L2 – 3.3 Quotient of Linear Functions

MHF4U

Part 1: Key Features of the Quotient of Linear Functions

Features of
$$f(x) = \frac{ax+b}{cx+d}$$

- If an x value is a zero of the denominator ONLY, this results in a vertical asymptote
 - Equation of vertical asymptote is $x = \frac{-d}{c}$
- If an x value is a zero of the numerator AND denominator, this results in a <u>hole</u> in the graph NOT a
 vertical asymptote
- There is a horizontal asymptote at the ratio of the leading coefficients
 - Equation of horizontal asymptote is $y = \frac{a}{c}$
- Forms a <u>Hyperbola</u>: the two branches of the graph of the function are equidistant from the point of intersection of the vertical and horizontal asymptotes
 - Once you know the shape of one branch, you can translate the points to graph the other branch
- You can find the x-intercept by setting y = 0 and solving for x
 - $\circ \quad \text{This results in } \left(\frac{-b}{a}, 0 \right)$
- You can find the y-intercept by setting x = 0 and solving for y
 - \circ This results in $\left(0, \frac{b}{d}\right)$

Part 2: Graphing a Quotient of Linear Functions

Example 1: Graph each of the following functions

$$a) f(x) = \frac{x-3}{x+2}$$

VA:
$$x+2=0$$

 $x=-2$

HA:
$$\frac{1}{7} = 1$$

$$\chi-int: O = \frac{\chi-3}{\chi+2}$$

$$O = \chi-3$$

$$\chi = 3$$

$$(3,0)$$

b)
$$g(x) = \frac{2x-3}{x-1}$$

$$VA^{\circ} \quad \chi_{-1} = 0$$
 $\chi_{=1}$

HA:
$$\frac{2}{1} = 2$$
 $y = 2$

$$\chi$$
-int: $0 = \frac{2\chi - 3}{\chi - 1}$
 $0 = 2\chi - 3$
 $\chi = \frac{3}{4}$
(1.5,0)

Y-int:
$$f(0) = \frac{2(0)-3}{0-1}$$

= 3
(0,3)

Other points:

$$f(2) = \frac{2(2)-3}{2-1} = \frac{1}{1} = 1$$
(2,1)

$$f(3) = \frac{2(3)-3}{3-1} = \frac{3}{2}$$
(3,1.5)

