

While the song is playing...

Draw a mental model / concept map of last lectures content on joins.

recap Joins

Joins with a person and a coat, by Leight Tami

Upcoming Due Dates

• Assignment 1: Due April 8 at 5pm (Today!)

Exploring life expectancy and income

We want to plot life expectancy vs income, but there's a problem:

```
gap_life_au
## # A tibble: 9 x 3
    country year life_expectancy
##
##
    <chr>
               <db1>
                               <db1>
## 1 Australia
                                82.5
               2012
                                82.6
## 2 Australia
                2013
## 3 Australia
                                82.5
                2014
## 4 Australia
                2015
                                82.5
  5 Australia
                                82.5
                2916
## 6 Australia
                                82.4
                2017
                                82.5
## 7 Australia
                2018
## 8 Australia
                                82.7
                2019
## 9 Australia
                                82.8
               2020
```

```
gap_income_au
## # A tibble: 9 x 3
    country
##
              vear
                      qdp
              <dbl> <dbl>
##
    <chr>
## 1 Australia 2012 42800
## 2 Australia 2013 43200
## 3 Australia 2014 43700
## 4 Australia 2015 44100
  5 Australia 2016 44600
## 6 Australia
               2017 44900
## 7 Australia 2018 45400
## 8 Australia
               2019 45500
## 9 Australia 2020 45800
```

We need them in the same dataframe!

We could try bind_cols(), to bind dataframes columns together

```
bind_cols(gap_life_au,
         gap_income_au)
## # A tibble: 9 x 6
##
    country year life_expectancy country1 year1
    <chr> <dbl>
                          <dbl> <dbl> <dbl> <dbl> <
## 1 Australia 2012
                              82.5 Australia 2012 42800
## 2 Australia 2013
                              82.6 Australia 2013 43200
## 3 Australia 2014
                              82.5 Australia 2014 43700
## 4 Australia 2015
                              82.5 Australia 2015 44100
## 5 Australia 2016
                              82.5 Australia 2016 44600
## 6 Australia 2017
                              82.4 Australia 2017 44900
## 7 Australia 2018
                              82.5 Australia 2018 45400
                              82.7 Australia 2019 45500
## 8 Australia 2019
## 9 Australia 2020
                              82.8 Australia 2020 45800
```

But this has problems:

- 1. It produces messy output (country1, year1)
- 2. It doesn't work if the data doesn't have the same number of rows

```
## # A tibble: 9 x 6
    country year life_expectancy country1 year1
##
## <chr> <dbl>
                          <db1> <chr> <db1> <db1> <db1>
## 1 Australia 2012
                              82.5 Australia 2012 42800
## 2 Australia 2013
                              82.6 Australia 2013 43200
## 3 Australia 2014
                              82.5 Australia 2014 43700
## 4 Australia 2015
                              82.5 Australia 2015 44100
## 5 Australia
                              82.5 Australia 2016 44600
              2916
## 6 Australia 2017
                              82.4 Australia 2017 44900
## 7 Australia 2018
                              82.5 Australia 2018 45400
## 8 Australia
                              82.7 Australia 2019 45500
              2019
## 9 Australia 2020
                              82.8 Australia 2020 45800
```

How to bind data?

For example, how do we add this co2 data to income or life?

How to bind data?

We can't use bind_cols()

We could think about a more complex approach using filter, and so on...

But surely this must be a problem that we encounter in data analysis?

Someone must have thought of a solution to this before?

They did! **Joins**!

Joins!

We can use left_join() to combine the income and life expectancy data

```
left_join(x = gap_income_au,
         y = gap_life_au,
         by = c("country", "year"))
## # A tibble: 9 x 4
  country year gdp life_expectancy
  <chr> <dbl> <dbl>
                                  <db1>
##
## 1 Australia 2012 42800
                                   82.5
## 2 Australia 2013 43200
                                   82.6
## 3 Australia 2014 43700
                                   82.5
## 4 Australia 2015 44100
                                   82.5
## 5 Australia 2016 44600
                          82.5
## 6 Australia 2017 44900
                                   82.4
## 7 Australia 2018 45400
                                   82.5
## 8 Australia 2019 45500
                                   82.7
## 9 Australia 2020 45800
                                   82.8
```

Add co2 data with another join:

We get missings for co2, because we don't have c02 values for 2015 and beyond.

```
left_join(x = gap_income_au,
         y = gap_life_au,
         by = c("country", "year")) %>%
 left_join(gap_co2_au,
           by = c("country", "year"))
## # A tibble: 9 x 5
##
   country year gdp life_expectancy co2
  <chr> <dbl> <dbl> <dbl> <dbl> <
## 1 Australia 2012 42800 82.5 17
## 2 Australia 2013 43200
                                 82.6 16.1
## 3 Australia 2014 43700
                                 82.5 15.4
## 4 Australia 2015 44100
                                  82.5 NA
## 5 Australia 2016 44600
                                  82.5 NA
## 6 Australia 2017 44900
                                  82.4 NA
## 7 Australia 2018 45400
                                  82.5 NA
## 8 Australia 2019 45500
                                  82.7 NA
## 9 Australia 2020 45800
                                  82.8 NA
```

So now we can combine that together like so:

```
gap_au <- left_join(x = gap_income_au,</pre>
         y = gap_life_au,
         by = c("country", "year")) %>%
 left_join(gap_co2_au,
          by = c("country", "year"))
gap_au
## # A tibble: 9 x 5
## country year gdp life_expectancy co2
  ## 1 Australia 2012 42800 82.5 17
## 2 Australia 2013 43200
                                 82.6 16.1
## 3 Australia 2014 43700
                                 82.5 15.4
## 4 Australia 2015 44100
                                 82.5 NA
## 5 Australia 2016 44600
                                 82.5 NA
## 6 Australia 2017 44900
                                 82.4 NA
## 7 Australia 2018 45400
                                 82.5 NA
## 8 Australia 2019 45500
                                 82.7 NA
## 9 Australia 2020 45800
                                 82.8 NA
```

Now we can make a plot!

Your Turn: go to exercises on rstudio.cloud

open "joins.Rmd"

Discuss with your partner why these two joins produce different results?

```
left_join(gap_life_au,
          gap_co2_au)
## # A tibble: 9 x 4
    country year life_expectancy
                              <db1> <(
##
    <chr> <dbl>
## 1 Australia 2012
                               82.5
## 2 Australia 2013
                               82.6
                               82.5
## 3 Australia 2014
## 4 Australia 2015
                               82.5
## 5 Australia
               2916
                               82.5
  6 Australia 2017
                               82.4
## 7 Australia 2018
                               82.5
                               82.7
## 8 Australia
               2019
## 9 Australia 2020
                               82.8
```

Your Turn:

What happens when we add data from New Zealand into the mix? How can you join that data together?

Making effective data plots

- 1. Principles / science of data visualisation
- 2. Features of graphics

Principles / science of data visualisation

- Palettes and colour blindness
- change blindness
- using proximity
- hierarchy of mappings

Features of graphics

- Layering statistical summaries
- Themes
- adding interactivity

Palettes and colour blindness

There are three main types of colour palette:

- Qualitative: categorical variables
- Sequential: low to high numeric values
- Diverging: negative to positive values

Qualitative: categorical variables

Sequential: low to high numeric values

Diverging: negative to positive values

Example: TB data

```
## # A tibble: 157,820 x 5
##
     country year count gender age
     <chr> <dbl> <dbl> <chr> <chr>
##
   1 Afghanistan 1980
                         NA m
                                  04
##
   2 Afghanistan
                 1981
                        NA m
                                  04
##
   3 Afghanistan
                 1982
                        NAm
                                  04
##
   4 Afghanistan
                 1983
                         NA m
                                  04
##
   5 Afghanistan
##
                 1984
                         NA m
                                  04
   6 Afghanistan
##
                 1985
                         NA m
                                  04
   7 Afghanistan
                 1986
                         NA m
                                  04
##
##
   8 Afghanistan
                 1987
                         NA m
                                  04
   9 Afghanistan
                 1988
                         NA m
                                  04
  10 Afghanistan 1989
                         NA m
                                  04
## # ... with 157,810 more rows
```

Example: TB data: adding relative change

```
## # A tibble: 219 x 4
   country `2002` `2012` reldif
##
  1 Afghanistan 6509 13907 1.14
  2 Albania
         225 185 -0.178
  3 Algeria 8246 7510 -0.0893
  4 American Samoa 1
                        0 -1
  5 Andorra
  6 Angola 17988 22106 0.229
##
 7 Anguilla
  8 Antigua and Barbuda 4 1 -0.75
  9 Argentina 5383 4787 -0.111
## 10 Armenia 511 316 -0.382
## # ... with 209 more rows
```

Example: Sequential colour with default palette

```
ggplot(tb_map) + geom_polygon(aes(x = long, y = lat, group = group, fill = reldif))
theme_map()
```


Example: (improved) sequential colour with default palette

```
library(viridis)
ggplot(tb_map) +
  geom_polygon(aes(x = long, y = lat, group = group, fill = reldif)) +
  theme_map() + scale_fill_viridis(na.value = "white")
```


Example: Diverging colour with better palette

```
ggplot(tb_map) +
  geom_polygon(aes(x = long, y = lat, group = group, fill = reldif)) +
  theme_map() +
  scale_fill_distiller(palette = "PRGn", na.value = "white", limits = c(-7, 7))
```


Summary on colour palettes

- Different ways to map colour to values:
 - Qualitative: categorical variables
 - Sequential: low to high numeric values
 - Diverging: negative to positive values

Colour blindness

- About 8% of men (about 1 in 12), and 0.5% women (about 1 in 200) population have difficulty distinguishing between red and green.
- Several colour blind tested palettes: RColorbrewer has an associated web site <u>colorbrewer.org</u> where the palettes are labelled. See also viridis, and scico.

Plot of two coloured points: Normal Mode

Plot of two coloured points: dicromat mode

Showing all types of colourblindness

X

X

Impact of colourblind-safe palette

```
p2 <- p + scale_colour_brewer(palette = "Dark2")
p2</pre>
```


Impact of colourblind-safe palette

Impact of colourblind-safe palette

```
p3 <- p + scale_colour_viridis_d()
p3</pre>
```


Impact of colourblind-safe palette

Summary colour blindness

- Apply colourblind-friendly colourscales
 - + scale_colour_viridis()
 - + scale_colour_brewer(palette = "Dark2")
 - scico R package

Pre-attentiveness: Find the odd one out?

Pre-attentiveness: Find the odd one out?

Using proximity in your plots

Basic rule: place the groups that you want to compare close to each other

Which plot answers which question?

- "Is the incidence similar for males and females in 2012 across age groups?"
- "Is the incidence similar for age groups in 2012, across gender?"

incidence similar for: (M and F) or (age, across gender)?"

"Incidence similar for M & F in 2012 across age?"

- Males & females next to each other: relative heights of bars is seen quickly.
- Auestion answer: "No, the numbers were similar in youth, but males are more affected with increasing age."

"Incidence similar for age in 2012, across gender?"

- Puts the focus on age groups
- Answer to the question: "No, among females, the incidence is higher at early ages. For males, the incidence is much more uniform across age groups."

Proximity wrap up

- Facetting of plots, and proximity are related to change blindness, an area of study in cognitive psychology.
- There are a series of fabulous videos illustrating the effects of making a visual break, on how the mind processes it by Daniel Simons lab.
- Here's one example:

The door study

Layering

- Statistical summaries: It is common to layer plots, particularly by adding statistical summaries, like a model fit, or means and standard deviations. The purpose is to show the **trend** in relation to the variation.
- *Maps*: Commonly maps provide the framework for data collected spatially. One layer for the map, and another for the data.

geom_point()

 $ggplot(df, aes(x = x, y = y1)) + geom_point()$

geom_smooth(method = "lm", se = FALSE)

```
ggplot(df, aes(x = x, y = y1)) + geom_point() + geom_smooth(method = "lm", se = FALSE)
```


geom_smooth(method = "lm")

```
ggplot(df, aes(x = x, y = y1)) + geom_point() + geom_smooth(method = "lm")
```


geom_point()

 $ggplot(df, aes(x = x, y = y2)) + geom_point()$

geom_smooth(method = "lm", se = FALSE)

```
ggplot(df, aes(x = x, y = y2)) + geom_point() + geom_smooth(method = "lm", se = FALSE)
```


geom_smooth(se = FALSE)

```
ggplot(df, aes(x = x, y = y2)) + geom_point() +
  geom_smooth(se = FALSE)
```


$geom_smooth(se = FALSE, span = 0.05)$

```
ggplot(df, aes(x = x, y = y2)) + geom_point() + geom_smooth(se = FALSE, span = 0.05)
```


$geom_smooth(se = FALSE, span = 0.2)$

```
p1 <- ggplot(df, aes(x = x, y = y2)) + geom_point() +
  geom_smooth(se = FALSE, span = 0.2)
p1</pre>
```

Interactivity with magic plotly

```
library(plotly)
ggplotly(p1)
```

Themes: Add some style to your plot

Theme: theme_minimal

```
p +
  theme_minimal()
```


Theme: ggthemes theme_few()

```
p +
  theme_few() +
  scale_colour_few()
```


Theme: ggthemes theme_excel() 🌭


```
p +
  theme_excel() +
  scale_colour_excel()
```


Theme: for fun

```
library(wesanderson)
p +
  scale_colour_manual(
    values = wes_palette("Royal")
)
```


Summary: themes

- The ggthemes package has many different styles for the plots.
- Other packages such as xkcd, skittles, wesanderson, beyonce, ochre,

Channels: Expressiveness Types and Effectiveness Ranks

Figure 5.1. The effectiveness of channels that modify the appearance of marks depends on matching the expressiveness of channels with the attributes being encoded.

Hierarchy of mappings

- 1. Position common scale (BEST): axis system
- 2. Position nonaligned scale: boxes in a side-by-side boxplot
- 3. Length, direction, angle: pie charts, regression lines, wind maps
- 4. Area: bubble charts
- 5. Volume, curvature: 3D plots
- 6. Shading, color (WORST): maps, points coloured by numeric variable
- Di's crowd-sourcing expt
- Nice explanation by <u>Peter Aldous</u>
- General plotting advice and a book from Naomi Robbins

Your Turn:

- lab quiz open (requires answering questions from Lab exercise)
- go to rstudio.cloud and check out exercise 4-B
- If you want to use R / Rstudio on your laptop:
 - Install R + Rstudio (see <u>Stuart Lee's instructions</u>)
 - open R
 - type the following:

```
# install.packages("usethis")
library(usethis)
use_course("https://ida.numbat.space/exercises/4b/ida-exercise-4b.zip")
```

Resources

- Kieran Healy <u>Data Visualization</u>
- Winston Chang (2012) Cookbook for R
- Antony Unwin (2014) Graphical Data Analysis
- Naomi Robbins (2013) <u>Creating More Effective Charts</u>