Ecuaciones diferenciales parciales:

Las ecuaciones famosas

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

30 de septiembre de 2021

Agenda Ecuaciones diferenciales parciales famosas

- La ecuación de onda
- La ecuación de difusión
- 3 Laplace, Poisson y Schoedinger
- Recapitulando

La ecuación de onda

$$\nabla^2 u(\mathbf{r},t) = \frac{1}{c^2} \frac{\partial^2 u(\mathbf{r},t)}{\partial t^2}$$

describe el desplazamiento $u(\mathbf{r},t)$, de una cuerda (o una membrana que vibra, o de un sólido, un gas o un líquido) respecto a su posición de equilibrio.

La ecuación de onda

$$\nabla^2 u(\mathbf{r},t) = \frac{1}{c^2} \frac{\partial^2 u(\mathbf{r},t)}{\partial t^2}$$

describe el desplazamiento $u(\mathbf{r},t)$, de una cuerda (o una membrana que vibra, o de un sólido, un gas o un líquido) respecto a su posición de equilibrio.

• La cantidad c es la velocidad de propagación de las ondas.

La ecuación de onda

$$\nabla^2 u(\mathbf{r},t) = \frac{1}{c^2} \frac{\partial^2 u(\mathbf{r},t)}{\partial t^2}$$

describe el desplazamiento $u(\mathbf{r},t)$, de una cuerda (o una membrana que vibra, o de un sólido, un gas o un líquido) respecto a su posición de equilibrio.

- La cantidad c es la velocidad de propagación de las ondas.
- Para el caso unidimensional tendremos

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

donde la velocidad de propagación de la onda es $c^2=T/
ho$

La ecuación de onda

$$\nabla^2 u(\mathbf{r},t) = \frac{1}{c^2} \frac{\partial^2 u(\mathbf{r},t)}{\partial t^2}$$

describe el desplazamiento $u(\mathbf{r},t)$, de una cuerda (o una membrana que vibra, o de un sólido, un gas o un líquido) respecto a su posición de equilibrio.

- La cantidad c es la velocidad de propagación de las ondas.
- Para el caso unidimensional tendremos

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

donde la velocidad de propagación de la onda es $c^2=T/
ho$

• Para el caso en el que el sistema tenga aplicada una fuerza, f(x, t), por unidad de longitud, tendremos

$$T\frac{\partial^2 u}{\partial x^2} + f(x, t) = \rho \frac{\partial^2 u}{\partial t^2}$$

• Las fuerzas sobre Δs de la cuerda. Si la tensión T es uniforme entonces la fuerza vertical neta hacia arriba es $\Delta F = T \sin \theta_2 - T \sin \theta_1$

- Las fuerzas sobre Δs de la cuerda. Si la tensión T es uniforme entonces la fuerza vertical neta hacia arriba es $\Delta F = T \sin \theta_2 T \sin \theta_1$
- Suponiendo que $\theta_1 \sim \theta_2 << 1$ tendremos $\sin \theta \approx \theta$ y la pendiente $\tan \theta = \partial u/\partial x$, entonces la fuerza es $\Delta F = T \left[\frac{\partial u(x+\Delta x,t)}{\partial x} \frac{\partial u(x,t)}{\partial x} \right] \approx T \frac{\partial^2 u(x,t)}{\partial x^2} \Delta x$

- Las fuerzas sobre Δs de la cuerda. Si la tensión T es uniforme entonces la fuerza vertical neta hacia arriba es $\Delta F = T \sin \theta_2 T \sin \theta_1$
- Suponiendo que $\theta_1 \sim \theta_2 << 1$ tendremos $\sin \theta \approx \theta$ y la pendiente $\tan \theta = \partial u/\partial x$, entonces la fuerza es $\Delta F = T \left[\frac{\partial u(x + \Delta x, t)}{\partial x} \frac{\partial u(x, t)}{\partial x} \right] \approx T \frac{\partial^2 u(x, t)}{\partial x^2} \Delta x$
- El elemento de cuerda tiene una masa $\rho\Delta s\approx\rho\Delta x \text{ si las vibraciones de la}$ cuerda son pequeñas, entoces $\rho\Delta x\frac{\partial^2 u(x,t)}{\partial t^2}=T\frac{\partial^2 u(x,t)}{\partial x^2}\Delta x$

- Las fuerzas sobre Δs de la cuerda. Si la tensión T es uniforme entonces la fuerza vertical neta hacia arriba es $\Delta F = T \sin \theta_2 T \sin \theta_1$
- Suponiendo que $\theta_1 \sim \theta_2 << 1$ tendremos $\sin \theta \approx \theta$ y la pendiente $\tan \theta = \partial u/\partial x$, entonces la fuerza es $\Delta F = T \left[\frac{\partial u(x+\Delta x,t)}{\partial x} \frac{\partial u(x,t)}{\partial x} \right] \approx T \frac{\partial^2 u(x,t)}{\partial x^2} \Delta x$
- El elemento de cuerda tiene una masa $\rho\Delta s\approx\rho\Delta x \text{ si las vibraciones de la}$ cuerda son pequeñas, entoces $\rho\Delta x\frac{\partial^2 u(x,t)}{\partial t^2}=T\frac{\partial^2 u(x,t)}{\partial x^2}\Delta x$
- Finalmente $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$

La ecuación de difusión

$$\kappa \nabla^2 T(\mathbf{r}, t) = \frac{\partial T(\mathbf{r}, t)}{\partial t}$$

describe la temperatura $T(\mathbf{r},t)$ en una región que no contiene fuentes ni sumideros de calor, donde constante κ es la difusividad.

La ecuación de difusión

$$\kappa \nabla^2 T(\mathbf{r}, t) = \frac{\partial T(\mathbf{r}, t)}{\partial t}$$

describe la temperatura $T(\mathbf{r},t)$ en una región que no contiene fuentes ni sumideros de calor, donde constante κ es la difusividad.

• Para un sólido de volumen V delimitado por una superficie S, la tasa de flujo de calor por unidad de superficie en cualquier dirección \mathbf{r} es proporcional a la componente del gradiente de temperatura en esa dirección y es $(-k\nabla T) \cdot \mathbf{r}$.

La ecuación de difusión

$$\kappa \nabla^2 T(\mathbf{r}, t) = \frac{\partial T(\mathbf{r}, t)}{\partial t}$$

describe la temperatura $T(\mathbf{r},t)$ en una región que no contiene fuentes ni sumideros de calor, donde constante κ es la difusividad.

- Para un sólido de volumen V delimitado por una superficie S, la tasa de flujo de calor por unidad de superficie en cualquier dirección \mathbf{r} es proporcional a la componente del gradiente de temperatura en esa dirección y es $(-k\nabla T) \cdot \mathbf{r}$.
- El flujo total de calor fuera del volumen V por unidad de tiempo será $-\frac{\mathrm{d}Q}{\mathrm{d}t} = \iint_S (-k\nabla T) \cdot \mathbf{n} \ \mathrm{d}S \equiv \iiint_V \nabla \cdot (-k\nabla T) \ \mathrm{d}V$ donde Q es la energía calórica total en V para el tiempo t y \mathbf{n} es la normal a S.

La ecuación de difusión

$$\kappa \nabla^2 T(\mathbf{r}, t) = \frac{\partial T(\mathbf{r}, t)}{\partial t}$$

describe la temperatura $T(\mathbf{r},t)$ en una región que no contiene fuentes ni sumideros de calor, donde constante κ es la difusividad.

- Para un sólido de volumen V delimitado por una superficie S, la tasa de flujo de calor por unidad de superficie en cualquier dirección \mathbf{r} es proporcional a la componente del gradiente de temperatura en esa dirección y es $(-k\nabla T) \cdot \mathbf{r}$.
- El flujo total de calor fuera del volumen V por unidad de tiempo será $-\frac{\mathrm{d}Q}{\mathrm{d}t} = \iint_S (-k\nabla T) \cdot \mathbf{n} \ \mathrm{d}S \equiv \iiint_V \nabla \cdot (-k\nabla T) \ \mathrm{d}V$ donde Q es la energía calórica total en V para el tiempo t y \mathbf{n} es la normal a S.
- Podemos expresar Q como una integral de volumen sobre V, como $Q = \iiint_V s\rho T \, dV \Leftrightarrow \frac{dQ}{dt} = \iiint_V s\rho \frac{\partial T}{\partial t} \, dV = \iiint_V \nabla \cdot (-k\nabla T) \, dV$

 La ecuación de difusión puede también generalizarse a $k\nabla^2 u + f(\mathbf{r},t) = s\rho \frac{\partial u}{\partial t}$. El término $f(\mathbf{r},t)$, representa una densidad de fuentes de calor. En el caso más general, k, s y ρ dependen de la posición **r**, y el primer término se convierte en $\nabla \cdot (k\nabla u)$.

- La ecuación de difusión puede también generalizarse a $k\nabla^2 u + f(\mathbf{r},t) = s\rho \frac{\partial u}{\partial t}$. El término $f(\mathbf{r},t)$, representa una densidad de fuentes de calor. En el caso más general, k, s y ρ dependen de la posición \mathbf{r} , y el primer término se convierte en $\nabla \cdot (k\nabla u)$.
- La ecuación de Laplace, $\nabla^2 u = 0$ es un caso particular, $\partial u/\partial t = 0$ en la ecuación de difusión. Describe la distribución de la temperatura en estado estacionario.

- La ecuación de difusión puede también generalizarse a $k\nabla^2 u + f(\mathbf{r},t) = s\rho \frac{\partial u}{\partial t}$. El término $f(\mathbf{r},t)$, representa una densidad de fuentes de calor. En el caso más general, k, s y ρ dependen de la posición \mathbf{r} , y el primer término se convierte en $\nabla \cdot (k\nabla u)$.
- La ecuación de Laplace, $\nabla^2 u = 0$ es un caso particular, $\partial u/\partial t = 0$ en la ecuación de difusión. Describe la distribución de la temperatura en estado estacionario.
- La ecuación de Poisson, $\nabla^2 u = \rho(\mathbf{r})$ es la ecuación de Laplace, para regiones que contienen materia, cargas o fuentes de calor o fluidos. Estas fuentes se representan por el campo $\rho(\mathbf{r})$.

- La ecuación de difusión puede también generalizarse a $k\nabla^2 u + f(\mathbf{r},t) = s\rho \frac{\partial u}{\partial t}$. El término $f(\mathbf{r},t)$, representa una densidad de fuentes de calor. En el caso más general, k, s y ρ dependen de la posición \mathbf{r} , y el primer término se convierte en $\nabla \cdot (k\nabla u)$.
- La ecuación de Laplace, $\nabla^2 u = 0$ es un caso particular, $\partial u/\partial t = 0$ en la ecuación de difusión. Describe la distribución de la temperatura en estado estacionario.
- La ecuación de Poisson, $\nabla^2 u = \rho(\mathbf{r})$ es la ecuación de Laplace, para regiones que contienen materia, cargas o fuentes de calor o fluidos. Estas fuentes se representan por el campo $\rho(\mathbf{r})$.
- La ecuación de Schrödinger $-\frac{\hbar^2}{2m}\nabla^2 u + V(\mathbf{r})u = i\hbar\frac{\partial u}{\partial t}$ describe la función de onda $u(\mathbf{r},t)$ de una partícula no relativista de masa m; \hbar es la constante de Planck dividida por 2π .

Recapitulando

En presentación consideramos

