Verification For Security: Introduction

Klaus v. Gleissenthall

What is Algorithmic Verification?

Algorithms, Techniques and Tools to ensure that:

- Program's don't have bugs.
- Later: are secure in some sense.

But what does that mean? Stay tuned:)

Course Website

- Course website at: <u>Verification-for-Security.github.io</u>
- Contains lecture slides, calendar, additional details

Goals

- Deep dive into:
 - The state of the art of program verification
 - Programming Languages (PL) techniques for security
 - Learn our way of thinking about these problems
 - Prepare for research in the area
 - Learn how to use this in practice
 - Make you a better programmer
 - Have fun!

This course

- Starts from zero, but moves fast
- Want to explain everything, end-to-end
- We start with lectures that give you the necessary background
- We'll have two assignments that teach you how to do verification hands-on.
- Then, you get to apply what you learned in a project.

Why should you care?

SYNOPSYS®

 Many success stories AWS, Airbus, Microsoft, NASA, Galois, Facebook, Google

AIRBUS

TOYOTA

Verified crypto in google Chrome (Fiatcrypto)

 Verified Operating System (sel4, hi-star), compilers (compcert), processors (ARM/Intel), distributed systems (AWS), networks (AWS), enclaves, etc.

Turing Awards in PL / Verification

Plan

Two parts:

- Algorithms for showing that programs are correct
- Later: Showing that programs are secure
- Not an easy course, but you will learn a lot

Plan

Logic:

- Propositional
- First order
- Theories

Programs to Logic:

- Hoare Logic
- VCGen

Automation

- Horn clauses
- PredicateAbstraction

Security

- InformationFlow Control
- Side-Channels

Evaluation

- 2 Practical Assignments (25%)
- Final Project (25%)
- Written Exam (50%)
- Must pass assignment and project with grade >=4
- Must pass the exam with grade >=5.5

- Implement an SMT solver & a program verifier in Haskell!
- Verify programs in a language called Nano
- Groups of 2
- We give you skeleton code, need to fill in main functions
- Pass all the tests, full points

- Late submissions: one malus point per day
- One late-day, no questions asked
- Exceptions for hardship
 - Need to be approved by study advisor

- Assignment 1: SAT & SMT Solver
- Assignment 2: Implement a Program Verifier
- Assignment 3: Pick your own Project

- You'll need to know Haskell (quite well!)
- Start reading the tutorial now!
- http://learnyouahaskell.com/chapters
- Intro assignment due on Sep 10!
- Look at our monad tutorial <u>here</u>
- Download GHC and start coding

Project

- This is where you get to show us what you learned.
- The project needs to be written in Haskell
- Groups of 2, as before.
- First, 1 page proposal.
- Then, you'll implement the project and write up a report of up to three pages.
- List of project ideas on the website

Exam

- Check understanding of the material
- Shows individual contribution, as the rest of the course is pair projects.
- We'll release online Canvas quizzes that you can use to prepare for the exam.

Plagiarism

- Please don't do it! It's bad for everyone
- Don't copy & don't share solutions
- We will check automatically & manually
- There are no existing solutions, the assignments are new

Office Hours

- We have a practical session on Friday
- This will be used as office hours for asking questions about lecture, programming assignments and the project

Getting the most out of this course

- Take what I say as a starting point and read more!
- I will add links to further reading & other similar courses
- Google: "topic site:edu slides" to find more material
- Think about how & why things work
- Would they still work if we changed x,y?
- Ask questions!
- Use the canvas message board liberally (but don't share code)!

Questions? ... let's start!

Let's start!

Logic

- Why are we talking about logic?
- Logic is the Calculus of Computation!
- May seem abstract now (what's up with all these symbols?) ...
- ... but much/all of program analysis can be boiled down to logic.
- Think of logic as a language for asking questions about programs!

Decision Procedures

- Efficient Algorithms to answer questions about programs
- Easily enough to teach one or many courses
- We will only scratch the surface to give a feel
- Good resource: <u>Calculus of Computation</u>

Propositional Logic

- You probably already know this, but good to recap
- A logic is a language, described by:
 - Syntax of its formulas (variables, connectives, ...)
 - Semantics of formulas (when is a formula satisfied, or valid)

Propositional Logic: Syntax

Atom:

truth symbols

 \top (true), \bot (false)

propositional variables

 $p, q, r, p_1, p_2,...$

Literal:

an atom a or its negation ¬ a

Formula:

A literal, or application of a logical connective to formula F, F₁, F₂, ...

 $\neg F$

"not"

negation

 $F_1 \wedge F_2$

"and"

conjunction

 $F_1 v F_2$

"or"

discjunction

Propositional Logic: Syntax

Formula:

A literal, or application of a **logical connective** to formula F, F_1 , F_2 , ...

 $\neg F$

"not"

negation

 $F_1 \wedge F_2$

"and"

conjunction

 $F_1 \vee F_2$

"or" F_1

discjunction

We can define additional connectives in terms of these basic ones:

 $F_1 \rightarrow F_2$ "implies"

 $\neg F_1 \lor F_2$

 $F_1 \leftrightarrow F_2$ "if and only if" $(F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$

Propositional Logic: Syntax

Atom:

⊤ (true), ⊥ (false)

 $p, q, r, p_1, p_2,...$

Literal: an atom a or its negation ¬ a

Formula: literal or

 $\neg F$ $F_1 \land F_2 \qquad F_1 \lor F_2$

- Quiz:
- a) is p an atom?
- b) Is p a literal?
- c) is p a formula?
- d) what about $\neg p$?
- e) what about $\neg \neg p$?

- A logic is a language, described by:
 - Syntax of its formulas (predicates, connectives, ...)
 - Semantics of formulas (when is a formula satisfied, or valid)

An interpretation I maps propositional variables to truth values

$$I: \{p \rightarrow \top, q \rightarrow \bot, r \rightarrow \bot, \cdots \}$$

We can evaluate a formula F under I by substituting each p for I(p)

We write $I \models F$, if F evaluates to \top under I, we call I a satisfying interpretation or model

We write $I \not\models F$, if F evaluates to \bot under I, I is a falsifying interpretation or counter-model

We can evaluate a formula F under I by substituting each p for I(p)

We can make this more precise through an inductive definition

Base case

$$I \models \top \qquad I \not\models \bot$$

$$I \models p$$
, if $I(p) = \top$

$$I \not\models p$$
, if $I(p) = \bot$

Inductive Case

$$I \models \neg F$$
, if $I \not\models F$

$$I \models F_1 \land F_2$$
, if $I \models F_1$ and $I \models F_2$

$$I \models F_1 \lor F_2$$
, if $I \models F_1$ or $I \models F_2$

What about \rightarrow , \leftrightarrow ? Already defined.

Example

Base case

Consider formula $F = (\neg p \lor q)$ and interpretation $I = \{p \to T, q \to \bot\}$

$$I \models \top \qquad I \not\models \bot$$

$$I \models p$$
, if $I(p) = \top$

$$I \not\models p$$
, if $I(p) = \bot$

Which of the following is true?

a)
$$I \models F$$

Inductive Case

$$I \models \neg F$$
, if $I \not\models F$

$$I \models F_1 \land F_2$$
, if $I \models F_1$ and $I \models F_2$

$$I \models F_1 \lor F_2$$
, if $I \models F_1$ or $I \models F_2$

What about formula $(p \land q) \rightarrow (\neg p \lor q)$?

Satisfiability and Validity

F is <u>satisfiable</u>, iff there exists an interpretation I such that $I \models F$

F is <u>valid</u>, iff for all interpretations I, $I \models F$

F is contingent, iff it is satisfiable but not valid

Duality between satisfiability and validity:

F is valid, iff ¬F is unsatisfiable

Thus: If we can decide whether a formula is satisfiable, we can also check if it is valid

Example

Are these formulas sat, unsat, or valid?

- 1. $(p \land q) \rightarrow \neg p$
- 2. $(p \land q) \rightarrow (p \lor \neg q)$
- 3. $(p \rightarrow (q \rightarrow r)) \land \neg ((p \land q) \rightarrow r)$

Deciding Satisfiability

- Logic: asking questions about programs
- But how to answer?
- We want to decide whether a formula is satisfiable

- Why only satisfiable?
 - Let's look at two simple methods first:
 - Enumerating interpretations (aka truth tables)
 - Semantic Arguments (deductive proofs)

Deciding Satisfiability: Truth Table

- Let's look at the following formula $F \triangleq (p \land q) \rightarrow (p \lor \neg q)$
- We can enumerate its interpretations via a truth table

Deciding Satisfiability: Truth Table

• Let's look at another example $F \triangleq (p \lor q) \rightarrow (p \land q)$

For n propositional variables, there are 2ⁿ interpretations: impractical

Deciding Satisfiability: Semantic Argument

Try to prove validity of formula F through a proof by contradiction

- Assume F is not valid, i.e., there exists I s.t., $I \not\models F$
- Apply proof rules to derive ⊥ along every branch (what's that?)
- If we succeed, F is valid

Deciding Satisfiability: Semantic Argument

Proof Rules

$$I \not\models F_1 \land F_2$$

$$-----$$

$$I \not\models F_1 \text{ or } I \not\models F_2$$

$$I \not\models F_1 \lor F_2$$

$$-----$$

$$I \not\models F_1 \quad I \not\models F_2$$

$$I \not\models F_1 \rightarrow F_2$$

$$-----$$

$$I \models F_1 \quad I \not\models F_2$$

$$\underbrace{\text{Contr}}_{\text{I} \models F} \quad \text{Let's prove that } F \triangleq (p \land q) \rightarrow (p \lor \neg q) \text{ is valid}$$

$$\underline{\text{contr}} \quad I \models F \quad I \not\models F \qquad \text{Let's do } F \triangleq (p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$$

$$I \models \bot$$

Where are we?

- Propositional Logic Syntax & Semantics
- Naive ways of checking satisfiability
- Next lecture: checking sat efficiently
- Bigger picture:
 - Logic is the language of computation
 - Propositional logic is too restricted
 - Next, first order logic (too expressive) & undecidable
 - Goldilocks solution SMT: propositional logic + theories