Билет 12:Сформулируйте теоремы о переходе к пределу в неравенстве (в двух неравенствах) для последовательностей. Докажите одну из них.

Переход к пределу в неравенствах

Теорема (о предельном переходе в неравенстве). Пусть $\lim_{n\to\infty} a_n = a \ u \ \lim_{n\to\infty} b_n = b$, u пусть $a_n \le b_n$, по крайней мере, начиная с некоторого номера $(n \ge n_0)$. Тогда $a \le b$.

Доказательство. Рассмотрим последовательность $\{c_n\} = \{b_n - a_n\}$. Эта последовательность сходящаяся $\left(\lim_{n \to \infty} c_n = c = b - a\right)$, кроме того, $c_n \ge 0$ при $(n \ge n_0)$. Покажем, что $c \ge 0$.

Предположим, что c < 0 . Тогда возьмем $\varepsilon = \frac{|c|}{2}$ и выберем номер N такой, что при n > N

$$\left|c_{n}-c\right|<\frac{\left|c\right|}{2}$$
 , to ectb
$$\begin{cases} c_{n}< c+\frac{\left|c\right|}{2}\\ c_{n}> c-\frac{\left|c\right|}{2} \end{cases}.$$

Но в таком случае, при $n>\max\left\{N,n_0\right\}$ будет (мы используем только верхнее неравенство) $c_n < c + \frac{|c|}{2} < 0$. Мы пришли к противоречию. следовательно $c \ge 0$.

Теорема (о предельном переходе в двух неравенствах). Пусть $\lim_{n\to\infty} a_n = a \ u$ $\lim_{n\to\infty} b_n = a$, u пусть $a_n \le c_n \le b_n$, по крайней мере, начиная c некоторого номера $(n \ge n_0)$. Тогда последовательность $\{c_n\}$ сходится u $\lim c_n = a$.

Доказательство. \blacktriangleright Фиксируем произвольное $\varepsilon>0$. По условию теоремы, после некоторого номера N_1 , элементы последовательности $\{a_n\}$ будут находиться в $O_\varepsilon\left(a\right)$, а, после номера N_2 , в той же окрестности будут находиться все члены последовательности $\{b_n\}$. Тогда для номеров $n>N=\max\left\{N_1,N_2,n_0\right\}$ элемент последовательности $\{c_n\}$, находясь между a_n и b_n , тоже попадет в $O_\varepsilon\left(a\right)$, то есть $\lim_{n\to\infty}c_n=a$.