Détection automatique de faux billets

- → Description des données
 - Univariée et bivariée
 - Multivariée

- → Classification
 - ♦ Non-supervisée
 - Supervisée

- → Description des données
 - ♦ Univariée et bivariée
 - Multivariée

- → Classification
 - ♦ Non-supervisée
 - Supervisée

Univariée

170 billets avec 7 variables

1 Qualitative

104.07 mm

height_left -

is_genuine

100 vrais billets

70 faux billets

6 Quantitatives

length - 171.94 mm

Bivariée Matrice de corrélation

Bivariée Boîtes à moustaches

- → Description des données
 - Univariée et bivariée
 - Multivariée

- → Classification
 - ♦ Non-supervisée
 - Supervisée

Multivariée Analyse en Composante Principale

→ PCA() de factomineR

Répartition des cos2

Éboulis des valeurs propres

Multivariée Plan 1-2 Cercle de corrélation des variables

Multivariée Plan 1-2 Nuage des individus

Multivariée Plans suivants

- → Description des données
 - Univariée et bivariée
 - Multivariée

- **→** Classification
 - **♦** Non-supervisée
 - ◆ Supervisée

Non-supervisée Clustering Ascendant Hiérarchique

- → Normalisation
- → Méthode de Ward fonction hclust()

Matrice de confusion

 Vrai billet
 Faux billet

 1
 24
 69

 Cluster
 2
 76
 1

85% bien classés

Non-supervisée K-means

- **→** Normalisation
- → Fonction kmeans ()

Matrice de confusion

	Vrai billet	Faux billet
1	92	1
2	8	69

Cluster

95% bien classés

Non-supervisée K-means - Nuage des individus

Non-supervisée нсрс

- → Combinaison d'ACP, CAH et K-means
- → Fonction HCPC () de FactorMineR

Matrice de confusion

	Vrai billet	Faux billet
1	92	1
2	8	69

→ Même résultats qu'avec la méthode des K-means

Cluster

- → Description des données
 - Univariée et bivariée
 - Multivariée

- **→** Classification
 - ♦ Non-supervisée
 - **♦** Supervisée

Supervisée Régression logistique

Division des données

→ Apprentissage : 75%

→ Test: 25%

→ createDataPartition() de caret

Calculs

→ Approche stepwise (définition) → glm() et stepAIC()

Modèle

Variables choisies	Intercept	diagonal	margin_low	margin_up
Coefficients	3247.43	-36.58	63.59	174.72

Supervisée Régression logistique Évaluation du modèle

jeu de test → 42 billets

Matrice de confusion

Réalité

		Faux billet	Vrai billet
Cluster	Faux	15 vrai négatif	1 faux négatif
	Vrai	2 faux positif	25 vrai positif

Précision = **0.92**

Rappel = **0.96**

Supervisée régression logistique - Nuage des individus

- → Description des données
 - Univariée et bivariée
 - Multivariée

- → Classification
 - ♦ Non-supervisée
 - ◆ Supervisée

Programme de détection de faux billets

```
Dans le terminal :
$ Rscript detect_faux_billets.R 'billets_a_tester.csv'
```

→ Affiche les **probabilités** & exporte une **projection** des billets parmis les données d'apprentissage

