SSA

15-411/15-611 Compiler Design

Seth Copen Goldstein

September 15, 2020

Today

- Trivial SSA
- φ-functions
- Motivation (CCP)
- Dominators
- Placement & Renaming
- Deconstructing SSA

SSA

- Static single assignment is an IR where every variable has only ONE definition in the program text
 - single static definition
 - (Could be in a loop which is executed dynamically many times.)
- φ-functions used at CFG merge points
- Definitions dominate uses

Advantages of SSA

- Makes du-chains explicit
- Makes dataflow optimizations
 - Easier
 - faster
- Improves register allocation
 - Makes building interference graphs easier
 - Easier register allocation algorithm
 - Decoupling of spill, color, and coalesce
- For most programs reduces space/time requirements

One definition for each use

- Key to SSA is single point of definition for each use
- Introduce φ-functions to handle joins in CFG

```
x ← ...
y ← ...
while(x < 100){
   x ← x + 1
   y ← y + 1
}</pre>
```

```
\mathbf{x} \leftarrow \dots
   if (x >= 100) goto end
loop:
   x \leftarrow x + 1
   y \leftarrow y + 1
   if (x < 100) goto loop
end:
```

One definition for each use

- Key to SSA is single point of definition for each use
- Introduce φ-functions to handle joins in CFG

```
x ← ...
y ← ...
if (x >= 100) goto end
loop:
x ← x + 1
y ← y + 1
if (x < 100) goto loop
end:</pre>
```

One definition for each use

- Key to SSA is single point of definition for each use
- Introduce φ-functions to handle joins in CFG

```
\mathbf{x}_0 \leftarrow \dots
       y_0 \leftarrow ...
       if (x_0 >= 100) goto end
loop:
       \mathbf{x}_1 \leftarrow \Phi(\mathbf{x}_0, \mathbf{x}_2)
      y_1 \leftarrow \Phi(y_0, y_2)
      \mathbf{x}_2 \leftarrow \mathbf{x}_1 + \mathbf{1}
       y_2 \leftarrow y_1 + 1
       if (x_2 < 100) goto loop
end:
       \mathbf{x}_3 \leftarrow \Phi(\mathbf{x}_0, \mathbf{x}_2)
       y_3 \leftarrow \Phi(y_1, y_2)
```

15-411/611

© 2019 Goldstein

The **P** function

- At a BB with p predecessors, there are p arguments to the Φ function.

$$X_{\text{new}} \leftarrow \Phi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p)$$

- How do we choose which x_i to use?
 - We don't really care!
 - If we care, use moves on each incoming edge

Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert

 functions for all variables with multiple outstanding defs.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert

 functions for all variables with multiple outstanding defs.

Another Example

Another Example

15

Lets optimize the following:

```
i=1;
j=1;
k=0;
while (k<100) {
  if (j<20) {
     j=i;
     k++;
  } else {
     j=k;
     k+=2;
return j;
```


First, turn into SSA

Properties of SSA

- Only 1 assignment per variable
- definitions dominate uses

 $\begin{array}{c}
j_2 \leftarrow \Phi(j_4, j_1) \\
k_2 \leftarrow \Phi(k_4, k_1) \\
k_2 < 100?
\end{array}$

 Can we use this to help with constant propagation?

- If " $v \leftarrow c$ ", replace all uses of v with c
- If "v ← Φ(c,c,c) replace all uses of v with c
 W <- list of all defs

```
while !W.isEmpty {
        Stmt S <- W.removeOne
        if S has form "v <- \Phi(c,...,c)"
          replace S with V <- c
        if S has form "v <- c" then
          delete S
          foreach stmt U that uses v,
            replace v with c in U
            W.add(U)
```

19

Lecture 4

Other stuff we can do?

- Copy propagation delete "x ← Φ(y)" and replace all x with y delete "x ← y" and replace all x with y
- Constant Folding (Also, constant conditions too!)
- Unreachable Code
 Remember to delete all edges from unreachable block

Lecture 4

- Does block 6 ever execute?
- Simple CP can't tell
- CCP can tell:
 - Assumes blocks don't execute until proven otherwise
 - Assumes Values are constants until proven otherwise

CCP data structures & lattice

Keep track of:

- Blocks (assume unexecuted until proven otherwise)

-Variables (assume not executed, only with proof of assignments

of a non-constant value do we assume not constant)

Use a lattice for variables:

Lecture 4

Now What?

Now What?

Conditional Constant Propagation

Now What?

Conditional Constant Propagation

1

Now What?

CCP

Just a taste of the kinds of optimizations that SSA enables.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert

 functions for all variables with multiple outstanding defs.

If there is a def of **a** in block 5, which nodes need a $\Phi()$?

- There is a block x containing a def of b
- There is a block y (with y ≠ x) containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

- There is a block x containing a def of b
- There is a block y (with y ≠ x) containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both
 P_{xz} and P_{yz} prior to the end, though it
 may appear in one or the other.

- There is a block x containing a def of b
- There is a block y (with y ≠ x) containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

- There is a block x containing a def of b
- There is a block y (with $y \neq x$) containing a def of b
- There is a nonempty path P_{x7} of edges from x to z
- There is a nonempty path P_{vz} of edges from y to z
- Paths P_{xz} and P_{vz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{vz} prior to the end, though it may appear in one or the other.

- There is a block x containing a def of b
- There is a block y (with y ≠ x) containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

- There is a block x containing a def of b
- There is a block y (with y ≠ x) containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

Iterative Insertion

- Implicit def of every variable in start node
- ullet Inserting Φ -function creates new definition
- While there ∃ x,y,z that
 - satisfy path-convergence critera
 - and z does not contain Φ -function for b
- do
 - insert b ← Φ (b,b,b,...,b_n) at node z, z having n predecessors.

Dominance Property of SSA

- In SSA definitions dominate uses.
 - If x_i is used in $x \leftarrow \Phi(..., x_i, ...)$, then BB(x_i) dominates ith pred of BB(PHI)
 - If x is used in y ← ... x ...,
 then BB(x) dominates BB(y)
- We can use this for an efficient alg to convert to SSA

(actually only true for strict SSA, where all variables are defined before they are used.

Side trip: Dominators

Dominators

- a dom b
- block a dominates block b if every possible execution path from entry to b includes a
 - entry dominates everything
 - **0** dominates everything but entry
 - 1 dominates and

Dominators are useful in indentifying "natural" loops

Dominators

- a dom b
- block a dominates block b if every possible execution path from entry to b includes a
 - entry dominates everything
 - **0** dominates everything but entry
 - 1 dominates 2 and 1

Dominators are useful in indentifying "natural" loops

Definitions

- a sdom b
- -If a and b are different blocks and a dom b, we say that a strictly dominates b
- a idom b
- If a sdom b, and there is no c such that a sdom c and c sdom b, we say that a is the immediate dominator of b

Properties of Dom

- Dominance is a partial order on the blocks of the flow graph, i.e.,
 - 1. Reflexivity: a dom a for all a
 - 2. Anti-symmetry: a dom b and b dom a implies a = b
 - 3. Transitivity: a dom b and b dom c implies a dom c
- NOTE: there may be blocks a and b such that neither a dom b or b dom a holds.

 The dominators of each node n are linearly ordered by the dom relation. The dominators of n appear in this linear order on any path from the initial node to n.

Computing dominators

 We want to compute D[n], the set of blocks that dominate n

Initialize each D[n] (except D[entry]) to be the set of all blocks, and then iterate until no D[n] changes:

$$D[entry] = \{entry\}$$

$$D[n] = \{n\} \cup \left(\bigcap_{p \in \mathsf{pred}(n)} D[p]\right), \quad \text{for } n \neq \mathsf{entry}$$

Initialization

IIIILIAIIZALIOII	
block	D[n]
entry	{entry}
0	{entry,0,1,2,3,4,5,exit}
1	{entry,0,1,2,3,4,5,exit}
2	{entry,0,1,2,3,4,5,exit}
3	{entry,0,1,2,3,4,5,exit}
4	{entry,0,1,2,3,4,5,exit}
5	{entry,0,1,2,3,4,5,exit}
exit	{entry,0,1,2,3,4,5,exit}

Initialization		First Pass
block	D[n]	D[n]
entry	{entry}	{entry}
0	{entry,0,1,2,3,4,5,exit}	{0,entry}
1	{entry,0,1,2,3,4,5,exit}	{1,0,entry}
2	{entry,0,1,2,3,4,5,exit}	{2,1,0,entry}
3	{entry,0,1,2,3,4,5,exit}	{3,1,0,entry}
4	{entry,0,1,2,3,4,5,exit}	{4,0,entry}
5	{entry,0,1,2,3,4,5,exit}	{5,4,0,entry}
exit	{entry,0,1,2,3,4,5,exit}	{exit,3,1,0,entry}

Update rule:
$$D[n] = \{n\} \cup \left(\bigcap_{p \in pred(n)} D[p]\right)$$

First Pass		Second Pass
block	D[n]	D[n]
entry	{entry}	{entry}
0	{0,entry}	{0,entry}
1	{1,0,entry}	{1,0,entry}
2	{2,1,0,entry}	{2,1,0,entry}
3	{3,1,0,entry}	{3,0,entry}
4	{4,0,entry}	{4,0,entry}
5	{5,4,0,entry}	{5,4,0,entry}
exit	{exit,3,1,0,entry}	{exit,3,0,entry}

Update rule:
$$D[n] = \{n\} \cup \left(\bigcap_{p \in pred(n)} D[p]\right)$$

Second Pass		Third Pass
block	D[n]	D[n]
entry	{entry}	{entry}
0	{0,entry}	{0,entry}
1	{1,0,entry}	{1,0,entry}
2	{2,1,0,entry}	{2,1,0,entry}
3	{3,0,entry}	{3,0,entry}
4	{4,0,entry}	{4,0,entry}
5	{5,4,0,entry}	{5,4,0,entry}
exit	{exit,3,0,entry}	{exit,3,0,entry}

Update rule:
$$D[n] = \{n\} \cup \left(\bigcap_{p \in pred(n)} D[p]\right)$$

Computing dominators

- Iterative algorithm is $O(n^2e)$
 - assuming bit vector sets
- More efficient algorithm due to Lengauer and Tarjan
 - $-O(e\cdot\alpha(e,n))$
 - much more complicated
 - your book provides a simple algorithm that is very fast in practice
 - faster than Tarjan algorithm for any realistic CFG

Computing iDom(n)

 Let sD[n] be the set of blocks that strictly dominate n, then

$$sD[n] = D[n] - \{n\}$$

- To compute iD[n], the set of blocks (size <= 1) that immediately dominate n
- Set iD[n] = sD[n]
- Repeat until no iD[n] changes:

$$iD[n] = iD[n] - \bigcup_{d \in iD[n]} (sD[d])$$

	Initialization	First Pass
block	iD[n]=sD[n]	iD[n]
entry	{}	{}
0	{entry}	
1	{0,entry}	
2	{1,0,entry}	
3	{0,entry}	- e
4	{0,entry}	
5	{4,0,entry}	
exit	{3,0,entry}	

Update rule: $iD[n] = iD[n] - \bigcup_{d \in iD[n]} (sD[d])$

entry

Dominator Tree

In the dominator tree the initial node is the entry block, and the parent of each other node is its immediate dominator.

block	iD[n]
entry	{}
0	{entry}
1	{0}
2	{1}
3	{0}
4	{0}
5	{4}
exit	{3}

Dominance Frontier

- If z is the first node we encounter on the path from x which x does not strictly dominate, z is in the dominance frontier of x
- For some path from node x to z, $x \rightarrow ... \rightarrow y \rightarrow z$ where x dom y but not x sdom z.
- Dominance frontier of 1?
- Dominance frontier of 2?
- Dominance frontier of 4?

Dominance Frontier

- If z is the first node we encounter on the path from x which x does not strictly dominate, z is in the dominance frontier of x
- For some path from node x to z, $x \rightarrow ... \rightarrow y \rightarrow z$ where x dom y but not x sdom z.
- Dominance frontier of 1? {3}
- Dominance frontier of **2**? {3}
- Dominance frontier of **4**? {3,4}

- There is a block x containing a def of b
- There is a block y (with y ≠ x) containing a def of b
- There is a nonempty path P_{xz} of edges from x to z
- There is a nonempty path P_{yz} of edges from y to z
- Paths P_{xz} and P_{yz} do not have any node in common other than z, and...
- The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

 IOW, $Z \in DF(X)$

Calculating the Dominance Frontier

- Let dominates[n] be the set of all blocks which block n dominates
 - subtree of dominator tree with n as the root
- The dominance frontier of n, *DF*[*n*] is

$$DF[n] = \left(\bigcup_{s \in dominates[n]} succs(s)\right) - \left(dominates[n] - \{n\}\right)$$

First calculate dominates[n] from the dominator tree

block	dominates[n]	
entry	{entry,0,1,2,3,4,5,exit}	
0	{0,1,2,3,4,5,exit}	
1	{1,2}	
2	{2}	
3	{3,exit}	
4	{4,5}	
5	{5}	
exit	{exit}	

Dominator Tree

Then compute the successor set of dominates[n]

block	dominates[n]	<i>succ</i> (dominates[n])
entry	{entry,0,1,2,3,4,5,exit}	
0	{0,1,2,3,4,5,exit}	
1	{1,2}	
2	{2}	
3	{3,exit}	
4	{4,5}	
5	{5}	
exit	{exit}	{}

Finally, remove all the blocks from the successor set that are strictly dominated by n to get DF[n]

block	sdominates[n]	<i>succ</i> (dominates[n])	DF[n]
entry	{entry,0,1,2,3,4,5,exit}	{0,1,2,3,4,5,exit}	
0	{0,1,2,3,4,5,exit}	{1,2,3,4,5,exit}	
1	{1,2}	{2,3}	
2	{2}	{3}	
3	{3,exit}	{exit}	
4	{4,5}	{3,4,5}	
5	{ 5 }	{3,4}	
exit	{exit}	{}	{}

block	DF[n]
entry	{}
0	{}
1	{3}
2	{3}
3	{}
4	{3,4}
5	{3,4}
exit	{}

Recap

- a dom b
 - every possible execution path from entry to b includes
- a sdom b
 - -a dom b and a != b
- a idom b
 - a is "closest" dominator of b
- a pdom b
 - every path from a to the exit block includes b
- Dominator trees
- Dominance frontier

Dominance

x strictly dominates w (s sdom w) iff x dom w AND $x \neq w$

Dominance Frontier

x strictly dominates w (s sdom w) iff x dom w AND $x \neq w$

Dominance Frontier & path-convergence

• Dominance-Frontier Criterion: Whenever node x contains a definition of some variable a, then any node $z \in DF(x)$, z needs a Φ -function for a.

• Iterated dominance frontier: since a Φ function itself is a definition, we must
iterate the dominance-frontier criterion
until there are no nodes that need Φ functions.

And, Iterating

And, Iterating

And, Iterating

Using DF to compute minimal SSA

- place all Φ()
- Rename all variables

minimal, but not pruned

Using DF to Place Φ()

- Gather all the defsites of every variable
- Then, for every variable
 - foreach defsite
 - foreach node in DF(defsite)
 - if we haven't put $\Phi()$ in node put one in
 - If this node didn't define the variable before: add this node to the defsites

 This essentially computes the Iterated Dominance Frontier on the fly, creating minimal SSA

Using DF to Place Φ()

```
foreach node n {
  foreach variable v defined in n {
    orig[n] \cup = \{v\}
    defsites[v] \cup = \{n\}
  foreach variable v {
    W = defsites[v]
    while W not empty {
      foreach y in DF[n]
      if y ∉ PHI[v] {
         insert "v \leftarrow \Phi(v,v,...)" at top of y
         PHI[v] = PHI[v] \cup \{y\}
         if v \notin orig[y]: W = W \cup \{y\}
```

Renaming Variables

- Walk the D-tree, renaming variables as you go
- Replace uses with more recent renamed def
 - For straight-line code this is easy
 - If there are branches and joins?

Renaming for Straight-Line Code

- Need to extend for φ-functions.
- Need to maintain property that definitions dominate uses.

```
for each variable a:
  Count[a] = 0
  Stack[a] = [0]
renameBasicBlock(B):
  for each instruction S in block B:
     for each use of a variable x in S:
       i = top(Stack[x])
       replace the use of x with x_i
     for each variable a that S defines
       count[a] = Count[a] + 1
       i = Count[a]
       push i onto Stack[a]
       replace definition of a with a_i
```

Renaming in CFG

```
rename(n):
  renameBasicBlock(n)
     for each successor Y of n, where n is the j<sup>th</sup> predecessor of Y:
     for each phi-function f in Y, where the operand of f is 'a'
          i = top(Stack[a])
          replace j<sup>th</sup> operand with a<sub>i</sub>
     for each child of n in D-tree, X:
          rename(X)
     for each instruction S \in n:
          for each variable v that S defines:
             pop Stack[v]
```

Compute D-tree

D-tree

Compute Dominance Frontier

Flavors of SSA

Minimal SSA

- at each join point with >1 outstanding definition insert a ϕ -function
- Some may be dead
- Pruned SSA
 - only add live ϕ -functions
 - must compute LIVEOUT
- Semi-pruned SSA
 - Same as minimal SSA, but only on names live across more than 1 basic block

Deconstructing SSA

- Real machines don't have Φ-functions
- Implement with moves (and swaps) to predecessors.

Deconstructing SSA

- Real machines don't have Φ-functions
- Implement with moves (and swaps) to predecessors.
- Issue 1: critical edges

Deconstructing SSA

Real machines don't have Φ-functions

Implement with moves (and swaps) to predecessors.

- Issue 1: critical edges
 - unnecc assignment
 - So, first remove critical edges

Removing a Critical Edge

- A critical edge is an edge from a to b when a has > 1 successor and b has > 1 predecessor.
- For each edge (a,b) in CFG
 where a > 1 succ and

b > 1 pred

- Insert new block Z
- replace (a,b) with
 - (a,z) and (z,b)

Removing a Critical Edge

- A critical edge is an edge from a to b when a has > 1 successor and b has > 1 predecessor.
- For each edge (a,b) in CFG
 where a > 1 succ and

b > 1 pred

- Insert new block Z
- replace (a,b) with
 - (a,z) and (z,b)

Replacing **Φ**

- Insert $\mathbf{b} \leftarrow \mathbf{b_i}$ in predecessor block for each $\mathbf{b_i}$ in Φ
- remove Φ

 There are still some issues, but only if certain optimizations are performed.

Summary

- SSA is a useful and efficient IR.
- Definitions dominate Uses
- Constructing SSA can be efficient
 (No need to do Lengaur-Tarjan Algorithm, instead see <u>A Simple, Fast Dominance</u>
 Algorithm by Cooper, Harvey, and Kennedy

Don't do any optimizations yet!