Modeling cellular pathways

- Modeling simple motifs
- State spaces, vector fields, and bifurcations
- Application to modeling the cell cycle

Next level of hierarchy

Cellular signaling and regulatory pathways

Cell physiology is governed by complex assemblies of interacting proteins carrying out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, movement and information processing.

These processes are orchestrated by signaling and regulatory networks.

Computational molecular biology

Take a cellular process and...

- 1. Draw a **wiring diagram** representing the signaling and regulatory interactions between underlying proteins...
- Convert the diagram to a system of (differential/difference/Boolean) equations...
- 3. **Simulate the system** (along with **finding optimal parameters**) to understand its temporal/spatial properties and how they relate to the process being modelled...
- 4. **Make predictions** about molecular and process-level behavior in unobserved scenarios including the effect of mutations.

Linear response

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R$$

Steady-state solution
$$R_{ss}=$$

$$s = \frac{k_0 + k_1 S}{k_2}$$

Linear response

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R$$

$$R_{ss} = \frac{k_0 + k_1 S}{k_2}$$

Linear response

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R$$

$$R_{ss} = \frac{k_0 + k_1 S}{k_2}$$

Hyperbolic response

$$R_T = R + R_P$$

$$\frac{dR_P}{dt} = k_1 SR - k_2 R_P$$

$$= k_1 S(R_T - R_P) - k_2 R_P$$

Steady-state solution
$$R_{P,ss}=rac{R_TS}{(k_2/k_1)+S}$$

Hyperbolic response

$$\frac{dR_P}{dt} = k_1 S(R_T - R_P) - k_2 R_P$$

Steady-state solution
$$R_{P,ss} = rac{R_T S}{(k_2/k_1) + S}$$

Hyperbolic response

$$R_T = R + R_P$$

$$\frac{dR_P}{dt} = k_1 S(R_T - R_P) - k_2 R_P$$

Steady-state solution
$$R_{P,ss} = rac{R_T S}{(k_2/k_1) + S}$$

$$R_{T} = R + R_{P}$$

$$\frac{dR_{P}}{dt} = \frac{k_{1}S(R_{T} - R_{P})}{K_{m1} + R_{T} - R_{P}} - \frac{k_{2}R_{P}}{k_{m2} + R_{P}}$$

Michaelis-Menten kinetics:

- One of the best-known models for enzyme kinetics
- Assumes that enzyme concentration is much less than the substrate concentration.

$$R_T = R + R_P$$

$$\frac{dR_P}{dt} = \frac{k_1 S(R_T - R_P)}{K_{m1} + R_T - R_P} - \frac{k_2 R_P}{k_{m2} + R_P}$$

$$k_1S(R_T-R_P)(K_{m2}+R_P)=k_2R_P(K_{m1}+R_T-R_P)$$

$$rac{R_{P,ss}}{R_T} = G(k_1 S, k_2, rac{K_{m1}}{R_T}, rac{K_{m2}}{R_T})$$
 Physiologically meaningful solution w/ $0 < R_{
m p} < R_{
m T}$

$$G(u,v,J,K) = \frac{2uK}{v - u + vJ + uK + \sqrt{(v - u + vJ + uK)^2 - 4(v - u)uK}}$$

Goldbeter-Koshland function: graded & reversible

Tyson (2003) Curr. Opin. Cell Biol.

 $R_T = R + R_P$

Zero-order ultrasensitivity

$$\frac{dR_P}{dt} = \frac{k_1 S(R_T - R_P)}{K_{m1} + R_T - R_P} - \frac{k_2 R_P}{k_{m2} + R_P}$$

Steady-state solution $rac{R_{P,ss}}{R_T} = G(k_1,S,k_2,rac{K_{m1}}{R_T},rac{K_{m2}}{R_T})$

Just like the linear and hyperbolic responses, the sigmoid response is graded & reversible, but, unlike the other two, it is also abrupt.

Positive feedback loop

One-way switch

1-parameter bifurcation diagram

Positive feedback loop

1-parameter bifurcation diagram

Positive feedback loop

- Irreversible
- Bistable
 - Between 0 & S_{crit}
 (bifurcation point) and
 - O Between S_{crti1} & S_{crit2}
- Undergoes a bifurcation:
 - In this case, a saddle-node bifurcation.

Negative feedback can also create an oscillatory response.

$$\bullet \quad X \to R \twoheadrightarrow X$$

This results in **damped oscillations** to a stable steady state.

Sustained oscillations require at least three components:

$$\bullet \quad X \to Y \to R \twoheadrightarrow X$$

Third component (Y) introduces a time delay in the feedback loop, causing the system to repeatedly over- & undershoot its steady state.