

Matemáticas para las Ciencias II Semestre 2020-2

Prof. Pedro Porras Flores Ayud. Irving Hernández Rosas

Tarea-examen I

Kevin Ariel Merino Peña¹

Realice los siguientes ejercicios, escribiendo el procedimiento claramente. Y recuerden que la tarea-examen se entrega individual.

1. Muestre que $\mathbb{P}_2(\mathbb{R}) = \{c + bx + ax^2 \mid a, b, c \in \mathbb{R}\}$, es un espacio vectorial con la suma usual y la multiplicación por escalar usual, es decir:

+:
$$\mathbb{P}_2(\mathbb{R}) \times \mathbb{P}_2(\mathbb{R}) \longrightarrow \mathbb{P}_2(\mathbb{R})$$

 $(a_1x^2 + b_1x + c_1, a_2x^2 + b_2x + c_2) \mapsto (a_1 + a_2)x^2 + (b_1 + b_2)x + (c_1 + c_2).$
 μ : $\mathbb{R} \times \mathbb{P}_2(\mathbb{R}) \longrightarrow \mathbb{P}_2(\mathbb{R})$
 $(\alpha, (a_1x^2 + b_1x + c_1)) \mapsto (\alpha a_1)x^2 + (\alpha b_1)x + (\alpha c_1).$

Definición 1. Sea \mathbb{V} un conjunto no vacío con 2 operaciones definidas $(+,\mu)$ y un campo $\mathbb{F} = \mathbb{R}$ que cumple

- 1. Sean $\vec{x}, \vec{y} \in \mathbb{V}$, entonces $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 2. Sean $\vec{x}, \vec{y}, \vec{z} \in \mathbb{V}$, entonces $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- 3. Existe $\vec{0} \in \mathbb{V} \quad \cdot \vec{9} \quad \vec{0} + \vec{x} = \vec{x}, \quad \forall \vec{x} \in \mathbb{V}$
- 4. Para todo $\vec{x} \in \mathbb{V}$ existe $\vec{y} \in \mathbb{V}$ tal que $\vec{x} + \vec{y} = 0$
- 5. Para todo $\vec{x} \in \mathbb{V}$ se cumple que $\vec{1}\vec{x} = \vec{x}$ donde $\vec{1}$ es el neutro multiplicativo de $\mathbb{F}(\mathbb{R})$
- 6. Para todo $\alpha, \beta \in \mathbb{F}$ y $\vec{x} \in \mathbb{V}$ se cumple $(\alpha \beta) \vec{x} = \alpha(\beta \vec{x})$
- 7. Para todo $\alpha, \beta \in \mathbb{F}$ y $\vec{x} \in \mathbb{V}$ entonces $(\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x}$
- 8. Sea $\alpha \in \mathbb{F}$ y $\vec{x}, \vec{y} \in \mathbb{V}$, entonces $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$

Sean $\vec{x}, \vec{y} \in \mathbb{P}_2(\mathbb{R})$, por demostrar $\vec{x} + \vec{y} = \vec{y} + \vec{x}$, como los elementos de $\mathbb{P}_2(\mathbb{R})$ son de la forma $c + ax + bx^2$, entonces digamos que

$$\vec{x} = a_1 + a_2 x + a_3 x^2$$

 $\vec{y} = b_1 + b_2 x + b_3 x^2$

$$\vec{x}+\vec{y}=(a_1+a_2x+a_3x^2)+(b_1+b_2x+b_3x^2)$$
 Por definición de los vectores
$$\vec{x}+\vec{y}=(a_1+b_1)+(a_2+b_2)x+(a_3+b_3)x^2$$
 Por definición de la suma
$$\vec{x}+\vec{y}=(b_1+a_1)+(b_2+a_2)x+(b_3+a_3)x^2$$
 Porque los elementos en $\mathbb R$ conmutan
$$\vec{x}+\vec{y}=(b_1+b_2x+b_3x^2)+(a_1+a_2x+a_3x^2)$$
 Por la definición de + Por definición de los vectores

 \therefore los elementos de $\mathbb{P}_2(\mathbb{R})$ conmutan, i.e. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$

Sean $\vec{x}, \vec{y}, \vec{z} \in \mathbb{V}$ por demostrar $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ como los elementos de $\mathbb{P}_2(\mathbb{R})$ son de la forma $c + ax + bx^2$, entonces digamos que

$$\vec{x} = a_1 + a_2 x + a_3 x^2$$

 $\vec{y} = b_1 + b_2 x + b_3 x^2$

$$\vec{z} = c_1 + c_2 x + c_3 x^2$$

 $^{^{1}317031326}$

$$(\vec{x} + \vec{y}) + \vec{z} = (a_1 + a_2x + a_3x^2 + b_1 + b_2x + b_3x^2) + c_1 + c_2x + c_3x^2$$
 Por definición de los vectores
$$(\vec{x} + \vec{y}) + \vec{z} = ((a_1 + b_1) + (a_2 + b_2)x + (a_3 + b_3)x^2) + c_1 + c_2x + c_3x^2$$
 Por definición de los + en $\mathbb{P}_2(\mathbb{R})$
$$(\vec{x} + \vec{y}) + \vec{z} = ((a_1 + b_1) + c_1) + ((a_2 + b_2) + c_2)x + ((a_3 + b_3) + c_3)x^2$$
 Por definición de los + en $\mathbb{P}_2(\mathbb{R})$ Por definición de los + en $\mathbb{P}_2(\mathbb{R})$

la suma es asociativa en $\mathbb{P}_2(\mathbb{R})$

Por demostrar: $\vec{0} + \vec{x} = \vec{x}$. Proponemos $\vec{0} = 0 + 0x + 0x^2$. Sea $\vec{x} \in \mathbb{V}$, entonces \vec{x} es de la forma

$$\vec{x} = a_1 + a_2 x + a_3 x^2$$

$$\vec{0} + \vec{x} = (0 + 0x + 0x^2) + (a_1 + a_2x + a_3x^2)$$
 Por definición de \vec{x} , $\vec{0}$
$$\vec{0} + \vec{x} = (0 + a_1) + (0 + a_2)x + (0 + a_3)x^2$$
 Por definición de \vec{x} Por definición de \vec{x} Por definición de \vec{x} Por definición de \vec{x}

 \therefore 0 + 0x + 0x² es el neutro adivito en $\mathbb{P}_2(\mathbb{R})$

Sea $\vec{x} \in \mathbb{V}$, por demostrar, existe $\vec{y} \in V$ $\rightarrow \rightarrow \cdot \vec{x} + \vec{y} = \vec{0}$, sabemos que los elementos de \mathbb{V} tienen la siguiente forma

$$\vec{x} = a_1 + a_2 x + a_3 x^2$$

proponemos

$$\vec{y} = -a_1 - a_2 x - a_3 x^2$$

$$\vec{x} + \vec{y} = (a_1 + a_2 x + a_3 x^2) + (-a_1 - a_2 x - a_3 x^2)$$
 Por definición de los vectores
$$\vec{x} + \vec{y} = (a_1 - a_1) + (a_2 - a_2) x + (a_3 - a_3) x^2$$
 Por definición de la suma en $\mathbb{P}_2(\mathbb{R})$ Los elementos del campo tienen inverso aditivo
$$\vec{x} + \vec{y} = \vec{0}$$
 Por definición del neutro aditivo

 $-a_1 - a_2 x - a_3 x^2$ es el inverso aditivo de \vec{x}

Sea $\vec{x} \in \mathbb{V}$, por demostrar $\vec{1} \cdot \vec{x} = \vec{x}$ Proponemos $\vec{1} = 1$

$$1 \cdot \vec{x} = 1(a_1 + a_2x + a_3x^2)$$
 Por definición de los elementos de $\mathbb{P}_2(\mathbb{R})$
 $1 \cdot \vec{x} = (1 \cdot a_1) + (1 \cdot a_2)x + (1 \cdot a_3)x^2$ Por definición del producto en $\mathbb{P}_2(\mathbb{R})$
 $1 \cdot \vec{x} = a_1 + a_2x + a_3x^2$ Puesto que los elementos del campo tienen neutro multiplicativo
 $1 \cdot \vec{x} = \vec{x}$ Por definición de \vec{x}

 $\vec{1}$ es el neutro multiplicativo en $\mathbb{P}_2(\mathbb{R})$

Sean $\alpha, \beta \in \mathbb{F}(\mathbb{F} = \mathbb{R})$ y $\vec{x} \in \mathbb{V}$, por demostrar que $(\alpha\beta)\vec{x} = \alpha(\beta\vec{x})$

$$(\alpha\beta)\vec{x} = (\alpha\beta)(a_1 + a_2x + a_3x^2)$$
 Por definición de los elementos en $\mathbb{P}_2(\mathbb{R})$
 $(\alpha\beta)\vec{x} = ((\alpha\beta)a_1) + ((\alpha\beta)a_2)x + ((\alpha\beta)a_3)x^2$ Por definición del producto en $\mathbb{P}_2(\mathbb{R})$
 $(\alpha\beta)\vec{x} = \alpha(\beta a_1) + \alpha(\beta a_2)x + \alpha(\beta a_3)x^2$ Porque los elementos del campo asocian
 $(\alpha\beta)\vec{x} = \alpha(\beta\vec{x})$ Aplicando la definición del producto

$$\mathbb{P}_2(\mathbb{R})$$
 se cumple que $(\alpha\beta)\vec{x} = \alpha(\beta\vec{x})$

Sean $\alpha, \beta \in \mathbb{F}(\mathbb{F} = \mathbb{R})$ y $\vec{x} \in \mathbb{V}$, por demostrar que $(\alpha + \beta)\vec{x} = \alpha\vec{x} + \beta\vec{x}$

$$(\alpha + \beta)\vec{x} = (\alpha + \beta)(a_1 + a_2x + a_3x^2)$$
 Definición de elementos en $\mathbb{P}_2(\mathbb{R})$

$$(\alpha + \beta)\vec{x} = \alpha a_1 + \beta a_1 + \alpha a_2x + \beta a_2x + \alpha a_3x^2 + \beta a_3x^2$$
 Pues los elementos del campo tienen distributividad

$$(\alpha + \beta)\vec{x} = \alpha a_1 + \alpha a_2x + \alpha a_3x^2 + \beta a_1 + \beta a_2x + \beta a_3x^2$$
 Reordenando

$$(\alpha + \beta)\vec{x} = \alpha (a_1 + a_2x + a_3x^2) + \beta (a_1 + a_2x + a_3x^2)$$
 Por definición del producto

$$(\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x}$$
 Por definición de los elementos en $\mathbb{P}_2(\mathbb{R})$

 \therefore en $\mathbb{P}_2(\mathbb{R})$ se cumple distributividad cuando un elemento se multiplica por la suma de dos escalares

Sea $\alpha \in \mathbb{V}$, $\vec{x}, \vec{y} \in \mathbb{V}$, por demostrar que $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$

$$\alpha(\vec{x}+\vec{y}) = \alpha((a_1+a_2x+a_3x^2)+(b_1+b_2x+b_3x^2)) \qquad \text{Por definición de los elementos en } \mathbb{P}_2(\mathbb{R})$$

$$\alpha(\vec{x}+\vec{y}) = \alpha((a_1+b_1)+(a_2+b_2)x+(a_3+b_3)x^2) \qquad \text{Por definición de la suma en } \mathbb{P}_2(\mathbb{R})$$

$$\alpha(\vec{x}+\vec{y}) = \alpha(a_1+b_1)+\alpha(a_2+b_2)x+\alpha(a_3+b_3)x^2 \qquad \text{Por definición del producto en } \mathbb{P}_2(\mathbb{R})$$

$$\alpha(\vec{x}+\vec{y}) = (\alpha a_1+\alpha b_1)+(\alpha a_2+\alpha b_2)x+(\alpha a_3+\alpha b_3)x^2 \qquad \text{Porque los elementos del campo tienen distributividad}$$

$$\alpha(\vec{x}+\vec{y}) = \alpha(a_1+a_2x+a_3x^2)+\alpha(b_1+b_2x+b_3x^2) \qquad \text{Agrupando de manera conveniente}$$

$$\alpha(\vec{x}+\vec{y}) = \alpha(\vec{x})+\alpha(\vec{y}) \qquad \text{Por definición de los elementos en } \mathbb{P}_2(\mathbb{R})$$

$$\therefore$$
 en $\mathbb{P}_2(\mathbb{R})$ se cumple que $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$

2. Muestre que el conjunto $\beta = \{1, x, x^2\}$ es base de $\mathbb{P}_2(\mathbb{R})$

Definición 2. Sea S un subconjunto de un espacio vectorial V decimos que S genera a V si $\forall \hat{x} \in V$ es una combinación lineal de elementos de S al generado de s se le denota como $span(S), \langle S \rangle, gen(S)$

Definición 3. Una base β de $\mathbb V$ espacio vectorial es un subconjunto de $\mathbb V$ · $\mathfrak v$ · β genera a $\mathbb V$ y β es linealmente independiente

Diremos que el conjunto β genera a $\mathbb{P}_2(\mathbb{R})$ si ocurre que

$$\alpha_1(p_1(x)) + \alpha_2(p_2(x)) + \alpha_3(p_3(x)) = \beta_1(1 + 0x + 0x^2) + \beta_2(0 + 1x + 0x^2) + \beta_3(0 + 0x + 1x^2)$$

donde $p_1, p_2, p_2 \in \beta$ por lo que, sean $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$

$$\alpha_1(1+0x+0x^2) + \alpha_2(0+x+0x^2) + \alpha_3(0+0x+x^2) = \beta_1(1+0x+0x^2) + \beta_2(0+x+0x^2) + \beta_3(0+0x+x^2)$$

$$(\alpha_1+0\alpha_1x+0\alpha_1x^2) + (0\alpha_2+x\alpha_2+0\alpha_2x^2) + (0\alpha_3+0\alpha_3x+\alpha_3x^2) = (\beta_1+0\beta_1x+0\beta_1x^2) + (0\beta_2+\beta_2x+0\beta_2x^2) + (0\beta_3+0\beta_3x+\beta_3x^2)$$

$$(\alpha_1+0\alpha_2+0\alpha_3) + (0\alpha_1+\alpha_2+0\alpha_3)x + (0\alpha_1+0\alpha_2+\alpha_3)x^2 = (\beta_1+0\beta_2+0\beta_3) + (0\beta_1+\beta_2+0\beta_3)x + (0\beta_1+0\beta_2+\beta_3)x^2$$

$$\begin{pmatrix} \alpha_1 & 0\alpha_2 & 0\alpha_3 \\ 0\alpha_1 & \alpha_2 & 0\alpha_3 \\ 0\alpha_1 & 0\alpha_2 & \alpha_3 \end{pmatrix} = \begin{pmatrix} \beta_1 & 0\beta_2 & 0\beta_3 \\ 0\beta_1 & \beta_2 & 0\beta_3 \\ 0\beta_1 & 0\beta_2 & \beta_3 \end{pmatrix}$$
 Agrupando cada uno de los elementos en una matrix
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Manteniendo sólo coeficientes

De esta manera ha quedado claro que dichos coeficientes β existen, es más, podemos afirmar que son:

$$\alpha_1 = \beta_1, \quad \alpha_2 = \beta_2, \quad \alpha_3 = \beta_3$$

$$\therefore \quad <\beta >= \mathbb{P}_2(\mathbb{R})$$

Ahora veamos si β es linealmente independiente para lo que debe ocurrir

Definición 4. Sea $\mathbb S$ un subconjunto de $\mathbb V$ un espacio vectorial, decimos que $\mathbb S$ es linealmente independiente si la única solución para $\alpha_1, \alpha_2 \dots \alpha_n \in \mathbb R$

$$\alpha_1 \vec{s}_1 + \alpha_2 \vec{s}_2 + \dots + \alpha_n \vec{s}_n = 0$$

es que todos los coeficientes $\alpha_i, i \in \{1, 2, \dots, n\}$ sean todos 0

Sean $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$

$$\alpha_{1}(1+0x+0x^{2})+\alpha_{2}(0+x+0x^{2})+\alpha_{3}(0+0x+x^{2})=\vec{0} \qquad \beta \text{ como combinación lineal} \\ \alpha_{1}(1+0x+0x^{2})+\alpha_{2}(0+x+0x^{2})+\alpha_{3}(0+0x+x^{2})=0+0x+0x^{2} \qquad \text{Por definición de } \vec{0} \in \mathbb{P}_{2}(\mathbb{R}) \\ (1\alpha_{1}+0\alpha_{1}x+0\alpha_{1}x^{2})+(0\alpha_{2}+\alpha_{2}x+0\alpha_{2}x^{2})+(0\alpha_{3}+0\alpha_{3}x+\alpha_{3}x^{2})=0+0x+0x^{2} \qquad \text{Distribuyendo} \\ (\alpha_{1}+0\alpha_{2}+0\alpha_{3})+(0\alpha_{1}+\alpha_{2}+0\alpha_{3})x+(0\alpha_{1}+0\alpha_{2}+\alpha_{3})x^{2}=0+0x+0x^{2} \qquad \text{Agrupando}$$

Finalmente igualemos entrada con entrada

$$\begin{pmatrix}
\alpha_1 & 0\alpha_2 & 0\alpha_3 \\
0\alpha_1 & \alpha_2 & 0\alpha_3 \\
0\alpha_1 & 0\alpha_2 & \alpha_3
\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
Igualemos entrada por entrada
$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
Mateniendo sólo coeficientes

Finalmente es fácil observar que

$$\alpha_1 = \alpha_2 = \alpha_3 = 0$$

 $\begin{array}{ccc} \therefore & \beta \text{ es linealmente independiente} \\ & \therefore & \beta \text{ es base para } \mathbb{P}_2(\mathbb{R}) \end{array}$

3. Muestre que la siguiente transformación es lineal.

$$T \colon \mathbb{P}_2(\mathbb{R}) \longrightarrow \mathbb{P}_2(\mathbb{R})$$

$$T(f(x)) \mapsto xf'(x) + xf(2) + f(3)$$

Como el dominio de T es $\mathbb{P}_2(\mathbb{R})$, entonces sean $p(x), q(x) \in \mathbb{P}_2(\mathbb{R})$, y $\xi \in \mathbb{R}$ recordemos que los elementos de $\mathbb{P}_2(\mathbb{R})$ tienen la forma

$$p(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$$
$$q(x) = \delta_1 + \delta_2 x + \delta_3 x^2$$

$$\xi p(x) + q(x) = \xi(\alpha_1 + \alpha_2 x + \alpha_3 x^2) + (\delta_1 + \delta_2 x + \delta_3 x^2)$$
Por definición de $p(x), q(x)$

$$\xi p(x) + q(x) = (\xi \alpha_1 + \xi \alpha_2 x + \xi \alpha_3 x^2) + (\delta_1 + \delta_2 x + \delta_3 x^2)$$
Distribuyendo ξ

$$\xi p(x) + q(x) = (\xi \alpha_1 + \delta_1) + (\xi \alpha_2 + \delta_2)x + (\xi \alpha_3 + \delta_3)x^2$$
Por definición de la suma en $\mathbb{P}_2(\mathbb{R})$

$$T(\xi p(x) + q(x)) = \xi \alpha_2 + \delta_2 + 2x(\xi \alpha_3 + \delta_3) + x((\xi \alpha_1 + \delta_1) + 2(\xi \alpha_2 + \delta_2) + 4(\xi \alpha_3 + \delta_3)) + ((\xi \alpha_1 + \delta_1) + 3(\xi \alpha_2 + \delta_2) + 9(\xi \alpha_3 + \delta_3))$$

$$= \xi \alpha_2 + \delta_2 + 2x(\xi \alpha_3 + \delta_3) + x(\xi \alpha_1 + \delta_1) + 2x(\xi \alpha_2 + \delta_2) + 4x(\xi \alpha_3 + \delta_3) + (\xi \alpha_1 + \delta_1) + 3(\xi \alpha_2 + \delta_2) + 9(\xi \alpha_3 + \delta_3)$$

$$= (\xi \alpha_1 + \delta_1) + 3(\alpha_2 + \delta_2) + 9(\xi \alpha_3 + \delta_3) + x(\xi \alpha_1 + \delta_1 + 3\xi \alpha_2 + 3\delta_2 + 4\xi \alpha_3 + 4\delta_3) + 2x^2(\xi \alpha_3 + \delta_3)$$

$$= \xi \left(\alpha_1 + 3\alpha_2 + 9\alpha_3 + x(\alpha_1 + 3\alpha_2 + 4\alpha_3) + 2x^2\alpha_3\right) + \delta_1 + 3\delta_2 + 9\delta_3 + x(\delta_1 + 3\delta_2 + 4\delta_3) + 2x^2\delta_3$$

$$= \xi T(p(x)) + T(q(x))$$

T es transformación lineal, pues hemos visto que abre sumas «p(x) + q(x)» y saca escalares « ξ »

4. Determine el núcleo y la imagen de T.

Definición 5. Sea $T:V\to W$ una transformación lineal, la **imagen** de una trasformación T es $Im(T)=\{T(\hat{x})|\hat{x}\in V\}$

Definición 6. Sea $T: V \to W$ una transformación lineal, el **núcleo** de una trasformación T es $Nu(T) = \{\hat{x} \in V | T(\hat{x}) = \hat{0}_W \}$

Para ello, tomemos un elemento en el dominio de T. Sea $p(x) \in \mathbb{P}_2(\mathbb{R})$ $\cdot \ni \cdot p(x) = \eta_1 + \eta_2 x + \eta_3 x^2 \text{ y } \vec{0}_{\mathbb{P}_2(\mathbb{R})}$

$$T(p(x)) = \vec{0}_{\mathbb{P}_2(\mathbb{R})} \qquad \qquad \text{Por definición del núcleo}$$

$$T(\eta_1 + \eta_2 x + \eta_3 x^2) = 0 + 0x + 0x^2 \qquad \qquad \text{Por definición de los elementos}$$

$$\eta_1 + 3\eta_2 + 9\eta_3 + x(\eta_1 + 3\eta_2 + 4\eta_3) + 2x^2\eta_3 = 0 + 0x + 0x^2 \qquad \qquad \text{Siguiendo la regla de correspondencia}$$

$$\eta_1 + 3\eta_2 + 9\eta_3 = 0$$
 Igualando entrada a entrada $x(\eta_1 + 3\eta_2 + 4\eta_3) = 0x$ Igualando entrada a entrada $2x^2\eta_3 = 0x^2$ Igualando entrada a entrada

$$\eta_3=0$$
 De lo anterior $\eta_1+3\eta_2+9(0)=0$ Sistituyendo $\eta_1=-3\eta_2$ Sistituyendo

La solución puede escribirse como $(-3 + 1x + 0x^2)\eta_2$ por lo que el **núcleo** de la transformación $\{(-3(\eta_2) + x(\eta_2) + 0x^2)\}$. Cabe mencionar que la nulidad de T es 1, pues esa es la dimensión del núcleo y además, T no es una transformación uno a uno pues el núcleo $\neq \vec{0}_{\mathbb{P}_2(\mathbb{R})}$

Para ver cuál es la imagen de la transformación lineal tomemos un elemento arbitrario en el dominio y otro en su imagen. Sean $p(x), q(x) \in \mathbb{P}_2(\mathbb{R})$, recordemos que los elementos de $\mathbb{P}_2(\mathbb{R})$ tienen la forma

$$p(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$$
$$q(x) = \delta_1 + \delta_2 x + \delta_3 x^2$$

$$T(p(x)) = q(x) \qquad \qquad \text{Por definición de la imagen}$$

$$T(\alpha_1 + \alpha_2 x + \alpha_3 x^2) = \delta_1 + \delta_2 x + \delta_3 x^2 \qquad \qquad \text{Por definición delos vectores}$$

$$\eta_1 + 3\eta_2 + 9\eta_3 + x(\eta_1 + 3\eta_2 + 4\eta_3) + 2x^2\eta_3 = \delta_1 + \delta_2 x + \delta_3 x^2 \qquad \qquad \text{Por definición delos vectores}$$

$$\eta_1 + 3\eta_2 + 9\eta_3 = \delta_1 \qquad \qquad \text{Igualando entrada a entrada}$$

$$x(\eta_1 + 3\eta_2 + 4\eta_3) = \delta_2 x \qquad \qquad \text{Igualando tercera entrada}$$

$$2x^2\eta_3 = \delta_3 x^2 \qquad \qquad \text{Igualando entrada a entrada}$$

$$\eta_1 + 3\eta_2 + 9\eta_3 = \delta_1 \qquad \qquad \text{Igualando entrada a entrada}$$

$$\eta_1 + 3\eta_2 + 4\eta_3 = \delta_2 \qquad \qquad \text{Por el inverso multiplicativo de } x$$

$$2\eta_3 = \delta_3 \qquad \qquad \text{Por el inverso multiplicativo de } x^2$$

 \therefore los elementos de la imagen son de la forma $q(x) = \delta_1 + \delta_2 x + \delta_3 x^2$ donde

$$\delta_1 = \eta_1 + 3\eta_2 + 9\eta_3
\delta_2 = \eta_1 + 3\eta_2 + 4\eta_3
\delta_3 = 2\eta_3$$

Es decir, todo $\mathbb{P}_2(\mathbb{R})$

5. Encuentre la matriz asociada a T con respecto a la base β , esto es $[T]_{\beta}$. Tomememos las bases ordenadas $\beta\{1, x, x^2\}$ y $\gamma = \{1, x, x^2\}$ entonces. Apliquemosla trasformación T a cada uno de los elementos de β

$$T(p(x)) = \eta_1 + 3\eta_2 + 9\eta_3 + x(\eta_1 + 3\eta_2 + 4\eta_3) + 2x^2\eta_3$$
 Por el ejercicio anterior
$$T(1) = 1 + 3(0) + 9(0) + x(1 + 3(0) + 4(0)) + 2x^2(0)$$
 Porque $\eta_1 = 1, \eta_2 = 0, \eta_3 = 0$ Operando
$$T(x) = (0) + 3(1) + 9(0) + x((0) + 3(1) + 4(0)) + 2x^2(0)$$
 Porque $\eta_1 = 0, \eta_2 = 1, \eta_3 = 0$ Operando
$$T(x) = 3 + 3x$$
 Operando
$$T(x^2) = (0) + 3(0) + 9(1) + x((0) + 3(0) + 4(1)) + 2x^2(1)$$
 Operando
$$T(x^2) = 9 + 4x + 2x^2$$
 Desarrollando

$$T(1) = 1 \cdot 1 + 1 \cdot x + 0 \cdot x^2$$
 Igualemos el primer elemento de β
$$T(x) = 1 \cdot 1 + 1 \cdot x + 0 \cdot x^2$$
 Igualemos el segundo elemento de β
$$T(x^2) = 9 \cdot 1 + 4 \cdot x + 2 \cdot x^2$$
 Igualemos el tercer elemento de β

De lo anterior, es claro poder concluir que

$$[T]_{\beta} = \begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$

6. ¿Cuál es el rango de $[T]_{\beta}$?

El rango de una matriz es el número de columnas linealmente independientes, en este paso es muy claro que sólo tiene 2 columnas linealmente independientes, por lo que su rango es n=2

7. La matriz $[T]_{\beta}$ es invertible, si sí muéstrelo, si no argumente porque.

Como vimos en clase, una matriz es invertible si y sólo si tiene rango completo, en ese caso no fue así, por lo que $[T]_{\beta}$ no es invertible

- 8. ¿Cuales son los valores propios asociados a $[T]_{\beta}$?
- 9. Determine los vectores propios asociados a cada valor propio.
- 10. Muestre que el conjunto de los vectores propios es una base ordenada.

Definición 7. Sea $\mathbb V$ un espacio vectorial dimensionalmente finito. Una base ordenada para $\mathbb V$ es una base para $\mathbb V$ establecida con un orden específico; es decir, una base ordenada para $\mathbb V$ en una secuencia finita de elementos de $\mathbb V$ linealmente independientes que generan a $\mathbb V$

- 11. Determine $Q \in M_{3\times 3}(\mathbb{R})$, tal que $Q^{-1}[T]_{\beta}Q = D$, donde D es una matriz diagonal cuyos elementos de la diagonal son valores propios.
- 12. Muestre que $\beta' = \{-3+x, -3-13x+4x^2, 1+x\}$, es una base para $\mathbb{P}_2(\mathbb{R})$ y además determine $[T]_{\beta'}$.