Universidade Federal de Viçosa UFV

Departamento de Engenharia Elétrica

ELT 366 Laboratório de Máquinas Elétricas I

Relatório 04

Autores

Hiago Batista 96704
 Wérikson Alves 96708

Professor

José Resende

m Viçosa, Julho de 2021

Sumário

1	Intr	oduçã	io	2				
2	Metodologia							
	2.1	2.1 Materiais Utilizados						
	2.2	Deterr	minação dos pontos das bobinas	. 2				
	2.3	Autot	transformadores	. 3				
		2.3.1	Abaixador	. 3				
		2.3.2	Ensaios	. 3				
		2.3.3	Elevador	. 4				
		2.3.4	Rendimento e Regulação	. 4				
		2.3.5	Correntes	. 4				
		2.3.6	Potências	. 5				
3	Res	Resultados						
	3.1	Parâm	netros iniciais	. 5				
	3.2	Abaix	xador	. 5				
	3.3	Ensaid	os	. 5				
	3.4	Elevac	dor	. 5				
	3.5	Rendi	imento e Regulação	. 5				
	3.6	Corre	entes	. 6				
	3.7	Potêne	ncias	. 6				
4	Con	ıclusão	0	6				

1 Introdução

Quando os transformadores monofásicos são ligados, dependendo da polarização de entrada, podem ser gerados fem em sentidos diferentes, sendo assim de estrema importância a determinação da polarização do transformadores indicando assim o inicio e o final dos enrolamentos. A polarização, também conhecida como marcação dos pontos, é de estrema importância para se realizar a ligação de transformadores em estrela ou triângulo, além das ligações em séries ou paralelos e a ligações na configuração de autotransformados.

Outro ponto importante sobre os transformadores é que ao interliga os seus terminais é gerado um autotransformador, o qual possui uma saída maior em relação ao transformado monofásico, além de possuir uma potencia aparente maior. Essa topologia também é dividida em elevadores e abaixadores, e para obter seus parâmetros podem ser utilizador os mesmos métodos aplicados para transformadores monofásicos.

Portanto, neste trabalho será verificado as polaridades do transformadores, determinado os inícios e os fins de cada bobina. Além disto, será realizada as montagens dos autotransformadores elevador e abaixador, realizando em seguida os ensaios em vazio e em curto circuito do autotransformador abaixador.

2 Metodologia

2.1 Materiais Utilizados

- 01 Transformadores Monofásicos, 1kVA, 110/110V, 60Hz;
- 01 Varivolt;
- 01 Wattímetro Monofásicos;
- 01 Multímetro;

2.2 Determinação dos pontos das bobinas

Para a determinação dos pontos, foi aplicado a tensão nominal de forma a circular corrente pelas bobinas. Em seguida, é medido a tensão entre as bobinas, de forma que: se o resultado for zero os pontos estão em sentidos opostos (polaridade subtrativa), Figuras (1), e caso o resultado dê o dobro do valor os pontos estão no mesmo sentidos (polaridade aditiva), Figuras (2).

Figura 1 – Polarização: Subtrativa

Figura 2 – Polarização: Aditiva

2.3 Autotransformadores

Como citado anteriormente os autotransformadores são nada mais do que transformadores que tiveram as bobinas interligadas em uma determinada configuração, como pode ser observado nas Figuras (3) e (4), assim para a realização do experimento, foram associados duas bobinas em série no primário de um transformador.

Figura 3 – Auto transformador: Abaixador

Figura 4 – Auto transformador: Elevador

2.3.1 Abaixador

De acordo com a topologia da Figura (3), foi energizado os terminais primários, verificando a tensão no secundário. A partir disto, foram realizados os ensaios a vazio e em curto circuito, conforme estudado anteriormente.

2.3.2 Ensaios

Asim, para o ensaio em vazio o secundário está em aberto e aplica-se uma tensão no primário do transformador (considerando o lado de baixa tensão como primário e o de alta tensão como secundário) e assim obtendo os valores de I_{CA} , V_{CA} e P_{CA} que são utilizados para o calculo da resistência, impedância de circuito aberto e reatância de magnetização, como mostra as Eq. 1, 2 e 3.

$$R_M = \frac{V_{CA}^2}{P_{CA}} \tag{1}$$

$$|Z_{\phi}| = \frac{V_{CA}}{I_{CA}} \tag{2}$$

$$X_M = \frac{1}{\sqrt{\left(\frac{1}{|Z_{\phi}|}\right)^2 - \left(\frac{1}{R_C}\right)^2}} \tag{3}$$

E para o ensaio em curto, foi aplicado uma corrente nos terminais de alta tensão e o lado de baixa tensão é curto circuitado. A partir deste ensaio é possível obter informações sobre a reatância de dispersão e resistências do enrolamento, e assim obter os valores: I_{CC} , V_{CC} , e P_{CC} que são utilizadas para calcular os valores equivalentes de impedância, resistência e reatância, como mostra as Eq. 4, 5 e 6.

$$|Z_{eq}| = \frac{V_{CC}}{I_{CC}} \tag{4}$$

$$R_{eq} = R_{CC} = \frac{P_{CC}}{I_{CC}^2}$$
 (5)

$$X_{eq} = X_{CC} = \sqrt{|Z_{eq}|^2 - R_{CC}^2}$$
 (6)

2.3.3 Elevador

Em seguida, em um novo experimento foi montado a topologia apresentado na Figura (4). Após isto, foi energizado os terminais do primário e depois verificado a tensão no secundário.

2.3.4 Rendimento e Regulação

Tomando como base a topologia autotransformador abaixador representada na Figura (5), foram calculados o rendimento (η) e a regulação (reg) de tensão, para uma dada carga com fator de potência de

0,8 atrasado, por meio da Eq. (10) e da Eq. (12).

Figura 5 – Auto transformador Abaixador com carga.

$$I_{SE} = \frac{P_{trafo}}{V_{SE}} \tag{7}$$

$$I_C = \frac{P_{trafo}}{V_C} \tag{8}$$

$$P_{out} = V_2(I_C + I_{SE}) \tag{9}$$

$$\eta = \frac{P_{out} \cdot FP}{P_{out} \cdot FP + P_{CA} + P_{CC}} \tag{10}$$

$$|V_{vazio}| = V_P + (Z_{eq}) \times I_{CC} < -\Theta$$
 (11)

$$Reg(\%) = \frac{V_{vazio} - V_{plena-carga}}{V_{plena-carga}} \times 100$$
(12)

2.3.5 Correntes

Em seguida, foram calculados as correntes que estão presente nos terminais do primário (I_1) e do secundário (I_2) , através das Eq. (13) e (14).

$$I_1 = I_{SE} \tag{13}$$

$$I_2 = I_C + I_{SE}$$
 (14)

2.3.6 Potências

Por fim, com essas informações obtidas anteriormente, foram calculadas as potências aparente transformada (S_{out}) , a aparente total (S_{tot}) e a transferida condutivamente (S_{cond}) , de acordo com as Equações (15), (16) e (17), respectivamente.

$$S_{out} = P_{trafo} \tag{15}$$

$$S_{tot} = P_{out} \tag{16}$$

$$S_{cond} = S_{tot} - S_{out} \tag{17}$$

3 Resultados

3.1 Parâmetros iniciais

Inicialmente, foi determinado as polaridades das bobinas do transformador, marcando-as com um pontos. Em seguida, a partir dos dados presente na placa do transformador, foram utilizados como parâmetros: 1 kVA, 110/110 V e 60 HZ.

3.2 Abaixador

Após energizar o circuito do autotransformador abaixador, foi observado que nos terminais do primário e do secundário:

- $V_P = 220 \text{ V}$
- $V_S = 110 \text{ V}$

3.3 Ensaios

A partir dos ensaios realizados foram medidos os seguintes valores.

- $P_{CA} = 10 \text{ W}$
- $V_{CA} = 220 \text{ V}$
- $I_{CA} = 0.72 \text{ A}$
- $P_{CC} = 225 \text{ W}$
- $V_{CC} = 85 \text{ V}$
- $I_{CC} = 5,91 \text{ A}$

Em seguida, usando as Eq. (1), (2), (3), (4), (5) e (6) foi obtido a Tabela (1).

Tabela 1 – Parâmetros do Transformador

R_M	X_M	Z_{ϕ}
4840 Ω	306,17 i Ω	$4840{+}306{,}17\mathrm{i}\ \Omega$
R_{eq}	X_{eq}	Z_{eq}
$6,44~\Omega$	12,86 i Ω	$6,44+12,86$ i Ω

3.4 Elevador

Agora, após energizar o circuito do autotransformador elevador, foi observado que nos terminais do primário e do secundário:

- $V_P = 220 \text{ V}$
- $V_S = 330 \text{ V}$

3.5 Rendimento e Regulação

Para o circuito da Figura (5), usando as Equações (7), (8), (9), (10), (11) e (12), e considerando $P_{trafo} = 1$ kVA, $V_{SE} = V_C = V_2 = V_S = 110$ V, $V_{plena-carga} = 220$ V, foram obtidos os valores para o preenchimento da Tabela (2).

3.6 Correntes

Usando as Equações (13) e (14), foram obtidos os valores para o preenchimento da Tabela (2).

3.7 Potências

Usando as Equações (15), (16) e (17), foram obtidos os valores para o preenchimento da Tabela (2).

Tabela 2 – Dados calculados

Variável	Valor
η (%)	87,19
Reg (%)	35,67
I_1 (A)	9,09
I_2 (A)	18,18
S_{out} (kVA)	1
S_{tot} (kVA)	2
S_{cond} (kVA)	1

4 Conclusão

Pelos resultados obtidos percebe-se que um transformador ligado como autotransformador possui uma potência aparente maior, ao utilizar os mesmos componentes. Além disto, pode-se observar que a regulação não possui um valor tão elevado nem muito baixo, e o rendimento está em um nível aceitável. Outro ponto importante a ser observado, é que esta topologia de autotransformador conduz apenas aproximadamente 50% da potência total produzida pelo autotransformador.

Referências

- Stephen J Chapman. Fundamentos de máquinas elétricas. AMGH editora, 2013.
- [2] Stephen D Umans. Máquinas Elétricas de Fitzgerald e Kingsley-7. AMGH Editora, 2014.