

Frame Compression

16110720018 张姝菡

Contents

- Algorithm and hardware design
- → Overall Architecture
- → TBT(Tail Bit Truncation)
- → IBP(In Block Prediction)
- → VLC(Variable Length Coding)
- Hardware architecture
- Experiment results

Overall Architecture

TBT


```
import numpy as np
def TBT(X,1):
    B = 2**1 - 1
    n, m = X.shape
    # residual
    TR = np.zeros(n,m)
    for i in range(n):
        for j in range(m):
            TR[i,j] = X[i,j] \& B
    # new X after truncation
    for i in range(n):
        for j in range(m):
           X[i,j] = X[i,j] \gg 1
    return X, TR
```


TBT decompression


```
import numpy as np
from math import log

def TBT_decode(X, TR, 1):
    n,m = X.shape
    # initialize output frame
    new_X = np.array(X.shape,dtype=np.uint8)

# decode
for i in range(n):
    for j in range(m):
        new_X[i,j] = (X[i,j] << 1) + TR[i,j]
    return new_X</pre>
```


IBP

BP residual

```
# BP residual
for i in range(1,n):
    res[i,0] = X[i,0]-X[i-1,0]
for i in range(1,m):
    res[0,i] = X[0,i]-X[0,i-1]
```


IBP

$\begin{tabular}{ll} TABLE\ II \\ Mode\ Mapping\ for\ HEVC\ Intra\ Mode\ and\ IBP\ Mode \\ \end{tabular}$

Intra Mode	IBP Mode	Intra Mode	IBP Mode
Planner	4,5,7	11-18	0,2,6
DC	4,5,7	19-26	1,5,6
2-10	0,4,5	27-34	1,3,4

TABLE I IBP Mode

Mode	e Prediction (C=)
0	R1
1	R3
2	(R1+R2)/2
3	(R3+R4)/2
4	(R1+R4)/2
5	(R1+R3)/2
6	((R1+R2)/2+R3)/2
7	((R1+R2)/2+(R3+R4)/2)/2

C: Predicted Pixel Rx: Reference Pixels

After 1bit TBT, the BP mode computation won't overflow.

```
import numpy as np
from math import log

# BP mode
mode0 = lambda r1,r2,r3,r4: r1
mode1 = lambda r1,r2,r3,r4: r3
mode2 = lambda r1,r2,r3,r4: (r1+r2)>>1
mode3 = lambda r1,r2,r3,r4: (r3+r4)>>1
mode4 = lambda r1,r2,r3,r4: (r1+r4)>>1
mode5 = lambda r1,r2,r3,r4: (r1+r4)>>1
mode6 = lambda r1,r2,r3,r4: ((r1+r2)>>1)+r3)>>1
mode7 = lambda r1,r2,r3,r4: (((r1+r2)>>1)+((r3+r4)>>1))>>1
ibp_mode = [mode0,mode1,mode2,mode3,mode4,mode5,mode6,mode7]
domain = [[4,5,7],[4,5,7],[0,4,5],[0,2,6],[1,5,6],[1,3,4]]
```

```
# NP residual
modelist = domain[intra mode]
predicts = np.zeros([len(modelist),n-1,m-1])
BP mode = None
best predict = None
p = 0.0
for k in range(len(modelist)):
   for i in range(1,n):
        for j in range(1,m):
           r1 = X[i,j-1]
           r2 = X[i-1,j-1]
           r3 = X[i-1,j]
            if j+1>=8:
               r4 = 0
            else:
               r4 = X[i-1,j+1]
           predicts[k,i-1,j-1]=\
           ibp mode[modelist[k]](r1,r2,r3,r4)
```


IBP

	TABLE I	
	IBP MODE	
		_
Mode	e Prediction (C=)	_
0	R1	
1	R3	
2	(R1+R2)/2	
3	(R3+R4)/2	
4	(R1+R4)/2	
5	(P1+P3)/2	
6	((R1+R2)/2+R3)/2	
7	((R1+R2)/2+(R3+R4)/2)/2	

C: Predicted Pixel Rx: Reference Pixels

```
//wire
wire [W-1:0] Out1, Out2, Out3, Out4;

assign Out1 = DataEn ? Mem[0] : 0;
assign Out2 = DataEn ? Mem[Length-1] : 0;
assign Out3 = DataEn ? Mem[Length-2] : 0;
assign Out4 = DataEn ? Mem[Length-3] : 0;
```


BP mode decision

In order to reduce the memory consumption after VLC, we need to make the maximum absolute value of the residual block as small as possible.

PROPOSED VLC TABLE											
	01	10	00	110							
Max. value	0	1	2	3~4							
0	-	1	01	001							
±1		0S	1S	01S							
±2			00S	10S							
±3				11S							
±4				000S							
	1110	11110	111110	111111							
Max. value	<i>5~8</i>	<i>9~16</i>	17~32	>32							
0	0001	00001	00001								
±1	001S	0001S	0001S								
±2	010S	0010S	0010S								
±7	111S	0111S	0111S								
±8	0000S	1000S	1000S								
•••		•••	•••								
±11		1011S	1011S	xxx···xxS							
±12		1100S	11000S								
±15		1111S	11011S								
±16		00000S	1110000S								
±31			1111111S								
			0000000S								

TABLE III

IBP experiments

IBP experiments

gray line

pink line

IBP code

```
from recompression import TBT
from pylab import *
from PIL import Image
def IBP_decode(IP, BP_mode, res):
    X = zeros(res.shape, dtype=np.uint8)
   n,m = res.shape
    # IP
   X[0,0] = IP
    # BP
    for i in range(1,n):
       X[i,0] = X[i-1,0] + res[i,0]
    for i in range(1,m):
       X[0,i] = X[0,i-1] + res[0,i]
    # NP
    X = X.flatten()
    for i in range(1,n):
        for j in range(1,m):
            idx = i*m+j
            r1 = X[idx-1]
            r2 = X[idx-1-m]
            r3 = X[idx-m]
            r4 = X[idx-m+1]
            X[idx] = ibp_mode[BP_mode](r1,r2,r3,r4) + res[i,j]
    X = X.reshape(res.shape)
    return X
```

```
def IBP(X, intra mode, 1, printall = False):
    n, m = X.shape
    res = np.zeros(X.shape,dtype=np.int8)
    # IP
    IP = X[0,0]
    # BP
    for i in range(1,n):
        res[i,0] = X[i,0] - X[i-1,0]
    for i in range(1,m):
        res[0,i] = X[0,i] - X[0,i-1]
    # NP
    old X = X[:,:]
    X = X.flatten()
    modelist = domain[intra_mode]
    predicts = zeros([len(modelist),n-1,m-1])
    BP mode = None
    best predict = None
    p = 255
    for k in range(len(modelist)):
        for i in range(1,n):
           for j in range(1,m):
                idx = i*m+j
                r1 = X[idx-1]
                r2 = X[idx-1-m]
                r3 = X[idx-m]
                r4 = X[idx-m+1]
                predicts[k,i-1,j-1] = ibp_mode[modelist[k]](r1,r2,r3,r4)
       if printall:
            print k
            print predicts[k]
        current = abs(old_X[1:,1:] - predicts[k]).max()
       if current < p:
            p = current
            best_predict = k
            BP mode = modelist[k]
    res[1:,1:] = old_X[1:,1:] - predicts[best_predict]
    return IP, BP_mode, res
```


Results

testing code

```
from recompression import *
from PIL import Image
from pylab import *
from scipy import misc
im = array(Image.open('empire.jpg').convert('L'))
# original picture
misc.toimage(im, cmin=0, cmax=255).save('gray_empire.jpg')
n, m = im.shape
new im = zeros([n,m])
for i in range(n/8):
    for j in range(m/8):
       X = im[i*8:(i+1)*8, j*8:(j+1)*8]
       X, TR = TBT(X, 1)
       IP, BP mode, res = IBP(X, 0, 7)
       X = IBP_decode(IP, BP_mode, res)
       X = TBT_decode(X, TR, 1)
       new_im[i*8:(i+1)*8, j*8:(j+1)*8] = X
# image after decompression
misc.toimage(new_im, cmin=0, cmax=255).save('new_empire.jpg')
```

original image

image after decompression

VLC

- The proposed VLC table on the paper requires the maximum absolute residual. Thus, 28(3*8+4) clock time is required before compression.
- The division of 8*8 block and compression mode increase the control logic complexity. This can deteriorate the circuit's performance.
- If only one large residual exists in the 4*4 block, the compression rate the whole block will be increased.
- Instead of proposed VLC, I choose to compress residuals with Exp-golomb.

Exp-golomb

Methods:

- Let count to memorize the coordinate, and output DataOut if count equals or exceeds memory band width.
- 2) Use count to memorize the coordinate. After compression, left shift DataOut (length-count) bit. Then, sequentially output DataOut.

Due to the fact that we cannot use register or wire to represent coordinates, method 1 is not possible.

Hardware Architecture

Results

IBP

Results: VLC

Nаме	Value			1	185 ns		190 n:	5	.	195 ns		200 ns		205	5 ns	210 ns		215 ns		220 n	5	225	ns	230 ns
™ clk	1			┪																				
™ rst	0																							
🍱 DataEn	0																							
⊞ DataIn[7:0]	f1	f1	χ	ee	\supset	eb	x	e8	X	e5) e	2	df		de	df	X	e2	χ .	25	e8	\Box	eb	ee
₩ DataOutEn	1																							
H DataOut [511:0]	e5df161b727578	0	X 00000	0000	X 00	000000	0000	0000	X 00	000000	00000	000	00000000.		0000000	 00000000	f 8	f7fd9	X 7fd9f	fc	X f4fcdf1f	\Box	df1fc1eb	c1ebe5df.
₩ flag	0																							
⊞ 📲 Address[4:0]	05										00								χ .) [02	\Box	03	04
H 0 Out[15:0]	0000															0000								
₩ ReadEn	0																							
#- ₩ [31:0]	8000000															00000008								

Results: Top module

Name	Value		270 ns	ε,		280 m	ıs ,		290 I	ns,		Į:	300 n	s,		310 :	ns ,		Į:	320 n	s,		330 :	ns ,		34	40 ns			350 ns	·	ļ:	360 ns
₩ clk	0			卅	#				H			\dashv				Ħ			Ħ		+		+	#	丗	$^{+}$						Ħ	
₩ rst	0																																
■ ■ intra_mode[2:0]	0																					0											
🌡 ReadEn	О																																
🐌 DataEn	0	"														_																	
■ 🖥 DataIn[7:0]	99	75	72) 6f	Х 6	EX	69	66	63	\supset	60	(6)		66	69	6c	\supset C	6f	X 72	\square X	75	78	75	X	re X	81	84	\supset	87	8a	84	X 90	9:
₩ TROut	0																																
■ 🥌 BP_mode[2:0]	4																					4											
■ 📲 Data0ut[15:0]	0000		00	00		\(\sigma\)	888	a8ae	afbe	· /f	bef)	bef	ъХе	fbe	fbef	bee!	5 X f	bef	X bef	ъΧе	fba	fb8f	b6f1) X4e	ebf X	acfa	afa	8 (f:	a2f	a0fa	X4fa8	Xac	00 X
₩ flag	1																						_										
∃ - ₹ ₩[31:0]	8000000																					00000	08										

Results

Utilization - Post-Synthesis

Resource	Estimation	Available	Utilization %
LUT	20025	303600	6.60
LUTRAM	7	130800	0.01
FF	1673	607200	0.28
10	35	600	5.83
BUFG	1	32	3.13

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.59 W

Junction Temperature: 25.8 °C

Thermal Margin: 59.2 °C (40.8 W)

Effective 9JA: 1.4 °C/W

Power supplied to off-chip devices: 0 $\ensuremath{\mathbb{W}}$

Confidence level: <u>Low</u>

Setup		Hold		Pulse Width								
Worst Negative Slack (WNS)	3.029 ns	Worst Hold Slack (WHS):	-0.004 ns	Worst Pulse Width Slack (WPWS):	7.720 ns							
Total Negative Slack (TNS)	0.000 ns	Total Hold Slack (THS):	-0.030 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns							
Number of Failing Endpoint	s: 0	Number of Failing Endpoints:	7	Number of Failing Endpoints:	0							
Total Number of Endpoints:	3395	Total Number of Endpoints:	3395	Total Number of Endpoints:	1683							

Timing constraints are not met.

