PAT-NO:

JP405260851A

DOCUMENT-IDENTIFIER: JP 05260851 A

TITLE:

DENDROMETER FOR MEASURING THE DIAMETER GROWTH OF TREES

PUBN-DATE:

October 12, 1993

INVENTOR-INFORMATION:

NAME

TAKAHASHI, KUNIHIDE

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NORIN SUISANSYO SHINRIN SOGO KENKYUSHO

N/A

APPL-NO:

JP03067090

APPL-DATE: March 29, 1991

INT-CL (IPC): A01G007/00, G01B007/00, G01B007/02

ABSTRACT:

PURPOSE: To enable continuous measurement of the thickening growth of trees with relatively high sensitivity at a relatively short interval.

CONSTITUTION: This dendrometer is provided with an aluminum band which increases its circumference as the tree grows and thickens, a potentiometer which detects the thickening growth through the increase in length of aluminum band as a change of the partial pressure and a data logger which records the detections by the potentiometer every a certain time interval, and, when needed, a thermometer for recording the temperature when the measurements are carried out.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特計庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平5-260851

(43)公開日 平成5年(1993)10月12日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
A 0 1 G	7/00	G	8602-2B		
G 0 1 B	7/00	L	9106-2F		
	7/02	Α	9106-2F		

審査請求 有 請求項の数2(全 5 頁)

(21)出願番号	特願平3-67090
ひい山蝦番写	分解よう01/03/

(22)出願日 平成3年(1991)3月29日

特許法第30条第1項適用申請有り 平成3年3月15日 日本林学会大会運営委員会発行の「第102回日本林学会 大会講演要旨集」に発表

(71)出願人 391025615

農林水産省森林総合研究所長 茨城県稲敷郡茎崎町松の里1番地

(72)発明者 髙橋 邦秀

札幌市豊平区羊ケ丘1 森林総研宿舎2-3 - 3

(74)代理人 弁理士 本多 小平

(54) 【発明の名称 】 樹木の直径成長を測定するデンドロメータ

(57)【要約】

【目的】 樹木の肥大成長を、高感度にしかも比較的短 い間隔毎で連続して長期間測定する。

【構成】 樹木の肥大成長に伴って周長が増大するアル ミバンドと、このアルミバンドの周長増大を、分圧の変 化として検出するポテンショメータと、このポテンショ メータによる検出を一定時間毎に記録するデータロガー とを備え、更に必要に応じて測定時点の温度を記録する デンドロメータ。

1

【特許請求の範囲】

【請求項1】 測定しようとする樹幹の直径成長に伴っ て周長が増大するように該樹幹に巻装されたバンドと、 このバンドの周長増大を分圧の変化として検出するポテ ンショメータと、このポテンショメータに電気的に接続 されたデータロガーとを備えたことを特徴とするデンド ロメータ。

【請求項2】 請求項1において、データロガーに温度 計を接続し、上記ポテンショメータによる各測定時点の 温度を同時に記録するように構成したことを特徴とする 10 デンドロメータ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、樹木の成長を測定する 装置、詳しくはデンドロメータとこれを用いた樹木の直 径成長の測定法に関するものである。

[0002]

【発明の背景と従来技術】近年いろいろな地域でアルミ バンド製のデンドロメータを用いた樹木の肥大成長測定 が行なわれている。

【0003】このデンドロメータは、装置が極めて簡単 で安価であり、しかも比較的高い精度で測定ができ、し たがって多数の個体についてデータを収集してこれを注 意深く解析することを通じて、木本植物の肥大成長に関 して新しい知見が得られるものとして注目されている。 【0004】このようなデンドロメータとして、例え ば、アルミバンドに目盛りとバーニャを刻み、肉眼で変 化を読み取るようにしたもの(第37回日本林学会関西 支部大会「デンドロメータによる肥大生長の測定」, 1 986年)、鏡成長計によるもの(黒岩菊郎; 「キリの 30 日肥大成長曲線」、日林誌、昭和57年)、歪計を利用 したもの(第71回日本林学会大会講演集「クロマツ幹 径の時間変化」,1961、日林誌「二,三の落葉広葉 樹の幹径の日変動量とそれを左右する環境要因」、67 (4)1985、第75回日本林学会大会講演集「ポプ ラ幹径の時間変化」、1964、東大演習報告74「ア カマツ、ヒノキ幼齢木の幹直径の日変化と季節変化」、 1984)等が従来提案されている。

[0005]

【発明が解決しようとする課題】しかしながら、上記ア 40 ルミバンドに目盛りとバーニャを刻んだ方式のものは、 簡便に周囲長の変化を測定でき、幹全体の平均直径成長 量を知ることができため最も普及しているが、精度が O. 1 mm、測定間隔が1週間~1か月単位が多くより 高精度の測定には向いてない。

【0006】また上記鏡成長計を用いたものは、鏡と望 遠鏡を利用したものであるが、実際の野外測定のために は解決すべき課題が多く、現在殆ど使用されていない。 【0007】さらに、上記歪計を利用したものは幹上の るが、交流電源が必要であり、また風や振動の影響を受 けるため、長期間に渡る野外の測定には限界がある。

【0008】以上のように、従来提案されている種々の 装置にはそれぞれ難点があって、野外で高精度な測定を 行ない、木本植物の肥大成長に関してより一層の研究を 図るには、優れた肥大成長測定の装置あるいは方法に関 する新しい提案が待たれている。

【0009】本発明者は、このような現状に鑑み、電源 のない野外で長期間に渡り木本植物の肥大成長を連続的 に測定することが可能な全天候型のデンドロメータを開 発するために鋭意研究を重ねて本発明をなすに至ったも のである。

【0010】また本発明の別の目的は、数μm~数十μ mの高精度で、例えば1か月以上の長期間に渡り数分~ 数十分程度の極短い測定間隔で連続測定を実現できるデ ンドロメータを提供することにある。

[0011]

【課題を解決するための手段及び作用】上記のような目 的を実現する本発明のデンドロメータの特徴は、代表的 20 には、測定しようとする樹幹に対し一端が固定され、か つ他端が樹木の直径成長に伴って周長を増大する方向に 移動できるようにバネで巻き締めて巻装された例えばア ルミ製のバンドと、このバンドの上記一端近傍で樹幹に 固定されたポテンショメータと、このポテンショメータ と電気的に接続されているデータロガーとを備え、ポテ ンショメータの分圧抵抗を変化させる移動部材を、上記 バンドの移動する他端に作動的に連係させたという構成 をなすところにある。

【0012】また上記構成のデンドロメータは、樹幹の 肥大成長を分圧抵抗の変化により検出するものであり、 測定環境が野外であることから、環境要因、特に温度に よる抵抗値の変化やアルミバンドの熱膨張により測定値 の信頼性が問題となることが考えられる。そこで本発明 者は、上記データロガーにより所定時間毎に繰り返しポ テンショメータの測定値を記録すると共に、更にこのデ ータロガーに接続した温度計を用いて、同測定時点の温 度を記録して、後日におけるデータの補正を行なえるよ うにしたデンドロメータも提供する。

【0013】このような本発明のデンドロメータによれ ば、リリウム電池等を電源として、数分~数十分程度の 極短い測定間隔を任意に設定し、数カ月以上に渡る連続 的な樹幹の肥大成長の測定を行なうことができる。

[0014]

【実施例】以下本発明を図面に示す実施例に基づいて説 明する。

【0015】図1において、1は測定の対象となる樹木 であり、その樹幹にアルミバンド2を一端21を固定 し、他端22を該樹幹を周回させてこの一端21の上に 重ね、一端部のピン25と他端部のピン26の間に張設 1点あるいは2点間の変化量をかなりの精度で測定でき 50 したバネ3により巻き締めるように巻装する。これによ

り該アルミバンド2は、樹幹の肥大成長に伴い、バネ3 を伸長させながら上記他端22が移動できることとな る。なおこのアルミバンドの一部には固定部分に設けた 目盛り23と他端部分に設けた目盛り24の相対移動に より肉眼で観察できるようにしている。なおアルミバン ドを券装する際に樹皮に凹凸がある場合には予めナタ等 で表面を平滑にしておくことがよい。

【0016】4は樹幹にパイプバンド41により固定さ れたポテンショメータであり、これが野外で使用される て設けられている。本例のこのポテンショメータ4は例 えば抵抗値 $1\Omega = 10\mu$ m程度の既知のものであり、そ の内部構造は図示しないが、分圧抵抗を決めるための端 子が組み付けられた軸芯43が容器42の外部に延出さ れ、これに、一端が上記バンド2の移動端22に連繋さ れているピアノ線5が結着されている。なお6はこのピ アノ線の緩みをとるためのリターンバネである。なおポ テンショメータ4の防水等を一層図るために防水用カバ ー7等を被せたり、雨よけカバーを設けること等も好ま しい。また、軸芯43の移動長と抵抗値については測定 20 に先立ちキャリブレーションを行なっておくことは当然 である。このために軸芯43とリターンバネ6の結着部 分は、螺子によって位置調整可能としておくことが好ま LW.

【0017】8は、全天候型のデータロガー9とポテン ショメータ4を接続するためのケーブルであり、バッテ リー(図示せず)もこのデータロガー9の収納ケースに 一体に組み込まれている。なおこれらの電気的な配線に ついてはハンダ付け部分等を防水のためにコーキング材 で覆うようにすることが好ましい。

【0018】実施例1

上記説明したデンドロメータを用い、記録間隔を1時間 に設定し、野外でミズナラとカツラの樹幹の肥大成長を 約4か月に渡り測定した。

【0019】そしてその測定した記録を、コンピュータ により演算処理して得た結果を図3に示した。

【0020】この結果によれば、環孔材樹種(ミズナ ラ)と散孔材樹種(カツラ)の違いが明確に現われてお り、樹種の特性を反映した直径の平均成長量を10 μm 単位で知ることができた。

【0021】また、データロガーの約1週間の記録か ら、測定検出値と気温の変化の関係を図4に示した。気 温の上昇によりアルミバンドの熱膨張が生ずると樹幹直 径は実際の値よりも小さく測定される。そこで、実測値 として現われた測定検出値(図上部のグラフの下側実線 で示す)に気温の変化(図下部のグラフで示す)に対応 したアルミバンドの熱膨張量 (図上部のグラフの破線で ことに鑑みて防水性のプラスチック容器 4 2内に嵌挿し 10 示す)を加算し、実際の幹の直径変化量を上図に示した ように求めた。

> 【0022】その結果、従来は樹幹直径の日変化は昼間 の縮小として考えられていたが、本発明の実施により、 実際の日変化としては樹幹自体の熱膨張による変動が大 きく、日中の気温上昇に並行した樹幹増大が生じている ことを知ることができた。

[0023]

【発明の効果】本発明のデンドロメータによれば、数4 m~数十µmの高精度で、例えば1か月以上の長期間に 渡り数分~数十分程度の極短い測定間隔で連続測定を実 現できるという効果がある。

【図面の簡単な説明】

【図1】本発明のデンドロメータの構成概要一例を示し た図である。

【図2】図1のデンドロメータを展開して示した図であ

【図3】図1のデンドロメータを用いて野外でミズナラ とカツラの樹幹の肥大成長を約4か月に渡り測定した結 果を示した図である。

30 【図4】気温の日変化と図1のデンドロメータにより野 外で測定したミズナラとカツラの樹幹直径の実測値、ア ルミバンドの熱膨張、修正された樹幹直径の日変化との 関係を約1週間に渡り示した図である。

【符号の説明】

1・・・樹幹、2・・・アルミバンド、3・・・バネ、 4・・・デンドロメータ、5・・・ピアノ線、6・・・ リターンバネ、7・・・防水用カバー、8・・・ケーブ ル、9・・・データロガー。

【図2】

11/7/06, EAST Version: 2.1.0.14

