

法律声明

- ■课程详情请咨询
 - ◆微信公众号:北风教育
 - ◆官方网址: http://www.ibeifeng.com/

人工智能之机器学习

随机森林 (Random Forest)

主讲人: 赵翌臣

上海育创网络科技有限公司

走进森林,参天大树一棵棵相继出现

集成学习——Bagging思想

Bagging是Bootstrap Aggregating的缩写,通过并行地构造多个个体分类器,然后以一定的方式将它们组合成一个强学习器

随机森林 (Random Forest)

■介绍

◆RF是基于决策树的集成模型,随机森林是机器学习中最成功的算法之一,他能做二分类、多分类和回归任务。随机森林里集成了很多棵决策树,目的是减小过拟合的风险(减小模型方差)。

■优点

- ◆像决策树一样,RF可以处理类别特征与连续特征,能扩展到多类分类,不需要特征缩放,能捕获非线性关系和特征间的影响
- ◆算法可以并行

■森林

◆树的集合

随机森林 (Random Forest)

- ■思考
 - ◆随机的目的是什么?
- ■注入随机性
 - ◆样本随机:训练每一个决策树使用的都是bootstrapping产生的数据集
 - ◆特征随机:在每一个树结点上进行结点划分时,考虑特征子空间
 - ▶ 简单做法: 从原始特征中随机不重复地抽取一些特征;
 - ▶ 延伸做法: 从原始特征中随机不重复地抽取一些特征, 然后将某些特征线性合并, 产生一系列组合特征。

随机森林的训练伪代码

```
function RandomForest(D,T)
for t=1,2,...,T //可以并行执行
    ①request size-N' data D<sub>t</sub> from bootstrapping
    ②obtain base g<sub>t</sub> by DTree(D'<sub>t</sub>)
return G=Uniform(g<sub>t</sub>)
```


随机森林的结合策略

■分类

◆投票,少数服从多数。每个树的预测结果就是给某个类别投一票,最终随机森林的输出值就是得票最多的类别

■回归

◆平均法,每一个树都会输出一个实数,随机森林的输出值就是所有决策树输出值的均值

编程——基于Bagging的回归

例 8.2 已知如表 8.2 所示的训练数据, x 的取值范围为区间[0.5,10.5], y 的取值范围为区间[5.0,10.0], 学习这个回归问题的提升树模型, 考虑只用树桩作为基函数.

寿	8.2	ijΙ.	练数据表
-74	U. M	1911	-WY 200 1/12 400

x_i	1	2	3	4	5	6	7	8	9	10
y_i	5.56	5.70	5.91	6.40	6.80	7.05	8.90	8.70	9.00	9.05

并行的训练多颗回归树,对有个样本进行预测时,所有回归树同时预测,取均值作为输出

编程——基于Bagging的分类

例 8.1 给定如表 8.1 所示训练数据. 假设弱分类器由 x < v 或 x > v 产生, 其阈值 ν 使该分类器在训练数据集上分类误差率最低. 试用 AdaBoost 算法学习一个强分类器.

表 8.1 训练数据表

序号	1	2	3	4	5	6	7	8	9	10
x	0	1	2	3	4	5	6	7	8	9
у	1	1	1	-1	-1	-1	1	1	1	-1

编程——RF综合案例之森林植被类型预测

EDUCATION TO CREATE A BRIGHT FUTURE

https://archive.ics.uci.edu/ml/datasets/covertype

■解释:

◆ 该数据集记录了美国科罗拉多州不同地块的森林植被类型。每个样本包含了描述每块土地的若干特征,包括海拔、坡度、到水源的距离、遮阳情况和土壤类型,并且随同给出了地块的已知森林植被类型。我们需要总共54 个特征中的其余各项来预测森林植被类型

Data Set Characteristics:	Multivariate	Number of Instances:	581012	Area:	Life
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	54	Date Donated	1998-08-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	185453

编程——RF回归案例之共享单车租赁数量预测

- This dataset contains the hourly and daily count of rental bikes between years 2011 and 2012 in Capital bikeshare system with the corresponding weather and seasonal information.
 - ◆数据下载 http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Data Set Characteristics:	Univariate	Number of Instances:	17389	Area:	Social
Attribute Characteristics:	Integer, Real	Number of Attributes:	16	Date Donated	2013-12-20
Associated Tasks:	Regression	Missing Values?	N/A	Number of Web Hits:	232895

用随机森林做特征选择

- ■为什么要特征选择?
 - ♦答
- ■优点
 - ◆高效: 更简单的分割平面、更短的训练预测时间
 - ◆泛化能力增强: 无用特征被移除
 - ◆可解释性增强
- ■缺点
 - ◆计算代价
 - ◆ 选出了不好的特征的话,会影响模型精度

特征选择的思考

- ■如果可以计算出每个特征的重要性,即 importance(k) for k = 1, 2, ...,d。那就能将不重要的特征舍弃,达到降维的效果
- ■那么如何考量每个特征的重要性呢?
 - ◆线性模型
 - ◆非线性模型

置换检验

■介绍

◆置换检验是统计学中显著性检测的一种。

■思想

- ◆如果特征k是重要的,那么用随机的值将该特征破坏,<mark>重新训练和评估</mark>,计算模型泛化能力的退化程度,即,importance(k) = performance(G) performance(G'),这个退化程度就可以度量特征k的重要性
- ■采用什么样的随机数
 - ◆均匀分布,高斯分布,...
 - ◆置换

置换检验

- ■置换检验效率问题:
 - importance(k) = performance(G) performance(G')
 - ◆performance(G') 需要重新训练和验证,耗时耗力
- ■如何避免呢?

$$importance(k) = E(G) - E(G')$$

importance(k) = E(G) - E'(G)

OOB

没有用来训练 g_t 的样本——称为 g_t 的out-of-bag(OOB) 集合中的样本

如果 N' = N

$$(x_i, y_i)$$
 属于 g_t 的OOB集合的概率: $(1 - \frac{1}{N})^N$

如果 N 很大:

$$(1 - \frac{1}{N})^{N} = \frac{1}{(\frac{N}{N-1})^{N}} = \frac{1}{(1 + \frac{1}{N})^{N}} \approx \frac{1}{e} \approx 0.368$$

 g_t 的OOB 集合中的元素个数 $\approx \frac{1}{e}N$

OOB集合可以用来对模型进行验证

*意味着该样本属于g的 OOB集合

使用OOB完成Bagging的自我验证

如何做自我验证:

用 * 来验证 g_t ? 能做,但很少需要这样做,因为 g_t 不是最终关心的,最终 关心的是G

	g_1	g_2	g_3	• • •	g_T
(x_1,y_1)		*			
(x_2, y_2)	*	*			
(x_3, y_3)	*		*		
•••					
(x_N, y_N)		*	*		*

用 * 来验证G

假设 x_i 同时属于某些 g_t 的OOB集合,我们将这些 g_t 组合成一个G,而不是用所有的 g_t ,记为 G_i^- ,如: $G_3^-(\mathbf{x}) = \text{uniform}(g_1,g_3,\cdots)$

那么, G的误差近似表示为:

$$E_{oob}(G) = \frac{1}{N} \sum_{i=1}^{N} err(y_i, G_i^{-}(x_i))$$

透过OOB误差进行模型选择RF 参数

上海育创网络科技有限公司