

TEKNOFEST 2020 ROKET YARIŞMASI MBK KOU SPACE ROKET TAKIMI Atışa Hazırlık Raporu (AHR)

Takım Yapısı

KTR'den Değişimler

	KTR'den Değişimler	
Değişim Konusu	Değişim	Değişim Nedeni
Birincil ve Faydalı yük paraşütünün yeri	Paraşütlerin burunun i çerisine taşınmasına karar verilmiştir.	Büyük paraşütün içerisine rahat sığabilmesi için kabının uzatılması kararı alınıp diğer paraşütlerinde buruna taşınmasının daha sağlıklı olacağı hesaplanmıştır.
Paraşüt Rengi	Kırmızı, sarı yerine; turuncu,sarı ve yeşil renginde paraşütler kullanılmıştır.	Tedariği daha kolay olduğu için değişikliğe gidilmiştir.
GPS Değişimi	Adafruit Ultimate GPS Breakout yerine Beitian bn-880 GPS modülü kullanılmıştır.	Adafruit Ultimate GPS Breakout modülünün pandemiden dolayı tedariği zor olduğu için değişikliğe gidilmiştir.
Şok Kordonu Değişimi	Tübüler Naylon yerine Polyester Perlon kullanılmıştır.	Tübüler Naylonun taşıma kapasitesinin taşıması gerekenden çok fazla olması nedeniyle ve maliyet açısından uygun olan Polyester Perlon kullanımına karar verildi.
Kurtarma Sistemi	Kurtarma sisteminde yayın sıkışacağı alan kısaltılıp, paraşütün içine gireceği yaya bağlı olan kabın boyutu uzatıldı. Totalde kurtarma sisteminin boyu uzatılmış oldu.	Yayın sıkışacağı alanını kısaltarak fırlatma kuvvetini arttırmak ve kabın boyunu uzatarak paraşütün içerisine sığacağı alan oluşturmak.
Üst Kanatçık Konumu	Gövdelerin birleşim noktasından 16cm yukarısındayken 24,5cm yukarısına alınmıştır.	Gövde boyutlarının değişiminden dolayı statik marjinin istenilen değerde tutulabilmesi için değişikliğe gidilmiştir.
Faydalı yükün kapsülün açılma mekanizması	Faydalı yükün kapsülünün açılma mekanizması için 2 tane çubuk ve dişli yerine 1'er taneye düşürülmüştür.	Faydalı yükün kapsülün kapağına tek yönde daha çok kuvvet uygulayarak daha kolay açabilmesini sağlamaktadır.
Aviyonikllerin Görevlerinin Değişimi	Ana aviyonik olması planan kartın yedek; yedek aviyonik olması planlanan kartın ana aviyonik olmasına karar verildi.	Basınç sensörünün GPS'e kıyasla daha hassas irtifa verisi vermesi ve irtifanın karşılaştırılarak alındığında daha sağlıklı sonuçlar elde edilmesinden dolayı bu değişiklik tercih edildi.

KTR'den Değişimler

KTR'den Değişimler		
Değişim Konusu	Değişim	Değişim Nedeni
Burun boyutu	Burunun gövdeye geçtiği kısım 12cm'den 9 cm'ye düşürülmüştür.	Birincil ve yük paraşütünün buruna taşıma kararı alındığı ve paraşütlerin burundan daha rahat çıkabilmesi için denemeler yapılarak bu 3cm burunu kısaltmaya karar verilmiştir.
Gövde Boyutları	Üst gövdenin boyutu 80 cm'den 91 cm'e çıkarılmış olup alt gövdenin boyutu ise 100 cm'den 89 cm'e düşürülmüştür.	Roket tasarlama aşamasında yedek motor olarak tercih ettiğimiz M2150 ticari motorunun atanma olasılığı üzerine roketimizde minimum değişikliğe gitmek için alt gövdeyi uzun tasarlanmıştı. Atanan motorun M1675 olmasından dolayı alt gövdede boşluk kalmıştır. Statik marjinin istenilen seviyede tutulması için gövde boyutlarında değişime gidilip uçuş analiz verileri aşağıdaki gibi tekrar hesaplanmış olup grafik sonuçları sonucunda uçuşun daha stabil gerçekleştiği öngörülmüştür.
Motor Kapağı Malzemesi	Üretim malzemesi Alüminyumken, demir olarak revize edildi	Alüminyumun erime sıcaklığı ve özkütle düşüklüğünden dolayı hafif olması uçuş statik marjini olumsuz etkilemekteydi. Yapılan hesaplamalara göre motor kapağının daha ağır olmasına karar verildi

Roket Alt Sistemleri

Roket Alt Bileşenleri	Üretim ve Tedarik Durumları	
Burun	Üretimi Tamamlandı.	
Gövdeler	Üretimi Tamamlandı.	
Kanatçıklar ve Motor Alt Sistemleri	Üretimi Tamamlandı.	
Aviyonik Sistem	Üretim Tamamlandı, üzerinde geliştirilmeler yapılmakta.	
Kurtarma Sistemi	Üretimi Tamamlandı.	
Paraşütler	Üretimi Tamamlandı.	
Faydalı Yük	Üretimi Tamamlandı.	
Ara bağlantı elemanları	Üretimi Tamamlandı.	

OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

Burun – Detay

Burun konisi optimum aerodinamik özellikleri sağlamak için **Ogive** şekilde üretilmiştir. Hafif ve sağlam olduğu için üretim malzemesi olarak karbon fiber tercih edilmiştir.

Karbon fiber burunu, karbon elyafı yatırıp reçine sürme yöntemi ile üretilmiştir.

Burun gövdeye sıkı şekilde değil, normal – serbest arası geçme ile geçecektir. Bu sayede yay gücü ile kolayca gövdeden dışarı fırlamayacak, yukarı çıkarken motor kuvveti sayesinde gövdeden ayrılmayacaktır.

Burun konisi gövdeye içeriden sağlam bir ip ile bağlı olup fırladıktan sonra farklı bir yere gitmeyecektir. İçerisine hafif şekilde yerleştirilmiş olacak olan paraşütler yükün ağırlığı sayesinde içerisinden düşecek ve roket düşmeye başladığı anda açılmaya başlayacaktır.

Roket Alt Sistem	Ürün Yapı Malzemesi	Üretim Ağırlığı (g)
Burun Konisi	Karbonfiber	434 g

Faydalı Yük ve Faydalı Yük Bölümü – Detay

Faydalı yük yere güvenli ve sağlam bir şekilde ulaşabilmesi amacıyla kapsül şeklinde tasarlanmıştır. Kapsül oval iki kapak ve bir silindirik gövde olmak üzere üç parçadan oluşmaktadır. Parçaların her biri 3B yazıcıdan PLA+ (mor renkli) kullanılarak üretilmiştir. Kapsülün içinde bir adet insansız kara aracı bulunmaktadır. İnsansız kara aracı arazinin izohips haritasını oluşturmak amacıyla kapsül içerisinden üzerindeki kremayer mekanizması (bir tane çubuk ve bir tane çarktan oluşan sistem) sayesinde kapsülden çıkıp görevini gerçekleştirecektir. İnsansız kara aracının arazide ilerleyebilmesi için palet, rulman, pla parçaları ve motordan oluşan sistem kullanılmıştır. Kapsülün içinde ayrıca kapsülün pozisyonuna göre aracın düz kalması için dışı PLA+'dan içi ise 3.5 mm demir bilyelerden oluşan rulman(2 adet) kullanılmıştır. Kapsülün ağırlığı 4 kg yapmak için kapsülün içine ağırlık yerleştirildi.

KAPSÜLÜN İÇİNDEKİ RULMANIN	İÇ ÇAP:9.00
BOYUTU	DIŞ ÇAP:9.89
KAYIŞIN İÇİNEKİ RULMANIN	DIŞ ÇAP:19 mm
BOYUTU	İÇ ÇAP:7 mm

PALET BOYUTU	10 cm
İNSANSIZ HAVA ARACI BOYUTU	114 mm
KREMAYER MEKANİZMASININ ÇARKININ BOYUTU	KALINLIĞI:7.70 mm ÇAPI:1mm
KREMAYER MEKANİZMASININ ÇUBUĞUNUN BOYUTU	110.77 mm

KAPSÜLÜN TOPLAM AĞIRLIĞI	4000 gr
KAPSÜLÜN DIŞ ÇAPI	11 cm
KAPSÜLÜN İÇÇAPI	10 cm
KAPSÜLÜN UZUNLUĞU	14,5 cm
KAPSÜLÜN ET KALINLIĞI	1 cm
KAPSÜLÜN MALZEMESİ	PLA
KAPSÜLÜN KABUK AĞIRLIĞI	531,45 g

İNSANSIZ KARA ARACININ İÇİNDE KULLANILAN MALZEMELER
Arduino nano
XBEE PRO 900
3S LiPO PİL
Redüktörlü DC motor
Beitian BN-880
URM 37 Ultrasonik mesafe sensörü
Buzzer

Kurtarma Sistemi Mekanik Görünüm

Ayrılma Sistemi – Detay

Kurtarma sistemi yaylı bir sistemdir. Altındaki servo motorların pim bağlantıları sayesinde yükün fırlatılmasını ve paraşütlerin fırlatılmasını kontrol etmektedir. Sistemin tamamının boyu 117,5 mm, çapı **113 mm** ölçülerinde üretilmiştir. 40 mm yay içerisine gömülü kalacak şekilde paraşüt kabı üretilmiştir. Paraşüt kabının

toplam uzunluğu ise **290**

Sistemin alt kısmında bulunan ilk servo roket düşmeye başladığı anda çalışarak sistemin ortasındaki yayı serbest bırakacak, yay ise faydalı yükü, yükün önünde bulunan faydalı yükün ve roketin küçük paraşütünü ve burunu gövdeden ayıracak şekilde fırlatacaktır.

Roket küçük paraşüt açık halde düşüşte iken, 600 m yüksekliğe geldiğinde ikinci servo çalışarak büyük paraşütün çıkmasını engelleyen pimi serbest bırakacak ve büyük paraşütün açılmasını sağlayacaktır. Büyük paraşüt yay kuvveti ile çıkmayacak şekilde kap içerisinde yumuşak bir kapak mukavva malzeme) sayesinde fırlamayacaktır. Küçük paraşütün büyük paraşütü açmasına engel olan pim açıldığı anda küçük paraşüt gerilip büyük paraşütü çekecek ve büyük paraşütün kapağının kuvvetini yenerek büyük paraşütün dışarı çıkmasını sağlayacaktır.

Paraşütler – Detay

- Paraşüt kumaşı olarak en büyük özelliği yırtılmazlık olan ripstop kumaşı kullanılmıştır.
- Paraşütlerin şeklinin; diğerlerine göre daha hızlı açılabilen, kontrolünün daha kolay olduğu ve büyük yükleri tek seferde indirebilme özelliğinden dolayı yuvarlak olmasına ayrıca paraşütün havada salınımını azaltması amacıyla ortasında paraşütün çapının %10'u oranında bir delik açılmıştır.
- Paraşütlerin mantar şeklini oluşturabilmesi için yarım portakal dilimi gibi kesilip dikilmiştir.
- Dilimlerin birleştiği noktalara lup adı verilen bağlantılar dikilmiştir bu luplar iplerin bağlanmasını kolaylaştırmaktadır.
- Dayanımı 400 kilograma kadar çıkabilen %100 polyester perlon şok kordonu kullanılmıştır.
- Paraşüt iplerini içerisinde kevlar maddesi bulunması sebebiyle 4 milimetre çapında olan paracord ipini tercih ettik.

PARAŞÜTLERİN ÖZELLİKLERİ	
Birincil Paraşüt	Roketin sürüklenmesini kontrol edebilmek için paraşütün düşüş hızının 27,235 m/s olacak şekilde çapı 800mm üretilmiştir. Paraşüt altı adet dilimin birleşmesiyle üretilmiştir. Luplardan inen iplerin her birinin uzunluğu 920mm'dir. Taşıyıcı ipler , ortadaki delikten inen ana (apex) iple birleşip 1,50m olan şok kordonuna bağlanacaktır. Kordonu rokete kurtarma sisteminin altında büyük paraşütün açılımını engelleyen bir yüzük yardımıyla tutulmaktadır. Birincil paraşüt ,zarfın içerisinde burunda bulunacaktır. Yayın fırlamasıyla paraşüt burundan çıkacaktır. Paraşütün rengi sarı, turuncu ve yeşil olarak üretilmiştir ama büyük paraşütten ayırt edilebilmesi içi boyanacaktır.
Yükün Paraşütü	Burunda bir zarfın içerisinde faydalı yüke 1,5m olan bir şok kordonuyla bağlanmıştır. Düşüş anında yayın fırlamasıyla serbest kalacaktır. Düşüş hızı 6,945m/s olabilmesi için 1,5m çapında üretilmiştir. Paraşüt sekiz adet dilimi birleştirilerek dikilmiştir. Dikim yerlerindeki lup bölgelerine bağlanan iplerin her birinin uzunluğu 1,72m'dir. Yükün roketten ayrılıp açıldığını gözlemlemek için rengini sarı ve turuncu olarak ürettik.
Ana Paraşüt	Yaya bağlı bir kap içerisinde bulunan ana paraşüt 600m'de servonun küçük paraşütün yüzüğünü serbest bırakmasıyla açılacaktır. Roket iniş hızının 6,832m/s olacak şekilde 2,80m olarak üretilmiştir. Paraşütü on adet dilimin birleşimiyle ve her bir dilimdeki lupa bağlı iplerin uzunluğu 3,22m'dir. Paraşütün rengi; birincil paraşütten ayırt edilmesini sağlayan iki adet yeşil dilim, sarı ve turuncudur. Ayrıca şok kordonunun 6m olmasından dolayı küçük paraşütün üstünde kalacaktır.

Aviyonik Sistem Mekanik Görünüm

CAD Görünümü Aviyonik Sitem

Üretilen Aviyonik Sitem

Aviyonik Sistem – Detay

Aviyonik sistem roketin üst gövdesinde, üzerinde bulkhead, altında gövde bağlantı parçası kalacak şekilde sabitlenmiştir. Avi yonik sistem için silindirik iki kapak arasına iki taraflı bir levha olacak şekilde parça üretilmiştir. İçine havalı poşete sarılmış halde iki adet li-po piller sabitlenmiştir. Parçanın iki yüzüne, yedek ve ana olacak şekilde iki aviyonik sabitlenmiştir. Aviyonik sistem hem fırlatma sistemini otonom kontrol edecek hem de konum ve yükseklik verilerini uzaktan yer istasyonuna iletecek şekilde tasarlanıp üretilmiştir. Algoritma; roketin yüksekliğini sürekli ölçerek son yükseklikten bir önceki yüksekliği çıkartmakta ve böylelikle sonucun pozitif ya da negatif çıkması durumuna göre roketin yükseldiği veya düştüğü sonucuna varmaktadır. Roket, düşme durumuna geçtiğinde fırlatma-kurtarma sisteminde bulunan servo motorları kontrol edip düzgünce çalıştırmaktadır. Ana aviyoniğe bağlı servo motorların tetiklenememesi, birlikte hem GPS bağlantısının kopması hem de basınç sensöründen yükseklik verisi alınamaması veya gücün tamamen kesilmesi (kartın yanması veya pilin bitmesi) durumlarında yedek aviyoniğe giden tetikleme sinyali kesilerek yedek aviyoniğe geçiş yapılacaktır. Gövdenin yüzeyine uzaktan iletişimi sağlayacak anten, BME 280 basınç sensörü ve aviyoniği açıp kapatmayı sağlayacak olan swit ch için delik açılmıştır.

Ana aviyonikten yedek aviyoniğe bir adet kablo ile sürekli "HIGH" sinyali gönderilmektedir. Yedek aviyonik başlangıçta bu sinyali gördüğü sürece hiçbir işlem yapmamaktadır fakat ana aviyonikte oluşabilecek bir aksaklık durumunda (GPS bağlantısının kopması ve basınç sensöründen veri alınamaması, servo motorların gerektiğinde tetiklenmemesi, aviyoniğe giden gücün herhangi bir sebepten dolayı kesilmesi, kartın yanması) "HIGH" sinyali "LOW" sinyaline dönüşerek yedek aviyoniğin aktif hale gelmesi sağlanmıştır. Böyle bir durumda ise ana aviyonik pasif duruma geçmektedir. Ana aviyoniği besleyen pilin bitmesi ya da bağlantısının kopması sebebiyle yedek aviyoniğe geçiş yapıldıysa böyle bir durumda yedek aviyoniğe giden sinyal yazılımsal olarak "LOW" değerine düşmediği için servo motorların VCC ve toprak hatları üzerinden dolaylı olarak ana aviyoniği az da olsa beslemekte ve bu da servolara giden sinyallerin çakışmasına neden olmakla beraber çalışmamasına sebep olmaktaydı. Bunun önüne geçebilmek için hem ana hem de yedek aviyoniğin servo uçlarına diyot eklenmiştir. (Testleri KTR aşamasında yapılmış olup başarılı olduğu video ile gösterilmiştir.)

Yedek aviyonik, ana aviyoniğin üstlendiği tüm görevleri yapabilecek şekilde tasarlanıp üretilmiştir. Sadece ana aviyonikten farklı olarak yükseklik ölçümü için basınç sensörü kullanmayıp bu işlemi yalnızca GPS ile yapmaktadır. Yedek aviyonik GPS vasıtasıyla aldığı yükseklik verileri ile ana aviyonikteki düşme algoritmasının aynısını kullanmaktadır.

Not: Üretim ve test sürecinde BME 280 basınç sensöründen alınan yükseklik verilerinin GPS'ten alınan yükseklik verilerine kıyasladaha hassas olması ve ana aviyonikte yükseklik verilerinin iki farklı algılayıcı tarafından kıyaslanmasının daha iyi sonuçlar vereceğini düşünmemiz nedeniyle yedek bilgisayar olarak kullanılması planlanarak tasarlanıp üretilmiş elektronik kartının ana bilgisayar, ana bilgisayar olarak kullanılması planlanarak tasarlanıp üretilmiş elektronik kartın ise yedek bilgisayar olarak kullanılmasına karar verilmiştir. Kartların tasarımında herhangi bir değişiklik olmayıp sadece kartların görevleri değişmiştir. Bu yüzden KTR aşamasında yapılan testler yeterli bulunup ayrıca test yapmaya gerek duyulmamıştır.

Ana, yedek ve faydalı yükten yer bilgisayarına XBEE aracılığıyla gönderilen verilerin başında üç haneli karakter kodları bulunmakta ve yazdığımız arayüz bu kodları gördüğü durumlarda bizim verilerimiz olduğunu anlayıp arayüz üzerinde ayrılan yerlere verileri yazdırmaktadır. Bu sayede diğer takımların gönderdiği veriler ile bizim verilerimizin karışması önlenmektedir. Verilerin başına koyulan karakter kodlarının üç haneli olması sayesinde verilerin karışma ihtimali oldukça azaltılmıştır. (4.5'e-5'den daha düşük ihtimal)

Roket ve faydalı yükün bulunmasını kolaylaştırmak amacıyla ana aviyonik, yedek aviyonik ve faydalı yükün devrelerine buzzer koyulmuştur. Bu sayede kurtarma ekibinin işi kolaylaştırılmıştır.

Aviyonik Sistem

Arayüz python ile yazılmış olup gövde ve yükün; yükseklik ve konum verilerini gösterebilmektedir. Her iki parçanın konum verilerini biigisayarda oluşturduğu .txt dosyasına kaydetmektedir. Daha sonrasında bu dosyalar manuel olarak "GPS Visualizer" adlı siteye aktarılıp rota bilgisi alınabilmektedir. Bu sayede kurtarma ekibinin işi kolaylaştırılmıştır. Ayrıca uçuş sırasında arayüz üzerine eklenen ekran sayesinde roketin hangi yöne(Doğu-Batı-Kuzey-Güney) doğru gittiği görülebilmektedir.(Bu özellik için çalışmalar sürmekte ve 10 Ağustos tarihine kadar tamamlanması öngörülmektedir.) Ayrıca roketin ve yükün, alınan yükseklik verileri kullanlılarak arayüz üzerindeki ayrılmış ekranlarda yükselme ve alçalma durumları iki boyutlu olarak görülebilmektedir. Bunların dışında motorların tetiklenme durumu, hangi aviyoniğin aktif olduğu ve zaman bilgileri de arayüz üzerinden görülebilmektedir. Aynı zamanda arayüzün yanında açılan seri ekran ile de yer bilgisayarına gelen tüm veriler görülebilmektedir.

Ana aviyonik ve faydalı yük güç verildiği anda direkt veri gönderimi yapmayıp sadece arayüz üzerinde bulunan "Başlat" butonuna basıldıktan sonra veri aktarımı yapmaya başlamaktadırlar. Bu, yer bilgi sayarından aviyoniklere sistemi başlatmak amacıyla yapılmış tek kontrol olayıdır. Bunun dışında yer bigi sayarından başka veri gönderimi yapılmamaktadır.

Ana Aviyonik: Kullanılan Komponentler
Arduino Nano
XBEE PRO 900
Beitian BN-880
BME 280
Servo Motor
Buzzer
3S Li-Po pil
Limit Anahtarı

Yedek Aviyonik: Kullanılan Komponentler
Arduino Nano
XBEE PRO 900
Beitian BN-880
Servo Motor
Buzzer
3S Li-po pil
Limit Anahtarı

Yer İstasyonu Kullanılan Komponentler
Arduino Nano
XBEE PRO 900

Yer istasyonu modüler bir yapıya sahiptir. Arayaüz ise .exe formatına çevrilerek bir masaüstü programı haline getirilmiştir. Bu sayede alanda bulunan herhangi bir takım üyesinin bilgisayarında yer istasyonu kolayca çalıştırılabilecektir. Bu sayede yer istasyonunun bağlandığı bilgisayarda sorun çıkması durumunda bir diğer bilgisayarda yer istasyonu hızlı bir şekilde çalıştırılabileceği için bu özellik bize hız ve kurtarma görevinde ciddi avantaj sağlamaktadır.

Kanatçıklar Mekanik Görünüm

Ön (küçük) Kanatçıklar

Arka (büyük) Kanatçıklar

Kanatçıklar – Detay

Rokette kullanılacak kanatçık tipleri statik marjin ve basınç merkezi dikkate alınarak istenilen değerlerin ayarlanabilmesi için free form şeklinde üretilmiştir.

Yapılan akış analizinde tasarlanan roketin kanatçıkları gerekli koşullarda başarılı bir şekilde dayanım sağlamıştır.

Kanatçıklar roket gövdesine açılan oyuklara taban kenarının geçirilmesi ile bağlantının daha güçlü olmasını ve montaj kolaylığı sağlamıştır.

Fiberglass kanatçıklar; karmaşık şekillere kolayca dönüşebilen, hafif, güçlü, kırılganlığı az olan aerodinamik açıdan roketimize optimum uygunluk sağlayan cam elyafın yatırılıp reçinelenmesi ile üretilmiştir.

Kanatçık sayısı olarak **4** üst gövdede **4** alt gövde de olmak üzere **8** kanat kullanılması uygun görülmüştür. Bunun en büyük sebebi ise rüzgara göre rokete istenilen hareket kabiliyetini sağlamasıdır.

Roket Genel Montaji

- Montajı yapılmış parçalar:
- 1) Alt ve üst kanatçıklar.
- 2) Motor bloğun ringleri.
- 3) Bulkhead'a mapanın montajı.

Motor Bloğu

Üretilen Gövde

- Montaj için yapılacaklar: Üst Gövde;
- 1) Burun-gövde bağlantısı yapılır.
- 2) Üst gövdenin alttaki ringi vidalanır.
- 3) Paraşütlerin ipleri, iki parça arasına dikilmiş lup bölümlerine denizci düğümüyle bağlanır.

4) Paraşütlerin ortasındaki delikten inen ana taşıyıcı ip (apex ipi), yardımcı taşıyıcı iplerin boyuna göre ayarlanıp sağlam bir düğüm atılarak birleştirilir. Düğümün altında devam etmekte olan apex ipi, şok kordonunda bıraktığımız yüzüğe sağlam bir şekilde bağlanır.

Paraşüt

Roket Genel Montaji

5) Katlanıp navlakasına yerleştirilmiş olan yük paraşütünün kordonu karabina yardımıyla yüke sabitlenir.

- 8) Kordonların bağlantı yaptığı yüzük kabın üst kısmında kalacak şekilde bırakılır.
- 9) Sürükleme paraşütünün ipleri ve şok kordonu takıldıktan sonra kordonun ucuna tektardan parakord ipi bağlantısı yapılarak kurtarma sisteminde ikinci servo kontrolünü sağlayan mekanizmadaki pimden geçerek ana paraşütün üst kısmındaki kordonun yüzüğüne bağlanarak rokete sabitlenir. Katlama işlemi gerçekleştirilerek navkasının içerisine konulur.
- 10) Kurtarma sisteminin yayı sıkıştırılarak pim'i birinci servo'ya sabitlenir.

6) Kurtarma sisteminin altında bulunan 1cm derinliğinde fiberglassdan üretilmiş olan bulkhead'in üzerindeki mapaya ana paraşütün şok kordonu karabina yardımıyla sabitlenir.

Roket Genel Montaji

- 11) Bulkhead, servoların kablolarını haberleştirecek şekilde aviyonik sistemini ve kurtarma sistemini birleştirir. Sürükleme paraşütünün ipleri kurtarma sisteminin kenarında olması dikkate alınarak rokete yerleştirilir. Bulkhead rokete vidalanır.
- 12) Faydalı yük, kurtarma sisteminin üzerine yerleştirilir. Kordon bağlantılarına dikkat edilerek yük paraşütü ardından sürükleme paraşütü buruna yerleştirilir ve burun kapatılır.

Alt Gövde;

- 1) Alt gövdeye önce motor bloğu yerleştirilir.
- 2) Alt gövdenin engine bloğu yerleştirilerek vidalanır.

Üst ve alt gövde ara parça ile birleştirilir.

Motor kapağı yerleştirilir.

Roket Motoru Montaji

Fiberglasstan üretilmiş olan motor bloğu ringlerle birlikte alt gövdeye yerleştirilir. Sonra motorun itki gücünü karşılayacak olan yine fiberglasstan üretilmiş 20 mm kalınlığında olan engineblockun montajı vidalarla yapılır. Daha sonra motor, gövdenin alt tarafından yerine konulur ve motor kapağı kapatılır.

Montaj Video Linki : https://youtu.be/Ao-ozu e3qQ

Üretilen Motor Kapağı

Üretilen Motor Bloğu

Montajı yapılmış Motor Bloğu ve Motor Kapağı

Atış Hazırlık Videosu

• Atış günü roketimizin tüm montajı yapılmış ve sistemleri çalışabilir durumda olacaktır. Altimetre gövde bağlantı noktasının içerisinde strafor bir yuvaya yerleştirilerek titreşimden korunur bir şekilde sabitlemiş olacağız. Aynı zamanda gövde bağlantı noktasının kolay ulaşılabilir bir yer olması bize kolaylık sağlayacaktır. Altimetre montajından sonra gövdenin dışarısından aviyonik sistemi switch yardımı ile aktifleştirilecektir ve atışa hazır hale gelecektir.

Video Linki : https://youtu.be/FGd1Q0XtDLo

Yapısal/Mekanik Mukavemet Testleri

Gövdeyi ürettiğimiz malzeme olan karbobfiberden test için plaka ürettik. Bu plaka ile dayanıklılık testi yaptık.

Gövde Yapısal Testi: https://www.youtube.com/watch?v=P_FlEpCaMZs&feature=youtu.be

Mekanik Vibrasyon: https://www.youtube.com/watch?v=U1B5D8lylJQ&feature=youtu.be

Kurtarma Sistemi Testleri

Yaylı kurtarma sistemimizi roketimizin montajı yapılmış bir şekilde test ettik. Ayrılma testi faydalı yükün dışarı atılması ve paraşütlerin çıkmasıyla başarılı bir şekilde gerçekleşti.

Ayrılma Testi: https://www.youtube.com/watch?v=lnw2QSA02RE&feature=youtu.be

Paraşüt: https://www.youtube.com/watch?v=dONdtskiFE8&feature=youtu.be

Paraşüt Açılma Testi: https://www.youtube.com/watch?v=t--XMf9jjnY&feature=youtu.be

Paraşüt Zarfı: https://www.youtube.com/watch?v=bx1-azXuXhM&feature=youtu.be

Faydalı Yük: https://www.youtube.com/watch?v=ktSmbzmxjK4&feature=youtu.be

• Aviyonik Sistem Yazılım ve Donanım Testleri

Aviyonikler Arası Geçiş Testi: https://www.youtube.com/watch?v=dONdtskiFE8&feature=youtu.be

GPS İrtifa Testi: https://www.youtube.com/watch?v=fKJgqQE0CMA&feature=youtu.be

Faydalı Yük Mesafe Sensörü: https://www.youtube.com/watch?v=f3-zE6jPYGs&feature=youtu.be

Basınç Sensörü Testi: https://www.youtube.com/watch?v=ixvf1p1vKH8&feature=youtu.be

• Telekominikasyon Testleri

Gps ile haberleşme testini araç ile uzaklaşarak test ettik. Gps gittiğimiz konumu bize çizerek başarılı bir sonuç verdi. Gps ile irtifa testini olta yardımı ile balkondan test ettik.

Araç ile Haberleşme Testi: https://www.youtube.com/watch?v=Ers_YelyXa8&feature=youtu.be

Olta İle Haberleşme Testi: https://www.youtube.com/watch?v=fKJgqQE0CMA&feature=youtu.be

Xbee Range Testi: https://www.youtube.com/watch?v=dmqssjfETD0&feature=youtu.be

Yarışma Alanı Planlaması

MONTAJ GÜNÜ				
TAKIM ÜYESİ	DEPARTMAN	İŞ PLANI		
Mehmet Emin SEZER	Mekanik Tasarım	Montaj i çin gere kli tüm malzemelerin kontrolü		
Altan Anıl Sipahi	AR- GE	Avi yon i k sistemin kontrolü		
Mehmet Emin SEZER – Melisa GÜLPINAR	Mekanik Tasarım - Kurtarma Sistemleri	Paraşütlerin katlanması ve montaj için uygun hale getirilmesi		
Ömer Faruk Kahraman	Mekanik Tasarım	Üst gövde alt bileşenlerinin montajı		
Berk Can Asatekin	Aviyonik	Motor bloğunun alt gövdeye sabitlenmesi		
Mehmet Emin SEZER	Meknaik Tasarım	Motor Ka pağının kapatılması		
Mehmet Emin SEZER	Mekanik Tasarım	Genel Detaylı Montaj Kontrolü		
ATIŞ GÜNÜ				
TAKIM ÜYESİ	DEPARTMAN	İŞ PLANI		
Altan Anıl Sipahi	AR- GE	Sistemlerin çalışabilir durum kontrolü		
Ömer Faruk Kahraman-Berk Can Asatekin	Meknaik Tasarım	Roket kurtarma planlaması tatbikatı		
Mehmet Emin Sezer	MeknaikTasarım	Al ti metre Yerleştirilmesi		
Altan Anıl Sipahi	AR-GE	Motorun motor bloğuna yerleştirilmesi		
Mehmet Emin Sezer	Meknaik Tasarım	Atış i çin detaylı genel kontrolün ya pılması		
Berkcen ASATEKİN - Mehmet Emin SEZER	Avi yon i k - Meknaik Tasarım	Roketin rampaya yerleştirilmesi ve Avi yonik sistemlerin çalıştırılması		
Ömer Faruk Kahraman	MeknaikTasarım	Atış sonrası düşen roketin kurtarılması		

Yarışma Alanı Planlaması

ACİL DURUM EYLEM PLANI				
ACİL DURUM	Roket Sistem Bölümü	Zarar Azalma ve sınırlayıcı tedbirler	Müdahale Yöntemleri	
Pilin iniş anında patlaması	Aviyonik	Pil yuvasıyla sabitleyip darbeye karşı korumak.	Yangın tüpü kullanarak müdahale	
Aviyonik Sistem Bozulması	Aviyonik	Yedek Kompanetler	Yedeklerin Montelenmesi	

Yarışma Alanı Planlaması

RİSK ANALİZ TABLOSU				
RİSK	Roket Sistem Bölümü	Çözüm Yöntemleri		
ARDUİNO veya SENSÖRLERİN YANMASI/BOZULMASI	Aviyonik	Arduino ve sensörlerin yedekleri yanımızda getirilerek sorun çözülecektir.		
BASKI DEVRE YOLLARINDA KOPUKLUK YAŞANMASI	Aviyonik	Havya ve lehim getirilerek olası sorun çözülecektir.		
PİLİN PATLAMASI	Aviyonik	Pil yerleşim noktalarında pilin sarsıntı veya çarpma sonucu zarar görmemesi için pil yuvaları imal edip yuvalara güvenli bir şekilde sabitledik.		
KANATÇIKLARIN KIRILMASI	Mekanik	Yedek kanatçıklar ve gerekli montaj malzemeleri alana getirilecektir.		

31 Temmuz 2020 Cuma