

Graphes et complexité d'algorithmes

CM nº1 — Algorithmique (AL5)

Matěj Stehlík 22 septembre 2023

Équipe pédagogique

TD INF1+BIO	Roberto Mantaci	<roberto.mantaci@irif.fr></roberto.mantaci@irif.fr>
TD INF2+JAP	Juliusz Chroboczek	<jch@irif.fr></jch@irif.fr>
TD INF3	Emily Clement	<pre><emily.clement@irif.fr></emily.clement@irif.fr></pre>
TD INF4	Yan Jurski	<jurski@irif.fr></jurski@irif.fr>
TD INF5	Mónika Csikós	<csikos@irif.fr></csikos@irif.fr>
TD MI1	Mikaël Rabie	<mikael.rabie@irif.fr></mikael.rabie@irif.fr>
CM	Matěj Stehlík	<matej@irif.fr></matej@irif.fr>

Volumes horaires

Cours magistraux (CM)	24h	2h par semaine
Travaux dirigés (TD)	24h	2h par semaine

Transparents du cours + feuilles de TD seront affichés sur Moodle

Évaluation

Contrôle continu intégral (pas de session 2)

I note moyenne de 2 interrogations TD

ET note épreuve terminale (janvier)

SC note seconde chance (juin)

note finale = $\max\{SC, 0.5 \times I + 0.5 \times ET\}$

Objectifs

Le cours présente les algorithmes des graphes, plus particulièrement

- algorithmes d'exploration
 - parcours en largeur
 - parcours en profondeur
- algorithmes d'optimisation
 - arbre couvrant minimum
 - plus court chemin
 - couplage maximum
 - flot maximum...

Exemple d'un graphe

Graphes

- Soit X un ensemble.
- On note $\binom{X}{2}$ l'ensemble des parties à deux éléments de X.
- En général, on notera uv la partie $\{u, v\}$.
- L'ordre et les répétitions ne sont pas pris en compte : 12 = 21.

Exemple

Si
$$X = \{1, 2, 3\}$$
, alors $\binom{X}{2} = \{12, 13, 23\}$.

Définition

- Un graphe est un couple G = (V, E) formé par un ensemble fini V et un sous-ensemble E de $\binom{V}{2}$.
- V est l'ensemble des *sommets* de G (on le note aussi V(G)).
- E est l'ensemble des *arêtes* de G (on le note aussi E(G)).

À quoi ça sert?

- Les sommets modélisent des "objets"
 - personnes
 - pages web
 - neurones
 - aéroports...
- Les arêtes modélisent des "relations" (binaires) entre ces objets
 - amitiés
 - hyperliens
 - connexions synaptiques
 - vols...
- Les arêtes peuvent être
 - non-orientées
 - orientées (dans ce cas on parle de graphes orientés)

Quelques applications des graphes

Les graphes sont très utilisés dans :

- les problèmes de routage en réseau,
- les problèmes de trafic en transport,
- l'étude des jeux,
- la recherche d'information (graphe du web)
- codage
- ordonnancement et emploi du temps
- . . .

Quelques exemples de graphes

- $(\{1, 2, 3, 4, 5\}, \{12, 13, 23, 24\})$.
- Le métro : ({stations}, {stations directement reliées}).

- L'internet : ({pages web}, (hyper-)liens).
- Facebook : ({utilisateurs}, {amitiés}).
- Molécules. $V = \{atomes\}, E = \{atomes partageant des électrons\}.$

Représentation graphique

- On représente chaque sommet par un disque : •
- Pour représenter une arête uv, on trace un trait entre les disques correspondants à u et à v.

Remarques

- La forme des « disques » et des « traits » n'a aucune importance (sauf pour la lisibilité de la figure).
- Ce qui compte, c'est de traduire graphiquement s'il y a une arête entre deux sommets ou non.

Adjacence et incidence

Définition

Soient G un graphe, u et v deux sommets de G et e une arête de G.

- u et v sont adjacents (ou voisins) si $uv \in E(G)$;
- e est incidente à u si $u \in e$;
- les deux éléments de e sont ses extrémités;
- le voisinage de u dans G est l'ensemble $N_G(u)$ des sommets de G adjacents à u;
- les voisins de u sont les éléments de $N_G(u)$;
- l'ensemble des arêtes incidentes à u est noté $\delta_G(u)$.

Exemple

- 1 et 2 sont adjacents
- 4 est voisin de 2
- $N(2) = \{1, 3, 4\}$
- $N(5) = \emptyset$ (5 est isolé)
- l'arête 12 est incidente à 2

Sous-graphes

Définition

Soient G = (V, E) et H = (W, F) deux graphes.

- H est un sous-graphe de G si $W \subseteq V$ et $F \subseteq E$.
- H est un sous-graphe couvrant de G si W = V et $F \subseteq E$.
- H est un sous-graphe induit de G si $W \subseteq V$ et F contient toutes les arêtes $uv \in E$ où $u, v \in W$. On le note G[W].

Illustration des différents types de sous-graphe

sous-graphe de G

Isomorphismes

• Souvent, on ne fera pas de distinction entre deux graphes ayant « la même forme », c'est-à-dire : qu'on ne peut les distinguer si l'on oublie les noms de leurs sommets.

Définition

- Soient *G*, *H* deux graphes.
- On dit que G est isomorphe à H s'il existe une bijection f de V(G) sur V(H) telle que pour toute paire xy de sommets de G, on a $xy \in E(G)$ si et seulement si $f(x)f(y) \in E(H)$.

Illustration

• La relation d'isomorphisme est une relation d'équivalence.

Remarque

Il n'est pas toujours facile, à partir de représentations graphiques, de décider si deux graphes sont isomorphes.

Graphe complémentaire

Définition

Soit G = (V, E) un graphe. Le graphe complémentaire \overline{G} est défini comme $\overline{G} = (V, \binom{V}{2} \setminus E)$.

• C'est-à-dire, les arêtes de G sont les non-arêtes de \overline{G} , et vice versa.

Représentation matricielle et par listes

- Il y a plusieurs façons de représenter un graphe en mémoire de l'ordinateur.
- On va en voir trois :
 - 1. matrice d'adjacence
 - 2. matrice d'incidence
 - 3. liste d'adjacence
- En général, chacune est plus ou moins adaptée au problème considéré et possède des avantages/inconvénients notamment par rapport à la densité (en arêtes) du graphe.

Matrices d'adjacence

Définition

- Soit G un graphe à n sommets.
- On numérote les sommets $V(G) = \{v_1, \dots, v_n\}.$
- La matrice d'adjacence de G (pour la numérotation choisie) est la matrice M carrée $n \times n$ sur $\{0,1\}$ définie par :

$$M_{ij} = 1$$
 si et seulement si $v_i v_j \in E(G)$.

Remarque

• *M* est *symétrique* et nulle sur la diagonale.

$$M = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Matrices d'incidence

Définition

- Soit G un graphe à n sommets et m arêtes.
- On numérote les sommets

$$V(G) = \{v_1, \dots, v_n\}$$
 et les arêtes $E(G) = \{e_1, \dots, e_m\}$.

• La matrice d'incidence de G est la matrice N sur $\{0,1\}$ de taille $n \times m$ définie par :

$$N_{ij} = 1$$
 si et seulement si $v_i \in e_j$.

Remarque

• La somme de chaque colonne vaut 2.

$$N = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Listes d'adjacence

Définition

- Soit *G* un graphe.
- Une représentation en liste d'adjacence de G est la donnée, pour chaque sommet v de G, de la liste des voisins de v.

- 1:[2,3]
- 2:[1,3,4]
- 3:[1,2]
- 4:[2]
- 5: []

Degrés

Définition

- Soient G un graphe et v un sommet de G.
- Le degré de v dans G, noté $d_G(v)$, est le nombre d'arêtes de G incidentes à v.
- C'est aussi (par simplicité des graphes définis dans ce cours) le nombre de voisins de $v: d_G(v) = |N_G(v)|$.
- Si $d_G(v) = 0$ on dit que v est isolé.
- Si $d_G(v) = 1$ on dit que v est une feuille.

- d(1) = 2
- d(2) = 3
- d(3) = 2
- d(4) = 1
- d(5) = 0

La somme des degrés

Théorème

Soit G un graphe, alors $\sum_{v \in V(G)} d_G(v) = 2|E(G)|$.

Démonstration

- Soit S la somme de tous les éléments de la matrice d'incidence de G.
- La somme de chaque ligne est égale au degré du sommet correspondant, donc $S = \sum_{v \in V(G)} d_G(v)$.
- La somme de chaque colonne est égale à deux, et on a |E(G)| colonnes, donc S=2|E(G)|.

Illustration

$$N = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$S = \sum_{v \in V(G)} d(v) = 2 + 3 + 2 + 1 + 0 = 8$$

$$S = 2|E(G)| = 2 \cdot 4 = 8$$

Une conséquence

Corollaire

- Soit G un graphe. La somme $\sum_{v \in V(G)} d_G(v)$ est paire.
- Autrement dit, le nombre de sommets de degré impair est pair.

Exemple

Sept personnes participent à une fête. Est-il possible que chacun d'entre eux serre la main de trois autres personnes exactement?

Graphes complets

Définition

- Soit $n \ge 1$ un entier.
- Le graphe complet à n sommets est le graphe $(\{1,\ldots,n\},\binom{\{1,\ldots,n\}}{2})$.
- Il est noté K_n .

Variants des graphes

- Un *multigraphe* est un graphe auquel on permet d'avoir plus d'une arête entre deux sommets ou une arête dont les deux extrémités sont identiques (boucles).
- Un graphe *orienté* est obtenu à partir d'un graphe en ordonnant, pour chaque arête, ses extrémités. Autrement dit, chaque arête est dirigée vers une de ses extrémités.
- Dans un *hypergraphe*, les (hyper-)arêtes peuvent être incidentes à un nombre arbitraire de sommets (et pas seulement à deux comme dans le cas des graphes).

Opérations élémentaires

Définition

Une *opération élémentaire* est une opération qui s'effectue en temps constant sur tous les calculateurs usuels.

On considérera les opérations suivantes comme élémentaires :

- Affectation:
- Comparaisons;
- Opérations arithmétiques et logiques;
- Accès à une case d'un tableau;
- Appel d'une sous-routine;
- •

Complexité temporelle

Définition

La complexité temporelle (dans le pire cas) d'un algorithme A, noté T(n), est le nombre d'opérations élémentaires maximum que puisse effectuer A avant d'arriver à un résultat, étant donné une entrée de taille n.

- T(n) s'exprime en fonction de la taille n de l'entrée.
- pour un graphe, on compte la complexité en fonction du nombre de sommets n, et éventuellement du nombre d'arêtes m.
- donc n n'est pas ici exactement la taille de l'entrée, mais les deux sont reliés polynomialement.

Remarques sur la complexité temporelle

- Les études de complexité portent dans la majorité des cas sur le comportement *asymptotique*, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand *O*.
- La complexité temporelle est la mesure la plus courante en algorithmique; on parle parfois simplement de la complexité d'un algorithme
- Il existe d'autres mesures comme la complexité spatiale.

Exemple

Entrées : graphe G à n sommets sous forme de matrice d'adjacence A**Sorties :** degré moyen de Gdébut $somme_degre \leftarrow 0$; pour i de O à n-1 faire pour j de O à n-1 faire $somme_degre \leftarrow somme_degre + A[i][j]$; **Retourner** (somme_degre/n);

La notation grand O

Définition

- Soient f(n) et g(n) des fonctions de \mathbb{R} vers \mathbb{R} .
- On écrit $f \in O(g)$ (ou plus souvent f = O(g)) s'il existe une constante c > 0 telle que $|f(x)| \le c \cdot |g(x)|$ pour tout $x \in \mathbb{R}$ suffisamment grand.

Remarques

- $f \in O(g)$ veut dire que f n'augmente pas plus vite que g.
- $f \in O(g)$ est moins fort que $f \leq g$.
- La différence vient de la constante c; par exemple, $100n \in O(n)$.
- Cette constante nous permet d'ignorer ce qui se passe pour des petites valeurs de n.

La notation grand O: exemple

- Supposons que nous devrons choisir entre deux algorithmes A_1 et A_2 pour une certaine tâche, de complexité $T_1(n) = n^2$ et $T_2(n) = 300n + 700$, respectivement.
- T_2 se comporte mieux quand n augmente; A_2 est meilleur.
- $T_2 \in O(T_1)$, parce que

$$\frac{T_2(n)}{T_1(n)} = \frac{300n + 700}{n^2} \le 1000$$

pour tout $n \ge 1$.

• Par contre, $T_1 \notin O(T_2)$, car

$$\frac{T_1(n)}{T_2(n)} = \frac{n^2}{300n + 700}$$

tend vers l'infini quand n tend vers l'infini.

La notation grand O: exemple

- Supposons qu'il y a un autre algorithme A_3 de complexité $T_3(n) = n$.
- La différence entre T_2 et T_3 est minuscule comparé à la différence énorme entre T_1 et T_2 .
- Donc, on considère deux fonctions comme équivalentes si elles ne diffèrent que par une constante multiplicative.
- On remarque que $T_2 = O(T_3)$:

$$\frac{T_2(n)}{T_3(n)} = \frac{300n + 700}{n} \le 1000.$$

• On a aussi $T_3 = O(T_2)$, avec c = 1.

La notation Ω et Θ

Définition

De la même manière que $O(\cdot)$ est un analogue de \leq , nous pouvons aussi définir des analogues de \geq et de = comme suit :

$$f \in \Omega(g)$$
 veut dire $g \in O(f)$
 $f \in \Theta(g)$ veut dire $f \in O(g)$ et $f \in \Omega(g)$.

Règles pour simplifier les fonctions dans $O(\cdot)$

Omettre les termes dominés par d'autres termes. En particulier :

- Omettre les constantes multiplicatives : $25n^3$ domine n^3 .
- n^a domine n^b si a > b: par exemple, n^2 domine n.
- Les fonctions exponentielles dominent les polynômes : 2^n domine n^{100} .
- Les polynômes dominent les logarithmes : n domine $(\log n)^3$.