import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

Out[3]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed
	0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.(
	1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0
	2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0
	3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0
	4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0

5 rows × 23 columns

In [4]: data.describe()

Out[4]:		MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Wind
	count	143975.000000	144199.000000	142199.000000	82670.000000	75625.000000	135197.000000	143
	mean	12.194034	23.221348	2.360918	5.468232	7.611178	40.035230	
	std	6.398495	7.119049	8.478060	4.193704	3.785483	13.607062	
	min	-8.500000	-4.800000	0.000000	0.000000	0.000000	6.000000	
	25%	7.600000	17.900000	0.000000	2.600000	4.800000	31.000000	
	50%	12.000000	22.600000	0.000000	4.800000	8.400000	39.000000	
	75%	16.900000	28.200000	0.800000	7.400000	10.600000	48.000000	
	max	33.900000	48.100000	371.000000	145.000000	14.500000	135.000000	

In [5]: data.shape

Out[5]: (145460, 23)

```
data.isnull().sum()
 In [6]:
                                0
         Date
 Out[6]:
          Location
                                0
          MinTemp
                             1485
          MaxTemp
                             1261
          Rainfall
                             3261
          Evaporation
                            62790
          Sunshine
                            69835
          WindGustDir
                            10326
          WindGustSpeed
                            10263
          WindDir9am
                            10566
          WindDir3pm
                             4228
          WindSpeed9am
                             1767
          WindSpeed3pm
                             3062
          Humidity9am
                             2654
          Humidity3pm
                            4507
          Pressure9am
                            15065
          Pressure3pm
                            15028
          Cloud9am
                            55888
          Cloud3pm
                            59358
          Temp9am
                             1767
          Temp3pm
                             3609
          RainToday
                             3261
          RainTomorrow
                             3267
          dtype: int64
 In [7]:
          data = data.drop(["Evaporation", "Sunshine", "Cloud9am", "Cloud3pm", "Location", "Date"], a
          data.head()
 Out[7]:
             MinTemp
                      MaxTemp Rainfall WindGustDir WindGustSpeed WindDir9am WindDir3pm WindSpeed
          0
                 13.4
                           22.9
                                    0.6
                                                  W
                                                               44.0
                                                                             W
                                                                                       WNW
          1
                  7.4
                           25.1
                                    0.0
                                               WNW
                                                               44.0
                                                                           NNW
                                                                                       WSW
          2
                 12.9
                           25.7
                                    0.0
                                               WSW
                                                               46.0
                                                                             W
                                                                                       WSW
          3
                           28.0
                  9.2
                                    0.0
                                                 NE
                                                               24.0
                                                                             SE
                                                                                           Ε
                 17.5
                           32.3
                                    1.0
                                                  W
                                                               41.0
                                                                            ENE
                                                                                         NW
 In [8]:
           data = data.dropna(axis = 0)
          data.shape
          (112925, 17)
 Out[8]:
 In [9]:
           data.columns
 Out[9]: Index(['MinTemp', 'MaxTemp', 'Rainfall', 'WindGustDir', 'WindGustSpeed',
                  'WindDir9am', 'WindDir3pm', 'WindSpeed9am', 'WindSpeed3pm',
                 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Temp9am',
                 'Temp3pm', 'RainToday', 'RainTomorrow'],
                dtype='object')
In [11]:
          from sklearn.preprocessing import LabelEncoder
           le = LabelEncoder()
```

```
data['WindGustDir'] = le.fit_transform(data['WindGustDir'])
data['WindDir9am'] = le.fit_transform(data['WindDir9am'])
data['WindDir3pm'] = le.fit_transform(data['WindDir3pm'])
data['RainToday'] = le.fit_transform(data['RainToday'])
data['RainTomorrow'] = le.fit_transform(data['RainTomorrow'])
```

```
In [12]:     x = data.drop(['RainTomorrow'], axis = 1)
     y = data['RainTomorrow']
```

```
plt.figure(figsize = (8,8))
sns.scatterplot(x = 'MaxTemp', y = 'MinTemp', hue = 'RainTomorrow', data = data)
```

Out[13]: <AxesSubplot:xlabel='MaxTemp', ylabel='MinTemp'>


```
In [14]:
    plt.figure(figsize = (8,8))
    sns.heatmap(data.corr())
```

Out[14]: <AxesSubplot:>


```
In [15]:
          from sklearn.model_selection import train_test_split
          x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2,random_state=1
In [17]:
          from sklearn.linear model import LogisticRegression
          lr = LogisticRegression()
          lr.fit(x_train,y_train)
          predictions = lr.predict(x_test)
          print(confusion_matrix(y_test, predictions))
          print(classification_report(y_test, predictions))
          print(accuracy_score(y_test, predictions))
          [[16668
                    852]
           [ 2630
                   2435]]
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.86
                                       0.95
                                                  0.91
                                                           17520
                     1
                             0.74
                                       0.48
                                                  0.58
                                                            5065
                                                  0.85
                                                           22585
              accuracy
                             0.80
                                       0.72
                                                  0.74
                                                           22585
             macro avg
                                                  0.83
                                                           22585
         weighted avg
                             0.84
                                       0.85
```

0.8458268762452955

C:\Users\mayur\anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:763: Conver

9/8/2021 Raining Logistic

genceWarning: lbfgs failed to converge (status=1):
 STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 n_iter_i = _check_optimize_result(
In []: