Groups - Definitions

Lectured by Dr Rachel Camina

Michaelmas 2013

Definition (Binary Operation). A binary operation on a set X is a way of combining two elements.

Definition (Group). A group (G,*) is a set G and a binary operation * on G which satisfies the following 4 axioms:

- 1. $x, y \in G \Rightarrow x * y \in G$ (Closure)
- 2. \exists an element $e \in G$ satisfying $x * e = x = e * x \ \forall x \in G$ (Existence of an identity)
- 3. $\forall x \in G \ \exists y \in G \ \text{such that} \ x * y = e = y * x \ \text{(Existence of inverses)}$
- 4. $x * (y * z) = (x * y) * z \ \forall x, y, z \in G$ (Associative law)

Definition (Abelian). A group G is abelian (or commutative) if xy = yx for all $x, y \in G$.

Definition (Group order). Let (G, *) be a group. If the underlying set G is finite we call G a finite group. Otherwise G is an infinite group. If G is a finite group, the order of G, denoted |G|, is the number of elements in the set G.

Definition (Element order). Let G be a group and $g \in G$. The *order* of g, written o(g), is the least positive integer n such that $g^n = e$, if such an n exists. If not, g has infinite order.

Definition (Subgroup). Let (G, *) be a group and H a subset of G. We call (H, *) a subgroup of G if it is a group (with the same operation), and write $H \leq G$.

Definition (Function). Let A and B be sets. Then f is a function (or map) if f assigns to each element of A a unique element of B.

Definition (Injective). A function $f: A \to B$ is *injective* (aka 1-1 or 'one-to-one') iff $f(a_1) = f(a_2) \implies a_1 = a_2$ for all $a_1, a_2 \in A$. (i.e. every element of A is mapped to a different element of B)

Definition (Surjective). A function $f: A \to B$ is *surjective* (aka 'onto') iff given $b \in B \exists a \in A$ such that f(a) = b. (i.e. every element of B is 'hit' / mapped to)

Definition (Bijective). A function $f: A \to B$ is bijective iff it is both injective and surjective.

(i.e. there is a pairing between the elements of A and the elements of B)

Definition (Homomorphism). Let $(G, *_G)$ and $(H, *_H)$ be groups. Then the map θ : $G \to H$ is a homomorphism if $\theta(x *_G y) = \theta(x) *_H \theta(y) \forall x, y \in G$.

The *image* of the homomorphism is $Im(\theta) = \theta(G) = \{\theta(g) : g \in G\}.$

The kernel of the homomorphism is $Ker(\theta) = \{g \in G : \theta(g) = e_H\}.$

Definition (Isomorphism). A bijective homomorphism is called an *isomorphism*. If G and H are groups and $\theta: G \to H$ is an isomorphism, we say that G and H are *isomorphic* and write $G \cong H$.

Definition (Cyclic). A group H is *cyclic* if $\exists h \in H$ such that any element of H can be written as a power of h. i.e. $\forall x \in H, \exists n \in \mathbb{Z} : x = h^n$. Then h is called a *generator* of H and we write $\langle h \rangle = H$.

Definition (Permutation). Let X be a set. A bijection $f: X \to X$ is called a *permutation* of X.

Sym(X) denotes the set of all permutations of X.

Definition (Symmetric group). The group S_n is the set of permutations (i.e. bijections) of the set of the first n natural numbers $X = \{1, 2, ..., n\}$.

Definition (K-cycle). Let a_1, a_2, \ldots, a_k be distinct integers in $\{1, 2, \ldots, n\}$.

Suppose $\sigma \in S_n$ satisfies $\sigma(a_i) = a_{i+1}$ for $1 \le i \le k-1$, and $\sigma(a_k) = a_1$, and $\sigma(x) = x$ for all $x \in \{1, 2, ..., n\} \setminus \{a_1, a_2, ..., a_k\}$

Then σ is a k-cycle and we write $\sigma = (a_1 \, a_2 \, \dots \, a_k)$. A 2-cycle is known as a transposition.

Definition (Disjoint cycles). Two cycles $\sigma = (a_1 \ a_2 \dots a_k)$ and $\tau = (b_1 \ b_2 \dots b_l)$ are disjoint if $\{a_1, a_2, \dots, a_k\} \cap \{b_1, b_2, \dots, b_l\} = \emptyset$.

Definition (Sign). Let $\sigma \in S_n$ $(n \geq 2)$. Then the sign of σ , written $\operatorname{sgn}(\sigma)$, is $(-1)^k$ where k is the number of factors in some expression of σ as a product of transpositions. σ is an even permutation if $\operatorname{sgn}(\sigma) = 1$. σ is an odd permutation if $\operatorname{sgn}(\sigma) = -1$.

Definition (Alternating group). The even permutations of S_n ($n \ge 2$) form a subgroup of S_n , denoted A_n , called the alternating group of degree n.

Definition (Dihedral group). The group of symmetries of a regular n-gon is called the *dihedral* group of order 2n, and denoted D_{2n} .

Algebraically, $D_{2n} = \langle s, t \mid s^n = e = t^2, tst = s^{-1} \rangle$.

Definition (Coset). Let $H \leq G$ and $g \in G$. Then a *left coset* of H in G is given by $\{gh: h \in H\}$, and denoted gH.

Similarly, we can define the right coset $Hg = \{hg : h \in H\}$.

Definition (Index). Let $H \leq G$. The *index* of H in G is the number of distinct left cosets of H in G, denoted |G:H|. (This is equal to the no. of distinct right cosets.)

Definition (Normal subgroup). A subgroup K of G is called *normal* in G if gK = Kg for all $g \in G$. We write $K \subseteq G$.

Equivalent conditions: $gKg^{-1} = K \ \forall g \in G \text{ or } gkg^{-1} \in K \ \forall k \in K, g \in G$

Definition (Quotient group). If $K \subseteq G$, the set (G : K) of left cosets of K in G is called the *quotient group* of G by K and denoted G/K. The group operation is coset multiplication i.e. $gK \circ hK = ghK$.

Definition (Direct product). Let H and K be groups. The (external) direct product $H \times K$ is a group with elements (h, k) for $h \in H, k \in K$, and the operation * such that $(h_1, k_1) * (h_2, k_2) = (h_1h_2, k_1k_2)$ i.e. component-wise multiplication.

Definition (Quaternion group). The quaternion group Q_8 is given by:

$$Q_8 = \langle -1, i, j, k \mid (-1)^2 = 1, i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Alternatively, $Q_8 = \langle a, b \mid a^4 = e, b^2 = a^2, bab^{-1} = a^{-1} \rangle.$

Definition (Group action). Let G be a group and X a non-empty set. We say that G acts on X if there is a mapping $\rho: G \times X \to X: (g,x) \mapsto \rho(g,x) = g(x)$ such that:

- i) If $g \in G$ and $x \in X$, then $\rho(g, x) \in X$.
- ii) For $g, h \in G$ and $x \in X$, $\rho(gh, x) = \rho(g, \rho(h, x))$. (Shorthand: (gh)(x) = g(h(x)))
- iii) For all x, $\rho(e, x) = x$. (Shorthand: e(x) = x)

Definition (Left regular action). G acts on itself by left multiplication.

$$\rho: G \times G \to G: (g,k) \mapsto \rho(g,k) = g(k) = gk.$$
 (The right regular action is given by, $G \times G \to G: (g,k) \mapsto kg^{-1}$.

Definition (Conjugation). G acts on itself by *conjugation*.

$$\rho: G \times G \to G: (q, k) \mapsto q(k) = qkq^{-1}.$$

Definition (Left coset action). Let $H \subseteq G$, then G acts on the set of left cosets of H in G

$$\rho: G \times (G:H) \to (G:H): (g,kh) \mapsto g(k) = gkH.$$

Definition (Orbit). Let G act on a set X, and $x \in X$. The *orbit* of x in G is given by: $Orb_G(x) = G(x) = \{g(x) : g \in G\} \subseteq X$.

i.e. the set of points in X which x can be mapped to.

Definition (Conjugacy class). Let G act on itself by conjugation, and $h \in G$. Then $Orb_G(h) = \{g(h) : g \in G\} = \{ghg^{-1} : g \in G\} = ccl_G(h)$, the *conjugacy class* of h in G. If $k \in ccl_G(h)$, we say that k and h are *conjugate*.

Definition (Transitivity). We say that a group G acts transitively on a set X if for any $x \in X$, $Orb_G(x) = X$.

Equivalently, if given any pair $x_1, x_2 \in X$, $\exists g \in G$ such that $g(x_1) = x_2$.

Definition (Stabiliser). Let G act on X and $x \in X$. Then the *stabiliser* of x in G is given by:

$$\operatorname{Stab}_{G}(x) = G_{x} = \{g \in G : g(x) = x\} \subseteq G.$$

i.e. all those elements of G that fix x.

Definition (Centraliser). Let G act on itself by conjugation, and $h \in G$. Then $\operatorname{Stab}_G(h) = \{g \in G : g(h) = h\} = \{g \in G : ghg^{-1} = h\} = \operatorname{C}_G(h)$, the *centraliser* of h in G.

Definition (Cycle type). Let $\sigma \in S_n$ and write σ as a product of disjoint cycles including 1-cycles. Then the *cycle type* of σ is $(n_1, n_2, ...n_k)$ where $n_1 \geq n_2 \geq ... \geq n_k \geq 1$ and the cycles in σ have length n_i .

Definition (Simple group). A group G is *simple* if it has no non-trivial proper normal subgroups. (i.e. if its only normal subgroups are $\{e\}$ and G)

Definition (General linear group). Let $M_n(\mathbb{R})$ denote the set of all $n \times n$ matrices with entries in \mathbb{R} . The general linear group is

$$GL_n(\mathbb{R}) = \{ M \in M_r(\mathbb{R}) : \det(M) \neq 0 \}.$$

Definition (Special linear group). The special linear group is

$$SL_n(\mathbb{R}) = \{ A \in GL_n(\mathbb{R}) : \det(A) = 1 \}.$$

Definition (Orthogonal group). The orthogonal group is

$$O_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) : A^T A = I \}.$$

(It is a subgroup of $GL_n(\mathbb{R})$)

Definition (Special orthogonal group). The special orthogonal group is

$$SO_n(\mathbb{R}) = \{ A \in O_n(\mathbb{R}) : \det(A) = 1 \}.$$

Definition (Möbius transformation). A Möbius transformation (or map) is a function of a complex variable z of the following form:

$$f(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$.

We consider f defined on $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$, the extended complex plane.

Definition (Triple transitivity). A group G acts triply transitively on a set X if given $x_1, x_2, x_3 \in X$ all distinct and $y_1, y_2, y_3 \in X$ all distinct, there exists $g \in G$ such that $g(x_i) = y_i \text{ for } i = 1, 2, 3.$

A group G acts sharply triply transitively if such a q is unique.

Definition (Cross-ratio). The *cross-ratio* of distinct points $z_1, z_2, z_3, z_4 \in \mathbb{C}_{\infty}$ is given by:

$$[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_2)(z_3 - z_4)}$$

and
$$[\infty, z_2, z_3, z_4] = \frac{(z_2 - z_4)}{(z_3 - z_4)},$$
 $[z_1, \infty, z_3, z_4] = -\frac{(z_1 - z_3)}{(z_3 - z_4)},$ $[z_1, z_2, \infty, z_4] = -\frac{(z_1 - z_3)}{(z_1 - z_2)},$ $[z_1, z_2, z_3, \infty] = \frac{(z_1 - z_3)}{(z_1 - z_2)}$

$$[z_1, z_2, \infty, z_4] = -\frac{(z_2 - z_4)}{(z_1 - z_2)},$$
 $[z_1, z_2, z_3, \infty] = \frac{(z_1 - z_3)}{(z_1 - z_2)}$