

Geometry of fuzzy spaces

Paul Druce, John W Barrett, Lisa Glaser

Why do we care about fuzzy spaces?

Standard model $\mathcal{A} = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$ $\mathcal{H} = \mathbb{C}^{96}$

D = matrix of fermion masses

Noncommutative spacetime? $\mathcal{A} = M_n(\mathbb{C})$ $\mathcal{H} = V \otimes M_n(\mathbb{C})$

fuzzy space

Fuzzy examples

Fuzzy Sphere $D = \gamma^0 + \sum_{i < j = 1}^{3} \gamma^0 \gamma^i \gamma^j \otimes [L_{ij}, \cdot]$ $\uparrow_{\mathfrak{so}(3) \text{ generators}}$ $\mathcal{A}_n \simeq igoplus^{n-1} V_l$ $ightharpoonup \mathrm{spanned\ by\ } Y_m^l \longrightarrow \mathrm{maximum\ energy/\ minimum\ length}$ recover round metric on the sphere as $N \to \infty$

Random Fuzzy Spaces

- Using Monte Carlo methods to randomly generate the matrices L_i, H_j
- Probability distribution given $e^{-S(D)}$ with $S(D) = Tr(D^4) + g_2 Tr(D^2)$
- \exists phase transition as we vary g_2 , what changes geometrically?!

Fuzzy dimension

- In the literature the notion of spectral dimension is well studied.
- Defined using the Heat Kernel trace, $K_{\Delta}(t) = Tr(e^{-t\Delta}) = \sum_{i} e^{-t\lambda_{i}(\Delta)}$ as the following:

 $d_s(t) = -2t \frac{d \log(K(t))}{dt}$

- Typically Dirac operators do not have zero eigenvalues and this dominates the series for large t.
- So we define the spectral variance as: $v_s(t) = d_s(t) t \frac{dv_s(t)}{dt}$
- The maximum of the spectral variance, $\max(V_s)$, approximates the dimension

Fuzzy volume

- Using heat kernel trace asymptotics we can geometric invariants
- Using the Mellin transform we can relate the heat kernel to the spectral zeta function

- $Vol(M) = \frac{(4\pi)^{d/2}}{Tr(Id)} \Gamma(s) Res_{s=\frac{d}{2}} \zeta_{D^2}(s)$
- Making use of the Dixmier trace we can estimate the volumes

estimate the volumes
$$Res_{s=\frac{d}{2}}\zeta_{D^2}(s)=\lim_{N\to\infty}\frac{d}{2}\frac{1}{\log(N+1)}\sum_{n=0}^N\lambda_n(D^{-\frac{d}{2}})$$

$$Vol_N(M) = \frac{d}{2} \frac{(4\pi)^{d/2}}{Tr(Id)} \frac{\Gamma(s)}{\log(N+1)} \sum_{i=0}^{N} \lambda_i(D^{-\frac{d}{2}})$$

Volumes become size dependant after phase transition At the phase transition we see matrix size independent features

Conclusion

- Fuzzy spaces exhibit non zero dimension and volumes
- Phase transition of random noncommutative geometries is linked to size independent geometry
- More fuzzy spaces need constructing and studying

References

[1] Barrett, John W. "Matrix geometries and fuzzy spaces as finite spectral triples." Journal of Mathematical Physics 56.8 (2015): 082301.

[2] Barrett, John W., and Lisa Glaser. "Monte Carlo simulations of random non-commutative geometries." Journal of Physics A: Mathematical and Theoretical 49.24 (2016): 245001. [3] Glaser, Lisa. "Scaling behaviour in random non-commutative geometries." Journal of Physics A: Mathematical and Theoretical 50.27 (2017): 275201.

