Lösung Übungstest Analysis 1, 30.10.2009, B

Philipp Dörsek

17. November 2009

1: Zeigen Sie, dass es eine Funktion $f: \mathbb{N} \to \mathbb{N}$ gibt, die f(1) = 5 und $f(n+1) = 7f(n) + 5 \cdot 2^n$ erfüllt. Zeigen Sie $f(n) = 7^n - 2^n$.

Lösung: Setze $A := \mathbb{N} \times \mathbb{N}$, $a := (5,1) \in A$ und definiere eine Abbildung g durch

$$g((x_1, x_2)) := (7x_1 + 5 \cdot 2^{x_2}, x_2 + 1).$$

Offensichtlich ist g als Abbildung $A \to A$ wohldefiniert. Dann existiert nach dem Rekursionssatz eine eindeutige Funktion $\varphi \colon \mathbb{N} \to A$ mit $g(\varphi(n)) = \varphi(n+1)$ und $\varphi(1) = a$. Mit $\pi_i \colon A \to \mathbb{N}$, $\pi_i((x_1, x_2)) := x_i$, setzen wir $f := \pi_1 \circ \varphi$ und erhalten $f(1) = \pi_1(\varphi(1)) = \pi_1((5, 1)) = 5$ und

$$f(n+1) = \pi_1(\varphi(n+1)) = \pi_1(g(\varphi(n)))$$

= $\pi_1((7\pi_1(\varphi(n)) + 5 \cdot 2^{\pi_2(\varphi(n))}, \pi_2(\varphi(n)) + 1))$
= $7f(n) + 5 \cdot 2^{\pi_2(\varphi(n))}$.

Da offensichtlich $\pi_2(\varphi(n)) = n$ gilt, haben wir eine Funktion $f : \mathbb{N} \to \mathbb{N}$ gefunden, die den Voraussetzungen genügt.

Wir beweisen nun die gegebene Darstellung für f durch Induktion: Für den Induktionsanfang setzen wir n=1 und erhalten f(1)=7-2=5, was laut Angabe stimmt. Sei nun die Induktionsvoraussetzung $f(n)=7^n-2^n$ für ein gewisses $n\in\mathbb{N}$ gegeben, dann haben wir $f(n+1)=7^{n+1}-2^{n+1}$ zu zeigen. Es gilt

$$f(n+1) = 7f(n) + 5 \cdot 2^n = 7(7^n - 2^n) + 5 \cdot 2^n = 7^{n+1} - 2^{n+1}$$

wobei wir in der ersten Gleichheit die Rekursionsvorschrift und in der zweiten die Induktionsvoraussetzung angewendet haben. Damit ist alles gezeigt.

2: Sei K ein angeordneter Körper und $x, y \in K$. Zeigen Sie: Aus |x|y > xy folgt x < 0, y > 0.

Bestimmen Sie in einem archimedisch angeordneten Körper K

$$\inf\left\{(1_K + nx)^{-1} \colon n \in \mathbb{N}\right\}$$

für $0_K < x \in K$.

Lösung: Wir beweisen die erste Behauptung durch Widerspruch: Angenommen, $x \ge 0$, dann folgt |x| = x und damit |x|y = xy, Widerspruch. Angenommen, x < 0 und $y \le 0$, dann gilt $xy \ge 0$ und $|x|y \le 0$, als $|x|y \le xy$, Widerspruch. Damit ist die Aussage gezeigt.

Wir bestimmen nun das Infimum der gegebenen Menge und behaupten inf $M = 0_K$, wobei $M := \{(1_K + nx)^{-1} : n \in \mathbb{N}\}.$

- 0_K ist eine untere Schranke. Sei $m \in M$ beliebig, dann gilt $1_K > 0$ und nx > 0, daher auch $1_K + nx > 0$ und schließlich $(1_K + nx)^{-1} > 0$.
- 0_K ist die größte untere Schranke. Sei $\varepsilon > 0$ beliebig, dann müssen wir zeigen, dass es $m \in M$ mit $m < \varepsilon$ gibt. Da K archimedisch angeordnet ist, gibt es $n \in \mathbb{N}$ mit $n > \frac{1_K \varepsilon}{\varepsilon x}$. Für $m := (1_K + nx)^{-1} \in M$ folgt daher

$$m = (1_K + nx)^{-1} < \left(1_K + \frac{1_K - \varepsilon}{\varepsilon x}x\right)^{-1} = \left(\frac{1_K}{\varepsilon}\right)^{-1} = \varepsilon,$$

was zu zeigen war.