Nelineární optimalizace a numerické metody

Jaroslav Langer *

Říjen 2020

Contents

1	$\mathbf{P\check{r}e}$	dnáška 1.		
	1.1	Funkce, extrémy funkcí		
		1.1.1 Derivace funkce		
		1.1.2 Derivace některých funkcí		
		1.1.3 Konvexní a konkávní funkce		
	1.2	Kvadratické programování		
	1.3	Kvadratická funkce mnoha proměnných		
		Abstract		
	Definice, pojmy a znalosti z předmětu NI-NON. Odkaz na prezen-			
	ta	co.		

1 Přednáška 1.

Úvod, motivace, funkce, derivace funkce, extrémy funkcí, kvadratické funkce n proměnných, metoda největšího spádu

1.1 Funkce, extrémy funkcí

1.1.1 Derivace funkce

Definice: Nechť je funkce f(x), limita

^{*}z přednášek NI-NON/FIT/ČVUT pana profesora Jaroslava Kruise

$$\frac{df(x)}{dx}=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$
se nazývá derivace funkce f(x) v bodě x, někdy značeno $f'(x)$

1.1.2 Derivace některých funkcí

f(x)	f'(x)
x^n	$nx^{(n-1)}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
n^x	$n^x \cdot \ln n$
$\log_n x$	$\frac{1}{r \ln n}$

Definice: Bod $x \in D$ se nazývá stacionárním právě když f'(x) = 0

1.1.3 Konvexní a konkávní funkce

Definice: Funkce f(x) se nazývá konvexní na množině $M \subset D$, když $\forall x_1, x_2 \in D, \alpha \in (0, 1)$ platí $f(\alpha x_1 + (1 - \alpha)x_2) \leq \alpha f(x_1) + (1 - \alpha)f(x_2)$

Věta: jeli f'(x) > 0 funkce je v bodě x rostoucí.

Věta: jeli f'(x) < 0 funkce je v bodě x klesající.

Věta: jeli f''(x) > 0 funkce je v bodě k ryze konvexní.

Věta: jeli f''(x) < 0 funkce je v bodě k ryze konkávní.

Věta: jeli $f'(x) = 0 \land f''(x) > 0$ funkce má v bodě x lokální minimum. **Věta**: jeli $f'(x) = 0 \land f''(x) < 0$ funkce má v bodě x lokální maximum.

1.2 Kvadratické programování

1.3 Kvadratická funkce mnoha proměnných

$$f(x) = \frac{1}{2}a_{1,1}x_1^2 + \frac{1}{2}a_{1,2}x_1x_2 + \dots + \frac{1}{2}a_{1,n}x_1x_n$$

$$+ \frac{1}{2}a_{2,1}x_2x_1 + \frac{1}{2}a_{2,2}x_2^2 + \dots + \frac{1}{2}a_{2,n}x_2x_n$$

$$\dots$$

$$+ \frac{1}{2}a_{n,1}x_nx_1 + \frac{1}{2}a_{n,2}x_nx_2 + \dots + \frac{1}{2}a_{n,n}x_n^2$$

$$+ b_1x_1 + b_2x_2 + \dots + b_nx_n + c \quad (1)$$

potom se dají proměnné $x_1, x_2, \dots x_n$ napsat jako vektor \mathbf{v} a kvadratická rovnice n proměnných se dá maticově napsat jako

$$f(x) = x^T A x + x^T b + c$$

cnemění vlastnosti extrému, pouze jeho absolutní hodnotu, proto se dále předpokládá, že c=0

 $\mathbf{Definice} :$ Matice $A^{n,n}$ je pozitivně definitní, právě tehdy když pro libovolný nenulový vektor x

$$x \in R^n, x^T A x > 0$$

Poznámka: Velmi mnoho inženýrských úloh se dá zkonstruovat tak, že se hledá minimum kvadratické rovnice o n neznámýchjako s pozitivně definitní maticí.

 \mathbf{V} ěta: Matice $A^{n,n}$ je pozitivně definitní právě tehdy když jsou všechna její vlastní čísla kladná.

 $\mathbf{def}\colon$ Matice Aje symetrická právě tehdy když $A=A^T$