Measurement of $D\overline{D}$ Decays from the $\psi(3770)$ Resonance

Andy Julin

University of Minnesota - Twin Cities

May 11th, 2017

Andy Julin (UMN) Thesis Defense May 11th, 2017 1 / 65

Overview

- Introduction
- 2 Theoretical Background
- 3 Accelerator and Detector
- 4 Analysis Software
- **5** Measurement of the $D\overline{D}$ Cross Section
- ${f 6}$ Measurement of the Non- ${\it D}{\overline{\it D}}$ Branching Fraction
- Conclusion

Introduction

Introduction

Describe basic meaning of $\psi(3770) o D\overline{D}$ cross section

4 / 65

Andy Julin (UMN) Thesis Defense May 11th, 2017

Previous Measurements

Show list of previous experimental results Explain need for interference

Really Quick Overview

Describe need to measure decay products
Describe background subtraction
Describe getting counts to determine cross section

Theoretical Background

Fundamental Forces

- 1) Electromagnetic (QED)
 - Responsible for attracting / repelling electrically charged objects
 - Mediated by the massless photon (γ)
 - Very precisely calculable using perturbation theory
- 2) Weak
 - Responsible for radioactive decays and flavor changes
 - ullet Mediated by the very heavy W^\pm and Z
 - Led to discovery of C and CP violation
- 3) Strong (QCD)
 - Responsible for binding together hadrons
 - Mediated by the massless gluon (g)
 - Complicated calculations not described by perturbation theory
- 4) Gravity Negligible at this mass scale

Fermions and Bosons

Fermions

- Half-Integer Spin
- ② Explanation
- Example

Examples:

- Quarks (q):u, d, s, c, b, t
- Leptons (*I*): $e^-, \mu^-, \tau^-, \nu_e, \nu_\mu, \nu_\tau$
- Baryons (qqq): $p, n, \Delta, \Lambda, \dots$

Bosons

- Integer Spin
- 2 Explanation
- Second Example
 Second Example

Examples:

- Gauge Bosons: γ, W^{\pm}, Z, g
- Higgs Boson:H
- Mesons $(q\bar{q})$: $\pi^{\pm}, \ \pi^{0}, \ K^{\pm}, \ K_{S}^{0}, \ \dots$

9 / 65

Standard Standard Model Slide

Charmonium

Resonances formed by a $c\bar{c}$ pair: J/ψ , $\psi(2S)$, $\psi(3770)$, ...

- ullet $\psi(2S)$ and $\psi(3770)$ originally interpreted as excited states of J/ψ
- Evidence of mixed-states suggests more complicated picture

Andy Julin (UMN) Thesis Defense May 11th, 2017 11 / 65

OZI Rule

- Requires three gluons for decay
- Very narrow decay width
 - $\Gamma_{\psi(2S)} = 0.286 \, \text{MeV}$

- Decays via open charm $(D\overline{D})$
- Much wider decay width
 - $\Gamma_{\psi(3770)} = 27.5 \,\mathrm{MeV}$

Addition of $D\overline{D}$ decays introduces drastically different behavior!

Accelerator and Detector

Institute of High Energy Physics (IHEP)

BESIII is hosted at the IHEP Campus located in Beijing, China

Accelerator - Beijing Electron-Positron Collider II (BEPCII)

- Oreate positrons by firing electrons into stationary material
 - Generates high energy γ s which interact with material to form e^+e^-
- Separate newly created positrons magnetically
- Accelerate positrons in linear accelerator and feed into storage ring
- Accelerate electrons and feed into the oppositely circulating ring
 - Electrons readily available, so extraction from photons unnecessary
- Focus each beam using magnets along storage rings until collision

Detector - Beijing Spectrometer III (BESIII)

Collision of beams tuned to occur at central point of detector

Beams angled during collision to improve integrated luminosity

Four main subdetector systems:

- Main Drift Chamber
- Time-of-Flight
- Electromagnetic Calorimeter
- Muon Identifier

Main Drift Chamber (MDC)

- Reconstruct charged tracks from interactions with sense wires (hits)
 - Wires surrounded by ionizable gas
 - Initial ionization due to particle triggers avalanche of electrons
 - High electric field near wires draws in released electrons to measure energy deposited
- Determine properties of particle from curvature in magnetic field
 - Radius determines momentum
 - Direction determines charge
- Energy deposition rate (dE/dx) helps determine particle candidate

BESIII Event Display

Andy Julin (UMN) Thesis Defense May 11th, 2017 17 / 65

Time-of-Flight (ToF)

- Measure particle velocity using travel time after initial collision
 - Scintillator bands located at 0.81 m and 0.86 m from interaction point
 - Attached to photomultiplier tubes to measure light output
- Helps distinguish between K^{\pm} and π^{\pm} candidates at lower momenta
 - Combined with dE/dx measurements in MDC to set particle hypothesis

MDC Measurements

ToF Measurements

Andy Julin (UMN) Thesis Defense

Electromagnetic Calorimeter (EMC)

- Measure energy deposited by electron and photon tracks
 - Other particles are generally relativistic and thereby minimum ionizing
 - These deposit relatively constant energy, independent of momenta
 - Use CsI(TI) crystals attached to photodiodes to measure energy
 - Energy lost primarily in gaps of arrangement or out the back of crystals
- Allows reconstruction of purely neutral decays, such as $\pi^0 o \gamma \gamma$

Andy Julin (UMN) Thesis Defense May 11th, 2017 19 / 65

Muon Identifier (MUC)

- Identify tracks traversing through multiple layers as muons
 - Most particle types will be stopped before reaching the MUC
 - Electrons susceptible to Bremsstrahlung radiation
 - Kaons and pions susceptible to strong interactions
 - Requires muons with $p > 0.4 \, \text{GeV}$ for appropriate curvature

20 / 65

Triggering System

Collisions filtered unless passing event reconstruction criteria

Andy Julin (UMN) Thesis Defense May 11th, 2017 21 / 65

Analysis Software

Monte Carlo Generation

Describe process and usage of MC samples

Andy Julin (UMN) Thesis Defense May 11th, 2017 23 / 65

Monte Carlo Generators

Describe usage of KKMC Describe usage of BesEvtGen Describe usage of Babayaga

Andy Julin (UMN) Thesis Defense May 11th, 2017 24 / 65

D-Tagging

Describe process and usage of *D*-Tagging

Andy Julin (UMN) Thesis Defense May 11th, 2017 25 / 65

Selection Cuts

Show cuts on $\pi^\pm, \mathit{K}^\pm, \pi^0, \mathit{K}^0_\mathit{S}$

Andy Julin (UMN) Thesis Defense May 11th, 2017 26 / 65

Measurement of the $D\overline{D}$ Cross Section

Procedure

Derive theoretical model used to describe cross section List data samples used for measurement Determine $E_{\rm cm}$ and $\mathcal L$ for each data point Identify signal and background components Measure efficiency of reconstruction Combine everything to determine cross section Assess systematic uncertainties

Derivation of $\sigma_{\psi(3770) o D\overline{D}}$ - Part I

Show derivation of cross section

Andy Julin (UMN) Thesis Defense May 11th, 2017 29 / 65

Derivation of $\sigma_{\psi(3770) o D\overline{D}}$ - Part II

Show derivation of cross section

Andy Julin (UMN) Thesis Defense May 11th, 2017 30 / 65

Derivation of $\sigma_{\psi(3770) o D\overline{D}}$ - Part III

Show derivation of cross section

Andy Julin (UMN) Thesis Defense May 11th, 2017 31 / 65

Form Factors

Explain form factor choices and describe necessary modifications

Andy Julin (UMN) Thesis Defense May 11th, 2017 32 / 65

Data Samples

Show scan data and describe usage $\psi(3770)$, R-scan, and XYZ-scan samples

Andy Julin (UMN) Thesis Defense May 11th, 2017 33 / 65

Center-of-Mass Energy

Describe measurement and correction process

Andy Julin (UMN) Thesis Defense May 11th, 2017 34 / 65

Luminosity

Describe measurement process

Andy Julin (UMN) Thesis Defense May 11th, 2017 35 / 65

Monte Carlo Generation

List included MC samples and explain KKMC modification

Andy Julin (UMN) Thesis Defense May 11th, 2017 36 / 65

Signal Determination

Describe process of 2D fitting to ΔE and m_{BC} Show example results plot near $\psi(3770)$

37 / 65

Andy Julin (UMN) Thesis Defense

Efficiency Correction

Describe process of averaging efficiency over all decay modes

Andy Julin (UMN) Thesis Defense May 11th, 2017 38 / 65

CP Violation Correction

Quickly list process of correcting for CP

Andy Julin (UMN) Thesis Defense May 11th, 2017 39 / 65

Cross Section Fitting

Describe procedure of obtaining $\psi(3770)$ parameters

Andy Julin (UMN) Thesis Defense May 11th, 2017 40 / 65

Exponential Results

Show Exponential results

Andy Julin (UMN) Thesis Defense May 11th, 2017 41 / 65

Vector Dominance Model Results

Show VDM results

Andy Julin (UMN) Thesis Defense May 11th, 2017 42 / 65

Systematic Uncertainties

Describe process of measuring systematics

Systematics

Luminosity π^{\pm}/K^{\pm} Tracking π^0 Tracking K_S^0 Tracking Single Tag Fitting PDG Branching Fractions Meson Radii

Negligible Systematics

MC Iteration
MC ISR Generation
Intermediate Resonances

Andy Julin (UMN) Thesis Defense May 11th, 2017 45 / 65

Model Dependent Systematic

Form Factor assumption

Andy Julin (UMN) Thesis Defense May 11th, 2017 46 / 65

Final Results

Show final results with systematics Compare to KEDR and PDG

Measurement of the Non-DD Branching Fraction

Procedure

Event Selection Hadron Cut Methods Signal Counting Fits MC Background Subtraction Efficiency Extrapolation $D\overline{D}$ Multiplicity Correction Examination of Results for $\psi(3770)$ Data Background Investigation Examination of Results for Scan Data

Data Samples

Show 3650 Data Sets Mention energy measurement

Andy Julin (UMN) Thesis Defense May 11th, 2017 50 / 65

Event Selection

Charged Track Selection Neutral Track Selection Background Rejection

Andy Julin (UMN) Thesis Defense May 11th, 2017 51 / 65

Hadronic Selection

Show SHAD, LHAD, and THAD cut tables

Andy Julin (UMN) Thesis Defense May 11th, 2017 52 / 65

Signal Counting

Show signal counting fits for data

Andy Julin (UMN) Thesis Defense May 11th, 2017 53 / 65

Background Subtraction

List MC samples considered (and note those excluded)
Relate to total number of hadrons found for future extrapolation

Efficiency Extrapolation

Repeat procedure for new continuum data Extrapolate efficiency based on $E_{\rm cm}$ Show extrapolation plots for SHAD, LHAD, and THAD

Procedure for $\psi(3770)$ Data

Repeat procedure for $\psi(3770)$ data Introduction of new backgrounds and $D\overline{D}$ component

Andy Julin (UMN)

$D\overline{D}$ Correction

Create multiplicity distributions from single-tag events Obtain correction factors for R1 and R2 separately Example plots for D^0 and D^+ of R1

Reconstruction Efficiencies

Show different backgrounds for SHAD Describe correction used for $\gamma\psi(2S)$ events Point out cross sections used by Derrick for $\psi(3770)$ data

Initial Results - $\psi(3770)$ Data

Show cross section / branching fractions Point out likely high values due to $\psi(2S)$ shape

Andy Julin (UMN) Thesis Defense May 11th, 2017 59 / 65

Background Investigation - Part I

Describe alternate estimation for $\psi(2S)$ events Show branching fraction results with estimation

Andy Julin (UMN)

Background Investigation - Part II

Describe alternate estimation ignoring $\psi(2S)$ events Show branching fraction results with estimation

Andy Julin (UMN)

Procedure for Scan Data

Using best information available from $\psi(3770)$ results Show hadronic cross section over region

Results for Scan Data

Show non- $D\overline{D}$ cross section over region Show non- $D\overline{D}$ branching fraction over region

Conclusion

Conclusion

Show overview of measurements for $D\overline{D}$ cross section and non- $D\overline{D}$ branching fraction List results of parameters for $\psi(3770)$ List branching fraction range for non- $D\overline{D}$