

Example:

Process the dataset

- Verify results of clustering by plotting them with ggplot2
 - >ggplot(data = df2, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point(aes(col =
 - as.factor(clusterResult\$cluster)))# Plot to see how Sepal.Length and Sepal.Width data points
 - have been distributed in clusters
 - >ggplot(data = df2, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point(aes(col = df1))# Plot to see how Sepal.Length and Sepal.Width data points have been distributed originally as per "class" attribute in dataset
 - > ggplot(data = df2, aes(x = Petal.Length, y = Petal.Width)) + geom_point(aes(col = as.factor(clusterResult\$cluster)))# Plot to see how Petal.Length and Petal.Width data points have been distributed in clusters
 - > $ggplot(data = df2, aes(x = Petal.Length, y = Petal.Width)) + geom_point(aes(col = df1))# Plot to see how Petal.Length and Petal.Width data points have been distributed originally as per "class" attribute in dataset$
- as.factor() is necessary for the cluster because the variable is otherwise interpreted as a continuous one

How to determine the optimal number of clusters:

Choosing an appropriate <u>k</u>

Elbow method

- Minimize the total intra-cluster variation
- Known as total within-cluster variation or total within-cluster sum of square
- Algorithm:
 - Compute *k-means* clustering for different values
 - For each k, calculate the total within-cluster sum of square (wss)
 - Plot the curve of wss according to the number of clusters k.
 - The location of a bend (knee) in the plot is generally considered as an indicator of the appropriate number of clusters.

wss measures the compactness of the clustering.

Example:

Choosing an appropriate \underline{k} with Elbow method

- # Create an empty vector
- # Write a **for-loop** for different k-values from **1 to 20**
- # Apply k-means clustering algorithm for each k-value
- # Calculate the sum of wss-values for each k-value with withinss-variable
- # Save them in your vector and **plot** them.

Example:

Choosing an appropriate \underline{k} with Elbow method

```
# create an empty vector
> wss=c()
# Write a for-loop for different k-values from 1 to 20
# Apply k-means clustering algorithm for each k-value
# Calculate the sum of wss-values for each k-value with withinss-variable & save them in your vector
> for(k in 1:20){
        clusters=kmeans(df2, centers=k)
        wss[k]=sum(clusters$withinss) # sum of within-cluster sum of squares
}
# Plot the wss values with plot function and ggplot2 library
>plot(1:length(wss), wss, type="b", xlab="Number of Clusters", ylab="Within groups sum of squares")
>plotValues=data.frame(k=1:length(wss), values=wss)
>p = ggplot(plotValues, aes(x=k, y=values))
>p = p + geom_point() + geom_line()
>p
```


Limitiations:

- K-means getting stuck
 - A local optimum: Possible solution is to run k-means multiple times with different initial clusters

Would it be better to have one cluster here

... to have two cluster here

Limitiations:

- K-means getting stuck
 - Different density

Original points

ICDM: Top Ten Data Mining Algorithms

Limitiations:

- K-means getting stuck
 - Non-globular shapes

ICDM: Top Ten Data Mining Algorithms

Limitiations:

- K-means getting stuck
 - Effect of outliers

... k-means is sensitive to Outliers

- Hierarchical clustering
 - an alternative approach which builds a **hierarchy** from the bottom-up based on a **distance matrix**
- The specification of the number of clusters is not required
- The algorithm works as follows:
 - Put each data point in its own cluster.

- Hierarchical clustering
 - an alternative approach which builds a **hierarchy** from the bottom-up based on a **distance matrix**
- The specification of the number of clusters is not required
- The algorithm works as follows:
 - Put each data point in its own cluster.
 - Identify the closest two clusters and combine them into one cluster.
 - Repeat the above step till all the data points are in a single cluster.

Hierarchical clustering

Once this is done, it is usually represented by a **dendrogram**

like structure

	(G1 (G6)
(3)	G4

	Dog	Turtle	Canary	Goldfish
Dog	0	1.73	1.73	2.0
Turtle	1.73	0	0	1.0
Canary	1.73	0	0	1.0
Goldfish	2.0	1.0	1.0	0

Identification of how close two clusters are:

- Linkage methods
 - measure the distance between clusters in order to decide the rules for clustering
- **1.** <u>Complete-linkage:</u> Find the maximum possible distance between points belonging to two different clusters
- **2.** <u>Single linkage clustering:</u> Find the minimum possible distance between points belonging to two different clusters.
- **Mean linkage clustering (UPGMA):** Find all possible pairwise distances for points belonging to two different clusters and then calculate the average.
- **4.** <u>Centroid linkage clustering:</u> Find the centroid of each cluster and calculate the distance between centroids of two clusters.

Example: Hierarchical clustering based on Complete-Linkage (use maximum distance as distance between clusters)

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster

	Α	В	С	D	E
Α	0	12	6	4	8
В		0	10	10	18
С			0	6	2
D				0	14
E					0

ABCDE

https://www.datascienceplus.com

Example: Hierarchical clustering based on Complete-Linkage (use maximum distance as distance between clusters)

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them

	Α	В	С	D	E
Α	0	12	6	4	8
В		0	10	10	18
С			0	6	2
D				0	14
E					0

ABCDE

https://www.datascienceplus.com

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them

	Α	В	С	D	E
Α	0	12	6	4	8
В		0	10	10	18
С			0	6	2
D				0	14
E					0

Example: Hierarchical clustering based on Complete-Linkage (use maximum distance as distance between clusters)

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones

	Α	В	С	D	E
Α	0	12	6	4	8
В		0	10	10	18
С			0	6	2
D				0	14
E					0

https://www.datascienceplus.com

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones

	Α	В	С	D	E	C,E
Α	0	12	6	4	8	8
В		0	10	10	18	
С			0	6	2	
D				0	14	
E					0	
C,E						0

		Г		
Α	В	С	Ε	D

Example: Hierarchical clustering based on Complete-Linkage (use **maximum distance** as distance between clusters)

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - Example: Original distances : B-C = 10 B-E = 18

 New distance is the maximum of old distances : B-(C,E) = 18

	Α	В	С	D	E	C,E
Α	0	12	6	4	8	8
В		0	10	10	18	18
С			0	6	2	
D				0	14	
E					0	
C,E						0

		Г		
Α	В	C	Ē	D

https://www.datascienceplus.com

Example: Hierarchical clustering based on Complete-Linkage (use **maximum distance** as distance between clusters)

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - Example: Original distances : D-C = 6 D-E = 14

 New distance is the maximum of old distances : D-(C,E) = 14

	Α	В	С	D	E	C,E
Α	0	12	6	4	8	8
В		0	10	10	18	18
С			0	6	2	
D				0	14	14
E					0	
C,E						0

		Г		
Α	В	Ċ	Ē	D

https://www.datascienceplus.com

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - After the calculation of the new distances is done the clustered elements can be removed from the table

	Α	В	9		D			C,E
Α	0	12	Œ		4	1		8
В		0	1	0	10		8	18
C			Ļ		0			
D					0	:	4	14
			Ц					
C,E			H			T		0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - After the calculation of the new distances is done the clustered elements can be removed from the table

	Α	В	D	C,E
Α	0	12	4	8
В		0	10	18
D			0	14
C,E				0

		Г		
Α	В	С	Ε	D

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	Α	В	D	C,E
Α	0	12	4	8
В		0	10	18
D			0	14
C,E				0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	Α	В	D	C,E
Α	0	12	4	8
В		0	10	18
D			0	14
C,E				0

		Г		
Α	В	C	Ē	D

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	Α	В	D	C,E
Α	0	12	4	8
В		0	10	18
D			0	14
C,E				0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	Α	В	D	C,E	A,D
Α	0	12	4	8	
В		0	10	18	
D			0	14	
C,E				0	
A,D					0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - Example: Original distances: B-A = 12 B-D = 10
 New distance is the maximum of old distances: B-(A,D) = 12

	Α	В	D	C,E	A,D
Α	0	12	4	8	
В		0	10	18	12
D			0	14	
C,E				0	
A,D					0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - Example: Original distances : (C,E)-A = 8 , (C,E)-D = 14

 New distance is the maximum of old distances : (C,E)-(A,D) = 14

	Α	В	D	C,E	A,D
Α	0	12	4	8	
В		0	10	18	12
D			0	14	
C,E				0	14
A,D					0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	В	C,E	A,D
В	0	18	12
C,E		0	14
A,D			0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	В	C,E	A,D
В	0	18	12
C,E		0	14
A,D			0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	В	C,E	A,D
В	0	18	12
C,E		0	14
A,D			0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	В	C,E	A,D	A,D,B
В	0	18	12	
C,E		0	14	
A,D			0	
A,D,B				0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - Example: Original distances : (C,E)-(A,D) = 14 (C,E)-B = 18

 New distance is the maximum of old distances : (C,E)-(A,D,B) = 18

	В	C,E	A,D	A,D,B
В	0	18	12	
C,E		0	14	18
A,D			0	
A,D,B				0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	C,E	A,D,B
C,E	0	18
A,D,B		0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	C,E	A,D,B
C,E	0	18
A,D,B		0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2

	C,E	A,D,B
C,E	0	18
A,D,B		0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - We can skip this step since no other cluster remains

	C,E	A,D,B
C,E	0	18
A,D,B		0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
 - We can skip this step since no other cluster remains

	A,D,B,C,E
A,D,B,C,E	0

- Given a matrix containing the distances between 5 objects
- 1. First consider each object as a single cluster
- 2. Identify the two clusters with the smallest distance and combine them
- 3. Update the distance matrix with distances between the new cluster and the other ones
- 4. If not all elements are in one cluster go back to step 2 Done

	A,D,B,C,E
A,D,B,C,E	0

Dendrograms:

Tree like diagrams

- 1. Cluster 1: Points 4 and 6
- 2. Cluster 2: Points 1 and 2
- **3.** Point **5** was merged in the same <u>cluster 1</u> followed by point **3** resulting in two clusters
- **4. <u>Final step:</u>** two clusters are merged into a single cluster

When should we stop merging the clusters?

- depends on your knowledge about the data
- you can leverage the results from the dendrogram to approximate the number of clusters
 - Select the maximum distance up and down without intersecting the merging point

Example:

Import the data file called "animalData.csv" into the variable mydata

```
> mydata= read.table("animalData.csv", header=TRUE, sep=",", stringsAsFactors = TRUE)
# Check the dimensions of the data
# View statistical summary of dataset
# View the complete data
```

Process the dataset

- Divide mydata in two data frames as df1 and df2
 - df1 contains the class attribute "animal"
 - df2 contains the remaining information
- Create a distance matrix for all entries (function in R: dist)
- Apply the hierarchical clustering algorithm (function in R: hclust)
- Verify results of clustering by plotting them

Example:

Process the dataset

Divide mydata in two data frames as df1 and df2

```
> df1=mydata[, "animal"]
```

- > df2= subset(mydata, select=-c(animal)) # or mydata[, 1:85]
- Create a distance matrix for all entries (?dist for help)
 - > distMat = dist(df2)
- Apply hierarchical clustering algorithm (?hclust for help)
 - > clusterResult= hclust(distMat, method = "average")
 #apply hierarchical clustering algorithm with mean linkage clustering
- Verify results of clustering by plotting them

Example:

Process the dataset

Verify results of clustering by plotting them with plot()

>plot(clusterResult, labels = df1) #Using labels we can add the class attribute "animal" to the plot

Example:

Process the dataset

- Verify results of clustering by plotting them with ggplot2
- This is not directly easily possible
- We need another package ggdendro

```
>install.packages("ggdendro")
```

>library(ggdendro)

>ggdendrogram(clusterResult)

#For adding labels we need an extra step at the beginning before the clustering

>rownames(df2) = df1 #We assign the animal names as row names to df2

>distMat = dist(df2)

>clusterResult = hclust(distMat, method = "average")

>ggdendrogram(clusterResult)

Clustering Exercises

Exercise: beansData

Import the data file called "DryBeanData_smallData.csv" into the variable bean_data

Process the dataset

- Check the dimensions of the dataset and what type of data it contains
- Check for missing values and replace them with the median
- Divide bean_data in two data frames as df1 and df2
 - df1 contains the attribute "Class"
 - df2 contains the remaining information
- Normalize the values in df2 between 0 and 1 using our own function
- Create a subset of 100 randomly selected observations
- Perform k-means clustering
- Find the optimal k by using the elbow method. Verify results of clustering by plotting them for the optimal k
- Apply hierarchical clustering for a subset of 100 randomly selected observations
- Visualize your results with a phylogenetic dendrogram