PARTE 1

Configuración de la Ips:

Configuración terminada:

Configuración de PC1, se debe hacer al igual con todos los computadores:

Simulación


```
C:\>ping 192.168.1.3

Pinging 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time=1ms TTL=128
Reply from 192.168.1.3: bytes=32 time=1ms TTL=128
Reply from 192.168.1.3: bytes=32 time=2ms TTL=128
Reply from 192.168.1.3: bytes=32 time=1ms TTL=128

Ping statistics for 192.168.1.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

```
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:

Reply from 192.168.1.1: bytes=32 time=9ms TTL=255
Reply from 192.168.1.1: bytes=32 time=4ms TTL=255
Reply from 192.168.1.1: bytes=32 time=4ms TTL=255
Reply from 192.168.1.1: bytes=32 time=4ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 4ms, Maximum = 9ms, Average = 5ms
```

Simulación de PC0 A PC6:

Router 192.169.1.1/24 PC0: 192.168.1.2 PC1: 192.168.1.3 PC2: 192.168.1.4 PC3: 192.168.1.5 PC4: 192.168.1.6 PC5: 192.168.1.7

PARTE 2

Comparación de capas entre los modelos OSI y TCP/IP:

Modelo OSI (7 capas)	Modelo TCP/IP (4 capas)	Equivalencia
Capa 7: Aplicación	Capa 4: Aplicación	Aplicación, presentación y sesión (OSI)
Capa 6: Presentación		(Integrada en la capa de aplicación TCP/IP)
Capa 5: Sesión		
Capa 4: Transporte	Capa 3: Transporte	Transporte
Capa 3: Red	Capa 2: Internet	Red
Capa 2: Enlace de Datos	Capa 1: Acceso a la red	Enlace de datos + Física
Capa 1: Física		

Verificación de la funcionalidad del modelo TCP/IP:

Capa de Aplicación: Usar herramientas como navegadores, clientes FTP o comandos como telnet, ftp, ping para probar servicios.

Capa de Transporte: Verificar que TCP y UDP funcionen correctamente. Herramientas como Wireshark muestran los puertos y el tipo de protocolo.

Capa de Internet: Comprobar el direccionamiento IP, el enrutamiento y protocolos como ICMP (ej. usando ping o tracert).

Capa de Acceso a la red: Verificar la conexión física (cables, Wi-Fi), direcciones MAC y protocolos como Ethernet o ARP.

PREGUNTAS DE REPASO:

¿Qué dispositivos operan en la capa de enlace de datos en la simulación?

• Switches y puentes operan principalmente en la capa de enlace de datos, ya que trabajan con direcciones MAC para dirigir los paquetes.

¿Qué protocolos de la capa de transporte observaste en el tráfico?

• Generalmente se observan TCP (protocolo orientado a conexión) y UDP (protocolo sin conexión).

¿Cómo se dividen las capas de los modelos OSI y TCP/IP al analizar un paquete ICMP?

- En OSI:
 - o Capa 3: Red (ICMP opera aquí)
 - o Capa 2: Enlace de datos (encapsulamiento Ethernet, por ejemplo)
 - o Capa 1: Física (transmisión real)
- En TCP/IP:
 - o Capa de Internet (ICMP)
 - o Capa de acceso a la red (enlace + física)