POWERED BY Dialog

Wiring board manufacturing method involves forming resin layer after filling organic solvent in via hole

Patent Assignee: HITACHI CHEM CO LTD

Inventors: IWASAKI Y; OYAMA T; SHIMIZU A

Patent Family (1 patent, 1 country)

Patent Number	Kind	Date	Application Number	Kind	Date	Update Type
JP 2001060769	Α	20010306	JP 1999234849	Α	19990823	200215 B

Priority Application Number (Number Kind Date): JP 1999234849 A 19990823

Patent Details

Patent Number	Kind	Language	Pages	Drawings	Filing Notes
JP 2001060769	Α	JA	3	1	

Alerting Abstract: JP A

NOVELTY - The via hole (5) and wiring pattern (6) are formed on a substrate. An organic solvent (7) is filled in via hole, after which resin layer (8) is formed over entire substrate.

USE - For manufacturing wiring board mounting electronic devices, for multichip packages.

ADVANTAGE - Reliable wiring board is manufactured.

DESCRIPTION OF DRAWINGS - The figure shows the explanatory diagram of wiring board manufacturing method. (Drawing includes non-English language text).

5 Hole

6 Wiring pattern

7 Organic solvent

8 Resin layer

Main Drawing Sheet(s) or Clipped Structure(s)

International Classification (Main): H05K-003/46

Dialog Results Page 3 of 3

Japan

Publication Number: JP 2001060769 A (Update 200215 B)

Publication Date: 20010306

METHOD FOR MANUFACTURING WIRING BOARD

Assignee: HITACHI CHEM CO LTD (HITB)

Inventor: SHIMIZU AKIRA IWASAKI YORIO OYAMA TATSUYA

Language: JA (3 pages, 1 drawings)

Application: JP 1999234849 A 19990823 (Local application)

Original IPC: H05K-3/46(A) Current IPC: H05K-3/46(A)

Derwent World Patents Index © 2006 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 11171267

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-60769

(P2001-60769A)

(43)公開日 平成13年3月6日(2001.3.6)

(51) Int.Cl.7

設別記号

FΙ

テーマコート*(参考)

H 0 5 K 3/46

H05K 3/46

N 5E346

В

審査請求 未請求 請求項の数1 OL (全 3 頁)

(21)出願番号

(22)出願日

特願平11-234849

平成11年8月23日(1999.8.23)

(71)出顧人 000004455

日立化成工業株式会社

東京都新宿区西新宿2丁目1番1号

(72)発明者 清水 明

茨城県下館市大字小川1500番地 日立化成

工業株式会社下館事業所内

(72)発明者 岩崎 順雄

茨城県下館市大字小川1500番地 日立化成

工業株式会社下館事業所内

(74)代理人 100071559

弁理士 若林 邦彦

最終頁に続く

(54) 【発明の名称】 配線板の製造方法

(57)【要約】

【課題】信頼性に優れた配線板の製造方法を提供すること。

【解決手段】回路を形成した基板の上に、絶縁樹脂層を 形成し、その表面に回路を形成して、ビアホールによる 接続を行う工程を繰り返して多層化する配線板の製造方 法において、ビアホール内に絶縁樹脂層の樹脂と相溶性 のある有機溶剤を充填した後に、絶縁樹脂層を形成する 配線板の製造方法。

20

【特許請求の範囲】

【請求項1】回路を形成した基板の上に、 絶縁樹脂層を 形成し、その表面に回路を形成して、ピアホールによる 接続を行う工程を繰り返して多層化する配線板の製造方 法において、ピアホール内に絶縁樹脂層の樹脂と相溶性 のある有機溶剤を充填した後に、絶縁樹脂層を形成する ことを特徴とする配線板の製造方法。

1

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、配線板の製造方法 10 に関するものである。

[0002]

【従来の技術】各種電子機器の小型化に伴って、髙密度 実装技術の要求が強くなり、半導体チップを配線板に直 接実装したチップオンボードや複数の半導体チップを搭 載したマルチチップパッケージ用配線板が提案されてい る。また、多くの入出力端子数を有する半導体パッケー ジに使用される配線板が提案されている。これらの配線 板はいずれも高密度配線が必要なため、異なる導体層上 の導体の接続には、スルーホールだけでなく非貫通ビア ホールを用いている。このような配線板は、多層化する ために、回路を形成した基板の上に絶縁層を形成し、そ の表面に回路を形成して、ビアホールによる接続を行 い、ビアホールに樹脂を埋め、これを繰り返して多層化 している。ピアホールを樹脂で埋めるのは、その上に絶 縁層を形成しさらに導体を形成するのに、表面にそのビ アーホールの凹凸の影響がでないようにするためであ る。

[0003]

【発明が解決しようとする課題】ところで、このような 30 従来の配線板を製造するときに、非貫通のピアホールに 熱硬化性樹脂や光硬化型樹脂を穴埋め印刷すると、非貫 通ビアホールのアスペクト比が大きかったり穴埋め樹脂 の粘度が高かったりして、ビアホール内に樹脂が十分に 充填されていなかった。とのために、電子部品を搭載し てはんだリフローを行う時に、樹脂が充填されていない 箇所に、クラックやふくれなどの不具合が発生してい tc.

【0004】本発明は、信頼性に優れた配線板の製造方 法を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明の配線板の製造方 法は、回路を形成した基板の上に、絶縁樹脂層を形成 し、その表面に回路を形成して、ピアホールによる接続 を行う工程を繰り返して多層化する配線板の製造方法に おいて、ビアホール内に絶縁樹脂層と相溶性のある有機 溶剤を充填した後に、絶縁樹脂層を形成することを特徴

【0006】本発明者らは、鋭意検討の結果、樹脂と相

の上から樹脂を塗布すれば、樹脂が有機溶剤に溶解して 多少薄まりはするものの、ビアホール内を樹脂で完全に 充填することができるという知見を得て、本発明をなす ことができた。

[0007]

【発明の実施の形態】基板の絶縁基材には、ポリイミド 樹脂やエポキシ樹脂などのプラスチックフィルムやガラ ス布、ガラス不織布にポリイミドやエポキシ、ポリエス テル樹脂を含浸・硬化したものが使用できる。

【0008】ピアホールは、エキシマレーザー、炭酸ガ スレーザーを照射した後、電気銅メッキや無電解銅メッ キによって穴内壁を金属化して形成することができる。 また、絶縁基材にポリイミドフィルムを用いた場合、ア ルカリ性のヒドラジン/トリエタノールアミン水溶液に 浸漬することによって、穴明けすることもできる。

【0009】ピアホールに充填する有機溶剤には、充填 する樹脂に相溶すれば特に制限するものではなく、トル エン、キシレン、メチルエチルケトン、酢酸セルソル ブ、ジメチルアセトアミドなどが使用できる。この有機 溶剤をピアホールに充填する方法は、ピアホールの箇所 だけ溶剤がとおるように塗膜を形成したスクリーン印刷 版の上から溶剤を流したり、ディスペンサなどを用いて ディップする等のいずれの方法でも構わないが、ビアホ ール上面まで充填することが望ましい。

【0010】また、樹脂には、熱硬化性樹脂として、エ ポキシ樹脂、ポリイミド樹脂を主成分とするものや、光 硬化型樹脂として、エポキシ系ソルダレジストインクな どが使用可能である。この樹脂を塗布してピアホール内 に有機溶剤と相溶した樹脂で埋まった後に、有機溶剤が ピアホール内に残留していると、ピアホール内のボイ ド、穴埋め不足になる可能性があるので、硬化前に真空 脱泡するととが望ましい。

[0011]

【実施例】実施例

図1 (a) に示すように、12μmの銅箔2をガラス布 にエポキシ樹脂を含浸させた基材3の両面に貼り合わせ た厚さ0. 1mmの銅張り積層板であるMCL-E-6 79 (日立化成工業株式会社製、商品名)のピアホール となる箇所の銅箔をエッチング除去して直径0.1mm 40 の開口部1を形成した後、その開口部1にレーザーを照 射して直径0.1mmのピアホール5を形成した。次 に、図2(b)に示すように、ピアホール5内部と銅箔 2の全面に、厚さ10μmの無電解めっき銅4を形成し た後、図1(c)に示すように、不要な箇所の銅をエッ チング除去して、配線パターン6を形成した。次に、図 1(d)に示すように、無電解めっきしたピアホール5 内に、有機溶剤7としてソルダーレジスト用の希釈剤で あるレジューサー」(太陽インキ製造株式会社、商品 名)を穴上部までディスペンサーで充填した。次に、図

溶性のある有機溶剤でピアホール内を濡らしておき、そ 50 1 (e)に示すように、樹脂 8 として光感光性のソルダ

ーレジストであるPSR-4000(太陽インキ製造株 式会社製、商品名)を全面にスクリーン印刷法で塗布 し、ソルダーレジストが有機溶剤に相溶するに十分な時 間として20分間放置した後、有機溶剤を蒸散させるた めに、真空脱泡し、加熱乾燥し、半硬化の状態にした後 に、フォトマスクを重ねて紫外線を照射し、現像し、加 熱硬化してソルダーレジストを形成した配線板を作製し た。この配線板のビアホール5内の樹脂8のボイドは0 %であった。また、チップ接着用ペーストを塗布し、チ ップを接着した後、260℃、1分間のリフローテスト 10 【符号の説明】 を行っても、ふくれは発生しなかった。

【0012】比較例

ソルダーレジストをスクリーン印刷する前に、有機溶剤 7をピアホール5に充填しなかったこと以外は実施例と 同様にして配線板を作製した。その結果、ピアホール5 内の樹脂8のボイドは12%であった。また、チップ接 着用ペーストを塗布しチップを接着した後、260°C、* * 1 分間のリフローテストを行った結果、ふくれの発生率 は28%であった。

[0013]

【発明の効果】以上に説明したとおり、本発明によっ て、信頼性に優れた配線板の製造方法を提供することが できる。

【図面の簡単な説明】

【図1】(a)~(e)は、それぞれ本発明の位置実施 例を説明するための各工程における断面図である。

1. 開□部

2. 銅箔

3. 基材

4. 無電解め

っき銅

5. ピアホール

6. 配線パタ

ーン

7. 有機溶剤

8. 樹脂

【図1】

フロントページの続き

(72)発明者 大山 達也

茨城県下館市大字小川1500番地 日立化成 工業株式会社下館事業所内

Fターム(参考) 5E346 AA43 CC08 CC32 DD23 EE13 FF07 FF13 HH31