Riemann integral (Definite integral)

Elena Lebedeva

Saint Petersburg State University

Definition (Tagged partition of an interval)

Let [a, b] be a closed interval $(-\infty < a < b < +\infty)$. A set of points

$$\tau = \{x_k\}_{k=0}^n$$
 such that $a = x_0 < x_1 < \ldots < x_n = b$

is called a partition of an interval [a,b]. Intervals $[x_k,x_{k+1}]$ are called intervals of the partition. We use notation $\Delta x_k = |x_{k+1} - x_k|$ for the length of an interval $[x_k,x_{k+1}]$. Then the value

$$\lambda = \lambda_{\tau} = \max_{0 \le k \le n-1} \Delta x_k$$

is called a **mesh** of the partition τ .

We say that a pair (τ, ξ) is a **tagged partition** of an interval [a, b] if τ is a partition of an interval [a, b] and $\xi = \{\xi_k\}_{k=0}^{n-1}$ is a set of tags such that $\xi_k \in [x_k, x_{k+1}]$.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Definition (A Riemann sum, a Riemann integral, a Riemann-integrable function)

Let $f : [a, b] \to \mathbb{R}$. A **Riemann sum** of a function f with respect to a tagged partition (τ, ξ) is defined as

$$\sigma = \sigma(f, \tau, \xi) = \sigma(\tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k.$$

The function f is called a **Riemann-integrable** on [a, b] if there exist a number $I \in \mathbb{R}$ such that for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every tagged partition (τ, ξ) with a mesh $\lambda_{\tau} < \delta$ we have $|\sigma(f, \tau, \xi) - I| < \varepsilon$, that is

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (\tau, \xi) (\lambda_{\tau} < \delta \ \rightarrow |\sigma(f, \tau, \xi) - I| < \varepsilon).$$
 (1)

The number I is called a **Riemann integral** and is denoted as $I := \int_a^b f(x) \, \mathrm{d}x$. We denote a set of all Riemann-integrable functions on a segment [a,b] as $\mathcal{R}[a,b]$.

Example.
$$f(x) = 1 + x$$
, $x \in [0, 3]$.

$$\tau = \{x_k\}_{k=0}^n, \ 0 = x_0 < x_1 < \dots < x_n = 3, \ \xi_k = \frac{x_k + x_{k+1}}{2}.$$

$$\sigma = \sigma(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k$$

$$=\sum_{k=0}^{n-1}\left(1+\frac{x_k+x_{k+1}}{2}\right)(x_{k+1}-x_k)=x_n-x_0+\frac{x_n^2-x_0^2}{2}=\frac{15}{2}.$$

A base $\mathcal B$ in the set of tagged partitions (τ,ξ) . The element $B_d,\,d>0$, of the base $\mathcal B$ consists of all tagged partitions (τ,ξ) for which $\lambda_{\tau}< d$.

- $B_d \neq \emptyset$.
- If $d_1, d_2 > 0$, and $d = \min\{d_1, d_2\}$, then $B_{d_1} \cap B_{d_2} = B_d \in \mathcal{B}$.

We denote the base ${\cal B}$ by $\lim_{\lambda_{\tau} \to 0}$. So,

$$\int_a^b f(x) dx = \lim_{\lambda_\tau \to 0} \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k.$$

$$\left(\text{ Reminder: } \lim_{\mathcal{B}} \sigma(\tau, \xi) = I \underset{\text{def}}{\Longleftrightarrow} \forall \ V(I) \ \exists \ (\tau, \xi) \in \mathcal{B} \quad \sigma(\tau, \xi) \subset V(I) \right)$$

Theorem (A necessary condition for intergability)

If $f \in \mathcal{R}[a, b]$, then f is bounded on [a, b].

Proof. Assume the converse. Consider a partition $\tau = \{x_k\}_{k=0}^n$. The function f is not bounded on some $[x_r, x_{r+1}]$. Fix tags $\xi_k \in [x_k, x_{k+1}]$ for $k \neq r$. We will choose ξ_r later.

$$\sigma(f,\tau,\xi) = f(\xi_r)\Delta x_r + \underbrace{\sum_{k\neq r} f(\xi_k)\Delta x_k}_{=:\alpha} \Rightarrow |\sigma(f,\tau,\xi)| \ge |f(\xi_r)| \Delta x_r - |\alpha|.$$

Suppose A > 0, we choose ξ_r such that

$$|\sigma(f,\tau,\xi)| \ge |f(\xi_r)| \Delta x_r - |\alpha| > A$$
, that is $|f(\xi_r)| > \frac{A + |\alpha|}{\Delta x_r}$.

Than $\sigma(f, \tau, \xi)$ is not bounded.

Remark. Boundedness is not sufficient for Riemann-integrability.

Example. The Dirichlet function

$$f_D(x) = \mathbb{1}_{\mathbb{Q}}(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

If $\xi_k \in \mathbb{Q}$, than

$$\sigma(f_D, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = \sum_{k=0}^{n-1} \Delta_k = b - a.$$

If $\xi_k \notin \mathbb{Q}$, than

$$\sigma(f_D, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = 0.$$

 $\sigma(f_D, \tau, \xi)$ depends on $\xi \Rightarrow f_D \notin \mathcal{R}[a, b]$.

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 夕久で

Definition (Upper and lower Darboux sums)

Let $f:[a,b]\to\mathbb{R},\, au=\{x_k\}_{k=0}^n$ be a partition of [a,b],

$$M_k := \sup_{x \in [x_k, x_{k+1}]} f(x), \qquad m_k := \inf_{x \in [x_k, x_{k+1}]} f(x),$$

k = 0, ..., n-1. The **upper and lower Darboux sums** of a function f with respect to a partition τ are defined as

$$S=S_{\tau}(f):=\sum_{k=0}^{n-1}M_k\Delta x_k,\quad s=s_{\tau}(f):=\sum_{k=0}^{n-1}m_k\Delta x_k,$$

respectively.

Remark. The upper and lower Darboux sums might not be Riemann sums. **Why?**

Remark. f is bounded from above (from below) $\Leftrightarrow S(s)$ is finite.

◆ロト 4周ト 4 章 ト 4 章 ト 第 900

The properties of Darboux sums

D1.
$$S_{\tau}(f) = \sup_{\xi} \sigma(f, \tau, \xi), \quad s_{\tau}(f) = \inf_{\xi} \sigma(f, \tau, \xi).$$

D1. $S_{\tau}(f) = \sup_{\xi} \sigma(f, \tau, \xi), \quad s_{\tau}(f) = \inf_{\xi} \sigma(f, \tau, \xi).$ **Proof.** We prove $s_{\tau}(f) = \inf_{\xi} \sigma(f, \tau, \xi).$ For S_{τ} we can proceed the same way.

$$f(\xi_k) \ge m_k$$
, for $k = 0, \dots, n-1, \ \xi_k \in [x_k, x_{k+1}]$

$$\Rightarrow \sigma(f,\tau,\xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k \ge \sum_{k=0}^{n-1} m_k \Delta_k = s_{\tau}(f).$$

Let us prove $\forall \varepsilon \exists \xi^0 \quad \sigma(f, \tau, \xi^0) < s_\tau(f) + \varepsilon$.

• \underline{f} is bounded from below. We choose $\xi_k^0 \in [x_k, x_{k+1}]$ such that $f(\xi_k^0) < m_k + \frac{\varepsilon}{h-3}$, than

$$\sigma(f,\tau,\xi^0) = \sum_{k=0}^{n-1} f(\xi_k^0) \Delta x_k < \sum_{k=0}^{n-1} \left(m_k + \frac{\varepsilon}{b-a} \right) \Delta x_k$$

$$= s_{\tau}(f) + \sum_{k=0}^{n-1} \frac{\varepsilon}{b-a} \Delta x_k = s_{\tau}(f) + \varepsilon.$$

• \underline{f} is not bounded from below. Then $s_{\tau}(f) = -\infty$ and $\sigma(f, \tau, \xi)$ is not bounded from below (see the proof of a necessary condition for integrability, check by yourself).

Elena Lebedeva (SPSU)

D2. The upper sum does not increase and the lower sum does not decrease when new points are added to partition.

Proof. We consider $S_{\tau}(f)$. Suppose $\tau = \{x_k\}_{k=0}^n$ is a partition of [a, b], add a new point $c \in (x_r, x_{r+1})$, denote the new partition by T.

$$S_{\tau}(f) = \sum_{k=0}^{r-1} M_k \Delta x_k + M_r(x_{r+1} - x_r) + \sum_{k=r+1}^{n-1} M_k \Delta x_k,$$

$$S_T(f) = \sum_{k=0}^{r-1} M_k \Delta x_k + M'(c - x_r) + M''(x_{r+1} - c) + \sum_{k=r+1}^{n-1} M_k \Delta x_k,$$

where
$$M' := \sup_{x \in [x_r, c]} f(x), \quad M'' := \sup_{x \in [c, x_{k+1}]} f(x).$$

$$M' \leq M_r, \ M'' \leq M_r \quad \Rightarrow \quad M'(c - x_r) + M''(x_{r+1} - c) \leq M_r(x_{r+1} - x_r)$$

$$S_{\mathcal{T}}(f) \leq S_{\mathcal{T}}(f)$$
.

D3. Any lower Darboux sum is not greater than any upper Darboux sum, that is

$$\forall \tau_1, \tau_2 \quad s_{\tau_1} \leq S_{\tau_2}.$$

Proof. Let τ_1, τ_2 be two partitions. Denote $\tau := \tau_1 \cup \tau_2$. Then

$$s_{\tau_1}(f) \underbrace{\leq}_{D2} s_{\tau}(f) \leq S_{\tau}(f) \underbrace{\leq}_{D2} S_{\tau_2}(f).$$

Definition (Darboux integrals)

The quantities

$$I^* := \inf_{ au} S_{ au}(f)$$
 and $I_* := \sup_{ au} s_{ au}(f)$

are called the upper and the lower Darboux integrals, respectively.

Theorem (Criterion for integrability)

Suppose f is bounded on [a, b]. Then the following conditions are equivalent

- 1. $f \in \mathcal{R}[a, b]$.
- 2. $\forall \varepsilon \exists \tau \ (S_{\tau}(f) s_{\tau}(f) < \varepsilon)$.
- 3. $\forall \varepsilon \ \exists \delta = \delta(\varepsilon) \ \forall \tau \ (\lambda_{\tau} < \delta \ \rightarrow \ S_{\tau}(f) s_{\tau}(f) < \varepsilon)$.

Proof. 1. \Rightarrow 2. \Rightarrow 3. \Rightarrow 1.

$$\underline{1.} \Rightarrow 2.$$

$$I = \int_a^b f \quad \Leftrightarrow \quad \forall \varepsilon > 0 \,\, \exists \delta > 0 \,\, \forall \, (\tau, \xi) \left(\lambda_\tau < \delta \,\, \to I - \frac{\varepsilon}{3} < \sigma < I + \frac{\varepsilon}{3} \right).$$

$$S_{\tau}(f) = \sup_{\xi} \sigma(f, \tau, \xi) \Rightarrow S_{\tau}(f) \leq I + \frac{\varepsilon}{3} \\ s_{\tau}(f) = \inf_{\xi} \sigma(f, \tau, \xi) \Rightarrow s_{\tau}(f) \geq I - \frac{\varepsilon}{3} \Rightarrow 0 \leq S_{\tau}(f) - s_{\tau}(f) \leq \frac{2\varepsilon}{3}.$$

 $\underline{2.} \Rightarrow \underline{3.}$ Fix $\varepsilon > 0$ and a partition $\tau = \{x_k^*\}_{k=0}^n$: $S_{\tau}(f) - s_{\tau}(f) < \varepsilon/2$. We need to find $\delta = \delta(\varepsilon)$ such that for any $T = \{x_k\}_{k=0}^N$, $\lambda(T) < \delta$ the inequality $S_T(f) - s_T(f) < \varepsilon$ holds. We choose $\delta < \frac{1}{8nK}$, where $K := \sup |f|([a, b])$.

$$S_T(f) - s_T(f) = \sum^{a} (M - m)\Delta + \sum^{b} (M - m)\Delta$$

 $\sum_{k=1}^{a}$: intervals of T contain at least one point x_{k}^{*} , $\sum_{k=1}^{b}$: intervals of T do not contain points x_{k}^{*} .

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - め Q G

An amount of terms in \sum^a is $\leq 2n$. $\Rightarrow \sum^a (M-m)\Delta \leq 2n2K\delta < \varepsilon/2$.

 $\sum_{i=0}^{b} \sum_{j=0}^{n-1} \sum_{i=0}^{j}$, where $\sum_{j=0}^{j}$ corresponds to the intervals $[x_k, x_{k+1}]$ of T:

 $[x_k, x_{k+1}] \subset (x_j^*, x_{j+1}^*).$

$$\sum_{j=0}^{n-1} \sum_{j=0}^{j} (M-m) \Delta \leq \sum_{j=0}^{n-1} (M_j-m_j) \sum_{j=0}^{j} \Delta \leq \sum_{j=0}^{n-1} (M_j-m_j) \Delta x_j < \frac{\varepsilon}{2}.$$

 $\underline{3.} \Rightarrow \underline{1.} \ I^* := \inf_{\tau} S_{\tau}(f) \leq S_{\tau}(f) \ \text{and} \ I_* := \sup_{\tau} s_{\tau}(f) \geq s_{\tau}(f).$

$$S_{ au}(f) \geq s_{ au'}(f) \mathop{\Longrightarrow}\limits_{\inf_{ au}} I^* \geq s_{ au'}(f) \mathop{\Longrightarrow}\limits_{\sup_{ au'}} I^* \geq I_*.$$

$$0 \leq I^* - I_* \leq S_{\tau}(f) - s_{\tau}(f) \rightarrow 0 \text{ as } \lambda_{\tau} \rightarrow 0 \Rightarrow I^* = I_* =: I_0.$$

$$egin{aligned} s_{ au}(f) &\leq I_0 \leq S_{ au}(f) \ s_{ au}(f) &\leq \sigma \leq S_{ au}(f) \end{aligned} \Rightarrow |\sigma - I_0| \leq S_{ au}(f) - s_{ au}(f) o 0 ext{ as } \lambda_{ au} o 0$$

$$\Rightarrow I_0 = \int_a^b f.$$

Example. The Riemann function

$$f_R(x) = \left\{ egin{array}{ll} 1/q, & x = p/q, \\ 0, & x
otin \mathbb{Q} \ ext{or} \ x = 0. \end{array} \right.$$

Let us prove $f_R \in \mathcal{R}[0, 1]$.

 $s_{\tau}(f_R)=0$. Let us prove $S_{\tau}(f_R)\to 0$ as $\lambda_{\tau}\to 0$. Fix $\varepsilon>0$, find $N\in\mathbb{N}:1/N<\varepsilon/2$. The amount C_N of rational numbers $p/q\in[0,1],\ q\le N$ is finite. We choose $\delta=\varepsilon/(4C_N),\ \tau:\lambda_{\tau}<\delta$

$$S_{\tau}(f_R) = \sum_{M_k \ge 1/N} \underbrace{M_k}_{<1} \Delta x_k + \sum_{M_k < 1/N} M_k \Delta x_k < 2C_N \cdot 1 \cdot \delta + \frac{1}{N} \underbrace{\sum_{<1}}_{<1} \Delta x_k < \varepsilon$$

Elena Lebedeva (SPSU)

Definition (An Oscillation of a function)

Suppose $f:D\subset\mathbb{R}\to\mathbb{R}$. The **oscillation** of the function f on the set D is defined as

$$\omega(f, D) = \sup_{x,y \in D} |f(x) - f(y)|.$$

Remark. or Exercise.
$$\omega(f, D) = \sup_{x \in D} f(x) - \inf_{x \in D} f(x)$$
.

Corollary

$$f \in \mathcal{R}[a, b] \quad \Leftrightarrow \quad \forall \varepsilon \ \exists \tau = \{x_k\}_{k=0}^n \qquad \sum_{k=0}^{n-1} \omega_k(f) \Delta x_k < \varepsilon,$$

where
$$\omega_k(f) := \omega(f, [x_k, x_{k+1}]) = M_k - m_k$$
.

Theorem (Integrability of a restriction)

Suppose $f \in \mathcal{R}[a, b]$, and $[c, d] \subset [a, b]$, then $f \in \mathcal{R}[c, d]$.

Proof.

$$f \in \mathcal{R}[a, b] \Rightarrow \forall \varepsilon \ \exists \delta = \delta(\varepsilon) \ \forall \tau \ (\lambda_{\tau} < \delta \ \rightarrow \ S_{\tau}(f) - s_{\tau}(f) < \varepsilon)$$

Let τ_0 , τ_1 , and τ_2 be partitions of [c, d], [a, c], and [d, b], respectively, $\lambda_{\tau_j} < \delta, j = 0, 1, 2$. Then $\tau := \tau_0 \cup \tau_1 \cup \tau_2$ is a partition of $[a, b], \lambda_{\tau} < \delta$.

$$au = x_0 = a < x_1 < \dots < x_{\mu} = c < \dots < x_{\nu} = d < \dots < x_n = b.$$

$$S_{ au_0}(f)-s_{ au_0}(f)=\sum_{k=\mu}^{
u-1}\omega_k(f)\Delta x_k\leq \sum_{k=0}^{n-1}\omega_k(f)\Delta x_k=S_{ au}(f)-s_{ au}(f)$$

Theorem (Additivity of the integral w. r. t. the interval)

Suppose $a < c < b, \, f \in \mathcal{R}[a, \, c], \, f \in \mathcal{R}[c, \, b].$ Then $f \in \mathcal{R}[a, \, b]$ and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Proof. $f \in \mathcal{R}[a,\,c], \ f \in \mathcal{R}[c,\,b] \Rightarrow \forall \, \varepsilon \quad \exists \, \tau_1, \ \text{partition of } [a,\,c], \ \exists \, \tau_2, \ \text{partition of } [c,\,b], \ S_{\tau_1}(f) - s_{\tau_1}(f) < \frac{\varepsilon}{2} \quad S_{\tau_2}(f) - s_{\tau_2}(f) < \frac{\varepsilon}{2}.$ Then $\tau = \tau_1 \cup \tau_2$ is a partition of $[a,\,b]$ and $S_{\tau}(f) - s_{\tau}(f) = S_{\tau_1}(f) - s_{\tau_1}(f) + S_{\tau_2}(f) - s_{\tau_2}(f) < \varepsilon \Rightarrow f \in \mathcal{R}[a,\,b].$ Let $\tau_1^k, \ \tau_2^k, \ k \in \mathbb{N}$, be sequences of partitions of $[a,\,c]$ and $[c,\,b]$, respectively, $\lambda_{\tau_1^k} \to 0$, $\lambda_{\tau_2^k} \to 0$ as $k \to \infty$. Then $\tau^k := \tau_1^k \cup \tau_2^k$ is a sequence of partitions of $[a,\,b]$ and $\lambda_{\tau^k} \to 0$ as $k \to \infty$.

$$S_{ au^k}(f) = S_{ au^k_1}(f) + S_{ au^k_2}(f) \underset{k o \infty}{\Longrightarrow} \int_a^b f = \int_a^c f + \int_c^b f. \ \Box$$

19 / 76

Theorem (Integrability of continuous functions)

If $f \in C[a, b]$, then $f \in \mathcal{R}[a, b]$.

Proof. If $f \in C[a, b]$, then f is uniformly continuous on [a, b] (the Heine-Cantor theorem).

$$\forall \varepsilon \exists \delta \ \forall c, d \in [a, b] \ \left(|c - d| < \delta \rightarrow |f(c) - f(d)| < \frac{\varepsilon}{b - a} \right)$$

If
$$\tau = \{x_k\}_{k=0}^n, \lambda_{\tau} < \delta$$
, then $\omega_k(f) = \sup_{c,d \in [x_k, x_{k+1}]} |f(c) - f(d)| < \frac{\varepsilon}{b-a}$

$$\Rightarrow \sum_{k=0}^{n-1} \omega_k(f) \Delta_k < \frac{\varepsilon}{b-a} \sum_{k=0}^{n-1} \Delta x_k = \varepsilon. \quad \Box$$

Elena Lebedeva (SPSU)

Theorem (Integrability of monotone functions)

A monotone function is integrable.

Proof. Suppose f is decreasing on [a, b]. If f(a) = f(b), then f is a constant, say, f = C, $\sigma(f, \tau, \xi) = C(b - a)$, $f \in \mathcal{R}[a, b]$.

If $f(a) \neq f(b)$, then we fix ε , choose $\delta = \frac{\varepsilon}{f(a) - f(b)}$, and consider $\tau = \{x_k\}_{k=0}^n, \ \lambda_{\tau} < \delta$.

$$\omega_k(f) = f(x_k) - f(x_{k+1}) \implies \sum_{k=0}^{n-1} \omega_k(f) \Delta x_k = \sum_{k=0}^{n-1} (f(x_k) - f(x_{k+1})) \Delta x_k$$

$$<\frac{\varepsilon}{f(a)-f(b)}\underbrace{\sum_{k=0}^{n-1}(f(x_k)-f(x_{k+1}))}_{=f(a)-f(b)}=\varepsilon.$$

Lemma

The integrability and the value of the integral do not change if we change values of an integrable function at a finite number of points.

Proof. Let
$$f \in \mathcal{R}[a, b]$$
, $\tilde{f} : [a, b] \to \mathbb{R}$, $\left\{ x \middle| f(x) \neq \tilde{f}(x) \right\} = \left\{ x_1, \dots, x_m \right\}$. f is bounded, $|f(x)| \leq K$, then $|\tilde{f}(x)| \leq \max \left\{ |\tilde{f}(x_1)|, \dots, |\tilde{f}(x_m)|, K \right\}$

$$\left|\sigma(f,\tau,\xi)-\sigma(\tilde{f},\tau,\xi)\right|=\left|\sum_{k:f(\xi_k)
eq \tilde{f}(\xi_k)}\left(f(\xi_k)-\tilde{f}(\xi_k)\right)\Delta x_k\right|$$

$$\leq 2m(K+ ilde{K})\lambda_{ au} o 0$$
 as $\lambda_{ au} o 0$. \square

Remark. The function f might not be defined at a finite number of points of [a, b], nevertheless, f might be Riemann-integrable on [a, b].

◆ロト ◆昼ト ◆差ト ◆差 めへで

22 / 76

Definition (A piecewise continuous function)

A function $f:[a,b]\to\mathbb{R}$ is called **piecewise continuous** if the set of points of discontinuity is either empty or finite and all discontinuities are of a first kind (jump discontinuities).

Theorem (Integrability of piecewise continuous functions)

A piecewise continuous function is integrable.

Proof. Let $\{c_1,\ldots,c_m\}$ be the points of discontinuity of f on (a,b). Denote $c_0:=a,\ c_{m+1}:=b$. The function f is continuous on $(c_k,c_{k+1}),\ k=0,\ldots,m,$ and $f(c_k\pm 0)$ are finite. So, there are at most two points, where f differs from a continuous function on $[c_k,c_{k+1}]$. By Lemma, $f\in\mathcal{R}[c_k,c_{k+1}]$. By additivity of the integral w.r.t. the interval of integration, $f\in\mathcal{R}[a,b]$.

Example. $\int_0^{\pi/2} \sin x \, \mathrm{d}x,$

$$\sin \in C[0, \pi/2] \Rightarrow \sin \in \mathcal{R}[0, \pi/2] \Rightarrow \int_0^{\pi/2} \sin x \, \mathrm{d}x = \lim_{n \to \infty} \sigma(f, \tau^n, \xi^n),$$

where $\lambda_{\tau^n} \to 0$ as $n \to \infty$.

$$\tau^{n} = \{x_{k}^{n}\}_{k=0}^{n} = \left\{\frac{\pi k}{2n}\right\}_{k=0}^{n}, \quad \xi_{k}^{n} = x_{k}^{n}, \quad \Delta x_{k} = \frac{\pi}{2n}, \quad \lambda_{\tau^{n}} \to 0 \text{ as } n \to \infty.$$

$$\sigma(\sin,\tau^n,\xi^n) = \frac{\pi}{2n} \sum_{k=0}^{n-1} \sin \frac{\pi k}{2n} = \frac{\sqrt{2}\pi}{4n} \frac{\sin \left(\frac{\pi}{4} - \frac{\pi}{4n}\right)}{\sin \frac{\pi}{4n}} \to 1 \text{ as } n \to \infty.$$

$$\left(\text{Reminder: } \sum_{k=1}^{N} \sin k\alpha = \frac{\sin \frac{Nx}{2} \sin \frac{(N+1)x}{2}}{\sin \frac{x}{2}} \right)$$

(□) (□) (□) (□) (□) (□)

Example. $\int_a^b \frac{\mathrm{d}x}{x^2}, \ 0 < a < b.$

$$\frac{1}{x^2} \in C[a,b] \Rightarrow \frac{1}{x^2} \in \mathcal{R}[a,b] \Rightarrow \int_a^b \frac{\mathrm{d}x}{x^2} = \lim_{n \to 0} \sigma(1/x^2, \tau^n, \xi^n),$$

where $\lambda_{\tau^n} \to 0$ as $n \to \infty$.

$$\tau^n = \{x_k\}_{k=0}^n, \ \xi_k = \sqrt{x_k x_{k+1}}.$$

$$\sigma(1/x^2, \tau, \xi) = \sum_{k=0}^{n-1} \frac{\Delta x_k}{x_k x_{k+1}} = \sum_{k=0}^{n-1} \left(\frac{1}{x_k} - \frac{1}{x_{k+1}} \right) = \frac{1}{a} - \frac{1}{b}.$$

Example. Let f be monotonic on [0,1]. Let us prove that

$$\int_{0}^{1} f(x)dx - \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = O\left(\frac{1}{n}\right).$$

$$s_{\tau}(f) \leq \int_{0}^{1} f \leq S_{\tau}(f), \quad s_{\tau}(f) \leq \sigma \leq S_{\tau}(f)$$

$$\Rightarrow \left| \int_{0}^{1} f - \sigma \right| \leq S_{\tau}(f) - s_{\tau}(f).$$

Let τ be a uniform partition $\tau = \left\{\frac{k}{n}\right\}_{n=0}^{n}$, f is monotonic

$$\Rightarrow S_{\tau}(f) - s_{\tau}(f) = \frac{1}{n} |f(1) - f(0)| = O\left(\frac{1}{n}\right).$$

$$\left| \frac{\int\limits_0^1 f - \sigma}{S_\tau(f) - s_\tau(f)} \right| \leq 1 \Rightarrow \int\limits_0^1 f - \sigma = O\left(\frac{1}{n}\right).$$

Reminder: A set X is **countable** if it is equipollent with the set \mathbb{N} , that is, $\operatorname{card} X = \operatorname{card} \mathbb{N}$.

Definition (Set of measure zero)

It is said that a set $E \subset \mathbb{R}$ has **measure zero** if for any ε there exists a covering of the set E by at most countable system $\{(a_n,b_n)\}_n$ of intervals such that $\sum_n |b_n-a_n| < \varepsilon$.

Example. Any at most countable set has measure zero.

Indeed, let $\{x_k\}_k$ be at most countable set, than the desired covering is $(x_k - \varepsilon 2^{-k-1}, x_k + \varepsilon 2^{-k-1})$.

Theorem (Lebesgue's criterion for Riemann integrability)

 $f \in \mathcal{R}[a,b] \Leftrightarrow f$ is bounded on [a,b] and the points of discontinuity of f form a set of measure zero.

Example. The Riemann function f_R is bounded, the set of points of discontinuity of f_R is $\mathbb{Q} \setminus \{0\}$. It is countable. Therefore, $f_R \in \mathcal{R}[a, b]$.

Example. We give a example of integrable function such that the set of points of discontinuity for the function is not countable.

The Cantor set.

We take the interval $F_1 = [0,1]$, then we remove the interval (1/3,2/3) and get $F_2 = [0,1/3] \cup [2/3,1]$. After that we remove the intervals (1/9,2/9), (7/9,8/9) and get $F_3 = [0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$. We continue the process for infinitely many steps. On each step we remove the open middle third from each closed interval designed on the previous step. As a result, we have a sequence of sets $(F_n)_{n=1}^\infty$.

The set
$$F := \bigcap_{k=1}^{\infty} F_k$$
 is called **the Cantor set**.

1. F is not countable. Indeed, let $x \in [0,1]$ has ternary representation $x = 0.x_1x_2..., x_k \in \{0,1,2\}$. Then $F = \{x = 0.x_1x_2... : x_k \in \{0,2\}\}$. Using the binary representation for a real number, we conclude that F is equipollent to [0,1], which is not countable.

2. F is of measure zero.

$$\textit{F} = [0,1] \setminus \left(\left(\frac{1}{3},\frac{2}{3}\right) \cup \left(\frac{1}{9},\frac{2}{9}\right) \cup \left(\frac{7}{9},\frac{8}{9}\right) \cup \dots \right)$$

The sum of the lengths of all open intervals is equal to

$$\frac{1}{3} + 2 \cdot \frac{1}{9} + 4 \cdot \frac{1}{27} + \dots = \frac{1}{3} \left(1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \dots \right) = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = 1.$$

Consider the function $f = \mathbb{1}_F$. It is bounded and the set of points of discontinuity of f is F. Therefore, $f \in \mathcal{R}[0,1]$.

Elena Lebedeva (SPSU)

Example. Suppose $f:[a,b] \to \mathbb{R}, f \in \mathcal{R}[a,b], A \le f(x) \le B$ and $\psi:[A,B] \to \mathbb{R}, \psi \in C[A,B], g = \psi \circ f:[a,b] \to \mathbb{R}$. Let us prove that $g \in \mathcal{R}[a,b]$.

f satisfies Lebesgue's criterion for Riemann integrability, $\psi \circ f$ continuous at every points of continuity of $f \Rightarrow \psi \circ f$ satisfies Lebesgue's criterion for integrability.

The condition $\psi \in C[A, B]$ can not be relaxed to $\psi \in \mathcal{R}[A, B]$. Indeed,

$$\psi(y) = \begin{cases} 0, & y = 0, \\ 1, & y \neq 0, \end{cases} \quad f_R(x) = \begin{cases} 1/q, & x = p/q, \\ 0, & x \notin \mathbb{Q} \text{ or } x = 0. \end{cases}$$

$$f_R \in \mathcal{R}[a, b], \quad \psi \in \mathcal{R}[A, B], \quad f_D = \psi \circ f_R \notin \mathcal{R}[a, b].$$

Theorem (Integrability and arithmetic operations)

If $f, g \in \mathcal{R}[a, b]$, $\alpha \in \mathbb{R}$, then αf , f + g, |f|, $fg \mathcal{R}[a, b]$. In addition, if $\inf g([a, b]) > 0$, then $f/g \in \mathcal{R}[a, b]$.

Proof. The case of fg f, g are bounded, $|f(x)| \le C_1$, $|g(x)| \le C_2$. Let $x_1, x_2 \in E \subset [a, b]$.

$$|f(x_1)g(x_1) - f(x_2)g(x_2)| \le |f(x_1) - f(x_2)||g(x_1)| + |g(x_1) - g(x_2)||f(x_2)|$$

$$\le C_2|f(x_1) - f(x_2)| + C_1|g(x_1) - g(x_2)| \le C_2\omega(f, E) + C_1\omega(g, E)$$

$$\Rightarrow \omega(fg, E) \leq C_2\omega(f, E) + C_1\omega(g, E).$$

For any $au=\{x_k\}_{k=0}^n$ we get $\omega_k(\mathit{fg}) \leq \mathit{C}_2\omega_k(\mathit{f}) + \mathit{C}_1\omega_k(\mathit{g}) \Rightarrow$

$$\sum_{k=0}^{n-1} \omega_k(fg) \Delta x_k \leq C_2 \sum_{k=0}^{n-1} \omega_k(f) \Delta x_k + C_1 \sum_{k=0}^{n-1} \omega_k(g) \Delta x_k.$$

The case of |f|

$$||f(x_1)| - |f(x_2)|| \le |f(x_1) - f(x_2)| \le \omega(f, E) \Rightarrow \omega(|f|, E) \le \omega(f, E)$$

The case of 1/g

$$m := \inf g([a, b]), \quad \left| \frac{1}{g(x_1)} - \frac{1}{g(x_2)} \right| = \frac{|g(x_1) - g(x_2)|}{|g(x_1)g(x_2)|} \le \frac{|g(x_1) - g(x_2)|}{m^2}$$
$$\le \frac{1}{m^2} \omega(g, E) \implies \omega(1/g, E) \le \frac{1}{m^2} \omega(g, E) \quad \Box$$

Remark. $|f| \in \mathcal{R}[a,b] \Rightarrow f \in \mathcal{R}[a,b]$, for example

$$f_D(x) - 1/2 = \left\{ egin{array}{ll} 1/2, & x \in \mathbb{Q}, \\ -1/2, & x
otin \mathbb{Q} \end{array}
ight.
otin \mathcal{R}[a,b], \quad ext{while} \quad |f_D| \equiv 1/2 \in \mathcal{R}[a,b].$$

Elena Lebedeva (SPSU)

Remark. If a > b and $f \in \mathcal{R}[b, a]$, then $\int_a^b f := -\int_b^a f$, $\int_a^a f := 0$.

Properties of Riemann integral

11. Linearity of integral. If $f, g \in \mathcal{R}[a, b], \alpha, \beta \in \mathbb{R}$, then

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Proof. By theorem on integrability and arithmetic operations, $\alpha f + \beta g \in \mathcal{R}[a,b]$. Let (τ^n,ξ^n) be a sequence of tagged partitions $\tau^n = \{x_k^n\}_{k=0}^{N_n}, \, \xi^n = (\xi_k^n)_{k=0}^{N_n-1}, \, \lambda_{\tau^n} \to 0 \text{ as } n \to \infty, \text{ then }$

$$\sum_{k=0}^{N_n-1} \left(\alpha f(\xi_k^n) + \beta g(\xi_k^n) \right) \Delta x_k^n = \alpha \sum_{k=0}^{N_n-1} f(\xi_k^n) \Delta x_k^n + \beta \sum_{k=0}^{N_n-1} g(\xi_k^n) \Delta x_k^n.$$

It remains to pass to the limit $n \to \infty$.

33 / 76

12. Monotonicity of integral. If a < b, $f, g \in \mathcal{R}[a, b]$, $f(x) \le g(x)$ for $x \in [a, b]$, then $\int_{a}^{b} f \le \int_{a}^{b} g$.

Proof. Let (τ^n, ξ^n) be a sequence of tagged partitions $\tau^n = \{x_k^n\}_{k=0}^{N_n}$, $\xi^n = (\xi_k^n)_{k=0}^{N_n-1}$, $\lambda(\tau^n) \to 0$ as $n \to \infty$, then

$$\sum_{k=0}^{N_n-1} f(\xi_k^n) \Delta x_k^n \le \sum_{k=0}^{N_n-1} g(\xi_k^n) \Delta x_k^n.$$

It remains to pass to the limit $n \to \infty$.

Corollary 1. If $m \le f(x) \le M$, $x \in [a, b]$, then

$$m(b-a) \leq \int_a^b f \leq M(b-a).$$

Corollary 2. If $f(x) \ge 0$, $x \in [a, b]$, then $\int_a^b f \ge 0$.

13. If $f \in \mathcal{R}[a, b]$, $f \ge 0$, $\exists x_0 \in [a, b] (f(x_0) > 0, f \text{ is continuous at } x_0)$, then $\int_a^b f > 0$.

Proof. f is continuous at $x_0 \Rightarrow$ for $\varepsilon = \frac{f(x_0)}{2} \quad \exists \, \delta \, \forall \, x \in (x_0 - \delta, x_0 + \delta)$ $\left| f(x) - f(x_0) \right| < \frac{f(x_0)}{2} \Rightarrow f(x) > \frac{f(x_0)}{2}$. We denote $[c,d] := [a,b] \cap [x_0 - \delta, x_0 + \delta]$.

$$\int_{a}^{b} f = \left(\underbrace{\int_{a}^{c} + \int_{c}^{d} + \underbrace{\int_{d}^{b}}_{\geq 0}} \right) f \geq \int_{c}^{d} f \geq \int_{c}^{d} \frac{f(x_{0})}{2} = \frac{f(x_{0})}{2} (d-c) > 0. \square$$

Example. $f \in \mathcal{R}[a, b], f > 0 \text{ on } [a, b] \Rightarrow \int_a^b f > 0.$

By Lebesgue's criterion the points of discontinuity of f form a set of measure zero. So,

 $\exists x_0$ such that $f(x_0) > 0, f$ is continuous at x_0

It remains to apply the property I3

□ ▶ 4 @ ▶ 4 를 ▶ 4 를 ▶ 9 Q (

$$14. \left| \int_a^b f \right| \le \left| \int_a^b |f| \right|$$

Proof. a < b

$$-|f| \leq f \leq |f| \underset{f_2}{\Longrightarrow} - \int_a^b |f| \leq \int_a^b f \leq \int_a^b |f| \Rightarrow \left| \int_a^b f \right| \leq \int_a^b |f|.$$

$$b < a$$

$$\int_a^b f = -\int_b^a f$$

$$\left| \int_{a}^{b} f \right| = \left| \int_{b}^{a} f \right| \le \int_{b}^{a} |f| = \left| \int_{a}^{b} |f| \right| \quad \Box$$

Theorem (The first mean value theorem)

If $f,g \in \mathcal{R}[a,b], g \ge 0$ (or $g \le 0$) on [a,b], and $m \le f \le M$, then

$$\exists \mu \in [m, M] \quad \int_a^b fg = \mu \int_a^b g.$$

Proof.
$$g \ge 0 \Rightarrow \int_a^b g \ge 0$$

$$m \le f \le M \Rightarrow mg \le fg \le Mg \xrightarrow{b} m \int_{a}^{b} g \le \int_{a}^{b} fg \le M \int_{a}^{b} g$$

If
$$\int_{0}^{b} g = 0$$
, then $\int_{0}^{b} fg = 0$ and any μ is appropriate.

If
$$\int_a^b g > 0$$
, then $m \le \frac{\int_a^b fg}{\int_a^b g} \le M$.

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 恵 - り 9 (P)

Corollary

If $f \in C[a,b], g \in \mathcal{R}[a,b], g \ge 0$ (or $g \le 0$) on [a,b], then

$$\exists c \in [a,b] \int_a^b fg = f(c) \int_a^b g.$$

Proof. By the Weierstrass maximum value theorem $\exists x_1, x_2 \in [a, b]$ $f(x_1) = \max f([a, b]) = M$, $f(x_2) = \min f([a, b]) = m$. By the Bolzano intermediate value theorem $\forall \mu \in [m, M] \ \exists \ c \in [a, b] \ f(c) = \mu$.

Corollary

If $f \in \mathcal{R}[a,b]$ and $m \leq f \leq M$, then $\exists \mu \in [m,M] \int_a^b f = \mu(b-a)$.

Corollary

If
$$f \in C[a,b]$$
, then $\exists c \in [a,b] \int_a^b f = f(c)(b-a)$.

Theorem (Integral with variable upper limit)

Let
$$f \in \mathcal{R}[a,b], x \in [a,b], \Phi(x) := \int_a^x f$$
, then

- $\bullet \ \Phi \in C[a,b]$
- ② If f is continuous at $x_0 \in [a, b]$, then Φ is differentiable at x_0 and $\Phi'(x_0) = f(x_0)$.

The function Φ is called an integral with variable upper limit.

Proof. 1. $f \in \mathcal{R}[a,b] \Rightarrow \exists M |f| \leq M$. Let $x_0, x_0 + \Delta x \in [a,b]$.

$$\left|\Phi(x_0+\Delta x)-\Phi(x_0)\right| = \left|\int_a^{x_0+\Delta x} f - \int_a^{x_0} f\right| = \left|\int_{x_0}^{x_0+\Delta x} f\right| \leq \left|\int_{x_0}^{x_0+\Delta x} \left|f\right|\right|$$

$$= \left\{ \begin{array}{ll} \sum\limits_{\substack{x_0 \\ x_0 \\ x_0 \\ x_0 + \Delta x}}^{x_0 + \Delta x} |f|, \quad \Delta x \geq 0, \\ \int\limits_{x_0 + \Delta x}^{x_0} |f|, \quad \Delta x \leq 0, \end{array} \right. \leq \left\{ \begin{array}{ll} \sum\limits_{\substack{x_0 + \Delta x \\ x_0 \\ x_0 \\ x_0 \\ x_0 + \Delta x}}^{x_0 + \Delta x} |f|, \quad \Delta x \leq 0, \end{array} \right. = M|\Delta x| \to 0$$

as $\Delta x \rightarrow 0$.

4□▶ 4□▶ 4 ≣ ▶ 4 ≣ ▶ 9 Q @

39 / 76

2.
$$\frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} - f(x_0) = \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt - \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(x_0) dt$$

$$=\frac{1}{\Delta x}\int_{x_0}^{x_0+\Delta x} (f(t)-f(x_0)) dt$$

f is continuous at $x_0 \Rightarrow \forall \varepsilon \exists \delta \forall t \in (x_0 - \delta, x_0 + \delta) |f(t) - f(x_0)| < \varepsilon$. We choose $\Delta x : x_0 + \Delta x \in (x_0 - \delta, x_0 + \delta)$, then

$$\begin{vmatrix} \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} (f(t) - f(x_0)) dt \end{vmatrix} \leq \frac{1}{|\Delta x|} \begin{vmatrix} \int_{x_0}^{x_0 + \Delta x} |f(t) - f(x_0)| dt \end{vmatrix}$$

$$= \begin{cases} \frac{1}{|\Delta x|} \int_{x_0}^{x_0 + \Delta x} |f(t) - f(x_0)| dt, & \Delta x \geq 0, \\ \frac{1}{|\Delta x|} \int_{x_0 + \Delta x}^{x_0} |f(t) - f(x_0)| dt, & \Delta x \leq 0, \end{cases} \leq \frac{1}{|\Delta x|} \varepsilon |\Delta x| = \varepsilon \quad \Box$$

Remark. If $f \in C[a, b]$, then $\forall x \in [a, b] \ \Phi'(x) = f(x)$.

So, any continuous function has a primitive $\Phi(x) = \int_{a}^{x} f$.

An arbitrary primitive F of f is $F(x) = \Phi(x) + C$. For x = a we get $F(a) = \int_a^a f + C = C$, that is $\int_a^x f = F(x) - F(a)$.

Theorem (The fundamental theorem of integral calculus, the Newton-Leibniz formula)

If $f \in \mathcal{R}[a, b]$, F is a primitive of f on [a, b], then

$$\int_{a}^{b} f = F(b) - F(a) =: F(x) \Big|_{a}^{b}$$

Proof. Let $\tau^n = \{x_k^n\}_{k=0}^{N_n}$ be a sequence of partitions, $\lambda(\tau^n) \to 0$ as $n \to \infty$, then

$$F(b) - F(a) = \sum_{k=0}^{N_n - 1} \left(F(x_{k+1}^n) - F(x_k^n) \right) = \sum_{k=0}^{N_n - 1} F'(\xi_k^n) \Delta x_k^n$$
$$= \sum_{k=0}^{N_n - 1} f(\xi_k^n) \Delta x_k^n \to \int_a^b f, \text{ as } n \to \infty \quad \Box$$

Example. $I = \int_0^1 e^x \arcsin e^{-x} dx$.

$$F(x) = \int e^{x} \arcsin e^{-x} \, dx = \left[t = e^{-x} \right] = -\int \frac{\arcsin t}{t^{2}} dt = \frac{1}{t} \arcsin t$$

$$-\int \frac{dt}{t\sqrt{1 - t^{2}}} = \frac{1}{t} \arcsin t - \int \frac{dt}{t^{2} \sqrt{(1/t)^{2} - 1}} = \frac{1}{t} \arcsin t$$

$$+\int \frac{d(1/t)}{\sqrt{(1/t)^{2} - 1}} = \frac{1}{t} \arcsin t + \ln\left(\frac{1}{t} + \sqrt{\frac{1}{t^{2}} - 1}\right) + C$$

$$= e^{x} \arcsin e^{-x} + \ln\left(e^{x} + \sqrt{e^{2x} - 1}\right) + C.$$

$$\int_0^1 e^x \arcsin e^{-x} \, \mathrm{d}x = F(1) - F(0) = e \arcsin e^{-1} - \frac{\pi}{2} + \ln \left(e + \sqrt{e^2 - 1} \right).$$

→ロト→部ト→ミト→ミトーミーのQで

Elena Lebedeva (SPSU)

Example. Prove the inequality $\frac{4}{9}(e-1) < \int_0^1 \frac{e^x dx}{(x+1)(2-x)} < \frac{1}{2}(e-1)$. Consider the function $f(x) = \frac{1}{(x+1)(2-x)}$, $x \in [0,1]$. Its derivative

$$f'(x) = \frac{2x - 1}{(x + 1)^2(2 - x)^2} = 0 \text{ for } x = 1/2 \text{ and changes its sign from}$$

$$\text{minus to plus} \Rightarrow \min_{x \in [0,1]} f(x) = f(1/2) = 4/9,$$

$$\max_{x \in [0,1]} f(x) = f(0) = f(1) = 1/2, \text{ So, for any } x \in [0,1]$$

$$\frac{4}{9} \le \frac{1}{(x+1)(2-x)} \le \frac{1}{2},$$

and for $x \neq 0, x \neq 1/2$, and $x \neq 1$

$$\frac{4}{9}e^{x}<\frac{e^{x}}{(x+1)(2-x)}<\frac{e^{x}}{2}.$$

$$\frac{4}{9} \int_0^1 e^x \, \mathrm{d}x < \int_0^1 \frac{e^x}{(x+1)(2-x)} \, \mathrm{d}x < \frac{1}{2} \int_0^1 e^x \, \mathrm{d}x,$$

$$\frac{4}{9}(e-1) < \int_0^1 \frac{e^x}{(x+1)(2-x)} \, \mathrm{d}x < \frac{1}{2}(e-1).$$

Example.
$$\lim_{n \to \infty} \left(\frac{1^3}{n^4} + \frac{2^3}{n^4} + \dots + \frac{(n-1)^3}{n^4} \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{k}{n} \right)^3$$

$$= \lim_{n \to \infty} \sigma \left(x^3, \left\{ \frac{k}{n} \right\}_{k=0}^{n-1}, \left\{ \frac{k}{n} \right\}_{k=0}^{n-1} \right) = \int_0^1 x^3 \, \mathrm{d}x = \frac{x^4}{4} \bigg|_0^1 = \frac{1}{4}.$$

Example.
$$\lim_{n\to\infty} S_n, S_n = \sum_{k=1}^n \frac{2^{\frac{k}{n}}}{n+\frac{1}{k}}$$

$$S_n = \frac{1}{n} \sum_{k=1}^n \frac{2^{\frac{k}{n}}}{1 + \frac{1}{kn}} = S_n^{(1)} - S_n^{(2)},$$

where
$$S_n^{(1)} = \frac{1}{n} \sum_{k=1}^n 2^{\frac{k}{n}}, S_n^{(2)} = \frac{1}{n} \sum_{k=1}^n \frac{2^{\frac{k}{n}}}{1+kn}$$
. By $0 < S_n^{(2)} < \frac{2n}{n^2} = \frac{2}{n}$, we get $\lim_{n \to \infty} S_n^{(2)} = 0$, so

get
$$\lim_{n\to\infty} S_n^{(2)} = 0$$
, so

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} S_n^{(1)} = \int_0^1 2^x dx = \left. \frac{2^x}{\log 2} \right|_0^1 = \frac{1}{\log 2}.$$

Example.
$$I = \int_{-1}^{1} \frac{x^2 + 1}{x^4 + 1} dx$$
.

The 1-st method is to find a primitive for all $x \in [-1, 1]$.

$$F(x) = \int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} dx = \int \frac{d(x - \frac{1}{x})}{(x - \frac{1}{x})^2 + 2} = \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}}$$
$$+ \frac{\pi}{2\sqrt{2}} \operatorname{sign} x + C. \qquad I = F(1) - F(-1) = \frac{\pi}{\sqrt{2}}.$$

The 2-nd method is to apply additivity of the integral w.r.t. the interval and to exploit the Newton-Leibniz formula to each interval.

$$I = \int_{-1}^{1} \frac{x^2 + 1}{x^4 + 1} dx = \int_{-1}^{0} \frac{x^2 + 1}{x^4 + 1} dx + \int_{0}^{1} \frac{x^2 + 1}{x^4 + 1} dx$$
$$= \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} \Big|_{-1}^{-0} + \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} \Big|_{+0}^{1} = \frac{\pi}{\sqrt{2}}.$$

Theorem

If $f \in \mathcal{R}[a,b]$, F is continuous on [a,b], and F is a primitive of f on [a,b] except a finite number of points, then $\int_a^b f = F(b) - F(a) =: F(x) \Big|_a^b$.

Proof. Let c_1, \ldots, c_m be all points, where $F'(x) \neq f(x)$. We denote $c_0 := a, c_{m+1} = b$. Then

$$\int_{c_k}^{c_{k+1}} f = \lim_{\varepsilon \to 0} \int_{c_k + \varepsilon}^{c_{k+1} - \varepsilon} f = \lim_{\varepsilon \to 0} \left(F(c_{k+1} - \varepsilon) - F(c_k + \varepsilon) \right)$$
$$= F(c_{k+1}) - F(c_k). \quad \text{By additivity,}$$

$$\int_{a}^{b} f = \sum_{k=0}^{m} \int_{c_{k}}^{c_{k+1}} f = \sum_{k=0}^{m} F(c_{k+1}) - F(c_{k}) = F(b) - F(a) \quad \Box$$

Example.
$$\int_{-1}^{1} \operatorname{sign} t \, dt = |t| \Big|_{-1}^{1} = 0.$$

Remark. $F \in C[a, b]$ is important. For f(x) = 0, $F(x) = \operatorname{sign} x$,

$$0 = \int_{-1}^{1} f \neq F|_{-1}^{1} = 2.$$

47 / 76

Example.
$$I = \int_{-1}^{3} \frac{f'(x) dx}{1 + f^2(x)}$$
, where $f(x) = \frac{(x+1)^2(x-1)}{x^3(x-2)}$.

Since $\frac{f'(x)}{1+f^2(x)}$ is continuous and bounded on

 $D := [-1,0) \cup (0,2) \cup (2,3]$, it follows by Lemma that the integral is well-defined.

Let $F(x) := \arctan f(x)$. For every $x \in D$ we have $F'(x) = \frac{f'(x)}{1 + f^2(x)}$.

F can be extended to the continuous functions from the intervals [-1,0), (0,2), (2,3] to the intervals [-1,0], [0,2], [2,3] respectively.

Applying consequently the additivity of the integral w.r.t. the interval and the last Theorem we get

$$I = \int_{-1}^{0} \frac{f'(x) \, \mathrm{d}x}{1 + f^{2}(x)} + \int_{0}^{2} \frac{f'(x) \, \mathrm{d}x}{1 + f^{2}(x)} + \int_{2}^{3} \frac{f'(x) \, \mathrm{d}x}{1 + f^{2}(x)}$$
$$= (F(-0) - F(-1)) + (F(2 - 0) - F(+0)) + (F(3) - F(2 + 0))$$
$$= \left(-\frac{\pi}{2} - 0\right) + \left(-\frac{\pi}{2} - \frac{\pi}{2}\right) + \left(\arctan\frac{32}{27} - \frac{\pi}{2}\right) = \arctan\frac{32}{27} - 2\pi.$$

Example. Explain, why the equality is incorrect $\int_{-1}^{1} \frac{dx}{x^2} = -\frac{1}{x} \Big|_{-1}^{1} = -2$.

1.
$$\frac{1}{x^2} \notin \mathcal{R}[-1,1],$$
 2. $\left(\frac{1}{x^2}\right)' = -\frac{1}{x}$ is incorrect at $x = 0$.

Remark. The fundamental theorem of integral calculus is a result on a restoring a function via its derivative: If F is differentiable on [a,b] and

$$F' \in \mathcal{R}[a, b]$$
, then $\int_a^x F' + F(a) = F(x)$ for any $x \in [a, b]$.

Example. f has a primitive on $[a, b] \Rightarrow f \in \mathcal{R}[a, b]$, in other words, $\exists F : F' \notin \mathcal{R}[a, b]$.

$$F(x) = \begin{cases} x^2 \sin(1/x^3), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

$$f(x) = F'(x) = \begin{cases} 2x \sin(1/x^3) - 3/x^2 \cos(1/x^3), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

f is not bounded in a neighborhood of $x = 0 \Rightarrow f \notin \mathcal{R}[a, b]$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくで

Theorem (Integration by parts in the Riemann integral)

If f,g are differentiable on [a,b] and $f',g' \in \mathcal{R}[a,b]$, then

$$\int_a^b f'g = fg\big|_a^b - \int_a^b fg'.$$

Proof. f, g are differentiable on $[a, b] \Rightarrow f, g$ are continuous on $[a, b] \Rightarrow f, g \in \mathcal{R}[a, b] \Longrightarrow f'g, fg' \in \mathcal{R}[a, b] \Rightarrow f'g + fg' \in \mathcal{R}[a, b].$

By the fundamental theorem of integral calculus,

$$\int_{a}^{b} f'g + \int_{a}^{b} fg' = \int_{a}^{b} (f'g + fg') = fg\big|_{a}^{b} \quad \Box$$

Theorem (Change of Variable in the Riemann integral)

If $f \in C[a, b]$, $\varphi : [\alpha, \beta] \to [a, b]$, φ is differentiable on [a, b], $\varphi' \in \mathcal{R}[\alpha, \beta]$, then

$$\int_{\alpha}^{\beta} (f \circ \varphi) \varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta)} f.$$

Proof.
$$f \circ \varphi \in C[\alpha, \beta] \Rightarrow f \circ \varphi \in \mathcal{R}[\alpha, \beta] \underset{\varphi' \in \mathcal{R}[\alpha, \beta]}{\Longrightarrow} (f \circ \varphi) \varphi' \in \mathcal{R}[\alpha, \beta]$$

Let F be a primitive of f on [a, b], then

$$(F \circ \varphi)'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t).$$

So, $F \circ \varphi$ is a primitive of $(f \circ \varphi)\varphi'$ on $[\alpha, \beta]$. By the fundamental theorem of integral calculus,

$$\int_{\alpha}^{\beta} (f \circ \varphi) \varphi' = F \circ \varphi \big|_{\alpha}^{\beta} = F \big|_{\varphi(\alpha)}^{\varphi(\beta)} = \int_{\varphi(\alpha)}^{\varphi(\beta)} f. \quad \Box$$

Example.
$$\int_0^a \sqrt{a^2 - x^2} dx = [x = a \sin t] = a^2 \int_0^{\pi/2} \cos^2 t dt = \frac{a^2}{2} \left(t + \frac{\sin 2t}{2} \right) \Big|_0^{\pi/2} = \frac{\pi a^2}{4}.$$

Example. The polynomials $P_n(x) = \frac{1}{2^n n!} \frac{d^n \lfloor (x^2 - 1)^n \rfloor}{dx^n}$, n = 0, 1, 2, ..., are called **Legendre polynomials**. Let us prove that

$$\int_{-1}^{1} Q_m(x) P_n(x) dx = 0 \text{ for any polynomial } Q_m \text{ of order } m < n.$$

Since $\frac{d^k \lfloor (x^2-1)'' \rfloor}{dx^k}$, $k=0,\ldots,n-1$ is equal to 0 at x=-1 and x=1, integrating by parts we get

$$\int_{-1}^{1} Q_m(x) \frac{d^n \left[\left(x^2 - 1 \right)^n \right]}{dx^n} dx = Q_m(x) \frac{d^{n-1} \left[\left(x^2 - 1 \right)^n \right]}{dx^{n-1}} \bigg|_{-1}^{1}$$
$$- \int_{-1}^{1} Q'_m(x) \frac{d^{n-1} \left[\left(x^2 - 1 \right)^n \right]}{dx^{n-1}} dx = \dots$$

$$= (-1)^m \int_{-1}^1 Q_m^{(m)}(x) \frac{d^{n-m} \left[\left(x^2 - 1 \right)^n \right]}{dx^{n-m}} dx$$
$$= (-1)^m Q_m^{(m)}(x) \frac{d^{n-m-1} \left[\left(x^2 - 1 \right)^n \right]}{dx^{n-m-1}} \bigg|_{-1}^1 = 0,$$

 $Q_m^{(m)}(x)$ is a constant.

Example. $I = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$. Integrating by parts, we obtain

$$I_n = \cos x \sin^{n-1} x \Big|_{\frac{\pi}{2}}^0 + (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$$
$$= (n-1) \left(\int_0^{\frac{\pi}{2}} \sin^{n-2} x dx - \int_0^{\frac{\pi}{2}} \sin^n x dx \right) = (n-1) \left(I_{n-2} - I_n \right).$$

By the recursion formula $I_n = \frac{n-1}{n}I_{n-2}$ we get

$$I_{n} = \begin{cases} \frac{(2k-1)!!}{(2k)!!} \cdot \frac{\pi}{2}, & n = 2k, \\ \frac{(2k)!!}{(2k+1)!!}, & n = 2k+1. \end{cases}$$

$$I = \int_{0.5}^{2} \left(1 + x - \frac{1}{x} \right) e^{x + \frac{1}{x}} dx = \left[x + \frac{1}{x} = t, x = \frac{t \pm \sqrt{t^2 - 4}}{2} \right].$$

$$I = \int_{0.5}^{1} \left(1 + x - \frac{1}{x} \right) e^{x + \frac{1}{x}} dx + \int_{1}^{2} \left(1 + x - \frac{1}{x} \right) e^{x + \frac{1}{x}} dx = I_1 + I_2.$$

$$I_1 = \left[x = \frac{t - \sqrt{t^2 - 4}}{2} \right] = 0.5 \int_{2.5}^{2} e^t \left(1 - \frac{t}{\sqrt{t^2 - 4}} + t - \sqrt{t^2 - 4} \right) dt,$$

$$I_2 = \left[x = \frac{t + \sqrt{t^2 - 4}}{2} \right] = 0.5 \int_{2}^{2.5} e^t \left(1 + \frac{t}{\sqrt{t^2 - 4}} + t + \sqrt{t^2 - 4} \right) dt.$$

$$I = \int_{2}^{2.5} e^t \left(\frac{t}{\sqrt{t^2 - 4}} + \sqrt{t^2 - 4} \right) dt = \int_{2}^{2.5} e^t d\sqrt{t^2 - 4} dt$$

$$+ \int_{2}^{2.5} e^t \sqrt{t^2 - 4} dt$$

$$= e^t \sqrt{t^2 - 4} \Big|_{2}^{2.5} - \int_{2}^{2.5} e^t \sqrt{t^2 - 4} dt + \int_{2}^{2.5} e^t \sqrt{t^2 - 4} dt = 1.5e^{2.5}.$$
Final states (SSSI)

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous periodic function, T be a period of f. Prove that $\int_a^{a+T} f(x)dx = \int_0^T f(x) dx$, where a is an arbitrary real number.

By additivity
$$\int_{a}^{a+T} f(x) dx = \int_{a}^{T} f(x) dx + \int_{T}^{a+T} f(x) dx.$$
By periodicity
$$\int_{T}^{a+T} f(x) dx = \int_{T}^{a+T} f(x-T) dx.$$

Appying substitution x - T = t, we get

$$\int_T^{a+T} f(x-T) dx = \int_0^a f(t) dt.$$

Therefore,

$$\int_{a}^{a+T} f(x) \, \mathrm{d}x = \int_{0}^{a} f(x) \, \mathrm{d}x + \int_{a}^{T} f(x) \, \mathrm{d}x = \int_{0}^{T} f(x) \, \mathrm{d}x.$$

Elena Lebedeva (SPSU)

Example. Let f be a T-periodic continuous function. Prove that the function $F: x \mapsto \int_{x_0}^x f(t) \, \mathrm{d}t, \quad x \in \mathbb{R}$, is a sum of a linear function and a T-periodic function.

By the Theorem (Integral with variable upper limit) $\forall x \in \mathbb{R}$ F'(x) = f(x). By periodicity of f, we get F'(t+T) = f(t). Integrating over $[x_0, x]$, we obtain $F(x+T) - F(x_0+T) = F(x)$. Since

$$F(x_0 + T) = \int_{x_0}^{x_0 + T} f(t) dt = \int_0^T f(t) dt = C,$$

it follows that F(x+T)-F(x)=C. If C=0, then F(x+T)=F(x) and F is a T-periodic function. Let $C\neq 0$, consider the function

$$\Phi: x \mapsto F(x) - \frac{C}{T}x, \quad x \in \mathbb{R}.$$

Since Φ is T-periodic, it follows that

$$F(x) = \Phi(x) + \frac{C}{T}x, \quad x \in \mathbb{R},$$

is a sum of a periodic and a linear function.

Example.
$$I = \int_0^{200\pi} \sqrt{1 - \cos 2x} \, \mathrm{d}x$$
. $I = \sqrt{2} \int_0^{200\pi} |\sin x| \, \mathrm{d}x$, the function $x \mapsto |\sin x|, x \in \mathbb{R}$, is π -periodic, so,

$$I = 200\sqrt{2} \int_0^{\pi} \sin x \, \mathrm{d}x = 400\sqrt{2}.$$

Example. Find the integral $I = \int_0^{\pi} \frac{\sin nx}{\sin x} dx$, if it exists.

Since
$$\lim_{x\to +0} \frac{\sin nx}{\sin x} = n$$
, $\lim_{x\to \pi-0} \frac{\sin nx}{\sin x} = (-1)^{n+1}n$, it follows that

$$\int_0^{\pi} \frac{\sin nx}{\sin x} \, \mathrm{d}x = \int_0^{\pi} f(x) \, \mathrm{d}x, \text{ where } f(x) = \begin{cases} \frac{\sin nx}{\sin x}, & x \in (0, \pi), \\ n, & x = 0, \\ (-1)^{n+1}n, & x = \pi. \end{cases}$$

By the Euler formula
$$\sin kx = \frac{1}{2i} \left(e^{ikx} - e^{-ikx} \right), k = 1, n, \text{ so}$$

$$f(x) = \frac{e^{inx} - e^{-inx}}{e^{ix} - e^{-ix}} = \sum_{k=1}^{n} e^{i((n+1)-2k)x}$$

$$= \begin{cases} 2(\cos(n-1)x + \cos(n-3)x + \dots + \cos x), & n \text{ is even,} \\ 2(\cos(n-1)x + \cos(n-3)x + \dots + \cos 2x) + 1, n \text{ is odd.} \end{cases}$$

By
$$\int_0^{\pi} \cos(n-k)x \, dx = \frac{\sin(n-k)x}{n-k} \Big|_0^{\pi} = 0, k = 1, 2, ..., n-1$$
, we finally

$$get I = \begin{cases} 0, & n \text{ is even,} \\ \pi, & n \text{ is odd.} \end{cases}$$

Elena Lebedeva (SPSU)

Example. $\int_0^x e^{t^2} dt \sim \frac{e^{x^2}}{2x}$ as $x \to +\infty$.

Applying L'Hôpital's rule we get

$$\lim_{x \to +\infty} \frac{2x \int_{0}^{x} e^{t^{2}} dt}{e^{x^{2}}} = \lim_{x \to +\infty} \frac{\frac{d}{dx} \left(2x \int_{0}^{x} e^{t^{2}} dt\right)}{\frac{d}{dx} e^{x^{2}}} = \lim_{x \to +\infty} \frac{2 \int_{0}^{x} e^{t^{2}} dt + 2x e^{x^{2}}}{2x e^{x^{2}}}$$

$$= \lim_{x \to +\infty} \left(\frac{\int_{0}^{x} e^{t^{2}} dt}{x e^{x^{2}}} + 1\right) = \lim_{x \to +\infty} \left(\frac{\frac{d}{dx} \int_{0}^{x} e^{t^{2}} dt}{\frac{d}{dx} \left(x e^{x^{2}}\right)} + 1\right)$$

$$= \lim_{x \to +\infty} \left(\frac{e^{x^{2}}}{e^{x^{2}} + 2x^{2} e^{x^{2}}} + 1\right) = 1.$$

Lemma (Summation by parts or the Abel transformation)

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}), \text{ where } A_k := \sum_{i=1}^{k} a_i.$$

Proof.
$$A_0 := 0$$
, $\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (A_k - A_{k-1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k$
= $\sum_{k=1}^{n} A_k b_k - \sum_{k=0}^{n-1} A_k b_{k+1} = \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) + A_n b_n - \underbrace{A_0 b_1}_{=0}$. \square

Lemma (*)

If
$$m \leq A_k \leq M$$
, $b_i \geq 0$, $b_i \geq b_{i+1}$, then $mb_1 \leq \sum_{k=1}^{n} a_k b_k \leq Mb_1$.

Proof.

$$\sum_{k=1}^{n} a_k b_k \leq Mb_n + \sum_{k=1}^{n-1} M(b_k - b_{k+1}) = Mb_n + M(b_1 - b_n) = Mb_1. \square$$

60 / 76

Lemma

If $f \in \mathcal{R}[a,b]$, $g \ge 0$, g is nonincreasing on [a,b], then

$$\exists \, \xi \in [a,b] \int_a^b f g = g(a) \int_a^{\xi} f$$

Proof. Let $\tau = \{x_k\}_{k=0}^n$ be a partition of $[a, b], L := \sup f([a, b]),$

$$\int_{a}^{b} fg = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} fg = \sum_{k=0}^{n-1} g(x_{k}) \int_{x_{k}}^{x_{k+1}} f(x) dx$$

$$+ \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x) (g(x) - g(x_{k})) dx =: S_{1} + S_{2}.$$

$$|S_{2}| \leq \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} \underbrace{|f(x)|}_{S_{2}} \underbrace{|g(x) - g(x_{k})|}_{S_{2}} dx \leq L \sum_{k=0}^{n-1} \omega_{k}(g) \Delta x_{k} \to 0$$

as
$$\lambda_ au o 0. \Rightarrow \mathcal{S}_1 o \int^b \mathit{fg}, \ \mathsf{as} \ \lambda_ au o 0.$$

$$S_1 = \sum_{k=0}^{n-1} g(x_k) \int_{x_k}^{x_{k+1}} f(x) dx = \sum_{k=0}^{n-1} g(x_k) \left(F(x_{k+1}) - F(x_k) \right)$$

$$= \sum_{k=1}^{n} g(x_{k-1}) (F(x_k) - F(x_{k-1})), \text{ where } F(x) := \int_{a}^{x} f. \text{ We denote}$$

$$a_k := F(x_k) - F(x_{k-1}), \ b_k := g(x_{k-1}). \ \text{Then} \ A_k = \sum_{i=1}^n a_i = F(x_k).$$

$$F \in C[a,b] \Rightarrow \min F([a,b]) =: m \leq F(x_k) \leq M := \max_{i=1}^{i=1} F([a,b]).$$

By Lemma (*),
$$mg(a) \leq \sum_{k=1} g(x_{k-1}) (F(x_k) - F(x_{k-1})) \leq Mg(a) \Rightarrow$$

$$mg(a) \leq \int_a^b fg \leq Mg(a).$$

If g(a) = 0, then g = 0, $\int_a^b fg = 0$, any ξ is appropriate.

If $g(a) \neq 0$, then $m \leq \frac{1}{g(a)} \int_a^b fg \leq M$. By the Bolzano intermediate

value theorem for
$$F$$
, $\exists \xi \in [a,b]$ $F(\xi) = \frac{1}{g(a)} \int_{a}^{b} fg$.

Theorem (The second mean value theorem for the Riemann integral) If $f \in \mathcal{R}[a, b]$, g is monotonic on [a, b], then

$$\exists \, \xi \in [a,b] \quad \int_a^b fg = g(a) \int_a^\xi f + g(b) \int_\xi^b f.$$

Proof. Let g be nondecreasing on [a,b]. Then $g_1(x) := g(b) - g(x)$ is nonnegative and nonincreasing on [a,b]. By the last Lemma, $\exists \xi \in [a,b]$

$$\int_{a}^{b} fg_{1} = g_{1}(a) \int_{a}^{\xi} f \Leftrightarrow g(b) \int_{a}^{b} f - \int_{a}^{b} fg = (g(b) - g(a)) \int_{a}^{\xi} f$$

$$\Leftrightarrow g(b) \left(\int_{a}^{b} f - \int_{a}^{\xi} f \right) + g(a) \int_{a}^{\xi} f = \int_{a}^{b} fg.$$

If g is nonincreasing on [a, b]. Then $g_1(x) := g(x) - g(b)$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Elena Lebedeva (SPSU)

Example. Define the sign of the integral $I = \int_0^{2\pi} \frac{\sin x}{x} dx$ via the mean value theorems.

Since $\lim_{x\to 0} \frac{\sin x}{x} = 1$, it follows that I is well-defined.

$$I = \int_0^{\pi} \frac{\sin x}{x} dx + \int_{\pi}^{2\pi} \frac{\sin x}{x} dx = \int_0^{\pi} \frac{\sin x}{x} dx + \int_0^{\pi} \frac{\sin(t+\pi)}{t+\pi} dt$$
$$= \pi \int_0^{\pi} \frac{\sin x}{x(x+\pi)} dx = \pi \frac{\sin \xi}{\xi} \int_0^{\pi} \frac{dx}{x+\pi} = \pi \frac{\sin \xi}{\xi} \log(x+\pi) \Big|_0^{\pi}$$
$$= \pi \frac{\sin \xi}{\xi} \log 2, \quad 0 < \xi < \pi \Rightarrow I > 0.$$

Example. Estimate the integral $I = \int_0^{2\pi} \frac{\mathrm{d}x}{1 + 0.5 \cos x}$. By the first mean value theorem

$$I = \frac{2\pi}{1 + 0.5\cos\xi}, \quad 0 < \xi < 2\pi.$$

$$-1 \le \cos \xi \le 1 \quad \Rightarrow \quad \frac{1}{2} \le 1 + 0.5 \cos \xi \le \frac{3}{2} \quad \Rightarrow \quad \frac{4\pi}{3} \le I \le 4\pi.$$

Example. Estimate the integral $I = \int_{100}^{200} \sin \pi x^2 dx$.

$$I = \left[\pi x^2 = t\right] = \frac{1}{2\sqrt{\pi}} \int_{100^2 \pi}^{200^2 \pi} \frac{\sin t}{\sqrt{t}} dt$$

$$=\frac{1}{2\sqrt{\pi}}\left(\frac{1}{100\sqrt{\pi}}\int_{100^2\pi}^\xi \sin t\,\mathrm{d}t + \frac{1}{200\sqrt{\pi}}\int_\xi^{200^2\pi} \sin t\,\mathrm{d}t\right) = \frac{1-\cos\xi}{400\pi},$$

$$100^2 \pi < \xi < 200^2 \pi, \quad 0 < I < \frac{1}{200\pi}.$$

Example.
$$\lim_{n\to\infty} \int_{p}^{n+p} \frac{\sin x}{x} dx = 0, p > 0.$$

$$I_n = \int_n^{n+p} \frac{\sin x}{x} dx = \frac{1}{n} \int_n^{\xi_n} \sin x dx = \frac{\cos n - \cos \xi_n}{n}, \quad n < \xi_n < n + p.$$

By the estimate
$$|I_n| = \frac{|\cos n - \cos \xi_n|}{n} \le \frac{2}{n}$$
, we obtain $\lim_{n \to \infty} I_n = 0$.

Theorem (Taylor's formula with the reminder in integral form)

If $f \in C^{n+1}(a, b), n \in \mathbb{Z}_+, x, x_0 \in (a, b)$, then

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} f^{n+1}(t) (x - t)^n dt$$

Proof. Induction on n. n = 0: $f \in C^1(a, b)$, $f(x) = f(x_0) + \int_{x_0}^x f'$. By the fundamental theorem of integral calculus, it is true. Suppose

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{(n-1)!} \int_{x_0}^x f^n(t) (x - t)^{n-1} dt. \text{ Then}$$

$$\frac{1}{(n-1)!} \int_{x_0}^x f^n(t) (x - t)^{n-1} dt = \frac{-1}{n!} \int_{x_0}^x f^n(t) d(x - t)^n$$

$$= \frac{-1}{n!} \left(f^{(n)}(t) (x - t)^n \Big|_{t=x_0}^{t=x} - \int_{x_0}^x f^{n+1}(t) (x - t)^n dt \right)$$

$$= \frac{1}{n!} \left(f^{(n)}(x_0) (x - x_0)^n + \int_{x_0}^x f^{n+1}(t) (x - t)^n dt \right). \square$$

Remark. By the first mean value theorem there exists $c \in [x_0, x]$

$$\frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t) (x-t)^n dt = \frac{f^{(n+1)}(c)}{n!} \int_{x_0}^{x} (x-t)^n dt$$
$$= \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1}.$$

So, integral form of the reminder implies the Lagrange form, however assumptions are more restrictive:

 C^{n+1} versus C^n and existence of f^{n+1} .

Example. The Wallis formula $\pi = \lim_{n \to \infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$.

For $x \in (0, \frac{\pi}{2})$, $0 < \sin x < 1$, so for $n \in \mathbb{N}$

$$\sin^{2n+1} x < \sin^{2n} x < \sin^{2n-1} x,$$

$$\int_0^{\pi/2} \sin^{2n+1} x \, \mathrm{d}x < \int_0^{\pi/2} \sin^{2n} x \, \mathrm{d}x < \int_0^{\pi/2} \sin^{2n-1} x \, \mathrm{d}x,$$

$$\frac{(2n)!!}{(2n+1)!!} < \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2} < \frac{(2n-2)!!}{(2n-1)!!}$$

$$\left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n+1} < \frac{\pi}{2} < \left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n}.$$

Denote by
$$x_n = \left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{n}$$
.

$$\pi < x_n < \frac{2n+1}{2n}\pi, \quad x_n \to \pi.$$

Theorem (Hölder's inequality for integrals)

Suppose $f,g \in C[a,b]$, 1/p+1/q=1 (p and q are called conjugate exponents), then

$$\left| \int_a^b fg \right| \leqslant \left(\int_a^b |f|^p \right)^{1/p} \left(\int_a^b |g|^q \right)^{1/q}$$

Proof. Let $x_k = a + \frac{k(b-a)}{n}$, $k = 0, \ldots, n$, $a_k = f(x_k)(\Delta x_k)^{1/p}$, $b_k = g(x_k)(\Delta x_k)^{1/q}$. Then $a_k b_k = f(x_k)g(x_k)\Delta x_k$ by 1/p + 1/q = 1. Applying Hölder's inequality for sums

$$\left| \sum_{k=0}^{n-1} a_k b_k \right| \leqslant \left(\sum_{k=0}^{n-1} |a_k|^p \right)^{1/p} \left(\sum_{k=0}^{n-1} |b_k|^q \right)^{1/q}, \text{ we get }$$

$$\left| \sum_{k=0}^{n-1} f(x_k) g(x_k) \Delta x_k \right| \leq \left(\sum_{k=0}^{n-1} |f(x_k)|^p \Delta x_k \right)^{1/p} \left(\sum_{k=0}^{n-1} |g(x_k)|^q \Delta x_k \right)^{1/q}.$$

It remains to pass to the limit $n \to \infty$.

Corollary (Cauchy's inequality for integrals)

Let $f, g \in C[a, b]$, then

$$\left| \int_a^b fg \right| \le \sqrt{\int_a^b f^2} \cdot \sqrt{\int_a^b g^2}.$$

Theorem (Minkowski's inequality for integrals)

Suppose $f, g \in C[a, b]$, $p \ge 1$, then

$$\left(\int_a^b |f+g|^p\right)^{1/p} \leqslant \left(\int_a^b |f|^p\right)^{1/p} + \left(\int_a^b |g|^p\right)^{1/p}.$$

Prove by yourself.

Theorem (Chebyshev's inequality for integrals)

Suppose f increases, g decreases on [a, b]. Then

$$\frac{1}{b-a}\int_a^b fg \leq \left(\frac{1}{b-a}\int_a^b f\right) \cdot \left(\frac{1}{b-a}\int_a^b g\right).$$

In other words, the arithmetical mean of the product of two dissimilar monotonic functions does not exceed the product of the means.

Proof. Let $A = \frac{1}{b-a} \int_a^b f$, $E = \{x \in [a,b] : f(x) \le A\}$. $E \ne \emptyset$, otherwise, f > A on [a,b], and integrating we obtain A > A. Let $c = \sup E$. Then $A - f \ge 0$, $g \ge g(c)$ on [a,c) and $A - f \le 0$, $g \le g(c)$ on [c,b]. Then

$$\int_{a}^{b} (A-f)g = \int_{a}^{c} (A-f)g + \int_{c}^{b} (A-f)g$$

$$\geq g(c) \int_{a}^{c} (A-f) + g(c) \int_{c}^{b} (A-f) = g(c) \int_{a}^{b} (A-f) = 0,$$

that has to be proved.

< ロ ト → 個 ト → 差 ト → 差 → かへで

72 / 76

Corollary (Chebyshev's inequality for sums)

Let $n \in \mathbb{N}$, $a, b \in \mathbb{R}^n$,

$$a_1 \leq \ldots \leq a_n, \quad b_1 \geq \ldots \geq b_n.$$

Then

$$\frac{1}{n}\sum_{k=1}^{n}a_{k}b_{k}\leq\left(\frac{1}{n}\sum_{k=1}^{n}a_{k}\right)\cdot\left(\frac{1}{n}\sum_{k=1}^{n}b_{k}\right).$$

Proof. We apply Chebyshev's inequality for integrals for piecewise constant functions $f,g:[0,1]\to\mathbb{R}$, taking the values a_k and b_k on $\left(\frac{k-1}{n},\frac{k}{n}\right)$. (Values of f and g on the finite set of points do not affect the integrals.)

Example. Let $f \in C^1[a, b]$ and f(a) = 0. Prove the inequality

$$M^2 \le (b-a) \int_a^b f'^2(x) \, \mathrm{d}x,$$

where $M = \sup_{x \in [a,b]} \{ |f(x)| \}$. Cauchy's inequality

$$\left| \int_{a}^{x} \tilde{f}(t)g(t) dt \right| \leq \sqrt{\int_{a}^{x} \tilde{f}^{2}(t) dt} \sqrt{\int_{a}^{x} g^{2}(t) dt}$$

where $g(t) = f'(t), \tilde{f}(t) = 1, x \in [a, b]$, takes the form

$$\sqrt{\int_a^x (f')^2(t) dt} \sqrt{\int_a^x dt} \ge \left| \int_a^x f'(t) dt \right| = |f(x) - f(a)| = |f(x)|,$$

$$\sqrt{\int_a^b f'^2(t) dt} \sqrt{b - a} \ge |f(x)| \ge M.$$

Definition (Average of a function)

Let $f \in \mathcal{R}[a,b]$ for any $[a,b] \subset \mathbb{R}$. The function

$$F_{\delta}(x) = \frac{1}{2\delta} \int_{x-\delta}^{x+\delta} f(t) dt$$

is called the average (or the Steklov average) of f.

Properties of F_{δ} .

1. $F_{\delta} \in C(\mathbb{R})$.

Let $|f(x)| \leq C$, and $|h| < \delta$. Then

$$|F_{\delta}(x+h) - F_{\delta}(x)| = \frac{1}{2\delta} \left| \int_{x+\delta}^{x+\delta+h} f(t) dt + \int_{x-\delta+h}^{x-\delta} f(t) dt \right|$$

$$\leq \frac{1}{2\delta} (C|h| + C|h|) = \frac{C}{\delta} |h|.$$

2. If $f \in C^k(\mathbb{R})$, then $F_{\delta}(x) \in C^{k+1}(\mathbb{R})$.

By the chain rule,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{\varphi(x)} f(t) \mathrm{d}t = \frac{\mathrm{d}}{\mathrm{d}\varphi} \int_{a}^{\varphi} f(t) \mathrm{d}t \cdot \frac{\mathrm{d}\varphi}{\mathrm{d}x} = f(\varphi(x)) \varphi'(x).$$

Since

$$F_{\delta}(x) = \frac{1}{2\delta} \int_{a}^{x+\delta} f(t) dt - \frac{1}{2\delta} \int_{a}^{x-\delta} f(t) dt,$$

it follows that

$$F'_{\delta}(x) = \frac{f(x+\delta) - f(x-\delta)}{2\delta}.$$

3. If $f \in C(\mathbb{R})$, than $\lim_{\delta \to \pm 0} F(\delta)(x) = f(x)$.

$$F_{\delta}(x) = [t = x + u] = \frac{1}{2\delta} \int_{-\delta}^{\delta} f(x + u) du.$$

The first mean-value theorem yields

$$F_{\delta}(x) = \frac{1}{2\delta}f(x+\tau) \cdot 2\delta = f(x+\tau),$$

where $|\tau| < \delta$.