Aprendizaje automatizado

MÉTODOS LINEALES DE REGRESIÓN Y CLASIFICACIÓN

Gibran Fuentes Pineda Marzo 2021

Regresión

- · Salida continua (cuantitativa)
- · Ejemplos: predicción de temperatura de un cuarto, etc.

Prediciendo el precio de casas

• ¿Cómo podemos ajustar nuestra función f para modelar la relación entre el tamaño y el precio de casas?

Tamaño (m²)	Precio (USD)	
489.59	489.59	
556.08	556.08	
570.35	570.35	
772.84	772.84	
970.95	970.95	
1162.00	1162.00	
1263.10	1263.10	
:	:	

Prediciendo el precio de casas

• Podemos hacer presuposiciones sobre *f*, por ejemplo que la relación es lineal:

$$f_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

¿Cómo medimos la calidad del ajuste?

 Definimos una función de error, por ejemplo la suma de errores cuadráticos:

$$E(\boldsymbol{\theta}) = \frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2}$$

¿Cómo medimos la calidad del ajuste?

 Definimos una función de error, por ejemplo la suma de errores cuadráticos:

$$E(\boldsymbol{\theta}) = \frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2}$$

· Objetivo: encontrar el valor de θ que minimice $E(\theta)$

$$\hat{m{ heta}} = rg\max_{m{ heta}} E(m{ heta})$$

5

¿Cómo medimos la calidad del ajuste?

Modelando relaciones no lineales

· ¿Qué función se ajusta a estos datos?

Modelando relaciones no lineales

· Podemos ajustar un polinomio de la siguiente forma¹

¹Note que esta forma no está considerando interacciones

· Podemos usar uno lineal nuevamente

$$f_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

· O uno cuadrático

$$f_{\theta}(x) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^2$$

· Grado 3

$$f_{\theta}(x) = \theta_0 + \theta_1 + \theta_2 \cdot x^2 + \theta_3 \cdot x^3$$

· O grado 9

$$f_{\theta}(x) = \theta_0 + \theta_1 + \theta_2 \cdot x^2 + \cdot x + \cdots + \theta_9 \cdot x^9$$

El problema de la generalización

 Comparamos los desempeños con distintos grados de polinomio usando el error cuadrático medio (ECM)

$$E(\boldsymbol{\theta}) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2}$$

¿Por qué está sobreajustando?

	d = 0	d = 1	d = 3	d = 9
θ_0	0.05	0.78	-0.33	-17.62
$ heta_1$		-1.54	12.32	762.18
θ_2			-36.32	12071.82
θ_3			25.14	98135.73
$ heta_4$				-459092.41
θ_5				1301097.36
θ_6				-2263938.71
θ_7				2358449.27
$ heta_8$				-1347197.15
θ_9				324015.43

¿Cómo evito el sobreajuste?

· Penalizando parámetros con valores grandes

$$\tilde{E}(\boldsymbol{\theta}) = \frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} + \frac{\lambda}{2} \cdot \|\boldsymbol{\theta}\|_{2}^{2}$$

· λ determina la ponderación que se le da al término de penalización

¿Cómo evito el sobreajuste?

	$\log \lambda = -\infty$	$\log \lambda = -18$	$\log \lambda = 0$
θ_0	0.35	0.35	-17.62
$ heta_1$	232.37	4.74	-0.05
θ_2	-5321.83	-0.77	-0.06
θ_3	48568	-31.97	-0.05
$ heta_4$	-231639.30	-3.89	-0.03
$ heta_5$	640042.26	55.28	-0.02
θ_6	-1061800.52	41.32	-0.01
θ_7	1042400.18	-45.95	-0.00
$ heta_8$	-557682.99	-91.53	0.00
θ_9	125201.43	72.68	0.01

Mínimos cuadrados penalizados

Mínimos cuadrados penalizados

Regresión lineal

· Modelo lineal

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \sum_{i=1}^{d} \theta_i \cdot x_i$$

Regresión lineal

· Modelo lineal

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \sum_{i=1}^{d} \theta_i \cdot x_i$$

 \cdot Con expansión de funciones base ϕ

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) = \sum_{i=1}^{d} \theta_i \cdot \phi(\mathbf{x})_i$$

Regresión lineal

· Modelo lineal

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \sum_{i=1}^{d} \theta_i \cdot x_i$$

 \cdot Con expansión de funciones base ϕ

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) = \sum_{i=1}^{d} \theta_i \cdot \phi(\mathbf{x})_i$$

· Lineal en los parámetros $oldsymbol{ heta}$

Interpretación probabilística

• Asumiendo ruido ϵ con distribución normal en el modelo

$$y = f_{\theta}(\mathbf{x}, \boldsymbol{\theta}) + \epsilon$$

Interpretación probabilística

 \cdot Asumiendo ruido ϵ con distribución normal en el modelo

$$y = f_{\theta}(\mathbf{x}, \boldsymbol{\theta}) + \epsilon$$

 Tratamos de modelar la probabilidad condicional de la salida dados los datos y parámetros

$$P(y|\mathbf{x}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}(y|f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}), \sigma^2)$$

 Se busca minimizar el negativo de la verosimilitud logarítmica

$$NVL(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log P(y^{(i)}|\mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$= -\sum_{i=1}^{n} \log \mathcal{N}(y^{(i)}|f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \sigma^{2})$$

$$= -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} - \frac{n}{2} \log 2\pi \sigma^{2}$$

 Se busca minimizar el negativo de la verosimilitud logarítmica

$$NVL(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log P(y^{(i)}|\mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$= -\sum_{i=1}^{n} \log \mathcal{N}(y^{(i)}|f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \sigma^{2})$$

$$= -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} - \frac{n}{2} \log 2\pi \sigma^{2}$$

· Equivalente a minimizar suma de errores cuadráticos

$$E(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - \mathbf{y}^{(i)} \}^{2}$$

· Reformulando NVL

$$NVL(\theta) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\theta)^{\top} (\mathbf{y} - \mathbf{X}\theta)$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{y}^{\top} \mathbf{X}\theta - \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{X}\theta$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \theta^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{X}\theta$$

· Reformulando NVL

$$NVL(\theta) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\theta)^{\top} (\mathbf{y} - \mathbf{X}\theta)$$
$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{y}^{\top} \mathbf{X}\theta - \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{X}\theta$$
$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \theta^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{X}\theta$$

· Derivando con respecto a $oldsymbol{ heta}$ e igualando a cero

$$\mathsf{X}^{\top}\mathsf{X}\boldsymbol{\theta} = \mathsf{X}^{\top}\mathsf{y}$$

· Reformulando NVL

$$NVL(\boldsymbol{\theta}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} - \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

· Derivando con respecto a $oldsymbol{ heta}$ e igualando a cero

$$\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\top}\mathbf{y}$$

· El estimador de máxima verosimilitud es

$$\hat{\boldsymbol{\theta}}_{EMV} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

¿Y si tenemos múltiples variables de salida?

· Solución de mínimos cuadrados

$$\hat{\boldsymbol{\Theta}}_{EMV} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}$$

Equivalente a

$$\hat{\boldsymbol{\theta}_{REMV}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}_{R}$$

Obteniendo el estimador de máximo a posteriori

 \cdot Asumiendo distribución a priori normal sobre heta

$$\begin{split} \hat{\boldsymbol{\theta}}_{MAP} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} log \mathcal{N}(\boldsymbol{y}^{(i)}|\boldsymbol{\theta}_{0} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}^{(i)}), \sigma^{2}) \\ &+ \sum_{j=0}^{d} log \mathcal{N}(\boldsymbol{\theta}_{j}|\boldsymbol{0}, \tau^{2}) \end{split}$$

Obteniendo el estimador de máximo a posteriori

 \cdot Asumiendo distribución a priori normal sobre heta

$$\begin{split} \hat{\boldsymbol{\theta}}_{\text{MAP}} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} log \mathcal{N}(\boldsymbol{y}^{(i)}|\boldsymbol{\theta}_{0} + \boldsymbol{\theta}^{\top} \phi(\mathbf{x}^{(i)}), \sigma^{2}) \\ &+ \sum_{j=0}^{d} log \mathcal{N}(\boldsymbol{\theta}_{j}|\boldsymbol{0}, \tau^{2}) \end{split}$$

* Equivalente a minimizar suma de errores cuadráticos con los parámeros penalizados con la norma ℓ_2

$$\tilde{E}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - \mathbf{y}^{(i)} \}^{2} + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_{2}^{2}$$

Obteniendo el estimador de máximo a posteriori

 \cdot Asumiendo distribución a priori normal sobre heta

$$\begin{split} \hat{\boldsymbol{\theta}}_{\text{MAP}} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} log \mathcal{N}(\boldsymbol{y}^{(i)}|\boldsymbol{\theta}_{0} + \boldsymbol{\theta}^{\top} \phi(\mathbf{x}^{(i)}), \sigma^{2}) \\ &+ \sum_{j=0}^{d} log \mathcal{N}(\boldsymbol{\theta}_{j}|\boldsymbol{0}, \tau^{2}) \end{split}$$

* Equivalente a minimizar suma de errores cuadráticos con los parámeros penalizados con la norma ℓ_2

$$\tilde{E}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - \mathbf{y}^{(i)} \}^{2} + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_{2}^{2}$$

· Derivando $ilde{\it E}(heta)$ con respecto a heta e igualando a cero

$$\hat{\boldsymbol{\theta}}_{ridge} = (\lambda \cdot \mathbf{I}_D + \mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

Regularización con norma ℓ_1

· Cuando la regularización es por norma ℓ_1 se conoce como LASSO

$$\hat{\boldsymbol{\theta}}_{\text{LASSO}} = \underset{\boldsymbol{\theta}}{\text{arg min}} \left[\frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} + \frac{\lambda}{2} \cdot \|\boldsymbol{\theta}\|_{1} \right]$$

Regularización con norma ℓ_1

· Cuando la regularización es por norma ℓ_1 se conoce como LASSO

$$\hat{\boldsymbol{\theta}}_{\text{LASSO}} = \underset{\boldsymbol{\theta}}{\text{arg min}} \left[\frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} + \frac{\lambda}{2} \cdot \|\boldsymbol{\theta}\|_{1} \right]$$

 Optimización cuadrática: no existe solución cerrada pero existen algoritmos eficientes

Regularización con diferentes normas

Imagen tomada de C. Bishop. PRML, 2009

Método alternativo: descenso por gradiente

 Algoritmo iterativo de primer orden que va moviendo los parámetros hacia donde el error descienda más rápido en el vecindario

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \alpha \nabla E(\boldsymbol{\theta}^{[t]})$$

donde

$$\nabla E(\boldsymbol{\theta}^{[t]}) = \left[\frac{\partial E}{\partial \theta_0^{[t]}}, \cdots, \frac{\partial E}{\partial \theta_d^{[t]}}\right]$$

 \cdot A lpha se le conoce como tasa de aprendizaje

Gradiente para regresión lineal

 Gradiente de la función de error de suma de errores cuadráticos respecto a los parámetros está dado por

$$\nabla E(\boldsymbol{\theta}) = \nabla \left[\frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} \right] = \mathbf{X}^{\top} (f_{\boldsymbol{\theta}}(\mathbf{X}, \boldsymbol{\theta}) - \mathbf{y})$$

· donde X es la matriz de diseño

Algoritmo del descenso por gradiente para regresión lineal

- 1. Asignar valores aleatorios a los parámetros $oldsymbol{ heta}$
- 2. Repetir hasta que converja

$$\theta_{0} \leftarrow \theta_{0} - \alpha \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left(f_{\theta}(\mathbf{x}^{(i)}) - y^{(i)} \right)}_{i=1}$$

$$\theta_{j} \leftarrow \theta_{j} - \alpha \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left(f_{\theta}(\mathbf{x}^{(i)}) - y^{(i)} \right) \cdot x_{j}^{(i)}}_{\frac{\partial E(\theta_{j})}{\partial \theta_{i}}}$$

(Actualización simultánea de θ_0 y todos los θ_i)

Función de error convexa vs no convexa

- Cuando $\mathit{E}(\theta)$ es convexa, la solución puede converger al mínimo global
- · Cuando $E(\theta)$ no es convexa, la solución puede converger a cualquier mínima

Ejemplo del algoritmo de descenso por gradiente (GD)

Ejemplo del algoritmo de descenso por gradiente (GD)

Sensibilidad a tasa de aprendizaje α

Sensibilidad a tasa de aprendizaje α

Sensibilidad a tasa de aprendizaje α

Sensibilidad a tasa de aprendizaje lpha

Escalando características

• El problema: los valores de las características pueden estar en rangos de valores muy diferentes

Escalando características

- El problema: los valores de las características pueden estar en rangos de valores muy diferentes
- La estrategia: Normalizar los rangos tal que todas las características contribuyan proporcionalmente a la distancia

Escalando características

- El problema: los valores de las características pueden estar en rangos de valores muy diferentes
- La estrategia: Normalizar los rangos tal que todas las características contribuyan proporcionalmente a la distancia
- · Diferentes métodos:

$$x' = \frac{x - min(x_{1:n})}{max(x_{1:n}) - min(x_{1:n})}$$
 (Re-escalado)

$$x' = \frac{x - \bar{x}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \bar{x})^2}}$$
 (Estandaziración)

$$x' = \frac{x}{\|x\|}$$
 (Magnitud unitaria)

Descenso por gradiente estocástico

- Aproximación estocástica de GD: estima $\nabla E(\boldsymbol{\theta}^{[t]})$ y actualiza parámetros con un subconjunto $\mathcal B$ de ejemplos de entrenamiento
 - $\cdot |\mathcal{B}|$ es un hiperparámetro
 - Es común dividir y ordenar aleatoriamente el conjunto de n ejemplos de entrenamiento en k minilotes ($|\mathcal{B}| \times k \approx n$)

Clasificación

- · Salida discreta (cualitativa)
- Ejemplos: detección de spam, reconocimiento de rostros, etc.

Ejemplo de clasificación

 Clasificar sub-especias de la flor Iris basado en el ancho y largo de su pétalo

Ancho	Largo	Especie
1.4	0.2	Setosa
1.7	0.4	Setosa
1.5	0.1	Setosa
:	:	:
4.7	1.4	Versicolor
4.5	1.5	Versicolor
3.3	1.0	Versicolor
:	:	:

Características o Respuesta atributo

Tomada de https: //en.wikipedia.org/wiki/Iris_flower_data_set

Clasificación: el caso binario

· En regresión lineal tenemos

$$P(y|\mathbf{x}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}(y|f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}), \sigma^2)$$

 ¿Cómo podemos extender este modelo para la clasificación binaria?

Clasificación: el caso binario

• En regresión lineal tenemos

$$P(y|\mathbf{x}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}(y|f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}), \sigma^2)$$

- ¿Cómo podemos extender este modelo para la clasificación binaria?
- · Modelo de regresión logística

$$P(y|\mathbf{x}, \boldsymbol{\theta}) = Ber(y|sigm(\boldsymbol{\theta}^{\top}\mathbf{x}))$$

La función logística

· La función sigmoide o logística está dada por

$$sigm(z) = \frac{1}{1 + exp(-z)}$$

Estimador de máxima verosimilitud para regresión logística

· Tomando el negativo de la verosimilitud logarítmica

$$NVL(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \{y^{(i)} \log q^{(i)} + (1 - y^{(i)}) \log(1 - q^{(i)})\} = E(\boldsymbol{\theta})$$

donde $E(\theta)$ se conoce como entropía cruzada binaria y $q^{(i)} = sigm(\theta^{\top} \mathbf{x}^{(i)})$

Estimador de máxima verosimilitud para regresión logística

· Tomando el negativo de la verosimilitud logarítmica

$$NVL(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \{y^{(i)} \log q^{(i)} + (1 - y^{(i)}) \log(1 - q^{(i)})\} = E(\boldsymbol{\theta})$$

donde $E(\theta)$ se conoce como entropía cruzada binaria y $q^{(i)} = sigm(\theta^{\top} \mathbf{x}^{(i)})$

 No hay solución cerrada, podemos entrenar usando descenso por gradiente

$$\nabla E(\boldsymbol{\theta}) = \sum_{i=1}^{n} (q^{(i)} - y^{(i)}) \cdot \mathbf{x}^{(i)} = \mathbf{X}^{\top} (\mathbf{q} - \mathbf{y})$$

Regularización en clasificación

- Al igual que en regresión lineal la regularización puede ayudar a evitar el sobreajuste
- · La función de error y el gradiente están dados por

$$\tilde{E}(\boldsymbol{\theta}) = E(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_{2}^{2}$$
$$\nabla \tilde{E}(\boldsymbol{\theta}) = \nabla E(\boldsymbol{\theta}) + 2\lambda \boldsymbol{\theta}$$

Clasificación multi-clase: uno vs uno

• Un clasificador binario entre cada par de clases

Clasificación multi-clase: uno vs uno

· Un clasificador binario entre cada par de clases

Clasificación multi-clase: uno vs uno

· Un clasificador binario entre cada par de clases

Clasificación multiclase: regresión logística multinomial

· Extensión de la regresión logística para múltiples clases

$$P(y|\mathbf{x}, \mathbf{\Theta}) = Cat(y|softmax(\mathbf{\Theta}^{\top}\mathbf{x})_{k})$$
$$= \prod_{k=1}^{K} softmax(\mathbf{\Theta}^{\top}\mathbf{x})_{k}^{[y=k]}$$

Clasificación multiclase: regresión logística multinomial

· Extensión de la regresión logística para múltiples clases

$$P(y|\mathbf{x}, \mathbf{\Theta}) = Cat(y|softmax(\mathbf{\Theta}^{\top}\mathbf{x})_{k})$$
$$= \prod_{k=1}^{K} softmax(\mathbf{\Theta}^{\top}\mathbf{x})_{k}^{[y=k]}$$

• donde $\mathbf{x} = [1, x_1, \dots, x_d]$, [y = k] son los corchetes de Iverson, $\mathbf{\Theta} \in \mathbb{R}^{d \times K}$, $\mathbf{\Theta}^{\top} \mathbf{x} \in \mathbb{R}^{K}$ y softmax es una generalización de la función logística

softmax(z)_k =
$$\frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}} = \frac{e^{z_k - max(z)}}{\sum_{j=1}^K e^{z_j - max(z)}}$$

EMV para regresión logística multinomial

· Tomando el negativo de la verosimilitud logarítmica

$$NVL(\mathbf{\Theta}) = -\sum_{i=1}^{n} \sum_{k=1}^{K} [y^{(i)} = k] \log q_k^{(i)} = E(\mathbf{\Theta})$$

· donde

$$q_k^{(i)} = softmax(\mathbf{\Theta}^{\top} \mathbf{x}^{(i)})_k$$

· A $E(\Theta)$ se le como entropía cruzada categórica.

EMV para regresión logística multinomial

· Tomando el negativo de la verosimilitud logarítmica

$$NVL(\mathbf{\Theta}) = -\sum_{i=1}^{n} \sum_{k=1}^{K} [y^{(i)} = k] \log q_k^{(i)} = E(\mathbf{\Theta})$$

· donde

$$q_k^{(i)} = softmax(\mathbf{\Theta}^{\top} \mathbf{x}^{(i)})_k$$

- · A $E(\Theta)$ se le como entropía cruzada categórica.
- Podemos entrenar modelos usando descenso por gradiente

$$\nabla E(\boldsymbol{\theta})_k = \sum_{i=1}^n (q_k^{(i)} - [y^{(i)} = k]) \cdot \mathbf{x}^{(i)}$$

¿Cómo representamos múltiples clases?

 Sólo un valor: se representa por una variable discreta y que puede tomar los valores 1,..., K. Por ej. si tenemos 4 clases, representamos la clase 2 por y = 2

¿Cómo representamos múltiples clases?

- Sólo un valor: se representa por una variable discreta y que puede tomar los valores 1,..., K. Por ej. si tenemos 4 clases, representamos la clase 2 por y = 2
- 1-de-K: cada clase se representa por un vector binario y de K dimensiones con 1 sólo en la posición de la clase.
 Siguiendo el mismo ejemplo tenemos

$$y = [0, 1, 0, 0]$$

Modelos generativos

- Modelan la probabilidad conjunta de los entradas y las salidas P(x, y) = P(x|y)P(y).
- La probabilidad condicional de las salidas dadas las entradas P(y|x) se obtiene a partir de la probabilidad conjunta.
- Ejemplos: clasificador bayesiano ingenuo, redes bayesianas, HMMs, etc.

Modelos discriminativos

- Modelan directamente la probabilidad condicional de las salidas dadas las entradas P(y|x).
- · Ejemplos: regresión logística, SVMs, etc.

Generativos vs distriminativos: Entrenamiento

- Generativo: algunos modelos requieren sólo contar y promediar.
- **Discriminativo**: usualmente requieren resolver problemas de optimización convexo.

Generativos vs distriminativos: nuevas clases

- Generativo: las clases se entrenan por separado, por lo que no es necesario volver a entrenar si agregamos una nueva clase.
- **Discriminativo**: requiere volver a entrenar el modelo completo si agregamos una nueva clase.

Generativos vs distriminativos: datos faltantes

- Generativo: podemos ignorar datos faltantes en la etapa de prueba y calcular la probabilidad a posteriori con los disponibles.
- Discriminativo: no tienen una forma natural de lidiar con datos faltantes.

Generativos vs distriminativos: datos no etiquetados

- **Generativo**: es sencillo de incorporar datos no etiquetados (aprendizaje semi-supervisado).
- · Discriminativo: difícil de incorporar datos no etiquetados.

Generativos vs distriminativos: simetría en entradas y salidas

- Generativo: es posible inferir entradas posibles dadas ciertas salidas.
- **Discriminativo**: no es posible inferir entradas posibles dadas ciertas salidas.

Generativos vs distriminativos: expansión por bases

- · Generativo: difícil de incorporar debido a dependencias.
- · Discriminativo: es fácil modelar entradas expandidas.

Generativos vs distriminativos: calibración de probabilidades

- **Generativo**: algunos modelos hacen presuposiciones de independencia que no se cumplen y esto puede hacer que las probabilidades estén en los extremos (cerca de 0 o 1).
- · Discriminativo: usualmente mejor calibradas.