Lesson 7 Homework

- 8. WE12 The total surface area of a closed cylinder is $200\,{
 m cm}^2$. The base radius is $r\,{
 m cm}$ and the height is $h\,{
 m cm}$.
 - a. Express h in terms of r.
 - b. Show that the volume, $V\,\mathrm{cm}^3$, is $V=100r-\pi r^3$.
 - c. Hence, show that for maximum volume the height must equal the diameter of the base.
 - d. Calculate, to the nearest integer, the minimum volume if $2 \leq r \leq 4$.

Hint: Use surface area formula on your formula sheet

Refer to the last question of the lesson if you're stuck.

10. A section of a rose garden is enclosed by edging to form the shape of a sector ABC of radius r metres and arc length l metres. The perimeter of this section of the garden is 8 metres.

- a. If heta is the angle in radian measure subtended by the arc at C, express heta in terms of r.
- b. The formula for the area of a sector is $A_{
 m sector}=rac{1}{2}r^2 heta$. Express the area of a sector in terms of r.
- c. Calculate the value of $\boldsymbol{\theta}$ when the area is greatest.

Hint: Perimeter = 8m

Arc length: $l = r \times \theta$

Perimeter: P = l + r + r

For B: substitute theta with what you found in A