Universidad Nacional Autónoma de México Facultad de Ciencias Teoría de los Números I

Tarea 1

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

25 de Febrero 2019

1. Divisibilidad

Ejercicio 1.1. Definimos la siguiente relación:

$$a \preccurlyeq b \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad a \mid b.$$

Prueba que \leq es un orden parcial sobre $\mathbb{Z}^+ = \{1, 2, \ldots\}$, es decir que (\mathbb{Z}^+, \leq) . Explica porqué no es un orden parcial sobre \mathbb{Z} .

Solución: Antes de empezar procederemos dando unas definiciones.

Definición 1. Un **orden parcial** es una relación binaria R sobre un conjunto X que es reflexiva, antisimétrica, y transitiva, es decir, para cualesquiera a, b, y c en X se tiene que:

- a. aRa (reflexividad).
- b. Si aRb y bRa, entonces a = b (antisimetría).
- c. Si aRb y bRc, entonces aRc (transitividad).

Definición 2. Sean $a, b \in \mathbb{Z}$, decimos que a divide a b si existe un entero $k \in \mathbb{Z}$ tal que b = ak.

$$a \mid b \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad \exists k \in \mathbb{Z} \ni b = ak$$

Por demostrar que (\mathbb{Z}^+, \preceq) . Para esto hay que probar las tres propiedades descritas anteriormente.

- Reflexividad. Sea $a \in \mathbb{Z}$, por demostrar que $a \leq a$. Por definición se tiene que $\exists k \in \mathbb{Z} \ni a = ak$ y k debe ser una unidad en \mathbb{Z} por lo que a1 = a. Por tanto $a \leq a$.
- Antisimetría. Sean $a, b \in \mathbb{Z}$. Si $a \leq b$ y $b \leq a$ por demostrar que a = b. Por definición de \leq tenemos que $\exists p \in \mathbb{Z} \ni b = ap$ y $\exists q \in \mathbb{Z} \ni a = bq$ entonces sustituyendo a tenemos que b = (bq)p, asociando b = b(qp), entonces qp = 1. Por tanto a = b.
- Transitividad. Sean $a, b, c \in \mathbb{Z}$. Si $a \leq b$ y $b \leq c$ por demostrar que $a \leq c$. Por definición de \leq tenemos que $\exists p \in \mathbb{Z} \ni b = ap$ y $\exists q \in \mathbb{Z} \ni c = bq$, sustituyendo b tenemos que c = (ap)q, asociando c = a(pq). Por tanto $a \leq b$.

Ahora bien $(\mathbb{Z}, \preccurlyeq)$ no es un orden parcial porque no cumple la antisimetría y se dará un contraejemplo. Sean $a, b \in \mathbb{Z}$. Si $a \preccurlyeq b$ y $b \preccurlyeq a$. Por definición de \preccurlyeq tenemos que $\exists p \in \mathbb{Z} \ni b = ap$ y $\exists q \in \mathbb{Z} \ni b = aq$ pero si tomamos a a = 1 y b = -1 (s.p.d.g), no se cumple \preccurlyeq porque $a \neq b$.

Ejercicio 1.2. Sobre las unidades de un anillo:

a. Sea A un anillo conmutativo con 1 y $U(A) = \{u \in A \mid \exists v \in A \text{ tal que } uv = 1\}$ su conjunto de unidades. Definimos la siguiente relación:

$$a \sim b \iff \exists u \in U(A) \text{ tal que } a = ub$$

Prueba que \sim es una relación de equivalencia. Si $a \sim b$, decimos que a y b son asociados. ¿Qué conjunto es el espacio cociente \mathbb{Z}/\sim ?

Solución: Antes de empezar, se procederá a dar la definición de relación de equivalencia

Definición 3. Sea K un conjunto dado no vació y R una relación binaria sobre K. Se dice que R es una relación de equivalencia si cumple las siguientes propiedades:

- Reflexividad. $\forall x \in K : xRx$
- Simetría. $\forall x, y \in K : xRy \implies yRx$
- Transitividad. $\forall x, y, z \in K : xRy \land yRz \implies xRz$

Por demostrar que $a \sim b$ es una relación de equivalencia.

- Reflexividad: $a = 1a \quad \forall a \in A$.
- Simetría: Si $a \sim b$ implies a = ub como $\exists u^{-1} \in A \implies u^{-1} \in U(A)$. Por lo tanto $b = u^{-1}a, b \sim a$.
- Transitividad: $a \sim b$ y $b \sim c \implies a = ub \wedge b = u'c$ con $u, u' \in U(A) \implies a = u(u'c)$ $\implies a = (uu')c$. Por tanto $a \sim c \implies uu' \in A$.
- b. Sea $p \in \mathbb{Z}$ un número primo. Prueba que $\mathbb{Z}_{(p)} := \{\frac{a}{b} \in \mathbb{Q} \mid p \not\mid b\}$ es un anillo con las operaciones usuales de \mathbb{Q} y describe el conjunto $U(\mathbb{Z}_{(p)})$.

Solución:

c. Prueba que cuales quiera dos elementos primos de $\mathbb{Z}_{(p)}$ son asociados (un elemento q en cualquier anillo conmutativo con 1 es primo si no es una unidad y además cumple que $q \mid ab \Longrightarrow q \mid a \circ q \mid b$).

Solución:

d. Prueba que si $\frac{a}{b} \in \mathbb{Z}_{(p)}$ no es una unidad, entonces $\frac{a}{b} + 1 \in U(\mathbb{Z}_{(p)})$. Explica porque la prueba de Euclides de la infinitud de los números primos falla para $\mathbb{Z}_{(p)}$.

Solución:

Ejercicio 1.3. Sean $a, b, c \in \mathbb{Z}$. Prueba las siguientes propiedades:

a. $a \mid b \Longrightarrow ac \mid bc$ para toda $c \in \mathbb{Z}$ y si $c \neq 0$, entonces $ac \mid bc \Longrightarrow a \mid b$.

Solución: Como por hipótesis y aplicando la definición de divisibilidad tenemos que $\exists p, q$ tales que si ap = b entonces acq = bc. Entonces basta con dividir acq = bc entres c ya que es un factor común teniendo $\frac{acq}{c} = \frac{bc}{c}$, teniendo entonces aq = b. Por tanto $a \mid b$

b. Si $a \mid a' y b \mid b'$, entonces $ab \mid a'b'$.

Solución: Basta escribir a $a \mid a' \ y \ b \mid b'$, usando la definición de divisibilidad tenemos entonces $p, q \in \mathbb{Z}$ tal que $ap = a' \ y \ bq = b'$. Multiplicando ambas igualdades tenemos que apbq = a'b' y asociando ab(pq) = a'b'. Por tanto $ab \mid a'b'$.

c. Si $a \mid c, b \mid c$ y (a,b) = 1, entonces $ab \mid c$. Muestra un contraejemplo de esta propiedad si (a,b) > 1.

Solución: Tomando a=2, b=4 y c=4. Porque (a,b)=(2,4)=2 y tenemos que $2 \mid 4$ y $4 \mid 4$, pero no se cumple $ab \mid c$ ya que $8 \nmid 4$.

d. $(a+n,n) \mid n$ para toda $n \in \mathbb{Z}$.

<u>Solución</u>: Sabemos por un teorema, que el máximo común divisor de dos números cualesquiera puede ser expresado como la mínima combinación lineal. Sabiendo éso, podemos expresar a (a+n,n)=d como p(a+n)+qn=d con $p,q\in\mathbb{Z}$. Ahora bien, por el inciso h) sabemos que si (a,b)=d, entonces $(\frac{a}{d},\frac{b}{d})=1$. Aplicando el resultado previo, tenemos que $(\frac{a+n}{d},\frac{n}{d})=1$, reescribiendo como combinación lineal se tiene que $r\frac{a+n}{d}+s\frac{n}{d}=1$ para algún $r,s\in\mathbb{Z}$, multiplicando ambos lados por n se tiene $nr\frac{a+n}{d}+ns\frac{n}{d}=n$ y factorizando n tenemos $n(r\frac{a+n}{d}+s\frac{n}{d})=n$, lo que implica que $(r\frac{a+n}{d}+s\frac{n}{d})=1$. Por tanto, aplicando la definición de divisibilidad se tiene que $(a+n,n)\mid n$.

e. Si (a, b) = 1 entonces (a + b, a - b) = 1 ó 2.

Solución: Si (a,b) = d por definición se tiene que $d \mid a y d \mid b$. Entonces regresando a la expresión a probar se tiene que $d \mid a+b, a-b$, si tomamos la suma y diferencia de ambos términos tenemos que $d \mid (a+b) + (a-b) = 2a y d \mid (a+b)(a-b) = 2b$, teniedo entonces que $d \mid (2a, 2b) = 2(a, b) = 2$. Ergo d = 1 o d = 2.

f. (a+tb,b)=(a,b) para toda $t\in\mathbb{Z}$.

Solución: Sabemos que podemos expresar a (a,b)=d como la menor combinación lineal positiva. Entonces expresamos a (a+tb,b)=d como dicha combinación teniendo entonces (a+tb)m+bn=d con $m,n\in\mathbb{Z}$, expandiendo el producto y asociando tenemos am+(tm+n)b=d y por otro lado tenemos que ap'+bq'=d. Por tanto, podemos expresar a ambos (a+tb,b) y (a,b) como la menor combinación lineal positiva y ambos tienen el mismo máximo común divisor. Ergo (a+tb,b)=(a,b) \forall $t\in\mathbb{Z}$.

g. Si $a' \mid a, b' \mid b$ y (a,b) = 1 entonces (a',b') = 1. En palabras esto es: si a y b son primos relativos, entonces sus divisores son primos relativos entre ellos.

Solución: Por demostrar que (a',b')=1. Una de las hipótesis dice que (a,b)=1, reescribiendo el m.c.d. como ax+by=1 para algunos $x,y\in\mathbb{Z}$. Se sigue que:

$$ax + by = 1$$
 (Mínima combinación lineal de (a, b))
 $a'p = a \land b'q = b$ (Por hipótesis y aplicando definición de divisibilidad)
 $(a'p)x + (b'q)y = 1$ (Sitituyendo)
 $a'(px) + b'(qy) = 1$ (Asociando)

Ergo si a y b son primos relativos, entonces sus divisores son primos relativos entre ellos.

h. Si (a,b) = d entonces $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

Solución: Sea $\left(\frac{a}{d}, \frac{b}{d}\right) = d'$. Por demostrar que d' = 1. Como d' es un factor común de $\frac{a}{d}$ y

de $\frac{b}{d}$, entonces $\exists l, m$ tales que $\frac{a}{d} = ld'$ y $\frac{b}{d} = md'$. Entonces a = ldd' y b = mdd', entonces dd' es un factor común de a y b. Entonces, por definición de máximo común divisor tenemos que $dd' \leq d$, entonces d' = 1. Por tanto d' es un entero positivo tal que d' = 1. Ergo si (a, b) = d entonces $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

i. Si (a, b) = 1 = (a, c), entonces (a, bc) = 1.

Solución: Por demostrar que (a,bc)=1. Se tiene por hipótesis que (a,b)=1=(a,c) lo cual se puede expresar como ax+by=1 y ap+cq=1 para algunos $x,y,p,q\in\mathbb{Z}$. Se sigue entonces:

$$(ax + by)(ap + cq) = 1$$
 (Multiplicando ambas ecuaciones)
 $axap + axqp + byap + bycq = 1$ (Aplicando producto)
 $a(xap + xqp + byp) + bc(yq) = 1$ (Factorizando y asociando)

Por tanto (a, bc) = 1.

j. Sea a_0, a_1, a_2, \ldots la sucesión de Fibonacci $1, 1, 2, 3, 5, \ldots$ definida recursivamente como $a_{n+1} := a_n + a_{n-1}$ donde $a_0 = 1 = a_1$. Prueba que $(a_n, a_{n+1}) = 1$ para toda n.

Solución: Prueba por inducción. Sea $n \in \mathbb{N}$, demostrar que la propiedad P(n) se cumple $\forall n \in \mathbb{N}$

Caso base: para n = 2, $P(2) = a_2 = a_1 + a_0 = 2$. Se cumple que $(a_1, a_2) = (2, 1) = 1$.

Hipótesis de inducción: Suponer que $k \in \mathbb{N}$ con k > 1, entonces se cumple P(k) tal que $(a_k, a_{k+1}) = 1$ para toda $k \in \mathbb{Z}$.

Paso inductivo: Probar que se cumple P(n+1).

$$(a_{k+1}, a_{k+2}) = (a_{k+1}, a_{k+1} + a_k)$$
 (Definición de Fibonacci, $a_{k+2} := a_{k+1} + a_k$)
 $= (a_{k+1} + a_k, a_{k+1})$ (Conmutanto)
 $= (a_{k+1}, a_k)$ (Usando que $(a, b) = (a + b, a)$)
 $= 1$ (Por hipótesis de inducción)

Por tanto $(a_n, a_{n+1}) = 1 \ \forall n$.

Ejercicio 1.4. Un *mínimo común múltiplo* de dos enteros $a, b \in \mathbb{Z}$ se define como un entero m > 0 que cumple las siguientes dos propiedades:

- (\bullet) $a \mid m \vee b \mid m$.
- (••) Si $m' \in \mathbb{Z}$ es tal que $a \mid m'$ y $b \mid m'$, entonces $m \mid m'$.

Fija $a, b, c \in \mathbb{Z}$. Prueba las siguientes propiedades del mínimo común múltiplo (mcm):

a. Prueba que el mcm de a, b es único; gracias a esto lo denotamos por [a, b].

Solución: Prueba por unicidad y existencia.

Empecemos por suponer $n, m \in \mathbb{Z}$ que satisfacen (\bullet) y ($\bullet \bullet$). Como m es un m.c.d. de a y b y como n satisface ($\bullet \bullet$) entonces $n \mid m$. Sin perdida de generalidad, intercambiamos las variables y tenemos que $m \mid n$. Lo que implica que si $n \mid m$ y $m \mid n$, entonces n = m y con esto hemos provado la unicidad.

Para provar la existencia, denotaremos a $S = x \in \mathbb{N}$: $a \mid x \wedge b \mid x$. Por el principio del buen orden se tiene que S tiene un elemento mínimo m. Por tanto tenemos que $a \mid m$ y $b \mid m$, con

ésto hemos provado (•). Para probar (••) denotaremos a $x \in \mathbb{Z}$ tal que $a \mid x \wedge b \mid x$. Por el algorítmo de la división tenemos que $\exists !q, r \in \mathbb{Z}$ tal que x = mq + r, $0 < r \le m$. Dado que $a \mid x$ y $a \mid x$ entonces $x = aq_1$ para algún $q_1 \in \mathbb{Z}$. Como $a \mid m$ entonces por definición $m = aq_2$ para alguna $q_2 \in \mathbb{Z}$. Se sigue que $aq_1 = aq_2 + r$ y reescribiendo $a(q_1 - q_2) = r$. Lo que implica que $a \mid r$ (por definición). Si r > 0 entonces $r \in S$ y contradice la definición de m. Ergo r = 0. Para b la prueba es totalmente análoga.

b. [ab, ac] = a[b, c]

Solución: En el inciso d) se demostró qué $[a,b] = \frac{ab}{(a,b)}$, por consiguiente podemos expresar a [ab,ac] como $[ab,ac] = \frac{abac}{(ab,ac)}$ de lo que se sigue que:

$$[ab, ac] = \frac{abac}{(ab, ac)}$$
 (Por prueba del inciso d))
$$= \frac{abac}{abx + acy}$$
 (Mínima combinación lineal de ab, cy)
$$= \frac{abac}{a(bx + cy)}$$
 (Factorizando)
$$= \frac{abc}{bx + cy}$$
 (Reduciendo factor común)
$$= a\frac{bc}{(b, c)}$$
 (Reescribiendo como m.c.d. a $bx + cy$)
$$= a[b, c]$$
 (Por inciso d))

Ergo [ab, ac] = a[b, c].

c. $(a,b) = [a,b] \Longrightarrow a = b$

Solución: Tenemos por el inciso d) que $[a,b] = \frac{ab}{(a,b)}$. Sabiendo eso, rescribiremos al m.c.m. como $[a,b] = \frac{ab}{(a,b)}$ pero por hipótesis se tiene que (a,b) = [a,b], sustituyendo [a,b] se tiene que $(a,b) = \frac{ab}{(a,b)}$, despejando se sigue que $(a,b)^2 = ab \iff a = b$ porque ab tiene que ser cuadrado.

d. ab = (a, b)[a, b]

Solución: Antes de probarlo, enunciaremos los siguiente Lemas. Sean a y b dos enteros positivos expresaremos al m.c.m y m.c.d. con la siguiente descomposición canónica.

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} \quad \land \quad b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n} \ni a_i, b_i \ge 0$$

(Asumimos que ambas descomposiciones contienen exactamente las mismas bases primas p_i). Entonces podemos expresar al m.c.m y m.c.d como .

$$[a,b] = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$
$$(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}$$

Ahora bien, teniendo los lema anteriores procederemos con la demostración. Tenemos que ab=(a,b)[a,b], reacomodando tenemos demostrar que $[a,b]=\frac{ab}{(a,b)}$. Sea $a=p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}$ y $b=p_1^{b_1}p_2^{b_2}\cdots p_n^{b_n}$ la descomposición canónica de a y b. Entonces tenemos

$$[a,b] = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

$$(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}$$

Por consiguiente,

$$\begin{split} (a,b)[a,b] &= p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)} \cdot p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)} \\ &= p_1^{\min(a_1,b_1) + \max(a_1,b_1)} \cdots p_n^{\max(a_n,b_n) + \max(a_n,b_n)} \\ &= p_1^{a_1+b_1} p_2^{a_2+b_2} \cdots p_n^{a_n+b_n} \\ &= (p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}) (p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}) \\ &= ab \end{split}$$

Ergo
$$[a,b] = \frac{ab}{(a,b)} \iff ab = (a,b)[a,b]$$

e.
$$(a + b, [a, b]) = (a, b)$$

<u>Solución</u>: Antes de proceder con la demostración enunciaremos un lema y un teorema que usaremos.

Lemma 1. Sean $a, b \in \mathbb{Z}$, Sea d = (a, b) entonces d = (a + b, a) = (a + b, b). Demostración:

$$(a,b) = ax + by$$

$$= ax + by + (ay - ay)$$

$$= ay + by + ax - ay$$

$$= y(a+b) + a(x-y)$$

$$= (a+b)y + ap'$$

Por tanto (a,b) = (a+b,a)

$$(a,b) = ax + by$$

$$= ax + by + (bx - bx)$$

$$= ax + bx + by - bx$$

$$= x(a+b) + b(y-x)$$

$$= (a+b)x + bq'$$

Por tanto (a, b) = (a + b, b)

Teorema 1. El m.c.d. se distribuye sobre el m.c.m. Sean $a, b, c \in \mathbb{Z}$, se sigue que:

$$(a, [b, c]) = [(a, b), (a, c)]$$

Sabiendo eso procederemos con la demostración:

$$(a+b,[a,b]) = [(a+b,a),(a+b,b)] \qquad \text{(Distributividad del m.c.d. sobre m.c.m)}$$

$$= \frac{(a,b)}{(a,b)} \qquad \text{(Aplicando el lemma)}$$

$$= \frac{(a,b)(a,b)}{(a,b)} \qquad \text{(Por inciso } d\text{))}$$

$$= (a,b) \qquad \text{(Simplificando)}$$

Ergo (a + b, [a, b]) = (a, b).

Ejercicio 1.5. Sean $a \in \mathbb{Z}$ y $d \in \mathbb{Z}^+$ fijos y considera el sistema de ecuaciones

$$(\star) \begin{cases} (x,y) = d \\ xy = a \end{cases}$$

Prueba que (\star) tiene una solución $(x_0,y_0)\in\mathbb{Z}\times\mathbb{Z}$ si y solamente si $d^2\mid a$.

Solución: \Longrightarrow) Por demostrar que $d^2 \mid a$. Tomando $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ como una solución particular de la forma $x_0 = d$ y $y_0 = \frac{a}{d}$, de esta forma se satisface en la segunda ec. que:

$$d\frac{a}{d} = a$$
 $a = a$

Por definición de divisivilidad $\exists k \in \mathbb{Z} \ni d^2k = a$ y escibiendo a como (x, y) como combinación lineal de la forma xs + yt = d p.a. $s, t \in \mathbb{Z}$ se sigue que:

$$\begin{aligned} & = kd^2 \\ & = k(xs+yt)^2 \\ & = k(ds+\frac{a}{d}t)^2 \\ & = k(d^2s^2+2ds\frac{a}{d}t+\frac{a^2}{d^2}t) \\ & = k(d^2s^2+2ds\frac{xy}{d}t+\frac{a^2}{d^2}t^2) \\ & = k(d^2s^2+2ds\frac{dy}{d}t+\frac{a^2}{d^2}t^2) \\ & = k(d^2s^2+2ds\frac{dy}{d}t+\frac{a^2}{d^2}t^2) \\ & = k(d^2s^2+2ds\frac{dy}{d}t+\frac{a^2}{d^2}t^2) \\ & = k(d^2s^2+d^2\frac{2syt}{d}+\frac{a^2}{d^2}t^2) \\ & = k(d^2s^2+d^2\frac{2syt}{d}+\frac{x^2y^2}{d^2}t^2) \\ & = k(d^2s^2+d^2\frac{2syt}{d}+\frac{x^2y^2}{d^2}t^2) \\ & = k(d^2s^2+d^2\frac{2syt}{d}+\frac{y^2t^2}{d^2}) \\ & = k(d^2s^2+\frac{2syt}{d}+\frac{y^2t^2}{d^2}) \\ & = k(d^2s^2+\frac{2syt}{d}+\frac{syt}{d^2}) \\ & = k(d^2s^2+\frac{syt}{d}+\frac{syt}{d^2}) \\ & = k(d^2s^2+\frac{syt}{d}+\frac{syt}{d^2}) \\ & = k(d^2s^2+\frac{syt}{d}+\frac{syt}{d^2}) \\ & =$$

Por definición de divisivilidad, ergo $d^2 \mid a$.

 \iff) Por demostrar que (\star) tiene una solución $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$. Como $d^2 \mid a$ entonces $d^2p = a$ para alguna $p \in \mathbb{Z}$. Entonces tiene solucion

$$\iff xy = d^2p$$

$$\iff d^2p = a$$

$$\iff x = d^2 \land y = \frac{a}{d^2}$$

$$\iff p = y = \frac{a}{d^2}$$

Por tanto, (\star) tiene una solución $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$.

Ejercicio 1.6. Sea D_n el conjunto de divisores positivos de n, ie. $D_n = \{d > 0 : d \mid n\}$. Ahora sea $F: D_a \times D_b \to D_{ab}$ la función definida por F(d, d') = dd'. Prueba que si (a, b) = 1, entonces F es una función bien definida y que es biyectiva. Si (a, b) > 1, ¿deja de ser biyectiva la función? Explica tu respuesta.

Solución: Quiero que este sea mi ejercicio gratis.

Ejercicio 1.7. Sean $n, m, x, y \in \mathbb{Z}$ fijos tales que n = ax + by y m = cx + dy para algunas $a, b, c, d \in \mathbb{Z}$. Si $ad - bc = \pm 1$, prueba que (m, n) = (x, y).

Solución: Sea d=(m,n), entonces podemos expresar a d como d=sn+tm p.a. $s,t\in\mathbb{Z}$, sea d'=(x,y). Como por hipótesis dejamos fijos n=ax+by y m=cx+dy, entonces d=s(ax+by)+t(cx+dy)=sax+sby+tcx+tdy=x(sa+tc)+y(sb+td). Por tanto se sigue que $d\mid d'$ porque tanto d y d' se pueden expresar como combinaciones lineales en términos de x y y. Una transformación lineal por $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ es invertible si $\Delta \neq 0$, pero como por hipótesis se tiene que $ad-bc=\pm 1$, entonces podemos escribir a x y y como combinaciones lineales de m y n, entonces se sigue que x=dm-bn y y=-cm+an. $\exists p,q\ni px+qy=d'$. Se tiene que:

$$d' = px + qy$$

$$= p(dm - bn) + q(-cm + an)$$

$$= m(pd - qc) + n(-qb + qa)$$

Por tanto, se tiene que $d' \mid d$.

Si $(m,n) \mid (x,y)$ y $(x,y) \mid (m,n)$, (como el máximo común divisor es positivo) entonces (m,n) = (x,y).

Ejercicio 1.8. Fija tres enteros $a, b, c \in \mathbb{Z}$. Prueba que la ecuación ax + by = c tiene solución si y solamente si $(a, b) \mid c$. Además, si (x_0, y_0) es una solución ¿de qué forma son el resto de las soluciones?

Solución: \Rightarrow) Por demostrar que $(a,b) \mid c$. Suponer que ax + by = c tiene solución i.e. x = r y y = s, entonces ar + bs = c. Como (a,b) = d, por definición se sigue que $d \mid a$ y $d \mid b$. Recordando un teorema visto en clase que dice que:

Sean $a, b \in \mathbb{Z}$ y d = (a, b) si $d \mid a \text{ y } d \mid b$ entonces $d \mid (ap + bq)$ para algún $p, q \in \mathbb{Z}$. Sabiendo eso, entonces $d \mid ar + bs = c$.

 \Leftarrow) Por demostrar que la ecuación ax + by = c tiene solución. Expresando (a, b) = d, entonces c = dr para algún $r \in \mathbb{Z}$. Escribiendo a (a, b) = an + bm para algún $n, m \in \mathbb{Z}$, se sigue que:

$$anr + bmr = dr$$
 (Multiplicando $an + bm$ por r)
 $a(nr) + b(mr) = c$ (Asociando y sustutuyendo $dr = c$)

Por tanto la ecuación tiene solución y es de la forma $x_0 = nr$ y $y_0 = mr$.

Ahora bien para si (x_0, y_0) es una solución, se deberá exhibir como son el resto de las soluciones. Sean x_0, y_0 y x', y' soluciones se sigue que $ax_0 + by_0 = c$ y ax' + by' = c, igualando ambas ecuaciones se tiene que $ax_0 + by_0 = ax' + by'$, por consiguiente:

$$a(x'-x_0) = b(y_0 - y')$$
 (1)

Dividiendo ambos lado de (1) entre d = (a, b):

$$\frac{a}{d}(x'-x_0) = \frac{b}{d}(y_0 - y') \quad (2)$$

Ahora debemos enunciar el siguiente teorema y corolario que nos serán de utilidad.

Teorema 2. Sean $a, b \in \mathbb{Z}$. Si (a, b) = d entonces $(\frac{a}{d}, \frac{b}{d}) = 1$

Corolario 1. Sean $a, b \in \mathbb{Z}$ con (a, b) = 1. Si $a \mid bc$ entonces $a \mid c$.

Utilizando el teorema y corolario anterior se sigue que $\frac{b}{d} \mid x' - x_0$ y por consiguiente $x' - x_0 = (\frac{b}{d})t$ para alguna $t \in \mathbb{Z}$. Se tiene entonces que:

$$x' = x_0 + (\frac{b}{d})t$$

Ahora sustituyendo $x' - x_0$ en (2) se tiene que:

$$a(\frac{b}{d})t = b(y_0 - y')$$
$$(\frac{a}{d})t = y_0 - y'$$
$$y' = y_0 - (\frac{a}{d})t$$

Ergo la forma del resto de las ecuaciones son:

$$x' = x_0 + (\frac{b}{d})t$$
 \wedge $y' = y_0 - (\frac{a}{d})t$

Ejercicio 1.9. Prueba que todo entero mayor que 6 se puede expresar como suma de dos enteros primos relativos.

<u>Solución</u>: Antes de proceder, se provará probar dos lemas que serán de gran utilidad para la siguiente demostración.

Lemma 2. Sean $a, b, d \in \mathbb{Z}$ si $d \mid a \neq d \mid b$, entonces $d \mid a - b$.

$$dp = a \quad \land \quad dq = b$$
 (Definición de divisibilidad)
 $dp - dq = a - b$ (Restando la ec.2 a ec.1)
 $d(p - q) = a - b$ (Asociando)

Por tanto $d \mid a - b$.

Lemma 3. Dos enteros consecutivos son primos relativos. Sea $n \in \mathbb{Z}$, suponer que (n, n+1) = p, lo que por definición de divisivilidad se sigue que $p \mid n$ y $p \mid n+1$, por el lema anterior se sigue que $p \mid n - (n+1)$ lo que implica que $p \mid 1$. Por definición de divisibilidad pr = 1, pero esto ocurre si y solo si r = 1. Por tanto (n, n+1) = p = 1.

Teniendo ésos dos lemas, se continuará con la demostración. Sea n > 6, se procederá a analizar por casos.

- Si n es par. Entonces n es de la forma n=2k $\ni k \in \mathbb{Z}$ con $k \geq 4$ resscribiendo a n como 2k=k+k=(k+2)+(k-2) o 2k=k+k=(k+4)+(k-4), y dados cualesquiera dos números impares a y b si su diferencia es 2 ó 4 se sigue que son primos relativos.
- Si n es impar. Entonces n es de la forma n = 2k + 1 $\ni k \in \mathbb{Z}$ con $k \geq 3$ resscribiendo a n como 2k + 1 = k + (k + 1) se sigue que k y k + 1 son ambos primos relativos por el lemma previamente citado.

(*)**Ejercicio 1.10.** Demuestra que para todo a > 1 y exponentes n, m > 0 se cumple que $(a^n - 1, a^m - 1) = a^{(n,m)} - 1$.

Solución: Sea $d = (a^n - 1, a^m - 1)$, se sigue por definición que $d \mid a^n - 1$ y $d \mid a^m - 1$. Expresando a (n, m) = nx + my. Entonces:

$$d \mid a^{nx} - 1$$
 (Elevando $d \mid a^n - 1 \text{ a } x$) (1)
$$d \mid a^{my} - 1$$
 (Elevando $d \mid a^m - 1 \text{ a } y$) (2)
$$d \mid (a^{nx} - 1)(a^{my} - 1)$$
 (Multiplicando (1) y (2))
$$d \mid a^{ny+my} - a^{nx} - a^{my} + 1$$
 (Multiplicando productos)
$$d \mid a^{(n,m)} - a^{nx} - a^{my} + 1$$
 (Recordando que $(n,m) = nx + my$) (3)

Hecho ese análisis, por definición de divisivilidad se tiene que:

$$d \mid a^n - 1 \iff dp = a^n - 1 \tag{4}$$

$$d \mid a^m - 1 \iff dq = a^m - 1 \tag{5}$$

Elevando (4) y (5) a x y y respectivamente se tiene que:

$$dp' = a^{nx} - 1 \iff a^{nx} = dp' + 1 \tag{6}$$

$$dq' = a^{my} - 1 \iff a^{my} = dq' + 1 \tag{7}$$

Regresando a (3):

$$d \mid a^{(n,m)} - (dp' + 1) - (dq' + 1) + 1$$
 (Sutituyendo con (6) y (7))

$$ds = a^{(n,m)} - dp' - 1 - dq' - 1 + 1$$
 (Definición de divisibilidad $\exists s \in \mathbb{Z}$)

$$ds + dp' + dq' = a^{(n,m)} - 1$$
 (Agrupado)

$$d(s + p' + q') = a^{(n,m)} - 1$$
 (Factorizando)

$$dt = a^{(n,m)} - 1$$
 ($t \in \mathbb{Z}$ tal que $t = s + p' + q'$)

Ergo $(a^n - 1, a^m - 1) = a^{(n,m)} - 1.$

- (*)Ejercicio 1.11. Los números armónicos no son enteros.
 - a. Sean $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ fracciones irreducibles, es decir (a, b) = 1 = (c, d). Prueba que

$$\frac{a}{b} + \frac{c}{d} \in \mathbb{Z} \implies b = \pm d.$$

Solución: Por hipótesis se tiene que $\frac{a}{b} + \frac{c}{d} \in \mathbb{Z}$, se sigue que $\frac{ad+bc}{bd} = n \iff ad+bc = nbd$.

$$ad = nbd - bx \implies ad = b(nd - x)$$
 (1)

$$bc = nbd - ad \implies bc = d(nb - a)$$
 (2)

Teniendo (1) y (2), se aplicará en ambas la definición de divisibilidad:

$$b \mid ad$$
 (3)

$$d \mid bc$$
 (4)

Usando las hipótesis de (a, b) = 1 = (c, d):

$$b \mid d$$
 (Porque $(a, b) = 1$) (5)
 $d \mid b$ (Porque $(c, d) = 1$) (6)

Entonces de (5) y (6) se siguen los siguientes casos $b \le d$ y $d \le b$. Por tanto b = d.

b. Los números armónicos H_n se definen como las sumas parciales de la serie armónica, es decir

$$H_n := \sum_{k=1}^n \frac{1}{k}.$$

Prueba que $H_n \notin \mathbb{Z}$ para toda n > 1.

Solución: Sea L el mínimo común múltiplo de 1, 2, ..., n entonces H_n puede ser escrito como una fracción con denominador L. Para $1 \le k \le n$, escribimos $L = ka_k$ con $a_k \in \mathbb{Z}^n$, así $1/k = a_k/L$. Entonces.

$$H_n = \sum_{k=1}^{n} \frac{1}{k} = \frac{\sum_{k=1}^{n} a_k}{L}$$

Daso que $n \geq 2$, L es par. Se mostrará que $\sum_{k_1}^n ak$ es impar, de tal forma la proporción no es entera. Fijamos 2^r como la potencia más grande de 2 hasta n: $2^r \leq n \leq 2^{r+1}$. El único entero hasta n divisible por 2^r es 2^r , dado que $2/2^r > n$. Por lo tanto $L = 2^r b$ donde b es impar, entonces $a^r b = k a_k$ para $1 \geq k \geq n$. Cuando $k = 2^r$ vemos que $a_k = b$ es impar. Cuando $k \neq 2^r$, k no es divisible por $k \neq 2^r$, así que $k \neq 2^r$, $k \neq 2^r$, $k \neq 2^r$, es impar y el resto es par, entonces la suma total es impar.

Referencias

- [1] Thomas Koshy. *Elementary Number Theory with Applications. 2nd Edition*. Addison-Wesley, Reading, Massachusetts, 1993. Academic Press. 8th May 2007.
- [2] Apostol, Tom M. Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.
- [3] Notas tomadas en clase del curso de Teoría de los Números I (2019-2).
- [4] KEITH CONRAD, THE p-ADIC GROWTH OF HARMONIC SUMS. https://kconrad.math.uconn.edu/blurbs/gradnumthy/padicharmonicsum.pdf