13.2 习题

张志聪

2025年2月11日

13.2.1

方法一: 使用连续的定义证明

• (a)

 $- \Rightarrow$

对任意 $\epsilon>0,\frac{1}{\sqrt{2}}\epsilon$,因为 f 在 x_0 处连续,存在 $\delta_f>0$ 使得只要 $d_X(x,x_0)<\delta_f$,就有

$$d_{l^2}(f(x), f(x_0)) = |f(x) - f(x_0)| < \frac{1}{\sqrt{2}}\epsilon$$

类似地,存在 $\delta_g > 0$ 使得只要 $d_X(x,x_0) < \delta_g$,就有

$$d_{l^2}(g(x), g(x_0)) = |g(x) - g(x_0)| < \frac{1}{\sqrt{2}}\epsilon$$

综上, $\delta < min(\delta_f, \delta_g)$, 使得只要 $d_X(x, x_0) < \delta$, 就有

$$d_{l^{2}}(f \oplus g(x), f \oplus g(x_{0})) = d_{l^{2}}((f(x), g(x)), (f(x_{0}), g(x_{0})))$$

$$= \sqrt{|f(x) - f(x_{0})|^{2} + |g(x) - g(x_{0})|^{2}}$$

$$< \epsilon$$

所以 $f \oplus g$ 在 x_0 处是连续的。

- =

任意 $\epsilon > 0$,由于 $f \oplus g$ 在 x_0 处是连续的,所以存在 $\delta > 0$ 使得只要 $d_X(x,x_0) < \delta$,就有

$$d_{l^{2}}(f \oplus g(x), f \oplus g(x_{0})) = d_{l^{2}}((f(x), g(x)), (f(x_{0}), g(x_{0})))$$

$$= \sqrt{|f(x) - f(x_{0})|^{2} + |g(x) - g(x_{0})|^{2}}$$

$$< \epsilon$$

由此可得

$$|f(x) - f(x_0)| < \epsilon$$

 $|g(x) - g(x_0)| < \epsilon$

即

$$d_{l^2}(f(x), f(x_0)) < \epsilon$$

$$d_{l^2}(g(x), g(x_0)) < \epsilon$$

于是可得 f,g 在 x_0 处是连续的。

• (b) 可以由 (a) 直接推出。

方法二: 使用书中的提示

• (a)

 $- \Rightarrow$

任意 $(x^{(n)})_{n=1}^{\infty}$ 是 X 中依度量 d_X 收敛于 x_0 的序列,因为 f,g 在 x_0 处连续,由命题 13.1.4(b) 可知,序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $f(x_0)$ (书中有说在没有特殊说明的时,提到度量空间 $R^n(n \geq 1)$ 指的就是欧几里得度量)。序列 $(g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $g(x_0)$ 。

由命题 12.1.18(d) 可知, $(f(x^{(n)}),g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $(f(x_0),g(x_0))$,由 13.1.4(b) 可知 $f\oplus g$ 在 x_0 处是连续的。

 $- \Leftarrow$

任意 $(x^{(n)})_{n=1}^{\infty}$ 是 X 中依度量 d_X 收敛于 x_0 的序列,因为 $f \oplus g$ 在 x_0 处是连续的,由命题 13.1.4(b) 可知,序列 $(f \oplus g(x^{(n)}))_{n=1}^{\infty} = (f(x^{(n)}), g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $(f(x_0), g(x_0))$,由命题 12.1.18(d) 可知序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $f(x_0)$,序列 $(g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $g(x_0)$,所以由 13.1.4(b) 可知 f,g 在 x_0 处连续。

• (b) 可以由 (a) 直接推出。

13.2.2