In [3]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
iris = pd.read_csv(r'C:\Users\chand\OneDrive\Documents\Desktop\Iris.csv')

In [4]: print(iris.head())

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Speci
es						
0	1	5.1	3.5	1.4	0.2	Iris-seto
sa						
1	2	4.9	3.0	1.4	0.2	Iris-seto
sa						
2	3	4.7	3.2	1.3	0.2	Iris-seto
sa						
3	4	4.6	3.1	1.5	0.2	Iris-seto
sa						
4	5	5.0	3.6	1.4	0.2	Iris-seto
sa						

In [5]: print(iris.describe())

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthC
m					
count	150.000000	150.000000	150.000000	150.000000	150.00000
0					
mean	75.500000	5.843333	3.054000	3.758667	1.19866
7					
std	43.445368	0.828066	0.433594	1.764420	0.76316
1					
min	1.000000	4.300000	2.000000	1.000000	0.10000
0					
25%	38.250000	5.100000	2.800000	1.600000	0.30000
0					
50%	75.500000	5.800000	3.000000	4.350000	1.30000
0					
75%	112.750000	6.400000	3.300000	5.100000	1.80000
0					
max	150.000000	7.900000	4.400000	6.900000	2.50000
0					

In [21]: print(iris.isna().sum())
print(iris.describe())

Id	0
SepalLengthCm	0
SepalWidthCm	0
PetalLengthCm	0
PetalWidthCm	0
Species	0
dtype: int64	

,	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthC
m .	150 00000	450 00000	450 000000	450 00000	450 00000
count 0	150.000000	150.000000	150.000000	150.000000	150.00000
mean 7	75.500000	5.843333	3.054000	3.758667	1.19866
std 1	43.445368	0.828066	0.433594	1.764420	0.76316
min 0	1.000000	4.300000	2.000000	1.000000	0.10000
25% 0	38.250000	5.100000	2.800000	1.600000	0.30000
50% 0	75.500000	5.800000	3.000000	4.350000	1.30000
75% 0	112.750000	6.400000	3.300000	5.100000	1.80000
max 0	150.000000	7.900000	4.400000	6.900000	2.50000

In [22]: iris.head()

Out[22]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [23]: iris.head(150)

Out	[23]	:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [24]: iris.tail(100)

Out[24]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
50	51	7.0	3.2	4.7	1.4	Iris-versicolor
51	52	6.4	3.2	4.5	1.5	Iris-versicolor
52	53	6.9	3.1	4.9	1.5	Iris-versicolor
53	54	5.5	2.3	4.0	1.3	Iris-versicolor
54	55	6.5	2.8	4.6	1.5	Iris-versicolor
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

100 rows × 6 columns

```
In [27]: import matplotlib.pyplot as plt
    plt.figure(1)
    plt.boxplot([iris['SepalLengthCm']])
    plt.figure(2)
    plt.boxplot([iris['SepalWidthCm']])
    plt.show()
```



```
In [30]: iris.hist()
plt.show()
```



```
In [31]:
          iris.plot(kind ='density', subplots = True, layout =(3,3), sharex = False)
Out[31]: array([[<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                  <Axes: ylabel='Density'>],
                 [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                  <Axes: ylabel='Density'>],
                 [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                  <Axes: ylabel='Density'>]], dtype=object)
                                                                        SepalWidthCm
             0.0050
                                                SepalLengthCrie
                                      Density
                                                                þ.5
             0.0025
                                 ld
              0.0000
                                     200
                 0.2
                         PetalLengthCn2
                 0.1
                                         þ.2
                                                    PetalWidthCm
                 0.0
                         0
                                5
                                                 0
                                                         2
                                       10
```

```
SepalLengthCm
                            Axes(0.285345,0.53;0.133621x0.35)
          SepalWidthCm
                             Axes(0.44569,0.53;0.133621x0.35)
          PetalLengthCm
                            Axes(0.606034,0.53;0.133621x0.35)
          PetalWidthCm
                            Axes(0.766379,0.53;0.133621x0.35)
          dtype: object
                                                   8
           150 -
                                                                      2.5
                                         4.b
                                                                      2.þ
           100
                                         3.5
                                                                      1.5
                                         3.þ
                                                                      1.þ
             50
                                         2.5
                                                                      0.5
              0
                                                   0
                                                                      <del>0.</del>0
                             SepalLengthCmSepalWidthCmPetalLengthCmPetalWidthCm
                      Ιd
In [34]: X = iris['SepalLengthCm'].values.reshape(-1,1)
          print(X)
          [[5.1]]
           [4.9]
           [4.7]
           [4.6]
           [5.]
           [5.4]
           [4.6]
           [5.]
           [4.4]
           [4.9]
           [5.4]
           [4.8]
           [4.8]
           [4.3]
           [5.8]
           [5.7]
           [5.4]
           [5.1]
           [5.7]
           FF 47
```

In [32]: iris.plot(kind ='box', subplots = True, layout =(2,5), sharex = False)

Axes(0.125,0.53;0.133621x0.35)

Out[32]: Id

```
In [36]: Y = iris['SepalWidthCm'].values.reshape(-1,1)
           print(Y)
           [[3.5]
             [3.]
             [3.2]
             [3.1]
             [3.6]
             [3.9]
             [3.4]
             [3.4]
             [2.9]
             [3.1]
             [3.7]
             [3.4]
             [3.]
             [3.]
             [4.]
             [4.4]
             [3.9]
             [3.5]
             [3.8]
In [37]: plt.xlabel("SepalLengthCm")
   plt.ylabel("SepalWidthCm ")
           plt.scatter(X,Y,color='b')
           plt.show()
                4.5
                4.0
            SepalWidthCm
                3.5
                3.0
                2.5
```

7.5

8.0

7.0

6.5

2.0

4.5

5.0

5.5

6.0

SepalLengthCm

```
In [39]:
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import train_test_split
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn import svm
          from sklearn import metrics
          from sklearn.tree import DecisionTreeClassifier
In [40]: train, test = train_test_split(iris, test_size = 0.25)
         print(train.shape)
         print(test.shape)
          (112, 6)
          (38, 6)
In [41]: train_X = train[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm',
                            'PetalWidthCm']]
         train_y = train.Species
          test_X = test[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm',
                            'PetalWidthCm']]
          test_y = test.Species
In [42]: |train_X.head()
Out[42]:
               SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
          129
                         7.2
                                      3.0
                                                    5.8
                                                                 1.6
          131
                         7.9
                                      3.8
                                                    6.4
                                                                 2.0
          108
                         6.7
                                      2.5
                                                    5.8
                                                                 1.8
                                      2.7
                                                    4.2
           94
                         5.6
                                                                 1.3
           33
                         5.5
                                      4.2
                                                    1.4
                                                                 0.2
In [43]: |test_y.head()
Out[43]: 9
                     Iris-setosa
          92
                 Iris-versicolor
                  Iris-virginica
          109
          10
                     Iris-setosa
          119
                  Iris-virginica
```

Name: Species, dtype: object

```
In [46]:
         model = LogisticRegression()
         model.fit(train_X, train_y)
         prediction = model.predict(test_X)
         print('Accuracy:',metrics.accuracy_score(prediction,test_y))
         Accuracy: 0.9736842105263158
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.
         py:460: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown i
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
         ikit-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
         ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
         c-regression)
```

n_iter_i = _check_optimize_result(