ECE 550: Fundamentals of Computer Systems and Engineering

Digital Arithmetic

Admin

- Homework
 - Homework 1
- Reading:
 - Chapter 3

Last Time in ECE 550....

Who can remind us what we talked about last time?

Last Time in ECE 550....

- Who can remind us what we talked about last time?
 - Numbers
 - One hot
 - Binary
 - Hex
 - Digital Logic
 - Sum of products
 - Encoders
 - Decoders

- First, one bit addition.
 - Three inputs: Carry In (CI), A, B
 - Two outputs Carry Out (CO), Sum (S)
- Go around room for truth table:

CI	A	В	S	СО
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

ECE 550 (Hilton): Digital Arithmetic

- First, one bit addition.
 - Three inputs: Carry In (CI), A, B
 - Two outputs Carry Out (CO), Sum (S)
- Go around room for truth table:

CI	A	В	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Half Adder

- Ignore CI for a second (assume is 0)
 - Can simplify a lot and build "half adder"
 - Formula for S?
 - Formula for CO?

CI	A	В	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Half Adder

- Ignore CI for a second (assume is 0)
 - Can simplify a lot and build "half adder"
 - Formula for S? A xor B
 - Formula for CO? A and B

CI	A	В	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Half Adder

- Half adder:
- 1 XOR and 1 AND
- Can anyone guess why its called a half adder?

- Re-visit Truth table, but...
 - Use Half-Sum and Half-CO (results of Half-Adder)
- Go around room for truth table:

CI	Half-Sum	Half-CO	S	СО
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- Re-visit Truth table, but...
 - Use Half-Sum and Half-CO (results of Half-Adder)
- Go around room for truth table:

CI	Half-Sum	Half-CO	S	СО
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	!!!	!!!

- Re-visit Truth table, but...
 - Use Half-Sum and Half-CO (results of Half-Adder)
- Go around room for truth table:

CI	Half-Sum	Half-CO	S	СО
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

- Formulas:
 - Sum?
 - CO?

CI	Half-Sum	Half-CO	S	СО
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

• Formulas:

- Sum? CI xor Half-Sum
- CO? (CI and Half-Sum) OR Half-CO

CI	Half-Sum	Half-CO	S	СО
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

• Formulas:

• Sum? CI xor Half-Sum

• CO? (CI and Half-Sum) OR Half-CO

What does this look like?

CI	Half-Sum	Half-CO	S	СО
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

ECE 550 (Hilton): Digital Arithmetic

Full Adder

- Full Adder
- 2 Half Adders + an OR Gate

ECE 550 (Hilton): Digital Arithmetic

Ripple Carry

- Full Adder = Add 1 Bit
 - Can chain together to add many bits
 - Upside: Simple
 - Downside?

Ripple Carry

- Full Adder = Add 1 Bit
 - Can chain together to add many bits
 - Upside: Simple
 - Downside? Slow
 - Let's see why

Full Adder

- Cout depends on Cin
 - 2 "gate delays" through full adder for carry

Ripple Carry

- Carries form a chain
 - Need CO of bit N is CI of bit N+1
- For few bits (e.g., 4) no big deal
 - For realistic numbers of bits (e.g., 32, 64), slow

Adding

- Adding is important
 - Want to fit add in single clock cycle
 - (More on clocking soon)
 - Why? Add is ubiquitous
- Ripple Carry is slow
 - Maybe can do better?
 - But seems like Cin always depends on prev Cout
 - ...and Cout always depends on Cin...

Hardware != Software

- If this were software, we'd be out of luck
 - But hardware is different
 - Parallelism: can do many things at once
 - Speculation: can guess

Carry Select

- Do three things at once (32 gates)
 - Add low 16 bits
 - Add high 16 bits assuming CI = 0
 - Add high 16 bits assuming CI =1
- Then pick correct assumption for high bits (2—3 gates)

Carry Select

- Could apply same idea again
 - Replace 16-bit RC adders with 16-bit CS adders
 - Reduce delay for 16 bit add from 32 to 18
 - Total 32 bit adder delay = 20
- So... just go nuts with this right?

Tradeoffs

- Tradeoffs in doing this
 - Power and Area (~= number of gates)
 - Roughly double every "level" of carry select we use
 - Less return on increase each time
 - Adding more mux delays
 - Wire delays increase with area
 - Not easy to count in slides
 - But will eat into real performance
- Fancier adders: recitation
 - Can do even better

Recall: Subtraction

- 2's complement makes subtraction easy:
 - Remember: A B = A + (-B)
 - And: $-B = \sim B + 1$
 - ↑ that means flip bits ("not")
 - So we just flip the bits and start with CI = 1
 - Fortunate for us: makes circuits easy
- 1
- 0110101 -> 0110101

32-bit Adder/subtractor

- Inputs: A, B, Add/Sub (0=Add,1 = Sub)
- Outputs: Sum, Cout, Ovf (Overflow)

32-bit Adder/subtractor

- By the way:
 - That thing has about 3,000 transistors
 - Aren't you glad we have abstraction?

Arithmetic Logic Unit (ALU)

- ALUs do a variety of math/logic
 - Add
 - Subtract
 - Bit-wise operations: And, Or, Xor, Not
 - Shift (left or right)
- Take two inputs (A,B) + operation (add,shift..)
 - Do a variety in parallel, then mux based on op

Bit-wise operations: SHIFT

- Left shift (<<)
 - Moves left, bringing in 0s at right, excess bits "fall off"
 - 10010001 << 2 = 01000100
 - x << k corresponds to x * 2^k
- Logical (or unsigned) right shift (>>)
 - Moves bits right, bringing in 0s at left, excess bits "fall off"
 - 10010001 >> 3 = 00010010
 - x >>k corresponds to x / 2^k for unsigned x
- Arithmetic (or signed) right shift (>>)
 - Moves bits right, brining in (sign bit) at left
 - 10010001 >> 3= 11110010
 - x >> k corresponds to $x / 2^k$ for signed x

Shift: Implementation...?

Suppose an 8-bit number
 b₇b₆b₅b₄b₃b₂b₁b₀

Shifted left by a 3 bit number $s_2s_1s_0$

- Option 1: Truth Table?
 - 2048 rows? Not appealing

Lets simplify

• Simpler problem: 8-bit number shifted by 1 bit number (shift amount selects each mux)

ECE 550 (Hilton): Digital Arithmetic

Lets simplify

• Simpler problem: 8-bit number shifted by 2 bit number (new muxes selected by 2nd bit)

Now shifted by 3-bit number

• Full problem: 8-bit number shifted by 3 bit number (new muxes selected by 3rd bit)

Now shifted by 3-bit number

• Shifter in action: shift by 000

Now shifted by 3-bit number

• Shifter in action: shift by 010

Now shifted by 3-bit number

Shifter in action: shift by 011

What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - Pi = 3.145...
 - $\frac{1}{2} = 0.5$
- How could we represent these sorts of numbers?
 - Fixed Point
 - Rational
 - Floating Point (IEEE Single Precision)

Floating Point

- Think about scientific notation for a second:
- For example:

```
6.02 * 10^{23}
```

- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 2 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?

Floating Point

- How about:
- +/- X.YYYYYY * 2+/-N
- Big numbers: large positive N
- Small numbers (<1): negative N
- Numbers near 0: small N
- This is "floating point": most common way

IEEE single precision floating point

- Specific format called IEEE single precision:
- $+/- 1.YYYYYY * 2^{(N-127)}$
- "float" in Java, C, C++,...
- Assume X is always 1 (save a bit)
- 1 sign bit (+ = 0, 1 = -)
- 8 bit biased exponent (do N-127)
- Implicit 1 before binary point
- 23-bit mantissa (YYYYY)

Binary fractions

- 1.YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - tenths
 - hundredths
 - Thousandths
 -
- So after a binary point you have...

Binary fractions

- 1.YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - Tenths
 - Hundredths
 - Thousandths
 -
- So after a binary point you have...
 - Halves
 - Quarters
 - Eights
 -

Floating point example

- Binary fraction example:
 - $101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625$
- For floating point, needs normalization:
 - $1.01101 * 2^2$
- Sign is +, which = 0
- Exponent = $127 + 2 = 129 = 1000\ 0001$
- Mantissa = 1.011 0100 0000 0000 0000 0000

```
    31 30
    23 22

    0 | 1000 | 0001 | 011 | 0100 | 0000 | 0000 | 0000 | 0000
```

Floating Point Representation

Example:

What floating-point number is:

0xC1580000?

Answer

What floating-point number is 0xC1580000?

1100 0001 0101 1000 0000 0000 0000 0000

```
Sign = 1 which is negative

Exponent = (128+2)-127 = 3

Mantissa = 1.1011

-1.1011x2^3 = -1101.1 = -13.5
```

Trick question

- How do you represent 0.0?
 - Why is this a trick question?

Trick question

- How do you represent 0.0?
 - Why is this a trick question?
 - 0.0 = 000000000
 - But need 1.XXXXX representation?

Trick question

- How do you represent 0.0?
 - Why is this a trick question?
 - \bullet 0.0 = 000000000
 - But need 1.XXXXX representation?
- Exponent of 0 is denormalized
 - Implicit 0. instead of 1. in mantissa
 - Allows 0000....0000 to be 0
 - Helps with very small numbers near 0
- Results in +/- 0 in FP (but they are "equal")

Other weird FP numbers

- Exponent = 1111 1111 also not standard
 - All 0 mantissa: +/- ∞

$$1/0 = +\infty$$
$$-1/0 = -\infty$$

• Non zero mantissa: Not a Number (NaN)

$$sqrt(-42) = NaN$$

Floating Point Representation

Double Precision Floating point:

64-bit representation:

- 1-bit sign
- 11-bit (biased) exponent
- 52-bit fraction (with implicit 1).
- "double" in Java, C, C++, ...

```
S Exp Mantissa
1 11-bit 52 - bit
```

Danger: floats cannot hold all ints!

- Many programmers think:
 - Floats can represent all ints
 - NOT true

- First summer internship I had:
 - Need some floats and some ints: just use floats!
 - Bug in their code!
 - Other developers shocked as I demonstrated problem...
- Doubles can represent all 32-bit ints
- (but not all 64-bit ints)
 S Exp
 Mantissa
 1 | 11-bit | 52 bit

Wrap Up

- Implementation of Math
 - Addition/Subtraction
 - Shifting
- Floating Point Numbers
 - IEEE representation
 - Denormalized Numbers
- Next Time:
 - Storage
 - Clocking