

Architettura di Internet a.a. 2022/2023 Esercitazione 5

Ulderico Vagnoni ulderico.vagnoni2@unibo.it

www.unibo.it

Esercizio 1

Assumere che in una sessione TCP Reno il RTT sia fisso a 150 ms, che i segmenti abbiano una lunghezza fissa di 1500 bit e che la banda massima disponibile tra i due host sia di 10 Mbps.

- Calcolare la finestra di congestione massima
- Da che valore riprende la finestra se, una volta raggiunto il massimo, si verifica un 3 ack duplicato?
- Calcolare il tempo impiegato dalla connessione per raggiungere di nuovo il valore massimo della finestra dopo un 3 ack duplicato

Assumere che il file inviato dal server sia composto da 55 segmenti e che la SST iniziale sia di 8 segmenti e che vi siano perdite nel caso dei pacchetti 33, 41 e 43.

Disegnare l'evoluzione della finestra di congestione e della SST

Soluzione

CW_{max} =
$$\frac{RTT \times R}{L} = \frac{1 \times 10^7 \times 1.5 * 10^{-1}}{1500} = 1000 segmenti$$

b) 500 segmenti

c) 500 * RTT = 75 secondi

Soluzione

d)

Round	CW	SST	Pacchetti
1	1	8	1
2	2	8	2,3
3	4	8	4,5,6,7
4	8	8	8,,15
$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	9	8	16,,24
6	10	8	25,, 33 , <u>34</u>
7	11	8	$35, 36, \dots 41, \dots 43, \dots 45$
8	5	5	33, 34, 35, 36, 37
9	6	5	38,,43
10	7	5	44,,50
11	8	5	51,,55

3 ACK DUPLICATO

Esercizio 2

Assumere che in una sessione TCP Reno il RTT sia fisso a 85 ms, che i segmenti abbiano una lunghezza fissa di 2500 bit e che la banda massima disponibile tra i due host sia di 10 Mbps.

- Calcolare la finestra di congestione massima
- Di quanto diminuisce la finestra se, una volta raggiunto il massimo, avviene un timeout?
- Calcolare il tempo impiegato dalla connessione per raggiungere di nuovo il valore massimo della finestra dopo un 3 ack duplicato

Soluzione

a) $CW_{max} = \frac{RTT \times R}{L} = \frac{1 \times 10^7 \times 8.5 * 10^{-2}}{2500} = 340 segmenti$

b) 339 segmenti, perché ritorna a 1

c) 170 * RTT = 14.45 secondi

Algoritmo di Dijkstra

L'algoritmo di Dijkstra è un algoritmo di ricerca del cammino più breve in un grafo pesato, l'algoritmo trova quindi il percorso più breve tra un nodo sorgente e tutti gli altri nodi del grafo.

L'algoritmo di Dijkstra utilizza una "frontiera" di nodi con i costi più bassi conosciuti per raggiungere quel nodo dalla sorgente. Questa frontiera viene iterativamente espansa fino a quando non viene raggiunto il nodo di destinazione o fino a quando tutti i nodi raggiungibili sono stati esplorati.

L'algoritmo seleziona il nodo con il costo minimo e aggiorna i costi dei suoi vicini se il costo per raggiungerli è più basso del costo corrente.

Algoritmo di Dijkstra

```
function Dijkstra(Graph, source):
        create vertex set Q
        for each vertex v in Graph:
            dist[v] + INFINITY
            prev[v] + UNDEFINED
            add v to Q
        dist[source] + 0
10
11
12
        while Q is not empty:
13
            u ← vertex in Q with min dist[u]
14
15
            remove u from Q
16
17
            for each neighbor v of u:
                                                // only v that are still in Q
                alt + dist[u] + length(u, v)
18
                if alt < dist[v]:
19
                    dist[v] + alt
20
21
                    prev[v] \leftarrow u
22
        return dist[], prev[]
23
```

A parità di costo, si sceglie il nodo in ordine alfabetico

Algoritmo di Dijkstra - Esempio

Considerare il seguente grafico, dove le etichette riportate vicino ogni arco rappresentano il costo di attraversamento dell'arco stesso.

Si mostrino i passi necessari per ricavare i cammini di costo minimo da A verso tutti gli altri nodi utilizzando l'algoritmo di Dijkstra, si esplicitino tutti i passaggi in una tabella e si disegni l'albero dei cammini minimi risultante:

Algoritmo di Dijkstra - Esempio

Nodi conosciuti	D_b	D_c	D_d	D_e
A	8	1	∞	∞
\mathbf{AC}	7		3	6
ACD	6		6,5.399	4
ACDE	<u>6</u>			
ACDEB	3.53			

Percorsi	
В	ACDB
C	\mathbf{AC}
D	ACD
E	ACDE

Algoritmo di Dijkstra - Esempio

Nodi conosciuti	D_b	D_c	D_d	D_e
A	8	1	∞	∞
\mathbf{AC}	7		3	6
ACD	6		44.000	4
ACDE	6			
ACDEB				

Percorsi	
В	ACDB
C	\mathbf{AC}
D	ACD
E	ACDE

Considerare il seguente grafico, si mostrino i passi necessari per ricavare i cammini di costo minimo da A verso tutti gli altri nodi utilizzando l'algoritmo di Dijkstra, si esplicitino tutti i passaggi in una tabella e si disegni l'albero dei cammini minimi risultante:

Nodi conosciuti	D_b	D_c	D_d	D_e	D_f	D_g
A	8	∞	∞	∞	2	4
\mathbf{AF}	8	∞	∞	12		4
AFG	7	14	∞	9		
AFGB		10	∞	9		
AFGBE		10	11	1		
AFGBEC			<u>11</u>			
AFGBECD						

Percorsi	
В	AGB
C	AGBC
D	AGED
\mathbf{E}	AGE
F	\mathbf{AF}
G	AG

Disegnare ora l'albero dei cammini minimi supponendo che il nodo G venga disattivato:

Nodi conosciuti	D_b	D_c	D_d	D_e	D_f
Α	8	∞	∞	∞	2
AF	8	∞	∞	12	
AFBC AFBCE		11	∞ 17 14	12 12	

Percorsi	
В	AB
C	ABC
D	AFED
\mathbf{E}	AFE
F	AF

ŀ

Considerare il seguente grafico, si mostrino i passi necessari per ricavare i cammini di costo minimo da G verso tutti gli altri nodi utilizzando l'algoritmo di Dijkstra, si esplicitino tutti i passaggi in una tabella e si disegni l'albero dei cammini minimi risultante:

Nodi conosciuti	D_a	D_b	D_c	D_d	D_e	D_f	D_h
G	∞	∞	∞	∞	∞	2	1
GH	9	3	8	∞	∞	2	
GHF	9	3	5	5	12		
GHFB	7	100000	5	5	12		
GHFBC	7			5	12		
GHFBCD	7			1726	12		
GHFBCDA					12		
GHFBCDAE							

Percorsi	
A	GHBA
В	GHB
C	GFC
D	GFD
E	GFE
F	GF
H	GH

Disegnare ora l'albero dei cammini minimi supponendo che il collegamento G-H venga eliminato:

Nodi conosciuti	D_a	D_b	D_c	D_d	D_e	D_f	D_h
G	∞	∞	∞	∞	∞	2	∞
\mathbf{GF}	∞	∞	<u>5</u>	5	12		∞
GFC	∞	13		5	12		∞
GFCD	∞	13			12		12
GFCDE	∞	13					12
GFCDEH	20	!3					
GFCDEHB	17						
GFCDEHBA							

Percorsi	
A	GFCBA
В	GFCB
C	GFC
D	GFD
E	GFE
F	GF
H	GFCH

Considerare il seguente grafico, si mostrino i passi necessari per ricavare i cammini di costo minimo da A verso tutti gli altri nodi utilizzando l'algoritmo di Dijkstra, si esplicitino tutti i passaggi in una tabella e si disegni l'albero dei cammini minimi risultante e disegnare l'albero dei cammini minimi supponendo che il collegamento B-H abbia costo 1:

	A		H)	1	6 G)	_(1	14	10	5)		8	H 1	G-	2 F	10
	Nodi conosciuti	D_b	D_c	D_d	D_e	D_f	D_g	D_h	D_i	1	Percorsi		i			
1	A	4	∞	∞	∞	∞	∞	8	∞		P	AB	+			
	AB	7.1097	12	∞	∞	∞	∞	8	∞		C	ABC	1			
	ARH		19	~	~	~	Q	1 5350	15			ADC				

	Nodi conosciuti	D_b	D_c	D_d	D_e	D_f	D_g	D_h	D_i
Г	A	4	∞	∞	∞	∞	∞	8	∞
	AB	100	12	∞	∞	∞	∞	8	∞
	ABH		12	∞	∞	∞	9	18560	15
	ABHG		12	∞	∞	11			15
	ABHGF		12	25	21				15
	ABHGFC			19	21				14
	ABHGFCI			19	21				21000000
	ABHGFCID			1100101010	21				
	ABHGFCIDE								

Percorsi	
В	AB
C	ABC
D	ABCD
E	AHGFE
F	AHGF
G	AHG
H	AH
I	ABCI

Nodi conosciuti	D_b	D_c	D_d	D_e	D_f	D_g	D_h	D_i
A	4	∞	∞	∞	∞	∞	8	∞
$^{\mathrm{AB}}$	1150	12	∞	∞	∞	∞	5	∞
ABH		12	∞	∞	∞	6	7.9	12
ABHG		12	∞	∞	8			12
ABHGF		12	22	18				12
ABHGFC			19	18				12
ABHGFCI			19	18				
ABHGFCIE			19					
ABHGFCIED								

Percorsi	
В	AB
C	ABC
D	ABCD
E	ABHGFE
F	ABHGF
G	ABHG
H	ABH
I	ABHI

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Campus di Bologna Corso di Laurea in Informatica per il management

E-mail ulderico.vagnoni2@unibo.it

www.unibo.it