MATH 562 Spring 2016 Final Exam

1. (10 points) Let $A \in \mathbf{R}^{m \times m}$ be written in the form A = L + D + U where L is the strictly lower triangular part of A, D is the diagonal part of A, and U is the strictly upper triangular part of A. Assuming D is invertible, $A\mathbf{x} = \mathbf{b}$ is equivalent to $\mathbf{x} = -D^{-1}(L+U)\mathbf{x} + D^{-1}\mathbf{b}$. The Jacobi iteration method for solving Ax = b is defined by

$$\mathbf{x}^{(n+1)} = -D^{-1}(L+U)\mathbf{x}^{(n)} + D^{-1}\mathbf{b}.$$

Show that if A is nonsingular and strictly row diagonally dominant:

$$0 < \sum_{j \neq i} |a_{ij}| < |a_{ii}|, \quad i = 1, ..., m,$$

then Jacobi iteration converges to $\mathbf{x}_{\star} = A^{-1}\mathbf{b}$, for each fixed $\mathbf{b} \in \mathbf{R}^{m}$. (Hint: The norm $||\cdot||_{\infty}$ is a convenient one to use.)

2. (10 points) Let $A \in \mathbf{R}^{m \times m}$ be symmetric positive definite (SPD), $\mathbf{b} \in \mathbf{R}^m$ and define $\phi : \mathbf{R}^m \to \mathbf{R}$ by

$$\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b}.$$

Suppose K is a subspace of \mathbf{R}^m . Show that $\hat{\mathbf{x}} \in K$ minimizes $\phi(\mathbf{x})$ over K if and only if $\nabla \phi(\hat{\mathbf{x}}) \perp K$.

- 3. (10 points) Show that:
 - (a) (Forward-error analysis)

$$|fl(\mathbf{x}^T\mathbf{a}) - \mathbf{x}^T\mathbf{a}| \le n\epsilon_{machine}|\mathbf{x}|^T|\mathbf{a}| + O(\epsilon_{machine}^2),$$

where \mathbf{x} , \mathbf{a} are *n*-dimensional floating point vectors and $fl(\mathbf{x}^T\mathbf{a})$ represents floating point computation of dot product between \mathbf{x} and \mathbf{a} . $|\mathbf{x}|$ represents the vector containing absolute values of \mathbf{x} . (hint: by induction)

(b) (Forward-error analysis)

$$||fl(XA) - XA||_F \le n\epsilon_{machine} ||X||_F ||A||_F + O(\epsilon_{machine}^2),$$

where X, A are $n \times n$ dimensional floating point matrices and fl(XA) represents floating point computation of matrix multiplication between X and A.

(c) (Backward-error analysis) Show that the relative backward error $\frac{\|\delta A\|_F}{\|A\|_F} \leq n\kappa(X)O(\epsilon_{machine})$, where $\kappa(X) = \|X\|_F \|X^{-1}\|_F$, $fl(XA) = X(A + \delta A)$.

4. (10 points) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Let Gaussian ellimination be carried out on A without pivoting. After k steps, A will be reduced to the form

$$A^{(k)} = \begin{pmatrix} A_{11}^{(k)} & A_{12}^{(k)} \\ 0 & A_{22}^{(k)} \end{pmatrix}$$

where $A_{22}^{(k)}$ is an $(n-k) \times (n-k)$ matrix. Show by induction

- a). $A_{22}^{(k)}$ is symmetric positive definite, b). $a_{ii}^{(k)} \leq a_{ii}^{(k-1)}$ for all $k \leq i \leq n, \ k=1,\ldots,n-1$.
- 5. (5 points) Let $A \in \mathbb{R}^{m \times n}$ be an $m \times n$ matrix, m > n, and

$$A = \left(\begin{array}{c} A_1 \\ A_2 \end{array}\right)$$

where A_1 is an $n \times n$ nonsingular matrix, and A_2 an $(m-n) \times n$ arbitrary matrix.

- a). What is the pseudo-inverse A^+ of A such that $A^+A = I_n$? Express it explicitly in A_1 and A_2 .
- b). Prove that $||A^+||_2 \le ||A_1^{-1}||_2$.
- 6. (10 points) Let $A \in \mathbb{C}^{m \times m}$ with rank(A) = r. Suppose and SVD of A is given by $A = U\Sigma V^*$, where $\mathbf{u}_1, ..., \mathbf{u}_m$ denote the columns of U and $\mathbf{v}_1, ..., \mathbf{v}_m$ denote the columns of V. Prove that $\langle \mathbf{v}_{r+1},...,\mathbf{v}_m \rangle = null(A)$.
- 7. (10 points) Problem 33.2 (Page 255) of the textbook.
- 8. (5 points) Problem 36.1 (Page 283) of the textbook.
- 9. (10 points) Let $f: R \to R$ be twice continuously differentiable for all x in the neighborhood $\{x \in R : |x - \xi| < r\}$ of a simple zero ξ of f such that $f(\xi) = 0$. Consider the two-step Newton method:

$$y_k = x_k - f(x_k)/f'(x_k), \qquad x_{k+1} = y_k - f(y_k)/f'(x_k).$$

a). Show that if the method converges, then

$$\lim_{k \to \infty} \frac{x_{k+1} - \xi}{(y_k - \xi)(x_k - \xi)} = \frac{f''(\xi)}{f'(\xi)}.$$

b). The convergence is cubic:

$$\lim_{k \to \infty} \frac{x_{k+1} - \xi}{(x_k - \xi)^3} = \frac{1}{2} \left(\frac{f''(\xi)}{f'(\xi)} \right)^2.$$

10. (30 points) Matlab project.