

USER MANUAL

Starter Kit EFM32TG-STK3300

0 1 2 3 4

Feature rich starter kit for evaluation, prototyping and application development for the EFM32TG MCU family with the ARM Cortex-M3 CPU core.

Main features;

- Advanced Energy Monitoring provides real-time visibility into the energy consumption of an application or prototype design.
- On-board debugger with debug out functionality
- 160-segment Energy Micro LCD

1 Introduction

1.1 Features

- Advanced Energy Monitoring system for precise current tracking.
- Special hardware configuration for isolation of the MCU power domain.
- Full feature USB debugger with debug out functionality.
- 160 segment Energy Micro LCD.
- 20 pin expansion header.
- Breakout pads for easy access to I/O pins.
- Powered by USB or CR2032 battery.
- 2 user buttons, 1 user LED and a touch slider.
- Ambient Light sensor and inductive-capacitive metal sensor.
- EFM32 Op-amp footprint.
- 32MHz and 32.768kHz crystal oscillators.

2 STK block diagram

An overview of the Kit is shown in the block diagram below.

Figure 2.1. EFM32TG-STK3300 Block Diagram

3 Hardware layout

The layout of the EFM32TG-STK3300 is shown below.

Figure 3.1. EFM32TG-STK3300 hardware layout

4 Power supply

4.1 USB

The EFM32TG-STK3300 can get its power from the USB port. The MCU voltage will be 3.3 volts when USB is connected.

4.2 Battery

There is a socket for a 20mm coin cell battery, which can be used to power the kit. When the battery connect switch position is towards the battery, the EFM and its peripherals is powered by the battery. The board controller/AEM is not powered by the battery, so the BSP software support library cannot be used without USB connected. The current consumption while running on battery will be zero since the battery supply is not part of the AEM.

Note

Make sure that the battery is inserted with the correct polarity.

5 Reset infrastructure

5.1 MCU

The primary user reset for the EFM32 MCU is the reset button on the board. This will only reset the EFM32 MCU. The MCU can also be reset by the internal debugger or an external debugger.

5.2 Board controller

The board controller can only be reset by pulling and reinserting the USB cable. While on battery power this will not reset the EFM32 MCU.

6 Peripherals

The starter kit has a set of peripherals that showcase some of the features of the EFM32TG.

Be aware that most EFM32 I/O routed to peripherals are also routed to the breakout pads. This must be taken into consideration when using the breakout pads for your application.

6.1 Pushbuttons

The kit has two user pushbuttons marked PB0 and PB1. They are connected to the EFM32, and are debounced by RC filters with a time constant of 1ms.

6.2 LED

There is one LED on the kit marked USER LED. An active high on the respective pin will light the LED.

6.3 LCD

A 28-pin Energy Micro LCD display is connected to the EFM32. The LCD has 8 common lines and 20 segment lines. This gives a total of 160 segments in 8-plexed mode. These lines are not shared on the breakout pads. Capacitors for the EFM32TG LCD boost function is also available on the EFM32TG-STK3300.

6.4 Touch slider

A touch slider utilizing the capacitive touch capability is available. It is placed under the two push buttons on the kit, above the "TOUCH SLIDER" print.

6.5 Ambient Light Sensor

The kit has a light sensitive, transistor type, ambient light sensor connected to the low energy sensor interface of the EFM32TG MCU. The sensor is placed above the push buttons and can be used to sense changes in ambient light levels.

6.6 LC Sensor

In the bottom right corner there is an inductive-capacitive sensor for demonstrating the low energy sensor interface. By setting up oscillating currents in the inductor, metal nearby the inductor can be sensed by measuring the oscillation decay time. The effective range is a few millimeters.

6.7 Op-Amp Footprint

If the kit is flipped over there is a silk-print model of a typical operational amplifier feedback circuit. The actual operational amplifier is one of the op-amps inside the EFM32. By soldering 0603 sized resistors the EFM32 internal operational amplifier can be evaluated with exact resistor values.

7 Advanced Energy Monitor

7.1 Usage

The AEM (Advanced Energy Monitor) data is collected by the board controller and can be displayed by the energyAware Profiler, available through Simplicity Studio. By using the energyAware Profiler, current consumption and voltage can be measured and linked to the actual code running on the EFM32 in realtime.

7.2 AEM theory of operation

In order to be able to measure currents ranging from 0.1uA to 50mA (114dB dynamic range), two current sense amplifiers are utilized. The amplifiers measure voltage drop over a small series resistor and translates this into a current. Each amplifier is adjusted for current measurement in a specific range. The ranges for the amplifiers overlap and a change between the two occurs when the current is 200uA. To reduce noise, averaging of the samples is performed before the current measurement is presented in the AEM GUI.

During startup of the kit, an automatic calibration of the AEM is performed. This calibration compensates for the offset error in the sense amplifiers.

7.3 AEM accuracy and performance

The Advanced Energy Monitor is capable of measuring currents in the range of 0.1uA to 50mA. For currents above 200uA, the AEM is accurate within 0.1mA. When measuring currents below 200uA, the accuracy increases to 1uA. Even though the absolute accuracy is 1uA in the sub 200uA range, the AEM is able to detect changes in the current consumption as small as 100nA The measurement bandwidth of the AEM is 60Hz when measuring currents below 200uA and 120Hz when measuring currents above 200uA. The table below summarizes the accuracy of the two current sense amplifiers in different ranges.

Table 7.1. AEM accuracy

Current range	Low gain amplifier accuracy	High gain amplifier accuracy
50mA	0.1mA	-
1mA	0.1mA	-
200uA	0.01mA	1uA
10uA	-	0.1uA
1uA	-	0.1uA

Note

The current measurement will only be correct when powering the EFM32 from USB power. The battery switch should be in the position furthest away from the battery.

8 Board controller

The control MCU can act as a board controller (BC). There is a UART connection between the EFM32 and the BC. The connection is made by setting the bc_en line high. The EFM32 can then use the BSP (Board Support Package) library functions to send commands to the BC. When bc_en is low, bc_tx and bc_rx can be used by other applications.

To use the board controller for your application, the Board Support Package must be installed. See the BSP chapter to find out how.

Note

The board controller is only available when USB power is connected.

9 Board Support Package

The Board Support Package (BSP) is a set of C source and header files that enables easy access to, and control over some board specific features.

Compared to the Energy Micro development kit, the functionality is limited. Unless you need/want some of the functions contained in the BSP, there is really no need to include or use it. The EFM32 in the Starter Kit is fully usable without BSP support, and you can use all peripherals in the efm32lib without the BSP.

The BSP use EFM32 peripheral USART1 (TX pin PD7, RX pin PD6) on baudrate 115200-8-N-1 to communicate with the board controller.

Note

The BSP is only functional when the Starter Kit is USB-powered, using these function calls with USB disconnected will give unpredictable results.

9.1 Installation location

When installing Simplicity Studio, the BSP will be installed in the user directory, typically in a location such as

```
Win7: C:\Users\[username]\AppData\Roaming\energymicro\boards
```

or something similar (depending on your OS/Windows version). All files in the board support package is prefixed by stk.

9.2 Application Programming Interface

To use the BSP, include the Starter Kit header file, like this:

```
#include "stk.h"
```

All functions in the BSP are prefixed with STK_. The main initialization routine is defined as

```
void STK_Init(void);
```

and must be called before any access to the STK-functions. This function call will setup the UART communication channel with a 115800 baud rate. This baud rate depends on the current core clock, so correct clock configuration should be set before calling this function.

```
bool STK_Ready(void);
```

Returns *true* if the board controller is responding. A non-responding board will either return false, or hang (i.e. if the EFM32 is powered by the CR2032 battery cell).

```
float STK_Current(void);
```

Returns instant current usage in milliamperes.

```
float STK_Voltage(void);
```


Returns instant voltage (VMCU) reading in volt.

```
bool STK_EnergyMode(uint8_t em);
```

Informs the board controller about the Energy Mode (sleep mode) we are going into. This information can be used by the board controller to present a richer visual graph for illustrating what the EFM32 is currently doing.

In addition to these main functions, full documentation of the complete API is included in the Doxygen/ HTML documentation of the installed package.

9.3 Example Applications

Under the EFM32_Gxxx_STK/examples folder in your installation directory, you will find an example program using the BSP, with corresponding project/Makefiles for the supported IDEs.

9.4 How to include in your own applications

The easiest way to include the BSP in your application is to base your work on the example application that use the BSP. The following items are recommended for correct configuration:

- 1. Make sure you define the correct part number (i.e. EFM32TG840F32) as a preprocessor defined symbol
- 2. Make sure you define the correct part number (i.e. EFM32TG840F32) for your project file
- 3. Add and include the EFM32_CMSIS-files (startup_efm32.s, system_efm32.c, core_cm3.c) to your project
- 4. Add and include _all_ BSP package .c-files, with the stk-prefix to your project
- 5. Configure include paths to point at the CMSIS/CM3/CoreSupport and CMSIS/CM3/DeviceSupport/ EnergyMicro/EFM32 directories
- 6. Configure include paths to point to the EFM32_Gxxx_STK/bsp directory

Make sure you call "STK_Init()" early at startup, and you should be all set.

10 Connectors

10.1 Breakout pads

Most I/O except the LCD pins are routed to the breakout pads at the top and bottom edge of the kit. A 2.54mm (100 mil) pitch pin header can be soldered in place on the pads for easier access.

Some of the breakout pads are not connected and therefore marked NC. The position of the connected pins are compatible with the EFM32G Gecko starter kit.

Note

Some of the breakout pads are shared by on-board EFM peripherals. The schematic must be consulted to make sure that it is OK to use a shared pin in your application.

Figure 10.1. Breakout pads and layout diagram

10.2 Expansion header

A 20 pin expansion header can be used to connect plugin boards. This contains a selection of I/O, powers and ground. See the pinout in the table below.

Table 10.1. Expansion header pinout

I/O	#	#	I/O
GND	1	2	VMCU
PC4	3	4	PD0
PC5	5	6	PD1
PC12	7	8	PD2
PC13	9	10	PD3
PB11	11	12	PD4
PB12	13	14	PD5
PD7	15	16	PD6
PD8	17	18	5V
GND	19	20	3V3

Table 10.2. Expansion header pin list

EXP header pin number	MCU GPIO pin	Some MCU GPIO pin functions
1	GND	Ground
2	VMCU	MCU supply voltage
3	PC4	OPAMP_P0 #0 / LETIMER_OUT0 #3 / ACMP0_CH4 / LES_CH4
4	PD0	ADC0_CH0 / USART1_TX #1 / OPAMP_OUT2 #1
5	PC5	OPAMP_N0 #0 / LETIMER_OUT1 #3 / ACMP0_CH5 / LES_CH5 #0
6	PD1	ADC0_CH1 / TIMER0_CC0 #3 / USART1_RX #1 / OPAMP_OUT1ALT #4
7	PC12	CMU_CLKOUT0 #1 / ACMP1_CH4 / LES_CH12 #0
8	PD2	ADC0_CH2 / TIMER0_CC1 #3 / USART1_CLK #1
9	PC13	ACMP1_CH5 #0 / TIM1_CC0 #0 / TIM1_CC2 #4 / PCNT0_S0IN #0 / LES_CH13 #0
10	PD3	ADC0_CH3 / OPAMP_N2 #0 / TIM0_CC2 #3 / US1_CS #1
11	PB11	DAC0_OUT0 #0 / OPAMP_OUT0 #0 / TIM1_CC2 #3 / LETIM0_OUT0 #1
12	PD4	ADC0_CH4 / OPAMP_P2 #0 / LEU0_TX #0
13	PB12	DAC0_OUT1 #0 / OPAMP_OUT1 #0 / LETIM0_OUT1 #1
14	PD5	ADC0_CH5 / OPAMP_OUT2 #0 / LEU0_RX #0
15	PD7	ADC0_CH7 / OPAMP_N1 #0 / TIM1_CC1 #4 / I2C0_SCL #1 / LES_ALTEX1 #0 / ACMP1_O #2
16	PD6	ADC0_CH6 / OPAMP_P1 #0 / TIM1_CC0 #4 / I2C0_SDA #1 / LES_ALTEX0 #0 / ACMP0_O #2
17	PD8	CMU_CLKOUT1 #1
18	5V	USB Power
19	GND	Ground
20	3V3	3.3V board power

10.3 Debug connector

This connector is used for Debug In and Debug Out (see Debug chapter). The pinout is described in the table.

Table 10.3. Debug connector pinout

Pin number	Function	Note
1	VTARGET	Target voltage on the debugged application.
2	NC	
3	/TRST	JTAG tap reset
4	GND	
5	TDI	JTAG data in
6	GND	
7	TMS/SWDIO	JTAG TMS or Serial Wire data I/O
8	GND	
9	тск	JTAG TCK or Serial Wire clock
10	GND	
11	RTCK	JTAG RTCK
12	GND	
13	TDO/SWO	JTAG TDO or Serial Wire Output
14	GND	
15	/RESET	Target MCU reset
16	GND	
17	PD	This pin has a 100k pulldown.
18	Cable detect	This signal must be pulled to ground by the external debugger or application for cable insertion detection.
19	PD	This pin has a 100k pulldown.
20	GND	

11 Debugging

The EFM32TG-STK3300 has an on-board debugger, and it can be used in different ways to debug the EFM32, both on and off kit. Below are descriptions on the different modes. Check the configuration chapter to find out how to change the debug setting.

Table 11.1. Debug modes

Mode	Description
Debug MCU	In this mode the on-board debugger is connected to EFM32 on the EFM32TG-STK3300.
Debug IN	In this mode the on-board debugger is disconnected, and an external debugger can be connected to debug the EFM32 on the EFM32TG-STK3300.
Debug OUT	In this mode the on-board debugger can be used to debug an EFM32 mounted in your own application.

11.1 Debugging during battery operation

When the EFM32 is powered by the battery and the USB is still connected, the on-board debug functionality is available. If the USB power is disconnected the debug controller on the kit will not work. To enable debugging in this mode, connect an external debugger (e.g. another EFM32TG-STK3300) to the debug pads in the bottom right corner of the EFM32TG-STK3300. These pads are connected directly to the EFM32 debug interface.

12 Integrated Development Environments

The Energy Micro software packages contains various examples in source form to use with the Starter Kit. The following IDEs are supported.

12.1 IAR Embedded Workbench for ARM

An evaluation version of IAR Embedded Workbench for ARM is included on a CD in the EFM32TG-STK3300 package. Check the quick start guide for where to find updates, and IAR's own documentation on how to use it. You will find the IAR project file in the

iar

subfolder of each project

12.2 Rowley Associates - CrossWorks for ARM

See the quick start guide for download details for CrossWorks for ARM. You will find CrossWorks project files in the

rowley

subfolder of each project.

12.3 CodeSourcery - Sourcery G++

See the quick start guide for download details for Sourcery G++. The

codesourcery

subfolder contains Makefiles for use with the Sourcery G++ development environment.

12.4 Keil - MDK-ARM

See the quick start guide for download details for evaluation versions of Keil MDK-ARM. The

arm

subfolder in each project contains project files for MDK-ARM. Please see the MDK-ARM documentation for usage details.

13 energyAware Commander and Upgrades

The *energyAware Commander* is a program that comes with Simplicity Studio. It can perform various kit and EFM32 specific tasks.

13.1 eA Commander Operation

This utility gives the ability to program the EFM32, upgrade the kit, lock and unlock devices and more. Some of the features will only work with Energy Micro kits, while other will work with a J-Link debugger connected. Press the "F1" button, or select the "Help->Help" menu item for a full description.

13.2 Upgrades

Upgrading the kit is done through Simplicity Studio. The Studio will automatically check for new updates on startup.

You can also use the *energyAware Commander* for manual upgrades. Select the "Kit" icon, use the "Browse" button to select the correct file ending in ".emz", and press the "Install package button".

14 Errata

The following sections lists the erratas and known issues for operating the STK. You can read the STK revision on the white label on the back side of the STK. It is in the format "BRD2100, Rev: Axx".

14.1 Chip errata

You can use *energyAware Commander* and press the "Connect" button to retrieve EFM32 revision information. Download the chip errata from http://www.energymicro.com for the latest errata updates on your device.

14.2 efm32lib Chip Init routine

The efm32lib

```
#include "efm32_chip.h"
CHIP_Init()
```

routine will, as far as possible, enable work arounds for chip erratas to make EFM32 Tiny Gecko devices be as software compatible as possible. In some cases, this can introduce increased current. See the device errata and source code for details.

14.3 STK Revision Errata

Table 14.1. BRD2100 Revision Errata

Revision	Problem	Description

15 Version information

The current version information can be read from Gecko Commander.

Table 15.1. Current versions

Туре	Version	Released
Firmware revision	1.5.0	13.05.2011
Board	BRD2100A Rev. A03	13.05.2011

16 Schematic

On the next pages you can find the schematic of the board.

Figure 16.1. Schematic Page 1

Figure 16.2. Schematic Page 2

Figure 16.3. Schematic Page 3

Figure 16.4. Schematic Page 4

Figure 16.5. Schematic Page 5

Figure 16.6. Schematic Page 6

Figure 16.7. Schematic Page 7

Figure 16.8. Schematic Page 8

Figure 16.9. Schematic Page 9

Figure 16.10. Schematic Page 10

17 Assembly Drawing

On the next pages you can find the assembly drawings of the board (not to scale).

Figure 17.1. Assembly Drawing Page 1

Figure 17.2. Assembly Drawing Page 2

18 Bill of Materials

On the next pages you can find the Bill of Materials for the board.

Table 18.1. Bill of Materials

Qty.	Reference	Manufacturer	Manufacturers Part Number
7	C100,C101,C708,C709,C712,C713,C718	Murata	1N 16V X7R GRM155
1	C198	Murata	330P 50V C0G GRM155
39	C199,C401,C402,C403,C404,C408,C600,C603,	Murata	100N 16V X7R GRM155
3	C400,C501,C716	Murata	1U 10V X5R GRM18
12	C407,C409,C601,C700,C703,C714,C719,C720,	Murata	10U 10V X5R GRM21
6	C410,C411,C890,C905,C908,C909	Murata	10N 16V X7R GRM155
4	C412,C413,C902,C903	Murata	12P 50V C0G GCM155
2	C414,C415	Murata	22P 50V C0G GCM155
1	C500	Murata	22N 16V X7R GRM155
2	C602,C705	Murata	33N 16V X7R GRM155
2	C900,C901	Murata	18P 50V C0G GCM155
1	D600	NXP Semiconductors	IP4220CZ6,125
1	D703	National	LM4040CIM3-3.0
1	D800	Vishay Semiconductors	VESD05A8A-HNH
1	LCD1	Tri-T Co Ltd	CL010-1087-03
3	LED100,LED900,LED902	Everlight	EL-19-21UYC/S530-A2/TR8
1	LED901	Panasonic	LNJ926W8CRA
1	LED903	Everlight	19-21SDRC/S530-A3/TR8
1	L100	Bourns	390UH SDR0302-391KL
9	L400,L660,L700,L701,L730,L780,L800,L801,	Murata	BLM21B102S
1	L600	Murata	BLM41P600S
1	PCB1		PCB2100 Rev. A03
1	P100	Taitek	HE2-20G6C394-5R
1	P601	Hirose Electric Co Ltd	UX60-MB-5ST
1	P700	Keystone	3002
1	P800	ЗМ	D2520-6V0C-AR-WE
1	Q100	Vishay	TEMT6200FX01A
1	Q702	ON Semiconductor	BC846BWT1G
2	RP800,RP801	ROHM	MNR04M0APJ330
6	R100,R103,R401,R730,R750,R810		100R
11	R101,R102,R680,R681,R682,R686,R687,R708,		1M
5	R190,R900,R903,R905,R912		2K
15	R195,R197,R198,R704,R719,R721,R771,R773,		0R
2	R196,R901		1K5
2	R199,R706		22K
2	R241,R242		0R
4	R400,R717,R724,R910		1R
10	R600,R609,R612,R700,R713,R714,R715,R716,		10K

Qty.	Reference	Manufacturer	Manufacturers Part Number
2	R601,R702		180K
2	R602,R703		110K
9	R603,R604,R605,R606,R729,R802,R803,R804,		100K
6	R607,R608,R660,R774,R807,R808		4K7
2	R610,R814		10M
1	R611		180K
1	R701	Bourns	4R7 0.1% CRT1206-BY-4R7-ELFTR
3	R705,R728,R772		1K
3	R707,R727,R801		47K
1	R709		1K8 0.1%
1	R710		43R 0.1%
1	R711		4R7 0.1%
1	R712		0R 0.1%
1	R718		12K 0.1%
1	R720		10K 0.1%
1	R760		10M 1%
3	R781,R805,R806		33R
2	R902,R904		22R
3	SW100,SW101,SW400	Omron Electronics	B3S1000
1	SW700	C&K Components	JS202011SCQN
2	U600,U701	National Semiconductor	LP3982ILDX-ADJ
1	U601	Microchip	24AA024-I/MS
4	U602,U695,U702,U805	Texas Instruments	TS3A4751RUCR
3	U660,U803,U804	NXP	74LVC2G125DC
1	U700	Texas Instruments	TS5A3159ADBVR
2	U703,U705	National Semiconductor	LTC6102CDD#PBF
1	U704	Texas Instruments	TLV272CDGK
3	U706,U707,U850	Microchip Technology	MCP6001T-I/OT
3	U800,U802,U806	NXP	74LVC4066BQ
1	U801	Texas Instruments	74LVC16T245DGG
1	U902	Numonyx	M25PX16-VMP6E
1	U904	Energy Micro	EFM32TG840
1	X400	NDK	NX5032GA-32.000M
1	X401	Golledge	GSWX-26
1	X900	NDK	NX5032GA-16.000000MHZ

19 Document Revision History

19.1 Revision 1.00

2011-05-13

Initial revision.

A Disclaimer and Trademarks

A.1 Disclaimer

Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Energy Micro products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Energy Micro reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Energy Micro shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Energy Micro. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Energy Micro products are generally not intended for military applications. Energy Micro products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

A.2 Trademark Information

Energy Micro, EFM32, EFR, logo and combinations thereof, and others are the registered trademarks or trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited. Other terms and product names may be trademarks of others.

B Contact Information

B.1 Energy Micro Corporate Headquarters

Postal Address	Visitor Address	Technical Support
Energy Micro AS P.O. Box 4633 Nydalen N-0405 Oslo NORWAY	Energy Micro AS Sandakerveien 118 N-0484 Oslo NORWAY	support.energymicro.com Phone: +47 40 10 03 01

www.energymicro.com

Phone: +47 23 00 98 00 Fax: + 47 23 00 98 01

B.2 Global Contacts

Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information.

Americas	Europe, Middle East and Africa	Asia and Pacific
www.energymicro.com/americas	www.energymicro.com/emea	www.energymicro.com/asia

Table of Contents

1.	Introduction		
_	1.1. Features		
	STK block diagram		
	Hardware layout		
4.	Power supply		
	4.1. USB		
_	4.2. Battery		
5.	Reset infrastructure		
	5.1. MCU	• • •	۲
_	5.2. Board controller		
ь.	Peripherals		
	6.1. Pushbuttons		
	6.2. LED		
	6.3. LCD		
	6.4. Touch slider		
	6.5. Ambient Light Sensor		
	6.6. LC Sensor		
_	6.7. Op-Amp Footprint		
1.	Advanced Energy Monitor		
	7.1. Usage		
	7.2. AEM theory of operation	• • •	ζ
_	7.3. AEM accuracy and performance	• • •	5
	Board Controller		
9.	Board Support Package		
	9.1. Installation location	- '	10
	9.2. Application Programming Interface		
	9.3. Example Applications	٠- '	11
4.0	9.4. How to include in your own applications		
10	. Connectors		
	10.1. Breakout pads		
	10.2. Expansion header		13
	10.3. Debug connector		
11	. Debugging		16
	11.1. Debugging during battery operation		16
12	. Integrated Development Environments	-	1/
	12.1. IAR Embedded Workbench for ARM		17
	12.2. Rowley Associates - CrossWorks for ARM		17
	12.3. CodeSourcery - Sourcery G++		
	12.4. Keil - MDK-ARM		17
13	energyAware Commander and Upgrades		18
	13.1. eA Commander Operation		
	13.2. Upgrades		
14	. Errata		
	14.1. Chip errata		
	14.2. efm32lib Chip Init routine		19
. –	14.3. STK Revision Errata		
_	. Version information		
	. Schematic		
	. Assembly Drawing		
	. Bill of Materials		
19	. Document Revision History		
	19.1. Revision 1.00		
A.	Disclaimer and Trademarks		-
	A.1. Disclaimer		
_	A.2. Trademark Information		
В.	Contact Information		
	B.1. Energy Micro Corporate Headquarters	. :	37
	R 2 Global Contacts		47

List of Figures

2.1. EFM32TG-STK3300 Block Diagram	3
3.1. EFM32TG-STK3300 hardware layout	4
10.1. Breakout pads and layout diagram	2
16.1. Schematic Page 1	<u>-</u>
16.2. Schematic Page 2	2
16.3. Schematic Page 3	?
16.4. Schematic Page 4	Z
16.5. Schematic Page 5	6
16.7. Schematic Page 7	7
16.7. Schematic Page 7	۶
16.9. Schematic Page 9	·C
16.10. Schematic Page 10	
17.1. Assembly Drawing Page 1	1
17.2 Assembly Drawing Page 2	

List of Tables

7.1. AEM accuracy	8
I0.1. Expansion header pinout	13
I0.2. Expansion header pin list	14
10.3. Debug connector pinout	
I1.1. Debug modes	16
I4.1. BRD2100 Revision Errata	19
15.1. Current versions	
8.1. Bill of Materials	

Energy Micro AS Sandakerveien 118 P.O. Box 4633 Nydalen N-0405 Oslo Norway

www.energymicro.com