Normalization

Trivial Functional Dependency

- Trivial If a functional dependency (FD) X → Y holds, where Y is a subset of X, then it is called a trivial FD. Trivial FDs always hold.
- Non-trivial If an FD X → Y holds, where Y is not a subset of X, then it is called a non-trivial FD.
- **Completely non-trivial** − If an FD $X \rightarrow Y$ holds, where x intersect $Y = \Phi$, it is said to be a completely non-trivial FD.

Full Dependency

- If the determinant of the dependency is either a candidate key or a super key then such dependency is defined as full dependency.
- Note: (1) There is no condition on dependent.
 - (2) The amount of redundancy caused by each and every full dependency is zero.

Partial Dependency

- If a non-prime attribute of the relation is getting derived by only a part of the composite candidate key then such dependency is defined as partial dependency.
- Note:(1) While identifying the partial dependencies we shall verify that the dependent must be a non-prime attribute and the determinant must be a part of candidate key.
- (2) In order to have partial dependency in a relation, it should have at least one composite candidate key.
 (3) Partial dependency will cause redundancy and hence it will get eliminated by normalization technique.

Transitive Dependency

- If a non-prime attribute of the relation is getting derived by either another non-prime attribute or the combination of part of the candidate key along with a non-prime attribute then such dependency would be defined as transitive dependency.
- Note: (1) While identifying the transitive dependency make sure that the dependent is a non-prime attribute and the determinant could be either a non-prime attribute or the combination of part of the candidate key along with non-prime attribute. (2) Transitive dependency will cause redundancy in the relation and hence it will get eliminated by normalization technique.

Example: For relation R(A,B,C,D,E) if AD is a candidate key then Prime attributes = {A,D} Non prime attributes = {B,C,E}

- Prime attributes = parts of candidate key of given relational table.
- Non-prime attributes = not a part of candidate key.

1NF: The relation should have no non-atomic

values.

R_{non1NF}

<u>ID</u>	Name	LivesIn
<u>100</u>	Pettersson	{Stockholm, Linköping}
<u>101</u>	Andersson	{Linköping}
<u>102</u>	Svensson	{Ystad, Hjo, Berlin}

<u>ID</u>	Name
100	Pettersson
<u>101</u>	Andersson
102	Svensson

What about multi-valued composite attributes 2

R2_{1NF}

<u>ID</u>	<u>LivesIn</u>
<u>100</u>	<u>Stockholm</u>
<u>100</u>	<u>Linköping</u>
101	Linköping
<u>102</u>	<u>Ystad</u>
<u>102</u>	<u>Hjo</u>
102	<u>Berlin</u>

- 2NF: no nonprime attribute should be functionally dependent on a part of a candidate key (= partial dependency).
- 2NF: Every nonprime attribute is fully functionally dependent on every candidate key.
- A table is said to be in 2NF if both the following conditions hold:
- 1. Table is in 1NF (First normal form)
- 2. No non-prime attribute is dependent on the proper subset of any candidate key of table.

 2NF: no nonprime attribute should be functionally dependent on a part of a candidate key (= partial dependency).

R_{non2NF}

EmpID	<u>Dept</u>	Work%	EmpName
<u>100</u>	<u>Dev</u>	50	Baker
<u>100</u>	<u>Support</u>	50	Baker
<u>200</u>	<u>Dev</u>	80	Miller

R1_{2NF}

<u>EmplD</u>	EmpName
100	Baker
200	Miller

 $R2_{2NF}$

<u>EmpID</u>	<u>Dept</u>	Work%
<u>100</u>	<u>Dev</u>	50
<u>100</u>	Support	50
<u>200</u>	<u>Dev</u>	80

Teacher_id	Subject	Teacher_name
1	Maths	A
1	Physics	A
2	Biology	В
3	Physics	C
3	Chemistry	C

Candidate Keys:
{teacher_id, subject}
Non prime attribute:
teacher_name

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because non prime attribute teacher_name is dependent on teacher_id alone which is a proper subset of candidate key. This violates the rule for 2NF as the rule says "**no** non-prime attribute is dependent on the proper subset of any candidate key of the table".

To make the table complies with 2NF we can break it in two tables.

teacher_details table:

Teacher_id	Teacher_name
1	A
2	В
3	C

teacher_subject table:

Teacher_id	Subject
1	Maths
1	Physics
2	Biology
3	Physics
3	Chemistry

- 3NF: 2NF + no nonprime attribute is transitively dependent on any candidate key.
- 3NF: 2NF + no nonprime attribute should be functionally dependent on a set of nonprime attributes.
- A table is in 3NF if it is in 2NF and for each functional dependency X-> Y at least one of the following conditions hold:
- 1. X is a **super key** of table
- 2. Y is a prime attribute of table

3NF: 2NF + no nonprime attribute should be functionally dependent on a set of nonprime attributes

R_{non3NF}

<u>ID</u>	Name	Zip	City
<u>100</u>	Andersson	58214	Linköping
<u>101</u>	Björk	10223	Stockholm
<u>102</u>	Carlsson	58214	Linköping

R1_{3NF}

<u>ID</u>	Name	Zip
<u>100</u>	Andersson	58214
<u>101</u>	Björk	10223
<u>102</u>	Carlsson	58214

R2_{3NF}

<u>Zip</u>	City
58214	Linköping
<u>10223</u>	Stockholm

emp_id	emp_name	emp_zip	emp_state	emp_city	emp_district
1001	John	282005	UP	Agra	Dayal Bagh
1002	Ajeet	222008	TN	Chennai	M-City
1006	Lora	282007	TN	Chennai	Urrapakkam
1101	Lilly	292008	UK	Pauri	Bhagwan
1201	Steve	222999	MP	Gwalior	Ratan
emp_nar Candida Non-prii prime as Here, er emp_zip non-prii transitive	Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip} Candidate Keys: {emp_id} Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any candidate keys. Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively dependent on super key (emp_id). This violates the rule of 3NF.				

employee table:

emp_id	emp_name	emp_zip
1001	John	282005
1002	Ajeet	222008
1006	Lora	282007
1101	Lilly	292008
1201	Steve	222999

employee_add table:

emp_zip	emp_state	emp_city	emp_district
282005	UP	Agra	Dayal Bagh
222008	TN	Chennai	M-City
282007	TN	Chennai	Urrapakkam
292008	UK	Pauri	Bhagwan
22999	MP	Gwalior	Ratan

Boyce-Codd Normal Form

- $lue{o}$ A table R is in BCNF if for every non-trivial FD A \rightarrow B, A is a super key.
- BCNF: Every determinant is a super key (in practice: every determinant is a candidate key)
- BCNF = decompose if X \rightarrow A is such that X is not a super key and A is a prime attribute.
- © Example: Given R(A,B,C,D) and $AB \rightarrow CD$, $C \rightarrow B$. Then R is in 3NF but not in BCNF
- C is a determinant but not a super key (tuples are not uniquely identified in R)

emp_id	emp_nationality	emp_dept	dept_type	dept_no_of_emp
1001	Austrian	Production and planning	D001	200
1001	Austrian	stores	D001	250
1002	American	design and technical support	D134	100
1002	American	Purchasing department	D134	600

emp_id->emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables

emp_nationality table:	emp_id	emp_nationality
1	1001	Austrian
	1002	American

emp_dept table:

emp_dept	dept_type	dept_no_of_emp
Production and planning	D001	200
stores	D001	250
design and technical support	D134	100
Purchasing department	D134	600

emp_dept_mapping table:

emp_id	emp_dept
1001	Production and planning
1001	stores
1002	design and technical support
1002	Purchasing department

• Functional dependencies:

emp_id -> emp_nationality emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

- Boyce-Codd Normal Form (BCNF) 3NF and all tables in the database should be only one primary key.
- Fourth Normal Form (4NF)
 Tables cannot have multi-valued dependencies on a Primary Key.
- Fifth Normal Form (5NF)
 A composite key shouldn't have any cyclic dependencies.

S_ID	Subject	Activity
1	H	T
1	E	T
1	Н	S
1	E	S
2	M	J

S_ID	Subject
1	Н
1	E
2	M

S_ID	Activity
1	T
1	S
2	J

AGENT_COMPANY_PRODUCT			
Agent Company Produ		Product	
Suneet	ABC	Nut	
Raj	ABC	Bolt	
Raj	ABC	Nut	
Suneet	CDE	Bolt	
Suneet	ABC	Bolt	

P1		
Agent	Company	
Suneet	ABC	
Suneet	CDE	
Raj	ABC	

P2		
Agent	Product	
Suneet	Nut	
Suneet	Bolt	
Raj	Bolt	
Raj	Nut	

Р3		
Product		
Nut		
Bolt		
Bolt		

P1 ⋈ P2	_	_
Agent	Company	Product
Suneet	ABC	Nut
Suneet	ABC	Bolt
Suneet	CDE	Nut
Suneet	CDE	Bolt
Raj	ABC	Bolt
Raj	ABC	Nut

Р3		
Company	Product	
ABC	Nut	
ABC	Bolt	
CDE	Bolt	

P1 ⋈ P2 ⋈ P3			
Agent	Company	Product	
Suneet	ABC	Nut	
Suneet	ABC	Bolt	
Suneet	CDE	Bolt	
Raj	ABC	Nut	
Raj	ABC	Bolt	

Properties of decomposition

- Keep all attributes from the universal relation R.
- FD preservation: Preserve the identified functional dependencies.
- Lossless join decomposition: It must be possible to join the smaller tables to arrive at composite information without spurious tuples.

- An algorithm for decomposing a table into 3NF with both properties is as follows:
- Find the minimal cover of F. Suppose it is E.
- 2. For each FD $A \rightarrow B$ in E, if b is a non-key attribute, have a table (A, B), where A is the primary key.
- (optional but good) Merge tables that have identical primary key.
- 4. Have a table R-B, where B is the set of nonkey attributes that appeared on the RHS of some FD in E.

```
Suppose R = (a, b, c, d, e, f)
The FD set F contains a,b \rightarrow c,d,e and d \rightarrow a.
The minimal cover of the functional dependencies is:
a,b-->c
a,b-->d
a,b-->e
d--->a
The candidate keys are
b,f,a
b,f,d
Thus c, e are non-key attributes.
  The table is NOT in 2NF because
                                                  there
                                                           are
  partialdependencies .e.g., a.b → c
A FD-preserving decomposition to 3NF works as follows:
  Using step 2, we will have two tables (a,b,c) and (a,b,e),
  where {a,b} is the primary key.
Using step 3, we merge the above table into (a,b,c,e).
Using step 4, we get the table (a,b,d,f).
```