Video Description

Antonia Zeibel

Technical University of Cluj-Napoca

June 4, 2025

Summary

- Introduction
- 2 Data Collection & Pre-processing
- 3 Frame Extraction and Selection
- 4 Feature Extraction
- 6 Caption Processing
- 6 Model Architecture Design
- Training
- 8 Evaluation
- 9 Further Improvements

Introduction

The goal of this project is to generate a caption given a video.

Road-map:

- Data Collection & Preprocessing: Acquire MSVD corpus and video clips. Extract, select, and preprocess video frames. Clean and tokenize captions.
- **2 Feature Extraction**: Extract visual features from selected frames using a pre-trained CNN (VGG16).
- Model Architecture Design: Implement an Encoder-Decoder model using LSTMs for video feature encoding and caption generation.
- Model Training: Train the LSTM Encoder-Decoder model on the prepared video features and captions.
- **Model Evaluation**: Perform inference to generate captions and evaluate model performance using metrics like BLEU score.

Data Sources

MSVD Dataset Corpus

- primarily used for **video description** or **video captioning** tasks in machine learning and natural language processing
- contains information regarding the video files: VideoID, Start, End, WorkerID, Source, AnnotationTime, Language, and **Description**

MSVD Clips

• contains the video snippets associated to the annotations in the MSVD Corpus

Pre-processing Steps

Video Corpus Clean-Up

- keep only the annotations in English
- drop all the other irrelevant columns and keep only the VideoID and Description
- prepare the **Description** column for tokenizer
 - transform to lowercase
 - de-contract words
 - remove punctuation, numbers and unnecessary white-spaces
 - \bullet adds <BOS>and <EOS>

Frame Extraction and Selection

Frame Extraction

- The video file is transformed into a list of frames
- The frames are saved under specific directories using the unique identifier (VideoID)

Frame Selection

- The frames are categorized as **key-frames** and **in-between** frames
- \bullet Key-frames \to frames with significant change in the scene
- In-between frames \rightarrow frames that are between these key-frames

Frame Selection using Scene Detection

The **key-frames** can actually be chosen using a **scene detection technique** which works directly on the video files.

Scene Detection with scenedetect API

- Implemented various detectors:
 - ContentDetector (fast cuts)
 - ThresholdDetector (slow transitions)
 - AdaptiveDetector (adjacent frame differences)
 - HistogramDetector (histograms)
 - HashDetector (perceptual hashing)
- Chosen: AdaptiveDetector
 - Effective for adjacent frame analysis.
 - Chosen via trial-and-error due to varied video content.

Frame Selection

Process After Detector Selection

- Parsed video directories to select **key frames**.
- Set a parameter for the **required number of frames**.
- If detected key scenes did not match, **padded with in-between** frames.

Output

- Selected frames saved in video-specific directories.
- Created frames_metadata.csv with:
 - VideoID
 - Key_Frames (number of detected key frames)
 - Total_Frames (final number after padding)
- **Result**: No failed frame extraction or selection.

Feature Extraction using the Selected Frames

Before extracting the features using a pre-trained model, I had to transform the frames into suitable inputs:

Frame Preprocessing

- Ensure all selected frames have consistent size.
- **Resizing**: 224x224 pixels (common for VGG16).
- Convert PIL Image Object to **3D NumPy array** (height, width, channels).
- Apply preprocess_input (from Keras) for proper VGG16 handling.

Feature Extraction using the Selected Frames

Now that the frames are ready for the model, the features can be extracted:

Feature Extraction with VGG16

- Loaded **pre-trained VGG16 model** on ImageNet dataset.
- Access the **second-to-last Dense layer** (4096 units) since interested in **feature representation**.
- 4096-dimensional feature vector for each 224x224x3 frame.
- All resulting feature vectors per video are appended to a NumPy file, saved under its VideoID.

Captions Processing: Tokenization & Analysis

Tokenization with Keras Tokenizer

- Uses a Word-level tokenization which basically splits text by word separators.
- Builds vocabulary by assigning unique integers to words.
- Out-of-Vocabulary (OOV) words: Replaced with an OOV token (e.g., <unk>) or skipped.
- Vocabulary Limit: Initialized to use only top 1500 most frequent words.

Captions Processing: Tokenization & Analysis

Token Length Analysis

- Performed analysis on tokenized description lengths.
- Key Statistics:
 - Max Length: 139
 - Min Length: 3
 - Mean Length: 9.10
 - 90th Percentile: 12
- Filtered data by max/min length to discourage outliers.
- Sequences were padded to a fixed maximum length to ensure consistent model input.

Caption Processing: Example

Table 1: Video Description and Padded Sequence Examples

Description	Padded Sequence
⟨bos⟩ a bird is bathing in a sink ⟨eos⟩	[3, 2, 253, 5, 554, 9, 2, 465, 4, 0, 0, 0, 0, 0]
(bos) a bird is splashing around under a	[3, 2, 253, 5, 1, 81, 318, 2, 47, 903, 4, 0, 0,]
running faucet (eos)	0, 0]
$\langle bos \rangle$ a bird is bathing in a sink $\langle eos \rangle$	[3, 2, 253, 5, 554, 9, 2, 465, 4, 0, 0, 0, 0, 0]

Caption Generator: LSTM Encoder

The first block of the architecture is the **encoder**.

Role of the LSTM Encoder

- Responsible for processing the input sequence of **video features**.
- Compresses the information into a fixed-size **context vector** (final hidden and cell states).
- This context vector acts as a summary of the entire input sequence.

Caption Generator: LSTM Encoder

Key Aspects of the Encoder Architecture

- LSTM layer: The core recurrent unit.
- Input Size: Dimensionality of each individual feature in the input sequence (e.g., 4096 for VGG16 features).
- Hidden Size: Number of hidden units in the LSTM layer.
- Outputs: Output of the LSTM at each time step.
- **Hidden**: Final hidden state (compact representation of the entire input sequence).
- Cell: Final cell state (part of the LSTM's internal memory).

Caption Generator: LSTM Decoder

The second block of the architecture is the **decoder**.

Role of the LSTM Decoder

- Takes the **context vector** from the encoder.
- Generates an **output sequence** (the textual caption).
- Predicts one word at a time, using the previously predicted word and the encoder's context.

Caption Generator: LSTM Decoder

Key Aspects of the Decoder Architecture

- Embedding Size: Dimensionality of the word embeddings.
- **Hidden Size**: Number of hidden units in the decoder's LSTM layer (typically matches encoder's hidden size).
- Vocabulary Size: Total number of unique words in the vocabulary (including special tokens).
- Outputs, Hidden, Cell: Predicted word logits for the sequence, along with the final hidden and cell states.

Caption Generator: VideoCaptioningModel

The Combined Model

- Combines both the LSTM Encoder and the LSTM Decoder.
- Flow:
 - 1 Video features are first passed through the **Encoder**.
 - 2 Encoder outputs initial hidden and cell states.
 - **3** These initial states are then passed to the **Decoder**, along with the caption tokens.
 - **1** The Decoder generates the **predicted word logits**.
- Final Output: Sequence of predicted word logits.
 - Used to calculate loss during training.
 - Used to determine the most likely words during inference.

Training

Training Setup

- Model trained for 40 epochs.
- Instances of the model were saved at:
 - Epoch 10
 - Epoch 20
 - Epoch 30
 - Epoch 40

Training Progress

- The training loss consistently **decreased** over the epochs.
- This indicates that the model was **successfully learning** from the training data, continually reducing prediction errors.

Figure 1: Training Loss

Evaluation: Inference Process

Out of curiosity, I wanted to visualize the results of the model, therefore I have implemented a dedicated method for inference.

Inference Mechanism

- Implemented a dedicated method for the **inference process**.
- Model generates the caption word by word.
- Visualized results by displaying actual video frames alongside the generated captions.

Evaluation: BLEU Scores

To measure the scores along the test data, I have used the **BLEU** Score.

BLEU Score

- Widely used metric for evaluating the quality of machine-generated text.
- Compares generated text against a set of human-created reference texts.
- Interpretation: A higher BLEU score generally indicates better quality and closer resemblance to human references.

Evaluation: BLEU Scores

Table 2: Average BLEU Scores on Test Set

Model trained for	Average BLEU Score
10 epochs	0.1734
20 epochs	0.1685
30 epochs	0.1586
40 epochs	0.1548

Conclusions regarding the BLEU Score

- The model trained for 10 epochs showed the highest BLEU score.
- I have expected to improve the BLEU score if I trained for more than 10 epochs, but the findings show that the score actually decreases after the 10th epoch.
- There is still significant room for improvement in caption quality.

Further Improvements

- Use a different tokenizer for the caption processing.
- Use different vocabulary sizes.
- Explore other architectures for video captioning or even summarization.

Thank you!