A stationary point charge +Q is near a block of polarization material (a linear dielectric). The net electrostatic force on the block due to the point charge is:

A. attractive (to the left)

B. repulsive (to the right)

C. zero

EXAM 2 INFORMATION

- Covers through polarization (up to Ch 4.2.3)
- Emphasizes material since Exam 1
 - But don't forget Exam 1 material!
- Specifics on Wednesday

POLARIZATION

The sphere below (radius a) has uniform polarization \mathbf{P}_0 , which points in the +z direction. What is the total dipole moment of this sphere?

A. zero

B. **P** $_{0}a^{3}$

C. $4\pi a^3 \mathbf{P}_0/3$

 $\mathbf{D}.\,\mathbf{P}_0$

E. None of these/must be more complicated

The cube below (side a) has uniform polarization \mathbf{P}_0 , which points in the +z direction. What is the total dipole moment of this cube?

A. zero

B. $a^3 P_0$

 $\mathsf{C}.\,\mathbf{P}_0$

D. **P**₀/ a^3

E. $2P_0a^2$

Consider a cylinder of radius a and height b that has it base at the origin and is aligned along the z-axis. The polarization of this cylinder is "baked in" and can be modeled using

$$\mathbf{P} = P_0 \left(\frac{z}{b}\right) \hat{z}.$$

Determine the total dipole moment of this cylinder:

A.
$$P_0\pi a^2b\hat{z}$$

B.
$$\frac{1}{2}P_{0}\pi a^{2}b\hat{z}$$

$$C. P_0 2\pi ab^2 \hat{z}$$

D.
$$\frac{1}{2}P_0\pi ab^2\hat{z}$$

E. Something else

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles

idealized dipoles

A.
$$\sigma_b = 0$$
, $\rho_b \neq 0$
B. $\sigma_b \neq 0$, $\rho_b \neq 0$
C. $\sigma_b = 0$, $\rho_b = 0$
D. $\sigma_b \neq 0$, $\rho_b = 0$

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B. $\sigma_b \neq 0, \rho_b \neq 0$
C. $\sigma_b = 0, \rho_b = 0$

D. $\sigma_b \neq 0$, $\rho_b = 0$

idealized dipoles

A VERY thin slab of thickness d and area A has volume charge density $\rho=Q/V$. Because it's so thin, we may think of it as a surface charge density $\sigma=Q/A$.

The relation between ρ and σ is:

A.
$$\sigma = \rho$$

B. $\sigma = \rho d$
C. $\sigma = \rho / d$
D. $\sigma = V \rho$
E. $\sigma = \rho / V$

A dielectric slab (top area A, height h) has been polarized, with $\mathbf{P} = P_0$ in the +z direction. What is the surface charge density, σ_b , on the bottom surface?

A. 0

 $B. -P_0$

 $\mathsf{C}.P_0$

 $D. P_0Ah$

 $E. P_0A$

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the surface charge density?

A. 0

B. Non-zero Constant

C. constant* $\sin \theta$

D. constant* $\cos \theta$

E. ??

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the volume charge density?

A. 0

B. Non-zero Constant

C. Depends on r, but not θ

D. Depends on θ , but not r

E. ?

