Statistical Computing - HW2

Yaqiong Yao 9/13/2018

Abstract

We use this homework to familiar with Rmarkdown and also to learn how computers process numbers, especially the double floating numbers.

Question 2

Use Monte Carlo method to approximate the distribution function of

$$\Phi(t) = \int_{\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$$

```
n <- c(1e2, 1e3, 1e4)
t <- c(0.0, 0.67, 0.84, 1.28, 1.65, 2.32, 2.58, 3.09, 3.72)
itr <- 100
set.seed(1)
Phi <- matrix(NA, nrow = length(n), ncol = length(t))
for (ni in seq_along(n)){
    X_ni <- rnorm(n[ni], mean = 0, sd = 1)
    for (ti in seq_along(t)) {
        Phi[ni, ti] <- sum(X_ni <= t[ti])/n[ni]
    }
}
Phi <- rbind(pnorm(t, mean = 0, sd = 1, options(digits = 4)), Phi)
colnames(Phi) <- t
rownames(Phi) <- c("True Value", "1000", "10000")
knitr::kable(Phi)</pre>
```

	0	0.67	0.84	1.28	1.65	2.32	2.58	3.09	3.72
True Value	0.5000	0.7486	0.7995	0.8997	0.9505	0.9898	0.9951	0.9990	0.9999
100	0.4600	0.7400	0.8200	0.9100	0.9700	0.9900	1.0000	1.0000	1.0000
1000	0.5210	0.7390	0.7940	0.8920	0.9360	0.9900	0.9960	0.9990	0.9990
10000	0.5056	0.7496	0.7937	0.8967	0.9521	0.9910	0.9960	0.9994	1.0000

From the table, we know that the monte carlo method works well. The estimated distribution is approximated to the true distribution.

```
# iteration for 100 times
set.seed(12)
Phi <- list()
for (ni in seq_along(n)) {
   Phii <- matrix(NA, nrow = itr, ncol = length(t))
   for (i in 1:itr) {
      X_ni <- rnorm(n[ni], mean = 0, sd = 1)
      for (ti in seq_along(t)) {
        Phii[i, ti] <- sum(X_ni <= t[ti])/n[ni]</pre>
```

```
}
}
Phi[[ni]] <- Phii
}
# Boxplot
boxplot(Phi[[1]], names = t, xlab = "t", main = "Boxplot when n = 100")</pre>
```

Boxplot when n = 100

boxplot(Phi[[2]], names = t, xlab = "t", main = "Boxplot when n = 1000")

Boxplot when n = 1000

boxplot(Phi[[3]], names = t, xlab = "t", main = "Boxplot when n = 10000")

Boxplot when n = 10000

Question 3

.Machine\$double.xmax: The largest normalized floating-point number. It can be expressed by $(-1)^0(1+\sum_{i=1}^{52}2^{-i})\times 2^{2046-1023}$. The first 10 digits of exponent part are 1 and 52 bits of fraction are all 1. u <- 0 for (i in 1:52) u <- u+2^(-i) (1+u)*2^(1023) == .Machine\$double.xmax ## [1] TRUE

.Machine\$double.xmin: The smallest non-zero normalized floating-point number. It can be expressed as $(-1)^0 2^{1-1023}$. Only last bit of exponent is 1 and all 52 bits of fraction are 0.

```
2<sup>1-1023</sup> == .Machine$double.xmin
```

[1] TRUE

.Machine\$double.eps: The smallest positive floating-point number x such that $1+x\neq 1$. It equals to 2^{-52} .

```
2^{-52} == .Machine$double.eps
```

[1] TRUE

.Machine\$double.neg.eps: A small positive floating-point number x such that $1-x \neq 1$. It equals to 2^{-53} .

```
2^(-53) == .Machine$double.neg.eps
```

[1] TRUE