# Convergência de Operadores e o Teorema de Toeplitz

#### Alexandre do Amaral João Vitor Parada Poletto Professor: José Carlos Corrêa Eidam

Universidade Federal do Paraná

20 de novembro de 2019



#### Convergência de sequências de operadores

Seja X e Y espaços normados. Uma sequência de operadores  $(T_n)$  de operadores  $T_n \in B(X, Y)$  é dita:

(1) **uniformemente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $||T_n - T|| \longrightarrow 0$ .

#### Convergência de sequências de operadores

Seja X e Y espaços normados. Uma sequência de operadores  $(T_n)$  de operadores  $T_n \in B(X, Y)$  é dita:

- (1) **uniformemente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $||T_n T|| \longrightarrow 0$ .
- (2) **fortemente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $||T_n x Tx|| \longrightarrow 0$  para todo  $x \in X$ .

#### Convergência de sequências de operadores

Seja X e Y espaços normados. Uma sequência de operadores  $(T_n)$  de operadores  $T_n \in B(X, Y)$  é dita:

- (1) **uniformemente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $||T_n T|| \longrightarrow 0$ .
- (2) **fortemente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $||T_n x Tx|| \longrightarrow 0$  para todo  $x \in X$ .
- (3) **fracamente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $|f(T_n x) f(T x)| \longrightarrow 0$  para todo  $x \in X$  e para todo  $f \in Y'$ .

#### Convergência de sequências de operadores

Seja X e Y espaços normados. Uma sequência de operadores  $(T_n)$  de operadores  $T_n \in B(X, Y)$  é dita:

- (1) **uniformemente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $||T_n T|| \longrightarrow 0$ .
- (2) **fortemente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $||T_n x Tx|| \longrightarrow 0$  para todo  $x \in X$ .
- (3) **fracamente convergente** se existe um operador  $T: X \longrightarrow Y$  tal que  $|f(T_n x) f(T x)| \longrightarrow 0$  para todo  $x \in X$  e para todo  $f \in Y'$ .

T é chamado o operador limite *uniforme, forte e fraco* de  $T_n$ , respectivamente.

No espaço  $l^2$  nós consideramos a sequência  $(T_n)$ , onde  $T_n: l^2 \longrightarrow l^2$  é definido por:

$$T_n x = (\underbrace{0, 0, \cdots, 0}_{n \text{ zeros}}, \xi_{n+1}, \xi_{n+2}, \xi_{n+3}, \cdots);$$

$$\operatorname{com} x = (\xi_1, \xi_2, \cdots) \in I^2.$$

No espaço  $l^2$  nós consideramos a sequência  $(T_n)$ , onde  $T_n: l^2 \longrightarrow l^2$  é definido por:

$$T_n x = (\underbrace{0, 0, \cdots, 0}_{n \, zeros}, \xi_{n+1}, \xi_{n+2}, \xi_{n+3}, \cdots);$$

com  $x=(\xi_1,\xi_2,\cdots)\in I^2$ . Este operador é linear e limitado e é fortemente convergente para 0 mas não é uniformemente convergente.

Ainda no espaço  $I^2$ , uma outra sequência  $T_n$  de operadores  $T_n$ :  $I^2 \longrightarrow I^2$  é definida por:

$$T_n x = (\underbrace{0,0,\cdots,0}_{n \, zeros},\xi_1,\xi_2,\xi_3,\cdots);$$

$$com x = (\xi_1, \xi_2, \cdots) \in I^2.$$

Ainda no espaço  $I^2$ , uma outra sequência  $T_n$  de operadores  $T_n$ :  $I^2 \longrightarrow I^2$  é definida por:

$$T_n x = (\underbrace{0,0,\cdots,0}_{n \text{ zeros}},\xi_1,\xi_2,\xi_3,\cdots);$$

com  $x=(\xi_1,\xi_2,\cdots)\in I^2$ . O operador  $T_n$  é linear e limitado e mostraremos que ele é fracamente convergente para 0 mas não fortemente. Para isso recorramos ao Teorema de Riesz.

#### Teorema

#### Teorema de Riesz (Funcionais no espaço de Hilbert)

Todo funcional linear f em um espaço de Hilbert pode ser representado em termos do produto interno, chamado:

$$f(x) = \langle x, z \rangle$$

onde z depende de f, é unicamente determinado pelo funcional e tem norma:

$$||z|| = ||f||$$

Qualquer funcional  $f \in I^2$  pode ser escrito como

$$f(x) = \langle x, z \rangle = \sum_{j=1}^{\infty} \xi_j \overline{\eta}_j$$

onde  $z = (\eta_i) \in I^2$ .

Qualquer funcional  $f \in I^2$  pode ser escrito como

$$f(x) = \langle x, z \rangle = \sum_{j=1}^{\infty} \xi_j \overline{\eta}_j$$

onde  $z = (\eta_i) \in l^2$ . Desta forma, chamando j = n + k

$$f(T_nx) = \langle T_nx, z \rangle = \sum_{j=n+1}^{\infty} \xi_{j-n}\overline{\eta}_j = \sum_{k=1}^{\infty} \xi_k \overline{\eta}_{n+k}$$

Qualquer funcional  $f \in I^2$  pode ser escrito como

$$f(x) = \langle x, z \rangle = \sum_{i=1}^{\infty} \xi_i \overline{\eta}_i$$

onde  $z = (\eta_i) \in I^2$ . Desta forma, chamando j = n + k

$$f(T_nx) = \langle T_nx, z \rangle = \sum_{j=n+1}^{\infty} \xi_{j-n}\overline{\eta}_j = \sum_{k=1}^{\infty} \xi_k \overline{\eta}_{n+k}$$

Usando a desigualdade de Holder para somas, temos que:

$$|f(T_nx)| = |\sum_{k=1}^{\infty} \xi_k \overline{\eta}_{n+k}| \le \sum_{k=1}^{\infty} |\xi_k \overline{\eta}_{n+k}| \le \left(\sum_{k=1}^{\infty} |\xi_k|^2\right)^{1/2} \left(\sum_{m=n+1}^{\infty} |\eta_m|^2\right)^{1/2}$$

Elevando ambos os lados ao quadrado:

$$|f(T_nx)| = \left(\sum_{k=1}^{\infty} |\xi_k|^2\right) \left(\sum_{m=n+1}^{\infty} |\xi_m|^2\right)$$

Como o lado direito da desigualdade vai a 0, temos que  $f(T_n x) \longrightarrow 0$ . Consequentemente,  $(T_n)$  é fracamamente operador convergente para 0.

Elevando ambos os lados ao quadrado:

$$|f(T_nx)| = \left(\sum_{k=1}^{\infty} |\xi_k|^2\right) \left(\sum_{m=n+1}^{\infty} |\xi_m|^2\right)$$

Como o lado direito da desigualdade vai a 0, temos que  $f(T_n x) \longrightarrow 0$ . Consequentemente,  $(T_n)$  é fracamamente operador convergente para 0.

Porém  $T_n x$  não é fortemente operador convergente, basta considerarmos a sequência  $x = (1, 0, 0, \cdots)$ 

E sobre convergência de funcionais?

E sobre convergência de funcionais?

Como funcionais são operadores lineares, as definições citadas anterioremente se aplicam. Além disso, para uma sequência de funcionais, convergência forte e fraca são equivalentes, basta relembrar o seguinte teorema:

#### Teorema

#### Teorema (convergência forte e fraca)

Seja  $(x_n)$  uma sequência em um espaço normado X. Então

- a) Convergência forte implica convergência fraca com o mesmo limite.
- b) A recíproca de *a* não é sempre verdadeira.
- c) Se dim  $X < \infty$ , convergência fraca implica convergência forte.

Para uma sequência de funcionais  $f_n$  temos que  $f_n x \in F$  para todo  $x \in X$ .

Para uma sequência de funcionais  $f_n$  temos que  $f_n x \in F$  para todo  $x \in X$ .

Então, assumindo que exista um funcional f para o qual a sequência de funcionais converge fracamente significa que para cada  $x \in X$  e  $g \in F'$ , temos que:  $\|f_n(x) - f(x)\| \longrightarrow 0 \iff |g(f_nx) - g(fx)|$  pelo item c do teorema anterior.

Para uma sequência de funcionais  $f_n$  temos que  $f_n x \in F$  para todo  $x \in X$ .

Então, assumindo que exista um funcional f para o qual a sequência de funcionais converge fracamente significa que para cada  $x \in X$  e  $g \in F'$ , temos que:  $\|f_n(x) - f(x)\| \longrightarrow 0 \iff |g(f_nx) - g(fx)|$  pelo item c do teorema anterior.

Por esse motivo, há as seguintes definições:

Definção (forte e fraca\* convergência de uma sequência de funcionais)

Seja  $f_n$  uma sequência de funcionais lineares limitados no espaço normado X. Então:

(a) Convergência forte de  $f_n$  significa que existe um  $f \in X'$  tal que  $||f_n - f|| \longrightarrow 0$ . Escrevemos:

$$f_n \longrightarrow f$$
.

## Definção (forte e fraca\* convergência de uma sequência de funcionais)

Seja  $f_n$  uma sequência de funcionais lineares limitados no espaço normado X. Então:

(a) Convergência forte de  $f_n$  significa que existe um  $f \in X'$  tal que  $||f_n - f|| \longrightarrow 0$ . Escrevemos:

$$f_n \longrightarrow f$$
.

(b) Convergência fraca\* de  $f_n$  significa que existe um  $f \in X'$  tal que  $f_n(x) \longrightarrow f(x)$  para todo  $x \in X$ . Escrevemos:

$$f_n \stackrel{w^*}{\longrightarrow} f$$

## Definção (forte e fraca\* convergência de uma sequência de funcionais)

Seja  $f_n$  uma sequência de funcionais lineares limitados no espaço normado X. Então:

(a) Convergência forte de  $f_n$  significa que existe um  $f \in X'$  tal que  $||f_n - f|| \longrightarrow 0$ . Escrevemos:

$$f_n \longrightarrow f$$
.

(b) Convergência fraca\* de  $f_n$  significa que existe um  $f \in X'$  tal que  $f_n(x) \longrightarrow f(x)$  para todo  $x \in X$ . Escrevemos:

$$f_n \stackrel{w^*}{\longrightarrow} f$$

f em (a) e (b) é chamado limite forte e limite fraco\* de  $f_n$ , respectivamente.

## Convergência de operadores

Voltando para convergência de operadores  $T_n \in B(X, Y)$  o que pode ser dito do operador limite?

## Convergência de operadores

Voltando para convergência de operadores  $T_n \in B(X, Y)$  o que pode ser dito do operador limite?

Em primeiro lugar, convergência uniforme implica que  $T: X \longrightarrow Y$  nas definicões anteriores é limitado.

## Convergência de operadores

Voltando para convergência de operadores  $T_n \in B(X, Y)$  o que pode ser dito do operador limite?

Em primeiro lugar, convergência uniforme implica que  $T: X \longrightarrow Y$  nas definições anteriores é limitado.

Em segundo lugar, se a convergência é forte ou fraca o operador ainda é linear, mas não necessariamente limitado.

O espaço X das sequências  $x=(\xi_j)$  no  $l^2$  com somente finitos termos não nulos, na métrica  $l^2$  não é completo.

O espaço X das sequências  $x=(\xi_j)$  no  $l^2$  com somente finitos termos não nulos, na métrica  $l^2$  não é completo.

É possível construir uma sequência de operadores nesse espaço que converge fortemente para um operador ilimitado.

O espaço X das sequências  $x = (\xi_j)$  no  $I^2$  com somente finitos termos não nulos, na métrica  $I^2$  não é completo.

É possível construir uma sequência de operadores nesse espaço que converge fortemente para um operador ilimitado.

Tal sequência é:

$$T_n x = (\xi_1, 2\xi_2, 3\xi_3, \cdots, n\xi_n, \xi_{n+1}, \xi_{n+2}, \cdots).$$

O espaço X das sequências  $x = (\xi_j)$  no  $I^2$  com somente finitos termos não nulos, na métrica  $I^2$  não é completo.

É possível construir uma sequência de operadores nesse espaço que converge fortemente para um operador ilimitado.

Tal sequência é:

$$T_n x = (\xi_1, 2\xi_2, 3\xi_3, \cdots, n\xi_n, \xi_{n+1}, \xi_{n+2}, \cdots).$$

Porém, se *X* é completo, convergência forte implica que o limite dos operadores é um operador limitado.

#### Lema (Convergência forte de operadores

Seja  $T_n \in B(X, Y)$  uma sequência de operadores, onde X é um espaço de Banach e Y é um espaço normado. Se  $T_n$  é fortemente convergente com limite T, então  $T \in B(X, Y)$ .

#### Lema (Convergência forte de operadores

Seja  $T_n \in B(X, Y)$  uma sequência de operadores, onde X é um espaço de Banach e Y é um espaço normado. Se  $T_n$  é fortemente convergente com limite T, então  $T \in B(X, Y)$ . **Demonstração:** A linearidade de T segue direto da linearidade de  $T_n$ .

#### Lema (Convergência forte de operadores

Seja  $T_n \in B(X, Y)$  uma sequência de operadores, onde X é um espaço de Banach e Y é um espaço normado. Se  $T_n$  é fortemente convergente com limite T, então  $T \in B(X, Y)$ . **Demonstração:** A linearidade de T segue direto da

**Demonstração:** A linearidade de T segue direto de linearidade de  $T_n$ .

Como  $T_n x \longrightarrow T x$  para cada  $x \in X$ , segue que a sequência  $(T_n x)$  é limitada para cada x, visto que toda sequência convergente é limitada.

#### Lema (Convergência forte de operadores)

Como X é completo,  $(\|T_n\|)$  é limitado pelo teorema da limitação uniforme. Digamos então que  $\|T_n\| \le c$  para todo n. Então,  $\|T_nx\| \le \|Tn\| \|x\| \le c \|x\|$ . Daí segue o resultado anunciado.  $\blacksquare$ 

#### Teorema

#### Convergência forte

Uma sequência  $(T_n)$  de operadores  $T_n \in B(X, Y)$ , onde X e Y são espaços de Banach, é fortemente convergente se, e somente se, são satisfeitos:

### Convergência forte

Uma sequência  $(T_n)$  de operadores  $T_n \in B(X, Y)$ , onde X e Y são espaços de Banach, é fortemente convergente se, e somente se, são satisfeitos:

(A) A sequência ( $||T_n||$ ) é limitada.

### Convergência forte

Uma sequência  $(T_n)$  de operadores  $T_n \in B(X, Y)$ , onde X e Y são espaços de Banach, é fortemente convergente se, e somente se, são satisfeitos:

- (A) A sequência ( $||T_n||$ ) é limitada.
- (B) A sequência  $(T_n x)$  é Cauchy em Y para todo x em um conjunto total M de X.

**Demonstração:** Se  $T_n x \longrightarrow Tx$  para cada  $x \in X$ , então (A) segue do lema anterior e (B) é verificado facilmente.

**Demonstração:** Se  $T_n x \longrightarrow Tx$  para cada  $x \in X$ , então (A) segue do lema anterior e (B) é verificado facilmente. Reciprocamente, assumindo que (A) e (B) são satisfeitos existe c tal que  $||T_n|| \le c$  para todo n.

**Demonstração:** Se  $T_n x \longrightarrow Tx$  para cada  $x \in X$ , então (A) segue do lema anterior e (B) é verificado facilmente.

Reciprocamente, assumindo que (A) e (B) são satisfeitos existe c tal que  $||T_n|| \le c$  para todo n. Seja agora  $x \in X$  e  $\epsilon > 0$ . Como M é total em X segue que span M é denso em X. Então existe  $y \in spanM$  tal que

$$||x-y||<\frac{\epsilon}{3c}.$$

Como  $y \in spanM$ , a sequência  $(T_n y)$  é Cauchy em (B) Consequentemente, existe um N tal que

$$||T_ny-T_my||\leq \frac{\epsilon}{3}.$$

para m, n > N.

Como  $y \in spanM$ , a sequência  $(T_n y)$  é Cauchy em (B)Consequentemente, existe um N tal que

$$||T_ny-T_my||\leq \frac{\epsilon}{3}.$$

para m, n > N.

Utilizando as desigualdades triangulares temos o resultado provado. ■

# Aplicações

Considerando uma sequência de funconais  $(f_n)$  no teorema anterior obtemos aplicações interessantes, como veremos a seguir.

## Métodos de Somabilidade

Com intuito de generalizar a noção de convergência de sequências podemos utilizar métodos de somabilidade, que associam uma sequência com outra possivelmente convergente.

#### Métodos matriciais

Um método de somabilidade é nomeado matricial se é possível escreve-lo na forma:

$$y = Ax$$

Onde y e x são vetores coluna infinitos e A é uma matriz infinita.

## Método de Cesàro

### Definição

O método de Cesàro é a sequência de médias até o n-ésimo termo

## Representação em somatório

Dada uma sequência  $x=(\xi_n)_n$  temos que sua sequência de Cesáro  $y=(\eta_n)_n$  é tal que

$$\eta_n = \sum_{k=1}^{\infty} \alpha_{nk} \xi_k$$

$$\alpha_{nk} = \begin{cases} \frac{1}{n} & \text{se } k \le n \\ 0 & \text{se } k > n \end{cases}$$

# Representação matricial do método de Cesàro

$$A = \begin{bmatrix} \frac{1}{1} & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & \dots \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & \dots \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & \dots \\ \vdots & & \ddots & & \end{bmatrix}$$

# Regularidade e notação

Um método matricial pode ser chamado de A-método, se todas as linhas da matriz infinita e  $y=(\eta_n)_n$  convergem no sentido usual. O limite é denominado A-limite de x e x é dito A-somável, o conjunto de todas as sequências somáveis é denominado A-domínio.

## Regularidade

Um método matricial é dito regular se toda sequência convergente pertence ao seu domínio e seu A-limite coincide com o limite usual da sequência.

## Teorema de Toeplitz

Um método matricial é regular se e somente se,

$$\lim_{n\to\infty}\alpha_{nk}=0\tag{1}$$

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} \alpha_{nk} = 1 \tag{2}$$

$$\sum_{k=1}^{\infty} |\alpha_{nk}| \le \gamma \tag{3}$$

## Regularidade ⇒ Equação 1

Dada a sequência  $x_k$  com todo termo igual a 0, exceto o termo k que é igual a 1, temos que  $\eta_n = \alpha_{nk}$ 

### Regularidade ⇒ Equação 2

Dada a sequência x com todo termo igual a 1 temos que

$$\eta_{\mathsf{n}} = \sum_{\mathsf{k}=1}^{\infty} \alpha_{\mathsf{n}\mathsf{k}}$$

## Regularidade ⇒ Equação 3

Dado o espaço metrico c com a norma  $\ell^{\infty}$  definimos funcionais lineares

$$f_{nm}(x) = \sum_{k=1}^{m} \alpha_{nk} \xi_k$$
  $m, n = 1, 2, ...$ 

então temos que o método define funcionais lineares

$$\eta_n = f_n(x) = \sum_{k=1}^{\infty} \alpha_{nk} \xi_k \quad n = 1, 2, \dots$$

$$f_{nm}(x) o f_n(x)$$
 ou seja  $f_{nm} \overset{w^*}{ o} f_n$ 

## Regularidade ⇒ Equação 3

$$\xi_k^{(n,m)} = \begin{cases} \frac{\alpha_{nk}}{|\alpha_{nk}|} & \text{se } k \le m \text{ e } \alpha_{nk} \ne 0\\ 0 & \text{se } k > m \text{ ou } \alpha_{nk} = 0 \end{cases}$$

então temos

$$\sum_{k=1}^{m} |\alpha_{nk}| = f_{nm}(x_{nm}) \le ||f_{nm}||$$

$$\sum_{k=1}^{\infty} |\alpha_{nk}| \le ||f_n|| \le \gamma$$

## Equações 1, 2 e 3 ⇒ Regularidade

Definimos o funcional linear

$$f(x) = \xi = \lim_{k \to \infty} \xi_k$$

que é limitado pois

$$|f(x)| \le \sup_{k \in \mathbb{N}} |\xi_k| = ||x||$$

Dado o conjunto M das sequências quase constantes, que é denso em c, e  $x \in M$  com todo termo igual apos j

### Equações 1, 2 e 3 $\implies$ Regularidade

$$\eta_n = f_n(x) = \sum_{k=1}^{j-1} \alpha_{nk} \xi_k + \xi \sum_{k=j}^{\infty} \alpha_{nk}$$

$$= \sum_{k=1}^{j-1} \alpha_{nk} (\xi_k - \xi) + \xi \sum_{k=1}^{\infty} \alpha_{nk}$$
Pelas Equações 1 e 2
$$\eta_n = f_n(x) \to 0 + \xi * 1 = \xi = f(x)$$

## Equações 1, 2 e 3 Regularidade

E pela Equação 3 temos

$$|f_n(x)| \le ||x|| \sum_{k=1}^{\infty} |\alpha_{nk}| \le \gamma ||x||$$

então  $f_n$  é limitado, e como  $f_n(x) \to f(x), x \in M$  logo  $f_n \stackrel{w^*}{\to} f$ . Portanto se f(x) existe  $\eta_n \to \xi$  e portanto é regular.

#### Inverso do método de Cesàro

Podemos encontrar um inverso para o método de Cesàro notando-se que

$$\xi_1 = \eta_1$$
 $\xi_2 = 2\eta_2 - \eta_1$ 
 $\xi_3 = 3\eta_3 - 2\eta_2$ 
 $\xi_n = n\eta_n - (n-1)\eta_{n-1}$ 

#### Matriz do inverso do método de Cesàro

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & \dots \\ 0 & -2 & 3 & 0 & 0 \\ 0 & 0 & -3 & 4 & 0 \\ \vdots & & \ddots & & \end{bmatrix}$$

### Método Ck de Cesàro

Primeiramente definimos  $\sigma_n^{(0)} = \xi_n$ , então é definido

$$\sigma_n^{(k)} = \sum_{k=1}^n \sigma_k^{(k-1)} \quad k \ge 1, n = 0, 1, 2, \ldots$$

Com isso, obtemos o método  $C_k$ ,

$$\eta_n^{(k)} = \frac{\sigma_n^{(k)}}{\binom{n+k}{k}}$$
$$\sigma_n^{(k)} = \sum_{\nu=0}^n \binom{n+k-1-\nu}{k-1} \xi_{\nu}$$

Com o  $C_1$ -método encontraremos o  $C_1$  limite para as sequências abaixo:

$$(1,0,1,0,1,0,\cdots)$$

Com o  $C_1$ -método encontraremos o  $C_1$  limite para as sequências abaixo:

$$(1,0,1,0,1,0,\cdots)$$

$$(1,0,-\frac{1}{4},-\frac{2}{8},-\frac{3}{16},\cdots).$$

**Método da Somabilidade de Holder**  $H_P$  é definido a seguir.  $H_1$  é idêntico a  $C_1$ . O método  $H_2$  consiste de duas sucessivas aplicações de  $H_1$ ;  $H_3$  consiste de três aplicações seguidas de  $H_3$ , e assim sucessivamtne. Vejamos os métodos  $H_1$  e  $H_2$  para a sequência:

$$(1, -3, 5, -7, 9, -11, \cdots).$$

**Séries** Uma série infinita é dita *A*-somável se a sequência de suas somas parciais é *A*-somável, e o *A*-limite da sequência é chamado *A*-soma da série.

**Séries** Uma série infinita é dita *A*-somável se a sequência de suas somas parciais é *A*-somável, e o *A*-limite da sequência é chamado *A*-soma da série. Vejamos que a seríe  $1 + z + z^2 + \cdots$ 

é  $C_1$ -somável para  $|z| \le 1$  e sua soma é  $\frac{1}{1-z}$ .