16.13 Let $\{a_n\}$ be any sequence of real numbers such that $\lim_{n\to\infty} na_n = 0$. Prove that

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} + a_n \right)^n = e$$

Proof. Use factoring

$$b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + b^{n-3}a^{2} + \dots + a^{n-1}) \le n(b - a)b^{n-1}.$$

Since $\lim_{n\to\infty} na_n = 0$, for sufficiently large n, $|na_n| < 1$. For efficiency, assume $a_n > 0$.

$$\left| \left(1 + \frac{1}{n} + a_n \right)^n - \left(1 + \frac{1}{n} \right)^n \right| \leq |na_n| \left(1 + \frac{1}{n} + |a_n| \right)^{n-1}$$

$$\leq na_n \left(1 + \frac{1+1}{n} \right)^{n-1}$$

$$\leq na_n \left\{ \left(1 + \frac{1}{n} \right)^2 \right\}^{n-1}$$

$$\leq na_n \left\{ \left(1 + \frac{1}{n} \right)^n \right\}^2 < e^2 na_n$$

This explains all.