University of Bergen Department of Informatics

Solving Maximum Weighted Matching problem using Graph Neural Networks

Author: Nikita Zaicev

Supervisor: Fredrik Manne

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet

September, 2023

${f Abstract}$			
In this work we tried to train a Graph Neural Network (GNN) to solve a popular problem of Maximum Weighted Matching.			

Contents

List of Figures

List of Tables

Listings

Chapter 1

Introduction

Machine Learning (ML) has become a powerfull tool for solving a wide variety of problems. One such field that has been particularly challenging is Combinatorial Optimization (CO).

1.1 Background

This chapter is dedicated to all the knowledge and background research that was required for this project.

1.1.1 Listings

You can do listings, like in Listing??

```
Listing 1.1: Look at this cool listing. Find the rest in Appendix??
```

```
1 $ java -jar myAwesomeCode.jar
```

You can also do language highlighting for instance with Golang: And in line ?? of Listing ?? you can see that we can ref to lines in listings.

Listing 1.2: Hello world in Golang

```
package main
import "fmt"
func main() {
   fmt.Println("hello world")
}
```

1.1.2 Figures

Example of a centred figure

Figure 1.1: Caption for flowchart

Credit: Acme company makes everything https://acme.com/

1.1.3 Tables

We can also do tables. Protip: use https://www.tablesgenerator.com/ for generating tables.

Table 1.1: Caption of table

Title1	Title2	Title3
data1	data2	data3

1.1.4 Git

Git is fun, use it!

Appendix A

Generated code from Protocol buffers

Listing A.1: Source code of something

System.out.println("Hello Mars");