STAT 216: Golden Ticket for Descriptive and Inferential Statistical Methods

Scenario	One Categorical Response	Two Categorical Variables	One Quantitative Response OR Paired Differences	Two Quantitative Variables	Quant. Response and Categ. Explanatory (independent samples)
Type of plot	Bar plot	Segmented bar plot, mosaic plot	Dot plot, histogram, box plot, density plot	Scatterplot	Side-by-side box plots, stacked dot plots or histograms
Summary measure	Proportion	Difference in proportions	Mean or Mean difference	Slope or Correlation	Difference in means
Parameter notation	π	$\pi_1 - \pi_2$	μ or μ_d	eta_1 or $ ho$	$\mu_1 - \mu_2$
Statistic notation	ŷ	$\hat{p}_1 - \hat{p}_2$	\bar{x} or \bar{x}_d	b_1 or r	$\bar{x}_1 - \bar{x}_2$
Null hypothesis	$H_0: \pi = \pi_0$	$H_0: \pi_1 - \pi_2 = 0$	$H_0: \mu = \mu_0 \text{ or} $ $H_0: \mu_d = 0$	$H_0: \beta_1 = 0 \text{ or} $ $H_0: \rho = 0$	$H_0: \mu_1 - \mu_2 = 0$
Simulation test (how to generate the null distribution) p-value = proportion of null simulations at or beyond $(H_A \text{ sign})$ the observed statistic	Spin spinner with probability equal to π_0 , n times or draw with replacement n times from a deck of cards created to reflect π_0 as probability of success. Plot the proportion of successes. Repeat 1000's of times. Centered at π_0 .	Label cards with response variable values from original data; mix cards together; shuffle into two new groups of sizes n_1 and n_2 . Plot difference in proportion of successes. Repeat 1000's of times. Centered at 0.	Shift the original data by adding $(\mu_0 - \bar{x})$ or $(0 - \bar{x}_d)$. Sample with replacement from the shifted data n times. Plot sample mean. Repeat 1000's of times. Centered at μ_0 (single mean) or 0 (paired mean difference).	Hold the x values constant; shuffle the y 's to new x 's. Find the regression line for shuffled data; plot the slope or the correlation for the shuffled data. Repeat 1000's of times. Centered at 0.	Label cards with response variable values from original data; mix cards together; shuffle into two new groups of sizes n_1 and n_2 . Plot difference in means. Repeat 1000's of times. Centered at 0.
Bootstrap confidence interval (how to generate the bootstrap distribution) If X is the confidence level, CI = $\left(\frac{1-X}{2}\%tile, \left(X+\frac{1-X}{2}\right)\%tile\right)$	original responses. Randomly draw with replacement n times. Plot the resampled proportion of successes. Repeat 1000's of	Label n_1+n_2 cards with the original responses. Randomly draw with replacement n_1 times from group 1 and n_2 times from group 2. Plot the resampled difference in proportion of successes. Repeat 1000's of times. Centered at $\widehat{p_1}-\widehat{p_2}$.	Label n cards with the original responses. Randomly draw with replacement n times. Plot the resampled mean. Repeat 1000's of times. Centered at \overline{x} or $\overline{x_d}$.	Label n cards with the original (response, explanatory) values. Randomly draw with replacement n times. Plot the resampled slope or correlation. Repeat 1000's of times. Centered at b_1 or r .	Label n_1+n_2 cards with the original responses. Randomly draw with replacement n_1 times from group 1 and n_2 times from group 2. Plot the resampled difference in means. Repeat 1000's of times. Centered at $\overline{x_1}-\overline{x_2}$.
Conditions to use theory-based methods	Independent cases; Number of successes and number of failures in the sample both at least 10.	Independence (within and between groups); Number of successes and number of failures in EACH sample all at least 10. (All four cell counts at least 10.)	Independent cases; $n < 30$ with no clear outliers or skewness OR $n \ge 30$ and no particularly extreme outliers.	Linear form; Independent cases; Nearly normal residuals; Variability around the regression line is roughly constant.	Independence (within and between groups); In EACH sample, $n < 30$ with no clear outliers $OR \ n \geq 30$ and no particularly extreme outliers.
Theory-based distribution	Standard normal	Standard normal	t distribution $df = n - 1$	t distribution $df = n - 2$	t distribution $df = \min(n_1 - 1, n_2 - 1)$
Theory-based standardized statistic (test statistic)	$z = \frac{\hat{p} - \pi_0}{SE_0(\hat{p})}$	$z = \frac{\widehat{p_1} - \widehat{p_2}}{SE_0(\widehat{p_1} - \widehat{p_2})}$ $SE_0(\widehat{p_1} - \widehat{p_2})$	$t = \frac{\overline{x} - \mu_0}{SE(\overline{x})}$	$t = \frac{b_1}{SE(b_1)}$	$df = \min(n_1 - 1, n_2 - 1)$ $t = \frac{\overline{x_1} - \overline{x_2}}{SE(\overline{x_1} - \overline{x_2})}$
	$SE_0(\hat{p}) = \sqrt{\frac{\pi_0 \times (1 - \pi_0)}{n}}$	$= \sqrt{\hat{p}_{pool} \times \left(1 - \hat{p}_{pool}\right) \times \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ and $\hat{p}_{pool} = \frac{total\ successes}{total\ sample\ size}$	$SE(\overline{x}) = \frac{s}{\sqrt{n}}$		$SE(\overline{x_1} - \overline{x_2}) = \sqrt{\frac{1}{n_1} + \frac{2}{n_2}}$
Theory-based confidence interval	$\hat{p} \pm z^* \times SE(\hat{p})$ $SE(\hat{p}) = \sqrt{\frac{\hat{p} \times (1 - \hat{p})}{n}}$	$\widehat{p_1} - \widehat{p_2} \pm z^* \times SE(\widehat{p_1} - \widehat{p_2})$ $SE(\widehat{p_1} - \widehat{p_2})$ $= \sqrt{\frac{\widehat{p_1} \times (1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2} \times (1 - \widehat{p_2})}{n_2}}$	$\overline{x} \pm t^* \times SE(\overline{x})$ $SE(\overline{x}) = \frac{s}{\sqrt{n}}$	$b_1 \pm t^*SE(b_1)$ $SE(b_1) \text{ is the reported standard}$ error (std.error) of the slope term in the \lim () output from R	$\overline{x_1} - \overline{x_2} \pm t^* \times SE(\overline{x_1} - \overline{x_2})$ $SE(\overline{x_1} - \overline{x_2}) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$