Model Theory: Example Sheet 3

Otto Pyper

- 1. T is a complete theory in a countabel language \mathcal{L} .
 - (a) Let $\mathcal{M} \models T$ be atomic and let $f: A \to M$ be partial elementary, A finite, and let $c \in M$.

 \mathcal{M} is atomic, so every realised type in \mathcal{M} is isolated. Let $p = \operatorname{tp}^{\mathcal{M}}(a_1, \dots, a_n, c)$. Then $(\overline{a}, c) \models p$, so p is isolated. Hence there exists some φ such that $\mathcal{M} \models \forall \overline{x}, y(\varphi(\overline{x}, y) \to \psi(\overline{x}, y))$.

But also $\mathcal{M} \models \varphi(\overline{a}, c)$, so in particular $\mathcal{M} \models \exists y \varphi(\overline{a}, y)$, so $\mathcal{M} \models \exists y \varphi(f(\overline{a}), y)$ by partial elementaryness of f. So there is some d such that $\mathcal{M} \models \varphi(f(\overline{a}, d))$.

Now take any $\psi(\overline{x}, y)$ with $\mathcal{M} \models \psi(\overline{a}, c)$. We have that $\mathcal{M} \models \varphi(f(\overline{a}), d)$ and so $\mathcal{M} \models \psi(f(\overline{a}), d)$. So done.

(b) Enumerate $\mathcal{M} = \{a_1, a_2, \dots\}$ and $\mathcal{N} = \{b_1, b_2, \dots\}$. We build a bunch of partial elementary functions and then take their union.

Idea: $a_1 \models \operatorname{tp}(a_1)$, so there is some $b \in N$ such that $b \models \operatorname{tp}(a_1) = \operatorname{tp}(b)$. Then take b_i where i is least, and consider $(b, b_i) \models \operatorname{tp}(b, b_i)$. There must then exist $c, d \in M$ such that $(c, d) \models \operatorname{tp}(b, b_i)$. But note that for $\varphi(X) \in \operatorname{tp}(b)$, we have $(\varphi(x) \land y = y) \in \operatorname{tp}(b, b_i)$, hence $\mathcal{M} \models \varphi(c)$, so $c \models \operatorname{tp}(b) = \operatorname{tp}(a_1)$, and $c \equiv_{\operatorname{tp}} a$, so there is a' such that $(c, d) \equiv_{\operatorname{tp}} a_1, a'$.

Keeping going, using back and forth argument to ensure that $a_n \in \text{dom} f_n$, $b_n \in \text{Im} f_n$, f_n partial elementary. Then take $f = \bigcup f_n$. This is elementary, since any counterexample must be a counterexample on some finite f_n , which was partial elementary. Moreover, it is surjective and injective (check). So isomorphism.

Indeed, suppose we have $f_n:\{a_1,\ldots,a_{2n}\}\to\{b_1,\ldots,b_{2n}\}$ partial elementary, such that $\operatorname{tp}(\overline{a})=\operatorname{tp}(\overline{b})$ and the a_i s (respectively b_i s) are pairwise distinct.

Pick $a_{2n+1} \in A$. Then there exists $\overline{c} \in M$ such that $\operatorname{tp}(a_1, \ldots, a_{2n+1}) = \operatorname{tp}(c_1, \ldots, c_{2n+1})$. Moreover, must have $\operatorname{tp}(a_1, \ldots, a_{2n}) = \operatorname{tp}(b_1, \ldots, b_{2n}) = \operatorname{tp}(c_1, \ldots, c_{2n})$ so by \aleph_0 homogeneity can find b_{2n+1} such that $\operatorname{tp}(b_1, \ldots, b_{2n+1}) = \operatorname{tp}(c_1, \ldots, c_{2n+1}) = \operatorname{tp}(a_1, \ldots, a_{2n+1})$. Then send a_{2n+1} to b_{2n+1} . Keep going.

- (c) prime iff countable and atomic, implies countable and \aleph_0 -homogeneous. So just need to show the type realising thing.
 - Let $p \in S_n(T)$. Then if \mathcal{M} realises p, p must be isolated (since \mathcal{M} atomic) and so p is realised in all structures, including \mathcal{N} . Similarly the other way. So $\mathcal{M} \cong \mathcal{N}$.
- 2. If models \mathcal{M}, \mathcal{N} disagree on some \mathcal{L} -sentence, φ , then they disagree on some \mathcal{L}^0 -sentence φ where \mathcal{L}^0 finite. They both still model T_k^0 , so we need only show T_k^0 complete.

But this is the theory of DLO plus partition into dense subsets (plus identifying finitely many points in one class), and this is \aleph_0 -categorical; given two countable models, first identify the c_i s. Then each section between some c_i s (or on either side) is just a copy of DLO plus partition into

dense subsets (without any identified points), and this theory is complete by a back and forth argument.

Then it is clear to see that $I(T,\aleph_0) = k+2$, since we have k+2 options for the limit properties of the c_n s. Either they are unbounded above, or bounded but with no limit, or they have a limit $c \in U_i$, where $1 \le i \le k$. Any two models with different limit properties can clearly not be isomorphic, and any two models with the same limit properties are isomorphic since after identifying the c_i s and the limits (if they exist) we can just do another back-and-forth type argument on the remaining sections of \mathbb{Q} .

- 3. Let $B \subseteq M$, $|B| < \kappa$ and let p be a complete n-type in the language \mathcal{L}_A with respect to the \mathcal{L}_A -structure \mathcal{M}^* with parameters from B. Then $p \cup \operatorname{Th}_B(\mathcal{M}^*)$ is consistent, *i.e.* p is a collection of $\mathcal{L}_{A \cup B}$ sentences consistent with all $\mathcal{L}_{A \cup B}$ sentences modelled by \mathcal{M} . In particular, $p \cup \operatorname{Th}_{A \cup B}(\mathcal{M})$ is consistent, so $p \in S_n^{\mathcal{M}}(A \cup B)$, and $|A \cup B| < \kappa$ (as long as $\kappa \geq \aleph_0$) so this type is realised by κ -saturation.
- 4. Similar to 1(b). Let $\kappa = |M| = |N|$, $M = \{a_{\alpha} : \alpha < \kappa\}$ and $\mathcal{N} = \{b_{\alpha} : \alpha < \kappa\}$ and define nested $f_{\alpha} : \alpha < \kappa$ such that $a_{\alpha} \in \text{dom} f_{\alpha}$, $b_{\alpha} \in \text{Im} f_{\alpha}$.

Indeed, given f_{α} : $\alpha < \gamma < \kappa$ a limit, define $f_{\gamma} = \bigcup f_{\alpha}$, whose domain still has cardinality less than κ because κ is uncountable and initial.

Given f_{α} , write $A_{\alpha} = \text{dom} f_{\alpha}$, $B_{\alpha} = \text{Im} f_{\alpha}$ and consider $p = \text{tp}^{\mathcal{M}}(a_{\alpha}/A_{\alpha})$. Let q be the set of formulae obtained by applying f to every parameter in the formulae in p. This gives a set of formulae with parameters from B_{α} , and is complete and consistent since f_{α} is partial elementary. Then by saturation, and the fact that $|B_{\alpha}| < \kappa$, q is realised by some b. So (a_{α}, b) is our new point.

Same again backwards, pick b_{α} and consider $\operatorname{tp}^{\mathcal{N}}(b_{\alpha}/B_{\alpha} \cup \{b\})$. This is a set of formulae with parameters in the range of $f_{\alpha} \cup \{(a_{\alpha}, b)\}$, so undo the function on the formulae to obtain a new consistent type, which is thus realised in \mathcal{M} .

Repeat, then union all the f_{α} s together.

5.