

Simulation of Trading in an artificial Stock Market

Nicholas Eyring Youri Popoff

I⊦≣⊦

Departement Informationstechnologie und Elektrotechnik

Contents

The Big Picture – Why do we want a Model

- The financial system is flawed
- A financial crisis has very broad repercussions on the general prosperity of the population
- The stock market can be used as a general indicator of the state of an economy
- The goal : to foresee/prevent financially unfavorable situations by modelling trading on the stock market

Fundamental Research Questions

How does past market volatility affect the future price of a stock

To what extent can price regulation be used to stabilize a volatile market

How accurately can financially unfavorable situations be modelled

Swiss Federal Institute of Technology Zurich

The Model (1)

- One publically traded firm
- Based on paper (Raberto, 2005)
- Agent-based simulation: Traders (agents) interact in the market (playground)
- Fixed number of traders each of which have a specific amount of shares and liquidities which evolve over time
- Limit order book (double auction)
 mechanism : sellers and buyers
 bid seperately; price overlap of
 bids causes a transaction

The Model (2)

- Time is separated into days
- At the end of a day the market closes: all remaining bids are cleared from the books
- Input: initial bid prices (IPO parameters), number of traders, distribution parameters for random variables, etc...
- Output: Average transaction price over time, trader assets over time, value of firm over time, etc...

INET ho	me syste	m stats	help	
inet GOOG		GET STOCK GOOG go Aggregate by Price		
LAST MATCH		TODAY'S ACTIVITY		
Price	384.9000	Orders	1,295,622	
Time	15:18:56	Volume	2,791,809	
BUY 0	RDERS	SELL ORDERS		
SHARES	PRICE	SHARES	PRICE	
50	384.8200	93	384.9500	
100	384.8200	100	385,0300	
100	384.8100	100	385.0600	
300	384.8100	100	385.0700	
100	384.8000	200	385.0900	
500	384.7900	100	385.1800	
200	384.7700	100	385.2400	
500	384.7600	25	385.2500	
100	384.7100	100	385.3500	
100	384.6900	15	385.5000	
200	384.6800	200	385.5500	
300	384.5900	200	385.6000	
100	384.5000	360	385.6300	
50	384.0000	100	385.6800	
100	384.0000	100	385.7100	
(209	more)	(283	(283 more)	

Source: ece.cmu.edu

November 12th, 2012 Nicholas Eyring Youri Popoff 6

Sequence of Events – When the market is open

- The waiting time follows an exponential distribution
- A trader is chosen based on a uniform distribution
- The trader will place either a buy or sell order with a predetermined probability
- The price of the order follows a Gaussian distribution with the price of the most competitive valid order as the mean
- The number of shares ordered is uniformly distributed between 1 and the trader's maximum

Swiss Federal Institute of Technology Zurich

Measuring Market Volatility

- Rate of Return (ROR): ratio of money gained or lost on an investment relative to the amount of money invested (%)
- Logarithmic returns :

$$r_{log} = 100 \cdot \ln \left[\frac{V_{final}}{V_{initial}} \right]$$

- Single-period vs. Multiperiod
- Take standard deviation of multiple single-period return values (σ_T)
- Stable market : small deviations
- Volatile market : large deviations

Stable Market:

Volatile Market:

Swiss Federal Institute of Technology Zurich

Taking past Market Volatility into Account

- Volatility feedback occurs solely in the prices of new bids
- The principle: if the transaction price has fluctuated in the past traders are less sure of the true value of the stock
- As a result, prices tend to deviate more from the latest bid values
- We can achieve this by modifying the variance of the Gaussian distribution that the new bid prices are based on :

$$\sigma_{new} = k \cdot \sigma_T$$
, $k = const.$
 $\sigma = \alpha \cdot \sigma_{new} + (1 - \alpha) \cdot \sigma$, $\alpha \in]0,1]$

Low Volatility (Small Variance):

High Volatility (Large Variance):

Results – Without Volatility Feedback

Our Results:

130 120 transaction price 80 70 0.5 1.5 x 10⁵ time in seconds -2 -3 -4 -5 <u>-</u> 2.5 time in seconds

Raberto, 2005:

Results – With Volatility Feedback

November 12th, 2012 Nicholas Eyring Youri Popoff 11

Using Price Regulation to stabilize the Market

- Combination of price floor/ceiling
- In the model: prices which would be out of bounds are set to the nearest legal limit
- Enable growth (% per day)
- Result : regulation works. Market stays within bounds → stability
- However, no longer a free market → less economic welfare
- Tradeoff between stability and free market

$$\begin{cases} p_c(t) = p_{c0} + \frac{g \cdot p_{c0}}{24 \cdot 60 \cdot 60} \cdot t \\ p_f(t) = p_{f0} + \frac{g \cdot p_{f0}}{24 \cdot 60 \cdot 60} \cdot t \end{cases}$$
With $g = growth$ (% per day)

Example:

Modelling Financial Bubbles

- Stock is consistently overvalued

 → prices explode
- Awareness of overvaluation

 → prices fall (bubble burst)
 - In the model: at some point switch to a non-symmetric probability distribution for bid prices ⇒ prices are much more likely to increase. Later reverse the trend ⇒ prices are extremely likely to fall and keep falling
 - Challenge: what causes the switch? When do we do it?
- Too many parameters

November 12th, 2012 Nicholas Eyring Youri Popoff 13

Implementation (1)

- Model implemented in 3 main sections:
 - → input generation
 - → computation/simulation
 - → result analysis (plot)
- Sections may be called seperately (independent)
- Input generation:
- → creates different sets of input parameters according to parameter sweep
 - → saves to input files

Implementation (2)

- Computation/simulation:
- → runs model on specific set of parameters and saves the results
- → main.m function contains for-loop which iterates through each simulation second and calls different sub-functions (auction age update, new auction, book emptying, etc...)
- Result analysis:
 - → generates plot of the results
 - → live plot also available (simulation takes more time)

Swiss Federal Institute of Technology Zurich

Departement Informationstechnologie und Elektrotechnik

main.m (sample)

```
%% Simulation section
for i = 1:1:(SP.M)*(SP.T)
    %% Age Update
    SSM.bookbpaging = ageUpdate( SSM.bookbpaging, SSM.sbbp );
    SSM.bookspaging = ageUpdate( SSM.bookspaging, SSM.sbsp );
    %% Calculate Log Returns
    if i == lrt
                                                                          % calcu
        [ SSM ] = logReturns( SSM, SP );
        lrt = lrt + SP.dt;
                                                                          % incre
    end
    %% New Book Entry Section
    if i == t
        Tau = 1+round(exprnd(SP.lambda));
                                                                          % step
                                                                            (rand
```


Parameter Sweep

- param.txt defines the sweep range of the involved parameters
- Every possible combination of parameters is then generated
- Input files are created
 - → Example of param.txt :

SP.p0	100	1	110
SP.k	1.40	0.01	1.60
SP.volfeed	0	1	1
SP.entage	500	10	700

Automatic File Structure

- control.m:
- → generates file and folder structure using bash commands
- → executes parameter sweep according to chosen parameters (param.txt) and creates input files
- → runs simulation and calls plot functions
- info-files and log-files created for each simulation
- "Compare folder" with graphs to be compared

und Elektrotechnik

Information File (sim0info.txt)

**** SIMULATION 0 ****

Information file

volfeed: 1

Date: 29-0ct-2012 Time: 18:22:17 Number of traders -100 tnum: totShares: 100000 Amount of shares -Starting price -100.00 թ0։ Mean of normal distribution -1.0000 mu: Initial std. deviation of normal dist. sigma: 0.0050 Parameter of exponential distribution lambda: 20.0000 Total days -M: 1 Total time in seconds -10800 60.00 Last tick iteration window dt: Empty book (On/Off) bkempty: 1 Entry refresh (On/Off) entrefresh: 0 Entry erasure when aged (On/Off) entage: 1 Multiple shares (On/Off) mulshares: 1

November 12th, 2012 Nicholas Eyring Youri Popoff 19

Volatility feedback (On/Off) -

Our Experience - Why we didn't hand it in

- Time management
 - → debugging can be VERY time consuming!
 - → eg. ~12h: parameter is too big by a factor of 100

Problems we had to overcome

- Model badly described in paper
 - → led to a lot of testing and bouncing ideas off eachother
- Very unclear concerning implementation of the model
 - → eg. parameter choice
- Hard to control the model due to large number of random events
 - → First simulated without random variables
- Things got complicated very quickly
 - → Started with the bare minimum and slowly added to it

Things we did well

- MatLab Script/Function hierarchy/organization
 - → keep track of the big picture
- Commenting almost every line of code
 - → easier to find your way around a complex model
- Using existing MatLab functions
- Using data structures (eg. MatLab structs)
 - → system state matrices as function inputs/outputs
 - → grouping important output variables together
 - → simplifies data analysis

Thanks for listening!

