Lecture 9-1: Merge Sort

Sunghyun Cho

Professor
Division of Computer Science
chopro@hanyang.ac.kr

HANYANG UNIVERSITY

Keywords

Sorting

Selection

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S₁ and S₂
 - Recur: solve the subproblems associated with S₁ and S₂
 - Conquer: combine the solutions for S₁ and S₂ into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It uses a comparator
 - It has $O(n \log n)$ running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

HANYANG UNIVERSITY

3

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm *mergeSort(S, C)*

Input sequence *S* with *n* elements, comparator *C*

Output sequence *S* sorted according to *C*

if S.size() > 1

 $(S_1, S_2) \leftarrow partition(S, n/2)$

 $mergeSort(S_1, C)$

 $mergeSort(S_2, C)$

 $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(A, B)

Input sequences A and B with n/2 elements each

Output sorted sequence of A \cup B

S \leftarrow \text{empty sequence}

while \neg A.isEmpty() \land \neg B.isEmpty()

if A.first().element() < B.first().element()

S.addLast(A.remove(A.first()))

else

S.addLast(B.remove(B.first()))

while \neg A.isEmpty()

S.addLast(A.remove(A.first()))

while \neg B.isEmpty()

S.addLast(B.remove(B.first()))

return S
```

HANYANG UNIVERSITY

5

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

Execution Example (cont.)

Recursive call, partition

Recursive call, partition

Execution Example (cont.)

Recursive call, base case

Recursive call, base case

Execution Example (cont.)

Merge

◆Recursive call, ..., base case, merge

Execution Example (cont.)

Merge

Recursive call, ..., merge, merge

Execution Example (cont.)

Merge

Merging Arrays

Code Fragment 13.1: Algorithm for merging two sorted array-based sequences (textbook p. 537)

Figure 13.5: A step in the merge of two sorted arrays (textbook p. 537)

17 HANYANG UNIVERSIT

Merging (Linked) Lists

Code Fragment 13.3: Algorithm for merging two sorted sequences implemented as a queue (textbook p. 541)

A step in the merge of two sorted linked lists

Trace of merge results for bottom-up mergesort

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- \bullet The overall amount or work done at the nodes of depth *i* is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- \bullet Thus, the total running time of merge-sort is $O(n \log n)$

depth #seqs size

0 1 n

1 2 n/2

i 2ⁱ n/2ⁱ

HANYANG UNIVERSITY

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	$O(n \log n)$	■ fast 합을 생성하는 것 자체가 ■ in-place 과부화가 걸림 ■ for large data sets (1K — 1M)
merge-sort	$O(n \log n)$	 ■ fast 추가적 메모리가 필요해 in-place가 안됨 ■ sequential data access ■ for huge data sets (> 1M)

HARYANG UNIVERSITY

19