ARM[®]

Cortex - M4 Technical Reference Manual ARM DDI 0439B Errata 01

This Errata document gives corrections and additions to the Cortex-M4 Technical Reference Manual (ARM DDI 0439B).

The number of cycles for the MUL and MLA instructions in Table 3-1 page 3-4 are incorrect. Each instruction takes one cycle to execute, not two cycles.

Table 3-1 Cortex-M4 instruction set summary lists all the correct cycle timings.

Table 3-1 Cortex-M4 instruction set summary

Operation	Description	Assembler	Cycles
Move	Register	MOV Rd, <op2></op2>	1
	16-bit immediate	MOVW Rd, # <imm></imm>	1
	Immediate into top	MOVT Rd, # <imm></imm>	1
	To PC	MOV PC, Rm	1 + P
Add	Add	ADD Rd, Rn, <op2></op2>	1
	Add to PC	ADD PC, PC, Rm	1 + P
	Add with carry	ADC Rd, Rn, <op2></op2>	1
	Form address	ADR Rd, <label></label>	1
Subtract	Subtract	SUB Rd, Rn, <op2></op2>	1
	Subtract with borrow	SBC Rd, Rn, <op2></op2>	1
	Reverse	RSB Rd, Rn, <op2></op2>	1
Multiply	Multiply	MUL Rd, Rn, Rm	1
	Multiply accumulate	MLA Rd, Rn, Rm	1
	Multiply subtract	MLS Rd, Rn, Rm	1
	Long signed	SMULL RdLo, RdHi, Rn, Rm	1
	Long unsigned	UMULL RdLo, RdHi, Rn, Rm	1
	Long signed accumulate	SMLAL RdLo, RdHi, Rn, Rm	1
	Long unsigned accumulate	UMLAL RdLo, RdHi, Rn, Rm	1

Table 3-1 Cortex-M4 instruction set summary (continued)

Operation	Description	Assembler	Cycles
Divide	Signed	SDIV Rd, Rn, Rm	2 to 12 ^a
	Unsigned	UDIV Rd, Rn, Rm	2 to 12 ^a
Saturate	Signed	SSAT Rd, # <imm>, <op2></op2></imm>	1
	Unsigned	USAT Rd, # <imm>, <op2></op2></imm>	1
Compare	Compare	CMP Rn, <op2></op2>	1
	Negative	CMN Rn, <op2></op2>	1
Logical	AND	AND Rd, Rn, <op2></op2>	1
	Exclusive OR	EOR Rd, Rn, <op2></op2>	1
	OR	ORR Rd, Rn, <op2></op2>	1
	OR NOT	ORN Rd, Rn, <op2></op2>	1
	Bit clear	BIC Rd, Rn, <op2></op2>	1
	Move NOT	MVN Rd, <op2></op2>	1
	AND test	TST Rn, <op2></op2>	1
	Exclusive OR test	TEQ Rn, <op1></op1>	
Shift	Logical shift left	LSL Rd, Rn, # <imm></imm>	1
	Logical shift left	LSL Rd, Rn, Rs	1
	Logical shift right	LSR Rd, Rn, # <imm></imm>	1
	Logical shift right	LSR Rd, Rn, Rs	1
	Arithmetic shift right	ASR Rd, Rn, # <imm></imm>	1
	Arithmetic shift right	ASR Rd, Rn, Rs	1
Rotate	Rotate right	ROR Rd, Rn, # <imm></imm>	1
	Rotate right	ROR Rd, Rn, Rs	1
	With extension	RRX Rd, Rn	1
Count	Leading zeroes	CLZ Rd, Rn	1

Table 3-1 Cortex-M4 instruction set summary (continued)

Operation	Description	Assembler	Cycles
Load	Word	LDR Rd, [Rn, <op2>]</op2>	2 ^b
	To PC	LDR PC, [Rn, <op2>]</op2>	2 ^b + P
	Halfword	LDRH Rd, [Rn, <op2>]</op2>	2 ^b
	Byte	LDRB Rd, [Rn, <op2>]</op2>	2 ^b
	Signed halfword	LDRSH Rd, [Rn, <op2>]</op2>	2 ^b
	Signed byte	LDRSB Rd, [Rn, <op2>]</op2>	2 ^b
	User word	LDRT Rd, [Rn, # <imm>]</imm>	2 ^b
	User halfword	LDRHT Rd, [Rn, # <imm>]</imm>	2 ^b
	User byte	LDRBT Rd, [Rn, # <imm>]</imm>	2 ^b
	User signed halfword	LDRSHT Rd, [Rn, # <imm>]</imm>	2 ^b
	User signed byte	LDRSBT Rd, [Rn, # <imm>]</imm>	2 ^b
	PC relative	LDR Rd,[PC, # <imm>]</imm>	2 ^b
	Doubleword	LDRD Rd, Rd, [Rn, # <imm>]</imm>	1 + N
	Multiple	LDM Rn, { <reglist>}</reglist>	1 + N
	Multiple including PC	LDM Rn, { <reglist>, PC}</reglist>	1 + N + 1
Store	Word	STR Rd, [Rn, <op2>]</op2>	2 ^b
	Halfword	STRH Rd, [Rn, <op2>]</op2>	2 ^b
	Byte	STRB Rd, [Rn, <op2>]</op2>	2 ^b
	Signed halfword	STRSH Rd, [Rn, <op2>]</op2>	2 ^b
	Signed byte	STRSB Rd, [Rn, <op2>]</op2>	2 ^b
	User word	STRT Rd, [Rn, # <imm>]</imm>	2 ^b
	User halfword	STRHT Rd, [Rn, # <imm>]</imm>	2 ^b
	User byte	STRBT Rd, [Rn, # <imm>]</imm>	2 ^b
	User signed halfword	STRSHT Rd, [Rn, # <imm>]</imm>	2 ^b
	User signed byte	STRSBT Rd, [Rn, # <imm>]</imm>	2 ^b
	Doubleword	STRD Rd, Rd, [Rn, # <imm>]</imm>	1 + N
	Multiple	STM Rn, { <reglist>}</reglist>	1 + N
Push	Push	PUSH { <reglist>}</reglist>	1 + N
	Push with link register	PUSH { <reglist>, LR}</reglist>	1 + N
Pop	Pop	POP { <reglist>}</reglist>	1 + N
	Pop and return	POP { <reglist>, PC}</reglist>	1 + N + I

Table 3-1 Cortex-M4 instruction set summary (continued)

Operation	Description	Assembler	Cycles
Semaphore	Load exclusive	LDREX Rd, [Rn, # <imm>]</imm>	2
	Load exclusive half	LDREXH Rd, [Rn]	2
	Load exclusive byte	LDREXB Rd, [Rn]	2
	Store exclusive	STREX Rd, Rt, [Rn, # <imm>]</imm>	2
	Store exclusive half	STREXH Rd, Rt, [Rn]	2
	Store exclusive byte	STREXB Rd, Rt, [Rn]	2
	Clear exclusive monitor	CLREX	1
Branch	Conditional	B <cc> <label></label></cc>	1 or 1 + Pc
	Unconditional	B <label></label>	1 + P
	With link	BL <label></label>	1 + P
	With exchange	BX Rm	1 + P
	With link and exchange	BLX Rm	1 + P
	Branch if zero	CBZ Rn, <label></label>	1 or 1 + Pc
	Branch if non-zero	CBNZ Rn, <label></label>	1 or 1 + Pc
	Byte table branch	TBB [Rn, Rm]	2 + P
	Halfword table branch	TBH [Rn, Rm, LSL#1]	2 + P
State change	Supervisor call	SVC # <imm></imm>	-
	If-then-else	IT <cond></cond>	1 ^d
	Disable interrupts	CPSID <flags></flags>	1 or 2
	Enable interrupts	CPSIE <flags></flags>	1 or 2
	Read special register	MRS Rd, <specreg></specreg>	1 or 2
	Write special register	MSR <specreg>, Rn</specreg>	1 or 2
	Breakpoint	BKPT # <imm></imm>	-
Extend	Signed halfword to word	SXTH Rd, <op2></op2>	1
	Signed byte to word	SXTB Rd, <op2></op2>	1
	Unsigned halfword	UXTH Rd, <op2></op2>	1
	Unsigned byte	UXTB Rd, <op2></op2>	1
Bit field	Extract unsigned	UBFX Rd, Rn, # <imm>, #<imm></imm></imm>	1
	Extract signed	SBFX Rd, Rn, # <imm>, #<imm></imm></imm>	1
	Clear	BFC Rd, Rn, # <imm>, #<imm></imm></imm>	1
	Insert	BFI Rd, Rn, # <imm>, #<imm></imm></imm>	1

Table 3-1 Cortex-M4 instruction set summary (continued)

Operation	Description	Assembler	Cycles
Reverse	Bytes in word	REV Rd, Rm	1
	Bytes in both halfwords	REV16 Rd, Rm	1
	Signed bottom halfword	REVSH Rd, Rm	1
	Bits in word	RBIT Rd, Rm	1
Hint	Send event	SEV	1
	Wait for event	WFE	1 + W
	Wait for interrupt	WFI	1 + W
	No operation	NOP	1
Barriers	Instruction synchronization	ISB	1 + B
	Data memory	DMB	1 + B
	Data synchronization	DSB <flags></flags>	1 + B

a. Division operations use early termination to minimize the number of cycles required based on the number of leading ones and zeroes in the input operands.

b. Neighboring load and store single instructions can pipeline their address and data phases. This enables these instructions to complete in a single execution cycle.

c. Conditional branch completes in a single cycle if the branch is not taken.

d. An IT instruction can be folded onto a preceding 16-bit Thumb instruction, enabling execution in zero cycles.