Digital Logic Design Daily Practice Problems Day - 3

- 31. $\mathbf{A} + \overline{\mathbf{A}}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\mathbf{D} + \cdots =$ (a) $\mathbf{A} + \mathbf{B} + \mathbf{C} + \cdots$
 - (b) $\overline{A} + \overline{B} + \overline{C} + \overline{D} + \cdots$
 - (c) 1
 - (d) 0

32. The complement of a Boolean expression is obtained by

- (a) interchanging all 0s and 1s
- (b) interchanging all 0s and 1s, all + and '·' signs
- (c) interchanging all 0s and 1s, all + and '·' signs and complementing all the variables
- (d) interchanging all + and '·' signs and complementing all the variables

Use the Code: BVREDDY, to get Maximum Discount

33. In function W, X, Y and Z are as follows

$$W = R + \overline{P}Q + \overline{R}S$$

 $X = PQ\overline{R}\overline{S} + \overline{P}\overline{Q}\overline{R}\overline{S} + P\overline{Q}\overline{R}\overline{S}$
 $Y = RS + \overline{PR + PQ + \overline{P}Q}$
 $Z = R + S + \overline{PQ + \overline{P}Q}\overline{R} + P\overline{Q}\overline{S}$

Then

(a)
$$W = Z, X = \bar{Z}$$

(c)
$$W = Y$$

(b)
$$W = Z, X = Y$$

(d)
$$W = Y = \bar{Z}$$

(a)
$$\bar{C} + \bar{D}$$

What does the Boolean expression

 $AD + ABCD + ACD + \overline{A}B + ACD + \overline{A}\overline{B}$, on minimization result into?

$$(a) A + D$$

(a)
$$A + D$$
 (b) $AD + \overline{A}$

(d)
$$\bar{A} + D$$

36. The minimized form of the logical expression

$$(\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC})$$
 is

(a)
$$A\bar{C} + B\bar{C} + A\bar{B}$$

(c)
$$\bar{A}C + \bar{B}C + \bar{A}B$$

(b)
$$A\bar{C} + \bar{B}C + \bar{A}B$$

(d)
$$A\bar{C} + \bar{B}C + A\bar{B}$$

The reduced form of the Boolean expression $A[B + C(\overline{AB + AC})]$ is

(a) $\bar{A}B$

(b) $A\bar{B}$

(c) AB

(d) $AB + B\bar{C}$

Use the Code: BVREDDY, to get Maximum Discount

38. The minimized form of the logical expression

$$(\overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + \overline{A} B C + A B \overline{C})$$
 is

(a)
$$\bar{A}\bar{C} + B\bar{C} + \bar{A}B$$

(c)
$$\bar{A}C + \bar{B}C + \bar{A}B$$

(b)
$$A \bar{C} + \bar{B} C + \bar{A} B$$

(d)
$$A\bar{C} + \bar{B}C + A\bar{B}$$

39. If X = 1 in the logic equation

$$[X + Z \{\overline{Y} + (\overline{Z} + X \overline{Y})\}] \{\overline{X} + \overline{Z}(X + Y)\} = 1 \text{ then}$$
(a) Y = Z (b) $Y = \overline{Z}$ (c) Z = 1 (d) Z = 0

40. The simplified form of the Boolean expression

 $Y = (\overline{A} B C + D)(\overline{A} D + \overline{B} \overline{C})$ can be written as

- (a) $\bar{A}D + \bar{B}\bar{C}D$
- (c) $(\bar{A} + D)(\bar{B} C + \bar{D})$

- (b) $A D + B \bar{C} D$
- (d) $A \overline{D} + B C \overline{D}$

41. The simplified form of a logic function $\mathbf{W} = \mathbf{x}(\mathbf{y} + \mathbf{z}(\overline{\mathbf{x}\mathbf{y} + \mathbf{x}\mathbf{z}}))$ is (a) $\mathbf{x}\,\bar{\mathbf{y}}$ (b) $\mathbf{x}\bar{\mathbf{y}}$ (c) $\mathbf{x}\mathbf{y}$ (d) $\mathbf{x}\mathbf{y}$

42. Let $\mathbf{A}^*\mathbf{B} = \mathbf{A} + \overline{\mathbf{B}}$ and $\mathbf{y} = \mathbf{A} * \mathbf{B}$ then the value of $\mathbf{z} = \overline{\mathbf{y}} * \overline{\mathbf{B}}$ is

(a) A

(b) 1

(c) B

(d) \overline{B}

The simplified form of the Boolean expression 43.

AB + A(B + C) + B(B + C) is given By

- (a) AB + AC (b) B + AC (c) BC + AC

(d) AB + C

P, Q, R are Boolean variables, then $(P + \overline{Q})(P.\overline{Q} + P.R)(\overline{P}.\overline{R} + \overline{Q})$ 44. simplifies to

(a) $P.\bar{Q}$ (b) $P.\bar{R}$

(c) $P.\bar{Q} + R$ (d) $P.\bar{R} + Q$

45. The simplified SOP (Sum of Product) form of the Boolean expression

$$(P + \bar{Q} + \bar{R}).(P + \bar{Q} + R).(P + Q + \bar{R})$$

(a) $(P + \bar{Q} + \bar{R})$ (b) $(P + \bar{Q}.\bar{R})$ (c) $(\bar{P}.Q + R)$ (d) $(P.Q + R)$

46. Which of the following Boolean function equation are true?

(i)
$$xy + x'z + yz = xy + x'z$$

(ii)
$$(x + y) (x' + z) (y + z) = (x + y) (y' + z)$$

(a) only (i)

- (b) only (ii)
- (c) Both (i) and (ii)
- (d) Neither (i) Nor (ii)

47. The Boolean equation $X = [(A + \overline{B})(B + C)]B$ can be simplified to

(a)
$$X = \overline{A}B$$

(c)
$$X = AB$$

(b)
$$X = A\overline{B}$$

(d) $X = \overline{A}\overline{B}$

(d)
$$X = \overline{A} \overline{B}$$

48. The simplified expression of the Boolean function

$$F = \overline{AB} (CD + \overline{E}F)(\overline{AB} + \overline{CD})$$
 is

(a)
$$AB + (\bar{C} + \bar{D})(\bar{E} + \bar{F})$$

(c)
$$A\bar{B} + (\bar{C} + \bar{D})(E + \bar{F})$$

(b)
$$AB + (C + D)(E + \bar{F})$$

(d)
$$AB + (\bar{C} + \bar{D})(E + \bar{F})$$

49.
$$f(A, B, C) = [A + B + AB] [A + C + AC]$$

(a) $AB + C$ (b) $A + B$ (c) $A + C$ (d) $A + BC$

Use the Code: BVREDDY, to get Maximum Discount

Simplified form of the logic expression $(A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C)$ is 50.

(a)
$$\overline{AB} + \overline{C}$$
 (b) $A + \overline{BC}$ (c) A (d) $AB + \overline{C}$

(c) A (d)
$$AB + \overline{C}$$

Use the Code: BVREDDY, to get Maximum Discount

The Boolean function x'y'+xy+x'y is equivalent to
(A) x'+y' (B) x+y (C) x+y' (D) x'+y

52. The Boolean expression

$$\overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z + X Y \overline{Z} + X \overline{Y} Z + X Y Z$$
 can be simplified to

(A)
$$X \bar{Z} + \bar{X} Z + Y Z$$

(C)
$$\overline{X}Y + YZ + XZ$$

(B)
$$XY + \overline{Y}Z + Y\overline{Z}$$

(D)
$$\overline{XY} + Y \overline{Z} + \overline{X} Z$$

53. Let * be defined as $x * y = \overline{x} + y$, Let z = x * y. Value z * x is

(A) $\overline{x} + y$ (B) x (C) 0 (D) 1

Logic function ABD + ABD can be reduced to:

(a) AB
(b) AB
(c) BD
(d) AD

- 55. The logic function
 - $f(A, B, C, D) = (\overline{A} + BC) (B + CD)$ can be expressed to:
 - (a) \overline{A} B+BC+ \overline{A} CD+BCD
 - (b) $AB + A\overline{B} + A\overline{C}D + BCD$
 - (c) $AB + \overline{AB} + \overline{ACD} + B\overline{CD}$
 - (d) $A\overline{B} + \overline{A}B + \overline{A}CD + BCD$

The Boolean expression (a+b+c+d)+(b+c) simplifies to

(A) 1 (B) $\overline{a.b}$ (C) a.b (D) 0

57. The Boolean expression XY + (X'+ Y')Z is equivalent to
 (A) XYZ'+ X'Y'Z (B) X'Y'Z'+ XYZ
 (C) (X+Z) (Y+Z) (D) (X'+Z)(Y'+Z)

The Boolean expression $(X+Y)(X+\overline{Y})+\overline{X}\overline{Y}+\overline{X}$ simplifies to (A) X (B) Y (C) XY (D) X+Y 59. If X = 1 in the logic equation

$$\left[X+Z\left\{\overline{Y}+\left(\overline{Z}+X\overline{Y}\right)\right\}\right]\left\{\overline{X}+\overline{Z}(X+Y)\right\}=1, \text{then}$$
(A) Y=Z (B) Y=\overline{Z} (C) Z=1 (D) Z=0

- 60. The Boolean expression AC + BC is equivalent to
 - (A) $\overline{AC} + \overline{BC} + \overline{AC}$
 - (B) $\overline{BC} + AC + B\overline{C} + \overline{ACB}$
 - (C) $AC + B\overline{C} + \overline{B}C + ABC$
 - (D) ABC+ABC+ABC+ABC