Theory of Statistical Learning Part II

Damien Garreau

Université Côte d'Azur

2021

Outline

Linear predictors
 Linear classification
 Linear regression
 Ridge regression
 Polynomial regression
 Logistic regression

2. Tree classifiers Partition rules

3. Boosting

1. Linear predictors

1.1. Linear classification

Linear functions

- $ightharpoonup \mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$
- ► thus $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})^{\top}$
- we consider no bias term (otherwise affine):

$$\{h: x \mapsto w^{\top}x, w \in \mathbb{R}^d\}.$$

▶ **Reminder:** given two vectors $u, v \in \mathbb{R}^d$,

$$\langle u, v \rangle = u^{\top} v = \sum_{j=1}^{d} u_i v_i.$$

- **b** binary classification: 0-1 loss, $\mathcal{Y} = \{-1, +1\}$
- ▶ **Important:** compose h with $\phi : \mathbb{R} \to \mathcal{Y}$ (typically the sign)

The sign function

Figure: the sign function

Halfspaces

thus our function class is

$$\mathcal{H} = \{ x \mapsto \operatorname{sign}(w^{\top} x), w \in \mathbb{R}^d \}.$$

 \triangleright gives label +1 to vector pointing in the same direction as w

VC dimension of halfspaces

Proposition: the VC dimension of halfspaces in dimension d is exactly d+1.

Consequence: \mathcal{H} is PAC learnable with sample complexity

$$\Omega\left(rac{d+\log(1/\delta)}{arepsilon}
ight)$$
 .

Linearly separable data

- ▶ Important assumption: data is linearly separable
- ▶ that is, there is a $w^* \in \mathbb{R}^d$ such that

$$y_i = \operatorname{sign}(\langle w^*, x_i \rangle) \quad \forall 1 \leq i \leq n.$$

Linear programming

► Empirical risk minimization: recall that we are looking for w such that

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i \neq \operatorname{sign}(w^{\top} x_i)}$$

is minimal

- **Question:** how to solve this?
- we want $y_i = \operatorname{sign}\left(w^\top x_i\right)$ for all $1 \le i \le n$
- equivalent formulation: $y_i \langle w, x_i \rangle > 0$
- \triangleright we know that there is a vector that satisfies this condition (w^*)
- let us set $\gamma = \min_i \{ y_i \langle w^*, x_i \rangle \}$ and $\overline{w} = w^* / \gamma$
- we have shown that there is a vector such that $y_i\langle \overline{w}, x_i \rangle \geq 1$ for any $1 \leq i \leq n$ (and it is an ERM)

Linear programming, ctd.

▶ define the matrix $A \in \mathbb{R}^{n \times d}$ such that

$$A_{i,j} = y_i x_{i,j}$$
.

- ▶ **Intuition:** observations × labels
- ightharpoonup remember that we have the ± 1 label convention
- ightharpoonup define $v = (1, ..., 1)^{\top} \in \mathbb{R}^n$
- ▶ then we can rewrite the above problem as

maximize
$$\langle u, w \rangle$$
 subject to $Aw \leq v$,

with u = 0 for instance

- we call this sort of problems linear programs¹
- solvers readily available, e.g., scipy.optimize.linprog if you use Python

¹Boyd, Vandenberghe, Convex optimization, Cambridge University Press, 2004

The perceptron

- ► another possibility: the *perceptron*²
- ▶ **Idea:** iterative algorithm that constructs $w^{(1)}, w^{(2)}, \dots, w^{(T)}$
- update rule: at each step, find i that is misclassified and set

$$w^{(t+1)} = w^{(t)} + y_i x_i$$
.

- **Question:** why does it work?
- pushes w in the right direction:

$$y_i\langle w^{(t+1)}, x_i\rangle = y_i\langle w^{(t)} + y_ix_i, x_i\rangle = y_i\langle w^{(t)}, x_i\rangle + \|x_i\|^2$$

remember, we want $y_i \langle w, x_i \rangle > 0$ for all i

²Rosenblatt, *The perceptron, a perceiving and recognizing automaton*, tech report, 1957

1.2. Linear regression

Least squares

► regression ⇒ squared-loss function

$$\ell(y,y')=(y-y')^2.$$

still looking at linear functions:

$$\mathcal{H} = \{ h : x \mapsto \langle w, x \rangle \text{ s.t. } w \in \mathbb{R}^d \}.$$

empirical risk in this context:

$$\hat{\mathcal{R}}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_{i} - y_{i})^{2} = F(w).$$

- also called mean squared error
- ▶ empirical risk minimization: we want to minimize $w \mapsto F(w)$ with respect to $w \in \mathbb{R}^d$
- F is a convex, smooth function

Least squares, ctd.

▶ let us compute the gradient of *F*:

$$\frac{\partial F}{\partial w_j}(w) = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_j} (w^\top x_i - y_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^n 2 \frac{\partial}{\partial w_j} w^\top x_i (w^\top x_i - y_i)$$
$$\frac{\partial F}{\partial w_j}(w) = \frac{2}{n} \sum_{i=1}^n (w^\top x_i - y_i) x_{i,j}.$$

Least squares, ctd.

we can rewrite it, define

$$A = \sum_{i=1}^n x_i x_i^{ op}$$
 and $b = \sum_{i=1}^n y_i x_i$,

then solving $\nabla F(w) = 0$ is equivalent to

$$Aw = b$$
.

▶ if *A* is invertible, straightforward:

$$\hat{w} = A^{-1}b$$

what happens when A is not invertible?

Singular value decomposition

▶ since *A* is symmetric, it has an eigendecomposition

$$A = VDV^{\top}$$
,

with $D \in \mathbb{R}^d$ diagonal and V orthonormal

▶ define *D*⁺ such that

$$D_{i,i}^{+} = 0$$
 if $D_{i,i} = 0$ and $D_{i,i}^{+} = \frac{1}{D_{i,i}}$ otherwise.

- ightharpoonup define $A^+ = VD^+V^\top$
- then we set

$$\hat{w} = A^+ b$$
.

Singular value decomposition, ctd.

- why did we do that?
- \triangleright let v_i denote the *i*th column of V, then

$$A\hat{w} = AA^+b$$
 (definition of \hat{w})
 $= VDV^\top VD^+V^\top b$ (definition of A^+)
 $= VDD^+V^\top b$ (V is orthonormal)
 $A\hat{w} = \sum_{i:D_{i,i}\neq 0} v_i v_i^\top b$.

- ▶ in definitive, $A\hat{w}$ is the projection of b onto the span of v_i such that $D_{i,i} \neq 0$
- ▶ since the span of these v_i is the span of the x_i and b is in the linear span of the x_i , we have $A\hat{w} = b$

Exercise

Exercise: Of course, one does not have to use the squared loss. Instead, we may prefer to use

$$\ell(y,y')=|y-y'|.$$

1. show that, for any $a \in \mathbb{R}$,

$$|c| = \min_{a \geq 0} a$$
 subject to $c \leq a$ and $c \geq -a$.

- 2. use the previous question to show that ERM with the absolute value loss function is equivalent to minimizing the linear function $\sum_{i=1}^{n} s_i$, where the s_i satisfy linear constraints
- 3. write it in matrix form, that is, find $A \in \mathbb{R}^{2n \times (n+d)}$, $v \in \mathbb{R}^{d+n}$, and $b \in \mathbb{R}^{2n}$ such that the LP can be written

minimize
$$c^{\top}v$$
 subject to $Av \leq b$.

Correction of the exercise

- 1. The absolute value is the smallest positive number larger than both c and -c for any real number c.
- 2. In that case, the empirical risk can be written

$$\hat{\mathcal{R}}_S(w) = \frac{1}{n} \sum_{i=1}^n |y_i - w^\top x_i|.$$

We deduce the result from question 1.

3. One possibility is to define $v = (w_1, \ldots, w_d, s_1, \ldots, s_n)^\top \in \mathbb{R}^{n+d}$, $c = (0, \ldots, 0, 1, \ldots, 1)^\top \in \mathbb{R}^{d+n}$, $b = (y_1, \ldots, y_n, -y_1, \ldots, -y_n)^\top \in \mathbb{R}^{2n}$, and

$$A = \begin{pmatrix} -X & I_n \\ X & I_n \end{pmatrix} \in \mathbb{R}^{2n \times (n+d)},$$

with $X \in \mathbb{R}^{n \times d}$ the matrix whose lines are the x_i s and I_n the identity matrix.