A Book of Abstract Algebra (2nd Edition)

1 Bookmark

Show all steps: (

ON

Problem

Prove part:

Let *p* and *q* be distinct primes. Then $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

Step-by-step solution

Step 1 of 3

Consider any two distinct prime numbers p and q. Objective is to prove that

$$p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$$

Since p and q are distinct prime numbers, therefore both are relatively primes, or

$$\gcd(p,q)=1$$

Consider the following result:

If $a \equiv 1 \pmod{m}$ and $a \equiv 1 \pmod{n}$ where gcd(m, n) = 1, then $a \equiv 1 \pmod{mn}$.

Comment

Step 2 of 3

By Fermat's theorem,

$$p^{q-1} \equiv 1 \pmod{q}$$

Also,
$$q^{p-1} \equiv 0 \pmod{q}$$
.

On adding both the congruences, one get

$$p^{q-1} + q^{p-1} \equiv 1 \pmod{q}$$

On adding both the congruences, one get
$p^{q-1} + q^{p-1} \equiv 1 \pmod{p}$
Thus, by using the above result it implies that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.
Comment

Similarly, again by Fermat's theorem, $q^{p-1} \equiv 1 \pmod{p}$. Also, $p^{q-1} \equiv 0 \pmod{p}$.

Step 3 of 3

Hence, for distinct primes p and q, $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

Comment