Paul Gustafson Texas A&M University - Math 641 Instructor - Fran Narcowich

HW₂

1 a Show that if α , β are positive with $\alpha + \beta = 1$ then for all $u, v \ge 0$ we have

$$u^{\alpha}v^{\beta} \le \alpha u + \beta v.$$

Proof. If u = v = 0, then the inequality holds. Since the inequality is symmetric in u and v, we may assume $v \neq 0$. Hence we wish to show

$$(\frac{u}{v})^{\alpha} \le \alpha(\frac{u}{v}) + \beta$$

. Letting $x=\frac{u}{v}$, this is equivalent to showing that $f(x)\geq 0$, where $f(x)=\alpha x-x^{\alpha}+\beta$ and $x\geq 0$. Since $\alpha>0$, we have $f'(x)=\alpha-\alpha x^{\alpha-1}=\alpha(1-x^{\alpha-1})$ whose only zero in $[0,\infty)$ is at x=1. Moreover, since $\alpha<1$, we have $f''(1)=\alpha(\alpha-1)x^{\alpha-2}|_{x=1}=\alpha(\alpha-1)<0$. Hence, the maximum value of f on $[0,\infty)$ occurs at x=1. We have $f(1)=\alpha-1+\beta=0$, so $f(x)\leq 0$ for $x\geq 0$.

1 b Let $x, y \in \mathbb{R}^n$, and let p > 1 and define q by $q^{-1} = 1 - p^{-1}$. Prove Hölder's inequality,

$$|\sum_{j} x_{j} y_{j}| ||x||_{p} ||y||_{q}.$$

Hint: Using the inequality in part (a). first prove it for $||x||_p = ||y||_q = 1$. Scale to get the final inequality.

Proof. Suppose $||x||_p = ||y||_q = 1$. Then

$$|\sum_{j} x_{j} y_{j}| \leq \sum_{j} |x_{j}| |y_{j}|$$

$$= \sum_{j} (|x_{j}|^{p})^{1/p} ((|y_{j}|)^{q})^{1/q}$$

$$\leq \sum_{j} \frac{1}{p} |x_{j}|^{p} + \frac{1}{q} |y_{j}|^{q}$$

$$\leq \frac{1}{p} (\sum_{j} |x_{j}|^{p}) + \frac{1}{q} (\sum_{j} |y_{j}|^{q})$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1.$$

For the general case, note that if x=0 or y=0 then the inequality holds. Hence we may assume both are nonzero. Let $x'=\frac{x}{\|}x\|_p$ and $y'=\frac{y}{\|}y\|_p$. We can now apply the special case to x' and y' then clear denominators to get the general inequality.

1 c Suppose $\phi = (y_1, \dots, y_n) \in l_p^*$. Hölder's inequality implies that $\|\phi\|_{l_p^*} \le \|y\|_q$. Show that we actually have $\|\phi\|_{l_p^*} = \|y\|_q$.

Proof. If $||y||_q = 0$ then $\phi = 0$, and $||\phi||_{l_p^*} = 0 = ||y||_q$. Hence, we may assume $||y||_q \neq 0$. Let $x_i = \text{sign}(y_i) \frac{|y_i|^{q/p}}{||y||_q^{q/p}}$ for $1 \leq i \leq n$. Then $||x||_p = \sum_i \frac{|y_i|^q}{||y||_q^q} = 1$.

Then
$$\phi(x) = \sum_{i} x_{i} y_{i} = \sum_{i} \frac{|y_{i}|^{q/p}}{\|y\|_{q}^{q/p}} |y_{i}| = \frac{1}{\|y\|_{q}^{q/p}} \sum_{i} |y_{i}|^{\frac{p+q}{p}} = \frac{1}{\|y\|_{q}^{q/p}} \sum_{i} |y_{i}|^{q} = \|y\|_{q}^{q-q/p} = \|y\|_{q}.$$

1 d Let $x, y \in \mathbb{R}^n$, and let p > 1. Prove Minkowski's inequality,

$$||x+y||_p \le ||x||_p + ||y||_p.$$

Use this to show that $||x||_p$ defines a norm on \mathbb{R}^n . Hint: you will need to use Hölder's inequality, along with a trick.

Proof. Acknowledgement: I looked in Carother's Real Analysis book for a hint on this problem. Setting 1/p + 1/q = 1, we have

$$\begin{aligned} \|x+y\|_p^p &= & \sum_i |x_i+y_i||x_i+y_i|^{p-1} \\ &\leq & \sum_i |x_i||x_i+y_i|^{p-1} + \sum_i |y_i||x_i+y_i|^{p-1} \\ &\leq & (\|x\|_p + \|y\|_p) \left(\sum_i |x_i+y_i|^{q(p-1)}\right)^{1/q} \\ &= & (\|x\|_p + \|y\|_p) \left(\sum_i |x_i+y_i|^p\right)^{1-1/p} \\ &= & (\|x\|_p + \|y\|_p) \left(\sum_i |x_i+y_i|^p\right)^{1-1/p} \\ &= & (\|x\|_p + \|y\|_p) \|x+y\|_p^{p-1} \end{aligned}$$

If $||x+y||_p^{p-1} \neq 0$, we can divide by it to get desired inequality. If $||x+y||_p = 0$ then the inequality follows from the fact that $||x||_p + ||y||_p$ must be nonnegative by definition.

To show that $\|\cdot\|_p$ is a norm, it remains to show that it is homogeneous and positive definite. To see that $\|\cdot\|_p$ is homogeneous, let $c \in \mathbb{R}$ and $v \in \mathbb{R}^n$, then $\|cv\|_p = (\sum_i |cv_i|^p)^{1/p} = (|c|^p \sum_i |v_i|^p)^{1/p} = |c|\|v\|_p$. It is obvious that $\|v\|_p \ge 0$. If $\|v\|_p = 0$, then each component of v must be zero or else $\sum_i |v_i|^p > 0$. Hence v = 0.

2 L_2 minimization. Find the straight line y=a+bx that minimizes $\int_0^1 (e^{-x}-a-bx)^2 dx$.

Proof. By HW 1, Problem 4, we know that a + bx minimizes $||e^{-x} - a - bx||_2$ iff

$$\left(\begin{array}{c} \langle e^{-x}, 1 \rangle \\ \langle e^{-x}, x \rangle \end{array}\right) = \left(\begin{array}{cc} \langle 1, 1 \rangle & \langle x, 1 \rangle \\ \langle 1, x \rangle & \langle x, x \rangle \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right)$$

The one slightly tricky integral is $\langle e^{-x}, x \rangle = \int_0^1 x e^{-x} \, dx = x(-e^{-x})|_{x=0}^1 + \int_0^1 e^{-x} \, dx = -e^{-1} - (e^{-x})|_{x=0}^1 = -e^{-1} - (e^{-1} - 1) = 1 - 2e^{-1}.$

$$\begin{pmatrix} 1 - e^{-1} \\ 1 - 2e^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0.943036 \\ -0.62183 \end{pmatrix}$$

3 L_1 minimization. Find the straight line y = a + bx that minimizes $\int_0^1 |e^{-x} - a - bx| dx$, by following these steps.

a. Whatever the minimizer is, geometric considerations show that e^{-x} and a + bx will cross at two points, 0 < s < t < 1. Find these two points by minimizing, over a, b, the area A between f(x) and a + bx:

$$A = \int_0^1 |e^{-x} - a - bx| \, dx = \int_0^s (e^{-x} - a - bx) \, dx + \int_s^t (a + bx - e^{-x}) \, dx + \int_t^1 (e^{-x} - a - bx) \, dx.$$

b. Use the crossing conditions $a + bs = e^{-s}$ and $a + bt = e^{-t}$ to find a and b.

Proof. a. Let $g_1(a,b,s) = e^{-s} - a - bs$, and $g_2(a,b,t) = e^{-t} - a - bt$. The method of Lagrange multipliers gives us the following necessary condition for

(a, b, s, t) to minimize A given the constraints $g_1 = g_2 = 0$:

$$0 = (\frac{\partial}{\partial a}, \frac{\partial}{\partial b}, \frac{\partial}{\partial s}, \frac{\partial}{\partial t})(A - \lambda_1 g_1 - \lambda_2 g_2)$$

$$0 = \left(\int_0^s (-1) \, dx + \int_s^t 1 \, dx + \int_t^1 (-1) \, dx - \lambda_1 - \lambda_2, \right.$$

$$\left. \int_0^s (-x) \, dx + \int_s^t x \, dx + \int_t^1 (-x) \, dx - \lambda_1 s - \lambda_2 t, \right.$$

$$\left. 2(-e^{-s} - a - bs) + \lambda_1 (-e^{-s} - b), -2(-e^{-t} - a - bt) + \lambda (-e^{-t} - b) \right)$$

$$0 = (-s + (t - s) + (t - 1) - \lambda_1 - \lambda_2,$$

$$(-1/2)s^2 + (1/2)(t^2 - s^2) + (-1/2)(1 - t^2) - \lambda_1 s - \lambda_2 t,$$

$$\lambda_1 (-e^{-s} - b), \lambda_2 (-e^{-t} - b))$$

$$0 = (2t - 2s - 1 - \lambda_1 - \lambda_2, t^2 - s^2 - 1/2 - \lambda_1 s - \lambda_2 t, \lambda_1 (-e^{-s} - b), \lambda_2 (-e^{-t} - b))$$
(1)

From the last two components, we get four cases.

Case $e^{-s} = e^{-t} = -b$. Since b is the slope of the line between (s, e^{-s}) and (t, e^{-t}) , we have $b = \frac{e^{-t} - e^{-s}}{t - s} = 0$ which cannot correspond to a minimum.

Case $e^{-s}=-b$ and $\lambda_2=0$. From the first component of 1, we have $\lambda_1=2t-2s-1$. Substituting into the second component of 1, $0=t^2-s^2-1/2-\lambda_1s=t^2-s^2-1/2-(2t-2s-1)s=(t-s)^2-(1/2-s)$. Since t-s>0, we have $t=s+\sqrt{1/2-s}$. Using the case assumption, we have $e^{-s}=-b=-\frac{e^{-t}-e^{-s}}{t-s}=-e^{-s}\frac{e^{-\sqrt{1/2-s}}-1}{\sqrt{1/2-s}}$. Thus if $u=-\sqrt{1/2-s}$, then $u=e^u-1$. The only solution to this equation is u=0. To see this, note that $f(u):=e^u-u-1$ has derivative e^u-1 , hence f has a unique global minimum at 0.

Hence s = 1/2, so t = 1/2. This cannot correspond to a minimum.

Case $\lambda_1=0$ and $e^{-t}=-b$. From the first component of 1, we have $\lambda_2=2t-2s-1$. Substituting into the second component of 1, $0=t^2-s^2-1/2-\lambda_2t=t^2-s^2-1/2-(2t-2s-1)t=-(t-s)^2+t-1/2$. Since t-s>0, we have $s=t-\sqrt{t-1/2}$. Using the case assumption, we have $e^{-t}=-b=-\frac{e^{-t}-e^{-s}}{t-s}=-e^{-t}1-e^{\sqrt{t-1/2}}\sqrt{t-1/2}$. Thus if $u=\sqrt{t-1/2}$, then $u=e^u-1$. As in the previous case, the only solution to this equation is u=0.

Hence t = 1/2, so s = 1/2. This cannot correspond to a minimum.

Case $\lambda_1 = \lambda_2 = 0$. We have t = s+1/2, so $0 = (s+1/2)^2 - s^2 - 1/2 = s - 1/4$. Hence s = 1/4, t = 3/4.

b. We have $a + b(1/4) = e^{-(1/4)}$ and $a + b(3/4) = e^{-(3/4)}$. Hence a = 0.9320 and b = -0.6128.

3 Use your favorite software (mine is Matlab) and plot, on the same set of axes, e^{-x} and the two minimization solutions found in the previous two problems.

4 Let V be a finite dimensional inner product space and let U be a subspace of V. Recall that the orthogonal complement of U is

$$U^\perp = \{v \in V | \langle v, u \rangle = 0 \text{ for all } \mathbf{u} \ \in U \}.$$

Show that $V=U\oplus U^{\perp}$, where \oplus symbolizes the direct sum of vector spaces. Also, show that $(U^{\perp})^{\perp}=U$.

Proof. By HW 1 (4)(b), the orthogonal projection $P:V\to U$ exists. Let $v\in V$. Then v=Pv+(v-Pv). By HW 1 (3), $v-Pv\in U^\perp$. Hence, $V=U+U^\perp$. Moreover, if $w\in U\cap U^\perp$, then $\langle w,w\rangle=0$ so w=0. Thus, $v=U\oplus U^\perp$.

Moreover, if $w \in U \cap U^{\perp}$, then $\langle w, w \rangle = 0$ so w = 0. Thus, $v = U \oplus U^{\perp}$. To see that $U \subset (U^{\perp})^{\perp}$, let $u \in U$. Then $\langle v, u \rangle = 0$ for all $v \in U^{\perp}$. Hence, $\langle u, v \rangle = 0$ for all $v \in U^{\perp}$. Thus, $u \in (U^{\perp})^{\perp}$.

Since $V = W \oplus W^{\perp}$ for any subspace W, we have $\dim(U) + \dim(U^{\perp}) = \dim(V) = \dim(U^{\perp}) + \dim((U^{\perp})^{\perp})$. Since $\dim(U^{\perp}) < \infty$, we have $\dim(U) = \dim((U^{\perp})^{\perp})$. Since $U \subset (U^{\perp})^{\perp}$ and they are finite dimensional, this implies that $U = (U^{\perp})^{\perp}$.