

# Machine learning model validation

# Risk Americas Workshop New York, NY

Agus Sudjianto and Vijay Nair Corporate Model Risk, Wells Fargo May 9, 2022

# Agenda

- 9:00 9:30: Introduction Agus Sudjianto
- 9:30-10:45: Machine Learning and Explainability
  - Vijay Nair and Sri Krishnamurthy
- 10:45-11:00: **Break**
- 10:45-11:45: Unwrapping ReLU Networks
  - Agus Sudjianto
- 11:45-12:45 Inherently Interpretable Models
  - Vijay Nair and Sri Krishnamurthy
- 12:45-1:15: Lunch Break

- 1:15-2:15: Outcome Testing
  - Agus Sudjianto
- 2:15-3:15 Hands-on Exercises
  - Sri Krishnamurthy
- 3:15-3:30: Break
- 3:30-4:30 Bias and Fairness
  - Nick Schimdt

- 4:30-5:00: ModelOp Presentation
  - Jim Olsen

#### Overview

- 1. Introduction: Risk Dynamics, Conceptual Soundness and Outcome Testing
- 2. Supervised Machine Learning: Algorithms and Explainability
- 3. Deep ReLU Networks and Inherent Interpretation
- 4. Inherently Interpretable Models
- 5. Outcome Testing

### Outline

#### Inherently interpretable models

- Overview
- FANOVA framework
- Functional ANOVA Models
  - Explainable boosting machine
  - GAMI neural networks
- Comparisons
- PiML Demo

$$f(\mathbf{x}) = g_0 + \sum g_j(x_j) + \sum g_{jk}(x_j, x_k)$$



### Inherently interpretable models

- Key characteristics of inherently interpretable models
  - Parsimonious models are easier to interpret, more robust and more likely to generalize
    - ✓ Sparsity → not too many active effects or complicated relationships
    - ✓ Low-order main effects, preferably linear
    - ✓ **Low-order interactions** → more than two hard to understands
  - Analytic expression for model form → use regression coefficients for interpretation
- Goals and challenges of complex models
  - Goal → extract as much predictive performance as possible
  - BUT ... no analytic expressions → rely on low dimensional summaries
    - → don't present the full picture
    - → can't visualize it in low dimensions
  - No parsimony → lots of variables, complex relationships and interactions
  - **High correlations** which create lot of problems
- Emerging view:
  - Low-order nonparametric models are adequate in most of our applications → typical in banking
  - Directly interpretable
  - Reversing emphasis on complex modeling → balance potential small improvements for interpretation

### Examples of "Low Order" Models

#### Additive Index Models:

$$f(\mathbf{x}) = g_1(\boldsymbol{\beta}_1^T \mathbf{x}) + g_2(\boldsymbol{\beta}_2^T \mathbf{x}) + \dots + g_K(\boldsymbol{\beta}_K^T \mathbf{x})$$

- Generalization of Generalized Additive Models (GAMs):  $f(x) = g_1(x_1) + g_2(x_2) + ... + g_P(x_P)$
- Incorporates certain types of interactions
- Projection pursuit regression (Friedman and Stuetzle, 1981)
- Need for scalable algorithms with large datasets and many predictors
- Use specialized neural network architecture and associated fast algorithms
  - eXplainable Neural Networks (xNNs) → Vaughan,
     Sudjianto, ... Nair (2020)



### Examples of "Low Order" Models

#### Functional ANOVA Models:

$$f(\mathbf{x}) = g_0 + \sum_{j} g_j(x_j) + \sum_{j < k} g_{jk}(x_j, x_k) + \sum_{j < k < l} g_{jkl}(x_j, x_k, x_l) + \cdots$$

- FANOVA models with low-order interactions are adequate for many of our applications
- Focus on models with functional main effects and second order interactions
- Stone (1994); Wahba and her students (see Gu, 2013)
  - → use **splines** to estimate low-order functional effects non-parametrically
- Not scalable to large numbers of observations and predictors
- Recent approaches
  - → use **ML architecture and optimization algorithms** to develop fast algorithms

### FANOVA framework

$$f(x) = g_0 + \sum_{j} g_j(x_j) + \sum_{j < k} g_{jk}(x_j, x_k)$$

- Model made up of mean  $g_0$ , main effects  $g_j(x_j)$ , two-factor interactions  $g_{jk}(x_j,x_k)$
- Interpretability
  - Fitted model is additive, effects are enforced to be orthogonal
  - Components can be easily visualized and interpreted directly
  - Regularization or other techniques used to keep model parsimonious
- Two state-of-the-art ML algorithms for fitting these models:
  - Explainable Boosting Machine (Nori, et al. 2019) → boosted tress
  - GAMI Neural Networks (Yang, Zhang and Sudjianto, 2021) → specialized NNs
- GAMI-Tree and other inherently interpretable models under development

Nori, Jenkins, Koch and Caruana (2019). InterpretML: A Unified Framework for Machine Learning Interpretability. <a href="mailto:arXiv:1909.09223"><u>arXiv:1909.09223</u></a> Yang, Zhang and Sudjianto (2021, Pattern Recognition): GAMI-Net. <a href="mailto:arXiv:2003.07132"><u>arXiv:2003.07132</u></a>

## Explainable Boosting Machine

• EBM – Boosted-tree algorithm by Microsoft group (Lou, et al. 2013)

$$f(\mathbf{x}) = g_0 + \sum g_j(x_j) + \sum g_{jk}(x_j, x_k)$$

- Microsoft InterpretML (Nori, et al. 2019)
- fast implementation in C++ and Python

#### Multi-stage model training:

- 1: fit functional main effects non-parametrically
  - Shallow tree boosting with splits on the same variable for capturing a nonlinear main effect
- 2: fit pairwise interactions on residuals:
  - a. Detect interactions using **FAST** algorithm (next page)
  - b. For each interaction  $(x_j, x_k)$ , fit function  $g_{jk}(x_j, x_k)$  non-parametrically using a tree with depth two: 1 cut in  $x_j$  and 2 cuts in  $x_k$ , or 2 cuts in  $x_j$  and 1 cut in  $x_k$  (pick the better one)
  - c. Iteratively fit all the detected interactions until convergence

    Lou, Caruana, Gehrke and Hooker (2013). Accurate Intelligible Models with Pairwise Interactions. Microsoft Research



# Explainable boosting machine

- **FAST** algorithm for pairwise interaction detection
  - Obtain the residuals of fitted main effects;
  - Score each interaction  $(x_i, x_k)$  by simple depth-2 trees:
    - Place 1 cut on each of  $x_i$  and  $x_k$ , respectively;
    - Fast computation of target values for each quadrant;
    - Speedup by using bookkeeping data structures;
  - Select the top-K pairwise interactions.
- FAST algorithm has a **C++ implementation** in InterpretML.
- **Bagging** option for enhanced performance
  - Inner bag: fit individual effects on bagged sample;
  - Outer bag: fit individual EBMs on different subsamples of dataset.





# Explainable boosting machine: Example

#### Friedman1 simulated data:

- <u>sklearn.datasets.make\_friedman1</u>
   n\_samples=10000, n\_features=10, and noise=0.1.
- Multivariate independent features x uniformly distributed on [0,1]
- Continuous response generated by  $y(\mathbf{x}) = 10\sin(\pi x_0 x_1) + 20(x_2 0.5)^2 + 20x_3 + 10x_4 + \epsilon$

depending only  $x_0 \sim x_4$ 



### **GAMI-Net**

NN-based algorithm for non-parametrically fitting

$$f(\mathbf{x}) = g_0 + \sum_{i} g_j(x_j) + \sum_{i} g_{jk}(x_j, x_k)$$

Multi-stage training algorithm:

1: estimate  $\{g_j(x_j)\}$   $\rightarrow$  train main-effect subnets and **prune** small main effects

2: estimate  $\{g_{jk}(x_j, x_k)\} \rightarrow$  compute residuals from main effects and train pairwise interaction nets

- Select candidate interactions using heredity constraint
- Evaluate their scores (by FAST) and select top-K interactions;
- Train the selected two-way interaction subnets;
- Prune small interactions

3: retrain main effects and interactions simultaneously



## GAMI-Net and interpretability constraints

#### Incorporates the following constraints:

- **Sparsity**: select only the most important main effects and pairwise interactions
- **Heredity**: a pairwise interaction is selected only if at least one of its parent main effects has been selected
- Marginal Clarity: enforce pairwise interactions to be nearly orthogonal to the main effects, by imposing penalty
- **Potential monotonicity**: certain features can be constrained to be monotonic increasing or decreasing

$$f(\mathbf{x}) = g_0 + \sum g_j(x_j) + \sum g_{jk}(x_j, x_k)$$



# Diagnostics: Effect importance and feature importance

• Each **effect importance** (before normalization) is given by

$$D(h_j) = \frac{1}{n-1} \sum_{i=1}^n g_j^2(x_{ij}), \qquad D(f_{jk}) = \frac{1}{n-1} \sum_{i=1}^n g_{jk}^2(x_{ij}, x_{ik})$$

• For prediction at  $x_i$ , the **local feature importance** is given by

$$\phi_j(x_{ij}) = g_j(x_{ij}) + \frac{1}{2} \sum_{j \neq k} g_{jk}(x_{ij}, x_{ik})$$

For GAMI-Net (or EBM), the global feature importance is given by

$$FI(x_j) = \frac{1}{n-1} \sum_{i=1}^{n} (\phi_j(x_{ij}) - \overline{\phi_j})^2$$

• The effects can be visualized by a line plot (for main effect) or heatmap (for pairwise interaction).

## GAMI-Net implementation

- GAMI-Net is implemented in both TensorFlow<sup>9</sup> and PyTorch<sup>10</sup>
- Some implementation details:

#### Warm initialization for subnetworks:

- 1. Fit a fast GAM with B-splines using subsampled training data;
- 2. Generate 1D or 2D random sample X and compute  $Y = \hat{s}(X)$  by the fitted B-spline component;
- 3. Initialize the main effect or interaction subnetwork by training it to the generated data (X, Y).
- Other tricks ...

<sup>9</sup>GAMI-Net in TensorFlow 2.0: <a href="https://github.com/ZebinYang/gaminet">https://github.com/ZebinYang/gaminet</a>
<sup>10</sup>GAMI-Net in PyTorch 1.10: <a href="https://github.com/ZebinYang/GAMINet-PyTorch">https://github.com/ZebinYang/GAMINet-PyTorch</a>

#### Without warm initialization



#### With warm initialization (~3 times faster)



# Comparison of Results on Friedman1 Simulated Data



#### GAMI-Net Output with Test RMSE = 0.0058 and R2 = 99.89%



### Comparisons

#### Bike sharing data:

- Hourly count of rental bikes between years 2011 and 2012 in Capital bikeshare system
- Sample size: 17,379
- Features include weather conditions, precipitation, day of week, season, hour of the day, etc.
- Response is count of total rental bikes





#### Discussion: EBM vs. GAMI-Net

- Both ML algorithms to fit low-order FANOVA models  $f(x) = g_0 + \sum g_j(x_j) + \sum g_{jk}(x_j, x_k)$
- Exploit ML architectures  $\rightarrow$  fast and scalable  $\rightarrow$  can handle large datasets with many predictors
- Inherently interpretable models: additive, orthogonal effects, can be directly visualized
- Direct techniques for capturing feature and effects importance → no need to rely on post hoc tools

#### • **EBM**:

- Tree-based → piecewise constant models
- Good for fitting non-smooth response surfaces
- Introduced FAST algorithm for identifying important interactions

#### GAMI-Net:

- NN based → piecewise linear models
- Good for fitting smooth models
- Has sparsity constraints
- Can incorporate monotonicity

### PiML Demo