Lineare Algebra 2 — Lösung zu Übungsblatt 6

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Fr 12.06.2020 um 9:15 Uhr

- **22. Aufgabe:** (3+3 Punkte, Die Jordansche Normalform)
 - (a) Man bestimme die Jordansche Normalform der Matrix

$$A = \begin{pmatrix} 10 & -11 & -11 & -32 \\ -1 & 0 & -2 & 4 \\ 1 & -1 & 1 & -4 \\ 2 & -2 & -2 & -6 \end{pmatrix} \in M_{4,4}(\mathbb{Q})$$

aus Aufgabe 17.

(b) Sei $n \in \mathbb{N}$ und sei $A \in M_{n,n}(\mathbb{Q})$ eine Matrix mit den Invariantenteilern

$$c_1(A) = \dots = c_5(A) = 1$$
, $c_6(A) = t + 1$, $c_7(A) = t^2 + t$, $c_8(A) = t^5 + 3t^4 + 3t^3 + t^2$

wie in Aufgabe 20. Man bestimme die Jordansche Normalform von A.

Bemerkung: Die Ergebnisse aus Aufgabe 17 und Aufgabe 20 dürfen ohne erneuten Beweis verwendet werden.

Lösung:

(a) In Aufgabe 17 wurden bereits die Invariantenteiler bestimmt. Diese sind:

$$c_1(A) = 1$$

 $c_2(A) = 1$
 $c_3(A) = t - 2$
 $c_4(A) = (t+1)(t-2)^2$

Die Weierstrassteiler sind Potenzen teilerfremder, irreduzibler Faktoren der nichtkonstanten Invariantenteiler:

$$h_1(A) = t - 2$$

 $h_2(A) = t + 1$
 $h_3(A) = (t - 2)^2$

Wie bestimmen die Nullstellen $\lambda_1, \lambda_2, \lambda_3$ der Weierstrassteiler mit Vielfachheiten e_1, e_2, e_3 :

$$\lambda_1 = 2,$$
 $e_1 = 1$ $\lambda_2 = -1,$ $e_2 = 1$ $\lambda_3 = 2,$ $e_3 = 2$

Die zugehörigen Jordanmatrizen sind daher

$$J(2,1) = (2), \quad J(-1,1) = (-1), \quad J(2,2) = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}.$$

Wir gruppieren Jordanmatrizen zu gleichen Eigenwerten zusammen, dann ist die Jordannormalform von *A* gegeben durch:

$$A \approx \begin{pmatrix} J(-1,1) & & & \\ & J(2,1) & & \\ & & J(2,2) \end{pmatrix} = \begin{pmatrix} -1 & & & \\ & 2 & & \\ & & 2 & 0 \\ & & 1 & 2 \end{pmatrix}$$

(b) In Aufgabe 20 wurden bereits die Weierstrassteiler bestimmt. Diese sind:

$$h_{1,1} = t + 1$$

 $h_{2,1} = t$
 $h_{2,2} = t + 1$
 $h_{3,1} = t^2$
 $h_{3,2} = (t + 1)^3$

Wir erhalten folgende Nullstellen $\lambda_1, ..., \lambda_5$ mit Vielfachheiten $e_1, ..., e_5$:

$$\lambda_1 = -1,$$
 $e_1 = 1$
 $\lambda_2 = 0,$ $e_2 = 1$
 $\lambda_3 = -1,$ $e_3 = 1$
 $\lambda_4 = 0,$ $e_4 = 2$
 $\lambda_5 = -1,$ $e_5 = 3$

Die Jordannormalform ist nun gegeben durch:

$$A \approx \begin{pmatrix} J(-1,1) & & & & \\ & J(0,1) & & & \\ & & J(-1,1) & & \\ & & & J(-1,3) & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\$$

23. Aufgabe: $(2+4 \ Punkte, Faktormoduln \ "uber Faktorringen")$ Seien R ein Ring, $I \subseteq R$ ein Ideal und M ein R-Modul. Dann ist nach Bemerkung 6.11 die Menge

$$IM = \left\{ \sum_{i=1}^{n} a_i m_i \mid a_i \in I, m_i \in M, n \in \mathbb{N} \right\} \subseteq M$$

ein R-Untermodul von M. Man zeige:

- (a) Mit der natürlichen Addition und der skalaren Multiplikation $R/I \times M/IM \rightarrow M/IM$, $(\overline{a}, \overline{m}) \mapsto \overline{a} \cdot \overline{m} := \overline{a \cdot m}$ wird M/IM zu einem R/I-Modul. **Hinweis:** Man verwende, dass M/IM ein R-Modul ist.
- (b) Ist $n \in \mathbb{N}$ und $\varphi \colon M \to R^n$ ein R-Modulisomorphismus, so ist $\varphi|_{IM} \colon IM \to I^n$ eine Bijektion und φ induziert einen R/I-Modulisomorphismus $\overline{\varphi} \colon M/IM \to (R/I)^n$.

Lösung:

- (a) Nach Bem. 6.6 ist M/IM bereits ein R-Modul, sodass $(M/IM, +, \overline{0})$ bereits eine abelsche Gruppe bildet. Die in der Aufgabenstellung definierte Multiplikation ist wohldefiniert, denn es gilt für $a + I = b + I \in R/I$, dass $a b \in I$ und daher $am bm = (a b)m \in IM$, also $\overline{am} = \overline{bm}$. Mit der Definition der Multiplikation und unter der Ausnutzung, dass M ein R-Modul ist, gilt für \overline{a} , $\overline{b} \in R/I$ und \overline{m} , $\overline{m'} \in M/IM$:
 - $\overline{(a+b)} \cdot \overline{m} = \overline{(a+b)m} = \overline{am+bm} = \overline{a} \cdot \overline{m} + \overline{b} \cdot \overline{m}$
 - $\overline{a} \cdot \overline{(m+m')} = \overline{a(m+m')} = \overline{am+am'} = \overline{a} \cdot \overline{m} + \overline{a} \cdot \overline{m'}$
 - $\overline{a}(\overline{b} \cdot \overline{m}) = \overline{a} \cdot \overline{bm} = \overline{abm} = \overline{ab} \cdot \overline{m} = (\overline{a} \cdot \overline{b})\overline{m}$
 - $\overline{1} \cdot \overline{m} = \overline{1 \cdot m} = \overline{m}$

Alternative Lösung: $I \subseteq \text{Ann}(M/IM) = \{a \in R \mid aM/IM = 0\}$. Außerdem wissen wir bereits, dass M/IM ein R-Modul ist. Damit folgt mit der Anmerkung nach Def. 6.12, dass M/IM auch ein R/I-Modul ist. Insbesondere ist die Multiplikation wohldefiniert.

(b) Wir zeigen zuerst, dass $\varphi|_{IM} \colon IM \to I^n$ eine Bijektion ist. Die Einschränkung $\varphi|_{IM} \colon IM \to I^n$ ist wohldefiniert, da $\varphi|_{IM}(IM) \subseteq I^n \colon$ Sei dafür $\sum_{i=1}^n a_i m_i \in IM$ mit $a_i \in I$, $m_i \in M$. Es gilt

$$\varphi|_{IM}(\sum_{i=1}^n a_i m_i) = \sum_{i=1}^n a_i \varphi(m_i) \in I^n,$$

da $\varphi(m_i) \in \mathbb{R}^n$ nach Definition von φ . Die Injektivität von φ vererbt sich auf die Einschränkung $\varphi|_{IM}$. Für die Surjektivität sei $(a_1,...,a_n) \in I^n$. Da φ surjektiv ist, gibt es Elemente $m_i \in M$ mit $\varphi(m_i) = (0,...,1,...,0) \in \mathbb{R}^n$, mit 1 an der i-ten Stelle. Es gilt

$$\varphi|_{IM}(\sum_{i=1}^n a_i m_i) = \sum_{i=1}^n a_i \varphi(m_i) = (a_1, ..., a_n)$$

und $\varphi|_{IM}$ ist damit surjektiv.

Wir betrachten die Abbildung $\pi\colon R^n\to (R/I)^n$ die durch komponentenweise Anwendung der kanonischen Projektion gegeben ist. Dann ist π ein surjektiver R-Modulhomomorphismus und es gilt $\ker(\pi)=I^n$ (ggf. nachrechnen). Es folgt

$$\ker(\pi \circ \varphi) = \{ m \in M \mid \pi(\varphi(m)) = 0 \}$$
$$= \{ m \in M \mid \varphi(m) \in I^n \}$$
$$= IM.$$

wobei die letzte Gleichung daraus folgt, dass $\varphi|_{IM}$ IM bijektiv auf I^n abbildet. Mit dem Homomorphiesatz gilt nun, dass $\pi \circ \varphi$ einen R-Isomorphismus $\overline{\pi} \circ \overline{\varphi} \colon M/IM \to (R/I)^n$ induziert. Dieser ist bereits ein R/I-Isomorphismus. Hierbei wird die Bijektivität und Additivität erhalten. Für die Multiplikation mit Elementen $\overline{a} \in R/I$ erhalten wir: $\overline{\varphi}(\overline{am}) = \overline{\varphi}(\overline{am} + IM) = (\pi \circ \varphi)(\overline{am}) = \pi(\overline{a} \cdot \varphi(\overline{m})) = \overline{a} \cdot \overline{\varphi}(\overline{m} + IM) = \overline{a} \cdot \overline{\varphi}(\overline{m})$.

Definition: Sei R ein Ring und M ein R-Modul. Sei $(x_i)_{i \in I}$ ein Erzeugendensystem von M. Dann heißt $(x_i)_{i \in I}$ minimal, wenn für jede echte Teilmenge $J \subseteq I$ das System $(x_i)_{i \in J}$ kein Erzeugendensystem von M ist.

24. Aufgabe: (4 Punkte, Minimale Erzeugendensysteme und Basen) Man zeige, dass die Menge $S := \{t+1, t^2+1\}$ ein minimales Erzeugendensystem von $\mathbb{Q}[t]$ als $\mathbb{Q}[t]$ -Modul, aber keine Basis ist

Lösung:

• S ist ein ES: Es gilt $1 = \frac{1}{2}(t^2 + 1) + (-\frac{1}{2})(t - 1)(t + 1) \in \text{Lin}(S)$. Hiermit folgt für ein beliebiges Polynom $f \in \mathbb{Q}[t]$, dass

$$f = f \cdot 1 = f \cdot (\frac{1}{2}(t^2 + 1) + (-\frac{1}{2})(t - 1)(t + 1)) = f \cdot \frac{1}{2}(t^2 + 1) + f(-\frac{1}{2})(t - 1)(t + 1) \in \text{Lin}(S).$$

• S ist ein minimales ES: Dafür müssen wir zeigen, dass $\{t+1\}$ und $\{t^2+1\}$ keine ES'e von $\mathbb{Q}[t]$ sind. $\mathbb{Q}[t]$ ist ein nullteilerfreier Ring, weshalb für Polynome $f,g \in \mathbb{Q}[t] \setminus \{0\}$ gilt:

$$\deg(fg) = \deg(f) + \deg(g).$$

Somit gilt für alle $f \in \text{Lin}(\{t+1\})$: $\exists g \in \mathbb{Q}[t] : f = g \cdot (t+1)$ und

$$\deg(f) = \deg(g) + \deg(t+1) = \deg(g) + 1 \neq 0,$$

denn $\deg(f) \ge 1$, falls $g \ne 0$ und $\deg(f) = -\infty$ für g = 0. Damit sind die konstanten Polynome nicht in $\text{Lin}(\{t+1\})$.

Analog verfahren wir mit $\{t^2 + 1\}$. Für alle $f \in \text{Lin}(\{t^2 + 1\})$: $\exists g \in \mathbb{Q}[t] : f = g \cdot (t^2 + 1)$ und

$$\deg(f) = \deg(g) + \deg(t^2 + 1) = \deg(g) + 2 \notin \{0, 1\},\$$

denn $\deg(f) \ge 2$, falls $g \ne 0$ und $\deg(f) = -\infty$ für g = 0. Damit sind die konstanten Polynome und Polynome von Grad 1 nicht in Lin($\{t+1\}$).

• S ist nicht linear unabhängig, da

$$a_1(t+1) + a_2(t^2+1) = 0$$

beispielsweise für $a_1 = t^2 + 1$ und $a_2 = -(t+1) \in \mathbb{Q}[t]$, $a_i \neq 0$.

- **25. Aufgabe:** (4+3+1 Punkte, Freie Moduln) Man zeige:
 - (a) Sei R ein Ring und $I \neq 0$ ein Ideal in R. Dann sind äquivalent:
 - (i) *I* ist ein Hauptideal, welches von einem Nicht-Nullteiler erzeugt wird.
 - (ii) *I* ist frei als *R*-Modul.
 - (b) Das Ideal $(2, 1 + \sqrt{-3})$ in $\mathbb{Z}[\sqrt{-3}]$ ist nicht frei als $\mathbb{Z}[\sqrt{-3}]$ -Modul. **Hinweis:** Man erinnere sich an Aufgabe 10.
 - (c) Man gebe ein Beispiel eines Ringes R, eines freien R-Moduls M und eines R-Untermoduls N von M, sodass N nicht frei ist.

Lösung:

(a) (i) \Rightarrow (ii): Sei I ein Hauptideal, welches von einem Nicht-Nullteiler $0 \neq x \in R$ erzeugt wird. Per Definition gilt dann I = (x) = Rx, das heißt (x) ist ein Erzeugendensystem von I. Da x kein Nullteiler ist, gilt für alle $y \in R$, $y \neq 0$, dass $yx \neq 0$ ist. Dies entspricht gerade der linearen Unabhängigkeit von (x). Daher ist (x) eine Basis von I und I ist somit ein freier R-Modul.

(ii) \Rightarrow (i): Sei I frei als R-Modul. Dann existiert eine Basis $(x_j)_{j \in J} \subset R$. In einem Ring sind zwei Elemente $x_j, x_k \in R$ jedoch immer linear abhängig, denn

$$x_i \cdot x_k + (-x_k) \cdot x_i = 0$$

ist eine nichttriviale Darstellung der Null. Damit ist die Basis einelementig, etwa I=Rx, und I ist ein Hauptideal. x ist außerdem kein Nullteiler, sonst gäbe es $y \in R$, $y \ne 0$ mit xy=0. Für $a=rx \in I=(x)$ würde dann ya=y(rx)=r(yx)=0 gelten, das heißt (a) wäre linear abhängig und es könnte daher keine Basis für I geben.

(b) In Aufgabe 10 wurde gezeigt, dass $\mathbb{Z}[\sqrt{-3}]^{\times} = \{\pm 1\}$ ist und 2, $1 + \sqrt{-3}$ und $1 - \sqrt{-3}$ irreduzibel in $\mathbb{Z}[\sqrt{-3}]$ sind. Angenommen $(2, 1 + \sqrt{-3})$ ist frei als $\mathbb{Z}[\sqrt{-3}]$ -Modul, so wäre $(2, 1 + \sqrt{-3})$ nach Aufgabenteil (a) ein Hauptideal, erzeugt von einem Nicht-Nullteiler x, das heißt

$$(2, 1 + \sqrt{-3}) = (x).$$

Da 2, $1 + \sqrt{-3} \in (x)$ sind, existieren $y_1, y_2 \in \mathbb{Z}[\sqrt{-3}]$ beide ungleich 0 mit

$$2 = y_1 x, \quad 1 + \sqrt{-3} = y_2 x.$$

Da 2 irreduzibel ist, muss entweder y_1 oder x eine Einheit sein. Es folgt $x \in \{\pm 1, \pm 2\}$. Analog folgt aus $1 + \sqrt{-3}$ irreduzibel, dass $x \in \{\pm 1, \pm (1 + \sqrt{-3})\}$ ist. Da 2 und $1 + \sqrt{-3}$ nicht assoziert sind, ist $x \in \{\pm 1\}$. Somit folgt

$$(2, 1 + \sqrt{-3}) = (\pm 1) = \mathbb{Z}[\sqrt{-3}],$$

aber $(2, 1 + \sqrt{-3})$ enthält offensichtlich nicht die 1, denn: Angenommen es existieren $a, b \in \mathbb{Z}[\sqrt{-3}]$ mit $1 = 2a + (1 + \sqrt{-3})b$. Dann folgt

$$1 - \sqrt{-3} = (1 - \sqrt{-3})(2a + (1 + \sqrt{-3})b) = 2((1 - \sqrt{-3})a + 2b),$$

also 2 | $(1 - \sqrt{-3})$. Da $1 - \sqrt{-3}$ irreduzibel ist müssten dann 2 und $1 - \sqrt{-3}$ assoziiert sein, was offenbar nicht der Fall ist.

(c) Betrachte den Ring $R = \mathbb{Z}[\sqrt{-3}]$ und den Modul M = R über sich selbst. $\mathbb{Z}[\sqrt{-3}]$ ist ein Ideal in R mit $\mathbb{Z}[\sqrt{-3}] = \mathbb{Z}[\sqrt{-3}] \cdot 1 = (1)$ und 1 ist offensichtlich ein Nicht-Nullteiler. Nach Teil (a) ist R somit ein freier R-Modul. Betrachte nun den R-Untermodul $N = (2, 1 + \sqrt{-3})$: Dieser ist nach Aufgabenteil (b) nicht frei. Damit haben wir ein geeignetes Beispiel gefunden.

Anmerkung: Jeder unitäre Ring *R* ist frei als *R*-Modul.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.