Semaine 4 - Primitives et équations différentielles linéaires

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Intégrales de Wallis

Soit $n \in \mathbb{N}$ on définit I_n (l'intégrale de Wallis) par $I_n = \int_0^{\frac{\pi}{2}} \sin(x)^n dx$.

- 1 Trouver une relation entre I_{n+2} et I_n . En déduire la valeur de I_n en fonction de la parité de n.
- **2** Montrer que $\lim_{n\to+\infty} \frac{I_{2n}}{I_{2n+1}} = 1$.
- **3** En déduire que $\lim_{n\to+\infty} \sqrt{n} \frac{(2n-1)(2n-3)...1}{2n(2n-2)...2} = \frac{1}{\sqrt{\pi}}$

Remarque : ce calcul est un grand classique. Il sert notamment pour obtenir une formule très utile : la formule de Stirling. Celle-ci donne un équivalent en l'infini de la factorielle. Plus précisément : $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$.

2 Suite et intégrale (1)

Soit $n \in \mathbb{N}$. On définit $J_n = \int_0^{\frac{\pi}{4}} \tan(x)^n dx$.

- 1 Donner une formule liant J_{n+2} et J_n . On commencera par calculer $J_{n+2} + J_n$.
- **2** Après avoir calculé J_0 et J_1 exprimer J_n en fonction de la parité de n.

3 Suite et intégrale (2)

Soit $n \in \mathbb{N}$. On définit $K_n = \int_0^{\frac{\pi}{4}} \frac{1}{\cos(x)^n} dx$.

- 1 Calculer K_0 et K_1 .
- **2** Donner une formule liant K_{n+2} et K_n . On pourra intégrer par partie K_{n+2} .

4 Suite et intégrale (3)

Soit $n \in \mathbb{N}$. On définit $L_n = \int_1^e \log(x)^n dx$.

- 1 Donner une formule liant L_{n+1} et L_n .
- **2** En déduire un équivalent de L_n .

5 Primitive et fonction circulaire

- **1** Donner une primitive de $x \mapsto \arccos(x)$.
- **2** Donner une primitive de $x \mapsto \frac{1}{\cos(x)}$.

- **3** Donner une primitive de $x \mapsto \frac{1}{\sin(x)}$.
- **4** Donner une primitive de $x \mapsto \frac{1}{2+\sin(x)^2}$.

6 Primitive et fonction hyperbolique

- 1 Donner une primitive de $x \mapsto \frac{1}{\cosh(x)}$.
- **2** Donner une primitive de $x \mapsto \frac{1}{\sinh(x)}$.
- **3** Donner une primitive de $x \mapsto \frac{1}{\tanh(x)}$.
- **4** Donner une primitive de $x \mapsto \frac{1}{1-\cosh(x)}$.

7 Résolution d'une équation différentielle (1)

- 1 Résoudre en y sur $\mathbb R$ l'équation suivante : $y'(x) + y(x) = \frac{1}{1+2e^x}$.
- **2** Résoudre en y sur $]-\infty,0[$ l'équation suivante : x(xy'(x)+y(x)-x)=1.

8 Résolution d'une équation différentielle (2)

1 Résoudre en y sur $]-\infty,-1[$, sur]-1,1[et sur $]1,+\infty[$ l'équation suivante : $(1-x^2)y'(x)-2xy(x)=x^2$.

9 Résolution d'une équation différentielle (3)

1 Résoudre en y sur $]-\infty,0[$ et sur $]0,+\infty[$ l'équation suivante : $|x|y'(x)+(x-1)y(x)=x^3.$

10 Résolution d'une équation différentielle (4)

1 Résoudre en y sur \mathbb{R} l'équation suivante : $x^2y'(x) - y(x) = 0$

11 Fonctions trigonométriques et équation différentielle

- 1 Calculer $\cos(\arctan(x))$ pour $x \in \mathbb{R}$.
- **2** Calculer $\sin(\arctan(x))$ pour $x \in \mathbb{R}$.

12 Conditions initiales et équations différentielles

- 1 Déterminer les fonctions dérivables sur \mathbb{R} telles que $\forall x \in \mathbb{R}, f'(x) + f(x) = f(0) + f(1)$.
- **2** Déterminer les fonctions dérivables sur \mathbb{R} telles que $\forall x \in \mathbb{R}, \ f'(x) + f(x) = \int_0^1 f(t) dt$.

13 Barrières et entonnoirs

1 Soit $f \in \mathcal{C}^1(\mathbb{R})$. On suppose que $\lim_{x \to +\infty} (f(x) + f'(x)) = 0$. Montrer que $\lim_{x \to +\infty} f(x) = 0$.