Introduction to Statistics and Data Science: Instructor's Guide

Danielle Sass

2023-10-01

Table of contents

Preface	3
Sample syllabus	4
Course info	4
Instructional Team	4
Learning objectives	4
Course Structure	5
Textbooks	5
Software	6
Hardware	6
Assessment	6
Grading	7
Tips for success	8
Asking Questions & Course Communication	8
School Policies	8
Tentative schedule	9
11 week Schedule	9
Day 01	10
·	10
	10
v	11
References	12

Preface

This book is meant to be a resource for instructors to provide a complete guide for teaching Introduction to Statistics and Data Science.

Sample syllabus

Course info

	Day	Time	Location
Lectures	MWF	9:00 am - 9:50 am	Room 107

Prerequisite: High School Algebra

Instructional Team

	Title	Email	Office Hours
Prof. Name	Professor		By Appointment
TA Name	TA		Tue/Thur 4-5pm

Learning objectives

By the end of the quarter, you will be able to...

- 1. Use statistical software to manage and process data.
- 2. Use statistical software to perform exploratory data analyses. That is, explore data numerically and visually to gain understanding through data and generate hypotheses and inferences to later test.

"Numbers don't lie. That's where we come in."

- 3. Recognize the importance of data collection, identify limitations in data collection methods, and determine how they affect the scope of inference.
- 4. Build a conceptual understanding of the unified nature of statistical inference.
- 5. Apply estimation and testing methods to analyze single variables or the relationship between two variables in order to understand natural phenomena and make data-based decisions.
- 6. Model numerical response variables using a single or multiple explanatory variables.
- 7. Interpret results in context without relying on statistical jargon.
- 8. Critique and evaluate data-based claims and decisions.

Course Structure

This class will follow an active learning design. Meaning the majority of each lecture will be dedicated to working on activities. A lot of what you do in this course will involve writing code, and coding is a skill that is best learned by doing. A typical class will devote 10-15 minutes to discussion/lecture with the remainder of the class devoted to working on activities where students will either work by themselves or in groups. Throughout the class we will discuss and review the work on the activities. In many cases we may come together to work on parts of an activity as a class.

Textbooks

We will be using Introduction to Statistics and Data Science which is a free online book that we have been developing for this course.

Software

We will be using/introducing the free statistical software Posit Cloud.

Hardware

Students will need a laptop or Chromebook to be able to follow lectures and to work with RStudio Cloud to complete activities. If access to a laptop is an issue, then please contact the course instructor and we will work to find an accommodation.

Assessment

Assessment for the course is comprised of five components: participation, reading tutorials, activities, 3 exams, and final project.

Participation

Reading Tutorials

Reading tutorials will be completed using Posit Cloud/Rstudio and uploaded to the course Canvas page. Each reading tutorial will be scaled to be worth 10 points. Reading tutorials will be accepted up to 3 days after the due date with a 10% late penalty.

The lowest reading tutorial grade will be dropped at the end of the semester.

Activities

Daily activities will be worth 10 points. Activities will be accepted up to 3 days after the due date with a 10% late penalty.

The lowest activity grade will be dropped at the end of the semester.

Exams

There will be 3 in-class exams; they will be structured very similarly to your reading tutorials. Roughly half of it will focus on conceptual knowledge and roughly half will focus on practical applications. Students will be allowed one 8.5×11 inch cheat sheet (front & back) on each in-class exams. The exams are not cumulative.

Project

The final project will be completed in groups of 3-6 people and allow you to explore a dataset of your choice. More information will be provided later in the quarter.

Exam Improvement Policy

We have worked to develop a policy geared towards a growth mindset. That is, we want a policy where students clearly demonstrate that they have used the exam as a diagnostic tool to learn from and improve their understanding of statistics. There is NO final cumulative exam during the designated final exam time, instead you may choose to retake 1 exam during the exam time. This exam will replace your old score — only in cases where it is an improvement.

Missed Exam Policy

There are no make-up exams. If you miss an exam due to illness, travel, etc., you will need to take the exam during the final exam period as your re-take exam.

Grading

The final course grade will be calculated as follows:

Category	Percentage
Participation	5%
Reading Tutorials	15%
Activities	10%
Exam 1	20%
Exam 2	20%
Exam 3	20%
Project	10%

The final letter grade will be determined based on the following thresholds:

Letter Grade	Final Grade
A	>= 93
A-	90 - 92.9
B+	87 - 89.9
В	83 - 86.9

Letter Grade	Final Grade
B-	80 - 82.9
C+	77 - 79.9
\mathbf{C}	73 - 76.9
C-	70 - 72.9
D	60 - 69.9
F	< 59.9

Tips for success

- Dedicate yourself to being an active and engaged learner.
- Prepare for class by reading and working through code before class.
- Work in groups to learn and complete activities.
- Ask questions! Ask them during class, office hours, or on Campuswire.
- Contribute to a welcoming and inclusive learning environment.
- Don't be afraid to make mistakes, you learn from mistakes.

Asking Questions & Course Communication

This term we will be using Campuswire ("Enrollment Code: XXXX") as our preferred platform for questions about activities, reading tutorials, and general course questions. The system is highly catered to getting you help quickly and efficiently from classmates and the instructional team. Rather than emailing questions to the instructional team, you should post your questions on Campuswire.

The instructional team will check Campuswire periodically and answer questions, but we strongly encourage students to answer each other's questions. To this end, student will be able to earn bonus points — see Canvas for details.

Please do not expect answers during weekends and evenings.

School Policies

Add your standard school policies here.

Tentative schedule

11 week Schedule

	Topic	Textbook	Agenda	
Day 1	Syllabus Day		Syllabus Day	
Day 2	Intro to R	Preface and Chapter	Activity 01	
		1		
Day 3	Data Visualization	Sections 2.0-2.3	Activity 02	
Day 4	Data Visualization	Sections 2.4-2.6	Activity 03	
Day 5	Data Visualization	Sections 2.7-2.9	Activity 04	
Day 6	Data Wrangling	Sections $3.0-3.3$	Activity 05	
Day 7	Data Wrangling	Sections 3.4-3.9	Activity 06	
Day 8	Tidy Data	Chapter 4	Activity 07	
Day 9	Exam 1			
Day 10	Regression	Sections $5.0-5.1$	Activity 08	
Day 11	Regression	Sections $5.2-5.4$	Activity 09	
Day 12	Regression	Sections 6.0-6.1	Activity 10	
Day 13	Regression	Sections 6.2-6.4	Activity 11	
Day 14	Randomization + Causality	Chapter 7	Activity 12	
Day 15	Populations +	Chapter 8	Activity 13	
	Generalizability			
Day 16	Exam 2			
Day 17	Distributions	Sections 9.0-9.1	Activity 14	
Day 18	Repeated Sampling	Sections 9.2-9.4	Activity 15	
Day 19	CLT	Sections 9.5-9.7	Activity 16	
Day 20	Confidence Intervals	Chapter 10	Activity 17	
Day 21	Confidence Intervals	Chapter 10	Activity 17	
Day 22	P-values	Chapter 11	Activity 18	
Day 23	Hypothesis Testing	Chapter 12	Activity 19	
Day 24	Hypothesis Testing	Chapter 12	Activity 20	
Day 25	Hypothesis Testing	Chapter 12	Activity 20	
Day 26	Review	Chapter 13		
Day 27	Exam 3			
	Final Project			

Day 01

Welcome to class! Today is all about getting setup with the needed resources and reviewing the syllabus.

Agenda

- ~ 15 min Syllabus and expectations
- ~ 20 min Welcome and get students setup with all of the needed resources
- ~ 15 min Students take survey and get to know their neighbors

Today's tasks

Teaching note:

I recommend using Posit Cloud if possible for ease of getting started. Otherwise you will need to dedicate more time towards downloading R and RStudio.

See the sample survey for some examples of questions to ask your students! We use these survey results on the exams.

Make sure you have completed the following agenda items by the end of class!

- 1. Review the syllabus
- 2. Visit the course's Campuswire page using your school email. Enrollment code: XXXX
- 3. Gain access to the Posit Cloud Class Workspace or install R and RStudio
- 4. We will be using AHA slides for participation.
- 5. Set up and test out the Reading Tutorials System. Install the required package: remotes::install_github("NUstat/isdsTutorials", dependencies = TRUE Try running the first tutorial: learnr::run_tutorial("01_intro", package = "isdsTutorials")
- 6. Login/create your Northwestern Zoom Account if you do not have one. This will be used for office hours or requested appointments.
- 7. Complete the google survey we will use this data later.

Homework

- Complete RT 01 by running learnr::run_tutorial("01_intro", package = "isdsTutorials") in your Console and submitting the downloaded html to a learning management system

References