## Lecture Notes: Surface Integral by Coordinate

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

#### 1 Smooth, xy-Monotone, and Oriented Surfaces

Recall that one way to specify a surface in  $\mathbb{R}^3$  is to give an equation f(x, y, z) = 0 over some legal ranges of x, y, z. We say that the surface is *smooth* if both of the following are satisfied:

- the gradient  $\nabla f(p) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$  changes continuously as point p moves about on the surface;
- $\nabla f(p) \neq \mathbf{0}$ .

As discussed earlier,  $\nabla f(p)$  gives a normal vector of the surface at point p. Hence, the first bullet essentially says that this normal vector changes continuously as p moves on the surface. The second bullet implies that we can always obtain a *unit* normal vector at p as  $\frac{\nabla f(p)}{|\nabla f(p)|}$ .

We say that a surface is xy-monotone if every line perpendicular to the xy-plane hits the surface at no more than one point. In other words, the surface can be represented as an equation z = g(x, y). For example, the sphere  $x^2 + y^2 + z^2 = 1$  is not xy-monotone, but the hemisphere

$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ z \ge 0 \end{cases}$$

is, because we can represent the hemisphere as  $z = \sqrt{1 - x^2 - y^2}$ .

An xy-monotone surface S usually has two "sides". For example, the cap-shaped surface below has two sides: facing outward and inward, respectively. To define surface integral by coordinate, we need to choose a side of the surface. Formally, we do so by choosing the directions of normal vectors. Specifically, for each point p on the surface S, take a normal vector  $\mathbf{u}$  at p. There are only two choices for  $\mathbf{u}$ , as shown in the example below. Denote by  $\gamma(p)$  the angle between the direction of  $\mathbf{u}$  and the positive direction of the z-axis. We require that either  $\gamma(p) \in [0, \pi/2]$  for all p on S, or  $\gamma(p) \in [\pi/2, \pi]$  for all p on S. In the former case, we say that we have chosen the *upper side* of S, where in the latter, we say that we have chosen the *lower side*. In both cases, S is said to have been *oriented*.



# 2 Surface Integral by Coordinates x and y

Let S be an oriented xy-monotone surface described by equation z = g(x, y). Let D be the projection of S onto the xy-plane. We say that function h(x, y, z) is continuous on S if h(x, y, g(x, y)) is continuous in D. Then, we define surface integral

$$\iint_{S} h(x, y, z) \, dx dy \tag{1}$$

as a short form for

$$\begin{cases} \iint_D h(x, y, g(x, y)) dxdy & \text{if } S \text{ is the upper side of } z = g(x, y) \\ -\iint_D h(x, y, g(x, y)) dxdy & \text{otherwise} \end{cases}$$

**Example 1.** Let S be the lower side of the plane 3x + 2y + z = 6 with  $0 \le x \le 1$  and  $0 \le y \le 1$ . Calculate  $\iint_S x + y + z \, dx \, dy$ .

Solution. Let D be the area in the xy-plane corresponding to  $0 \le x \le 1$  and  $0 \le y \le 1$ . S can be described by the equation z = 6 - 3x - 2y.

$$\begin{split} \iint_S x + y + z \, dx dy &= -\iint_D x + y + 6 - 3x - 2y \, dx dy \\ &= -\iint_D 6 - 2x - y \, dx dy = -9/2. \end{split}$$

# 3 Evaluating Surface Integrals by Jacobian

Recall that a surface is inherently a 2D geometric object, even though it is embedded in  $\mathbb{R}^3$ . Besides using an equation f(x, y, z) = 0, we can also describe a surface by representing x-, y-, and z-coordinates as functions of two parameters u and v, namely, x(u, v), y(u, v), z(u, v). Accordingly, we can evaluate a surface integral by changing the integral variables from x, y to u, v. However, since we are dealing with a double integral, the change of variables is more complicated than simply applying the chain rule; instead, we need to resorting to the Jacobian, as you should have learned in a prerequisite course. Next, we illustrate this using an example.

**Example 2.** Let S be the upper side of the hemisphere  $x^2 + y^2 + z^2 = 1$  with  $z \ge 0$ . Calculate  $\iint_S z^2 dx dy$ .

Solution. Let D be the projected region of S onto the xy-plane, namely, D is the disc  $x^2 + y^2 \le 1$ . Hence:

$$\iint_{S} z^2 dx dy = \iint_{D} 1 - x^2 - y^2 dx dy. \tag{2}$$

We can represent the x-, y-, and z-coordinates of each point (x, y, z) on S as functions of u, v:

$$x(u, v) = \cos u \cdot \sin v$$
  
 $y(u, v) = \sin u \cdot \sin v$   
 $z(u, v) = \cos v$ 

with  $0 \le u \le 2\pi$  and  $0 \le v \le \pi/2$ . The Jacobian J equals:

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$
  
=  $-\sin u \cdot \sin v \cdot \sin u \cdot \cos v - \cos u \cdot \cos v \cdot \cos u \cdot \sin v$   
=  $-\sin v \cdot \cos v$ .

Now we can change the variables x, y in (2) to u, v as:

$$\iint_{R} 1 - x^{2} - y^{2} dxdy = \iint_{R} (1 - \cos^{2} u \sin^{2} v - \sin^{2} u \sin^{2} v) \cdot |J| dudv$$

$$= \iint_{R} \cos^{2} v \cdot |J| dudv$$

$$= \iint_{R} \cos^{2} v \cdot |\sin v \cdot \cos v| dudv$$

$$= \int_{0}^{2\pi} \left( \int_{0}^{\pi/2} \cos^{3} v \cdot \sin v dv \right) du$$

$$= \frac{1}{4} \int_{0}^{2\pi} du = \pi/2.$$

## 4 Surface Integrals on Regions Not xy-Monotone

So far our definition of surface integrals in (1) is limited to xy-monotone regions. Next, we extend the definition also to regions that are not xy-monotone. We achieve the purpose by (i) introducing a special case for vertical regions, and (ii) cutting a non-xy-monotone region into xy-monotone ones.

A Special Case. Let S be a surface that is perpendicular to the xy-plane. Then, we define

$$\iint_{S} h(x, y, z) \, dx dy = 0.$$

The above definition is fairly intuitive. If S is perpendicular to the xy-plane, its projection D onto the xy-plane is a line segment whose area is 0; see below.



**Piecewise xy-Monotone Surfaces.** Let S be a surface that can be cut into a sequence of surfaces  $S_1, S_2, ..., S_m$ , each of which is either an oriented surface, or perpendicular to the xy-plane. We refer to S as a *piecewise xy-monotone surface*. Also, suppose that function h(x, y, z) is continuous on each xy-monotone  $S_i$  ( $i \in [1, m]$ ). Then, we define

$$\iint_{S} h(x, y, z) dxdy = \sum_{i=1}^{m} \iint_{S_{i}} h(x, y, z) dxdy.$$

**Example 3.** Let S be the outer side of the sphere  $x^2 + y^2 + z^2 = 1$ . Calculate  $\iint_S z^2 dxdy$ 

Solution. Divide S into two xy-monotone surfaces  $S_1$  and  $S_2$ , where

- $S_1$  is the upper side of  $x^2 + y^2 + z^2 = 1$  with  $z \ge 0$ ;
- $S_2$  is the lower side of  $x^2 + y^2 + z^2 = 1$  with  $z \le 0$ .

Thus:

$$\iint_S h(x,y,z) \, dx dy = \iint_{S_1} h(x,y,z) \, dx dy + \iint_{S_2} h(x,y,z) \, dx dy.$$

We have seen in Example 2 that  $\iint_{S_1} h(x, y, z) dxdy = \pi/2$ . Next, we calculate  $\iint_{S_2} h(x, y, z) dxdy$ . Let D be the projected region of  $S_2$  onto the xy-plane, namely, D is the disc  $x^2 + y^2 \le 1$ . Hence:

$$\iint_{S_2} z^2 \, dx dy = -\iint_D 1 - x^2 - y^2 \, dx dy. \tag{3}$$

We can represent the x-, y-, and z-coordinates of each point (x, y, z) on S as functions of u, v:

$$x(u, v) = \cos u \cdot \sin v$$
  
 $y(u, v) = \sin u \cdot \sin v$   
 $z(u, v) = \cos v$ 

with  $0 \le u \le 2\pi$  and  $\pi/2 \le v \le \pi$ . The Jacobian J equals:

$$J = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} = -\sin v \cdot \cos v.$$

Now we can change the variables x, y in (3) to u, v as:

$$-\iint_{D} 1 - x^{2} - y^{2} dxdy = -\iint_{R} \cos^{2} v \cdot |J| dudv$$

$$= -\iint_{R} \cos^{2} v \cdot |\sin v \cdot \cos v| dudv$$

$$= \int_{0}^{2\pi} \left( \int_{\pi/2}^{\pi} \cos^{3} v \cdot \sin v dv \right) du$$

$$= -\frac{1}{4} \int_{0}^{2\pi} du = -\pi/2.$$

Therefore,  $\iint_S h(x, y, z) dxdy = \pi/2 - \pi/2 = 0$ .