Compito Scritto di Informatica Teorica

I appello estivo 2016 16 giugno 2016

Soluzioni

Esercizio 1

Siano M_1, M_2 macchine di Turing che decidono L_1, L_2 , rispettivamente.

- 1. Una macchina di Turing che decide $L_1 \cup L_2$ é la seguente: data una stringa w, eseguiamo M_1 su w; se w viene accettata, si puó concludere che $w \in L_1 \cup L_2$, altrimenti eseguiamo M_2 su w; se w viene accettata, si puó concludere che $w \in L_1 \cup L_2$, altrimenti si puó concludere che $w \notin L_1 \cup L_2$.
- 2. Una macchina di Turing che decide L_1L_2 é la seguente: data una stringa w, eseguiamo M_1 sul prefisso di w di lunghezza n, per $n=0,1,2,\ldots$; ogni volta che troviamo un n tale che il prefisso di w di lunghezza N viene accettato da M_1 , eseguiamo M_2 sul suffisso complementare; se M_2 accetta tale suffisso, si puó concludere che $w \in L_1L_2$; se ció non accade per alcun prefisso accettato da M_1 , si puó concludere che $w \notin L_1L_2$; se M_1 non accetta alcun prefisso di w, si puó concludere che $w \notin L_1L_2$.
- 3. Si osservi che $w \in L_1^*$ se e solo se esiste un numero naturale n tale che $w \in \bigcup_{i=1}^n L_1^i$. Pertanto, siccome ho appena dimostrato che unione e concatenazione di linguaggi ricorsivi sono ricorsivi, posso concludere che L_1^* é anch'esso ricorsivo.

Esercizio 2

Occorre dimostrare che $L \in \mathcal{NP}$ e che $L \in co - \mathcal{NP}$.

Data una stringa y, "indovino" la sua controimmagine x tramite f, quindi calcolo f(x) per controllare se f(x) = y (per ipotesi f é computabile in tempo polinomiale), dopodiché (se é cosí) controllo se la prima lettera di x é uguale a 1 (cosa che si puó fare in tempo costante). Quella appena descritta é una macchina di Turing non deterministica polinomiale che accetta L, pertanto L ∈ NP.

• Osserviamo che $\overline{L} = \{y \mid \exists x : f(x) = y \text{ oppure } \exists x : f(x) = y \text{ e la prima lettera di } x \notin 0\}$. Poiché f é iniettiva e conserva la lunghezza, si ha che f é biiettiva sull'insieme Σ_n delle stringhe binarie di lunghezza fissata n, per ogni numero naturale n. Pertanto $\overline{L} = \{y \mid \exists x : f(x) = y \text{ e la prima lettera di } x \notin 0\}$. Allora, data una stringa y, "indovino" la sua controimmagine x tramite f, quindi calcolo f(x) per controllare se f(x) = y (per ipotesi f é computabile in tempo polinomiale), dopodiché (se é cosí) controllo se la prima lettera di x é uguale a 0 (cosa che si puó fare in tempo costante). Quella appena descritta é una macchina di Turing non deterministica polinomiale che accetta \overline{L} , pertanto $L \in co - \mathcal{NP}$.