PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-273601

(43)Date of publication of application: 30.09.1994

(51)Int.CI.

G02B 1/10 C23C 14/06

(21)Application number: 05-084092

(71)Applicant: CANON INC

(22)Date of filing:

18.03.1993 (72)I

(72)Inventor: TERADA JUNJI

KAMEYAMA MAKOTO SAKAMOTO JUNICHI

(54) ANTIREFLECTION FILM OF OPTICAL PARTS MADE OF SYNTHETIC RESIN

(57)Abstract:

PURPOSE: To improve the durability of the antireflection films of optical parts made of a synthetic rasin

CONSTITUTION: An under coat 2 essentially consisting of a silicon dioxide SiOx (2>x>1) and having 200 to 300nm film thickness is formed on the surface 1a of a plastic lens 1 and multilayered films 3 are laminated on this under coat 2. These multilayered films 3 consist of thin films 3a, 3c of a first layer and third layer formed out of high-refractive index materials essentially consisting of TiO2 or ZrO2 or a mixture composed thereof and thin films 3b, 3d of a second layer and fourth layer 4 made of low-refractive index materials essentially consisting of the silicon dioxide SiOx (2≥x≥1). The under coat 2 enhances the adhesion property between the multilayered films 3 and the surface 1a of the plastic lens 1 without impairing the antireflection characteristics of the multilayered films 3 and improves the durability, such as wear resistance and chemical resistance, thereof.

LEGAL STATUS

[Date of request for examination]

16.09.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3221764

[Date of registration]

17:08.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B2)

(11)特許番号 特許第3221764号

(P3221764)

(45)発行日 平成13年10月22日(2001.10.22)

(24)登録日 平成13年8月17日(2001.8.17)

(51) Int.Cl.7		識別記号	F I		
G02B	1/11		C 2 3 C	14/06	P
C 2 3 C	14/06		G02B	1/10	Α

請求項の数2(全 10 頁)

(21)出願番号	特顯平5-84092	(73)特許権者	
(22)出顧日	平成5年3月18日(1993.3.18)	(72)発明者	キヤノン株式会社 東京都大田区下丸子3丁目30番2号 寺田 順司
(65)公開番号 (43)公開日	特開平6-273601 平成6年9月30日(1994.9.30)	(12)元为日	東京都大田区下丸子3丁目30番2号 キャンス株式会社内
審查請求日	平成11年9月16日(1999.9.16)	(72)発明者	ペング (本式 会社 P) 名山 誠 東京都大田区下丸子3丁目30番2号 キ
		(72)発明者	ヤノン株式会社内 坂本 淳一
		(10)75914	東京都大田区下丸子3丁目30番2号 キャン株式会社内
		(74)代理人	100095991 弁理士 阪本 善朗
		審査官	横井 康真
			最終頁に続く

(54) 【発明の名称】 合成樹脂製光学部品の反射防止膜

1

(57)【特許請求の範囲】

【請求項1】 合成樹脂製光学部品の表面に成膜されたケイ素酸化物SiOx (2>x>1)を主成分とする膜厚200nmないし300nmのアンダーコートと、該アンダーコート上に成膜された反射防止特性を有する繰返し多層膜からなり、前記アンダーコートの屈折率が1.49ないし1.59の範囲にあり、かつ、前記繰返し多層膜が前記合成樹脂製光学部品の表面に近い側から

順に第1層ないし第4層の4層の薄膜からなり、設計波長 2=500 nm、前記第1層の薄膜の屈折率と光学膜厚をそれぞれ n1、 n1 d1、前記第2層の薄膜の屈折率と光学膜厚をそれぞれ n2、 n2 d2、前記第3層の薄膜の屈折率と光学膜厚をそれぞれ n3、 n3 d3、前記第4層の薄膜の屈折率と光学膜厚をそれぞれ n4、 n4 d4 としたときに、これらの薄膜の屈折率と光学膜厚が以下の条件式、

1. $9.5 \le n1 \le 2$. 1.5, $0. 0.5 \lambda \le n1 d1 \le 0$. 1.3λ , 1. $4.3 \le n2 \le 1$. 5.5, $0.10.3 \lambda \le n2 d2 \le 0$. 0.7λ , 1. $9.5 \le n3 \le 2$. 1.5, $0.21 \lambda \le n3 d3 \le 0$. 4.9λ , 1. $4.3 \le n4 \le 1$. 5.5, $0.20 \lambda \le n4 d4 \le 0$. 2.8λ ,

<u>を満足す</u>ることを特徴とする合成樹脂製光学部品の反射 防止膜。

【請求項2】 繰返し多層膜の第1層と第3層がTiO

2 またはZrO2 またはこれらの混合物を主成分とする 高屈折率材料から形成され、第2層と第4層がSiOx (2≧x≧1)を主成分とする低屈折率材料から形成さ

2

<u>れた</u>ことを特徴とする請求項1記載の合成樹脂製光学部 品の反射防止膜。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、プラスチックレンズ等の合成樹脂製光学部品の表面反射を防止するための合成樹脂製光学部品の反射防止膜に関するものである。

[0002]

【従来の技術】従来から、光学レンズ等の光学部品の表面反射を防止するために、ケイ素酸化物SiOェの薄膜 10を設けたり、あるいはZrO₂,TiO₂,CaO₂,Ta₂О₅ 等の高屈折率材料の薄膜とMgF₂,SiО₂等の低屈折率材料の薄膜を交互に蒸着した多層膜からなる反射防止膜を設ける方法が提案されており、特に、プラスチックレンズ等の合成樹脂製の光学部品においては、その表面の軟質性や耐薬品性等を補うことも必要であるため、硬度が高く、耐薬品性等にすぐれたケイ素酸化物SiOェの薄膜を反射防止膜の第1層あるいは中間層として用いることが多い。

【0003】一例として、特開昭60-98401号公 20 報には、アクリルレンズの表面にSiOからなる屈折率 nが1.55以上で厚さ89nm以下の四分の一波長膜 (以下、「1/4膜」という。) を蒸着し、その上にM g F2 からなる屈折率n=1.38の1/4膜を積層し た2層膜の反射防止膜が提案されており、また、特開昭 60-225101号公報には、第1層としてSiO2 からなる屈折率n=1.47、膜厚d=354nm、光 学膜厚nd=λoの薄膜を真空蒸着によって形成し、そ の上に順次、Ta2 O5 からなる屈折率n=2.05、 光学膜厚nd=0.057λoの薄膜と、SiO2から なる屈折率n=1.47、光学膜厚d=0.11λοの 薄膜と、Ta2 O5 からなる屈折率n=2.05、光学 膜厚nd=0.538λoの薄膜と、SiO2からなる 屈折率n=1.47、光学膜厚nd=0.258λoの 薄膜を積層した5層膜からなる反射防止膜が提案されて おり(設計波長 lo = 520 nm)、さらに、特開平3 -116101号公報には、メタクリル樹脂注型基板上 に第1層として SiO_x からなる屈折率n=1. 60、 光学膜厚 $n d = (\lambda_0 / 4) \times 20\% (d = 1.7 \sim 1.8)$ nm) の薄膜を真空蒸着によって形成し、その上に、T 40 i O2 からなる屈折率n=1.95、光学膜厚nd= (λo /4) ×20%の薄膜と、SiO2 からなる屈折 率n=1.45、光学膜厚nd=(λo/4)×40% の薄膜と、TiO₂からなる屈折率n=2.0、光学膜 厚nd=(λo /4)×70%の薄膜と、SiO2 から

なる屈折率n=1. 45、光学膜厚 $nd=(\lambda o/4)$ ×95%の薄膜を積層した5層膜からなる反射防止膜(設計波長 $\lambda o=550\sim570$ nm) が提案されている。

[0004]

【発明が解決しようとする課題】しかしながち上記従来の技術によれば、いずれも居住用空間等の限られた環境で用いる場合は著しく性能が劣化するおそれはないが、屋外等において厳しい温度条件に曝されたり、温度や湿度の変化の大きい環境で長期にわたって使用されると、耐摩耗性や耐薬品性が劣化したり、合成樹脂の母材の熱歪等によって反射防止膜にクラック(膜割れ)が発生し、ひどい時には膜剥離を起すおそれがある。

【0005】また、後述する品質評価テストの結果、前述の特開昭60-98401号公報および特開平3-116101号公報に記載された反射防止膜は、成膜直後からその耐摩耗性や耐薬品性が不充分であることが判明し、特開昭60-225101号公報に記載された反射防止膜は、可視域の光に対して3%程度の吸収性を有し、その光学特性に難点があることが判明した。

【0006】本発明は上記従来の技術の未解決の課題に 鑑みてなされたものであり、耐摩耗性や耐薬品性および 光学特性にすぐれており、かつ、厳しい温度条件や湿度 条件、あるいは、温度や湿度が大きく変化する環境で長 時間使用しても、前述の特性が劣化したり、クラックや 膜剥離を起こすおそれのない合成樹脂製光学部品の反射 防止膜を提供することを目的とするものである。

[0007]

【課題を解決するための手段】上記目的を達成するため に本発明の反射防止膜は、合成樹脂製光学部品の表面に 成膜されたケイ素酸化物SiOx (2>x>1)を主成 分とする膜厚200nmないし300nmのアンダーコ ートと、該アンダーコート上に成膜された反射防止特性 を有する繰返し多層膜からなり、前記アンダーコートの 屈折率が1.49ないし1.59の範囲にあり、かつ、 前記繰返し多層膜が前記合成樹脂製光学部品の表面に近 い側から順に第1層ないし第4層の4層の薄膜からな り、設計波長 1 = 5 0 0 n m、前記第 1 層の薄膜の屈折 率と光学膜厚をそれぞれn1、n1d1、前記第2層の 薄膜の屈折率と光学膜厚をそれぞれn2 、n2 d2 、前 記第3層の薄膜の屈折率と光学膜厚をそれぞれn3、n 3 d3 、前記第4層の薄膜の屈折率と光学膜厚をそれぞ れn4 、n4 d4 としたときに、これらの薄膜の屈折 率と光学膜厚が以下の条件式、

1. $95 \le n1 \le 2$. 15, 0. $05\lambda \le n1 d1 \le 0$. 13 λ ,

1. $43 \le n2 \le 1$. 55, 0. $03\lambda \le n2 d2 \le 0$. 07λ ,

1. $9.5 \le n.3 \le 2.$ 15, 0. $2.1.\lambda \le n.3$ d3 $\le 0.$ 49 λ ,

1. $43 \le n4 \le 1$. 55, 0. $20 \lambda \le n4 d4 \le 0$. 28λ ,

<u>を満足す</u>ることを特徴とする。

50 【0008】また、繰返し多層膜の第1層と第3層が下

i O2 またはZ r O2 またはこれらの混合物を主成分とする高屈折率材料から形成され、第2層と第4層がS i Ox $(2 \ge x \ge 1)$ を主成分とする低屈折率材料から形成されるとよい。

[0009]

【作用】上記装置によれば、硬度が高く、耐薬品性や合成樹脂に対する密着性にすぐれたケイ素酸化物SiOx(2>x>1)を主成分とする薄膜を、反射防止特性に関与しないアンダーコートとして用いることによって、反射防止膜の耐摩耗性や耐薬品性および合成樹脂に対する密着性を向上させる。アンダーコートの膜厚を200nm以上にすることで、上記の耐摩耗性、耐薬品性を充分に向上させ、加えて、屋外等の温度、湿度の厳しい環境における耐久性も向上させることができる。また、アンダーコートの膜厚が300nm以下であれば、前記の厳しい環境において長期間使用しても反射防止膜のクラックや膜剥離を生じるおそれがない。

[0010]

【実施例】本発明の実施例を図面に基づいて説明する。 【0011】図1は一実施例を示す模式断面図であって、本実施例の合成樹脂製光学部品の反射防止膜E1は、ポリメタクリル酸メチル(PMMA)で作られたプラスチックレンズ1の表面1aに蒸着されたアンダーコート2と、これに積層された繰返し多層膜である多層膜3からなり、アンダーコート2は前述の合成樹脂製材料に対して良好な密着性を有し、かつ、耐薬品性、おび耐摩耗性にすぐれたケイ素酸化物SiOx(2>x>1)を主成分とする屈折率n=1、49~1、59の低屈折率材料からなる膜厚d=200nm~300nmの薄膜であり、多層膜3は、酸化チタンTiOzまたは酸化ジルコニウムZrOzまたはこれらの混合物を主成分とする高屈折率材料からなる第1層の薄膜(以下、「第 1 層」という。) 3 a b a c

【0012】アンダーコート2の材料として屈折率n=1.49~1.59のケイ素酸化物を主成分とする低屈 折率材料を選んだ理由は、合成樹脂製光学部品の材料として多用されるポリメタクリル酸メチル(PMMA)や ポリカーボネート (PC) やポリスチレン (PS) の屈 折率が上記の範囲にあること、および、上記低屈折率材料が、耐薬品性や耐摩耗性にすぐれており、上記の合成 樹脂に対して良好な密着性を有し、かつ、アンダーコートとして用いた場合に光散乱量および光吸収量が少いためである。

【0013】また、アンダーコート2の膜厚が200 n m以下であると、充分な耐薬品性や耐摩耗性を得ることができず、300 n m以上である場合は逆にクラックが発生しやすいことが実験によって判明している。なお、多層膜3の第1層3aと第2層3bは高屈折率材料と低屈折率材料からなる等価薄膜を構成し、多層膜3の基本的な膜構成は、設計波長えに対して前記等価薄膜の膜厚が2/4、第3層3cの膜厚が2/4または2/2、第4層3dの膜厚が2/4である。また、多層膜3の各層3a~3dの屈折率nおよび光学膜厚ndは以下の範囲であるのが望ましい。

[0014]

屈折率n

1. 43~1. 55

率 n 光学膜厚 n d

第1層3a1.95~2.150.05λ~0.13λ第2層3b1.43~1.550.03λ~0.07λ

第3層3 c 1.95~2.15 0.21 l~0.49 l

ここで、基本波長 λ=500nm 次に、本実施例の製造工程を説明する。

第4層3d

rrに設定し、ZrO2とTiO2の混合物を主成分とする蒸発材料を電子ビーム加熱法によって加熱蒸発させ、蒸着速度5Å/secで光学膜厚nd=36nmの多層膜3の第1層3aを形成する。さらに、O2ガス導入量を制御して真空蒸着室の圧力を1.0×10⁻¹ torrに設定し、SiO2を主成分とする蒸発材料を電子ビーム加熱法によって加熱蒸発させ、蒸着速度10Å/secで光学膜厚nd=24nmの第2層3bを形成し、次いで、O2ガス導入量を制御して真空蒸着室の圧力を5×10⁻⁵ torrに設定し、ZrO2とTiO2の混合物を主成分とする蒸発材料を電子ビーム加熱法によって加熱蒸発させ、蒸着速度5Å/secで光学膜厚

nd=210nmの第3層3cを形成し、さらに、O2

0. 20λ~0. 28λ

ガス導入量を制御して真空蒸着室の圧力を1.0×10 torrに設定し、SiOzを主成分とする蒸発材料を電子ビーム加熱法によって加熱蒸発させ、蒸着速度10Å/secで光学膜厚nd=115nmの第4層3dを形成したのち、Ozガスの導入を停止して真空蒸着室の圧力を一旦3×10-5 torr以上の高真空に減圧したうえで大気圧まで昇圧し、真空蒸着室を開放して製品

を取出す。

【0016】このようにして製作された反射防止膜E1の材料構成、各薄膜の屈折率n、膜厚dおよび光学膜厚ndを表1に示し、また、その反射防止特性を図2に示す

[0017]

【表1】

上し、兵皇然有主を併	100 C 3500	[32.1]		
構成	材料	屈折率n at 587nm		≢nd (d) λ=460mm
多層膜の第4層	SiO ₂	1. 47	115	0. 25λ
多層膜の第3層	SiO ₂ とTiO ₂ の混合材	2. 01	210	0. 45λ
多層膜の第2層	SiO ₂	1. 47	2 2	0. 04λ
多層膜の第1層	SiO ₂ とTiO ₂ の混合材	2. 01	3 6	0. 07λ
アンダーコート	SiO _x (2>x>1)	1. 55	330 (208)	0. 71λ
プラスチックレンズ	PMMA	1. 49		

次に、上記の製造工程の一部および反射防止膜またはプラスチックレンズの材料の一部を変更して第1ないし第3の変形例の反射防止膜E2~E4を製作した。第1変形例の反射防止膜E2~E4を製作した。第1変形例の反射防止膜E2の製造工程においては、アンダー30コートを蒸着する際の真空蒸着室の02ガス雰囲気の圧力を 1.5×10^4 torrとし、多層膜の第2層と第4層はSiOx ($2 \ge x \ge 1$)を主成分とした低屈折率材料を公知の抵抗加熱法または電子ビーム加熱法で加熱蒸発させ、真空蒸着室の02ガス雰囲気の圧力をアンダーコートを蒸着するときと同じ 1.5×10^4 torrに設定し、また多層膜の第1層と第3層はTiO2を主成分とする高屈折率材料を公知の抵抗加熱法または電子ビーム加熱法で加熱蒸発させた。他の点は本実施例の反射防止膜E1の製造工程と同様であるので説明は省略する。

【0018】第2変形例の反射防止膜E3の製造工程に

おいては、多層膜の第1層と第3層を蒸着するときの真空蒸着室の O_2 ガス雰囲気の圧力を 1×10^{-4} torrに設定し、蒸着速度は $2\sim3$ Å/secで成膜した。その他の点は本実施例の反射防止膜E1の製造工程と同様である。

【0019】第3変形例の反射防止膜E4は、プラスチックレンズの材料にポリカーボネート(PC)を用いて製作した。製造工程は本実施例の反射防止膜E1と同様である。

【0020】このようにして製作された第1ないし第3の変形例の反射防止膜 $E2\sim E4$ の材料構成、各薄膜の屈折率n、膜Pdおよび光学膜Pndをそれぞれ表2ないし表4に示し、また、その反射防止特性をそれぞれ図3ないし図5に示す。

[0021]

【表2】

9

構成	材料	屈折率n at 587mm			
多層膜の第4層	SiO _x (2≥ x ≥1)	1. 50	115	0. 25λ	
多層膜の第3層	TiO ₂	2. 10	220	0. 47λ	
多層膜の第2層	SiO _x (2≥ x ≥1)	1. 50	24	0. 05λ	
多層膜の第1層	TiO ₂	2. 10	3 6	0. 07λ	
アンダーコート	SiO _x (2>x>1)	1. 50	375 (250)	0.81λ	
プラスチックレンズ	PMMA	1. 49			

[0022]

【表3】

構成	材料	屈折率n at 587nm		関 n d (d) λ=460mm		
多層膜の第4層	S10 ₂	1. 44	115	0. 25λ		
多層膜の第3層	SiO ₂ とTiO ₂ の混合材	2. 14	206	0. 44λ		
多層膜の第2層	SiO ₂	1. 44	2 7	0.05		
多層膜の第1層	SiO ₂ とTiO ₂ の混合材	2. 14	2 8	0. 06λ		
アンダーコート	SiO _x (2>x>1)	1. 53	330 (215)	0. 71λ		
プラスチックレンズ	PMMA	1. 49				

[0023]

【表4】

40

nmとして本実施例の反射防止膜E1と同じ製造工程に よって第1比較例の反射防止膜E5を製作し、さらに、 アンダーコートの膜厚dを310nmとして反射防止膜 E1と同じ製造工程によって第2の比較例の反射防止膜

プラスチックレンズ РС

また、比較のために、アンダーコートの膜厚 d を 180 20 E 6 を製作した。両者の材料構成、各薄膜の屈折率 n 、 膜厚dおよび光学膜厚ndをそれぞれ表5,6に示し、 また反射防止特性をそれぞれ図6,7に示す。

12

[0024]

【表5】

1. 59

		,		
構成	材料	屈折率n at 587mm		≇nd (d) λ=480mm
多層膜の第4層	S10 ₂	1. 47	120	0. 25λ
多層膜の第3層	SiO ₂ とTiO ₂ の混合材	2. 01	227	0. 47λ
多層膜の第2層	SiO ₂	1. 47	3 1	0. 06λ
多層膜の第1層	SiO ₂ とTiO ₂ の混合材	2. 01	3 1	0. 06λ
アンダーコート	SiO _x (2>x>1)	1. 55	279 (180)	0. 58λ
プラスチックレンズ	PMMA	1. 49		

[0025]

【表6】

構成	材料	屈折率n at 587mm		₽nd (d) λ=490nm	
多層膜の第4層	SiO ₂	1. 47	1 2 2	0. 25λ	
多層膜の第3層	SiO, とTiO, の混合材	2. 01	242	0. 49λ	
多層膜の第2層	SiO ₂	1. 47	3 4	0. 07λ	
多層膜の第1層	SiO ₂ とTiO ₂ の混合材	2. 01	2 9	0. 06λ	
アンダーコート	SiQ (2>x>1)	1. 55	480 (310)	0. 63λ	
プラスチックレンズ	PMMA	1. 49		 	

次に、各反射防止膜E1~E6および前述の特開昭60 20 それぞれの品質を評価する品質評価テストを行った結果 -98401号公報の反射防止膜を従来例1、特開昭6 0-25101号公報の反射防止膜を従来例2、特開平 3-16101号公報の反射防止膜を従来例3として、

を表7に示す。

[0026]

【表7】

	描	#	PWNA	PMNA	PWWA	PC	PMMA	PMMA	PWAA	PWIKA	РИМА	
	48≺	下	0	0	0	0	◁	٥	×	◁	×	1
型	路前	上野林和	0	0	0	0	0	4	×	◁	0	1
	熱衝擊試験	资準和	0	0	0	0	0	0	×	0	0	1
境	76.7.	外 觀	0	0	0	0	0	◁	×	٥	0	
煕	過數	重機品型	0	0	0	0	◁	◁	×	◁	×	不與
霍	極超	康聚基	0	0	0	0	0	◁	×	◁	0	×
	層把	密替性	0	0	0	0	0	0	×	0	0]^
	1	外 觀	0	0	0	0	0	◁	×	4	0	Lax.
ļ .	기	炉 線品和	0	0	0	0	◁	0	×	0	×	一部不良
#	Ē	海摩莊姓	0	0	0	0	0	0	×	0	0] [
	₹ ≥	紀御世	0	0	0	0	0	0	0	0	0	∣⊲
		外 觀	0	0	0	0	0	0	0	0	0	
#	八 学	奉 和	0	0	0	0	0	0	0	. 🗸	0	良好
l iii	E	数	ည	5	2	ល	ις.	ည	2	ည	23	
Ä	A 屈 形	4 * * *	SiO ₂	Si0,	Si0 ₂	Si0,	Si02	SiO2	KgF2	Si02	Si0,	
極屈花路女尊		Zr02 Ti02	TiO2	Zr0 ₂ Ti0 ₂	Zr0 _z Ti0 _z	Zr02 Ti02	$\begin{array}{c} 2_{\rm r}0_{\rm z} \\ {\rm Ti}0_{\rm z} \end{array}$	ı	Ta20s	Ti02		
* * *		政 d n n	208	250	215	862	180	310	83	354	18	
アント	ו	膜材	Si0,	Si0,	Si0,	Si0,	Si0,	Si0,	Sio	Si0,	Si0,	
膜名		E1	E2	E 3	E4	ខន	9 3	従来例1	従来例2	従来例3		

表7から、本実施例の反射防止膜E1およびその変形例の反射防止膜E2~E4はいずれも密着性、耐摩耗性お 40 よび耐薬品性においてすぐれており、また、これらの特性は、高温高湿の厳しい環境においてもあるいは厳しい温度変化のある環境においても大きく損なわれるおそれがないことが判る。なお、第1比較例の反射防止膜E5 はアンダーコートの膜厚が不足したために耐薬品性が不充分であり、第2の比較例の反射防止膜E6はアンダーコートの膜厚が大きすぎるためにクラックが発生しやすいことが判る。また、前述のように、従来例1および3 は成膜直後からその耐摩耗性や耐薬品性が不充分であり、従来例2は光学特性に難点があることが判る。 50

【0027】表7における(1)密着性、(2)耐摩耗 40 性、(3)耐薬品性、(4)耐環境性は以下のテスト方 法で評価した。

【0028】(1) 密着性

反射防止膜の表面に、セロファンテープを貼り、膜面に 対し垂直方向にテープを瞬時に引剥し、目視にて膜剥離 の有無を観察する。膜剥離が起きていない場合のみを良 好とした。

【0029】(2)耐摩耗性

反射防止膜の表面に、シルボン紙を当て荷重300gに て、往復50回こすり、目視にて傷の有無を観察する。

50 膜傷が発生していない場合のみを良好とした。

【0030】(3)耐薬品性

反射防止膜の表面に、エチルエーテルを浸したシルボン 紙を当て荷重300gにて、往復50回こすり、目視に て膜浮きや膜傷等の有無を観察する。膜浮きや膜傷等が 発生していない場合のみを良好とした。

【0031】(4)耐環境性

(4-1) 高温高湿加速試験

反射防止膜を形成したプラスチックレンズを70℃-8 5%RHに設定された恒温槽内に500時間放置した 後、目視にて膜外観を観察し、異常が認められない場合 10 のみを良好とした。さらに、前記の(1)密着性、

(2) 耐摩耗性、(3) 耐薬品性の評価テストを実施した。

【0032】(4-2)熱衝擊試験

反射防止膜を形成したプラスチックレンズを-30%/60%-60%RHに各2時間のサイクルを10サイクル実施した後、目視にて膜外観を観察し、異常が認められない場合のみを良好とした。さらに、前記の(1) 密着性、(2) 耐摩耗性、(3) 耐薬品性の評価テストを実施した。

[0033]

【発明の効果】本発明は、上述のとおり構成されている ので、以下に記載するような効果を奏する。

【0034】耐摩耗性や耐薬品性および光学特性にすぐれており、かつ、屋外等の厳しい温度条件や湿度条件、あるいは温度や湿度が大きく変化する環境で長時間使用

しても、前述の特性が劣化したり、クラックや膜剥離を 起すおそれのない合成樹脂製光学部品の反射防止膜を実 現する。その結果、屋外等ですぐれた耐久性を示す反射 の少ない合成樹脂製光学部品を実現できる。

18

【図面の簡単な説明】

【図1】一実施例を示す模式断面図である。

【図2】図1の反射防止膜の反射防止特性を示すグラフである。

【図3】第1変形例の反射防止膜の反射防止特性を示す グラフである。

【図4】第2変形例の反射防止膜の反射防止特性を示す グラフである。

【図5】第3変形例の反射防止膜の反射防止特性を示す グラフである。

【図6】第1比較例の反射防止膜の反射防止特性を示す グラフである。

【図7】第2比較例の反射防止膜の反射防止特性を示す グラフである。

【符号の説明】

- 20 1 プラスチックレンズ
 - 2 アンダーコート
 - 3 多層膜
 - 3 a 第1層
 - 3 b 第2層
 - 3 c 第3層
 - 3 d 第4層

【図1】

【図2】

フロントページの続き

(56)参考文献 特開 昭63-217302 (JP, A)

(58)調査した分野(Int.C1.⁷, DB名) CO2B 1/10 - 1/12