7.12 Pour vérifier l'authenticité du message, c'est-à-dire que le message a bien été envoyé par Alice, Bob doit contrôler que $m=s^{e_{\rm A}} \mod n_{\rm A}$.

En l'occurrence, Bob doit s'assurer que $341076^{251} \equiv 11911 \mod 638611$.

x	reste r	n	$341076^{2^n} \mod 638611$	contribution (si $r = 1$)
251	1	0	341076	341076
125	1	1	$341076^2 \equiv 264961$	264961
62	0	2	$264961^2 \equiv -91542$	
31	1	3	$(-91542)^2 \equiv 84222$	84222
15	1	4	$84222^2 \equiv 292907$	292907
7	1	5	$292907^2 \equiv 315854$	315854
3	1	6	$315854^2 \equiv -61104$	-61104
1	1	7	$(-61104)^2 \equiv -259701$	-259701

Bob en conclut que le message est bien valide.

Théorie des nombres : cryptographie (RSA) Corrigé 7.12