Pedro STEM Lesson n°1 v1.0

« Discover Pedro Robot »

@ Learning Objective

Discover the Pedro robot, understand its basic operation, and explore its different control modes.

Students will learn:

- Basic concepts of robotics (programming, embedded systems, planetary gear systems)
- How a 3D printer works
- How to identify the components of a robot
- How to assemble a robot

X Required Materials

- All Pedro robot parts printed in 3D
- 2 ball bearings 8x22x7 mm
- ✓ 4 continuous rotation (**360**°) servomotors
- 1 micro USB cable
- **7.4V** battery
- Pedro Rev3 Electronic Board
- 🔽 PC (Windows, Linux, or OS X) with Arduino IDE installed

Tinstalling and Uploading Pedro Firmware

- 1. **Download and install** the latest version of the <u>Arduino IDE</u>.
- 2. **Install the required libraries** from the Library Manager:
 - **PedroRobot**: Tools → Manage Libraries → search **PedroRobot** → Install
 - **U8glib**: Tools → Manage Libraries → search **U8glib** → Install
 - **RF24**: Tools → Manage Libraries → search **RF24** → Install
- 3. **Connect** your Pedro robot to your computer via USB.
- 4. Select the correct port:
 - Tools → Select the port that appear when you connect Pedro robot
- 5. Select the board type:
 - Tools → Board → Arduino Micro
- 6. **Open the example sketch**:
 - File \rightarrow Examples \rightarrow PedroRobot \rightarrow Pedro
- 7. **Compile and upload** the sketch to your Pedro board.
- Done! Your Pedro robot is now ready to run with the latest firmware.

1. Materials Check:

Make sure you have all the parts before starting the assembly. Check all the parts by putting an \bigvee next to each part of Pedro robot.

What You Should Know About Pedro

All the parts of **Pedro** are **3D printed**. As you can see, there are **no screws** in the pieces that make up Pedro. **Which makes Pedro a 100% 3D-printed robot.**

What Is 3D Printing?

3D printing is a technology that allows us to create solid objects by **melting and layering plastic filament**. Before printing a part, several important steps are needed:

1. Design (CAD):

The first step is to design the part using a **CAD** (**Computer-Aided Design**) software. This program lets us draw the object in **three dimensions** on a computer.

2. Export to STL:

Once the design is finished, it is **converted into an STL file**. This file describes the shape of your object using **a set of precise coordinates and numbers**.

3. Generate the G-code:

The STL file is then converted into a **G-code file**. G-code contains the exact **instructions the 3D printer follows** to create the part **layer by layer**. Usually, the G-code is **saved on a microSD card**, which is then inserted into the 3D printer to start printing.

2. Robotics Concept:

As robotic arm Pedro is equipped with **four servomotors**, each serving a distinct purpose in its movement. Three servomotors control the movement axes, allowing for a **180° rotation** for each axis, while the fourth servomotor is dedicated to the gripper.

- The **first servomotor** controls the base rotation, facilitating horizontal movement translation.
- The **second servomotor** manages the shoulder, enabling vertical rotation.
- The **third servomotor** operates the elbow, facilitating pick-up movements.
- Finally, the **fourth servomotor** controls the gripper, enabling Pedro to grasp objects securely.

Together, these servomotors enable Pedro to perform a wide range of precise and coordinated movements, making it an effective tool for various robotic applications.

Mechanical Components

- **3D Printed Parts**: High-quality PLA or ABS, providing durability and strength.
- Ball Bearings: Three precision bearings for enhanced movement accuracy:
 - **Base Bearing**: Ensures stable and precise rotational movement.
 - **Elbow Bearing**: Provides accurate and fluid bending at the first articulation.
 - Arm Bearing: Offers smooth motion and stability at the arm joint.

3. Planetary gear system

Pedro features three planetary motion modules, fully 3D-printed. These modules enable smooth and precise movements, powered by a MG30S 360° motor placed at the center of each joint.

What is a planetary gear system in robotics?

A planetary gearbox is a gear mechanism that optimizes motion transmission by reducing speed and increasing torque. It consists of:

- The sun gear: the central gear (driven by the motor)
- 🌞 The planet gears: three gears rotating around the sun
- 🌞 The ring gear (here replaced by Pedro's structure), holding everything together

Why use a planetary system on Pedro?

- Increased power and precision
- Compact and robust design
- Fully 3D-printable with no complex parts

This system allows Pedro to execute smooth and precise movements in its three main joints: the base, shoulder, and elbow. No screws, no glue just 100% 3D printed

4. The Pedro Board

- **OLED Screen (128x64)**: Visualize data, debug in real-time, or create interactive menus.
- NRF24L01: Enable long-range wireless communication between Pedro or devices.
- **ESP8266-01 WiFi Module**: Bring your Pedro online with ease. (**Rev3 only**)
- **HC-05 Bluetooth Module**: Connect wirelessly to smartphones or other devices. (**Rev3 only**)

3. Assembling:

Step 1:

Step 2:

Step 3:

Multiple Choice Quiz 🔽