https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help

Recalling Comparison Sorts

Assignment Project Exam Help

- Mergesort
- Heal of the Power of the Powe

are all $O(N \log N)$.

• Not Ast dor Who ison at 18 pm W 6 order

However, there are sorting methods that achieve O(N) performance.

Algorithms (580) Linear Sorting March 2018 2 / 18

The Counting Sort algorithm sorts integers from a known range

Assignment Projecte Exames Help

Counting Sort(Input: $A = [A_1, ..., A_N], k$)

- For i = 0 to k
 Proposition of the large of the complex of the large of the complex of the large of the complex of the large of the
- For i = 1 to N
 - C[A[i]] = C[A[i]] + 1 <-- count how many A[j] there are
- For iA1ded WeChat powcoder how pany less than or equal to i
- For i = N to 1
 - B[C[A[i]]] = A[i]
 - C[A[i]] = C[A[i]] 1
- Return B

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

https://powcoder.com C 1 2 4 5 6 8

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

https://powcoder.com C 1 2 4 5 6 7

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

https://powcoder.com

C 1 2 4 5 6 7

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

```
https://powcoder.com

C 0 2 4 5 6 7
```

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

https://powcoder.com C 0 2 4 5 6 7

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

https://powcoder.com C 0 2 4 5 6 6

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Assignment Projecto Exam Help

Add WeChat powcoder

- Counts of each value are saved into C
- Next the counts are accumulated
- Now C[i] holds number of values $\leq i$
- Finally copy contents of A to correct positions in B using C

Counting Sort Time

Counting sort makes two passes through the input and two passes through the count table C

Assignment Project Exam Help

```
Counting Sort(Input: A = [A_1, ..., A_N], k)
```

- For i=0, to k ://powcoder.comn the range
- For i = 1 to N
 - C[A[j]] = C[A[j]] + 1 <-- count how many A[j] there are
- For iAdd WeChat powcoder C[i] = C[i] + C[i-1] <-- how many less than or equal to i
- For i = N to 1
 - B[C[A[j]]] = A[j]
 - C[A[j]] = C[A[j]] 1
- Return B

Properties

Assignment Project Exam Help

Question

Under what circumstances does this become Q(N) time?

Counting Sort is also stable

- 'Different' 3s stay in the same order
 Can be in brant whether the value are lined to the later
- This property is used by the next algorithm

- It makes d passes through the data
- Each pass sorts on the ith digit only

```
Assignment Project Exam Help
              158
    https://poweoder.com
              558
    Add WeChat powcoder
```

- Counter-intuitively, the first sort is on the least significant digit
- It allows counting sort to be used per digit, over a much smaller range

8 / 18

e.g. For decimal numbers there are 10 values to sort on

Algorithms (580) Linear Sorting March 2018

```
Assignment Project Exam Help
    https://powegoder.com
              189
    Add WeChat powcoder
```

- Counter-intuitively, the first sort is on the least significant digit
- It allows counting sort to be used per digit, over a much smaller range
- e.g. For decimal numbers there are 10 values to sort on

Algorithms (580) Linear Sorting March 2018 9 / 18

Assignment Project Exam Help https://powgoder.com 189 Add WeChat powcoder

- Counter-intuitively, the first sort is on the least significant digit
- It allows counting sort to be used per digit, over a much smaller range
- e.g. For decimal numbers there are 10 values to sort on

Assignment Project Exam Help 5**3**5 https://powegoder.com 189 Add WeChat powcoder

- Counter-intuitively, the first sort is on the least significant digit
- It allows counting sort to be used per digit, over a much smaller range

March 2018

11 / 18

e.g. For decimal numbers there are 10 values to sort on

Algorithms (580) Linear Sorting

Assignment Project Exam Help **5**35 https://powegoder.com 189 Add WeChat powcoder

- Counter-intuitively, the first sort is on the least significant digit
- It allows counting sort to be used per digit, over a much smaller range
- e.g. For decimal numbers there are 10 values to sort on

Algorithms (580) Linear Sorting March 2018 12 / 18

Assignment Project Exam Help **1**34 https://poweoder.com **5**58 Add WeChat powcoder

- Counter-intuitively, the first sort is on the least significant digit
- It allows counting sort to be used per digit, over a much smaller range
- e.g. For decimal numbers there are 10 values to sort on

Algorithms (580) Linear Sorting March 2018 13 / 18

Assignment Project Exam Help

The algorithm is simple to state

- * For https://powcoder.com
 - Use a stable sort to sort A on digit i
 - Counting of cally interest that about the counting to be considered to the counting to

Linear Sorting March 2018 14 / 18

The Radix

Assignment Project Exam Help

- For i = 0 to d

• Use a stable sort to sort A on digit i https://powcoder.com

Discussion

You are sorting N numbers with Radix sort. You can *choose* what base the numbers will be represented in within the sort procedure oder

- What base would you choose?
- Why?

The Radix

Assignment Project Exam Help

- Expressed in base B
- Each with up to d digits Radix sort takes d (N + B) time.
 - Base B has values in the range 0 to (B-1)
 - · So, thredd Wirell htat upowcoder

A base that is O(N), e.g. base N, will limit the number of digits compared to some smaller base, while not dominating the time for each pass.

Binary

Binary, representation allows porto pick any pover of 2 as a base level p

- Each number has b bits
- Splitthe number into digits each complising r bits. Radix Sort runs in $\Theta((b/r)(N+2^r))$ time (if the stable sort takes
- $\Theta(N+k)$ time to sort values in the range $0 \dots k$).
 - Each Aurol of has Weights' hat powcoder
 Choose r ~ log₂(N) gives ~ N values per digit

Under the assumption that $b = O(\log_2 N)$ the running time of Radix Sort is $\Theta(N)$. In practice, constant factors may mean that Quicksort is faster.