

Tiempo: 50 minutos

Departamento de Matemáticas 2° Bachillerato CCSS

Tipo: A

Parcial 1^aEv.

Nombre:	Fecha:

Esta prueba tiene 4 ejercicios. La puntuación máxima es de 13. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	Total
Puntos:	5	3	2	3	13

- 1. Dadas las matrices $A = \begin{bmatrix} 1 & 0 & -1 \\ -3 & 2 & 3 \\ -1 & 3 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix}$ y $C = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.
 - (a) Encontrar si existe una matriz X tal que $3 \cdot X + 2 \cdot A = B \cdot C$. (1 punto)
 - (b) Encontrar si existe la matriz inversa de A, por determinantes (1 punto)
- 2. Dada:

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

(a) Calcula (1 punto) $A-2\cdot I$

siendo I la matriz identidad de orden 3.

(b) Determina los valores del parámetro k para que la matriz: (2 puntos)

$$A - k \cdot I$$

tenga inversa.

(c) Encuentra la matriz X que verifica que: (2 puntos)

$$(A - 2 \cdot I) \cdot X = 2 \cdot I$$

3. Dadas las matrices
$$A = \begin{bmatrix} -2 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 y $B = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ -2 & 1 \end{bmatrix}$

(a) Calcula $C = B \cdot A - A^t \cdot B^t$

(1 punto)

(2 puntos)

(b) Halle la matriz X siendo $A \cdot B \cdot X = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

4. Dada la matriz:

$$A = \begin{bmatrix} k & 0 & k \\ 0 & k+2 & 0 \\ 1 & 1 & k+2 \end{bmatrix}$$

(a) Determine el rango de A según los diferentes valores de k

(2 puntos)

(b) Determine la inversa de A para k=1

(1 punto)