AUTOMAT ASYNCHRONICZNY

Automat asynchroniczny

1. Wstęp:

Celem ćwiczenia było wykonanie syntezy automatu asynchronicznego z dwoma wejściami w postaci przycisków niestabilnych x_1 i x_2 oraz jednym wyjściem y. Każde naciśnięcie przycisku x_1 powinno powodować zmianę stanu wyjścia na przeciwny a wciśnięcie przycisku x_2 powinno zawsze wyłączać wyjście.

2. Przebieg ćwiczenia:

Na wykresie podajemy istotne zależności między sygnałami wejściowymi a wyjściowym

Określamy liczbę stanów całkowitych i rysujemy pierwotną tabelę przejść

Redukcja tabelki poprzez połączenie stanów równoważnych

Kodowanie stanów

Tabela przejść z uwzględnieniem kodowania

1113	00 01	11 10 Y
4 00	01 -	01 00 0
101	01 01	01 11 0
2 11	10 -	01 11 1
3 10	10 01	- 00 1
	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN	

Zjawisko wyścigu wystąpi, jednak nie będzie to wyścig krytyczny, ponieważ:

Minimalizacja za pomocą siatek Karnaugha:

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					144	1	2			
J.W.	2				11/2					
0100	00	01	11	104	0,00	00	01	11	10	
00	0	0	0	0	00	1	1	1	0	
01	0	0	0	14	01	1	1	1	1	4
11	1	0	0	16	11	0	1	1	1	
10	1	0	+	0	10	0	1		O	A
		7	119		114	1	1 39			

$$Q'_{1} = Q_{0}x_{1}x'_{2} + Q_{1}x'_{1}x'_{2}$$

$$Q'_{2} = x_{2} + Q_{0}x_{1} + Q'_{1}x'_{1}$$

$$Y = Q_{1}$$

Schemat:

