Lista 9: Relações

Igor Lacerda

11 de maio de 2023

Questões Discursivas

- 1. Uma relação \sim de A em B é um subconjunto do produto cartesiano $A \times B$.
- 2. Toda função é uma relação (em particular uma relação unívoca e completa), pois toda função é subconjunto do produto cartesiano do domínio com o contradomínio. Mas nem toda relação é uma função, pois numa relação dois elementos podem ser mapeados para um mesmo elemento no segundo conjunto (o que viola a definição de função).
 - 3. Uma relação \sim de A em A é um subconjunto do produto cartesiano $A \times A$.
 - 4. Dada uma relação \sim em A, ela é dita reflexiva se $\forall a \in A : a \sim a$.
 - 5. Dada uma relação \sim em A, ela é dita simétrica se $\forall a,b \in A, a \sim b \Rightarrow b \sim a$.
 - 6. Dada uma relação \sim em A, ela é dita transitiva se $\forall a, b, c \in A, a \sim b \Rightarrow b \sim c$.
- 7. Seja \sim_R uma relação de um conjunto A para um conjunto B e seja \sim_S uma relação do conjunto B para o conjunto C. A composição de \sim_R e \sim_S é a relação composta pelos pares ordenados (a,c), onde $a \in A \land c \in C$ para os quais existe um $b \in B \mid a \sim_R b \land b \sim_S c$. Se usamos a notação de letras maiúsculas, a composta das relações R e S é $S \circ R$.
 - 8. Seja Ruma relação em $A\times B.$ Então a relação inversa R^{-1} de R é:

$$R^{-1} = \{ (y, x) \in B \times A \mid (x, y) \in R \}$$

9. Seja R uma relação em A. Então as potências $R^n, n=1,2,3\ldots$, são definidas recursivamente por:

$$\begin{cases} R^1 = R \\ R^{n+1} = R^n \circ R \end{cases}$$

- 10. Uma relação R em A é transitiva se, e somente se $R^n \subseteq R \forall n \in \mathbb{N}$
- 11. Representa-se $R \subseteq A \times B$ com uma matriz $m \times n$ em que m é a cardinalidade de A e n é a cardinalidade de B, em que cada elemento a_{ij} é 1 se $i \sim j$ e 0 caso contrário.
- 12. Seja R uma relação em A, então sua representação como grafo orientado consiste em vértices como elementos de A e arestas de a para b se aRb.

- 13. Seja R um relação em A, seu fecho transitivo $\overline{R^t}$ é a menor extensão de R que seja transitiva.
- 14. Seja R uma relação em A, então sua **relação de conectividade** R^* é composta pelos pares (a,b) tais que existe um caminho de comprimento pelo menos um de a para b em R.
 - 15. Em outras palavras, R^* é a união de todos os conjuntos R^n :

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

- 16. O fecho transitivo $\overline{R^t}$ é igual à relação de conectividade R^* .
- 17. $\overline{R^t} = R \cup R^2 \cup \ldots \cup R^n$. Mais especificamente, seja M_R a matriz da relação R num conjunto com n elementos. Então a matriz do fecho transitivo $\overline{R^t} = R^*$ é:

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} \vee \dots M_R^{[n]}$$

- 18. Pode-se provar que uma relação \sim em um conjunto A é de equivalência ao se provar que \sim é reflexiva, simétrica e transitiva.
- 19. Seja R uma relação de equivalência em A. Então, o conjunto de todos os elementos que estão relacionados com algum elemento a é a classe de equivalência [a]. Em termos matemáticos:

$$[a] = \{s \mid a \sim s\}$$

- 20. Vale que [a] = [b] ou (exclusivamente) que $[a] \cap [b] = \emptyset$. Ou seja, para duas classes de equivalência serem iguais, basta que elas tenham um elemento em comum, e se elas não tiverem nenhum elemento em comum, elas são diferentes.
- 21. Uma partição de um conjunto S é a família de subconjuntos não vazios de S, que são disjuntos 2 a 2 e que tem S como sua união.
- 22. A partição gerada por uma relação \sim é aquela em que os conjuntos correspondem a classes de equivalência distintas.
- 23. Dada uma relação \sim em A, ela é dita anti-simétrica se $\forall a,b \in A \mid a \sim b \wedge b \sim a \Rightarrow a = b$. Ou seja, se $a \neq b$, então ou $a \sim b$ ou $b \sim a$ ou a e b não estão relacionados. Intuitivamente, uma relação anti-simétrica é aquela em que os únicos elementos que são simétricos são do tipo $a \sim a$.
- 24. Pode-se provar que uma relação \sim em um conjunto A é uma ordem parcial ao se provar que ela é reflexiva, anti-simétrica e transitiva.
- 25. Um conjunto A e uma ordem parcial \sim formam um conjunto parcialmente ordenado ou poset e é denotado por (A, \sim) .
- 26. Dois elementos a em b de um poset (S, \preceq) são ditos comparáveis se ou $a \preceq b$ ou $b \preceq a$. Quando nenhuma dessas condições ocorre, diz-se que a e b são incomparáveis.

- 27. Se (S, \sim) for um poset e todos os elementos de S forem 2 a 2 comparáveis, S é chamado de conjunto totalmente ordenado e \sim é uma ordem total.
- 28. Dado um produto cartesiano de *n posets* $(A_1, \sim_1), (A_2, \sim_2), \ldots, (A_n, \sim_n)$ define-se a seguinte ordem parcial \leq como a **ordem lexicográfica** em $A_1 \times A_2 \times \ldots \times A_n$:

$$(a_1, a_2, \dots, a_n) \prec (b_1, b_2, \dots b_n)$$

Se $a_1 \prec b_1$ ou se existe algum i > 0 tal que $a_1 = b_1, \ldots a_i = b_i \wedge a_{i+1} \prec_{i+1} b_{i+1}$. Assim, nós podemos definir uma ordem lexicográfica para strings: sejam $a_1a_2\ldots a_m$ e $b_1b_2\ldots b_n$ em um conjunto parcialmente ordenado S, tais que uma é diferente da outra. Seja t o mínimo entre m e n. Então a definição da ordem lexicográfica é que a string $a_1a_2\ldots a_m$ é menor que a string $b_1b_2\ldots b_n$ se e somente se:

$$(a_1, a_2, \dots, a_t) \prec (b_1, b_2, \dots b_t) \lor ((a_1, a_2, \dots, a_t) = (b_1, b_2, \dots b_t) \land m < n)$$

29. Um diagrama de Hasse é um tipo de diagrama matemático usado para representar um *poset* finito. Pode-se construir um diagrama de Hasse da seguinte maneira: comece com o grafo direcionado da relação e remova os laços. Depois, remova as arestas presentes apenas para completar a transitividade. Depois, ordene o grafo de tal maneira que o vértice inicial fique em baixo do último vértice e remova as setas. O diagrama resultante é um diagrama de Hasse.