Билет №17. Вычисление объемов тел через площади сечений. Объем тела вращения.

1.1. Объём тела сечения:

Теорема: Пусть сечение тела плоскостью \bot оси OX зависит только от координаты пересечения с осью, и F(x) - площадь данного сечения. Если тело ограничено плоскостями $x=a;\;x=b,$ то его объём будет равен: $V=\int_a^b F(x)dx$

Рисунок 1.1. Площадь сечения

Разобьём отрезок [a,b] на элементарные интервалы Δx_K , тогда объём тела разобьётся в сумму элементарных объёмов V_K . При $\Delta x_K \to 0$ соответственный объём V_K можно приблизительно считать объёмом цилиндра. $V_K \approx V_{\text{цил.}} = S_{\text{осн.}} * h = F_x * \Delta x$

$$V = \sum_{k=1}^n V_K pprox \sum_{k=1}^\infty F_{ck} * \Delta x_K$$
 и $V = \lim_{\Delta x_K o 0} \sum_{k=1}^\infty F_{ck} * \Delta x_K = \int_a^b F(x) dx$

1.2. Объём тела вращения:

Теорема: пусть прямолинейная трапеция образованная графиком функции y = y(x), осью OX, прямыми x = a; x = b, вращается вокруг оси OX, тогда объём тела вращения будет равен: $V_x = \pi * \int_a^b y^2(x) dx$

Рисунок 1.2. Объём тела вращения

(Площадь сечения \bot оси OX)

Док-во:

 $F(x)=\pi*R^2,$ по предыдущей теореме \Rightarrow V $_x=\int_a^bF(x)dx=\int_a^b\pi*y^2(x)dx=\pi\int_a^by^2(x)dx$

Замечание: Если тело вращается вокруг оси OY, то его объём вычисляется по формуле: $V_y = \pi \int_a^b x^2(y) dy$