1	2	3	4	Calificación

Análisis Avanzado - Segundo parcial

12/07/2021

1. Consideremos el espacio normado

$$E = \{ a \in \ell^{\infty} : \text{ existe } n_0 \in \mathbb{N} \text{ tal que } a_n = 0 \text{ para todo } n \ge n_0 \},$$

dentro del cual consideramos el subespacio

$$S = \left\{ a \in E : \sum_{n \ge 1} a_n = 0 \right\}.$$

Probar que S es denso en E.

- **2**. Sea X un espacio métrico, y sean $f_n: X \to \mathbb{R}$ funciones que convergen uniformemente a una función continua f.
 - a) Probar que si $(x_n)_{n\geq 1}\subseteq X$ es tal que $\lim_{n\to\infty}x_n=x$ entonces $\lim_{n\to\infty}f_n(x_n)=f(x)$.
 - b) Mostrar que a) es falso si la convergencia de las f_n a f es solamente puntual.
- **3**. Sea $E \subseteq \mathbb{R}$ acotado. Probar que E es medible si y sólo si existen conjuntos $A, H \subseteq E$ tales que A es unión numerable de cerrados, H es un conjunto nulo y $E = A \cup H$.
- 4. Sea $(A_n)_{n\in\mathbb{N}}$ una sucesión de subconjuntos medibles del intervalo [0,1] tal que $A_{n+1}\subseteq A_n$ para todo $n\in\mathbb{N}$). Sea $f:[0,1]\to\mathbb{R}$ una función integrable tal que $0\leq f(x)<1$ para casi todo x.

Consideremos la sucesión de funciones $(f_n)_{n\in\mathbb{N}}$ definidas por $f_n=(1+f^n)\chi_{A_n}$. Probar que f_n es integrable para todo $n\in\mathbb{N}$, y que

$$\lim_{n\to\infty}\int f_n\,d\mu=\mu\left(\cap_{n\in\mathbb{N}}A_n\right).$$

Justifique todas sus respuestas, no omita detalles y sea claro al escribir.