Projet 5

Catégorisez automatiquement des questions

Plan de présentation

- 1. Présentation de problématique
- 2. Cleaning
- 3. Feature engineering
 - BOW
 - TF-IDF
 - Word2vect
- 4. Exploration
 - Analyse exploratoire
 - Réduction de dimension
- 5. Modélisation non-supervisée
 - LDA
 - Clustering
 - Approche basée sur les fréquences
- 6. Modélisation supervisée
- 7. Conclusion

1. Présentation de problématique

- Stack Overflow est une des plus grandes plateformes de questions réponses pour les développeurs
- Les utilisateurs peuvent poser des questions relatives au développement de code, mais souvent il faut mieux chercher dans les questions qui existent déjà

Aujourd'hui, la BDD contient :

- 47 millions de questions dont
- 4 millions de questions qui datent de 2019.
- Pour faciliter la classification des questions et la recherche, les utilisateurs sont censés de saisir jusqu'à 5 tags => mots clés qui caractérisent la question
- Les tags sont un texte libre (système d'aide automatique existe, mais pas de restriction sur le chaîne de caractères saisie)

1. Présentation de problématique

But de projet :

 Trouver un algorithme de machine learning qui aidera l'utilisateur à saisir les tags appropriés en faisant une prédiction de tags à partir de données texte renseignées

Intérêt de projet :

- Mieux classifier des questions
- Proposer des questions déjà existantes plus pertinentes
- Eviter des questions en doublons
- Fidéliser les utilisateurs en proposant un fonctionnement simple, rapide et efficace

Données :

- Analyses descriptives + modélisation : 50 000 questions de 2019
- Création d'un modèle word2vect : 500 000 questions de 2019

2. Cleaning

Features:

- Chaque feature est composées de titre et corps de question
- Exemple de corps :

- Particularités :
 - Contient du code
 - Contient des balises HTML
- Workflow de cleaning :

2. Cleaning

Cible:

- Composé de plusieurs tags séparés par <>
- Si le tag contient plusieurs mots, ceux-ci sont séparés par « »
- Exemple de cible :

```
'<java><executorservice><java-threads>'
```

=> Le cleaning consiste en suppression de <> et remplacement par l'espace

3. Features engineering Workflow

Plusieurs façons de **définition de feature** ont été testés :

- Titre uniquement
- Titre + corps
- Titre + corps + bigrams titre + bigrams corps
- Titre pondéré + corps
- Titre pondéré + bigrams titre + corps

3. Features engineering Bag of Words

- Méthode utilisée pour créer une matrice creuse à partir d'un corpus de texte
- Dimensions de la matrice :
 - o *n* lignes, où *n* représente le nombre de questions
 - o k colonnes, où k représente le nombre de n-grams de corpus
- Les éléments de la matrice représentent le comptage de nombre de fois le mot apparaît dans la question
- Création BOW de cible : matrice binaire, car chaque tag n'est présent qu'une fois dans chaque question => avantage pour la modélisation (par exemple pour appliquer une régression logistique)

3. Features engineering TF-IDF

- TF- IDF = Term-Frequency Inverse Document Frequency
- Equivalent de la méthode Bag of Words
- Les mêmes dimensions de la matrice :
 - o *n* lignes, où *n* représente le nombre de questions
 - o *k* colonnes, où *k* représente le nombre de n-grams de corpus

• Différence :

- o les termes de la matrice sont calculés comme fréquence pondérée :
- o Fréquence de terme au sein d'un document / fréquence inversée de terme dans le corpus

3. Features engineering Word2vect

- Méthode de word embedding (plongement de mots) pour créer une matrice dense
- Les mots sont représentés par vecteurs => possibilité de calculer les distances, les similarités entre les mots, ainsi que des opérations arithmétiques
- Il est possible d'utiliser des dictionnaires qui existent déjà et qui sont disponible en ligne, par exemple des vecteurs pré-entraîné sur Google News dataset (100 billion mots)
- Etant donné que notre problématique est spécifique dans le domaine d'informatique, j'ai créé mon propre modèle à partir de 500 000 questions publiées en 2019
- 2 modèles ont été testés : vecteurs de taille 300 et 400
- Exemple de tests effectués sur le modèle :

4. Exploration Analyse exploratoire

4. Exploration Analyse exploratoire - cible

Les tags les plus fréquents :

	Word	Frequence	Pourcentage	Pourc cum
3511	python	3777	4.021508	4.021508
2136	javascript	3632	3.867121	7.888629
2113	java	2548	2.712947	10.601576
816	o#	1927	2.051746	12.653322
164	android	1905	2.028322	14.681644

La première expression est présente 3777 fois, ce qui représente 4 % de posts.

Les tags les moins fréquents :

	Word	Frequence	Pourcentage	Pourc cum
413	appsettings	2	0.002129	99.991482
414	appsflyer	2	0.002129	99.993612
415	appveyor	2	0.002129	99.995741
848	callgrind	2	0.002129	99.997871
313	angular-ng-if	2	0.002129	100.000000

Nombre de tags par post : • min = 1 / max = 5

• médian = 3 • moyen = 3

• 11,5 k tags

4. Exploration Réduction de dimension

- Réduction de dimension d'un échantillon de 1000 questions, matrice TF-IDF
- Méthodes testées : ACP et t-SNE
- Affichage d'un sous-ensemble de tags contenant mot spécifiques: python, php, github, javascript

5. Modélisation non-supervisée Latent Dirichlet Allocation

LDA est une méthode non-supervisée générative qui nous permets d'évaluer un nombre donné de thèmes présents dans le corpus et de retourner les mots clés les plus pertinents pour chaque sujet

- Objectif : Récupérer les thèmes potentielles pour reformuler les tags et réduire leur nombre
- Désavantage de la méthode : Difficile de trouver des thème précis, distincts et interprétable.
- Workflow: Test de plusieurs types de définition de features (BOW, TF-IDF avec titre, titre pondéré, bigrams etc.), puis tuning de paramètres de modèle
- Interprétation de sujets : dans le « meilleur » modèle visualisation interactive à l'aide de LDAvis :
- Conclusion : Certains sujets sont interprétable, d'autre non. Difficile à utiliser pour reformuler la cible

5. Modélisation non-supervisée Clustering

- Méthode utilisée: Kmeans, données transformées par TF-IDF
- **But :** Trouver des clusters avec des questions similaires, déterminer les sujets et réduire le nombre de tags

Workflow:

Fonction utilisée dans sci-kit learn : MiniBatchKMeans

5. Modélisation non-supervisée Clustering

Résultats pour le titre codé avec TF-IDF :

Coefficient de silhouette est faible, mais augmente avec le nombre de clusters. Nous avons choisi un nombre « raisonnable » de clusters qui forme un pic sur la courbe : 14 clusters

5. Modélisation non-supervisée Clustering

Conclusion: Les clusters ne sont pas très nets et difficiles à interpréter.

5. Modélisation non-supervisée Approche basée sur les fréquences

Méthode inspirée par un approche non-supervisée proposée par Ha-Cohen-Kerner en 2003

Principe de la méthode :

- 1. Créer un dictionnaire de tags
- 2. Créer un dictionnaire d'expressions de questions composée par titre, corps et leur bigrams
- 3. Comparer les expressions communes au dictionnaire de tags et au dictionnaire de questions
- 4. Calculer les fréquences TF IDF d'expressions de la question et classer par ordre décroissant
- 5. Sortir 3 tags les plus fréquents

Avantages :

- Rapidité de calcul
- Propose au moins 1 tags dans 99,99 % de cas

Inconvénients :

Ne fait aucune estimation de tags qui ne figurent pas parmi les expressions écrites par utilisateur

Conclusion :

 Modèle est simple et donne des résultat intéressants. Utilisation comme modèle de « baseline » pour comparer avec la modélisation supervisée

- 1. Réduire le nombre de tags
- 2. Echantillonnage + Séparation en jeu d'entraînement et de validation
- 3. Entraînement de plusieurs modèles avec plusieurs types de features

4. Choix de modèle

5. Validation sur les données test

6 . Comparaison avec le modèle de baseline

- 1. Réduction de nombre de tags
 - Pas de méthode appropriée parmi les modèles non-supervisés testés => réduction de nombre de tags par rapport à leur fréquences.
 - Suppression de tags avec moins de 0.1 % d'effectif
 - Top tags = 130 tags les plus fréquents
 - Après la suppression 15 % de question se retrouve sans aucun tag

2. Données pour choisir le modèle

3. Entraînement de plusieurs modèles avec plusieurs types de features

- Feature = titre pondéré + corps
 - Bag of words
 - o TF-IDF
 - Word2vect (2 modèles différents)
- Cible = matrice binaire de 130 labels
- Modèles de classification multilabel
 - Régression logistique
 - o KNN
 - Arbres de décision
 - Forêts aléatoires

4. Choix de modèle

- Critère de choix :
 - Score F1 micro avg, qui calcule le score en se basant sur le nombre de TP et FN et FP global
 - Score F1 est une moyenne harmonique de précision et recall => prend en considération les tags prédits par erreur ET les tags qui ne sont pas prédits par erreur
- Le meilleur modèle :
 - Régression logistique avec TF-IDF, F1 = 0.47, Précision = 0.75, Recall = 0.35

5. Validation sur les données test

• Le jeu de données test (15 000 questions / 50 000) mise de côté tout au début

• Résultat :

- \circ F1 = 0.56
- o Précision = 0.76
- \circ Recall = 0.44

6. Comparaison avec le modèle de baseline

		Critère	Modèle de baseline	Modèle supervisé
I	١.	Temps d'exécution	0.15 sec	0.06 sec
I	ı.	Nombre de questions avec au moins 1 prédiction	99.99 %	59.46 %
I	III.	Nombre de questions avec au moins 1 prédiction correcte	36.89 %	50.41 %

Prédiction de tags pour une question test aléatoire :

Titre: IPV4 traffic not working with AWS egress only internet gateway

<I have assigned an egress only internet gateway to my private subnet. Now I can connect with IPV6 websites bu</p>

Corps: t not with IPV4 addresses.

O I need NAT gateways to access IPV4 address from my EC2 machine? (Only outgoing traffic)

private

Tags prédits modèle de baseline : gateway

--- 0.15600037574768066 seconds ---

amazon-web-services

Tags prédits modèle supervisé : --- 0.06240034103393555 seconds ---

7. Présentation d'API

2 Saisir le texte

```
Entrée [*]: # User's title input
    title = input("Title: ")

Title:

Entrée [*]: # User's body input
    body = input("Body: ")
```

3 Retourner les tags prédits

```
Entrée [*]: # Cleaning
body_clean = post_to_words(body)
title_clean = post_to_words(title)
post_w = (title_clean + " ") *3 + " " + body_clean
post_w = Series(post_w)

# Formatting
new_question_final = tf_idf_final.transform(post_w)
new_question_final = new_question_final.toarray()

# Fit the sample
predicted_tags_new_quest = model_final.predict(new_question_final)

# Print the tags
for freq, word in zip(predicted_tags_new_quest[0], y_train_final_vocab):
    if freq > 0:
        print(word)
```

8. Conclusion

Afin de prédire les tags à partir de données texte, la régression logistique est le meilleur modèle parmi les algorithmes testés

Avantages:

- o Rapidité de prédiction,
- Précision

Désavantage :

Le modèle donne des prédictions positifs dans seulement 60 % de cas

Améliorations proposées:

- Réduire le seuil de prédiction positive pour obtenir plus de tags prédits
- Créer un modèle hybride qui prend en compte et les tags prédit par le modèle supervisé et le modèle de baseline

9. Liens & ressources

 Le code de projet, les documents, ainsi que le code final d'API est accessible ici : https://github.com/Lenka-St/Projet5

• Ressources:

- o https://www.kaggle.com/c/word2vec-nlp-tutorial#part-1-for-beginners-bag-of-words
- o http://www.nltk.org/book/ch01.html
- o https://towardsdatascience.com/topic-modeling-and-latent-dirichlet-allocation-in-python-9bf156893c24
- o https://towardsdatascience.com/using-word2vec-to-analyze-news-headlines-and-predict-article-success-cdeda5f14751
- o https://www.kaggle.com/jbencina/clustering-documents-with-tfidf-and-kmeans
- o https://www.kdnuggets.com/2019/09/overview-topics-extraction-python-latent-dirichlet-allocation.html
- o https://medium.com/datadriveninvestor/predicting-tags-for-the-questions-in-stack-overflow-29438367261e
- https://towardsdatascience.com/improving-the-stack-overflow-search-algorithm-using-semantic-search-and-nlpa23e20091d4c