

MOS MONOLITHIC 100-BIT SHIFT REGISTER

**PL
5100**
JULY 1965

The GM_e pL5100 MOS Monolithic 100-Bit Shift Register was designed for use in two-phase clocked sequential digital systems. The pL5100 provides a maximum amount of storage in a single TO-5 can and can be cascaded to provide longer delays or larger capacity memories. Some of its outstanding features are:

- Low power consumption — 2 mW/bit
- Clock rate — > 2 Mc
- Full mil temperature range — -55°C to +125°C

This system can be interfaced with RTL circuitry as shown in the Applications. A simple two-phase clock generator is also shown in the Applications.

ABSOLUTE MAXIMUM RATINGS

Voltage applied $V_{1,2,3,4,6,7,9}$ (Note 1) - 35 v
Storage temperature range, ambient -55°C to +150°C
Operating temperature range -55°C to +125°C

TYPICAL TIMING DIAGRAM

PACKAGING

Low profile
TO-5 package

PIN CONFIGURATION

Pins 6, 9, and 10 are test pins and must be grounded for normal operation.

General Micro-electronics Inc.

2920 SAN YSIDRO WAY • SANTA CLARA, CALIFORNIA 95051 • TWX: (408) 737-9961 • PHONE (408) 245-2966

A SUBSIDIARY OF THE PYLE NATIONAL COMPANY

ELECTRICAL TEST SPECIFICATIONS (Notes 2, 3, 5, 6)

Standard conditions:

$T_A = +25^\circ\text{C}$, $V_{DD} = -20 \text{ v}$, Load = 10 meg and 7 pf, CP_1 and $CP_2 = -27 \text{ v}$

Input word used for measurements = 010011000111

CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Clock Repetition Rate	10			kc	$CP_2 = 1 \mu\text{sec}$ $CP_1 = 0.5 \mu\text{sec}$
Clock Repetition Rate			1.0	Mc	$CP_2 = 0.5 \mu\text{sec}$ $CP_1 = 0.3 \mu\text{sec}$
Power Consumption		2.5	3.5	mw/bit	Pulse Rep. Rate = 1 Mc/sec $CP_2 = 0.5 \mu\text{sec}$ $CP_1 = 0.3 \mu\text{sec}$
Power Consumption		0.024	0.10	mw/bit	Pulse Rep. Rate = 10 kc/sec $CP_2 = 1 \mu\text{sec}$ $CP_1 = 0.5 \mu\text{sec}$
Input Data Logic "0"			-4.0	volts	$CP_2 = 0.5 \mu\text{sec}$
Input Data Logic "1"	-8.0			volts	$CP_1 = 0.3 \mu\text{sec}$
Output Data Logic "0"			-3.0	volts	$CP_2 = 0.5 \mu\text{sec}$
Output Data Logic "1"	-9.0			volts	$CP_1 = 0.3 \mu\text{sec}$
AC Noise Immunity Logic "0" and Logic "1"	1.0			volt	Note 4 $CP_2 = 0.5 \mu\text{sec}$ $CP_1 = 0.3 \mu\text{sec}$

NOTES

- 1 Voltage subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.
- 2 All voltage measurements are referenced to pin 5.
- 3 Exercise caution to insure that the V_{DD} supply does not exceed $+0.3 \text{ v}$ when set to zero, as is the case for some supplies; otherwise the positive voltage will forward-bias drain-to-body junctions and destroy the devices.
- 4 AC noise immunity is defined as follows:

$$\text{"1" state N.I.} = V_1 \text{ MIN} - V_1 \text{ TH} = |-9 \text{ v}| - |-8 \text{ v}| = 1 \text{ v}$$

$$\text{"0" state N.I.} = V_0 \text{ TH} - V_0 \text{ MAX} = |-4 \text{ v}| - |-3 \text{ v}| = 1 \text{ v}$$
- 5 Units are 100% tested to this specification but these conditions do not represent the optimum limits.
- 6 Manufacturer reserves the right to make design and process improvements.
- 7 This shift register can be selected to operate with $V_{DD} = -12 \text{ volts}$ and $CP_1 = CP_2 = -24 \text{ volts}$.

The GMe pL5100 Shift Register can be used in a large number of applications where its large storage capacity would be advantageous. A few of these applications are:

- **A FREQUENCY DIVIDER.** Add one inverter in a closed loop and the frequency is divided by $2N$ where N is the bit length of the register.
- **A MEMORY REGISTER.** By tying the register back on itself and recirculating, the register will hold a digital word or pattern of pulses indefinitely. An example of this scheme is shown below. (Fig. 1)
- **A FIXED OR VARIABLE DELAY LINE** where the length of the register is directly related to the clock frequency as shown in the schematic below.
- **A REGISTER IN A DDA.** The register can easily be integrated with the necessary logic to make functional blocks for a DDA.

Fig. 1 A possible approach to recirculate data in the register and store new data as required.

Fig. 1

Fig. 2

Fig. 3 In order for the pL5100 to be used with standard NPN transistor logic, a buffer stage will be needed. One configuration, using a PNP transistor to interface RTL, is shown. A similar approach can be used to interface DTL.

Fig. 3

Additional GM Dynamic Shift Registers. The electrical specifications for the pL5100 apply to the following registers:

Top View 10 Lead TO-5
pL 5172 24 AND 48-BIT REGISTER

Top View 10 Lead TO-5
pL 5150 DUAL 50-BIT REGISTER

Top View 10 Lead TO-5
pL 5120 DUAL 20-BIT REGISTER

Top View 10 Lead TO-5
pL 5220 20-BIT REGISTER

Top View 10 Lead TO-5
pL 5216 DUAL 16-BIT REGISTER

Top View 10 Lead TO-5
pL 5208 DUAL 8-BIT REGISTER

SALES OFFICES

9911 Inglewood Blvd.
Suite 102, Inglewood, Calif.
(213) 677-6111

1250 W. Dorothy Ln.
Suite 215, Dayton, Ohio
(513) 298-0249

Benson Manor, Suite 114 B.
Washington Ln., Jenkintown, Penn.
(215) 885-0430

1643 Beacon St.
Waban, Mass.
(617) 332-5880

In Micro-electronics it's

TECHNICAL DATA SHEET • TENTATIVE SPECIFICATIONS

9-BIT SHIFT REGISTER PARALLEL OUT

**pL
4R02
SEPTEMBER 1965**

FUNCTION:

The GMc pL4R02, a monolithic integrated circuit using MOS devices, is a nine-stage shift register with gate-controlled buffered outputs from each register stage. This unit will operate from dc to 100 kc. The pL4R02 is useful as a serial-to-parallel converter, a sequencer or an arithmetic accumulator register.

OPERATION:

The pL4R02 consists of nine master-slave flip-flops connected as a shift register. The master-slave flip-flops require a complete clock cycle to accomplish a one-bit shift. All inputs are buffered and inverted where necessary, requiring only single-line inputs. A negative clock signal (logic "1") shifts data into the master flip-flop and a ground signal (logic "0") shifts data from the master to the slave flip-flop. The reset and read commands are actuated by a logic "1" input. The reset signal is directly applied to both the master and slave flip-flops of all stages of the register. The ninth stage of the register has two true outputs available. The serial output is not gated and is continuously available. A typical operation of the pL4R02 is shown in the Timing Diagram.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL TIMING DIAGRAM

NOTE: READ COMMAND > -9V
RESET COMMAND < -3V

PACKAGING

Pin No.	Description	Pin No.	Description
1	Ground	12	Ground
2	N.C.	13	Power Supply (V_{DD})
3	9th Read Output (R_9)	14	Power Supply (V_{GG})
4	8th Read Output (R_8)	15	Clock Input
5	7th Read Output (R_7)	16	4th Read Output (R_4)
6	6th Read Output (R_6)	17	3rd Read Output (R_3)
7	5th Read Output (R_5)	18	2nd Read Output (R_2)
8	N.C.	19	1st Read Output (R_1)
9	N.C.	20	Read Input
10	N.C.	21	Serial In (S_m)
11	Reset	22	Serial Out (S_o)

General Micro-electronics Inc.

2920 SAN YSIDRO WAY • SANTA CLARA, CALIFORNIA 95051 • TWX: (408) 737-9961 • PHONE (408) 245-2966

A SUBSIDIARY OF THE PYLE NATIONAL COMPANY

ELECTRICAL CHARACTERISTICS

Standard Conditions: (Unless otherwise noted)

$T_A = -20^\circ\text{C}$ to $+70^\circ\text{C}$, $V_{DD} = -12 \text{ v}$, $V_{GG} = -24 \text{ v}$, Load = $10 \text{ M}\Omega$ and 7.5 pf .

CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Clock-Pulse Repetition Rate	dc		100	kc	Pulse Width = $5.0 \mu\text{sec}$
Clock-Pulse Rise and Fall Time			10.0	μsec	Pulse Width = $100 \mu\text{sec}$, $f = 1 \text{ kc}$
Input Pulse Width	1.0			μsec	
Input Logic Levels (Note 1)					
Logic "0" ($V_{0\text{TH}}$)	0		-3.0	Volts	dc
Logic "1" ($V_{1\text{TH}}$)	-9.0		-12.0	Volts	
Output Logic Levels					
Logic "0" ($V_{0\text{MAX}}$)		0.5	-2.0	Volts	dc
Logic "1" ($V_{1\text{MIN}}$)	-10.0	11.0	-12.0	Volts	
DC Noise Immunity (Note 3)					
Logic "0" and Logic "1"	1.0			Volt	
Input Capacity		3.0		pf	$V_{IN} = 0 \text{ v}$
Input Leakage Current			1.0	μa	$V_{IN} = -10 \text{ v}$
Output Impedance to Ground (Output Logic "0")		1000	2000	Ohms	
Short-Circuit Output Current	400			μa	
Turn-off Time (T_{OFF}) (Note 2)		1.5	2.0	μsec	Input Logic Levels "0" = -2 v , "1" = -10 v
Turn-on Time (T_{ON}) (Note 2)		0.1	0.5	μsec	Input Logic Levels "0" = -2 v , "1" = -10 v

NOTES

1. The input logic levels apply to serial input, read, reset, and clock inputs.
2. Turn-on and turn-off times are defined as logic level changes.
3. DC noise immunity is defined as follows:

$$\begin{aligned} \text{"1" State N.I.} &= V_{1\text{MIN}} - V_{1\text{TH}} = |-10| - |-9| = 1 \text{ v} \\ \text{"0" State N.I.} &= V_{0\text{TH}} - V_{0\text{MAX}} = |-3| - |-2| = 1 \text{ v} \end{aligned}$$

4. Exercise caution to insure that the power supplies and input signals do not exceed $+0.3$ volts; otherwise, the PN junction used for gate protection will be forward-biased and damage may result.
5. Manufacturer reserves the right to make design and process improvements.
6. The bias voltages of $V_{DD} = -12 \text{ v}$ and $V_{GG} = -24 \text{ v}$ were selected for -20°C to $+70^\circ\text{C}$ operation.

MAXIMUM RATINGS

Drain Voltage (V_{DD})	-30 v
Gate Voltage (V_{GG})	-30 v
Logic Input Voltages	-30 v
Storage Temperature	-55°C to +150°C
Operating Temperature Range (Note 5)	-55°C to +125°C
Power Dissipation $T_A = 25^\circ\text{C}$	75 mw

SCHEMATIC DIAGRAM

9911 Inglewood Blvd.
Suite 102, Inglewood, Calif.
(213) 677-6111

Benson Manor, Suite 114 B.
Washington Ln., Jenkintown, Penn.
(215) 885-0430

1643 Beacon St.
Waban, Mass.
(617) 332-5880

In Micro-electronics it's

TECHNICAL DATA SHEET • TENTATIVE SPECIFICATIONS

9-BIT SHIFT REGISTER PARALLEL LOAD

pL

4R01

SEPTEMBER 1965

FUNCTION:

The GM_e pL4R01, a monolithic integrated circuit using MOS devices, is a nine-stage shift register with inputs to each stage. This unit will operate from dc to 100 kc. The parallel inputs are gated by a "load" command which makes this unit useful as a parallel-to-serial converter. The pL4R01 is also useful as a delay element and temporary memory.

OPERATION:

The pL4R01 consists of nine master-slave flip-flops connected as a shift register. The master-slave flip-flops require a complete clock cycle to accomplish a one-bit shift. All inputs are buffered and inverted where necessary, requiring only single-line inputs. A negative clock signal (logic "1") shifts data into the master flip-flop and a ground signal (logic "0") shifts data from the master to the slave flip-flop. The reset and load commands are actuated by a logic "1" input. The reset signal is applied directly to both the master and slave flip-flops of all stages of the register. The ninth stage of the register has the true output available. It should be noted that the shift register should be parallel loaded only when the clock is at a logic "0." A typical operation of the pL4R01 is shown in the Timing Diagram.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL TIMING DIAGRAM

PACKAGING

Pin No.	Description	Pin No.	Description
1	Ground	12	Ground
2	N.C.	13	Power Supply (V_{DD})
3	9th Preset Input (P_9)	14	Power Supply (V_{GG})
4	8th Preset Input (P_8)	15	Clock Input
5	7th Preset Input (P_7)	16	4th Preset Input (P_4)
6	6th Preset Input (P_6)	17	3rd Preset Input (P_3)
7	5th Preset Input (P_5)	18	2nd Preset Input (P_2)
8	N.C.	19	1st Preset Input (P_1)
9	N.C.	20	Load Input
10	N.C.	21	Serial Input (S_{in})
11	Reset	22	Serial Output (S_{out})

General Micro-electronics Inc.

2920 SAN YSIDRO WAY • SANTA CLARA, CALIFORNIA 95051 • TWX: (408) 737-9961 • PHONE (408) 245-2966

A SUBSIDIARY OF THE PYLE NATIONAL COMPANY

ELECTRICAL CHARACTERISTICS

$T_A = -20^\circ\text{C}$ to $+70^\circ\text{C}$, $V_{DD} = -12 \text{ v}$, $V_{GG} = -24 \text{ v}$, Load = $10 \text{ M}\Omega$ and 7.5 pf

CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Clock-Pulse Repetition Rate	dc		100	kc	Pulse Width = $5.0 \mu\text{sec}$
Clock-Pulse Rise and Fall Time			10.0	μsec	Pulse Width = $100 \mu\text{sec}$ $f = 1 \text{ kc}$
Input Pulse Width (Note 1)	1.0			μsec	
Input Logic Levels (Note 1)					
Logic "0" ($V_{0\text{TH}}$)	0		-3.0	Volts	dc
Logic "1" ($V_{1\text{TH}}$)	-9.0		-12.0	Volts	
Serial Output Logic Levels					
Logic "0" ($V_{0\text{TH}}$)	-10.0	-0.5	-2.0	Volts	dc
Logic "1" ($V_{1\text{TH}}$)		-11.0	-12	Volts	
DC Noise Immunity (Note 3)	1.0			Volt	
Logic "0" and Logic "1"					
Input Capacity		3.0		pf	$V_{IN} = 0 \text{ v}$
Input Leakage Current			1.0	μa	$V_{IN} = -10 \text{ v}$
Output Impedance to Ground (Output Logic "0")		1000	2000	Ohms	
Turn-off Time (T_{OFF}) (Note 2)		1.5	2.0	μsec	Input Logic Levels "0" = -2 v , "1" = -10 v
Turn-on Time (T_{ON}) (Note 2)		0.1	0.5	μsec	Input Logic Levels "0" = -2 v , "1" = -10 v

NOTES

1. The input logic levels apply to serial input, load, nine preset inputs, reset, and clock input.
2. Turn-on and turn-off times are defined as logic level changes.
3. DC noise immunity is defined as follows:

$$\text{"1" State N.I.} = V_{1\text{MIN}} - V_{1\text{TH}} = |-10| - |-9| = 1 \text{ v}$$

$$\text{"0" State N.I.} = V_{0\text{TH}} - V_{0\text{MAX}} = |-3| - |-2| = 1 \text{ v}$$
4. Exercise caution to insure that the power supplies and input signals do not exceed $+0.3$ volts; otherwise, the PN junction used for gate protection will be forward-biased and damage may result.
5. Manufacturer reserves the right to make design and process improvements..
6. The bias voltages of $V_{DD} = -12 \text{ v}$ and $V_{GG} = -24 \text{ v}$ were selected for -20°C to $+70^\circ\text{C}$ operation.

MAXIMUM RATINGS

Drain Voltage V_{DD}	-30 v
Gate Voltage V_{GG}	-30 v
Input Signal Voltages	-30 v
Storage Temperature	-55°C to $+150^\circ\text{C}$
Operating Temperature Range (Note 6)	-55°C to $+125^\circ\text{C}$
Power Dissipation $T_A = 25^\circ\text{C}$	75 mw

SWITCHING-TIME CONSTANT DEFINITION

SCHEMATIC DIAGRAM

SALES OFFICES

9911 Inglewood Blvd.
Suite 102, Inglewood, Calif.
(213) 677-6111

Benson Manor, Suite 114 B.
Washington Ln., Jenkintown, Penn.
(215) 885-0430

1643 Beacon St.
Waban, Mass.
(617) 332-5880