Schramm-Loewner Evolution

A quick overview

Nikolai Bobenko

Outline

Discrete Models

Complex Analysis

SLE Def & Properties

Reference:

Conformally Invariant Processes in the Plane - G. Lawler

BM from random walks

Scaling limit Brownian motion.

Self-avoiding random walk

Conjectured Scaling limit $SLE_{\frac{8}{3}}$

Domain Markov Property

Measure $\mu_D^\#(z,w)$ conditioned on initial curve segment $\gamma(0,t]$ is equal to $\mu_{D\setminus\gamma(0,t]}^\#(\gamma(t),w)$

Loop-erased random walk

- (DMP)
- Conformally invariant in the limit
- Scaling limit SLE₂. (LSW '04)

Scaling Limits?

- Erasing loops from BM? Hard
- Conformal invariance to the rescue.
- CI + DMP ⇒ SLE.

Definition (Conformal map)

 $f: D_1 \to D_2$ is conformal if it is bijective and holomorphic.

Brownian Motion is Conformally invariant

Theorem

- $f: D_1 \to D_2$ conformal, $0 \in D_1, D_2$, f(0) = 0.
- \blacksquare W = X + iY planar Brownian motion
- Define $\tau_{D_1} := \inf\{t \geq 0 : W_t \notin D_1\}$

Then $f(W_t)|_{[0,T_{D_*}]}$ is a time-changed Brownian motion.

 $\int_0^{\sigma_s} |f'(B_r)|^2 dr = s$, then $f(W_{\sigma_s})$ is BM in D_2 . Locally scaling + rotation.

Brownian Motion is conformally invariant

Theorem

 $\widetilde{W}_t = f(W_{\sigma_t})$ is Brownian motion.

Proof:

f = u + iv. By Ito's Lemma + Cauchy Riemann:

$$d(u(W_t)) = u_x(W_t)dX_t + u_y(W_t)dY_t$$

$$\implies \langle u(W) \rangle_t = \int_0^t |f'(W_s)|^2 ds$$

Thus $<\widetilde{X}>_t=<\widetilde{Y}>_t=t,<\widetilde{X},\widetilde{Y}>=0.$ + Lévy characterization.

Riemann Mapping Theorem

Theorem

D non-empty, simply connected proper subset of \mathbb{C} , then there exists a conformal $f:D\to\mathbb{D}$.

Three real degrees of freedom.

Mapping out

- $ightharpoonup \gamma: [0,\infty)
 ightarrow \mathbb{H}, \gamma(0) = 0, \gamma(\infty) = \infty.$
- K_t^c = unbounded component of $\mathbb{H} \setminus \gamma[0, t]$.

Mapping out

- lacksquare $\gamma:[0,\infty) o \mathbb{H}, \, \gamma(0)=0, \gamma(\infty)=\infty.$
- K_t^c = unbounded component of $\mathbb{H} \setminus \gamma[0, t]$.
- $lacksquare g_t: \mathcal{K}^c_t o \mathbb{H} ext{ conformal, } g_t(\infty) = \infty.$
- Expand at ∞ : $g_t(z) = a_1 z + a_0 + a_{-1} z^{-1} + \dots$ with $a_i \in \mathbb{R}$.
- $\blacksquare \exists ! \ g_t \ \text{with} \ a_1 = 1, a_0 = 0.$
- compact \mathbb{H} hull $K \leftrightarrow$ mapping out function g

Capacity

$$g_t(z) = z + a_{-1}z^{-1} + \dots$$

Then $\text{hcap}(K_t) := a_{-1} = \lim_{y \to \infty} y \mathbb{E}^{iy}[\text{Im}(W_{\tau_{K_t \cup \mathbb{R}}})].$

Capacity

$$g_t(z)=z+a_{-1}z^{-1}+\ldots$$

Then $\operatorname{hcap}(K_t):=a_{-1}=\lim_{y\to\infty}y\mathbb{E}^{iy}[\operatorname{Im}(W_{\tau_{K_t\cup\mathbb{R}}})].$

Lemma (Additivity)

 $hcap(K_{t+s}) = hcap(K_t) + hcap(g_t(K_{t+s} \setminus K_t))$

Capacity

$$g_t(z)=z+a_{-1}z^{-1}+\ldots$$

Then $\operatorname{hcap}(K_t):=a_{-1}=\lim_{y\to\infty}y\mathbb{E}^{iy}[\operatorname{Im}(W_{\tau_{K_t\cup\mathbb{R}}})].$

Lemma (Scaling)

 $hcap(rK_t) = r^2 hcap(K_t)$

Loewner Evolution

Parametrize γ by hcap.

Theorem

Let γ_t be a simple curve from 0 to ∞ parametrized s.t. $hcap(K_t) = 2t$. $\tau_z := \inf\{t \ge 0 : z \in K_t\}$, $U_t = g_t(\gamma_t)$ Then

$$\dot{g}_t(z) = rac{2}{g_t(z) - U_t} \; ext{for} \; t \in [0, au_z], \; g_0(z) = z.$$

Loewner Evolution

Parametrize γ by hcap.

Theorem

Let γ_t be a simple curve from 0 to ∞ parametrized s.t. $hcap(K_t) = 2t$. $\tau_z := \inf\{t \ge 0 : z \in K_t\}$, $U_t = g_t(\gamma_t)$ Then

$$\dot{g}_t(z) = rac{2}{g_t(z) - U_t} ext{ for } t \in [0, au_z], \ g_0(z) = z.$$

Remark: Can extend to non-simple curves γ :

Sets K_t derived from Loewner chains "continuously increasing hulls":

$$\bigcap_{\delta>0}\overline{K_{t,t+\delta}}=U_t$$

Schramm Loewner Evolution

Study U_t instead of γ_t . Invert construction:

Definition

- \blacksquare W_t BM, $\kappa \geq 0$.
- Solve $\dot{g}_t(z) = \frac{2}{g_t(z) \sqrt{\kappa}W_t}$, $g_0(z) = z$ for $t < \tau_z = \sup\{t \ge 0, g_t(z) \text{ well defined}\}$.
- $K_t = \{z \in \mathbb{H} : \tau_z \leq t\}$
- \blacksquare γ curve generating $(K_t)_{t>0}$ is SLE_{κ} .

Schramm Loewner Evolution

Study U_t instead of γ_t . Invert construction:

Definition

- \blacksquare W_t BM, $\kappa \geq 0$.
- Solve $\dot{g}_t(z) = \frac{2}{g_t(z) \sqrt{\kappa}W_t}$, $g_0(z) = z$ for $t < \tau_z = \sup\{t \ge 0, g_t(z) \text{ well defined}\}$.
- $K_t = \{z \in \mathbb{H} : \tau_z \leq t\}$
- \blacksquare γ curve generating $(K_t)_{t>0}$ is SLE_{κ} .

Proposition (Rohde-Schramm, Lawler-Schramm-Werner)

y is well defined.

Remark: SLE_{κ} is really a measure $\mu_{\mathbb{H}}^{\#}(0,\infty)$ on paths going from 0 to ∞ up to time reparametrization.

Scale invariance

Proposition

If γ is SLE_{κ} then $\tilde{\gamma}: t \mapsto r\gamma(\frac{t}{r^2})$ is also SLE_{κ} .

Scale invariance

Proposition

If γ is SLE_{κ} then $\tilde{\gamma}: t \mapsto r\gamma(\frac{t}{r^2})$ is also SLE_{κ} .

Proof: $\tilde{g}_t(z) = rg_{t/r^2}(z/r)$ is mapping out function of $\tilde{\gamma}$.

$$\implies \dot{\tilde{g}}_t(z) = \frac{2}{\tilde{g}_t(z) - r\sqrt{\kappa}W(t/r^2)} \stackrel{d}{=} \frac{2}{\tilde{g}_t(z) - \sqrt{\kappa}W(t)}.$$

SLE on other domains

D simply connected domain, $z, w \in \partial D$, $f : \mathbb{H} \to D$ conformal with f(0) = z, $f(\infty) = w$.

Definition

 $\mu_D^{\#}(z, w)$ is the image of $\mu_{\mathbb{H}}^{\#}(0, \infty)$ under f.

SLE on other domains

D simply connected domain, $z, w \in \partial D$, $f : \mathbb{H} \to D$ conformal with f(0) = z, $f(\infty) = w$.

Definition

 $\mu_D^\#(z,w)$ is the image of $\mu_{\mathbb{H}}^\#(0,\infty)$ under f.

f not unique - any other such map written as $f_1(z) = f(rz), r > 0$. Still well defined by scale invariance.

New mapping out function $h_t(z) = f(g_t(f^{-1}(z)))$

Conformal invariance and Domain Markov Property

- For any D, a, b as above given measures $\mu_D(a, b)$ on curves modulo time reparametrization.
- (CI): $f_*(\mu_{D_1}(a,b)) = \mu_{D_2}(z,w)$ for conformal f.
- $\blacksquare (\mathsf{DMP}): \mu_D(a,b)(\cdot |\gamma|_{[0,\tau]}) = \mu_{D\setminus \gamma([0,\tau])}(\gamma(\tau),b)$

Theorem (Schramm '00)

 $(\mu_D(a,b))$ satisfies (CI) and (DMP) $\iff \mu_D(a,b) \stackrel{d}{=} SLE_{\kappa}$ for some $\kappa \geq 0$.

Conformal invariance and Domain Markov Property

Theorem (Schramm '00)

 $(\mu_D(a,b))$ satisfies (CI) and (DMP) $\iff \mu_D(a,b) \stackrel{d}{=} SLE_{\kappa}$ for some $\kappa \geq 0$.

Proof sketch:

Enough to consider $\mu_{\mathbb{H}}(0,\infty)$. Let U_t be the Loewner transform of K_t . Then

$$\underbrace{U_t^{\lambda} := \lambda U_{t/\lambda^2},}_{\mathsf{LT} \ \mathsf{of} \ \lambda \mathcal{K}_t} \quad \underbrace{U_t^{(s)} := U_{s+t} - U_s}_{\mathsf{LT} \ \mathsf{of} \ \mathcal{K}_{s,t} = g_s(\mathcal{K}_{t+s} \backslash \mathcal{K}_s)}.$$

Thus

- \blacksquare K_t scale inv \iff U_t scale inv.
- K_t DMP \iff (U_t) stationary indep increments.

Phases of SLE

Proposition (Rohde-Schramm)

- \blacksquare $\kappa \in [0,4]$: γ is simple.
- \blacksquare $\kappa \in (4,8)$: γ is self-intersecting with 0 Lebesque measure.
- $\kappa \geq 8$: γ is space-filling.

$$\hat{g_t}(z) = rac{g_t(z) - \sqrt{\kappa} W_t}{\sqrt{\kappa}}$$
 satisfies

$$d\hat{g}_t(z) = rac{2/\kappa}{\hat{g}_t(z)}dt - dW_t.$$

 $\implies n = \frac{4}{\kappa} + 1$ dimension of Bessel process.