Beating the House (You Will Not Beat the House)

A.C.

August 7, 2024

Outline

Putting It All On Black
Playing it Straight
Getting Back to Even
Xeno's Gamble

Fast Horses, Faster Money

The Rules

1. Place a bet with probability p and payout ratio r.

The Rules

- 1. Place a bet with probability p and payout ratio r.
- 2. The wheel spins.

The Rules

- 1. Place a bet with probability p and payout ratio r.
- 2. The wheel spins.
- 3. Get paid . . . or don't.
 - 3.1 House advantage: pr < 1

$$X = \alpha \left(-1 + r \mathbb{I}(\mathsf{Win}) \right)$$

Open Decisions

- ► What bet to place.
 - Black feels lucky.
 - $p \approx 0.47$
 - ightharpoonup r = 2

Open Decisions

- ► What bet to place.
 - Black feels lucky.
 - $p \approx 0.47$
 - ightharpoonup r=2
- How much to bet.

Open Decisions

- ► What bet to place.
 - Black feels lucky.
 - $p \approx 0.47$
 - r=2
- How much to bet.
- When to walk away.

The System

```
 \begin{aligned} & \textbf{procedure} \  \, \text{ConstantBets} \\ & \alpha \leftarrow 1 \\ & \textbf{while} \  \, \text{true} \  \, \textbf{do} \\ & \text{bet}(\alpha) \end{aligned}
```

$$W_n \sim \text{Bin}(n, p)$$

$$X_n = r \cdot W_n - n$$

Playing it Out

$$X_n = r \cdot W_n - n$$

$$Var(X_n) = r^2 Var(W_n) = npqr^2$$
 $E(X_n) = r \cdot E(W_n) - n = npr - n = n(pr - 1)$

 $W_n \sim \text{Bin}(n, p)$

Playing it Out

$$W_n \sim \mathsf{Bin}(\mathsf{n},\,\mathsf{p})$$
 $X_n = r \cdot W_n - n$

$$Var(X_n) = r^2 Var(W_n) = npqr^2$$

$$E(X_n) = r \cdot E(W_n) - n = npr - n = n(pr - 1)$$

Expected losses grow as n, stddev as \sqrt{n} . Per Chebyshev, we are going broke, *almost certainly*.

The System

```
procedure MartingaleBetting \alpha \leftarrow 1 while true do bet(\alpha) if Win then return else \alpha \leftarrow 2 \cdot \alpha
```

Let N be the round of betting where we finally win:

$$X_N = -1 - 2 - 4 \cdot \cdot \cdot - 2^{N-1} + 2^N = \dots$$

Let N be the round of betting where we finally win:

$$X_N = -1 - 2 - 4 \cdots - 2^{N-1} + 2^N = \dots$$

$$= 1$$

Let N be the round of betting where we finally win:

$$X_N = -1 - 2 - 4 \cdot \cdot \cdot - 2^{N-1} + 2^N = \dots$$

$$= 1$$

p nowhere to be found.

Let N be the round of betting where we finally win:

$$X_N = -1 - 2 - 4 \cdots - 2^{N-1} + 2^N = \dots$$

$$= 1$$

p nowhere to be found.

Guaranteed profit, on arbitrarily bad bets!

Alas!

- Very hard to get unlimited betting rounds.
 - Credit limits
 - ► Table limits

Alas!

- Very hard to get unlimited betting rounds.
 - Credit limits
 - ► Table limits

Exercise for the reader: what happens if we can be cut off before the payout?

The System

```
\begin{array}{l} \textbf{procedure} \  \, \text{AntiMartingaleBetting} \\ \text{reserves} \leftarrow 1.0 \\ \text{target} \leftarrow 1.0 \\ \alpha \leftarrow 0.5 \\ \textbf{while} \  \, \text{reserves} \leq \text{target do} \\ \text{reserves} \leftarrow \text{reserves} + \text{bet}(\alpha) \\ \textbf{if} \  \, \alpha \geq \text{reserves then} \\ \alpha \leftarrow 0.5 \cdot \alpha \\ \textbf{if} \  \, \alpha \leq 0.25 \cdot \text{reserves then} \\ \alpha \leftarrow 2 \cdot \alpha \end{array}
```

Xeno's Gamble

Playing it Out

$$P(Lose) = 0$$

Can't lose, must win...Right?

Xeno's Gamble

$$P_{-1} = 1$$

 $P_i = p^2 P_{i-1} + pq P_i + q P_{i+1}$

$$P_{-1} = 1$$

$$P_{i} = \rho^{2} P_{i-1} + pq P_{i} + q P_{i+1}$$
 Let $\hat{p} = \frac{\rho^{2}}{1 - pq}$, $\hat{q} = 1 - \hat{p}$
$$P_{i} = \hat{p} P_{i-1} + \hat{q} P_{i+1}$$

$$\hat{p} P_{i} + \hat{q} P_{i} = \hat{p} P_{i-1} + \hat{q} P_{i+1}$$

Massage.

$$P_{-1}=1$$

$$P_{i}=p^{2}P_{i-1}+pqP_{i}+qP_{i+1}$$
 Let $\hat{p}=rac{p^{2}}{1-pq},~\hat{q}=1-\hat{p}$
$$P_{i}=\hat{p}P_{i-1}+\hat{q}P_{i+1}$$
 $\hat{p}P_{i}+\hat{q}P_{i}=\hat{p}P_{i-1}+\hat{q}P_{i+1}$

Massage. series-term-cancellation.

$$P_{-1}=1$$

$$P_{i}=p^{2}P_{i-1}+pqP_{i}+qP_{i+1}$$
 Let $\hat{p}=rac{p^{2}}{1-pq},~\hat{q}=1-\hat{p}$
$$P_{i}=\hat{p}P_{i-1}+\hat{q}P_{i+1}$$
 $\hat{p}P_{i}+\hat{q}P_{i}=\hat{p}P_{i-1}+\hat{q}P_{i+1}$

Massage. series-term-cancellation. limit as $n \to \infty$.

$$P_i=p^2P_{i-1}+pqP_i+qP_{i+1}$$
 Let $\hat{p}=rac{p^2}{1-pq}$, $\hat{q}=1-\hat{p}$

 $P_{-1} = 1$

$$\hat{p}P_i + \hat{q}P_i = \hat{p}P_{i-1} + \hat{q}P_{i+1}$$

 $P_i = \hat{p}P_{i-1} + \hat{q}P_{i+1}$

Massage. series-term-cancellation. limit as $n \to \infty$. Massage.

$$P_0 = \frac{\hat{p}}{\hat{q}}$$

We've created a gambler's ruin problem, just flipped and in log scale.

- Nonzero probability of winning at every step.
- Nonzero probability of *never* walking away from the table.
- Also, need to be able to place arbitrarily small bets.

We've created a gambler's ruin problem, just flipped and in log scale.

- Nonzero probability of winning at every step.
- Nonzero probability of never walking away from the table.
- Also, need to be able to place arbitrarily small bets.

$$p = 0.48 \Rightarrow \frac{\hat{p}}{\hat{q}} \approx 0.44$$

We've created a gambler's ruin problem, just flipped and in log scale.

- Nonzero probability of winning at every step.
- ▶ Nonzero probability of *never* walking away from the table.
- Also, need to be able to place arbitrarily small bets.

$$p=0.48\Rightarrow \frac{\hat{p}}{\hat{q}}\approx 0.44$$

Would've been better off laying it all on black.

Outline

Putting It All On Black

Fast Horses, Faster Money
Some Low-Level Accounting
A Bigger, Dutcher Book

- 1. n horses running, each with probability of winning p_i and payout odds r_i
 - 1.1 House advantage: $\sum_{i} \frac{1}{r_i} > 1$

- 1. n horses running, each with probability of winning p_i and payout odds r_i
 - 1.1 House advantage: $\sum_{i} \frac{1}{r_i} > 1$
- 2. Bet α_i units on each horse

- 1. n horses running, each with probability of winning p_i and payout odds r_i
 - 1.1 House advantage: $\sum_{i} \frac{1}{r_i} > 1$
- 2. Bet α_i units on each horse
- The horses run.

- 1. n horses running, each with probability of winning p_i and payout odds r_i
 - 1.1 House advantage: $\sum_{i} \frac{1}{r_i} > 1$
- 2. Bet α_i units on each horse
- The horses run.
- 4. Get paid according to your wager on the winning horse.

$$X = \sum_{i} \left[\alpha_{i} (-1 + r_{i} \mathbb{I}(h_{i})) \right]$$

Open Decisions

► Which horse(s) to back.

Open Decisions

- ▶ Which horse(s) to back.
- ► How much to bet.

Open Decisions

- Which horse(s) to back.
- ► How much to bet.
- When to walk away.
 - We're going to do single round betting here.

▶ We could play it straight, as we did in roulette.

- We could play it straight, as we did in roulette.
- More (any) epistemic uncertainty

- We could play it straight, as we did in roulette.
- More (any) epistemic uncertainty
- Might even be able to turn a profit, if you're smarter than the market.

- We could play it straight, as we did in roulette.
- More (any) epistemic uncertainty
- Might even be able to turn a profit, if you're smarter than the market.
- Still gambling though.

The Booky's Favorite

► Suppose there is an old nag in the race, Rocinante.

The Booky's Favorite

- Suppose there is an old nag in the race, Rocinante.
- Rocinante is a long, long, long shot. Maybe 1 in 1000.

The Booky's Favorite

- Suppose there is an old nag in the race, Rocinante.
- Rocinante is a long, long, long shot. Maybe 1 in 1000.
- ▶ Book-maker offers a special on Rocinante bets: 2000 to 1.
 - Does not update the rest of the book.
 - ▶ House advantage slips. Now $\sum_{i} \frac{1}{r_i} < 1$

Could just take the bookie up on the special.

- Could just take the bookie up on the special.
- Bet is positive valued in expectation

- Could just take the bookie up on the special.
- Bet is positive valued in expectation
- But I still need to make the rent this month, and this is a single round of gambling

- Could just take the bookie up on the special.
- Bet is positive valued in expectation
- But I still need to make the rent this month, and this is a single round of gambling
- ► Too rich for my blood, and it's still gambling.

$$X = \sum_{i} \left[\alpha_{i} (-1 + r_{i} \mathbb{I}(h_{i})) \right]$$

What happens if we try to clear r_i out of our RV?

$$X = \sum_{i} \left[\alpha_{i} (-1 + r_{i} \mathbb{I}(h_{i})) \right]$$

What happens if we try to clear r_i out of our RV? Must have $\alpha_i = \frac{1}{r_i}$:

$$X = \sum_{i} \left(-\frac{1}{r_i} + \mathbb{I}(h_i) \right) = 1 - \frac{1}{r_i}$$

$$X = \sum_{i} \left[\alpha_{i} (-1 + r_{i} \mathbb{I}(h_{i})) \right]$$

What happens if we try to clear r_i out of our RV? Must have $\alpha_i = \frac{1}{r_i}$:

$$X = \sum_{i} \left(-\frac{1}{r_i} + \mathbb{I}(h_i) \right) = 1 - \frac{1}{r_i}$$

That's a fixed payout.

$$X = \sum_{i} \left[\alpha_{i} (-1 + r_{i} \mathbb{I}(h_{i})) \right]$$

What happens if we try to clear r_i out of our RV? Must have $\alpha_i = \frac{1}{r_i}$:

$$X = \sum_{i} \left(-\frac{1}{r_i} + \mathbb{I}(h_i) \right) = 1 - \frac{1}{r_i}$$

That's a fixed payout.

A fixed, *positive* payout. This is what's known as a Dutch Book.

Finding a bookie setting a line that is susceptible to a Dutch Book is...not easy.

A Bigger, Dutcher Book

N bookies, One Race

► Suppose multiple bookies are taking action on a single race.

N bookies, One Race

- Suppose multiple bookies are taking action on a single race.
- They have different clientelle, and are setting different lines
 - Bookie doesn't care about odds, bookie wants to take a vig off of evenly spread bets.
 - Just like we did with our Dutch book.

N bookies, One Race

- Suppose multiple bookies are taking action on a single race.
- ► They have different clientelle, and are setting different lines
 - Bookie doesn't care about odds, bookie wants to take a vig off of evenly spread bets.
 - Just like we did with our Dutch book.
- Call the most favorable odds across all book makers for each horse r_i*

N bookies, One Race

- Suppose multiple bookies are taking action on a single race.
- They have different clientelle, and are setting different lines
 - Bookie doesn't care about odds, bookie wants to take a vig off of evenly spread bets.
 - Just like we did with our Dutch book.
- Call the most favorable odds across all book makers for each horse r_i*

If $\sum_i r_i^* < 1$ we have a composite Dutch book! Let the arbitrage times roll.

Alas?

- ► Efficient market theory is wrong.
 - Not often wrong enough for this, though.

Alas?

- Efficient market theory is wrong.
 - Not often wrong enough for this, though.
- With the right combination of speed and luck, however, arbitrage is possible.
 - A frightening amount of effort goes into exactly this sort of game
 - Usually against financial markets, though

- Efficient market theory is wrong.
 - Not often wrong enough for this, though.
- With the right combination of speed and luck, however, arbitrage is possible.
 - A frightening amount of effort goes into exactly this sort of game
 - Usually against financial markets, though

Also, if we pull this off we haven't so much beaten the house as become it.

