EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul scolar 2022-2023

Varianta 1

Probă scrisă Matematică

BAREM DE EVALUARE ȘI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I și SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	b)	5p
2.	(c)	5p
3.	(a)	5 p
4.	c)	5p
5.	d)	5p
6.	b)	5p

SUBIECTUL al II-lea

(30 de puncte)

1.	c)	5p
2.	c)	5p
3.	c)	5p
4.	b)	5p
5.	b)	5p
6.	c)	5p

SUBIECTUL al III-lea

(30 de puncte)

1.	a) Peste 2 ani vârsta Mariei va fi de 14 + 2 = 16 ani, iar vârsta tatălui Mariei va fi de 40 + 2 = 42 de ani	1p
	Cum $16+42=58\neq 60$, deducem că nu este posibil ca peste 2 ani suma dintre vârsta Mariei și vârsta tatălui ei să fie egală cu 60 de ani	1p
	b) $14 + x = \frac{1}{2} \cdot (40 + x)$, unde x reprezintă numărul de ani care vor trece până când vârsta Mariei	1p
	va fi jumătate din vârsta tatălui ei $28 + 2x = 40 + x$	1p
	x=12	1p
2.	a) $\frac{1}{(x+1)(x+2)} + \frac{1}{x+2} = \frac{1+x+1}{(x+1)(x+2)} =$	1p
	$= \frac{x+2}{(x+1)(x+2)} = \frac{1}{x+1}$, pentru orice număr real x , $x \ne -2$ și $x \ne -1$	1p

	·	
	b) $E(x) = \frac{1}{x+1} \cdot \frac{5(x+1)}{x+3} = \frac{5}{x+3}$, unde x este număr real, $x \ne -3$, $x \ne -2$ și $x \ne -1$	1p
	$\frac{5}{x+3} = \frac{x-3}{8}$, de unde obținem $x^2 = 49$	1p
	x = -7 sau $x = 7$, care convin, deci suma soluțiilor ecuației este egală cu 0	1p
3.		1p
	$f(6) = -1 \Rightarrow f(4) + f(6) = 0$	1p
	b) $A(5,0)$ și $B(0,5)$	1p
	În triunghiul dreptunghic AOB , $AB = \sqrt{AO^2 + OB^2} = 5\sqrt{2}$	1p
	$\mathcal{A}_{\Delta PAB} = \frac{d\left(P,AB\right) \cdot AB}{2} = \frac{AO \cdot PB}{2} = \frac{5 \cdot 8}{2} = 20, \text{ de unde obținem } d\left(P,AB\right) = 4\sqrt{2}$	1p
4.	a) BD bisectoarea $\angle ABC \Rightarrow \angle ABC = 30^{\circ}$	1p
	ABCD trapez, deci $\angle BCD = 150^{\circ}$	1p
	b) $CD \parallel AB$, BD secantă $\Rightarrow \angle CDB = \angle ABD$, deci $\triangle BCD$ este isoscel cu $CD = BC = 10$ cm	1p
	$CE \perp AB$, $E \in AB \Rightarrow AECD$ dreptunghi, deci $AD = CE$, $AE = CD$	
	Triunghiul <i>CEB</i> este dreptunghic în <i>E</i> , $\angle CBE = 30^{\circ} \Rightarrow CE = \frac{BC}{2} = 5 \text{ cm}$, $BE = 5\sqrt{3} \text{ cm}$, deci	1
	$AB - AD = \left(5 + 5\sqrt{3}\right) \text{cm}$	1p
	Cum $5+5\sqrt{3}<14 \Leftrightarrow 5\sqrt{3}<9 \Leftrightarrow \sqrt{75}<\sqrt{81}$, obţinem $AB-AD<14$ cm	1p
5.	a) Triunghiul ABC este dreptunghic, deci $BC^2 = AC^2 - AB^2$, de unde obținem $BC = 3\sqrt{10}$ cm	1p
	$\mathcal{A}_{ABCD} = AB \cdot BC = 9\sqrt{10} \cdot 3\sqrt{10} = 270 \mathrm{cm}^2$	1p
	b) $\Delta MCE \equiv \Delta MDA$, de unde obținem $ME = MA$	1p
	<i>CM</i> și <i>EO</i> sunt mediane în triunghiul ACE , $CD \cap EO = \{P\}$, deci punctul P este centrul de	
	greutate al triunghiului $ACE \Rightarrow \frac{MP}{MC} = \frac{1}{3}$	
	IVIC 5	1p
	AM și DO sunt mediane în triunghiul ACD , $AM \cap DO = \{S\}$, deci punctul S este centrul de	•
	greutate al triunghiului $ACD \Rightarrow \frac{MS}{MA} = \frac{1}{3}$	
	$\frac{MP}{MC} = \frac{MS}{MA} = \frac{1}{3}, \ $	1p
	MC = MA = 3, $SOM = 24MC = 26M = 3MC = 100M$	тh
6.	a) $AB' \parallel DC'$, deci $\sphericalangle (AB', BC') = \sphericalangle (DC', BC')$	1p
	Cum $BC' = DC' = DB$, obținem că triunghiul $BC'D$ este echilateral, deci $\sphericalangle(AB', BC') =$	1p
	$= \langle BC'D = 60^{\circ}$ b) $AC \cap BD = \{O\}$, $CC' \perp (ABC)$, $BD \subset (ABC)$, deci $BD \perp CC'$ și, cum $BD \perp AC$,	1n
		1p
	obţinem $CC' \cap AC = \{C\}$, deci $BD \perp (CC'O)$	
	$CP \perp C'O$, $P \in C'O$, $CP \subset (CC'O)$, deci $CP \perp BD$, $C'O \cap BD = \{O\}$, obţinem $CP \perp (BDC')$,	1p
	deci CP reprezintă distanța de la punctul C la planul (BDC')	•
	Triunghiul $C'CO$ este dreptunghic în $C \Rightarrow C'O = 5\sqrt{6}$ cm și $CP = \frac{CO \cdot CC'}{C'O} = \frac{10\sqrt{3}}{3}$ cm	1p