SoftMech training day Introduction to Finite Element Method

SoftMech MP, University of Glasgow Steven.Roper@glasgow.ac.uk

January 28, 2022

Finite Element Method

Principle of virtual work

The equilibrium of a body in some state of deformation is expressed as

$$\operatorname{div} \boldsymbol{\sigma} + \rho \mathbf{f} = \mathbf{0}$$

where σ is the *Cauchy stress* and f is the body force (per unit mass). The stress σ depends on the state of deformation.

Finite Element Method

Principle of virtual work

The equilibrium of a body in some state of deformation is expressed as

$$\operatorname{div} \boldsymbol{\sigma} + \rho \mathbf{f} = \mathbf{0}$$

where σ is the Cauchy stress and f is the body force (per unit mass). The stress σ depends on the state of deformation. Let δu be a 'virtual displacement' and define

$$W = \int_{B} \delta \mathbf{u} \cdot (\operatorname{div} \boldsymbol{\sigma} + \rho \mathbf{f}) \ dV.$$

Integrating by parts we have

$$W = \int_{\partial B} \delta \mathbf{u} \cdot (\boldsymbol{\sigma} \mathbf{n}) \ dS + \int_{B} \delta \mathbf{u} \cdot \rho \mathbf{f} - \operatorname{grad} \delta \mathbf{u} \cdot \boldsymbol{\sigma} \ dV$$

Principle of virtual work

$$W = \int_{\partial B} \delta \mathbf{u} \cdot (\boldsymbol{\sigma} \mathbf{n}) \ dS + \int_{B} \delta \mathbf{u} \cdot \rho \mathbf{f} - \operatorname{grad} \delta \mathbf{u} \cdot \boldsymbol{\sigma} \ dV$$

Principle of virtual work

$$W = \int_{\partial B} \delta \mathbf{u} \cdot (\boldsymbol{\sigma} \mathbf{n}) \ dS + \int_{B} \delta \mathbf{u} \cdot \rho \mathbf{f} - \operatorname{grad} \delta \mathbf{u} \cdot \boldsymbol{\sigma} \ dV$$

Let ∂B_x be the part of the boundary on which the deformation is specified. We will only consider virtual displacements that have $\delta u = 0$ on ∂B_x (call these admissible virtual displacements).

Principle of virtual work

$$W = \int_{\partial B} \delta \mathbf{u} \cdot (\boldsymbol{\sigma} \mathbf{n}) \ dS + \int_{B} \delta \mathbf{u} \cdot \rho \mathbf{f} - \operatorname{grad} \delta \mathbf{u} \cdot \boldsymbol{\sigma} \ dV$$

Let ∂B_x be the part of the boundary on which the deformation is specified. We will only consider virtual displacements that have $\delta u = 0$ on ∂B_x (call these admissible virtual displacements). On the other part of the boundary, ∂B_t , we have specified tractions so $\sigma n = t$, then

$$W = \int_{\partial B_t} \delta \mathbf{u} \cdot \mathbf{t} \, dS + \int_B \delta \mathbf{u} \cdot \rho \mathbf{f} - \operatorname{grad} \delta \mathbf{u} \cdot \boldsymbol{\sigma} \, dV$$

the terms represent the virtual work done by the tractions, by the body forces and by the internal forces.

Principle of virtual work

If, for a given σ , we have that W=0 for every admissible virtual displacement this is equivalent to σ satisfying the equilibrium equation is satisfied with traction boundary conditions on ∂B_t .

Finite Element Method

Lagrangian coordinates

We can of course use material coordinates to write the principle of virtual work

$$\int_{B_0} (J\boldsymbol{\sigma}) \cdot \operatorname{grad} \delta u \, dV = \int_{B_0} \delta u \cdot \rho_0 f \, dV + \int_{\partial B_t} t \cdot \delta u \, dS$$

where we have left the surface term (though sometimes this might be best written in material coordinates).

Finite Element Method

Lagrangian coordinates

We can of course use material coordinates to write the principle of virtual work

$$\int_{B_0} (J\boldsymbol{\sigma}) \cdot \operatorname{grad} \delta u \, dV = \int_{B_0} \delta u \cdot \rho_0 f \, dV + \int_{\partial B_t} t \cdot \delta u \, dS$$

where we have left the surface term (though sometimes this might be best written in material coordinates). Alternatively

$$\int_{B_0} \mathsf{S}^T \cdot \mathsf{Grad} \, \delta \mathsf{u} \, dV = \int_{B_0} \delta \mathsf{u} \cdot \rho_0 \mathsf{f} \, dV + \int_{\partial B_t} \mathsf{t} \cdot \delta \mathsf{u} \, dS$$

where S is the nominal stress.

One-dimensional bar

In the theory of linear elasticity in one dimension with one end clamped (at x=0) and a traction t_L applied to the other end at x=L, we have

$$W = \int_0^L -\sigma \frac{dv}{dx} + \rho_0 f v \, dx + t_L v \big|_L,$$

where we have used v for the virtual displacements. If $\sigma = Edu/dx$ where E is the elastic modulus and u is the displacement then we have exactly the same form as for the Poisson equation.

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v \, dx + t_L v \big|_L.$$

One-dimensional bar

In the theory of linear elasticity in one dimension with one end clamped (at x=0) and a traction t_L applied to the other end at x=L, we have

$$W = \int_0^L -\sigma \frac{dv}{dx} + \rho_0 f v \, dx + t_L v \big|_L,$$

where we have used v for the virtual displacements. If $\sigma = E du/dx$ where E is the elastic modulus and u is the displacement then we have exactly the same form as for the Poisson equation.

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 fv - \rho_0 \ddot{u}v \, dx + t_L v \big|_L.$$

Note that we can extend the principle of virtual work to the case in which we have kinetic energy, by use of D'Alembert's principle, then v are interpreted as virtual velocities.

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

The next steps are to use this form in a discretisation. As described earlier this consists of the following steps:

 Generate a mesh: a discretisation of the domain into disjoint pieces, the union of which approximates the domain.

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \Big|_L. \tag{*}$$

The next steps are to use this form in a discretisation. As described earlier this consists of the following steps:

Generate a mesh: a discretisation of the domain into disjoint pieces, the union of which approximates the domain.
 In this case the interval [0, L] can be split into intervals (not necessarily equal).

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

- Generate a mesh: a discretisation of the domain into disjoint pieces, the union of which approximates the domain.
 In this case the interval [0, L] can be split into intervals (not necessarily equal).
- Selection of a set of basis functions used to approximate u, defined using the mesh. Gives approximation of u in terms of a discrete set of variables (e.g. the values u_i at the nodes of the mesh).

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

- Generate a mesh: a discretisation of the domain into disjoint pieces, the union of which approximates the domain.
 In this case the interval [0, L] can be split into intervals (not necessarily equal).
- Selection of a set of basis functions used to approximate u, defined using the mesh. Gives approximation of u in terms of a discrete set of variables (e.g. the values u_i at the nodes of the mesh). Similarly a set of basis functions to approximate the virtual displacements v.

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

- Generate a mesh: a discretisation of the domain into disjoint pieces, the union of which approximates the domain.
 In this case the interval [0, L] can be split into intervals (not necessarily equal).
- Selection of a set of basis functions used to approximate u, defined using the mesh. Gives approximation of u in terms of a discrete set of variables (e.g. the values u_i at the nodes of the mesh). Similarly a set of basis functions to approximate the virtual displacements v.
- Use of (\star) , set W=0 for different v, to generate equations for the u_i .

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

- Generate a mesh: a discretisation of the domain into disjoint pieces, the union of which approximates the domain.
 In this case the interval [0, L] can be split into intervals (not necessarily equal).
- Selection of a set of basis functions used to approximate u, defined using the mesh. Gives approximation of u in terms of a discrete set of variables (e.g. the values u_i at the nodes of the mesh). Similarly a set of basis functions to approximate the virtual displacements v.
- Use of (\star) , set W=0 for different v, to generate equations for the u_i .
- In general gives nonlinear ODEs.

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

• For example, take the 'mesh' as consisting of a single interval [0, L] with $u = u_1 N_1$ and N_1 is the shape function $N_1(x) = x/L$. This approximates u as linear.

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

- For example, take the 'mesh' as consisting of a single interval [0, L] with $u = u_1 N_1$ and N_1 is the shape function $N_1(x) = x/L$. This approximates u as linear.
- Note that $u(L) = u_1 N_1(L) = u_1$ so u_1 is the displacement at the node x = L. Then $du/dx = u_1/L$.

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

- For example, take the 'mesh' as consisting of a single interval [0, L] with $u = u_1 N_1$ and N_1 is the shape function $N_1(x) = x/L$. This approximates u as linear.
- Note that $u(L) = u_1 N_1(L) = u_1$ so u_1 is the displacement at the node x = L. Then $du/dx = u_1/L$.
- Choose the virtual velocity $v = N_1$.

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

- For example, take the 'mesh' as consisting of a single interval [0, L] with $u = u_1 N_1$ and N_1 is the shape function $N_1(x) = x/L$. This approximates u as linear.
- Note that $u(L) = u_1 N_1(L) = u_1$ so u_1 is the displacement at the node x = L. Then $du/dx = u_1/L$.
- Choose the virtual velocity $v = N_1$.
- Then W = 0 in (\star) becomes

$$\left(\frac{\rho_0 L}{3}\right) \ddot{u}_1 + \frac{E}{L} u_1 = t_L + \int_0^L \rho_0 f \frac{x}{L} dx$$

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L. \tag{*}$$

- For example, take the 'mesh' as consisting of a single interval [0, L] with $u = u_1 N_1$ and N_1 is the shape function $N_1(x) = x/L$. This approximates u as linear.
- Note that $u(L) = u_1 N_1(L) = u_1$ so u_1 is the displacement at the node x = L. Then $du/dx = u_1/L$.
- Choose the virtual velocity $v = N_1$.
- Then W = 0 in (\star) becomes

$$M\ddot{u}_1 + Ku_1 = F$$

 $(M = \rho_0 L/3 \text{ the mass}, K = E/L \text{ the stiffness}).$

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L - t_0 v \big|_0. \quad (\star)$$

• Again take the 'mesh' as consisting of a single interval [0,L] with $u=u_0N_0+u_1N_1$ and $N_0=(L-x)/L$, $N_1(x)=x/L$. This again approximates u as linear (but now without a clamped boundary at x=0)

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L - t_0 v \big|_0. \quad (\star)$$

- Again take the 'mesh' as consisting of a single interval [0,L] with $u=u_0N_0+u_1N_1$ and $N_0=(L-x)/L$, $N_1(x)=x/L$. This again approximates u as linear (but now without a clamped boundary at x=0)
- Choose two different virtual velocities $\tilde{v}_0 = N_0$ and $\tilde{v}_1 = N_1$.

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L - t_0 v \big|_0. \quad (\star)$$

- Again take the 'mesh' as consisting of a single interval [0,L] with $u=u_0N_0+u_1N_1$ and $N_0=(L-x)/L$, $N_1(x)=x/L$. This again approximates u as linear (but now without a clamped boundary at x=0)
- Choose two different virtual velocities $\tilde{v}_0 = N_0$ and $\tilde{v}_1 = N_1$.
- Then W = 0 in (\star) becomes, using each virtual velocity in turn,

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L - t_0 v \big|_0. \quad (\star)$$

- Again take the 'mesh' as consisting of a single interval [0,L] with $u=u_0N_0+u_1N_1$ and $N_0=(L-x)/L$, $N_1(x)=x/L$. This again approximates u as linear (but now without a clamped boundary at x=0)
- Choose two different virtual velocities $\tilde{v}_0 = N_0$ and $\tilde{v}_1 = N_1$.
- Then W = 0 in (\star) becomes, using each virtual velocity in turn,

$$\left(\frac{\rho_0 L}{6}\right) \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \ddot{u}_0 \\ \ddot{u}_1 \end{pmatrix} + \frac{E}{L} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \end{pmatrix} = \begin{pmatrix} -t_0 \\ t_L \end{pmatrix} + \begin{pmatrix} f_0 \\ f_1 \end{pmatrix}$$

One-dimensional bar

$$W = \int_0^L -E \frac{du}{dx} \frac{dv}{dx} + \rho_0 f v - \rho_0 \ddot{u} v \, dx + t_L v \big|_L - t_0 v \big|_0. \quad (\star)$$

- Again take the 'mesh' as consisting of a single interval [0,L] with $u=u_0N_0+u_1N_1$ and $N_0=(L-x)/L$, $N_1(x)=x/L$. This again approximates u as linear (but now without a clamped boundary at x=0)
- Choose two different virtual velocities $\tilde{v}_0 = N_0$ and $\tilde{v}_1 = N_1$.
- Then W = 0 in (\star) becomes, using each virtual velocity in turn,

$$\left(\frac{\rho_0L}{6}\right)\begin{pmatrix}2&1\\1&2\end{pmatrix}\begin{pmatrix}\ddot{u}_0\\\ddot{u}_1\end{pmatrix}+\frac{E}{L}\begin{pmatrix}1&-1\\-1&1\end{pmatrix}\begin{pmatrix}u_0\\u_1\end{pmatrix}=\begin{pmatrix}-t_0\\t_L\end{pmatrix}+\begin{pmatrix}f_0\\f_1\end{pmatrix}$$

mechanical: $M\ddot{u} + Ku = F$, (M is the mass matrix, K is the stiffness matrix).

Summary

- The principle of virtual work and D'Alembert's principle naturally connect the equation of balance of linear momentum to an integral (weak) form.
- The weak form plus the restriction of the virtual displacements/velocities (test functions) allows us to consider a wider class of solutions than we might be able to consider for the original differential equations.
- Applies to all materials: fluid and solid, hyperelastic or not.