STRUCTURES FOR SEMANTICS: **ERRATA Sep 2000**

Fred Landman Tel Aviv University

Note: there is a paperback edition: ISBN: 0-7923-1240-6 (Kluwer)

►: change into

Note: these errata ignore spelling mistakes, except the following, which should be changed everywhere:

> **▶** discrete discreet well founded ▶ well-founded bivalid **▶** bivalent

CHAPTER 1

8/3: $(\phi \rightarrow (\psi \rightarrow \chi) \rightarrow$ $\blacktriangleright (\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow$ 9/9: $(p \rightarrow (q \rightarrow p)$ \triangleright $(p \rightarrow (q \rightarrow p))$

29/1-3: We can---range

> We can find a formula $\varphi[X,Y]$ which expresses that there is a relation between individuals which has X as its domain and Y as its range; we can express that this relation is a function;

37/-6: > **▶** >) 38/16: =(x.y)+x $\blacktriangleright = (x.y)+x$ \blacktriangleright f and dom(f)=A. 51/16: f. 63/7: g(y)>> \triangleright g(y)> \triangleright A $\models \varphi [g]$ /20: $A \models [g]$ $\triangleright g^*(x)$ 62/26: $\underset{f\text{-l}(b)}{g(x)}$ 64/12: g* /13:

CHAPTER 2

73/12: algebra ► structure /18:) **>** /-3: if A is ▶ if A is ► *_A \ B 74/9: * [A /14,15: even numbers ► even natural numbers odd numbers ▶ odd natural numbers (twice) /16/17: **►** A /-6: **▶** B В 77/3: $\mathbf{B} \mid h(\mathbf{A})$ \triangleright **B** \mid h(A)

▶ g

The topnode of A is labelled: f 79/picture (1):

84/-4: Second symbol $\triangleright \sqsubseteq$

91/-11 $P \sqsubseteq Q$ $\blacktriangleright P \sqsubseteq P \sqcup Q$ 98/-9: $\lambda s \lambda . \llbracket$ $\blacktriangleright \lambda s \lambda w . \llbracket$ \rrbracket

104/1: even numbers ▶ even natural numbers

/9: and $a \le b$ } \blacktriangleright and $a \le b'$ }

111/18: **Z**' ► **Z**

116/-16: for any chain $C_0 \in C$ \blacktriangleright for any chain $C_0 \subseteq C$

/-14: $c \in X$ $\triangleright c \subseteq X$ 120/6: $\langle a, \leq \rangle$ $\triangleright \langle A, \leq \rangle$ \triangleright can

CHAPTER 3

122/14: **■**

The picture is upside down.

125/-2: F $126/2: H\emptyset \qquad \blacktriangleright F\varphi$ $130/7: \lambda n. \qquad \blacktriangleright \lambda n\lambda p.$ 132/5: sententional $\blacktriangleright c n + c n^{+}[0]$

133/5: $(p \land q)[0]$ $\blacktriangleright (p \land q)^{+}[0]$ /10: 2]] $\blacktriangleright 2$]]] Add:

9: Add: However, the core idea of the analysis developed here is Larson's.

168/4: where φ is true \blacktriangleright where φ is false

CHAPTER 4

172/7: $\cap X$ $\triangleright \cap X$

174/7: conclusion ► inclusion
175/2,3: chain---element ► period contains at least one minimal period

191: Exercise 2 ► Exercise 4

CHAPTER 5

203/-7: ► Fo (in the conclusion of IF) Fψ fails the ► fails to 206/4: 218/-1: \blacktriangleright = 1 228/15: if $A2(e')(\phi)$ ► if A2(e)(ϕ) 229/11: of **▶** or ▶ incomp-231/-19: comp-

CHAPTER 6

/-3:

 $\phi_1 \wedge ... \wedge \phi_n$

234/11: LB(x) **►** LB(X) 241/-8: ► to 0. The other way round doesn't hold, by the way.) to 0) 242/-7: <a,≤> ► <A,≤> 244/12: Add: For the borderline case of $\leq \{0\}, \leq \infty$ we stipulate that 0 is an atom and that $<\{0\}, \le$ is atomic^{*}. 248/11: ▶ $a \lor b = 1$ iff $\neg a \le b$; $a \land b = 0$ iff $b \le \neg a$ 249/8: of A generates A ▶ of X generates A 250/-3: **▶** N 254/16: subalgebras **▶** sublattices 255/23: atoms.) \blacktriangleright atoms.) Again, we stipulate that $<\{0\}, \le$ is atomistic^{*}. 255/11: set. \triangleright set, except $< \{0\}, \le >$. ▶ any lattice $L \in K$ 258/-10: any lattice L 259/11: ightharpoonup $F_K(X)'$ $F_k(X)'$ **▶** equational 260/9,11,13,20,33: equivalence 261/-8,-3 262/1,4: ► completely free free 265/3: **▶** in on 272/7: (e) **►** (c) 279/16: disjunction **▶** intersection 283/-5: $\{\phi_1,...,\phi_n\}$ $\blacktriangleright \{\phi_1,...,\phi_n,...\}$

 \blacktriangleright $\phi_1 \wedge ... \wedge \phi_n \wedge ...$

CHAPTER 7

```
A^{B}
                                                           \triangleright B<sup>A</sup>
285/3:
287/-15:
                       isomorphic
                                                           ▶ identical
292/7:
                       <U,t)

ightharpoonup <U,t>
                       \underset{\uparrow\downarrow}{\text{and}}
301/-11:
                                                           ▶ or
310/-10:
                                                           ▶ 1. If A has a minimum 0 then A = \{0\}.
315/4:
                                                           ► MPRED
318/-10:
                       CPRED

ightharpoonup V(\llbracket^{\uparrow}P\rrbracket_g)
                       V(\llbracket P \rrbracket g)
320/20:
```

ANSWERS

325/11:	is not true	▶ is not false
	is not false	▶ is not true
329/3:	g(f(a)) = a	ightharpoonup g(f(a)) = c
/in exercise 4:		
	(A)	▶ (I)
	(B)	► (II)
330/8,9:	$c \vee d$ k.	▶ b \vee c = d, but f(b \vee c) = j and f(b) \vee f(c) = i.
332/17 ev	In this exercise everywhere where ≤ occurs between capital letters:	
	≤	► ≤' (nine times)
334/-11,-10:		I. moves to the beginning of the exercise.
337/Picture in	n d:	The connecting line between $\{c\}$ and \emptyset is missing.
/Line under (e):		
	No woman moves	► (f) No woman moves
338:/-4:	\leq	> <
3/10/5	n or a	aorr

338:/-4: ≤ \blacktriangleright < q or r
342/14: e,e" ∈ q \blacktriangleright e,e" ∈ r
344/Exercise 1: (b) moves to line -3 -1: x ≤ y} 49/8 e.v.: \blacktriangleright x ≤ y]

Hence $b \land \neg a$ is the complement of a, so $b \land \neg a = \neg a$, hence $\neg a \le b$. Assume $\neg a \le b$, i.e. $\neg a \lor b = b$. Then $a \lor (\neg a \lor b) = a \lor b$, i.e. $(a \lor \neg a) \lor b = a \lor b$, so $1 \lor b = a \lor b$ and

 $a \lor b = 1$.

The other one goes in a similar way.