품질공학 HW #5

2020170837 최원준

9.1. The data in Table 9E.1 represent individual observations on molecular weight taken hourly from a chemical process.

The target value of molecular weight is 1,050 and the process standard deviation is thought to be about $\sigma = 25$.

(a)
$$\mu_0 = 1050$$
, $\sigma = 25$

$$K = \frac{1 \cdot 25}{2} = 12.5, \quad H = 5 \cdot 25 = 125$$

- (a) Set up a tabular CUSUM for the mean of this process. Design the CUSUM to quickly detect a shift of about 1.0σ in the process mean.
- (b) Is the estimate of σ used in part (a) of this problem reasonable?

		1	1		•			
Period	Input	C_Plus	N_Plus	C_Minus	N_Minus			
1	1045	0	0	0	0			
2	1055	0	0	0	0			
3	1037	0	0	0.5	0			
4	1064	1.5	1	0	0			
5	1095	34	2	0	0			
6	1008	0	0	29.5	0			
7	1050	0	0	17	0			
8	1087	24.5	1	0	0	1200 -	C-	_
9	1125	87	2	0	0		→ C-	
10	1146	170.5	3	0	0	1000 -	U	CL ent
11	1139	247	4	0	0	800 -	LC	
12	1169	353.5	5	0	0	800		
13	1151	442	6	0	0	600 -		
14	1128	507.5	7	0	0			
15	1238	683	8	0	0	400 -		
16	1125	745.5	9	0	0	200		
17	1163	846	10	0	0	200 -		
18	1188	971.5	11	0	0	0 -	• •	•
19	1146	1055	12	0	0			
20	1167	1159.5	13	0	0	l	0.0	2.
K = 12.5	& H = 125						3.0	

(b)

 $n(= sample \ size) = 1$ 일 때는 $\frac{\overline{MR}}{d_2}$ 를 $\hat{\sigma}$ 으로 사용한다.

$$\hat{\sigma} = \frac{38.84}{1.128} = 34.43$$

문제에서 추정한 σ 값인 25와는 큰 차이를 보이고 있으므로 적절한 추정이 아니라고 볼 수 있다.

9.2. Rework Exercise 9.1 using a standardized CUSUM.

Standardized CUSUM 은 다음과 같이 정의된다.

9.1.4 The Standardized CUSUM

Many users of the CUSUM prefer to standardize the variable x_i before performing the calculations. Let

$$y_i = \frac{x_i - \mu_0}{\sigma} \tag{9.8}$$

be the standardized value of x_i . Then the standardized CUSUMs are defined as follows.

The Standardized Two-Sided CUSUM $C_{i}^{+} = \max \left[0, y_{i} - k + C_{i-1}^{+} \right] \qquad (9.9)$ $C_{i}^{-} = \max \left[0, -k - y_{i} + C_{i-1}^{-} \right] \qquad (9.10)$

$$\mu_0 = 1050$$
, $\sigma = 25$

$$K = \frac{1 \cdot 1}{2} = 0.5$$
, $H = 5 \cdot 1 = 5$

Period	Input	C_Plus	N_Plus	C_Minus	N_Minus
1	-0.2	0	0	0	0
2	0.2	0	0	0	0
3	-0.52	0	0	0.02	0
4	0.56	0.06	1	0	0
5	1.8	1.36	2	0	0
6	-1.68	0	0	1.18	0
7	0	0	0	0.68	0
8	1.48	0.98	1	0	0
9	3	3.48	2	0	0
10	3.84	6.82	3	0	0
11	3.56	9.88	4	0	0
12	4.76	14.14	5	0	0
13	4.04	17.68	6	0	0
14	3.12	20.3	7	0	0
15	7.52	27.32	8	0	0
16	3	29.82	9	0	0
17	4.52	33.84	10	0	0
18	5.52	38.86	11	0	0
19	3.84	42.2	12	0	0
20	4.68	46.38	13	0	0
K = 0.5 &	H = 5				

9.25. Rework Exercise 9.1 using an EWMA control chart with $\lambda = 0.1$ and L = 2.7. Compare your results to those obtained with the CUSUM.

```
\mu_0 = 1050, \ \sigma = 25
\lambda = 0.1, \ L = 2.7
```



```
if c_p > UCL:
    print(f'First "out of control" at period {period}')
    break

✓ 0.0s

First "out of control" at period 9

for period, z_, ucl in zip(np.arange(ex_data1['x'].shape[0] + 1)[1:], z[1:], EWMA_UCL[1:]):
```

이 문제에서는 CUSUM chart는 period 9부터 불량을 탐지하였고 EWMA는 period 10 부터 불량을 탐지하였다.

CUSUM은 변동 감지에 상대적으로 민감하여 공정의 작은 변동도 빠르게 포착하는 반면,

EWMA는 공정의 전체적인 방향을 탐지하는 데에 더 유리해보인다.

CUSUM 과 달리 EWMA 는 각 period 마다 UCL 과 LCL을 새로 계산해줌으로 더 정확한 변동 감지가 가능하다. 두 차트 모두 작은 변동에는 민감하게 반응하지만, 큰 변동에는 Shewart chart 만큼 빠르게 감지하지는 못한다.

9.26. Consider a process with
$$\mu_0 = 10$$
 and $\sigma = 1$. Set up the following EWMA control charts:

(a)
$$\lambda = 0.1, L = 3$$

(b)
$$\lambda = 0.2, L = 3$$

(c)
$$\lambda = 0.4, L = 3$$

Discuss the effect of λ on the behavior of the control

각 상황별로 steady-state control limit을 구해보겠다.

$$UCL = \mu_0 + L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

$$CL = \mu_0$$

$$LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

$$CL = \mu_0$$

$$LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

λ	L	UCL	LCL
0.1	3	10.6882472	9.3117528
0.2	3	11	9
0.4	3	11.5	8.5
target (μ_0)	10		
σ	1		

L 값이 일정할 때 steady-state control limit은 λ 가 커질수록 UCL은 증가하고, LCL은 감소한다.

즉 전체 control limit 폭은 λ 가 증가함에 따라 같이 증가한다.

다음은 $y=\sqrt{\frac{\lambda}{2-\lambda}}$ 그래프이다. 그래프를 통해 볼 수 있듯이 y 값은 λ 가 증가함에 따라 같이 증가하게 된다.

 λ 크다는 것은 present observation 에 더 큰 가중을 한다는 의미로 큰 변동을 감지하 는 데에 유리하며,

 λ 가 작다는 것은 past observation 에 더 큰 가중을 하는 것으로 작은 변동을 감지 하는 데에 유리하다.

공정 특성에 따라서 적절한 λ 값을 설정해야한다.