104165 - Real functions

Baruch Solel

October 23, 2018

Abstract

1 Introduction

If $\forall x \quad f_n(x) \to f(x)$ (pointwise) does $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$? Define $f_n(x) = \chi_{r_1, r_2, \dots r_n}$, where $\{r_i\} = \mathbb{Q} \cap [0, 1]$, i.e., first n rational numbers. Those functions are integrable since they are non-zero in finite number of points. However, $f(x) = \chi_{\mathbb{Q} \cap [0, 1]}$ is not integrable.

Riemann integral: limit We defined Riemann integral as limit of Riemann sum:

By dividing on y, we bound the error by the size of each interval, ϵ :

$$g(x) = s\chi_{A_1} + (s + \epsilon)\chi_{A_2} + \dots$$
$$\forall x \quad |g(x) - f(x)| \le \epsilon$$

2 Measure

For $A \subseteq \mathbb{R}$ we want to define size of A which we will denote $\lambda(A)$. What do we require from λ ?

- 1. $\lambda([a,b]) = b a$
- $2. \ 0 \le \lambda(A) \le \infty$
- 3. $\lambda(\emptyset) = 0$
- 4. If $A = \bigcup_{k=1}^{\infty} A_k$ and $\forall i, j \quad A_i \cap A_j = \emptyset$, then $\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_k)$.
- 5. $\lambda(A+x) = \lambda(A)$, where $A + x = \{s + x : a \in A\}$.

From those properties we get additional properties:

• Additivity:

$$A = \bigcup_{i=1}^{n} A_i \Rightarrow \lambda(A) = \sum_{i=1}^{n} \lambda(A_i)$$

1

• If $A \subseteq B$, then $\lambda(A) \le \lambda(B)$.

Theorem Function λ fulfilling 1-5 and defined on every subset of \mathbb{R} doesn't exist.

Proof Suppose there exists such λ .

Define equivalence relation $x \sim y$ iff $x - y \in \mathbb{Q}$. Define E choose from each equivalence class one representative from $\left[0, \frac{1}{2}\right]$. Note that if $q_1 \neq q_2$, then $q_1 + E \cap q_2 + E = \emptyset$, since else $e_1 - e_2 = q_1 - q_2$ and $e_1 \sim e_2$, in contradiction. From definition $E \subset \left[0, \frac{1}{2}\right]$. Take a look at

$$\bigcup_{k=0}^{\infty} \left(\frac{1}{k} + E\right) \subseteq [0,1]$$

Thus

$$\lambda \left(\bigcup_{k=2}^{\infty} \left(\frac{1}{k} + E \right) \right) \le \lambda([0,1]) = 1$$

On the other hand

$$\lambda\!\left(\bigcup_{k=2}^{\infty}\left(\frac{1}{k}+E\right)\right) = \sum_{k=2}^{\infty}\lambda\!\left(\frac{1}{k}+E\right)) = \lambda(E))$$

Thus $\lambda(E) = 0$. However,

$$\mathbb{R} = \bigcup_{r \in \mathbb{Q}} r + E$$

From sigma-additivity

$$\lambda(\mathbb{E}) = \sum_{r \in \mathbb{Q}} \lambda(r + E) = 0$$

But $\lambda(\mathbb{R}) \geq \lambda([0,1])$, in contradiction.

Regirements for measure in \mathbb{R}

- 1. $0 \le \lambda(E) \le \infty$
- 2. $\lambda(\emptyset) = 0$
- 3. $\lambda([a_1,b_1] \times [a_2,b_2] \times \ldots \times [a_n,b_n]) = \prod_{i=1}^n (b_i a_i)$
- 4. If $A = \bigcup_{k=1}^{\infty} A_k$, then $\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_k)$.
- 5. If C is acquired from A by rotation or translation $\lambda(C) = \lambda(A)$.

Note In \mathbb{R}^3 it is impossible to define measure that fulfills those requirements eve if we replace sigma-additivity with additivity.

Banach-Tarski paradox Denote B – unit ball in \mathbb{R}^3 . We can write

$$B = \bigcup_{i=1}^{5} A_i$$

and find C_i by rotation or translation of A_i such that $\bigcup_{i=1}^5 C_i$ is two unit balls.

2.1 Construction of λ

Special boxes Let E box with edges parallel to axes:

$$E = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

For E we define

$$\lambda(E) = \prod_{i=1}^{n} (b_i - a_i)$$

Special polygons is a finite union of special boxes.

Note Each special polygon is a finite union of special boxes with disjoint interior.

Let P is special polygon written as $P = \bigcap_{i=1}^k A_i$ where A_i is special box and their interior is disjoint.

$$\lambda(P) = \sum_{i=1}^{k} \lambda(A_i)$$

Claim

- 1. The definition is independent on choice of A_i .
- 2. If P_1 , P_2 are special polygons and $P_1 \subseteq P_2$ then $\lambda(P_1) \leq \lambda(P_2)$.
- 3. If P_1 , P_2 are special polygons with disjoint interior then

$$\lambda(P_1 \cup P_2) = \lambda(P_1) + \lambda(P_2)$$

4. For all $x \in \mathbb{R}^n$

$$\lambda(x+P) = \lambda(P)$$

Proof

1. Let $P = \bigcap A_i = \bigcap B_i$.

If we continue edges of both A_i and B_i we'll get net which divides P into C_i which refines both A_i and B_i and thus

$$\lambda(P) = \sum_{i} \lambda(A_i) = \sum_{i} \lambda(B_i) = \sum_{i} \lambda(C_i)$$

- 2. Let $P_2 = \bigcap A_i$ and choose the refinement which divides P_1 .
- 3. Find A_i which divides both P_1 and P_2 .
- 4. ...

Alternative proof For special boxes

$$\lambda(E) = \lim_{N \to \infty} \frac{1}{N^n} \left| E \cap \frac{1}{N} \mathbb{Z}^n \right|$$

For n = 1, $I = [a, b] \subseteq \mathbb{R}$. We claim

$$b - a = \lim_{N \to \infty} \frac{1}{N} \left| E \cap \frac{1}{N} \mathbb{Z} \right|$$

First of all

$$b - a - 1 \le |[a, b] \cap \mathbb{Z}| \le b - a + 1$$

To find $|[a,b] \cap \frac{1}{2}\mathbb{Z}|$, we can use $|[2a,2b] \cap \mathbb{Z}|$, which means

$$2b - 2a - 1 \le \left| E \cap \frac{1}{2} \mathbb{Z} \right| \le 2b - 2a + 1$$

And for any N:

$$Nb-Na-1 \leq \left|[a,b] \cap \frac{1}{N}\mathbb{Z}\right| \leq Nb-Na+1$$

$$b-a-\frac{1}{N} \leq \frac{1}{N} \left| [a,b] \cap \frac{1}{N} \mathbb{Z} \right| \leq b-a+\frac{1}{N}$$

By sandwich rule, we get the equality.

We can do the same for higher dimension and for open sets, and then we can easily proof the claim.

If P is special polygon and we take $\lim_{N\to\infty} \frac{1}{N^n} |P \cap \frac{1}{N}\mathbb{Z}^n| = \sum \lambda(A_i)$ when $P = \bigcap A_i$

Open sets

Definition G is open if $\forall x \in G$ exists ball B(x,r) such that $B \subset G$. Alternatively we can replace ball with special box.

Thus for any open $G \neq \emptyset$

$$G = \bigcup \{ P \text{ special polygon} \}$$

And we can define

$$\lambda(G) = \sup \{\lambda(P) | P \subseteq G\}$$

Claim

1. $0 \le \lambda(G) \le \infty$

 $\lambda(G) = 0 \iff G = \emptyset$

3. $\lambda(\mathbb{R}^n) = \infty$

4. $G_1 \subseteq G_2 \Rightarrow \lambda(G_1) \le \lambda(G_2)$

5. $\lambda \left(\bigcup_{k=1}^{\infty} G_k \right) \le \sum \lambda(G_k)$

6. $\lambda\left(\bigcup_{k=1}^{\infty} G_k\right) = \sum \lambda(G_k)$

7. $\lambda(P) = \lambda(\operatorname{int} P) \inf \{ \lambda(G) : P \subseteq G \}$

8. $\lambda(x+G) = \lambda(G)$

Lemma Let $K \subseteq \mathbb{R}^n$ compact set and $\{G_i\}_{i \in I}$ open cover $(K \subseteq \bigcup G_i)$. Then exists $\epsilon > 0$ such that $\forall x \in K$ exists $i \in I$ such that $B(x, \epsilon) \subseteq G_i$.

Claim

- 1. Obvious
- 2. If G is not empty, exists $x \in G$ and special box around x such that $P \subseteq G$ and thus $\lambda(G) \le \lambda(P) > 0$
- 3. Any box is subset of \mathbb{R}^n thus $\lambda(\mathbb{R}^n) = \infty$
- 4. Obvious
- 5. Let P special polygon, $P \subseteq \bigcup_{k=1}^{\infty} G_k$. We'll show that it's possible to write

$$P = \bigcup_{j=1}^{N} I_j$$

finite union of special boxes with disjoint interior and for each j exists k such that $I_j \subset G_k$. Let ϵ from lemma for K = P. Write $P = \bigcup_{j=1}^N = I_j$ such that diameter of each $I_j < \epsilon$. If x_j is center of I_j , then $I_j \subseteq B(x_j, \epsilon) \subseteq G_k$.

If this is possible, for such P denote

$$P_k = \bigcup_{j=1}^{\infty} I_j | I_j \subset G_k, \forall i < k \quad I_j \not\subset G_i$$

Obviously $\bigcup P_k = P$ and union is finite since for some m, for every k > m $P_m = \emptyset$, because there is finite number of I_j , and also internals of P_k are disjoint.

Thus $\lambda(P) = \sum \lambda(P_k) \leq \sum \lambda(G_k)$. This is right for any P, thus

$$\lambda\left(\bigcup(G_k)\right) = \sup\left\{\lambda(P)|P\subseteq\bigcup(G_k)\right\} \le \sum_{k=1}^{\infty}\lambda(G_k)$$

- 6. ...
- 7. ...
- 8. Obvious since it's right for polygons