

Structured Matching for Phrase Localization

Mingzhe Wang, Mahmoud Azab, Noriyuki Kojima, Rada Mihalcea, Jia Deng

Computer Science and Engineering, University of Michigan, Ann Arbor

 $\sum_{i=1}^{n} y_{ij} \le 1, j = 1, 2, \dots, m$

 $0 \le y_{ij} \le 1, i = 1, \dots, n, j = 1, \dots, m$

A man sitting with

his leg spread out

on a steel platform

using his laptop

Introduction

Phrase Localization

· Given an image and its textual description, locate the image regions that correspond to the noun phrases in the description.

A woman wearing a black helmet riding

A man is working his horse on a racetrack. (examples from Flickr30Entities [1] dataset)

Our Contribution

- For the task of phrase localization, we propose a structured matching of phrases and regions that encourages the semantic relations between phrases to agree with the visual relations between regions.
- We formulate structured matching as a discrete optimization problem and relax it to a linear program to enable end-to-end training with neural networks.

Motivation

- Phrase localization requires a deep understanding of semantic relations among phrases.
- This leads to the problem of structured matching of regions and phrases: (1) individual regions agree with their corresponding phrases.
- (2) visual relations among regions agree with textual relations among corresponding phrases.

Contact

Email: mzwang@umich.edu

Approach

A man sitting with

*Partial coreference : introduced by possessive prenouns "his", "her" or "its". For example:

Partial Coreference

A woman is dressed in Asian garb with a basket of goods on her hip.

An instructor is teaching his students how to escape a hold in a self-defense class.

Structured Matching

- Denote z_{ijst} as the joint configuration of phrase p_i, p_s with r_i, r_t.
- Relaxation: Refer y_{ij} as the probability of p_i is matched with r_i . Then z_{ijst} is the joint probability of p_i is matched with r_i , p_s is matched with r_t . With the rule of marginalization:

$$\sum_{t=1}^{m} z_{ijst} = \sum_{t} \Pr(R(p_i) = r_j, R(p_s) = r_t) = \Pr(R(p_i) = r_j) = y_{ij}$$

A woman is sitting down and leaning her head on her hand while another woman is smiling

Experiments

Experiment Setup

Bipartite Matching

Denote y_{ij} as a matching configura-

tion, $y_{ij} = 1$ is phrase p_i is matched

Denote w_{ij} as the weight of phrase p_i

with region r_j , $y_{ij} = 0$ otherwise.

Solve the bipartite matching as a

problem of Linear Programming:

and region r_j .

- · Dataset: Flickr30K Entities [1].
 - · 31783 images and 500k regions.
- 500k noun phrases and 70k unique phrases.
- Evaluate with Recall@1 across all phrases.
- · A region is true if it overlaps with the ground truth in terms of IoU > 0.5.

Results				
Methods	Accuracy (Recall@1)			
CCA [1]	25.30			
NonlinearSP [2]	26.70 (43.89)			
SCRC [9]	27.80			
GroundR [3]	29.02 (47.70)			
MCB [28]	(48.69)			
CCA [29]	(50.89)			
Ours: CCA+Fast-RCNN	39.44			
Ours: Matching	41.78			
Ours: Structured Matching	42.08			

Methods			accuracy (Recall@1) on PC phrases only						
Bipartite Matching Structured Matching			47.8						
			49.3						
Methods	person	cloth ing	body parts	anim als	vehic les	instru ments	scene	other	
CCA[1]	29.58	24.20	10.52	33.40	34.75	35.80	20.20	20.75	
GroundR[3]	44.24 (53.80)	9.93 (34.04)	1.91 (7.27)	45.17 (49.23)	46.00 (58.75)	20.99 (22.84)	30.20 (52.07)	16.12 (24.13)	
CCA[29]	(64.73)	(46.88)	(17.21)	(65.83)	(68.75)	(37.65)	(51.39)	(31.77)	
Ours: CCA+FRCN	55.39	32.78	16.25	53.86	48.50	19.14	28.97	23.56	
Ours: Bipartite	57.94	34.43	16.44	56.56	51.50	27.16	33.42	26.23	
Ours: Structured	57.89	34.61	15.87	55.98	52.25	23.46	34.22	26.23	
Upperbound	89.36	66.48	39.39	84.56	91.00	69.75	75.05	67.40	

Qualitative Results

Successful cases

References

- [1] Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: Collecting region-to-phrase correspondences for richer image to setence models. ICCV 2015
- [2] Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving image-text embedings.CVPR 2016
- [3] Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., Schiele, B.: Grounding of textual phrases in images by reconstruction, ECCV 2016
- [9] Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., Darrell, T.: Natural language object retrieval. CVPR 2016 [28] Fukui, A., Park, D.H., Yang, D., Rohrbach, A., Darrell, T., Rohrbach, M.: Multimodal compact bilinear pooling for visual question answering and visual grounding, arXiv 2016
- [29] Plummer B.A. Wang J., Cervantes C.M., Caicedo J.C., Hockenmaier J., Lazebnik S.; Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. IJCV 2016

Code

https://github.com/mingzhew/structured-matching