UNIVERSITÀ DI PADOVA ESAME DI BIOELETTROMAGNETISMO

Prova scritta – Completa

Cognome	Nome	Numero Matricola	Numero posto
Esercizio 1			
a) In una regione V nel v	vuoto, in assenza di correnti	impresse:	
$c^2\nabla\times\bar{B}=j\omega$	\bar{E} $c^2 \nabla \times$	$c^{2}\overline{H} = j\omega \overline{E}$ $c^{2}\nabla$	$J \times \overline{H} = j\omega \overline{D}$
1) II	4: 4:4::4\\ 4 4 4	:	
normale è:	di discontinuita tra due me	ezzi omogenei, privi perdite, $\varepsilon_1 \neq$	ϵ_2 . Il campo elettrico
mai continuo	sempr	re continuo può e	essere continuo
		F	
c) Regione di tessuto bio	plogico con $\sigma = 0.05 \frac{s}{}$ e ε	$= \frac{1}{6\pi} \cdot 10^{-9} \frac{F}{m}$ e non dispersivo. È	un buon conduttore se
la frequenza:	m	6π m	
< 15 <i>GHz</i>	<u>~</u> 1	L5 MHz	> 15 <i>MHz</i>
< 15 dHz		IJ MIIZ	> 13 M112
d) A grande distanza da	un'antenna filiforme attravo	erso l'aria, la potenza complessiva	a che fluisce attraverso
una sfera centrata nell'or		•	
	a da m		
indipendentement	e da <i>r</i> deca	$\det \operatorname{con} \frac{1}{r^2} \qquad \qquad \det$	ecade con $\frac{1}{r}$

Illustrare il teorema di Poynting nel dominio dei vettori complessi.

a) Canali del sodio e del potassio rea	agiscono a stimoli in tensione:				
allo stesso modo	allo stesso modo ma con tempi sfalsati	dinamiche diverse			
b) La refrattarietà del potenziale d'a	zione:				
depolarizza la membrana	limita la frequenza del potenziale d'azione	isola la membrana			
c) Secondo le linee guida ICNIRP, i livelli di riferimento sono:					
funzione della frequenza	funzione del tempo	costanti			
d) I modelli analitici a geometria sferica della stima del SAR:					
sono più precisi dei metodi numerici	non consentono il calcolo del SAR locale	Sono computazionalmente meno onerosi			

Con concetti, formule e grafici descrivere il modello elettrico circuitale per la modellazione della propagazione sottosoglia del potenziale d'azione nell'assone a-mielinico.

a) Valutazione numerica SAR nel modello anatomico irraggiato da onda piana, se la polarizzazione cambia:					
è sufficiente richiamare una macro in post processing	è necessaria una nuova simulazione elettromagnetica	è necessario riapplicare l'equazione del biocalore			
b) Nel software commerciale CST a cosa servono i field monitors?					