Requirements Engineering

BEGRIFFE

Anforderung ist eine Bedingung oder Fähigkeit ...

- die von einer Person zur Lösung eines Problems oder zur Erreichung eines Ziels benötigt wird
- die ein System oder Systemteile erfüllen oder besitzen muss, um einen Vertrag zu erfüllen oder einer Norm, einer Spezifikation oder anderen, formell vorgegebenen Dokumenten zu entsprechen

ARTEN VON ANFORDERUNGEN

Funktionale Anforderungen

- Was soll ein Produkt tun
 - Funktionen, Verhalten, Strukturen (Daten, Abhängigkeiten in einem System)

Qualitätsanforderungen

- Wie gut soll ein Produkt seine Leistung erbringen
- non-functional-requirement
- Performance, Verfügbarkeit, Zuverlässigkeit, ...

Rahmenbedingungen

- können (von den Beteiligten) nicht verändert werden
- werden nicht umgesetzt, sondern schränken die Umsetzungmöglichkeiten ein

Stakeholder

- Projektbetroffener
- Quelle für Anforderungen
- direkt: Nutzer, Adminstratoren
- indirekt: Management, Hacker, Gesetze

Requirements Engineering

- Hauptaufgaben
 - Ermitteln der Anforderungen
 - Dokumentieren der Anforderungen
 - Prüfen und Abstimmen der Anforderungen
 - Verwalten der Anforderungen
- Vorgehensweise
 - kooperativ, iterativ, inkrementell
 - während des gesamten Lebenszyklus des Systems

ZIELE DES REQUIREMENTS ENGINEERING

- alle relevanten Anforderungn sind bekannt und verstanden
- alle Stakeholder stimmen allen Anforderungen zu (Übereinstimmung)
- Alle Anforderungen sind
 - standardkonform dokumentiert
 - standardkonform spezifiziert

Warum gutes Requirements Engineering?

60% der Fehler in Softwareentwicklungsprojekten enstehen bereits im Requirements Engineering

— B. Boehm

URSACHEN FÜR FEHLER

- Anforderungen fehlen
- Anforderungen sind unklar formuliert
- Fehlerhafte Anforderungen erscheinen (trotz der Fehler) subjektiv schlüssig (für den Entwickler) oder werden (vom Entwickler) unbewusst vervollständigt

GEGENMASSNAHMEN

- 1. Grenzen kennen
- 2. Fallen vermeiden
- 3. Detektiv sein
- 4. gemeinsame Sprache entwickeln
- 5. strukturiert arbeiten
- 6. Qualitätsprüfung der Anforderungen
- 7. ein Rahmen für das Ganze

REQUIREMENTS ENGINEERING

GRENZEN KENNEN

Systemkontext

Alle Aspekte, die eine Beziehung zu dem System haben

- Personen
- Systeme (Hardware oder andere Software)
- Prozesse, Geschäftsprozesse
- Ereignisse
- Dokumente (Gesetze, Standards)

SYSTEM- UND KONTEXTGRENZEN

FALLEN VERMEIDEN

- Stakeholder systematisch identifizieren und einbeziehen
- aus Projektbetroffenen sollen Projektbeteiligte werden
 - Stakeholder regelmäßig abholen
 - Individuelle "Verträge" vereinbaren

FALLEN VERMEIDEN - KANO

Welche Bedeutung hat ein Anforderung für die Zufriedenheit eines Stakeholders?

- Unterscheidung:
 - unterbewusst
 - unbewusst
 - bewusst
- mit der Zeit können Begeisterungsanforderungen zu Leistungsanforderungen und später zu Basisanforderungen werden

DETEKTIV SEIN

- Kommunikations-Geschick im Umgang mit dem Stakeholder
- Auswahl der richtigen Ermittlungstechnik
 - Befragungstechniken (Interview, Fragebogen)
 - Kreativitätstechniken (Brainstorming, Brainstorming Paradox, Perspektivenwechsel, Analogietechnik/Bisoziation)
 - Beobachtungstechniken (Feldbeobachtung, Apprenticing)

GEMEINSAME SPRACHE

- Erstellung eines Glossars
 - Fachbegriffe, Abkürzungen, Synonyme
 - alltägliche Begriffe, die im Kontext eine andere Bedeutung haben (Problemdomäne)
- Verwalten des Glossars
 - ein Verantwortlicher
 - zentral zugänglich

STRUKTUR & DOKUMENTATION

Was muss dokumentiert werden?

- Stakeholder
- Systemkontext
- Glossar
- Nutzer und Zielgruppen
- Annahmen
- Alle Anforderungen

QUALITÄTSKRITERIEN

Anforderungsdokument muss

- Eindeutig und Konsistent sein
 - jede einzelne Anforderung
 - kein Widerspruch zwischen den Anforderungen
 - identifizierbar (Dokument & jede Anforderung)
- Klare Struktur haben
- Modifizierbar und Erweiterbar sein
- Vollständig
- Verfolgbar sein

WIE DOKUMENTIEREN?

Natürliche Sprache

- ggf. Satzschablonen verwenden
- Kurze Sätze, kurze Absätze
- nur eine Anforderung pro Satz
 - Aktiv formulieren, nur ein Prozesswort (Verb)
- Gefahr der Mehrdeutigkeit

NATÜRLICHE SPRACHE -BEISPIEL

Zur Anmeldung des Benutzers werden die Login-Daten eingegeben

oder

Das System soll dem Benutzer ermöglichen, seinen Usernamen und sein Passwort über die Tastatur am Terminal einzugeben.

SATZSCHABLONEN - BEISPIEL

Als <Rolle> möchte ich <Ziel/Wunsch>, um <Nutzen>

WIE DOKUMENTIEREN?

Modellbasiert

- UML
 - Use-Case-Diagrame
 - Datenflussdiagramme
 - Aktivitätsdiagramme

• • •

3.15

DATENFLUSSDIAGRAM

AKTIVITÄTSDIAGRAM

QUALITÄTSKRITERIEN FÜR ANFORDERUNGEN

REQUIREMENTS-MANAGEMENT ALS RAHMEN

Verwalten und Kontrollieren aller Aufgaben des Requirements Engineering während der kompletten Lebenszeit des Produktes.

- Attributierung der Anforderungen
- Priorisierung der Anforderungen
- Verfolgbarkeit der Anforderungen
- Versionierung der Anforderungen
- Steuern des Lebenszyklus aller Anforderungen

ATTRIBUTIERUNG BEISPIEL

VERFOLGBARKEIT

Eine Anforderung ist nachvollziehbar, wenn sowohl deren Ursprung als auch deren Umsetzung und die Beziehung zu anderen Dokumenten nachvollziehbar ist.

Andere Dokumente: Commit-Hostorie, Testplan, Testprotokoll

VORTEILE VERFOLGBARKEIT

- Nachweisbarkeit
- Identifikation von Goldrandlösung
- Auswirkungsanalyse
- Zuordnung von Entwicklungsaufwänden

QUELLEN BILDER

- Kontextabgrenzung http://docplayer.org/docsimages/24/4428614/images/7-0.png
- Kano Modell http://smallthingsmatter.ch/kano/
- UseCase Diagram https://en.wikipedia.org/wiki/Use_case_diagram
- Datenflussdiagram http://www.ritzdv.de/beratungsangebot/systemanalyseabb.php
- Aktivitätsdiagram https://de.wikipedia.org/wiki/Aktivitätsdiagramm
- Attributierung von Anforderungen "Basiswissen Requirements Engineering" - Pohl, Rupp