Package 'hetid'

June 13, 2025

```
Title A package for identification through heteroskedasticity a la Lewbel
      (2012)
Version 0.1.0
Description This package implements the identification through
      heteroskedasticity method of Lewbel (2012) for time-series models with
      endogenous regressors. It provides tools for estimation and inference
      when traditional instruments are not available.
License MIT + file LICENSE
{\bf URL}\ {\tt https://github.com/fernando-duarte/heteroskedasticity\_identification}
BugReports
      https://github.com/fernando-duarte/heteroskedasticity_identification/issues
Depends R (>= 4.2)
Imports AER,
      boot,
      dplyr,
      furrr,
      future,
      ggplot2,
      knitr,
      magrittr,
      purrr,
      rlang,
      stats,
      tidyr,
      utils
Suggests knitr,
      rmarkdown,
      testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
```

Contents

	analyze_bootstrap_results	2
	analyze_main_results	3
	analyze_sample_size_results	4
	analyze_sensitivity_results	4
	calculate_lewbel_bounds	5
	create_default_config	6
	generate_all_plots	7
	generate_all_seeds	8
	generate_lewbel_data	9
	generate_seed_matrix	10
	plot_bootstrap_ci	11
	plot_estimator_distributions	11
	plot_first_stage_f_dist	12
	plot_het_sensitivity	13
	plot_sample_size_consistency	13
	print_simulation_summary	14
	run_bootstrap_demonstration	14
	run_lewbel_demo	15
	run_lewbel_monte_carlo	16
	run_main_simulation	17
	run_sample_size_analysis	18
	run_sensitivity_analysis	19
	run_single_lewbel_simulation	19
	verify_lewbel_assumptions	20
Index		22
muca		
analy	/ze_bootstrap_results	

Analyze Bootstrap Results

Description

Analyzes and displays bootstrap standard error results for set identification bounds.

Usage

```
analyze_bootstrap_results(results_main, bootstrap_demo, config, verbose = TRUE)
```

Arguments

Data.frame. Main simulation results. results_main bootstrap_demo Data.frame. Bootstrap demonstration results. config List. Configuration object. verbose Logical. Whether to print output (default: TRUE).

Value

A data.frame with bootstrap examples.

analyze_main_results 3

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_main <- run_main_simulation(config, seeds)
bootstrap_demo <- run_bootstrap_demonstration(config, seeds)
bootstrap_analysis <- analyze_bootstrap_results(results_main, bootstrap_demo, config)
## End(Not run)</pre>
```

```
analyze_main_results Analyze Main Simulation Results
```

Description

Provides comprehensive analysis of the main Monte Carlo simulation results, including performance metrics for point estimators and set identification.

Usage

```
analyze_main_results(results, config, verbose = TRUE)
```

Arguments

results Data.frame. Results from run_main_simulation().

config List. Configuration object used for the simulation.

verbose Logical. Whether to print detailed output (default: TRUE).

Value

A list containing summary tables and statistics.

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results <- run_main_simulation(config, seeds)
analysis <- analyze_main_results(results, config)
## End(Not run)</pre>
```

```
analyze_sample_size_results

Analyze Sample Size Results
```

Description

Analyzes consistency of estimators across different sample sizes.

Usage

```
analyze_sample_size_results(results_by_n, config, verbose = TRUE)
```

Arguments

results_by_n Data.frame. Results from run_sample_size_analysis().

config List. Configuration object.

verbose Logical. Whether to print output (default: TRUE).

Value

A data.frame with sample size analysis.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_by_n <- run_sample_size_analysis(config, seeds)
size_analysis <- analyze_sample_size_results(results_by_n, config)
## End(Not run)</pre>
```

```
{\tt analyze\_sensitivity\_results}
```

Analyze Sensitivity Results

Description

Analyzes sensitivity of results to heteroscedasticity strength.

Usage

```
analyze_sensitivity_results(results_by_delta, config, verbose = TRUE)
```

Arguments

```
results_by_delta
```

Data.frame. Results from run_sensitivity_analysis().

config List. Configuration object.

verbose Logical. Whether to print output (default: TRUE).

Value

A data.frame with sensitivity analysis.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_by_delta <- run_sensitivity_analysis(config, seeds)
sensitivity_analysis <- analyze_sensitivity_results(results_by_delta, config)
## End(Not run)</pre>
```

```
calculate_lewbel_bounds
```

Calculate Set Identification Bounds for Lewbel Estimator

Description

Computes set identification bounds for the endogenous parameter under a relaxed covariance restriction. Optionally computes bootstrap standard errors for the bounds.

Usage

```
calculate_lewbel_bounds(data, tau, compute_se = FALSE, B = 100)
```

Arguments

data	Data.frame. Dataset containing Y1, Y2, Xk, Z variables.
tau	Numeric. Relaxation parameter for covariance restriction (0 \leq tau \leq 1). When tau = 0, gives point identification.
compute_se	Logical. Whether to compute bootstrap standard errors (default: FALSE).
В	Integer. Number of bootstrap replications if compute se = TRUE (default: 100).

Details

Under the relaxed assumption $|Corr(Z, \epsilon_1 \epsilon_2)| \le tau |Corr(Z, \epsilon_2^2)|$, the parameter gamma_1 is set-identified. The bounds are computed as the real roots of a quadratic equation in gamma_1.

Value

A list containing:

- bounds: Numeric vector of length 2 with lower and upper bounds
- se: Numeric vector of length 2 with bootstrap standard errors (if requested)

6 create_default_config

Examples

```
## Not run:
params <- list(
   beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
   beta2_0 = 1.0, beta2_1 = -1.0,
   alpha1 = -0.5, alpha2 = 1.0, delta_het = 1.2
)
data <- generate_lewbel_data(1000, params)

# Point identification (tau = 0)
bounds_point <- calculate_lewbel_bounds(data, tau = 0)

# Set identification with bootstrap SE
bounds_set <- calculate_lewbel_bounds(data, tau = 0.2, compute_se = TRUE, B = 100)

## End(Not run)</pre>
```

create_default_config Create Default Configuration for Lewbel Monte Carlo Simulations

Description

Creates a comprehensive configuration list with all parameters needed for running Lewbel (2012) Monte Carlo simulations.

```
create_default_config(
  num_simulations = 200,
  main_sample_size = 500,
  sample_sizes = c(250, 500, 1000, 2000),
  delta_het = 0.8,
  delta_het_values = c(0.4, 0.8, 1.2),
  n_{ps_by_n} = 100,
  n_{ps_by_delta} = 100,
  bootstrap_reps = 100,
  bootstrap_subset_size = 10,
  bootstrap_demo_size = 5,
  beta1_0 = 0.5,
  beta1_1 = 1.5,
  gamma1 = -0.8,
  beta2_0 = 1,
  beta2_1 = -1,
  alpha1 = -0.5,
  alpha2 = 1,
  tau_set_id = 0.2,
  endog_var_name = "Y2",
  exog_var_names = "Xk"
```

generate_all_plots 7

Arguments

```
num_simulations
                  Integer. Number of main simulation runs (default: 1000).
main_sample_size
                  Integer. Primary sample size for main results (default: 1000).
sample_sizes
                  Integer vector. Sample sizes for consistency analysis (default: c(500, 1000,
                  2000)).
delta_het
                  Numeric. Heteroscedasticity strength parameter (default: 1.2).
bootstrap_reps Integer. Number of bootstrap replications (default: 100).
gamma1
                  Numeric. True value of the endogenous parameter (default: -0.8).
tau_set_id
                  Numeric. Tau parameter for set identification (default: 0.2).
                  Integer. Base seed for reproducibility (default: 123).
set_seed
```

Value

A list containing all configuration parameters.

Examples

```
## Not run:
config <- create_default_config()
config$gamma1 # -0.8

# Custom configuration
custom_config <- create_default_config(
   num_simulations = 500,
   gamma1 = -0.5
)

## End(Not run)</pre>
```

generate_all_plots

Generate All Simulation Plots

Description

Generates all visualization plots for the Lewbel simulation results.

```
generate_all_plots(
  results_main,
  results_by_n,
  results_by_delta,
  bootstrap_examples,
  config,
  verbose = TRUE
)
```

8 generate_all_seeds

Arguments

Value

A list of ggplot2 objects.

Examples

```
## Not run:
# Run full simulation
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_main <- run_main_simulation(config, seeds)
results_by_n <- run_sample_size_analysis(config, seeds)
results_by_delta <- run_sensitivity_analysis(config, seeds)
bootstrap_demo <- run_bootstrap_demonstration(config, seeds)
bootstrap_examples <- analyze_bootstrap_results(results_main, bootstrap_demo, config)

plots <- generate_all_plots(
    results_main, results_by_n, results_by_delta,
    bootstrap_examples, config
)

## End(Not run)</pre>
```

generate_all_seeds

Generate All Seeds for Lewbel Simulation

Description

Pre-generates all seeds needed for different parts of the Lewbel simulation to ensure reproducibility across parallel execution.

Usage

```
generate_all_seeds(config)
```

Arguments

config

List. Configuration object from create_default_config().

generate_lewbel_data 9

Value

A list containing seed vectors/matrices for different simulation parts.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
names(seeds) # "main", "by_n", "by_delta", "bootstrap_demo"
## End(Not run)</pre>
```

generate_lewbel_data Generate Data for Lewbel (2012) Triangular Model

Description

Creates a dataset based on the triangular model with single-factor error structure that satisfies Lewbel's identifying assumptions. The data generating process uses a common factor structure for the errors to ensure the covariance restriction $\text{Cov}(Z, \epsilon_1 \epsilon_2) = 0$ is satisfied.

Usage

```
generate_lewbel_data(n, params)
```

Arguments

n Integer. Sample size.

params List. Parameters fo

List. Parameters for the data generating process containing:

- beta1_0, beta1_1: Parameters for first equation
- beta2_0, beta2_1: Parameters for second equation
- gamma1: Endogenous parameter (key parameter of interest)
- alpha1, alpha2: Factor loadings for common factor U
- delta_het: Heteroscedasticity strength parameter

Details

The triangular model is:

$$Y_1 = \beta_{1,0} + \beta_{1,1}X + \gamma_1 Y_2 + \epsilon_1$$
$$Y_2 = \beta_{2,0} + \beta_{2,1}X + \epsilon_2$$

The error structure follows a single-factor model:

$$\epsilon_1 = \alpha_1 U + V_1$$

$$\epsilon_2 = \alpha_2 U + V_2$$

where U, V_1 are independent standard normal, and V_2 ~ N(0, $\exp(\delta Z)$) with Z = X^2 - EX^2 being the heteroscedasticity driver.

10 generate_seed_matrix

Value

A data.frame with columns Y1, Y2, Xk, Z, epsilon1, epsilon2.

Examples

```
## Not run:
params <- list(
   beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
   beta2_0 = 1.0, beta2_1 = -1.0,
   alpha1 = -0.5, alpha2 = 1.0, delta_het = 1.2
)
data <- generate_lewbel_data(1000, params)
head(data)
## End(Not run)</pre>
```

generate_seed_matrix Generate Seed Matrix for Reproducible Parallel Simulations

Description

Pre-generates seeds for reproducible parallel simulations to ensure consistent results across different computing environments.

Usage

```
generate_seed_matrix(base_seed, n_experiments, n_reps_each)
```

Arguments

```
base_seed Integer. Base seed for random number generation.

n_experiments Integer. Number of experiments (rows in matrix).

n_reps_each Integer. Number of replications per experiment (columns).
```

Value

A matrix of seeds with dimensions n_experiments x n_reps_each.

```
## Not run:
seeds <- generate_seed_matrix(123, 3, 100)
dim(seeds) # 3 x 100
## End(Not run)</pre>
```

plot_bootstrap_ci 11

Description

Creates a plot showing set identification bounds with bootstrap confidence intervals.

Usage

```
plot_bootstrap_ci(bootstrap_examples, config)
```

Arguments

bootstrap_examples

Data.frame. Bootstrap examples with standard errors.

config List. Configuration object containing true parameter values.

Value

A ggplot2 object or NULL if insufficient data.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_main <- run_main_simulation(config, seeds)
bootstrap_demo <- run_bootstrap_demonstration(config, seeds)
bootstrap_examples <- analyze_bootstrap_results(results_main, bootstrap_demo, config)
p5 <- plot_bootstrap_confidence_intervals(bootstrap_examples, config)
if (!is.null(p5)) print(p5)
## End(Not run)</pre>
```

```
plot_estimator_distributions
```

Create Distribution Plot of Estimators

Description

Creates a density plot comparing the distributions of OLS and 2SLS estimators.

Usage

```
plot_estimator_distributions(results_clean, config)
```

Arguments

```
results_clean Data.frame. Cleaned simulation results.
```

config List. Configuration object containing true parameter values.

Value

A ggplot2 object.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results <- run_main_simulation(config, seeds)
results_clean <- na.omit(results)
p1 <- plot_estimator_distributions(results_clean, config)
print(p1)
## End(Not run)</pre>
```

```
plot_first_stage_f_dist
```

Create First-Stage F Distribution Plot

Description

Creates a histogram of first-stage F-statistics with weak instrument threshold.

Usage

```
plot_first_stage_f_dist(results_clean, config = NULL, weak_iv_pct = NULL)
```

Arguments

```
results_clean Data.frame. Cleaned simulation results.

weak_iv_pct Numeric. Percentage of simulations with weak instruments.
```

Value

A ggplot2 object.

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results <- run_main_simulation(config, seeds)
results_clean <- na.omit(results)
weak_iv_pct <- mean(results_clean$first_stage_F < 10) * 100
p4 <- plot_first_stage_f_distribution(results_clean, weak_iv_pct)
print(p4)
## End(Not run)</pre>
```

plot_het_sensitivity 13

Description

Creates a boxplot showing 2SLS performance by heteroscedasticity strength.

Usage

```
plot_het_sensitivity(results_by_delta, config)
```

Arguments

```
results_by_delta
```

Data.frame. Results from sensitivity analysis.

config

List. Configuration object containing true parameter values.

Value

A ggplot2 object.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_by_delta <- run_sensitivity_analysis(config, seeds)
p3 <- plot_heteroscedasticity_sensitivity(results_by_delta, config)
print(p3)
## End(Not run)</pre>
```

```
plot_sample_size_consistency
```

Create Sample Size Consistency Plot

Description

Creates a boxplot showing 2SLS estimate consistency across sample sizes.

Usage

```
plot_sample_size_consistency(results_by_n, config)
```

Arguments

```
results_by_n Data.frame. Results from sample size analysis.
```

config List. Configuration object containing true parameter values.

Value

A ggplot2 object.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_by_n <- run_sample_size_analysis(config, seeds)
p2 <- plot_sample_size_consistency(results_by_n, config)
print(p2)
## End(Not run)</pre>
```

```
print_simulation_summary
```

Print Simulation Summary

Description

Prints a comprehensive summary of simulation findings.

Usage

```
print_simulation_summary(analysis = NULL, config = NULL, verbose = TRUE)
```

Arguments

verbose

Logical. Whether to print the summary (default: TRUE).

Examples

```
## Not run:
print_simulation_summary()
## End(Not run)
```

```
run\_bootstrap\_demonstration
```

Run Bootstrap Demonstration

Description

Runs a separate demonstration of bootstrap standard errors for set identification bounds.

```
run_bootstrap_demonstration(config, seeds, verbose = TRUE)
```

run_lewbel_demo 15

Arguments

config List. Configuration object from create_default_config().

seeds List. Seed object from generate_all_seeds().

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A data.frame containing bootstrap demonstration results.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
bootstrap_results <- run_bootstrap_demonstration(config, seeds)
## End(Not run)</pre>
```

run_lewbel_demo

Run Quick Lewbel Monte Carlo Demo

Description

Runs a quick demonstration of the Lewbel Monte Carlo simulation with reduced parameters for faster execution.

Usage

```
run_lewbel_demo(num_simulations = 100, verbose = TRUE)
```

Arguments

num_simulations

Integer. Number of simulations to run (default: 100).

verbose Logical. Whether to print output (default: TRUE).

Value

Results from run_lewbel_monte_carlo() with reduced parameters.

```
## Not run:
# Quick demo with 50 simulations
demo_results <- run_lewbel_demo(50)

# Silent demo
demo_results <- run_lewbel_demo(100, verbose = FALSE)
## End(Not run)</pre>
```

```
run_lewbel_monte_carlo

Run Complete Lewbel (2012) Monte Carlo Simulation
```

Description

Executes a comprehensive Monte Carlo simulation to evaluate the performance of Lewbel's (2012) heteroscedasticity-based identification strategy. This is the main function that orchestrates all simulation components.

Usage

```
run_lewbel_monte_carlo(
  config = NULL,
  run_verification = TRUE,
  run_bootstrap_demo = TRUE,
  run_sample_analysis = TRUE,
  run_sensitivity = TRUE,
  generate_plots = TRUE,
  verbose = TRUE
)
```

Arguments

Details

This function runs a complete Monte Carlo evaluation including:

- Verification of Lewbel's identifying assumptions
- Main simulation comparing OLS vs 2SLS (Lewbel) estimators
- Bootstrap demonstration for set identification bounds
- Sample size consistency analysis
- · Sensitivity analysis to heteroscedasticity strength
- Comprehensive result analysis and visualization

The simulation uses parallel processing for efficiency and includes proper seed management for reproducibility.

run_main_simulation 17

Value

A list containing:

- config: Configuration used
- results_main: Main simulation results
- results_by_n: Sample size analysis results (if run)
- results_by_delta: Sensitivity analysis results (if run)
- bootstrap_demo: Bootstrap demonstration results (if run)
- analysis: Summary analysis
- plots: Visualization plots (if generated)

Examples

```
## Not run:
# Run with default settings
results <- run_lewbel_monte_carlo()

# Run with custom configuration
custom_config <- create_default_config(
    num_simulations = 500,
    gamma1 = -0.5,
    delta_het = 1.5
)

results <- run_lewbel_monte_carlo(custom_config)

# Run only main simulation without extras
results <- run_lewbel_monte_carlo(
    run_bootstrap_demo = FALSE,
    run_sample_analysis = FALSE,
    run_sensitivity = FALSE
)

## End(Not run)</pre>
```

run_main_simulation

Run Main Lewbel Monte Carlo Simulation

Description

Executes the main Monte Carlo simulation to evaluate the performance of Lewbel's (2012) heteroscedasticity-based identification strategy.

Usage

```
run_main_simulation(config, seeds, verbose = TRUE)
```

Arguments

config List. Configuration object from create_default_config(). seeds List. Seed object from generate_all_seeds().

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A data frame containing results from all simulation runs.

Examples

```
## Not run:
config <- create_default_config(num_simulations = 100)
seeds <- generate_all_seeds(config)
results <- run_main_simulation(config, seeds)
## End(Not run)</pre>
```

```
run_sample_size_analysis
```

Run Sample Size Analysis

Description

Analyzes the consistency of estimators across different sample sizes.

Usage

```
run_sample_size_analysis(config, seeds, verbose = TRUE)
```

Arguments

config List. Configuration object from create_default_config().

seeds List. Seed object from generate_all_seeds().

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A data frame containing results for different sample sizes.

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
size_results <- run_sample_size_analysis(config, seeds)
## End(Not run)</pre>
```

```
run_sensitivity_analysis
```

Run Sensitivity Analysis

Description

Analyzes sensitivity of results to heteroscedasticity strength.

Usage

```
run_sensitivity_analysis(config, seeds, verbose = TRUE)
```

Arguments

config List. Configuration object from create_default_config().

seeds List. Seed object from generate_all_seeds().

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A data.frame containing results for different heteroscedasticity parameters.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
sensitivity_results <- run_sensitivity_analysis(config, seeds)
## End(Not run)</pre>
```

```
run_single_lewbel_simulation
```

Run Single Lewbel Simulation

Description

Executes a single Monte Carlo simulation run comparing OLS, 2SLS (Lewbel), and set identification approaches for estimating the endogenous parameter.

```
run_single_lewbel_simulation(
    sim_id,
    params,
    endog_var = "Y2",
    exog_vars = "Xk",
    compute_bounds_se = FALSE
)
```

Arguments

```
sim_id Integer. Simulation run identifier.

params List. Parameters for data generation and estimation.

endog_var Character. Name of endogenous variable (default: "Y2").

exog_vars Character vector. Names of exogenous variables (default: "Xk").

compute_bounds_se

Logical. Whether to compute bootstrap SE for bounds (default: FALSE).
```

Value

A data.frame with one row containing simulation results including: OLS and 2SLS estimates, coverage indicators, first-stage F-statistic, and identification bounds.

Examples

```
## Not run:
config <- create_default_config()
params <- list(
    sample_size = config$main_sample_size,
    beta1_0 = config$beta1_0, beta1_1 = config$beta1_1, gamma1 = config$gamma1,
    beta2_0 = config$beta2_0, beta2_1 = config$beta2_1,
    alpha1 = config$alpha1, alpha2 = config$alpha2,
    delta_het = config$delta_het, tau_set_id = config$tau_set_id,
    bootstrap_reps = config$bootstrap_reps
)
result <- run_single_lewbel_simulation(1, params)
## End(Not run)</pre>
```

```
verify_lewbel_assumptions
```

Verify Lewbel's Key Identifying Assumptions

Description

Tests whether the data generating process satisfies the key assumptions required for Lewbel's (2012) identification strategy. This includes testing the covariance restriction and instrument relevance condition.

```
verify_lewbel_assumptions(
  data = NULL,
  config = NULL,
  n = 10000,
  params = NULL,
  verbose = TRUE
)
```

Arguments

data	Data.frame. Optional. Pre-generated data to verify (alternative to n/params).
config	List. Optional. Configuration object (used with data parameter).
n	Integer. Sample size for verification (default: 10000, used with params).
params	List. Parameters for the DGP (same format as generate_lewbel_data).
verbose	Logical. Whether to print detailed output (default: TRUE).

Details

The function tests:

```
    Assumption A2: Cov(Z, ε<sub>1</sub>ε<sub>2</sub>) = 0 (covariance restriction)
    Assumption A3: Cov(Z, ε<sup>2</sup><sub>2</sub>)!= 0 (instrument relevance)
    Endogeneity: Cov(ε<sub>1</sub>, ε<sub>2</sub>)!= 0
```

Can be called in two ways:

- 1. verify_lewbel_assumptions(data, config) using pre-generated data
- 2. verify_lewbel_assumptions(n = 10000, params = params) generating new data

Value

Invisibly returns a list with verification results and data.

```
## Not run:
config <- create_default_config()
params <- list(
  beta1_0 = config$beta1_0, beta1_1 = config$beta1_1, gamma1 = config$gamma1,
  beta2_0 = config$beta2_0, beta2_1 = config$beta2_1,
    alpha1 = config$alpha1, alpha2 = config$alpha2, delta_het = config$delta_het
)
verify_lewbel_assumptions(params = params)
## End(Not run)</pre>
```

Index

```
analyze_bootstrap_results, 2
analyze_main_results, 3
analyze_sample_size_results, 4
analyze_sensitivity_results, 4
calculate_lewbel_bounds, 5
create_default_config, 6
generate_all_plots, 7
generate_all_seeds, 8
generate\_lewbel\_data, 9
{\tt generate\_seed\_matrix}, 10
plot_bootstrap_ci, 11
plot_estimator_distributions, 11
plot_first_stage_f_dist, 12
plot_het_sensitivity, 13
plot_sample_size_consistency, 13
print_simulation_summary, 14
run_bootstrap_demonstration, 14
run_lewbel_demo, 15
run_lewbel_monte_carlo, 16
run_main_simulation, 17
run_sample_size_analysis, 18
run_sensitivity_analysis, 19
run_single_lewbel_simulation, 19
verify_lewbel_assumptions, 20
X^2, 9
```