School of Information and Computer Technology Sirindhorn International Institute of Technology Thammasat University

CSS326 Database Programming Laboratory

Laboratory Assignment#5

Data manipulation using MySQL

Objectives:

- To understand about MySQL server usage without a GUI.
- To learn more about MySQL usage such as view and cursor.
- To understand the restrictions on tables in MySQL.
- 1. Create a database named "SIIT" having five tables as shown below. All the commands must be executed in the Command prompt (not in PHPMyAdmin).

instructor					
PK instructor_ID					
first_name					
last_name dept_code					

Table 1: instructor

student				
PK student_ID				
first_name				
	last_name			
FK	dept_code			

Table 2: student

salary					
PK instructor_ID					
FK	dept_code				
salary					

Table 3: salary

- (a). You need to have at least 3 data entries (3 rows of data) for each of the tables using SQL commands. (0.6 points)
- (b). The resulting relational schema should look as shown in Figure 1 & should follow the following rules. (Instructor is related to the department, salary is related to the department as well). (1.4 points)
- If an instructor resigns, his salary record should be deleted and if the instructor ID is updated, it should be updated in the salary table.
- If an instructor leaves/ updates, the teaches table should also change accordingly.
- If a department code updates then, Instructor, course, salary and student should be updated as well.
- However, department entries should not be able to delete.
- When a course is deleted/updated, then the taches table should be changed accordingly.
- (c). if the instructor table is the first one, you're creating, can you still set up a foreign key relationship with the department table?

1 / 13

teaches						
PK	instructor_ID					
FK	course_ID					
sec_ID						
	semester					
	year					

Table 4: teaches

course				
PK course_ID				
	title			
	credits			
FK	dept_code			

Table 5: course

Figure 1: Relational schema

- 2. Let's now create a simple Library database with tables such as 'Books', 'Authors', 'Transactions' and 'Borrowers'. Then answer the following queries.

 ***creating tables, inserting records & relationships (0.4 points)

 *You have sample records, structure and relationships provided with figures.
 - (a) List all books checked out by 'Alice Johnson'. Title and author name should be listed, author name should be combined with last name properly. (0.4 points)

(b) List all overdue books as below. (0.4 points)

(c) List all authors who have books checked out and the number of books checked out by each as below. (0.4 points)

```
| Author_Name | books_checked_out |
| Jane Smith | 1 |
| John Doe | 1 |
| Mark Johnson | 1 |
```

(d) Find the borrower who has the most books taken from library (0.4 points)

```
+-----+
| Borrower_Name | books_checked_out |
+------+
| Alice Johnson | 2 |
+------+
```

Table structures:

Authors table:

++ Field	Туре	Null	Key	Default	Extra
author_id first_name last_name +		YES		NULL NULL NULL	auto_increment

Books table:

+ Field	Туре	 Null	Key	Default	+ Extra
book_id title author_id ISBN publication_year	int(11) varchar(255) int(11) varchar(13) int(11)	NO YES YES YES YES	PRI MUL	NULL NULL NULL NULL NULL	auto_increment

Borrowers table:

Field	Туре	Null	Key	Default	Extra
borrower_id first_name last_name email		NO YES YES YES	PRI	NULL NULL NULL NULL	auto_increment

Transactions table:

+	+	+	+	+	+
Field	Type	Null	Key	Default	Extra
transaction_id book_id borrower_id checkout_date return_date	int(11) int(11) int(11) date date	NO YES YES YES YES	PRI MUL MUL MUL	NULL NULL NULL NULL NULL	auto_increment

Records:

Authors table:

+ author_id +	first_name	++ last_name ++
2	John Jane Mark	Doe Smith Johnson

Books table:

+		author_id	+	+
book_id	title		ISBN	publication_year
j 2	Book1 Book2 Book3	2	1234567890 2345678901 3456789012	2010 2015 2020

Borrowers table:

borrower_id	first_name	last_name	email
	Alice	Johnson	alice@example.com
	Bob	Smith	bob@example.com

Transactions table:

Figure 2: Relation schema for the library database (Constraints is set for restricting updates and deletions)

book_id : int(11)

borrower_id : int(11)

checkout_date : date

return_date : date

library authors

author_id : int(11)

first_name : varchar(50)

a last_name : varchar(50)

- 3. Create a Coffee shop database with tables involving 'products', customers', 'orders' and 'order_items'. Then answer the following queries.

 ***creating tables, inserting records & relationships (0.4 points)

 *You have sample records, structure and relationships provided with figures.
 - (a) List all orders along with the customer's name and order total as below. (0.4 points)

(b) Calculate the total revenue for the coffee shop as below image. (0.4 points)

(c) Create a view to see the most popular products and list them as below. (0.4 points)

(d) Find the top-spending customers as the below image. (0.4 points)

Table structures:

Products table:

+ Field	Туре	++ Null	Key	Default	Extra
product_id name price +	int(11) varchar(255) decimal(10,2)		į	NULL NULL NULL	auto_increment

Customers table:

Field	Туре	Null	Key	Default	Extra
customer_id first_name last_name email	int(11) varchar(50) varchar(50) varchar(100)	NO	PRI	NULL NULL NULL NULL	auto_increment

Orders table:

+ Field	Type	Null	Key Default	Extra
order_id customer_id order_date	int(11)	YES	MUL NULL	auto_increment

Order_items table:

+ Field +				Default	
item_id order_id product_id quantity	int(11) int(11)	YES YES	MUL MUL	NULL NULL	auto_increment

Records:

Products table:

+ product_id +	+ name	++ price
1 2 3 4 5		2.50 3.50 3.00 2.00 1.50

Customers table:

+ customer_id	first_name	last_name	email
	Alice	Johnson	alice@example.com
	Bob	Smith	bob@example.com

Orders table:

Order_items table:

Figure 3: Relation schema for the Coffee shop database (Constraints is set for restricting updates and deletions)

- 4. Let's create a simple Bank database with 'customers', 'accounts', and 'transactions' tables.
 - ***creating tables, inserting records & relationships (0.4 points)
 - *You have sample records, structure and relationships provided with figures.
 - (a) List all customers and their account types along with the total balance for each customer as below. (0.8 points)

customer_name account_types	total_balance
Alice Johnson Checking, Savings Bob Smith Checking	15000.00 3000.00

(b) Find the top 3 customers with the highest total balance across all accounts as the given image. (0.8 points)

+	
customer_name	total_balance
Alice Johnson	15000.00
Bob Smith	3000.00

Table structures:

Customers table:

+ Field +	Type	 Null	Key	Default	Extra
customer_id first_name last_name email phone_number		: :	PRI	NULL NULL NULL NULL	auto_increment

Accounts table:

+	Type	 Null	Key	Default	Extra
customer_id	int(11) int(11) enum('Checking','Savings','Loan') decimal(10,2)	NO YES YES YES	PRI MUL 	NULL NULL NULL NULL	auto_increment

Transactions table:

+	+	Null	Key	Default	++ Extra
transaction_id account_id transaction_date amount description	int(11) int(11) date decimal(10,2) varchar(255)	NO YES YES YES YES YES	PRI MUL	NULL NULL NULL NULL NULL	auto_increment

Records:

Customers table:

+ customer_id	+ first_name	last_name	email	phone_number
		Johnson Smith	alice@example.com bob@example.com	123-456-7890 987-654-3210

Accounts table:

Transactions table:

Figure 4: Relation schema for the Bank database (Constraints is set for restricting updates and deletions)

- 5. Let's create a simple search engine with 'web pages', 'search queries', and 'search results' tables. Then answer the following queries.
 - ***creating tables, inserting records & relationships (0.8 points)
 - *You have sample records, structure and relationships provided with figures.
 - (a) Update the content of a web page based on its URL as below. (0.4 points)

+	+ title +	content	
1 http://www.example.com/page1 2 http://www.example.com/page2 3 http://www.example.com/page3	Example Page 2		ı. İ

(b) List the web pages ranked by their appearance in search results for a specific query as the given image. (0.8 points)

```
| query_text | title | url | rank |
| Search engine | Example Page 2 | http://www.example.com/page2 | 1 |
| Search engine | Example Page 3 | http://www.example.com/page3 | 2 |
```

Table structures:

Web pages table:

ALL MAN					
+ Field +				+ Default +	
page_id url title	int(11) varchar(255) varchar(255) text	NO YES YES	PRI UNI	NULL NULL NULL	auto_increment
T					+

Search_queries table:

+ Field	Туре	+ Null	Key	Default	++ Extra
query_id query_text search_date	varchar(255)	NO YES YES		NULL	auto_increment

Search_results:

+ Field	Туре	Null	Key	Default	Extra
result_id query_id page_id rank	int(11)	YES YES	MUL MUL	NULL NULL	auto_increment

Records:

Web_pages table:

page_id url	title	content
1 http://www.example.com/page1 2 http://www.example.com/page2 3 http://www.example.com/page3	Example Page 2	This is the content of page 2.

Search_queries table:

Search_results table:

Figure 5: Relation schema for the Search_engine database (Constraints is set for restricting updates and deletions)

*** Put all the SQL commands in a Text file (or a word file) in the sequence and Name it as "YourID.txt" ("YourID.pdf",convert to a pdf) .