Entrepôts de Données et Big Data - HAI708I

Optimisation de Requête

Référence : cours de Serge Abiteboul

Architecture type d'un SGBD

Pourquoi on s'intéresse à l'optimisation ?

- Volume de données (>~1000 lignes)
- Requêtes consommatrices de temps et de ressources
- Optimisation = tâche du SGBD
- Mais
 - requête mal écrite
 - mauvaise optimisation
 - possibilité d'influer sur l'optimisation faite par le SGBD
 - meilleure optimisation
 - Nécessité de comprendre les mécanismes de l'optimisation de requêtes

Les bonnes pratiques pour écrire une requête

Index non utilisé si :

- fonction ou d'opérateur utilisés sur une colonne indexée
- comparaison des colonnes indexées avec la valeur null

Éviter les opérations inutiles

- le select *
- le tri
- filtre sur les données le plus tôt possible dans le cas de requêtes imbriquées et de jointures

Favoriser les opérations les moins coûteuses

- Favoriser les UNION/UNION ALL aux OR
- Favoriser le EXISTS par rapport au IN lorsque la liste à parcourir est issue d'une sous-requête et pas d'une liste statique
- Attention au IN/NOT IN lorsqu'il y a des valeurs nulles : il ne peut pas les comparer et considère qu'elles n'existent pas.

Qu'est-ce que « optimiser » ?

- Requête SQL déclarative : elle ne dit pas comment calculer le résultat.
- Besoin d'un programme : le plan d'exécution = arbre constitué d'opérateurs

Qu'est-ce que « optimiser » ?

Deux étapes pour obtenir le plan d'exécution

 À chaque étape, plusieurs choix : le SGBD les évalue et choisit le « meilleur »

 Titre des films parus en 1958, où l'un des acteurs joue le rôle de John Ferguson.

Requête SQL

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```

2 sélections1 jointure1 projection

 Titre des films parus en 1958, où l'un des acteurs joue le rôle de John Ferguson.

Requête SQL

Plan d'exécution logique (l'algèbre)

 $\pi_{titre}(\sigma_{annee=1958 \land nom\ role='Ferguson'}(Film \bowtie_{id=id_film} Role))$

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```

2 sélections 1 jointure 1 projection

 Titre des films parus en 1958, où l'un des acteurs joue le rôle de John Ferguson.

Requête SQL

Plan d'exécution logique (l'algèbre)

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```


 Titre des films parus en 1958, où l'un des acteurs joue le rôle de John Ferguson.

Requête SQL

Plan d'exécution logique (l'algèbre)

 Titre des films parus en 1958, où l'un des acteurs joue le rôle de John Ferguson.

Requête SQL

Plan d'exécution logique (l'algèbre)

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```


Plan d'exécution physique (opérateurs)

Un opérateur = une opération
Plusieurs algorithme par opération

 Titre des films parus en 1958, où l'un des acteurs joue le rôle de John Ferguson.

Requête SQL

Plan d'exécution logique (l'algèbre)

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```


Plan d'exécution physique (opérateurs)

Un opérateur = une opération

Plusieurs algorithme par opération

 Titre des films parus en 1958, où l'un des acteurs joue le rôle de John Ferguson.

Requête SQL

Plan d'exécution logique (l'algèbre)

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```


Plan d'exécution physique (opérateurs)

Plusieurs plan possibles Évaluation des
coûts pour
trouver le
meilleur plan
physique

Le rôle de l'optimiseur

Trouver les expressions équivalentes

Requête SQL

Plan d'exécution logique - PEL (l'algèbre)

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```


Choisir le bon algorithme pour chaque opération

Plan d'exécution physique - PEP (opérateurs)

Un opérateur = une opération

Plusieurs algorithme par opération

Le rôle de l'optimiseur

Trouver les expressions équivalentes

Requête SQL

Plan d'exécution logique - PEL (l'algèbre)

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```


Choisir le bon algorithme pour chaque opération

Plan d'exécution physique - PEP (opérateurs)

Un opérateur = une opération

Plusieurs algorithme par opération

Le rôle de l'optimiseur : la réécriture algébrique (PEL)

Problème :

 suivant l'ordre des opérateurs algébriques dans un arbre, le coût d'exécution est diffèrent

Pourquoi?

- le coût des opérateurs varient en fonction du volume des données traitées : plus le nombre de n-uplets des relations traitées est petit, plus les coûts cpu et d'E/S sont minimisés
- certains opérateurs diminuent le volume des données (restriction, projection, ...)

Le rôle de l'optimiseur : la réécriture algébrique (PEL)

Trouver les expressions équivalentes

- l'algèbre permet d'obtenir une version opératoire de la requête
- les équivalences algébriques permettent d'explorer un ensemble de plans
- l'optimiseur évalue le coût (entrée / sortie) de chaque plan : différentes fonctions / modèles de coût existantes

Exemples de règles de réécriture

- 1. Commutativité des jointures : $R \bowtie S \equiv S \bowtie R$
- 2. Regroupement des sélections : $\sigma_{A='a'\wedge B='b'}(R) \equiv \sigma_{A='a'}(\sigma_{B='b'}(R))$
- 3. Commutativité de σ et de π : $\pi_{A_1,A_2,...A_p}(\sigma_{A_i='a'}(R)) \equiv \sigma_{A_i='a'}(\pi_{A_1,A_2,...A_p}(R))$
- 4. Commutativité de σ et de \bowtie : $\sigma_{A='a'}(R[\ldots A\ldots]\bowtie S)\equiv \sigma_{A='a'}(R)\bowtie S$

Le rôle de l'optimiseur : la réécriture algébrique (PEL)

Trouver les expressions équivalentes

- MAIS impossible d'énumérer tous les plans possibles
 - → Utilisations d'heuristiques
- Heuristique classique = réduction de la taille des données
 - Opérations réductrices (sélections et projections) groupées sur chaque relation le plus tôt possible, et jointures regroupées
 - grouper les restrictions aux feuilles (dégrouper puis descendre)
 - descendre les projections
 - regrouper les jointures du même coté de l'arbre (deep-left plan)

Détails sur le calcul du coût : un exemple de fonction de coût

Fonction / Modèle de coût :

- Facteur de sélectivité s : utile pour estimer le coût si on ne connaît pas la répartition exacte des données
 - Proportion de n-uplets d'une relation qui satisfont une condition

Exemple :

SELECT * FROM R1, R2

 \rightarrow s = 1

SELECT * FROM R1 WHERE A = valeur

 \Rightarrow s = 1 / CARD(A) avec un modèle uniforme

Détails sur le calcul du coût : un exemple de fonction de coût

Sélectivité des Restrictions

```
TAILLE (\sigma(R)) = s * TAILLE(R) avec :
\square s(A = valeur) = 1 / CARD(A)
\square s(A > valeur) = (max(A) - valeur) / (max(A) - min(A))
\square s(A < valeur) = (valeur - min(A)) / (max(A) - min(A))
\square s(A IN liste valeurs) =
        (1/CARD(A)) * CARD(liste valeurs)
\square s(P et Q) = s(P) * s(Q)
\square s(P ou Q) = s(P) + s(Q) - s(P) * s(Q)
\square s(not P) = 1 - s(P)
```

Détails sur le calcul du coût : un exemple de fonction de coût

Sélectivité des Jointures

- TAILLE(R1 $\bowtie_{R1.A=R2.B}$ R2) = s * TAILLE(R1) * TAILLE(R2)
 - s dépend du type de jointure et de la corrélation des colonnes :
 - s = 0 si aucun n-uplet n'est joint
 - s = 1 / MIN(CARD(A),CARD(B)) si distribution uniforme équiprobable des attributs A et B sur un même domaine
 - s = 1 si produit cartésien
- Cas particulier :
 - Si A est clé de R1 et B est clé étrangère de R2 alors

 TAILLE(R1 ⋈_{R1.A=R2.B} R2) = TAILLE(R2)

 S = 1 / MIN(CARD(A), CARD(B)) = 1 / CARD (A)

 S ~ 1 / TAILLE(R1)

Un exemple de réécriture algébrique (PEL)

Soit le schéma relationnel (notation simplifiée) :

Cinéma (ID-cinéma, nom, adresse)

Salle (ID-salle, ID-cinéma, capacité)

Séance (ID-salle, heure-début, film)

Requête: quels films commencent au Multiplex à 20 heures?

SELECT Séance.film

FROM Cinéma, Salle, Séance

WHERE Cinéma.nom = 'Multiplex' AND

Séance.heure-début = 20 AND

Cinéma.ID-cinéma = Salle.ID-cinéma AND

Salle.ID-salle = Séance.ID-salle ;

· Expression algébrique

 π_{film} ($\sigma_{\text{nom}} = \text{'Multiplex' } \wedge \text{heure-début} = 20$ ((Cinéma \searrow Salle) \searrow Séance))

Un exemple de réécriture algébrique (PEL)

Arbre algébrique de requête

 π film (σ nom = 'Multiplex' \wedge heure-début=20 ((Cinéma \triangleright Salle) \triangleright Séance))

Un exemple de réécriture algébrique (PEL)

Arbre algébrique de requête

 $\pi_{\text{film}}(\sigma_{\text{nom = 'Multiplex' } \land \text{ heure-début=20}})$ ((Cinéma \triangleright Salle) \triangleright Séance))

 π_{film} ($\sigma_{\text{nom}} = \text{'Multiplex'} \land \text{heure-début} = 20 \text{ Séance}$) \longrightarrow (($(\sigma_{\text{nom}} = \text{'Multiplex'} \land \text{Cinéma}) \longrightarrow \text{Salle}$)))

Hypothèses (en nombre de lignes) :

- Cinéma : 4 lignes dont 20 % de Multiplex
- Salle : 6 lignes dont 50 % des salles de Cinéma
- Séance : 50 lignes et 50 % des séances après 20h

Plan 1 :

Jointure : on lit 4 * 6 = 24 lignes
 et on produit 50 % * 6 = 3 lignes

- Hypothèses (en nombre de lignes) :
 - Cinéma : 4 lignes dont 20 % de Multiplex
 - Salle : 6 lignes dont 50 % des salles de Cinéma
 - Séance : 50 lignes et 50 % des séances après 20h
- Plan 1 :
 - Jointure : on lit 4 * 6 = 24 lignes
 et on produit 50 % * 6 = 3 lignes
 => Sélectivité de la jointure = 0,5
 (la moitié des salles sont des salles de Cinéma)

Hypothèses (en nombre de lignes) :

- Cinéma : 4 lignes dont 20 % de Multiplex
- Salle : 6 lignes dont 50 % des salles de Cinéma
- Séance : 50 lignes et 50 % des séances après 20h

```
    Jointure : on lit 4 * 6 = 24 lignes
    et on produit 50 % * 6 = 3 lignes
```

```
    Jointure : on lit 3 * 50 = 150 lignes
        et on produit 50 lignes
        => Sélectivité de la jointure = 1
        (toutes les séances sont des séances de salles de cinéma)
```


Hypothèses (en nombre de lignes) :

- Cinéma : 4 lignes dont 20 % de Multiplex
- Salle : 6 lignes dont 50 % des salles de Cinéma
- Séance : 50 lignes et 50 % des séances après 20h

- Jointure : on lit 4 * 6 = 24 lignes
 et on produit 50 % * 6 = 3 lignes
- Jointure : on lit 3 * 50 = 150 lignes et on produit 50 lignes
- Sélection : on lit 50 lignes
 et on produit 50 % * 50 = 25 lignes
 => Sélectivité de la restriction = 0,5 (la moitié des séances sont aprés 20h)

Hypothèses (en nombre de lignes) :

- Cinéma : 4 lignes dont 20 % de Multiplex
- Salle : 6 lignes dont 50 % des salles de Cinéma
- Séance : 50 lignes et 50 % des séances après 20h

- Jointure : on lit 4 * 6 = 24 lignes
 et on produit 50 % * 6 = 3 lignes
- Jointure : on lit 3 * 50 = 150 lignes et on produit 50 lignes
- Sélection : on lit 50 lignes
 et on produit 50 % * 50 = 25 lignes
- Sélection : on lit 25 lignes
 et on produit 20 % * 25 = 5 lignes
 => Sélectivité de la restriction = 0,2
 (20 % des cinémas sont des Multiplex)

Hypothèses (en nombre de lignes) :

- Cinéma : 4 lignes dont 20 % de Multiplex
- Salle : 6 lignes dont 50 % des salles de Cinéma
- Séance : 50 lignes et 50 % des séances après 20h

- Jointure : on lit 4 * 6 = 24 lignes
 et on produit 50 % * 6 = 3 lignes
- Jointure : on lit 3 * 50 = 150 lignes et on produit 50 lignes
- Sélection : on lit 50 lignes
 et on produit 50 % * 50 = 25 lignes
- Sélection : on lit 25 lignes
 et on produit 20 % * 25 = 5 lignes
- On laisse de côté la projection (même coût dans les deux cas et même nombre de lignes)
- Coût (E/S): 24E + 3S + 150E + 50S + 50E + 25S + 25E + 5S = 332 lignes E/S

- Hypothèse (en nombre de lignes) :
 - Cinéma : 4 lignes dont 20 % de Multiplex
 - Salle : 6 lignes dont 50 % des salles de Cinéma
 - Séance : 50 lignes et 50 % des séances après 20h
- Plan 1 : coût (E/S) = 332 lignes E/S
- Plan 2 :
 - Sélection : on lit 4 lignes
 et on produit 20 % * 4 = 1 lignes
 => Sélectivité de la restriction = 0,2
 (20 % des cinémas sont des Multiplex)

- Hypothèse (en nombre de lignes) :
 - Cinéma : 4 lignes dont 20 % de Multiplex
 - Salle : 6 lignes dont 50 % des salles de Cinéma
 - Séance : 50 lignes et 50 % des séances après 20h
- Plan 1 : coût (E/S) = 332 lignes E/S
- Plan 2 :
 - Sélection : on lit 4 lignes
 et on produit 20 % * 4 = 1 lignes
 - Jointure : on lit 1 * 6 = 6 lignes et on produit 50 % * 6 = 3 lignes => Sélectivité de la jointure = 0,5 => Nombre de lignes MAX : dans le pire
 - => Nombre de lignes MAX : dans le pire des cas, toutes les salles sont des salles du cinéma 'Mutiplex'

- Hypothèse (en nombre de lignes) :
 - Cinéma : 4 lignes dont 20 % de Multiplex
 - Salle : 6 lignes dont 50 % des salles de Cinéma
 - Séance : 50 lignes et 50 % des séances après 20h
- Plan 1 : coût (E/S) = 332 lignes E/S
- Plan 2 :
 - Sélection : on lit 4 lignes
 et on produit 20 % * 4 = 1 lignes
 - Jointure : on lit 1 * 6 = 6 lignes
 et on produit 50 % * 6 = 3 lignes
 - Sélection : on lit 50 lignes
 et on produit 50 % * 50 = 25 lignes
 => Sélectivité de la restriction = 0,5
 (la moitié des séances sont aprés 20h)

Hypothèse (en nombre de lignes) :

- Cinéma : 4 lignes dont 20 % de Multiplex
- Salle : 6 lignes dont 50 % des salles de Cinéma
- Séance : 50 lignes et 50 % des séances après 20h
- Plan 1 : coût (E/S) = 332 lignes E/S
- Plan 2 :
 - Sélection : on lit 4 lignes
 et on produit 20 % * 4 = 1 lignes
 - Jointure : on lit 1 * 6 = 6 lignes
 et on produit 50 % * 6 = 3 lignes
 - Sélection : on lit 50 lignes
 et on produit 50 % * 50 = 25 lignes
 - Jointure : on lit 25 * 3 = 75 lignes
 et on produit 25 lignes
 - => Sélectivité de la jointure = 1
 - => Nombre de lignes MAX

Hypothèse (en nombre de lignes) :

- Cinéma : 4 lignes dont 20 % de Multiplex
- Salle : 6 lignes dont 50 % des salles de Cinéma
- Séance : 50 lignes et 50 % des séances après 20h
- Plan 1 : coût (E/S) = 332 lignes E/S
- Plan 2 :
 - Sélection : on lit 4 lignes
 et on produit 20 % * 4 = 1 lignes
 - Jointure : on lit 1 * 6 = 6 lignes
 et on produit 50 % * 6 = 3 lignes
 - Sélection : on lit 50 lignes
 et on produit 50 % * 50 = 25 lignes
 - Jointure : on lit 25 * 3 = 75 lignes et on produit 25 lignes
 - On laisse de côté la projection (même coût dans les deux cas et même nombre de lignes)
 - Coût (E/S): 4E + 1S + 6E + 3S + 50E + 25S + 75E + 25S = 189 lignes E/S

Un exemple de réécriture algébrique qui échoue (PEL)

- Question: le plan ainsi obtenu est-il toujours optimal?
 - Réponse: NON, d'autres facteurs peuvent intervenir
- On rajoute une table Film, en plus de Cinéma, Salle, Séance
 Film (film, réalisateur, année)
- Requête: les réalisateurs des films qu'on peut voir après 14h

SELECT Film.réalisateur FROM Film, Séance WHERE Séance.heure-début > 14 AND Film.film = Séance.film

- Expressions algébrique
 - Initiale: π réalisateur (σ heure-début > 14 (Film Séance))
 - Optimisée: π réalisateur (Film σ heure-début > 14 (Séance))
- Hypothèses
 - Film occupe 8 lignes
 - Séance occupe 50 lignes, 90% des séances sont après 14h et 20 % des séances concernent des films

Un exemple de réécriture algébrique qui échoue (PEL)

- Plan initial: π réalisateur (σ heure-début > 14 (Film \nearrow Séance))
 - Jointure: on lit 8 * 50 = 400 lignes et on produit 20% * 50 = 10 lignes
 - Sélection: on produit 90% * 10 = 9 lignes de séances après 14h
 - On laisse de côté la projection (même coût dans les deux cas)
 - Coût (E/S): 400E + 10S + 10E + 9S = 429 lignes E/S
- Plan optimisé: π réalisateur (Film σ heure-début > 14 (Séance))
 - Sélection: on lit 50 lignes et on produit 90% * 50 = 45 lignes de séances
 - Jointure: on lit 8 * 45 = 360 lignes et on produit 20% * 45 = 9 lignes
 - \longrightarrow Coût (E/S): 50E + 45S + 360E + 9S = 464 lignes E/S
 - D'aprés la fonction de coût utilisée, le meilleur plan est le plan initial !

 Cas rare: ici la jointure est plus sélective que la sélection

Conclusion sur la réécriture algébrique (PEL)

- · La réécriture algébrique est nécessaire, mais pas suffisante
- Il faut tenir compte d'autres critères:
 - Les chemins d'accès aux données (selon l'organisation physique)
 - On peut accéder aux données d'une table par accès séquentiel, par index, par hachage, etc.
 - Les différents algorithmes possibles pour réaliser un opérateur
 - Il existe par exemple plusieurs algorithmes pour la jointure
 - Souvent ces algorithmes dépendent des chemins d'accès disponibles
 - Les propriétés statistiques de la base de données
 - Taille des tables
 - Sélectivité des attributs
 - etc.

Le rôle de l'optimiseur

Trouver les expressions équivalentes

Requête SQL

Plan d'exécution logique - PEL (l'algèbre)

```
select titre
from Film f, Role r
where nom_role ='Ferguson'
and f.id = r.id_ilm
and f.annee = 1958
```


Choisir le bon algorithme pour chaque opération

Plan d'exécution physique - PEP (opérateurs)

Un opérateur = une opération

Plusieurs algorithme par opération

