Design and Analysis of Sample Surveys

Andrew Gelman

Department of Statistics and Department of Political Science

Columbia University

Class 5a: Simple and stratified random sampling

Simple random sampling

- Sampling from a list
- Missing and duplicate items

Simple random sampling in R

- Simulation
- Analysis using the "survey" package

The population and the sample

Targe	et Populati	on	٦
			Sampling Frame
		Sampled Population	
			Ineligible
Non	response		

Sampling from the phone book

	Page	Column	Entry	Address $\#$	Telephone #
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

(A bit of) the population

KASSUMB	ULA-KAIZ	509
KATOPIS Theodore 120 F 82 212 249-3047	KATTULA Jennafer 409 E 69	212327-2845
KATOVITZ Michael 299 W 12 212 929-9511	KATUN Mosammat 316 W 95	
KATOWSKY Marc 215 F 95 212 706-2855	KATUS B 210 W 89	
	KATUSAK F J 176 E 77	
KATRAGADDA Sireesha 31 E 31212 532-6457	KATVAN Moshe 40 W 17	
KATRANCI Elif 155 E 99. 212 722-1951	Moshe 40 W 17	
KATRI Edmond 160 E 48 212 588-0118	Moshe 40 W 17	212627-5035
KATRITSIS A 212741-0174	Moshe & Rivka 117 W 17	212 627-5034
KATROV Marat P 747 10 Av 212 757-4845	KATWAROO Dianna 434 W 163	212 568-0636
KATS Amir 531 W 48 212 333-5811	Errol 434 W 163	
Ester 15 Willett 212 477-2490	KATYAL Monica 617 W 115	
Guyora 230 W 82 212 362-5351 1 212 588-1244	KATYANG Keo 104 W 96KATZ A	212749-8386
1	KATZ A	212721-3504
Inna 1277 3 Av 212 288-7739	Α	212725-6758
Michael 345 E 93 212 987-2902	A 268 E Bway A 737 Park Av	212 982-8619
Victor 75 West St212 385-1686	A 737 Park Av	212 517-8897
KATSAMAKIS Basil 315 F 69 212 628-9512	A 25 Av	212 533-9692
Basil 530 E 72 212 628-0312	A 148 10 Av	212 366-6487
KATSANOS Andrew 321 E 71 212 717-9393	A 315 F 86	. 212831-7554
Christina 417 W 47 212 459-2304	A D 433 W 21	212 255-1769

- ► How can you use random numbers to take a random sample of telephone households?
- ▶ 5 columns per page, 126 lines per column

A sample

	Page	Column	Entry	Address #	Telephone #
1	520	5	100	15 W 53 St	586-7149
2	519	2	116	240 W 116 St	663-1076
3	519	4	087	710 West End Ave	749-2245
4	520	2	081	511 E 20 St	533-0614
5	519	4	115	2 Horatio St	206-7914
6	519	3	124	$256\dots$	304-2769
7	519	2	110	350	308-4620
8	520	1	107	129	xxx-2xxx
9	520	5	126	315	xxx-2xxx
10	520	2	040	104	xxx-1xxx

- ▶ This is not an equal-probability sample
- What did they do wrong?

First digits of addresses and phone number suffixes

First digits of phone number suffixes	First digits of addresses
0	
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9

First digits of addresses and phone number suffixes

How many siblings are in your family?

Family size (# of siblings,	
including self)	Count
1	3
2	3
3	5
4	5
5	3
6 or more	0

Simple random sampling

- Define SRS
- Sampling with and without replacement
- Give examples of equal-probability sampling that are not SRS
- The sampling frame

Problems with the sampling frame

- Items not on the list
- Blanks in the list
- Duplicates
- Clusters
- Potential solutions
 - ▶ Ignore the problems
 - Redefine the population to fit the frame
 - Separate stratum for elements not in the frame
 - Treat clusters as individual units
 - Rejecting blanks that are sampled

Systematic sampling

- ► Sample every 10th unit in the list
- Actually a form of cluster sampling
- Will discuss analysis later

Stratified sampling in R

- Simulation
- Analysis using the "survey" package

Stratified sampling: population

- ▶ Strata h = 1, ..., H, with $N_1, ..., N_H$ units in each stratum
- ▶ Population size $N = \sum_{h=1}^{H} N_h$
- ▶ Within each stratum h: population stratum mean \overline{Y}_h and population stratum variance S_h^2
- Parameter (population quantity) of interest: $\overline{Y}_W = \sum_{h=1}^H W_h \overline{Y}_h$
- ▶ Sum of weights $\sum_{i=1}^{H} W_h = 1$
- ▶ Usually, $W_h = N_h/N$. If so, then $\overline{Y}_W = \overline{Y}$, the population mean

Stratified sampling: data

- ▶ Independent sampling from each stratum
- ► Sample sizes $n_1, ..., n_H$, total sample size $n = \sum_{h=1}^H n_h$
- ▶ Within each stratum h: sample stratum mean \bar{y}_h and sample stratum variance s_h^2
- Within each stratum, any kind of sampling might be done; for now, assume simple random sampling

Stratified sampling: concepts

- Interpretation as a regression estimate
- Connection to survey weights
- Why stratify?
 - Practicality/cost
 - Bias reduction
 - Variance reduction

Stratified sampling: weights

- \triangleright Relation between W_h and N_h
- Usually $W_h = N_h/N$.
- ▶ When does $W_h \neq N_h/N$?
 - You are interested in a larger superpopulation (for example, age adjustment of death rates)
 - N_h's are unknown. Then you must create weights based on estimates

Stratified sampling: design and analysis

- Standard error and design effect
- Tasks of stratified sampling
 - Setting up the strata
 - Allocate the sample size across strata
 - Perform the sampling
 - Do the analysis
- Poststratification