1.Import Libraries

```
In [86]: import numpy as np
    import pandas as pd
    from sklearn import tree
    import matplotlib.pyplot as plt
    from sklearn.metrics import accuracy_score
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
```

2.Import Datasets

```
In [40]: data=pd.read_csv('Iris.csv',index_col=0)
    data.head()
```

Out[40]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
ld					
1	5.1	3.5	1.4	0.2	0
2	4.9	3.0	1.4	0.2	0
3	4.7	3.2	1.3	0.2	0
4	4.6	3.1	1.5	0.2	0
5	5.0	3.6	1.4	0.2	0

3.Data Undestanding

```
In [88]: data.isnull().sum()
Out[88]: SepalLengthCm
                           0
         SepalWidthCm
                           0
         PetalLengthCm
                           0
         {\tt PetalWidthCm}
                           0
         Species
                           0
         dtype: int64
In [87]: data.shape
Out[87]: (150, 5)
In [41]: le=LabelEncoder()
         data['Species']=le.fit_transform(data['Species'])
In [42]: data['Species']
Out[42]: Id
         1
                 0
         2
                 0
         3
                 0
         4
                 0
         5
                 0
         146
                 2
          147
                 2
         148
                 2
         149
                 2
         150
         Name: Species, Length: 150, dtype: int64
In [43]: x=data.drop(['Species'],axis=1)
         y=data['Species']
```

Name: Species, dtype: int64

```
In [49]: pd.DataFrame({"Actual":y_test,"Predict":y_pred_test})
```

Out[49]:

ld	Actual	Predict
136	2	2
68	1	1
89	1	1
13	0	0
79	1	1
115	2	2
8	0	0
97	1	1
22	0	0
69	1	1
137	2	2
24	0	0
120	2	1
132	2	2
47	0	0
144	2	2
85	1	1
113	2	2
60 5	0	1 0
72	1	1
117	2	2
20	0	0
104	2	2
25	0	0
38	0	0
75	1	1
16	0	0
71	1	2
128	2	2
7	0	0
15	0	0
26	0	0
114	2	2
149	2	2
122	2	2
55	1	1
4	0	0
52 72	1	1
73 84	1	1 2
44	0	0
116	2	2
66	1	1
105	2	2
. 55	4	2

```
Out[70]: 0.95555555555556
In [71]: | print(classification_report(y_test,y_pred_test))
                          precision
                                         recall f1-score
                                                               support
                       0
                                1.00
                                            1.00
                                                       1.00
                                                                     15
                                            0.93
                                0.93
                                                       0.93
                                                                     15
                       1
                                0.93
                                           0.93
                                                       0.93
                                                                     15
                                                       0.96
                                                                     45
               accuracy
                                0.96
                                           0.96
                                                       0.96
                                                                     45
              macro avg
                                0.96
                                           0.96
                                                       0.96
                                                                     45
          weighted avg
In [58]: tree.plot_tree(dt)
          plt.show()
                           X[3] <= 0.7
gini = 0.666
amples = 105
                                 X[2] <= 4.75
ginl = 0.5
camples = 70
                                              X[3] <= 1.75
ginf = 0.193
samples = 37
                     X[3] <= 1.65
gini = 0.059
samples = 33
In [68]: fn=['sepal length', "petal length", "seple width", "petal length"]
           cn=["setosa","verginica","versi color"]
          tree.plot_tree(dt,class_names=cn,feature_names=fn,filled=True)
          plt.show()
           5. Build Desicion Tree classifier using entropy
In [76]: | model=DecisionTreeClassifier(criterion="entropy", max_depth=3)
In [77]: model.fit(x_train,y_train)
Out[77]: DecisionTreeClassifier(criterion='entropy', max_depth=3)
In [79]: |y_test_pr=model.predict(x_test)
          y_test_pr
Out[79]: array([2, 1, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 2, 1, 0, 1, 2,
                   0, 2, 0, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, 1, 0, 1, 1, 1, 0, 2, 1,
                   2], dtype=int64)
```

In [70]: | accuracy_score(y_pred_test,y_test)