11月4日上机实习安排

使用MS软件CASTEP模块完成:

Spin-polarized calculation for magnetic Fe membranes:

- Build slab models for square & triangular Fe membranes
- (No Geometry optimizations !!!) directly perform spin-polarized calculations for different magnetic states
- 3. Perform spin-polarized calculations for FCC & HCP Fe bulks

HCP(001)_Rhombic Membrane

Background of Fe Membranes

Fe membrane suspended in graphene nanocavity

Science 2014, 343, 1228.

Background of Fe Membranes

Collapse of a suspended single-atom Fe layer under electron irradiation

Science 2014, 343, 1228.

Reference Structures

FCC Crystal

(b)

FCC(100)_Square Membrane

2.35 Å60°

HCP Crystal HCP(001)_Rhombic Membrane

Chen, S. and Zeng, X. C. ACS Appl. Mater. Interfaces 2017, 9, 12100.

2.46 Å

function (21). The calculations show that the in-plane square lattice of monolayer Fe is energetically favored over the other possible 2D configurations, including tetragonal, hexagonal, and so forth. The calculations suggest the most stable lattice constant for monolayer Fe is ~2.35 Å, which is smaller than our experimental value of 2.65 ± 0.05 Å; however, the calculated energy difference between 2.35 Å and 2.65 Å is not large (0.2 eV per atom) (table S1). In addition, some physical aspects not considered in the calculations could lead to a larger lattice constant. For

Science 2014, 343, 1228.

Structural Evolution of Fe Nanostructures

Morphology Change from Metastable 2D Fe Membrane to 3D Cluster

1. Build the Slab Models

- 1 Cleave surface along (100) plane of FCC Fe bulk (thickness: 0.5) or along (001) plane of HCP Fe bulk (thickness: 0.5)
- 2 Add 20 Å-vacuum layer

③ Build → Symmetry → Supercell (2×2×1)

Computational Setting:

- Method PBE
- Mark "Spin polarized"
- Mark "Use formal spin as initial"
- Mark "Use LDA+U"
- Mark "Metal"
- Cutoff energy: 400 eV
- FFT grid density: standard
- SCF tolerance: 1e-5 eV/atom
- K points: Gamma point only

Electronic Configuration Setting for Ferromagnetic State:

(Modify → Electronic Configuration)

- Formal charge: 0
- Formal spin: changing from 0 to 4
- Hubbard U for d orbital of Fe atoms: 3.00 eV

Apply

Help

11

OK.

Cancel

Choose "No" to start the single-point calculations.

- ➤ By switching different magnetic states also with different formal spins (from 1 to 4), the energies of Fe membranes with different magnetic states are estimated, learning from *.castep file.
- The one with the lowest energy would be the most possible magnetic state that we search for.
- Compare to the Fe bulks and make conclusion.