Lista 2

Para todas as listas de exercício, você deve criar arquivos .m com os códigos implementados e, se necessário, um arquivo em pdf com os resultados gerados (pode ser a impressão dos resultados calculados ou figuras). Todos arquivos devem ser nomeados como RA000000_LXX_YY.m, em que

- 000000 é o número do seu RA
- XX é o número da lista.
- YY é o número do exercício.

Resolva os exercícios 1 a 4 utilizando estruturas de decisão e repetição. Para o exercício 1, utilize também somente as 4 operações básicas (+,-,* e /) quando algum cálculo for necessário. Salve cada arquivo de acordo com as intruções acimas, mas utilize funções. O nome da função é o nome do arquivo. Os parâmetros de entrada e saída são definidos em cada exercício.

1) Dados x e ϵ reais, $\epsilon > 0$, calcular uma aproximação para atan(x) através da série infinita

$$\operatorname{atan}(x) = \frac{x}{1} - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^k \frac{x^{2k+1}}{2k+1} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Teste sua função. Lembre-se, por exemplo, que $\tan(30^\circ) = \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$. Assim, sua função deve retornar

```
x=sqrt(3)/3;
atan(x)-pi/6
```

ans = 0

Observe que o raio de convergência da série acima é $-1 \le x \le 1$ (verifique), ou seja, a função só é válida para valores de x tal que $|x| \le 1$. A função arco tangente, no entanto, possui a seguinte propriedade:

$$atan\left(\frac{1}{x}\right) = \frac{\pi}{2} - atan(x)$$

Portanto, para valores de |x| > 1, é possível utilizar a identidade acima para determinar atan(x) calculando $atan(\frac{1}{x})$ com a série acima.

2) Um ponto no plano pode ser localizado através das coordenadas cartesianas (x, y) ou das coordenadas polares (r, θ) . É relativamente simples calcular as coordenadas cardesianas de um ponto a partir de suas coordenadas polares. O processo contrário já não é tão simples. O raio pode ser calculado através de

$$r = \sqrt{x^2 + y^2}$$

Se as coordendas pertencem ao primeiro ou quarto quadrantes (isto é, se x > 0), então

$$\theta = \operatorname{atan}\left(\frac{y}{x}\right)$$

Surge uma dificuldade, no entanto, para os outros casos. A tabela a seguir ilustra as diferentes possibilidades.

x	у	heta
<0	>0	$tan^{-1}(y/x) + \pi$
<0	<0	$\tan^{-1}(y/x) - \pi$
<0	=0	π
=0	>0	$\pi/2$
=0	<0	π/2 -π2
=0	=0	0

Escreva uma função, utilizando estruturas de decisão e a função do exercício anterior, para calcular as coordenadas polares r e θ em função das coordenadas x e y.

Teste a sua função com os valores da tabela abaixo e compare seus resultados com a função do matlab cart2pol.

x	у	r	θ
2	0		
2	1		
0	3		
-3 -2	1		
-2	0		
-1	-2		
0	0		
0	-2		
2	2		

3) O matemático italiano Leonardo de Pisa, conhecido por Fibonacci, descreveu no ano de 1202 o crescimento de uma população de coelhos através da sequência que ficou conhecida como sequência de Fibonacci:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

A sequência pode ser definida de foma recursiva como:

$$F_1 = 1$$

 $F_2 = 1$
 $F_n = F_{n-1} + F_{n-2}, n \ge 3$

Escreva um programa que, dado n, calcula F_n

```
function [Fn] = fibonacci(n)
%
end
```

4) Os pontos (x, y) que pertencem ao quarto de círculo unitário no primeiro quadrante são tais que $x \ge 0$, $y \ge 0$ e $x^2 + y^2 \le 1$.

Dados *n* pontos reais, verifique se cada ponto pertence ou não ao quarto de círculo.

Entrada: uma matriz xy, cujo tamanho é size(xy)==[2,n], ou seja, a coordenada x de cada ponto é a primeira linha e a coordenada y é a segunda linha da matriz.

Saída: uma matriz de 1 linha e n colunas, com os valores 1 ou 0 se o ponto pertencer ou não, respectivamente, ao quarto de círculo.

Lembre-se que o tamanho n pode ser obtido tanto com a função size quanto com a função length.