Serie 1

(Abgabe: am 6. März 2018 bis 10:00 Uhr im Fach)

Aufgabe 1.1

Bestimme mit der Lagrangeschen Interpolationsformel das Polynom p zweiten Grades, das in den Punkten x = 1, 4, 9 mit $1/\sqrt{x}$ übereinstimmt. Vergleiche die Approximation p(2.25) mit dem exakten Wert 2/3. Zeichne p(x) und $1/\sqrt{x}$ für $x \in [1, 10]$.

Aufgabe 1.2

Bestimme das Polynom p zweiten Grades, das p(-3) = 0, p(-1) = 1 und p(1) = 0 erfüllt. Verwende dafür sowohl die Lagrangesche als auch die Newtonsche Interpolationsformel. Verifiziere, dass das Polynom in beiden Fällen dasselbe ist.

Aufgabe 1.3 (P)

Betrachte die folgende Wertetabelle für die Funktion log₂ ("Logarithmentafel"):

i	x_i	y_i
0	40	5.321928
1	42	5.392317
2	44	5.459432
3	46	5.523562
4	48	5.584963

Schreibe eine Matlab-Funktion LogInterpol, die mit der Newtonschen Interpolationsformel den interpolierten Wert p(x) an einer beliebigen Stelle x berechnet. Vergleiche den interpolierten mit dem exakten Wert bei x=45.254834. Zeichne p(x) und $\log_2(x)$, zuerst für $x\in[40,48]$ und dann für $x\in[1,100]$. Zeichne auch die Fehlerfunktion $r(x)=\log_2(x)-p(x)$ für $x\in[40,48]$.