Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (currently amended): A method comprising:

determining whether a register of a processor has been updated; and

if the register is updated, setting an indicator bit of the register to indicate the update.

Claim 2 (cancel)

Claim 3 (currently amended): The method of claim [[2]] 1 wherein if the register has not been updated, refraining from transferring the contents of the register back to a memory.

Claim 4 (cancel)

Claim 5 (cancel)

Claim 6 (currently amended): The method of claim 1 including assigning a single indicator bit as the indicator bit for a plurality of registers, the single indicator bit located in one of the plurality of registers.

Claim 7 (currently amended): An article comprising a medium storing machine-readable instructions that if executed enable a processor-based system to:

determine whether a register of a processor of the processor-based system has been updated; and

if the register is updated, set an indicator bit of the register to indicate the update.

Claim 8 (cancel)

Claim 9 (currently amended): The article of claim [[8]] 7 further storing instructions that enable the processor-based system to refrain from transferring the contents of the register back to a memory if the register has not been updated.

Claim 10 (cancel)

Claim 11 (cancel)

Claim 12 (currently amended): The article of claim [[10]] 7 further storing instructions that enable the processor-based system to save the contents of a plurality of registers to a memory if the indicator bit is set.

Claim 13 (currently amended):

A processor comprising:

a register; and

a storage storing instructions to determine whether the register has been updated and if the register is updated, set an indicator bit of the register.

Claim 14 (cancel)

Claim 15 (currently amended): The processor of claim [[14]] 13 wherein said storage stores instructions that enable the processor to refrain from transferring the contents of the register back to a memory if the register has not been updated.

Claim 16 (currently amended): The processor of claim [[14]] 13 wherein said storage stores instructions that enable the processor to determine whether the register has been updated and if so, save the contents of the register to a memory.

Claim 17 (currently amended): The processor of claim 16 wherein said storage stores instructions that enable the processor to save the register contents to <u>the</u> memory on a context change.

Claim 18 (cancel)

Claim 19 (currently amended):

A system comprising:

a processor having a register; and

a storage to store instructions to determine whether the register has been updated and if the register has been updated, set an indicator bit of the register.

Claim 20 (currently amended): The system of claim 19 including a memory and an interface <u>coupled</u> between said memory and said processor.

Claim 21 (cancel)

Claim 22 (currently amended): The system of claim [[21]] <u>20</u> wherein said storage stores instructions that enable the processor to refrain from transferring the contents of the register back to the memory <u>via the interface</u>.

Claim 23 (original): The system of claim 21 wherein said storage stores instructions that enable the processor to determine whether the register has been updated and if so, save the contents of the register to the memory.

Claim 24 (original): The system of claim 23 wherein said storage stores instructions that enable the processor to save the register contents to memory on a context change.

Claim 25 (cancel)

Claim 26 (currently amended): The system of claim 19 including a control register to store said indicator bit and wherein said storage storing instructions and said control register are part of said processor, and wherein the register comprises a main register.

Claim 27 (currently amended): The system of claim 19 including a plurality of registers coupled to said processor and a single indicator bit as the indicator bit for all of those registers, the single indicator bit stored in one of the plurality of registers.

Claim 28 (currently amended): The method of claim [[5]] 1, further comprising not saving the register contents to a memory on the a context change if the register has not been updated.

Claim 29 (currently amended): The article system of claim [[11]] 20, further emprising wherein said storage stores instructions that enable the processor-based system to not save the register contents to the memory on the a context change if the register has not been updated.

Claim 30 (cancel)

Claim 31 (previously presented): The processor of claim [[30]] 13, wherein said register comprises a control register.

Claim 32 (cancel)

Claim 33 (previously presented): The system of claim [[32]] 19, wherein said register comprises a control register.

Claim 34 (new): The method of claim 1, further comprising:

determining if a context switch occurs; and

clearing the indicator bit upon occurrence of the context switch, then determining whether the register has been updated.

Claim 35 (new): The method of claim 3, further comprising reducing power consumption of a battery-operated device including the processor by refraining from transferring the register contents.

Claim 36 (new): The method of claim 1, wherein the register comprises a control register, and further comprising setting a main indicator bit of a main register if the main register is updated.

Claim 37 (new): The article of claim 7 further storing instructions that enable the processor-based system to:

determine if a context switch occurs; and

clear the indicator bit upon occurrence of the context switch, then determine whether the register has been updated.

Claim 38 (new): The article of claim 7, wherein the register comprises a control register, and further comprising instructions that enable the processor-based system to set a main indicator bit of a main register if the main register is updated.

Claim 39 (new): The processor of claim 13, wherein the storage further stores instructions to:

determine if a context switch occurs; and

clear the indicator bit upon occurrence of the context switch, then determine whether the register has been updated.

Claim 40 (new): The processor of claim 13, the register comprises a control register, and wherein the storage further stores instructions to set a main indicator bit of a main register if the main register is updated.

Claim 41 (new): The processor of claim 16, wherein the said storage stores instructions that enable the processor to save the contents of the register to the memory through an interface coupled between the processor and the memory.

Claim 42 (new): The system of claim 20, wherein the system comprises a portable system to operate on battery power.

Claim 43 (new): The system of claim 42, wherein the system to reduce power consumption by refraining from transferring contents of the register to the memory on a context switch based on the indicator bit.