Medicinal Plants of the World

Medicinal Plants of the World

Chemical Constituents, Traditional and Modern Medicinal Uses

Volume 2

By

Ivan A. Ross

Springer Science+Business Media, LLC

© 2001 Springer Science+Business Media New York Originally published by Humana Press Inc. in 2001

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permission from the Publisher. Methods in Molecular BiologyTM is a trademark of Springer Science+Business Media, LLC.

All authored papers, comments, opinions, conclusions, or recommendations are those of the author(s), and do not necessarily reflect the views of the publisher.

The author assumes no responsibility for, makes no warranty with respect to results that may be obtained from the uses or dosages listed, and does not necessarily endorse such uses, dosages, or procedures. The author is not liable to any person whatsoever for any damage resulting from reliance on any information contained herein, whether with respect to plant identification, uses, procedures, dosages, or by reason of any misstatement or error contained in this work. The author recognizes that there are differences in varieties of plants, the geographical location in which they are grown, growing conditions, stage of maturity, and method of harvesting and preparation.

This publication is printed on acid-free paper.
ANSI Z39.48-1984 (American Standards Institute)
Permanence of Paper for Printed Library Materials.

Cover design by Patricia F. Cleary

For additional copies, pricing for bulk purchases, and/or information about other Humana titles, contact Humana at the above address or at any of the following numbers: Tel.: 973-256-1699; Fax: 973-256-8341; E-mail: humana@humanapr.com; or visit our Website: http://humanapress.com

Photocopy Authorization Policy:

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Springer Science+Business Media, LLC, provided that the base fee of US \$10.00 per copy, plus US \$00.25 per page, is paid directly to the Copyright Clearance Center at 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license from the CCC, a separate system of payment has been arranged and is acceptable to Springer Science+Business Media, LLC. The fee code for users ofthe Transactional Reporting Service is: [0-89603-877-7/01 \$10.00 + \$00.25].

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging in Publication Data

Medicinal plants of the world:chemical constituents, traditional and modern medicinal uses/ by Ivan Ross.

p. cm. Includes index.

1. Medicinal plants--Encyclopedias. I. Title. RS164.R6761 2001 615'.32--dc21 98-34758

CIP

Preface

This second volume of the series *Medicinal Plants of the World* contains information on 24 plant species and 3225 references. It follows the pattern of the previous volume, which was warmly received in the scientific communities around the world. The reviews in the leading scientific periodicals commended the plan of work and offered suggestions for improvement. I have made use of those suggestions in this second volume of *Medicinal Plants of the World*, and I appreciated those suggestions since they were an encouragement to me in the continuation of this work. After learning of the need for more information regarding medicinal plants, I felt obligated to intensify my efforts to continue this work speedily, while at the same time maintaining its essential standards and character as a standard reference book.

Readers of the previous volume have pointed out the need for an index and for references to the chemical constituents. These needs have been met in this volume. There were also questions about the criteria for the choice of the plants. The volume of rapidly proliferating literature made it very difficult to decide on the plants to discuss. The criteria used in final selection of plants were the distribution and uses of the plant in developing countries where they are needed as a primary source of medicine, the amount of information available on the plant, and consumer interest.

I am grateful to all those who have contributed to this book. I count myself as greatly privileged to have their collaboration since their wisdom has made this possible. I wish to record my grateful appreciation of the cooperation that has been extended to me by the administrators of the NAPRALERT database at the University of Illinois, Chicago, IL, USA; The New York Botanical Garden, Bronx, New York, NY USA for access to the herbarium, and to Mrs. Richter and the staff at Richter's, The Herb Specialists, Goodwood, Ontario, Canada for their hospitality while photographing some of the plants in this volume. My appreciation goes to scientists around the world for their dedication to the exploration of the medicinal values of plants and for sharing their knowledge. Thanks also to those colleagues and friends who have helped with criticism and suggestions. I am especially grateful to Danna Owens and Louise Joseph for their work on the manuscript, and to Jennifer Carroll for editing the project. I sincerely hope that this series will help promote healthier nations, a better appreciation and utilization of plants, and more research to further medicine.

As in the case of the previous volume, every effort has been made to present all available information up to the time of publication.

Again, suggestions for improvement will be gratefully received and made use of in subsequent volumes.

Ivan A. Ross

Contents

Pre	race		V
1	Allium c	сера	
		Common Names	1
A		Botanical Description	2
		Origin and Distribution	2
4		Traditional Medicinal Uses	2
		Chemical Constituents	3
		Pharmacological Activities and Clinical Trials	6
		References	19
2	Althaea	officinalis	
		Common Names	37
	-	Botanical Description	37
•		Origin and Distribution	37
		Traditional Medicinal Uses	38
P		Chemical Constituents	38
_		Pharmacological Activities and Clinical Trials	39
		References	39
3	Anacaro	dium occidentale	
•	,	Common Names	43
1		Botanical Description	43
	k	Origin and Distribution	44
	1	Traditional Medicinal Uses	44
	-61	Chemical Constituents	44
14	*	Pharmacological Activities and Clinical Trials	46
		References	49
4	Ananas	comosus	
		Common Names	55
	MA	Botanical Description	55
		Origin and Distribution	56
1		Traditional Medicinal Uses	56
8		Chemical Constituents	57
2		Pharmacological Activities and Clinical Trials	59
100	1000	References	61

5	Angelica		
		Common Names	
	*	Botanical Description	
3		Origin and Distribution	67
	* 1	Traditional Medicinal Uses	67
2 Co		Chemical Constituents	68
etition.		Pharmacological Activities and Clinical Trials	68
		References	75
6	Azadirac	chta indica	
		Common Names	81
	100	Botanical Description	82
	EL-W	Origin and Distribution	82
1		Traditional Medicinal Uses	82
		Chemical Constituents	82
MA	100	Pharmacological Activities and Clinical Trials	
		References	
7	Echinace	ea angustifolia	
		Common Names	119
KA.	1	Botanical Description	119
	1	Origin and Distribution	119
	1	Traditional Medicinal Uses	119
		Chemical Constituents	121
.460		Pharmacological Activities and Clinical Trials	122
		References	125
8	Ephedra	sinica	
	•	Common Names	131
		Botanical Description	131
	12	Origin and Distribution	131
+	#//	Traditional Medicinal Uses	131
A	\boldsymbol{Y}	Chemical Constituents	131
No.		Pharmacological Activities and Clinical Trials	132
		References	135
9	Eucalypt	tus globulus	
		Common Names	
		Botanical Description	
3		Origin and Distribution	
		Traditional Medicinal Uses	
		Chemical Constituents	
8/4/8		Pharmacological Activities and Clinical Trials	
		References	148

10	Gink	go biloba	
		Common Names	157
4	V	Botanical Description	157
-	10 18	Origin and Distribution	157
28		Traditional Medicinal Uses	157
	214	Chemical Constituents	158
		Pharmacological Activities and Clinical Trials	162
		References	
11	Glycy	yrrhiza glabra	
	, ,	Common Names	191
		Botanical Description	191
-	All Sala	Origin and Distribution	191
0		Traditional Medicinal Uses	192
1	30.00	Chemical Constituents	193
		Pharmacological Activities and Clinical Trials	195
		References	
12	Hype	ericum perforatum	
	/	Common Names	241
16.22	÷.	Botanical Description	
	met a	Origin and Distribution	
	5414	Traditional Medicinal Uses	
計		Chemical Constituents	
NO. N	40000000000000000000000000000000000000	Pharmacological Activities and Clinical Trials	
		References	
13	Lauru	us nobilis	
		Common Names	261
A		Botanical Description	261
		Origin and Distribution	
		Traditional Medicinal Uses	262
1		Chemical Constituents	262
		Pharmacological Activities and Clinical Trials	264
		References	266
14	Lyco	persicon esculentum	
		Common Names	271
6	01	Botanical Description	271
		Origin and Distribution	271
	100	Traditional Medicinal Uses	272
	7.	Chemical Constituents	272
		Pharmacological Activities and Clinical Trials	274
		References	276

15	Matricaria chamomilla	
	Common Names	
	Botanical Description	
	Origin and Distribution	
3	Traditional Medicinal Uses	
	Chemical Constituents	
1555000	Pharmacological Activities and Clinical Trials	289
	References	297
16	Morinda citrifolia	
	Common Names	
	Botanical Description	309
3	Origin and Distribution	310
	Traditional Medicinal Uses	310
1	Chemical Constituents	311
-	Pharmacological Activities and Clinical Trials	312
	References	314
17	Musa sapientum	
	Common Names	319
	Botanical Description	319
	Origin and Distribution	320
	Traditional Medicinal Uses	320
63	Chemical Constituents	321
	Pharmacological Activities and Clinical Trials	321
	References	326
18	Myristica fragrans	
	Common Names	333
	Botanical Description	333
	Origin and Distribution	334
	Traditional Medicinal Uses	
	Chemical Constituents	335
	Pharmacological Activities and Clinical Trials	
	References	
19	Nelumbo nucifera	
	Common Names	353
9097	Botanical Description	353
5	Origin and Distribution	
	Traditional Medicinal Uses	
1	Chemical Constituents	
19	Pharmacological Activities and Clinical Trials	
	References	

20	Pimpi	inella anisum	
	•	Common Names	363
	-	Botanical Description	363
		Origin and Distribution	363
	130	Traditional Medicinal Uses	363
	10 1	Chemical Constituents	364
		Pharmacological Activities and Clinical Trials	
		References	368
21	Ricin	us communis	
		Common Names	375
	P. C.	Botanical Description	376
She.		Origin and Distribution	
31	0	Traditional Medicinal Uses	
		Chemical Constituents	
	1	Pharmacological Activities and Clinical Trials	
		References	
22	Tanac	cetum parthenium	
		Common Names	397
	2	Botanical Description	397
-3	The same of	Origin and Distribution	
雅		Traditional Medicinal Uses	
7		Chemical Constituents	
		Pharmacological Activities and Clinical Trials	
		References	
23	Tribu	lus terrestris	
_0		Common Names	411
		Botanical Description	
	1	Origin and Distribution	
ALL	N	Traditional Medicinal Uses	412
	A Non	Chemical Constituents	413
		Pharmacological Activities and Clinical Trials	414
		References	420
24	Vitex	agnus-castus	
		Common Names	427
	L	Botanical Description	427
. Š		Origin and Distribution	427
		Traditional Medicinal Uses	427
3	200	Chemical Constituents	428
	1. 1.	Pharmacological Activity and Clinical Trials	430
		References	432

Cross Reference	437
Glossary	459
Index	471

List of Color Plates

Color plates appear as an insert following page 242.

- Plate 1. Allium cepa.
- Plate 2. Althaea officinalis.
- Plate 3. Anacardium occidentale.
- Plate 4. Ananas comosus.
- Plate 5. Angelica sinensis.
- Plate 6. Azadirachta indica.
- Plate 7. Echinacea angustifolia.
- Plate 8. Ephedra sinica.
- Plate 9. Eucalyptus globulus.
- Plate 10. Ginkgo biloba.
- Plate 11. Glycyrrhiza glabra.
- Plate 12. Hypericum perforatum.
- Plate 13. Laurus nobilis.
- Plate 14. Lycopersicon esculentum.
- Plate 15. Matricaria chamomilla.
- Plate 16. Morinda citrifolia.
- Plate 17. Musa sapientum.
- Plate 18. Myristica fragrans.
- Plate 19. Nelumbo nucifera.
- Plate 20. Pimpinella anisum.
- Plate 21. Ricinus communis.
- Plate 22. Tanacetum parthenium.
- Plate 23. Tribulus terrestris.
- Plate 24. Bitex agnus-castus.

1 Allium cepa

Common Names

Basal	Jordan	Oignon	Vietnam
Basal	Yemen	Onion	Europe
Basl	Arabic Countries	Onion	Netherlands
Basl	Saudi Arabia	Onion	Brazil
Bassal	Egypt	Onion	Egypt
Bermuda onion	USA	Onion	Greece
Bsal	Morocco	Onion	Guyana
Ceba	France	Onion	India
Cebo	France	Onion	Iran
Cebolla morada	Mexico	Onion	Japan
Cebolla	Guatemala	Onion	Kuwait
Cebolla	Nicaragua	Onion	Mexico
Cebolla	Peru	Onion	Nepal
Cepa bulb	Kuwait	Onion	Nicaragua
Cepolla	Italy	Onion	Tanzania
Cipolla	Italy	Onion	USA
Common onion	Kuwait	Onion	USSR
Cu hanh	Vietnam	Piaz	Iran
Hom khaao	Thailand	Piyaj	Fiji
Hom yai	Thailand	Piyaj	India
Hua phak bua	Vietnam	Piyaz	Fiji
Hu-tsung	China	Pyaz	India
I-bsel	Tunisia	Pyaz	Nepal
Inyan	Nicaragua	Red globe onion	USA
Khtim	Vietnam	Sebuya	Nicaragua
Kitunguu	Tanzania	Shallot	China
L'oignon	West Indies	Sibuyas	India
Loyon	West Indies	Sogan	Turkey
Madras onion	West Indies	Spanish onion	USA
Oignon	Rodrigues Islands	Vengayam	India
Oignon	France	White globe onion	USA
Oignon	Tunisia	Yellow onion	USA

From: Medicinal Plants of the World, vol. 2: Chemical Constituents, Traditional and Modern Uses By: Ivan A. Ross Humana Press Inc., Totowa, NJ

BOTANICAL DESCRIPTION

A herbaceous biennial monocot with leaves that consist of a blade and sheath; the blade may or may not be distinctive. The sheath develops to encircle the growing point and forms a tube that encloses younger leaves and the shoot apex. Young leaves grow up through the center of the sheath of the preceding leaf. Leaves are initiated alternately and opposite each other. The leaf blades are tubular, slightly flattened on the adaxial side, and although hollow, are closed at the tip. Bulbs are uniform in shape, size, and skin color. Shapes range from spherical to nearly cylindrical and include flat and cone-like bulbs. Skin variation is considerable, as is skin color, which may be white, yellow, brown, red, or purple. The terminal inflorescence develops from the ring-like apical meristem. Scapes, one to several, generally elongate well above the leaves and range in height from 30 cm to more than 100 cm. The scape is the stem internode between the spathe and the last foliage leaf. A spherical umbel is borne on each scape and can range from 2 cm to 15 cm in diameter. The umbel is an aggregate of flowers at various stages of development; usually it consists of 200-600 small individual flowers, but this number can range from 50 to more than 1000. Flowers are perfect, having 6 white petals, 6 stamens, and a 3carpel pistil. Seeds are black, irregularly shaped, and relatively small; about 250 seeds weigh 1 gram.

ORIGIN AND DISTRIBUTION

An old species that originated in central Asia, the onion was cultivated in India about 600 BC. It is now cultivated throughout the world. Although temperate in origin, it has been bred to adapt to the tropics.

TRADITIONAL MEDICINAL USES

Arabic countries. The dried bulb is used orally as a contraceptive, externally as a lini-

ment, and as an emmenagogue in the form of a pessary in Unani medicine^{ACO265}.

Brazil. Hot water extract of the fresh bulb is taken orally to treat hypertension or to induce diuresis^{ACO294}.

Egypt. The roasted bulb is used intravaginally as a contraceptive, before and after coitus^{ACO338}.

Europe. The bulb is taken orally to induce menses^{ACO105}.

Fiji. Fresh bulb juice is applied ophthalmically to improve eyesight; aurally for earache (juice warmed with coconut oil is dropped in the ear). The fresh bulb is eaten raw with salt for stomachache^{ACO295}.

Germany. Fresh bulb juice is used externally as an anti-inflammatory agent on insect bites and for bronchitis^{ACO288}. Hot water extract of the bulb is taken orally to induce miscarriage^{ACO101}.

Greece. Warm bulbs are applied externally to treat furuncles^{ACO161}.

Guatemala. Hot water extract of the dried bulb is used externally for wounds, ulcers, bruises, sores, skin diseases, irritations and eruptions, erysipelas and burns^{ACO318}.

India. The bulb is taken orally as an emmenagogue^{ACO104}. The hot water extract is taken orally by women as an emmenagogue^{AC0344}. Butanol extract of the bulb is taken orally for asthma. Hot water extract of the bulb is taken orally by men and women as an aphrodisiac. Butanol extract of the bulb is taken orally as an expectorant and diuretic^{AC0223}. The dried seed is used as an abortifacient; 3 parts of the seed, 3 parts of Punica granatum root, 2 parts of Cajanus cajan and red lead oxide are taken with honey. For abortion, the vaginal region is fumigated with feces of wild pigeon and seeds of Allium cepa^{ACO298}. Hot water extract of the seed is taken orally as an emmenagogue^{AC0309}. Fresh fruit juice, mixed with the juice of Achyranthes bidentata leaves is taken orally every 2 hours for cholera^{AC0284}. Hot water extract of the fresh bulb is taken orally for diabetes^{ACO118}, dysentery and fever^{ACO270}. The leaf juice is administered ophthalmically to treat jaundice^{ACO170}. **Italy.** The bulb is taken orally for menstrual and uterine pains^{ACO322}. Decoction of the dried shoot is taken orally as a cicatrizing agent and to treat insect bites^{ACO331}. Hot water extract of the dried bulb is used for inflammation^{ACO193}. The decoction is used externally as a cicatrizing agent^{ACO331}. The raw bulb is eaten to improve eyesight^{ACO322}. Wine extract of the fresh bulb is taken orally for renal function and urinary disease; externally it is used for boils and whitlows^{ACO325}. The bulb is eaten for gastronomic purposes^{ACO331}.

Japan. The fresh bulb is used as a regular part of the diet^{ACO163}.

Kuwait. The bulb is taken orally as an emmenagogue and aphrodisiac^{ACO176}.

Malaysia. The bulb is taken orally for amenorrhea^{ACO106}.

Mexico. Decoction of the dried leaf, together with *Pimpinella anisum* and *Allium sativum*, is given orally to newborn infants^{ACO280}. The root is taken orally to facilitate expulsion of the placenta^{ACO138}.

Nepal. The fresh bulb is taken orally for tuberculosis. Five hundred grams of the leaf of *Adhatoda vasica* is decocted in 5 liters of water until a dark brown mass remains. Half a teaspoonful of this drug is taken with honey and 10 grams *Allium cepa* twice daily for 6 months^{ACO213}.

Nigeria. The fresh bulb is taken orally as a carminative, tonic, antipyretic, hypotensive and diuretic^{ACO264}.

Peru. Hot water extract of the fresh bulb is taken orally to regulate blood pressure, dropsy, urinary problems, renal and biliary calculi, bronchitis and as an antidiabetic. Externally, the extract is used for acne^{ACO317}. **Philippines.** Butanol extract of the dried

bulb is taken orally to treat high blood pressure^{ACO292}.

Saudi Arabia. Hot water extract of the fresh bulb is taken orally for diabetes, dropsy, colic, catarrh, chronic bronchitis, scurvy, body

heat, epilepsy, hysterical fits, nosebleed, jaundice, unclear vision, spleen enlargement, rheumatic pain and strangury^{ACO205}. Hot water extract of the dried bulb is taken orally for diabetes, dropsy, colic, catarrh, chronic bronchitis, scurvy, epileptic fits, hysterical fits, epistasis, jaundice, enlarged spleen, rheumatic pain and strangury^{ACO293}.

Thailand. Fresh bulb essential oil, administered by inhalation, is used for the treatment of colds. The bulb is taken orally for gastrointestinal infections^{AC0222}.

Tunisia. The dried bulb is taken orally as an antiphlogistic, and is applied externally to treat infections^{ACO279}.

USA. The fresh bulb is taken orally as a sedative, blood purifier and expectorant ACO374.

Vietnam. The bulb is taken orally as an emmenagogue^{ACO107}.

West Indies. Bulb juice with sugar is given to children for worms^{ACO232}.

Yemen. Hot water extract of the plant is used medicinally^{AC0274}.

Yugoslavia. Hot water extract of the fresh bulb is taken orally for diabetes^{AC0242}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

(+)L-S-Prop-1-enyl-cysteine-s-oxide: Bu 25.8^{AC0376}

1(F)-beta-fructosyl-sucrose: Bu^{AC0359}

1-Methyl-dithio-propane: EO^{AC0245}

1-Methyl-trithio-propane: EO^{AC0245}

1-Propyl-dithio-propane: EOAC0245

1-Propyl-trithio-propane: EO^{AC0245}

2-Methyl-but-2-en-1-al: Bu^{AC0379}

2-Methyl-butyr-2-aldehyde: Bu^{AC0370}

2-Methyl-penten-2-al: Headspace volatiles^{AC0146}

2-Methyl-penten-2-en-1-al: EO^{AC0245}

4-Alpha-methyl-zymostenol: Bu^{AC0260}

4-S-Oxide(trans)dec-2-ene,5-ethyl-4,6,7-Trithia (diastereomer): Bu^{AC0121}

4-S-Oxide(trans)dec-2-ene,5-ethyl-4,6,7-trithia: Bu^{AC0121}

4-S-Oxide(trans/cis)deca-2,8-diene,5-ethyl-4,6,7-thithia (diastereomer): Bu^{AC0121}

4-S-Oxide(trans/cis)deca-2,8-diene,5-ethyl-4,6,7-thithia: Bu^{AC0121}

4-S-Oxide(trans/trans)deca-2,8-diene,5ethyl-4,6,7-thithia (diastereomer): Bu^{ÁC0121}

4-S-Oxide(trans/trans)deca-2,8-diene,5ethyl-4,6,7-thithia: Bu^{AC0121}

5-Dehydroavenasterol: Sd^{AC0204}

6(G)-Beta-fructosyl-sucrose: Bu^{AC0359}

2,3-Dimethyl-bicyclo(2,2,1)hexane-5-oxide-5,6-dithia(1,2,3,4-alpha-5-beta): Bu^{AC0121}

2,3-Dimethyl-thiophene: Bu^{AC0183}

2,4-Dimethyl-thiophene: Bu^{AC0183}, EO^{AC0245}

24-Methylene cycloartanol: Bu^{AC0260}

2,5-Dimethyl-thiophene: EOAC0245

28-Iso-fucosterol: Bu^{AC0260}

31-Nor-cycloartenol: Bu^{AC0260}

31-Nor-lanostenol: BuAC0260

3,4-Dimethyl-2,5-dioxo-2,5dihydrothiophene: EO^{AC0245}

3,4-Dimethyl-thiophene: EOAC0245

9,10,13-Trihydroxy-octadec-11-enoic acid: Bu^{AC0198}

9,12,13-Trihydroxy-octadec-10-enoic acid: Bu^{AC0198}

Abscisic acid: Bu^{AC0257}

Acetal: BuAC0379

Acetic acid: BuAC0370 Adenosine: Bu^{AC0277,AC0208}

Allicin: Bu^{AC0258,AC0208}

Alliin gamma-glutamyl peptide: BuAC0162

Alliin: Bu^{AC0182,AC0162}

Alliospiroside B: Fr 0.05%^{AC0119} Alliospiroside C: Fr 0.05% AC0120 Alliospiroside D: Fr 71.4^{AC0120}

Allium cepa polysaccharide: Bu^{AC0177}

Allyl-methyl-disulfide: Headspace volatiles^{AC0146}

Allyl-propyl-disulfide: Bu^{AC0146,AC0126}

Allyl-propyl-sulfide: Headspace

volatiles^{AC0146}

Allyl-propyl-trisulfide: Headspace

volatiles^{AC0146}

Alpha amyrin: BuAC0237

Alpha linolenic acid: BuACO189 Alpha-sitosterol: Bu^{AC0237}

Alpha-tocopherol: Sd oil^{AC0185}. Bu^{AC0249}

Arabinose: Bu^{AC0368}

Arachidic acid: Sd oil^{AC0196} Ascorbic acid: Bu^{AC0181}, Lf^{AC0249} Benzyl-iso-thiocyanate: Bu^{AC0288} Beta carotene: Bu 0.01^{AC0145} Beta-sitosterol: Bu^{AC0260}, Sd^{AC0204} Beta-tocopherol: Sd^{AC0185} Brassicasterol: Sd^{AC0204}

Butane-cis-1-cis-4-dithial-S-S-dioxide, 2, 3-

dimethyl: Bu^{AC0370}

Caffeic acid: BuAC0373, Rt, LfAC0365

Calcium oxalate: BuAC0112 Campesterol: Sd^{AC0204}, Bu^{AC0260}

Carotene: Fl 28AC0384 Catechol: Bu^{AC0386}

Cepaene 1: Bu^{AC0385,AC0329} Cepaene 2-A: Bu^{AC0385} Cepaene 2-B: Bu^{AC0385} Cepaene 3: Bu^{AC0385} Cepaene 4-A: Bu^{AC0385}

Cepaene 4-B: Bu^{AC0385} Cholest-7-en-3-beta-ol: BuAC0260 Cholesterol: Sd^{AC0204}, Bu^{AC0127,AC0260}

Choline: Bu 0.08%AC0348

Cis-1-(1-propenyl-dithio)-propane: EOAC0245

Cis-Propanethial-s-oxide: BuAC0224

Cis-zweibelane: Bu^{AC0160} Citric acid: Bu, LfAC0367 Cyanidin bioside: Bu^{AC0382} Cyanidin diglycoside: Bu^{AC0382} Cyanidin monoglycoside: Bu^{AC0382}

Cyanidin-3-O-laminariobioside: Bu^{AC0129} Cyclo-(2,1,1)-heptane-5-oxide,cis-2,3dimethyl-5,6-dithia: BuACO197

Cyclo-(2,1,1)-heptane-5-oxide,trans-2,3-

dimethyl-5,6-dithia: Bu^{AC0197}

Cycloalliin: Bu^{AC0162} Cycloartanol: Bu^{AC0260} Cycloartenol: Bu^{AC0260} Cycloeucalenol: Bu^{AC0260} Cysteine: Bu^{AC0162}

Di-n-propyl-disulfide: Bu^{AC0379} Diallyl-disulfide: EO^{AC0372} Diallyl-sulfide: EOAC0372 Diallyl-trisulfide: EO^{AC0372}

Dimethyl-disulfide: EOAC0144, Headspace

volatiles^{AC0146}

Dimethyl-pentasulfide: EOAC0144 Dimethyl-sulfide: EO^{AC0372} Dimethyl-tetrasulfide: EO^{AC0144}

Dimethyl-trisulfide: EO^{AC0372,AC0144} Bu^{AC0371} Diphenylamine: Bu 0.004-1.1% AC0184, AC0167

Dipropyl-disulfide: Headspace

volatiles^{AC0146}

Dipropyl-tetrasulfide: EO^{AC0144} Dipropyl-trisulfide: EO^{AC0144,AC0146}

DNA: Bu^{AC0238}

Eicosen-1-ol: Sd oil^{AC0185}

Ethanol: Bu^{AC0370,AC0379}

Ferulic acid: Bu^{AC0373}, Rt, Lf^{AC0365} Fixed oil: Sd 17.3-18.1%^{AC0185}

Fructose: Lf, Bu^{AC0249}

Gamma-glutamyl leucine: Bu^{AC0362} Gamma-glutamyl-S-(Beta-carboxy-Beta-

methyl-ethyl)-cysteinyl glycine, Bu^{AC0360}

Gamma-L-glutamyl cysteine: Bu^{AC0362}

Gamma-L-glutamyl-L-iso-leucine: Bu^{AC0362} Gamma-L-glutamyl-L-valine: Bu^{AC0362}

Gamma-L-glutamyl-S-(2-carboxy-N-propyl)cysteine; Bu^{AC0357}

Gamma-L-glutamyl-S-(2-carboxy-propyl)-L-

cysteinyl glycine ethyl ester: Bu^{AC0362} Gamma-L-glutamyl-s-propenyl cysteine

sulfoxide: Bu^{AĆ0361}

Gibberellin A-4: Rt^{AC0366} Glucofructan (Allium cepa): Bu^{AC0186}

Glucose: Lf, Bu^{AC0249} Glutamic acid: Bu^{AC0165} Glutathione: Bu^{AC0162} Glycine: Bu^{AC0165} Glycolic acid: Bu^{AC0380} Gramisterol: Bu^{AC0260}

Hexadecen-1-ol: Sd oil^{AC0185}

Iso-quercitrin: Bu^{AC0187}

Iso-rhamnetin 4'-O-beta-D-glucoside:

Iso-rhamnetin: Bu^{AC0174}

Kaempferol: Skin^{AC0346}, Bu 2^{AC0151}

Kaempferol-3,4'-di-O-beta-D-glucoside:
Bu^{AC0267}

Kaempferol-3-0-sophoroside-7-0-glucuronide: Epidermis^{AC0122}

Kaempferol-4',7-di-O-beta-D-glucoside: Bu^{AC0267}

Kaempferol-4'-0-beta-D-glucoside: Bu^{AC0267,AC0190}

L-2-Propenyl-cysteine sulfoxide: Bu^{AC0165}

L-Gamma-glutamyl-phenylalanine ethyl ester: Bu^{AC0360}

L-Gamma-glutamyl-phenylalanine: Bu^{AC0360} Gamma-L-glytamyl-L-arginine: Bu^{AC0357} L-Methyl-cysteine sulfoxide: Bu^{AC0165}

Linoleic acid: Sd oil 57.5-59.1%^{AC0337,AC0185}

Lophenol: Bu^{AC0260} Lutein: Bu 0.02^{AC0145} Malic acid: Bu, Lf^{AC0367}

Melatonin: Bu 31.5 pcg/gm^{AC0163} Methanol: Lf^{AC0135}, Bu^{AC0370},AC0379

Methionine methylsulfonium salt: Bu^{AC0378}

Methionine sulfone: Bu^{AC0378}

Methionine: Bu^{AC0162}

Methyl,1-(methyl-sulfinyl)-propyl-disulfide:
Bu^{AC0191}

Methyl-dithio-methane: EO^{AC0245} Methyl-propyl-disulfide: EO^{AC0144}, Headspace volatiles^{AC0146}

Methyl-propyl-tetrasulfide: EO^{AC0144} Methyl-propyl-trisulfide: EO^{AC0144},

Headspace volatiles^{AC0146} Mevalonic acid: Bu 0.5^{AC0383} Myristic acid: Sd oil^{AC0196} N-Propyl mercaptan: Bu^{AC0133} Nonadecanoic acid: Bu^{AC0136} Oleanolic acid: Bu^{AC0237,AC0368}

Oleic acid: Sd oil 26-29%^{AC0337,AC0185}, Bu^{AC0189}

Onion coat colorant: Bu^{AC0149} Oxalic acid: Bu, Lf^{AC0268}

Palmitic acid: Sd oil 7.3%^{AC0337}, Bu^{AC0189} Para-coumaric acid: Bu, Lf, Rt^{AC0365}

Para-hydroxybenzoic acid: Lf, Rt, Bu^{AC0365} Pelargonidin monoglycoside: Bu^{AC0382} Phloroglucinol carboxylic acid: Bu 100^{AC0373}

Phloroglucinol: Bu 100^{AC0373} Prop-cis-enyl-disulfide: Bu^{AC0183}

Prop(cis)enyl-propyl-disulfide: Headspace volatiles^{AC0146}

Prop-(cis)-enyl-propyl-trisulfide: Headspace volatiles^{AC0146}

Prop-(trans)-enyl-propyl-disulfide: Headspace volatiles^{AC0146} Prop-1-ene-1-thiol: Headspace

volatiles^{AC0146}

Prop-(trans)-enyl propyl-trisulfide: Bu^{AC0146} Propan-1-ol: Bu^{AC0370}

Propane-1-thiol: Bu^{AC0379}

Propanethiol: Headspace volatiles AC0146

Propional: Bu^{AC0379}

Propional debydo: LfAC0135 BuAC0

Propionaldehyde: Lf^{AC0135}, Bu^{AC0370} Prostaglandin A: Bu^{AC0243}

Prostaglandin A-1: Bu 1^{AC0229} Prostaglandin B: Bu^{AC0243} Prostaglandin E-1: Bu^{AC0189} Prostaglandin F: Bu^{AC0243}

Protocatechuic acid: LfAC0365, Bu 0.45%AC0373

Pyrocatechol: Bu^{AC0373} Pyruvic acid: Bu^{AC0225}

Quercetin: Bu 0.01-4.8% AC0276, AC0353 Quercetin-3, 4'-di-O-Beta-D-glucoside:

Quercetin-3-O-sophoroside-7-O-glucuronide: Epidermis^{AC0122}

Quercetin-4',7-di-O-beta-D-glucoside: Bu^{AC0267}

Quercetin-4-O-beta-D-glucoside: Bu^{AC0125}

Raffinose: Bu, LfAC0249 Rhamnose: Bu^{AC0368} Ribose: Bu^{AC0368} Rutin: Bu^{AC0174}

S-(2-Carboxy-propyl) glutathione: Bu 125 mcg/gm^{AC0201}

S-(beta-carboxy-beta-methyl-Lethyl)cysteine: BuAC0360

S-1-cis-propenyl ester methyl sulfinothioic acid: Bu^{AC0197}

S-1-Cis-propenyl ester propyl sulfinothioic acid: Bu^{AC0197}

S-1-Propenyl ester n-propyl sulphinothioic acid(cis): Bu^{AC0121}

S-1-Propenyl ester n-propyl sulphinothioic acid(trans): BuAC0121

S-1-Trans-propenyl ester methyl sulfinothioic acid: Bu^{AC0197}

S-1-Trans-propenyl ester propyl sulfinothioic acid: Bu^{AC019}

S-Allyl-cysteine: Bu^{AC0378}

S-Methyl-cysteine sulfoxide: Bu^{AC0159}

S-N-Propyl ester N-propyl sulphinothioic acid: Bu^{AC0121}

S-Propyl ester propyl sulfinothioic acid: Bu^{AC0121}

S-Propyl-cysteine sulfoxide: Bu^{AC0378}

Satiomem: Bu^{AC0124}

Seleno methionine: PIAC0132 Seleno homo-cystine: Pl^{AC0132}

Seleno-methyl-seleno cysteine selenoside: PIAC0132

Seleno-methyl-seleno cysteine: Pl^{AC0132} Seleno-methyl-seleno methionine: Pl^{AC0132} Sinapic acid: Lf, Bu, RtAC0365

Sodium prop-(cis)-1-enyl-thiosulfate: Bu^{AC0123}

Sodium prop-(trans)-1-enyl-thiosulfate: Bu^{AC0123}

Sodium propyl-thiosulfate: Bu^{AC0123}

Spiraeoside: Bu 1.13%^{AC0353}

Stearic acid: Sd oil 3.5% AC0353, BuAC0267

Stigmast-7-en-3-beta-ol: Sd^{AC0204} Stigmasterol: Bu^{AC0127}, Sd oil^{AC0185}

Succinic acid: Bu, LfAC0367 Sucrose: Lf, Bu^{ACO249}

Sugars: Bu^{AC0225}

Thiopropanal-S-oxide: Bu^{AC0369} Thiopropional-S-oxide: BuAC0379 Trans-1-(1-propenyl-dithio)-propane: EO^{AC0245}

Trigonelline: Sd 13^{AC0302} Tseposide A: Sd^{AC0204} Tseposide B: Sd^{AC0204} Tseposide C: Sd^{AC0204} Tseposide D: Sd^{AC0204} Tseposide E: Sd^{AC0204} Tseposide F: Sd^{AC0204} Tuliposide A: Rt^{AC0134} Tuliposide B: Rt^{AC0134} Valine: Bu^{AC0165} Xylitol: Bu^{AC0175} Xylose: Bu^{AC0368} Zeaxanthin: BuAC0145

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Abortifacient effect. Ethanol/water (1:1) extract of the seed, administered orally to female rats at a dose of 200.0 mg/kg, was inactive^{AC0335}.

Acid phosphatase inhibition. Water extract of the fresh bulb, in the ration of rabbits at a concentration of 20.0% of the diet, was active. The study was conducted for 6 months in cholesterol-loaded animals^{AC0251}. Water extract of the fresh bulb and the fresh bulb, administered intragastrically to rats, were active on RBCAC0320.

Adenosine deaminase inhibition. Sap of the fresh bulb, at a concentration of 10.0 microliters, was inactive^{AC0330}.

Aflatoxin production inhibition. Water extract of the fresh bulb, at a concentration of 1.0 mcg/ml, was active on Aspergillus flavus. Aflatoxin B-1 production was inhibited 44.80%. On agar plate, a concentration of 250.0 mcg/ml was active. Aflatoxin B-1 production was inhibited 60.44%^{ACO143}. **Alanine racemase inhibition.** Lyophilized extract of the fresh bulb, in the ration of chicken at a concentration of 2.0% of the diet, was active. Cu-Zn superoxide dismu-

tase activity was inhibited^{AC0141}. Alkaline phosphatase inhibition. Water extract of the fresh bulb, in the ration of rabbits at a concentration of 20.0% of the ALLIUM CEPA 7

diet, was active. The study was conducted for 6 months in cholesterol-loaded animals^{AC0251}. Water extract of the fresh bulb and the fresh bulb, administered intragastrically to rats, were active on RBCACO32O Alkaline phosphatase stimulation. The fresh bulb, in the ration of rats at a concentration of 3.0% of the diet, was inactive^{AC0150}. Allergenic activity. Acetone and water extracts of the bulb, applied by patch test to 3 subjects, were inactive. The ethanol (95%) extract was active ACD230. Aqueous slurry (homogenate) of the fresh bulb, applied externally to female adults, was active. Case reports of bronchial asthma, rhinoconjunctivitis and contact dermatitis were confirmed by skin tests^{AC0158}.

Alpha amylase inhibition. Water extract of the bulb was active^{AC0226}.

Analgesic activity. Ethanol (70%) extract of the fresh bulb, administered intraperitoneally to mice of both sexes at variable dosage levels, was active^{ACO264}.

Antifungal activity. The essential oil, on agar plate, was active on several plant pathogenic fungi^{ACOIII}.

Antiallergenic activity. Ethanol (95%) extract of the fresh bulb was active on adults^{ACO215}. Water extract of the fresh bulb, in cell culture at a concentration of 100.0 microliters/ml, was inactive on LEUK-RBL 3H3 vs biotinylated anti-DNP IgE/avidin-induced beta-hexosaminidase release^{ACO166}. Antianaphylactic activity. Ethanol (95%) extract of the bulb, administered intraperitoneally to guinea pigs at a dose of 50.0 mg/kg, and orally at a dose of 100.0 mg/kg, was active vs egg albumin sensitization^{ACO223}.

Antiascariasis activity. Water extract of the bulb, at a concentration of 10.0 mg/ml, was active on earthworms^{A05682}.

Antiasthmatic activity. The bulb, taken orally by human adults at variable dosage levels, was active. The study involved 100 patients with bronchial asthma^{ACO254}. Chloroform and ethanol (95%) extracts of the

dried bulb were active in adults^{ACD276}. Ethanol (95%) extract of the bulb, taken orally by 300 asthma patients of both sexes at a dose of 500.0 mg/person, was active^{AC0223}. Ether extract of the fresh bulb, administered intragastrically to guinea pigs at a dose of 100.0 mg/kg, was active vs allergen-induced asthmatic reactions and platelet activating factor-induced asthmatic reactions, and inactive vs histamine-induced asthmatic reactions and acetylcholine-induced asthmatic reactions^{AC0207}. Ethanol (95%) extract of the fresh bulb, administered by gastric intubation to guinea pigs at a dose of 1.0 ml/animal, was active vs allergen-induced bronchial asthma. Results significant at p < 0.02 level. The extract was inactive vs histamine- and acetylcholine-induced bronchial asthma. The water extract was inactive vs allergen-induced bronchial obstruction. Lipid fraction produced weak activity vs allergen-induced bronchial obstruction. Results significant at p < 0.05 level^{AC0288}.

Antiatherosclerotic activity. Butanol extract of the dried bulb, taken orally by human adults, was active. The treatment prevented the total rise in serum cholesterol, B-lipoprotein cholesterol, B-lipoprotein and serum triglycerides in patients with alimentary lipemia^{ACO273}.

Antibacterial activity. Infusion of the fresh bulb, in broth culture, was inactive on Bacteroides melaninogenicus, MIC 125.0 mg/ml; Bifidobacterium longum, MIC 15.6 mg/ml; Clostridium paraputrificum, MIC 15.6 mg/ml; Bacteroides vulgaris, MIC 31.2 mg/ ml; Eubacterium limosum, MIC 31.2 mg/ml; Fusobacterium nucleatum, MIC 31.2 mg/ml; Peptostreptococcus productus, MIC 31.2 mg/ ml; Bacteroides fragilis, MIC 62.5 mg/ml; Clostridium perfringens, MIC 62.5 mg/ml; Eubacterium lentum, MIC 62.5 mg/ml; Serratia marcescens, MIC >25.0 mcg/ml; Acinetobacter calcoaceticus, MIC >625.0 mcg/ml; Citrobacter freundii, MIC >625.0 mg/ml; Pseudomonas aeruginosa, MIC 625.0 mcg/ml and Streptococcus faecalis, MIC 625.0 mg/ ml. The infusion was active on Staphylococcus aureus, MIC 39.0 mcg/ml; Staphylococcus aureus 25923, MIC 3.9 mg/ml; Propionibacterium acnes MIC 7.8 mg/ml and Propionibacterium intermedium, MIC 7.8 mg/ml. The petroleum ether extract was active on Clostridium paraputrificum, MIC 20.0 mcg/ ml and Staphylococcus aureus 25923, MIC 312.0 mcg/ml; inactive on Propionibacterium intermedium, MIC 625.0 mcg/ml and produced weak activity on Bifidobacterium longum, MIC 78.0 mcg/ml and Propionibacterium acnes, MIC 78.0 mg/ml^{AC0195}. The fresh bulb juice, on agar plate, produced weak activity on Staphylococcus aureus^{AC0351}. The fresh bulb, on agar plate, was inactive on Escherichia coli and Staphylococcus aureus, MIC 7.5 mg/ml. The chloroform extract was inactive on Escherichia coli and Staphylococcus aureus, MIC >6.0 mg/ml^{AC0327}. Undiluted juice of the fresh bulb, on agar plate, was active on Bacillus subtilis, Pseudomonas aeruginosa and Salmonella typhosa^{AC0363}. Tincture of the dried bulb (10 gm of plant material in 100 ml ethanol), on agar plate at a concentration of 30.0 microliters/disc, was inactive on Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus^{AC0318}. Water extract of the bulb, on agar plate at a concentration of 1:16, was active on Escherichia coli and Serratia marcescens, and inactive on Pseudomonas aeruginosa. A concentration of 1:256 was active on Streptococcus sanguis; 1:32 was active on Lactobacillus odontolyticus and inactive on Serratia marcescens; 1:64 was active on Streptococcus milleri. Undiluted concentration produced weak activity on Bacillus cereus, Entobacter cloacae and Streptococcus hominis ACO266. Water extract of the bulb, on agar plate, was active on Escherichia coli and Streptococcus faecalis^{ACO387}. Water extract of the dried bulb, on agar plate, was active on Bacillus mycoides, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus. The extract was inactive on Proteus

vulgaris^{ACO220}. Water extract of the fresh bulb was inactive on Escherichia coli and Micrococcus luteus ACO172.

Anticholesterolemic activity. Water extract of the fresh bulb, in the ration of rabbits at a concentration of 20.0% of the diet, was inactive. The study was conducted for 6 months in cholesterol-loaded animals^{ACO251}. The fresh bulb, administered orally to rabbits, was active. Hypercholesterolemic rabbits that were fed a cholesterol and onion extract diet had a lower level of total lipids, cholesterol and phospholipids in the eyes than those fed only cholesterol. This level was similar to the control group^{AC0269}. Anticlastogenic activity. Bulb juice, administered intragastrically to mice at a dose of 25.0 ml/kg, was active on bone marrow cells vs mitomycin C-, dimethylnitrosamine-, and tetracycline-induced micronuclei^{AC0157}.

Anticoagulant activity. Butanol extract of the fresh bulb, taken orally by adults at a dose of 200.0 gm/person, was active. The subjects consumed a high fat meal prior to testing ACO296.

Anticonvulsant activity. Ethanol (70%) extract of the fresh bulb, administered intraperitoneally to mice of both sexes at variable dosage levels, was active vs metrazole-and strychnine-induced convulsions^{ACO264}. **Anticrustacean activity.** Ethanol (95%) extract of the dried bulb was inactive on *Artemia salina*. The assay system was intended to predict for antitumor activity^{ACO142}.

Antiedema activity. Methanol extract of the bulb, applied on the ears of mice at a dose of 2.0 mg/ear, was active vs 12-0-tetradecano-ylphorbol-13-acetate (TPA)-induced ear inflammation. Inhibition ratio (IR) was 15^{ACO148}. Antifertility effect. Hot water extract of the dried bulb scales, at a concentration of 20% in the drinking water, and administered intraperitoneally at variable dosage levels, was equivocal in pregnant mice^{ACO311}. Antifilarial activity. The fresh bulb was active on Setaria digitata, LC₁₀₀ 7000 ppm^{ACO320}.

ALLIUM CEPA 9

Antifungal activity. Water extract of the fresh leaf, on agar plate, produced weak activity on Ustilago maydis^{AC0282}. Acetone extract of the dried entire plant inhibited spore germination of Helminthosporium turcicum^{AC0179}. Bulb essential oil, at a concentration of 10.0%/disc on agar plate, was active on Geotrichum candidum^{ACO275}. Essential oil of the bulb, on agar plate at variable concentrations, was active on Cladosporium werneckii^{AC0259}. Ethanol/water (1:1) extract of the bulb, on agar plate at a concentration of 1042 mg/ml (expressed as dry weight of plant), was active on Aspergillus niger, and inactive on Aspergillus fumigatus, Botrytis cinerea, Penicillium digitatum, Rhizopus nigricans and Trichophyton mentagrophytes^{AC0324}. A concentration of 500 mg/ml was active on Fusarium oxyporum, and inactive on Aspergillus fumigatus, Aspergillus niger, Botrytis cinerea, Penicillium digitatum, Rhizopus nigricans and Trichophyton mentagrophytes^{AC0305}. Ethanol/ water (50%) extract of the dried leaf was active on Rhizoctonia solani. Mycelial inhibition was 52.90% ACO326. The fresh bulb, on agar plate, was active on Nannizzia fulva, Nannizzia gypsea and Nannizzia incurvata^{AC0388}. Water extract of the bulb, at a concentration of 250.0 mcg/ml on agar plate, was active on Aspergillus flavus; growth was inhibited 52.35% ACO143. The fresh bulb, on agar plate, was inactive on Trichophyton andouinii, Trichophyton rubrum, Trichophyton schoenleini and Trichophyton tonsurans, MIC 1000 mcg/ml; Aspergillus fumigatus, MIC 2000 mcg/ml; Microsporum canis, MIC 500 mcg/ml and Trichophyton mentagrophytes, MIC >1000 mcg/ml^{AC0327} .

Antihistamine activity. Ethanol (95%) extract of the bulb, administered orally to guinea pigs at a dose of 200.0 mg/kg, and intraperitoneally at a dose of 50.0 mg/kg, was active vs histamine aerosol^{ACO223}.

Antihypercholesterolemic activity. The bulb juice, administered orally to rabbits, was active. The animals were fed a high

cholesterol diet, and the juice of 25 gm of onion/kg of body weight daily for 16 weeks^{AC0234}. The bulb, taken orally by human adults at a dose of 100.0 gm/person, was active. Statistical data indicate significant results^{ACO389}. Butanol extract of the fresh bulb, taken orally by male human adults at a dose of 50.0 gm/person, was inactive. The study utilized 10 healthy subjects ranging in age from 18 to 30 years. The subjects were given a fatty breakfast containing 100 gm butterfat. The breakfast produced a significant increase in serum cholesterol and plasma fibrinogen, and a decrease in blood fibrinolytic A. After the administration of either raw or boiled onion, no significant change in serum cholesterol or plasma fibrinogen levels was seen. Statistical data indicate significant results^{AC0235}. Ethanol (95%) extract of the fresh bulb, administered by gastric intubation to rabbits at a dose of 20.0 gm/animal, was inactive. Cholesterolloaded diet was used daily for 3 months. The onion extract appeared to prevent crenation and aggregation of RBC^{AC0250}. The essential oil, administered by gastric intubation to rats at a dose of 100.0 mg/kg for 60 days, was active vs ethanol-induced hyperlipemia. Results significant at p < 0.01 level^{AC0290}. The fixed oil, in the ration of male rats at a dose of 100.0 mg/kg, was active. Simultaneous feeding of unsaturated oil from the plant material with a high sucrose diet significantly reduced serum and tissue cholesterol levels, and a small but significant tissue-protein reducing effect was also observed^{AC0256}. The outer skin fiber, in the ration of male rats at a dose of 263.0 gm/day, was active^{AC0164}. Scales of bulb, administered by gastric intubation to rats at a dose of 5.0 mg/kg for 45 days, was active^{AC0354}.

Antihyperglycemic activity. The bulb, taken orally by human adults at variable dosage levels, was active. Addition of raw onion to the diet lowered the amount of

anti-diabetic drugs needed to control the disease in diabetic patients^{AC0300}. Decoction of the fresh bulb, administered intragastrically to mice at a dose of 0.5 ml/animal, was active. Twenty-five percent aqueous extract was used and produced a maximal change in blood sugar of 28.2% vs alloxan-induced hyperglycemia^{AC0205}. Ethanol (95%) extract of the bulb, administered by gastric intubation to rabbits, was active. The petroleum ether extract produced strong activity vs epinephrine- and alloxan-induced hyperglycemia^{AC0249}. Ethanol (95%) extract of the bulb, at a dose of 250.0 mg/ kg, was active in rabbits vs alloxan-induced hyperglycemia. A 18.57% drop in blood glucose was observed at 2 hours post-treatment^{ACO130}. Ether and ethanol (95%) extracts of dried bulb, var. Behairy, administered by gastric intubation to rats at a dose of 50.0 gm/kg (expressed as dry weight of the bulb), were active vs alloxan- and epinephrineinduced hyperglycemia^{AC0291}. Ether extract of the aerial part, administered subcutaneously to rats at a dose of 0.5 ml/animal daily for 10 days, was equivocal vs alloxan-induced hyperglycemia. The plant juice produced weak activity^{AC0333}. Ether extract of the fresh bulb, administered intragastrically to rabbits at doses of 100 mg/animal/ day for 7 days^{AC0203}, and 250 mg/kg^{AC0116}, was active vs alloxan-induced hyperglycemia. Water extract of the fresh bulb, taken orally by human adults at a dose of 100.0 gm/person, was active vs glucose- and adrenalininduced hyperglycemia^{AC0117}. Fresh bulb juice, administered intragastrically to rabbits at a dose of 25.0 gm/animal (expressed as dry weight of plant), was active vs glucose-induced hyperglycemia^{AC0115}. Fresh bulb juice, taken orally by human adults at a dose of 50 gm/person, was active in diabetic patients^{AC0203}. Petroleum ether extract of the fresh bulb, administered intragastrically to rabbits at a dose of 250 mg/kg, was active vs alloxan-induced hyperglycemia^{AC0114}. Hot

water extract of the dried bulb, administered by gastric intubation to mice at a dose of 0.5 ml (25% of the extract), was active vs alloxan-induced hyperglycemia^{ACO293}. Plant juice, taken orally by human adults at a dose of 50.0 gm/person, was active. Blood sugar level was reduced 30-50 mg percent. When administered orally to rabbits at a dose of 10.0 ml/animal, a 13.4 mg percent drop in blood sugar level was observed after 8 days of treatment^{ACO131}. Water extract of the dried bulb, administered intravenously to mice at a dose of 70.0 mg/kg, was active vs alloxan-induced hyperglycemia^{ACO301}.

Antihyperlipemic activity. The bulb, taken orally by human adults at a dose of 100.0 gm/person, was active^{AC0389}. The water extract, administered orally to rabbits at a dose of 10.0 ml/kg, was active. Hyperlipidemia was induced by long term feeding of sucrose. There was a significant reduction in serum, liver and aorta triglycerides, and serum and liver proteins, and a significant increase in liver free amino acidsACO228. The essential oil, administered by gastric intubation to rats at a dose of 100.0 mg/kg for 60 days, was active. The effect was measured in the liver vs ethanol-induced hyperlipemia. Results significant at p < 0.01 level^{AC0290}. The essential oil, taken by male adults, was active^{AC0306}. Saponin fraction of the bulb, taken orally by adults at a dose of 50.0 gm/ person, was active^{AC0321}. The fixed oil, in the ration of male rats at a dose of 100.0 mg/kg, was active. Simultaneous feeding of unsaturated oil from the plant material with a high sucrose diet significantly reduced serum and tissue cholesterol levels, and a small but significant tissue-protein reducing effect was observed^{AC0256}. Water extract of the fresh bulb, in the ration of rabbits at a concentration of 20.0% of the diet, was inactive. The study was conducted for 6 months in cholesterol-loaded animals^{AC0251}. Antihypertensive activity. Ethanol (95%) extract of the fresh bulb, in the ration of rats, was inactive. The extraction was made at zero degrees Celsius. Four ml of the extract was fed for 3 weeks, then salt was added and the dose increased to 8 ml. Salt did not affect blood pressure in the spontaneously hypertensive animals^{ACO199}.

Antihypertriglyceridemic effect. Outer skin fiber, in the ration of male rats at a dose of 263.0 gm/day, was active^{ACO164}.

Anti-implantation effect. Ethanol (95%) extract of the bulb, administered orally to rats, was inactive^{AC0219}. Water extract of the dried seed, administered intraperitoneally to female rats, was inactive^{AC0309}.

Anti-inflammatory activity. The bulb, taken orally by adults at variable dosage levels, was active^{ACO261}. Ethanol (80%) extract of the bulb, administered by gastric intubation to male rats at a dose of 100.0 mg/kg, was inactive vs carrageenin-induced pedal edema^{ACO193}.

Antimutagenic activity. Water extract of the fresh bulb, at a dose of 0.4 ml/plate, was active on *Salmonella typhimurium* TA100, vs TRP-P-2 mutagenicity with S9 mix^{ACO310}.

Antimycobacterial activity. Ethanol (95%) extract of the bulb, on agar plate, was inactive on Mycobacterium tuberculosis^{ACO332}. Ethanol (95%) extract of the fresh seed, on agar plate, produced strong activity on Mycobacterium tuberculosis. The extract was prepared using 1 part of fresh plant to 3 parts of solvent^{ACO334}.

Antioxidant activity. The fresh bulb, at a concentration of 1.0%, was inactive. The effect was seen at 120 degrees Fahrenheit^{AC0390}. The fresh bulb homogenate produced 24% inhibition of lipid peroxidation, results significant at p <0.05 level^{AC0169}. Hot water extract of the bulb was active^{AC0336}. Hot water extract of the fresh aerial part produced strong activity^{AC0336}.

Antiradiation effect. The dried bulb, in the ration of rats at a concentration of 20.0 mg/kg, was active vs X-irradiation^{ACO355}.

Antisickling activity. Water extract of the fresh bulb, in cell culture at a concentra-

tion of 40.0 microliters, was active on platelets vs epinephrine-induced aggregation^{ACOZO9}. **Antispasmodic activity.** Ethanol (95%) extract of the bulb, at a concentration of 4.0 mg/ml, was active on the guinea pig ileum vs BaCl₂, 5-HT, acetylcholine, and histamine spasms^{ACOZZ3}.

Antispermatogenic effect. Essential oil of the bulb, administered by inhalation to male rats, was inactive^{ACO339}.

Antithiamine activity. The fresh bulb juice was active. The activity was heat stable^{ACQ281}. Antithyroid activity. Butanol extract of the fresh bulb, taken orally by adults at a dose of 93.0 gm/person, was inactive. Iodine uptake by the thyroid was measured^{ACQ375}. Antitoxic activity. Essential oil, administered by gastric intubation to rats at a dose of 100.0 mg/kg, was active. The treatment prevented ethanol-induced serum cholesterol and triglyceride rise, kidney and liver cholesterol accumulation, hepatic total lipid rise, and serum albumin reduction vs ethanol-induced hyperlipemia^{ACQ285}.

Antitumor activity. Ethanol (95%) extract of the bulb, administered intraperitoneally to rats at a dose of 50.0 mg/kg, produced weak activity on Sarcoma III(MTK)^{AC0108}. The fresh bulb, taken orally by adults at variable dosage levels, was active. Interviews conducted with 564 patients with stomach cancer and 1131 controls revealed a significant reduction in gastric cancer risk with increasing consumption of Allium cepa^{AC0194}. Essential oil, applied externally on female mice at a dose of 1.0 mg/animal vs twice weekly 12-0-tetradecanoyl-phorbol-13-acetate promotion for 2 weeks, followed by mezerein promotion for 18 weeks, was active. The dose, when given with a second promoter, produced a 32% decrease in incidence of papilloma vs DMBA-induced carcinogenesis^{AC0211}. Hot water extract of the fresh bulb, applied externally on mice at a dose of 1.0 mg/animal, was active vs DMBAinduced carcinogenesis^{AC0323}. Hot water extract of the fresh bulb, in cell culture, produced weak activity on RAJI cells vs phorbol myristate acetate-promoted expression of EB virus early antigen^{ACO147}.

Antiviral activity (plant pathogens). Water extract of the leaf produced strong activity on Tobacco Mosaic virus^{ACO110}. Aqueous lowspeed supernatant, at a concentration of 1.0%, and the undiluted juice of the fresh bulb, were active on top necrosis virus^{ACO180}. Antiviral activity. Ethanol (80%) extract of freeze-dried entire plant, at variable concentrations in cell culture, was equivocal on Poliovirus 1, and inactive on Adenovirus (unspecified), Coxsackie B2 virus, Herpes virus type 1, Measles virus and Semlicki-forest virus vs plaque-inhibition^{AC0262}. Antiyeast activity. Bulb essential oil, at a concentration of 1.0%/disc, was active on Brettanomyces anomalus, Hansenula anomala. Kloeckera apiculata and Lodderomyces elongisporus. A concentration of 10.0%/disc was active on Kluyveromyces fragilis, Metschnikowia pulcherrima, Pichia membranaefaciens, Rhodotorula rubra, and Saccharomyces cerevisiae, and inactive on Candida lipolytica^{ACO275}. Dried oleoresin, on agar plate at a concentration of 500.0 ppm, was active on Bebaryomyces hansenii vs ascospore production, and on Rhodotorula rubra vs pseudomycelium production. The oleoresin was inactive on Candida albicans, Saccharomyces cerevisiae, Torulopsis glabrata, and Hansenula anomala vs pseudomycelium production, and on Hansenula anomala, Saccharomyces cerevisiae and Lodderomyces elongisporus vs ascospore production. Weak activity was produced on Lodderomyces elongisporus vs pseudomycelium production. A concentration of 500.0 ppm, in broth culture, was active on Debaryomyces hansenii, Hansenula anomala and Saccharomyces cerevisiae vs biomass production, and inactive on Candida lipolytica, Kloeckera apiculata, Lodderomyces elongisporus, Rhodotorula rubra and Torulopsis glabrata vs biomass production^{AC0313}. Ethanol/water (1:1) extract of the bulb, at concentrations of 500 mg/ml^{AC0305} and 1042 mg/ml^{AC0324} (dry weight of the plant material) on agar plate, were inactive on Candida albicans and Saccharomyces pastorianus. The fresh bulb, on agar plate, was inactive on Candida stellatoidea, MIC 1000 mcg/ml and Candida albicans, MIC 470.0 mcg/ml. The chloroform extract was inactive on Candida albicans, MIC >6.0 mg/ml^{AC0327}. Tincture of the dried bulb (10 gm of plant material in 100 ml ethanol), on agar plate at a concentration of 30.0 microliters/disc, was inactive on Candida albicans^{AC0318}. Water extract of the bulb, on agar plate, produced weak activity on Candida albicans and Saccharomyces cerevisiae^{AC0266}.

Appetite stimulant. The bulb, taken orally by adults, was active. It is claimed to be a tonic medicine and capable of accelerating recovery from fatigue. When mixed with equal weight of starch, it is free of unpleasant odor and taste. The biological activity has been patented^{ACO231}.

Ascorbic acid lowering effect. The fresh bulb, in the ration of rats at a concentration of 3.0% of the diet, was active^{ACO150}.

ATPase (mg) inhibition**. The bulb, administered intragastrically to rats, was active, and the water extract was inactive on RBC^{ACO32O}.

ATPase inhibition. Water extract of the fresh bulb, in the ration of rabbits at a concentration of 20.0% of the diet, was active. The study was conducted for 6 months in cholesterol-loaded animals^{ACO251}.

Blood pressure effect (biphasic). Water extract of the dried bulb, administered intravenously to cats and rats at a dose of 0.1 mg/kg, was active. A concoction of Nicotiana tabacum leaf, Ocimum basilicum leaf, Allium sativum leaf, Allium cepa bulb, Allium ascabricum bulb, Citrus limon fruit juice, cow's urine, and trona (an alkaloid mineral substance) was used. The treatment pro-

duced an initial hypotensive effect followed by hypertension^{ACQ283}.

Bradycardia activity. Water extract of the dried bulb, administered intravenously to cats and rats at a dose of 10–20 mg/kg, produced weak activity^{ACO283}.

Bronchodilator activity (autonomic). Chloroform extract of the fresh bulb, administered intragastrically to guinea pigs at a dose of 20.0 mg/kg, was active vs allergen-induced bronchial obstruction. A dose of 80.0 mg/kg was active vs PAF-induced bronchial obstruction. Ether extract, at a dose of 20.0 mg/kg, and lyophilized extract, at a dose of 100.0 mg/kg, were active vs allergen-induced bronchial obstruction ACO197. Ethanol (95%) extract of the fresh bulb, administered by inhalation to human adults, was active vs allergen- and platelet aggregating factor-induced bronchial obstruction ACO2115.

Bronchodilator activity. Chloroform and ethanol (95%) extracts of the bulb were active; benzene, methanol and petroleum ether extracts were inactive^{ACO276}.

Carcinogenesis inhibition. Essential oil, applied externally to mice at a concentration of 0.01 mg/animal, was active vs phorbol myristate acetate-induced carcinogenesis of the skin^{ACO286}. A dose of 2.0 mg/animal, applied 30 minutes before DMBA, resulted in 50% decrease in incidence of carcinoma vs DMBA-induced carcinogenesis^{ACO211}.

Cardiac activity. Ethanol (95%) extract of the bulb, administered by perfusion to the heart of the guinea pig at a dose of 10.0 mg, was inactive^{AC0223}.

Cardiovascular effect. Water extract of the dried bulb, administered intravenously to cats and rats at a dose of 10-20 mg/kg, produced no change in ECG^{ACO283}.

Choleretic activity. Butanol extract of the bulb, in the ration of dogs, was active^{ACO341}. The fresh bulb juice was active on rats^{ACO340}.

Cholesterol inhibition. The entire plant, together with cholesterol in the ration of rabbits, was inactive^{ACO137}.

Cholesterol level decrease. The fresh bulb, in the ration of rats at a concentration of 3.0% of the diet, was active^{ACO150}.

Chronotropic effect (positive). Ethanol/water (1:1) extract of the fresh bulb, administered by gastric intubation to rats at a dose of 40.0 ml/kg, was inactive^{ACO295}.

CNS depressant activity. Butanol extract of the bulb, in the ration of dogs, was active^{ACO341}.

Coagulant activity. Essential oil, administered by gastric intubation to male rabbits at a dose of 2.0 gm/kg for 3 months, produced strong activity. There was an increase in coagulation time. Results significant at p < 0.001 level^{ACO278}.

Cyclooxygenase inhibition. Essential oil of the dried entire plant, at a concentration of 0.35 mg/ml, was active on rabbit platelets^{AC0315}. Chloroform extract of the bulb, at variable dosage levels, was active on the platelets^{AC0240}. The freeze-dried bulb juice, at variable concentrations, was active. This was a review on the antiasthmatic activity of onion, including the identification of several sulfur compounds found in onion and their effects on cyclooxygenases^{AC0329}. Methanol extract of the fresh bulb, at a concentration of 100.0 mcg/ ml, was active. Ether soluble material produced 46% inhibition. The ether insoluble material was inactive with 4% inhibition^{AC0152}.

Cytotoxic activity. The dried bulb, in cell culture at a concentration of 25.0%, was active on Hamster-CA-HCPC-1^{ACO314}. Water extract of the fresh leaf, on agar plate, was inactive on *Ustilago nuda*^{ACO282}.

Desmutagenic activity. Aqueous high speed supernatant of the fresh unripe fruit juice, on agar plate at a concentration of 0.5 ml/plate, was inactive on Salmonella

typhimurium TA98 vs mutagenicity of L-tryptophan pyrolysis products. The assay was done in the presence of S9 mix^{ACO303}. The fresh plant juice, on agar plate at a concentration of 0.5 ml/plate, was inactive on Salmonella typhimurium TA98^{ACO304}.

Diuretic activity. Butanol extract of the bulb, in the ration of dogs, was active^{AC0341}. Ethanol/water (1:1) extract of the fresh bulb (5 parts of fresh bulb in 100 parts ethanol/water), administered intragastrically to rats at a dose of 40.0 ml/kg, was active^{AC0192}. The fresh bulb juice, administered by gastric intubation to rabbits, was active^{AC0340}. Methanol extract of scales of the bulb, administered to dogs, was active^{AC0353}.

DNA synthesis inhibition. Essential oil, applied externally to female mice at a dose of 5.0 mg/animal, produced 86% inhibition when the oil was applied 2 hours before DMBA vs DMBA-induced carcinogenesis^{AC0211}.

Embryotoxic effect. Ethanol/water (1:1) extract of the seed, administered orally to female rats at a dose of 200.0 mg/kg, was inactive^{ACO335}.

Fibrinolytic activity. Butanol extract of the bulb, taken orally by human adults, was active. The bulb juice, in the ration of rabbits, was active^{ACO273}. Butanol extract of the fresh bulb, taken orally by adults, was active^{ACO239}. The essential oil, administered by gastric intubation to male rabbits at a dose of 2.0 gm/kg for 3 months, decreased fibrinolytic activity. Results significant at p <0.001 level^{ACO278}.

Gastric inhibitory polypeptide stimulation. The bulb, in the ration of rabbits and rats, produced weak activity vs cholesterolloaded animals^{AC0255}.

Glucose uptake induction. Ether extract of the fresh bulb, administered intragastrically to rabbits at a dose of 250 mg/kg, was active vs alloxan-induced hyperglycemia^{ACO116}. **Glutamate pyruvate transaminase inhi-**

bition. Water extract of the fresh bulb, in

the ration of rabbits at a concentration of 20.0% of the diet, was active. The study was conducted for 6 months on cholesterolloaded animals^{ACO251}.

Glutathione peroxidase inhibition. Lyophilized extract of the fresh bulb, in the ration of chicken at a concentration of 2.0% of the diet, was inactive^{ACO141}.

Goitrogenic activity. The bulb, in the ration of rats at a concentration of 20.0% of the diet for 4 weeks, was active^{AC0356}.

Growth promoter activity. Benzene/chloroform (6:4) extract of the fresh fruit essential oil, diluted to the same concentration as in fresh onion juice and administered intragastrically to rats at a dose of 5.0 ml/ kg for 42 days, was inactive. Body weight, growth, and organ weights were unaffected. Protein content of the kidneys was greater than that of controls. Polyamine content of the organs was not different from the controls. Undiluted essential oil of the fresh onion, administered intragastrically to rats at a dose of 5.0 ml/kg for 42 days, was active. Body weight, growth, and weight of the spleen, muscles, heart and protein content of major organs were greater than vehicletreated controls. Polyamine contents of the liver and kidney were higher than the controls. Ether extract of fresh onion juice, diluted to the same concentration as fresh onion juice and administered intragastrically to rats at a dose of 5.0 ml/kg for 42 days, was active. Body weight, growth, and weights of muscle, heart, lungs, and protein content of organs were greater than vehicle-treated controls. Polyamine contents of the liver and kidneys were higher than the controls. Methanol extract of fresh onion juice, diluted to the same concentration as fresh onion juice and administered intragastrically to rats at a dose of 5.0 ml/ kg for 42 days, was active. Body weight and the weight of the heart and lungs were greater than the vehicle-treated controls. Polyamine content of the liver was greater than the controls, but the organ protein content was unaffected^{ACO319}.

Hemotoxic activity. The bulb, in the ration of guinea pigs at variable concentrations, was active. The bulb was fed in raw form, cooked or as various types of extracts. The result was a decrease in red blood cell count; the decrease was proportional to the amount fed. Changes in the white blood cell count were variable. Death occurred within 23 days after starting the animals on a diet containing high doses. The red blood cell count decreased from 5 million to 3.5 million^{ACO343}. Ethanol (95%) extract of the dried bulb, administered intraperitoneally to guinea pigs, was active. Anemia was induced. The water and ether extracts were inactive^{AC0352}. The fresh bulb, administered by gastric intubation to dogs at a dose of 15.0 gm/kg, was active. Daily dosing for 6 days produced anemia characterized by a red blood cell count of 1.99 million (7.76 million prior to onion dosing), hemoglobin concentration of 30 (91 prior to dosing) and a white blood cell count of 25,000 (10,900 prior to dosing). Data was comparable following dosing with autoclaved onions and/or autoclaved onion juice^{AC0347}. Butanol extract of the fresh bulb, in the ration of cattle at a concentration of 25.0% of the diet, was active. A decrease in the number of red blood cells and hemoglobin concentration was observed^{AC0323}.

Histamine release inhibition. Ethanol (75%) extract of the fixed oil, in cell culture, was active on the human basophil. The biological activity has been patented^{ACO168}.

Hydroxy(17)-steroid urinary excretion increased. The fresh bulb, in the ration of rats at a concentration of 2.0% of the diet, was active^{ACO150}.

Hypercholesterolemic activity. The bulb, taken orally by adults, was active. Cholesterol levels were elevated in subjects on moderate or heavy amounts of onion, 50–100 gm, and garlic, 5–10 gm^{ACO156}. The dried

bulb, administered orally to male rats at a dose of 5.0 gm/kg daily for 56 days, was active^{ACO227}. Water extract of the fresh bulb, administered intragastrically to rats, was active^{ACO320}.

Hyperglycemic activity. The fresh bulb and ether extract of the fresh bulb, administered to pancreatectomized dogs by gastric intubation, were active^{ACO349}. Methanol extract of the dried bulb, administered intragastrically to rats at a dose of 2.0 gm/kg, was inactive^{ACO153}.

Hyperlipidemic activity. Water extract of the fresh bulb, in the ration of rabbits at a concentration of 20.0% of the diet, was active. The study was conducted for 6 months on cholesterol-loaded animals^{ACO251}. Hypertensive activity. Ethanol (95%) extract of the bulb, administered intravenously to dogs at a dose of 100.0 mg/kg, was inactive^{ACO223}.

Hypocholesterolemic activity. The fresh bulb, administered intragastrically to rats, was active^{AC0320}. The butanol extract, taken orally by male adults at a dose of 50.0 gm/ person, was inactive. The study used 10 healthy subjects; no effect on serum cholesterol, fibrinogen or fibrinolytic activity in normal fasting subjects was observed. Statistical data indicate significant results^{AC0236}. Water extract of the fresh bulb, taken orally by adults at a dose of 50.0 gm/person, was inactive. The extract was given to people with normal blood serum cholesterol levels^{ACO277}. Lyophilized extract of the fresh bulb, in the ration of chicken at a concentration of 2.0% of the diet, was inactive^{AC0141}. The raw onion, taken orally by normal adults at a dose of 80.0 gm/person daily for 5 months, was active^{AC0178}.

Hypoglycemic activity. Chloroform extract of the raw bulb, administered by gastric intubation to rabbits, produced strong activity vs glucose-induced hyperglycemia. The treatment was 79.4% as effective as tolbutamide. The petroleum ether extract

was active^{AC0271}. Chloroform, ethanol (95%), and petroleum ether extracts of the fresh bulb, administered by gastric intubation to rabbits, were active^{AC0184}. Ethanol (95%) extract of the bulb, administered by gastric intubation to rabbits, was active. The petroleum ether extract produced strong activity^{AC0249}. Ether and petroleum ether extracts of the bulb, administered by gastric intubation to male rabbits at a dose of 0.25 gm/kg, were active^{AC0345}. Ether extract of the fresh bulb, administered to pancreatectomized dogs and rabbits by gastric intubation, was active^{AC0349}. Ether extract of the fresh bulb, administered intragastrically to rabbits at a dose of 250 gm/kg, was active ACO116. The water extract, taken orally by adults at a dose of 200.0 gm/person, was inactive^{AC0118}. A dose of 10.0 mg/kg, administered orally to rabbits, was active. A drop in blood sugar of 15 mg relative to inert-treated controls indicated positive results^{AC0118}. The fresh bulb juice, administered intravenously to rabbits, was active^{AC0340}. Methanol extract of the dried bulb, administered intragastrically to rats at a dose of 2.0 gm/kg, was inactive^{AC0153}. Petroleum ether and petroleum ether-insoluble extracts of the dried bulb, administered by gastric intubation to female rats at a dose of 0.25 gm/kg, were inactive^{AC0221}. The plant juice, administered subcutaneously to rats at a dose of 0.5 ml/ animal daily for 10 days, was inactive. Fasting blood sugar levels were determined^{AC0333}. Hypolipemic activity. The essential oil, administered by gastric intubation to rats at a dose of 100.0 mg/kg for 60 days, was active. The effect was measured in the liver. Results significant at p < 0.01 level vs ethanol-induced hyperlipemia^{AC0285}. The fresh bulb and water extract of the fresh bulb, administered intragastrically to rats, were active on RBCAC0320. The bulb juice, in the ration of rabbits, was active. The treatment prevented a rise in the levels of serum cholesterol for up to 60 days^{AC0273}.

Hypotensive activity. Chloroform extract of the fresh bulb, administered intravenously to rats at a dose of 1.0 mg/animal, was active^{AC0241}. Ethanol (70%) extract of the fresh bulb, administered intravenously to rats at variable dosage levels, was active^{ACO264}. Ethanol (95%) extract of the bulb, administered intravenously to dogs at a dose of 100.0 mg/kg, was inactive^{AC0223}. Ethanol/ water (1:1) extract of the fresh bulb sap, administered by gastric intubation to rats at a dose of 40.0 ml/kg, produced weak activity^{AC0295}. Water extract of the dried bulb, administered intravenously to cats and rats at doses of 5 to 20 mg/kg, produced weak activity^{AC0283}.

Hypotriglyceridemia activity. Lyophilized extract of the fresh bulb, in the ration of chicken at a concentration of 2.0% of the diet, was inactive^{ACO141}.

Immunosuppressant activity. Aqueous suspension of the fresh bulb, administered by gastric intubation to rabbits at a concentration of 10.0%, was active^{ACO270}.

Insect attractant activity. Butanol extract of the fresh bulb was active on *Delia antiqua*^{ACO188}. **Lacrymation stimulation.** Juices of the bulb of red globe, white globe, and madras varieties were active when applied ophthalmically to human adults^{ACO128}.

Lactate dehydrogenase stimulation. Water extract of the fresh bulb, in the ration of rabbits at a concentration of 20.0% of the diet, was active. The study was conducted for 6 months in cholesterol-loaded animals^{AC0251}.

Lipid metabolism effects. Ethanol (100%) extract of the bulb was active in rats^{ACO307}. Ethanol (95%) extract of the fresh bulb, in the ration of rats, was active. The extraction was made at zero degrees Celsius. Four ml of the extract was fed for 3 weeks, then salt was added and the dose increased to 8 ml. Salt did not affect blood pressure in the spontaneously hypertensive animals. Arachidonic acid level was decreased^{ACO199}.

Lipid peroxide formation inhibition. Hot water extract of the fresh bulb was active vs T-butyl hydroperoxide/heme-induced luminol-enhanced chemiluminescence^{AC0147}. **Lipoxygenase inhibition**. The essential oil, at variable concentrations, was active ACO202. Ethanol (75%) extract of the fixed oil was active on the polymorphonuclear leukocytes of guinea pigs. The biological activity has been patented^{AC0168}. Methanol extract of the fresh bulb, at a concentration of 100.0 mcg/ml, was active on the rat platelets. Ether-soluble material produced 77% inhibition and the ether-insoluble material was inactive with zero percent inhibition^{AC0152}.

Lipoxygenase stimulation. Essential oil of the dried entire plant, at a concentration of 0.35 mg/ml, was active on the rabbit platelets^{ACO315}.

Mutagenic activity. The bulb was active on Salmonella typhimurium TA98^{AC0308}. Chloroform/methanol (2:1) extract of the bulb, on agar plate at a concentration of 100.0 mg/plate, was inactive on Salmonella typhimurium TA100 and TA98. The water extract was inactive on pig kidney cells LLC-PK-1 and trophoblastic-placenta cells. The effect was the same with or without metabolic activation^{ACO248}. Ethanol (95%) extract of the dried bulb, on agar plate at a concentration of 10.0 mg/plate, was inactive on Salmonella typhimurium TA102 and TA98AC0142. The fresh bulb, on agar plate at a concentration of 1.2 mg/plate, was active on Salmonella typhimurium TA1535, and inactive on TA98. A concentration of 2.4 mg/plate was active on TA1537 and TA1538^{ACO328}. Water extract of the fresh bulb, on agar plate, was inactive on Salmonella typhimurium TA100^{AC0310}.

Nucleotidase inhibition. Water extract of the fresh bulb, administered intragastrically to rats, was active on RBC^{ACO320}.

Phorbol ester antagonist. The essential oil, applied externally to female mice at a

dose of 5.0 mg/animal, was active. The dose was applied 1 hour before application of 12-0-tetradecanoyl-phorbol-13-acetate. Sixteen hours later, the rate of DNA synthesis was decreased by 79%^{ACO211}. The fresh bulb was active vs phorbol myristate acetate-induced decrease in glutathione peroxidase, and stimulation of ornithine decarboxylase^{ACO323}.

Plant germination inhibition. Water extracts of the dried leaf and dried stem, at a concentration of 500.0 gm/liter, were active on the seeds of *Cuscuta reflexa* after 6 days of exposure to the extract^{ACO218}.

Plant growth inhibition. Water extract of the dried stem, at a concentration of 500.0 gm/liter, was active on *Cuscuta reflexa*. Seedling length, weight, and dry weight were measured after 6 days of exposure to the extract^{ACO218}.

Plant pollen tube elongation inhibition.

The fresh bulb, at a concentration of 0.3 gm/well, was active vs Camellia sinensis pollen ACO391. Water extract of the bulb, at a concentration of 0.001%, was active on Calotropis gigantea ACO287.

Plasminogen activation stimulation. Water extract of the fresh bulb was active^{ACO263}.

Platelet adhesion inhibition. The essential oil, administered by gastric intubation to male rabbits at a dose of 2.0 gm/kg for 3 months, was active. Results significant at p <0.001 level^{ACO278}.

Platelet aggregation inhibition. Butanol extract of the bulb, at a dose of 20.0 microliters, was active on human platelets vs ADP-induced aggregation. Ethanol-insoluble fraction, at a concentration of 20.0 microliters, was active vs ADP-induced aggregation. One out of 6 fractions extracted showed activity^{ACO277}. Butanol extract of the fresh bulb, taken orally by adults at a dose of 200.0 gm/person, was active. The subjects consumed a high fat meal prior to testing^{ACO296}. Chloroform extract of the bulb, at variable dosage levels, was active on platelets of humans and rabbits. Platelet aggre-

gation was inhibited by the blocking of thromboxane synthesis^{AC0240}. The essential oil, at concentrations of 10 to 30 mcg/ml, produced strong activity in human adults vs ADP-induced aggregation. There was induction of a redistribution of the products of lipoxygenase pathway. Concentrations of 30 to 60 mcg/ml also produced strong activity vs ADP-induced aggregation. There was complete suppression of the formation of all oxygenase products^{AC0252}. The essential oil produced weak activity on human platelets vs ADP-induced platelet aggregation ACO247. Water extract of the fresh bulb, in cell culture at a dose of 10.0 microliters, was active vs ADP-induced aggregation^{AC0209}. A dose of 30.0 microliters was active vs collagen-, epinephrine- and arachidonic acid-induced aggregation^{AC0206}. Water extract of the fresh bulb was active vs ADP- and arachidonic acid-induced platelet aggregation^{AC0244}.

Pro-oxidant activity. The fresh bulb, at a concentration of 1.0%, was active. The effect was observed at 140 degrees Fahrenheit in peanut oil^{ACO390}.

Prostaglandin inhibition. Water extract of the fresh bulb, in cell culture, was active on platelets^{ACO206} and on the rat aorta^{ACO209}.

Protein synthesis inhibition. The fresh bract, in buffer, was active, IC_{50} 60.0 mcg protein/ml^{ACO210}.

Quinone reductase induction. Acetonitrile extract of the dried bulb, in cell culture at a concentration of 7.9 mg/gm, was active on mice hepatoma-ICIC7. Assay was conducted to determine the induction of detoxifying enzyme, an effect that may have anticarcinogenic activity^{ACO155}.

Respiratory depressant. Ethanol (95%) extract of the bulb, administered intravenously to dogs at a dose of 100.0 mg/kg, was inactive^{ACO223}.

Respiratory stimulant effect. Ethanol (95%) extract of the bulb, administered

intravenously to dogs at a dose of 100.0 mg/kg, was inactive^{AC0223}.

Smooth muscle relaxant activity. Ethanol (95%) extract of the bulb, administered by perfusion to guinea pig lung at a dose of 5.0 mg, was active^{ACO223}.

Smooth muscle stimulant activity. Chromatographic fraction of the fresh bulb was active on the stomach (fundus)^{ACO198}. The fresh bulb juice was active on the rat intestine^{ACO340}.

Spermicidal effect. The essential oil was active in guinea pigs^{ACO339}.

Superoxide inhibition. Lyophilized extract of the fresh bulb, in the ration of chicken at a concentration of 2.0% of the diet, was active. Mn-superoxide dismutase activity was stimulated^{ACO141}.

Sympathomimetic activity. Water extract of the dried bulb, administered intravenously to cats at a dose of 0.05 mg/ml, was active. A concoction of Nicotiana tabacum leaf, Ocimum basilicum leaf, Allium sativum leaf, Allium cepa bulb, Allium ascabricum bulb, Citrus limon fruit juice, cow's urine, and trona (an alkaloid mineral substance) was used. The treatment enhanced the contractile response of the cat nictating membrane evoked by preganglionic cervical sympathetic nerve stimulation. At a higher dose, it caused contraction without nerve stimulation^{AC0283}.

Thromboxane B-2 inhibition. Chloroform extract of the bulb, at variable dosage levels, was active on human platelets vs incubation with labeled arachidonic acid^{ACO240}.

Thromboxane B-2 synthesis induction. The fresh bulb, taken orally by adults at a dose of 5.0 gm/person on days 1 to 7, was inactive^{ACO200}.

Thromboxane B-2 synthesis inhibition. Chloroform and ether extracts of the fresh bulb juice, at a concentration of 0.001 mg/ml, were active^{ACO197}. Essential oil of the dried entire plant was active on rabbit plate-

ALLIUM CEPA 19

lets, IC_{50} 0.125 mg/ml^{ACO315}. Ether extract of the fresh bulb juice, in cell culture, was active on fibroblasts-human-lung and platelets^{ACO207}. Water extract of the fresh bulb, in cell culture, was active^{ACO244}.

Toxic effect (general). Butanol extract of the fresh bulb, in the ration of dogs at undiluted concentration, was active. A pug puppy was referred to a Veterinary college. The dog had a depraved appetite and preferred raw onion to other vegetables, which led to anemia in the dog^{ACO253}.

Tumor necrosing factor induction. The fresh bulb juice, administered intravenously to mice at a dose of 200.0 microliters/animal, was active. Three hours after priming TNF production with the juice, intravenous injection of OK-432 or IFN-Gamma was used to trigger TNF production. Two hours later, TNF was assayed by its cytotoxicity against L929 cells^{ACO216}.

Tumor promoting effect. Hot water extract of the fresh bulb, applied externally to mice at a dose of 10.0 mg/animal, was active. The dose was applied 3 times weekly for 49 to 60 weeks after tumor initiation vs DMBA-induced carcinogenesis^{AC0323}.

Tumor promotion inhibition. Ethyl acetate extract of the fresh root, in cell culture at a dose of 200.0 mcg, was active on Epstein-Barr virus vs 12-0-Hexadecanoylphorbol-13-acetate-induced Epstein-Barr activation. The methanol extract was inactive^{ACO316}.

Uricosuric activity. Benzene/chloroform (6:4) and ether extracts of the fresh onion juice and the essential oil, diluted to the same concentration as in fresh onion juice and administered intragastrically to rats at a dose of 5.0 ml/kg for 42 days, were inactive. Urinary urea content was increased transiently, then decreased below the level of the vehicle-treated controls. Allantoin level in the urine was greater than that in the control group. The methanol extract of fresh onion juice, diluted to the same

concentration as in fresh onion juice and administered intragastrically to rats at a dose of 5.0 ml/kg for 42 days, was inactive^{ACO319}.

Uterine stimulant effect. Fresh bulb juice was active on the uterus of rats^{ACO340}. Water extract of the bulb, at a concentration of 15.0 mg/ml, produced weak activity. The treatment was equivalent to 0.003 IU of oxytocin^{ACO104}. Water extract of the bulb was active on non-pregnant, and produced strong activity on pregnant mice and rats^{ACO109}.

WBC macrophage stimulant. Water extract of the freeze-dried bulb, at a concentration of 2.0 mg/ml, was inactive on sarcoma (Yoshida ASC). Nitrite formation was used as an index of the macrophage stimulating activity to screen effective foods^{ACO214}. **WBC** stimulant. Fresh bulb juice, administered intraperitoneally to mice, was active. Neutrophil accumulation was increased 78%, ED₅₀ 0.15 ml/animal^{ACO140}.

REFERENCES

AC0100	Quisumbing, E. Medicinal
	plants of the Philippines. Tech
	Bull 16, Rep Philippines, Dept
	Agr Nat Resources, Manila
	1951: 1–.

AC0101 Magid, M. and M. Wenzkowsky. Illegal methods of abortion. **Dtsch Z Ges Gerichtl Med** 1932; 19: 501-.

AC0102 Novikova, M. A., I. S. Levi and A. S. Khoklov. In the antitumoral action of alliin. 1957; 29 (1):41–46.

AC0103 Saha, J. C., E. C. Savini and S. Kasinathan. Ecbolic properties of Indian medicinal plants. Part 1. **Indian J Med Res** 1961; 49: 130–151.

AC0104 Saha, J. C. and S. Kasinathan. Ecbolic properties of Indian medicinal plants. Part II. Indian J Med Res 1961; 49: 1094–1098. AC0105 Jochle, W. Menses-inducing drugs: Their role in antique,

medieval and renaissance gyne-

	cology and birth control. Con-		J Med Res 1973; 61(7): 1066–
	traception 1974; 10: 425–439.		1071.
AC0106	Gimlette, J. D. A Dictionary	AC0117	Sharma, K. K., R. K. Gupta and
	of Malayan Medicine. Oxford		K. C. Samuel. Antihyperglyc-
	Univ. Press., New York, USA,		emic effect of onion: Effect on
	1939.		fasting blood sugar and induced
AC0107	Petelot, A. Les Plantes Medic-		hyperglycemia in man. Indian J
	inales du Cambodge, du Laos et		Med Res 1977; 65(3): 422–429.
	du Vietnam, Vols. 1–4. Archives	AC0118	Jain, S. R. and S. N. Sharma.
	des Recherches Agronomiques		Hypoglycemic drugs of Indian
	et Pastorales au Vietnam No. 23,		indigenous origin. Planta Med
. 60100	1954.	. 60110	1967; 15(4): 439–442.
AC0108	Kimura, Y. and K. Yamamoto.	AC0119	Kravets, C. D., Y. S. Vollerner,
	Cytological effect of chemicals		M. B. Gorovits, A. S. Shashkov
	on tumors. XXIII. Influence of		and N. K. Abubakirov. Steroid
	crude extracts from garlic and		of the spirostand and furostan
	some related species on MTK-		series from plants of the genus
	sarcoma III. Gann 1964; 55:		Allum. II. The structure of Alli-
A G0100	325		ospiroside B from Allium cepa.
AC0109	Sharaf, A. Food plants as a pos-		Chem Nat Comp 1987; 22(5):
	sible factor in fertility control.	A C0120	553–556.
	Qual Plant Mater Veg 1969; 17: 153	AC0120	Kravets, S. D., Y. S. Vollerner,
AC0110	Manil, P. Inhibition of phyto-		A. S. Shashkov, M. B. Gorovits and N. K. Abubakirov. Steroids
ACOTTO	pathogenic viruses by extracts of		of the spirostan and furostan series
	plants. C R Seances Soc Biol		of plants of the Allium genus.
	Ses Fil 1949; 143: 101–.		XXIII. Structure of cepagenin
AC0111	Maruzzella, J. C. and J. Balter.		and of alliospirosides C and D
1100111	The action of essential oils on		from Allium cepa. Chem Nat
	phytopathogenic fungi. Plant		Comp 1988; 23(6): 700–706.
	Dis Rept 1959; 43: 1143–1147.	AC0121	Bayer, T., W. Breu, O. Selig-
AC0112	Walter-Levy, L. and R. Strauss.		mann, V. Wray and H. Wagner.
	Inorganic deposits in plants. C R		Biologically active thiosulphi-
	Acad Sci 1954; 239: 897–.		nates and alpha-sulphinyl-disul-
AC0113	Janot, M. M. and J. Laurin.		phides from Allium cepa. Phy-
	Hypoglucemic action of bulbs of		tochemistry 1989; 28(9): 2373–
	Allium cepa L. Compt Rend		2377.
	1930; 191: 1098–1100.	AC0122	Urushibara S. I., Y. Kitayama, T.
AC0114	Brahmachari, H. D. and K. T.		Watanabe, T. Okuno, A. Qatarai
	Augusti. Effects of orally effec-		and T. Matsumoto. New flavo-
	tive hypoglycaemic agents from		nol glycosides, major determi-
	plants on alloxan diabetes. J		nants inducing the green flu-
	Pharm Pharmacol 1962; 14:		orescence in the guard cells of
	617.		Allium cepa. Tetrahedron Lett
AC0115	Jain, R. C., C. R. Vyas and O. P.		1992; 33(9): 1213–1216.
	Mahatma. Hypoglycaemic action	AC0123	Yamamato, O., T. Yoshihara, A.
	of onion and garlic. Lancet 1973;		Ichihara and Y. Maede. Novel
A CO116	1973: 1491.		heinz body hemolysis factors
AC0116	Augusti, K. T. Studies on the ef-		in onion (Allium cepa; Biosci
	fect of a hypoglycemic principle		Biotech Biochem 1994; 58(1):
	from Allium cepa Linn. Indian		221–222.

AC0124	Upreti, R. K., S. Ahmad, S. Shukla and A. M. Kidwai. Experimental anorexigenic effect of a membrane proteoglycan isolated from plants. J Ethnopharmacol 1994; 42(1): 53–61.	AC0134 AC0135	Slob, A., B. Jekel, B. De Jong and E. Schlatmann. On the occurrence of tuliposides in the Liliflorae. Phytochemistry 1975; 14: 1997–2005.
AC0125	Mahran, G. H. Phytochemical study of <i>Allium cepa</i> . Abstr Proc Conf Med Pl (Marienbad) 1975; 1975: 119–.	AC0133	Burtsev, A. F., T. W. Pash- chenko and G. R. Rik. Mass- spectrometric analysis of vola- tile phytonocide substances of cucumber and common onion
AC0126	Augusti, K. T., V. C. M. Roy and M. Semple. Effect of allyl propyl disulfide isolated from onion (<i>Allium cepa</i>) on glucose tolerance of alloxan diabetic rabbits. Experientia 1974; 30: 1119–.	AC0136	leaves. Fiziol Biokhim Kul't Rast 1974; 6: 516—. Gilbert, M. D., G. A. Maylin and D. J. Lisk. Gas chromatographic analysis of neodecanoic acids in onions. J Agr Food Chem 1976;
AC0127	Sallam, L. A. R., A. H. El-Refai, M. Edrees and A. F. Abdel-Fattah. Outer pigmented skins of onions. Qual Plant Plant Foods Hum Nutr 1974; 24: 159–.	AC0137	24: 194–. Jain, R. C. Onion and garlic in experimental cholesterol induced atherosclerosis. Indian J Med Res 1976; 64: 1509.
AC0128	Tiwari, G. M. and C. Bandyo- padhyay. Quantitative evalua- tion of lachrymatory factor in onion by thin-layer chromatog- raphy. J Agr Food Chem 1975;	AC0138 AC0139	Viesca-Trevino, C. Estudios Sobre Ethnobotanica y Antropologia Medica. Inst Mexicano para est pl Medic, Mexico, 1976. Starke, H. and K. Herrmann.
AC0129	23: 645. Du, C. T., P. L. Wang and F. J. Francis. Cyanidin-3-laminario- bioside in Spanish red onion (Allium cepa; J Food Sci 1974;		Flavonols and flavones of vegetables. VI. On the behavior of flavonols in the onion. Z Lebensm-Unters Forsch 1976; 161(2): 137–142.
AC0130	39: 1265–. Jain, R. C. and C. R. Vyas. Hypoglycaemic action of onion on rabbits. Brit Med J 1974; 1974(2): 730.	AC0140	Yamazaki, M. and T. Nishimura. Induction of neutrophil accumulation by vegetable juice. Biosci Biotech Biochem 1992; 56(91): 150–151.
AC0131	Mathew, P. T. and K. T. Augusti. Hypoglycaemic effects of onion, <i>Allium cepa</i> , on diabetes mellitus-A preliminary report. Indian J Physiol Pharmacol 1975; 19: 213.	AC0141	Sklan, D., Y. N. Berner and H. D. Rabinowitch. The effect of dietary onion and garlic on hepatic lipid concentrations and activity of antioxidative enzymes in chicks. J Nutr Biochem 1992;
AC0132	Hamilton, J. W. Chemical examination of seleniferous onions, <i>Allium cepa</i> . Adv Front Plant Sci 1975; 30: 189–.	AC0142	3(7): 322–325. Mahmoud, I., A. Alkofahi and A. Abdelaziz. Mutagenic and toxic activities of several spices
AC0133	Nishimura, H. and J. Mizutani. Effect of gamma-irradiation on development of lachrymator of onion. Agr Biol Chem 1975; 39:	AC0143	and some Jordanian medicinal plants. Int J Pharmacog 1992; 30(2): 81–85. Bilgrami, K. S., K. K. Sinha
	2245–.		and A. K. Sinha. Inhibition of

	aflatoxin production & growth of <i>Aspergillus flavus</i> by eugenol & onion & garlic extracts. Indian J Med Res 1992; 96(34): 171–175.	AC0151	Hertog, M. G. L., P. C. H. Hollman and M. B. Katani. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly
AC0144	Jirovetz, L., H. P. Koch, W. Jager and G. Remberg. Investigations of German onion oil by		consumed in the Netherlands. J Agr Food Chem 1992; 40(12): 2379–2383.
	GC-FID, GC-MS, and GC-FTIR. Pharmazie 1992; 47(6): 455–456.	AC0152	Sekiya, K., T. Fushimi, N. Ishikawa, T. Kanamori, M. Itoh, M. Takita and T. Nakanishi.
AC0145	Granado, F., B. Olmedilla, I. Blanco and E. Rojas-Hidalgo. Carotenoid composition in raw and cooked Spanish vegetables.		Regulation of arachidonic acid metabolism in platelets by vegetables. Biosci Biotech Biochem 1993;57(4): 670–671.
	J Agr Food Chem 1992; 40 (11): 2135–2140.	AC0153	Kim, O. K. and E. B. Lee. The screening of plants for hypogly-
AC0146	Tokitomo, Y. and A. Kobayashi. Isolation of the volatile components of fresh onion by thermal desorption cold trap capillary		cemic action in normal and allo- xan-induced hyperglycemic rats. Korean J Pharmacog 1992; 23 (2): 117–119.
	gas chromatography. Biosci Biotech Biochem 1992; 56(11): 1865–1866.	AC0154	Hong, S. K., S. D. Koh, H. K. Shin and K. S. Kim. Effects of garlic oil, garlic juice and allyl
AC0147	Maeda, H., T. Katsuki, T. Akaike and R. Yasutake. High correlation between lipid peroxide radical and tumor-promoter		sulfide on the responsiveness of dorsal horn cell in the cat. Hanyang Uidae Haksulchi 1992; 12(2): 621–633.
	effect: Suppression of tumor promotion in Epstein-Barr virus/B-lymphocyte. Jap J Cancer Res (GANN) 1992; 83(9): 923–928.	AC0155	Prochaska, H. J., A. B. Santamaria and P. Talalay. Rapid detection on inducers of enzymes that protect against carcinogens.
AC0148	Yasukawa, K., A. Yamaguchi, J. Arita, S. Sakurai, A. Ikeda and		Proc Nat Acad Sci (USA) 1992; 89: 2394–2398.
	M. Takido. Inhibitory effect of edible plant extracts on 12-0-tetradecanoylphorbol-13-acetate-induced ear oedema in mice. Phytother Res 1993; 7(2): 185–	AC0156	Sogani, R. K. and K. Katoch. Correlation of serum cholesterol levels and incidence of myocardial infarction with dietary onion and garlic eating habits. J Assoc
AC0149	189. Kojima, T., T. Tanaka, H. Mori, Y. Kato and M. Nakamura. Acute and subacute toxicity tests of onion coat, natural colorant extracted from onion (<i>Allium</i>	AC0157	Phys Ind 1981; 29(6): 443–446. Lim-Sylianco, C. Y., J. A. Concha, A. P. Jocano and C. M. Lim. Antimutagenic effects of eighteen Philippine plants. Philippine J Sci 1986; 115(4): 293–
AC0150	cepa L.) in (CC57BL/6XC3H)F mice. J Toxicol Environ Health 1993; 38(1): 89–101. Babu, P. S. and K. Srinivasan. Influence of dietary spices on adrenal steroidogenesis in rats. Nutr Res 1993; 13(4): 435–444.	AC0158	296. Valdivieso, R., J. Subiza, S. Varela-Losada, J. L. Subiza, M. J. Narganes, C. Martinez- Cocera and M. Cabrera. Bronchial asthma, rhinoconjunctivitis, and contact dermatitis caused

	by onion. J Allergy Clin Immu-		on beta-hexosamininase release
AC0159	nol 1994; 94(5): 928–930. Kumari, K. and K. T. Augusti.		from rat basophilic leukemia cells (RBL-2H3) Jpn J Toxicol En-
	Antidiabetic effects of s-meth-		viron Health 1992; 38(5): 418–
	ylcysteine sulphoxide in alloxan diabetes. Planta Med 1995;	AC0167	424. Karawva, M. S., S. E. Khayyal,
	61(1): 72–74.	ACOIO	N. M. Farrrag and M. M. Ayad.
AC0160	Calvey, E. M., J. E. Matusik, K.		Screening of diphenylamine as
	D. White, J. M. Betz, E. Block, M. H. Littlejohn, S. Naganathan		an antihyperglycemic in certain edible plant organs. Egypt J
	and D. Putman. Off-line super-		Pharm Sci 1986; 25(1/2/3):
	critical fluid extraction of thio-		21–25.
	sulfinates from garlic and onion.	AC0168	Lichtenstin, L. M. and W. C. Pic-
	J Agr Food Chem 1994; 42(6): 1335–1341.		kett. Treatment of allergies and inflammatory conditions. Patent-
AC0161	Malamas, M. and M. Marselos.		Eur Pat APPL-153,881 1985;
	The tradition of medicinal plants	. 601.60	21pp.
	in Zagori, Epirus (Northwestern Greece) J Ethnopharmacol	AC0169	Al-Saikhan, M. S., L. R. Howard and J. C. Miller Jr. Antioxidant
	1992; 37(3): 197–203.		activity and total phenolics in
AC0162	Ueda, Y., T. Taubuku and R.		different genotypes of potato
	Miyajima. Composition of sul- fur-containing components in		(Solanum tuberosum L.) J Food Sci 1995; 60(2): 341–347.
	onion and their flavor characters.	AC0170	Singh, K. K. and J. K. Mahesh-
	Biosci Biotech Biochem 1994;		wari. Traditional phytotherapy
AC0163	58(1): 108–110. Hattori, A., H. Migitaka, M.		of some medicinal plants used by the Tharus of the Nainital dis-
7100103	ligo, M. Itoh, K. Yamamoto, R.		trict, Uttar Pradesh, India. Int J
	Ohtani-Kaneko, M. Hara, T.	. ~~	Pharmacog 1994;32(1): 51–58.
	Suzuki and R. J. Reiter. Identification of melatonin in plants and	AC0171	Ito, Y., M. Ono, C. Masuoka, S. Yahara and T. Nohara. Hyal-
	its effects on plasma melatonin		uronidase inhibitors of onion
	levels and binding to melatonin		(Allium cepa L.) skin. Kyushu
	receptors in vertebrates. Bio-chem Mol Biol Int 1995; 35(3):		Tokai Daigaku Nogakubu Kiyo 1995; 1995(14): 43–48.
	627–634.	AC0172	Akema, R., N. Okazaki and
AC0164	Vadhera, S., A. K. Punia and G.		K. Takizawa. Antibacterial sub-
	L. Soni. Hypocholesterolemic/ hypolipidemic effect of dietary		stance in commercial Allium plants. Kanagawa-Ken Eisei
	fibers from outer dry skin of gar-		Kenkyusho Kenkyu Hokoku
	lic and onion. J Food Sci 1995;	. 60450	1987; 1987(17): 39–40.
AC0165	32(1): 62–64. Thomas, D. J. and K. L. Parkin.	AC0173	Hollman, P. C. H., J. H. M. De Vries, S. D. Van Leeuwen, M. J.
7100105	Quantification of alk(en)ly-l-		B. Mengelers and M. B. Katan.
	cysteine sulfoxides and related		Absorption of dietary quercetin
	amino acids in alliums by high- performance liquid chromatog-		glycosides and quercetin in healthy ileostomy volunteers. Amer J
	raphy. J Agr Food Chem 1994;		Clin Nutr 1995; 62(6): 1276–1282.
	42(8): 1632–1638.	AC0174	Park, Y. K. and C. Y. Lee. Iden-
AC0166	Tanaka, Y., M. Kataoka, Y. Konishi, T. Nishmune and Y. Taka-		tification of isorhamnetin 4'-glu- coside in onions. J Agr Food
	gaki. Effects of vegetable foods		Chem 1996; 44(1): 34–36.

AC0175	Counsell, J. N. and D. J. Roberton.	AC0184	Karawya, M. S., S. M. A.
1100175	Xylitol - A sweetener which is	1100104	Wahab, M. M. El-Olemy and N.
	kind to the teeth. Food Process		M. Farrag. Diphenylamine, an
	Ind 1976; 45(54): 24–26.		antihyperglycemic agent from
AC0176	Alami, R., A. Macksad and A. R.		onion and tea. J Nat Prod 1984;
	El-Gindy. Medicinal Plants in	. 60405	47(5): 775–780.
	Kuwait. Al-Assiriya Printing	AC0185	Grujic-Injac, B., L. Basarevic-
AC0177	Press, Kuwait, 1976. Schnabl, H. Isolation and identi-		Dinic, S. Lajsic and D. Stefanovic. Chemical analysis of seed
ACOITT	fication of soluble polysaccha-		oil of the onion (Allium cepa).
	rides in epidermal tissue of		Hrana Ishrana 1985; 25(7/10):
	Allium cepa. Planta 1977; 135:		167–169.
	307–.	AC0186	Khodzhaeva, M. A. and E. S.
AC0178	Bhushan, S., S. Verma, V. M.		Kondratenko. Carbohydrates of
	Bhatnagar and J. B. Singh. A		Allium. V. Glucofructan of Al-
	study of the hypocholesterol-		lium cepa. Chem Nat Comp
	aemic effect of onion (Allium cepa) on normal human beings.	AC0187	1984; 20(1): 101–102. Kiviranta, J., K. Huovinen and
	Indian Med Gaz 1977; 16: 378.	ACOIO	R. Hiltunen. Variation of flavo-
AC0179	Khan, I. A., A. Subhan, A. Ahmad		noids in Allium cepa. Planta
	and A. Ahmad. Inhibition of		Med 1986; 1986(6): 517–518.
	spore germination of Helmintho-	AC0188	Miller, J. R., M. O. Harris and
	sporium turcicum, the incitant of		J. A. Breznak. Search for potent
	sorghum leaf blight, by chemi-		attractants of onion flies. J Chem
	cals and plant extracts. Indian J Plant Prot 1980; 7(1): 77–81.	AC0189	Ecol 1984; 10(10): 1477–1488. Ustunes, L., M. Claeys, G. Laeke-
AC0180	Roy, A. N., B. P. Sinha and K.	AC0169	man, A. G. Herman, A. J. Vliet-
7100100	C. Gupta. The inhibitory effect		nick and A. Ozer. Isolation and
	of plant juices on the infectivity		identification of two isometric
	of top necrosis virus of pea.		trihydroxy octadecenoic acids
	Indian J Microbiol 1979;19:		with prostaglandin e-like act-
. 60101	198–201.		ivity from onion bulbs (Allium
AC0181	Yao, G., Y. J. Li, X. Q. Chang		<i>cepa</i>). Prostaglandins 1985; 29
	and J. Lu. Vitamin C content in vegetables and fruits in Shen-	AC0190	(5): 847–865. Scheer, T. and M. Wichtl. On the
	yang (China) market during four	AC0190	occurrence of kaempferol-4'-o-
	seasons. Yingyang Xuebao 1983;		beta-d-glucopyranoside in <i>Fili</i> -
	5(4): 373–379.		pendula ulmaria and Allium cepa.
AC0182	Liakopoulou-Kyriakides, M.,		Planta Med 1987; 53(6): 573–574.
	Z. Sinakos and D. A. Kyriakidis.	AC0191	Kawakishi, S. and Y. Morimitsu.
	Identification of alliin, a consti-		New inhibitor of platelet aggre-
	tuent of <i>Allium cepa</i> with an inhibitory effect on platelet aggre-		gation in onion oil. Lancet 1988; 1988(8606): 330–.
	gation. Phytochemistry 1985;	AC0192	De A Ribeiro, R., F. Barros, M.
	24(3): 600–601.	1100132	Margarida, R. F. Melo, C. Muniz,
AC0183	Kimura, K., H. Nishimura, I.		S. Chieia, M. G. Wanderley, C.
	Kimura, I. Iwata and J. Mizutani.		Gomes and G. Trolin. Acute diu-
	Flavor components of roasted		retic effects in conscious rats
	onion. I. Changes in flavor com-		produced by some medicinal
	ponents of onion by roasting.		plants used in the state of Sao Paulo, Brasil. J Ethnopharma -
	Nippon Eiyo Shokuryo Gak- kaishi 1984; 37(4): 343–347.		col 1988; 24(1): 19–29.
	MISHI 1707, 37(7). 373-377.		EUI 1700, 2 I(1). 17 27.

AC0193 AC0194	Mascolo, N., G. Autore, F. Capasso, A. Menghini and M. P. Fasulo. Biological screening of Italian medicinal plants for anti-inflammatory activity. Phytother Res 1987; 1(1): 28–31. You, W. C., W. J. Blot, Y. S. Chang, A. Ershow, Z. T. Yang, O. And J. F. Fraumoni Jr. and T.	AC0201	let thromboxane production in humans. Prostaglandins Leukotrienes Essent Fatty Acids 1989; 35(3): 183–185. Tsuboi. S., S. Kishimoto and S. Ohmori. S-(2-carboxypropyl) glutathione in vegetables in Liliflorae. J Agr Food Chem 1989; 37(3): 611–615
	Q. An, J. F. Fraumeni Jr. and T. G. Wang. Allium vegetable and reduced risk of stomach cancer. J Nat Cancer Inst 1989; 81(2): 162–164.	AC0202	37(3): 611–615. Belman, S., J. Solomon, A. Segal, E. Block and G. Barany. Inhibition of soybean lipoxygenase and mouse skin tumor promo-
AC0195	Didry, N., M. Pinkas and L. Dubreuil. Antibacterial activity of species from the genus Allium. Pharmazie 1987; 41(10):	AC0203	tion by garlic and onion components. J Biochem Toxicol 1989; 4(3): 151–160. Mathew, P. T and K. T. Augustini.
AC0196	687–788. Reddy. P. N., G. Azeemoddin and S. D. T. Rao. Processing and analysis of onionseed (<i>Allium cepa</i>) and its fixed oil. J Amer		Hypoglycaemic effects of onion, <i>Allium cepa</i> Linn. on diabetes mellitus, a preliminary report. Indian J Physiol Pharmacol 1975; 19(4): 213–217.
AC0197	Oil Chem Soc 1989; 66(3): 365 Dorsch, W., H. Wagner, T. Bayer, B. Fessler, G. Hein, J. Ring, P. Scheftner, W. Sieber, T.	AC0204	Kintia, P. K., L. P. Degtiaryova, N. N. Balashova and S. A. Shvets. Sterols and steroidal glycosides of bulb onion seeds.
	Strassert and E. Weib. Anti-asth- matic effects of onions. Alk(en) ylsulfinothoic acid al(en)yl-es- ters inhibit histamine release, leukotriene and thromboxane	AC0205	Fecs Int Conf Chem Biotechol Biol Act Nat Prod (Proc.) 3rd 1985, 1987; 1987(5): 166–170. Mossa, J. S. A study on the crude antidiabetic drugs used in
	biosynthesis in vitro and coun- teract PAF and allergen-induced bronchial obstruction in vivo Bio -		Arabian folk medicine. Int J Crude Drug Res 1985;23(3): 137-145
		AC0206	
AC0198	teract PAF and allergen-induced bronchial obstruction in vivo. Biochem Pharmacol 1988; 37(23): 4479–4486. Claeys, M., L. Ustunes, G. Laekeman, A. G. Herman, A. J. Vlietinck and A. Ozer. Characterization of prostaglandin Elike activity isolated from plant source (Allium cepa). Prog	AC0206 AC0207	Crude Drug Res 1985;23(3): 137–145. Srivastava, K. C. Aqueous extracts of onion, garlic and ginger inhibited platelet aggregation and alter arachidonic acid metabolism. Biomed Biochim Acta 1984; 43(8/9): 5335–5346. Dorsch, W., M. Ettl, G. Hein, P. Scheftner, J. Weber, T. Bayer and
AC0198 AC0199	teract PAF and allergen-induced bronchial obstruction in vivo. Bio- chem Pharmacol 1988; 37(23): 4479–4486. Claeys, M., L. Ustunes, G. Laekeman, A. G. Herman, A. J. Vlietinck and A. Ozer. Charac- terization of prostaglandin E- like activity isolated from plant		Crude Drug Res 1985;23(3): 137–145. Srivastava, K. C. Aqueous extracts of onion, garlic and ginger inhibited platelet aggregation and alter arachidonic acid metabolism. Biomed Biochim Acta 1984; 43(8/9): 5335–5346. Dorsch, W., M. Ettl, G. Hein, P.

AC0210	Srivastava, K. C. Effects of aqueous extracts of onion, garlic and ginger on platelet aggregation and metabolism of arachidonic acid in the blood vascular system: In Vitro study. Prostaglandins Leukotrienes Med 1984; 13(2): 227–235.	AC0218	J Amer Vet Med Assn 1992; 200(8): 1090–1094. Chauhan, J. S., N. K. Singh and S. V. Singh. Screening of higher plants for specific herbicidal principle active against dodder, <i>Cuscuta reflexa</i> Roxb. Indian J Exp Biol 1989; 27(10): 877–
AC0210	Gasperi-Campani, A., L. Barbieri, M. G. Batteli and F. Stirpe. On the distribution of ribosome-inactivating proteins amongst plants. J Nat Prod 1985; 48(3): 446–454.	AC0219	884. Dhar, S. K., S. Gupta and N. Chandhoke. Antifertility studies of some indigenous plants. Proc XI Ann Conf Indian Phar-
AC0211	Perchellet, J. P., E. M. Perchellet and S. Belman. Inhibition of DMBA-induced mouse skin tumorigenesis by garlic oil and inhibition of two tumor-promo-	AC0220	macol Soc, New Delhi 1978; 1978: 1. Sangmahachai, K. Effect of onion and garlic extracts on the growth of certain bacteria. Master The-
	tion stages by garlic and onion oils. Nutr Cancer 1990; 14(3/4): 183–193.	AC0221	sis 1978; 88 pp. Achachotipong, S. and S. Rachapongthai. Studies on hypogly-
AC0212	Suresh, M. and R. K. Rai. Cardol: The antifilarial principle from Anacardium occidentale. Curr		cemic activity of Allium spp. Undergraduate Special Project Report 1985; 22 pp.
AC0213	Sci 1990; 59(9): 477–479. Bhattarai, N. K. Traditional phytotherapy among the Sherpas of Helambu, Central Nepal. J Ethnopharmacol 1989; 27(1/2):	AC0222	Laohapoonrangsee, P. and S. Muneepeerakul. Antibacterial activity of Allium spp. Undergraduate Special Project Report 1977; 25 pp.
AC0214	45–54. Miwa, M., Z. L. Kong, K. Shinohara, M. Watanabe. Macrophage stimulating activity of foods. Agr Biol Chem 1990; 54(7):	AC0223 AC0224	Sharma, K. C. and S. S. K. Shanmugasundram. <i>Allium cepa</i> as an antiasthmatic. RRL JAMMU Newsletter 1979; 6(2): 8. Block, E., R. E. Penn and L. K.
AC0215	1863–1866. Dorsch, W. and H. Wagner. New antiasthmatic drugs from traditional medicine. Int Arch Allergy Appl Immunol 1991; 94	AC0225	Revelle. Structure and origin of the onion lachrymatory factor. A microwave study. J Amer Chem Soc 1979; 101: 2200–2201. Malkki, Y., O. E. Nikkila and
AC0216	(1/2): 262–265. Yamazaki, M., H. Ueda, K. Fukuda, M. Okamoto and S. Yiu. Priming effects of vegetable juice		M. Aalto. The composition and aroma of onions and influencing factors. J Sci Agr Soc Finland 1978; 50: 103–.
AC0217	on endogenous production of tu- mor necrosis factor. Biosci Bio- tech Biochem 1992; 56(1): 149. Lincoln, S. D., M. E. Howell,	AC0226	Suh, M. J. Effects of condiments upon alpha-amylase activity. Hanguk Yongyang Hakhoe Chi 1976; 9: 104.
	J. J. Combs and D. D. Hinman. Hematologic effects and feeding performance in cattle fed cull domestic onions (<i>Allium cepa</i>).	AC0227	Galal, E. E., H. M. Salem, S. A. Osman, M. Abdel Latif and M. M. Said. The value of onion extract and ascorbic acid as poten-

AC0228	tial hypocholesteremic agents. J Drug Res(Egypt) 1976; 8: 55–67. Sebastian, K. L., N. T. Zacharias, B. Philip and K. T. Augusti. The hypolipidemic effect of onion (Allium cepa Linn.) in sucrose fed rabbits. Indian J	AC0238	sapogenins in onions. Zesz Nauk Akad Ekon Poznaniu Ser 1 1978; (73): 40–43. Maggini, F., T. Marazia and P. Stanziano. Characterization of repetitive DNA in <i>Scilla sibirica</i> , Allium sativum by reassociation kinetics. Ann Bot (Rome) 1976; 25, 26, 425, 446
AC0229	Physiol Pharmacol 1979; 23: 27–29. Maugh II, T. H. It's nothing to cry about. Science 1979; 204:	AC0239	35–36: 435–446. Menon, I. S. Onions and blood fibrinolysis. Indian Practitio- ner 1979; 32: 72–76.
AC0230	293–. Van Ketel, W. G. and P. De Hann. Occupational eczema from garlic and onion. Contact Dermatitis 1978; 4: 53–54.	AC0240	Makheja, A. N., J. Y. Vanderhoek and J. M. Bailey. Inhibition of platelet aggregation and thromboxane synthesis by onion and garlic. Lancet 1979;
AC0231	Miyao, K. Pharmaceuticals containing onion extracts. Patent-Japan Kokai-78 09 1978; 309–.	AC0241	1979: 781. Attrep, K. A., W. P. Bellman, M. Attrep, J. B. Lee and W. E.
AC0232	Ayensu, E. S. Medicinal plants of the West Indies. Unpublished Manuscript 1978; 110 p–.		Braselton. Separation and identification of prostaglandin A1 in onion. Lipids 1980; 15: 292–
AC0233	Smoczkiewiczowa, A. and D. Nitschke. Flavonoids in onions. Zesz Nauk Akad Ekon Poznaniu Ser 1 1978; (73): 35–39.	AC0242	297. Tucakov, J. Ethnophytotherapy of diabetes. Srp Arh Celok Lek 1978; 106: 159–173.
AC0234	Sharma, K. K., N. K. Chowdhury and A. L. Sharma. Studies on hypocholestraemic activity of onion. II. Effect on serum cholesterol in rabbits maintained on high cholesterol diet. Indian J Nutr Diet 1975; 12: 388–391.	AC0243 AC0244	Pobozsny, K., P. Tetenyi, I. Hethelyi, L. Kocsar and V. Mann. Biologically active substances: Investigations into the prostaglandin content of Allium species. I. Herba Hung 1979; 18(2): 71–81. Makheja, A. N., J. Y. Vander-
AC0235	Sharma, K. K., S. Gupta and K. K. Dwivedi. Effect of raw and boiled onion on the alterations of blood cholesterol, fibrinogen and fibrinolytic activity in man during alimentary lipaemia. Indian Med Gaz 1977; 16: 479–	AC0244	hoek, R. W. Bryant and J. M. Bailey. Altered arachidonic acid metabolism in platelets inhibited by onion or garlic extracts. Adv Prostaglandin Thromboxane Res 1980; 6: 309–312. Albrand, M., P. Dubois, P. Etie-
AC0236	481. Sharma, K. K. and A. L. Sharma. Effect of onion on blood cholesterol, fibrinogen and fibrinolytic activity in normal subjects. Indian J Pharmacol 1976; 8: 231–233.		vant, R. Gelin and B. Tokarska. Identification of a new volatile compound in onion (<i>Allium cepa</i>) and leek (<i>Allium porum</i>): 3,4-dimethyl-2,5-dioxo-2,5-dihydrothiophene. J Agr Food Chem 1980; 28: 1037–1038.
AC0237	Smoczkiewiczowa, A. and D. Nitschke. Study of saponins and	AC0246	Ariga, T. and S. Oshiba. Effects of the essential oil components

AC0247	of garlic cloves on rabbit platelet aggregation. Igaku To Seibutsugaku 1981; 102(4): 169–174. Ariga, T. and S. Oshiba. Inhibition of human platelet aggregation by garlic oil and related substances. Igaku To Saibutsugaku 1981; 102(4): 175–180.	AC0256	fibrinolysis in experimental atherosclerosis. Indian H Pharmacol 1981; 13(3): 90–91. Adamu, I., P. K. Joseph and K. T. Augusti. Hypolipidemic action of onion and garlic unsaturated oils in sucrose fed rats over a two-month period. Experien
AC0248	Rockwell, P. and I. Raw. A mutagenic screening of various herbs, spices, and food additives. Nutrition and Cancer 1979; 1: 10–15.	AC0257	tia 1982; 38: 899–901. Karmelyuk, L. V., A. L. Fel'dman, Z. D. Gusar, A. T. Markh and N. P. Korableva. Determina-
AC0249	Osman, S. A. Chemical and biological studies of onion and garlic in an attempt to isolate a hypoglycemic extract. Abstr 4th	AC0258	tion of abscisic acid in common onion tissues. Fiziol Biokhim Kul't Rast 1982; 14: 295–298. Smoczkiewiczowa, M. A., J.
	Asian Symp Med Plants Spices Bangkok Thailand September 15–19, 1980; 117.	AC0236	Lutomski and D. Nitschke. Chemical and pharmacological characterization of <i>Allium cepa</i> .
AC0250	Vatsala, T. M. and M. Singh. Relationship between plasma cholesterol level and erythrocytes shape in rabbits on atherogenic diet and onion extracts. Curr Sci 1981; 50: 211–213.	AC0259	Herba Pol 1981; 27: 169–188. Sharma, A., S. R. Padwal-Desae, G. M. Tewari and C. Bandyopadhyay. Factors affecting antifungal activity of onion extractives against aflatoxin-produc-
AC0251	Vatsala, T. M. and M. Singh. Effects of onion in atherosclerosis in rabbits for maintenance of normal activity of aortic enzymes. Curr Sci 1982; 51: 276–278.	AC0260	ing fungi. J Food Sci 1981; 46: 741–744. Itoh, T., T. Tamura, T. Mitsuhashi and T. Matsumoto. Sterols of Liliaceae. Phytochemistry
AC0252	Vanderhoek, J. Y., A. N. Makheja and J. M. Bailey. Inhibition of fatty acid oxygenases by onion and garlic oils. Evidence for the mechanism by which these oils inhibit platelet aggregation. Bio-	AC0261	1977; 16: 140–141. Dabral, P. K. and R. K. Sharma. Evaluation of the role of rumalaya and geriforte in chronic arthritis-A preliminary study. Probe 1983; 22(2): 120–127.
AC0253	chem Pharmacol 1980; 29:3169–3173. Stallbaumer, M. Onion poisoning in a dog. Vet Rec 1981; 108:523–524.	AC0262	Van Den Berghe, D. A., M. Ieven, F. Mertens, A. J. Vlietinck and E. Lammense. Screening of higher plants for biological activities. II. Antiviral activity. J Nat Prod
AC0254	Amla, V., S. L. Verma, T. R. Sharma, O. P. Gupta and C. K. Atal. Clinical study of <i>Allium cepa</i> Linn. in patients of bronchial asthma. Indian J Pharmacol 1981; 13: 63–64.	AC0263	1978; 41: 463–467. Nagda, K. K., S. K. Ganeriwal, K. C. Nagda and A. M. Diwan. Effect of onion and garlic on blood coagulation and fibrinolysis in vitro. Indian J Physiol
AC0255	Kaur, J., S. Goyal, V. Bhasin, V. K. Kulshrestha and D. N. Prasad. Effect of <i>C. mukul, A. sativum</i> and <i>A. cepa</i> on coagulation and	AC0264	Pharmacol 1983; 27(2): 141–145. Adesina, S. K. Studies on some plants used as anticonvulsants

AC0265	in Amerindian and African traditional medicine. Fitoterapia 1982; 53: 147–162. Razzack, H. M. A. The concept of birth control in Unani medical literature. Unpublished Manuscript 1980; 64 pp.	AC0275	of drugs and medicinal plants of Yemen. J Ethnopharmacol 1983; 8(3): 335–344. Conner, D. E. and L. R. Beuchat. Effects of essential oils from plants on growth of food spoilage yeasts. J Food Sci 1984;
AC0266	Elnima, E. L., S. A. Ahmed, A. G. Mekkawi and J. S. Mossa. The antimicrobial activity of garlic and onion extracts. Pharmazie 1983; 38(11): 747–748.	AC0276	49(2): 429–434. Handa, G., J. Singh and C. K. Atal. Antiasthmatic principle of <i>Allium cepa</i> Linn. (Onions) Indian Drugs 1983; 20(6): 239.
AC0267	Tissut, M. and P. Ravanel. Assessment of flavonols in adult leaves of several vegetative vacuoles. Phytochemistry 1980; 19:2077–2081.	AC0277	Weisenberger, H., H. Grube, E. Koenig and H. Pelzer. Isolation and identification of the platelet aggregation inhibitor present in onion, <i>Allium cepa</i> . Febs Lett
AC0268	Gad, S. S., M. Esmat El-Zalaki, M. S. Mohamed and S. Z. Mohassed. Oxalate content of some leafy vegetables and dry legumes consumed widely in Egypt. Food Chem 1982; 8(3): 169–177.	AC0278	1972; 26(1): 105–108. Chauhan, L. S., J. Garg, H. K. Bedi, R. C. Gupta, B. S. Bomb and M. P. Agarwal. Effect of onion, garlic and clofibrate on coagulation and fibrinolytic acti-
AC0269	Vatsala, T. M. and M. Singh. Effects of onion in induced atherosclerosis in rabbits. 2. Reduction of lipid levels in the eye.	AC0279	vity of blood in cholesterol fed rabbits. Indian Med J 1982; 76(10): 126–127. Boukef, K., H. R. Souissi and
AC0270	Curr Sci 1982; 51: 230–232. Vyas, D. S., R. P. Acharya, A. P. Dadhich, J. L. Godhwani and V. S. Purohit. Effect of <i>Allium cepa</i> (onion) on immune response in		G. Balansard. Contribution to the study on plants used in traditional medicine in Tunisia. Plant Med Phytother 1982; 16(4): 260–279.
AC0271	rabbit. Indian J Physiol Pharmacol 1983; 27(3): 259–260. Gupta, R. K. and S. Gupta. Partial purification of the hypoglycemic principle of onion. IRCS	AC0280	Cosminsky, S. Knowledge of body concepts of Guatemalan wives. Chapter 12. Anthropology of Human Birth 1982; 233–252.
AC0272	Med Sci Libr Compend 1976; 4(9): 410. Sharma, K. K. and S. P. Sharma. Effect of onion and garlic on	AC0281	Rattanapanone, V. Antithiamin factor in fruits, mushrooms and spices. Chiang Mai Med Bull 1979; 18: 9–16.
AC0273	serum cholesterol in normal subjects. Mediscope 1979; 22(7): 134–136. Jain, R. C. and C. R. Vyas. Onion and garlic in atherosclerotic heart disease. Medikon 1977; 6(5):	AC0282	Singh, K. V. and R. K. Pathak. Effect of leaves extracts of some higher plants on spore germination of <i>Ustilago maydes</i> and <i>U. nuda</i> . Fitoterapia 1984; 55(5): 318–320.
AC0274	12-14. Fleurentin, J., G. Mazars and J. M. Pelt. Additional information on the cultural background	AC0283	Ojewole, J. A. O., A. D. Adekile and O. O. Odebiyi. Pharmaco- logical studies on a Nigerian her- bal preparation: 1. Cardiovas-

	cular actions of cow's urine con-		induced hyperglycemia. J Drug
	coction (CUC) and its individual		Res (Egypt) 1981; 13(1/2): 61–
	components. Int J Crude Drug		68.
	Res 1982; 20: 71–85.	AC0292	Said, M. Potential of herbal medi-
AC0284	Kapur, S. K. Medico-botanic		cines in modern medical ther-
	survey of medicinal and aroma-		apy. Ancient Sci Life 1984; 4
	tic plants of Mawphlang (Shil-		(1): 36–47.
	long). Indian Drugs 1983; 21(1):	AC0293	Mossa, J. S. A study on the crude
	1–5.		antidiabetic drugs used in Ara-
AC0285	Bobboi, A., K. T. Augusti and		bian folk medicine. Int J Crude
	P. K. Joseph. Hypolipidemic		Drug Res 1985;23(3): 137–145.
	effects of onion oil and garlic oil	AC0294	De A Ribeiro, R., M. M. R. Fiuza
	in ethanol-fed rats. Indian J		De Melo, F. De Barros, C.
	Biochem Biophys 1984; 21(3):		Gomes and G. Trolin. Acute
	211–213.		antihypertensive effect in con-
AC0286	Anon. More praise for onions		scious rats produced by some
	and garlic. Food Chem Toxicol		medicinal plants used in the state
	1984; 22(11): 918.		of Sao Paulo. J Ethnopharma-
AC0287	Viswanathan, K. and K. K. Laksh-		col 1986; 15(3): 261–269.
	manan. Phytoallelopathic effects	AC0295	Singh, Y. N. Traditional medi-
	on in vitro pollinial germination		cine in Fiji: Some herbal folk
	of Calotropis gigantea R. BR.		cures used by Fiji Indians. J Eth-
	Indian J Exp Biol 1984; 22(10):		nopharmacol 1986; 15(1): 57–88.
	544–547.	AC0296	Doutremepuich, C., G. Gamba,
AC0288	Dorsch, W., O. Adam, J. Weber		J. Refauvelet and R. Quilichini.
	and T. Ziegeltrum. Antiasth-		Effects of onion, Allium cepa
	matic effects of onion extracts-		L., on primary haemostasis in
	detection of benzyl- and other		healthy voluntary person before
	isothiocyanates (mustard oils) as		and after high fat meal absorp-
	antiasthmatic compounds of plant		tion. Ann Pharm Fr 1985; 43(3):
	origin. Eur J Pharmacol 1985;		273–280.
	107(1): 17–24.	AC0297	Singh, M. and P. Kanakara. Hypo-
AC0289	El-Ashwah, E. T., M. H.		cholesterolemic effect of onion
	Ibrahim, F. S. El-Hashimy and		extract on cholesterol-enriched
	R. M. M. El-Allawy. Hypogly-		erythrocytes. Indian J Exp Biol
	cemic activity of different vari-		1985; 23(8): 456–459.
	eties of Egyptian onion (Allium	AC0298	Venkataraghavan, S. and T. P.
	cepa) in alloxan diabetic rats.		Sundaresan. A short note on con-
	J Drug Res (Egypt) 1981; 13		traceptive in Ayurveda. J Sci
	(1/2): 45–52.		Res Pl Med 1981; 2(1/2): 39.
AC0290	Bobboi, A., K. T. Augusti and	AC0299	Jain, H. C. Indian plants with oral
	P. K. Joseph. Hypolipidemic		hypoglycaemic activity. Abstr In-
	effects of onion oil and garlic		ternat Res Cong Nat Prod Coll
	oil in ethanol-fed rats. Indian J		Pharm Univ N Carolina Chapel
	Biochem Biophys 1984; 21(3):		Hill NC, July 7–12 1985; Abstr-
	211–213.		152.
AC0291	Aswah, E. T., R. M. El-Allawy,	AC0300	Bhushan, S., S. P. Saxena, G.
	F. S. El-Hashimy and M. H.		Prakash, P. Nigam and A. B.
	Ibrahim. The hypoglycemic acti-		Asthavan. Effect of oral admin-
	vity of onion extracts "Allium		istration of raw onion on glucose
	cepa" influenced by adrenaline-		tolerance test of diabetics - A

AC0301	comparison with tolbutamide. Curr Med Pract 1984; 28(12): 712–715. Mossa, J. S. and M. Tariq. Studies on antidiabetic activity of <i>Allium cepa</i> . Abstr International Sym-	AC0310	Shinohara, K., S. Kuroki, M. Miwa, Z. L. Kong and H. Hosoda. Antimutagenicity of dialyzates of vegetables and fruits. Agr Biol Chem 1988; 52(6): 1369–1375.
AC0302	posium on Chinese Medicinal Materials Research Hong Kong June 12–14 1984; ABSTR-1. Evans, L. S. and W. A. Tramontano. Trigonelline and promotion of cell arrest in G2 of	AC0311	Younis, S. A. and E. G. Hagop. Preliminary studies on the red onion scaly leaves: Abortive action and effects on serum enzymes in mice. Fitoterapia 1988; 59(1): 21–24.
AC0303	various legumes. Phytochemistry 1984; 23(9): 1837–1840. Morita, K., M. Hara and T. Kada. Studies on natural desmutagens: Screening for vegetable and fruit factors active in inactivation of	AC0312 AC0313	Renu. Fungitoxicity of leaf extracts of some higher plants against <i>Rhizoctonia solani</i> Kuehm. Natl Acad Sci Lett (India) 1983; 6(8): 245–246. Conner, D. E. and L. R. Beuchat.
AC0304	mutagenic pyrolysis product from amino acids. Agr Biol Chem 1978; 42(6): 1235–1238. Yamaguchi, T., Y. Yamashita	AC0314	Inhibitory effects of plant oleoresins on yeast. Interact Food Proc Int IUMS-ICFMH Symp. 12th 1984; 1983: 447–451.
AC0305	and T. Abe. Desmutagenic activity of peroxidase in autoxidized linolenic acid. Agr Biol Chem 1980; 44(4): 959–961. Guerin, J. C. and H. P. Reveil-	AC0314	Niukian, K., J. Schartz and G. Shklar. In vitro inhibitory effect of onion extract on hamster buccal pouch carcinogenesis. Nutr Cancer 1987; 10(3): 137–144.
	lere. Antifungal activity of plant extracts used in therapy. 1. Study of 41 plant extracts against 9 fungi species. Ann Pharm Fr 1984; 42(6): 553–559.	AC0315	Yg, G., Y. Y. Liu, X. H. Yang, D. Chen and F. H. Fu. Effect of <i>Allium cepa</i> L. var <i>Agrogatum don</i> and <i>Allium macrostemon</i> on arachidonic acid metabolism. Yao
AC0306	Singhvi, S., K. C. Joshi, S. Hiram, S. Bhandari and L. K. Tambi. Effect of onion and garlic in blood lipids. Rajasthan Med J 1984; 23(1): 3–6.	AC0316	Hsueh Pao 1988; 23(1): 8–11. Koshimizu, K., H. Ohigashi, H. Tokuda, A. Kondo and K. Yama- guchi. Screening of edible plants against possible anti-tumor pro-
AC0307	Kiviranta, J., T. Seppanen, H. Karppanen, H. Huovinen and R. Hiltunen. Effects of onion and garlic extracts on spontaneously hyperbolic rats. Pharm Weekly	AC0317	moting activity. Cancer Lett 1988; 39(3): 247–257. Ramirez, V. R., L. J. Mostacero, A. E. Garcia, C. F. Mejia, P. F. Pelaez, C. D. Medina and C. H.
AC0308	(Sci Ed) 1987; 9(4): 237. Juergen, S. H. and H. Waltraud. Flavonols-Mutagens in our daily nutrition. Dtsch Lebensm Run- dsch 1984; 80(3): 85–87.		Miranda. Vegetales empleados en medicina tradicional Norpe- ruana. Banco Agrario Del Peru and NACL Univ Trujillo, Tru- jillo, Peru, June, 1988; 54 pp.
AC0309	Kamboj, V. P. A review of Indian medicinal plants with interceptive activity. Indian J Med Res 1988; 1988(4): 336–355.	AC0318	Caceres, A., L. M. Giron, S. R. Alvarado, and M. F. Torres. Screening of antimicrobial activity of plants popularly used in

AC0319	Guatemala for the treatment of dermatomucosal diseases. J Eth-nopharmacol 1987; 20(3): 223–237. Koremura, N., S. Takano and T.	AC0327	Hughes, B. G. and L. D. Lawson. Antimicrobial effects of <i>Allium</i> sativum L. (garlic), <i>Allium ampeloprasum</i> L. (elephant garlic), and <i>Allium cepa</i> L. (onion), gar-
	Hasegawa. Study on the effect on rats of the growth accelerat- ing substances in the onion. Nutr		lic compounds and commercial garlic supplement products. Phytother Res 1991; 5(4): 154–158.
AC0320	Rep Int 1989; 40(1): 101–112. Ahluwalia, P. and A. Mohindroo. Effect of oral ingestion of different fractions of <i>Allium cepa</i> on the blood and erythrocyte membrane lipids and certain	AC0328	Sivaswamy, S. N., B. Balachandran, S. Balanehru and V. M. Sivaramakrishnan. Mutagenic activity of South Indian food items. Indian J Exp Biol 1991; 29(8): 730–737.
	membrane-bound enzymes in rats. J Nutr Sci Vitaminol 1989; 35(2): 155–161.	AC0329	Wagner, H., T. Bayer and W. Dorsch. The antiasthmatic principles of Zwiebel (<i>Allium cepa</i>
AC0321	Singhvi, S., K. C. Joshi, S. Hiran, S. Bhandari and L. K. Tambi. Effect of onion and gar-	AC0330	L.). Z Phytother 1988; 9(6): 165–170. Kock, H. P., W. Jager, J. Hysek
. 00000	lic on blood lipids. Rajasthan Med J 1984; 23(1): 3–6.	1100330	and B. Korpert. Garlic and onion extracts. In vitro inhibition of
AC0322	Leporatti, M. L. and A. Pavesi. New or uncommon uses of several medicinal plants in some areas of central Italy. J Ethnophar -	AC0331	adenosine deaminase. Phytother Res 1992; 6(1): 50–52. Lokar, L. C. and L. Poldini. Herbal remedies in the tradi-
AC0323	macol 1990; 29(2): 213–223. Belman, S., A. Sellakumar, M. C. Bosland, K. Savarese and R. D. Estensen. Papilloma and car-		tional medicine of the Venezia Giulia region (Northeast Italy). J Ethnopharmacol 1988; 22(3): 213–239.
	cinoma production in DMBA-initiated, onion oil-promoted mouse skin. Nutr Cancer 1990; 14(2): 141–148.	AC0332	Mukerji, B. and S. K. Gupta. Indigenous drugs in experimental tuberculosis. Chemotherapy Proc Symposium Lucknow 1959;
AC0324	Guerin, J. C. and H. P. Reveillere. Antifungal activity of plant extracts used in therapy. I. Study of 41 plant extracts against 9	AC0333	1958 1959: 90. Sharaf, A. A., A. M. Hussein and M. Y. Mansour. The antidiabetic effect of some plants. Planta
AC0325	fungi species. Ann Pharm Fr 1984; 42(6): 553-559. Antonone, R., F. De Simone,	AC0334	Med 1963; 11: 159. Frisbey, A., J. M. Roberts, J. C. Jennings, R. Y. Gottshall and E.
AC0323	P. Morrica and E. Ramundo. Traditional phytotherapy in the Roccamonfina volcanic group, Campania, Southern Italy. J Ethnopharmacol 1988; 22(3): 295–306.		H. Lucas. The occurrence of anti- bacterial substances in seed plants with special reference to <i>Myco-</i> <i>bacterium tuberculosis</i> (Third Report). Mich State Univ Agr Appl Sci Quart Bull 1953; 35:
AC0326	Renu. Fungitoxicity of leaf extracts of some higher plants against <i>Rhizoctonia solani</i> Kuehn. Natl Acad Sci Lett 1983; 6(8): 245–246.	AC0335	392–404. Prakash, A. O. and R. Mathur. Screening of Indian plants for antifertility activity. Indian J Exp Biol 1976; 14: 623–626.

AC0336			
AC0330	Pratt, D. E. and B. M. Watts. The	AC0347	Gruhzit, O. M. and D. Lindsay.
	antioxidant activity of vegetable		Anemia in dogs produced by
	extracts. I. Flavone aglycones.		feeding of the whole onions and
			of onion fractions. Amer J Med
	J Food Sci 1964; 29: 27–33.		
AC0337	Badami, R. C. and K. B. Patil.		Sci 1931; 181: 812–815.
	Minor seed oils. X: Physico-	AC0348	Dakshinamurti, K. Choline con-
	chemical characteristics and fatty		tent of South Indian foods. Curr
	acid composition of seven minor		Sci 1955; 24:194–195.
	oils. J Oil Technol Ass India	AC0349	Laland, P. and O. W. Havrevold.
		AC0349	
	1975; 7(3): 82–84.		The active principle of onions
AC0338	El-Dean Mahmoud, A. A. G.		(Allium sativum), which lowers
	Study of indigenous (folk ways)		blood sugar per os. 1. Z Physiol
	birth control methods in Alexan-		Chem 1933; 221: 180–196.
	dria. Thesis-MS-Univ of Alex-	AC0350	Laurin, J. Hypoglucemic action
	andria, Higher Inst of Nursing,		of the bulbs of Allium cepa L.
	1972.		Compt Rend 1931; 192: 1289–
A C0220			
AC0339	Tokin, I. B. The effect of phy-		1291.
	tonocides on spermatozoa and	AC0351	Carpenter, C. W. Antibacterial
	spermatogenesis in mammals.		properties of yeasts, Fusarium
	Dokl Akad Nauk SSSR 1953;		species, onion and garlic. Haw-
	93: 567–568.		aiian Planters Record 1945;
AC0340	Kreitmair, H. Pharmacological		49: 41–67.
1100010	trials with some domestic plants.	AC0352	Malori, L. and L. Squeri. Guinea-
	E Merck's Jahresber 1936; 50:	1100332	pig blood behavior after admin-
	102–110.		1 0
4 (202.41			istration of various extract frac-
AC0341	Christomanos, A. A. The bio-		tions from Allium cepa. Atti Soc
	logical effect of onion (Bulbus		Peloritana Sci Fis Mat Nat
	regions essent of emen (Butous		i civiliana Sci Fis Mat Mat
	cepae). Klin Wochschr 1932;		1955; 2: 233–235.
		AC0353	1955; 2: 233–235.
AC0342	<i>cepae</i>). Klin Wochschr 1932; 11: 248.	AC0353	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski,
AC0342	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad.	AC0353	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski.
AC0342	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian	AC0353	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction
AC0342	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J	AC0353	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst
AC0342	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Num-		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166.
	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Num- ber 1965; 48: 14–15.	AC0353 AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardy-
AC0342 AC0343	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Num- ber 1965; 48: 14–15. Majori, L. and L. Squeri. Hema-		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko.
	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Num- ber 1965; 48: 14–15.		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardy-
	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Num- ber 1965; 48: 14–15. Majori, L. and L. Squeri. Hema-		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko.
	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Num- ber 1965; 48: 14–15. Majori, L. and L. Squeri. Hema- tological modifications in the guinea pig and albino rat pro-		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the choles-
	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta
	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholester-
AC0343	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792.		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin
	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Na-
AC0343	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Eco-	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79.
AC0343	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press,		1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y.
AC0343	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Eco-	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79.
AC0343	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press,	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y.
AC0343 AC0344	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press, Calcutta, India, 1933; 550 pp. Brahmachari, H. D. and K. T.	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y. A. N. Kinzburskii and B. M. Kopytin. Use of P Vitamins,
AC0343 AC0344	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press, Calcutta, India, 1933; 550 pp. Brahmachari, H. D. and K. T. Augusti. Hypoglycaemic agent	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y. A. N. Kinzburskii and B. M. Kopytin. Use of P Vitamins, Quercetin and Flavallicep during
AC0343 AC0344	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press, Calcutta, India, 1933; 550 pp. Brahmachari, H. D. and K. T. Augusti. Hypoglycaemic agent from onions. J Pharm Phar-	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y. A. N. Kinzburskii and B. M. Kopytin. Use of P Vitamins, Quercetin and Flavallicep during radiation sickness in rats. Vliy-
AC0343 AC0344 AC0345	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press, Calcutta, India, 1933; 550 pp. Brahmachari, H. D. and K. T. Augusti. Hypoglycaemic agent from onions. J Pharm Pharmacol 1961; 13: 128.	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y. A. N. Kinzburskii and B. M. Kopytin. Use of P Vitamins, Quercetin and Flavallicep during radiation sickness in rats. Vliyanie Organizm Fiz Khim Fak-
AC0343 AC0344	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press, Calcutta, India, 1933; 550 pp. Brahmachari, H. D. and K. T. Augusti. Hypoglycaemic agent from onions. J Pharm Pharmacol 1961; 13: 128. Bhandari, P. R. Detection of	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y. A. N. Kinzburskii and B. M. Kopytin. Use of P Vitamins, Quercetin and Flavallicep during radiation sickness in rats. Vliyanie Organizm Fiz Khim Faktorov Vnesh Sredy Sb Rab Mater
AC0343 AC0344 AC0345	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press, Calcutta, India, 1933; 550 pp. Brahmachari, H. D. and K. T. Augusti. Hypoglycaemic agent from onions. J Pharm Pharmacol 1961; 13: 128. Bhandari, P. R. Detection of kaempferol on onion skins (All-	AC0354 AC0355	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y. A. N. Kinzburskii and B. M. Kopytin. Use of P Vitamins, Quercetin and Flavallicep during radiation sickness in rats. Vliyanie Organizm Fiz Khim Faktorov Vnesh Sredy Sb Rab Mater Nauch Konf 1967; 1967: 57–58.
AC0343 AC0344 AC0345	cepae). Klin Wochschr 1932; 11: 248. Galal, E. E. and M. A. Gawad. Antidiabetic activity of Egyptian onion, Allium cepa extract. J Egypt Med Assoc Spec Number 1965; 48: 14–15. Majori, L. and L. Squeri. Hematological modifications in the guinea pig and albino rat produced by ingestion of Allium cepa. Boll Soc Ital Biol Sper 1954; 30: 791–792. Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press, Calcutta, India, 1933; 550 pp. Brahmachari, H. D. and K. T. Augusti. Hypoglycaemic agent from onions. J Pharm Pharmacol 1961; 13: 128. Bhandari, P. R. Detection of	AC0354	1955; 2: 233–235. Kaczmarek, F., Z. Kowalewski, J. Lutomski and T. Wrocinski. Preparation of a diuretic fraction from dried onion scales. Biul Inst Rosl Leczn 1961; 7: 157–166. Lisevitskaya, L. I., V. A. Bardynkova and A. L. Shinkarenko. Effect of a preparation of common onion skin on the cholesterol content of blood and aorta in experimental hypercholesterolemia in white rats. Nauchin Dokl Vysshei Shkoly Biol Nauki 1966; 1966(2): 78–79. Bakina, E. E., V. S. Rodina, Y. A. N. Kinzburskii and B. M. Kopytin. Use of P Vitamins, Quercetin and Flavallicep during radiation sickness in rats. Vliyanie Organizm Fiz Khim Faktorov Vnesh Sredy Sb Rab Mater

AC0357	tors on weight and function of thyroid gland of experimental animal. J Egypt Public Health Assoc 1969; 44(5): 473–480.	AC0365	glycemic agents. J Pharm Pharmacol 1962; 14: 254–255. Das, V. S. R. and J. V. S. Rao. Phenolic acids of onion plant.
AC0337	Matikkala, E. J. and A. I. Virtanen. Isolation of gamma-l-glutamyl-l-arginine and gamma-l-glutamyl-s-(2-carboxy-n-proyl)-	AC0366	Curr Sci 1964; 33(15): 471–472. Das, V. S. R. and J. V. S. Rao. Onion root gibberellins. Curr Sci 1965; 34(1): 28–.
A CO250	1-cysteine from Allium cepa (onion). Suomen Kemistilehti 1970; 43(11): 435–438.	AC0367	Soldatenkov, S. V., T. A. Mazurova and A. N. Ranteleev. Organic acids of onion and spinach.
AC0358	Link, K. P., A. D. Dickson and J. C. Walker. The occurrence of protocatechuic acid in pigmen- ted onion scales and its relation	AC0368	Trudy Petergof Biol Inst, Leningrad Gosudarst Univ Im AA Zhdanova 1960; 1960(18): 55–61. Sinha, A. Chemical examination
AC0359	to disease resistance in the onion. J Biol Chem 1929; 84: 719–725. Bacon, J. S. D. Trisaccharide	AC0308	of <i>Allium cepa</i> . I. Glycosidic and sugar fractions. Indian J Appl Chem 1959; 22: 89–91.
AC0360	fraction of some monocotyledons. Biochem J 1959; 73: 507–514. Virtamen, A. I. and E. J. Matik-	AC0369	Brodnitz, M. H. and J. V. Pascale. Thiopropanal s-oxide: A lachrymatory factor in onions. J
	kala. New gamma-glutamyl peptides in onion (Allium cepa) I. Gamma-glutamylphenylalanine	AC0370	Agr Food Chem 1971; 19(2): 269–272. Wilkens, W. F. Isolation and
	and gamma-glutamyl-s-(beta-carboxy-beta-methylethyl)cy-steinlglycine. Suomen Kemis-		identification of the lachrymo- genic compound of onion. Cor- nell Univ. Agr Expt Sta Mem
AC0361	tilehti 1960; 33B: 83–84. Virtanen, A. I. and E. J. Matik- kala. Structure of the gamma- glutamyl peptide 4 isolated from	AC0371	No 385 1964; 31pp—. Carson, J. F. and F. F. Wong. The volatile flavor components of onions. J Agr Food Chem
	onion (<i>Allium cepa</i>)-gamma-l-glutamyl-s-(1-propenyl)cysteine sulfoxide. Suomen Kemisti-	AC0372	1961; 9: 140–143. Schultz, O. E. and H. L. Mohrmann. Analysis of constituents of garlic
AC0362	lehti 1961; 34B: 84–. Virtanen, A. I. and E. J. Matik- kala. New gamma-l-glutamyl	AC0373	Allium sativum. II. Gas chromatography of garlic oil. Pharmazie 1965; 20(7): 441–447.
AC0363	peptides in onion (<i>Allium cepa</i>). III. Suomen Kemistilehti 1961; 34B: 53–54. Abdou, I. A., A. A. Abou-Zeid,	AC0373	Hermann, K. Flavonols and phenols of the onion (<i>Allium cepa</i>). Arch Pharm 1958; 291: 238–247. Liebstein, A. M. Therapeutic ef-
AC0303	M. R. El-Sherbeeny and Z. H. Abou-El-Gheat. Antimicrobial activities of <i>Allium sativum</i> , <i>All-</i>	AC0374	fects of various food articles. Amer Med 1927; 33: 33–38. Greer, M. A. and E. B. Astwood.
	ium cepa, Raphanus sativus, Capsicum frutescens, Eruca sativa, Allium kurrat on bacteria. Qual	ACUSIS	The antithyroid effect of certain foods in man as determined with radioactive iodine. Endocrinol-
AC0364	Plant Mater Veg 1972; 22 (1): 29–35. Brahmachari, H. D. and K. T.	AC0376	ogy 1948; 43: 105–119. Spare, C. G. and A. L. Virtanen. On the lachrymatory factor in
AC0304	Augusti. Orally effective hypo-		onion (Allium cepa) vapours and

AC0377	its precursor. Acta Chem Scand Ser A 1963; 17: 641–650. Echandi, R. J. An organoleptic and chemical investigation of the linguachemaceric properties of onion (<i>Allium cepa L.</i>) and garlic (<i>Allium sativum L.</i>). Diss Abstr Int B 1966; 26(10): 5632–5633.	AC0385 AC0386	Bayer, T., H. Wagner, V. Wray and W. Dorsch. Inhibitors of cyclooxygenase and lipoxygenase in onions. Lancet 1988; 1988(8616): 906–. Link, K. P. and J. C. Walker. The isolation of catechol from pigmented onion scales and its significance in relation to disease
AC0378	Renis, H. E. and R. E. Henze. Studies on sulfur compounds from onion. Diss Abstr Int B 1957; 17: 1456–1457.	AC0387	resistance in onions. J Biol Chem 1933; 100: 379–383. Arunachalam, K. Antimicrobial activity of garlic, onion
AC0379	Wilkens, W. F. The isolation and identification of the lachrymogenic compound of onion. Diss	AC0388	and honey. Geobios 1980; 7(1): 46–47.
AC0380	Abstr Int B 1962; 22: 3978–. Balansard, J. and M. Arnoux. A	AC0366	Singh, K. V. and S. K. Desmukh. Volatile constituents from mem- bers of Liliaceae and spore ger-
AC0300	study of the hepato-renal diuretics. III. The active principle of onion juice. Med Trop (Mar-		mination of <i>Microsporum gypseum</i> complexes. Fitoterapia 1984; 55(5): 297–299.
AC0381	seille) 1951; 11: 632–634. Balansard, J. A study of the hepato-renal diuretics. 1. onion bulbs. Med Trop (Marseille) 1951; 11: 622–626.	AC0389	Sainani, G. S., D. B. Desai, N. H. Gorne, D. V. Pise and P. G. Sainani. Effect of garlic and onion on important lipid and coagulation parameters in ali-
AC0382	Fuleki, T. The anthocyanins of strawberry, rhubarb, radish and onion. J Food Sci 1969; 34(4):	AC0390	mentary hyperlipaemia. J Ass Phys India 1979; 27: 57-64. Gazzani, G. Anti- and pro-oxidant
AC0383	365–369. Wills, R. B. H. and E. V. Scurr. Mevalonic acid concentrations in		activity of some vegetables in the Mediterranean diet. Riv Sci Aliment 1994; 23(3): 413–420.
AC0384	fruit and vegetable tissues. Phytochemistry 1975; 14: 1643–. Krylova, M. I. Carotenoids in the reproductive organs of fertile and sterile onion plants, <i>Allium cepa</i> . Bot Zh 1967; 52(9): 1340–1341.	AC0391	Iwanami, Y. Inhibiting effects of volatile constituents of plants on pollen growth. Experientia 1981; 37(12): 1280–1281.

2 Althaea officinalis

L

Common Names

Altea	France	Khatmi	India
Altea	Peru	Marsh mallow	USA
Althea	USA	Marsh mallow	USSR
Bardul Khatmi	India	Marsh mallow	Bolivia
Bon visclo	France	Marsh mallow	Poland
Eibisch	France	Malva blanca	France
Erva molle	Italy	Malvavisco	Bolivia
Guimauve	France	Malvavisco	Peru
Guimauve	Tunisia	Marmolone	Italy
Hobbiza	Tunisia	Suzmool	India
Khairi	Arabic countries	Sweet weed	USA
Khatmi-ka-phool	India	Wymote	USA

BOTANICAL DESCRIPTION

This perennial herb of the MALVACEAE family is a 60–120 cm high hardy, velvety plant that has an erect root up to 50 cm long and a few cm thick with secondary roots. The succulent stem is usually woody at the base and unbranched. The leaves are short-petioled with an ovate, acute leaf-blade. The secondary leaves are narrow and drooping. The lower leaves are 5-lobed, the upper cauline leaves are often triangular, more wide than long. The reddish-white flowers are usually in axillary or terminal clusters; the 6–9 sepals of the epicalyx are fused at the base, and are 8–10 mm long and

pointed; 5 sepals, 5 heart-shaped petals and numerous stamens are fused together with the anthers to a column. The ovaries in a ring, numerous styles; mericarps smooth and downy. The 5-8 mm fruit is disc-like and breaks up into the mericarps that are downy on the outside and often have fine, branched, radiating ribs. The seeds are dark-brown, glabrous, kidney-shaped and somewhat compressed.

ORIGIN AND DISTRIBUTION

A native of the British Isles and the temperate regions of India, it is now distributed throughout Europe and can be found in parts of the Americas.

TRADITIONAL MEDICINAL USES

Arabic countries. Hot water extract of the plant is taken orally as an abortifacient and emmenagogue in Unani medicine^{AOO133}.

Bolivia. Infusion of the plant is taken orally as an expectorant^{AO0134}.

France. Infusion of the flower and leaf is taken orally as an emmolient and externally as an antiseptic^{AOOII3}.

India. Infusion of the dried flower is taken orally as an expectorant^{AOO108}. The root, boiled with black pepper, is taken orally for asthma^{AOO114}.

Italy. Decoction of the dried root is taken orally for constipation^{AOO139}. Decoction of the flower and leaf is taken orally as an antiasthmatic^{AOO110}. Infusion of the root is taken orally for bronchial catarrh and as a gastric protective^{AOO110}.

Peru. Hot water extracts of the dried flower and the dried leaf are used externally as an emollient AOO138. Hot water extract of the dried root is used externally as an emollient AOO138.

Tunisia. The dried leaf is used as a cicatrizant^{ACO135}.

USA. Hot water extract of the dried root is taken orally as an expectorant and externally as a demulcent^{AOO141}. Infusion of the dried leaf is taken orally to treat cystitis^{AOO107}. The root is taken orally for coughs and sore throat^{AOO104}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Aesculetin: Aer, Rt^{AO0108} Aesculin: Aer, Rt^{AO0108} Alanine: Rt^{AO0105}

Althaea D-glucan: LfAO0131

Althaea mucilage O: Rt 0.22% AO0129 Althaea mucilage OL: Lf 550 AO0101

Althaea mucilage polysaccharide: Rt^{AO0117} Althaea mucopolysaccharide: Rt^{AO0116}

Arabinofuranan, L: Rt^{AO0115} Asparagine: Rt^{AO0105}

Asparaginic acid: Rt^{AO0105} Astragalin: Fl^{AO0111}, Lf^{AO0103} Benzoic acid, 4-hydroxy: Lf^{AO0130}, Fl^{AO0121}, Rt^{AO0102}

Butyric acid, 4-amino: Rt^{AO0105}

Caffeic acid: FIAO0106, LfAO0130, RtAO0102

Cichorin: Aer, Rt^{AO0108} Chlorogenic acid: Fl^{AO0121}

Coumaric acid, para: Lf^{AO0130}, Fl^{AO0121}, Rt^{AO0102}

Coumarin: Aer, RtAO0108

Diosmetin, 8-hydroxy-3-sulfo-8-0-beta-D-glucoside: Lf^{AO0130}

Diosmetin, 8-hydroxy 8-0-beta-D-glucoside: Lf^{AO0103}

Diosmetin, 8-hydroxy 8-0-beta-D-glucoside-3-sulfate: Lf^{AO0103}

Ferulic acid: Lf^{AO0130}, Fl^{AO0121}, Rt^{AO0102}

Herniarin: Aer, RtAO0108

Hypolaetin, 8-0-gentiobioside: Fl^{AO0125} Hypolaetin-4-methyl ether-8-0-glucoside-3sulphate: Lf^{AO0124}

Hypolaetin-4-0-methyl-ether-8-0-beta-D-glucoside: Fl^{AO0125}

Hypolaetin-8-0-gentiobioside: Lf, Fl^{AO0111} Hypolaetin-8-beta-gentiobioside: Lf^{AO0120} Hypoletin-8-glucoside: Lf^{AO0120}

Kaempferol, dihydro, 4-0-beta-D-glucoside: FIAO0125

Kaempferol, dihydro, 4-0- beta-D: Fl 0.76-0.84%^{AO0126}

Kaempferol, dihydro, 4-0-glucoside: Lf, FI^{AO0111}

Kaempferol-3-0-beta-D-(6-0-para-hydroxy-cinnamoyl)-glucoside: Lf^{AO0130}

Luteolin, beta-hydroxy, 8-gentiobioside: FJI3059

Mucilage (Althaea officinalis): Pl 18-21% AO0122

Naringenin-4-0-beta-D-glucoside: Fl^{AO0125} Naringenin-4-0-glucoside: Fl^{AO0124} Phenyl-acetic acid, para-hydroxy: Lf, Fl^{AO0123}

Phenylacetic acid, para-hydroxy: Rt^{AO0102}, Lf^{AO0130}, FIAO0106

Polysaccharide (Althaea officinalis): Rt^{AO0119}

Populnin: Fl^{AO0121}

Protocatechuic acid: Lf, Fl^{AO0123} Quercitrin, iso: Fl^{AO0121}, Lf^{AO0130}

Salicyclic acid: Fl^{AO0106}, Lf^{AO0130}, Rt^{AO0102} Scopoletin: Lf^{AO0130}, Fl^{AO0123}, Rt^{AO0102}, Aer^{AO0108} Scopoletin, iso: Aer, Rt^{AO0108} Scopolin: Aer, Rt^{AO0108}

Scutellarein, iso, 4-methyl ether 8-0-beta-D-glucoside-2-potassium sulfate: Rt

21^{AO0102}

Scyllitol: Lf 800^{AO0140} Sinapic acid: Lf, Fl^{AO0123} Spiraeoside: Lf, Fl^{AO0124}

Syringic acid: Lf^{AO0130}, Fl^{AO0106}, Rt^{AO0102} Tiliroside: Lf 0.13-0.25%, Fl 0.15-

 $0.19\%^{AO0126}$

Umbelliferone: Aer, RtAO0108

Valine: Rt^{AO0105}

Vanillic acid: Fl^{AO0121}, Lf^{AO0130}, Rt^{AO0102}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Antibacterial activity. Ethanol (95%) and water extracts of the flower, leaf and root, on agar plate, were inactive on Escherichia coli and Staphylococcus aureus^{AOO100}. Ethanol (95%), hexane and water extracts of the dried seed, at a concentration of 10.0 mg/ml, were inactive on Corynebacterium diphtheriae, Diplococcus pneumoniae, Staphylococcus aureus, Streptococcus pyogenes and Streptococcus viridans^{AOO127}.

Anticomplement activity. Polysaccharide fractions of the dried leaf and dried root, at a concentration of 500.0 mcg/ml, were active on human serum^{AO0137}.

Antifungal activity. Ethanol (95%), water and hexane extracts of the dried seed, on agar plate at a concentration of 10.0 mg/ml, were inactive on Microsporum canis, Microsporum gypseum, Phialophora jeanselmei, Piedraia hortae and Trichophyton mentagrophytes^{AOO127}.

Anti-inflammatory activity. Ethanol (80%) extract of the dried root, administered by gastric intubation to male rats at a dose of 100.0 mg/kg, was inactive vs carrageenin-induced pedal edema^{AOO118}.

Antimycobacterial activity. Ethanol (95%) extract of the flower, leaf and root, on agar plate, was inactive on Mycobacterium tuberculosis^{AOO100}.

Antitussive activity. Polysaccharide fraction of the dried root, administered intragastrically to cats at a dose of 50 mg/kg, was equivocal, and a dose of 100.0 mg/kg was active vs cough elicited by laryngopharyngeal and tracheobronchial mucosal stimulation^{AOO128}.

Antiviral activity. Ethanol (80%) extract of the freeze-dried entire plant, in cell culture at variable concentrations, was inactive on adenovirus, coxsackie B2 virus, Herpes virus type 1, measles virus, poliovirus 1 and Semlicki-Forest virus vs plaque-inhibition^{A00132}. Water extract of the dried leaf, in cell culture at a concentration of 10.0%, was inactive on Herpes virus type 2, influenza virus A2(Manheim 57), poliovirus 11 and vaccinia virus^{A00136}.

Antiyeast activity. Ethanol (95%), water and hexane extracts of the dried seed, on agar plate at a concentration of 10.0 mg/ml, were inactive on Candida albicans and Candida tropicalis^{AOO127}.

Common cold relief. Hot water extract of the dried seed, taken orally by adults at a dose of 20 gm/person, was active^{AOO142}.

Cytotoxic activity. Water extract of the flower, leaf and root, in cell culture at a concentration of 10%, was inactive on Hela cells^{AO0136}.

Radical scavenging effect. Ethanol/water (1:1) extract of the dried entire plant, at a concentration of 5.0 mcg/ml, produced weak activity vs superoxide anion when estimated by the neotetrazolium method^{AOO112}.

REFERENCES

AO0100

Gottshall, R. Y., E. H. Lucas, A. Lickfeldt and J. M. Roberts. The occurrence of antibacterial substances active against mycobacterium tuberculosis in seed plants. **J Clin Invest** 1949; 28: 920–923.

AO0101

Tomoda, M., N. Shimizu, H. Suzuki and T. Takasu. Plant muci-

	lages, XXVIII. Isolation and		nique. Acta Pol Pharm 1991;
	characterization of mucilage,		48(3/4): 59–62.
	"Althaea-mucilage ol", from	AO0112	Masaki, H., S. Sakaki, T. Atsumi
	the leaves of Althaea officinalis.		and H. Sakurai. Active-oxygen
	Chem Pharm Bull 1981; 29(8):		scavenging activity of plant ex-
	2277–2282.		tracts. Biol Pharm Bull 1995;
AO0102	Gudej, J. Flavonoids, phenolic		18(1): 162–166.
	acids and coumarins from the	AO0113	Novaretti, R. and D. Lemordant.
	roots of Althaea officinalis. Planta		Plants in the traditional medicine
	Med 1991; 57(3): 284–285.		of the Ubaye valley. J Ethno-
AO0103	Gudej, J. Flavonoid compounds		pharmacol 1990; 30(1): 1–34.
	of Althaea officinalis leaves. 1.	AO0114	Singh, V. Traditional remedies
	Glucoside esters, monogluco-		to treat asthma in north west and
	sides. Acta Pol Pharm 1985; 42		Trans-Himalayan region in J.
	(2): 192–198.		and K. States. Fitoterapia 1995;
AO0104	Hussey, J. S. Some useful plants		65(6): 507–509.
	of early New England. Econ Bot	AO0115	Kocis, P., A. S. Shashkov, S. V.
	1974; 28: 311–.		Yarotsky, R. Toman and P.
AO0105	Hahn-Dienstrop, E. Marshmallow		Capek. 13-CNMR study on the
	root. Identification of marshmal-		structure of L-arabinans from
	low extract and determination of		the roots of the marshmallow
	contents in an instant-tea. Dtsch		(Althaea officinalis L.) and from
	Apoth Ztg 1995; 135(13): 31–33.		the bark of white willow (Salix
AO0106	Gudej, J. Polyphenolic com-		alba L.). Bioorg Khim 1983;
	pounds in Althaea officinalis		9(2): 240–245.
	flowers. Acta Pol Pharm 1988;	AO0116	Capek, P., R. Toman, J. Rosik
	45(4): 340–345.		and A. Kardosova. Biologically
AO0107	Yarnelle, E. Botanical medicine		active polysaccharides from the
	for cystitis. Altern Complement		roots of Althaea officinalis. Patent
. 00100	Therap 1997; 1997: 269–275.		Czech-227,759 1985; 4 pp.
AO0108	Shome, U., S. Mehrotra and H.	AO0117	Madaus, A., W. Blaschek and
	P. Sharma. Comparative phar-		G. Franz. Althaea radix muci-
	macognosy of two Althaea spp.		lage polysaccharides, isolation,
	and 'gulkhairo' samples. Int J		characterization and stability.
4.00100	Pharmacog 1992; 30(1): 47–55.		Pharm Weekbl (Sci Ed) 1987;
AO0109	Komissarenko, S. N. and V. N.	4.00110	9(4): 139–.
	Kovalev. Coumarins of Althaea	AO0118	Mascolo, N., G. Autore, F.
	officinalis and A. armenica.		Capasso, A. Menghini and M. P.
	Chem Nat Comp 1992; 28(2):		Fasulo. Biological screening of
4.00110	243–244.		Italian medicinal plants for anti-
AO0110	De Feo, V. and F. Senatore. Med-		inflammatory activity. Phyto-
	icinal plants and phytotherapy	AO0119	ther Res 1987; 1(1): 28–31.
	in the Amalfitan coast, Salerno	A00119	Capek, P., D. Uhrin, J. Rosik, A.
	Province, Campania, Southern		Kardosova, R. Toman and V.
	Italy. J Ethnopharmacol 1993; 39(1): 39–52.		Mihalov. Polysaccharides from the roots of the marsh mallow
AO0111	Gudei, J and T. H. Dzido. Quan-		Althaea officinalis L., var. rho-
100111	titative determination of fla-		busta): Dianhydrides of oligosac-
	vonoid glycosides in leaves and		charides of the aldose type. Car-
	flowers from some species of		bohydr Res 1988; 182(1): 160–
	Althaea genus using HPLC tech-		165.
			*

AO0120	Gudej, J. Flavonoid compounds of <i>Althaea officinalis</i> leaves ll.		recky and E. Bukovska. Antitus- sive efficacy of the complex ex-
	Glycosides of 8-hydroxyluteolin (hypoletin). Acta Pol Pharm 1987; 44(3/4): 369–373.		tract and the polysaccharide of marshmallow (Althaea officinalis L. var. robusta). Pharmazie
AO0121	Didry, N., M. Torck and M. Pin- kas. Polyphenolic compounds	AO0129	1992; 47(3): 224–226. Tomoda, M., S. Kaneko, M.
	from the flowers of <i>Althaea officinalis</i> . Fitoterapia 1990; 61(3): 280.		Ebashi and T. Nagakura. Plant mucilages. XVI. Isolation and characterization of a mucous
AO0122	Akhtardzhiev, K. H., M. Koleva, G. Kitanov and S. Ninov. Phar-		polysaccharide "Althaea-mucilage O" from the roots of <i>Alth-</i>
	macognistic study of representatives of <i>Arum</i> , <i>Althaea</i> and <i>Hypericum</i> species. Farmatsiya (Sofia)	AO0130	aea officinalis. Chem Pharm Bull 1977; 25: 1357. Gudej, J. Polyphenolic com-
AO0123	1984; 34(3): 1–6. Gudej, J. and M. L. Bieganow-	A00130	pounds in <i>Althaea officinalis</i> leaves. Acta Pol Pharm 1981;
	ska. Chromatographic investiga- tion of phenolic acids and cou-	AO0131	38: 385.
	marins in the leaves and flowers	A00131	Kardosova, A., J. Rosik, R. Toman and P. Capek. Glucan
	of some species of the genus Al-		isolated from leaves of Althaea
	thaea. J Liq Chromatogr 1990; 13(20): 4081–4092.		officinalis L. Collect Czech Chem Commun 1983; 48(7):
AO0124	Gudej, J. and M. L. Bieganow-	AO0132	2082–2087.
	ska. Chromatographic investigations of flavonoid compounds in	AU0132	Van Den Berghe, D. A., M. Ieven, F. Mertens, A. J. Vlietinck and
	the leaves and flowers of some		E. Lammens. Screening of higher
	species of the genus <i>Althaea</i> . Chromatographia 1990; 30(5/		plants for biological activities. II. Antiviral activity. J Nat Prod
AO0125	6): 333–336. Dzido, T. H., E. Soczewinski and	AO0133	1978; 41: 463–467.
A00123	Gudej, J. Computer-aided opti-	A00133	Razzack, H. M. A. The concept of birth control in Unani medical
	mization of High-Performance		literature. Unpublished manu-
	Liquid Chromatographic analysis of flavonoids from some	AO0134	script of the Author 1980; 64 pp. Bastien, J. W. Pharmacopeia of
	species of the genus Althaea. J		Qollahuaya Andeans. J Ethno-
	Chromatogr 1991; 550 (1/2): 71–76.	AO0135	pharmacol 1983; 8(1): 97–111. Boukef, K., H. R. Souissi and G.
AO0126	Gudej, J. Determination of fla-	A00133	Balansard. Contribution of the
	vonoids in leaves, flowers, and		study on plants used in tradi-
	roots of <i>Althaea officinalis</i> L. Farm Pol 1990; 46(5/6): 153–		tional medicine in Tunisia. Plant Med Phytother 1982; 16(4):
	155.		260–279.
AO0127	Naovi, S. A. H., M. S. Y. Khan and S. B. Vohora. Antibacterial,	AO0136	May, G. and G. Willuhn. Antiviral activity of aqueous extracts
	anti-fungal and anthelmintic in-		from medicinal plants in tissue
	vestigations on Indian medicinal plants. Fitoterapia 1991; 62(3):		cultures. Arzneim-Forsch 1985; 28(1): 1–7.
	221–228.	AO0137	Yamada, H., T. Nagai, J. C.
AO0128	Nosal'ova, G., A. Strapkova, A. Kardosova, P. Capek, L. Zathu-		Cyong, Y. Otsuka, M. Tomoda, N. Shimizu and K. Shimada.

	Relationship between chemical structure and anti-complementary activity of plant polysaccha-		Giulia region (North East Italy). J Ethnopharmacol 1988; 22(3): 231–239.
	rides. Carbohydr Res 1985;	AO0140	Plouvier, V. Research on the oc-
	144(1): 101–111.		currence of scyllitol in higher
AO0138	Ramirez, V. R., L. J. Mostacero,		plants. C R Acad Sci Ser 1972;
	A. E. Garcia, C. F. Mejia, P. F.		D 275: 2993–2996.
	Pelaez, C. D. Medina and C. H.	AO0141	Anon. The herbalist. Hammond
	Miranda. Vegetables empleados		Book Company, Hammond Indi-
	en Medicina Tradicional Norpe-		ana, 1931, 400 pp.
	ruana. Banco Agrario Del Peru	AO0142	Latif, A. A comparative study on
	and NACL Univ Trujillo, Tru-		decoction of powdered (Sufoof)
	jillo, Peru, June 1988; 54 pp.		and unpowdered (Mussalum)
AO0139	Lokar, L. C. and L. Poldini.		drugs in Unani pharmacy. Nagar-
	Herbal remedies in the tradi-		jun 1983; 27(2): 44–45.
	tional medicine of the Venezia		

3 Anacardium occidentale

Common Names

Amaranon	Cuba	Kashumavu	India
Caju	Brazil	Kasjoe	Surinam
Caju	Portugal	Kubisa	Senegal
Cajueiro	Brazil	Kusu	Guinea
Cashew apple	Brazil	Maranon	Colombia
Cashew apple	India	Maranon	Guatemala
Cashew bark	Jamaica	Maranon	Nicaragua
Cashew nut tree	India	Maranon	Panama
Cashew nut	Brazil	Maranon	Peru
Cashew nut	India	Mbiba	Tanzania
Cashew nut	USA	Mbibo	Tanzania
Cashew tree	South Africa	Merey	Colombia
Cashew	Guyana	Mkorosho	Tanzania
Cashu	Peru	Munthamaamidi	India
Caujil	Colombia	Noix d'acajou	West Indies
Chura	Colombia	Noix de cajou	Senegal
Kadu	Senegal	Pom kajou	Haiti
Kaju badam	India	Pom	West Indies
Kaju badam	India	Pomme d'acajou	Guinea
Kaju	India	Pomme d'cajou	West Indies
Kaju	Nigeria	Pommier cajou	Senegal
Kajutaka	India	Somo	Guinea
Kajutaka	India	Uri	Nicaragua
Kasantaya	Nicaragua	Yalage porto	Guinea
Kasau	Nicaragua		

BOTANICAL DESCRIPTION

A hardy and drought resistant plant of the ANACARDIACEAE family that grows to a height of up to 12 m. The leaves are alternate, ovate, 15-20 cm long, prominently veined in pale green, and of a leathery texture. The flowers are in panicles at the ends of the branches and may be purely male or bisexual. Only a few flowers in the panicle develop into fruits. The fruits are kidneyshaped and are attached to the fleshy, swollen fruit stalk. The fruit stalk is shiny red and is known as the 'cashew-apple', while the true fruit or nut hangs from the enlarged end.

ORIGIN AND DISTRIBUTION

The cashew is native to the relatively dry areas of the Caribbean and the northern region of South America. It is now cultivated throughout the tropics for the "cashew nut".

TRADITIONAL MEDICINAL USES

Brazil. Hot water extract of the leaf is taken orally for diabetes^{AO0136}.

Colombia. The seed is taken orally as an aphrodisiac and to treat impotence^{AOO101}.

Cuba. The seed, toasted and powdered, is mixed with sugar and taken orally as an aphrodisiac^{AOO166}.

Europe. Decoction of the dried kernel is taken orally for diabetes mellitus^{AO0135}.

Ghana. Hot water extract of the dried bark is taken orally by women to increase fertility. Hot water extract of the dried fruit is used as a wash to treat yaws^{AOO150}. The peeled twig is used as a chewing stick^{AOO151}.

Guinea. The unripe fruit juice is taken orally to treat hemorrhage and diarrhea. The ripe fruit juice is taken orally as a diuretic and anti-scorbutic^{AOO100}.

Haiti. Decoction of the bark is taken orally for amenorrhea^{AO0158}.

India. Exudate of the fresh pericarp is used externally as an emollient for cracking skin on the feet and to prevent termite attack. The dried seed is taken orally as an aphrodisiac^{AOO154}. The fresh fruit juice is used externally as an insecticide^{AOO168}. Hot water extract of the dried kernel is taken orally as an aphrodisiac^{AOO131}.

Jamaica. Hot water extract of the dried bark is taken orally for diabetes^{AOO147}.

Madagascar. Water extract of the bark is taken orally as an antidysenteric, hypotensive and hypoglycemic^{AOO125}.

Panama. Hot water extract of the bark is used externally to treat inflammation of the extremities and orally to treat diarrhea. Hot water extract of the entire plant is taken orally for hypertension and as a diuretic. The fruit is eaten on an empty stomach to treat throat pain^{AOO148}.

Peru. Hot water extract of the dried fruit and seed is taken orally as an antidysenteric, antihemorrhagic, purgative and respiratory stimulant. It is used externally as an antiinflammatory and for warts^{AOO161}.

Senegal. Hot water extract of the fruit, together with *Securinega virosa*, is taken orally as an aphrodisiac^{AOO106}. Water extract of the dried bark is taken orally as an antidiarrheal^{AOO145}.

Tanzania. Water extract of the leaf is taken orally for diarrhea^{AO0162}.

Thailand. Hot water extract of the dried leaf is taken orally for diabetes^{AOO165}.

West Indies. Hot water extract of the leaf is used externally to wash ulcers. Hot water extract of the trunk and bark is taken orally as an aphrodisiac. The juice of the seed is taken orally for uterine disorders^{AOO147}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Acetophenone: Fr pulp^{AO0144} Afzelechin, epi (-): Testa^{AO0113} Agathisflavone: Lf^{AO0130} Aluminum: Kernel^{AO0137} Amyrin, alpha: Sd^{AO0118}

Anacardic acid (diene): Nutshell^{AO0108} Anacardic acid (monoene): Nutshell^{AO0108} Anacardic acid (triene): Nutshell^{AO0108} Anacardic acid: Sd^{AO0116}, Nutshell

77.43%^{AO0126} Anacardol: Sd^{AO0116} Apigenin: Lf^{AO0130} Arachidic acid: Sd^{AO0117}

Arachidyl alcohol, iso: Sd^{AO0118}
Arachidyl alcohol: Sd^{AO0118}
Ascorbic acid: Fr^{AO0140}
Benzaldehyde: Fr pulp^{AO0144}

Benzoic acid 3,4,5-trimethoxy ethyl ester:

Gum 0.15%^{AO0110}

Benzoic acid para-hydroxy: LfAO0125

Butan-1-al 3-methyl: Fr pulpAO0144

Calcium: Kernel^{AO0137}

Campesterol: Sd^{AO0118}, St Bk^{AO0132}

Capric acid: Sd^{AO0117} Car-3-ene: Fr pulp^{AO0144}

Cardanol, 6-methyl: Nutshell^{AO0104} Cardanol: Sd^{AO0115}, Nutshell 1.21-9.17%^{AO0126}

Cardol, 2-methyl: Sd^{AO0114}, Nutshell 1.7- $2.6\%^{AO0126}$

Cardol: Nutshell 15-20%^{AO0126}, Sd^{AO0115}

Caryopyllene: Fr pulpAO0144 Catechin, (+): Testa 4.0%^{AO0111}

Catechin, epi (-): TestaAO0111, Sd coatAO0143

Chloride: Kernel^{AO0137} Cholesterol: St Bk^{AO0132} Chromium: FrAO0136

Cycloartanol, 24-methyl: SdAO0118

Cycloartenol: SdAO0118

Cyclohexane, ethyl: Fr pulpAO0144 Digallic acid, meta: Fl^{AO0109} Docosan-1-ol: SdAO0118 Eicosane, n: Sd^{AO0118} Elaidic alcohol: SdAO0118 Ethyl acetate: Fr pulpAO0144 Fatty acids: Sd oil^{AO0164} Furfural: Fr pulp^{AO0144}

Gadoleic acid: Sd^{AO0117} Gallic acid ethyl ester: Gum^{AO0110}, Fl

 $3.0\%^{AO0109}$

Gallic acid methyl ester: FlAO0109

Gallic acid: Fr^{AO0141} Gentisic acid: Lf^{AO0125} Heneicosane, iso: SdAO0118 Heneicosane, n: Sd^{AO0118} Hentriacontane, n: Sd^{AO0118} Heptacosan-1-ol: Sd^{AO0118} Heptacosane, n: SdAO0118 Hexacosan-1-ol: SdAO0118 Hexacosane, iso: SdAO0118 Hexacosane, n: Sd^{AO0118}

Hexadecadienoic acid: Sd^{AO0117}

Hexadecan-1-ol: Sd^{AO0118} Hexan-1-al: Fr pulpAO0144

Hex-cis-3-en-1-ol: Fr pulp^{AO0144} Hex-trans-2-en-1-al: Fr pulp^{AO0144}

Hyperoside: Fl^{AO0109}, Fr^{AO0141}

Kaempferol: Lf^{AO0130} Lauric acid: Sd^{AO0117} Leucocyanidin: Fl^{AO0109} Leucodelphinidin: Fl^{AO0109} Limonene: Fr pulp^{AO0144}

Linoleic aicd: Sd^{AO0117} Linolenic acid: Sd^{AO0117} Magnesium: Kernel^{AO0137} Malic acid: Fr^{AO0140}

Montanyl alcohol, iso: SdAO0118 Myricetin: LfAO0130, FrAO0141 Myristic acid: SdAO0117 Myristoleic acid: Sd^{AO0117} Naringenin: Shell 330^{AO0146} Nonan-1-al: Fr pulpAO0144 Nondecaan-1-ol: Sd^{AO0118} Nondecane, n: SdAO0118

Non-trans-2-en-1-al: Fr pulp^{AO0144} Occidentoside: Pericarp 160^{AO0142} Octacosan-1-ol, iso: Sd^{AO0118}

Octanoic acid ethyl ester: Fr pulp^{AO0144}

Oleic acid: Sd^{AO0139} Palmitic acid: Sd^{AO0117} Palmitoleic acid: Sd^{AO0117} Pentacosan-1-ol, iso: Sd^{AO0118} Pentacosane, iso: Sd^{AO0118} Pentacosane, n: Sd^{AO0118} Pentadecan-1-ol: Sd^{AO0118} Pentan-1-ol, 2-methyl: Sd^{AO0144} Phellandrene, alpha: Fr pulp^{AO0144}

Phenol, 3-(8-cis-11-cis14-pentadecatrienyl):

Nutshell AO0122

Phenol, 3-(8-cis-11-cis-pentadecadienyl): Nutshell^{AO0122}

Phenol, 3-(8-cis-pentacecenyl): Nutshell^{AO0122}

Phenol, 3-(pentadeca-cis-8,11,14-trienyl): Nutshell^{AO0133}

Phenol, 3-(pentadeca-cis-8-cis-11, 14trienyl: Nutshell^{AO0127}

Phenol, 3-(pentadeca-cis-8-cis-11-dienyl):

Nutshell EO^{AO0133}

Phenol, 3-(pentadeca-cis-8-cis-12-dienyl): Nutshell^{AO0120}

Phenol, 3-(pentadec-cis-8-enyl): Nutshell $0.825\%^{AO0127}$

Phenol, 3-pentadeca-cis-8-cis-11-dienyl: Nutshell 0.855%^{AO0127}

Phenol, 3-pentadecyl: Nutshell^{AO0122} Phenylacetaldehyde: Fr pulp^{AO0144}

Phosphorous: Kernel^{AO0137} Potassium: Kernel^{AO0137}

Protein: Sd 25.41%^{AO0163} Protocatechuic acid: LfAO0125, FrAO0141

Prunin-6-O-para-coumarate: Shell 330^{AO0146}

Quercetin: Lf^{AO0130}, Fr^{AO0141}, Fl^{AO0109}

Quercetin-3-galloyl-glucoside: Lf^{AO0125}

Quercitrin, iso: Lf^{AO0130} Ouercitrin: Lf^{AO0130}

Ouercitroside, iso: Lf^{AO0125}

Resorcinol, 2-methyl-5-(8-cis-11-cis-14-pentadecatrienyl): Nutshell^{AO0122}

Resorcinol, 2-methyl-5-(8-cis-

pentadecadienyl): Nutshell^{AO0122}

Resorcinol, 2-methyl-5-(8-cis-pentadecyl): Nutshell^{AO0122}

Resorcinol, 2-methyl-5-(pentadeca-cis-8-cis-11,14-trienyl): Nutshell EO 0.995%^{AO0127}

Resorcinol, 2-methyl-5-(pentadeca-cis-8-cis-11-dienyl): Nutshell^{AO0120}, Sd 1.0%^{AO0127}

Resorcinol, 2-methyl-5-(pentadec-cis-8-enyl): Sd 1.0%^{AO0127}, Nutshell EO 0.105%^{AO0127}

Resorcinol, 2-methyl-5-pentadecyl: Nutshell^{AO0122}

Resorcinol, 5-(8-cis-11-cis-14-pentadecatrienyl): Nutshell^{AO0122}

Resorcinol, 5-(8-cis-11-cis-

pentadecadienyl): Nutshell^{AO0122}

Resorcinol, 5-(8-cis-pentadecenyl): Nutshell^{AO0122}

Resorcinol, 5-(pentadeca-cis-8-cis-11, 14-trienyl): Nutshell EO 11.0%, Sd 39.0%^{AO0127}

Resorcinol, 5-(pentadeca-cis-8-cis-11-dienyl): Nutshell EO 2.5%, Sd 4.38%^{AO0127}

Resorcinol, 5-(pentadec-cis-8-enyl): Nutshell EO 1.4%, Sd 1.31%^{AO0127}

Resorcinol, 5-pentadecyl: Nutshell^{AO0120} Robustaflavone: Lf^{AO0130}

Salicylic acid, 6-(8-cis-11-cispentadecadienyl): Fr^{AO0122}

Salicylic acid, 6-(8-cis-14-pentadecatrienyl): Fr^{AO0122}

Salicylic acid, 6-(penta-cis-8-cis-11, 14-trienyl): Fr Juice 200^{AO0127}

Salicylic acid, 6-(pentadeca-cis-8-cis-11, 14-trienyl): Nutshell EO 12.0%^{AO0127}

Salicylic acid, 6-(pentadeca-cis-8-cis-11-dienyl): Nutshell EO 4.5%, Fr juice 100^{AO0127}

Salicylic acid, 6-(pentadec-cis-8-enyl): Nutshell EO 8.0%, Fr juice 200^{AO0127}

Salicylic acid, 6-(pentadecyl-cis-8-cis-11-dienyl): Nutshell^{AO0120}

Salicylic acid, 6-pentadecyl: Nutshell EO^{AO0133}

Salicylic acid, 6-(8-cis-pentadecyl): Fr^{AO0122}

Salipurposide, (-): Pericarp 100^{AO0142}

Selinene, alpha: Fr pulp^{AÒ0144}

Sitosterol, beta: St bark^{AO0132}, Fl^{AO0109}, Sd^{AO0118}, Pericarp 20^{AO0142}

Sodium: Kernel^{AO0137}

Squalene: Sd^{AO0118}

Stearic acid, iso: Sd^{AO0117} Stearic acid: Sd^{AO0117} Stigmasterol: St bark^{AO0132}

Tannin: Fr^{AO0140}

Terpinene, alpha: Fr pulp^{AO0144}

Tetracosane, iso: Sd^{AO0118}
Tetracosane, n: Sd^{AO0118}
Tocopherol, alpha: Sd^{AO0118}
Tocopherol, beta: Sd^{AO0118}
Tocopherol, delta^{AO0118}
Tocopherol, gamma^{AO0118}

Tocopherol, gamma^{AO0118} Toluene: Fr pulp^{AO0144}

Triacontan-1-ol: Sd^{AO0118} Tricosan-1-ol, iso: Sd^{AO0118}

Tricosan-1-ol: Sd^{AO0118}
Tricosane, iso: Sd^{AO0118}

Tricosane, n: Sd^{AO0118} Xylene, meta: Fr pulp^{AO0144} Xylene, ortho: Fr pulp^{AO0144}

Xylene, para: Fr pulp^{AO0144}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Allergenic activity. The pollen, administered by inhalation and intradermally to 65 patients with bronchial asthma and 10 healthy volunteers as control, at a concentration of 200 ppm, was active^{AOO124}.

Analgesic activity. Hot water extract of the leaf, administered intraperitoneally to mice^{AOO119}, and the leaf essential oil, administered intraperitoneally to rats at a dose of 300.0 mg/kg, were active vs hot plate method^{AOO156}.

Antibacterial activity. Ethanol (95%) extract of the dried bark (50 mg/ml) and the dried seed (100 mg/ml), on agar plate at a concentration of 0.1 ml of extract/plate, was active on *Bacillus subtilis* and *Staphylococcus aureus*^{AOO159}. Ethanol/petroleum ether

extract of the dried bark, on agar plate at a concentration of 166.0 gm/ml, produced weak activity on Staphylococcus aureus and Serratia marcescens. A concentration of 333.0 gm/ml produced weak activity on Escherichia coli and Proteus morganii, and a concentration of 666.0 mg/ml produced weak activity on Pseudomonas aeruginosa and Sarcina lutea^{AO0145}. Methanol (50%) extract of the leaf, in broth culture, was active on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Proteus species and Staphylococcus albus^{AO0112}. Water extract of the dried leaf, on agar plate at a concentration of 166.0 mg/ml, produced weak activity on Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Staphylococcus aureus, Proteus morganii, Pseudomonas aeruginosa, Salmonella typhosa and Sarcina lutea. The tannin fraction, at a concentration of 10.0 mg/ml, was inactive on Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium and Serratia marcescens, and produced weak activity on Sarcina lutea and Staphylococcus aureus^{AO0145}. Ethanol (95%) extract of the dried leaf (50 mg/ml), on agar plate at a concentration of 0.1 ml of extract/plate, was active on Bacillus mycoides and Staphylococcus aureus, and was inactive on Escherichia coli and Pseudomonas aeruginosa^{AO0159}. The essential oil, on agar plate at a concentration of 1:100, was inactive on Aerobacter aerogenes, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhosa, Shigella flexneri, Streptococcus hemolyticus and Vibrio cholera, and produced weak activity on Staphylococcus albus and Staphylococcus aureus^{AO0107}. The seed hull essential oil, in broth culture, was active on Staphylococcus aureus, MIC 12.5 mcg/ml; and Brevibacterium ammoniagenes, MIC 3.13 mcg/ml; Streptococcus mutans, MIC 3.13 mcg/ml; Bacillus subtilis, MIC 6.25 mcg/ml; and inactive on Enterobacter aerogenes, Escherichia coli and Pseudomonas aeruginosa, MICs > 1600 mcg/ml^{AO0133}.

Anticercarial activity. Hexane extract of the nutshell, at a concentration of 1.0 ppm, was active on *Schistosoma mansonii*^{ACO0128}.

Antifungal activity. Ethanol (95%) extract of the dried bark, dried seed and dried leaf (50.0 mg/ml), on agar plate at a concentration of 0.1 ml extract/plate, was inactive on Aspergillus niger^{AOO159}. The leaf essential oil, on agar plate, was active on Trichophyton rubrum, Keratinomyces ajelloi, Microsporum gypseum, Trichophyton equinum, Trichophyton mentagrophytes and Trichophyton terrestris^{AOO160}. The seed hull essential oil, in broth culture, was inactive on Penicillum chrysogenum, MIC > 1600 mcg/ml^{AOO133}.

Antihyperglycemic activity. The dried kernel, in the ration of male mice at a concentration of 6.25% of the diet for 28 days, was inactive vs streptozotocin-induced hyperglycemia^{AOO135}.

Antihypertensive activity. Water extract of the dried bark, administered intravenously to rats, was active. The biological activity has been patented^{AOO102}.

Anti-inflammatory activity. Isopropanol (50%) extract of the dried bark, administered intraperitoneally to adrenalectomized rats at a dose of 6.25 mg/kg, was active vs carrageenin-induced pedal edema. The ED₅₀ was 15.8 mg/kg vs acetic acid-induced writhing. The shell, administered by gastric intubation to rats at a dose of 1.0 gm/kg, was active vs carrageenin-induced pedal edema, results significant at p < 0.05 level. The dose was inactive vs dextran-induced pedal edema. A dose of 300.0 mg/kg was inactive vs acetic acid-induced writhing, and a dose of 500.0 mg/kg given on days 15-21, was active vs adjuvant-induced arthritis. The effect was seen on day 19. Results significant at p < 0.05 level. A dose of 12.5 mg/kg, administered intraperitoneally to rats on days 15-21, was active vs adjuvantinduced arthritis and dextran-induced pedal edema. The effect seen on day 20 was highly dose-dependent. Results significant at p < 0.05 level. A dose of 50.0 mg/kg was active vs cotton pellet granuloma. Results significant at p < 0.05 level. The ED₅₀ was 11.2 mg/kg vs carrageenin-induced pedal edema. To produce a decrease in number of leukocytes in exudate; the ED₅₀ was 12.6 mg/kg^{AO0155}.

Antischistosomal activity. Hexane extract of the dried shell, at a concentration of 1.4 ppm, was active on *Schistosoma mansoni*^{ACO169}.

Antitumor activity. Ethanol (50%) extract of the leaf, administered intraperitoneally to mice, was active on hepatoma 129E(ASC)^{AOO105}.

Antiyeast activity. Ethanol (95%) extract of the dried bark, dried seed and dried leaf (50.0 mg/ml), on agar plate at a concentration of 0.1 ml extract/plate, was inactive on Candida albicans^{ACO159}. The seed hull essential oil, in broth culture, was inactive on Candida utilis and Saccharomyces cerevisiae, MIC's > 1600 mcg/ml^{ACO133}.

Ascaricidal activity. The nutshell liquid, administered by gastric intubation to chickens at a dose of 1.0 gm/animal, produced weak activity, and a dose of 5.0 gm/animal was active on *Ascaridia galli*^{AOO103}.

Barbiturate potentiation. The leaf essential oil, administered intraperitoneally to rats at a dose of 150.0 mg/kg, was active^{AOO156}.

Capillary permeability decreased. The shell, administered intraperitoneally to rats at a dose of 12.5 mg/kg, was active vs histamine- and bradykinin-induced inflammation. Results significant at p < 0.05 level. A dose of 6.25 mg/kg was active vs 5-HT- and PgE₂-induced inflammation. Results significant at p < 0.05 level.

CNS depressant activity. Hot water extract of the leaf, administered intraperitoneally to rats, blocked conditioned avoidance response similar to morphine^{AOO119}. The leaf essential oil, administered intraperitoneally to rats at a dose of 300.0 mg/kg, was active vs rotarod test^{AOO156}.

Conditioned avoidance response decreased. The leaf essential oil, administered intraperitoneally to rats at a dose of 300.0 mg/kg, was active^{AOO156}.

Cytotoxic activity. Ethanol (50%) extract of the leaf, in cell culture, was inactive on CA-9KB, $ED_{50} > 20.0 \text{ mcg/ml}^{AOO105}$.

Dermatitis producing effect. In a case report, the fresh fruit eaten by a child caused perioral contact dermatitis^{AO0123}.

Fish poison. Hexane extract of the dried shell was active on *Lebistes reticulatus*, LD_{100} 10.0 ppm^{AOO169}. Hexane extract of the nutshell, at a concentration of 10.0 ppm, was active on *Lebistes reticulatus*^{AOO128}.

Hypoglycemic activity. Ethanol (50%) extract of the dried leaf, administered orally to rabbits at a dose of 10.0 gm/kg, was inactive^{AO0165}. Ethanol (50%) extract of the leaf, administered orally to rats at a dose of 250.0 mg/kg, was active^{AO0105}. Hot water extract of the dried bark, administered by gastric intubation to dogs at a dose of 200.0 ml/animal, produced weak activity^{AO0152}. The dried kernel, in the ration of male mice at a concentration of 6.25% of the diet for 28 days, was inactive^{AO0135}.

Hypothermic activity. The leaf essential oil, administered intraperitoneally to rats at a dose of 300.0 mg/kg, was active^{AOO156}.

Juvenile hormone activity. Acetone extract of the dried stem produced weak activity on *Dysdercus cingulatus*^{AOO149}.

Larvicidal activity. Hexane extract of the dried fruit peel, at a concentration of 100.0 ppm, produced weak activity on *Aedes fluviatilis*^{AOO121}. Water extract of the dried seed hull was active on *Culex quinquefasciatus*. The LC₁₀₀ was 3 mg of the dried hull per ml of water with 6 hours of exposure. The ethanol (95%) extract was active, and the ether and petroleum ether extracts produced weak activity^{AOO129}.

Molluscicidal activity. Ethanol (95%) and water extracts of the dried pericarp, at

a concentration of 200.0 ppm, were inactive on Biomphalaria glabrata and Biomphalaria straminea. A concentration of 500.0 ppm of the ethanol extract produced 80% mortality and the water extract produced 60% mortality on both species. Ethanol (95%) and water extracts of the dried trunkbark, at a concentration of 1000 ppm, produced weak activity on Biomphalaria glabrata and Biomphalaria straminea^{AO0167}. Hexane extract of the dried shell was active on Biomphalaria glabrata, LD₅₀ 1.4 ppm^{AO0169}. Hexane extract of the nutshell, at a concentration of 0.6 ppm, was lethal to the newly hatched Biomphalaria glabrata; 1.4 ppm was lethal to the adults and 18.0 ppm was lethal to the eggmasses^{AO0128}. The fresh leaf essential oil, at a concentration of 1:10, was inactive on Biophalaria glabrata^{AO0153}.

Mutagenic activity. The seed oil was active on Salmonella typhimurium TA100 and TA98. Metabolic activation was not required for activity^{A00157}.

Spontaneous activity reduction. The leaf essential oil, administered intraperitoneally to rats at a dose of 150.0 mg/kg, was active^{ACO156}. **Toxic effect.** Hexane extract of the dried shell, administered intraperitoneally to mice, was inactive^{ACO169}.

Toxicity assessment. When ethanol (50%) extract of the leaf was administered intraperitoneally to mice, the maximum tolerated dose was 250.0 mg/kg^{ACO105}. When the shell was administered intraperitoneally, the LD₅₀ was 118.8 mg/kg in mice and 245.0 mg/kg in rats; by gastric intubation the LD₅₀ was 944.1 mg/kg in mice and >4.0 mg/kg in rats^{ACO155}.

Tumor promoting effect. The seed oil, applied externally to mice at a dose of 1.0%, was active vs carcinogenesis induced by 7,12-dimethylbenz(a)anthracene^{AO0138}.

WBC-macrophage stimulant. Water extract of the freeze-dried seed, at a concentration of 2.0 mg/ml, was inactive. Nitrite

formation was used as an index of the macrophage stimulating activity to screen effective foods^{AO0134}.

REFERENCES

AO0100 Vasileva, B. Plantes Medicinales de Guinee. Conakry, Republique de Guinee, 1969.

AO0101 Garcia-Barriga, H. Flora Medicinal de Colombia. Vol. 2/3
Universidad Nacional, Bogota,
1975.

AO0102 Thuillier, Y. and P. Giono-Barber. Antihypertensive *Anacardium* occidentale extract. **Patent-Ger Offen-2,034,708** 1971; 18 pp.

AO0103 Varghese, C. G., P. D. Jacob, P. T. Georgekutty and C. T. Peter. Use of cashew (*Anacardium occidentale*) nut shell oil as an anthelmintic against ascaridiasis in the domestic fowl. **Kerala J Vet Sci** 1971; 2(1): 5–7.

AO0104 Gedam, P. H.,P. S. Sampathkumaran and M. A. Sivasamban. Examination of components of cashew nut shell liquid by NMR. Indian J Chem 1972; 10: 388– 391.

AO0105 Dhar, M. L., M. M. Dhar, B. N. Dhawan, B. N. Mehrotra and C. Ray. Screening of Indian plants for biological activity: Part I. Indian J Exp Biol 1968; 6: 232–247.

AO0106 Berhault, J. Flore Illustre du Senegal. I. Dicots (Acanthaceae-Avicenniaceae) Govt. Senegal, Dakar, 1971.

AO0107 Rao, B. G. V. N. Antimicrobial action of some essential oils. IV. Effect of organic compounds. Riechst Aromen Koerperpflegem 1971; 21: 10-.

AO0108 Tyman, J. H. P. and N. Jacobs. Composition of the unsaturated phenolic components of anacardic acid. **J Chromatogr** 1971; 54: 83–90.

AO0109 Subramanian, S. S., K. J. Joseph and A. G. R. Nair. Polyphenols

AO0110	of Anacardium occidentale. Phytochemistry 1969; 8: 673–. Subramanian, S. S. and A. G. R. Nair. Ethyl 3,4,5-trimethoxy benzoate from Anacardium occidentale gum. J Indian Chem Soc 1971; 48: 977–.	AO0120	Pharmacologists, Singapore, May 11–14, 1976 - Abstr 1976: 8–. Toyomizu, M., S. Sugiyama, R. L. Jin and T. Nakatsu. Alphaglucosidase and aldose reductase inhibitors: Constituents of cashew, <i>Anacardium occiden</i> -
AO0111	Subramanian, S. S. and A. G. R. Nair. Catechins from cashewnut testa. Curr Sci 1969; 38(20): 494–495.	AO0121	tale, nut-shell liquids. Phyto- ther Res 1993; 7(3): 252–254. Consoli, R. A. G. B., N. M. Mendes, J. P. Pereira, B. D. S.
AO0112	Ogunlana, E. O. and E. Ramstad. Investigations into the antibacterial activities of local plants. Planta Med 1975; 27: 354–.		Santos and M. A. Lamounier. Larvicidal properties of plant extracts against <i>Aedes fluviatilis</i> (Lutz) (Diptera: Culicidae) in the
AO0113	Desai, H. K., D. H. Gawad, T. R. Govindachari, B. S. Joshi, V. N. Kamat, P. C. Parthasarathy, K. S. Ramachandran, M. N. Shanb-	AO0122	laboratory. Mem Inst Oswaldo Cruz (Rio de Janeiro) 1988; 83(1): 87–93. Kubo, I., M. Ochi, P. C. Vieira and
	hag, A. R. Sidhaye and N. Viswanathan. Chemical investigation of some Indian plants: Part VIII. Indian J Chem 1975; 13: 97–98.		S. Komatsu. Antitumor agents from the cashew (<i>Anacardium occidentale</i>) apple juice. J Agr Food Chem 1993; 41(6): 1012–1015.
AO0114	Tyman, J. H. P. Long-chain phenols. IV. Quantitative determination of the olefinic composition of the component phenols in cashew nut-shell liquid. J Chro-	AO0123	Diogenes, M. J. N., S. M. De Morais and F. F. Carvalho. Perioral contact dermatitis by cardol. Int J Dermatol 1995; 34(1): 72–73.
AO0115	matogr 1975; 111: 277—. Tyman, J. H. P. Long-chain phenols. V. Gas chromatographic analysis of cashew nut-shell liquid (<i>Anacardium occidentale</i>). J Chromatogr 1975; 111: 285—.	AO0124	Fernandez, L. and A. M. Mesquita. Clinical aspects of allergic disease. <i>Anacardium occidentale</i> (cashew) pollen allergy in patients with allergic bronchial asthma. J Allergy Clin Immu-
AO0116	D'Arocha Gonsalves, A. M. and A. M. B. S. R. C. Santos Costa. Chromatography of cashew nutshell liquid. J Chromatogr 1975; 104: 225–.	AO0125	nol 1995; 95(2): 501–504. Laurens, A. and R. R. Paris. The polyphenols of African and Mad- agascan Anacardiaceae. <i>Pou-</i> partia birrea, <i>Poupartia caffra</i>
AO0117	Maia, G. A., W. H. Brown, F. M. Whiting and J. W. Stull. Cashew fatty acids. Hortscience 1975;	. 00126	and Anacardium occidentale. Plant Med Phytother 1977; 11: 16—.
AO0118	10: 233–. Maia, G. A., W. H. Brown, F. M. Whiting and J. W. Stull. Cashew nut unsaponifiable matter. J Food Sci 1976; 41: 190–.	AO0126	Tyman, J. H. and Lam Soot Kiong. Long chain phenols: Part XI. Composition of natural cashew nutshell liquid (<i>Anacar-dium occidentale</i>) from various
AO0119	Sardjono, O. S. Pharmacological effect of the leaf of <i>Anacardium occidentale</i> . Southeast Asian/Western Pacific Regional Mtg of	AO0127	sources. Lipids 1978; 13: 525–. Kubo, I., S. Komatsu and M. Ochi. Molluscicides from the cashew <i>Anacardium occidentale</i>

AO0128	and their large-scale isolation. J Agr Food Chem 1986; 34(6): 970–973. Pereita, J. R. and C. P. De Souza.	AO0137	Thomas, V. and Y. Dave. Structure and histochemistry of fruit and seed of <i>Anacardium occidentale</i> . Indian Bot Contractor
A00126	Preliminary study of Anacar-		1980; 7(4): 151–153.
	dium occidentale as a mollusci-	AO0138	Banerjee, S. and A. R. Rao. Pro-
	cide. Cienc Cult 1974; 26(11):	A00136	moting action of cashew nut
	54–57.		shell oil in DMBA-iniated mouse
AO0129	Evans, D. A. and R. K. Raj. Ex-		skin tumour model system. Can-
A00127	tracts of Indian plants as mos-		cer Lett 1992; 62(2): 149–152.
	quito larvicides. Indian J Med	AO0139	Maia, G. A. and J. W. Stull. Fatty
	Res 1988; 88(1): 38–41.	1100103	acid and lipid composition of
AO0130	Arya, R., V. Babu, M. Ilyas and		cashews (Anacardium occiden-
	K. T. Nasim. Phytochemical ex-		tale). Cienc Agron 1977; 7(1):
	amination of the leaves of Ana-		49–.
	cardium occidentale. J Indian	AO0140	Price, R. L., L. F. Holanda, J. A.
	Chem Soc 1989; 66(1): 67–68.		Moura Fe, G. A. Maia and C. B.
AO0131	Reddy, M. B., K. R. Reddy and		Martins. Constituents of Brazil-
	M. N. Reddy. A survey of me-		ian cashew apple juice. Cienc
	dicinal plants of Chenchu tribes		Agron 1975; 5(1): 61–.
	of Andhra Pradesh, India. Int J	AO0141	Satyanarayana, D., C. Mythirayee,
	Crude Drug Res 1988; 26(4):		V. Krishnamurty and W. Madha-
	189–196.		vakrishna. Studies on the poly-
AO0132	Dinda, B., J. Chatterjee and J.		phenols of cashew apple (Ana-
	Banerjee. Sterols from Anacar-		cardium occidentale). Leather
	dium occidentale. J Indian Chem		Sci (Madras) 1978; 25: 51–54.
	Soc 1987; 64(10): 647–648.	AO0142	Murthy, S. S. N., A. S. R. Anjan-
AO0133	Himejima, M. and I. Kubo. Anti-		eyulu, L. R. Row, A. Pelter and
	bacterial agents from the cashew		R. S. Ward. Chemical examina-
	Anacardium occidentale (Anacar-		tion of Anacardium occidentale.
	diaceae) nut shell oil. J Agr Food Chem 1991; 39(2): 418–421.		Isolation and structure determination of a novel biflavonoid-c-
AO0134	Miwa, M., Z. L. Kong, K. Shi-		glycoside. Planta Med 1982;
1100154	nohara and M. Watanabe. Mac-		45: 3–10.
	rophage stimulating activity of	AO0143	Amala, B., T. Swarnalakshmi,
	foods. Agr Biol Chem 1990; 54	1100115	K. Gomathi, L. Ambujavalli and
	(7): 1863–1866.		S. Nagarajan. Anti-flammatory
AO0135	Swanston-Flatt, S. K., C. Day, P.		activity of (-)-epicatechin. Abstr
	R. Flatt, B. J. Gould and C. J.		13th Annu Conf Indian Pharma-
	Bailey. Glycaemic effects of tra-		col Soc, Jammu-Tawi, India,
	ditional European plant treat-		Sept. 30-Oct. 2, 1980: Abstr-F5.
	ments for diabetes studies in	AO0144	Mac Leod, A. J. and N. G. De
	normal and streptozotocin dia-		Troconis. Volatile flavour com-
	betic mice. Diabetes Res 1989;		ponents of cashew "apple" (Ana-
1.00126	10(2): 69–73.		cardium occidentale). Phyto-
AO0136	Felcman, J. and M. L.T. Brag-	1.001.45	chemistry 1982; 21: 2527–2530.
	anca. Chromium in plants com-	AO0145	Laurens, A., S. Mboup, P. Giono-
	parison between the concen-		Barber, O. Sylla and M. David-
	tration of chromium in Brazilian nonhypo and hypoglycemic		Prince. Study of the antimicrobial activity of <i>Anacardium occi</i> -
	plants. Biol Trace Element Res		dentale L. Ann Pharm Fr 1982;
	1988; 17(1): 11–16.		40(2): 143–146.
			- (=). 1.0 1.0.

AO0146	Rahman, W., K. Ishratullah, H. Wagner, O. Seligmann, V. Mohan Chari and B. G. Osterdahl. Prunin-6"-o-p-coumarate, a new acylated flavonone glycoside from <i>Anacardium occidentale</i> . Phytochemistry 1978; 17: 1064–1065.	AO0156	flammatory actions of tannins isolated from the bark of <i>Anacardium occidentale</i> L. J Ethnopharmacol 1985; 13(3): 289–300. Garg, S. C. and H. L. Kasera. Neuropharmacological studies of the essential oil of <i>Anacardium occidentale</i> . Fitoterapia
AO0147	Ayensu, E. S. Medicinal plants of the West Indies. Unpublished Manuscript 1978; 110 pp	AO0157	1984; 55(3): 131–136. Polasa, K. and C. Rukmini. Mutagenicity tests of cashewnut shell
AO0148	Gupta, M. P., T. D. Arias, M. Correa and S. S. Lamba. Ethnopharmacognistic observations on Panamanian medicinal plants. Part I. Q J Crude Drug Res		liquid, rice-bran oil and other vegetable oils using the <i>Salmonella typhimurium</i> /microsome system. Food Chem Toxicol 1987; 25(10): 763–766.
AO0149	1979; 17(3/4): 115–130. Gopakumar, B., B. Ambika and V. K. K. Prabhu. Juvenomimetic activity in some South Indian plants and the probable cause of this activity in <i>Morus alba</i> . Entomon 1977; 2: 259–261.	AO0158	Weniger, B., M. Rouzier, R. Daguilh, D. Henrys, J. H. Henrys and R. Anton. Popular medicine of the Central Plateau of Haiti. 2. Ethnopharmacological inventory. J Ethnopharmacol 1986; 17(1): 13–30.
AO0150	Lewis, R. A. Herbal medicine in West Africa. Trends Pharmacol Sci 1980; (1): 7–8.	AO0159	Verpoorte, R. and P. P. Dihal. Medicinal plants of Surinam. IV. Antimicrobial activity of
AO0151	Adu-Tutu, M., Y. Afful, K. Asante-Appiah, D. Lieberman, J. B. Hall and M. Elvin-Lewis. Chewing stick usage in Southern Ghana. Econ Bot 1979; 33: 320–	AO0160	some medicinal plants. J Ethno- pharmacol 1987; 21(3): 315–318. Deshmukh, S. K., P. C. Jain and S. C. Agrawal. A note on myco-
AO0152	328. Morrison, E. Y. S. A. and M. West. A preliminary study of the effects of some West Indian medi-	AO0161	toxicity of some essential oils. Fitoterapia 1986; 58(4): 295–297. Ramirez, V. R., L. J. Mostacero,
	cinal plants on blood sugar levels in the dog. West Indian Med J 1982; 31: 194–197.		A. E. Garcia, C. F. Mejia, P. F. Pelaez, C. D. Medina and C. H. Miranda. Vegetales empleados
AO0153	Rouquayrol. M. Z., M. C. Fonteles, J. E. Alencar, F. Jose de Abreu Matos and A. A. Craveiro. Molluscicidal activity of essential oils from Northeastern Brazilian plants. Rev Brasil Pesq	AO0162	en medicina tradicional Norperuana. Banco Agrario del Peru & Nacl Univ Trujillo, Trujillo, Peru, June, 1988; 54 pp Chhabra, S. C., R. L. A. Mahunnah and E. N. Mshiu. Plants used
AO0154	Med Biol 1980; 13: 135–143. John, D. One hundred useful raw drugs of the Kani tribes of Tri- vandrum Forest Division, Ker- ala, India. Int J Crude Drug	AO0163	in traditional medicine in Eastern Tanzania. I. Pteridophytes and angiosperms (Acanthaceae to Canellaceae). J Ethnopharmacol 1987; 21(3): 253–277.
AO0155	Res 1984; 22(1): 17–39. Mota, M. L. R., G. Thomas and J. M. Barbosa Filho. Anti-in-	A00103	Padilla, S. P. and F. A. Soliven. Chemical analysis for possible sources of oils of forty-five spe-

	cies of oil-bearing seeds. Philip-		de Cuba. Ministerio de Agricul-
	pine Agr 1933; 22: 408–.		tura, Republica de Cuba, Hav-
AO0164	Upadhya, G. S., G. Narayana-		ana, 1945; 872 pp
	swamy and A. R. S. Kartha. Note	AO0167	Pinheiro de Sousa, M. and M. Z.
	on the comparative development		Rouquayrol. Molluscicidal acti-
	of fatty acids in ripening seeds		vity of plants from Northeast
	of 6 dicot species producing		Brazil. Rev Bras Fpesq Med
	C16-C18 acid fats. Indian J Agr		Biol 1974; 7(4): 389–394.
	Sci 1974; 44: 620–.	AO0168	Nayar, S. L. Vegetable insecti-
AO0165	Mueller-Oerlinghausen, B., W.		cides. Bull Natl Inst Sci India
	Ngamwathana and P. Kanchana-		1955; 1955(4): 137–145.
	pee. Investigation into Thai med-	AO0169	Pereira, J. P. and C. Pereira
	icinal plants said to cure dia-		de Souza. Preliminary studies of
	betes. J Med Ass Thailand 1971;		Anacardium occidentale as a
	54: 105–111.		molluscicide. Cienc Cult (Sao
AO0166	Roig y Mesa, J. T. Plantas Medi-		Paulo) 1974; 26(11): 1054–1057.
	cinales, Aromaticas o Venenosas		

4 Ananas comosus

Common Names

Ara kai Cook Islands	Nenas	Malaysia
Alipiong India	Painap	Fiji [*]
Anana Peru	Painappuru	Fiji
Ananas Dominica	Pina comun	Puerto Rico
Ananas Fiji	Pina	Guatemala
Ananas French Guiana	Pina	Peru
Ananas Gabon	Pina	Philippines
Ananas Guadeloupe	Pina	Puerto Rico
Ananas India .	Pine	Guyana
Ananas West Indies	Pineapple	Guyana
Ananash India	Pineapple	USA
Anannas India	Pineapple	Indonesia
Anannasa India	Pineapple	Malaysia
Anaras India	Pineapple	Dominica
Andras Fiji	Pineapple	Fiji
Cay thom India	Pineapple	India
Cockerell Dominica	Pineapple	Japan
Iaiaua West Indies	Pineapple	Tahiti
Idiaua Dominica	Pineapple	Taiwan
Iguwu Gabon	Pineapple	Thailand
Kateh Thailand	Pineapple	Trinidad
Kathal saphri India	Pineapple	West Indies
Kuraua Dominica	Pineapple plant	India
Lagarto pina Peru	Sap parot	Thailand
Nanas Indonesia	Yeiawa	Nicaragua
Nanas Malaysia	Zanana	West Indies

BOTANICAL DESCRIPTION

A periennial of the BROMELIACEAE family with short stem and usually spiny-edged leaves, 30-100 cm long and arranged in a

rosette. Offshoots with small rosettes of leaves arise in the axils of the large leaves and serve to propagate the plant vegetatively. After a year or 2 the stem lengthens to form a spike-like inflorescence, at the end of which is a thickened axis. It consists of numerous long-pointed bracts with three-petalled flowers in their axils. The flowers become fruits without being pollinated, and the inferior ovaries develope into berries, which together with axis of the inflorescence and the bracts, form a compound fruit or syncarp. Only the roughly diamond-shaped and flattened sides of the individual fruits can be seen, making up the surface of the aggregate fruit. The upper bracts of the inflorescence do not have flowers in their axils and turn green and leaf-like. This upper part of the fruit can be cut and used for vegetative propagation.

ORIGIN AND DISTRIBUTION

The pineapple originated in the tropical regions of Brazil. It has been in cultivation since ancient times by various Indian tribes. It is now cultivated throughout the tropics.

TRADITIONAL MEDICINAL USES

Brazil. The fruit is eaten as a vermifuge, diuretic, and abortifacient^{AC0140}.

Cook Islands. The unripe fruit is used to treat impotence. One half of an unripe pineapple, a handful of seeds of Ocimum basilicum and 4 Gardenia taitensis flowers are pounded together into the water of a green coconut. A suitable-sized stone is heated until it is red-hot and dropped carefully into the mixture in the coconut. A man considered to suffer from tira mao or tira ngaro, or impotence, sits with the steaming coconut directed at his genitals, with a cloth wrapped around him. The healer massages him from the flanks to the genitals with coconut oil. Should the genitals retract in the steam they will return to normal with massage^{ACO156}. **Dominica.** Unripe fruit or the juice of unripe fruit, taken orally, is used by the aborigines as an abortive agent^{AC0194}.

Fiji. Fresh fruit juice is taken orally for diarrhea and fresh leaf juice is taken orally for intestinal worms. Unripe fresh fruit is

taken orally to terminate pregnancy (up to 3 months)^{ACO187}.

French Guiana. Unripe fruit is consumed by pregnant humans to provoke abortion^{ACO104}. **Gabon.** The flower is used by female adults as an emmenagogue^{ACO105}.

Guadeloupe. Hot water extract of fresh unripe fruit, together with the fruit of *Achras sapota*, is taken orally to induce abortion, in particular during the fourth month of pregnancy^{ACO182}.

India. Hot water extract of dried flowers is taken orally by adults as an anthelmintic^{AC0199}. Hot water extract of the dried leaf and ripe and unripe fruit is taken orally as an emmenagogue and abortifacient^{AC0190}. Hot water extract of the dried leaf is taken orally as an anthelmintic^{ACO185}. Hot water extract of dried root is taken orally as an abortifacient^{ACO175}. Hot water extract of fresh ripe fruit, unripe fruit, and lead are used as an abortifacient^{AC0190}. Juice from young fruit is taken orally as an abortive^{AC0181}. Leaf juice is taken orally as an abortifacient and anthelmintic^{AC0144}. It is also taken as an emmenagogue, to treat venereal diseases, as an anthelmintic and as a purgative ACO140. The juice of unripe fruit is taken in large doses as an abortifacient^{AC0100,AC0199}. Unripe fruit is taken orally as an emmenagogue, expectorant, anthelmintic, diuretic and abortifacient^{AC0137}. Unripe fruit juice is taken orally as an abortifacient, emmenagogue, method of criminal abortion ACO 108 and anthelmintic AC0144. Water extract of fruit and leaf is taken orally as an abortive^{AC0127}.

Indonesia. The fruit is taken orally as an abortifacient. A 4–5 cm piece of black cane stalk is pounded with half a young pineapple and taken with ragi (rice, garlic, alpinia, galanga, aromatics and spices such as cinnamon, ginger and *Capsicum annuum*). This is diluted with water and taken orally twice daily by pregnant women^{ACO178}. Unripe fruit juice is taken orally as an abortifacient^{ACO109} and as an emmenagogue^{ACO140}.

Japan. The dried fruit is used as a food to aid in digestion^{ACO155}.

Malaysia. Fruit juice is taken orally as an abortifacient^{ACO140}. Unripe fruit juice is taken orally to prevent conception^{ACO137}, to produce abortion^{ACO120}, as a diuretic, for gonorrhea and as a vermifuge for children^{ACO140}. Young inflorescence are eaten raw or sucked ad libitum as an abortifacient^{ACO106}. Juice of the unripe fruit is taken raw or with salt to interfere with pregnancy^{ACO126}.

Mexico. Decoction of fresh fruit is taken orally as an abortifacient^{ACO186}.

New Caledonia. Fruit juice is taken orally as an abortifacient^{AC0110}.

Nigeria. Fresh fruit juice is taken orally for diabetes^{ACO176}. Hot water extract of the dried bark is taken orally by adults as a treatment for arthritis^{ACO176}.

Peru. Fresh fruit juice is taken orally for gastrointestinal upset, weight loss and as a stomachic^{ACO192}.

Philippines. Juice of unripe fruit is taken orally as an emmenagogue^{ACO100}.

Puerto Rico. Unripe fruit juice is taken orally as a powerful emmenagogue^{ACO198}.

South America. Hot water extract of fresh unripe fruit is taken orally as a diuretic, expectorant, anthelmintic and as an abortive^{ACO197}.

Tahiti. Hot water extract of inflorescence is boiled with leaves of some herbs and the concoction is drunk to produce abortion a few hours later ACO147.

Thailand. Hot water extract of dried root is taken orally as a diuretic^{ACO200}. Juice of fresh fruit and stem is taken orally as an anti-inflammatory^{ACO193}.

Trinidad. Unripe fruit is used as an abortifacient. Slices of green pineapple with the skin on are boiled with flowers of silk fig (type of banana) and taken orally 2 or 3 times daily^{ACO195}.

USA. Fresh fruit is used as a blood purifier, to aid digestion, for gastro-intestinal disorders, diseases of the larynx and pharynx,

and as a mild antiseptic and a mild stimulant^{AC0201}.

West Indies. Immature fruit and juice are taken orally as an abortifacient^{ACO172}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

2-Methyl pentan-2-ol: Fr^{AC0129} 3-Methyl pentan-3-ol: Fr^{AC0129} 3,4-Benzopyrene: Fr^{AC0146} Acetaldehyde: Fr^{AC0122}

Acetic acid methyl-thio-methyl ester: Fr^{AC0129}

Acetic acid: Fr Ju^{AC0139} Acetone: Fr^{AC0131}

Acrylic acid ethyl ester: Fr^{AC0129} Acrylic acid methyl ester: Fr^{AC0129}

Alanine: Fr, Lf^{AC0102} Allyl hexanoate: Fr^{AC0179} Alpha carotene: Fr Ju^{AC0132} Alpha copaene: Fr^{AC0150} Alpha mannosidase: Fr^{AC0157}

Alpha methyl butyric acid methyl ester:

Fr^{AC0129}

Alpha muurolene: Fr^{AC0150} Alpha terpineol: Fr^{AC0129}

Alpha tocopherol: Fr 26.75-39.6 mcg/100

gm^{AC0141}

Ananas comosus acid: FrAC0112

Ananas comosus antiedema substance:

Unripe Fr Ju^{AC0128}

Ananas comosus proteolytic enzyme: St, Fr^{AC0169}

Antheraxanthin (cis): Fr Ju^{AC0132} Antheraxanthin: Fr Ju^{AC0132}

Arginine: Lf^{AC0163} Asparatic acid: Lf^{AC0163}

ATPase: Lf^{AC0162} Auroxanthin: Fr Ju^{AC0132} Beta carotene: Fr^{AC0138}

Beta carotene: Fr^{AC0138} Beta mannosidase: Fr^{AC0157} Beta sitosterol: Lf^{AC0144}

Beta-acetoxy caproic acid ethyl ester: Fr^{AC0129}

Beta-acetoxy caproic acid methyl ester: ErAC0129

Beta-acetoxy octanoic acid methyl ester: Fr^{AC0129}

Beta-hydroxy caproic acid ethyl ester:

Beta-hydroxy caproic acid methyl ester: Fr^{AC0129}

Beta-hydroxy octanoic acid methyl ester: Fr^{AC0129}

Beta-methyl-thio propionic acid ethyl ester: Fr^{AC0129}

Beta-methyl-thio propionic acid methyl

ester: Fr^{AC0129}

Beta-xylosidase: Fr^{AC0157} Beta-ylangene: Fr^{AC0150} Bexzaldehyde: Fr^{AC0129} Bromelain FA-2: Fr^{AC0148}

Bromelain iso-inhibitor VI: St^{AC0143}
Bromelain: St 400^{AC0111}, Fr^{AC0113}, Call Tiss^{AC0167}, Skin 750^{AC0173}, Lf^{AC0173}

Bromelin: FrAC0161

Butan-2-ol,2,3-dimethyl: FrAC0129

Butanol(iso): Fr EO^{AC0136} Butanol(tert): Fr^{AC0131} Butyl acetate(iso): Fr^{AC0131} Caffeic acid: Fr^{AC0160}

Calcium oxalate: Fr^{AC0122,AC0125}

Calcium: Fr Ju^{AC0107} Campestanol: Lf^{AC0144} Campesterol: Lf^{AC0144} Camphor: Fr^{AC0129}

Caproic acid ethyl ester: Fr^{AC0129} Caproic acid methyl ester: Fr^{AC0129}

Chlorogenic acid: Fr^{AC0133} Cis violaxanthin: Fr Ju^{AC0132} Cis-lutein: Fr Ju^{AC0132}

Cis-luteoxanthin: Fr Ju^{AC0132}

Citric acid: Fr^{AC0130} Cryptoxanthin: Fr Ju^{AC0132}

Cyanidin-3,3',5,0-beta-D-triglucoside:

Cyanidin-3,5,0-beta-D-diglucoside:

Dec-cis-4-enoic acid ethyl ester: Fr^{AC0129} Dec-cis-4-enoic acid methyl ester: Fr^{AC0129} Decanoic acid ethyl ester: Fr^{AC0129} Decanoic acid methyl ester: Fr^{AC0129}

Delta cadinene: Fr^{ACO150} Delta octalactone: Fr^{ACO129}

Delta-acetoxy caproic acid ethyl ester: Fr^{AC0129}

Delta-acetoxy octanoic acid methyl ester: Fr^{AC0129}

Delta-acetoxy octanoic acid ethyl ester: Fr^{AC0129}

Di-cis violaxanthin: Fr Ju^{AC0132} Dimethyl disulfide: Fr^{AC0129} Ergosterol peroxide: Lf^{AC0144} Ethanol: Fr EO^{AC0136,AC0131} Ethyl acetate: Fr^{AC0131}

Ethyl Beta-methyl-thio propionate: Fr^{AC0135}

Ethyl formate: Fr^{AC0131}
Ethyl lactate: Fr EO^{AC0136}
Ethyl propionate: Fr^{AC0131}
Ferulic acid: Fr^{AC0121,AC0160}
Flavoxanthin: Fr Ju^{AC0132}
Formic acid: Fr Ju^{AC0139}

Gamma caprolactone: Fr^{AC0129}
Gamma dodecalactone: Fr^{AC0129}
Gamma eudesmol: Fr^{AC0129}
Gamma gurjunene: Fr^{AC0150}
Gamma nonalactone: Fr^{AC0129}
Gamma octalactone: Fr^{AC0129}
Gamma palmitolactone: Fr^{AC0129}

Germacrene D: Fr^{AC0150} Glutamic acid: Lf^{AC0163} Glycine: Lf^{AC0163}

Hemicellulose 3(Ananas comosus): Fr

Hemicellulose A(*Ananas comosus*): Fr lu^{AC0159}

Heptanoic acid methyl ester: Fr^{AC0129} Hex-trans-3-enoic acid ethyl ester: Fr^{AC0129}

Hexan-1-al: Fr^{AC0129} Hexan-1-ol: Fr^{AC0129} Hexan-2-one: Fr^{AC0129} Hexan-3-ol: Fr^{AC0129} Hexan-3-one: Fr^{AC0129} Histidine: Lf^{AC0163}

Hydroxy alpha carotene: Fr Ju^{AC0132}

Iso-butyl formate: Fr^{AC0131} Iso-ethyl butyrate: Fr^{AC0131} Iso-propyl-iso- butyrate: Fr^{AC0131}

Iso-leucine: Lf^{AC0163}

Iso-methyl butyrate: Fr^{AC0131}

Leucine: Lf^{AC0163}

Linalool oxide: Fr^{AC0129} Linalool: Fr^{AC0129} Lutein: Fr Ju^{AC0132}

Lutein-5,6-epoxide: Fr Ju^{AC0132}

Luteoxanthin: Fr Ju^{AC0132}

Lysine: Lf^{AC0163}

Magnesium: Fr Ju^{AC0107}

Malonic acid dimethyl ester: Fr^{AC0129} Melatonin: Fr 36.2 pcg/gm^{AC0153}

Menth-1-en-4-ol: Fr^{ACŎ1Ž9} Methanol: Fr EO^{ACO136} Methionine: Lf^{ACO163} Methyl acetate: Fr^{ACO131}

Methyl beta-methyl-thio propionate:

Fr^{ÁC0135}

Methyl formate: Fr^{AC0131} Methyl hexoate: Fr^{AC0131}

Methyl iso-valerate: Fr EO^{AC0136} Methyl mercaptan: Fr^{AC0129} Methyl n-caprylate: Fr EO^{AC0136}

Methyl pivalate: Fr^{AC0131} Mutatoxanthin: Fr Ju^{AC0132} Myricyl alcohol: Lf^{AC0144} Myristic acid: Lf^{AC0144}

N-amyl,n-caproate: Fr EO^{AC0136} N-butyl formate: Fr^{AC0131} N-ethyl butyrate: Fr EO^{AC0136} N-ethyl caproate: Fr EO^{AC0136} N-methyl caproate: Fr EO^{AC0136} N-propyl acetate: Fr ^{AC0131} N-propyl formate: Fr^{AC0131} Neochrome: Fr Ju^{AC0132} Neoxanthin: Fr Ju^{AC0132}

Neurosporene: Fr Ju^{AC0132} Nonanoic acid ethyl ester: Fr^{AC0129} Nonanoic acid methyl ester: Fr^{AC0129} Oct-cis-4-enoic acid ethyl ester: Fr^{AC0129} Oct-cis-4-enoic acid methyl ester: Fr^{AC0129} Oct-trans-3-enoic acid ethyl ester: Fr^{AC0129}

Fr^{AC0129}

Octanoic acid ethyl ester: Fr^{AC0129} Octanoic acid methyl ester: Fr^{AC0129} Para coumaric acid: Fr^{AC0121,AC0133,AC0160}

Pentan-1-ol: Fr EO^{AC0136} Pentosans: Lf^{AC0166}

Peonidin-3,5-0-Beta-D-glucoside: Lf^{AC0180}

Phenylalanine: Lf^{AC0163} Phytofluene: Fr Ju^{AC0132} Pipecolic acid: Lf^{AC0123}

Potassium: Fr Ju 50% of ashAC0107

Proline: Lf^{AC0163} Propan-1-al: Fr^{AC0129} Propan-1-ol: Fr EO^{AC0136}

Protein(ananas comosus): Rh^{AC0114}

Protein: Fr^{AC0130} Proteinase: Lf^{AC0168} Serine: Lf^{AC0163} Sinapic acid: Fr^{AC0160}

Stigmast-5-ene-3-beta-7-alpha-diol: Lf^{AC0144}

Stigmastanol: Lf^{AC0144} Sucrose: Fr^{AC0130}

Threonine: Lf 39.6 mcg/100 gm^{AC0163}

Trollixanthin: Fr Ju^{AC0132} Tryptophan: Lf^{AC0163} Tyrosine: Lf^{AC0163}

Valeric acid methyl ester: Fr^{AC0129}

Valine: LfAC0163

Wax(*Ananas comosus*): Fr^{AC0118} Xylan(*Ananas comosus*): Fr Pe^{AC0145}

Xylitol: Fr^{AC0158}

Zeta carotene: Fr Ju^{AC0132}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Abortifacient effect. Ethanol (95%) extract of unripe fruit, at a dose of 200 mg/kg, and water extract at a dose 100 mg/kg, were equivocal when administered orally to rats. The petroleum ether extract, at a dose of 150 mg/kg, was inactive^{ACO196}. Young fruit juice, administered intragastrically to the pregnant mouse at a dose of 0.2 ml/animal, was active. Dosing was done on day 2 and 4 of pregnancy^{ACO149}.

Allergenic activity. The fruit, administered intradermally to adults by scratch test, produced positive results. When taken orally, Basophil degranulation test indicated positive results^{ACO152}. Thirty-two patients had pruritic urticarial rashes followed by abdominal pain, vomiting and diarrhea after eating pineapple, and 20 of the patients were hypotensive^{ACO151}.

Anthelmintic activity. Unripe fruit juice, administered orally to cats, dogs and human adults was inactive on *Taenia saginata*^{AC0117}. Water extract of the fruit juice was active on *Ascaris lumbricoides*^{AC0119}.

Antiallergenic activity. Water extract of the dried fruit, in cell culture at a concentration of 100.0 microliters/ml, was inactive on LEUK-RBL 2H3 vs Biotinylated anti-DNP IgE/avidin-induced Beta-hexosaminidase release^{AC0155}.

Antifertility effect. Ethanol (95%) and petroleum ether extracts of the rhizome, administered orally to mice, were active. The water extract was inactive^{ACOIOI}.

Antifilarial activity. The fresh leaf was active on *Setaria digitata*, LC₁₀₀ 5200 ppm^{ACO164}. **Anti-implantation effect.** Ethanol (95%) extract of the unripe fruit, administered orally to rats at a dose of 100 mg/kg, was

active^{ACO116}. Extract of the dried leaf, administered intraperitoneally to rats, was active. The percentage effectiveness in the studies reviewed was 93%^{ACO190}. Ethanol (95%) and petroleum ether extracts of the rhizome, administered orally to mice, were active. The water extract was inactive^{ACO101}. Extract of the dried rhizome, administered intraperitoneally to female rats, was active^{ACO190}.

Anti-inflammatory activity. Water extract of fresh fruit juice, administered intraperitoneally to rats, was active. The biological activity has been patented^{ACO171}. Water extract of root, administered intraperitoneally to rats, was active. The reported biological activity is highly dose-dependent^{ACO171}.

Antimutagenic activity. Methanol extract of the dried fruit, on agar plate at a concentration of 50.0 microliters/disc, was inactive on *Bacillus subtilis* NIG-1125 His Met and *Escherichia coli* B/R-WP2-TRP^{ACO184}. Methanol extract of the dried leaf, at a concentration of 50 microliters/disc on agar plate, was inactive on *Bacillus subtilis* NIG-1125 His Met and *Escherichia coli* B/R-WP2-TRP^{ACO184}.

Antithiamine activity. Fresh fruit juice was active. The activity was heat-stable^{ACO183}.

Antithyroid activity. Boiled canned fruit, taken orally by adults at a dose of 1200 gm/person, was inactive. Iodine uptake by the thyroid was measured^{ACO202}.

Antitumor activity. Ethanol (95%) extract of dried entire plant, administered intraperitoneally to mice at doses of 225 and 1800 mg/kg, were inactive on colon cells 38. Doses of 50 and 200 mg/kg were inactive on Melanoma-B16, and a dose of 200 mg/kg produced weak activity on LEUK-P388^{ACO191}.

Antiviral activity. Undiluted fruit juice, in cell culture, produced weak activity on poliovirus^{ACO170}.

ATPase stimulation. Water extract of the leaf was active^{AC0162}.

Cytotoxic activity. Ethanol (95%) extract of dried entire plant, in cell culture, was inactive on CA-9KB, $ED_{50} > 100 \text{ mcg/ml}^{AC0191}$. Ethanol/water (1:1) extract of entire plant, in cell culture, was inactive on CA-9KB, $ED_{50} > 20.0 \text{ mcg/ml}^{AC0103}$. Water extract of fruit was active on leafcutter ants^{AC0124}.

Desmutagenic activity. Aqueous high speed supernatant of fresh fruit juice, at a concentration of 0.5 ml/plate on agar plate, was active on Salmonella typhimurium TA98 vs mutagenicity of L-tryptophan pyrolysis products. The assay was done in the presence of S9 mix^{AC0189}. Fresh fruit homogenate, at a concentration of 100.0 microliters/disc on agar plate, was active on Salmonella typhimurium TA98 and TA100 vs 1,4dinitro-2-methyl pyrrole mutagenesis^{AC0188}. Embryotoxic effect. Ethanol (95%) extract of unripe fruit, at a dose of 200 mg/kg, and water extract at a dose 100 mg/kg, were equivocal when administered orally to rats. The petroleum ether extract, at a dose of 150 mg/kg, was inactive^{AC0196}. Ethanol/ water (1:1) extract of dried fruit, administered by gastric intubation to pregnant rats at a dose of 100.0 mg/kg, was inactive^{AC0177}. **Estrogenic effect.** Petroleum ether extract of fruit, administered intraperitoneally to female mice, was active^{AC0118}.

Gastric secretory stimulation. Fruit juice taken orally by adults was active^{ACO134}.

Insecticidal antagonist. Chromatographic fraction of stem was active. Bromelain fractions II and III were tested^{ACO174}.

Peroxidase activity. Chromatographic fraction of stem was active. Bromelain fraction 1 was tested. Fractions II and III were inactive^{ACO174}.

Platelet aggregation stimulation. Chromatographic fraction of stem was inactive. Bromelain fractions II and III were tested^{ACO174}. **Protease inhibition.** Water extract of fresh fruit juice was inactive. Water extract of roots was inactive^{ACO171}.

on early pregnancy in albino

rats. Indian J Med Res 1970;

58: 1285-1289.

AC0104 Proteolytic activity. Chromatographic De Wildemann, E. Medicinal plants of Guiana. Bull Sci Pharfraction of stem was active. Bromelain fracmacol 1909; 16: 460. tions II and III were tested, fraction 1 was AC0105 Raponda-Walker, A. and R. inactive^{AC0174}. Chromatographic fraction of Sillans. Plants Used in Gabon, dried stem at variable concentrations was Encyclopedie Biologique, Paris, active^{AC0154}. 1961. **Serotonin agonist effect.** Acetone extract AC0106 Gimlette, J. D. Malay Poisons and of fresh fruit pulp was active on the rat Charm Cures. J & A. Churchill, London, 3rd edition, 1929. colon and uterus. Spasmogenic activity was AC0107 Bodenstein, J. C. Composition antagonized by bromo-LSD, an anti-5HT and by-products of pineapples. substance^{AC0142}. Farming S Afr 1937; 12: 437–. **Toxic effect.** The entire plant, taken orally AC0108 Saha, J. C., E. C. Savina and S. by adults, produced cystitis^{AC0115}. Ethanol Kasinathan. Ecbolic properties (95%) extract of the dried entire plant, of Indian medicinal plants. Part administered intraperitoneally to mice at 1. **Indian J Med Res** 1961; 49: a dose of 400 mg/kg, was active on Mela-130-151. noma-B16^{AC0191}. AC0109 Van Steenis-Kruseman, M. J. Select Indonesian medicinal **Toxicity assessment.** Ethanol/water (1:1) plants. Organiz Sci Res Indoneextract of entire plant, when administered sia Bull 1953; 18: 1. intraperitoneally to mice, resulted in LD50 AC0110 Rageau, J. Les Plants Medi- $>1.0 \text{ gm/kg}^{AC0103}$. cinales de la Nouvelle-Caledo-WBC-Macrophage stimulant. Water exnie. Trav & Doc De Lorstom No. tract of the freeze-dried fruit, at a concen-23. Paris, 1973. AC0111 Makay, N. Bromelain extraction tration of 2.0 mg/ml, was inactive. Nitrite from pineapple stems. Patentformation was used as an index of the macro-US-3,455,787 1966. phage stimulating activity to screen effec-AC0112 Bose, P. K. and S. N. Bhattactive foods^{AC0165}. harya. Constitution of an acid iso-REFERENCES lated from pineapple. Sci Cult 1936; 2: 162-. Medicinal AC0100 Quisumbing, E. AC0113 Roemisch, H. Bromelin from plants of the Phillipines. Tech pineapples. Patent-Ger (East)-Bull 16 Rep Phillipines Dept **55,405** 1965. Agr Nat Resources, Manila Murakami, M., T. Sado and A. AC0114 1951: 1-. Tachibana. Antiedema substances AC0101 Bhaduri, B., C. R. Ghose, A. N. from pineapple rhizome juice. Bose, B. K. Moza and U. P. Patent-Ger Offen-1,913,503 Basu. Antifertility activity of 1969. some medicinal plants. Indian J AC0115 Pauli-Magnus, H. Some cases of Exp Biol 1968; 6: 252-253. fruit cystitis. Arch Schiff Tro-AC0102 Datta, S. C. Free amino acids of pen-Hyg 1937; 41: 348-. Indian fruits. Bull Bot Soc Ben-AC0116 Garg, S. X., S. K. Saksena and gal 1963; 17: 8-. R. R. Chaudhury. Antifertility AC0103 Dhar, M. L., M. N. Dhar, B. N. screening of plants. Part VI. Dhawan, B. N. Mehrotra, R. C. Effect of five indigenous plants

Srimal and J. S. Tandon. Screen-

ing of Indian plants for biologi-

cal activity. Part 1V. Indian J

Exp Biol 1973; 11: 43–54.

AC0117	Hernandez-Morales, F. and C. P. Asenjo. Inactivity of fresh pine-		edema substance. Patent-Brit-1,192,773 1970.
	apple juice as an anthelmintic in	AC0129	Naf-Muller, R. and B. Willhalm.
	vivo. J Pub Health Trop Med		On the volatile constituents of
	(Puerto Rico) 1943; 18: 119.		pineapple. Helv Chim Acta 1971;
AC0118	Feurt, S. D. and L. E. Fox. Re-		54: 1880–.
	port on wax from several species	AC0130	Boland, F. E., V. H. Blomquist
	of Tillandsia and from Ananas		and B. Estrin. Chemical compo-
	<i>comosus.</i> Science 1955; 121:		sition of Mexican pineapple. J
A C0110	42		Ass Offic Anal Chem 1972;
AC0119	Asenjo, C. F. A preliminary study	A CO121	55(1): 200–.
	of the anthelmintic activity in	AC0131	Howard, G. E. and A. Hoffman.
	vitro of fresh pineapple juice.		A study of the volatile flavour-
	J Amer Pharm Assoc 1940; 29: 8.		ing constituents of canned Mal-
AC0120			ayan pineapple. J Sci Food Agr
AC0120	Gimlette, J. D. A Dictionary of Malayan Medicine, Oxford	AC0132	1967; 18: 106–. Morgan, R. C. Chemical studies
	Univ. Press., New York, USA,	AC0132	on concentrated pineapple juice.
	1939.		I. Carotenoid composition of
AC0121	Gortner, W. A., M. J. Kent and		fresh pineapples. J Food Sci
1100121	G. K. Sutherland. Ferulic and		1966; 31: 213–.
	p-coumaric acids in pineapple	AC0133	Baruah, P. On certain phenols in
	tissue as midifiers of pineapple		pineapple tissues. Sci Cult 1966;
	indoleacetic acid oxidase. Na-		32: 183.
	ture (London) 1958; 181: 630	AC0134	Brailski, K., K. Mao and K. Kuk.
AC0122	Clark, H. E. Oxalates in pine-		The action of certain tropical
	apples. Food Res 1939; 4: 75–.		fruits on the gastric function.
AC0123	Philips, D. M. Pipecolinic acid		VOPR Pitaniya 1960; 19(4):
	(pipecolic acid). Chem Ind		39.
	(London) 1953: 1953; 127–.	AC0135	Rodin, J. O., D. M. Coulson, R.
AC0124	Makinen, Y., M. D. Upadhya		M. Silverstein and R. W. Leeper.
	and J. L. Brewbaker. Cytotoxic		Volatile flavor and aroma com-
	effects of extracts from gamma-		ponents of pineapple. III. The
	irradiated pineapples. Nature		sulfur-containing components.
AC0125	(London) 1967; 214: 413–. Peters, L. and I. Suecker. Infra-	AC0136	J Food Sci 1966; 31: 721–. Connell, D. W. Volatile flavor-
AC0123	red spectroscopic microdeter-	AC0130	ing constituents of the pineapple.
	mination of calcium oxalate in		I. Some esters, alcohols and car-
	pineapple raphides. Z Lebensm -		bonyl compounds. Aust J Chem
	Unters Forsch 1967; 131: 351		1964; 17: 130–.
AC0126	De Laszlo, H. and P. S. Hen-	AC0137	Watt, J. M. and M. G. Breyer-
	shaw. Plant materials used by		Brandwijk. The Medicinal and
	primitive peoples to affect fertil-		Poisonous Plants of Southern
	ity. Science 1954; 119: 626–631.		and Eastern Africa. 2nd Edition,
AC0127	Petelot, A. Les Plantes Medici-		E. S. Livingstone, Ltd., London,
	nales du Cambodge, Du Laos et		1962.
	Vietnam, Vols 1-4. Archives des	AC0138	Singleton, V. L. and W. A. Gort-
	Recherches Agronomiques et		ner. Carotenoid pigments of pine-
	Pastorales au Vietnam No. 23,		apple fruit. II. Influence of fruit
	1954.		ripeness, handling and process-
AC0128	Murakami, M., T. Sado, A.		ing of pigment isomerization. J
	Tachibana and M. Adachi. Anti-		Food Sci 1961; 26: 53–.

AC0139	Mehlitz, A. and B. Matzik. Vola-	AC0149	Mulyoto. Effects of Ananas co-
1100107	tile acids in fruit juices. Ind	11001.5	mosus L. fruits on pregnant mice.
	Obst Gemeuseverwert 1956;		Theses-MS-FAC Biol Univ
	41: 227–.		Jenderal Soedirman-Indonesia,
AC0140	Burkill, I. H. Dictionary of the	. 00150	1986.
	Economic Products of the Malay	AC0150	Berger, R. G., F. Drawert and S.
	Peninsula. Ministry of Agriculture and Cooperatives, Kuala		Nitz. Sesquiterpene hydrocarbons in pineapple fruit. J Agr
	Lumpur, Malaysia. Volume 1,		Chem 1983; 1983(31): 1237–
	1966.		1239.
AC0141	Mannan, A. and K. Ahmad.	AC0151	Kabir, I., P. Speelman and A.
	Studies on Vitamin E in foods of		Islam. Systemic allergic reaction
	East Pakistan. Pak J Biol Agr		and diarrhoea after pineapple
	Sci 1966; 9: 13–.		ingestion. Tropical Geograph
AC0142	Foy, J. M. and J. R. Parratt. 5-	4 60150	Med 1993; 45(2): 77–79.
	Hydroxytryptamine in pineapples. J Pharm Pharmacol 1961;	AC0152	Dompmartin, A., C. Szczurko, M. Michel, B. Castel, B. Cor-
	13: 382–383.		nillet, L. Guilloux, B. Remond,
AC0143	Hatano, K. I., M. Kojima, M.		C. Dapogny, D. Leroy. 2 Cases
1100113	Tanokura and K. Takahashi. Pri-		of urticaria following fruit in-
	mary structure, sequence-spe-		gestion, with cross-sensitivity to
	cific 1h-nmr assignments and		latex. Contact Dermatitis 1994;
	secondary structure in solution	. ~~.	30(4): 250–252.
	of bromelian inhibitor VI from	AC0153	Hattori, A., H. Migitaka, M.
	pineapple stem. Eur J Biochem 1995; 232(2): 335–343.		Iigo, M. Itoh, K. Yamamoto, R. Ohtani-Kaneko, M. Hara, T.
AC0144	Pakrashi, S. C., B. Achari and P.		Suzuki and R. J. Reiter. Identifi-
	C. Majumdar. Studies on Indian		cation of melatonin in plants and
	medicinal plants: Part XXXII.		its effects on plasma melatonin
	Constituents of Ananas comosus		levels and binding to melatonin
	leaves. Indian J Chem 1975;		receptors in vertebrates. Bio-
A CO 1 45	13: 755.		chem Mol Biol Int 1995; 35(3):
AC0145	Haq, Q. N. and N. I. Mollah. Xylan from pineapple (<i>Ananas</i>	AC0154	627–634. AFS. Sulphydryl protease inhib-
	sativum) peel. Bangladesh J Sci	AC0134	itors from pineapple plant stem.
	Ind Res 1974; 9: 35–.		Int J Biochem 1990; 22(12):
AC0146	Shiraishi, Y., T. Shirotori and E.		1401–1406.
	Takabatake. Determination of	AC0155	Tanaka, Y., M. Kataoka, Y.
	polycyclic aromatic hydrocar-		Konishi, T. Nishmune and Y.
	bons in foods. V. 3,4-Benzopy-		Takagaki. Effects of vegetable
	rene in fruits. Shokuhin Eis-		foods on beta-hexosamininase
AC0147	eigaku Zasshi 1975; 16: 187–. Devereux, G. A Study of Abor-		release from rat basophilic leu- kemia cells(RBL-2H3). Jpn J
ACOIT	tion in Primitive Societies. The		Toxicol Environ Health 1992;
	Julian Press, Inc., New York,		38(5): 418–424.
	1976.	AC0156	Holdsworth, D. K. Traditional
AC0148	Yamada, F., N. Takahashi and T.		medicinal plants of Rarotonga,
	Murachi. Purification and char-		Cook Islands Part 1. Int J Crude
	acterization of a proteinase from	A CO 1 5 7	Drug Res 1990; 28(3): 209–218.
	pineapple fruit, fruit bromelain	AC0157	Nakagawa, Y. and N. Yakahashi.
	FA2. J Biochem (Tokyo) 1976; 79: 1223–.		Alpha-mannosidase from pine- apple fruit: Partial purification
			apple fruit. I artial pullification

A CO150	and action on glycopeptides. Agr Biol Chem 1977; 41: 455	AC0168	Daley. L. S. and H. M. Vines. Pineapple (Ananas comosus) leaf
AC0158	Counsell, J. N. and D. J. Roberton. Xylitol - A sweetener which is		proteinase. Plant Sci Lett 1978; 11: 59–.
	kind to the teeth. Food Process	AC0169	Vongsinudom K. Isolation and
	Ind 1976; 45(54): 24–26.		characterization of papain-like
AC0159	Chan, J. K. C. and J. H. Moy.		enzyme of pineapple. Master
	Hemicellulose-B from commer-		Thesis 1977; Abstr.
	cial pineapple juice underflow.	AC0170	Konowalchuk, J. and J. I. Speirs.
AC0160	J Food Sci 1977;42: 1451–1453. Van Lelyveld, L. J. and J. A. De		Antiviral effect of commercial juices and beverages. Appl En-
7100100	Bruyn. Polyphenols, ascorbic		viron Microbiol 1978; 35: 1219.
	acid and related enzyme activi-	AC0171	Heinicke, R. M., T. Ito and N.
	ties associated with black heart		Araki. Biologically active sub-
	in cayenne pineapple fruit. Agro-		stances from pineapples. Patent-
A CO1 (1	chemophysica 1977; 9: 1–.	A CO172	Japan Kokai-78 91,107 1978.
AC0161	Murachi, T. Bromelain enzymes. Methods Enzymol 1976; 45:	AC0172	Ayensu, E. S. Medicinal plants
	475–.		of the West Indies. Unpublished Manuscript 1978; 110 pp.
AC0162	Daley, L. S. and H. M. Vines.	AC0173	Omar, S., A. Z. Idrus and O.
	Diurnal fluctuations of inorganic		Abdul Razak. Extraction and
	orthophosphate in pineapple		activity of bromelain from pine-
	(Ananas comosus) leaves and a		apple. Mardi Res Bull 1978;
	possible role of ATPase. Plant	A C0174	6(2): 172–179.
AC0163	Sci Lett 1977; 10: 289. Yeoh, H. H., Y. C. Wee and L.	AC0174	Morita, A. H., D. A. Uchida, S. J. Taussig, S. C. Chou and Y.
ACOTOS	Watson. Taxonomic variation in		Hokama. Chromatographic frac-
	total leaf protein amino acid		tion and characterization of the
	compositions of monocotyle-		active platelet aggregation inhib-
	donous plants. Biochem Syst		itory factor from bromelain. Arch
A CO164	Ecol 1986; 14(1): 91–96.		Int Pharmacodyn Ther 1979;
AC0164	Suresh, M. and R. K. Rai. Cardol: The antifilarial principle from	AC0175	239: 340–350. Dev. S. Fertility control through
	Anacardium occidentale. Curr	ACOLIS	Ayurveda. J Family Welfare
	Sci 1990; 59(9): 477–479.		1980; 27(1): 23–25.
AC0165	Miwa, M., Z. L. Kong, K. Shino-	AC0176	Iwu, M. M. and B. N. Anyanwu.
	hara and M. Watanabe. Macro-		Phytotherapeutic profile of Nig-
	phage stimulating activity of		erian herbs. 1. Anti-inflamma-
	foods. Agr Biol Chem 1990; 54 (7): 1863–1866.		tory and anti-arthritic agents. J Ethnopharmacol 1982; 6(3):
AC0166	Kuride, T., T. Nishijima, Z. S.		263–274.
1100100	Imperial, S. Fujishige and H.	AC0177	Prakash, A. O., R. B. Gupta and
	Tsuboi. Chemical composition		R. Mathur. Effect of oral admin-
	of pineapple fiber I. Sen'i Kob-		istration of forty-two indigenous
	unshi Zairyo Kenkyusho Ken-		plant extracts on early and late
	kyu Happyokai Sanko, Shiryo 1976; 51: 45–.		pregnancy in albino rats. Probe 1978; 17(4): 315–323.
AC0167	Apte, P. V., G. S. Kaklij and M.	AC0178	Hirschhorn, H. H. Botanical
1100107	R. Heble. Proteolytic enzymes		remedies of the former Dutch
	(bromelains) in tissue cultures		East Indies (Indonesia). 1. Eumy-
	of Ananas sativus (pineapple).		cetes, Pteridophyta, Gymnosper-
	Plant Sci Lett 1979; 14: 57–.		mae, Angiospermae (monocoty-

AC0179	ledons only). J Ethnopharma- col 1983; 7(2): 123–156. Nitz, S. and F. Drawert. Occurrence of allyl hexanoate in pine- apple fruit. Chem Mikrobiol		Screening for vegetable and fruit factors active in inactivation of mutagenic pyrolysis product from amino acids. Agr Biol Chem 1978; 42(6): 1235–1238.
AC0180	Technol Lebensm 1982; 7: 148–. Saito, N. and J. B. Harborne. A cyanidin glycoside giving scarlet coloration in plants of the	AC0190	Kamboj, V. P. A review of Indian medicinal plants with interceptive activity. Indian J Med Res 1988; 1988(4): 336–355.
AC0181	Bromeliaceae. Phytochemistry 1983; 22(8): 1735–1740. Rao, R. R. and N. S. Jamir. Ethnobotanical studies in Naga-	AC0191	Suffness, M., B. Abbott, D. W. Statz, E. Wonilowicz and R. Spjut. The utility of P388 leukemia compared to B16 melanoma
AC0182	land.1. Medicinal plants. Econ Bot 1982; 36: 176–181. Vitalyos, D. Phytotherapy in domestic traditional medicine in	AC0192	and colon carcinoma 38 for in vivo screening of plant extracts. Phytother Res 1988; 2(2): 89–97. Ramirez, V. R., L. J. Mostacero,
AC0183	Matouba-Papaye (Guadeloupe). Dissertation-PH.D Univ Paris 1979; 11 pp. Rattanapanone, V. Antithiamin		A. E. Garcia, C. F. Mejia, P. F. Pelaez, C. D. Medina and C. H. Miranda. Vegetales empleados en medicina tradicional Norpe-
	factor in fruits, mushrooms and spices. Chiang mai Med Bull 1979; 18: 9–16.		ruana. Banco Agrario Del Peru and NACL Univ Trujillo , Trujillo, Peru, June, 1988; 54 pp.
AC0184	Ishii, R., K. Yoshikawa, H. Minakata, H. Komura and T. Kada. Specificities of bio-antimutagens in plant kingdom. Agr Biol Chem	AC0193	Panthong, A., D. Kanjanapothi and W. C. Taylor. Ethnobotanical review of medicinal plants from Thai traditional books, Part
AC0185	1984; 48(10): 2587–2591. Kapur, S. K. Medico-botanic survey of medicinal and aroma- tic plants of Mawphlang (Shil- long). Indian Drugs 1983; 21	AC0194	1. Plants with antiinflammatory, anti-asthmatic and antihypertensive properties. J Ethnopharmacol 1986; 18(3): 213–228. Hodge, W. H. and D. Taylor. The
AC0186	(1): 1-5. Browner, C. H. Plants used for reproductive health in Oaxaca,		ethnobotany of the island Caribs of Dominica. WEBBIA 1956; 12: 513–644.
AC0187	Mexico. Econ Bot 1985; 39(4): 482–504. Singh, Y. N. Traditional medi-	AC0195	Simpson, G. E. Folk medicine in Trinidad. J Amer Folklore 1962; 75: 326–340.
	cine in Fiji: Some herbal folk cures used by Fiji Indians. J Ethnopharmacol 1986; 15(1): 57–88.	AC0196	Prakash, A. O. and R. Mathur. Screening of Indian plants for antifertility activity. Indian J Exp Biol 1976; 14: 623–626.
AC0188	Osawa, T., H. Ishibashi, M. Namiki, T. Kadam and K. Tsuji. Desmutagenic action of food components on mutagens form-	AC0197	Dragendorff, G. Die Heilpflanzen der Verschiedenen Volker Und Zeiten, F. Enke, Stuttgart, 1898; 885 pp.
	ed by the sorbic acid nitrite reaction. Agr Biol Chem 1986; 50 (8): 1971–1977.	AC0198	Roig y Mesa, J. T. Plantas Medicinales, Aromaticas o Vene- nosas de Cuba. Ministerio De
AC0189	Morita, K., M. Hara and T. Kada. Studies on natural desmutagens:		Agricultura, Republica De Cuba, Havana, 1945; 872 pp.

AC0199 Chopra, R. N. Indigenous Drugs of India. Their Medical and Economic Aspects. The Art Press, Calcutta, India, 1933; 550 pp.

AC0200 Wasuwat, S. A list of Thai medicinal plants, ASRCT, Bangkok. Report No. 1 on Res. Project. 17.

Research Project A.S.R.C.T., No. 1 On Research Project 17, 1967; 22 pp.

AC0201 Liebstein, A. M. Therapeutic effects of various food articles.

Amer Med 1927; 33: 33–38.

AC0202 Greer, M. A. and E. B. Astwood. The antithyroid effect of certain foods in man as determined with radioactive iodine. Endocrinol-

ogy 1948; 43:105–119.

5 Angelica sinensis

L.

Common Names

Angelica	Europe	Kara toki	Hong Kong
Angelica	USA	Langdu danggui	China
Chinese angelica	China	Min-gui	China
Dang gui	China	Tang Kuei	China
Danggui	China	Tang-kwei	China
Dong quai	China	Tangkuei	China

BOTANICAL DESCRIPTION

A perennial of the UMBELLIFERAE family that grows to 50-250 cm. The stem is erect, often thick as an arm at the base, round, finely grooved, hollow, tinged reddish below and branched above. The leaves are very large, 60-90 cm and tri-pinnate with a hollow petiole, leaflets are ovate and unevenly serrate. The leaf sheaths are large and swollen. The flowers are greenishwhite to yellowish in 20-40 rayed compact umbels, no involucre; the tiny epicalyx has numerous sepals and the tips of the sepals are minute. The petals have indented, indistinguishable tips. The elliptic fruit is 7 mm long by 4 mm wide and winged. The outer fruit membrane separates from the inner one. The rhizome is short, fleshy and has long fibrous roots. The plant has a strong tangy odor: taste is sweetish to burning tangy.

ORIGIN AND DISTRIBUTION

This species is indigenous to China. Other species with similar composition are found in the Americas, Syria, and the coast of the Baltic Sea as far north as Lapland and in Europe.

TRADITIONAL MEDICINAL USES

China. The dried entire plant is used externally for burns^{ASO171}. The hot water extract is taken orally on a regular basis as a medicine ^{ASO127}. Hot water extract of the root is taken orally as an emmenagogue, and for menstrual disorders, amenorrhea^{ASO100}, dysmenorrhea, constipation, cancer, and sterility^{ASO123}. Hot water extract of the dried root is taken orally for "hot flashes", to expedite child-birth and to regulate menstruation^{TO2276}. The dried root is taken orally in traditional Chinese medicine for the treatment of thrombo-

angitis obliterans and acute cerebral thrombolytic diseases^{AS0149}. Externally, the water extract is used to treat hyperpigmentation of the skin, such as melasma and ephelides, in order to enhance the beauty of ladies^{ASO151}. Hot water extract of the dried root is taken orally to improve circulation and to dissolve blood clots^{AS0156}. To promote blood circulation, to relieve heart pain and as a warming and aromatic remedy, the hot water extract of a mixture of the dried root of Angelica sinensis, Aconitum carmichaellii and Allium macrostemon is taken orally. Hot water extract of the dried root is taken orally for constipation, dysentery, and premenstrual syndrome, as a sedative and for irregular menstruation and amenorrhea^{AS0162}.

Taiwan. Hot water extract of the dried root is taken orally for liver diseases^{AS0173}.

USA. Hot water extract of the root is taken orally for suppressed menstruation^{AS0126}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Adenine: Rt^{AS0112,AS0160}

Alanine: RtAS0160

Angelic acid: Pl 940^{AS0149}, Rt^{AS0172} Angelica polymorpha alkaloid: RtASO104 Angelica polysaccharide AS-1: Rt^{AS0135} Angelica polysaccharide: Rt^{AS0110}

Angelica sinensis compound E-232: RtASO108

Angelicide: Pl^{AS0107}, Rt 10^{T07685}

Angelicone: Rt^{AS0172} Angelol: Rt^{AS0172} Arginine: Rt^{AS0159} Aspartic acid: RtAS0160 Bergapten: RtAS0105 Brefeldin A: RtAS0159

Butyric acid, gamma-amino: RtAS0160

Cadinene, beta: Rt EO^{AS0172} Carvacrol: Rt EO^{AS0172}

Choline, lysophosphatidyl: Rt^{AS0147} Choline, phosphatidyl: Rt^{AS0147} Choline: Rt 0.247% ÁS0125

Cystine: RtAS0160 Dodecan-1-ol: Rt^{AS0172}

Ferulic acid: Pl 940^{AS0127}, Rt^{AS0182}

Folic acid: Rt^{AS0172} Glutamic acid: RtASO159

Glycine: RtAS0160 Histidine: RtAS0160 Leucine, iso: RtAS0160 Leucine: RtAS0160 Lignoceric acid: Rt^{AS0141}

Ligustilide: Rt^{AS0117}, EO 45-74% AS0114, AS0141

Lysine: Rt^{AS0160}

Malic acid, L: Rt 2.6^{AS0121} Methionine: RtAS0160 Myristic acid: RtAS0172 Neoangelide: RtAS0159

Nephthalide, butylidene: Rt EO^{AS0172}

Nicotinic acid: RtAS0128

Ocimene, beta, cis: Rt EO 12.18% ASO141

Palmitic acid: Rt^{AS0172} Phenylalanine: RtAS0160

Phthalic anhydride, 2,4-dihydro: Rt

FO^{AS0172}

Phthalide, butylidene: Rt^{AS0128,AS0112}

Phthalide, n-butyl: RtAS0128 Phthalide, n-butylidene: Rt^{AS0105}

Polysaccharide (angelica sinensis): Rt^{AS0129}

Proline: Rt^{AS0160} Safrol, iso: Rt EO^{AS0172} Safrole: Rt EO^{AS0172}

Serine: RtAS0160

Sitosterol, beta: Rt^{AS0141,AS0172} Sphingomyelin: RtAS0147 Succinic acid: Rt^{AS0112} Sucrose, D: Rt^{AS0105} Sucrose: Rt^{AS0100}

Tetradecan-1-ol: Rt^{AS0172} Tetradecane, N: Rt^{AS0105} Threonine: RtAS0160

Tocopherol, alpha: Rt^{AS0105,AS0172}

Tryptophan: Rt^{AS0160} Tyrosine: Rt^{AS0160} Umbelliferone: Rt^{AS0141} Uracil: Rt^{AS0112,AS0172}

Valerophenone-o-carboxylic acid: Rt

EO^{AS0172} Valine: RtAS0160 Vitamin A: Rt^{AS0172} Vitamin B-12: RtAS0172

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Abortifacient effect. Hot water extract of the dried root, in a mixture containing Ligusticum wallichii root, Prunus persica seed, Carthamus tinctorius flower, Paeonia obvata root, Achyranthes bidentata root, Leonurus sibiricus aerial parts, Lycopus lucidus var. hirta leaf, Curcuma longa, Curcuma aromatica or Curcuma zedoaria root and Campsis grandiflora flowers, taken orally by pregnant women, was inactive. Hot water extract of the root, in a mixture containing Paeonia obovata root, Ligusticum wallichii flower, Campsis grandiflora flower, Carthamus tinctorius flower, Prunus persica seed, Verbena officinalis aerial parts or root, Curcuma longa, Curcuma aromatica or Curcuma zedoaria root, Scirpus yagara root bark, Eupatorium chinense root and Rheum palmatum root, was inactive. The preparation was taken in 3 doses and repeated 3 times by 41 pregnant women^{AS0179}. Water extract of the root, administered intravenously to pregnant dogs and rabbits, was active^{AS0104}.

Acetylcholinesterase inhibition. Dichloromethane extract of the root, at a concentration of 200.0 mcg/ml, was active. Results significant at p < 0.05 level^{AS0124}.

Analgesic activity. Decoction of the dried root, in a Chinese herbal medicine that contains Gentiana macrophylla root, Lycium chinense plant, bupleurum falcatum root, Anemarrhena asphodeloides root, Rehmannia glutinosa root, Paeonia albiflora root, Prunus mume fruit, Glycyrrhiza glabra root, Scutellaria baicalensis root, Paeonia moutan root and Lithospermum species root, was active when administered daily for 4 weeks to a patient with diagnosis of subsepsis allergica. The clinical features of the patient were fever of long standing, arthralgia, leukocytosis and rash^{AS0139}. Water extract of the root, administered intraperitoneally to mice, was inactive vs acetic acid writhing inhibition^{AS0125}. **Angiotensin II inhibition.** Water extract of the dried root was equivocal^{AS0137}.

Antiamnesic activity. Dichloromethane extract of the root, administered intraperitoneally to male rats at a dose of 100.0 mg/kg, was inactive vs scopolamine-induced amnesia in passive avoidance test^{AS0124}.

Antianginal activity. Hot water extract of the dried root, taken orally by a patient with variant angina pectoris, in a mixture containing Aconitum carmichaellii and Allium macrostemon, was active. Given at the same time was a preparation containing Asarum sieboldii, Alpinia officinarum, Corydalis yanhusno and Lignum santali^{ASO162}.

Antiarrhythmic activity. Ethanol (100%) extract of the dried root, administered intravenously to rats, was active vs aconitine, epinephrine, BaCl₂ and digitalis-induced arrhythmia. The water extract was active vs ouabain, epinephrine, BaCl₂ and digitalis induced arrhythmia^{ASO142}. The ethanol (95%) extract, administered intravenously to cats at a dose of 4.0 gm/kg, was active vs ChCl₃ or epinephrine-induced arrhythmia^{ASO163}.

Antiasthmatic activity. Water extract of the dried root, taken orally by adults, increased forced expiratory volume in the first second^{ASO142}.

Antifibrillatory activity. Ether extract of the dried root was active on dogs vs electrically- and acetylcholine-induced fibrillations^{ASO142}.

Antifibrinolytic activity. The water and hot water extracts of the dried root, at a concentration of 5.0 mg/ml, were inactive vs standard fibrin plate method^{ASO175}.

Antihemorrhagic activity. Decoction of the dried root, taken orally by a 4-year-old girl with burns over 20% of her body surface, was active. The patient was given blood transfusion and the herb preparation via nasogastric tube. After 5 days of treatment, the gastric juice was normal on examination, and after another 4 days a negative hematest stool was obtained. The general condition of the patient was markedly improved, with no signs of repetition of bleeding. The patient was earlier treated for massive gastrointestinal hemorrhage. The herbal preparation taken consists of Panax ginseng and Glycyrrhiza glabra (6 grams each), Atractylodes macrocephala, Angelica sinensis,

Polygala tenuifolia, Euphoria longana and Paeonia moutan (10 grams each), Ziziphus spinosus and Gardenia jasminoides (12 grams each), Astragalus species and Bletilla species (15 grams each) and Agrimonia species (30 grams)^{ASO161}.

Antihepatotoxic activity. Decoction of the dried root, administered by gastric intubation to rats at variable dosage levels, was active vs CCl₄ induced hepatotoxicity. The decoction taken consisted of Angelica sinensis, Actractylodes macrocephala, Paeonia albiflora, Salvia miltiorrhiza, Artemisia scoparia, Astragalus membranaceus, Gardenia jasminoides, Rehmannia glutinosa, Paeonia moutan and Poria cocos ASO 167. The decoction, administered intraperitoneally to rats at a dose of 10.0 ml/kg, was active^{AS0178}. One hundred and five patients with cirrhosis of the liver were treated for 2 to 18 months with a preparation that contained Angelica sinensis, Atractylodes macrocephala, Paeonia albiflora, Salvia miltiorrhiza, Artemsia scoparia, Astragalus membranaceus, Gardenia jasminoides, Rehmannia glutinosa, Paeonia moutan and Poria cocos. The conditions and liver functions of the majority of the patients were improved or restored to normal. Liver and spleen that were enlarged were shrunk or softened. Sixty-seven of the patients recovered, 14 showed marked improvement, 17 showed some improvement and 7 did not respond to the treatment. The patients were followed up for 3 to 6 months and relapse was noted in 13.4% of the cases^{AS0166}. Water extract of the dried root was active vs Dgalactosamine induced liver damage^{AS0142}.

Antihyperglycemic activity. Hot water extract of the dried root, in the drinking water of mice at a dose of 50.0 ml/liter, was inactive vs streptozotocin-induced hyperglycemia. The extract was in a preparation that contained Codonopsis pilosula, Rehmannia glutinosa, Eucommia ulmoides, Dipsacus asperoides, Astragalus membranaceus, Loranthus parasiticus, Cibotium barometz and Yu-

Ma-Gen^{ASO132}. Decoction of the dried root, administered intragastrically to Goldblatt hypertensive dogs at a dose of 9.0 gm/kg, was active. The decoction was composed of equal amounts of *Curculigo orchioides*, *Epimedium* species, *Morinda officinalis*, *Phellodendron chinense*, *Anemarrhena asphodeloides* and *Angelica sinensis*. Nine gm/kg was given for 10 days, then 18 gm/kg for 10 days. The dogs were then observed for 10 more days^{ASO106}. The essential oil, administered intravenously to dogs, was active^{ASO142}. The water extract, administered intravenously to dogs at a dose of 2.0 gm/kg, was active^{ASO113}.

Antihypertensive activity. The powdered dried root, in combination with *Paeonia albiflora*, *Cnidium officinale*, *Polyporaceae* and *Atractylodes* and *Alisma* species, in the drinking water of rats at a dose of 800.0 mg/kg daily for 20 days, was active^{ASO133}.

Antihypothermic activity. Decoction of the root, taken orally by adults, produced a decline in peripheral core temperatures slower than controls at 23 degrees Celsius^{ASO165}.

Antileukopenic activity. Hot water extract of the dried root, administered intragastrically to mice, was active vs cis-diamine dichloroplatinum (II) induced toxicity, ED_{50} 59.4 mg/kg^{ASO121}.

Antimutagenic activity. Hot water extract of the dried root, on agar plate at a concentration of 40.0 mg/plate, was inactive on *Salmonella typhimurium* TA100 and TA98 vs aflatoxin B1 induced mutagenesis. Metabolic activation had no effect on the results^{AS0146}.

Antinephritic effect. Decoction of the dried root, administered intragastrically to rats treated with puromycin to induce nephrosis, at a dose of 3.0 ml/animal, was active^{ASOI19}. A preparation of the composite extract of Angelica sinensis, Panax ginseng, Astragalus species, Atractylodes japonica, Bupleurum falcatum, Zizyphus species, Citrus species, Glycyrrhiza glabra, Cimicifuga simplex and Zingi-

ber officinale was taken orally by 53 patients with nephroptosis, at a dose of 7.5 gm/day. The patients showed improvement in lower back pain and subabdominal discomfort^{ASO118}. Hot water extract of the dried root, administered intragastrically to mice, was active vs cis-diamine dichloroplatinum (II)-induced toxicity^{ASO121}.

Antipruritic activity. Decoction of the dried root, in a Chinese herbal medicine that contains Gentiana macrophylla root, Lycium chinense plant, Bupleurum falcatum root, Anemarrhena asphodeloides root, Rehmannia glutinosa root, Paeonia albiflora root, Prunus mume fruit, Glycyrrhiza glabra root, Scutellaria baicalensis root, Paeonia moutan root and Lithospermum species root, was active. The preparation was administered daily for 4 weeks to a patient with a diagnosis of subsepsis allergica. The clinical features of the patient were fever of long standing, arthralgia, leukocytosis and rash^{ASO139}.

Antipsoriatic activity. Decoction of the dried root, taken orally by 70 patients with psoriasis at a dose of 20.0 ml/person, was active. The dose contains Ephedra sinica, Aconitum carmichaellii, Ligusticum wallichii, Atractylodes lancea, Angelica sinensis, Coix lacryma-jobi, Zaocys dhumnades, and snake slough. The dose was taken twice daily for 3 to 8 weeks and for a further period of 3 weeks if no response to the initial treatment was indicated. There were 31 patients cured (44.29%) and 32 improved (45.71%). There were side effects such as nausea, anorexia, gastralgia and a mild decrease in leukocytes^{ASO144}.

Antipyretic activity. Decoction of the dried root, in a Chinese herbal medicine that contains Gentiana macrophylla root, Lycium chinense plant, Bupleurum falcatum root, Anemarrhena asphodeloides root, Rehmannia glutinosa root, Paeonia albiflora root, Prunus mume fruit, Glycyrrhiza glabra root, Scutellaria baicalensis root, Paeonia moutan root and Lithospermum species root, was

active. The preparation was administered daily for 4 weeks to a patient with a diagnosis of subsepsis allergica. The clinical feaures of the patient were fever of long standing, arthralgia, leukocytosis and rash^{ASO139}.

Antithrombotic effect. Decoction of the dried root, administered intragastrically to rat, was active. Intravenous administration to adults produced a decline in blood viscosity and plasma fibrinogen level^{AS0142}.

Antithyrotropic activity. The dried entire plant, administered by gastric intubation to rats, was active. A mixture of Salvia miltiorrhiza, Angelica sinensis, Ecklonea species, Prunella vulgaris and sea shells was used^{ASO164}.

Antitumor activity. Hot water extract of the dried root, administered intraperitoneally to mice, was active on CA-Ehrlichascites. The dose was composed of a mixture of Angelica sinensis, Bufo bufo, Solanum nigrum, Solanum lyratum, Duchesnea indica, Curcuma longa and Salvia miltiorrhiza^{AS0157}. The hot water extract, administered intravaginally to patients with uterine mycoma, was active. In 52.9% of the patients, the symptoms disappeared, and in 27.2% the tumors were reduced in size. The extract was used in combination with Curcuma zedoaria, Prunus persica, Dipsacus asper, Cyperus rotundus, Prunella vulgaris, Achyranthes bidentata, Vaccaria segetalis, Sparganium stoloniferum, Laminaria japonica and Coix lacrymjobi^{AS0181}. The polysaccharide fraction of the rhizome, administered intraperitoneally to mice at a dose of 0.4 mg/animal, was active on CA-Ehrlich-ascites^{AS0120}.

Antiviral activity. Decoction of the dried root, taken by a patient with atypical chronic infectious hepatitis, was active. The treatment was taken in combination with Salvia miltiorrhiza, Isatis tinctoria, Taraxacum mongolicum, Paeonia lactiflora, Atractyloides macrocephala, Rehmannia glutinosa, Poria cocos, Cyperus rotundus, Citrus reticulata, Prunus mume var. Viridicalyx and Justicia procumbens^{ASO131}.

Antiyeast activity. Hot water extract of the dried entire plant was taken orally for the treatment of systemic fungal infections. The extract was active on Candida albicans^{AS0136}. Aphrodisiac activity. The dried root, taken orally by 737 impotent men, was active. The treatment involved taking 1.0 gram of the preparation every morning and night with wine on an empty stomach for 15 days. Within one year 655 of the men recovered with erection and successful intercourse. Seventy-seven of them improved somewhat and 5 failed to respond to the treatment. A few of the subjects had side effects such as puffiness in the face and lower part of the torso and itching in the palms of the hands and feet. The symptoms were not serious and gradually disappeared^{AS0152}.

Blood flow increase. The powdered dried root, in the drinking water of rats at a dose of 800.0 mg/kg daily for 20 days, in combination with *Paeonia albiflora*, *Cnidium officinale*, *Polyporaceae* and *Atractylodes* and *Alisma* species, increased placental blood flow^{AS0133}. **Blood system effects.** Decoction of the root, when taken orally by adults, lowered the viscosity of whole blood^{AS0165}.

Cardiovascular effects. The dried plant, in combination with *Panax ginseng*, *Liriope spicata*, *Astragalus membranaceus* and *Salvia miltiorrhiza*, lowered the incidence of hypotension and congestive heart failure in myocardial infarction patients^{AS0170}.

Cerebral blood flow effect. Water extract of the dried root, administered intravenously to dogs at a dose of 2.0 mg/kg, increased the blood flow^{ASO113}.

Chromosome aberration inhibition. Water extract of the dried root was active vs cobalt irradiation-induced aberration in the rabbit^{ASO142}. The intraperitoneal administration was inactive vs cyclophosphamide-induced damage in mice^{ASO146}.

Clastogenic activity. Hot water extract of the dried root, administered intraperitoneally to mice, was inactive vs cyclophosphamide-induced damage^{AS0146}.

Coronary blood flow effect. Water extract of the dried root, administered intragastrically and intravenously to dogs at a dose of 2.0 gm/kg, increased blood flow^{ASO142}.

Diuretic activity. Hot water extract of the root, administered intravenously and orally to dogs at a dose of 10.0 gm/kg, was active^{ASO100}. **Estrogenic effect.** Hot water extract of the dried root, taken orally by female adults, was active in treating functional uterine hemorrhage^{ASO158}.

Fertility promotion effect. Decoction of the dried root was administered to 34 female patients at a dose of 2.0 ml/person. The patients suffered from tubal occlusion, and were treated with the compound "Danggui" by irrigation with uterographic catheter. Two ml of the decoction was diluted with normal saline to 12 ml as a dosage unit. Irrigation was performed 1 to 3 times at each menstrual period during the period from 3 days after cessation of menstruation to rise of the body temperature (follicular phase). The sessions of irrigation were given 1 to 2 days apart and withheld if vaginal bleeding occurred. The irrigation started with a small dosage and gradually increased to 5-8 dosage units per session, in general. The patients were treated for 2 to 15 sessions with 8 to 106 dosage units in total. Treatment for the 3 periods constituted 1 therapeutic course, and 1 to 3 courses were given if tubal patency was not regained after 1 course. Seventy-nine percent of the patients regained tubal patency and 66 percent of them became pregnant. The remaining patients regained tubal patency but the lumen was too narrow for good passage of iodine contrast medium^{AS0177}.

Glutamate pyruvate transaminase inhibition. Ethanol/water (1:1) extract of the dried root, in cell culture at a concentration of 1.0 mg/ml, was inactive vs CCl₄-induced

ANGELICA SINENSIS 73

hepatotoxicity and PGE 1-induced pedal edema on rat liver cells^{ASO173}.

Hair stimulant effect. Decoction of the dried root, in combination with Polygonum multiflorum, Allium sativum, Zingiber officinale, Panax ginseng, Carthamus tinctorius, Platycodon grandiflorum, Biota orientalis, Ligusticum wallichii, Salvia miltiorrhiza and Tetrapanax papyrifera, was effective in promoting hair growth when applied topically. The biological activity has been patented^{ASO115}. Hematopoietic activity. The polysaccharide fraction of the dried root promoted the formation of hemopoietic colonies on the surface of spleen of irradiated mice. The treatment also increased the rate of production of CFU-E, CFU-D and CFU-S in rats^{AS0142}. The powdered dried entire plant, in a preparation containing Rehmannia glutinosa, Astragalus membranaceus and Cyperus rotundus, taken orally by 12 patients with aplastic anemia at a dose of 9 gm, 2–3 times daily for 3 months, was active. The patients also received another preparation containing Panax ginseng, Cervus elaphus, Chinemys reevesii, Cervus species and Schisandra chinensis concomitantly over the 3-month period^{ASO169}. Hypotensive activity. Decoction of the dried root, administered intraduodenally to cats at a dose of 6.0 gm/kg, was active. The treatment contained equal parts of Angelica sinensis, Curculigo orchioides, Epimedium species, Morinda officinalis, Phellodendron chinense and Anemarrhena asphodeloides. Intraperitoneal administration to cats at a dose of 12.0 gm/kg, and to dogs at a dose of 6.0 gm/kg, were active^{AS0106}. Water extract of the dried root, administered intravenously to dogs at a dose of 2.0 gm/kg, was active^{AS0142}. Water extract of the root, administered intravenously to dogs, was active^{AS0104}.

Immunostimulant activity. Polysaccharide fraction of the rhizome, in cell culture at a concentration of 10.0 mcg/ml, was active on the spleen ASO120. Water extract of the

root increased phagocytic clearance, serum antibodies and lymphocyte proliferation in the mouse^{ASO142}.

Immunosuppressant activity. Decoction of the dried root, administered intragastrically to mice at a dose of 200.0 mg/kg for 8 days, was active. The treatment inhibited local graft vs host response to cells. A combination of extracts of Angelica sinensis and Gardenia jasminoides was used^{ASO143}. Hot water extract of the dried root, in the drinking water of mice at a dose of 50.0 ml/liter, was inactive. The dose also contained Codonopsis pilosula, Rehmannia glutinosa, Eucommia ulmoides, Dipsacus asperoides, Astragalus membranaceus, Loranthus parasiticus, Cibotium barometz, and "Yu-Ma-Gen". The preparation did not prevent long-term rejection^{ASO132}. The dried-root heartwood, in a prescription containing Rehmannia glutinosa, Paeonia lactiflora, Cnidium officinale, Scutellaria baicalensis, Phellodendron chinese, Coptis chinensis, and Gardenia jasminoides, administered intragastrically to mice at a dose of 10.0 mg/kg for 4 days postimmunization, was active vs sheep red blood cell-induced footpad reaction; dosing for 7 days postimmunization was active vs tuberculin-induced footpad reactions; dosing for 8 days was active vs host reaction and 5 days of dosing postimmunization was active vs picryl chloride-induced contact dermatitis and humoral antibody formation^{AS0174}.

Mutagenic activity. Water extract of the plant, on agar plate at a concentration of 40.0 mg/plate, was inactive on *Salmonella typhimurium* TA100 and TA98. The extract, administered intraperitoneally to mice at a dose 10 to 40 times the dose used in medication, was inactive^{AS0122}.

Oxygen radical inhibition. Decoction of the dried root, at a concentration of 500.0 mcg/ml, was active. The treatment also contained "Juzentaihoto" which is composed of Astragalus mongoholicus, Cinnamomum cassia,

Rehmannia glutinosa, Paeonia albiflora, Cnidium monnieri, Atractylodes lancea, Panax ginseng, Poria cocos and Glycyrrhiza glabra. A concentration of 61.0 mcg/ml was inactive on the guinea pig macrophages vs inhibition of FMLP-induced superoxide anion^{ASO140}.

Phagocytosis stimulation. Water extract of the dried rhizome, administered intravenously to male mice at a dose of 16.0 gm/kg, was active vs clearance function of mononuclear phagocyte system as determined by the congo red clearance test. A dose of 20.0 gm/kg, administered subcutaneously, was active vs phagocytosis by peritoneal macrophages^{ASO150}.

Plasmin inhibition. Ethanol (95%), hot water and water extracts of the dried root, at a concentration of 60.0 mcg/ml, were inactive vs chromogenic substrate method^{ASO175}. **Platelet aggregation inhibition.** The dried root, in cell culture, and the water and hot water extracts, administered intravenously to rats, were active vs ADP- and collageninduced aggregation^{ASO142}.

Progestagenic effect. Hot water extract of the dried root, taken orally by 60 women with functional uterine hemorrhage, was active. The treatment also contained Agrimonia eupatoria, Leonurus heterophyllus, Rehmannia glutinosa, Paeonia lactiflora, Rubia cordifolia, Panax ginseng, Codonopsis pilosula, Gardenia jasminoides, Scutellaria baicalensis, Ligusticum chuanxiong and Astragalus membranaceus^{AS0158}.

Radioprotective effect. Water extract of the dried root, administered intravenously to mice at necrotic doses daily for 30 days post-irradiance, restored 80% of pregnancy rate vs none in controls. The polysaccharide fraction increased survival by 30 days in irradiated mice^{ASO142}.

Renal function improvement. Water extract of the dried root was active vs aminonucleoside-induced renal damage^{ASO142}.

Respiratory depressant. Decoction of the dried root, administered intraperitoneally

to cats at a dose of 12.0 gm/kg, was inactive^{ASO106}.

Sebaceous secretion inhibition. Ethanol (95%) extract of the dried root, applied topically to hamsters at a dose of 20.0 microliters/animal, was inactive^{ASO134}.

Serotonin antagonist activity. Hot water extract of the dried root, at a concentration of 500.0 mg/ml, inhibited the aggregation and release of 5-HT labeled platelets induced by thrombin^{ASO149}.

Smooth muscle stimulant activity. Hot water extract of the root, administered intravenously to dogs at a dose of 10.0 gm/kg, was active on the urinary bladder and intestine^{ASO100}.

Sperm motility increased. Water extract of the dried root, at a concentration of 100.0 mg/ml, was inactive on human sperm^{AS0116}.

Toxic effect. Water extract of the dried root, administered intragastrically to mice at a dose of 5.0% for 15 weeks, produced no side effects. Intravenous administration to 40 patients, at a dose of 240.0 ml/person for 30 days, produced no side effects^{ASO142}.

Toxicity assessment. Water extract of the dried root, when administered intravenously to mice, produced LD₅₀ 100.0 gm/kg^{ASO142}. **Tyrosinase inhibition.** Methanol/water (1:1) extract of the dried root was active,

(1:1) extract of the dried root was active, ID₅₀ 28.0 mg/ml^{ASO151}. **Uterine stimulant effect.** Ethanol (95%) and water extracts of the dried root, administered intravenously to cats, dogs and rabbits, were active^{ASO172}. Water extract of the

root was active on the human uterus and produced strong activity on the rabbit uterus. The extract, administered intraperitoneally to rats^{ASO105} and intravenously to dogs, was active^{ASO104}. Hot water extract of the root was active on the non-pregnant rabbit uterus. The hot water extract, administered intravenously to dogs at a dose of 10.0 gm/kg, was active^{ASO100}.

Vasodilator activity. Decoction of the dried root, in combination with equal amounts

of Curculigo orchioides, Epimedium species, Morinda officinalis, Phellodendron chinense and Anemarrhena asphodeloides, administered intraduodenally to dogs at a dose of 12.0 gm/kg, was active. A dose of 6.0 gm/kg, administered intraperitoneally to dogs, dilated peripheral blood vessels ^{ASO106} . The water extract decreased vascular resistance and increased blood flow ^{ASO142} .
REFERENCES

AS0100 Schmidt, C. F., B. E. Read and K. K. Chen. Chinese drugs. I. Tang-kwei. Chin Med J 1924; 38: 362–.

AS0101 Apon. The Atlas of Commonly.

AS0101 Anon. The Atlas of Commonly Used Chinese Traditional Drugs, Revolutionary Committee of the Inst Materia Medica, Chinese Acad Sci, Peking, 1970.

AS0102 Matsui, A. D. S., J. Rogers, Y. K. Woo and W. C. Cutting. Effects of some natural products on fertility in mice. Med Pharmacol Exp 1967; 16: 414–.

AS0103 Ibragimova, F. I. and V. S. Ibragimova. Principal Remedies of Chinese Medicine. Foreign Technology Div, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, 1964.

AS0104 Read, B. E. Some of the old Chinese drugs used in obstetrical practice. J Obstet Gynecol Brit Emp 1927; 34: 498–508.

AS0105 Li, C. P. Chinese Herbal Medicine. U. S. Dept. Health, Education and Welfare, Publ. No. (NIH) 75–732, Washington, D. C., 1974.

AS0106 Ch'en, W. C., C. H. Sun, H. Y. Li and K. S. Ting. Studies on antihypertensive drugs. Hypotensive effect and toxicity of er hsien t'ang. Chin Med J 1962; 81(5): 295–302.

AS0107 Chen, Y., H. Zhang, N. Chen, T. Zhao and M. Wang. Analysis of the ingredients of *Angelica sine-nsis*-Determination of the structure of angelicide. **K'o Heush**

T'ung Pao (Foreign Lang Ed) 1984;29(4): 560–562.

AS0108

AS0109

AS0110

AS0111

AS0112

AS0113

AS0114

AS0115

Hon, P. M., C. M. Lee, T. F. Choang, K. Y. Chui and H. N. C. Wong. A ligustilide dimer from *Angelica sinensis*. **Phytochemistry** 1990; 29(4): 1189–1191.

Kane, J. A., S. P. Kane and S. Jain. Hepatitis induced by traditional Chinese herbs; possible toxic components. **Gut** 1995; 36(1): 146–147.

Wang, Y. P. and B. Zhu. The effect of angelica polysaccharide on proliferation and differentiation of hematopoietic precursor cells. **Zhonghua Yixue Zazhi** 1996: 76(5): 363–366

Cells. Zhonghua Yixue Zazhi 1996; 76(5): 363–366.

Kong, Y. C., S. Y. Hu, F. K. Lau, C. T. Che, H. W. Yeung, S. Cheung and J. C. C. Hwang. Potential anti-fertility plants from Chinese medicine. Amer J Chinese Med 1976;4: 105–128. Lin, M., G. Zhu, Q. M. Sun and Q. C. Fang. Chemical studies of Angelica sinensis. Yao Hsueh Hsueh Pao 1979; 14(9): 529–534. Chou, Y. P., L. Y. Huang, Y. L. Cheng, L. L. Fap, L. Y. Chang and K. Y. Tseng. The effect of

namics and myocardiac oxygen consumption in dogs. **Yao Hsueh Hsueh Pao** 1979; 14: 156–160. Fang, H. J., R. M. Lu, G. S. Lin and T. C. Liu. Studies on the components of essential oils. **Yao**

Angelica sinensis on hemody-

Hsueh Hsueh Pao 1979; 14(10): 617–623.

Huang, M. F., W. J. Hang and Q. Zhong. Hair growth stimulating preparations containing medicinal plant extracts. **Patent-Faming Zhuanli Shenqing Gongkai Shuomingshu-1,043,624** 1990; 6 pp.

AS0116 Hong, C. Y., J. Ku and P. Wu. Astragalus membranaceus stimulates sperm motility in vitro. Amer J Chinese Med 1992; 20 (3/4): 289–294.

AS0117	Lay, H. L., W. Y. Lin, Y. Motota, F. Tamai and T. Tanabe. Studies on the production and the improvement in quality of <i>Angelica acutiloba</i> Kitagawa. II. Seasonal variation on plant growth, yield, extract ligustilide contents in different species of crude drug "tou-ki". Shoyakugaku Zasshi 1992; 46(4): 365–371.	AS0125	and Y. H. Suh. Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of <i>Evodia rutae-carpa</i> . Planta Med 1996; 62(5): 405–409. Tanaka, S., C. Hoshino, Y. Ikeshiro, M. Tabata and M. Konoshima. Studies on anti-nociceptive activities of aqueous ex-
AS0118	Horii, A. and M. Maekewa. Clinical evaluation of ginseng and astragalus combination used to treat nephroptosis. Int J Orient Med 1993; 18(3): 140–147.	AS0126	tracts from different varieties of toki. Yakugaku Zasshi 1977; 97: 14—. Lucas, R. Secrets of the Chinese Herbalists. Parker Publ. Co. New
AS0119	Wang, H. Y., J. Z. Li, S. L. Zhu, H. Yu, S. F. Mao and M. H. Zhang. Effects of <i>Tripterygium wildordii</i> , <i>Astragalus membranaceus</i> and <i>Angelica sinensis</i> on glomerular permeability in rats with puromycin nephrosis. Chunghua I Hsueh Tsa chih (Beijing)	AS0127 AS0128	York, 1977. Lu, R. M., L. I. Ho and S. Y. Lo. Determination of ferulic acid in danggui (Angelica sinensis). Chung Ts'ao Yao 1980; 11(9): 395–398. Sheu, S. J., Y. S. Ho, Y. P. Chen and H. Y. Hsu. Analysis and pro-
AS0120	1988; 68(9): 513-515. Choy, Y. M., K. N. Leung, C. S. Cho, C. K. Wong and P. K. T. Pang. Immunopharmacological studies of low molecular weight polysaccharide from <i>Angelica sinensis</i> . Amer J Chinese Med	AS0129	cessing of Chinese herbal drugs: VI. The study of <i>Angelica radix</i> . Planta Med 1987; 53(4): 377–378. Gu, Y. X., Y. F. Cui, Z. P. Wang and X. T. Liu. Effect of plant polysaccharides on T and B lym-
AS0121	1994; 22(2): 137–145. Sugiyama, K., H. Ueda, Y. Suhara, Y. Kajima, Y. Ichio and M. Yokota. Protective effect of sodium l-malate, an active constituent isolated from <i>Angelica radix</i> , on cis-diamminedichloroplatinum (II)-induced toxic side effect. Chem Pharm Bull 1994;	AS0130	phocytes in normal and tumor transplanted mice. J Trad Chin Med 1988; 8(3): 198–202. Ma, L. F., X. M. Mao, X. W. Li and H. S. Zhao. The effect of Angelica sinensis polysaccharides on mouse bone marrow hematopoieses. Zhongua Xinxueguanbing Zazhi 1988; 9(3): 148–149.
AS0122	42(12): 2565–2568. Yin, X. J., D. X. Liu, H. Wang and Y. Zhou. A study on the mutage- nicity of 102 raw pharmaceuti- cals used in Chinese traditional	AS0131 AS0132	Yu, L. A. and Q. L. Xu. Treatment of infectious hepatitis with an herbal decoction. Phytother Res 1989; 3(3): 13–14. Tuch, B. E., K. A. Lenord and
AS0123	medicine. Mutat Res 1991; 260 (1): 73–82. Duke, J. A. and E. S. Ayensu. Medicinal Plants of China. Ref-	1100132	J. F. Thompson. Evidence that Chinese herbal medicine is of no advantage in murine fetal pan- creatic transplants. Transplan-
AS0124	erence Publications, Inc. Algonac, Michigan 1985; 1(4): 352–361. Park, C. H., S. H. Kim, W. Choi, Y. J. Lee, J. S. Kim, S. S. Kang	AS0133	tation 1989; 4792: 407–408. Watanabe, K. I., K. Suzuki, F. Masani, Y. Horokawa, A. Shibata and S. Maruyama. Effect of toki-

AS0134	shakuyaku-san on the fetal development of spontaneously hypertensive rats. Acta Med Biol 1989; 37(2): 91–95. Fukushima, M., H. Kuroda and Y.	AS0142	sp.). Yun-nan Chih Wu Yen Chiu 1991; 13(1): 85–88. Me, Q. B., J. Y. Tao and B. Cui. Advances in the pharmacological studies of <i>Radix angelica</i>
	Inaoka. A study of crude drugs for the development of an effec- tive component in cosmetics (II) Effect of crude drug extractives on the size of auricular seba- ceous glands in hamsters. Sho- yakugaku Zasshi 1989; 43(4):	AS0143	sinensis (Oliv) diels (Chinese danggui). Chin Med J 1991; 104(9): 776–781. Mase, A., H. Ono, H. Nagai and T. Eda. Effect of tang-kuei and gardenia combination on immunological reaction. International
AS0135	305–309. Zhang, H., Z. X. Li and Y. Z. Chen. Studies of the active principles of <i>Angelica sinensis</i> (Oliv.). Diels-isolation, characterization and biological effect of its polysaccharides. Lan-chou Ta Hsueh Hsueh Pao, Tsu Jan K'o Hsueh	AS0144	J Oriental Medicine 1992; 17(1): 23–26. Zhang, Y. S., M. X. Zhou, Z. D. Yao and N. H. Peng. Treatment of 70 cases of psoriasis with qufeng xuanwei mixture. Xinjiang J Trad Chin Med 1987; 1987 (2): 26–28.
AS0136	Pan 1989; 25(4): 78-81. Van Benschoten, M. M. Management of systemic fungal infections with Chinese herbal medicine. Int J Orient Med	AS0145	Yan, T. Y., A. C. Hou, G. Y. Zhou, M. M. Gong, Z. M. Li, X. N. Wu and B. T. Sun. Pharmacological effects of Angelica injection and its treatment of infantile viral
AS0137	1990; 15(3): 141–145. Han, G. Q., J. X. Pan, C. L. Li and F. Tu. The screening of Chinese traditional drugs by bio- logical assay and the isolation of some active components. Int J Chinese Med 1991; 16(1): 1–17.	AS0146	pneumonia. Chin J Integ Trad West Med 1987; 7(3): 161–162. Liu, D. X., X. J. Yin, H. C. Wang, Y. Zhou and Y. H. Zhang. Antimutagenicity screening of water extracts from 102 kinds of Chinese medicinal herbs. Chung-kung Chung Yang Tan Chi Li
AS0138	Chen, S. M., Y. M. Lu, X. M. Yan, G. H. Hu, H. M. Zhu and H. Xie. Production of superoxide radical and its interaction with natural medicine. Fu-tan Hsueh Pao, Tsu Jan K'o Hsueh 1991;	AS0147 AS0148	kuo Chung Yao Tsa Chi Li 1990; 15(10): 617–622. Gun, R., J. C. Lu and Y. M. Xu. Phospholipid components of danggui. Zhongguo Zhongyao Zazhi 1991; 16(12): 741–742. Ma, W. C. Comparison of the con-
AS0139	30(1): 31–36. Yu, L. A. Letter to the editor. Phytother Res 1987; 1(4): 11–.		stituents between gansu and cultivated dangguei (Angelica sinensis). Chung Ts'ao Yao 1980;
AS0140 AS0141	Imamichi, T., K. Hayashi, T. Nakamura, K. Kaneko and J. Koyama. A Chinese traditional medicine, juzentaihoto, inhibits the O2-generation by macrophages. J Pharmacobio Dyn 1989; 12(11): 693–699. Rao, G. X., X. J. Yu and H. D.	AS0149	Yin, Z. Z., L. Y. Zhang and L. N. Xu. The effect of dang-gui (Angelica sinensis) and its ingredient ferulic acid on rat platelet aggregation and release of 5-HT. Yao Hsueh Hsueh Pao 1980; 15: 321–326.
1100171	Sun. Chemical constituents of "lang-du dang-gui" (Angelica	AS0150	Xu, L. N., O. Y. Rong, Z. Z. Yin, L. Y. Zhang and L. X. Ji. The

	effect of dang-gui (Angelica sinensis) and its constituent ferulic acid on phagocytosis in mice. Yao Hsueh Hsueh Pao 1981; 16: 41-414.		composition and pharmacological effects of <i>Angelica sinensis</i> (Oliv) Diels. Lan-chou Ta Hsueh Hsueh Pao, Tsu Jan K'o Hsueh Pan 1984; 20(1): 158–160.
AS0151	Masamoto, Y., S. Iida and M. Kuto. Inhibitory effect of Chinese crude drugs on tyrosinase. Planta Med 1980; 40: 361–365.	AS0160	Chen, Y. Z., H. D. Zhang and W. T. Cai. Study on the analysis of chemical constituents of <i>Angelica sinensis</i> . III. Determination
AS0152	Chen, Y. M. Observation of 737 cases of impotence treated by "kang-wei-ling" (potency arousing). Chung I Tsa Chih 1981;		of amino acids in min-gui. Lanchou Ta Hsueh Hsueh Pao, Tsu Jan K'o Hsueh Pan 1983; 19: 194–195.
4.001.50	22(4): 36–37.	AS0161	Ma, E., C. Luo, C. Huang and F.
AS0153	Zhu, F. Q., W. J. Zhang and J. X. Xu. Experience of treating 42		Liu. The treatment of severe hemorrhage of the gastrointesti-
	cases of ectopic pregnancy by		nal tract in burn children by
	the method of combining TCM		combined traditional Chinese
	and Western medicine. Zheji- ang- Zhongyi Zazhi 1982; 17:		and Western medicine. Chung I Tsa Chih (Engl Ed) 1983; 3(1):
	102–.		59–61.
AS0154	Dai, S. J. And Y. H. Chen. Heal-	AS0162	Chen, K. Certain progress in the
	ing of ten-year amenorrhea with traditional herbal drugs. Shang-		treatment of coronary heart disease with traditional medicinal
	hai chung I Tsa Chih 1982;		plants in China. Amer J Chinese
	1982(5): 17–.		Med 1981; 9: 193–196.
AS0155	Wong, H. B. Effects of herbs and	AS0163	Cha, L., C. C. Chien and F. H. Lu.
	drugs during pregnancy and lactation. J Singapore Pediatric		Antiarrhythmic effect of <i>Angelica sinensis</i> root, tetrandrine and
	Soc 1979; 21(3/4): 169–178.		Sophora flavescens root. Yao
AS0156	Pong, J. J., W. F. Wang, T. F. Lee		Hsueh T'ung Pao 1981; 16(4):
	and W. Liu. Effect of 28 herbal drugs on the uptake of 86-RU by	AS0164	53–54. Chen, B. X., R. G. Jiang and J. K.
	mouse heart muscle. Chung	7150104	Hu. Traditional Chinese medi-
	Ts'ao Yao 1981; 12(1): 33–34.		cine action on experimental rat
AS0157	Wang, K. R., Y. L. Zhao, D. S. Wang and M. L. Zhao. Effects of		goiter and normal rat thyroids. Chin Med J 1983; 96(3): 235–
	traditional Chinese herbs, toad		239.
	tincture and adenosine 3', 5'	AS0165	Terasawa, K., A. Imadays, H.
	camp on Ehrlich ascites tumor		Tosa, T. Mitsuma, K. Toriizura,
	cells in mice. Chin Med J 1982; 95(7): 527–532.		K. Takeda, M. Mikage, M. Hattori and T. Namba. Chemical
AS0158	Wang, X. H. A report on 60 cases		and clinical evaluation of crude
	of functional uterine hemor-		drugs derived from Angelica
	rhage treated with "xian he gu gong tang" (decoction of agri-		acutilobae and A. Sinensis. Fito- terapia 1985; 56(4): 201–208.
	mony and others). Zhejiang-	AS0166	Han, J. and F. Li. Clinical obser-
	Zhongyi Zazhi 1982; 17: 272–.		vations on the efficacy of qiang
AS0159	Chen, Y. Z., Z. X. Duan, H. D.		gan ruan jian tang in the treat-
	Zhang, J. Y. Tao, Y. P. Ruan, Q. B. Mei, S. Liu, Q. D. Tian, F. X.		ment of 105 cases of uncompensated cirrhosis of the liver. Natl
	Xie and Y. F. Yu. Chemical		Med J China 1979; 59: 584–588.

AS0167	Han, J. H. and F. G. Li. A study on experimental hepatic cirrhosis treated with qiang gan ruan jian tang (a Chinese herbal decoction). Natl Med J China 1979; 59: 577–583.	AS0176	ditional crude drugs on fibrinolysis by plasmin: Antiplasmin principles in eupolyphaga. Chem Pharm Bull 1986; 34(6): 2512–2517. He, Z. P. Clinical studies on defi-
AS0168	Ma, X. Effect of Salvia milti- orrhiza on experimental hepatic regeneration. Chin J Integ Trad West Med 1983;3(3): 182–185.		cient type amenorrhea treated by regulating menstruation decoc- tion of <i>Radix angelica sinensis</i> and <i>Radix astragaliseu</i> Hedysari
AS0169	Liu, X. L. Twelve cases of aplastic anemia treated mainly by ready made Chinese drugs. Chung I Tsa Chih 1984; 25	AS0177	(dang gui-huang qi). Chung I Tsa Chih 1984; 25(12): 915–917. Fu, Y. F., Y. Xia, Y. P. Shi and N. Q. Sun. Treatment of 34 cases
AS0170	(10): 759–760. Kou, W., Z. Chen and S. Tao. Clinical effect of "yi gi huo xue" medicinal herbs in acute myo- cardial infarction: A randomized		of infertility due to tubal occlusion with compound danggui injection by irrigation. Jiangsu J Trad Chin Med 1988; 9(1): 15–16.
AS0171	controlled study. Chin J Integ Trad West Med 1983; 3(3): 146– 148. Siang, S. T. Use of combined tra-	AS0178	Xiong, X., Y. Zhang, Q. Y. Zai, H. S. Luo, S. B. Li and J. Y. Guo. The protective effect of <i>Radix</i> angelicae sinensis against acute
7150171	ditional Chinese and Western medicine in the management of burns. Panminerva Med 1983; 25(3): 197–202.		liver damage by d-galactosamine in rats: A histochemical study. Wu-han I Hsueh Yuan Hsueh Pao 1982; 11(4): 68–72.
AS0172	Zhu, D. P. Q. Dong quai. Amer J Chinese Med 1987; 15(3/4): 117–125.	AS0179	Li, F. K. Problems concerning artificial abortion through oral administration of traditional drugs.
AS0173	Yanfg, L. L., K. Y. Yen, Y. Kiso and H. Kikino. Antihepatotoxic actions of Formosan plant drugs. J Ethnopharmacol 1987; 19(1):	AS0180	Ha-Erh-Pin Chung-I 1965; 1965 (1): 11–14. Lin, C. S. Enriched "four-ingredient brew" to treat in situ dead
AS0174	103–110. Koda, A., Y. Ono, T. Nishiyori, H. Nagai, N. Matsuura, A. Mase and	AS0181	fetus. Fu-Chien Chung-I-Yoo 1964; 1964(1): 44–45. Wu, D. Y. Treatment of 136 cases
	T. Matsuyama. Immunopharma- cological studies of wen-qing- yin, a Chinese blended medi-		of uterine mycoma with 'Kung Ching Tang'. Chung I Tsa Chih 1981; 22(1): 34–35.
	cine: Effects on type IV allergic reactions and humoral antibody production. Int J Immunopharmacol 1987; 9(3): 289–295.	AS0182	Chen, H. P., S. X. Liu, G. M. Li and Q. H. Li. Determination of ferulic acid in the Chinese angelica (Angelica sinensis) and its
AS0175	Kawashiri, N., K. Torizuka, I. Adachi, M. Ueno, K. Terasawa and I. Horikoshi. Effects of tra-		preparations by HPLC. Chung Ts'ao Yao 1989; 19(10): 447–448.

6 Azadirachta indica

Common Names

Azad dirakhat Bewina mara Bo-nim Cape lilac	India India India Indonesia	Miro Tahiti Mwarobaini Neeb Neem	Easter Island Tanzania Tanzania USA
China tree	Indonesia	Neem	Antigua
Chinaberry	Indonesia	Neem	Fiji
Chinaberry	USA	Neem	Gambia
Darbejiya	Nigeria	Neem	Guyana
Dogo yaro	Nigeria	Neem	India
Dogonyaro	Nigeria	Neem	Kenya
Gori	India	Neem	Nepal
Gringging	Indonesia	Neem	Nigeria
Igi-oba	Nigeria	Neem	Philippines
Imba	India	Neem	Sudan
Indian lilac	India	Neem	Trinidad
Indian neem tree	Kenya	Neem	West Indies
Intaran	Indonesia	Nim tree	India
Isa-bevu	India	Nim	Fiji
Kiswahili	Tanzania	Nim	India
Kohomba	Sri Lanka	Nim	Nepal
Lilas de perse	Rodrigues Islands	Nimba	India
Limb	India	Nimbatikta	India
Limbado	India	Nivaquine	Senegal
Mahanim	India	Sadao India	Thailand
Mahanimba	India	Sadao tree	Thailand
Mahnimu	India	Sadao	Thailand
Mala	Fiji	Sa-Dao	Thailand
Margosa tree	India	Vembu	India
Margosa tree	Nepal	Vepa	India
Margosa	India	Veppam	India
Mimba	India	White cedar	Indonesia
Mindi	Indonesia	Zanzalakhat	Saudi Arabia

From: Medicinal Plants of the World, vol. 2: Chemical Constituents, Traditional and Modern Uses By: Ivan A. Ross Humana Press Inc., Totowa, NJ

BOTANICAL DESCRIPTION

Azadirachta indica is a tropical evergreen of the MELIACEAE family that grows up to 25 m high. It has rough dark brown bark with wide longitudinal fissures separated by flat ridges. The leaves are compound, imparipinnate, each comprising 5–15 leaflets that are arranged in alternate pairs with terminal leaflets. The compound leaves are themselves alternating with one another. The thin, lanceolate leaflets measure about 6 cm long and 2 cm broad. It bears many flowered panicles, mostly in the leaf-axils. The sepals are ovate and about 1 cm long with sweet scented white oblanceolate petals. It produces yellow drupes that are ellipsoid and glabrous, 12-20 cm long.

ORIGIN AND DISTRIBUTION

A native to east India and Burma, it grows in much of Southeast Asia and West Africa, and more recently the Caribbean and South and Central America.

TRADITIONAL MEDICINAL USES

India. Hot water extract of the bark is taken orally by the adult female as a tonic and emmenagogue^{A10390}. The hot water extract of the dried fixed oil is taken orally as an emmenagogue^{A10362}. Anthraquinone fraction of the dried flower, fruit and leaf is taken orally for leprosy^{AlO286}. Hot water extract of the flower and leaf is taken orally as an antihysteric remedy, and is used externally to treat wounds^{A10390}. The dried flowers are taken orally for diabetes^{A10235}. Hot water extract of the dried fruit is used for piles and externally for skin diseases and ulcers^{A10321}. Hot water extract of the entire plant is taken orally as an anthelmintic, an insecticide and a purgative A10390. Juices of the bark of Andrographis paniculata, Azadirachta indica and Tinospora cordifolia are taken orally as a treatment for filariasis^{A10235}. Hot water extract of the bark is taken with water, orally before breakfast, for leprosy. The extract is also taken for fever and diabetes, and as a tonic,

refrigerant, anthelmintic and antiperiodic Al0296,Al0317. The fresh fruit is used externally for leprosy^{Al0296}. Fruit, leaf and root, ground and mixed with dried ginger and "trifala", a preparation consisting of the powdered fruit of *Terminalia bellerica* (Gaertn.) Roxb., *T. Chebula* Retz, and *Emblica officinalis* Gaertn., is taken orally with lukewarm water to treat common fevers^{Al0195}. Leaf juice is administered by intravenous infusion for chronic skin diseases^{Al0251}, and is taken orally as an anthelmintic^{Al0389}.

Indo-China. Hot water extract of the bark is taken orally for malaria, but it is inferior to quinine. Hot water extract of the leaf is also taken orally as a treatment for malaria A10109.

Nigeria. Decoction of the dried bark is taken orally as a treatment for fevers, and the infusion is taken orally for malaria^{AlO182}. Hot water extract of the fresh leaf and bark is taken orally to treat jaundice, to cure malaria and as a cathartic^{AlO260}.

Senegal. Hot water extract of the dried bark is taken orally for gingivitis, and for the healing of wounds^{AIO228}.

Sri Lanka. Hot water extract of the entire plant is used externally for wounds and ulcers, skin diseases, leprosy and rheumatic disorders. The extract is taken orally for fevers, malaria, jaundice, and syphilis^{AI0359}.

Thailand. Extract of the dried flower is taken orally as a bitter tonic^{AlO272}. Hot water extract of the dried fruit is taken orally as an anthelmintic, laxative, bitter tonic and for fever^{AlO270}, The dried unripe fruit is taken orally as a bitter tonic and for fever^{AlO272} and the dried gum is used as a bitter tonic^{AlO272}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Alanine: Fl^{Al0216}

Phenylalanine: SdAI0207

Androsta-1-14-dien-3-16-dione, 7-alphaacetoxy-4-4-8-trimethyl-5-alpha-17-oxa: Fr Pe 1.7^{Al0159} Arginine: FlAI0216, Call TissAI0207

Asparagine: FI^{Al0216} Asparatic acid: FI^{Al0216}

Astragalin: Fl Al0399, Lf 19.2Al0225

Azadirachta arabinoglactan: Fr Pu^{Al0164}
Azadirachta indica glycoprotein: Gum^{Al0262}
Azadirachta indica meliacin 1: Sd^{Al0282}
Azadirachta indica meliacin 2: Sd^{Al0282}
Azadirachta indica meliacin 3: Sd^{Al0282}

Azadirachta indica meliacin 4: Sd^{Al0282} Azadirachta indica polysaccharide N-9-G1:

Bk^{Al0124}

Azadirachta indica polysaccharide N-9-G1A: Bk^{Al0305}

Azadirachta indica polysaccharide N-9-G1B: Bk^{Al0305}

Azadirachta polymer NB-1: St Bk^{Al0229} Azadirachta polymer NB-II: St Bk^{Al0229} Azadirachtanin; Lf 18.7^{Al0119}

Azadirachtin: Sd 56.0-243.2^{Al0211},Al0212

Azadirachtin A: Sd oil 40.0^{Al0169} Azadirachtin B: Sd oil 13.7^{Al0169} Azadirachtin C: Sd oil ^{Al0203} Azadirachtin D: Sd oil 5.2^{Al0169} Azadirachtin H: Sd oil 2.5^{Al0169}

Azadirachtin I: Sd oil 0.75^{Al0169} Azadirachtin,12-nor,11-alpha-hydroxy: Sd 0.5^{Al0163}

Azadirachtin, 3-acetyl-11-methoxy-1-tigloyl: Bk 8.0^{Al0133}

Azadirachtin, 22-23-dihydro, 23-betamethoxy: Sd 47.2^{Al0133}

Azadirachtin, 3-deacetyl, cinnamoyl: Lf 4.6^{Al0133}

Azadirachtinol, deacetyl: Fr oil 16.7Al0117

Azadirachtol: Fr 25AI0118

Azadirachtol, 3-tigloyl: Sd 5.6^{Al0133}

Azadiractin K: Sd 30Al0162

Azadiradione: Sd 0.47%^{Al0259},Fr 0.70%^{Al0200} Azadiradione,1-2-dihydro, epoxy-1-alphamethoxy: Sd 30^{Al0259}

Azadiradione,1-beta-2-beta-diepoxy: Sd 30^{Al0259}

Azadiradione, 17-beta-hydroxy: Fr 0.015%^{Al0200}, Sd 0.035%^{Al0259}

Azadiradione, 17-epi: Fr 35^{Al0200}, Sd 50^{Al0259}

Azadiradione, 17-hydroxy: Fr^{Al0279}, Sd^{Al0175} Azadiradione, 7-deacetyl-17-beta-hydroxy:

Azadiradione,7-deacetyl-7-benzoyl-epoxy: Sd 120^{Al0259}

Azadiradione, 7-deacetyl-7-benzoyl: Sd 70^{Al0259}

Azadiradione, defurano: Fr Pe 4.2^{Al0159} Azadiradione, epoxy: Fr 0.13%^{Al0249}, Sd

 $0.72\%^{A10259}$

Azadirinin: Rt Bk 2.8^{Al0156} Azadirol: Fr 20^{Al0250} Azadirolide, Iso: Lf ^{Al0125}

Azadirone: Fr Pe^{Al0166}, Sd 0.05%^{Al0259}

Azadirone, 6-hydroxy: Lf Al0133

Azadirone, A-homo,1-2-dihydro,11-acetyl-4-alpha-6-alpha-dihydroxy: Lf Al0133

Azadirone, A-homo, 4-alpha-6-alpha-dihydroxy: Lf 11.4^{Al0304}

Methyl butyl disulfide: Sd^{Al0221} N-propyl butyl disulfide: Sd^{Al0221} Prop-1-enyl butyl disulfide: Sd^{Al0221} Gamma amino butyric acid: Fl^{Al0216}

Catechin: St BkAl0246

Epi-gallo catechin: St Bk^{Al0246} Epi-catechin (-): St Bk^{Al0246} Gallo catechin: St Bk^{Al0246} Chlorogenic acid: Sd, Lf ^{Al0320}

Cholesterol: Fr^{Al0122}

Iso-coumarin, 6-8-dihydroxy-3-methyl-3-4-dihydro: Twig^{Al0219}

Iso- coumarin, 7-8-dihydroxy-3-methyl-3-4-dihydro: Twig^{Al0219}

Cycloartanol, 24-methylene: Heartwood 0.01%^{Al0196}

Cycloeucalenol: Trunkwood^{Al0388}

Cysteine: Fl^{Al0216}

Daucosterol: Heartwood 40^{Al0196} Di-n-propyl disulfide: Sd^{Al0209} Disulfide, cis-1-propenyl-1-propyl:

Sd^{Al0248}

Dipropyl disulfide: Sd^{Al0248}

Trans-1-propenyl-1-propyl disulfide: Sd^{Al0248}

N-docosane: Fr^{Al0155} N-docosene: Fr^{Al0155}

Ergosta-8-24(28)-dien-3-beta-ol, 5-alpha-4-14-alpha-dimethyl: Heartwood^{Al0196} Ergosta-8-24(28)-dien-3-beta-ol, 5-alpha, 4alpha-methyl: Heartwood^{Al0196}

Fatty acids: Sd^{Al0387}

Flavanone, 8-prenyl-5-7-dihydroxy-3'-(3-hydroxy-3-3-dimethyl-butyl)-4'-methoxy: Lf Al0161

Iso-fraxidin: TwigAl0219

5-hydroxy-methyl furfural: Fr 0.69%^{Al0210}

Gallic acid: Stembark^{Al0246}

Gazadirone: Sd 0.4%^{Al0259}

Gedunin: Bk^{Al0227}, Fr^{Al0122}, Fl^{Al0216}, Sd

 $0.067\%^{Al0259}$

7-deacetoxy-7-alpha-hydroxy gedunin:

Sd^{Al0393}

7-deacetoxy-7-benzoyl gedunin: Sd 0.015%^{Al0259}

0.015%, "0255

Deacetyl gedunin: Sd^{Al0175}

Glutamine: Fl^{Al0216} Glycine: Fl^{Al0216}

Glycopeptide: Gum^{Al0274} Glycoprotein: Gum^{Al0287}

Grevillic acid methyl ester: Stembark 2.8^{Al0140}

Hyperoside: Fl^{Al0399}, Lf ^{Al0264}

N-icosane: Fr^{Al0155} Kaempferol: Fl^{Al0385}

Kaempferol-3-0-rutinoside: Lf 42Al0225

Kulactone: Fr 1^{Al0250} Iso-limbolide: Twig^{Al0131} Limbonin: Sd^{Al0157} Limocin A: Fr 3.3^{Al0249} Limocin B: Fr 3.3^{Al0249} Limocinin: Fr 5^{Al0249} Limocinol: Fr 1.6^{Al0249}

Limocinone: Fr 2^{Al0249}

Linoleic acid: Sd 15%^{Al0113} Lophenol, 24-methylene: Heartwood

0.015%^{Al0213} Lysine: Fl^{Al0216}

Mahmoodin: Sd 50^{Al0155} Margocetin: Twig ^{Al0219} Margocillin: Rt Bk^{Al0147} Margocinin: Rt Bk^{Al0147} Margolonone: St Bk 25^{Al0142}

Margolonone, iso: St Bk 7.5^{Al0142}

Margosin: Rt Bk^{Al0147}
Margosine: St Bk 7.0^{Al0149}
Margosinolide: Twig 4.2^{Al0126}
Margosinolide, iso: Twig 8.3^{Al0126}
Margosinolone: St Bk 3.2^{Al0150}
Margosinone: St Bk 8.5^{Al0150}
Margosolone: St Bk 4.7^{Al0149}

Meldenin: Sd 5^{Al0103}, Lf ^{Al0206} Meldenin, iso: Lf ^{Al0206}

Meldenin-1-ene-6-7-diol: Lf Al0206

Melia azadirachta polysaccharide GI-A: Bk 0.037% Al0292

Melia azadirachta polysaccharide GI-B: Bk 0.037%^{AI0292}

Melia azadirachta polysaccharide N-9-G-I: Sd^{Al0338}

Melia lactone I: Sd oil^{Al0103} Melia lactone II: Sd oil^{Al0103}

Melia polysaccharide CSP-I: Bk^{Al0171,Al0254} Melia polysaccharide CSP-II: Bk^{Al0233,Al0254}

Melia polysaccharide CSP-III: Bk^{Al0233},Al0171,Al0254

Melia polysaccharide CSSP-I: Bk^{Al0233}
Melia polysaccharide CSSP-II: Bk^{Al0233}
Melia polysaccharide CSSP-III: Bk^{Al0233}
Melia polysaccharide FG-III-C: Bk^{Al0160}
Melia polysaccharide G-III-B: Bk^{Al0160}
Melia polysaccharide G-III-B: Bk^{Al0160}

Melia polysaccharide N-9-GI:

Bk^{Ai0153},Al0154

Melia polysaccharide N-9-GI-A: Bk^{Al0153} Melia polysaccharide N-9-GI-B: Bk^{Al0153} Meliacarpin, 1-3-diacetyl-11-19-deoxa-11oxo: Sd 0.8^{Al0141}

Meliacarpin, 3-acetyl-11-hydroxy-4-betabeta-methyl-1-tigloyl: Sd 0.5^{Al0158}

Meliantriol: Sd^{Al0394} Melicitrin: Fl^{Al0399}

Mellein, 6-methoxy: Twig^{Al0219}

Myricetin: FIAI0112

Myricetin-3-0-rutinoside: Lf 25.6Al0225

Naheedin: Fr 3AI0155

Neotrichilenone, 7-acetyl: Sd 70Al0259

Nimbadiol: Sd^{Al0175}

Nimbaflavone: Lf 18.8^{Al0307,Al0202}

Nimbanal: Sd 139Al0139

Nimbandiol: Lf 130, Sd oil 250^{Al0261}

Nimbandiol, 6-0-acetyl: Sd oil 120Al0261, Fr

oil 93.3^{Al0117}

Nimbidin: St Bk^{Al0313}, Sd oil 1.1%^{Al0309},Al0199

Nimbidinin: Ker^{Al0404} Nimbidiol: Rt Bk 100^{Al0130}

Nimbidol: Sd^{Al0100}

Nimbilicin: Rt Bk 0.25^{Al0144} Nimbilin: Rt Bk 2.3^{Al0146}

Nimbin: Lf^{Al0148}, Call Tiss^{Al0268}, Sd oil 0.19%^{Al0102}, Bk 800^{Al0402}, Fl^{Al0216}, Ker 210^{Al0162}

Nimbin, 4-epi: Sd oil 0.25%^{Al0165} Nimbin, 6-deacetyl: Lf ^{Al0148} Nimbin, 6-deacyl: Sd 200^{Al0162}

Nimbin, acetyl: Tr Bk, TwigAl0127, SdAl0395

Nimbal, 6-deacetyl: Lf 120AI0148

Nimbinene: Lf 30, Bk 300, Sd oil 40^{Al0261} Nimbinene, 6-deacetyl: Lf 60, Bk 38, Sd oil 52^{Al0261} AZADIRACHTA INDICA

Nimbinin: Sd^{Al0401,Al0103} Nimbinol: Sd 0.8^{Al0148}

Nimbinolide, deacetyl: Twig 1.7^{Al0127,Al0131}

Nimbinolide, iso: St Bk^{Al0134} Iso-nimbinolide, deacetyl: Twig 2.5^{Al0127,Al0131}

Nimbinone: St Bk^{Al0134}

Nimbiol: Tr Bk 110^{Al0397,Al0398} Methyl nimbiol: St Bk 3.3^{Al0136}

Nimbione: St BkAI0134

Nimbionol: St Bk 22.9^{Al0138}

Demethyl nimbionol: St Bk 0.4Al0151

Nimbionone: St Bk1529^{Al0138}

Methyl nimbionone: St Bk 7.3^{Al0136}

Nimbisonol: St Bk 0.3^{Al0151} Nimbocetin: Fr 200^{Al0210} Nimbochalcin: Fr 150^{Al0210} Nimbocidin: Rt Bk 0.3^{Al0144}

Nimbocinol: Fr 0.10%^{Al0122}, Sd oil

 $0.12\%^{Al0152}$

Nimbocinol, 17-epi: Sd oil 880^{Al0152}

Nimbocinolide: Lf 9.5Al0137 Nimbocinolide, iso: Lf Al0120 Nimbocinone: Lf 250Al0123 Nimbolicin: Rt 0.58Al0143

Nimbolide: Lf 13.3-400^{Al0145},Al0148, Sd

13^{AI0162}

Nimbolide, 28-deoxo: Lf 60-199^{Al0148,Al0145}

Nimbolin A: Wood^{Al0403}

Nimbolin B: Wood, Rt 19.7Al0143 Nimbonolone: St Bk 2.3Al0140 Nimbonone: St Bk 7.6Al0140 Nimbosodione: St Bk 0.6Al0151 Nimbosone: St Bk 3.2Al0136

Nimocin: Lf 0.5^{Al0121} Nimocinol: Lf ^{Al0123},Al0201

Nimocinolide: Lf 4-17^{Al0121},Al0137

Nimocinolide, iso: Twig^{Al0131}, Lf 32^{Al0121}

Nimolicinoic acid: Fr 0.4^{Al0129} Nimolicinol: Fr 50^{Al0269}

Nimolicinolide, iso: Fr 1.0^{Al0129} Nimolide, iso: Twig^{Al0131} Nimolinin: Rt Bk 0.14^{Al0146} Nimolinone: Fr^{Al0132}

Nimosone: St Bk 8.5^{Al0136} Nimbin: Pl^{Al0207}

Nonan-2-one: Sd^{Al0221} Onchinolide B: Ker 73^{Al0162}

Oleic acid: Heartwood^{Al0196}, Sd oil

49%^{Al0113}

Ornithine: Pl, Call Tiss^{Al0207}

Palmitic acid: Heartwood^{Al0196}, Sd oil

15%^{Al0113}

Pent-2-enal, 2-methyl: Sd^{Al0221,Al0248} Polysaccharide CSP-I: Bk^{Al0215} Polysaccharide CSP-II: Bk^{Al0215} Polysaccharide CSP-III: Bk^{Al0215} Polysaccharide G-III-D0'-2-I-A: Bk

16.1^{Al0312}

Polysaccharide G-III-D0'-2-I-B: Bk 13.2^{Al0312}

Polysaccharide G-III-D0'-2-II-A: Bk 16.3^{Al0312}

Polysaccharide G-III-D0'-2-II-B: Bk 11.0^{Al0312}

Polysaccharide MA-9: Bk^{Al0239} Polysaccharide N-9-Gl (Azadirachta

indica): Bk 144Al0116

Proline: PlAI0207

Prop-I-cis-enyl tetrasulfide, n-propyl: Sd^{Al0221}

Prop-I-cis-enyl trisulfide, di: Sd^{Al0221} Prop-I-cis-enyl trisulfide, methyl: Sd^{Al0221} Prop-I-cis-enyl trisulfide, n-propyl: Sd^{Al0221} Prop-I-enyl disulfide, methyl: Sd^{Al0221} Prop-I-trans-enyl trisulfide, n-propyl:

Sd^{Al0221}

Prop-I-trans-enyl disulfide, n-propyl: Sd^{Al0221}

Prop-I-trans-enyl tetrasulfide, n-propyl: Sd^{Al0221}

Prop-I-trans-enyl trisulfide, di: Sd^{Al0221} Prop-I-trans-enyl trisulfide, methyl: Sd^{Al0221} Prop-2-enyl trisulfide, n-propyl: Sd^{Al0221}

Propyl disulfide, di: Sd^{Al0221} Propyl disulfide, methyl: Sd^{Al0221} Propyl tetrasulfide, di: Sd^{Al0221} Propyl trisulfide, di: Sd^{Al0221}

Propyl tetrasulfide, methyl: Sd^{Al0221} Protein: Lf 13.42%^{Al0386},Al0314 Quercetin: Lf 0.257%^{Al0206}, Fl^{Al0112} Quercetin-rhamnoside: Lf 0.45%^{Al0210}

Quercitrin: Lf 4.8^{Al0225},Al0264 Quercitrin, iso: Lf 37.2^{Al0225} Rhamnetin, iso: Lf ^{Al0210} Rutin: Lf 132^{Al0225}

Salannin: Sd oil 0.95%^{Al0102}

Salannin, 3-deacetyl: Lf 31.3^{Al0307}, Fr fixed

oil 183^{Al0117}

Salannin, deacetyl: Sd oil^{Al0175}

Salannol: Sd oil^{Aí0289}

Salannol, 2'-3'-dehydro: Lf 31.9^{Al0202}

Salannol, 3-0-acetyl: Sd 222^{Al0139} Salannolactam 21: Ker 25^{Al0128} Salannolactam 23: Ker 8.3^{Al0128}

Salannolide: Sd^{Al0306}

Scopoletin: Twig^{Al0219}, Lf ^{Al0125}

Serine: Sd, Pl^{Al0207}

Sitosterol, beta: Heartwood 0.15%^{Al0196}, Tr Bk 40^{Al0397}, Lf ^{Al0385},Al0202</sup>, Fl^{Al0216}

Stearic acid: Sd oil 15%^{Al0113}

Stigmasterol: Lf Al0123 Sugiol: Tr Bk 70Al0397

Tannin: St Bk 15.8%^{Al0303}, Tr Bk

15.0%^{Al0396}

Thiophene, 2-4-dimethyl: Sd^{Al0248,Al0221} Thiophene, 3-4-dimethyl: Sd^{Al0221,Al0248} Threonine: Fl^{Al0216}, Pl, Call tiss^{Al0207}

Tiglic acid: Sd oil 200^{Al0114} Tricosane, 2-methyl: Fr^{Al0155}

Trithiolane, 1-2-4, cis-3-5-diethyl: Sd^{Al0248}

Trithiolane, 1-2-4, trans-3-5-diethyl: Sd^{Al0248}

Tryptophan: Pl^{Al0207}

Tyrosine: Pl, Call Tiss, SdAI0207

Úndecan-2-one: Sd^{Al0221}

Valine: Pl^{Al0207} Valine, nor: Fl^{Al0216} Velpinin: Sd oil^{Al0401} Vepaol: Sd^{Al0323} Vilasinin: Lf^{Al0392}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Abortifacient activity. The dried fixed oil, when administered intraperitoneally to rats, was 100% effective^{Al0362}. Ethanol/water (1:1) extract of the dried seed, administered orally to pregnant rats at a dose of 100.0 mg/kg, was inactive^{Al0284}. The seed oil, administered intravaginally to pregnant rats at doses of 0.25 ml/animal^{Al0373} and 12.5 microliters/animal^{Al0316}, was active.

Acid phosphatase inhibition. The dried leaf, administered intragastrically to rats at a dose of 1.0 gm/kg, was active vs paracetamol-induced hepatotoxicity^{Al0184}.

Alkaline phosphatase inhibition. The dried leaf, administered intragastrically to rats at a dose of 1.0 gm/kg, was active vs paracetamol-induced hepatotoxicity^{Al0184}.

Alkaline phosphatase stimulation. The dried leaf, in the ration of chicken at a dose of 2.0% of the diet, was active^{Al0Z55}.

Analgesic activity. Ethanol (95%) extract of the dried leaf, administered intragastrically to female mice at a dose of 100.0 mg/kg, was active vs acetic acid-induced writhing. A dose of 1 gm/kg was inactive in the male vs tail clip method. At a dose of 300.0 mg/kg, the extract was active vs subcutaneous injection of Brewer's yeast^{Al0258}. Ethanol (50%) extract of the stemwood, administered intragastrically to mice, was inactive vs hot plate and tail clip methods^{A10379}. Ethanol/water (50%) extract of the dried root, stemwood, fruit pulp and root wood, administered intragastrically to mice, was inactive vs hot plate and tail clip methods^{A10379}. Hot water extract of the dried leaf, administered by gastric intubation to male mice at a dose of 100.0 mg/kg, was inactive vs hot plate method and inhibition of acetic acid-induced writhing^{A10293}.

Anthelmintic activity. A mixture of equal parts of Butea frondosa, Moringa pterygosperma, Piper nigrum, Azadirachta indica and Embelia ribes was taken orally by adults of both sexes, at a dose of 1–2.0 gm/person with dosing 3 times daily for 4–8 weeks. The results indicated that the treatment was positive on 11 cases of ascariasis, 9 cases of ancylostomiasis, 9 cases of enterobiasis and 7 cases of Hymenolepis nana. Stool specimens were found negative at the end of the treatment period^{Alo280}.

Antiancylostomiasis activity. The essential oil, taken orally by adults at a dose of 10.0 ml/person, was inactive in 17 patients^{A10389}. The leaf juice, taken orally by adults at a dose of 20.0 ml/person, was inactive in 12 patients^{A10389}.

Antiandrogenic effect. The dried leaf, administered intragastrically to male rats at a dose of 20–60 mg/animal, was equivocal^{Al0380}. **Antiarrhythmic activity**. Hot water extract of the leaf, administered intravenously to

AZADIRACHTA INDICA 87

rabbits of both sexes at a dose of 40.0 mg/kg, was active^{A10198}.

Antiascariasis activity. Ethanol (95%) extract of the seed produced paralysis in earthworms. Eighteen hours after treatment no death was observed^{AlO167}.

Antibacterial activity. Acetone extract of the oven-dried leaf, on agar plate, was active on Escherichia coli, Klebsiella pneumoniae, Neisseria gonorrhea, Proteus vulgaris, Psuedomonas aeruginosa, Salmonella typhimurium Type 2, Shigella dysenteriae, Staphylococcus aureus, Streptococcus faecalis, and Vibrio cholera^{A10367}. Chromatographic fraction of the stembark, on agar plate, was active on Bacillus subtilis, Staphylococcus epidermidis and Klebsiella species, and produced weak activity on Staphylococcus citreus and Streptococcus lactis^{Al0138}. Ethanol (95%) extract of the dried seed and seed oil, on agar plate, were active on several gram positive and gram negative organisms^{A10267}. Ethanol (95%) extract of the dried seed, at a concentration of 1.0%, prevented the spread of bacterial wilt to cantaloupe plants^{A10295}. Methanol extract of the dried leaf, at a concentration of 2.0 mg/ml on agar plate, was active on Proteus vulgaris, Pseudomonas aeruginosa, and Staphylococcus aureus, and inactive on Corynebacterium diphtheriae, Neisseria species, Salmonella species, Streptobacillus species and Streptococcus species^{Al0252}. The seed oil, at a concentration of 0.3% on agar plate, was active on Staphylococcus aureus and 0.4% was active on Salmonella typhosa. The undiluted seed oil was active on Bacillus subtilis, 15 mm zone of inhibition; Corynebacterium diphtheriae, 14 mm zone of inhibition; Escherichia coli, 15 mm zone of inhibition; Salmonella paratyphi A, 15 mm zone of inhibition; Salmonella paratyphi B, 20 mm zone of inhibition; Salmonella typhosa, 16 mm zone of inhibition; Staphylococcus albus, 15 mm zone of inhibition and Staphylococcus aureus, 20 mm zone of inhibition. The seed oil was inactive on Pseudomonas aeruginosa^{Al0384}. The seed oil, at a concentration of 3.0% on agar plate, was active on Escherichia coli and Proteus species; a concentration of 6.0% was active on Klebsiella pneumoniaeA10351. The seed oil, administered intravaginally to adults at a dose of 5.0 ml/day for 2 weeks, was active in a double-blind, placebo-controlled study on 55 patients with abnormal vaginal discharge due to microbial infections vs bacterial vaginosis. The treatment was also active on Chlamydia trachomatis^{A10194}. Water extract of the dried leaf, on agar plate, was active on Actinomycete species and other bacterial species. Commercial dentifrices were tested alone and in combination with plant extracts against plaque bacteria in the paper disc assay. The addition of the plant extract significantly increased the zone of inhibition relative to that of the dentifrices. The extract was active on Bacteroides gingivalis vs 2 clinical isolates; Pseudomonas saccharophila vs clinical isolate; Streptococcus salivarius vs 5 clinical isolates and Streptococcus viridans vs 40 clinical isolates. The extract was active when taken orally by adults. Fifty patients with chronic suppurative periodontitis were given the leaf extracts of Mangifera indica, Camellia sinensis, Murraya koenigii, Ocimum basilicum or Azadirachta indica. The bacterial population declined by 50%, and 40 patients showed improvement^{Al0223}.

Anticholinergic activity. Hot water extract of the dried leaf, administered by gastric intubation to male mice at a dose of 500.0 mg/kg, was inactive^{Al0293}. Methanol extract and methanol insoluble fractions of the dried leaf, in cell culture at variable dosage levels, were inactive on the ileum^{Al0240}.

Anticomplement activity. Water extract of the dried bark was active on human blood^{Al0372}. Water extract of the dried stembark, at a concentration of 1.0 mg/ml, was active^{Al0356}.

Anticonvulsant activity. Ethanol (95%) extract of the dried leaf, administered intra-

gastrically to mice at a dose of 1.0 gm/kg, was inactive vs electrically-induced convulsions^{A10258}. The hot water extract, administered by gastric intubation to male mice at a dose of 500.0 mg/kg, was inactive vs strychnine-, metrazole- and supramaximal electroshock-induced convulsions^{A10293}.

Anticrustacean activity. Chloroform, ethanol (100%) and water extracts of the dried leaf and stem were active on *Artemia salina*. The assay system was intended to predict for antitumor activity^{AlO186}.

Antiestrogenic effect. The seed oil, administered subcutaneously to rats at doses of 0.2 ml/animal^{A10222} and 0.3 ml/animal^{A10363}, was inactive.

Antifertility activity. The volatile component of neem oil, administered intravaginally to rabbits at a dose of 10.0 mg/animal, was active^{Al0378}. The seed oil, administered by gastric intubation to male rats at doses of 2.0 and 4.0 ml/kg, was inactive. A dose of 6.0 ml/kg was equivocal^{AI0310}. A dose of 1.0 ml/animal administered intravaginally to humans and to Rhesus monkeys prior to intercourse was 100% effective. The intravaginal dose of 20.0 microliters/animal was active in the rabbit A10301. Water extract of the fresh leaf, administered by gastric intubation to male mice at a dose of 1.0 ml/animal, was active. The extract was obtained from 0.5 gm of fresh leaf equivalent per 1.0 ml. Dosing was done daily for 1 month, followed by mating. Results significant at P < 0.05 level^{A10290}. When the water and hot water extracts of the fresh leaf were administered orally to male mice daily for 6 weeks before mating, the activity was reversible without inhibition of spermatogenesis. The cause was apparently an antimating effect^{AI0281}.

Antifilarial activity. Hot water extract of a commercial preparation containing Melia azadirachta (15%), Sida cordifolia (15%), Tribulus terrestris (12%), Terminalia chebula (39%) and Tinospora cordifolia (19%), at a

dose of 100.0 mcg/ml, produced weak activity. A dose of 500.0 mcg/ml was active on *Acanthocheilonema viteae*^{A10236}. The fresh leaf was active on *Setaria digitata*, LC₁₀₀ 82,000 ppm^{A10242}.

Antifungal activity. Acetone extract of the oven-dried leaf, on agar plate, was inactive on Aspergillus fumigatus, Epidermophyton floccosum, Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes and Trichophyton rubrum^{Al0367}. The aqueous, lowspeed supernatant of the fresh leaf, in broth culture at a concentration of 100.0 ml/ liter, was inactive on Hendersonula toruloidea^{Al0319}. Water extract of the fresh leaf, on agar plate at a concentration of 50%, was active on Fusarium oxysporum F. Sp. Lentis. The extract represented 1 gm of dried leaf in 1.0 ml of water^{Al0190}. Butyl-methyl-ether and methanol extracts of the dried kernel, on agar plate, were active on Epidermophyton floccosum, Microsporum canis, Microsporum gypseum, Trichophyton concentricum, Trichophyton mentagrophytes, Trichophyton rubrum and Trichophyton violaceum. The chloroform extract was active on Epidermophyton floccosum, Microsporum canis, Microsporum gypseum, Trichophyton concentricum, and Trichophyton mentagrophytes; inactive on Trichophyton rubrum and produced strong activity on Trichophyton violaceum^{A10234}. Butylmethyl-ether extract of the dried leaf, on agar plate, was active on Epidermophyton floccosum, Microsporum canis, M. gypseum, Trichophyton concentricum, and T. violaceum, and was inactive on T. mentagrophytes and T. rubrum. Ethanol (70%) extract, when applied externally on 7 patients with ringworm at a concentration of 40.0% twice daily for 5-10 days, was active^{A10283}. Ethanol (50%) extract was active on Rhizoctonia solani, mycelial growth was inhibited 32.5%^{Al0375}. The hot water extract, in broth culture, was active on Trichophyton mentagrophytes A10226. Methanol extract, on agar plate, was active on Epidermophyton floccoAZADIRACHTA INDICA 89

sum, Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum and Trichophyton violaceum, and was inactive on Trichophyton concentricum. Petroleum ether extract, on agar plate, was active on Microsporum canis, Microsporum gypseum, Trichophyton concentricum, Trichophyton mentagrophytes and Trichophyton rubrum, and produced strong activity on Trichophyton violaceum^{A10234}. Essential oil of the fresh leaf, in broth culture, was active on Trichophyton mentagrophytes, MIC 125.0 mcg/ml^{A10214}. Hot water extract of the dried stem, in broth culture, was active on Trichophyton mentagrophytes A10226. The seed oil, at a concentration of 1.4%, was active on Diaporthe citri^{A10256}. Water extract of the fresh fruit, at a concentration of 20.0%, was active on Trichoconiella padwickii^{A10224}.

Antihistamine activity. Methanol extract and methanol-insoluble fraction of the dried leaf, in cell culture at variable concentrations, was inactive on the ileum^{A10240}. Antihyperglycemic activity. A mixture containing Gymnema sylvestre, Syzygium cumini, Azadirachta indica and Enicostema hyssopifolium, administered intragastrically to rats at a dose of 40.0 mg/kg, was active vs anterior pituitary extract-induced hyperglycemia^{Al0115}. Ethanol (95%) extract of the dried leaf, administered intraperitoneally to rats at doses of 500.0 mg/kg^{Al0225} and 75.0 mg/animal^{Al0350}, were active vs streptozotocin-induced hyperglycemia. The hot water extract, administered by gastric intubation to rabbits at variable dosage levels, was inactive^{A10291}. Hot water extract of the dried leaf, administered by gastric intubation to mice at a dose of 0.5 ml/animal (a concentration of 25% of the extract), produced weak activity vs alloxan-induced hyperglycemia^{A10325}. The seed oil, administered by gastric intubation to rabbits at a dose of 2.5 ml/kg, was active^{Al0291}. A dose of 200.0 mg/animal was active in rats vs alloxaninduced hyperglycemia. Results significant

at P < 0.01 level^{A10342}. A dose of 21.0 mg/kg was active in the rat^{A10344}. Water extract of the fresh leaf, administered intragastrically to rats, was active vs epinephrine- and streptozotocin-induced hyperglycemia and vs glucose-loaded animals^{A10187}. Hot water extract of the dried leaf, administered intravenously to dogs at a dose of 0.15 mg/kg, was active vs epinephrine-induced hyperglycemia. The extract was prepared by boiling 100 gm of fresh tender leaves with 200.0 ml of distilled water for 2 hours^{A10273}.

Antiimplantation effect. Decoction of the volatile component of neem oil, administered intrauterine to pregnant rats at a dose of 1.0 mg/animal, was active. The essential oil, administered intravaginally to rabbits and pregnant rats at a dose of 10.0 mg/ml, was inactive^{Al0378}. The essential oil, administered orally to the rat at a dose of 4.0 ml/ kg on days 1–3, was also active^{Al0354}. The seed oil, administered by gastric intubation at a dose of 5.0 ml/animal, was inactive^{A10364}. A subcutaneous dose of 0.2 ml/animal and intravaginal administration to pregnant rats at a dose of 12.5 ml/animal, was active^{Al0316}. Ethanol/water (1:1) extract of the dried seed, administered orally to female rats at a dose of 100.0 mg/kg, was inactive^{A10284}.

Antiinflammatory activity. Chloroform extract of the fresh stembark, applied externally to rats at a dose of 1.0%, was active vs croton oil-induced inflammation of the ear. The extract, when administered intragastrically to rats at a dose of 1.0 gm/kg, was active vs carrageenin-induced pedal edema^{A10284}. Ethanol (70%) extract of fresh bark and leaf, administered by gastric intubation to rats at a dose of 400.0 mg/kg, was active vs carrageenin-induced pedal edema^{Al0260}. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 1.0 gm/kg, was active vs carrageenin-induced pedal edema^{A10258}. The gum, taken orally by adults of both sexes at variable dosage levels, was active^{A10298}. The seed oil, administered intramuscularly to the rat at a dose of 50.0 mg/kg, was active vs cotton pellet granuloma^{AlO275}.

Antimalarial activity. Acetone/water (1:1) extracts of the dried bark, dried root and dried leaf, on agar plate at a concentration of 20.0 microgram/ml, were active on Plasmodium falciparum^{Al0182}. The water extract, when administered orally to mice at a dose of 0.1 gm/kg, was active on Plasmodium yoelii^{Al0355}. Ethanol (95%) extract of dried stembark, in broth culture, was inactive on Plasmodium falciparum^{A10232}, but ethanol (95%) extract of the dried entire plant was active, ED₅₀ 5.0 mcg/ml. When administered to mice subcutaneously at a dose of 31.0 mg/kg, and by gastric intubation at a dose of 62.5 mg/kg, the extract was inactive on Plasmodium berghei. The water extract was active on Plasmodium falciparum, ED₅₀ 115.0 mcg/ml. When administered by gastric intubation to mice at a dose of 746 mg/ kg, and subcutaneously at a dose of 93.0 mg/kg, the extract was inactive on Plasmodium berghei^{A10205}. Ethanol (95%) extract of the dried leaf at a concentration of 25.0 mcg/ml was active on Plasmodium falciparum^{Al0368}. Ethanol (95%) extract of the dried leaf, in broth culture, was inactive on Plasmodium falciparum, IC₅₀ 50.0 mcg/ml. The water, methanol and petroleum ether extracts, at a concentration of 500.0 mcg/ml, were inactive^{Al0232}. Ethanol (95%) extract of the dried seed at a concentration of 200.0 mcg/ml was active on Plasmodium falciparum^{AI0368}. Hot water extract of the fresh leaf, administered by gastric intubation to mice at a dose of 500.0 mg/kg on days 1–4, produced weak activity on Plasmodium berghei. There was some suppression of parasitemia. Water extract of the fresh leaf, at a concentration of 1.0 mg/ml, was inactive on guinea pig ileum, seminal vesicles and vas deferens, rabbit duodenum, and rat stomach (fundus) and seminal vesicleA10341. Hot water extract of the

leaf, administered orally to mice at a dose of 5.0 ml/animal, was inactive on Plasmodium berghei. One ml of the extract is equivalent to 1 gm of dried leaves. The animals were dosed once before infection and then once daily^{AI0197}. Methanol and petroleum ether extracts of the dried leaf were inactive on Plasmodium falciparum vs hypoxanthine uptake by plasmodia, IC₅₀ 499.0 mcg/ml^{Al0241}. Methanol extract of the dried stembark was inactive on Plasmodium falciparum vs hypoxanthine uptake by plasmodia, IC₅₀ >499 mcg/ml^{Al0241}. Water extract of the bark, administered orally to chicken at a dose of 1.10 gm/kg, was inactive on Plasmodium gallinaceum^{A10101}.

Antimitotic activity. Hot water extract of the dried leaf, at concentrations of 1.5% and 10.0%, was active on *Allium cepa* root tips^{Al0276}. **Antimycobacterial activity**. Ethanol (95%) extract of the fresh leaf essential oil, on agar plate, was inactive on *Mycobacterium tuberculosis*^{Al0383}.

Antinematodal activity. Water extract of the dried leaf, at variable concentrations, produced strong activity on *Meloidogyne incognita*^{A10300}.

Antiprogesterone effect. The seed oil, administered subcutaneously to rats at a dose of 0.3 ml/animal, was inactive^{AlO363}.

Antipyretic activity. Chloroform, water and hexane extracts of a commercial sample of the seed, administered orally to rabbits at a dose of 150.0 mg/kg, were inactive vs yeast-induced pyrexia^{A10357}. Chloroform, water and hexane extracts of the dried leaf and twig, administered by gastric intubation to rabbits at a dose of 150.0 mg/kg, were active vs yeast-induced pyrexia. Results significant at P < 0.05 level^{A10331}. Ethanol (70%) extract of the fresh leaf and bark, administered by gastric intubation to rabbits at a dose of 400.0 mg/kg, was active^{A10260}. The seed oil, administered subcutaneously to male rats at a dose of 50.0 mg/kg, was active vs yeast-induced fever^{Al0100}. Water extract of the dried fruit, administered by gastric intubation to rabbits at a dose of 600.0 gm/kg (dry weight of plant), was inactive vs yeast-induced pyrexia^{AlO270}.

Antischistosomal activity. Water extract of the dried leaf, at a concentration of 500.0 ppm, produced weak activity on *Schistosoma mansoni*^{A10245}.

Antispasmodic activity. Ethanol/water (1:1) extract of the dried leaf, at variable concentrations, was active on guinea pig ileum^{A10406}. Ethanol/water (1:1) extract of the stembark was active on guinea pig ileum vs ACh- and histamine-induced spasms^{A10107}.

Antispermatogenic effect. Ethanol (80%) extract of the dried leaf, administered intragastrically to male rats at a dose of 100.0 mg/kg daily for 21 days, was inactive Alo377. The dried leaf, administered intragastrically to male rats at a dose of 20–60 mg/animal daily for 24 days, was active Alo380. The seed oil, administered by gastric intubation to male rats at doses of 2.0, 4.0, and 6.0 ml/kg, was inactive Alo310. The intraluminal injection (into the vas deferens), at a dose of 50.0 mcg/animal, was active Alo381.

Antitrichomonal activity. The seed oil, administered intravaginally to adults at a dose of 5.0 ml/day for 2 weeks, in a double-blind, placebo-controlled study on 55 patients with abnormal vaginal discharge due to microbial infections, was inactive on *Trichomonas vaginalis*^{Al0194}.

Antitumor activity. Polysaccharide fraction of the dried bark, administered intraperitoneally to mice at a dose of 25.0 mg/kg, was active on sarcoma 180 (solid). The biological activity has been patented^{Al0336}.

Antiulcer activity. Chloroform extract of the fresh stembark, at a dose of 1.0% applied to the rat ear simultaneously with croton oil, was active^{Al0230}. The dried seed, taken orally by human adults at a dose of 100.0 mg/person twice daily, was found to

completely cure chronic ulcers that were 1 cm deep, in 34 days. No side effects were observed Alo311. Water extract of the dried leaf, administered intragastrically to rats at a dose 160.0 mg/kg, and a dose of 100 mg/kg administered intraperitoneally, were active vs stress-induced ulcers (restraint). A dose of 40.0 mg/kg was active when the animals were pre-treated for 5 days Alo179.

Antiviral activity. Ethanol/water (1:1) extract of the dried twig, in cell culture at a concentration of 0.05 mg/ml, was inactive on Ranikhet and Vaccinia viruses^{Al0173}. Ethanol/water (1:1) extracts of the dried root, fruit pulp, leaf and root-wood, in cell culture at a concentration of 0.05 mg/ml, were inactive on Vaccinia virus^{Al0379}. Hot water extract of the dried leaf, in cell culture at a concentration of 4.0 mg/ml, was inactive on Herpes Simplex 1 and 2 viruses, influenza virus (A-2/England/42/72), Japanese encephalitis virus, mumps virus, parainfluenza virus, Poliovirus 1, Sindbis virus, Chandipura virus and Dengue virus. It produced weak activity on Chikungunya virus, measles virus, Vaccinia virus and Nile virus^{A10168}, and was active on Spinach Mosaic virus^{A10360}. Undiluted leaf juice was active on the Bean Mosaic virus^{A10315}. Water extract of the bark was active on Potato X virus^{AI0104}.

Antiyeast activity. Acetone extract of oven-dried leaf, on agar plate, was inactive on Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum and Sporotrichum schenckii^{Al0367}. The seed oil was administered intravaginally to 55 adult patients with abnormal vaginal discharge due to microbial infections, at a dose of 5.0 ml/day for 2 weeks, in a double-blind, placebocontrolled study. The extract was inactive on Candida albicans^{Al0194}. The seed, on agar plate at a concentration of 1.0%, was active on Cryptococcus neoformans^{Al0400}.

Barbiturate potentiation. Hot water extract of the dried leaf, administered by gas-

tric intubation to male mice at a dose of 500.0 mg/kg, was inactive^{Al0293}. Methanol extract and the methanol-insoluble fraction of the dried leaf, administered orally to mice at a dose of 100.0 mg/kg, were active^{Al0240}.

Bitter tasting effect. Ethanol (60%) extract of dried stembark, taken orally by human adults at a dose of 0.03 gm/person, was active. The 10% ethanol extract was 3 times bitterer than genetian. The tincture was presented in a mixture composed of iron and ammonium citrate (7.2 gm), tincture of crude drug (2.4 ml), syrup of orange (4.0 ml) and peppermint water, to a total volume of 60.0 ml. It was given at a dose of 0.13 ml/person and was reported to be a little bitter and had an iron taste^{Al0272}.

Cardiotoxic activity. Ethanol/water (1:1) extract of the dried leaf, administered intravenously to dogs at variable dosage levels, was inactive^{A10406}.

Cellular immunity stimulation. The seed oil, administered intraperitoneally to mice at a dose of 150.0 microliters/animal, was active. The response to tetanus toxoid was assayed^{Al0172}.

Clastogenic activity. Water extract of the dried entire plant was active on *Foeniculum vulgare* somatic cells^{A10370}.

CNS depressant activity. Methanol extract and the methanol-insoluble fraction of the dried leaf, administered orally to mice at a dose of 100.0 mg/kg, were active^{A10240}.

Complement alternative pathway inhibition. A decoction consisting of the dried barks of Azadirachta indica, Terminalia cheruba, Terminalia bellerica, Woodfordia floribunda, and Phyllanthus emblica, in cell culture, was active on polymorphonuclear leukocytes^{Al0174}. Complement classical pathway inhibition. A decoction consisting of the dried barks of Azadirachta indica, Terminalia cheruba, Terminalia bellerica, Woodfordia floribunda,

and *Phyllanthus emblica*, in cell culture, was active on polymorphonuclear leukocytes^{Al0174}.

Cytotoxic activity. Chloroform extract of the fruit and leaf, in cell culture, was active on CA-9KB, ED₅₀ <20.0 mcg/ml^{Al0407}. Ethanol/water (1:1) extract of the stembark, in cell culture, was inactive on CA-9KB, ED₅₀ >20.0 mcg/ml^{Al0107}. Methanol extract of the dried bark, administered intraperitoneally to mice at a dose of 100.0 mg/kg on days 1-4, was active on sarcoma 180 (ASC) Al0337. The polysaccharide fraction of the dried bark, in cell culture, was active on sarcoma (unspecified). The biological activity has been patented Indiana in cell culture.

Dermatitis producing effect. Dried leaf, applied as patch test to a 50 year-old patient with recurrent contact dermatitis, was active Alo243. The fresh leaf, when applied externally on adults, was active vs patch test. Of the 207 patients tested, 5.45% were sensitive Alo358.

Diuretic activity. Ethanol/water (1:1) extracts of the seedling root, stemwood and root-wood, administered intragastrically to rats at a dose of 510.7 mg/kg, were inactive^{A10379}. Ethanol/water (1:1) extracts of the dried root, fruit pulp and leaf, administered intragastrically to rats at a dose of 510.7 mg/kg, were active^{A10379}. Methanol extract and the methanol-insoluble fraction of the dried leaf, administered orally to mice at a dose of 50.0 mg/kg, were inactive^{A10240}.

Embryotoxic effect. Acetone and water/ ethanol (1:1) extracts of the dried leaf, administered by gastric intubation to pregnant rats at a dose of 200.0 mg/kg on days 1–7, were inactive^{A10330}. The essential oil, administered orally to pregnant rats at a dose of 4.0 ml/kg on days 6–8, was active^{A10354}. Doses of 2.0 and 4.0 ml/kg, administered by gastric intubation on days 1–10, were inactive; 6.0 ml/kg^{A10310} and the seed oil administered intravaginally at a dose of 0.25 ml/ animal^{A10373}, were active.

Estrogenic effect. The seed oil, administered subcutaneously to ovariectomized

rats at a dose of 0.5 ml/animal^{A10100}, and a dose of 0.3 ml/animal^{A10363} administered to normal rats, were inactive.

Estrous cycle disruption effect. Ethanol (95%) and petroleum ether extracts of the dried leaf, administered by gastric intubation to rats at a dose of 150.0 mg/kg for 7 days, were inactive^{A10348}. The seed oil, administered by gastric intubation to rats at doses of 2.0 and 4.0 ml/kg, was inactive. A dose of 6.0 ml/kg was equivocal^{AIO310}. Ethanol (95%) extract of the dried bark, administered by gastric intubation to rats at a dose of 150.0 mg/kg for 7 days, was inactive. The petroleum ether extract was active. Ethanol (95%) extract of the dried stem, administered by gastric intubation to rats at a dose of 150.0 mg/kg for 7 days, was inactive, and the petroleum ether extract was active^{AI0348}.

Feeding deterrent activity. The chromatographic fraction of the acetone soluble fraction of the hexane extract of the dried kernel, at a concentration of 1.0%, was active on Diabrotica undecimpunctata howardi and Acalymma vittata. The chromatographic fraction from the ethanol extract and the ethanol (95%) extract produced strong activity on Acalymma vittata and Diabrotica undecimpunctata howardi. The hexane extract of the acetone insoluble fraction was active on Diabrotica undecimpunctata howardi and inactive on Acalymma vittata. Hexane extract of the acetone soluble fraction was inactive on Diabrotica undecimpunctata howardi and produced weak activity on Acalymma vittata^{A10318}. Hot water extract of the dried kernel, at a concentration of 200.0 ppm, was active on Spodoptera frugiperda^{A10347}. The dried entire plant was active on Crocidolomia binotalis A10322. The essential oil was active when sprayed on rice seedlings vs rice planthopper and green rice leafhopper. The insect fecundity was reduced^{A10365}. The dried seed, at a concentration of 0.2%, was active on Antigastra cata-

launalis^{A10278}. Ethanol (95%) extract of the seed cake was active on the male Dacus cucurbitae and Rhopalosiphum nympheae A10108. Acetone extract of the dried seed was active vs rice hispa on treated rice seedlings. The ethanol (95%) and water extracts were active vs pulse beetles and jute hairy caterpillars. The hexane extract was active vs adult rice hispa on treated rice seedlings and brown rice planthopper, green rice leafhopper and rice hispa^{AlO365}. Chloroform extract of the seed, at a dose of 0.063%, produced weak activity, while ethanol (95%) extract, at a dose of 0.016%, produced strong activity A10105. The water and methanol extracts of the seed, at a dose of 0.031%, were active on the larvae of Euproctis lunata^{Al0105}. Chromatographic fraction and ethanol (95%) extract of the dried seed were active on Mythimna separata^{A10323}. The dried seed was active on Oryzaephilus surinamensis^{A10204}. Ethanol (95%) and water extracts of the dried leaf were active vs pulse beetles and jute hairy caterpillars. Hexane extract was active vs brown rice planthopper and green rice leafhopper and rice hispa. The ethanol (95%) and ether extracts were active vs rice hispa^{Al0365}. Ethanol (95%) extract of the dried seed, at a concentration of 0.1%, produced weak activity on Bacillus thermoacidurans applied to cantaloupe seeds^{A10295}. Methanol extract of the dried seed, at a concentration of 0.001%, was active on Crocidolomia binotalis^{Al0288}. Seed oil, at a concentration of 0.1%, was active on Henosepilachna vigintiotopunctata^{A10352}. A concentration of 200.0 mcg/disc was active on Reticulitermes speratus A10175 , the ED $_{50}$ was 2.0 ppm on Peridroma saucia^{A10237}. Seed oil was active on Spodoptera litura^{A10339}. The fruit was active on Schistocera gregaria (Dese Root locust), when applied externally A10106. **Fertilization inhibition**. The seed oil, at a concentration of 10-25%, was active in the mouse. The sperm/egg interaction was studiedAI0382.

Gastric mucus increase. Water extract of the dried leaf, administered intragastrically to rats at a dose of 40.0 mg/kg, was active vs stress-induced depletion of gastric wall adherent cells. The rats were pretreated for 5 days^{AlO179}.

Glutamate oxaloacetate transaminase inhibition. The dried leaf, in the ration of the chicken at a dose of 5.0% of the diet, was inactive^{A10255}. Water extract of the dried leaf, administered intraperitoneally to rats at a dose of 100.0 mg/kg, was active^{A10177}. Leaf homogenate, administered intragastrically to rats at a dose of 1.0 gm/kg, was active vs paracetamol-induced hepatotoxicity^{A10184}.

Glutamate pyruvate transaminase inhibition. Leaf homogenate, administered intragastrically to rats at a dose of 1.0 gm/kg, was active vs paracetamol-induced hepatotoxicity^{Al0184}.

Glycogen content decrease. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a concentration of 500.0 mg/kg, was active^{AlO188}.

Glycogen synthesis stimulation. Ethanol (95%) extract of the dried leaf, at a concentration of 25.0 mg/ml, was inactive on the diaphragm^{Al0188}.

Hepatotoxic activity. Water extract of the dried leaf, administered intragastrically to rabbits at a dose of 2.328 mg/kg, was active. The rabbits showed a significant increase in serum alkaline phosphatase, glutamate oxalate-transamine and glutamate pyruvate-transaminase levels^{AI0178}. Ethanol (95%) extract of the dried seed, administered subcutaneously to rats at a dose of 0.1 ml/animal, was active. The extract was administered daily to 3 groups for 6, 12, or 18 days. There was a significant decrease in the glycogen content of the liver and kidneys, and an increase in the adrenals. Protein content increased in the adrenals and decreased in the kidneys. The activity of acid phosphatase was increased in the adrenals

and decreased in the kidneys. Histological features of these organs were also changed. All biochemical parameters remained unchanged in the spleen. In the liver, hepatocytes showed hyperchromatosis, vacuolation, congestion and necrosis. Kidneys showed severe damage, which included disorganization of tubular and cortical cells. There was no differentiation of cortical and tubular regions. The adrenals exhibited granulation and the cells in the medullary region revealed hypertrophy. The spleen did not show much significant change, except at 18 days dosing, when red and white pulps became undifferentiated^{Al0376}.

Humoral immunity stimulation. Water extract of the dried leaf, administered intraperitoneally to immunized rats at a dose of 100.0 mg/kg, was active^{Al0177}.

Hypertensive activity. Ethanol/water (1:1) extract of the dried leaf, administered intravenously to dogs at variable dosage levels, was inactive^{A10406}.

Hypocholesterolemic activity. Water extract of the dried leaf, administered intraperitoneally to rats at a dose of 100.0 mg/kg, was active vs stress-induced hypercholesterolemia^{A10177}.

Hypoglycemic activity. A mixture containing Gymnema sylvestre, Syzygium cumini, Azadirachta indica, and Enicostema hyssopifolium, administered intragastrically to rats at a dose of 40.0 mg/kg for 20 days, was inactive^{Al0115}. Ethanol/water (1:1) extracts of the seedling root, fruit pulp, root wood, leaves and dried root, administered intragastrically to rats at a dose of 250.0 mg/kg, were inactive^{Al0379}. Hot water extract of the dried leaf, administered intravenously to dogs at a dose of 0.15 ml/kg, was active. The extract was prepared by boiling 100 gm of fresh tender leaves with 200 ml of distilled water for 2 hours^{A10273}. Hot water extract of dried leaf, administered to rats and rabbits orally and by gastric intubation at a dose of 10.0 mg/kg, was inactive^{A10177}.

The methanol extract and the methanol-insoluble fraction, administered intravenously to mice at a dose of 2.5 mg/kg, were active^{A10240}. Water extract of the dried leaf, administered orally to rats at a dose of 10.0 mg/kg, was inactive.

Hypotensive activity. Ethanol/water (1:1) extract of the stembark, administered intravenously to dogs at a dose of 50.0 mg/kg, was active^{A10107}. Hot water extract of the leaf, administered intravenously to guinea pigs at a dose of 30.0 mg/kg, and to rabbits at a dose of 5.0 mg/kg, was active^{A10198}. The dried leaf, administered intravenously to dogs at variable dosage levels, was inactive^{A10406}.

Hypothermic activity. Acetone extract of the oven-dried leaf, administered intragastrically to mice at a dose of 100.0 mg/kg, was active. The effect was measured per rectum^{Al0367}. Hot water extract of the dried leaf, administered by gastric intubation to male mice at a dose of 250.0 mg/kg, was active^{Al0293}.

Hypotriglyceridemia activity. Water extract of the dried leaf, administered intraperitoneally to rats at a dose of 100.0 mg/kg, was active^{Al0177}.

Immunomodulator activity. Water extract of the dried leaf, administered intragastrically to rats at a dose of 160.0 mg/kg 5 days before, was active vs stress-induced depletion of gastric wall-adherent cells^{A10179}. A dose of 40.0 mg/kg was active vs stressinduced (restraint) ulcers Alo179. Water extract of the dried stembark, in cell culture, was active on polymorphonuclear leukocytes^{A10346}. Immunostimulant activity. Ethanol (95%) extract of the dried stembark, at variable concentrations in cell culture, was active on human lymphocytes^{Al0361}. Water extract of the dried leaf, administered intraperitoneally to rats at a dose of 100.0 mg/kg, was active vs stress-induced immunosuppression. Footpad thickness in response to the sheep red blood cell immunization and leukocyte migration was enhanced^{AI0177}.

Immunosuppressant activity. Water extract of the dried bark was active^{AlO238}.

Impaired development of fertilized ova. Seed oil, at a concentration of 10-25%, was active on the mouse sperm/egg interaction^{Alo382}.

Inotropic effect positive. Methanol extract and the methanol-insoluble fraction of the dried leaf, in cell culture at a concentration of 50.0 mcg/ml, were active on the atrium^{Al0240}.

Insect development inhibition. Acetone extract of the dried kernel, at a concentration of 0.01%, was active on Spodoptera littoralis^{A10347}. When also tested on Spodoptera littoralis, the butanol, pentane, carbon tetrachloride and isopropanol extracts, at a concentration of 0.05%, were inactive. The ethanol (95%), water and methanol extracts, at concentration of 0.01%, were active, and the kerosene extract, at a concentration of 1.0%, produced weak activity^{A10328}. The de-oiled seed powder, at a concentration of 10.0% of the diet, was active on Macronesia fortunata^{Al0326}. Methanol (85%) extract of the dried seed, at a concentration of 0.01%, was active on Nephotettix nigropictus. Extract-treated rice seedling as the sole food source increased nymphal mortality and delayed adult emergence^{A10365}. Methanol extract of the dried fruit fixed oil was active on Heliothis virescens Alollo Methanol extract of the dried fruit fixed oil was active on the larvae of Pectinophora gossypiella^{Al0117}. Seed oil, at a concentration of 1.0%, was inactive on Spodoptera littoralis^{A10327}. Water extract of the dried entire plant, at a concentration of 0.6%, was active on Spodoptera littoralis A10327. Water extract of the dried kernel was active on Schistocera gregaria^{Al0332}. **Insect repellant activity**. The essential oil, at a concentration of 0.125%, was active on Apis florea vs olfactometer test A10217. Ether and ethanol (95%) extracts of the dried seed were active on rice hispa. The metha-

nol extract was active on Nephotettix nigro-

pictus^{Al0365}. Petroleum ether extract of the dried leaf, at variable dosage levels, was active on *Rhyzopertha dominica*, *Sitophilus granarius*, and *Tribolium castaneum*^{Al0302}. The acetone, butanol, chloroform, methanol and pentane extracts of the dried kernel were active on *Tetranychus cinnabarus*. The water extract was inactive^{Al0329}.

Insect sterility induction. Ether extract of the dried seed was active. Egg deposition of brown rice plant hopper and green rice leafhopper were reduced^{Al0365}. The essential oil was active when sprayed on rice seedlings vs rice planthopper and green rice leafhopper. The insect fecundity was reduced^{Al0365}.

Insecticidal activity. Fixed oil was active on Heliothis armigera^{A10345}. Butyl-methylether and water extracts of the dried seed were active on Plutella xylostella and Echinochloa crus-galli larvae, and the methanol extract was active on Epilachna varivestis, Leptinotarsa decemlineata and Plutella xylostella. Synergistic effect with piperonyl butoxide was determined^{Al0374}. Chloroform, ethanol (95%) and ether extracts of the dried leaf, at a concentration of 1.0%, produced weak activity on the Culex fatigans larvae. Ethanol (70%) extract, at a concentration of 40.0% applied externally twice daily for 5-10 days on adults, was active in 5 cases of scabies^{Al0266}. The water extract was active on Phyllocnistis citrella by contact poisoning^{A10405}. The dried leaf, at a concentration of 1.0%, was active 1 month after treatment. Moisture, ash, fiber, fat, protein and carbohydrate levels remained unaffected. A concentration of 2.0% produced weak activity on Trogoderma granarium in maize stored for 6 months. Changes in nutritional composition were proportional to insect damage^{Al0185}. Petroleum ether extract of the dried leaf, at a concentration of 0.2%, was active on the Culex fatigans and Culex pipiens Al0266, and a concentration of 1.0% was strongly active on Culex fatigans larvae^{A10208}. Chloroform and ether extracts of the dried leaf, at a concentration of 1.0%, and ethanol (95%) extract at a dose of 0.5%, were active on the Culex fatigans larvae^{Al0285}. Decoction of the dried stembark, administered orally and externally, was active on patients with scabies^{Al0313}. Hot water extract of the dried kernel was active on Spodoptera frugiperda, LC_{100} 2,000 ppm. The methanol extract, at a concentration of 10.0 ppm, was active^{Al0347}. Methanol extract of the seed was active on Epilachna varivestis A10294. Petroleum ether extract of the dried entire plant, at a concentration of 20.0 ppm, was active on Culex quinquefasciatus. A mortality rate of 25% was produced^{A10308}. The powdered seed, together with Curcuma longa root at a ratio of 4:1, was ground to form a paste. The paste was spread over the entire body daily. Ninety-seven percent of the 814 cases of scabies treated were cured within 15 days of the treatment^{A10170}. The seed cake was active on Pyralis species in a field test^{A10349}. The seed oil, at a concentration of 20.0 ppm, was active on Ostrinia furunclis. Concentrations of 0.005 microliters/insect and 1.4% were active on Tessaratoma papillosa, 0.3% was active on Plutella xylostella and 2.0% was active on Piers rapaeA10256. The seed, in the ration, was active on Sitotroga cerealellaA10110. The essential oil was active on rice planthopper and green rice leafhopper when sprayed on rice seedlings. The insects fecundity was reduced^{AlO365}. The seed was active on Asphondylium sesami^{A10265}. Water extract of the dried leaf was inactive on Aedes aegypti, and produced weak activity on Anopheles arabiensis, MIC 1,000 ppm^{Al0218}. Water extract of the dried kernel was active on Culex fatigans larvae^{A10333}. The kerosene extract, at a concentration of 1.0%, was active against Trogoderma granarium in maize stored for 6 months. After 1 month of treatment, the moisture, ash, fiber, fat, protein and carbohydrate level of the extract remained unaffected. The effect of the kerosene extract was still positive 6 months after treatment^{A10185}. The powdered, dried kernel was active on the female Callosobruchus chinensis and C. Maculatus^{A10334}.

Insulin release inhibition. Water extract of the fresh leaf, at a concentration of 1.0 mg/ml, was active on the rat uterus. The effect was caused by inhibition of serotonin release^{A10187}.

Interferon induction stimulation. Ethanol/water (1:1) extract of the dried stem, at a concentration of 0.012 mg/ml in cell culture, was active on Ranikhet virus and inactive on vaccinia virus^{Al0299}.

lonophoric activity. Water extract of the dried leaf, at a concentration of 1.0 mg/ml, was active on the rat uterus^{AIO187}.

Lactate dehydrogenase stimulation. The dried leaf, in the ration of the chicken at a dose of 5.0% of the diet, was active^{A10255}.

Larval growth inhibition. Ether extract of the seed, at concentrations of 0.125%, 0.250%, and 0.375%, was active on *Sitophilus oryzae*^{Al0277}.

Larvicidal activity. The essential oil, at a concentration of 25.0 ppm, was active on the larvae of *Anopheles stephensi*^{Al0366}. Methanol extract of the dried seed, at a concentration of 0.001%, was active on *Crocidolomia binotalis*^{Al0376}. Water extract of the dried kernel was active on *Culex fatigans* larvae^{Al0334}. The methanol extract, at a concentration of 15.0 mg/liter, produced weak activity on *Epilachna varivestis*. A concentration of 20.0 mg/liter was active^{Al0263}.

Leukocyte migration inhibition. Water extract of the dried bark was active on human blood. It increased the production of migration inhibition factor by lymphocytes^{A10372}.

Leukocytosis activity. Decoctions of the fruit, leaf and stem, administered intragastrically to rats at a concentration of 1.6%, were active^{AlO189}.

Liver effects. Decoction of the dried entire plant, taken orally by adults at a dose

of 100.0 ml, was active. A mixture of *Phyllanthus emblica*, *Terminalia chebula*, *Picrorhiza kurroa*, *Swertia chirata*, and *Azadirachta indica* was used. The dose was taken for 1–5 weeks. Eighteen of 20 cases of jaundice were cured. The effect on serum albumin was very satisfactory^{Al0371}.

Malate dehydrogenase inhibition. Water extract of the dried flowers produced 77% inhibition on *Setaria digitata* enzyme^{AlO183}.

Malate dehydrogenase stimulation. Water extract of the dried leaf, at a concentration of 0.33%, was active on enzyme obtained from *Setaria digitata*. The effect was activated 24%^{AlO183}.

Malic enzyme inhibition. Water extract of the dried flowers, at a concentration of 0.033%, was active on enzyme obtained from *Setaria digitata*. The activity was inhibited 100%. Water extract of the dried leaf, at a concentration of 0.033%, was active on enzyme obtained from *Setaria digitata*. The effect was activated 7%^{Al0183}.

Mating inhibition. Ethanol (80%) extract of the dried leaf, administered intragastrically to male rats at a dose of 100.0 mg/kg daily for 21 days, was inactive^{Al0377}.

Mitogenic activity. Water extract of the seed, in cell culture at a concentration of 50.0 mcg/ml, was active on lymphocytes^{A10231}. Molluscicidal activity. Water extract of the dried bark of Azadirachta indica and Acacia nilotica, at a concentration of 100.0 ppm, was active on Biomphalaria pfeifferi and Bulinus truncatus. The water extract of the bark of Azadirachta indica and Hydnoraa absyssinica, at a concentration of 75.0 ppm, was active on Anguina tritic and Biomphalaria pfeifferi. A preparation consisting of the water extract of the bark of Azadirachta indica and tannic acid, at a concentration of 75.0 ppm, was active on Biomphalaria pfeifferi and Bulinus truncatus^{A10340}. Methanol extract of the dried bark, at a concentration of 100 ppm, was active on Biomphalaria pfeifferi and Bulinus truncatus^{A10335}. Water extract of the dried fruit, at a concentration of 0.5%, was active on *Melania scabra*^{A10353}.

Mutagenic activity. Acetone extract of the seed oil, on agar plate at a concentration of 200.0 mg/plate, and the DMSO extract, at a concentration of 500.0 mg/plate, was inactive on *Salmonella typhimurium* TA98 and TA100^{A10324}. Petroleum ether extract of the fresh leaf, on agar plate at a concentration of 0.1 ml/plate, was inactive on *Salmonella typhimurium* TA100, TA1535, TA1537 and TA98. Metabolic activation had no effect on the results^{A10220}.

Myodegeneration effect. Powdered dried leaf, in the ratio of rats at a dose of 25% of the diet, was active Al0176.

Nematocidal activity. Decoction of the bark, at a concentration of 10.0 mg/ml, was inactive on *Toxacara canis* Alo247. Decoction of the seed was inactive on *Toxacara canis* Alo247. Water extract of the dried bark, at a concentration of 10.0 mg/ml, was active on *Toxacara canis* Alo253.

Nephrotoxic activity. Ethanol (95%) extract of the dried seed, administered subcutaneously to rats at a dose of 0.1 ml/animal, was active. The extract was administered daily to 3 groups for 6, 12, or 18 days. There was a significant decrease in the glycogen content of the liver and kidneys, and an increase in the adrenals. Protein content increased in the adrenals and decreased in the kidneys. The activity of acid phosphatase was increased in the adrenals and decreased in the kidneys. All biochemical parameters remained unchanged in the spleen. Histological features of these organs were also changed. In the liver, hepatocytes showed hyperchromatosis, vacuolation, congestion and necrosis. Kidneys showed severe damage, which included disorganization of cortical and tubular cells. There was no differentiation of cortical and tubular regions. Adrenals exhibited granulation and the cells in the medullary region revealed hypertrophy. The spleen did not show significant change, except at 18 days dosing, red and white pulps became undifferentiated^{A10376}.

Nerve regeneration. Water extract of the dried leaf, at a concentration of 500.0 gm/liter exposed for 6 days, produced strong activity on *Cuscuta reflexa* seeds^{Al0257}.

Neuromuscular blocking activity. Acetone extract of the oven-dried leaf, administered intragastrically to mice, was active vs inclined plane test, ED₅₀ 30.0 mg/kg^{Al0367}. **Oviposition inhibition**. The Azadirachta indica preparation "neemrich", at a concentration of 1.0 mg/sq cm, was active on po-

tato tuber moth^{AlO244}. **Oxidative burst inhibition**. Water extract of the dried stembark, at a concentration of 0.1 mg/ml, was active vs chemiluminescence assay with activated polymorphonuclear leukocytes^{AlO246}.

Phytotoxic effect. Butanol and chloroform extracts of the dried kernel were active on the bean leaf^{Alo329}.

Plant germination inhibition. Butanol, chloroform/methanol (1:1), ether, ethanol (95%), petroleum ether and chloroform extracts of the dried stem, at a concentration of 500.0 gm/liter, produced weak activity. The water extract was active and the hexane extract was inactive on Cuscuta reflexa seeds after 6 days of exposure to the extracts. Butanol, ethanol (95%), petroleum ether and water extracts of the dried root, at a concentration of 500.0 gm/liter, were active. The chloroform, chloroform/methanol (1:1), ether and hexane extracts produced weak activity on the seeds of Cuscuta reflexa after 6 days of exposure to the extracts. Butanol, ether and petroleum ether extracts of the dried leaf, at a concentration of 500.0 gm/liter for 6 days, were active. The chloroform and hexane extracts produced weak activity, and chloroform/methanol (1:1) and ethanol (95%) extracts produced strong activity on the seeds of Cuscuta reflexa^{AIO257}.

Plant growth inhibition. Butanol, chloroform/methanol (1:1) and water extracts, at

a dose of 500.0 gm/liter, were active. The ether, ethanol (95%), hexane, and petroleum ether extracts were inactive on the seedling length, weight and dry weight of the Cuscuta reflexa plant, after 6 days of exposure to the extracts. Butanol and ethanol (95%) extracts of the dried leaf, at a concentration of 500.0 gm/liter for 6 days, produced strong activity. Chloroform extract was inactive, chloroform/methanol (1:1) and water extracts were active, and ether, hexane and petroleum ether extracts produced weak activity on Cuscuta reflexa seedlings. The length, weight and dry weight were measured. Butanol, ethanol (95%), petroleum ether and water extracts of the dried root, at a concentration of 500.0 gm/ liter, were active. The chloroform, chloroform/methanol (1:1), ether and hexane extracts produced weak activity on Cuscuta reflexa after 6 days of exposure to the extracts. Seedling length, weight and dry weight were measured^{A10257}.

Plant growth promoter. Seed cake, in a field test, was active on Azolla pinnata^{AlO349}. **Plaque formation suppressant**. Water extract of the seed was inactive on Streptococcus mutans, IC₅₀ >1,000 mcg/ml. The methanol/water (1:1) and methanol extracts were active, IC₅₀ 250.0 mcg/ml and 400.0 mcg/ml, respectively^{AlO343}.

Plasma bilirubin increase. The dried leaf, in the ration of chicken at a dose of 2.0% of the diet, was active^{Al0255}.

Platelet stimulant. Water extract of the dried leaf, administered orally to mice at a dose of 0.1 gm/kg, was active^{Al0355}.

Polygalacturonase inhibition. Hot water extract of the bark was active^{A10111}.

Polymorphonuclear leukocyte activation inhibitor. Water extract of the dried bark was active on blood vs oxygen radical production of activated polymorphonuclear leukocytes^{AlO372}.

Potassium depletion. Decoction of the fruit, leaf and stem, administered intragas-

trically to rats at a concentration of 0.4%, was active^{AlO189}.

Protease (HIV) inhibition. Water and methanol extracts of the dried seed, at a concentration of 200.0 mcg/ml, were equivocal^{AlO193}. **Proteolytic activity**. Water extract of the dried gum, at variable concentrations, was active^{AlO391}.

Protopectinase inhibition. Hot water extract of the bark was active^{AlO111}.

RBC stimulant activity. Decoction of the fruit, leaf and stem, administered intragastrically to rats at a concentration of 0.4%, was active^{Al0189}.

RBC synthesis antagonist. Dried leaf in the ration of chicken at a dose of 5.0% of the diet, was active^{Al0255}.

Respiratory depressant. Acetone extract of the oven-dried leaf, administered intragastrically to mice at a dose of 200.0 mg/kg, was active^{A10367}.

Serotonin antagonist activity. Methanol extract and the methanol-insoluble fraction of the dried leaf, in cell culture at variable concentrations, were inactive on ileum^{A10240}.

Smooth muscle relaxant activity. Water extract of the fresh leaf, at a concentration of 1.0 mg/ml, was inactive on guinea pig ileum, seminal vesicles and vas deferens, rabbit duodenum and rat stomach (fundus) and seminal vesicle^{Al0187}.

Smooth muscle stimulant activity. Water extract of the fresh leaf, at a concentration of 1.0 mg/ml, was inactive on guinea pig ileum, seminal vesicles and vas deferens, rabbit duodenum and rat stomach (fundus) and seminal vesicle^{A10187}.

Spasmolytic activity. Ethanol/water (1:1) extract of the seedling root was inactive on rat uterus^{AlO379}. Ethanol/water (1:1) extract of the stemwood, dried root, fruit pulp, leaf, and root wood was inactive on rat uterus^{AlO379}.

Spermicidal effect. Ethanol (80%) extract of the dried leaf, administered intragastrically to male rats at a dose of 100.0 mg/ani-

mal daily for 21 days^{Al0377}, and the leaves, at a dose of 20-60 mg/animal^{Al0380}, were active. Mating inhibition effect was negative. Saponin fraction of the dried seed, at a concentration of 25%, was active on the human sperm^{Al0191}. The dried seed, administered intravaginally, was active in baboon, monkey and rabbit^{Al0192}.

Spontaneous activity reduction. Acetone extract of the oven-dried leaf, administered intragastrically to mice at a dose of 100.0 mg/kg, was active^{Al0367}.

Testosterone level decrease. Decoction of the fruit, leaf, and stem, administered intragastrically to rats at a concentration of 0.1%, was active^{Al0189}.

Toxic effect. Ethanol (95%) extract of the dried seed, administered subcutaneously to rats at a dose of 0.1 ml/animal, was active. The extract was administered daily to 3 groups for 6, 12, or 18 days. There was a significant decrease in the glycogen content of the liver and kidneys, and increase in the adrenals. Protein content increased in the adrenals and decreased in the kidneys. The activity of acid phosphatase was increased in the adrenals and decreased in the kidneys. All biochemical parameters remained unchanged in the spleen. Histological features of these organs were also changed. In the liver, hepatocytes showed hyperchromatosis, vacuolation, congestion and necrosis. Kidneys showed severe damage, which included disorganization of cortical and tubular cells. There was no differentiation of cortical and tubular regions. Adrenals exhibited granulation and the cells in the medullary region revealed hypertrophy. The spleen did not show significant change, except at 18 days dosing, red and white pulps became undifferentiated^{A10376}. Ethanol (95%) extract of the dried leaf, administered intragastrically to mice at a dose of 10.0 gm/kg, was inactive^{A10258}. Toxic effect was observed by an adult male who consumed 1,000 ml of hot water extract of the

leaf^{AlO369}. Ethanol (95%) extract of the seed cake, in the ration of lamb at a concentration of 20.0% of the diet, was inactive, and at a concentration of 30% of the diet, was active^{AlO297}. The seed cake, at a concentration of 84% of the diet of rats, was inactive^{AlO180}. Ethanol/water (1:1) extract of the dried leaf, administered by gastric intubation and subcutaneously to mice at a dose of 10.0 gm/kg, was inactive^{AlO271}. Hot water extract of the leaf, administered intravenously to guinea pigs of both sexes at a dose of >40.0 mg/kg, was active^{AlO198}.

Toxicity assessment. Ethanol (70%) extract of the fresh bark and leaf, when administered by gastric intubation to mice, resulted in LD₅₀ 13.0 gm/kg^{A10260}. Ethanol/water (1:1) extract of the dried seed, administered intraperitoneally to mice of both sexes, resulted in LD₅₀ 681.0 mg/kg^{AI0284}. Ethanol/water (1:1) extract of the stembark, administered intraperitoneally to mice, resulted in $LD_{50} > 1.0$ gm/kg A10107 . Ethanol/ water (1:1) extract of the stemwood, administered intraperitoneally to mice, resulted in $LD_{50} > 1000$ mg/kg A10379 . Ethanol/water (1:1) extract of the dried root, fruit pulp, root wood, and leaf, when administered intraperitoneally to mice, resulted in LD₅₀ 681.0 mg/kg^{AI0379}.

Tranquilizing effect. Hot water extract of the dried leaf, administered by gastric intubation to rats at a dose of 500.0 mg/kg, produced weak activity^{AlO293}.

Uric acid increase. The dried leaf, in the ration of chicken at a dose of 2.0% of the diet, was active^{Al0255}.

Wound healing acceleration. Leaf juice, applied externally on calves, was active^{Al0181}.

REFERENCES

AI0100

Murthy, P. S. and M. Sirsi. Pharmacological studies on *Melia azadirachta*. Part II. Estrogenic and antipyretic activity of neem oil and its fraction. **Indian J Physiol Pharmacol** 1958; 2: 456-.

AI0101	Spencer, C. F., F. R. Koniuszy, E. F. Rogers, J. Shavel Jr., N. R. Easton, E. A. Kaczka, F. A. Kuehl Jr., R. F. Phillips, A. Walti, K. Folkers, C. Malanga and A. O. Seeler. Survey of plants for antimalarial activity. Lloydia 1947; 10: 145–174.	AI0110	Lumpur, Malaysia. Volume II, 1966; 1–. Abraham, C. C., B. Thomas, K. Karunakaran and R. Gopalakrishnan. Relative efficiency of some plant products in controlling infestation by the Angoumois Grain moth (Sitotroga cere-
AI0102	Harris, M., R. Henderson, R. M. C. Crindle, K. H. Overton and D.W. Turner. Tetranortriterpenoids. VIII. The constitution and	AI0111	alella) infesting stored paddy in Kerala. Agr Res J Kerala 1972; 10: 59–. Prasad, V. and S. C. Gupta. Inhib-
	sterochemistry of nimbin. Tetra- hedron 1967; 24: 1517–1523.		itory effect of bark and leaf decoctions on the activity of pectic
AI0103	Connolly, J. D., K. L. Handa and R. Mc Crindle. Further constituents of nim oil: the constitution	AI0112	enzymes of <i>Alternaria tennis</i> . Indian J Exp Biol 1967; 5: 192–. Pankadamani, K. S. and T. R. Ses-
	of meldenin. Tetrahedron Lett 1968; 1968: 437–440.	1110112	hadri. Survey of anthoxanthins. Proc Indian Acad Sci Ser A
AI0104	Singh, R. Inactivation of potato virus X by plant extracts. Phytopathol Mediterr 1971; 10:	AI0113	1952; 36: 157–. Child, R. and S. Ramanathan. The fatty acids of margosa oil. J Soc
AI0105	211 Babu, T. H. and Y. P. Beri. Effi-	AI0114	Chem Ind 1936; 55: 124–127T. Raman, H. and S. Santhanagop-
	cacy of neem (Azadirachta in- dica) seed extracts in different solvents as a deterrent to the lar-		alan. Isolation of (E) -2-methyl-2-buteonic acid (tiglic acid) from neem. Indian J Chem Ser B
	vae of Euprocits lunata. Andhra Agr J 1969; 16(4): 107–.	AI0115	1979; 17(2): 169 Gupta, S. S. and C. B. Seth. Ex-
AI0106	Pradhan, S., M. G. Jotwani and B. K. Rai. The neem seed (<i>Azadirachta indica</i>) deterrent to locusts. Indian Farm 1962; 12(8): 7–.		perimental studies on pituitary diabetes. Part II. Comparison of blood sugar level in normal and anterior pituitary extract induced
AI0107	Bhakuni, D. S., M. L. Dhar, M. M. Dhar, B. N. Dhawan, B. Gupta and R. C. Srimali. Screening of		hyperglycaemic rats treated with a few Ayurvedic remedies. Indian J Med Res 1962; 50(5): 708–
	Indian plants for biological activity. Part III. Indian J Exp	AI0116	714. Anon. Preparation of antitumor
AI0108	Biol 1971; 9: 91—. Goyal, R. S., K. C. Gulati, P. Sarup, M. A. Kidwai and D. S. Singh. Biological activity of		polysaccharide N9GI from <i>Melia</i> azadirachta. Patent-Japan Kokai Tokkyo Koho-60 (19,718) 1985; 10 pp
	various alcohol extractives and isolates of neem (Azadirachta indica) seed cake against Rhopalosiphum nympheae and Schisto-	AI0117	Kubo, I., A. Matsumoto, T. Matsumoto and J. A. Klocke. New insect ecdysis inhibitory limonoid deacetylazadirachtinol iso-
	cerca gregaria. Indian J Ento- mol 1971; 33: 67–.		lated from Azadirachta indica (Meliaceae) oil. Tetrahedron
AI0109	Burkill, I. H. Dictionary of the Economic Products of the Malay Peninsula. Ministry of Agriculture and Cooperatives, Kuala	AI0118	1986; 42(2): 489–496. Siddiqui, S., B. S. Siddiqui and S. Faizi. Studies in the chemical constituents of <i>Azadirachta in</i> -

AI0119	dica. Part II. Isolation and structure of the new triterpenoid azadirachtol. Planta Med 1985; 1985(6): 478–480. Podder, G. and S. B. Mahato. Azadirachtanin, a new limonoid from the leaves of <i>Azadirachta indica</i> . Heterocycles 1985; 23(9): 2321–2325.	AI0128	tetranortriterpenoids from Azadirachta indica. J Nat Prod 1986; 49(6): 1068–1073. Kraus, W., A. Klenk, M. Bokel and B. Vogler. Tetranortriterpenoid lactams with insect antifeeding activity from Azadirachta indica A. Juss (Meliaceae). Liebigs Ann Chem 1987; 1987(4):
AI0120	Siddiqui, S., S. Faizi, T. Mahmood and B. S. Siddiqui. Isolation of a new tetranortriterpenoid from <i>Azadirachta indica</i> A. Juss (Meliaceae). Heterocycles 1986; 24(5): 1319–1324.	AI0129	337–340. Siddiqui, S., T. Mahmood, S. Faizi and B. S. Siddiqui. Studies in the chemical constituents of <i>Azadirachta indica</i> A. Juss. (Mel- iaceae). Part 10. Isolation and
AI0121	Siddiqui, S., S. Faizi, T. Mahmood and B. S. Siddiqui. Two new insect growth regulator meliacins from <i>Azadirachta indica</i> A. Juss (Meliaceae). J Chem Soc Perkin Trans I 1986; 1986(6):		structure elucidation of isonimolicinolide, the first 17-acetoxy tetranortriterpenoid and nimolicinoic acid. J Chem Soc Perkin Trans I 1987; 1987(7): 1429–1432.
AI0122	1021–1025. Siddiqui, S., S. Faizi and B. S. Siddiqui. Studies in the chemical constituents of <i>Azadirachta ind-</i> <i>ica</i> A. Juss (Meliaceae), Part VII. Z Naturforsch Ser B 1986; 41	AI0130	Majumder, P. L., D. C. Maiti, W. Kraus and M. Bokel. Nimbidiol, a modified diterpenoid of the root bark of <i>Azadirachta indica</i> . Phytochemistry 1987; 26(11): 3021–3023.
AI0123	(7): 922–924. Siddiqui, S., T. Mahmood, B. S. Siddiqui and S. Faizi. Isolation of a triterpenoid from <i>Azadi-</i> rachta indica. Phytochemistry	AI0131	Siddiqui, S., T. Mahmood, B. S. Siddiqui and S. Faizi. Isonimolide and isolimeolide, two new tetranortriterpenoids from the twigs of <i>Azadirachta indica</i> A.
AI0124	1986; 25(9): 2183–2185. Anon. Antitumor polysaccharide (N9GI) from <i>Melia azadirachta</i> . Patent-Japan Kokai Tokkyo	AI0132	Juss (Meliaceae). Heterocycles 1987; 26(7): 1827–1833. Siddiqui, S., S. Shaheen Bina, S. Faizi and T. Mahmood. Studies
AI0125	Koho-60 (42,331) 1985; 8 pp. Siddiqui, S., B. S. Siddiqui, S. Faizi and T. Mahmood. Isoazadirolide, a new tetranortriterpenoid from <i>Azadirachta indica</i> A.	AI0133	on the chemical constituents of Azadirachta indica A. Juss (Meliaceae). Part VI. J Chem Soc Pak 1986; 8(3): 341–347. Kraus, W., M. Bokel, A. Bruhn, P. Gromon, I. Wieber, A. Klonk
AI0126	Juss (Meliaceae). Heterocycles 1986; 24(11): 3163–3167. Siddiqui, S., S. Faizi, T. Mahmood and B. S. Siddiqui. Margosinolide and isomargosinolide, two new tetranortriterpenoids from <i>Azadirachta indica</i> A.		R. Cramer, I. Klaiber, A. Klenk, G. Nagl, H. Pohnl, H. Sadlo and B. Vogler. Structure determination by NMR of azadirachtin and related compounds from <i>Azadirachta indica</i> A. Juss. (Meliaceae). Tetrahedron 1978; 43(12):
AI0127	Juss (Meliaceae). Tetrahedron 1986; 42(17): 4849–4856. Siddiqui, S., T. Mahmood, B. S. Siddiqui and S. Faizi. Two new	AI0134	2817–2830. Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Terpenoids from the stem bark of <i>Azadirachta</i>

AI0135	indica. Phytochemistry 1988; 27(6): 1801–1804. Lee, S. M., J. I. Olsen, M. P. Schweizer and J. A. Klocke. 7-Deacetyl-17-beta-hydroxyazadiradione, a new limonoid insect growth inhibitor from Azadirachta indica. Phytochemistry	AI0144	iacin connamates from the root bark of <i>Azadirachta indica</i> A. Juss (Meliaceae). Heterocycles 1989; 29(4): 729–735. Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Diterpenoids from the root bark of <i>Azadirachta indica</i> . Z. Naturforsch Ser
AI0136	1988; 27(9): 2773–2775. Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Tricyclic diterpenoids from the stem bark of <i>Azadirachta indica</i> . J Nat Prod 1988; 51(6): 1054–1061.	AI0145	B 1989; 44(10): 1279–1282. Kigodi, P. K. G., G. Blasko, Y. Thebtaranonth, J. M. Pezzuto and G. A. Cordell. A new limonoid from <i>Azadirachta indica</i> . Spectroscopic and biological investi-
AI0137	Siddiqui, S., B. S. Siddiqui, T. Mahmood and S. Faizi. Tetranor-triterpenoids from <i>Azadirachta indica</i> A. Juss (Meliaceae). Het-		gation of nimbolide and 28-de- oxonimbolide from <i>Azadirachta</i> <i>indica</i> . J Nat Prod 1989; 52(6): 1246–1251.
AI0138	erocycles 1989; 29(1): 87–96. Siddiqui, A., I. Ara, S. Faizi and T. Mahmood. Phenolic tricyclic diterpenoids from the bark of <i>Azadirachta indica</i> . Phytochemistry 1988; 27(12): 3903–	AI0146 AI0147	Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Two new terpe- noids from root bark of <i>Azadi-</i> <i>rachta indica</i> . J Nat Prod 1989; 52(6): 1209–1213. Ara, I., B. S. Siddiqui, S. Faizi
AI0139	3907. Rojatkar, S. R., V. S. Bhat, M. M. Kulkarni, V. S. Joshi and B. A. Nagasampagi. Tetranortriter-	A10147	and S. Siddiqui. Tricyclic diterpenoids from root bark of <i>Azadirachta indica</i> . Phytochemistry 1990; 29(3): 911–914.
	penoids from Azadirachta indica. Phytochemistry 1989; 28 (1): 203–205.	AI0148	Bokel, M., R. Cramer, H. Gutzeit, S. Reeb and W. Kraus. Tetranor-triterpenoids related to nimbin
AI0140	Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Diterpenoids from the stem bark of <i>Azadirachta indica</i> . Phytochemistry	AI0149	and nimbolide from <i>Azadirachta</i> indica A. Juss. (Meliaceae). Tetrahedron 1990; 46(3): 775–782. Ara, I., B. S. Siddiqui, S. Faizi
AI0141	1989; 28(4): 1177–1180. Kraus, W., H. Gutzeit and M. Bokel. 1,3-diacetyl-11, 19-de- oxa-11-oxo-meliacarpin, a pos- sible precursor of Azadirachtin, from Azadirachta indica A. Juss	AI0150	and S. Siddiqui. Tricyclic diterpenes from the stem bark of <i>Azadirachta indica</i> . Planta Med 1990; 56(1): 84–86. Ara, I., B. S. Siddiqui and F.S. Siddiqui. Margosinone and mar-
AI0142	(Meliaceae). Tetrahedron Lett 1989; 30(14): 1797–1798. Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Structurally novel diterpenoid constituents from the stem bark of <i>Azadirachta indica</i> (Meliaceae). J Chem Soc	AI0151	gosinolone, two new polyacetate derivatives from <i>Azadirachta indica</i> . Fitoterapia 1989; 60(6): 519–523. Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Three new diterpenoids from the stem bark of
AI0143	Perkin Trans I 1989; 1989(2): 343–345. Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Isolation of mel-	AI0152	Azadirachta indica. J Nat Prod 1990; 54(4): 816–820. Gaikwad, B. R., T. Mayelaga- nan, B. A. Vyas and S.V. Bhat.

AI0153	Nimbocinol and 17-epinimbocinol from the nimbidin fraction of neem oil. Phytochemistry 1990; 29(12): 3963–3965. Anon. Preparation of antitumor polygogleside (NICE) from Marchaeleside (NICE) from Marchaeleside (NICE) from Marchaeleside (NICE)	AI0161	Balasubramanian, C., P. S. Mohan, K. Arumugasamy and K. Udaiyan. Flavanoid from resinglands of <i>Azadirachta indica</i> . Phytochemistry 1993; 34(4): 1194–1195.
	polysaccharide (N9GI) from <i>Melia azadirachta</i> . Patent-Japan Kokai Tokkyo Koho-60 (42,328) 1983; 7 pp	AI0162	Govindachari, T. R., G. Sandhya and S. P. G. Raj. Structure of azadirachtin k, a new tetranortriter-
AI0154	Anon. Antitumor polysaccharide from the bark of <i>Melia azadira-chta</i> . Patent-Japan Kokai Tok-kyo Koho-60 (42,330) 1983;	AI0163	penoid from <i>Azadirachta indica</i> . Indian J Chem Ser B 1992; 31 (6): 295–298. Rojatkar, S. R. and B. A. Nagas-
AI0155	7 pp—. Siddiqui, S., S. Faizi, B. S. Siddiqui and Ghiasuddin. Constituents of <i>Azadirachta indica</i> : iso-		ampagi. 11-Alpha-hydroxy-12-norazadirachtin from <i>Azadira-chta indica</i> (A. Juss). Nat Prod Lett 1994; 5(1): 69–76.
	lation and structure elucidation of a new antibacterial tetranortriterpenoid, mahmoodin, and a new protolimonoid, Naheedin. J Nat Prod 1992; 55(3): 303–310.	AI0164	Sen, A. K., A. K. Das and N. Banerji. A water soluble arabinogalactan from the fruit pulp of <i>Azadirachta indica</i> . Indian J Chem Ser B 1993; 32(8): 862–
AI0156	Ara, I., B. S. Siddiqui, S. Faizi and S. Siddiqui. Isolation and structure elucidation of the triterpene azadirinin from the root of <i>Azadirachta indica</i> . Fitote -	AI0165	866. Devakumar, C. and S. K. Mukerjee. 4-epinimbin, a new meliacin from <i>Azadirachta indica</i> A. Juss. Indian J Chem Ser B 1985; 24:
AI0157	rapia 1992; 63(2): 118–121. Siddiqui, S., B. S. Siddiqui, Ghiasuddin and S. Faizi. Triterpenoids from kernel of <i>Azadirachta indica</i> . Proc Pak Acad Sci 1990; 27(4): 333–348.	AI0166	1105–1106. Siddiqui, S., T. N. Waheed, J. Lucke and W. Voelter. The structure isolated from the fruit pulp of <i>Melia azadirachta</i> . Z Naturforsch Ser B 1975; 30: 961–964.
AI0158	Rojatkar, S. R. and B. A. Nagasampagi. 1-Tigloyl-3-acetyl-11-hydroxy-4-beta-methylmeliacarpin from <i>Azadirachta indica</i> .	AI0167	Kaleysa Raj, R. Screening of indigenous plants for anthelmintic action against human lumbricoides: Part II. Indian J Physiol
AI0159	Phytochemistry 1993; 32(1): 213–214. Siddiqui, B. S., S. Ghiasuddin, S. Faizi and S. Siddiqui. Triterpenoids from the fresh fruit coats of <i>Azadirachta indica</i> . Phyto-	AI0168	Pharmacol 1975; 19: 47–49. Gogate, S. S. and A. D. Marathe. Antiviral effect of neem leaf (<i>Azadirachta indica</i> , Juss) extract on chikungunya and measles viruses. J Res Indian Med 1989;
AI0160	chemistry 1992; 31(12): 4275–4278. Fujiwara, T., E. Sugishita, T. Takeda, Y. Ogihara, M. Shimizu, T. Nomura and Y. Tomita. Further etudies on the etructure of	AI0169	8(1): 1–5. Govindachari, T. R., G. Sandhya and S. P. G. Raj. Azadirachtins H and I: Two new tetranortriter- penoids from <i>Azadirachta in-</i>
	ther studies on the structure of polysaccharides from the bark of <i>Melia azadirachta</i> . Chem Pharm Bull 1984; 32(4): 1385–1391.	AI0170	dica. J Nat Prod 1992; 55(5): 596–601. Charles, V. and S. X. Charles. The use and efficacy of Azadi-

AI0171	rachta indica ADR ('neem') and Curcuma longa ('turmeric') in scabies. Trop Geogr Med 1992; 44: 178–181. Shimizu, M., M. Takai, K. Inoue, T. Takeda and Y. Ogiwara. Antitumor polysaccharides from Melia azadirachta bark extracts and their purification. Patent-Japan Kokai Tokkyo Koho-01 (275,602) 1989; 9 pp	AI0179 AI0180	chta indica leaf extract in rabbits. Fitoterapia 1992; 63(4): 311–319. Gara, G. P., S. K. Nigam and C. W. Oale. The gastric antiulcer effects of the leaves of the neem tree. Planta Med 1993; 59(3): 215–217. Rao, P. U. Chemical composition and biological evaluation of debitterized and defatted neem
AI0172	Upadhyay, S. N., S. Dhawan, S. Garg and G. P. Talwar. Immuno-modulatory effects of neem (<i>Azadirachta indica</i>) oil. Int J Immunopharmacol 1992; 14(7):	AI0181	(Azadirachta indica) seed kernel cake. J Amer Oil Chem Soc 1987; 64(9): 1348–1351. Kumar, A., V. K. Sharma, H. P. Singh, P. Prakash and S. P. Singh.
AI0173	1187–1193. Bhakuni, D. S., A. K. Goel, S. Jain, B. N. Mehrotra, G. K. Patnaik and V. Prakash. Screening of Indian plants for biological	AI0182	Efficacy of some indigenous drugs in tissue repair in buffaloes. Ind Vet J 1993; 70(1): 42–44. Udeinya, I. J. Anti-malaria activity of Nigerian neem leaves.
AI0174	activity: Part XIII. Indian J Exp Biol 1988; 26(11): 883RY–904. Kores, B. H., A. J. J. Van Der Berg, R. P. Labadie, A. M. Abeysekera and K. T. D. De	AI0183	Trans Roy Soc Trop Med Hyg 1993; 87(4): 471–. Banum M. J., K. Nellaiappan and S. Dhandayuthapani. Mito- chondrial malate dehydrogenase
AI0175	Silva. Impact of the preparation process on immunomodulatory activities of the ayurvedic drug <i>Nimba arishta</i> . Phytother Res 1993; 7(1): 35–40.	A IO194	and malic enzyme of a filarial worm <i>Setaria digitata</i> : Some properties and effect of drugs and herbal extracts. Japan J Med Sci Biol 1992; 45(3): 137–150.
A10175	Ishida, M., M. Serit, K. Nakata, L. R. Juneja, M. Kim and S. Takahashi. Several antifeedants from neem oil, <i>Azadirachta indica</i> A. Juss., against <i>Reticulitermes speratus</i> Kolbe (Isoperta:Rhinoterm-	AI0184	Chattopadhyay, R. R., S. K. Sar- kar, S. Ganguly, R. N. Banerjee, T. K. Basu and A. Mukherjee. Hepatoprotective activity of <i>Aza-dirachta indica</i> leaves on par- acetamol induced hepatic dam-
AI0176	itidae). Biosci Biotech Biochem 1992; 56(11): 1835–1838. Bahri, S., Y. Sani and P. T. Hooper. Myodegeneration in rats fed <i>Melia azedarach</i> . Aust	AI0185	age in rats. Indian J Exp Biol 1992; 30(8): 738–740. Jood, S., A. C. Kapoor and R. Singh. Evaluation of some plant products against <i>Trogoderma</i>
AI0177	Vet J 1992; 69(2): 33–. Sen, P., P. Mediratta and A. Ray. Effects of <i>Azadirachta indica</i> A. Juss on some biochemical, immunilogical and visceral parameters in normal and stressed rats. Indi-		granarium everts in stored maize and their effects on nutritional composition and organoleptic characteristics of kernels. J Agr Food Chem 1993; 41(10): 1644– 1648.
AI0178	an J Exp Biol 1992; 30(12): 1170–1175. Akah, P. A. and O. E. Onuogu. Hepatotoxic effect of <i>Azadira</i> -	AI0186	Rahmani, M., H. B. M. Ismail, F. Ahmad and A. R. Manas. Screening of tropical plants for the presence of bioactive com-

AI0187	pounds. Pertanika 1992; 15(2): 131–135. Chattopadhyay, R. N., S. K. Maitra and R. R. Chattopadhyay. Possible mechanism of antihyperglycemic effect of <i>Azadirachta indica</i> leaf extract. Part I. Fitoterapia 1993; 64(4): 332–	AI0195	S. Gupta and G. P. Talwar. Clinical trial with praneem polyherbal cream in patients with abnormal vaginal discharge due to microbial infections. Aust Nz J Obstet Gynaecol 1995; 35(2): 190–191. Singh, V. K. and Z. A. Ali. Folk medicines in primary health care:
AI0188	335. Chattopadhyay, R. R., R. N. Chattopadhyay and S. K. Maitra. Possible mechanism of antihyperglycemic effect of <i>Azadirachta indica</i> leaf extract. Part III. Fitotopario , 1003, 64(6), 535, 538	AI0196	Common plants used for the treatment of fevers in India. Fitoterapia 1994; 65(1): 69–74. Banerji, R., G. Misra and S. K. Nigam. On the triterpenes of <i>Azadirachta indica</i> (<i>Melia azadirachta</i>) Fitotoropia 1077; 48: 166
AI0189	terapia 1993; 64(6): 535–538. Parshad, O., P. Singh, M. Gardner, C. Fletcher, E. Rickards and E. Choo-Kang. Effect of aqueous neem (<i>Azadirachta indica</i>)	AI0197	chta). Fitoterapia 1977; 48: 166—. Tella, A. The effects of Azadirachta indica in acute Plasmodium berghei Malaria. Nigerian Med J 1977; 7: 258—.
	extract on testosterone and other blood constituents in male rats. A pilot study. West Indian Med J 1994; 43(3): 71–74.	AI0198	Thompson, E. B. and C. C. Anderson. Cardiovascular effects of <i>Azadirachta indica</i> extract. J Pharm Sci 1978; 67: 1476–1478.
AI0190	Singh, J., A. K. Dubey and N. N. Tripathi. Antifungal activity of <i>Mentha spicata</i> . Int J Pharmocog 1994; 32(4): 314–319.	AI0199	Pillai, N. R., D. Suganthan, C. Seshadri and G. Santhakumari. Anti-gastric ulcer activity of nimbidin. Indian J Med Res 1978;
AI0191	Garg, S., G. Doncel, S. Chabra, S. N. Upadhyay and G. P. Talwar. Synergistic spermicidal activity of neem seed extract, <i>Retha saponins</i> , and quinine hydrochloride. Contraception 1994; 50 (2): 185–190.	AI0200	68: 169–175. Kraus, W. and R. Cramer. 17-epi-azadiradione and 17-beta-hydroxy-azadiradione, two new constituents of <i>Azadirachta indica</i> . Tetrahedron Lett 1978; 1978: 2395–.
AI0192	Talwar, G. P., S. Garg, V. Dhar, R. Chabra, A. Ganju and S. N. Upadhyay. Praneem polyherbal cream and pessaries with dual properties of contraception and alleviation of genital infections. Curr	AI0201 AI0202	Siddiqui, S., B. S. Siddiqui, S. Faizi and T. Mahmood. Isolation of a tetranortriterpenoid from <i>Azadirachta indica</i> . Phytochemistry 1984; 23(12): 2899–2901. Garg, H. S. and D. S. Bhakuni.
AI0193	Sci 1995; 68(4): 437–440. Kusumoto, I. T., T. Nakabayashi, H. Kida, H. Miyashiro, M. Hat- tori, T. Namba and K. Shimo- tohno. Screening of various plant extracts used in ayurvedic medi- cine for inhibitory effects on Human Immunodeficiency Virus type 1 (HIV-1) protease. Phyto-	AI0203	2', 3' - dehydrosalannol, a tetra- nortriterpenoid from <i>Azadira-</i> <i>chta indica</i> leaves. Phytochem- istry 1985; 24(4): 866–867. Rembold, H., H. Forster, C. Czop- pelt, P. J. Rao and K. P. Sieber. The azadirachtins, a group of in- sect growth regulators from the neem tree. Schriftenr Gtz 1984;
AI0194	ther Res 1995; 9(3): 180–184. Mittal, A., S. Kapur, S. Garg, S. N. Upadhyay, S. Suri, S. K. Kas,	AI0204	161: 153–161. Srivastava, Y. N. and R. K. Bhanotar. Efficacy of neem powder

AI0205	infested with Oryzaephilus surinamensis L. with notes on the sex ratio of O. surinamensis. Indian J For 1980; 3(4): 353–356. Rochanakij, S., Y. Thebtaranonth, C. Yenjai and Y. Yuthavong. Nimbolide, a constituent of Azadirachta indica, inhibits Plasmodium falciparum in culture.	AI0212	Lee, S. M. and J. A. Klocke. Combined florisil, droplet countercurrent, and high-performance liquid chromatographies for preparative isolation and purification of Azadirachtin from neem (<i>Azadirachta indica</i>) seeds. J Liq Chromatogr 1987; 10(6): 1151–1163.
AI0206	Southeast Asian J Trop Med Public Health 1985; 16(1): 66–72. Pachapurkar, R. V. and P. M. Kornule. Tetranortriterpenoids from the leaves of <i>Azadirachta indica</i> . Acta Cienc Indica 1983;	AI0213	Banerji, R., G. Misra and S. K. Nigam. Identification of 24-methylenelophenol from heartwood of <i>Azadirachta indica</i> . Phytochemistry 1987; 26(9): 2644–2645.
AI0207	9(1): 55–59. Sanval, M., and P. C. Datta. Tissue environments for biosynthesis of amino acids and some secondary metabolites in Azadirachta. Indian Biol 1985; 17(2):	AI0214 AI0215	Pant, N., H. S. Garg, K. P. Madhusudanan and D. S. Bhakuni. Sulfurous compounds from <i>Azadirachta indica</i> leaves. Fitoterapia 1986; 57(4): 302–304. Kurokawa, Y., T. Takeda, Y. Ogi-
AI0208	9–11. Chavan, S. R. Chemistry of alkanes separated from leaves of <i>Azadirachta indica</i> and their larvicidal/insecticidal activity against		hara, M. Shimizu and M. Takai. Studies on the structure of a polysaccharide from the bark of <i>Melia azadirachta</i> . Chem Pharm Bull 1988; 36(7): 2654–2660.
AI0209	mosquitoes. Schriftenr Gtz 1984; 161: 59–65. Lee, S. M., M. F. Balandrin, R. B. Yamasaki and J. A. Klocke. Characterization of biologically active volatile organosulfur com- pounds from seeds of the neem	AI0216 AI0217	Ali, M. and J.S. Oadry. Studies on the stem exudate of <i>Azadirachta indica</i> Linn. Curr Sci 1988; 57(10): 550–551. Gupta, M. Essential oils: A new source of bee repellents. Chem Ind (London) 1987; 1987(5):
	tree, Aza-dirachta indica. Abstr 27th Annual Meeting Ameri- can Society of Pharmacognosy July 27–30, 1986, Ann Arbor MI, 1986; Abstr-58.	AI0218	161–163. Zarroug, I. M. A., A. D. Nugud, A. K. Bashir and A. A. Mageed. Evaluation of Sudanese plant extracts as mosquito larvicides.
AI0210	Siddiqui, S., T. Mahmood, B. S. Siddiqui and S. Faizi. Studies in the nonterpenoidal constituents of <i>Azadirachta indica</i> . Pak J Sci Ind Res 1985; 28(1): 1–4.	AI0219	Int J Crude Drug Res 1988; 26 (2): 77–80. Siddiqui, S., T. Mahmood, B. S. Siddiqui and S. Faizi. Non-ter- penoidal constituents from <i>Aza</i> -
AI0211	Bryanyamasaki, R., J. A. Klocke, S. M. Lee, G. A. Stone and M. V. Darlington. Isolation and purification of Azadirachtin from neem (<i>Azadirachta indica</i>) seeds using flash chromatography and high-performance liquid chrom-	AI0220	dirachta indica. Planta Med 1988; 54(5): 457–459. Riazudin, S., M. M. Malik and A. Nasim. Mutagenicity testing of some medicinal herbs. Environ Molec Mutagen 1987; 10(2): 141–148.
	atography. J Chromatogr 1986; 356: 220–226.	AI0221	Balandrin, M. F., S. M. Lee and J. A. Klocke. Biologically active

AI0222	volatile organosulfur compounds from seeds of the neem tree, Azadirachta indica (Meliaceae). J Agr Food Chem 1988; 36(5): 1048–1054. Tewari, R. K., S. Pathak and A. O. Prakash. Biochemical and histological studies of reproductive organs in cyclic and ovariectomized rats supporting a non-hormonal action for neem oil. J Ethnopharmacol 1989; 25(3):	AI0229 AI0230	activity of 43 species. J Ethnopharmacol 1989; 25(3): 315–338. Van Der Nat, J. M., L. A. 'T Hart, W. G. Van Der Sluis, H. Van Dijk, A. J. J. Van Den Berg, K. T. D. De Silva and R. P. Labadie. Characterization of anti-complement compounds from <i>Azadirachta indica</i> . J Ethnopharmacol 1989; 27(1/2): 15–24. Tidjani, M. A., C. Dupont and J.
AI0223	281–293. Patel, V. K. and H. Venkatakrishna-Bhatt. Folklore therapeutic indigenous plants in periodontal disorders in India (Review, experimental and clinical approach). Int J Clin Pharmacol Ther Toxicol 1988; 26(4): 176–184.	AI0231	Wepierre. Azadirachta indica stem bark extract anti-inflamma- tory activity. Plant Med Phyto- ther 1989; 23(4): 259–266. Namba, T., K. Sawa, M. B. Gewali, M. Hattori, Y. Naruse and S. Kagamimori. Studies on development of immunomodu- lating drugs (II) effect of Ayur-
AI0224	Shetty, S. A., H. S. Prakash and H. S. Shetty. Efficacy of certain plant extracts against seed-borne infection of <i>Trichoconiella padwickii</i> in Paddy (<i>Oryza sativa</i>). Can J Bot 1989; 67(7): 1956–	AI0232	vedic medicines on blastogenesis of lymphocytes from mice. Shoyakugaku Zasshi 1989; 43 (3): 250–255. Bray, D. H., D. C. Warhurst, J. D. Connolly, M. J. O'Neill
AI0225	1958. Chakrabortty, T., L. Verotta and G. Poddar. Evaluation of <i>Azadirachta indica</i> leaf extract for hypoglycaemic activity in rats. Phytother Res 1989; 3(1): 30–32.	AI0233	and J. D. Phillipson. Plants as sources of antimalarial drugs. Part 7. Activity of some species of Meliaceae plants and their constituent limonoids. Phytother Res 1990; 4(1): 29–35. Kurokawa, Y., T. Takeda and Y.
AI0226	Rai, M. K. and S. Upadhyay. Screening of medicinal plants of Chhindwara District against <i>Trichophyton mentagrophytes</i> : A causal organism of <i>Tinea pedis</i> . Hindustan Antibiot Bull 1988; 30(1/2): 33–36.	AI0234	Ogihara. Further studies on the structure of polysaccharides from the bark of <i>Melia azadirachta</i> (VII). Shoyakugaku Zasshi 1990; 44(1): 29–37. Khan, M., B. Schneider, S. W. Wassilew and V. Splanemann.
AI0227	Khalid, S. A., H. Duddeck and M. Gonzalez-Sierra. Isolation and characterization of an antimalarial agent of the neem tree <i>Azadirachta indica</i> . J Nat Prod	A 1022 5	The effect of raw materials of the neem tree, neem oils and neem extracts on dermatophytes, yeasts and molds. Z Hautkrankheiten 1988; 63(6): 499–502.
AI0228	1989; 52(5): 922–926. Le Grand, A. Anti-infectious phytotherapy of the tree-savannah, Senegal (Western Africa) III: A review of the phytochemical substances and anti-microbial	AI0235	Reddy, M. B., K. R. Reddy and M. N. Reddy. A survey of medicinal plants of Chenchu tribes of Andhra Pradesh, India. Int J Crude Drug Res 1988; 26(4): 189–196.

AI0236 AI0237	Comley, J. C. W., V. P. K. Titanji, J. F. Ayafor and V. K. Singh. In vitro antifilarial activity of some medicinal plants. Acta Leidensia 1990; 59(1/2): 361–363. Isman, M. B., O. Koul, A. Luczynski and J. Kaminski. Insecticidal and antifeedant bioactivities of neem oils and their relationship to <i>Azadirachtin</i> content.	AI0245	other plants for <i>Phthorimaea</i> operculella (Zell) control. Curr Sci 1990; 59(19): 932–933. Elsheikh, S. H., A. K. Bashir, S. M. Suliman and M. E. Wassila. Toxicity of certain Sudanese plant extracts on Cercariae and Miracidia of <i>Schistosoma mansoni</i> . Int J Crude Drug Res 1990; 28(4): 241–245.
AI0238	J Agr Food Chem 1990; 38(6): 1406–1411. Van Der Nat, J. M. Azadirachta indica bark. An immunopharmacognostical study of its traditional use in inflammatory dis-	AI0246	Van Der Nat, J. M., W. G. Van Der Sluis, L. A. 'Thart, H. Van dijk, K. T. D. De Silva and R. P. Labadie. Activity-guided isolation and identification of <i>Azadirachta indica</i> bark extract con-
AI0239	ease. Pharm Weekbl (Sci Ed) 1990; 12(4): 160–161. Shimizu, M., S. Yamamoto, Y. Tamura, T. Nomura and S. Yamamato. Preparation of antitumor polysaccharide MA9 from Melia azadirachta bark. Patent-Japan Kokai Tokkyo Koho-62	AI0247	stituents which specifically inhibit chemiluminescence. Planta Med 1991; 57(1): 65–68. Kiuchi, F., M. Hioki, N. Nakamura, N. Miyashita, Y. Tsuda and K. Kondo. Screening of crude drugs used in Sri Lanka for nematocidal activity on the larva
AI0240	(185,023) 1986; 4 pp Singh, P. P., A. Y. Junnarkar, G. P. Thomas, R. M. Tripathi and R. K. Varma. A pharmaco-	AI0248	of <i>Toxacara canis</i> . Shoyaku-gaku Zasshi 1989; 43(4): 288–293. Mubarak, A. M. and C. P. Kula-
AI0241	logical study of <i>Azadirachta indica</i> . Fitoterapia 1990; 61(2): 164–168. Weenen, H., M. H. H. Nkunya,		tilleke. Sulphur constituents of neem seed volatiles: A revision. Phytochemistry 1990; 29(10): 3351–3352.
	D. H. Bray, L. B. Mwasumbi, L. S. Kinabo and V. A. E. B. Kilimali. Antimalarial activity of Tanzanian medicinal plants. Planta Med 1990; 56(4): 368–	AI0249	Siddiqui, S., B. S. Siddiqui and S. Faizi. Terpenoids from fruit coatings of <i>Azadirachta indica</i> . Phytochemistry 1991; 30(5): 1615–1619.
AI0242	370. Suresh, M. and R. K. Rai. Cardol: The antifilarial principle from <i>Anacardium occidentale</i> . Curr Sci 1990; 59(9): 477–479.	AI0250	Siddiqui, S., B. S. Siddiqui, Ghiasuddin and S. Faizi. Tetracyclic triterpenoids of the fruit coats of <i>Azadirachta indica</i> . J Nat Prod 1991; 54(2): 408–415.
AI0243	Pasricha, J. S., P. Bhaumik and A. Agarwal. Contact dermatitis due to <i>Xanthium strumarium</i> . Indian J Dermatol Venereol	AI0251	Nagaraju, N. and K. N. Rao. A survey of plant crude drugs of Rayalaseema, Andhra Pradesh, India. J Ethnopharmacol 1990;
AI0244	Leprol 1990; 56(4): 319–321. Deshpande, S. G., B. A. Nagasampagi and R. N. Sharma. Synergistic oviposition deterrence activity of extracts of <i>Glycosmis pentaphyllum</i> (Rutaceae) and	AI0252	29(2): 137–158. Hussain, H. S. N. and Y. Y. Deeni. Plants in Kano ethnomedicine; screening for antimicrobial acti- vity and alkaloids. Int J Phar- macog 1991; 29(1): 51–56.

AI0253	Ali, M. A., M. Mikage, F. Kiuchi, Y. Tsuda and K. Kondo. Screening of crude drugs used in Bangladesh for nematocidal activity on the larva of <i>Toxocara canis</i> . Shoyakugaku Zasshi 1991; 45(3): 206–214. Shimizu, M., M. Takai, K. Inoue, T. Takeda and Y. Ogiwara. Anti-	AI0263	ization of a glyco-protein from neem (<i>Azadirachta indica</i>) gum. Indian J Biochem Biophys 1980; 17: 222–227. Ascher, K. R. S. and R. Gsell. The effect of neem seed kernel extract on <i>Epilachna varivestis</i> Muls. larvae. Z Pflanzenkr Pfla- nzenschutz 1981; 88: 764–767.
	tumor polysaccharides from <i>Melia azadirachta</i> bark extracts and their purification. Patent-Japan Kokai Tokkyo Koho-01 (275,602) 1989; 9 pp	AI0264	Nakov, N., O. Labode, and K. Akhtardzhiev. Study of the flavonoid composition of <i>Azadira-chta indica</i> . Farmatsiya (Sofia) 1982; 32: 24–28.
AI0255	Ibrahim, I. A., S. A. Khalid, S. A. Omer and S. E. I. Adam. On the toxicology of <i>Azadirachta indica</i> leaves. J Ethnopharmacol 1992; 35(3): 267–273.	AI0265	Chadha, S. S. Control of sesame gall midge (<i>Asphondylia sesami</i>) (Diptera, Cecidomyiidae) by cultural and chemical means. Cecidol Indica 1974; 9(3): 83–97.
AI0256 AI0257	Shin-Foon, C. Studies on plants as a source of insect growth regulators for crop protection. J Appl Ent 1989; 107: 185–192. Chauhan, J. S., N. K. Singh and	AI0266	Chavan S. R., D. M. Renopurkar and M. H. Shah. Mosquito larvicidal activity of <i>Azadira-chta indica</i> , A. Juss (neem leaves). Indian J Pharmacol 1981; 13:
	S. V. Singh. Screening of higher plants for specific herbicidal principle active against dodder, <i>Cuscuta reflexa</i> Roxb. Indian J Exp Biol 1989; 27(10): 877–	AI0267	96 Singh, N. and M. S. Sastry. Antimicrobial activity of neem oil. Indian J Pharmacol 1981; 13: 102
AI0258	884. Tandan, S. K., S. Chandra, S. Gupta, H. C. Tripath and J. Al. Pharmacological effects of <i>Azadirachta indica</i> leaves. Fitote-	AI0268	Sanyal, M. and P. C. Datta. Nimbin biosynthesis and the age of cultured callus from neem bark. Indian Drugs 1981; 19(2): 61–63. Siddiqui, S., S. Faizi and B. S.
AI0259	rapia 1990; 61(1): 75–. Karus, W., R. Cramer and G. Sawitzki. Tetranortriterpenoids from the seed of <i>Azadirachta indica</i> . Phytochemistry 1981; 20: 117–120.		Siddiqui. Studies on the chemical constituents of <i>Azadirachta indica</i> A. Juss (Meliaceae) Part I: Isolation and structure of a new tetranortriterpenoid-nimolicinol. Heterocycles 1984; 22(2):
AI0260	Okpanyi, S. N. and G. C. Eze- ukwu. Anti-inflammatory and antipyretic activities of <i>Azadira-</i> <i>chta indica</i> . Planta Med 1981; 41: 34–39.	AI0270	295–298. Phamiehuttra, P., W. Khonganantaphan, P. Piansiripinyo and W. Panichawatana. Antipyretic activity of <i>Azadirachta indica</i>
AI0261	Kraus, W. and R. Cramer. Pentanortriterpenoids from <i>Azadirachta indica</i> A. Juss (Meliaceae). Chem Ber 1981; 114: 2375–2381.	AI0271	Juss. in rabbit. Thai J Pharm Sci 1976; 2(3): 837–841. Mokkhasmit, M., K. Swatdimongkol and P. Satrawaha. Study on
AI0262	Nayak, B. R. and T. N. Pattabiraman. Studies on plant gums: Part VI-Isolation and character-		toxicity of Thai medicinal plants. Bull Dept Med Sci 1971; 12(2/4): 36–65.

AI0272	Chongsiri, A. and C. Suvagondha. The comparison study of four local bitters with gentian. J Pharm Ass Siam 1949; 2(4): 165–179.	AI0281	study of krimi roga. J Res Indian Med Yoga Homeopathy 1978; 13: 130–132. Deshpande, V. Y., K. N. Mendulkar and N. L. Sadre. Antifer-
AI0273	Satyanarayana Murty K., D. Narayana Rao, D. Krishna Rao and L. B. Gopalakrishna Murty. A preliminary study on hypoglycaemic and antihyperglycaemic effects of <i>Azadirachta in</i> -	AI0282	tility activity of Azadirachta indica in male mice. Abstr 4th Asian Symp Med Plants Spices Bangkok Thailand September 15–19 1980. 1980; 64 Kraus, W., R. Cramer, M. Bokel
AI0274	dica. Indian J Pharmacol 1978; 10: 247–250. Nayak, B. R. and T. N. Patta- biraman. Studies on plant gums: Part III - Isolation and character- ization of a glycopeptide from		and G. Sawitzki. New insect antifeedants from Azadirachta indica and Melia azedarach (Mel- iaceae). (Abstract). Abstr 4th Asian Symp Med Plants Spices Bangkok Thailand September
	neem (Azadirachta indica) gum after pronase digestion. Indian J Biochem Biophys 1978; 15: 449–455.	AI0283	15–19 1980. 1980; 126 Singh, N., N. Misra, S. P. Singh and R. P. Kohli. <i>Melia azadira-</i> <i>chta</i> in some common skin disor-
AI0275	Shankaranarayan, D. Effect of neem oil and its constituents on cotton pellet inflammation. Mediscope 1978; 20: 273–274.	AI0284	ders. Antiseptic 1979; 76: 677–680. Dhawan, B. N., M. P. Dubey, B. N. Mehrotra, R. P. Rastogi and J. S. Tandon. Screening of Ind-
AI0276	Yadav, S. K. and J. S. Rathore. Mitotic inhibition by <i>Melia aza-dirachta</i> leaf extracts. Proc Nat Acad Sci India Ser B 1976; 46:	AI0285	ian plants for biological activity. Part IV. Indian J Exp Biol 1980; 18: 594–606. Chavan, S. R., P. B. Deshmukh
AI0277	527 Qadri, S. S. H. and S. B. Hasan. Growth retardant effect of some indigenous plant seeds against rice weevil <i>Sitophilus oryzae</i>	AI0286	and D. M. Renapurkar. Investigation of indigenous plants for larvicidal activity. Bull Haff-kine Inst 1979; 7(2): 23–34. Zafarullah, M., H. Bano and S.
AI0278	(L). J Food Sci Technol 1978; 15: 121–123. Chadha S. S. Use of neem (<i>Aza</i> -		B. Vohora. Juzam (leprosy) and its treatment in Unani medicine. Compar Med East West 1980;
	dirachta indica A. Juss.) seed as a feeding inhibitor against Anti- gastra catalaunalis Dupon. (Lep- idoptera, Pyralidae): A sesame (Sesamum indicum L.) pest in Nigeria. E Afr Agr For J 1977;	AI0287	8: 370–384. Nayak, B. R. and T. N. Pattabiraman. Studies on plant gums: Part VIII - Isolation and characterization of a high molecular weight glycoprotein from neem
AI0279	42: 257–262. Lucke, J., S. Fuchs and W. Voelter. Isolation and structure-elucidation of a novel triterpenoid from <i>Melia azadirachta</i> . (Abstract). Planta Med 1980;	AI0288	(Azadirachta indica) gum. Indian J Biochem Biophys 1981; 18: 202–205. Fagoonee, I. and G. Lauge. Noxious effects of neem extracts on Crocidoloma binotalis. Phyto-
AI0280	39: 280–. Tyagi, R. K., M. K. Tyagi, H. R. Goyal and K. Sharma. A clinical	AI0289	parasitica 1981; 9(2): 111–118. Kraus, W. and R. Cramer. Novel tetranortriterpenoids with insect

AI0290	antifeeding activity from neem oil. Justus Liebigs Ann Chem 1981; 1981: 181–189. Deshpande, V. Y., K. N. Mendulkar and N. L. Sadre. Male an-	AI0299	Babbar, O. P., M. N. Joshi and A. R. Madan. Evaluation of plants for antiviral activity. Indian J Med Res Suppl 1982; 76: 54–65.
	tifertility activity of <i>Azadirachta</i> indica in mice. J Postgrad Med 1980; 26: 167–170.	AI0300	Vijayalakshimi, K., S. D. Mishra and S. K. Prasad. Nematicidal properties of some indigenous
AI0291	Pillai, L. R. and G. Santhakumari. Hypoglycaemic activity of <i>Melia azadirachta</i> Linn (neem). Indian J Pharmacol 1981; 13: 91–92.		plant materials against second stage juveniles of <i>Meloidogyne</i> incognita (Koffoid and White) chitwood. Indian J Entomol
AI0292	Fujiwara, T., T. Takeda, Y. Ogihara, M. Shimizu, T. Nomura and Y. Tomita. Studies on the structure of polysaccharides from	AI0301	1979; 41(4): 326–331. Sinha, K. C., S. S. Riar, R. S. Tiwary, A. K. Dhawan, J. Bard- han, P. Thomas, A. K. Kain and
	the bark of <i>Melia azadirachta</i> . Chem Pharm Bull 1982; 30: 4025–4030.		R. K. Jain. Neem oil as a vaginal contraceptive. Indian J Med Res 1984; 79: 131–136.
AI0293	Debelmas, A. M. and J. Hache. Toxicity of several medicinal plants of Nepal including some behavioral and central nervous system effects. Plant Med Phytother 1976; 10: 128–138.	AI0302	Jilani, G. and H. C. F. Su. Laboratory studies on several plant materials as insect repellents for protection of cereal grains. J Econ Entomol 1983; 76(1): 154–157.
AI0294	Lang, W. and H. Schmutterer. Experiments with synergists to improve the effect of the metamorphosis-disturbing properties of methanolic extracts of seeds of the neem tree (Azadirachta	AI0303	Atal, C. K., J. B. Srivasta, B. K. Wali, R. B. Chakravarty, B. N. Dhawan and R. P. Rastogi. Screening of Indian plants for biological activity. Part VIII. Indian J Exp Biol 1978; 16: 330–349.
AI0295	indica). Pflanzenkr Pflanzenschutz 1982; 89: 258–265. Reed, D. K., J. D. Warthen Jr, E. C. Uebel and G. L. Reed. Effects of two triterpenoids from neem on feeding by cucumber beetles (Coleoptera: Chrysomelidae). J	AI0304	Bruhn, A., M. Bokel and W. Kraus. 4A,-6A-Dihydroxy-A Homoazadiron, a new tetranortriterpenoid from <i>Azadirachta indica</i> A. Juss. (Meliaceae). Tetrahedron Lett 1984; 25(34): 3961–3962.
AI0296	Econ Entomol 1982; 75(6): 1109–1113. Shah, N. C. Herbal folk medicines in Northern India. J Ethnopharmacol 1982; 6(3): 293–301.	AI0305	Shimuzu, M. and T. Nomura. Polysaccharides and therapeutic compositions containing them. Patent-Fr Demande-2,522,001 1982; 41 pp
AI0297	Vijjan, V. K., H. C. Tripathi and N. S. Parihar. A note on the toxicity of neem (<i>Azadirachta indica</i>)	AI0306	Garg, H. S. and D. S. Bhakuni. Salannolide, a meliacin from <i>Azadirachta indica</i> . Phytochemis
AI0298	seed cake in sheep. J Environ Biol 1982; 3(2): 47–52. Vijayasarathy, V., L. K. Sharma and A. Prakash. Indigenous drug treatment for hemorrhoids. Probe 1981; 20(4): 285–287.	AI0307	try 1984; 23(10): 2383–2385. Garg, H. S. and D. S. Bhakuni. An isoprenylated flavanone from leaves of <i>Azadirachta indica</i> . Phytochemistry 1984; 23(9): 2115–2118.

AI0308	Kalyanasundaram, M. and C. J. Babu. Biologically active plant extracts as mosquito larvicides. Indian J Med Res Suppl 1982; 76: 102–106.	AI0318	Reed, D. K., M. Jacobson, J. D. Warthen Jr., E.C. Uebel, N. J. Tromley, L. Jurd and B. Freedman. Cucumber beetle antifeedants. Laboratory screening of
AI0309	Pillai, N. R. and G. Santhakumari. Effects of nimbidin on acute and chronic gastro-duodenal ulcer models in experimental animals.	AI0319	natural products. USDA Sci Educ Admin Tech Bull 1981; 1641: 1–11. Barde, A. K. and S. M. Singh.
AI0310	Planta Med 1984; 1984: 143–146. Khare, A. K., M. C. Srivastava, M. K. Sharma and J. P. Tewari. Antifertility activity of neem oil in rabbits and rats. Probe 1984;	1110317	Activity of plant extracts against <i>Scytalidium anamorph</i> of <i>Hendersonula toruloidea</i> causing skin and nail diseases in man. Indian Drugs 1983; 20(9): 362–364.
AI0311	23(2): 90–94. Pillai, N. G. K., K. G. B. Pillai, P. B. Kurup and C. P. R. Nair.	AI0320	Shaheen, T., R. Ahmad and M. J. Qureshi. Total phenolics of neem plant. Pak J Sci 1984; 33(1/4): 45–47.
AI0312	Ropana Guna of Nimbatikta in Dushta Vrana - A case report. Vagbhata 1983; 1(6): 37–38. Fujiwara, T., T. Takeda, Y. Ogi- hara, M. Shimizu, T. Nomura	AI0321	Jain, S. P. and D. M. Verma. Medicinal plants in the folk- lore of North-east Haryana. Natl Acad Sci Lett (India) 1981; 4
	and Y. Tomita. Further studies on the structure of polysaccharides from the bark of <i>Melia azadirachta</i> (III). Shoyakugaku	AI0322	(7): 269–271. Fagoonee, I. Effect of azadirachtin and of a neem extract on food utilization by <i>Crocidolomia binotalis</i> . Schriftner Gtz 1984;
AI0313	Zasshi 1984; 38(4): 334–340. Kurup, P. B., R. K. G. B. Pillai and C. P. R. Nair. Clinical trials on pama, infected scabies. Vegb- hata 1983; 1(5): 5–6.	AI0323	161: 211–223. Sharma, H. C., K. Leuschner, A. V. B. Sankaram, D. Gunasekhar, M. Marthandamurthi, K. Bha-
AI0314	Bhandari, D. S. and H. N. Govil. Evaluation of fodder tree leaves for sheep and goat in semiarid area of Rajasthan. J Nucl Agric Biol 1978; 7(3): 110–113.		skariah, M. Subramanyam and N. Sultana. Insect antifeedants and growth inhibitors from Azadirachta indica and Plumbago zeylanica. Schriftner Gtz 1984;
AI0315	Tripathi, R. K. R. and R. N. Tripathi. Reduction in Bean Common Mosaic Virus (BCMV) infectivity vis-a-vis crude leaf extract of some higher plants. Experientia 1982; 38(3): 349.	AI0324	Jongen, W. M. F. and J. H. Koeman. Mutagenicity testing of two tropical plant materials with pesticidal potential in Salmonella typhimurium: Phytolacca
AI0316	Sinha, K. C., S. S. Riar, J. Bardhan, P. Thomas, A. K. Kain and R. K. Jain. Anti-implantation effect of neem oil. Indian J Med		dodecandra berries and oil from seeds of Azadirachta indica. Environ Mutagen 1983; 5: 687–694.
AI0317	Res 1984; 80(6): 708–710. Deka, L., R. Majumdar and A. M. Dutta. Some ayurvedic important plants from district Kam-	AI0325	Mossa, J. S. A study on the crude antidiabetic drugs used in Arabian folk medicine. Int J Crude Drug Res 1985; 23(3): 137–145.
	rup (Assam). Ancient Sci Life 1983; 3(2): 108–115.	AI0326	Singh, R. P. and S. Singh. Evaluation of deoiled neem (Azadi-

	rachta indica A Juss) seed ker-	AI0336	Anon. Antitumor polysaccharide
	nel against Trogoderma grana-		(N9G1) from Melia azadirachta.
	riun Eversts. Curr Sci 1985;		Patent-Japan Kokai Tokkyo
	54(18): 950–951.		Koho-60 42,329 1985; 7 pp
AI0327	Meisner, J. and K. R. S. Ascher.	AI0337	Shimizu, M., T. Sudo and T.
	Insect growth-regulating (IGR)		Nomura. China tree bark extract
	effects of neem products on		with antineoplastic action. Patent-
	Spodoptera littoralis. Schrif-		Swiss-650,404 1985; 12 pp
	tenr Gtz 1984; 161: 345–351.	AI0338	Anon. Production of antitumor
AI0328	Ascher, K. R. S., M. Eliyahu, N.		polysaccharide N9G1 from Melia
	E. Nemny and J. Meisner. Neem		azadirachta bark. Patent-Japan
	seed kernel extract as an inhibi-		Kokai Tokkyo Koho-60 19,717
	tor of growth and fecundity in		1985; 10 pp
	Spodoptera littoralis. Schrif-	AI0339	Chiu, S. F. and Y. G. Zhang.
	tenr Gtz 1984; 161: 331–344.		Effects of some plant materials
AI0329	Mansour, F. A. and K. R. S.		on Meliaceae on fifth instar lar-
	Ascher. Effects of neem (Azadi-		vae of Spodeptera litura as feed-
	rachta indica) seed kernel ex-		ing inhibitors. Neem Newslett
	tracts from different solvents on		1984; 1(3): 23–24.
	the Carmine spider mite, Tetra-	AI0340	Hussein Ayoub, S. M. and L. K.
	nychus cinnabarinus. Schrif-		Yankov. Potential molluscicides
	tenr Gtz 1984; 161: 461–469.		from some tannin containing plants
AI0330	Prakash, A. O. Potentialities of		growing in the Sudan. Fitotera-
	some indigenous plants for anti-		pia 1985; 56(6): 371–373.
	fertility activity. Int J Crude	AI0341	Abatan, M. O. and M. J. Makinde.
	Drug Res 1986; 24(1): 19–24.		Screening Azadirachta indica
AI0331	Khattak, S. G., S. N. Gilani and		and Pisum sativum for possible
	M. Ikram. Antipyretic studies on		antimalarial activities. J Ethno -
	some indigenous Pakistani med-	4 702 42	pharmacol 1986; 17(1): 85–93.
	icinal plants. J Ethnopharma-	AI0342	Dixit, V. P., R. Sinha and R.
	col 1985; 14(1): 45–51.		Tank. Effect of neem seed oil on
AI0332	Bhanotar, R. K. and Y. N. Sri-		the blood glucose concentration
	vastava. Effect of neem kernel		of normal and alloxan diabetic
	suspension on the development		rats. J Ethnopharmacol 1986;
	of eggs of desert locust, Schisto-	AI0343	17(1): 95–98. Namba, T., M. Tsunezuka, D. M.
	cerca gregaria (Forskal). Neem	A10343	R. B. Dissanayake, U. Pilapitiya,
AI0333	Newslett 1984; 1(3): 30–. Singh, R. P. Effect of water ex-		K. Saito, N. Kakiuchi and M.
Alusss			Hattori. Studies on dental caries
	tract of deoiled neem kernel on second instar larvae of <i>Culex fati</i> -		prevention by traditional medi-
	gans Weidemann. Neem News-		cines (Part VII) screening of ayur-
	lett 1984; 1(2): 16–17.		vedic medicines for anti-plaque
AI0334	Yadav, T. D. Efficacy of neem		action. Shoyakugaku Zasshi
1110331	(Azadirachta indica A. Juss.)		1985; 39(2): 146–153.
	kernel powder as seed treatment	AI0344	Sharma, M. K., A. K. Khare and
	against pulse beetles. Neem		H. Feroz. Effect of neem oil on
	Newslett 1984; 1(2): 13–15.		blood sugar levels of normal,
AI0335	Ayoub, S. M. H. and L. K.		hyperglycaemic and diabetic ani-
	Yankov. The molluscicidal fac-		mals. Nagarjun 1983; 26(10):
	tor of tannin-bearing plants. Int		247–250.
	J Crude Drug Res 1986; 24(1):	AI0345	Satyanarayana, R. R. and K. P.
	16–18.		Srivastava. Evaluation of neem

AI0346	formulations against sorghum earhead worm. Neem Newslett 1984; 1(4): 37–38. Van Der Nat, J. M., J. P. A. M. Klerx, H. Van Dijk, K. T. D. De Silva and R.P. Labadie. Immodulatory activity of an aqueous extract of the stem bark of <i>Azadirachta indica</i> . Proc 34th An-	AI0354	Lal, R., M. Ghandhi, A. Sankaranarayanan, V. S. Mathur and P. L. Sharma. Antifertility effect of <i>Azadirachta indica</i> oil administered per os to female albino rats on selected days of pregnancy. Fitoterapia 1987; 58(4): 239–242. Hemadri, K. and S. S. Rao, Jaun-
AI0347	nual Congress on Medicinal Plant Research-Hamburg Sept 22–27, 1986. Hellpap, C. Effects of neem ker-	AI0355	dice: tribal medicine. Ancient Sci Life 1984; 3(4): 209–212. Obaseki, O. and H. A. Jegede Fadunsin. The antimalarial acti-
	nel extracts on the fall armyworm, <i>Spodoptera Frugiperda</i> . Schriftner Gtz 1984; 1984: 353–363.	AI0356	vity of Azadirachta indica. Fito- terapia 1986; 57(4): 247–251. Van Der Nat, J. M., J. P. A. M. Klerx, H. Van Dijk, K. T. D. De
AI0348	Krishna Reddy, M., C. K. Kokate and N. Chari. Anti-ovulatory effect of different crude drug combinations in female albino rats. Ancient Sci Life		Silva and R. P. Labadie. Immunomodulatory activity of an aqueous extract of <i>Azadirachta indica</i> stem bark. J Ethnopharmacol 1987; 19(2): 125–131.
AI0349	1984; 4(2): 132–134. Kannaiyan, S., M. Thangaraju and G. Oblisami. Influence of neem cake on the growth of Az- olla pinnata. Madras Agr J	AI0357	Ikram, M., S. G. Khattak and S. N. Gilani. Antipyretic studies on some indigenous Pakistani medicinal plants: II. J Ethnopharmacol 1987; 19(2): 185–192.
AI0350	1984; 71(1): 66–67. Chakraborty, T. and G. Poddar. Herbal drugs in diabetes - Part I: hypoglycaemic activity of indig- enous plants in streptozotocin	AI0358	Sharma, V. K. and S. Kaur. Contact dermatitis due to plants in Chandigarh. Indian J Dermatol Venereol Leprol 1987; 53(1): 26–30.
	(STZ) induced diabetic rats. J Inst Chem (India) 1984; 56(1): 20–22.	AI0359	Van Der Nat, J. M., W. G. Van Der Sluis, Ahjm De Haan, K. T. D. De Silva and R. P. Labdue.
AI0351	Rao, D. V. K., I. Singh, P. Chopra, P. C. Chhabra and G. Ramanujalu. In vitro antibacterial activity of neem oil. Indian J Med		Ethnopharmacological study of <i>Azadirachta indica</i> . A conceptual evaluation. Planta Med 1986; 1986(6): 552–A.
AI0352	Res 1986; 84(9): 314–316. Tewari, G. C. and P. N. Krishna Moorthy. Plant extracts as anti- feedants against <i>Henosepilachna</i> vigintioctopunctata (Fabricius)	AI0360	Zaidi, Z. B., V. P. Gupta, A. Samad and Q. A. Naqvi. Inhibition of Spinach Mosaic Virus by extracts of some medicinal plants.
AI0353	and their effect on its parasite. Indian J Agr Sci 1985; 55(2): 120–124. Muley, E. V. Biological and chemical control of the vector snail Melania scabra (Gastropoda: Prosobranchia). Bull Zool Surv India 1978; 1(1): 1–5.	AI0361	Curr Sci 1988; 57(3): 151–152. Van Der Nat, J. M., R. P. Labadie, A. Abeysekera, A. Bamunuarachchi, S. Ratnayake and K. T. D. De Silva. In vitro immunomodulation by Sri Lanka plants. Part 2. Effects in the migration inhibition factor (MIF) test. Pharm Weekbl (Sci Ed) 1987; 9(2): 159–.

AI0362	Kamboj, V. P. A review of Indian medicinal plants with interceptive activity. Indian J Med	AI0372	jaundice (Kamala). Sachitra Ayurved 1985; 37(2): 89–94. Van Der Nat, J. M., L. A. T. Hart,
AI0363	Res 1988; 1988(4): 336–355. Prakash, A. O., R.K. Tewari and R. Mathur. Non-hormonal post- coital contraceptive action of neem oil in rats. J Ethnophar- macol 1988; 23(1): 53–59.		W. G. Van Der Sluis and R. P. Labadie. Two functionally different immunomodulators from an aqueous bark extract of <i>Azadirachta indica</i> A. Juss. (Meliaceae). Pharm Weekbl (Sci Ed)
AI0364	Twwari, R. K., R. Mathur and A. O. Prakash. Post-coital antifertility effect of neem oil in female albino rats. Icrs Med Sci 1986; 14(10): 1005–1006.	AI0373	1987; 9(4): 224–. Riar, S.S., J. Bardhan, P. Tho- mas, A.K. Kain and R. Parshad. Mechanism of antifertility action of neem oil. Indian J Med Res
AI0365	Islam, B. N. Pesticidal action of neem and certain indigenous plants and weeds of Bangladesh. Schriftner Gtz 1984; 161: 263–290.	AI0374	1988; 88(4): 339–342. Lang, W. Piperonyl butoxide: synergistic effects on different neem seed extracts and influence on degradation of an enriched
AI0366	Kumar, A. and G. P. Dutta. Indigenous plant oils as larvicidal agent against <i>Anopheles stephensi</i> mosquitoes. Curr Sci 1987; 56(18): 959–960.	AI0375	extract by ultra-violet. Schriftner Gtz 1984; 161: 129–139. Renu. Fungitoxicity of leaf extracts of some higher plants against <i>Rhizoctonia solani</i> Kuehn.
AI0367	Singh, P. P., A. Y. Junnarkar, G. S. Reddi and K. V. Singh. <i>Azadirachta indica</i> : Neuro-psychopharmacological and antimicrobial studies. Fitoterapia 1987; 58(4): 235–238.	AI0376	Nat Acad Sci Lett 1983; 6(8): 245–246. Prakash, A. O., A. Mishra, H. Metha and R. Mathur. Effect of ethanolic extract of <i>Azadirachta indica</i> seeds on organs in female
AI0368	Badam, L., R. P. Deolankar, M. M. Kulkarni, B. A. Nagsampgi and U. V. Wagh. In vitro antimalarial activity of neem (<i>Azadirachta indica</i> A. Juss) leaf and seed extracts. Indian J Malerio	AI0377	rats. Fitoterapia 1991; 62(2): 99–105. Choudhary, D. N., J. N. Singh, S. K. Verma and B. P. Singh. Antifertility effects of leaf extracts of some plants in male rats. Indian
AI0369	1987; 24(2): 111–117. Tiwary, R. S. Neem leaf poisoning. J Ass Phys India 1985; 33(12): 817–.	AI0378	J Exp Biol 1990; 28(8): 714–716. Riar, S. S., C. Devakumar, R. C. Sawhney, G. Ilavazhagan, J. Bardhan, A. K. Kain, P. Thomas, R.
AI0370	Krishna Reddy, M., N. Chari, C. K. Kokate, G. Sathaiah and Vidyavati. Mitodepressive & clastogenic activity of crude drug com-		Singh, B. Singh and R. Parshad. Antifertility activity of volatile fraction of neem oil. Contraception 1991; 44(3): 319–326.
AI0371	binations on the somatic cells of <i>Foeniculum vulgare</i> Mill-I. East Pharm 1984; 27(319): 125–127. Dwivedi, M. L., S. V. Tripathi	AI0379	Abraham, Z., S. D. Bhakuni, H. S. Garg, A. K. Goel, B. N. Mehrotra and G. K. Patnaik. Screening of Indian plants for biological activity. Part XII. Indian I Exp.
A103/1	and H. S. Dwivedi. Role of <i>Phalatrikadi kashaya & Arogyayardhini vati</i> in the treatment of	AI0380	activity. Part XII. Indian J Exp Biol 1986; 24(1986): 48–68. Shaikh, P. D., B. Manivannan, K. M. Pathan, M. Kasturi and R.

AI0381	N. Ahamed. Antispermatic activity of Azadirachta indica leaves in albino rats. Curr Sci 1993; 64(9): 688–689. Upadhyay, S., S. Dhawan and G. P. Talwar. Antifertility effects of neem (Azadirachta indica) oil in male rats by single intra-vas administration: An alternate approach to vasectomy. J Androl 1003: 14(4): 275–281	AI0390 AI0391	XIX. Drugs allied to thyme. Ind- 1995; ian J Med Res 1923; 11: 353 Dragendorff, G. Die Heilpflan- zen der Verschiedenen Volker und Zeiten, F. Enke, Stuttgart, 1898; 1898: 885 pp Nayak, B. R., N. M. Rao and T. N. Pattabiraman. Studies on plant gums. Proteases in neem (Azadi-
AI0382	1993; 14(4): 275–281. Juneja, S. C. and R. S. Williams. Mouse sperm-egg interaction in vitro in the presence of neem oil. Life Sci 1993; 53(18): 279–284.	AI0392	rachta indica) gum. J Biol Sci 1979; 1: 393–400. Pachapurkar, R. V., P. M. Kornula and C. R. Narayanan. A new hexacyclic tetranortriterpe-
AI0383	Mukerji, B. and S. K. Gupta. Indigenous drugs in experimental tuberculosis. Chemotherapy Proc Symposium Lucknow 1958	AI0393	noid. Chem Lett 1974; 1974: 357-358. Lavie, D., C. Levy and M. K. Jain. Limonoids of biogenetic
AI0384	1959; (1959): 90–. Patel, R. P. and B. M. Trivedi. The in vitro antibacterial activity of some medicinal oils. Ind-	AI0394	interest from <i>Melia azadirachta</i> L. Tetrahedron 1971; 27: 3927–3939. Lavie, D., M. K. Jain and S. R.
AI0385	ian J Med Res 1962; 50: 218–. Basak, S. P. and D. P. Chakrab- orty. Chemical investigation of Azadirachta indica leaf. J Indian		Shpan-Gabrielith. A locust phagorepellent from two Melia species. Chem Commun 1967; 1967(18): 910–911.
AI0386	Chem Soc 1968; 45: 466–467. Malik, M. Y., A. A. Sheikh and W. H. Shah. Chemical compo- sition of indigenous fodder tree	AI0395	Narayanan, C. R. and K. N. Iyer. Isolation and characterization of deacetylnimbin. Indian J Chem 1967; 5(9): 460–.
	leaves. Pak J Sci 1967; 19: 171–.	AI0396	Thampuran, K. R. V. and E. C. Mathew. Use of margosa bark
AI0387	Upadhya, G. S., G. Narayanaswamy and A. R. S. Kartha. Note on the comparative development		for E. 1. Tanning. Bull Central Leather Research Inst Madras 1961; 7: 276–277.
	of fatty acids in ripening seeds of 6 dicot species producing C16-C18 acid fats. Indian J Agr Sci 1974; 44: 620–.	AI0397	Sengupta, P., S. N. Choudhuri and H. N. Khastgir. Terpenoids and related compounds. I. Con- stituents of the trunk bark of
AI0388	Ekong, D. E. U., E. O. Olagbemi and A. I. Spiff. Cycloeucalenol and 24-methylenecycloartanol		Melia azadirachta and the structure of the oxophenol, nimbiol. Tetrahedron 1960; 10: 45–54.
A T0200	on wood oils from the family Meliaceae. Chem Ind (London) 1968; 1968: 1808	AI0398	Sengupta, P., S. Choudhury and H. Khastgir. Trunk bark of <i>Melia azadirachta</i> . Chem Ind (Lon-
AI0389	Caius, J. F. and K. S. Mhaskar. The correlation between the chemical composition of anthelmintics and their therapeutic value in connection with the hook worm inquiry in the Madras presidency.	AI0399	don) 1958; 1958: 861–862. Subramanian, S. S. and A. G. R. Nair. Melicitrin, a new myricetin glycoside from the flowers of <i>Melia azadirachta</i> . Indian J Chem 1972; 10(4): 452–.

AI0400 AI0401	Sirsi, M. In vitro study of the inhibitory action of some chemotherapeutic agents on a freshly isolated strain of <i>Cryptococcus neoformans</i> . Hindustan Antibiot Bull 1963; 6(2): 39–40. Narayanan, C. R., R. V. Pacha-	AI0404	Mitra, C. R., H. S. Garg and G. N. Pandey. Constituents of <i>Azadirachta indica</i> . Part III. Identification of nimbidic acid and nimbidinin from <i>Azadirachta indica</i> . Phytochemistry 1971; 10: 857–864.
	purkar, B. M. Sawant and M. S. Wadia. Vepinin, a new constituent of neem oil. Indian J Chem 1969; 7(2): 187–.	AI0405	Bhasin, H. D. Annual report of the entomologist to government, Punjab, Lyallpur, for the year 1924–25. Rept Operations Dept
AI0402	Narasimhan, N. S. The structure of nimbin. I. The nature of the functional groups. Chem Ber 1959; 92: 769–775.	AI0406	Agr Punjab 1926; 1(II): 69–121. Mokkhasmit, M., W. Ngarmwathana, K. Sawasdimongkol and U. Permphiphat. Pharmacologi-
AI0403	Ekong, D. E. U., C. O. Fakunle, A. K. Fasina and J. I. Okogun. The meliacins (limonoids). Nimbolin A and B, two new meliacin cinnamates from <i>Azadirachta indica</i> L. and <i>Melia azedarach</i> L. Chem Commun 1969; 1969: 1166–1167.	AI0407	cal evaluation of Thai medicinal plants. (Continued). J Med Ass Thailand 1971; 54(7): 490–504. Anon. Unpublished data, National Cancer Institute. Nat Cancer Inst Central Files , 1976.

7 Echinacea angustifolia

L.

Common Names

American coneflower	USA	Kansas snakeroot	USA
Black sampson	USA	Ksapitahako	USA
Black susans	USA	Mika-Hi	USA
Comb flower	USA	Nigger head	USA
Cone flower	USA	On glakcapi	USA
Echinaceae	USA	Pale-purple coneflower	USA
Echinaceae	Europe	Purple cone flower	USA
Hedgehog	USA	Sampson root	USA
Icahpe Hu	USA	Sapariou hahts	USA
Inshtogahte-Hi	USA	Scurvy root	USA
Kansas niggerhead	USA		

BOTANICAL DESCRIPTION

A perennial herb of the COMPOSITAE family that grows up to 45 cm. The leaves are sparse, solitary, lanceolate to linear, opposite or alternate with rough surface. 7.5 to 20 cm long, entire margined on slender petioles. The dried rhizome is grayishbrown, often twisted, longitudinally furrowed, up to about 1 cm in diameter. The transverse section shows a thin bark and a yellowish porous wood flecked with black. The flower heads are large and solitary on terminal peduncles with spreading ray florets. The bracts are in a number of rows. The bracts are dry or leafy, rigid, thorny tipped, and longer than the conical erect disc florets. The reddish or occasionally white florets are conspicuous, usually sterile lingual florets and 3 cm long.

ORIGIN AND DISTRIBUTION

This species grows in the western United States and in Europe. Other species grow in the middle and eastern United States. It is now cultivated in Europe and North America.

TRADITIONAL MEDICINAL USES

India. The root is used as an antivenin^{EA0135}. **Italy.** Hot water extract of the dried leaf is taken orally for inflammations^{EA0146}.

USA. Decoction of the fresh leaf, and root are taken orally to treat sore mouth and gums. Externally, the decoction is used to relieve pain, and the tea is rubbed onto the

sore neck. The tea, when allowed in contact with sore tooth, relieves toothache EA0132. Hot water extract of the rhizome is taken orally as an aphrodisiac^{EA0126}. Hot water extract of the rhizome and root is used externally as an antiseptic. The extract is taken orally as a peripheral vasodilator, for headaches, to treat enlarged glands and for stomach cramps^{EA0125}. Fluid extract of the dried rhizome and root is taken orally in 2 to 4 gram doses as a sodorific in malaria, to improve the appetite, to treat the bites of poisonous snakes and insects, as a diaphoretic, sialagogue, diuretic, aphrodisiac, cholagogue, analgesic, to treat tuberculosis and as a blood purifier in treating such conditions as septicemia, typhoid fever, furunculosis, carbuncles, abscesses, diptheria, and gangrene. The fluid extract is also administered by gastric intubation to control diarrhea in calves EA0111. A medical account in 1905 highlighted the effectiveness of Echinacea angustifolia in a number of septic conditions, such as blood poisoning, tetanus, insect and snake bites, and septic fevers. It claimed that in 1870, Dr. H. F. C. Meyer of Nebraska declared that in several instances he had allowed himself to be bitten by a rattlesnake, and had then bathed the bite in strong tincture of Echinacea in addition to taking several drams of the tincture internally EA0135. The fresh fruit is eaten when thirsty or perspiring. The root is used to treat pain in the bowels, bellyache, and toothache EA0132. The root is used for healing inflammations and wounds, and as an analgesic^{EA0100}. Fluid extract of the dried root is taken orally for impotency, blood disorders, typhus, and meningitis. Rectally, the fluid extract is used for the treatment of hemorrhoids, and topically for the treatment of wounds and carbuncles. Hot water extract of the dried root is taken orally by the Sioux Indians for wound healing and as a snake bite remedy. It leaves a warm and

tingling sensation in the mouth and is sufficiently irritating to produce a prickly sensation and a slight blistering effect on mucous surfaces of the lips. Tincture of the root is taken orally to relieve nausea and high fevers, to alleviate diarrhea accompanying septic conditions, and to relieve the pain of gastric cancer. The tincture is considered a valuable substitute for morphine in many cases^{EA0105}. It is taken orally for smallpox to abate the fever, and is used externally for the irritation and inflammation of poison ivy dermatitis EA0107. The fresh root is scraped and administered internally to hasten the healing of wounds. Infusion of the root is taken orally in septic conditions as an adjunct to surgical treatments^{EA0105}. The hot water extract of dried root is taken orally as a diaphoretic. The root is steeped in a cup of boiling water for half an hour. A tablespoonful is then taken 3 to 6 times a day EA0181. Water extract of the fresh root is used externally as an antidote for snakebite and other bites, stings, and poisonous conditions. The extract is also taken orally for rabies, mumps, bellyache, pain in the bowels, measles, and as a cough medicine. It is used externally to treat putrefied wounds, and as an eyewash to treat sore eyes. To relieve inflammation, the ground up root is applied to areas of inflammation. The macerated root is applied externally as a local anaesthetic. A piece of root is chewed to treat colds, sore throat, and to stimulate the flow of saliva. Decoction of the fresh root is taken orally to treat rheumatism and arthritis. The root is made into a salve and used externally to treat rheumatism and arthritis. Decoction of the root, mixed with Mentzelia laevicaulis (blazing star), is taken orally to treat smallpox. The root, mixed with puffball spores (Lycoperdon) and skunk oil, is used externally to treat boils. The root is cut up and put into the feed of livestock as a treatment to improve the appetite EA0132.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Alkanes (C10-C33): Lf EA0160, EA0138

Ash: RtEA0106

Betaine: Rt 0.1%^{EA0108} Caffeic acid: Pl^{EA0136,EA0119} Caftaric acid: Rt^{EA0131} Cerotic acid: Rt^{EA0108}

Chichoric acid dimethyl ether: Pl^{EA0140} Chichoric acid monomethyl ether: Rt^{EA0140}

Chichoric acid: Pl^{EA0140}

Chicoric acid: PlEA0131,EA0136,EA0119

Chlorogenic acid: Aer^{EA0118} Chlorogenic acid iso: Aer^{EA0118}

Cynarin: Rt^{EA0133,EA0184,EA0131,EA0155,EA0156}

Dodeca-2-4-8-10-tetraen-1-oic acid isobutylamide: Rt 0.03%^{EA0115}

Dodeca-2-trans-4-cis-10-cis-trien-8-ynoic acid iso-butylamide: Rt^{EA0150}

Dodeca-2-trans-4-cis-diene 8,10-diynoic acid iso-butylamide: Pl^{EA0150}

Dodeca-2-trans-4-trans-10-cis-trien-8-ynoic acid iso-butylamide: Aer^{EA0150}

Dodeca-2-trans-4-trans-8-cis-10-cistetraenoic acid iso-butylamide: Rt, Aer^{EA0150}

Dodeca-2-trans-4-trans-8-cis-10-transtetraenoic acid iso-butylamide: Rt, Aer^{EA0150}

Dodeca-2-trans-4-trans-8-cis-trienoic acid iso-butylamide: Aer^{EA0150}

Dodeca-2-trans-4-trans-dienoic acid isobutylamide: Rt^{EA0150}

Dodeca-2-trans-ene-8,10-diynoic acid 2-methyl-butylamide: Rt^{EA0150}

Dodeca-2-trans-ene-8,10-diynoic acid isobutylamide: Rt^{EA0150}

Dodeca-cis-2-trans-4-diene-8,10-diyn-1-oic acid iso-butylamide: Rt 0.30%^{EA0115}

Dodeca-trans-2-cis-4-cis-10-trien-8-ynoic acid iso-butylamide: Aer, Rt, 137EA0149,EA0151,EA0103,EA0155,EA0156

Dodeca-trans-2-cis-4-cis-8-trienoic aci isobutyramide: Pl^{EA0119}

Dodeca-trans-2-cis-4-dien-8,10-diyne acid iso-butyramide: Pl^{EA0119}

Dodeca-trans-2-cis-4-diene-8,10-diynoic acid iso-butylamide: Rt 68^{EA0149}

Dodeca-trans-2-cis-4-diene-8,10-diynoic acid-n-iso-butylamide: Aer^{EA0118}

Dodeca-trans-2-ene-8,10-diynoic acid 2-methyl-butylamide: Rt 68^{EA0149}

Dodeca-trans-2-ene-8,10-diynoic acid isobutylamide: Rt 0.024%^{EA0149,EA0133}

Dodeca-trans-2-trans-4-cis-10-triend-8-ynoic acid-n-iso-butylamide: Aer^{EA0118}

Dodeca-trans-2-trans-4-cis-8-cis-10-tetraenoic acid iso-butylamide: Rt^{EA0149}

Dodeca-trans-2-trans-4-cis-8-cis-10tetraenoic acid iso-butyramide: Pl^{EA0119}

Dodeca-trans-2-trans-4-cis-8-cis-10tetraenoic acid-n-iso-butylamide: Aer^{EA0118}

Dodeca-trans-2-trans-4-cis-8-trans-10tetraenoic acid iso-butylamide: Rt^{EA0149}

Dodeca-trans-2-trans-4-cis-8-trans-10tetraenoic acid iso-butyramide: Pl^{EA0119}

Dodeca-trans-2-trans-4-cis-8-trans-10tetraenoic acid-n-iso-butylamide: Aer^{EA0118}

Dodeca-trans-2-trans-4-cis-8-trienoic acidn-iso-butylamide: Aer^{EA0118}

Dodeca-trans-2-trans-4-dienoic acid isobutylamide: Rt 0.01% EA0149

Dodeca-trans-2-trans-4-trans-10-trien-8-yne acid iso-butyramide: Pl^{EA0119}

Echinacea Factor A: Rt^{EA0173} Echinacea Factor B: Rt^{EA0173}

Echinacea polysaccharide: Pl^{EA0157,EA0145}

Echinacein: Rt 400^{EA0100} Echinacin B: Rt^{EA0180} Echinacoside 1: Rt^{EA0139} Echinacoside 2: Rt^{EA0139} Echinacoside:

P|EA0133,EA0184,EA0154,EA0161,EA0140

Echinolone: Rt 30^{EA0162,EA0159}

Essential oil: Rt 0.04-1.30%^{EA0114,EA0176,EA0101}

Glycine-betaine: Fl 0.805%, Lf 0.113%, St 0.49%, Rt 0.31% EA0148

Hexadeca-2-trans-9-cis-diene-12,14diynoic acid iso-butylamide: Rt^{EA0150}

Hexadeca-trans-2-cis-9-diene-12,14-diynoic acid iso-butyl amide:

Rt 6.8^{EA0149}

Hydrocarbons: Rt EO^{EA0175} Inulin: Rt 5-9%^{EA0108} Linoleic acid: Rt^{EA0108} Myristic acid: Rt^{EA0101}

Oleic acid: Rt

Palmitic acid: Rt^{EA0108} Pentadec-1-ene: Rt^{EA0101}

Pentadec-8-en-2-one: Rt 0.4%^{EA0112} Pentadec-trans-9-ene-1i,13-diyn-2-one 8-

hydroxy: Rt^{EA0142}

Pentadeca-1-cis-8-diene: RtEA0101

Pentadeca-2-trans-9-cis-diene-12,14diynoic acid iso-butylamide: Rt^{EA0150}

Pentadeca-trans-2-cis-9-diene-12,14diynoic acid iso-butylamide: Rt^{EA0149}

Pentadeca-trans-9-cis-13-dien-11-yn-2-one-

8-hydroxy: Rt^{EA0141}

Pentadeca-trans-9-cis-13-diene-11-yn-2-

one-8-hydroxy: Rt^{EA0142}

Pentadeca-trans-9-en-11,13-diyn-2-one-8hydroxy: Rt^{EA0141}

Rutin: PlEA0136,EA0119 Sitosterol,beta: RtEA0150 Sucrose: Rt 6.92%EA0179

Tartaric acid,2-caffeoyl: Pl^{EA0136,EA0119} Tetradeca-5,12-diene, 2-methyl: Rt^{EA0101} Tetradeca-6,12-diene, 2-methyl: Rt^{EA0101} Tridec-1-ene-3,5,7,9,11-pentayne: St

0.05%, Fl 0.08%, Rt 0.9%^{EA0112}

Tridec-1,3-diene-5,7,9,11-tetrayne: Rt 0.01%^{EA0112}

Trideca-1,5-diene-7,9,11-triyne, 3,4-epoxy: Rt 1.0%, St 0.01% EA0112

Trideca-2-trans-7-cis-diene-10,12-diynoic acid iso-butylamine: Rt^{EA0150}

Trideca-8,10,12-triene-2,4,6-triyne: Rt 0.02%, Fl tr^{EA0112}

Trideca-trans-2-cis-7-diene-10,12-diynoic acid iso-butylamide: Rt 6.8^{EA0149}

Tussilagine: Pl^{ÉA0143}
Tussilagine,iso: Pl^{EA0143}

Undeca-2-cis-4-trans-diene-8,10-diynoic acid iso-butylamide: Rt^{EA0150}

Undeca-2-cis-ene-8,10-diynoic acid, 2-methyl-butylamide: Rt^{EA0150}

Undeca-2-cis-ene-8,10-diynoic acid isobutylamide: Rt^{EA0150}

Undeca-2-trans-4-cis-8,10-diynoic acid isobutylamide: Rt^{EA0150}

Undeca-2-trans-4-cis-diene-8,10-diynoic acid iso-butylamide: Aer^{EA0150}

Undeca-2-trans-ene-8,10-diynoic acid isobutylamide: Rt^{EA0150}

Undeca-cis-2,8,10-triynoic acid isobutylamide: Rt 31^{EA0149}

Undeca-cis-2-ene-8,10-diynoic acid, 2-methyl-butylamide: Rt 6.8^{EA0149}

Undeca-cis-2-ene-8,10-diynoic acid isobutylamide: Rt 3.4^{EA0149}

Undeca-cis-2-trans-4-diene-2,4-diynoic acid iso-butylamide: Rt 0.03% EA0115

Undeca-cis-2-trans-4-diene-8,10-dynoic acid iso-butylamide: Rt 13.7^{EA0149}

Undeca-trans-2-cis-4-dien-8,10-diyne acid iso-butylamide: Pl^{EA0119}

Undeca-trans-2-cis-4-diene-8,10-diynoic acid iso-butylamide: Rt 10.3^{EA0149}

Undeca-trans-2-cis-4-diene-8,10-diynoic acid-n-iso-dutylamide: Aer^{EA0118}

Verbascoside: Aer^{EA0118}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Analgesic activity. Tincture of the dried root, administered subcutaneously to male adults at variable dosage levels, produced analgesia for 10 to 30 minutes. No adverse effect was noted^{EA0107}.

Anesthetic activity. Extract of the root, taken orally by adults, produced a numbing effect^{EA0100}.

Antiallergenic activity. Extract of the entire plant, in combination with lactic acid, was active when taken orally ^{EA0158}.

Antiinflammatory activity. Acetic acid extract of the dried root, applied externally to the mouse at a dose of 0.045 mg/ear, was active vs croton oil edema, results significant at p< 0.01 level. When administered intravenously to rats at a dose of 5.0 mg/kg, the result was positive vs carrageenin-induced pedal edema. Results significant at p< 0.05 level^{EA0168}. Ethanol (80%) extract of the dried leaf, administered by gastric intubation to male rats at a dose of 100.0 mg/ kg, was inactive vs carrageenin-induced pedal edema^{EA0146}. Water extract of the dried root, administered externally to mice, was active vs croton oil ear test, ID_{50} 450.0 mcg/ear^{EA0147}. The polysaccharide fraction, at a concentration of 45.0 mcg/ear, was active vs croton oil-induced irritation. The polysaccharide fraction, administered intravenously to rats at a dose of 0.5 mg/kg, was active vs carrageenin-induced pedal edema^{EA0171}.

Antimycobacterial activity. Ethanol (95%) extract of the entire plant, at a dilution of 1:80 in broth culture, was active on Mycobacterium tuberculosis H37RVTMC 102EA0153. Antitoxic activity. Tincture of the dried root, taken orally by adults at variable dosage levels, was active. A series of care reports on the treatment of conditions such as septicemia, abscesses, boils, spider bites, scarlet fever and sequelae, ulcerative stomatitis and gangrenous wounds was positive EA0110. **Antiviral activity.** The dried entire plant, taken orally by adults of both sexes at a dose of 3.0 gm/day, was active on HIV virus. A phase 1 trial of Echinacea angustifolia in HIVpositive individuals was conducted. Fourteen of the patients with CD4 counts ranging from 6 to 600/mm³ (mean 269) and viral loads (log 10) ranging from <2.3 to 5.4 (mean 4.68) were enrolled, and completed the study included the analyses. Each had been on a stable anti-retroviral regimen or no anti-retroviral from at least the previous 12 weeks. Each received a 12week course of Echinacea angustifolia at 1000 mg 3 times a day. Viral HIV loads, CD4 counts, natural killer cell killing activity against K562 target cells, clinical assessment, and laboratory monitoring for toxicity was done every 2 weeks. There was no clinical or laboratory toxicities noted during the study. At 12 weeks there was no significant difference in mean CD4 count compared to baseline; however, there was an overall 0.32 (log 10) reduction in viral load (mean 4.36, p< 0.05). Echinacea angustifolia did not demonstrate any direct anti-HIV killing activity in vitro and there was no change in natural killer cell activity. Thus, Echinacea was safe and associated with a significant reduction in viral load in HIVpositive individuals in this pilot study^{EA0123}. Ethanol extract of the leaf (defatted with petroleum ether), at a concentration of 1.0 mg/ml in cell culture, was inactive on Influenza Virus PR8EA0127. Water extract of the dried root, at a concentration of 10.0% in cell culture, was inactive on Herpes virus type 2, Influenza virus A2 (Manheim 57), Poliovirus 11 and Vaccina virus^{EA0183}.

Cardiotoxic activity. Tincture of the entire plant, administered by perfusion to the rabbit heart, was active EADIO2.

Cytotoxic activity. Ethanol extract of leaf, (defatted with petroleum ether), at a concentration of 0.5 mg/ml in cell culture, was inactive on bovine endocardiac cells^{EA0127}. Water extract of the dried root, at a concentration of 10.0% in cell culture, was inactive on HELA cells^{EA0183}.

Dermatitis improved. Hydro-alcoholic extract of the entire plant, administered to adults of both sexes at a dose of 400.0 mg/person, was active on the skin. The biological activity reported has been patented as a treatment for psoriasis and neurodermatitis^{EA0121}.

Diaphoretic activity. Tincture of dried root, taken orally by adults at a dose of 0.5 ml per person, was active. Each of 6 subjects received the preparation daily for 13 days. Excessive thirst and perspiration resulted. Blood sugar fluctuated as much as 20 mg, chlorides as much as 55 mg. Blood cholesterol first increased, then dropped to normal or even subnormal level^{EA0113}.

Glutamate oxaloacetate transaminase-inhibition. Lyophilized extract of the dried root, at a concentration of 0.32 mg/gm, was active on the rat liver. The preparation contained a mixture of *Echinacea purpurea*, *Echinacea angustifolia*, *Babtisia tinctoria*, and *Thuja occidentalis*. Results significant at p< 0.05 level^{EA0169}.

Glutamate pyruvate transaminase inhibition. Lyophilized extract of the dried root, at a concentration of 0.32 mg/gm, was inactive on the rat liver. The preparation contained a mixture of *Echinacea purpurea*, *Echinacea angustifolia*, *Babtisia tinctoria*, and *Thuja occidentalis*. Results significant at p< 0.05 level^{EA0169}.

Hemagglutinin activity. Saline extract of the dried seed, at a concentration of 10%, was inactive on human red blood cells^{EA0164}. **Hyaluronidase inhibition.** Butyl acetate, chloroform, and acetic acid extracts of the dried root were active, IC₅₀ 0.50 mg/ml, 0.62 mg/ml, and 0.44 mg/ml, respectively EA0131. The commercial product echinacin, at a concentration of 1:16 on agar plate, was active on Escherichia coli HS-30^{EA0178}. Water extract of the dried root, administered subcutaneously to male guinea pigs at a dose of 0.3 ml/animal, was active. The guinea pigs were infected intradermally with Streptococcus strain MSS-1 and the effects of cortisone and echinacin (the water extract of the root) on the infection were observed. After pre-treatment with cortisone, the infection spreads rapidly in the area. Pretreatment with echinacin localized the infection^{EA0174}. The effect of salvarsan on Trypanosoma rhodesiense infection of the white mouse was studied in combination with hyaluronidase. The effect of hyaluronidase depends on the dose of salvarsan given. The action of hyaluronidase was counteracted by echinacin^{EA0172}. Hypotensive activity. Tincture of the entire plant, administered intravenously to the rabbit, was inactive^{EA0102}.

Immunostimulant activity. Ethanol (95%) extract of the dried root, administered orally to chicken at a dose of 0.4 ml/ animal in 2 doses, was active. The preparation 'Influex' contained extracts of Echinacea angustifolia and Aconitum napellus, as well as dilutions of Apis mellifica and Lachesis muta venoms. Serum IgG, IgA and IgM increased^{EA0152}. Water extract of the dried root, taken orally by adults, was active. In 26 controlled studies, 30 of the 34 treatments showed improved parameters over controls, but studies had low methodological quality^{EA0129}. Extract of the entire plant, taken orally by adults of both sexes at a dose of 3.0 ml/day, was inactive. No significant changes were observed in absolute counts of leukocytes, lymphocytes, monocytes or granulocytes. The dose was inactive on leukocytes; there was no enhancement of cytokine production^{EA0117}. Hydro-alcoholic extract of the entire plant, taken orally by adults of both sexes at a dose of 5.0 ml, was inactive. In a randomized, double-blind, placebo-controlled study assessing the efficacy of Echinacea in URT infections, 32 subjects received 50 drops twice daily 5 days a week for a total of 12 weeks. Echinacea extract did not decrease the severity or duration of the symptoms when compared with the placebo EA0122. Water extract of the entire plant, administered intramuscularly to adults at variable dosage levels, was active. A review in 1965 stated that echinacin, an aqueous extract prepared from E. purpurea, E. pallida and/or E. angustifolia, can be used internally to activate reticuloendothelium to increase alpha, beta and gamma globulin and promote antibody formation^{EA0177}. Polysaccharide fraction of the dried pedicels, administered intraperitoneally to mice at a dose of 10.0 mg/kg, was active vs clearance of colloidal carbon EA0167.

Insecticide activity. Petroleum ether extract of the root was active^{EA0100}.

Juvenile hormone activity. Ether extract of the root, at variable concentrations, was active on *Oncopeltus fasciatus* and *Tenebrio molitor* pupae^{EA0162}. A concentration of 500.0 mcg/animal, applied externally, was active on *Oncopeltus fasciatus*^{EA0116}.

Larvicidal activity. Acetone extract of the dried root was active on *Culex quinquefasciatus*, LD₅₀ 16.0 ppm^{EA0182}.

Mitogenic activity. Water extract of the dried root was active on the mouse splenocytes^{EA0120}.

Mutagenic activity. Ethanol (25%) extract of the root, on agar plate at a concentration of 400.0 microliters/disc, was active on Salmonella typhimurium TA100 and TA98. Metabolic activation had no effect on the results^{EA0130}.

Phagocytosis rate increase. Polysaccharide fraction of the dried entire plant, at a concentration of 10.0 mcg/ml, was active on the adult polymorphonuclear leukocytes^{EAO166}.

Phagocytosis stimulation. Ethanol (95%) extract of the dried root, at a concentration of 0.001%, produced weak activity. When administered intragastrically to mice, a dose of 1.7 mg/kg 3 times daily for 2 days was active vs carbon clearance test^{EA0151}. The lyophilized extract, at a concentration of 0.32 mg/gm, was active on the rat liver, results significant at p< 0.05 level^{EA0169}. Ethanol (95%) extract of the dried root, administered orally to mice, was active vs clearance of colloidal carbon EA0170. Ethanol (95%) extract of the entire plant, at a concentration of 0.08% in cell culture, was active on polymorphonuclear leukocytes^{EA0134}. Ethanol/water (1:1) extract of the fresh root. administered intraperitoneally to mice at a dose of 50.0 mg/kg, was active EA0137.

Potassium depletion. Lyophilized extract of the dried root, at a concentration of 0.32 mg/gm, was inactive on the rat liver. The preparation contained a mixture of *Echinacea purpurea*, *Echinacea angustifolia*, *Babtisia tinctoria*, and *Thuja occidentalis*^{EA0169}.

Skin sensitization. Extract of the entire plant, at a concentration of 10.0%, was equivocal when applied externally to the adult. The investigators stated that they were not absolutely sure that the sensitization response was due to the extract. In preparing the extract, some unknown additional materials such as preservatives might have been used^{EAO128}.

Smooth muscle relaxant activity. Tincture of the entire plant was active on the rabbit's intestine and urinary bladder^{EAO102}. **Toxic effect.** Ethanol (95%) extract of the root, taken orally by adult females at a dose of 5.0 ml, caused anaphylaxis. It was possibly cross-reactivity with other structurally similar allergens. Five percent of the

patients with atopy showed hypersensitivity with *Echinacea*^{EA0124}.

Uterine relaxation effect. Tincture of the entire plant produced weak activity on non-pregnant rabbit uterus^{EA0102}.

Wound healing acceleration. Water extract of the entire plant was effective on the adult when applied externally. A review in 1965 stated that echinacin, an aqueous extract prepared from *E. purpurea*, *E. pallida* and/or *E. angustifolia*, can be used externally for the treatment of skin infections, to stimulate granulation and to stimulate the action of leukocytes^{EA0177}.

REFERENCES

EA0100 Jacobson, M. Occurrence of a pungent insecticidal principle in American coneflower roots. Science 1954; 120: 1028–.

EA0101 Voaden, D. J. and M. Jacobson. Tumor inhibitors. 3. Identification and synthesis of an oncolytic hydrocarbon from American coneflower roots. J Med Chem 1972; 15: 619–.

EA0102 Boyd, L. J. Pharmacology of the homeopathic drugs. 2. J Amer Inst Homeopathy 1928; 21: 209-.

EA0103 Stoll, A., J. Renz and A. Brack. Antibacterial materials . VI. Isolation and constitution of echinacoside, a glycoside from roots of *Echinacea angustifolia* D.C. Helv Chim Acta 1950; 33: 1877–1893.

EA0104 Beringer, G. M. Fluid extract of echinacea. **Amer J Pharm** 1911; 83: 324–325.

EA0105 Walsh, F. D. The therapeutic value of echinacea in septic conditions. **Physician and Surg** 1902; 24: 498–500.

EA0106 Culter, S. H. Journal of the Phytochemical notes. **J Amer Pharm Ass** 1930; 19: 120–121.

EA0107 Hewett, A. C. Echinacea angustifolia, Echafolta. **Dental Rev** 1906; 20: 1095–1100.

EA0108	Hewl, F. W. and M. C. Hart. Some constituents of <i>Brauneria</i> angustifolia. J Amer Chem Soc 1915; 37: 1769–1778.		herbal drugs from Echinacea purpurea, E. pallida and E. angustifolia. Dtsch Apoth Ztg 1988; 128(4): 174–180.
EA0109	Ellingwood, F. Echinacea angustifolia. Therap Gazz 1905; 29: 298-300.	EA0119	Trypsteen, M. F. M., R. G. E. Van Severen and B. M. J. De Spie- geleer. Planar chromatography
EA0110	Hewett, A. C. Echinacea purpurea, Echinacea angustifolia, Echafolta. Dental Rev 1906; 20: 1218–1230.		of Echinacea species extracts with automated multiple development. Analyst (London) 1989; 114(9): 1021–1024.
EA0111	Hocking, G. M. Echinacea angustifolia (coneflower) as crude drug. Q J Crude Drug Res 1965; 5(1): 679–683.	EA0120	Willigmann, I., D. Egert, C. Bod- inet and N. Beuscher. Chemical immunological properties of the immunomodulatory active com-
EA0112	Schulte, K. E., G. Rucher and J. Perlick. The occurrence of polyacetylene compounds in <i>Echinacea purpera</i> and <i>Echinacea ang</i> -		pounds from the roots of different Echinacea species. Planta Men Suppl 1993; 59(7): A671–A972.
	ustifolia. Arzneim-Forsch 1967; 17: 825–829.	EA0121	Calarasu, C. Pharmaceuticals containing diphenhydramine and
EA0113	Hepburn, J. S., G. W. Boericke, R. Ricketts and E. D. Boone. Laboratory study of twenty drugs on normal human beings with comments on their symptoma-		Echinacea and Eupatorium and Gelsemium and Lachesis extracts for the treatment of psoriasis and neurodermatitis. Patent-GER OFFEN-3,641,220 1988; 4 pp.
	tology and therapeutic use. J Amer Inst Homeopathy 1950; 43: 201–204.	EA0122	Barnes, J. Complementary health care symposium. Focus on phytotherapy. Pharmaceuticals J
EA0114	Neugebauer, H. The constituents of echinacea. Pharmazie 1949; 4: 137–140.	EA0123	1998; 260: 67. See, D., S. Berman, J. Justis, N. Broumand, S. Chou, J. Chang
EA0115	Bohlmann, F. and M. Grenz. Polyacetylene compounds. CXII. Components of Echinacea varieties. Chem Ber 1966; 99: 3197–3200.		and J. Tilles. A phase I study on the safety of <i>Echinacea angus-</i> <i>tifolia</i> and its effect on viral load in HIV infected individuals. J Amer Nutr Ass 1998; 11: 14–17.
EA0116	Jacobson, M., R. E. Redfern and G. D. Mills Jr. Naturally occurring insect growth regulators. Ll.	EA0124	Mullins, R. J. <i>Echinacea</i> – associated anaphylaxis. Med J Australia 1998; 168(4): 170–171.
	Screening of insect and plant extracts as insect juvenile hormone mimics. Lloydia 1975; 38: 455–472.	EA0125	Veninga, L. and B. R. Zaricor. Goldenseal, etc., Ruka publications, Santa Cruz, California, 1976.
EA0117	Elsasser-Beile, U., W. Willenbacher, H. H. Bartsch, H. Gallati, J. S. Monting and S. Von Kleist.	K4702	Christopher, J. R. School of natural healing. J. R. Christopher, Publ., Provo, Utah, 1976.
	J Clin Lab Anal 1996; 10(6): 441–445.	EA0127	Kelling, C. L., I. A. Schipper, L. J. Schermeister and J. P. Vacik.
EA0118	Bauer, R., P. Ramiger and H. Wagner. Echinacea. Comparative TLC and HPLC analysis of		Effects of crude extracts of various plants on infectious Bovine rhinotracheitis virus-plaque pro-

	duction. Amer J Vet Res 1976; 37: 215.		and R. B. Rao. Antisnake venom botanicals from ethnomedicine.
EA0128	Bruynzell, D. P., W. G. Van Ketel,		J Herbs Spices Med Plants 1994;
	E. Young, T. Van Joost and G.		2(4): 45–100.
	Smeenk. Contact sensitization	EA0136	Trypsteen, M. F. M., R. G. E. Van
	by alternative topical medica-		Severen and B. M. J. De Spie-
	ments containing plant extracts.		geleer. Planar chromatography
	Contact Dermatitis 1992; 27(4):		of Echinacea species extracts with automated multiple devel-
EA0129	278–279. Melchart, D., K. Linde, F. Worku,		opment. Analyst (London) 1989;
LHOIL	R. Bauer and H. Wagner. Immu-		114(9): 1021–1024.
	nomodulation with Echinacea –	EA0137	Bukovsky, M., S. Vaverkova and
	A systematic review of controlled		D. Kostalova. Immunomodulat-
	clinical trials. Phytomedicine		ing activity of Echinacea glori-
	1994; 1 (3): 245–254.		osa L., Echinacea angustifolia
EA0130	Schimmer, O., A. Kruger, H.		DC., and Rudbeckia speciosa
	Paulini and F. Haefele. An eval-		Wenderoth ethanol-water extracts.
	uation of 55 commercial plant extracts in the Ames mutagenic-		Pol J Pharmacol 1995; 47(2): 175–177.
	ity test. Pharmazie 1994; 49(6):	EA0138	Verelis, C. and H. Becker. The
	448–451.		n-alkanes of Echinacea angusti-
EA0131	Facino, R. M., M. Carini, G.		folia. Planta Med 1977; 31: 288–
	Aldini, C. Marinello, E. Arlan-		289.
	dini, L. Franzoli, M. Colombo,	EA0139	Berkulin, W., H. Honerlagen
	P. Pietta and P. Mauri, Direct		and H. J. Schilling. Isolation of
	characterization of caffeoyl esters with antihyaluronidase activity		Echinosides by preparative gel chromatography on fracto gel
	in crude extracts from Echina-		TSK HW 40F. Abstr Mtg Gesell
	cea angustifolia roots by fast		Schaft Arzneipflanzeen Forsch
	atom bombardment tandem mass		July 1984, Antwerp, 1984.
	spectrometry. Farmaco 1993;	EA0140	Becker, H., W. C. Hsieh. Chi-
	48(10): 1447–1461.		choric acid and its derivatives
EA0132	Kindscher, K. Ethnobotany of		from Echinacea species. Z Natur-
	purple coneflower (Echinacea angustifolia, Asteraceae) and		forsch Ser C40 1985; 7/8: 585–587.
	other Echinacea species. Econ	EA0141	Bauer, R., I. A. Khan, V. Wray
	Bot 1989; 43(4): 498–507.	LAUITI	and H. Wagner. Isolation, struc-
EA0133	Bauer, R. and G. Tittel. Quality		ture elucidation and analysis of
	assessment of herbal prepara-		new acetylenic constituents from
	tions as a precondition of phar-		Echinacea angustifolia. Planta
	macological and clinical studies.		Med 1986; 1986(1): 424–A.
	Phytomedicine 1996; 2(3): 193–	EA0142	Bauer, R., I. A. Khan, V. Wray
EA0134	198. Erhard, M., J. Kellner, J. Wild,		and H. Wagner. Two acetylenic compounds from <i>Echinacea pal</i> -
LA0154	U. Losch and F. S. Hatiboglu.		lida roots. Phytochemistry 1987;
	Effect of Echinacea, Aconitum,		26(94): 1198–1200.
	Lachesis and Apis extracts, and	EA0143	Roder, E., H. Wiedenfeld, T.
	their combinations on phagocy-		Hille and R. Britz-Kirstgen. Pyr-
	tosis of human granulocytes. Phy-		rolizidines in Echinacea angus-
E 4 0105	tother Res 1994; 8(1): 14–17.		tifolia DC. and Echinacea purp-
EA0135	Selvanayahgam, Z. E., S. G. Gnanevendhan, K. Balakrishna		<i>urea</i> M. Dtsch Apoth Ztg 1984; 124(45): 2316–2318.
	Onalievelluliali, K. Dalaki islilla		147(43). 4310-4310.

EA0145 EA0146	Bauer, R., V. Wray and H. Wagner. The chemical discrimination of <i>Echinacea angustifolia</i> and <i>E. pallida</i> . Pharm Weekbl (Sci Ed) 1987; 9(4): 220. Wagner, H., M. H. Zenk and H. Ott. Polysaccharides derived from Echinacea plants as immunostimulants. Patent-Ger Offen-3,541,945 1988; 10 pp. Mascolo, N., G. Autore, F. Cap-	EA0153	Grange, J. M. and R. W. Davey. Detection of antituberculous activity in plant extracts. J Appl Bacteriol 1990; 68(6): 587–591. Facino, R. M., A. Sparatore, M. Carini, B. Gioia, E. Arlandini and L. Franzoi. Field desorption mass spectrometry, fast atom bombardment mass spectrometry and fast atom bombardment tandem mass spectrometry of
LAUI40	asso, A. Menghini and M. P. Fasulo. Biological screening of Italian medicinal plants for anti-inflammatory activity. Phytother Res 1987; 1(1): 28–31.		echinacoside, the main caffeoyl- glycoside from <i>Echinacea ang-</i> <i>ustifolia</i> roots (Asteraceae). Org Mass Spectrom 1991; 26(11): 951–955.
EA0147	Tragni, E., C. L. Galli, A. Tubaro, P. Del Negro and R. Della Loggia. Anti-inflammatory activity of <i>Echinacea angustifolia</i> frac-	EA0155	Hamburger, M. and K. Hostettmann. Analytical aspects of drugs of natural origin. J Pharm Biomed Anal 1989; 7(12): 1337–1349.
	tions separated on the basis of molecular weight. Pharmacol Res Commun Suppl 1988; 20(5): 87–90.	EA0156	Bauer, R., I. A. Khan and H. Wagner. TLC and HPLC analysis of <i>Echinacea pallida</i> and <i>Echinacea angustifolia</i> roots. Planta
EA0148	Soicke, H., K. Gorler and D. Kruger. Glycine-betaine in Echinacea species and their preparations. Fitoterapia 1988; 59(1): 73–75.	EA0157	Med 1988; 54(5): 426–430. Wagner, H., M. H. Zenk and H. Ott. Pharmaceutical polysaccha- rides from Echinacea, for stim- ulation of macrophage activity.
EA0149	Bauer, R., P. Remiger and H. Wagner. Alkamides from the roots of <i>Echinacea angustifolia</i> . Phytochemistry 1989; 28(2): 505–	EA0158	Patent-Ger Offen - 3,744,345 1989; 4 pp. Reith, F. J. Pharmaceuticals containing lactic acid derivatives and
	508.		Echinacea. Patent-Ger Offen-
EA0150	Bauer, R. and P. Remiger. TLC and HPLC analysis of alkamides in Echinacea drugs. Planta Med 1989; 55(4): 367–371.	EA0159	2,721,014 1978. Cooke M. P. Jr. Stereoselective synthesis of the proposed American coneflower juvenile hor-
EA0151	Bauer, R., P. Remiger, K. Jurcic and H. Wagner. Influence of Echinacea extracts on phagocytic activity. Z Phytother 1989; 10(2): 43–48.		mone mimic. Some observations on the cyclopropylcarbinyl rearrangement in substituted systems. J Org Chem 1979; 44: 2461–2468.
EA0152	Schranner, I., M. Wordinger, N. Klumpp, U. Losch and S. N. Okpanyi. Influence of a medici-	EA0160	Verelis, C. and H. Becker. N-alkanes of <i>Echinacea angustifolia</i> . Planta Med 1977; 31: 288–289.
	nal complex drug (influex) and <i>Echinacea angustifolia</i> extract on Avian humoral immune reactions. Zentralbl Veterinaermed Ser B 1989; 36(5): 353–364.	EA0161	Becker, H., W. C. Hsieh, R. Wylde, C. Laffite and C. Andary. Structure of echinacoside. Z Naturforsch Ser C 1982; 37: 351–353.

EA0162	Jacobson, M., R. E. Redfern and		neim-Forsch 1985; 35(9): 1437–
	G. D. Mills Jr. Naturally occurring insect growth regulators. Lll. Echinolone, a highly active juvenile hormone mimic from <i>Echinacea angustifolia</i> roots. Lloydia 1975; 38: 473–476.	EA0170	1439. Bauer, R., K. Jurcic, J. Puhlmann and H. Wagner. Immunological in vivo examinations of Echinacea extracts. Arzneim-Forsch 1988; 38(2): 276–281.
EA0163	Becker, H. Against snakebite and influenza. Use and components of <i>Echinacea angustifolia</i> and <i>Echinacea purpurea</i> . Dtsch Apoth Ztg 1982; 122: 2320–2323.	EA0171	Tubaro, A., E. Tragni, P. Del Negro, C. L. Galli and R. Della Loggia. Anti-inflammatory activity of a polysaccharadic fraction of <i>Echinacea angustifolia</i> . J Pharmacol 1987; 39(7): 567–569.
EA0164	Hardman, J. T., M. L. Beck and C. E. Owensby. Range for lectins. Transfusion 1983; 23(6): 519–522.	EA0172	Korting, G. W. and W. Born. The influence of hyaluronidase and of a hyaluronidase inhibitor (echinacin) on the trypanocidal
EA0165	May, G. and G. Willuhn. Antivi-		effect of salvarasan. Arzeim-
	ral activity of aqueous extracts from medicinal plants in tissue cultures. Arzneim-Forsch 1978; 28(1): 1–7.	EA0173	Forsch 1954; 4: 424–426. Anon. Recovery of active agents from aqueous extracts of the spe- cies of Echinacea. Patent-Ger-
EA0166	Wagner, H., A. Proksch, I. Reiss-		950,674 1956.
	Maurere, A. Vollmar, S. Odenthal, H. Stuppner, K. Jurcic, M.	EA0174	Koch, E. and H. Uebel. Experimental studies on the local in-
	Le Turdu and J. N. Fang. Immu-		fluence of cortisone and echina-
	nostimulating polysaccharides (heteroglycans) of higher plants.		cin upon tissue resistance against streptococcus infection. Arzneim -
	Arzneim-Forsch 1985; 35(7):	D 4 0 1 7 7	Forsch 1954; 4: 551–560.
EA0167	1069–1075. Wagner, H., A. Proksch, I. Reiss-	EA0175	Woods, E. L. The chemical constitution of the hydrocarbons of
L/10107	Maurer, A. Vollmar, S. Odenthal,		Echinacea angustifolia. Amer J
	H. Stuppner, K. Jurcic, M. Le	E 4 0 1 7 C	Pharm 1930; 102: 611–630.
	Turdu and Y. H. Heur. Immunostimulating polysaccharides	EA0176	Bischoff, F. Oil of Echinacea angustifolia. J Amer Pharm Ass
	(heteroglycans) of higher plants/		1924; 13: 898–902.
	preliminary communication. Arz-	EA0177	Kabelik, J. The Echinacea: Possi-
	neim-Forsch 1984; 34(6): 659–661.		bly an important medicinal plant? Ziva 1965; 13(1): 4–5.
EA0168	Tragni, E., A. Tubaro, S. Melis	EA0178	Busing, K. H. Hyaluronidase in-
	and C. L. Galli. Evidence from		hibition by echinacin. Arzneim-
	two classic irritation tests for an anti-inflammatory action of a	EA0179	Forsch 1952; 2: 467–469. Heyl, F. W. and J. F. Staley. Anal-
	natural extract, Echinacina B.		ysis of two Echinacea roots. Amer
	Food Chem Toxicol 1985; 23(2):	E 4 0 1 9 0	J Pharm 1914; 86: 450–455.
EA0169	317–319. Vomel, T. Influence of a vege-	EA0180	Bonadeo, I., G. Bottazzi and M. Lavazza. Echinacin B: Active
	table immune stimulant on pha-		polysaccharide from Echinacea.
	gocytosis of erythrocytes by the		Riv Ital Essenze Profumi Plante
	reticulohistocytary system of isolated perfused rat liver. Arz-		Office Aromi Saponi Cosmet Aer 1971; 53: 281–295.

EA0181	Anon. The herbalist. Hammond book company, Hammond, Indiana, 1931; 400 pp.		from medicinal plants in tissue cultures. Arzeim-Forsch 1978; 28(1): 1–7.
EA0182	Hartzell, A. Plant products for insecticidal properties and summary of results to date. Contrib Boyce Thompson Inst 1947; 15: 21–34.	EA0184	Bauer, R., V. Wray and H. Wagner. The chemical discrimination of <i>Echinacea angustifolia</i> and <i>E. pallida</i> Pharm Weekbl (Sci Ed) 1987; 9(4): 220.
EA0183	May, G. and G. Willuhn. Antiviral activity of aqueous extracts		

8 Ephedra sinica

Common Names

Ephedra	USA	Mao-kon	China
Ephedra	Europe	Mao	Japan
Ma-huang	China	Maoh	Japan
Ma Huang	USA	Maou	China
Mahuang	China	Soma	India

BOTANICAL DESCRIPTION

The plant is a 30 cm high lightly branched subshrub with lengthened, cylindrical branches 1 to 2 mm in diameter. It is similar in appearance to horsetail, sometimes twining and often having underground runners. The stem and branches are round with numerous vertical grooves of gray-green or bright green coloring; very small reddish-brown leaves, occasionally reduced to pointed scales, almost always fused at the base to form a sheath. The flowers are small and occasionally reduced to acuminate scales. They are fused in pairs at the base. They are unisexual, usually dioecious and sometimes monoecious. The male inflorescences consist of 2–24 blooms. The involucre is 2-lobed and fused to a tube. The fruit is a red, berrylike false fruit formed from the upper bract.

ORIGIN AND DESCRIPTION

This species grows mainly in Mongolia and the bordering area of China. Other species grow in India.

TRADITIONAL MEDICINAL USES

China. Decoction of the entire plant is taken orally for malaria ESO125.

India. The unripe fresh fruit juice is taken orally to combat fatigue ESO160.

Japan. Hot water extract of the root is taken orally as an antiperspirant ESO149.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Apigenin: AerES0135

Apigenin-5-0-rhamnoside: AerES0135 Benzylamine, methyl: PlES0167

Carveol, dihydro: St^{ES0157}, EO^{ES0172}

Catechin, epi (-): St^{ES0131}

Cvclohex-3-ene -1,2,3-trimethyl, lcarboxaldehyde: StES0157

Cyclohex-3-ene,1-acetyl-1,3-dimethyl: EO 5.3%^{ES0139}

Cyclohex-3-ene-1-carboxaldehyde: EO^{ES0172}

Cyclohex-3-ene-1-methanol alpha, alpha, 4trimethyl: EO 35.0% ES0139

Ephedradine A: RtES0149

Ephedrine: Pl 1.2% ES0171, Aer 0.18-2.27% ES0119, ES0145

From: Medicinal Plants of the World, vol. 2: Chemical Constituents, Traditional and Modern Uses By: Ivan A. Ross Humana Press Inc., Totowa, NJ

Ephedrine (-): Aer 1.6% ES0109, Pl $0.98\%^{ES0110}$ Ephedrine (DL): Aer^{ES0126} Ephedrine, iso (+): PIESO169 Ephedrine, iso methyl (+): PlESO169 Ephedrine, iso nor (+): PlES0169 Ephedrine, methyl: Aer 310-1340^{ES0132}, Pl 700^{ES0110} Ephedrine, methyl (+): Aer 0.184% ES0109 Ephedrine, methyl (-): Aer 0.11% ES0128 Ephedrine, N-methyl: PIES0107 Ephedrine, N-methyl (-): AerES0126 Ephedrine, nor-pseudo (+): Aer^{ES0126} Ephedrine, nor: Pl^{ES0130}, Aer 180-1420^{ES0132} Ephedrine, nor (-): PlES0169, Aer 100-430^{ES0128,ES0109} Ephedrine, nor, pseudo: Aer 0.11%-0.142%^{ES0106}, PI^{ES0108} Ephedrine, pseudo: PlES0112, Aer 0.027%- $0.963\%^{\mathsf{ESO106},\mathsf{ESO132}}$ Ephedrine, pseudo (+): Pl 0.41% ES0110, Aer 0.13%-0.73%^{ES0128}, Ephedrine, pseudo, methyl: Aer 120^{ES0133} Ephedrine, pseudo, methyl (+): Aer Ephedrine, pseudo, n-methyl (+): Aer^{ES0126} Ephedrine, pseudo, nor: Aer 140^{ES0133} Ephedrine, pseudo, nor (+): PIESO134, Aer 290^{ES0109} Ephedroxane: Aer 10^{ES0150} Epherdrine (-): Aer 0.73% ES0128 Fluoride: Aer 3.5^{ES0165} Gallocathechin, epi (-): St^{ES0131} Herbacetin: Aer^{ES0135} Herbacetin, 3-methoxy: AerES0135 Kaempferol: AerES0135 Kaempferol rhamnoside: Aer^{ES0135} Ligustrazine: PlESO105, StESO157 Menth-2-en-7-ol, para: EO^{ES0172}, St^{ES0157} Myrcene: St^{ES0157}, EO^{ES0172} Oxalic acid: AerES0144 Pseudoephedrine: PlES0130 Pseudoephedrine (+): Rh, Lf^{ES0129} Pseudoephedrine, nor: Pl^{ES0130} Pyrazine, 2,3,5,6-tetramethyl: EO^{ES0172} Succinic acid, hydroxy: AerES0144 Terpinen-4-ol: EOES0172, StES0157 Terpineol: Pl^{ES0105} Terpineol, alpha: EOES0114, StES0157 Terpineol, alpha (-): EOES0172 Terpineol, beta: St^{ES0157}, EO 6.5%^{ES0139}

Tricin: AerES0135

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Abortifacient effect. Methanol (70%) extract of the aerial part, administered by gastric intubation to pregnant rats at a dose of 500.0 mg/kg on day 13 of pregnancy, was inactive ESO154.

Analgesic activity. Decoction of the dried stem, administered intragastrically to mice at a dose of 1.2 gm/kg for 7 days, was inactive vs hot plate method. The decoction was used in a mixture containing Cinnamomum cassia bark, Zingiber officinale rhizome, Glycyrrhiza glabra root, Ziziphus jujuba fruit, Asiasarum species root, and Aconitum species root. A dose of 300.0 mg/kg for 8 days was active vs cold stress-induced hyperalgesia. A dose of 100.0 mg/kg for 22 days was active vs adjuvant-induced hyperalgesia ES0137. Hot water extract of the dried aerial part, administered by gastric intubation to mice at a dose of 26.0 ml/animal, was active. The preparation was in combination with Paeonia albiflora, Angelica koreana, Angelica dahurica, Scutellaria baicalensis, Aralia cordata, Nepeta japonica, Glehnia littoralis, Clematis mandshurica, Atractylodes japonica, Poncirus trifoliata, Platycodon grandiflorum, Pueraria thunbergiana, Cnidium officinale, Angelica gigas, Cimicifuga heracleifolia and Glycyrrhiza uralensis vs inhibition of acetic acid-induced writhing. Results significant at p < 0.05 level^{ES0155}. Angiotensin-converting enzyme inhibition. Tannin fraction of the dried aerial

part was active, IC₅₀ 1.9 mcg/ml^{ES0163}. **Antibacterial activity.** Decoction of the dried entire plant, on agar plate, was active on Staphylococcus epidermidis, MIC 1.95 mg/ml; Staphylococcus aureus, MIC 3.91 mg/ml; Bordetella bronchiseptica, Micrococcus flavus and Proteus vulgaris, MIC 7.81 mg/ml. The decoction was inactive on Bacillus subtilis, MIC 125.0 mg/ml, and produced weak activity on Klebsiella pneumonia; Pseudomonas aeruginosa; Salmonella typhi type 2; Sarcina lutea, MIC 15.63 mg/ml; Bacillus cereus and

EPHEDRA SINICA 133

active on Streptococcus mutans, MIC 15.6 mg/ ml^{ES0136}. Ethanol (90%) extract of the dried root, on agar plate at a concentration of 500.0 mg/disc, was inactive on Bacillus subtilis, Escherichia coli, Streptococcus aureus and Streptococcus faecalis ES0153. Hot water extract of the stem, on agar plate, was inactive on Escherichia coli and Staphylococcus aureus ESO101. Antifungal activity. Water extract of the dried aerial part, at a concentration of 10.0 mg/ml, was active on Aspergillus niger ES0123. Anti-inflammatory activity. Decoction of the dried stem, administered intragastrically to mice at a dose of 100.0 mg/kg for 22 days, was inactive vs adjuvant-induced arthritis ES0137. The decoction was used in a mixture containing Cinnamomum cassia bark, Zingiber officinale rhizome, Glycyrrhiza glabra root, Ziziphus jujuba fruit, Asiasarum species root, and Aconitum species root ES0137. Hot water extract of the dried aerial part, administered by gastric intubation to rats at a dose of 26.0 ml/animal, was active. The preparation was in combination with Paeonia albiflora, Angelica koreana, Angelica dahurica,

Escherichia coli, MIC 31.25 mg/ml^{ES0164}. Decoc-

tion of the dried rhizome, on agar plate, was

Platycodon grandiflorum, Pueraria thunbergiana, Cnidium officinale, Angelica gigas, Cimicifuga heracleifolia, and Glycyrrhiza uralensis vs inhibition of acetic acid-induced pedal edema. The extract produced weak activity vs inhibition of heat denaturation of serum, results significant at p <0.05 level^{ESO155}. Methanol extract of the aerial part, at a concentration of 0.1 mg/ml, produced weak activity on the rat macrophages vs lipopolysaccha-

Scutellaria baicalensis, Aralia cordata, Nepeta japonica, Glehnia littoralis, Clematis mandshu-

rica, Atractylodes japonica, Poncirus trifoliata,

Antimutagenic activity. Hot water extract of the dried aerial part, on agar plate at a concentration of 40.0 mg/plate, was inactive

ride-induced interleukin 8 production^{ESO117}.

Water extract of the entire plant was inactive in an albumin stabilizing assay ESO100.

on Salmonella typhimurium TA100 and TA98 vs aflatoxin B1-induced mutagenesis^{ES0147}.

Antipsoriatic activity. Decoction of the dried stem, taken orally by adults at a dose of 20.0 ml/person, was active. The dose was taken in a mixture containing *Iaconitum carmichaeli*, *Ligusdticum wallichii*, *Atractylodes lancea*, *Angelica sinensis*, *Coix lacrymajobi*, *Zaocys dhumnades* and snake slough. Seventy patients with psoriasis were treated twice daily for 3 to 8 weeks and for a further period of 3 weeks if there was no response to the initial treatment. There were 31 cases cured (44.29%) and 32 improved (45.71%). Side effects such as nausea, anorexia, and gastralgiam were observed, as well as a mild decrease in leukocytes^{ES0146}.

Antitumor activity. Ethanol (90%) extract of the dried root, administered intraperitoneally to mice at a dose of 500.0 mg/kg, was inactive on CA-Ehrlich-ascites, LEUK-SN36 and Sarcoma 180 (ASC)^{ESO153}.

Antitussive activity. Hot water extract of the dried aerial part, in a mixture containing platycodon, ipecac and ginseng administered by gastric intubation and intraperitoneally to mice, was active, ED₅₀ 175.0 mg/kg and 107.0 mg/kg, respectively^{ES0170}.

Antiviral activity. Hot water extract of the dried stem, in cell culture at a concentration of 0.5 mg/ml, was active on poliovirus l, inactive on herpes simplex l virus and measles virus in vero cells culture ES0111. Hot water extract of the dried aerial part, administered intragastrically to female mice at a dose of 300.0 mg/kg, was active on Herpes simplex 1 virus. The extract induced a strong delayed type hypersensitivity response ESO115. Water extract of the dried aerial part, in cell culture at a concentration of 10.0%, was inactive on Herpes virus type 2, influenza virus A2 (Mannheim 57) and poliovirus ll^{ES0159}. Antiyeast activity. Ethanol (90%) extract of the dried root, on agar plate at a concentration of 500.0 mg/disc, was inactive on Candida albicans^{ES0153}.

Barbiturate potentiation. Methanol (75%) extract of the entire plant, administered intraperitoneally to male mice at a dose of 250.0 mg/kg, was inactive^{ESO152}.

Chromosome aberration induction. Hot water extract of the dried aerial part, administered intraperitoneally to mice, was inactive on the bone marrow vs cyclophosphamide-induced damage^{ES0147}.

Clastogenic activity. Hot water extract of the dried aerial part, administered intraperitoneally to mice, was inactive on bone marrow vs cyclophosphamide-induced damage^{ES0147}.

CNS stimulant activity. Infusion of the dried entire plant, taken orally by adults, was active. A case was reported of a healthy individual becoming manic after 2 months consumption of herbal tea. The symptoms disappeared in 3 days after discontinuation ESO118. Cyclic AMP phosphodiesterase inhibi**tion.** The aerial part, at a concentration of 1.0 mg/ml, produced 70.3% inhibition ES0138. The stem, in combination with Prunus persica in ratios ranging from 1:1 to 1:5, produced inhibition ranging from 60% to 90%, respectively. Ephedra sinica and Cinnamomum cassia, in ratios ranging from 1:1 to 1:5, produced inhibition ranging from 80% to 100%. Ephedra sinica and Glycyrrhiza uralensis, in ratios ranging from 1:1 to 1:5, produced inhibition ranging from 90% to 100%. Ephedra sinica, Glycyrrhiza uralensis, and Cinnamomum cassia produced 64.1% inhibition. Ephedra sinica, Glycyrrhiza uralensis and Prunus persica produced 58.2% inhibition ES0138.

Cytotoxic activity. Acetone, petroleum ether and water extracts of the dried stem, at a concentration of 5.0%, were inactive on CA-Ehrlich-ascites. Inhibitions were 17 mm, 14 mm and 18 mm, respectively. The methanol extract was equivocal; 20 mm inhibition ESO166. Benzene extract of the dried aerial part, in cell culture, was active on LEUK-L1210, ED₅₀ 10.2 mcg/ml^{ESO103}. Water

extract of the dried aerial part, in cell culture at a concentration of 10.0%, was inactive on Hela cells^{ES0159}. Water extract of the dried root, in cell culture at a concentration of 500.0 mcg/ml, produced weak activity on Ca-Mammary microalveolar^{ES0140}.

DNA polymerase inhibition. Water extract of the dried entire plant, at a concentration of 340.6 mcg/ml, produced weak activity on Hepatitis B DNA^{ESO121}.

Glutamate-pyruvate-transaminase inhibition. Water extract of the aerial part, at a concentration of 1.0 mg/ml, was inactive on the rat hepatocytes vs CCl₄-induced hepatotoxicity^{ESO104}.

Hexosaminidase inhibition. Water extract of the dried entire plant, in cell culture, inhibited the release of B-hexosaminidase from the rat RBL-2H3 cells^{ESO112}.

Histamine release inhibition. Hot water extract of the dried aerial part, at a concentration of 25.0 mg/ml, was inactive on the rat mast cells vs inhibition of histamine release induced by concanavalin A and by compound 48/80^{ESO158}.

Hypertensive activity. The total alkaloids of the dried entire plant, administered intravenously to dogs at a dose of 1.0 gm/animal, were active^{ES0168}.

Hypotensive activity. Hot water^{ES0151} and methanol^{ES0149} extracts of the root, administered intravenously to rats, were active.

Macrophage migration stimulation. Hot water extract of the dried aerial part was active on guinea pigs^{ESO162}.

Mutagenic activity. Water and methanol extracts of the entire plant, on agar plate at a concentration of 100.0 mg/ml, was inactive on *Bacillus subtilis* H-17 (Rec+) and *Salmonella typhimurium* TA100 and TA98. Metabolic activation had no effect on the results^{ES0156}. Water extract of the dried aerial part, on agar plate at a concentration of 50.0 mg/ml, was inactive on *Salmonella typhimurium* TA1535. Metabolic activation had no effect on the results^{ES0143}.

Plant growth inhibition. Hot water extract of the aerial part, at a concentration of 2.0 gm/liter, was equivocal. The number of fronds of *Lemna paucicostata* >1 mm in length was 96% of controls^{ESO141}.

Plant root growth stimulant. Hot water extract of the aerial part, at a concentration of 2.0 gm/liter, was active. The root length in *Brassica rapa* was 134% of control^{ESO141}. Hot water extract of the aerial part, at a concentration of 2.0 gm/liter, was equivocal on *Cucumis sativus*. The number of roots greater than 5 mm in length was 171% of control^{ESO141}.

Superoxide dismutase stimulation. Ethanol (95%) extract of the aerial part, administered intragastrically to mice at a dose of 2.0 gm/kg, was inactive. A dose of 1.5 gm/kg, administered intraperitoneally to mice, was active ESO127.

Teratogenic activity. Methanol (70%) extract of the aerial part, administered by gastric intubation to pregnant rats at a dose of 500.0 mg/kg on day 13 of pregnancy, was inactive^{ES0154}.

Toxic effect. Water extract of the dried aerial part, administered intraperitoneally to mice, produced weak activity. The mild toxicity was similar to ephedrine. A dose of 8.0 gm/kg, administered by gastric intubation to mice, was inactive^{ESO170}.

Toxicity assessment. Ethanol (90%) extract of the dried root, administered intraperitoneally to mice, produced LD₅₀ 1.0 gm/kg ^{ES0153}. Methanol (70%) extract of the aerial part, administered by gastric intubation to mice, produced MLD >2 gm/kg^{ES0154}. Water and hot water extracts of the dried aerial part, administered intraperitoneally to mice, produced LD₅₀ 689.0 mg/kg^{ES0145} and 650.0 mg/kg^{ES0170}, respectively.

Tyrosinase inhibition. Methanol extract of the dried entire plant, at a concentration of 167.0 mcg/ml, was active^{ESO113}.

Xanthine oxidase inhibition. Ethanol (95%) extract of the aerial part, at a concentration of 15.0 mcg/ml, was active^{ESO127}.

REFERENCES

ES0100 Han, B. H., H. J. Chi, Y. N. Han and K. S. Ryu. Screening on the anti-inflammatory activity of crude drugs. **Korean J Pharmcog** 1972; 4(3): 205–209.

ES0101 Gaw, H. Z. and H. P. Wang. Survey of Chinese drugs for presence of antibacterial substances.

Science 1949; 110: 11–12.

ES0102 Chou, T. Q. The preparation and properties of ephedrine and its salts. **J Biol Chem** 1926; 70: 109–113.

ES0103 Bae, K. H., B. S. Min, D. S. Do, N. S. Kim, G. J. Yang and B. Z. Ahn. Screening on cytotoxicity of medicinal plants against L1210 cell. Yakhak Hoe Chi 1992; 36(5): 491–495.

ES0104 Lee, J. W., J. H. Choi and S. M. Kang. Screening of medicinal plants having hepatoprotective activity effect with primary cultured hepatocytes intoxicated using carbon tetrachloride cytotoxicity. **Korean J Pharmacog** 1992; 23(4): 268–275.

ES0105 Sun, J. Y., P. Chen, N. G. Xie, J. M. Zhang and X. P. Yu. Determination of main constituents of the whole plant, the joints, and the dejointed portion of *Ephedra sinica* Stapf. **Zhongguo Zhong-yao Zazhi** 1995; 20(6): 331–332.

ES0106 Cui, J. F., T. H. Zhou, J. S. Zhang and Z. C. Lou. Analysis of alkaloids in Chinese *Ephedra* species by gas chromatographic methods. **Phytochem Anal** 1991; 2(3): 116–119.

ES0107 Sakai, Y., H. Shimizu and Z. M. Meng. Determination of ephedrine, pseudoephedrine, nore-phedrine and methylephedrine in *Ephedra herba*. **Gifu Ken Eisei Kenkyushoho** 1991; 1991(36): 30–37.

ES0108 Cheng, D. D., P. Guo and J. Zhao. Seasonal variation of alkaloids contained in *Ephedra sin-*

ES0109	ica herba in Inner Mongolia. Zhongguo Yaoke Daxue Xuebao 1992; 23(2): 82–87. Liu, Y. M., S. J. Sheu, S. H. Chiou, H. C. Chang and Y. P. Chen. A comparative study on commercial samples of <i>Ephedrae herba</i> . Planta Med 1993; 59(4): 376–378.	ES0117	agenicity of 102 raw pharmaceuticals used in Chinese traditional medicine. Mutat Res 1991; 260 (1): 73–82. Lee, G. I., J. Y. Ha, K. R. Min, H. Nakagawa, S. Tsurufuji, I. M. Chang and Y. S. Kim. Inhibitory effects of Oriental herbal medicines on IL-8 induction in lipo-
ES0110	Wang, C. G., C. G. Bian and Q. Y. Dou. Extraction technology for pseudoephedrine. Chung Ts'ao Yao 1993; 24(6): 301–303.	ES0118	polysaccharide-activated rat macrophages. Plant Med 1995; 61 (1): 26–30. Capwell, R. R. Ephedrine-in-
ES0111	Kurokawa, M., H. Ochiai, K. Nagasaka, M. Neki, H. X. Hu, S. Kadota, S. Sutardio, T. Matsu-		duced mania from a herbal diet supplement. Amer J Psychiatry 1995; 152(4): 647–.
	moto, T. Namba and K. Shiraki. Antiviral traditional medicines against Herpes Simplex virus (HSV-1), Poliovirus, and Mea- sles virus in vitro and their thera- peutic efficacies for HSV-1 infec-	ES0119	Tanaka, T., K. Ohba, K. Kawahar and E. Sakai. Comparison of the constituents of ephedra herbs from various countries on ephedrine type alkaloids. Nat Med 1995; 49(4): 418–424.
	tion in mice. Antiviral Res 1993; 22(2/3): 175–188.	ES0120	Ling, M., S. J. Piddlesen and B. P. Morgan. A component of the
ES0112	Kataoka, M. and Y. Takagaki. Study on pharmacological effect and effective component of <i>Ephedrae herba</i> by using RBL-2H3 cells. Osaka-Furitsu Koshu Eisei		medicinal herb ephedra blocks activation in the classical and alternative pathways of complement. Clin Exp Immunol 1995; 102(3): 582–588.
E00112	Kenkyusho Kenkyu Hokoku Yakuji 1993; 1993(27): 9–12.	ES0121	Chung, T. H., J. C. Kim, M. K. Kim, S. C. Choi, S. L. Kim, J. M.
ES0113	Shirota, S., K. Miyazaki, R. Aiyama, M. Ichioka and T. Yokikura. Tyrosinase inhibitors from crude drugs. Biol Pharm Bull 1994; 17(2): 266–269.		Chung, I. S. Lee, S. H. Kim, K. S. Hahn and I. P. Lee. Investigation of Korean plant extracts for potential phytotherapeutic agents against B-virus hepatitis. Phyto-
ES0114	Jia, Y. Y., X. A. Liu and F. X. Lu. Determination of 1-alpha-terpineol in volatile oil from <i>Ephedra sinica</i> by TLC scanning method. Yaowu Fenxi Zazhi	ES0122	ther Res 1995; 9(6): 429–434. Schuckit, M. A. Ma-huang (ephedrine) abuse and dependence. Drug Abuse & Alcoholism Newsletter 1996; 25(5): 1–4.
ES0115	1989; 9(2): 91–93. Nagasaka, K., M. Kurokawa, M. Imakita, K. Terasawa and K. Shiraki. Efficacy of kakkon-to, a traditional herb medicine, in Herpes Simplex virus type 1 infection in price of the state	ES0123	Oh, K. B., Y. Iida, H. Matsuoka and H. Kurata. Rapid and sensitive screening of antifungal activity in medicinal plants by a single-cell biosensing system. Biosci Biotech Biochem 1996; 60(5):
ES0116	tion in mice. J Med Virol 1995; 46(1): 28–34. Yin, X. J., D. X. Liu, H. Wang and Y. Zhou. A study on the mut-	ES0124	911–913. Nadir, A., S. Agrawal, P. D. King and J. B. Marshall. Acute hepa- titis associated with the use of a

	Chinese herbal product, ma-huang. Amer J Gastroenterol 1996; 91(7): 1436–1438.		by high performance liquid chromatography. Planta Med 1988; 54(1): 69–70.
ES0125	Duke, J. A. and E. S. Ayensu. Medicinal Plants of China. Reference Publications, Inc. Algonac, Michigan 1985; 1(4): 52–361.	ES0134	Yue, N. Extraction and transformation of (+)-norpseudoephedrine. Yiyao Gongye 1983; 1983 (2): 45–46.
ES0126	Betz, J. M., M. L. Gay, M. M. Mossoba S. Adams and B. S. Portz. Chiral gas chromatographic determination of ephedrine-type alkaloids in dietary sup-	ES0135	Purev, O., F. Pospisil and O. Motl. Flavonoids from <i>Ephedra</i> sinica Stapf. Collect Czech Chem Commun 1988; 53(12): 3193–3196.
	plements containing ma-huang. J Aoac Int 1997; 80(2): 303–315.	ES0136	Chen, C. P., C. C. Lin and T. Namba. Screening of Taiwanese
ES0127	Yoshizaki, F., T. Komatsu, K. Inoue, R. Kanari, T. Ando and S. Hisamichi. Int J Pharmacog 1996; 34(4): 277–282.		crude drugs for antibacterial activity against <i>Streptococcus mutans</i> . J Ethnopharmacol 1989; 27(3): 285–295.
ES0128	Kasahara, Y., H. Hikino and T. Hine. Determination of ephedrine alkaloids by isotachophoresis. J Chromatogr 1985; 324 (2): 503–507.	ES0137	Kuraishi, Y., T. Nanayama, T. Yamauchi, T. Hotani and M. Satoh. Antinociceptive effects of Oriental medicine kei-kyoh-zoh-soh-oh-shin-bu-toh in mice and
ES0129	Yamazaki, K. Chemical components of ma-huang. Wakan Iyaku Gakkaishi 1985; 2(1): 93–94.	ES0138	rats. J Pharmacobio Dyn 1990; 13(1): 49–56. Nikaido, T., T. Ohmoto, T. Kuge,
ES0130	Iwanami, N., Y. Ohtsuka and H. Kubo. Determination of ephedrine alkaloids in ephedra herb and Oriental pharmaceutical by HPLC. Yao Hseuh T'ung Pao	E30136	A. Yanagisawa, K. Teinozawa, H. Takeda and H. Tsukamoto. The study on Chinese herbal medicinal prescription with enzyme inhibitory activity. III. The study
ES0131	1985; 20(3): 149–153. Takechi, M., Y. Tanaka, M. Takehara, G. I. Nonaka and I. Nishioka. Structure and antiherpetic activity among the tannins. Phytochemistry 1985; 24(10): 2245–2250.	ES0139	of mao-to with adenosine 3',5'-cyclic monophosphate phosphodiesterase. Yakugaku Zasshi 1990; 110(7): 504–508. Jia, Y. Y., L. Zhang, J. H. Liu, F. M. Dong and C. G. Cheng. Chemical constituents of essential oils
ES0132	Sagara, K., T. Oshima and T. Misaki. A simultaneous determination of norephedrine, pseudoephedrine, ephedrine and methylephedrine in <i>Ephedrae herba</i> and Oriental pharmaceutical prep-	ES0140	in Ephedra sinica Stapf and Ephedra equisetina BGE. Zhongguo Yaoxue Zazhi 1989; 24(7): 402–404. Sato, A. Studies on anti-tumor activity of crude drugs. I. The
ES0133	arations by ion-pair high performance liquid chromatography. Chem Pharm Bull 1983; 31(7): 2359–2365. Zhang, J., Z. Tian and Z. C. Lou. Simultaneous determination of six alkaloids in <i>Ephedrae herba</i>	ES0141	effects of aqueous extracts of some crude drugs in short-term screening test. Yakugaku Zasshi 1989; 109(6): 407–423. Shimomura, H., Y. Sashida and H. Nakata. Plant growth regulating activities of crude drugs and

ES0142	medicinal plants. Shoyakugaku Zasshi 1981; 35(3): 173–179. Kim, T. H., K. S. Yang, E. Z. Hwang and S. B. Park. Effect of <i>Ephedrae herba</i> on the im-	ES0149	Tamada, M., K. Endo, H. Hikino and C. Kabuto. Structure of ephedradine A, a hypotensive principle of ephedra roots. Tetrahedron Lett 1979; 1979: 873–876.
	mune response in mice. Korean J Pharmacog 1991; 22(3): 183– 191.	ES0150	Konno, C., T. Taguchi, M. Tamada and H. Hikino. Studies in the constituents of ephedra. Part III.
ES0143	Chang, I. M., I. C. Guest, J. Lee-Chang, N. W. Paik, J. W. Jhoun and R. Y. Ryun. Assay of poten-		Ephedroxane, anti-inflammatory principle of ephedra herbs. Phytochemistry 1979; 18: 697–698.
	tial mutagenicity and antimutagenicity of Chinese herbal drugs	ES0151	Tamada, M., K. Endo and H. Hikino. Maokonine hyperten-
	by using SOS chromotes (<i>E. coli</i> PQ37) and SOS UMU test (<i>S. typhimurium</i> TA 1535/PSK 1002).	ES0152	sive principles of ephedra roots. Planta Med 1978; 34: 291–. Woo, W. S., K. H. Shin, I. C. Kim
	Proc First Korea-Japan Toxicology Symposium Safety Assess-	L30132	and C. K. Lee. A survey of the response of Korean medicinal
FG0144	ment of Chemicals In Vitro 1989; 133–145.	F1001.52	plants on drug metabolism. Arch Pharm Res 1978; 1: 13–19.
ES0144	Lu, W., Z. Shen and J. Chen. Determination of organic acids in traditional Chinese medicine by ion chromatography - trace	ES0153	Woo, W. S., E. B. Lee and B. H. Han. Biological evaluation of Korean medicinal plants. III. Arch Pharm Res 1979; 2: 127–131.
	hydroxysuccinic acid and oxalic acid in <i>Ephedra sinica</i> Stapf.	ES0154	Lee, E. B. Teratogenicity of the extracts of crude drugs. Korean J Pharmacog 1982; 13: 116–121.
ES0145	Sepu 1990; 8(5): 335–337. Minamatsu, S., Y. Kobayashi, N. Kobayashi, Y. Fujii, M. Aburada and M. Yamashita. Acute <i>Ephe-drae herba</i> and ephedrine poison-	ES0155	Ahn, D. K. Studies on the analgesic and anti-inflammatory effects of youngsunjetong-eum. Korean J Pharmacog 1981; 12:
ESO146	ing in mice. Jap J Toxicol 1991; 4(2): 143–149.	ES0156	34–40. Morimoto, I., F. Watanabe, T.
ES0146	Zhang, Y. S., M. X. Zhou, Z. D. Yao and N. H. Peng. Treatment of 70 cases of psoriasis with qufeng xuanwei mixture. Xinjiang J Trad Chin Med 1987; 1987(2):		Osawa, T. Okitsu and T. Kada. Mutagenicity screening of crude drugs with <i>Bacillus subtilis</i> recassay and salmonella/microsome reversion assay. Mutat Res 1982;
ES0147	26–28. Liu, D. X., X. J. Yin, H. C. Wang, Y. Zhou and Y. H. Zhang. Anti- mutagenicity screening of water	ES0157	97: 81–102. Sun, J. Y. Novel active constituents of <i>Ephedra sinica</i> . Chung Ts'ao Yao 1983; 14(8): 345–350.
	extracts from 102 kinds of Chinese medicinal herbs. Chung-Kuo Chung Yao Tsa Chi Li 1990; 15	ES0158	Hirai, Y., H. Takase, H. Kobayashi, M. Yamamoto, N. Fujioka, K. Yamasaki, T. Yasuhara and T.
ES0148	(10): 617–622. Cui, J. F., C. O. Niu and J. S. Zhang. Determination of six ephedra alkaloids in Chinese ephedra (10) has a shape of the control of the contr		Nakajima. Screening test for anti-inflammatory crude drugs based on inhibition of histamine release from mast cell. Shoyaku-
	dra (ma huang) by gas chromatography. Yao Hsueh Hsueh Pao 1991; 26(11): 852–857.	ES0159	gaku Zasshi 1983; 37(4): 374–380. May, G. and G. Willuhn. Antiviral activity of aqueous extracts

ES0160	from medicinal plants in tissue cultures. Arzneim-Forsch 1978; 28(1): 1–7. Mahdihassan, S. Soma as energizer-cum-euphoriant, versus sura, as intoxicant. Ancient Sci Life 1984; 3(3): 161–168.	ES0166	cines (Part VI). On the fluoride contents in crude drugs. Shoya-kugaku Zasshi 1985; 39(2): 165–169. Ueki, H., M. Kaibara, M. Sakagawa and S. Hayashi. Antitumor activity of plant constituents.
ES0161	Shin, K. H. and W. S. Woo. A survey of the response of medicinal plants on drug metabolism. Korean J Pharmacog 1980; 11: 109–122.	ES0167	I. Yakugaku Zasshi 1961; 81: 1641–1644. Chen, A. L., E. H. Stuart and K. K. Chen. The occurrence of methy- benzylamine in the extract of ma
ES0162	Adachi, I., A. Yasuta, T. Matsubara, M. Ueno, K. Terasawa and I. Horikoshi. Macrophage procoagulant activity. Effects of hot water extracts of several kanpoprescriptions on macrophage procoagulant activity. I. Yakugaku	ES0168	huang. J Amer Pharm Ass 1931; 20: 339–344. Read, B. E. and C. T. Feng. The alleged ephedrine action of two California species of ephedra. Proc Soc Exp Biol Med 1927; 24: 819–821.
ES0163	Zasshi 1984; 104(9): 959–965. Inokuchi, J. I., H. Okabe, T. Yamauchi, A. Nagamatsu, G. I. Nonaka and I. Nishioka. Inhibi-	ES0169	Kanao, S. Constituents of the Chinese drug, "ma huang." 6. Yakugaku Zasshi 1928; 48: 845–851.
ES0164	tors of angiotensin-converting enzyme in crude drugs. II. Chem Pharm Bull 1985; 33(1): 264– 269. Chen, C. P., C. C. Lin and T. Namba. Development of natural	ES0170	Shoji, T. and K. Kisara. Pharma- cological studies of crude drugs showing antitussive and expec- torant activity. Report 1. The combined effects of some crude drugs in antitussive activity and
ES0165	crude drug resources from Taiwan. (VI). In vitro studies of the inhibitory effect on 12 microorganisms. Shoyakugaku Zasshi 1987; 41(3): 215–225. Sakai, T., K. Kobashi, M. Tsunezuka, M. Hattori and T. Namba. Studies on dental caries prevention by traditional Chinese medi-	ES0171	acute toxicity. Oyo Yakuri 1975; 10: 407–415. Le Blanc, F. and A. N. Hume. Development of <i>Ephedra sinica</i> . S Dakota Agr Expt Sta Ann Rept 1938 1939; 1938: 40–. Sun, J. U. Novel active constituents of <i>Ephedra sinica</i> . Chung Ts'ao Yao 1983; 14(8): 345–346.

9 Eucalyptus globulus

Common Names

Alcanfor	Mexico	Eucalyptus	Australia
Calipso	Italy	Eucalyptus	France
Caliptus	Spain	Eucalyptus	Guyana
Ecualipto	Peru	Eucalyptus	Philippines
El ban	Sudan	Eucalyptus	West Indies
Eucalipto blanco	Canary Islands	Gigante	Mexico
Eucalipto	Bolivia	Gum tree	USA
Eucalipto	Brazil	Gum tree	West Indies
Eucalipto	Canary Is.	Kalatus	Tunisia
Eucalipto	Guatemala	Nuholani	Hawaii
Eucalipto	Italy	Plaepiwa	Hawaii
Eucalipto	Mexico	Pulukamu	Tonga
Eucaliptus	Spain	Yukari	Tunisia
Eucalyptus	Tunisia		

BOTANICAL DESCRIPTION

A small to large tree of the MYRTACEAE family that secretes resinous gums, and often has flaky bark. The leaves are simple, opposite, coriaceous, variously shaped and sized, sometimes aromatic. The flowers are axillary of terminal panicles or subumbels. The calyx consists of a calyptra covering the flower bud, corolla absent, stamens numerous and often white, and the ovary inferior. The fruit is a woody capsule opening by means of slits.

ORIGIN AND DISTRIBUTION

The genus Eucalyptus consists of about 600 species, most of which are native to Australia. Many are now introduced throughout the tropical and warm-temperate regions of the world.

TRADITIONAL MEDICINAL USES

Bolivia. Infusion of the dried leaf is taken orally as an expectorant for coughs and respiratory congestion. The extract is also used externally to kill fleas EG0202.

China. Hot water extract of the dried entire plant is used externally to promote eschar formation in burn treatment^{EG0213}.

France. Hot water extract of the leaf is taken orally as a hypoglycemic^{EG0143}.

Guatemala. Decoction of the leaf is taken orally for fever^{EGO160}. Hot water extract of the dried leaf is used externally for ringworm, fungal skin diseases^{EGO183}, wounds, ulcers, bruises and sores, pimples and pustules, as a douche for vaginitis and leucorrhea, and as a wash for infections of the skin and mucosa^{EGO218}. The extract is taken orally for diabetes, as a febrifuge and sudorific, and for kidney diseases^{EGO217}.

India. The leaf essential oil is used externally as a mosquito repellant and an insecticide EGO223.

Italy. Infusion of the dried leaf is used in inhalation therapy to treat bronchial asthma, and is taken orally as a cholagogue and to treat diabetes^{EG0162}. The hot water extract is taken orally for inflammations^{EG0174}.

Kenya. The fresh and the dried leaf are used to control snail infestation^{EG0196}.

Mexico. Hot water extract of the dried leaf is taken orally as an antigrippe medication, for urethritis, laryngitis, cystitis, pyelonephritis, gastritis, enteritis, bronchitis, as an antimalarial and antipyretic. The extract is used externally as an antiseptic EGO204.

Mexico. Infusion of the shade-dried leaf is taken orally to treat infectious diseases^{EG0131}. **Peru.** Decoction of the twig is taken orally

for pulmonary ailments and colds^{EG0163}.

Spain. Essential oil of the fruit and leaf are used in inhalation therapy for the treatment of colds and catarrh. The decoction is taken orally for catarrh^{EG0150}. Hot water extract of the leaf is taken orally for diabetes^{EG0136}.

Tunisia. Hot water extract of the dried leaf is taken orally for bronchial conditions and coughs. Externally, it is used as a mouthwash for dental pain EGO203.

USA. Hot water extract of the leaf is taken orally as a stimulating expectorant^{L00715}.

West Indies. Hot water extract of the leaf is taken orally for asthma and diabetes EGO199.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Alkanes (C-23 to C-31): Lf Wax^{EG0124} Amyrin, beta: Wood 9.3^{EG0122}

Apigenin: Lf^{EG0139}

Aromadendrene: Lf EO 0.86-

3.6%^{EG0177,EG0151}, Fr EO^{EG0147}, Twig 2.0%^{EG0146}

Aromadendrene, allo: Fr EO 23.3%^{EG0185}, Lf EO 0.2-0.8%^{EG0177,EG0151}, Twig 0.6%^{EG0146} Aromadendrene, alpha: Fr EO^{EG0188} Aromadendrin, 3-methoxy: Resin^{EG0157}

Aromadendrin, 7-methoxy: Resin^{EG0157} Benzoquinone, para 2,6-dimethoxy:

Bk^{EG0122}

Betulic acid methyl ester: Wood 14.1^{EG0122}

Betulinic acid, acetyl: Wood^{EG0122}

Bicostol: Lf EOEG0117

Borneol: Fr EO^{EG0147}, Lf EO 0.2%^{EG0151},

Twig w/Lf 0.3%^{EG0146} Borneol acetate: Fr EO^{EG0147}

Bulnesene, alpha: Fr EO 5.95% EG0185

Cadinene, delta: Lf EO^{EG0126}

Cadinene, gamma: Lf EO 0.1% EG0151, Fr

EOEG0188

Calyptoside: Lf EG0143

Camphene: Fr EOEG0147, Lf EO 0.51% EG0177

Caproic acid: Fr EO^{EG0147}

Caryophyllene: Lf EO 16.7%^{EG0141} Caryophyllene oxide: Lf EO 0.3%^{EG0151}

Catechin (+): Lf T14766 Cedrene, beta: Lf EOEG0127

Chrysin: Lf EG0193

Cineol, 1-8: Lf EO 23.6-64.5% EG0141, EG0178, Fr EO 20.81-72.5% EG0185, EG0172, Twig w/Lf 72.8% EG0146

Citral: Fr EO^{EG0147}

Citronellal: Lf EO^{EG0185}

Citronellol: Lf EO 13.6%^{EG0141} Copaene, alpha: Lf EO 0.2%^{EG0151} Cryptone: Lf EO 8.6-16.7%^{EG0141}

Cubebene, beta: 0.1% EG0141

Cymene, para: Lf EO 0.5-14.6% EG0177, EG0153

Daugosterol: Wood 6.1^{EG0122} Ellagic acid: Lf^{EG0138,EG0139} Ellagitannin: Lf ^{EG0139}

Macrocarpal B: Lf 13^{EG0121}, Calyx

Eremophilene: Fr EONO1115 Erythrodiol: Wood 10.1^{EG0122} Eucalyptin: Lf EG0193 Eucalyptin, 8-demethyl: Lf EG0193 Eucalyptone: Lf 27.4^{EGO121,EGO120} Eucalyptus globulus substance EK: Bud 0.43%^{EGÕ192} Eudesmol: Fr EOEG0147 Eudesmol, alpha: Lf EO 1.7% EG0151 Eudesmol, beta: Lf EO 1.3% EG0151 Eudesmol, gamma: Lf EO 0.6% EG0151 Euglobal I-A-I: Bud^{EG0195,EG0191} Euglobal I-A-2: Bud^{EG0195,EG0191} Euglobal I-B: Bud^{EG0195,EG0191}. Lf^{EG0210} Euglobal I-C: Lf^{EG0210}, Bud^{EG0195,EG0191} Euglobal II-A: Bud^{EG0195,EG0191}, Lf^{EG0210} Euglobal II-B: Bud^{EG0195,EG0191} Euglobal II-C: Bud^{EG0195,EG0191} Euglobal III: Lf 10, Bud 100^{EG0190} Euglobal IV: Bud^{EG0191} Euglobal IV-A: LfEG0194 Euglobal IV-B: LfEG0194 Euglobal V: Bud^{EG0191} Euglobal VII: Bud^{EG0191} Farnesol, cis-trans: Fr EO 9.95% EG0185 Fenchone: Fr EOEG0147 Fenchone, iso: Lf EO 0.38% EG0177 Gallic acid: LfEG0139 Geraniol: EO^{EG0173} Geraniol acetate: EOEG0173 Globulol: Fr EOEG0188, Twig w/Lf 1.3%^{EG0146}, Lf EO 1.3-3.44%^{EG0151,EG0177} Globulol, epi: Lf EO^{L02117} Guaiene, alpha: Fr EO 3.15% EG0185 Gurjunene, alpha: Fr EO^{EG0188}, Lf EO 0.6%^{EG0151} Hexane, iso-propyl: Lf EO^{EG0141} Hyperoside: Lf EGÓ142 Isoamyl alcohol: Fr EO^{EG0147} Ledol: Lf EO^{L02117}, Twig w/Lf 0.2%^{EG0146} Limonene: Lf EO 3.1-5.2% EG0177, EG0178 Limonene (+): Lf EO^{EG0110} Linalool: Twig w/Lf 0.2% EG0146, Lf EO 0.2%^{EG0151} Linalool acetate: Lf EO 1.8% EG0141 Linalool oxide: Lf EO 1.9% EG0141, Fr EO^{EG0188} Linoleic acid: Fr Fixed Oil EG0123

Luteolin: Lf EG0139

280^{EG0119}

Macrocarpal A: Lf 109^{EG0121}, Calyx

180^{EG0119} Macrocarpal C: Lf 229^{EG0121}, Calyx 430^{EG0119} Macrocarpal D: Lf 18.2^{EG0121}, Calyx 250^{EG0119} Macrocarpal E: Calyx 150^{EG0119} Macrocarpal H: Lf 23.0^{EG0121} Macrocarpal I: Lf 23.0^{EG0121} Macrocarpal J: Lf 28.4^{EG0121} Maslinic acid: LfEG0170 Menthane, para: Fr EO^{EG0147} Myrcene: Fr EO^{EG0147}, Lf EO 0.1%^{EG0151}. Twig w/Lf 0.5% EG0146 Myristic acid: Fr fixed oil EG0147 Myrtenol: Fr EO^{EG0147} Ocimene, beta trans: Lf EO 0.1% EG0151 Oleanolic acid: Lf^{EG0170} Oleanolic acid, acetyl: Wood^{EG0122} Oleanolic acid, para-methoxy-ciscinnamoyl: Wood 2.7^{EG0122} Oleic acid: Fr fixed oil^{EG0123} Palmitic acid: Fr fixed oil^{EG0123} Phellandrene, alpha: Lf EO 0.1-34.3%^{EG0151,EG0153}, Fr EO 8.3%^{EG0185}, Twig w/Lf 0.3% EG0146 Phellandrene, alpha (-): Lf EO^{T02560} Phellandrene, beta: Fr EO 3.43% EG0185, Lf EO 3.6% EG0141 Phenol, 2,4,6-trimethoxy: Bk ^{EG0122} Phenol, 3,4,5-trimethoxy: Bk^{EG0122} Pinene: Lf^{L00715} Pinene, alpha: Lf EO 0.5- 26.0% j15237, EG0185, Fr EO 4.09% EG0185, Twig w/Lf 11.9%^{EG0146} Pinene, beta: Lf EO 0.5% EG0151, Fr EO^{EG0188}, Twig w/Lf 0.7%^{EG0146} Pinocarveol, trans: Lf EO 0.94% EG0177, Twig w/Lf 1.6% EG0146, Fr EOEG0147 Piperitone; Fr EO^{EG0188}, Twig w/Lf 0.1% EG0146 Proanthocyanidin: Lf^{EG0138} Procyanidin B-2,3-O-galloyl: Lf ^{EG0171} Prodelphinidin B-2,3-O-galloyl: Lf EG0171 Prodelphinidin B-2,3,3-di-O-galloyl: I f EG0171 Prodelphinidin B-5: Lf^{EG0171} Prodelphinidin B-5,3,3-di-O-galloyl: LfEG0171 Pulegole, iso: Lf EO 0.2% EG0141 Ouercetin: Lf^{EG0142}

Quercitrin: Lf^{EG0139} Quercitrin, iso: Lf^{EG0142}

Rutin: Lf^{EG0142}

Sabinene: Fr EO^{EG0147} Sakuranetin: Resin^{EG0157}

Scyllitol: Lf^{EG0224}

Selinene, alpha: Lf EO 0.2% EG0151

Sideroxylin: Lf^{EG0193}

Sideroxylin, 8-demethyl: Lf^{EG0193}

Styrene alpha para-demethyl: twig w/Lf

0.3%^{EG0146}

Terpin-1-en-4-ol: EO 0.1%^{EG0173} Terpinen-4-ol: Fr EO^{EG0188}, Lf

EO0.8% EG0151, Twig w/Lf 0.3% EG0146

Terpinene, alpha: Fr EO^{EG0188}
Terpinene, beta: Fe EO^{EG0188}
Terpinene, gamma: Lf EO 0.1-8.9%^{EG0151,EG0153}, Fr EO^{EG0188}
Terpineol, alpha: Lf EO 2.9-

5.8%^{EG0141,EG0151}, Fr EO^{EG0147}

Terpineol, alpha acetate: Lf EO 2.09%^{EG0177}, twig w/Lf 2.7%^{EG0146} Terpinolene: Lf EO 0.1-0.5%^{EG0151,EG0141}

Thujone, alpha: Fr EO^{EG0147} Thujone, beta: Fr EO^{EG0147}

Thymol: Fr EO^{EG0147}

Tocopherol, alpha: Lf 333K16666

Tritriacontan-16,18-dione: Lf Wax^{M14832}
Tritriacontan-18-one, 16-hydroxy: 7.5^{EG0116}
Tritriacontane-16,18-dione, 4-hydroxy: Lf 6^{EG0116}

Ursolic acid: Wood 8.1^{EG0122}

Ursolic acid, acetyl: Wood 48.8^{EG0122}

Ursolic acid, para-methoxy-cis-cinnamoyl:

Wood 3.3^{EG0122}

Ursolic acid, para-methoxy-transcinnamoyl: Wood 4.2^{EG0122} Uvaol: Wood 12.8^{EG0122}

Valeraldehyde: Lf^{L00715} Verbenol, trans: Fr EO^{EG0147} Verbenone: Fr EO^{EG0147}, Twig w/Lf 0.1%^{EG0146}

Viridiflorol: Lf EO^{L02117} Vomifoliol: Bk^{EG0122}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Abortifacient effect. The leaf essential oil, administered subcutaneously to pregnant mice at a dose of 135.0 mg/kg on days 6–15 of gestation, was inactive^{EGO219}.

ACTH-induction. The dried leaf, in the ration of opossum at variable concentrations, was inactive EGO107.

Analgesic activity. The essential oil was applied on the forehead and temple areas of 32 healthy adults in a double-blind, placebo-controlled, randomized cross-over study. Four different test preparations were applied to large areas of the forehead and temples using a small sponge. The effects were then evaluated by comparing baseline and treatment results. The combination of peppermint oil, eucalyptus oil, and ethanol increased cognitive performance and had a muscle-relaxing and mentally relaxing effect, but had little influence on pain sensitivity. A significant analgesic effect with a reduction in sensitivity to headache was produced by a combination of peppermint oil and ethanol EGO161. The leaf essential oil was applied externally with alcohol to 32 volunteers in a randomized, double-blind, placebo-controlled study. The effect was described as muscularly and mentally relaxing, but not analgesic EG0158.

Anthelmintic activity. Ether extract of the leaf was active on *Strongyloides atercoralis*^{EGO222}. Antiamoebic activity. The essential oil, in broth culture at a concentration of 4.0 microliters/ml, was active on *Entamoeba histolytica*^{EGO155}.

Antiancylostomiasis activity. Ether extract of the leaf was active on Ancylostoma caninum and Ancylostoma duodenale^{EGO222}.

Antibacterial activity. Ethanol (50%) extract of the dried aerial part, in broth culture at a concentration of 25.0 mcg/ml, was active on *Staphylococcus aureus* Methanol extract of the shade-dried leaf, on agar plate at a concentration of 0.6 mg/ml, was inactive on *Staphylococcus aureus*. A concentration of 10.0 mg/ml was inactive on *Escherichia coli* and *Pseudomonas aeruginosa* The chromatographic fraction of the dried leaf, on agar plate at variable concentrations, was active on several gram-

EUCALYPTUS GLOBULUS 145

positive organisms^{A11407}. The fresh essential oil, on agar plate, was active on Pseudomonas aeruginosa and Staphylococcus aureus, and inactive on Bacillus cereus and Escherichia coli^{EG0201}. Water extract of the leaf, on agar plate, was active on Escherichia coli, MIC 0.07; Staphylococcus aureus, MIC 0.09; Staphylococcus aureus strain Oxford, MIC 0.4; Bacillus subtilis, MIC 0.8 and Enterococcus faecalis, MIC 1.3 mg/ml^{EG0166}. The leaf essential oil, on agar plate, was inactive on Propionibacterium acnes EG0125. The leaf essential oil, on agar plate at a concentration of 6.0 microliters/disc, was active on Enterobacter species, Escherichia coli, Haemophilus influenza, Klebsiella species, Proteus mirabilis, Proteus morganii, Proteus rettgeri, Pseudomonas species, Salmonella typhi, Salmonella wien, Staphylococcus aureus, Streptococcus species and Pseudomonas aeruginosa^{EG0176}. The leaf essential oil on agar plate, was active on Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus^{EG0212}. The leaf essential oil, on agar plate, was active on Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and inactive on Bacillus cereus EG0215. Tincture of the dried leaf (10 gm of plant material in 100 ml ethanol), on agar plate at a concentration of 30.0 microliters/disc, produced weak activity on Escherichia coli^{EG0218}.

Antibacteriophage activity. Ethanol (70%) extract of the fresh leaf, in broth culture, was active on Bacteriophage T2, T4, Type I, MS2, PHI-X0174 and T-7^{EGO159}.

Antifungal activity. Aqueous low-speed supernatant of the fresh leaf, in broth culture at a concentration of 100.0 ml/liter, produced strong activity on Hendersonula toruloidea^{EGOQQOO}. Hot water extract of the dried leaf, in broth culture, was inactive on Epidermophyton floccosum, Microsporum canis, and Trichophyton mentagrophytes var. granulare and algodonosa^{EGOQOO}. The fresh essential oil, on agar plate, was inactive on Penicillium cyclopium, Trichoderma viride,

and Aspergillus aegyptiacus EGO201. The leaf essential oil, on agar plate, produced strong activity on Aspergillus aegyptiacus, Penicillium cyclopium and Trichoderma viride EGO215. The leaf essential oil, on agar plate, was active on Aspergillus flavus, and produced weak activity on Keratinomyces ajelloi, Microsporum gypseum, Trichophyton equinum, Trichophyton mentagrophytes, Trichophyton rubrum, and Trichophyton terrestris EGO214. The leaf essential oil, on agar plate, was active on Monila sitophila, Trichophyton tonsurans, and Penicillium digitatum EGO141. The leaf essential oil, on agar plate, was inactive on Trichophyton mentagrophytes EGO125.

Antihyperglycemic activity. Hot water extract of the dried leaf, in the ration of mice at a dose of 6.25% of the diet with the addition of decoction 1 gm/400 ml of drinking water, was active vs Streptozotocin-induced hyperglycemia EG0180. Infusion of the dried leaf, taken orally by adults at variable dosage levels, was inactive EGO 108. Water extract of the dried leaf, administered intragastrically to mice, was active^{EG0136}. Water extract of the dried leaf, administered by gastric intubation and intraperitoneally to mice, produced weak activity vs alloxan-induced hyperglycemia EG0204. The ethanol (95%) extract, administered by gastric intubation to rabbits at a dose of 1.0 gm/kg, was inactive^{EG0115}.

Anti-inflammatory activity. Decoction of the dried seed was active vs croton oil-induced edema in mice and vs cotton pellet granuloma and carrageenin-induced pedal edema in the rat^{EGO129}. Ethanol (80%) extract of the dried leaf, administered by gastric intubation to male rats at a dose of 100.0 mg/kg, produced 18% inhibition of edema vs carrageenin-induced pedal edema^{EGO174}.

Antimalarial activity. Chloroform extract of the twig, administered orally to chicken at a dose of 264.0 mg/kg, and the water extract at a dose of 3.48 gm/kg, were inactive on *Plasmodium gallinaceum*^{EGO101}. Ethanol

(95%) extract of the dried aerial part, at a concentration of 100.0 mcg/ml, produced weak activity on *Plasmodium falciparum* FMN-17, MP-II and SO. A concentration of 150.0 mcg/ml produced weak activity on *P. falciparum* FAN-5. A concentration of 75.0 mcg/ml was active on *P. falciparum* FMN-13^{EGO220}. Hexane extract of the dried leaf, administered intragastrically to mice at a dose of 100.0 mg/kg daily for 4 days, was inactive on *Plasmodium berghei* EGO144.

Antimutagenic activity. Methanol extracts of the dried fruit and leaf, on agar plate at a concentration of 50.0 microliters/disc, were inactive on Bacillus subtilis NIG-1125 His Met and Escherichia coli B/R-WP2-TRPEG0205. Infusion of the leaf, on agar plate at a concentration of 100.0 microliters/disc, was inactive on Salmonella typhimurium TA100 vs ethyl methanesulfonate-induced mutagenicity and on Salmonella typhimurium TA98 vs 2-amino-anthracene-induced mutagenicity. Metabolic activation was not required for the activity EG0165. Methanol extract of the dried leaf, on agar plate at a concentration of 50.0 microliters/disc, was inactive on Bacillus subtilis NIG-1125 His Met and Escherichia coli B/R-WP2-TRPEG0205.

Antimycobacterial activity. Ethanol (95%) extract^{EGO114} and fluid extract^{EGO103} of the dried leaf, on agar plate, were active on *Mycobacterium tuberculosis*. The activity was lost in the presence of whole blood. The water extract was inactive^{EGO114}. The leaf essential oil, administered intramuscularly to guinea pigs at a dose of 500.0 mg/kg, was active on *Mycobacterium tuberculosis*. The treatment enhances the activities of sulfetrone 100 mg/kg, streptomycin 2 mg/kg, and isoniazid 10.0 mg/kg, administered orally^{EGO113}.

Antioxidant activity. Hexane and methanol extracts of the dried leaf were equivocal^{ECO145}. **Antitumor activity.** Ethanol (50%) extract of the dried aerial part, administered intraperitoneally to mice at a dose of 140.0 mg/kg, was inactive on LEUK-P388^{EGO209}.

Antiviral activity. Water extract of the dried leaf, in cell culture at a concentration of 10.0%, was active on Influenza virus, Vaccinia virus and Poliovirus II, and produced strong activity on Herpes virus type 2^{EG0207}. Antiyeast activity. Methanol (50%) extract of the dried leaf, on agar plate, was active on Candida albicans EG0221. The tincture (10 gm of plant material in 100 ml ethanol), on agar plate at a concentration of 30.0 microliters/disc, produced weak activity^{EG0218}. Methanol extract of the shade-dried leaf, on agar plate at a concentration of 1.25 mg/ ml, was inactive on Candida albicans EG0131. The leaf essential oil, on agar plate, was inactive on Pityrosperum ovale^{EG0125}. The leaf essential oil, on agar plate, was active on Candida albicans EGO212 and Cryptococcus neoformans EG0154.

Cardiovascular effect. Ethanol (50%) extract of the dried aerial part, administered intravenously to dogs at a dose of 25.0 mg/kg, was active^{EG0209}.

CNS effect. The essential oil was applied on the forehead and temple areas of 32 healthy adults in a double-blind, placebocontrolled, randomized cross-over study. Four different test preparations were applied to large areas of the forehead and temples using a small sponge. The effects were then evaluated by comparing baseline and treatment results. The combination of peppermint oil, eucalyptus oil and ethanol increased cognitive performance and had a musclerelaxing and mentally relaxing effect, but had little influence on pain sensitivity. A significant analgesic effect with a reduction in sensitivity to headache was produced by a combination of peppermint oil and ethanol EGO161.

Cutaneous absorption effect. The leaf essential oil, applied to the abdomen of mice at a concentration of 0.25%, was active when measured 2 hours after application Economic **Cytotoxic activity.** Ethanol (50%) extract of the dried aerial part, in cell culture at a concentration of 25.0 mcg/ml, was inactive

on CA-9KB^{EG0209}. Water extract of the dried leaf, in cell culture at a concentration of 10.0%, produced weak activity on Hela cells^{EG0207}.

Diuretic activity. Decoction of the dried leaf, administered nasogastrically to rats at a dose of 1.0 gm/kg, was active^{EGO217}.

Estrogenic effect. The leaf essential oil, administered subcutaneously to ovariectomized mice, was inactive. The treatment was effective on immature female rats. The activity was equivalent to 10 units/ml^{ECO100}. **Expectorant activity.** The leaf essential oil, administered orally to cats and rabbits at a dose of 100.0 mg/kg, produced weak activity, was active in rats and inactive in dogs. A dose of 50.0 mg/kg was active in guinea pigs^{ECO104}.

Hypertensive activity. The chromatographic fraction of the dried leaf, administered intravenously to rabbits at variable dosage levels, was inactive^{A011407}.

Hypotensive activity. The chromatographic fraction of the dried leaf, administered intravenously to rabbits at variable dosage levels, was inactive^{A011407}.

Insect repellent activity. The leaf essential oil (12 part), in a mixture of pennyroyal oil (24 part), cedar oil (6 part), citronella oil (6 part) and rue oil (1.5 part) formulated (2-7%) in an organic solvent, paraffin wax, petrolatum, soap, and cotton rope was effective for fleas on dogs^{EG0200}. The leaf essential oil was active on *Pediculus humanus humanus* humanus.

Insecticide activity. The leaf essential oil, at a concentration of 0.8%, was active on mites (Pyroglyphidae)^{EG0148}. The leaf essential oil, at a concentration of 0.002%, in a mixture containing 0.01% *Ocimum sanctum* essential oil and 0.002% *Ocimum basilicum* essential oil, produced 100% mortality on *Culex fatigans* larvae^{EG0208}.

Larvicidal activity. The essential oil, at a concentration of 25.0 ppm, was active on the *Anopheles stephensi* larvae^{EG0216}.

Molluscicidal activity. Water extracts of the dried and fresh leaf, at a concentration of 1:500, were active on *Ancylostoma ceylanicum*, *Biophalaria* species, *Bulinus* species, and *Physopsis* species^{EG0196}.

Mutagenic activity. Tincture of the leaf, on agar plate at a concentration of 80.0 microliters/disc, was inactive on *Salmonella typhimurium* TA100 and TA98. Metabolic activation had no effect on the results^{ECO152}. **Radical scavenging effect.** Ethanol (50%) extract of the dried entire plant, at a concentration of 5.0 mcg/ml, produced weak activity vs superoxide anion, estimated by the neotetrazolium method^{EGO156}.

Repellent activity. Methanol extract of the dried leaf, at a concentration of 4.0 mg/square cm, was equivocal on *Mytilus edulis*^{EG0118}.

Rubefacient effect. The leaf essential oil was applied externally with alcohol to 32 volunteers in a randomized, double-blind, placebo-controlled study. The effect was described as muscularly and mentally relaxing but not analgesic EGO0158.

Teratogenic activity. The leaf essential oil, administered subcutaneously to pregnant mice at a dose of 135.0 mg/kg on days 6 to 15 of gestation, was inactive^{ECO219}.

Toxic effect. Fatalities have been reported after the ingestion of doses between 4 and 480 ml of the essential oil. Toxic symptoms include gastrointestinal pain, vomiting, diarrhea, CNS depression, coma, miosis, seizure (usually in children), feeling of suffocation and muscular weakness. Treatment is supportive and may include gastric lavage and charcoal EGO181. The chromatographic fraction of the dried leaf, administered subcutaneously to rabbits at a dose of 0.2 mg/ kg daily for 2 weeks, was inactive^{A011407}. The leaf essential oil, in the bath water, produced burning, redness and irritation on the skin of a child. When taken orally by an adult, vomiting, mild CNS depression, apnea and cardiac arrythmias were observed EG0182. The leaf essential oil, taken orally by a

child at a dose of 10 to 15 ml, produced symptoms that included pallidity, lethargy, coolness of the skin and dyspnea ^{EGO149} . Toxicity assessment. Ethanol (50%) extract of the dried aerial part, when administered intraperitoneally to mice, produced an LD ₅₀ 562.0 mg/kg ^{EGO209} . The leaf essential oil, when administered intragastrically to mice, produced an LD ₅₀ 3.32 gm/kg ^{EGO175} . The leaf essential oil, when administered orally to rats, produced LD ₅₀ 4.44 gm/kg ^{EGO198} . Tyrosine inhibition. The dried aerial part,		EG0108 EG0109 EG0110	alleged relationship the eucalyptus leaf diet. Med J Aust 1953; 1: 917–919. John, H. L. A trial of eucalyptus infusion in diabetes. J Metabolic Research 1922; 1: 489–495. Triebs, W. and H. Barchet. Azulenes. Forschungen U Fortschr 1949; 24: 4–. Prakash, S., G. K. Sinha and R. C. Pathak. Antibacterial and antifungal properties of some essential oils extracted from medicinal plants of the Kumaon region.
	ure at a concentration of 500.0 s inactive on melanoma-B16 ^{EG0134} .		Indian Oil Soap J 1972; 37(9): 230–232.
REFERENC	`F\$	EG0111	Meyer, F. and E. Meyer. Percuta-
EG0100	Zondek, B. and E. Bergmann.		neous absorption of essential oils and their constituents. Arzneim -
	Phenol methyl ethers as oestrogenic agents. Biochem J 1938; 32: 641–645.	EG0112	Forsch 1959; 9(8): 516–519. Pochinok, V. Y. An antibiotic substance isolated from the leaves of blue eucalyptus, and its de-
EG0101	Spencer, C. F., F. R. Koniuszy, E. F. Rogers, J. Shavel Jr., N. R. Easton, E. A. Kaczka, F. A.	F.G.112	toxifying properties. Farm ZH (Kiev) 1965; 20(3): 70–71.
	Kuehl Jr., R. F. Phillips, A. Walti, K. Folkers, C. Malanga and A. O. Seeler. Survey of plants for antimalarial activity. Lloydia 1947; 10: 145–174.	EG0113	Kufferath, F. and G. M. Mundualdo. The activity of some preparations containing essential oils in tuberculosis. Fitoterapia 1954; 25: 483–485.
EG0102	Stager, R. New studies on the effect of plant odors on ants. Mitt Schweiz Antomol Ges 1933; 15: 567–.	EG0114	Gottshall, R. Y., E. H. Lucas, A. Lickfeldt and J. M. Roberts. The occurrence of antibacterial substances active against <i>Mycobac</i> -
EG0103	Fitzpatrick, F. K. Plant substances active against <i>Mycobacterium tuberculosis</i> . Antibiot	EG0115	<i>J Clin Invest</i> 1949; 28: 920–923. Lin, Y. C., J. T. Huang and H. C.
EG0104	Chemother 1954; 4: 528–. Boyd, E. M. and G. L. Pearson. On the expectorant action of volatile oils. Amer J Med Sci 1946; 211:		Hsiu. Studies on the hypoglycemic activity of the medical herbs. Formosan Med Ass 1964; 63(8): 400–404.
EG0105	602 Maruzzella, J. C. and J. Balter. The action of essential oils on phytopathogenic fungi. Plant	EG0116	Osawa, T. and M. Namiki. Natural antioxidants isolated from eucalyptus leaf waxes. J Agr Food Chem 1985; 33(5): 777–780.
EG0106	Dis Rept 1959; 43: 1143–1147. Oppenheim, M. Exanthema produced by eucalyptus cough drops. Zentralbl Biochem Biophys	EG0117	Dayai, R. and K. S. Ayyar. Analysis of medicinal oil from <i>Eucalyptus globulus</i> . SSP. Bicostata leaves. Planta Med 1986; 1986
EG0107	1912; 13: 128–. Bolliger, A. Adrenals of the Koala (<i>Phascolarctos cinereus</i>) and the	EG0118	(2): 162 Yamashita, N., H. Etoh, K. Sakata, H. Ina and K. Ina. New acylated

EG0119	rhaponticin isolated from Eucalyptus rubida as a repellent against the blue mussel, Mytilus edulis. Agr Biol Chem 1989; 53(10): 2827–2829. Nishizawa, M., M. Emura, Y. Kan, H. Yamada, K. Ogawa and N. Hamanaka. Macrocarpals: HIV-rtase inhibitors of Eu-	EG0127	oil of Eucalyptus globulus from Portugal. Flavour Fragrance J 1994; 9(2): 51–53. Foudil-Cherif, Y., A. Y. B. Hadj-Ahmed, B. Y. Meklatim, J. F. Bonvin and S. Alamercery. Analysis of essential oil of Eucalyptus globulus Labill leaves by coupled gas chromatography (GC)
EG0120	calyptus globulus. Tetrahedron Lett 1992; 33(21): 2983–2986. Osawa, K., H. Yasuda, H. Morita, K. Takeya and H. Itokawa. Eucalyptone from <i>Eucalyptus globulus</i> . Phytochemistry 1995; 40(1):	EG0128	and FTIR spectrometry. J Soc Alger Chim 1995; 5(1): 13–23. Zygadlo, J. A., A. L. LaMarque, D. M. Maestri and N. R. Grosso. Use of essential oils as natural antioxidants. Grasas Aceites
EG0121	183–184. Osawa, K., H. Yasuda, H. Morita, K. Takeya and H. Itokawa. Macrocarpals H, I and J from the leaves of <i>Eucalyptus globulus</i> .	EG0129	(Seville) 1995; 46(4/5): 285–288. Jiao, S. P., B. Chen, W. M. Gao and H. G. Song. Studies on the antiinflammatory and analgesic action of Tasmanian blue-gum
EG0122	J Nat Prod 1996; 59(9): 823–827. Santos, G. G., J. C. N. Alves, J. M. L. Rodilla, A. P. Duarte, A. M. Lithgow and J. G. Urones. Terpenoids and other constitu- ents of Eucalyptus globulus. Phy-	EG0130	(Eucalyptus globulus) seed. Chung Ts'ao Yao 1996; 27(4): 223–225. Beck, F. Camphor- and mentholbased analgesic compositions useful in providing a temporary relief from symptoms of arthri-
EG0123	tochemistry 1997; 44(7): 1309–1312. Prakash, S., G. K. Sinha and S. C. Mittal. Chemical examination of fatty oil extracted from the fruits of <i>Eucalyptus globulus</i> . J	EG0131	tis. Patent-US-5,073,366 1991; 2 pp Navarro, V., M. L. Villareal, G. Rojas and X. Lozoya. Antimicrobial evaluation of some plants used in Mexican traditional
EG0124	Sci Res (Hardwar, India) 1973; 5: 36–. Herbin, G. A. and P. A. Robins. Studies on plant cuticular waxes. II. Alkanes from members of the genus Agave (Agavaceae), the	EG0132	medicine for the treatment of infectious diseases. J Ethnopharmacol 1996; 53(3): 143–147. Osawa, K. J., H. U. Yasuda, H. S. Morita, K. I. Takeya and H. J. Itokawa. Configurational and con-
	genera Kalanchoe, Echeveria, Crassula and Sedum (Crassu- laceae) and the genus Eucalyp- tus (Myrtaceae) with an examin- ation of Hutchinson's sub-divi- sion of the Phytochemistry	EG0133	formational analysis of macro- carpals H, I and J from Eucalyp- tus globulus. Chem Pharm Bull 1997; 45(7): 1216–1217. Osawa, K. J. and H. Y. Yasuda. Extraction of phloroglucinol de-
EG0125	1968; 7(2): 257–268. Williams, L. R., J. K. Stockey, V. N. Home and W. Yan. Therapeutic use for tea tree oil. Aust J		rivatives from eucalyptus for lar- yngitis and Streptolysin O poi- soning. Patent-Japan Kokai Tokkyo Koho-08 259,452 1996;
EG0126	Pharm 1997; 78(924): 285–287. Silvestre, A. J. D., J. A. S. Cavaleiro, B. Delmond, C. Filliatre and G. Bouregeois. The essential	EG0134	11 Obayashi, K., A. Iwamoto and H. Masaki. Evaluation of plant extracts on depigmentation effect

EG0135	in cultured B 16 melanoma cells. J Sccj 1996; 30(2): 153–160. Abdullah, D., Q. N. Ping and G. J. Liu. Enhancing effect of essential oils on the penetration of 5-fluorouracil through rat skin. Yao Hsueh Hsueh Pao 1996; 31(3): 214–221.	EG0143 EG0144	Boukef, K., G. Balansard, P. Susplugas and P. Bernard. Study of a phenolic heteroside isolated from the leaves of <i>Eucalyptus globulus</i> . Plant Med Phytother 1976; 10: 119–. Brandao, M., M. Botelho and E. Krettli. Antimalarial experimen-
EG0136	Gray, A. M. and P. R. Flatt. Nature's own pharmacy: The diabetes perspective. Proc Nutr Soc 1997; 56(1B): 507–517.	EG0145	tal chemotherapy using natural products. Cienc Cult 1985; 37(7): 1152–1163. Chevolleau, S., J. F. Mallet, E.
EG0137	Anpalahan, M. and D. G. Le Gouteur. Deliberate self-poisoning with eucalyptus oil in an elderly woman. Aust N Z J Med 1998; 28(1): 58–.		Ucciani, J. Gamisans and M. Gruber. Antioxidant activity in leaves of some Mediterranean plants. J Amer Oil Chem Soc 1992; 69(12): 1269–1271.
EG0138	Cadahia, E., E. Conde, M. C. Garcia-Vallejo and B. F. De Simon. High pressure liquid chromatographic analysis of polyphenols in leaves of <i>Eucalyptus camaldulensis</i> , <i>E. globulus</i> and <i>E. rudis</i> : Proanthocyanidins, ellagitannins and flavonol glycosides. Phytochem Anal 1997; 8: 78–83.	EG0146 EG0147	Zrira, S. S., B. B. Benjilali, M. M. Fechtal and H. H. Richard. Essential oils of twenty-seven eucalyptus species grown in Morocco. J Essent Oil Res 1992; 4(3): 259–264. Baslas, R. K. Essential oil of fruits of <i>Eucalyptus globulus</i> raised in Nainital (Uttar Pradesh,
EG0139	Conde, E., E. Cadahia and M. C. Garcia-Villejo. Low molecular weight polyphenols in leaves of <i>Eucalyptus camaldulensis</i> , <i>E. globulus</i> and <i>E. rudis</i> . Phytochem Anal 1997; 8: 186–193.	EG0148	India). Nat Appl Sci Bull 1977; 29(2): 73–74. McDonald, L. G. and E. Tovey. The effectiveness of benzyl benzoate and some essential plant oils as laundry additives for kill-
EG0140	Day, L. M., J. Ozanne-Smith, B. J. Parwsons, M. Dobbin and J. Tibballs. Eucalyptus oil poisoning among young children: Mechanisms of access and the poten-	EG0149	ing house dust mites. J Allergy Clin Immunol 1993; 92(5): 771– 772. Hindle, R. C. Eucalyptus oil in- gestion. New Zealand Med J
	tial for prevention. Aust N Z J Public Health 1997; 21(3): 297–302.	EG0150	1994; 107(977): 185 Bonet, M. A., C. Blanche and J. V. Xirau. Ethnobotanical study
EG0141	Saeed, M. A. and A. W. Sabir. Antimicrobial studies of the con- stituents of Pakistani eucalyptus oils. J Fac Pharm Gazi 1995;		in River Tenes Valley (Catalonia, Iberian Peninsula). J Ethnopharmacol 1992; 37(3): 205–212.
EG0142	12(2): 129–140. Boukef, K., G. Balansard, M. Lallemand and P. Bernard. Study of flavonoid heterosides and aglycones isolated from the leaves of <i>Eucalyptus globulus</i> . Plant Med Phytother 1976; 10: 30–.	EG0151	Dethier, M., A. Nduwimana, Y. Cordier, C. Menut and G. Lamaty. Aromatic plants of tropical Central Africa. XVI. Studies on essential oils of five eucalyptus species grown in Burundi. J Essent Oil Res 1994; 6(5): 469–473.

EG0152 EG0153	Schimmer, O., A. Kruger, H. Paulini and F. Haefele. An evaluation of 55 commercial plant extracts in the Ames mutagenicity test. Pharmazie 1994; 49(6): 448–451. Kathihabwa, J. and E. Ruracenyeka. Analysis of the essential oils of the leaves of <i>Eucalyptus maideni</i> and <i>E. globulus</i> in the Mageyo Region in Merris Sci. Rev Univ Burundi, Ser.: Sci Exa-	EG0162	eucalyptus oil preparations on neurophysiological and experi- mental algesimetric headache parameters. Cephalalgia 1994; 14: 228–234. De Feo, V., R. Aquino, A. Menghini, E. Ramundo and F. Senatoare. Traditional phyto- therapy in the Peninsula Sorren- tina, Campania, Southern Italy. J Ethnopharmacol 1992; 36(2):
EG0154	ctes 1993; 17: 61–76. Viollon, C. and J. P. Chaumont. Antifungal properties of essential oils and their main components upon <i>Cryptococcus neoformans</i> . Mycopathol 1994; 128 (3): 151–153.	EG0163	113–125. Yelasco-Negueruela, A., M. J. Perez-Alonso and G. Esenarro Abarca. Medicinal plants from Pampallakta: An Andean com- munity in Cuzco (Peru). Fito- terapia 1995; 66(5): 447–462.
EG0155	De Blasi, V., S. Debrot, P. A. Menoud, L. Gendre and J. Schowing. Amoebicidal effect of essential oils in vitro. J Toxicol Clin Exp 1990; 10(6): 361–373. Masaki, H., S. Sasaki, T. Atsumi	EG0164	Mumcuoglu, K. Y., R.Galun, U. Bach, J. Miller and S. Magdassi. Repellency of essential oils and their components to the human body louse, <i>Pediculus humanus humanus</i> . Entomol Exp Appli-
EG0157	and H. Sakurai. Active-oxygen scavenging activity of plant extracts. Biol Pharm Bull 1995; 18(1): 162–166. Quijano, T. J. and M. A. Ensun-	EG0165	cata 1996; 78(3): 309–314. Badria, F.A. Is man helpless against cancer? An environmental approach: Antimutagenic agents from Egyptian food and medi-
EG0158	cho. Further flavonoids from the resin of diseased eucalyptus. Actual Biol (Medellin) 1985; 14 (52): 61–63. Gobel, H., G.Schmidt, M. Dworschak, H. Stolze and D. Heuss.	EG0166	cinal preparations. Cancer Lett 1994; 84(1): 1–5. Brantner, A. and E. Grein. Antibacterial activity of plant extracts used externally in traditional medicine. J Ethnopharmacol
EG0159	Essential plant oils and head- ache mechanisms. Phytomedi- cine 1995; 2(2): 93–102. Verykokidou, E., H. Skaltsa, M. Couladis and A. Delitheos. Anti- bacteriophage properties of some	EG0167	1994; 44(1): 35–40. Ontengco, D. C., L. A. Dayap and T. V. Capal. Screening for the antibacterial activity of essential oils from some Phillipine plants. Acta Manilana 1995; 43: 19–
EG0160	Greek plant extracts. Int J Pharmacog 1995; 33(4): 339–343. Giron, L. M., V. Freire, A. Alonzo and A. Caceres. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala.	L00715	23. Der Marderosian, A. H. Pharmacognosy: Medicinal teas-boon or bane? Drug Ther 1977; 1977(7): 178–186. De Pascual Teresa, J., J. G. Urones
EG0161	J Ethnopharmacol 1991; 34 (2/3): 173–187. Gobel, H., G. Schmidt and D. Soyka. Effect of peppermint and		and M. F. Gonzales. Sesquiterpenes from the essential oil fraction of <i>Eucalyptus globulus</i> . An Quim 1977; 73: 751–.

EG0170	Movsumov, I. S. and A. M. Aliev. Triterpene acids of some representatives of eucalyptus. Khim Prir Soedin 1985; 21(2): 271–272. Takechi, M., Y. Tanaka, M. Take-	EG0179	Wagner, H., M. Wierer and R. Bauer. In vitro inhibition of prostaglandin biosynthesis by essential oils and phenolic compounds. Planta Med 1986; 1986
EG0171	hara, G. I. Nonaka and I. Nishioka. Structure and antiherpetic activity among the tannins. Phytochemistry 1985; 24(10): 2245–2250.	EG0180	(3): 184–187. Swanston-Flatt, S. K., C. Day, C. J. Bailey and P. R. Flatt. Tradi- tional plant treatments for diabe- tes. Studies in normal and strep- tozotocin diabetic mice. Dia-
EG0172	Baslas, R. K. and S. Saxena. Chemical examination of essential oil from the fruits of <i>Eucalyptus globulus</i> Labill. Herba Hung 1984; 23(3): 21–23.	EG0181	betologia 1990; 33(8): 462–464. Mack, R. B. Fair dinkum koala kruisine-eucalyptus oil poisoning. North Carolina Med J 1988; 49(11): 599–600.
EG0173	Ahmadouch, A., J. Bellakdar, M. Berrada, C. Denier and R. Pinel. Chemical analysis of the essential oil from five species of eucalyptus acclimated to Morocco. Fitoterapia 1985; 56(4): 209–	EG0182	Spoerke, D. C., S. A. Vandenberg, S. C. Smolinske, K. Kulig and B. M. Rumack. Eucalyptus oil: 14 cases of exposure. Vet Hum Toxicol 1989; 31(2): 166–168.
EG0174	220. Mascolo, N., G. Autore, F. Capasso, A. Menghini and M. P. Fasulo. Biological screening of Italian medicinal plants for anti-inflammatory activity. Phytother Res 1987; 1(1): 28–31.	EG0183	Caceres, A., B. R. Lopez, M. A. Giron and H. Logemann. Plants used in Guatemala for the treatment of dermatophytic infections. 1. Screening for antimycotic activity of 44 plant extracts. J Ethnopharmacol 1991; 31(3): 263–
EG0175	Ohsumi, T., K. Kuroki, T. Kimura and Y. Murakami. Study on acute toxicities of essential oils used in endodontic treatment. Kyushu Shika Gakkai Zasshi 1984; 38(6): 1064–1071.	M28771	276. Ansari, A. A. and A. K. Shrivastava. The effect of eucalyptus oil on growth and aflatoxin production by <i>Aspergillus flavus</i> . Lett Appl Microbiol 1991; 13
EG0176	Benouda, A., M. Hassar and B. Benjilali. In vitro antibacterial properties of essential oils, tested against hospital pathogenic bacteria. Fitoterapia 1988; 59(2): 115–119.	EG0185	(2): 75–77. Xiao, S. C., M. Z. Wen, Y. Z. Wu, W. J. Ren and P. Q. Chen. Botanical identification of yik- ouzhong (a Chinese herbal drug) and its chemical constituents of
EG0177	Renedo, J., J. A. Otero and J. R. Mira. Essential oil of <i>Eucalyptus globulus</i> L. from Cantabria (Spain). Variation during distillation. Plant Med Phytother 1990; 24(1): 31–35.	EG0185	essential oils. Tianran Chanwu Yanjiu Yu Kaifa 1990; 2(2): 51–54. Erazo, S., C. Bustos, A. M. Erazo, J. Rivas, O. Zollner, C. Cruzat and J. Gonzalez. Comparative
EG0178	Dellacassa, E., P. Menendez, P. Moyna and P. Cerdeiras. Antimicrobial activity of eucalyptus essential oils. Fitoterapia 1989; 60(6): 544–546.		study of twelve species of eucalyptus acclimatized in Quilpue (33 L. S. 5th. Region, Chile). Plant Med Phytother 1990; 24(4): 248–257.

EG0187	Chauhan, J. S., N. K. Singh and S. V. Singh. Screening of higher plants for specific herbicidal principle active against dodder, <i>Cuscuta reflexa</i> Roxb. Indian J Exp Biol 1989; 27(10): 877–884.	EG0196	from Eucalyptus globulus Labill. 2. The structures of euglobal- 1A1, -1A2, -1B, -1C, -2A, -2B and -2C. Chem Pharm Bull 1982; 30: 1952–1963. Chennoufi, R., J. P. Morizur, H. Richard and F. Sandret. Study of
EG0188	Nichimura, H. and M. Calvin. Essential oil of <i>Eucalyptus globulus</i> in California. J Agr Food Chem 1979; 27: 432–435.		Eucalyptus globulus essential oils from Morocco (young and old leaves). Riv Ital Eppos 1980; 62: 353–357.
EG0189	Edwards, C. O., J. A. Throup, E. W. T. Major and B. A. McGaw. The occurrence of caryophy-	EG0197	Broberg, G. Molluscicidal effects of eucalyptus. Vet Rec 1982; 111: 526–.
EG0190	llene in Eucalyptus globulus. Q J Crude Drug Res 1978; 16: 113–. Sawada, T., M. Kozuka, T.	EG0198	Duke, J. A. Phytotoxin tables. CRC Crit Rev Toxicol 1977; 5: 189–237.
	Komiya, T. Amano and M. Goto. Euglobal-III, a novel granulation inhibiting agent from	EG0199	Ayensu, E. S. Medicinal plants of the West Indies. Unpublished Manuscript 1978; 110 p.
	Eucalyptus globulus Labill. Chem Pharm Bull 1980; 28: 2546–2548.	EG0200	Cox, N. D. Flea treatment composition for animals. Patent-US-4,193,986 1980; 3 pp
EG0191	Amano, T., T. Komiya, M. Hori, m. Goto, M. Kozuka and T. Sawada. Isolation and characterization of euglobals from <i>Eucalyptus globulus</i> Labill. by pre-	EG0201	Ross, S. A., N. E. El-Keltawi and S. E. Megalla. Antimicrobial activity of some Egyptian aromatic plants. Fitoterapia 1980; 51: 201–205.
	parative reversed-phase liquid chromatography. J Chromatogr 1981; 208: 347–355.	EG0202	Bastien, J. W. Pharmacopeia of Qollahuaya Andeans. J Ethno-pharmacol 1983; 8(1): 97–111.
EG0192	Anon. Physiologically active substance EK and EA. Patent-Japan Kokai Tokkyo Koho-81 20,597 1981; 7 pp	EG0203	Boukef, K., H. R. Souissi and G. Balansard. Contribution to the study on plants used in traditional medicine in Tunisia. Plant
EG0193	Wollenweber, E. and G. Kohorst. Epicuticular leaf flavonoids	EG0204	Med Phytother 1982; 16(4): 260–279.
EG0194	from eucalyptus species and from Kalmia latifolia. Z Naturforsch Ser C 1981; 36: 913–915. Kozuka, M., T. Sawada, E. Mizuta, F. Kasahara, T. Amano, T. Komiya and M. Goto. The gran-	EG0204	Perez, R. M., G. A. Ocegueda, J. L. Munoz, J. G. Avila and W. W. Morrow. A study of the hypoglucemic effect of some Mexican plants. J Ethnopharmacol 1984; 12(3): 253–262.
	ulation-inhibiting principles from Eucalyptus globulus Labill. 3. The structures of euglobal-III, -IVB and -VII. Chem Pharm Bull 1982; 30: 1964–1973.	EG0205	Ishii, R., K. Yoshikawa, H. Minakata, H. Komura and T. Kada. Specificities of bio-antimutagens in plant kingdom. Agr Biol Chem 1984; 48(10): 2587–2591.
EG0195	Kozuka, M., T. Sawada, F. Kasahara, E. Mizuta, T. Amano, T. Komiya and M. Goto. The granulation-inhibiting principles	EG0206	Barde, A. K. and S. M. Singh. Activity of plant extracts against Scytalidium anamorph of Hendersonula toruloidea causing skin

EG0207	and nail diseases in man. Indian Drugs 1983; 20(9): 362–364. May, G. and G. Willuhn. Antiviral activity of aqueous extracts from medicinal plants in tissue cultures. Arzneim-Forsch 1978; 28(1): 1–7.	EG0216	bial activity of some Egyptian aromatic plants. Herba Pol 1980; 26(4): 245–250. Kumar, A. and G. P. Dutta. Indigenous plant oils as larvicidal agent against <i>Anopheles stephensi</i> mosquitoes. Curr Sci 1987;
EG0208	Chavan, S. R., N. P. Shah and S. T. Nikam. Individual and synergistic activity of some essential oils as mosquito larvicidal agents. Bull haffkine Inst 1983; 11(1): 18–21.	EG0217	56(18): 959–960. Caceres, A., L. M. Giron and A. M. Martinez. Diuretic activity of plants used for the treatment of urinary ailments in Guatemala. J Ethnopharmacol 1987; 19(3):
EG0209	Aswal, B. S., D. S. Bhakuni, A. K. Goel, K. Kar, B. N. Mehrotra and K. C. Mukherjee. Screening of Indian plants for biological activity: Part X. Indian J Exp Biol 1984; 22(6): 312–332.	EG0218	233–245. Caceres, A., L. M. Giron, S. R. Alvarado and M. F. Torres. Screening of antimicrobial activity of plants popularly used in Guatemala for the treatment of
EG0210	Kozuka, M., K. Fujitani, T. Konoshima and M. Takasaki. Biological activities of euglobals and their related compounds. II. Anti-tumor promoting activities. Abstr 27th Annual Meeting	EG0219	dermatomucosal diseases. J Eth-nopharmacol 1987; 20(3): 223–237. Pages, N., G. Fournier, F. Le Luyer and M. C. Marques. The essential oils and their potential
EG0211	American Society of Pharmacognosy July 27–30 1986 Ann Arbor, MI 1986; Abstr-64. Benjilali, B., A. Tantaqui-Elaraki, M. Ismaili-Alaoui and A. Ayadi. Method to test the antiseptic effects of essential oils by direct contact. Plant Med Phytother	EG0220	teratogenic properties: Example of the essential oils of Eucalyptus globulus preliminary study with mice. Plant Med Phytother 1990; 24(1): 21–26. Badam, L., R. P. Deolankar, S. R. Rojatkar, B. A. Nagsampgi and U. V. Wagh. In vitro antima-
EG0212	1986; 20(2): 155–167. Janssen, A. M., N. I. J. Chin, J. J. C. Scheffer and A. Baerheim- Svendsen. Screening for antimi- crobial activity of some essential oils by the agar overlay tech- nique. Pharm Weekbl (Sci Ed)	EG0221	larial activity of medicinal plants of India. Indian J Med Res 1988; 87(4): 379–383. Giron, L. M., G. A. Aguilar, A. Caceres and G. L. Arroyo. Anticandidal activity of plants used for the treatment of vaginitis in
EG0213	1986; 8(6): 289–292. Siang, S. T. Use of combined traditional Chinese and Western medicine in the management of		Guatemala and clinical trial of a <i>Solanum nigrescens</i> preparation. J Ethnopharmacol 1988; 22(3): 307–313.
EG0214	burns. Panminerva Med 1983; 25(3): 197–202. Deshmukh, S. K., P. C. Jain and S. C. Agrawal. A note on mycotoxicity of some essential oils. Fito-	EG0222	Gilbert, B., W. B. Mors, P. M. Baker, T. C. B. Tomassini, E. G. Coulart, J. C. De Holanda, J. A Ribiero da Costa, J. N. G. Lopes, D. Dos Santos Filho, S. J. Sarti,
EG0215	terapia 1986; 58(4): 295–297. El-Keltawi, N. E. M., S. E. Megalla and S. A. Ross. Antimicro-		A. M. T. Turco and Vichn. Anthelmintic activity of essential oils and their chemical compo-

	nents. An Acad Brasil Cienc Suppl 1972; 44: 423–428.	EG0226	Chevolleau, S., J. F. Mallet, A. Debal and E. Ucciani. Antioxi-
EG0223	Nayar, S. L. Vegetable insecticides. Bull Natl Inst Sci India 1955;1955(4): 137–145.		dant activity of Mediterranean plant leaves: Occurrence and anti- oxidative importance of alpha-
EG0224	Plouvier, V. Research on the occurrence of scyllitol in higher plants. C R Acad Sci Ser D 1972; 275: 2993–2996.	EG0227	tocopherol. J Amer Oil Chem Soc 1993; 70(8): 807–809. Osawa, T. and M. Namiki. A novel type of antioxidant iso-
EG0225	Opdyke, D. L. J. Monographs on fragrance raw materials. Alphaphellandrene. Food Cosmet Toxicol 1978; 16: 843–844.		lated from leaf wax of eucalyptus leaves. Agr Biol Chem 1981; 45(3): 735–739.

Ginkgo biloba

Common Names

Eun-haeng	Korea	Ityo	Japan
Ginkgo tree	USA	Maiden hair tree	China
Ginkgo nut	Japan	Maiden hair tree	Germany
Ginkgo	Iran	Maiden hair tree	India
Ginkgo	Japan	Maiden hair tree	Iran
Ginkgo	Korea	Maiden hair tree	Japan
Ginkyo	Japan	Maiden hair tree	Korea
Ginnan	Japan Japan	Maiden hair tree	USA
Gin-nan	Japan	Zhanco	Iran
Icho	Japan		

BOTANICAL DESCRIPTION

Gingko biloba is a 30 to 40 m high dioecious tree of the CYCADACEAE family, with a girth of about 4 meters. The trees can live for hundreds of years. The bark is light to dark brown with rough grooves and reticulate fissures. The leaves are fan-shaped with bifurcated ribs, fresh green and golden vellow in autumn. The tree flowers for the first time when it is between 20 to 30 years old. The flowers are dioecious. They are in the axils of the lower leaves of the annual growth. The male flowering parts are attached to short catkins. The female flowers have longer pedicles and are at the end of a leafless branch. Fertilization occurs months after pollination by spermatozoids, although usually only one ovule is fully

formed. The seeds later become fleshy and plum-like round and light green or yellow in color. They have a diameter of about 2.5-3 cm and contain a two-edged edible nut. They smell like butyric, capric or valeric acid when ripe.

ORIGIN AND DISTRIBUTION

Indigenous to China, Japan and Korea, it is now grown in Europe.

TRADITIONAL MEDICINAL USES

China. The fruit pulp is macerated in vegetable oil, and after 100 days it is taken orally for pulmonary tuberculosis GB0236. Hot water extract of the fruit is taken as an anthelmintic GB0339. Hot water extract of the leaf is taken orally as a vermifuge, and for asthma and senility GB0213. The raw seeds are eaten, and the decoction of the seed is taken orally for cancer. The pan-fried seeds are eaten for tuberculosis GBO236.

Iran. Hot water extract of the dried leaf is taken orally for vision disturbances associated with blood circulation abnormalities and inflammation, and to improve memory loss associated with blood circulation abnormalities. The ethanol (90% and 95%) extracts are taken orally as an arterial dilator and arterial circulation stimulator GB0123. **Korea.** Hot water extract of the fruit is

South Korea. Hot water extract of the seed is taken orally to induce labor^{GB0336} and as an abortifacient^{GB0324}.

taken orally for its oxytocic effect GB0109.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Acacetin: LfGB0322

Acetic acid: Pollen^{GB0318} Acetic acid: Pollen^{GB0311} Afzelin: Pollen 141^{GB0315}

Amentoflavone: Lf 3.8-5^{GB0263,GB0295}

Anacardic acid: PlGB0126

Apigenin: Lf^{GB0146}, Pollen 109^{GB0315}

Arabinitol,2-carboxy: Lf 18 nmol/gm^{GB0209}

Arachidic acid: Pollen^{GB0315}

Ascorbic acid: Fr 640GB0340. LfGB0100

Astragalin: Lf 1.8%^{GB0261}
Atlantone,(E): Heartwood^{GB0124}
Atlantone,(Z): Heartwood^{GB0124}
Atlantone,10,11-dhydro,(Z):

Heartwood^{GB0124}

Atlantone, 10, 11-dihydro, (E):

 $Heartwood^{GB0124} \\$

Atlantone, 10, 11-dihydro-6-oxo, (E):

 $Heartwood^{GB0124} \\$

Auroxanthin: Chloroplast^{GB0264} Behenic acid: Pollen^{GB0315}

Benzene,1,4-dimethyl-2,5-diisopropyl: EO^{GB0318}

Benzoic acid,4-hydroxy: Lf GB0322

Betulaprenol 15: Lf^{GB0206}
Betulaprenol 16: Lf^{GB0206}
Betulaprenol 17: Lf^{GB0206}
Betulaprenol 18: Lf^{GB0206}
Betulaprenol 19: Lf^{GB0206}
Betulaprenol 20: Lf^{GB0206}
Betulaprenol 21: Lf^{GB0206}

Bilobalide A: Lf^{GB0105}

Bilobalide: Lf 330^{GB0169}, Pl^{GB0185} Bilobanone: Lf^{GB0242}, Heartwood^{GB0124} Bilobetin,1-5-methoxy: Testa^{GB0136} Bilobetin,5-methoxy: Lf 2^{GB0314}

Bilobetin: Lf 0.0025%-1.9%GB0107,GB0285

Bilobol: Fr^{GB0154}

Campesterol: Kernel^{GB0320} Cardanol: Testa^{GB0328}

Carotene, alpha: Chloroplast GB0264

Carotene, beta: LfGB0189

Carotene, gamma: Chloroplast GB0264 Catechin, (+): LfGB0100, Call TissGB0243

Catechin,epi,(-): Lf^{GB0100} Catechin,epi-gallo,(-): Lf^{GB0101} Catechol,(+): Lf^{GB0242}

Catechol,epi,(-): Lf^{GB0242} Catechol,epi-gallo,(-): Lf^{GB0242} Catechol,gallo,(+): Lf^{GB0242}

Choline: Lf^{GB0242}

Citric acid: Pollen^{GB0311} Cosmosiin: Lf^{GB0146}

Coumaric acid, para: Pollen 47GB0315

Coumarin, iso, 8-hydroxy-3-(6-

pentadecenyl)-3,4-dihydro: Fr^{GB0121} Coumarin,iso,8-hydroxy-3-heptadecyl-3,4-

dihydro: Fr^{GB0121}

Coumarin, iso, 8-hydroxy-3-tridecyl-3,4-

dihydro: Fr^{GB0121} Cymene,para: EO^{GB0318} Cystathionine: Fr 0.16^{GB0343} Daucosterol: Lf^{GB0100}

Diphenol,4,4-(penta-cis-1-cis-5-diene-1,5-

diynyl): Lf 22.7^{GB0117}

Docosan-1-ol: Pollen 445^{GB0315}

Dolichol: LfGB0281

Elemol: Heartwood^{GB0124} Ergosterol: Sd^{GB0338}

Eudesmol, beta: Heartwood GB0124 Eudesmol, gamma: Heartwood GB0124

Flavonoids: Lf^{GB0308}

Flavoxanthin: Chloroplast^{GB0264} Formic acid: Pollen^{GB0311} Galactocerebroside: Lf^{GB0229} Gallocatechin,(+): Lf^{GB0101}

Gingolide C: LfGB0282

Ginkgetin,iso: Lf 21-2900^{GB0107,GB0217} Ginkgetin: Lf 42-6530^{GB0107,GB0217} Ginkgo biloba polyprenol 14: Lf^{GB0321} Ginkgo biloba polyprenol 15: Lf^{GB0321} Ginkgo biloba polyprenol 16: Lf^{GB0321} Ginkgo biloba polyprenol 17: Lf^{GB0321}

Ginkgo biloba polyprenol 18: Lf^{GB0321} Ginkgo biloba polyprenol 19: Lf^{GB0321} Ginkgo biloba polyprenol 20: Lf^{GB0321} Ginkgo biloba polyprenol 21: Lf^{GB0321} Ginkgo biloba polyprenol 22: LfGB0321 Ginkgo flavone glycosides: LfGB0199 Ginkgo polyprenol 15: Lf^{GB0163} Ginkgo polyprenol 16: Lf^{GB0163} Ginkgo polyprenol 17: Lf^{GB0163} Ginkgo polyprenol 18: LfGB0163 Ginkgo polyprenol 19: Lf^{GB0163} Ginkgo polyprenol 20: Lf^{GB0163} Ginkgo polyprenol 21: Lf^{GB0163} Ginkgo polyprenol 22: Lf^{GB0163} Ginkgo polyprenol 85: Lf^{GB0163} Ginkgo polyprenol 90: Lf^{GB0163} Ginkgo polyprenol 95: Lf^{GB0163} Ginkgo polyprenol 120: Lf^{GB0163} Ginkgo polysaccharide GF-1: Lf^{GB0119} Ginkgo polysaccharide GF-2-A: Lf^{GB0119} Ginkgo polysaccharide GF-2-B: LfGB0119 Ginkgo polysaccharide GF-3: Lf^{GB0119} Ginkgoic acid, hydro: Endosperm GB0130 Ginkgoic acid: FrGB0154 Ginkgol: Lf^{GB0317}, Endosperm^{GB0130} Ginkgolic acid, dihydro: Fr^{GB0173} Ginkgolic acid, hydro: Lf^{GB0173} Ginkgolic acid: Fr^{GB0173}, Lf <50^{GB0229} Ginkgolide A: Rt Bk 100^{GB0114}, Lf 4-220GB0111,GB0169, Call TissGB0137, PlGB0185 Ginkgolide B: Rt Bk 100^{GB0114}, Pl^{GB0329}, Lf 50-2500^{GB0111,GB0176} Ginkgolide C: PlGB0185 Ginkgolide C: PlGB0329, Lf 0.75-120^{GB0111,GB0169}, Rt Bk 200^{GB0114} Ginkgolide J: Lf 540^{GB0164}, Call Tiss^{GB0137}, Rt^{ĞB0156} Ginkgolide M: Rt Bk 0.2^{GB0114} Ginkgotoxin: Sd 100^{GB0118}, Lf^{GB0232} Ginnol: Lf 1260^{GB0162}, Pollen 463^{GB0315}, FrGB0154 Ginnone: Lf^{GB0100} Glycerol, DL-threo-para-hydroxy-phenyl: LfGB0122 Glycerol, threo-guaiacyl, DL: Lf^{GB0122} Heptacosane, N: Lf 38.1% GB0162 Heptadeca-3,6,9-trien-1-ol: EOGB0318 Hexacosan-1-ol: LfGB0100 Hexadecanoic acid,14-methyl: Sd OilGB0231 Hex-cis-3-en-1-ol: EO^{GB0318} Hex-cis-4-en-1-ol: EO^{GB0318} Hexen-1-al: LfGB0100

Hex-trans-2-en-1-al: LfGB0113 Hex-trans-4-en-1-ol: EOGB0318 Ingnoceric acid: Pollen GB0315 Ionone, beta: EOGB0318 Kaempferol: LfGB0112 Kaempferol-2,6-dirhamnosyl glucoside: LfGB0276 Kaempferol-3-0-(2,0-[6,0-{para-(beta-Dglucosyl)-oxy-trans-cinnamoyl}-beta-Dglucosyl]-alpha-L-rhamnoside): Lf^{GB0146} Kaempferol-3-0-(2,6-di-0rhamnopyranosyl-glucopyranoside): I fGB0202 Kaempferol-3-0-(2,6-dirhamnopyranosylbeta-D-glucopyranoside): Lf 22^{GB0295} Kaempferol-3-0-(2-0-beta-Dglucopyranosyl)-alpha-Lrhamnopyranoside: Lf 5.3^{GB0120} Kaempferol-3-0-(6-para-coumaroylglucopyranosyl-beta-1,4rhamnopyranoside): Lf^{GB0288} Kaempferol-3-0-(6-para-coumaroylglucosyl(1,2))rhamnoside: Lf^{GB0296} Kaempferol-3-0-[2,0-6-0-(para-hydroxytrans-cinnamoyl)-beta-D-glucosyl]-alpha-L-rhamnoside: Lf^{GB0146} Kaempferol-3-0-[2-0-(beta-D-glucosyl)alpha-L-rhamnosidel: LfGB0146 Kaempferol-3-0-[2-0-6-0-{para-(7-0-beta-Dglucopyranosyl)-coumaroyl}-beta-Dglucopyranosyl]-alpha-L-rhamnopyranoside: Lf 3.1 GB0120 Kaempferol-3-0-[2-0-6-0-bis-(alpha-Lrhamnosyl)-beta-D-glucoside]: Lf^{GB0146} Kaempferol-3-0-[3-para-coumaroylglucosyl-beta(1,4)-rhamnoside]: Lf 2.5%^{GB0261} Kaempferol-3-0-[6,0-para-coumaroyl-beta-D-glucopyranosyl(1,2)]-alpha-Lrhamnopyranoside: Lf 200^{GB0295} Kaempferol-3-0-[6-0-alpha-Lrhamnosyl)beta-D-glucoside]: Lf^{GB0146} Kaempferol-3-0-[6-0-para-coumaroyl-beta-D-glucosyl-(1,2)-alpha-L-rhamnoside]: Kaempferol-3-0-[alpha-rhamnosyl-(,2)alpha-rhamnosyl-(1,6)]-beta-D-glucoside: Lf 1.2%^{GB0261}

Kaempferol-3-0-[alpha-

700^{GB0266}

rhamnosyl(1,2)alpha-

rhamnosyl(1,6)]beta-D-glucoside: Lf

Kaempferol-3-0-[beta-D-glucopyranosyl(1,2)]-alpha-L-rhamnopyranoside: Lf^{GB0122}

Kaempferol-3-0-alpha-(6-para-coumaroyl-glucosyl-beta-1-4-rhamnoside): Lf^{GB0221}

Kaempferol-3-0-alpha-(6-para-coumaroylglucosyl-beta-1-4-rhamnoside): Lf 47^{GB0262}

Kaempferol-3-0-alpha-L-[beta-D-glucopyranosyl(1,2)rhamnopyranoside]:

Kaempferol-3-0-alpha-L-rhamno-glucoside: Lf 580^{GB0104}

Kaempferol-3-0-alpha-L-rhamnoside: Lf^{GB0146}

Kaempferol-3-0-beta-D-rutinoside: Lf 0.1% GB0313

Kaempferol-3-0-coumaroylglucorhamnoside: Lf^{GB0174}

Kaempferol-3-0-para-coumaroyl-glucorhamnoside: Lf^{GB0178}

Kaempferol-3-0-rhamnosyl

(1,2)rhamnosyl(1,6)glucoside: Lf^{GB0296}

Kaempferol-3-0-rutinoside: Lf 40-130^{GB0262,GB0295}

Kaempferol-coumaroyl-glucorhamnoside: I f^{GB0286}

Kynurenic acid,6-hydroxy: Lf 20-966^{GB0262},GB0245

Lactic acid: Pollen^{GB0311}

Laricitrin-3-0-rutinoside: Lf^{GB0295}

Lauric acid: Pollen^{GB0315}

Legumin-like protein (Ginkgo biloba): SdGB0265

Linalool oxide, trans: EOGB0318

Linoleic acid: Lf, Kernel 44.5% GB0310

Linolenic acid, alpha: Lf^{GB0125} Linolenic acid: Fr, Lf^{GB0173}

Lutein ester: Lf^{GB0189}

Lutein, 5-6-epoxy: Chloroplast GB0264

Lutein: Lf^{GB0189} Luteolin: Lf^{GB0146}

Luteolin-3-0-beta-D-glucoside: Lf^{GB0146}

Malic acid: Pollen^{GBO311}

Myricetin, 3-0-methyl-H 3-0-alpha-L-rham-

noside: Lf 305^{GBÓ313}

Myricetin,3-methyl 3-0-(6-0-alpha-L-rhamnosyl)-beta-D-glucoside: Lf GB0146

Myricetin: LfGB0146

Myricetin-3-0-[6-0-(alpha-L-rhamnosyl)-beta-D-glucoside]: Lf^{GB0146}

Myristic acid: Pollen GB0315

Naphthalene,dihydro 2,5,8-trimethyl:

Neoxanthin, cis: Chloroplast GB0264 Neoxanthin, trans: Chloroplast GB0264

Neoxanthin: Lf GB0189 Octacosan-1-ol: Lf GB0100

Octadeca-5,9,12-trienoic acid: Sd Oil^{GB0231}

Octadeca-5,9-dienoic acid: Sd Oil^{GB0231} Octadecasphingadiene,n-alphahydroxypalmitoyl-glucosyl: Sd^{GB0312}

Oleic acid: Kernel 37.5%, Lf GB0310 Palmitic acid.alpha-hydroxy: Sd,

 $Kernel^{GB0312} \\$

Pentacosane,n: Lf 17.4%, Kernel^{GB0162}

Phenol,2-isopropyl: EO^{GB0318} Pinitol,(+): Pollen 76^{GB0315}

Pinitol: Lf^{GB0242}

Plamitic acid: Lf 25.1%, Kernel^{GB0310}, Fr GB0173, Pollen^{GB0315}

Populnin: Lf 1.5^{GB0262}, Pollen 119^{GB0315}

Proanthocyanidin: Lf 4.12% GB0143

Prodelphinidin: Lf^{GB0242}

Propylene,para-tolyl: EO^{GB0318}
Protein H(Ginkgo biloba): Sd^{GB0265}
Protocathechuic acid: Lf^{GB0248}
Pyridoxine,4-0-methyl: Sd^{GB0175}
Pyridoxine,4-methoxy: Sd 100^{GB0116}
Pyridoxine,4-methyl: Lf, Sd^{GB0232}

Pyruvic acid: Pollen^{GB0311} Quercetin: Lf 24^{GB0179}

Quercetin-3-0-(2,6-di-0-rhamnopyranosyl-glucopyranoside): Lf GB0202

Quercetin-3-0-(2-0-beta-D-glucopyranosyl)-alpha-L-rhamnopyranoside: Lf 2.8^{GB0120}

Quercetin-3-0-(6-0-para-coumaroyl-beta-D-glucopyranosyl(1,2)alpha-Lrhamnopyranoside): Lf^{GB0295}

Quercetin-3-0-(6-paracoumaroyl)glucosyl(1,2)rhamnoside): I f^{GB0296}

Quercetin-3-0-(6-para-coumaroylglucopyranosyl-beta-1,4rhamnopyranoside): Lf^{GB0288}

Quercetin-3-0-(6-para-coumaroyl-glucosylbeta(1,4)-rhamnoside: Lf 2.1% GB0261

Quercetin-3-0-(alpha-rhamnosyl-(1,2)alpha-rhamnosyl-(1,6)-beta-glucoside: Lf 0.8%^{GB0261} Quercetin-3-0-(alpha-rhamnosyl(1,2)alpharhamnosyl(1,6)beta-glucoside: Lf 700^{GB0266}

Quercetin-3-0-[2-0-(6-0-para-hydroxycinnamoyl)-beta-D-glucosyl]-alpha-Lrhamnoside: LfGB0146

Quercetin-3-0-[2-0-(6-0-parahydroxy-transcinnamoyl)-beta-D-glucosyl]-alpha-Lrhamnoside: LfGB0146

Quercetin-3-0-[2-0-6-0-{para-(7-0-beta-Dglucopyranosyl}-coumaroyl)-beta-D-glu-co pyranosyl}-coumaroyl)-beta-D-glucopyranosyl]alpha-L-rhamnopyranoside: Lf 4.4^{GB0120}

Quercetin-3-0-[2-0-6-0-bis(alpha-Lrhamnosyl)-beta-D-glucoside]: Lf^{GB0146}

Quercetin-3-0-[2-0-6-0-para-coumaroyl)beta-D-glucopyranosyl]-alpha-Lrhamnopyranosyl-7-0-beta-D-glucopyranoside: Lf 40^{GB0120}

Quercetin-3-0-[2-0-beta-D-glucosyl)-alpha-L-rhamnoside: Lf^{GB0146}

Quercetin-3-0-[6-0-alpha-L-rhamnosyl]beta-D-glucoside: LfGB0146

Quercetin-3-0-[6-0-para-beta-D-glucosyl]oxy-trans-cinnamoyl-beta-D-glucosyalpha-L-rhamnoside: LfGB0146

Quercetin-3-0-[6-0-para-coumaroyl-transcinnamoyl)-beta-D-glucosyl-alpha-Lrhamnoside: Lf GB0276

Quercetin-3-0-alpha-(6-para-coumaroylglucosyl-beta-1,2-rhamnoside): LfGB0221

Quercetin-3-0-alpha-(6-para-coumaroylglucosyl-beta-1,4-rhamnoside): Lf $20^{GB02\acute{6}2}$

Quercetin-3-0-alpha-(6-para-coumaroylglycosyl-beta-1,4-rhamnoside): Lf 20^{GB0246}

Quercetin-3-0-alpha-L-rhamno-glucoside: I fGB0100

Quercetin-3-0-coumaroylglucorhamnoside: Lf^{GB0174}

Quercetin-3-0-para-coumaroylglucorhamnoside: Lf^{GB0178}

Quercetin-3-0-rhamnosyl(1,2) rhamnosyl(1,6)glucoside: LfGB0296

Quercitrin, iso: Lf 0.5GB0262 Quercitrin: Lf 0.5GB0262 Quinic acid: Lf^{GB0100}

Resorcyclic acid,6-(pentadec-8-enyl):

Resorcyclic acid,6-(tridec-8-enyl): Sd^{GB0155}

Rhamnetin, iso 3-0-[2-0-6-0-bis(alpha-L $rhamnosyl)-beta-D-glucoside]: Lf^{GB0146}\\$ Rhamnetin, iso 3-0-[6-0-alpha-Lrhamnosyl)-beta-D-glucoside: Lf^{GB0146} Rhamnetin, iso 3-0-beta-D-glucoside: LfGB0146

Rhamnetin, iso 3-0-beta-D-rutinoside: Lf 625^{GB0313}

Rhamnetin, iso 3-0-rutinoside: Lf 2.0% GB0261 Rhamnetin, iso: Lf^{GB0112}

Rhamnetol, iso 3-0-rutinoside: Lf 2^{GB0262}

Rutin: Lf 6-940^{GB0262,GB0179}

Salicylic acid,6-heptadeca-cis-9-cis-12dienyl: Lf 500^{GB0220}

Salicylic acid,6-heptadecadienyl: Lf GB0173 Salicylic acid, 6heptadec-cis-8-enyl: Lf $0.44\%^{GB0220}$

Salicylic acid,6-heptadecenyl: Lf, Fr^{GB0173} Salicylic acid,6-heptadecenyl: Lf^{GB0247} Salicylic acid,6-pentadec-cis-8-enyl: Lf 1.2%^{GB0220}

Salicylic acid, 6-pentadec-cis-enyl: Fr, I fGB0173

Salicylic acid,6-pentadecenyl: Lf^{GB0247} Salicylic acid,6-pentadecyl: Lf^{GB0173} Salicylic acid,6-tridecyl: Fr^{GB0173} Salicylic acid,6-tridecyl: Lf 400^{GB0220} Salicylic acid,6-tridecyl: Lf^{GB0173} Salicylic acid,n-heptadecenyl: Fr, Lf^{GB0151} Salicylic acid,n-heptadecyl: Lf, Fr^{GB0151} Salicylic acid,n-pentadecenyl: Lf, Fr^{GB0151} Salicylic acid,n-pentadecyl: Lf, Fr^{GB0151} Salicylic acid,n-tridecyl: Lf, Fr^{GB0151} Sciadopitysin: Lf 33-78^{GB0107,GB0295} Sequoyitol: Lf^{GB0100}, Pollen 31^{GB0315} Sesamin,(+): Heartwood^{A07572} Shikimic acid: Lf^{GB0100} Sitosterol, beta: Lf^{GB0102}, Pollen^{GB0315}, SdGB0338

Stearic acid: Pollen GB0315 Stogmasterol: Pollen^{GB0315}, Lf^{GB0102}

Succinic acid: Pollen GB0311

Syringetin-3-0-rutinoside: Lf 1.4^{GB0262}

Thymol: EOGB0318

Tocopherol, gamma: Lf 140GB0162 Tricosane,n: Lf 12.5% GB0162 Vanillic acid: Lf^{GB0248}

Violaxanthin, cis: Chloroplast GB0264 Violaxanthin, trans: Chloroplast GB0264

Violaxanthin: LfGB0189

Zeaxanthin: Chloroplast^{GB0264}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Acetylglucoseamidase inhibition. The dried leaf extract, administered intravenously to rats at a dose of 2.0 mg/kg, was active on the intestine vs ligation-induced ischemia^{GB0272}.

Adaptogenic activity. The flavonoid fraction of the dried leaf, administered intraperitoneally to rats at a dose of 50.0 mg/kg, was active on animals subjected to the stress of being bound in a 5 degrees Celsius and 428 mm Hg environment. The time until colonic temperature had fallen to 23 degrees Celsius and the time to recovery once the animals were removed to normal environment (32 deg. Celsius and 1 ATM) were recorded. When the treatment was given 34 minutes prior to the test, recovery was significantly reduced. When the animals were dosed for 5 days, the time to attain 23 degrees Celsius was increased and the recovery time was decreased significantlyGB0293.

Adrenergic agonist (beta). Ethanol (95%) extract of the dried leaf, administered intraperitoneally to mice at a dose of 100.0 mg/kg, was active. The extract exerts a specific effect on the noradrenergic system and on Beta-receptors. No variation was found in alpha-2 receptors or serotonin uptake^{GB0254}. AIDS therapeutic effect. Ethanol (30%) extract of the leaf, in a mixture containing flavopereirine, dihydro-flavopereirine, naringin and naringenin, taken orally by adults, was effective. The biological activity has been patented^{GB0157}.

Allergenic activity. The fruit, taken orally by male adults at a dose of 2 fruits/person, produced erythrema, burning and swelling of the mouth, tenesmus, perirectal burning and pruritis ani GBO127.

Analgesic activity. Ethanol (30%) extract of the dried leaf, administered by intravenous infusion to adult patients with dia-

betes mellitus who had hyperpathic polyneuropathy syndrome, showed a decrease in symptoms. The biological activity has been patented^{GB0297}.

Antiaging activity. Ethanol (30%) extract of the dried leaf was effective vs aging-induced changes in mitochondrial morphology and function GBO138.

Antiallergenic activity. Hydro-alcoholic extract of the dried leaf, at a concentration of 0.1%, was effective in a double-blind, placebo-controlled study of 22 females with contact dermatitis. After pretreatment of the skin with the extract, 68% of the subjects showed significantly reduced skin reactivity as compared with the placebo^{GB0147}.

Antiatherosclerotic activity. Ethanol (30%) extract of the dried leaf, administered intragastrically to rabbits receiving a high fat diet at a dose of 10.0 mg/kg daily, was effective^{GB0227}.

Antibacterial activity. Hot water extract of the leaf, on agar plate at a concentration of 1.2 mg/disc, was inactive on *Streptococcus mutans* strains MT5091 and OMZ176. The methanol extract, at a concentration of 0.2 mg/disc, was active on strain MT5091. A concentration of 0.8 mg/disc was active on OMZ176. Methanol/water (1:1) extract, at a dose of 1.2 mg/disc, was active on strains MT5091 and OMZ176^{GB0331}. Water extract of the leaf, on agar plate, was active on *Staphylococcus aureus*, MIC 10.5 mg/ml^{GB0239}.

Anticerebral edema activity. Ethanol (30%) extract of the dried leaf, administered intraperitoneally to rats at a dose of 5.0 mg/kg daily for 21 days, increased binding density of labeled 8-hydroxy-2(di-n-propylamino)tetralin to 5-HT-1A receptors in aged animals GBO181. Ethanol (95%) extract of the dried leaf, at a dose of 0.2 gm/person, was administered either orally or by intravenous infusion to women with idiopathic cyclic edema. Full correction of the biological anomaly resulted in the 5 patients treated by the intravenous infusion, and in

10 patients treated by oral administration. Landis' test was performed before and after the oral treatment^{GB0260}. The intravenous infusion of the extract, at a dose of 100.0 mg/person, was effective on patients with vasogenic edema observed after irradiation of the brain^{GB0258}.

Anticlastogenic activity. Ethanol (30%) extract of the dried leaf, at a concentration of 100.0 mcg/ml, was effective when tested on culture exposed to clastogenic factors from plasma of persons exposed to irradiation of 2 months, was effective when taken orally by recovery workers from the Chernobyl accident of the control of the cont

Anticytotoxic activity. Ethanol (30%) extract of the dried leaf, administered intragastrically to mice at a dose of 200.0 mg/kg, was active on pancreatic beta cells vs alloxan-induced cytotoxicity GBO180.

Antideafness activity. Ethanol (95%) extract of the dried leaf was taken orally by adults with acute cochlear deafness. At the conclusion of the double-blind therapeutic trial comparing the extract and a standard alpha-blocker (nicergoline), a significant recovery was observed in both therapeutic groups. Improvement was distinctly better in the extract-treated group^{GB0256}.

Antidementia activity. Ethanol (30%) extract of the dried leaf was taken orally by 202 patients with Alzheimer's or multiinfarct dementia. Significant improvement was seen in the Alzheimer's biological activity disease assessment scale and a geriatric evaluation by Relative's rating instrument, but not in clinical global impression of change GB0134. When the extract was taken orally by 12 healthy volunteers, EEG data indicated increased alpha activity GB0211. The ethanol (95%) extract, administered intraperitoneally to rats and orally to healthy volunteers at variable dosage levels, was effective in 4 studies using electroencephalograms to measure the effects GB0267.

The effectiveness of the ethanol (95%) extract of the dried leaf, taken orally by adults of both sexes in the treatment of cerebral disorders due to aging, was evaluated. In the double-blind, drug vs placebo trial involving 166 patients, a specially devised geriatric clinical evaluation scale was used. The results confirmed that the extract is effective against cerebral disorders due to aging. The difference between control and treatment groups became significant at 3 months and increased during the following months GB0259. The dried leaf was taken or ally by adults at a dose of 150.0 mg/kg, in a study to test the effect on improvement of well being and cerebral functional capacity. The randomized, double-blind, placebo-controlled trial with 50 patients with degenerative and vascular dementia lasted for 13 weeks. Three tablets of 50.0 mg of extract each or 3 placebo tablets were given daily. Adverse side effects were seen under placebo treatment once and under active treatment twice. Significant differences between the groups were seen in 7 of 11 patients after 12 weeks. The active treatment group was significantly faster in carrying out the Figure Connection Test after 6 and 12 weeks. The results indicate a significant improvement in cerebral functional capacity in the patients with degenerative and vascular dementia GB0289. Ethanol (30%) extract of the leaf, taken orally by adults at a dose of 150.0 mg/day, was effective. Fifty patients aged from 57 to 76 years with cerebro-organic syndrome, participated in a placebo-controlled, double-blind study. After a washout phase of 14 days, the therapy began with the intake of a 50 mg coated tablet 3 times daily. The therapeutic efficacy was tested with the Vienna Determination test, the Figure Connection test, Saccadic eye movement, EEG analysis, and measurement of the evoked potentials. For all 5 target criteria, a statistically highly significant superiority of active treatment was shown in comparison to the placebo group, which appeared after only 3 weeks of treatment and became more obvious after 6 weeks. At the same time the clinical symptoms improved, the results indicated that therapy with the extract in patients with cerebro-organic syndrome contributes to an increased cerebral capacity GB0299. This dose was also active in patients after a subarachnoid hemorrhage and aneurysm operation. Without treatment, even after 7-42 months they had serious cognitive deficits and only 70% of them would have good neuropsychological results. A placebo-controlled, double-blind study was conducted with 50 outpatients after SAH and an aneurysm operation. After 12 weeks of treatment with the extract, significant improvements were shown in the field of attention and verbal short-term memory GB0304. In a placebo-controlled, double-blind study, the efficacy of the extract on cerebral functional capacity and well-being was studied in 52 ambulant patients with vascular dementia over a period of 3 months. The dose in this case was a drinking solution equivalent to 150.0 mg of the leaf extract. A strong placebo effect was observed. At a total study period of 2 years, the stability of the solution was possibly not sufficient. The effectiveness was equivocal GB0302.

Antiedema activity. Ethanol (30%) extract of the dried leaf, administered intragastrically to rats at a dose of 100.0 mg/kg immediately after the induction of cerebral lipid deoxidation and edema by bromethalin, was effective GB0307. The extract also decreased the water, sodium and potassium levels vs triethyltin-induced cerebral edema GB0273. Methanol extract of the fruit, at a dose of 2.0 mg/ear, was effective on the mouse vs 12-0-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation. The inhibition ratio was 10 GB0170.

Antiemetic activity. Ethanol (30%) extract of the dried leaf was administered intragas-

trically to rats at a dose of 50.0 mg/kg, in a mixture of 50% ginger, 20% extract and 30% water. The results showed blocked lithium chloride-induced conditioned place aversion, indicating antiemetic activity comparable to metoclopramide^{GBO210}.

Antifungal activity. Ether extract of the fresh bud, on agar plate, was active on Aspergillus fumigatus GBO332.

Antihyperglycemic activity. Ethanol (30%) extract of the dried leaf, administered intragastrically to male rats at a dose of 50.0 mg/kg, produced weak activity vs streptozotocin-induced non-insulin dependent diabetes mellitus^{GBO129}. A dose of 80.0 mg/person, taken orally by 7 male volunteers twice daily for 8 weeks, showed no significant change or tendency to change. Differential tests with LHRH and TRH were performed before, and 4 and 8 weeks after the treatment^{GBO115}.

Antihypoxic effect. Glycoside mixture of the entire plant, taken orally by 8 healthy men in a double-blind, crossover study, demonstrated a hypoxia-protecting effect GB0330. Water extract of the dried leaf, administered by gastric intubation to rats at a dose of 200.0 mg/kg for 14 days, did not significantly alter brain energy metabolism. although it had a protective effect. A dose of 100.0 mg/kg, administered intraperitoneally to rats, produced an increase in blood glucose level, a slight lowering of lactate and a lowering of the lactate /pyruvate ratio. There was also a less pronounced breakdown of high-energy phosphates in cases of severe hypoxia. Results significant at p < 0.001 level^{GB0244}.

Antiinflammatory activity. Ethanol (30%) extract of the dried leaf, applied externally on mice, was effective vs croton oil-induced edema^{GB0186}. A dose of 80.0 mg/person, taken orally by adults, was effective vs platelet aggregation factor-induced skin wheal and flare^{GB0133}. Ten patients, aged 35–75, participated in a study to determine the effect of

GINKGO BILOBA 165

the extract on ulcerative colitis. Of the 10 patients, 3 went into remission, 2 experienced some effects and 5 experienced no effect^{GB0177}. Antiischemic effect. Ethanol (30%) extract of the dried leaf, at a concentration of 200.0 mg/kg, improved the mechanical recovery and suppressed the leakage of lactate dehydrogenase during reperfusion. It diminished the decrease of ascorbate content and suppressed the increase of dehydroascorbate GB0191. When administered intraarterial to the rabbit at a dose of 10.0 mg/ kg, the extract inhibited the increase in lipid peroxidation and superoxide dismutase vs ischemia/reperfusion-injury GB0194. Intragastric administration to rats was effective vs chloroquine-induced increase in amplitude and delay of B wave on electroretinogram, indicative of retinopathy GB0195. A dose of 50.0 mg/kg, administered intragastrically to rats, reduced reperfusioninduced increases in tissue Na⁺ and Cl⁻, and decreased K⁺ following ischemia injury in streptozotocin-induced diabetic animals GB0205. A dose of 1.0 mg/kg, administered intravenously to dogs, was effective vs embolic stroke-induced cerebral blood flow decreases and oxygen extraction increases^{GB0201}. A dose of 100.0 mg/kg, administered intravenously to rats, was not effective vs bilateral carotid obstruction-induced ischemia GB0212. A dose of 150.0 mg/person, taken orally by 50 outpatients with degenerative and vascular dementia in a randomized, double-blind, placebo-controlled trial, was found to improve performance on psychometric tests and judgment scales after 6 and 12 weeks^{GB0158}. A dose of 10.0 mg/kg, administered subcutaneously to rats, was effective vs middle cerebral artery ligation-induced infarct^{GB0212}.

Antimutagenic activity. Methanol extract of the dried leaf, on agar plate at a concentration of 50.0 microliters/disc, was inactive on *Bacillus subtilis* NIG-1125 His Met and *Escherichia coli* B/R-WP2-TRP^{GB0323}.

Antimycobacterial activity. Ethanol (30%) extract of the dried leaf, administered intragastrically to female mice at a dose of 200.0 mg/kg, was inactive on Mycobacterium avium^{GB0197}. Ethanol (95%) extract of the fresh fruit peel, on agar plate, was active on Mycobacterium smegmatis^{GB0319}. The fruit, on agar plate, was active on Mycobacterium tuberculosis GB0110. The leaf juice, on agar plate, produced weak activity on Mycobacterium tuberculosis, MIC 1:20GB0108. Antineurotoxic activity. Ethanol (30%) extract of the dried leaf, in the drinking water of mice at a dose of 50.0 mg/kg for 7 months, increased the projection field of intra- and infra-pyramidal mossy fibers, and reduced the area of stratum radiatum GBO187. The ethanol (95%) extract, administered intragastrically to mice at a dose of 100.0 mg/kg daily for 17 days, prevented a 25% loss of striatal dopaminergic nerve endings seen in control, vs subcutaneously osmopump-released n-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP) at a rate of 100 mg/kg/davGB0279.

Antioxidant activity. Ethanol (30%) extract of the dried cell free extract, at a concentration of 10.0 mcg/ml, was active on neurons vs oxidative stress induced by hydrogen peroxide GBO237. Ethanol (30%) extract of the dried leaf, at a concentration of 2-16 mcg/ml, reduced the ability of synaptosomes prepared from striata to take up 3H-dopamine rapidly during incubation at 37 degrees Celsius, in an oxygenated Krebs-Ringer medium with 0.1 mM ascorbic acid. Ascorbic acid was responsible for this decrease. Its effectiveness after a 60 minute incubation was concentration-dependent from 1 mM and virtually complete for 0.1 mM. A decrease of synaptosomal membrane fluidity was revealed by measurements of fluorescence polarization. This decrease was potentiated by Fe²⁺. In contrast, it was prevented by the Fe²⁺ chelator, deferriozamine (0.1mM), by the extract as well as by the

flavonoid quercetin. This preventative effect was shared by trolox (0.1 mM). It is concluded that peroxidation of neuronal membrane lipids induced by ascorbic acid/ Fe2+ is associated with a decrease in membrane fluidity, which in turn reduces the ability of the dopamine transported to take up dopamine GBO222. A concentration of 200.0 mg/liter quenches diphenylpicrylhydrazyl in a dose-dependent manner and is able to react with free radicals directly GB0191. A concentration of 25.0 mcg/ml had a time- and dose-dependent effect on the red blood cells. A 14.84% inhibition was produced, results significant at p < 0.01 level. A dose of 250.0 mcg/ml produced 56.53% inhibition. Results significant at p <0.001 level GB0192,GB0193 . The ED_{50} of the extract was 6.4 mcg/ml vs photo-induced oxidation of low-density lipoprotein cholesterol^{GB0238}. A concentration of 250.0 mcg/ ml was active on human red blood cells vs lipid peroxidation induced by hydrogen peroxide^{GB0141}. The IC₅₀ was 150.0 mcg/ml on liver microsomes vs NADPH, ADP and FeCl₃-induced lipoperoxidation, results significant at p <0.05 level^{GB0204}. A dose of 100.0 mg/day, administered in the drinking water of male rats, was active on the rat brain and liver mitochondria GB0142. Intragastric administration to rats, at a dose of 100.0 mg/kg, was effective on bromethalin-induced brain lipid peroxidation and cerebral edema^{GB0190}. A dose of 150.0 mg/ kg reduced LDH activity, decreased mitochondrial lipid peroxide content, decreased mitochondrial phospholipid content and increased reduced glutathione content in ischemia-induced rat brain injury GB0224. The leaves, administered orally to male rats, inhibited ischemia-induced lipid peroxidation in animals with experimental spinal cord injury GB0140. The dried leaf, at a concentration of 100.0 mcg/ml, was active vs copper-mediated LDL oxidation GB0208 and inhibited LDL-peroxidation, but deltatocopherol and beta-carotene levels were maintained^{GB0200}.

Antiplatelet activity. Ethanol (30%) extract of the dried leaf, at a dose of 60 mg per day for 1.5 years, produced an increase in bleeding time. The dose was taken orally by a 33-year-old woman without significant medical history. She developed bilateral subdural hematomas spontaneously^{GB0132}.

Antipolydipsia activity. Ethanol (30%) extract of the dried leaf, administered intragastrically to rats at a dose of 100.0 mg/kg, was effective vs stress-induced polydipsia^{GB0172}.

Antiproteolytic activity. Ethanol (30%) extract of the dried leaf, at a dose of 40.0 mg/kg in the drinking water of rabbits for 3 weeks, had a protective effect on retinal tissue GB0188.

Antishock effect. Ethanol (95%) extract of the dried leaf, administered by intravenous infusion to adults at a dose of 50.0 mg/person, was effective in a rare but severe case of hypovolemic shock related to monoclonal gammapathy. The treatment resulted in a dramatic recovery, and was followed by oral administration GBO251.

Antistress activity. Ethanol (30%) extract of the dried leaf, administered intragastrically to rats at a dose of 50.0 mg/kg, was effective on the hippocampus vs chronic cold stress-induced desensitization of serotonin-1A receptors at the adenyl cyclase coupling step^{GB0144}.

Antithrombotic effect. Ethanol (30%) extract of the dried leaf, administered intragastrically to male rats at a dose of 50.0 mg/kg, was effective vs laser-induced arterial thrombosis. Results significant at p <0.05 level^{GB0240}. The 95% ethanol extract, administered intravenously to male guinea pigs at variable dosage levels, was active vs PAF-acether-induced thrombosis^{GB0249,GB0250}.

Antitinnitus activity. Ethanol (95%) extract of the dried leaf, taken orally by 103 patients in a 13-month treatment period

using a double-blind, drug vs placebo method, improved the condition of all the tinnitus patients, irrespective of the prognostic factors. The results were conclusive as regards the effectiveness of the extract, and it was possible to determine the prognostic value of different parameters of special importance^{GB0257}.

Antivertigo effect. Ethanol (95%) extract of the dried leaf was used in a study of 70 patients with vertiginous syndrome of recent onset and undetermined origin. In a double-blind trial extending over a 3-month period, the patients were given either the extract or placebo. The effectiveness of the extract on the intensity, frequency and duration of the disorder was statistically significant. At the conclusion of the study, 47% of the patients treated had no more symptoms as compared to 18% of those who received the placebo^{GB0255}.

Antiviral activity. Hot water extract of the dried fruit, in vero cell cultures at a concentration of 0.5 mg/ml, was inactive on Herpes Simplex 1 virus, measles virus and poliovirus 1^{GB0183}.

Anxiety induction. Ethanol (30%) extract of the dried leaf, administered intragastrically at a dose of 48.0 mg/kg and intraperitoneally at a dose of 8.0 mg/kg to male rats, decreased the duration of social contact in social interaction test^{GB0241}.

Anxiolytic effect. Acetone/water (1:1) extract of the dried leaf, administered intragastrically to female rats at a dose of 1.0 mg/kg, was active vs elevated plus-maze test. The 30% ethanol extract, in a mixture with Zingiber officinale, was also effective^{GB0218}.

Apoptosis inhibition. Ethanol (30%) extract of the dried leaf, at a concentration of 100.0 mcg/ml assayed in cerebellar cell culture, was active on neurons vs hydroxyl radical-induced apoptosis^{GBO230}.

ATP level increased. Ethanol (30%) extract of the dried leaf, at a concentration of 0.5 mcg/ml, was active on the human

umbilical vein endothelium vs hypoxia-induced decrease in ATP^{GB0214}.

Blood viscosity decreased. The leaf juice, taken orally by 30 artherosclerotic patients 3 times daily for over 3 months, was effective. Two out of 3 patients showed a decrease in blood viscosity^{GB0277}.

Blood viscosity increased. Ethanol (95%) extract of the dried latex, taken orally by adults at a dose of 45.0 ml/person, was not effective^{GB0275}.

Bradykinin antagonist activity. Flavonoid fraction of the leaf was effective on guinea pig ileum, ED₅₀ 75.0 mcg/ml^{GBO103}.

Cardiovascular effect. Ethanol (95%) extract of the dried leaf, administered orally to 36 patients with arteritis for 65 weeks, was active. For the first 6 months of treatment, the patients participated in a double-blind, randomized comparison with 35 well-matched patients taking a placebo. Subsequently, the patients taking the extract were given the option to continue treatment on an open basis with follow-up at regular 3-month intervals. The patients taking the extract had significantly greater pain relief and walking tolerance than the placebo after 6 months of treatment, and the improvement continued throughout the duration of the study GB0252.

Cell membrane stabilization. Ethanol (30%) extract of the dried leaf, in cell culture at a concentration of 100.0 mcg/ml, was active on pulmonary artery endothelial cells. The extract inhibited LDH release after pre-incubation of the cells with the extract^{OBO223}. The dried fruit was active on the rabbit RBC, ED₅₀ 0.2 mg/ml. A dose of 200.0 mg/kg increased the resistance to hemolysis by 54% after 24 hours^{CBO316}.

Cerebral arteriosclerotic effect. Ethanol (70%) extract of the dried leaf, taken orally by adults in a chewing gum containing the extract, was effective in treating cerebral apoplexy. The biological activity has been patented^{GB0139}.

Cerebral blood flow effect. Ethanol (30%) extract of the dried leaf, administered intragastrically and intraperitoneally to rats of both sexes at a dose of 100.0 mg/kg for 21 days, showed an increase in blood flow, ATP, glucose and lactate levels as compared to controls. When a dose of 200.0 mg/kg was administered to the animals for 14 days, prior to hypobaric hypoxia, the animals survived the hypoxia for a longer time, but the brain metabolism was not affected GB0139. The extract was taken orally at a dose of 300.0 mg/kg by 24 hypertensive patients with fundus hypertonicus phase 1 according to Theil. In the randomized, placebo-controlled, double-blind trial, the influence of the extract on retinal blood flow was measured before and on the 14th and 22nd day of treatment. The daily dose was 3 coated tablets, each containing 100 mg of the extract. In the placebo group, the value did not change considerably. Under Verum treatment, both the blood flow in the quadrant artery and the total blood flow, improved significantly in comparison to the placebo group. The arteriovenous circulation time decreased significantly. Rheological parameters, erythrocyte aggregation and erythrocyte filtration time showed a tendency to decrease, and plasma viscosity demonstrated a significant drop in comparison to placebo GB0291. A dose of 150.0 mg/person was tested for the improvement of typical symptoms of cerebral insufficiency in a placebo-controlled, double-blind study. Ninety-nine outpatients with typical symptoms participated in the study that lasted for 12 weeks. The state of health was significantly improved after only 4 weeks. After 12 weeks, 10 of 12 symptoms were clearly improved when compared to the controls GB0292.

Cerebral blood flow increase. Ethanol (30%) extract of the leaf, administered intravenously to rats at a dose of 50.0 mg/kg,

was effective on the ante-positioned arteria mesenterica superior. After the induction of lactate acidosis, the effect was measured in 48 single procedures and registered by means of intravital microscopy. Various methods of application and dosages were tested against control solution. However, it was only at 1 minute after local and 15-22 minutes after intravenous application that significant hemorheologic effects could be seen GB0305. A double-blind study of the extract was conducted with 16 volunteers who had signs of cerebral insufficiency in order to prove the pharmacological effects concerning vigilance. An enforced lack of sleep model was used where the topographic aspects of the EEG output could be shown with a special EEG mapping method. After 8 weeks of therapy, the output of the Theta band decreased in the group treated with the extract under enforced lack of sleep, whereas the Alpha slow wave index in the control group increased. The results of the analysis indicated that treatment with the extract influences the EEG frequency spectrum within the sense of increased vigilance GB0303. In a placebo-controlled, double-blind study, the efficacy of the extract on cerebral functional capacity and well-being was studied in 52 ambulant patients with vascular dementia over a period of 3 months. The dose in this case was in the drinking solution equivalent to 150.0 mg of the leaf extract. A strong placebo effect was observed. At a total study period of 2 years, the stability of the solution was possibly not sufficient. The effectiveness was equivocal GB0302.

Cerebral edema decreased. The dried leaf, administered intragastrically to rats at a dose of 100.0 mg/kg, was effective^{GB0271}.

Cerebral insufficiency improvement. Acetone/water (1:1) extract of the leaf, taken orally by adults at a dose of 160 mg/day, was effective GBO148. Ethanol (30%) extract of the

GINKGO BILOBA 169

dried leaf, taken orally by adults at a dose of 120.0 mg/person daily for 4-6 weeks, was effective GB0166. The efficacy of the extract, at a dose of 150.0 mg/day, was tested in a double-blind trial of 90 patients with cerebral insufficiency. The average age of the patients was 62.7 years. By the end of the 12 week trial period, there was significant improvement in the patients' performance, observed under Verum, compared to the placebo preparation which was administered to a control group of patients among which the relevant disorders were distributed homogeneously. The effect of the extract was stabilization of a more consistent response behavior with minor intraindividual variations involved. There was improvement in the patients' attention with respect to tasks which required quick orientation and readaptation, or a consistent attentiveness level, to be maintained over a longer period of time (long-term stress). The range of optimum attention with respect to the solution of tasks was enlarged as far as the time was concerned. Improvement in memory performance was experienced, particularly with respect to the visual memory of sensitive parameters of cerebral insufficiency, which may also be due to the improvement in concentration power. Positive changes in subjective performance were also found, which were experienced by the patient and the people in his or her environment. Since improvements of some of the parameters were not observed until the 6th week of treatment, the test preparation should be used over a minimum period of time^{GB0226}.

Chloride channel inhibition. Ethanol (30%) extract of the dried leaf, at a concentration of 50.0 mcg/ml, inhibited isoproterenol-induced chloride current, but no effect was seen on the action potential or associated currents of guinea pig heart^{GBO182}. Cholesterol level decrease. The dried leaf, taken orally by adults of both sexes at a dose

of 120.0 mg/person in combination with garlic, produced improvement in cholesterol with no dietary or exercise changes^{GB0196}.

Chronotrophic effect. Ethanol (95%) extract of the dried latex, taken orally by adults at a dose of 45.0 ml/person, was not effective GB0275. Ethanol (30%) extract of the dried leaf, taken orally by 10 adult volunteers each with some hemorheological abnormality, was effective. The extract was in combination with *Panax ginseng*. The heart rate was measured 1 hour after the treatment GB0165.

Circulation stimulation. Ethanol (95%) extract of the dried latex, taken orally by adults at a dose of 45.0 ml/person, was effective GB0275. The influence of the dried leaf, at a dose of 112.5 mg/person on cutaneous microcirculation, was studied in a randomized, placebo-controlled, singleblind crossover study of 2 groups. In the first phase of the study, a liquid preparation was tested against a corresponding placebo. In the second phase, a solid preparation was tested compared with the liquid preparation. Blood pressure, heart rate and capillary diameters stayed constant in both tests. A significant increase of capillary erythrocyte velocity was measured 1 hour after administration of the Ginkgo liquid (57%) followed by the Ginkgo tablet (42%). The peak efficiency of both preparations was reached about 1 hour after administration GB0290.

CNS depressant activity. Ethanol (30%) extract of the dried leaf, administered intraperitoneally to male rats at a dose of 16.0 mg/kg, was not effective on locomotor activity^{GB0241}.

CNS effects. Ethanol (30%) extract of the dried leaf, administered intragastrically to rats at dose of 10.0 mg/kg, significantly increased the amplitude of spectra analysis of EEG in alloxan-diabetic and extract-treated animals compared to controls^{GB0215}.

The leaf, taken orally by 36 patients at a dose of 120 mg/day, was effective. The 36 patients with cerebro-organic syndrome (dizziness, memory and concentration loss, and orientation disorders) participated in a double-blind, placebo-controlled study. After 4 to 8 weeks of treatment, the treated group had lower Saccade duration, and better scores on the Wiener determination test and number connection test than the control group. Upon EEG testing, the theta proportion of the theta/alpha ratio was reduced^{GB0335}.

Corticosteroid synthesis stimulation. Ethanol (30%) extract of the dried leaf, administered intragastrically to male rats at a dose of 100.0 mg/kg, was active vs ACTH-stimulated corticosterone production in adrenocortical cells^{GB0145}.

Cytochrome P-450 induction. Ethanol (30%) extract of the dried leaf, taken orally by adults at a dose of 400.0 mg/person, was inactive GB0203.

Cytotoxic activity. Acetone, ether and methanol extracts of the dried seed, at a concentration of 5.0% were inactive by the cylinder plate method, and the water extract was equivocal on CA-Ehrlich ascites. The inhibitions were 16 mm, 17 mm, 0 mm and 25 mm, respectively GB0341. Chloroform, water and methanol extracts of the leaf, in cell culture, were inactive on LEUK-P388, ED₅₀ 100.0 mcg/ml^{GB0228}. Ethanol (30%) extract of the dried leaf, in cell culture at a concentration of 500.0 mcg/ml, was inactive on pulmonary artery endothelial cells GB0223. Ethyl acetate extract of the leaf, in cell culture, produced weak activity on HELA-83 cells, IC₅₀ 43.0 mcg/ml^{GB0233}.

Desmutagenic activity. The fresh fruit homogenate, on agar plate at a concentration of 100.0 microliters/disc, was active on *Salmonella typhimurium* TA100 and TA98 vs 1,4-dinitro-2-methyl pyrrole mutagenesis^{GB0327}.

DNA binding inhibition. The dried leaf, in cell culture at a concentration of 10.0

mcg/ml, was active on Jurkat cells vs AP-1 binding activity in 12-0-tetradecanoylphor-bol 13-acetate-treated cells^{GB0225}.

Dopamine uptake inhibition. Ethanol (30%) extract of the dried leaf, at variable concentrations, was inactive on synaptosomes^{GB0167}.

Fibrinolytic activity. Ethanol (30%) extract of the dried leaf, administered intraarterially (left coronary artery) to rabbits at a dose of 10.0 mg/kg, was active vs ischemia/reperfusion-induced decrease in plasminogen activator and increase in plasminogen activator inhibitor GBO194.

Glucose uptake induction. The dried entire plant, in cell culture at a concentration of 0.25 mcg/ml, was effective on the smooth muscle cells of pig aorta^{GB0269}.

Glucose uptake inhibition. Ethanol (30%) extract of the dried leaf, at a dose of 50.0 mg/kg administered 1 hour before the administration of radioactive 2-deoxyglucose, produced a decrease in 21 of 38 brain regions, and whole brain glucose utilization declined by 16.1%. Glucose utilization was determined autoradiographically in brain slices^{GB0184}.

Glucose utilization inhibition. Ethanol (30%) extract of the dried leaf, administered intragastrically to rats at a dose of 50.0 mg/kg, decreased the utilization of glucose in the frontal parietal, somatosensory cortex, nucleus accumbens and pons^{GB0207}.

Glutamate receptor blocker. The dried leaf, at a concentration of 2.0 mcg/ml, was active on quisqualate and kainate receptors^{GB0213}.

Glutathione formation induction. Ethanol (30%) extract of the dried leaf, in cell culture at a concentration of 200.0 mcg/ml, was active on pulmonary artery endothelial cells vs tert-butylperoxide-induced glutathione depletion^{GB0131}.

Glutathione reductase stimulation. Ethanol (30%) extract of the dried leaf, in cell culture at a concentration of 300.0 mcg/ml,

was active on pulmonary artery endothelial cells^{GB0131}.

Glycogen content increase. Ethanol (30%) extract of the dried leaf, administered intragastrically to male rats at a dose of 50.0 mg/kg, was effective on the gastrocnemius-soleus muscle vs streptozotocininduced noninsulin dependent diabetes mellitus^{GB0129}.

Glycogen synthesis stimulation. The dried entire plant, in cell culture at a concentration of 0.25 mcg/ml, was effective on the smooth muscle cells of pig aorta^{GB0269}.

Hypertensive activity. Ethanol (95%) extract of the dried latex, taken orally by adults at a dose of 45.0 ml/person, was not effective^{OB0275}.

Immunostimulant activity. Ethanol (95%) extract of the dried latex, taken orally by adults at a dose of 45.0 ml/person, was not effective GBO275.

Insecticide activity. Water extract of the dried branches and leaves, at variable concentrations, was inactive on *Blatella germanica*. When administered intravenously at a dose of 40.0 ml/kg, the extract was inactive on *Periplaneta americana*^{GB0342}.

Insulin level increase. Ethanol (30%) extract of the dried leaf, administered intragastrically to male mice at a dose of 50.0 mg/kg, was not effective when measured in the plasma^{GB0129}.

Insulin release stimulation. Ethanol (30%) extract of the dried leaf, in cell culture at a concentration of 25.0 mg/kg, did not elicit electrical activity and decreased glucose-stimulated spike activity on pancreatic beta cells. A dose of 200.0 mg/kg, administered intragastrically to mice, increased spike activity on exposure to glucose, an indicator of insulin release^{GB0180}.

Learning enhancement. Acetone/water (1:1) extract of the dried leaf, in the ration of male rats at a dose of 50.0 mg/kg, decreased the number of sessions to reach cri-

terion performance, as well as the number of errors vs 8-armed radical maze^{GB0149}. The 95% ethanol extract, administered intragastrically to mice at a dose of 100.0 mg/kg, improved the acquisition of a 2-response sequence and the retrieval of this response at a later date^{GB0280}.

Lipid peroxide formation inhibition. Ethanol (30%) extract of the dried leaf, in cell culture at a concentration of 400.0 mcg/ml, was active on pulmonary artery endothelial cells vs tert-butylperoxideinduced peroxidation GB0131. A dose of 100.0 mg/kg daily was administered intragastrically to rats for 10 days. The perfused retina was then isolated and subjected to Fe²⁺/Na ascorbate-induced lipid peroxidation. The extract prevented a decrease in the electroretinogram B wave amplitude GB0306. The leaf, in cell culture at a concentration of 50.0 mcg/ml, was effective. Cyclosporin A-induced lipid peroxidation, as assayed by malondialdehyde formation, was entirely inhibited by this dose. The addition of ferric chloride to the incubation medium diminished the effect^{GB0284}.

Memory enhancement effect. Ethanol (30%) extract of the dried leaf, administered intragastrically to mice at a dose of 100.0 mg/kg, reduced the time to acquisition and enhancement performance in an operant conditioning task, but did not affect the performance in a passive avoidance test^{GB0139}. A dose of 320.0 mg/person was taken orally by 18 elderly patients with age-related memory impairment. In the double-blind, crossover study of the effect on dual-coding abilities, the extract decreased the break point and dual coding from 960 and 1920 msec to 480 and 960 msec^{GB0171}. A dose of 600.0 mg/person, taken orally by adults of both sexes, was equivocal. The double-blind, crossover study evaluated the effects of the extract on cognitive functions in healthy humans. The results showed a reduction in reaction time

on the Sternberg memory scanning test GB0139. Ethanol (95%) extract of the dried leaf was taken orally by 8 female volunteers at acute and ascending doses of 600.0, 140.0 and 120.0 mg with placebo. One hour after the treatment, the patients were subjected to a battery of tests including critical clicker fusion, choice reaction time, subjective rating scale and Sternberg memory scanning test. In the first 3 tests, no statistically significant differences with the placebo were observed. However, short-term memory, assessed by the Sternberg test, was significantly improved following the 600.0 mg dose, compared to the placebo. These results differentiate the extract from sedative and stimulant drugs, and indicated a specific effect on the memory processes GB0255. The leaf, taken orally by adults at a dose of 40.0 mg/person, was effective. Thirty-one patients with mild to moderate impairment in memory due to organic causes of at least 3 months duration, participated in a double-blind, placebo-controlled study. The dose was taken 3 times daily for 24 weeks. There was a significant improvement in the digit copying sub-test of the Kendrick battery, and in the median speed of response in a classification task^{GB0283}.

Memory retention impairment. Acetone/water (1:1) extract of the dried leaf, administered intragastrically to rats at a dose of 1.0 mg/kg, was not effective vs inhibitory avoidance conditioning and water maze performance GBO152.

Memory retention improvement. Ethanol (30%) extract of the dried leaf, taken orally by 12 healthy females in a dummy placebo-controlled double-blind study at a dose of 600.0 mg/person, was not effective. The effect on psychomotor and amnesic performances of the acute oral dosing was evaluated. The objective measures of vigilance, choice reaction time, memory tasks and self-rating evaluation tests were per-

formed. The testing sessions took place before and 1 hour after the treatment. No statistically significant changes from placebo were observed on objective measures of vigilance, choice reaction time or subjective rating of drug effects. No differences were seen between treatment on the Sternberg scanning test and picture recognition GB0294. The ethanol (95%) extract was effective when administered intragastrically to mice at a dose of 100.0 mg/kg for 4–8 weeks before operant conditioning and training, and for 10 weeks further GB0280. The hydro-alcoholic extract, administered intraperitoneally to female mice at a dose of 40.0 mg/kg, enhanced learning and memory in human adults and aged animals as demonstrated in performance tasks^{GB0150}.

Metabolites. Ethanol (30%) extract of the dried leaf, administered intragastrically to mice, produced the following metabolites in the plasma: 3,4-dihydroxyphenylacetic acid, hippuric acid, 3-hydroxyphenylacetic acid, homovanallic acid and benzoic acid^{GB0216}.

Microsomal metabolizing system induction. The leaf, taken orally by adults at a dose of 400.0 mg/day for 13 days, did not affect the elimination half-life of antipyrene^{GB0334}.

Moulting activity. Ethanol (95%) extract of the leaf was inactive on *Calliphora erythrocephala*^{GB0337}.

Muscarinic receptor increase. Ethanol (30%) extract of the dried leaf was active on the rat hippocampus^{GB0301}. The dried leaf, administered orally to rats at a dose of 100.0 mg/kg daily for 28 days, was active. Receptor population of the 2-year old treated animals was similar to control animals aged 3 months, whereas 2-year old controls showed a significant decrease in receptors^{GB0270}.

Neural plasticity enhancement effect. Ethanol (30%) extract of the dried leaf, administered intraperitoneally to unilaterally

vestibular-neurectomized cats at a dose of 50.0 mg/kg daily for 30 days, was effective. The treatment accelerated postural compensation, locomotor balance recovery, spontaneous and evoked neck muscle activity, recovery of spontaneous firing rate of deafferented vestibular nucleus and synaptic reoccupation of the same nucleus in treated animals vs controls^{GB0287}.

Neuroexcitatory activity. Ethanol (30%) extract of the dried leaf, administered intracerebrally to guinea pigs at a dose of 10.0 mg/ml, was effective. The extract was directly infused into the area of the vestibular nuclei. A stereotyped reversible postural syndrome developed, which was mirror image-related to that induced by unilateral lesion of otolithic receptors, indicating excitation of the lateral vestibular nuclei GB0159. **Neuroprotective effect.** Ethanol (30%) extract of the dried leaf, administered intragastrically to rats of both sexes at a dose of 100.0 mg/kg, was effective vs neurochemical effects of electroconvulsive shock treatment. The extract reduced free fatty acid levels in the hippocampus and delayed the increase in diacylglycerol concentration in the hippocampus and cerebral cortex. Intraperitoneal administration reduced behavioral deficits resulting from bilateral frontal cortex lesions GB0139.

Nitric acid synthase inhibition. Ethanol (30%) extract of the dried leaf, in cell culture, was active on macrophage cell line RAW 264.7 vs lipopolysaccharide plus interferon-gamma-induced nitric acid production, IC₅₀ 100.0 mcg/ml^{GB0135}. The extract also reduced the rate of production of nitrite from nitroprusside, IC₅₀ 20.0 mcg/ml; and scavenges nitric oxide as shown by competition with the oxidation of oxyhemoglobin, IC₅₀ 7.5 mcg/ml^{GB0184}.

Oxidative burst inhibition. Ethanol (30%) extract of the dried leaf, in cell culture at a concentration of 50.0 mcg/ml, was active on pulmonary artery endothelial cells^{GB0223}.

Peroxide formation inhibition. Ethanol (30%) extract of the dried leaf, at a concentration of 0.1 mcg/ml, was active on cerebellar neurons. Exposure of cultured neurons to the extract for 60 minutes resulted in a decreased intracellular H_2O_2 when determined by 21,7-dichlorofluroescin fluorescence^{GB0168}.

Pharmacokinetics. In a pilot study, two healthy volunteers took 50, 100 and 300 mg of the ethanol (30%) extract of the leaf in the form of coated tablets. Plasma concentrations of the flavonoids were measured over a period of 24 hours. The peak plasma concentrations were reached within 2-3 hours after intake and were proportional to the applied dose. The elimination phase was characterized by a typical exponential function. Twenty-four hours after intake the zero value was reached again GBO300. Ethanol (95%) extract of the dried leaf, administered by gastric intubation to rats, had a half-life of about 4.5 hours. The pharmacokinetics of the extract, based on blood specific activity data vs time course, were characteristic of a 2-compartment model with apparent first order phase. During the first 3 hours, radioactivity was primarily associated with the plasma. Specific activity peaked after 1 and 1.5 hours. Glandular and neuronal tissues and eyes showed a high affinity for the labeled extract^{GB0253}.

Phospholipase A2 activation. Acetone/water (70:30) extract of the dried leaf, in cell culture at a concentration of 0.3 mg/ml, was active on endothelial cells^{GBO153}.

Platelet aggregation inhibition. Ethanol (30%) extract of the dried leaf, taken orally by adults at a dose of 120.0 mg/person, was inactive vs ADP-induced aggregation, and a dose of 80.0 mg/person was active vs platelet aggregating factor-induced aggregation^{GB0133}. A dose of 320.0 mg/person, taken orally by 10 volunteers with hemorheological abnormality, was active after 1 hour of administration. The extract taken was a

combination of Ginkgo biloba and Panax ginseng (3:5) GBO 165.

Platelet aggregation stimulation. Ethanol (95%) extract of the dried latex, taken orally by adults at a dose of 45.0 ml/person, was not effective^{GB0275}.

Prolactin inhibition. Ethanol (95%) extract of the dried leaf, in cell culture, was active on the rat pituitary, MIC 1.8 mcg/ml^{GB0235}.

Protein degradation inhibition. Ethanol (30%) extract of the dried leaf, at a concentration of 500.0 mcg/ml, inhibited protein polymerization on rat liver microsomes^{GB0160}.

Protein synthesis stimulation. Ethanol (30%) extract of the dried leaf, administered intragastrically to male rats at a dose of 100.0 mg/kg, was active vs ACTH-stimulated corticosterone production in adrenocortical cells^{GB0145}.

Radical scavenging effect. Ethanol (30%) extract of the dried leaf, at a concentration of 100.0 mcg/ml, was active vs peroxylinduced lipid peroxidation GB0200. The leaf, at a concentration of 100.0 mcg/ml tested in a phenazine methosulfate and NADH system, was effective. A concentration of 125.0 mcg/ml was also effective when determined by low-temperature electron spin resonance GB0268.

Receptor binding stimulant. Extract of the dried leaf, administered intraperitoneally to rats at a dose of 5.0 mg/kg daily for 21 days, had no effect on the density of tritiated-rauwolscine, which selectively binds alpha-2 adrenergic receptors on the hippocampus of young rats (4 months of age), but produced an increase in older animals (24 months of age)^{GBO298}.

Serotonin receptor regulation. Ethanol (30%) extract of the dried leaf, administered intraperitoneally to rats at a dose of 5.0 mg/kg daily for 21 days, increased binding density of labeled 8-hydroxy-2-(di-n-propylamino)tetralin to 5-HT-1A receptors on the cerebral cortex of aged animals^{GB0181}.

Serotonin uptake inhibition. Ethanol (30%) extract of the dried leaf, at concentrations of 32 mcg/ml to 2 mg/ml, was effective on mouse synaptosomes^{GBO167}.

Serotonin uptake stimulation. Ethanol (30%) extract of the dried leaf, at concentrations of 4–16 mcg/ml, was active on mouse synaptosomes. A concentration of 100.0 mg/kg, administered intragastrically to mice twice daily for 4 days preceding the assay, was active on synaptosomes^{GB0167}.

Smooth muscle relaxant activity. The nonginkolide-nonflavonoid subfraction of the dried leaf was effective on the corpus cavernosum vs norepinephrine-induced contractions, results significant at p <0.05% level, ED_{50} 0.74 mg/ml^{GB0234}.

Spasmolytic activity. Flower buds, at concentrations of 30–300 mcg/ml, were active on the endothelial lining of a rabbit aorta vs phenylephrine-induced contractions^{GB0278}.

Thiobarbiturate reacting substance inhibition. Ethanol (30%) extract of the dried leaf was taken orally by 15 patients undergoing aortic valve replacement at a dose of 320 mg daily for 5 days prior to surgery. Upon aortic unclamping, the extract inhibited transcardiac release of thiobarbituric acid-reactive species, attenuated free radical levels and reduced delayed leakage of myoglobin and ventricular myosin leakage GBO128.

Tumor promoting inhibition. Methanol extract of the fresh fruit, in cell culture at a concentration of 200.0 mcg/ml, was active on Epstein-Barr virus vs 12-0-hexadecanoylphorbol-13-acetate-induced Epstein-Barr virus activation GBO3333.

Vasoconstrictor activity. The dried entire plant was active on the rabbit vein. The effect was blocked by phenoxybenzamine, ED₅₀ 86.0 mcg/ml^{GB0325}.

Vasodilator activity. Ethanol (30%) extract of the leaf, taken orally by adults at a dose of 17.5 mg/person, was effective on a group of 42 patients, normal or with

peripheral vascular diseases. The effect of the dose appears similar to that of ergot derivatives, acetylcholine and sodium nicotinate, but is significantly more constant GB0274. Water extract of the leaf, administered by intravenous infusion to a pregnant ewes at a concentration of 1-3.0 mg/kg, increased the fetal arterial pH and P-O2 and decreased the base deficit and P-CO, in 45% of the cases. There was also an increase of uterine arterial blood flow. A dose of 140.0 mg/person, given to pregnant women during labor or 12 days before the onset of labor for the treatment of fetal asphyxia caused by impairment of utero-placental circulation unrelated to uterine hyperactivity, was effective GB0106. The dried leaf was taken orally by 79 patients with peripheral arterial insufficiency, at a dose of 40.0 mg/day for 60 months in a doubleblind randomized clinical trial. The patients had obliterative arterial disease of the lower limbs, Fontaine's stage IIB. Painfree walking distance, maximum walking distance and plethysmography recordings were used to assess the efficacy of the treatment. The results indicated that the treatment was active and significantly better than the placebo GB0326.

REFERENCES

KEFEKEN	CES		Univ Pub
GB0100	Weinges, K., W. Bahr and P. Kloss. Natural phenolic compounds. XI. Review of the com-	GB0110	Schramm drugs of t medica in
	ponents of Ginkgo biloba leaves.		nary tube
	Arzneim-Forsch 1968; 18: 537–		1956; 4(4
	539.	GB0111	Okabe, K
GB0101	Weinges, K., W. Bahr and P.		mura and
	Kloss. The phenolic constituents		lides. J
	from the leaves of Ginkgo bilo-		1967: 22
	ba. Arzneim-Forsch 1968; 18: 539–545.	GB0112	Fisel, J. and isorh
GB0102	Kircher, H. W. Beta sitosterol in		leaves of
	Ginkgo biloba leaves. Phyto-		wissensch
	chemistry 1970; 9: 1879–.	GB0113	Major, R.
GB0103	Natarajan, S., V. V. S. Murti, T. R.		Kuenkler
	Seshadri and A. S. Ramaswamy.		linolenate
	Some new pharmacological pro-		tionation

perties of flavonoids and biflavonoids. **Curr Sci** 1970; 39: 533–534.

GB0104

GB0105

GB0107

GB0108

GB0109

Geiger, H. and S. Beckman. On the occurrence of rutin and kaempferol-3-rhamnoglucoside in *Ginkgo biloba*. **Z Naturforsch Ser B** 1965; 20: 1139–1140. Weinges, K. and W. Bahr. Condensed ring systems. II. Bilobalide A, a new sesquiterpine obtained from the leaves of *Ginkgo biloba* and containing a tertiary butyl group. **Justus Liebigs Ann Chem** 1969; 1969: 214–216.

GB0106 Condorelli, S., F. Tonelli, G. Galati and E. V. Cosmi. Treatment of subacute and chronic fetal asphyxia with extract of the leaves of *Ginkgo biloba*.

Acta Anaesthesiol Ital 1972; 23: 547–559.

Miura, H., T. Kihara and N. Kawano. Studies on bisflavones in the leaves of *Podocarpus macrophylla* and *P. nagi*. Chem Pharm Bull 1969; 17: 150–154. Fitzpatrick, F. K. Plant substances active against *Mycobacterium tuberculosis*. Antibiot Chemother 1954; 4: 528–.

Monograph Ser 3, Seoul Natl Univ Publ Ctr, Seoul, 1966. Schramm, G. Plant and animal drugs of the old Chinese materia medica in the therapy of pulmonary tuberculosis. **Planta Med**

Lee, S. J. Korean Folk Medicine.

1956; 4(4): 97–104. Okabe, K., K. Yamada, S. Yamamura and S. Takada. Ginkgolides. **J Chem Soc C** 1967; 1967: 2201–2206.

Fisel, J. Kaempferol, quercetin and isorhamnetin from the green leaves of *Ginkgo biloba*. **Naturwissenschaften** 1965; 52: 592A–. Major, R. T., J. S. Roth and A. S.

Kuenkler. Enzymic oxidation of linolenate by ginkgo leaves fractionation and characterization of

GB0114	active fractions. Phytochemistry 1974; 13: 1083–1084. Maruyama, M., A. Terahara, Y. Itagaki and Koji Nakanishi. The ginkgolides. I. Isolation and characterization of the various groups. Tetrahedron Lett 1967;	GB0122	and synthesis of new dihydroiso-coumarins from <i>Ginkgo biloba</i> L. Tetrahedron Lett 1994; 35(23): 3949–3952. Kim, B. E., S. H. Ban, S. H. Woo and S. K. Chung. A study on the composition of <i>Ginkgo biloba</i>
GB0115	1967: 299–302. Felber, J. P. Effect of <i>Ginkgo biloba</i> extract on endocrine parameters. Presse Med 1986; 15 (31): 1573–1574.	GB0123	leaves. Rist Yongu Nonmun 1994; 8(1): 105–114. Zargari, A. Medicinal Plants. Vol. 5, 4th Ed, Tehran University Publications, No 1810/5, Tehran,
GB0116	Wada, K., S. Ishigaki, K. Ueda, M. Sakata and M. Haga. An antivitamin B-6, 4'-methoxypyridoxine, from the seed of <i>Ginkgo biloba</i> L. Chem Pharm Bull	GB0124	Iran 1991; 5: 974 pp. Irie, H., K. Ohno, Y. Ito and S. Uyeo. Isolation and characterization of 10,11-dihydroatlantone and related compounds from
GB0117	1985; 33(8): 3555–3557. Plieninger, H., B. Schwarz, H. Jaggy, U. Huberpatz, H. Rodewald, H. Irngartinger and K. Weinges. Natural products from medicinal plants. XXIV. Isolation structure determination and	GB0125	Ginkgo biloba. Chem Pharm Bull 1975; 23: 1892—. Cherif, A., J. P. Dubadq, R Mache, A. Oursel and A. Tremolieres. Biosynthesis of alpha-linolenic acid by desaturation of oleic and linoleic acids in sev-
GB0118	synthesis of (Z,Z)-4.4'-(1,4-pentadiene-1,5-diyl) diphenol, an unusual natural product from leaves on the Ginkgo tree (<i>Ginkgo biloba</i> L.). Liebigs Ann Chem 1986; 1986(10): 1772–1778. Wada, K., S. Ishigaki, K. Ueda,	GB0126	eral organs of higher and lower plants and algae. Phytochemistry 1975; 14: 703–706. Gellerman, J. L., W. H. Anderson and H. Schlenk. Biosynthesis of anacardic acids from acetate in <i>Ginkgo biloba</i> . Lipids 1974; 9: 722–.
	Y. Take, K. Sasaki, M. Sakata and M. Haga. Studies on the constitution of edible and medicinal plants. I. Isolation and identification of 4-0-methylpyridoxine,	GB0127 GB0128	Becker, L. E. and G. B. Skipworth. Ginkgo-tree dermatitis, stomatitis and proctitis. J Amer Med Ass 1975; 231: 1162–. Pietri, S., J. R. Seguin, P.
GB0119	toxic principle from the seed of Ginkgo biloba L. Chem Pharm Bull 1988; 36(5): 1779–1782. Kraus, J. Water-soluble polysaccharides from Ginkgo biloba leaves. Phytochemistry 1991;		D'Arbigny, K. Drieu and M. Culcasi. <i>Ginkgo biloba</i> extract (EGB 761) pretreatment limits free radical-induced oxidative stress in patients undergoing coronary bypass surgery. Cardi-
GB0120	30(9): 3017–3020. Hasler, A., G. A. Gross, B. Meier and O. Sticher. Complex fla- vonol glycosides from the leaves	GB0129	ovasc Drugs Ther 1997; 11(2): 121–131. Rapin, J. R., R. G. Yoa, C. Bouvier and K. Drieu. Effects of re-
GB0121	of Ginkgo biloba. Phytochemistry 1992; 31(4): 1391–1394. Choukchou-Braham, N., Y. Asakawa and J. P. Lepoittevin. Isolation, structure determination		peated treatments with an extract of <i>Ginkgo biloba</i> (EGB 761) and bilobalide on liver and muscle glycogen contents in the noninsulin dependent diabetic rat.

GB0130	Drug Dev Res 1997; 40(1): 68–74. Wang, J., B. Yu, X. G. Liu and Y. M. Zhang. Isolation and identification of the constituents from episperm of ginkgo (<i>Ginkgo biloba</i>). Chung Ts'al Yao	GB0138	cell cultures of <i>Ginkgo biloba</i> . Phytochemistry 1997; 46(1): 127–130. Sastre, J., R. Pla, G. Juan, A. Millan, F. V. Pallardo, J. G. De La Asuncion, J. A. Marin, E. O'Connor, M. T. Droy-Lefaix, et
GB0131	1995; 26(6): 290–292. Rong, Y., Z. Geng and B. H. S. Lau. <i>Ginkgo biloba</i> modulates glutathione redox cycle in vas- cular endothelial cells. Nutr Res 1996; 16(11/12): 1913–1923.		al. Prevention by <i>Ginkgo biloba</i> extract (EGB 761) of age-associated impairment of brain mitochondria. Proc Int Symp Nat Antioxid Mol Mech Health Eff 1995; 1995: 434–443.
GB0132	Rowin, J. and S. L. Lewis. Spontaneous bilateral subdural hematomas associated with chronic <i>Ginkgo biloba</i> ingestion. Neurology 1996; 46(6): 1775–1776.	GB0139	Smith, P. F., K. Maclennan and C. L. Darlington. The neuroprotective properties of the <i>Ginkgo biloba</i> leaf: A review of the possible relationship of platelet-
GB0133	Chung, K. F., M. M. McCusker, C. P. Page, G. Dent, P. Guinot and P. J. Barnes. Effect of a ginkgolide mixture (BN 52063)	GB0140	activating factor (PAF). J Eth-nopharmacol 1996; 50(3): 131–139. Koc, R. K., H. Akdemir, A. Kurt-
GB0134	in antagonizing skin and platelet responses to platelet activating factor in man. Lancet 1987; 1987: 248–251.		sov, H. Pasaoglu, I. Kavuncu, A. Passaoglu and I. Karakucuk. Lipid peroxidation in experimental spinal cord injury: Com-
GB0134	Le Bars, P. L., M. M. Katz, N. Berman, T. M. Itil, A. M Freedman and A. F. Schatzberg. A placebo-controlled, double-blind randomized trial of an extract of <i>Ginkgo biloba</i> for dementia. J Amer Med Ass 1997; 278(16): 1327–1332.	GB0141	parison of treatment with <i>Ginkgo biloba</i> , TRH and methylprednisolone. Res Exp Med 1995; 195(2): 117–123. Kose, K., P. Dogan, M. Ascioglu and O. Ascioglu. In vitro antioxidant effect of <i>Ginkgo biloba</i> extract (EGB 761) on lipoper-
GB0135	Kobuchi, H., M. T. Droy-Lefaix, Y. Christen and L. Packer. <i>Ginkgo biloba</i> extract (EGB 716): Inhibitory effect on nitric oxide production in the macrophage cell line raw 264.7. Biochem Pharmacol 1997; 53(6): 897–	GB0142	oxidation induced by hydrogen peroxide in erythrocytes of EBHCET's patients. Jap J Phar- macol 1997; 75(3): 253–258. Sastre, J., A. Millan, J. G. De La Asuncion, R. Pla, G. Juan, F. V. Pallardo, E. O'Connor, J. A.
GB0136	Pan, J. X., H. Y. Zhang, W. B. Tang and M. F. Hong. Biflavones from the testa of <i>Ginkgo biloba</i> L. Zhiwu Ziyuan Yu		Martin, M. T. Droy-Lefaix and J. Vina. A <i>Ginkgo biloba</i> extract (EGB 761) prevents mitochondrial aging by protecting against oxidative stress. Free Radical
GB0137	Huanjing 1995; 4(2): 17–21. Laurain, D., J. Tremouillaux-Guiller, J. C. Chenifux and T. A. Van Beek. Production of gink-golide and bilobalide in transformed and gametophyte derived	GB0143	Biol Med 1998; 24(2): 298–304. Lang, F. and E. Wilhelm. Quantitative determination of proanthocyanidins in <i>Ginkgo biloba</i> special extracts. Pharmazie 1996; 51(10): 734–737.

GB0144	Bolanos-Jimenzs, F., R. M. Castro, H. Sarhan, N. Prudhomme, K. Drieu and G. Fillion. Stressinduced 5-HTIA receptor desensitization protective effects of <i>Ginkgo biloba</i> extract (EGB 761). Fundam Clin Pharmacol 1995; 9(2): 169–174.	GB0151	Ghosal, S., R. Sundaram, A. V. Muruganandam, S. K. Singh, K. S. Satyan, S. K. Bhattacharya, V. Saravanan and N. Mishra. The chemistry and action of 6-alk-ysalicylates of Indian <i>Ginkgo biloba</i> . Indian J Chem 1997; 36B(3): 257–263.
GB0145	Amri, H., K. Drieu and V. Papadopoulos. Ex vivo regulation of adrenal cortical cell steroid and protein synthesis, in response to adrenocorticotropic hormone stimulation, by the <i>Ginkgo biloba</i> extract EGB 761 and isolated ginkgolide B. Endocrinology 1997; 138(12): 5412–5426.	GB0152	Hasenohri, R. U., B. Topic, C. Frisch, R. Hacker, C. M. Mattern and J. P. Huston. Dissociation between anxiolytic and hypomnestic effects for combined extracts of <i>Zingiber officinale</i> and <i>Ginkgo biloba</i> , as opposed to diazepam. Pharmacol Biochem Behav 1998; 59(2): 527–
GB0146	Hasler, A., O. Sticher and B. Meier. Identification and determination of the flavonoids from <i>Ginkgo biloba</i> by high-performance liquid chromatography. J Chromatogr 1992; 605(1): 41–48.	GB0153	535. Arnould, T., C. Michiels, D. Janssens, N. Brna and J. Remacle. Effect of gonkor fort on hypoxia-induced neutrophil adherence to human saphenous vein endothelium. J Cardiovacs Phar-
GB0147	Castelli, D., L. Colin, E. Camel and G. Ries. Pretreatment of skin with a <i>Ginkgo biloba</i> extract/sodium carboxymethyl-beta-1, 3-glucan formulation appears to	GB0154	macol 1998; 31(3): 456–463. Han, D. S. Crude drugs inducing allergic reaction on <i>Ginkgo bil-</i> <i>oba</i> . Yakhak Hoe Chi 1975; 19: 79–86.
CD0149	inhibit the elicitation of allergic contact dermatitis in man. Contact Dermatitis 1998; 38(3): 123–126.	GB0155	Gellerman, J. L., W. H. Anderson and H. Schlenk. 6-(pentadec-8-enyl)-2,4-dihydroxybenzoic acid from seeds of <i>Ginkgo</i>
GB0148	Schulz, V., W. D. Hubner and M. Ploch. Clinical trials with phyto-psychopharmacological agents. Phytomedicine 1997; 4(4): 379–387.	GB0156	biloba. Phytochemistry 1976; 15: 1959–1961. Flesch, V., M. Jacques, L. Cosson, B. P. Teng, V. Petiard and J. P. Balz. Relative impor-
GB0149	Winter, J. C. The effects of an extract of <i>Ginkgo biloba</i> , EGB 761, on cognitive behavior and longevity in the rat. Physiol		tance of growth and light level on terpene content of <i>Ginkgo biloba</i> . Phytochemistry 1992; 31 (6): 1941–1945.
GB0150	Behav 1998; 63(3): 425–433. Cohen-Salmon, C., P. Venault, B. Martin, M. J. Raffalli-Sebille, M. Barkats, F. Clostre, M. C.	GB0157	Beljanski, M. Virucidal composition comprising flavopereirine. Patent-Eur Pat Appl-373,986 1990; 7 pp. Schneider, B. <i>Ginkgo biloba</i> ex-
	Pardon and G. Chapouthier. Effects of <i>Ginkgo biloba</i> extract (EGB 761) on learning and possible actions on aging. J Physiol (Paris) 1997; 91(6): 291–300.	OD0130	tract in peripheral arterial disease/meta-analysis of controlled clinical trials. Arzneim-Forsch 1992; 42(4): 428–436.

GB0159 GB0160	Yabe, I., M. Chat, E. Malherne and P. P. Vidal. Effects of <i>Ginkgo biloba</i> extract (EGB 761) on the guinea pig vestibular system. Pharmacol Biochem Behav 1992; 42(4): 595–604. Dumont, E., E. Petit, T. Tarraade and A. Nouvelot. UV-C irradia-	GB0167	Ramassamy, C., Y. Christen, F. Clostre and J. Costentin. The <i>Ginkgo biloba</i> extract, EGB 761, increases synaptosomal uptake of 5-hydroxytryptamine: In-vitro and ex-vivo studies. J Pharm Pharmacol 1992; 44 (11): 943–945.
CD0161	tion-induced peroxidative degradation of microsomal fatty acids and proteins: Protection by an extract of <i>Ginkgo biloba</i> (EGB 761). Free Radical Biol Med 1992; 13(3): 197–203.	GB0168	Oyama, Y., T. Ueha, A. Hayashi, J. Chikahisa and K. Noda. Flow cytometric estimation of the effect of <i>Ginkgo biloba</i> extract on the content of hydrogen peroxide in dissociated mammalian
GB0161	Markham, K. R., H. Geiger and H. Jaggy. Kaempferol-3-O-glucosyl(1-2)rhamnoside from <i>Ginkgo biloba</i> and a reappraisal of	GB0169	brain neurons. Jap J Pharmacol 1992; 60(4): 385–388. Wada, K., K Sasaki, K. I. Miura, M. Yagi, Y. Kubota, T. Matsu-
GB0162	other gluco(1-2,1-3 and 1-4)rha mnoside structures. Phytochem- istry 1992; 31(3): 1009–1011. Gulz, P. G., E. Muller, K. Schmitz, F. J. Marner and S.		moto and M. Haga. Isolation of the bilobalide and ginkgolide A from <i>Ginkgo biloba</i> L. shorten the sleeping time induced in mice by anesthetics. Biol Pharm
	Guth. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipfera. Z Naturforsch Ser C 1992; 47(7/8):	GB0170	Bull 1993; 16(2): 210–212. Yasukawa, K., A. Yamaguchi, J. Arita, S. Sakurai, A. Ikeda and M. Takido. Inhibitory effect of edi- ble plant extracts on 12-o-tetrade- canoylphorbol-13-acetate-in-
GB0163	516-526. Huh, H., E. J. Staba and J. Singh. Supercritical fluid chromato- graphic analysis of polyprenols in <i>Ginkgo biloba</i> L. J Chro- matogr 1992; 600(2): 364-369.	GB0171	duced ear oedema in mice. Phytother Res 1993; 7(2): 185–189. Allain, H., P. Raoul, A. Lieury, F. Lecoz, J. M Gandon and P. D'Arbigny. Effect of two doses of <i>Ginkgo biloba</i> extract (EGB
GB0164	Van Beek, T. A. and G. P. Lelyveld. Concentration of ginkgolides and bilobalide in <i>Ginkgo biloba</i> leaves in relation to the	GB0172	761) on the dual-coding test in elderly subjects. Clin Ther 1993; 15(3): 549–558. De Turco, E. B. R., M. T. Droy-
GB0165	time of year. Planta Med 1992; 58(5): 413–416. Kiesewetter, H., F. Jung, C. Mrowietz and E. Wenzel. Hem-	G=0.1=4	Lefaix and N. G. Bazan. EGB 761 inhibits stress-induced polydipsia in rats. Physiol Behav 1993; 53(5): 1001–1002.
CD0166	orrheological and circulatory effects of gincosan. Int J Clin Pharmacol Ther Toxicol 1992; 30(3): 97–102.	GB0173	Verotta, L. and F. Peterlongo. Selective extraction of phenolic components from <i>Ginkgo biloba</i> extracts using superical car-
GB0166	Woerdenbag, H. J. Therapy with leaf extract of <i>Ginkgo biloba</i> . Pharm Weekblad 1993; 128(4): 102–106.		bon dioxide and off-line capillary gas chromatography/mass spectrometry. Phytochem Anal 1993; 4 (4): 178–182.

campi of three inbred mouse

GB0174	Kang, G. S., J. R. Youm and S. S. Kang. Seasonal variations of the flavonol glycoside content from <i>Ginkgo biloba</i> leaves. Korean J Pharmacog 1993; 24(1):	GB0181	Hughet, F., K. Drieu and A. Piriou. Decreased cerebral 5-HT-1-A receptors during aging: Reversal by <i>Ginkgo biloba</i> extract (EGB 761). J Pharm Phar-
GB0175	Yagi, M., K. Wada, M. Sakata, M. Kokubo and M. Haga. Studies on the constituents of edible and medicinal plants. IV. Determination of 4-o-methylpyridoxine in serum of the patient with gin-nan food poisoning. Yakugaku Zasshi 1993; 113(8): 596-	GB0182	macol 1994; 46(4): 316–318. Masson, F., G. Neliat, K. Drieu, F. V. Defeudis and T. Jean. Effects of an extract of <i>Ginkgo biloba</i> on the action potential and associated transmembrane ionic currents in mammalian cardiac myocytes: Inhibition of isoproterenol-induced chloride currents.
GB0176	Yu, X. Y., X. P. Zhuang, P. Braquet and Y. J. Fang. The analysis of ginkgolide B from leaves of <i>Ginkgo biloba</i> L. by high-performance liquid chromatography. Yaowu Fenxi Zazhi 1993;	GB0183	rent. Drug Dev Res 1994; 32(1): 29–41. Kurokawa, M., H. Ochiai, K. Nagasaka, M. Neki, H. X. Xu, S. Kadota, S. Sutardio, T. Matsumoto, T. Namba and K. Shiraki. Antiviral traditional medicines
GB0177	13(2): 85–88. Sandberg-Gertzen, H. An open trail of cedemin, <i>Ginkgo biloba</i> extract with PAF-antagonistic effects for ulcerative colitis. Amer J Gastroenterol 1993; 88(4):		against herpes simplex virus (HSV-1), poliovirus, and measles virus in vitro and their therapeutic efficacies for HSV-1 infection in mice. Antiviral Res 1993; 22(2/3): 175–188.
GB0178	615–616. Kang, G. S., J. R. Youm and S. S. Kang. Seasonal variations of the flavonol glycoside content from <i>Ginkgo biloba</i> leaves. Korean J Pharmacog 1993; 24(1): 47–53.	GB0184	Marcocci, L., J. L. Maguire, M. T. Droy-Lefaix and L. Packer. The nitric oxide-scavenging properties of <i>Ginkgo biloba</i> extract EGB 761. Biochem Biophys Res Commun 1994; 201 (2): 748–755.
GB0179	Zhuang, X. P., X. Y. Xu, G. S. Yan and Y. Q. Fang. Determination of total flavonoids in the leaves of ginkgo (<i>Ginkgo biloba</i>) and studies on its extraction process. Chung Ts'ao Yao 1992;	GB0185	Pietta, P., P. Mauri and A. Rava. Rapid liquid chromatography of terpenes in <i>Ginkgo biloba</i> L. extracts and products. J Pharm Biomed Anal 1992; 10(10/12): 1077–1079.
GB0180	23(3): 122–124. Vasseur, M., T. Jean, F. V. Defeudis and K. Drieu. Effects of repeated treatments with an extract of <i>Ginkgo biloba</i> (EGB 761), bilobalide and ginkgolide	GB0186	Della Loggia, R., S. Sosa, A. Tubaro and E. Bombardelli. Anti-inflammatory activity of <i>Ginkgo biloba</i> flavonoids. Planta Med Suppl 1993; 59(7): A588–.
	B on the electrical activity of pancreatic B cells of normal of alloxan-diabetic mice: An ex vivo study with intracellular microelectrodes. Gen Pharmac	GB0187	Barkats, M., P. Vanault, Y. Christen and C. Cohen-Salmon. Effect of long-term treatment with EGB 761 on age-dependent structural changes in the hippo-

1994; 25(1): 31–46.

GB0188	strains. Life Sci 1995; 56(4): 213–222. Pritz-Hohmier, S., T. I. Chao, J. Krenzlin and A. Reichenbach. Effect of in vivo application of the <i>Ginkgo biloba</i> extract EGB 761 (Rokan) on the susceptibility of mammalian retinal cells to proteolytic enzymes. Opthalmic Res 1994; 26(2): 80–86.	GB0195	Biochem Mol Biol Int 1995; 35(1): 125–134. Vennat, J. C., M. T. Droy-Lefaix, G. Besse and M. Doly. Prevention of chloroquine-induced electroretinogram alterations by <i>Ginkgo biloba</i> extract (EGB 761) in rat. Int Congr Ser-Excerpta Med 1992; 998: 761–764.
GB0189	Matile, P., B. M. P. Flach and B. M. Eller. Autumn leaves of <i>Ginkgo biloba</i> L.: Optical properties, pigments and optical brighteners. Bot Acta 1992; 105 (1): 13–17.	GB0196	Kenzelmann, R. and F. Kade. Limitation of the deterioration of lipid parameters by a standard- ized garlic ginkgo combination product. A multicenter placebo- controlled double-blind study.
GB0190	Dorman, D. C., L. M. Cote and W. B. Buck. Effects of an extract of <i>Ginkgo biloba</i> on bromethalin-induced cerebral lipid peroxidation and edema in rats. Amer J Vet Res 1992; 53(1): 138–142.	GB0197	Arzneim-Forsch 1993; 43(9): 978–981. Struillou, L., Y. Cohen, J. L. Vilde, J. J. Pocidalo and C. Perronne. Ginkgo biloba extract EGB 761 is not active against Mycobacterium avium infection
GB0191 GB0192	Haramaki, N., S. Aggarwal, T. Kawabata, M. T. T. Droy-Lefaix and L. Packer. Effects of natural antioxidant <i>Ginkgo biloba</i> extract (EGB 761) on myocardial ischemia-reperfusion injury. Free Radical Biol Med 1994; 16(6): 789–794. Kose, K. and P. Dogan. Lipo-	GB0198	in C57BL/6 mice. Antimicrob Agents Chemother 1995; 39(4): 1013–1014. Emerit, I., R. Arutyunyan, N. Oganesian, A. Levy, L. Cernjavsky, T. Sarkisian, A. Pogossian and K. Asrian. Radiation-induced clastogenic factors: Anticlastogenic effect of Ginkgo
GB0192	peroxidation induced by hydrogen peroxide in human erythrocyte membranes. 1. Protective effect of <i>Ginkgo biloba</i> extract (EGB 761). J Int Med Res 1995; 23(1): 1–8. Kose, K. and P. Dogan. Lipoperoxidation induced by hydro-	GB0199	biloba extract. Free Radical Biol Med 1995; 18(6): 985–991. Kim, B. Y., G. C. Lee, W. K. Whang and J. D. Huh. Studies on the extraction of active components in <i>Ginkgo biloba</i> L. leaves by enzyme treatment (I). Korean J Pharmacog 1989; 20(1):
GB0194	gen peroxide in human erythrocyte membranes. 2. Comparison of the antioxidant effect of Ginkgo biloba extract (EGB 761) with those of water-soluble and lipid-soluble antioxidant. J Int Med Res 1995; 23(1): 9–18. Shen, J. G. and D. Y. Zhou. Efficiency of Ginkgo biloba extract (EGB 761) in antioxidant protection against myocardial ischemia and reperfusion injury.	GB0200 GB0201	43–47. Maitra, I., L. Marcocci, M. T. Droy-Lefaix and L. Packer. Peroxyl radical scavenging activity of <i>Ginkgo biloba</i> extract EGB 761. Biochem Pharmacol 1995; 49(11): 1649–1655. Agnoli, A., J. R. Rapin, V. Scapagnini and W. V. Weitbrecht. Effects of <i>Ginkgo biloba</i> extract on organic cerebral impairment. Effects of <i>Ginkgo biloba</i> extract

	on organic cerebral impairment.	GB0209	Moore, B. D., E. Isidoro and J.
	A. Agnoli, J. R. Rapin, V. Sca-		R. Seemann. Distribution of 2-
	pagnini, W. V. Weitbrecht, John		carboxyarabinitol among plants.
	Libbey, Eurotext LTD 1984;		Phytochemistry 1993; 34(3):
	1985(1984): 43–49.		703–707.
GB0202	Kang, S. S., Y. M. Koh, J. S.	GB0210	Frisch, C., R. U. Hasenohri, C.
	Kim, M. W. Lee and D. S. Lee.		M. Mattern, R. Hacker and J. P.
	Phytochemical analysis of Gink-		Huston. Blockade of lithium
	go biloba yellow leaves. Korean		chloride-induced conditioned
	J Pharmacog 1995; 26(1): 23–		place aversion as a test for anti-
	26.		emetic agents: Comparison of
GB0203	Duche, J. C., J. Barre, P. Guinot,		metoclopramide with combined
020200	J. Duchier, A. Cournot and J. P.		extracts of Zingiber officinale
	Tillement. Effect of Ginkgo		and Ginkgo biloba. Pharmacol
	biloba extract on microsomal		Biochem Behav 1995; 52(2):
	enzyme induction. Int J Clin		321–327.
	Pharmacol Res 1989; 9(3):	GB0211	Itil, T. and D. Martorano. Natural
	165–168.	GB0211	substances in psychiatry (Gink-
GB0204			go biloba in dementia). Psycho-
GB0204	Dumont, E., P. D. Arbigny and		
	A. Nouvelot. Protection of poly-		pharmacol Bull 1995; 31(1):
	unsaturated fatty acids against	CD0212	147–158.
	iron-dependent lipid peroxi-	GB0212	Krieglstein, J., F. Ausmeier, H.
	dation by a Ginkgo biloba ex-		El-Abhar, K. Lippert, M. Welsch,
	tract (EGB 761). Meth Find		K. Rupalla and P. Henrich-
	Exp Clin Pharmacol 1995; 17		Noack. Neuroprotective effects
	(2): 83–88.		of Ginkgo biloba constituents.
GB0205	Szabo, M. E., M. T. Droy-Lefaix		Eur J Pharmacol Sci 1995;
	and M. Doly. EGB 761 and the		3(1): 39–48.
	recovery of ion imbalance in is-	GB0213	Cott, J. Medicinal plants and die-
	chemic reperfused diabetic rat		tary supplements: Sources for in-
	retina. Opthalmic Res 1995; 27		novative treatments of adjuncts.
	(2): 102–109.		Psychopharmacol Bull 1995;
GB0206	Shen, Z. B. and X. N. Chen.		31(1): 131–137.
	Polyprenols from Ginkgo biloba	GB0214	Janssens, D., C. Michiels, E.
	leaves. Linchan Huaxue Yu		Delaive, F. Eliaers, K. Drieu and
	Gongye 1992; 12(4): 279–286.		J. Remacle. Protection of hyp-
GB0207	Duverger, D., F. Defeudis and K.		oxia-induced ATP decrease in
	Drieu. Effects of repeated treat-		endothelial cells by Ginkgo
	ments with an extract of Ginkgo		biloba extract and bilobalide.
	biloba (EGB 761) on cerebral		Biochem Pharmacol 1995;
	glucose utilization in the rat: An		50(7): 991–999.
	autoradiographic study. Gen	GB0215	Agar, A., P. Yargicoglu, K. C.
	Pharmacol 1995; 26(6): 1375–		Apaydin and Y. Oguz. The ef-
	1383.		fect of Ginkgo biloba extract on
GB0208	Yan, L. J., M. T. Droy-Lefaix		EEG spectra in experimental
	and L. Packer. Ginkgo biloba		diabetes; no relation to lipid per-
	extract (EGB 761) protects hu-		oxidation. Int J Neurosci 1994;
	man low density lipoproteins		76(3/4): 259–266.
	against oxidative modification	GB0216	Pietta, P. G., C. Gardana, P. L.
	mediated by copper. Biochem		Mauri, R. Maffei-Facino and M.
	Biophys Res Commun 1995;		Carini. Identification of fla-
	212(2): 360–366.		vonoid metabolites after oral

GB0217	administration to rats of a <i>Ginkgo biloba</i> extract. J Chromatogr B 1995; 673(1): 75–80. Zhong, Y. A. and L. S. Xu. Extraction, isolation and HPLC determination of biflavones in <i>Ginkgo biloba</i> L. Yao Hsueh Hsueh Pao 1995; 30(9): 694–697.	GB0224	Seif-El-Nasr, M. and A. A. B. El-Fattah. Lipid peroxide, phospholipids, glutathione levels and superoxide dismutase activity in rat brain after ischaemia: Effect of <i>Ginkgo biloba</i> extract. Pharmacol Res 1995; 32(5): 273–278.
GB0218	Hasenohri, R. U., C. H. Nichau, C. H. Frisch, M. A. D. S. Silva, J. P. Huston, C. M. Mattern and R. Hacker. Anxiolytic-like effects of combined extracts of Zingiber officinale and Ginkgo biloba in the elevated plus-maze.	GB0225	Mizuno, M., M. T. D. Lefaix and L. Packer. <i>Ginkgo biloba</i> extract EGB 761 as a suppressor of AP-1 transcription factor stimulated by phorbol 12-myristate 13-acetate. Biochem Mol Biol Int 1996; 39(2): 395–401.
GB0219	Pharmacol Biochem Behav 1996; 53(2): 271–275. Emerit, J., N. Oganesian, T. Sarkisian, R. Arutyunyan, A. Pogosian, K. Asrian, A. Levy and L. Cernjavski. Clastogenic factors in the plasma of Cher-	GB0226	Vesper, J. and K. D. Hansgen. Efficacy of <i>Ginkgo biloba</i> in 90 outpatients with cerebral insufficiency caused by old age. Results of a placebo-controlled double-blind trial. Phytomedicine 1994; 1(1): 9–16.
	nobyl accident recovery workers: Anticlastogenic effect of <i>Ginkgo biloba</i> extract. Radiation Res 1995; 144(2): 198–205.	GB0227	Wojcicki, J., J. Samochowiec, S. Juzwiak, B. Gonet, W. Syrnski, B. Barcew-Wiszniewska, L. Rozewicka, S. Tustanowski, M.
GB0220	Irie, J., M. Murata and S. Homma. Glycerol-3-phosphate dehydrogenase inhibitors, anacardic acids, from <i>Ginkgo biloba</i> . Biosci Biotech Biochem 1996; 60(2): 240–243.		Ceglecka, Z. Juzyszyn, Z. Mysliwiec, M. Kaldonska, W. Gornik and D. Kadlubowska. <i>Ginkgo biloba</i> extract inhibits the development of experimental atherosclerosis in rabbits. Phy -
GB0221	Kang, S. S., J. S. Kim, W. J. Kwak and K. H. Kim. Structures of two acylated flavonol glucorhamnosides from <i>Ginkgo biloba</i> leaves. Arch Pharm Res 1990; 13(2): 207–210.	GB0228	tomedicine 1994; 1(1): 33–38. Park, S. Y. and Y. W. Kim. Screening and isolation of the antitumor agents from medicinal plants. (II). Seoul Univ J Pharm Sci 1992; 17: 1–5.
GB0222	Ramassamy, C., F. Girbe, Y. Christen and J. Costentin. <i>Ginkgo biloba</i> extract EGB 761 or trolox c prevent the ascorbic	GB0229	O'Reilly, J. Extract from the leaves of <i>Ginkgo biloba</i> . Patent-Pct Int Appl-95 15,172 1995; 20 pp.
GB0223	acid/FE2+ induced decrease in synaptosomal membrane fluidity. Free Radical Res Commun 1993; 19(5): 341–350. Rong, Y. Q., Z. H. Geng and B. H. S. Lau. <i>Ginkgo biloba</i> attenu-	GB0230	Ni, Y., B. Zhao, J. W. Hou and W. J. Xin. Preventive effect of <i>Ginkgo biloba</i> extract on apoptosis in rat cerebellar neuronal cells induced by hydroxyl radicals. Neurosci Lett 1996; 214
	ates oxidative stress in macrophages and endothelial cells. Free Radical Biol Med 1996; 20(1): 121–127.	GB0231	(2/3): 115–118. Hierro, M. T. G., G. Robertson, W. W. Christie and Y. C. Joh. The fatty acid composition of the

GB0232	seed of Ginkgo biloba. J Amer Oil Chem Soc 1996; 73(5): 575–579. Arenz, A., M. Klein, K. Fiehe, J. Grob, C. Drewke, T. Hemscheidt and E. Leistner. Occurrence of neurotoxic 4'-o-methylpyridoxine in Ginkgo biloba leaves, ginkgo medications and Japa-	GB0240	tional medicine. J Ethnopharmacol 1994; 44(1): 35–40. Belougne, E., O. Aguejouf, P. Imbault, O. F. Azougagh, F. Doutremepuich, M. T. Droy-Lefaix and C. Doutremepuich. Experimental thrombosis model induced by laser beam. Application of aspirin and an extract
GB0233	nese ginkgo food. Planta Med 1996; 62(6): 548–551. Takatsuki, S., T. Narui, H. Ekimoto, H. Abuki, K. Nijima and T. Okuyama. Studies on cytotoxic activity of animal and plant and crude drugs. Nat Med 1996;	GB0241	of Ginkgo biloba: EGB 761. Thrombosis Res 1996; 82(5): 453–458. Chermat, R., D. Brochet, F. V. De Feudis and K Drieu. Interactions of Ginkgo biloba extract (EGB 761), diazepam and ethyl
GB0234	50(2): 145–157. Paick, J. S. and J. H. Lee. An experimental study of the effect of <i>Ginkgo biloba</i> extract on the		beta-carboline-3-carboxylate on social behavior of the rat. Pharmacol Biochem Behav 1997; 56(2): 333–339.
	human and rabbit <i>Corpus cavernosum</i> tissue. J Urol 1996; 156 (5): 1876–1880.	GB0242	Anton, R. Ginkgo and vascular disorders. Plant Med Phytother 1977; 118: 189–.
GB0235	Mazzanti, G., L. Braghiroli, P. Bolle, A. Saija and L. Saso. Effects of <i>Panax ginseng</i> and <i>Ginkgo biloba</i> on in vitro prolactin secretion. Phytother Res	GB0243	Schrall, R. and H. Becker. Production of catechins and oligomeric proanthocyanidins in tissue and suspension cultures of <i>Crataegus monogyna</i> . Planta
GB0236	1996; 10: S33–S35. Duke, J. A. and E. S. Ayensu. Medicinal Plants of China. Reference Publications, Inc. Algonac, Michigan, 1985. 1985; 1(4): 52–361.	GB0244	Med Suppl 1977; 32: 297–307. Karcher, L., P. Zagermann and J. Krieglstein. Effect of an extract of Ginkgo biloba on rat brain energy metabolism on hypoxia. Naun- un-Schmiedeberg's Arch Phar-
GB0237	Oyama, Y., L. Chikahisa, T. Ueha, K. Kancemaru and K. Noda. Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen per-	GB0245	macol 1984; 327(1): 31–35. Schennen, A. and J. Holzl. 6- Hydroxykynurenic acid, the first n-containing compound from the <i>Ginkgo biloba</i> leaf. Planta
GB0238	oxide. Brain Res 1996; 712(2): 349–352. Rasetti, M. F., D. Caruson, G. Galli and E. Bosisio. Extracts of <i>Ginkgo biloba</i> leaves and <i>Vaccinium myrtillus</i> L. fruits prevent photo induced oxidation of low	GB0246	Med 1986; 1986(3): 235–236. Nasri, C., A. Lobstein-Guth, M. Haag-Berrurier and R. Anton. Quercetin coumaroyl glucohamnoside from <i>Ginkgo biloba</i> . Phytochemistry 1987; 26(10): 2869–2870.
GB0239	density lipoprotein cholesterol. Phytomedicine 1996; 3(4): 335–338. Brantner, A. and E. Grein. Antibacterial activity of plant extracts used externally in tradi-	GB0247	Matsumoto, T. and T. Sei. Antifeedant activities of <i>Ginkgo biloba</i> L. components against the larva of <i>Pieris rapae crucivora</i> . Agr Biol Chem 1987; 51(1): 249–250.

GB0248	Anon. Preparation and definition of <i>Ginkgo biloba</i> extract. Presse		biloba extract in the treatment of tinnitus. Presse Med 1986; 15
GB0249	Med 1986; 15(31): 1455–1457. Bourgain, R. H., L. Maes, R. Andries and P. Braquet. Thrombus induction by endogenic PAF-acether and its inhibition by <i>Ginkgo biloba</i> extracts in the guinea pig. Prostaglandins	GB0258	(31): 1562–1564. Hannequin, D., A. Thibert and Y. Vaschalde. Development of a model to study the anti-oedema properties of <i>Ginkgo biloba</i> extract. Presse Med 1986; 15(31): 1575–1576.
GB0250	1986; 32(1): 142–144. Bourgain, R. H., R. Andries and P. Braquet. Effect of ginkgolide PAF-acether antagonists on arterial thrombosis. Adv Prost Thromb Leuk Res 1987; 17: 815–817.	GB0259	Tailander, J., A. Ammar, J. P. Rabourdin, J. P. Ribeyre, J. Pichon, S. Niddam and H. Pierart. <i>Ginkgo biloba</i> extract in the treatment of cerebral disorders due to aging. Presse Med 1986; 15(31): 1583–1587.
GB0251	Lagrue, G., K. Rahbar, A. Behar, A. Sobel and J. Laurent. Recurrent shock associated with monoclonal gammapathie. Acute and chronic treatment with parenteral and oral <i>Ginkgo biloba</i> extract. Presse Med 1986; 15(31):	GB0260 GB0261	Lagrue, G., A. Behar, M. Kazandjian and K. Rahbar. Idiopathic cyclic oedema. Role of capillary hyperpermeability and its correction by <i>Ginkgo biloba</i> extract. Presse Med 1986; 15(31): 1550–1553. Vanhaelen, M. and R. Vanhae-
GB0252	1546–1549. Bauer, U. <i>Ginkgo biloba</i> extract in the treatment of lower limb arteritis. A sixty-week trial. Presse Med 1986; 15(31): 1546–1549.	GB0201	len-Fastre. Countercurrent chromatography for isolation of flavonol glycosides from <i>Ginkgo biloba</i> leaves. J Liq Chroma-
GB0253	Moreau, J. P., C. R. Eck, J. McCabe and S. Skinner. Absorption, distribution and elimination of radiolabelled <i>Ginkgo biloba</i> leaves extract in the rat. Presse Med 1986; 15(31): 1458–1461.	GB0262	togr 1988; 11(14): 2969–2975. Victoire, C., M. Haag-Berrurier, A. Lobstein-Guth, J. P. Balz and R. Anton. Isolation of flavonol glycosides from <i>Ginkgo biloba</i> leaves. Planta Med 1988; 54(3):
GB0254	Racagni, G., N. Brunello and R. Paoletti. Variations of neuromediators in cerebral aging. Effects of <i>Ginkgo biloba</i> extract. Presse Med 1986; 15(31): 1488–1490.	GB0263	245–247. Lobstein-Guth, A., F. Briandon-Scheid, C. Victoire, M. Haag-Berrurier and R. Anton. Isolation of amentoflavone from <i>Ginkgo biloba</i> . Planta Med 1988; 54(6):
GB0255	Hindmarch, I. Activity of <i>Ginkgo biloba</i> extract on short term memory. Presse Med 1986; 15 (31): 1592–1594.	GB0264	555–556. Yadav, S., P. K. Ralhan and S. P. Singh. Qualitative distribution pattern of carotenoids in three
GB0256	Dubreuil, C. Comparative therapeutic trial of <i>Ginkgo biloba</i> extract and nicergoline in acute	GB0265	selected gymnosperms. Curr Sci 1987; 56(8): 354–359. Jensen, U. and H. Bertholdi.
GB0257	cochlear deafness. Presse Med 1986; 15(31): 1559–1561. Meyer, B. A mulitcentre, randomized, double-blind drug versus placebo study of <i>Ginkgo</i>	GB0266	Legumin-like proteins in gymnosperms. Phytochemistry 1989; 28(5): 1389–1394. Vanhaelen, M. and R. Vanhaelen-Fastre. Flavonol triglycosides

	from Ginkgo biloba. Planta Med 1989; 55(2): 202		mometry and cutaneous thermography. Therapic 1972; 27(5):
GB0267	Pidoux, B. Effects of Ginkgo biloba extract on functional activity of the brain. Results of clinical and experimental studies. Presse Med 1986; 15(31):	GB0275	881–892. Jung, F., C. Mrowietz, H. Kiesewetter and E. Wenzel. Effect of <i>Ginkgo biloba</i> on fluidity of blood and peripheral microcir-
GB0268	1588–1591. Pincemail, J., M. Dupuis, C. Nasr, P. Hans, M. Haag-Berrurier, R. Anton and C. Deby. Superoxide anion scavenging effect and superoxide dismutase activity of <i>Ginkgo biloba</i> extract. Experentia 1989; 45(8):	GB0276	culation in volunteers. Arzneim-Forsch 1990; 40(5): 589–593. Kang, S. S., J. S. Kim, W. J. Kwak and K. H. Kim. Identification and quantitative analysis of flavonol glycosides from <i>Ginkgo biloba</i> leaves by high performance liquid chromatography.
CD0260	708–712.		Korean J Pharmacog 1990; 21
GB0269	Bruel, A., J. Gardette, E. Berrou, M. T. Droy-Lefaix and J. Picard. Effects of <i>Ginkgo biloba</i> extract on glucose transport and glycogen synthesis of cultured smooth muscle cells from pig. Pharmacol Res 1989; 21(4): 421–429.	GB0277	(2): 148–152. Witte, S., I. Anadere and H. Chmiel. Therapeutical effect of <i>Ginkgo biloba</i> flavon glucosides on increased viscoelasticity of blood. Rev Port Hemorreol 1988; 2(1): 5–12.
GB0270	Taylor, J. E. Binding of neuro- mediators to their receptors in rat brain. Effect of chronic adminis- tration of <i>Ginkgo biloba</i> extract. Presse Med 1986; 15(31): 1491– 1493.	GB0278	Auguet, M., S. Delaflotte, A. Hellegouarch and F. Clostre. Pharmacological basis for the impact of <i>Ginkgo biloba</i> extract on vessels. La Presse Med 1986; 15(31): 1524–1528.
GB0271	Le Poncin Lafitte, M., J. Rapin and J. R. Rapin. Effects of <i>Ginkgo biloba</i> on changes induced by quantitative cerebral microembolization in rats. Arch Int Pharmacodyn Ther 1980; 243 (2): 236–244.	GB0279	Ramassamy, C., F. Clostre, Y. Christen and J. Costentin. Prevention by a <i>Ginkgo biloba</i> extract (EGB 761) of the dopaminergic neurotoxicity of MPTP. J Pharm Pharmacol 1990; 42 (11): 785–789.
GB0272	Otamiri, T. and C. Tagesson. Ginkgo biloba extract prevents mucosal damage associated with small-intestinal ischaemia. Scand J Gastroenterol 1989; 24(6):	GB0280	Winter, E. Effects of an extract of <i>Ginkgo biloba</i> on learning and memory in mice. Pharmacol Biochem Behav 1991; 38 (1): 109–114.
GB0273	666-670. Otani, M., S. S. Chatterjee, B. Gabard and G. W. Kreutzberg. Effect of an extract of <i>Ginkgo biloba</i> on triethyltin-induced cerebral edema. Acta Neuropa -	GB0281	Kageyu, A., S. Nakagawa, T. Takigawa, M. Shimamura, M. Okada and M. Mizuno. Anti-inflammatory compositions containing dolichol. Patent-Japan Kokai Tokkyo Koho-62 33,118
GB0274	thol 1986; 69(1/2): 54–65. Gautherie, M., P. Bourjat, E. Grosshans and Y. Quenneville. Vasodilator effects of <i>Ginkgo</i> biloba extract measured by ther-	GB0282	1987; 11 pp. Van Beek, T. A., H. A. Scheeren, T. Rantio, W. C. Melger and G. P. Lelyveld. Determination of ginkgolides and bilobalide in

GB0283	Ginkgo biloba leaves and phytopharmaceuticals. J Chromatogr 1991; 54(2): 375–387. Rai, G. S., C. Shovlin and K. A. Wesnes. A double-blind, placebo controlled study of Ginkgo biloba extract ('Tanakan') in elderly out-patients with mild to	GB0291	Wochenschr 1991; 133: S44–S46. Koza, K. D., F. D. Ernst and E. Spori. Retinal blood flow after <i>Ginkgo biloba</i> treatment in <i>Fundus hypertonicus</i> . Muench Med Wochenschr 1991; 133: S47–S50.
GB0284	moderate memory impairment. Curr Med Res Opin 1991; 12 (6): 350–355. Barth, S. A., G. Inselmann, R.	GB0292	Schmidt, U., K. Rabinovici and S. Lande. Effect of a <i>Ginkgo biloba</i> special extract on wellbeing in cerebral insufficiency.
	Engemann and H. T. Heidemann. Influences of <i>Ginkgo biloba</i> on cyclosporin a induced lipid peroxidation in human liver microsomes in comparison to vitamin E, glutathione and n-	GB0293	Muench Med Wochenschr 1991; 133: S15-S18. Ramachandran, U., H. M. Dive- kar, S. K. Grover and K. K. Srivastava. New experimental model for the evaluation of
GB0285	acetylcysteine. Biochem Pharmacol 1991; 41(10): 1521–1526. Song, Y. F. Chemical composition and utilization of <i>Ginkgo biloba</i> L. Lincoln Huaxue Yu Gongye 1986; 6(3): 42–45.	GB0294	adaptogenic products. J Ethno- pharmacol 1990; 29(3): 275– 281. Warot, D., L. Lacomblez, Danjou, E. Weiller, C. Payan and A. J. Puech. Comparative effects
GB0286	Lobstein, A., L. Rietsch-Jako, M. Haag-Berrurier and R. Anton. Seasonal variations of the flavonoid content from <i>Ginkgo biloba</i> leaves. Planta Med 1991;	GB0295	of Ginkgo biloba extracts on psychomotor performances and memory in healthy volunteers. Therapie 1991; 46(1): 33–36. Kang, S. S., J. S. Kim, W. J.
GB0287	57(5): 430–433. Lacour, M., L. Ez-Zaher and J. Raymond. Plasticity mechanisms in vestibular compensation in the cat are improved by an extract of <i>Ginkgo biloba</i>	GB0296	Kwak and K. H. Kim. Flavo- noids from the leaves of <i>Ginkgo</i> biloba. Korean J Pharmacog 1990; 21(2): 111–120. Pietta, P., P. Mauri, A. Bruno, A. Rava, E. Manera and P. Ceva.
GB0288	(EGB 761). Pharm Biochem Behavior 1991; 40(2): 367–379. Verotta, L., E. Lolla and A. Moggi. Improvement in the separation of two <i>Ginkgo biloba</i> coumaroyl flavonoids. Fitote-		Identification of flavonoids from Ginkgo biloba L., Anthemis nobilis L. and Equisetum arvense L. by high-performance liquid chromatography with diode-array UV detection. J Chroma-
GB0289	rapia 1991; 62(4): 339–341. Halama, P. Judgment of well- being and psychometric tests in patients from a neurological practice treated with ginkgo.	GB0297	togr 1991; 553(1/2): 223–231. Koeltringer, P. Drug composition comprising ginkgo flavone glycosides for the treatment of neuropathies. Patent-Eur Pat
GB0290	Muench Med Wochenschr 1991; 133: S19–S22. Jung, F., R. Schahram, H. Kiese- wetter and E. Wenzel. Efficacy of <i>Ginkgo biloba</i> on cutaneous microcirculation. Muench Med	GB0298	Appl-326,034 1989; 5 pp. Huguet, F. and T. Tarrade. Alpha 2-adrenoceptor changes dur- ing cerebral aging. The effect of Ginkgo biloba extract. J Pharm Pharmacol 1991; 44(1): 24–27.

GB0299	Hofferberth, B. Ginkgo biloba special extract in patients with cerebro-organic syndrome. Muench Med Wochenschr 1991;	GB0309	Tokkyo Koho-02 193,907 1990; 3 pp. Umeda, Y. Topical formulations containing flavonoids of gingko-
GB0300	133: S30–S33. Nieder, M. Pharmacokinetics of <i>Ginkgo biloba</i> flavonoids in plasma. Muench Med Wochenschr 1991; 133: S61–S62.	GB0310	leaf extracts. Patent-Japan Ko- kai Tokkyo Koho-04 29,934 1992; 4 pp. Chung, A. S. and H. S. Shin. Studies on the lipid components
GB0301	Allard, M. Treatment of old age disorders with <i>Ginkgo biloba</i> extract. Presse Medicale 1986; 15(31): 1540–1545.	GB0311	of ginkgo nut. Han'guk Sikp' um Kwahakhoe Chi 1978; 10: 119 Ohmoto, T., T. Nikaido and M.
GB0302	Hartmann, A. and M. Frick. Efficacy of a ginkgo extract on psychometric parameters in patients with vascular dementia. Muench	GB0311	Ikuse. Constituents of pollen. V. Constituents of <i>Retula platyphylla</i> var Japonica. Chem Pharm Bull 1978; 26: 1437–1442.
GB0303	Med Wochenschr 1991; 133: S23–S25. Schultz, H., M. Jobert and H. P. Breuel. Efficacy of L11370 con-	GB0312	Kameyama, H. and C. Urakami. Glycolipids isolated from ginkgo nuts (<i>Ginkgo biloba</i>) and their fatty acid compositions. J
	cerning the egg of elderly persons in the enforced lack of sleep model. Muench Med Wochenschr 1991; 133: S26–S29.	GB0313	Amer Oil Chem Soc 1979; 56: 549—. Geiger, H. 3'-o-methylmyricetin-3-rhamnoglucoside a new
GB0304	Maier-Hauff, K. L11370 after cerebral aneurysm operation. Muench Med Wochenschr 1991; 133: S34–S37.		flavonoid from the autumnal leaf of <i>Ginkgo biloba</i> L. Z Natur- forsch Ser C 1979; 34: 878– 879.
GB0305	Ernst, F. D. Effect of a <i>Ginkgo biloba</i> special extract on disturbed microcirculation. Muench Med Wochenschr 1991; 133: S51–S53.	GB0314	Joly, M., M. Haag-Berrurier and R. Anton. 5-Methoxybilobetin, a biflavone extracted from <i>Ginkgo biloba</i> . Phytochemistry 1980; 19: 1999–2002.
GB0306	Droy-Lefaix, M. T., B. Bon- homme and M. Doly. Protective effect of <i>Ginkgo biloba</i> extract (EGB 761) on free radical-in-	GB0315	Ohmoto, T., O. Yoshida, M. Kano and M. Ikuse. Constituents of pollen. VII. Constituents of <i>Ginkgo biloba</i> L. Shoyakugaku
GB0307	duced changes in the electroret- inogram of isolated rat retina. Drugs Exp Clin Res 1991; 17 (2): 571–574. Dorman, D. C., L. M. Cote and W. B. Buck. Effects of an extract of <i>Ginkgo biloba</i> on brometh-	GB0316	Zasshi 1980; 34: 145–150. Etienne, A., J. Baranes, F. Hecquet, A. Hellegouarch and F. Clostre. Membrane stabilizing effect of an extract of <i>Ginkgo biloba</i> . Planta Med 1980; 39: 237–.
CD0202	alin-induced cerebral lipid peroxidation and edema in rats. Amer J Vet Res 1992; 53(1): 138–142.	GB0317	Chung, B. Y., L. S. Won, B. R. Lee and C. H. Lee. A new chemical constituent of green leaves of <i>Ginkgo biloba</i> . Taehan Hwa-
GB0308	Matsumoto, T. Extraction of therapeutic flavons from ginkgo leaves. Patent-Japan Kokai	GB0318	hakhoe Chi 1982; 26: 95–98. Hirao, N. and T. Shogaki. The essential oil of <i>Ginkgo biloba</i> L.

	(Icho). Kinki Daigaku Rikoga- kubu Kenkyu Hokoku 1981; 1981(16): 47-50.		eral arterial insufficiency. Arz-neim-Forsch 1984; 34(1): 716–720.
GB0319	Adawadkar, P. D. and M. A. El Sohly. Isolation, purification and antimicrobial activity of anacardic acids from <i>Ginkgo biloba</i> fruits. Fitoterapia 1981; 52: 129–135.	GB0327	Osawa, T., H. Ishibashi, M. Namiki, T. Kada and K. Tsuji. Desmutagenic action of food components on mutagens formed by the sorbic acid nitrite reaction. Agr Biol Chem 1986; 50(8): 1971–1977.
GB0320	Kameyama, H. and K. Matsuoka. Steryl glycosides in ginkgo nuts (<i>Ginkgo biloba</i>). Kumamoto Joshi Diagaku Gakujutsu Kiyo 1983; 35: 69–72.	GB0328	Itokawa, H., N. Totsuka, K. Nakahara, K. Takeya, J. P. Lepoittevin and Y. Asakawa. Antitumor principles from <i>Ginkgo bil</i> -
GB0321	Ibata, K., M. Mizuno, T. Takigawa and Y. Tanaka. Long-chain betulaprenol-type polyprenols from the leaves of <i>Ginkgo biloba</i> . Biochem J 1983; 213(2):	GB0329	oba L. Chem Pharm Bull 1987; 35(7): 3016–3020. Lamant, V., G. Mauco, P. Braquet, H. Chap and L. Douste-Blazy. Inhibition of the metab-
GB0322	305–311. Briancon-Scheid, F., A. Lobstein-Guth and R. Anton. HPLC separation and quantitative determination of biflavones in leaves from <i>Ginkgo biloba</i> . Planta	GB0330	olism of platelet activating factor (PAF-acether) by three specific antagonists from <i>Ginkgo biloba</i> . Biochem Pharmacol 1987; 36(17): 2749–2752. Schaffler, K. and P. W. Reeh.
GB0323	Med 1983; 49(4): 204–207. Ishii, R., K. Yoshikawa, H. Minakata, H. Komura and T. Kada. Specificities of bio-anti- mutagens in plant kingdom. Agr Biol Chem 1984; 48(10): 2587– 2591.		Double-blind study of the hypoxia-protective effect of a standardized <i>Ginkgo biloba</i> preparation after repeated administration in healthy volunteers. Arzneim-Forsch 1985; 35(8): 1283–1286.
GB0324	Woo, W. S., E. B. Lee, K. H. Shin, S. S. Kang and H. J. Chi. A review of research on plants for fertility regulation in Korea. Korean J Pharmacog 12(3): 153–170.	GB0331	Namba, T., M. Tsunezuka, K. H. Bae and M. Hattori. Studies on dental caries prevention by traditional Chinese medicines. Part I. Screening of crude drugs for antibacterial action against <i>Strep</i> -
GB0325	Hellegouarch, A., J. 1981; Baranes, F. Clostre, K. Drieu, P. Braquet and F. V. Defeudis. Comparison of the contractile effects of an extract of <i>Ginkgo biloba</i> and some neurotransmitters on rabbit isolated vena cava. Gen	GB0332	tococcus mutans. Shoyakugaku Zasshi 1981; 35(4): 295–302. Leifertova, I. and M. Lisa. The antifungal properties of higher plants affecting some species of the genus Aspergillus. Folia Pharm (Prague) 1979; 2: 29–
GB0326	Pharmacol 1985; 16(2): 129–132. Bauer, U. 6-Month double-blind randomised clinical trial of <i>Ginkgo biloba</i> extract versus placebo in two parallel groups in patients suffering from periph-	GB0333	54. Koshimizu, K., H. Ohigashi, H. Tokuda, A. Kondo and K. Yamaguchi. Screening of edible plants against possible anti-tumor promoting activity. Cancer Lett 1988; 39(3): 247–257.

GB0334	Duche, J. C., J. Barre, P. Guinot, J. Duchier, A. Cournot and J. P. Tillement. Effect of <i>Ginkgo biloba</i> constituents related to protection against brain damage caused by hypoxia. Pharmacol	GB0339	Inst Phys Chem Res 8: 228–233. Dragendorff, G. Die 1929; Heilpflanzen der Verschiedenen Volker und Zeiten, F. Enke, Stuttgart, 1898; 885 pp.
	Res Commun 1988; 20(5): 349–368.	GB0340	Cross, F. B. The effect of certain cultural practices on the ascorbic
GB0335	Hofferberth, B. Effect of Ginkgo biloba extract on neurophysiological and psychometric mea-		acid content of some horticultural plants. Dissertation-Ph.DUniv Missouri 1939; 123 pp.
	surement results in patients with cerebro-organic syndrome/A double-blind study versus placebo. Arzneim-Forsch 1989; 39(8): 918–922.	GB0341	Ueki, H., M. Kaibara, M. Sakagawa and S. Hayashi. Antitumor activity of plant constituents. I. Yakugaku Zasshi 1961; 81: 1641–1644.
GB0336	Lee, E. B., H. S. Yun and W. S. Woo. Plants and animals used for fertility regulation in Korea. Korean J Pharmacog 1977; 8:	GB0342	Heal, R. E., E. F. Rogers, R. T. Wallace and O. Starnes. A survey of plants for insecticidal activity. Lloydia 1950; 13: 89–162.
GB0337	81–87. Hoffmeister, H., G. Heinrich, G. B. Staal and W. J. Van Der Burg. The occurrence of ecdysterone in <i>Taxus baccata</i> . Naturwissen- schaften 1967; 54: 471–.	GB0343	Datko, A. H., S. H. Mudd and J. Giovanelli. A sensitive and specific assay for cystathionine: Cystathionine content of several plant tissues. Anal Biochem 1974; 62 (2): 531–545.
GB0338	Sumi, M. The steroids isolated from several vegetables. Bull		

11 Glycyrrhiza glabra

Common Names

Arq sus	Morocco	Mulethi	India
Asloosoos	India	Muleti	India
Bouesc-dous	France	Mulhati	India
Buyan	Turkey	Mulhatti	India
Cha-em-thet	Thailand	Pega-dousa	France
Gancao	China	Persian licorice	Iran
Glycyrrhiza	USA	Recalisse	France
Glycyrrhizae radix	China	Reglisse	France
Jakyakgamcho-tang	South Korea	Russian licorice	USSR
Jashtimadhu	India	Si-pei	China
Jethimadha	India	Spanish licorice	Spain
Kanpo	Japan	Sussholzwurzel	Spain
Kanzo	Japan	Sweet wood	ÚSA
Licorice root	USA	Walmee	India
Licorice	Israel	Welmii	India
Liquorice	India	Xi-bei	China
Madhuyasthi rasayama	India	Yashti	India
Morethi	India	Yashtimadhu	India
Mulathi	India	1	

BOTANICAL DESCRIPTION

A perennial of the LEGUMINOSAE family. It grows to a height of 1–2 m. It has dark green spreading pinnate leaves that are divided into pairs of narrow leaflets. The pea-like, purple-blue flowers arise from the leaf axils in a spike-like cluster. The pods are small and flat, 2–3 cm in length, turning brown at maturity and containing 1–7 small dark reniform seeds about the size of a pinhead.

The plant has a deep tap root system, and produces horizontal stolons and rhizomes that spread out from the main plant just under the soil surface. The plant produces new shoots from buds on the underground stolons.

ORIGIN AND DISTRIBUTION

This native of the Mediterranean and Near East is distributed in the sub-tropical and warm temperature regions of the world.

TRADITIONAL MEDICINAL USES

China. Hot water extract of the dried root. mixed with Triticum aestivum and Ziziphus jujuba, is taken orally for emotional instability, infantile convulsions, and insomnia; with Lonicera japonica and Stellaria dichotoma as a detoxicant and for pyrexia; with Panax ginseng and Glycyrrhiza glabra, 6 gm each; Athractylodes macrocephala, Angelica sinensis, Polygala tenuifolia, Euphoria longan, and Paeonia moutan, 10 gm each; Zizyphus spinosusi, and Gardenia jasminoides, 12 gm each; Astragalus species and Bletilla species, 15 gm each; and Agrimonia species 30 gm. To restore vital function, a mixture with Panax ginseng, Citrus reticulata, Equus asinus hide and Citrus aurantium, 6 gm each; Astragalus species, Angelica sinensis, Atractylodes macrocephala, Paeonia species, Rehmannia glutinosa, and Bletilla striata, 10 gm each; and Sanguisorba officinalis 15 gm, is taken^{T09788}.

England. Hot water extract of the dried root is taken orally for gastric ulcers, and for amenorrhea^{T09858}.

France. Decoction of the dried root is taken orally as a diuretic, depurative, and emollient^{K27340}.

India. A mixture of 10 grams each of Sida spinosa root, Glycyrrhiza glabra root, Lycium barbarum (leaf), Pistacia integerrima galls, and Mesua ferrea anthers is mixed with honey, cow's milk, and ghee (milk fat), then taken orally in doses of 10 gm daily to produce sterility in the Bhat community^{T01925}. The root, mixed with Adhatoda zeylanica and Azadirachta indica, is taken orally for bronchial troubles^{K26376}. Hot water extract of the dried root is taken orally for irritated urinary organs, gastric ulcers, addison's disease, coughs and in throat lozenges, catarrhal disorders, as a tea to increase sexual vigor, as an anabolic and to improve the voice, for dermatological affections in Ayurvedic medicine, as an emmenagogue and in a mixture with Terminalia arjuna, Sida retusa, Sida spinosa, and ghee, for heart disease^{T09366}. The hot water extract of the dried root is taken orally for tuberculosis^{T09394}. Hot water extract of the rhizome and root is taken orally to improve sexual functions in the male. Traditionally it is recommended for males, but females have been using it also for the same effect^{M18213}. Hot water extract of the root is taken orally as a galactagogue, emmenagogue, and aphrodisiac^{A00449}.

Israel. Hot water extract of the dried root, sweetened with sugar, is taken orally for lung ailments; the decoction is taken orally for kidney stones and ulcers^{M22672}. The fresh leaf is used topically on wounds^{M22672}.

Morocco. Water extract of the root is taken orally as a cholagogue^{K27820}.

South Korea. Hot water extract of the dried root, in a mixture with Astragalus membranaceus, Panax ginseng, Atractylodes species, Angelica gigas, Citrus aurantium, Cimicifuga species, and Bupleurum species, is taken orally to control digestive functions^{T09705}. Hot water extract of the root, in a mixture of Bupleurum falcatum, Scutellaria baicalensis, Panax ginseng, Glycyrrhiza glabra, Zingiber officinale, Ziziphus jujuba, and Pinellia tuberosa is taken orally for tonsilitis, otitis media, tuberculosis, the common cold, liver disorders and chills and fevers^{T11122}. Hot water extract of the rhizome is taken orally as a contraceptive WOO346.

Thailand. Hot water extract of the dried root is taken orally as an expectorant^{w03804}. **Turkey.** Decoction of the root is taken orally for stomachache^{K27061}.

USA. Hot water extract of the dried root is taken orally as a cathartic^{WO3671}, laxative, cough suppressant^{LO0715}, and for cancer^{TO3436}. A teaspoonful of the dried root is taken once or twice daily in a cup of boiling water as a laxative, demulcent, and expectorant^{WO3968}. Infusion of the dried rhizome and root is taken orally to treat cystitis J14032; the fluid extract is taken for dysmenorrhea^{TO7821}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Abssinone II: Rt 69.9H21113 Acetoin: Rt EO^{L02697} Acetol: Rt EO^{L02697}

Acetophenone,2,4-dihydroxy: Rt EO^{L02697}

Amyrin,beta: Rt^{A00012} Anisole,4-propenyl: Rt^{L02697} Apigenin: Rt^{K03299}

Astragalin: Lf, St^{M20849} Benzaldehyde: Rt EO^{L02697}

Benzofuran,2,3-dihydro: Rt EOL02697

Benzoic acid: Rt^{A04678} Benzyl alcohol: Rt^{L02697,N02085} Bergapten, Lf: StM20849 Betulinic acid: PlK21540

Bravachalcone, iso: Rt 60.1H21113 Butan-1-ol-2-one: Rt EO^{L02697} Butan-1-ol-3-one: Rt EOL02697 Butane-2,3-diol: Rt EO^{L02697}

Butyric anhydride: Rt EO^{L02697} Butyrolactone,gamma: Rt EO^{L02697}

Caproic acid: Rt EO^{L02697} Carvacrol: Rt EOL02697

Chalcone,3,3'-di-gamma-gamma-dimethylallyl,2,4,4-trihydroxy: Rt 140H18792

Chalcone, 4-hydroxy: Rt^{J01883}

Cresol: Rt^{L02697}

Cyclopent-2-en-1-one,2-hydroxy-5-methyl: Rt EO^{L02697}

Cymene, para: Rt^{L02697} Cymenol, para: Rt^{L02697}

DNA: Rt^{K28444}

Echinatin: Rt 300H19475

Estriol: Rt^{A04678}

Euchrenone A-5: Rt 95.4H21113

Fenchone: Rt^{L02697}

Flavone, 5-7-dihydroxy-6-(gamma-gamma-

dimethyl-allyl): AerM13969

Flavone, iso, 7-acetoxy-2-methyl: Rt 17^{K03299}

Flavone, iso, 7-hydroxy-2-methyl: Rt 4^{K03299} Flavone, iso, 7-methoxy-2-methyl: Rt

25K03299

Fluoride: Rt 4.2T15629

Formononetin: Rt 0.192% K09820

Fructose: RtM07997

Furan,2-acetyl-5-methyl: Rt EO^{L02697}

Furan, 2-acetyl: Rt EO^{L02697}

Furan-2-one,3-hydro-5-methyl: Rt EO^{L02697} Furan-3-one,2-tetrahydro-2-methyl: Rt EO^{L02697}

Furan-3-one, tetrahydro, 2-methyl: RtL02697 Furfural: Rt EOL02697

Furfural,5-methyl: Rt EOL02697 Furfuryl acetate: Rt EO^{L02697} Furfuryl alcohol: Rt EOL02697 Furfuryl butyrate: Rt EO^{L02697} Furfuryl formate: Rt EO^{L02697} Furfuryl propionate: Rt EO^{L02697} Furfuryl, 2,4-di, furan: Rt EO^{L02697} Furfuryl, di, ether: Rt EO^{L02697} Furyl ethyl ketone: Rt EO^{L02697} Furyl methyl ketone: Rt^{L02697} Furyl,2-2,di, ethane: Rt EO^{L02697} Furyl,2-2-di, ethylene: Rt EO^{L02697} Furyl,2-2-di, methane: Rt EO^{L02697}

Galangin: Aer^{J11413,M13969}

Genistein: Lf 940^{K27056}, Aer^{M13969}

Genistein,3'-6-(dimethyl-allyl): Rt 5H18364

Geraniol: Rh EON02085

Glabranin: Aer 0.31%M13969. RtT01382

Glabranin A: RtN19034 Glabranin B: RtN19034 Glabrene: Rt 800M28111 Glabric acid: RtA05989

Glabridin: Rt 0.15-0.7% K24219 Glabridin,3'-hydroxy-4'-0-methoxy:

Rt 100H17895

Galbridin,3'-methoxy: Rh 116^{M16692}

Glabridin,4'-0-methyl: Rt 88-169^{H17895,M16692}

Glabrocoumarone A: Rt 0.147% H18792 Glabrocoumarone B: Rt 66H18792

Glabrol: Rt 0.13%H19475

Glabrol, 3-hydroxy: Rh 23M16692, Rt 266H18792

Glabrolide: Rt^{A05989}

Glabrolide,11-deoxo: RtA05989

Glabrolide,iso: Rt^{A05989}

Glabrolide, iso, 21-alpha-hydroxy: RtA05989

Glabrone: Rt 12^{K04125}

Glucose: Rt 3.19-4.23%L00299

Glycerrhetic acid,28-hydroxy: Rt^{J04392}

Glycestrone: Aer^{A00013} Glycycoumarin: Rh, RtM24467 Glycycoumarin,iso: Rh, Rt^{M30792}

Glycyrin: RtM06494 Glycyrol: RtM06494

Glycyrol,iso: Rt, Rh^{M24467}

Glycyrram: RtM14578

Glycyrrhetinic acid: Rt 1.9-2.2% No1578 Glycyrrhetinic acid monoglucuronide: Rt^{M29302}

Glycyrrhetinic acid, beta: Rt 4.39%^{K09820} Glycyrrhetinic acid,18-alpha: Rt 0.13-0.71%^{M07972}

Glycyrrhetinic acid,18-beta: Rt 7.0-16.8%^{M07972}

Glycyrrhetinic acid, beta: Rt 0.88% No1888

Glycyhrrhetol: Rt^{A05989}

Glycyrrhiza galactomannan: Sd 5.0%^{H09651} Glycyrrhiza glabra triterpene mp 288-290: Rt 80^{J07913}

Glycyrrhizin: Rt 0.12-2.24% K26760 Glycyrrhizin: Rt 1-52.06% K15379 Glycyrrhizin, apio: Rt 200H19475 Glycyrrhizin, arabo: Rt 0.02% H19475 Glycyrrhizinic acid, 18-alpha: RtN14584 Glycyrrhizinic acid, 18-beta: RtN14584

Glyinflanin G: Rt 0.01%H19154

Glyzaglabrin: Rt^{M00142} Glyzarin: Rt^{N00756} Guaiacol: Rt^{L02697}

Hederasaponin C: RtM09959

Heptalactone, gamma: Rt EO^{L02697} Heptane-1-2-diol: Rt EO^{L02697} Hex-trans-3-en-l-ol: Rh EO^{N02085} Hexalactone, gamma: Rt^{L02697}

Hexan-I-ol: Rt^{L02697}

Hispaglabridin B: Rh 118M16692, Rt 81H17895

Hispaglabridin B, methyl: Rt 6^{H19475} Hispaglabridin A: Rt 60-127^{M16692}

Indole: Rt^{L02697}

Kaempferol: RtK03299, Lf, StM20849

Kanzonol B: Rt 23.8^{H21113}
Kanzonol R: Rt 10^{H13735}
Kanzonol T: Rt 5^{H18364}
Kanzonol U: Rt 3.75^{H19154}
Kanzonol V: Rt 11.1^{H19154}
Kanzonol W: Rt 11.1^{H19154}
Kanzonol X: Rt 48.1^{H19154}
Kanzonol Y: Rt 22.2^{H19154}
Ketone,methyl-ethyl: Rt EO^{L02697}

Kumatakenin: Rt^{M06494} Lavandulol: Rt^{L02697}

Leiocarpin,hemi, ent(-): Rt 10^{H19475} Licoagrocarpin: Rt 7.8^{H21113} Licoagrochalcone A: Rt 6.0^{H21113} Licochalcone A: Rt 55^{H18364} Licochalcone B: Rt 100^{H19475} Licocoumarone: Rt^{M31271}

Licoflavanone: Lf 800^{K27056}, Rt 700-

7900^{K24219}

Licoflavone A, prenyl: Rt 1000H19475

Licoflavone A: Rt 1000H19475

Licoflavone B: Rt^{M06494} Licoflavonol: Rt^{M06494} Licoisoflavanone: Rt 5^{H18364} Licoisoflavone B: Rt 57.5^{H18364} Licoisoflavone C: Rt^{M06494}

Licoisoflavone A: Rt^{M06494} Licorice saponin A-3: Rt 400^{H19475} Licorice saponin C-2: Rt 60^{H19475}

Licorice saponin E-2: Rt 800^{H19475} Licorice saponin G-2: Rt 900^{H19475} Licorice saponin H-2: Rt 2300^{H19475}

Licuraside: Rt 2000^{H19475} Licuroside,neo: Rh^{M19116} Licuroside: Rt^{M19116} Ligustrazine: Rh EO^{N02085}

Likviritin: RtK11066

Linalool A oxide: Rh EO^{N02085} Linalool B oxide: Rh EO^{N02085}

Linalool oxide: Rt^{L02697}

Linalool acid ethyl ester: Rt EO^{L02697}

Linalool: Rt^{L02697}

Linolenic acid ethyl ester: Rt EO^{L02697}

Liqcoumarin: Rt 23^{K01941} Liquirazide: Rt^{A05989}

Liquiritic acid,24-hydroxy: Rt^{A05989}

Liquiritic acid: Rt^{A05989}

Liquiritigenin iso: Rt 9610K09820

Liquiritigenin: Rt^{K03299}

Liquiritin apoiside: Rt 9800^{H19475} Liquiritin,gluco, apioside: Rt 40^{H19475} Liquiritin, iso: Rt 920-1500^{M26994,H19475} Liquiritin,iso, apioside: Rt 1.65%^{H19475}

Liquiritin, neo-iso: Rt 300^{H19475} Liquiritin, neo: Rt^{M06494} Liquiritin, neo, iso: Rt^{A05989} Liquiritin: Rt 2300^{M28190} Liquoric acid: Rt^{A05989}

Lonchocarpin,4-hydroxy: Rt 27.6H21113

Lupeol: Pl^{K21540}

Lupiwighteone: Lf 170^{K27056}

Maltol: Rt EO^{L02697} Maltose: Rt^{M07997}

Medicarpin: Rt 900^{H19475} Mucronulatol,iso: Lf^{L02443}

Naringenin, 6-prenyl: Lf 740^{K27056}

Naringenin: Aer^{M13969}

Nicotinic acid: Lf 100-1000W03668

Nonacosane,n: Rt^{A00012} Nonalactone,gamma: Rt^{L02697} Nonanoic acid: Rt^{L02697}

Oct-I-en-3-ol: Rh/Rt EO^{L02697,N02085}

Octacosan-I-ol: RtA00012

Octadec-trans-10-enoic acid, 9, 1213-trihydroxy: Rt, StM25110

Octadecanoic acid,9,12,13-trihydroxy-

10,11-epoxy: Rt, StM25110 Octalactone, gamma: Rt^{L02697} Octanoic acid: Rt EO^{L02697}

Oleana-11,13(18)0dienoic acid-3,24-

dihydroxy: Aer^{K01990}

Oleana-9(11)-12-dienoic acid-3,24-

dihydroxy: AerK01990

Ononin: Rt 320-700^{M26964,H19475}

Palmitic acid ethyl ester: Rt EO^{L02697}

Pectin: Aer 5.8% No0553

Pentan-2-one,4-hydroxy-4-methyl: Rt

FO^{L02697}

Pentan-I-ol: Rh EON02085

Phaseollin,1-methoxy: Rt 70H19475

Phaseollinisoflavan,8-prenyl: Rt 9H17895

Phaseollinisoflavan: RtN00846, Rh 26.7M16692

Phenethyl alcohol: Rh EON02085

Phenol, ethyl: Rt^{L02697}

Phenol, ortho, methoxy: Rt EO^{L02697} Phenol, para, methoxy: Rt EO^{L02697}

Phenol: Rt EO^{L02697}

Phenylacetate, ethyl: Rt EO^{L02697} Phenylethanol,2: Rt EO^{L02697}

Phenylethyl alcohol, dimethyl: Rt^{L02697}

Phenylethyl alcohol: Rt^{L02697} Phenylpropionic acid: Rt EO^{L02697}

Phthalate, butyl: Rt EO^{L02697}

Pinocembrin: Pl^{J08389}, Lf 0.8-1.55%^{K24219}

Polysaccharide: Aer 0.8% N00553

Primula acid A: Rt^{M09959}

Propan-2-one,1-(2-furyl): Rt EO^{L02697}

Propane-1,2-dione,1-(5-methyl-2-furyl): Rt EO^{L02697}

Propionic acid: Rt EO^{L02697} Prunetin: Lf 180K27056

Pyrazine,2-ethyl-6-methyl: Rt EO^{L02697}

Pyrazine,trimethyl: Rt EO^{L02697} Pyrazine, 2,6-dimethyl: Rt EO^{L02697}

Pyrazole: Rt EO^{L0269}7

Pyrrole,1-furfuryl-2-formyl: Rt EO^{L02697} Pyrrole,1-methyl-2-formyl: Rt EO^{L02697}

Pyrrole, 2-acetyl: Rt^{L02697}

Pyrrole,2-formyl-5-methyl: Rt EO^{L02697} Pyrrole,1-furfuryl-2-acetyl: Rt EO^{L02697} Quercetin, Rt 2-formyl-5-methyl: Rt

EO^{K03299}

Salicyclic acid,o-acetyl: Rh 1636^{M16692}

Salicyclic acid: Rh 567.3^{M16692} Shinflavonone: Rt 913H18792

Shinpterocarpin: Rt 25.9H19154 Sitosterol, beta: Rt 500^{A00010} Soyasaponin I: PI^{M25235} Soyasaponin II: PIM25235

Soyasaponin: Rt 0.1-0.7%K16587 Squalene synthase: PlK28772

Stigmasterol: RtA00012 Sucrose, D: Rh^{A06628}

Sucrose, Rt 5.28-9.17%^{L00299} Terpin-l-en-4-ol: Rh EON02085 Terpineol, alpha: Rt^{L02697} Tetracosan-l-ol: Rt^{A00012}

Tetradecan,n: Rt^{L02697} Thujone: Rt^{L02697} Thymol: Rt EO^{L02697} Tigaldehyde: Rt EO^{L02697} Toluene, 4-propenyl: Rt^{L02697}

Uralsaponin B: Rh-Rt 0813%M30792,

Rt^{L02697}

Wighteone: Lf 420^{K27056} Xambioona: Rt 7.8H21113 Xanthotoxin: Lf, StM20849

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

ACTH-induction. Water extract of the dried root, in a mixture containing Bupleurum falcatum (7 gm), Pinella ternata (5 gm), Scutellaria baicalensis (3 gm), Zingiber officinale (4 gm), Ziziphus inermis (3 gm), and Glycyrrhiza glabra (2 gm), administered intraperitoneally to rats at a dose of 200.0 mg/ kg, produced an increase in plasma ACTH level relative to controls. The increase was not found in adrenalectomized animals or dexamethasone-treated animals^{T14878}.

Acyl-Co-A:cholesterol acyltransferase **inhibition.** Decoction of the dried rhizome, administered intragastrically to mice at a dose of 1.2 gm/kg, was active. The incorporation of oleic acid into cholesteryl oleate was inhibited. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K08369}.

Alanine aminotransferase inhibition. Decoction of the dried rhizome, taken orally by 80 adults of both sexes with Hepatitis B antigen positive and treated for 6 months at a dose of 7.5 gm/day, was active. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit and Panax ginseng root^{K13785}.

Aldehyde reductase 1 inhibition. A dose of 7.5 ml/kg was active on the rat red blood cells^{M28880}.

Aldol reductase inhibition. Chromatographic fraction of the dried root was active, IC_{50} 0.72 micromols^{M14042}.

Aldosterone agonist activity. The dried rhizome, taken orally by 6 adults at a dose of 7.5 gm/person daily, decreased plasma renin activity and urinary aldosterone^{K16152}. Water extract of the dried root, taken orally by adults at a dose of 3.0 gm/person daily, ameliorates postural hypotension due to diabetic peripheral neuropathy, probably through volume expansion^{K19271}.

Aldosterone decrease. Hot water extract of the dried root, taken orally by healthy adults at a dose of 100 gm daily for 8 weeks (0.7 gm glycyrrhizic acid), was effective. Aldosterone was measured in the urine and plasma^{M21430}. Water extract of the rhizome, taken orally by adults at variable dosage levels, was effective^{M31333}.

Alkaline phosphatase stimulation. The dried root, together with *Glycine max* in the ration of rats at a dose of 0.38% of the diet, was active^{K09254}.

Analgesic activity. A preparation that included Coptis chinensis, Scutellaria baicalensis, Lirope species, Pinellia ternata, Lycium species, Paeonia rubra, Akebia species, Rehmannia glutinosa, Glycyrrhiza glabra (1.875 gm each), and Zingiber officinale (3.75 gm) was effective vs acetic acid-induced writh-

ing and pressure pain threshold test^{M20428}. Decoction of the dried root, in a mixture of Cinnamomum cassia bark, Zingiber officinale rhizome, Ziziphus jujuba fruit, Ephedra sinica stem, Asiasarum species root, and Aconitum species root, administered intragastrically to mice at a dose of 1.2 gm/kg, was not effective when tested for analgesia by the hot plate method. A dose of 300.0 mg/kg was effective vs cold stress-induced hyperalgesia; a dose of 100.0 mg/kg was effective vs adjuvant-induced hyperalgesia^{M24676}. Hot water extract of the dried root, in a mixture with Paeonia albiflora, administered by gastric intubation to mice at a dose of 18.0 mg/kg, was effective vs acetic acid-induced writhing, results significant at p < 0.001 level. The hot water extract, at a dose of 18.0 mg/kg, produced a weak effect vs acetic acid-induced writhing^{T11694}. Hot water extract of the dried root, in a mixture with Astragalus membranaceus, Panax ginseng, Atractylodes species, Angelica gigas, Citrus aurantium, Cimicifuga species, and Bupleurum species, administered by gastric intubation to mice at a dose of 0.25 mg/gm, was effective vs acetic acid-induced writhing, results significant at p < 0.01 level. A dose of 1.0 gm/kg, administered to rats by gastric intubation, was effective vs pressure pain threshold test^{T09702}. Methanol extract of the dried root, administered by gastric intubation to mice at a dose of 1.0 gm/kg, was active vs inhibition of acetic acid-induced writhing, results significant at p < 0.001 levelT12842.

Anesthetic activity. Hot water extract of the root, at a concentration of 2.0%, was effective on the sciatic nerve^{TO1091}. Decoction of the dried root, in combination with *Triticum aestivum* and *Ziziphus jujuba*, at a concentration of 5.0% was effective vs nerve action potential^{M18551}. Ethanol (30%) extract of the root, applied ophthalmically to rabbits at a concentration of 10.0%, was not effective^{TO1446}.

Angiogenesis inhibition. Water extract of the dried root, in cell culture, was effective on vascular endothelium. Tube formation was assayed, IC_{50} 0.518 mg/ml^{K23386}. A dose of 80.0 mg/kg, administered intraperitoneally to mice, was effective when assayed in Freund's adjuvant-induced granuloma K23386. Antiallergenic activity. Decoction of the dried root, in cell culture at a concentration of 250.0 mcg/ml, was effective on monocytes vs interleukin 4-induced CD23 expression as a model of atopy^{K20398}. Hot water and methanol extracts of the dried root, administered by gastric intubation to mice at a dose of 100.0 mg/kg, were not effective vs Type IV reaction with contact dermatitis induced by picryl chloride. Dosing was immediately before and 16 hours after challenge. The hot water and methanol extracts, administered by gastric intubation to rats at a dose of 200.0 mg/kg, were not effective vs Type I reaction induced by anti-dinitrophenylated ascaris IgE serum in 48-hour homologous PCA in rats. Dosing was 1 hour before challenge TO6654. Hot water extract of the dried root, in a mixture containing Pinella ternata tuber, Bupleurum falcatum root, Zingiber officinale rhizome, Pachyma hoelen, Scutellaria baicalensis root, Panax ginseng root, Ziziphus vulgaris fruit, Magnolia officinalis bark, and Perilla frutescens herb in the following proportions: 9:4:3:2:1.5:1.5:1.5:1.5:1, administered by gastric intubation to mice at a dose of 100.0 mg/kg, was effective vs Type IV reaction with contact dermatitis induced by picryl chloride. Dosing was immediately before and 16 hours after challenge, results significant at p < 0.05 level. Methanol extract of the dried root, administered by gastric intubation to rats at a dose of 100.0 mg/ kg 2 hours before challenge, was effective vs Type I reaction induced by anti-dinitrophenylated ascaris-IgE serum in 48-hour homologous PCA, results significant at p < 0.05 level^{T06654}.

Antiasthmatic activity. The dried root, in a mixture that contained *Curcuma longa* taken orally by 26 patients (11 male and 15 female) with bronchial asthma at a dose of 250.0 mg/person once daily for 3 weeks, was effective TO3554.

Antibacterial activity. Ethanol (80%) extract of the dried root, on agar plate at a concentration of 1.0 mg/ml, was active on Staphylococcus aureus^{T07382}. Ethanol (94%) extract of the root, on agar plate, was active on Staphylococcus aureus NOO846. Ethanol (95%) and water extracts of the dried rhizome, on agar plate at a concentration of 10.0 mg/ml, were inactive on Corynebacterium diptheriae, Diplococcus pneumoniae, and Streptococcus viridans, and produced weak activity on Staphylococcus aureus and Streptococcus pyogenes^{M29966}. Juice of the dried root, on agar plate at a concentration of 5.0%, was active on Streptococcus mutans. Ethanol (95%) extract of the stem, on agar plate, was active on Bacillus subtilis, Vibrio cholera, and Staphylococcus aureus W00232. Methanol extract of the aerial part, on agar plate at a concentration of 1.0 ml/plate, was active on Bacillus subtilis, Sarcina subflava, Staphylococcus aureus, and Streptococcus sobrinus, and inactive on Citrobacter diversus, Citrobacter freundi, Enterobacter aerogenes, Escherichia coli, Proteus mirabilis, Proteus morganii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella paratyphi, Salmonella typhi, Serratia marcescens, Shigella boydi, and Shigella flexneri^{T15721}. Saponin fraction of the dried root, on agar plate, was equivocal on Escherichia coli, Pseudomonas acrugenea, Staphylococcus aureus, and Streptococcus faecalis, MIC 0.63% K27726. Water extract of the dried root was found to have a coliform count of 0.0001 in the fresh crude drug, and a count of 0.01 was found in sample stored for 1 year at 15–20 degrees Celsius^{T09452}.

Antibody formation enhancement. Decoction of the dried rhizome, in cell culture, was active on peripheral blood monocytes

from healthy adults who were treated with pokeweed mitogen. The treatment enhanced plaque cell formation in response to the sheep red blood cells. The study was conducted with a Kampoh, a prescription known as Shosaikoto, which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}. Arachidonic acid release inhibition. Decoction of the dried rhizome, in cell culture, was active on macrophages. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng $root^{K13785}$.

Antibody formation enhancement. Decoction of the dried root, in cell culture at a concentration of 100.0 mcg/ml, was effective. Peripheral lymphocytes from 8 patients with chronic active hepatitis, 4 with HBEAG and 4 with HBE, were cultured with the decoction. Anti-HBC and anti-HBE antibodies were produced by HBCAG stimulation^{KO7057}.

Anticholinergic activity. A preparation that included Coptis chinensis, Scutellaria baicalensis, Liriope sp., Pinellia ternata, Lycium sp., Pachyma sp., Paeonia rubra, Akebia sp., Rehmannia glutinosa, Glycyrrhiza glabra (1.875 gm each), and Zingiber officinale (3.75 gm), was active on mouse ileum vs ACh-induced contractions^{M20428}.

Anticonvulsant activity. A preparation that included Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia ternata, Lycium species, Pachyma species, Paeonia rubra, Akebia species, Rehmannia glutinosa, Glycyrrhiza glabra (1.875 gm each), and Zingiber officinale (3.75 gm), administered to mice at a dose of 1.0 gm/kg, was active vs strychnine and picrotoxin-induced con-

vulsions^{M20428}. Decoction of the dried root, in a Japanese formula 'Shosaiko-to-keishika-shoyakuyaku-to' (TJ-960), containing Paeonia albiflora, Cinnamomum zeylanicum, Bupleurum falcatum, Zingiber officinale, Scutellaria baicalensis, Panax ginseng, Pinellia ternata, and Ziziphus jujuba, administered intragastrically to mice and intravenously to male rats at a dose of 1.0 gm/kg, was active vs metrazole-induced convulsions^{M31385}. Decoction of the dried root, in a mixture containing Bupleurum falcatum root, Cinnamomum cassia bark, Paeonia albiflora root, Zingiber officinale rhizome, Panax ginseng root, Scutellaria baicalensis root, Pinellia ternata tuber, and Ziziphus jujuba fruit, taken orally by 24 patients with frequent uncontrollable epileptic seizures at a concentration of 1.5 gm/person, was active. The treatment resulted in 6 cases that were well controlled (no fit for 10 months), 13 were improved (marked decrease or grand mal was eliminated), and 3 cases that showed no effect. No patient had conditions that worsened^{T08450}. Water extract of the root, in a mixture containing Zingiber officinale, Panax ginseng, Scutellaria baicalensis, Ziziphus jujuba, Pinellia ternata, Bupleurum falcatum, Cinnamomum cassia, and Paeonia albiflora, administered by gastric intubation to mice at a dose of 4.0 gm/kg, was active vs supramaximal electroshock-induced convulsions and audiogenic seizures, results significant at p < 0.05 level. The treatment was inactive vs strychnine- and pentenetetrazide-induced convulsions TO8515. Hot water extract of the root, at a concentration of 1.07%, was inactive vs inhibition of metrazol-induced bursting of snail neurons^{T00348}.

Anticrustacean activity. Ethanol (95%) extract of the dried root was inactive on Artemia salina, LD_{50} 237 mcg/ml^{KO8041}.

Antidiarrheal activity. Hot water extract of the dried root, in a mixture containing Astragalus membranaceus, Panax ginseng, Atractylodes species, Angelica gigas, Citrus auran-

tium, Cimicifuga species, and Bupleurum species, administered by gastric intubation to mice at a dose of 0.5 gm/kg, was effective vs castor oil-induced diarrhea, results significant at p <0.05 level^{T09705}. Water extract of the dried root, in a mixture with *Pinellia ternata*, Citrus aurantium, Pachyma hoelen, and Zingiber officinale, administered by gastric intubation to mice at a dose of 0.5 mg/gm, was effective vs castor oil-induced diarrhea^{T11368}.

Antidiuretic activity. Hot water extract of the dried root, taken by healthy adults at a dose of 100.0 gm daily for 8 weeks (0.7 gm glycyrrhizic acid), produce mild to severe edema in 9 of 15 subjects. The signs disappeared 2 weeks after the dosing ended^{M21430}. Antidiuretic hormone decrease. Hot water extract of the dried root, taken by healthy adults at a dose of 100.0 gm daily for 8 weeks (0.7 gm glycyrrhizic acid), decreased the hormone level in plasma^{M21430}.

Antieczema effect. Decoction of the dried root, taken orally by a group of 40 adults with refractory atopic dermatitis at a dose of 200.0 ml/person daily for 8 weeks, was effective. The treatment consisted of the dried rhizome in a mixture of Ledebouriella seseloides, Potentilla chinensis, Clematis armandil, Rehmannia glutinosa, Paeonia albiflora, Lophaterum gracile, Dictamnus dasycarpus, Tribulus terrestris, and Schizonepeta tenuifolia^{K09062}. Decoction of the dried root, in a Chinese traditional prescription containing Ledebouriella seseloides, Clematis armandii, Rehmannia glutinosa, Paeonia albiflora, Lophatherum gracile, Dictamnus dasycarpus, Tribulus terrestris, and Schizonepeta tenuifolia, was effective^{J12590}. The same prescription, at a dose of 200.0 ml/day taken orally by 31 patients with severe ectopic eczema, was effective^{K20199}.

Antifatigue activity. Water extract of the dried root, in a mixture composed of Paeonia species, Angelica giga, Astragalus membranaceus, Cnidium officinale, Rehmannia glu-

tinosa, Atractylodes species, Pueraria species, Cinnamomum cassia, Zingiber officinale, Ziziphus vulgaris, and Panax ginseng, administered intragastrically to mice at a dose of 1.5 gm/kg, was effective^{M25858}. Ethanol (95%) extract of the dried root, taken orally by adults at a dose of 2.5 gm/person, was effective in cases of chronic fatigue syndrome^{K20308}. Antifungal activity. Acetone, ethanol (95%), and water extracts of the dried root, on agar plate at a concentration of 50%, were inactive on Neurospora crassa^{W04570}. Ethanol (95%) extract of the dried root, on agar plate, was equivocal on Rhizoctonia solani, inactive on Alternaria kikuchiana, Solani phaseoli, and Phomopsis mali, and produced weak activity on Aphanomyces euteiches¹¹²⁴⁴¹. Ethanol (95%) extract of the stem, on agar plate, was active on Trichophyton mentagrophytes and Trichophyton rubrum W00232. Ethanol/water (1:1) extract of the dried root, on agar plate at a concentration of 417.0 mg of plant material/ml, was inactive on Aspergillus fumigatus, Aspergillus niger, Botrytis cinerea, Penicillum digitatum, Rhizopus nigricans, and Trichophyton mentagrophytes^{T16238}. The dried root, in broth culture at a dose of 10.0 gm/liter, was inactive on Aspergillus flavus. The production of aflatoxin was inhibited at lower doses^{TO8142}. The dried root, on agar plate, was active on Aspergillus auricomus, Aspergillus candidus, Aspergillus fischeri, Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus sydowi, Aspergillus terreus, Aspergillus terricola, Aspergillus ustus, and Aspergillus versicolor POOOO5.

Antigen expression inhibition. Decoction of the rhizome, in cell culture at a concentration of 100.0 mcg/ml, was active on lymphocytes taken from ARC, HIV-positive asymptomic, and AIDS patients. The study was conducted in Japan with a Kampoh prescription known as 'Shosaikoto', which consists of Bupleurum falcatum root, Zingiber officinales rhizome, Scutellaria baicalensis

root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{M27622}.

Antihemorrhagic activity. Decoction of the dried root, in a mixture containing Panax ginseng and Glycyrrhiza glabra, 6 grams each; Atractylodes macrocephala, Angelica sinensis, Polygala tenuifolia, Euphoria longana, and Paeonia moutan, 10 grams each; Ziziphus spinosus and Gardenia jasminoides, 12 grams each; Astragalus species and Bletilla species, 15 grams each; and Agrimonia species, 30 grams. A 4 year-old girl with burns over 20% of her body surface was treated for massive gastrointestinal hemorrhage. The patient was given blood transfusion and the herb decoction by a nasogastric tube. After 5 days the gastric juice was normal on examination, and another 4 days a hematest negative stool was obtained. The patient's general condition was markedly improved with no signs of repetition of bleeding T09788. Antihemorrhoidal activity. Ethanol (95%) extract of the dried root, administered intraduodenally to rats at dose of 400.0 mg/ kg, produced weak activity, results significant at p < 0.05 level^{W03673}.

Antihepatotoxic activity. Hot water extract of the dried root, in a mixture containing 7 gm Bupleurum falcatum, 5 gm Pinellia ternata, 3 gm Scutellaria baicalensis, 2 gm Glycyrrhiza glabra, 1 gm Zingiber officinale, 3 gm Panax ginseng, and 3 gm Ziziphus jujuba in 700 ml water, administered intragastrically to mice for 1 month, was active vs CCl₄-induced hepatotoxicity^{M20760}. Hot water extract of the dried root, in a mixture containing 5 gm Bupleurum falcatum, 4 gm Pinella ternata, 2 gm each Scutellaria baicalensis, Zingiber officinale, Cinnamomum cassia, Ziziphus inermis, Glycyrrhiza glabra, and Paeonia albiflora and 1.5 gm Panax ginseng, administered intraperitoneally to rats at a dose of 200.0 mg/kg, was active. A mixture of 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm of Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng suppressed hyaline degeneration of the liver induced by D-galactosamine and hepatic glutamine synthetase activity vs d-galactosamine-induced hepatotoxicity^{T14824}. Hot water extract of the root, in a mixture containing Bubleurum falcatum, Zingiber officinale, Scutellaria baicalensis, Pinellia ternata, Ziziphus jujuba, Glycyrrhiza glabra, and Panax ginseng, administered by gastric intubation to rats at a dose of 400.0 mg/kg, was active vs CCl₄induced hepatotoxicity^{T11122}. Methanol extract of the dried root, in a mixture containing Machilus species, Alisma species, Amomum xanthiodes, Bulboschoenus maritimus, Artemisia iwayomogis, Atractylodes japonica, Crataegus cuneata, Hordeum vulgar, Citrus sinensis, Polyporus umbellatus, Agastache rugosa, Raphanus sativus, Poncirus trifoliatus, Curcuma zedoaria, Citrus aurantium, Saussurea lappa, and Zingiber officinale, administered by gastric intubation to rabbits at a dose of 0.5 gm/kg, was active vs CCl₄induced hepatotoxicity^{T08441}. The powdered, dried root, in the ration of rats at a concentration of 5.0% of the diet, was active vs elevated liver enzymes induced by cholic acid and dietK08429. Water extract of the dried rhizome and root, taken orally by 13 chronic hepatitis patients over the age of 62 at a dose of 5.0 gm/day for 6 months, was active. Serum aminotransferase and alanine aminotransferase levels dropped. Alkaline phosphatase, cholinesterase, and zinc sulfate levels were unaffected^{M22529}.

Antihistamine activity. A preparation that included Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia ternata, Lycium species, Pachyma species, Paeonia rubra, Akebia species, Rehmannia glutinosa, Glycyrrhiza glabra (1.875 gm each), and Zingiber officinale (3.75 gm), was active on mouse ileum vs histamine-induced contractions^{M20428}. Antihypercholesterolemic activity. Methanol extract of the dried root, in a mixture

containing Machilus species, Alisma species, Amomum xanthiodes, Bulboschoenus maritimus, Artemisia iwayomogis, Atractylodes japonica, Crataegus cuneata, Hordeum vulgar, Citrus sinensis, Polyporus umbellatus, Agastache rugosa, Raphanus sativus, Poncirus trifoliatus, Curcuma zedoaria, Citrus aurantium, Saussurea lappa, and Zingiber officinale, administered by gastric intubation to rabbits at a dose of 0.5 gm/kg, was effective, results significant at p < 0.01 level^{T08441}. The powdered, dried root, in the ration of rats at a concentration of 5.0% of the diet, was effective. The effect was seen in animals made hypercholesterolemic with cholic acid and dietK08429.

Antihyperglycemic activity. Hot water extract of the dried root, in the ration of mice at a dose of 6.25% of the diet, was not effective vs streptozotocin-induced hyperglycemia^{M24255}. The powdered, dried root, in the ration of rats at a concentration of 5.0% of the diet, was effective. The effect was seen in animals made hyperglycemic with cholic acid and dietKO8429. Water extract of the dried root, administered intragastrically to mice at a dose of 1.0 gm/kg 1 hour after streptozotocin and twice daily for 3 subsequent days, was effective. Blood glucose was 197.8 vs 236.3 mg/dl for controls vs streptozotocin-induced hyperglycemia^{M28457}. Antihyperlipemic activity. The powdered, dried root, in the ration of rats at a concentration of 5.0% of the diet, was effective. The effect was seen in animals made hypercholesterolemic with cholic acid and dietK08429. Antihypertriglyceridemia effect. The powdered, dried root, in the ration of rats at a concentration of 5.0% of the diet, was effective. The effect was seen in animals made hypercholesterolemic with cholic acid and dietK08429.

Anti-inflammatory activity. A preparation that included Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia ternata, Lycium species, Pachyma species, Paeonia

rubra, Akebia species, Rehmannia glutinosa, Glycyrrhiza glabra (1.875 gm each), and Zingiber officinale (3.75 gm), at a dose of 2.0 gm/kg, was effective vs carrageenin and histamine-induced pedal edema^{M20428}. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 2.0 gm/ kg, was effective vs formalin-induced pedal edema^{K26333}. Decoction of the dried root, in an oriental medicine containing Cinnamomum cassia bark, Zingiber officinale rhizome, Ziziphus jujuba fruit, Ephedra sinica stem, Asiasarum species root, and Aconitum species root, administered intragastrically to rats at a dose of 100.0 mg/kg, was not effective vs adjuvant-induced arthritis^{M24676}. The ethanol (95%) extract, administered intraperitoneally to rats, was effective^{N14740}. The hot water extract, in a preparation that also contained Paeonia albiflora, administered by gastric intubation at a dose of 18.0 mg/kg, was effective vs carrageenin-induced pedal edema and cotton pellet granuloma^{T11694}. Hot water extract of the dried root, in a mixture containing 8 gm Bupleurum species, 3 gm each Glycyrrhiza glabra, Panax ginseng, Ziziphus jujuba, and Scutellaria baicalensis, 1 gm Zingiber officinale, and 8 gm Pinellia ternata, administered by gastric intubation to rats at a dose of 1.1 gm/kg, was effective vs carrageenin-induced pedal edema, results significant at p < 0.05 level; vs cotton pellet granuloma, results significant at p <0.01 level^{T09859}. The dried root, in a mixture containing Bauhinia variegata and Commiphor mukul was taken orally by 18 patients with rheumatic diseases. Eleven of the patients showed good, 4 showed moderate and 3 showed no relief^{T07267}. Water extract of the dried root, administered intraperitoneally to rats at a dose of 3.0 gm/kg, was effective vs acetic acid-induced pedal edema^{N13376}. The butanol and ether extracts of the root were not effective, and the water extract was effective in an albumin stabilizing assay^{A02047}.

Antijaundice effect. Decoction of the dried rhizome, taken orally by 120 patients with hepatitis B at a dose of 30 ml/person twice daily for approximately 60 days, was effective. The preparation used was a mixture of Citrus reticulata fresh leaf, Astragalus membranaceus root, Similax china rhizome, Gardenia jasminoides root, Pueraparia lobata root, Curcuma aromatica root, and Vigna sinensis pod. A total effective rate of 90% was demonstrated, 60% cured and 30% improved^{M30710}. **Antimalarial activity.** Ethanol/water (1:1) extract of the dried root, at a concentration of 100.0 mcg/ml, inhibited Plasmodium berghei by 63%. A dose of 1.0 gm/kg, administered intragastrically to mice daily for 4 days, was not effective on Plasmodium berghei^{M27524}.

Antimutagenic activity. Ethanol (95%) extract of the dried rhizome, on agar plate at a concentration of 75.0 microliters/plate, was active on Salmonella typhimurium TA100 vs ribose-lysine-induced mutagenesis, and inactive vs ethyl methanesulfonate and nmethyl-n-nitroso-guanidine-induced mutagenesis^{K16830}. Ethanol (95%) extract of the dried rhizome, on agar plate at variable concentrations, was active on Salmonella typhimurium TA100^{M16692}. Infusion of the rhizome, on agar plate at a concentration of 100.0 microliters/disc, produced strong activity on Salmonella typhimurium TA98 vs 2-amino-anthracene-induced mutagenicity and TA100 vs ethyl methanesulfonate-induced mutagenicity. Metabolic activation was required for activity^{K28100}. The powdered root, on agar plate at a concentration of 0.5 mg/plate, was active on Salmonella typhimurium TA100 vs aflatoxin B1-induced mutagenesis^{A03634}. The root, on agar plate at a concentration of 7.5 mg/plate, was active on Salmonella typhimurium TA98 vs TRP-P-1 and TRP-P-2-induced mutation^{T14055}. The root, on agar plate at a concentration of 50.0 mg/ml, was inactive on Salmonella typhimurium TA1535 vs mitomycin and aflatoxin-induced mutagenesis. Metabolic activation had no effect on the results^{M29342}. Water extract of the dried root, on agar plate at variable concentrations, was inactive on Salmonella typhimurium TA100 and TA98 vs benzo[a]pyrene-induced mutagenesis^{M28436}. Water extract of the dried root, on agar plate at a concentration of 300.0 mcg/plate, was active on Salmonella typhimurium TA100 and TA98. A decrease in mutation frequencies was induced by mutagens in modified Ames test with and without metabolic activation^{J12382}.

Antimycobacterial activity. Ethanol (80%) extract of the dried root, on agar plate at a concentration of 1.0 mg/ml, was active on Mycobacterium smegmatis^{T07382}. Ethanol (95%) extract of the entire plant, in broth culture, was active on Mycobacterium tuberculosis H37RVTMC 102^{M27150}. Ethanol (95%) extract of the root, on agar plate, was active on Mycobacterium smegmatis^{N00846}.

Antinematodal activity. Water extract of the dried bark, at variable concentrations, produced strong activity on *Meloidogyne incognita*^{T07251}.

Antinephroptosis activity. The root, taken orally by adults at a dose of 7.5 gm/day, was active. The study was conducted with 53 patients with nephroptosis. The patients showed improvement in lower back pain and subabdominal discomfort. Results were obtained using the composite extract of Panax ginseng, Astragalus species, Atractylodes japonica, Angelica sinensis, Bupleurum falcatum, Zizyphus species, Cimicifuga simplex, and Zingiber officinales^{K14330}.

Antinephretic effect. Decoction of the dried root, in a Japanese medicine, "TJ-8014", containing Bupleurum falcatum 7 gm root, Pinellia ternata 5 gm tuber, Scutellaria baicalensis 3 gm root, Panax ginseng 3 gm root, Coptis chinensis 1 gm rhizome, Pachyma hoelen 3 gm fruit, Glycyrrhiza glabra 2 gm root, and Ziziphus vulgaris 3 gm fruit, administered intragastrically to male rats at a dose

of 2–5.0 gm/kg, was active^{M29539}. Decoction of the dried root, taken orally by 15 cases of chronic nephritis, 1 case of hypertensive nephritis, 8 cases of latent nephritis, 2 cases each of nephrotic syndrome types I and II and 2 cases of lupus nephritis, was active. The patients were treated with a syrup made from the decoction, at a dose of 10.0 ml/person 3 times a day for a period ranging from 2–10 months. The syrup also contained Tripterygium wilfordii and Salvia miltiorrhiza. Steroids were gradually withdrawn from the patients with type II nephrotic syndrome, but stopped in other patients. Proteinuria was improved in all of the patients. In 10 cases with proteinuria, the level was checked before and after treatment; proteinuria decreased from 4.1 to 1.4 gm/dl. Proteinuria completely disappeared in 12 patients. The onset of action was 2 to 3 weeks^{M28436}.

Antioxidant activity. Methanol extract of the dried root, administered intragastrically to mice at a dose of 0.16 gm/kg, was active vs ethanol-induced lipid peroxidation in mouse liver M20450. Methanol extract of the stem, at a concentration of 50.0 microliters, produced strong activity K23609. Polar lipid fraction of the dried rhizome, on agar plate at a concentration of 100.0 mcg/ml, was active on Escherichia coli vs illuminated rose bengal-induced oxygen radical formation K07531.

Antioxytocic effect. Water extract of the dried root, in a mixture with *Pinellia ternata*, Citrus aurantium, Pachyma hoelen, and Zingiber officinale, at a concentration of 0.01 gm/ml, produced weak activity on a rat uterus vs oxytocin-induced contractions^{T11368}.

Antipruritic activity. Decoction of the dried root, taken orally by adults, was effective on a patient who was presented with a diagnosis of subsepsis allergica. The main clinical features were long-standing fever, arthralgia, leukocytosis, and rash.

The patient was treated daily with the decoction for a period of 4 weeks. The treatment consisted of a Chinese prescription that also contained Gentiana macrophylla root, Lycium chinensis plant, Bupleurum falcatum root, Angelica sinensis root, Anemarrhena asphodeloides root, Rehmannia glutinosa root, and Paeonia albiflora root^{M28622}.

Antipyretic activity. A preparation that included 1.875 gm each of Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia ternata, Lycium species, Pachyma species, Paeonia rubra, and Akebia species, and 3.75 gm each of Rehmannia glutinosa, Glycyrrhiza glabra, and Zingiber officinale, administered to the rat at a dose of 1.0 gm/ kg, was effective vs endotoxin-induced fever^{M20428}. Hot water extract of the dried root, administered by gastric intubation to rabbits at a dose of 1.0 gm/kg, was effective vs typhoid vaccine-induced pyrexia^{T09702}. The dried root, administered intragastrically to rats, was not effective vs pyrexia induced by the subcutaneous injection of veastA14888.

Antisecretory effect. Water extract of the dried root, administered intraperitoneally to rats at a dose of 0.1 gm/kg, was not effective, and a dose of 1.0 gm/kg was effective vs Shay-induced ulcers^{N13376}.

Antispasmodic activity. Ethanol (30%) extract of the root, at a concentration of 0.1%, was active on guinea pig ileum vs histamine- and ACh-induced spasms^{T01446}. Ethanol (95%) extract of the root, at a concentration of 2.0 mg/ml, was active on the dog intestine vs ACh-induced spasms^{A05480}. Ethanol (95%) extract of the root was active on the guinea pig intestine^{A00358}. Water and methanol extracts of the dried root, at a concentration of 0.1 mg/ml, were active on the guinea pig ileum vs ACh-induced contractions^{N13376}. Water extract of the dried root, in a mixture with *Pinellia ternata*, *Citrus aurantium*, *Pachyma hoelen*, and *Zin-*

giber officinale, at a concentration of 0.01 gm/ml, was active on the guinea pig and rabbit ileum and small intestine^{T11368}. Water extract of the root was active on rabbit small intestine vs BaCl₂-induced contractions^{A06746}.

Antitoxic activity. The dried root, in broth culture at a dose of 1.0 gm/liter, was active on Aspergillus flavus vs urethane-induced narcosis. The production of aflatoxin was inhibited^{TO8142}. The root, in mixtures with Catanospermum australe and Zingiber officinale, administered by gastric intubation to mice at a dose of 350.0 mg/kg, were active vs treatment with alkaloid fractions of Aconitum sibiricum. A dose of 700.0 mg/kg of the dried root alone was active^{TO9184}.

Antitumor activity. Acid/water, ethanol (95%), and water extracts of the powdered root, administered subcutaneously to mice of both sexes at a dose of 1.0 gm/kg, were inactive on Sarcoma 37^{w03671}. Decoction of the dried rhizome, at variable dosage levels 3 times daily, was active in 11 cases of malignant lymphoma. The preparation used was a mixture of Oldenlandia diffusa, Cremastra variabilis, Sparganium stoloniferum, Curcuma zedoaria, Atractylodes macrocephala, Prunella vulgaris, Laminaria japonica, Arca inflata, Dioscorea bulbifera, pangolin scale and scorpion, silkworm and oyster shell^{M30700}. Ethanol (95%) and water extracts of the dried root, administered intraperitoneally to mice at a dose of 100.0 mg/kg, were inactive and equivocal, respectively, on Sarcoma 180(ASC)^{M23643}. Ethanol/water (1:1) extract of the dried root, administered intraperitoneally to mice at a dose of 170.0 mg/kg, was active on LEUK-P388^{T10126}. Water extract of the dried root, in a preparation that also contained Bupleurum falcatum, Pinellia ternata, Scutellaria baicalensis, Ziziphus jujuba, Panax ginseng, and Zingiber officinale, administered by gastric intubation to mice at a dose of 300.0 mg/kg on days 1-10, was active on Leuk-L1210. The animals were also given either 5-fluorouracil or cytarabine. Results significant at p < 0.05 level. The same dose, administered intraperitoneally to mice, was inactive^{T11351}.

Antitussive activity. Ethanol (16%) extract of the dried root, in a mixture of alcoholic extract of *Stemona tuberosa* and clove oil, administered intraperitoneally to mice, was active vs cough induced by ammonia vapor^{P00104}.

Antiulcer activity. Deglycyrrhizinized extract of the dried root, administered by gastric intubation to rats at a dose of 2.0 gm/ kg, was active vs aspirin- and bile-induced ulcers, results significant at p < 0.005 level and p < 0.002 level, respectively T09776. The root and stem, administered intragastrically to male rats, was active. The dose protected the gastric mucosa against aspirin damage. Deglycyrrhinized licorice and licorice with 15% glycyrrhizinic acid added showed the same effect K19357. Deglycyrrhizinized extract of the root, taken orally by 41 adult patients in a study to determine the ability to prevent recurrence of ulcers, was equivocal^{M01055}. Ethanol (30%) extract of the root, administered orally to rats at a dose of 0.25 ml/kg, was active vs Shay rat test (30% reduction in ulceration)^{T01446}. The water extract, administered by intravenous bolus dose, was inactive vs pylorusligated ulcers (Shay)¹⁰⁹⁶⁹³. Hot water extract of the dried root, administered by gastric intubation to mice at a dose of 1.589 gm/ kg, was inactive on ulcers induced by stress T04496. The dried root was taken orally by adults in a study employing 15 cases of radiologically proven peptic ulcer. The results showed beneficial effects on symptomatology of peptic ulcer with radiological improvement in ulcer healing in more than 75% of the cases. There was minimal effect on gastric acid secretion^{N02187}. Water extract of the dried rhizome, taken orally by adults at a dose of 380.0 mg/person 3 times daily, was active. Deglycirrhizinated

licorice was administered to 169 patients with chronic duodenal ulcers. No significant improvement in healing, compared with cimetidine, was observed KOT727. Water extract of the dried root, administered intraperitoneally to rats at a dose of 0.1 gm/kg, was inactive, and a dose of 1.0 gm/kg was active vs Shay-induced ulcers N13376. Water extract of the dried root, in a mixture with *Pinellia ternata*, *Citrus aurantium*, *Pachyma hoelen*, and *Zingiber officinale*, administered intraperitoneally to rats at a dose of 1.0 mg/gm, was active vs Shay ulcers, results significant at p <0.01 level^{T11368}.

Antiviral activity. Saponin fraction of the dried root, on embryonated chicken, produced strong activity on influenza virus A^{w03697}. The dried root, at variable concentrations, was active on Spinach Mosaic virus^{T14473}. Water and methanol extracts of the dried root, on agar plate at a concentration of 100.0 mcg/ml, were inactive on Herpes simplex I virus^{K28424}. Water extract of the dried root, in cell culture at a concentration of 10.0 mg/mL, was inactive on Herpes virus type 2, Influenza virus A2 (Manheim 57), Poliovirus II, and Vaccinia virus^{T09507}.

Antiyeast activity. Ethanol (80%) extract of the dried root, on agar plate at a concentration of 1.0 mg/ml, was inactive on Candida albicans^{T07382}. The ethanol (95%) extract was active NO0846</sup>. Ethanol (95%) extract of the stem, on agar plate, was active on Candida albicans^{W00232}. Ethanol/water (1:1) extract of the dried root, on agar plate at a concentration of 417.0 mg/mL, was inactive on Candida albicans and Saccharomyces pastorianus^{T16238}. Saponin fraction of the dried root, on agar plate, was equivocal on Candida albicans, Candida parasilosis, Candida pseudotropicalis, and Candida stellatoidea, MIC 0.63%^{K27726}.

Arachidonate metabolism inhibition. Hot water extract of the dried root, in a mix-

ture containing 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng in 700 mL of water, administered intragastrically to mice on days 1 to 3, was active^{M20581}.

Aspartate transaminase level decrease. Decoction of the dried rhizome, taken orally by 80 adults of both sexes with hepatitis B antigen positive chronic hepatitis for 6 months at a dose of 7.5 gm/day, was active. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}.

Astringent effect. Acetone/water (70:30) extract of the dried rhizome was active vs binding to hemoglobin^{T14957}.

Atrial natriuretic peptide increase. Hot water extract of the dried root, taken orally by healthy adults at a dose of 100 gm (0.7 gm glycyrrhizic acid) daily for 8 weeks, produced an increase in plasma ANP correlated with weight gain but not blood pressure^{M21430}.

Barbiturate potentiation. A preparation that included 1.875 gm each Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia ternata, Lycium species, Pachyma species, Paeonia rubra, Akebia species, Rehmannia glutinosa, Glycyrrhiza glabra, and 3.75 gm Zingiber officinale, administered to the mouse at a dose of 1.0 gm/kg, was active^{M20428}. The dried root, in a mixture containg Paeonia species, Angelica gigas, Astragalus membranaceus, Cnidium officinale, Rehmannia glutinosa, Atractylodes species, Pueraria species, Cinnamomum cassia, Zingiber officinale, Ziziphus vulgaris, and Panax ginseng, administered intragastrically to mice at a dose of 3.0 gm/kg, increased hexabarbital-induced sleeping time^{M25858}.

Benzopyrene hydroxylase induction. Water extract of the dried root, in the ration of mice at a concentration of 8.0% of the diet, was active^{K11705}.

Binding effect. Hot water extract of the dried root, in a mixture containing *Paeonia albiflora*, *Rehmannia glutinosa*, *Astragalus* species, *Angelica gigas*, *Selinum monnieri*, and *Cinnamomum* species, administered intragastrically to rats, was active vs binding of sulphobromophthalein to hepatic cytoplasmic protein^{M20703}.

BUN lowering effect. Water extract of the dried root, administered orally to rats at a dose of 0.2 gm/kg for 12 days, showed no inhibition of the elevation of plasma urea nitrogen in nephritic rats^{K20129}.

Calcium channel blocker. Decoction of the dried root, in a mixture with *Triticum aestivum* and *Ziziphus jujuba* at a concentration of 4.0%, was active on the snail neuron^{M18551}. **Carcinogenesis inhibition.** Infusion of the dried root, in the drinking water of mice for 31 weeks, decreased lung and forestomach tumors by 26% and 55%, respectively, vs n-nitrosodiethylamine-induced carcinogenesis, and 20% and 60%, respectively, vs benzo[a]pyrene-induced carcinogenesis^{K08654}. **Catalase stimulation.** The dried root, in combination with *Glycine max* in the ration

Cell proliferation inhibition. Polar lipid fraction of the dried rhizome, on agar plate at a concentration of 200.0 mcg/ml, was inactive on *Escherichia coli*^{M20458}.

of rats at a dose of 3.0% of the diet, was

activeK09254.

Choleretic activity. Methanol extract of the dried root, administered intragastrically to rats at a dose of 0.2 gm/kg, was inactive^{M16531}. Water extract of the dried root, administered intragastrically to rats at a dose of 6.278 gm/kg, was active on the gall bladder^{J12401}.

Cholesterol ester formation. Decoction of the dried rhizome, administered intragastrically to mice at a dose of 1.2 gm/kg,

was inactive on macrophages. The study was conducted with a Kampoh, a prescription known as Shosaikoto, which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{KO8369}.

Choline acetyltransferase induction. Powdered, dried root, in a kampo medicine 'Kami-untan-to', that contains dried Pinellia ternata, Phyllostachys nigra, Citrus aurantium, Poria cocos, Citrus unshiu, Polygala tenuifolia, Scrophularia ningpoensis, Panax ginseng, Rehmannia glutinosa, Ziziphus jujuba, and Zingiber officinale administered intragastrically to rats, was active on the brain^{K24968}.

CNS depressant activity. Hot water extract of the dried root, in a mixture containing Astragalus membranaceus, Panax ginseng, Atractylodes species, Angelica gigas, Citrus aurantium, Cimicifuga species, and Bupleurum species, administered by gastric intubation to mice at a dose of 1.0 gm/kg, was active vs Rotarod test^{T09702}.

CNS effect. Water extract of the root, in a mixture containing Zingiber officinale, Panax ginseng, Scutellaria baicalensis, Ziziphus jujuba, Pinellia ternata, Bupleurum falcatum, Cinnamomum cassia, and Paeonia albiflora, administered by gastric intubation to mice at a dose of 4.0 gm/kg, was inactive. No change in the EEG, behavior, or the active and resting cycles was observed^{TOSS15}.

Common cold relief. Hot water extract of the dried root, in a preparation containing 5 grams each *Glycyrrhiza glabra*, *Viola odorata*, *Onosma bracteatum*, and *Lavendula stoechas*, soaked in 240 ml of water and then boiled, was taken orally by 43 adult patients with chronic sinusitis, at a dose of 120 ml twice daily. Eleven of the patients were relieved and 9 partially relieved multiple and both water extract, taken orally by adults at a dose of 20 gm/person, was effective T14073.

Corticosteroid type activity. Hot water extract of the dried root, in a mixture con-

taining 8 gm Bupleurum species, 3 gm Glycyrrhiza glabra, 3 gm Ziziphus jujuba, 1 gm Zingiber officinale, 3 gm Panax ginseng, 8 gm Pinellia ternata, and 3 gm Scutellaria baicalensis, administered by gastric intubation to rats at a dose of 1.1 gm/kg, increased the plasma level of prednisolone^{T09859}.

Corticosterone induction. Hot water extract of the dried root, in a mixture containing 8 gm of Bupleurum species, 3 gm Glycyrrhiza glabra, 3 gm Ziziphus jujuba, 1 gm Zingiber officinale, 3 gm Panax ginseng, 8 gm of Pinellia ternata, and 3 gm Scutellaria baicalensis, administered by gastric intubation to rats at a dose of 1.1 gm/ kg, was active, results significant at p < 0.01 level^{T09859}. Decoction of the dried root, in a preparation containing Bupleurum falcatum 7 gm root, Pinellia ternata 5 gm tuber, Scutellaria baicalensis 3 gm root, Panax ginseng 3 gm root, Coptis chinensis 1 gm rhizome, Pachyma hoelen 3 gm fruit, Glycyrrhiza glabra 2 gm root, and Ziziphus vulgaris 3 gm fruit, administered intragastrically to rats at a dose of 0.5 gm/kg daily for 2 weeks after the injection of rabbit anti-rat GBM to produce nephritis, was active^{M30495}. The hot water extract, administered intraperitoneally to rats at a dose of 200.0 mg/kg, produced an increase in serum and adrenal corticosterone vs carrageenin-induced pedal edema^{T14823}. Water extract of the dried rhizome, administered intraperitoneally at a dose of 150.0 mg/kg to mice subjected to immobilizaton stress, was active^{M20458}.

Cortisol decrease. Hot water extract of the dried root, taken orally by healthy adults at a dose of 100.0 gm/day for 8 weeks, produced an increase in urine cortisol, but plasma cortisol was stable^{M21430}.

Cyclic AMP stimulation. Hot water extract of the dried root, in a mixture containing 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax gin-

seng, administered intraperitoneally to rats at a dose of 200.0 mg/kg, produced an increase in cyclic AMP levels in the pituitary and adrenal glands, but not in the hypothalamus. The increase was inhibited by dexamethasone^{T14878}.

Cyclic nucleotide phosphodiesterase inhibition. Chloroform and hot water extracts of the root, at a concentration of 100.0 mcg/ml, produced 72% inhibition^{T04931}.

Cytochrome P-450 induction. The root, administered intragastrically to mice of both sexes at a dose of 3.138 gm/kg, was active on the liver microsomes)¹⁴⁵⁷⁸.

Cytotoxic activity. Ethanol/water (1:1) extract of the dried root, in cell culture at a concentration of 25.0 mcg/ml, was inactive on CA-9KB^{T10126}. Water and methanol extracts of the dried root, on agar plate at a concentration of 100.0 mcg/ml, were inactive on Vero cells^{K28424}. Water extract of the dried rhizome, in cell culture at a concentration of 250.0 mcg/ml, produced weak activity on CA-mammary-microalveolar, and a concentration of 500.0 mcg/ml was inactive on human embryonic HE-l cells M26592. Water extract of the dried root, in cell culture at a concentration of 10.0%, was inactive on Hela cells^{T09507}. Water extract of the dried root, in cell culture at variable concentrations, was inactive on Salmonella typhimurium TA100 and TA98^{M24807}. The hot water extract, at a concentration of 500.0 mcg/ml, was inactive on HE-I cells. The inhibition rate was 25%. A dose of 250.0 mcg/ml was active on CA-JTC-26 with an inhibition rate of 67%M27219.

Degranulation inhibition. Hot water extract of the dried root, with a mixture of Bupleurum falcatum, Pinellia ternata, Poria cocos, Scutellaria baicalensis, Ziziphus vulgaris, Panax ginseng, Magnolia obvata, Perilla frutescens var. acuta, and Zingiber officinale, in cell culture at a concentration of 0.1 mg/ml, was active vs compound 48-40-induced degranulation of mast cells^{M29006}.

Desmutagenic activity. Ethanol (95%) extract of the dried rhizome, on agar plate at a concentration of 75.0 microliters/plate, was active on *Salmonella typhimurium* TA100 vs ribose-lysine, ethyl methanesulfonate and n-methyl-n-nitroso-guanidine-induced mutagenesis^{K16830}.

Diuretic activity. Hot water extract of the dried root, in a mixture containing Astragalus membranaceus, Panax ginseng, Atractylodes species, Angelica gigas, Citrus aurantium, Cimicifuga species and Bupleurum species, administered by gastric intubation to mice at a dose of 500.0 mg/kg, was effective, results significant at p <0.01 level^{T09705}.

DNA polymerase alpha, beta and gamma inhibition. Water extract of the dried root, in a prescription known as 'Shosaikoto', which consists of 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng, at a concentration of 500.0 mcg/ml, was active on reverse transcriptase from HIVM31066.

DNA polymerase inhibition. The decoction of the root, at a concentration of 500.0 mcg/ml, was active on alpha and beta inhibition, and inactive on gamma inhibition. The study was conducted with a Japanese kampoh prescription known as 'Shosaikoto', which consists of Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata trunk, Ziziphus jujuba fruit, Glycyrrhiza glabra root, and Panax ginseng root^{M27618}.

DNA-binding inhibition. The root, at a concentration of 2.25 mg/ml, was active on the calf thymus DNA. The dose decreased the binding of aflatoxin B1 metabolites by 89%. Metabolic activation was required to obtain positive results^{A00124}.

Embryotoxic effect. Ethanol (40%) extract of the dried root, administered orally to pregnant rats and rabbits at a dose of 1.6 ml/kg, was inactive^{TO1997}. Ethanol (95%)

extract of the dried root, administered by gastric intubation to pregnant rats at a dose of 250.0 mcg/kg, was equivocal^{TO8548}.

Epstein-Barr virus early activation inhibition. The decoction and ether extract of the dried rhizome, in cell culture at a concentration of 5.0 mcg/ml, were active vs 12-0-tetradecanoylphorbol-13-acetate-induced early antigen activation. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}.

Estrogenic activity. Acetone extract of the leaf, administered subcutaneously to infant mice, was active^{A04826}. Ethanol (95%) extract of the aerial part, administered subcutaneously to immature, ovariectomized, infant and normal mice, was active. The activity was variable depending on the season of plant collection. Plants harvested in the autumn showed the highest activity^{A05981}. Ethanol (95%) extract of the root, administered orally to ovariectomized rats, was inactive^{A00124}. When administered subcutaneously to infant mice the extract was active A04678, as was the petroleum ether extract A00012. Ethanol(95%) extract of the root, administered subcutaneously and water extract in the ration of infant mice^{A00008} and ovariectomized rats^{A06518} at a dose of 5.0 mg/animal. were active. The root, in the ration of infant female mice, was active. The effect was equivalent to 12,800 estrogen units/kg plant material^{A04871}.

Fertilization inhibition. Ethanol (40%) extract of the dried root, administered orally to female rats at a dose of 1.6 ml/kg, was not effective^{TO1997}.

Gastric antisecretory activity. Ethanol (30%) extract of the root, at a concentration of 1.0% administered by perfusion to the female rat, produced no change in

pH^{T01446}. Hot water extract of the dried root, in a mixture containing Astragalus membranaceus, Panax ginseng, Atractylodes species, Angelica gigas, Citrus aurantium, Cimicifuga species, and Bupleurum species, administered by gastric intubation to mice at a dose of 500.0 mg/kg, was effective vs pylorus ligation-induced ulcers, results significant at p <0.001 level^{T09705}. The root, administered orally to, rats showed no reduction in total acid level, but a decrease in free acid levels^{NO2187}. Water extract of the dried root, administered by gastric intubation to rabbits at a dose of 125.0 mg/kg, was effective. A mixture of Pinellia ternata rhizome, Atractylis species rhizome, Citrus aurantium plant, Pachyma hoelen fruit, Panax ginseng root, Glycyrrhiza glabra root, Zingiber officinale rhizome, and Zizyphus jujuba fruit was used^{T09574}. Water extract of the dried root, in a mixture with Pinellia ternata, Citrus aurantium, Pachyma hoelen, and Zingiber officinale, administered intraperitoneally to rats at a dose of 0.5 mg/gm, was effective vs Shay ulcers^{T11368}. **Genitourinary effect.** Water extract of the dried root, administered orally to rats at a dose of 0.2 gm/day for 12 days, did not affect the urinary protein excretion in nephretic rats. However, the treatment reduced hypercellularity of the glomeruli in the treated nephretic rats. A dose of 0.5 mg/kg of the mixture containing Bubleurum falcatum root, Pinellia ternata tuber, Scutellaria baicalensis root, Panax ginseng root, Coptis chinensis rhizome, Pachyma hoelen fruit, Glycyrrhiza glabra root, and Ziziphus vulgaris fruit, reduced hypercellularity and adhesion index in glomeruli. Urinary protein excretion was also lower^{K20129}.

Glucagon induction. A prescription containing Gypsum fibrosum, Oryzae semen, Anemarrhenae rhizoma, Glycyrrhiza radix, and Panax ginseng was active vs cyproheptadin-induced diabetes^{M24251}.

Glucuronyl transferase stimulation. Methanol extract of the dried root, administered

intragastrically to rats at a dose of 1.0 gm/kg, was active^{J11422,K23201}.

Glutamate oxaloacetate transaminase **inhibition.** Hot water extract of the dried root, in a mixture containing Paeonia albiflora, Rehmannia glutinosa, Astragalus species, Angelica gigas, Selinum monnieri, and Cinnamomum species, administered intragastrically to rats, was inactive M20703. Methanol extract of the dried root in a mixture containing Machilus species, Alisma species, Amomum xanthiodes, Bulboschoenus maritimus, Artemisia iwayomogis, Atractylodes japonica, Crataegus cuneata, Hordeum vulgar, Citrus sinensis, Polyporus umbellatus, Agastache rugosa, Raphanus sativus, Poncirus trifoliatus, Curcuma zedoaria, Citrus aurantium, Saussurea lappa, and Zingiber officinale, administered by gastric intubation to rabbits at a dose of 0.5 gm/kg, was active vs CCl₄induced hepatotoxicity, results significant at p < 0.01 level^{T08441}. Water extract of the dried root, in a mixture containing Bupleurum laoi root, Pinellia ternata tuber, Scutellaria baicalensis root, Panax ginseng root, Ziziphus vulgaris fruit, and Zingiber officinale rhizome, administered intraperitoneally to rats at a dose of 1.0 gm/kg, was active vs CCl₄-induced hepatotoxicity^{M28210}.

Glutamate pyruvate transaminase inhi**bition.** Water extract of the dried root, in a mixture containing Bupleurum laoi root, Pinellia ternata tuber, Scutellaria baicalensis root, Panax ginseng root, Ziziphus vulgaris fruit, and Zingiber officinale rhizome, administered intraperitoneally to rats at a dose of 1.0 gm/kg, was active vs CCl₄-induced hepatotoxicity^{M28210}. Hot water extract of the dried root, in a mixture containing 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 2 gm Glycyrrhiza glabra, 1 gm Zingiber officinale, 3 gm Panax ginseng, and 3 gm Ziziphus jujubain 700 ml of water, administered intragastrically to mice for 1 month, was active vs CCl₄-induced hepatotoxicity and galactosamine-induced toxicity^{M20760}. Methanol extract of the dried root, in a mixture containing Machilus species, Alisma species, Amomum xanthiodes, Bulboschoenus maritimus, Artemisia iwayomogis, Atractylodes japonica, Crataegus cuneata, Hordeum vulgar, Citrus sinensis, Polyporus umbellatus, Agastache rugosa, Raphanus sativus, Poncirus trifoliatus, Curcuma zedoaria, Citrus aurantium. Saussurea lappa, and Zingiber officinale, administered by gastric intubation to rabbits at a dose of 0.5 gm/kg, was active vs CCl₄induced hepatotoxicity, results significant at p < 0.01 level^{T08441}. Hot water extract of the dried root, in a mixture containing Paeonia albiflora, Rehmannia glutinosa, Astragalus species, Angelica gigas, Selinum monnieri, and Cinnamomum species, administered intragastrically to rats, was inactive^{M20703}.

Glutamate oxaloacetate transaminase inhibition. Hot water extract of the dried root, in a mixture of 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng, administered intraperitoneally to rats at a dose of 200.0 mg/kg, suppressed increase in serum GPT because of d-galactosamine-induced liver injury vs d-galactosamine-induced hepatotoxicity T14824. Hot water extract of the root, in combination with Bupleurum falcatum, Zingiber officinale, Scutellaria baicalensis, Pinellia ternata, Ziziphus jujuba, Glycyrrhiza glabra, and Panax ginseng, administered by gastric intubation to rats at a doses of 100.0 and 400.0 mg/kg, were active vs CCl₄-induced hepatotoxicity. Methionine, 100 mg/kg, was added, results significant at p < 0.01 levelT11122.

Glutamate pyruvate transaminase inhibition. Hot water extract of the dried root, in a mixture of 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm

Panax ginseng, administered intraperitoneally to rats at a dose of 200.0 mg/kg, suppressed increase in serum GPT because of d-galactosamine-induced liver injury. The effect was not seen in adrenalectomized rats vs d-galactosamine-induced hepatotoxicity^{T14824}. Hot water extract of the root, in combination with Bupleurum falcatum, Zingiber officinale, Scutellaria baicalensis, Pinellia ternata, Ziziphus jujuba, Glycyrrhiza glabra, and Panax ginseng, administered by gastric intubation to rats at doses of 100.0 and 200.0 mg/kg, were active vs CCl₄-induced hepatotoxicity, results significant at p <0.01 level^{T11122}.

Glutathione formation induction. Polar lipid fraction of the dried rhizome, on agar plate at a concentration of 100.0 mcg/ml, was active on *Escherichia coli*^{K07531}.

Glutathione-s-transferase induction. Dried root, in combination with Glycine max in the ration of rats at a dose of 3.0% of the diet, was active^{K09254}. Water extract of the dried root, in the ration of mice at a concentration of 8.0% of the diet, was active ^{K09254}. Hot water extract of the dried root, in a mixture containing Paeonia albiflora, Rehmannia glutinosa, Astragalus species, Angelica gigas, Selinum monnieri, and Cinnamomum species, administered intragastrically to rats, was inactive^{M20703}.

GRAS status. *Glycyrrhiza glabra* has been approved as a flavoring agent, not as a component of sugar substitutes, allowable up to 9.5% ash basis^{T15572}. The root was approved safe as a flavoring agent by the United States Food and Drug Administration in 1976 (sect.582.10)^{K000040}.

Hepatitis antigen expression inhibition. Decoction of the dried rhizome was administered orally to 80 adults of both sexes with hepatitis B antigen positive chronic hepatitis, at a dose of 7.5 mg/day for 6 months. Eight of the patients seroconverted to antihepatitis B antibody, 15 became seronegative and 11 had a decrease of hepatitis B anti-

211

gen levels of more than 50%. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}. Histamine release inhibition. Hot water extract of the dried root, in a mixture containing Bupleurum falcatum, Pinellia ternata, Poria cocos, Scutellaria baicalensis, Ziziphus vulgaris, Panax ginseng, Magnolia obvata, Perilla frutescens var. acuta, and Zingiber officinale, in cell culture at a concentration of 0.1 mg/ml, was active vs compound 48-40-induced histamine release^{M29006}. Hot water extract of the dried root, at a concentration of 5.0 mg/ml produced strong activity on the rat mast cells vs inhibition of histamine release induced by concanavalin A and compound 48/80. The assay was to predict antiinflammatory activity TO8540.

Histamine release stimulation. Water extract of the dried rhizome, administered intraperitoneally to mice subjected to immobilization stress at a dose of 150.0 mg/kg, was active^{M20458}.

Hydroxysteroid (II beta) dehydrogenase inhibition. Water extract of the dried rhizome, taken orally by adults at a dose of 100.0 gm/person daily for 8 weeks, was active^{K15582}. Water extract of the dried root, taken orally by adults, inhibited the conversion of cortisol to cortisone. In the kidney, this conversion protects the mineral-corticoid receptor from cortisol^{K07503}. A mixture containing Bupleurum falcatum, Pinellia ternata, Poria cocos, Scutellaria baicalensis, Ziziphus vulgaris, Panax ginseng, Magnolia officinalis, Glycyrrhiza glabra, Perilla frutescens, and Zingiber officinale produced strong activity^{K17195}.

Hypernatremia activity. Hot water extract of the dried root, taken orally by healthy adults at a dose of 100.0 gm/day for 8 weeks, was active^{M21430}.

Hypertensive activity. A case was reported of a 38 year-old woman who was hospitalized because of hypertension and hypokalemia after eating 200.0 gm of licorice daily J13291. Hot water extract of the dried root, taken orally by healthy adults at a dose of 100.0 gm/day for 8 weeks, produced mild hypertension that was normalized 2 weeks after dosing endedM21430. Water extract of the dried root, in a mixture containing the roots of Angelica koreana, Peucedanum japonicum, Angelica gigas, Lindera strychnifolia, Angelica dahurica, and Asiasarum species, the rhizome of Cnidium officinale, Pinellia ternata, Cyperus rotundus, and Zingiber officinale, with branches of Cinnamomum cassia, fruit of Pachyma hoelen, and Citrus aurantium, administered intravenously to rats at a dose of 1.5 mg/kg, was effective. A vasopressor and then a vasodepressor response occurred following administration of the extract. Hypotensive response was blocked by the administration of propranolol and atropine but not by chlorisondamine, prazosin, and cyproheptadine^{M26285}. Water extract of the rhizome, taken orally by adults at variable dosage levels, was effective^{M31333}. Water extract of the root, taken orally by human adults, was effective^{M00186}.

Hypocholesterolemic activity. A prescription containing Gypsum fibrosum, Oryzae semen, Anemarrhenae rhizoma, Glycyrrhizae radix, and Panax ginseng was effective vs cyproheptadine-induced diabetes^{M24251}.

Hypokalaemic activity. A 62 year-old man demonstrated hypokalemic effect and generalized weakness and pain after the ingestion 100.0 gm of rhizome^{M26664}. A case was reported of a 29 year-old bulemic female who ingested 300–600 gm of the dried rhizome daily^{K27186}. Hot water extract of the dried root, taken orally by healthy adults at a dose of 100.0 gm/day for 8 weeks, was effective^{M21430}. A report describes 2 cases of hypokalemia induced by licorice flavoured chewing gum presenting symptoms of hyper-

tension and edema^{K28964}. A review documented 59 cases of glycyrrhizin-induced hypokalemic myopathy that include onset factors, clinical manifestations and laboratory assessments showing that licorice ingestion and combined use of hypotensive diuretic agents increased risk. The main symptoms were flaccid quadriplegia. Complete cure was attained in 57 patients after discontinuation of licorice ingestion^{J13228}. Water extract of the root, taken orally by a woman 58 years of age at a dose of 1.8 kg/week, was effective. The patient was admitted to hospital because of weakness in limbs and tiredness^{M01047}.

Hypolipemic activity. A prescription containing Gypsum fibrosum, Oryzae semen, Anemarrhenae rhizoma, Glycyrrhizae radix, and Panax ginseng was effective vs cyproheptadine-induced diabetes^{M24251}.

Hypotensive activity. Hot water extract of the dried root, in a mixture containing Astragalus membranaceus, Panax ginseng, Atractylodes species, Angelica gigas, Citrus aurantium, Cimicifuga species, and Bupleurum species, administered by gastric intubation to rabbits at a dose of 100.0 mg/kg, was effective^{T09705}. A preparation that included 1.875 gm each of Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia ternata, Lycium species, Pachyma species, Paeonia rubra, Akebia species, Rehmannia glutinosa, Glycyrrhiza glabra, and 3.75 gm Zingiber officinale, administered to the rabbit at a dose of 50.0 gm/kg, was effective^{M20428}. Water extract of the dried rhizome and root taken, orally by 30 normotensive healthy adults at a dose of 100.0 gm/person, was effective^{J12420}.

Hypotriglyceridemia activity. A prescription containing Gypsum fibrosum, Oryzae semen, Anemarrhenae rhizoma, Glycyrrhizae radix, and Panax ginseng was active vs cyproheptadine-induced diabetes^{M24251}.

Immunomodulator activity. A medication containing *Glycyrrhiza glabra* root, *Panax*

ginseng root, Bupleurm falcatum root, Scutellaria baicalensis root, Zingiber officinale rhizome, Pinellia ternata tuber, and Ziziphus vulgaris fruit, administered orally to mice at a dose of 89.0 mg/kg, suppressed the mitogenic activity of phytohemagglutinin and phorbol myristate acetate. A prescription containing Glycyrrhiza glabra root, Panax ginseng root, Paeonia lactiflora root, Angelica acutiloba root, Atractylodes japonica rhizome, Cnidium officinale rhizome, Poria cocos root, Astragalus membranceus root, Cinnamomum cassia, and Rehmannia glutinosa root, administered orally to rats at a dose of 11.0 mg/kg, had no effect on the mitogenic activity of lipopolysaccharide. The mitogenic activity of phorbol myristate acetate and phytohemagglutinin were elevated. At a dose of 17.8 mg/kg, the mitogenic activity of lipopolysaccharide was elevated and the activities of phorbol myristate acetate and phytohemagglutinin were elevated. A prescription containing Glycyrrhiza glabra root, Panax ginseng root, Bupleurum falcatum root, Scutellaria baicalensis root, Angelica acutiloba root, Atractylodes japonica rhizome, Astragalus membranaceus root, Citrus unshiu pericarp, and Cimifuga simplex rhizome, at a dose of 86.7 mg/kg, produced elevation in the mitogenic activity of lipopolysaccharide, phorbol myristate acetate, and phytohemagglutinin^{T15280}. The dried root, administered intraperitoneally and intragastrically to mice, produced an inhibitory effect on humoral immune response to T-dependent antigen in sheep erythrocyte, delayed hypersensitivity, endogenous colony formation and phagocytic activity^{K15610}.

Immunostimulant activity. Decoction of the dried root, in the preparation Ninjin-ypuei-to which is comprised of Rehmannia glutinosa, Angelica acutiloba, Atractylodes japonica, Poria cocos, Panax ginseng, Cinnamomum cassia, Polygala tenuifolia, Paeonia albiflora, Citrus unshui, Astragalus membranaceus, Glycyrrhiza glabra, and Schisandra

chinensis, administered intraperitoneally to male mice at a dose of 2.0 mg/kg, caused an induction of neutrophil accumulation^{M30683}. Water extract of the dried root was administered intravenously to 18 patients with subacute hepatic failure due to viral hepatitis at doses of 40 or 100 ml daily for 30 days, followed by 3 doses weekly for 8 weeks. The survival rate of patients was 72.2% vs 31.1% in control group patients. The patients showed improvement of ascites. Associated infections were observed in 2 of the 13 survivors and 4 of 5 patients who died. Adverse effects were not observed in any of the patients during therapy^{K13101}.

Immunosuppressant activity. Water extract of the dried root, administered intragastrically to mice at a dose of 5.0 gm/kg, was inactive^{K18999}. Water extract of the dried root, at a concentration of 12.5 mg/ml, was equivocal on human lymphocytes. Evaluation was by depression of blastogenic response to phytohemagglutinin^{TOZ391}.

Insulin induction. Hot water extract of the dried root, in the ration of mice at a dose of 6.25% of the diet, was inactive vs streptozotocin-induced hyperglycemia^{M24255}.

Insulin release inhibition. A prescription containing Gypsum fibrosum, Oryzae semen, Anemarrhenae rhizoma, Glycyrrhizae radix, and Ginseng radix was active vs cyproheptadine-induced diabetes^{M24251}.

Interferon induction stimulation. Decoction of the dried rhizome, in cell culture at a concentration of 100.0 mcg/ml, was active on mouse splenocytes. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root. When administered intraperitoneally to mice at a dose of 250.0 mg/kg, the decoction was also active K13115. Decoction of the dried root, in a prescription containing Glycyr-

rhiza glabra root, Panax ginseng root, Bupleurum falcatum root, Scutellaria baicalensis root, Zingiber officinale rhizome, Pinellia ternata tuber, and Ziziphus vulgaris fruit, in cell culture at a concentration of 100.0 mcg/ ml, was active. The peripheral lymphocytes from 8 patients with chronic active hepatitis, 4 with HBEAG and 4 with anti-HBE, were cultured with the extract KO7057. Hot water extract of the root, in a mixture containing Bupleurum chinense, Pinellia ternata, Scutellaria baicalensis, Ziziphus jujuba, Panax ginseng, and Zingiber officinale, administered intraperitoneally to mice at a dose of 100.0 mg/kg, was active vs polymyxin B-induced interferon secretion inhibition^{M24197}.

Interleukin-I, II, III & VI formation stimulation. Decoction of the dried aerial parts, in cell culture, was active on peripheral blood monocytes from healthy adults. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}. When administered intraperitoneally to mice at a dose of 250.0 mg/kg, the decoction was active K13115.

Intestinal motility inhibition. Hot water extract of the dried root, in a mixture containing Astragalus membranaceus, Panax ginseng, Atractylodes species, Angelica gigas, Citrus aurantium, Cimicifuga species, and Bupleurum species, administered by gastric intubation to mice at a dose of 1.0 gm/kg, was effective vs charcoal meal intestinal transport assay, results significant at p < 0.001 level^{T09705}. Water extract of the dried root, in a mixture with Pinellia ternata, Citrus aurantium, Pachyma hoelen, and Zingiber officinale, administered by gastric intubation to rabbits at a dose of 100.0 mg/kg, was effective^{T11368}.

Irradiation effect. Methanol extract of the dried root, administered intraperitoneally

to mice at a dose of 400.0 mg/kg, was active vs soft x-ray irradiation at lethal dose^{T14342}. LDL oxidation inhibition. Alcohol extract of the root was active on the ovariectomized hamster, IC_{50} 1.8 mg/liter vs $CuSO_{4}$ induced formation of MDA equivalents in the plasma. The extract was also active on human adults, IC₅₀ 2.2 mg/liter vs CuSO₄induced formation of lipid peroxides. When administered through the drinking water of atherosclerotic mice at a dose of 200.0 mcg/day, the extract was active vs CuSO₄-induced LDL oxidation, results significant at p < 0.01 level. The extract was active on LDL isolated from 10 healthy subjects, treated for 2 weeks with the extract (lanox softgels) at a dose of 100.0 mg/ day. The patients were subjected to oxidation by incubation with CuSO₄ or 2,2'azobis 2-amidino propane hydrochloride^{J13941}. Leukopenic activity. A mixture containing 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng, administered intraperitoneally to rats at a dose of 200.0 mg/kg, was active vs carrageenin-induced pleurisy^{T14878}.

Leukotriene B-4 production inhibition. Decoction of the dried rhizome, at a concentration of 50.0 mcg/ml, was active on macrophages vs calcium ionophore-induced leukotriene B-4 production. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}. **Lipid metabolism effects.** Decoction of the dried rhizome, administered intragastrically to mice at a dose of 1.2 gm/kg, increased the uptake of ox-LDL 1.6 times. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}.

Lipid mobilization inhibition. Water extract of the dried root, in combination with *Paeonia albiflora*, at a dose of 90.0 mg/kg, was effective. The animals were sterilized by injection of testosterone subcutaneously at 2 days of age. The extract was administered daily for 2 weeks. Estradiol/testosterone ratio increased. The effect was not seen in the oophorectomized animals^{M30730}.

Lymphocyte blastogenesis inhibition. Water extract of the dried root, in cell culture at a concentration of 125.0 mcg, was inactive on human lymphocytes^{TO7814}.

Lymphocyte blastogenesis stimulation. Water extract of the dried root, in cell culture at a concentration of 125.0 mcg, was inactive on human lymphocytes^{TO7814}.

Macrophage activation. A mixture containing Glycyrrhiza glabra root, Panax ginseng root, Bupleurum falcatum root, Scutellaria baicalensis root, Zingiber officinale rhizome, Pinellia ternata tuber, and Ziziphus vulgaris fruit, administered intraperitoneally to mice, was active T14857.

Macrophage cytotoxicity enhancement. A preparation containing Bupleurum falcatum, Pinellia ternata, Scutellaria baicalensis, Ziziphus vulgaris, Panax ginseng, Glycyrrhiza glabra, and Zingiber officinale, administered by gastric intubation to mice at a dose of 600.0 mg/kg, was inactive on Leuk-

L1210T11351.

Melanin formation inhibition. Fat soluble extract of the dried root, in cell culture, inhibited the uptake of labeled thiouracil in Melanoma-B16. The activity is highly dose-dependent^{K23645}. Water extract of the dried root, at a concentration of 0.1%, was effective. The biological activity reported has been patented^{K23960}.

Membrane fluidity increase. Hot water extract of the dried root, in a mixture con-

taining 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng in 700 ml of water, administered intragastrically to mice, was active vs membrane fluidity of macrophage^{M20581}.

Membrane stabilization effect. Decoction of the dried root, in a mixture with *Tricticum aestivum* and *Ziziphus jujuba* at a concentration of 4.0%, was active on the snail neuron vs pentylenetetrazol-induced bursting^{M18551}.

Memory retention improvement. Decoction of the dried root, in a mixture containing Glycyrrhiza glabra root, Saussurea lappa root, Ziziphus jujuba var. inermis fruit, Zingiber officinale rhizome, Ziziphus jujuba seed, and Euphoria longana aril, administered intragastrically to male mice at a dose of 1.0 gm/kg, was active. There was amelioration of memory registration impairment induced by ethanol in step through and step down tests^{M27585}. The powder of a Kampo medicine, 'Kami-untan-to', containing Pinellia ternata, Phyllostachys nigra, Citrus aurantium, Poria cocos, Citrus unshiu, Polygala tenuifolia, Scrophularia ningpoensis, Panax ginseng, Rhemannia glutinosa, Ziziphus jujuba, and Zingiber officinale, administered intragastrically to rats, was active^{K24968}.

Menstruation induction effect. Hot water extract of a decoction of 31.25 gm *Glycyrrhiza glabra* root, and 6.24 gm *Panax ginseng* root per 200–300 ml dose, taken orally by adults with amenorrhea due to hypopituitarism daily for 30 days and 20 additional days, at a reduced dose level, was active woods active woods are decorated as a reduced dose level.

Metabolism inhibition. The root, at a concentration of 45 mg/ml, inhibited the formation of organosoluble metabolites of aflatoxin B1. Metabolic activation was required to obtain positive results^{M30420}.

Mineral balance effect. Water extract of the dried root, taken orally by adults at variable dosage levels, was active. A man 70 years of age consumed 60 to 100 grams of licorice daily for 4 to 5 years. Evaluation revealed the patient to have hypertension, hypokalemia and increased sodium levels. Plasma renin, aldosterone and urinary aldosterone levels fell to low levels^{K07495}.

Mineralocorticoid type activity. Water extract of the dried rhizome, taken orally by human adults at a dose of 10.65 gm/person daily for 4 weeks, produced hypertension, hypokalemia, peripheral edema and depressed renin levels in patients with sub-clinical disease or using oral contraceptives^{K17032}. Miscellaneous effects. Methanol extract of the dried root, in a mixture containing Machilus species, Alisma species, Amomum xanthiodes, Bulboschoenus maritimus, Artemisia iwayomogis, Atractylodes japonica, Crataegus cuneata, Hordeum vulgar, Citrus sinensis, Polyporus umbellatus, Agastache rugosa, Raphanus sativus, Poncirus trifoliatus, Curcuma zedoaria, Citrus aurantium, Saussurea lappa, and Zingiber officinale, administered by gastric intubation to rabbits at a dose of 500.0 mg/kg, was active vs CCl₄-induced hepatotoxicity. A decrease in bromosulphathalein accumulation in the blood and an increase in serum albumin and protein content were observed, results significant at p <0.01 level^{T08441}.

Mitogenic activity. Decoction of the dried rhizome, in cell culture at a concentration of 100.0 mcg/ml, was active on mouse splenocytes. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}. Hot water extract of the dried root, in a mixture with Bupleurum falcatum, Pinellia ternata, Scutellaria baicalensis, Ziziphus vulgaris, Panax ginseng, and Zingiber officinale, at a concentration of 10.0 mcg, was active on the mouse

splenocytes. When the extract mixture was added directly to the medium of spleen cells, an increase in mitogenic activity of lipopolysaccharide was observed. However, in the experimental system without lipopolysaccharide, the extract mixture itself showed activity; also, at an extract mixture concentration of 100 mcg, mitogenic activity was inhibited and cell viability was decreased remarkably. At a dose of 3.60 gm/ kg, the extract mixture was first orally administered to mice and then the serum of the treated animals was tested for activity. An increase in mitogenic activity of lipopolysaccharide was observed. In the same experimental system without lipopolysaccharide, mitogenic action was not recognized in the spleen cells of the extract mixture-treated mice cells^{T16190}.

Monamine oxidase inhibition. Water extract of the dried rhizome, at a concentration of 30.0 mcg/ml, was active^{M28190}. Water extract of the dried root, at a dose of 30.0 mcg/ml, was active^{M28190}.

Monooxygenase induction. The root, administered intragastrically to mice of both sexes at a dose of 6.2 gm/day, was active on the liver vs CYP-dependent monooxygenases. The result was observed after repeated dosings^{J14578}.

Mutagenic activity. Ethanol (95%) extract of the dried root, on agar plate at a concentration of 10.0 mg/plate, was inactive on Salmonella typhimurium TA98 and TA100K08041. Ethanol (95%) extract of the root, administered intravenously to dogs at a dose of 800.0 mg/kg, was inactive^{A05480}. Hot water and methanol extracts of the root, on agar plate at a concentration of 50.0 mg of plant material/disc, were inactive on Salmonella typhimurium TA100 and TA98. The effect was the same with or without metabolic activation. Histidine was removed from the extract prior to testing^{T06535}. Water extract of the dried root, on agar plate, was inactive on Salmonella typhimurium TA100 and TA98 preincubated with S9 mix from PCB-induced rats^{M24807}.

Natural killer cell enhancement. Polysaccharide fraction of the root, administered intragastrically to mice at a dose of 1.0 gm/kg, produced weak activity vs mononuclear cells incubated with YAC-I cells¹¹⁰⁷¹².

Nematocidal activity. Decoction of the rhizome, at a concentration of 10.0 gm/ml, was inactive on *Toxacara canis*^{M26175}. Water extract of the dried rhizome, at a concentration of 10.0 mg/ml, was active, and the methanol extract, at a concentration of 1.0 mg/ml, was inactive on *Toxacara canis*^{M28316}.

Nerve growth factor stimulation. A Kampo medicine 'Kami-untan-to' containing Pinellia ternata, Phyllostachys nigra, Citrus aurantium, Poria cocos, Citrus unshiu, Polygala tenuifolia, Scrophularia ningpoensis, Panax ginseng, Rehmannia glutinosa, Ziziphus jujuba, and Zingiber officinale, administered intragastrically to rats, was active on the brain^{K24968}.

Ornithine decarboxylase inhibition. The dried root, in combination with *Glycine max* in the ration of rats at a dose of 0.38% of the diet, was active^{K09254}.

Ovulation inhibition. Ethanol (40%) extract of the dried root, administered orally to rats at a dose of 1.6 ml/kg, was inactive^{T01997}.

Oxygen radical inhibition. Decoction of the dried root, at a concentration of 17.0 mcg/ml, was inactive on the guinea pig macrophages vs inhibition of FMLP-induced superoxide anion. The decoction of a traditional Chinese medicine, 'Juzentaihoto', composed of Astragalus mongoholicus, Cinnamomum cassia, Rehmannia glutinosa, Paeonia albiflora, Cnidium monnieri, Angelica sinensis, Atractylodes lancea, Panax ginseng, Poria cocos, and Glycyrrhiza glabra, at a concentration of 500.0 mcg/ml, was active on the guinea pig macrophages^{M29253}. Polar lipid fraction of the dried rhizome, on agar plate at a concentration of 100.0 mcg/ml, was active on Escherichia coli vs illuminated rose bengal-induced oxygen radicals^{K07531}. The root, at a concentration of 10.0 mg/liter, was active vs DPPH assay^{J13941}.

Pancreatic secretion stimulation. Methanol extract of the rhizome, administered to dogs intraduodenally at a dose of 0.5 gm/animal and intragastrically at a dose of 2.0 gm/animal, as active^{M18099}. Water and methanol extracts of the dried root, administered intraduodenal to male rats at doses of 100.0 mg/kg and 50.0 mg/kg, respectively, produced strong activity^{N05481}.

Penile erectile stimulant. Extract of the dried stem, taken orally by adults, showed improvement in erection, duration of coitus and post-coital satisfaction in 56 cases treated for 4 weeks^{T14366}.

Pepsin inhibition. Water extract of the dried root, administered by gastric intubation to rabbits at a dose of 125.0 mg/kg, was active. A mixture of *Pinellia ternata* rhizome, *Atractylis* species rhizome, *Citrus aurantium* plant, *Pachyma hoelen* fruit, *Panax ginseng* root, *Glycyrrhiza glabra* root, *Zingiber officinale* rhizome, and *Zizyphus jujuba* fruit was used, results significant at p <0.05 level^{T09574}.

Phagocytosis capacity increased. Hot water extract of the dried root, in a mixture of 7 gm Bupleurum falcatum, 5 gm Pinella ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng in 700 ml of water, administered intragastrically to mice, was active^{M20581}.

Pharmacokinetic study. The bioavailability of glycyrrhizin was much decreased when given in extract form with equivalent amount of compound, when compared to giving pure compound^{K26801}. The decoction of the dried rhizome, taken orally by 5 normal adults at a concentration of 5%, reached maximum serum concentrations of glycyrrhetic glycosides at 4 hours post ingestion and was eliminated within 72 hours. Glycyrrhetic acid reached maximum serum concentration 24 hours post inges-

tion. The highest concentration was 30 ng/ml, and excretion was not completed after 96 hours in 2 of the subjects. In 2 cases of pseudoaldosteronism the serum glycyrrhetic acid levels were as high as 70-80 ng/ml while glycosides were quite low^{K13115}. Water extract of the dried root, administered intragastrically to rats at a dose of 6.278 gm/kg, was excreted in the bile, reaching maximum by 8 hours after dosing¹¹²⁴⁰¹.

Phosphodiesterase inhibition. Hot water extract of the stem, at a concentration of 1.0 mg/ml, was active^{K28931}.

Phospholipase A2 inhibition. Decoction of the dried rhizome, at a concentration of 100.0 mcg/ml, was active on macrophages and splenocytes. The study was conducted with a Kampoh, a prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{K13785}.

Plaque formation suppressant. Water extract of the root was inactive on *Streptococcus mutans*, $IC_{50} > 1000$ mcg/ml. The methanol and methanol/water (1:1) extracts were active, IC_{50} 10.0 mcg/ml and 20.0 mcg/ml, respectively^{T11789}.

Platelet aggregation stimulation. Hot water extract of the dried root, in a mixture containing Zingiber officinale, Panax ginseng, Citrus aurantium, and Atractylodes japonica, was active on human platelets^{T15353}.

Potassium channel blocking activity. Decoction of the dried root, in a mixture with *Tricticum aestivum* and *Ziziphus jujuba*, at a concentration of 4.0%, was active on the snail neuron^{MI8551}.

Potassium depletion. Water extract of the rhizome, taken orally by adults at variable dosage levels, was active^{M31333}.

Prolactin stimulation. A 22 year-old patient suffering from licorice intoxication had symptoms such as headache, vomiting, photophobia and subsequently hyperprolactin-

emia and hypogonadism, indicating toxicity of cerebral functions^{TO1704}.

Prostaglandin synthetase inhibition. Hot water extract of the dried root, in a mixture of 7 gm Bupleurum falcatum, 5 gm Pinellia ternata, 3 gm Scutellaria baicalensis, 4 gm Zingiber officinale, 3 gm Ziziphus inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng in 700 ml of water, administered intragastrically to mice, was active^{M20581}.

Protein kinase stimulation. The dried root, in combination with *Glycine max* in the ration of rats, at doses of 3.0% and 0.38% of the diet, were active^{KO9254}.

Protein synthetasis inhibition. Hot water extract of the dried root, in a mixture containing Paeonia species, Angelica gigas, Astragalus membranaceus, Cnidium officinale, Rehmannia glutinosa, Atractylodes species, Pueraria species, Cinnamomum cassia, Zingiber officinale, Ziziphus vulgaris, and Panax ginseng, administered intragastrically to mice and rats, was inactive M25858.

Prothrombin time decrease. Hot water extract of the dried root, in a mixture containing 7 gm Bupleurum falcatum, 5 gm Pinellia ternata, 3 gm Scutellaria baicalensis, 2 gm Glycyrrhiza glabra, 1 gm Zingiber officinale, 3 gm Panax ginseng, and 3 gm Ziziphus jujuba in 700 ml of water, administered intragastrically to mice for 1 month, was active vs CCl₄-induced hepatotoxicity^{M20760}.

Renal function improvement. Decoction of the dried root was taken orally by 15 adults with chronic renal failure due to chronic glomerulonephritis, polycystic disease, TB or diabetes enrolled in the study. The patients were dosed 3 times daily for 3 months with the combination of the extract and *Rehum officinale*. Improvements were seen in BUN, edema, fatigue, nausea, and constipation, without effect on hematocrit or albumin. The effect decreased after 6 months^{K14322}.

Renin inhibition. Hot water extract of the dried root, taken orally by healthy adults at

a dose of 100.0 gm/day for 8 weeks, indicated a decrease in plasma renin for the first 4 weeks^{M21430}. Water extract of the rhizome, taken orally by adults at variable dosage levels, was active^{M31333}.

Reverse transcriptase inhibition. Decoction of the rhizome, in cell culture at a concentration of 100.0 mcg/ml, was inactive on the lymphocytes of AIDS patients, and a concentration of 50.0 mcg/ml was active on lymphocytes from asymptomatic HIV positive and ARC patients. The study was conducted with a Kampoh prescription known as 'Shosaikoto', which consists of Glycyrrhiza glabra rhizome, Bupleurum falcatum root, Zingiber officinale rhizome, Scutellaria baicalensis root, Pinellia ternata tuber, Ziziphus jujuba fruit, and Panax ginseng root^{M27622}. Water extract of the dried root, in a prescription containing Glycyrrhiza glabra root, Panax ginseng root, Bupleurum falcatum root, Scutellaria baicalensis root, Zingiber officinale rhizome, Pinellia ternata tuber, and Zizibhus vulgaris fruit, at a concentration of 200.0 mcg/ml, showed positive reverse transcriptase activity on the Moloney murine leukemia virus and HIVM31066.

Secretin induction. Methanol extract of the rhizome, administered to dogs intraduodenally at a dose of 0.5 gm/animal and intragastrically at a dose of 2.0 gm/animal, were active^{M18099}.

Smooth muscle relaxant activity. A preparation that included 1.875 gm each of Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia ternata, Lycium species, Pachyma species, Paeonia rubra, Akebia species, Rehmannia glutinosa, Glycyrrhiza glabra and 3.75 gm Zingiber officinale was active on the mouse ileum vs barium-induced contractions M20428. Water extract of the dried root, at a concentration of 0.1 mg/ml, was active on mouse ileum N13376.

Sodium channel blocking effect. Decoction of the dried root, in a mixture with *Tricticum aestivum* and *Ziziphus jujuba*, at a

GLYCYRRHIZA GLABRA 219

concentration of 4.0%, was active on the snail neuron^{M18551}.

Spermicidal effect. Saponin fraction of the aerial parts, at a concentration of 2.0%, was inactive on the human spermatozoa^{K01553}.

Spontaneous activity reduction. A preparation that included 1.875 gm each of Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia ternata, Lycium species, Pachyma species, Paeonia rubra, Akebia species, Rehmannia glutinosa, and Glycyrrhiza glabra and 3.75 gm Zingiber officinale, at a dose of 0.5 gm/kg, was active on the mouse^{M20428}.

Superoxide dismutase inhibition. Water extract of the dried root, in the ration of mice at a concentration of 2.5% of the diet, was active^{K11705}.

Taenifuge activity. Ethanol (95%) extract of the root, at a concentration of 1.0 mg/ml, was active on *Taenia pisiforma*^{A05480}.

Teratogenic activity. Ethanol (40%) extract of the dried root, administered orally to pregnant rabbits at a dose of 1.6 ml/kg, was inactive^{T01997}.

Testosterone hydroxylation stimulation. The root, administered intragastrically to mice of both sexes at a dose of 6.2 gm/day, was active on liver microsomes^{J14578}.

Toxic effect. A case was reported of a 45 year-old man who was ingesting 100 to 200 gm of rhizome daily. The subject experienced necrosis of muscle fibers, highly contracted sacromeres with Z-line disorganization and a decreased level of myoadenylate deaminaseK11894. Ethanol (40%) extract of the dried root, administered orally to rats of both sexes at a dose of 1.6 ml/kg daily for 13 weeks, was inactive. The dose had no effect on hemoglobin, red blood cells, packed cell volume, mean corpuscle volume, mean corpuscle hemoglobin concentration, total and differential white blood cells, serum GOT, blood glucose, BUN, bilirubin, total protein albumin, Na⁺, K⁺, Cl⁻, or cholesterol. Urine samples were normal (microscopic, chemical, cell counts). Histology after sacrifice of the animals showed no pathology of the brain, pituitary, eye, salivary gland, cervical lymph node, thyroid, tongue, aorta, heart, thymus, lungs, sternal bone or marrow, esophagus, stomach, duodenum, jejunum, ileum, large intestine, liver, spleen, mesenteric lymph node, pancreas, kidneys, adrenals, bladder, gonads, prostate, seminal vesicle, uterus, skin, mammary gland, nerve or voluntary muscle. Weights of the following organs were normal: liver, kidneys, adrenals, heart, brain, prostate, and uterus^{T01997}. A case was reported of woman 40 years of age with severe hypertension and hypokalaemic metabolic alkalosis due to prolonged licorice ingestion^{J12350}. A 69 year-old female developed a case of pseudoaldosteronism after daily use of a mouth refresher containing licorice^{J12934}. Infusion of the dried rhizome, administered intragastrically to dogs, was inactive^{K27014}. The infusion, in combination with Helichrysum arenarium, Tanacetum vulgare, Mentha piperita, and Urtica dioica, administered intragastrically to rats and dogs, had no adverse effect on internal organs, rat embryos and fetuses and postnatal development. There were stabilizing effects on the liver of animals treated with CCl4 and activated microsomal monooxygenases^{K27014}. Licorice extract, at a dose of 25 to 200 gm/daily for 6 months to 5 years, consumed by 4 women aged 38 to 55 years, produced suppression of renin-angiotensin-aldosterone axis resulting in mineralocorticoid deficiency^{M01056}. Water extract of the dried rhizome, taken orally by a 15 year-old male, developed a hypertension encephalopathy after ingesting 0.5 kg of licorice candy. He recovered completely in the course of 5 months^{K25908}. Water extract of the dried root (48-58% glycyrrhizin), administered orally to rats of both sexes at a dose of 0.63 gm/kg daily for 90 days, had no toxic effect. A dose of 2.5 gm/kg decreased body-weight, blood cell count and thymus weight. Atropic cortex and sporadic lymphofollicle formation were noted in the medulla of the thymus gland. All changes reverted to normal after discontinuation of the treatment. A dose of 200 mg/kg, adminsitered by gastric intubation to rats, produce no change in bodyweight, organ weight, blood cell count or histological changes in the liver and kidneys^{M05081}. Water extract of the rhizome, taken orally by adults at variable dosage levels, was active. Five patients who used a laxative containing licorice suffered from toxicities which included hypertension, decreased potassium, plasma renin, and aldosterone levels M31333. Water extract of the root, taken orally by a woman 58 years of age at a dose of 1.8 kg/week, was active. The patient was admitted to hospital because of weakness in the limbs and tirednessM01047.

Toxicity assessment. Ethanol (30%) extract of the root, administered orally to mice of both sexes, produced LD₅₀ 32.0 ml/kg. The LD₅₀ for 30% ethanol was 42 ml/kg^{T01446}. Ethanol/water (1:1) extract of the dried root, administered intraperitoneally to mice, produced LD₅₀ 681.0 mg/kg^{T10126}. Water extract of the dried root (48-58% glycyrrhizin), administered intraperitoneally, orally and subcutaneously to mice and rats, produced LD₅₀ 1.5 gm/kg, 16.0 gm/kg, and 4.2 gm/kg, respectively^{N03792}.

Tranquilizing effect. A preparation that included 1.875 gm each of Coptis chinensis, Scutellaria baicalensis, Liriope sp., Pinellia ternata, Lycium sp., Pachyma sp., Paeonia rubra, Akebia sp., Rehmannia glutinosa, and Glycyrrhiza glabra and 3.75 gm Zingiber officinale, at a dose of 0.5 gm/kg, was active on mice vs rotarod test^{M20428}.

Tryptophan pyrrolase stimulation. Hot water extract of the dried root, in a mixture containing 7 gm *Bupleurum falcatum*, 5 gm *Pinella ternata*, 3 gm *Scutellaria baicalensis*, 4 gm *Zingiber officinale*, 3 gm *Ziziphus*

inermis, 2 gm Glycyrrhiza glabra, and 3 gm Panax ginseng, administered intraperitoneally to rats at a dose of 200.0 mg/kg, suppressed decrease in hepatic tryptophan pyrrolase due to d-galactosamine-induced liver injury vs d-galactosamine-induced hepatotoxicity^{T14824}.

Turgal stimulant activity. Hot water extract of the dried root, in a mixture containing 7 gm *Bupleurum falcatum*, 5 gm *Pinella ternata*, 3 gm *Scutellaria baicalensis*, 4 gm *Zingiber officinale*, 3 gm *Ziziphus inermis*, 2 gm *Glycyrrhiza glabra*, and 3 gm *Panax ginseng*, administered intraperitoneally to rats at a dose of 200.0 mg/kg, decreased the volume of exudate^{T14878}.

Tyrosinase inhibition. Fat soluble fraction of the dried root was active, IC_{50} 3.1 mcg^{K23645}. **UDP glucuronyl transferase stimulation.** Water extract of the dried root, in the ration of mice at a concentration of 25.0% of the diet, was inactive^{K11705}.

Ureteral stone removal. Water extract of the root, taken by adults orally in combination with other plants, was active¹⁰⁹⁸³¹.

Uterine relaxation effect. Ethanol (95%) extract of the root, at a concentration of 1.0 mg/ml, was effective on the pregnant and nonpregnant uterus of dogs^{A05480} and mice^{A00008}. The water extract, administered intraperitoneally to mice and rats at a dose of 50.0 mg/animal, was active^{A05606}. Water extract of the dried root, in a mixture with *Pinellia ternata*, *Citrus aurantium*, *Pachyma hoelen*, and *Zingiber officinale*, at a concentration of 0.01 gm/ml, was active on a rat uterus vs ACh and barium-induced contractions^{T11368}. Water extract of the root was active on a rat uterus^{A00358}.

Uterine stimulant effect. Ethanol (95%) extract of the root, at a concentration of 8.0 mg/ml, was inactive on the pregnant and nonpregnant uterus of dogs^{A05480}.

Vasodilator activity. A preparation that included 1.875 gm each of Coptis chinensis, Scutellaria baicalensis, Liriope species, Pinellia

ternata, Lycium species, Pachyma species, Paeonia rubra, Akebia species, Rehmannia glutinosa, and Glycyrrhiza glabra and 3.75 gm Zingiber officinale, at a concentration of 1.0%, was active on the rabbit blood vessel^{M20428}.

WBC stimulant. Decoction of the dried root, in a prescription containing Glycyrrhiza glabra root, Panax ginseng root, Bupleurum falcatum root, Scutellaria baicalensis root, Zingiber officinale rhizome, Pinellia ternata tuber, and Ziziphus vulgaris fruit, at a concentration of 20.0 mcg/ml, produced an average enhanced response of 40%. When enhancement of pokeweed mitogen-induced peripheral mononuclear cell proliferation was assayed, the response was enhanced an average of 34%. The extract was inactive when enhancement of phytohemagglutinin- and concanvallin A-induced peripheral mononuclear cell proliferation were assayed, and on leukocytes obtained from AIDS patients. The response increased 23% with enhancement of pokeweed mitogen-induced proliferation in leukocytes obtained from AIDS patients^{K07123}.

Weight gain increase. Hot water extract of the dried root, when taken orally by healthy subjects at a dose of 100 gm/day for 8 weeks, showed a mean increase of 1.6 kg. The weight gain was normalized 3 weeks after the end of the treatment^{M21430}.

Weight gain inhibition. Water extract of the dried root, in the ration of mice at a concentration of 8.0% of the diet, was effective^{K11705}.

Weight loss. Hot water extract of a mixture containing 8 gm Bupleurum species, 3 gm Glycyrrhiza glabra, 3 gm Ziziphus jujuba, 1 gm Zingiber officinale, 3 gm Panax ginseng, 8 gm Pinellia ternata, and 3 gm Scutellaria baicalensis, administered by gastric intubation to rats at a dose of 1.1 gm/kg, was effective^{T09859}.

Xanthine oxidase inhibition. Water extract of the dried root, at a concentration of 30.0 mcg/ml, was active^{M28190}.

REFERENCES

A00008 Shihata, I. M. and M. I. Elghamry. Estrogenic activity of *Glycyrrhiza glabra* with its effect on uterine motility at various stages of the sex cycle. **Zentralbl Veterinaermed** 1963; 10A: 155–.

A00009 Elghamry, M. I., A. Hassan and S. M. A. D. Zayed. Estrogenic substances from Egyptian *Gly-cyrrhiza glabra*. I. Separation and estimation of a highly potent estrogenic fraction. **Zentralbl Veterinaermed** 1964; 11A: 70–.

A00010 Zayed, S. M. A. D., A. Hassan and M. I. Elghamry. Estrogenic substances from Egyptian *Glycyrrhiza glabra*. II. Beta-sitsoterol as an estrogenic principle. **Zentralbl Veterinaermed** 1964; 11A: 476–.

A00011 Zayed, S. M. A. D., M. I. Elghamry and A. Hassan. Estrogenic substances from Egyptian *Glycyrrhiza glabra*. III. Separation and estrogenic potency of the phenolic constituents on the mouse. **Zentralbl Veterinaermed** 1964; 11A: 773–.

A00012 Van Hulle, C. The estrogenic action of licorice root. **Pharmazie** 1970; 25: 620–.

A00013 Murav'ev, I. A. and N. F. Kononikhina. Estrogenic properties of *Glycyrrhiza glabra* (Licorice). **Rast Resur** 1972; 8: 490–.

A00124 Holler, H., H. Huckel and W. Schneider. Does licorice possess estrogenic properties? **Sci Pharm** 1960; 28: 33–.

A00358 Takagi, K. and M. Harada. Pharmacological studies on herb peony root. III. Effects of Peoniflorin on circulatory and respiration systems and isolated organs. Yakugaku Zasshi 1969; 89: 893–.

A00449 Mukerji, B. The Indian Pharmaceutical Codex. Volume I-Indigenous Drugs. Council of Scientific and Industrial Research, New Delhi, India, 1953.

A02047	Han, B. H., H. J. Chi, Y. N. Han	A05989	Shibata, S. Some Chemical Stud-
	and K. S. Ryu. Screening on the		ies on Chinese Drugs. Some Re-
	anti-inflamatory activity of crude		cent Developments in the Chem-
	drugs. Korean J Pharmacog		istry of Natural Products (Ran-
	1972; 4(3): 205–209.		gaswami, S. and N. V. Subba Rao,
A03634	Fitzpatrick, F. K. Plant substances		Ed), Prentice Hall, New Delhi
	active against Mycobacterium tu-	106510	1972; 1972: 1–.
	berculosis. Antibiot Chemother	A06518	Sharaf, A. Estrogenicity in plants.
A03781	1954; 4: 528–. Kattaev, N. S. and G. K. Niko-		Arab Sci Congr 5th, Baghdad 1966. 1967; 1: 281–.
	nov. Glabranin-A new flavanone	A06628	Rasenack, P. Sweet substances
	from Glycyrrhiza glabra. Khim		of Eupatorium rebaudianum
	Prir Soedin 1972; 8: 805		and of licorice. Arb Kais Biol
A04132	Saha, J. C., E. C. Savini and S.		Anst Land Fortwirtsch 1908;
	Kasinathan. Ecbolic properties		28: 420–.
	of Indian medicinal plants. Part	A06746	Wrocinski, T. Determination of
	1. Indian J Med Res 1961; 49:		the activity of spasmolytic drugs
4.04021	130–151.		with reference to the Papaverine
A04231	Puri, H. S. Indian medicinal plants		Standard. Biul Inst Rosl Leczn
	used in elixirs and tonics. Q J Crude Drug Res 1970; 10: 1555–.	A14888	1960; 6: 236–. Gujral, M. L., P. N. Saxena and
A04678	Costello, C. H. and E. V. Lynn.	A14000	R. P. Kohli. Antipyretic activity
1101070	Estrogenic substances from plants.		of some indigenous drugs. Ind-
	I. Glycyrrhiza. J Amer Pharm		ian J Med Res 1955; 43(3): 457–
	Ass Sci Ed 1950; 39: 177–.		461.
A04826	Kononikhina, N. F. Conditions	H09651	Mestechkina, N. M., K. Dovlet-
	for the extraction of the phytoes-		muradov and V. D. Shcherbuk-
	trogens from Glycyrrhiza glabra		hin. A galactomannan from seeds
	(Licorice). Aktual Vopr Farm		of licorice (Glycyrrhiza glabra).
A 0.4970	1970; 1970: 112–.		Prikl Biokhim Mikrobiol 1991;
A04870	Sharaf, A. and N. Goma. Phytoestrogens and their antagonism	H13735	27(3): 435–441. Fukai, T., J. Nishiza, M. Yoko-
	to progesterone and testosterone.	1113733	yama, L. Tantai and T. Nomura.
	J Endocrinol 1965; 31: 289–.		Five new isoprenoid-substituted
A04871	Tuskaev, A. K. Estrogen activ-		flavonoids, kanzonols M-P and
	ity of some fodder plants in North-		R, from two Glycyrrhiza spe-
	ern Ossetia. Rast Resur 1971; 7:		cies. Heterocycles 1994; 38(5):
	295–.		1089–1098.
A05480	Shihata, M. and M. I. Elghamry.	H17895	Kinoshita, T., K. Kajiyama, Y.
	Experimental studies in the ef-		Hiraga, K. Takahashi, Y. Tamura
	fect of Glycyrrhiza glabra. Planta		and K. Mizutani. Isoflavan deriv-
A05606	Med 1963; 11:37		iatives from Glycyrrhiza glabra
A03000	Sharaf, A. Food plants as a possible factor in fertility control.		(Licorice). Heterocycles 1996; 43(3): 581–588.
	Qual Plant Mater Veg 1969;	H18364	Fukai, T., L. Tantai and T. Nom-
	17: 153–.		ura. Isoprenoid-substituted fla-
A05981	Goryachev, V. S., L. E. Pauzner		vonoids from Glycyrrhiza glabra.
	and S. S. Muinova. Estrogenic		Phytochemistry 1996; 43(2):
	activity of Glycyrrhiza glabra		531–532.
	and Glycyrrhiza uralensis Hay.	H18792	Kinoshita, T., K. Kajiyama, Y.
	Mater Biol Vidov Roda Gly-		Hiraga K. Takahashi, Y. Tamura
	cyrrhiza 1970; 1970: 11–.		and K. Mizutani. The isolation

	of new Pyrano-2-arylbenzofuran derivatives from the root of <i>Glycyrrhiza glabra</i> . Chem Pharm	J09831	Anon. "General attack therapy" of ureteral stone. Natl Med J China 1975; 55: 32–.
H19154	Bull 1996; 44(6): 1218–1221. Fukai, T., C. B. Sheng, T. Horikoshi and T. Nomura. Isoprenylated flavonoids from underground parts of <i>Glycyrrhiza glabra</i> . Phytochemistry 1996; 43 (5): 1119–1124.	J10712	Yamaoka, Y., T. Kawakita, M. Kaneko and K. Nomoto. A polysaccharide fraction of <i>Zizyphi fructus</i> in augmenting natural killer activity by oral administration. Biol Pharm Bull 1966; 19(7): 936–939.
H19475	Kitagawa, I., W. Z. Chen, K. Hori, E. Harada, N. Yasuda, M. Yoshikawa and J. Ren. Chemical studies of Chinese licorice-roots. I. Elucidation of five new flavonoid constituents from the roots	J11413	Aminov, S. D., A. A. Vakhabov and R. K. Hasanova. Anti-in-flammatory activity of flavonoids from aerial parts of <i>Glycyrrhiza glabra</i> and its derivatives. Dokl Akad Nauk Resp
	of <i>Glycyrrhiza glabra</i> L. collected in Xinjiang. Chem Pharm Bull 1994; 42(5): 1056–1062.	J11422	Uzb 1995; 9/10: 55–56. Moon, A. and S. H. Kim. Effect of <i>Glycyrrhiza glabra</i> roots and
H21113	Asada, Y., W. Li and T. Yoshi- kawa. Isoprenylated flavonoids from hairy root cultures of <i>Gly</i> -		glycyrrhizin on the glucuronidation in rats. Planta Med 1996; 62(2): 115–119.
	cyrrhiza glabra. Phytochemistry 1998; 47(3): 389–392.	J12350	Heikens, J., E. Fliers. E. Endert, M. Ackermans and G. Van Mont-
H21593	Kinoshita, T., Y. Tamura and K. Mizutani. Isolation and synthesis of two new 3-arylcoumarin derivatives from the root of <i>Glycyrrhiza glabra</i> (Licorice), and		frans. Liquorice-induced hypertension - A new understanding of an old disease: Case report and brief review. Neth J Med 1995; 47(5): 230–234.
	structure revision of an antioxidant isoflavonoid glabrene. Nat Prod Lett 1997; 9(4): 289–296.	J12382	Hrelia, P., C. Fimognari, F. Maffel, F. Vigagni and G. Cantelli-Forti. Potential antimutagenic
J01883	Hoton-Dorge, Mrs. M. Identification of some flavonoid aglycone extracts of <i>Glycyrrhiza gla-</i>		activity of <i>Glycyrrhiza glabra</i> extract. Phytother Res 1996; 10: S101–S103.
	<i>bra</i> roots. J Pharm Belg 1974; 29: 560–.	J12401	Cantelli-Forti, G., M. A. Raggi, F. Buganelli, F. Maffei, A. Vil-
J07913	Elgamal, M. H. A. and M. B. E. Fayez. A new triterpenoid from the roots of <i>Glycyrrhiza glabra</i> . Constituents of local plants. XXI.		lari and N. M. Trieff. Toxicological assessment of liquorice: Biliary excretion in rats. Pharmacol Res 1997; 35(5): 463–470.
	Naturwissenschaften 1975; 62: 183–.	J12420	Sigurjonsdottir, H. A., J. Ragnarsson, L. Franzson and G. Signarsson
J08389	Kattaev, N. S. and G. K. Nikonov. Flavonoids of <i>Glycyrrhiza glabra</i> . Chem Nat Comp 1974; 10(1): 94–95.		urdsson. Is blood pressure commonly raised by moderate consumption of liquorice? J Human Hypertension 1995; 9(5): 345–
J09693	Ishii, Y. and Y. Fujii. Effects of several mild antiulcer agents on pylorus ligated rats (Shay rats). Nippon Yakurigaku Zasshi 1974; 70: 863–.	J12441	348. Sekizaki, H. Antifungal activity of medicinal plants to phytopathogens. Nat Med 1995; 49(1): 97–103.

J12590	Latchman, Y. Whittle, B. Rustin,	K01553	Setty, B. S., V. P. Kamboj, H. S.
	M., D. J. Atherton and J. Bro-		Garg and N. M. Khanna. Sper-
	stoff. The efficacy of traditional		micidal potential of saponins
	Chinese herbal therapy in atopic		isolated from Indian medicinal
	eczema. Int Arch Allergy Im-		plants. Contraception 1976; 14
	munol 1994; 104(3): 222–226.		(5): 571–578.
J12934	Kageyama, K., H. Watanobe, M.	K01941	
J12734		KU1941	Bhardwaj D. K., R. Murari, T. R.
	Nishie, K. I. Imamura and T.		Seshadri and R. Singh. Liqcou-
	Suda. A case of pseudoaldoster-		marin, a novel coumarin from
	onism induced by a mouth re-		Glycyrrhiza glabra. Phytoche-
	fresher containing licorice. Endo-	1701000	mistry 1976; 15: 1182–1183.
	crine J 1997; 44(4): 631–632.	K01990	Bogatkina, V. F., I. A. Murav'ev,
J13228	Shintani, S., H. Murase, H.		E. F. Stephanov and N. P. Kir'
	Tsukagoshi and T. Shigai. Gly-		yalov. Triterpene compounds
	cyrrhizin (licorice)- induced hy-		from the epigeal mass of Glycyr-
	pokalemic myopathy. Eur Neu-		rhiza glabra. Chem Nat Comp
	rol 1992; 32: 44–51.		1975; 11(1): 114–115.
J13291	Seelen, M. A. J., P. H. E. M. Mei-	K03299	Bharadwaj, D. K., R. Murari, T.
	jer, J. Braun, L. M. J. W. Swin-		R. Seshadri and R. Singh. Occur-
	kels and H. W. A. E. Meinders.		rence of 2-methylisoflavones in
	Hypertension caused by liquorice		Glycyrrhiza glabra. Phytoche-
	consumption. Nederland Tijd-		mistry 1976; 15: 352–353.
	schr Geneeskunde 1996; 140	K04125	Kinoshita, T., T. Saitoh and S.
	(52): 2632–2635.	110	Shibata. The occurrence of an iso-
J13941	Fuhrman, B., S. Buch, J. Jaya, P.		flavene and the corresponding
313711	Belinky, R. Coleman, T. Hayek		isoflavone in licorice root. Chem
	and M. Aviram. Licorice extract		Pharm Bull 1976; 24: 991–.
	and its major polyphenol gla-	K07057	Kakumu, S., K. Yoshioka, T.
	bridin protest low-density lipo-	107057	Wakita and T. Ishikawa. Effects
	protein against lipid peroxida-		of TJ09 Sho-Saiko-To (Kampo
	tion: In vitro and ex vivo studies		medicine) on interferon gamma
	in humans and in atherosclero-		
			and antibody production speci-
	tic apolipopriotein E-deficient		fic for Hepatitis B virus antigen
	mice. Amer J Clin Nutr 1997;		in patients with Type B chronic
T12074	66(2): 267–2757.		hepatitis. Int J Immunophar-
J13964	Gray, A. M. and P. R. Flatt. Nat-	****	macol 1990; 13(2/3): 141–146.
	ure's own pharmacy: The diabe-	K07123	Inada, Y., K. Watanabe, M.
	tes perspective. Proc Nutr Soc		Kamiyama, T. Kanemitsu, W. S.
	1997; 56(1B): 507–517.		Clark and M. Lange. In vitro im-
J14032	Yarnell, E. Botanical medicine		munomodulatory effects of tra-
	for cystitis. Altern Complement		ditional Kampo medicine (Sho-
	Therap 1997; 1997: 269–275.		Saiko-To: SST) on peripheral
J14578	Paolini, M., L. Pozzatti, A. Sapone		mononuclear cells in patients
	and G. Cantelli-Forti. Effect of		with AIDS. Biomed Pharmaco-
	licorice and glycyrrhizin on mu-		ther 1990; 44(1): 17–19.
	rine liver cyp-dependent mono-	K07222	Wang, X.Q. TLC-densitometric
	oxygenases. Life Sci 1998; 62		determination of liquitrin in Ra-
	(6): 571–582.		dix glycyrrhizae. Yaowu Fenxi
K00040	Anon. Gras status of foods and		Zazhi 1990; 10(6): 351–352.
	food additives. Fed Regist 1976;	K07495	Farese, J. R., E. G. Biglieri, C.
	41: 38644–.		H. L. Shackleton, I. Irony and R.

K07503	Gomez-Fontes. Licorice-induced hypermineralcorticoidism. Gen Clinical Res Cent 1991; 325 (17): 1223–1227. Edwards, C. R. W. Lessons from licorice. N Engl J Med 1991;	K09144	ditional Chinese herbal therapy in adult atopic dermatitis. Lan- cet 1992; 340(8810): 13–17. Sheehan, M. P. and D. J. Ather- ton. A controlled trial of tradi- tional Chinese medicinal plants
K07531	325(17): 1242–1243. Kuo, S., D. M. Shankel, H. Telikepalli and L. A. Mitscher. Glycyrrhiza glabra extract as an effector of interception in Escherichia coli K12+. Mutat Res 1992; 282(2): 93–98.	K09209	in widespread non-exudative atopic eczema. Brit J Dermatol 1992; 126(2): 179–184. Furukawa, M., H. Sakashita, M. Kamide and R. Umeda. Inhibitory effects of Kampo medicine on Epstein-Barr virus antigens
K07727	Kassir, Z. A. Endoscopic controlled trial of four drug regimens in the treatment on chronic duodenal ulceration. Irish Med	K09241	induction by tumor promoter. Auris-Nasus Larynx (Tokyo) 1990; 17(1): 49–54. Graham-Brown, R. Toxicity of
K08041	J 1985; 78(6): 153–156. Mahmoud, I., A. Alkofahi and A. Abdelaziz. Mutagenic and toxic activities of several spices and some Jordanian medicinal plants. Int J Pharmacog 1992; 30(2): 81–85.	K09254	Chinese herbal remedies. Lancet 1992; 340(8820): 673–674. Webb, T. E., P. C. Stromberg, H. Abou-Issa, R. W. Curly Jr. and M. Moeschberger. Effect of dietary soybean and licorice on the male F344 rat: An integrated
K08369	Nagatsu, Y., M. Inoue and Y. Ogihara. Effects of Shosaikoto (Kampo medicine) in lipid metabolism in macrophages. Chem Pharm Bull 1992; 40(7): 1828–	K09820	study of some parameters relevant to cancer chemoprevention. Nutr Cancer 1992; 18(3): 215–230. Weinberg, D. S., M. I. Mainer,
K08429	1830. Sitohy, M. Z., R. A. El-Massary, S. S. El-Saadany and S. M. Labib. Metabolite effects of licorice roots (<i>Glycyrrhiza glabra</i>) on lipid distribution pattern, liver and renal functions of albino	1105020	M. D. Richardson and F. G. Haibach. Identification and quantification of isoflavonoid and triterpenoid compliance markers in a licorice-root extract powder. J Agr Food Chem 1993; 41(1): 42–47.
K08654	rats. Nahrung 1991; 35(8): 799–806. Wang, Z. Y., R. Agarwal, W. A. Khan and H. Mukhtar. Protection against benzo(a)pyrene- and n-nitrosodiethylamine-induced lung and forestomach tumori-	K10131	Pratesi, C., M. Scali, V. Zampollo, M. C. Zennaro, P. De Lazzari, S. Lewicka, P. Vecsei and D. Armanini. Effects of licorice on urinary metabolites of cortisol and cortisone. J Hypertension 1991; 9(S6): S274–
K09062	genesis in A/J mice by water extracts of green tea and licorice. Carcinogenesis 1992; 13(8): 1491–1494. Sheehan, M. P., M. H. A. Rustin, D. J. Atherton, C. Buckley, D. J. Harris, J. Brostoff, L. Ostlere and A. Dawson. Efficacy of tra-	K11066	S275. Voskoboinikoya, I. V., N. A. Tjukavkina, V. K. Kolhir, S. V. Geodakyan, V. A. Zjuzin, Y. A. Kolesnik and V. I. Litvineko. Experimental pharmacokinetics of biologically active plant phenolic compounds. II. Pharmaco-

K11705	kinetics of likvirtin in the rat. Phytother Res 1993; 7(1): 84–86. Mirsalis, J. C., C. M. Hamilton, J. E. Schindler, C. E. Green and J. E. Dabbs. Effects of soya bean	K14330	Horii, A. and M. Maekewa. Clinical evaluation of ginseng and astragalus combination used to treat nephroptosis. Int J Orient Med 1993; 18(3): 140–147.
K11894	flakes and liquorice root extract on enzyme induction and toxic- ity in B6C3F1 mice. Food Chem Toxicol 1993; 31(5): 343–350. Caradonna, P., N. Gentioloni, S. Servidei, G. A. Perrone, A. V. Greco and M. A. Russo. Acute	K15379	Chen, H. R. and Sheu, S. J. Determination of glycyrrhizin and glycyrrhetnic acid in traditional Chinese medicinal preparations by capillary electrophoresis. J Chromatogr A 1993; 653(1): 184–188.
	myopathy associated with chro- nic licorice ingestion: Reversible loss of myoadenylated deami- nase activity. Ultrastructural	K15582	Schambelan, M. Licorice ingestion and blood pressure regulating hormones. Steroids 1994; 59(2): 127–130.
K13101	Pathol 1992; 16(5): 529–535. Acharya, S. K., S. Dasarathy, A. Tandn, Y. Joshi and B. N. Tan-	K15610	Muravyev, I. A., L. Y. Staro- kozhko, O. P. Kolesnikova, V. A. Kozlov and Z. D. Khadzhi-
	don. A preliminary open trial on interferon stimulator (SNMC) derived from <i>Glycyrrhiza glabra</i> in the treatment of subacute hep-		yeva. Examining the immuno- modulating properties of glycy- ram and thick licorice (Glycyr- rhiza) root extract. Khim Farm
K13115	atic failure. Indian J Med Res 1993; 98(2): 69–74. Matsuura, K., T. Kawakita, S.	K16152	Zh 1992; 26(9/10): 39–42. Armenini, D., C. Pratesi, M. Scali, V. Zampollo and M. C. Zennaro.
	Nakal, Y. Saito, A. Suzuki and K. Nomoto. Role of B-lympho-		The mechanism of mineralcorticoid action of licorice: Demon-
	cytes in the immunopharmacological effects of a traditional Chinese medicine, Xiao-Chai-		stration of a direct effect in vivo on mineralocorticoid receptions. Endocrine Soc 74th Annual Meet
	Hu-Tang (Shosaiko-To). Int J Immunopharmacol 1993; 15(2):		Prog Abstract June 1992. 1979; 267 pp
K13428	237–243. Dai, J. Z., J. W. Zhang, K. Li, S. L. Hu and Y. P. Lu. Action against peptic ulcer of Gantongsuan. Zhongguo Yiyao Gongye Zazhi	K16587	Hayashi, H., H. Fukui and M. Tabata. Distribution pattern of saponins in different organs of <i>Glycyrrhiza glabra</i> . Planta Med 1993; 59(4): 351–353.
K13785	1992; 23(11): 509–511. Mizoguchi, Y., Y. Komats and Y. Ohkura. Effects of Sho-Saiko-To	K16830	Zani, F., M. T. Cuzzoni, M. Daglia, S. Benvenuti and P. Mazza. Inhibition of mutagenicity in <i>Sal</i> -
V14222	on cytokine cascade and arachidonic acid cascade. Adv Exp Med Biol 1992; 319: 309–317.		monella typhimurium by Glycyrrhiza glabra extract, glycyrrhizinic acid, 18A- and 18B-glycyrhizinic acid, 18A- and 18B-glycyrhizin acids Blorts Med 1002.
K14322	Nishio, S., S. Hayashi and H. Yoshihara. The effects of ginseng & ginger combination and rhubarb & licorice combination on patients with chronic renal failure. Int J Orient Med 1993; 18(3): 148–155.	K17032	rhetnic acids. Planta Med 1993; 59(6): 502–507. Bernardi, M., P. E. D'Intino, F. Trevisani, G. Cantelli-Forti, M. A. Raggi, E. Turchetto and G. Gasbarrini. Effects of prolonged ingestion of graded doses of

K17195	licorice by healthy volunteers. Life Sci 1994; 55(11): 863–872. Homma, M., K. Oka, T. Niitsuma and H. Itoh. A novel 11B-hydroxysteroid dehydrogenase inhibitor contained in Saibuko-To, a herbal remedy for steroid-dependent bronchial asthma. J Pharm Pharmacol 1994; 46(4): 305–309.	K21046	J Dermatol 1995; 132(4): 592–598. Dehpour, A. R., M. E. Zolfaghari, T. Samadian, F. Kobarfard, M. Faizi and M. Assari. Antiulcer activities of liquorice and its derivatives in experimental gastric lesion induced by Ibuprofen in rats. Int J Pharmaceut 1995; 119(2): 133–138.
K18999	Gaworski, C. L., T. A. Vollmuth, M. M. Dozier, J. D. Heck, L. T. Dunn, H. V. Ratajczak and P. T. Thomas. An immunotoxicity assessment of food flavouring ingredients. Food Chem Toxicol 1994; 32(5): 409–415.	K21540	Hayashi, H., H. Fukui and M. Tabata. Examination of triterpenoids produced by callus and cell suspension cultures of <i>Glycyrrhiza glabra</i> . Plant Cell Rep 1988; 7(7): 508–511. Moon, A., M. K. Lee, S. H. Kim,
K19271	Basso, A., L. Dalla Paola, G. Erle, M. Boscaro and D. Armanini. Licorice ameliorates postural hypotension caused by diabetic autonomic neuropathy. Diabetes	K23386	Y. C. Kim and S. D. Lee. Effect of <i>Glycyrrhizae radix</i> on the glucuronidation in rat liver. Arch Pharm Res 1995; 18(5): 320–324. Kobayashi, S., T. Miyamoto, I.
K20129	Care 1994; 17(11): 1356—. Hattori, T., T. Nagamatsu, M. Ito and Y. Suzuki. Studies on anti- nephritic effect of TJ-8014, a new Japanese herbal medicine, and its mechanisms (1): Effects	22000	Kimura and M. Kimura. Inhibitory effect of isoliquiritin, a compound in licorice root, on angiogenesis in vivo tube formation in vitro. Biol Pharm Bull 1995; 18(10): 1382–1386.
	on original-type anti-gbm nephritis in rats and platelet aggregation. Jap J Pharmacol 1989; 50(4): 477–485.	K23609	Kim, S. Y., J. H. Kim, S. K. Kim, M. J. Oh and M. Y. Jung. Antioxidant activities of selected Oriental herb extracts. J Amer
K20199	Sheehan, M. P., H. Stevens, L. S. Ostlere, D. J. Atherton, J. Brostoff and M. H. Rustin. Follow-up of adult patients with atopic eczema treated with Chinese herbal therapy for 1 year. Clin Exp Dermatol 1995; 20(2): 136–140.	K23645	Oil Chem Soc 1994; 71(6): 633–640. Haramoto, I. Licorice extract has an inhibitory effect on melanogenesis and improve melasma and other pigmented lesions by its topical use. Sei Marianna Ika Daigaku Zasshi 1994; 22(6):
K20308	Baschetti, R. Chronic fatigue syndrome and liquorice. New Zealand Med J 1995; 108(998): 156–157.	K23960	941–946. Hadas, N. Cosmetic preparation containing plant extracts for bleaching the skin. Patent-Ger
K20398	Latchman, Y., G. A. Bungy, D. J. Atherton, M. H. Rutin and J. Brostoff. Efficacy of traditional Chinese herbal therapy in vitro. A model system for atopic eczema: Inhibition of CD 23 expression on blood monocytes. Brit	K24219	Offen-19,509,434 1995; 8 pp Hayashi, H., G. Honda, M. Tabata, H. Yamamoto, E. Yesilada and E. Sezik. A survey of distribution and chracteristics of <i>Glycyrrhiza</i> glabra L. in Turkey. Nat Med 1995; 49(2): 129–132.

K24968	Yabe, T., K. Toriizuka and H.	K27061	Fujita, T., E. Sezik, M. Tabata, E.
	Yamada. Kami-Untan-To (KUT) improves cholinergic deficits in aged rats. Phytomedicine 1996;		Yesilada, G. Honda, Y. Takeda, T. Taanka and Y. Takaishi. Traditional medicine in Turkey VII.
	2(3): 253–258.		Folk medicine in Middle and
K25908	Van Der Zwan, A. Hypertension		West Black Sea regions. Econ
	encephalopathy after liquorice ingestion. Clin Neurol Neuro-	K27186	Bot 1995; 49(4): 406–422. Brayley, J. and J. Jones. Life-
	surg 1993; 95(1): 35–37.	K2/100	threatening hypokalemia asso-
K26333	Basavarajaiah, C. R., D. S. Lucas,		ciated with excessive licorice
	R. Anadarajashekhar and R. R. Parmesh. Fundamentals of Ayur-		ingestion. Amer J Psychiatry 1994; 151(4): 617–618.
	vedic pharmaceuticals anti-in-	K27340	Novaretti, R. and D. Lemordant.
	flammatory activity of different preparations of three medicinal		Plants in the traditional medicine of the Ubaye Valley. J Ethno-
	plants. J Res Edi Ind Med 1990;		pharmacol 1990; 30(1): 1–34.
	9(3): 25–30.	K27726	Abbasoglu, U. and S. Turkoz.
K26376	Sharma, M. P., J. Ahmad, A. Hussain and S. Khan. Folklore		Antimicrobial activities of sapo- nin extracts from some indige-
	medicinal plants of Mewat (Gur-		nous plants of Turkey. Int J Phar-
	gaon District), Haryana, India.		macog 1995; 33(4): 293–296.
	Int J Pharmacog 1992; 30(2):	K27820	Bellakhdar, J., R. Claisse, J.
K26760	135-137. Usai, M., V. Picci and A. D.		Fleurentin and C. Younos. Repertory of standard herbal drugs
R20700	Atzel. Glycyrrhizin variability in		in the Morrocan pharmagopoea.
	subterranean organs of Sardinian		J Ethnopharmacol 1991; 35(2):
	Glycyrrhiza glabra subspecies Glabra var. Glabra. J Nat Prod	K28100	123-143. Badria, F. A. Is man helpless
	1995; 58(11): 1727–1729.	1120100	against cancer? An environmen-
K26801	Wang, Z., M. Nishioka, Y. Kuro-		tal approach: Antimutagenic
	saki, T. Nakayama and T. Kim- ura. Gastrointestinal absorption		agents from Egyptian food and medicinal preparations. Cancer
	characteristics of glycyrrhizin		Lett 1994; 84(1): 1–5.
	from Glycyrrhiza extract. Biol	K28424	Hattori, M., T. Nakabayashi, Y.
	Pharm Bull 1995; 18(9): 1238–		A. Lim, H. Miyashiro, M. Kuro-
K27014	1241. Ubasheev, I. O., K. S. Lonshak-		kawa, K. Shiraki, M. P. Gupta, M. Correa and U. Pilapitiya. In-
1127011	ova, E. I. Matkhanov, T. A. Azh-		hibitory effects of various Ayu-
	unova, E. L. Tolmacheva and V.		rvedic and Panamanian medici-
	N. Strubinova. Cellular-molecular assessment of toxicity and em-		nal plants on the infection of Herpes simplex virus-1 in vitro
	bryotoxicity of cholagogic her-		and in vivo. Phytother Res
	bal tea. Khim Farm Zh 1988;		1995; 9(4): 270–276.
K27056	22(4): 445–450. Hayashi, H., M. Yasuma, N. Hira-	K28444	Yamazaki, M., A. Sato, K. Shi- momura, K. Inoue, Y. Ebizuka,
K27030	oka, Y. Ikeshiro, H. Yamamoto,		I. Murakoshi and K. Saito. Ex-
	E. Yesilada, E. Sezik, G. Honda		traction of DNA and rapid analy-
	and M. Tabata. Flavonoid varia-		sis from dried licorice root. Nat
	tion in the leaves of Glycyrrhiza glabra. Phytochemistry 1996;	K28772	Med 1995; 49(4): 488–490. Hayashi, H., N. Hiraoka and Y.
	42(3): 701–704.		Ikeshiro. Molecular cloning and

K28931	functional expression of CDNAs for <i>Glycyrrhiza glabra</i> squalene synthase. Biol Pharm Bull 1996; 19(10): 1387–1389. Thein, K., W. Myin, M. M.	M00142	vor components of licorice. J Agr Food Chem 1977; 25: 1238–. Bhardwaj, D. K., and R. Singh. 'Glyzaglabrin', a new isoflavone from <i>Glycyrrhiza glabra</i> . Curr
K20731	Myint, S. P. Aung, M. Khin, A. Than and M. Bwin. Preliminary screening of medicinal plants for biological activity based on inhibition of cyclic AMP phos-	M00186	Sci 1977; 46: 753—. Taylor, A. A., F. C. Bartter. Hypertension in licorice intoxication, acromegaly, and Cushing's syndrome. Hypertens Physio-
K28964	phodiesterase. Int J Pharmaceut 1995; 33(4): 330–333. De Klerk, G. J., M. G. Nieuwenhuis and J. J. Beutler. Hypokalaemia and hypertension associ-	M01047	pathol Treat 1977; 1977: 755–. Bannister, B., R. Ginsburg and J. Shneerson. Cardiac arrest due to liquorice-induced hypokalae- mia. Brit Med J 1977; 1977(2):
K29399	ated with use of liquorice flavoured chewing gum. Brit Med J 1997; 314(7082): 731–732. Watanabe, T., T. L. Komeno,	M01048	738–. Montoliu, J. Liquorice-induced cardiac arrest. A commentary. Brit Med J 1977; 1977(2):
	M. Hatanaka and E. Takahashi. Hair growth stimulants containing chitosan, saccharides, and natural products. Patent-Japan	M01049	1353A Bannister, B. A., R. Ginsburg and J. Shneerson. Liquorice-induced cardiac arrest-A rebuttal. Brit
L00299	Kokai Tokkyo Koho-08 20,514 1996; 8 pp. Jaskonis, J. Multiplication and growth of licorice and the accumulation of active substances in its roots. (2. Accumulation of	M01055	Med J 1977; 1977(2): 1353B—. Green, G., D. Hollanders, B. E. Boyes, I. L. Woolf, D. J. Cowley and I. W. Dymock. Is long-term prophylaxis for recurrent gastric ulceration a practical proposi-
	active substances). Liet Tsr Mokslu Akad Darb Ser C 1976; 1976(3): 49–.	M01056	tion? Gut 1975; 16: 842–. Epstein, M. T., E. A. Espiner, R. A. Donald and H. Hughes.
L00505	Epstein, M. T., E. A. Espiner, R. A. Donald and H. Hughes. Effect of eating liquorice on the reninangiotensen aldosterone axis in		Liquorice toxicity and the reninangiotensin-aldosterone axis in man. Brit Med J 1977; 1977(1): 209–.
L00715	normal subjects. Brit Med J 1977; 1977(1): 488–. Der Marderosian, A. H. Pharma-	M05081	Tsurumi, K. and H. Fujimura. Change of purgative activity and subacute toxicity by successive
	cognosy: Medicinal teas-boon or bane? Drug Ther 1977; 1977(7): 178–186.		administration of cathartic preparation (DK-EXT) made from water extract of rhubarb and lic-
L02443	Ingham, J. L. An isoflavan phytoalexin from leaves of <i>Glycyr</i> -	M06404	orice. Oyo Yakuri 1975; 10(2): 329–341.
L02475	rhiza glabra. Phytochemistry 1977; 16: 1457–1458. Cumming, A. M. M. Metabolic effects of liquorice. J Agr Food Chem 1977; 25: 1238–.	M06494	Hirag, Y., H. Endo, K. Takahashi and S. Shibata. High-performance liquid chromatographic analysis of licorice extracts. J Chromatogr 1984; 292(2): 451–453.
L02697	Frattini, C., C. Bicchi, C. Barettini and G. M. Nano. Volatile fla-	M07972	Amagaya, S., E. Sugishita, Y. Ogihara, S. Ogawa, K. Okada

	and T. Aizawa. Separation and	M18060	Kawakita, T., A. Yamada, M.
	quantitative analysis of 18-alpha-		Mitsuyama, Y. Kumazawa and
	glycyrrhetinic acid and 18-beta- glycyrrhetinic acid in <i>Glycyrr</i> -		K. Nomoto. Protective effect of a traditional Chinese medicine,
	hizae radix by gas-liquid. J Chro -		Xiao-Chai-Hu-Tang (Japanese
	matogr 1985; 320(2): 430–443.		name: Shosaiko-To), on listeria
M07997	Vora, P. S. and R. M. Tuorto.		monocytogenes infection in mice.
	Liquid chromatographic deter-		Immunopharmacol Immunoto-
	mination of sugars in licorice		xicol 1988; 10(3): 345–364.
	extracts: Collaborative study. J	M18099	Watanabe, S. I., W. Y. Chey, K.
	Ass Offic Anal Chem 1984; 67		Y. Lee and T. M. Chang. Release
	(4): 764–767.		of secretin of licorice extract in
M09959	Glasl, H. and M. Ihrig. Quantita-		dogs. Pancreas 1986; 1(5): 449–
	tive determination of triterpene		454.
	saponins in drugs. Pharm-Ztg	M18213	Nisteswar, K. and V. K. Murthy.
3.644	1984; 129(43): 2619–2622.		Aphrodisiac effect of indigenous
M11732	Khan, M. M. A. and M. I. Ali.		drugs-A myth or reality? Probe
	Iltehab tajaweek-e-anf (sinusi-	N410551	1989; 28(2): 89–92.
	tis) (A clinical and therapeutic study). Bull Islamic Med 1982;	M18551	Tsuda, T., K. Kubota, K. yasuda,
	2: 469–472.		S. Nishikawa, A. Sugaya and E. Sugaya. Effects of Chinese her-
M13969	Batirov, E. K., F. Kiyamitdinova		bal medicine "Kanbaku-Taiso-
1.110,00	and V. M. Malikov. Flavonoids		To" on transmembrane ionic
	of the epigeal part of Glycyr-		currents and its local anesthetic
	rhiza glabra. Chem Nat Comp		action. J Ethnopharmacol 1986;
	1986; 22(1): 111–112.		17(3): 257–261.
M14042	Tawata, M., K. Aida, H. Shindo,	M19116	Miething, H. and A. Speicher-
	T. Onaya, H. Sasaki and H. Nish-		Brinker. Neolicuroside-A new
	imura. The existence of aldose		chalcone glycoside from the roots
	reductase inhibitors in some		of Glycyrrhiza glabra. Arch
	Kampo medicines (Oriental herb		Pharm (Weinheim) 1989; 322
	prescriptions). The Endocrine Society 69th Annual Meeting	M20428	(3): 141–143. Hong, N. D., B. H. Koo, S. M.
	Program and Abstracts June	W120428	Joo and S. K. Lee. Studies on the
	10–12, 1987. 1987; 271–.		efficacy of combined prepara-
M14578	Manyak, V. A. and I. A. Mur-		tion of crude drugs (XXXVI).
	av'ev. Isolation of glycyrram.		Effects of sipmidojuksan on the
	Patent-USSR-1,223,911 1986.		central nervous and cardiovascu-
M16531	Miura, M., S. Ohta, A. Kamo-		lar systems. Korean J Pharma-
	gawa and M. Shinoda. Basic		cog 1988; 19(2): 141–.
	study of assay method of choler-	M20450	Han, B. H., Y. N. Han and M. H.
	etic effect and the screening of		Park. Chemical and biochemical
	crude drugs. Yakugaku Zasshi		studies on antioxidant compo-
M16602	1987; 107(12): 992–1000.		nents of ginseng. Advances in
M16692	Mitscher, L. A., S. Drake, S. R.		Chinese Medicinal Materials
	Gollapudi, J. A. Harris and D. M. Shankel. Isolation and identifi-		Research H. M. Chang, H. W. Yeung, W. W. Tso and A. Koo
	cation of higher plant agents ac-		(Eds) World Scientific Press Phi-
	tive in antimutagenic assay sys-		ladelphia PA. 1984; 485–498.
	tems: Glycyrrhiza glabra. Basic	M20458	Eun, J. S., C. H. Oh and J. H.
	Life Sci 1986; 39: 153–165.		Han. Immobilization stress cor-

	ticosterone histamine. Korean J Pharmacog 1989; 20(1): 37–42.		Israel. J Ethnopharmacol 1984; 10(3): 295–310.
M20581	Nagatsu, Y., M. Inoue and Y. Ogihara. Modification of macrophage functions by Shosaikoto (Kampo medicine) leads to en-	M23643	Itokawa, H., F. Hirayama, S. Tsuruoka, K. Mizuno, K. Takeya and A. Nitta. Shoyakugaku Zasshi 1990; 44(1): 58–62.
M20703	hancement of immune response. Chem Pharm Bull 1989; 37(6): 1540–1542. Han, Y. H. and C. K. Shim. Ef-	M24195	Toda, S., M. Kimura and M. Ohnishi. Induction of neutrophil accumulation by Chinese herbal medicines "hochu-etsuki-to"
	fects of a blended Korean herbal remedy, ssang wha tang, on the liver cytoplasmic protein bind- ing of sulforbromophthalein in rats. Phytother Res 1989; 3(3):	M24197	and "jyuzen-daiho-to". J Ethno-pharmacol 1990; 30(1): 91–95. Kawakita, T., S. Nakai, Y. Kumazawa, O. Miur, E. Yumioka and K. Nomoto. Induction of inter-
M20760	109–111. Amagaya, S., M. Hayakawa, Y. Ogihara, Y. Ohta, K. Fujiwara,		feron after administration of a traditional Chinese medicine, xiao-chai-hu-tang (Shosaiko-to).
	H. Oka, H. Oshio and T. Kishi. Treatment of chronic liver injury in mice by oral administration of	M24251	Int J Immunopharmacol 1990; 12(5): 515–521. Goto, M., H. Inoue, Y. Seyama,
M20849	xiao-chai-hu-tang. J Ethnophar-macol 1989; 25(2): 181–187. Saleh, N. A. M., M. H. A. Elgamal and A. G. Hanna. Constituents of the leaves of <i>Glycyrrhiza</i>		S. Yamashita, O. Inoue and E. Yumioka. Comparative effects of traditional Chinese medicines (dai-saiko-to,hatimi-ziogan and byakko-ka-ninzin-to) on experi-
M21430	glabra. Fitoterapia 1989; 60(2): 189–. Forslund, T., F. Fyhrquist, B.		mental diabetes and hyperlipidemia. Nippon Yakurigaku Zasshi 1989; 93(3): 179–186.
	Froseth and I. Tikkanen. Effects of licorice on plasma atrial natriuretic peptide in healthy volunteers. J Internal Med 1989; 225 (2): 95–99.	M24255	Swanston-Flatt, S. K., C. Day, C. J. Bailey and P. R. Flatt. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabe -
M21692	Okada, K., Y. Tamura, M. Yamamoto, Y. Inoue, R. Takagaki, K. Takahashi, S. Demizu, K. Kajiyama, Y. Hiraga and T. Kinoshita. Identification of antimicrobial and antioxidant constituents	M24467	tologia 1990; 33(8): 462–464. Zeng, L. U., R. Y. Zhang, T. Meng and Z. C. Lou. Determina- tion of nine flavonoids and cou- marins in licorice root by high- performance liquid chromatog-
	from licoric of Russian and Xin- jiang origin. Chem Pharm Bull 1989; 37(9): 2528–2530.	M24676	raphy. J Chromatogr 1990; 513 (1): 247–254. Kuraishi, Y., T. Nanayama, T.
M22529	Watanabe, A., S. Hayashi, M. Hayakawa and H. Nagashima. Treatment of chronic hepatitis in elderly patients. Int J Orient Med 1989; 14(1): 57–62.		Yamauchi, T. Hotani and M. Satoh. Antinociceptive effects of Oriental medicine kei-kyoh-zoh-soh-oh-shin-bu-toh in mice and
M22672	Dafni, A., Z. Yaniv and D. Palevitch. Ethnobotanical survey of medicinal plants in Northern	M24807	rats. J Pharmacobio Dyn 1990; 13(1): 49–56. Sakai, Y., H. Nagase, Y. Ose, T. Sato, M. kawai and M. Mizuno.

M25110	Effects of medicinal plant extracts from Chinese herbal medicines on the mutagenic activity of benzo(a)pyrene. Mutat Res 1988; 206(3): 327–334. Shirinyan, E. A. L., A. G. Panosyan, M. L. Barikyan and O. M. Avakyan. 9, 12, 13-Trihydroxy-10(E)-octadecenic and 9, 12, 13,-tryhydroxy-10, 11-epoxoc-	M26664	fects of aqueous extracts of some crude drugs in short term screening test. Yakugaku Zasshi 1989; 109(6): 407–423. Achar, K. N., T. J. Abduo and N. K. Menon. Severe hypokalemic rhabdomolysis due to ingestion of liquorice during Ramadan. Aust N Z J Med 1989; 19(4): 365–367.
M25235	tadecaonic acids-New antistressor compounds from liquorice. Izv Akad Nauk Ssr 1988; 1988 (6): 932–936. Hayashi, H., T. Sakai, H. Fukui	M26964	Yang, L., Y. L. Liu and S. Q. Lin. HPLC analysis of flavonoids in the root of six Glycyrrhiza species. Yao Hsueh Hsueh Pao 1990; 25(11): 840–848.
	and M. Tabata. Formation of soyasaponins in licorice cell suspension cultures. Phytochemistry 1990; 29(10): 3127–3129.	M27150	Grange, J. M. and R. W. Davey. Detection of antituberculosis activity in plant extracts. J Appl Bacteriol 1990; 68(6): 587–591.
M25788	Stewart, P. M., A. M. Wallace, S. M. Atherden, C. H. Shearing and C. R. W. Edwards. Mineralocorticoid activity of carbenoxolone: Contrasting effects of carbenoxolone and liquorice on 11-beta-	M27219	Sato, A. Cancer chemotherapy with Oriental medicine. I. Antitumor activity of crude drugs with human tissue cultures in in vitro screening. Int J Orient Med 1990; 15(4): 171–183.
M25858	hydroxysteroid dehydrogenase activity. Clin Sci 1990; 78(1): 49–54. Shin, K. H., E. B. Lee, M. S. Chung, O. J. Kim and K. Y. Yoon. The acute and subacute toxicities	M27524	Misra, P., N. L. Pal, P. Y. Guru, J. C. Katiyar and J. S. Tandon. Antimalarial activity of traditional plants against erythrocytic stages of <i>Plasmodium berghei</i> . Int J Pharmacog 1991; 29(1):
	and pharmacological actions of gami ssanghwa tang preparations. Korean J Pharmacog 1990; 21 (2): 179–185.	M27585	19–23. Nishizawa, K., H. Saito and N. Nishiyama. Effects of Kamikihi- to, a traditional Chinese medi-
M26175	Kiuchi, F., M. Hioki, N. Nakamura, N. Miyashita, Y. Tsuda and K. Kondo. Screening of crude drugs used in Sri Lanka for nematocidal activity on the larva of <i>Toxocaria canis</i> . Shoyakugaku Zasshi 1989; 43(4): 288–202	M27618	cine, on learning and memory performance in mice. Phytother Res 1991; 5(3): 97–102. Ono, K., H. Nakane, M. Fukushima, J. C. Chermann and F. Barre-Sinoussi. Differential inhibition of the activities of reverse transportations and performance and performance.
M26285	293. Moon, Y. H., M. H. Chung, H. K. Jhoo, D. Y. Lim and H. J. Yoo. Influence of sopung-tang on the blood pressure response of the rat. Korean J Pharmacog 1990; 21(2): 173–178.	M27622	scriptase and various cellar DNA polymerases by a traditional Kampo drug, sho-saiko-to. Biomed Pharmacother 1990; 44: 13–16. Buimovoci-Klein, E., V. Mohan, M. Lang, E. Fenamore, Y. Inada and L. Z. Cooper. Inhibition of
M26592	Sato, A. Studies on anti-tumor activity of crude drugs. I. The ef-		HIV replication in lymphocyte cultures of virus-positive sub-

M28111	jects in the presence on sho-sai-ko-to, an Oriental plant extract. Antiviral Res 1990; 14(4/5): 279–286. Nishida, K., T. Kawai, K. Tamura and T. Tsutsumi. Anticaries glabridin and/or glabrene from <i>Glycyrrhiza glabra</i> . Patent-Japan Kokai Tokkyo Koho-03 109,314 1991; 4 pp	M29006	tract of licorice on sorbitol levels in red blood cells of diabetic rats. Chung-Hua Chung Liu Tsa Chih 1990; 15(7): 357–448. Toda, S., M. Kimura, M. Onishi and K. Nakashima. Effects of the Chinese herbal medicine "saiboku-to" on histamine release from and the degranulation of mouse peritoneal mast cells in-
M28190	Hatano, T., T. Fukuda, Y. Z. Liu, T. Noro and T. Okuda. Phenolic constituents of licorice. IV. Cor-	1,000,50	duced by compound 48/80. J Eth-nopharmacol 1988; 24(2/3): 303–309.
	relation of phenolic constituents and licorice specimens from various sources, and inhibitory effects of licorice extracts on xanthine oxidase and monoamine oxidase. Yakugaku Zasshi 1991; 111(6): 311–321.	M29253	Imamichi, T., K. Hayashi, T. Nakamura, K. Kaneko and J. Koyama. A Chinese traditional medicine, juzentaihoto, inhibits the 02-generation by macrophages. J Pharmacobio Dyn 1989; 12 (11): 693–699.
M28210	Yen, M. H., C. C. Lin, C. H. Chuang and S. Y. Lium. Evaluation of root quality of Bupleurum species by TLC scanner and the liver protective effects of "xiao-chai-hu-tang" prepared	M29302	Kuramoto, T. and M. Yamamoto. Monoglucuronylglycyrrentinic acid (MGGR) from licorice and its use as a sweetener in foods. Shokuhn Kogyo 1990; 33(24): 46–50.
	using three different Bupleurum species. J Ethnopharmacol 1991; 34(2/3): 155–165.	M29342	Chang, I. M., I. C. Guest, J. Lee- Chang, N. W. Paik, J. W. Jhoun and R. Y. Ryun. Assay of poten-
M28316	Ali, M. A., M. Mikage, F. Kiuchi, Y. Tsuda and K. Kondo. Screening of crude drugs used in Bangladesh for nematocidal activity on the larva of <i>Toxocara canis</i> . Shoyakugaku Zasshi 1991; 45(3): 206–214.		tial mutagenicity and antimutagenicity of Chinese herbal drugs by using SOS chromotes (E. Coli PQ37) and SOS UMU test (S. typhimurium TA 1535/PSK 1002). Proc First Korea-Japan Toxicology Symposium Safety Ass-
M28436	Wang, Y. J., L. Xu, C. Wang and C. F. Zhu. Decreased proteinuria in glomerular disease with shenteng syrup. Zhejiang-Zhongyi	M29385	essment of Chemicals In Vitro. 1989; 133–145. Sugaya, E., A. Ishige, K. Seki- guchi, S. Izuka, A. Sugimoto, M.
M28457	Zazhi 1988; 23(6): 242 Kim, C. J., S. K. Cho, M. S. Shin, H. Cho, D. S. Ro, J. S. Park and C. S. Yook. Hypoglycemic activ- ity of medicinal plants. Arch Pharm Res 1990; 13(4): 371- 373.	M29539	Yuzurihara and E. Hosoya. Inhibitory effect of a mixture of herbal drugs (TJ-960, SK) on pentylenetetrazol-induced convulsions in EL mice. Epilepsy Res 1988; 2(5): 337–339. Hattori, T., M. Ito, T. Nagamatsu
M28622 M28880	Yu, L. A. Letter to the editor. Phytother Res 1987; 1(4): 11–. Zhou, Y. P. and J. Q. Zhang. Ef-		and Y. Suzuki. Studies on anti- nephritic effect of TJ-8014, a new Japanese herbal medicine
	fects of baicalin and liquid ex-		(3): Effects on crescentic-type

	anti-GBM nephritis in rats. Jap J Pharmacol 1990; 52(1): 131–		els. Amer J Chinese Med 1989; 17(_): 35–44.
M29792	140. Zeng, L., R. Y. Zhang and Z. C.	M30792	Zeng, L., Z. C. Lou and R. Y. Zhang. Quality evaluation of Chi-
	Lou. Separation and quantitative determination of three saponins		nese licorice. Yao Hsueh Hsueh Pao 1991; 26(10): 788–793.
	in licorice root by high perfor-	M31066	Ono, K., H. Nakane, M. Fukush-
	mance liquid chromatography. Yao Hsueh Hsueh Pao 1991;		ima, J. C. Chermann and F. Barre- Sinoussi. Differential inhibition
	26(1): 53–58.		of the activities of reverse tran-
M29966	Naovi, S. A. H., M. S. Y. Khan		scriptase and various cellular
	and S. B. Vohora. Anti-bacterial		DNA polymerases by a tradi-
	and anthelmintic investigations on Indian medicinal plants. Fito-		tional Kampo drug, Sho-saiko- to. Biomed Pharmacother 1990;
	terapia 1991; 62(3): 221–228.		44(1): 13–16.
M30420	Ngo, H. N., R. W. Teel and B. H.	M31271	Takagaki, R. Extraction of fla-
	S. Lau. Modulation of mutagen-		vonoids from licorice for phar-
	esis, DNA binding, and metabolism of aflatoxin B1 by licorice		maceuticals, cosmetics and food. Patent-Japan Kokai Tokkyo
	compounds. Nutr Res 1992; 12		Koho-02 204,495 1990; 4 pp
N/20405	(2): 247–257.	M31333	Scali, M., C. Pratesi, M. C. Zen-
M30495	Hattori, T., T. Nagamatsu, M. Ito and Y. Suzuki. Studies on anti-		naro, V. Zampollo and D. Armanini. Pseudohyperaldosteronism
	nephritic effect of TJ-8014, a new		from liquorice-containing laxa-
	Japanese herbal medicine, and		tives. J Endocrinol Invest 1990;
	its mechanisms (2): Effect on the release of corticosterone from	M31385	13(10): 847–848.
	adrenal glands. Jap J Pharma-	W131363	Sugaya, E., A. Ishige, K. Sekigichi, S. Iizuka, K. Ito, A. Sugim-
	col 1989; 51(1): 117–124.		oto, M. Aburanda and E. Hosoya.
M30683	Toda, S., M. Kimura and M.		Inhibitory effect of TJ-960 (SK)
	Onishi. Induction of neutrophil accumulation by the Chinese		on pentylenetetrazol-induced EEG power spectrum changes.
	herbal medicine "ninjin-youei-		Epilepsy Res 1988; 2(1): 27–31.
	to". J Ethnopharmacol 1990;	N00553	Dzhumamuratova, A., E. Seit-
M20700	29(1): 105–109.		muratov, D. A. Rakhimov and
M30700	Chen, L. C. Treatment of 11 cases of malignant lymphoma. Zhe-		Z. F. Isailov. Polysaccharides of some species of Glycyrrhiza.
	jiang J Trad Chin Med 1988;		Chem Nat Comp 1978; 14(4):
1.620710	23(8): 365–366.	1100556	437
M30710	Kang, L. S., Y. F. Lin, L. I. Kang, W. W. Wu, W. M. Zeng,	N00756	Bhardwaj, D. K., T. R. Seshadri and R. Singh. Glyzarin a new iso-
	H. Lin and S. Q. Kang. Treat-		flavone from Glycyrrhiza glabra.
	ment of 120 cases of hepatitis		Phytochemistry 1977; 16: 402–.
	B with hepatitis B mixture. Sha-	N00846	Mitscher, L. A., Y. H. Park, S.
	nxi J Traditional Chinese Med 1987; 3(6): 16–17.		Omoto, G. W. Clark and D. Clark. Antimicrobial agents from higher
M30730	Takeuchi, T., O. Nishii, T. Oka-		plants, Glycyrrhiza glabra (var
	mura and T. Yaginuma. Effect		Spanish). I. Some antimicrobial
	of traditional herbal medicine, Shakuyaku-kanzo-to on total		isoflavans, isoflavenes, flavanones and isoflavones. Heterocy -
	and free serum testosterone lev-		cles 1978; 9: 1533–.

N01578	Bombardelli, E., B. Gabetta, E. M. Martinelli and G. Mustich. Quantitative evaluation of glycyrrhetic acid and GC-MS investigation on licorice triterpenoids. Fitoterapia 1979; 50: 11–. Killacky, J., M. S. F. Ross and T.	N14584	lated intestine. Korean J Pharmacog 1982; 13: 87–91. Tsubone, K., S. Ohnishi and T. Yoneya. Separation of glycyrrhiznic acid isomers by highperformance liquid chromatography. J Chromatogr 1982; 248:
1101000	D. Turner. The determination of beta-glycyrrhetinic acid in liquorice by high pressure liquid chromatography. Planta Med 1976; 30: 310–315.	N14740	469–471. Anon. Antiinflammatory preparations. Patent-Japan Kokai Tokkyo Koho-81 138,121 1981; 3 pp
N02085	Toulemonde, B., M. Mazza and J. Bricout. Composition of the aroma of <i>Glycyrrhiza rhizome</i> . Ind Aliment Agr 1977; 94: 1179–1182.	N19034	Varshney, I. P., D. C. Jain and H. C. Srivastava. Study of saponins from <i>Glycyrrhiza glabra</i> root. Int J Crude Drug Res 1983; 21(4): 169–172.
N02187	Chaturvedi, G. N., P. Mahadeo, A. K. Agrawal and J. P. Gupta. Some clinical and experimental studies on whole root of <i>Glycyrrhiza glabra</i> Linn. (Yashtimadhu) in peptic ulcer. Indian Med Gaz 1979; 113: 200–205.	P00005	To-A-Nun, C., T. Sommart and V. Rakvidhyasastra. Effect of some medicinal plants and spices on growth of Aspergillus. Abstr 11th Conference of Science and Technology Thailand Kasetsart University, Bangkok, Thai-
N03792	Komiyama, K., Y. Kawakubo, T. Fukushima, K. Sugimoto, H. Takeshima, Y. Ko, T. Sato, M. Okamoto, I. Umezawa and Y. Nishiyama. Acute and subacute toxicity test on the extract from Glycyrrhiza. Oyo Yakuri 1977;	P00104	land, October 24–26, 1985. 1985; 364–365. Burapanont, P., P. Siriwongpaira and M. Leartskulpiriya. Preparation and evaluation of cough pills. Undergraduate Special Project Report 1984; 30 pp.
N05481	14: 535–548. Ishii, Y. and M. Terada. Effect of F-M-100, a fraction of licorice root, on exocrine secretion from the rat pancreas. Jap J Pharmacol 1979; 29: 664–666.	T00348	Sugaya, A., T. Tsuda, E. Sugaya, M. Takato and K. Takamura. Effects of Chinese medicine Saikokeishi-to on the abnormal bursting activity of snail neurons. Planta Med 1978; 34: 294–298.
N06188	Mitscher, L. A., Y. H. Park, D. Clark and J. L. Beal. Antimicrobial agents from higher plants. Antimicrobial isoflavanoids and related substances from <i>Glycyrrhiza glabra</i> L. var. Typica. J Nat	T01091	Sugaya, A., T. Tsuda, E. Sugaya, M. Usami and K. Takamura. Local anaesthetic action of the Chinese medicine Saiko-keishito. Planta Med 1979; 37: 274–276.
N13376	Prod 1980; 43: 259–269. Hong, N. D., J. W. Kim, G. M. Jeong and N. J. Kim. Studies on the efficacy of combined prepa- rations of crude drugs (9). Effect of "jakyakgamcho-tang" on anti-inflammatory and antiulcer- ative actions, and motility of iso-	T01446 T01704	Leslie, G. B. A pharmacometric evaluation of nine bio-strath herbal remedies. Medita 1978; 8(10): 3–19. Werner, S., K. Brismar and S. Olsson. Hyperprolactinaemia and liquorice. Lancet 1979; 1979: 319–.

T01723	Waddell, T. G., H. Jones and A. L. Keith. Legendery chemical aphrodisiacs. J Chem Ed 1980;		Anti-allergic actions of crude drugs and blended Chinese tra- ditional medicines. Effects on
T01925	57: 341–342. Lal, S. D. and K. Lata. Plants used by the Bhat community for		Type I and Type IV allergic reactions. Nippon Yakurigaku Zasshi 1982; 80: 31–41.
	regulating fertility. Econ Bot 1980; 34: 273–275.	T07267	Rao, N. H. Kanchanara gugulu kwatha in rheumatic diseases, a
T01997	Leslie, G. B. and G. Salmon. Repeated dose toxicity studies and reproductive studies on nine bio-		new dimension in Kwatha preparations. Rheumatism 1982; 17 (2): 59–67.
	strath herbal remedies. Swiss Med 1979; 1(1/2): 1-3.	T07382	Al-Shamma, A. and L. A. Mitscher. Comprehensive survey of
T02391	Singh, L. M. and S. Chatterjee. Effect of <i>Amoora rohituka</i> on invitro blastogenesis of lympho-		indigenous Iraqi plants for economic value. I. Screening results of 327 species for alkaloids and
	cytes. J Res Indian Med Yoga Homeopathy 1979; 14: 44–48.		antimicrobial agents. J Nat Prod 1979; 42: 633–642.
T03436	Nebelkopf, E. Herbs and cancer.	T07814	Singh, L. M. and S. Chatterjee.
	Part II. Herbalist 1981; 6(1): 26–39.	20,02.	Effect of Amoora rohituka on in vitro blastogenesis of lym-
T03554	Shankara, M. R., N. S. N. Murthy and L. N. Shastry. Method of manufacture and clinical effi-		phocytes. J Res Indian Med Yoga Homeopathy 1979; 14(1): 45–48.
	cacy of rasamanikya mishrana in	T07821	Novitch, M. and R. S. Schwei-
	tamaka shwasa (bronchial asthma). Indian J Pharm Sci 1979;		ker. Orally administered mens-
	41: 267B–.		trual drug products for over-the- counter human use, establish-
T04496	Yamazaki, M. and H. Shirota. Application of experimental		ment of a monograph. Fed Regist 1982; 47: 55076–55101.
	stress ulcer test in mice for the survey of neurotropic naturally	T08142	El-Shayeb, N. M. A. and S. S. Mabrouk. Utilisation of some
	occurring drug materials. Sho-		edible and medicinal plants to
	yakugaku Zasshi 1981; 35: 96–102.		inhibit aflatoxin formation. Nutr Rep Int 1984; 29(2): 273–282.
T04931	Nikaido, T., T. Ohmoto, H. Nog- uchi, H. Saitoh and U. Sankawa.	T08441	Hong, N. D., J. W. Kim, B. W. Kim and J. G. Shon. Studies on
	Inhibitors of cyclic AMP phos-		the efficacy of the combined
	phodiesterase in medicinal plants.		preparation of crude drugs. 6.
T 0 (2.2.0	Planta Med 1981; 43: 18–23.		Effect of "saengkankunbi-tang"
T06320	Dabral, P. K. and R. K. Sharma.		on activities of the liver enzyme,
	Evaluation of the role of ruma- laya and geriforte in chronic arth-		protein contents and the excretory action of bile juice in the
	ritis-A preliminary study. Probe 1983; 22(2): 120–127.		serum of CCL4-intoxicated rab- bits. Korean J Pharmacog 1982;
T06535	Yamamoto, H., T. Mizutani and		13: 33–38.
	H. Nomura. Studies on the muta-	T08450	Narita, Y., H. Satowa, T. Kok-
	genicity of crude drug extracts. I. Yakugaku Zasshi 1982; 102:		ubu and E. Sugaya. Treatment of epileptic patients with the Chi-
	596–601.		nese herbal medicine 'Saiko-
T06654	Koda, A., T. Nishiyori, H. Nagai, N. Matsuura and H. Tsuchiya.		keishi-to' (SK). Ircs Libr Compend 1982; 10(2): 88–89.

T08515	Takato, M., K. Takamura, A. Sugaya, T. Tsuda and E. Sugaya. Effect of the Chinese medicine 'Saiko-keishi-to' on audiogenic	T09702	ments of isolated stomach. Korean J Pharmacog 1984; 15(3): 128–133. Hong, N. D., I. K. Chang, S. I. Lee
	seizure mice, kindling animals and conventional pharmacological screening procedures. Ircs Libr Compend 1982; 10(2): 86–87.	105702	and N. J. Kum. Studies on the efficacy of combined preparation of crude drugs (XVI). Effects of "bojungikgi-ting" on the central nervous system. Korean J Phar -
T08540	Hirai, Y., H. Takase, H. Kobayashi, M. Yamamoto, N. Fujioka, H. Kohda, K. Yamasaki, T. Yasuhara and T. Nakajima. Screening test for anti-inflammatory crude drugs based on inhibition effect of histamine release from mast cell. Shoyakugaku Zasshi 1983;	T09705	macog 1984; 15(3): 115–120. Kong, N. D., I. K. Chang, S. I. Lee and N. J. Kim. Studies on the efficacy of combined prepa- ration of crude drugs (XVII). Ef- fects of "bojungikgi-tang" on the digestive sysytem, blood pres- sure and diuretic actions. Kor-
T08548	37(4): 374–380. Sharma, B. B., M. D. Varshney, D. N. Gupta and A. O. Prakash. Antifertility screening of plants. Part I. Effect of ten indigenous plants on early pregnancy in albino rats. Int J Crude Drug Res 1983; 21(4): 183–187.	T09776	ean J Pharmacog 1984; 15(3): 121–127. Morgan, R. J., L. M. Nelson, R. I. Russell and C. Docherty. The protective effect of deglycyrrhinized liquorice against aspirin and aspirin plus bile acid-induced gastric mucosal damage, and its
T09184	Chung, B. S., S. K. Kim, H. K. Lee and S. H. Kim. Studies on Korean Aconitum species (I). An alkaloid of <i>Aconitum sibiricum</i> and the comparison of toxicities among related Aconitum	T09788	influence on aspirin absorption in rats. J Pharm Pharmacol 1983; 35(9): 605–607. Ma, E., C. Luo, C. Huang and F. Liu. The treatment of severe hemorrhage of the gastrointes-
T09394	species. Korean J Pharmacog 1984; 15(2): 108–113. Arseculeratne, S. N., A. A. L. Gunatilaka and R. G. Panabokke. Studies on medicinal plants of Sri Lanka. Part 14: Toxicity of some traditional medicinal herbs.	T09858	tinal tract in burn children by combined traditional Chinese and Western medicine. Chung I Tsa Chih (Engl Ed) 1983; 3(1): 59–61. Thompson, W. A. R. Herbs that heal. J Roy Coll Gen Pract
T09452	J Ethnopharmacol 1985; 13(3): 323–335. Grabowska, H. and B. Kedzia. Effect of crude drugs on survival of enterobacteriaceae bacilli.	T09859	1976; 26: 365–370. Shimuzu, K., S. Amagaya and Y. Ogihara. Combination effects of Shosaikoto (Chinese traditional medicine) and prednisolone on
T09507	Herba Pol 1982; 28: 205–212. May, G. and G. Willuhn. Antiviral activity of aqueous extracts from medicinal plants in tissue	T10126	the anti-inflammatory action. J Pharmacobio Dyn 1984; 7(12): 891–899. Aswal, B. S., D. S. Bhakuni, A.
T09574	cultures. Arzneim-Forsch 1978; 28(1): 1–7. Chang, I. K. and S. I. L. Park. Effects of yukgunja-tang on secretion of gastri juice and move-	110120	K. Goel, K. Kar, B. N. Mehrotra and K. C. Mukherjee. Screening of Indian plants for biological activity: Part X. Indian J Exp Biol 1984; 22(6): 312–332.

T10387	Namba, T., M. Tsunezuka, Y. Takehana, S. Nunome, K. Takeda, Y. Z. Shu, N. Kakiuchin, S. Takagi and M. Hattori. Studies on dental caries prevention by traditional Chinese medicines. IV. Screening of crude drugs for anti-plaque action and effects of Artemisia cappilaris spikes on adherence of Streptococcus mutans to smooth surfaces and synthesis of glucan by. Shoyakugaku Zasshi 1984; 38(3): 253–263.	T11806	prevention by traditional medicines (Part VII) screening of Ayurvedic medicines for antiplaque action. Shoyakugaku Zasshi 1985; 39(2): 146–153. Russell, R. I., R. J. Morgan and L. M. Nelson. Studies on the protective effect of deglycyrrhinised liquorice against aspirin (ASA) and ASA plus bile acid-induced gastric mucosal damage, and ASA absorption in rats. Scand J Gastroenterol Suppl 1984; 19(92): 97–100.
T11122	Kim, J. S., G. H. Kim and I. H. Kim. Studies on the concurrent administrations of Sosiho-tang extract and methionine. Effects on the liver lesion induced by carbon tetrachloride in rats. Korean J Pharmacog 1986; 17(2):	T12842 T13824	Joe, Y. S., N. D. Kim and K. H. Ko. The effects of licorice fraction and glycyrrhizin on prostaglandin synthetase activity of bull seminal vesicle. Korean J Pharmacog 1986; 17(2): 107–112. Sugaya, A. T. Tsuda, K. Yasuda
T11351	148–152. Ito, H. and K. Shimura. Effects of a blended Chinese medicine, xiao-chai-hu-tang, on Lewis lung carcinoma growth and inhibition of lung metastasis, with special reference to macrophage activation. Jap J Pharmacol 1986; 41:	T13839	and E. Sugaya. Effect of Chinese herbal medicine "Saiko-keishi- to" on transmembrane ionic cur- rent of snail neurons. Planta Med 1985; 1985(1): 60–61. Sugaya, A., Tsuda, T. K. Yasuda, E. Sugaya and M. Onozuka. Ef- fect of Chinese herbal medicine
T11368	307–314. Hong, N. D., I. K. Chang, J. W. Kim, S. K. Ryu and M. J. Kim. Studies on the efficacy of com- bined preparation of crude drugs (XXII). Korean J Pharmacog	T13931	"Saiko-keishi-to" on intracellular calcium and protein behavior during pentyl-enetetrazole-induced bursting activity in snail neurone. Planta Med 1985; 1985 (1): 2–6.
T11487	1985; 16(2): 73–80. Segal, R., S. Pisanty, R. Wormser, E. Azaz and M. N. Sela. Anticariogenic activity of licorice and glycyrrhizine: I. Inhibition of in vitro plaque formation by <i>Streptococcus mutans</i> . J Pharm Sci 1985; 74(1): 79–81.	113931	Yamahara, J., T. Yamada, H. Kimura, T. Sawada and H. Fujimura. Biologically active principles of crude drugs. Antiallergic principles of "Shoseiryu-to." I. Effect on delayed-type allergy reaction. Yakugaku Zasshi 1982; 102(9): 881–886.
T11694	Sugishita, E., S. Amagaya and Y. Ogihara. Studies on the combination of <i>Glycyrrhizae radix</i> in Shakuyakukanzo-to. J Pharma-	T14055	Tanaka, M., N. Mano, E. Akazai, Y. Naruim F. Kato and Y. Koyama. Inhibition of mutagenicity by glycyrrhiza extract and gly-
T11789	cobio Dyn 1984; 7: 427–435. Namba, T., M. Tsunezuka, D. M. R. B. Dissanayake, U. Pilapitiya, K. Saito, N. Kakiuchi and M. Hattori. Studies on dental caries	T14073	cyrrhizin. J Psychedelic Drugs 1987; 10(12): 685–688. Latif, A. A comparative study on decoction of powdered (sufoof) and unpowdered (mussalum)

T14342	drugs in Unani pharmacy. Nagarjun 1983; 27(2): 44–45. Ohta, S., N. Sakurai, T. Inoue and M. Shinoda. Studies on chemical protectors against radiation. XXV. Radioprotective activities of various crude drugs. Yakugaku Zasshi 1987; 107(1): 70–75.	T14957	Hatano, T., F. H. Kagawa, T. Yasuhara and T. Okuda. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem Pharm Bull 1988; 36(6): 2090–2097. Kawakita, T., A. Yamada, Y.
T14366	Sankaran, J. R. Problem of male virility - An Oriental therapy. J Natl Integ Med Ass 1984; 26 (11): 315–317.		Kumazawa and K. Nomoto. Functional maturation of immature B cells accumulated in the periphery by an intraperitoneal
T14473 T14823	Zaidi, Z. B., V. P. Gupta, A. Samad and Q. A. Naqvi. Inhibition of Spinach Mosaic virus by extracts of some medicinal plants. Curr Sci 1988; 57(3): 151–152. Kato, M., M. Marumoto, M.		administration of a traditional Chinese medicine, Xiao-chai-hu-tang (Japanese name: Shosaiko-to). Immunopharmacol Immunotoxicol 1987; 9(2/3): 299–317.
114023	Hayashi, T. Maeda and E. Hayashi. Pharmacological studies on Saiko-prescriptions. IV. Effect of shosaiko-to on swelling of rat hind paws induced by carrageenin. Yakugaku Zasshi 1984; 104(5): 509–514.	T15280	Iwama, H., S. Amagaya and Y. Ogihara. Effects of five kampohozais on the mitogenic activity of lipopolysaccharide, concanavalin A, phorbol myristate acetate and phytohemagglutinin in vivo. J Ethnopharmacol 1986;
T14824	Kato, M., M. Marumoto, M. Hayashi, T. Maeda and E. Hayashi. Pharmacological studies on Saiko-prescriptions. VI. Effect of Shosaiko-to on liver injury induced by D-galactosamine in rats. Yakugaku Zasshi 1984; 104(7): 798–804.	T15326	18(2): 193–204. Kakimoto, M., N. Takasugi, T. Fuwa and H. Saito. Anti-inflam- matory and anti-allergic effects of a preparation of crude drugs, a remedy for nasal disease (fuji- bitol). Pharmacometrics 1984; 28(4): 555–565.
T14857	Kumazawa, Y., H. Takimoto, S. I. Miura, C. Nishimura, A. Yamada, T. Kawakita and K. Nomoto. Activation of murine peritoneal macrophages by intraperitoneal administration of a traditional Chinese herbal medicine, Xiaochai-hu-tang (Japanese name: Shosaiko-to). Int J Immuno-	T15353	Okuyama, T., M. Takata, S. Shibata, M. Hoson, T. Kawada, H. Masaki and T. Noguchi. Effect of Sino-Japanese medicine on platelet aggregation (IV) Chinese medical prescriptions employed for angina pectoris-like symptoms. Shoyakugaku Zasshi 1987; 41(2): 147–152.
T14878	pharmacol 1988; 10(4): 395–403. Kato, M. M. Marumoto, M. Hayashi, T. Maeda and E. Hayashi. Pharmacological studies on Saiko-prescriptions. V. Mechanisms of actions of Shosaiko-to on swelling of rat hnd paws induced by carrageenin. Yakugaku Zasshi 1984; 104(4): 516–523.	T15572 T15628	Anon. Gras status of licorice (glycyrrhiza), ammoniated glycyrrhizin, and monoammonium glycyrrhizinate. Fed Regist 1985; 50(99): 21043–21045. Kato, M., M. Hayashi and T. Maeda. Pharmacological studies on Saiko-prescriptions. III. Inhibitory effects of Saiko-prescriptions on experimental inflamma-

T15629	tory actions in rats. Yakugaku Zasshi 1983; 103(4): 466–472. Sakai, T., K. Kobashi, M. Tsunezuka, M. Hattori and T. Namba. Studies on dental caries prevention by traditional Chinese medicines (Part VI). On the fluoride	W03029	for fertility regulation in Korea. Korean J Pharmacog 1977; 8: 81–87. Anon. More Secret Remedies. What They Cost and What They Contain. British Medical Association, London, 1912; 185–209.
	contents in crude drugs. Shoya-kugaku Zasshi 1985; 39(2): 165–169.	W03668	Zawahry, M. R. Microbiological assay of niacin. Egypt Pharm Bull 1962; 44(4): 139–149.
T15721	Sabahi, M., S. H. Mansouri, M. Ramezanian and A. Gholam-Hoseinian. Screening of plants from the southeast of Iran for antimicrobial activity. Int J Crude	W03671	Belkin, M. and D. B. Fitzgerald. Tumor-damaging capacity of plant materials. I. Plants used as cathartics. J Nat Cancer Inst 1952; 13: 139–155.
T16102	Drug Res 1987; 25(2): 72–76. Terasawa, K., M. Bandoh, H. Tosa and J. Hirate. Disposition of glycyrrhetic acid and its glycosides in healthy subjects and patients with pseudoaldostero-	W03673	Takagi, K. and K. Kawashima. Effects of some anti-inflammatory drugs on capillary permeability of the gastric mucosa in the rat. Jap J Pharmacol 1969; 19: 431–439.
T16190	nism. J Pharmacobio Dyn 1986; 9: 95–100. Iwama, H., S. Amagaya and Y. Ogihara. Effect of Shosaikoto. A	W03697	Vichkanova, S. A. and L. V. Goryunova. Antiviral activity of some saponins. Tr Vses Nauch-Issled Indt Lek Rast 1971; 14:
T16238	Japanese and Chinese traditional herbal medicinal mixture, on the mitogenic activity of lipopolysacharide: A new pharmacological testing method. J Ethnopharmacol 1987; 21(1): 45–53. Guerin, J. C. and H. P. Reveil-	W03804	204–212. Wasuwat, S. A list of Thai medicinal plants, Asrct, Bangkik. Report no. 1 on res. project. 17. Research Report, A. S. R. C. T., No. 1 on Research Project 17 1967; 1967; 22 pp
	lere. Antifungal activity of plant extracts used in therapy. I. Study of 41 plant extracts against 9 fungi species. Ann Pharm Fr 1984; 42(6): 553–559.	W03993	Lei, C. C. and C. C. Tang. Successful treatment of postpartum hypopituitarism with decoction of <i>Radix glycyrrhizae</i> and <i>Radix ginseng</i> . Report of a case. Natl
T16944	Liu, H. N., S. K. Jaw and C. K. Wong. Chinese herbs and atopic dermatitis. Lancet 1993; 342 (8880): 1175–1176.	W04570	Med J China 1973; 53: 693–694. Kuba, S. J. Investigations on known or potential antitumoral plants by means of microbio-
W00232	Ray, P. G. and S. K. Majumdar. Antimicrobial activity of some Indian plants. Econ Bot 1976; 30: 317–320.		logical tests. Part III. Biological activity of some cultivated plant species in <i>Neurospora crassa</i> test. Acta Biol Cracov Ser Bot
W00346	Lee, E. B., H. S. Yun and W. S. Woo. Plants and animals used		1972; 15: 87–100.

12 Hypericum perforatum

Common Names

Common Numes				
Balsana	Arabic Countries	Johaniskraut	Germany	
Balsana	India	Johannesort	Sweden	
Bassant	India	Johanniskraut	Europe	
Blutkraut	Germany	Liebeskraut	Europe	
Corazancillo	Spain	Pelatro	ltaly .	
Corazoncillo	Argentina	Pelicao	Madeira	
Dendhu	India	Perforata	Italy	
Devil's scorge	Europe	Pinillo de Oro	Spain	
Eisenblut	Europe	Qian Ceng lou	China	
Flor De Sao Joao	Madeira	Saint John's wort	Greece	
Fuga daemonum	Europe	Sanjuanera	Spain	
Hartheu	Europe	Sint-Janskruid	Netherlands	
Heofariqon	Arabic Countries	St. John's Worth	Canada	
Herba de Millepertuis	France	St. John's Worth	Estonia	
Herba de Saint Jean	France	St. John's Worth	Germany	
Herrgottsblut	Germany	St. John's Wort	USA	
Hexenkraut	Europe	St. John's Wort	USSR	
Hierba De San Juan	Spain	Tenturotou	Turkey	
Hipericao	Madeira	Teufelsflucht	Europe	
Hiperico	Argentina	Toutsaine	France	
Hipericon	Argentina	Witcher's herb	Europe	
Hipericon	Spain	Zwieroboij	USSR	
Iperico	Italy	l		

BOTANICAL DESCRIPTION

A herbaceous, rhizomatous perennial herb of the HYPERICACEAE family that grows to a height of up to 1 m with erect stems that are 2-edged and branching in the upper part. The leaves are pale green, opposite, sessile, oblong, ovate or linear, 8-24 mm long with black dots or oil glands that can be seen when holding the leaf to light. The flowers are bright yellow, about 25 mm in diameter, in terminal corymbose cymbes. The calyx and corolla are marked with black dots and lines. Sepals and petals are 5 in number, and the ovary is pear-shaped with 3 long styles. The capsule is 3-celled, ovoid, 8 mm long, with many small round blackish seeds. The plant has a characteristic balsamic odor and a bitter, resinous, somewhat astringent taste.

ORIGIN AND DISTRIBUTION

H. perforatum is native to Europe, Western Asia, North Africa, Madeira and the Azores. It now grows in parts of North America and Australia.

TRADITIONAL MEDICINAL USES

Arabic countries. The dried entire plant is used in the form of a vaginal pessary, in Unani medicine, as an emmenagogue^{HPO219}. **Argentina.** Olive oil extract of the leaf is taken orally for menstrual cramps^{HPO237}.

England. Hot water extract of the dried leaf is used topically to promote hair growth, and for wounds and bruises. The extract is taken orally for venomous bites and intestinal worms^{HPO215}.

Europe. Hot water extract of the aerial part is taken orally as an emmenagogue, and as a diuretic. Externally, the aerial part is used for wound healing^{HPO118}. Hot water extract of the entire plant is taken orally for menstrual complaints^{HPO238}. Hot water extract of the leaf is taken orally to produce abortion^{HPO210}.

Germany. The fresh leaf and stem is eaten for nervous disorders and sleeplessness^{HPO139}. Water extract of the leaf is taken orally as an antidepressant^{HPO183}.

Greece. Olive oil extract of the flowers is used to treat skin wounds and herpes zoster. The flower in olive oil is exposed to sun for a week. When the solution takes on an orange color, it is applied to the infected area^{HPO186}. The aerial part is applied externally to aid wound healing^{HPO109}.

India. Hot water extract of the aerial part is taken orally as an anthelmintic and emmenagogue^{HPO244}. Hot water extract of the dried aerial part is taken orally as an emmenagogue, anthelmintic and diuretic^{HPO216}. Hot

water extract of the dried entire plant is taken orally as an anthelmintic and emmenagogue^{HP0240}. Hot water extract of the entire plant is taken orally as an emmenagogue^{HP0106}. **Italy.** Acetic acid (2%) extract of the dried flower is taken orally as an antihematoma. The infusion is taken orally to treat articular aches^{HP0231}. Olive oil extract of the flowering tops is used externally for Herpes simplex lesions, especially on the lips^{HP0229}. Hot water extract of the dried flowering tops is used topically for inflammations^{HP0203}. **Madeira.** Infusion of the entire plant is taken orally as a diuretic for gout, lithemia and kidney diseases^{HP0192}.

Soviet Union. Hot water extract of the aerial part is taken orally for treating goiter^{HPO104}. Hot water extract of the leaf is taken orally for bacillary dysentery^{HPO235}.

Spain. Hot water extract of the dried aerial part is used externally for wound healing, and orally as a spasmolytic and for colds^{HPO230}. Water extract of the flower and leaf is taken orally 2 to 3 times a day for scanty and difficult menstruation^{HPO123}.

Turkey. Decoction of the aerial part is taken orally for stomachache^{HPO190}. Infusion of the dried aerial part is taken orally to treat stomachache. One glass of the infusion with other herbs and flower is taken twice a day^{HPO184}. Hot water extract of the dried aerial part is taken orally for neurological disorders, convulsions, tetanus, ulcers^{HPO193}, common cold, gastrointestinal disorders, jaundice, hepatic disorders, biliary disorders, and the healing of wounds^{HPO208}. Pounded fresh flower is applied directly on open wounds to promote healing^{HPO184}.

USA. Fluid extract of the inflorescence is taken orally for menorrhagia, hysteria, nervous affections, jaundice, worms, as a sedative, and diuretic. Externally, the fluid extract is used to treat hard tumors^{HPO124}. Hot water extract of the aerial part is taken orally to promote menstruation and for painful menstruation^{HPO197}. When administered to cows

Plate 7. Echinacea angustifolia (see full discussion in Chapter 7).

Plate 8. Ephedra sinica (see full discussion in Chapter 8).

Plate 9. Eucalyptus globulus (see full discussion in Chapter 9).

Plate 10. Ginkgo biloba (see full discussion in Chapter 10).

Plate 11. *Glycyrrhiza glabra* (see full discussion in Chapter 11).

Plate 12. *Hypericum perforatum* (see full discussion in Chapter 12).

Plate 1. *Allium cepa (see* full discussion in Chapter 1).

Plate 2. *Althaea officinalis* (see full discussion in Chapter 2).

Plate 3. Anacardium occidentale (see full discussion in Chapter 3).

Plate 4. *Ananas comosus* (see full discussion in Chapter 4).

Plate 5. Angelica sinensis (see full discussion in Chapter 5).

Plate 6. *Azadirachta indica* (*see* full discussion in Chapter 6).

Plate 13. Laurus nobilis (see full discussion in Chapter 13).

Plate 14. Lycopersicon esculentum (see full discussion in Chapter 14).

Plate 15. Matricaria chamomilla (see full discussion in Chapter 15).

Plate 16. Morinda citrifolia (see full discussion in Chapter 16).

Plate 17. Musa sapientum (see full discussion in Chapter 17).

Plate 18. *Myristica fragrans* (see full discussion in Chapter 18).

Plate 19. Nelumbo nucifera (see full discussion in Chapter 19).

Plate 20. Pimpinella anisum (see full discussion in Chapter 20).

Plate 21. *Ricinus communis* (see full discussion in Chapter 21).

Plate 22. *Tanacetum parthenium* (see full discussion in Chapter 22).

Plate 23. *Tribulus terrestris* (see full discussion in Chapter 23).

Plate 24. Vitex agnus-castus (see full discussion in Chapter 24).

in the ration, the aerial part produced eruptions on the udder HPO120. Hot water extract of the dried flowering tops is taken orally as an astringent and has a peculiar soothing effect. The extract is used as an ointment for skin irritation and insect bites HPO241.

Yugoslavia. Hot water extract of the dried aerial part is taken orally for diabetes. Hot water extract of the dried flower is taken orally for diabetes^{HPO212}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Adhyperfolin: Fl, Fr^{HP0136} Alkanes (C28,C30): Aer^{HP0132}

Alkanols (C24,C26,C28): Aer^{HP0132} Amentoflavone: Aer 0.0267%^{HP0195}

Amyrin,beta, Aer^{HP0222} Apigenin: Aer^{HP0152}

Apigenin,1(3)-11(8)-BI: FI^{HP0179}

Apigenin, Bl: Aer HP0152

Apigenin,1(3)-II(8)-BI: Aer 72.5HP0200

Ascorbic acid: Lf^{HP0116}

Biapigenin,1-3 Il-8: Aer 0.01% HP0195 Cadiforin,hydroperoxy: Aer 5.6 HP0137 Caffeic acid: PlHP0214, Aer 0.1% HP0234 Carotene,beta: Aer 12.1 mg/% HP0122

Caryophyllene: EO^{HP0133} Catechin,(+): Pl^{HP0221,HP0206} Catechin,epi(-): Pl^{HP0199} Chlorogenic acid: Pl^{HP0199} Choline: Aer 0.1% HP0107

Cuprenene, alpha: Lf EO^{HP0138} Cyclopseudohypericin: Pl^{HP0213, HP0180}

Cysteine: Pl^{HP0218}
Decanal,n: EO^{HP0133}

Decane,2-methyl: Aer^{HP0134} Essential oil: Aer 0.07-0.08%^{HP0108}

Flavone: Aer^{HP0165} Gallic acid: Pl^{HP0214} Glutamine: Pl^{HP0218}

Heptane,2-4-dione,5-methyl: Lf EO^{HP0138} Heptane,2-4-dione,6-methyl: Lf EO^{HP0138}

Hexacosan-1-ol: Lf^{HP0220} Humulene: EO^{HP0133}

Hypercinin, cyclo-pseudo: Aer HP0163

Hyperfolin: Lf, St^{HP0139} Hyperforin: Aer^{HP0113,HP0162}

Hypericin: Fl 0.036-0.22%HP0185, Lf

0.195%, EO 0.22%^{HP0112} Hypericin,proto-pseudo: Pl^{HP0180}, Fl $0.51\%^{HP0168}$

Hypericin, proto: PIHP0180, FI 0.182%HP0168

Hypericin, psuedo: PIHP0180, FI 0.10-

0.58%HP0185,HP0168 Hyperoside: PIHP0130 Aer

Hyperoside: Pl^{HP0130}, Aer 0.5-4.0% HP0110, HP0242

Imanin: Aer^{HP0131} Ishwarane: Lf EO^{HP0138} Kaempferol: PI^{HP0206} Kielcorin: Rt^{HP0198} Leucine: PI^{HP0218}

Limonene: Aer EOHP0134

Linoleic acid: Flowering tops 13%HP0173

Lutein: FlHP0135

Luteoxanthin: Fl^{HP0135} Lysine: Pl^{HP0218} Mangiferin: Aer^{HP0163}

Melatonin: Fl 4.4, Lf 17.5HP0172

Myrcene: Aer^{HP0134}
Myricetin: Pl^{HP0206}
Myristic acid: Fl^{HP0135}
Neoxanthin: Fl^{HP0135}
Nicotinic acid: Lf 7.2^{HP0103}
Nonane,n: Aer EO^{HP0134}
Novoimanin: Aer 3-4%^{HP0121}
Octacosan-1-ol: Lf^{HP0220}
Octanal,n: EO^{HP0133}

Octane,2-methyl: Aer EOHP0134

Ornithine: PlHP0218

Palmitic acid: Flowering tops 30.7% HP0173

Perflavit: Aer^{HP0115} Phenol: Aer^{HP0201}

Phloroglucinol: Aer^{HP0201} Pinene,alpha: Aer EO^{HP0134} Pinene,beta: Aer EO^{HP0134}

Proline: PlHP0218

Pyrano(4-3-B)-pyran-5-one,2(H)-5-(H) 7-iso-butyl-2-2-dimethyl: Lf EO^{HP0138} Pyrano(4-3-B)-pyran-5-one,2(H)-5-(H) 7-sec-butyl-2-2-dimethyl: Lf EO^{HP0138}

Pyrocatechol: Aer^{HP0201} Pyrogallol: Aer^{HP0201} Quercetin: PI^{HP0114,HP0211}

Quercetin-3-0-glucuronide: Aer^{HP0181} Quercetin-3-0-xyloside: Aer^{HP0181}

Quercetrin: Pl^{HP0169} Quercitin,iso: Pl^{HP0206} Quercitrin: Pl^{HP0126} Quercitrin,iso: Aer^{HP0162} Resorcinol: Aer^{HP0201}

Rutin: PIHP0126, Aer 2.32%HP0155

Scopoletin: PIHP0218

Sitosterol, beta: AerHP0132

Stearic acid: Flowering topsHP0173

Tannin: Lf 12.4%, Fl 16.2%, St 3.8%HP0125

Taraxasterol: Aer^{HP0222}
Tetracosan-l-ol: Lf^{HP0220}
Threonine: Pl^{HP0218}
Triacontan-l-ol: Lf^{HP0220}
Trollichrome: Fl^{HP0135}
Trollixanthin: Fl^{HP0135}
Trollixanthin,cis: Fl^{HP0135}
Umbelliferone: Pl^{HP0218}
Undecan,n: Aer EO^{HP0134}
Violaxanthin: Fl^{HP0135}

Xanthone,1-3-6-7-tetrahydroxy: Lf^{HP0183} Xanthone,1-3-6-trihydroxy: Aer^{HP0163}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

AIDS therapeutic effect. Sixty early ARC patients were administered St. Johns' Wort tablets (standardized at 0.14% hypericin) with or without AZT for 6 months. Twenty-five patients completed the 6 months of therapy (most of the patients were lost to follow up). No significant CD4+, CD8+ or P24 antigen levels were seen in any of the groups^{HP0228}.

Analgesic activity. Ethanol/water (1:1) extract of the entire plant, administered intragastrically to mice, was not effective vs hot plate and tail clip methods^{HPO232}. Ethanol/water (1:1) extract of the dried aerial part, administered intraperitoneally to mice at a dose of 250.0 mg/kg, was effective vs tail flick response to radiant heat^{HPO193}. Flavonoid fraction of the dried shoots, administered intraperitoneally to mice, was effective HPO227.

Anesthetic activity. The essential oil was effective in treating earaches when administered as an ear drop^{HPO118}.

Antianginal activity. The leaf (20–60%), mixed with *Filipendula ulmaria* (40–80%) and 1.5% salicylic acid, has been patented as a treatment for angina pectoris and cardiac diseases^{HPO243}.

Antibacterial activity. Chloroform extract of the dried aerial part, at a concentration

of 0.04 ml/disc, was active on Staphylococcus aureus, Staphylococcus oxford, and Streptococcus mutans, and inactive on Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, and Streptococcus sanguis. The water extract was active on Staphylococcus oxford and inactive on Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sanguis. The methanol extract was active on Escherichia coli, Proteus vulgaris, Streptococcus mutans, Streptococcus sanguis and, in broth culture, was active on Staphylococcus oxford, MIC 0.62 mg/ml, and on Staphylococcus aureus, MIC 1.25 mg/ml. The petroleum ether extract, on agar plate at a concentration of 0.04 ml/disc, was active on Pseudomonas aeruginosa and, in broth culture, was active on Staphylococcus aureus, Staphylococcus oxford, Streptococcus mutans, Streptococcus sanguis, Escherichia coli and Proteus vulgaris; MIC 0.31, 0.31, 0.31, 0.62, 1.25, and 1.25, respectively^{HP0205}. The chloroform extract, at a concentration of 1.0 gm/liter on agar plate, produced weak activity, and the methanol extract was inactive on Klebsiella pneumonia. The chloroform and methanol extracts were inactive on Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa^{HP0230}. Ethanol (95%) extract of the dried entire plant, on agar plate at variable concentrations, was inactive on Aerobacter aerogenes, Bacillus globifer and erythromycin and tetracycline resistant strains, Bacillus mycoides, Bacillus subtilis, Escherichia coli and streptomycin resistant strain, Proteus morganii, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens, and Streptococcus aureus HP0217. Methanol extract of the dried aerial part, on agar plate at a concentration of 20.0 microliters/disc, was active on Escherichia coli; equivocal on Pseudomonas aeruginosa and Staphylococcus aureus (methicillin-sensitive); inactive on Enterobacter aerogenes, Klebsiella pneu-monia, Salmonella typhimurium TA98 and Serratia marcescens; and produced weak

HYPERICUM PERFORATUM 245

activity on *Bacillus subtilis*^{HPO245}. Petroleum ether extract of the dried aerial part, on agar plate, was active on *Staphylococcus aureus*^{HPO147}. The aerial part, on agar plate, was active on *Escherichia coli*, *Proteus vulgaris*, *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Streptococcus mutans*^{HPO153}.

Antidepressant activity. Ethanol/water (1:1) extract of the dried aerial part, administered intraperitoneally to mice at a dose of 250.0 mg/kg, decreased swimming time, rota-rod walking time and decreased exploratory activity^{HP0193}. Exudate from the aerial part used in a clinical trial was superior to placebo in alleviating the symptoms of depression as quantified by the Hamilton scaleHP0196. Hydro-alcoholic extract of the dried aerial part, taken orally by 105 patients with mild depression of short duration at a dose of 900.0 mg/day, was active in a double-blind study with either 300 mg of the extract or placebo 3 times a day for 4 weeks. The effectiveness was judged according to the Hamilton depression scale after 2 and 4 weeks. The values of the mean basic score in these periods fell from 15.8 to 9.6 and 7.2 in the active group, and in the placebo group from 15.8 to 12.3 and 11.3. The differences between active and placebo groups were statistically significant at p < 0.05 and p < 0.01 achieved after 2 and 4 weeks, respectively. In the active group 28 of the 42 patients (67%), and in the placebo group, 13 of the 47 patients (28%) responded to treatment. Notable side effects were not foundHP0161. In a randomized, double-blind study, the effectiveness and tolerance of a standardized preparation of Hypericum perforatum was examined and compared to maprotiline in a group of 102 patients with depression, in accordance with ICD-10, F 32.1. The study was conducted in the offices of neurology and psychiatry specialists. The patients received, over a period of 4 weeks, either 300 mg Hypericum perforatum extract or 25 mg maprotiline pills 3 times daily. The effectiveness was determined using the Hamilton depression scale (HAMD), the depression scale according to Von Zerssen (D-S), and the clinical global impression scale (CGI). The total score of the HAMD scale dropped during the 4 weeks of therapy in both treatment groups by about 50%. The mean values of the D-S scale and the CGI scale showed similar results, and after 4 weeks of therapy, no significant differences in either treatment group were noticed^{HP0164}. A meta-analysis of 23 comparisons or placebo-controlled randomized trials of 1757 patients with mild to moderate depressions demonstrated that a dose of 900.0 mg/day of hydro-alcoholic extract of the dried aerial part, when taken orally, was significantly superior to placebo (p = 0.05) and as effective as standard antidepressant drugs. The side effects were lower in the extract treated group^{HP0164}. In a randomized double-blind, placebo-controlled study of 50 patients with mild to moderate depression, treatment with 900 mg/day of hydro-alcoholic extract of the dried aerial part for 4 weeks was significantly more effective than placebo for reducing depressive symptoms. Thirty-nine patients with depression with somatic symptoms were treated with the extract for 4 weeks at a dose of 300 mg 3 times daily. The result showed a significant improvement in the active treatment group at the 5% level as compared to placebo. Seventy percent of the patients treated with the extract were free of symptoms after 4 weeks. Typical symptoms of depression such as lack of activity, tiredness, fatigue and disturbed sleep were especially responsive. In no case were any undesirable side effects observed HPO159. The leaf, taken orally by adults at a dose of 900.0 mg/person, was active in a double-blind, placebo-controlled study of 105 patients^{HP0191}. The aerial part, taken orally by human adults of both sexes at a dose of 1.8 gm/day, was active. In a multi-center study of the extract in severely depressed patients (HAMD score >20), in a randomized, double-blind study involving 20 psychiatric hospitals and day care centers in Germany, 209 patients received 6 weeks treatment of the extract, 600 mg 3 times daily or imipramine, 50 mg 3 times daily. Results indicated that both preparations were effective, although there was a trend in favor of imipramine. A randomized 6 week trial comparing a dose of 900 mg daily of Hypericum perforatum extract with 75 mg daily of amitriptyline in 165 patients with mild-to-moderate depression showed that both the extract and amitryptyline reduced mean HAMD scores when compared with baseline values. Amitriptyline appeared to have a more beneficial effect than Hypericum perforatum, although the side effects profile of Hypericum perforatum extract was more favorable HP0141. The aerial part, taken orally by human adults of both sexes at a dose of 900.0 mg/day, was active. The effectiveness and acceptance of a 4-week treatment with Hypericum perforatum extract were investigated by 663 private practitioners. The results of the 3250 patients (76% women and 24% men), were recorded using data sheets. The age of the patients ranged from 20 to 90 years of age (mean 51 years). Forty-nine percent of the patients were mildly depressed, 46% intermediate and 3% severely depressed. In about 30% of the patients, the situation normalized or improved during the therapy. Undesired drug effects were reported in 79 (2.4%) patients and 48 (1.5%) discontinued the therapy. The most frequently noted side effects were gastrointestinal irritations (0.6%), allergic reactions (0.5%), tiredness (0.4%), and restlessness (0.3%)HP0154. Ethanol (95%) extract of the aerial part, taken orally by human adults of both sexes at a dose of 300.0 mg/day, was active HPO175. Hydro-alcoholic extract of the aerial part, taken orally at a dose of 900.0 mg/day, was active. Seventy-two patients of 11 physi-

cians' practices were treated in a doubleblind study for a period of 6 weeks either with Hypericum perforatum extract or with placebo. Inclusion criterion was a major depression in accordance with DSM-III-R. The changes were controlled using 4 psychometric scales (HAMD, D-S, BEB, GCI). The statistic evaluation revealed, after 4 weeks of therapy, in all 4 psychometric tests, a significant improvement in the active group as compared to the placebo group; after switching the placebo group to active treatment (5th and 6th week of therapy), significant improvements were found in the original placebo group. No serious side effects were observedHP0171. Methanol extract of the aerial part, taken orally by human adults in 16 clinical studies of St. John's wort for the treatment of mild to moderate depression from 1991–1997, was active HPO175. In a 6 week study comparing Hypericum perforatum (300 mg 3 times daily) with imipramine (25 mg 3 times daily), the Hamilton depression scale scores decreased from 20.2 to 8.8 in the Hypericum perforatum group, and 19.4 to 10.7 in the imipramine group. Fewer and milder side effects were noted in the Hypericum perforatum group. In a 4 week double-blind trial of 105 out-patients with mild depression of short duration, 67% of the patients taking Hypericum perforatum improved, compared to 28% of the placebo group. No side effects were noted. Metaanalysis of 23 randomized trials of 1757 patients with mild or moderate depression indicated that Hypericum perforatum was more effective than the placebo and as effective as the standard antidepressant drugs. Fewer side effects were observed in the Hypericum perforatum group (19.8%) as compared to the standard antidepressant (52.8%). In a 4 week study in which Hypericum perforatum extract was compared with maprotline (25) mg/3 times a day) in 102 depressed patients, no significant differences were observed in either group^{HP0142}. The dried aerial part,

247

taken orally by adults, was active HP0156,HP0158. Ethanol (95%) extract of the dried aerial part, administered intragastrically to male gerbils at a dose of 2.0 mg/kg, was active vs clonidine-induced depression. A dose of 5.0 mg/kg, administered intragastrically to mice, was active; it enhanced the exploratory activity in a foreign environment and activity in the water wheel testHP0160. In a double-blind comparative study of 135 depressed patients in 20 centers with typical depressions with single episode, several episodes, depressive neurosis, and adjustment disorder with depressed mood in accordance with DSM-III-R, 300 mg of hydro-alcoholic extract of the dried aerial part or 25 mg impramine were administered orally 3 times daily for 6 weeks. The main assessment criteria were the Hamilton depression scale, the depression scale according to Von Zerssen and the Clinical Global Impressions. In both groups, a parallel reduction of the Hamilton score from 20.2 to 8.8 (extract, n = 67) or from 19.4 to10.7 (imipramine, n = 68), and the transformed D-S point values from 39.6 to 27.2 and 39.0 to 29.2 (imipramine) were found. In the group dosed with the extract, fewer and milder side effects were found as compared to imipramine. Tincture of the dried leaf was taken orally at a dose of 30 drops 3 times a day for 4–6 weeks by 6 women with depressive symptoms. In all of the patients there was an increase in 3-methoxy-4-hydroxy-phenylglucol, which is an expression of antidepressive reaction. The patients showed a quantitative improvement in anxiety, dysphoric mood, loss of interest, hypersomnia, anorexia, morning depression, insomnia, obstipation, psychomotor retardation and feelings of worthlessness. The leaf (20-60%), mixed with Filipendula ulmaria (40-80%) and 1.5% salicylic acid, has been patented as a treatment for angina pectoris and cardiac diseases^{HP0225}. Hydroalcoholic extract of the dried flower and

leaf, taken orally by adults of both sexes, was active HP0246.

Antifungal activity. Ethanol (95%) extract of the dried aerial part, on agar plate at a concentration of 6-10 mg/ml, was active on several fungi^{HP0216}. Ethanol (95%) extract of the dried entire plant, on agar plate at variable concentrations, was inactive on Fusarium culmoun, Fusarium solani, Penicillum notatum and Scopulariopsis speciesHP0217. Methanol extract of the dried aerial part, on agar plate at a concentration of 80.0 mg/disc, was inactive on Aspergillus flavus, Aspergillus fumigatus, Fusarium tricintum, Trichoderma viride, and Trichophyton mentagrophytes, and produced weak activity on Microsporum cookei and Microsporum gypseum^{HP0189}. Ethanol/water (1:1) extract of the dried flowering tops, at a concentration of 833.0 mg of the dried plant material/ml on agar plate, was inactive on Aspergillus niger, Botrytis cinerea, Penicillum digitata, Rhizopus nigricans, and Trichophyton mentagrophytes^{HPO247}. The fresh entire plant, on agar plate at a concentration of 1.0 gm/ml, was inactive on Cytospora species, Fomes annosus, and Pestaalotia funerea^{HPO248}.

Anti-inflammatory activity. Ethanol (80%) extract of the dried flowering tops, administered by gastric intubation to male rats at dose of 100.0 mg/kg, produced 14% inhibition of edema vs carrageenin-induced pedal edemaHP0203. The essential oil, used externally by adults of both sexes, was active in alleviating bedsores in elderly patients^{HP0249}. Antimycobacterial activity. Chloroform and methanol extracts of the dried aerial part, on agar plate at a concentration of >1.0 gm/liter, were inactive on Mycobacterium phlei^{HP0230}. Ethanol (95%) extract of the fresh flowers (1 part of fresh plant material to 3 parts of solvent), on agar plate, produced strong activity, and the water extract produced weak activity on Mycobacterium tuberculosis^{HP0236}. Ethanol (95%) extract of the dried entire plant, on agar plate at variable concentrations, was inactive on Mycobacterium phlei and Mycobacterium smegmatis^{HPO217}. Fresh leaf juice, on agar plate, was active on Mycobacterium tuberculosis, MIC 1:80^{HPO105}. Methanol extract of the dried aerial part, on agar plate at a concentration of 20.0 microliters/disc, was active on Mycobacterium phlei^{HPO182}.

Antipsoriatic activity. The leaf (20–60%), mixed with *Filipendula ulmaria* (40–80%) and 1.5% salicylic acid, has been patented as a treatment for rheumatism, phlebitis and psoriasis^{HPO243}.

Antispasmodic activity. Ethanol (95%) extract of the dried aerial part, at a concentration of 200.0 mcg/ml, was active on guinea pig ileum vs histamine-induced contractions, and strong activity was produced vs barium-induced contractions. The water extract was inactive vs histamine-induced contractions, and produced weak activity vs barium-induced contractions^{HPO223}.

Antitumor activity. Water and ethanol (95%) extracts of the entire plant, administered intraperitoneally to mice, were inactive on Sarcoma 180 (solid) and CA-Ehrlich-ascites^{HPO101}.

Antiviral activity. Acetone, hot water and ethyl acetate extracts of the aerial part, in cell culture, were active on influenza virus^{HP0177}. Ethanol/water (1:1) extract of the entire plant, in cell culture at a concentration of 0.05 mg/ml, was inactive on vaccinia virusHP0232. The hydro-alcoholic extract and decoction of the dried stem, at a concentration of 100.0 mcg/ml in cell culture on Vero cells, was inactive on Herpes simplex 1 and 2 virus and HIV when assayed in JM cellsHP0194. Water extract of the aerial part, in cell culture at a concentration of 10.0%, was active on Herpes virus type 2, influenza virus A2 (Manheim 57) and vaccinia virus, and inactive on poliovirus II^{HP0226}. Hot water extract of the dried flower and leaf, administered intraperitoneally to mice

at a concentration of 5.0%, was active on encephalitis virus (unspecified)^{HPO250}.

Antiyeast activity. Chloroform and methanol extracts of the dried aerial part, on agar plate at a concentration of >1.0 gm/ liter, were inactive on Candida albicansHP0230. Methanol extract of the dried aerial part, on agar plate at a concentration of 80.0 mg/ disc, was inactive on Candida albicans and Saccharomyces cerevisiae HPO189. Ethanol/water (1:1) extract of the dried entire plant, on agar plate at variable concentrations, was inactive on Kloekera brevis and Saccharomyces cerevisiaeHP0217. Ethanol/water (1:1) extract of the dried flowering top, at a concentration of 833.0 mg of plant material/ml, was inactive on Saccharomyces pastorianus and Candida albicans^{HP0247}.

Arachidonic acid release stimulation. Methanol extract of the aerial part was inactive vs cortical cells^{HPO150}.

Barbiturate sleeping time decrease. Ethanol/water (1:1) extract of the dried aerial part, administered intraperitoneally to mice at a dose of 500.0 mg/kg, was active vs CCl₄-induced hepatotoxicity^{HPO208}.

Benzodiazepine receptor binding. Methanol extract of the dried flower and the dried leaf inhibited 3H-flumazenil binding to benzodiazepine binding sites of the GABA receptors, IC₅₀ 6.83 and 200.0 mcg/ml, respectively^{HPO176}.

Bile secretion increase. Ethanol/water (1:1) extract of the dried aerial part, administered intraperitoneally to mice at a dose of 500.0 mg/kg, was active^{HPO208}.

Cardiotonic activity. Hot water extract of the stem, administered intravenously to frogs, produced weak activity^{HP0100}.

Catechol-o-methyl transferase inhibition. Methanol extract of the dried aerial part, at a concentration of 1.0 mmol, was active. The petroleum ether extract was inactive HPO170.

Chromosome aberrations. Ethanol (95%) extract of the dried leaf, administered intra-

gastrically to hamsters at a dose of 10.0 ml/kg, was inactive^{HPO207}.

CNS depressant activity. Ethanol/water (1:1) extract of the dried aerial part, administered intragastrically to mice at a concentration of 25.5 mg/kg, produced weak activity. The activity decreased with increased dosage using the actimeter test, results significant at P < 0.005 level^{HPO149}.

Convulsant activity. The aerial part in both the fresh and dried form, in the ration of sheep, was active when the photosensitized animals contacted water^{HPO128}.

Coronary blood flow increase. Flavonoid fraction of the dried aerial part, at a concentration of 1.0 mcg/ml, was active on guinea pig heart^{HPO144}.

Creatine phosphokinase enhancement. The aerial part, administered intragastrically to cattle of both sexes at a dose of 3.0 gm/kg, was active^{HPO143}.

Cryoprotective activity. Methanol extract of the aerial part, in cell culture at a concentration of 40.0 mcg/ml, was inactive vs cortical cell line. The extract was also inactive vs GP120-induced cytotoxicity in cortical cells and NMDA-treated cortical cells^{HP0150}. **Cutaneous circulation effect.** Hydro-alcoholic extract of the aerial part, taken orally by human adults of both sexes at a dose of 900.0 mg/day, was inactive in a clinical study of 25 individuals with mild depression. The effect of *Hypericum perforatum* on cutaneous circulation indicated no difference between the test group and the control group^{HP0174}.

Cytotoxic activity. Water and ethanol (95%) extracts of the entire plant, in cell culture, were inactive on CA-9KB, ED₅₀ 100.0 mcg/ml and >0.1 mg/ml respectively^{HPO101}. Water extract of the aerial part, in cell culture at a concentration of 10.0%, produced weak activity on Hela cells^{HPO226}.

Diuretic activity. Ethanol/water (1:1) extract of the entire plant, administered

intragastrically to rats at a dose of 750.0 mg/kg, was inactive^{HPO232}. Flavonoid fraction of the dried aerial part, at a dose of 4.0 gm/kg, produced weak activity^{HPO242}. Water extract of the entire plant was active on dogs^{HPO130}.

DNA repair induction. Ethanol (95%) extract of the dried leaves was active on rat liver cells^{HPO207}.

Dopamine uptake inhibition. Carbon dioxide extract of the dried flower and leaf was active on synaptosomes^{HPO251}.

Emmolient effect. Olive oil extract of the flower was active as a burn treatment when applied topically HPO140.

GABA inhibition. Carbon dioxide extract of the dried flower and leaf was active on synaptosomes^{HPO251}.

GABA receptor binding decrease. Hydroalcoholic extract of the dried flower and leaf inhibited muscimol and CGP binding to GABA receptors, IC₅₀ 3.24 and 3.31 mcg/ml, respectively^{HPO252}.

Genotoxicity activity. Ethanol (95%) extract of the dried leaf was inactive in in vitro studies in systems such as hypoxanthine guanidine phosphoribosyl transferase test, unscheduled DNA synthesis test and Syrian hamster embryo cell transformation test^{HPO207}.

Glutamate receptor binding decrease. Hydro-alcoholic extract of the dried flower and leaf inhibited CGP binding to the NMDA receptors^{HPO252}.

Glutamate uptake inhibition. Carbon dioxide extract of the dried flower and leaf was active on synaptosomes^{HPO251}.

Glutamate-oxaloacetate inhibition. Ethanol (95%) extract of the dried leaf, administered intragastrically to mice at variable dosage levels, was inactive vs fur spot test^{HPO207}.

Glycolysis inhibition. Water extract of the dried aerial part was active on the brain HPO157.

Hair stimulant effect. Water extract of the entire plant, applied topically together with a mixture of other plants, was effective for alopecia HP0111.

Hemagglutinin activity. Saline extract of the dried seeds, at a concentration of 10%, was inactive on the human RBCHP0224.

Hepatotoxic activity. Thirty-one HIV positive patients were administered over-thecounter hypericin-containing herbal extracts orally. No statistically significant changes in CD4+ levels were seen in any patient group of the study. Five patients experienced elevated live function testsHP0228.

Hypertensive activity. Hot water extract of the stem, administered intravenously to dogs at a dose of 1.0 ml/animal, was effectiveHP0100.

Inotropic effect. Flavonoid fraction of the dried aerial part, at a concentration of 0.1 mcg/ml, had a positive effect on the heartHP0144.

Insecticide activity. Water extract of the aerial part was inactive on Blatella germanica and Oncopeltus fasciatus^{HP0239}.

Interleukin-1-alpha release inhibition. Water extract of the entire plant was active on the human monocytes vs lipopolysaccharide stimulation HP0253.

Interleukin-1-beta release inhibition. Hydro-alcoholic extract of the dried aerial part was equivocal on the human blood vs phytohemagglutinin or lipopolysaccharide-induced releaseHP0166.

Interleukin-6 release. Hydro-alcoholic extract of the dried aerial part was active on the human blood vs phytohemagglutinin or lipopolysaccharide-induced release^{HP0166}.

Leukotriene B-4 production inhibition. Water extract of the entire plant was active on the human polymorphonuclear leukocytes vs calcium ionophore A23187-phorbol-12-myristate-13-acetate stimulation HPO253.

Monoamine oxidase inhibition (Types A and B). Carbon dioxide extract of the dried flower, at a concentration of 50.0 mcg/ml,

was inactive^{HP0251}. Methanol and petroleum ether extracts of the dried aerial part, at a concentration of 1.0 mmol, produced weak activityHP0170.

Muscarinic antagonist activity. Hydroalcoholic extract of the aerial part, at a concentration of 1.0%, was active on mouse brain HP0167.

Mutagenic activity. Chloroform, ethyl acetate and ethanol (95%) extracts of the dried aerial part, on agar plate at a concentration of 20.0 microliters/plate, were active on Salmonella typhimurium TA98HP0188. Ethanol (100%) extract of the dried flower, at variable concentrations on agar plate, was active on Salmonella typhimurium TA100 and TA98. Metabolic activation was required for activityHP0202. Ethanol (95%) extract and the essential oil of the dried leaf were active on Salmonella typhimurium^{HPO204}. Tincture of the aerial part, on agar plate at a concentration of 160.0 microliters/disc, was active on Salmonella typhimurium TA100 and TA98. Metabolic activation had no effect on the resultsHP0187. Narcotic activity. Ethanol (95%) extract of the dried aerial part, administered intra-

gastrically to mice, was activeHP0146.

Norepinephrine uptake inhibition. Carbon dioxide extract of the dried flower and leaf was active on synaptosomes^{HP0251}.

Phagocytosis stimulation. Ethanol (95%) extract and unsaponifiable fraction of the dried leaves, administered intraperitoneally to mice at a dose of 0.5 ml/animal, were inactiveHP0243.

Pharmacokinetic study. In a pharmacokinetic study, 1 mg of the hydro-alcoholic extract was administered as a single dose to human adults, and blood samples were taken. From 3.5 to 8 hours after dosing, the level of the extract increased from 0.45 ng/ ml to 4.21 ng/ml. Maximum resorption time was 6 hours HP0145.

Photosensitizer activity. Fluid extract of the entire plant, on agar plate, was inactive on Candida albicans HP0117. The aerial part, in the ration of sheep, was active. Sheep with fully pigmented skin were insensitive to the action of the plant^{HPO119}.

Phototoxicity. The aerial part, in the ration of cattle of both sexes at a dose of 1.0 gm/kg, was inactive. The animals were dosed after exposure to sunlight. A dose of 3.0 gm/kg, administered intragastrically, was active. When the animals were dosed after exposure to sunlight, the temperature and respiration of the animals rose 3 to 4 hours later and the animals were restless and passed soft feces^{HP0143}.

Prophage induction. Ethanol (95%) extract of the dried entire plant, on agar plate at variable concentrations, was inactive. The assay system was intended to predict for antitumor activity^{HPO217}.

Reverse transcriptase inhibition. Acetone and ethanol (70%) extracts of the dried entire plant, at a concentration of 10.0 mcg/ml, were inactive. The ethanol (95%) extract was active^{HPO254}.

Serotonin receptor blocking effect. Hydroalcoholic extract of the aerial part, at a concentration of 0.1%, produced weak activity on a mouse brain vs 5-HT-IAA receptor^{HPO167}. **Serotonin uptake inhibition.** Carbon dioxide extract of the dried flower and leaf was active on synaptosomes^{HPO251}. Hydro-alcoholic extract of the aerial part, at a concentration of 0.01%, was active on the mouse brain vs re-uptake of synaptosome preparations^{HPO167}.

Serotonin uptake stimulation. Methanol extract of the aerial part was active on the rat synaptosome, IC_{50} 6.2 mcg/ml^{HP0150}.

Sleep potentiation. Ethanol/water (1:1) extract of the dried aerial part, administered intragastrically to mice at a concentration of 13.25 mg/kg, produced weak activity vs influence on the sleep duration induced by pentobarbital. The activity was decreased with dosage, results significant at p <0.005 level^{HPO149}. The aerial part, administered intragastrically to male mice, extended narcotic-induced sleep^{HPO142}.

Smooth muscle relaxant activity. Ethyl acetate extract of the dried aerial part, at a concentration of 0.1 mg/ml, was active on pig arterial muscle vs histamine-induced contractions, and on the coronary artery vs prostaglandin F2 alpha-induced contractions^{HP0148}. Water extract of the aerial part, at a concentration of 1:5, and tincture at a concentration of 1:20, were active on cat and mouse intestines^{HP0127}.

Smooth muscle stimulant activity. Hot water extract of the stem was active on the guinea pig ileum. The spasms were blocked by atropine^{HPO100}.

Spasmolytic activity. Ethanol/water (1:1) extract of the entire plant was inactive on a rat uterus^{HP0232}.

Toxic effect. The aerial part^{HPO154} and its hydro-alcoholic extract HPO171, when taken orally by adults of both sexes at a dose of 900.0 mg/day, were inactive. In an open study of 3250 patients treated with St. John's Wort, observed side effects were gastrointestinal (0.6%) and fatigue (0.4%)HPO151. The aerial part, administered orally to pigs, was active. Symptoms include temperature increase to about 105 degrees Fahrenheit, rapid pulse and respiration, diarrhea and dermatitis in the white animals after exposure to sunlight. Blistering and necrosis of the skin and subcutaneous tissue was observed. Intestinal and stomach inflammations were sometimes seen HPO178.

Toxicity assessment. Ethanol/water (1:1) extract of the entire plant, administered intraperitoneally to mice, produced LD_{50} >1000 mg/kg^{HPO232}.

Tumor necrosing factor inhibition. Hydroalcoholic extract of the dried aerial part was active on human blood vs phytohemagglutinin or lipopolysaccharide-induced release^{HP0166}.

Uterine relaxation effect. Hot water extract of the stem was active on a non-pregnant rat uterus^{HPO100}.

Uterine stimulant effect. Hot water extract of the stem, at a concentration of 50.0

ml/liter, was active on guinea pig uterus. A concentration of 100.0 ml/liter was active on human uterus. A dose of 2.0 ml/kg, administered intravenously to dogs, was inactive HPO100. Water extract of the leaf was active on nonpregnant rat uterus HPO102. Wound healing acceleration. Ethanol		HP0107	1. Indian J Med Res 1961; 49: 130–151. Broda, B. and E. Andrzejewska. Choline content in some medicinal plants. Farm Pol 1966; 22: 181–184. Isaev, V. Essential oils of the flora of Tadshikistan. Acta Hortis Pot Tadshikistan. 1032: 1032:
(60%) extract of the dried leaf, administered intragastrically to rats at a dose of 0.1 ml/animal, increased wound strength and rate of contraction and epithelization in excision wounds ^{HPO209} . Hot water extract		HP0109	tii Bot Tadshikistan 1932; 1932: 17 Lawrendiadis, G. Contribution to the knowledge of the medicinal plants of Greece. Planta Med 1961; 9: 164
rabbits ^{HP0233}	al part, applied externally to and guinea pigs at a dose of sactive vs experimentally-in-nds ^{HP0129} .	HP0111	Jerzmanowska, Z. Hyperin, a glucoside of <i>Hypericum perforatum</i> . Wiadomosci Farm 1937; 64: 527–.
REFERENC	CES	HP0111	Makoru, L. Hair restorer. Patent-
HP0100	Mishra, M. B., J. P. Tewari and S. K. Bapat. A preliminary pharmacological screening of <i>Hypericum perforatum</i> . Labdev 1965;	HP0112	Austrian-176,950 1953. Roth, L. Hypericin content of various varieties of <i>Hypericum perforatum</i> . Dtsch Apoth Ztg 1953; 63: 653
HP0101	3: 272 Konopa, J., E. Jereczek, A. Mat- uszkiewicz and T. Nazarewicz. Screening of antitumor sub- stances from plants. Arch Imm -	HP0113	Gurevich, A. I., V. N. Dobrynin, M. N. Kolosov, S. A. Popravko, I. D. Ryabova, B. K. Chernov, N. A. Derbentseva, B. E. Aizenman and A. D. Garagulya. Hyper-
HP0102	unol Ther Exp 1967; 15: 129–. Dhawan, B. N. and P. N. Saxena. Evaluation of some indigenous drugs for stimulant effect on the rat uterus. A preliminary report. Indian J Med Res 1958; 46(6):	HP0114	forin, an antibiotic from Hypericum perforatum. Antibiotiki (Moscow) 1971; 16: 510—. Maksyutina, N. P. and D. G. Kolesnikov. Extraction of hyperin and quercetin from Hyperin and propering and propering antibiotic from Hypering and propering
HP0103	308-311. Rolleri, F. Occurrence of nicotinic acid and nicotinamide in curative plants. Arch Pharm	HP0115	ricum perforatum. Med Prom SSR 1964; 18(3): 41–. Biochinov, A., D. Drumev, R. Gakhniyan and K. Akhtard-
HP0104	(Weinheim) 1943; 281: 118–. El'Yashevych, O. H. and R. Cholii. Some means of treatment in the folk medicine of Lvov.		zhiev. Bioflavonoid from <i>Hypericum perforatum</i> possessing Vitamin P activity. Farmatsiya (Sofia) 1965; 15(2): 92–.
HP0105	Farm ZH (Kiev) 1972; 27(6): 78–. Fitzpatrick, F. K. Plant substances active against <i>Mycobacterium tuberculosis</i> . Antibiot	HP0116	Khalmatov, K. K. Quantitative changes in tannin substances and in ascorbic acid in plants. Dokl Akad Nauk Uzb SSR 1957; 14(3): 35–.
HP0106	Chemother 1954; 4:528–. Saha, J. C., E. C. Savini and S. Kasinathan. Ecbolic properties of Indian medicinal plants. Part	HP0117	Daniels, F. A simple microbiological method for demonstrating phototoxic compounds. J Invest Dermatol 1965; 44: 259—.

HYPERICUM PERFORATUM 253

HP0118 Burrall, F. A. Some uses of the Oleum hypericin. N Engl Med Monthly 1887; 7: 342 HP0119 Seddon, H. R. and H. G. Belschner. The effect of young immature St. John's Wort on sheep. Agr Gaz N SW 1929; 40(12): 914 HP0120 Gress, E. M. Poisonous plants of Pennsylvania. Penn Dept Agr Bull 1935; 531 18(5): 1 HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum seditorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev. Eli Lilly and Co, Indianapolis, 1898. HP0125 Grims, M. Flavonoids of Hypericum perforatum in Hypericum perfora				
Seddon, H. R. and H. G. Belschner. The effect of young immature St. John's Wort on sheep. Agr Gaz N S W 1929; 40(12): 914 HP0120 Gress, E. M. Poisonous plants of Pennsylvania. Penn Dept Agr Bull 1935; 531 18(5): 1 HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Shornik 1956; 1956: 269 HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Phamacay and Therapeutics. 5th Rev. Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum Sci Pharm Jugosl 1959; 9: 113 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Aizenman, B. Y. Antibiotic preparations from St. John's Wort (Hypericum perforatum Hypericum Hypericum. V. Identification of several non-volatile constituents Phytotochemistry 1964; 3(2): 377-378. HP0127 Maisenbacher. P. and K. A. Kovar. Adhyperforin: A homologue of hypericin from Hypericum perforatum. Novice as a constituents of plants, Peroxides as constituents of the leaf essential oil of Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725-730. HP0128 Pedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1969; 262: 32-100.	HP0118	Burrall, F. A. Some uses of the		
HP0119 Seddon, H. R. and H. G. Belschner. The effect of young immature St. John's Wort on sheep. Agr Gaz N S W 1929; 40(12): 914 HP0120 Gress, E. M. Poisonous plants of Pennsylvania. Penn Dept Agr Bull 1935; 531 18(5): 1- HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparation from Hypericum perforatum. Novio-manin, an antiotic preparation from Hypericum perforatum. Physician position of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0121 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0122 HP0123 Machine S. Shornik 1956; 1956: 269 HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum and some other Hypericum species. Acta Pharm 1953; 21: 242 HP0126 Griss, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm 1953; 21: 242 HP0127 Laitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N. Z. J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1969; 31(2): 128 HP0134 Mathis, C. and G. Ourisson. Chemotaxonomic study of the genus Hypericum perforatum beveral non-volatile constituents of Hypericum perforatum between thypericum perforatum on sesquiterpenes, monoterpene alcohols and saturated alchydocarbons and monoterpenes from the essential oil of Hypericum perforatum. Phytochemistry 1964; 3(3): 373-378. HP0135 HP0136 Profession of Hypericum perforatum hypericum perforatum. Phytochemistry 1964; 3(3): 373-378. HP0136 HP0137 Mathis C. and G. Ourisson. Chemotaxonomic study of the genus Hypericum perforatum he essential oil of Hypericum perforatum. Phytochemistry 1964; 3(3)		Oleum hyperici. N Engl Med		tum. Biul Inst Rosl Leczn 1959;
ner. The effect of young immature St. John's Wort on sheep. Agr Gax N S W 1929; 40(12): 914 HP0120 Gress, E. M. Poisonous plants of Pennsylvania. Penn Dept Agr Bull 1935; 531 18(5): 1 HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev. Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm 1953; 21: 242 HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 HP0129 Zaitseva, I. M. The effect of common St. John's Wort on the garning the genus Hypericum. V. Identification of several non-volatile constituents of several non-volatile constituents of hypericum. IV. Distribution of several non-volatile constituents of hypericum. IV. Distribution of sequiterpenes, monoterpene alcohols and saturated alchydes from the essential oil of Hypericum. Phytochemistry 1964; 3(1): 133-141. HP0126 Costes, C. Carotenoid pigments in the flowers and petals of Hypericum perforatum. Phytochemistry 1964; 3(1): 133-141. HP0137 Costes, C. Carotenoid pigments in the flowers and petals of Hypericum perforatum. Phytochemistry 1964; 3(3): 379-378. HP0138 HP0139 Chapting petron perforation of several non-volatile constituents of Hypericum. V. Identification of several non-volatile constituents of Hypericum. V. Distribution of sesquiterpenes, monoterpenes, monoterpenes, monoterpenes denotes of the pericum perforatum. Phytochemistry 1964; 3(1): 133-141. HP0139 Chapting petron perforation of the pericum perforation of the		Monthly 1887; 7: 342–.		5: 227–.
ture St. John's Wort on sheep. Agr Gaz N S W 1929; 40(12): 914 HP0120 Gress, E. M. Poisonous plants of Pennsylvania. Penn Dept Agr Bull 1935; 531 18(5): 1 HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novic-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev. Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0127 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum. N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska	HP0119	Seddon, H. R. and H. G. Belsch-	HP0131	Aizenman, B. Y. Antibiotic prep-
HP0120 Gress, E. M. Poisonous plants of Pennsylvania. Penn Dept Agr Bull 1935; 531 18(5): 1— HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248—. HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269—. HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum non experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska		ner. The effect of young imma-		arations from St. John's Wort
HP0120 Gress, E. M. Poisonous plants of Pennsylvania. Penn Dept Agr Bull 1935; 531 18(5): 1—. HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248—. HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum persoratum grass. Sbornik 1956; 1956: 269—. HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska		ture St. John's Wort on sheep.		(Hypericum perforatum). Mikro-
HP0120 Gress, E. M. Poisonous plants of Pennsylvania. Penn Dept Agr Bull 1935; 531 18(5): 1—. HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248—. HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum persoratum grass. Sbornik 1956; 1956: 269—. HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska		Agr Gaz N S W 1929; 40(12):		biol Zh (Kiev) 1969; 31(2):
HP0121 Portentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity ity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum non experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska		914–.		
HP0121 Portentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity ity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum non experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska	HP0120	Gress, E. M. Poisonous plants of	HP0132	Mathis, C. and G. Ourisson. Che-
HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum position of Hypericum perforatum L probaba per pericum perforatum		Pennsylvania. Penn Dept Agr		motaxonomic study of the genus
HP0121 Derbentseva, N. A., A. S. Rabinovich and S. I. Zelepukha. Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska		Bull 1935; 531 18(5): 1–.		Hypericum. V. Identification of
Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska	HP0121	Derbentseva, N. A., A. S. Rab-		
Novio-manin, an antiotic preparation from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska		inovich and S. I. Zelepukha.		of Hypericum perforatum L. Phy-
ration from Hypericum perforatum. Dopov Akad Nauk Ukr Rsr 1963; 1963 (9): 1248 HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269 HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravook hr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska				
HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269—. HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska Hypericum. IV. Distribution of sesquiterpenes, monoterpene alsochols and saturated alehydes from the essential oil of Hypericum. Phytochemistry 1964; 3(3): 377–378. HP0134 HP0135 HP0134 Mathis C. and G. Ourisson. Chemo-taxonomic study of the genus Hypericum. Phytochemistry 1964; 3(3): 377–378. HP0134 HP0135 Cand G. Ourisson. Chemo-taxonomic study of the genus Hypericum. Phytochemistry 1964; 3(3): 377–378. HP0136 HP0137 HP0134 Mathis C. and G. Ourisson. Chemo-taxonomic study of the genus Hypericum. Phytochemistry 1964; 3(3): 377–378. HP0134 Mathis C. and G. Ourisson. Chemo-taxonomic study of the genus Hypericum. Phytochemistry 1964; 3(3): 377–378. HP0135 Cand G. Ourisson. Chemo-taxonomic study of the genus Hypericum. Phytochemistry 1964; 3(3): 377–378. HP0136 HP0137 Mathis C. and G. Ourisson. Chemo-taxonomic study of the genus Hypericum. Phytochemistry 1964; 3(1): 133–141. HP0136 Mathis C. and G. Ourisson. Chemo-taxonomic study of the genus Hypericum Phytochemistry 1964; 3(1): 133–141. HP0136 Mathis C. and G. Ourisson. Chemo-taxonomic study of			HP0133	
HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269—. HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska				motaxonomic study of the genus
HP0122 Chaplinskaya, M. G. The composition of Hypericum perforatum grass. Sbornik 1956; 1956: 269—. HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 HP0129 Fedorchuk, A. M. Effect of Phypericum perforatum. Next J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska				
tum grass. Sbornik 1956; 1956: 269—. HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska	HP0122	Chaplinskaya, M. G. The com-		sesquiterpenes, monoterpene al-
HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Zaitseva, I. M. The effect of common St. John's Wort of the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska		position of Hypericum perfora-		cohols and saturated alehydes
HP0123 Vander, A. Plantas Medicinales Editorial Sintes, Barcelona-7, 1972. HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska 377–378. Mathis C. and G. Ourisson. Chemo-taxonomic study of the genus Hypericum III. The distribution of saturated hydrocarbons and monoterpenes from the sesential oil of Hypericum. Playericum perforatum. Ann Physiol Veg 1967; 9(2): 157–177. Maisenbacher, P. and K. A. Kovar. Adhyperforin: A homologue of hyperforin from Hypericum perforatum. Planta Med 1992; 58(3): 291–293. HP0137 Rucken-tavon Chemo-taxonomic study of the genus Hypericum III. The distribution of saturated hydrocarbons and monoterpenes from the essential oil of Hypericum. Phytochemistry 1964; 3(1): 133–141. Cotses, C. Carotenoid pigments in the flowers and petals of Hypericum perforatum. Ann Physiol Veg 1967; 9(2): 157–177. Maisenbacher, P. and K. A. Kovar. Adhyperforin: A homologue of hyperforin from Hypericum perforatum Planta Med 1992; 58(3): 291–293. HP0138 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance		tum grass. Sbornik 1956; 1956:		from the essential oil of Hyperi-
HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska		269–.		cum. Phytochemistry 1964; 3(3):
HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242–. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113–. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23–. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207–. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32–. HP0130 Borkowski, B., A. Duchnowska	HP0123	Vander, A. Plantas Medicinales		377–378.
HP0124 Anon. Lilly's Handbook of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska			HP0134	Mathis C. and G. Ourisson.
macy and Therapeutics. 5th Rev, Eli Lilly and Co, Indianapolis, 1898. HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska				Chemo-taxonomic study of the
HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska	HP0124			genus Hypericum. III. The dis-
HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska essential oil of Hypericum. Phytochemistry 1964; 3(1): 133—141. Costes, C. Carotenoid pigments in the flowers and petals of Hypericum perforatum. Ann Physical Veg 1967; 9(2): 157–177. Maisenbacher, P. and K. A. Kovar. Adhyperforin from Hypericum perforatum. Planta Med 1992; 58(3): 291–293. Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725–730. Constituents of the leaf essential oil of Hypericum. Physical Physica				tribution of saturated hydrocar-
HP0125 Neuwald, F. and U. Hagenstrom. The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242 HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113 HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska				
The estimation of tannins in Hypericum perforatum. Sci Pharm 1953; 21: 242—. HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska				
HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113–. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23–. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207–. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32–. HP0130 Borkowski, B., A. Duchnowska HP0135 Costes, C. Carotenoid pigments in the flowers and petals of Hypericum perforatum. Ann Physein the flowers and petals of Hypericum perforatum. Ann Physeiol Veg 1967; 9(2): 157–177. HP0136 Maisenbacher, P. and K. A. Kovar. Adhyperforin: A homologue of hyperforin from Hypericum perforatum. Planta Med 1992; 58(3): 291–293. HP0137 Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725–730. HP0138 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance	HP0125			
HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113–. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookir Beloruss 1966; 12(5): 23–. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207–. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32–. HP0130 Borkowski, B., A. Duchnowska				
HP0126 Grims, M. Flavonoids of Hypericum perforatum and some other Hypericum species. Acta Pharm Hypericum species. Acta Pharm Hypericum species. Acta Pharm HP0136 Jugosl 1959; 9: 113—. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska			HP0135	
the second perforatum and some other Hypericum species. Acta Pharm Jugosl 1959; 9: 113–. HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23–. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207–. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32–. HP0130 Borkowski, B., A. Duchnowska iol Veg 1967; 9(2): 157–177. Maisenbacher, P. and K. A. Kovar. Adhyperforin: A homologue of hyperforin from Hypericum perforatum. Planta Med 1992; 58(3): 291–293. HP0137 Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725–730. HP0138 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance	HD0126			
Hypericum species. Acta Pharm Jugosl 1959; 9: 113 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 HP0130 Maisenbacher, P. and K. A. Kovar. Adhyperforin: A homologue of hyperforin from Hypericum perforatum. Planta Med 1992; 58(3): 291-293. HP0137 Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725-730. HP0138 HP0139 Maisenbacher, P. and K. A. Kovar. Adhyperforin: A homologue of hyperforin from Hypericum perforatum. Planta Med 1992; 58(3): 291-293. HP0137 Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725-730. HP0138 HP0138 HP0138 Kovar. Adhyperforin: A homologue of hyperforin from Hypericum perforatum. Planta Med 1992; 58(3): 291-293. Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance	HP0126			
HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska Kovar. Adhyperforin: A homologue of hyperforatum. Planta Med 1992; 58(3): 291–293. Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725–730. HP0138 Kovar. Adhyperforin: A homologue of hyperforatum. Planta Med 1992; 58(3): 291–293. Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725–730. HP0139 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance			HD0126	
HP0127 Zaitseva, I. M. The effect of common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23—. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207—. HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska Index of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance			HP0136	
common St. John's Wort on the gastrointestinal tract. Zdravookhr Beloruss 1966; 12(5): 23–. HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (<i>Hypericum perforatum</i>). N Z J Sci Technol 1947; 29A: 207–. HP0129 Fedorchuk, A. M. Effect of <i>Hypericum perforatum</i> on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32–. HP0130 Borkowski, B., A. Duchnowska	HD0107			
gastrointestinal tract. Zdravoo- khr Beloruss 1966; 12(5): 23 HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (<i>Hypericum perforatum</i>). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of <i>Hype-ricum perforatum</i> on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska 1992; 58(3): 291–293. Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from <i>Hypericum perforatum</i> . Acta Pharm Nordica 1995; 328(10): 725–730. HP0138 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of <i>Hypericum perforatum</i> L. from India. Flavour Fragrance	HP0127			
HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32–. HP0130 Rucker, G., D. Manns, R. Hartmann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725–730. HP0138 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance				
HP0128 Cunningham, I. J. Photosensitivity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska mann and U. Bonsels. Peroxides as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725-730. HP0138 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance		-	HD0127	
ity diseases in New Zealand v. photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska as constituents of plants, Part 19. A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725-730. HP0138 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance	1100120		HP0137	
photosensitization by St. John's Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 HP0130 A C50-hydroperoxide from Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725- 730. Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance	HF0128	=		
Wort (Hypericum perforatum). N Z J Sci Technol 1947; 29A: 207 Tedorchuk, A. M. Effect of Hypericum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Wort (Hypericum perforatum. Acta Pharm Nordica 1995; 328(10): 725-730. Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance				
N Z J Sci Technol 1947; 29A: 207 HP0129 Fedorchuk, A. M. Effect of Hype- ricum perforatum on experimentally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32 HP0130 Borkowski, B., A. Duchnowska Nordica 1995; 328(10): 725- 730. Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance		- ·		
HP0129 Fedorchuk, A. M. Effect of Hype- ricum perforatum on experimen- tally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska 730. Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance				
HP0129 Fedorchuk, A. M. Effect of Hype- ricum perforatum on experimen- tally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32—. HP0130 Borkowski, B., A. Duchnowska HP0138 Weyerstahl. P., U. Splittgerber, H. Marschall and V. K. Kaul. Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flavour Fragrance				
ricum perforatum on experimentally infected wounds. Mikrobiol Constituents of the leaf essential Zh (Kiev) 1964; 26: 32—. oil of Hypericum perforatum L. HP0130 Borkowski, B., A. Duchnowska from India. Flavour Fragrance	HP0129		HP0138	
tally infected wounds. Mikrobiol Zh (Kiev) 1964; 26: 32–. HP0130 Borkowski, B., A. Duchnowska Constituents of the leaf essential oil of <i>Hypericum perforatum</i> L. from India. Flavour Fragrance				
Zh (Kiev) 1964; 26: 32–. oil of <i>Hypericum perforatum</i> L. HP0130 Borkowski, B., A. Duchnowska from India. Flavour Fragrance		• •		
HP0130 Borkowski, B., A. Duchnowska from India. Flavour Fragrance				
<u> </u>	HP0130			
		and T. Wrocinski. Flavonoid		

HP0139	Rucker, G., D. Manns, R. Hartmann and U. Bonsels. A C50-Hydroperoxide from <i>Hypericum perforatum</i> . Arch Pharm (Weinheim) 1995; 328(10): 725–730.	HP0149	perforatum L. in isolated porcine coronary arteries. Arzneim-Forsch 1991; 41(1): 481–483. Girzu, M., A. Carnat, A. M. Provat, J. Fialip, A. P. Carnat and J.
HP0140	Saljic, J. Ointment for the treatment of burns. Patent-Ger Offen-2,406,452 1975.		L. Lamaison. Sedative activity in mice of a hydroalcohol extract of <i>Hypericum perforatum</i> L. Phy-
HP0141	Wheatley, D., E. U. Vorbach, B. Mockel and J. Beuth. Evidence for benefit of St. John's Wort in depressive disorders. Pharmaceutical J 1996; 257(6919): 770–771.	HP0150	tother Res 1997; 11(5): 395–397. Perovic, S. and W. E. G. Miller. Pharmacological profile of Hypericum extract. Effect on serotonin uptake by postsynaptic re-
HP0142	Wincor, M. Z. and M. A. Gutierrez. St. John's Wort and the treatment of depression. US Pharmacist 1997; 22(8): 88–97.	HP0151	ceptors. Arzneim-Forsch 1995; 45(11): 1145–1148. De Smet, P. A. G. M. and W. A. Nolen. St. John's Wort as an anti-
HP0143	Araya, O. S. and E. J. H. Ford. An investigation of the type of photosensitization caused by the ingestion of St. John's Wort (<i>Hypericum perforatum</i>) by calves.		depressant: Longer term studies are needed before it can be recommended in major depression. Brit Med J 1996; 313(7052): 241–242.
HP0144	J Comp Path 1981; 91: 135–141. Melzer, R., U. Fricke, R. Podehl	HP0152	Brantner, A., T. Kartnig and F. Quehenberger. Comparative phytochemical investigation of <i>Hype</i> -
111 0144	and J. Zylka. Procyanidins from <i>Hypericum perforatum</i> : Effects on isolated guinea pig hearts.		ricum perforatum L. and Hypericum maculatum Crantz. Sci Pharm 1994; 62: 261–276.
HP0145	Planta Med 1989; 55: 655–656. Stock, S. and J. Holzl. Pharma- cokinetic test of (14-C)-labelled	HP0153	Grauds, C. St. John's Wort for depression. Pharmacy Times 1997; 63(10): 40–.
	hypericin and pseudohypericin from <i>Hypericum perforatum</i> and serum kinetics of hypericin in man. Planta Med Suppl 1991; 57(2): A61–A62.	HP0154	Woelk, H., G. Burkard and J. Grunwald. Benefits and risk of the Hypericum extract LI 160: Drug monitoring study with 3250 patients. J Geriat Psychiat Neurol
HP0146	Okpanyi, V. S. N. and M. L. Weischer. Experimental animal studies of the psychotropic activity of a Hypericum extract. Arzneim-Forsch 1987; 37(1): 10–13.	HP0155	1994; 7: 834–838. Prokosheva, L. I. and L. V. Shatunova. Content of active substances in the aboveground parts of <i>Hypericum perforatum</i> . Rast Resur 1985; 21(4): 461–463.
HP0147	Brondz, I., T. Greibrokk, P. A. Groth, and J. Aasen. The relative stereochemistry of hyperforin - an antibiotic from <i>Hypericum</i>	HP0156	Carey, B. The sunshine supplement. Can a humble herb really chase your blues away? Health 1998; 12(1): 53–55.
HP0148	perforatum L. Tetrahedron Lett 1982; 23(12): 1299–1300. Melzer, R., U. Fricke and J. Holzl. Vasoactive properties of procyandins from <i>Hypericum</i>	HP0157	Dittman, V. J., H. D. Herrmann and H. Palleske. Normalizing glucose metabolism in brain tumor slices by hyperoside. Arzneim-Forsch 1971; 21(12): 1999–2002.

HP0158	Cot, J. Natural product formulations available in Europe for psychotropic indications. Psychopharmacol Bull 1995; 31(4): 745–751.	HP0167	Mueller, W. E. and C. Schaefer. St. John's Wort. In vitro investigation on Hypericum extract, hypericin, and kaempferol as antidepressant. Dtsch Apoth Ztg
HP0159	Hubner, W. D., S. Lande and H. Podzuweit. Hypericum treatment of mild depressions with somatic symptoms. J Geriat Psychiat Neurol 1994; 7(1): S12–S14.	HP0168	1996; 136(3): 17–22. Falk, H. and W. Schmitzberger. On the nature of "soluble" hypericin in Hypericum species. Monatsh Chem 1992; 123(8/9):
HP0160	Vorbach, E. U., W. D. Hubner and K. H. Arnoldt. Effectiveness and tolerance of the Hypericum extract LI 160 in comparison with imipramine: Randomized double-blind study with 135 outpatients. J Geriat Psychiat Neurol 1994; 7(1): S19–S23.	HP0169	731–739. Kartnig, T. and B. Heydel. Effects of visible and ultraviolet light on the production of hypericins and flavonoids in cell cultures of <i>Hypericum perforatum</i> . Planta Med Suppl 1993; 59(7): A654–.
HP0161	Sommer, H. and G. Harrer. Placebo-controlled double-blind study examining the effectiveness of an Hypericum preparation in 105 mildly depressed pa-	HP0170	Thiede, H. M. and A. Walper. Inhibition of MAO and COMT by Hypericum extracts and hypericin. J Geriat Psychiat Neurol 1994; 7(Supp1): 854–856.
HP0162	tients. J Geriat Psychiat Neurol 1994; 7(1): S9–S11. Holzl, J. and E. Ostrowski. HPLC analysis of the constituents and the variety in populations. Dtsch Apoth Ztg 1987; 127(23): 1227–1230.	HP0171	Hansgen, K. D., J. Vesper and M. Ploch. Multicentre double blind study examining the anti-depressant effectiveness of the Hypericum extract LI 160. Nervenheilkunde 1993; 12: 285–289.
HP0163	Wagner, H. and S. Bladt. Pharmaceutical quality of <i>Hypericum</i> extracts. J Geriat Psychiat Neurol 1994; 7(81): 865–868.	HP0172	Murch, S. J., C. B. Simmons and P. K. Saxena. Melatonin in fever-few and other medicinal plants. Lancet 1997; 350(9091): 1598–
HP0164	Klaus, L., G. Ramirez, C. D. Muldrow, A. J. Pauls, W. G. Weidenhammer and D. Melchart. St. John's Wort for depression-An overview and metaanalysis of randomised clinical trials. Brit Med	HP0173	1599. Girzu, M., A. P. Carnat and J. L. Chabard. Fatty acid composition of the <i>Hypericum perforatum</i> flowering tops. Ol Corps Gras Lipides 1995; 2(4): 317–318.
HP0165	J 1996; 313(7052): 253–258. Demisch, L., J. Holzl, B. Gollnik and P. Kaczmarczyk. Identifica- tion of selective MAO-type-A inhibitors in <i>Hypericum perfor-</i> atum L. (Hyperforat). Pharma-	HP0174	Mueck-Weymann, M., K. Tritt, T. Moesler, T. Rechlin and P. Joraschky. Does St. John's Wort have an effect on autonomic responses of cutaneous circulation? Microvasc Res 1997; 54(3):
HP0166	copsychiatry 1989; 22: 194–. Thiele, B., I. Brink and M. Ploch. Modulation of cytokine expression by Hypericum extract. J Geriat Psychiat Neurol 1994; 7(1): S60–S62.	HP0175	270–272. Schulz, V., W. D. Hubner and M. Ploch. Clinical trials with phyto-psychopharmacological agents. Phytomedicine 1997; 4(4): 379–387.

HP0176	Baureithel, K. H., K. B. Buter, A. Engesser, W. Burkard and W. Schannfer. Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species of Hypericum.	HP0185	Int J Pharmacog 1992; 30(3): 233–239. Falk, H. and W. G. Schmitzberger. On the nature of "soluble" hypericin in Hypericum species. Monatsh Chem 1992; 123(8/9): 721, 739.
HP0177	Pharm Acta Helv 1997; 72(3): 153–157. Mishenkova, E. L., N. A. Derbentseva, A. D. Garagulya and L. N. Litvin. Antiviral properties of St. John's Wort and prepara-	HP0186	731–739. Malamas, M and M. Marselos. The tradition of medicinal plants in Zagori, Epirus (Northwestern Greece). J Ethnopharmacol 1992; 37(3): 107–203
	tions produced from it. Tr Szeda Mikrobiol Ukr 1975; 4th 1975: 222–.	HP0187	37(3): 197–203. Schimmer, O., A. Kruger, H. Paulini and F. Haefele. An eval- uation of 55 commercial plant
HP0178	Link, R. P. Toxic plants, rodenticides, herbicides and yellow fat disease. Diseases of Swine		extracts in the Ames mutagenicity test. Pharmazie 1994; 49(6): 448–451.
HD0170	Dunne H. W.: Lemon Ad (EDS) Iowa State Univ Press, Ames, Iowa 4th Ed, 1975; 861	HP0188	Poginsky, B., J. Westendorf, N. Prosenc, M. Kuppe and H. Marquardt. Genotoxicity due to its
HP0179	Maisenbacher, P. and K. A. Kovar. Analysis and stability of <i>Hyperici oleum</i> . Planta Med 1992; 58(4): 351–354.	HP0189	quercetin content. Dtsch Apoth Atg 1988; 128(26): 1364–1366. McCutecheon, A. R., S. M. Ellis, R. E. W. Hancock, and G.
HP0180	Haeberlin, H., K. P. Tschiersch, S. Stock and J. Hoelzl. St. John's Wort (<i>Hyperteum perforatum</i> L.). Part I. Identification of an additional naphthodianthrone. Pz		H. N. Towers. Antifungal screening of medicinal plants of British Columbian native peoples. J Ethnopharmacol 1994; 44(3): 157–169.
HP0181	Wiss 1992; 5(4): 169–174. Seabra, R. M., M. H. Vasconcelos, M. A. C. Costa and A. C. Alves. Phenolic compounds from <i>Hypericum perforatum</i> and <i>H. undulatum</i> . Fitoterapia 1992; 63(5): 473–474.	HP0190	Yesilada, E., G. Honda, E. Sezik, M. Tabata, T. Fujita, T. Tanaka, Y. Takeda and Y. Takaishi. Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. J Ethnopharmacol 1995; 46(3): 133–152.
HP0182	McCutcheon, A. R., S. M. Ellis, R. E. W. Hancock and G. H. N. Towers. Antibiotic screening of medicinal plants of the British	HP0191	Harrer, G. and H. Sommer. Treatment of mild/moderate depressions with Hypericum. Phytomedicine 1994; 1(1): 3–8.
*******	Columbian native peoples. J Eth-nopharmacol 1992; 37(3): 213–223.	HP0192	Rivera D. and C. Obon. The eth- nopharmacology of Madeira and Porto Santo Islands, a review. J
HP0183	Sparenberg, B., L. Demisch and J. Hoelzl. Antidepressive constituents of St. John's Wort. Pz Wiss 1993: 6(2): 50, 54	HP0193	Ethnopharmacol 1995; 46(2): 73–93. Ozturk, Y., S. Aydin, R. Beis, K.
HP0184	Wiss 1993; 6(2): 50–54. Sezik, E., M. Zor and E. Yesilada. Traditional medicine in Turkey II. Folk medicine in Kastamonu.		H. C. Baser and H. Berberoglu. Effects of Hypericum perforatum L. and Hypericum calycinum L. extracts on the central

HP0194	nervous system in mice. Phytomedicine 1996; 3(2): 139–146. Pacheco, P., J. Sierra, G. Schmeda-Hirschmann, C. W. Potter, B. M. Jones and M. Moshref. Antiviral activity of Chilean medicinal plant extracts. Phytother Res 1993; 7(6): 415–418.	HP0203	Mascolo, N., G. Autore, F. Capasso, A. Menghini and M. P. Fasulo. Biological screening of Italian medicinal plants for anti-inflammatory activity. Phytother Res 1987; 1(1): 28–31. Poginsky, B., J. Westendorf, N. Prosenc, M. Kuppe and H. Mar-
HP0195	Kartnig, T., I. Gobel and B. Heydel. Production of hypericin, pseudohypericin and flavonoids in cell cultures of various Hypericum species and their chemotypes. Planta Med 1996; 62 (1): 51–53.	HP0205	quardt. St. John's Wort (Hypericum perforatum L.). Genotoxicity due to the quercetin content. Dtsch Apoth Ztg 1988; 128(26): 1346–1366. Barbagallo, C. and G. Chisari. Antimicrobial activity of three
HP0196	Ernst, E. St. John's Wort in depression. Pharm J 1995; 255(6862): 491–.	HP0206	Hypericum species. Fitoterapia 1987; 58(3): 175–177. Akhtardzhiev, K. H., M. Koleva,
HP0197	Heinerman, J. Medical doctors' guide to herbs. Biworld Publishers, Provo, Utah (ISBN-0-89557-016-5), 1977.		G. Kitanov and S. Ninov. Pharmacognostic study of representatives of Arum, Althaea and Hypericum species. Farmatsiya
HP0198	Nielsen, H. and P. Arends. Structure of the xanthonolignoid kielcorin. Phytochemistry 1978; 17: 2040–2041.	HP0207	(Sofia) 1984; 34(3): 1–6. Okpanyi, S. N., H. Lidzba, B. C. Scholl and H. C. Miltenburger. Investigations into the genotox-
HP0199	Ollivier, B., C. Balansard, C. Maillard, E. Vidal and G. Boudon. Separation and identification of phenolic acids in parie-		icity of a standardized extract of <i>Hypericum perforatum</i> . Arzneim-Forsch 1990; 40(8): 851–855.
	tary (<i>Parietaria officinalis</i> L.) and Saint-John's Wort (<i>Hypericum perforatum</i> L.) by HPLC and UV. J Pharm Belg 1985; 40 (3): 173–177.	HP0208	Ozturk, Y., S. Aydin, K. H. C. Baser, N. Kirimer and N. Kurtar-Ozturk. Hepatoprotective activity of <i>Hypericum perforatum</i> L. alcoholic extract in rodents. Phy -
HP0200	Berghofer, R. and J. Holzl. Biflavonoids in <i>Hypericum perforatum</i> -1, part 1. Isolation of 13, II8-biapigenin. Planta Med 1987; 53(2): 216–217.	HP0209	tother Res 1992; 6(1): 44–46. Rao, S. G., A. L. Udupa, S. L. Udupa, P. G. M. Rao, G. Rao and D. R. Kulkarni. Calendula and Hypericum: Two homeopathic
HP0201	Grujic-Vasic, J., T. Bosnic, and M. Jovanovic. The examining of isolated tannins and their astrin-		drugs promoting wound healing in rats. Fitoterapia 1991; 62(6): 508–.
	gent effect. Planta Med 1986; 1986(6): 548–A.	HP0210	Newman, L. F. Ophelia's herbal. Econ Bot 1979; 33: 227–232.
HP0202	Schimmer, O., F. Hafele and A. Kruger. The mutagenic potencies of plant extracts containing	HP0211	Gella, E. V., L. V. Shatunova and V. A. Biryuk. Quercetin. Patent-USSR-701,640 1979.
	quercetin in Salmonella typhimurium TA98 and TA100. Mutat Res 1988; 206(2): 201–208.	HP0212	Tucakov, J. Ethnotherapy of diabetes. Srp Arh Celok Lek 1978; 106: 159–173.

HP0213	Giese, A. C. Hypericism. (Re-		commercially available crude
	view). Photochem Photobiol		drugs and the related plant mate-
	Rev 1980; 5: 229–255.		rials. Shoyakugaku Zasshi 1983;
HP0214	Jela, G. V. and B. Tamara. Study		37(3): 223–228.
	of plant oxyaromatic acids. Arh	HP0224	Hardman, J. T., M. L. Beck and
	Farm 1981; 31(5/6): 273–278.		C. E. Owensby. Range forb lec-
HP0215	Vickery, A. R. Traditional uses		tins. Transfusion 1983; 23(6):
	and folklore of Hypericum in the		519–522.
	British Isles. Econ Bot 1981; 35:	HP0225	Muldner, H. and M. Zoller. Anti-
	289–295.		depressive effect of a Hypericum
HP0216	Khosa, R. L. and N. Bhatia. Anti-		extract standardized to the active
	fungal effect of Hypericum per-		Hypericine complex/biochem-
	foratum Linn. J Sci Res Pl Med		istry and clinical studies. Arz-
	1982; 3(2/3): 49–50.		neim-Forsch 1984; 34(8): 918–
HP0217	Dornberger, K. and H. Lich.		920.
	Screening for antimicrobial and	HP0226	May, G. and G. Willuhn. Antivi-
	presumed cancerostatic plant me-		ral activity of aqueous extracts
	tabolites. Pharmazie 1982; 37		from medicinal plants in tissue
	(3): 215–221.		cultures. Arzneim-Forsch 1978;
HP0218	Karryev, M. O. and N. F. Komis-		28(1): 1–7.
	sarenko. Phytochemical study	HP0227	Vasil'chenko, E. A., L. N. Vasil'
	of Hypericum L. plants of the		eva, N. F. Komissarenko, I. G.
	Turkmenian flora. Izv Akad		Levashova and V. S. Batyuk.
	Nauk Turkm Ssr Ser Biol Nauk		Analgesic action of flavonoids
1100010	1980; 1980(3): 52–57.		of Rhododendron luteum Sweet,
HP0219	Razzack, H. M. A. The concept		Hypericum perforatum L., Les-
	of birth control in Unani medical		pedeza bicolor Turoz. and L.
	literature. Unpublished manu-		hedysaroides (Pall.) Kitag. Rast
1100000	script of the author 1980; 64 pp.	1100000	Resur 1986; 22(1): 12–21.
HP0220	Brondz, I., T. Greibrokk and A.	HP0228	Anon. Hypericin. Aids/HIV
	J. Aasen. N-1-Alkanols of Hype-		Treatment Directory 1990; 4
	ricum perforatum. J Nat Prod	HP0229	(2): 25.
HD0221	1983; 46(6): 940	HP0229	Leporatti, M. L. and A. Pavesi.
HP0221	Kitanov, G. Determination of the absolute configuration of cate-		New or uncommon uses of several medicinal plants in some
	chins isolated from Hypericum		areas of Central Italy. J Ethno-
	perforatum. Farmatsiya (Sofia)		pharmacol 1990; 29(2): 213–
	1983; 33(2): 19–22.		223.
HP0222	Hooper, S. N. and R. F. Chand-	HP0230	Rios, J. L., M. C. Recio and A.
111 0222	ler. Herbal remedies of the Mari-	111 0230	Villar. Antimicrobial activity of
	time Indians: Phytosterols and		selected plants employed in the
	triterpenes of 67 plants. J Eth-		Spanish Mediterranean area. J
	nopharmacol 1984; 10(2): 181–		Ethnopharmacol 1987; 21(2):
	194.		139–152.
HP0223	Itokawa, H. S. Mihashi, K.	HP0231	Lokar, L. C. and L. Poldini. Her-
	Watanabe, H. Natsumoto and T.		bal remedies in the traditional
	Hamanaka. Studies on the con-		medicine of the Venezia Giulia
	stituents of crude drugs having		region (North East Italy). J Eth-
	inhibitory activity against con-		nopharmacol 1988; 22(3): 231-
	traction of the ileum caused by		239.
	histamine or barium chloride (1).	HP0232	Abraham, A., S. D. Bhakuni, H. S.
	Screening test for the activity of		Garg, A. K. Goel, B. N. Mehrotra

HP0244	and G. K. Patnaik. Indian J Exp Biol 1986; 24(1986): 48–68. Chopra, R. N., R. L. Badhwar and S. Ghosh. Poisonous plants of India. Manager of Publica-		with special reference to <i>Mycobacterium tuberculosis</i> (Third report). Mich State Univ Agr Appl Sci Quart Bull 1953; 35: 392–404.
	tions, Government of India Press,	HP0237	Saggese, D. Medicinal Herbs of
1100222	Calcutta. Volume 1, 1949.		Argentina, 10th Ed. Antognazzi
HP0233	Lazareva, K. N., Z. Y. Lagno, F. A. Zarukii, N. A. Kuznetsova	HP0238	& Co., Rosario, 1959; 1–189. Dragendorff, G. Die Heilpflan-
	and R. N. Abdullina. The results	111 0230	zen der Verschiedenen Volker
	of a study of some drug plants of		und Zeiten, F. Enke, Stuttgart,
	the Bashkir ASSR. Sb Nauchn		1898; 885 pp
	Tr Bashk Gos Med Inst 1968;	HP0239	Heal, R. E., E. F. Rogers, R. T.
	17: 54–.		Wallace and O. Starnes. A sur-
HP0234	Broda, B., W. Jaroniewski and		vey of plants for insecticidal ac-
	L. Swiatek. Occurrence of caf-		tivity. Lloydia 1950; 13: 89–162.
	feic acid in some medicinal	HP0240	Chopra, R. N. Indigenous Drugs
	plants. Acta Pol Pharm 1960; 17: 301–306.		of India. Their Medical and Eco-
HP0235	Snajder, K. Use of indigenous		nomic Aspects. The Art Press, Calcutta, India, 1933; 550 pp
111 0233	medicinal plants against dysen-	HP0241	Anon. The Herbalist, Hammond
	tery and diarrhea in vicinity of	111 0241	Book Company, Hammond, Indi-
	Trstenik (Central Siberia). Sb		ana, 1931; 400 pp
	Radova Sapadnika Inst Ispi-	HP0242	Borkowski, B. Diuretic action of
	tivaye Lekovit Biya (Belgrade)		several flavone drugs. Planta
	1951; 1951(1): 21		Med 1960; 8: 95–104.
HP0236	Frisbey, A., J. M. Roberts, J. C.	HP0243	Tonero, A. Therapeutic product for
	Jennings, R. Y. Gottshall and E.		the treatment of several diseases,
	H. Lucas. The occurrence of anti-		such as rheumatism. Patent-Belg-
	bacterial substances in seed plants		654,916 1965; 4 pp

13 Laurus nobilis

L.

Common Names

Alauro	Italy	Gar	Jordan
Alloro	Italy	Gekkeiju	Japan
Apollo's laurel	France	Hab-el-ghar	India
Asat sinda musa	Morocco	Habet L-gar	Morocco
Barge boo	Iran	Indian bay	USA
Bay laurel	Japan	Laurel comun	Argentina
Bay laurel	USA	Laurel noble	Argentina
Bay tree	Europe	Laurel real	Peru
Bay tree	Guyana	Laurel tree	Iran
Bay tree	Iran	Lauriello	Italy
Bay tree	Japan	Laurier D'apollon	France
Bay tree	USA	Laurier sauce	Tunisia
Bay tree	West Indies	Lauro	Italy
Bay	Brazil	Lorbeerfrucht	Italy
Bay	Japan	Rend	Tunisia
Derakhte barge boo	Iran	Sweet bay	Iran

BOTANICAL DESCRIPTION

A small evergreen tree of the LAURACEAE family. It is a hardy multi-branched tree with smooth bark that grows to about 10 m high. The leaves are glossy dark green lanceolate, alternate, acuminate at both ends and about 10 cm long. They are short-petioled and their margins are often sinuate and coriaceous and emit a sweet balsamic scent when bruised. The flowers are in axillary bushy umbels or short racemous panicles. They are dioecious, whitish-green, with 4 petals fused at the base. The male

flower usually has 10–12 stamens, the female has 4 staminoids. The ovary is short-stemmed with 1 chamber with a hanging ovule, a short style and a triangular obtuse stigma. The fruit develops on the stem into deep-black 2 cm long ovate berries.

ORIGIN AND DISTRIBUTION

This family that is chiefly tropical originated in southern Asia. It is now distributed in the West Indies, South and Central America, the Mediterranean region and Africa.

TRADITIONAL MEDICINAL USES

Afghanistan. The leaf, mixed with anise and Casuarina equisetifolia, is inserted intravaginally to induce pregnancy^{LN0171}.

Argentina. Decoction of the dried leaf is taken orally to treat respiratory and urinary tract infections^{LN0125}. Half to 1 gram of the fruit is taken orally to accelerate parturition. The leaf juice, 3–4 drops in water, is taken orally to promote menstruation^{LN0105}. **England.** Hot water extract of the fruit is taken orally to induce menstruation^{LN0104}. **Europe.** The fruit is taken orally during childbirth to speed up delivery^{LN0104}.

Greece. Hot water extract of the leaf is taken orally as a contraceptive^{LN0175}.

India. Hot water extract of the dried leaf is taken orally as an emmenagogue^{LN0164}. The fruit is taken orally by women as an emmenagogue. Water extract of the leaf is taken orally as an emmenagogue^{LN0102}.

Iran. Decoction of the dried fruit is taken orally as an appetite stimulant and digestive aid. Infusion of the dried leaf is taken orally as a diaphoretic, antiflatulant, diuretic, for cramps, amenorrhea and catarrh, and in high doses as an emetic^{LN0110}.

Israel. Hot water extract of the dried leaf, together with *Ruta chalepensis*, is used in intravenous infusion for respiratory problems. Steam bath of the dried leaf, in combination with *Salvia fruticosa*, *Ruta chalepensis* and *Satureja thymbra*, is taken for colds and as a general tonic. The fruit essential oil is used externally on wounds and for rheumatic and neuralgic pains^{LN0145}.

Italy. Hot water extract of the dried leaf is used externally for inflammations^{LN0141}. The infusion is taken orally to aid in digestion^{LN0169}. Infusion of the leaf is taken orally as an antispasmodic for abdominal colic, and as a sedative and digestive. The essential oil is used as an emollient for hemorrhoids and for subcutaneous bleeding^{LN0120}. The fruit is taken orally as anaperient^{LN0120}. The dried fruit, macerated in alcohol, is

mixed with olive oil and used externally as an antirheumatic^{LN0169}. The ethanol/water (1:1) extract is taken orally to treat stomachache. A poultice prepared from the leaf is used to treat insect bites^{LN0170}.

Jordan. Decoction of the leaf is taken orally as an aperitive and antidiarrheal^{LN0133}. **Morocco.** The leaf is taken orally for liver disorder and for dental hygiene^{LN0134}.

Peru. Hot water extract of the dried fruit is taken orally as a circulatory stimulant and used externally to soften tumors and ulcers^{LN0167}. Hot water extract of the dried leaf is taken orally as a circulatory stimulant, and externally it is used to soften tumors and ulcers^{LN0167}.

Tunisia. The dried leaf is taken orally as a tranquilizer and used externally for rheumatism^{LN0161}.

USA. Hot water extract of the dried leaf is taken orally as a carminative, astringent and stomachic^{LN0178}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Actinodaphnine: Wd, St Bk^{LN0179} Actinodaphnini, (+): Lf, St BK, Rt^{LN0121} Actinodaphnine, n-methyl, (+): Lf^{LN0121}

Artemorin: Lf 140-231^{LN0148,LN0155}

Astragalin: Lf^{LN0150} Boldine, (+): Lf^{LN0121}

Borneol: Lf EO 0.47%^{LN0113},LN0122 Borneol acetate: Lf EO^{LN0149} Cadinene, delta: Lf EO^{LN0149} Caffeic acid: Lf, Fr^{LN0157} Camphene: Lf EO 0.7%^{LN0174}

Camphor: Lf EO^{LN0113}

Car-3-ene: Lf EO^{LN0181,LN0149}

Carvacrol: Lf EO^{LN0113}

Caryophyllene, alpha: Fr EO^{LN0176} Caryophyllene, beta: Lf EO 200^{LN0113}

Catechin, (+): Lf^{LN0137}
Catechin, epi, (-): Lf^{LN0137}
Catechin, gallo, epi, (-): Lf^{LN0137}
Cineol,1-8: Lf EO 21.14%62.0%^{LN0113},LN0174

Cinnamic acid: Fr EO 9.0%^{LN0176} Cinnamic acid methyl ester: Fr EO 17.2%^{LN0176} Citral: Fr EOLN0176 Launobine, (+): St Bk, Rt, Lf^{LN0121} Laurenobiolide: Lf^{LN0155}, Rt 0.06-0.2%^{LN0118} Costunolide: Lf 0.119%^{LN0155}, Rt 0.31%^{LN0118}, Fr 0.256%^{LN0106} Laurenobiolide, deacetyl: Lf 50^{LN0118} Costuslactone, dehydro: Fr 1.4%LN0106 Laurenoniolide: Rt^{LN0173} Coumaric acid, para: Fr 20, Lf 192LN0157 Limonene: Lf EO^{LN0149} Cryptodorine, (+): Lf^{LN0121} Limonene, (+): Lf EO 2.9% LN0174 Cymene, para: Lf EO 19.83%LN0116 Linalool: Lf EO 0.4-18-4% LN0174, LN0181 Decane, N: Lf EO^{LN0149} Linalool acetate: Lf EO^{LN0149} Linalool, (+): Lf EO^{LN0139} Docosan-1-ol tetradecanoate: Fr^{LN0107} Domesticine, iso, (+): Lf^{LN0121} Linalool, (-): LfLN0151 Domesticine, iso, nor, (+): Lf^{LN0121} Mannitol: Rt 0.64%LN0155 Elemene, beta: Lf EO^{LN0149} Myrcene: Lf EO 4.68%^{LN0116} Myrcene, beta: Lf EO^{LN0113} Eremanthin: Fr 1.4%^{LN0106} Nandigerine, (+): Lf^{LN0121} Essential oil (Laurus nobilis): Fr 3.9-4.1%^{LN0176}, Lf 2.5%^{LN0174} Neolitsine, (+): Lf^{LN0121} Estragole: Lf EO^{LN0149} Nonane, N: Lf EO^{LN0149} Eudesmol, beta: Lf EO^{LN0149} Octacosan-1-ol, 10-hydroxy, Eugenol: Lf EO 0.36-1.02%^{LN0181} tetradecanoate: Fr^{LN0107} Eugenol acetate: Lf EO 0.5% LN0174 Octulose, 3, D-gluco-L-Glycero, phellandrene, alpha: Fr EO Eugenol methyl ether: Lf EO 0.5-7.7%^{LN0174},LN0149 10.07%^{LN0123}, Lf^{LN0151} Eugenol, acetyl: Lf EO^{LN0139} Pinene, alpha: Lf EO 0.13-Gallocatechin, (+): Lf^{LN0137} 9.30%LN0113,LN0123 Geraniol: Lf EO 1.3%LN0174 Pinene, alpha, (-): Fr EO^{LN0176} Geraniol acetate: Lf EOLN0149 Pinene, beta: Lf EO 0.16-5.40% LN0113, LN0149 Germacra-trans-1(10)-trans-5-diene-4(R)-Pinene, beta, (-): Fr EO^{LN0176} 11(epsilon)-diol,12-acetoxy,(7S): Fr Pinocarveol, trans: Lf EO^{LN0149} 286^{LN0106} Piperidine: Lf^{LN0151} Guaiene, alpha: Lf EO^{LN0149} Procyanidin B-2: Lf^{LN0137} Guaijaverin: Lf^{LN0150} Procyanidin B-4: Lf^{LN0137} Procyanidin B-5: Lf^{LN0137} Hex-cis-3-en-1-ol-O-xyloside: Lf 16^{LN0108} Humulene: Lf EO^{LN0149} Procyanidin B-7: Lf^{LN0137} Juglanin: Lf^{LN0150} Quercitrin-3-O-alpha-L-galactoside: If LN0150 Kaempferol-3-0-alpha-L-(2,4-DL-trans-Quercitrin: Lf^{LN0150} para-coumaroyl)-rhamnoside: Lf 5.6^{LN0109} Quercitrin, iso: Lf^{LN0150} Reticuline, (+): St Bk, Lf^{LN0121} Kaempferol-3-O-alpha-L-(2,4-cis-para-Reynosin: Lf 66-89^{LN0148,LN0155} coumaroyl)-rhamnoside: Lf 20.6^{LN0109} Kaempferol, 3-O-alpha-L(2-trans-para-Rutin: Lf^{LN0150} coumaroyl)-rhamnoside: Lf 3.3^{LN0109} Sabinene: Lf EO 3.1-8.3% LN0149, LN0181 Santamarin: Lf 73.3^{LN0148} Kaempferol-3-O-alpha-L-(3,4-DL-transpara-coumaroyl)-rhamnoside: Lf 20^{LN0109} Santamarine: Lf 44^{LN0155} Schizandraside: Lf 24^{LN0108} Kaempferol-3-O-alpha-L-galactoside: LfLN0150 Spathulenol: Lf^{LN0149} Terpinen-4-ol: Lf EO 0.78-2.2% LN0113, LN0149 Kaempferol-3-O-alpha-L-rhamnoside: I fLN0150 Terpinene, alpha: Lf EO^{LN0181} Kaempferol-3-O-beta-D-rutinoside: Lf^{LN0150} Terpinene, gamma: Lf EO 0.17%^{LN0113} Terpineol: Fr EO 10.9%LN0176 Lariciresinol, iso, 5-methoxy, seco, 9-Obeta-D-xylopyranoside, (+): Lf 8^{LN0108} Terpineol, 4: Lf EO^{LN0116}

Terpineol, alpha: Fr EO 5.85%^{LN0123}, Lf EO

Terpineol, alpha, (-): Lf EO^{LN0100}

0.4%^{LN0174}

Lariciresinol, iso, seco, 9-O-beta-D-

xylopyranoside, (+): Lf 15^{LN0108}

Launobine: Pl^{LN0154}

Terpineol, alpha, acetate: Lf EO 2.30-7.14% LN0149, LN0116

Terpinolene, alpha: Lf EO^{LN0149} Terpinyl acetate: EO^{LN0140} Thuj-2-en-4-ol-cis: Lf^{LN0136} Thujene, alpha: Lf EO^{LN0149}

Thymol: Lf EO^{LN0113} Trepinen-4-ol: Lf EO^{LN0139}

Triacontan-9-one, 11-hydroxy: Fr^{LN0107}

Tridecane, N: Lf EO^{LN01'49}
Tulipinolide: Rt^{LN0155}
Undecane, N: Lf EO^{LN0149}
Verlotorin: Lf 123^{LN0148}
Zaluzanin D: Fr 0.32%^{LN0106}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Antiamoebic activity. The essential oil, in broth culture at a concentration of 2.0 microliters/ml, was active on *Entamoeba histolytica*^{LN0127}.

Antibacterial activity. Decoction of the dried leaf, on agar plate at a concentration of 1.0 mg/ml, was inactive on Salmonella typhi^{LN0112}. The hot water extract, at a concentration of 62.5 mg/ml, was inactive on Staphylococcus aureus^{LN0122}. The essential oil, on agar plate at a concentration of 15.0 microliters/disc, produced weak activity on Staphylococcus aureus. A concentration of 25.0 microliters/disc was active on Escherichia coli, and inactive on Pseudomonas aeruginosa^{LN0165}. The fresh essential oil, on agar plate, was active on Pseudomonas aeruginosa and Staphylococcus aureus and inactive on Bacillus cereus and Escherichia coli^{LN0159}. The leaf essential oil, on agar plate, was active on Bacillus cereus, Escherichia coli and Staphylococcus aureus, and inactive on Pseudomonas aeruginosa^{LN0166}. The leaf essential oil, in broth culture, was active on Sarcina lutea, MIC 0.250 mg/ml; Bacillus subtilis and Staphylococcus aureus, MIC 0.333 mg/ml and Escherichia coli, MIC 0.500 mg/ml. It was inactive on Bordetella bronchiseptica, MIC > 1000 mg/ml^{LN0147}. The powdered leaf, in broth culture at a concentration of 4.7%, produced weak activity on Yersinia enterolytica^{LN0135}.

Antiedema activity. Methanol extract of the dried leaf, applied externally to mice at a dose of 2.0 mg/ear, was active vs 12-0-tetradecanoyl phorbol-13-acetate (TPA)-induced ear inflammation. Inhibition ratio was 49LN0119.

Antifungal activity. Hot water extract of the dried leaf, on agar plate at a concentration of 62.5 mg/ml, was inactive on Aspergillus niger^{LN0122}. The essential oil, on agar plate, was inactive on Penicillium cyclopium, Trichoderma viride and Aspergillus aegyptiacus^{LN0159}. The leaf essential oil, in broth culture, was active on Aspergillus niger, MIC 0.25 mg/ml^{LN0147}. The leaf essential oil, on agar plate at a dose of 100.0 microliters, was active on Sclerotinia sclerotiorum, and produced weak activity on Fusarium moniliforme, Phytophthora capsici and Rhizoctonia solani^{LN0115}. A concentration of 1.0 ml/plate was inactive on Fusarium moniliforme, Phytophthora capsici, Rhizoctonia solani and Sclerotinia sclerotiorum^{LN0113}. A concentration of 10.0%/disc was inactive on Geotrichum candidum^{LN0160}. The leaf essential oil, on agar plate, was active on Aspergillus aegyptiacus and Trichoderma viride LN0166. The leaf, on agar plate at a concentration of 2.0%, was inactive on Aspergillus flavus, Aspergillus niger, Geotrichum candidum and Penicillium roquefortiiLN0168.

Antihyperglycemic activity. Water extract of the dried leaf, administered intragastrically to rabbits at doses of 6.0, 8.0 and 10.0 gm/kg, was inactive vs alloxan-induced hyperglycemia^{LN0129}.

Antihypertensive activity. Ethanol (95%) extract of the dried entire plant, in a mixture containing Cucumis melo, Carum carvi, Pimpinella anisum, Zea mays, Foeniculum vulgare, Tribulus terrestris and Prunus avium, was active^{LNO163}.

Anti-inflammatory activity. Ethanol (80%) extract of the dried leaf, administered by gastric intubation to rats at a dose of 100.0 mg/kg, produced 19% inhibition of edema

vs carrageenin-induced pedal edema^{LN0141}. Ethyl acetate and hexane extracts of the leaf, applied externally on mice at a dose of 20.0 microliters/animal, were active vs tetradecanoyl phorbol acetate phospholipids synthesis and 12-0-tetradecanoyl phorbol-13-acetate (TPA)-induced ear inflammation. The methanol extract was equivocal^{LN0114}.

Antimycobacterial activity. The leaf essential oil, on agar plate, was active on Mycobacterium intracellulare^{LN0116}. The leaf juice, on agar plate, was active on Mycobacterium tuberculosis, MIC 1:160^{LN0101}.

Antioxidant activity. Petroleum ether extract of the leaf, at a concentration of 0.1%, produced weak activity. The petroleum ether insoluble fraction was insoluble^{LN0153}. The essential oil was active. Antioxidant activity was measured by peroxide values^{LN0111}. Antipyretic activity. Hot water extract of the dried leaf, taken orally by adults at a dose of 1.0 gm/person, was active^{LN0103}.

Antispasmodic activity. Ethanol (95%) extract of the dried entire plant, in a mixture containing Cucumis melo, Carum carvi, pimpinella anisum, Zea mays, Foeniculum vulgare, Tribulus terrestris, and Prunus avium, was active^{LNO163}.

Antiviral activity. Water extract of the dried fruit, in cell culture at a concentration of 10.0%, was active on Herpes virus type 2 and vaccinia virus, and inactive on influenza virus and poliovirus ll^{LN0162}. Water extract of the dried leaf, in cell culture at a concentration of 10.0%, was active on Herpes virus type 2 and vaccinia virus and inactive on influenza virus A2 (Manheim 57) and poliovirus ll^{LN0162}.

Antiyeast activity. The essential oil, on agar plate at a concentration of 25.0 microliters/disc, was active on Candida albicans^{LNO165}. The leaf essential oil, in broth culture, was active on Candida parakrusei, MIC 0.333 mg/ml and Candida albicans, MIC 0.500 mg/ml^{LNO147}. The leaf essential oil, on agar plate

at a concentration of 10.0%/disc, was active on Torulopsis glabrata, and inactive on Brettanomyces anomalus, Candida lipolytica, Debaryomyces hansenii, Hansenula anomala, Klocdkera apiculata, Kluyveromyces fragilis, Lodderomyces elongisporus, Metschnikowia pulcherrima, Pichia membranaefaciens, Rhodotorula rubra and Saccharomyces cerevisiae^{LN0160}. The leaf essential oil, on agar plate, was active on Candida albicans and Cryptococcus neoformans^{LN0116}.

Barbiturate potentiation. Ether extract of the dried leaf, administered intraperitoneally to mice at a dose of 200.0 mg/kg, was inactive^{LN0142}.

Barbiturate sleeping time decrease. Ether extract of the dried leaf, administered intragastrically to mice at a dose of 200.0 mg/kg for 7 days, was inactive^{LN0142}.

Bradycardia activity. The dried leaf essential oil was active on the hearts of frogs and rabbits^{LNO138}.

Cytotoxic activity. Methanol extract of the dried leaf, in cell culture at a concentration of 100.0 mg/kg, was equivocal on Chinese-Hamster-V79 cells^{LN0124}. Water extract of the dried leaf, in cell culture at a concentration of 10.0%, produced weak activity on Hela cells^{LN0162}. Water extract of the dried fruit, in cell culture at a concentration of 10.0%, was inactive on Hela cells^{LN0162}.

Dermatitis producing effect. The dried leaf essential oil, applied externally at variable dosage levels, was active on human adults.^{LN0138}.

Embryotoxic activity. Water extract of the dried leaf was active on *Biophalaria glabrata*, LD₅₀ 124.4 ppm and LD₉₀ 198.9 ppm^{LN0146}. Water extract of the dried flower was active on *Biomphalaria glabrata*, LD₅₀ 34.3 ppm and LD₉₀ 50.1 ppm^{LN0146}.

GRAS status. The fruit essential oil was approved as a flavoring agent by the United States of America Food and Drug Administration in 1976 (Sect 582.20)^{LNO117}.

Hypoglycemic activity. Water extract of the dried leaf, administered intragastrically

to rabbits at doses of 6.0, 8.0 and 10.0 gm/kg, was inactive^{LN0129}.

Kidney dissolution effect. Ethanol (95%) extract of the dried entire plant, taken orally by adults, was effective. A mixture of Cucumis melo, Carum carvi, Pimpinella anisum, Foeniculum vulgare, Prunus avium, and Tribulus terrestris was taken by 300 patients with kidney or ureteral stones. Sixty-seven percent of the patients passed stones, 18% transferred and there was a decrease in the volume of stone in 11% of the patients. Ninety-eight percent of the patients reported relief from colic^{LN0163}.

Molluscicidal activity. Water extract of the dried flower was active on *Biomphalaria glabrata*, LD₅₀ 242.0 ppm and LD₉₀ 340.0 ppm^{LN0146}. Water extract of the dried leaf was inactive on *Biophalaria glabrata*, LD₅₀ 1219 ppm and LD₉₀ 1900 ppm^{LN0146}.

Mutagenic activity. Chloroform/methanol (2:1) extract of the leaf, on agar plate at a concentration of 100.0 mg/plate, was inactive on Salmonella typhimurium TA100 and TA98. The effect was the same with or without metabolic activation. The water extract was inactive on Pig-Kidney-LLC-PK-1 cells and Trophoblastic-Placenta cells. The effect was the same with or without metabolic activation^{LN0156}. Hot water and methanol extracts of the leaf, on agar plate at a concentration of 50.0 mg/disc, were inactive on Salmonella typhimurium TA98 and TA100. Histidine was removed from the extract prior to testing. The effect was the same with or without metabolic activation^{LN0158}. **Nematocidal activity.** Water and metha-

Nematocidal activity. Water and methanol extracts of the dried leaf, in cell culture at a concentration of 10.0 mg/ml, were active on *Toxacara canis*^{LN0132}.

Photoxicity effect. The dried leaf essential oil, applied externally to mice and pigs, was inactive^{LN0138}.

Sensitization. The dried leaf essential oil, applied by patch test to adults at a concentration of 10.0%, was inactive^{LN0138}.

Toxicity assessment. Ethanol (95%) extract of the dried entire plant, in a mixture with Cucumis melo, Carum carvi, Pimpinella anisum, Foeniculum vulgare, Prunus avium, and Tribulus terrestris, was administered intraperitoneally to mice; LD_{50} was 7.0 ml/kg^{LN0163}. The leaf essential oil, administered by gastric intubation to rats, produced LD_{50} 3.95 gm/kg. Intradermal administration to rabbits produced LD_{50} >5.0 gm/kg^{LN0138}.

Tumor promotion inhibition. Ethyl acetate extract of the leaf, in cell culture at a concentration of 50.0 mcg/ml, was equivocal on C3H/10Ti/2 cells vs tetradecanoyl phorbol acetate-induced acetate phospholipid synthesis. The hexane and methanol extracts were inactive^{LN0114}.

Tyrosinase inhibition. Ethanol/water (1:1) extract of the dried leaf, at a concentration of 0.5 mg/ml, was inactive^{LN0126}.

REFERENCES

LN0100 Rutovskii, B. N. Russian essential oils. **Perfum Essent Oil Rec** 1928; 19: 391–.

LN0101 Fitzpatrick, F. K. Plant substances active against *Mycobacterium tuberculosis*. **Antibiot Chemother** 1954; 4: 528–.

LN0102 Saha, J. C., E. C. Savini and S. Kasinathan. Ecbolic properties of Indian medicinal plants. Part I. **Indian J Med Res** 1961; 49: 130–151.

LN0103 Doran, M. A. The febrifuge and antiperiodic effect of Apollo laurel leaves (*Laurus nobilis*). C R Acad Sci 1872; 75: 1121–

LN0104 Culpeper, N. Culpeper's Complete Herbal. W. Foulsham + Co., Ltd., London, 1650; 430 pp-.

LN0105 Manfred, L. Siete Mil Recetas Botanicas a Base de Mil Trescientas Plantas. Edit Kier, Buenos Aires, 1947.

LN0106 Appendino, G., S. Tagliapietra, G. M. Nano and M. Cisero. A sesquiterpene alcohol from the fruits of *Laurus nobilis*. **Phytochemistry** 1992; 31(7): 2537–2538.

LN0107	Garg, S. N., M. S. Siddiqui, S. K. Agarwai. New fatty acid esters and hydroxy ketones from fruits of <i>Laurus nobilis</i> . J Nat Prod 1992; 55(9): 1315–1319. Yahara, S., M. Nakazono, H.	LN0116	cal compositions of essential oils of selected aromatic plants growing wild in Turkey. J Agr Food Chem 1997; 45(2): 4821–4825. Soliman, F. M., E. A. El-Kashoury, A. M. El-Fishawy and M.
	Tutumi and T. Nohara. Lignans from leaves of <i>Laurus nobilis</i> L. Shoyakugaku Zasshi 1992; 46(2): 184–186.		A. A. El-Kawy. Analysis of the essential oil of <i>Laurus nobilis</i> L. Bull Fac Pharm Cairo Univ 1994; 32(3): 387–389.
LN0109	Fiorini, C., B. David, I. Fourasti and J. Vercauteren. Acylated kaempferol glycosides from <i>Laurus nobilis</i> leaves. Phytochemistry	LN0117	Anon. Gras status of foods and food additives. Fed Regist 1976; 41: 38644—. Tada, H. and K. Takeda. Sesquit-
LN0110	1998; 47(5): 821–824. Zagari, A. Medicinal Plants. Vol. 4, 5 th Ed, Tehran University Pub-		erpenes of Lauraceae plants. IV. Germacranolides from <i>Laurus</i> nobilis. Chem Pharm Bull 1976;
LN0111	lications, No. 1810/4, Tehran, Iran, 1992; 969 pp Zygadlo, J. A., A. L. Lamarque, D. M. Maestri and N. R. Grosso. Use of essential oils as natural	LN0119	24: 667–. Yasukawa, K., A. Yamaguchi, J. Arita, S. Sakurai, A. Ikeda and M. Takido. Inhibitory effect of edible plant extracts on 12-o-
LN0112	antioxidants. Grasas Aceites (Seville) 1995; 46(4/5): 285–288. Perez, C. and C. Anesini. In vitro antibacterial activity of Argen-		tetradecanoylphorbol-13-acetate-induced ear oedema in mice. Phytother Res 1993; 7(2): 185–189.
I NO112	tine folk medicinal plants against Salmonella typhi. J Ethnopharmacol 1994; 44(1): 41–46.	LN0120	De Feo, V. and F. Senatore. Medicinal plants and phytotherapy in the Amalfitan Coast, Salerno
LN0113	Muller-Riebau, F., B. Berger and O. Yegen. Chemical composition and fungitoxic properties to phytopathogenic fungi of	LN0121	Province, Campania, Southern Italy. J Ethnopharmacol 1993; 39(1): 39–51. Pech, B. and J. Bruneton. Alka-
	essential oils of selected aromatic plants growing wild in Turkey. J Agr Food Chem 1995; 43		loids of Laurier noble, Laurus nobilis. J Nat Prod 1982; 45(5): 560–563.
LN0114	(8): 2262–2266. Okuyama, T., M. Matsuda, Y. Masuda, M. Baba, H. Masubu- chi, M. Adachi, Y. Okada, T. Has-	LN0181	Roque, O. R. Seasonal variation in oil composition of <i>Laurus nobilis</i> grown in Portugal. J Essent Oil Res 1989; 1(4): 199–200.
	himoto, L. B. Zou and H. Nishino. Studies on cancer biochemoprevention of natural resources. X. Inhibitory effect of spices on TPAenhanced 3H-choline incorpora-	LN0122	Anesini, C. and C. Perez. Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 1993; 39(2): 119–128.
	tion in phospholipid of C3H10 T1/2 cells and on TPA-induced ear edema. Zhonghua Yao-xue	LN0123	Nigam, M. C., A. Ahmad and L. N. Misra. <i>Laurus nobilis</i> -A potentially valuable essential oil.
LN0115	Zashi 1995; 47(5): 421–430. Muller-Riebau, F. J., B. M. Berger, O. Yegen and C. Cakir. Seasonal variations in the chemi-	LN0124	Parfuem Kosmet 1992; 73(12): 850–852. Hirobe, C., D. Palevitch, K. Takeya and H. Itokawa. Screening

	test for antitumor activity of crude drugs. (IV) Studies on cytotoxic activity of Israeli medicinal plants. Nat Med 1994; 48(2): 168–170.	LN0135	Bara, M. T. F. and M. C. D. Vanetti. Antimicrobial effect of spices on the growth of <i>Yersinia enterocolitica</i> . J Herbs Spices Med Plants 1995; 3(4): 51–58.
LN0125	Perez, C. and C. Anesini. Inhibition of <i>Pseudomonas aerguinosa</i> by Argentinean medicinal plants.	LN0136	Novak, M. A monoterpene alcohol from <i>Laurus nobilis</i> . Phytochemistry 1985; 24(4): 858.
	Fitoterapia 1994; 65(2): 169–172.	LN0137	Sakar, M. K. and R. Engelshowe. Tanning producing mon-
LN0126	Matsuda, H., S. Nakamura and M. Kubo. Studies of cuticle drugs from natural sources. II. Inhibitory effects of <i>Prunus</i> plants on		omeric and dimeric substances in bay leaves. (<i>Laurus nobilis</i> L.). Z Lebensm-Unters Forsch 1985; 180(6): 494–495.
	melanin biosynthesis. Biol Pharm Bull 1994; 17(10): 1417–1420.	LN0138	Anon. Monographs on fragrance raw materials. Laurel leaf oil.
LN0127	De Blasi, V., S. Debrot, P. A. Menoud, L. Gendre and J. Schow-		Food Chem Toxicol 1976; 14: 337–338.
I NO120	ing. Amoebicidal effect of essential oils in vitro. J Toxicol Clin Exp 1990; 10(6): 361–373.	LN0139	Kekelidze, N. A. Production of laurel essential oil from fresh raw material. Maslo-Zhir Prom-
LN0129	Yanardag, R. and S. Can. Effect of <i>Laurus nobilis</i> L. leaves on blood glucose levels in normal and alloxan-diabetic rabbits. Chim Acta Turc 1994; 22(2): 169–175.	LN0140	St 1985; 1985(10): 28–. Bagaturiya, N. S. and V. P. Mekhashishvili. Chemical composition of residues from fractionation of laurel oil. Maslo-Zhir Prom-St 1987; 1987(2): 25–.
LN0130	Baghadi, H. H., S. S. Ahmad, G. Fournier and A. M. Refaat. On the essential oil of <i>Laurus nobilis</i> grown in Egypt. Egypt J Hortic 1993; 19(1): 93–97.	LN0141	Mascolo, N., G. Autore, F. Capasso, A. Menghini and M. P. Fasulo. Biological screening of Italian medicinal plants for anti-inflammatory activity. Phyto-
LN0131	De Feo, V., R. Aquino, A. Menghini, E. Ramundo and F. Senatore. Traditional phytotherapy in the Peninsula Sorrentina, Campania, Southern Italy. J Ethnopharmacol 1992; 36(2): 113–125.	LN0142	ther Res 1987; 1(1): 28–31. Han, Y. B., K. H. Shin and W. S. Woo. Effect of spices on hepatic microsomal enzyme function in mice. Arch Pharm Res 1984; 7(1): 53–56.
LN0132	Kiuchi, F. Studies on the nematocidal constituents of natural medicines. Nat Med 1995; 49(4): 364–372.	LN0143	Natake, M., K. Kanazawa, M. Mizuno, N. Ueno, T. Kobayashi, G. I. Danno and S. Minamoto. Herb water-extracts markedly
LN0133	Al-Khalil, S. A survey of plants used in Jordanian traditional medicine. Int J Pharmacog 1995;		suppress the mutagenicity of TRP-P-2. Agr Biol Chem 1989; 53 (5): 1423–1425.
LN0134	33(4): 317–323. Bellakhidar, J., R. Claisse, J. Fleurentin and C. Younos. Repertory of standard herbal drugs in the Moroccan pharmagopoea. J Ethnopharmacol 1991; 35(2): 123–143.	LN0144	Sakata, K., H. Hagiwara, A. Yagi and K. Ina. The first naturally occurring 3-octulose, d-gluco-l-glycero-3-octulose, as the main constituent of <i>Laurus nobilis</i> flush. Agr Biol Chem 1989; 53 (9): 2539–2541.

LN0145	Dafni, A., Z. Yaniv and D. Palevitch. Ethnobotanical survey of medicinal plants in Northern Israel. J Ethnopharmacol 1984; 10(3): 295–310. Re, L. and T. Kawano. Effects of Laurus nobilis (Lauraceae) on Biomphalaria glabrata (Say, 1818). Mem Inst Oswaldo Cruz	LN0153	human and animal sensitivity to alpha-methylene-gamma but-yrolactone and derivatives. Brit J Dermatol 1978; 99: 163–169. Saito, Y., Y. Kimura and T. Sakamoto. The antioxidant effects of petroleum ether soluble and insoluble fractions from spices. Eiyo To Shokuryo 1976; 29:
LN0147	Rio de Janeiro 1987; 82(4): 315–320. Raharivelomanana, P. J., G. P. Terrom, J. P. Bianchini and P. Coulanges. Study of the antimicrobial action of various essen-	LN0154 LN0155	505–510. Ralph, I., C. Bick and W. Singhai. Alkaloids of the Lauraceae. Heterocycles 1978; 9: 903–945. El-Feraly, F. S. and D. A. Benigni. Sesquiterpene lactones of
LN0148	tial oil extracts from Madagascan plants. II. The Lauraceae. Arch Inst Pasteur Madagascar 1989; 56(1): 261–271. Kiuchi, F., N. Nakamura, N. Miyashita, S. Nishizawa, Y. Tsuda and K. Kondo. Nemato-	LN0156	Laurus nobilis leaves. J Nat Prod 1980; 43: 527–531. Rockwell, P. and I. Raw. A mutagenic screening of various herbs, spices, and food additives. Nutr Cancer 1979; 1: 10–15. Schultz, J. M. and K. Herrmann.
	cidal activity of some anthelmintics, traditional medicines, and spices by a new assay method using larvae of <i>Toxocara canis</i> . Shoyakugaku Zasshi 1989; 43		Occurrence of hydroxybenzoic acids and hydroxycinnamic acid in spices. IV. Phenolics of spices. Z Lebensm-Unters Forsch 1980; 171: 193–199.
LN0149	(4): 279–287. Hokwerda, H., R. Bos, D. H. E. Tattje and T. M. Malingre. Com- position of essential oils of <i>Lau-</i> rus nobilis, L. nobilis var. angusti- folia and <i>Laurus azoorica</i> . Planta	LN0158	Yamamoto, H., T. Mizutani and H. Nomura. Studies on the muta- genicity of crude drug extracts. I. Yakugaku Zasshi 1982; 102: 596–601. Ross, S. A., N. E. El-Keltawi and
LN0150	Med 1982; 44: 116–119. Knackstedt, J. and K. Herrmann. Flavonol glycosides of bay leaves (<i>Laurus nobilis</i>) and star an-		S. E. Megalla. Antimicrobial activity of some Egyptian aromatic plants. Fitoterapia 1980; 51: 201–205.
	ise fruits (<i>Illicium verum hook</i> , Fil.) Part 7. Phenolics of spices. Z Lebensm-Unters Forsch 1981; 173: 288–290.	LN0160	Conner, D. E. and L. R. Beuchat. Effects of essential oils from plants on growth of food spoil- age yeasts. J Food Sci 1984; 49
LN0151	Verma, M. M. The isolation and identification of a cockroach repellent in bay leaves and a fluorescence method for determination of protein in wheat. Diss Abstr Int B 1981; 41: 4514—.	LN0161	(2): 429–434. Boukef, K., H. R. Souissi and G. Balansard. Contribution to the study on plants used in traditional medicine in Tunisia. Plant Med Phytother 1082: 16(4): 260, 270
LN0152	Stampf, J. L., G. Schlewer, G. Ducombs, J. Foussereau and C. Benezra. Allergic contact dermatitis due to sesquiterpene lactones. A comparative study of	LN0162	Phytother 1982; 16(4): 260–279. May, G. and G. Willuhn. Antiviral activity of aqueous extracts from medicinal plants in tissue cultures. Arzneim-Forsch 1978; 28(1): 1–7.

LN0163	Moattar, F., Y. Mozoun, T. Gafgazi and A. Mansuri. Antiurolithiasis activities from the selected medicinal plants I. Extraction, clinical and pharmacological studies. Abstr Internat Res Cong	LN0170	Lokar, L. C. and L. Poldini. Herbal remedies in the traditional medicine of the Venezia Giulia Region (North East Italy). J Ethnopharmacol 1988; 22(3): 231–239.
	Nat Prod Coll Pharm Univ N Carolina Chapel Hill NC July 7–	LN0171	Hunte, P., M. Safi, A. Macey and G. B. Kerr. Indigenous methods
* > * 0.4 < 4	12 1985. 1985; Abstr-197.		of voluntary fertility regulation
LN0164	Kamboj, V. P. A review of Indian medicinal plants with inter-		in Afghanistan. Natl Demogra- phic Family Guidance Survey
	ceptive activity. Indian J Med Res 1988; 1988(4): 336–355.		of Settled Population Afghanistan 1975; 4: 1
LN0165	Menghini, A., A. Savino, M. N. Lollini and A. Caprio. Antimic-	LN0172	Hogg, J. W., S. J. Terhune and B. M. Lawrence. Dehydro-1,8-
	robial activity on direct contact		cineole: A new monoterpene ox-
	of certa in essential oils. Plant Med Phytother 1987; 21(1): 36–		ide in <i>Laurus nobilis</i> oil. Phyto-chemistry 1974; 13: 868–.
	42.	LN0173	Tada, H. and K. Takeda. Struc-
LN0166	El-Keltawi, N. E. M., S. E.	2110175	ture of the sesquiterpene lactone
	Megalla and S. A. Ross. Antimi-		laurenobiolide. Chem Commun
	crobial activity of some Egyp-		1971; 1971: 1391–.
	tian aromatic plants. Herba Pol	LN0174	Skrubis, B. G. Seven wild aro-
	1980; 26(4): 245–250.		matic plants growing in Greece
LN0167	Ramirez, V. R., L. J. Mostacero,		and their essential oils. Flavour
	A. E. Garcia, C. F. Mejia, P. F.		Ind 1972; 3: 566–.
	Pelaez, C. D. Medina and C. H.	LN0175	Jochle, W. Biology and biochem-
	Miranda. Vegetales empleados		istry of reproduction and contra-
	en medicina tradicional Norpe-		ception. Angew Chem Int Ed
	ruana. Banco Agrario del Peru		Engl 1962; 1: 537–549.
	& Nacl Univ Trujillo, Trujillo,	LN0176	Nigam, I. C. Studies in some In-
	Peru, June, 1988; 54 pp.		dian essential oils. Agra Univ J
LN0168	Akgul, A. and M. Kivanc. Inhib-		Res Sci 1962; 11: 147–152.
	itory effects of selected Turkish	LN0177	Chopra, R. N. Indigenous Drugs
	spices and oregano components		of India. Their Medical and Eco-
	on some foodborne fungi. Int J		nomic Aspects. The Art Press,
	Food Microbiol 1988; 6(3): 263–		Calcutta, India, 1933; 550 pp
	268.	LN0178	Anon. The Hearbalist. Hammond
LN0169	Antonone, R., F. De Simone, P.		Book Company, Hammond, In-
	Morrica and E. Ramundo. Tradi-	LN0179	diana, 1993; 400 pp. Willaman, J. J. and H. L. Li. Alka-
	tional phytotherapy in the Roc- camonfina Volcanic Group, Cam-	LINUI/7	loid-bearing plants and their
	pania, Southern Italy. J Ethno-		contained alkaloids, 1957–1968.
	pharmacol 1988; 22(3): 295–306.		Lloydia 1970; 338: 1–286.
	F		

14 Lycopersicon esculentum

Common Names

Domates	Turkey	Tomate	Puerto Rico
Dumadu	Nicaragua	Tomatera	Spain
Gojeh farangee	Iran	Tomatis	Nicaragua
Jitomate	Mexico	Tomato	Greece
Ma khue thet	Thailand	Tomato	Canada
Nyanya	Tanzania	Tomato	Czechoslovakia
Palkcha	Mexico	Tomato	England
Pomme D'amour	Rodrigues Islands	Tomato	Guyana
Pomodoro	Italy	Tomato	India
Pummarola	Italy	Tomato	Iran
Takkali	India	Tomato	Japan
Tamatar	Fiji	Tomato	Tanzania
Tamatar	India	Tomato	Thailand
Tamatem	Tunisia	Tomato	USA
Tamatum	Oman	Tomato	Wales
Tomat	Haiti	Tomato	West Indies
Tomate	France	Vel vangi	India
Tomate	Guatemala	Vilayithi baingan	India
Tomate	Nicaragua	Vilayithi vengan	India
Tomate	Peru		

BOTANICAL DESCRIPTION

A spreading, pubescent herb of the SOLA-NACEAE family with a strong characteristic odor and grayish green, curled and unevenly pinnate leaves. The fruits are villose when young, and glabrous and shining when mature. Seeds are flat, kidney-shaped and hairy. The shape and size of the fruits and the thickness of the pericarp vary in the numerous types under cultivation.

ORIGIN AND DISTRIBUTION

The tomato plant is indigenous to the western regions of tropical South America. It is now cultivated throughout the world for its edible fruits.

TRADITIONAL MEDICINAL USES

Fiji. The fresh fruit juice is administered orally to induce vomiting in children in cases of poisoning, and to arrest excessive bleeding from wounds^{LEO207}.

Greece. The fresh fruit is used externally to treat furuncles^{LE0155}.

Guatemala. Hot water extract of the dried fruit is used externally for wounds, abscesses, furuncles, scrofula, ulcers, bruises, and sores^{LE0217}. The leaf is used externally to treat burns^{LE0165}.

Haiti. The dried leaf and the fresh fruit are taken orally for buccal thrush. The decoction is taken orally for vomiting^{LE0211}.

Iran. The fresh fruit is taken orally for gout and detoxification, uremia, to remove urinary and bile solid deposits, as a laxative, to reduce intestinal inflammations, and for its anabolic activity, to reduce swelling of the joints and topically for acne^{LE0112}. The fresh leaf is used as an insecticide. Five kg of fresh leaves are macerated in 5 liters of vinegar for 2 days and then mixed with 100 liters of boiling water for 15 minutes. This is then left at room temperature for 2 days, stirring occasionally^{LE0112}.

Italy. The fresh fruit is used externally to cure scorpion and other insect bites. The juice is taken orally as a cholagogue and the entire plant is used externally as an antivaricose^{LE0168}. The fruit is used externally as a caustic^{LE0139}.

Ivory Coast. The fresh leaf is used externally as a hemostatic^{LEO216}.

Mexico. The fresh fruit is used externally as a febrifuge. The fruit is also placed on the leaf of *Ricinus communis* and used as a poultice on the abdomen^{LEO202}.

Oman. The leaf is used intranasally for nosebleeds^{LE0137}.

Peru. Hot water extract of the dried fruit is taken orally for tonsilitis and rectally for hemorrhoids^{LE0215}.

Philippines. The fresh fruit is used to treat edema during pregnancy. A poultice made of the fruit is applied to the abdomen^{LEQ205}.

Rodrigues Islands. Decoction of the fresh fruit is taken orally by human adults to stop vomiting^{LE0167}.

Tunisia. Extract of the dried leaf is taken orally as a hypotensive and to treat kidney stones^{LE0203}.

Turkey. The fruit is used externally for scorpion sting^{LE0166}.

USA. The fresh fruit is taken orally to aid digestion, for kidney and liver troubles, and as a cathartic^{LE0223}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Abscisic acid: LFLE0179

Abscisic acid-1'-4'-trans-diol: FrLE0177

Abscisic acid-1'-O-beta-d-glucopyranoside: St^{LE0195}

Acetic acid: Fr^{LE0104}

Aconitic acid, trans: Fr^{LE0104}

Amyrin, beta: Sd^{LE0169} Antheraxanthin: Rt^{LE0148}

Arabinitol,2-carboxy: Lf 115 nmol/gm^{LE0159}

Ascorbic acid: Fr^{LE0107,LE0118}

Benzaldehyde: Fr^{LE0131} Benzaldehyde, 4-hydroxy: Fr^{LE0176}

Benzyl alcohol: Fr^{LÉ0131}

Blumenol A 9-O-beta-d-glucopyranoside

tetraacetate: Lf^{LE0121}

Blumenol C O-beta-d-glucopyranoside tetraacetate: Lf^{LE0121}

Butan-1-ol,2-methyl: Fr^{LE0131} Caffeic acid: Fr Pu^{LE0113}

Car-2-ene: Lf^{LE0133}

Carotene, beta: Fr 4.9^{LE0134}, Rt^{LE0148}

Carotene, gamma: Fr 1.4^{LE0134}

Carotene, pseudo beta cis-5: Fr^{LE0175} Carotene, pseudo epsilon cis-5: Fr^{LE0175}

Caryophyllene, beta: EO 26.24%^{LE0143}

Chlorogenic acid: Fr, Lf, Fl^{LE0124}

Cholesta-7-24-dien-3-beta-ol, 4-alpha-24-

dimethyl: Sd^{LE0171}

Chlesta-8-24-dien-3-beta-ol, 4-alpha-14-

alpha-24-trimethyl: Sd^{LE0171}

Chromium: Lf LE0186 Citric acid: FrLE0104

Citronellol: EO 0.16% LE0143

Citronellol: Fr^{LE0131} Citrostadienol: Sd^{LE0171} Coumaric acid, para: Pl^{LE0176}

Coumarin: Fl, Fr^{LE0124}

Cycloartanol: Sd^{LE0169}

Cycloartanol, 24-methylene: SdLE0169

Cycloartenol, 31-nor: Sd^{LE0171} Cycloeucalenol: Sd^{LE0171}

Cyclohex-2-en-1-one,3-5-5-trimethyl-4-(3-hydroxy butylidene) cis-6, O-beta-D-glucopyranoside-tetracetate: Lf LE0121

Cyclohex-2-en-1-one,3-5-5-trimethyl-4-(3-hydroxy butylidene) trans-6, O-beta-D-glucopyranoside-tetracetate: Lf LE0121

Cyclohexanol: Fr EO^{LE0172} Cymene, para: EO .43%^{LE0143} Damascenone: Fr EO^{LE0180}

Damascone, beta 3-hydroxy: Fr^{LE0141,LE0131}

Dodecan-2-one: EO^{LE0143} Elemene, beta: EO 0.10%^{LE0143} Elemene, delta: EO 0.57%^{LE0143}

Ethanol: Fr EO^{LE0172} Ethylene: Fr^{LE0187} Eugenol: Fr EO^{LE0172} Formic acid: Fr^{LE0104} Gentisic acid: Lf ^{LE0103} Geranial: EO 0.10%^{LE0143}

Geraniol: Fr LE0131 , EO 0.21% LE0143 Gibberellin A-1: Lf LE0122 , Sd, Pc LE0219

Gibberellin A-15: Sd^{LE0219} Gibberellin A-17: Sd^{LE0219}

Gibberellin A-19: SdLE0219, LfLE0122

Gibberellin A-24: Sd^{LE0219} Gibberellin A-25: Sd^{LE0219}

Gibberellin A-29: Sd^{LE0219}, Lf ^{LE0122}

Gibberellin A-3: Lf LE0122

Gibberellin A-3 iso-lactone: Lf LE0122

Gibberellin A-34: Lf LE0122 Gibberellin A-4: Lf LE0122 Gibberellin A-44: Lf LE0122 Gibberellin A-51: Lf LE0122 Gibberellin A-53: Lf LE0122 Gibberellin A-8: SdJ15787

Gibberellin A-8: Sd^{J15787}, Lf^{LE0122} Glycerol, phosphatidyl: Lf^{LE0178}

Glycerol, sulfoquinovosyl-diacyl: Lf LE0178

Gramisterol: Sd^{LE0171}

Hept-5-en-2-ol, 6-methyl: Fr^{LE0131}

Hexan-1-ol: FrLE0131

Humulene, alpha: EO 5.38%^{LE0143} Indole-3-acetic acid: Fr, Fl^{LE0123}

Interferon, beta: Lf LE0185

Ionol, alpha 3-hydroxy: Fr^{LE0141,LE0131} Ionol, alpha 3-oxo: Fr^{LE0141,LE0131}

Ionol, alpha 3-oxo O-beta-D-

glucopyranoside-tetraacetate: Lf LE0121 lonone, beta 3-hydroxy-7-8-dihydro: FrLE0141

Ionone, beta 7-8-dihydro 3-hydroxy: Fr LE0131

Kaempferol: Sd^{LE0173}, Fr 2 ^{LE0140}

Lactic acid: Fr LE0104

Lanost-8-en-3-beta-ol, 31-nor: Sd^{LE0171} Lanost-9(11)-en-3-beta-ol, 31-nor: Sd^{LE0171} Lanost-9(11)-en-3-beta-ol, 31-nor 2-4-

methyl: Sd^{LE0171} Lanosterol: Sd^{LE0169}

Lanosterol, 24-dihydro: Sd^{LE0169} Lanosterol, 31-nor: Sd^{LE0171} Leucinopine: Crown gall^{LE0201}

Leucinopine lactam: Crown gall^{LE0201}

Limonene: EO 7.59%^{LE0143}

Linalool: EO 1.84% LE0143, Fr LE0131

Lophenol: Sd LE0171

Lophenol, 24-®-ethyl: Sd^{LE0171} Lophenol, 24-®-methyl: Sd ^{LE0171} Lupeol: Pl^{LE0192}, Sd^{LE0169}, LE0170 Lutein: Rt^{LE0148}, Fr 0.5^{LE0134} Lycopene: Fr 21^{LE0134}

Lycopene, 1-5-dihydroxy-iridanyl: Fr 3^{LE0111}

Lycopene, all-trans: Fr^{LEÓ127} Lycopene, cis-5-cis-5': Fr^{LEO175} Lycopene, cis-5: Fr^{LEO175}

Lycoperoside A: Fr 0.5^{LE0109}, Lf 27.3^{LE0109} Lycoperoside B: Lf 20.6, Fr 1.5^{LE0109} Lycoperoside C: Lf 22.6, Fr 4.5^{LE0109}

Lycopersicon esculentum carboxypeptidase

inhibitor: Fr 1.0^{LE0193}

Lycopersicon esculentum furostanol sapo-

nin (MP 217-220): PI^{LE0200}

Lycopersicon esculentum saponin TF-1: pJLE0200

Malic acid: FrLE0104

Megastigm-5-en-7-yne-3-9-diol: Fr^{LE0141} Megastigma-5-en-7-yne-3-9-diol: Fr^{LE0131}

Melatonin: Fr 32.2 pcg/gm^{LE0156} Mevalonic acid: Fr (unripe) 3-4^{LE0220}

Myrcene: EO 0.91%^{LE0143} Myricetin: Fr 0.5^{LE0149} Naringenin: Skin^{LE0132}

Naringenin chalcone: Skin^{LE0132}

Naringin: Fl, Fr^{LE0124}

Neoxanthin, cis-9': Rt^{LE0147},LE0148 Neoxanthin, trans-9': Rt^{LE0147} Nerol: Fr^{LE0131}, EO 0.25%^{LE0143} Neurosporene, cis-5': Fr^{LE0175}

Nicotianamine: Lf 0.05 micromols^{LE0130}

Nicotine: Fr 4.3-42.8 ng/gm^{LE0144}

Obtusifoliol: Sd^{LE0171}

Ocimene, beta cis: EO <0.1%^{LE0143} Ocimene, beta trans: EO 0.42%^{LE0143} Octa-2-7-diene-1-6-diol,2-6-dimethyl cis: Fr^{LE0131}

Octa-2-7-diene-1-6-diol, 2-6-dimethyl

trans: Fr^{LE0131}

Oxalic acid: Fr 0.0263^{LE0102}

Pentan-1-ol: FrLE0131

Pentan-1-ol,3-methyl: Fr^{LE0131} Pentan-1-ol,4-methyl: Fr^{LE0131} Penten-2-one: Fr EO^{LE0172}

Phellandrene, alpha: EO 1.8%^{LE0143} Phellandrene, beta: EO 34.83%^{LE0143}

Phenylethanol,2: Fr^{LE0131} Phenylpropanol,3: Fr^{LE0131} Phytoene-1-2-oxide: Fr^{LE0218} Pinene, alpha: EO 1.82%^{LE0143} Pinene, beta: EO 0.1%^{LE0143}

Pregn-16-en-20-one,5-alpha 3-beta-hydroxy: Lf, St^{LE0105}

Protein P-14: Fr^{LE0135} Protein P-14-A: Fr^{LE0135} Protein P-14-B: Fr^{LE0135} Protein P-14-C: Fr^{LE0135} Protein P-14-D: Fr^{LE0135} Protein P-14-E: Fr^{LE0135} Protein P-14-F: Fr^{LE0135}

Pulcherosine: Pl^{LE0110} Quercetin: Sd^{LE0173}, Fr 8-13^{LE0140,LE0149}

Rishitin: PlLE0194

Rutin: Lf 2.4%^{LE0199}, Fr, Fl^{LE0124} Sabinene: EO 11.04%^{LE0143} Soladulcidine: Lf, St^{LE0105}

Sucrose: Rt^{LE0116}

Syringaldehyde: PlLE0176

Terpinene, alpha: EO 7.59% LE0143
Terpinene, gamma: EO 0.42% LE0143
Terpinenel, alpha: ErlE0131 EO 0.248

Terpineol, alpha: Fr^{LE0131}, EO 0.24%^{LE0143}

Terpinolene: EO 0.31%^{LE0143} Tigogenin, neo: Pl^{LE0115}, Sd ^{LE0188} Tomatida-3-5-diene: Lf, St^{LE0105}

Tomatidine: Lf, St^{LE0105}

Tomatine: Fr (unripe) 197^{LE0145}, Fr 23-

88^{LE0153}, Lf 0.1%^{LE0109}

Tomatine, alpha: Rt 0.01-0.13, Fr (unripe) 0.06-0.46%, Fr 20-170 LE0154, Lf 0.12-0.65%, St 0.10-0.68%, Fl 0.1-0.7% LE0160

Tomatine, gamma: Lf 9.3^{LE0109} Tomato invertase inhibitor: Sd^{LE0108}

Tomatoside A: Sd^{LE0191}

Tridecan-2-one: EO $< 0.01\%^{LE0143}$, Lf LE0189

Tryptamine: Fr 0.29%^{LE0161} Ubiquinone 10: Pl 60^{LE0129}

Vanillin: PILE0176

Violaxanthin,cis-9: Rt ^{LE0148} Violaxanthin,trans-9: Rt^{LE0148} Violaxanthin,trans: Rt ^{LE0147}

Zeatin: Pollen^{LE0158}

Zeatin riboside: Pollen^{LE0158}

Zeatin riboside, O-beta-D-glucosyl:

Pollen^{LE0158}

Zeatin, dihydro: Pollen LE0158

Zeatin, dihydro O-beta-D-glucosyl:

Pollen^{LÉ0158}

Zeatin, dihydro riboside: Pollen LE0158 Zeatin, O-beta-D-glucosyl: Pollen LE0158

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Antifungal activity. Acetone and water extracts of the dried aerial part, at a concentration of 50% on agar plate, were inactive and the ethanol (95%) extract was active on *Neurospora crassa*^{LE0223}.

Antiallergenic activity. Water extract of the fresh fruit, at a concentration of 100.0 microliters/ml in cell culture, was inactive on Leuk-RBL 2H3 vs biotinylated anti-DNP IgE/avidin-induced beta-hexosaminidase release^{LE0157}.

Antibacterial activity. Ethanol (95%) and water extracts of the aerial part, on agar plate, were inactive on *Escherichia coli* and *Staphylococcus aureus*^{LE0106}.

Anticlastogenic activity. The fruit juice, administered intragastrically to male mice at a dose of 1.0 ml, produced weak activity on reticulocytes vs gamma-ray irradiation^{LE0120}. Fruit juice, administered intraperitoneally to mice at a dose of 50.0 ml/kg, was active on marrow-cells vs mitomycin, dimethylnitrosamine and tetracycline-induced micronuclei^{LE0150}.

Anticoagulant activity. Water extract of the fresh leaf, at a concentration of 50.0%, was active on human whole blood. The extract showed brief coagulant activity followed by anticoagulant activity^{LE0216}.

Antiedema activity. Methanol extract of the dried fruit, administered topically to mice at a dose of 2.0 mg/ear, was active vs 12-0-tetradecanoylphorbol-13-acetate

(TPA)-induced ear inflammation. The inhibition ratio (IR) was 51^{LE0138}.

Antifungal activity. The dried stem, on agar plate, was active on *Sphacelia segetum*^{LEO225}. Water extract of the fresh leaf (1 gram of dried leaf in 1.0 ml of water), on agar plate at a concentration of 50%, was active on *Fusarium oxysporum* F.sp. lentis^{LEO152}. The extract, on agar plate, produced strong activity on *Ustilago maydis* and *Ustilago nuda*^{LEO204}. Antihistamine activity. Saponin fraction of the crown gall, administered intraperitoneally to guinea pigs at a dose of 40.0 mg/kg, was active vs histamine aerosol^{LEO101}.

Antimicrobial activity. Ethanol (95%) extract of the dried leaf, applied topically at a dose of 1.0%, was active. The biological activity reported has been patented^{LE0181}.

Antimutagenic activity. Water extract of the fresh fruit, on agar plate at a dose of 0.4 ml/plate, was active on *Salmonella typhimurium* TA100 vs TRP-P-2 mutagenicity in the presence of S9 mix^{LEO212}.

Antimycobacterial activity. Ethanol (95%) and water extracts of the aerial part, on agar plate, were inactive on Mycobacterium tuberculosis.^{LE0106}.

Antioxidant activity. The fruit juice, at a dose of 100.0 microliters, produced weak activity vs Fentons' reagent-induced lipid peroxidation^{LE0120}.

Antioxidant activity. Hot water extract of the fresh fruit peel was inactive^{LEO221}.

Antithyroid activity. The fresh fruit, at a dose of 600.0 gm/person, and the fruit juice, at a dose of 855.0 gm/person taken orally by adults, were inactive. Iodine uptake by the thyroid was measured^{LE0224}.

Antitumor activity. Ethanol/water (1:1) extract of the dried entire plant, administered intraperitoneally to mice at a dose of 200.0 mg/kg, was inactive on Leuk-P388^{LE0206}.

Antitumor-promoting activity. Hot water extract of the fresh fruit, in cell culture, produced weak activity on Raji cells vs phorbol myristate acetate-promoted expression of

EB virus early antigen^{LE0136}. Methanol extract of the fresh fruit, at a concentration of 200.0 mg/ml, was inactive on Raji cells vs EBV activation induced by HPA (40ng/ml)^{LE0162}. **Antiviral activity.** The undiluted fruit juice, in cell culture, produced weak activity on poliovirus 1^{LE0196}.

Carcinogenesis inhibition. Fruit juice, in the drinking water of male rats, produced weak activity on the urinary bladder vs n-butyl-n-(4-hydroxybutyl)nitrosamine initiated carcinogenesis. The test animals were treated with initiator for 8 weeks prior to treatment with the juice for 12 weeks. The juice-treated group showed a decrease in the number, but not in the incidence, of transitional cell carcinomas, results significant at p <0.05 level^{LE0125}. The fresh fruit, taken orally by adults, was active in a case-controlled study of the effect of tomato incidence of digestive tract cancers^{LE0151}.

Catalase stimulation. Fresh plant juice, at a concentration of 0.5 ml, was inactive^{LE0210}. **Cosmetic effect.** Ethanol (95%) extract of the dried leaf, at a dose of 1.0% applied topically, was active. The biological activity reported has been patented^{LE0181}.

Cyclooxygenase inhibition. Methanol extract of the fresh fruit, at a concentration of 100.0 mcg/ml, was inactive on rat platelets. There was no inhibition on ether-soluble or ether-insoluble fractions^{LE0142}.

Cytotoxic activity. Ethanol/water (1:1) extract of the dried aerial part, at a concentration of 25.0 mcg/ml in cell culture, was inactive on CA-9KB^{LEO206}.

Desmutagenic activity. Aqueous high speed supernatant of the fresh fruit juice (unripe), on agar plate at a concentration of 0.5 ml/plate, was inactive on *Salmonella typhimurium* TA98 vs mutagenicity of L-tryptophane pyrolysis products. The assay was done in the presence of S9 mix^{LE0209}. Fresh fruit homogenate, on agar plate at a concentration of 100.0 microliters/disc, was active on *Salmonella typhimurium* TA98 and TA100 vs

1,4-dinitro-2-methyl pyrole mutagenesis^{LE0208}. The fresh plant juice, on agar plate at a concentration of 0.5 ml/plate, was active on Salmonella typhimurium TA98^{LE0210}.

Estrogenic effect. Ethanol (95%) extract of the fruit, administered subcutaneously to infant female mice, was inactive^{LEO100}.

Insecticide activity. Acetone extracts of the dried leaf at a concentration of 33.0%, the dried leaf plus stem at 5.0% and the dried root at 5.0%, were inactive on Macrosiphium solanifolii and Orzyaephilus surinamensis^{LEO222}.

Larval growth inhibition. Phenolic fraction of the trichomes (glandular), in the ration at a dose of 0.1%, was active on *Heliothis zea*^{LE0213}.

Lipid peroxide formation inhibition. Hot water extract of the fresh fruit produced weak activity vs t-butyl hydroperoxide/heme-induced luminol-enhanced chemiluminescence^{LE0136}.

Lipoxygenase inhibition. Methanol extract of the fresh fruit, at a concentration of 100.0 mcg/ml, was active on rat platelets. Inhibition was 51% on the ether-soluble material. The extract was inactive on the ether-insoluble material; only 1% inhibition was observed^{LE0142}.

Molluscicidal activity. Aqueous homogenate of the fresh fruits, leaves and roots were inactive on *Lymnaea columella* and *Lymnaea cubensis*. The fresh leaf produced weak activity, LD₅₀ 1000 ppm, and the fresh root was inactive^{LE0197}.

Mutagenic activity. The fruit juice, at a dose of 200.0 microliters on agar plate, produced weak activity on Salmonella typhimurium TA100, and was inactive on Salmonella typhimurium TA98^{LE0128}. Water extract of the fresh fruit, on agar plate, was inactive on Salmonella typhimurium TA100^{LE0212}. Peroxidase activity. The fresh plant juice, at a concentration of 0.5 ml, was active^{LE0210}. Physical chemical study. The fresh fruit, taken orally by adult males undergoing pros-

tatectomy for carcinoma, showed no differences. The levels of cis- and trans-lycopene measured in benign and malignant prostate tissue obtained from the patients revealed that the cis-isomers predominate in the tissue although dietary sources contained predominately the trans-isomer^{LE0126}.

Protein synthesis inhibition. Buffered extract of the dried seed was active, IC_{50} 32.0 mcg protein/ml^{LE0183}.

Quinone reductase induction. Acetonitrile extract of the dried fruit, at a concentration of 7.9 mg/gm in cell culture, produced weak activity on hepatoma-mouse-IC7. It was assayed for induction of detoxifying enzyme, an effect that may have anticarcinogenic activity^{LE0146}.

Toxicity assessment. Ethanol/water (1:1) extract of the aerial part, administered intraperitoneally to mice, produced LD_{50} 825.0 mg/kg^{LE0206}.

Tumor promoting inhibition. Methanol extract of the fresh fruit, in cell culture at a concentration of 200.0 mcg, was inactive on Epstein-Barr virus vs 12-0-hexadecano-ylphorbol-13-acetate-induced Epstein-Barr virus activation^{LEO214}.

WBC-macrophage stimulant. Water extract of the freeze-dried fruit, at a concentration of 2.0 mcg/ml, was inactive on macrophages. Nitrite formation was used as an index of the macrophage stimulating activity to screen effective foods^{LE0224}.

REFERENCES

LE0101

LE0100 Walker, B. S. and J. C. Janney. Estrogenic substances. II. An analysis of plant sources. **Endo-**

crinology 1930; 14: 389-.

Wakkary, J. A., L. Goodfriend and B. A. Kovacs. Isolation and some pharmacological properties of two biologically active substances of crown gall infected tomato plants. **Arch Int Pharmacodyn Ther** 1970; 183: 289–.

LE0102 Yeh, H. L. and W. H. Adolph. The oxalate content of Chinese leaf

LE0103	vegetables. Chung-Kuo Sheng Li Hsueh Tsa Chih 1938; 13: 209–. Griffiths, L. A. On the distribution of gentisic acid in green plants.	LE0113	Qureshi, M. J. and J. A. Blain. Isolation and identification of antioxidant factors in tomato. Nucleus (Karachi) 1974; 11: 25–.
LE0104	J Exp Biol 1959; 10: 437—. Bulen, W. A., J. E. Varner and R. C. Burrell. Separation of organic acids from plant tissues.	LE0114	Hammerschlag, F. and M. E. Mace. Antifungal activity of extracts from fusarium wilt-susceptible and -resistant tomato plants.
LE0105	Anal Chem 1952; 24: 187–190. Schreiber, K. and O. Aurich. Isolation of several alkaloids and 3-beta-hydroxy-5-alpha-pregn-16-	LE0115	Phytopathology 1975; 65: 93–. Ronchetti, F. and G. Russo. Stereochemistry of the functionalization of C-26 in the biosynthe-
LE0106	en-zo-one from Lycopersicon pimpinellifolium Mill. Phyto- chemistry 1966; 5: 707–712. Gottshall, R. Y., E. H. Lucas,	LE0116	sis of neotigogenin. Tetrahedron Lett 1975; 1975: 85–. Chin, C. K. and G. D. Weston. Sucrose absorption and synthesis
	A. Lickfeldt and J. M. Roberts. The occurrence of antibacterial substances active against <i>Mycobacterium tuberculosis</i> in seed	LE0117	by excised Lycopersicon esculentum roots. Phytochemistry 1975; 14: 69–70. Andryushchenko, V. K., A. A.
LE0107	plants. J Clin Invest 1949; 28: 920–923. Pangsrinongsa, S. and C. Sambhandharaksa. Vitamin C content		Zhuchenko, A. P. Syrovatskaya, S. T. Butkevich and I. V. Didenko. Rapid method for determining ascorbic acid in tomatoes. Kon-
LE0108	in some local fruits. J Pharm Ass Siam 1949; 2(5): 213–219. Pressey, R. Invertase inhibitor in tomato fruit. Phytochemistry	LE0118	ser Vn Ovoshchesush Prom St 1974; 1974(9): 38–. Mahana, S. K. and D. Singh. Free ascorbic acid from solanaceous
LE0109	1994; 36(3): 543–546. Yahara, S., N. Uda and T. Nohara. Lycoperosides A-C, three stere-	LE0119	plants and their mutants. Indian J Pharmacy 1974; 36: 138–. Kochetova, L. T., Z. A. Troyan
	oisomeric 23-acetoxyspirosolan- 3-beta-ol beta-lycotetraosides from <i>Lycopersicon esculentum</i> . Phytochemistry 1996; 42(1):		and G. D. Ponpa. Change in biologically active substances in the production of tomato juice. Tr Krasnodar Nauch Issled Inst
LE0110	169–172.Brady, J. D., I. H. Sadler and S.C. Fry. Pulcherosine, an oxidatively coupled trimer of tyrosine in plant cell walls: its role in	LE0120	Pishch Prom 1973; 6: 203–. Shimoi, K., S. Masuda, B. Shen, M. Furugori and N. Kinae. Radi- oprotective effects of antioxi- dative plant flavonoids in mice.
LE0111	cross-link formation. Phytochemistry 1998; 47(3): 349–353. Yokota, T., H. Etoh, N. Ukai, S. Oshima, H. Sakamoto and Y.	LE0121	Mutat Res 1996; 350(1): 153–161. Tazaki, H. Y., R. K. Hori, K. S. Nabeta and H. S. Okuyama. Glucosides of ionone-related com-
	Ishiguro. 1, 5-dihydroxyiridanyllycopene in tomato puree. Biosci Biotech Biochem 1997; 61(3):	LE0122	pounds from tomato leaves. Shizen Kagaku 1995; 19(3): 149–157. Grunzweig, J. M., H. D. Rabino-
LE0112	549–550. Zargari, A. Medicinal plants. Vol 3, 5th Ed, Tehran University Publications, No 1810/3, Tehran, Iran 1992; 3: 889 pp.		witch, J. Katan, M. Wodner and Y. Ben-Tal. Endogenous gibberellins in foliage of tomato (<i>Lycopersicon esculentum</i>). Phytochemistry 1997; 46(5): 811–815.

LE0123	Kojima, K., N. Sakurai and K. Tsuruseki. IAA distribution with-	LE0131	Marlatt, C., C. T. J. Ho and M. J. Chien. Studies of aroma con-
LE0124	in tomato flower and fruit. Hortscience 1994; 29(10): 200–. Moskova-Simeonova, D. Pheno-		stituents bound as glycosides in tomato. J Agr Food Chem 1992; 40(2): 249–252.
	lic compounds in the reproduc- tive organs of tomato cultivars within different yield character- istics. Fiziol Rast (Sofia) 1987;	LE0132	Krause, M. and R. Galensa. Determination of naringenin and naringenin-chalcone in tomato skins by reverse-phase HPLC after
LE0125	13(2): 56–60. Okamima, E., M. Tsutsumi, S. Ozono, H. Akai, A. Danda, H.		solid-phase extraction. Z Lebensm-Unters Forsch 1992; 194 (1): 29–32.
	Nishino, S. Oshima, H. Sakamoto and Y. Konishi. Inhibitory effect of tomato juice on rat urinary	LE0133	Hamilton-Kemp, T. R., C. T. McCracken Jr., J. H. Loughrin, R. A. Andersen and D. F. Hilde-
	bladder carcinogenesis after N-butyl-N-(4-hydroxybutyl) nitrosamine initiation. Jap J Cancer		brand. Effects of some natural volatile compounds on the pathogenic fungi <i>Alternaria alter</i> -
LE0126	Res (Gann) 1998; 89(1): 22–26. Clinton, S. K., C. Emenhiser, S. J. Schwartz, D. G. Bostwick, A. W.	LE0134	nata and Botrytis cinerea. J Chem Ecol 1992; 18(7): 1083–1091. Granado, F., B. Olmedilla, I.
	Williams, B. J. Moore and J. W. Erdman Jr. Cis-trans lycopene isomers, carotenoids, and retinol		Blanco and E. Rojas-Hidalgo. Carotenoid composition in raw and cooked Spanish vegetables.
	in the human prostate. Cancer Epidemiol Biomark Prevent	* F0.10.5	J Agr Food Chem 1992; 40(11): 2135–2140.
LE0127	1996; 5(10): 823–833. Hakala, S. H. and I. M. Heinonen. Chromatographic purification of	LE0135	Cohen, Y., K. Guegler, E. Moesinger and T. Niderman. Fungicidal proteins P14 of tomato;
	natural lycopene. J Agr Food Chem 1994; 42(6): 1314–1316.		purification and cloning of sequences encoding them. Patent-
LE0128	Kassie, F., W. Parzefall, S. Musk, I. Johnson, G. Lamprecht, G. Son-		Pct Int Appl-92 (20,800) 1992; 36 pp
	tag and S. Knasmuller. Genotoxic effects of crude juice from	LE0136	Maeda, H., T. Katsuki, T. Akaike and R. Yasutake. High correla-
	brassica vegetables and juices and extracts from phytopharmaceuti-		tion between lipid peroxide radi- cal and tumor-promoter effect:
	cal preparations and spices of cruciferous plants origin in bacterial		suppression of tumor promotion in the Epstein-barr virus/B-
LE0129	and mammalian cells. Chem Biol Interact 1996; 102(1): 1–16. Ikeda, T., T. Matsumoto and M.	LE0137	lymphocyte. Jap J Cancer Res (Gann) 1992; 83(9): 923–928. Ghazanfar, S. A. and M. A. Al-
EE0129	Noguchi. Culture conditions of higher plant cells in suspension	EE0137	Sabahi. Medicinal plants of Northern and Central Oman (Arabia)
	culture. Part 7. Formation of ubi- quinone by tobacco plant cells in suspension culture. Phytochem -	LE0138	Econ Bot 1993; 47(1): 89–98. Yasukawa, K., A. Yamaguchi, J. Arita, S. Sakurai, A. Ikeda and M.
LE0130	istry 1976; 15: 568–569. Noma, M. and M. Noguchi. Oc-		Takido. Inhibitory effect of edible plant extracts on 12-o-tetradeca-
	currence of nicotianamine in higher plants. Phytochemistry 1976; 15: 1701–1702.		noylphorbol-13-acetate-induced ear oedema in mice. Phytother Res 1993; 7(2): 185–189.

LE0139	De Feo, V. and F. Senatore. Medicinal plants and phytotherapy in the Amalfitan Coast, Salerno Province, Campania, Southern Italy. J Ethnopharmacol 1993; 39(1): 39–51.	LE0148	Parry, A. and R. Horgan. Abscisic acid biosynthesis in roots. I. The identification of potential abscisic acid precursors, and other carotenoids. Planta 1992; 187(2): 185–191.
LE0140	Hertog, M. G. L., P. C. H. Hollman and M. B. Katani. Content of potentially anticarcinogenic flavanoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agr Food Chem 1992; 40(12): 2379–2383.	LE0149	Hertog, M. G. L., P. C. H. Hollman and B. Van De Putte. Content of potentially anticarcinogenic flavanoids of tea infusions, wines, and fruit juices. J Agr Food Chem 1993; 41(8): 1242–1246.
LE0141	Marlatt, C., M. Chien and C. T. Ho. C-13 norisoprenoids bound as glycosides in tomato. J Essent Oil Res 1991; 3(1): 27–31.	LE0150	Lim-Sylianco, C. Y., J. A. Concha, A. P. Jocano and C. M. Lim. Antimutagenic effects of expressions from twelve medici-
LE0142	Sekiya, K., T. Fushimi, T. Kanamori, N. Ishikawa, M. Itoh, M. Takita and T. Nakanishi. Regulation of arachidonic acid metabolism in platelets by vegetables. Biosci Biotech Biochem 1993;	LE0151	nal plants. Philippine J Sci 1986; 115(1): 23–30. Francheschi, S., E. Bidoli, C. Vecchia, R. Talamani, B. D'Avanzo and E. Negri. Tomatoes and risk of digestive-tract cancers. Int J
LE0143	57(4): 670–671. Urbasch, I. Comparative analysis of the essential oils of glandular hairs of cultivated and wild tomato plants (<i>Lycopersicon</i> spp.).	LE0152	Cancer 1994; 59(2): 181–184. Singh, J., A. K. Dubey and N. N. Tripathi. Antifungal activity of Mentha spicata. Int J Pharma- cog 1994; 32(4): 314–319.
LE0144	Planta Med 1986; 52(1): 58–60. Domino, E. F., E. Hornbach and T. Demana. The nicotine content of common vegetables. N Engl J Med 1993; 329(6): 437–.	LE0153	Bushway, R. J., L. B. Perkins, L.R. Paradis and S. Vanderpan. High-performance liquid chromatographic determination of the tomato glycoalkalid, tomatine, in
LE0145	Takagi, K., M. Toyoda, M. Shimizu and T. Satoh. Determination of tomatine in foods by liquid chromatography after derivatiza-	LE0154	green and red tomatoes. J Agr Food Chem 1994; 42(12): 2824– 2829. Friedman, M., C. E. Levin and
LE0146	tion. J Chromatogr 1994; 659(1): 127–131. Prochaska, H. J., A. B. Santamaria and P. Talalay. Rapid detection on inducers of enzymes that pro-		G. M. Mc Donald. Alpha-tomatine determination in tomatoes by HPLC using pulsed amperometric detection. J Agr Food Chem 1994; 42(9): 1959–1964.
I F0147	tect against carcinogens. Proc Nat Acad Sci (USA) 1992; 89: 2394–2398.	LE0155	Malamas, M. and M. Marselos. The tradition of medicinal plants in Zagori, Epirus (Northwest Gre-
LE0147	Parry, A., A. Griffiths and R. Horgan. Abscisic acid biosynthesis in roots. II. The effects of waterstress in wild-type and abscisicacid-deficient mutant (notabilis) plants of <i>Lycopersicon esculentum</i> Mill. Planta 1992; 187(2): 192–197.	LE0156	ece). J Ethnopharmacol 1992; 37(3): 197–203. Hattori, A., H. Migitaka, M. Iigo, M. Itoh, K. Yamamoto, R. Ohtani-Kaneko, M. Hara, T. Suzuki and R. J. Reiter. Identification of melatonin in plants and

LE0157	its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 1995; 35(3): 627–634. Tanaka, Y., M. Kataoka, Y. Konishi, T. Nishmune and Y. Takagaki. Effects of vegetable foods on beta-hexosaminidase release from rat basophilic leukemia cells (RBL-2H3). Jpn Toxicol Environ Health 1992; 38(5): 418–424.	LE0165	genic tomato by the UMU-test. Biosci Biotech Biochem 1995; 59(11): 2152. Giron, L. M., V. Freire, A. Alonzo and A. Caceres. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. J Ethnopharmacol 1991; 34(2/3): 173–187. Yesilada, E., G. Honda, E. Sezik, M. Tabata, T. Fujita, T. Tanaka, Y. Takeda and Y. Takaishi. Traditional medicina in Turkey. V.
LE0158	Singh, S. and V. K. Sawhney. Plant hormones in <i>Brassica napus</i> and <i>Lycopersicon esculentum</i> pollen. Phytochemistry 1992;	LE0167	ditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. J Ethnopharmacol 1995; 46(3): 133–152. Gurib-Fakim, A., M. D. Sweraj,
LE0159	31(12): 4051–4053. Moore, B. D., E. Isidoro and J. R. Seemann. Distribution of 2-carboxy arabinitol among plants. Phytochemistry 1993; 34(3):	LE0168	J. Gueho and E. Dulloo. Medicinal plants of Rodrigues. Int J Pharmacog 1996; 34(1): 2–14. De Feo, V., R. Aquino, A. Menghini, E. Ramundo and F. Senat-
LE0160	703–707. Friedman, M. and C. E. Levin. Alpha-tomatine content in tomato and tomato products determined by HPLC with pulsed am-		oare. Traditional phytotherapy in the Peninsula Sorrentina, Campania, Southern Italy. J Ethnopharmacol 1992; 36(2): 113–125.
LE0161	perometric detection. J Agr Food Chem 1995; 43(6): 1507–1511. Tsuchiya, H., K. Yamada, H. Kato, H. Hayashi, T. Miyazaki and T. Hayashi. High-perfor- mance liquid chromatographic analysis of tetrahydro-beta-car-	LE0169 LE0170	Itoh, T., T. Tamura and T. Matsumoto. Triterpene alcohols in the seeds of Solanaceae. Phytochemistry 1977; 16: 1723–1726. Saxena, V. K. Lupeol from the seed of <i>Lycopersicon esculentum</i> . J Indian Chem Soc 1977;
LE0162	bolines in food plants. Phyto- chem Anal 1995; 6(6): 297–301. Murakami, A., S. Jiwajiinda, K. Koshimizu and H. Ohigashi. Screening for in vitro anti-tumor promoting activities of edible plants from Thailand. Cancer Lett 1995: 95(1/2): 137, 146	LE0171	54: 916—. Itoh, T., T. Ishii, T. Tamura and T. Matsumoto. Four new and other 4-alpha-methylsterols in the seeds of Solanaceae. Phytochemistry 1978; 17: 971–977. Subrtova, D., J. Hubacek, M. Iankovsky and D. Fislaya, Vola
LE0163	Lett 1995; 95(1/2): 137–146. Johns, T., E. B. Mhoro and P. Sanaya. Food plants and masti- cants of the Batemi of Ngoron- goro District, Tanzania. Econ	LE0173	Jankovsky and D. Fialova. Volatile substances of tomatoes (<i>Lycopersicon esculentum</i>). Rostl Vyroba 1985; 31(8): 871–880. Saxena, V. K. and R. B. Singh.
LE0164	Bot 1996; 50(1): 115–121. Shinmoto, H., A. Tomiza Wa, M. Kobori, T. Tsushida and K. Shi- nohara. Assessment of the muta- genicity of extracts of TMV- coat-protein-gene induced trans-	LE0174	Flavanoid constituents of Lycopersicon esculentum. J Indian Chem Soc 1976; 53(3): 317–. Betz, H. and E. Schloesser. On the use of fungicidal saponins in crop protection. Tagungsber-

LE0175	Akad Landwirtschaftswiss DDR 1984; 222: 179–187. Zumbrunn, A., P. Uebelhart and C. H. Eugster. HPLC of carotenes with PSI-end groups and (z)-configuration at terminal	LE0184	ing proteins amongst plants. J Nat Prod 1985; 48(3): 446–454. Miwa, M., Z. L. Kong, K. Shinohara and M. Watanabe. Macrophage stimulating activity of foods. Agr Biol Chem 1990; 54
LE0176	conjugated double bonds, isolation of (5z)-lycopene from tomatoes. Helv Chim Acta 1985; 68(6): 1540–1542. Rao, G. S. R. L., J. H. M. Willison, W. M. N. Ratnayake and R. G. Ackman. Phenolics of suber-	LE0185	(7): 1863–1866. Odintsoya, T. I., R. L. Yanaudite, T. A. Egorov, L. I. Izbekova, E. N. Andreeva and V. A. Pukhal'skii. Detection of interferon-like pro- teins in tomato leaves. Chem Nat Comp 1991; 314(1/6): 256–259.
LE0177	ized envelopes generated by isolated tomato locule protoplasts. Phytochemistry 1985; 24(9): 2127–2128. Okamoto, M., N. Hirai and K. Ko-	LE0186	Felcman, J. and M. L. T. Braganca. Chromium in plants comparison between the concentration of chromium in Brazilian nonhypo and hypoglycemic plants.
LE0178	shimizu. Occurrence and metabolism of 1',4'-trans-diol of abscisic acid. Phytochemistry 1987; 26(5): 1269–1271. Kenrick, J. R. and D. G. Bishop.	LE0187	Biol Trace Element Res 1988; 17(1): 11–16. Anon. Studies on tomato storage. II. Ripening and ethylene evolution of tomato fruits. Chih Wu
	Phosphatidylglycerol and sulpho- quinovosyldiacylglycerol in lea- ves and fruits of chilling-sensitive plants. Phytochemistry 1986; 25	LE0188	Hsueh Pao 1978; 20: 348–354. Shchelochkova, A. P., N. I. Kozlova and K K. Koshoev. Neotigogenin from tomato seeds as
LE0179	(6): 1293–1295. Vermeer, E., E. Knegt and J. Bruinsma. Determination of abscisic acid in small amounts of plant material. J Chromatogr	LE0189	raw material for the production of hormonal preparation. Org Khim Puti Razvit Khim Proiz- vod Kirg 1976; 1976: 53–54. Williams, W. G., G. G. Kennedy,
LE0180	1987; 404(2): 346–351. Buttery, R. G., R. Teranishi and L. C. Ling. Identification of da- mascenone in tomato volatiles. Chem Ind(London) 1988; 1988 (7):238–.		R. T. Yamamoto, J. D. Thacker and J. Bordner. 2-Tridecanone: A naturally occurring insecticide from the wild tomato <i>Lycopersicon hirsutum</i> F. Glabratum. Science 1980; 207: 888–889.
LE0181	Anon. Pharmaceutical and cosmetic compositions containing tomato plant extracts for the treatment of skin diseases. Patent-Israel-78,820 1987; 15 pp	LE0190	Kawashima, N. and Y. Tanabe. Comparison of the primary structure of the large and small subunits of fraction I protein from Solanaceae plants and other fa-
LE0182	Lin, S. Y. H., J. T. Trumble and J. Kumamoto. Activity of volatile compounds in glandular trichomes of <i>Lycopersicon</i> species against	LE0191	milies. Biochem Syst Ecol 1975; 2: 193–199. Shchelochkova, A. P., Y. S. Vollerner and K. K. Koshoev. Tom-
LE0183	two insect herbivores. J Chem Ecol 1987; 13(4): 837–850. Gasperi-Campani, A., L. Barbieri, M. G. Battelli and F. Stirpe. On the distribution of ribosome-inactivat-	LE0192	atoside A from the seeds of <i>Lyco-</i> persicum esculentum. Chem Nat Comp 1980; 16(4): 386–392. Grzelinska, A. Isolation and iden- tification of tomato phytoalex-

LE0193	ins. II. Isolation of lupeol. Bull Acad Sci Ser Sci Biol 1980; 28(5): 293–298. Hass, G. M. and C. A. Ryan. Carboxypeptidase inhibitor from ripened tomatoes: Purification and properties. Phytochemistry	LE0203	ico. J Ethnopharmacol 1984; 11(2): 203–221. Boukef, K., H. R. Souissi and G. Balansard. Contribution to the study on plants used in traditional medicine in Tunisia. Plant Med Phytother 1982; 16(4): 260–279.
LE0194	1980; 19: 1329–1333. Grzelinska, A and J. Sierakowska. Isolation and identification of tomato phytoalexins. I. Isolation of rishitin. Bull Acad Pol Sci Ser Sci Biol 1980; 28: 287–	LE0204	Singh, K. V. and R. K. Pathak. Effect of leaves extracts of some higher plants on spore germination of <i>Ustilago maydes</i> and <i>U. nuda.</i> Fitoterapia 1984; 55(5): 318–320.
LE0195	292. Loveys, B. R. and B. V. Milborrow. Isolation and characterization of 1'-O-abscisic acid-beta-d-glucopyranoside from vegeta-	LE0205	Velazco, E. A. Herbal and traditional practices related to maternal and child health care. Rural Reconstruction Review 1980; 35–39.
LE0196	Physiol 1981; 8: 571–589. Konowalchuk, J. and J. I. Speirs. Antiviral effect of commercial juices and beverages. Appl Environ Microbiol 1078, 25, 1210.	LE0206	Aswal, B. S., D. S. Bhakuni, A. K. Goel, K. Kar, B. N. Mehrotra and K. C. Mukherjee. Screening of Indian plants for biological activity: Part X. Indian J Exp. Phys. 108(4) 22(6), 212, 222
LE0197	ron Microbiol 1978; 35: 1219–. Medina, F. R. and R. Woodbury. Terrestial plants molluscicidal to lymnaeid hosts of <i>Fasciliasis hepatica</i> in Puerto Rico. J Agr Univ Puerto Rico 1979; 63: 366–	LE0207	Biol 1984; 22(6): 312–332. Singh, Y. N. Traditional medicine in Fiji: Some herbal folk cures used by Fiji Indians. J Ethnopharmacol 1986; 15(1): 57–88.
LE0198	376. Roychoudhury, R. Effect of extracts of certain solanaceous plants on plant virus infection. Acta Bot Indica 1980; 8(1): 91–94.	LE0206	Osawa, T., H. Ishibashi, M. Namiki, T. Kada and K. Tsuji. Desmutagenic action of food components on mutagens formed by the sorbic acid nitrite reaction. Agr Biol Chem 1986; 50(8): 1971–
LE0199	Shaft, N. and M. Ikram. Quantitative survey of rutin-containing plants. Part I. Int J Crude Drug Res 1982; 20(4): 183–186.	LE0209	1977. Morita, K., M. Hara and T. Kada. Studies on natural desmutagens: Screening for vegetable and fruit
LE0200	Mahato, S. B., A. N. Ganguly and N. P. Sahu. Steroid saponins. Phytochemistry 1982; 21: 959–978.		factors active in inactivation of mutagenic pyrolysis products from amino acids. Agr Biol Chem
LE0201	Chang, C. C., C. M. Chen, B. R. Adams and B. M. Trost. Leucinopine, a characteristic compound of some crown-gall tumors. Proc Nat Acad Sci (USA) 1983; 80:	LE0210	1978; 42(6): 1235–1238. Yamaguchi, T., Y. Yamashita and T. Abe. Desmutagenic activ- ity of peroxidase on autoxidized linolenic acid. Agr Biol Chem
LE0202	3573–3576. Martinez, M. A. Medicinal plants used in a Totonac community of the Sierra Norte de Puebla: Tuzamapan de Galeana, Puebla, Mex-	LE0211	1980; 44(4): 959–961. Weniger, B., M. Rouzier, R. Daguilh, D. Henrys, J. H. Henrys and R. Anton. Popular medicine of the Central Plateau of Haiti.

LE0212	2. Ethnopharmacological inventory. J Ethnopharmacol 1986; 17(1): 13–30. Shinohara, K., S. Kuroki, M. Miwa, Z. L. Kong and H. Hosoda. Antimutagenicity of dialyzates of vegetables and fruits. Agr Biol Chem 1988; 52(6): 1369–1375.	LE0220	nerellins in fruits of <i>Lycopersi-con esculentum</i> , and their relationship to fruit size in <i>L. esculentum</i> and <i>L. pimpinellifolium</i> . Physiol Plant 1988; 73(3): 348–353. Wills, R. B. H. and E. V. Scurr. Mevalonic acid concentrations in fruit and vegetable tissues. Phytochemistry 1975; 14: 1643–.
LE0213	Duffey, S. S. and M. B. Isman. Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves. Expe	LE0221	Pratt, D. E. and B. M. Watts. The antioxidant activity of vegetable extracts. I. Flavone glycones. J Food Sci 1964; 29: 27–33.
LE0214	rientia 1981; 37(6): 574–576. Koshimizu, K., H. Ohigashi, H. Tokuda, A. Kondo and K. Yama- guchi. Screening of edible plants against possible anti-tumor pro- moting activity. Cancer Lett 1988; 39(3): 247–257.	LE0222	Tattersfield, F., C. Potter, K. A. Lord, E. M. Gillham, M. J. Way and R. I. Stoker. Insecticides derived from plants. Results of tests carried out on a number of British, tropical and Chinese plants. Kew Bull (London) 1948;
LE0215	Ramirez, V. R., L. J. Mostacero, A. E. Garcia, C. F. Mejia, P. F. Pelaez, C. D. Medina and C. H. Miranda. Vegetales empleados en medicina tradicional Norperuana. Banco Agrario del Peru & Nacl Univ Trujillo, Trujillo, Peru, June, 1988; 54 pp.	LE0223 LE0224	3: 329–349. Liebstein, A. M. Therapeutic effects of various food articles. Amer Med 1927; 33: 33–38. Greer, M. A. and E. B. Astwood. The antithyroid effect of certain foods in man as determined with radioactive iodine. Endocrinol-
LE0216	Kone-Bamba, D., Y. Pelissier, Z. F. Ozoukou and D. Kouao. Hemostatic activity of 216 plants used in traditional medicine in the Ivory Coast. Plant Med Phytother 1987; 21 (2): 122–130.	LE0225	ogy 1948; 43: 105–119. Celayeta, F. D. Action of the tissues of various plants on the growth of <i>Sphacelia segetum</i> . Farmacognosia (Madrid) 1960; 20: 91–101.
LE0217	Caceres, A., L. M. Giron, S. R. Alvarado and M. F. Torres. Screening of antimicrobial activity of plants popularly used in Guatemala for the treatment of dermatomucosal diseases. J Ethnopharmacol 1987; 20(3): 223–237. Britton, G. and T. W. Goodwin.	LE0226	Kubas, J. Investigations on known or potential antitumoral plants by means of microbiological tests. Part III. Biological activity of some cultivated plant species in <i>Neurospora crassa</i> test. Acta Biol Cracov Ser Bot 1972; 15: 87–100.
	The occurrence of phytoene 1,2-oxide and related carotenoids in tomatoes. Phytochemistry 1969; 8(11): 2257–2258.	LE0227	Itobe, E., C. S. Kim and M. Horike. A feeding deterrent for thrips <i>Palmi karny</i> (Thysanoptera: Thripidae) found in tomato leaves.
LE0219	Bohner, J., P. Hedden, E. Bora- Haber and F. Bangerth. Identifi- cation and quantitation of gin-		Nippon Oyo Dobutsu Konchu Gakkaishi 1994; 38(2): 109–120.

15 Matricaria chamomilla

Common Names

Babounag	Egypt	German Chamomille	England
Babunaj	Arabic countries	Herba de la mera	France
Babunj	Tunisia	Hungarian Chamomile	USA
Bachati	Nicaragua	Kamille	France
Calamido	France	Kamitsure	Japan
Camamilla	Spain	Kamiture	Japan
Camomiha	France	Manzanilla chiquita	Colombia
Camomile	Germany	Manzanilla comun	Colombia
Camomilla comune	Italy	Manzanilla dulce	Colombia
Camomilla	Colombia	Manzanilla romana	Colombia
Camomilla	Italy	Manzanilla	Argentina
Camomirra	Italy	Manzanilla	Bolivia
Campomilla	Italy	Manzanilla	Guatemala
Chamomile	Argentina	Manzanilla	Honduras
Chamomile	England	Manzanilla	Mexico
Chamomile	Estonia	Manzanilla	Nicaragua
Chamomile	India	Manzanilla	Peru
Chamomile	Japan	Manzilla	Guatemala
Chamomille	Mexico	Matricaire	France
Chamomille	Nicaragua	Matricaire	Tunisia
Chrysanthemum	Germany	Matricaris	France
English Chamomile	Japan	Pin heads	Europe
German Chamomile	USA	Sweet Feverfew	England
German Chamomile	USSR	Wild Chamomile	Germany

BOTANICAL DESCRIPTION

A glabrous, branching, erect, and aromatic annual of the COMPOSITAE family. It grows to about 1 m tall with a strong odor when bruised. The leaves, 2 to 3, are pinnately-parted with a narrow, thorny tip. Flowers are large, solitary heads on 2 to 8 cm long, grooved peduncles; The ray florets are white or yellowish, later becoming reflexed, disc florets numerous, yellow, tubular; peduncles 2.5 cm long, dark brown or dusk greenish yellow; achenes with 3-5 faint ribs.

ORIGIN AND DISTRIBUTION

M. Chamomilla is indigenous to Europe and northwest Asia, and is now naturalized in eastern Australia, North, and South America.

TRADITIONAL MEDICINAL USES

Arabic Countries. Hot water extract of dried flowers is taken orally and is used as a sitz bath for an emmenagogue in Unani medicine^{MCO247}.

Argentina. Decoction of the dried flowers is taken orally to treat diarrhea and respiratory and urinary tract infections^{MCO167}. Infusion is taken orally as a tranquilizer and spasmolytic^{MCO172}. Hot water extract of the dried aerial part is taken orally as a febrifuge and for stomach pains and respiratory diseases^{MCO267}.

Bolivia. Infusion of the dried flower is taken orally as a biliary regulant in bilious and biliary colic^{MCO250}.

Colombia. Hot water extract of the dried flower^{MCO279} and hot water extract of inflorescence^{MCO107} are taken orally as an emmenagogue.

England. Hot water extract of the aerial part is taken orally by human adults to expel the fetus at birth^{MCO116}. Infusion of the essential oil is taken orally as a sedative and hypnotic. The essential oil is also used externally as an analgesic and anti-inflammatory^{MCO140}.

Europe. Hot water extract of the flower is taken orally as a carminative, sedative, and tonic^{MC0117}.

France. Infusion of the aerial part is taken orally as an antispasmodic, to improve circulation as a tonic and vermifuge, and is used externally as an antiseptic^{MCO187}.

Germany. Butanol extract of the aerial part is used in menstruation powders^{MCO113}. Hot water extract of the flower is used as a vaginal douche to induce abortion^{MCO102}. The extract is sold as a "quack" abortifacient and a "quack" emmenagogue^{MCO289}. A

preparation that contains apiol, chamomile, *Artemisia absinthium* and yarrow is used as an abortifacient. In addition, a vaginal lavage containing formaldehyde, soap, alcohol and volatile oil was used^{MCO293}. Water extract of the dried flower is taken orally for insomnia, neuralgia and lumbago^{MCO173}.

Greece. Hot water extract of the flower is taken orally for stomach diseases MCO114 .

Guatemala. Hot water extract of the dried leaf is taken orally as a depurative and for urinary tract infection. Externally, it is used for wounds, ulcers, bruises and sores, pimples, pustules, dermatitis, inflammations, and conjunctivitis^{MCO280}. Infusion of the flower and leaf is taken orally for stomach and menstrual pains. The decoction is taken orally to strengthen the womb and for nervousness^{MCO179}.

Honduras. Hot water extract of the entire plant is taken orally for female illnesses^{MCO112}. **India**. Hot water extract of the leaf is used externally on the genitals as a powerful stimulant^{MCO111}.

Italy. Infusion of the dried flower head is taken orally as a sedative and laxative. A poultice prepared from the flower is used to treat earache and is placed over the eyes to treat conjunctivitis^{MCO283}. Infusion of the dried flower is used as an antispasmodic^{MCO282}. Infusion of the flower head (30–40 grams in one liter of water) is taken 2–3 cups per day orally to treat insomnia, biliary calculosis, and as a digestive^{MCO183}. Infusion of the inflorescence is taken orally as a digestive, sedative, and externally as an emollient. The decoction is taken orally for gastritis^{MCO158}.

Mexico. Hot water extract of the aerial part is used as a remedy to prevent miscarriage. The patient is placed on a bed and is given the extract orally 3 to 4 times a day. A gold ring was boiled in the water that was used to make the extract. It is believed that this may avert loss of the fetus^{MCO290}. Hot water extract of the dried flower is

taken orally to hasten parturition^{MCO235}. Infusion of entire plant is taken orally to treat mild stomach disorders^{MCO186}. Infusion of the dried entire plant is taken orally by human adults to diminish hunger. The infusion is mixed with alcohol, *Ruta graveolens*, and an egg^{MCO253}.

Nicaragua. Decoction of flowers is taken

orally to treat belly pain and as a purgative MCO181. Decoction of the leaf, mixed with Tagetes patula, is used externally for fever MCO181. Decoction of the entire plant is taken orally to aid in childbirth and as a digestive MCO185. Peru. Hot water extract of the dried flower and leaf is taken orally for heart and nervous diseases, colic, and as a diaphoretic and digestive MCO277. Infusion of the flower, leaf and stem is taken orally as an aromatic, digestive, sedative, and carminative for stomachaches MCO184.

Spain. Decoction and infusion of the dried flower head is taken orally as an intestinal antiseptic and digestive MCO168.

Tunisia. Hot water extract of the dried aerial part is taken orally for stomach pain and aerophagy^{MCO258}.

USA. Essential oil of the dried flower is taken orally as an antispasmodic and a carminative in flatulency, colic and cramps. Hot water extract of the dried flower is taken orally as an emetic. One to 2 cups of the warm infusion is then taken as an emetic^{MCO303}. Fluid extract of the flower is taken orally for amenorrhea, as a mild tonic and antispasmodic^{MCO318}. The hot water extract is taken orally as a spasmolytic and an anti-inflammatory^{MCO287}. Hot water extract of the aerial part is taken orally as an emmenagogue and as a nervine^{MCO221}.

USSR. Hot water extract of the flower is taken orally for bacillary dysentery, especially in children^{MCO2288}. Infusion of the dried flower is used as an eyewash for styes and runny eyes^{MCO208}. The hot water extract is taken orally as a blood purifier^{MCO272}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

1-8 Cineol: FIMC0274

2-(Butyn-2-ylid-3-ene)-dihydro furan(5-spiro-2-)-tetrahydrofuran: FI^{MC0126}

6-Methoxy kaempferol: FI^{MC0226}

6-Methyl-hept-5-en-2-one: FI EO 0.07% MC0147

3,6-Dimethoxy quercetin: Fl^{MC0226} 6,7-Dimethoxy quercetin: Fl^{MC0226}

Aesculetin: Fl^{MC0152} Alpha alanine: Fl^{MC0291} Alpha bisabolol (+): EO^{MC0134}

Alpha bisabolol (-): EO, Fl 0.252% MC0273

Alpha bisabolol (DL): FI^{MC0307}
Alpha bisabolol oxide A: FI 8.93-

16.85%MC0197, MC0159

Alpha bisabolol oxide B(-): Fl^{MC0136} Alpha bisabolol oxide B: Fl 23.54%^{MC0159} Alpha bisabolol oxide C(-): Fl^{MC0262} Alpha bisabolol: Fl, Fl EO 3.0-43%^{MC0196} Alpha bisabolone oxide(-): Fl^{MC0262}

Alpha bisabolone oxide: Fl EO 5.21% MC0159

Alpha cubebene: Fl^{MC0262} Alpha farnesene: Rt, EO^{MC0224} Alpha muurolene: EO^{MC0127} Alpha terpineol: Fl EO 900^{MC0147}

Anisic acid: FI^{MC0228} Anthecotulide: FI^{MC0265}

Anthemis cotula sesquiterpene lactone 1:

Apigenin glucoside: Fl^{MC0135} Apigenin glycoside: Fl^{MC0123}

Apigenin-7-(3-0-acetyl)-glucoside: Fl^{MC0234} Apigenin-7-(6-0-acetyl)-glucoside: Fl^{MC0163} Apigenin-7-0-beta-D-glucoside-2-3-

diacetate: FI^{MC0239}

Apigenin-7-0-beta-D-glucoside-2-acetate: Fl 0.36% MC0230

Apigenin-7-0-beta-D-glucoside-3-4-diacetate: FI^{MC0239}

Apigenin-7-0-beta-D-Glucoside-3-acetate: FIMC0155

Apigenin-7-0-beta-D-glucoside-4-acetate: FI^{MC0155}

Apigenin-7-0-beta-D-glucoside-6-acetate: FIMC0155

Apigenin-7-0-glucoside isomer: FI, Lf^{MC0305} Apigenin-7-acetyl-0-beta-D-glucoside: FI^{MC0198}

Apigenin-7-acetyl-glucoside: Fl 1.76-2.17% MC0242

Apigenin-7-beta-(6-0-acetyl)glucopyranoside: PI^{MC0201}

Apigenin-7-beta-(6-0-acetyl)-glucoside: FIMC0206

Apigenin-7-beta-D-glucopyranoside: PIMC0201

Apigenin: Fl 0.08-5.22% MC0105, MC0229

Apigetrin: Fl 2.39%MC0153

Apiin: FlMC0234 Axillarin: FI^{MC0232}

Azulene: Pl, Fl EO 10%MC0294, MC0217 Beta bisabolol oxide B: EO 11.17% MC0197 Beta caryophylene: RtMC0262, Rt EO 2MC0248,

FI EO 0.13%MC0147 Beta elemene: FIMC0147 Beta farnesene: Lf,

FI 0.04-0.28% MC0182, MC0157

Beta sitosterol: FIMC0144 Bisabolene oxide: EOMC0227

Bisabolol oxide 1: EO 1.65%MC0238

Bisabolol oxide A: Lf,

FI 0.15-0.59% MC0182, MC0157

Bisabolol oxide B: Fl, Lf^{MC0213, MC0182}

Bisabolol oxide C: EOMC0193

Bisabolol oxide II: EO 2.73% MC0238 Bisabolol: Fl, Lf, Fl EO 42% MC0260 Bisabolone oxide A: EOMC0246

Bisabolone oxide: FI EO 7.76%, FI 100-500MC0147, MC0157

Borneol acetate: FIMC0245 Borneol: FIMC0274

Boron: FI 80.4MC0110 Cadinene: FIMC0262 Caffeic acid: FIMC0228 Calamene: FIMC0262 Car-3-ene: EOMC0127

Caryophyllene epoxide: Rt^{MC0262}

Caryophyllene oxide: Fl EO 0.17% MC0147

Caryophyllene: Fl EOMC0274

Cerotic acid: FIMC0105

Chamaviolin: EOMC0127, FIMC0262

Chamazulene: Fl 260-1170^{MC0241,MC0273}. EO 1.26-23.00% MC0196, FI EO 3.80-8.19%MC0284

Chamillin: FIMC0299

Chamomillaester 1: RtMC0262, Rt EO 10MC0248

Chamomillaester II: Rt EO 2^{MC0248} Chamomillol: Rt EO 87MC0248 Choline: Fl 70-3,800^{MC0105,MC0109}

Chrysoeriol: FI^{MC0232}

Chrysosplenetin: FIMC0306,MC0232

Chrysosplenol: FIMC0232

Cinnamoyl-beta-D-glucopyranoside,1-(2hydroxy-4-methoxy): PIMC0128

Cis beta farnesene: FI EO 15.97% MC0159 Cis bisabolol oxide 1: EO 1.65% MC0238 Cis caryophyllene: Rt EO 6^{MC0248}

Cis cinnamic acid,4-methoxy,2-0-beta-D-

glucoside: Fl 1.71%MC0156

Cis cinnamic acid,4-methoxy,2-beta-D-

glucoside: Fl^{MC0142}

Cis dicycloether: Fl EO 9.64%MC0147 Cis en-yne-bicyclo ether: Fl^{MC0163}, Rt EO 12^{MČ0248}

Cis ene-yne-bicylco ether: EOMC0166 Cis spiro-(4,4)-non-3-ene,2-hexa-2,4-diin-1-ylidene-1,6-dioxa: Fl^{MC0200}

Cis-trans en-yne-bicyclo ether: Rt, St,

FIMC0262

Cis-trans farnesol: FI EO 0.42% MC0147 Cosmosiin: Fl 0.51-6.62%MC0156,MC0230

Cosmosioside: FIMC0304 Coumarin: FIMC0152 Cynaroside: FIMC0259,MC0305 Daucosterol: FI 300MC0144

Dioxaspiro-(4-4)-non-3-ene,1-6,2-(hexa-2-

4-diynylidene): FI^{MC0218}

En-yne-bicyclo ether: Fl 0.27-1.03% MC0157 Essential oil: Fl 0.46-0.85% MC0286, Call

Tiss^{MC0150} Eupaletin: FlMC0226 Eupalitin: FIMC0232 Eupatoletin: FI^{MC0232}

Farnesene: EO 1.59-27.72% MC0249, MC0197

Farnesol: FI EOMC0274 Fructose: FIMC0220

Gamma amino butyric acid: FI^{MC0190} Gamma cadinene: FI EO 0.75% MC0159

Gamma terpinene: EOMC0127 Geraniol: Fl EO 0.24MC0147 Glucosamine (D): FI^{MC0220}

Glucose: FI^{MC0220}

Guaiazulene: EOMC0103, FIMC0245 Herniarin: Fl 0.039-0.081% MC0233

Histidine (L): FIMC0291 Iso rhamnene: FIMC0228 Iso scopoletin: FIMC0152 Iso borneol: FI EO 0.1%MC0147 Jaceidin: Fl^{MC0226,MC0232} Leucine (DL): FIMC0291

Levulose: FI^{MC0105} Linalool: Fl EO 0.57%MC0147 Linoleic acid: FI^{MC0105}

Luteolin-7-0-beta-D-rutinoside: Fl, LfMC0305

Luteolin: FI^{MC0234,MC0228} Lysine (DL): FI^{MC0291}

Matricaria chamomilla sterol (MP122-123):

FI^{MC0105}

Matricaria chamomilla sterol glucoside (MP

158-160): FI^{MC0105}

Matricaria polysaccharide PS-1: FI^{MC0146} Matricaria polysaccharide PS-2: FI^{MC0146} Matricaria polysaccharide PS-3: FI^{MC0146}

Matricin: FIMCÓ165

Matricine: FI EO 3.52%MC0147

Menthol acetate: FI EO 0.17% MC0147

Menthol: Fl^{MC0147} Myrcene: Fl^{MC0274}

Nerol: FI EO 0.65%MC0147

Nerolidol: FI^{MC0274}

Nicotinic acid: Fl 0.88 mg/100 gmMC0108

Ocimene: Fl EO 0.11%^{MČÓ147} Oleanolic acid: Fl 70^{MCO144}

Oleic acid: FI^{MC0105}
Palmitic acid: FI^{MC0105}
Patchoulene: EO^{MC0212}
Patuletin: FI^{MC0234}
Patulitrin: FI^{MC0304}
Pectic acid: FI^{MC0194}

Pentacosan (N): FI 800-1100^{MC0157}

Phylloquinone: Lf^{MC0131} Pulegone: Fl EO^{MC0274} Quercetin: Fl^{MC0228} Quercimeritrin: Fl^{MC0304}

Rutin: FIMC0234

Salicyclic acid: Fl^{MC0105} Scopoletin: Fl^{MC0152} Serine: Fl^{MC0291} Skimmin: Lf, St^{MC0202}

Spathulenol: Fl EO 3.59-9.11%, Fl 120-

140^{MC0231}

Spinacetin: FI^{MC0232} Stearic acid: FI^{MC0105} Stigmasterol: FI 20^{MC0144}

Sucrose: Fl^{MC0105} Syringic acid: Fl^{MC0228}

T cadinol: FI EO 0.36%^{MC0147} Terpinen-4-ol: FI EO 700^{MC0147}

Thujone: Fl^{MC0149}

Trans alpha farnesene: Rt EO 3^{MC0248}, St,

FI^{MC0262}

Trans beta farnesene: Rt EO 87MC0248, Fl,

StMC0262

Trans bisabolol oxide B(-): EO^{MC0166} Trans bisabolol oxide: EO^{MC0151}

Trans cinnamic acid,4-methoxy,2-0-beta-D-

glucoside: Fl 0.62%MC0156

Trans cinnamic acid,4-methoxy,2-beta-D-

glucoside: Fl^{MC0142}

Trans dicycloether: Fl EO 3.33%^{MC0147} Trans en-yne-bicyclo ether: Fl, Rt EO 9MC0248

Trans ene-yne-bicyclo ether: EOMC0166

Trans farnesene: EOMC0166

Trans farnesol: Fl EO 0.32%^{MC0147}
Trans nerolidol: Fl EO 0.42%^{MC0147}
Trans spiro-(4,4)-non-3-ene,2-hexa-2,4-diin-1-ylidene-1,6-dioxa: Fl^{MC0200}

Triacontane (N): Fl 0.16%^{MC0105} Tryptophan: Fl^{MC0291}

Umbelliferone methyl ether: Fl

0.028%MC0105

Umbelliferone: Fl 100^{MC0233} Vanillic acid: Fl^{MC0228} Xanthoxylin: EO^{MC0127}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

ACTH level decrease. The essential oil, administered to ovariectomized rats by inhalation at a dose of 0.7 ml/animal, was active. There was a decreased restriction stress-induced increase of plasma ACTH levels. The response was enhanced by cotreatment with diazepam and inhibited by flumazenile^{MC0140}.

ACTH level increase. The essential oil, administered to ovariectomized rats by inhalation at a dose of 0.7 ml/animal, was active vs restriction stress^{MC0137}.

Allergenic activity. Ethanol (95%) extract of the fresh entire plant was active when applied externally to human adults at a dose of 1.0%. Of the 12 people with contact allergy to chrysanthemum, 3 also showed contact allergy to this plant Flavonoid fraction of the dried flower, applied externally to human adults, was active. The reaction is likely due to the anthecotulid content Likely due to the anthecotulid content taken or ally by human adults, was active. A case report is given of a 24-year-old male who had noted periodically that he experienced mild adverse reactions after

contact with the plant. He avoided contact with the plant for what he believed to be sufficient time so that the reaction would not recur and then became involved in harvesting the plant. Exposure to the plant resulted in a strong spurious dermatitis: edema, redness, blistering and pustule formation on the dorsal surface of both hands. He experienced a cutaneous reaction with the flower, slightly positive reaction with a decoction of the flower and negative reaction with the leaf. Further, the patient, having drunk a cup of chamomile infusion, presented very distinct general reactions of the anaphylactoid type: slow pulse, pale and goose-like skin, asthma and leukopenia. It was necessary to administer epinephrine to alleviate the symptoms^{MC0301}. Infusion of the dried flower, applied ophthalmically to human adults, was active. Seven patients with a history of asthma or seasonal rhinitis showed severe conjunctivitis associated with lid angioedema after chamomile tea eyewashes. All showed positive skin tests in response to tea and pollen, and to Artemesia vulgaris pollen. Prick test with heated tea was also positive, but ingestion was well tolerated. Large amounts of pollen were found in the tea. The ELISA test showed IgE activity in patients, but not healthy controls^{MC0208}. Infusion of the dried flower, taken orally by female human adults, was active. A case was reported of contact dermatitis after the ingestion of chamomile tea^{MC0145}. Hot water extract of the flower, taken orally by female human adults at a dose of 150.0 ml, was active MC0122. The sesquiterpene lactone fraction of the dried entire plant was active. Four and one half percent of the patients tested positive on patch test (for Compositae) or to extracts of 5 common composites (Chrysanthemum parthenium, Matricaria chamomilla, Tanacetum vulgare, Achillea millefolium and Arnica montana). Only 17 of 30 were positive to both MC0161. Undiluted ether extract

of the dried flower, applied by patch test to adults of both sexes, was active MCO223.

Antianaphylactic activity. Water extract of the dried flower head, at a concentration of 1.0 mcg/ml, produced weak activity on rat LEUK-RBL 2H3 vs biotinyl IgE-avidin complex-induced degranulation of Betahexosaminidase^{MCO177}.

Antibacterial activity. Decoction of the dried flower, on agar plate, was inactive on Pseudomonas aeruginosa^{MC0167}. Water extract, at a concentration of 1.0 mg/ml, was inactive on Salmonella typhi^{MC0139}. The hot water extract, at a concentration of 62.5 mg/ml, was inactive on Escherichia coli and Staphylococcus aureus^{MC0162}. Essential oil, on agar plate, was active on Moraxella glucidolyt*ica* and several gram-positive organisms^{MC0215}. Essential oil was active on Erwina amylovora on agar plate, MIC 450.0 mg/liter^{MC0211}. Ethanol (30%) extract of the flower, on agar plate, was inactive on Bacillus subtilis, Escherichia coli, Serratia marcescens, and Staphylococcus aureus. Ethanol (95%) extract was active on Escherichia coli and inactive on Staphylococcus aureus. The water extract was active on Escherichia coli and inactive on Staphylococcus aureus^{MC0125}. Ethanol (95%) extract of the dried flower, at a concentration of 1.25 mg/ml on agar plate, was active on Bacillus megaterium, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, results significant at p <0.05 level. It was also active on Staphylococcus aureus and Staphylococcus epidermidis, with results significant at p < 0.05 level, and Streptococcus mutans, Streptococcus salivarius, and other Streptococcus species. A concentration of 10.0 mg/ml was active on Bacillus megaterium and Escherichia coli, results significant at p < 0.05 level. A concentration of 5.0 mg/ml was active on Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus salivarius, results significant at p < 0.05 level MC0252 . Ethanol/water (1:1) extract of the dried flower, at a concentration of 50.0 microli-

291

ters on agar plate, was inactive on Escherichia coli, Salmonella enteritidis, Salmonella typhosa, Shigella dysenteriae, and Shigella flexneri^{MC0175}. Ether extract of the aerial part, on agar plate, was inactive and the water extract was active on Bacillus subtilis, Escherichia coli and Streptococcus sobrinus. Ethanol (95%) extract was active on Escherichia coli, and Streptococcus sobrinus, and was inactive on Bacillus subtilisMC0281. Essential oil of the flower, at a concentration of 8.0% in broth culture, was inactive on Escherichia coli and Pseudomonas aeruginosa, and active on Bacillus subtilis, MIC 0.6%, and Staphylococcus aureus, MIC 0.7% MC0297. Tincture of the dried leaf (10 gm of leaves in 100 ml ethanol), on agar plate at a concentration of 30.0 microliters/disc, was inactive on Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus^{MC0280}. Water extract of the flower, on agar plate, was active on Bacillus mesentericus, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus^{MC0192}. Water extract of the entire plant, in broth culture, was inactive on Staphylococcus aureus and Streptococcus faecium^{MC0129}.

Antiburn effect. Essential oil of the flowering tops produced weak activity when applied externally to female adults. A randomized single-blind study was performed to determine the efficacy of chamomile cream on acute radiation skin reactions in 50 female patients. With application of the cream twice daily 30 minutes prior to irradiation and at bedtime, most of the patients reported light erythema after irradiation. Results were similar to that of almond oil. Two allergic reactions to chamomile cream were reported^{MCO138}.

Anticonvulsant activity. Ethanol (95%) extract of the dried flower, administered intraperitoneally to mice at a dose of 2-4 ml/kg, was active vs supramaximal electroshock-, and corazol-induced convulsions. A dose of 4.0 mg dried plant material/kg was inactive vs strychnine-induced convul-

sions^{MC0115}. Water extract of the dried leaf and stem, administered intraperitoneally to mice at a dose of 0.2 ml/animal, was active vs picrotoxin-induced convulsions, results significant at p <0.01 level^{MC0271}.

Anticrustacean activity. Hot water extract of the dried leaf at a concentration of 20.0% was active on *Artemia salina*. Assay system was intended to predict for antitumor activity^{MC0154}.

Antidiarrheal activity. Water/alcoholic extract of the dried flower, taken orally by children of both sexes at a dose of 5.0 ml, was active. A prospective, double-blind, randomized, multicenter parallel group study was done with children (6 months to 5.5 years of age) with acute non-complicated diarrhea. They received either a preparation containing apple pectin and chamomile extract (diarrhoesan n=39) or placebo (n=40), in addition to the usual rehydration and realimentation diet. At the end of 3 days of treatment, the diarrhea had ended significantly by at least 5.2 hours, results significant at p <0.05 level^{MCO143}.

Antieczema effect. Flavonoid fraction of the dried flower, taken orally by human adults, was active vs eczema of the lower extremities^{MC0169}. Essential oil of the flower, on agar plate, was active on Trichophyton mentagrophytes and Trichophyton rubrum^{MC0132}. Essential oil, on agar plate, was active on Lenzites trabea, and inactive on Lentinus lepideus and Polyporus versicolor^{MC0119}. Ethanol (95%) extract of the dried root, on agar plate, was inactive on Alternaria kikuchiana, Aphanomyces euteiches, Solani phaseoli, Phomopsis mali, and Rhizoctonia solani^{MC0141}. Ethanol/water (1:1) extract of the dried flower, at a concentration of 500.0 mg of dried plant material/ml on agar plate, was active on Trichophyton mentagrophytes. It was inactive on Aspergillus fumigatus, Aspergillus niger, Botrytis cinerea, Fusarium oxysporum, Penicillium digitatum, and Rhizopus nigricans^{MC0270}. Fresh entire plant, at a concentration of 1.0

gm/ml on agar plate, was inactive on Ceratocystis ulmi, Cytospora species, Fomes annosus, and Pestaalotia funerea^{MCO255}. Hot water extract of the dried flower, at a concentration of 62.5 mg/ml on agar plate, was inactive on Aspergillus niger^{MCO162}. Water extract of the dried flower, on agar plate, was active on Microsporum cookei^{MCO170}.

Antihyperglycemic activity. Powdered dried flower, administered intragastrically to rats at a dose of 0.75 gm/kg, was inactive vs streptozotocin-induced hyperglycemia^{MCO188}.

Anti-inflammatory activity. Essential oil, administered ophthalmically to a guinea pig, was active vs mustard oil irritation MC0292. The essential oil, taken orally by adults, was active vs UV-induced erythema^{MC0298}. The essential oil, at a concentration of 90.0%, was active when applied externally. The biological activity has been patented MC0251. Essential oil of the dried entire plant, applied externally, was active vs irradiation erythema on human adults, pigs and rats. Ophthalmic application was active on rabbits vs mustard oil irritation of the rabbit eye^{MC0294}. Ethanol (30%) extract of the flower, at a concentration of 12.5%, was active vs UV-induced erythema on the mouth of cats. When administered intravenously to rats at a dose of 3.2 ml/kg, weak activity was produced vs heat-induced inflammation. Oral administration to female rats, at a dose of 2.8 ml/kg, produced weak activity vs carrageenin-induced pedal edema MC0222. Ethanol (80%) extract of the dried flower, administered intraperitoneally to rats at a dose of 400.0 mg/kg, was active vs carrageenin-induced pedal edema^{MC0204}. Flavonoid fraction of the dried flower, applied externally to human adults, was equivocal vs UV-induced erythema. When applied to mice, it was active vs croton oil-induced edema and carrageenin-induced pedal edema^{MC0169}. Infusion of the dried flower, administered externally to male mice at a

dose of 0.08 mg/animal, was inactive vs croton oil-induced edema. A dose of 0.25 mg/animal produced weak activity, and an 8.5% reduction of edema induced by croton oil was observed, results significant at p <0.05 level. A dose of 0.75 mg/animal was active, 23.4% reduction of edema induced by croton oil was observed, results significant at p <0.02 level^{MC0256}. Water extract of the entire plant, taken orally by adults, was inactive in a phase III, double-blind, placebo-controlled study of efficacy of the extract against 5-fluorouracil-induced oral mucositis^{MC0176}.

Antimalarial activity. Water extract of the dried aerial part was inactive on *Plasmodium berghei* in mice^{MC0129}.

Antimutagenic activity. Infusion of the flower, at a concentration of 50.0 mg/plate on agar plate, was active on Salmonella typhimurium TA98 vs 2-Amino-3-methylimidazo[4,5-F]quinoline-, 2-Amino-3,8-Dimethylimidazoxaline, 2-Amino-1-methyl-6phenylimidazo[4,5-B]-pyridine-, and 2-Amino-3,4-Dimethylimidazo[4,5-F]quinolineinduced mutagenesis. Metabolic activation was required to obtain positive results^{MC0180}. Infusion of the flower, at a concentration of 100.0 microliters/disc on agar plate, was inactive on Salmonella typhimurium TA98 vs 2-Amino-anthracene-induced mutagenicity, and TA100 vs ethylmethanesulfonateinduced mutagenicity. Metabolic activation was required for activity^{MC0189}. Methanol extract of the dried leaf and stem, at a concentration of 50.0 microliters/disc on agar plate, was inactive on Bacillus subtilis NIG-1125 His Met and Escherichia coli B/ R-WP2-TRPMC0261. Water extract of the flower, at a concentration of 50.0 mg of the plant material, was active on Salmonella typhimurium TA98 vs TRP-P-2-induced mutation. Metabolic activation was required for activity^{MC0203}.

Antimycobacterial activity. Essential oil of the flower, on agar plate, was active on

Mycobacterium phlei^{MCO132}. Ethanol (95%) extract of the flower, on agar plate, was inactive, and the water extract produced weak activity on Mycobacterium tuberculosis. MCO125. **Antinematodal activity.** Ethanol (95%) extract of the entire plant was inactive on Meloidogyne incognita^{MCO120}.

Antipyretic activity. Hot water extract of the flower, taken orally by adults, was active^{MCO285}.

Antispasmodic activity. The essential oil was active on guinea pig ileum vs histamine-induced contractions, ED₅₀ 1.15 mg/ ml, results significant at p <0.05 level; vs barium-induced contractions, ED₅₀ 1.22 mg/ml, results significant at p <0.05 level; vs bradykinin-induced contractions, ED₅₀ 2.24 mg/ml, results significant at p < 0.05 level; vs ACH-induced contractions, ED₅₀ 2.47 mg/ml, results significant at p < 0.05 level and vs 5-HT-induced contractions, ED₅₀ 2.54 mg/ml, results significant at p <0.05 level^{MC0234}. Ethanol (30%) extract of the flower, at a concentration of 3.0%, was active on guinea pig ileum vs ACh- and histamine-induced spasms^{MC0222}. Ethanol (95%) extract of the dried flower, at a concentration of 100.0 mcg/ml, was active on guinea pig ileum vs histamine- and barium-induced contractions. Water extract, at a concentration of 100.0 mcg/ml, was inactive on guinea pig ileum vs histamineinduced contractions, and produced weak activity vs barium-induced contractions^{MC0254}. Ethanol (95%) extract of the dried flower, at a concentration of 2.5 ml/liter, was active on guinea pig ileum vs ACH- and histamine-induced contractions^{MC0278}. Water and methanol extracts of the dried flower and leaf were active on the small intestine of rabbits MCO295. The essential oil was active on guinea pig ileum vs musculotropic spasms, ED₅₀ 0.038 mg/ml. The hydro-alcoholic extract, at a concentration of 0.038 mg/ml, was active on guinea pig ileum vs barium chloride-, acetylcholine-,

histamine-, sertonin- and brady-kinin-in-duced spasms^{MCO134}.

Antispirochetal activity. Ethanol (95%) extract of the dried flower, at a concentration of 0.31 mg/ml on agar plate, was active on *Leptospira icterohaemorrhagiae*, results significant at p <0.05 level^{MCO252}.

Antitrichomonal activity. Water extract of the dried flower, in broth culture, was active on *Trichomonas vaginalis*. The biological activity reported has been patented^{MC0164}. Ethanol (95%) extract of the dried flower, at a concentration of 0.31 mg/ml in broth culture, was active on *Trichomonas vaginalis*, results significant at p <0.05 level^{MC0252}.

Antitumor activity. Ethanol and water extracts of the flower, administered intraperitoneally to mice at doses of 100.0 mg/kg, were inactive on Sarcoma 180 (ASC)^{MCO243}. Ethanol/water (1:1) extract of the entire plant, administered intraperitoneally to the mouse, was inactive on LEUK-P388 MCO106. Water extract of the dried aerial part, administered intraperitoneally to mice at a dose of 400.0 mg/kg, was inactive on LEUK-P388^{MCO129}.

Antiulcer activity. Ethanol (30%) extract of the flower, administered orally to female rats at a dose of 0.5 ml/kg, was inactive vs Shay rat test^{MCO2222}. Ethanol (40%) extract of the flower, administered orally to male rats at a dose of 1.0 ml/animal, was active vs ethanol-induced ulcers^{MCO219}. Hot water extract of the dried flower, administered by gastric intubation to mice at a dose of 1.102 gm of crude plant material/kg of body weight, was inactive on ulcers induced by stress^{MCO178}.

Antiviral activity. Butanol and water extracts of the dried entire plant, at a concentration of 1.25 mg/ml in cell culture, were active on Herpes virus type 1 and Poliovirus II. The ether extract, at a concentration of 5.0 mg/ml, was inactive and the ethanol (95%) extract, at a concentra-

tion of 5.0 mg/ml, was active. Ethyl acetate extract, at a concentration of 2.5 mg/ml, was active on Poliovirus II and Herpes virus type 1^{MC0257}. Ethanol (70%) extract of the dried flower, at a concentration of 100.0 microliters/ml in cell culture, was active on Poliovirus I^{MC0199}. Ethanol (95%) and water extracts of the dried aerial part, at a concentration of 15.0 mg/ml in cell culture, were inactive on Rinderpest virus^{MC0275}. Hot water extract of the dried flower and leaf, administered intraperitoneally to mice at a concentration of 5.0%, was active on Encephalitis virus^{MC0210}. Water extract of the dried flower, at a concentration of 10.0% in cell culture, was inactive on Herpes virus type 2, Influenza virus A2 (Manheim 57), Poliovirus II and Vaccinia virus^{MC0263}.

Antiyeast activity. The essential oil of the flower, on agar plate, was active on Candida albicans^{MCO132}. Ethanol (95%) extract of the dried flower, at a concentration of 1.25 mg/ml, was active^{MCO252}, results significant at p <0.05 level. Ethanol/water (1:1) extract, at a concentration of 500.0 mg of dried plant material /ml, was inactive on Candida albicans and Saccharomyces pastorianus^{MCO270}. Flower essential oil, at a concentration of 0.7% in broth culture, was active on Candida albicans^{MCO297}. Tincture of the dried leaf (10 gm of leaf in 100 ml of ethanol), on agar plate at a concentration of 30.0 microliters/disc, was inactive on Candida albicans^{MCO2980}.

Carcinogenesis inhibition. Flavonoid fractions of the flower, applied externally to mice, were active vs DMBA-initiated and TPA-promoted skin lesions^{MCO169}.

Cholecystokinin receptor binding effect. The dried flower, at a concentration of 2.0 mcg/ml, was active^{MCO173}.

Choleretic activity. The essential oil, administered orally to dogs and cats at a dose of 0.01 ml/kg, was active. There was an increase of the cholesterol content of the bile^{MC0130}. Hot water extract of the dried

flower, administered by gastric intubation to dogs, produced strong activity. Animals had chronic fistula of the gall bladder according to Schwann-Dastre. The extract induced a marked stimulating effect on the secretory function of the liver MCO296. Ten percent infusion of hot water extract of the flower, administered orally to dogs at a dose of 50.0 ml/animal, was active MCO121.

CNS depressant activity. The essential oil, administered by gastric intubation to rats at a dose of 25.0 mg/kg, was inactive. A dose of 500.0 mg/kg was equivocal^{MC0240}. Hot water extract of the flower, taken orally by adults of both sexes at a dose of 180.0 ml/person, was active. Twelve hospitalized patients in a study (5 males and 7 females) had some form of heart disease. Two teabags of chamomile per 6 ounces of hot water were taken. Ten of the 12 subjects fell into a deep sleep 10 minutes after drinking the tea. The duration of the effect was 90 minutes^{MC0100}. Methanol extract of the dried flower, administered intracerebrally to rats, was active. Locomotor activity was tested^{MC0190}.

CNS effects. Tincture of the dried flower, taken orally by adults at a dose of 10.0 ml/person, diminished the acuteness of hearing^{MCO302}.

Cytotoxic activity. Ethanol/water (1:1) extract of the entire plant was inactive on CA-9KB in cell culture, ED₅₀ >20.0 mcg/ ml^{MCO106}. Water extract of the dried aerial part was inactive on CA-9KB in cell culture^{MCO129}. Water extract of the dried flower, at a concentration of 10.0% in cell culture, was inactive on HELA cells^{MCO263}.

Delayed type cutaneous hypersensitivity stimulation. Ethanol (95%) extract of the dried flower, applied externally on adults at a concentration of 0.2%, was active^{MCO216}. **Diuretic activity.** Decoction of the dried leaf, administered nasogastrically to rats at a dose of 1.0 gm/kg, was inactive^{MCO276}.

Embryotoxic effect. Ethanol (40%) extract of the dried flower, administered orally to pregnant rats at a dose of 1.6 ml/kg, was inactive^{MCO225}.

Fertilization inhibition. Ethanol (40%) extract of the dried flower, administered orally to female rats at a dose of 1.6 ml/kg, was inactive^{MCO225}.

GABA receptor blocking effect. The dried flower, at a concentration of 2.0 mcg/ml, was active M23856.

Gastric antisecretory activity. Ethanol (30%) extract of the flower, administered by perfusion to female rats at a concentration of 1.0%, was inactive^{MC0222}.

Glutamate receptor blocker. The dried flower, at a concentration of 2.0 mcg/ml, was active on quisqualate, kainate and NMBA receptors^{MCO173}.

Glutathione S-Transferase induction. The essential oil, administered intragastrically to mice at a dose of 30.0 mg/animal every 2 days for a total of 3 doses, was inactive on the small intestine, liver and stomach^{MCO214}. **GRAS Status.** GRAS status was approved by the United States of America Food and Drug Administration in 1976 (Sect. 582.10) as a flavoring agent^{MCO148}.

Hepatotoxic activity. Ether extract of the flower, administered by gastric intubation to dogs, was active. Chronic dosing produced fatty degeneration of the liver^{MCO293}.

Histamine release inhibition. Flavonoid fraction of the dried flower was active on human polymorphonuclear leukocytes vs antigen-stimulated release^{MCD169}.

Hypertensive activity. Hot water extract of the flower, taken by adults of both sexes at a dose of 180.0 ml/person, produced weak activity. Twelve hospitalized patients in a study (5 males and 7 females) with some form of heart disease were given 2 teabags of chamomile per 6 ounces of hot water. Small but significant increase in mean brachial arterial pressure was shown^{MCOIOO}.

Hypoazotemic activity. The essential oil, administered orally to rabbits at a dose of 0.05 gm/animal, was active^{MCOIO4}.

Hypotensive activity. The essential oil, at a concentration of 0.2 ml/kg, was active. There was a decrease in the frequency of cardiac contractions and decreased respiration^{MC0130}.

Immunostimulant activity. The polysaccharide fraction of the dried entire plant, administered intraperitoneally to mice at a dose of 10.0 mg/kg, was active vs clearance of colloidal carbon MCOJEGA. The polysaccharide fraction of the dried flower, administered intraperitoneally to rats, was active. Response to the sheep RBC was enhanced. Response to lipopolysaccharide was not enhanced unless animals had completed a physical task such as swimming MCOJEGO. Polysaccharide fraction of the flower, administered intraperitoneally to mice at a dose of 10.0 mg/kg, was active vs clearance of colloidal carbon MCOJEGO.

Insect feeding deterrent. Benzene extract of the flower, at a dose of 5.0%, was active on female *Spodoptera litura*^{MCO195}.

Insecticide activity. Water extract of the dried leaf and stem, at low concentration, was inactive on *Culex quinquefasciatus*^{MCO124}. Insulin level increase. Powdered dried flower, administered intragastrically to rats at a dose of 0.75 gm/kg, was inactive MCO188. Larvicidal activity. Acetone extract of the dried entire plant was inactive on *Aedes aegypti*MCO300. Ether extract of the flower was active on *Culex pipens* larvae, ED₅₀ 28.84 ppm^{MCO101}.

Lipoxygenase inhibition. Flavonoid fraction of the dried flower was active^{MCD169}.

Liver regeneration stimulation. The essential oil, administered subcutaneously to partially hepatectomized male rats at a dose of 50.0 mg/animal daily for 7 days, was inactive MCO236.

Local anesthetic effect. Ethanol (30%) extract of the flower, at a concentration of

8.0% applied ophthalmically to rabbits, was active MCO222.

Mutagenic activity. Ethanol/water (1:1) extract of the dried flower head, at a concentration of 100.0 microliters/plate on agar plate, was active on Salmonella typhimurium TA100. The preparation contained Matricaria chamomilla, Acorus calamus, Mentha piperita, Artemisia absinthium, Thymus vulgaris, and Foeniculum vulgare. Metabolic activation was required to obtain positive results^{MC0269}. Hot water extract of the flower, at a concentration of 12.5 mg of the dry plant material/disc on agar plate, was active on Salmonella typhimurium TA100. Histidine was removed from the extract prior to testing. Metabolic activation had no effect on the results MC0243. Infusion of the flower, on agar plate at a concentration of 50.0 mg/plate, was active on Salmonella typhimurium TA98 vs 2-Amino-3,7,8-trimethylimidazo[4,5,F] quinoxaline-,2-Amino-3, 4,7,8-tetramethyl3H-imidazo-[4,5-F]quinooxaline-, 3-Amino-1-methyl-5H-pyrido [4,3-B]indole- and 3-Amino-1,4-dimethyl-5H-pyrid[4,3-B]indole(TRP-P-1)-induced mutagenesis. Metabolic activation was required to obtain positive results MC0180.

Ovulation inhibition. Ethanol (40%) extract of the dried flower, administered orally to rats at a dose of 1.6 ml/kg, was inactive^{MCO225}.

Phagocytosis rate increased. Polysaccharide fraction of the dried entire plant, at a concentration of 10.0 mcg/ml, was active on polymorphonuclear leukocytes^{MCO264}.

Plant growth inhibition. Hot water extract of the entire plant, at a dose of 2.0 gm/liter, was active. The number of fronds of *Lemna paucicostata* >1 mm in length was 59% of the control^{MCO209}.

Plant root growth stimulation. Hot water extract of the entire plant, at a concentration of 2.0 gm/liter, was active. The number of *Cucumis sativus* roots >5 mm in length was 36.2 percent of control, and the

root length in *Brassica rapa pervidis* was 100 percent of control^{MC0209}.

Prostaglandin inhibition. Essential oil, at a concentration of 37.0 micromols, was inactive MCO205.

Protein synthesis inhibition. The dried seed, in buffer, was active, IC_{50} 14.0 mcg/ml^{MC0207}.

Psoriasis treatment. Ethanol (80%) extract of the dried flower, applied externally on adults, was active^{MCO244}.

Quinone reductase induction. Methanol extract of the freeze-dried leaf, in cell culture at a concentration of 2.1 mg/ml, was inactive on Hepatoma-mouse-ICIC7^{MCO133}.

Radical scavenging effect. Ethanol/water (1:1) extract of the dried entire plant, at a concentration of 5.0 mcg/ml, was equivocal vs superoxide anion. The result was estimated by the neotetrazolium method MCO171. Flavonoid fraction of the dried flower was active on human neutrophils. Determination was by chemiluminescence assay MCO169.

Receptor binding (benzodiazepine) decreased. Methanol extract of the dried flower was active. Inhibition of RO 5-4868 binding to the rat adrenal gland membrane, flunitrazepan binding to the rat cerebellar membranes and muscimol binding to GABA receptors in cortical synaptic membranes were observed^{MCO190}.

Receptor binding (chloride) activity. The dried flower, at a concentration of 2.0 mcg/ml, was active^{MCO173}.

Receptor binding (glycine) activity. The dried flower, at a concentration of 2.0 mcg/ml, was active^{MCO173}.

Serotonin antagonist activity. Flavonoid fraction of the dried flower, assayed in anaphylaxis models in guinea pigs, was active^{MCO169}.

Smooth muscle relaxant activity. The essential oil, at a concentration of 100.0 ppm, was active on rat small intestine. There was a decrease in tone and peristalsis^{MC0130}. The essential oil was active on

ml/kg, was inactive^{MC0225}.

guinea pig ileum and trachea, ED₅₀ 10.5 mg/liter and 55.0 mg/liter, respectively MC0268.

Sunscreen effect. Ethanol (95%) extract of the dried flower, at a concentration of 10.0%, produced weak activity (SPF 2)^{MCO191}. **Teratogenic activity.** Ethanol (40%) extract of the dried flower, administered orally to pregnant rabbits at a dose of 1.6

Toxic effect. Ethanol (40%) extract of the dried flower, administered orally to rats of both sexes at a dose of 1.6 ml/kg, was inactive. Daily dosing for 13 weeks with diluted commercial preparations that also contained a yeast hydrolsate was done. There was no effect on hemoglobin, RBC, packed cell volume, mean corpuscle volume, mean corpuscle hemoglobin concentration, total and differential WBC, serum GPT, blood glucose, BUN, bilirubin, total protein albumin, Na+, K+, or cholesterol. Urine samples were normal (microscopic, chemical, cell counts). Histology after sacrifice of animals showed no pathology of the brain, pituitary, eye, salivary gland, cervical lymph node, thyroid, tongue, aorta, heart, thymus, lungs, sternal bone or marrow, esophagus, stomach, duodenum, jejunum, ileum, large intestine, spleen, mesenteric lymph node, pancreas, kidneys, adrenals, bladder, gonads, prostate, seminal vesicles, uterus, skin, mammary glands, nerve, voluntary muscle or liver. Weights of the liver, kidneys, adrenals, heart, brain, prostate and uterus were normal^{MC0225}.

Toxicity assessment. Ethanol (30%) extract of the flower, administered orally to mice of both sexes, produced LD₅₀ 25.0 ml/kg. The LD₅₀ of 30% ethanol was 42 ml/kg^{MCO222}. Ethanol (80%) extract of the dried flower, administered intraperitoneally to rats, produced LD₅₀ >4000 mg/kg^{MCO2204}.

UV absorbent effect. Ethanol (95%) extract of the dried flower, at a concentration of 40.0%, produced weak activity. Maximum absorption was at 295 nm^{MC0191}.

REFERENCES

MC0100 Gould, L., C. V. R. Reddy and R. F. Gomprecht. Cardiac effect of chamomile tea. J Clin Pharmacol 1973; 13: 475–479.

MC0101 Gayar, F. and A. Shazli. Toxicity of certain plants to *Culex pipiens* larvae. **Bull Soc Entomol Egypte** 1968; 52: 467.

MC0102 Magid, M. and M. Wenzkowsky. Illegal methods of abortion. **Dtsch Z Ges Gerichtl Med** 1932; 19: 501–.

MC0103 Jakovlev, V. and A. Schlichtegroll. Antiinflammatory activity of (-)-alpha-bisabolol, an essential component of chamomile oil. **Arzneim-Forsch** 1969; 19: 615.

MC0104 Grochulski, A. and B. Borkowski. Effect of oil of chamomile in experimental glomerulone-phritis in rabbits. **Planta Med** 1972; 21: 289.

MC0105 Power, F. B. and H. Browning. The constituents of the flowers of *Matricaria chamomilla*. J Chem Soc 1914; 105: 2280-.

MC0106 Bhakuni, D. S., M. Bittner, C. Marticorena, M. Silva, E. Weldt, M. Hoeneisen and J. L. Hartwell. Screening of Chilean plants for anticancer activity. I. Lloydia 1976; 39(4): 225–243.

MC0107 Garcia-Barriga, H. Flora Medicinal de Colombia. Vol. 2/3
Universidad Nacional, Bogota, 1975.

MC0108 Rolleri, F. Occurrence of nicotinic acid and nicotinamide in curative plants. Arch Pharm (Weinheim) 1943; 281: 118–.

MC0109 Yurisson, E. E. and S. M. Yurisson. Choline content of some plants. **Aptechn Delo** 1966; 15 (4): 36–.

MC0110 Kataoka, H. Colorimetric quantitative determination of boron in ash of medicinal plants. Tohoku Yakka Daigaku Kenkyu Nempo 1956; 1956(3): 17-.

MC0111	Puri, H. S. A comparative study of folk lore vegetable drugs of Europe and India. Acta Phytother 1971; 18: 21.	MC0122	Benner, M. H. and H. J. Lee. Anaphylactic reaction to chamo- mile tea. J Allergy Clin Immu- nol 1973; 52: 307.
MC0112	Girard, R. The medicine chest of the Chorti Indians. Bol Indigenista 1947; 7(4): 347.	MC0123	Tyihak, E., I. Sarkany-Kiss and G. Verzar-Petri. Phytochemical investigation of apigenin glyco-
MC0113	Greibel, C. The composition of menstruation powders and similar preparations. Z Unters NAHR	MC0124	sides of <i>Matricaria chamomilla</i> . Pharmazie 1962; 17: 301–304. Hartzell, A. and F. Wilcoxon. A
MC0114	Genussm Gebrauchsgegensta- ende 1922; 43: 361–368. Lawrendiadis, G. Contribution		survey of plant products for in- secticidal properties. Contrib
WIC0114	to the knowledge of the medi- cinal plants of Greece. Planta	MC0125	Boyce Thompson Inst 1941; 12: 127–141. Gottshall, R. Y., E. H.Lucas, A.
MC0115	Med 1961; 9: 164–. Athanassova., S.Shopova and K.		Lickfeldt and J. M. Roberts. The occurrence of the antibacterial
	Roussinov. Pharmacological stu- dies of Bulgarian plants with a view to their anti-convulsive ef-		substances active against <i>Mycobacterium tuberculosis</i> in seed plants. J Clin Invest 1949; 28:
	fect. C R Acad Bulg Sci 1965; 18: 691–694.	MC0126	920–923. Breinlich, J. Chemistry and phar-
MC0116	Culpeper, N. Culpeper's Complete Herbal. W. Foulsham and Co., Ltd., London, 1650; 430 pp–.		macol of ene-yne dicycloether of <i>Matricaria chamomilla</i> . Dtsch Apoth Ztg 1966; 106: 698–699.
MC0117	Wren, R. C. Potter's New Cyclopedia of Botanical Drugs and Preparations. Sir Issac Pitman &	MC0127	Motl, O., M. Repcak, M. Budesinsky and K. Ubik. Further components of chamomile oil. III.
MC0118	Sons. Inc., London, 1956. Anon. The Lily Hand Book, 7th		Arch Pharm (Weinheim) 1983; 316(11): 908–912.
MC0110	Rev., Eli Lilly Co., Indianapolis, Indiana, 1917.	MC0128	Dranik, L. I., I. P. Kovalev, L. G. Dolganenko and M. P. Bublik.
MC0119	Maruzzella, J. C., D. Scrandis, J. B. Scrandis and G. Grabon. Action of odoriferous organic		New phenol compounds of <i>Matricaria chamomilla</i> . Farm Zh (Kiev) 1992; 1992(4): 80–83.
	chemicals and essential oils on wood-destroying fungi. Plants Dis Rept 1960; 44: 789.	MC0129	Caldes, G., B. Prescott and J. R. King. A potent antileukemic substance present in <i>Globularia aly</i> -
MC0120	Abivardi, C. Studies on the effects of nine Iranian anthelmintic plant extracts on the root-knot	MC0130	pum. Planta Med 1975; 27: 72–76. Sokolova, L. N., L.F. Belova and E. Y. Kiseleva. Pharmacology
	nematode <i>Meloidogyne incognita</i> . Phytopathol Z 1971; 71:		and toxicology of the essential oil of <i>Matricaria chamomilla</i> . Mater Vses Konf Issled Lek Rast
MC0121	300–308. Pasechnik, I. K. The possibility of using preparation of <i>Arnica montana</i> and <i>Matricaria chamo-</i>		Perspekt Ikh Ispolz Proizvod Lek Prep 1970 (Ed:Turova, Ad) Vses Nauch Issled Inst Lek Rast
	milla for the liver, bile ducts, and gall bladder. Mater Vses Nauchn Prakt Konf Ternopol'Skogo Med Inst 1963; 1963: 61.	MC0131	Bittsa Ussr, 1972; 151–. Jansson, O. Phylloquinone (Vitamin K-1) levels in leaves of plant species differing in suscep-

MC0132	tibility to 2,4-dichlorophenoxy-acetic acid. Physiol Plant 1974; 31: 323–. Szalontai, M., G. Verzar-Petri, E. Florian and F. Gimpl. Bactericidal and fungicidal activity of biologically active substances from <i>Matricaria chamomilla</i> . Abstr Proc Conf Med Pl (Marienbad) 1975; 1975: 96–.	MC0140	tine folk medicinal plants against <i>Salmonella typhi</i> . J Ethnopharmacol 1994; 44(1): 41–46. Yamada, K., T. Miura, Y. Mimaki and Y. Sashida. Effect of inhalation of chamomile oil vapour on plasma ACTH level in ovariectomized rat under restriction stress. Biol Pharm Bull 1996; 19(9): 1244–1246.
MC0133	Tawfiq, N., S. Wanigatunga, R. K. Heaney, S. R. R. Musk, G. Williamson and G. R. Fenwick. Induction of the anti-carcino-	MC0141	Sekizaki, H. Antifungal activity of medicinal plants to phytopathogens. Nat Med 1995; 49(1): 97–103.
	genic enzyme quinone reductase by food extracts using murine hepatoma cells. Eur J Cancer	MC0142	Ohe, C. T., M. Sugino, M. Y. Minami, C. A. Hasegawa, K. Ashida, K. Ogaki and H. Y.
MC0134	Prevent 1994; 3(3): 285–292. Carle, R. and K. Gomaa. Chamomile: A pharmacological and clinical profile. Drugs Today 1992; 28(8): 559–565.		Kanamori. Studies on the cultivation and evaluation of <i>Chamomilae flos</i> . Seasonal variation in production of the head (capitula) and accumulation of glycosides
MC0135	Pekic, B. and Z. Zekovic. Extraction of apigenin and its glucosides from chamomile flowers	NG0142	in the capitula of <i>Matricaria chamomilla</i> L. Yakugaku Zasshi 1995; 115(2): 130–135.
	(Chamomillae flos). Zb Rad- Tehnol Fak Novom Sadu 1994; 1994(24/25): 237–245.	MC0143	De La Motte, S., S. Bose-O'Reilly, M. Heinisch and F. Harrison. Double-blind comparison of a
MC0136	Pekic, B., Z. Zekovic, L. Petrovic and A. Tolic. Behavior of (-)-alpha-bisabolol and (-)-alpha-bisabolol oxides A and B in cha-		preparation of pectin/chamomile extract and placebo in children with diarrhea. Arzneim-Forsch 1997; 47(11): 1247–1249.
	momile flower extraction with supercritical carbon dioxide. Sep Sci Technol 1995; 30(18): 3567–3576.	MC0144	Ahmad, A. and L. N. Misra. Isolation of herniarin and other constituents from <i>Matricaria chamomilla</i> flowers. Int J Pharma-
MC0137	Yamada, K., T. Miura, Y. Mimaki and Y. Sashida. Effect of inhala- tion of chamomile oil vapour on plasma ACTH level in ovariec-	MC0145	cog 1997; 35(2): 121–125. Rudzki, E. and P. Rebendel. Positive patch test with Kamillosan in a patient with hypersensitivity
MC0138	tomized rat under restriction stress. Biol Pharm Bull 1996; 19(9): 1244–1246. Maiche, A. G., P. Grohn and H. Maki-Hokkonen. Effect of	MC0146	to chamomile. Contact Dermatitis 1998; 38(3): 164–. Fuller, E., S. Sosa, A. Tubaro, G. Franz and R. D. Loggia. Anti-inflammatory activity of Chamo-
MC0139	chamomile cream and almond ointment on acute radiation skin reaction. Acta Oncol 1991; 30: 395–396. Perez, C. and C. Anesini. In vitro	MC0147	milla polysaccharides. Planta Med Suppl 1993; 59(7): A666– A667. Reverchon, E. and F. Senatore. Supercritical carbon dioxide ex-
	antibacterial activity of Argen-		traction of chamomile essential

MC0148	oil and its analysis by gas chromatography-mass spectrometry. J Agr Food Chem 1994; 42(1): 154–158. Anon. GRAS status of foods and food additives. Fed Regist 1976;	MC0156	Planta Med Suppl 1992; 58(1): A686–687. Kanamori, H., M. Terauchi, J. I. Fuse and I. Sakamoto. Studies on the evaluation of <i>Chamomilla flos</i> (Part 2) Simultaneous and
MC0149	41: 38644—. De Pasquale, A. and R. Silvestri. Content of the active principles in various parts of <i>Matricaria</i> chamomilla. Atti Conv Naz Olii Essenz Sui Deriv Agrum 1975;	MC0157	quantitative analysis of glycosides. Shoyakugaku Zasshi 1993; 47(1): 34–36. Kanamori, H., M. Terauchi, J. I. Fuse and I. Sakamoto. Studies on the evaluation of <i>Chamomilla</i>
MC0150	607: 130–. Szoke, E., G. Verzar-Petri, E. Lemberkovica and E. Kery. Phy- tochemical analysis of tissue cul- tures of the camomile, <i>Matri</i> -	MC0158	flos (Part 1) Simultaneous and quantitative analysis of fat-soluble compounds. Shoyakugaku Zasshi 1992; 46(4): 384–388. De Feo, V. and F. Senatore.
	caria chamomilla, grown in the dark and in the light. Proc Hung Annu Meet Biochem 16 th (Ed Rosdy, B) Biochem Sect Hung Chem Soc Budapest Hung 1976;		Medicinal plants and phytotherapy in the Amalfitan Coast, Salerno Province, Campania, Southern Italy. J Ethnopharmacol 1993; 39(1): 39–51.
MC0151	1976: 33–. Verzar-Petri, G. and E. Lember- kovics. Gas chromatographic method for the qualitative and quantitative investigation of cha-	MC0159	Matos, F. J. A., M. I. L. Machado, J. W. Alencar and A. A. Craveiro. Constituents of Brazilian chamomile oil. J Essent Oil Res 1993; 5(3): 337–339.
MC0152	momile oil. Acta Pharm Hung 1976; 46: 129–. Kotov, A. G., P. P. Khvorost and N. F. Komissarenko. Coumarins of <i>Matricaria recutita</i> . Chem	MC0160	Laskova, I. L. and B. S. Uteshev. Immunomodulating action of heteropolysaccharides isolated from chamomile flower clusters. Antibiot Khimioter 1992; 37(6):
MC0153	Nat Comp 1992; 27(6): 753–. Pekic, B., Z. Lepojevic and B. Slavica. Determination of apigenin and apigenin 7-0-beta glucoside in the <i>Matricaria chamomilla</i> ligulate flowers. Arh Farm	MC0161	15–18. Paulsen, E., K. E. Andersen and B. M. Hausen. Compositae dermatitis in a Danish dermatology department in one year. Contact Dermatitis 1993; 29(1): 6–10.
MC0154	1989; 39(5): 163–168. Beloz, A. Brine shrimp bioassay screening of two medicinal plants used by the Warao: <i>Solanum stra-</i> <i>minifolium</i> and <i>Virola surinam-</i>	MC0162	Anesini, C. and C. Perez. Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 1993; 39(2): 119–128.
MC0155	ensis. J Ethnopharmacol 1992; 37(3): 225–227. Carle, R., B. Dolle, W. Muller and U. Baumeister. Thermospray liquid chromatography-mass spectrometry (TSP LC-MS) analysis of acetylated apigenin 7-glucosides from <i>Chamomilla recutita</i> .	MC0163	Carle, R., B. Dolle, W. Muller and U. Baumeister. Thermospray liquid chromatography/mass spectrometry (TSP LC/MS): Analysis of acetylated apigenin-7-glucosides from <i>Chamomilla recutita</i> . Pharmazie 1993; 48(4): 304–306.

MC0164	Carle, R., C. Gehringer, J. Beyer and J. Engel. Extract of chamomile with antimicrobial properties. Patent-Eur Pat Appl-496,230 1992; 6 pp	MC0173	flowers, is a central benzodiaze- pine receptors-ligand with anxi- olytic effects. Planta Med 1995; 61(3): 213–216. Cott, J. Medicinal plants and die-
MC0165	Schmidt, P. C. and B. Soyke. Development of a matricine-rich preparation. Part 1. Harvesting, drying, storage stability, and ex-	Wedita	tary supplements: Sources for innovative treatments of adjuncts. Psychopharmacol Bull 1995; 31(1): 131–137.
MC0166	rraction of chamomile flowers. Sci Pharm 1992; 60(1/2): 111–123. Marianovic, N., B. Pekic, L. Petrovic, Z. Lepoievic and Z	MC0174	Schubert, H. J. Allergy to Asteraceae (Compositae) in the horticulture region of Erfurt. Dermatosen Occup Environ 1995;
	Zekovic. Determination of different components of chamomile essential oil (<i>Aetheroleum chamomillae</i>) using GC and MS. Zb	MC0175	43(6): 257–261. Caceres, A., O. Cano, B. Samayoa and L. Aguilar. Plants used in Guatemala for the treatment
MC0167	Rad Tehnol Fak Novom Sadu 1992; 23: 189–195. Perez, C. and C. Anesini. Inhibi-		of gastrointestinal disorders. 1. Screening of 84 plants against enterobacteria. J Ethnophar -
	tion of <i>Pseudomonas aerguinosa</i> by Argentinean medicinal plants. Fitoterapia 1994; 65(2): 169–172.	MC0176	macol 1990; 30(1): 55–73. Fidler, P., C. L. Loprinzi, J. R. O'Fallon, J. M. Leitch, J. K. Lee, D. L. Hayes, P. Novotny, D.
MC0168	Bonet, M. A., C. Blanche and J. V. Xirau. Ethnobotanical study in River Tenes Valley (Catalonia, Iberian Peninsula). J Ethno -		Clemens-Schutjer, J. Bartel and J. C. Michalak. Prospective evaluation of a chamomile mouthwash for prevention of 5-fu-
MC0169	pharmacol 1992; 37(3): 205–212. Hormann, H. P. and H. C. Korting. Evidence for the efficacy and safety of topical herbal	MC0177	induced oral mucositis. Cancer 1996; 77(3): 522–525. Kataoka, M. and Y. Takagaki. Effect of the crude drugs (stan-
MC0170	drugs in Dermatology: Part I: Anti-inflammatory agents. Phytomedicine 1994; 1(2): 161–171.		dards of natural drugs not in the J.P.XII) on beta-hexosaminidase release from rat basophilic leuk-
MC0170	Mares, D., C. Romagnoli and A. Bruni. Antidermatophytic activity of herniarin in preparations of <i>Chamomilla recutita</i> (L.) Rau-	MC0178	emia (RBL-2H3) cells. Nat Med 1995; 49(3): 346–349. Asano, A. and T. Kondo. Topical formulations containing kojic acid
MC0171	schert. Plant Med Phytother 1993; 26(2): 91–100. Masaki, H., S. Sakaki, T. Atsumi and H. Sakurai. Active-oxygen		and plant extracts for dermatitis control. Patent-Japan Kokai Tokkyo Koho-03(236,322) 1991;
	scavenging activity of plant extracts. Biol Pharm Bull 1995; 18(1): 162–166.	MC0179	5 pp Giron, L. M., V. Freire, A. Alonzo and A. Caceres. Ethnobotanical survey of the medicinal flora
MC0172	Viola, H., C. Wasowski, M. Levi De Stein, C. Wolfman, R. Silveirs, F. Dajas, J. H. Medina and		used by the Caribes of Guatemala. J Ethnopharmocol 1991; 34(2/3): 173–187.
	A. C. Paladini. Apigenin, a component of <i>Matricaria recutita</i>	MC0180	Stavric, B., T. I. Matula, R. Klassen and R. H. Downe. The effect

	of teas on the in vitro mutagenic		medicinal preparations. Cancer
	potential of heterocyclic aromatic amines. Food Chem Toxicol	MC0190	Lett 1994; 84(1): 1–5. Avallone, R., P. Zanoli, L. Corsi,
MC0181	1996; 34(6): 515–523.		G. Cannazza and M. Baraldi. Benzodiazepine-like compounds
WICOTOT	Barrett, B. Medicinal plants of Nicaragua's Atlantic Coast. Econ		and GABA in flower heads of
	Bot 1994; 48(1): 8–20.		Matricaria chamomilla. Phyto-
MC0182	Marczal, G. and G. Verzar Petri.		ther Res 1996; 10: S177–S179.
	Examination of chamomile teas	MC0191	Ramos, M. F. S., E. P. Santos, C.
	and official chamomile prepara-		H. B. Bizarri and H. A. Mattos.
	tions. Gyogyszereszet 1987; 31		Preliminary studies towards uti-
MC0192	(8): 297–300.		lization of various plant extracts
MC0183	De Feo, V., R. Aquino, A. Menghini, E. Ramundo and F.		as antisolar agents. Int J Cosmet Sci 1996; 18(3): 87–101.
	Senatoare. Traditional phyto-	MC0192	Zaits, K. A., G. E. Arkad'eva
	therapy in the Peninsula Sorren-	1,1001,2	and V. A. Il'ina. Wild chamo-
	tina, Campania, Southern Italy. J		mile preparations. Farmatsiya
	Ethnopharmacol 1992; 36(2):		(Moscow) 1975; 24(6): 41–.
	113–125.	MC0193	Schilcher, H. Biosynthesis of (-)-
MC0184	Yelasco-Negueruela, A., M. J.		alpha-bisabolol and bisabolox-
	Perez-Alonso and G. Esenarro		ides. Part I. Tracer studies with
	Abarca. Medicinal plants for Pampallakta: An Andean com-		14-c-precursors. Planta Med 1977; 31: 315–.
	munity in Cuzco (Peru). Fito-	MC0194	Yakovlev, A. I. and A. G. Gorin.
	terapia 1995; 66(5): 447–462.		Structure of the pectic acid of
MC0185	Coee, F. G. and G. J. Anderson.		Matricaria chamomilla. Khim
	Ethnobotany of the Garifuna of		Prir Soedin 1977; 13: 186–.
	Eastern Nicaragua. Econ Bot	MC0195	Yajima, T., N. Kato and K. Muna-
MC0196	1996; 50(1): 71–107.		kata. Isolation of insect anti-feed-
MC0186	Heinrich, M., H. Rimpler, N. A. Barrera. Indigenous phytother-		ing principles in <i>Orixa japonica</i> . Agr Biol Chem 1977; 41: 1263–.
	apy of gastrointestinal disorders	MC0196	Konovalova, O. A., V. S. Kaba-
	in a lowland mixed community		nov, K. S. Rybalko, M. V. Gla-
	(Oaxaca, Mexico): Ethnophar-		zova and A. N. Shchavlinskii.
	macologic evaluation. J Ethno-		Chemical characteristics of the
	pharmacol 1992; 36(1): 63–80.		essential oil of Matricaria recu-
MC0187	Novaretti, R. and D. Lemordant.		tita L. Ayn., M. Chamomilla L.
	Plants in the traditional medicine of the Ubaye Valley. J Ethno-		Khim Farm Zh 1986; 20(4): 468–473.
	pharmacol 1990; 30(1): 1–34.	MC0197	Tsutsulova, A. and R. Antonova.
MC0188	Eskander, E. F. and H. W. Jun.		Analysis of Bulgarian daisy oil.
	Hypoglycaemic and hyperinsu-		Maslo-Zhir Prom-St 1984; 1984
	linenemic effects of some Egyp-		(11): 23–24.
	tian herbs used for the treatment	MC0198	Dolle, B., R. Carle and W. Muller.
	of Diabetes mellitus (Type II) in		Flavonoid analysis of chamo- mille extract preparations. Dtsch
	rats. Egypt J Pharm Sci 1995; 36(1–6): 331–342.		Apoth Ztg 1985; 125: 14–19.
MC0189	Badria, F. A. Is man helpless	MC0199	Vilagines, P., P. Delaveau and R.
	against cancer? An environmen-		Vilagines. Inhibition of poliovi-
	tal approach: Antimutagenic agents from Egyptian food and		rus replication by an extract of Matricaria chamomilla L. C R
	100 u unu		

MC0200	Acad Sci Ser III 1985; 301(6): 289–294. Redaelli, C., L. Formentini and E. Santaniello. High-performance liquid chromatography of cis- and trans-en-in-dicyclo ethers (spiro ethers) in <i>Matri-</i>	MC0208	On the distribution of ribosome-inactivating proteins amongst plants. J Nat Prod 1985; 48(3): 446–454. Subiza, J., J. L. Subiza, M. Alonso, M. Hinojosa, R. Garcia, M. Jerez and E. Subiza. Allergic
MC0201	caria chamomilla L. flowers and in chamomile. J Chromatogr 1981; 209(1): 110–112. Pietta, P., E. Manera and P. Ceva. Simultaneous isocratic high-performance liquid chromatographic determination of flavones and coumarins in Matricaria chamomilla extracts. J Chromatogr 1987; 404(1):	MC0209 MC0210	conjunctivities to chamomile tea. Ann Allergy 1990; 65(2): 127–132. Shimomura, H., Y. Sashida and H. Nakata. Plant growth regulating activities of crude drugs and medicinal plants. Shoyakugaku Zasshi 1981; 35(3): 173–179. Fokina, G. I., T. V. Frolova, V. M. Roikhel and V. V. Pogodina.
MC0202	279–281. Plouvier, V. Occurrence and distribution of syringoside, skimmin and similar coumarin glycosides and loganin in several bot-	MC0211	Experimental phytotherapy of tick-borne encephalitis. Soviet Progress in Virology 1991; 1991 (1): 27–31. Scortichini, M. and M. P. Rossi.
MC0203	anical groups. C R Acad Sci Ser III 1987; 305(6): 183–186. Natake, M., K. Kanazawa, M. Mizuno, N. Ueno, T. Kobayashi, G. I. Danno and S. Minamoto.		In vitro activity of some essential oils toward <i>Erwinia amylovora</i> (Burril) Winslow et al. Acta Phytopathol Entomol Hung 1989; 24(3/4): 421–423.
MC0204	Herb water-extracts markedly suppress the mutagenicity of TRP-P-2. Agr Biol Chem 1989; 53(5): 1423–1425. Al-Hindawi, M. K., I. H. S. Al-Deen, M. H. A. Nabi and M. A.	MC0212 MC0213	Retamar, J., G. Malinskas and M. Santi. Essential oil of <i>Matricaria recutita</i> . 2nd communication. Essenze Deriv Agrum 1989; 59(1): 40–43. Carle, R., B. Dolle and E. Rein-
MC0205	Ismail. Anti-inflammatory activity of some Iraqi plants using intact rats. J Ethnopharmacol 1989; 26(2): 163–168. Wagner, H., M. Wierer and R.	MC0214	hard. A new approach to the production of chamomile extract. Planta Med 1989; 55(6): 540–543. Lam, L. K. T. and B. L. Zheng. Effects of essential oils on glutathione s-transferase activity in
	Bauer. In vitro inhibition of pro-		taumone s-transferase activity in
MC0206	staglandin biosynthesis by essential oils and phenolic compounds. Planta Med 1986; 1986 (3): 184–187. Pietta, P. G., P. L. Mauri, E.	MC0215	mice. J Agr Food Chem 1991; 39(4): 660–662. Kedzia, B. Antimicrobial activity of chamomile oil and its components. Herba Pol 1991; 37(1):
MC0206 MC0207	ntial oils and phenolic compounds. Planta Med 1986; 1986 (3): 184–187.	MC0215 MC0216 MC0217	mice. J Agr Food Chem 1991; 39(4): 660–662. Kedzia, B. Antimicrobial activity of chamomile oil and its com-

MC0218	centrates. Patent-Hung Teljes-14,432 1978. Debska, W., E. Wasiewiczowa and T. Bartkowiakowa. Method for detection and determination of chamazulene, bisabolol, and spiroether(2-(2,4-hexadiynylidene)-1,6-dioxaspiro(4,4-)non-3-ene) in chamomile (<i>Matricaria chamomila</i>) flower heads. Acta Pol Pharm 1977; 34: 681–.	MC0227 MC0228	Lemberkovics, E. Farnesene isomers in chamomile oil. Sci Pharm 1979; 47: 330–332. Reichling, J., H. Becker, J. Exner and P. D. Draeger. Comparative studies of various commercial samples of Matricaria flowers. Essential oil, flavonoids, coumarins, phenolic acids and plant protectant residues. Pharm Ztg 1979; 124: 1998–2005.
MC0219	Szelenyi, I., O. Isaac and K. Thiemier. Pharmacological experiments with compounds of chamomile. III. Experimental studies of the ulcerprotective effect of chamomile. Planta Med	MC0229 MC0230	Redaekku, C. Extraction process for preparing apigenin. Patent-Ger Offen-2,943,167 1980. Redaelli, C., L. Formentini and E. Santaniello. Apigenin 7-glucoside and its 2"- and 6"-acetates
MC0220	1979; 35: 218–. Gianits, L. and S. Kocurik. Saccharides of the flowers of chamomile (<i>Matricaria chamomilla</i>).	MC0231	from ligulate flowers of <i>Matricaria chamomilla</i> . Phytochemistry 1980; 19: 985–986. Marczal, G., G. Verzar-Petri, S.
MC0221	Farm Obz 1979; 48(2): 63–67. Donsbach, K. W. Herbs Book No. 1., Int. Inst. Natural Health Sciences P. O. Box 550, Hun- tington Beach, CA, USA, 1977;		Meszaros and E. Lemberkovics. Occurrence of spathulenol and bisabolone oxide in Hungarian camomile. Sci Pharm 1980; 48 (2): 146–156.
MC0222	23 pp Leslie, G. B. A pharmacometric evaluation of nine bio-strath her- bal remedies. Medita 1978; 8	MC0232	Exner, J., J. Reiching, T. C. H. Cole and H. Becker. Methylated flavonoid-aglycones from <i>Matricariae flos</i> . Planta Med 1981; 41: 198–200.
MC0223	(10): 3–19. Hausen, B. M. The sensitizing capacity of Compositae plants. III. Test results and cross-reaction in Compositae-sensitive patients. Dermatologica 1979; 159:	MC0233	Redaelli, C., L. Formentini and E. Santaniello. HPLC determination of coumarins in <i>Matricaria chamomilla</i> . Planta Med 1981; 43: 412–413.
MC0224	1-11. Reichling, J. and H. Becker. Essential oil of Radix Chamomillae (<i>Matricaria chamomilla</i> L.). Z Naturforsch Ser C 1978; 33: 589-591.	MC0234	Achterrath-Tuckermann, U., R. Kunde, E. Flaskamp, O. Isaac and K. Thiemer. Pharmacological investigation with compounds of chamomile. V. Investigations on the spasmolytic effect of com-
MC0225	Leslie, G. B. and G. Salmon. Repeated dose toxicity studies and reproductive studies on nine		pounds of chamomile and kamillosan on the isolated guinea pig ileum. Planta Med 1980; 39: 38–50.
MC0226	bio-strath herbal remedies. Swiss Med 1979; 1(1/2): 1–3. Exner, J., J. Reichling and H. Becker. Flavonoids in <i>Matricaria chamomilla</i> . Planta Med 1980; 39: 219A–.	MC0235 MC0236	Ishikura, N. Flavonol glycosides in the flowers of <i>Hibiscus mutabilis</i> F. Versicolor. Agr Biol Chem 1982; 46: 1705–1706. Gershbein, L. L. Regeneration of rat liver in the presence of essen-

MC0237	tial oils and their components. Food Cosmet Toxicol 1977; 15: 173–182.	MC0246	Lcamomile. Pta-Repetitorium 1980; 1980(1): 1–3. Franz, C. Genetic, ontogenetic
MC0237	Yamazaki, H., M. Miyakado and T. J. Mabry. Isolation of a linear sesquiterpene lactone from <i>Matricaria chamomilla</i> . J Nat Prod 1982; 45: 508–.		and environmental variability of the constituents of chamomile oil from <i>Chamomilla recutita</i> (L.) Rauschert (syn. <i>Matricaria</i> <i>chamomilla</i> L.). Aetherische
MC0238	Negoescu, E., L. Mutihac, M. Botea, C. Faraianum, N. Palibroda and M. Culea. Study on	MC0247	Oele Ergeb Int Arbeitstag 1979–1980 1982; 214–224. Razzack, H. M. A. The concept
	the composition of volatile oil obtained from <i>Matricaria chamomillae</i> . Rev Chim (Bucha-	WIC0217	of birth control in Unani medical literature. Unpublished Manuscript 1980; 64 pp.
MC0239	rest) 1981; 32: 902–908. Redaelli, C., L. Formenti and E. Santaniello. Apigenin 7-gluco-	MC0248	Reichling, J., W. Bisson, H. Becker and G. Schilling. Com-
	side diacetates in ligulate flowers of <i>Matricaria chamomilla</i> .		position and accumulation of essential oil in <i>Matricariae radix</i> (2. Communication). Z Natur-
	Phytochemistry 1982; 21: 1828–1830.		forsch Ser C 1983; 38(4): 159–164.
MC0240	Fundaro A. and M. C. Cassone. Effect of the essential oils of chamomile, cinnamon, absinthium, mace, and origanum on operant	MC0249	Gasic, O., V. Lukic and A. Nikolic. Chemical study of <i>Matricaria chamomilla</i> L. II. Fitoterapia 1983; 54(2): 51–56.
N/C0241	behavior in rats. Boll Soc Ital Biol Sper 1980; 56: 2375–2380.	MC0250	Bastien, J. W. Pharmacopeia of Qollahuaya Andeans. J Ethno-
MC0241	Jasicova, M. and M. Felkova. Some qualitative parameters of <i>Matricaria chamomilla</i> L. in the SSR. Acta Fac Pharm 1979; 34: 125–150.	MC0251	pharmacol 1983; 8(1): 97–111. Frey, M., L. Cotenescu, I. S. Popescu, V. Ivanov, E. Nichi- forescu, A. Harles, B. V. Pal and I. Moldoveanu. Medicine with an
MC0242	Redaelli, C., L. Formentini and E. Santaniello. Reversed-phase		antiinflammatory action. Patent-Rom Ro 76,507 1981; 3 pp
	high-performance liquid chromatography analysis of apigenin and its glucosides in flowers of <i>Matricaria chamomilla</i> and chamomile. Planta Med 1981; 42: 288–292.	MC0252	Cinco, M., E. Banfi, A. Tubaro and R. D. Loggia. A microbiological survey on the activity of a hydroalcoholic extract of camomile. Int J Crude Drug Res 1983; 21(4): 145–151.
MC0243	Yamamoto, H., T. Mizutani and H. Nomura. Studies on the mutagenicity of crude drug extracts. I. Yakugaku Zasshi 1982; 102: 596–601.	MC0253	Martinez, M. A. Medicinal plants used in a Totonac community of the Sierra Norte de Puebla: Tuzamapan de Galeana, Puebla, Mexico. J Ethnophar-
MC0244	Janosik, I. Liquid preparation for treating psoriasis and sebborrhoic eczemas. Patent-Czech-185,262 1980; 3 pp.	MC0254	macol 1984; 11(2): 203–221. Itokawa, H., S. Mihashi, K. Watanabe, H. Natsumoto and T. Hamanaka. Studies on the con-
MC0245	Rahjes, J. Drugs with essential oil. VII. Matricaria chamomilla		stituents of crude drugs having inhibitory activity against con-

MC0255	traction of the ileum caused by histamine or barium chloride. (1) Screening test for the activity of commercially available crude drugs and the related plant materials. Shoyakugaku Zasshi 1983; 37(3): 223–228. Abraham, C., M. Amoros and L. Girre. Antifungic screening of higher plants: Effect of 39 indigenous plants on 4 phytopathogenic fungi. Ann Pharm Fr 1983; 41(3): 251–260.	MC0263 MC0264	the production and accumulation of essential oil in the whole plant and in the callus culture of <i>Matricaria chamomilla</i> . Planta Med 1984; 1984(4): 334–337. May, G. and G. Willuhn. Antiviral activity of aqueous extracts from medicinal plants in tissue cultures. Arzneim-Forsch 1978; 28(1): 1–7. Wagner, H., A. Proksch, I. Riess-Maurer, A. Vollmar, S. Odenthal, H. Stuppner, K. Jurcic, M.
MC0256	Tubaro, A., C. Zilli, C. Redaelli and R. D. Loggia. Evaluation of antiinflammatory activity of a chamomile extract after topical application. Planta Med 1984;	MC0265	Le Turdu and J. N. Fang. Immunostimulating polysaccharides (heteroglycans) of higher plants. Arzneim-Forsch 1985; 35(7): 1069–1075.
MC0257	1984(4): 359–. Suganda, A. G., M. Amoros, L. Girre and B. Fauconnier. Inhibitory effects of some crude and semi-purified extracts of indigenous French plants on multiplication of human Herpes virus 1 and human Poliovirus 2 in cell	MC0265	Hausen, B. M., E. Busker and R. Carle. The sensitizing capacity of Compositae plants. VII. Experimental investigations with extracts and compounds of <i>Chamomilla recutita</i> (L.) Rauschert and <i>Anthemis cotula</i> L. Planta Med 1984; 1984(3): 229–234.
MC0258	culture. J Nat Prod 1983; 46(5): 626–632. Boukef, K., H. R. Souissi and G. Balansard. Contribution to the study on plants used in traditional medicine in Tunisia. Plant Med Phytother 1982; 16(4): 260–279.	MC0266	Wagner, H., A. Proksch, I. Riess-Maurer, A. Vollmar, S. Odenthal, H. Stuppner, K. Jurcic, M. Le Turdu and Y. H. Heur. Immunostimulating polysaccharides (heteroglycanes) of higher plants/preliminary communication. Arzneim-Forsch 1984; 34(6): 659–
MC0259 MC0260	Konovalova, O. A. and K. S. Rybalko. Biologically active substances of wild chamomile. Rast Resur 1982; 18(1): 116–127. Karwowska, K., M. Ellert and	MC0267	661. Giberti, G. C. Herbal folk medicine in Northwestern Argentina: Compositae. J Ethnopharmacol 1983; 7(3): 321–341.
W100200	M. Boorkowska, R., M. Enter and M. Boorkowska. Extracts from plant raw materials containing chamazulene and sesquiterpene and flavonoid compounds. Patent-Pol-122,936 1984; 2 pp	MC0268	Reiter, M. and W. Brandt. Relaxant effects on tracheal and ileal smooth muscles of the guinea pig. Arzneim-Forsch 1985; 35 (1): 408–414.
MC0261	Ishii, R., K. Yoshikawa, H. Minakata, H. Komura and T. Kada. Specificities of bio-antimutagens in plant kingdom. Agr Biol Chem 1984; 48(10): 2587–2591.	MC0269	Goggelmann, W. and O. Schimmer. Mutagenicity testing of beta-asarone and commercial calamus drugs with Salmonella. Mutat Res 1983; 12(3/4): 191–194.
MC0262	Reichling, J., W. Bisson and H. Becker. Comparative study on	MC0270	Guerin, J. C. and H. P. Reveillere. Antifungal activity of plant

MC0271	extracts used in therapy. II. Study of 40 plants extracts against 9 fungi species. Ann Pharm Fr 1985; 43(1): 77–81. Abdul-Ghani, A. S., S. G. El-Lati, A. I. Sacaan, M. S. Suleiman and R. M. Amin. Anticonvulsant effects of some Arab medicinal plants. Int J Crude	MC0280	Abstr Princess Congress I Bangkok, Thailand, 10–13 December, 1987; 20 pp. Caceres, A., L. M. Giron, S. R. Alvarado and M. F. Torres. Screening of antimicrobial activity of plants popularly used in Guatemala for the treatment of dermatomucosal diseases. J
MC0272	Drug Res 1987; 25(1): 39–43. Pahlow, M. Information and tips for their uses. Blood purifying teas. Dtsch Apoth Ztg 1984; 124 (30): 1480–1481.	MC0281	Ethnopharmacol 1987; 20(3): 223–237. Diaz, R. M., J. Quevedo-Sarmiento, A. Ramos-Cormenzana, P. Cabo and J. Cabo. Phyto-
MC0273	Franz, C. and O. Isaac. Composition with antiphlogistic action. Patent - Ger Offen - 3,446,219 1986; 50		chemical and antibacterial screening of some species of Spanish Asteraceae. Part II. Fitoterapia 1989; 60(4): 353–355.
MC0274	Graciela, M., A. Griselda, M. Santi, R. Noemi and A. Juan. the essential oil of <i>Matricaria chamomilla</i> L. (chamomile). Essenze Deriv Agrum 1985; 55(1): 52–61.	MC0282	Antonone, R., F. De Simone, P. Morrica and E. Ramundo. Traditional phytotherapy in the Roccamonfina volcanic group, Campania, Southern Italy. J Ethnopharmacol 1988; 22(3): 295–
MC0275	Alwan, A. H., A. L. M. Jawad, A. S. Al-Bana and K. F. Ali. Antiviral activity of some Iraqi indigenous plants. Int J Crude Drug Res 1988; 26(2): 107–111.	MC0283	306. Lokar, L. C. and L. Poldini. Herbal remedies in the traditional medicine of the Venezia Giulia region (Northeast Italy). J Ethno -
MC0276	Caceres, A., L. M. Giron and A. M. Martinez. Diuretic activity of plants used for the treatment of urinary ailments in Guatemala. J Ethnopharmocol 1987; 19(3): 233–245.	MC0284	pharmacol 1988; 22(3): 213–239. Padula, L. Z., R. V. D. Rondina and J. D. Coussio. Quantitative determination of essential oil total azulenes and chamazulene in German chamomile (<i>Matrica</i> -
MC0277	Ramirez, V. R., L. J. Mostacero, A. E. Garcia, C. F. Mejia, P. F. Pelaez, C. D. Medina and C. H. Miranda. Vegetales empleados	MC0285	ria chamomilla) cultivated in Argentina. Planta Med 1976; 30: 273 Pedersen, J. G. Camomile tea
	en medicina tradicional Norperuana. Banco Agrario Del Peru and NACL Univ Trujillo, Tru-	MC0286	and fever. Ugeskr Laeger 1974; 136: 2885–. Dermanis, P. Researches on cam-
MC0278	jillo, Peru, June, 1988; 54 pp. Forster, H. B., H. Nikias and S. Lutz. Antispasmodic effects of some medicinal plants. Planta		omile and on the influence of different growth factors on oil- content of camomile blossoms. Heil Und Gewuerz Pflanzen
MC0279	Med 1980; 40(4): 309–319. Gonzalez, F. and M. Silva. A survey of plants with antifertility properties described in the South American folk medicine.	MC0287	1938; 18: 7. Farnsworth, N. R. and B. M. Morgan. Herb drinks. Chamomile tea. J Amer Med Ass 1972; 221: 410–.

MC0288	Snajder, K. Use of indigenous medicinal plants against dysentery and diarrhea in vicinity of Trstenik (Central Siberia). Sb Radova Sapadnika Inst Ispitivaye Lekovit Biya (Belgrade)	MC0298	Huebner, W. and W. Albath. The anti-inflammatory action of pure azulene from <i>Matricaria chamomilla</i> . Naunyn Schmiedeberg's Arch Exp Pathol Pharmakol 1939; 192: 383–388.
MC0289 MC0290	1951; 1951(1): 21–. Kantor, W. Quack abortifacients and declining birth rate. Therap M Onatsch 1916; 30: 561–568.	MC0299	Neuwald, F. and K. Harder. Chamillin, a constituent of chamomile flowers with spasmolytic (acetylcholine antagonistic) activity. Z Naturforsch Ser B 1949;
WC0290	Kelly, I. Folk Practices in North Mexico, Birth Customs, Folk Medicine and Spiritualism in the Laguna Zone, Institute of Latin American Studies, University of Texas Press, Austin, Texas, 1965;	MC0300	4: 309–. Jacobson, M. Insecticides from plants. A review of the literature, 1941–1953. Agr Handbook No. 154, USDA 1958; 299 pp.
MC0291	1–166. Maksyutin, G. V. Amino acids in plantago (plantain) major leaves	MC0301	Fivoli, C. Hypersensitivity to camomile (dermatitis and general symptoms). Ann Dermatol
MC0202	and <i>Matricaria recutita</i> inflorescences. Rast Resur 1972; 8: 110–112.	MC0302	Syphil 1937; 8: 326–327. Coleman, D. E. S. The effect of certain homeopathic remedies
MC0292	Reinecke, M., H. Barton and F. Jung. Synthetic azulenes. IV. Tests on the relation between structure and activity. Naunyn-Schmiedeberg's Arch Exp Pathol Phar-	MC0303	upon the hearing. J Amer Inst Homeopathy 1922; 15: 279–281. Anon. The Herbalist. Hammond Book Company, Hammond, Indiana, 1931; 400 pp.
MC0293	makol 1952; 215: 573–578. Joachimoglu, G. <i>Apiolum viride</i> as an abortifacient. Dtsch Med	MC0304	Iiurhammer, L., H. Wagner and B. Salfner. Flavones of Compositae and Papillionaceae. III. New
MC0294	Wochenschr 1926; 52: 2079–2080. Heubner, W. and F. Grabe. The anti-inflammatory action of camomile oil. Naunyn-Schmiede-	MC0305	flavone glucosides obtained from <i>Matricaria chamomilia</i> L. Arzneim-Forsch 1963; 13: 33–36. Harborne, J. B., V. H. Heywood
MC0295	berg's Arch Exp Pathol Pharmakol 1933; 171: 329–339. Horhammer, L. Flavone concentration of medicinal plants with regard to their spasmolytic action. Congr Sci Farm Conf Com-		and N. A. M. Saleh. Chemosystematics of the Compositae: Flavonoid patterns in the chrysanthemum complex of the tribe Anthemideae. Phytochemistry 1970; 9: 2011–2017.
MC0296	mun 21st, Pisa, 1962; 1961(21): 578–588. Pasechnik, I. K. Cholagogue action of extracts prepared from wild chamomile (<i>Matricaria cha</i> -	MC0306	Hansel, R., H. Rimpler and K. Walther. A lipophilic flavone from the chamomile (<i>Matricaria chamomilla</i> L.). Naturwissenschaften 1966; 53(1): 19–.
MC0297	momilla). Farmakol Toksikol 1966; 29: 468–469. Aggag, M. E. and R. T. Yousef. Study of antimicrobial activity of chamomile oil. Planta Med 1972; 22: 140–144.	MC0307	Kunde, R. and O. Isaac. Identification of racemic alpha-bisabolol in preparations made from chamomile extracts. Planta Med 1979; 35(1): 71–75.

Morinda citrifolia

Common Names

Common Names			
Ach	India	Nhau	Vietnam
Achi	Fiji	Nho	Vietnam
Achu	India	Nhor prey	Vietnam
Ainshi	India	Nhor thom	Vietnam
Al	India	Noko	Papua-New Guinea
Anino	Philippines	Noni	Guyana
Awl tree	Thailand	Noni	Hawaii
Bartundi	India	Nono	Cook Islands
Bengkudu	Indonesia	Nono	Rarotonga
Bo-aal	India	Nonu	Tonga
Dilo-K	India	Nuna	India
Hag apple	Nicaragua	Oko	Papua-New Guinea
Ice leaf	Nicaragua	Pain killer	Guyana
Indian mulberry	Hawaii	Pain killer	Virgin Islands
Indian mulberry	Indonesia	Patje	Indonesia
Indian mulberry	Thailand	Pemi	Bougainville
Kattatogaru	India	Pindra	India
Kura	Thailand	Riro	Bougainville
Maddi	India	Surangi	India
Mannanatti	India	Tagase	India
Mengkudu	Brunei	Te non	Bougainville
Minamaram	India	Togaru	India
Morinda	Fiji	Ura	Rotuma
Mwagum wagum	Papua	Yeiawa harachan	Nicaragua
Nhau nui	Vietnam	Yo	Thailand

BOTANICAL DESCRIPTION

A small tree of the RUBIACEAE family that grows to about 3-6 m tall, with a straight trunk. The leaves are glossy, membranous, broadly elliptical, bright green and glabrous. Petioles stout, 1.5–2 cm long, stipules connate or distinct, 10-12 mm long, apex entire or 2-3 lobed. The flowers are white and in dense ovoid to globose heads, peduncles 10-30 mm long; calyx a truncate rim; corolla white, 5-lobed, the tube greenish white, 7-9 mm long, the lobes oblong-deltate, 7 mm long; stamens 5, scarcely exserted; style about 15 mm long. Syncarp yellowish white, fleshy, 5–10 cm long and 3–4 cm in diameter, soft and foetid when ripe. Seeds have a distinct air chamber.

ORIGIN AND DISTRIBUTION

Native from southeastern Asia to Australia. It is now distributed throughout the tropics.

TRADITIONAL MEDICINAL USES

Bougainville. Hot water extract of the leaf is taken orally for dysentery^{MC0152}. Hot water extract of the bark is taken orally during child birth to induce labor^{MC0152,MC0142}.

Brunei. Decoction of the root is taken orally to regulate menstruation. The leaf extract is taken orally for enlarged spleen, and the fruit is used for tooth decay^{MCO135}.

Cook Islands. Water extract of the dried root is used externally as a treatment for stonefish stings. Water extract of the dried fruit is used for urinary tract ailments and abdominal swellings. Crushed fruits of *Thespesia populnea* and *Morinda citrolia*, grated root of *Piper methysticum* and the leaf of *Cordia subcordata* are used in the remedy^{MCO156}.

East Indies. Hot water extract of the leaf is taken orally for amenorrhea^{MCO161}.

Fiji. The fresh leaf is warmed and covered with oil, then used as a poultice for broken bones and sprains. Infusion of the dried bark is taken orally for urinary disorders^{MCO157}.

Hawaii. The fresh fruit is taken orally for arthritis, diabetes, to treat breast cancer and as a food^{MCO131}. Water extract of the fruit is taken orally for asthma^{MCO127}. Decoction of the leaf is taken orally to induce abortion^{MCO141}. The dried fruit is used for healing broken bones and for deep cuts and bruises^{MCO134}.

India. Decoction of the dried root is taken orally as a cathartic and febrifuge^{MCOII3}. The baked fruit is taken orally as an emmena-

gogue^{MCO102,AOO115}. The leaf is used for wound healing^{MCO113}. Hot water extract of the dried fruit is taken orally as an emmenagogue^{MCO158}. **Indonesia.** The fruit is used as an emmenagogue^{MCO103}.

Malaysia. The dried fruit and leaf are taken orally as an abortifacient MCO155.

Papua-New Guinea. Dried leaf juice is taken orally for stomachache^{MCO111}. The fresh leaf is used topically to treat leprosy sores^{MCO124}. Fresh root juice is taken orally to treat malarial fevers^{MCO118}.

Philippines. The fruit is taken orally as an emmenagogue^{MC0104}.

Rarotonga. The dried leaf, in combination with other plants, is taken orally to treat gonorrhea. Fresh bark juice, in combination with *Calophyllum inophylum*, is taken orally for diabetes. Fresh root juice is used topically to treat external cancerous swellings^{MCO124}.

Rotuma. Infusion of the fresh root is used

for insect sting and inflammation. The fresh leaf is used topically for burns. The infusion is taken orally for fever and hemorrhage. Infusion of the fresh fruit is taken orally for tuberculosis, seizures, fever, viral infection, as a tonic and for depression. The fresh flower is used for eye inflammation^{MC0121}. **Samoa.** Juice of the dried flower is administered ophthalmically for irritated, red eyes or sore eyes. The powdered dried bark is administered orally to infants for diarrhea. The decoction of the dried bark is taken orally for stomach complaints and cough; the infusion is taken orally for worms and stomach afflictions. Water extract of the dried fruit is taken orally for fever, tuberculosis, vomiting, and opthalmically for eye complaints. The infusion, in combination with the leaf of Boerhavia difusa L., is taken orally for diarrhea. For intestinal worms, the infusion, in combination with the root of Polypodium powelii, is taken

orally. The dried leaf is used externally for

chest cold in infants^{MC0133}. Hot water extract

of the fresh leaf is taken orally, twice daily, for severe malarial fevers^{MC0118}.

Tahiti. The fresh fruit is used for treating stonefish stings. The fruit is applied to the affected area^{MC0156}.

Thailand. The dried fruit is taken orally as a cardiotonic, for fainting and as a central nervous system stimulant MCO149. The hot water extract is taken orally as an antipyretic MCO163. The fresh leaf is eaten as a food MCO132.

Tonga. Decoction of the dried leaf, in combination with Pometia pinnata, is used to expel the afterbirth. Infusion of the dried leaf, in combination with Guettarda speciosa and Pometia pinnata, is used for menorrhagia, postpartum discharge, secondary amenorrhea, and vaginal bleeding. For infertility, infusion of the dried leaf of Alphitonia zizyphoides and Morinda citrifolia is taken orally daily by the couple. For childbirth, infusion of the dried leaf, in combination with Hibiscus tiliaceus and Melochia species are used to facilitate delivery (it is thought to make the uterus slippery). To treat vaginal bleeding, infusion of Vigna marina, Nephrolepis hirsutala and Morinda citrifolia is taken orally. To treat severe bleeding in early pregnancy, infusion of the dried leaf of Garcina sessilis, Vigna marina and Morinda citrifolia is taken orally. For the syndrome locally known as "Kahi" which affects the gastrointestinal and genitourinary systems and causes lower back pain, infusion of the dried leaf of Garcina sessilis, Morinda citrifolia and Evodia hortensis is taken orally. For dysuria, infusion of the dried leaves of Cymbopogon coloratus, Garcinia sessilis, Canavalia maritima and Morinda citrifolia is taken orally twice daily. Capsicum frutescens, Trema amboinensis and Zingiber zerumbet may also be used in the preparation. For severe bleeding during early pregnancy, infusion of the dried leaves of Glochidion concolor, Vigna marina, Cocos nucifera, Morinda citrifolia, Evodia hortensis, and Premna taitensis, with lemon juice, is taken orally. For the induration of the breast associated with redness, cataplasm of the leaves of *Glochidion concolor*, *Morinda citrifolia*, and *Evodia hortensis* is applied until the lesion dries up, followed by cataplasm of the leaves of *Ficus obliqua* and *Syzygium cornocarpum*. If the breast is swollen the infusion is taken orally^{MCO154}.

US Virgin Islands. The fruit is taken orally for heart troubles^{MC0160}.

Vietnam. Leaf extract is taken orally as an emmenagogue^{MC0105}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Acacetin-7-0-beta-D-glucopyranoside: FLMC0145

Alizarin: BkMC0107

Alizarin, alpha-methoxy: Rt Bk^{MC0110},

Anthraquinone, 1-5-6-trihydroxy: PI^{MC0116} Anthraquinone, 2-hydroxy-1-methoxy-7methyl: Rt^{MC0114}

Anthraquinone, 3-5-6-trihydroxy-2-methyl: PI 160^{MC0144}

Anthraquinone, 3-5-6-trihydroxy-2-methyl 6-beta-primeveroside: Pl 155^{MC0144}

Anthraquinone, 6-8-dimethoxy-3-methyl 1-0-beta-D-rhamnosyl-glucoside: FI^{MC0139}

Anthraquinone, 7-hydroxy-8-methoxy-2-methyl: Rt 300^{MC0112}

Anthraquinones: Pl 0.25%^{MC0119}, Call Tiss^{MC0115}

Apigenin, 5-7-dimethyl 4'-0-beta-D-galactopyranoside: FI^{MC0145} Asperuloside: Fr 0.048%^{MC0146}, Lf

0.158%^{MC0146} Asperulosidic acid, deacetyl: Fr 33.3^{MC0146}

Caproic acid: Fr^{MC0150} Caprylic acid: Fr^{MC0150}

Carotene, beta: Bk 8.6, Lf 124^{MC0130} Damnacanthal: Rt^{MC0125,MC0122}

Damnacanthal,nor: PI^{MC0116}, Rt^{MC0122}

Gentisic acid: Lf^{MC0108} Glucose: Fr Pu^{MC0150} Lucidin: Pl 600^{MC0144}

Lucidin, 5-6-dihydroxy: Pl 109^{MC0144}

Lucidin, 5-6-dihydroxy 3-betaprimeveroside: Pl 227^{MC0144}

Lucidin-3-beta-primeveroside: Pl 749^{MC0144} Lucidin-omega-ethyl ether: Pl^{MC0116} Monotropen: Lf 0.158% MC0146

Morindin: Rt Bk^{MC0110}

Morindone: Pl 146^{MC0144}, Heartwood

50^{MC0113}

Morindone, 3-hydroxy: Pl 309^{MC0144} Morindone, 3-hydroxy 6-betaprimeveroside: Pl 58.2^{MC0144} Morindone-6-beta-primeveroside:

PI 709^{MC0144}

Octanoic acid: FrMC0129

Physcion: Heartwood 38^{MC0113}

Physcion-8-0-[(alph-L-arabinopyranosyl91-6)]-beta-D-galactopyranoside: Heart-

wood 75^{MC0113}

Ruberythric acid: Bk^{MC0107} Rubiadin: Pl 127^{MC0144,MC0116} Rubiadin, mono-ethoxy: Bk^{MC0107} Rubiadin, mono-methoxy: Rt Bk^{MC0110} Sitosterol, beta: Lf ^{MC0151}, Pl 455^{MC0144} Ursolic acid: Lf^{MC0151}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Analgesic activity. Ethanol/water (1:1) extract of the aerial part, administered intraperitoneally to mice at a dose of 0.375 mg/kg, was inactive vs tail pressure method^{MC0159}. Lyophilized water extract of the decorticated root, administered intraperitoneally to mice at a dose of 800.0 mg/kg, was active vs acetic acid-induced writhing and the hot plate method. The effect was antagonized by naloxone^{MC0147}.

Antiascariasis activity. Ethanol (95%) extract of the leaf was active on earthworm. There was paralysis in 18 and death of 50% in 18 hours^{MCO117}.

Antibacterial activity. Acetonitrile extract of the dried fruit, at a concentration of 100 mcg/ml on agar plate, was inactive on Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Streptococcus pyrogenes MCO136. Ethanol (95%) extract of the dried leaf, at a concentration of 2-3 mcg/ml on agar plate, was inactive on Staphylococcus albus, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas aeruginosa MCO126. Ethanol (95%) extract of the dried root bark, at a concentration of

2-3 mcg/plate on agar plate, was active on Bacillus subtilis and Staphylococcus albus, and inactive on Klebsiella pneumoniae and Pseudomonas aeruginosa. Ethanol (95%) extract of the dried stembark, at a concentration of 2-3 mcg/plate, was active on Staphylococcus albus, inactive on Klebsiella pneumoniae and Pseudomonas aeruginosa and produced weak activity on Bacillus subtilis MCO126. Ethanol/water (1:1) extract of the aerial part, at a concentration of >25.0 mcg/ml on agar plate, was inactive on Bacillus subtilis, Escherichia coli, Salmonella typhosa, Staphylococcus aureus, and Agrobacterium tumefacien MCO159.

Anticonvulsant activity. Ethanol/water (1:1) extract of the aerial part, administered intraperitoneally to mice at a dose of 0.375 mg/kg, was inactive vs electroshockinduced convulsions^{MC0159}.

Antifungal activity. Ethanol/water (1:1) extract of the aerial part, at a concentration of >25.0 mcg/ml on agar plate, was inactive on Microsporum canis, Trichophyton mentagrophytes, and Aspergillus niger^{MCO159}.

Antiinflammatory activity. Ethanol/water (1:1) extract of the aerial part, administered orally to male rats at a dose of 0.375 mg/kg, was inactive vs carrageenin-induced pedal edema. The animals were dosed 1 hour before carrageenin injections^{MCO159}.

Antispasmodic activity. Ethanol/water (1:1) extract of the aerial part was inactive on guinea pig ileum vs ACh- and histamine-induced spasms^{MCO159}.

Antitumor activity. The ethanol-insoluble fraction of the dried fruit juice, administered intraperitoneally to mice at a dose of 500.0 mcg/animal, was active on Sarcoma 180 (ASC) and CA-Lewis lung^{MCO148}. Fresh fruit juice, administered intraperitoneally to mice at a dose of 15.0 mg animal, produced strong activity on CA-LLC, 119% ILS. A dose of 12.0 mg/animal was active on CA-LLC, 40% ILS^{MCO131}. Methanol extract of the fresh leaf, at a concentration of 200.0 mg/ml in cell culture, produced strong

activity on Raji cells vs EBV activation induced by HPA (40 mg/ml). A dose of 20.0 mcg/ml was also active vs teleocidin-induced EBV activation^{MCO138}. Methanol/water (1:1) extracts of the flower and the leaf, administered intraperitoneally to rats at a dose of 1.0 gm/kg, were inactive on sarcoma (Yoshida ASC)^{MCO100}.

Antiviral activity. Water extract of the dried fruit, in cell culture, was inactive on HIV-I virus, IC₅₀ >250 mcg/ml^{MCO136}.

Antiyeast activity. Ethanol/water (1:1) extract of the aerial part, at a concentration of >25.0 mcg/ml on agar plate, was inactive on Candida albicans and Cryptococcus neoformans^{MCO159}.

Cell morphological alteration. Chloroform, water, methanol and hexane extracts of the dried root, in cell culture, were inactive on NRK cells. The compound induced normal morphology and fibronectin expression in K-Ras-transformed cells of given type^{MCO125}.

CNS effect. The fresh fruit, administered intragastrically to mice at a dose of 1.0 gm/kg, was inactive. When administered intraperitoneally, the dose produced weak activity^{MCO120}.

Cytotoxic activity. Methanol extract of the fresh leaf, at a concentration of 20.0 mcg/ml in cell culture, was inactive on Raji cells^{MCO138}. Water extract of the dried fruit, in cell culture, was inactive on MT-4 cells, ED₅₀ >250 mcg/ml^{MCO136}.

Diuretic activity. Ethanol/water (1:1) extract of the aerial part, administered intraperitoneally to male rats at a dose of 0.185 mg/kg, was inactive on saline-loaded animals. Urine was collected for 4 hours after treatment^{MC0159}.

Histaminergic effect. Ethanol/water (1:1) extract of the dried fruit, at a concentration of 0.001 gm/ml, was active on guinea pig ileum^{MC0163}.

Hypoglycemic activity. Ethanol/water (1:1) extract of the aerial part, adminis-

tered orally to rats at a dose of 250.0 mg/kg, was inactive. Less than 30% drop in blood sugar level was observed^{MCO159}.

Hypotensive activity. The dried fruit and leaf, administered intravenously to rats at a dose of 0.1 ml/animal, were inactive^{MC0155}. Ethanol/water (1:1) extract of the dried fruit, administered intravenously to dogs at variable dosage levels, was inactive^{MC0163}. Quinone fraction of the dried root, administered intravenously to dogs, was inactive^{MC0109}.

Hypothermic activity. Ethanol/water (1:1) extract of the aerial part, administered intraperitoneally to mice at a dose of 0.375 mg/kg, was inactive^{MCO159}.

Insecticide activity. The fresh fruit pulp was active on Drosophilia mauritana, Drosophilia melanogaster, and Drosophilia simulans^{MCO129}.

Interleukin-1 formation stimulation. The dried root, in combination with extract from Ostrea species, Pachyma hoeleni fruit body and the alkaloid fraction of Panax ginseng, administered intraperitoneally to mice at a dose of 100.0 mg/animal daily for 7 days, was active^{MCO128}. The ethanol-insoluble fraction of the dried fruit juice, at a concentration of 0.1 mg/ml in cell culture, was active on mononuclear leukocytes^{MCO137}.

Interleukin-4 formation stimulation. The dried root, in combination with extract from Ostrea species, *Pachyma hoeleni* fruit body and the alkaloid fraction of *Panax ginseng*, administered intraperitoneally to mice at a dose of 100.0 mg/animal daily for 7 days, was active MCO128.

Nitric oxide synthesis stimulation. Ethanolinsoluble fraction of the dried fruit juice, at a concentration of 1.25 mg/ml in cell culture, was active on macrophages. The effect of interferon-gamma was enhanced^{MCO137}.

Reverse transcriptase inhibition. Methanol extract of the dried fruit and stem, at a concentration of 200.0 mcg/ml, was equivocal; 5% inhibition was produced vs HIV-1 reverse transcriptase^{MCO148}.

Semen coagulation. Ethanol/water (1:1) extract of the aerial part, at a concentration of 2.0%, was inactive on the rat semen^{MCO159}. **Smooth muscle stimulant activity.** Ethanol/water (1:1) extract of the dried fruit, at a concentration of 0.001 gm/ml, was active on guinea pig ileum^{MCO163}.

Spasmolytic activity. The fresh fruit, at a concentration of 2.0 gm/ml, was inactive on guinea pig ileum vs electrical stimulation MC0120.

Spermicidal effect. Ethanol/water (1:1) extract of the aerial part was inactive on rat sperm^{MC0159}.

Toxic effect. Ethanol/water (1:1) extract of the dried fruit, administered by gastric intubation and subcutaneously to mice at a dose of 10.0 gm/kg (expressed as dry weight of the fruit), was inactive^{MCO149}.

Toxicity assessment. Ethanol/water (1:1) extract of the aerial part, administered intraperitoneally to mice, produced LD₅₀ 0.75 gm/kg^{MCO159}. Methanol/water (1:1) extract of the flower and of the leaf, administered intraperitoneally to male mice, produced LD₅₀ >1.0 gm/kg^{MCO100}.

Tranquilizing effect. Water extract of the decorticated root, administered intraperitoneally to mice at a dose of 1.6 gm/kg, was active. Sleep was induced with co-administration of subhypnotic dose of pentobarbital MCO147.

Tumor necrosing factor release stimulation. The ethanol-insoluble fraction of the dried fruit juice, at a concentration of 0.1 mg/ml in cell culture, was active on mononuclear leukocytes^{MCO137}.

Uterine stimulant effect. The dried fruit and leaf, at a concentration of 0.3 ml, inactive on the pregnant rat uterus^{MCO155}.

REFERENCES

MC0100 Nakanishi, K., S. I. Sasaki, A. K. Kiang, J. Goh, H. Kakisawa, M. Ohashi, M. Goto, J. M. Watanabe, H. Yokotani, C. Matsumura and M. Togashi. Phytochemial

survey of Malaysian plants. Preliminary chemical and pharmacological screening. **Chem Pharm Bull** 1965; 13(7): 882–890.

MC0101 Matsui, A. D. S., J. Rogers, Y. K. Woo and W. C. Cutting. Effects of some natural products on fertility in mice. Med Pharmacol Exp 1967; 16: 414–.

MC0102 Saha, J. C., E. C. Savini and S. Kaninathan. Ecbolic properties of Indian medicinal plants. Part 1. **Indian J Med Res** 1961; 49: 130–151.

MC0103 Steenis-Kruseman, M. J. Van. Select Indonesian medicinal plants. **Organiz Sci Res Indonesia Bull** 1953; 18: 1–.

MC0104 Anon. Description of the Philippines. Part I., Bureau of Public Printing, Manila, 1903.

MC0105 Petelot, A. Les plantes medicinales du Cambodge, du Laos et du Vietnam, Vols 1–4. Archives des Recherches Agronomiques et Pastorales au Vietnam No. 23, 1954.

MC0106

MC0107

MC0108

MC0109

Matsui, A. D. S., S. Hoskins, M. Kashiwagi, B. W. Aguda, B. E. Zebart, T. R. Norton and W. C. Cutting. A survey of natural products from Hawaii and other areas of the Pacific for an antifertility effect in mice. Int Z Klin Pharmakol Ther Toxikol 1971; 5(1): 65–69.

Schermerhorn, J. W. and M. W. Quimby. Orders plantaginales and rubiales. **Lynn Index** 1962; 5-. Griffiths, L. A. On the distribution of genistic acid in green plants. **J Exp Biol** 1959; 10: 437-. Moorthy, N. K. and G. S. Reddy. Preliminary phytochemical and pharmacological study of *Morinda citrifolia*. **Antiseptic** 1970;

67(3): 167–171.

MC0110 Simonsen, J. L. Constituents of *Morinda citrifolia*. **J Chem Soc** 1920; 117: 561–564.

MC0111 Holdsworth, D. K. A phytochemical survey of medicinal plants of

MC0112	the D'Entrecasteaux Islands, Papua. Sci New Guinea 1974; 2 (2): 164–171. Rusia, K. and S. K. Srivastava. A new anthraquinone from the roots of <i>Morinda citrifolia</i> Linn.	MC0122	Hasegawa, H. and T. Koyano. Helicobacter pylori inhibitors containing nordamnacanthal or damnacanthal. Patent-Japan Kokai Tokkyo Koho-08,208,461 1996; 4 pp
MC0113	Curr Sci 1989; 58(5): 248–. Srivastava, M. and J. Singh. A new anthraquinone glycoside from <i>Morinda citrifolia</i> . Int J Pharmacog 1993; 31(3): 182–184.	MC0123 MC0124	Zenk, M. H., H. El-Shagi and U. Schulte. Plant tissue cultures in the production of natural compounds. Proc Nat Plant Tissue Cult Symp 1975; 1975: 75–. Holdsworth, D. K. Traditional
MC0114	Rusia, K. and S. K. Srivastava. A new anthraquinone from the roots of <i>Morinda citrifolia</i> Linn. Curr Sci 1989; 58(5): 249–.	MC0125	medicinal plants of Rarotonga, Cook Islands. Part II. Int J Phar-macog 1991; 29(1): 71–79. Hiramatsu, T., M. Imoto, T.
MC0115	Zenk, M. H., H. El-Shagi and U. Schulte. Anthraquinone production by cell suspension cultures of <i>Morinda citrifolia</i> . Planta Med Suppl 1975; 1975: 79–101.	1120125	Koyano and K. Umezawa. Induction of normal phenotypes in ras-transformed cells by damnacanthal from <i>Morinda citrifolia</i> . Cancer Lett 1993; 73(2/
MC0116	Leistner, E. Isolation, identification and biosynthesis of anthraquinones in cell suspension cultures of <i>Morinda citrifolia</i> . Planta Med Suppl 1975; 1975: 214–224.	MC0126	3): 161–166. Sundarrao, K., I. Burrows, M. Kuduk, Y. D. Yi, M. H. Chung, N. J. Suh, and I. M. Chang. Pre- liminary screening of antibacte- rial and antitumor activities of
MC0117	Kaleysa Raj, R. Screening of indigenous plants for anthelmintic action against human <i>Ascaris lumbricodes</i> : Part II. Indian J Physiol Pharmacol 1975; 19: 47–49.	MC0127	Papua, New Guinea native medicinal plants. Int J Pharmacog 1993; 31(1): 3–6. Hope, B. E., D. G. Massey and G. Fournier-Massey. Hawaiian Materia Medica for asthma. Hawaii
MC0118	Holdsworth, D. Traditional medicinal plants used in the treatment of malaria and fevers in Papua, New Guinea. Papua New Guinea Med J 1975; 18: 142–148.	MC0128	Med J 1993; 52(6): 160–166. Lee, B. K., M. K. Chu, H. K. Chung and J. D. Kim. Effect of adaptagen-alpha on the mouse peritoneal macrophages and spleen cells in vivo. Taehan
MC0119	El-Shagi, H. and U. Schulte. Plant tissue cultures in the production of natural compounds. Proc Natl Plant Tissue Cult Symp 1975; 1975: 75–82.	MC0129	Misangmul Hakhoechi 1994; 29(5): 507–515. Legal, L., B. Chappe and J. M. Jallon. Molecular basis of <i>Morinda citrifolia</i> (L.) toxicity on
MC0120	Cox, P. A., L. B. Sperry, M. Tuominen and L. Bohlin. Pharmacological activity of the Samoan ethnopharmacopoeia. Econ Bot 1989; 43(4): 487–497.	MC0130	drosophila. J Chem Ecol 1994; 20(8): 1931–1943. Aalbersberg, W. G. L., S. Hussein, S. Sotheeswaran and S. Parkinson. Carotenoids in leaves
MC0121	McClatchey, W. The ethnophar-macopoeia of Rotuma. J Ethno-pharmacol 1996; 50: 147–156.		of Morinda citrifolia. J Herbs Spices Med Plants 1993; 2(1): 51–55.

MC0131	Hirazumi, A., E. Furuzawa, S. C. Chou and Y. Hokama. Anticancer activity of <i>Morinda citrifolia</i> (noni) on intraperitoneally implanted Lewis lung carcinoma		promoting properties of edible plants from Thailand, and identification of an active constituent, cardamonin, of <i>Boesenbergia pandurata</i> . Biosci Biotech
	in synergenic mice. Proc West Pharmacol Soc 1994; 37(1): 145–146.	MC0139	Biochem 1993; 57(11): 1971–1973. Tiwari, R. D. and J. Singh. Struc-
MC0132	Murakami, A., S. Jiwajiinda, K. Koshimizu and H. Ohigashi. Screening for in vitro anti-tumor promoting activities of edible	Wests	tural study of the anthraquinone glycoside from the flowers of <i>Morinda citrifolia</i> . J Indian Chem Soc 1977; 54: 429–.
	plants from Thailand. Cancer Lett 1995; 95(1/2): 137–146.	MC0140	Wagner, F. and H. Vogelmann. Cultivation of plant tissue cul-
MC0133	Dittmar, A. Morinda citrifolia L. use in indigenous Samoan medi-		tures in bioreactors and formation of secondary metabolites.
	cine. J Herbs Spices Med Plants 1993; 1(3): 77–91.		Plant Tissue Culture Its Biotechnol Appl Proc Int Congr
MC0134	Locher, C. P., M. Witvrouw, M.	NG0141	1st 1976 1977; 1977: 245–252.
	P. De Bethune, M. T. Burch, H. F. Mower, H. Davis, A. Lasure, R. Pauwels, E. De Clercq and A.	MC0141	Gutmanis, J. Kahuna la 'au lapa' au-the practice of Hawaiian her- bal medicine, Island Heritage
	J. Vlietinck. Antiviral activity of Hawaiian medicinal plants against Human Immunodeficiency Virus	MC0142	Ltd, Honolulu, Hawaii, 1977. Holdsworth, D. K. Medicinal plants of Papua-New Guinea,
	type-1 (HIV-1). Phytomedicine 1996; 2(3): 259–264.		Technical paper no.175, South Pacific commission, Noumea,
MC0135	Haji Mohiddin, M. Y. B., W. Chin and D. Holdsworth. Tradi-	MC0143	New Caledonia, 1977. Brodelius, P., B. Deus, K. Mos-
	tional medicinal plants of Bru-	WICO143	bach and M.H. Zenk. Immobi-
	nei, Darussalam Part III. Seng- kurong. Int J Pharmacog 1992;		lized plant cells for the produc- tion and transportation of natu-
MC0136	30(2): 105–108. Locher, C. P., M. T. Burch, H.F.		ral products. Febs Lett 1979; 103(1): 93–97.
	Mower, J. Berestecky, H. Davis, B. Van Poel, A. Lasure, D. A.	MC0144	Inoue, K., H. Nayeshiro, H. Inouye
	Vander Berghe and A. J. Vlieti-		and M. Zenk. Anthraquinones in cell suspension cultures of <i>Mor-</i>
	nick. Anti-microbial activity and anti-complement activity of ex-		<i>inda citrifolia</i> . Phytochemistry 1981; 20: 1693–1700.
	tracts obtained from selected Hawaiian medicinal plants. J Eth-	MC0145	Singh, J. and R. D. Tiwari. Flavone glycosides from the flow-
MC0137	nopharmacol 1995; 49(1): 23–32. Hirazumi, A., E. Furusaw, E.		ers of <i>Morinda citrifolia</i> . J Indian Chem Soc 1976; 53: 424–.
	Chou and Y. Hokama. Immuno- modulation contributes to the	MC0146	Inouye, H., Y. Takeda, H. Nishimura, A. Kanomi, T. Okuda and
	anticancer activity of <i>Morinda</i>		C. Puff. Chemotaxonomic stud-
	citrifolia (noni) fruit juice. Proc West Pharmacol Soc 1996; 39		ies of rubiaceous plants containing iridoid glycosides. Phyto-
MC0138	(1): 7–9. Murakami, A., A. Kondo, Y.		chemistry 1988; 27(8): 2591–2598.
	Nakamura, H. Ohigashi and K. Koshimizu. Possible anti-tumor	MC0147	Younos, C., A. Rollanda, J. Fleurentin, M. C. Lanhers, R. Misslin

MC0148	and F. Mortier. Analgesic and behavioural effects of <i>Morinda citrifolia</i> . Planta Med 1990; 56(5): 430–434. Tan, G. T., J. M. Pezzuto, A. D. Kinghorn and S. H. Hughes. Evaluation of natural products as inhibitors of Human Immunodeficiency Virus type 1 (HIV-1) reverse transcriptase. J Nat Prod 1001, 54(1): 143, 154	MC0156	Loke, A. Nasrulhawq, S. L. Oo, C. E. Taylor, W. H. Wong and M. Zakaria. Studies on Malaysian medicinal plants: Preliminary results. Proc Fifth Asian Symposium On Medicinal Plants And Spices Seoul Korea August 20–24 1984 Bh Han Ds Han Yn Han And Ws Woo (EDS) 1984; 5: 473–483.
MC0149	1991; 54(1): 143–154. Mokkhasmit, M., K. Swatdimongkol and P. Satrawaha. Study on toxicity of Thai medicinal plants. Bull Dept Med Sci 1971;	MC0157	Whistler, W. A. Traditional and herbal medicine in the Cook Islands. J Ethnopharmacol 1985; 13(3): 239–280. Singh, Y. N. Traditional medi-
MC0150	12(2/4): 36–65. Levand, O. and O. Larson. Some chemical constituents of <i>Mor-</i> inda citrifolia. Planta Med 1979;		cine in Fiji: Some herbal folk cures used by Fiji Indians. J Ethnopharmacol 1986; 15(1): 57–88.
MC0151	36: 186–187. Ahmad, V.U. and S. Bano. Isolation of beta-sitosterol and ursolic acid from <i>Morinda citrifolia</i> Linn. J Chem Soc Pak 1980; 2	MC0158 MC0159	Kamboj, V. P. A review of Indian medicinal plants with interceptive activity. Indian J Med Res 1988; 1988(4): 336–355. Dhawan, B. N., G. K. Patnaik, R.
MC0152	(2): 71–. Holdsworth D. K. Traditional medicinal plants of the North Solomons Province, Papua, New Guinea. Q J Crude Drug Res		P. Rastogi, K. K. Singh and J. S. Tandon. Screening of Indian plants for biological activity. VI. Indian J Exp Biol 1977; 15: 208–219.
MC0153	1980; 18: 33–44. Cannon, J. R., P. Dampawan, V. Lojanapiwatna, B. Phuriyakorn, W. Sinchai, P. Sirirugsa, K. Suv-	MC0161	Oakes, A. J. and M. P. Morris. The West Indian weedwoman of the United States Virgin Islands. Bull Hist Med 1958; 32: 164–.
	atabhandhu and P. Wiriyachitra. A contribution to the Thai phytochemical survey. J Sci Soc Thailand 1980; 6: 46–53.	MC0161	Dragendorff, G. Die heilpflanzen der verschiedenen volker und zeiten, F. Enke, Stuttgart, 1898; 885 pp
MC0154	Singh, Y. N., T. Ikahihifo, M. Panuve and C. Slatter. Folk medicine in Tonga. A study on the use of herbal medicines for obstetric	MC0162	Chopra, R.N. Indigenous drugs of India. Their medicinal and economic aspects. The Art Press, Calcutta, India, 1933; 550 pp—.
MC0155	and gynaecological conditions and disorders. J Ethnopharma- col 1984; 12(3): 305–329. Goh, S. H., E. Soepadmo, P. Chang, U. Barnerjee, K. C. Chan, J. R. Deverre, H. Hadi, S. E.	MC0163	Mokkhasmit, M., W. Ngarmwathana, K. Sawasdimongkol and U. Permphiphat. Pharmacological evaluation of Thai medicinal plants. (Continued). J Med Ass Thailand 1971; 54(7): 490–504.

Musa sapientum

Common Names

Adam's apple	Iran	Kela	India
Adam's fig	Iran	Keli	India
Baalehannu	India	Kluai tai	Thailand
Banana matenten	Haiti	Kluai	Thailand
Banana	Bahamas	Laek	Thailand
Banana	China	Langbodo	Nigeria
Banana	Guyana	Ma-li-ong	Thailand
Banana	Japan	Mouz	Iran
Banana	Philippines	Ogede wewe	Nigeria
Banana	USA	Ogede	Iran
Banana	West Indies	Pisang	Indonesia
Cau	Indonesia	Platana	Mexico
Chek	Thailand	Sakui	Thailand
lsu opego	Nigeria	Vala	India
Kadalam	India	Vazhaippazhan	India
Kadalamu	India	Vudi dina	Fiji
Kadali	India	Vudi	Fiji
Kala	India	Ya-khai	Thailand

BOTANICAL DESCRIPTION

The banana is a herbaceous perennial of the MUSACEAE family that grows to 5–9 m in height. It has a tuberous subterranean rhizome, from which the leaves emerge. The lower part of the leaves is folded within each other producing a 'false stem' from which the long, narrow blades protrude and spread out. In the center of the folded leaf-sheats, a growing point forms from the top of the rhizome, grows

up and emerges as an overhanging inflorescence with a succession of reddish brown bracts. The bracts unfold from the base to the tip and fall off. Within the lower 1–12 bracts arise 14-18 female flowers in double rows. These develop into fruits without having to be fertilized, a process known as parthenocarpy. The next few bracts contained bisexual flowers that are rich in nectar but do not develop any further. In the upper bracts only male flowers are formed.

ORIGIN AND DISTRIBUTION

The banana originates in the Indomalayan area. By hybridization and domestication, the banana has spread thoughout the tropics.

TRADITIONAL MEDICINAL USES

Bangladesh. The juice of the inflorescence rachis is taken orally for bloody dysentery MP0127.

Brazil. Ash from the dried leaf is used in the chewing the leaves of *Erythroxyum* species^{MP0145}. Hot water extract of the fresh leaf is taken orally to treat hypertension or to induce diuresis^{MP0177}.

Cook Islands. The juice of the fresh stem is used externally for shingles^{MP0174}.

Fiji. The boiled fruit is eaten for acute dysentery. For burns, the ash of the dried leaf is mixed with coconut oil and applied. The immature leaf is applied as a dressing for burns and blisters. The fresh sap is taken orally for sterility in males^{MPO178}.

French Guiana. The flower is taken orally as an emmenagogue The pericarp of the unripe fruit is taken orally as an abortive The dried inflorescence and peduncle are ground, then added to charcoal and used as a dentifrice Theorem 1916.

Guinea-Bissau. The flower is taken orally as an emmenagogue^{MP0101}.

Hawaii. Water extract of the root is taken orally for asthma^{MP0135}.

India. Hot water extract of the dried flower, fruit and root is taken orally for diabetes^{MPO110}. The dried flower, together with the dried fruit of *Coccinia indica* L. (Voigt), is taken orally by females to prevent conception^{MPO142}. Hot water extract of the root is taken orally as an anthelminitic, aphrodisiac, laxative and tonic^{MPO195}. The dried root is taken orally for its antifertility properties and as an anthelminitic^{MPO151}. The extract of the boiled inflorescence is used as a bath for headache and rheumatism^{MPO157}. The fresh fruit is eaten as a treatment for

peptic and duodenal ulcersMP0168. The fresh plant juice is taken first thing in the morning, at a dose of half a cup daily for 7 days and then regularly for diabetes MP0164. The juice of the rhizome is diluted, sweetened with sugar and taken orally to dissolve urinary stones MP0128. The exudate from the rhizome is taken orally for peptic ulcers MPO157. The fresh root juice is taken orally by females, at a dose of 250 ml after the menstrual period to prevent conception MP0163, MP0188. The juice of the unripe fruit is taken orally daily in the morning for stomach ulcers MPO157. The dried unripe fruit is taken orally for diabetes and ulcersMP0133. The leaf ash is mixed with honey and taken orally to treat coughMP0141.

Indonesia. Water extract of the sap is taken orally to prevent postpartum hemorrhage MPO166.

Malawi. Hot water extract of the dried root is taken orally to prevent premature labor^{MPO173}. **Nigeria.** A decoction made from the dried leaf and those of *Carica papaya* is taken orally to treat general body infections. Only a small quantity should be given to children. The ashes of burnt fruit peel, stem and leaf are used externally as dusting powders for ulcers. The fresh sap is taken with food to treat diarrhea. The sap of the fresh inflorescence is used as a drop to treat earache. Water extract of the dried root is used as an enema^{MPO123}.

Philippines. The juice of the flower is mixed with curd and taken orally for dysmenorrhea and menorrhagia^{MPO100}.

Rarotonga. The sap of the fresh stem is applied to cuts and skin infections^{MP0122}.

Tanzania. Hot water extract of the unripe fresh fruit is taken orally to treat increased heartbeat and nervousness^{MPO180}.

Venda. Decoction of the dried fruit is taken orally for chest pain^{MP0170}.

West Indies. Hot water extract of the green fruit peel is taken orally for hypertension MP0162.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Abscisis acid-1-4-trans-diol: Fr PuMP0146

Alanine: Lf MP0149

Arabinitol, 2-carboxy: Lf 5 nmol/gm^{MP0140}

Asparatic acid: LfMP0149 Arginine: Lf^{MP0149}

Banana lectin ban-lec-1: Fr^{MP0114}

Banlec 1: Fr^{MP0155}

Benzaldehyde,3-4-dihydroxy: Fr peel^{MP0108}

Benzopyrene,3-4: Fr peel^{MP0119} Butan-1-ol,3-methyl: Fr^{MP0118}

Campesterol: Stalk, Fr Pu, Rh, Lf, Fr peel^{MP0152}

Cholest-20-en-3-one,9-19-cyclo,4-alpha-

14-alpha-dimethyl: FIMP0161

Cholesta-8-25(27)-dien-3-beta-ol,24-(R)-4alpha-14-alpha-24-trimethyl: Fl 40MP0167

Citroltadienol: Fr Pu^{MP0113}

Cycloartanol,24-methylene, palmitate: Fr peel^{MP0107}

Cycloartanol,24-methylene: FlMP0161, Fr peel, Stalk, RhMP0152

Cycloartenol: Fr peel, Stalk, Fr Pu, RhMP0152

Cycloaudenol,31-nor: Fl^{MP0112}

Cycloeucalenol: FlMP0161, Fr peel, Stalk, Pu, Lf, Rh^{MP0152}

Cyclolaudenol,3-alpha-31-nor: FIMP0112 Cyclolaudenone,31-nor: Fl^{MP0167} Daucosterol: Fr peel 0.1% MP0113

Delphinidin: Fr^{MP0104}

Dopamine: Fr Pu 22.0-48.0 mcg/gm, Fr

peel 210-720 mcg/gm^{MP0120} Elaidic acid: Fr PuMPÖ113

Emenolone: LfMP0116 Flavan-3(R)-4(R)-diol,trans-2-3-cis-3-4, 4hydroxy, (2S),(-): Sd 250^{MP0115}

Flavan-3(S)-4(R)-diol, Cis-2-3-trans-3-4, 4-7dihydroxy, (2S),(-): Sd 1000^{MP0115}

Flavan-3(S)-4(R)-diol,cis-2-3-trans-3-4,(2S),(-): Sd 500^{MP0115}

Flavan-3(S)-4(R)-diol, trans-2-3-cis-3-4, 4-7dihydroxy, (2S),(-): Sd 200^{MP0115}

Glutamic acid: LfMP0149

Glycerol, phosphatidyl: Lf, Fr peel, Fr Pu^{MP0148}

Glycerol, sulfoquinovosyl-diacyl: Lf, Fr peel, Fr Pu^{MPO148}

Glycine: Lf^{MP0149} Heptan-2-one: Fr^{MP0118} Hexan-1-ol: Fr^{MP0118} Histidine: : Lf^{MP0149}

larenolone: Lf^{MP0116} Lauric acid: Fr Pu^{MP0113} Leucine, iso: LfMP0149 Leucine: LfMP0149

Linoleic acid: Fr PuMP0113 Linolenic acid: Fr PuMP0113 Lopenol,24-ethyl: Fr Pu^{MP0113}

Lysine: LfMP0149

Melatonin: Fr 46.6 ng/100 gm^{MP0138}

Methionine: LfMP0149

Mevalonic acid: Fr 2, Fr peel 0.5^{MP0196}

Myristic acid: Fr Pu^{MP0113}

Norepinephrine: Fr Pu 1.4-5.8 mcg/gm, Fr

peel 27.0-81.0 mcg/gm^{MP0120}

Oleic acid: Fr Pu^{MP0113} Palmitic acid: Fr Pu^{MP0113} Pentan-2-one: FrMP0118 Phenylalanine: LfMP0149

Phosphorylase, alpha-glucan: Fr peel^{MP0117}

Proline: Lf^{MP0149}

Protein: Fr peel^{MP0117}

Salsolinol: Fr Pu 1.0-40.0 mcg/gm, Fr peel

0.1-260.0 mcg/gm^{MP0120}

Serine: Lf^{MP0149}

Sitoindoside I: Fr^{MP0168} Sitoindoside II: Fr^{MP0168}

Sitoindosterol I: Fr Pu 58^{MP0113} Sitoindosterol II: Fr Pu 14MP0113 Sitoindosterol III: Fr Pu 64.0^{MP0113}

Sitosterol, beta, myo-inosityl-beta-D-gluco-

side: Fr Pu 220^{MP0113}

Sitosterol, beta, gentiobioside: Fr Pu

260^{MP0113}

Sitosterol, beta: Fr peel, Stalk, Rh^{MP0152}, FI^{MP0167}, Lf^{MP0152}, Fr Pu^{MP0113}

Stigmasterol: Fr PuMP0113, FlMP0161, Fr peel

Stalk, Rh, Lf^{MP0152} Syringic acid: LfMP0147 Threonine: LfMP0149

Tryptamine, 5-hydroxy: Fr^{MP0111}

Tryptamine: Fr 29MP0143 Tryptophan: Lf^{MP0149} Tyrosine: LfMP0149 Valine: Lf^{MP0149}

Vanillic acid: LfMP0147

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Allergenic activity. The fresh fruit, taken orally, was active. Coincidental allergy to latex, chestnut, and/or banana was found in 8 patients^{MPO129} and coincidental allergy to latex, chestnut, and banana was found on 3 patients^{MPO130}. The powdered fresh fruit, taken orally by adults, was active. Patients with latex allergy that had symptoms caused by banana showed positive skin test and specific IgE test results. Cross-reacting IgE antibodies were confirmed by several inhibition techniques^{MPO134}.

Anthelmintic activity. Water extract of the root, at a concentration of 1:50, was active on *Haemonchus contortus*^{MPO195}.

Antiallergenic activity. Water extract of the dried fruit, in cell culture at a concentration of 100.0 microliters/ml, was inactive on LEUK-RBL 2H3 vs biotinylated anti-DNP IgE/avidin-induced beta-hexosaminidase release^{MPO139}.

Antibacterial activity. Benzene extract of the dried root, on agar plate, was active on Bacillus subtilis, Escherichia coli, Staphylococcus albus, Staphylococcus aureus, and Streptococcus hemolyticus; inactive on Pseudomonas pyocyanae and produced weak activity on Klebsiella aerogenes and Pseudomonas aeruginosa. The ethanol (95%) extract was active on Bacillus subtilis, Klebsiella aerogenes, Pseudomonas aeruginosa, and Streptococcus hemolyticus and produced weak activity on Escherichia coli, Pseudomonas pyocyanae, Staphylococcus albus, and Staphylococcus aureus. The hexane extract was active on Escherichia coli, Klebsiella aerogenes, Pseudomonas aeruginosa, Pseudomonas pyocyanae, and Staphylococcus albus, and produced weak activity on Bacillus subtilis, Staphylococcus aureus, and Streptococcus hemolyticus^{MP0151}. Chloroform and hexane extracts of the fresh fruit, on agar plate at a concentration of 0.2 ml/ well, were inactive, and the methanol extract was active on Bacillus cereus, Bacillus coagulans, Bacillus stearothermophilus, and Clostridium sporogenes. Water extract of the concentrated puree, on agar plate at a concentration of 0.2 ml/well, was active on Bacillus

cereus, Bacillus coagulans, Bacillus stearothermophilus, and Clostridium sporogenes. Water extract of the fresh fruit pulp, on agar plate at a concentration of 0.2 ml/well, was inactive on Bacillus cereus, Bacillus coagulans, Bacillus stearothermophilus, and Clostridium sporogenes^{MP0153}. Water extract of the dried leaf, on agar plate at a concentration of 10.0 mg/ ml, was inactive on Corynebacterium diphtheriae and Streptococcus viridans, and produced weak activity on Diplococcus pneumoniae, Staphylococcus aureus, and Streptococcus pyogenesMP0160. The leaf, used externally as dressing for skin lesions on patients with Stevens-Johnson syndrome, was effective. The leaf does not stick to the skin and appears to decrease the incidence of secondary infection MPO137. **Antifungal activity.** Benzene extract of the dried root, on agar plate, was active on Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, and Geotrichum candidum. The ethanol (95%) extract was inactive on Aspergillus flavus, Fusarium oxysporum, and Geotrichum candidum. The hexane extract was inactive on Aspergillus niger, Fusarium oxysporum and Geotrichum candidum, and produced weak activity on Aspergillus flavus MPO151. Ethanol/ water (50%) extract of the leaf was active on Rhizoctonia solani. Mycelial inhibition was 43.50% MP0193. The leaf essential oil, on agar plate, produced weak activity on Fusarium oxysporum^{MP0172}.

Antihemolytic activity. Water extract of the dried plant was active on red blood cells^{MPO194}. Antihyperglycemic activity. Water extract of the dried flower, fruit and root, administered orally to rabbits at a dose of 10.0 mg/kg, produced a drop in blood sugar of 15 mg relative to placebo-treated controls^{MPO110}. The fiber of dried ripened fruit and the dried unripened fruit, in the ration of rats at a dose of 25.0% of the diet, were inactive vs cholesterol-loaded animals, results significant at p <0.01 level^{MPO176}. The unripe dried fruit pulp, administered intragastrically to

MUSA SAPIENTUM 323

rabbits at a concentration of 1.5 gm/kg, was inactive vs alloxan-induced hyperglycemia^{MPO133}.

Antihyperlipemic activity. The fiber of dried ripened fruit, in the ration of rats at a dose of 25.0% of the diet, was inactive vs cholesterol-loaded animals^{MP0176}.

Antihypertensive activity. Dried fruit, administered intragastrically to rats, was active vs desoxycorticosterone-induced hypertension. The effect was seen in animals given the fruit before and during hypertension induction or only 7 days after induction began MPO159. The fruit pulp, administered intragastrically to rats at a dose of 50.0 gm/animal, was active. Daily dosing inhibited deoxycorticosterone-induced hypertension MPO132.

Antimycobacterial activity. The fruit juice, on agar plate, produced weak activity on Mycobacterium tuberculosis, MIC <1:40^{MPO103}. Antisecretory activity. Ethanol/water (1:1) extract of the dried fruit, administered by gastric intubation to rats at a dose of 22.5 mg/kg, was active vs aspirin-induced ulcers. The extract was not as effective as cimetidine, PGE₂ or 5-HT^{MPO169}. Ethanol/water (1:1) extract of the dried fruit, administered by gastric intubation to rats at a dose of 22.5 mg/kg, was effective but not as a effective as cimetidine, PGE₂ or 5-HT vs aspirin-induced ulcers^{MPO169}.

Antithiamine activity. The fresh fruit was active. The activity was heat-stable^{MPO171}. **Antithyroid activity.** The fruit, taken orally by adults at a dose of 1263 gm/person, was inactive^{MPO197}.

Antiulcer activity. Acetone, butanol and chloroform extracts of the dried fruit were inactive. The ethanol (95%) extract was active and the ethanol/water (1:1) extract, administered by gastric intubation and intraperitoneally to rats at a dose of 22.5 mg, was active vs aspirin-induced ulcers, results significant at p <0.01 level. The fruit, in

the ration of rats at a dose of 5.0 gm/animal administered before or after aspirin treatment, was active vs aspirin-induced ulcers. Results significant at p < 0.001 level^{MP0169}. Chromatographic fraction of the peeled fruit, administered by gastric intubation to rats at a dose of 30.0 mg/kg, was active. The fraction tested as prepared by sephadex G-50 and LH-20. The methanol extract at variable dosages, was active MP0168. The green fruit pulp, administered intragastrically to male rats at a concentration of 0.65 gm/animal given in a single dose before the ulcer inducer, was active vs ethanol- and indomethacin-induced ulcersMP0131. The powdered shade-dried fruit, administered by gastric intubation to guinea pigs at a dose of 0.5 gm/kg for 3 days, was active vs histamine-induced ulcers. Results significant at p < 0.01 level. The dose was active on rats vs aspirin-, cysteamine- and indomethacin-induced, and Shay ulcers. Dosing for 7 days was active vs phenylbutazoneinduced ulcers MP0183. The powdered dried fruit pulp, administered by gastric intubation to rats at a dose of 0.5 gm/kg for 3 days, was active, results significant at p < 0.01 level MP0182. The powdered shade-dried fruit, administered intragastrically to rats at a dose of 0.5 gm/kg for 3 days, enhanced gastric mucosal resistance MP0191.

Antiyeast activity. Water extract of the dried root, on agar plate, was active on Candida albicans using the hole-plate diffusion method, and in broth culture using test-tube dilution method. The methyl chloride extract, on agar plate, was inactive using the hole-plate diffusion method, and active in broth culture using the test-tube dilution method. The methanol extract, on agar plate, was inactive using the hole-plate diffusion method, and in broth culture using the test-tube dilution method. The petroleum ether extract, on agar plate, was active using the hole-plate diffusion method, and in

broth culture using the test-tube dilution method^{MPO179}.

Beta-glucuronidase inhibition. Neutral detergent extract of the dried stem, in the ration of rats at a concentration of 7.0% of the diet, was active. Beta-glucuronidase activity in the mucosa of the small intestine, colon, and cecum decreased^{MPO125}.

Cardiac depressant activity. Chromatographic fraction of the dried entire plant was active on the heart of the frog^{MPOLO9}.

Catecholamine-releasing effect. The fruit, in the ration of rats for 6 days, increased urinary secretion of catecholamines and indolamines^{MP0181}.

Cholesterol absorption inhibition. The fiber of the dried ripened fruit and the dried unripe fruit, in the ration of rabbits at a dose of 2.0 gm/animal, were inactive and active, respectively, vs cholesterol-loaded animals^{MP0176}.

Cholesterol inhibition. Fiber of the unripe dried fruit, in the ration of rats at a dose of 25% of the diet, was active MPDI76.

Chronotrophic effect (negative). Ethanol/water (1:1) extract of the fresh leaf, administered by gastric intubation to rats at a dose of 40.0 ml/kg, was active^{MP0178}.

Contracting effect. The lyophilized extract of the stem, at a concentration of 10.0 mg/ml, was active on the diaphragm. The effect was enhanced by low Ca⁺⁺ levels and nifedipine^{MP0156}.

Cysteine proteinase inhibition. Buffered ripe fruit was active vs ficin activity, and inactive vs bromelain activity. The buffered fresh unripe fruit was active vs papain, ficin and bromelain activities^{MPO192}.

Cytotoxic activity. Ethanol/water (1:1) extract of the leaf, in cell culture, was inactive on CA-9KB, ED₅₀ >20.0 mcg/ml^{MPOIO2}.

Dermatitis improvement. The leaf, used externally as a dressing for skin lesions on patients with Stevens-Johnson syndrome, was effective. The leaf does not stick to the

skin and appears to decrease the incidence of secondary infection MPO137.

Desmutagenic activity. Aqueous high speed supernatant of the fresh unripe fruit juice, on agar plate at a concentration of 0.5 ml/plate, was inactive on *Salmonella typhimurium* TA98 vs mutagenicity of L-tryptophane pyrolysis products. The assay was done in the presence of S9 mix^{MPO185}. The fresh fruit homogenate, on agar plate at a concentration of 100.0 microliters/disc, was active on *Salmonella typhimurium* TA100 and TA98 vs 1,4-dinitro-2-methyl pyrole mutagenesis^{MPO184}. The fresh fruit juice, at a concentration of 0.5 ml/plate, was active on *Salmonella typhimurium* TA98^{MPO186}.

Diuretic activity. Ethanol/water (1:1) extract of the fresh leaf, administered intragastrically to rats at a dose of 40.0 ml/kg, was active. Five parts of the fresh plant material in 100 parts of ethanol/water was used^{MPO198}.

DNA stimulation. The powdered shadedried fruit, administered by gastric intubation to rats at a dose of 0.5 gm/kg, was active on the stomach vs aspirin-induced ulcers, results significant at p < 0.001 level^{MP0183}.

Fructose diphosphatase inhibition and stimulation. The fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was inactive. Fiber-free fruit was used as control MPOLS4.

Gastric antisecretory activity. The powdered shade-dried fruit, administered by gastric intubation to rats at a dose of 0.5 gm/kg for 3 days, was inactive^{MPO182}.

Gastric secretory stimulation. The fruit juice, taken orally by adults, was active MPO106. The powdered shade-dried fruit, administered by gastric intubation to rats at a dose of 0.5 gm/kg for 3 days, was inactive MPO182.

Glucose absorption inhibition. The fiber of the ripe dried fruit and the unripe dried fruit, in the ration of rabbits at a dose of 2.0

gm/animal, were inactive and active, respectively, vs cholesterol-loaded animals^{MP0176}.

Glucose-1-phosphatase uridyl transferase stimulation. The fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control MPO 154.

Glucose-6-phosphatase stimulation. Fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control^{MP0154}.

Glusose-6-phosphate dehydrogenase stimulation. Fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control MPO154.

Glycogen content increased. Fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control MPO154.

Glycogen synthetase stimulation. Fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control^{MPO154}.

Glycosaminoglycan synthesis stimulation. Detergent neutral extract of the dried unripe fruit, in the ration of rats at variable dosages, was active. The concentrations of aortic glycosaminoglycans in rats fed cholesterol free and cholesterol containing diets decreased^{MPO124}.

Hexokinase inhibition. Fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control^{MPO154}.

Hypoglycemic activity. Ethanol (100%) and chloroform extracts of the dried entire plant, administered intragastrically to rabbits at a dose of 0.5 gm/animal, and the juice at a dose of 10.0 ml/kg, were active POLO The fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control POLO The dried fruit pulp, adminis-

tered intragastrically to rabbits at a concentration of 1.5 gm/kg, was active^{MP0133}.

Hypotensive activity. Ethanol/water (1:1) extract of the fresh leaf, administered intragastrically to rats at a dose of 40.0 ml/kg, produced weak activity^{MP0178}.

Larvicidal activity. Water extract of the dried rhizome, at a concentration of 0.03 gm/ml, was inactive on *Culex quinquefas-ciatus*^{MP0150}.

Neuromuscular blocking activity. Aqueous high-speed supernatant of the fresh trunk juice, at a concentration of 5–8 mg/ml, was active on the biventer-cervicis muscle of the chicken. The effect was reversed by calcium, but increased by neostigmine. A concentration of 3–5 mg/ml was active on the phrenic nerve diaphragm of the mouse vs alpha-bungarotoxin or hemicholium-induced blockage of neurotransmission. A concentration of 3.0 mg/ml was active on the phrenic nerve-diaphragm of mice vs K*-induced contractions^{MPO175}.

Nutritional value. The fresh fruit was taken by 3 ileostomy patients at a dose of 200.0 gm/person. The patients were involved in a study of starch breakdown in the small intestine. Up to 90% of the starch was found in ileal effluvium indicating that banana starch granules are largely indigestible. Starch content varies from 3 to 37 percent depending on ripeness^{MPO126}.

Peroxidase activity. The fresh fruit juice, at a concentration of 0.5 ml, produced weak activity^{MPO186}.

Phosphoglucomutase inhibition. Fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control^{MPO154}.

Pyruvate kinase inhibition. Fruit fiber, in the ration of rats at a concentration of 25% of the diet for 30 days, was active. Fiber-free fruit was used as control MPO154.

Serotonin releasing effect. The powdered shade-dried fruit, administered by gastric

intubation to rats at a dose of 0.5 gm/kg for 3 days, was active. The effect was seen in the gastric mucosa, but not the brain, results significant at p < 0.001 level^{MP0182}.

Skeletal muscle stimulant activity. Lyophilized extract of the stem, at a concentration of 4.0 mg/ml, was active on the diaphragm vs KCl- and electrically-induced contractions. The effect was Ca⁺⁺ dependent and was not inhibited by tetrodotoxin. Manganese abolished the effect. Aqueous high-speed supernatant, at a concentration of 1.0 mg/ml, was active on the biventer-cervicis of the chicken and on the phrenic nerve diaphragm of the mouse vs alpha-bungarotoxin or hemicholium-induced blockage of neurotransmission^{MPO175}.

Smooth muscle stimulant activity. Chromatographic fraction of the dried entire plant was inactive on the rat intestine MPOIOP. **Sodium content increase.** The fruit pulp, administered intragastrically to rats at a dose of 50.0 gm/animal, was active. Daily dosing enhanced salt consumption in deoxy-corticosterone-hypertensive animals. Ritanserin partially antagonized the effect MPOI32.

Toxicity assessment. Ethanol/water (1:1) extract of the leaf, administered intraperitoneally to mice, produced LD_{50} of 1.0 gm/kg^{MP0102}.

Uterine stimulant activity. Chromatographic fraction of the dried entire plant was inactive on a rat uterus^{MPO109}. Water extract of the dried root, at a concentration of 0.1 ml, was inactive on the guinea pig uterus^{MPO173}.

WBC-Macrophage stimulation. Water extract of the freeze-dried fruit, at a concentration of 2.0 mg/ml, was inactive on macrophages. Nitrite formation was used as an index of the macrophage stimulating activity. The powdered shade-dried fruit, administered by gastric intubation to rats at a dose of 0.5 gm/kg for 3 days, was inactive MPO182.

REFERENCES

MP0100 Quisumbing, E. Medicinal plants of the Philippines. **Tech Bull** 16, Rep Philippines, Dept Agr Nat Resources, Manila 1951; 1–.

MP0101 Alvaro Viera, R. Subsidio para o Estudo da Flora Medicinal da Guinea Portuguesa, Agencia-Geral do Ultramar, Lisboa, 1959.

MP0102 Dhar, M. L., M. N. Dhar, B. N. Dhawan, B. N. Mehrotra, R. C. Srimal and J. S. Tandon. Screening of Indian plants for biological activity. Part IV. Indian J Exp Biol 1973; 11: 43–54.

MP0103 Fitzpatrick, F. K. Plant substances active against *Mycobacterium tuberculosis*. **Antibiot Chemother** 1954; 4: 528–.

MP0104 Robinson, G. M. Leucoanthocyanins. III. Formation of cyanidin chloride from a constituent of the gum of *Butea frondosa*. J Chem Soc 1937; 1937: 1157–.

MP0105 Heckel, E. Les Plantes Medicinales et Toxiques de la Guyane Française. Protat Preres, Macon, 1897

MP0106 Brailski, K., K. Mao and K. Kuk. The action of certain tropical fruits on the gastric function. **Vopr Pitaniya** 1960; 19(4): 39–.

MP0107 Knapp, F. F. and H. J. Nicholas. The sterols and triterpenes of banana peel. **Phytochemistry** 1969; 8: 207–214.

MP0108 Mulvena, D., E. C. Webb and B. Zerner. 3,4-Dihydroxybenzaldehyde, a fungistatic substance from green Cavendish bananas. **Phytochemistry** 1969; 8: 393–395.

MP0109 Jain, S. R. Hypoglycaemic principle in *Musa sapientum* L. and its location. **Planta Med** 1968; 16(1): 44–47.

MP0110 Jain, S. R. and S. N. Sharma. Hypoglycaemic drugs of Indian indigenous origin. **Planta Med** 1967; 15(4): 439–442.

MP0111	Willaman, J. J. and H. L. Li. Al- kaloid-bearing plants and their contained alkaloids, 1957–1968. Lloydia 1970; 33S: 1–286. Banerji, N. and A. K. Das. Isola- tion of a new 9, 19-cyclotriter-	MP0120	rene in fruits. Shokuhin Eiseigaku Zasshi 1975; 16: 187–. Riggin, R. M., M. J. McCarthy and P. T. Kissinger. Identification of salsolinol as a major dopamine metabolite in the banana.
MD0112	pene from flowers of <i>Musa paradisiaca</i> (banana). J Inst Chem (India) 1984; 56(3): 147–149.	MP0121	J Agr Food Chem 1976; 24: 189–. Boiteau, P. Dictionary of Madagascan plant names. Fitoterapia
MP0113	Ghosal, S. Steryl glycosides and acyl steryl glycosides from <i>Musa</i> paradisiaca. Phytochemistry 1985; 24(8): 1807–1810.	MP0122	1976; 47: 57–. Holdsworth, D. K. Traditional medicinal plants of Rarotonga, Cook Islands. Part II. Int J Pha -
MP0114	Koshte, V. L., M. Aalbery, P. G. Calkhoven and R. C. Aalberse. The potent IGG4-inducing antigen in banana is a mannose-binding lectin, banlec-1. Int Arch	MP0123	rmacog 1991; 29(1): 71–79. Bhat, R. B., E. O. Eterjere and V. T. Oladipo Ethnobotanical studies from Central Nigeria. Econ Bot 1990; 44(3): 382–390.
	Allergy Immunol 1992; 97(1): 17–24.	MP0124	Usha, V., P. L. Vijayammal and
MP0115	Ali, M. and K. K. Bhutani. Flavan-3,4-diols from <i>Musa sapientum</i> seeds. Pharmazie 1993;		P. A. Kurup. Aortic/glycosaminoglycans alterations in antiatherogenic action of dietary fiber from unripe banana (<i>Musa paradisi</i>
MP0116	48(6): 455–456. Luis, J. G., F. Echeverri, W. Quifiones, I. Brito, M. Lopez, F. Torres, G. Cardona, Z. Aguiar, C. Pelaez and M. Roias. Irenolone and emenolone: Two new types of phytoalexin from <i>Musa paradisiaca</i> . J Org Chem 1993;	MP0125	aca). Indian J Med Res 1991; 94(2): 143–146. Serji, K. and K. S. Devi. Dietary fiber from Musa paradisiaca and Artocarpus heterophyllus on intestinal mucosal and bacterial b-glucuronidase activity in hexachlorocyclohexane-treated rats.
MP0117	58(16): 4306–4308. Singh, S. and G. G. Sanwal. Characterization of multiple forms of alpha-glucan phosphorylase from <i>Musa paradisiaca</i> fruits. Phytochemistry 1975; 14: 113–118.	MP0126	Bull Environ Contam Toxicol 1993; 50(2): 293–299. Englyst, H. N. and J. H. Cummings. Digestion of the carbohydrates of banana (<i>Musa paradisiaca sapientum</i>) in the human small intestine. Amer J Clin Nutr
MP0118	Drawert, F. and H. J. Kuenanz. Biogenesis of aroma substances in plants and fruits. XVI. Depen- dence of the behavior of the	MP0127	1986; 44: 42–50. Alam, M. K. Medical ethnobotany of the Marma tribe of Bangladesh. Econ Bot 1992; 46(3):
MP0119	main components in tissue slices from the fruit pulp of bananas on the physiological state of Chem Mikrobiol Technol Leb- ensm 1975; 3(6): 185–. Shiraishi, Y., T. Shirotori and E. Takabatake. Determination of	MP0128	330–335. Reddy, M. B., K. R. Reddy and M. N. Reddy. A survey of plant crude drugs of Anantapur Dis- trict, Andhra Pradesh, India. Int J Crude Drug Res 1989; 27(3): 145–155.
	polycyclic aromatic hydrocarbons in foods. V. 3,4-Benzopy-	MP0129	De Corres, L. F., I. Moneo, D. Munoz, G. Bernaola, E. Fernan-

	dez, M. Audicana and I. Urrutia. Sensitization from chestnuts and bananas in patients with urticaria and anaphylaxis from contact with latex. Ann Allergy 1993; 70(1): 35–39.	MP0138	syndrome. Ped Dermatol 1994; 11(3): 280–281. Dubbels, R., R. J. Reiter, E. Klenke, A. Goebel, E. Schnakenberg, C. Ehlers, H. W. Schiwara and W. Schlont. Melatonin
MP0130	Rodriquez, M., F. Vega, M. T. Garcia, C. Panizo, E. Laffond, A. Montalvo and M. Cuevas. Hypersensitivity to latex, chestnut, and banana. Ann Allergy 1993; 70(1): 31–34.	MP0139	in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 1995; 18(1): 28–31. Tanaka, Y., M. Kataoka, Y.
MP0131	Dunjic, B. S., I. Svensson, J. Axelson, P. Adlercruetz, A. Ar'rajab, K. Larsson and S. Bengmark. Green banana protection of gastric mucosa against experimentally induced injuries in rats.		Konishi, T. Nishmune and Y. Takagaki. Effects of vegetable foods on beta-hexosaminidase release from rat basophilic leukemia cells (RBL-2H3). Jpn J Toxicol Environ Health 1992;
MP0132	Scand J Gastroenterol 1993; 28(10): 894–898. Perfumi, M., M. Massi and G. De Caro. Effects of banana feeding on deoxycorticosterone-induced hypertension and salt con-	MP0140	38(5): 418–424. Moore, B. D., E. Isidoro and J. R. Seeman. Distribution of 2- carboxyarabinitol among plants. Phytochemistry 1993; 34(3): 703–707.
MP0133	sumption in rats. Int J Pharmacog 1994; 32(2): 115–125. Rao, V. V., S. K. Kwivedi and D. Swarup. Hypoglycaemic effect of <i>Musa sapientum</i> unripe fruits in rabbits. Fitoterapia 1994;	MP0141	Singh, K. K. and J. K. Maheshwari. Traditional phytotherapy of some medicinal plants used by the Tharus of the Nainital District, Uttar Pradesh, India. Int J Pharmacog 1994; 32(1):
MP0134	65(1): 65–67. Makinen-Kiljunen, S. F. Banana allergy in patients with immediate-type hypersensitivity to natural rubber latex: Characterization of cross-reacting antibodies and allergens. J Allergy Clin	MP0142	51–58. Jain, S. P., S. C. Singh and H. S. Puri. Medicinal plants of Neter- hat, Bihar, India. Int J Pharma- cog 1994; 32(1): 44–50. Tsuchiya, H., K. Yamada, H. Kato, H. Hayashi, T. Miyazaki and T.
MP0135	Immunol 1994; 93(6): 990–996. Hope, B. E., D. G. Massey and G. Fournier-Massey. Hawaiian materia medica for asthma. Ha- waii Med J 1993; 52(6): 160–166.		Hayashi. High-performance liquid chromatographic analysis of tetrahydro-beta-carbolines in food plants. Phytochem Anal 1995; 6(6): 297–301.
MP0136	Dompmartin, A., C. Szczurko, M. Michel, B. Castel, B. Cornillet, L. Guilloux, B. Remond, C. Dapogny and D. Leroy. 2 cases	MP0144	Holdsworth, D. K. A phytochemical survey of medicinal plants in Papua, New Guinea: I. Sci New Guinea 1974; 2(2): 142–.
MP0137	of urticaria following fruit ingestion, with cross-sensitivity to latex. Contact Dermatitis 1994; 30(4): 250–252. Dharnidharka, V. R. Use of ban-	MP0145	Plowman, T. The ethnobotany of coca (<i>Erythroxylum</i> Spp., Erythroxylaceae). Advances in Economic Botany Ethnobotany in the Neotropics G. T. Prance &
	ana leaves in Stevens-Johnson		J. A. Kallunki (Eds.) New York

MP0146	Botanical Garden, Bronx, NY 1984; 1: 62–111. Okamoto, M., N. Hirai and K. Koshimizu. Occurrence and metabolism of 1',4'-trans-diol of	MP0156	terization of banlec-1, a mannoside-binding lectin from <i>Musa</i> paradisiaca (banana). Biochem J 1990; 272(3): 721–726. Singh, Y. N. and W. F. Dryden.
MP0147	abscisic acid. Phytochemistry 1987; 26(5): 1269–1271. Merh, P. S., M. Daniel and S. D. Sabnis. Chemistry and taxonomy	1400155	The augmenting action of banana tree juice on skeletal muscle contraction. Toxicon 1990; 28(10): 1229–1236.
MP0148	of some members of the Zingiberales. Curr Sci 1986; 55(17): 835–839. Kenrick, J. R. and D. G. Bishop. Phosphatidylglycerol and sul-	MP0157	Nagaraju, N. and K. N. Rao. A survey of plant crude drugs of Rayalaseema, Andhra Pradesh, India. J Ethnopharmacol 1990; 29(2): 137–158.
	phoquinovosyldiacylglycerol in leaves and fruits of chilling-sensitive plants. Phytochemistry 1986; 25(6): 1293–1295.	MP0158	Miwa, M., Z. L. Kong, K. Shinohara and M. Watanabe. Macrophage stimulating activity of foods. Agr Biol Chem 1990; 54(7):
MP0149	Yeoh, H. H., Y. C. Wee and L. Watson. Taxonomic variation in total leaf protein amino acid compositions of monocotyledo-	MP0159	1863–1866. Osim, E. E. and J. O. Ibu. The effect of plantains (<i>Musa paradisiaca</i>) on doca-induced hyper-
MP0150	nous plants. Biochem Syst Ecol 1986; 14(1): 91–96. Evans, D. A. and R. K. Raj. Extracts of Indian plants as mos-	MP0160	tension in rats. Int J Pharmacog 1991; 29(1): 9–13. Naovi, S. A. H., M. S. Y. Khan and S. B. Vohora. Anti-bacterial,
MP0151	quito larvicides. Indian J Med Res 1988; 88(1): 38–41. Sharma, K. S., K. M. Porwal and		anti-fungal and anthelmintic investigations on Indian medicinal plants. Fitoterapia 1991; 62(3):
	B. K. Metha. In vitro antimicrobial activity of <i>Musa paradisiaca</i> root extracts. Fitoterapia 1989; 60(2): 157–158.	MP0161	221–228. Banerji, N., A. K. Sen and A. K. Das. A new 9,19-cyclotriterpene from flowers of <i>Musa paradisi</i> -
MP0152	Knapp, F. F. and H. J. Nicholas. The distribution of sterols and steryl esters in the banana plant.	MP0162	aca (banana). Indian J Chem Ser B 1982; 21: 387–388. Ayensu, E. S. Medicinal plants
MP0153	Phytochemistry 1969; 8(10): 2091–2093. Richter, E. R. and L. A. Vore.	MP0163	of the West Indies. Unpublished Manuscript 1978; 110 pp Billore, K. V. and K. C. Audi-
	Antimicrobial activity of banana puree. Food Microbiol 1989; 6(3): 179–187.		chya. Some oral contraceptives- family planning tribal way. J Res Indian Med Yoga Homeopathy
MP0154	Usha, V., P. L. Vijayammal and P. A. Kurup. Effect of dietary fiber from banana (<i>Musa paradisiaca</i>) on metabolism of carbo-	MP0164	1978; 13: 104–109. Boissya, C. L. and R. Majumder. Some folklore claims from the Brahmaputra Valley (Assam). Eth-
MP0155	hydrates in rats fed cholesterol free diet. Indian J Exp Biol 1989; 27(5): 445–449. Koshte, V. L., W. Van Dijk, M. E. Van Der Stelt and R. C. Aalberse. Isolation and charac-	MP0165	nomedicine 1980; 6: 139–145. Adu-Tutu, M., Y. Afful, K. Asante-Appiah, D. Lieberman, J. B. Hall and M. Elvin-Lewis. Chewing stick usage in Southern Ghana. Econ Bot 1979; 33: 320–328.

MP0166 Hirschhorn, H. H. Botanical fiber from banana (<i>Musa para</i> remedies of the former Dutch disiaca) on cholesterol metabo
,
East Indies (Indonesia). I: Eumy- lism. Indian J Exp Biol 1984
cetes, Pteridophyta, Gymno- 22(10): 550–554.
spermae, Angiospermae (mono- MP0177 De a Ribeiro, R., M. M. R. Fiuz-
cotylendones only). J Ethno- de Melo, F. De Barros, C. Gome
pharmacol 1983; 7(2): 123–156. and G. Trolin. Acute antihyper
MP0167 Dutta, P. K., A. K. Das and N. tensive effect in conscious rat
Banerji. A tetracyclic triterpe- produced by some medicina
noid from Musa paradisiaca. plants used in the state of Sac
Phytochemistry 1983; 22(11): Paulo. J Ethnopharmacol 1986
2563–2564. 15(3): 261–269.
MP0168 Ghosal, S. and K. Saini. Sitoin- MP0178 Singh, Y. N. Traditional medi
dosides I and II, two new anti- cine in Fiji: Some herbal foll
ulcerogenic sterylacylglucosides cures by Fiji Indians. J Ethno
from Musa paradisiaca. J Chem pharmacol 1986; 15(1): 57–88
Res (S) 1984; 1984(4): 110 MP0179 Gundidza, M. Screening of ex
MP0169 Best, R., D. A. Lewis and N. tracts from Zimbabwean highe
Nasser. The anti-ulcerogenic acplants. II: Antifungal properties
tivity of the unripe plantain ban- Fitoterapia 1986; 57(2): 111-
ana (<i>Musa</i> species). Brit J Phar-
macol 1984; 82(1): 107–116. MP0180 Hedberg, I., O. Hedberg, P. J
MP0170 Arnold, H. J. and M. Gulumian. Madati, K. E. Mshigeni, E. N
Pharmacopoeia of traditional me- Mshiu and G. Samuelsson. In
dicine in Venda. J Ethnophar -ventory of plants used in tradi
macol 1984; 12(1): 35–74. tional medicine in Tanzania. Par
MP0171 Rattanapanone, V. Antithiamin III. Plants of the families Pap
factor in fruits, mushrooms and ilionaceae-Vitaceae. J Ethno
spices. Chiang Mai Med Bull pharmacol 1983; 9(2/3): 237–260
1979; 18: 9–16. MP0181 Brodzinska, D. and M. Henne
MP0172 Pandey, D. K., H. Chandra and berg. Biogenous amines in <i>Muss</i>
N. N. Tripathi. Volatile fungitoxic sapientum L. fruits. I. Effect o
activity of some higher plants banana diet in rats on excretion
with special reference to that of of catecholamines and indola
Callistemon lanceolatus DC. Phymines in urine. Herba Pol 1983
topathol Z 1982; 105: 175–182. 29(2): 157–163. MP0173 Bullough, C. H. W. and W. P. MP0182 Goel, R. K., A. Chakrabarti and
Leary. Herbal medicines used by A. K. Sanyal. The effect of bio traditional birth attendants in logical variables on the anti-ulc
traditional birth attendants in logical variables on the anti-ulc Malawi. Trop Geograph Med erogenic effect of vegetable plan
1982; 34: 81–85. tain banana. Planta Med 1985
MP0174 Whistler, W. A. Traditional and 1985(2): 85–89.
herbal medicine in the Cook Is- MP0183 Goel, R. K., S. Gupta, R. Shan
lands. J Ethnopharmacol 1985; kar and A. K. Sanyal. Anti-ulce
13(3): 239–280. rogenic effect of banana powde
MP0175 Singh, Y. N. and W. F. Dryden. (Musa sapientum var. paradisi
Muscle paralyzing effect of the aca) and its effect on mucosa
juice from the trunk of the ba- resistance. J Ethnopharmaco
nana tree. Toxicon 1985; 23(6): 1986; 18(1): 33–44.
973–981. MP0184 Osawa, T., H. Ishibashi, M
MP0176 Usha, V., P. L. Vijayammal and Namiki, T. Kada and K. Tsuji
P. A. Kurup. Effect of dietary Desmutagenic action of food

	components on mutagens formed by the sorbic acid nitrite reaction. Agr Biol Chem 1986; 50(8): 1971–1977.	MP0192	Rao, N. M. Cysteine protease inhibitors from banana (<i>Musa paradisiaca</i>). Curr Sci 1989; 58(23): 1320–1322.
MP0185	Morita, K., M. Hara and T. Kada. Studies on natural desmutagens: Screening for vegetable and fruit factors active in inactivation of mutagenic pyrolysis products	MP0193	Renu. Fungitoxicity of leaf extracts of some higher plants against <i>Rhizoctonia solani</i> Kuehn. Nat Acad Sci Lett 1983; 6(8): 245–246.
	from amino acids. Agr Biol Chem 1978; 42(6): 1235–1238.	MP0194	Kausalya, S., L. Padmanabhan and S. Durairajan. Effect of cer-
MP0186	Yamaguchi, T., Y. Yamashita and T. Abe. Desmutagenic activity of peroxidase on autoxidized linolenic acid. Agr Biol Chem 1980; 44(4): 959–961.		tain plant extracts on chloropromazine induced haemolysis of human normal erythrocytes in vitro-A preliminary report. Clinician 1984; 48(12): 460–464.
MP0187	Stich, H. F., M. P. Rosin, C. H. Wu and W. D. Powrie. Clastogenic activity of dried fruits. Cancer Lett 1981; 12: 1–8.	MP0195	Sharma, L. D., H. S. Bahga and P. S. Srivastava. In vitro anthelmintic screening of indigenous medicinal plants against <i>Hae-</i>
MP0188	Nisteswar, K. Review of certain indigenous antifertility agents. Deerghayu International 1988; 4(1): 4–7.		monchus contortus (Rudolphi, 1803) Cobbold, 1898, of sheep and goats. Indian J Anim Res 1971; 5(1): 33–38.
MP0189	Vietmeyer, N. D. Lesser-known plants of potential use in agriculture and forestry. Science 1986; 232(4756): 1379–1384.	MP0196	Wills, R. B. H. and E. V. Scurr. Mevalonic acid concentrations in fruit and vegetable tissues. Phytochemistry 1975; 14: 1643–.
MP0190	Ramirez, V. R., L. J. Mostacero, A. E. Garcia, C. F. Mejia, P. F. Pelaez, C. D. Medina and C. H. Miranda. Vegetales empleados en medicina tradicional Norpe-	MP0197	Greer, M. A. and E. B. Astwood. The antithyroid effect of certain foods in man as determined with radioactive iodine. Endocrinology 1948; 43: 105–119.
MP0191	ruana. Banco Agrario del Peru & Nacl Univ Trujillo, Trujillo, Peru, June, 1988; 54 pp Mukhopadhyaya, K., D. Bhattacharya, A. Chakraborty, R. K. Goel and A. K. Sanyal. Effect of banana powder (<i>Musa sapientum</i> var. <i>paradisiaca</i>) on gastric mucosal shedding. J Ethnopharmacol 1987; 21(1): 11–19.	MP0198	De A Ribeiro, R., F. Barros, M. Margarida, R. F. Melo, C. Muniz, S. Chieia, M. G. Wanderley, C. Gomes and G. Trolin. Acute diuretic effects in conscious rats produced by some medicinal plants used in the state of Sao Paulo, Brasil. J Ethnopharmacol 1988; 24(1): 19–29.

18 Myristica fragrans Houtt.

Common Names

Besbasa	Morocco	Muskat	Yugoslavia
Chan thet	Thailand	Muskatnusz	Germany
Chan	Thailand	Nuez moscada	Mexico [′]
Dorg-chan	Thailand	Nuez moscada	Nicaragua
Goz buwwa	Egypt	Nuez moscada	Peru
Goz it-tib	Egypt	Nutmeg mace	Trinidad
Guzt s-serq	Morocco	Nutmeg	Brazil
Guzt t-tib	Morocco	Nutmeg	Guyana
Jaiphal	Fiji	Nutmeg	East Indies
Jaiphal	Nepal	Nutmeg	Europe
Jatiphal	India	Nutmeg	Grenada
Kerosin	Nicaragua	Nutmeg	Jamaica
Luk-chat-tet	Thailand	Nutmeg	Japan
Mace	Japan	Nutmeg	Nepal
Mace	USA	Nutmeg	Puerto Rico
Memoscada	Nicaragua	Nutmeg	USA
Misgadu	Nicaragua	Nutmeg	West Indies
Miskad	Guadeloupe	Nux moschata	USA
Miskad	Trinidad	Querosin	Nicaragua
Miskad	West Indies	Roudoukou	China
Muscade	Guadeloupe	Sadikka	India
Muscade	Trinidad	S-Sibisa	Morocco
Muscade	West Indies	Wasasashi	Japan
Muscade	Yugoslavia		•

BOTANICAL DESCRIPTION

An evergreen tree of the MYRISTICACEAE family. The tree grows to about 30 m high with an undivided trunk. The leaves are alternate, dark green, entire-margined, sharpedged, short-petioled, ovate-elliptical, leathery and up to 8 cm long. The bark is smooth greyish brown and the young branches are green. Male and female flowers are borne on separate trees, although there are male trees with female flowers and fruits. Male trees produce small white flowers in the axils of leaves. The inflorescence of the female trees are composed of 1 to 3 flowers with a white, bell-shaped perianth and a 1celled ovary ending in a 2-lobed stigma. The ovary develops into a light yellow fleshy fruit, almost round, acuminate at the stem end, 3 to 6 cm long and 2.5 to 5 cm thick. The fruit ripens 7 to 10 months after flowering. When ripened, the fleshy part bursts open and exposes the bright red aril which surrounds the dark brown seed. Within the aril, the seed kernel is covered in a hard brown testis, which shows the latticelike marks of the aril. The aril loses its red color as it dries, becoming brownish yellow and hardening to a horny consistency. The aril is used as a spice known as mace. The seed is dried to produce the nutmeg.

ORIGIN AND DISTRIBUTION

The nutmeg is native in the Moluccas and the Banda Islands, in the hot, wet climate of the tropical rainforest. It is now commonly cultivated in China, India and the West Indies.

TRADITIONAL MEDICINAL USES

Afghanistan. The seed is taken orally as a stimulant^{MF0172}.

Africa. The seeds are eaten as an aphrodisiac MFO109.

Brazil. Hot water extract of the dried seed is taken orally to treat hypertension or to induce diuresis^{MF0246}.

Egypt. The seeds are eaten as a sexual stimulant MF0210.

England. The seeds are taken orally as an emmenagogue^{MF0115} and abortifacient. The hot water extract is taken orally as an antispasmodic and sedative^{MF0259}.

Fiji. A paste made from the dried fruit and cow's milk is used externally for pimples and eczema^{MF0,246}.

Germany. The seed is taken orally for menorrhagic pains^{MF0112}, and as an abortifacient^{MF0113}.

Guadeloupe. Wine infusion of the seed is taken orally for abdominal pains during menstruation MF0231.

India. Decoctions of the dried flower and fruit are taken orally for diarrhea^{MF0169}. Water extract of the dried kernel is taken orally for diarrhea^{MF0166} and the kerosene extract has been claimed to have ecbolic properties^{MF0265}. The fresh leaf, in a mixture containing Vitex negundo (leaf 250 gm), Myristica fragrans (leaf 20 gm), Mimosa pudica (leaf 10 gm), Asparagus gonocladus (leaf 5 gm), Cucumis melo (seed 10 gm), and Styrax offincinalis (fruit 20 gm), is evaporated to dryness with 5 liters of cow's milk, and the residue is mixed with twice its weight in sugar and 1.0 kg of ghee (milk fat) and taken orally in 25 gm quantities daily to produce sterility^{MF0216}. Hot water extract of the seed is taken orally as a hallucinogen^{MF0162}. The seed is taken orally as an aphrodisiac (prescribed by Mahometan Doctors). Hot water extract of the plant is taken orally as a tonic, digestive, and it is claimed to have narcotic properties^{MF0100}.

Jamaica. The powdered dried fruit is taken orally by women during labor^{MF0108}.

Malaysia. The seed is taken orally to restore lost virility in the male^{MFO110}; it has also been reported as an abortive^{MFO134}.

Mexico. Hot water extract of the dried kernel is taken as a tea for gastrointestinal troubles^{MF0242}. The seed is taken orally as an abortifacient^{MF0163}.

Morocco. The seed is taken orally as an aphrodisiac and abortifacient. It is administered as a rectal suppository as an anti-hemorrhoidal^{MF0266}.

Nepal. The kernel is fried with butter and taken orally for diarrhea in children^{MF0267}.

Nicaragua. Decoction of the dried fruit is taken orally to aid in digestion^{MF0268}. The seed is taken orally for abdominal pain, diarrhea, fever and vomiting^{MF0269}.

Singapore. Hot water extract of the dried leaf is taken orally to treat high blood pressure^{MF0215}.

Thailand. Hot water extract of the aril is taken orally as an antipyretic^{MF0264}.

Trinidad. Hot water extract of the seed is taken orally for complications after giving birth^{MF0160}. The aril, boiled with mauby bark and anise seeds and sweetened, is taken orally as an aphrodisiac^{MF0258}.

USA. Hot water extract of the dried kernel is taken orally for dysmenorrhea^{MF0232}, and as an aromatic stimulant^{MF0262}. The seed is taken orally for functional changes at menopause^{MF0129}. The decoction is taken orally as an abortifacient, and the hot water extract is taken to promote menstruation^{MF0177}.

West Indies. The hot water extract of decoction of the seed is taken orally as an antiasthmatic, for dysmenorrhea and postparum depurant. The powdered seed is taken by women during labor^{MF0211}.

Yemen. Hot water extract of the seed is taken orally by men as an aphrodisiac MF0177.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Acetic acid: SdMF0100,MF0101

Acetic acid propyl ester,2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(3,4-methylenedioxy-phenyl): Sd^{MF0244}

Acetic acid propyl ester 2-(4-allyl-2,6-dimethoxy)-1-(4-acetoxy-3-methoxy-phenyl): Sd^{MF0244}

Acetic acid propyl ester 2-(4-allyl-2,6-dimethoxy)-1-(5-acetoxy-3-4-dimethoxy-phenyl): Sd^{MF0244}

Austrobailagnan 7: Aril^{MF0153}

Benzene,para-methyl-iso-propenyl: Aril EO 0.02% MF0103

Benzene,propenyl 2,4,5-trimethoxy: Sd^{MF0230}

Benzofuran 2-(3,4-methylenedioxy-phenyl)-2,3-dihydro-7-methoxy-3-methyl-5-(trans-1-propenyl): Aril^{MF0149}

Benzofuran 2-(3-methoxy-4,5methylenedioxy phenyl)-2,3-dihydro-7methoxy-3-methyl-5-(trans-1-propenyl): Aril^{MF0149}

Benzofuran 2,3-dihydro 2-(3,4,5-trimethoxy phenyl)-3-methyl-5-propenyl-7-methoxy: Sd^{MF0155}

Benzofuran 2,3-dihydro 2-(3,4-dimethoxy phenyl)-3-methyl-5-propenyl-7-methoxy: Sd^{MF0155}

Benzofuran 2,3-dihydro 2-(3,4methylenedioxy phenyl)-3-methyl-5propenyl-7-methoxy: Sd^{MF0155}

Benzofuran 2,3-dihydro 2-(3,5-dimethyl-5-propenyl-7-methoxy): Sd^{MF0155}

Benzofuran 2,3-dihydro 2-(3-methyl-5-propenyl-7-methoxy): Sd^{MF0155}

Benzofuran trans-2,3-dihydro-7-methoxy-2-(3,4-dimethoxy-phenyl)-3-methyl-5-(prop-trans-1-enyl): Aril 19.2^{MF0154}

Benzofuran trans-2,3-dihydro-7-methoxy-2-(3,4-methylenedioxy-phenyl)-3-methyl-5-(prop-trans-1-enyl): Aril 18.2^{MF0154}

Benzofuran trans-2,3-dihydro-7-methoxy-2-(3-methoxy-4-5-methylenedioxy-phenyl)-5-(prop-trans-1-enyl): Aril 0.20%^{MF0154}

Bergamotene, alpha: EO 2.0%MF0185

Bisabolene, beta: EOMF0185

Borneol: EOMF0185

Borneol acetate: EO 0.9%^{MF0102}

Borneol (+): Sd EOMF0101

Butan-1-ol 2,3-dimethyl-1,4-bis-(3,4-methylenedioxy phenyl): Aril 6^{MF0154}

Cadinene, delta: EOMF0185 Caffeic acid: Aril 16MF0223

Camphene: Aril EO 0.5%^{MF0103}, Sd EO 0.2-0.4%^{MF0261}, Lf EO^{MF0175}

Camphor: Sd EO 3.4%^{MF0259} Car-3-ene: Sd EO 2.4%^{MF0261} Caryophgyllene: EO^{MF0185}

Caryophyllene, beta: Aril EO 0.08% MF0103

Catechin, epi (-): Sd^{MF0236} Cerotic acid: Sd^{MF0100} Cineol: Lf EO^{MF0175}

Cineol, 1,8: Sd EO 2.7-3.2%^{MF0159}

Cironellol: Sd EO^{MF0136} Citronellol acetate: EO^{MF0185}

Copaene: Sd EO 0.3%MF0203, EO 0.8%MF0159

Copaene, alpha: EO 0.3%MF0185

Coumaric acid, para: Aril 16, Kernel 7^{MF0223} Cresol,meta 6-tert butyl: Aril 32.1^{MF0149}

Cubebene, alpha: EO 1.0%MF0185

Cyanidin: Sd^{MF0236}

Cymen-8-ol, para: EOMF0185

Cymene, para: Aril EO 0.9%^{MF0103}, Sd EO 1.6-4.3%^{MF0135}, Lf^{MF0175}

Dec-4-en-1-ol 3-methyl acetate: EOMF0185

Dec-4-en-1-ol 3-methyl: EOMF0185

Delphidin: SdMF0236

Diisoeugenol dehydro: Aril^{MF0149} Diisoeugenol dehydro 5-methoxy:

Aril^{MF0149}

Elemicin: Aril 0.28%^{MF0149}, Sd EO 1.3-2.1%^{MF0203}, MF0259

Elemicin, iso cis: Sd EOMF0136

Elemicin, iso trans: Sd EO 0.1% MF0259

Eugenol: Sd EO 0.2-3.8%^{MF0259} Eugenol, 5-methoxy: EO^{MF0185}

Eugenol, dehydro diiso: Aril^{MF0244} Eugenol, dehydro diiso (DL): Aril^{MF0271}

Eugenol, dehydro diiso acetyl: Aril^{MF0244}

Eugenol, iso-trans: EOMF0185

Eugenol, iso: Aril EO 0.1%^{MF0103}, Sd EO 0.2%^{MF0259},

Eugenol iso, dehydro: SdMF0138

Eugenol iso, methyl ether: Aril^{MF0149}

Eugenol iso, methyl ether trans: EOMF0185

Eugenol iso, trans: EOMF0185

Eugenol, iso: Sd^{MF0178}

Farnesene, alpha: EO 4.0% MF0185

Fenchyl alcohol: EOMF0185 Formic acid: SD EOMF0101

Fragransin A-2: Aril^{MF0152}

Fragransin B-1: Aril^{MF0152}

Fragransin B-2: Aril^{MF0152} Fragransin B-3: Aril^{MF0152}

Fragransin C-1: Aril^{MF0152}

Fragransin C-2: ArilMF0152

Fragransin C-2-A: Aril^{MF0152} Fragransin C-3-A: Aril^{MF0152}

Fragransin C-3-A. And Fragransin C-3-B: Aril MF0152

Fragransin D-2: Aril^{MF0153}

Fragransin D-3: Aril^{MF0153} Fragransin E-1: Aril^{MF0153}

Fragransol A: Aril 9.6^{MF0154,MF0153}

Fragransol B: Aril^{MF0153}

Fragransol C: Aril 48.1^{MF0154}

Fragransol D: Aril 5.7^{MF0154}

Fragransol D-1: Aril^{MF0153}

Gentisic acid: Lf^{MF0133}

Geraniol: Aril EO 0.1%^{MF0103}, Sd EO 0.0-11.9%^{MF0135}

Geraniol acetate: EOMF0159,MF0185

Germacrene D: EOMF0185

Glucose: SdMF0100

Glyceryl trimyristate: EOMF0159,MF0203

Guaiacin: Aril 64.1MF0149

Guaiaretic acid, dihydro meso: Aril

94.9^{MF0151}

Heptadecanoic acid: Sd EOMF0136

Humulene, alpha: EO 3.0%^{MF0185}

Ipuranol: SdMF0100

Lauric acid: Sd EOMF0178,MF0136

Limonene: Sd EO 2.3-11.9% MF0135, Aril EO

9.4%^{MF0103}, Lf EO^{MF0175}

Limonene, DL: Sd EO 2.6-8.0% MF0102, MF0101

Limonene, D: Sd EO 4.2% MF0261

Linalool: Sd EO 5.4-10.6%^{MF0135}, Aril EO

0.2%^{MF0103}

Linalool acetate: Sd EO 1.5%^{A01836}

Linalool (+): Sd EO^{MF0101} Linoleic acid: Sd^{MF0155} Lycopene: Aril^{MF0206}

Macelignan: Aril 0.25%^{MF0148} Macilenic acid: Aril^{MF0144} Macilolic acid: Aril^{MF0144} Malabaricone B: Aril^{MF0272}

Malabaricone C: Aril 0.1% MF0183

Menth-cis-2-en-1-ol, para: EO 0.1% MF0159,

Sd EO0.4%^{MF0203}

Menth-trans-2-en-1-ol, para: EOMF0185 Menth-trans-2-ene-1,4-diol, para: EOMF0185 Myrcene: Sd EO 2.3-3.8% MF0261,MF0203

Myristic acid: Sd EO 0.3%^{MF0101} Myristicanol A: Aril 8.4^{MF0154} Myristicanol B: Aril 8.0^{MF0154}

Myristicin: Sd EO 0.8-14.0% MF0203, MF0185,

Aril EO 3.8%^{MF0103} Nectandrin B: Aril^{MF0152}

Nerol: EO^{MF0185}

Nerol acetate EO^{MF0185} Octanoic acid: Sd EO^{MF0101}

Octylphenone, 2,6-dihydroxy-9-(2,5-dihydroxyphenyl): Aril 1.82%^{MF0217}

Oleic acid: SdMF0155

Palmitic acid: Sd^{MF0178,MF0155} Pentadecanoic acid: Sd EO^{MF0136}

Phellandrene, alpha: Sd EO 0.4-1.0%^{MF0203}, Lf EO^{MF0175}

Phellandrene, beta: Sd EO $3.4\%^{\text{MF0261}}$, Aril EO $2.3\%^{\text{MF0103}}$

Phenol,4-allyl 2,6-dimethoxy: Kernel^{MF0230} Phenone, octyl 2',6'-dihydroxy-9-(2,5-

dihydroxyphenyl): Aril 3.27%^{MF0263} Pinene, (+): Sd EO^{MF0101}

Pinene, alpha: Sd EO 12.5-26.5%^{MF0203}, Aril 26.7%^{MF0103}

Pinene, alpha, (DL): Sd EO 3.0%^{MF0102} Pinene, beta: Sd EO 12.3-19.1%^{MF0259}, Aril EO 20.7%^{MF0103}, Lf EO^{MF0175}

Pinene, beta, (+): Sd EO 68.0%^{MF0102} Piperitol, cis: Sd EO 0.1-0.6%^{MF0203} Piperitol, trans: EOMF0185

Prop-trans-2-en-1-ol-3-(3,4,5-trimethoxy phenyl): Aril 0.08%^{MF0154}

Prop-trans-2-en-1-ol, 3-(3-methoxy-4,5-methylenedioxy phenyl):Aril 3.8^{MF0154}

Propan, 2-(4-allyl-2,6-dimethoxy phenoxy)-1-(3,4,5-trimethoxy phenyl): Aril^{MF0149}

Propan-1,3-diol, erythro-2-(4-allyl,2,6-dimethoxy phenyl): Aril^{MF0153}

Propan-1-ol,1-(3,4,5-trimethoxy phenyl)-2-(4-allyl-2,6-dimethoxy phenyl): Fr^{MF0237}

Propan-1-ol,1-(3,4,5-trimethoxy phenyl): Fr^{MF0237}

Propan-1-ol,1-(3,4-dimethoxy phenyl): Fr^{MF0237}

Propan-1-ol,1-(3,4-methylenedioxy phenyl)-2-(4-allyl-2,6-dimethoxy phenoxy): Sd^{MF0138}

Propan-1-ol, 1-(3,5-dimethoxy-4-hydroxy phenyl)-2-(4-allyl-2,6-dimethoxy-phenoxy): Sd^{MF0155}

Propan-1-ol, 1-(3-hydroxy-4-methoxy phenyl)-2-(4-allyl-2,6-dimethoxy-phenoxy): Sd^{MF0155}

Propan-1-ol, 1-(3-methoxy-4-hydroxy phenyl)-2-(4-allyl-2,6-dimethoxy-phenoxy): Sd^{MF0155}

Propan-1-ol, erythro-2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(3,4,5-trimethoxy phenyl): Aril 115.4^{MF0154}

Propan-1-ol, erythro-2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(3,4-dimethoxy phenyl): Aril 141.0^{MF0154}

Propan-1-ol, erythro-2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(3-hydroxy-4,5-dimethoxy phenyl): Aril 32.1^{MF0150}

Propan-1-ol, erythro-2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(4-hydroxy-3,5-dimethoxy phenyl): Aril 256.4^{MF0150}

Propan-1-ol, erythro-2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(4-hydroxy-3-methoxy phenyl): Aril^{MF0199}

Propan-1-ol, erythro-2-(4-allyl-2-methoxy-phenoxy)-1-(4-hydroxy-3-methoxy phenyl): Aril 32.1^{MF0150}

Propan-1-ol, threo-1-(4-hydroxy-3-methoxy phenyl)-2-(2-methoxy-4-(1-trans-propenyl)-phenoxy: Aril^{MF0153}

Propan-1-ol, threo-1-(4-hydroxy-3,5-dimethoxy phenyl)-2-(2-methoxy-4-(1-trans-propenyl)-phenoxy: Aril 117.5^{MF0150} Propan-1-ol, threo-2-(4-allyl-2-methoxy phenoxy)-1-(4-hydroxy-3-methoxy phenyl): Aril^{MF0153}

Propan-1-ol, threo-2-(4-allyl-2,6-dimethoxy phenoxy)-1-(4-hydroxy-3-methoxy phenyl): Aril117.5^{MF0150}

Propan-1-ol, threo-2-(4-allyl-2,6-dimethoxy phenoxy)-1-(4-hydroxy-3-methoxy phenyl) methyl ester: Aril^{MF0149}

Propane, 2-(4-allyl-2,6-dimethoxy phenoxy)-1-(4-hydroxy-3-methoxy phenyl): Aril 53.4^{MF0150}

Propane, 2-(4-allyl-2,6-dimethoxy phenyl)-1-(3,4,5-trimethoxy phenyl): Sd^{MF0244}

Propane, erythro-1-(4-hydroxy-3-methoxy phenyl)-1-methoxy-2-(2-methoxy-4-(1-trans-propenyl)phenoxy): Aril^{MF0153}

Propane, erythro-2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(4-hydroxy-3-methoxy phenyl)-1-(4-hydroxy-3-methoxy phenyl)-1-methoxy: Aril 128.2% MF0150

Sabinene: Aril 14.5%^{MF0103}, Sd EO 15.4-50.7%^{MF0203}

Sabinene, cis hydrate: Sd EO 0.2-0.7%^{MF0203} Sabinene, trans hydrate: Sd EO 0.3-0.8%^{MF0203} Safrole: Aril 0.032%^{MF0149}, Sd EO 0-6.0%^{MF0135}

Sitosterol, beta: Sd^{MF0100} Stearic acid: Sd^{MF0230,MF0178}

Terpinen-4-ol: Sd EO 3.0-19.5%^{MF0259,MF0159}
Terpinen-4-ol acetate: Sd EO 0.1%^{MF0203}
Terpinene, alpha: Sd EO 0.8-4.0%^{MF0203}
Terpinene, gamma: Sd EO 1.9-6.8%^{MF0203}
Terpineol, alpha: Aril EO 0.7%^{MF0103}, Sd EO 4.0-7.7%^{MF0259}

Terpineol, alpha acetate: EO^{MF0185} Terpineol, beta: Sd EO^{MF0136}

Terpinolene: Sd EO 0-2.6%^{MF0203}, Aril EO 2.1%^{MF0103}

Thujene, alpha: Sd EO 3.0%^{MF0261} Tridecanoic acid: Sd^{MF0178}

Trimyristin: Sd^{MF0100}, Aril 42.7^{MF0149}

Vanillin: EO^{MF0185} Verrucosin: Aril^{MF0152}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Alkylating activity reduction. Hot water extract of the dried seeds produced weak activity on the reduction of ethyl methane sulfonate toward 4-para-nitrobenzylpyridine^{MF0220}.

Aminopyrine-n-demethylase induction.

Ether extract of the dried aril, administered intraperitoneally to mice at a dose of 200.0 mg/kg for 7 days, was effective, results significant at p < 0.02 level^{MF0148}.

Amtimutagenic activity. The kernel essential oil inhibited the formation of DNA adducts with aflatoxin B1 by inhibiting activation of the latter in rat liver microsomes, IC₅₀ 0.032 microliters/disc^{MF0168}.

Analgesic activity. Methanol extract of the dried aril, administered intragastrically to mice at a dose of 0.3 gm/kg, was effective vs acetic acid-induced writhing^{MF0188}.

Aniline hydrase inhibition. Ether and methanol extracts of the dried aril, administered intraperitoneally to mice at a dose of 200.0 mg/kg, were effective, results significant at p <0.01 and p <0.05 levels, respectively^{MF0148}.

Antiamoebic activity. The essential oil, in broth culture at a concentration of 0.5 microliters/ml, was active on *Entamoeba histolytica*^{MF0173}.

Antiamphetamine activity. Essential oil, administered intraperitoneally to chickens at a dose of 600 mg/kg, was active MFO229.

Antiascariasis activity. Hot water extract of the aril, at a dose of 10.0 mg/ml, was active on *Toxacara canis*^{MF0183}.

Antibacterial activity. Methanol extract and phenolic fraction of the aril were active on Streptococcus mutans, MIC 50.0 mcg/ ml and 25.0 mcg/ml, respectively MF0149. The aril essential oil, on agar plate, was active on Bacillus subtilis, Escherichia coli, and Staphylococcus aureus, and inactive on Pseudomonas aeruginosa^{MF0254}. The dried oleoresin, in broth culture at a concentration of 8.0 gm/liter, was inactive on Staphylococcus aureus^{MF0257}. The seed essential oil, on agar plate, was active on Bacillus subtilis, Escherichia coli, and Staphylococcus aureus, and inactive on Pseudomonas aeruginosa^{MF0254}. Water and hot water extracts of the dried aril, on agar plate at a concentration of 0.5 ml/disc, were inactive on *Bacillus subtilis* H-17(Rec+) and M-45(Rec-)^{MF0234}. Water and hot water extracts of the dried kernel and the dried kernel, on agar plate at a concentration of 0.5 ml/disc, were inactive on *Bacillus subtilis* H-17 (Rec+) and M-45 (Rec-)^{MF0234}. Water extract of the dried seed, on agar plate at a concentration of 10.0%, was inactive on *Escherichia coli*^{MF0247}.

Anticrustacean activity. Ethanol (95%) extract of the dried seed was inactive on *Artemia salina*^{MF0164}.

Antidiarrheal activity. Ethanol/water (1:1) extract of the dried flower, at a dose of 300.0 mg, was effective on guinea pigs and rabbits vs Escherichia coli enterotoxininduced diarrhea. Ethanol/water (1:1) and hexane extracts of the dried fruit, at a concentration of 300.0 mg, were effective on guinea pig and rabbit ileum vs Escherichia coli enterotoxin-induced diarrhea^{MF0169}. Hot water extract of the kernel, in combination with 10 plants which form an antidiarrheal remedy in India, administered orally to mice at a dose of 100.0 mg/animal, was effective. Prior administration of the dose prevented the onset of diarrhea symptoms induced by castor oil, myrobalam and epsom salt. Prevention was partial in the case of castor oil and complete in the case of myrobalan and epsom salt^{MF0221}. Ether and ethanol (95%) extracts of the dried kernel, at a concentration of 300.0 mg/ unit, were effective on rabbit and guinea pig ileum vs E. coli enterotoxins LT and STinduced secretory diarrhea^{MF0166}. Hot water extract of the aril, administered orally to mice at a dose of 100.0 mg/animal, was active. The extract produced partial prevention of diarrhea in the case of castor oil, and complete in the case of myrobalan and epsom salt^{MF0221}.

Antifatigue activity. A betel quid, prepared by mixing betel nut, lime and the dried leaf of *Myristica fragrans*, taken orally by adults, was effective MF0192.

MYRISTICA FRAGRANS 339

Antifungal activity. The essential oil, on agar plate, was active on Lentinus lepideus, Lenzites trabea, Polyporus versicolor and several plant pathogenic fungi^{MF0132}. Chloroform extract of the kernel, on agar plate at a concentration of 0.03 ml/plate, was inactive on Cladosporium werneckii^{MF0181}. The aril essential oil, on agar plate at a concentration of 10.0%/disc, was inactive on Geotrichum candidum^{MF0233}. The dried aril, on agar plate, was active on Aspergillus auricomus, A. candidus, A. fischeri, A. flavus, A. fumigatus, A. nidulans, A. niger, A. sydowi, A. terreus, A. terricola, A. ustus, and A. versicolor MF0208. The seed essential oil, on agar plate at a concentration of 10.0%/disc, was inactive on Geotrichum candidum^{MF0233}.

Antihalitosis effect. A betel quid, prepared by mixing betel nut, lime and the dried leaf of *Myristica fragrans*, taken orally by adults, was effective^{MF0192}.

Antiinflammatory activity. The dried aril, taken orally by human adults at variable dosage levels, was effective^{MF0227}. Methanol extract of the dried aril, administered intragastrically to mice at a dose of 1.0 gm/kg, was effective vs acetic acid-induced vascular permeability^{MF0188}.

Antimycobacterial activity. Leaf juice, on agar plate, produced weak activity on Mycobacterium tuberculosis, MIC < 1:20^{MF0106}. Antinematodal activity. Methanol extract of the aril, at a concentration of 1.0 mg/ ml, was active on Toxacara canis MF0197, MF0191. Water extract of the kernel, at a concentration of 10.0 mg/ml, had weak activity on Toxacara canis. The methanol extract, at a concentration of 1.0 mg/kg, was active^{MF0197}. Antioxidant activity. Ethanol (95%) extract of the aril essential oil, at a concentration of 0.02%, was effective on lard. The biological activity has been patented MF0263. Petroleum ether extract of the aril, at a concentration of 0.1%, produced strong activity, and the petroleum ether insoluble fraction was active. Petroleum ether extract of the seed, at a concentration of 0.1%, produced weak activity, and the insoluble fraction was active MFO213.

Antipyretic activity. Ethanol/water (1:1) extract of the dried aril, administered by gastric intubation to rabbits at variable dosage levels, was not effective vs yeast-induced pyrexia. Ethanol/water (1:1) extract of the dried seed, administered by gastric intubation to rabbits at variable dosage levels, was not effective vs yeast-induced pyrexia^{MFO264}. Antispasmodic activity. Water extract of the dried leaf, at a concentration of 0.005 ml/ml of the extract that was made with 1.0 gm of leaf/1.0 ml of water, was active on guinea pig ileum vs nicotine-induced contractions, and inactive vs ACh or histamine-induced contractions^{MFO215}.

Antitoxic activity. Ether extract of dried aril essential oil, administered intraperitoneally to mice at a dose of 100.0 mg/kg, was effective vs strychnine toxicity. Ether extract of the dried seed, administered intraperitoneally to mice, was inactive vs strychnine toxicity MF0186. The distillate, ethanol (95%), hexane and methanol extracts of the dried aril, administered intraperitoneally to mice at a dose of 200.0 mg/kg, were effective vs strychnine mortality test. Eight of 10 animals vs 3 of 10 controls; 9 of 10 vs 3 of 10 controls and 7 of 10 vs 3 of 10 controls survived MF0252.

Antitumor activity. Water extract of the dried kernel, administered intraperitoneally to mice, was effective on sarcoma 180 (solid)^{MF0165}.

Antiyeast activity. Essential oil of the aril, on agar plate at a concentration of 10.0%/disc, was active on Candida lipolytica, Kloeckera apiculata, Rhodotorula rubra, and Torulopsis glabrata, and inactive on Brettanomyces anomalus, Debaryomyces hansenii, Lodderomyces elongisporus, Pichia membranaefaciens, Saccharomyces cerevisiae, and Kluyveromyces fragilis^{MF0233}. The aril essential oil, on agar plate, was active on Candida albicans^{MF0254}.

The seed essential oil, on agar plate at a concentration of 10.0%/disc, was inactive on Brettanomyces anomalus, Candida lipolytica, Debaryomyces hansenii, Hansenula anomala, Kloeckera apiculata, Kluyveromyces fragilis, Lodderomyces elongisporus, Metschikowia pulcherrima, Pichia membranaefaciens, Rhodotorula rubra, Saccharomyces cerevisiae, and Torulopsis glabrata^{MF0233}. The seed essential oil, on agar plate, was active on Candida albicans^{MF0254}.

Aphrodisiac activity. Ether and ethanol (95%) extracts of the dried seed, administered intraperitoneally to rats, produced no effect on social behavior, including homosexual mounting, sniffing and lying over one another^{MF0218}.

Aryl hydrocarbon hydroxylase induction. Powdered dried aril, administered intragastrically to mice at a dose of 2.0% of the diet for 20 days, was effective^{MFO2O1}.

Barbiturate potentiation. Ether and methanol extracts of the dried aril, administered intraperitoneally to mice at a dose of 200.0 mg/kg, were effective, results significant at p <0.001 level^{MF0148}. Ether extract of the dried aril essential oil, administered intraperitoneally to mice at a dose of 100.0 mg/ kg, prolonged the sleeping time induced by hexobarbital^{MF0186}. The essential oil, administered intraperitoneally to male mice at a dose of 50.0 mg/kg, prolonged sleep duration by 41% MF0207. The distillate, ether, water, hexane and methanol extracts of the dried aril, administered intraperitoneally to mice at a dose of 200.0 mg/kg, were effective, results significant at p < 0.001, 0.001, 0.05, 0.05and 0.001 levels, respectively MF0252.

Carcinogenesis inhibition. Dried aril, administered intragastrically to mice at a dose of 10.0 mg/day, was effective vs methylocholanthrene-induced carcinogenesis. The incidence of carcinogenesis decreased 52% MF0196.

Chronotropic effect (positive). Ethanol/water (1:1) extract of the dried aril, admin-

istered intravenously to dogs at a dose of 0.15 gm/kg, was effective^{MF0264}.

Clastogenic activity. Powdered dried aril, administered intragastrically to mice at a dose of 2.0% of the diet for 30 days, was inactive on *Mucor miehei*^{MF0201}.

CNS depressant activity. Low boiling terpene fraction of the seed essential oil, administered intraperitoneally to male chickens at a dose of 600.0 mg/kg, produced a dosedependent increase in the average duration of light sleep episodes in young chicks^{MF0202}. The aril essential oil, administered by gastric intubation to rats at a dose of 25.0 mg/ kg, was not effective. A dose of 600.0 mg/ kg was equivocal MF0226. The dried kernel, administered by gastric intubation to monkeys at a dose of 5.0 gm/animal, was not effective MF0180. The essential oil, applied externally, was effective on the goldfish MF0128. The seed, taken orally by male adults at a dose of 5.0 gm/person, caused drowsiness for 24 hours. Coffee was given as an antidoteMF0119.

Cytochrome B-5 increase. The powdered dried aril, administered intragastrically to mice at a dose of 0.5% of the diet for 10 days, was effective^{MF0201}.

Cytochrome P-450 induction. Ether extract of the dried aril, administered intraperitoneally to mice at a dose of 200.0 mg/kg, was effective, results significant at p <0.05. The methanol extract was not effective MF0148. Powdered dried aril, administered intragastrically to mice at a dose of 1.0% of the diet for 10 days, was effective MF0201.

Diaphorase inducing activity. Powdered dried aril, administered intragastrically to mice at a dose of 0.5% of the diet for 10 days, was effective^{MF0201}.

Diuretic activity. Ethanol/water (1:1) extract of the dried seed, administered intragastrically to rats at a dose of 40.0 ml/kg, was effective^{MF0184}.

Embryotoxic effect. The seed essential oil, administered orally to rabbits at a dose

of 400.0 mg/kg daily for 13 consecutive days, was not effective^{MF0260}.

Ethanol potentiation effect. The seed essential oil, administered intraperitoneally to male chickens at a dose of 200.0 mg/kg, was effective^{MFO270}.

Euphoriant activity. A betel quid, prepared by mixing betel nut, lime and the dried leaf of *Myristica fragrans*, taken orally by adults, was effective^{MF0192}. The seed, taken by 10 male prison inmates at a dose of 18.0 gm/person, was effective^{MF0130}.

Glutathione-s-transferase induction. Powdered dried aril, administered intragastrically to mice at a dose of 0.5% of the diet for 10 days, was effective MFOZOI. The essential oil, administered intragastrically to mice at a dose of 30.0 mg/animal every 2 days for a total of 3 doses, was not effective on the small intestine, liver or stomach MFOI98. The seed essential oil, administered intragastrically to mice at a dose of 30.0 mg/animal every 2 days for a total of 3 doses, was inactive on the small intestine, liver and stomach MFOI98.

GRAS status. GRAS status was approved by the United States Food and Drug Administration in 1976 (sect.582.10) as a flavoring agent^{MF0157}.

Hallucinogenic activity. A woman who consumed 2 ground seeds had symptoms of a warm feeling, slight nausea, sweating, dry mouth and throat, intoxicated drowsy feeling, flushed skin, rapid pulse, incoherent speech, giddiness, disturbed vision, hallucinations of faces laughing at her and monsters in bed trying to engulf her. Full recovery was indicated in 24 hours MFO162. An adult female who ingested approximately 18.3 gm of the seed was hospitalized until recovery 2 weeks later MFO122. Two college students who took approximately 14.0 gm of the dried seed each in milk were hospitalized MFO143.

Hexobarbital hydroxylase inhibition. Ethanol (95%) and methanol extracts of the dried aril, administered intraperitone-

ally to mice at a dose of 200.0 mg/kg, were effective, results significant at p < 0.05 levels^{MF0252}.

Hexobarbital hydroxylase stimulation. Ether and methanol extracts of the dried aril, administered intraperitoneally to mice at a dose of 200.0 mg/kg, were effective, results significant at p <0.02 and p < 0.05 levels, respectively^{MF0148}.

Hypertensive activity. Ethanol/water (1:1) extract of the dried seed, administered by gastric intubation to rats at a dose of 40.0 ml/kg, was not effective^{MF0245}.

Hypotensive activity. Water extract of the dried leaf (1.0 gm of leaf/1 ml water), administered intravenously to rats at a dose of 1.2 ml/kg, was effective. The duration of action was 2 hours^{MF0215}.

Immunosuppressant activity. The essential oil, administered intragastrically to mice at a dose of 1.5 gm/kg, was not effective when humoral immunity was assayed in sheep erythrocyte plaque formation, and cellular immunity was assayed in survival time after *Listeria monocytogenes* infection MFO171.

Intestinal antisecretory activity. The dried kernel, administered by gastric intubation to rats at a dose of 1.0 gm/kg, was effective^{MF0240}.

Larvicidal activity. The seed, at a dose of 1.0% of the diet, produced weak activity on Callosobruchus maculatus larvae^{MF0176}.

Lipoxygenase inhibition. The seed essential oil, at a concentration of 1.0 mg/ml, was inactive on the rabbit platelets^{MF0250}.

Liver regeneration stimulation. The aril essential oil, administered subcutaneously to partially hepatectomized male rats at a dose of 100.0 mg/animal daily for 7 days, was effective MF0224.

Malondialdehyde inhibition. The powdered dried aril, administered intragastrically to mice at a dose of 2.0% of the diet for 10 days, was effective^{MF0201}.

Monoamine oxidase inhibition. One depressed and 4 schizophrenic patients were

treated with the seed at a dose of 500.0 mg/person 3 times daily for 3 weeks. Four of the 5 patients showed improvement. When administered orally to rats at a dose of 500.0 mg/kg, the seed was effective MF0137.

Mutagenic activity. Chloroform/methanol (2:1) extract of the aril, tested on pig kidney cells (LLC-PK-1) and trophoblastic-placenta cells on agar plate, produced complete growth inhibition. The effect was the same with or without metabolic activation. Chloroform/methanol (2:1) extract of the kernel, on agar plate, produced complete growth inhibition on pig kidney-LLC-PK-1 cells and trophoblastic placenta cells. The effect was the same with or without metabolic activation, IC₁₀₀ 10.0 mg/plate. The water extract was not effectiveMF0222. Ethanol (95%) extract of the dried seed, on agar plate at a concentration of 10.0 mg/plate, produced strong activity on Salmonella typhimurium TA102 and weak activity on Salmonella typhimurium TA98MF0164. The aril, at variable concentrations, and the water and hot water extracts, on agar plate at a concentration of 0.5 ml/disc, were inactive on Bacillus subtilis H-17(Rec+) and M-45(Rec-)MF0234. The oleoresin and its chromatographic fraction, on agar plate, were effective on Salmonella typhimurium TA100 (streptomycin dependent strain SD 1018) and Salmonella typhimurium TA 98 (streptomycin dependent strain SD 7823)MF0238. The seed essential oil, on agar plate at a concentration of 0.005%/plate, was inactive on Saccharomyces cerevisae D4 and Salmonella typhimurium TA1535, TA1537 and TA1538. The same results were observed in activation and non-activation tests^{MF0212}. Water and hot water extracts of the dried kernel and the dried kernel, on agar plate at a concentration of 0.5 ml/disc, were inactive on Bacillus subtilis H-17 (Rec+) and M-45 (Rec-)MF0234.

Parasympatholytic activity. Ethanol/water (1:1) extract of the dried aril, at variable

concentrations, was inactive on guinea pig ileum^{MF0264}.

Penis erectile stimulant. The dried fruit, taken orally by adults, produced an improvement in erection, duration of coitus and postcoital satisfaction in 56 cases treated for 4 weeks^{MF0256}.

Pheromonal activity. Water extract of the seed was effective as sex attractant and for signaling in Costelytra zealandica^{MF0156}.

Plaque formation suppressant. Water and water/methanol (1:1) extracts of the aril were inactive, and the methanol extract was active on *Streptococcus mutans*, $IC_{50} > 1000 \text{ mcg/ml}$, > 1000 mcg/ml and 20.0 mcg/ml, respectively^{MFO251}.

Platelet aggregation inhibition. Ethanol (95%) and petroleum ether extracts of the dried seed, at a concentration of 10.0 mcg/ml, were active in rabbits vs arachidonic acid-induced aggregation FO250. The essential oil, in cell culture, was effective vs arachidonic acid-induced aggregation, IC₅₀ 13.0 mcg/ml FO248 and 17.1 mcg/ml FO190. The seed essential oil was active vs arachidonic acid-induced aggregation, IC₅₀ 10.0 mcg/ml FO250. Progestagenic effect. The seed, taken orally by female adults at a dose of 7.5 gm/person, was not effective in stopping excessive menstrual flow FO127.

Prostaglandin synthetase inhibition. Petroleum ether and chromatographic fraction of the kernel, administered orally to rats at a dose of 40.0 mg/kg twice daily for 7 days, was effective MFO204.

Psychotropic activity. The dried kernel, taken orally by adults at a dose of 15.0 gm/person, caused emotional lability, feelings of isolation and impairment of intellectual processes MF0180. A bettel quid, prepared by mixing bettel nut, lime and the dried leaf of Myristica fragrans, taken orally by adults, was effective MF0192.

Smooth muscle relaxant activity. Hot water extract of the dried seed, at a concentration of 1.0 mcg/ml, was active vs potas-

sium*-induced contractions^{MF0189}. The essential oil, at a concentration of 100.0 mg/liter, was not effective on guinea pig ileum, but was effective on the trachea, ED₅₀ 44.0 mg/liter^{MF0249}.

Teratogenic activity. The seed essential oil, administered orally to pregnant rabbits at a dose of 400.0 mg/kg daily for 13 consecutive days, was inactive^{MF0260}.

Thromboxane B-2 synthesis inhibition. The seed essential oil, at a concentration of 100.0 mcg/ml, was active on rabbit platelets, results significant at p < 0.05 level^{MF0250}. **Toxic effect.** Ethanol/water (1:1) extract of the dried root, administered by gastric intubation and subcutaneously to mice at a dose of 10.0 gm/kg, was not effective MF0209. The dried kernel, taken orally by adults at a dose of 15.0 gm/person, caused vasomotor instability, tachycardia, hypothermia, absence of saliva, constricted pupils, emotional lability, feelings of isolation and impairment of intellectual processes MF0180. The dried kernel, taken orally by adults, produced abdominal pain, vomiting, elevated urinary pH, elevated white cell count, tachycardia, hypertension, hallucinations, drowsiness, and restlessness^{MF0146}. The seed, administered orally to cats at a dose of 3.3 gm/kg, caused salivation and anorexia for 2 days and the animals died 72 hours after dosing. Autopsy indicated fatty degeneration of the liver. At a dose of 5.0 gm/animal the animals were jaundiced and drowsy on, the third day, followed by coma and death^{MF0121}. A pregnant woman who took 1 entire seed to induce abortion had headache, dizziness, stomachache and difficulty in breathing. Recovery was 2 days later^{MF0124}. Ten hours after an adult ingested 7.5 gm of the seed, he had red swollen face, temperature of 103 degrees Fahrenheit, slight cyanosis of the nails but no other parts of the body, vomiting, dizziness and restlessness. Recovery was 5 days later^{MF0125}. A male adult who ingested the seed mixed with gin was comatose MF0120.

Toxicity assessment. Essential oil of the kernel, administered intraperitoneally to rats, produced LD₅₀ 1.72 gm/kg. LD₅₀ for the water extract was 0.5 gm/kg^{MFO180}. When the seed essential oil was administered orally to hamsters, mice, rats, and cats, the LD₅₀ were 6.0 gm/kg, 5.62 gm/kg, 2.6 gm/kg and 1.9 gm/kg, respectively^{MFO259}.

Tranquilizing effect. Hexane extract of the kernel, administered intraperitoneally to chickens at a dose of 2 gm/kg, was effective^{MF0255}.

REFERENCES

MF0100	Power, F. B. and A. H. Salway.
	Chemical examination and phys-
	iological action of nutmeg. Amer
	J Pharm 1908; 1908: 563–.

MF0101 Power, F. B. and A. H. Solway. The constituents of the essential oil of nutmeg. **Proc Chem Soc** 1908; 23: 285–.

MF0102 Itty, M. I. and S. S. Nigam. Essential oil of *Myristica fragrans*. **Reichst Aromen Koerperpflem**1966; 16: 399–400.

MF0103 Forrest, J. E., R. A. Heacock and T. P. Forrest. Identification of the major components of the essential oil of mace. **J Chromatogr** 1972; 69: 1115–.

MF0104 Williams, E. Y. and F. West. The use of nutmeg as a psychotropic drug. Report of two cases. J Natl Med Ass 1968; 60: 289–.

MF0105 Stager, R. New studies on the effect of plant odors on ants. **Mitt**Schweiz Antomol Ges 1933; 15:
567-.

MF0106 Fitzpatrick, F. K. Plant substances active against *Mycobacterium tuberculosis*. **Antibiot Chemother** 1954; 4: 528–.

MF0107 Saha, J. C., E. C. Savini and S. Kasinathan. Ecbolic properties of Indian medicinal plants. Part I. **Indian J Med Res** 1961; 49: 130–151.

MF0108	Beckwith, M. W. Notes on Jam-	MF0126	Wilkinson, K. D. Nutmeg poi-
	aican Ethnobotany. Publ. Folk-		soning. Brit Med J 1911; 1911
	lore found no. 8. Vassar College,) (FO127	(1): 993–.
MEOLOO	NY, 1927.	MF0127	Reekie, J. S. Nutmeg poisoning.
MF0109	Garbari, F. Notes on popular African and distinct in the hardware	ME0120	J Amer Med Ass 1909; 52: 62–.
	ican medicines in the herbarium	MF0128	Wesley-Hadzija, B. and P. Boh-
	at Florence. Webbia 1973; 28: 81–.		ing. Influence of some essential oils on the central nervous sys-
MF0110	Gimlette, J. D. A Dictionary of		tem of fish. Ann Pharm Fr 1956;
WITOTTO	Malayan Medicine, Oxford Univ.		14: 283–.
	Press., New York, USA, 1939.	MF0129	Hepburn, J. S., G. W. Boericke,
MF0111	Weil, A. T. Nutmeg as a narcotic.	1111 0129	R. Ricketts and E. D. Boone. A
	Ecno Bot 1965; 19: 194–.		laboratory study of twenty drugs
MF0112	Mendelsohn, G. Nutmeg poison-		on normal human beings with
	ing. Dtsch Med Wochenschr		comments on their symptoma-
	1907; 33: 2001–.		tology and therapeutic use. J
MF0113	Jurss, F. Volksabortiva. Verlag		Amer Inst Homeopathy 1951;
	Von Ferdinand Enke, Stuttgart,		44: 6–.
	1904.	MF0130	Weiss, G. Hallucenogenic and
MF0114	Carvell, G. H. Poisoning by nut-		narcotic-like effects of powd-
	meg. Brit Med J 1887; 1887:		ered Myristica (nutmeg). Psy-
MF0115	1317—.	ME0121	chiatr Q 1960; 34: 346–356.
MFUIIS	Pitter, R. A. A case of nutmeg poisoning. Lancet 1902; 1902	MF0131	Maruzzella, J. C., D. Scrandis, J. B. Scrandis and G. Grabon.
	(1): 1035.		Action of odoriferous organic
MF0116	Simpson, T. G. Case of poison-		chemicals and essential oils on
WH OTTO	ing by nutmeg. Lancet 1895;		wood-destroying fungi. Plant
	1895(1): 150–.		Dis Rept 1960; 44: 789–.
MF0117	Cushny, A. R. Nutmeg poison-	MF0132	Maruzzella, J. C. and J. Balter.
	ing. Proc Roy Soc Med 1908;		The action of essential oils on
	1(2): 39–.		phytopathogenic fungi. Plant
MF0118	Bentlif, P. B. Case of poisoning		Dis Rept 1959; 43: 1143–1147.
	by nutmeg. Brit Med J 1889;	MF0133	Griffiths, L. A. On the distribution
	1889(2): 1389		of gentisic acid in green plants.
MF0119	Alexander, J. Poisoning by nut-) (TO 1 2 4	J Exp Biol 1959; 10: 437–.
	meg. Brit Med J 1887; 1887(1):	MF0134	Burkill, I. H. Dictionary of the
ME0120	1085–.		Economic Product of the Malay Peninsula. Ministry of Agricul-
MF0120	Smith, S. M. Nutmeg poisoning. Lancet 1902; 1902(1): 1798–.		ture and Cooperatives, Kuala
MF0121	Dale, H. H. Note on nutmeg poi-		Lumpur, Malaysia, Volume II,
WIFOTZI	soning. Proc Roy Soc Med 1909;		1966.
	2(2): 69–.	MF0135	Bejnarowicz, E. A. and E. R.
MF0122	Green Jr., R. C. Nutmeg poison-	1,11 0100	Kirch. Gas chromatographic ana-
	ing. J Amer Med Ass 1959; 171:		lysis of oil of nutmeg. J Pharm
	1342–.		Sci 1963; 52: 988–.
MF0123	Hamilton, J. Nutmeg poisoning.	MF0136	Sammy, G. M. and W. W. Nawar.
	Brit Med J 1906; 1906(2): 900–.		Identification of the major com-
MF0124	Barlett, B. F. Nutmeg poisoning.		ponents of nutmeg oil by gas
	Brit Med J 1911; 1911(2): 269–.		chromatography and mass spec-
MF0125	Johnson, J. Nutmeg poisoning.		trometry. Chem Ind (London)
	Brit Med J 1906; 1906(2): 984–.		1968; 1968: 1279–.

MF0137	Truitt E. B. Jr., G. Duritz and E. M. Ebersberger. Evidence of monoamine oxidase inhibition by myristicin and nutmeg. Proc Soc Exp Biol Med 1963; 112: 647–650.	MF0150	by traditional medicines. X. Anti- bacterial action of phenolic com- ponents from mace against <i>Strep-</i> <i>tococcus mutans</i> . Chem Pharm Bull 1986; 34(9): 3885–3893. Hattori, M., S. Hada, Y. Z. Shu,
MF0138	Forrest, T. P., J. E. Forrest and R. A. Heacock. The isolation of some diarylpropanoids from nutmeg. Naturwissenschaften 1973; 60: 257–.		N. Kakiuchi and T. Namba. New acyclic bis-phenylpropanoids from the Aril of <i>Myristica fragrans</i> . Chem Pharm Bull 1987; 35(2): 668–674.
MF0139	Hamond, P. W. and M. B. Lond. Nutmeg poisoning. Brit Med J 1906; 1906(2): 778–.	MF0151	Woo, W. S., K. H. Shin, H. Wagner and H. Lotter. The structure of macelignan from <i>Myris</i> -
MF0140	Wilkinson, A. N. Poisoning by nutmeg. Brit Med J 1906; 1906 (1): 539–.	MF0152	tica fragrans. Phytochemistry 1987; 26(5): 1542–1543. Hattori, M., S. Hada, Y. Kawata,
MF0141	Panayotopoulos, D. J. and D. D. Chisolm. Hallucinogenic effect of nutmeg. Brit Med J 1970; 1970(1): 754–.		Y. Tezuka, T. Kikuchi and T. Namba. New 2,5-bis-aryl-3,4-dimethyltetrahydrofuran lignans from the Aril of <i>Myristica fra-</i>
MF0142	Gibbins, K. M. Nutmeg poisoning. Brit Med J 1909; 1909(1): 1005–.	MF0153	grans. Chem Pharm Bull 1987; 35(8): 3315–3322. Hada, S., M. Hattori, Y. Tezuka,
MF0143	Payne, R. B. Nutmeg intoxication. N Engl J Med 1963; 269: 36–.		T. Kikuchi and T. Namba. New neolignans and lignans from the
MF0144	Tschirch, A. and H. Achklowsky. Studies on mace. Arch Pharm 1915; 253: 102–109.		Aril of <i>Myristica fragrans</i> . Phytochemistry 1988; 27(2): 563–568.
MF0145	Braun, U. and D. A. Kalbhen. Evidence for the biogenic formation of amphetamine derivatives from components of nutmeg. Pharmacology 1973; 9: 312–316.	MF0154	Hattori, M., X. W. Yang, Y. Z. Shu, N. Kakiuchi, Y. Tezuka, T. Kikuchi and T. Namba. New constituents of the aril of <i>Myristica fragrans</i> . Chem Pharm Bull
MF0146	Painter, J. C., S. P. Shanor and C. L. Winek. Nutmeg poisoning –A case report. Clin Toxicol 1971; 4(1): 1–4.	MF0155	1988; 36(2): 648–653. Harvey, D. J. Examination of the diphenylpropanoids of nutmeg as their trimethylsilyl, triethyl-
MF0147	Sanchez-Palomera, E. Concept of the mucous barrier and its significance. Gastroenterology 1951; 18: 269–286.		silyl and tri-n-propylsilyl derivatives using combined gas chromatography and mass spectrometry. J Chromatogr 1975; 110:
MF0148	Shin, K. H. and W. S. Woo. Hepatic drug metabolism modifier from arils of <i>Myristica fragrans</i> . Korean J Pharmacog 1986; 17	MF0156	91 Osborne, G. O. and J. F. Boyd. Chemical attractants for larvae of <i>Costelytra zealandica</i> (Cole-
MF0149	(1): 91–99. Hattori, M., S. Hada, A. Watahiki, H. Ihara, Y. Z. Shu, N. Kakiuchi, T. Mizuno and T. Namba. Studies on dental caries prevention	MF0157	optera, Scarabaeidae). N Z J Zool 1974; 1: 371–. Anon. Gras status of foods and food additives. Fed Regist 1976; 41: 38644–.

MF0158	Shafran, I. Nutmeg toxicology.		on the formation of DNA adducts
	N Engl J Med 1976; 294: 849–.		by aflatoxin B1 in vitro. Nutr
MF0159	Baldry, J. J. Dougan, W. S. Mat-		Cancer 1994; 21(2): 169–175.
	thews, J. Nabney, G. R. Picker-	MF0169	Gupta, S., J. N. S. Yadava and J.
	ing and F. V. Robinson. Com-		S. Tandon. Antisecretory (anti-
	position and flavour of nutmeg		diarrhoeal) activity of Indian
	oils. Flavours Food Addit 1976;		medicinal plants against Esch-
	7: 28–.		erichia coli enterotoxin-induced
MF0160	Wong, W. Some folk medicinal		secretion in rabbit and guinea
	plants from Trinidad. Econ Bot		pig ileal loop models. Int J Phar-
	1976; 30: 103–142.		macog 1993; 31(3): 198–204.
MF0161	Schulze, R. G. Nutmeg as an hal-	MF0170	Chhabra, S. K. and A. R. Rao.
0101	lucinogen. N Engl J Med 1976;	1111 0170	Transmammary modulation of
	295: 174–.		xenobiotic metabolizing enzymes
MF0162	Siegel, R. K. Herbal intoxication.		in liver of mouse pups by mace
WII 0102	Psychoactive effects from herbal		(Myristica fragrans Houtt.) J
	cigarettes, tea, and capsules. J		
			Ethnopharmacol 1994; 42(3):
	Amer Med Ass 1976; 236(5):	ME0171	169–177.
ME0162	473–476.	MF0171	Gaworski, C. L., T. A. Vollmuth,
MF0163	Lozoya, X. Estado Actual del		M. M. Dozier, J. D. Heck, L. T.
	Conocimiento en Plantas Medi-		Dunn, H. V. Ratajczak and P. T.
	cinales Mexicanas. Inst. Mex.		Thomas. An immunotoxicity as-
ME0164	Est. Pl. Med., A. C., 1976; 165		sessment of food flavouring in-
MF0164	Mahmoud, I., A. Alkofahi and		gredients. Food Chem Toxicol
	A. Abdelaziz. Mutagenic and	N (E0172	1994; 32(5): 409–415.
	toxic activities of several spices	MF0172	Elisabetsky, E., W. Figueiredo and
	and some Jordanian medicinal		G. Oliveria. Traditional Amazo-
	plants. Int J Pharmacog 1992;		nian nerve tonics as antidepres-
N (FO1 65	30(2): 81–85.		sant agents: Chaunochiton kap-
MF0165	Nakajima, I. Myristica fragrans		pleri: A case study. J Herbs
	extract as neoplasm inhibitor.		Spices Med Plants 1992; 1(1/2):
	Patent-Japan Kokai Tokkyo	ME0172	125–162.
NT-0166	Koho-01 42,440 1989; 5 pp	MF0173	De Blasi, V., S. Debrot, P. A.
MF0166	Gupta, S., J. N. S. Yadava, R.		Menoud, L. Gendre and J. Schow-
	Mehrotra and J. S. Tandon. Anti-		ing. Amoebicidal effect of essen-
	diarrhoeal profile of an extract		tial oils in vitro. J Toxicol Clin
	and some fractions from Myris-	N (E0174	Exp 1990; 10(6): 361–373.
	tica fragrans (nut-meg) on Esch-	MF0174	Kusumoto, I. T., T. Naka-
	erichia coli enterotoxin-induced		bayashi, H. Kida, H. Miyashiro,
	secretory response. Int J Phar-		M. Hattori, T. Namba and K.
	macog 1992; 30(3): 179–183.		Shimotohno. Screening of vari-
MF0167	Singh, A. and A. R. Rao. Modu-		ous plant extracts used in Ayur-
	latory effect of areca nut on the		vedic medicine for inhibitory
	action of mace (Myristica fra-		effects on human immunodefi-
	grans, Houtt) on the hepatic		ciency virus type 1 (HIV-1) pro-
	detoxification system in mice.		tease. Phytother Res 1995; 9(3):
	Food Chem Toxicol 1993; 31	_	180–184.
	(7): 517–521.	MF0175	Chen, D. H., Q. I. Chang and J.
MF0168	Hashim, S., V. S. Aboobaker, R.		D. Feng. Comparative studies on
	Madhubala, R. K. Bhattacharya		essential oil of Myristica fra-
	and A. R. Rao. Modulatory ef-		grans Houtt. (seeds and leaves)
	fects of essential oils from spices		cultivated on Hainan Island and

MF0185 MF0186	plants used in the state of Sao Paulo, Brasil. J Ethnopharma-col 1988; 24(1): 19–29. Schenk, H. P. and D. Lamparsky. Analysis of nutmeg oil using chromatographic methods. J Chromatogr 1981; 204: 391–395. Han, Y. B., K. H. Shin and W. S. Woo. Effect of spices on hepatic
MF0187	microsomal enzyme function in mice. Arch Pharm Res 1984; 7(1): 53–56. Kumari, M. V. R. and A. R. Rao.
	Effects of mace (Myristica fra- grans, Houtt.) on cytosolic glu- tathione s-transferase activity and acid soluble sulfhydryl level in mouse liver. Cancer Lett
MF0188	1989; 46(2): 87–91. Ozaki, Y., S. Soedigdo, Y. R. Wattimena and A. G. Suganda. Antiinflammatory effect of mace,
	Aril of <i>Myristica fragrans</i> Houtt., and its active principles. Jap J Pharmacol 1989; 49(2): 155–163.
MF0189	Ichikawa, K., T. Kinoshita and U. Sankawa. The screening of Chinese crude drugs for CA2+ antagonist activity: Identification of active principles from the aerial part of <i>Pogostemon cablin</i> and the fruits of <i>Prunus mume</i> . Chem Pharm Bull 1989; 37(2):
MF0190	345–348. Janssens, J., G. M. Laekeman, L. A. C. Pieters, J. Totte, A. G. Herman and A. J. Vlietinck. Nut-
	meg oil: Identification and quantitation of its most active constituents as inhibitors of platelet aggregation. J Ethnopharmacol 1990; 29(2): 179–188.
MF0191 MF0192	Kiuchi, F., M. Hioki, N. Nakamura, N. Miyashita, Y. Tsuda and K. Kondo. Screening of crude drugs used in Sri Lanka for nematocidal activity on the larva of <i>Toxocaria canis</i> . Shoyakugaku Zasshi 1989; 43(4): 288–293. Cawte, J. Psychoactive substances of the South Seas: Betel,
1	MF0186 MF0188 MF0189 MF0190

MF0193	kava and pituri. Aust N Z J Psychiat 1985; 1985(19): 83–87. Takahashi, S., A. Uekane, K. Otsuka and K. Shigenobu. Sedative hypnotic action of pala papua, <i>Myristica argentea</i> , in mice. Phytother Res 1991; 5(2): 72–75.	MF0201	Kumari, M. V. R. Modulatory influence of mace (<i>Myristica fragrans</i> , Houtt.) on hepatic detoxification systems and bone marrow genotoxicity in male swiss albino mice. Nutrition Research 1992; 12(2):385–394. Sherry, C. J., R. S. Mannel and
MF0194	Stager, J., B. Wuthrich and S. G. O. Johansson. Spice allergy in celery-sensitive patients. Allergy 1991; 46(6): 475–478.		A. E. Hauck. The effect of the terpene fraction of the oil of nutmeg on the behavior of young chicks. Planta Med 1979; 36:
MF0195	Orabi, K. Y., J. S. Mossa and F. S. El-Feraly. Isolation and characterization of two antimicrobial agents from mace (<i>Myristica fragrans</i>). J Nat Prod 1991; 54(3): 856–859.	MF0203	49 Baldry, J., J. Dougan, W. S. Matthews, J. Nabney, G. R. Pickering and F. V. Robinson. Composition and flavour of nutmeg oils. Int Flavours Food Addit
MF0196	Hussain, S. P. and A. R. Rao. Chemopreventive action of mace (<i>Myristica fragrans</i> , Houtt) on methylcholanthrene-induced carcinogensis in the uterine cervix in mice. Cancer Lett 1991;	MF0204	1976; 7: 28–30. Misra, V., R. N. Misra and W. G. Unger. Role of nutmeg in inhibiting prostaglandin biosynthesis. Indian J Med Res 1978; 67: 482–484.
MF0197	56(3): 231–234. Kiuchi, F., N. Nakamura, N. Miyashita, S. Nishizawa, Y. Tsuda and K. Kondo. Nematoci-	MF0205	Stamford, I. F., A. Bennett and J. Greenhalf. Treatment of diarrhoea in cattle and pigs with nutmeg. Vet Rec 1978; 103: 14–15.
	dal activity of some anthelmintics, traditional medicines, and spices by a new assay method using larvae of <i>Toxocara canis</i> . Shoyakugaku Zasshi 1989;	MF0206	Gopalakrishnan, M., K. Rajaraman and A. G. Mathew. Identification of the mace pigment. J Food Sci Technol 1979; 16(6): 261–262.
MF0198	43(4): 279–287. Lam, L. K. T. and B. L. Zheng. Effects of essential oils on glu- tathione s-transferase activity in mice. J Agr Food Chem 1991; 39(4): 660–662.	MF0207	Marcus, C. and E. P. Lichtenstein. Interactions of naturally occurring food plant components with insecticides and pentobarbitalin rats and mice. J Agr Food Chem 1982; 30: 563–568.
MF0199	Matsumoto, A., T. Matsumoto and H. Tokuda. Lignans from mace as neoplasm inhibitors. Patent-Japan Kokai Tokkyo	MF0208	To-A-Nun, C., T. Sommart and V. Rakvidhyasastra. Effect of some medicinal plants and spices on growth of Aspergillus. Abstr
MF0200	Koho-03 287,527 1991; 4 pp Suzuki, H. and M. Harada. Identification of nutmeg by thin-layer chromatography and its introduction to Japanese standards for nonpharmacopeial crude drugs. Eisei Shikensho Hokoku 1990; 1990(108): 98–100.	MF0209	11th Conference of Science and Technology Thailand Kasets- art University, Bangkok, Thai- land, October 24–26, 1985 1985; 364–365. Mokkhasmit, M., K. Swatdim- ongkol and P. Satrawaha. Study on toxicity of Thai medicinal

MF0210	plants. Bull Dept Med Sci 1971; 12(2/4): 36–65. Salah Ahmed, M., G. Honda and W. Miki. Herb Drugs and Herbalists in the Middle East. Institute for the Study of Languages and cultures of Asia and Africa. Studia Culturae Islamicae No. 8, 1979; 1–208.	MF0220	wood extractives. J Agr Food Chem 1980; 28: 196–215. Meksongee, L., Y. Jiamchaisri, P. Sinchaisri and L. Kasamsuksakan. Effect of some Thai medicinal plants and spices on the alkylating activity of ethyl methane sulfonate. (Abstract). Abstr 4th Asias Symp Med Plants
MF0211	Ayensu, E. S. Medicinal plants of the West Indies. Unpublished Manuscript 1978; 110 p		Spices Bangkok Thailand September 15–19, 1980 1980; 1980: 118–.
MF0212	Jackson, W. L. Mutagenic evaluation of compound FDA-71-28 (MX8007-12-3), oil of nutmeg of East India. NTIS Report PB-267-350 1975; 1975: 1–37.	MF0221	Rajendran, V. M. and K. R. Shan- mugasundaram. Intestinal changes during diarrhea. Mechanism of action of an Indian antidiarrheal. J Madras Univ Sect B 1979; 42:
MF0213	Saito, Y., Y. Kimura and T. Sakamoto. The antioxidant effects of petroleum ether soluble and insoluble fractions from spices. Eito To Shokuryo 1976; 29:	MF0222	70–80. Rockwell, P. and I. Raw. A mutagenic screening of various herbs, spices, and food additives. Nutrition and Cancer 1979; 1: 10–15.
MF0214	505–510. Woo, W. S. and K. H. Shin. A further survey of the action of some medicinal plants on drug metabolism. Arch Pharm Res 1979; 2: 115–119.	MF0223	Schultz, J. M. and K. Herrmann. Occurrence of hydroxybenzoic acids and hydroxycinnamic acid in spices. IV. Phenolics of spices. Z Lebensm-Unters Forsch 1980; 171: 193–199.
MF0215	Lim, H. S. Some pharmacological actions of nutmeg leaves (Myristica fragrans). Proc Third Asian Symposium on Medicinal Plants and Spices Colombo Sri Lanka	MF0224	Gershbein, L. L. Regeneration of rat liver in the presence of essential oils and their components. Food Cosmet Toxicol 1977; 15: 173–182.
MF0216	February 1977 1977; 1977: 20A—. Lal, S. D. and K. Lata. Plants used by the Bhat community for regulating fertility. Econ Bot 1980; 34: 273–275.	MF0225	Sherry, C. J., L. E. Ray and R. E. Herron. The pharmacological effects of a ligroun extract of nutmeg (<i>Myristica fragrans</i>). J Ethnopharmacol 1982; 6(1):
MF0217	Kimura, Y., Y. Saito, T. Sakamoto, M. Shinbo and S. Kameyama. Food antioxidant from mice. Patent-Japan Kokai Tokkyo Koho-79,130,485 1979;	MF0226	61-66. Fundaro, A. and M. C. Cassone. Effect of the essential oils of chamomile, cinnamon, absinthium, mace, and origanum on
MF0218	9 pp Rao, M. R. R. and S. R. Parakh. Effect of some indigenous drugs on the sexual behavior of male rats. (Abstract). Indian J Pharm Sci 1978; 40: 236E	MF0227	operant behavior in rats. Boll Soc Ital Biol Sper 1980; 56: 2375–2380. Dabral, P.K. and R. K. Sharma. Evaluation of the role of rumalaya and geriforte in chronic arth-
MF0219	Gottlieb, O. R. and W. B. Mors. Potential utilization of Brazilian		ritis-A preliminary study. Probe 1983; 22(2): 120–127.

MF0228	Yamamoto, H., T. Mizutani and H. Nomura. Studies on the mutagenicity of crude drug extracts. I. Yakugaku Zasshi 1982; 102: 596–601.	MF0238	Damhoeri, A., A. Hosono, T. Itoh, and A. Matsuyama. In vitro mutagenicity tests on capsicum pepper, shallot and nutmeg oleoresins. Agr Biol Chem 1985;
MF0229	Sherry, C. J. and D. R. Erdelt. Nutmeg oil: Effect on acute amphetamine intoxication. Int J Crude Drug Pos. 1082: 20: 80: 02	MF0239	49(5): 1519–1520. Arseculeratne, S. N., A. A. L. Gunatilaka and R. G. Panabok-
MF0230	Drug Res 1982; 20: 89–92. Davis, D. V. and R. G. Cooks. Direct characterization of nut- meg constituents by mass spec- trometry-mass spectrometry. J Agr Food Chem 1982; 30(3): 495–504.	MF0240	ke. Studies on medicinal plants of Sri Lanka. Part 14: Toxicity of some traditional medicinal herbs. J Ethnopharmacol 1985; 13(3): 323–335. Weissinger, J. Effect of nutmeg, aspirin, chlorpromazine and lith-
MF0231	Vitalyos, D. Phytotherapy in domestic traditional medicine in Matouba-Papaye (Guadeloupe). Dissertation-Ph.DUniv Paris 1979; 1979: 110 pp.	MF0241	ium on normal intestinal transport. Proc West Pharmacol Soc 1985; 28: 287–293. Shin, K. H. and W. S. Woo. A survey of the response of medici-
MF0232	Novitch, M. and R. S. Schweiker. Orally administered menstrual drug products for over-the-coun- ter human use, establishment of a monograph. Fed Regist 1982;	MF0242	nal plants on drug metabolism. Korean J Pharmacog 1980; 11: 109–122. Bye Jr, R. A. Medicinal plants of the Sierra Madre: Comparative
MF0233	47: 55076–55101. Conner, D. E. and L. R. Beuchat. Effects of essential oils from plants on growth of food spoil- age yeasts. J Food Sci 1984; 49(2): 429–434.	MF0243	study of Tarahumara and Mexican market plants. Econ Bot 1986; 40(1): 103–124. Messiha, F. S. and N. N. Zaki. Effect of nutmeg on ethanol and D-amphetamine-produced alter-
MF0234	Ungsurungsie, M., O. Suthien- kul and C. Paovalo. Mutagenic- ity screening of popular Thai spices. Food Chem Toxicol 1982;	MF0244	ation of locomotor activity in the mouse. Vet Hum Toxicol 1984; 26: 17–20. Forrest, J. E., R. A. Heacock and
MF0235	20: 527–530. Kiuchi, F., M. Shibuya, T. Kinoshita and U. Sankawa. Inhibition of prostaglandin biosynthesis by the constituents of medicinal plants. Chem Pharm Bull 1983; 31(10): 3391–3396.	MF0245	T. P. Forest. Diarylpropanoids from nutmeg and mace (<i>Myristica fragrans</i> Houtt.). J Chem Soc Perkin Trans I 1974; 1974: 205–209. De A Ribeiro, R., M. M. R. Fiuza De Melo, F. De Barros, C.
MF0236	Gopalarkishnan, M. and A. G. Mathew. Proanthocyanidins of nutmeg. Indian Cocoa Areca -		Gomes and G. Trolin. Acute antihypertensive effect in conscious rats produced by some medicinal plants used in the state
MF0237	nut Spices J 1983; 6(4): 105—. Kuo, Y. H., Y. T. Lin and Y. T. Lin. Studies on the extractive constituents of the nutmeg of Myristica fragrans Houtt. J Chin Chem Soc (Taipei) 1983; 30(1): 63–67.	MF0246	of Sao Paulo. J Ethnopharma- col 1986; 15(3): 261–269. Singh, Y. N. Traditional medicine in Fiji: Some herbal folk cures used by Fiji Indians. J Ethno- pharmacol 1986; 15(1): 57–88.

MF0247	Rashid, A. and D. S. Misra. Antienterotoxic effect of <i>Myristica fragrans</i> (nutmeg) on enterotoxigenic <i>Escherichia coli</i> . Indian J Med Res 1984; 79(5): 594–696.	MF0256	roin extract of nutmeg and its residue on ethanol-induced sleep in the young chick. Int J Crude Drug Res 1982; 20(1): 37–41. Sankaran, J. R. Problem of male virility-An Oriental therapy. J
MF0248	Rasheed, A., G. Laekeman, J. Totte, A. J. Vlietnick and A. G. Herman. Eugenol and prostaglandin biosynthesis. N Engl J Med 1984; 310(1): 50–51.	MF0257	Natl Integ Med Ass 1984; 26(11): 315–317. Nes, I. F., R. Skjelkvale, O. Olsvik and B. P. Berdal. The effect of natural spices and oleo-
MF0249	Reiter, M. and W. Brandt. Relaxant effects on tracheal and ileal smooth muscles of the guinea pig. Arzneim-Forsch 1985; 35 (1): 408–414.		resins on Lactobacillus planta- rum and Staphylococcus aureus. Microb Assoc Interact Food Proc Int IUMS-ICFMH Sym 12th 1983 1984; 1984: 435–440.
MF0250	Rasheed, A., G. M. Laekeman, A. J. Vlietnick, J. Janssens, G. Hatfield, J. Totte and A. G.	MF0258	Simpson, G. E. Folk medicine in Trinidad. J Amer Folklore 1962; 75: 326–340.
	Herman. Pharmacological influence of nutmeg and nutmeg constituents on rabbit platelet function. Planta Med 1984; 1984(3): 222–226.	MF0259	Carr, C. J. Evaluation of the health aspects of nutmeg, mace and their essential oils as food ingredients. US NTIS Rep PB-266-878 1973; 1973: 1–17.
MF0251	Namba, T., M. Tsunezuka, D. M. R. B. Dissanayake, U. Pilapitiya, K. Saito, N. Kakiuchi and M. Hattori. Studies on dental caries	MF0260	Anon. Teratologic evaluation of oil of nutmeg in rabbits. US NTIS Report PB-264-821 1974; 1974: 15 pp
	prevention by traditional medicines (Part VII). Screening of Ayurvedic medicines for antiplaque action. Shoyakugaku Zasshi 1985; 39(2): 146–153.	MF0261	Ikeda, R., W. L. Stanley, S. H. Vannier and E. M. Spitler. The monoterpene hydrocarbon composition of some essential oils. J Food Sci 1962; 27: 455–458.
MF0252	Shin, K. H. and W. S. Woo. Biological evaluation of mace for drug metabolism modifying acti-	MF0262	Anon. The Herbalist. Hammond Book Company, Hammond Indiana, 1931; 400 pp
MF0253	vity. Korean J Pharmacog 1986; 17(3): 189–194. Morii, I. Topical antitussive, expectorant, analgesic and sedative agents. Patent-Japan Kokai	MF0263	Kimura, Y., Y. Saito, T. Sakamoto, M. Shinbo and S. Kameyama. Food antioxidant from mace. Patent-Japan Kokai Tokkyo Koho-79 130,486 1979; 9 pp
MF0254	Tokkyo Koho-62 59,219 1987; 7 pp Janssen, A. M., N. L. J. Chin, J. J. C. Scheffer and A. Baerheim-Svendsen. Screening for anti-	MF0264	Mokkhasmit, M., W. Ngarmwathana, K. Sawasdimongkol and U. Permphiphat. Pharmacological evaluation of Thai medicinal plants. (Continued). J Med Ass
	microbial activity of some essential oils by the agar overlay technique. Pharm Weekbl (Sci Ed) 1986; 8(6): 289–292.	MF0265	Thailand 1971; 54(7): 490–504. Nayar, S. L. Poisonous seeds of India. Part II. J Bombay Nat Hist Soc 1954; 52(2/3): 1–18.
MF0255	Herron, R. E., C. J. Sherry and L. E. Ray. The effect of the lig-	MF0266	Bellakhdar, J., R. Claisse, J. Fleurentin and C. Younos. Reper-

	tory of standard herbal drugs in the Moroccan pharmacopoea. J Ethnopharmacol 1991; 35(2): 123–143.	MF0270	Sherry, C. J. and R. E. Burnette. Enhancement of ethanol-induced sleep by whole oil of nutmeg. Experientia 1977; 34: 492–493.
MF0267	Bhattarapia, N. K. Folk herbal remedies for diarrhoea and dysentery in central Nepal. Fitoterapia 1993; 64(3): 243–250.	MF0271	Purushothaman, K. K. and A. Sarada. Isolation of DL-dehydroisoeugenol from the aril of <i>Myristica fragrans</i> . Indian J
MF0268	Coee, F. G. and G. J. Anderson. Ethnobotany of the Garifuna of eastern Nicaragua. Econ Bot 1996; 50(1): 71–107.	MF0272	Chem 1980; 19B: 236–237. Orabi, K. Y., J. S. Mossa and F. S. El-Feraly. Isolation and characterization of two antimicrobial
MF0269	Barrett, B. Medicinal plants of Nicaragua's Atlantic coast. Econ Bot 1994; 48(1): 8–20.		agents from mace (Myristica fragrans). J Nat Prod 1991; 54(3): 856–859.

19 Nelumbo nucifera Gaertn.

Common Names

Ambal	India	Lotus	Nepal
Ambuja	India	Nelum	Sri Lanka
Baino	Cambodia	Padma	India
Bhasinda	India	Pamposh	India
Bua luang	Thailand	Podum	India
Erra-tamara	India	Pankaj	India
East Indian lotus	Nepal	Plumula nelumbinis	China
Gusetsu	China	Pundarika	India
Hindu lotus	China	Renbo	China
Indian lotus	Japan	Renniku	Japan
Kamal	India	Salukid ba	India
Kalung	India	Senthamara	India
Kamal	Nepal	Soh-lapudong	India
Kamala	India	Suriyakamal	India
Kayo	Japan	Tavare-gadde	India
Lian	China	Thamara	India
Lotus	Cambodia	Upal ba	India
Lotus	India	Water lily	Guyana
Lotus	Japan	Yeon-kot	Japan

BOTANICAL DESCRIPTION

This genus of the water-lily or NYMPHA-CACEAE family is an aquatic herb with stout, creeping rhizome. The leaves are peltate, 60-90 cm or more in diameter, orbicular and glaucous. Petioles are very long, smooth or with small prickles. The flowers are solitary, large and white or rosy; fruittorus is large, top-shaped, 5-10 cm in diameter, spongy, with 10–30 uniovulate carpels sunk separately in cavities on the upper side. The carpels mature into ovoid nutlike achenes.

ORIGIN AND DISTRIBUTION

N. nucifera is a native of China, Japan and possibly India. The natural distribution extends from Japan to N. E. Australia and across the Caspian Sea. It has become naturalized in eastern Asia through cultivation.

TRADITIONAL MEDICINAL USES

Cambodia. Hot water extract of the root is taken orally as an emmenagogue^{NN0101}.

China. Hot water extracts of the dried receptacle and the rhizomes are taken orally as hemostatics^{NN0137}. Hot water extract of the rhizome is taken orally to expel the placenta and/or dead fetus^{NN0111}. Hot water extract of the seed is taken orally for spermatorrhea^{NN0112}. Decoction of the sun-dried flower is taken orally as a diuretic and aphrodisiac^{NN0130}.

India. Hot water extract of the dried flower is taken orally for cholera^{NN0140}. Hot water extract of the rhizome is taken orally as a sedative^{NN0133}. Olive oil extract of the dried fruit, in a mixture containing Terminalia arjuna, Aglaia roxburghiana, Jasminum officinalis, Indogofera tinctoria, Tinospora cordifolia, Pterocarpus marsupium, Eclipta alba, Pandanus tectorius, Oroxylum indicum, Valeriana hardwickii, Terminalia chebula, Terminalia bellerica, Emblica officinalis, Punica granatum and Sesamum indicum, is used externally to prevent premature graying of the hair NN0157. The fresh leaf is made into a paste and applied topically for leprosy^{NN0132}. The dried seed is taken with rice wash orally for 7 days by females to increase fertility^{NN0143}.

Indo-China. Hot water extract of the rhizome is taken as a tea for menorrhagia^{NN0103}. **Japan.** Decoctions of the dried rhizome and dried seed are taken orally as protectants against alcohol toxocity^{NN0150}.

Korea. Hot water extract of the dried flower is taken orally as an abortifacient^{NNO141}.

Malaysia. Hot water extract of the embryo is taken orally to treat spermatorrhea^{NN0103}.

Nepal. Hot water extract of the flower is taken orally for menorrhagia^{NN0100}.

Taiwan. Decoction of the dried seed is taken orally to treat diabetes mellitus^{NNO117}. **Thailand.** Hot water extract of the dried rhizome is taken orally as an antiinflammatory agent, cardiotonic and neurotonic. Hot water extract of the dried seed is taken

orally as a tonic^{NN0155}. Hot water extract of the stamen is taken orally as an antipyretic. Hot water extract of the root is taken orally as an antipyretic^{NN0155}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Alkanes (C12-C27): Lf EO 40.0% NN0120

Anonaine: Lf^{NN0121} Armepavine: Lf^{NN0121}

Armepavine, (DL): Embryo 95.2^{NN0147} Armepavine, N-Nor: Lf^{NN0121}, Pod, Sd^{NN0102}

Asimilobine: Lf 15.0%^{NN0121} Asimilobine, N-methyl: Lf^{NN0121}

Coclaurine, N-methyl 4-methyl: Embryo^{NN0121}

Cynaroside: Embryo NN0105

Ginnol: Lf^{NN0110}

Hyperoside: Embryo, Torus^{NN0105},

 $Plumule^{\text{NN}0131}$

Kaempferol-3-0-beta-D-glucuronide:

Torus^{NN0105}

Liensinine: Lf^{NN0104}, Sd^{NN0116}, Plumule^{NN0131},

Embryo 0.85-0.94%^{NN0114}

Liensinine, iso: Sd^{NN0108}, Embryo 125^{NN0147}

Linalool: Petiole EO 12.5% NNO 120

Lirinidine: Lf 22NN0121

Liriodenine: Pod, Sd^{NN0102}, Lf^{NN0121}

Lotusine: Sd^{NN0113} Meratin: Torus^{NN0105}

Neferine: Sd^{NN0108}, Embryo 220^{NN0147},

 $Plumule^{NN0131}$

Nelumbo polysaccharide: Sd 203^{NN0109} Nonadecane, N: Petiole EO 10.5%^{NN0120}

Nuciferine: Lf^{NN0110}, Sd, Pod^{NN0102} Nuciferine, N-nor: Aer^{NN0108} Nuciferine, nor: Lf^{NN0121}

Nuciferine, nor (-): Pod, Sd^{NN0113}

Nuciferine, pro: Sd^{NN0113} Phytol: Lf EO 16.2%^{NN0120} Quercetin: Receptacle 99^{NN0122}

Quercetin-3-0-beta-D-glucuronide: Torus^{NN0105}

Quercitrin, iso: Lf^{NN0134} Roemerine: Lf^{NN0121}

Rutin: Plumule^{NN0131}, Embryo^{NN0105} Sitosterol, beta: Sd^{NN0105}, Lf^{NN0110}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Adrenergic receptor blocker (Alpha-2).

Water extract of the dried seed produced strong activity^{NN0127}.

NELUMBO NUCIFERA 355

Alcohol dehydrogenase inhibition. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420.0 mg/kg 30 minutes after ethanol (3 g/kg) administration, was active. Measurements were made at 1 and 6 hours after administration in liver cytosol. The treatment was inactive when administered 30 minutes before or simultaneously with ethanol. Decoction of the dried seed, administered intragastrically to rats at a dose of 332.0 mg/kg 30 minutes after ethanol (3 gm/kg), was active in liver cytosol when measured at 1 and 6 hours after administration. The treatment was inactive at 1 and 6 hours after administration when administered 30 minutes before or simultaneously with ethanol^{NN0150}.

Aldehyde dehydrogenase inhibition. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420.0 mg/kg 30 minutes after ethanol (3 g/kg) administration, was active. Measurement was made 1 hour after treatment in liver cytosol. The treatment was inactive when administered 30 minutes before or simultaneously with ethanol and measured 1 and 6 hours later. When administered 30 minutes after ethanol, the decoction was inactive 6 hours after the treatment. Decoction of the dried seed, administered intragastrically to rats at a dose of 332.0 mg/kg 30 minutes after ethanol (3 gm/kg), was active when measured 1 hour after administration. The treatment was inactive when measured 6 hours after administration. When administered 30 minutes before or simultaneously with ethanol (3 gm/kg), the decoction was inactive when measured at 1 and 6 hours after administration^{NN0150}.

Analgesic activity. Ethanol/water (1:1) extract of the rhizome, administered intraperitoneally to mice at a dose of 0.5 mg/kg, was inactive vs tail pressure method^{NNO154}. Ethanol/water (1:1) extract of the seed, administered intragastrically to mice, was inactive vs hot plate and tail clip methods^{NNO151}.

Angiotensin II inhibition. Water extract of the dried seed was inactive^{NN0127}.

Antiallergenic activity. Water extract of the fresh leaf, in cell culture at a concentration of 100.0 microliters/ml, produced weak activity on Leuk-RBL 2H3 vs biotinylated anti-DNP IgE/avidin-induced Betahexosaminidase release^{NN0118}.

Antibacterial activity. Decoction of the dried seed, on agar plate, was inactive on Staphylococcus aureus, MIC 125.0 mg/ml; Bacillus cereus, MIC 250.0 mg/ml; Proteus vulgaris, MIC 250.0 mg/ml; Salmonella typhi type 2, MIC 250.0 mg/ml; Sarcina lutea, MIC 250.0 mg/ml; Bordetella bronchiseptica, MIC 62.5 mg/ml; and Micrococcus flavus, MIC 62.5 mg/ml^{NN0149}. Decoction of the dried stamen, on agar plate, produced weak activity on Streptococcus mutans, MIC 122.2 mg/ml NN0123. The ethanol (95%) extract of the dried stamen, on agar plate at a concentration of 100.0 mg/disc, was inactive on Escherichia coli, Salmonella typhosa, Shigella dysenteriae, Staphylococcus aureus, and Bacillus subtilis. The water extract, on agar plate at a concentration of 20.0 mg/disc, was active on Staphylococcus aureus, and inactive on Bacillus subtilis, Escherichia coli, Salmonella typhos, and Shigella dysenteriae^{NN0135}. Ethanol/water (1:1) extract of the rhizome, on agar plate at a concentration of >25.0 mcg/ml, was inactive on Bacillus subtilis, Escherichia coli, Salmonella typhosa, Staphylococcus aureus, and Agrobacterium tumefaciens^{NN0154}.

Anticonvulsant activity. Ethanol/water (1:1) extract of the rhizome, administered intraperitoneally to mice at a dose of 0.5 mg/kg, was inactive vs electroshock-induced convulsions^{NN0154}.

Antiedema activity. Methanol extract of the flower, at a dose of 2.0 mg/ear, was inactive on mice vs 12-0-tetradecanoylphorbol-13-acetate-induced ear inflammation. The inhibition ratio was 0^{NN0115}.

Antifungal activity. Ethanol/water (1:1) extract of the rhizome, on agar plate at a

concentration of >25.0 mcg/ml, was inactive on Microsporum canis, Trichophyton mentagrophytes, and Aspergillus niger^{NNO154}.

Antihemorrhagic activity. Water extracts of the dried receptacle and the dried rhizome, administered intraperitoneally to male mice at a dose of 0.5 gm/kg, were active. Parching of the plant material increased the activity^{NN0124}.

Antihepatotoxic activity. Methanol extract of the dried seed, administered intraperitoneally to rats of both sexes at a dose of 300.0 mg/kg, was equivocal vs alpha-naphthylisothiocyanate induced hepatotoxicity. A dose of 100.0 mg/kg, administered subcutaneously to rats of both sexes, produced weak activity vs CCl₄-induced hepatotoxicity^{NN0153}.

Antihistamine activity. Ethanol/water (1:1) extract of the stamen was inactive on guinea pig's ileum^{NN0155}.

Antihypercholesterolemic activity. Ethanol (95%) extract of the freeze-dried leaf, administered by gastric intubation to rats at a dose of 0.16 gm/kg, was active vs cholesterol-loaded animals, results significant at p < 0.01 level^{NN0142}.

Antihyperglycemic activity. Ethanol (100%) and water extracts of the dried flower, administered intragastrically to rabbits at a dose of 1.0 gm/kg, were active vs glucose induced hyperglycemia. The effect was seen on fasting blood sugar in moderately diabetic animals. No effect was seen in severely diabetic animals. The ethanol (100%) and water extracts, administered intragastrically to rats at a dose of 1.0 gm/kg daily for 6 weeks, were active vs glucose-induced hyperglycemia^{NN0128}. Ethanol (95%) and water extracts of the sun-dried flower, administered intragastrically to rabbits at a dose of 1.0 gm/kg, were active vs epinephrine-induced hyperglycemia^{NN0130}. Water extract of the dried seed, administered intragastrically to mice at a dose of 1.0 gm/kg, was inactive

vs streptozotocin-induced hyperglycemia. The dose was given 1 hour after streptozotocin and twice daily for 3 subsequent days. Blood glucose was 269.5 vs 236.3 mg/dl for controls^{NN0129}.

Antihyperlipemic activity. Ethanol (95%) extract of the freeze-dried leaf, administered by gastric intubation to rats at a dose of 0.16 gm/kg, was active vs cholesterolloaded animals^{NN0142}.

Antiinflammatory activity. Ethanol/water (1:1) extract of the rhizome, administered orally to male rats at a dose of 0.5 mg/kg, was inactive vs carrageenin-induced pedal edema. The animals were dosed 1 hour before carrageenin injections^{NN0154}.

Antimutagenic activity. Ethanol (70%) extract of the dried root, on agar plate, was inactive on *Escherichia coli* PQ 37 by the SOS-chromotest method vs mitomycin-induced mutagenesis^{NN0125}.

Antinematodal activity. Water extract of the dried leaf, at variable concentrations, was inactive on Meloidogyne incognita^{NN0139}.

Antioxidant activity. Methanol extract of the fruit and the seed, at a concentration of 50.0 microliters, produced strong activity. NO0119.

Antipyretic activity. Ethanol/water (1:1) extract of the root and stamen, administered by gastric intubation to rabbits at variable dosage levels, was inactive vs yeast-induced pyrexia^{NN0155}. Hot water extract of the dried flower, administered intragastrically to rats, was inactive vs pyrexia induced by subcutaneous injection of yeast^{NN0107}.

Antispasmodic activity. Ethanol/water (1:1) extract of the rhizome was inactive on guinea pig ileum vs histamine and AChinduced spasms^{NN0154}. Ethanol/water (1:1) extract of the root, at variable concentrations, was active on guinea pig ileum. Ethanol/water (1:1) extract of the stamen, at variable concentrations, was inactive on guinea pig ileum^{NN0155}.

Antiulcer activity. Hot water extract of the dried fruit, administered by gastric intubation to mice at a dose of 1.10 gm/kg, was inactive on ulcers induced by stress^{NNO138}.

Antiviral activity. Ethanol/water (1:1) extracts of the rhizome^{NN0154} and the seed^{NN0151}, in cell culture at a concentration of 50.0 mcg/ml, were inactive on vaccinia virus.

Antiyeast activity. Ethanol (95%) extract of the dried stamen, on agar plate at a concentration of 100.0 mg/disc, and the water extract at a concentration of 20.0 mg/disc, were inactive on *Candida albicans*^{NN0135}. Ethanol/water (1:1) extract of the rhizome, on agar plate at a concentration >25.0 mcg/ml, was inactive on *Candida albicans* and *Cryptococcus neoformans*^{NN0154}.

Barbiturate potentiation. Ethanol/water (1:1) extract of the rhizome, administered intraperitoneally to mice at a dose of 0.5 mg/kg, was active^{NN0154}.

Calcium channel blocker. Water extract of the dried seed was equivocal when assayed by displacement of either nitrendipine or diltiazem^{NN0127}.

Cardiotoxic activity. Ethanol/water (1:1) extract of the stamen, administered intravenously to dogs at variable dosage levels, was inactive^{NN0155}.

Cardiovascular activity. Ethanol/water (1:1) extract of the root, administered intravenously to dogs at variable dosage levels, markedly increased the heart rate^{NN0155}.

Chronotrophic effect (positive). Ethanol/water (1:1) extract of the stamen, administered intravenously to dogs at variable dosage levels, was inactive^{NNO155}.

Complement enzyme inhibition. Water extract of the dried seed produced strong activity^{NN0127}.

Cytotoxic activity. Ethanol (100%) extract of the dried fruit, in cell culture at a concentration of 0.1 ml/plate, was inactive on Hela cells^{NN0106}. Water extract of the dried seed, in cell culture at a concentration of

500.0 mcg/ml, was inactive on CA-mammary microalveolar^{NN0127}.

Desmutagenic activity. Aqueous high speed supernatant of the fresh fruit juice (unripe), on agar plate at a concentration of 0.5 ml/plate, was inactive on *Salmonella typhimurium* TA98 in the presence of S9 mix vs mutagenicity of L-tryptophan pyrolysis product^{NN0145}. Homogenate of the fresh seed, on agar plate at a concentration of 100.0 microliters/disc, was active on *Salmonella typhimurium* TA98 and TA100 vs 1,4-dinitro-2-methyl pyrrole mutagenesis^{NN0144}. The fresh plant juice, on agar plate at a concentration of 0.5 ml/plate, was inactive on *Salmonella typhimurium* TA98^{NN0146}.

Diuretic activity. Ethanol/water (1:1) extract of the rhizome, administered intraperitoneally to saline-loaded male rats at a dose of 0.25 mg/kg, was active. Urine was collected for 4 hours posttreatment^{NN0154}. Ethanol/water (1:1) extract of the seed, administered intragastrically to rats at a dose of 750.0 mg/kg, was inactive^{NN0151}.

Estrous cycle disruption effect. Petroleum ether extract of the dried seed, administered intraperitoneally to mice at a dose of 3.0 mg/kg, was active^{NNO152}.

Ethanol absorption decrease. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420 mg/kg 30 minutes after ethanol (3 gm/kg), was inactive. Decoction of the dried seed, at a dose of 3.0 gm/kg, was inactive in the rat jejunum and stomach. Intragastric administration to rats, at a dose of 332.0 mg/kg, was inactive^{NN0150}. **Ethanol elimination increase.** Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420.0 mg/kg 30 minutes before or simultaneously with ethanol (3 gm/kg), was active. Decoction of the dried seed, administered intragastrically to rats at a dose of 332.0 mg/kg, 30 minutes before ethanol or simultaneously with ethanol (3.0 gm/kg), was active^{NN0150}.

Ethanol oxidation enhanced. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420.0 mg/kg 30 minutes before, simultaneously with or 30 minutes after ethanol (3 gm/kg) treatment, was active, results significant at p <0.05 level. Decoction of the dried root, administered intragastrically to rats at a dose of 332.0 mg/kg 30 minutes before, simultaneously with, or 30 minutes after ethanol (3 gm/kg), decreased the lactate/pyruvate ratio in blood after 1 hour^{NN0150}.

Glucose uptake induction. Ethanol (100%) extract of the dried flower, administered intragastrically to rats at a dose of 1.0 gm/kg daily for 6 weeks, was active. Following the treatment the animals were sacrificed and a diaphragm preparation was made. Insulin-stimulated glucose uptake was enhanced in the preparation from animals fed the extract^{NNO128}.

Glutamate oxaloacetate inhibition. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420.0 mg/kg 30 minutes before, simultaneously with or 30 minutes after ethanol (3 g/kg), was inactive. Decoction of the dried seed, administered intragastrically to rats at a dose of 332.0 mg/kg 30 minutes before, simultaneously with, or 30 minutes after ethanol (3 gm/kg), was inactive^{NN0150}.

Glutamate oxaloacetate stimulation. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420.0 mg/kg 30 minutes before, simultaneously with or 30 minutes after ethanol (3 g/kg), was inactive. Decoction of the dried seed, administered intragastrically to rats at a dose of 332.0 mg/kg 30 minutes before, simultaneously with, or 30 minutes after ethanol (3 gm/kg), was inactive^{NN0150}.

Glutamate pyruvate transaminase inhibition. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420.0 mg/kg 30 minutes before, simultaneously with or 30 minutes after ethanol

(3 g/kg), was inactive. Decoction of the dried seed, administered intragastrically to rats at a dose of 332.0 mg/kg 30 minutes before, simultaneously with, or 30 minutes after ethanol (3 gm/kg), was inactive^{NN0150}.

Glutamate pyruvate transaminase stimulation. Decoction of the dried rhizome, administered intragastrically to rats at a dose of 420.0 mg/kg 30 minutes before, simultaneously with or 30 minutes after ethanol (3 g/kg), was inactive. Decoction of the dried seed, administered intragastrically to rats at a dose of 332.0 mg/kg 30 minutes before, simultaneously with, or 30 minutes after ethanol (3 gm/kg), was inactive.^{NN0150}.

Hemostatic activity. Hot water extract of the dried receptacle, administered intraperitoneally to mice at a dose of 1.0 gm/kg, was active. Hot water extract of the dried rhizome, administered intraperitoneally to mice at a dose of 1.0 gm/kg, was active^{NN0137}. Hypoglycemic activity. Ethanol (100%) and water extracts of the dried flower, administered intragastrically to rabbits at a dose of 1.0 gm/kg, were active. A dose of 500.0 mg/ kg produced weak activity. When administered to rats at a dose of 1.0 gm/kg daily for 6 weeks, the extracts produced an acute effect^{NN0128}. Ethanol/water (1:1) extract of the rhizome, administered orally to rats at a dose of 250.0 mg/kg, was inactive. Less than 30% drop in blood sugar level was $indicated^{\text{NN0154}}.$

Hypotensive activity. Ethanol/water (1:1) extract of the stamen, administered intravenously to dogs at variable dosage levels, was inactive^{NN0155}.

Hypothermic activity. Ethanol/water (1:1) extract of the rhizome, administered intraperitoneally to mice at a dose of 0.5 mg/kg, was inactive^{NN0154}.

Nematocidal activity. Decoction of the rhizome and the stamen, at a concentration of 10.0 mg/ml, were inactive on *Toxacara canis*^{NN0126}.

Platelet activating factor binding inhibition. Water extract of the dried seed produced weak activity^{NN0127}.

Semen coagulation. Ethanol/water (1:1) extract of the rhizome, at a concentration of 2.0%, was inactive on the rat semen^{NN0154}. **Spasmolytic activity.** Ethanol/water (1:1) extract of the seed was inactive on the rat uterus^{NN0151}.

Spermicidal activity. Ethanol/water (1:1) extract of the rhizome was inactive on the rat sperm^{NN0154}.

Toxic effect. Ethanol/water (1:1) extracts of the dried root and the stamen, administered by gastric intubation and subcutaneously to mice at a dose of 10.0 gm/kg, were inactive^{NN0136}.

Toxicity assessment. Ethanol/water (1:1) extract of the rhizome, administered intraperitoneally to mice, produced LD₅₀ 1.0 gm/ kg^{NN0154}. Ethanol/water (1:1) extract of the seed, administered intraperitoneally to mice, produced $LD_{50} > 1$ gm/kg NN0151 . Water extract of the dried receptacle, administered intraperitoneally to mice, produced LD₅₀ 2.5 gm/kg^{NN0122}.

Tumor promotion inhibition. Ethyl acetate extract of the fresh root, in cell culture at a concentration of 200.0 mcg/ml, was active on Epstein-Barr virus vs 12-0-hexadecanoylphorbol-13-acetate-induced Epstein-Barr virus activation. The methanol extract was inactive^{NN0148}.

WBC macrophage stimulant. Water extract of the freeze-dried seed, at a concentration of 2.0 mcg/ml, was inactive. Nitrile formation was used as an index of the macrophage stimulating activity^{NN0144}.

REFERENCES

NN0100 Suwal, P. N. Medicinal plants of Nepal. Ministry of forests, Department of Medicinal Plants, Thapathali, Kathmandu, Nepal, 1970. NN0101 Quisumbing, E. Medicinal

plants of the Philippines. Tech

Bull 16, Rep Philippines, Dept Agr Nat Res, Manilla 1951; 1951: 1-.

NN0102 Yang, T. H., C. M. Chen, C. S. Lu and C. L. Liao. Alkaloids of lotus receptacle. J Chin Chem Soc (Taipei) 1972; 19: 143-. NN0103

Burkill, I. H. Dictionary of the economic products of the Malay Peninsula. Ministry of Agriculture and Cooperatives, Kuala Lumpur, Malaysia. Volume II, 1966. NN0104

Pan, P. C., Y. L. Chou, T. T. Sun and Y. S. Kao. Studies on the alkaloids of embryo Loti, Nelumbo nucifera Gaertn. II. Structure of liensinine. Scientia Sinica 1962; 11(3): 321–336.

NN0105 Subramanian, S. S., K. J. Joseph and A. G. R. Nair. Flavonoids of Nelumbium speciousum. Phytochemistry 1969; 8: 674–.

NN0106 Kim, S. K. A study on the cytotoxicities of domestic antitumor crude drugs. Koreal J Pharma**cog** 1971; 2(4): 177–179.

Gujral, M. L., P. N. Saxena and R. P. Kohli. Antipyretic activity of some indigenous drugs. Indian J Med Res 1955; 43(3): 457–461.

Willaman, J. J. and H. L. Li. Alkaloid-bearing plants and their contained alkaloids, 1957-1968. Lloydia 1970; 33S: 1–286. Das, S., B. Ray and P. K. Ghosal. Structural studies of a polysaccharide from the seeds of Nelumbo nucifera. Carbohydr Res 1992; 224(1): 331–335.

Tripathi, V. J., A. B. Ray and B. Dasgupta. Chemical examination of Indian lotus, Nelumbo nucifera. J Inst Chem (Calcutta) 1974; 46: 200-.

Kong, Y. C., S. Y. Hu, F. K. Lau, C. T. Che, H. W. Yeung, S. Cheung and J. C. C. Hwang. Potential anti-fertility plants from Chinese medicine. Amer J Chin Med 1976; 4: 105–128.

NN0107

NN0108

NN0109

NN0110

NN0111

NN0112	Keys, J. D. Chinese herbs, Bot-	NN0121	Shoji, N., A. Umeyama, N. Saito,
11110112	any, Chemistry and Pharmaco-	11110121	A. Iuchi, T. Takemoto, A. Kaji-
	dynamics. Charles E. Tuttle Co.,		wara and Y. Ohizumi. Asimilo-
	Rutland, Vermont, USA, 1976.		bine and lirinidine, serotonergic
NN0113	Wang, J. L., X. M. Hu, W. H. Yin		receptor antagonists from <i>Nel</i> -
14140113	and H. S. Cai. Alkaloids of <i>Plu</i> -		umbo nucifera. J Nat Prod 1987;
			50(4): 773–774.
	mula nelumbinis. Zhongguo Zho-	NN0122	• •
	ngyao Zazhi 1991; 16(11): 673–	MNU122	Ishida, H., T. Umino, K. Tsuji and
NINIO114	675.		T. Kosuge. Studies on the anti-
NN0114	Hu, X. M., B. H. Xhou, S. Luo,		hemorrhagic substances in herbs
	H. S. Cai and W. H. Yin. Deter-		classified as hemostatics in Chi-
	mination of liensinine in embryo		nese Medicine. VIII. On the anti-
	of Hindu lotus (Nelumbo nuci-		hemorrhagic principle in Nelum-
	fera). Chung Ts'ao yao 1992;		bins receptaculum. Chem Pharm
	23(11): 575–576.		Bull 1988; 36(11): 4585–4587.
NN0115	Yasukawa, K., A. yamaguchi, J.	NN0123	Chen, C. P., C. C. Lin and T.
	Arita, S. Sakurai, A. Ikeda and		Namba. Screening of Taiwan-
	M. Takido. Inhibitory effect of		ese crude drugs for antibacte-
	edible plant extracts on 12-O-		rial activity against Streptococ-
	tetradecanoylphorbol-13-acetate		cus mutans. J Ethnopharmacol
	induced ear oedema in mice.		1989; 27(3): 285–295.
	Phytother Res 1993; 7(2): 185–	NN0124	Ishida, H., T. Umino, K. Tsuji
	189.		and T. Kosuge. Studies on the
NN0116	Hu, X. M., B. H. Zhou, S. D. Luo,		antihemorrhagic substances in
	H. S. Cai and W. H. Yin. Quanti-		herbs classified as hemostatics in
	tative determination of liensinine		Chinese Medicine. X. On hemo-
	in the embryo nelumbinis (Nel-		static activities on the parched
	umbo nucifera Gaertn.) by TLC-		herbs for hemostatics. Yakuga-
	scanning. Zhongguo Zhongyao		ku Zasshi 1989; 109(3): 179–183.
	Zazhi 1993; 18(3): 167–168.	NN0125	Seo, J. S., Y. W. Lee, N. J. Suh
NN0117	Lin, C.C. Crude drugs used for		and I. M. Chang. Assay of anti-
	the treatment of diabetes mel-		mutagenic activities of vegetable
	litus in Taiwan. Amer J Chin		plants. Korean J Pharmacog
	Med 1992; 20(3/4): 269–279.		1990; 21(1): 88–91.
NN0118	Tanaka, Y., M. Kataoka, Y. Kon-	NN0126	Kiuchi, F., M. Hioki, N. Naka-
	ishi, T. Nishmune and Y. Taka-		mura, N. Miyashita, Y. Tsuda
	gaki. Effects of vegetable foods		and K. Kondo. Screening of crude
	on Beta-hexosaminidase release		drugs used in Sri Lanka for nem-
	from rat basophilic leukemia		atocidal activity in the larva of
	cells (RBL-2H3). Jpn J Toxicol		Toxacara canis. Shoyakugaku
	Environ Health 1992; 38(5):		Zasshi 1989; 43(4): 288–293.
	418–424.	NN0127	Han, C. Q., J. X. Pan, C. L. Li
NN0119	Kim, S. Y., J. H. Kim, S. K. Kim,		and F. Tu. The screening of Chi-
	M. J. Oh and M. Y. Jung. Anti-		nese traditional drugs by bio-
	oxidant activities of selected		logical assay and the isolation of
	Oriental herb extracts. J Amer		some active components. Int J
	Oil Chem Soc 1994; 71(6): 633–		Chinese Med 1991; 16(1): 1–17.
	640.	NN0128	Huralikuppi, J. C., A. B. Christo-
NN0120	Kameoka, H., H. Omoto and K.		pher and P. M. Stephen. Antidia-
	Yoshimura. Essential oil from		betic effect of Nelumbo nucifera
	Nelumbo nucifera Gaertn. Yuka-		Gaertn. Extract. Part II. Phy-
	gaku 1983; 32(1): 48–50.		tother Res 1991; 5(5): 217–223.
			-,- (-,

NN0129	Kim, C. J., S. K. Cho, M. S. Shin, H. Cho, D. S. Ro, J. S. Park and C. S. Yook. Hypoglycemic activity of medicinal plants. Arch Pharm Res 1990; 13(4): 371–373.	NN0138	Yakugaku Zasshi 1981; 101: 501–503. Yamazaki, M. and H. Shirota. Application of experimental stress ulcer test in mice for the survey of neurotropic naturally oc-
NN0130	Huralikuppi, J. C., A. B. Christopher and P. M. Stephen. Antidiabetic effect of <i>Nelumbo nucifera</i> Gaertn. Part 1 Preliminary studies in rabbits. Phytother Res 1991; 5(2): 54–58.	NN0139	curring drug materials. Shoya- kugaku Zasshi 1981; 35: 96– 102. Vijayalakshimi, K., S. D. Mishra and S. K. Prasad. Nematicidal properties of some indigenous
NN0131	Xu, L. X. and A. Liu. Determination of alkaloids and flavonoids in lotus plumule by non-aqueous titration and colormetry. Yaowu Fenxi Zazhi 1991; 11(6): 349–352.	NN0140	plant materials against second stage juveniles of <i>Meloidogyne</i> incognita (Koffoid and white) Chitwood. Indian J Entomol 1979; 41(4): 326–331. Jain, S. P. and D. M. Verma.
NN0132	Mitra, R., S. Mehrotra and L. D. Kapoor. Pharmacognostic study of <i>Nelumbo nucifera</i> Gaertn. (Kamal) Leaf-II. J Res Indian Med Yoga Homeopathy 1976; 11:	NN0141	Medicinal plants in the folklore of North East Haryana. Natl Acad Sci Lett (India) 1981; 4 (7): 269–271. Woo, W. S., E. B. Lee, K. H.
NN0133	67–77. Mitra, R., S. Mehrotra and L. D. Kapoor. Pharmacognostical study of <i>Nelumbo nucifera</i> Gaertn. (Kamal) Rhizome- I. J Res Indian Med Yoga Homeopathy 1976;	NN0142	Shin, S. S. Kang and H. J. Chi. A review of research on plants for fertility regulation in Korea. Korean J Pharmacog 1981; 12 (3): 153–170. Onishi, E., K. Yamada, T.
NN0134	11: 45–53. Be Thi Thuan, Hoang Thi Kim Thank, Nguyen Thi Thin. Flavonoids in the lotus plant. (<i>Nelumbo nucifera</i> Gaertn. Nymphacaceae). Tap Chi Duoc Hoc	NN0143	Yamada, K. Kaji, H. Inoue, Y. Seyama and S. Yamashita. Comparative effects of crude drugs on serum lipids. Chem Pharm Bull 1984; 32(2): 646–650. Venkataraghavan, S. and T. P.
NN0135	1980; 1980(6): 19–20. Avirutnant, W. and A. Pongpan. The antimicrobial activity of some Thai Flowers and plants. Mahidol Univ J Pharm Sci 1983; 10(3): 81–86.	NN0144	Sundaresan. A short note on contraceptive in Ayurveda. J Sci Res Pl Med 1981; 2(1/2): 39–. Osawa, T., H. Ishibashi, M. Namiki, T. Kada and K. Tsuji. Desmutagenic action of food com-
NN0136	Mokkhasmit, M., K. Swatdimongkol and P. Satrawaha. Study on toxicity of Thai medicinal plants. Bull Dept Med Sci 1971; 12(2/4): 36–65.	NN0145	ponents on mutagens formed by the sorbic acid nitrile reaction. Agr Biol Chem 1986; 50(8): 1971–1977. Morita, K., M. Hara and T. Kada.
NN0137	Kosuge, T., M. Yokota, M. Yoshida and A. Ochiai. Studies on antihemorrhagic principles in the crude drugs for hemostatics. I. On hemostatic activities of the crude drugs for hemostatics.		Studies on natural desmutagens: screening for vegetable and fruit factors active in inactivation of mutagenic pyrolysis products from amino acids. Agr Biol Chem 1978; 42(6): 1235–1238.

NN0146 NN0147	Yamaguchi, T., Y. Yamashita and T, Abe. Desmutagenic activity of peroxidase on autoxidized linolenic acid. Agr Biol Chem 1980; 44(4): 959–961. Nishibe, S., H. Tsukamoto, H. Kinoshita, S. Kitagawa and A. Sakushima. Alkaloids from embryo of the seed of <i>Nelumbo nucifera</i> . J Nat Prod 1986; 49 (3): 547–548. Koshimizu, K., H. Ohigashi, H.	NN0153 NN0154	ity of seed of <i>Nelumbo nucifera</i> in mice. Indian J Exp Biol 1992; 30(6): 533–534. Ohta, S., N. Sato, S. H. Tu and M. Shinoda. Protective effects of Taiwan crude drugs on experimental liver injuries. Yakugaku Zasshi 1992; 113(12): 870–880. Dhawan, B. N., G. K. Patnaik, R. P. Rastogi, K. K. Singh and J. S. Tandon. Screening of Indian plants for biological activity. VI.
	Tokuda, A. Kondo and K. Yama- guchi. Screening of edible plants against possible anti-tumor pro- moting activity. Cancer Lett	NN0155	Indian J Exp Biol 1977; 15: 208–219. Wasuwat, S. A list of Thai medicinal plants, ASRCT, Bangkok.
NN0149	1988; 39(3): 247–257. Chen, C. P., C. C. Lin and T. Namba. Development of natural crude drug resources from Tai- wan. VI. In vitro studies of the	NN0155	Report No. 1 on Res. Project 17. Research Report A.S.R.C.T., No. 1 on Project 17 1967, 22 pp. Mokkhasmit, M., W. Ngarmwathana, K. Sawasdimongkol and
NN0150	inhibitory effect on 12 microorganisms. Shoyakugaku Zasshi 1987; 41(3): 215–225. Sakai, K., T. Yamane, Y. Saitoh, C. Ikawa and T. Nishihata. Effect of water extracts of crude drugs	NN0156	U. Permphiphat. Pharmacological evaluation of Thai medicinal plants. J Med Ass Thailand 1971; 54(7): 490–504. Mokkhasmit, M., W. Ngarmwathana, K. Sawasdimongkol and
NN0151	in decreasing blood ethanol concentrations in rats. Chem Pharm Bull 1987; 35(11): 4597–4604. Abraham, Z., S. D. Bhakuni, H. S. Garg, A. K. Goel, B. N. Mehrotra and G. K. Patnaik. Screening of Indian plants for biolog-	NN0157	U. Permphiphat. Pharmacological evaluation of Thai medicinal plants. Research Report A.S.R.C.T. , No. 1 on Project 17 1967; 22 pp. Kumar, D. S. and Y. S. Prabhakar. On the ethnomedical signifi-
NN0152	ical activity. Part XII. Indian J Exp Biol 24 1986; 1986: 48–68. Mazumder, U. K., M. Gupta, G. Pramanik, R. K. Mukhopadhyay and S. Sarkar. Antifertility activ-		cance of the arjun tree, <i>Terminalia arjuna</i> (Roxb.) Wight & Arnot. J Ethnopharmacol 1987; 20(2): 173–190.

Pimpinella anisum

Common Names

Anis vert Anisa Anise seed Anise	France Tunisia India Guyana Japan Trinidad West Indies Yugoslavia Argentina Colombia Guatemala Mexico Peru USA Arabic countries	Badishep Boucage anis Habbat hlawa Kuppi Mitha-jira Muhuri Petit anise Razianaj Saunf Star anise Saunf Sawonf Shombu Somp Sop	India North Africa Morocco India India India North Africa Arabic countries India
Annesella	Italy	Sopu	India
Badian	Afgĥanistan	Star anise	USA
Badian	India		

BOTANICAL DESCRIPTION

An annual of the UMBELLIFERAE family. It grows to 30-60 cm high with ternately pinnate leaves. The flowers are small, white, and borne in compound umbels. The fruit is ovoid or pyriform, laterally compressed, 3-5 mm in length and 2–3 mm wide, grayish green to grayish brown with a peculiar sweet smell. The mericarp is broadly ovoid, 5ridged with short hairs and numerous vittae.

ORIGIN AND DISTRIBUTION

This native of the eastern Mediterranean region is widely cultivated in southern and central Europe, USSR, North Africa and to a lesser extent Mexico and South America.

TRADITIONAL MEDICINAL USES

Afghanistan. Hot water extract of the fruit, together with ginger, is taken orally during the menstrual cycle to induce pregnancy PA0202. **Arabic countries.** Hot water extract of the fruit is taken orally as an emmenagogue in Unani medicine^{PA0183}.

Argentina. Decoction of the dried fruit is taken orally for diarrhea and respiratory and urinary tract infections^{PA0137}. Hot water extract of the seed is taken orally to facilitate childbirth and expulsion of the placenta^{PA0109}. **Colombia.** Hot water extract of the fruit is taken orally as a galactagogue^{PA0102}.

Egypt. The essential oil is taken orally as an aphrodisiac PAO107. The essential oil of the fruit is taken orally as a galactagogue PAO206.

Europe. Hot water extract of the dried aerial parts is used to induce milk letdown and as an aphrodisiac^{PA0174}. Hot water extract of the fruit is taken orally by pregnant women to produce abortion^{PA0171}. The essential oil is taken orally as a galactagogue^{PA0206}.

France. Hot water extract of the fruit is taken orally as a galactagogue, expectorant and antispasmodic^{PAO173}.

Guatemala. Decoction of the seed is taken orally for stomach pains and fever^{PA0141}.

Italy. Ethanol/water (1:1) extract of the seed is taken orally to treat spasms in the intestines^{PA0200}. Infusion of the fruit is taken orally as a digestive and antiasthmatic^{PA0133}.

Malaysia. Hot water extract of the fruit is taken orally by the mother immediately after giving birth^{PA0115}.

Mexico. Decoction of the dried seed, in combination with *Allium cepa* and *Allium sativum*, is given to the newborn child^{PA0187}. Hot water extract of the dried fruit is taken orally as an abortifacient^{PA0129}.

Morocco. The fruit is taken orally as an aphrodisiac, a poison antidote, for digestive difficulties and as an aperitive for aerophagie^{PA0143}.

North Africa. Hot water extract of the fruit is taken orally as a galactagogue^{PA0201}.

Peru. Hot water extract of the dried fruit is taken orally as a carminative, tonic and stimulant^{PA0199}.

Trinidad. The fruit, together with mauby bark and nutmeg mace, is boiled, sweetened with sugar and taken orally as an aphrodisiac^{PA0205}.

Tunisia. Hot water extract of the dried fruit is taken orally for stomach pain, heartburn and as a galactagogue^{PA0185}.

USA. Fluid extract of the fruit is taken orally to increase the secretion of milk^{PAO111}. Hot water extract of the dried fruit is taken orally for nausea, flatulence, colic in infants, and as a carminative and stimulant PAO209. Hot water extract of the seed is taken orally for asthma and as a carminative PAO146. Infusion of the dried seed is taken orally for coughs PAO181. The dried seeds are taken orally for gastritis, flatulence, abdominal cramping, gastrointestinal disorders and dyspepsia PAO157.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Abscisic acid: Fr 0.224^{PA0169} Anethole, cis: Fr EO^{PA0147}

Anethole, trans: Lf EO PA0179 , Fr EO PA0147 Anethole: Fr EO 80-90% PA0101 , Sd PA0134 ,

Shoots^{PA0153}

Anisaldehyde: Fr^{PA0150}, EO^{PA0121} Anisic acid, para: Fr EO^{PA0147}

Anisic acid: EO^{PA0163} Anisketone: Sd EO^{PA0126} Anisyl alcohol: Fr EO^{PA0147} Anisyl ketone: Fr EO^{PA0147}

Benzene, 2-hydroxy-5-methoxy-trans-propenyl 2-methyl-butyrate: Fr EO^{PA0128} Benzoic acid, 4-beta-d-glucopyranosyl-oxy: Fr 0.90%^{PA0186}

Benzoquinone, 1,4: Rt, Lf, Callus tissue^{PA0119}

Bergamotene, alpha, trans: Sd EO^{PA0168} Bergapten: Callus tiss 0.5%^{PA0135}, Fr^{PA0158} Bisabolene, beta: EO, Callus tiss^{PA0148}

Caffeic acid: Fr 2060^{PA0175} Camphene: EO^{PA0163}

Camphor: Fr EO^{PA0147}

Carvone, dihydro acetate: Fr EO^{PA0147} Carvone: Sd EO^{PA0168}, Fr EO^{PA0147} Caryophyllene, beta: Fr EO^{PA0147}

Chamazulene: EOPA0163

Choline, acetyl: Sd 64 nmol/gm^{PA0154} Choline: Sd 3950 nmol/gm^{PA0154} Cinnamaldehyde: Sd EO^{PA0168} Cinnamyl alcohol: Sd EO^{PA0168} Coumaric acid, para: Fr 737^{PA0175} Cynaroside: Fr 0.128%^{PA0170} Elemene, beta: Sd EO^{PA0168}

Essential oil (*Pimpinella anisum*): Call tiss^{PA0204}, Sd 0.61%^{PA0116}, Fr 2.4-3.2%^{PA0101}

Estragole: EO 81.5% PA0164, Fr EO 4.0% PA0147 Eugenol, (2-methyl-butyrate), pseudo-iso

epoxy: Shoot^{PÁ0153}

Eugenol, (2-methyl-butyrate), pseudo-iso: Shoot^{PA0153}

Eugenol, (2-methyl-butyryl ester), iso pseudo epoxy: Callus EO^{PA0148}

Eugenol, (2-methyl-butyryl ester), iso pseudo: Fr^{PA0150}, Callus EO^{PA0148}

Eugenol, (2-methyl-butyryl ester), iso pseudo epoxy: EO^{PA0148}

Eugenol, (2-methyl-butyryl ester), iso-

pseudo: EO^{PA0148} Eugenol, iso pseudo 2-mehtyl-butyrate: Fr

EOPA0151

Eugenol, iso pseudo 2-methyl-butyrate epoxide: Fr EO^{PA0151}

Eugenol, iso pseudo epoxy 2-methyl-bu-

tyrate: Sd^{PA0152} Eugenol: Fr EO^{PA0147} Fenchone: Fr EO^{PA0147} Foeniculin: Fr^{PA0150}

Geijerene, pre: Rt EO 16.4% PA0182

Glucinol: PIPA0177 Imperatorin: LfPA0131 Limonene: Fr EOPA0147 Linalool: Fr EOPA0147 Luteolin: Fr 0.125%PA0170 Luteolin-7-O-beta-d-xylosid

Luteolin-7-O-beta-d-xyloside: Fr

 $0.158\%^{PA0170}$

Myristicin: SdPA0208, Callus EOPA0148

Oleic acid: Sd 21.7%^{PA0184} Orientin, iso: Fr^{PA0178}

Petroselinic acid: Sd 48.9% PA0184 Phellandrene: Sd EOPA0116

Phenyl-(DL)-2-methyl-butanoate 4-

methoxy-2-(prop-trans-1-enyl): Aer 1.5% PA0145

Phenyl, 4-methoxy-2-(trans-1-propenyl) 2-methyl-butyrate: Sd^{PA0152}

Pinene, alpha: EOPA0163

Plastohydroquinone 9: Rt, Lf, Callus

tissPA0119

Plastoquinone: Rt, Lf, Callus tissPA0119

Psoralen, 5-methoxy: FrPA0139

Purine, amino 6-benzyl: Callus tiss^{PA0149} Quercetin-3-O-beta-d-glucuronide: Fr^{PA0178}

Quercitrin, iso: LfPA0207

Rutin: Fr^{PA0178} Safrole: EO^{PA0121} Scoparone: Lf^{PA0131}

Scopoletin: LfPA0131, Callus tiss 2.5%PA0135

Seselin: LfPA0131

Sitosterol, beta: Callus tiss^{PA0120} Stigmasterol: Callus tiss^{PA0120} Stilbene 4,4-dimethoxy: Fr EO^{PA0156}

Terpinene, alpha: EO^{PÁ0163} Terpineol: EO^{PA0121} Thujene, alpha: EO^{PA0163}

Thymol: EOPA0163

Tocopherol, alpha: Callus tiss, Rt, Lf^{PA0119}
Tocoquinone, alpha: Callus tiss, Rt, Lf^{PA0119}
Umbelliferone: Callus tiss 0.5%^{PA0135}
Vitamin K1: Callus tiss, Rt, Lf^{PA0119}

Vitexin, iso: Fr^{PA0178} Xanthotoxin: Fr^{PA0139,PA0158}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Absorption effects. The essential oil, administered to the abdomen of mice at a concentration of 0.25%, was inactive after 2 hours^{PA0118}.

Adenosine nucleotide release inhibition.

The essential oil, in cell culture at a concentration of 100.0 mcg/ml, was active on aortic endothelium^{PA0165}.

Adenosine uptake inhibition. The essential oil, in cell culture at a concentration of 40.0 mcg/ml, was active on aortic endothelium^{PA0165}.

Allergenic activity. The essential oil, at a concentration of 5.0%, produced contact dermatitis in cake factory workers^{PA0123}.

Analgesic activity. Hot water extract of the dried seed, administered intraperitoneally to mice at a dose of 150.0 mg/kg, was active vs benzoquinone-induced writhing and the hot plate method^{PA0198}.

Antibacterial activity. Decoction of the dried fruit, on agar plate, was inactive on Pseudomonas aeruginosa^{PAO[37}. The ethanol (95%) extract, at a concentration of 50.0 microliters/plate, was active on Staphylococcus aureus PA0140. The water extract, at concentrations of 1.0 mg/ml^{PA0122} and 50.0 microliters/platePA0140, was inactive on Salmonella typhi and Staphylococcus aureus, respectively. The hot water extract, at a concentration of 62.5 mg/ml, was inactive on Escherichia coli and Staphylococcus aureus PA0136. The fruit essential oil, on agar plate, was active on Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, PA0195 and Bacillus cereus PA0197. The essential oil, on agar plate, was active on Pseudomonas aeruginosa and Staphylococcus aureus, and inactive on Bacillus cereus and Escherichia coli^{PA0180}.

Anticonvulsant activity. Ethanol (95%) extract of the dried fruit, administered intraperitoneally to mice at a dose of 2–4 ml/kg, was active vs supramaximal electroshock-induced convulsions; produced weak activity vs corazol-induced convulsions and was inactive vs strychnine-induced convulsions^{PAO106}. Water extract of the dried twig, administered intraperitoneally to mice at a dose of 0.2 ml/animal, was active vs picrotoxin-induced convulsions, results significant at p <0.001 level^{PAO193}.

Anticrustacean activity. Ethanol (95%) extract of the dried fruit was active on *Artemia salina*, LD₅₀ 145 mcg/ml^{PAOI30}.

Antiedema activity. Methanol extract of the fruit, applied topically to the mouse at a dose of 2.0 mg/ear, was active vs 12-O-tetradecanoylphorbol-13-acetate-induced ear inflammation. The inhibition ratio was 6^{PAO132}.

Antifungal activity. Hot water extract of the dried fruit, at a concentration of 62.5 mg/ml, was inactive on Aspergillus niger PA0136. The fruit essential oil, on agar plate, was active on Lentinus lepideus, Lenzites trabea, and Polyporus versicolor PA0112. A concen-

tration of 500 ppm was active on Alternaria alternata, Alternaria tenuissima, Aspergillus awamori, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus ochraceus, Aspergillus sydowi, Aspergillus tamarii, Aspergillus terreus, Botryodiplodia threobromae, Cladosporium herbarum, Cladosporium werneckii, Colletotrichum capsici, Curvularia lunata, Curvularia pallescens, Fusarium monoliforme, Fusarium oxysporum, Fusarium udum, Mucor spinescence, Penicillium chrysogenum, Penicillum citrinum, and Rhizopus nigricans PA0194. The oil produced strong activity on Aspergillus aegyptiacus, Penicillium cyclopium, and Trichoderma viride PA0197. A concentration of 1.0 ml/plate was active on Rhizoctonia solani and Sclerotinia sclerotiorum; inactive on Phytophthora capsici and produced weak activity on Fusarium moniliforme PA0124. The seed essential oil, on agar plate, was active on Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, and Penicillium species PA0162. The essential oil, on agar plate, was inactive on Penicillium cyclopium, Trichoderma viride, and Aspergillus aegyptiacus PAO180. **Antihypertensive activity.** Ethanol (95%) extract of the dried entire plant, in a mixture containing Cucumis melo, Carum carvi, Zea mays, Foeniculum vulgare, Laurus nobilis, Prunus avium, and Tribulus terrestris, was activePA0189.

Anti-inflammatory activity. Ethyl acetate and hexane extracts of the fruit, applied topically to the mouse at a dose of 20.0 microliters/animal, were equivocal vs tetradecanoyl phorbol acetate-induced acetate phospholipid synthesis and 12-O-tetradecanoyl phorbol-13-acetate-induced ear inflammation. The methanol extract produced weak activity vs tetradecanoyl phorbol acetateinduced acetate phospholipid synthesis PA0125. **Antimutagenic activity.** Infusion of the fruit, on agar plate at a concentration of 100.0 microliters/disc, was inactive on Salmonella typhimurium TA100 vs ethyl methanesulfonate-induced mutagenicity. It was also active on Salmonella typhimurium TA98 vs

2-amino-anthracene induced mutagenicity. Metabolic activation was required for activity PA0144.

Antinematodal activity. Water extract of the fruit, at a concentration of 10.0 mg/ml, produced weak activity on *Toxacara canis*. The methanol extract, at a concentration of 1.0 mg/ml, was active^{PAO159}.

Antioxidant activity. Petroleum ether extract of the fruit, at a concentration of 0.1%, was inactive, and the petroleum ether insoluble fraction produced weak activity^{PA0172}. Antispasmodic activity. Ethanol (95%) extract of the dried entire plant, in a mixture containing Cucumis melo, Carum carvi, Zea mays, Foeniculum vulgare, Laurus nobilis, Prunus avium, and Tribulus terrestris, was active^{PA0189}.

Antiviral activity. Ethanol (80%) and water extracts of the dried aerial parts, in cell culture at concentrations of 6.0 and 8.0 mg/ml respectively, were active on Rinderpest virus^{PA0196}. Water extract of the dried fruit, in cell culture at a concentration of 10.0%, was inactive on Herpes virus type 2, influenza virus A2 (Manheim 57), poliovirus II, and vaccinia virus^{PA0188}.

Antiyeast activity. The fruit essential oil, on agar plate, was active on *Candida albicans*^{PAO195}.

Barbiturate potentiation. Ether extract of the dried seed, administered intraperitoneally to mice at a dose of 100.0 mg/kg, was inactive PA0155. The essential oil, administered intraperitoneally to mice at a dose of 50.0 mg/kg, produced 93% prolongation PA0167. **Chromosome aberration induction.** The

seed, together with the seed of Cuminum cyminum, administered intragastrically to mice at a dose of 0.1 gm/animal, produced weak activity on the sperm and bone marrow^{PAO161}.

Clastogenic activity. The seed, together with the seed of *Cuminum cyminum*, administered intragastrically to mice at a dose of 0.1 gm/animal, produced weak activity on bone marrow micronucleated cells^{PA0161}.

CNS depressant activity. The essential oil, applied externally to goldfish, was active^{PAO108}. **Cytotoxic activity.** Ethanol (50%) extract of the fruit, in cell culture, was inactive on CA-98KB, ED₅₀ >20.0 mcg/ml^{PAO103}.

Cytotoxic activity. Water extract of the dried fruit, in cell culture at a concentration of 10.0%, was inactive on Hela cells^{PA0188}. **Diuretic activity.** The dried seed, administered by gastric intubation to rabbits, was active. The effect was blocked by morphine PAO117. **Estrogenic effect.** The essential oil, administered subcutaneously to ovariectomized rats at a dose of 0.1 ml/animal, produced an activity equivalent to 0.1 mcg estradiolPA0105. The essential oil, administered subcutaneously to ovariectomized mice, produced activity equivalent to less than 10 units/ml. When administered to immature female rats, activity equivalent to 100 units/ml was produced PA0100. The seed oil, administered subcutaneously to ovariectomized rats, was active PA0114.

Expectorant activity. The essential oil, administered orally to guinea pigs at a dose of 10.0 mg/kg, was active^{PA0107}.

Galactagogue effect. Ethanol (95%) extract of the dried fruit, in a preparation containing Carum carvi, Foeniculum vulgare, Anethum graveolens, Trigonella foenum-graecum, and Petroselinum crispum, taken orally by 80 nursing mothers with low breast milk, was effective. The quantity of milk increased while taking the mixture. It had no effect on the milk content (water, fat and carbohydrate), and no toxic effect was observed in either mothers or babies^{PAO191}.

Glutathione-S-transferase induction. The essential oil, administered intragastrically to mice at a dose of 30.0 mg/animal every other day for a total of 3 doses, was inactive on the small intestine, liver and stomach^{PA0160}. **GRAS status.** The seed was approved by the United States of America Food and Drug Administration in 1976 (Sect. 582.10) as a flavoring agent^{PA0127}.

Hypotensive activity. Ethanol (50%) extract of the fruit, administered intravenously to dogs at a dose of 50.5 mg/kg, was active^{PAO103}.

Hypotensive activity. Water extract of the seed, at a concentration of 10%, was active in rats. The effect was abolished by atropine PA0154.

Immunosuppressant activity. The essential oil, administered intragastrically to mice at a dose of 0.375 gm/kg, was inactive. Humoral immunity was assayed in sheep erythrocyte plaque formation, and cellular immunity assayed in survival time after *Listeria monocytogenes* infection^{PA0138}.

Insecticidal activity. Acetone extract of the aerial parts was active on *Musca domestica*^{PA0166}. Chloroform extract of the fresh aerial parts was active on *Aedes aegypti* and *Drosophila melanogaster*^{PA0166}.

Kidney stone dissolution. Ethanol (95%) extract of the dried entire plant, in a mixture containing Cucumis melo, Carum carvi, Zea mays, Foeniculum vulgare, Laurus nobilis, Prunus avium, and Tribulus terrestris, was taken by 300 patients with kidney and ureteral stones. Sixty-seven percent of the patients passed stones, 18% transferred and there was a decrease in volume of the stones in 11% of the patients. Ninety-eight percent of the patients reported relief from colic PAO189.

Liver regeneration stimulation. The seed essential oil, administered subcutaneously to partially hepatectomized rats at a dose of 100.0 mg/animal daily for 7 days, was active, results significant at p <0.01 level^{PA0176}.

Mutagenic activity. Ethanol (95%) extract of the dried fruit, on agar plate at a concentration of 10.0 mg/plate, produced weak activity on Salmonella typhimurium TA102^{PA0130}. Ethanol (95%) extract of the dried seed, on agar plate at a concentration of 5-20 mg/plate, was active on streptomycin-dependent strain of Salmonella typhimurium TA98. Metabolic activation had no effect on the results^{PA0192}.

Nematocidal activity. Water extract of the dried fruit, in cell culture at a concentration of 10.0 mg/ml, and methanol extract, at a concentration of 1.0 mg/ml, were active on *Toxacara canis*^{PAO142}.

Skeletal muscle stimulant activity. Water extract of the seed, at a concentration of 10.0%, was active on the frog rectus abdominus muscle. The effect was abolished by tubocurarine PAO154.

Smooth muscle relaxant activity. The essential oil was active on the dog small intestine^{PA0203}. The essential oil, at a concentration of 100.0 mg/liter, was inactive on guinea pig ileum^{PA0190}.

Smooth muscle stimulant activity. Water extract of the seed, at a concentration of 10%, was active on rat jejunum. The effect was abolished by atropine^{PA0154}.

Toxicity assessment. Ethanol (95%) extract of the dried entire plant, administered intraperitoneally to mice in a mixture containing Cucumis melo, Carum carvi, Zea mays, Foeniculum vulgare, Laurus nobilis, Prunus avium, and Tribulus terrestris, produced LD₅₀ 7.0 mg/kg^{PAO189}.

Tumor promotion inhibition. Hexane and methanol extracts of the fruit, in cell culture at a concentration of 50.0 mcg/ml, were equivocal on C3H/10TI/2 cells, and the ethyl acetate extract produced weak activity vs tetradecanoyl phorbol acetate-induced acetate phospholipid synthesis^{PAO125}.

Uterine relaxation effect. The seed oil, administered intraperitoneally to rats at a dose of 0.1 ml/animal, was active^{PA0110}.

REFERENCES

PA0100 Zondek, B. and E. Bergmann. Phenol methyl ethers as oestrogenic agents. **Biochem J** 1938; 32: 641–645.

PA0101 Shishkin, B. K. Umbelliflorae. Flora of the USSR 1973; 16: 1–478.

PA0102 Garcia-Barriga, H. Flora Medicinal de Colombia. Vol. 2/3

PIMPINELLA ANISUM 369

	Universidad Nacional, Bogota,	PA0114	Sharaf, A. Estrogenicity in plants.
	1975.		Arab Sci Congr 5th, Baghdad
PA0103	Dhar, M. L., M. M. Dhar, B. N.		1966, 1967; 1967 1: 281–.
	Dhawan, B. N. Mehrotra and C.	PA0115	Burkill, I. H. Dictionary of the
	Ray. Screening of Indian plants		Economic Products of the Malay
	for biological activity: Part I.		Peninsula. Ministry of Agricul-
	Indian J Exp Biol 1968; 6: 232–247.		ture and Cooperatives, Kuala
PA0104	Stager, R. New studies on the ef-		Lumpur, Malaysia, Volume II, 1966.
1 A0104	fect of plant odors on ants. Mitt	PA0116	Rutovskii, B. N. and P. Leonov.
	Schweiz Antomol Ges 1933; 15:	1710110	Crimean oil of anise. Trav Sci
	567–.		Inst Chim Pharm Moscou 1924;
PA0105	Sharaf, A. and N. Goma. Phyto-		10: 64–68.
	estrogens and their antagonism	PA0117	Skovronskii, V. A. The effect of
	to progesterone and testosterone.		caraway, anise, and of sweet fen-
	J Endocrinol 1965; 31: 289–.		nel on urine elimination. Sbor-
PA0106	Athanassova-Shapova, S. and K.		nik Nauch 1953; 6: 275–283.
	Roussinov. Pharmacological stu-	PA0118	Meyer, F. and E. Meyer. Percu-
	dies of Bulgarian plants with a		taneous absorption of essential
	view to their anti-convulsive ef-		oils and their constituents. Arz-
	fect. C R Acad Bulg Sci 1965;		neim-Forsch 1959; 9(8): 516–
DA0107	18: 691–694.	DA0110	519.
PA0107	Boyd, E. M. and G. L. Pearson. On the expectorant action of	PA0119	Lichtenthaler, H. K. and V.
	volatile oils. Amer J Med Sci		Straub. The formation of lipoquinones in tissue cultures. Planta
	1946; 211: 602–.		Med Suppl 1975; 1975: 198–.
PA0108	Wesley-Hadzija, B. and P. Boh-	PA0120	Kartnig, T. H., H. Moeckel and
	ing. Influence of some essential		B. Maunz. The occurrence of
	oils on the central nervous sys-		coumarins and sterols in tissue
	tem of fish. Ann Pharm Fr 1956;		cultures of roots of Anethum
	14: 283–.		graveolens and Pimpinella ani-
PA0109	Manfred, L. Siete Mil Recetas		sum. Planta Med 1975; 27: 1
	Botanicas a Base de Mil Tresci-	PA0121	Kampf, R. and E. Steinegger.
	entas Plantas. Edit Kier, Buenos		Thin-layer and gas chromato-
DA0110	Aires, 1947.		graphic studies of Oleum anisi
PA0110	Sharaf, A. Food plants as a possible factor in fertility control. Qual		and Oleum anisi stellata. Pharm Acta Helv 1974; 49: 87–.
	Plant Mater Veg 1969; 17: 153–.	PA0122	Perez, C. and C. Anesini. In vitro
PA0111	Anon. Lilly's Hand Book of	1710122	antibacterial activity of Argen-
	Pharmacy and Therapeutics. 5th		tine folk medicinal plants against
	Rev, Eli Lilly and Co., India-		Salmonella typhi. J Ethnophar-
	napolis, 1898.		mocol 1994; 44(1): 41–46.
PA0112	Maruzzella, J. C., D. Scrandis,	PA0123	Garcia-Bravo, B., A. P. Bernal,
	J. B. Scrandis and G. Grabon.		M. J. Garcia-Hernandez and F.
	Action of odoriferous organic		Camacho. Occupational contact
	chemicals and essential oils on		dermatitis from anethole in food
	wood-destroying fungi. Plant		handlers. Contact Dermatitis
DA0112	Dis Rept 1960; 44: 789–.	DA0124	1997; 37(1): 38
PA0113	Maruzzella, J. C. and J. Balter. The action of essential oils on	PA0124	Muller-Riebau, F., B. Berger and
	phytopathogenic fungi. Plant		O. Yegen. Chemical composition and fungitoxic properties to
	Dis Rept 1959; 43: 1143–1147.		phytopathogenic fungi of essen-
	2.2 repe 1707, 15. 11 15 11 177.		pm, topathogome rangi or essen-

	tial oils of selected aromatic plants growing wild in Turkey. J Agr Food Chem 1995; 43(8): 2262– 2266.	PA0133	induced ear oedema in mice. Phytother Res 1993; 7(2): 185–189. De Feo, V. and F. Senatore. Medicinal plants and phytotherapy
PA0125	Okuyama, T., M. Matsuda, Y. Masuda, M. Baba, H. Masubuchi, M. Adachi, Y. Okada, T. Hashimoto, L. B. Zou and H.		in the Amalfitan Coast, Salerno Province, Campania, Southern Italy. J Ethnopharmacol 1993; 39(1): 39–51.
	Nishino. Studies on cancer biochemoprevention of natural resources. X. Inhibitory effect of spices on TPA-enhanced 3H-choline incorporation in phospholicid of C3H10T1/2 cells	PA0134	Himejima, M. and I. Kubo. Fungicidal activity of polygodial in combination with anethole and indole against <i>Candida albicans</i> . J Agr Food Chem 1993; 41(10): 1776–1779.
DA 0126	pholipid of C3H10T1/2 cells and on TPA-induced ear edema. Zhonghua Yaoxue Zashi 1995; 47(5): 421–430.	PA0135	Reichlina, J. and B. Merkel. Elicitor-induced formation of coumarin derivatives in suspension
PA0126	Kubo, I. and I. Kinst-Hori. Tyrosinase inhibitors from anise oil. J Agr Food Chem 1998; 46(4): 1268–1271.	PA0136	cultures of <i>Pimpinella anisum</i> . Planta Med 1993; 59(2): 187– 188. Ansiri C and C Perez Screen
PA0127	Anon. Gras status of foods and food additives. Fed Regist 1976; 41: 38644–.	PA0130	Anesini, C. and C. Perez. Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 1993;
PA0128	Kubeczka, K. H., F. V. Massow, V. Formacek and M. A. R. Smith. A new type of phenylpropane from the essential fruit oil of <i>Pimpinella anisum.</i> Z Naturforsch Ser B 1976; 31: 283–.	PA0137	39(2): 119–128. Perez, C. and C. Anesini. Inhibition of <i>Pseudomonas aeruginosa</i> by Argentinean medicinal plants. Fitoterapia 1994; 65(2): 169–172.
PA0129	Lozoya, X. Estado Actual del Conocimiento en Plantas Medic- inales Mexicanas. Inst. Mes. Est. Pl. Med., A. C., 1976; 165–.	PA0138	Gaworski, C. L., T. A. Vollmuth, M. M. Dozier, J. D. Heck, L. T. Dunn, H. V. Ratajczak and P. T. Thomas. An immunotoxicity as-
PA0130	Mahmoud, I., A. Alkofahi and A. Abdelaziz. Mutagenic and toxic activities of several spices		sessment of food flavouring ingredients. Food Chem Toxicol 1994; 32(5): 409–415.
	and some Jordanian medicinal plants. Int J Pharmacog 1992; 30(2): 81–85.	PA0139	Ceska, O., S. K. Chaudhary, P. J. Warrington and M. J. Ashwood-Smith. Photoactive furo-
PA0131	Zobel, A. M., J. Y. Wang, R. E. March and S. A. Brown. Identification of eight coumarins oc-		coumarins in fruits of some umbellifers. Phytochemistry 1987; 26(1): 165–169.
	curring with psoralen, xanthotoxin, and bergapten on leaf surfaces. J Chem Ecol 1991; 17(9): 1859–1871.	PA0140	Perez, C. and C. Anesini. Anti- bacterial activity of alimentary plants against <i>Staphylococcus</i> aureus growth. Amer J Chinese
PA0132	Yasukawa, K., A. Yamaguchi, J. Arita, S. Sakurai, A. Ikeda and M. Takido. Inhibitory effect of edible plant extracts on 12-O-tetradecanoylphorbol-13-acetate-	PA0141	Med 1994; 22(2): 169–174. Giron, L. M., V. Freire, A. Alonzo and A. Caceres. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala.

PIMPINELLA ANISUM 371

PA0142	J Ethnopharmacol 1991; 34(2/3): 173–187. Kiuchi, F. Studies on the nematocidal constituents of natural medicines. Nat Med 1995; 49(4): 364–372.	PA0151	DCCC. Pharm Weekbl (Sci Ed) 1987; 9(4): 240–. Schultze, W., G. Lange and G. Heinrich. Mass spectrometric study of medicinal plants. II. Direct mass spectrometric analysis
PA0143	Bellakhdar, J., R. Claisse, J. Fleurentin and C. Younos. Repertory of standard herbal drugs in the Moroccan pharmagopoea. J Ethnopharmacol 1991; 35(2): 123–143.	PA0152	of Anisi fructus. Dtsch Apoth Ztg 1986; 126(51/52): 2787–2793. Kleiman, R., R. D. Plattner and D. Weisleder. Antigermination activity of phenylpropenoids from the genus Pimpinella. J
PA0144	Badria, F. A. Is man helpless against cancer? An environmental approach: Antimutagenic agents from Egyptian food and medicinal preparations. Cancer Lett 1994; 84(1): 1–5.	PA0153	Nat Prod 1988; 51(2): 249–256. Reichling, J., R. Martin and U. Thuron. Production and accumulation of phenylpropanoids in tissue and organ cultures of <i>Pimpinella anisum</i> . Z Naturforsch
PA0145	Carter, G. T., H. K. Schinoes and E. P. Lichtenstein. 4-Methoxy-2-(trans-1-propenyl)phenyl(DL)-2-methylbutanoate from anise plants. Phytochemistry 1977; 16: 615–616.	PA0154	Ser C 1988; 43(1/2): 42–46. Haranath, P. S. R. K., M. H. Akther and S. I. Sharif. Acetyl- choline and choline in common spices. Phytother Res 1987; 1(2): 91–92.
PA0146	Der Marderosian, A. H. Pharmacognosy: Medicinal teas-boon or bane? Drug Ther 1977; 1977 (7): 178–186. Embong, M. B., D. Hadziyev	PA0155	Han, Y. B., K. H. Shin and W. S. Woo. Effect of spices on hepatic microsomal enzyme function in mice. Arch Pharm Res 1984; 7(1): 53–56.
1 A0147	and S. Molnar. Essential oils from spices grown in Alberta - Anise oil (<i>Pimpinella anisum</i>). Can J Plant Sci 1977; 57: 681–688.	PA0156	Miething, H., V. Seger and R. Hansel. Determination of photo-anethole from a stored essential oil of anise fruits as 4,4'-dimethoxystilbene by high perfor-
PA0148	Reichling, J., H. Becker, R. Martin and G. Burkhardt. Comparative studies on the production and accumulation of essential oil in the whole plant and in the cell culture of <i>Pimpinella anisum</i> L. Z Naturforsch Ser C 1985; 40 (7/8): 465–468.	PA0157	mance liquid chromatography- ultraviolet coupling. Phytother Res 1990; 4(3): 121–123. Giordano, J. and P. J. Levine. Botanical preparations used in Italian folk medicine: Possible pharmacological and chemical basis of effect. Social Pharma-
PA0149	Ernst, D., W. Schaefer and D. Oesterhelt. Isolation and identification of a new, naturally occurring cytokinin (6-benzylaminopurine riboside) from an anise cell	PA0158	col 1989; 3(1/2): 83–110. Zobel, A. M. and S. A. Brown. Psoralens on the surface of seeds of Rutaceae and fruits of Umbel- liferae and Leguminosae. Can J
PA0150	culture (<i>Pimpinella anisum</i> L.). Planta 1983; 159(3): 222–225. Miething, H., V. Seger and R. Hansel. Separation of non-polar components of <i>Anisi fructus</i> by	PA0159	Bot 1991; 69(3): 485–488. Kiuchi, F., N. Nakamura, N. Miyashita, S. Nishizawa, Y. Tsuda and K. Kondo. Nematoci- dal activity of some anthelmin-

	tics, traditional medicines, and spices by a new assay method		quiterpenes. Ann Falsif Expert Chim Toxicol 1982; 75: 357–
	using larvae of <i>Toxocara canis</i> . Shoyakugaku Zasshi 1989; 43 (4): 279–287.	PA0169	367. Mendez, J. Endogenous abscisic acid in umbelliferous fruits. Z Pfl -
PA0160	Lam, L. K. T. and B. L. Zheng. Effects of essential oils on glutathione s-transferase activity in mice. J Agr Food Chem 1991; 39(4): 660–662.	PA0170	anzenphysiol 1978; 86: 61–64. El-Moghazi, A. M., A. A. Ali, S. A. Ross and M. A. Mottaleb. Flavonoids of <i>Pimpinella anisum</i> L. growing in Egypt. Fitoterapia
PA0161	Balachandran, B., S. N. Sivaswamy and V. M. Sivaramakrishnan. Genotoxic effects of some	PA0171	1979; 50: 2667–2668. Newman, L. F. Ophelia's herbal. Econ Bot 1979; 33: 227–232.
	foods & food components in Swiss mice. Indian J Med Res 1991; 94(5): 378–383.	PA0172	Saito, Y., Y. Kimura and T. Sakamoto. The antioxidant effects of petroleum ether soluble and
PA0162	Gangrade, S. K., R. D. Shirvastava, O. P. Sharma, N. K. Jain and K. C. Trivedi. In vitro antifungal		insoluble fractions from spices. Eiyo To Shokuryo 1976; 29: 505–510.
PA0163	effect of the essential oils. Indian Perfum 1991; 35(1): 46–48. Mekhtieva, N. P. Essential oils	PA0173	Benzanger-Beauquesne, L., M. Pinkas, M. Torck and F. Trotin. Plantes Medicinales des Regions
	of <i>Pimpinella aromatica</i> . Chem Nat Comp 1991; 27(2): 249–250.	D. 0154	Temperees. Maloine S. A., Paris, 1980; 439 pp
PA0164	Mekhtieva, N. P. Essential oil of <i>Pimpinella aromatica</i> . Khim Prir Soedin 1991; 27(2): 288–291.	PA0174	Albert-Puleo, M. Fennel anise as estrogenic agents. J Ethnopharmacol 1980; 2(4): 337–344.
PA0165	Melzig, M. and E. Teuscher. Investigations of the influence of essential oils and their main components on the adenosine uptake by cultivated endothelial cells. Planta Med 1991; 57(1):	PA0175	Schultz, J. M. and K. Herrmann. Occurrence of hydroxybenzoic acids and hydroxycinnamic acid in spices. IV. Phenolics of spices. Z Lebensm-Unters Forsch 1980; 171: 193–199.
PA0166	41–42. Marcus, C. and E. P. Lichten-	PA0176	Gershbein, L. L. Regeneration of rat liver in the presence of essen-
	stein. Biologically active com- ponents of anise: Toxicity and interactions with insecticides in		tial oils and their components. Food Cosmet Toxicol 1977; 15: 173–182.
D. 046	insects. J Agr Food Chem 1979; 27(6): 1217–1223.	PA0177	Hopf, H. and O. Kandler. O-beta-d-glucopyranosyl-(1-1)-myo-
PA0167	Marcus, C. and E. P. Lichten- stein. Interactions of naturally occurring food plant compo-		inositol(glucinol) in higher plants. Z Pflanzenphysiol 1980; 100: 189–195.
	nents with insecticides and pentobarbital in rats and mice. J Agr Food Chem 1982; 30: 563–568.	PA0178	Akunzemann, J. and K. Herrmann. Isolation and identification of flavon(ol)-o-glycosides
PA0168	De Maack, F., D. Frunet, J. C. Malnati and J. Estienne. Study of minor constituents in anethole samples obtained from anise oil. 1. Study of the origin of an anethole by the identification of ses-		in caraway (Carum carvi L.), fennel (Foeniculum vulgare Mill.), anise (Pimpinella anisum L.), and coriander (Coriandrum sativun L.), and of flavone-c-glycosides in anise. I. Phenolics

PA0179	of spices. Z Lebensm-Unters Forsch 1977; 164: 194–200. Nguyen Thi Tam, Hua Thi Kim Thanh and Le Canh Hoa. Contributions to the study of the essence of the anise leaf grown in Lang Son (Vietnam). Duoc Hoc	PA0189	cultures. Arzneim-Forsch 1978; 28(1): 1–7. Moattar, F., Y. Mozoun, T. Gafgazi and A. Mansuri. Antiurolithiasis activities from the selected medicinal plants. I. Extraction, clinical and pharmaco-
PA0180	1979; 1979(2): 18–20. Ross, S. A., N. E. El-Keltawi and S. E. Megalla. Antimicrobial ac- tivity of some Egyptian aromatic plants. Fitoterapia 1980; 51:	DA 0100	logical studies. Abstr Internat Res Cong Nat Prod Coll Pharm Univ N Carolina Chapel Hill NC July 7–12 1985: 1985; Abstr-197.
PA0181	201–205. Huxtable, R. J. Herbs along the Western Mexican-American border. Proc West Pharmacol Soc	PA0190	Reiter, M. and W. Brandt. Relaxant effects on tracheal and ileal smooth muscles of the guinea pig. Arzneim-Forsch 1985; 35
PA0182	1983; 26: 185–191. Kubeczka, K. H. and I. Ullmann. Occurrence of 1,5-dimethycyclo- deca-1,5,7-triene (pregeijerene) in Pimpinella species and chemo- systematic implications. Biochem Syst Ecol 1980; 8: 39–41.	PA0191	(1): 408–414. Feiz, J. and F. Moattar. Formulation, preparation and evaluation of medicinal plants on quantity and quality of human milk. Abstr Internat Res Cong Nat Prod Coll Pharm Univ N Caro-
PA0183	Razzack, H. M. A. The concept of birth control in Unani medical literature. Unpublished Manuscript of the Author 1980; 64 pp.	PA0192	lina Chapel Hill NC July 7-12 1985: 1985; Abstr-193. Shashikanth, K. N. and A. Hosono. In vitro mutagenicity of tropical spices to streptomycin
PA0184	Kleiman, R. and G. F. Spencer. Search for new industrial oils: 16. Umbelliflorae-seed oils rich in petroselinic acid. J Amer Oil	PA0193	dependent strains of Salmonella typhimurium TA 98. Agr Biol Chem 1986; 50(11): 2947–2948. Abdul-Ghani, A. S., S. G. El-
PA0185	Chem Soc 1982; 59: 29–32. Boukef, K., H. R. Souissi and G. Balansard. Contribution to the study on plants used in traditional medicine in Tunisia. Plant Med Phytother 1982; 16(4): 260–279.	PA0194	Lati, A. I. Sacaan, M. S. Suleiman and R. M. Amin. Anticonvulsant effects of some Arab medicinal plants. Int J Crude Drug Res 1987; 25(1): 39–43. Shukla, H. S. and S. C. Tripathi.
PA0186	Dirks, U. and K. Herrmann. 4-(Beta-d-gluopyranosyloxy)benzoic acid, a characteristic phenolic constituent of the Apiaceae.	PA0195	Antifungal substance in the essential oil of anise (<i>Pimpinella anisum</i> L.). Agr Biol Chem 1987; 51(7): 1991–1993.
PA0187	Phytochemistry 1984; 23(8): 1811–1812. Cosminsky, S. Knowledge of body concepts of Guatemalan wives. Chapter 12. Anthropology of Human Birth 1982; 233–252.	r AU193	Janssen, A. M., N. L. J. Chin, J. J. C. Scheffer and A. Baerheim-Svendsen. Screening for antimicrobial activity of some essential oils by the agar overlay technique. Pharm Weekbl (Sci Ed) 1986; 8(6): 289–292.
PA0188	May, G. and G. Willuhn. Antiviral activity of aqueous extracts from medicinal plants in tissue	PA0196	Alwan, A. H., A. L. M. Jawad, A. S. Al-Bana and K. F. Ali. Antiviral activity of some Iraqi

PA0197	indigenous plants. Int J Crude Drug Res 1988; 26(2): 107–111. El-Keltawi, N. E. M., S. E. Megalla and S. A. Ross. Antimicrobial activity of some Egyp-	PA0203	Muirhead, A. L. and H. F. Gerald. The action of certain volatile oils on isolated intestinal segments. J Pharmacol Exp Ther 1916; 8: 253–260.
PA0198	tian aromatic plants. Herba Pol 1980; 26(4): 245–250. Twaij, H. A. A., E. E. Elisha, R. M. Khalid and N. J. Paul. Analgesic studies on some Iraqi med-	PA0204	Becker, H. Studies on the formation of volatile substances in plant tissue cultures. Biochem Physiol Pflanz 1970; 161: 425–441.
PA0199	icinal plants. Int J Crude Drug Res 1987; 25(4): 251–254. Ramirez, V. R., L. J. Mostacero,	PA0205	Simpson, G. E. Folk medicine in Trinidad. J Amer Folklore 1962; 75: 326–340.
	A. E. Garcia, C. F. Mejia, P. F. Pelaez, C. D. Medina and C. H. Miranda. Vegetales empleados en medicina tradicional Norpe-	PA0206	Dragendorff, G. Die Heilpflanzen der Verschiedenen Volker und Zeiten, F. Enke, Stuttgart, 1898; 885 pp
	ruana. Banco Agrario del Peru & Univ Trujillo, Trujillo, Peru, June, 1998 1988; 54 pp	PA0207	Crowden, R. K., J. B. Harborne and V. H. Heywood. Chemosystematics of the Umbelliferae - A
PA0200	Lokar, L. C. and L. Poldini. Herbal remedies on the traditional		general study. Phytochemistry 1969; 8: 1963–1984.
	medicine of the Venezia Giulia Region (North East Italy). J Eth- nopharmacol 1988; 22(3): 231– 239.	PA0208	Harborne, J. B., V. H. Heywood and C. A. Williams. Distribution of myristicin in seeds of the Umbelliferae. Phytochemistry 1969;
PA0201	Perrot, E. and R. R. Paris. Les Plantes Medicinales. Part I. Presses Universitaires dex France, Paris, France, 1971.	PA0209	8: 1729–1732. Anon. The Herbalist. Hammond Book Company, Hammond, Indiana, 1931; 400 pp
PA0202	Hunte, P., M. Safi, A. Macey and G. B. Kerr. Indigenous methods of voluntary fertility regulation in Afghanistan. Natl Demographic Family Guidance Survey of Settled Population Afghanistan 1975; 4: 1–.	PA0210	Myers, H. B. Comparative fungicidal action of certain volatile oils. J Pharmacol Exp Ther 1926; 27: 248–.

21 Ricinus communis

Common Names

Aamudamu chettu Aamudamu	India India	Eranda Erande	India India
Aavanak	India	Erandu	India
Agaliva	Guam	Erendi	India
Amudamu	India	Erund	India
Andela	Nepal	Fampinonoana	Madagascar
Ander	Nepal	Harwaa	Tunisia
Angan-tangan	Philippines	Higuereta	Cuba
Arand	Fiji ' '	Higuereta	Puerto Rico
Arandi	India	Higuerilla blanca	Mexico
Arundi	Oman	Higuerilla	Colombia
Avend	Nepal	Higuerilla	Mexico
Awriwra	Morocco	Higuerilla	Peru
Balambaal olyo	Somalia	Higuerillo blanco	Colombia
Balamball	Somalia	Higuerillo rojo	Colombia
Bele ni vavalagi	Somalia	Higuerillo	Guatemala
Bherenda	India	Higuero	Nicaragua
Bofareira	USA	Ix K' O' Och	Guatemala
Carapate	Guadeloupe	Jar	Saudi Arabia
Carrapateira	Brazil	Kastalan qajne	Mexico
Castor bean plant	Guam	Kerwa	Morocco
Castor bean	Saudi Arabia	Kharwa	Egypt
Castor bean	USA	Kharwa	Oman
Castor oil bush	West Indies	Kharwaa	Quatar
Castor oil plant	Guyana	Kherwa	Jordan
Castor oil plant	Nepal	Kherwa	Saudi Arabia
Castor oil plant	USA	Khiruwi	Sudan
Castor	Algeria	Khirwa	Saudi Arabia
Castor	Nepal	Koli	Hawaii
Coga macon	East Africa	Krapata	Surinam
Dhatura	Nepal	Legezabwende	Tanzania
Era	India	Lepo	Tanzania
Erand	India	Lepo	Tonga

From: Medicinal Plants of the World, vol. 2: Chemical Constituents, Traditional and Modern Uses By: Ivan A. Ross Humana Press Inc., Totowa, NJ

Lepohina Tanzania Red chicken tree **USA-MN** Lepohina Tonga Red eagle foot **USA-MN** Lepokula Tanzania Redh Fiii Lepokula Tonga Redhi Fiji Libono East Africa Rendi India Lupono Tanzania Ricin Tunisia Mamona Brazil Ricino Brazil Colombia Masketi Haiti Ricino Mbono East Africa Ricino Guinea-Bissau Mbonu East Africa Tel-enderu India Saudi Arabia Venda Tobsha Mupfure East Africa Tochem-I-bed-anjir Afghanistan Mwriki Noronda India Toto ni vavalagi Afghanistan Ntoo qaib lab **USA-MN Ttchakkma** Ethiopia Odagwa Kenya Txiv taw dlaav laab **USA-MN** Palma christi Mauritius Udukaju Thailand Palma christi Unapalan Nicaragua USA Palma christi West Indies Utouto Nicaragua Palma de Cristo Brazil Wete pela celik Argentina Pomaskwiti West Indies

BOTANICAL DESCRIPTION

A perennial of the EUPHORBIACEAE family that grows to 4 m or more in height, with green or maroon stems marked by ring-like scars. The leaves are thick but soft, alternate, peltate, with a palmately lobed blade on a long petiole. Young leaves are purplebronze and silky. Mature leaves are graygreen or dark purplish-red. The flowers are without petals, males and females on the same dense, terminal bunches. Male flowers have hundreds of stamens, while the female flowers have a superior, 3-lobed ovary. The fruit is a subglobose, brown capsule, somewhat spiny. When immature it is green or red, turning brown when mature and dry. At maturity it splits into 3 sections, each containing a mottled brown seed.

ORIGIN AND DISTRIBUTION

Native to the Old World tropics, most likely Africa. Seeds found in Egyptian tombs are believed to date back 4,000 years. It is now widespread throughout the tropics and warm-temperate regions of the world.

TRADITIONAL MEDICINAL USES

Afghanistan. The seed is eaten a small piece at a time to inhibit pregnancy^{RC0286}.

Africa. Hot water extract of the dried leaf is taken orally as an emmenagogue^{RC0226}. Hot water extract of the leaf is taken orally as a galactagogue and emmenagogue^{RC0111}.

Algeria. Hot water extract of the dried leaf is taken orally to produce sterility and as an emmenagogue^{RCO226}. The seed dipped in the warm blood of a killed rabbit, when eaten by a woman, is thought to prevent conception for 1 year^{RCO115}. The seed is taken orally as a contraceptive^{RCO114}.

Argentina. The powdered seed is applied locally for toothache and acne^{RC0173}.

Caledonia. The fresh green leaf is applied to the breast as a galactogogue^{RC0226}.

Cameroon. Hot water extract of the dried leaf is used for filiariasis^{RCO191}.

Colombia. The seed oil is taken orally at the term of pregnancy to stimulate uterine contractions^{RC0107, RC0275}.

Cook Islands. The seed oil, mixed with the oil of *Cocos nucifera*, the fruit juice of *Citrus*

RICINUS COMMUNIS 377

aurantium and the crushed leaf of Cordyline terminalis is taken orally as a laxative^{RCD247}.

Cuba. The fresh green leaf is applied over the breast to induce milk production^{RC0293}.

East Africa. The crushed seed, in water, is taken orally for bleeding after giving birth^{RC0151}.

Egypt. Hot water extract of the seed is taken orally as a contraceptive^{RC0292}.

Ethiopia. The dried seed is used to treat skin lesions^{RCD166}.

Fiji. Infusion of the dried leaf is taken orally as a treatment for retarded growth in children and a strong tea is taken to terminate pregnancy of up to 3 months. The seed oil is used externally as a soothing application for burns and itches, and as a hair restorer^{RC0254}.

Ghana. Hot water extract of the dried leaf is used externally for guinea worms^{RCO191}.

Guadeloupe. The seed oil is rubbed on the abdomen and genital area to promote uterine contractions^{RCO232}.

Guatemala. Hot water extract of the leaf is taken orally for stomach cramps^{RC0289}.

Guinea-Bissau. Decoction of the leaf is taken orally to accelerate the secretion of milk^{RC0105}.

Haiti. The fresh leaf is applied externally for rheumatism. The crushed leaf in oil is used for burns, and the boiled leaf is applied externally on sprains and trauma^{RCO263}. The seed oil is rubbed on the breast for hypogalactea^{RCO226}. The oil is taken orally for nervous shock and rage, externally for pneumonia, bronchitis, rheumatism and cutaneous affections, and together with the crushed leaves on burns^{RCO263}.

India. For jaundice, the leaves of *Solanum* nigrum, *Ricinus communis*, and *Boerhavia diffusa* are ground together in equal quantities and 10 gm of the paste produced is taken orally, once a day for 7 days^{RCO264}. Hot water extract of the leaf is taken orally as an emmenagogue^{RCO112}. For malarial fever, cas-

tor oil is applied to the leaf that is kept on the patient's head before shivering starts RC0172. The dried cotyledon is taken by women to produce permanent sterility. After removing the seed coat, the cotyledons are swallowed on the fifth day of the menstrual cycle. This is continued for about 7 days^{RCO279}. The dried leaf, fried in sesame oil is tied around the neck just below the jaw, as a treatment for tonsilitis and throat troubles. For wounds and rheumatism, the leaf with mustard oil is applied as a poultice^{RC0170}. For jaundice, the tender leaves, garlic and pepper are macerated in cow's milk and taken orally in the morning for 3 to 5 days^{RC0237}. The fresh leaf is warmed and tied locally as a dressing for guinea worm disease. The dressing is changed every night^{RC0202}. For sprains, the leaf is smeared with oil, heated, and tied to the affected area RC0245, and for headache, the warmed leaf is tied on the head^{RC0246}. For malaria, the leaf soaked in the seed oil is applied to the head, palms and feet of the patient before shivering starts. Two grams of alum is also administered to the patient orally twice daily^{RC0262}. The root, boiled in goat's milk, is applied locally to treat inflammation of lymph glands^{RC0158}. Hot water extract of the dried root is taken orally for rheumatism and sciaticaRC0243. The seed oil is taken orally as an emmenagogue^{RC0112} and a strong laxative^{RC0237}, and is used as an enema for constipation and inflammatory conditions of the bowels. Hot water extract of the seed oil is taken orally for diarrhea and dysentery^{RC0243}, and as an emmenagogue RC0269. The young shoot is taken orally for jaundice RC0190. As an abortifacient, a section of the stem is inserted in the vagina^{RC0256}. Water extract of the fresh root, together with the roots of Sterculia urens, Ficus benghalensis, and Madhuca longifolia var. latifolia, in equal parts, is taken orally during the first trimester of pregnancy to produce abortion^{RC0244}.

Italy. The fresh leaf is applied on the breast as a galactagogue and on the affected area to treat tumors^{RC0226}.

Japan. Water extract of the fresh seed is applied externally to promote hair growth RCO229. **Kenya.** Decoction of the fresh root is taken orally to facilitate expulsion of the placenta or hasten parturition RCO195.

Liberia. Hot water extract of the root is taken orally as an abortifacient^{RC0119}.

Madagascar. Hot water extract of the shoot is taken orally as a galactagogue^{RCO147}. **Mauritius.** Hot water extract of the dried leaf is taken orally as an emmenagogue^{RCO216}. **Mexico.** As a febrifuge, the dried leaf is seared on hot coal and placed with raw egg or wild tomato as a compress on the abdomen. The leaf is used as a poultice for swellings and stomachache^{RCO234}. Decoction of the fresh green leaf is taken orally to treat infertility in females^{RCO248}. The leaf is applied externally for muscular swelling, headache and fever^{RCO162}. The young leaf of *Asclepias curassavica* is smeared with the seed oil then eaten for hemorrhoids^{RCO234}.

Nepal. The seed is taken orally as a purgative^{RC0100}.

Nigeria. Hot water extract of the fresh root is taken orally as a tonic, sedative, antipyretic and analgesic. Hot water extract of the fresh seed is taken orally as an antipyretic, analgesic, sedative, and tonic^{RC0228}. The fermented cotyledons are used as a condiment in soups and sauces^{RC0249}.

Peru. Hot water extract of the dried seed is taken orally for spleen conditions, blenorrhagia, and as an antiinflammatory and galactagogue^{RCO273}.

Philippines. The seed is rubbed on the soles of the feet to hasten parturition or expulsion of the placenta^{RCO102}.

Saudi Arabia. Hot water extract of the dried aerial part is taken orally as an purgative, galactagogue, emmenagogue, anthelmintic, diuretic, bronchodilator, for eye diseases and alopecia^{RCO189}. The dried seeds

are taken orally as a common medication for good health^{RCO301}.

Senegal. A decoction of the dried leaf is applied externally for bilharziasis. The seeds are ingested for leprosy^{RCO226}.

Somalia. A handful of leaves is crushed and mixed with a cup of olive oil. The oily extract is rubbed into the skin of a paralyzed limb twice a day to restore activity. A handful of leaves is crushed and mixed with 1 cup of olive oil. The mixture is applied to the head and 1 drop is placed in each nostril to treat chronic headache. The treatment is continued until the patient is free of pain. For rigid knees, a handful of leaves is crushed and added to a cup of sesame oil. The mixture is filtered and applied to the knees. To treat muscular distortion, the leaves are boiled in water and the decoction applied to distorted muscle. Decoction of the dried root is taken orally to treat intestinal worms. The seed oil is applied to the eye to treat conjunctivitis. For intestinal worms, 50 grams of root is boiled with 2 cups of water until 1 cup remains. One cup is then taken twice daily for 3 days^{RC0154}.

South Africa. Hot water extract of the leaf is taken orally as an emmenagogue^{RCO129}. The powdered, dried root is applied locally as a vaginal antiseptic^{RCO226}.

South Korea. Hot water extract of the dried seed is taken orally as an emmenagogue, contraceptive, and abortifacient^{RC0251}. Hot water extract of the seed is taken orally to induce labor^{RC0284}.

Sudan. The leaf is applied on the breast to induce milk production TOO368.

Taiwan. Hot water extract of the dried root is taken orally for liver diseases^{RC0270}.

Tanzania. Hot water extract of the dried root is taken orally to treat diarrhea, stomach ulcers and stomachaches. It is used as an ear drop for earache and the powdered dried root is used as an antiseptic on wounds^{RCO164}. Hot water extract of the fresh entire plant is taken orally for venereal diseases, ulcers

and diarrhea, and is used as a fungicide. It is also administered as an ear drop^{RC0252}. The dried seed, boiled with the roots of Psorospermum febrifugum var. ferrugineum, Euclea schimperi, Albizia atnunesiana, Parinari curatellifolia, Clerodendrum phlebodes, Eteromorpha trifoliata, Cassia didymobotrya, and Xeromphis species, is taken orally for epilepsy. For insanity, 1 teaspoon of powdered Zanha africana is stirred in 1 quart of water. The foam is removed and the entire amount is taken orally to induce vomiting. If any remains in the stomach it is harmless. The ground bark of Boscia angustifolia in water is taken 1 cup daily for 2 days. The entire sequence is repeated then a decoction of Ricinus communis and Boscia angustifolia is taken, 1 cup in the morning and 1 in the evening for 2 days^{RC0253}. **Thailand.** The entire plant is taken orally as a purgative^{RC0260}.

Tunisia. Hot water extract of the dried leaf and seed is used externally for rheumatism and inflammation, and orally as a purgative^{RC0239}.

USA. Fluid extract of the seed is taken orally as a cathartic^{RCO127}. Hot water extract of the dried leaf is taken orally as a cathartic^{RCO298}. Hot water extract of the entire plant is used by the Laotian Hmong refugees in Minnesota for itching and enlarged liver^{RCO276}. The fluid extract is applied to the breast to induce milk production^{RCO127}.

Venda. The dried fruit, together with *Croton megalobotrys*, is macerated in cold water and the liquid taken orally for roundworms and tapeworms. The powdered fruit is eaten with porridge as a cure for cough, although it causes emesis and diarrhea. The seed oil is rubbed onto incisions made on the body as a tonic^{RCO241}.

West Africa. Hot water extract of the leaf is taken orally as a galactagogue and emmenagogue^{RC0120}.

West Indies. The seed oil, mixed with the leaf tea of *Annona muricata*, is taken orally for intestinal worms^{RC0209}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Aginine: Sd^{RC0132} Alanine: Pollen^{RC0288}

Amyrin, beta: Lf 0.03%RC0235 Aspartic acid: PollenRC0288 Astragalin: Lf 18RC0242

Avenasterol,5-dehydr: Sd oil^{RC0183} Benzoic acid 2,5-dihydroxy: Lf^{RC0161}

Brassicasterol: PIRC0296 Campesterol: PIRC0296 Carotene,beta: SdRC0133 Casbene: SeedlingRC0142 Catechin,epi (-): LfRC0161 Chlorogenic acid,neo: Lf RC0161 Chlorophyll A: Lf 0.44%RC0307 Chlorophyll B: 0.15%RC0307

Corilagin: Lf 0.02% RC0137 Coumarin, 6,7-dihydroxy-8-methoxy: Fl

 $0.05\%^{RC0211}$

Coumarin,6,8-dihydroxy-3,4-dimethoxy: Fl 0.035%RC0211

Diethylene glycol disulfide: PIRC0223

Ellagic acid: Lf^{RC0137}

Enolase: Endosperm^{RC0184}

Ethnaolamine, phosphatidyl: Sd^{RC0144}

Galactinol: Sdo.19%RC0168′ Gallic acid: LfRC0161,RC0137 Glutamic acid: PollenRC0288 Glycine: PollenRC0288

Hemagglutinin (Ricinus communis): SdRC0176

Histadine: Pollen^{RC0288}

Hyperoside: Lf 0.10% RC0235, FI 0.08% RC0211

Indole-3-acetic acid: RtRC0143

Kaempferol-3,0-beta-d-rutinoside: Lf

28RC0242

Kaempferol-3,0-beta-d-xylopyranoside: Lf 7^{RC0242}

Leucine: Pollen^{RC0288}

Linoleic acid: Sd oil 2.9-6.5% RC0221

Lupan-3-beta-ol-20-one,30-nor: Lf waxRC0296

Lupeol: PIRC0296

Methionine: Pollen^{RC0288}

Oleic acid: Sd oil 3.1-5.9% RC0221 Palmitic acid: Sd oil 0.9-1.5% RC0221

Phorbic acid: Lf^{RC0302} Proline: Pollen^{RC0288} Protein: Sd 30.61%^{RC0282}

Prunin,2-0-para-coumaroyl: Sd 181.8^{RC0139} Prunin,6-0-para-coumaroyl: Sd 227.2^{RC0139}

Quercetin, iso: Lf 310^{RC0242}

Quercetin: Lf 0.02% RC0235 Quinic acid: Lf RC0140

Ricin A: Sd^{RC0259}

Ricin A-B-1: Sd^{RC0150} Ricin A-B-2: Sd^{RC0150}

Ricin B: Sd^{RC0259} Ricin C: Sd^{RC0259}

Ricin D: Sd^{RC0178}

Ricin E: Sd^{RC0182}

Ricin, alpha: Sd^{RC0207} Ricin, beta: Sd^{RC0207}

Ricin, gamma: Sd^{RC0207}

Ricin: Lf^{RC0226}, Sd 0.35mg/seed^{RC0240} Ricine,n-demethyl: Lf 80-160^{RC0242} Ricinine: Sd 0.02%^{RC0217}, Lf 0.07-0.55%^{RC0242}, Fl 0.50%^{RC0211}

Ricinoleic acid triglycerides: Sd oil 84-91% RC0221

Ricinoleic acid: Endosperm^{RC0179} Ricinolein,tri: Sd oil^{RC0141}

Ricinus agglutinin RCL-1: Sd^{RC0308} Ricinus agglutinin RCL-II: Sd^{RC0308}

Ricinus agglutinin: Sd^{RC0259}

Ricinus communis glycoprotein CB-l-A: Sd 0.8% RC0185

Ricinus communis hemagglutinin: Sd^{RC0281} Ricinus communis lectin A-2: Sd^{RC0210}

Ricinus communis lectin A-I: Sd^{RC0210}

Ricinus communis lectin RCA-1: Sd^{RC0309}

Ricinus communis lectin, alpha: Sd^{RC0177} Ricinus communis lectin, beta: Sd^{RC0177}

Ricinus communis lectin, beta: Sd^{RC0177} Ricinus communis lectin, gamma: Sd^{RC0177}

Ricinus communis lectin: Sd^{RC0213}

Ricinus communis phytoagglutinin: Sd^{RC0126}

Ricinus lectin RCA-120: SdRC0310

Ricinus lectin: SdRC0208

Rutin: Lf 40-7600RC0242,RC0236, FI 1200RC0211

Serine, phosphatidyl: Sd^{RC0144} Shikimic acid: Lf^{RC0140}

Sitosterol, beta: Lf 550^{RC0235}, Sd oil^{RC0183},

plRC0296

Stearicacid: Sd oil 1.4-2.1% RC0221 Stigmasterol: SdRC0183, Lf 400 RC0235

Sucrose: Cotyledons^{RC0180} Synthetase,casbene: Sedling^{RC0212}

Triricinolein: Endosperm^{RC0179}
Tryptophan: Pollen^{RC0288}

Tyrosine: Pollen^{RC0288} Valine: Pollen^{RC0288} Vitamin B-1: Fr^{RC0287} Vitamin B-6: Fr^{RC0287}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Abortifacient effect. The seed oil, taken orally by pregnant women at a dose of 60.0 ml, was active^{RCO109}.

Acid phosphatase inhibition. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 200.0 mg/kg for 7 days, was active vs galactosamine-induced hepatotoxicity^{RCO159}.

Acid phosphatase stimulation. The seed oil, administered intragastrically to rats at a dose of 2.0 ml/animal, increased the release of intraluminal acid phosphatase in the duodenum and jejunum, but not in the stomach^{RCO188,RCO155}.

Agglutinin activity. Water extract of the fresh seed, in cell culture at a concentration of 2.0 microliters/ml, was active on the human lymphocytes^{RCO304}.

Alkaline phosphatase inhibition. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 200.0 mg/kg for 7 days, was active vs galactosamine-induced hepatotoxicity^{RC0159}.

Allergenic activity. A 21-year old female patient, wearing a necklace with abraded seeds that contacted the skin, went into anaphylactic shock. Skin tests for the seed were positive at 1:10,000,000 dilution^{RC0311}. Analgesic activity. Ethanol/water (1:1) extract of the seed, administered intragastrically to mice, was not effective vs hot plate and tail clip method^{RC0280}. Water extract of the dried root bark, administered intraperitoneally to rats at a dose of 250.0 mg/kg, was active vs tail-flick response to radiant heat^{RC0233}.

Antiamoebic activity. Ethanol/water (1:1) extract of the root, in broth culture at a concentration of 125.0 mcg/ml, was active on *Entamoeba histolytica*. Ethanol/water (1:1) extract of the stem, in broth culture at a concentration of 125.0 mcg/ml, was active on *Entamoeba histolytica*^{RCO306}.

RICINUS COMMUNIS 381

Antibacterial activity. Acetone extract of the dried leaf, on agar plate, was active on Escherichia coli, Salmonella newport, Serratia marcescens, and Shigella flexneri, and inactive on Salmonella B, Salmonella typhi, Sarcina lutea, Staphylococcus aureus, and Pseudomonas aeruginosa. The ethanol (95%) extract was active on Escherichia coli, Pseudomonas aeruginosa, Salmonella B, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus albus, and Staphylococcus aureus, and inactive on Sarcina lutea. The water extract was active on Escherichia coli. Pseudomonas aeruginosa, Salmonella newport, Salmonella typhi, Shigella flexneri, Sarcina lutea, Staphylococcus albus, and Staphylococcus aureus, and inactive on Salmonella B and Serratia marcescens. Acetone extract of the dried stem, on agar plate, was active on Escherichia coli, Pseudomonas aeruginosa, Shigella flexneri, and Staphylococcus aureus, and inactive on Salmonella B, Salmonella newport, Salmonella typhi, Sarcina lutea, Serratia marcescens, and Staphylococcus albus. The ethanol (95%) extract was active on Salmonella typhi, and inactive on Escherichia coli, Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, Salmonella B, Salmonella newport, Sarcina lutea, Serratia marcescens, and Staphylococcus albus. Water extract was active on Escherichia coli, Sarcina lutea, Shigella flexneri, and Staphylococcus aureus, and inactive on Pseudomonas aeruginosa, Salmonella B, Salmonella newport, Salmonella typhi, Serratia marcescens, and Staphylococcus albus RC0278. Chloroform extract of dried leaf and stem, on agar plate at a concentration of 4.0 mg/ml, was inactive on Bacillus subtilis, Salmonella typhosa, and Shigella dysenteriae, and produced weak activity on Salmonella typhosa and Escherichia coli. The ethanol (95%) extract was inactive on Bacillus subtilis, Salmonella typhosa, Shigella dysenteriae, and Escherichia coli. The hexane extract was inactive on Escherichia coli, and produced weak activity on Bacillus

subtilis and Shigella dysenteriae^{RC0230}. Ethanol (95%) extract of the dried leaf (10 ml/g of plant material), on agar plate at a concentration of 5.0 mg/ml, was active on Bacillus subtilis and Staphylococcus aureus. A concentration of 50.0 mg/ml was inactive on Escherichia coli and Pseudomonas aeruginosa^{RC0268}. Methanol extract of the dried root, on agar plate at a concentration of 10.0 mg/ml, was active on Staphylococcus aureus, inactive on Escherichia coli and Neisseria gonorrhea, and prooduced weak activity on Shigella boydii^{RC0164}. Seed oil, on agar plate, was inactive on Bacillus subtilis, Escherichia coli, Salmonella typhosa, Staphylococcus aureus, and Vibrio cholera^{RC0283}. Water extract of the fresh entire plant, on agar plate at a concentration of 1.0%, was active on Neisseria gonorrhea^{RC0252}.

Anticholestatic activity. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 25.0 mg/kg for 7 days, was active vs paracetamol-induced hepatotoxicity^{RC0159}.

Anticonvulsant activity. Ethanol (70%) extract of the fresh root, administered intraperitoneally to mice at variable dosage levels, was active vs metrazole-induced convulsions, and inactive vs strychnine-induced convulsions^{RC0228}. Ethanol (70%) extract of the fresh seed, administered intraperitoneally to mice at variable dosages, was active vs metrazole-induced convulsions, and inactive vs strychnine-induced convulsions^{RC0228}. Antifilarial activity. Methanol extract of the dried leaf, at a concentration of 0.1%, was active on *Onchocerca volvulvus*^{RC0271}.

Antifungal activity. Ethanol (95%) extract of the dried leaf (10 ml/g of plant material), on agar plate at a concentration of 50.0 mg/ml, was inactive on Aspergillus niger^{RCO268}. Seed oil, on agar plate, was inactive on *Trichophyton mentagrophytes*, *Trichophyton rubrum*, and Aspergillus niger^{RCO283}. The fresh plant juice, on agar plate, was inactive on Aspergillus niger^{RCO138}. Water extract of the fresh

leaf (1 gm leaf/1 ml water), on agar plate, was active on Fusarium oxysporum F. sp. Lentis^{RC0163}.

Anti-implantation effect. Benzene, ethanol (95%) and petroleum ether extracts of the seed, administered orally to female rats at a dose of 250.0 mg/kg, were not effective^{RCO149}. The ethanol (95%)^{RCO118} and petroleum ether^{RCO145} extracts, at a dose of 500.0 mg/kg, were not effective.

Anti-inflammatory activity. Hot water extract of the root bark, administered orally to rats, was inactive vs formalin-induced pedal edema^{RC0116}.

Antimycobacterial activity. Fresh plant juice, on agar plate, produced weak activity on Mycobacterium tuberculosis^{RCO138}.

Antioxidant activity. Methanol extract of the seed, at a concentration of 50.0 microliters, produced strong activity^{RCO171}.

Antischistosomal activity. The seed oil, administered intragastrically to mice at a dose of 0.3 ml/day for 7 days, was active on *Schistosoma mansonii*^{RC0192}.

Antitumor activity. A suspension of the dried seed oil, administered subcutaneously to mice of both sexes at a dose of 40.0 gm/ kg, was inactive on Sarcoma 37^{RC0298}. Acetone and water extracts of the dried leaf, administered subcutaneously to mice of both sexes at a dose of 1.0 gm/kg, were inactive on Sarcoma 37^{RC0268}. Ethanol/chloroform extract of the dried fruit, administered intraperitoneally to mice at doses of 1.7 and 3.5 mg/kg, were inactive on LEUK-L1210, CA-755 and Sarcoma 180(ASC). A dose of 7.0 mg/kg was inactive on Sarcoma 180(ASC). The seed oil, at a dose of 200.0 mg/kg, was active on Sarcoma-ARS-ascitic, 136% ILSRC0156. Antiviral activity. Ethanol (90%) extract of the dried root, in cell culture, was inactive on Sindbis virus and cytomegalovirus^{RC0203}. Ethanol/water (1:1) extract of the leaf, in cell culture at a concentration of 50.0 mcg/ ml, produced weak activity on vaccinia

virus^{RC0306}. Ethanol/water (1:1) extract of the seed, in cell culture at a concentration of 0.05 mg/ml, was inactive on vaccinia virus^{RC0280}.

Antiyeast activity. Ethanol (95%) extract of the dried leaf (10 ml/g of plant material), on agar plate at a concentration of 50.0 mg/ml, was inactive Candida albicans^{RC0268}. Seed oil, on agar plate, was inactive on Candida albicans and Saccharomyces cerevisiae^{RC0283}.

Cytotoxic activity. Ethanol/chloroform (1:1) extract of the dried fruit, in cell culture, was inactive on CA-9KB, $ED_{50} > 0.1$ mg/ml^{RC0290}. Ethanol/water (1:1) extract of the leaf was inactive on CA-9KB, ED₅₀ > 20 mcg/ml^{RC0306}. Ethanol/water (1:1) extract of the fruit, in cell culture, was active on CA-9KB, $ED_{50} < 20.0 \text{ mcg/ml}^{RC0305}$. Ethanol/ water (1:1) extract of the root, in cell culture, was active on CA-9KB, ED_{50} < 20.0 mcg/ml. Ethanol/water (1:1) extract of the stem, in cell culture, was active on CA-9KB, ED_{50} < 20.0 mcg/ml^{RC0306}. The seed oil, in cell culture at concentrations of 0.01% and 1.0%, was inactive on the rat fibroblast^{RC0295}. Water extract of the seed, in cell culture, produced strong activity on sarcoma (Yoshida ASC) RC0121.

Dermatitis producing effect. Two cases of cheilitis due to exposure to seed oil in lipstick were reported^{RCO199}.

Diuretic activity. Ethanol/water (1:1) extract of the seed, administered intragastrically to rats at a dose of 750.0 mg/kg, was effective^{RC0280}. Water extract of the dried aerial part, administered intragastrically to rats at a dose of 5.0 gm/kg, was effective^{RC0189}.

Embryotoxic effect. Ethanol (95%), water and petroleum ether extracts of the seed, administered orally to rats, were inactive^{RCO118}. RCO149,RCO145. Water extract of the dried cotyledon was active on the chicken embryo, results significant at p <0.05 level. The extract of the fermented cotyledons produced weak activity^{RCO249}.

Estrogenic effect. Ethanol (95%) extract of seed cake, digested with papain to liberate the active principle(s) from the protein complex, was active on the ovariectomized rat^{RC0131}.

Galactagogue effect. Ethanol (95%) extract of the leaf, taken orally by adults at a dose of 3.75 ml/person, was effective^{RCO113}.

Glutamate dehydrogenase inhibition. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 200.0 mg/kg for 7 days, was active vs galactosamine-induced hepatotoxicity^{RC0159}.

Glutamate dehydrogenase stimulation. The dried seed, in the ration of chicks at a concentration of 0.5% of the diet, was active^{RC0153, RC0157}.

Glutamate oxaloacetate transaminase inhibition. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 200.0 mg/kg for 7 days, was active vs galactosamine-induced hepatotoxicity^{RC0159}.

Glutamate oxaloacetate transaminase stimulation. The dried seed, in the ration of chicks at a concentration of 0.5% of the diet, was active^{RC0153, RC0157}.

Glutamate pyruvate transaminase inhibition. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 200.0 mg/kg for 7 days, was active vs galactosamine-induced hepatotoxicity^{RC0159}. Ethanol/water (1:1) extract of the dried root, in cell culture at a concentration of 1.0 mg/ml, was active on hepatocytes vs CCl₄-induced hepatotoxicity and PGE-induced pedal edema^{RC0270}.

Hair stimulant effect. Ethanol (95%) extract of the fresh seed, applied topically on the male mouse at a concentration of 0.4 gm/animal, was inactive^{RC0229}.

Hematopoietic activity. The dried seed, in the ration of the ewe, produced an elevated leukocyte count, but the RBC count and hemoglobin values remained the same^{RCO255}.

Hypoglycemic activity. Ethanol/water (1:1) extract of the leaf, administered orally to rats at a dose of 250.0 mg/kg, was effective^{RCO306}. Ethanol/water (1:1) extract of the root, administered orally to rats at a dose of 250.0 mg/kg, was active^{RCO306}. Ethanol/water (1:1) extract of the stem, administered orally to rats at a dose of 250.0 mg/kg, was effective^{RCO306}.

Insecticide activity. Acetone extract of the dried seed was inactive on *Culex quinquefasciatus*^{RCO136}.

Juvenile hormone activity. Ether extract of the fruit, at a concentration of 250.0 mcg/animal, was inactive, and a concentration of 500.0 mcg/ml was active on *Oncopeltus fasciatus*^{RCO146}.

Larvicidal activity. The essential oil, at a concentration of 25.0 ppm, was active on Anopheles stephensi larvae^{RCO272}.

Laxative effect. Seed oil, in the ration of mice at a concentration of 2.0% of the diet, was inactive vs mecamylamine-induced constipation^{RCO135}. A dose of 2.0 ml/animal, administered intragastrically to male rats, produced diarrhea^{RCO165}.

Lipid synthesis inhibition. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 100.0 mg/kg for 7 days, was active vs galactosamine-induced hepatotoxicity^{RC0159}.

Lipid synthesis stimulation. The dried seed, in the ration of chicks at a concentration of 0.5% of the diet, was active. Both liver and heart lipid levels were increased^{RC0153}.

Liver glycogen increase. Ethanol (95%) extract of the dried leaf, administered intragastrically to rats at a dose of 100.0 mg/kg for 7 days, was active vs galactosamine-induced hepatotoxicity^{RC0159}.

Mitogenic activity. Water extract of the fresh seed, in cell culture at a concentration of 2.0 microliters/ml, was inactive on the human lymphocytes^{RCO304}.

Molluscicidal activity. The fresh leaf homogenate was inactive on Lymnaea colum-

ella and Lymnaea cubensis, $LD_{100} > 1000 \text{ ppm}^{RC0224}$. Water extract of the oven-dried leaf produced weak activity on Biomphalaria pfeifferi^{RC0265}. Fresh root homogenate was inactive on Lymnaea columella and Lymnaea cubensis, $LD_{100} > 1000 \text{ ppm}^{RC0224}$. Homogenate of the fresh fruit was inactive on Lymnaea columellai and Lymnaea cubensis, LD₁₀₀ > 1000 ppm^{RC0224}. Water and ethanol (95%) extracts of the dried seed, at a concentration of 1000 ppm, produced weak activity on Biomphalaria glabrata and Biomphalaria straminea^{RC0294}. Water extract of the oven-dried stem was inactive on Biomphalaria pfeifferi^{RC0265}. Natriuretic activity. Water extract of the dried aerial part, administered intragastrically to rats at a dose of 5.0 gm/kg, was effective^{RCD189}. Nematocidal activity. Decoction of the seed, at a concentration of 10.0 mg/ml, was inactive on Toxacara canis RC0196. Methanol extract of the dried leaf, on agar plate at a concentration of 7.0 mg/ml, was inactive on Bursaphelenchus lignicolus RC0220. Water extract of the dried stem, at a concentration of 5.0 mcg/ml, and methanol extract, at a concentration of 1.0 gm/ml, were inactive on Toxacara canis^{RC0201}.

Pheromone (sex attractant and signalling). Ether extract of the inflorescence was equivocal on Aspiculurus tetraptera, Dacus dorsalis, male Mediterrean fruit fly and melon fly^{RCD148}. Plaque formation inhibition. Methanol and methanol/water (1:1) extracts of the root were active on Streptococcus mutans, IC₅₀ 230 mcg/ml. The water extract was inactive, IC₅₀ > 1000 mcg/ml^{RCD258}.

Platelet activating factor binding inhibition. Hot water extract of the dried seed, at a concentration of 10.0 mg/ml, produced 36% inhibition on the rabbit platelets^{RC0169}. **Platelet activating factor stimulation.** The seed oil, administered intragastrically to rats at a dose of 2.0 ml/animal, produced more platelet activating factor than controls in the duodenum and jejunum, but not in the stomach^{RC0155}.

Protease (HIV) inhibition. Water extract of the dried leaf, at a concentration of 200.0 mcg/ml, was inactive^{RCO167}.

Salidiuretic activity. Water extract of the dried aerial part, administered intragastrically to rats at a dose of 5.0 gm/kg, was effective^{RCO189}.

Sorbitol dehydrogenase stimulation. The dried seed, in the ration of chicks at a concentration of 0.5% of the diet, was active^{RC0153, RC0157}.

Spasmolytic activity. Ethanol/water (1:1) extract of the seed was inactive on the rat uterus^{RC0280}.

Toxic effect. A 52-year old woman, after ingesting 10 to 15 seeds, was presented 4 hours later with severe vomiting and diarrhea, but without abdominal pain or fever. She was hemodynamically stable and liver function was normal. She was treated with gastric lavage and parenteral fluids with good results. One month later she was in a satisfactory condition^{RC0197}. An adult who ingested 30 seeds in an attempted suicide was presented with acute abdominal pain, nausea, diarrhea, cramps in the limbs, blurred vision, and circulatory collapse with cyanosis of the extremities. Ricin level was measured in the blood and the half-life was estimated to be 8 days^{RC0240}. The dried seed, in the ration of chicks at a concentration of 0.5% of the diet, produced poor growth, dullness, locomotor disturbance, hepatocellular necrosis, lymphocytic infiltration in the portal tracts, and necrosis of cells of the renal convoluted tubules. There was also an increase in serum GOT, SDH, and GDH. Hepatic and cardiac lipid levels were also elevated^{RC0157}. Water extract of the leaf, administered intraperitoneally to guinea pigs at a dose of 28.0 gm/kg, caused death within 40-60 minutes of treatment^{RC0123}. The entire plant, at a dose of 20.0 gm/ kg administered orally, was lethal to 8/12 bovines^{RC0174}. The leaf, at a dose of 20.0 gm/ kg administered orally, was inactive on the

RC0104

RC0105

RC0106

cow^{RCO125}. When the seeds were taken orally by an adult it produced gastroenteritis, fluid and electrolyte depletion, gastrointestinal bleeding, hemolysis and hypoglycemia^{RCO200}. The seeds accounted for the death of several thousand ducks in Texas, USA in the fall and winter of 1969–1971. Symptoms were similar to those of botulism. When administered by gastric intubation to ducks, the LD₅₀ was 3 to 4 seeds per animal^{RCO218}.

Toxicity assessment. When the ethanol/ water (1:1) extract of the leaf was administered intraperitoneally to mice, the maximum tolerated dose was 100.0 mg/kg. When the ethanol/water (1:1) extract of the root was administered intraperitoneally to mice, the maximum tolerated dose was 1.0 gm/ kg^{RC0306}. When ethanol/water (1:1) extract of the seed was administered intraperitoneally to mice, $LD_{50} > 1.0$ gm/kg^{RC0280}. When the ethanol/water (1:1) extract of the stem was administered intraperitoneally to mice, the maximum tolerated dose was 500.0 mg/ kg^{RC0306}. When the seed was administered by gastric intubation, the minimal lethal doses were 14.0 gm/kg for chicken, 5.5 gm/kg for goat, 0.5 gm/kg for goose, 0.1 gm/kg for horse, 2.0 gm/kg for ox, 1.4 gm/kg for pig, 1.0 gm/kg for rabbit, and 1.25 gm/kg for ram^{RC0226}.

Uterine stimulant effect. Hot water extract of the leaf and stem, at a dose of 33.0 ml/liter, produced weak activity on the rat uterus^{RC0110}.

Suwal, P. N. Medicinal Plants of

Nepal. Ministry of Forests, De-

partment of Medicinal Plants,

REFFERENCES

RC0100

RC0101	Thapathali, Kathmandu, Nepal, 1970. Jain, S. K. and C. R. Tarafder. Medicinal plant-lore of the Santals. Econ Bot 1970; 24: 241–
	278.

RC0102 Quisumbing, E. Medicinal plants of the Phillipines. **Tech**

Bull 16, Rep Phillipines, Dept Agr Nat Resources, Manila 1951; 1-.

Giusti, G. V. and E. Moneta. A

RC0103 Uhlenbruck, G. and W. P. Herrmann. Agglutination of normal, coated, and enzyme-treated human spermatozoa with heterophil agglutinins. Vox Sang 1972; 23: 444–.

case of criminal abortion by ingestion of parsley decoction and naphthalene used vaginally. **Arch Kriminol** 1973; 152: 161–164. Alvaro Viera, R. Subsidio para o Estudo da Flora Medicinal da Guinea Portuguesa. Agencia-Geral do Ultramar, Lisboa, 1959. Malhi, B. S. and V. P. Trivedi. Vegetable antifertility drugs of

India. Q J Crude Drug Res

1972; 12: 1922-.

RC0107 Garcia-Barriga, H. Flora Medicinal de Colombia. Vol. 2/3
Universidad Nacional, Bogota, 1975.

RC0108 Mathieu, A. Observations on the use of castor oil, quinine, and pituitary extract in the induction of labor. **Amer J Obstet Gynecol** 1927; 13: 223–.

RC0109 Mathieu, A. and M. S. Sichel. Further observations on the use of castor oil, quinine, and pituitary extract in the induction of labor. An analysis based on the study of 320 consecutive cases from private practice. **Surg Gynecol Obstet** 1931; 53: 676–.

RC0110 Feng, P. C., L. J. Haynes, K. E.

Feng, P. C., L. J. Haynes, K. E. Magnus and J. R. Plimmer. Further pharmacological screening of some West Indian medicinal plants. **J Pharm Pharmacol** 1964; 16: 115–.

RC0111 Asprey, G. F. and P. Thornton. Medicinal plants of Jamaica. Part I. West Indian Med J 1953; 2(4): 233–252.

RC0112 Saha, J. C., E. C. Savini and S. Kasinathan. Ecbolic properties of Indian medicinal plants. Part

	I. Indian J Med Res 1961; 49: 130–151.		suspected of toxicity. Arq Inst Biol (Sao Paulo) 1943; 14: 15
RC0113	Gilfillan, W. The leaves of the <i>Ricinus communis</i> , as a galactagogue. Amer Med Times 1862; 4: 218–.	RC0124	Gowanloch, J. N. and C. A. Brown. Poisonous Snakes, Plants and Black Widow Spider of Louisiana, Dept. Conservation,
RC0114	Brondegaard, V. J. Contraceptive plant drugs. Planta Med 1973; 23: 167–172.	RC0125	New Orleans, Louisiana, 1943. Canella, C. F. C., C. H. Tokarnia and J. Dobereiner. Experiments
RC0115	Hilton-Simpson, M. W. Arab Medicine and Surgery. Oxford Univ Press, Humphrey Milford, London, 1922.		with plants supposedly toxic to cattle in Northeastern Brazil, with negative results. Pesqui Agropecu Brasil Ser Vet 1966;
RC0116	Chaturvedi, G. N. and R. H. Singh. Experimental studies on the antiarthritic effect of certain indigenous drugs. Indian J Med Res 1965; 53: 71–.	RC0126	1: 345–352. Onozaki, K., M. Tomita, Y. Sakurai and T. Ukita. The mechanism of the cytotoxicity of <i>Ricinus communis</i> phytoagglutinin
RC0117	Wei, C. H. Two phytotoxic anti- tumor proteins: Ricin and abrin. J Biol Chem 1973; 248: 3745–.		toward rat ascites tumor cells. Biochem Biophys Res Commun 1972; 48: 783–.
RC0118	Garg, S. K. and G. P. Garg. Anti- fertility screening of plants. Part VII. Effect of five indigenous plants on early pregnancy in al-	RC0127	Anon. Lilly's Hand Book of Pharmacy and Therapeutics. 5th Rev, Eli Lilly and Co. Indianapolis, 1898.
	bino rats. Indian J Med Res 1970; 59: 302–.	RC0128	Inman, N. Notes on some poisonous plants of Guam. Micro-
RC0119	Harley, G. W. Native African Medicine. Frank Cass & Co. Ltd., London, 1970.	RC0129	nesica 1967; 3: 55–. Watt, J. M. and M. G. Breyer-Brandwijk. The Medicinal and
RC0120	Petelot, A. Les Plantes Medicinales du Cambodge, du Laos et du Vietnam, Vols 1–4. Archives des Recherches Agronomiques		Poisonous Plants of Southern and Eastern Africa. 2nd Ed. E. + S. Livingstone, Ltd., London, 1962.
DC0121	et Pastorales au Vietnam No. 23, 1954.	RC0130	Dowzard, E. Note on the toxicity of castor seed. J Amer Pharm
RC0121	Tomita, M., T. Kurokawa, K. Onozaki, T. Osawa, Y. Sakurai and T. Ukita. The surface structure of murine ascites tumors II.	RC0131	Ass 1923; 12: 116—. Sahasrabudme, M. B. Estrogen potency of the defatted castor seed. Curr Sci 1945; 14: 69—.
	Difference in cytotoxicity of various phytoagglutinins toward Yoshida sarcoma cells in vitro.	RC0132	Ramachandran, B. V. Arginine content of oilseed cakes. J Sci Ind Res-C 1957; 16: 70–.
RC0122	Int J Cancer 1972; 10: 602–. Bradbury, R. B. and D. E. White. Estrogens and related substances in plants. Vitamins and Hor-	RC0133	Baszynski, T. Vegetable oils as a source of provitamin A (Betacarotene). Acta Soc Bot Pol 1954; 23: 17–.
RC0123	mones 1954; 1954: 207–. Rocha E Silva, M. Studies on	RC0134	Roark, R. C. Some promising insecticidal plants. Econ Bot
	poisonous plants in the state of Sao Paulo. Toxicological expts. on 27 plants which have been	RC0135	1947; 1: 437–445. Pike, M. The effect of an alcoholic extract of the leaves of

	Phytolacca americana on mecamylamine toxicity in mice and rats. Exp Med Surg 1970; 28: 154–.	RC0146	on female albino rats. Planta Med 1974; 26: 391–393. Jacobson, M., R. E. Redfern and G. D. Mills Jr. Naturally occur-
RC0136	Hartzell, A. and F. Wilcoxon. A survey of plant products for insecticidal properties. Contr Boyce Thompson Inst 1941; 12: 127–141.		ring insect growth regulators. II. Screening of insect and plant extracts as insect juvenile hormone mimics. Lloydia 1975; 38: 455–472.
RC0137	Matsuda, H. Studies on the constituents of the leaves of Rhus and of some species related genera in Japan. Chem Pharm Bull	RC0147 RC0148	Boiteau, P. Dictionary of Madagascan plant names. Fitoterapia 1975; 46: 201–. Keiser, I., E. J. Harris, D. H.
RC0138	1966; 14(8): 877–883. Azarowicz, E. N., J. E. Hughes and C. L. Perkins. Antibiotics in plants of Southern California active against <i>Mycobacterium tuberculosis</i> 607 and <i>Aspergillus niger</i> . Antibiot Chemother 1959;	RC0149	Miyashita, M. Jacobson and R. E. Perdue. Attraction of ethyl ether extracts of 232 botanicals to Oriental fruit flies, melon flies, and Mediterranean fruit flies. Lloydia 1975; 38(2): 141–152. Kholkute, S. D., V. Mudgal and
RC0139	2: 532–536. Yuldashev, M. P., E. K. Batirov, V. M. Malikov and P. K. Yuldashev. Acylated flavanone glyco-		P. J. Deshpande. Screening of indigenous medicinal plants for antifertility potentiality. Planta Med 1976; 29: 151–155.
	sides from Ricinus communis. Chem Nat Comp 1993; 29(3): 303–305.	RC0150	Ishiguro, M., M. Tomi, G. Funatsu and M. Funatsu. Isolation and chemical properties of a ricin
RC0140	Yoshida, S., K. Tazaki and T. Minamikawa. Occurrence of shi-kimic and quinic acids in angiosperms. Phytochemistry 1975; 14: 195–197.	RC0151	variant from castor bean. Toxicon 1976; 14: 157–. Kokwaro, J. O. Medicinal Plants of East Africa. East Afr Literature Bureau, Nairobi, 1976.
RC0141	Ropuszynski, S. Ester of ricinoleic acid triglyceride and phosphoric acid. Patent-Pol-69,705 1974.	RC0152	Kubo, Y. A case of allergic contact dermatitis to castor oil in lipstick. Hifu 1991; 33(11): 245–249.
RC0142	Sitton, D. and C. A. West. Casbene: An anti-fungal diterpene produced in cell-free extracts of <i>Ricinus communis</i> seedlings. Phytochemistry 1975; 14: 1921–1925.	RC0153	El Badwi, S. M. A., S. E. I. Adam and H. J. Hapke. Experimental <i>Ricinus communis</i> poisoning in chicks. Phytother Res 1992; 6(4): 205–208.
RC0143	Hall, S. M. and G. C. Medlow. Identification of IAA in phloem and root pressure saps of <i>Ricinus communis</i> by mass spectrometry. Planta 1974; 119: 257–.	RC0154	Samuelsson, G., M. H. Farah, P. Claeson, M. Hagos, M. Thulin, O. Hedberg, A. M. Warfa, A. O. Hassan, A. H. Elmi, A. D. Abdurahman, A. S Elmi, Y. A. Abdi
RC0144	Moore Jr., T. S. Phosphatidylserine synthesis in castor bean endosperm. Plant Physiol 1975; 56: 177–.		and M. H. Alin. Inventory of plants used in traditional medicine in Somalia. II. Plants of the families Combretaceae to Labia-
RC0145	Garg, S. K. Antifertility effect of oil from few indigenous plants		tae. J Ethnopharmacol 1992; 37(1): 47–70.

RC0155	Pinto, A., G. Autore, N. Mascolo, R. Sorrentino, A. Biondi, A. Izzo and F. Capasso. Time course of PAF formation by gastrointestinal tissue in rats after castor oil challenge. J Pharm Pharmacol 1992; 44(3): 224–226.	RC0165	zanian plants used in traditional medicine. Fitoterapia 1991; 62 (6): 499–503. Capasso, F., N. Mascolo, A. A. Izzo and T. S. Gaginella. Dissociation of castor oil-induced diarrhoea and intestinal mucosal
RC0156	Xue, S., D. S. Lu, B. L. Li, Z. L. Wang and J. G. Tao. Antitumor effect of castor oil extract. Zhongyuo Zhongyao Zazhi 1992;		injury in rat: Effect of NG-nitro-L-arginine methyl ester. Brit J Pharmacol 1994; 113(4): 1127–1130.
RC0157	17(9): 560–561. Badwi, S. M. A., H. M. Mousa, S. Adam and H. Hapke. Response of brown hisex chicks to low lev- els of <i>Jatropha curcas, Ricinus</i>	RC0166	Desta, B. Ethiopian traditional herbal drugs. Part II. Antimicrobial activity of 63 medicinal plants. J Ethnopharmacol 1993; 39(2): 129–139.
RC0158	communis or their mixture. Vet Hum Toxicol 1992; 34(4): 304—. Reddy, M. B., K. R. Reddy and M. N. Reddy. A survey of plant crude drugs of Anantapur District, Andhra Pradesh, India. Int J Crude	RC0167	Kusumoto, I. T., T. Nakabayashi, H. Kida, H. Miyashiro, M. Hat- tori, T. Namba and K. Shimot- ohno. Screening of various plant extracts used in Ayurvedic medi- cine for inhibitory effects on hu-
RC0159	Drug Res 1989; 27(3): 145–155. Visen, P., B. Shukla, G. Patnaik, S. Tripathi, D. Kulshreshtha, R. Srimal and B. Dhawan. Hepato-	RC0168	man immunodeficiency virus type 1 (HIV-1) protease. Phytother Res 1995; 9(3): 180–184. Kuo, T. M. Isolation and identifi-
RC0160	protective activity of <i>Ricinus</i> communis leaves. Int J Pharmacog 1992; 30(4): 241–250. Schlein, Y. and R. L. Jacobson. Mortality of <i>Leishmania major</i> in <i>Phlebotomus papatasi</i> caused by plant feeding of the sand flies.	RC0169	cation of galactinol from castor oilseed meal. J Amer Oil Chem Soc 1992; 69(6): 569–574. Han, B. H., O. K. Yang, Y. C. Kim and Y. N. Han. Screening of the platelet activating factor (PAF) antagonistic activities on
RC0161	Amer J Trop Med Hyg 1994; 50(1): 20–27. Khogali, A., S. Barakat and H. Abou-Zeid. Isolation and identification of the phenolics from	RC0170	herbal medicines. Yakhak Hoe Chi 1994; 38(4): 462–468. Anis, M. and M. Iqbal. Medicinal plantlore of Aligarh, India. Int J Pharmacog 1994; 32(1): 59–64.
RC0162	Ricinus communis L. Delta J Sci 1992; 16(1): 198–211. Zamora-Martinez, M. C. and C. N. P. Pola. Medicinal plants used in some rural populations of Oax-	RC0171	Kim, S. Y., J. H. Kim, S. K. Kim, M. J. Oh and M. Y. Jung. Antioxidant activities of selected Oriental herb extracts. J Amer Oil Chem Soc 1994; 71(6): 633–640.
RC0163	aca, Puebla and Veracruz, Mexico. J Ethnopharmacol 1992; 35(3): 229–257. Singh, J., A. K. Dubey and N. N. Tripathi. Antifungal activity of Mantha spicata Int. I Pharma-	RC0172	Singh, V. K. and Z. A. Ali. Folk medicines in primary health care: common plants used for the treatment of fevers in India. Fitoterapia 1994; 65(1): 68–74. Filipoy, A. Medicinal plants of
RC0164	Mentha spicata. Int J Pharmacog 1994; 32(4): 314–319. Chhabra, S. C. and F. C. Uiso. Antibacterial activity of some Tan-	KC01/3	the Pilaga of Central Chaco. J Ethnopharmacol 1994; 44(3): 181–193.

RC0174	Tokarnia, C. H., J. Dobereiner and C. F. C. Canella. Experimental poisoning by the leaves of <i>Ricinus communis</i> in cattle. Pesqui Agropecu Brasil Ser Vet 1975; 10(8): 1–.	RC0184	Miernyk, J. A. and D. T. Dennis. Enolase isozymes from <i>Ricinus communis</i> : Partial purification and characterization of the isozymes. Arch Biochem Biophys 1984; 233(2): 643–651.
RC0175	Stahl, F. Poisoning with castor beans-A warning. Dtsch Apoth Ztg 1977; 117: 465–.	RC0185	Trugo, N. M. F., C. A. L. Oliveira, M. A. T. Garcia, J. G. S. Junior and G. B. Domont. Chem-
RC0176	Ueno, S., G. Funatsu and M. Funatsu. Reinvestigation of the purification and characterization of castor bean hemagglutinin. Agr Biol Chem 1977; 41: 1069–.		ical and physiochemical characterization of CB-1A, an allergenic fraction isolated from castor bean (<i>Ricinus communis</i> L.). An Acad Brasil Cienc 1984;
RC0177	Lutsyk, M. D., A. D. Lutsyk, E. K. Kipiani and A. E. Krupko. The toxicity and antitumor activity of three individual fractions of lectins from <i>Ricinus communis</i> seeds. Neplasma 1977; 24: 341–.	RC0186	56(3): 323–331. Khafagy, S. M., Y. A. Mahmoud, N. A. Abdel Salam and Z. F. Mahmoud. Crystalline principles from the leaves of <i>Ricinus communis</i> L. J Drug Res (Egypt) 1983; 14(1/2): 189–193.
RC0178	Funatsu, G. and M. Funatsu. Separation of the two constituent polypeptide chains of ricin D. Agr Biol Chem 1977; 41: 1217–1223.	RC0187	Al-Yahya, M. A. Phytochemical studies of the plants used in traditional medicine of Saudi Arabia. Fitoterapia 1986; 57(3): 179–182.
RC0179	Donaldson, R. P. Accumulation of free ricinoleic acid in germinating castor bean endosperm. Plant Physiol 1977; 59: 1064–.	RC0188	Pinto, A., A. Calignano, N. Mascolo, G. Autore and F. Capasso. Castor oil increases intestinal formation of platelet-activating
RC0180	Komar, E. Sucrose uptake by cotyledons or <i>Ricinus communis</i> . Characteristics, mechanism and regulation. Planta 1977; 137: 119–.	RC0189	factor and acid phosphatase release in the rat. Brit J Pharmacol 1989; 96(4): 872–874. Tanira, M. O. M., A. M. Ageel and M. S. Al-Said. A study of some
RC0181	Bukhatchenko, S. L. and I. V. Khvostova. Toxicity of the seeds of different castor plant varieties. Vopr Fiziol Maslichn Rasst	P.C0100	Saudi medicinal plants used as diuretics in traditional medicine. Fitoterapia 1989; 60(5): 443–447.
RC0182	Zadachami Sel Agrotekh 1975; 1975: 58–. Funatsu, G., T. Mise, H. Matsuda and M. Funatsu. Isolation and characterization of two constitu- ent polypeptide chains of Ricin E. Agr Biol Chem 1978; 42:	RC0190 RC0191	Reddy, M. B., K. R. Reddy and M. N. Reddy. A survey of medicinal plants of Chenchu tribes of Andhra Pradesh, India. Int J Crude Drug Res 1988; 26(4): 189–196. Comley, J. C. W. New macro-
RC0183	851 Lotti, G., F. Navari-Izzo and S. Baragli. Variation in the sterol composition of castor oil during plant maturation. Riv Soc Ital Sci Aliment 1977; 6: 351	RC0192	filaricidal leads from plants? Trop Med Parasitol 1990; 41(1): 1–9. Salafsky, B., A. C. Fusco, L. H. Li, J. Mueller and B. Ellenberger. <i>Schistosoma mansoni</i> : Ex-

RC0193	perimental chemoprophylaxis in mice using oral anti-penetration agents. Exp Parasitol 1989; 69 (3): 263–271.	RC0202	Joshi, P. Herbal drugs used in Guinea worm disease by the tribals of Southern Rajasthan (India). Int J Pharmacog 1991;29
RC0193	Kanerva, L., T. Estlander and R. Jolanki. Long-lasting contact Urticaria from castor bean. J Amer Acad Dermatol 1990; 23 (2): 351–355.	RC0203	(1): 33–38. Yip, L., S. Pei, J. B. Hudson and G. H. N. Towers. Screening of medicinal plants from Yunnan Province in Southwest China for
RC0194	Suresh, M. and R. K. Rai. Cardol: The antifilarial principle from <i>Anacardium occidentale</i> . Curr Sci 1990; 59(9): 477–479.	RC0204	antiviral activity. J Ethnophar-macol 1991; 34(1): 1–6. Raja Reddy, K. Folk medicine from Chittoor District, Andhra
RC0195	Johns, T., J. O. Kokwaro and E. K. Kimanani. Herbal remedies of the Luo of Siaya District, Kenya: Establishing quantitative	RC0205	Pradesh, India, used in the treatment of jaundice. Int J Crude Drug Res 1988; 26(3): 127–140. Fernando, R. and D. N. Fernando.
RC0196	criteria for consensus. Econ Bot 1990; 44(3): 369–381. Kiuchi, F., M. Hioki, N. Naka-	RC0203	Poisoning with plants and mush- rooms in Sri Lanka: A retrospec- tive hospital based study. Vet Hum
	mura, N. Miyashita, Y. Tsuda and K. Kondo. Screening of crude drugs used in Sri Lanka for nematocidal activity on the larva of <i>Toxocaria canis</i> . Shoyakug -	RC0206	Toxicol 1990; 32(6): 579–581. Soboleva, V. A. Polyphenol compounds of <i>Ricinus communis</i> and <i>Mercurialis perennis</i> . Khim Prir Soedin 1980; 16(1): 123–124.
	aku Zasshi 1989; 43(4): 288–293.	RC0207	Panasiuk, I. M. and O. D. Lutsik. Purification and properties of
RC0197	Otano, O. B., A. B. Charles, R. Hernandez and E. M. Petri. Intoxication by ingestion of castor		individual lectins from <i>Ricinus</i> communis seeds. Farm Zh(Kiev) 1978; 1978(4): 29–.
	bean seeds, with reference to a case. Medicina Clinica 1988; 90(17): 716–717.	RC0208	Wei, C. H. and C. Koh. Crystallo- graphic characterization of a prin- cipal non-toxic lectin from seeds
RC0198	Nagaraju, N. and K. N. Rao. A survey of plant crude drugs of	RC0209	of <i>Ricinus communis</i> . J Mol Biol 1978; 123: 707–. Ayensu, E. S. Medicinal plants
	Rayalaseema, Andhra Pradesh, India. J Ethnopharmacol 1990; 29(2): 137–158.		of the West Indies. Unpublished Manuscript 1978; 110 p
RC0199	Fisher, A. A. Allergic cheilitis due to castor oil in lipsticks. Cutis 1991; 47(6): 389–390.	RC0210	Majumdar, T. and A. Surolia. Cross-linked arabinogalactan: A new affinity matrix for the purifi-
RC0200	Challoner, K. R. and M. M. McCarron. Castor bean intoxication. Ann Emerg Med 1990; 19	D.C0211	cation of <i>Ricinus communis</i> lectins. Experientia 1978; 34: 979–980.
RC0201	(10): 159–165. Ali, M. A., M. Mikage, F. Kiuchi, Y. Tsuda and K. Kondo. Screening of crude drugs used in	RC0211	Khafagy, S. M., Z. F. Mahmoud and N. A. E. Salam. Coumarins and flavonoids of <i>Ricinus communis</i> growing in Egypt. Planta
	Bangladesh for nematocidal activity on the larva of <i>Toxocara canis</i> . Shoyakugaku Zasshi 1991; 45(3): 206–214.	RC0212	Med 1979; 37: 191–. Dueber, M. T., W. Adolf and C. A. West. Biosynthesis of the diterpene phytoalexin casbene. Par-

RC0213	tial purification and characterization of casbene synthetase from <i>Ricinus communis</i> . Physiol Plant 1978; 62: 598–603. Barbieri, L., E. Lorenzoni and F. Stirpe. Inhibition of protein synthesis in vitro by a lectin from <i>Momordica charantia</i> Biochem	RC0224	tor bean cell suspension cultures. Phytochemistry 1981; 20: 2477–2479. Medina, F. R. and R. Woodbury. Terrestrial plants Molluscicidal to Lymnaeid hosts of <i>Fasciliasis hepatica</i> in Puerto Rico. J Agr Univ Puerto Rico 1979; 63: 366–376.
RC0214	J 1979; 182: 633–635. Billore, K. V. and K. C. Audichya. Some oral contraceptivesfamily planning the tribal way. J	RC0225	Oommachan, M. and S. S. Khan. Plants in aid of family planning programme. Sci Life 1981; 1: 64–66.
RC0215	Res Indian Med Yoga Homeopathy 1978; 13: 104–109. Grismondi, G. L., L. Scivoli and C. Cetera. Induction of labor. I. Review. Minerva Ginecologica	RC0226	Scarpa, A. and A. Guerci. Various uses of the castor oil plant (<i>Ricinus communis</i> L.). A review. J Ethnopharmacol 1982; 5(2): 117–137.
RC0216	1979; 31: 19–32. Sussman, L. K. Herbal medicine on Mauritius. J Ethnopharma- col 1980; 2(3): 259–278.	RC0227	Hafez, E. S. E. Abortifacients in primitive societies and in experimental animal models. Contraceptive Delivery Systems. E. S.
RC0217	Pahuja, D. N., S. V. Gavnekar, D. H. Shah, V. S. Jathar, P. R. Kulkarni and R. D. Ganatra. Goitrogenic principle from castor seeds. Biochem Pharmacol 1979; 28:	RC0228	E. Hafez(Ed.), MTP Pres, Ltd., Lancaster, England. (ISSN: 0143- 6112) 1982; 3(3): 452–. Adesina, S. K. Studies on some plants used as anticonvulsants
RC0218	641–643. Jensen, W. I. and J. P. Allen. Naturally occurring and experimentally induced castor bean (<i>Ricinus</i>	RC0229	in Amerindian and African traditional medicine. Fitoterapia 1982; 53: 147–162. Tanaka, S., M. Saito and M.
RC0219	communis) poisoning in ducks. Avian Dis 1981; 25: 184–194. Dev, S. Fertility control through Ayurveda. J Family Welfare		Tabata. Bioassay of crude drugs for hair growth promoting activ- ity in mice by a new simple method. Planta Med Suppl 1980;
RC0220	1980; 27(1): 23–25. Kawazu, K., y. Nishii, K. Ishii and M. Tada. A convenient screen- ing method for nematicidal acti- vity. Agr Biol Chem 1980; 44:	RC0230	40: 84–90. Ikram, M. and I. Haq. Screening of medicinal plants for antimicrobial activity. Part I. Fitoterapia 1980; 51: 231–235.
RC0221	631–635. Borodulina, A. A. and S. L. Bukhatchenko. Chemical composition of (castor) seeds. Klesche	RC0231	Vijayalakshimi, K., S. D. Mishra and S. K. Prasad. Nematicidal properties of some indigenous plant materials against second
RC0222	vina 1980; 1980: 92–98. Gafni, Y. and I. Shechter. Isolation of a kaurene synthetase inhibitor from castor bean seedlings and cell suspension cultures. Plant Physiol 1981; 67: 1169–1173.	RC0232	stage juveniles of <i>Meloidogyne incognita</i> (Koffoid and White) Chitwood. Indian J Entomol 1979; 41(4): 326–331. Vitalyos, D. Phytotherapy in domestic traditional medicine in Matouba-Papaye (Guadeloupe).
RC0223	Gafni, Y. and I. Shechter. Diethylene glycol disulfide from cas-		Dissertation-Ph.DUniv Paris 1979; 110 pp

RC0233	Gupta, R. A., B. N. Singh and R.	RC0243	Deka, L., R. Majumdar and A. M.
	N. Singh. Screening of Ayurve- dic drugs for analgesic activity. J		Dutta. Some Ayurvedic important plants from District Kamrup
RC0234	Sci Res Pl Med 1982; 3: 115–117.		(Assam). Ancient Sci Life 1983;
RC0234	Martinez, M. A. Medicinal plants used in a Totonac community	RC0244	3(2): 108–115. Hemadri, K. and S. Sasibhu-
	of the Sierra Norte de Puebla:	RC02++	shana Rao. Antifertility, aborti-
	Tuzamapan de Galeane, Puebla,		facient and fertility promoting
	Mexico. J Ethnopharmacol 1984; 11(2): 203–221.		drugs from Dandakaranya. Ancient Sci Life 1983; 3(2): 103–107.
RC0235	Khafagy, S. M., Y. A. Mah-	RC0245	Jain, S. P. and H. S. Puri. Ethno-
	moud, N. A. Abdel Salam and Z. F. Mahmoud. Crystalline princi-		medicinal plants of Jaunsar-Bawar Hills, Uttar Pradesh, India.
	ples from the leaves of <i>Ricinus</i>		J Ethnopharmacol 1984; 12(2):
	communis L. J Drug Res (Egypt)		213–222.
	1983; 14(1/2): 189–193.	RC0246	Sebastian, M. K. and M. M.
RC0236	Khafagy, S. M., N. A. Abdel		Bhandari. Medico-ethno botany
	Salam, Y. A. Mohamed and Z.		of Mount Abu, Rajasthan, India.
	F. Mahmoud. Determination of		J Ethnopharmacol 1984; 12(2):
	the flavonoidal content of <i>Rici</i> -	DC0247	223–230.
	nus communis L. and Euphorbia terraina L. J Drug Res (Egypt)	RC0247	Whistler, W. A. Traditional and herbal medicine in the Cook Is-
	1983; 14(1/2): 183–188.		lands. J Ethnopharmacol 1985;
RC0237	John, D. One hundred useful raw		13(3): 239–280.
	drugs of the Kani tribes of Tri-	RC0248	Browner, C. H. Plants used for
	vandrum Forest Division, Ker-		reproductive health in Oaxaca,
	ala, India. Int J Crude Drug Res 1984; 22(1): 17–39.		Mexico. Econ Bot 1985; 39(4): 482–504.
RC0238	Kopferschmitt, J., F. Flesch, A.	RC0249	Odunfa, S. A. Microbiological
	Lugnier, P. Sauder, A. Jaeger		and toxicological aspects of fer-
	and J. M. Mantz. Acute volun-		mentation of castor oil seeds for
	tary intoxication by ricin. Human Toxicol 1983; 2: 239–242.		Ogiri production. J Food Sci 1985; 50(6): 1758–1759.
RC0239	Boukef, K., H. R. Souissi and G.	RC0250	Sai, S. Lipstick dermatitis caused
	Balansard. Contribution to the		by castor oil. Contact Dermati-
	study on plants used in tradi-		tis 1983; 9(1): 75–.
	tional medicine in Tunisia. Plant	RC0251	Woo, W. S., E. B. Lee, K. H.
	Med Phytother 1982; 16(4):		Shin, S. S. Kang and H. J. Chi.
DC0240	260–279.		A review of research on plants
RC0240	Kopferschmitt, J., F. Flesch, A. Lugnier, P. H. Sauder, A. Jaeger		for fertility regulation in Korea. Korean J Pharmacog 1981; 12
	and J. M. Mantz. Human Tox-		(3): 153–170.
	icol 1983; 2(2): 239–242.	RC0252	Khan, M. R., G. Ndaalio, M. H.
RC0241	Arnold, H. J. and M. Gulumian.		H. Nkunya and H. Wevers. Stud-
	Pharmacopoeia of traditional me-		ies on the rationale of African
	dicine in Venda. J Ethnophar-		traditional medicine. Part II. Pre-
RC0242	macol 1984; 12(1): 35–74. Kang, S. S., G. A. Cordell, D. D.		liminary screening of medicinal plants for anti-gonoccoci activ-
NCU242	Soejarto and H. H. S. Fong. Al-		ity. Pak J Sci Ind Res 1978;
	kaloids and flavonoids from <i>Ric-</i>		27(5/6): 189–192.
	inus communis. J Nat Prod 1985;	RC0253	Mathias, M. E. Some medicinal
	48(1): 155–156.		plants of the Hehe (Southern

RC0254	Highlands Province, Tanzania). Taxon 1982; 31(3): 488–494. Singh, Y. N. Traditional medicine in Fiji: Some herbal folk cures used by Fiji Indians. J Ethnopharmacol 1986; 15(1): 57–	RC0264	Haiti. 2. Ethnopharmacological inventory. J Ethnopharmacol 1986; 17(1): 13–30. Hemadri, K. and S. S. Rao. Jaundice: Tribal medicine. Ancient Sci Life 1984; 3(4): 209–212.
RC0255	88. Veeraraghavan, G., M. M. Naidu and M. Mahender. Haematological studies on experimental feeding of castor bean meal (<i>Ricinus communis</i>) in sheep. Indian Vet J 1985; 62(5): 379–382.	RC0265	Kloos, H., F. W. Thiongo, J. H. Ouma and A. E. Butterworth. Preliminary evaluation of some wild and cultivated plants for snail control in Machakos District, Kenya. J Trop Med Hyg 1987; 90(4): 197–204.
RC0256	Venkataraghavan, S. and T. P. Sundaresan. A short note on contraceptive in Ayurveda. J Sci Res Pl Med 1981; 2(1/2): 39–.	RC0266	Nisteswar, K. Review of certain indigenous antifertility agents. Deerghayu International 1988; 4(1): 4–7.
RC0257	Anderson, E. F. Ethnobotany of hill tribes of Northern Thailand. I. Medicinal plants of Akha. Econ Bot 1986; 40(1): 38–53.	RC0267	Kulakkattolickal, A. Piscicidal plants of Nepal: Preliminary toxicity screening using grass carp (Ctenopharyngodon idella) fing-
RC0258	Namba, T., M. Tsunezuka, D. M. R. B. Dissanayake, U. Pilapitiya, K. Saito, N. Kakiuchi and M. Hattori. Studies on dental caries prevention by traditional medicines. (Part VII) Screening of Ayurvedic medicines for anti-	RC0268	erlings. J Ethnopharmacol 1987; 21(1): 1–9. Verpoorte, R. and P. P. Dihal. Medicinal plants of Surinam. IV. Antimicrobial activity of some medicinal plants. J Ethnopharmacol 1987; 21(3): 315–318.
D G0050	plaque action. Shoyakugaku Zasshi 1985; 39(2): 146–153.	RC0269	Kamboj, V. P. A review of Indian medicinal plants with inter-
RC0259	Lin, J. Y. and S. Y. Liu. Studies on the antitumor lectins isolated from the seeds of <i>Ricinus communis</i> (Castor bean). Toxicon	RC0270	ceptive activity. Indian J Med Res 1988; 1988(4): 336–355. Yanfg, L. L., K. Y. Yen, Y. Kiso and H. Kikino. Antihepatotoxic
RC0260	1986; 24(8): 757–765. Anderson, E. F. Ethnobotany of hill tribes of Northern Thailand. II. Lahu medicinal plants. Econ	RC0271	actions of Formosan plant drugs. J Ethnopharmacol 1987; 19(1): 103–110. Titanii, V. P. K., J. F. Ayafor, J.
RC0261	Bot 1986; 40(4): 442–450. Yang, L. L., F. M. Sheu, K. Y. Yen and T. C. Tung. Study of interferon inducer in Taiwan folk medicines. Asian J Pharm Suppl 1986; 6(8): 121–.		P. Mulufi and W. F. Mbacham. In vitro killing of <i>Onchocerca volvulus</i> (Filaroidea) adults and microfilariae by selected Cameroonian medicinal plant extracts. Fitoterapia 1987; 58(5): 338–
RC0262	Anis, M. and M. Iqbal. Antipyretic utility of some Indian plants in traditional medicine. Fitoterapia 1986; 57(1): 52–55.	RC0272	339. Kumar, A. and G. P. Dutta. Indigenous plant oils as larvicidal agent against <i>Anopheles steph</i> -
RC0263	Weniger, B., M. Rouzier, R. Daguilh, D. Henrys, J. H. Henrys and R. Anton. Popular medi-	RC0273	ensi mosquitoes. Curr Sci 1987; 56(18): 959–960. Ramirez, V. R., L. J. Mostacero,
	cine of the central plateau of		A. E. Garcia, C. F. Mejia, P. F.

	Pelaez, C. D. Medina and C. H. Miranda. Vegetales empleados en medicina tradicional Norperuana. Banco Agrario del Peru & Nacl Univ Trujillo, Trujillo,	RC0282	Padilla, S. P. and F. A. Soliven. Chemical analysis for possible sources of oils of forty-five spe- cies of oil-bearing seeds. Phill- ipine Agr 1933; 22: 408–.
RC0274	Peru, June, 1988; 54 pp Wee, Y. C., P. Gopalakrish- nakone and A. Chan. Poisonous plants in Singapore - A colour	RC0283	Ray, P. G. and S. K. Majumdar. Antimicrobial activity of some Indian plants. Econ Bot 1976; 30: 317–320.
RC0275	chart for identification with symptoms and signs of poisoning. Toxicon 1988; 26(1): 47–. Gonzalez, F. and M. Silva. A	RC0284	Lee, E. B., H. S. Yun and W. S. Woo. Plants and animals used for fertility regulation in Korea. Korean J Pharmacog 1977;8: 81–87.
RC0273	survey of plants with antifertility properties described in the South American folk medicine. Abstr Princess Congress I Bang-	RC0285	Nakaoki, T. and N. Morita. Medicinal resources. XII. Components of the leaves of <i>Cornus controversa</i> , Ailanthus altissima
RC0276	kok Thailand 10–13 December 1987, 1987; 20 pp Spring, M. A. Ethnopharmaco-	RC0286	and Ricinus communis. Yakuga- ku Zasshi 1958; 78: 558–559. Hunte, P., M. Safi, A. Macey and
	logic analysis of medicinal plants used by Laotian Hmong refuges in Minnesota. J Ethnopharmacol 1989; 26(1): 65–91.		G. B. Kerr. Indigenous methods of voluntary fertility regulation in Afghanistan. Natl Demogra- phic Family Guidance Survey
RC0277	Fernando, R. Plant poisoning in Sri Lanka. Toxicon 1988; 26(1): 20–.	RC0287	of Settled Population Afghanistan 1975; 4: 1–. Rao, P. G. and K. S. Sastry. Phys-
RC0278	Misas, C. A. J., N. M. R. Hernandez and A. M. L. Abraham. Contribution to the biological evaluation of Cuban plants. I. Rev	RC0287	iological characterizaton of male and female flowers in a monoecious plant, castor (<i>Ricinus communis</i>). Sci Cult 1971; 37: 210–.
RC0279	Cub Med Trop 1979; 31: 5–12. Vedavathy, S., K. N. Rao, M. Rajaiah and N. Nagaraju. Folk- lore information from Rayala- seema Region, Andhra Pradesh	RC0286	Chitaley, S. D. and A. A. Saoji. Screening of Datura, Ricinus, Bauhinia and Nerium pollen grains for free amino acids. Botanique 1972; 3: 125–.
D (2000)	for family planning and birth control. Int J Pharmacog 1991; 29 (2): 113–116.	RC0289	Logan, M. H. Digestive disorders and plant medicine in highland Guatemala. Anthropos 1973; 68:
RC0280	Abraham, Z., S. D. Bhakuni, H. S. Garg, A. K. Goel, B. N. Mehrotra and G. K. Patnaik. Screening of Indian plants for biological activity. Part XII. Indian J Exp Biol 1986; 24(1986): 48–68.	RC0290	537–543. Abbott, B. J., J. Leiter, J. L. Hartwell, M. E. Caldwell, J. L. Beal, R. E. Perdue Jr. and S. A. Schepartz. Screening data from the Cancer Chemotherapy National
RC0281	Kawaguchi, T. and T. Osawa. Elucidation of lectin receptors by quantitative inhibitions of lectin binding to human erythrocytes and lymphocytes. Biochemistry 1976; 15: 4581–.	RC0291	Service Center Screening Laboratories. XXXIV. Plant extracts. Cancer Res 1966; 26: 761–935. Anon. Traditional-Western combined treatment of 217 cases of tetanus. Chung-Hua I Hsueh Tsa Chih (Beijing) 1973; 53: 682–684.

RC0292	El-Dean Mahmoud, A. A. G. Study of indigenous (folk ways) birth control methods in Alexandria. Thesis-MS-University of Alexandria-Higher Institute of Nursing, 1972.	RC0303	acid in plants. Acta Chem Scand 1965; 19(7): 1705–1708. Moller, M. S. G. Custom, preg- nancy and child rearing in Tang- anyika. J Trop Pediatrics & African Child Health 1961; 7(3):
RC0293	Roig y Mesa, J. T. Plantas Medicinales, Aromatics o Venenosas de Cuba, Ministerio de Agricultura, Republica de Cuba, Havana, 1945; 872 pp	RC0304	66–78. Krupe, M., W. Wirth, D. Nies and A. Ensgraber. Studies on the "mitogenic" effect of hemoglu- tinating extracts of various plants
RC0294	Pinheiro de Sousa, M. and M. Z. Rouquayrol. Molluscicidal activity of plants from Northeast Brazil. Rev Bras Fpesq Med Biol 1974; 7(4): 389–394.		on the human small lymphocytes in peripheral blood cultured in vitro. Z Immunitatsforsch Allerg Klin Immunol 1968; 135 (1): 19–42.
RC0295	Saito, K. Fibroblast cultures. Nip- pon Yakurigaku Zasshi 1936;	RC0305	Anon. Unpublised data, National Cancer Institute.
RC0296	23: 1–5. Thompson, M. J. and W. S. Bowers. Lupeol and 30-norlupan-3 beta-ol-20-one from the coating of the castor bean (<i>Ricinus com</i> -	RC0306	Dhar, M. L., M. M. Dhar, B. N. Dhawan, B. N. Mehrotra and C. Ray. Screening of Indian plants for biological activity: Part I. Indian J Exp Biol 1968; 6: 232–247.
	<i>munis</i> L.). Phytochemistry 1968; 7: 845–847.	RC0307	Mary, N. Y., B. V. Christensen and J. L. Beal. The effect of
RC0297	Nayar, S. L. Vegetable insecticides. Bull Natl Inst Sci India 1955; 1955(4): 137–145.		freeze-drying on chlorophyll in the leaves of some selected drug plants. J Amer Pharm Ass Sci
RC0298	Belkin, M. and D. B. Fitzgerald. Tumor-damaging capacity of plant materials. 1. Plants used as cathartics. J Nat Cancer Inst 1952; 13: 139–155.	RC0308	Ed 1954; 43: 554–557. Lin, T. T. S. and S. S. L. Li. Purification and physiochemical properties of ricins and agglutinins fron <i>Ricinus communis</i> . Eur
RC0299	Osman, H. G. and E. W. Jwanny. Serological and chemical investigations on the agglutinins of <i>Phaseolus montcalm</i> . J Chem U A R 1963; 6(2): 191–204.	RC0309	J Biochem 1980; 105: 453–459. Surolia, A., B. K. bachhawat, P. J. Vithyathil and S. K. Podder. Unique subunit structure for <i>Ricinus communis</i> agglutin. Indian
RC0300	Anon. The Herbalist. Hammond Book Company, Hammond, In- diana, 1931; 400 pp	RC0310	J Biochem Biophys 1978; 15: 248. Tavasolian, B. and S. Mottaghian. Isolation and purification
RC0301	Anon. Western Arabia and the Red Sea. Geographical Hand- book Series. B. R. 527. Great	DC0111	of lectin from Iranian <i>Ricinus</i> communis seeds. Iran J Public Health 1979; 8(3): 145–154.
RC0302	Britain Naval Intelligence Division, 1946; 590–602. Nordal, A., A. Krogh and G. Ogner. The occurrence of phorbic	RC0111	Lockey Jr, S. D. and L. Dunkelberger. Anaphylaxis from an Indian necklace. J Amer Med Ass 1968; 206: 2900.

Tanacetum parthenium

L.

Common Names

Acetilla	Mexico	Featherfew	USA
Alfinetes de Senhora	Madeira	Febrifuge plant	USA
Altamisa Mexicana	Mexico	Feverfew tansy	Madeira
Altamisa	Argentina	Feverfew	Canada
Artemijio	Brazil	Feverfew	Croatia
Artemisia	Costa Rica	Feverfew	England
Artemisia	Madeira	Feverfew	Israel
Artmija	Madeira	Feverfew	USA
Boulet	France	Hierba Santa Maria	Canary Islands
Bouton d'argent	France	Luzab	Yemen
Camamieri	France	Matricaria comun	Argentina
Camomilla	France	Mutterkraut	Europe
Camoumida	France	Santa Maria	Argentina
Camsumilha	France	Santa Maria	Mexico
Canamelha	France	Tanacet	Canada
Featherfew	England		

BOTANICAL DESCRIPTION

A strongly aromatic perennial of the ASTER-ACEAE family with a taproot or stout caudex. The leaves are finely puberulent beneath, pinnatifid, with rounded, incised, or pinnate segments, evidently petiolate, the blades, up to about 8 cm long and 6 cm wide, are yellowish green. The basal and lower cauline leaves are more or less ovate with 3 to 7 oblong-elliptical to ovate segments, which are subpinnately divided. They are crenate or entire-margined. Heads are numerous in a corymbiform inflores-

cence, the disk 5–9 mm wide; involucral bracts narrow, the inner with sharply marked hyaline tips; rays 10–20 or more in double forms, 4–8 mm long. The achenes are 1.2 to 1.5 mm and 5 to 8-ribbed.

ORIGIN AND DISTRIBUTION

The plant originated in southeastern Europe, and is now naturalized throughout Europe, in Australia and the Americas.

TRADITIONAL MEDICINAL USES

Argentina. Hot water extract of the dried entire plant is taken orally for stomach

pains, to regulate the menstrual cycle, as an antitussive and abortive CP0172

Brazil. Infusion of the aerial part is taken orally for gastrointestinal problems^{CP0132}.

Canary Islands. Hot water extract of the dried flower is taken orally as a sedative and carminative. The infusion is taken as a vermifuge^{CP0174}.

Costa Rica. Hot water extract of the aerial part is taken orally as an emmenagogue^{CP0132}.

England. Hot water extract of the aerial part is taken orally to expel the afterbirth and to promote menstruation^{CP0103}. Hot water extract of the fresh aerial part is taken orally for migraine and as a febrifuge^{CP0141}. The leaves are taken orally for migraine, arthritis, and fevers CP0119,CP0169.

Europe. Hot water extract of the aerial part is taken orally as an emmenagogue^{CPO104} and anthelmintic CP0181. Hot water extract of the flower is taken orally as an abortifacient and to promote menstruation CP0139.

France. Infusion of the flowering tops is taken orally as an antispasmodic, carminative, antidiarrheal, aperative, and digestive. The decoction is taken as an emollient CP0135. Guatemala. Decoction of the leaf is taken orally for stomach pains^{CP0131}.

Italy. The dried shoots are used for problems associated with the stomach CP0180.

Madeira. Infusion of the leaf is taken orally as a diuretic, emmenagogue, and tonic CP0133. **Mexico.** An infusion made from the entire plant is taken orally as a purgative. A decoction of the twigs and leaves is taken orally as a stomachic CP0128. Decoction of the fresh branches is taken orally to speed up childbirth, for dysmenorrhea and postpartum recovery, and as an emmenagogue^{CP0171}. Hot water extract of the entire plant is taken orally to treat dysmenorrhea, internal parasites and gastrointestinal cramps CP0134. Decoction of the fresh flower is taken orally as an emmenagogue and to speed up childbirth CP0171. Hot water extract of the dried aerial part is taken orally as an emmenagogue and

antispasmodic^{CP0164}. The leaf is boiled in large quantities of water and used in a sitz bath to stimulate menstruation^{CP0165}.

USA. Hot water extract of the dried aerial part is taken orally for flatulence, for colds, as a vermifuge, emmenagogue, carminative and tonic CP0184. Hot water extract of the dried leaf is taken orally for arthritis, migraine and asthma^{CP0163}. Hot water extract of the flower is taken orally to induce menstrual flow^{CP0102}. The flower is taken orally as an abortifacient, emmenagogue, and vermifuge^{CP0166}.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Alantolactone: Lf^{CP0111} Apigenin-7-glucuronide: Lf^{CP0106}

Arbusculin, 1-beta-hydroxy: Pl^{CP0162,CP0107}

Artecanin: Aer 0.4CPÓ168, LÍCPO157

Artemorin: Aer 4.0^{CP0168} Artemorin, epoxy: Lf^{CP0136} Artemorin, epoxy(+): Lf^{CP0120} Artemorin, epoxy(-): Lf^{CP0120} Benzene, butyl: FI EOCP0121

Benzene, para-methyl-iso-propenyl: Fl EO^{CP0121}

Benzyl alcohol: Fl EO^{CP0121}

Benzyl-2-methyl-butyrate: FI EO 0.5%^{CP0121}

Bicyclogermacrene: Rt 4^{CP0168}

Borneol: FI EO 0.13-1.00%^{CP0121,CP0124} Borneol acetate: Aer 1.2^{CP0168}, Spadix^{CP0115},

FI EO 0.7%^{CP0121}

Borneol angelate: Aer 0.8^{CP0168}

Cadinene, delta: Spadix^{CP0115}, EO^{CP0124} Camphene: Spadix 1.96%CP0115, FI EO

0.7%^{CP0121}, Lf EO 3.0%^{CP0121}

Camphor: Aer 24^{CP0168}, Spadix^{CP0115}, FI EO 18.9%^{CP0121}, Lf EO 20.1%^{CP0121}

Canin: Aer 0.8^{CP0168} Canin, 10-epi: Aer 4^{CP0168} Car-3-ene: FI EOCP0121

Caryophyllene: FI EO^{CP0121} Caryophyllene oxide: Fl EO 0.4%^{CP0121} Caryophyllene, beta: Spadix 1.96% CP0115,

EO^{CP0124}

Chrysanth-trans-enyl acetate: EO

23.5%^{CP0124}

Chrysanthemum parthenium en-yne-bicyclo ether: Rt 3^{CP0183}

Chrysanthemum sesquiterpene lactone A: L fCP0178

Chrysanthemum sesquiterpene lactone B: Chrysanthenol: Aer 2^{CP0168} Chrysanthenol, 4-acetate: Aer 1.2^{CP0168} Chrysanthenol, 4-beta-hydroxy: Aer 3.2^{CP0168} Chrysanthenol, cis, acetate: Aer 1.2^{CP0168} Chrysanthenol, cis, angelate: Aer 1.2^{CP0168} Chrysanthenol, cis, iso-valerate: Aer 0.8^{CP0168} Chrysanthenol, trans, acetate: Spadix 70.0%^{CP0115}, FI EO 15.5%, Lf EO 4.7%^{CP0121} Chrysanthenone, 4-beta-acetoxy: Aer 1.2^{CP0168} Chrysoeriol-7-glucuronide: Lf^{CP0106} Costic acid methyl ester: Aer 0.8^{CP0168} Costunolide: Aer 6^{CP0168} Costunolide, 3-beta-hydroxy: Lf^{CP0120} Cumambrin B-3, 4-beta-epoxy-8-deoxy: Fl 485^{CP0108} Cymene, para: Spadix 4.77%CP0115, FI EO 0.5%^{CP0121}, EO 3.1%^{CP0124} Cynaroside: Lf^{CP0106} Dendranthema spirofuran A, cis: Aer 8^{CP0168} Dendranthema spirofuran A, cis-3-alphaacetate: Aer 4^{CP0168} Dendranthema spirofuran A, cis-3-isovalerate: Aer 1.2^{CP0168} Dendranthema spirofuran A, trans: Rt 2000, Aer 0.6^{CP0168} Dendranthema spirofuran A, trans 3-alpha acetate: Aer 4^{CP0168} Dendranthema spirofuran A, trans 3-isovalerate: Aer 0.8^{CP0168} Dioxaspiro-(4,5)-dec-3-ene, 2-(hexa-2,4diynylidene)-1,6-cis: Aer 1.2, Rt 100^{CP0168} Dioxaspiro-(4,5)-dec-3-ene, 2-(hexa-2,4diynylidene)-1,6-trans: Aer 0.6^{CP0168} Docos-3-ene: FI EO 6.0%^{CP0121} Eleutheroside B-1: Lf, twig^{CP0153} Estafiatin, 8-alpha-angeloyl-oxy: Aer 3.2^{CP0168} Estafiatin, 8-alpha-hydroxy: Aer 0.4^{CP0168} Estafiatin, 8-alpha-iso-butyryl-oxy: Aer 2CP0168 Eugenol: Spadix 1.09%CP0115, FI EO 0.1%^{CP0121}

Farnesene, alpha: FI EO^{CP0121}

Farnesene, beta: Aer 12, Rt 40^{CP0168}

Farnesene, beta, trans: Spadix^{CP0115}

Fraxidin, iso: Rt 121.7^{CP0109} Friedoolean-14-en-3-ol, D: Rt EO 5.3%^{CP0121} Germacrene: Spadix 1.49% CP0115 Germacrene A: PICP0112 Germacrene D: Aer 4.0^{CP0168}, Lf EO $3.1\%^{CP0121}$, EO $4.6\%^{CP0124}$ Hex-cis-3-en-1-ol: Fl EO^{CP0121} Hex-trans-2-en-1-al: FI EOCP0121 Hexan-1-al: FI EOCP0121 Isoamyl iso-valerate: FI EO 0.2%CP0121 Kaempferol, 6-hydroxy-3,7-dimethyl ether: Fl. Lf^{CP0106} Limonene: EO 0.5%^{CP0124} Linalool: Spadix 2.28%^{CP0115}, EO 1.3%^{CPO124} Linalool acetate: Spadix^{CP0115} Luteolin-7-glucuronide: Lf^{CP0106} Magnolialide: Pl^{CP0107,CP0162} Melatonin: Lf 5.7-3500^{CP0114} Michefuscalide: Lf^{CP0145} Myrcene: Fl EO^{CP0121}, Spadix^{CP0115} Octanoic acid ethyl ester: Fl EO 0.1%^{CP0121} Parthenolide: Fl EO 28.4%CP0121, Lf 0.05-1.27%^{CP0158,CP0122}, Aer 0.040-0.61%^{CP0155,CP0154}, Fl 0.24%^{CP0108}, Sd 1.52%^{CP0158} Parthenolide, 1-10-(H)-10,14,14-dehydro-1-beta-hydroxy: Aer 4.4^{CP0168} Parthenolide, 3-beta-hydroxy: Aer 1.2^{CP0168} Pectachol B, 9-epi: Rt 143.4^{CP0109} Penta-2,4-diene, 2-methyl: FI EO $0.2\%^{CP0121}$ Phellandrene, alpha: Spadix^{CP0115}, EO $0.6\%^{CP0124}$ Pinene, alpha: Fl EO 0.2%^{CP0121}. Spadix^{CP0115}, EO 1.0%^{CP0124} Pinene, beta: FI EO 0.1%^{CP0121}, Spadix^{CP0115}, EO^{CP0124} Pinocarvone: FI EO 0.2%^{CP0121}, EO^{CP0124} Quercetagetin-3,3,7-trimethyl ether: Fl, Lf^{CP0106} Quercetagetin-3,7-dimethyl ether: Fl, I fCP0106 Reynosin: Fl 0.148%^{CP0108}. Pl^{CP0168} Reynosin, 8-beta-hydroxy: PICP0107 Sabinene: Fl EO 0.1%^{CP0121}, Spadix^{CP0115}, EOCP0124 Sabinene hydrate: FI EO^{CP0121} Sabinol: Fl EO 0.13%^{CP0121} Santamarin: Pl^{CP0107}

Santamarine: Fl 424.2^{CP0108}, Pl^{CP0162}

Santamarine, epoxy: Fl 30.3^{CP0108}

Santin: PICP0101

Saussurealactine, dehydro: Fl EO

 $0.6\%^{CP0121}$

Sitosterol, beta: FI EO, Lf EO 1.6% CP0121

Spiroketal enol ether, trans: Fl EO 6.1%, Rt EO 5.1%^{CP0121}

Spiroketal enol ether, trans 2-iso-valerate

ester: Lf EO 1.3%^{CP0121}

Spiroketal enol ether, trans 2-iso-valeryl

ester: FI EO 1.4%CP0121

Spiroketol enol ether, cis: Rt EO

57.5%^{CP0121}

Stigmasterol: FI EO^{CP0121}

Tanacetin: Aer 1.58%^{CP0160}

Tanaparatholide B, seco: Lf^{CP0149}

Tanaparthin peroxide: Lf^{CP0120}

Tanaparthin-alpha-peroxide: Lf^{CP0136},

Aer 1.6^{CP0168}

Tanaparthin-beta-peroxide: Lf^{CP0157},

Aer 4^{CP0168}

Tanapartholide A, seco: Lf^{CP0136},

Aer 0.2^{CP0168}

Tanapartholide B, seco: Lf^{CP0136},

Aer 0.8^{CP0168}

Tanetin: Fl, Lf^{CP0106}

Terpinen-4-ol: Spadix^{CP0115}, Fl EO

 $0.1\%^{CP0121}$, EO $2.8\%^{CP0124}$

Terpinene, alpha: Spadix^{CP0115}

Terpinene, gamma: FI EO 0.1%CP0121 . Spadix^{CPŎ115}, EO 1.0%^{CP0124}

Terpineol, alpha: Spadix^{CP0115}

Terpinolene: Spadix^{CP0115}

Thujene, alpha: Fl EO 0.2%CP0121, EO 0.6% CP0124

Verlototin, anhydro 3-beta-hydroxy: Aer 1.2^{CP0168}

Verlotorin, anhydro 4-alpha-5-beta epoxide: Aer 1.2^{CP0168}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Allergenic activity. Sesquiterpene lactone fraction of the dried aerial part tested positive on 4.5% of the 30 patients tested^{CP0126}. **Analgesic activity.** The dried leaf, when taken orally by patients with migraine for 2 months, reduced the number and severity of attacks and the degree of vomiting^{CP0146}. The freeze-dried leaf was taken orally by seventeen migraine patients in a doubleblind study with either the plant material or placebo. The patients treated with the plant material had a lower incidence and severity of headachesCP0170.

Antibacterial activity. Acetone extract of the dried leaf, at a concentration of 50.0 mg/disc on agar plate, was active on Streptococcus pyogenes and produced MIC 1.0 mg/ disc for Streptococcus pneumoniae^{CP0129}. The ethanol (95%) extract, at a concentration of 50.0 mg/disc, was active on Streptococcus pneumoniae and Streptococcus pyogenes^{CP0123}. The extract was equivocal on Escherichia coli, Salmonella typhimurium, and Shigella flexneri. The hexane extract, at a concentration of 50.0 mg/disc, was active on Streptococcus pyogenes, and had weak activity on Streptococcus pneumoniae^{CP0129}. Essential oil of the unripe spadix, on agar plate, was inactive on Enterococcus species, Proteus rettgeri, Pseudomonas aeruginosa, Sarcina flava, and Staphylococcus aureus, and active on Escherichia coli, MIC 0.39%; Bacillus subtilis, MIC 0.59%; Klebsiella oxytoca, MIC 0.78%; Salmonella species, MIC 0.78%; Serratia marinorubra, MIC 0.78%; Shigella sonnei, MIC 0.78%; Bacillus cereus, MIC 3.12% and Citrobacter freundii, MIC 3.12% CP0115. Ethanol (40%) extract of the dried leaf, on agar plate, was inactive on Escherichia coli, Klebsiella oxytoca, Proteus mirabilis, Proteus morganii, Proteus rettgeri, Salmonella species, Serratia species, Shigella sonnei, Bacillus pumilus, Enterobacter species, and Bacillus subtilis, and produced weak activity on Sarcina flava, Staphylococcus aureus, and Staphylococcus hemolyticus, MIC 12.5%, 25.0% and 25.0%, respectively. The ethanol (90%) extract was inactive on Enterobacter species, Klebsiella oxytoca, Salmonella species, Shigella sonnei, Bacillus pumilus, and Bacillus subtilis, and produced weak activity on Escherichia coli, Sarcina flava, Staphylococcus aureus, Serratia species, Staphylococcus hemolyticus, Proteus mirabilis, Proteus morganii, and Proteus rettgeri CP0137. Ethanol (95%) and water extracts of the

entire plant, on agar plate, were active on Escherichia coli and Staphylococcus aureus CPO105. Ethanol/water (1:1) extract of the dried flower, leaf and stem, on agar plate at a concentration of 5.0 mg/ml, was active on Sarcina lutea and Staphylococcus aureus, and inactive on Escherichia coli^{CP0179}. Ethanol (50%) extract of the dried flowers, on agar plate at a concentration of 50.0 microliters/disc, was active on Salmonella enteritidis, and inactive on Escherichia coli, Salmonella typhosa, Shigella typhosa, S. dysenteriae, and S. flexneri^{CP0130}. Water extract of the dried leaf and stem, at a concentration of 20.0 mg/ml on agar plate, was active on Escherichia coli, Salmonella typhosa, and Shigella boydii^{CP0127}. Ethanol (95%) extract of the dried seed, at variable concentrations on agar plate, was equivocal on Bacillus globifer and Escherichia coli. The extract was inactive on Aerobacter aerogenes, Escherichia coli (streptomycin resistant), Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus; it had strong activity on Bacillus globifer (tetracycline resistant), and it produced weak activity on Bacillus globifer (erythromycin resistant), Bacillus mycoides, Bacillus subtilis, Proteus morganii and Proteus vulgaris CP0167.

Antifungal activity. Essential oil of the unripe spadix, on agar plate, was active on Trichophyton mentagrophytes, MIC 1.56%; Microsporum gypseum, MIC 3.125%; equivocal on Epidermophyton floccosum, MIC 25.0%; Aspergillus niger, MIC 50.0%; and produced weak activity on Aspergillus flavus, MIC 6.3% and Aspergillus ochraceus, MIC 6.4% CPO115. Ethanol (40% and 90%) extract of the dried leaf, on agar plate, produced weak activity on Trichophyton mentagrophytes, MIC 4.0%CP0137. Ethanol (95%) extract of the dried seed, at variable concentrations on agar plate, was inactive on Fusarium solani, Fusarium culmoun, Penicillium notatum, and Scopulariopsis species^{CPO167}. The leaf, on agar plate at a concentration of 100.0 mcg/ml, was active on Colletotrichum acutatum. Zero to 4%

of conidia germinated compared to 79–90% of control after 20 hours of incubation CPO161.

Anti-inflammatory activity. The dried leaf, taken orally by adults at a dose of 70.0 mg/day for 6 weeks, was inactive in a doubleblind study vs rheumatoid arthritis^{CP0148}.

Antimigraine effect. Ethanol (95%) extract of the fresh leaf, taken orally by 50 adults who have never taken this plant material before at a dose of 0.5 mg/day, was inactive. The efficacy of the leaf, in capsules, on migraine prophylaxis was studied in a randomized double-blind, placebo-controlled crossover study. At the end of the 9month study, the 44 patients who completed the study suffered the same number of migraine attacks. A prophylactic effect could not be demonstrated for the feverfew preparation. However, the patients used fewer symptomatic drugs during the period they used the extract^{CP0138}. The oven-dried leaves were taken orally by 57 adults of both sexes, at a dose of 100.0 mg/day for 4 months, in a double-blind, placebo-controlled cross-over study. Both groups were treated with the plant product in the preliminary phase of the study, which lasted 2 months. In the second and third phases, a double-blind, placebo-controlled cross-over study was conducted. The results obtained indicated that the plant product caused a significant reduction in pain intensity compared with the placebo treatment. There was also a profound reduction concerning the severity of the typical symptoms that are usually linked to migraine attacks, such as vomiting, nausea, and sensitivity to noise and light. When the treated group was transferred to the placebo treatment, there was an augmentation of the pain intensity as well as an increase in the severity of the associated symptoms. In contrast, changing the placebo group to treatment with the plant product resulted in a reduction in the pain intensity, as well as in the severity of the associated symptoms^{CP0113}.

Antimycobacterial activity. Ethanol (95%) extract of the dried seed, at variable concentrations on agar plate, was inactive on Mycobacterium phlei and Mycobacterium smegmatis^{CPO167}. Ethanol (95%) extract of the entire plant, on agar plate, was inactive on Mycobacterium tuberculosis. The water extract produced a weak activity that was lost in the presence of whole blood^{CPO105}.

Antisecretory effect. Chromatographic fraction of the dried leaf, at a concentration of 2.0 mg/ml in cell culture, was active on platelets^{CP0140}.

Antitumor activity. Ethanol (50%) extract of the leaf and stem, administered intraperitoneally to mice, was active on LEUK-P388^{CP0100}.

Antiyeast activity. Essential oil of the unripe spadix, on agar plate, was active on Candida tropicalis, MIC 1.6%; Candida pseudotropicalis, Cryptococcus neoformans, Candida species, and Hansenula anomala, MIC 3.12% CPO115. Ethanol (40% and 90%) extract of the dried leaf was inactive on Candida parapsilosis, and produced weak activity on Candida albicans. The 90% extract produced weak activity on Candida pulcherima and Candida tropicalis^{CP0137}. Ethanol (60%) extract of the dried flower, on agar plate, was inactive on Candida albicans^{CP0159}. Ethanol (95%) extract of the dried seed, at variable concentrations on agar plate, was inactive on Kloeckera brevis and Saccharomyces cerevisiae^{CP0167}.

Cell aggregation inhibition. Chloroform extract of the dried leaf was active on leukocytes vs polymorphonuclear leukocyte aggregation induced by ionophore^{CPO144}.

Chromosomal aberration induction. The leaf, taken orally for 11 months by 30 patients with migraine headache, was inactive on the lymphocytes^{CPO176}. The dried leaf, taken by adults at a dose of 73.0 mg/person for 11 months or longer, was inactive^{CPO156}.

Cyclo-oxygenase inhibition. Water extract of the dried leaf, at a concentration of 1:20, was active on platelets^{CPO142}. Water extract

of the fresh aerial part, at a concentration of 50.0 mcg/ml, was inactive on platelets^{CP0141}. **Cytotoxic activity.** Ethanol (50%) extract of the leaf and stem, in cell culture, was active on CA-9KB, ED_{50} < 20.0 mcg/ml^{CPO100}. **Degranulation inhibition.** Chloroform/ methanol (1:3) extract of the dried leaf was active on the human polymorphonuclear leukocytes vs sodium arachidonate-, formylmethionyl-leucyl-phenylalanine-, and calcium ionophore-induced degranulation^{CP0169}. Histamine release inhibition. Chloroform extract of the dried leaf, at a concentration of 1:320, was active on rat peritoneal cells vs stimulation with anti-IgE or ionophore A-23187CP0175.

Insecticide activity. Acetone extract of the dried flower, at a concentration of 5.0% sprayed on *Macrosiphoniella sanborni*, produced weak activity^{CPO182}. Acetone extract of the dried leaf and stem, at a concentration of 5.0%, produced weak activity when sprayed onto *Macrosiphoniella sanborni*^{CPO182}.

Leukotriene B-4 production inhibition. Chloroform extract of the leaf, at a concentration of 100.0 mcg/ml, was active on rat leukocytes stimulated by calcium ionophore A23187^{CPO119}. Chloroform extract of the fresh leaf, at a dose of 50.0 mcg/ml, was active on human and rat leukocytes stimulated by n-formyl-methionyl-leucyl-phenylalanine or calcium ionophore A23187. The water extract, at a concentration of 500.0 mcg/ml, was inactive on rat leukocytes stimulated by calcium ionophore A23187^{CPO119}.

Lipoxygenase inhibition. Water extract of the dried entire plant (20 mg of plant material per ml), at a dose of 50.0 mcg/ml, was active on the rat leukocytes^{CPO173}.

Mutagenic activity. The dried leaf, taken orally by adults at a dose of 73.0 mg/person for eleven months or longer, was inactive. The urine of the patients was assayed using the Ames test^{CP0156}.

Oxidative burst inhibition. Acetone and saline extracts of the dried leaf, at a con-

leaf was active^{CP0142}.

centration of 1:108, were active, and the chloroform extract produced weak activity on the human polymorphonuclear leukocytes vs phorbol 12-myristate-13-acetate-induced oxidative burst^{CP0110}.

Phagocytosis inhibition. Chloroform extract of the dried leaf, at a concentration of 100.0 microliters/ml, was active vs zymosan-induced chemiluminescence in whole blood. A concentration of 200.0 microliters/ml was active on leukocytes vs ingestion of liposomes and of zymosan particles^{CP0144}. Phospholipase A-2 inhibition. Ethanol (95%) and water extract of the dried leaf was active^{CP0143}. Water extract of the dried

Platelet adhesion inhibition. Chloroform extract of the dried leaf, at variable concentrations, was active vs platelet-collagen interaction National Nationa

Platelet aggregation inhibition. Chloroform extract of the dried leaf, in cell culture, was active vs arachidonic acid, collagen, and epinephrine-induced aggregation^{CPO150}. Water extract of the dried leaf, at a concentration of 1:20, was active vs ADP-, collagen- and thrombin-induced aggregation^{CPO142}.

Polymorphonuclear leukocyte activation. Acetone extract of the freeze-dried leaf was active vs phorbol myristate acetate-induced chemiluminescence^{CP0116}.

Potassium channel-blocking activity. Chloroform extract of the fresh leaf, at a concentration of 100.0 mcg/ml, was active on rabbit arterial muscle. Voltage-dependent potassium current was inhibited, but calcium-dependent channels were un-

affected. The extract also inhibited the voltage-dependent potassium current in rat anococcygeus muscle, IC₅₀ 56.0 mcg/ml^{CPO125}. **Prostaglandin inhibition.** Water extract of the dried entire plant (20 mg of plant material per ml), at a dose of 50.0 mcg/ml, was active on rat leukocytes^{CPO173}. Water extract of the fresh aerial part, at a concentration of 50.0 mcg/ml, was active^{CPO141}.

Prostaglandin synthetase inhibition. Chromatographic fraction of the fresh leaf was active, IC₅₀ 200.0 mcg/ml^{CPO145}.

Protein synthesis stimulation. Chloroform extract of the dried leaf, in cell culture, was active on plates when adrenaline or arachidonic acid were added^{CP0150}.

Serotonin secretion inhibition. Ethanol (95%) extract of the fresh leaf was active on bull platelets, IC₅₀ 2.937 mg/ml^{CPO117}. Acetone extract of the dried leaf, at a concentration of 48.0 mg/ml, was active on platelets^{CPO122}. Chloroform extract, in cell culture, was active vs arachidonic acid-, collagen-, and adrenaline-induced serotonin release ^{CPO150}. Chloroform/methanol (1:3) extract of the dried leaf was active on platelets vs calcium ionophore-, ADP-, epinephrine-, arachidonic acid-, collagen-, and U46619-induced aggregation ^{CPO169}.

Sister chromatid exchange stimulation. The dried leaf, taken orally by adults at a dose of 73.0 mg/person for 11 months and longer, was inactive on lymphocytes^{CP0156}. The leaf taken orally for 11 months by 30.

The leaf, taken orally for 11 months by 30 patients with migraine headache, was inactive on lymphocytes^{CP0176}.

Spasmogenic activity. Chloroform extract of the dried leaf, at a concentration of 250.0 mcg/ml, was active on rabbit aorta. Ketanserin (SHT-2 antagonist) had no effect on the activity^{CP0120}.

Spasmolytic activity. Chloroform extract of the dried leaf, at a concentration of 250.0 mcg/ml, was inactive on rabbit aorta vs epinephrine-, and 5-HT-induced contractions^{CPO120}. The dried leaf, at a concentra-

CP0104

CP0105

CP0106

CP0110

tion of 200.0 mcg/ml, was inactive vs serotonin-, phenylephrine-, thromboxane-, angiotensin-, and mimetic U46619-induced contractions^{CP0152}. Chloroform extract of the fresh leaf, at a concentration of 200.0 mcg/ml, was active on rabbit aorta vs serotonin-, thromboxane mimetic U46619-, angiotensin- and phenylephrine-induced contractions^{CP0118,CP0152}. Chloroform extract of the fresh leaf, at a concentration of 100.0 mcg/ml, was active on rabbit aorta vs 5-HT-, angiotensin II-, epinephrine- and carbachol-induced contractions^{CP0120}.

Thromboxane B-2 synthesis inhibition. Chloroform extract of the fresh leaf was active on the human and rat leukocytes stimulated by n-formyl-methionyl-leucyl-phenylalanine and calcium ionophore A-23187^{CPO119}. Chloroform/methanol (1:3) extract of the dried leaf was active on platelets vs epinephrine-induced aggregation, and inactive vs epinephrine-induced arrhythmia and ADP- and thrombin-induced aggregation (20 mg of plant material per ml), at a dose of 50.0 mcg/ml, was active on the rat leukocytes^{CPO173}.

Bhakuni, D. S., M. Bittner, C.

Marticorena, M. Silva, E. Weldt,

M. Hoeneisen and J. L. Hartwell.

plete Herbal. W. Foulsham &

REFERENCES

CP0100

Screening of Chilean plants for anticancer activity. I. Lloydia 1976; 39(4): 225–243. CP0101 Rodriquez, J., H. Tello, L. Quijano, J. Caldaron, F. Gomez, J. Romo and T. Rios. Flavanoids of Mexican plants. Isolation and structure of santin and glucoferide. Rev Latinoamer Quim 1974; 5: 41–53. CP0102 Krochmal, A. and C. Krochmal. Medicinal Plants of the United States. Quadrangle, The New York Times Book Co., New York, 1973. CP0103 Culpeper, N. Culpeper's ComCo., Ltd., London, 1650; 430 pp-.

Grieve, M. and C. F. Leyel. A Modern Herbal. The Medicinal, Culinary, Cosmetic and Economic Properties, Cultivation and Folk-lore of Herbs, Grasses, Fungi, Shrubs and Trees With All Their Modern Scientific Uses, 1931.

Gottshall, R. Y., E. H. Lucas, A. Lickfeldt and J. M. Roberts. The occurrence of antibacterial substances active against *Mycobacterium tuberculosis* in seed plants. **J Clin Invest** 1949; 28: 920–923. Williams, C. A., J. R. S. Hoult, J. B. Harborne, J. Greenham and J. Eagles. A biologically active lipophilic flavonol from *Tanacetum parthenium*. **Phytochemistry** 1995; 38(1): 267–270.

CP0107 Stefanovic, M., S. Mladenovic, M. Dermanovic and N. Ristic. Sesquiterpene lactones from the domestic plant species *Tanace-tum parthenium* L. (Compositae). **J Serb Chem Soc** 1985; 50 (9/10): 435-441.

CP0108 Milbrodt, M., F. Schroder and W. A. Konig. 3,4-Beta-epoxy-8-deoxycumambrin B, a sesquiterpene lactone from *Tanace-tum parthenium*. **Phytochemistry** 1997; 44(3): 471–474.

CP0109 Kisiel, W. and A. Stojakowska. A sesquiterpene coumarin from transformed roots of *Tanacetum parthenium*. **Phytochemistry** 1997; 46(3): 515–516.

Brown, A. M. G., C. M. Edward, M. R. Davey, J. B. Power and K. C. Lowe. Pharmacological activity of feverfew (*Tanacetum parthenium* (L.) Schultz-Bip.): Assessment by inhibition of human polymorphonuclear leukocyte chemiluminescence in-vitro. **J Pharm Pharmacol** 1997; 49 (5): 558–561.

CP0111 Hendriks, H., Y. Anderson-Wildeboer, G. Engels and H. J. Woer-

CP0112	denbag. The content of parthenolide and its yield per plant during the growth of <i>Tanacetum parthenium</i> . Planta Med 1997; 63(4): 356–359. Banthorpe, D. V. and G. D. Brown. <i>Tanacetum parthenium</i> (L.) Schultz Bip. (feverfew): In vitro culture and prospects for the production of parthenolide. Biotechnol Agr Forest 1993; 1993:	CP0119	Summer, H., U. Salan, D. W. Knight and F. R. S. Hoult. Inhibition of 5-lipoxygenase and cyclo-oxygenase in leukocytes by feverfew. Involvement of sesquiterpene lactones and other components. Biochem Pharmacol 1992; 43(11): 2313–2320. Barsby, R. W., U. Salan, D. W. Knight and J. R. S. Hoult. Feverfew and vascular smooth muscle:
CP0113	361–372. Palevitch, D., G. Earon and R. Carasso. Feverfew (<i>Tanacetum parthenium</i>) as a prophylactic treatment for migraine: A doubleblind placebo-controlled study.	CP0121	Extracts from fresh and dried plants show opposing pharmacological profiles, dependent upon sesquiterpene lactone content. Planta Med 1993; 59(1): 20–25. Banthorpe, D. V., G. D. Brown,
CP0114	Phytother Res 1997; 11(7): 508–511. Murch, S. J., C. B. Simmons and P. K. Saxena. Melatonin in feverfew and other medicinal plants. Lancet 1997; 350(9091): 1598–		J. F. Janes and I. M. Marr. Parthenolide and other volatiles in the flowerheads of <i>Tanace-tum parthenium</i> (L.) Schultz Bip. Flavour Fragrance J 1990; 5: 183–185.
CP0115	1599. Kalodera, Z., S. Pepeljnjak, N. Blazevic and T. Petrak. Chemical composition and antimicrobial activity of <i>Tanacetum parthenium</i> essential oil. Pharma	CP0122	Heptinstall, S., D. V. C. Awang, B. A. Dawson, D. Kindack, D. W. Knight and J. May. Parthenolide content and bioactivity of feverfew (<i>Tanacetum parthenium</i> (L.) Schultz-Bip.). Estimation
CP0116	zie 1997; 52(11): 885–886. Brown, A. M. G., C. M. Edwards, M. R. Davey, J. B. Power and K. C. Lowe. Effects of extracts of Tanacetum species on human polymorphonuclear leucocyte activity in vitro. Phytother Res	CP0123	of commercial and authenticated feverfew products. J Pharm Pharmacol 1991; 44(5): 391–395. Caceres, A., L. Fletes, L. Aguilar, O. Ramirez, L. Figueroa, A. M. Taracena and B. Samayoa. Plants used in Guatemala for the treat-
CP0117	1997; 11(7): 479–484. Marles, R. J., J. Kaminski, J. T. Arnason, L. Pazos-Sanou, S. Heptinstall, N. H. Fisher, C. W. Crompton, D. G. Kindack and D. V. C. Awang. A bioassay for inhibition of serotonin release	CP0124	ment of gastrointestinal disorders. 3. Confirmation of activity against enterobacteria of 16 plants. J Ethnopharmacol 1993; 38(1): 31–38. De Pooter, H. L., J. Vermeesch and N. M. Schamp. The essen-
CP0118	from bovine platelets. J Nat Prod 1992; 55(8): 1044–1056. Barsby, R. W. J., U. Salan, D. W. Knight and J. R. S. Hoult. Feverfew extracts and parthenolide irreversibly inhibit vascular responses of the rabbit aorta. J Pharm Pharmacol 1992; 44(9): 737–740.	CP0125	tial oils of <i>Tanacetum vulgare</i> L. and <i>Tanacetum parthenium</i> (L.) Schultz-Bip. J Essent Oil Res 1989; 1(1): 9–13. Barsby, R. W. J., D. W. Knight and I. Mc Fadzean. A chloroform extract of the herb feverfew blocks voltage-dependent potassium currents recorded from sin-

CP0126	gle smooth muscle cells. J Pharm Pharmacol 1993; 45(7): 641–645. Paulsen, E., K. E. Andersen and B. M. Hausen. Compositae dermatitis in a Danish dermatology department in one year. Contact Dermatitis 1993;29(1): 6–10.	CP0134	Heinrich, M., H. Rimpler and N. A. Barrera. Indigenous phytotherapy of gastrointestinal disorders in a lowland mixed community (Oaxaca, Mexico): Ethnopharmacologic evaluation. J Ethnopharmacol 1992; 36(1): 63–80.
CP0127	Acevedo, J. G. A., J. L. M. Lopez and G. M. Cortes. In vitro antimicrobial activity of various plant extracts used by Purepecha against some Enterobacteriaceae. Int J Pharmacog 1993; 31 (1): 61–64.	CP0135	Novaretti, R. and D. Lemordant. Plants in the traditional medicine of the Ubaye Valley. J Ethnopharmacol 1990; 30(1): 1–34. Hewlett, M. J., M. J. Begley, W. A. Groenewegen, S. Heptinstall, D. W. Knight, J. May, U. Salan
CP0128	Zamora-Martinez, M. C. and C. N. P. Pola. Medicinal plants used in some rural populations of Oaxaca, Puebla and Veracruz, Mexico. J Ethnopharmacol 1992; 35(3): 229–257.		and D. Toplis. Sesquiterpene lactones from feverfew, <i>Tanacetum parthenium</i> : Isolation, structural revision, activity against human blood platelet function and implications for migraine therapy.
CP0129	Caceres, A., L. Figueroa, A. M. Taracena and B. Samayoa. Plants used in Guatemala for the treatment of respiratory diseases. 2: Evaluation of activity of 16 plants against gram-positive bacteria. J Ethnopharmacol 1993; 39(1): 77–82.	CP0137	J Chem Soc Perkin Trans I 1996; 16: 1979–1986. Kalodera, Z., S. Pepeljnjak and T. Petrak. The antimicrobial activity of <i>Tanacetum parthenium</i> extract. Pharmazie 1996; 51(12): 995–996.
CP0130	Caceres, A., O. Cano, B. Samayoa and L. Aguilar. Plants used in Guatemala for the treatment of gastrointestinal disorders. 1. Screening of 84 plants against enterobacteria. J Ethnopharmacol 1990; 30(1): 55–73.	CP0136	De Weerdt, C. J., H. P. R. Bootsma and H. Hendriks. Herbal medicines in migraine prevention. Randomized double-blind placebo-controlled crossover trial of a feverfew preparation. Phytomedicine 1996; 3(3): 225–230.
CP0131	Giron, L. M., V. Freire, A. Alonzo and A. Caceres. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. J Ethnopharmacol 1991; 34(2/3): 173–187.	CP0139 CP0140	Lewis, W. H. and M. P. F. Elvin- Lewis. Medical Botany. Wiley- Interscience, New York. 1977. Groenwegen, W. A., D. W. Knight and S. Heptinstall. Compounds extracted from feverfew that
CP0132	Stehmann, J. R. and M. G. L. Brandao. Medicinal plants of Lavras Novas (Minas Gerais, Brazil). Fitoterapia 1995; 56		have anti-secretory activity contain an alpha-methylene butyrolactone unit. J Pharm Pharmacol 1986; 38: 709–712.
CP0133	(6): 515–520. Rivera, D. and C. Obon. The ethnopharmacology of Madeira and Porto Santo Islands, a review. J Ethnopharmacol 1995; 46(2): 73–93.	CP0141	Collier, H. O. J., N. M. Butt, W. J. McDonald-Gibson and S. A. Saefd. Extract of feverfew inhibits prostaglandin biosynthesis. Lancet 1980; 1980(II): 922–923.

CP0142	Makheja, A. N. and J. M. Bailey. A platelet phospholipase inhibitor from the medicinal herb feverfew (<i>Tanacetum parthenium</i>). Prostaglandins Leuko -	CP0151	hydryl groups. Foila Haematol (Leipzig) 1988; 115(4): 447–449. Groenewegen, W. A. and S. Heptinstall. A comparison of the ef-
CP0143	trienes Med 1982; 8: 653–660. Jain, M. K. and D. V. Jahagirdar. Action of phospholipase A-2 on bilayers. Effects of inhibitors. Biochim Biophys Acta 1985;	GD0152	fects of an extract of feverfew and parthenolide, a component of feverfew, on human platelet activity in-vitro. J Pharm Phar- macol 1990; 42(8): 553–557.
CP0144	814: 319–326. Losche, W., E. Michel, S. Heptinstall, S. Krause, W. A. Groenewegen, G. P. Pescarmona and K. Thielmann. Inhibition of the	CP0152	Barsby, R., U. Salan, D. W. Knight and J. R. S. Hoult. Irreversible inhibition of vascular reactivity by feverfew. Lancet 1991; 338(8773): 338 pp
GD0145	behaviour of human polynuclear leukocytes by an extract of <i>Chrys-</i> anthemum parthenium. Planta Med 1988; 54(5): 381–384.	CP0153	Plouvier, V. Occurrence and distribution of syringoside, calycanthoside and similar coumarinin glycosides in several bothers.
CP0145	Pugh, W. J. and K. Sambo. Prostaglandin synthetase inhibitors in feverfew. J Pharm Pharmacol 1988; 40(10): 743–745.	CP0154	anical groups. C R Acad Sci Ser III 1985; 301(4): 117–120. Fontanel, D., S. Bizot and P. Beaufils. Dosage by HPLC of
CP0146	Murphy, J. J., S. Heptinstall and J. R. A. Mitchell. Randomised double-blind placebo-controlled trial of feverfew in migraine prevention. Lancet 1988; 1988	GD0155	parthenolide content in the great chamomille <i>Tanacetum parthenium</i> (L.) Schulz-Bip. Planta Med Phytother 1990; 24(4): 231–237.
CP0147	(8604): 189–192. Losche, W., A. V. Mazuroy and S. Heptinstall. An extract of fever- few inhibits interactions of hu- man platelets with collagen sub- strates. Thrombosis 1987; 48(5): 511–518.	CP0155	Gromek, D., W. Kisiel, A. Sto- jakowska and S. Kohlmunzer. Attempts of chemical standardi- zing of <i>Chrysanthemum parthe-</i> <i>nium</i> as a prospective antimi- graine drug. Polish J Pharma- col Pharm 1991; 43(3): 213–217.
CP0148	Pattrick, M., S. Heptinstall and M. Doherty. Feverfew in rheumatoid arthritis: A double blind placebo controlled study. Ann Rheum Dis 1989; 48(7): 547–549.	CP0156	Johnson, E. S., N. P. Kadam, D. Anderson, P. C. Jenkinson, R. S. Dewdney and S. D. Blowers. Investigation of possible genetoxic effects of feverfew in migraine patients. Human Toxicol 1987;
CP0149	Begley, M. J., M. J. Hewlett and D. W. Knight. Revised structures for guaianolide alpha-methylenebutyro-lactones from fever-few. Phytochemistry 1989; 28 (3): 940–943.	CP0157	6(6): 533-534. Dolman, D. M., D. W. Knight, U. Salan and D. Toplis. A quantitative method for the estimation of parthenolide and other sesquiterpene lactones contain-
CP0150	Heptinstall, S., W. A. Groenewegen, P. Spangenberg and W. Losche. Inhibition of platelet behaviour by feverfew: A mechanism of action involving sulp-	CP0158	ing alpha-methylenebutyrolactone functions. Phytochem Anal 1992; 3(1): 26–31. Awang, D. V. C., B. A. Dawson, D. G. Kindack, C. W. Crompton

CP0159	and S. Heptinstall. Parthenolide content of feverfew (<i>Tanacetum parthenium</i>) assessed by HPLC and H-NMR spectroscopy. J Nat Prod 1991; 54(6): 1516–1521. Caceres, A., E. Jauregui, D. Herrera and H. Logemann. Plants	CP0168	abolites. Pharmazie 1982; 37(3): 215–221. Bohlmann, F. and C. Zdero. Naturally occurring terpene derivatives. Part 454. Sesquiterpene lactones and other constituents form <i>Tanacetum parthenium</i> . Phyto-
	used in Guatemala for the treatment of dermatomucosal infections. 1. Screening of 38 plant extracts for anticandidal activity. J Ethnopharmacol 1991; 33(3): 277–283.	CP0169	chemistry 1982; 21: 2543–2549. Heptinstall, S., L. Williamson, A. White and J. R. A. Mitchell. Extracts of feverfew inhibit granule secretion in blood platelets and polymorphonuclear leuco-
CP0160	Bloszyk, E. and B. Drozdz. Sesquiterpene lactones. XXII. Sesquiterpene lactones in species of the genus Chrysanthemum. Acta	CP0170	cytes. Lancet 1985; 1985(8437): 1071–1073. Johnson, E. S., N. P. Kadam, D. M. Hylands and P. J. Hylands.
CP0161	Soc Bot Pol 1978; 47: 3 Blakeman, J. P. and P. Atkinson. Antimicrobial properties and possible role in host-pathogen interactions of parthenolide.	CP0171	Efficacy of feverfew as prophylactic treatment of migraine. Brit Med J 1985; 291(6495): 569– 573.
	interactions of parthenolide, a sesquiterpene lactone isolated from glands of <i>Chrysanthemum</i> parthenium. Physiol Plant Pathol		Browner, C. H. Plants used for reproductive health in Oaxaca, Mexico. Econ Bot 1985; 39(4): 482–504.
CP0162	1979; 15: 183–192. Stefanovic, N. Ristic, M. Djermanovic and S. Mladenovic. New sesquiterpene lactone from <i>Tana</i> -	CP0172	Giberti, G. C. Herbal folk medicine in Northwestern Argentina: Compositae. J Ethnopharmacol 1983; 7(3): 321–341.
CP0163	cetum parthenium. (Abstract). Planta Med 1980; 39: 254A Makheja, A. N. and J. M. Bailey. The active principle in feverfew.	CP0173	Capasso, F. The effect of an aqueous extract of <i>Tanacetum parthenium</i> L. on arachidonic acid metabolism by rat peritoneal leu-
CP0164	Lancet 1981; 1981: 1054—. Morton, J. F. Caribbean and Latin American folk medicine and its influence in the United States. Q J Crude Drug Res 1980; 18(2):	CP0174	cocytes. J Pharm Pharmacol 1986; 38(1): 71–72. Darias, V., L. Bravo, E. Barquin, D. M. Herrera and C. Fraile. Contribution to the ethnopharmaco-
CP0165	57-75. Ishikura, N. Flavonol glycosides in the flowers of <i>Hibiscus mutabilis</i> F. Versicolor. Agr Biol	CP0175	logical study of the Canary Islands. J Ethnopharmacol 1986; 15(2): 169–193. Hayes, N. A. and J. C. Foreman.
CP0166	Chem 1982; 46: 1705–1706. Krag, K. J. Plants used as contraceptives by the North American Indians. An ethnobotanical study. Thesis -BS-Harvard Uni-		The activity of compounds extracted from feverfew on histamine release from rat mast cells. J Pharm Pharmacol 1987; 39 (6): 466–470.
CP0167	versity, 1976; 117 pp Dornberger, K. and H. Lich. Screening for antimicrobial and presumed cancerostatic plant met-	CP0176	Anderson, D., P. C. Jenkinson, R. S. Dewdney, S. D. Blowers, E. S. Johnson and N. P. Kadman. Chromosomal aberrations and sis-

	ter chromatid exchanges in lym- phocytes and urine mutagenicity of migraine patients: A compar- ison of chronic feverfew users		medicine of the Venezia Giulia Region (North East Italy). J Eth- nopharmacol 1988; 22(3): 231– 239.
	and matched non users. Human	CP0181	Dragendorff, G. Die Heilpflan-
CD0177	Toxicol 1988; 7(2): 145–152.		zen der Verschiedenen Volker
CP0177	Heptinstall, S., W. A. Groenewegen, P. Spangenberg and W. Loe-		und Zeiten, F. Enke, Stuttgart, 1898; 885 pp
	sche. Extracts of feverfew may	CP0182	Tattersfield, F., C. Potter, K. A.
	inhibit platelet behavior via neu-		Lord, E. M. Gillham, M. J. Way
	tralization of sulphydryl groups. ${f J}$		and R. I. Stoker. Insecticides
	Pharm Pharmacol 1987; 39(6):		derived from plants. Results of
GD0450	459–465.		tests carried out on a number of
CP0178	Wagner, H., B. Fessler, H. Lotter		British, Tropical and Chinese
	and V. Wray. New chlorine-con-		plants. Kew Bull (London) 1948;
	taining sesquiterpene lactones	CD0102	3: 329–349.
	from Chrysanthemum parthe-	CP0183	Bohlmann, F., W. V. Kap-Herr,
	<i>nium.</i> Planta Med 1988; 54(2): 171–172.		L. Fanghanel and C. Arndt. Polyacetylene compounds. LXXVI.
CP0179	Bhakuni, D. S., M. Bittner, C.		Several new constituents of the
	Marticorena, M. Silva, E. Weldt,		tribe Anthemideae. Chem Ber
	M. E. Melo and R. Zemelman.		1965; 98: 1411–1415.
	Screening of Chilean plants for	CP0184	Anon. The Herbalist. Hammond
	antimicrobial activity. Lloydia		Book Company, Hammond, In-
	1974; 37(4): 621–632.		diana, 1931; 400 pp
CP0180	Lokar, L. C. and L. Poldini. Her-		
	bal remedies in the traditional		

Tribulus terrestris

Common Names

Abrojo	Peru	Jili	Taiwan
Akanti	India	Jilisi	China
Bakhra	India	Kandalai	Pakistan
Bastitaj	India	Kanti	India
Betagokhru	India	Khokkrasan	Thailand
Bhakra	India	Kokulla	India
Bhakra	Pakistan	Krunda	India
Bullhead	Kuwait	Lahhango-khru	India
Burra gookeron	Kuwait	Lotak	India
Calthrop	India	Meethagokhru	India
Caltrap	India	Mithgokhru	India
Caltrop	Australia	Nahhanagokhru	India
Caltrop	Kuwait	Nerenchi	Sri Lanka
Chinnipalleru	India	Nerinjeekai	India
Chirupalleru	India	Neruńji	India
Chota gokharu	India	Pakhrá	Pakistan
Cow's hoof	India	Palleru	India
Croix de Malte	India	Pallerukayalu	India
Demirdiken	Turkey	Pedda palgeru	India
Deshi gokhru	India	Puncture vine	USA
Devil's thorn	India	Rasha	India
Ekanty	India	Sanna neggilu	India
Gai ma duong	China	Sarala	India
Gatha	Qatar	Sharatte	India
Gokhatri	India	Shitsurishi	China
Gokhru	India	Small caltrop	Kuwait
Gokhrudesi	India	Tat le	China
Gokhuru	Pakistan	Tsi li	China
Gokshura	India	Zama	India
Ikshugandha	India		

BOTANICAL DESCRIPTION

An annual, prostrate or semierect, diffusely branched herb of the ZYGOPHYLLACEAE family. It grows up to 90 cm in length. The root is slender, cylindrical, somewhat fibrous, 10–15 cm long, light brown and faintly aromatic. The leaves are paripinnate. Leaflets, 5–8 pairs, are subequal, oblong to linear-oblong. Flowers are leaf-opposed, solitary, and pale-yellow. The fruit is globose, consisting of 5–12 woody cocci, each with 2 pairs of hard, sharp, and divaricate spines, 1 pair longer than the other. The seeds are several in each coccus with transverse partitions between them.

ORIGIN AND DISTRIBUTION

A native of Europe, it grows on dry or sandy soil along roads and highways. It is now found in the tropics and warm-temperate regions of the world.

TRADITIONAL MEDICINAL USES

Bulgaria. The dried aerial part is taken orally to increase spermatogenesis and libido^{TT0179}.

China. Hot water extract of the aerial part is taken orally, in doses of 7 to 10 gm, as a tonic in spermatorrhea^{TTO121}. Hot water extract of the dried seed is taken orally for liver diseases^{TTO192}. The defatted fruit is taken orally for eye troubles, edema, abdominal distention, and leucorrhea^{TTO112}. Water extract of the dried fruit is used externally to treat hyperpigmentation of the skin, such as melasma and ephekides, in order to enhance the beauty of the skin^{TTO169}. The fruit is taken orally by pregnant women as an abortive^{TTO106}. The powdered, dried plant is mixed with butter and honey and licked to promote longevity^{TTO200}.

Europe. Hot water extract of the leaf is taken orally as a galactagogue, diuretic and antidiarrheal^{TT0210}.

India. Decoction of the entire plant is taken orally to treat leucorrhea^{TT0135}, and the hot water extract is taken orally as an aphro-

disiac^{TT0208}. Hot water extract of the dried plant is taken orally for renal or urinary calculi^{TT0198}. Hot water extract of the root is taken orally as an emmenagogue^{TT0104}. The fresh seed is taken orally with honey as a tonic, to improve vitality and luster of the skin, to prevent wrinkles and to treat jaundiceTT0181. The powdered, dried fruit and twigs are taken orally as a narcotic. When taken in excess it will cause delirium^{TT0205}. The fresh fruit juice is taken orally for urinary complaints^{TT0152}. The powdered, dried root is taken orally, 3 times daily, for gonorrhea^{TT0137}. Water extract of the fruit is taken orally as a tonic, diuretic, and aphrodisiacTT0105. The infusion is taken orally as a uterine tonic^{TT0138}, and the fruit is taken orally for impotence in Ayurvedic medicine^{TT0174}. Infusion of the fruit is taken orally for urinary calculus and as a diuretic TT0127. Infusion of the dried fruit is taken orally as a treatment for urolithiasis^{TT0126} and gonorrhea, as a cooling tonic, as a diuretic for gout^{TT0177}, and for urinary and kidney diseases^{TT0189}. For acute debility after childbirth, a 1:2 mixture of Tribulus terrestris fruit and Curculigo orchiodes root is given with the juice of Echinops echinatus root^{TT0152}.

Kuwait. Hot water extract of the root is taken orally as an aphrodisiac^{TT0139}.

Nepal. Hot water extract of the fruit is taken orally as an aphrodisiac and for impotence, and as a tonic and diuretic^{TT0100}.

Pakistan. The fruit is taken orally to treat impotence and as an aphrodisiac^{TT0101}.

Peru. Hot water extract of the dried aerial part is taken orally as a diuretic and anti-inflammatory^{TTO2O2}.

South Korea. Hot water extract of the dried fruit is taken orally as an abortifacient TT0190. Hot water extract of the seed is taken orally for liver diseases TT0166.

Tanzania. The leaf is used as a vegetable in the normal diet^{TT0134}.

Thailand. Hot water extract of the dried root is taken orally as a diuretic^{TT0211}.

Turkey. Decoction of the seed is taken orally to pass kidney stones TT0136.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Aspartic acid: Fr^{TT0164}

Astragalin: Fr, Lf^{TT0222}, Aer^{TT0220}

Bioscin prosapogenin A sulfate: Aer^{TT0108}

Calcium: Fr 0.144%^{TT0120} Campesterol: Fl^{TT0141}, Rt^{TT0213} Chlorogenin: Aer 0.17%^{TT0218}

Daucosterol: Aer^{TT0162}

Dioscin prosapogenin A: Aer^{TT0108}

Dioscin, proto: Aer^{TT0108} Dioscin: Aer 55^{TT0162}

Diosgenin: Rt 0.13%^{TT0124}, Pl 0.15-0.98%^{TT0212,TT0183}, Aer 0.35-0.80%^{TT0218,TT0161}, St 0.78%^{TT0124}

Fatty acids: Sd^{TT0145}

Furost-20(22)en-12-one-3-beta-26-diol, 5-alpha 26-O-beta-d-glucopyranosyl-3-O-[[beta-d-xylopyranosyl(1,3)]-beta-d-galacto-pyransoyl(1,2)]-beta-d-glucopyranosyl (1,4)-beta-d-glucopyranosyl: Aer 10^{TT0111}

Furostan-12-one-3-beta-22,26-triol, 5-alpha 26-O-beta-d-glucopyranosyl-3-O-[[beta-d-xylopyranosyl(1,3)]-beta-d-galactopoyranosyl(1,20]-beta-d-glucopyranosyl(1,4)-beta-d-glucopyranosyl: Aer 8^{TT0111}

Gigenin, neo: Pl^{TT0113} Gitogenin, neo: Fl^{TT0141}

Gitogenin: Pl^{TT0221}, Aer 0.111%^{TT0218}

Gitonin, F: Fr^{TT0110} Gitonin: Fr^{TT0110}

Glutamic acid: Fr^{TT0164} Gracillin, proto: Aer^{TT0108}

Gracillin: Aer^{TT0108}
Harmaline: Pl^{TT0130}
Harmalol: Pl^{TT0130}
Harman, nor: Pl^{TT0125}
Harman: Pl^{TT0130}

Harmine, tetrahydro: Pl^{TT0144}

Harmine: Pl^{TT0130} Harmol: Pl^{TT0219}

Hecogenin, neo, 3-O-beta-dglucopyranoside: Aer 50^{TT0162}

Hecogenin: Pl^{TT0173}
Hecogenin-3-O-beta-dglucopyranosyl(1,4)-beta-dgalactopyranoside: Aer 20^{TT0111}
Indan-1-one, hydro, 7-methyl: Pl^{TT0109}

Kaempferol: AerTT0216

Kaempferol-3-gentiobioside: Lf^{TT0163} Kaempferol-3-gentiobioside-7-glucoside:

Kaempferol-3-O-beta-d-rutinoside: Lf^{TT0163} Kaempferol-3-para-coumaroyl-glucoside: Lf^{TT0163}

Kaempferol-3-rutinoside: Fr, Lf^{TT0222} Kikubasaponin: Pl^{TT0180,TT0115} Lanatigonin II, degluco: Fr^{TT0110}

Linoleic acid: Pl^{TTŎ105} Nitrate: Fr^{TTO105}

Oleic acid: PI^{TT0203,TT0105}
Palmitic acid: Sd^{TT0105}
Potassium: Fr 0.42%^{TT0120}
Protein: Fr 10.85%^{TT0164}
Quercetin, iso: Lf^{TT0163}

Quercetin: Fr, St^{TT0131}, Fl^{TT0141} Quercetin-3-gentibioside: Lf^{TT0163} Quercetin-3-gentiobioside: Lf^{TT0143} Quercetin-3-gentiobioside-7-glucoside: Lf ^{TT0163}

Quercetin-3-gentiobioside-7-glucoside: Lf^{TT0143}

Quercetin-3-gentiotrioside: Lf^{TT0163}

Quercetin-3-rhamnogentiobioside: Lf TT0163 Rhamnetin, iso, 3,7-di-O-beta-glucoside:

Rhamnetin, iso, 3-gentiobioside: Lf TT0163 Rhamnetin, iso, 3-gentiobioside-7-glucoside: Lf TT0163

Rhamnetin, iso, 3-O-beta-d-glucoside: Lf^{TT0163}

Rhamnetin, iso, 3-O-beta-d-rutinoside: Lf^{TT0163}

Rhamnetin, iso, 3-para-coumaroyl-glucoside: Lf^{TT0163}

Ruscogenin: PI^{TT0113}

Ruscogenin-1-O-alpha-L-rhamnopyranosyl (1,2)-beta-d-6-O-acetyl-glucopyranosyde: p1^{TT0113}

Rutin: Lf 0.58%, Fr 0.51%^{TT0178}

Rutin: Lf TT0143

Sitosterol, beta: Pl^{TT0186} Sodium: Fr 0.64%^{TT0120}

Spirosta-3,5-diene, 25 (D): PlTT0221

Spirosta-3,5-diene: Fl^{TT0160}
Stearic acid: Sd^{TT0105}
Stigmasterol: Pl^{TT0186}
Terrestriamide: Pl^{TT0109}
Terrestroside F: Pl^{TT0173}

Terrestrosin A: Fr^{TT0110}

Terrestrosin B: Fr^{TT0110}

Terrestrosin C: Fr^{TT0110}
Terrestrosin D: Fr^{TT0110}
Terrestrosin E: Fr^{TT0110}

Terrestrosin F: Fr 0.1458%^{TT0112}
Terrestrosin G: Fr 0.325%^{TT0112}
Terrestrosin H: Fr 0.342%^{TT0112}
Terrestrosin I: Fr 0.167%^{TT0112}
Terrestrosin J: Fr 0.042^{TT0112}
Terrestrosin K: Fr 0.079^{TT0112}

Tigogenin: PITT0113

Tigogenin-3-O-[beta-d-xylopyranosyl(1,2)-(beta-d-xylopyranosyl(1,3))]-beta-d-glucopyranosyl(1,4)-(alpha-L-rhamno-pyranosyl(1,2)-beta-d-galactopyranoside:

Tigonenin, neo: Pl^{TT0113}
Tigonin, deglacto: Fr^{TT0110}
Tribuloside: Fr, Lf^{TT0222}
Tribulosin: Aer 90^{TT0162}

Tribulus polysaccharide H: Lf, St^{TT0107}

Tribusponin: Lf^{TT0140}
Trillarin: Aer^{TT0108}
Trillin: Pl^{TT0185}

PHARMACOLOGICAL ACTIVITIES AND CLINICAL TRIALS

Abortifacient effect. The dried plant, administered intragastrically to pregnant ewes at a dose of 400.0 gm/animal, was inactive^{TTO207}.

Analgesic activity. Chloroform extract of the dried entire plant, administered intraperitoneally to mice at a dose of 500.0 mg/kg, was active vs tail clip method^{TT0146}. Hot water extract of the dried aerial part, administered intraperitoneally to mice of both sexes at a dose of 150.0 mg/kg, was active vs hot plate method^{TT0201}. The dried fruit, administered by gastric intubation to mice at a dose of 0.5 gm/kg in a preparation containing *Bombyx mori*, *Aconitum sinense*, *Alpinia* species, *Mentha arvensis*, and *Sophora flavescens*, was active vs acetic acid-induced writhing^{TT0154}.

Androgenic activity. The plant, in a preparation containing *Lactuca scariola*, *Hygrophila spinosa*, *Parmelia parlata*, *Macuna pruriens*, *Argyreia speciosa*, and *Leptadenia reticulata*, administered orally to castrated mice

pretreated with testosterone subcutaneously at a dose of 7.70 mg/animal for 4 days, was active. A dose of 22.0 mg/animal increased the maltase activity of the dorsoventral prostate and the fructose content of the seminal vesicle^{TT0209}.

Anthelmintic activity. The alkaloid fraction and ethanol (95%) extract of the dried entire plant, administered orally to chickens, were active on *Ascaridia galli*^{TT0167}.

Antiallergenic activity. Decoction of the plant, at a concentration of 250.0 mcg/ml in a preparation containing Ledebouriella seseloides, Potentilla chinensis, Clematis armandii, Rehmannia glutinosa, Paeonia albiflora, Lophaterum gracile, Dictamnus dasycarpus, Glycyrrhiza glabra, and Schizonepeta tenuifolia, in cell culture, was active on monocytes vs interleukin 4-induced CD23 expression as a model of atopy^{TT0129}. The dried fruit, administered by gastric intubation to mice at a dose of 0.5 gm/kg in a preparation containing Bombyx mori, Aconitum sinense, Alpinia species, Mentha arvensis, and Sophora flavescens, was active vs picryl chloride-induced contact dermatitis^{TT0154}.

Antianaphylactic activity. Water extract of the dried fruit, at a concentration of 1.0 mcg/ml, was inactive on the rat LEUK-RBL 2H3 vs biotinyl IgE-avidin complex-induced degranulation of beta-hexosaminidase^{TT0133}. Antiascariasis activity. Ethanol extract (95%) of the seed produced paralysis in 18 hours and no deaths^{TT0114}.

Antibacterial activity. Chloroform extract of the dried entire plant, on agar plate, was active on *Staphylococcus aureus*, MIC >83.2 gm/liter. The methanol extract, at a concentration of 1.0 gm/liter, was inactive on *Klebsiella pneumoniae* and *Staphylococcus aureus*^{TTO151}. Chloroform extract of the dried leaf and stem, at a concentration of 4.0 mg/ml on agar plate, was inactive on *Escherichia coli*, *Salmonella typhosa*, and *Shigella dysenteriae*, and produced weak activity on *Bacillus subtilis*^{TTO176}. Ethanol (95%) extract

of the dried aerial part, on agar plate at a concentration of 100.0 mg of plant material/disc, and the water extract at a concentration of 20.0 mg/disc, were inactive on Bacillus subtilis, Escherichia coli, Salmonella typhosa, and Shigella dysenteriae. The water extract was active, and the ethanol (95%) extract was inactive on Staphylococcus aureus^{TT0165}.

Anticholesterolemic activity. Saponin fraction of the dried root, administered by gastric intubation to rabbits at a dose of 10.0 mg/kg for 90 days, decreased the development of protein, carbohydrate, and lipid dystrophy of the liver vs cholesterol-loaded animals^{TT0217}.

Anticholinergic activity. The dried fruit, administered by gastric intubation to mice at a concentration of 5.0 mg/ml in a preparation containing *Bombyx mori*, *Aconitum sinense*, *Alpinia* species, *Mentha arvensis*, and *Sophora flavescens*, was active on the ileum vs ACh-induced contractions^{TT0154}.

Antieczema effect. Decoction of the dried fruit, in a prescription containing Ledebouriella seseloides, Clematis armandi, Rehmannia glutinosa, Paeonia albiflora, Lophatherum gracile, Dictamnus dascarpus, Glycyrrhiza glabra, and Schizonepeta tenuifolia, taken orally by adults, was active TT0119. The entire plant, taken orally by 47 children in a double-blind, placebo-controlled study, was active TT0117. Decoction of the plant, at a dose of 200.0 ml/ person in a preparation containing Ledebouriella seseloides, Potentilla chinensis, Clematis armandii, Rehmannia glutinosa, Paeonia albiflora, Lophaterum gracile, Dictamnus dasycarpus, Glycyrrhiza glabra, and Schizonepeta tenuifolia, was taken orally every day for 8 weeks. The treatment was effective on 40 adults with refractory atopic dermatitis^{TT0128}, and 31 patients with severe ectopic eczema^{TT0122}. Antifilarial activity. Hot water extract of the plant, in a mixture with Melia azadirachta (15%), Sida cordifolia (15%), Tribulus terrestris (12%), Terminalia chebula (39%), and Tinospora cordifolia (19%), at a concentration of 100.0 mcg/ml, produced weak activity on Acanthocheilonema viteae. A concentration of 500.0 mcg/ml was active^{TT0153}. **Antihistamine activity.** The dried fruit, at a concentration of 5.0 mg/ml in a preparation containing Bombyx mori, Aconitum sinense, Alpinia species, Mentha arvensis, and Sophora flavescens, was active on the mouse ileum vs histamine-induced contractions. A dose of 1.0 gm/kg, administered by gastric intubation, was active vs histamine-induced pedal edema^{TT0154}.

Anti-inflammatory activity. Ethanol (95%) extract of the entire plant, administered orally to rats at a dose of 20.0 mg/kg, was inactive vs formalin-induced pedal edema TT0142. The dried fruit, administered by gastric intubation to mice at a dose of 2.0 gm/ kg in a preparation containing Bombyx mori, Aconitum sinense, Alpinia species, Mentha arvensis, and Sophora flavescens, was active vs dextran-induced pedal edema, leakage of dye into the peritoneal cavity and yeastinduced inflammation of the paw^{TT0154}. The root, in a preparation (Rumalaya tablets, Himalaya Drug Co., India) containing Pristimera indica, Rubia cordifolia, Tinospora cordifolia, Commiphora mukul, and muskadena, was taken orally by 50 patients with rheumatoid arthritis. Pain and tenderness of the joints decreased in 28% of the subjects after 2 weeks of treatment. Thirty-two percent of the patients did not respond. No side effect was observed in the patients^{TT0175}. Antimalarial activity. Ethanol (50%) extract of the dried fruit, administered intragastrically to mice at a dose of 1.0 gm/kg, was inactive on Plasmodium berghei. The methanol (50%) extract, at a concentration of 100.0 mcg/ml, produced 16% inhibition on Plasmodium berghei^{TT0158}.

Antimycobacterial activity. Chloroform extract of the dried entire plant, on agar plate, was active on *Mycobacterium phlei*, MIC 41.6 gm/liter. The methanol extract, at a concentration of 1.0 gm/liter, was inactive^{TT0151}.

Antipruritic activity. Ethanol (70%) extract of the plant, administered intragastrically to mice at a dose of 500 mg/kg, was inactive vs compound 48/80-induced pruritis^{TTO118}. Antispasmodic activity. Ethanol (95%) extract of the dried fruit, at a concentration of 200.0 mcg/ml, was inactive on guinea pig ileum vs histamine-, and barium-induced contractions TT0187. Ethanol (95%) extract of the entire plant, at a concentration of 10.0 mcg/ml, was active on guinea pig ileum vs ACh-, histamine-, and BaCl₂induced spasms^{TT0142}. The alkaloid fraction and water extract of the dried fruit were active on the rat intestine vs ACh-induced contractions^{TT0215}.

Antitumor activity. Water extract of the dried fruit, at a dose of 100.0 mg/kg, was active on the mouse Sarcoma 180(ASC)^{TT0148}. Antiurolithiasis activity. Ethanol (95%) extract of the dried fruit, administered intragastrically to rats at a dose of 25.0 mg/kg, was active vs seed-induced cystolithiasis^{TT0126}. Antiveast activity. Chloroform extract of the dried entire plant, on agar plate, was active on Candida albicans, MIC >83.2 gm/ liter. The methanol extract, at a concentration of 1.0 gm/liter, was inactive^{TT0151}. Ethanol (95%) and water extracts of the dried aerial part, on agar plate at concentrations of 100.0 mg/disc and 20.0 mg/disc, respectively, were inactive on Candida albicans^{TT0165}. Hot water extract of the dried entire plant was active on Candida albicans TTO155. Aphrodisiac activity. The dried seed, in a preparation containing Orchis mascula, Lactuca scariola, Hygrophila spinosa, Macuna pruriens, Parmelia parlata, Argyreia speciosa, and Laptadenia reticulata, was taken by 21 infertile oligospermic patients in the age group of 25–35 years. The patients were administered 2 tablets, 3 times daily for 4 weeks. Fifty percent of the patients showed improvement of prostatic function as assessed by the activity of maltase and by the citric acid content, with increase in the activity

of amylase and maltase, and a decrease in post-treatment levels of glycogen in seminal fluid. No marked change in seminal vesicular function was noted^{TT0172}. The saponin fraction of the dried entire plant, administered by gastric intubation to male rats, increased sexual reflexes and libido. There was also an increase in libido when the saponin fraction was taken orally by men^{TT0173}. **Barbiturate potentiation.** Methanol extract of the dried fruit, administered intraperitoneally to mice at a dose of 500.0 mg/kg, was inactive^{TT0191}. The dried fruit, at a concentration of 5.0 mg/ml in a preparation containing Bombyx mori, Aconitum sinense, Alpinia species, Mentha arvensis, and Sophora flavescens, was active^{TT0154}.

Benign prostatic hyperplasia improvement. Hot water extract of the dried entire plant, in a preparation that also contained Orchis mascula, Lactuca serriola, Asteracantha longifolia, Macuna pruriens, Parmelia perlata, Argyreia speciosa, Leptadenia reticulata, and gold, was taken orally by 45 patients with prostatitis and 10 patients serving as untreated controls. Of the 38 patients with benign hypertrophy in the test group, 28 improved and did not need surgery. All of the controls needed surgery. All of

Cardiac depressant activity. Alkaloid fraction of the dried fruit was active on the frog heart^{TT0215}.

Cardiotonic activity. Water extract of the fruit was active on cat papillary muscle and frog and rabbit hearts^{TTO120}. Ethanol (95%) extract of the entire plant, administered by perfusion at a concentration of 2.5 mg/animal, increased the rate and amplitude of frog heart^{TTO142}.

Cardiovascular effect. Ethanol (95%) extract of the dried entire plant decreased the force of contractions of rabbit heart TTO182.

Cholinesterase inhibition. Ethanol (95%) extract of the entire plant, at a concentration of less than 0.5 mg/ml, was active on the rectus abdominus muscles of frogs^{TT0142}.

Chronotropic effect. Saponin fraction of the fresh aerial part, administered intravenously to rats, produced a negative chronotropic effect vs diosgenin^{TT0224}. The dried fruit, administered intravenously to rats at a dose of 1.0 gm/kg in a preparation containing Bombyx mori, Aconitum sinense, Alpinia species, Mentha arvensis, and Sophora flavescens, had a positive effect^{TT0154}.

Circulation stimulation. Water extract of the dried fruit, administered intravenously to rabbits at a dose of 4.5 mg/kg, was active^{TT0197}.

CNS depressant activity. Chloroform and ethanol (95%) extracts of the dried entire plant, administered intraperitoneally to mice at a dose of 500.0 mg/kg, were active^{TT0146}.

CNS stimulant activity. Ethanol (95%) extract of the entire plant, administered orally to rats at a dose of less than 50 mg/kg, was active^{TT0142}.

Convulsant activity. Ethanol (95%) extract of the entire plant, administered orally to rats at a dose of 50.0 mg/kg, produced clonic-type convulsions^{TT0142}.

Corticosteroid type activity. Ethanol (95%) extract of the entire plant, administered orally to fasted rats at a dose of 20.0 mg/kg, was active. The treatment also lowered the level of ascorbic acid in the adrenals^{TT0142}.

Cytotoxic activity. Ethanol (50%) extract of the entire plant, in cell culture, was inactive on CA-9KB, ED₅₀ >20.0 mcg/ml^{TT0103}. Water extract of the dried seed, in cell culture at a concentration of 500.0 mcg/ml, was inactive on CA-mammary-microalveolar cells^{TT0157}.

Diuretic activity. Alkaloid fraction of the dried fruit, taken orally by adults, produced weak activity. The ether extract, administered intravenously to anesthetized dogs, produced diuresis and increased the creatinine renal clearance, but had little effect on chloride clearance^{TT0214}. Ethanol (95%) extract of the entire plant, administered

orally to dogs at a dose of 20.0 mg/kg, was inactive^{TT0142}. Ethanol (95%) extract of the seed, taken orally by adults, was active^{TT0105}. Hot water extract of the plant, administered intraperitoneally to male rats at a dose of 0.2 ml/animal, was active. The duration of action was 60 minutes^{TT0170}.

Estrogenic effect. The saponin fraction of the dried entire plant was active when administered by gastric intubation to female rats^{TT0173}.

Fertility promotion effect. Tablets of the dried entire plant were administered to 35 patients with oligospermia at a dose of 192 mg/day for 3 months. The treatment produced an improvement in total sperm count and motility^{TT0196}. The saponin fraction of the dried entire plant was active when administered by gastric intubation to female rats^{TT0173}. **Follicle stimulating hormone effect.** The dried seed, in a preparation containing *Orchis*

dried seed, in a preparation containing Orchis mascula, Lactuca scariola, Hygrophila spinosa, Macuna pruriens, Parmelia parlata, Argyreia speciosa, and Laptadenia reticulata, taken orally by adults at variable dosage levels, was equivocal on FSH release inhibition, release stimulation and synthesis stimulation TTO172.

Glutamate pyruvate transaminase inhibition. Water extract of the seed, at a concentration of 1.0 mg/ml, was active on rat hepatocytes vs CCl₄-induced hepatotoxicity^{TT0116}.

Glycolate dehydrogenase inhibition. Decoction of the fruit, administered intragastrically to glycolate-challenged rats at a dose of 5.0 gm/kg, decreased oxylate and increased glyoxylate in the urine^{TT0127}.

Glycolate oxidase inhibition. Decoction of the fruit, administered intragastrically to glycolate-challenged rats at a dose of 5.0 gm/kg, decreased oxylate and increased glyoxylate in the urine^{TT0127}.

Gonadotropin effect. The dried seed, in a preparation containing Orchis mascula, Lactuca scariola, Hygrophila spinosa, Macuna pruriens, Parmelia parlata, Argyreia speciosa, and

Laptadenia reticulata, taken orally by adults at variable dosage levels, was equivocal on gonadotropin synthesis stimulation and release stimulation TTO172.

Hemolytic activity. Saline extract of the dried seed, at a concentration of 10%, was active on human red blood cells^{TTO188}.

Hyperglycemic activity. Ethanol (95%) extract of the entire plant, administered orally to fasted rats at a dose of 20.0 mg/kg, was effective^{TTO142}.

Hypertensive activity. Hot water extract of the plant, administered intraperitoneally to male rats at a dose of 0.2 ml/animal, was active. The duration of action was 60 minutes^{TT0170}.

Hyperthermic effect. Ethanol (95%) extract of the dried entire plant, administered intraperitoneally to mice at a dose of 500.0 mg/kg, was inactive^{TT0182}.

Hypocholesterolemic activity. Ethanol (95%) extract of the entire plant, administered orally to fasted rats at a dose of 20.0 mg/kg, was effective^{TT0142}.

Hypooxyaluric effect. The dried fruit, administered intragastrically to rats at a dose of 5.0 gm/kg, was active vs hyperoxaluric condition induced by hydroxyproline and maintained by sodium glycolate^{TTO123}.

Hypotensive activity. Alkaloid fraction of the dried fruit, administered intravenously to dogs, was inactive. The water extract was active^{TT0215}. Ethanol (95%) extract of the dried entire plant, administered intraperitoneally to mice and intravenously to rabbits at a dose of 500.0 mg/kg, was active^{TT0182}. Ethanol (95%) extract of the entire plant, administered intravenously to cats at a dose of 20.0 mg/kg, produced a 20 to 50 mm/Hg drop in blood pressure for 3 to 5 minutes^{TT0142}. A dose of 50.0 mg/kg, administered intravenously to dogs, was effective^{TT0103}.

Immunologic effect. The powdered plant, taken orally in combination with *Ledebouriella seseloides*, *Potentilla chinensis*, *Clematis*

armandii, Rehmannia glutinosa, Paeonia albiflora, Lophaterum gracile, Dictamnus dasycarpus, Glycyrrhiza glabra, and Schizonepeta tenuifolia, was active vs increased soluble IL-2 receptor and vascular cell adhesion molecule in atopic eczema patients and interleukin 4-induced CD23 expression in atopic eczema patients. Eight weeks of treatment in atopic eczema patients decreased IgE complexes, while total IgE did not change^{TT0132}.

Inotropic effect (negative). Saponin fraction of the fresh aerial part, administered intravenously to rats, was active^{TT0224}.

Kidney stone dissolution effect. Ethanol (95%) extract of the dried entire plant, in combination with Cucumis melo, Carum carvi, Pimpinella anisum, Zea mays, Foeniculum vulgare, Laurus nobilis, and Prunus avium, was taken by 300 patients with kidney and ureteral stones. Sixty-seven percent of the patients passed stones, 18% transferred and there was a decrease in volume of stone in 11%. Ninety-eight percent of the patients reported relief from colic^{TTO193}.

Leukopenic activity. Ethanol (95%) extract of the dried fruit, administered intragastrically to rats at a dose of 50.0 mg/kg, was active^{TT0126}.

Luteinizing hormone effect. The dried seed, in a preparation containing Orchis mascula, Lactuca scariola, Hygrophila spinosa, Macuna pruriens, Parmelia parlata, Argyreia speciosa, and Laptadenia reticulata, taken orally by adults at variable dosage levels, was equivocal on LH release inhibition, release stimulation and synthesis stimulation TTO172.

Molluscicidal activity. Water extract of the dried entire plant, at a concentration of 100.0 ppm, was active on *Bulinus truncatus*^{TT0150}.

Nematocidal activity. Decoction of the entire plant, at a concentration of 10.0 mg/ml, produced weak activity on *Toxacara canis*^{TT0156}. Water extract of the dried fruit, at

a concentration of 10.0 mg/ml, was active on *Toxacara canis*. The methanol extract, at a concentration of 1.0 mg/ml, was inactive^{TT0159}. **Neurotoxic activity.** The dried aerial part, in the ration of ewes at variable dosage levels, caused an unusual locomotory disturbance characterized by staggering^{TT0195}.

Penis erectile stimulant. The dried fruit, taken orally, produced an improvement in erection, duration of coitus and postcoital satisfaction in 56 cases treated for 4 weeks^{TT0199}. **Photosensitizing activity.** The fresh aerial part, administered orally to sheep and goats, was active. There was a 37% prevalence in clinical cases in sheep^{TT0206}.

Respiratory depressant effect. Ethanol (95%) extract of the dried entire plant, administered intraperitoneally to mice at a dose of 500.0 mg/kg, was active^{TTO182}.

Respiratory stimulant effect. Ethanol (95%) extract of the entire plant, administered orally to dogs at a dose of 20.0 mg/kg, produced weak activity of a brief duration^{TTO142}. **Sclerosing effect.** Saponin fraction of the dried leaf, administered intravenously to adults, was active. The biological activity has been patented^{TTO184}.

Skeletal muscle relaxant activity. Ethanol extract of the entire plant, at a concentration of 500.0 mcg/ml, was inactive on a frog rectus abdominus muscle^{TT0142}. Ethanol (95%) extract of the dried entire plant, administered intraperitoneally to mice at a dose of 300.0 mg/kg, was active^{TT0194}.

Smooth muscle relaxant activity. Ethanol (95%) extract of the entire plant, at a concentration of 10.0 mcg/ml, was active on rabbit duodenum^{TT0142}. The dried fruit, at a concentration of 5.0 mg/ml in a preparation containing *Bombyx mori*, *Aconitum sinense*, *Alpinia* species, *Mentha arvensis*, and *Sophora flavescens*, was active on mouse ileum vs spontaneous and barium-induced contractions^{TT0154}. Smooth muscle stimulant activity. Ethanol (95%) extract of the dried aerial part

blocked atropine-induced contractions of guinea pig ileum^{TT0182}.

Spermatogenic affect. The dried seed, in a preparation containing Orchis mascula, Lactuca scariola, Hygrophila spinosa, Macuna pruriens, Parmelia parlata, Argyreia speciosa, and Laptadenia reticulata, was taken by 30 infertile oligospermic patients in the age group of 24 to 46 years. After 4 months of treatment, there were increases in magnesium content and in sperm count^{TT0171}. The plant was taken orally in a mixture containing Orchis mascula, Lactuca scariola, Hygrophila spinosa, Macuna pruriens, Parmelia parlata, Argyreia speciosa, Laptadenia reticulata, and Suvarnavang (mosaic gold) by 40 adult males, most of whom showed marked improvement in semen profiles TT0168. The saponin fraction of the dried entire plant, taken orally by the adult male, was activeTT0173.

Toxic effect. The fresh aerial part, administered orally to sheep, produced a fatality rate of almost 70%^{TT0206}. Toxicity was also indicated in lambs and goats^{TT0149}. The aerial part, in the ration of ewes, did not cause Geeldikkop in black faced sheep^{TT0223}. The fresh plant, administered intragastrically to lamb, produced nigrostriatal dopaminergic disorder^{TT0147}.

Toxicity assessment. Ethanol (95%) extract of the dried plant, in a mixture containing Cucumis melo, Carum carvi, Pimpinella anisum, Zea mays, Foeniculum vulgare, Laurus nobilis, and Prunus avium, administered intraperitoneally to mice, produced LD_{50} 7.0 ml/kg^{TT0193}. Ethanol (95%) extract of the entire plant, administered intraperitoneally to rats, produced LD_{50} 56.4 mg/kg^{TT0142}. The maximum tolerated dose of the ethanol (50%) extract when administered intraperitoneally to mice was 100.0 mg/kg^{TT0103}.

Tyrosinase inhibition. Methanol (50%) extract of the dried fruit, at a concentration of 100.0 mg/ml, was inactive^{TT0169}.

420		МЕ	EDICINAL PLANTS OF THE WORLD II
the seed waterus TT010 Vasodilat concentrate taining Bonia species vescens, waterus	or activity. The dried fruit, at a tion of 5.0% in a preparation conmbyx mori, Aconitum sinense, Alpis, Mentha arvensis, and Sophora flasas active on rabbit atrium ^{TT0154} .	TT0108	fication and preliminary structural determination of heteropolysaccharide H. Yao Hsueh Hsueh Pao 1991; 26(8): 578–583. Mashchenko, N. E., R. Gyulemetova, P. K. Kintya and A. S. Shashkov. A sulfated glycoside from the preparation "tribestan". Chem Nat Comp 1991; 26(5): 552–555.
TT0100	Suwal, P. N. Medicinal Plants of Nepal. Ministry of Forests, De- partment of Medicinal Plants, Thapathali, Kathmandu, Nepal, 1970.	TT0109	Ren, Y. J., H. S. Chen, G. J. Yang and H. Zhu. Isolation and identification of a new derivative of cinnamic amide from <i>Tribulus terrestris</i> . Yao Hsueh Hsueh
TT0101	Ahmad, Y. S. A Note on the Plants of Medicinal Value Found in Pakistan. Government of Pakistan Press, Karachi, 1957. Dhawan, B. N. and P. N. Saxena.	TT0110	Pao 1994; 29(3): 204–206. Yan, W., K. Ohtani, R. Kasai and K. Yamasaki. Steroidal saponins from fruits of <i>Tribulus terrestris</i> . Phytochemistry 1966; 42(5):
110102	Evaluation of some indigenous drugs for stimulant effect on the rat uterus. A preliminary report. Indian J Med Res 1958; 46(6): 808–811.	TT0111	1417–1422. Wu, G., S. H. Jiang, F. X. Jiang, D. Y. Zhu, H. M. Wu and S. K. Jiang. Steroidal glycosides from <i>Tribulus terrestris</i> . Phytochem- istry 1966; 42(6): 1677–1681.
TT0103	Dhar, M. L., M. M. Dhar, B. N. Dhawan, B. N. Mehrotra and C. Ray. Screening of Indian plants for biological activity: Part I. Indian J Exp Biol 1968; 6: 232–247.	TT0112	Wang, Y., K. Ohtani, R. Kasai and K. Yamasaki. Steroidal saponins from fruits of <i>Tribulus terrestris</i> . Phytochemistry 1997; 45(4): 811–817.
TT0104	Saha, J. C., E. C. Savini and S. Kasinathan. Ecbolic properties	TT0113	Wilkins, A. L., C. O. Miles, W. T. De Kock, G. L. Erasmus, A. T. Basson and T. S. Kellerman.

saccharide H. Yao Hsueh **h Pao** 1991; 26(8): 578–583. nchenko, N. E., R. Gyuleva, P. K. Kintya and A. S. hkov. A sulfated glycoside the preparation "tribestan". n Nat Comp 1991; 26(5): 555. Y. J., H. S. Chen, G. J. Yang H. Zhu. Isolation and idention of a new derivative of amic amide from Tribulus stris. Yao Hsueh Hsueh 1994; 29(3): 204–206. W., K. Ohtani, R. Kasai and amasaki. Steroidal saponins fruits of Tribulus terrestris. ochemistry 1966; 42(5): -1422.G., S. H. Jiang, F. X. Jiang, . Zhu, H. M. Wu and S. K. . Steroidal glycosides from ulus terrestris. Phytochem-1966; 42(6): 1677–1681. g, Y., K. Ohtani, R. Kasai K. Yamasaki. Steroidal saps from fruits of Tribulus stris. Phytochemistry 1997;): 811–817. ins, A. L., C. O. Miles, W. e Kock, G. L. Erasmus, A. T. Basson and T. S. Kellerman. Photosensitivity in South Africa. IX. Structure elucidation of a beta-glucosidase-treated saponin from Tribulus terrestris, and the identification of saponin chemotypes of South African T. terres-1996; 63(4): 327–334.

medicine. Indian J Med Res Petelot, A. Les Plantes Medici-TT0114 nales du Cambodge, du Laos et du Vietnam, Vols 1-4. Archives des Recherches Agronomiques et Pastorales au Vietnam, No.

TT0115

tris. Onderstepoort J Vet Res Kaleysa Raj, R. Screening of indigenous plants for anthelmintic action against human Ascaris lumbricodes: Part II. Indian J Physiol Pharmacol 1975; 19:

Huang, X. L., Y. S. Zhang and Z. Y. Liang. Studies on water soluble polysaccharides isolated from Tribulus terrestris L.-Puri-

of Indian medicinal plants. Part

I. Indian J Med Res 1961; 49:

Chopra, R. N. and S. Ghosh, Ob-

servations on certain medicinal

plants used in the indigenous

130-151.

23, 1954.

1929; 17: 377-.

TT0105

TT0106

TT0107

Perepelitsa, E. D. and P. K. Kintya. A chemical study of the steroid glycosides of Tribulus terrestris. IV. Steroid saponins.

Chem Nat Comp 1975; 11(2): TT0124 Tosun, F., M. Tanker, M. Cos	S-
kun and A. Tosun. Determina	
TT0116 Lee, J. W., J. H. Choi and S. M. tion of diosgenin in <i>Tribulus ter</i>	
Kang. Screening of medicinal restris L. growing in Turkey by	-
plants having hepatoprotective HPLC. Pharmacia (Ankara	1)
activity effect with primary cul- 1991; 31(3): 90–96.	
tured hepatocytes intoxicated TT0125 Bourke, C. A., G. R. Steven	
using carbon tetrachloride cyto- toxicity. Korean J Pharmacog and M. J. Carrigan. Locomoto effects in sheep of alkaloid	
toxicity. Korean J Pharmacog effects in sheep of alkaloid 1992; 23(4): 268–275. identified in Australian <i>Tribulu</i>	
TT0117 Sheehan, M. P. and D. J. Ather- terrestris. Aust Vet J 1992; 69	
ton. A controlled trial of tradi-	,,
tional Chinese medicinal plants TT0126 Anand, R., G. K. Patnaik, S	2
in widespread non-exudative Srivastava, D. K. Kulshresht	
atopic eczema. Brit J Dermatol and B. N. Dhawan. Evaluation o	
1992; 126(2): 179–184. antiurolithiatic activity of <i>Tribu</i>	
TT0118 Kubo, M., H. Matsuda, Y. Dai, lus terrestris. Int J Pharmaco	
Y. Ido and M. Yoshikawa. Stud- 1994; 32(3): 217–224.	0
ies on Kochiae fructus. I. Anti- TT0127 Sangeeta, D., H. Sidhu, S. K	ζ.
pruritogenic effect of 70% eth- Thind and R. Nath. Effect of	
anol extract from Kochiae fruc- Tribulus terrestris on oxalat	te
tus and its active component. metabolism in rats. J Ethno	D-
Yakugaku Zasshi 1997; 117(4): pharmacol 1994; 44(2): 61–66	6.
193–201. TT0128 Sheehan, M. P., H. Stevens, L. S	
TT0119 Latchman, Y., B. Whittle, M. Ostlere, D. J. Atherton, J. Bro	
Rustin, D. J. Atherton and J. stoff and M. H. Rustin. Follow	
Brostoff. The efficacy of tradi- up of adult patients with atopi	
tional Chinese herbal therapy in eczema treated with Chines	
atopic eczema. Int Arch Allergy herbal therapy for 1 year. Clin	
Immunol 1994; 104(3): 222–226. Exp Dermatol 1995; 20(2): 136- TT0120 Seth, S. D. and G. Jagadeesh. 140.) —
Cardiac action of <i>Tribulus ter</i> - TT0129 Latchman, Y., G. A. Bungy, D	`
restris. Indian J Med Res 1976; J. Atherton, M. H. Rutin, J	
64: 1821–. Brostoff. Efficacy of traditiona	
TT0121 Keys, J. D. Chinese Herbs, Chinese herbal therapy in vitro	
Botany, Chemistry and Pharma- A model system for atopic ecz	
codynamics. Charles E. Tuttle ema: Inhibition of CD23 expres	
Co., Rutland, Vermont, USA, sion on blood monocytes. Brit	J
1976. Dermatol 1995; 132(4): 592	2-
TT0122 Sheehan, M. P. and D. J. Ather- 598.	
ton. A controlled trial of tradi- TT0130 Tosun, F., M. Tanker and A	
tional Chinese medicinal plants Tosun. Alkaloids of Tribulu	
in widespread non-exudative terrestris L. growing in Turkey	
atopic eczema. Brit J Dermatol Fabad Farm Bilimler Der	·g
1992; 126(2): 179–184. 1994; 19(4): 149–151. TT0123 Sangeeta, D., H. Sidhu, S. K. TT0131 Zafar, R. and A. K. Nasa. Ouer	
TT0123 Sangeeta, D., H. Sidhu, S. K. TT0131 Zafar, R. and A. K. Nasa. Quer Thind, R. Nath and S. Vaidyan-cetin and kaempferol from the	
than. Therapeutic response of fruits and stem of <i>Tribulus ter</i>	
Tribulus terrestris (Gokhru) restris Linn. Indian J Nat Pro	
aqueous extract on hyperoxalu- 1987; 3(2): 17–18.	
ria in male adult rats. Phytother TT0132 Latchman, Y., P. Banerjee, I	L.
Res 1993; 7(2): 116–119. W. Poulter, M. Rustin and J.	

	Brostoff. Association of immu-		sponin - An antisclerotic agent.
	nological changes with clinical	TTO 1 4 1	Patent-USSR-567,449 1977.
	efficacy in atopic eczema pa- tients treated with traditional	TT0141	Sharma, M. C. and J. L. Harula. Chemical investigations of flow-
	Chinese herbal therapy (Zema-		ers of <i>Tribulus terrestris</i> . Chem
	phyte). Int Arch Allergy Im-		Era 1977; 13(1): 15
	munol 1996; 109(3): 243–249.	TT0142	Chakraborty, B. and N. C. Neogi.
TT0133	Kataoka, M. and Y. Takagaki.		Pharmacological properties of
	Effect of the crude drugs (stan-		Tribulus terrestris. Indian J
	dards of natural drugs not in the		Pharm Sci 1978; 40: 50–52.
	J. P. XII) on beta-hexosamini-	TT0143	Saleh, N. A. M. and M. N.
	dase release from rat basophilic		El-Hadidi. An approach to the
	leukemia (RBL-2H3) cells. Nat Med 1995; 49(3): 346–349.		chemosystematics of the Zygo- phyllaceae. Biochem Syst Ecol
TT0134	Johns, T., E. B. Mhoro and P.		1977; 5: 121–128.
110154	Sanaya. Food plants and masti-	TT0144	Prakash, D., P. N. Singh and S.
	cants of the Batemi of Ngor-	110111	P. Wahi. An evaluation of <i>Tribu</i> -
	ongoro District, Tanzania. Econ		lus terrestris Linn. (Chota Gok-
	Bot 1996; 50(1): 115–121.		haru). Indian Drugs 1985; 22(6):
TT0135	Sharma, M. P., J. Ahmad, A. Hus-		332–333.
	sain and S. Khan. Folklore med-	TT0145	Kittur, M. H., C. S. Mahajan-
	icinal plants of Mewat (Gurgaon		shetti, T. N. B. Kaimal and G.
	District), Haryana, India. Int J		Lakshminarayana. Characteristics and composition of some mi-
	Pharmacog 1992; 30(2): 135–137.		nor seeds and the oils. J Oil Tech-
TT0136	Vesilada, E., G. Honda, E. Sezik,		nol Ass India 1983; 15(3): 43–45.
110150	M. Tabata, T. Fujita, T. Tanaka,	TT0146	Tariq, M., M. A. Al-Yahya, J. S.
	Y. Takeda and Y. Takaishi. Tra-		Moss, I. A. Al-Meshal and A. A.
	ditional medicine in Turkey. V.		Al-Badr. Phytochemical, pharma-
	Folk medicine in the Inner Tau-		cognustical and pharmacologi-
	rus Mountains. J Ethnophar-		cal studies on CNS depressant
TT0127	macol 1995; 46(3): 133–152.		plants of Saudi Arabia. Abstr
TT0137	Diddiqui, M. B. and W. Husain. Traditional treatment of gonor-		45 th International Congress of Pharmaceutical Sciences FIP 85
	rhoea through herbal drugs in the		Montreal Canada (1985) 1985;
	province of Central Uttar Pra-		Abstr-122.
	desh, India. Fitoterapia 1993;	TT0147	Bourke, C. A. A novel nigro-
	64(5): 399–403.		striatal dopaminergic disorder in
TT0138	Kakrani, H. K. and A. K. Saluja.		sheep affected by Tribulus ter-
	Traditional treatment through		restris staggers. Res Vet Sci 1987;
	herbal drugs in Kutch District,	TT0140	43(3): 347–350.
	Gujarat State, India. Part I. Uter-	TT0148	Itokawa, H. Research on antine- oplastic drugs from natural
	ine disorders. Fitoterapia 1993; 65(5): 463–465.		sources, especially from higher
TT0139	Alami, R., A. Macksad and A. R.		plants. Yakugaku Zasshi 1988;
	El-Gindy. Medicinal Plants in		108(9): 824–841.
	Kuwait. Al-Assiriya Printing	TT0149	Jacob, R. H. and R. L. Peet. Poi-
	Press, Kuwait, 1976.		soning of sheep and goats by Tr-
TT0140	Kemertelidze, E. P., T. A.		ibulus terrestris (Caltrop). Aust
	Pkheidze, T. N. Kachukhashvili,	TTO 1 50	Vet J 1987; 64(9): 288–289.
	A. D. Turova, L. N. Sokolova	TT0150	Twaij, H. A. A., S. N. Mahmoud
	and R. S. Umikashvili. Tribu-		and R. M. Khalid. Screening of

TRIBULUS TERRESTRIS 423

TT0151	some Iraqi medicinal plants for their molluscicidal activities. Fitoterapia 1989; 60(3): 267–268. Recio, M. C., J. L. Rios and A. Villar. Antimicrobial activity of selected plants employed in the Spanish Mediterranean area. Part II. Phytother Res 1989; 3(3):	TT0160	ing of crude drugs used in Ban- gladesh for nematocidal activity on the larva of <i>Toxocara canis</i> . Shoyakugaku Zasshi 1991; 45 (3): 206–214. Zafar, R. and V. Aeri. Constitu- ents of <i>Tribulus terrestris</i> flow- ers. Fitoterapia 1992; 63(1):
TT0152	77–80. Shah, G. L. and G. V. Gopal. Ethnomedical notes from the tribal inhabitants of the North Gujarat (India). J Econ Taxon Botany 1985; 6(1): 193–201.	TT0161	90–. Savaire, Y. and J. C. Baccou. Problems on the hydrolysis of saponins. Conditions for diosgenin, (25-R)-spirosta-5-ene-3-beta-ol. Lloydia 1978; 41: 247–.
TT0153	Comley, J. C. W., V. P. K. Titanji, J. F. Ayafor and V. K. Singh. In vitro antifilarial activity of some medicinal plants. Acta Leidensia 1990; 59(1/2): 361–363.	TT0162	Mahato, S. B., N. P. Sahu, A. N. Ganguly, K. Miyahara and T. Kawasaki. Steroidal glycosides of <i>Tribulus terrestris</i> Linn. J Chem Soc Perkin Trans I 1981; 1981:
TT0154	Chae, B. Y., N. D. Hong, N. J. Kim and J. S. Kim. Studies on the efficacy of combined preparation of crude drug (XLI). Effects of tongkwan-san. Koca J.	TT0163	2405–2410. Saleh, N. A. M., A. A. Ahmed and M. F. Abdalla. Flavonoid glycosides of <i>Tribulus pentandrus</i> and <i>T. terrestilles</i> . Phytochem-
TT0155	Pharmacog 1990; 21(2): 163–172. Van Benschoten, M. M. Management of systemic fungal infections with Chinese herbal medicine. Int J Orient Med 1990; 15(3): 141–145.	TT0164	istry 1982; 21: 1995–2000. Vasi, I. G. and V. P. Kalintha. Chemical examination of the fruits of <i>Tribulus terrestris</i> Linn. Comp Physiol Ecol 1982; 7: 68–70.
TT0156	Kiuchi, F., M. Hioki, N. Nakamura, N. Miyashita, Y. Tsuda and K. Kondo. Screening of crude drugs used in Sri Lanka for nematocidal activity on the larva	TT0165	Avirutnant, W. and A. Pongpan. The antimicrobial activity of some Thai flowers and plants. Mahidol Univ J Pharm Sci 1983; 10 (3): 81–86.
TT0157	of <i>Toxocara canis</i> . Shoyakuga-ku Zasshi 1989; 43(4): 288–293. Sato, A. Studies on the anti-tumor	TT0166	Yun, H. S. and I. M. Chang. Plants with liver protective activities. (I). Korean J Pharmacog
	activity of crude drugs. I. The effects of aqueous extracts of some crude drugs in short term screening test. Yakugaku Zasshi 1989; 109(6): 407–423.	TT0167	1977; 8: 125–129. Chakraborty, B., N. M. Ray and S. Sikdar. Study of anthelmintic property of <i>Tribulus terrestris</i> Linn. Indian J Anim Health
TT0158	Misra, P., N. L. Pal, P. Y. Guru, J. C. Katiyar and J. S. Tandon. Antimalarial activity of traditional plants against erythrocytic stages of <i>Plasmodium berghei</i> . Int J Pharmacog 1991; 29(1):	TT0168	1979; 18: 23–25. Pardanani, D. S., R. J. Delima, R. V. Rao, A. Y. Vaze, P. G. Jayatilak and A. R. Sheth. Study of the ef- fects of speman on semen qual- ity in oligospermic men. Indian
TT0159	19–23. Ali, M. A., M. Mikage, F. Kiuchi, Y. Tsuda and K. Kondo. Screen-	TT0169	J Surg 1976; 38: 34–39. Masamoto, Y., S. Iida and M. Kuto. Inhibitory effect of Chi-

	nese crude drugs on tyrosinase.		tion tribestan. Pharmazie 1982;
	Planta Med 1980; 40: 361–365.		37: 296–.
TT0170	Nilvises, N., K. Chenpanich and	TT0180	Mahato, S. B., A. N. Ganguly and
	P. Tuchinda. Some pharmacological effects of the extract of		N. P. Sahu. Steroid saponins. Phytochemistry 1982; 21: 959–
	Zygophyllaceae, Tribulus terre-		978.
	stris. Mahidol Univ Ann Res	TT0181	Pushpangadan, P. and C. K. Atal.
TTTO 1.7.1	Abstr 1979; 1979: 73–.		Ethno-medico-botanical investi-
TT0171	Solepure, A. B., N. M. Joshi, B. V. Deshkar, S. R. Muzumdar and		gations in Kerala. I. Some primitive tribals of Western Ghats and
	C. D. Shirole. The effect of		their herbal medicine. J Ethno-
	'speman' on quality of semen in		pharmacol 1984; 11(1): 59–77.
	relation to magnesium concen-	TT0182	Mossa, J. S., M. A. Al-Yahya,
	tration. Indian Practitioner 1979;		I. A. Al-Meshal and M. Tariq.
TT0172	32: 663–668. Jayatilak, P. G., A. R. Sheth, P.		Phytochemical and biological screening of Saudi medicinal
1101/2	P. Mugatwala and D. S. Pardan-		plants-Part 5. Fitoterapia 1983;
	ani. Effect of an indigenous drug		54(4): 147–152.
	(speman) on human accessory	TT0183	Perepelitsa, E. D. and P. K.
	reproductive function. Indian J Surg 1976; 38: 12–15.		Kintya. Use of hydrolytic enzymes from the fungus <i>Aspergil</i> -
TT0173	Tomova, M., R. Gyulemetova, S.		lus niger BKMT-33 to increase
	Zarkova, S. Peeva, T. Pangarova		the diosgenin yield from Trib-
	and M. Simova. Steroidal sap-		ulus terrestris L. Prikl Biokhim
	onins form <i>Tribulus terrestris</i> L.		Mikrobiol 1978; 14(2): 309–
	with a stimulating action on the sexual functions. Int Conf Chem	TT0184	312. Kemertelidze, E. P., T. A. Pkh-
	Biotechnol Biol Act Nat Prod	110101	eidze, T. N. Kachukhashvili, A.
	(Proc) 1 st 1981; 3: 298–302.		D. Turova, L. N. Soklova and R.
TT0174	Kapoor, S. L. and L. D. Kapoor.		S. Umikashvilli. "Tribusponin" -
	Medicinal plant wealth of the Karimnagar District of Andhra		An antisclerotic agent. Otkry- tiya Izobret Prom Obraztsy
	Pradesh. Bull Med Ethnobot		Tovarnye Znaki 1977; 54(29):
	Res 1980; 1: 120–144.		10–.
TT0175	Kanth, A. D. Rumalaya therapy	TT0185	Perepelitsa, E. D. and P. K.
	in the treatment of rheumatoid arthritis. Probe 1981; 20: 211–214.		Kintya. Ability of a complex enzymic preparation from the fun-
TT0176	Ikram, M. and I. Haq. Screening		gus Aspergillus niger to cleave
	of medicinal plants for antimi-		the steroidal saponins of <i>Tribu</i> -
	crobial activity. Part I. Fitoter-		lus terrestris L. Tezisy Dokl
TT0177	apia 1980; 51: 231–235.		Soobshch-Konf Molodykh Uch
TT0177	Ikram, M. A review on the medicinal plants. Hamdard 1981; 24	TT0186	Mold, 9th 1974; 1974: 212–. Mahato, S. B., N. P. Sahu, B. C.
	(1/2): 102–129.	110100	Pal, R. N. Chakravarti, D. Chak-
TT0178	Shaft, N. and M. Ikram. Quanti-		ravarti and A. Ghosh. Screening
	tative survey of rutin-containing		of Tribulus terrestris plants for
	plants. Part 1. Int J Crude Drug Pos 1082: 20(4): 183-186		diosgenin. J Inst Chem (India) 1978; 50(1): 49–50.
TT0179	Res 1982; 20(4): 183–186. Gyulemetova, R., M. Tomova,	TT0187	Itokawa, H., S. Mihashi, K.
	M. Simova, T. Pangarova and S.	,	Watanabe, H. Natsumoto and T.
	Peeva. Determination of furo-		Hamanaka. Studies on the con-
	stanol saponins in the prepara-		stituents of crude drugs having

		FFF0105	
	inhibitory activity against con-	TT0195	Bourke, C. A. Staggers in sheep
	traction of the ileum caused by		associated with the ingestion of
	histamine or barium chloride. (1)		Tribulus terrestris. Aust Vet J
	Screening test for the activity of	TT0106	1984; 61(11): 360–363.
	commercially available crude	TT0196	Madaan, S. Speman in oligosper-
	drugs and the related plant mate-	TT0107	mia. Probe 1985; 1985: 115–117.
	rials. Shoyakugaku Zasshi 1983;	TT0197	Ohmoto, T., Y. I. Sung, K. Koike and T. Nikaido. Effect of alka-
TT0100	37(3): 223–228.		
TT0188	Hardman, J. T., M. L. Beck and C.		loids of simaroubaceous plants
	E. Owensby. Range for lectins. Transfusion 1983; 23(6): 519–522.		on the local blood flow rate. Sho-yakugaku Zasshi 1985; 39(1):
TT0189	Sahu, T. R. Less known uses of		28–34.
110107	weeds as medicinal plants. Anc-	TT0198	Mukerjee, T., N. Bhalla, G. Singh
	ient Sci Life 1984; 3(4): 245–249.	110170	Aulakh and H. C. Jain. Herbal
TT0190	Woo, W. S., E. B. Lee, K. H.		drugs for urinary stones. Litera-
110150	Shin, S. S. Kang and H. J. Chi. A		ture appraisal. Indian Drugs
	review of research on plants for		1984; 21(6): 224–228.
	fertility regulation in Korea. Ko-	TT0199	Sankaran, J. R. Problem of male
	rean J Pharmacog 1981; 12(3):		virility - An Oriental therapy. J
	153–170.		Natl Integ Med Ass 1984; 26
TT0191	Shin, K. H. and W. S. Woo. A		(11): 315–317.
	survey of the response of med-	TT0200	Lama, S. and S. C. Santra. Dev-
	icinal plants on drug metabol-		elopment of Tibetan plant medi-
	ism. Korean J Pharmacog 1980;		cine. Sci Cult 1979; 45: 262–265.
	11: 109–122.	TT0201	Twaij, H. A. A., E. E. Elisha, R.
TT0192	Chang, I. M. and H. S. Yun.		M. Khalid and N. J. Paul. Anal-
	Plants with liver-protective act-		gesic studies on some Iraqi med-
	ivities, pharmacology and toxi-		icinal plants. Int J Crude Drug
	cology of aucubin. Advances in		Res 1987; 25(4): 251–254.
	Chinese Medicinal Materials	TT0202	Ramirez, V. R., L. J. Mostacero,
	Research H. M. Chang, H. W.		A. E. Garcia, C. F. Mejia, P. F.
	Yeung, W. W. Tso and A. Koo		Pelaez, C. D. Medina and C. H.
	(Eds) World Scientific Press,		Miranda. Vegetales empleados
TT0102	Philadelphia, Pa 1984; 269–285.		en medicina tradicional Norpe-
TT0193	Moattar, F., Y. Mozoun, T. Gaf-		ruana. Banco Agrario del Peru
	gazi and A. Mansuri. Antiurolithiasis activities from the selec-		& Nacl Univ Trujillo, Trujillo,
		TT0203	Peru, June, 1988, 1988; 54 pp
	ted medicinal plants. I. Extraction, clinical and pharmaco-	110203	Saeedi-Ghomi, M. H. and R. M. Garcia. Potential of the flora
	logical studies. Abstr Internat		of arid zones. Cienc Desarrollo
	Res Cong Nat Prod Coll Pharm		1982; 47: 98–109.
	Univ. N. Carolina, Chapel Hill,	TT0204	Mukherjee, S., T. K. Ghosh and
	NC, July 7–12, 1985, 1985;	11020.	D. De. Effect of speman on pros-
	Abstr-197.		tatism - A clinical study. Probe
TT0194	Al-Yahya, M. A., I. A. Al-Meshal,		1986; 25: 237–240.
	J. S. Mossa and M. Tariq. Bio-	TT0205	Navchoo, I. A. and G. M. Buth.
	logical studies on Saudi medici-		Ethnobotany of Ladakh, India:
	nal plants. 42nd International		Beverages, narcotics, foods. Econ
	Congress of Pharmaceutical		Bot 1990; 44(3): 318–321.
	Sciences, FIP 82, Copenhagen,	TT0206	Glastonbury, J. R. W., F. R.
	Denmark (1982) 1982; 1982:		Doughty, S. J. Whitaker and E.
	86–.		Sergeant. A syndrome of hepato-

TT0207	genous photosensitization, resembling geeldikkop, in sheep grazing <i>Tribulus terrestris</i> . Aust Vet J 1984; 61(10): 314–316. Walker, D., A. Bird, T. Flora and B. O'Sullivan. Some effects of feeding <i>Tribulus terrestris</i> , <i>Ipomoea lonchophylla</i> and the seed of <i>Abelmoschus ficulneus</i> on fetal development and the outcome	TT0216 TT0217	Panova, D. and M. Tomova. <i>Tribulus terrestris</i> for producing phenol compounds. Farmatsiya (Sofia) 1970; 20(3): 29–32. Umikashvili, R. S. Histochemical characteristics of the liver in experimental hypercholesterolemia under the action of <i>Tribulus terrestris</i> saponins. Soobshch Akad Nauk Gruz SSR 1072, 67(3): 720, 731
TT0208	of pregnancy in sheep. Reprod Fertil Dev 1992; 4(2): 135–144. Chopra, R. N., R. L. Badhwar and S. Ghosh. Poisonous Plants of India. Manager of Publica-	TT0218	1972; 67(3): 729–731. Gheorghiu, A. and E. Ionescu- Matiu. Presence of chlorogenin with diosgenin and gitogenin in <i>Tribulus terrestris</i> . Ann Pharm
TT0209	tions, Government of India Press, Calcutta. Volume I, 1949. Jayatilak, P. G., D. S. Pardanani, B. D. Murty and A. R. Sheth. Ef- fect of an indigenous drug (spe- man) on accessory reproductive functions of mice. Indian J Exp	TT0219	Fr 1968; 26(12): 745–798. Gill, S. and W. Raszeja. Chromatographic analysis of Harman alkaloid derivatives in some plant raw materials. Rozpr Wydz 3 Nauk Mat Przyr Gdansk Tow Nauk 1973; 8: 137–143.
TT0210	Biol 1976; 14: 170–. Dragendorff, G. Die Heilpflanzen der Verschiedenen Volker und Zeiten, F. Enke, Stuttgart, 1898; 885 pp	TT0220	Tomova, M. P., D. Panova and N. S. Vulfson. Steroid saponins and sapogenins. IV. Saponins from <i>Tribulus terrestris</i> . Planta Med 1974; 25(3): 231–237.
TT0211	Wasuwat, S. A list of Thai medicinal plants, ASRCT, Bangkok. Report No. 1 on Res. Project 17. Research Report, A. S. R. C. T., No. 1 on Research Project 17, 1967; 22 pp	TT0221	De Kock, W. T. and P. R. Enslin. Chemical investigations of photosensitization diseases of domestic animals. I. Isolation and characterization of steroidal sapogenins from <i>Tribulus terrestris</i> . J
TT0212	Kachukhashvili, T. N. Diosgenin from <i>Tribulus terrestris</i> growing in Georgian SSR. Med Prom	TT0222	S Afr Chem Inst 1958; 11: 33–36. Bhutani, S. P., S. S. Chibber and T. R. Seshadri. Flavonoids of the
TT0213	SSSR 1965; 19(3): 46–48. Tomova, M. P., D. I. Panova and N. S. Vul'fson. Phytosterols from <i>Tribulus terrestris</i> . Dokl Bolg Akad Nauk 1973; 26(3): 379–381.		fruits and leaves of <i>Tribulus ter-</i> restris. Constitution of tribulo- side. Phytochemistry 1969; 8: 299–303.
TT0214	Singh, R. C. P. and C. S. Sisodia. Effect of <i>Tribulus terrestris</i> fruit extracts on chloride and creatinine renal clearances in dogs. Indian J Physiol Pharmacol 1971; 15(3): 93–96.	TT0223	Quin, J. I. and C. Rimington. Photosensitization with special reference to the problem of geel-dikkop among small stock in South Africa. S Afr J Sci 1933; 30: 461–471.
TT0215	Bose, B. C., A. Q. Saifi, R. Vijayvargiya and J. N. Bhatnagar. Some aspects of chemical and pharmacological studies of <i>Tribulus terrestris</i> . Indian J Med Sci 1963; 17(4): 291–293.	TT0224	Turova, A. D. and N. I. Skach-kova. Comparative study of the cardiotonic activity of plant steroids. Vestn Akad Nauk Kaz SSR 1974; 1974(11): 68–70.

Vitex agnus-castus

Common Names

Abrahamsstraugh	Europe	Hayit	Turkey
Agno-casto	France	Hemp tree	India
Agnus castus	Iran	Jurema	Brazil
Angarf	Morocco	Kef-meriem	France
Banjankusht	Arabic countries	Kerwa	Morocco
Chaste tree	Croatia	Keuschlamm	Europe
Chaste tree	Europe	Monchpfeffer	Europe
Chaste tree	India	Monk's pepper tree	Iran [.]
Chaste tree	France	Monk's pepper tree	India
Chaste tree	Germany	Panj angosht	Iran
Chaste tree	lran [′]	Ranukabija ma	India
Cyclamen	Arabic countries	Sauzatillo	France
Felfele barry	Iran	Tree of chastity	Iran
Gattilier	France	,	•

BOTANICAL DESCRIPTION

A strongly aromatic shrub or low tree of the VERBENACEAE family with densely short-puberulent branches. The leaves, 5–9, are digitate and velvety. Leaflets, 5–7, are mostly unequal, the central one largest, the lowermost pair smallest, the 3 largest petiolulate, the 2–4 smallest usually sessile, and narrow-elliptical, the central one 4.5–11.5 cm long and 9–21 mm wide, attenuate or acuminate at both ends, pulverulent or glabrate above. Petioles 1.5–2.5 cm long are densely puberulent and resinous-granular. Flowers are pale purple or violet, in interrupted spikes, in groups of several.

Drupes are small, 4-celled, globose and exceeding the calyx.

ORIGIN AND DISTRIBUTION

Native to Southern Europe and the Orient, it is widely cultivated and now naturalized in most of the Eastern and Southern United States, and in the tropics and warm temperate regions of both hemispheres.

TRADITIONAL MEDICINAL USES

Arabic countries. The dried seed is taken orally as a lactogenic agent and emmenagogue. The hot water extract is used as a contraceptive, and the entire plant is inhaled,

by fumigation, as an emmenagogue in Unani medicine^{VA0140}.

Austria. The fruit is eaten as an emmenagogue and an aphrodisiac VA0112.

Europe. Hot water extracts of the entire plant and the fruit are taken orally as an emmenagogue, anaphrodisiac, and to promote expulsion of the afterbirth^{VA0146}.

France. Hot water extracts of the flowering top and leaf, and of the fruit are taken orally as an antispasmodic, sedative, and anaphrodisiac^{VA0145}. Hot water extract of the dried fruit is taken orally as an antispasmodic and for an antiestrogenic effect^{VA0137}.

Germany. Tincture of the fruit is taken orally for menorrhagia^{VA0100}.

Iran. Infusion of the dried fruit is taken orally as an anaphrodisiac, tonic, diuretic, antiflatulent and narcotic^{VA0107}.

Morocco. The seed is taken orally as a cale-facient VAO127.

CHEMICAL CONSTITUENTS

(ppm unless otherwise indicated)

Abietatriene: Fr EO 0.44%^{VA0131} Agnuside: Lf 0.3-0.6%^{VA0148,VA0133}, Wd^{VA0105}, Fr, Pl^{VA0112}, Sd^{VA0153} Alcohol, diacetyl: Fr EO 0.29%^{VA0131}

Androstenedione: Lf^{VA0136} Anethole: Fr EO 0.77%^{VA0131}

Aromadendrene, allo: Lf EO 3.4-8.6%^{VA0109}, Fr EO 0.79-8.8%^{VA0126,VA0120},

Fl EO 0.99%^{VA0126} Artemetin: Fr 12.5^{VA0106}

Artemiseol: Lf EO 0.1%, Fr EO, Fl EO

 $0.1\%^{VA0108}$

Aucubin: Wd^{VA0105}, Lf 0.4%^{VA0148}, Fr, pJ^{VA0112}

Aucuboside: Fr, Lf^{VA0153}, Sd^{VA0153} Benzofuran: Fr EO 0.4%^{VA0120}

Bergamotene, alpha, cis: Fr EO 1.09% VA0131 Bergamotene, alpha, trans: Fr EO 0.8%, Lf

EO 0.7%, FI EO 0.6%^{VA0108} Beyerene: Fr EO 1.85%^{VA0131}

Bisabolol, alpha, epi: Fr EO 0.2%, Fl EO 0.3%, Lf EO 0.3% VA0108

Bisabolol, beta: Fr EO 0.32% VA0131

Borneol acetate: FI EO 0.1%, Lf EO 0.1%, Fr EO 0.8% VA0108

Cadina-5,10(15)-dien-4-ol: Fr EO 1.18%^{VA0131}

Cadinene, delta: FI EO 0.6%, Lf EO 0.5%, Fr EO 0.4%^{VA0108}

Cadinene, gamma: Fr EO 0.1%^{VA0120}, Lf EO 0.1%^{VA0109}

Cadinol, alpha: FI EO, Lf EO 0.1%, Fr EO 1 4%VA0108

Cadinol, delta: Fr EO 0.15%^{VA0131}
Cadinol, T: Lf EO 0.1-1.2%^{VA0109,VA0108}, Fr
EO 0.21-2.82%^{VA0126,VA0131}, Fl EO 2.09%^{VA0126}

Camphene: Lf EO, Fr EO 0.1%, Fl EO^{VA0108} Campholenal, alpha: Lf EO^{VA0109}

Camphor: Lf EO 0.15%^{VA0126}, Fr EO 0.12-0.24%^{VA0131,VA0126}, Fl EO 0.16%^{VA0126}

Car-3-ene: Lf EO 0.3%, Fr EO 0.1%^{VA0108} Carveol, cis: Lf EO 0.1%, Fr EO 0.3%^{VA0108} Carvone, cis-dihydro: Fr EO, Fl EO 0.3%^{VA0108}

Carvone, trans-dihydro: Fl EO 0.1%, Fr EO 0.1% VA0108

Caryophyllene epoxide: Fr EO 1.76% VA0131 Caryophyllene oxide: Lf EO 0.3-

1.17%^{VA0109,VA0126}, Fr EO 0.1-

 $5.52\%^{\text{VA0120,VA0126}}$, FI EO $4.86\%^{\text{VA0126}}$

Caryophyllene, beta: FI EO 8.4%^{VA0126}, Fr EO 0.91-11.76%^{VA0126,VA0131}, Lf EO 3.9-8.9%^{VA0109,VA0108}

Casticin: FrVA0112 If VA0132 Sd 0.1%

Casticin: Fr^{VA0112}, Lf ^{VA0132}, Sd 0.1%^{VA0150} Cedrane-8(s)-14-diol: Fr EO 0.64%^{VA0131}

Chrysosplenetin: Fr 1.2^{VA0106} Chrysosplenol, D: Fr^{VA0138}

Cineol, 1-8: Fr EO 0.15-20.6%^{VA0131,VA0108}, Lf EO 11.21-35.2%^{VA0126,VA0109}, Fl EO 6.09%^{VA0126}

Cinnamaldehyde: Lf EOVA0108

Citronellol acetate: Fr EO 0.2%^{VA0108}, Lf EO 0.2-0.5%^{VA0109}

Citronellol: Fr EO 0.1-1.0%^{VA0120,VA0108}, Lf EO 0.1-0.9%^{VA0109,VA0108}

Cuminaldehyde: Lf EO 0.1%^{VA0109}
Cuparene: Fr EO 0.2%, Lf EO^{VA0108}
Curcumene, alpha: Fr EO 0.32%^{VA0131}
Cymene, para: Lf EO 0.2-1.4%^{VA0109,VA0126}, Fr EO 1.13-3.18%^{VA0131,VA0126}, Fl EO 2.1%^{VA0126}

Cymol, ortho: Lf EO^{VA0134} Cynaroside: Lf^{VA0112}

Dodec-1-ene: Lf EO 0.3%, Fr EO 0.1%, Fl EO 0.4% VA0108

Dodecane, n: Lf EO 1.0%, Fr EO 0.1%, Fl EO 0.8%^{VA0108} Elemene, gamma: Lf EO 0.1% VA0109 Encecalin, demethoxy: Fr EO 1.35% VA0131 Ethanol, 2-butoxy: Fr EO 0.36%K29804 Eugenol: Lf EO 0.3% VA0108 Eurostoside: Lf 700^{VA0133} Farnesene, beta, cis: Lf EO 8.6% VA0108, Fr EO 1.77-6.90% VA0131, VA0108 Farnesene, beta, trans: Lf EO 8.15%, FI EO 5.24%^{VA0126}, Fr EO 0.4-1.67%^{VA0108,VA0126} Farnesene, beta: Lf EO 3.4-8.6% VA0109 Geranial: Lf EO 0.2%, Fr EO 0.3% VA0108 Geraniol acetate: Fr EO 0.2% VA0108 Geraniol: Lf EO 0.5%, Fr EO 0.6% VA0108 Germacrene B: Fr EO 8.1-9.4% VA0120, VA0131. Lf EO 0.7-11.2% VA0109 Globulol: Fr EO 0.2-0.6% VA0108, VA0131, Lf EO 0.1-0.5%^{VA0109} Guaiacol: Fr EO 0.3%^{VA0120} Guaiene, alpha: Fr EO 1.0%, Lf EO 1.0%^{VA0108} Guaiol: Lf EO 1.3%, Fr EO 1.0% VA0108 Gurjunene, alpha: Lf EO 0.3-1.6%^{VA0108,VA0109}, Fr EO 0.2-1.0%, Fl EO $0.31\%^{VA0126}$ Gurjunene, beta: Fr EO 0.18-0.50% VA0108, VA0131, Lf EO 0.3% VA0108 Gurjunene, gamma: Fr EO 0.1% VA0120, Lf EOVA0109 Heptan-1-ol: Fr EO 800^{VA0131} Hexacosane, n: Fr EO 0.1% VA0120 Hexadec-1-ene: Lf EO 0.1%, Fr EO: $0.1\%^{VA0108}$ Humulene, alpha: Fr EOVA0108, Lf EO 0.6-0.8%^{VA0108}, VA0131 Kaempferol, 6-hydroxy 3,4,6,7-tetramethyl ether: Fr^{VA0112},VA0138 Kaempferol, 6-hydroxy 3,6,7-trimethyl ether: Fr^{VA0138} Kaurene: Lf EO 0.6% VA0108 Ledol: Lf EO 0.6% VA0108, Fr EO 0.27-0.80% VA0108, VA0131, FLEO 1.18% VA0126

Limonene: Fr EO 0.5-16.7% VA0108, VA0120. Lf

EO 0.5-11.21%^{VA0108,VA0126}, FI EO

Linalool acetate: Lf EO 0.2%^{VA0108}, Fr EO

Linalool: Fr EO 0.1-0.9% VA0120, VA0108, Lf EO

Longifolene: Lf EO 0.2%, Fr EO 0.1% VA0108

 $6.09\%^{VA0126}$

0.3%^{VA0108}

 $0.1 \text{-} 0.7\%^{VA0109,VA0108}$

Luteolin: Fr 5.5VA0106 Luteolin-6-C-(4-methyl-6-O-trans-caffeoylglucoside): Fr 23VAO106 Luteolin-6-C-(6-O-trans-caffeoyl-glucoside): Fr 6.5^{VA0106} Luteolin-6-C-(trans-caffeoyl-glucoside): Fr 16^{VA0106} Luteolin-7-O-(6-para-benzoyl-glucoside): Fr 1.2^{VA0106} Manool oxide: Fr EO 1.7% VA0120 Manool, 13-epi: Fr EO 1.01% VA0120, Lf EO $0.1 - 0.8\%^{VÅ0109}$ Manool, beta, epi: Lf EO, Fr EOVA0108 Manool: Fr EO 0.35-0.90% VA0131, VA0108, Lf EO 1.3%^{VA0108} Manoyl oxide: Lf EO 0.1-0.5% VA0109, Fr EO^{VA0108} Menth-cis-2-en-1-ol, para: Fr EO 0.4VA0120, Lf EO 0.1-0.9% VA0109, VA0108 Menthol: Fr EO 0.14% VA0131 Menth-trans-2-en-1-ol, para: Fr EO 0.1-0.3%^{VA0108,VA0120}, Lf EO 0.1-0.7% VA0108, VA0109 Muurolene, alpha: Lf EO 0.3% VA0108 Muurolene, gamma: Lf EO 0.3%, Fr EO $0.6\%^{VA0108}$ Muurolot, T: Lf EOVA0109 Myrcene, beta: Fr EO 1.12%^{VA0131} Myrcene: Fr EO 0.74% VA0126, Lf EO 0.1-1.8% VA0109, VA0126, FI EO 1.03% VA0126 Nerol acetate: Fr EO 0.2% VA0108 Nerol: Lf EO 0.3%, Fr EO 0.4% VA0108 Nerolidol, cis: Lf EO 0.1%, Fr EO $0.2\%^{VA0108}$ Nerolidol: Fr EO 0.17%^{VA0131} Nonal-1-al: Lf EO 0.15%, Fr EO 0.2% VA0108 Ocimene, beta, cis: Lf EO, Fr EO 0.1%^{VA0108} Ocimene, beta, trans: Fr EO, Lf EO 0.15%^{VA0108} Octacosane, N: Fr EO 0.1%^{VA0120} Octadec-1-ene: Fr EO 0.2% VA0108 Octan-3-ol-acetate: Fr EO 0.26% VA0131 Orientin, iso: Lf, StVA0149 Orientin: Lf^{VA0112,VA0132} Penduletin: FrVA0112 Phellandrene, alpha: Lf EO 0.2-0.8%, Fr EO 0.5%^{VA0108} Phellandrene, beta: Fr EO 5.6%^{VA0131}, Lf EO 0.1%^{VA0108} Phenol, 4-vinyl: Fr EO 0.1%^{VA0120} Phenol: Fr EO 1.1% VA0120

Phenylacetaldehyde: Fr EO 0.4%^{VA0108} Phyllocladene: Lf EO 0.1% VA0108

Pinene, alpha: Lf EO 0.7-7.6% VA0109, Fr EO 3.5-7.5% VA0120, VA0131, FI EO 2.01% VA0126 Pinene, beta: Lf EO 0.98-2.4% VA0126, VA0108

FI EO 0.46% VA0126, Fr EO 0.47-1.5% VA0108, VA0131

Pinene, cis, hydrate: Lf EOVA0109 Pinocarveol, trans: Lf EOVA0109

Piperitol, cis: Fr EO 0.28% VA0131, Lf EO 0.1%^{VA0108}

Piperitol, trans: Lf EO, Fr EO 0.2% VA0108

Piperitone: Fr EO 0.84%^{VA0131}

Progesterone, 17-alpha-hydroxy: LfVA0136

Progesterone: LfVA0136

Propionaldehyde, 2-phenyl: Lf EOVA0109

Rhamnetin, iso: Fr 0.85^{VA0106}

Rubber: Rt 110^{VA0147}

Sabinene, cis, hydrate: Lf EO 0.3%, Fr EO $0.2\%^{VA0108}$

Sabinene, trans, hydrate: Lf EO, Fr EO $0.1\%^{VA0108}$

Sabinene: FI EO 9.34% VA0126, Lf EO 3.3-23.6%^{VA0109}, Fr EO 7.1-22.3%VA0108,VA0126

Santalol, alpha: Fr EO, Lf EO 0.1% VA0108 Sclareol: Fr EO 0.2-1.28% VA0108, VA0131. Lf EO 0.3%^{VA0108}

Selinene, beta: Lf EO 9.0%, Fr EO 6.0%^{VA0108}

Sesquiphellandrene, beta: Fr EO 0.54%^{VA0131}

Spathulenol: Lf EO 0.2-1.16% VA0109, VA0126 Fr EO 0.4-3.83% VA0120, VA0126. FI EO 3.84%^{VA0126}

Terpinen-4-ol acetate: Lf EO 0.1%, Fr EO 0.2%^{VA0108}

Terpinen-4-ol: Lf EO 0.1-3.82% VA0109, VA0126 Fr EO 2.2% VA0108

Terpinene, alpha: Fr EO 0.52%^{VA0131}, Lf EO0.2%^{VA0108}

Terpinene, gamma: Fr EO 0.22-0.92%^{VA0126,VA0131}, Lf EO 0.21-1.1%^{VA0126,VA0108}, FI EO 0.1%^{VA0126}

Terpineol, 4: Fr EO 0.1%VA0120

Terpineol, alpha, acetate: Lf EO 0.3-17.1%^{VA0108,VA0109}, FI EO 3.29%^{VA0126}, Fr EO 0.1-7.7%VA0108,VA0120

Terpineol, alpha: Fr EO 0.7-5.5%^{VA0131,VA0108}, Lf EO 0.5-8.5% VA0109, VA0108, FI EO 1.17% VA0126 Terpineol, beta, acetate: Fr EO 0.09% VA0131 Terpineol, beta, cis: Lf EO, Fr EO $0.1\%^{VA0108}$

Terpineol, delta: Lf EO 0.45%^{VA0126}

Terpineol, trans, dihydro: Lf EO 0.1%VA0109, Fr EO 0.19%^{VA0131}

Terpineol, trans-alpha-dihydro: Lf EO 1.8%, Fr EO 1.3%^{VA0108}

Terpinolene, alpha: Fr EO 0.24% VA0131 Terpinolene: Lf EO 0.4%, Fr EO 0.3% VA0108

Testosterone, epi: FlVA0136 Testosterone: FİVA0136

Tetracosane. N: Fr EO 0.1% VA0120

Tetracosanoic acid methyl ester: Fr EOVA0120

Tetradec-1-ene: Fr EO 0.2% VA0108

Thujene, alpha: Fr EO 0.1-

0.5% VA0120, VA0126, FI EO 0.30% VA0131, Lf EO 0.2-0.79% VA0108, VA0126

Thymol: Fr EO 0.47% VA0131, Lf EO $0.1\%^{VA0108}$

Tridecane, N: Fl EO 0.3% VA0108 Undec-1-ene: Fl EO 0.1% VA0108 Undecane, N: Lf EO 0.15% VA0108 Verbenol, trans: Lf EOVA0109

Viridiflorol: Lf EO 0.4% VA0108, Fr EO 0.3-1.65%^{VA0131,VA0108}

Vitexin, iso, xyloside: LfVA0112 Vitexin, iso: LfVA0112

Ylangene, alpha: Lf EO 0.3%, Fr EO

0.2%^{VA0108}

Zingiberene, alpha: Fr EO 0.15% VA0131

PHARMACOLOGICAL ACTIVITY AND CLINICAL TRIALS

Anti-acne activity. Tincture of the dried fruit, taken orally by female adults at a dose of 1.0 ml/person 3 times daily, was active^{VA0115}. **Antibacterial activity.** The essential oil and ethanol (95%) and ether extracts of the dried flower, leaf, and fruit, on agar plate, were active on Bacillus subtilis, Escherichia coli, and Shigella sonnei^{VA0144}. The fruit essential oil, on agar plate, was active on Escherichia coli and Staphylococcus aureus VA0134. The leaf essential oil, on agar plate, was inactive on Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus^{VA0143}. **Antifertility effect.** The seed, in the ration of rats of both sexes at a dose of 20.0 gm/kg, was inactive VA0101.

VITEX AGNUS-CASTUS 431

Antifungal activity. Acetone, water and ethanol (95%) extracts of the dried aerial parts, on agar plate at a concentration of 50%, were active on Neurospora crassa^{VA0152}. The essential oil, on agar plate, was active on Candida albicans VA0144, and inactive on Penicillium cyclopium, Trichoderma viride, and Aspergillus aegyptiacus VA0139. Ethanol/water (1:1) extract of the dried fruit, on agar plate at a concentration of 500.0 mg/ml, was active on Fusarium oxysporum, and inactive on Aspergillus fumagitus, Aspergillus niger, Botrytis cinerea, Penicillium digitatum, Rhizopus nigricans, and Trichophyton mentagrophytes VA0142. The leaf essential oil, on agar plate, was inactive on Aspergillus aegyptiacus, Penicillium cyclopium, and Trichoderma viride^{VA0143}.

Anti-PMS activity. The dried fruit, at a dose of 20 mg daily for 3 months, was taken orally by 37 patients with luteal phase defects due to latent hyperprolactinaemia in a randomized, double-blind, placebo-controlled study. The treatment reduced the level of prolactin; luteal phase and progesterone synthesis were normalized in the treated group. No side effects were observed VA0129. The fruit was taken orally by 217 female patients for 3 months in a double-blind, placebo-controlled clinical study. The patients were treated with Vitex agnus-castus or a soybased placebo. No statistical difference between the treatments was observed. However, both treatments indicated dramatic improvement after 1 cycle^{VA0128}.

Antiyeast activity. Acetone and ethanol (95%) extracts of the dried aerial parts, in broth culture at a concentration of 50%, were inactive on Saccharomyces cerevisiae^{VA0151}. Ethanol/water (1:1) extract of the dried fruit, on agar plate at a concentration of 500.0 mg/ml, was inactive on Saccharomyces pastorianus and Candida albicans^{VA0142}. Ether and ethanol (95%) extracts of the dried flower, leaf, and fruit, on agar plate, were active on Candida albicans^{VA0144}. The

fruit essential oil, on agar plate, was active on Candida albicans VAO134.

Cytotoxic activity. Hydro-alcoholic extract of the dried fruit, in cell culture at a concentration of 3.3 mg/ml, was inactive vs cultured pituitary cells^{VAO118}.

Dopaminergic effect. Hydro-alcoholic extract of the dried fruit, in cell culture at a concentration of 2.0 mg/ml, was active. The extract bound to dopamine receptors and inhibited prolactin release VAO118.

Fertility promotion effect. After 3 endocrinologically normal cycles, and after undergoing unstimulated invitro fertilization, a woman took the dried fruit at the beginning of the fourth unstimulated cycle. In the fourth cycle, her serum gonadotrophin and ovarian hormone measurements were disordered. One embryo resulted from the 3 eggs collected, but a pregnancy did not take place. The patient had symptoms suggestive of mild ovarian hyperstimulation syndrome in the luteal phase. The 2 subsequent cycles were endocrinologically normal^{VA0111}. Multiple follicular development occurred in a patient treated with the plant^{VA0119}.

FSH release inhibition. Ethanol (16%) extract of the fruit, administered orally to guinea pigs for 90 days, was active VAO100.

LH release stimulation. Ethanol (16%) extract of the fruit, administered orally to guinea pigs for 90 days, was active VAOIOO.

Luteotropic effect. The fruit, taken orally by female adults at variable dosages, was active VAO112.

Molluscicidal activity. Ethanol (80%) extract of the dried leaf, at a concentration of 200.0 mg/liter, was inactive on *Biomphalaria pfeifferi* and *Bulinus truncatus*^{VA0135}. Water saturated with the fresh leaf essential oil, at a concentration of 1/10, was inactive on *Biomphalaria glabrata*^{VA0141}.

Premenstrual syndrome treatment. Hydroalcoholic extract of the fruit was taken by women with premenstrual tension syndrome

was assessed using the premenstrual tension syndrome scale (PMTS), the recording of 6 characteristic complaints of the syndrome and the clinical global impression scale (CGIS). Upon completion of the trial, efficacy of the treatment was assessed by the investigator as well as by the patient. On the PMTS, treatment with the VAC and B6 produced a reduction on score points from 15.2 to 5.1 and from 11.9 to 5.1, respectively. In comparison with B6, VAC produced a considerably more marked alleviation of typical PMTS complaints, such as tenderness of the breasts, edema, inner tension, headache, constipation and depression. Analogous results were obtained with the GCIS. In both treatment groups, efficacy was rated as inadequate by more than 80% of the investigators; however, VAC treatment rated as excellent by 24.5%, and B6 treatment by 12.1% of the investigators. According to the patient's assessment, 36.1% of the cases in the VAC group and 21.3% in the pyridoxine group were free from complaints. Adverse effects, such as gastrointestinal and lower abdominal complaints, skin manifestations, and transitory headache occurred in 5 patients under B6 and 12 patients under VACVA0121. The fruit, taken orally by female adults at variable dosage levels, was active VA0112. Tincture of the dried fruit, taken orally by female adults at a dose of 0.2–9.0 ml/person, was active VAOIIT. Progestagenic effect. The seed oil was active on female rats VA0104. Prolactin inhibition. Hydro-alcoholic ex-

over a period of 3 treatment cycles. In a

randomized, controlled trial vs pyridoxine,

a Vitex agnus-castus (VAC) capsule plus a

placebo capsule is taken daily vs 2 capsules

of pyridoxine (B6). The therapeutic response

Prolactin inhibition. Hydro-alcoholic extract of the dried fruit, in cell culture at a concentration of 3.3 mg/ml, inhibited prolactin release induced by TRH in pituitary cells. Intravenous administration to rats, at a dose of 20.0 mg/ml, was active vs hypo-

thalamus-lesioned animals. A dose of 60 mg/ml, administered intravenously to male rats, inhibited stress-induced prolactin release^{VA0118}.

Toxic effect. A 45-year-old woman suffered 3 general tonic-clonic seizures after taking black cohosh root, chaste tree berries and evening primrose oil. The patient recovered after discontinuing the herbal therapy and was prescribed carbamazepine^{VA0110}.

REFERENCES

VA0100 Haller, J. Animal experimentation with the Lipschutz technic on the activity of a phytohormone on gonadotropin function. **Geburtshilfe Frauen-heilkd** 1958; 18(11): 1347–1353.

VA0101 Gujral, M. L., D. R. Varma and K. N. Sareen. Oral contraceptives. Part I. Preliminary observations on the antifertility effect of some indigenous drugs. Indian J Med Res 1960; 48: 46–51.

VA0102 Jochle, W. Menses-inducing drugs: Their role in antique, medieval and renaissance gynecology and birth control. **Contraception** 1974; 10: 425–439.

VA0103 De Laszlo, H. and P. S. Henshaw. Plant material used by primitive peoples to affect fertility. **Science** 1954; 119: 626–631.

VA0104 Belic, I., J. Bergant-Dolar, D. Stucin and M. Stucin. A biologically active substance from *Vitex agnus-castus*. **Vestnik Sloven Kemi Drustva** 1958; 5: 63–67.

VA0105 Hansel, R., C. H. Leuckert, H. Rimpler and K. D. Schaaf. Chemotaxomic investigation of the genus *Vitex* L. **Phytochemistry** 1965; 4: 19–27.

VA0106 Hirobe, C., Z. S. Qiao, K. Takeya and H. Itokawa. Cytotoxic flavonoids from *Vitex agnus-castus.* **Phytochemistry** 1997; 46(3): 521–524.

VA0107 Zargari, A. Medicinal Plants. Vol. 3, 5th Ed, Tehran University

	Publications, No 1810/3, Tehran,		bal medicine. Human Reprod
	Iran, 1992, 889 pp.		1995; 10(8): 2175–.
VA0108	Senatore, F., G. Della Porta and	VA0120	Galletti, G. C., M. T. Russo and
	E. Reverchon. Constituents of		P. Bocchini. Pyrolysis gas chro-
	Vitex agnus-castus L. essential		matography mass spectrometry
	oil. Flavour Fragrance J 1996;		used to simultaneously deter-
	11(3): 179–182.		mine essential oil and phenolic
VA0109	Galletti, G. C. and M. T. Russo.		compounds in the monk' pepper
	Essential oil composition of		Vitex agnus-castus L. Rapid
	leaves and berries of Vitex agnus-		Commun Mass Spectrum 1995;
	castus L. from Calabria, South-		9(3): 1252–1260.
	ern Italy. Rapid Commun Mass	VA0121	Lauritzen, C., H. D. Reuter, H.
	Spectrum 1996; 10(11): 1345–		D. Repfes, K. J. Bohnert and U.
	1350.		Schmidt. Treatment of premen-
VA0110	Shuster, J. Herbal remedies and		strual tension syndrome with <i>Vitex</i>
	seizures. Self-treatment for men-		agnus-castus. Controlled, double-
	strual regulation goes awry. Nurs-		blind study versus pyridoxine.
	ing 1997; 97(1997): 75–.		Phytomedicine 1997; 4(3): 183–
VA0111	Cahill, D. J., R. Fox, P. G. Wardle	*****	189.
	and C. R. Harlow. Multiple fol-	VA0122	Sliutz, G., P. Speiser, A. M.
	licular development associated		Schultz, J. Spona and R. Zeil-
	with herbal medicine. Human		linger. Agnus castus extracts in-
*** 0110	Reprod 1994; 9(8): 1469–1470.		hibit prolactin secretion of rat
VA0112	Kartnig, T. H. Vitex agnus-cas-		pituitary cells. Horm Metab
	tus-Monchspfeffer or keusch-	VA 0122	Res 1993; 25(5): 253–255.
	lamm. A medicinal plant with in-	VA0123	Kustrak, D. and A. Antolic. Isolation of iridoids from leaves of
	direct lutetropic activity. Zeitch- rift Phytother 1986; 7: 119–122.		Vitex agnus-castus L. Farm
VA0113	Amann, W. A look at the pre-		Glas 1992; 48(11): 305–310.
VA0113	menstrual syndrome. Arztl Pra-	VA0124	Hirobe, C., D. Palevitch, K.
	xis 1979; 31: 3091–3092.	VA0124	Takeya and H. Itokawa. Screen-
VA0114	Amann, W. Treatment of amenor-		ing test for antitumor activity
VAULT	rhea with <i>Agnus castus</i> (Agnolyt).		of crude drugs (IV) Studies on
	Z Allg Med 1982; 58: 228–231.		cytotoxic activity of Israeli me-
VA0115	Amann, W. Acne vulgaris and		dicinal plants. Nat Med 1994;
1710113	Agnus castus (Agnolyt). Z Allg		48(2): 168–170.
	Med 1975; 35: 1645–1647.	VA0125	Kustrak, D., A. Antolic and Z.
VA0116	Amann, W. Activity of Agnus	1110120	Males. Determination of the fla-
	castus (Agnolyt) on premen-		vonoid content of chaste tree
	strual water retention. Z Allg		(Vitex agnus-castus L.). Farm
	Med 1979; 55: 48–51.		Glas 1994; 49(11): 299–303.
VA0117	Houghton, P. Agnus castus.	VA0126	Kustrak, D., J. Kuftinec and N.
	Pharm J 1994; 253: 720–721.		Blazevic. Composition of the es-
VA0118	Wuttke, W., C. Gorkow and H.		sential oil of Vitex agnus-castus
	Jarry. Dopaminergic compounds		L. J Essent Oil Res 1994; 6(4):
	in Vitex agnus-castus. Phyto-		341–344.
	pharmaka Forsch Klin Anwend	VA0127	Bellakhdar, J., R. Claisse, J.
	1995; 1995: 81–91.		Fleurentin and C. Younos. Rep-
VA0119	Cahill, D. J., R. Fox, P. G. L.		ertory of standard herbal drugs
	Wardle, C. R. Harlow and D.		in the Moroccan pharmagopoea.
	Propping. Multiple follicular de-		J Ethnopharmacol 1991; 35(2):
	velopment associated with a her-		123–143.

VA0128	Turner, S. and S. Mills. A double-blind clinical trial on a herbal remedy for premenstrual syndrome: A case study. Compl	VA0136	Saden-Krehula, M., D. Kustrak and N. Blazevic. Delta4-3-keto-steroids in flowers and leaves of <i>Vitex agnus-castus</i> . Acta Pharm
VA0129	Therap Med 1993; 1: 73–77. Milewicz, A., E. Gejdel, H. Sworen, K. Sienkiewicz, J. Jjedrzejak, T. Teucher and H. Schmitz. <i>Vitex agnus-castus</i> extract in the treatment of luteal phase defects	VA0137	Jugosl 1991; 41(3): 237–241. Benzanger-Beauquesne, L., M. Pinkas, M. Torck and F. Trotin. Plantes Medicinales des Regions Temperees. Maloine S. A., Paris, 1980; 439 pp
	due to latent hyperprolactina- emia. I. Results of a randomized placebo-controlled double blind study. Arzneim-Forsch 1993;	VA0138	Wollenweber, E. and K. Mann. Flavonols from fruits of <i>Vitex agnus-castus</i> . Planta Med 1983; 48(2): 126–127.
VA0130	43(2): 752–756. Merz, P. G., A. Schroedter, S. Rietbrock, C. Gorkow and D. Loew. Prolactin secretion and tolerance during treatment with	VA0139	Ross, S. A., N. E. El-Keltawi and S. E. Megalla. Antimicrobial activity of some Egyptian aromatic plants. Fitoterapia 1980; 51: 201–205.
	and Agnus castus extract (BP 1095E1). Effect on prolactin secretion. Phytopharmaka Forsch Klin Anwend 1995; 1995: 93–	VA0140	Razzack, H. M. A. The concept of birth control in Unani medical literature. Unpublished Manu- script of the Author 1980; 64 pp.
VA0131	97. Zwavina, J. H. and R. Bos. Composition of the essential fruit of Vitex agnus-castus. Planta Med	VA0141	Rouquayrol, M. Z., M. C. Fonteles, J. E. Alencar, F. Jose de Abreu Matos and A. A. Craveiro. Molluscicidal activity of essen-
VA0132	1996; 62(1): 83–84. Gomaa, C. S., M. A. El-Moghazy, F. A. Halim and A. E. El-Sayyad. Flavonoids and iridoids from <i>Vitex agnus-castus</i> . Planta Med 1978; 33: 277–.	VA0142	tial oils from Northeastern Brazilian plants. Rev Brasil Pesq Med Biol 1980; 13: 135–143. Guerin, J. C. and H. P. Reveillere. Antifungal activity of plant extracts used in therapy. II. Study
VA0133	Gorler, K., D. Oehlke and H. Soicke. Iridoidfuhrung von <i>Vitex agnus-castus</i> . Planta Med 1985;	VA0143	of 40 plant extracts against 9 fungi species. Ann Pharm Fr 1985; 43(1): 77–81. El-Keltawi, N. E. M., S. E.
VA0134	1985(6): 530–531. Mishurova, S. S., T. A. Malinov- skaya, I. B. Akhmedov and D. G. Mamedov. Essential oil of <i>Vitex</i> agnus-castus L., its fractional	VA0143	Megalla and S. A. Ross. Antimicrobial activity of some Egyptian aromatic plants. Herba Pol 1980; 26(4): 245–250.
	composition and antimicrobial activity. Rast Resur 1986; 22(4): 526–530.	VA0144	Kustrak, D., S. Pepeljnak, A. Antolic and N. Blazevic. Antimicrobial activity of <i>Vitex agnus-</i>
VA0135	Abdel-Aziz, A., K. Brain and A. K. Bashir. Screening of Sudanese plants for molluscicidal activity and identification of leaves of <i>Tacca leontopetaloides</i> (L.) O	VA0145	castus. Pharm Weekbl (Sci Ed) 1987; 9(4): 238–. Perrot, E. and R. R. Paris. Les Plantes Medicinales. Part I. Presses Universitaires des France,
	Ktze (Taccaceae) as a potential new exploitable resource. Phytother Res 1990; 4(2): 62–65.	VA0146	Paris, France, 1971. Dragendorff, G. Die Heilpflanzen der Verschiedenen Volker und

	Zeiten, F. Enke, Stuttgart, 1898; 885 pp		ticin. J Chem Soc 1961; 1961: 2523–2525.
VA0147	Fernandez, O. Analysis of domestic rubber-bearing plants. Ion 1947; 7: 2–10.	VA0151	Kubas, J. Investigations on known or potential antitumoral plants by means of microbiological
VA0148	Winde, E. and R. Hansel. Constituents of Verbenaceae. III. Pseudoindicans from <i>Vitex agnuscastus</i> L. Arch Pharm (Wein-		tests. Part IV. Biological activity of selected plant species in the yeast test. Acta Biol Cracov Ser Bot 1972; 15: 101–112.
VA0149	heim) 1960; 293: 556–567. Hansel, R. and H. Rimpler. Isolation of homoorientin from Vitex agnus-castus. Arch Pharm (Weinheim) 1963; 296: 598–605.	VA0152	Kubas, J. Investigations on known or potential antitumoral plants by means of microbio- logical tests. Part III. Biological activity of some cultivated plant
VA0150	Belic, I., J. Bergant-Dolar and R. A. Morton. Constituents of <i>Vitex agnus-castus</i> seeds. Part I. Cas-		species in <i>Neurospora crassa</i> test. Acta Biol Cracov Ser Bot 1972; 15: 87–100.

Cross Reference

Common name	Country	Latin binomial
Aamudamu chettu	India	Ricinus communis
Aamudamu	India	Ricinus communis
Aavanak	India	Ricinus communis
Abrahamsstraugh	Europe	Vitex agnus-castus
Abrojo	Peru	Tribulus terrestris
Acetilla	Mexico	Tanacetum parthenium
Ach	India	Morinda citrifolia
Achi	Fiji	Morinda citrifolia
Achu	India	Morinda citrifolia
Adam's apple	Iran	Musa sapientum
Adam's fig	Iran	Musa sapientum
Agaliva	Guam	Ricinus communis
Agno-casto	France	Vitex agnus-castus
Agnus castus	Iran	Vitex agnus-castus
Ainshi	India	Morinda citrifolia
Akanti	India	Tribulus terrestris
Al	India	Morinda citrifolia
Alauro	Italy	Laurus nobilis
Alcanfor	Mexico	Eucalyptus globulus
Alfinetes de Senhora	Madeira	Tanacetum parthenium
Alipiong	India	Ananas comosus
Alloro	Italy	Laurus nobilis
Altamisa Mexicana	Mexico	Tanacetum parthenium
Altamisa	Argentina	Tanacetum parthenium
Altea	France	Althaea officinales
Altea	Peru	Althaea officinales
Althea	USA	Althaea officinales
Amaranon	Cuba	Anacardium occidentale
Ambal	India	Nelumbo nucifera

From: Medicinal Plants of the World, vol. 2: Chemical Constituents, Traditional and Modern Uses By: Ivan A. Ross Humana Press Inc., Totowa, NJ

Latin binomial Common name Country Nelumbo nucifera India Ambuja Echinacea angustifolia American coneflower USA Amudamu India Ricinus communis Anana Peru Ananas comosus Ananas Dominica Ananas comosus Ananas Fiii Ananas comosus French Guiana Ananas comosus Ananas Ananas Gabon Ananas comosus Guadeloupe Ananas Ananas comosus Ananas India Ananas comosus West Indies Ananas comosus Ananas India Ananash Ananas comosus India Anannas Ananas comosus India Ananas comosus Anannasa India Ananas comosus Anaras Andela Nepal Ricinus communis Ricinus communis Ander Nepal Ananas comosus Andras Fiji **Philippines** Ricinus communis Angan-tangan Morocco Vitex agnus-castus Angarf Morinda citrifolia Anino **Philippines** France Pimpinella anisum Anis vert Pimpinella anisum Tunisia Anis vert Pimpinella anisum India Anisa Pimpinella anisum Anise seed Guvana Pimpinella anisum Anise seed Japan Pimpinella anisum Anise seed Trinidad West Indies Pimpinella anisum Anise seed Pimpinella anisum Yugoslavia Anise seed Argentina Pimpinella anisum Anise Colombia Pimpinella anisum Anise Guatemala Pimpinella anisum Anise Mexico Pimpinella anisum Anise Pimpinella anisum Peru Anise USA Pimpinella anisum Anise Pimpinella anisum Arabic countries Anisoon Pimpinella anisum Annesella Italy Laurus nobilis Apollo's laurel France Ananas comosus Ara kai Cook Islands Ricinus communis Fiji Arand Ricinus communis Arandi India Glycyrrhiza glabra Morocco Arq sus Tanacetum parthenium Brazil Artemijio Costa Rica Tanacetum parthenium Artemisia Madeira Tanacetum parthenium Artemisia

Common name Latin binomial Country Tanacetum parthenium Artmija Madeira Arundi Oman Ricinus communis Asat sinda musa Morocco Laurus nobilis Asloosoos India Glycyrrhiza glabra Avend Nepal Ricinus communis Awl tree Thailand Morinda citrifolia Awriwra Morocco Ricinus communis Azad dirakhat India Azadirachta indica Baalehannu India Musa sapientum Babounag Egypt Matricaria chamomilla Arabic countries Matricaria chamomilla Babunaj Matricaria chamomilla Tunisia Babuni Bachati Matricaria chamomilla Nicaragua Badian Afghanistan Pimpinella anisum Badian India Pimpinella anisum India Badishep Pimpinella anisum Baino Cambodia Nelumbo nucifera Bakhra India Tribulus terrestris Somalia Balambaal olyo Ricinus communis Balamball Somalia Ricinus communis Arabic Countries Balsana Hypericum perforatum Balsana India Hypericum perforatum Banana matenten Haiti Musa sapientum Banana Bahamas Musa sapientum Banana China Musa sapientum Banana Guyana Musa sapientum Banana Japan Musa sapientum Banana **Philippines** Musa sapientum Banana USA Musa sapientum Banana West Indies Musa sapientum Banjankusht Arabic countries Vitex agnus-castus Bardul Khatmi India Althaea officinales Barge boo Iran Laurus nobilis Bartundi India Morinda citrifolia Basal Iordan Allium cepa Basal Yemen Allium cepa Basl Arabic Countries Allium cepa Bas1 Saudi Arabia Allium cepa Bassal Egypt Allium cepa Bassant India Hypericum perforatum Bastitai India Tribulus terrestris Bay laurel Laurus nobilis Japan Bay laurel **USA** Laurus nobilis Bay tree Laurus nobilis Europe

Guyana

Laurus nobilis

Bay tree

Camamieri

Camamilla

Camomiha

Tanacetum parthenium

Matricaria chamomilla

Matricaria chamomilla

Common name **Country** Latin binomial Laurus nobilis Bay tree Iran Laurus nobilis Bay tree Japan USA Laurus nobilis Bay tree West Indies Laurus nobilis Bay tree Brazil Laurus nobilis Bay Laurus nobilis Bay Iapan Somalia Bele ni vavalagi Ricinus communis Indonesia Bengkudu Morinda citrifolia Bermuda onion USA Allium cepa Besbasa Morocco Myristica fragrans Betagokhru India Tribulus terrestris Bewina mara India Azadirachta indica Bhakra India Tribulus terrestris Bhakra Pakistan Tribulus terrestris Bhasinda India Nelumbo nucifera Bherenda India Ricinus communis Black sampson **USA** Echinacea angustifolia **USA** Black susans Echinacea angustifolia Blutkraut Germany Hypericum perforatum Bo-aal India Morinda citrifolia Bofareira USA Ricinus communis Bon visclo France Althaea officinales Bo-nim India Azadirachta indica North Africa Pimpinella anisum Boucage anis Bouesc-dous France Glycyrrhiza glabra Boulet France Tanacetum parthenium Bouton d'argent France Tanacetum parthenium Morocco Allium cepa Bsal Bua luang Thailand Nelumbo nucifera Bullhead Kuwait Tribulus terrestris Burra gookeron Kuwait Tribulus terrestris Turkey Glycyrrhiza glabra Buyan Caju Brazil Anacardium occidentale Portugal Anacardium occidentale Caiu Brazil Anacardium occidentale Cajueiro Matricaria chamomilla Calamido France Italy Eucalyptus globulus Calipso Eucalyptus globulus Caliptus Spain India Tribulus terrestris Calthrop India Tribulus terrestris Caltrap Australia Tribulus terrestris Caltrop Tribulus terrestris Caltrop Kuwait

France

Spain

France

Latin binomial Common name Country Camomile Matricaria chamomilla Germany Camomilla comune Matricaria chamomilla Italy Camomilla Colombia Matricaria chamomilla Tanacetum parthenium Camomilla France Camomilla Matricaria chamomilla Italv Camomirra Matricaria chamomilla Italy Camoumida France Tanacetum parthenium Matricaria chamomilla Campomilla Italy Camsumilha France Tanacetum parthenium Canamelha France Tanacetum parthenium Cape lilac Indonesia Azadirachta indica Carapate Guadeloupe Ricinus communis Brazil Ricinus communis Carrapateira Brazil Anacardium occidentale Cashew apple Anacardium occidentale Cashew apple India Anacardium occidentale Cashew bark Iamaica Anacardium occidentale Cashew nut tree India Cashew nut Brazil Anacardium occidentale Cashew nut India Anacardium occidentale USA Cashew nut Anacardium occidentale Cashew tree South Africa Anacardium occidentale Cashew Guvana Anacardium occidentale Cashu Peru Anacardium occidentale Castor bean plant Ricinus communis Guam Saudi Arabia Castor bean Ricinus communis Castor bean USA Ricinus communis Castor oil bush West Indies Ricinus communis Castor oil plant Guyana Ricinus communis Castor oil plant Nepal Ricinus communis Castor oil plant **USA** Ricinus communis Castor Algeria Ricinus communis Castor Nepal Ricinus communis Cau Indonesia Musa sapientum Caujil Colombia Anacardium occidentale Cay thom India Ananas comosus Ceba France Allium cepa Cebo France Allium cepa Cebolla morada Mexico Allium cepa Cebolla Guatemala Allium cepa Cebolla Nicaragua Allium cepa Cebolla Peru Allium cepa Cepa bulb Kuwait Allium cepa Cepolla Italy Allium cepa Cha-em-thet Thailand Glycyrrhiza glabra Chamomile Matricaria chamomilla Argentina

Devil's thorn

Tribulus terrestris

Latin binomial Common name **Country** Chamomile England Matricaria chamomilla Chamomile Estonia Matricaria chamomilla Chamomile India Matricaria chamomilla Chamomile Matricaria chamomilla **Japan** Chamomille Mexico Matricaria chamomilla Chamomille Matricaria chamomilla Nicaragua Chan thet Thailand Myristica fragrans Thailand Chan Myristica fragrans Chaste tree Croatia Vitex agnus-castus Chaste tree Europe Vitex agnus-castus Chaste tree France Vitex agnus-castus Chaste tree Germany Vitex agnus-castus Chaste tree India Vitex agnus-castus Chaste tree Iran Vitex agnus-castus Chek Thailand Musa sapientum China tree Indonesia Azadirachta indica Indonesia Azadirachta indica Chinaberry USA Azadirachta indica Chinaberry Chinese angelica China Angelica sinensis India Tribulus terrestris Chinnipalleru India Tribulus terrestris Chirupalleru Chota gokharu India Tribulus terrestris Matricaria chamomilla Chrysanthemum Germany Anacardium occidentale Chura Colombia Cipolla Italv Allium ceba Cockerell Dominica Ananas comosus East Africa Coga macon Ricinus communis Comb flower USA Echinacea angustifolia Common onion Kuwait Allium cepa Cone flower USA Echinacea angustifolia Corazancillo Spain Hypericum perforatum Corazoncillo Argentina Hypericum perforatum Cow's hoof India Tribulus terrestris Croix de Malte India Tribulus terrestris Cu hanh Vietnam Allium cepa Cyclamen Arabic countries Vitex agnus-castus China Angelica sinensis Dang gui China Danggui Angelica sinensis Darbeiiva Nigeria Azadirachta indica Demirdiken Turkev Tribulus terrestris Dendhu India Hypericum perforatum Laurus nobilis Derakhte barge boo Iran Deshi gokhru India Tribulus terrestris Devil's scorge Europe Hypericum perforatum

India

Common name	Country	Latin binomial
Dhatura	Nepal	Ricinus communis
Dilo-K	India	Morinda citrifolia
Dogo yaro	Nigeria	Azadirachta indica
Dogonyaro	Nigeria	Azadirachta indica
Domates	Turkey	Lycopersicon esculentum
Dong quai	China	Angelica sinensis
Dorg-chan	Thailand	Myristica fragrans
Dumadu	Nicaragua	Lycopersicon esculentum
East Indian lotus	Nepal	Nelumbo nucifera
Echinaceae	USA	Echinacea angustifolia
Eibisch	France	Althaea officinales
Eisenblut	Europe	Hypericum perforatum
Ekanty	India	Tribulus terrestris
El ban	Sudan	Eucalyptus globulus
English Chamomile	Japan	Matricaria chamomilla
Era	India	Ricinus communis
Erand	India	Ricinus communis
Eranda	India	Ricinus communis
Erande	India	Ricinus communis
Erandu	India	Ricinus communis
Erendi	India	Ricinus communis
Erra-tamara	India	Nelumbo nucifera
Erund	India	Ricinus communis
Erva molle	Italy	Althaea officinales
Eucalipto blanco	Canary Islands	Eucalyptus globulus
Eucalipto	Bolivia	Eucalyptus globulus
Eucalipto	Brazil	Eucalyptus globulus
Eucalipto	Canary Islands	Eucalyptus globulus
Eucalipto	Guatemala	Eucalyptus globulus
Eucalipto	Italy	Eucalyptus globulus
Eucalipto	Mexico	Eucalyptus globulus
Eucalipto	Peru	Eucalyptus globulus
Eucaliptus	Spain	Eucalyptus globulus
Eucalyptus	Tunisia	Eucalyptus globulus
Eucalyptus	Australia	Eucalyptus globulus
Eucalyptus	France	Eucalyptus globulus
Eucalyptus	Guyana	Eucalyptus globulus
Eucalyptus	Philippines	Eucalyptus globulus
Eucalyptus	West Indies	Eucalyptus globulus
Eun-haeng	Korea	Ginkgo biloba
Fampinonoana	Madagascar	Ricinus communis
Featherfew	England	Tanacetum parthenium
Featherfew	USA	Tanacetum parthenium
Febrifuge plant	USA	Tanacetum parthenium
Felfele berry	Iran	Vitex agnus-castus
,		

Latin binomial

Common name Country Feverfew tansy Madeira Feverfew Canada Feverfew Croatia Feverfew England Feverfew Israel Feverfew USA Flor De Sao Ioao Madeira Fuga daemonum Europe Gai ma duong China China Gancao Iordan Gar Gatha Oatar Gattilier France Gekkeiju Japan German Chamomile **USA** German Chamomille England Gigante Mexico Ginkgo nut Iapan Ginkgo tree USA Ginkgo Iran Ginkgo Japan Ginkgo Korea Ginkvo Japan Ginnan Japan Gin-nan Japan Glycyrrhiza radix Japan Glycyrrhiza USA Glycyrrhizae radix China Gojeh farangee Iran India Gokhatri Gokhru India Gokhrudesi India Gokhuru Pakistan Gokshura India India Gori Goz buwwa Egypt Goz it-tib Egypt Indonesia Gringging France Guimauve Tunisia Guimauve USA Gum tree West Indies Gum tree China Gusetsu

Morocco

Morocco

Guzt s-serq Guzt t-tib Tanacetum parthenium Tanacetum parthenium Tanacetum parthenium Tanacetum parthenium Tanacetum parthenium Tanacetum parthenium Hypericum perforatum Hypericum perforatum Tribulus terrestris Glycyrrhiza glabra Laurus nobilis Tribulus terrestris Vitex agnus-castus Laurus nobilis Matricaria chamomilla Matricaria chamomilla Eucalyptus globulus Ginkgo biloba Glycyrrhiza glabra Glycyrrhiza glabra Glycyrrhiza glabra Lycopersicon esculentum Tribulus terrestris Tribulus terrestris Tribulus terrestris Tribulus terrestris Tribulus terrestris Azadirachta indica Myristica fragrans Myristica fragrans Azadirachta indica Althaea officinales Althaea officinales Eucalyptus globulus Eucalyptus globulus Nelumbo nucifera Myristica fragrans Myristica fragrans

Common name Country Latin binomial Habbat hlawa Morocco Pimpinella anisum India Hab-el-ghar Laurus nobilis Habet L-gar Morocco Laurus nobilis Morinda citrifolia Hag apple Nicaragua Hartheu Europe Hypericum perforatum Harwaa Tunisia Ricinus communis Hayit Turkey Vitex agnus-castus USA Hedgehog Echinacea angustifolia India Hemp tree Vitex agnus-castus Heofarigon Arabic Countries Hypericum perforatum Herba de la mera France Matricaria chamomilla Herba de Millepertuis France Hypericum perforatum Herba de Saint Jean France Hypericum perforatum Herrgottsblut Germany Hypericum perforatum Hexenkraut Europe Hypericum perforatum Hierba De San Iuan Spain Hypericum perforatum Hierba Santa Maria Canary Islands Tanacetum parthenium Higuereta Cuba Ricinus communis Puerto Rico Higuereta Ricinus communis Higuerilla blanca Mexico Ricinus communis Higuerilla Colombia Ricinus communis Mexico Higuerilla Ricinus communis Higuerilla Peru Ricinus communis Higuerillo blanco Colombia Ricinus communis Higuerillo rojo Colombia Ricinus communis Higuerillo Guatemala Ricinus communis Higuero Nicaragua Ricinus communis Hindu lotus China Nelumbo nucifera Madeira Hipericao Hypericum perforatum Hiperico Argentina Hypericum perforatum Hipericon Argentina Hypericum perforatum Hipericon Spain Hypericum perforatum Hobbiza Tunisia Althaea officinales Hom khaao Thailand Allium cepa Hom yai Thailand Allium cepa Hua phak bua Vietnam Allium cepa Hungarian Chamomile USA Matricaria chamomilla Hu-tsung China Allium cepa West Indies Iaiaua Ananas comosus I-bsel Tunisia Allium cepa Icahpe Hu **USA** Echinacea angustifolia Ice leaf Nicaragua Morinda citrifolia Icho Japan Ginkgo biloba Idiaua Dominica Ananas comosus

Nigeria

Azadirachta indica

Igi-oba

Common name Country Latin binomial Gabon Ananas comosus Iguwu Ikshugandha India Tribulus terrestris India Imba Azadirachta indica Indian bay **USA** Laurus nobilis Indian lilac India Azadirachta indica Indian lotus Japan Nelumbo nucifera Indian mulberry Hawaii Morinda citrifolia Indonesia Indian mulberry Morinda citrifolia Indian mulberry Thailand Morinda citrifolia Indian neem tree Kenya Azadirachta indica Inshtogahte-Hi USA Echinacea angustifolia Indonesia Azadirachta indica Intaran Nicaragua Allium cepa Inyan **Iperico** Italy Hypericum perforatum India Azadirachta indica Isa-bevu Nigeria Musa sapientum Isu opego Ityo Japan Ginkgo biloba Ix K' O' Och Guatemala Ricinus communis **Jaiphal** Fiii Myristica fragrans Jaiphal Nepal Myristica fragrans South Korea Jakyakgamcho-tang Glycyrrhiza glabra Saudi Arabia Ricinus communis lar Iashtimadhu India Glycyrrhiza glabra India **Jatiphal** Myristica fragrans **Ieshtamadh** India Glycyrrhiza glabra India Glycyrrhiza glabra Iethimadha Iili Taiwan Tribulus terrestris China Tribulus terrestris Iilisi **litomate** Mexico Lycopersicon esculentum **Iohaniskraut** Germany Hypericum perforatum Johannesort Sweden Hypericum perforatum Iohanniskraut Europe Hypericum perforatum Iurema Brazil Vitex agnus-castus Kadalam India Musa sapientum India Kadalamu Musa sapientum India Kadali Musa sapientum Kadu Senegal Anacardium occidentale Kaju badam India Anacardium occidentale India Anacardium occidentale Kaju Nigeria Anacardium occidentale Kaiu Anacardium occidentale India Kajutaka India Kala Musa sapientum Kalatus Tunisia Eucalyptus globulus India Nelumbo nucifera Kalung

Common name	Country	Latin binomial
Kamal	India	Nelumbo nucifera
Kamal	Nepal	Nelumbo nucifera
Kamala	India	Nelumbo nucifera
Kamille	France	Matricaria chamomilla
Kamitsure	Japan	Matricaria chamomilla
Kamiture	Japan	Matricaria chamomilla
Kandalai	Pakistan	Tribulus terrestris
Kanpo	Japan	Glycyrrhiza glabra
Kansas niggerhead	USA	Echinacea angustifolia
Kansas snakeroot	USA	Echinacea angustifolia
Kanti	India	Tribulus terrestris
Kanzo	Japan	Glycyrrhiza glabra
Kara toki	Hong Kong	Angelica sinensis
Kasantaya	Nicaragua	Anacardium occidentale
Kasau	Nicaragua	Anacardium occidentale
Kashumavu	India	Anacardium occidentale
Kasjoe	Surinam	Anacardium occidentale
Kastalan qajne	Mexico	Ricinus communis
Kateh	Thailand	Ananas comosus
Kathal saphri	India	Ananas comosus
Kattatogaru	India	Morinda citrifolia
Kayo	Japan	Nelumbo nucifera
Kef-meriem	France	Vitex agnus-castus
Kela	India	Musa sapientum
Keli	India	Musa sapientum
Kerosin	Nicaragua	Myristica fragrans
Kerwa	Morocco	Ricinus communis
Kerwa	Morocco	Vitex agnus-castus
Keuschlamm	Europe	Vitex agnus-castus
Khairi	Arabic countires	Althaea officinales
Kharwa	Egypt	Ricinus communis
Kharwa	Oman	Ricinus communis
Kharwaa	Quatar	Ricinus communis
Khatmi	India	Althaea officinales
Khatmi-ka-phool	India	Althaea officinales
Kherwa	Jordan	Ricinus communis
Kherwa	Saudi Arabia	Ricinus communis
Khiruwi	Sudan	Ricinus communis
Khirwa	Saudi Arabia	Ricinus communis
Khokkrasan	Thailand	Tribulus terrestris
Khtim	Vietnam	Allium cepa
Kiswahili	Tanzania	Azadirachta indica
Kitunguu	Tanzania	Allium cepa
Kluai tai	Thailand	Musa sapientum

Limbado

Liquorice

L'oignon

Glycyrrhiza glabra

Allium cepa

Common name Country Latin binomial Kluai Thailand Musa sapientum Sri Lanka Kohomba Azadirachta indica Kokulla India Tribulus terrestris Koli Hawaii Ricinus communis Suriname Ricinus communis Krapata Krunda India Tribulus terrestris USA Ksapitahako Echinacea angustifolia Senegal Anacardium occidentale Kubisa Kuppi India Pimpinella anisum Kura Thailand Morinda citrifolia Dominica Ananas comosus Kuraua Kusu Guinea Anacardium occidentale Laek Thailand Musa sapientum Lagarto pina Peru Ananas comosus Lahhango-khru India Tribulus terrestris Nigeria Musa sapientum Langbodo Langdu danggui China Angelica sinensis Laurus nobilis Laurel comun Argentina Laurus nobilis Laurel noble Argentina Laurel real Peru Laurus nobilis Laurel tree Iran Laurus nobilis Italy Laurus nobilis Lauriello Laurier D'apollon France Laurus nobilis Laurus nobilis Tunisia Laurier sauce Lauro Italy Laurus nobilis Legezabwende Tanzania Ricinus communis Tanzania Ricinus communis Lepo Tonga Ricinus communis Lepo Tanzania Ricinus communis Lepohina Ricinus communis Lepohina Tonga Lepokula Tanzania Ricinus communis Ricinus communis Tonga Lepokula Lian China Nelumbo nucifera Libono East Africa Ricinus communis **USA** Glycyrrhiza glabra Licorice root Israel Glycyrrhiza glabra Licorice New Zealand Glycyrrhiza glabra Licorice Glycyrrhiza glabra Licorice Spain **USA** Glycyrrhiza glabra Licorice Hypericum perforatum Liebeskraut Europe Rodrigues Islands Azadirachta indica Lilas de perse India Azadirachta indica Limb India Azadirachta indica

India

West Indies

Common name	Country	Latin binomial
Lorbeerfrucht	Italy	Laurus nobilis
Lotak	India	Tribulus terrestris
Lotus	Cambodia	Nelumbo nucifera
Lotus	India	Nelumbo nucifera
Lotus	Japan	Nelumbo nucifera
Lotus	Nepal	Nelumbo nucifera
Loyon	West Indies	Allium cepa
Luk-chat-tet	Thailand	Myristica fragrans
Lupono	Tanzania	Ricinus communis
Luzab	Yemen	Tanacetum parthenium
Ma khue thet	Thailand	Lycopersicon esculentum
Mace	Japan	Myristica fragrans
Mace	USA	Myristica fragrans
Maddi	India	Morinda citrifolia
Madhuyasthi rasayama	India	Glycyrrhiza glabra
Madras onion	West Indies	Allium cepa
Mahanim	India	Azadirachta indica
Mahanimba	India	Azadirachta indica
Mahnimu	India	Azadirachta indica
Mahuang	China	Ephedra sinica
Ma-huang	China	Ephedra sinica
Maiden hair tree	China	Ginkgo biloba
Maiden hair tree	Germany	Ginkgo biloba
Maiden hair tree	India	Ginkgo biloba
Maiden hair tree	Iran	Ginkgo biloba
Maiden hair tree	Japan	Ginkgo biloba
Maiden hair tree	Korea	Ginkgo biloba
Maiden hair tree	USA	Ginkgo biloba
Ma-li-ong	Thailand	Musa sapientum
Malva blanca	France	Althaea officinales
Malvavisco	Bolivia	Althaea officinales
Malvavisco	Peru	Althaea officinales
Mamona	Brazil	Ricinus communis
Mannanatti	India	Morinda citrifolia
Manzanilla chiquita	Colombia	Matricaria chamomilla
Manzanilla comun	Colombia	Matricaria chamomilla
Manzanilla dulce	Colombia	Matricaria chamomilla
Manzanilla romana	Colombia	Matricaria chamomilla
Manzanilla	Argentina	Matricaria chamomilla
Manzanilla	Bolivia	Matricaria chamomilla
Manzanilla	Guatemala	Matricaria chamomilla
Manzanilla	Honduras	Matricaria chamomilla
Manzanilla	Mexico	Matricaria chamomilla
Manzanilla	Nicaragua	Matricaria chamomilla
Manzanilla	Peru	Matricaria chamomilla

Common name Latin binomial Country Manzilla Matricaria chamomilla Guatemala Ephedra sinica Mao Japan Maoh Japan Ephedra sinica China Mao-kon Ephedra sinica Maou China Ethedra sinica Colombia Anacardium occidentale Maranon Maranon Guatemala Anacardium occidentale Anacardium occidentale Maranon Nicaragua Maranon Panama Anacardium occidentale Anacardium occidentale Peru Maranon India Azadirachta indica Margosa tree Azadirachta indica Nepal Margosa tree Azadirachta indica India Margosa Marmolone Italy Althaea officinales Althaea officinales Marsh mallow Bolivia Marsh mallow Poland Althaea officinales Marsh mallow USA Althaea officinales Masketi Haiti Ricinus communis Matricaire France Matricaria chamomilla Tunisia Matricaria chamomilla Matricaire Argentina Tanacetum parthenium Matricaria comun Matricaris Matricaria chamomilla France Anacardium occidentale Mhiha Tanzania Anacardium occidentale Mbibo Tanzania Mbono East Africa Ricinus communis East Africa Ricinus communis Mbonu India Tribulus terrestris Meethagokhru Myristica fragrans Memoscada Nicaragua Mengkudu Brunei Morinda citrifolia Colombia Anacardium occidentale Merey Mika-Hi USA Echinacea angustifolia India Mimba Azadirachta indica Minamaram India Morinda citrifolia Indonesia Azadirachta indica Mindi China Angelica sinensis Min-gui Azadirachta indica Miro Tahiti Easter Island Myristica fragrans Misgadu Nicaragua Guadeloupe Myristica fragrans Miskad Miskad Trinidad Myristica fragrans West Indies Myristica fragrans Miskad Pimpinella anisum Mitha-jira India Tribulus terrestris Mithgokhru India Tanzania Anacardium occidentale Mkorosho Europe Vitex agnus-castus Monchpfeffer Monk's pepper tree Iran Vitex agnus-castus

Common name	Country	Latin binomial
Monk's pepper tree	India	Vitex agnus-castus
Morethi	India	Glycyrrhiza glabra
Morinda	Fiji	Morinda citrifolia
Mouz	Iran	Musa sapientum
Muhuri	India	Pimpinella anisum
Mulathi	India	Glycyrrhiza glabra
Mulethi	India	Glycyrrhiza glabra
Muleti	India	Glycyrrhiza glabra
Mulhati	India	Glycyrrhiza glabra
Mulhatti	India	Glycyrrhiza glabra
Munthamaamidi	India	Anacardium occidentale
Mupfure	Venda	Ricinus communis
Muscade	Guadeloupe	Myristica fragrans
Muscade	Trinidad	Myristica fragrans
Muscade	West Indies	Myristica fragrans
Muscade	Yugoslavia	Myristica fragrans
Muskat	Yugoslavia	Myristica fragrans
Muskatnusz	Germany	Myristica fragrans
Mutterkraut	Europe	Tanacetum parthenium
Mwagum wagum	Papua	Morinda citrifolia
Mwarobaini	Tanzania	Azadirachta indica
Mwriki	East Africa	Ricinus communis
Nahhanagokhru	India	Tribulus terrestris
Nanas	Indonesia	Ananas comosus
Nanas	Malaysia	Ananas comosus
Neeb	Tanzania	Azadirachta indica
Neem	USA	Azadirachta indica
Neem	Antigua	Azadirachta indica
Neem	Fiji	Azadirachta indica
Neem	Gambia	Azadirachta indica
Neem	Guyana	Azadirachta indica
Neem	India	Azadirachta indica
Neem	Kenya	Azadirachta indica
Neem	Nepal	Azadirachta indica
Neem	Nigeria	Azadirachta indica
Neem	Philippines	Azadirachta indica
Neem	Sudan	Azadirachta indica
Neem	Trinidad	Azadirachta indica
Neem	West Indies	Azadirachta indica
Nelum	Sri Lanka	Nelumbo nucifera
Nenas	Malaysia	Ananas comosus
Nerenchi	Sri Lanka	Tribulus terrestris
Nerinjeekai	India	Tribulus terrestris
Nerunji	India	Tribulus terrestris
Nhau nui	Vietnam	Morinda citrifolia
		ř

Oignon

Common name Country Latin binomial Nhau Vietnam Morinda citrifolia Nho Vietnam Morinda citrifolia Vietnam Nhor prey Morinda citrifolia Nhor thom Vietnam Morinda citrifolia USA Nigger head Echinacea angustifolia Nim tree India Azadirachta indica Nim Fiii Azadirachta indica Nim India Azadirachta indica Nim Nepal Azadirachta indica Nimba India Azadirachta indica Nimbatikta India Azadirachta indica Nivaquine Senegal Azadirachta indica Anacardium occidentale Noix d'acajou West Indies Anacardium occidentale Noix de cajou Senegal Noko Papua-New Guinea Morinda citrifolia Noni Guyana Morinda citrifolia Noni Hawaii Morinda citrifolia Nono Cook Islands Morinda citrifolia Nono Rarotonga Morinda citrifolia Nonu Tonga Morinda citrifolia Noronda India Ricinus communis **USA-MN** Ntoo gaib lab Ricinus communis Nuez moscada Mexico Myristica fragrans Nuez moscada Nicaragua Myristica fragrans Nuez moscada Peru Myristica fragrans Nuholani Hawaii Eucalyptus globulus Nuna India Morinda citrifolia Trinidad Nutmeg mace Myristica fragrans Nutmeg Brazil Myristica fragrans East Indies Myristica fragrans Nutmeg Nutmeg Europe Myristica fragrans Grenada Myristica fragrans Nutmeg Nutmeg Guyana Myristica fragrans Nutmeg Jamaica Myristica fragrans Japan Myristica fragrans Nutmeg Nepal Nutmeg Myristica fragrans Puerto Rico Nutmeg Myristica fragrans USA Myristica fragrans Nutmeg West Indies Myristica fragrans Nutmeg Nux moschata USA Myristica fragrans Tanzania Lycopersicon esculentum Nyanya Kenya Ricinus communis Odagwa Nigeria Musa sapientum Ogede wewe Ogede Iran Musa sapientum

Rodrigues Islands

Allium cepa

Common name **Country** Latin binomial Oignon France Allium cepa Oignon Tunisia Allium cepa Oignon Vietnam Allium cepa Oko Papau-New Guinea Morinda citrifolia On glakcapi **USA** Echinacea angustifolia Onion Europe Allium cepa Netherlands Onion Allium cepa Onion Brazil Allium cepa Onion Egypt Allium cepa Onion Greece Allium cepa Onion Guvana Allium cepa Onion India Allium cepa Onion Iran Allium cepa Onion Japan Allium cepa Kuwait Onion Allium cepa Onion Mexico Allium cepa Onion Allium cepa Nepal Onion Nicaragua Allium cepa Onion Tanzania Allium cepa Onion USA Allium cepa Padma India Nelumbo nucifera Pain killer Guyana Morinda citrifolia Pain killer Virgin Islands Morinda citrifolia Painap Fiji Ananas comosus Painappuru Fiji Ananas comosus Pakhra Pakistan Tribulus terrestris Pale-purple coneflower **USA** Echinacea angustifolia Palkcha Mexico Lycopersicon esculentum Palleru India Tribulus terrestris Pallerukayalu India Tribulus terrestris Palma christi Mauritius Ricinus communis Palma christi USA Ricinus communis Palma christi West Indies Ricinus communis Palma de Cristo Brazil Ricinus communis Pamposh India Nelumbo nucifera Panj angosht Iran Vitex agnus-castus Pankaj India Nelumbo nucifera Patje Indonesia Morinda citrifolia Pedda palgeru India Tribulus terrestris Pega-dousa France Glycyrrhiza glabra Pelatro Italy Hypericum perforatum Pelicao Madeira Hypericum perforatum Pemi Bougainville Morinda citrifolia Perforata Italy Hypericum perforatum

Iran

Glycyrrhiza glabra

Persian licorice

Nelumbo nucifera

Common name Latin binomial Country Petit anise North Africa Pimpinella anisum Piaz Iran Allium ceba Pin heads Europe Matricaria chamomilla Pina comun Puerto Rico Ananas comosus Pina Guatemala Ananas comosus Pina Peru Ananas comosus Pina **Philippines** Ananas comosus Puerto Rico Pina Ananas comosus Pindra India Morinda citrifolia Pine Guvana Ananas comosus India Pineapple plant Ananas comosus Dominica Ananas comosus Pineapple Fiji Ananas comosus Pineapple Guyana Pineapple Ananas comosus India Pineapple Ananas comosus Indonesia Pineapple Ananas comosus Pineapple Japan Ananas comosus Malaysia Pineapple Ananas comosus Tahiti Pineapple Ananas comosus Pineapple Taiwan Ananas comosus Pineapple Thailand Ananas comosus Pineapple Trinidad Ananas comosus Pineapple USA Ananas comosus West Indies Pineapple Ananas comosus Pinillo de Oro Spain Hypericum perforatum Indonesia Musa sapientum Pisang Piyaj Fiji Allium cepa Allium cepa India Piyai Fiii Allium cepa Pivaz Hawaii Eucalyptus globulus Plaepiwa Platana Mexico Musa sapientum Plumula nelumbinis China Nelumbo nucifera Podum India Nelumbo nucifera Pom kajou Haiti Anacardium occidentale West Indies Anacardium occidentale Pom Ricinus communis Pomaskwiti West Indies Pomme d'acajou Guinea Anacardium occidentale Rodrigues Islands Lycopersicon esculentum Pomme D'amour Anacardium occidentale West Indies Pomme d'cajou Anacardium occidentale Senegal Pommier cajou Lycopersicon esculentum Pomodoro Italy Pulukamu Tonga Eucalyptus globulus Pummarola Italy Lycopersicon esculentum **USA** Tribulus terrestris Puncture vine

India

Pundarika

Latin binomial Common name Country Purple cone flower **USA** Echinacea angustifolia India Allium cepa Pyaz Pyaz Nepal Allium cepa Qian Ceng lou China Hypericum perforatum Querosin Nicaragua Myristica fragrans Ranukabija ma India Vitex agnus-castus Rasha India Tribulus terrestris Arabic countries Pimpinella anisum Razianaj Recalisse France Glycyrrhiza glabra **USA-MN** Red chicken tree Ricinus communis Red eagle foot **USA-MN** Ricinus communis Red globe onion **USA** Allium cepa Redh Fiji Ricinus communis Redhi Fiji Ricinus communis Reglisse France Glycyrrhiza glabra Renbo China Nelumbo nucifera Rend Tunisia Laurus nobilis Rendi India Ricinus communis Renniku Japan Nelumbo nucifera Ricin Tunisia Ricinus communis Ricino Brazil Ricinus communis Colombia Ricino Ricinus communis Ricino Guinea-Bissau Ricinus communis Riro Bougainville Morinda citrifolia Roudoukou China Myristica fragrans Thailand Sadao India Azadirachta indica Sadao tree Thailand Azadirachta indica Sadao Thailand Azadirachta indica Sa-Dao Thailand Azadirachta indica Sadikka India Myristica fragrans Saint John's wort Greece Hypericum perforatum Sakui Thailand Musa sapientum Salukid ba India Nelumbo nucifera Sampson root USA Echinacea angustifolia Spain Sanjuanera Hypericum perforatum Sanna neggilu India Tribulus terrestris Santa Maria Argentina Tanacetum parthenium Santa Maria Mexico Tanacetum parthenium Thailand Sap parot Ananas comosus Sapariou hahts **USA** Echinacea angustifolia Sarala India Tribulus terrestris Saunf Star anise India Pimpinella anisum Saunf India Pimpinella anisum Sauzatillo France Vitex agnus-castus

India

Pimpinella anisum

Sawonf

Common name Country **USA** Scurvy root Sebuva Nicaragua Senthamara India Shallot China Sharatte India Shitsurishi China Shombu India India Sibuyas Netherlands Sint-Janskruid China Si-pei Small caltrop Kuwait Turkev Sogan Soh-lapudong India India Soma Somo Guinea India Somp India Sop Nepal Sop India Sopu Spanish licorice Spain USA Spanish onion S-Sibisa Morocco St John's worth Canada St John's worth Germany St. John's wort USA Estonia St. John's worth **USA** Star anise India Surangi India Surivakamal Sussholzwurzel Spain Suzmool India Sweet bay Iran Sweet Feverfew England Sweet weed **USA** USA Sweet wood India **Tagase** India Takkali Fiii **Tamatar** India Tamatar Tamatem Tunisia Tamatum Oman Canada Tanacet China Tang Kuei

Tangkuei Tang-kwei China

China

Latin binomial Echinacea angustifolia Allium cepa Nelumbo nucifera Allium cepa Tribulus terrestris Tribulus terrestris Pimpinella anisum Allium cepa Hypericum perforatum Glycyrrhiza glabra Tribulus terrestris Allium cepa Nelumbo nucifera Ephedra sinica Anacardium occidentale Pimpinella anisum Pimpinella anisum Pimpinella anisum Pimpinella anisum Glycyrrhiza glabra Allium cepa Myristica fragrans Hypericum perforatum Hypericum perforatum Hypericum perforatum Hypericum perforatum Pimpinella anisum Morinda citrifolia Nelumbo nucifera Glycyrrhiza glabra Althaea officinales Laurus nobilis Matricaria chamomilla Althaea officinales Glycyrrhiza glabra Morinda citrifolia Lycopersicon esculentum Lycopersicon esculentum Lycopersicon esculentum Lycobersicon esculentum Lycopersicon esculentum Tanacetum parthenium Angelica sinensis Angelica sinensis

Angelica sinensis

Latin binomial Common name Country Tat le China Tribulus terrestris India Nelumbo nucifera Tavare-gadde Te non Bougainville Morinda citrifolia Tel-enderu India Ricinus communis Tenturotou Turkey Hypericum perforatum Teufelsflucht Hypericum perforatum Europe Thamara India Nelumbo nucifera Saudi Arabia Tobsha Ricinus communis Tochem-I-bed-anjir Afghanistan Ricinus communis India Morinda citrifolia Togaru Tomat Haiti Lycopersicon esculentum Tomate France Lycopersicon esculentum Tomate Guatemala Lycopersicon esculentum Tomate Nicaragua Lycopersicon esculentum **Tomate** Peru Lycopersicon esculentum Tomate Puerto Rico Lycopersicon esculentum Tomatera Spain Lycopersicon esculentum Tomatis Nicaragua Lycopersicon esculentum Tomato Greece Lycopersicon esculentum Canada Tomato Lycopersicon esculentum Tomato Czechoslovakia Lycopersicon esculentum Tomato England Lycopersicon esculentum Tomato Guyana Lycopersicon esculentum Tomato India Lycopersicon esculentum Tomato Iran Lycopersicon esculentum Tomato Japan Lycopersicon esculentum Tomato Tanzania Lycopersicon esculentum Thailand **Tomato** Lycopersicon esculentum Tomato USA Lycopersicon esculentum Tomato Wales Lycopersicon esculentum Tomato West Indies Lycopersicon esculentum Toto ni vavalagi Afghanistan Ricinus communis Toutsaine France Hypericum perforatum Tree of chastity Iran Vitex agnus-castus Tsi li China Tribulus terrestris Ttchakkma Ethiopia Ricinus communis Txiv taw dlaav laab USA-MN Ricinus communis Udukaju Thailand Ricinus communis Unapalan Ricinus communis Nicaragua Upal ba India Nelumbo nucifera Ura Rotuma Morinda citrifolia Uri Nicaragua Anacardium occidentale Utouto Nicaragua Ricinus communis Vala India Musa sapientum

India

Musa sapientum

Vazhaippazhan

Country Latin binomial Common name India Lycopersicon esculentum Vel vangi India Azadirachta indica Vembu Vengayam India Allium cepa Vepa India Azadirachta indica India Azadirachta indica Veppam Vilayithi baingan India Lycopersicon esculentum Vilavithi vengan India Lycopersicon esculentum Vudi dina Fiji Musa sapientum Vudi Fiji Musa sapientum Walmee India Glycyrrhiza glabra Wasasashi Myristica fragrans Japan Water lilv Nelumbo nucifera Guyana Glycyrrhiza glabra Welmii India Ricinus communis Wete pela celik Argentina Indonesia Azadirachta indica White cedar USA Allium cepa White globe onion Wild Chamomile Germany Matricaria chamomilla Witcher's herb Hypericum perforatum Europe Wymote USA Althaea officinales Xi-bei China Glycyrrhiza glabra Ya-khai Thailand Musa sapientum Anacardium occidentale Yalage porto Guinea Yashti India Glycyrrhiza glabra Yashtimadhu India Glycyrrhiza glabra Yeiawa harachan Nicaragua Morinda citrifolia Ananas comosus Yeiawa Nicaragua Yellow onion Allium cepa USA Nelumbo nucifera Yeon-kot Iapan Yo Thailand Morinda citrifolia Eucalyptus globulus Yukari Tunisia Zama India Tribulus terrestris West Indies Ananas comosus Zanana Zanzalakhat Saudi Arabia Azadirachta indica Ginkgo biloba Zhanco Iran Zwieroboij **USSR** Hypericum perforatum

Glossary

Abortifacient An agent which causes the premature expulsion from the uterus of the products of conception – of the embryo, or of a nonviable fetus.

Acid phosphatase An enzyme that catalyzes the cleavage of orthophosphate under acid conditions.

Acinetobacter calcoaceticus A gram-negative, paired coccibacilli, aerobic, catalase-positive and oxidase-negative bacteria that is widely distributed in nature and is part of the normal mammalian flora, but can cause severe primary infections in compromised hosts.

Aconitine A poisonous drug from the dried tuberous root of *Aconitum napellus*. It was once given internally as a febrifuge and gastric anesthetic.

Adenosine deaminase An enzyme that catalyzes the deamination of adenosine to form inosine, a reaction of purine metabolism.

Adrenolytic An agent that inhibits the action of adrenergic nerves; inhibiting the response to epinephrine.

Aflatoxin A toxic factor produced by Aspergillus flavus and A. parasiticus, molds contaminating groundnut seedlings. In experimental animals, aflatoxin caused liver necrosis, bile duct proliferation, and cirrhosis, and on prolonged administration, leads

to hepatocellular carcinoma and cholangiocarcinoma.

Agrobacterium tumefaciens A species of bacteria of the family Rhizobiaceae. It is a small, gram-negative, aerobic, flagellated rod that is found in the soil or in the roots or stems of plants. Most species produce hypertrophy (galls) in plant stems.

Alkaline phosphatase An enzyme that catalyzes the cleavage of orthophosphate under acid conditions.

Allergen An antigenic substance capable of producing immediate-type hypersensitivity (allergy).

Allergenic Acting as an allergen; inducing allergy.

Allergy A state of hypersensitivity induced by exposure to a particular antigen (allergen) resulting in harmful immunologic reactions on subsequent exposures.

Alpha amylase An enzyme secreted by the salivary glands and pancreas of mammals. It catalyzes the hydrolysis of internal alpha-1,4-glucosidic linkages in polysaccharides that contain three or more glucose residues.

Amenorrhea Absence or abnormal stoppage of menstruation.

Analgesic An agent that alleviates pain without causing loss of consciousness.

Anclastogenic Preventing disruption or breakage, as of chromosomes.

Antiallergenic Preventing the induction of allergy.

Antiamnesic Preventing a lack or loss of memory.

Antianaphylactic Preventing the manifestation of immediate hypersensitivity in which exposure of a sensitized individual to a specific antigen results in urticaria, pruritis and angioedema, followed by vascular collapse and shock.

Antianginal Preventing or alleviating angina. An agent that prevents or alleviates spasmodic, choking, or suffocative pain of the thorax that often radiates to the arms, particularly the left, sometimes accompanied by a feeling of suffocation. The pain is most often due to ischemia or the myocardium and precipitated by effort or excitement.

Antiascariasis Destructive to intestinal parasites of the genus *Ascaris*, such as roundworm.

Antiasthmatic An agent that relieves the spasm of asthma.

Antiatherosclerotic Preventing the formation of plaques containing cholesterol, lipoid material, and lipophages within the intima and inner media of large and medium-sized arteries.

Anticholesterolemic Promoting a reduction in cholesterol levels in the blood.

Anticoagulant Any substance that prevents blood clotting.

Anticonvulsant An agent that prevents or relieves convulsions.

Antidiabetic An agent that prevents or alleviates diabetes.

Antifungal Destructive to fungi, or suppressing their reproduction and growth; effective against fungal infections.

Antihistamine A drug that counteracts the action of histamine.

Antihypercholesterolemic Effective in decreasing or preventing an excessively high level of cholesterol in the blood.

Antihyperglycemic An agent that counteracts high levels of glucose in the blood. Antihyperlipemic An agent that prevents an elevated concentration of triglycerides in the blood.

Antihypertensive An agent that reduces abnormally high blood pressure.

Antihypotensive An agent that counteracts abnormally low blood pressure.

Anti-implantation Preventing the attachment of the blastocyst to the epithelial lining of the uterus, its penetration through the epithelium, and in humans, its embedding in the compact layer of the endometrium, beginning six or seven days after fertilization.

Anti-inflammatory An agent that counteracts or suppresses the inflammatory process. **Antilithic** Preventing the formation of stone or calculus.

Antimutagenic A substance that antagonizes the mutagenic effects of other substances.

Antimycobacterial An agent that is effective against mycobacteria.

Antioxidant An agent that prevents or delays deterioration by the action of oxygen in the air.

Antiphlogistic An agent that counteracts inflammation and fever.

Antiradiation An agent capable of counteracting the effects of radiation, effective against radiation injury.

Antisickling Preventing the development of sickle cells in the blood, as in sickle cell anemia.

Antispasmodic An agent that relieves spasms, usually of smooth muscle, as in arteries, bronchi, intestine, bile duct, ureters or sphincters, but also of voluntary muscle. **Antispermatogenic** A substance that reduces the production of semen or spermatozoa.

Antithiamine Counteracting the effect of the vitamin thiamine, a deficiency of which can result in beri-beri.

Antithyroid Counteracting the functioning of the thyroid, especially in its synthesis of thyroid hormone.

Antitoxic Effective against a poison.

Antitumor Counteracting tumor formation. **Aphrodisiac** Any drug that arouses the sexual instinct.

Arrhythmia Any variation from the normal rhythm of the heartbeat; it may be an abnormality of either the rate, regularity, or site of impulse origin or the sequence of activation.

Arthralgic Pertaining to pain in a joint. **Ascospore** A sexual spore formed within a special sac, or ascus, as in ascomycetous fungi.

Aspergillus flavus A mold found on corn, peanuts, and grain; it produces aflatoxin.

Aspergillus fumigatus A thermotolerant fungus growing in soils and manure. It has been found in infections of the ear, nose, lungs and other organs of humans and animals, and is considered to be a primary pathogen of birds; inhalation of its spores in contaminated barley dust causes malt worker's lung. Its cultures produce various antibiotics, such as fumagillin and helvolic acid.

Aspergillus niger A species of fungus common in soil and often isolated from otomycosis; it may produce a severe and very persistent infection.

Avidin A protein from egg whites that binds biotin, rendering it unavailable for absorption, and resulting in biotin deficiency if large quantities of raw egg whites are ingested.

Bacillus cereus A sometimes motile, aerobic or facultatively anaerobic spore-forming bacteria that is a common soil saprophyte. It causes food poisoning by the formation of an enterotoxin in contaminated foods.

Bacillus subtilis A common saprophytic soil and water bacteria, often occurring as a laboratory contaminant and occasionally

causing conjunctivitis in humans. It produces the antibiotic bacitracin.

Bacteroides fragalis A group of closely bile-resistant, saccharolytic organisms. It is the numerically dominant species found in the human intestine and is the most commonly encountered anaerobic bacteria in clinical specimens. It is present normally in the mouth, throat, and vaginal tract. Organisms in this species are more resistant to antibiotics than any other anaerobe.

Bacteroides melaninogenicus A bile sensitive saccharolytic coccoid species that produces a black hematin pigment, part of the normal flora of the mucus membranes. It is also an important pathogen in oral, lung, and brain abscesses and occurs in other mixed infections.

Bacteroides vulgatus One of the species of bacteria most frequently isolated from fecal specimens, and it has occasionally been isolated from human infections.

Beta-hexosaminidase A specific enzyme named for specific amino sugars and linkages that are potential substrates.

Biliary Pertaining to the bile, to the bile ducts, or to the gallbladder.

Biotinylated Molecules incorporated with biotinyl groups.

Bombyx mori The silkwork used extensively in experimental genetics.

Bronchial Pertaining to one or more bronchi. **Bronchitis** Inflammation of one or more bronchi.

Bronchodilator An agent that causes expansion of the lumina of the air passages of the lungs.

Calculi Abnormal concretion occurring within the animal body and usually composed of mineral salts.

Candida albicans A species of yeast-like imperfect fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastospores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of

infections. It is the most frequent agent of candidiasis.

Carcinogenesis The production of carcinoma.

Carcinoma A malignant new growth made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases.

Cardiac Pertaining to the heart.

Cardiovascular Pertaining to the heart and blood vessels.

Carminative A medicine that relieves flatulence and assuages pain.

Catarrh Inflammation of a mucous membrane, with a free discharge; especially such inflammation of the air passages of the head and throat.

Cervical Pertaining to the neck, or to the neck of any organ.

Chloretic An agent that accelerates the flow of bile.

Cholesterol The precursor of bile acids and steroid hormones and a key constituent of cell membranes, mediating their fluidity and permeability. Most is synthesized by the liver and other tissues, but some is absorbed from dietary sources, with each kind transported in plasma by specific lipoproteins.

Chronotrophic Affecting the time or rate, as the rate of contraction of the heart.

Cicatrization The formation of a scar.

Citrobacter freundii A species of gramnegative, facultatively anaerobic, rod-shaped bacteria that is able to use citrate as a sole carbon source. The species is not inhibited by potassium cyanide and is found in soil, water, sewage, and food, in clinical specimens from normal persons, and as an opportunistic pathogen.

Cladosporium werneckii A species of chiefly saprophytic dematiaceous imperfect fungi. It causes tinea nigra; because it is highly variable, some authorities assert that several species are involved.

Clostridium paraputrificum A species of obligate anaerobic or microaerophilic, gram-

positive, spore-forming, rod-shaped bacteria commonly found in soil and feces.

Clostridium perfringens A species of obligate anaerobic or microaerophilic, grampositive, spore-forming, rod-shaped bacteria. It is the most common agent of gas gangrene, differentiable, on the basis of the distribution of 12 different toxins, into several different types: type A causes gas gangrene, necrotizing colitis, and food poisoning in humans; type B causes lamb dysentery; type C causes enteritis necroticans in man and struck in sheep; type D causes enterotoxemia in sheep; type E causes enterotoxemia in lambs and calves.

Coagulant promoting, accelerating, or making possible the clotting of blood.

Colic Acute abdominal pain; characteristically, intermittent visceral pain with fluctuations corresponding to smooth muscle peristalsis.

Contraceptive An agent that diminishes the likelihood of or prevents conception.

Cyclooxygenase An activity of prostaglandin synthase.

Cytotoxic Exhibiting a specific destructive action on certain cells or the possession of such action; used particularly in referring to the lysis of cells by immune phenomena and to antineoplastic drugs that selectively kill dividing cells.

Debaryomyces hansenii A species of fungus that changes sugars into oxalic acid.

Decoction A medicine or other substance prepared by boiling.

Depressant An agent that reduces functional activity and vital energies in general by producing muscular relaxation and diaphoresis.

Diabetes A general term referring to disorders characterized by excessive urine excretion, as in diabetes mellitus and diabetes inispidus. When used alone, the term refers to diabetes mellitus.

Diuretic An agent that promotes the excretion of urine.

Dropsy Massive generalized edema.

Dysentery Any of various disorders marked by inflammation of the intestines, especially of the colon, and attended by pain in the abdomen, tenesmus, and frequent stools containing blood and mucus.

Edema The presence of abnormally large amounts of fluid in the intercellular tissue spaces of the body; usually applied to demonstrable accumulation of excessive fluid in the subcutaneous tissues. Edema may be localized, because of venous or lymphatic obstruction or to increase vascular permeability, or it may be systemic because of heart failure or renal disease.

Embryotoxic Any agent that is destructive to the fertilized ovum that eventually become the offspring during the period of most rapid development; in humans from the end of the second week after fertilization to the end of the eighth week.

Emmenagogue An agent or measure that induces menstruation either by acting directly upon the reproductive organs or by relieving another condition of which amenorrhea is a secondary result.

Enterococcus faecalis A gram-positive, facultatively anaerobic bacteria that is a normal inhabitant of the human intestinal tract; it causes urinary tract infections, infective endocarditis, and bacteremia that is often fatal. Also called *Streptococcus faecalis*.

Entobacter cloacae A species of gramnegative, facultatively anaerobic rodshaped bacteria. It is found in feces, soil, and water and, less commonly, in urine, pus, and pathological material.

Ephelides Freckles.

Epilepsy Any of a group of syndrome characterized by paroxysmal transient disturbances of the brain function that may be manifested as episodic impairment or loss of consciousness, abnormal motor phenomena, psychic or sensory disturbances, or perturbation of the autonomic nervous system.

Epistasis Suppression of a secretion of excretion, as of blood, menses, or lochia. In genetics, the superimposition of one hereditary character upon one that is unexpressed or masked.

Erysipelas An acute superficial form of cellulites involving the dermal lymphatics, usually caused by an infection with group A streptococci, and chiefly characterized by a peripherally spreading hot, bright red, edematous, brawny, infiltrated, and sharply circumscribed plaque with a raised indurated border.

Escherichia coli The principal species of the genus and the predominant organism of the intestine of humans and animals. It is usually non-pathogenic, but pathogenic strains producing pyogenic infections and diarrhea are common. The pyogenic strains are found in infections in the urinary tract, abscesses, conjunctivitis, and occasionally septicemia, such as hemorrhagic septicemia in newborn infants. The enteropathogenic strains produce intestinal disease, especially in hospitalized infants. It causes diarrhea in piglets and calves, and a cholera-like disease in human infants and adults. It invades the epithelial cells of the human colon, causing dysentery, sometimes associated with food poisoning. It often becomes the predominant bacteria in the flora of the mouth and throat during antibiotic therapy. **Eubacterium lentum** A nonsporulating, gram-positive, anaerobic, rod-shaped bacteria found as a saprophyte in soil and water. It is a normal inhabitant of the skin and cavities of humans and other mammals, occasionally causing infections of soft tissues. **Eubacterium limosum** A nonsporulating, gram-positive, anaerobic, rod-shaped bacteria that synthesizes vitamin B₁₂. It has been isolated from the feces of humans and other animals, from human infections, and

Expectorant An agent that promotes the ejection of mucus or exudate from the

lungs, bronchi, and trachea; sometimes extended to all remedies that quiet cough (antitussives).

Fibrinogen A fraction of normal human plasma, when in solution, has the property of being converted into soluble fibrin when thrombin is added; administered by intravenous infusion to increase the coagulability of the blood.

Fibrinolytic An agent that causes the dissolution of fibrin by enzymatic action.

Fluidextract A liquid preparation of a vegetable drug prepared by percolation, containing alcohol as a solvent or as a preservative, or both, of such strength that each milliliter contains the extraction of 1 gm of the standard drug which it represents.

Furuncles A painful nodule formed in the skin by circumscribed inflammation of the corium and subcutaneous tissue, enclosing a central slough or "core". It is caused by staphylococci, which enter through the hair follicles, and its formation is favored by constitutional or digestive derangement and local irritation.

Fusarium oxysporum A species of imperfect fungi. This species is frequently associated with mycotic keratitis, often destroying the eye. It also causes banana wilt.

Fusobacterium nucleatum A gram-negative, anaerobic, non-sporulating bacteria isolated from the normal mouth, the upper respiratory, genital, and gastrointestinal tracts and infections of the mouth, lungs, and brain. It is the organism most commonly found, in association with spirochetes (Treponema vincentii), in acute necrotizing gingivitis. It is also called Bacillus fusiformis.

Galactagogue An agent that promotes the flow of milk.

Gastralgia Gastric colic.

Geotrichum candidum A species of yeast-like imperfect fungi found in the feces and in dairy products. It is the etiologic agent of geotrichosis.

Gluconeogenesis The formation of glucose from molecules that are not themselves carbohydrates, as from amino acids, lactate, and the glycerol portion of fats.

Glucose-6-phosphatase An enzyme that catalyzes the dephosphorylation of glucose 6-phosphate. It occurs in the endoplasmic reticulum of liver, kidney, and intestinal mucosa, but not in muscle, and its reaction is the principal route of hepatic gluconeogenesis, controlling blood glucose concentrations.

Glutamate pyruvate transaminase An enzyme that catalyzes the reversible transfer of an amino group from alanine to alphaketoglutarate to form glutamate and pyruvate. The enzyme is found in serum and body tissues, especially in the liver. Serum enzyme activity (SGPT) is greatly increased in liver diseases and also elevated in infectious mononucleosis.

Glutathione A tripeptide that is widely distributed in animal and plant tissues. It functions in various reactions such as the destruction of peroxides and free radicals, as a cofactor for enzymes, and in the detoxification of harmful compounds. Glutathione is also involved in the transport of amino acids across cell membranes and in the formation and maintenance of disulfide bonds in proteins.

Goiter An enlargement of the thyroid gland, causing a swelling in the front part of the neck.

Goitrogenic Producing goiter.

Hansenula anomala A nonpathogenic species of yeast commonly found in soil and in the respiratory and intestinal tracts.

Hematinic An agent that improves the quality of the blood, increasing the hemoglobin level and the number of erythrocytes.

Hemotoxic An agent that is poisonous to the formation of the blood cells and to the blood

Hypercalcemia An excess of calcium in the blood; manifestations include fatigabil-

ity, muscle weakness, depression, anorexia, nausea, and constipation.

Hypercholesterolemic An agent that pertains to, characterized by, or tends to produce an excess of cholesterol in the blood.

Hyperglycemic Pertaining to, characterized by, or causing an increase in the level of glucose in the blood.

Hyperlipemia A general term for the elevated concentrations of any or all of the lipids in the plasma.

Hypertension High arterial pressure. Various criteria for its threshold have been suggested, ranging from 140 mm Hg systolic and 90 mm Hg diastolic, to 200 mm Hg systolic and 110 mm Hg diastolic. Hypertension may have no known cause (idiopathic of essential) or be associated with other primary diseases (secondary).

Hypertensive An agent that is characterized by or causes increased tensions or pressure, as abnormally high blood pressure.

Hypocholesterolemic Pertaining to, characterized by, or producing an abnormally diminished amount of cholesterol in the blood.

Hypoglycemia An abnormally diminished concentration of glucose in the blood, which may lead to tremulousness, cold sweat, piloerection, hypothermia and headache, accompanied by irritability, confusion, hallucinations, bizarre behavior, and ultimately, convulsions and coma.

Hypoglycemic An agent that acts to lower the level of glucose in the blood.

Hypolipemia An abnormally decreased amount of fat in the blood.

Hypotension Abnormally low blood pressure as seen in shock, but not necessarily indicative of it.

Hypotensive Characterized by, or causing diminished tension or pressure, as abnormally low blood pressure.

Hypothermic Pertaining to or exhibiting reduced body temperature.

Immunosuppressant An agent capable of suppressing immune responses.

Inosine An intermediate in the degradation of purines and purine nucleosides to uric acid.

Intra-aural Within the ear.

Intragastric Situated or occurring within the stomach.

Intraperitoneal Within the peritoneal cavity. **Intravaginal** Within the vagina.

Jaundice A syndrome characterized by hyperbilirubinemia and deposition of bile pigment in the skin, mucus membranes and sclera with resulting yellow appearance of the patient.

Klebsiella pneumonia A gram-negative, facultatively anaerobic, non-motile bacteria that is found in soil, water, and grain, in the intestinal tract of humans and animals, and in association with infections of the urinary and respiratory tracts. It is the etiologic agent of acute bacterial pneumonia.

Kluyveromyces fragalis A gram-negative, facultatively anaerobic, rod-shaped bacteria occurring in human clinical specimens. It is an occasional opportunistic pathogen, causing respiratory and urinary infections.

Lacrymation The secretion and discharge of tears.

Lactate dehydrogenase An enzyme that catalyzes the reduction of pyruvate to lactate. The reaction is the final step in glycolysis. The reverse reaction is the first step in the combustion of lactate in the heart or its conversion to glucose in the liver. It occurs in the cytoplasm of nearly all cells and its presence in serum is used for clinical diagnosis. Leukocytes White blood cells or corpuscles. The varieties are classified into two main groups: granular and nongranular.

Lipemia A general term for the elevated concentrations of any or all of the lipids in the plasma.

Lipolytic Pertaining to, characterized by, or causing the decomposition or splitting up of fat.

Lipoxygenase An enzyme that catalyzes the oxidation of lineolate and related polyunsaturated fatty acids to their hydroperoxide forms.

Lochia The vaginal discharge that takes place during the first week or two after childbirth.

Lyophilized The creation of a stable preparation of a substance by rapid freezing and dehydration of the frozen product under high vacuum.

Melasma Hypermelanosis characterized by the development of sharply demarcated blotchy, brown macules usually in a symmetric distribution over the cheeks and forehead and sometimes on the upper lip and neck. It frequently occurs during pregnancy, at menopause, and in those taking oral contraceptives and sometimes in men. A similar pattern of facial hyperpigmentation may be associated with chronic liver disease.

Metastasis The transfer of disease from one organ or part to another not directly connected with it.

Micrococcus luteus A spherical, grampositive, aerobic bacteria of extremely small size, usually occurring in irregular masses. It is saprophytic and non-pathogenic and is found in soil, water, dust, and dairy products.

Micronuclei The smaller types of nuclei when more than one are present in a cell. In ciliate protozoa, the transcriptively inert, diploid nucleus, much smaller than the macronucleus, that is involved in reproduction.

Microsporum canis A fungus that is the common cause of ringworm in cats and dogs; often transmitted to children, in whom it causes tinea capitis and tinea corporis. It is also probably the cause of a dermatomycosis in horses.

Mitomycin C An antineoplastic antibiotic produced by *Streptomyces caespitosus* that acts as a bifunctional or trifunctional alkyl-

ating agent causing cross-linking of DNA and inhibition of DNA synthesis, and is relatively phase-specific for the late G_1 and early S phases of the cell cycle. It has activity against carcinomas of the stomach, pancreas, colon, rectum, breast, lung, and head and neck, as well as chronic myelogenous leukemia.

Mutagenic Causing change or inducing genetic mutation.

Mutagenicity The property of being able to induce mutation.

Mutation A change in form, quality, or some other characteristic. In genetics, a permanent transmissible change in the genetic material, usually a single gene.

Mycobacterium phlei A gram-positive, aerobic, rapid growing, photochromogenic, nonpathogenic species found in grasses and soil.

Mycobacterium tuberculosis A grampositive, slow-growing, nonphotochromogenic, pathogenic species that is the causative agent of tuberculosis in man, other primates, dogs, guinea pigs, and hamsters.

Natriuretic An agent that promotes the excretion of sodium in the urine.

Necrosis The sum of the morphological changes indicative of cell death and caused by the progressive degradative action of enzymes; it may affect groups of cells or part of a structure or an organ.

Neutrophil A granular leukocyte having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules; neutrophils have the properties of chemotaxis, adherence to immune complexes, and phagocytosis.

Nucleotidase An enzyme that catalyzes the cleavage of a nucleotide to a nucleoside and orthophosphate.

Oleoresin Any natural combination of a resin and a volatile oil such as exudes from plants. A compound prepared by exhausting a drug by percolation with a volatile

solvent, such as acetone, alcohol, or ether, and evaporating the solvent.

Ophthalmic Pertaining to the eye.

Oxytocin One of the major hormones made in the magnocellular hypothalamic neurons and stored in the posterior lobe of the pituitary. It has uterine-contracting and milk-ejecting actions.

Pancreatectomized Surgical removal of the pancreas gland.

Pasteurella pestis (Yersinia pestis) A gramnegative, facultatively anaerobic, rod-shaped to ovoid bacteria. It is etiologic agent of the bubonic and pneumonic plague in humans and rats, ground squirrels, and other rodents, transmitted from rat to rat and from rat to man by rat flea, and from man to man by the human body louse.

Pathogenic Giving origin to disease or to morbid symptoms.

Peptostreptococcus productus A grampositive, obligately anaerobic, chemo-organotrophic bacteria with spherical cells, occurring in chains. It is isolated from cases of gangrene and pelvic abscesses and from blood and urine.

Phorbol ester The ester of a polycyclic alcohol that is structurally similar diacylglycerol and can activate protein kinase C. They are used in research to enhance the induction of mutagenesis or tumors by carcinogens. **Placenta** A fetomaternal organ characteristic of true mammals during pregnancy, joining mother and offspring, providing endocrine secretion and selective exchange of soluble, blood-borne substances through an apposition of uterine and trophoblastic vascularized parts.

Platelet aggregation Clumping together of platelets as part of a sequential mechanism leading to the initiation and formation of a thrombus or hemostatic plug.

Platelet Disc-like structure, 2 to 4 mm in diameter, found in the blood of all mammals and chiefly known for its role in blood coagulation.

Polyamine Any compound containing two or more amine groups; polyamines are low molecular weight cations and are synthesized within cells to provide intermediates for protein synthesis.

Propionibacterium acnes A non-sporeforming, anaerobic or aerotolerant, grampositive bacteria that is a normal inhabitant of the skin and a frequent contaminant of anaerobic cultures. It is a potential pathogen associated with chronic infections in the blood and bone marrow.

Prostaglandin Any of a group of components derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway; they are extremely potent mediators of a diverse group of physiologic processes.

Proteus vulgaris A gram-negative, facultatively anaerobic, rod-shaped bacteria found in fecal matter, sewage, and soil. It is a common cause of cystitis and pyelonephritis and is associated with eye and ear infections, pleuritis, peritonitis, and suppurative abscesses. The species has many serotypes and reacts with antibodies formed in rickettsial infections, and is used in the Well-Felix reaction for the diagnosis of typhus, scrub typhus, and Rocky Mountain spotted fever.

Pseudomonas aeruginosa A gram-negative bacteria that produce pyocyanin and fluorescein, which give the color to "blue pus" observed in certain suppurative infections. It is a major agent that causes severe and often fatal infections most commonly involving the urinary tract, wounds, abscesses, or the blood stream; it may also cause eye infections in those who use contact lenses. **Purine** A compound $(C_5H_4N_4)$ that is not found free in nature, but is variously substituted to produce a group of compounds known as *purines*, of which uric acid is a

Pyrolysis Decomposition of organic substances under the influence of a rise in temperature.

metabolic end product.

Rheumatic Pertaining to or affected with any of a variety of disorders marked by inflammation, degeneration, or metabolic derangement of the connective tissue structures, including muscles, bursae, tendons and fibrous tissue.

Rhinoconjunctivitis Inflammation of the mucus membranes of the nose and eyes.

Rhodotorula rubra A species of imperfect yeast that contaminates the skin but rarely cause opportunistic infections in man.

Saccharomyces cerevisiae A yeast-like fungi with oval or spherical cells, known as *brewers*' or *bakers*' yeast; it causes alcoholic fermentation, and is a very rare cause of lung disease.

Salmonella typhosa A gram-negative, facultatively anaerobic bacteria that is a strict parasite of humans and the cause of typhoid fever. The organism is transmitted by water or food contaminated by human excreta.

Sarcoma Any of a group of tumors usually arising from connective tissue, although the term now includes some of epithelial origin; most are malignant. Many types have prefixes denoting the type of tissue or structure involved.

Scurvy A condition due to deficiency of ascorbic acid (Vitamin C) in the diet and marked by weakness, anemia, spongy gums, a tendency to mucocutaneous hemorrhages and a brawny induration of the muscles of the calves and legs.

Serratia marcescens A gram-negative, facultatively anaerobic bacteria with redpigmented varieties, occurring in water, soil, and food and in clinical specimens. It is an opportunistic pathogen, causing nosocomial bacteriemia, endocarditis, and pneumonia in immunocompromised patients.

Spermicidal Destructive to spermatoza. **Staphylococcus aureus** A gram-positive, facultatively anaerobic bacteria comprising the yellow-pigmented, coagulase-positive pathogenic forms of the genus, causing serious suppurative infections and systemic

disease; it produced toxins that cause food poisoning and toxic shock syndrome. Also called S. pyogenes.

Strangury Slow and painful discharge of urine, due to spasm of the urethra and bladder.

Streptococcus faecalis See Enterococcus faecalis.

Streptococcus mutans A species of the viridans group with variable hemolysis. It has been implicated in the formation of dental caries.

Streptococcus pyogenes A species of β-hemolytic, toxigenic pyogenic streptococci causing septic sore throat, rheumatic fever, puerperal sepsis, acute glomerulonephritis, and other conditions in man.

Streptococcus sanguis A gram-positive, facultatively anaerobic, α -hemolytic bacteria of the viridans grroup. It is found in humans in dental plaque, in blood, and in subacute bacterial endocarditis.

Streptococcus thermophilus An α -hemolytic species of the viridans group found in milk and milk products.

Streptococcus viridans A group of α-hemolytic streptococci that have no defined group antigens found as part of the normal flora of the respiratory tract; streptococci of this group cause dental caries and bacterial endocarditis.

Subcutaneous Beneath the skin.

Supernatant Situated above or on top of something. The overlying liquid after precipitation of a solid component.

Superoxide Any compound containing the highly reactive superoxide radical O_2 , which is produced by reduction of molecular oxygen in many biological oxidations; this highly toxic free radical is continuously removed by the enzyme superoxide dismutase.

Sympathomimetic An agent that produces effects similar to those of impulses conveyed by adrenergic postganglionic fibers of the sympathetic nervous system.

Thromboxane Either of two compounds, thromboxane A_2 (TXA₂) or thromboxane B_2 (TXB₂); TXA₂ is an extremely potent inducer of platelet aggregation and platelet release reactions and is also a vasoconstrictor. It is synthesized by platelets and is very unstable, undergoing nonenzymatic hydrolysis to TXB₂, which is inactive, with a half-life of 30 seconds.

Tincture An alcoholic or hydroalcoholic solution prepared from biological substances or from chemical substances.

Tinea versicolor A common chronic, non-inflammatory and usually symptomless disorder, characterized only by occurrence of multiple macular patches, of all sizes and shapes, varying from whitish in pigmented skin to fawn –colored or brown in pale skin. It is seen most frequently in hot, humid tropical regions and is caused by *Malassezia furfur*.

Titer The quantity of a substance required to produce a reaction with a given volume of another substance, or the amount of one substance required to correspond with a given amount of another substance.

Tolbutamide A sulfonylurea compound used as a hypoglycemic in the treatment of non-insulin-dependent diabetes mellitus.

Torulopsis glabrata A species of imperfect fungi which is morphologically similar to Cryptococcus but do not have a capsule, and are normal flora of the mouth, gut, and urinary tract.

Toxacara canis A nematode worm parasitic in the intestine of dogs; migrating larvae may cause lesions of the lung, liver, kidney, brain, and eye. In human infections, the larvae do not complete their cycle, but cause visceral larva migrans.

Trichophyton mentagrophytes A species of imperfect fungi that attacks the skin, nails, and hair.

Trichophyton rubrum A species of imperfect fungi that attacks the skin, nails, and hair.

Trichophyton tonsurans A species of imperfect fungi that attacks the skin, nails, and hair.

Triglyceride A compound consisting of three molecules of fatty acid esterified to glycerol; it is a neutral fat synthesized from carbohydrates for storage in animal adipose cells. On enzymatic hydrolysis, it releases free fatty acids in the blood.

Trophoblast A layer of extraembryonic ectodermal tissue on the outside of the blastocyst. It attaches the ovum to the endometrium of the uterine wall and supplies nutrition to the embryo. From it are derived the chorion and amnion.

Uric acid The end product of purine catabolism in primates. Urate is very insoluble in water, and disorders of purine metabolism produce gout, in which deposition of sodium urate crystals in the joints and skin is followed by a foreign-body inflammatory response.

Uricosuric An agent that promotes the excretion of uric acid in the urine.

Urinary Pertaining to the urine; containing or secreting urine.

Ustilago maydis A fungus causing corn smut; the ingestion of infected seeds causes ustilaginism, a condition similar to ergotism.

Whitlow A primary infection of the terminal segment of a finger, usually occurring in persons exposed to infected oral or respiratory secretions. It begins with intense itching and pain, followed by the formation of deep coalescing vesicles. The process is associated with much tissue destruction and may be accompanied by systemic symptoms.

A	castor oil plant inhibition, 380
Abortifacient,	licorice root stimulation, 196
angelica, 68, 69	neem effects on activity, 86
castor oil plant, 380	onion effects on activity, 6, 7
ephedra, 132	Alkylating activity, nutmeg inhibition, 337
eucalyptus, 144	Allergenic activity,
neem, 86	anise, 365
pineapple, 59	banana, 321, 322
puncture vine, 414	cashew nut, 46
Acetylcholinesterase, angelica inhibition, 69	castor oil plant, 380
Acetylglucoseamidase, Ginkgo biloba	echinaceae, 122, 125
inhibition, 162	feverfew, 400
Ach, see Indian mulberry	German chamomile, 289, 290
Acid phosphatase,	Ginkgo biloba, 162
castor oil plant effects, 380	licorice root inhibition, 197
neem inhibition, 86	lotus inhibition, 355
onion inhibition, 6	onion, 7
Acne, chaste tree inhibition, 430	pineapple, 59
ACTH,	puncture vine inhibition, 414
eucalyptus induction, 144	tomato inhibition, 274
German chamomile effects, 289	Allium cepa, see Onion
licorice root induction, 195	Althaea officinalis,
Acyl-CoA: cholesterol acyltransferase,	botanical description, 37
licorice root inhibition, 195	chemical constituents, 38, 39
Adenosine deaminase, onion inhibition, 6	common names, 37
Adenosine nucleotide, anise inhibition, 365	origin and distribution, 37
a ₂ -Adrenergic receptor, lotus inhibition, 355	pharmacological activities and clinical
β-Adrenergic receptor, Ginkgo biloba	trials, 39
antagonism, 162	traditional medicinal uses, 38
Aflatoxin, onion inhibition of production, 6	Aminopyrine-n-demethylase, nutmeg
Aging, Ginkgo biloba inhibition, 162	inhibition, 338
AIDS therapy,	Amoeba,
Ginkgo biloba, 162	bay tree inhibition, 264
St. John's wort, 244	castor oil plant inhibition, 380
Alanine aminotransferase, licorice root	eucalyptus inhibition, 144
inhibition, 196	nutmeg inhibition, 338
Alanine racemase, onion inhibition, 6	Amphetamine, nutmeg inhibition, 338
Alcohol dehydrogenase, lotus inhibition, 355	α-Amylase, onion inhibition, 7
Aldehyde dehydrogenase, lotus inhibition, 355	Anacardium occidentale, see Cashew nut
Aldehyde reductase, licorice root inhibition,	Analgesia,
196	angelica, 69
Aldosterone, licorice root effects, 196	anise, 365
Alkaline phosphatase,	cashew nut, 46

castor oil plant, 380	onion activity, 8, 13
echinaceae, 122	tomato activity, 274
ephedra, 132	Anticonvulsant,
eucalyptus, 144	anise activity, 366
feverfew, 400	castor oil plant activity, 381
Ginkgo biloba, 162	German chamomile activity, 291
Indian mulberry, 312	Indian mulberry activity, 312
licorice root, 196	licorice root activity, 198
lotus, 355	lotus activity, 355
neem, 86	neem activity, 87, 88
nutmeg, 338	onion activity, 8
onion, 7	St. John's wort inhibition, 249
puncture vine, 414	Antigen expression, licorice root inhibition,
St. John's wort, 244	199, 200
Ananas comosus, see Pineapple	Antihistamine,
Anaphylaxis,	ephedra activity, 134
German chamomile inhibition, 290	feverfew activity, 402
onion inhibition, 7	German chamomile activity, 295
puncture vine inhibition, 414	Indian mulberry inhibition, 313
Anesthesia,	licorice root activity, 200, 211
echinaceae, 122	lotus activity, 356
German chamomile, 295, 296	neem activity, 89
licorice root, 196	onion activity, 9, 15
St. John's wort, 244	puncture vine activity, 415
Angelica sinensis,	tomato activity, 275
botanical description, 67	Antioxidants,
chemical constituents, 68	althea activity, 39
common names, 67	angelica activity, 73, 74
origin and distribution, 67	anise activity, 367
pharmacological activities and clinical	bay tree activity, 265
trials, 68–75	castor oil plant activity, 382
traditional medicinal uses, 67, 68	eucalyptus activity, 146, 147
Angina,	German chamomile activity, 296
angelica inhibition, 69	Ginkgo biloba activity, 165, 166, 174
St. John's wort inhibition, 244	licorice root activity, 203, 216, 217
Angiogenesis, licorice root inhibition, 197	lotus activity, 356
Angiotensin II, angelica inhibition, 69	nutmeg activity, 339
Angiotensin-converting enzyme, ephedra	onion activity, 11
inhibition, 132	tomato activity, 275
Aniline hydrase, nutmeg inhibition, 338	Anxiety, Ginkgo biloba induction, 167
Anise,	Aphrodisiac,
botanical description, 363	angelica, 72
chemical constituents, 364, 365	nutmeg, 340
common names, 363	puncture vine, 416
origin and distribution, 363	Apoptosis, Ginkgo biloba inhibition, 167
pharmacological activities and clinical	Appetite, onion stimulation, 12
trials, 365–368	Arachidonic acid,
traditional medicinal uses, 363, 364	licorice root inhibition, 198, 205
ANP, see Atrial natriuretic peptide	St. John's wort effects, 248
Anticoagulation,	Ricinus communis, see Castor oil plant
	The second secon

Arrhythmia,	onion inhibition, 7, 8
angelica inhibition, 69	puncture vine inhibition, 414, 415
neem inhibition, 86, 87	St. John's wort inhibition, 244, 245
Artemisia, see Feverfew	tomato inhibition, 274, 275
Aryl hydrocarbon hydroxylase, nutmeg	Bacteriophage, eucalyptus inhibition, 145
induction, 340	Banana,
Ascariasis,	botanical description, 319
Indian mulberry inhibition, 312	chemical constituents, 321
nutmeg inhibition, 338	common names, 319
onion inhibition, 7	origin and distribution, 320
puncture vine inhibition, 414	pharmacological activities and clinical
Ascorbic acid, onion inhibition, 12	trials, 321–326
Aspartate transaminase, licorice root	traditional medicinal uses, 320
inhibition, 205	Barbiturate potentiation,
Asthma,	anise, 367
angelica inhibition, 69	bay tree effects, 265
licorice root inhibition, 197	cashew nut, 48
onion inhibition, 7	ephedra, 134
Astringents, licorice root, 205	licorice root, 205
Atherosclerosis,	lotus, 357
Ginkgo biloba inhibition, 162, 167	neem, 91, 92
onion inhibition, 7	nutmeg, 340
ATP, Ginkgo biloba effects on levels, 167	puncture vine, 416
ATPase,	St. John's wort inhibition, 248
onion inhibition, 12	Bay tree,
pineapple stimulation, 60	botanical description, 261
Atrial natriuretic peptide (ANP), licorice	chemical constituents, 262–264
root effects, 205	common names, 261
Azadirachta indica, see Neem	origin and distribution, 261
Azotemia, German chamomile inhibition, 295	pharmacological activities and clinical trials, 264–266
В	traditional medicinal uses, 262
Bacteria,	Benign prostatic hyperplasia, puncture vine
althea inhibition, 39	effects, 416
anise inhibition, 366	Benzodiazepine receptor,
banana inhibition, 322	German chamomile inhibition, 296
bay tree inhibition, 264	St. John's wort inhibition, 248
cashew nut inhibition, 46, 47	Benzopyrene hydroxylase, licorice root
castor oil plant inhibition, 381	induction, 206
chaste tree inhibition, 430	Bhakra, see Puncture vine
ephedra inhibition, 132, 133	Bile, St. John's wort effects on secretion, 248
eucalyptus inhibition, 144, 145	Bilirubin, neem stimulation, 99
feverfew inhibition, 400, 401	Bitterness, neem, 92
German chamomile inhibition, 290, 291	Blood pressure, see Hypertension
Ginkgo biloba inhibition, 162	Blood urea nitrogen (BUN), licorice root
Indian mulberry inhibition, 312	reduction, 206
licorice root inhibition, 197	Blood viscosity, Ginkgo biloba effects, 167
lotus inhibition, 355	Bradycardia, bay tree effects, 265
neem inhibition, 87	Bradykinin, Ginkgo biloba antagonism, 167
nutmeg inhibition, 338	Bronchodilation, onion activity, 13

BUN, see Blood urea nitrogen Burn, German chamomile inhibition, 291	Chamomile, see German chamomile Chaste tree,
	botanical description, 427
C	chemical constituents, 428–430
Calcium channel,	common names, 427
licorice root inhibition, 206	origin and distribution, 427
lotus inhibition, 357	pharmacological activities and clinical
Caltrop, see Puncture vine	trials, 430–432
Cardiotoxicity, echinaceae, 123	traditional medicinal uses, 427, 428
Cashew nut,	Chinaberry, see Neem
botanical description, 43, 44	Chloride channel,
chemical constituents, 44–46	German chamomile inhibition, 296
common names, 43	Ginkgo biloba inhibition, 169
origin and distribution, 44	Cholecystokinin receptor, German
pharmacological activities and clinical	chamomile binding, 294
trials, 46–49	Cholesterol,
traditional medicinal uses, 44	banana effects, 324
Castor oil plant,	castor oil plant inhibition, 381
botanical description, 376	German chamomile effects, 294
chemical constituents, 379, 380	Ginkgo biloba effects, 169
common names, 375, 376	licorice root effects, 200, 201, 206, 211
origin and distribution, 376	lotus inhibition, 356
pharmacological activities and clinical	neem effects, 94
trials, 380–385	onion effects on serum levels, 8, 9, 13, 15
traditional medicinal uses, 376–379	puncture vine effects, 415, 418
Catalase,	Choline acetyltransferase, licorice root
licorice root stimulation, 206	induction, 206
tomato stimulation, 275	Cholinergic inhibition,
Catechol-o-methyl transferase, St. John's	neem, 87
wort inhibition, 248	puncture vine, 415
Catecholamine, banana-induced release, 324	Cholinesterase, puncture vine inhibition, 416
Cell aggregation, feverfew inhibition, 402	Chromosome aberration,
Central nervous system (CNS),	angelica inhibition, 72
anise depression, 367	anise induction, 367
cashew nut depression, 48	ephedra induction, 134
ephedra stimulation, 134	feverfew induction, 402
eucalyptus effects, 146	Clastogenic activity,
German chamomile effects, 294	anise, 367
Ginkgo biloba effects, 169, 170	ephedra effects, 134
Indian mulberry effects, 313	Ginkgo biloba inhibition, 163
licorice root effects, 206	neem effects, 92
neem depression, 92	nutmeg, 340
nutmeg depression, 340	onion inhibition, 8
puncture vine effects, 417	tomato inhibition, 274
St. John's wort depression, 249	CNS, see Central nervous system
Cerebral blood flow,	Cold relief,
angelica effects, 72	althea, 39
Ginkgo biloba effects, 168, 169	licorice root, 206
Cerebral edema, Ginkgo biloba inhibition,	Complement,
162, 163, 168	althea inhibition, 39

lotus inhibition, 357	neem, 92
neem inhibition, 87, 92	pineapple, 60
Cone flower, see Echinaceae	puncture vine, 417
Convulsant, puncture vine, 417	St. John's wort, 249
Corticosteroid,	_
Ginkgo biloba effects on synthesis, 170	D
licorice root effects, 206, 207	Deafness, Ginkgo biloba inhibition, 163
puncture vine activity, 417	Degranulation,
Cortisol, licorice root inhibition, 207	feverfew inhibition, 402
	licorice root inhibition, 207
Cow's hoof, see Puncture vine	Delayed type hypersensitivity, German
Creatine phosphokinase, St. John's wort	chamomile stimulation, 294
enhancement, 249	Dementia, Ginkgo biloba inhibition, 163, 164
Crustacean,	Depression, St. John's wort inhibition,
anise inhibition, 366	245–247
German chamomile inhibition, 291	Dermatitis,
licorice root inhibition, 198	banana inhibition, 324
neem inhibition, 88	bay tree induction, 265
nutmeg inhibition, 338	castor oil plant induction, 382
Cyclic AMP phosphodiesterase,	echinaceae inhibition, 123
ephedra inhibition, 134	neem induction, 92
licorice root inhibition, 207	Diaphorase, nutmeg induction, 340
Cyclooxygenase,	Diaphoretic, echinaceae activity, 123
feverfew inhibition, 402	Diarrhea,
onion inhibition, 13	German chamomile inhibition, 291
tomato inhibition, 275	licorice root inhibition, 198, 199
Cysteine protease, banana inhibition, 324	nutmeg inhibition, 338
Cytochrome B-5, nutmeg induction, 340	Diuretics,
Cytochrome P-450	angelica, 72
Ginkgo biloba induction, 170	anise, 367
licorice root induction, 207	banana, 324
nutmeg induction, 340	castor oil plant, 382
Cytotoxicity,	eucalyptus, 147
althea, 39	German chamomile, 294
anise, 367	Indian mulberry, 313
banana, 324	licorice root,
bay tree, 265	activity, 208
cashew nut, 48	inhibition, 199
castor oil plant, 382	lotus, 357
chaste tree, 431	neem, 92
echinaceae, 123	nutmeg, 340
ephedra, 134	onion, 14
eucalyptus, 146, 147	puncture vine, 417
feverfew, 402	St. John's wort, 249
German chamomile, 294	DNA binding,
Ginkgo biloba,	Ginkgo biloba inhibition, 170
activity, 170	licorice root inhibition, 208
inhibition, 163	DNA polymerase,
Indian mulberry, 313	ephedra inhibition, 134
licorice root, 207	licorice root inhibition, 208
lotus, 357	DNA repair, St. John's wort induction, 249

DNA synthesis, onion inhibition, 14	angelica, 72
Dong quai, see Angelica sinensis	anise, 367
Dopamine uptake,	castor oil plant, 383
chaste tree effects, 431	eucalyptus, 147
Ginkgo biloba inhibition, 170	licorice root, 208
St. John's wort inhibition, 249	neem effects, 88, 92, 93
E	pineapple, 60
	puncture vine, 417
Echinaceae,	tomato, 276
botanical description, 119	Estrous cycle,
chemical constituents, 121, 122	lotus disruption, 357
common names, 119	neem effects, 93
origin and distribution, 119	Ethanol,
pharmacological activities and clinical trials, 122–125	lotus effects on metabolism, 357, 358 potentiation by nutmeg, 341
traditional medicinal uses, 119, 120	Eucalyptus,
Eczema,	botanical description, 141
German chamomile inhibition, 291, 292	chemical constituents, 142–144
licorice root inhibition, 199	common names, 141
puncture vine inhibition, 415	origin and distribution, 141
Edema,	pharmacological activities and clinical
anise inhibition, 366	trials, 144–148
bay tree inhibition, 264	traditional medicinal uses, 141, 142
Ginkgo biloba inhibition, 164	Euphoriant, nutmeg activity, 341
lotus inhibition, 355	Expectorants,
onion inhibition, 8	anise, 367
tomato inhibition, 274, 275	eucalyptus, 147
Embryotoxicity,	• •
bay tree, 265	F
castor oil plant, 382	Fatigue,
licorice root, 208	licorice root inhibition, 199
neem, 92	nutmeg inhibition, 338
nutmeg, 340, 341	Fertility,
Emesis, Ginkgo biloba inhibition, 164	angelica effects, 72
Emmolient, St. John's wort, 249	chaste tree effects, 431
Ephedra,	chaste tree inhibition, 430
botanical description, 131	licorice root inhibition, 208
chemical constituents, 131, 132	neem inhibition, 88
common names, 131	onion effects, 8
origin and distribution, 131	pineapple inhibition, 59
pharmacological activities and clinical	puncture vine effects, 417
trials, 132–135	Feverfew,
traditional medicinal uses, 131	botanical description, 397
Epstein-Barr virus, licorice root inhibition, 208	chemical constituents, 398-400
Erand, see Castor oil plant	common names, 397
Erection,	origin and distribution, 397
licorice root stimulation, 217	pharmacological activities and clinical
nutmeg stimulation, 342	trials, 400-404
puncture vine stimulation, 419	traditional medicinal uses, 397, 398
Estrogenicity,	Fibrillation, angelica inhibition, 69

Fibrinolysis,	licorice root status, 210
angelica inhibition, 69	nutmeg status, 341
chaste tree effects, 431	Genotoxicity, St. John's wort, 249
Ginkgo biloba activity, 170	German chamomile,
onion inhibition, 14	botanical description, 285
Filaria,	chemical constituents, 287–289
neem inhibition, 88	common names, 285
puncture vine inhibition, 415	origin and distribution, 286
Follicle stimulating hormone (FSH), puncture vine effects, 417	pharmacological activities and clinical trials, 289–297
Fructose diphosphatase, banana effects, 324	traditional medicinal uses, 286, 287
FSH, see Follicle stimulating hormone	Ginkgo biloba,
Fungus,	botanical description, 157
althea inhibition, 39	chemical constituents, 158–161
anise inhibition, 366	common names, 157
banana inhibition, 322	metabolites, 172
bay tree inhibition, 264	origin and distribution, 157
cashew nut inhibition, 47	pharmacokinetics, 173
castor oil plant inhibition, 381, 382	pharmacological activities and clinical
•	trials, 162–175
chaste tree inhibition, 431	traditional medicinal uses, 157, 158
ephedra inhibition, 133	Glucagon, licorice root induction, 209
eucalyptus inhibition, 145	Glucose-6-phosphatase, banana stimulation
feverfew inhibition, 401	325
Ginkgo biloba inhibition, 164	Glucose-6-phosphate dehydrogenase,
Indian mulberry inhibition, 312	banana stimulation, 325
licorice root inhibition, 199	Glucose-1-phosphate uridyltransferase,
lotus inhibition, 355, 356	banana stimulation, 325
neem inhibition, 88, 89	Glucose uptake,
nutmeg inhibition, 339	banana inhibition, 324, 325
onion inhibition, 7, 9	Ginkgo biloba effects, 170
St. John's wort inhibition, 247	lotus induction, 358
tomato inhibition, 274, 275	β-Glucuronidase, banana inhibition, 324
G	Glucuronyl transferase, licorice root
GABA,	stimulation, 209
German chamomile inhibition, 295	Glutamate dehydrogenase, castor oil plant
St. John's wort inhibition, 249	effects, 383
Galactagogue effect,	Glutamate oxaloacetate transaminase,
anise, 367	castor oil plant inhibition, 383
castor oil plant, 382	echinaceae inhibition, 123
Gastric acid,	licorice root inhibition, 209, 210
banana effects, 324	lotus effects, 358
licorice root inhibition, 208, 209	neem inhibition, 94
Gastric inhibitory polypeptide, onion	St. John's wort inhibition, 249
stimulation, 14	Glutamate pyruvate transaminase,
Gastric mucus, neem induction, 94	angelica inhibition, 72, 73
Generally regarded as safe (GRAS),	castor oil plant inhibition, 383
anise status, 368	echinaceae inhibition, 123
bay tree status, 265	ephedra inhibition, 134
German chamomile status, 295	
Octilian chamonine status, 293	licorice root inhibition, 209, 210

lotus effects, 358	Hematopoiesis,
neem inhibition, 94	angelica effects, 73
onion inhibition, 14	castor oil plant effects, 383
puncture vine inhibition, 417	Hemolysis,
Glutamate receptor,	banana inhibition, 322
German chamomile antagonism, 295	puncture vine effect, 418
Ginkgo biloba antagonism, 170	Hemorrhage,
St. John's wort antagonism, 249	angelica inhibition, 69, 70
Glutamate uptake, St. John's wort	licorice root inhibition, 200
inhibition, 249	lotus inhibition, 356
Glutathione reductase, Ginkgo biloba	Hemorrhoid, licorice root inhibition, 200
stimulation, 170, 171	Hemotoxicity, onions, 15
Glutathione S-transferase,	Hepatitis antigen, licorice root inhibition,
anise induction, 367	210, 211
German chamomile induction, 295	Hepatotoxicity,
licorice root induction, 210	angelica inhibition, 70
nutmeg induction, 341	German chamomile, 295
Glycine receptor, German chamomile	licorice root inhibition, 200
inhibition, 296	lotus inhibition, 356
Glycogen,	neem, 94
banana effects, 325	St. John's wort, 250
castor oil plant effects, 383	Hexobarbitol hydroxylase, nutmeg effects, 341
Ginkgo biloba effects, 171	Hexokinase, banana inhibition, 325
neem effects, 94	Hexosaminidase, ephedra inhibition, 134
Glycolate dehydrogenase, puncture vine	Higuerilla, see Castor oil plant
inhibition, 417	Hipericon, see St. John's wort
Glycolate oxidase, puncture vine inhibition,	Histamine release, see Antihistamine
417	HIV protease inhibitors,
Glycolysis, St. John's wort inhibition, 249	castor oil plant, 384
Glycosaminoglycan, banana stimulation,	neem, 99
325	Hyaluronidase, echinaceae inhibition, 124
Glycyrrhiza glabra, see Licorice root	Hydrogen peroxide, Ginkgo biloba
Goiter, onion effects, 14	inhibition, 173
Gokhru, see Puncture vine	Hydroxysteroid dehydrogenase, licorice
GRAS, see Generally regarded as safe	root inhibition, 211
Gum tree, see Eucalyptus	Hyperglycemia,
• •	angelica inhibition, 70
Н	banana inhibition, 322, 323, 325
Hair growth,	bay tree inhibition, 264-266
angelica promotion, 73	cashew nut inhibition, 47, 48
St. John's wort stimulation, 250	castor oil plant inhibition, 383
Halitosis, nutmeg inhibition, 339	eucalyptus inhibition, 145
Hallucinogen, nutmeg activity, 341	German chamomile inhibition, 292
Helminth,	Ginkgo biloba inhibition, 164
banana inhibition, 322	Indian mulberry inhibition, 313
eucalyptus inhibition, 144	licorice root inhibition, 201
neem inhibition, 86	lotus inhibition, 356, 358
pineapple inhibition, 59	neem inhibition, 89, 94, 95
puncture vine inhibition, 414	onion effects, 9, 10, 15, 16
Hemagglutinin activity. St. John's wort. 250	puncture vine effects, 418

Hyperlipidemia, banana inhibition, 323 licorice root effects, 201, 212 lotus inhibition, 356 onion effects, 10, 15, 16 Hypernatremia, licorice root activity, 211 Hyperoxaluria, puncture vine effects, 418 Hypertension, angelica inhibition, 323, 325 bay tree inhibition, 323, 325 bay tree inhibition, 264 cashew nut inhibition, 47 echinaceae inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 212 neem effects, 94 point inhibition, 11, 16 Hypokalemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root effects, 212 neem effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root effects, 212 neem effects, 26 mangelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 nutmeg, 341	Hypericum perforatum, see St. John's wort	puncture vine, 418
licorice root effects, 201, 212 lotus inhibition, 356 onion effects, 10, 15, 16 Hypermatremia, licorice root activity, 211 Hypertoxaluria, puncture vine effects, 418 Hypertension, angelica inhibition, 70, 73 anise inhibition, 366, 368 banana inhibition, 264 cashew nut inhibition, 24 ephedra effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect sterility, neem induction, 96 Insect development, neem inhibition, 96 Insect development, neem inhibition, 96 Insect sterility, neem induction, 96 Insect sterility, 368	Hyperlipidemia,	Implantation,
lotus inhibition, 356 onion effects, 10, 15, 16 Hypernatremia, licorice root activity, 211 Hyperoxaluria, puncture vine effects, 418 Hypertension, angelica inhibition, 70, 73 anise inhibition, 366, 368 banana inhibition, 323, 325 bay tree inhibition, 47 echinaceae inhibition, 47 echinaceae inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95	banana inhibition, 323	castor oil plant effects, 382
onion effects, 10, 15, 16 Hypernatremia, licorice root activity, 211 Hyperoxaluria, puncture vine effects, 418 Hypertension, angelica inhibition, 70, 73 anise inhibition, 366, 368 banana inhibition, 323, 325 bay tree inhibition, 264 cashew nut inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 388 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 220 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 48 Indian mulberry activity, 313 neem activity, 48 Indian mulberry activity, 313 neem activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect terellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	licorice root effects, 201, 212	neem inhibition, 89
Hypertoxaluria, puncture vine effects, 418 Hypertension, angelica inhibition, 70, 73 anise inhibition, 366, 368 banana inhibition, 264 cashew nut inhibition, 264 cashew nut inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 418 St. John's wort effects, 418 St. John's wort effects, 212 neem effects, 95 onion inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95	lotus inhibition, 356	pineapple effects, 59, 60
Hyperoxaluria, puncture vine effects, 418 Hypertension, angelica inhibition, 70, 73 anise inhibition, 366, 368 banana inhibition, 323, 325 bay tree inhibition, 264 cashew nut inhibition, 47 echinaceae inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 210 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect eterlity, neem induction, 96 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insect iterility, neem induction, 96 Insecticide, anise activity, 368	onion effects, 10, 15, 16	Indian mulberry,
Hypertension, angelica inhibition, 70, 73 anise inhibition, 366, 368 banana inhibition, 264 cashew nut inhibition, 47 echinaceae inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 210 nem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 common names, 309 origin and distribution, 310 pharmacological activities and clinical trials, 312–314 traditional medicinal uses, 310, 311 Inflammation, althea inhibition, 39 anise inhibition, 366 bay tree inhibition, 36 bay tree inhibition, 47, 48 castor oil plant inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 47 German chamomile inhibition, 401 German chamomile inhibition, 401 German chamomile inhibition, 39 nuture ynhibition, 312 licorice root effects, 295 Ginkgo biloba inhibition, 11 pineapple inhibition, 39 nuture vine inhibition, 401 lotus inhibition, 39 nuture vine inhibition, 30 nuture vine inhibition, 312 licorice root inhibition, 312 licorice root effects, 295 neem effects, 94, 95 nutmeg inhibition, 39 nutmed inhibition, 47 feverfew inhibition, 38 ecashew nut inhibition, 47 feverfew inhibition, 39 anise inhibition, 31 linflammation, althea inhibition, 310 by tree inhibition, 310 lotus inhibit	Hypernatremia, licorice root activity, 211	botanical description, 309, 310
angelica inhibition, 70, 73 anise inhibition, 366, 368 banana inhibition, 323, 325 bay tree inhibition, 264 cashew nut inhibition, 47 echinaceae inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 94, 95 onion inhibition, 11, 16 Hypokalemia, licorice root effects, 220 Hypertriglyceridemia, licorice root effects, 210 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 origin and distribution, 310 pharmacological activities and clinical trials, 312—314 traditional medicinal uses, 310, 311 Inflammation, althea inhibition, 39 anise inhibition, 36 bay tree inhibition, 36 bay tree inhibition, 36 cashew nut inhibition, 382 echinaceae inhibition, 47, 48 castor oil plant inhibition, 382 echinaceae inhibition, 145 feverfew inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 313 neem activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	Hyperoxaluria, puncture vine effects, 418	chemical constituents, 311, 312
anise inhibition, 366, 368 banana inhibition, 323, 325 bay tree inhibition, 264 cashew nut inhibition, 47 echinaceae inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 pharmacological activities and clinical trials, 312–314 traditional medicinal uses, 310, 311 Inflammation, althea inhibition, 39 anise inhibition, 366 bay tree inhibition, 366 bay tree inhibition, 366 cashew nut inhibition, 122 ephedra inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 145 Inflammation, althea inhibition, 39 anise inhibition, 39 anise inhibition, 366 bay tree inhibition, 47, 48 castor oil plant inhibition, 47, 48 castor oil plant inhibition, 142 feverfew inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 382 echinaceae inhibition, 292 Ginkgo biloba inhibition, 201 lotus inhibition, 39, 90 nutmeg inhibition, 39 onion inhibition, 39 onion inhibition, 39 onion inhibition, 164 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	Hypertension,	common names, 309
banana inhibition, 323, 325 bay tree inhibition, 264 cashew nut inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 trials, 312–314 traditional medicinal uses, 310, 311 Inflammation, althea inhibition, 39 anise inhibition, 36 bay tree inhibition, 36 bay tree inhibition, 264 cashew nut inhibition, 382 echinaceae inhibition, 122 ephedra inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 133 eucalyptus inhibition, 104 German chamomile inhibition, 292 Ginkgo biloba inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 313 neem inhibition, 401 German chamomile inhibition, 104 Inflammation, althea inhibition, 39 anise inhibition, 366 bay tree inhibition, 36 cashew nut inhibition, 47, 48 castor oil plant inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 133 eucalyptus inhibition, 164 Indian mulberry inhibition, 164 Indian mulberry inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 313 licorice root inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 416 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 2	angelica inhibition, 70, 73	origin and distribution, 310
bay tree inhibition, 264 cashew nut inhibition, 47 echinaceae inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 traditional medicinal uses, 310, 311 Inflammation, althea inhibition, 39 anise inhibition, 264, 265 cashew nut inhibition, 264, 265 cashew nut inhibition, 47, 48 castor oil plant inhibition, 132 echinaceae inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 366 bay tree inhibition, 264, 265 cashew nut inhibition, 47, 48 castor oil plant inhibition, 132 echinaceae inhibition, 145 feverfew inhibition, 10 German chamomile inhibition, 292 Ginkgo biloba inhibition, 201 lotus inhibition, 336 neem inhibition, 339 onion inhibition, 339 onion inhibition, 311 licorice root effects, 212 neem effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 10, 11 pineapple inhibition, 401 lotus inhibition, 339 onion inhibition, 339 onion inhibition, 319 licorice root inhibition, 310 lotus inhibition, 339 onion inhibition, 341 licorice root inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 415 Inflammation, 410 lathea inhibition, 312 licorice roit printing inhi	anise inhibition, 366, 368	pharmacological activities and clinical
cashew nut inhibition, 47 echinaceae inhibition, 124 ephedra effects, 134 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 10, 11, 15, 16 puncture vine effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Inflammation, althea inhibition, 39 anise inhibition, 36 bay tree inhibition, 264, 265 cashew nut inhibition, 264, 265 cashew nut inhibition, 47, 48 castor oil plant inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 132 eucalyptus inhibition, 102 Ginkgo biloba inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 312 licorice root inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 291 lotus inhibition, 330 net cashew nut inhibition, 47, 48 castor oil plant inhibition, 122 ephedra inhibition, 132 eucalyptus inhibition, 102 Ginkgo biloba inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 291 lotus inhibition, 330 neem inhibition, 382 eucalyptus inhibition, 104 Intorice root inhibition, 104 Intorice root inhibition, 104 Intorice root inhibition, 201 lotus inhibition, 39, 90 nutmeg inhibition, 39 noino inhibition, 39 noino inhibition, 313 eucalyptus inhibition, 415 Feverfew inhibition, 401 German chamomile inhibition, 312 licorice root inhibition, 104 Intorice root inhibition, 39 noino inhibition, 11 licorice root defects, 212 neem effects, 212 neem effects, 250 Intorice root inhibition, 415 St. John's wort inhibition, 415 St. John's w	banana inhibition, 323, 325	trials, 312–314
echinaceae inhibition, 124 ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 althea inhibition, 39 anise inhibition, 264, 265 cashew nut inhibition, 48 castor oil plant inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 145 feverfew inhibition, 122 ephedra inhibition, 145 feverfew inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 122 ephedra inhibition, 145 feverfew inhibition, 122 ephedra inhibition, 145 feverfew inhibition, 122 ephedra inhibition, 145 feverfew inhibition, 164 Insect inhibition, 164 Insect devlopment, 164 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 95, 96 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	bay tree inhibition, 264	traditional medicinal uses, 310, 311
ephedra effects, 134 eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 anise inhibition, 366 bay tree inhibition, 264, 265 cashew nut inhibition, 47, 48 castor oil plant inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 292 Ginkgo biloba inhibition, 292 licorice root inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 201 lotus inhibition, 356 neem inhibition, 319 eucalyptus inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 onion effects, 95 netman chamomile inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 339 nutmeg inhibition, 339 nutmeg inhibition, 47 Interprete wine inhibition, 60 puncture vine inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 60 puncture vine inhibition, 60 puncture vine inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect development, neem inhibition, 95, 97 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 92, 94, 95 Insecticide, anise activity, 368	cashew nut inhibition, 47	Inflammation,
eucalyptus effects, 147 German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 bay tree inhibition, 264, 265 cashew nut inhibition, 47, 48 castor oil plant inhibition, 122 ephedra inhibition, 122 ephedra inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 294 Ginkgo biloba inhibition, 312 licorice root inhibition, 390 nutmeg inhibition, 390 nutmeg inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	echinaceae inhibition, 124	althea inhibition, 39
German chamomile effects, 295 Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 cashew nut inhibition, 47, 48 castor oil plant inhibition, 122 echinaceae inhibition, 122 ephedra inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 292 Ginkgo biloba inhibition, 382 echinaceae inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 47, 48 castor oil plant inhibition, 122 ephedra inhibition, 132 echinaceae inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 292 Ginkgo biloba inhibition, 292 Ginkgo biloba inhibition, 164 Insect attractant, onion, 16 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	ephedra effects, 134	anise inhibition, 366
Ginkgo biloba effects, 171 Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 castor oil plant inhibition, 122 echinaceae inhibition, 132 echinaceae inhibition, 132 echinaceae inhibition, 132 echinaceae inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 292 Ginkgo biloba inhibition, 382 echinaceae inhibition, 145 feverfew inhibition, 145 feverfew inhibition, 401 Grman chamomile inhibition, 292 Ginkgo biloba inhibition, 292 Ginkgo biloba inhibition, 292 nutmeg inhibition, 339 noin inhibition, 312 licorice root inhibition, 312	eucalyptus effects, 147	bay tree inhibition, 264, 265
Indian mulberry inhibition, 313 licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae inhibition, 132 ephedra inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 292 Indian mulberry inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 356 neem inhibition, 356 neem inhibition, 39, 90 nutmeg inhibition, 39, 90 nutmeg inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 415 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus inhibition, 145 Indian mulberry inhibition, 292 Indian mulberry inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 39 nonion inhibition, 39, 90 nutmeg inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 60 puncture vine inhibition, 416 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	German chamomile effects, 295	cashew nut inhibition, 47, 48
licorice root effects, 211, 212 lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 ephedra inhibition, 133 eucalyptus inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 164 Indian mulberry inhibition, 312 licorice root inhibition, 312 licorice root inhibition, 356 neem inhibition, 356 neem inhibition, 39, 90 nutmeg inhibition, 39 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 416 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus inhibition, 195 feverfew inhibition, 401 German chamomile inhibition, 292 dinkgo biloba inhibition, 129 nutmeg inhibition, 312 licorice root inhibition, 314 licorice root inhibition, 319 neem inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 416 licorice root inhibition, 319 neem inhibition,	Ginkgo biloba effects, 171	castor oil plant inhibition, 382
lotus inhibition, 358 neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 eucalyptus inhibition, 145 feverfew inhibition, 401 German chamomile inhibition, 292 Ginkgo biloba inhibition, 164 Indian mulberry inhibition, 312 licorice root inhibition, 356 neem inhibition, 356 neem inhibition, 39 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	Indian mulberry inhibition, 313	echinaceae inhibition, 122
neem effects, 94, 95 nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 feverfew inhibition, 401 German chamomile inhibition, 401 German chamomile inhibition, 164 Indian mulberry inhibition, 164 I lotus inhibition, 356 neem inhibition, 356 neem inhibition, 339 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 415 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	licorice root effects, 211, 212	ephedra inhibition, 133
nutmeg effects, 341 onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile inhibition, 164 Ilicorice root inhibition, 164, 165 Indian mulberry inhibition, 201 lotus inhibition, 356 neem inhibition, 39, 90 nutmeg inhibition, 39 onion inhibition, 415 St. John's wort inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	lotus inhibition, 358	eucalyptus inhibition, 145
onion effects, 10, 11, 15, 16 puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 I Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Ginkgo biloba inhibition, 164 Indian mulberry inhibition, 201 lotus inhibition, 356 neem inhibition, 356 neem inhibition, 339 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	neem effects, 94, 95	feverfew inhibition, 401
puncture vine effects, 418 St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry inhibition, 201 lotus inhibition, 356 neem inhibition, 89, 90 nutmeg inhibition, 339 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 Indian mulberry inhibition, 201 lotus inhibition, 356 neem inhibition, 399 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 415 St. John's wort inhibition, 415 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	nutmeg effects, 341	German chamomile inhibition, 292
St. John's wort effects, 250 Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root inhibition, 356 neem inhibition, 356 neem inhibition, 89, 90 nutmeg inhibition, 339 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	onion effects, 10, 11, 15, 16	
Hypertriglyceridemia, licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Il Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Inotus inhibition, 356 neem inhibition, 89, 90 nutmeg inhibition, 339 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	puncture vine effects, 418	Indian mulberry inhibition, 312
licorice root effects, 212 neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem effects, 95 nutmeg inhibition, 39 nutmeg inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	St. John's wort effects, 250	licorice root inhibition, 201
neem effects, 95 onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 nutmeg inhibition, 339 onion inhibition, 11 pineapple inhibition, 10 puncture vine inhibition, 415 St. John's wort inhibition, 427 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	Hypertriglyceridemia,	lotus inhibition, 356
onion inhibition, 11, 16 Hypokalemia, licorice root activity, 211, 212 Hypothermia, angelica inhibition, 70 angelica inhibition, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 onion inhibition, 11 pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 247 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	licorice root effects, 212	neem inhibition, 89, 90
Hypokalemia, licorice root activity, 211, 212 pineapple inhibition, 60 puncture vine inhibition, 415 Hypothermia, St. John's wort inhibition, 247 Inotropic effect, neem, 95 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 minimid pineapple inhibition, 60 puncture vine inhibition, 415 St. John's wort inhibition, 427 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		•
puncture vine inhibition, 415 Hypothermia, angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Insect attractant, onion, 16 Hypoxia, Ginkgo biloba inhibition, 164 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	onion inhibition, 11, 16	
Hypothermia, angelica inhibition, 70 Inotropic effect, neem, 95 Indian mulberry activity, 313 neem activity, 95 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, Immunomodulation, angelica, 73 anise, 368 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		
angelica inhibition, 70 cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Ingent activity, 95 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, Immunomodulation, German chamomile, 295 angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Inotropic effect, neem, 95 puncture vine, 418 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		
cashew nut activity, 48 Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	• •	•
Indian mulberry activity, 313 neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		
neem activity, 95 Hypoxia, Ginkgo biloba inhibition, 164 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect attractant, onion, 16 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	• •	
Hypoxia, Ginkgo biloba inhibition, 164 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect development, neem inhibition, 95, 97 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		=
Immunomodulation, German chamomile, 295 angelica, 73 neem, 93 anise, 368 Insect repellant, echinaceae, 124 eucalyptus, 147 German chamomile, 295 Ginkgo biloba, 171 Insect sterility, neem induction, 96 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect sterility, neem induction, 96 Insect sterility, neem induction, 96 Insect sterility, 368		
Insect feeding deterrence, German chamomile, 295 angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect feeding deterrence, German chamomile, 295 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	Hypoxia, Ginkgo biloba inhibition, 164	•
Immunomodulation, angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 German chamomile, 295 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	1	· · · · · · · · · · · · · · · · · · ·
angelica, 73 anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 neem, 93 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368	Immunomodulation	
anise, 368 echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect repellant, eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		
echinaceae, 124 German chamomile, 295 Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 eucalyptus, 147 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		
German chamomile, 295 Ginkgo biloba, 171 Ilicorice root, 197, 198, 212, 213 neem, 92, 94, 95 neem, 95, 96 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		
Ginkgo biloba, 171 licorice root, 197, 198, 212, 213 neem, 92, 94, 95 Insect sterility, neem induction, 96 Insecticide, anise activity, 368		
licorice root, 197, 198, 212, 213 Insecticide, anise activity, 368		
neem, 92, 94, 95 anise activity, 368		
	nutmeg, 341	banana activity, 325

echinaceae activity, 124	LDL, see Low-density lipoprotein
eucalyptus activity, 147	Learning, Ginkgo biloba enhancement, 171
feverfew activity, 402	Lepo, see Castor oil plant
German chamomile activity, 295	Leukocyte migration, neem inhibition, 97
Ginkgo biloba activity, 171	Leukopenia,
Indian mulberry activity, 313	angelica inhibition, 70
neem activity, 96, 97	licorice root activity, 214
nutmeg activity, 341	puncture vine effects, 418
St. John's wort activity, 250	Leukotriene B-4
tomato activity, 276	feverfew inhibition, 402
Insulin,	licorice root inhibition, 214
German chamomile effects, 295	St. John's wort inhibition, 250
Ginkgo biloba stimulation, 171	LH, see Luteinizing hormone
licorice root effects, 213	Licorice root,
neem inhibition, 97	botanical description, 191
Interferon,	chemical constituents, 193–195
licorice root induction, 213	common names, 191
neem induction, 97	origin and distribution, 191
Interleukins,	pharmacokinetics, 217
Indian mulberry stimulation,	pharmacological activities and clinical
IL-1, 313	trials, 195–221
IL-4, 313	traditional medicinal uses, 192
licorice root induction, 213	Lipid peroxides,
St. John's wort,	Ginkgo biloba inhibition, 171
IL-1 inhibition, 250	tomato inhibition, 276
IL-6 enhancement, 250	Lipid synthesis, castor oil plant effects, 383
Intestinal mobility, licorice root inhibition,	Lipoxygenase,
213	feverfew inhibition, 402
Ischemia, Ginkgo biloba inhibition, 165	German chamomile inhibition, 295
I	nutmeg inhibition, 341
•	onion effects, 17
Jaundice, licorice root inhibition, 202	tomato inhibition, 276
Juvenile hormone,	Liver regeneration,
castor oil plant activity, 383	anise stimulation, 368
echinaceae activity, 124	German chamomile stimulation, 295
K	nutmeg stimulation, 341
Kaju, see Cashew nut	Lotus,
Kharwa, see Castor oil plant	botanical description, 353
Kidney stone,	chemical constituents, 354
anise dissolution, 368	common names, 353
bay tree inhibition, 266	origin and distribution, 353
puncture vine effects, 416, 418	pharmacological activities and clinical
Kura, see Indian mulberry	trials, 355–359
	traditional medicinal uses, 354
L	Low-density lipoprotein (LDL), licorice
Lactate dehydrogenase,	root inhibition, 214
neem stimulation, 97	Luteinizing hormone (LH),
onion stimulation, 16	chaste tree effects, 431
Laurus nobilis, see Bay tree	puncture vine effects, 418
Laxative, castor oil plant activity, 383	Lycopersicon esculentum, see Tomato

Lymphocyte blastogenesis, licorice root	eucalyptus activity, 147
inhibition, 214	neem activity, 97, 98
M	puncture vine activity, 418
Ma Huang, see Ephedra	tomato activity, 276
	Monoamine oxidase,
Macrophage,	licorice root inhibition, 216
licorice root,	nutmeg inhibition, 341, 342
activation, 214	St. John's wort inhibition, 250
cytotoxicity enhancement, 214	Monooxygenase, licorice root induction, 216
migration, ephedra stimulation, 134	Morinda citrifolia, see Indian mulberry
Maiden hair tree, see Ginkgo biloba	Musa sapientum, see Banana
Malaria,	Muscade, see Nutmeg
eucalyptus inhibition, 145, 146	Muscarinic receptor,
German chamomile inhibition, 292	Ginkgo biloba effects, 172
licorice root inhibition, 202	St. John's wort antagonism, 250
neem inhibition, 90	Mutagenesis,
puncture vine inhibition, 415	angelica activity, 70, 73
Malate dehydrogenase, neem effects, 97	anise,
Malic enzyme, neem inhibition, 97	activity, 368
Malondialdehyde, nutmeg inhibition, 341	inhibition, 366, 367
Manzanilla, see German chamomile	banana, 324
Mao, see Ephedra	bay tree, 266
Maranon, see Cashew nut	cashew nut activity, 49
Margosa, see Neem	echinaceae activity, 124
Marsh mallow, see Althaea officinalis	ephedra effects, 133, 134
Mating, neem inhibition, 97	eucalyptus inhibition, 146, 147
Matricaria chamomilla, see German	feverfew, 402
chamomile	German chamomile effects, 292, 296
Melanin, licorice root inhibition, 214	Ginkgo biloba effects, 165, 170
Membranes,	licorice root,
Ginkgo biloba stabilization, 167	activity, 216
licorice root,	desmutagenic activity, 208
fluidity increase, 214, 215	inhibition, 202
stabilization, 215	lotus,
Memory,	desmutagenic activity, 357
Ginkgo biloba enhancement, 171, 172	inhibition, 356
licorice root enhancement, 215	neem activity, 98
Menstruation, licorice root induction, 215	nutmeg,
Migraine, feverfew inhibition, 401	activity, 342
Mineralocorticoid, licorice root activity, 215	inhibition, 338
Miskad, see Nutmeg	onion,
Mitogenic activity,	activity, 14, 17
castor oil plant, 383	inhibition, 11, 13
echinaceae, 124	pineapple activity, 60
licorice root, 215, 216	St. John's wort, 250
neem, 97	tomato activity, 275, 276
Molluscicide,	Mycobacteria,
bay tree activity, 266	althea inhibition, 39
castor oil plant activity, 383, 384	banana inhibition, 323
chaste tree activity, 431	bay tree inhibition, 265

castor oil plant inhibition, 382 echinaceae inhibition, 123 eucalyptus inhibition, 146 feverfew inhibition, 402	Neurotoxicity, Ginkgo biloba inhibition, 165 puncture vine, 419 Nho, see Indian mulberry
German chamomile inhibition, 292, 293	Nim, see Neem
Ginkgo biloba inhibition, 165	Nitric oxide synthase,
licorice root inhibition, 202	Ginkgo biloba inhibition, 173
neem inhibition, 90	Indian mulberry stimulation, 313
nutmeg inhibition, 339	Noni, see Indian mulberry
onion inhibition, 11	Norepinephrine uptake, St. John's wort
puncture vine inhibition, 415	inhibition, 250
St. John's wort inhibition, 247, 248	Nucleotidase, onion inhibition, 17
tomato inhibition, 275	Nutmeg,
Myristica fragrans, see Nutmeg	botanical description, 333, 334
N	chemical constituents, 335–337 common names, 333
Narcotic activity, St. John's wort, 250	origin and distribution, 334
Natriuretic activity, castor oil plant, 384	pharmacological activities and clinical
Neem,	trials, 337–343
botanical description, 82	traditional medicinal uses, 334, 335
chemical constituents, 82–86	,
common names, 81	0
origin and distribution, 82	Onion,
pharmacological activities and clinical	botanical description, 2
trials, 86–100	chemical constituents, 3-6
traditional medicinal uses, 82	common names, 1
Nelumbo nucifera, see Lotus	origin and distribution, 2
Nematocides,	pharmacological activities and clinical
anise, 367, 368	trials, 6–19
bay tree, 266	traditional medicinal uses, 2, 3
castor oil plant, 384	Ornithine decarboxylase, licorice root
German chamomile, 292	inhibition, 216
licorice root, 202, 216	Oviposition, neem inhibition, 98
lotus, 356	Ovulation,
neem, 90, 98	German chamomile inhibition, 296 licorice root inhibition, 216
nutmeg, 339	Oxidative burst,
puncture vine, 418, 419	feverfew inhibition, 402, 403
Nephritis,	Ginkgo biloba inhibition, 173
angelica inhibition, 70, 71	neem inhibition, 98
licorice root inhibition, 202, 203	Oxytocin, licorice root inhibition, 203
Nephrotoxicity, neem, 98	
Nerve growth factor, licorice root	P
stimulation, 216	Palleru, see Puncture vine
Nerve regeneration, neem activity, 98	Palma christi, see Castor oil plant
Neural plasticity, Ginkgo biloba	Pancreatic secretion, licorice root
enhancement, 172, 173	stimulation, 217
Neuromuscular blockers,	Pepsin, licorice root inhibition, 217
banana, 325	Peroxidase,
neem, 98	banana activity, 325
Neuroprotection, Ginkgo biloba, 173	pineapple activity, 60

tomato activity, 276	nutmeg inhibition, 342
Phagocytosis,	onion inhibition, 17, 18
angelica stimulation, 74	pineapple stimulation, 60
echinaceae stimulation, 125	PMS, see Premenstrual syndrome
feverfew inhibition, 403	Polyamines, onion effects, 14, 15
German chamomile stimulation, 296	Polydipsia, Ginkgo biloba inhibition, 166
licorice root stimulation, 217	Polygalacturonase, neem inhibition, 99
St. John's wort stimulation, 250	Polymorphonuclear leukocyte activation,
Pheromonal activity,	feverfew, 403
castor oil plant, 384	neem inhibition, 99
nutmeg, 342	Pom, see Cashew nut
Phorbol ester, onion antagonism, 17	Potassium channel,
Phosphodiesterase, licorice root inhibition, 217	feverfew inhibition, 403
Phosphoglucomutase, banana inhibition, 325	licorice root inhibition, 217
Phospholipase A ₂	Potassium depletion,
feverfew inhibition, 403	echinaceae, 125
Ginkgo biloba activation, 173	licorice root, 217
licorice root inhibition, 217	neem, 99
Photosensitization,	Premenstrual syndrome (PMS), chaste tree
puncture vine, 419	inhibition, 431–433
St. John's wort, 250, 251	Progesterone,
Phototoxicity,	chaste tree activity, 432
bay tree, 266	neem inhibition, 90
St. John's wort, 251	nutmeg activity, 342
Phytotoxicity, neem, 98	Prolactin,
Pimpinella anisum, see Anise	chaste tree inhibition, 432
Pineapple,	Ginkgo biloba inhibition, 174
botanical description, 55, 56	licorice root stimulation, 217, 218
chemical constituents, 57-59	Prophage, St. John's wort induction, 251
common names, 55	Prostaglandin,
origin and distribution, 56	feverfew inhibition, 403
pharmacological activities and clinical	German chamomile inhibition, 296
trials, 59–61	licorice root inhibition, 218
traditional medicinal uses, 56, 57	nutmeg inhibition, 342
Plant growth,	onion inhibition, 18
ephedra effects, 135	Proteases,
German chamomile effects, 296	Ginkgo biloba inhibition, 166
neem effects, 98, 99	neem, 99
onion inhibition, 17	pineapple, 60, 61
Plasmin, angelica inhibition, 74	Protein kinase, licorice root stimulation, 218
Platelet activating factor, castor oil plant	Protein synthesis,
effects, 384	feverfew stimulation, 403
Platelet adhesion,	German chamomile inhibition, 296
feverfew inhibition, 403	Ginkgo biloba stimulation, 174
onion inhibition, 17	licorice root inhibition, 218
Platelet aggregation,	onion inhibition, 18
angelica inhibition, 74	tomato inhibition, 276
feverfew inhibition, 403	Protopectinase, neem inhibition, 99
Ginkgo biloba inhibition, 166, 173, 174	Pruritis,
licorice root stimulation, 217	angelica inhibition, 71

licorice root inhibition, 203	traditional medicinal uses, 242, 243
puncture vine inhibition, 416	Santa Maria, see Feverfew
Psoriasis,	Schistosome,
angelica inhibition, 71	cashew nut inhibition, 48
ephedra inhibition, 133	castor oil plant inhibition, 382
German chamomile inhibition, 296	neem inhibition, 91
St. John's wort inhibition, 248	Secretin, licorice root induction, 218
Puncture vine,	Serotonin,
botanical description, 412	banana effects, 325, 326
chemical constituents, 413, 414	feverfew effects, 403
common names, 411	German chamomile effects, 296
origin and distribution, 412	Ginkgo biloba modulation, 174
pharmacological activities and clinical	neem antagonism, 99
trials, 414–420	St. John's wort effects, 251
traditional medicinal uses, 412, 413	Sister chromatid exchange, feverfew
Pyrexia,	stimulation, 403
angelica inhibition, 71	Skeletal muscle,
bay tree inhibition, 265	anise stimulation, 368
German chamomile inhibition, 293	banana effects, 326
licorice root inhibition, 203	puncture vine relaxation, 419
lotus inhibition, 356	Sleep, St. John's wort potentiation, 251
neem inhibition, 90, 91	Smooth muscle,
nutmeg inhibition, 339	angelica effects, 74
Pyruvate kinase, banana inhibition, 325	anise effects, 368
Q	banana effects, 326
•	echinaceae effects, 125
Quinone reductase, German chamomile inhibition, 296	German chamomile relaxation, 296, 297
onion induction, 18	Ginkgo biloba effects, 174
tomato induction, 276	licorice root effects, 218
tomato muuction, 270	neem effects, 99
R	nutmeg relaxation, 342, 343
Radiation,	onion effects, 18
angelica protective effects, 74	puncture vine effects, 419
licorice root effect, 213, 214	St. John's wort effects, 251
onion protective effects, 11	Sodium channel, licorice root inhibition,
RBC, see Red blood cell	218, 219
Red blood cell (RBC), neem effects, 99	Sop, see Anise
Renin, licorice root inhibition, 218	Sorbitol dehydrogenase, castor oil plant
Reverse transcriptase,	stimulation, 384
Indian mulberry inhibition, 313	Spasmolysis,
licorice root inhibition, 218	anise inhibition, 367
St. John's wort inhibition, 251	bay tree inhibition, 265
S	German chamomile inhibition, 293
St. John's wort,	Ginkgo biloba activity, 174
botanical description, 241, 242	Indian mulberry inhibition, 312
chemical constituents, 243, 244	licorice root inhibition, 203, 204
common names, 241	lotus inhibition, 356, 359
origin and distribution, 242	neem activity, 99
pharmacological activities and clinical	nutmeg inhibition, 339
trials, 244–252	puncture vine inhibition, 416

St. John's wort inhibition, 248	origin and distribution, 271
Sperm motility,	pharmacological activities and clinical
angelica effects, 74	trials, 264–276
feverfew activity, 403, 404	traditional medicinal uses, 272
Spermatogenesis,	Toxicity,
neem inhibition, 91	angelica, 74
puncture vine effects, 419	anise, 368
Spermicide,	banana, 326
licorice root activity, 219	bay tree, 266
neem activity, 99, 100	cashew nut, 49
onion activity, 18	castor oil plant, 384, 385
Spirochete, German chamomile inhibition, 293	chaste tree, 432
Sunscreen, German chamomile, 297	ephedra effects, 135
Superoxide,	eucalyptus, 147, 148
ephedra effects, 135	German chamomile, 297
licorice root effects, 219	Indian mulberry, 314
onion inhibition, 18	licorice root, 219, 220
·	lotus, 359
Т	neem, 100
Tanacetum parthenium, see Feverfew	nutmeg, 343
Tang Kuei, see Angelica sinensis	onion, 19
Teratogens,	pineapple, 61
ephedra, 135	puncture vine, 419
German chamomile, 297	St. John's wort, 251
Testosterone,	tomato, 276
licorice root stimulation of	Tranquilizers,
hydroxylation, 219	Indian mulberry, 314
neem inhibition, 100	licorice root, 220
puncture vine activity, 414	neem, 100
Thiamine,	nutmeg, 343
banana inhibition, 323	Tribulus terrestris, see Puncture vine
onion inhibition, 11	Trichomonas, neem inhibition, 91
pineapple inhibition, 60	Tryptophan pyrrolase, licorice root
Thrombosis,	stimulation, 220
angelica inhibition, 71	Tumor,
Ginkgo biloba inhibition, 166	angelica inhibition, 71
licorice root inhibition, 218	anise inhibition, 368
Thromboxane B-2	bay tree inhibition, 266
feverfew inhibition, 404	cashew nut,
nutmeg inhibition, 343	inhibition, 48
onion effects, 18, 19	promoting effect, 49
Thyroid,	castor oil plant inhibition, 382
banana inhibition, 323	ephedra inhibition, 133
pineapple inhibition, 60	eucalyptus inhibition, 146
tomato inhibition, 275	feverfew inhibition, 402
Tinnitus, Ginkgo biloba inhibition, 166, 167	German chamomile inhibition, 293, 284
Tomato,	Ginkgo biloba inhibition, 174
botanical description, 271	Indian mulberry inhibition, 312, 313
chemical constituents, 272-274	licorice root inhibition, 204, 206
common names, 271	lotus inhibition, 359

neem inhibition, 91	Vertigo, Ginkgo biloba inhibition, 167
nutmeg inhibition, 339, 340	Virus,
onion,	althea inhibition, 39
inhibition, 11–13, 19	angelica inhibition, 71
promoting effect, 19	anise inhibition, 367
pineapple inhibition, 60	bay tree inhibition, 265
puncture vine inhibition, 416	castor oil plant inhibition, 382
St. John's wort inhibition, 248	echinaceae inhibition, 123
tomato inhibition, 275, 276	ephedra inhibition, 133
Tumor necrosis factor,	eucalyptus inhibition, 146
Indian mulberry stimulation, 314	German chamomile inhibition, 293, 294
onion induction, 19	Ginkgo biloba inhibition, 167
St. John's wort inhibition, 251	Indian mulberry inhibition, 313
Tyrosinase,	licorice root inhibition, 205
angelica effects, 74	lotus inhibition, 357
bay tree inhibition, 266	neem inhibition, 91
ephedra inhibition, 135	onion inhibition, 12
licorice root inhibition, 220	pineapple inhibition, 60
puncture vine inhibition, 419	St. John's wort inhibition, 248
puncture vine initiation, 419	tomato inhibition, 275
U	Vitex agnus-castus, see Chaste tree
UDP glucuronyl transferase, licorice root	W
stimulation, 220	WBC, see White blood cell
Ulcer,	Weight loss, licorice root effects, 221
banana inhibition, 323	White blood cell (WBC),
German chamomile inhibition, 293	banana stimulation, 326
licorice root inhibition, 204, 205	cashew nut stimulation, 49
lotus inhibition, 357	licorice root stimulation, 221
neem inhibition, 91	lotus stimulation, 359
Uric acid, neem increase, 100	onion stimulation, 19
Uricosuria, onion effects, 19	pineapple stimulation, 61
Uterus,	tomato stimulation, 276
angelica stimulation, 74	Wound healing,
anise relaxation, 368	echinaceae activity, 125
banana effects, 326	neem activity, 100
castor oil plant stimulation, 385	St. John's wort effects, 251
echinaceae relaxation, 125	X
Indian mulberry stimulation, 314	
licorice root relaxation, 220	Xanthine oxidase,
onion stimulation, 19	ephedra inhibition, 135 licorice root inhibition, 221
puncture vine stimulation, 420	ficonce root initiation, 221
St. John's wort effects, 251, 252	Y
	Yeast,
V	althea inhibition, 39
Vasodilation,	angelica inhibition, 72
angelica, 74, 75	anise inhibition, 367
Ginkgo biloba , 174, 175	banana inhibition, 323, 324
licorice root, 220, 221	bay tree inhibition, 265
puncture vine, 420	cashew nut inhibition, 48

castor oil plant inhibition, 382 chaste tree inhibition, 431 ephedra inhibition, 133 eucalyptus inhibition, 146 feverfew inhibition, 402 German chamomile inhibition, 294 Indian mulberry inhibition, 313 licorice root inhibition, 205

lotus inhibition, 357
neem inhibition, 91
nutmeg inhibition, 339, 340
onion inhibition, 12
pharmacokinetics, 250
puncture vine inhibition, 416
St. John's wort inhibition, 248
Yo, see Indian mulberry