

Practice Queries - Advanced RA

COMPANY Database

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
100000000000000000000000000000000000000		100000000000000000000000000000000000000	100						

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date

DEPT_LOCATIONS

Dnumber	Dlocation
-	:

PROJECT

Pname	Pnumber	Plocation	Dnum

WORKS_ON

Essn Pno Hou	rs
--------------	----

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
			F53352416-240	

Practice Queries

• Q1: Retrieve the name and address of all employees who work for the 'Research' department.

- Q2: For every project located in 'Stafford', list the project number, the controlling department number and the department manager's last name, address, and birth date.
- Q3: Find the names of employees who work on *all* the projects controlled by department number 5.

• Q1:

$$\pi_{\text{Fname, Lname, Address}} (\sigma_{\text{Dname='Research'}} (DEPARTMENT \bowtie_{\text{Dnumber=Dno}} (EMPLOYEE))$$

• Q2:

$$STAFFORD_PROJS \leftarrow \sigma_{Plocation=`Stafford'}(PROJECT)$$

$$CONTR_DEPTS \leftarrow (STAFFORD_PROJS \bowtie_{Dnum=Dnumber} DEPARTMENT)$$

$$PROJ_DEPT_MGRS \leftarrow (CONTR_DEPTS \bowtie_{Mgr_ssn=Ssn} EMPLOYEE)$$

$$RESULT \leftarrow \pi_{Pnumber, Dnum, Lname, Address, Bdate} (PROJ_DEPT_MGRS)$$

• Q3:

$$\begin{split} \mathsf{DEPT5_PROJS} &\leftarrow \rho_{(\mathsf{Pno})} \left(\pi_{\,\mathsf{Pnumber}} \left(\sigma_{\,\mathsf{Dnum=5}} \left(\mathsf{PROJECT} \right) \right) \right) \\ &= \mathsf{EMP_PROJ} \leftarrow \rho_{\,(\mathsf{Ssn},\,\mathsf{Pno})} \left(\pi_{\,\mathsf{Essn},\,\mathsf{Pno}} \left(\mathsf{WORKS_ON} \right) \right) \\ &= \mathsf{RESULT_EMP_SSNS} \leftarrow \mathsf{EMP_PROJ} \div \mathsf{DEPT5_PROJS} \\ &= \mathsf{RESULT} \leftarrow \pi_{\,\mathsf{Lname},\,\mathsf{Fname}} \left(\mathsf{RESULT_EMP_SSNS} * \mathsf{EMPLOYEE} \right) \end{split}$$

Practice Queries

- Q4: Make a list of project numbers for projects that involve an employee whose last name is 'Smith', either as a worker or as a manager of the department that controls the project.
- Q5: Retrieve the names of employees who have no dependents.
- Q6: List the names of managers who have at least one dependent.

• Q4:

 π_{Pno} (WORKS_ON $\bowtie_{Essn=Ssn}$ (π_{Ssn} ($\sigma_{Lname='Smith'}$ (EMPLOYEE))) \cup π_{Pno} (($\pi_{Dnumber}$ ($\sigma_{Lname='Smith'}$ (π_{Lname})))

≈ _{Ssn=Mgr_ssn} DEPARTMENT)) ≈ _{Dnumber=Dnum} PROJECT)

SMITHS (Essn) $\leftarrow \pi_{Ssn} (\sigma_{Lname='Smith'}(EMPLOYEE))$

SMITH_WORKER_PROJS $\leftarrow \pi_{Pno}(WORKS_ON * SMITHS)$

 $MGRS \leftarrow \pi_{Lname. Dnumber} (EMPLOYEE \bowtie_{Ssn=Mgr ssn} DEPARTMENT)$

SMITH_MANAGED_DEPTS (Dnum) $\leftarrow \pi_{Dnumber} (\sigma_{Lname='Smith'}(MGRS))$

SMITH_MGR_PROJS (Pno) $\leftarrow \pi_{Pnumber}$ (SMITH_MANAGED_DEPTS * PROJECT)

 $RESULT \leftarrow (SMITH_WORKER_PROJS \cup SMITH_MGR_PROJS)$

• Q5:

ALL_EMPS
$$\leftarrow \pi_{Ssn}$$
 (EMPLOYEE)

EMPS_WITH_DEPS (Ssn) $\leftarrow \pi_{Essn}$ (DEPENDENT)

EMPS_WITHOUT_DEPS ← (ALL_EMPS – EMPS_WITH_DEPS)

RESULT $\leftarrow \pi_{\text{Lname, Fname}}$ (EMPS_WITHOUT_DEPS * EMPLOYEE)

 $\Pi_{\text{Lname. Fname}} ((\pi_{\text{Ssn}}(\text{EMPLOYEE}) - \rho_{\text{Ssn}}(\pi_{\text{Essn}}(\text{DEPENDENT}))) * \text{EMPLOYEE})$

• Q6:

 $\mathsf{MGRS}\,(\mathsf{Ssn}) \leftarrow \pi_{\,\mathsf{Mgr_ssn}}(\mathsf{DEPARTMENT})$

EMPS_WITH_DEPS (Ssn) $\leftarrow \pi_{Essn}$ (DEPENDENT)

MGRS_WITH_DEPS ← (MGRS ∩ EMPS_WITH_DEPS)

RESULT $\leftarrow \pi_{Lname, Fname}$ (MGRS_WITH_DEPS * EMPLOYEE)

Thanks!!

