STAT 135 Lecture 10/Midterm Review

Henry Liev

15 July 2025

Remark 0.1 (Estimation Big Picture)

- Have data $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} f(x|\theta)$, data (X's) random, θ fixed (not random)
- Construct $T(X_1, X_2, \ldots, X_n)$ to guess θ
- \bullet T is a random variable
- $\sqrt{Var(T)}$ is called standard error of T (Measure of uncertainty)
- T has a sampling distribution, which we can use to
 - 1. Quantify how good T is
 - 2. Expressing uncertainty
 - -SE(T)
 - Confidence intervals involving ${\cal T}$

Method 0.2 (Constructing Estimators)

- Method of Moments
 - Calculate population moments $\mu_k = E(X^k)$
 - Write θ in terms of the moments
 - Replace μ_k with $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i^k$
- Maximum Likelihood Estimation
 - Write likelihood function $L(\theta) = f(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$
 - $-\hat{\theta}_{MLE}$ is θ maximizing $L(\theta)$, $\hat{\theta}_{MLE} = \arg\max_{\theta} L(\theta)$
 - $-l(\theta) = \log(L(\theta))$
 - $\underset{\theta}{\operatorname{arg\,max}} l(\theta)$, set $l'(\theta) = 0$ solve for θ .

Remark 0.3 (Nice Properties)

 $\hat{\theta}$ an estimator of θ

- Unbiasedness: $E(\hat{\theta}) = \theta, \forall \theta$
 - \bar{X} is always unbiased
 - $-X_1$ is always unbiased
 - MoM not always unbiased $\mathcal{N}(\mu, \sigma^2) \to \hat{\sigma}_{MoM} = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$
 - MLE not always unbiased
- Consistency: $\hat{\theta}_n \stackrel{p}{\to} \theta$ as $n \to \infty$
 - A property of sequences of estimators
 - Low bar
 - $-X_1,\ldots,X_n$ iid with mean $\mu, \bar{X} \xrightarrow{p} \mu$ (Weak law of large numbers)
 - $-f(\bar{X}) \stackrel{p}{\to} f(\mu)$ f continuous (Continuous mapping theorem)
 - MoM are consistent
 - MLE is consistent

Remark 0.4 (Confidence Intervals via Math)

"Reasonable range of values" for θ have seen some cases where $\hat{\theta} \pm 1.96 SE(\hat{\theta})$ covers θ with probability 95%.

Example 0.5

Situation	How we get SE
$\hat{\theta} = \bar{X} \text{ or } p$	Use CLT/Calculate directly
$\hat{\theta} = f(\bar{X}) \text{ or } f(\hat{p})$ $\hat{\theta} \text{ is MLE}$	Delta Method
$\hat{\theta}$ is MLE	$SE(\hat{\theta}_{MLE}) pprox rac{1}{\sqrt{nI(\theta)}}$

Method 0.6 (Confidence Intervals via Simulation)

$$X_1, X_2, \dots, X_n \stackrel{iid}{\sim} f(x|\theta)$$

Have some estimator $\hat{\theta}$ of θ

Get approximate CI with parametric bootstrap

Parametric Bootstrap

1. By simulation, generate large B iid samples of size n from $f(x|\hat{\theta})$, For each i, calculate θ_i^*

Remark 0.7 (Measuring Goodness of Estimators)

- Focused on MSE (Mean Squared Error) $E\left\lceil (\hat{\theta} \theta)^2 \right\rceil$
- $MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias^2(\hat{\theta})$, Noise + Systematic Error
- Bias-Variance Tradeoff
- · Optimality
 - Can't find a "best overall" estimator
 - We can find (sometimes) a best unbiased estimator
 - Cramer-Rao Lower Bound: Variance of unbiased estimator $\geq \frac{1}{nI(\theta)}$
 - * If we have an unbiased estimator with variance $\frac{1}{nI(\theta)}$, it is the best possible amongst (unbiased estimators)
 - MLE is "asymptotically optimal", $\hat{\theta}_{MLE} \approx \mathcal{N}(\theta, \frac{1}{nI(\theta)})$

Remark 0.8 (Sufficiency)

- Main idea: A sufficient statistic T for θ has all the info in the sample about θ
- Formal definition: Conditional distribution of X's on T $(f(x_1, x_2, ..., x_n | \theta))$ does not depend on θ
- Factorization Criterion
 - T is sufficient $\Leftrightarrow f(x_1, \dots, x_n | \theta) = g(T(x_1, \dots, x_n), \theta) h(x_1, \dots, x_n)$, where g involves T and θ , whereas h does not involve θ
 - Can help find a sufficient statistic T and can help check that T is sufficient
- Why do we care? (Two ways to say sufficient statistics are important or necessary building blocks)
 - MLE must be based on a sufficient statistic
 - For any estimator $\hat{\theta}$ of θ , if we have a sufficient statistic, T for θ , we can make a new estimator $\tilde{\theta} = E(\hat{\theta}|T)$, which has a lower MSE (Rao-Blackwell Theorem)

Remark 0.9 (MLE)

- Can usually carry out (at least numerically)
- Consistent
- Asymptotically efficient $(\sqrt{n}(\hat{\theta}_{MLE} \theta) \stackrel{d}{\to} \mathcal{N}(0, \frac{1}{I(\theta)}))$
- Equivariance: $\hat{\theta}$ is the MLE for θ then $f(\hat{\theta})$ is the MLE for $f(\theta)$