Введение в искусственный интеллект. Современное компьютерное зрение Лекция 3. Методы оптимизации нейронных сетей

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

15 октября 2019

План лекции

- 💶 Инициализация весов нейронной сети
- Градиентный спуск
- Модификации градиентного спуска для обучения нейронных сетей
- Граф вычислений
- Метод обратного распространения ошибки

2 / 27

Этапы подготовки модели к обучению

- Выбор архитектуры
- Выбор функции потерь
- Инициализация весов
- 🐠 Решение оптимизационной задачи

Методы инициализации весов нейронной сети

- Инициализация нулями
- Инициализация единицами или другими константами
- Инициализация нормально распределенными значениями
- Инициализация равномерно распределенными значениями
- Инициализация значениями из усеченного нормального распределения
- Инициализация случайной ортогональной матрицей
- Инициализация единичной матрицей

Более продвинутые методы инициализации весов нейронной сети

• Lecun-инициализация 1 (n_i — количество входов (нейронов) і-го слоя)

$$W \sim U[-\sqrt{\frac{3}{n_i}}, \sqrt{\frac{3}{n_i}}], \ b \sim 0$$

• Xavier-инициализация ²

$$W \sim U[-\frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}, \frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}], \ b \sim 0$$

¹LeCun Y. A. et al. Efficient backprop. 1998.

²Xavier Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.

2010

Более продвинутые методы инициализации весов нейронной сети

• Инициализация для ReLU сетей ³

$$W \sim N(0, \sqrt{\frac{2}{n_i}}), \ b \sim 0$$

³K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance imagenet classification. 2015.

Этапы подготовки модели к обучению

- Выбор архитектуры
- Выбор функции потерь
- Инициализация весов
- 💿 Решение оптимизационной задачи

Методы оптимизации нейронной сети

Оптимизационная задача

$$L(x, \theta) = \sum_{(x_i, y_i) \in train} L(x_i, y_i, \theta) \to \min_{\theta}$$

Градиентный спуск

$$\omega[t+1] = \omega[t] - \alpha[t] \bigtriangledown (L, w[t])$$

Почему сложно обучать нейронную сеть

- Не всегда оптимизируемая функция дифференцируема
- Даже если она дифференцируемая, то иногда производная бывает тривиальной (для кусочно-постоянных функций)

Почему обучать нейронную сеть сложно

Почему сложно обучать нейронную сеть

- Не всегда оптимизируемая функция дифференцируема
- Даже если она дифференцируемая, то иногда производная бывает тривиальной (для кусочно-постоянных функций)
- В большинстве случаев оптимизируемая функция не является выпуклой и имеет множество локальных минимумов
- Даже если мы попали в глобальный минимум никто не обещает, что это хорошо, так как это может быть переобучением

⁴https://www.willamette.edu/~gorr/classes/cs449/momrate.html

Методы оптимизации нейронных сетей

Методы оптимизации

- Градиентный спуск
- Стохастический градиентный спуск ⁵
- Стохастический градиентный спуск с использованием мини-батча

Достоинства и недостатки градиентного спуска

Достоинства

- Он работает
- Серьёзных альтернатив градиентному спуску нет

Недостатки

- Выбор шага градиентного спуска довольно сложная задача
- Один и тот же шаг применяется ко всем параметрам при обновлении весов
- Нет гарантий сходимости в общем случае

⁶Иллюстрация работы алгоритма при большом и маленьком шагах обучения 🛶 🗸 🗦 🥕 🗦 🤛

Моментум ⁸

Momentum

$$v[t+1] = \mu v[t] - \alpha[t] \nabla (L, w[t])$$
$$\omega[t+1] = \omega[t] + v[t+1]$$

- ullet Типичное значение $\mu=0.9$
- Направление шага алгоритма зависит от всех предыдущих значений градиентов взятых с экспоненциально убывающими коэффициентами

7

⁸Polyak, B.T. Some methods of speeding up the convergence of iteration methods. 1964.

⁷https://www.willamette.edu/~gorr/classes/cs449/momrate.html

Градиент Нестерова ⁹

Nesterov accelerated gradient

$$v[t+1] = \mu v[t] - \alpha[t] \bigtriangledown (L, w[t] + \mu v[t])$$
$$\omega[t+1] = \omega[t] + v[t+1]$$

- Главная идея вычисление градиента в более релевантной точке
- Перед вычислением градиента мы уже имеет хорошее приближение точки, где мы будем на следующем шаге.

 $^{^{9}}$ Nesterov, Y. A method of solving a convex programming problem with convergence rate O(1/sqr(k)) = 1983.

Adaptive Gradient Algorithm ¹⁰

Adagrad

$$g[t+1] = g[t] + \nabla(L, w[t]) \odot \nabla(L, w[t])$$

$$\omega[t+1] = \omega[t] - \frac{\alpha[t]}{\sqrt{g[t]+\varepsilon}} \odot \nabla(L, w[t])$$

- Главная идея адаптирование шага градиента для различных направлений
- Веса, которые обновляются часто, имеют меньший шаг
- Главный недостаток, что g[t] возрастает

¹⁰ J. Duchi, E. Hazan, Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. 2011

Root Mean Square Propagation 11

RMSprop

$$g[t+1] = \rho g[t] + (1-\rho) \bigtriangledown (L, w[t]) \odot \bigtriangledown (L, w[t])$$

$$\omega[t+1] = \omega[t] - \frac{\alpha[t]}{\sqrt{g[t] + \varepsilon}} \odot \bigtriangledown (L, w[t])$$

- Такая же основная идея, но немного другая реализация
- Типичное значение $\rho = 0.9$

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

15 / 27

 $^{^{11}}$ T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recen💋 🦇 magnitude. COURSERA: Neural Networks for Machine Learning. 2012.

Adadelta

$$g[t+1] = \rho g[t] + (1-\rho) \bigtriangledown (L, w[t]) \odot \bigtriangledown (L, w[t])$$

$$\omega[t+1] = \omega[t] - \frac{\sqrt{d[t] + \varepsilon}}{\sqrt{g[t] + \varepsilon}} \odot \bigtriangledown (L, w[t])$$

$$d[t+1] = \rho d[t] + (1-\rho)(\omega[t+1] - \omega[t]) \odot (\omega[t+1] - \omega[t])$$

ullet Типичное значение ho=0.9

Adam 13

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details. and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```


Adamax

Algorithm 2: AdaMax, a variant of Adam based on the infinity norm. See section 7.1 for details. Good default settings for the tested machine learning problems are $\alpha = 0.002$, $\beta_1 = 0.9$ and $\beta_2 = 0.999$. With β_1^t we denote β_1 to the power t. Here, $(\alpha/(1-\beta_1^t))$ is the learning rate with the bias-correction term for the first moment. All operations on vectors are element-wise.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
  m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
  u_0 \leftarrow 0 (Initialize the exponentially weighted infinity norm)
  t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
     t \leftarrow t + 1
      q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
     m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      u_t \leftarrow \max(\beta_2 \cdot u_{t-1}, |g_t|) (Update the exponentially weighted infinity norm)
      \theta_t \leftarrow \theta_{t-1} - (\alpha/(1-\beta_1^t)) \cdot m_t/u_t (Update parameters)
  end while
   return \theta_t (Resulting parameters)
```


Визуализация различных оптимизаторов

Ø

19 / 27

15 октября 2019

14

Прочие подходы и эвристики

- Nadam ¹⁵
- Cyclical Learning Rates for Training Neural Networks 16
- Radam ¹⁷
- Lookahead optimizer ¹⁸
- ..
- Тут может быть ссылка на вашу работу

¹⁵Timothy Dozat. Incorporating Nesterov Momentum into Adam. 2015.

¹⁶L. Smith. Cyclical Learning Rates for Training Neural Networks. 2019.

¹⁷L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, J. Han. On the Variance of the Adaptive Learning Rate and Beyond. 2019.

¹⁸ M. Zhang, J. Lucas, G. Hinton, J. Ba. Lookahead Optimizer: k steps forward, 1 step back, 2019.

Граф вычислений

- Нейронную сеть удобно представлять в виде ориентированного графа (очень часто ацикличного, но не всегда)
- В листьях такого дерева находятся входные данные
- В остальных вершинах находятся операции

Производная сложной функции

$$z_1 = z_1(y_1, y_2)$$

$$z_2 = z_2(y_1, y_2)$$

$$y_1 = y_1(x_1, x_2)$$

$$y_2 = y_2(x_1, x_2)$$

Chain rule (производная сложной функции)

$$\frac{dz}{dx} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} \frac{\partial z_1}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial z_1}{\partial y_2} \frac{\partial y_2}{\partial x_1} & \frac{\partial z_1}{\partial y_1} \frac{\partial y_1}{\partial x_2} + \frac{\partial z_1}{\partial y_2} \frac{\partial y_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} \frac{\partial z_1}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial z_1}{\partial y_2} \frac{\partial y_2}{\partial x_1} & \frac{\partial z_1}{\partial y_1} \frac{\partial y_2}{\partial x_2} + \frac{\partial z_2}{\partial y_2} \frac{\partial y_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} \frac{\partial z_1}{\partial y_1} & \frac{\partial z_1}{\partial y_2} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial y_1} & \frac{\partial z_1}{\partial y_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial y_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial y_2} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial y_2} & \frac{\partial z_2}{\partial y_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial z_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_2} & \frac{\partial z_2}{\partial x$$

22 / 27

Метод обратного распространения ошибки ¹⁹

Постановка задачи

Дано:

$$x_0 \xrightarrow{W_1} x_1 \xrightarrow{W_2} x_2 o ... \xrightarrow{W_s} x_s$$
, то есть $x_{i+1} = x_{i+1}(x_i, W_{i+1})$

Найти:

$$\frac{dx_s}{dW_1}, \ \frac{dx_s}{dW_2}, ..., \ \frac{dx_s}{dW_s},$$

Схема вычисления

$$0. \quad \frac{dx_s}{dW_s}, \quad \frac{dx_s}{dx_{s-1}}$$

1.
$$\frac{dx_s}{dW_{s-1}} = \frac{dx_s}{dx_{s-1}} \frac{dx_{s-1}}{dW_{s-1}}$$
, $\frac{dx_s}{dx_{s-2}} = \frac{dx_s}{dx_{s-1}} \frac{dx_{s-1}}{dx_{s-2}}$

2.
$$\frac{dx_s}{dW_{s-2}} = \frac{dx_s}{dx_{s-2}} \frac{dx_{s-2}}{dW_{s-2}}$$
, $\frac{dx_s}{dx_{s-3}} = \frac{dx_s}{dx_{s-2}} \frac{dx_{s-2}}{dx_{s-3}}$

. . .

¹⁹D. Rumelhart, G. Hinton, R. Williams. Learning representations by back-propagating errors. 1986.

Метод обратного распространения ошибки

Схема вычисления

$$0. \quad \frac{dx_s}{dW_s}, \quad \frac{dx_s}{dx_{s-1}}$$

1.
$$\frac{dx_s}{dW_{s-1}} = \frac{dx_s}{dx_{s-1}} \cdot \frac{dx_{s-1}}{dW_{s-1}} \cdot \frac{dx_s}{dx_{s-2}} = \frac{dx_s}{dx_{s-1}} \cdot \frac{dx_{s-1}}{dx_{s-2}}$$

2.
$$\frac{dx_s}{dW_{s-2}} = \frac{dx_s}{dx_{s-2}} \frac{dx_{s-2}}{dW_{s-2}}$$
, $\frac{dx_s}{dx_{s-3}} = \frac{dx_s}{dx_{s-2}} \frac{dx_{s-2}}{dx_{s-3}}$

..

i.
$$\frac{dx_s}{dW_{s-i}} = \frac{dx_s}{dx_{s-i}} \frac{dx_{s-i}}{dW_{s-i}}$$
, $\frac{dx_s}{dx_{s-i-1}} = \frac{dx_s}{dx_{s-i}} \frac{dx_{s-i}}{dx_{s-i-1}}$

. . .

s-1.
$$\frac{dx_s}{dW_1} = \frac{dx_s}{dx_1} \frac{dx_1}{dW_1}$$

Заключение

Главное правило: при обратном распространении градиента на каждом шаге необходимо считать производную по весам и по входу!

Метод обратного распространения ошибки

- Метод обратного распространения полностью соотвествует парадигме объектно-ориентированного программирования
- На каждом шаге необходимо вычислять градиент по весам и по входу
- Сложность алгоритма линейна относительно глубины цепочки зависимостей
- Метод позволяет вычислять производные довольно сложных функций, в графе которых нет циклов
- В случае, если в графе есть циклы, то существуют модификации алгоритма для разных специальных случаев

Заключение

- Важно инициализировать веса не нулями
- От параметров и выбора оптимизатора зависит скорость и качество обучения
- Исследования по методам оптимизации для нейронных сетей активно продолжаются
- На практике часто бывает, что SGD+momentum работает более стабильно
- Метод обратного распространения ошибки эффективная схема вычисления градиента

Спасибо за внимание!

