

Contents					2.11		20
1 数学			1		0.10	(, , , , , , , , , , , , , , , , , , ,	20
L	奴 1.1	「 多项式	1			7(111=111)	20
	1.1	多模式 · · · · · · · · · · · · · · · · · · ·	1				20
		1.1.2 NTT	1		2.14		21
		1.1.3 任意模数卷积(MTT, 毛梯梯)	2			F 17 = F1711 117 1	21 21
		1.1.4 多项式操作	$\frac{2}{3}$				21 21
		1.1.5 更优秀的多项式多点求值	5			2.14.3 其他常用公式	<u>. 1</u>
		1.1.6 多项式快速插值	6	3	图论	> 2	22
		1.1.7 拉格朗日反演(多项式复合逆)	7				22
		1.1.8 分治FFT	7				22
		1.1.9 半在线卷积	8			×1.1—	22
		$1.1.10$ 常系数齐次线性递推 $O(k \log k \log n)$	8				23
		$1.1.11$ 应用: $O(\sqrt{n}\log^2 n)$ 快速求阶乘	9			3.1.4 Steiner Tree 斯坦纳树	24
	1.2	插值	9			3.1.5 最小直径生成树	25
		1.2.1 牛顿插值	9		3.2	最短路	25
		1.2.2 拉格朗日(Lagrange)插值	9				25
		1.2.3 连续点值平移(待完成)	9				25
	1.3	FWT快速沃尔什变换	9				25
		1.3.1 三行FWT	10			•	26
	1.4	单纯形	10			– . – . –	26
		1.4.1 线性规划对偶原理	11				26
	1.5	线性代数	11		0.4		27
		1.5.1 矩阵乘法	11		3.4		27
		1.5.2 高斯消元	11		9.5		27
		1.5.3 行列式取模	11		3.5		28
		1.5.4 线性基(消成对角)	12 12				28 28
		1.5.5 线性代数知识	12				20 29
	1.6	博弈论	12				29 30
	1.0	1.6.1 SG定理	12		3.6		30
		1.6.2 纳什均衡	12		0.0		30
		1.6.3 经典博弈	12				31
		1.6.4 例题(待完成)	13				32
	1.7	自适应Simpson积分	13				34
	1.8	常见数列	13		3.7	· · —	34
		1.8.1 斐波那契数 卢卡斯数	13		3.8		34
		1.8.2 伯努利数, 自然数幂次和	13		3.9	最大流	35
		1.8.3 分拆数	13			3.9.1 Dinic	35
		1.8.4 斯特林数	14				35
		1.8.5 贝尔数	14				36
		1.8.6 欧拉数(Eulerian Number)	14		3.10	* 17 * 1112	37
		1.8.7 卡特兰数, 施罗德数, 默慈金数	15			- 11 - 11 -	37
	1.9	常用公式及结论	15			•	38
		1.9.1 方差	15		3.11		38
		1.9.2 单位根反演(展开整除条件[n k])	15			F 17 1111-	38
		1.9.3 康托展开(排列的排名)	15				38
		1.9.4 连通图计数	15			* · · · · · · ·	39
	1 10	1.9.5 线性齐次线性常系数递推求通项 常用生成函数变换	16 16			—	39 39
	1.10	吊用生风图数变换	10				39
2	数记	>	17		3 19		39
	2.1	$O(n)$ 预处理逆元 $\dots\dots\dots$	17				40
	2.2	线性筛	17		0.10	ANIMAK	10
	2.3	杜教筛	17	4	数排	3 结构 4	11
	2.4	Powerful Number筛	17				41
	2.5	洲阁筛	18				41
	2.6	离散对数(BSGS)(待完成)	19				41
	2.7	Miller-Rabin	19				42
	2.8	Pollard's Rho	19		4.2		42
	2.9	快速阶乘算法	20			,	42
	2.10	扩展欧几里德	20				43
		2.10.1 求通解的方法	20			———————————————————————————————————————	43
		2.10.2 类欧几里德算法(直线下整点个数)	20		4.4	平衡树	44

		4.4.1 Treap	44		6.2	例题(待完成)	73
		4.4.2 无旋Treap/可持久化Treap	45 45	7	斗乍	拿几何	71
	4.5	4.4.3 Splay	46	'			74
	4.0				1.1	Delaunay三角剖分 Voronoi图(待完成)	74
	16	4.5.1 动态树形DP(最大权独立集)	46	8	Міс	goollanaang	
	4.6	树分治	48	0		scellaneous	75
		4.6.1 动态树分治	48		8.1	O(1)快速乘	75
	4.7	4.6.2 紫荆花之恋	49		8.2	Kahan求和算法(减少浮点数累加的误差)	75
	4.7	LCT动态树	51		8.3	Python Decimal	75
		4.7.1 不换根(弹飞绵羊)	51		8.4	$O(n^2)$ 高精度	75
		4.7.2 换根/维护生成树	52		8.5	笛卡尔树	78
		4.7.3 维护子树信息	53		8.6	$GarsiaWachs$ 算法 $(O(n \log n)$ 合并石子 $)$	78
	4.0	4.7.4 模板题:动态QTREE4(询问树上相距最远点)	55		8.7	常用NTT素数及原根	78
	4.8	K-D树	57		8.8	xorshift	78
		4.8.1 动态K-D树(定期重构)	57		8.9	枚举子集	79
	4.9	LCA最近公共祖先	58		8.10	STL	79
		4.9.1 Tarjan LCA $O(n+m)$	58			8.10.1 vector	79
		虚树	58			8.10.2 list	79
	4.11	长链剖分	59			8.10.3 unordered_set / unordered_map	79
		4.11.1 梯子剖分	60		8.11	Public Based DataStructure(PB_DS)	79
		左偏树	60			8.11.1 哈希表	79
	4.13	莫队	60			8.11.2 堆	79
		4.13.1 回滚莫队(无删除莫队)(待完成)	60			8.11.3 平衡树	79
		4.13.2 莫队二次离线	60		8.12	rope	80
		$4.13.3$ 带修莫队在线化 $O(n^{\frac{5}{3}})$	62			其他C++相关	80
		$4.13.4$ 莫队二次离线 在线化 $O((n+m)\sqrt{n})$	62		00	8.13.1 <cmath></cmath>	80
	4.14	常见根号思路	63			8.13.2 <algorithm></algorithm>	80
_	<u>ب</u>	ተ				8.13.3 std::tuple	80
Э	字符		65			8.13.4 <complex></complex>	80
	5.1	KMP	65		8 14	一些游戏	80
		5.1.1 ex-KMP	65		0.14	8.14.1 炉石传说	80
		AC自动机	65		Q 15	OEIS	80
	5.3	后缀数组	66		0.10	8.15.1 计数相关	80
		5.3.1 倍增	66				81
		5.3.2 SA-IS	66			8.15.2 线性递推数列	
		5.3.3 SAMSA	67			8.15.3 数论相关	81
		后缀平衡树	68		0.10	8.15.4 其他	81
	5.5	后缀自动机	68			编译选项	
		5.5.1 广义后缀自动机	68		8.17	注意事项	82
		5.5.2 区间本质不同子串计数(后缀自动				8.17.1 常见下毒手法	82
		机+LCT+线段树)	69			8.17.2 场外相关	82
	5.6	回文树	69		_	8.17.3 做题策略与心态调节	82
		5.6.1 广义回文树	70		8.18	附录: vscode相关	82
	5.7	Manacher马拉车	71			8.18.1 插件	82
	5.8	字符串原理	72			8.18.2 设置选项	82
_						8.18.3 快捷键	82
6			73			附录: 骂人的艺术 —梁实秋	82
	6.1	决策单调性 $O(n\log n)$	73		8.20	附录: Cheat Sheet	83

1. 数学

1.1 多项式

1.1.1 FFT

```
// 使用时一定要注意double的精度是否足够(极限大概是10 ^ 14)
2
  const double pi = acos((double)-1.0);
3
4
  // 手写复数类
5
  // 支持加减乘三种运算
  // += 运算符如果用的不多可以不重载
  struct Complex {
      double a, b; // 由于Long double精度和double几乎相同,通
9
        → 常没有必要用Long double
10
      Complex(double a = 0.0, double b = 0.0) : a(a), b(b) {}
11
12
      Complex operator + (const Complex &x) const {
13
          return Complex(a + x.a, b + x.b);
14
15
16
      Complex operator - (const Complex &x) const {
17
          return Complex(a - x.a, b - x.b);
18
19
20
      Complex operator * (const Complex &x) const {
21
          return Complex(a * x.a - b * x.b, a * x.b + b *
22
            \hookrightarrow x.a);
23
      Complex operator * (double x) const {
25
          return Complex(a * x, b * x);
26
27
28
      Complex &operator += (const Complex &x) {
29
          return *this = *this + x;
30
31
32
      Complex conj() const { // 共轭, 一般只有MTT需要用
33
          return Complex(a, -b);
34
35
  } omega[maxn], omega_inv[maxn];
36
  const Complex ima = Complex(0, 1);
  int fft_n; // 要在主函数里初始化
39
40
  // FFT初始化
41
  void FFT_init(int n) {
42
      fft n = n;
43
44
      for (int i = 0; i < n; i++) // 根据单位根的旋转性质可以
45
        → 节省计算单位根逆元的时间
          omega[i] = Complex(cos(2 * pi / n * i), sin(2 * pi
46
            \hookrightarrow / n * i));
47
      omega_inv[0] = omega[0];
      for (int i = 1; i < n; i++)
          omega_inv[i] = omega[n - i];
50
      // 当然不存单位根也可以,只不过在FFT次数较多时很可能会
        → 增大常数
52
53
  // FFT主过程
54
  void FFT(Complex *a, int n, int tp) {
55
      for (int i = 1, j = 0, k; i < n - 1; i++) {
56
          k = n;
57
          do
58
```

```
j ^= (k >>= 1);
          while (j < k);
60
61
           if (i < j)
62
              swap(a[i], a[j]);
63
64
       for (int k = 2, m = fft_n / 2; k <= n; k *= 2, m /= 2)
66
           for (int i = 0; i < n; i += k)
               for (int j = 0; j < k / 2; j++) {
68
                   Complex u = a[i + j], v = (tp > 0)? omega:
69
                     \rightarrow omega_inv)[m * j] * a[i + j + k / 2];
70
                   a[i + j] = u + v;
71
                   a[i + j + k / 2] = u - v;
73
       if (tp < 0)
           for (int i = 0; i < n; i++) {
76
               a[i].a /= n;
               a[i].b /= n; // 一般情况下是不需要的, 只有MTT时
                 →才需要
79
80
```

1.1.2 NTT

```
constexpr int p = 998244353; // p为模数
  int ntt_n, omega[maxn], omega_inv[maxn]; // ntt_n要在主函数
    →里初始化
  void NTT_init(int n) {
      ntt_n = n;
      int wn = qpow(3, (p - 1) / n); // 这里的3代表模数的任意
        → 一个原根
      omega[0] = omega_inv[0] = 1;
10
11
      for (int i = 1; i < n; i++)
12
          omega_inv[n - i] = omega[i] = (long long)omega[i -
13
            \hookrightarrow 1] * wn % p;
14
  void NTT(int *a, int n, int tp) { // n为变换长度,
    → tp为1或-1, 表示正/逆变换
17
       for (int i = 1, j = 0, k; i < n - 1; i++) { // O(n)旋转
18
        → 算法,原理是模拟加1
          k = n;
          do
              j ^= (k >>= 1);
          while (j < k);
          if (i < i)
24
              swap(a[i], a[j]);
25
26
       for (int k = 2, m = ntt_n / 2; k <= n; k *= 2, m /= 2)
          for (int i = 0; i < n; i += k)
              for (int j = 0; j < k / 2; j++) {
                 int w = (tp > 0 ? omega : omega_inv)[m *
31

    j];

32
                  int u = a[i + j], v = (long long)w * a[i +
33
                    \hookrightarrow j + k / 2] % p;
                  a[i + j] = u + v;
34
                  if (a[i + j] >= p)
35
```

36

37

42

43

44

45

46

47

48 49

50

51

52

53

61

```
a[i + j] -= p;
36
37
                    a[i + j + k / 2] = u - v;
38
                    if (a[i + j + k / 2] < 0)
39
                        a[i + j + k / 2] += p;
40
41
42
       if (tp < 0) {
43
           int inv = qpow(n, p - 2);
44
           for (int i = 0; i < n; i++)
45
               a[i] = (long long)a[i] * inv % p;
46
47
48
```

1.1.3 任意模数卷积(MTT, 毛梯梯)

三模数NTT和直接拆系数FFT都太慢了,不要用. MTT的原理就是拆系数FFT,只不过优化了做变换的次数. 考虑要对A(x), B(x)两个多项式做DFT,可以构造两个复多项式

$$P(x) = A(x) + iB(x) \quad Q(x) = A(x) - iB(x)$$

只需要DFT一个,另一个DFT实际上就是前者反转再取共轭,再利用

$$A(x) = \frac{P(x) + Q(x)}{2}$$
 $B(x) = \frac{P(x) - Q(x)}{2i}$

即可还原出A(x), B(x).

IDFT的 道 理 更 简 单, 如 果 要 对A(x)和B(x)做IDFT, 只 需 要 64 对A(x)+iB(x)做IDFT即可,因为IDFT的结果必定为实数,所 65 以结果的实部和虚部就分别是A(x)和B(x).

实际上任何同时对两个实序列进行DFT,或者同时对结果为实序 67 列的DFT进行逆变换时都可以按照上面的方法优化,可以减少一半 68 的DFT次数.

```
// 常量和复数类略
                                                                     72
                                                                     73
   const Complex ima = Complex(0, 1);
                                                                     74
                                                                     75
  int p, base;
                                                                     76
   // FFT略
                                                                     77
                                                                     78
   void DFT(Complex *a, Complex *b, int n) {
                                                                     79
       static Complex c[maxn];
                                                                     80
10
                                                                     81
       for (int i = 0; i < n; i++)
                                                                     82
12
        c[i] = Complex(a[i].a, b[i].a);
                                                                     83
13
                                                                     84
       FFT(c, n, 1);
                                                                     85
15
                                                                     86
16
       for (int i = 0; i < n; i++) {
                                                                     87
17
          int j = (n - i) & (n - 1);
                                                                     88
18
                                                                     89
           a[i] = (c[i] + c[j].conj()) * 0.5;
                                                                     90
           b[i] = (c[i] - c[j].conj()) * -0.5 * ima;
                                                                     91
22
                                                                     92
23
   void IDFT(Complex *a, Complex *b, int n) {
25
                                                                     94
       static Complex c[maxn];
26
                                                                     95
27
       for (int i = 0; i < n; i++)
                                                                     96
         c[i] = a[i] + ima * b[i];
29
                                                                     98
30
       FFT(c, n, -1);
                                                                     99
31
                                                                     100
32
       for (int i = 0; i < n; i++) {
33
           a[i].a = c[i].a;
```

```
b[i].a = c[i].b;
Complex a[2][maxn], b[2][maxn], c[3][maxn];
int ans[maxn];
int main() {
    int n, m;
    scanf("%d%d%d", &n, &m, &p);
    m++;
    base = (int)(sqrt(p) + 0.5);
    for (int i = 0; i < n; i++) {
        int x:
        scanf("%d", &x);
        x %= p;
        a[1][i].a = x / base;
        a[0][i].a = x % base;
    for (int i = 0; i < m; i++) {
        int x;
        scanf("%d", &x);
        x %= p;
        b[1][i].a = x / base;
        b[0][i].a = x \% base;
    int N = 1;
    while (N < n + m - 1)
       N <<= 1;
    FFT_init(N);
    DFT(a[0], a[1], N);
    DFT(b[0], b[1], N);
    for (int i = 0; i < N; i++)
      c[0][i] = a[0][i] * b[0][i];
    for (int i = 0; i < N; i++)
       c[1][i] = a[0][i] * b[1][i] + a[1][i] * b[0][i];
    for (int i = 0; i < N; i++)
      c[2][i] = a[1][i] * b[1][i];
    FFT(c[1], N, -1);
    IDFT(c[0], c[2], N);
    for (int j = 2; \sim j; j--)
        for (int i = 0; i < n + m - 1; i++)
            ans[i] = ((long long)ans[i] * base + (long
              \hookrightarrow long)(c[j][i].a + 0.5)) % p;
    // 实际上就是c[2] * base ^ 2 + c[1] * base + c[0], 这样
      →写可以改善地址访问连续性
    for (int i = 0; i < n + m - 1; i++) {
        if (i)
            printf(" ");
        printf("%d", ans[i]);
```

```
数学
                                                    Standard Code Library
                                                                                                                   1.1 多项式
       return 0;
                                                                  // 不定积分, 最好预处理逆元
                                                                  void get_integrate(int *A, int *C, int n) {
102
                                                                      for (int i = 1; i < n; i++)
                                                               64
                                                                          C[i] = (long long)A[i - 1] * qpow(i, p - 2) % p;
                                                               65
  1.1.4 多项式操作
                                                                      C[0] = 0; // 不定积分没有常数项
                                                               67
   // A为输入, C为输出, n为所需长度且必须是2^k
   // 多项式求逆,要求A常数项不为0
                                                                  // 多项式Ln, 要求A常数项不为0
                                                               70
   void get_inv(int *A, int *C, int n) {
 3
                                                                  void get_ln(int *A, int *C, int n) { // 通常情况下A常数项都
                                                               71
       static int B[maxn];
 4
 5
                                                                      static int B[maxn];
                                                               72
       memset(C, 0, sizeof(int) * (n * 2));
 6
       C[0] = qpow(A[0],p - 2); // 一般常数项都是1, 直接赋值
                                                                      get_derivative(A, B, n);
         → 为1就可以
                                                                      memset(B + n, 0, sizeof(int) * n);
                                                               75
       for (int k = 2; k <= n; k <<= 1) {
 9
                                                               77
                                                                      get_inv(A, C, n);
           memcpy(B, A, sizeof(int) * k);
10
           memset(B + k, 0, sizeof(int) * k);
11
                                                                      NTT(B, n * 2, 1);
                                                               79
12
                                                                      NTT(C, n * 2, 1);
           NTT(B, k * 2, 1);
13
           NTT(C, k * 2, 1);
14
                                                                      for (int i = 0; i < n * 2; i++)
15
                                                                      B[i] = (long long)B[i] * C[i] % p;
           for (int i = 0; i < k * 2; i++) {
16
               C[i] = (2 - (long long)B[i] * C[i]) % p * C[i]
17
                                                                      NTT(B, n * 2, -1);
                \hookrightarrow % p;
               if (C[i] < 0)
18
                                                                      get_integrate(B, C, n);
                                                                87
                  C[i] += p;
19
                                                                88
20
                                                                89
                                                                      memset(C+n,0,sizeof(int)*n);
21
                                                               90
           NTT(C, k * 2, -1);
22
                                                               91
23
                                                                  // 多项式exp, 要求A没有常数项
                                                               92
           memset(C + k, 0, sizeof(int) * k);
24
                                                                  // 常数很大且总代码较长,一般来说最好替换为分治FFT
25
                                                                  // 分治FFT依据: 设G(x) = exp F(x), 则有 g_i = \sum_{k=1}
                                                                    \hookrightarrow ^{i-1} f_{i-k} * k * g_k
26
                                                                  void get_exp(int *A, int *C, int n) {
                                                               95
   // 开根
                                                                      static int B[maxn];
   void get_sqrt(int *A, int *C, int n) {
29
30
       static int B[maxn], D[maxn];
                                                                      memset(C, 0, sizeof(int) * (n * 2));
                                                               98
31
                                                                      C[0] = 1;
       memset(C, 0, sizeof(int) * (n * 2));
32
                                                               100
       C[0] = 1; // 如果不是1就要考虑二次剩余
33
                                                                      for (int k = 2; k <= n; k <<= 1) {
                                                               101
34
                                                                          get_ln(C, B, k);
                                                               102
       for (int k = 2; k <= n; k *= 2) {
35
                                                               103
           memcpy(B, A, sizeof(int) * k);
36
                                                                          for (int i = 0; i < k; i++) {
                                                               104
           memset(B + k, 0, sizeof(int) * k);
37
                                                                              B[i] = A[i] - B[i];
                                                               105
38
                                                                              if (B[i] < 0)
                                                               106
           get_inv(C, D, k);
39
                                                                                  B[i] += p;
                                                               107
40
                                                               108
           NTT(B, k * 2, 1);
41
                                                                          (++B[0]) %= p;
           NTT(D, k * 2, 1);
42
                                                               110
43
                                                                          NTT(B, k * 2, 1);
                                                               111
           for (int i = 0; i < k * 2; i++)
44
                                                                          NTT(C, k * 2, 1);
                                                               112
           B[i] = (long long)B[i] * D[i]%p;
45
                                                               113
46
                                                                          for (int i = 0; i < k * 2; i++)
           NTT(B, k * 2, -1);
47
                                                                          C[i] = (long long)C[i] * B[i] % p;
                                                               115
48
           for (int i = 0; i < k; i++)
49
                                                                          NTT(C, k * 2, -1);
               C[i] = (long long)(C[i] + B[i]) * inv_2 % p;//
50
                                                               118
                → inv 2是2的逆元
                                                                          memset(C + k, 0, sizeof(int) * k);
                                                               119
51
                                                               120
52
                                                               121
                                                               122
    // 求导
                                                                  // 多项式k次幂,在A常数项不为1时需要转化
   void get_derivative(int *A, int *C, int n) {
55
                                                               |124||// 常数较大且总代码较长,在时间要求不高时最好替换为暴力快
       for (int i = 1; i < n; i++)
                                                                    → 谏幂
          C[i - 1] = (long long)A[i] * i % p;
57
                                                                  void get_pow(int *A, int *C, int n, int k) {
                                                               125
```

126

127

128

static int B[maxn];

get_ln(A, B, n);

58

59

60

61

C[n - 1] = 0;

```
129
       for (int i = 0; i < n; i++)
130
         B[i] = (long long)B[i] * k % p;
131
132
       get_exp(B, C, n);
133
134
   // 多项式除法, A / B, 结果输出在C
136
   // A的次数为n, B的次数为m
137
   void get div(int *A, int *B, int *C, int n, int m) {
138
       static int f[maxn], g[maxn], gi[maxn];
139
140
       if (n < m) {
141
           memset(C, 0, sizeof(int) * m);
142
            return:
143
144
145
       int N = 1;
146
       while (N < (n - m + 1))
147
148
           N <<= 1;
149
       memset(f, 0, sizeof(int) * N * 2);
150
       memset(g, 0, sizeof(int) * N * 2);
151
       // memset(gi, 0, sizeof(int) * N);
152
153
       for (int i = 0; i < n - m + 1; i++)
154
          f[i] = A[n - i - 1];
155
       for (int i = 0; i < m \&\& i < n - m + 1; i++)
156
           g[i] = B[m - i - 1];
157
158
       get_inv(g, gi, N);
159
160
       for (int i = n - m + 1; i < N; i++)
161
         gi[i] = 0;
162
163
       NTT(f, N * 2, 1);
164
       NTT(gi, N * 2, 1);
165
166
       for (int i = 0; i < N * 2; i++)
167
         f[i] = (long long)f[i] * gi[i] % p;
168
169
       NTT(f, N * 2, -1);
170
171
       for (int i = 0; i < n - m + 1; i++)
172
         C[i] = f[n - m - i];
173
174
175
    // 多项式取模,余数输出到c,商输出到D
   void get_mod(int *A, int *B, int *C, int *D, int n, int m)
178
       static int b[maxn], d[maxn];
179
180
       if (n < m) {
           memcpy(C, A, sizeof(int) * n);
181
182
            if (D)
183
              memset(D, 0, sizeof(int) * m);
184
185
186
           return:
187
188
       get_div(A, B, d, n, m);
189
190
       if (D) { // D是商,可以选择不要
191
            for (int i = 0; i < n - m + 1; i++)
192
            D[i] = d[i];
193
194
195
       int N = 1;
196
       while (N < n)
197
```

```
198
199
        memcpy(b, B, sizeof(int) * m);
200
201
        NTT(b, N, 1);
202
        NTT(d, N, 1);
203
        for (int i = 0; i < N; i++)
205
         b[i] = (long long)d[i] * b[i] % p;
206
208
        NTT(b, N, -1);
209
210
        for (int i = 0; i < m - 1; i++)
211
           C[i] = (A[i] - b[i] + p) \% p;
212
        memset(b, 0, sizeof(int) * N);
213
214
        memset(d, 0, sizeof(int) * N);
215
216
   // 多点求值要用的数组
217
   int q[maxn], ans[maxn]; // q是要代入的各个系数, ans是求出的
218
   int tg[25][maxn * 2], tf[25][maxn]; // 辅助数组, tg是预处理
   // tf是项数越来越少的f, tf[0]就是原来的函数
220
221
    void pretreat(int 1, int r, int k) { // 多点求值预处理
222
223
       static int A[maxn], B[maxn];
224
225
       int *g = tg[k] + 1 * 2;
        if (r - 1 + 1 \le 200) {
227
228
           g[0] = 1;
            for (int i = 1; i \leftarrow r; i++) {
230
                for (int j = i - l + 1; j; j---) {
231
232
                    g[j] = (g[j - 1] - (long long)g[j] * q[i])
                    if (g[j] < 0)
233
                       g[j] += p;
234
235
                g[0] = (long long)g[0] * (p - q[i]) % p;
236
237
238
239
            return;
240
241
        int mid = (1 + r) / 2;
242
243
        pretreat(1, mid, k + 1);
244
        pretreat(mid + 1, r, k + 1);
245
246
        if (!k)
247
248
        return;
249
        int N = 1;
250
        while (N \leftarrow r - l + 1)
251
252
253
        int *gl = tg[k + 1] + 1 * 2, *gr = tg[k + 1] + (mid + 1)
254
255
        memset(A, 0, sizeof(int) * N);
256
        memset(B, ∅, sizeof(int) * N);
257
258
        memcpy(A, gl, sizeof(int) * (mid - l + 2));
259
260
        memcpy(B, gr, sizeof(int) * (r - mid + 1));
261
262
        NTT(A, N, 1);
```

```
NTT(B, N, 1);
263
        for (int i = 0; i < N; i++)
           A[i] = (long long)A[i] * B[i] % p;
266
        NTT(A, N, -1);
268
        for (int i = 0; i <= r - 1 + 1; i++)
                                                                      10
           g[i] = A[i];
                                                                      11
271
272
273
    void solve(int 1, int r, int k) { // 多项式多点求值主过程
274
                                                                      14
        int *f = tf[k];
275
                                                                      15
276
        if (r - 1 + 1 \le 200) {
277
                                                                      16
            for (int i = 1; i <= r; i++) {
278
                                                                      17
                int x = q[i];
279
280
                for (int j = r - 1; \sim j; j--)
281
                     ans[i] = ((long long)ans[i] * x + f[j]) %
282
                                                                      21

→ p:

            }
283
                                                                      23
284
                                                                      24
            return;
285
                                                                      25
286
                                                                      26
287
                                                                      27
        int mid = (1 + r) / 2;
288
                                                                      28
        int *ff = tf[k + 1], *gl = tg[k + 1] + 1 * 2, *gr =
289
                                                                      29
          \hookrightarrow tg[k + 1] + (mid + 1) * 2;
        get_mod(f, gl, ff, NULL, r - 1 + 1, mid - 1 + 2);
291
                                                                      32
        solve(1, mid, k + 1);
292
                                                                      33
                                                                      34
        memset(gl, 0, sizeof(int) * (mid - 1 + 2));
                                                                      35
        memset(ff, 0, sizeof(int) * (mid - 1 + 1));
295
                                                                      36
        get mod(f, gr, ff, NULL, r - 1 + 1, r - mid + 1);
                                                                      37
        solve(mid + 1, r, k + 1);
                                                                      38
                                                                      39
        memset(gr, 0, sizeof(int) * (r - mid + 1));
300
                                                                      40
        memset(ff, 0, sizeof(int) * (r - mid));
301
                                                                      41
302
                                                                      42
303
                                                                      43
    // f < x^n, m个询问,询问是0-based,当然改成1-based也很简单
304
                                                                      44
    void get_value(int *f, int *x, int *a, int n, int m) {
305
                                                                      45
        if (m <= n)
306
                                                                      46
            m = n + 1;
307
                                                                      47
308
        if (n < m - 1)
                                                                      48
          n = m - 1; // 补零方便处理
309
                                                                      49
310
                                                                      50
        memcpy(tf[0], f, sizeof(int) * n);
311
        memcpy(q, x, sizeof(int) * m);
312
                                                                      52
313
                                                                      53
        pretreat(0, m - 1, 0);
314
                                                                      54
        solve(0, m - 1, 0);
315
316
                                                                      56
        if (a) // 如果a是NULL, 代表不复制答案, 直接用ans数组
317
                                                                      57
            memcpy(a, ans, sizeof(int) * m);
318
                                                                      58
319
                                                                      59
```

1.1.5 更优秀的多项式多点求值

这个做法不需要写取模, 求逆也只有一次, 但是神乎其技, 完全搞不懂原理

清空和复制之类的地方容易抄错, 抄的时候要注意

```
int q[maxn], ans[maxn]; // q是要代入的各个系数, ans是求出的

→ 值
int tg[25][maxn * 2], tf[25][maxn]; // 辅助数组, tg是预处理

→ 乘积,
```

```
// tf是项数越来越少的f, tf[0]就是原来的函数
   void pretreat(int l, int r, int k) { // 预处理
       static int A[maxn], B[maxn];
       int *g = tg[k] + 1 * 2;
       if (r - 1 + 1 <= 1) {
           g[0] = 1;
           for (int i = 1; i <= r; i++) {
                for (int j = i - l + 1; j; j---) {
                    g[j] = (g[j - 1] - (long long)g[j] * q[i])
                      \hookrightarrow % p;
                    if (g[j] < 0)
                        g[j] += p;
               g[0] = (long long)g[0] * (p - q[i]) % p;
           reverse(g, g + r - 1 + 2);
           return;
       int mid = (1 + r) / 2;
       pretreat(1, mid, k + 1);
       pretreat(mid + 1, r, k + 1);
       int N = 1:
       while (N \le r - 1 + 1)
           N *= 2:
       int *gl = tg[k + 1] + 1 * 2, *gr = tg[k + 1] + (mid +

→ 1) * 2;

       memset(A, 0, sizeof(int) * N);
       memset(B, 0, sizeof(int) * N);
       memcpy(A, gl, sizeof(int) * (mid - 1 + 2));
       memcpy(B, gr, sizeof(int) * (r - mid + 1));
       NTT(A, N, 1);
       NTT(B, N, 1);
       for (int i = 0; i < N; i++)
         A[i] = (long long)A[i] * B[i] % p;
       NTT(A, N, -1);
       for (int i = 0; i <= r - l + 1; i++)
           g[i] = A[i];
   void solve(int l, int r, int k) { // 主过程
       static int a[maxn], b[maxn];
       int *f = tf[k];
       if (1 == r) {
           ans[1] = f[0];
62
           return;
65
       int mid = (1 + r) / 2;
66
       int *ff = tf[k + 1], *gl = tg[k + 1] + 1 * 2, *gr =
67
         \hookrightarrow \mathsf{tg}[\mathsf{k} + \mathsf{1}] + (\mathsf{mid} + \mathsf{1}) * \mathsf{2};
68
```

```
while (N < r - 1 + 2)
70
71
72
        memcpy(a, f, sizeof(int) * (r - 1 + 2));
73
        memcpy(b, gr, sizeof(int) * (r - mid + 1));
        reverse(b, b + r - mid + 1);
76
        NTT(a, N, 1);
77
        NTT(b, N, 1);
        for (int i = 0; i < N; i++)
           b[i] = (long long)a[i] * b[i] % p;
80
        reverse(b + 1, b + N);
82
        NTT(b, N, 1);
83
        int n_inv = qpow(N, p - 2);
        for (int i = 0; i < N; i++)
           b[i] = (long long)b[i] * n_inv % p;
        for (int i = 0; i < mid - 1 + 2; i++)
        ff[i] = b[i + r - mid];
90
        memset(a, 0, sizeof(int) * N);
91
        memset(b, 0, sizeof(int) * N);
92
93
        solve(1, mid, k + 1);
94
95
        memset(ff, 0, sizeof(int) * (mid - 1 + 2));
96
97
        memcpy(a, f, sizeof(int) * (r - 1 + 2));
98
        memcpy(b, gl, sizeof(int) * (mid - 1 + 2));
99
        reverse(b, b + mid - 1 + 2);
100
101
        NTT(a, N, 1);
102
        NTT(b, N, 1);
103
        for (int i = 0; i < N; i++)
104
            b[i] = (long long)a[i] * b[i] % p;
105
106
        reverse(b + 1, b + N);
107
        NTT(b, N, 1);
108
        for (int i = 0; i < N; i++)
109
           b[i] = (long long)b[i] * n_inv % p;
110
111
        for (int i = 0; i < r - mid + 1; i++)
112
         ff[i] = b[i + mid - l + 1];
113
114
        memset(a, 0, sizeof(int) * N);
115
        memset(b, 0, sizeof(int) * N);
116
117
        solve(mid + 1, r, k + 1);
118
119
        memset(gl, 0, sizeof(int) * (mid - 1 + 2));
120
        memset(gr, 0, sizeof(int) * (r - mid + 1));
121
        memset(ff, 0, sizeof(int) * (r - mid + 1));
122
123
124
   // f < x^n, m个询问, 0-based
125
   void get_value(int *f, int *x, int *a, int n, int m) {
126
        static int c[maxn], d[maxn];
127
128
        if (m <= n)
129
           m = n + 1;
130
        if (n < m - 1)
           n = m - 1; // 补零
133
        memcpy(q, x, sizeof(int) * m);
134
135
        pretreat(0, m - 1, 0);
136
137
```

```
int N = 1;
139
        while (N < m)
            N *= 2:
140
141
        get_inv(tg[0], c, N);
142
143
        fill(c + m, c + N, 0);
144
        reverse(c, c + m);
45
46
        memcpy(d, f, sizeof(int) * m);
147
149
        NTT(c, N * 2, 1);
        NTT(d, N * 2, 1);
150
151
        for (int i = 0; i < N * 2; i++)
152
            c[i] = (long long)c[i] * d[i] % p;
153
        NTT(c, N * 2, -1);
154
155
        for (int i = 0; i < m; i++)
156
            \mathsf{tf}[0][i] = \mathsf{c}[i + \mathsf{n}];
158
        solve(0, m - 1, 0);
        if (a) // 如果a是NULL, 代表不复制答案, 直接用ans数组
160
            memcpy(a, ans, sizeof(int) * m);
```

1.1.6 多项式快速插值

快速插值: 给出 $n \uparrow x_i = y_i$, 求一 $\uparrow n - 1$ 次多项式满足 $F(x_i) = y_i$. 考虑拉格朗日插值:

$$F(x) = \sum_{i=1}^{n} \frac{\prod_{i \neq j} (x - x_j)}{\prod_{i \neq j} (x_i - x_j)} y_i$$

第一步要先对每个i求出

$$\prod_{i \neq j} (x_i - x_j)$$

设

$$M(x) = \prod_{i=1}^{n} (x - x_i)$$

那么想要的是

$$\frac{M(x)}{x-x}$$

取 $x = x_i$ 时,上下都为0,使用洛必达法则,则原式化为M'(x). 使用分治算出M(x),使用多点求值即可算出每个

$$\prod_{i \neq j} (x_i - x_j) = M'(x_i)$$

设

$$v_i = \frac{y_i}{\prod_{i \neq j} (x_i - x_j)}$$

第二步要求出

$$\sum_{i=1}^{n} v_i \prod_{i \neq j} (x - x_j)$$

使用分治. 设

$$L(x) = \prod_{i=1}^{\lfloor n/2 \rfloor} (x - x_i), \ R(x) = \prod_{i=\lfloor n/2 \rfloor + 1}^{n} (x - x_i)$$

则原式化为

$$\left(\sum_{i=1}^{\lfloor n/2\rfloor} v_i \prod_{i \neq j, j \leq \lfloor n/2\rfloor} (x - x_j)\right) R(x) +$$

```
v_i \qquad \prod \qquad (x-x_j) \int L(x)
```

递归计算, 复杂度 $O(n \log^2 n)$.

注意由于整体和局部的M(x)都要用到,要预处理一下.

```
int qx[maxn], qy[maxn];
   int th[25][maxn * 2], ansf[maxn]; // th存的是各阶段的M(x)
   void pretreat2(int 1, int r, int k) { // 预处理
       static int A[maxn], B[maxn];
       int *h = th[k] + 1 * 2;
7
       if (1 == r) {
           h[0] = p - qx[1];
           h[1] = 1;
           return:
12
13
       int mid = (1 + r) / 2;
14
15
       pretreat2(1, mid, k + 1);
16
       pretreat2(mid + 1, r, k + 1);
17
       int N = 1;
19
       while (N \leftarrow r - 1 + 1)
20
         N *= 2;
       int *hl = th[k + 1] + 1 * 2, *hr = th[k + 1] + (mid +
23
24
       memset(A, 0, sizeof(int) * N);
25
       memset(B, 0, sizeof(int) * N);
26
27
       memcpy(A, hl, sizeof(int) * (mid - l + 2));
28
29
       memcpy(B, hr, sizeof(int) * (r - mid + 1));
30
31
       NTT(A, N, 1);
32
       NTT(B, N, 1);
33
       for (int i = 0; i < N; i++)
34
         A[i] = (long long)A[i] * B[i] % p;
35
36
       NTT(A, N, -1);
37
38
       for (int i = 0; i <= r - 1 + 1; i++)
39
          h[i] = A[i];
40
41
42
   void solve2(int l, int r, int k) { // 分治
43
       static int A[maxn], B[maxn], t[maxn];
44
       if (1 == r)
46
          return;
       int mid = (1 + r) / 2;
49
50
       solve2(1, mid, k + 1);
       solve2(mid + 1, r, k + 1);
52
       int *hl = th[k + 1] + 1 * 2, *hr = th[k + 1] + (mid +

→ 1) * 2;

55
       int N = 1;
56
57
       while (N < r - 1 + 1)
58
         N *= 2;
59
60
       memset(A, 0, sizeof(int) * N);
61
```

```
memset(B, 0, sizeof(int) * N);
       memcpy(A, ansf + 1, sizeof(int) * (mid - 1 + 1));
64
        memcpy(B, hr, sizeof(int) * (r - mid + 1));
65
       NTT(A, N, 1);
       NTT(B, N, 1);
        for (int i = 0; i < N; i++)
 70
         t[i] = (long long)A[i] * B[i] % p;
 71
        memset(A, 0, sizeof(int) * N);
       memset(B, 0, sizeof(int) * N);
       memcpy(A, ansf + mid + 1, sizeof(int) * (r - mid));
       memcpy(B, hl, sizeof(int) * (mid - 1 + 2));
       NTT(A, N, 1);
       NTT(B, N, 1);
        for (int i = 0; i < N; i++)
         t[i] = (t[i] + (long long)A[i] * B[i]) % p;
       NTT(t, N, -1);
 85
 86
       memcpy(ansf + 1, t, sizeof(int) * (r - 1 + 1));
87
88
89
   // 主过程
90
   // 如果x,y传NULL表示询问已经存在了qx,qy里
   void interpolation(int *x, int *y, int n, int *f = NULL) {
       static int d[maxn];
94
        if (x)
           memcpy(qx, x, sizeof(int) * n);
        if (y)
           memcpy(qy, y, sizeof(int) * n);
       pretreat2(0, n - 1, 0);
101
        get_derivative(th[0], d, n + 1);
102
103
104
       multipoint_eval(d, qx, NULL, n, n);
105
        for (int i = 0; i < n; i++)
106
           ansf[i] = (long long)qy[i] * qpow(ans[i], p - 2) %
107

→ p;

108
       solve2(0, n - 1, 0);
109
110
        if (f)
111
           memcpy(f, ansf, sizeof(int) * n);
112
113
```

1.1.7 拉格朗日反演(多项式复合逆)

```
如果f(x)与g(x)互为复合逆,则有
[x^n] g(x) = \frac{1}{n} \left[ x^{n-1} \right] \left( \frac{x}{f(x)} \right)^n
[x^n] h(g(x)) = \frac{1}{n} [x^{n-1}] h'(x) \left(\frac{x}{f(x)}\right)^n
```

1.1.8 分治FFT

```
void solve(int l,int r) {
      if (1 == r)
2
          return;
3
      int mid = (1 + r) / 2;
5
```

```
solve(1, mid);
                                                                          40
                                                                          41
       int N = 1;
                                                                          42
       while (N \leftarrow r - l + 1)
10
                                                                          43
          N *= 2;
11
                                                                          44
12
                                                                          45
       for (int i = 1; i \leftarrow mid; i++)
13
                                                                          46
          B[i - 1] = (long long)A[i] * fac_inv[i] % p;
14
                                                                          47
       fill(B + mid - l + 1, B + N, \emptyset);
15
                                                                          48
       for (int i = 0; i < N; i++)
                                                                          49
16
       C[i] = fac_inv[i];
17
                                                                          50
                                                                          51
18
       NTT(B, N, 1);
                                                                          52
19
       NTT(C, N, 1);
20
                                                                          53
21
                                                                          54
       for (int i = 0; i < N; i++)
22
                                                                          55
         B[i] = (long long)B[i] * C[i] % p;
23
                                                                          56
24
                                                                          57
       NTT(B, N, -1);
25
26
       for (int i = mid + 1; i <= r; i++)
27
         A[i] = (A[i] + B[i - 1] * 2 % p * (long long)fac[i]
28
              \hookrightarrow % p) % p;
                                                                          62
29
                                                                          63
30
       solve(mid + 1, r);
                                                                          64
31
                                                                          65
```

1.1.9 半在线卷积

```
void solve(int 1, int r) {
       if (r \ll m)
          return;
       if (r - 1 == 1) {
           if (1 == m)
               f[1] = a[m];
           else
             f[1] = (long long)f[1] * inv[1 - m] % p;
           for (int i = 1, t = (long long)1 * f[1] % p; <math>i \leftarrow
             \hookrightarrow n; i += 1)
             g[i] = (g[i] + t) \% p;
12
13
           return;
14
16
       int mid = (1 + r) / 2;
17
18
19
       solve(1, mid);
20
       if (1 == 0) {
21
22
           for (int i = 1; i < mid; i++) {
23
               A[i] = f[i];
               B[i] = (c[i] + g[i]) \% p;
24
           NTT(A, r, 1);
           NTT(B, r, 1);
           for (int i = 0; i < r; i++)
               A[i] = (long long)A[i] * B[i] % p;
29
           NTT(A, r, -1);
30
           for (int i = mid; i < r; i++)
           f[i] = (f[i] + A[i]) \% p;
33
34
       else {
35
           for (int i = 0; i < r - 1; i++)
36
               A[i] = f[i];
37
           for (int i = 1; i < mid; i++)
```

```
B[i - 1] = (c[i] + g[i]) \% p;
          NTT(A, r - 1, 1);
          NTT(B, r - 1, 1);
           for (int i = 0; i < r - 1; i++)
              A[i] = (long long)A[i] * B[i] %p;
          NTT(A, r - 1, -1);
           for (int i = mid; i < r; i++)
            f[i] = (f[i] + A[i - 1]) \% p;
          memset(A, 0, sizeof(int) * (r - 1));
          memset(B, 0, sizeof(int) * (r - 1));
           for (int i = 1; i < mid; i++)
              A[i - 1] = f[i];
           for (int i = 0; i < r - 1; i++)
              B[i] = (c[i] + g[i]) \% p;
          NTT(A, r - 1, 1);
          NTT(B, r - 1, 1);
           for (int i = 0; i < r - 1; i++)
             A[i] = (long long)A[i] * B[i] % p;
          NTT(A, r - 1, -1);
          for (int i = mid; i < r; i++)
           f[i] = (f[i] + A[i - 1]) \% p;
      memset(A, 0, sizeof(int) * (r - 1));
66
      memset(B, 0, sizeof(int) * (r - 1));
67
68
69
       solve(mid, r);
70 }
```

1.1.10 常系数齐次线性递推 $O(k \log k \log n)$

如果只有一次这个操作可以照抄, 否则就开一个全局flag.

```
1 // 多项式取模,余数输出到C,商输出到D
  void get_mod(int *A, int *B, int *C, int *D, int n, int m)
      static int b[maxn], d[maxn];
3
       static bool flag = false;
4
       if (n < m) {
6
          memcpy(C, A, sizeof(int) * n);
7
           if (D)
9
              memset(D, 0, sizeof(int) * m);
10
11
          return:
12
       }
13
14
       get_div(A, B, d, n, m);
15
16
       if (D) { // D是商,可以选择不要
17
           for (int i = 0; i < n - m + 1; i++)
18
             D[i] = d[i];
19
20
21
       int N = 1;
22
       while (N < n)
23
          N *= 2;
24
25
       if (!flag) {
26
           memcpy(b, B, sizeof(int) * m);
27
          NTT(b, N, 1);
28
29
           flag = true;
30
```

```
31
32
       NTT(d, N, 1);
33
       for (int i = 0; i < N; i++)
35
          d[i] = (long long)d[i] * b[i] % p;
36
       NTT(d, N, -1);
38
       for (int i = 0; i < m - 1; i++)
40
          C[i] = (A[i] - d[i] + p) \% p;
42
43
       // memset(b, 0, sizeof(int) * N);
44
       memset(d, 0, sizeof(int) * N);
45
46
   // g < x^n, f是输出答案的数组
47
   void pow_mod(long long k, int *g, int n, int *f) {
48
       static int a[maxn], t[maxn];
49
50
       memset(f, 0, sizeof(int) * (n * 2));
51
       f[0] = a[1] = 1;
53
       int N = 1;
       while (N < n * 2 - 1)
           N *= 2;
       while (k) {
           NTT(a, N, 1);
           if (k & 1) {
               memcpy(t, f, sizeof(int) * N);
               NTT(t, N, 1);
               for (int i = 0; i < N; i++)
                   t[i] = (long long)t[i] * a[i] % p;
               NTT(t, N, -1);
               get_mod(t, g, f, NULL, n * 2 - 1, n);
           for (int i = 0; i < N; i++)
               a[i] = (long long)a[i] * a[i] % p;
           NTT(a, N, -1);
75
           memcpy(t, a, sizeof(int) * (n * 2 - 1));
           get_mod(t, g, a, NULL, n * 2 - 1, n);
           fill(a + n - 1, a + N, \emptyset);
79
80
           k \gg 1;
81
82
       memset(a, 0, sizeof(int) * (n * 2));
84
85
86
   // f_n = \sum_{i=1}^{n} f_n - i  a_i
87
   // f是0~m-1项的初值
88
   int linear_recurrence(long long n, int m, int *f, int *a) {
89
       static int g[maxn], c[maxn];
90
91
       memset(g, 0, sizeof(int) * (m * 2 + 1));
92
93
       for (int i = 0; i < m; i++)
94
           g[i] = (p - a[m - i]) \% p;
95
       g[m] = 1;
96
97
       pow_mod(n, g, m + 1, c);
98
       int ans = 0;
```

```
for (int i = 0; i < m; i++)

| ans = (ans + (long long)c[i] * f[i]) % p;

| return ans;
| 105 | }
```

1.1.11 应用: $O(\sqrt{n}\log^2 n)$ 快速求阶乘

问题: 求 $n! \pmod{p}$, n < p, $p \neq NTT$ 模数. 考虑令 $m = |\sqrt{n}|$, 那么我们可以写出连续m个数相乘的多项式:

$$f(x) = \prod_{i=1}^{m} (x+i)$$

那么显然就有

$$n! = \left(\prod_{k=0}^{m-1} f(km)\right) \prod_{i=m^2+1}^{n} i$$

f(x)的 系 数 可 以 用 倍 增 求(或 者 懒 一 点 直 接 分 治FFT), 然 后 f(km) 可 以 用 多 项 式 多 点 求 值 求 出, 所 以 总 复 杂 度 就 是 $O(\sqrt{n}\log^2 n)$.

当然如果p不变并且多次询问的话我们只需要取一个m,也就是预处理 $O(\sqrt{p}\log^2 p)$,询问 $O(\sqrt{p})$.

1.2 插值

1.2.1 牛顿插值

牛顿插值的原理是二项式反演.

二项式反演:

$$f(n) = \sum_{k=0}^{n} \binom{n}{k} g(k) \iff g(n) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k)$$

可以用 e^x 和 e^{-x} 的麦克劳林展开式证明.

套用二项式反演的结论即可得到牛顿插值:

$$f(n) = \sum_{i=0}^{\kappa} \binom{n}{i} r_i$$
$$r_i = \sum_{i=0}^{i} (-1)^{i-j} \binom{i}{j} f(j)$$

其中k表示f(n)的最高次项系数.

实现时可以用 k次差分替代右边的式子:

```
for (int i = 0; i <= k; i++)
r[i] = f(i);
for (int j = 0; j < k; j++)
for (int i = k; i > j; i--)
r[i] -= r[i - 1];
```

注意到预处理 r_i 的式子满足卷积形式,必要时可以用FFT优化 至 $O(k \log k)$ 预处理.

1.2.2 拉格朗日(Lagrange)插值

$$f(x) = \sum_{i} f(x_i) \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

1.2.3 连续点值平移(待完成)

1.3 FWT快速沃尔什变换

```
1 // 注意FWT常数比较小,这点与FFT/NTT不同
2 // 以下代码均以模质数情况为例,其中n为变换长度,tp表示
→ 正/逆变换
```

```
// 按位或版本
   void FWT_or(int *A, int n, int tp) {
       for (int k = 2; k \le n; k *= 2)
           for (int i = 0; i < n; i += k)
               for (int j = 0; j < k / 2; j++) {
                    if (tp > 0)
                       A[i + j + k / 2] = (A[i + j + k / 2] +
10
                          \hookrightarrow A[i + j]) \% p;
                   else
11
                       A[i + j + k / 2] = (A[i + j + k / 2] -
12
                          \hookrightarrow A[i + j] + p) \% p;
13
14
   // 按位与版本
   void FWT_and(int *A, int n, int tp) {
17
       for (int k = 2; k <= n; k *= 2)
           for (int i = 0; i < n; i += k)
               for (int j = 0; j < k / 2; j++) {
                   if (tp > 0)
                       A[i + j] = (A[i + j] + A[i + j + k /
                          → 2]) % p;
                   else
                       A[i + j] = (A[i + j] - A[i + j + k / 2]
                          \hookrightarrow + p) % p;
26
27
   // 按位异或版本
28
   void FWT_xor(int *A, int n, int tp) {
       for (int k = 2; k <= n; k *= 2)
30
           for (int i = 0; i < n; i += k)
31
               for (int j = 0; j < k / 2; j++) {
32
                    int a = A[i + j], b = A[i + j + k / 2];
33
                   A[i + j] = (a + b) \% p;
                   A[i + j + k / 2] = (a - b + p) \% p;
35
37
       if (tp < 0) {
           int inv = qpow(n % p, p - 2); // n的逆元, 在不取模
39
             → 时需要用每层除以2代替
           for (int i = 0; i < n; i++)
40
               A[i] = A[i] * inv % p;
41
42
43
```

1.3.1 三行FWT

```
void fwt_or(int *a, int n, int tp) {
       for (int j = 0; (1 << j) < n; j++)
           for (int i = 0; i < n; i++)
               if (i \gg j \& 1) {
                   if (tp > 0)
                       a[i] += a[i ^ (1 << j)];
                   else
                       a[i] -= a[i ^ (1 << j)];
10
11
   // and自然就是or反过来
   void fwt_and(int *a, int n, int tp) {
       for (int j = 0; (1 << j) < n; j++)
15
           for (int i = 0; i < n; i++)
               if (!(i >> j & 1)) {
16
                   if (tp > 0)
17
                       a[i] += a[i | (1 << j)];
19
                       a[i] -= a[i | (1 << j)];
20
```

```
22 }
23
24 // xor同理
```

1.4 单纯形

```
const double eps = 1e-10;
   double A[maxn][maxn], x[maxn];
   int n, m, t, id[maxn * 2];
   // 方便起见,这里附上主函数
   int main() {
       scanf("%d%d%d", &n, &m, &t);
       for (int i = 1; i <= n; i++) {
10
           scanf("%1f", &A[0][i]);
           id[i] = i;
12
13
       for (int i = 1; i <= m; i++) {
           for (int j = 1; j <= n; j++)
16
               scanf("%lf", &A[i][j]);
17
18
           scanf("%lf", &A[i][0]);
19
20
21
       if (!initalize())
22
           printf("Infeasible"); // 无解
23
       else if (!simplex())
24
           printf("Unbounded"); // 最优解无限大
26
       else {
27
           printf("%.151f\n", -A[0][0]);
28
           if (t) {
29
               for (int i = 1; i <= m; i++)
30
                   x[id[i + n]] = A[i][0];
               for (int i = 1; i <= n; i++)
                   printf("%.151f ",x[i]);
36
       return 0;
37
38
   //初始化
39
   //对于初始解可行的问题,可以把初始化省略掉
40
   bool initalize() {
41
       while (true) {
42
           double t = 0.0;
43
           int 1 = 0, e = 0;
44
45
           for (int i = 1; i <= m; i++)
46
               if (A[i][0] + eps < t) {
47
                   t = A[i][0];
48
                   1 = i;
49
51
           if (!1)
52
               return true;
53
54
           for (int i = 1; i <= n; i++)
55
               if (A[1][i] < -eps && (!e || id[i] < id[e]))</pre>
56
57
58
           if (!e)
59
              return false;
60
61
           pivot(l, e);
62
```

```
63
64
66
   bool simplex() {
67
68
        while (true) {
            int 1 = 0, e = 0;
69
            for (int i = 1; i <= n; i++)
70
                 if (A[0][i] > eps && (!e || id[i] < id[e]))</pre>
71
                     e = i;
72
73
            if (!e)
74
                return true;
76
            double t = 1e50;
77
            for (int i = 1; i <= m; i++)
78
                 if (A[i][e] > eps && A[i][0] / A[i][e] < t) {
                     l = i;
                     t = A[i][0]/A[i][e];
            if (!1)
                return false;
86
            pivot(1, e);
88
89
90
    //转轴操作,本质是在凸包上沿着一条棱移动
91
    void pivot(int 1, int e) {
92
        swap(id[e], id[n + l]);
93
        double t = A[1][e];
94
        A[1][e] = 1.0;
95
96
        for (int i = 0; i \leftarrow n; i++)
97
            A[1][i] /= t;
99
        for (int i = 0; i \leftarrow m; i++)
100
            if (i != 1) {
101
                t = A[i][e];
102
                A[i][e] = 0.0;
103
                 for (int j = 0; j \leftarrow n; j++)
104
                     A[i][j] -= t * A[1][j];
105
106
107
```

1.4.1 线性规划对偶原理

给定一个原始线性规划:

Minimize
$$\sum_{j=1}^{n} c_j x_j$$
 Subject to
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i,$$

$$x_j \ge 0$$

定义它的对偶线性规划为:

Maximize
$$\sum_{i=1}^{m} b_i y_i$$
 Subject to
$$\sum_{i=1}^{m} a_{ij} y_i \leq c_j,$$

$$y_i \geq 0$$

用矩阵可以更形象地表示为:

```
Minimize \mathbf{c}^T \mathbf{x} Maximize \mathbf{b}^T \mathbf{y}
Subject to A\mathbf{x} \ge \mathbf{b}, \iff Subject to A^T \mathbf{y} \le \mathbf{c}, \mathbf{x} \ge 0 \mathbf{y} \ge 0
```

1.5 线性代数

1.5.1 矩阵乘法

```
for (int i = 1; i <= n; i++)

for (int k = 1; k <= n; k++)

for (int j = 1; j <= n; j++)

a[i][j] += b[i][k] * c[k][j];

// 通过改善内存访问连续性,显著提升速度
```

1.5.2 高斯消元

高斯-约当消元法 Gauss-Jordan

每次选取当前行绝对值最大的数作为代表元,在做浮点数消元时可以很好地保证精度.

```
void Gauss_Jordan(int A[][maxn], int n) {
      for (int i = 1; i <= n; i++) {
          int ii = i;
          for (int j = i + 1; j <= n; j++)
              if (fabs(A[j][i]) > fabs(A[ii][i]))
                  ii = j;
          if (ii != i) // 这里没有判是否无解,如果有可能无解
            → 的话要判一下
              for (int j = i; j <= n + 1; j++)
                  swap(A[i][j], A[ii][j]);
10
11
          for (int j = 1; j <= n; j++)
              if (j != i) // 消成对角
                  for (int k = n + 1; k >= i; k--)
                     A[j][k] -= A[j][i] / A[i][i] * A[i][k];
15
16
17
```

解线性方程组

在矩阵的右边加上一列表示系数即可, 如果消成上三角的话最后要倒序回代.

求逆矩阵

维护一个矩阵B,初始设为n阶单位矩阵,在消元的同时对B进行一样的操作,当把A消成单位矩阵时B就是逆矩阵.

行列式

消成对角之后把代表元乘起来. 如果是任意模数, 要注意消元时每交换一次行列要取反一次.

1.5.3 行列式取模

1.5.4 线性基(消成对角)

```
void add(unsigned long long x) {
       for (int i = 63; i >= 0; i--)
            if (x >> i & 1) {
                if (b[i])
                    x \stackrel{\wedge}{=} b[i];
                else {
                    b[i] = x;
                     for (int j = i - 1; j \ge 0; j--)
                         if (b[j] && (b[i] >> j & 1))
                             b[i] ^= b[j];
                     for (int j = i + 1; j < 64; j++)
                         if (b[j] \gg i \& 1)
14
                             b[j] ^= b[i];
15
                    break;
18
19
```

1.5.5 线性代数知识

行列式:

 $\det A = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i} a_{i,\sigma_i}$

逆矩阵:

$$B = A^{-1} \iff AB = 1$$

代数余子式:

$$C_{i,j} = (-1)^{i+j} M_{i,j} = (-1)^{i+j} |A^{i,j}|$$

也就是A去掉一行一列之后的行列式 伴随矩阵:

$$A^* = C^T$$

即代数余子式矩阵的转置 同时我们有

 $A^* = |A|A^{-1}$

特征多项式:

$$P_A(x) = \det(Ix - A)$$

特征根: 特征多项式的所有n个根(可能有重根).

1.5.6 矩阵树定理, BEST定理

无向图: 设图G的基尔霍夫矩阵L(G)等于度数矩阵减去邻接矩阵, 则G的生成树个数等于L(G)的任意一个代数余子式的值.

有向图: 类似地定义 $L_{in}(G)$ 等于**入度**矩阵减去邻接矩阵(i指向j有边, 则 $A_{i,j}=1$), $L_{out}(G)$ 等于**出度**矩阵减去邻接矩阵.

则以i为根的内向树个数即为 L_{out} 的第i个主子式(即关于第i行第i列 的余子式), 外向树个数即为 L_{in} 的第i个主子式.

(可以看出,只有无向图才满足L(G)的所有代数余子式都相等.)

 \mathbf{BEST} 定理(有向图欧拉回路计数): 如果G是有向欧拉图,则G的 欧拉回路的个数等于以一个任意点为根的内/外向树个数乘 以 $\prod_{v}(\deg(v)-1)!$.

并且在欧拉图里, 无论以哪个结点为根, 也无论内向树还是外向树, 个 数都是一样的.

另外无向图欧拉回路计数是NP问题.

1.6 博弈论

1.6.1 SG定理

对于一个**平等**游戏,可以为每个状态定义一个SG函数.

一个状态的SG函数等于所有它能一步到达的状态的SG函数的mex, 也就是最小的没有出现过的自然数.

那么所有先手必败态的SG函数为0, 先手必胜态的SG函数非0.

如果有一个游戏,它由若干个独立的子游戏组成,且每次行动时只 能选一个子游戏进行操作,则这个游戏的SG函数就是所有子游戏 的SG函数的异或和. (比如最经典的Nim游戏, 每次只能选一堆取若 干个石子.)

同时操作多个子游戏的结论参见"经典博弈"部分.

1.6.2 纳什均衡

首先定义纯策略和混合策略: 纯策略是指你一定会选择某个选项, 混 合策略是指你对每个选项都有一个概率分布 p_i , 你会以相应的概率选 择这个选项.

考虑这样的游戏:有几个人(当然也可以是两个)各自独立地做决定, 然后同时公布每个人的决定, 而每个人的收益和所有人的选择有关.

那么纳什均衡就是每个人都决定一个混合策略, 使得在其他人都是纯 策略的情况下,这个人最坏情况下(也就是说其他人的纯策略最针对 他的时候)的收益是最大的. 也就是说, 收益函数对这个人的混合策略 求一个偏导,结果是0(因为是极大值).

纳什均衡点可能存在多个,不过在一个双人零和游戏中,纳什均衡点 一定唯一存在.

1.6.3 经典博弈

1. 阶梯博弈

台阶的每层都有一些石子,每次可以选一层(但不能是第0层),把任 意个石子移到低一层.

结论: 奇数层的石子数量进行异或和即可.

实际上只要路径唯一就可以,比如在树上博弈,然后石子向根节点方 向移动, 那么就是奇数深度的石子数量进行异或和.

2. 可以同时操作多个子游戏

如果某个游戏由若干个独立的子游戏组成, 并且每次可以任意选几 **个**(当然至少一个)子游戏进行操作,那么结论是: 所有子游戏都必败 时先手才会必败, 否则先手必胜.

3. 每次最多操作k个子游戏(Nim-K)

如果每次最多操作k个子游戏,结论是: 把所有子游戏的SG函数写成 二进制表示, 如果每一位上的1个数都是(k+1)的倍数, 则先手必败, 否则先手必胜.

(实际上上面一条可以看做 $k=\infty$ 的情况,也就是所有 SG 值都是0时 才会先手必败.)

如果要求整个游戏的SG函数,就按照上面的方法每个二进制位相加 后 $\operatorname{mod}(k+1)$, 视为(k+1)进制数后求值即可. (未验证)

4. 反Nim游戏(Anti-Nim)

和Nim游戏差不多,唯一的不同是取走最后一个石子的输. 分两种情况:

- 所有堆石子个数都是1: 有偶数堆时先手必胜, 否则先手必败.
- 存在某个堆石子数多于1: 异或和不为0则先手必胜, 否则先手必

当然石子个数实际上就是SG函数, 所以判别条件全都改成SG函数 也是一样的.

5. 威佐夫博弈

有两堆石子,每次要么从一堆中取任意个,要么从两堆中都取走相同数量.

结论: 设两堆石子分别有a个和b个,且a < b,则先手必败当且仅当 $a = \left| (b-a) \frac{1+\sqrt{5}}{2} \right|$.

6. 删子树博弈

有一棵有根树,两个人轮流操作,每次可以选一个点(除了根节点)然后把它的子树都删掉,不能操作的输. 结论:

$$SG(u) = XOR_{v \in son_u} (SG(v) + 1)$$

1.6.4 例题(待完成)

1.7 自适应Simpson积分

Forked from fstqwq's template.

```
// Adaptive Simpson's method : double simpson::solve
    \hookrightarrow (double (*f) (double), double l, double r, double eps)
    \rightarrow: integrates f over (l, r) with error eps.
  double area (double (*f)(double), double 1, double r) {
       double m = 1 + (r - 1) / 2;
       return (f(1) + 4 * f(m) + f(r)) * (r - 1) / 6;
6
  double solve (double (*f) (double), double 1, double r,
    → double eps, double a) {
       double m = 1 + (r - 1) / 2;
       double left = area(f, 1, m), right = area(f, m, r);
10
       if (fabs(left + right - a) <= 15 * eps)</pre>
11
           return left + right + (left + right - a) / 15.0;
12
       return solve(f, 1, m, eps / 2, left) + solve(f, m, r,
13
         \hookrightarrow eps / 2, right);
14
15
  double solve (double (*f) (double), double 1, double r,

    double eps) {
17
       return solve(f, l, r, eps, area (f, l, r));
```

1.8 常见数列

查表参见"Miscallous/OEIS"部分.

1.8.1 斐波那契数 卢卡斯数

```
斐波那契数: F_0=0, F_1=1, F_n=F_{n-1}+F_{n-2}
0,1,1,2,3,5,8,13,21,34,55,89,\dots
卢卡斯数: L_0=2, L_1=1
2,1,3,4,7,11,18,29,47,76,123,199,\dots
通项公式
\phi=\frac{1+\sqrt{5}}{2}, \hat{\phi}=\frac{1-\sqrt{5}}{2}
F_n=\frac{\phi^n-\hat{\phi}^n}{\sqrt{5}}, L_n=\phi^n+\hat{\phi}^n
实际上有\frac{L_n+F_n\sqrt{5}}{2}=\left(\frac{1+\sqrt{5}}{2}\right)^n, 所以求通项的话写一个类然后快 25 速幂就可以同时得到两者.
快速倍增法
F_{2k}=F_k\left(2F_{k+1}-F_k\right), F_{2k+1}=F_{k+1}^2+F_k^2
```

```
\Gamma_{2k} = \Gamma_k (2\Gamma_{k+1} - \Gamma_k), \ \Gamma_{2k+1} = \Gamma_{k+1} + \Gamma_k
```

```
pair<int, int> fib(int n) { // 返回F(n)和F(n + 1)

if (n == 0) return {0, 1};

auto p = fib(n >> 1);

int c = p.first * (2 * p.second - p.first);

int d = p.first * p.first + p.second * p.second;

if (n & 1)

return {d, c + d};
```

1.8.2 伯努利数,自然数幂次和

```
指数生成函数:B(x) = \sum_{i \geq 0} \frac{B_i x^i}{i!} = \frac{x}{e^x - 1} B_n = [n = 0] - \sum_{i = 0}^{n-1} \binom{n}{i} \frac{B_i}{n - k + 1} \sum_{i = 0}^n \binom{n+1}{i} B_i = 0 S_n(m) = \sum_{i = 0}^{m-1} i^n = \sum_{i = 0}^n \binom{n}{i} B_{n-i} \frac{m^{i+1}}{i+1} B_0 = 1, \ B_1 = -\frac{1}{2}, \ B_4 = -\frac{1}{30}, \ B_6 = \frac{1}{42}, \ B_8 = -\frac{1}{30}, \ \dots (除了B_1 = -\frac{1}{2}以外,伯努利数的奇数项都是0.) 自然数幂次和关于次数的EGF:
```

$$F(x) = \sum_{k=0}^{\infty} \frac{\sum_{i=0}^{n} i^{k}}{k!} x^{k}$$
$$= \sum_{i=0}^{n} e^{ix}$$
$$= \frac{e^{(n+1)x-1}}{e^{x} - 1}$$

1.8.3 分拆数

```
int b = sqrt(n);
           ans [0] = tmp [0] = 1;
           for (int i = 1; i <= b; ++i) {
                            for (int rep = 0; rep < 2; ++rep)
                                            for (int j = i; j <= n - i * i; ++j)
                                                           add(tmp[j], tmp[j - i]);
                            for (int j = i * i; j <= n; ++j)
                                           add(ans[j], tmp[j - i * i]);
13
           long long a[100010];
           long long p[50005]; // 欧拉五边形数定理
           int main() {
                  p[0] = 1;
                  p[1] = 1;
                  p[2] = 2;
21
                    for (i = 1; i < 50005;
                                       i++) /*递推式系数1,2,5,7,12,15,22,26...i*(3*i-1)/
                                               \leftrightarrow 2, i*(3*i+1)/2*/
                           a[2 * i] = i * (i * 3 - 1) / 2; /*五边形数

→ 为1,5,12,22...i*(3*i-1)/2*/

                           a[2 * i + 1] = i * (i * 3 + 1) / 2;
                  }
28
                   for (
                                   i = 3; i < 50005;
                                  i++) /*p[n]=p[n-1]+p[n-2]-p[n-5]-
                                           \hookrightarrow p[n-7]+p[12]+p[15]-...+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n-i*[3i-1]/2]+p[n

→ i*[3i+1]/2]*/

32
                           p[i] = 0;
33
                           int j;
```

```
for (j = 2; a[j] <= i; j++) /*有可能为负数,式中
           p[i] = (p[i] + p[i - a[j]] + 1000007) \% 1000007;
39
           p[i] = (p[i] - p[i - a[j]] + 1000007) \% 1000007;
42
43
     int n;
    while (~scanf("%d", &n))
45
       printf("%11d\n", p[n]);
46
```

1.8.4 斯特林数

1. 第一类斯特林数

 $\binom{n}{k}$ 表示n个元素划分成k个轮换的方案数.

递推式: $\binom{n}{k} = \binom{n-1}{k-1} + (n-1)\binom{n-1}{k}$.

求同一行: 分治FFT $O(n\log^2 n)$, 或者倍增 $O(n\log n)$ (每次都 是f(x) = g(x)g(x+d)的形式,可以用g(x)反转之后做一个卷积求 出后者).

$$\sum_{k=0}^{n} {n \brack k} x^{k} = \prod_{i=0}^{n-1} (x+i)$$

求同一列: 用一个轮换的指数生成函数做 k次幂

$$\sum_{n=0}^{\infty} {n \brack k} \frac{x^n}{n!} = \frac{\left(\ln(1-x)\right)^k}{k!} = \frac{x^k}{k!} \left(\frac{\ln(1-x)}{x}\right)^k$$

2. 第二类斯特林数

 $\binom{n}{k}$ 表示n个元素划分成k个子集的方案数.

递推式: $\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$.

$$\binom{n}{k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n = \sum_{i=0}^{k} \frac{(-1)^i}{i!} \frac{(k-i)^n}{(k-i)!}$$

求同一行: FFT, 狗都会做 求同一列: 指数生成函数

$$\sum_{n=0}^{\infty} {n \brace k} \frac{x^n}{n!} = \frac{(e^x - 1)^k}{k!} = \frac{x^k}{k!} \left(\frac{e^x - 1}{x}\right)^k$$

普通生成函数

$$\sum_{n=0}^{\infty} {n \brace k} x^n = x^k \left(\prod_{i=1}^k (1-ix) \right)^{-1}$$

3. 幂的转换

上升幂与普通幂的转换

$$x^{\overline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}$$
$$x^{n} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}}$$

下降幂与普通幂的转换

$$x^{n} = \sum_{k} {n \choose k} x^{\underline{k}} = \sum_{k} {x \choose k} {n \choose k} k!$$
$$x^{\underline{n}} = \sum_{k} {n \brack k} (-1)^{n-k} x^{k}$$

另外,多项式的**点值**表示的每项除以阶乘之后卷上 e^{-x} 乘上阶乘之后 是牛顿插值表示,或者不乘阶乘就是下降幂系数表示. 反过来的转换 当然卷上 e^x 就行了. 原理是每次差分等价于乘以(1-x), 展开之后 用一次卷积取代多次差分.

4. 斯特林多项式(斯特林数关于斜线的性质)

定义:

$$\sigma_n(x) = \frac{\begin{bmatrix} x \\ n \end{bmatrix}}{x(x-1)\dots(x-n)}$$

 $\sigma_n(x)$ 的最高次数是 x^{n-1} . (所以作为唯一的特例, $\sigma_0(x)=\frac{1}{2}$ 不是 多项式.)

斯特林多项式实际上非常神奇, 它与两类斯特林数都有关系.

$$\begin{bmatrix} n \\ n-k \end{bmatrix} = n^{\underline{k+1}} \sigma_k(n)$$

$$\begin{Bmatrix} n \\ n-k \end{Bmatrix} = (-1)^{k+1} n^{\underline{k+1}} \sigma_k(-(n-k))$$

不过它并不好求,可以 $O(k^2)$ 直接计算前几个点值然后插值, 或者如 果要推式子的话可以用后面提到的二阶欧拉数.

1.8.5 贝尔数

$$B_0 = 1, B_1 = 1, B_2 = 2, B_3 = 5,$$

 $B_4 = 15, B_5 = 52, B_6 = 203, \dots$

$$B_n = \sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix}$$

递推式:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

指数牛成函数:

$$B(x) = e^{e^x - 1}$$

Touchard同余:

$$B_{n+p} \equiv (B_n + B_{n+1}) \pmod{p}$$
, p is a prime

1.8.6 欧拉数(Eulerian Number)

1. 欧拉数

 $\binom{n}{k}$: n个数的排列, 有k个上升的方案数.

2. 二阶欧拉数

 $\binom{n}{k}$: 每个数都出现两次的多重排列,并且每个数两次出现之间的数都比它要大. 在此前提下有k个上升的方案数.

$$\left\langle \left\langle {n \atop k} \right\rangle \right\rangle = (2n - k - 1) \left\langle \left\langle {n - 1 \atop k - 1} \right\rangle \right\rangle + (k + 1) \left\langle \left\langle {n - 1 \atop k} \right\rangle \right\rangle$$
$$\sum_{k=0}^{n-1} \left\langle \left\langle {n \atop k} \right\rangle \right\rangle = (2n - 1)!! = \frac{(2n)^{\underline{n}}}{2^n}$$

3. 二阶欧拉数与斯特林数的关系

$$\begin{cases} x \\ x - n \end{cases} = \sum_{k=0}^{n-1} \left\langle \left\langle n \right\rangle \right\rangle \left\langle x + n - k - 1 \right\rangle$$

$$\left[x \\ x - n \right] = \sum_{k=0}^{n-1} \left\langle \left\langle n \right\rangle \right\rangle \left\langle x + k \right\rangle$$

$$\left[x \\ x - n \right] = \sum_{k=0}^{n-1} \left\langle \left\langle n \right\rangle \right\rangle \left\langle x + k \right\rangle$$

1.8.7 卡特兰数,施罗德数,默慈金数

卡特兰数

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1}$$

- n个元素按顺序入栈, 出栈序列方案数
- 长为2n的合法括号序列数
- n+1个叶子的满二叉树个数

递推式:

$$C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}$$

$$C_n = C_{n-1} \frac{4n - 2}{n + 1}$$

普通生成函数:

$$C(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

扩展: 如果有n个左括号和m个右括号, 方案数为

$$\binom{n+m}{n} - \binom{n+m}{m-1}$$

施罗德数

$$S_n = S_{n-1} + \sum_{i=0}^{n-1} S_i S_{n-i-1}$$

$$(n+1)s_n = (6n-3)s_{n-1} - (n-2)s_{n-2}$$

其中 S_n 是(大)施罗德数, s_n 是小施罗德数(也叫超级卡特兰数). 除了 $S_0=s_0=1$ 以外, 都有 $S_i=2s_i$. 施罗德数的组合意义:

- $\mathcal{M}(0,0)$ 走到(n,n), 每次可以走右, 上, 或者右上一步, 并且不能超过y=x 这条线的方案数
- 长为n的括号序列,每个位置也可以为空,并且括号对数和空位置数加起来等于n的方案数
- 凸n边形的任意剖分方案数

(有些人会把大(而不是小)施罗德数叫做超级卡特兰数.)

默慈金数

$$M_{n+1} = M_n + \sum_{i=0}^{n-1} M_i M_{n-1-i} = \frac{(2n+3)M_n + 3nM_{n-1}}{n+3}$$

$$M_n = \sum_{i=0}^{\frac{n}{2}} \binom{n}{2i} C_i$$

在圆上的n个**不同的**点之间画任意条不相交(包括端点)的弦的方案数. 也等价于在网格图上,每次可以走右上,右下,正右方一步,且不能走到y < 0的位置,在此前提下从(0,0)走到(n,0)的方案数.

扩展: 默慈金数画的弦不可以共享端点. 如果可以共享端点的话是A054726, 后面的表里可以查到.

1.9 常用公式及结论

1.9.1 方差

*m*个数的方差:

$$s^2 = \frac{\sum_{i=1}^{m} x_i^2}{m} - \overline{x}^2$$

随机变量的方差: $D^2(x) = E(x^2) - E^2(x)$

1.9.2 单位根反演(展开整除条件[n|k])

$$[n|k] = \frac{1}{n} \sum_{i=0}^{n-1} \omega_n^{ik}$$

$$\sum_{k\geq 0} [x^{ik}]f(x) = \frac{1}{k} \sum_{k=0}^{k-1} f(\omega_k^j)$$

1.9.3 康托展开(排列的排名)

求排列的排名: 先对每个数都求出它后面有几个数比它小(可以用树状数组预处理), 记为 c_i , 则排列的排名就是

$$\sum_{i=1}^{n} c_i (n-i)!$$

已知排名构造排列:从前到后先分别求出 c_i ,有了 c_i 之后再用一个平衡树(需要维护排名)倒序处理即可.

1.9.4 连通图计数

设大小为n的满足一个限制P的简单无向图数量为 g_n ,满足限制P且连通的简单无向图数量为 f_n ,如果已知 $g_{1...n}$ 求 f_n ,可以得到递推式

$$f_n = g_n - \sum_{k=1}^{n-1} {n-1 \choose k-1} f_k g_{n-k}$$

这个递推式的意义就是用任意图的数量减掉不连通的数量,而不连通的数量可以通过枚举1号点所在连通块大小来计算.

注意, 由于 $f_0 = 0$, 因此递推式的枚举下界取0和1都是可以的.

推一推式子会发现得到一个多项式求逆,再仔细看看,其实就是一个 多项式ln.

1.9.5 线性齐次线性常系数递推求通项

• 定理3.1: 设数列 $\{u_n: n \geq 0\}$ 满足r 阶齐次线性常系数递推 关系 $u_n = \sum_{j=1}^r c_j u_{n-j} \ (n \geq r)$. 则

$$(i). \qquad U(x) = \sum_{n \geq 0} u_n x^n = \frac{h(x)}{1 - \sum_{j=1}^r c_j x^j}, \quad deg(h(x)) < r.$$

(ii). 若特征多项式

$$c(x) = x^r - \sum_{j=1}^r c_j x^{r-j} = (x - \alpha_1)^{e_1} \cdots (x - \alpha_s)^{e_s},$$

其中 $\alpha_1, \dots, \alpha_s$ 互异, $e_1 + \dots + e_s = r$ 则 u_n 有表达式

$$u_n = p_1(n)\alpha_1^n + \dots + p_s(n)\alpha_s^n$$
, $deg(p_i) < e_i, i = 1, \dots, s$.

1.10 常用生成函数变换

$$\frac{x}{(1-x)^2} = \sum_{i>0} ix^i$$

$$\frac{1}{(1-x)^k} = \sum_{i>0} \binom{i+k-1}{i} x^i = \sum_{i>0} \binom{i+k-1}{k-1} x^i, \ k>0$$

$$\begin{split} \sum_{i=0}^{\infty} i^n x^i &= \sum_{k=0}^n \binom{n}{k} k! \frac{x^k}{(1-x)^{k+1}} = \sum_{k=0}^n \binom{n}{k} k! \frac{x^k (1-x)^{n-k}}{(1-x)^{n+1}} \\ &= \frac{1}{(1-x)^{n+1}} \sum_{i=0}^n \frac{x^i}{(n-i)!} \sum_{k=0}^i \binom{n}{k} k! (n-k)! \frac{(-1)^{i-k}}{(i-k)!} \end{split}$$

(用上面的方法可以把分子化成一个n次以内的多项式,并且可以用一次卷积求出来.)

如果把 i^n 换成任意的一个n次多项式,那么我们可以求出它的下降幂表示形式(或者说是牛顿插值)的系数 r_i ,发现用 r_k 替换掉上面的 $\binom{n}{k}k!$ 之后其余过程完全相同.

2. 数论

2.1 O(n)预处理逆元

2.2 线性筛

```
// 此代码以计算约数之和函数\sigma_1(对10^9+7取模)为例
  // 适用于任何f(p^k)便于计算的积性函数
  constexpr int p = 1000000007;
  int prime[maxn / 10], sigma one[maxn], f[maxn], g[maxn];
  // f: 除掉最小质因子后剩下的部分
  //g: 最小质因子的幂次,在f(p^k)比较复杂时很有用,
   → 但f(p^k)可以递推时就可以省略了
  // 这里没有记录最小质因子,但根据线性筛的性质,每个合数只
   → 会被它最小的质因子筛掉
  bool notp[maxn]; // 顾名思义
10
11
  void get_table(int n) {
     sigma_one[1] = 1; // 积性函数必有f(1) = 1
12
13
     for (int i = 2; i <= n; i++) {
         if (!notp[i]) { // 质数情况
14
            prime[++prime[0]] = i;
15
            sigma_one[i] = i + 1;
16
            f[i] = g[i] = 1;
17
18
19
         for (int j = 1; j \leftarrow prime[0] && i * prime[j] \leftarrow n;
20
          notp[i * prime[j]] = true;
21
22
            if (i % prime[j]) { // 加入一个新的质因子, 这种
23
              → 情况很简单
                sigma_one[i * prime[j]] = (long
24
                 f[i * prime[j]] = i;
                g[i * prime[j]] = 1;
27
            else { // 再加入一次最小质因子,需要再进行分类讨
28
              →论
                f[i * prime[j]] = f[i];
                g[i * prime[j]] = g[i] + 1;
30
                // 对于f(p^k)可以直接递推的函数,这里的判断
31
                 → 可以改成
                // i / prime[j] % prime[j] != 0, 这样可以省
                 → 下f[]的空间,
                // 但常数很可能会稍大一些
33
34
                if (f[i] == 1) // 质数的幂次, 这
                 → 里\sigma_1可以递推
                   sigma_one[i * prime[j]] = (sigma_one[i]
36
                     \hookrightarrow + i * prime[j]) % p;
                   // 对于更一般的情况,可以借助g[]计
37

→ 算f(p^k)

                else sigma_one[i * prime[j]] = // 否则直接
38
                 → 利用积性, 两半乘起来
                   (long long)sigma_one[i * prime[j] /
39

    f[i]] * sigma_one[f[i]] % p;

40
41
```

```
42 | }
43 | }
44 |}
```

2.3 杜教筛

```
// 用于求可以用狄利克雷卷积构造出好求和的东西的函数的前缀
   → 和(有点绕)
  // 有些题只要求n <= 10 ^ 9, 这时就没必要开Long Long了, 但记
   → 得乘法时强转
  //常量/全局变量/数组定义
  const int maxn = 50000005, table_size = 50000000, p =
   \hookrightarrow 1000000007, inv_2 = (p + 1) / 2;
  bool notp[maxn];
  int prime[maxn / 20], phi[maxn], tbl[100005];
  // tbl用来顶替哈希表,其实开到n ^ {1 / 3}就够了,不过保险
   → 起见开成\sqrt n比较好
  long long N;
  // 主函数前面加上这么一句
  memset(tbl, -1, sizeof(tbl));
  // 线性筛预处理部分略去
  // 杜教筛主过程 总计O(n ^ {2 / 3})
  // 递归调用自身
  // 递推式还需具体情况具体分析,这里以求欧拉函数前缀和(mod
   → 10 ^ 9 + 7) 为例
  int S(long long n) {
     if (n <= table_size)</pre>
        return phi[n];
     else if (~tbl[N / n])
        return tbl[N / n];
     // 原理: n除以所有可能的数的结果一定互不相同
     int ans = 0;
      for (long long i = 2, last; i \le n; i = last + 1) {
27
         last = n / (n / i);
         ans = (ans + (last - i + 1) \% p * S(n / i)) \% p; //
          → 如果n是int范围的话记得强转
30
      ans = (n \% p * ((n + 1) \% p) \% p * inv_2 - ans + p) %
       → p; // 同上
33
     return tbl[N / n] = ans;
34
```

2.4 Powerful Number筛

注意Powerful Number筛只能求积性函数的前缀和.

本质上就是构造一个方便求前缀和的函数,然后做类似杜教筛的操作。 定义Powerful Number表示每个质因子幂次都大于1的数,显然最多有 \sqrt{n} 个.

设我们要求和的函数是f(n),构造一个方便求前缀和的**积性**函数g(n)使得g(p) = f(p).

那么就存在一个积性函数 $h = f * g^{-1}$,也就是f = g * h. 可以证明h(p) = 0,所以只有Powerful Number的h值不为0.

$$S_f(i) = \sum_{d=1}^n h(d) S_g\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

只需要枚举每个Powerful Number作为d,然后用杜教筛计算g的前缀和.

求h(d)时要先预处理 $h(p^k)$,显然有

$$h\left(p^{k}\right) = f\left(p^{k}\right) - \sum_{i=1}^{k} g\left(p^{i}\right) h\left(p^{k-i}\right)$$

处理完之后DFS就行了. (显然只需要筛 \sqrt{n} 以内的质数.) 复杂度取决于杜教筛的复杂度,特殊题目构造的好也可以做 16 int f[maxn], pr[maxn], g[2][maxn], dp[maxn]; 到 $O(\sqrt{n})$.

例题:

- $f(p^k) = p^k (p^k 1) : g(n) = id(n)\varphi(n)$.
- $f(p^k) = p \operatorname{xor} k : n$ 为偶数时 $g(n) = 3\varphi(n)$, 否则 $g(n) = \varphi(n)$.

2.5洲阁筛

计算积性函数f(n)的前n项之和时,我们可以把所有项按照是否 有 $>\sqrt{n}$ 的质因子分两类讨论,最后将两部分的贡献加起来即可.

1. 有 $>\sqrt{n}$ 的质因子

显然 $>\sqrt{n}$ 的质因子幂次最多为1,所以这一部分的贡献就是

$$\sum_{i=1}^{\sqrt{n}} f(i) \sum_{d=\sqrt{n}+1}^{\left\lfloor \frac{n}{i} \right\rfloor} \left[d \in \mathbb{P} \right] f(d)$$

我们可以DP后面的和式。由于f(p)是一个关于p的低次多项式,我 34 们可以对每个次幂分别DP: 设 $g_{i,j}$ 表示[1,j]中和前i个质数都互质的 数的k次方之和. 设 \sqrt{n} 以内的质数总共有m个, 显然贡献就转换成了

$$\sum_{i=1}^{\sqrt{n}} i^k g_{m, \left\lfloor \frac{n}{i} \right\rfloor}$$

边界显然就是自然数幂次和, 转移是

$$g_{i,j} = g_{i-1,j} - p_i^k g_{i-1, \lfloor \frac{j}{p_i} \rfloor}$$

也就是减掉和第i个质数不互质的贡献.

在滚动数组的基础上再优化一下: 首先如果 $j < p_i$ 那肯定就只有1-个数; 如果 $p_i \leq j < p_i^2$, 显然就有 $g_{i,j} = g_{i-1,j} - p_i^k$, 那么对每 47 个j记下最大的i使得 $p_i^2 \leq j$,比这个还大的情况就不需要递推了,用 48 到的时候再加上一个前缀和解决.

2. 所有质因子都 $\leq \sqrt{n}$

类似的道理, 我们继续 $DP: h_{i,j}$ 表示只含有第i到m个质数作为质因 子的所有数的f(i)之和. (这里不需要对每个次幂单独DP了; 另外倒 $_{53}$ 着DP是为了方便卡上限.)

边界显然是 $h_{m+1,i} = 1$, 转移是

$$h_{i,j} = h_{i+1,j} + \sum_{c} f(p_i^c) h_{i+1, \left\lfloor \frac{j}{p_i^c} \right\rfloor}$$

跟上面一样的道理优化,分成三段: $j < p_i$ 时 $h_{i,j} = 1, j < \frac{1}{59}$ p_i^2 时 $h_{i,j} = h_{i+1,j} + f(p_i)$ (同样用前缀和解决),再小的部分就 $_{60}$

预处理 \sqrt{n} 以内的部分之后跑两次DP,最后把两部分的贡献加起来就

两部分的复杂度都是 $\Theta\left(\frac{n^{\frac{3}{4}}}{\log n}\right)$ 的.

以下代码以洛谷P5325 $(f(p^k) = p^k(p^k - 1))$ 为例.

```
constexpr int \max n = 200005, p = 10000000007;
  long long N, val[maxn]; // 询问的n和存储所有整除结果的表
  int sqrtn;
                                                               71
                                                               72
  inline int getid(long long x) {
                                                               73
      if (x <= sqrtn)</pre>
        return x;
                                                               75
      return val[0] - N / x + 1;
10
  bool notp[maxn];
14 | int prime[maxn], prime_cnt, rem[maxn]; // 线性筛用数组
```

```
int l[maxn], r[maxn];
   // 线性筛省略
   inline int get_sum(long long n, int k) {
       n %= p;
       if (k == 1)
          return n * (n + 1) % p * ((p + 1) / 2) % p;
          return n * (n + 1) % p * (2 * n + 1) % p * ((p + 1))
   void get_dp(long long n, int k, int *dp) {
31
       for (int j = 1; j \leftarrow val[0]; j++)
          dp[j] = get_sum(val[j], k);
       for (int i = 1; i <= prime_cnt; i++) {
           long long lb = (long long)prime[i] * prime[i];
           int pw = (k == 1 ? prime[i] : (int)(lb % p));
           pr[i] = (pr[i - 1] + pw) \% p;
           for (int j = val[0]; j && val[j] >= lb; j--) {
41
               int t = getid(val[j] / prime[i]);
               int tmp = dp[t];
               if (l[t] < i)
                   tmp = (tmp - pr[min(i - 1, r[t])] +
                     \hookrightarrow pr[l[t]]) \% p;
               dp[j] = (dp[j] - (long long)pw * tmp) % p;
               if (dp[j] < 0)
                   dp[j] += p;
       for (int j = 1; j \leftarrow val[0]; j++) {
           dp[j] = (dp[j] - pr[r[j]] + pr[l[j]]) \% p;
55
           dp[j] = (dp[j] + p - 1) % p; // 因为DP数组是有1的,
             → 但后面计算不应该有1
   int calc1(long long n) {
       get_dp(n, 1, g[0]);
       get_dp(n, 2, g[1]);
       int ans = 0;
       for (int i = 1; i <= sqrtn; i++)
67
           ans = (ans + (long long)f[i] * (g[1][getid(N / i)]

    - g[0][getid(N / i)])) % p;

       if (ans < 0)
70
          ans += p;
       return ans:
74
   int calc2(long long n) {
       for (int j = 1; j \leftarrow val[0]; j++)
          dp[j] = 1;
       for (int i = 1; i <= prime_cnt; i++)</pre>
```

```
pr[i] = (pr[i - 1] + f[prime[i]]) % p;
81
82
        for (int i = prime_cnt; i; i--) {
83
             long long lb = (long long)prime[i] * prime[i];
84
85
             for (int j = val[0]; j && val[j] >= lb; j--)
86
                 for (long long pc = prime[i]; pc <= val[j]; pc</pre>
                   int t = getid(val[j] / pc);
88
                      int tmp = dp[t];
                      if (r[t] > i)
                          tmp = (tmp + pr[r[t]] - pr[max(i,
92
                            \hookrightarrow l[t])]) % p;
93
                      dp[j] = (dp[j] + pc \% p * ((pc - 1) \% p) \%
94
                        \hookrightarrow p * tmp) % p;
                 }
95
96
97
        return (long long)(dp[val[0]] + pr[r[val[0]]] -
98
          \hookrightarrow pr[l[val[0]]] + p) \% p;
99
100
    int main() {
        // ios::sync_with_stdio(false);
104
        cin >> N;
105
106
107
        sqrtn = (int)sqrt(N);
108
109
        get_table(sqrtn);
110
        for (int i = 1; i <= sqrtn; i++)
111
        val[++val[0]] = i;
112
113
        for (int i = 1; i <= sqrtn; i++)
114
            val[++val[0]] = N / i;
115
116
        sort(val + 1, val + val[0] + 1);
117
118
        val[0] = unique(val + 1, val + val[0] + 1) - val - 1;
119
120
        int li = 0, ri = 0;
121
        for (int j = 1; j \leftarrow val[0]; j++) {
122
            while (ri < prime_cnt && prime[ri + 1] <= val[j])</pre>
123
                 ri++;
124
125
            while (li <= prime cnt && (long long)prime[li] *</pre>
126

    prime[li] <= val[j])</pre>
                 li++;
127
            l[j] = li - 1;
129
            r[j] = ri;
130
131
132
        cout << (calc1(N) + calc2(N)) % p << endl;</pre>
133
134
        return 0;
135
136
```

2.6 离散对数(BSGS)(待完成)

2.7 Miller-Rabin

```
1 // 复杂度可以认为是常数
2 // 封装好的函数体
```

```
// 需要调用check
  bool Miller_Rabin(long long n) {
      if (n == 1)
          return false;
      if (n == 2)
          return true;
      if (n % 2 == 0)
10
          return false:
11
      for (int i : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
13
          if (i >= n)
14
              break:
15
          if (!check(n, i))
16
              return false;
17
18
19
      return true;
20
21
  // 用一个数检测
  // 需要调用Long Long快速幂和O(1)快速乘
  bool check(long long n, long long b) { // b: base
      long long a = n - 1;
      int k = 0;
27
      while (a \% 2 == 0) {
          a /= 2;
30
          k++;
31
32
33
      long long t = qpow(b, a, n); // 这里的快速幂函数需要
34
        → 写0(1)快速乘
      if (t == 1 | | t == n - 1)
35
          return true;
36
37
      while (k--) {
          t = mul(t, t, n); // mul是0(1)快速乘函数
39
          if(t == n - 1)
40
              return true;
41
42
43
      return false;
44
45
```

2.8 Pollard's Rho

```
1 // 注意,虽然Pollard's Rho的理论复杂度是O(n ^ {1 / 4})的,
  // 但实际跑起来比较慢,一般用于做Long Long范围内的质因数分
   → 解
  // 封装好的函数体
  // 需要调用solve
  void factorize(long long n, vector<long long> &v) { // v用
   → 于存分解出来的质因子, 重复的会放多个
     for (int i : {2, 3, 5, 7, 11, 13, 17, 19})
        while (n \% i == 0) {
10
            v.push_back(i);
            n /= i;
11
        }
12
14
     solve(n, v);
     sort(v.begin(), v.end()); // 从小到大排序后返回
15
16
17
  // 递归过程
  // 需要调用Pollard's Rho主过程,同时递归调用自身
  void solve(long long n, vector<long long> &v) {
```

```
if (n == 1)
        return;
22
23
      long long p;
24
25
       p = Pollards_Rho(n);
26
      while (!p); // p是任意一个非平凡因子
27
28
      if (p == n) {
29
         v.push_back(p); // 说明n本身就是质数
30
31
32
33
      solve(p, v); // 递归分解两半
34
      solve(n / p, v);
35
36
37
  // Pollard's Rho主过程
  // 需要使用Miller-Rabin作为子算法
  // 同时需要调用0(1)快速乘和gcd函数
40
  long long Pollards_Rho(long long n) {
41
      // assert(n > 1);
42
43
      if (Miller_Rabin(n))
44
        return n;
45
46
      long long c = rand() \% (n - 2) + 1, i = 1, k = 2, x =
47
        → rand() % (n - 3) + 2, u = 2; // 注意这里rand函数需
        → 要重定义一下
      while (true) {
         i++;
49
          x = (mul(x, x, n) + c) % n; // mul是O(1)快速乘函数
50
          long long g = gcd((u - x + n) \% n, n);
          if (g > 1 && g < n)
53
            return g;
54
          if (u == x)
             return 0; // 失败, 需要重新调用
57
          if (i == k) {
             u = x;
              k *= 2;
61
62
63
64
```

2.9 快速阶乘算法

参见"数学/多项式"部分.

2.10 扩展欧几里德

```
void exgcd(LL a, LL b, LL &c, LL &x, LL &y) {
    if (b == 0) {
        c = a;
        x = 1;
        y = 0;
        return;
    }
    exgcd(b, a % b, c, x, y);

LL tmp = x;
    x = y;
    y = tmp - (a / b) * y;

10
11
12
12
13
14
15
16
17
18
18
20
21
22
23
24
```

2.10.1 求通解的方法

假设我们已经找到了一组解 (p_0,q_0) 满足 $ap_0+bq_0=\gcd(a,b)$,那么其他的解都满足

$$p = p_0 + \frac{b}{\gcd(p, q)} \times t$$
 $q = q_0 - \frac{a}{\gcd(p, q)} \times t$

其中t为任意整数.

2.10.2 类欧几里德算法(直线下整点个数)

 $a, b \ge 0, m > 0$,计算 $\sum_{i=0}^{n-1} \left\lfloor \frac{a+bi}{m} \right\rfloor$.

2.11 中国剩余定理(待完成)

- 2.11.1 ex-CRT(待完成)
- 2.12 组合数取模(ex-Lucas)(待完成)
- 2.13 原根 阶

阶: 最小的整数k使得 $a^k \equiv 1 \pmod{p}$, 记为 $\delta_p(a)$.

显然 在原根以下的幂次是两两不同的.

一个性质: 如果a,b均与p互质, 则 $\delta_p(ab)=\delta_p(a)\delta_p(b)$ 的充分必要条件是 $\gcd\left(\delta_p(a),\delta_p(b)\right)=1.$

另外,如果a与p互质,则有 $\delta_p(a^k)=\dfrac{\delta_p(a)}{\gcd\left(\delta_p(a),k\right)}$.(也就是环上一次跳k步的周期.)

原根: 阶等于 $\varphi(p)$ 的数.

只有形如 $2,4,p^k,2p^k(p$ 是奇素数)的数才有原根,并且如果一个数n有原根,那么原根的个数是 $\varphi(\varphi(n))$ 个.

暴力找原根代码:

```
def split(n): # 分解质因数
      i = 2
      a = []
      while i * i <= n:
          if n % i == 0:
               a.append(i)
               while n % i == 0:
                  n /= i
10
          i += 1
11
12
       if n > 1:
13
          a.append(n)
16
      return a
17
   def getg(p): # 找原根
18
19
       def judge(g):
          for i in d:
20
              if pow(g, (p - 1) / i, p) == 1:
                   return False
22
23
          return True
```

```
d = split(p - 1)
g = 2

while not judge(g):
    g += 1

return g

print(getg(int(input())))
```

2.14 常用数论公式

2.14.1 莫比乌斯反演

$$f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) f(d)$$
$$f(d) = \sum_{d|k} g(k) \Leftrightarrow g(d) = \sum_{d|k} \mu\left(\frac{k}{d}\right) f(k)$$

2.14.2 降幂公式

$$a^k \equiv a^{k \bmod \varphi(p) + \varphi(p)}, \ k \ge \varphi(p)$$

2.14.3 其他常用公式

$$\mu * I = e \quad (e(n) = [n = 1])$$

$$\varphi * I = id$$

$$\mu * id = \varphi$$

$$\sigma_0 = I * I, \sigma_1 = id * I, \sigma_k = id^{k-1} * I$$

$$\sum_{i=1}^n [(i, n) = 1] i = n \frac{\varphi(n) + e(n)}{2}$$

$$\sum_{i=1}^n \sum_{j=1}^i [(i, j) = d] = S_\varphi\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$\sum_{i=1}^n \sum_{j=1}^m [(i, j) = d] = \sum_{d \mid k} \mu\left(\frac{k}{d}\right) \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloor$$

$$\sum_{i=1}^n f(i) \sum_{j=1}^n g(j) = \sum_{i=1}^n g(i) \sum_{j=1}^n f(j)$$

3. 图论

3.1 最小生成树

3.1.1 Boruvka算法

思想: 每次选择连接每个连通块的最小边, 把连通块缩起来. 每次连通块个数至少减半,所以迭代 $O(\log n)$ 次即可得到最小生成 54 // 需要调用Reduction和Contraction

一种比较简单的实现方法:每次迭代遍历所有边,用并查集维护连通 性和每个连通块的最小边权.

应用: 最小异或生成树

3.1.2 动态最小生成树

```
60
                                                      61
  // 动态最小生成树的离线算法比较容易,而在线算法诵常极为复杂
  // 一个跑得比较快的离线做法是对时间分治,在每层分治时找出一
   → 定在/不在MST上的边,只带着不确定边继续递归
  // 简单起见,找确定边的过程用KruskaL算法实现,过程中的两种重
   → 要操作如下:
  // - Reduction:待修改边标为+INF,跑MST后把非树边删掉,减少无
                                                      67
   →用边
  // - Contraction:待修改边标为-INF,跑MST后缩除待修改边之外的
                                                      69
   → 所有MST边, 计算必须边
                                                      70
  // 每轮分治需要Reduction-Contraction,借此减少不确定边,从而
                                                      71
   → 保证复杂度
  // 复杂度证明:假设当前区间有k条待修改边,n和m表示点数和边
   \rightarrow 数,那么最坏情况下R-C的效果为(n, m) -> (n, n + k - 1) ->
   \hookrightarrow (k + 1, 2k)
                                                      75
  // 全局结构体与数组定义
                                                      76
  struct edge { //边的定义
                                                      77
     int u, v, w, id; // id表示边在原图中的编号
                                                      78
     bool vis; // 在Kruskal时用,记录这条边是否是树边
                                                      79
     bool operator < (const edge &e) const { return w < e.w;
                                                      81
  } e[20][maxn], t[maxn]; // 为了便于回滚,在每层分治存一个副
                                                      82
16
                                                      83
17
                                                      84
  // 用于存储修改的结构体,表示第id条边的权值从u修改为v
                                                      85
  struct A {
                                                      86
     int id, u, v;
                                                      87
  } a[maxn];
21
                                                      88
22
                                                      89
  int id[20][maxn]; // 每条边在当前图中的编号
  int p[maxn], size[maxn], stk[maxn], top; // p和size是并查集
   → 数组, stk是用来撤销的栈
  int n, m, q; // 点数,边数,修改数
                                                      93
27
                                                      94
28
                                                      95
  // 方便起见,附上可能需要用到的预处理代码
29
                                                      96
  for (int i = 1; i <= n; i++) { // 并查集初始化
                                                      97
31
     p[i] = i;
                                                      98
     size[i] = 1;
32
                                                      99
33
                                                      100
                                                      101
  for (int i = 1; i <= m; i++) { // 读入与预标号
35
                                                      102
     scanf("%d%d%d", &e[0][i].u, &e[0][i].v, &e[0][i].w);
36
                                                      103
     e[0][i].id = i;
37
                                                      104
     id[0][i] = i;
38
                                                      105
39
                                                      106
40
                                                      107
  for (int i = 1; i <= q; i++) { // 预处理出调用数组
41
                                                      108
     scanf("%d%d", &a[i].id, &a[i].v);
42
                                                     109
     a[i].u = e[0][a[i].id].w;
43
     e[0][a[i].id].w = a[i].v;
44
                                                     110
45
```

```
for(int i = q; i; i--)
      e[0][a[i].id].w = a[i].u;
48
  CDQ(1, q, 0, m, 0); // 这是调用方法
  // 分治主过程 O(nLog^2n)
  void CDQ(int 1, int r, int d, int m, long long ans) { //
    → CDQ分治
      if (1 == r) { // 区间长度已减小到1,输出答案,退出
          e[d][id[d][a[1].id]].w = a[1].v;
          printf("%11d\n", ans + Kruskal(m, e[d]));
          e[d][id[d][a[1].id]].w=a[1].u;
          return;
      int tmp = top;
      Reduction(1, r, d, m);
      ans += Contraction(1, r, d, m); // R-C
      int mid = (1 + r) / 2;
      copy(e[d] + 1, e[d] + m + 1, e[d + 1] + 1);
      for (int i = 1; i <= m; i++)
         id[d + 1][e[d][i].id] = i; // 准备好下一层要用的数
      CDQ(1, mid, d + 1, m, ans);
      for (int i = 1; i <= mid; i++)
          e[d][id[d][a[i].id]].w = a[i].v; // 进行左边的修改
      copy(e[d] + 1, e[d] + m + 1, e[d + 1] + 1);
      for (int i = 1; i <= m; i++)
          id[d + 1][e[d][i].id] = i; // 重新准备下一层要用的
      CDQ(mid + 1, r, d + 1, m, ans);
      for (int i = top; i > tmp; i--)
         cut(stk[i]);//撤销所有操作
      top = tmp;
91 // Reduction(减少无用边):待修改边标为+INF,跑MST后把非树边删
    → 掉,减少无用边
92 // 需要调用Kruskal
  void Reduction(int 1, int r, int d, int &m) {
      for (int i = 1; i <= r; i++)
         e[d][id[d][a[i].id]].w = INF;//待修改的边标为INF
      Kruskal(m, e[d]);
      copy(e[d] + 1, e[d] + m + 1, t + 1);
      int cnt = 0:
      for (int i = 1; i <= m; i++)
          if (t[i].w == INF || t[i].vis){ // 非树边扔掉
              id[d][t[i].id] = ++cnt; // 给边重新编号
              e[d][cnt] = t[i];
      for (int i = r; i >= 1; i--)
         e[d][id[d][a[i].id]].w = a[i].u; // 把待修改的边改
           → 回夫
```

```
m=cnt:
112
114
   // Contraction(缩必须边):待修改边标为-INF,跑MST后缩除待修改
115
    → 边之外的所有树边
   // 返回缩掉的边的总权值
   // 需要调用Kruskal
   long long Contraction(int 1, int r, int d, int &m) {
       long long ans = 0;
120
       for (int i = 1; i <= r; i++)
121
           e[d][id[d][a[i].id]].w = -INF; // 待修改边标为-INF
       Kruskal(m, e[d]);
124
       copy(e[d] + 1, e[d] + m + 1, t + 1);
126
       int cnt = 0;
       for (int i = 1; i <= m; i++) {
129
           if (t[i].w != -INF && t[i].vis) { // 必须边
130
               ans += t[i].w;
              mergeset(t[i].u, t[i].v);
           else { // 不确定边
               id[d][t[i].id]=++cnt;
               e[d][cnt]=t[i];
136
137
138
       for (int i = r; i >= 1; i--) {
140
           e[d][id[d][a[i].id]].w = a[i].u; // 把待修改的边改
141
           e[d][id[d][a[i].id]].vis = false;
143
       m = cnt:
       return ans;
148
149
150
   // Kruskal算法 O(mlogn)
151
   // 方便起见,这里直接沿用进行过缩点的并查集,在过程结束后撤
152
    →销即可
   long long Kruskal(int m, edge *e) {
153
       int tmp = top;
       long long ans = 0;
155
       sort(e + 1, e + m + 1); // 比较函数在结构体中定义过了
157
       for (int i = 1; i <= m; i++) {
159
           if (findroot(e[i].u) != findroot(e[i].v)) {
160
               e[i].vis = true;
               ans += e[i].w;
162
               mergeset(e[i].u, e[i].v);
163
164
           else
165
              e[i].vis = false;
166
167
168
       for(int i = top; i > tmp; i--)
169
           cut(stk[i]); // 撤销所有操作
170
       top = tmp;
171
172
       return ans;
173
174
175
176
   // 以下是并查集相关函数
177
```

```
int findroot(int x) { // 因为需要撤销,不写路径压缩
       while (p[x] != x)
179
          x = p[x];
180
       return x;
183
184
   void mergeset(int x, int y) { // 按size合并,如果想跑得更快
185
     → 就写一个按秩合并
       x = findroot(x); // 但是按秩合并要再开一个栈记录合并之
        → 前的秩
      y = findroot(y);
187
       if (x == y)
189
          return:
190
191
       if (size[x] > size[y])
192
          swap(x, y);
193
194
       p[x] = y;
195
       size[y] += size[x];
196
       stk[++top] = x;
197
198
199
   void cut(int x) { // 并查集撤销
       int y = x;
           size[y = p[y]] -= size[x];
       while (p[y]! = y);
       p[x] = x;
208
```

3.1.3 最小树形图

对每个点找出最小的入边,如果是一个DAG那么就已经结束了. 否则把环都缩起来,每个点的边权减去环上的边权之后再跑一遍,直 到没有环为止.

可以用可并堆优化到 $O(m\log n)$,需要写一个带懒标记的左偏树. O(nm)版本

```
constexpr int maxn = 105, maxe = 10005, inf = 0x3f3f3f3f;
   struct edge {
3
       int u, v, w;
   } e[maxe];
   int mn[maxn], pr[maxn], ufs[maxn], vis[maxn];
   bool alive[maxn];
   int edmonds(int n, int m, int rt) {
10
       for (int i = 1; i <= n; i++)
11
           alive[i] = true;
12
13
14
       int ans = 0;
15
       while (true) {
16
           memset(mn, 63, sizeof(int) * (n + 1));
17
           memset(pr, 0, sizeof(int) * (n + 1));
18
           memset(ufs, 0, sizeof(int) * (n + 1));
19
           memset(vis, 0, sizeof(int) * (n + 1));
20
21
           mn[rt] = 0;
22
           for (int i = 1; i <= m; i++)
24
               if (e[i].u != e[i].v && e[i].w < mn[e[i].v]) {</pre>
25
                   mn[e[i].v] = e[i].w;
26
                   pr[e[i].v] = e[i].u;
27
```

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

56

60

```
29
            for (int i = 1; i <= n; i++)
30
                if (alive[i]) {
31
                    if (mn[i] >= inf)
32
                        return -1; // 不存在最小树形图
33
34
                    ans += mn[i];
35
36
37
           bool flag = false;
38
           for (int i = 1; i <= n; i++) {
40
                if (!alive[i])
41
                   continue;
42
43
                int x = i;
44
                while (x && !vis[x]) {
45
                    vis[x] = i;
46
                    x = pr[x];
47
48
49
                if (x && vis[x] == i) {
50
                    flag = true;
51
                    for (int u = x; !ufs[u]; u = pr[u])
52
                        ufs[u] = x;
53
54
55
56
           for (int i = 1; i <= m; i++) {
57
               e[i].w -= mn[e[i].v];
58
59
                if (ufs[e[i].u])
60
                   e[i].u = ufs[e[i].u];
61
                if (ufs[e[i].v])
62
                   e[i].v = ufs[e[i].v];
63
65
           if (!flag)
66
67
              return ans;
68
           for (int i = 1; i <= n; i++)
69
               if (ufs[i] && i != ufs[i])
70
                   alive[i] = false;
71
72
73
```

$O(m \log n)$ 版本

(堆优化版本可以参考fstqwq的模板,在最后没有目录的部分.)

3.1.4 Steiner Tree 斯坦纳树

问题: 一张图上有k个关键点,求让关键点两两连通的最小生成树**做法**: 状压 $\mathrm{DP},\,f_{i,S}$ 表示以i号点为树根,i与S中的点连通的最小边权和

转移有两种:

1. 枚举子集:

$$f_{i,S} = \min_{T \subset S} \left\{ f_{i,T} + f_{i,S \setminus T} \right\}$$

2. 新加一条边:

$$f_{i,S} = \min_{(i,j) \in E} \{ f_{j,S} + w_{i,j} \}$$

第一种直接枚举子集DP就行了,第二种可以用SPFA或者Dijkstra松 $_{63}$ 弛 (显然负边一开始全选就行了,所以只需要处理非负边). $_{64}$ 复杂度 $O(n3^k+2^k {\rm SSSP}(n,m)))$,其中SSSP(n,m)可以是nm或 $_{65}$ 者 n^2+m 或者 $m\log n$.

```
constexpr int maxn = 105, inf = 0x3f3f3f3f3;
int dp[maxn][(1 << 10) + 1];
int g[maxn][maxn], a[15];
bool inq[maxn];
int main() {
   int n, m, k;
    scanf("%d%d%d", &n, &m, &k);
    memset(g, 63, sizeof(g));
    while (m--) {
       int u, v, c;
        scanf("%d%d%d", &u, &v, &c);
        g[u][v] = g[v][u] = min(g[u][v], c); // 不要忘了是
         → 双向边
   }
   memset(dp, 63, sizeof(dp));
    for (int i = 0; i < k; i++) {
       scanf("%d", &a[i]);
       dp[a[i]][1 << i] = 0;
   }
    for (int s = 1; s < (1 << k); s++) {
        for (int i = 1; i <= n; i++)
            for (int t = (s - 1) \& s; t; (--t) \& = s)
               dp[i][s] = min(dp[i][s], dp[i][t] + dp[i][s]
                 // SPFA
        queue<int> q;
        for (int i = 1; i <= n; i++)
            if (dp[i][s] < inf) {</pre>
               q.push(i);
                inq[i] = true;
        while (!q.empty()) {
           int i = q.front();
            q.pop();
            inq[i] = false; // 最终结束时inq一定全0, 所以不
             → 用清空
            for (int j = 1; j <= n; j++)
                if (dp[i][s] + g[i][j] < dp[j][s]) {
                   dp[j][s] = dp[i][s] + g[i][j];
                    if (!inq[j]) {
                       q.push(j);
                        inq[j] = true;
    int ans = inf;
    for (int i = 1; i <= n; i++)
        ans = min(ans, dp[i][(1 << k) - 1]);
    printf("%d\n", ans);
   return 0;
```

3.1.5 最小直径生成树

首先要找到图的绝对中心(可能在点上,也可能在某条边上),然后以 46 绝对中心为起点建最短路树就是最小直径生成树. 47

3.2 最短路

3.2.1 Dijkstra

见k短路(注意那边是求到t的最短路)

3.2.2 Johnson算法(负权图多源最短路)

首先前提是图没有负环.

先任选一个起点s, 跑一边 ${
m SPFA}$, 计算每个点的势 $h_u=d_{s,u}$, 然后将 $_{59}$ 每条边 $u\to v$ 的权值w修改为w+h[u]-h[v]即可,由最短路的性质 $_{60}$ 显然修改后边权非负.

然后对每个起点跑Dijkstra, 再修正距离 $d_{u,v} = d'_{u,v} - h_u + h_v$ 即可, 62 复杂度 $O(nm \log n)$, 在稀疏图上是要优于Floyd的.

3.2.3 k短路

```
1 // 注意这是个多项式算法,在k比较大时很有优势,但k比较小时
   → 最好还是用A*
  // DAG和有环的情况都可以,有重边或自环也无所谓,但不能有零
   →环
  // 以下代码以Dijkstra + 可持久化左偏树为例
  constexpr int maxn = 1005, maxe = 10005, maxm = maxe * 30;
   → //点数,边数,左偏树结点数
6
  // 结构体定义
7
  struct A { // 用来求最短路
     int x, d;
9
10
     A(int x, int d) : x(x), d(d) {}
11
12
      bool operator < (const A &a) const {</pre>
13
         return d > a.d;
15
16
17
  struct node { // 左偏树结点
18
     int w, i, d; // i: 最后一条边的编号 d: 左偏树附加信息
19
     node *lc, *rc;
20
21
     node() {}
22
23
     node(int w, int i) : w(w), i(i), d(0) {}
24
25
      void refresh(){
26
         d = rc -> d + 1;
27
28
  } null[maxm], *ptr = null, *root[maxn];
29
30
  struct B { // 维护答案用
     int x, w; // x是结点编号, w表示之前已经产生的权值
      node *rt; // 这个答案对应的堆顶,注意可能不等于任何一个
33
       → 结点的堆
     B(int x, node *rt, int w) : x(x), w(w), rt(rt) {}
35
36
     bool operator < (const B &a) const {
37
         return w + rt -> w > a.w + a.rt -> w;
39
40
  };
41
  // 全局变量和数组定义
  vector<int> G[maxn], W[maxn], id[maxn]; // 最开始要存反向
   → 图, 然后把G清空作为儿子列表
```

```
bool vis[maxn], used[maxe]; // used表示边是否在最短路树上
   int u[maxe], v[maxe], w[maxe]; // 存下每条边,注意是有向边
   int d[maxn], p[maxn]; // p表示最短路树上每个点的父边
   int n, m, k, s, t; // s, t分别表示起点和终点
49
   // 以下是主函数中较关键的部分
   for (int i = 0; i \leftarrow n; i++)
      root[i] = null; // 一定要加上!!!
   // (读入&建反向图)
   Dijkstra();
56
   // (清空G, W, id)
   for (int i = 1; i <= n; i++)
       if (p[i]) {
          used[p[i]] = true; // 在最短路树上
          G[v[p[i]]].push_back(i);
64
   for (int i = 1; i \leftarrow m; i++) {
      w[i] -= d[u[i]] - d[v[i]]; // 现在的w[i]表示这条边能使
        → 路径长度增加多少
       if (!used[i])
          root[u[i]] = merge(root[u[i]], newnode(w[i], i));
70
   dfs(t);
72
   priority_queue<B> heap;
   heap.push(B(s, root[s], ∅)); // 初始状态是找贡献最小的边加
   printf("%d\n",d[s]); // 第1短路需要特判
   while (--k) { // 其余k - 1短路径用二叉堆维护
       if (heap.empty())
          printf("-1\n");
       else {
81
          int x = heap.top().x, w = heap.top().w;
82
          node *rt = heap.top().rt;
83
          heap.pop();
          printf("%d\n", d[s] + w + rt \rightarrow w);
          if (rt -> lc != null || rt -> rc != null)
              heap.push(B(x, merge(rt \rightarrow lc, rt \rightarrow rc), w));
89
                → // pop掉当前边,换成另一条贡献大一点的边
          if (root[v[rt -> i]] != null)
              heap.push(B(v[rt -> i], root[v[rt -> i]], w +
                → rt -> w)); // 保留当前边, 往后面再接上另一
                → 条边
   // 主函数到此结束
   // Dijkstra预处理最短路 O(m\log n)
   void Dijkstra() {
      memset(d, 63, sizeof(d));
       priority_queue<A> heap;
      heap.push(A(t, ∅));
102
       while (!heap.empty()) {
105
          int x = heap.top().x;
106
          heap.pop();
107
          if(vis[x])
108
              continue;
109
```

```
110
              vis[x] = true;
111
              for (int i = 0; i < (int)G[x].size(); i++)
112
                  if (!vis[G[x][i]] \&\& d[G[x][i]] > d[x] + W[x]
113
                     \hookrightarrow [i])
                       d[G[x][i]] = d[x] + W[x][i];
114
                       p[G[x][i]] = id[x][i];
115
116
                       heap.push(A(G[x][i], d[G[x][i]]));
117
118
119
120
121
    // dfs求出每个点的堆 总计O(m\Log n)
122
    // 需要调用merge, 同时递归调用自身
123
    void dfs(int x) {
124
         root[x] = merge(root[x], root[v[p[x]]]);
125
126
         for (int i = 0; i < (int)G[x].size(); i++)</pre>
127
              dfs(G[x][i]);
128
129
130
    // 包装过的new node() 0(1)
131
    node *newnode(int w, int i) {
         *++ptr = node(w, i);
         ptr -> lc = ptr -> rc = null;
         return ptr;
135
136
137
    // 带可持久化的左偏树合并 总计O(\Log n)
138
    // 递归调用自身
139
    node *merge(node *x, node *y) {
140
         if (x == null)
141
142
             return y;
143
         if (y == null)
144
             return x;
145
         if (x \rightarrow w \rightarrow y \rightarrow w)
146
147
              swap(x, y);
148
         node *z = newnode(x -> w, x -> i);
149
         z \rightarrow 1c = x \rightarrow 1c;
150
151
         z \rightarrow rc = merge(x \rightarrow rc, y);
152
         if (z \rightarrow lc \rightarrow d \rightarrow z \rightarrow rc \rightarrow d)
153
              swap(z \rightarrow lc, z \rightarrow rc);
154
155
         z -> refresh();
156
157
         return z;
158
```

3.3 Tarjan算法

3.3.1 强连通分量

```
int dfn[maxn], low[maxn], tim = 0;
vector<int> G[maxn], scc[maxn];
int sccid[maxn], scc_cnt = 0, stk[maxn];
bool instk[maxn];

void dfs(int x) {
    dfn[x] = low[x] = ++tim;

    stk[++stk[0]] = x;
    instk[x] = true;

for (int y : G[x]) {
    if (!dfn[y]) {
        dfs(y);
    }
}
```

```
low[x] = min(low[x], low[y]);
15
16
            else if (instk[y])
17
                low[x] = min(low[x], dfn[y]);
18
19
20
21
       if (dfn[x] == low[x]) {
            scc_cnt++;
22
23
            int u:
24
            do {
25
                u = stk[stk[0]--];
26
                instk[u] = false;
27
                sccid[u] = scc_cnt;
28
29
                scc[scc_cnt].push_back(u);
            } while (u != x);
30
31
32
33
   void tarjan(int n) {
34
       for (int i = 1; i <= n; i++)
35
            if (!dfn[i])
36
                dfs(i);
37
38
```

3.3.2 割点 点双

```
vector<int> G[maxn], bcc[maxn];
  int dfn[maxn], low[maxn], tim = 0, bccid[maxn], bcc_cnt =
  bool iscut[maxn];
  pair<int, int> stk[maxn];
  int stk_cnt = 0;
   void dfs(int x, int pr) {
8
       int child = 0;
9
       dfn[x] = low[x] = ++tim;
10
11
       for (int y : G[x]) {
12
13
           if (!dfn[y]) {
14
                stk[++stk_cnt] = make_pair(x, y);
1.5
                child++:
                dfs(y, x);
16
17
               low[x] = min(low[x], low[y]);
18
19
                if (low[y] >= dfn[x]) {
20
                    iscut[x] = true;
21
                    bcc_cnt++;
23
                   while (true) {
                        auto pi = stk[stk_cnt--];
25
26
                        if (bccid[pi.first] != bcc_cnt) {
27
                            bcc[bcc_cnt].push_back(pi.first);
                            bccid[pi.first] = bcc_cnt;
                        if (bccid[pi.second] != bcc_cnt) {
                            bcc[bcc_cnt].push_back(pi.second);
                            bccid[pi.second] = bcc_cnt;
32
33
                        if (pi.first == x && pi.second == y)
36
37
38
39
           else if (dfn[y] < dfn[x] && y != pr) {
40
               stk[++stk_cnt] = make_pair(x, y);
41
```

```
low[x] = min(low[x], dfn[y]);
42
43
        }
44
45
        if (!pr && child == 1)
                                                                         14
46
           iscut[x] = false;
47
                                                                         16
48
49
   void Tarjan(int n) {
50
        for (int i = 1; i <= n; i++)
51
                                                                         20
52
            if (!dfn[i])
                                                                         21
53
                dfs(i, ∅);
                                                                         22
                                                                         23
```

3.3.3 桥 边双

```
int u[maxe], v[maxe];
  vector<int> G[maxn]; // 存的是边的编号
2
3
   int stk[maxn], top, dfn[maxn], low[maxn], tim, bcc_cnt;
   vector<int> bcc[maxn];
7
   bool isbridge[maxe];
   void dfs(int x, int pr) { // 这里pr是入边的编号
9
       dfn[x] = low[x] = ++tim;
10
       stk[++top] = x;
11
12
       for (int i : G[x]) {
13
           int y = (u[i] == x ? v[i] : u[i]);
14
15
           if (!dfn[y]) {
16
               dfs(y, i);
17
               low[x] = min(low[x], low[y]);
18
19
               if (low[y] > dfn[x])
20
                   bridge[i] = true;
21
22
           else if (i != pr)
23
24
              low[x] = min(low[x], dfn[y]);
25
26
       if (dfn[x] == low[x]) {
27
28
           bcc_cnt++;
29
           int y;
30
           do {
               y = stk[top--];
               bcc[bcc_cnt].push_back(y);
           } while (y != x);
33
34
35
```

3.4 仙人掌

一般来说仙人掌问题都可以通过圆方树转成有两种点的树上问题来做.

3.4.1 仙人掌DP

```
struct edge{
    int to, w, prev;
}e[maxn * 2];

vector<pair<int, int> > v[maxn];

vector<long long> d[maxn];

stack<int> stk;
```

```
int p[maxn];
  bool vis[maxn], vise[maxn * 2];
  int last[maxn], cnte;
15
  long long f[maxn], g[maxn], sum[maxn];
   int n, m, cnt;
   void addedge(int x, int y, int w) {
       v[x].push_back(make_pair(y, w));
24
   void dfs(int x) {
25
27
       vis[x] = true;
28
       for (int i = last[x]; ~i; i = e[i].prev) {
29
           if (vise[i ^ 1])
               continue;
31
33
           int y = e[i].to, w = e[i].w;
           vise[i] = true;
35
           if (!vis[y]) {
37
38
               stk.push(i);
39
               p[y] = x;
40
               dfs(y);
41
42
               if (!stk.empty() && stk.top() == i) {
43
                    stk.pop();
44
                    addedge(x, y, w);
47
           else {
               cnt++;
               long long tmp = w;
51
               while (!stk.empty()) {
                    int i = stk.top();
                    stk.pop();
                    int yy = e[i].to, ww = e[i].w;
56
57
                    addedge(cnt, yy, ∅);
59
                    d[cnt].push_back(tmp);
60
61
                    tmp += ww;
                    if (e[i ^ 1].to == y)
                       break:
               addedge(y, cnt, 0);
69
               sum[cnt] = tmp;
70
72
73
   void dp(int x) {
       for (auto o : v[x]) {
77
           int y = o.first, w = o.second;
78
79
           dp(y);
```

```
80
81
        if (x \le n) {
82
            for (auto o : v[x]) {
83
                int y = o.first, w = o.second;
                f[x] += 2 * w + f[y];
            g[x] = f[x];
89
            for (auto o : v[x]) {
                int y = o.first, w = o.second;
92
                 g[x] = min(g[x], f[x] - f[y] - 2 * w + g[y] +
            }
        else {
            f[x] = sum[x];
            for (auto o : v[x]) {
99
                int y = o.first;
100
101
                f[x] += f[y];
102
103
            g[x] = f[x];
105
            for (int i = 0; i < (int)v[x].size(); i++) {
                int y = v[x][i].first;
                 g[x] = min(g[x], f[x] - f[y] + g[y] + min(d[x])
110
                   \hookrightarrow [i], sum[x] - d[x][i]));
```

3.5 二分图

3.5.1 匈牙利

```
vector<int> G[maxn];
   int girl[maxn], boy[maxn]; // 男孩在左边,女孩在右边
  bool vis[maxn];
  bool dfs(int x) {
       for (int y : G[x])
           if (!vis[y]) {
               vis[y] = true;
               if (!boy[y] || dfs(boy[y])) {
                   girl[x] = y;
                   boy[y] = x;
                   return true;
       return false;
20
21
   int hungary() {
22
       int ans = 0;
23
24
       for (int i = 1; i <= n; i++)
25
           if (!girl[i]) {
26
              memset(vis, 0, sizeof(vis));
27
               ans += dfs(i);
```

```
29 | }
30 | return ans;
32 }
```

3.5.2 Hopcroft-Karp二分图匹配

其实长得和Dinic差不太多,或者说像匈牙利和Dinic的缝合怪.

```
vector<int> G[maxn];
  int girl[maxn], boy[maxn]; // girl: 左边匹配右边 boy: 右边
    → 匹配左边
   bool vis[maxn]; // 右半的点是否已被访问
   int dx[maxn], dy[maxn];
   int q[maxn];
   bool bfs(int n) {
       memset(dx, -1, sizeof(int) * (n + 1));
10
       memset(dy, -1, sizeof(int) * (n + 1));
       int head = 0, tail = 0;
13
       for (int i = 1; i <= n; i++)
           if (!girl[i]) {
               q[tail++] = i;
               dx[i] = 0;
       bool flag = false;
       while (head != tail) {
           int x = q[head++];
24
           for (auto y : G[x])
25
               if (dy[y] == -1) {
26
                   dy[y] = dx[x] + 1;
                   if (boy[y]) {
                       if (dx[boy[y]] == -1) {
                           dx[boy[y]] = dy[y] + 1;
                           q[tail++] = boy[y];
33
                   else
35
                       flag = true;
36
37
38
39
       return flag;
40
41
   bool dfs(int x) {
43
       for (int y : G[x])
           if (!vis[y] \&\& dy[y] == dx[x] + 1) {
45
               vis[y] = true;
46
               if (boy[y] && !dfs(boy[y]))
                  continue;
               girl[x] = y;
52
               boy[y] = x;
               return true;
53
54
       return false;
56
57
58
59 int hopcroft_karp(int n) {
```

```
int ans = 0;
60
61
       for (int x = 1; x <= n; x++) // 先贪心求出一组初始匹配,
62
         → 当然不写贪心也行
           for (int y : G[x])
63
               if (!boy[y]) {
64
                   girl[x] = y;
65
                   boy[y] = x;
66
                   ans++
67
                   break;
68
69
70
       while (bfs(n)) {
71
           memset(vis, 0, sizeof(bool) * (n + 1));
72
73
           for (int x = 1; x <= n; x++)
74
               if (!girl[x])
75
                   ans += dfs(x);
76
77
78
79
       return ans;
80
```

3.5.3 KM二分图最大权匹配

```
2
3
   long long w[maxn][maxn], lx[maxn], ly[maxn], slack[maxn];
   // 边权 顶标 slack
   // 如果要求最大权完美匹配就把不存在的边设为-INF,否则所有边
    → 对0取max
  bool visx[maxn], visy[maxn];
   int boy[maxn], girl[maxn], p[maxn], q[maxn], head, tail; //
10
  int n, m, N, e;
11
12
   // 增广
13
  bool check(int y) {
      visy[y] = true;
16
      if (boy[y]) {
          visx[boy[y]] = true;
          q[tail++] = boy[y];
          return false;
20
21
      while (y) {
23
          boy[y] = p[y];
24
          swap(y, girl[p[y]]);
25
26
      return true;
28
29
30
                                                              100
   // bfs每个点
31
                                                              101
   void bfs(int x) {
32
                                                              102
      memset(q, 0, sizeof(q));
33
                                                              103
      head = tail = 0;
34
                                                              104
35
                                                              105
      q[tail++] = x;
36
                                                              106
      visx[x] = true;
                                                              108
      while (true) {
39
                                                              109
          while (head != tail) {
40
                                                              110
              int x = q[head++];
41
                                                              111
42
```

```
for (int y = 1; y <= N; y++)
                    if (!visy[y]) {
44
                        long long d = lx[x] + ly[y] - w[x][y];
45
46
                        if (d < slack[y]) {</pre>
47
                            p[y] = x;
48
                            slack[y] = d;
49
50
                            if (!slack[y] && check(y))
51
                                return;
52
53
55
           long long d = INF;
57
           for (int i = 1; i <= N; i++)
               if (!visy[i])
59
                   d = min(d, slack[i]);
61
           for (int i = 1; i <= N; i++) {
62
               if (visx[i])
63
                   lx[i] -= d;
               if (visy[i])
                   ly[i] += d;
67
               else
                   slack[i] -= d;
           for (int i = 1; i <= N; i++)
               if (!visy[i] && !slack[i] && check(i))
74
                   return;
76
   // 主过程
   long long KM() {
       for (int i = 1; i <= N; i++) {
           // Lx[i] = 0;
81
           ly[i] = -INF;
82
           // boy[i] = girl[i] = -1;
83
           for (int j = 1; j <= N; j++)
85
               ly[i] = max(ly[i], w[j][i]);
86
87
       for (int i = 1; i <= N; i++) {
89
           memset(slack, 0x3f, sizeof(slack));
           memset(visx, 0, sizeof(visx));
           memset(visy, 0, sizeof(visy));
           bfs(i);
       long long ans = 0;
       for (int i = 1; i <= N; i++)
97
           ans += w[i][girl[i]];
       return ans;
   // 为了方便贴上主函数
   int main() {
       scanf("%d%d%d", &n, &m, &e);
       N = max(n, m);
       while (e--) {
           int x, y, c;
           scanf("%d%d%d", &x, &y, &c);
           w[x][y] = max(c, 0);
```

31 32

33

34

45

57

58 59

60

61

62

```
112
113
                                                                              20
         printf("%11d\n", KM());
114
                                                                              21
                                                                              22
         for (int i = 1; i <= n; i++) {
116
                                                                              23
              if (i > 1)
117
                                                                              24
                  printf(" ");
118
                                                                              25
             printf("%d", w[i][girl[i]] > 0 ? girl[i] : 0);
119
                                                                              26
120
                                                                              27
         printf("\n");
121
                                                                              28
122
                                                                              29
         return 0;
123
124
                                                                              30
```

3.5.4 二分图原理

• 最大匹配的可行边与必须边, 关键点

以下的"残量网络"指网络流图的残量网络.

- 可行边: 一条边的两个端点在残量网络中处于同一个SCC, 不 37 论是正向边还是反向边. 38
- 必须边: 一条属于当前最大匹配的边, 且残量网络中两个端点不在同一个SCC中.
- 关键点(必须点): 这里不考虑网络流图而只考虑原始的图,将 42
 匹配边改成从右到左之后从左边的每个未匹配点进行floodfill, 43
 左边没有被标记的点即为关键点.右边同理.

独立集

二分图独立集可以看成最小割问题,割掉最少的点使得S和T不连通,则剩下的点自然都在独立集中.

所以独立集输出方案就是求出不在最小割中的点,独立集的必须点/可行点就是最小割的不可行点/非必须点.

割点等价于割掉它与源点或汇点相连的边,可以通过设置中间的边 50 权为无穷以保证不能割掉中间的边,然后按照上面的方法判断即可.

(由于一个点最多流出一个流量, 所以中间的边权其实是可以任取 51 的.) 52

• 二分图最大权匹配

二分图最大权匹配的对偶问题是最小顶标和问题, 即: 为图中的每个 54 顶点赋予一个非负顶标, 使得对于任意一条边, 两端点的顶标和都要 55 不小于边权, 最小化顶标之和. 56

显然KM算法的原理实际上就是求最小顶标和.

3.6 一般图匹配

3.6.1 高斯消元

```
// 这个算法基于Tutte定理和高斯消元,思维难度相对小一些,也
                                                 64
   → 更方便进行可行边的判定
                                                 65
  // 注意这个算法复杂度是满的,并且常数有点大,而带花树通常
                                                 66
   → 是跑不满的
  // 以及,根据Tutte定理,如果求最大匹配的大小的话直接输
   → 出Tutte矩阵的秩/2即可
                                                 69
  // 需要输出方案时才需要再写后面那些乱七八糟的东西
                                                 70
                                                 71
                                                 72
  // 复杂度和常数所限, 1s之内500已经是这个算法的极限了
                                                 73
  const int maxn = 505, p = 1000000007; // p可以是任意10^9以
   → 内的质数
  // 全局数组和变量定义
                                                 76
  int A[maxn][maxn], B[maxn][maxn], t[maxn][maxn], id[maxn],
                                                 77
   → a[maxn]:
                                                 78
  bool row[maxn] = {false}, col[maxn] = {false};
                                                 79
12
  int n, m, girl[maxn]; // girl是匹配点, 用来输出方案
13
                                                 80
                                                 81
  // 为了方便使用,贴上主函数
                                                 82
 // 需要调用高斯消元和eliminate
16
                                                 83
 int main() {
17
                                                 84
     srand(19260817);
```

```
scanf("%d%d", &n, &m); // 点数和边数
   while (m--) {
       int x, y;
       scanf("%d%d", &x, &y);
       A[x][y] = rand() \% p;
       A[y][x] = -A[x][y]; // Tutte矩阵是反对称矩阵
   for (int i = 1; i <= n; i++)
       id[i] = i; // 输出方案用的, 因为高斯消元的时候会交
         → 换列
   memcpy(t, A, sizeof(t));
   Gauss(A, NULL, n);
   m = n;
   n = 0; // 这里变量复用纯属个人习惯
   for (int i = 1; i <= m; i++)
       if (A[id[i]][id[i]])
          a[++n] = i; // 找出一个极大满秩子矩阵
   for (int i = 1; i <= n; i++)
       for (int j = 1; j <= n; j++)
          A[i][j] = t[a[i]][a[j]];
   Gauss(A, B, n);
   for (int i = 1; i <= n; i++)
       if (!girl[a[i]])
           for (int j = i + 1; j <= n; j++)
              if (!girl[a[j]] && t[a[i]][a[j]] && B[j]
                → [i]) {
                  // 注意上面那句if的写法, 现在t是邻接矩
                    → 阵的备份,
                  // 逆矩阵i行i列不为0当且仅当这条边可行
                  girl[a[i]] = a[j];
                  girl[a[j]] = a[i];
                  eliminate(i, j);
                  eliminate(j, i);
                  break:
   printf("%d\n", n / 2);
   for (int i = 1; i <= m; i++)
       printf("%d ", girl[i]);
   return 0;
// 高斯消元 O(n^3)
// 在传入B时表示计算逆矩阵,传入NULL则只需计算矩阵的秩
void Gauss(int A[][maxn], int B[][maxn], int n) {
   if(B) {
       memset(B, 0, sizeof(t));
       for (int i = 1; i <= n; i++)
          B[i][i] = 1;
   for (int i = 1; i <= n; i++) {
       if (!A[i][i]) {
           for (int j = i + 1; j <= n; j++)
              if (A[j][i]) {
                  swap(id[i], id[j]);
                  for (int k = i; k \le n; k++)
                      swap(A[i][k], A[j][k]);
                  if (B)
```

```
for (int k = 1; k <= n; k++)
                                                                       int blossom() {
85
                                 swap(B[i][k], B[j][k]);
                                                                           int ans = 0;
86
                                                                    12
                        break;
87
                                                                           for (int i = 1; i <= n; i++)
                                                                                if (!girl[i])
89
                                                                    15
                if (!A[i][i])
                                                                                    ans += bfs(i);
90
                                                                    16
                    continue;
91
                                                                           return ans;
92
                                                                    18
                                                                    19
93
            int inv = qpow(A[i][i], p - 2);
94
95
                                                                       // bfs找增广路 O(m)
            for (int j = 1; j <= n; j++)
                                                                    22
96
                                                                       bool bfs(int s) {
                if (i != j && A[j][i]){
                                                                    23
97
                                                                           memset(t, 0, sizeof(t));
                    int t = (long long)A[j][i] * inv % p;
98
                                                                           memset(p, 0, sizeof(p));
99
                    for (int k = i; k \le n; k++)
100
                                                                           for (int i = 1; i <= n; i++)
                        if (A[i][k])
101
                                                                               f[i] = i; // 并查集
                             A[j][k] = (A[j][k] - (long long)t *
102
                               \hookrightarrow A[i][k]) \% p;
                                                                           head = tail = 0;
                                                                    30
103
                                                                           q[tail++] = s;
                    if (B)
                                                                    31
104
                                                                           t[s] = 1;
                         for (int k = 1; k <= n; k++)
                                                                    32
105
                             if (B[i][k])
                                                                    33
106
                                                                           while (head != tail) {
                                B[j][k] = (B[j][k] - (long)
                                                                    34
107
                                                                                int x = q[head++];
                                   \hookrightarrow long)t * B[i][k])%p;
                                                                    35
                                                                                for (int y : G[x]) {
                }
                                                                    36
108
                                                                                    if (findroot(y) == findroot(x) || t[y] == 2)
                                                                    37
109
                                                                                        continue;
110
        if (B)
                                                                    39
111
                                                                                    if (!t[y]) {
            for (int i = 1; i <= n; i++) {
112
                                                                                        t[y] = 2;
                int inv = qpow(A[i][i], p - 2);
                                                                    41
113
                                                                                        p[y] = x;
                for (int j = 1; j <= n; j++)
                                                                    43
115
                                                                                        if (!girl[y]) {
                    if (B[i][j])
116
                                                                                            for (int u = y, t; u; u = t) {
                        B[i][j] = (long long)B[i][j] * inv % p;
117
                                                                                                t = girl[p[u]];
118
                                                                                                girl[p[u]] = u;
119
                                                                                                girl[u] = p[u];
120
    // 消去一行一列 O(n^2)
   void eliminate(int r, int c) {
                                                                                            return true;
        row[r] = col[c] = true; // 已经被消掉
        int inv = qpow(B[r][c], p - 2);
                                                                                        t[girl[y]] = 1;
126
                                                                                        q[tail++] = girl[y];
        for (int i = 1; i <= n; i++)
            if (!row[i] && B[i][c]) {
                                                                                    else if (t[y] == 1) {
                                                                    56
                int t = (long long)B[i][c] * inv % p;
                                                                                        int z = LCA(x, y);
                                                                    57
130
                for (int j = 1; j <= n; j++)
                                                                                        shrink(x, y, z);
                    if (!col[j] && B[r][j])
                                                                                        shrink(y, x, z);
                                                                    60
                        B[i][j] = (B[i][j] - (long long)t *
                                                                    61
                          \hookrightarrow B[r][j]) \% p;
                                                                    62
134
                                                                    63
135
                                                                           return false;
                                                                    65
                                                                    66
   3.6.2 带花树
                                                                       //缩奇环 O(n)
                                                                       void shrink(int x, int y, int z) {
   // 带花树通常比高斯消元快很多, 但在只需要求最大匹配大小的
                                                                           while (findroot(x) != z) {
     → 时候并没有高斯消元好写
                                                                                p[x] = y;
   // 当然输出方案要方便很多
                                                                                y = girl[x];
 3
   // 全局数组与变量定义
 4
                                                                                if (t[y] == 2) {
```

```
vector<int> G[maxn];
 int girl[maxn], f[maxn], t[maxn], p[maxn], vis[maxn], tim,
  int n, m;
7
8
9
 // 封装好的主过程 O(nm)
```

```
79
           if (findroot(x) == x)
```

t[y] = 1;

q[tail++] = y;

77

78

55

```
f[x] = z;
                                                                          28
80
             if (findroot(y) == y)
                                                                          29
81
                 f[y] = z;
 82
                                                                          30
 83
             x = p[y];
84
                                                                          31
85
                                                                          32
86
                                                                          33
                                                                          34
    //暴力找LCA O(n)
                                                                          35
    int LCA(int x, int y) {
 89
                                                                          36
90
        tim++;
                                                                          37
        while (true) {
91
                                                                          38
             if (x) {
                                                                          39
                 x = findroot(x);
                                                                          40
                  if (vis[x] == tim)
                                                                          41
                      return x;
                                                                          42
                  else {
                                                                          43
                      vis[x] = tim;
                      x = p[girl[x]];
100
101
             swap(x, y);
102
103
                                                                          47
104
    //并查集的查找 0(1)
                                                                          50
107
    int findroot(int x) {
                                                                          51
108
        return x == f[x] ? x : (f[x] = findroot(f[x]));
                                                                          52
109
```

3.6.3 带权带花树

Forked from templates of Imperisible Night. (有一说一这玩意实在太难写了, 抄之前建议先想想算法是不是假的或者有SB做法)

```
//maximum weight blossom, change g[u][v].w to INF - g[u]
                                                                         60
     \rightarrow [v].w when minimum weight blossom is needed
                                                                         61
   //type of ans is long long
                                                                         62
   //replace all int to long long if weight of edge is long
                                                                         63
     \hookrightarrow Long
   struct WeightGraph {
                                                                         66
       static const int INF = INT_MAX;
                                                                         67
       static const int MAXN = 400;
                                                                         68
        struct edge{
                                                                         69
            int u, v, w;
                                                                         70
            edge() {}
            edge(int u, int v, int w): u(u), v(v), w(w) {}
                                                                         71
                                                                         72
       };
12
                                                                         73
       int n, n x;
13
                                                                         74
       edge g[MAXN * 2 + 1][MAXN * 2 + 1];
       int lab[MAXN * 2 + 1];
15
       int match[MAXN * 2 + 1], slack[MAXN * 2 + 1], st[MAXN
16
         \hookrightarrow 2 + 1], pa[MAXN * 2 + 1];
                                                                         77
       int flower_from[MAXN * 2 + 1][MAXN+1], S[MAXN * 2 + 1],
         \hookrightarrow vis[MAXN * 2 + 1];
                                                                         79
       vector<int> flower[MAXN * 2 + 1];
                                                                         80
       queue<int> q;
19
       inline int e_delta(const edge &e){ // does not work
20
          \hookrightarrow inside blossoms
            return lab[e.u] + lab[e.v] - g[e.u][e.v].w * 2;
21
                                                                         85
22
       inline void update_slack(int u, int x){
                                                                         86
23
            if(!slack[x] || e_delta(g[u][x]) <</pre>
                                                                         87
              \hookrightarrow e_delta(g[slack[x]][x]))
                                                                         88
                slack[x] = u;
25
                                                                         89
26
                                                                         90
       inline void set_slack(int x){
```

```
slack[x] = 0;
    for(int u = 1; u <= n; ++u)
        if(g[u][x].w > 0 && st[u] != x && S[st[u]] ==
            update_slack(u, x);
void q_push(int x){
    if(x \le n)q.push(x);
    else for(size_t i = 0;i < flower[x].size(); i++)</pre>
        q_push(flower[x][i]);
inline void set_st(int x, int b){
    st[x]=b;
    if(x > n) for(size_t i = 0;i < flower[x].size(); +</pre>

→ +i)

                set_st(flower[x][i], b);
inline int get_pr(int b, int xr){
    int pr = find(flower[b].begin(), flower[b].end(),
      → xr) - flower[b].begin();
    if(pr \% 2 == 1){
        reverse(flower[b].begin() + 1,
          → flower[b].end());
        return (int)flower[b].size() - pr;
    } else return pr;
inline void set_match(int u, int v){
    match[u]=g[u][v].v;
    if(u > n){
        edge e=g[u][v];
        int xr = flower_from[u][e.u], pr=get_pr(u, xr);
        for(int i = 0; i < pr; ++i)
            set_match(flower[u][i], flower[u][i ^ 1]);
        set match(xr, v);
        rotate(flower[u].begin(), flower[u].begin()+pr,
          → flower[u].end());
inline void augment(int u, int v){
    for(; ; ){
        int xnv=st[match[u]];
        set_match(u, v);
        if(!xnv)return;
        set_match(xnv, st[pa[xnv]]);
        u=st[pa[xnv]], v=xnv;
inline int get_lca(int u, int v){
    static int t=0;
    for(++t; u || v; swap(u, v)){
        if(u == 0)continue;
        if(vis[u] == t)return u;
        vis[u] = t;
        u = st[match[u]];
        if(u) u = st[pa[u]];
    return 0;
inline void add_blossom(int u, int lca, int v){
    int b = n + 1;
    while(b <= n_x \& st[b]) ++b;
    if(b > n_x) ++n_x;
    lab[b] = 0, S[b] = 0;
    match[b] = match[lca];
    flower[b].clear();
    flower[b].push_back(lca);
    for(int x = u, y; x != lca; x = st[pa[y]]) {
        flower[b].push_back(x),
```

```
flower[b].push_back(y = st[match[x]]),
                                                                                             int u = q.front();q.pop();
91
                                                                       154
                                                                                             if(S[st[u]] == 1)continue;
                 q_push(y);
92
                                                                       155
                                                                                             for(int v = 1; v \leftarrow n; ++v)
93
                                                                       156
            reverse(flower[b].begin() + 1, flower[b].end());
                                                                                                 if(g[u][v].w > 0 && st[u] != st[v]){
94
                                                                       157
             for(int x = v, y; x != lca; x = st[pa[y]]) {
                                                                                                      if(e_delta(g[u][v]) == 0){
95
                                                                       158
                 flower[b].push_back(x),
                                                                                                          if(on_found_edge(g[u]
96
                                                                       159
                 flower[b].push_back(y = st[match[x]]),
                                                                                                            → [v]))return true;
97
                                                                                                     }else update_slack(u, st[v]);
                 q_push(y);
                                                                       160
98
                                                                       161
             set_st(b, b);
                                                                       162
100
                                                                                        int d = INF;
             for(int x = 1; x <= n_x; ++x) g[b][x].w = g[x][b].w
                                                                                         for(int b = n + 1; b \le n_x; ++b)
               \hookrightarrow = 0;
             for(int x = 1; x \le n; ++x) flower_from[b][x] = 0;
                                                                                             if(st[b] == b \&\& S[b] == 1)d = min(d,
102
             for(size_t i = 0 ; i < flower[b].size(); ++i){</pre>
                                                                                               \hookrightarrow lab[b]/2);
103
                 int xs = flower[b][i];
                                                                                         for(int x = 1; x <= n_x; ++x)
                                                                       166
                                                                                             if(st[x] == x && slack[x]){
                 for(int x = 1; x <= n_x; ++x)
                                                                       167
                     if(g[b][x].w == 0 \mid \mid e_delta(g[xs][x]) <
                                                                                                 if(S[x] == -1)d = min(d,
106
                                                                                                   \hookrightarrow e_delta(g[slack[x]][x]));
                       \hookrightarrow e_delta(g[b][x]))
                                                                                                 else if(S[x] == 0)d = min(d,
                          g[b][x] = g[xs][x], g[x][b] = g[x][xs];
                                                                       169
                                                                                                   \label{eq:condition} \leftarrow e\_delta(g[slack[x]][x])/2);
                 for(int x = 1; x <= n; ++x)
                                                                                             }
                     if(flower_from[xs][x]) flower_from[b][x] =
                                                                       170
109
                                                                                         for(int u = 1; u <= n; ++u){
                                                                       171
                                                                                             if(S[st[u]] == 0){
                                                                                                 if(lab[u] <= d)return 0;</pre>
             set_slack(b);
                                                                                                 lab[u] -= d;
        inline void expand_blossom(int b){ // S[b] == 1
                                                                                             }else if(S[st[u]] == 1)lab[u] += d;
             for(size_t i = 0; i < flower[b].size(); ++i)</pre>
                                                                                         for(int b = n+1; b <= n_x; ++b)
                 set_st(flower[b][i], flower[b][i]);
115
             int xr = flower_from[b][g[b][pa[b]].u], pr =
                                                                                             if(st[b] == b){
116
                                                                                                 if(S[st[b]] == 0) lab[b] += d * 2;

    get_pr(b, xr);
             for(int i = 0; i < pr; i += 2){
                                                                                                 else if(S[st[b]] == 1) lab[b] -= d * 2;
                 int xs = flower[b][i], xns = flower[b][i + 1];
                                                                       181
                 pa[xs] = g[xns][xs].u;
                                                                                        q=queue<int>();
119
                                                                       182
                 S[xs] = 1, S[xns] = 0;
                                                                                         for(int x = 1; x <= n_x; ++x)
                                                                       183
120
                 slack[xs] = 0, set_slack(xns);
                                                                                             if(st[x] == x && slack[x] && st[slack[x]] !
                                                                       184
121
                                                                                               \Rightarrow = x && e_delta(g[slack[x]][x]) == 0)
                 q_push(xns);
122
                                                                                                 if(on_found_edge(g[slack[x]][x]))return
                                                                       185
123
            S[xr] = 1, pa[xr] = pa[b];
                                                                                                   → true;
                                                                                         for(int b = n + 1; b <= n_x; ++b)
             for(size_t i = pr + 1; i < flower[b].size(); ++i){
                                                                       186
                                                                                             if(st[b] == b && S[b] == 1 && lab[b] ==
                 int xs = flower[b][i];
                                                                       187
                                                                                               \hookrightarrow \emptyset)expand_blossom(b);
                 S[xs] = -1, set_slack(xs);
                                                                       188
                                                                                    return false;
                                                                       189
             st[b] = 0;
                                                                       190
130
                                                                                inline pair<long long, int> solve(){
                                                                       191
        inline bool on_found_edge(const edge &e){
131
                                                                                    memset(match + 1, 0, sizeof(int) * n);
             int u = st[e.u], v = st[e.v];
                                                                       192
132
                                                                                    n_x = n;
                                                                       193
             if(S[v] == -1){
133
                 pa[v] = e.u, S[v] = 1;
                                                                                    int n_matches = 0;
134
                                                                                    long long tot_weight = 0;
                                                                       195
                 int nu = st[match[v]];
135
                                                                                    for(int u = 0; u <= n; ++u) st[u] = u,
                 slack[v] = slack[nu] = 0;
136
                                                                                      → flower[u].clear();
                 S[nu] = 0, q_push(nu);
137
                                                                                    int w_max = 0;
                                                                       197
             }else if(S[v] == 0){
138
                                                                                    for(int u = 1; u <= n; ++u)
                 int lca = get_lca(u, v);
139
                                                                                         for(int v = 1; v \le n; ++v){
                 if(!lca) return augment(u, v), augment(v, u),
                                                                                             flower_from[u][v] = (u == v ? u : 0);

→ true;

                                                                                             w_max = max(w_max, g[u][v].w);
                 else add_blossom(u, lca, v);
                                                                       201
141
142
                                                                       202
                                                                                    for(int u = 1; u <= n; ++u) lab[u] = w_max;
                                                                       203
            return false;
                                                                                    while(matching()) ++n_matches;
                                                                       204
                                                                                    for(int u = 1; u <= n; ++u)
        inline bool matching(){
                                                                       205
                                                                                         if(match[u] && match[u] < u)</pre>
            memset(S + 1, -1, sizeof(int) * n_x);
                                                                       206
                                                                                             tot_weight += g[u][match[u]].w;
            memset(slack + 1, 0, sizeof(int) * n_x);
                                                                       207
                                                                                    return make_pair(tot_weight, n_matches);
            q = queue<int>();
                                                                       208
             for(int x = 1; x <= n_x; ++x)
                                                                       209
149
                                                                                inline void init(){
                 if(st[x] == x && !match[x]) pa[x]=0, S[x]=0,
                                                                       210
150
                                                                                    for(int u = 1; u <= n; ++u)
                   \hookrightarrow q_push(x);
                                                                       211
             if(q.empty())return false;
                                                                       212
                                                                                         for(int v = 1; v \leftarrow n; ++v)
151
             for(;;){
                                                                       213
                                                                                             g[u][v]=edge(u, v, 0);
152
                 while(q.size()){
153
```

39

40

41

42

43

44

45

46

47

61

62

64

65

67

68

3.6.4 原理

设图G的Tutte矩阵是 \tilde{A} , 首先是最基础的引理:

- G的最大匹配大小是 $\frac{1}{2}$ rankA.
- $(\tilde{A}^{-1})_{i,j} \neq 0$ 当且仅当 $G \{v_i, v_j\}$ 有完美匹配. (考虑到逆矩阵与伴随矩阵的关系, 这是显然的.)

构造最大匹配的方法见板子. 对于更一般的问题, 可以借助构造方法转化为完美匹配问题.

设最大匹配的大小为k,新建n-2k个辅助点,让它们和其他所有点 51 连边,那么如果一个点匹配了一个辅助点,就说明它在原图的匹配中 52 不匹配任何点.

- 最大匹配的可行边: 对原图中的任意一条边(u,v),如果删掉u,v后新图仍然有完美匹配(也就是 $\tilde{A}_{u,v}^{-1} \neq 0$),则它是一条可行边.
- 最大匹配的必须边: 待补充
- 最大匹配的必须点: 可以删掉这个点和一个辅助点, 然后判断剩 58 下的图是否还有完美匹配, 如果有则说明它不是必须的, 否则是必须 59 的. 只需要用到逆矩阵即可. 60
- 最大匹配的可行点: 显然对于任意一个点, 只要它不是孤立点, 就是可行点.

3.7 支配树

记得建反图!

```
vector<int> G[maxn], R[maxn], son[maxn]; // R是反图, son存
    → 的是sdom树上的儿子
   int ufs[maxn];
   int idom[maxn], sdom[maxn], anc[maxn]; // anc: sdom的dfn最
    → 小的祖先
   int p[maxn], dfn[maxn], id[maxn], tim;
   int findufs(int x) {
       if (ufs[x] == x)
10
          return x;
11
12
       int t = ufs[x];
13
       ufs[x] = findufs(ufs[x]);
14
15
       if (dfn[sdom[anc[x]]] > dfn[sdom[anc[t]]])
16
          anc[x] = anc[t];
17
18
       return ufs[x];
19
20
   void dfs(int x) {
22
       dfn[x] = ++tim;
23
       id[tim] = x;
       sdom[x] = x;
26
       for (int y : G[x])
          if (!dfn[y]) {
               p[y] = x;
               dfs(y);
31
33
   void get_dominator(int n) {
34
       for (int i = 1; i <= n; i++)
35
          ufs[i] = anc[i] = i;
36
37
```

```
for (int i = n; i > 1; i--) {
   int x = id[i];
    for (int y : R[x])
        if (dfn[y]) {
            findufs(y);
            if (dfn[sdom[x]] > dfn[sdom[anc[y]]])
                sdom[x] = sdom[anc[y]];
    son[sdom[x]].push_back(x);
    ufs[x] = p[x];
    for (int u : son[p[x]]) {
       findufs(u);
       idom[u] = (sdom[u] == sdom[anc[u]] ? p[x] :
          → anc[u]);
   son[p[x]].clear();
for (int i = 2; i <= n; i++) {
   int x = id[i];
    if (idom[x] != sdom[x])
       idom[x] = idom[idom[x]];
    son[idom[x]].push_back(x);
```

3.8 2-SAT

如果限制满足对称性(每个命题的逆否命题对应的边也存在), 那么可以使用Tarjan算法求SCC搞定.

具体来说就是,如果某个变量的两个点在同一SCC中则显然无解,否则按拓扑序倒序尝试选择每个SCC即可.

由于Tarjan算法的特性,找到SCC的顺序就是拓扑序**倒序**,所以判断完是否有解之后,每个变量只需要取SCC编号**较小**的那个.

如果要字典序最小就用DFS, 注意可以压位优化. 另外代码是0-base的.

```
bad = true;
13
                        break;
14
15
16
17
   // 最后stk中的所有元素就是选中的值
18
19
20
   bool dfs(int x) {
^{21}
       if (vis[x ^ 1])
22
23
           return false;
24
       if (vis[x])
26
           return true;
27
       vis[x] = true;
       stk[++top] = x;
30
       for (int i = 0; i < (int)G[x].size(); i++)
32
           if (!dfs(G[x][i]))
33
               return false;
34
35
       return true;
36
```

3.9 最大流

3.9.1 Dinic

```
// 注意Dinic适用于二分图或分层图,对于一般稀疏图ISAP更优,稠
    → 密图则HLPP更优
  struct edge{
      int to, cap, prev;
   } e[maxe * 2];
   int last[maxn], len, d[maxn], cur[maxn], q[maxn];
   // main函数里要初始化
  memset(last, -1, sizeof(last));
10
12
   void AddEdge(int x, int y, int z) {
       e[len].to = y;
13
       e[len].cap = z;
       e[len].prev = last[x];
16
       last[x] = len++;
17
18
   void addedge(int x, int y, int z) {
19
20
      AddEdge(x, y, z);
21
       AddEdge(y, x, 0);
22
23
   void bfs() {
      int head = 0, tail = 0;
25
      memset(d, -1, sizeof(int) * (t + 5));
26
       q[tail++] = s;
27
       d[s] = 0;
28
29
       while (head != tail){
30
           int x = q[head++];
31
           for (int i = last[x]; \sim i; i = e[i].prev)
32
               if (e[i].cap > 0 && d[e[i].to] == -1) {
33
                   d[e[i].to] = d[x] + 1;
34
                   q[tail++] = e[i].to;
35
36
37
38
39
```

```
int dfs(int x, int a) {
        if (x == t \mid \mid !a)
41
            return a;
42
43
       int flow = 0, f;
44
        for (int \&i = cur[x]; \sim i; i = e[i].prev)
45
            if (e[i].cap > 0 && d[e[i].to] == d[x] + 1 && (f =
46
              \hookrightarrow dfs(e[i].to, min(e[i].cap,a)))) {
                 e[i].cap -= f;
48
                 e[i^1].cap += f;
49
                 flow += f;
50
                 a -= f;
51
52
                 if (!a)
53
                     break;
54
55
56
       return flow;
57
58
59
   int Dinic() {
61
       int flow = ∅;
        while (bfs(), \sim d[t]) {
            memcpy(cur, last, sizeof(int) * (t + 5));
            flow += dfs(s, inf);
65
66
       return flow;
67
```

3.9.2 ISAP

可能有毒,慎用.

```
// 注意ISAP适用于一般稀疏图,对于二分图或分层图情况Dinic比
   → 较优, 稠密图则HLPP更优
  // 边的定义
  // 这里没有记录起点和反向边, 因为反向边即为正向边xor 1, 起
   → 点即为反向边的终点
  struct edge{
     int to, cap, prev;
  } e[maxe * 2];
  // 全局变量和数组定义
int last[maxn], cnte = 0, d[maxn], p[maxn], c[maxn],

    cur[maxn], q[maxn];

  int n, m, s, t; // s, t—定要开成全局变量
  void AddEdge(int x, int y, int z) {
13
     e[cnte].to = y;
14
      e[cnte].cap = z;
15
16
      e[cnte].prev = last[x];
17
     last[x] = cnte++;
18
19
  void addedge(int x, int y, int z) {
20
     AddEdge(x, y, z);
21
      AddEdge(y, x, ∅);
22
23
  // 预处理到t的距离标号
  // 在测试数据组数较少时可以省略,把所有距离标号初始化为@
  void bfs() {
27
     memset(d, -1, sizeof(d));
28
29
      int head = 0, tail = 0;
30
     d[t] = 0;
31
      q[tail++] = t;
32
33
```

```
while (head != tail) {
           int x = q[head++];
35
           c[d[x]]++;
36
37
           for (int i = last[x]; \sim i; i = e[i].prev)
38
               if (e[i ^ 1].cap && d[e[i].to] == -1) {
39
                   d[e[i].to] = d[x] + 1;
40
                   q[tail++] = e[i].to;
41
42
43
44
45
   // augment函数 O(n) 沿增广路增广一次,返回增广的流量
46
   int augment() {
       int a = (\sim 0u) \gg 1; // INT_MAX
49
       for (int x = t; x != s; x = e[p[x] ^ 1].to)
           a = min(a, e[p[x]].cap);
       for (int x = t; x != s; x = e[p[x] ^ 1].to) {
           e[p[x]].cap -= a;
           e[p[x] ^ 1].cap += a;
                                                                 13
56
                                                                 14
                                                                 15
       return a;
58
                                                                 16
59
                                                                 17
60
                                                                 18
   // 主过程 O(n^2 m), 返回最大流的流量
61
                                                                 19
   // 注意这里的n是编号最大值,在这个值不为n的时候一定要开个变
                                                                 20
     → 量记录下来并修改代码
                                                                 21
   int ISAP() {
                                                                 22
       bfs();
                                                                 23
65
                                                                 24
       memcpy(cur, last, sizeof(cur));
                                                                 25
67
                                                                 26
       int x = s, flow = 0;
69
       while (d[s] < n) {
70
           if (x == t) { // 如果走到了t就增广一次,并返回s重新
             → 找增广路
                                                                 31
               flow += augment();
                                                                 32
               x = s;
                                                                 33
                                                                 34
75
                                                                 35
           bool ok = false;
76
                                                                 36
           for (int \&i = cur[x]; \sim i; i = e[i].prev)
               if (e[i].cap && d[x] == d[e[i].to] + 1) {
                                                                 37
                   p[e[i].to] = i;
                                                                 38
                   x = e[i].to;
                                                                 39
                                                                 40
                   ok = true;
                                                                 41
                   break;
                                                                 42
                                                                 43
                                                                 44
           if (!ok) { // 修改距离标号
                                                                 45
               int tmp = n - 1;
                                                                 46
               for (int i = last[x]; \sim i; i = e[i].prev)
                                                                 47
                   if (e[i].cap)
                       tmp = min(tmp, d[e[i].to] + 1);
                                                                 49
                                                                 50
               if (!--c[d[x]])
                                                                 51
                  break; // gap优化,一定要加上
93
                                                                 52
                                                                 53
               c[d[x] = tmp]++;
                                                                 54
               cur[x] = last[x];
                                                                 55
                                                                 56
               if(x != s)
                                                                 57
                   x = e[p[x] ^1].to;
                                                                 58
                                                                 59
101
                                                                 60
```

```
3.9.3 HLPP 最高标号预流推进
  constexpr int maxn = 1205, maxe = 120005;
  struct edge {
      int to, cap, prev;
  } e[maxe * 2];
  int n, m, s, t;
  int last[maxn], cnte;
9 int h[maxn], gap[maxn * 2];
10 long long ex[maxn]; // 多余流量
  bool inq[maxn];
  struct cmp {
     bool operator() (int x, int y) const {
      return h[x] < h[y];
  };
  priority_queue<int, vector<int>, cmp> heap;
   void adde(int x, int y, int z) {
      e[cnte].to = y;
      e[cnte].cap = z;
      e[cnte].prev = last[x];
      last[x] = cnte++;
  void addedge(int x, int y, int z) {
      adde(x, y, z);
      adde(y, x, ∅);
  bool bfs() {
      static int q[maxn];
      fill(h, h + n + 1, 2 * n); // 如果没有全局的n, 记得改这
      int head = 0, tail = 0;
      q[tail++] = t;
      h[t] = 0;
      while (head < tail) {</pre>
          int x = q[head++];
          for (int i = last[x]; \sim i; i = e[i].prev)
              if (e[i ^ 1].cap \&\& h[e[i].to] > h[x] + 1) {
                  h[e[i].to] = h[x] + 1;
                  q[tail++] = e[i].to;
      return h[s] < 2 * n;
  void push(int x) {
      for (int i = last[x]; \sim i; i = e[i].prev)
          if (e[i].cap && h[x] == h[e[i].to] + 1) {
              int d = min(ex[x], (long long)e[i].cap);
              e[i].cap -= d;
              e[i ^1].cap += d;
              ex[x] -= d;
```

```
ex[e[i].to] += d;
61
62
                 if (e[i].to != s && e[i].to != t &&
63
                   \hookrightarrow !inq[e[i].to]) {
                      heap.push(e[i].to);
64
                      inq[e[i].to] = true;
65
66
                 if (!ex[x])
68
                      break;
69
70
71
72
    void relabel(int x) {
73
        h[x] = 2 * n;
74
75
        for (int i = last[x]; \sim i; i = e[i].prev)
76
             if (e[i].cap)
77
                h[x] = min(h[x], h[e[i].to] + 1);
78
79
80
    long long hlpp() {
81
        if (!bfs())
82
            return 0;
83
84
        // memset(gap, 0, sizeof(int) * 2 * n);
85
        h[s] = n;
86
        for (int i = 1; i <= n; i++)
88
            gap[h[i]]++;
89
90
        for (int i = last[s]; \sim i; i = e[i].prev)
91
             if (e[i].cap) {
92
                 int d = e[i].cap;
93
94
                 e[i].cap -= d;
95
                 e[i ^1].cap += d;
96
                 ex[s] -= d;
97
                 ex[e[i].to] += d;
98
99
                 if (e[i].to != s && e[i].to != t &&
100
                   \hookrightarrow !inq[e[i].to]) {
                          heap.push(e[i].to);
101
                          inq[e[i].to] = true;
102
103
104
105
        while (!heap.empty()) {
106
             int x = heap.top();
107
             heap.pop();
108
             inq[x] = false;
109
110
             push(x):
111
             if (ex[x]) {
112
                 if (!--gap[h[x]]) { // gap
113
                      for (int i = 1; i <= n; i++)
114
                           if (i != s && i != t && h[i] > h[x])
115
                               h[i] = n + 1;
118
                 relabel(x);
119
120
                 ++gap[h[x]];
                 heap.push(x);
                 inq[x] = true;
        return ex[t];
126
127
```

3.10 费用流

```
3.10.1 SPFA费用流
   constexpr int maxn = 20005, maxm = 200005;
   struct edge {
       int to, prev, cap, w;
   } e[maxm * 2];
   int last[maxn], cnte, d[maxn], p[maxn]; // 记得把Last初始化
    →成-1,不然会死循环
   bool inq[maxn];
   void spfa(int s) {
11
       memset(d, -63, sizeof(d));
12
       memset(p, -1, sizeof(p));
13
14
       queue<int> q;
15
17
       q.push(s);
18
       d[s] = 0;
19
       while (!q.empty()) {
20
21
           int x = q.front();
22
           q.pop();
23
           inq[x] = false;
24
           for (int i = last[x]; \sim i; i = e[i].prev)
25
               if (e[i].cap) {
26
                    int y = e[i].to;
                    if (d[x] + e[i].w > d[y]) {
30
                        p[y] = i;
                        d[y] = d[x] + e[i].w;
31
                        if (!inq[y]) {
32
                            q.push(y);
33
34
                            inq[y] = true;
35
36
                    }
               }
37
38
39
40
41
   int mcmf(int s, int t) {
       int ans = 0;
42
43
       while (spfa(s), d[t] > 0) {
44
           int flow = 0x3f3f3f3f;
45
           for (int x = t; x != s; x = e[p[x] ^ 1].to)
46
47
                flow = min(flow, e[p[x]].cap);
           ans += flow * d[t];
49
50
           for (int x = t; x != s; x = e[p[x] ^ 1].to) {
51
               e[p[x]].cap -= flow;
               e[p[x] ^1].cap += flow;
54
           }
55
56
57
       return ans;
58
59
   void add(int x, int y, int c, int w) {
60
       e[cnte].to = y;
61
       e[cnte].cap = c;
62
```

3.10.2 Dijkstra费用流

有的地方也叫原始-对偶费用流.

原理和求多源最短路的Johnson算法是一样的,都是给每个点维护一个势 h_u ,使得对任何有向边 $u \to v$ 都满足 $w + h_u - h_v \ge 0$.

如果有负费用则从s开始跑一遍 SPFA 初始化,否则可以直接初始 $\mathrm{61}$ 化 $h_u=0$.

每次增广时得到的路径长度就是 $d_{s,t}+h_t$,增广之后让所有 $h_u=63$ $h'_u+d'_{s,u}$,直到 $d_{s,t}=\infty$ (最小费用最大流)或 $d_{s,t}\geq0$ (最小费用 64 流)为止.

注意最大费用流要转成取负之后的最小费用流,因为Dijkstra求的是最短路.

```
struct edge {
      int to, cap, prev, w;
   } e[maxe * 2];
   int last[maxn], cnte;
   long long d[maxn], h[maxn];
   int p[maxn];
  bool vis[maxn];
   int s, t;
   void Adde(int x, int y, int z, int w) {
      e[cnte].to = y;
       e[cnte].cap = z;
       e[cnte].w = w;
       e[cnte].prev = last[x];
       last[x] = cnte++;
18
19
  void addedge(int x, int y, int z, int w) {
21
       Adde(x, y, z, w);
22
       Adde(y, x, 0, -w);
24
25
   void dijkstra() {
26
       memset(d, 63, sizeof(d));
27
       memset(vis, 0, sizeof(vis));
28
29
       priority_queue<pair<long long, int> > heap;
30
31
       d[s] = 0;
32
       heap.push(make_pair(011, s));
33
       while (!heap.empty()) {
           int x = heap.top().second;
36
           heap.pop();
37
           if (vis[x])
              continue;
40
42
           vis[x] = true;
           for (int i = last[x]; \sim i; i = e[i].prev)
43
               if (e[i].cap > 0 && d[e[i].to] > d[x] + e[i].w
                  \hookrightarrow + h[x] - h[e[i].to]) {
```

```
d[e[i].to] = d[x] + e[i].w + h[x] -
                     \hookrightarrow h[e[i].to];
                   p[e[i].to] = i;
                   heap.push(make_pair(-d[e[i].to], e[i].to));
47
48
49
50
   pair<long long, long long> mcmf() {
53
54
       spfa();
       for (int i = 1; i <= t; i++)
           h[i] = d[i];
56
       // 如果初始有负权就像这样跑一遍SPFA预处理
57
       long long flow = 0, cost = 0;
       while (dijkstra(), d[t] < 0x3f3f3f3f) {</pre>
           for (int i = 1; i <= t; i++)
              h[i] += d[i];
           int a = 0x3f3f3f3f3f;
           for (int x = t; x != s; x = e[p[x] ^ 1].to)
69
               a = min(a, e[p[x]].cap);
70
71
           flow += a;
72
           cost += (long long)a * h[t];
73
74
           for (int x = t; x != s; x = e[p[x] ^ 1].to) {
               e[p[x]].cap -= a;
               e[p[x] ^ 1].cap += a;
77
79
80
81
       return make_pair(flow, cost);
82
83
  // 记得初始化
84
  memset(last, -1, sizeof(last));
```

3.11 网络流原理

3.11.1 最大流

• 判断一条边是否必定满流

在残量网络中跑一遍Tarjan,如果某条满流边的两端处于同一SCC中则说明它不一定满流.(因为可以找出包含反向边的环,增广之后就不满流了.)

3.11.2 最小割

首先牢记最小割的定义:选权值和尽量小的一些边,使得删除这些边之后*s*无法到达*t*.

• 最小割输出一种方案

在残量网络上从S开始floodfill,源点可达的记为S集,不可达的记为T,如果一条边的起点在S集而终点在T集,就将其加入最小割中.

• 最小割的可行边与必须边

- 可行边: 满流,且残量网络上不存在u到v的路径,也就是u和v不在同一SCC中. (实际上也就是最大流必定满流的边.)
- 必须边: 满流, 且残量网络上S可达u, v可达T.

• 字典序最小的最小割

直接按字典序从小到大的顺序依次判断每条边能否在最小割中即可.

如果一条边是可行边,我们就需要把它删掉,同时进行退流, $u \to s$ 和 $t \to v$ 都退掉等同于这条边容量的流量. 退流用Dinic实现即可.

3.11.3 费用流

3.11.4 上下界网络流

有源汇上下界最大流

新建超级源汇S', T', 然后如图所示转化每一条边.

然后从S'到S,从T到T'分别连容量为正无穷的边即可.

因为附加边实际上算了两次流量,所以最终答案应该减掉所有下界之 $_1$

有源汇上下界最小流

按照上面的方法转换后先跑一遍最大流,然后撤掉超级源汇和附加边,反过来跑一次最大流退流,最大流减去退掉的流量就是最小流.

无源汇上下界可行流

转化方法和上面的图是一样的,只不过不需要考虑原有的源汇了. 在新图跑一遍最大流之后检查一遍辅助边,如果有辅助边没满流则无解,否则把每条边的流量加上b就是一组可行方案.

3.11.5 常见建图方法

• 最大流/费用流

流量不是很多的时候可以理解成很多条路径, 并且每条边可以经过 15 的次数有限. 16

最小割

常用的模型是**最大权闭合子图**. 当然它并不是万能的, 因为限制条件 ¹⁸ 可以带权值.

1. 如果某些点全部在S集或者T集则获得一个正的收益 21 把这个条件建成一个点,向要求的点连 ∞ 边,然后s向它连 ∞ 边.(如 22 果是T集就都反过来) 23

那么如果它在S集就一定满足它要求的点都在S集,反之如果是T集亦然.

- 2. 如果两个点不在同一集合中则需要付出代价 27 建双向边, 那显然如果它们不在同一集合中就需要割掉中间的边, 28 付出对应的代价. 29
- 3. 二分图, 如果相邻的两个点在同一集合则需要付出代价 染色后给一半的点反转源汇, 就转换成上面的问题了.

3.11.6 例题

- 最大流
- 最小割
- 1. 切糕
- 费用流
- 1. 序列上选和尽量大的数,但连续k个数中最多选p个. 费用流建图,先建一条n+1个点的无限容量的链表示不选,然后每个点往后面k个位置连边,答案是流量为p的最大费用流. 因为条件等价于选p次并且每次选的所有数间隔都至少是k.

2. 还要求连续k个数中最少选q个.

任选一个位置把图前后切开就会发现通过截面的流量总和恰为p. 注意到如果走了最开始的链就代表不选,因此要限制至少有q 的流量不走链,那么只需要把链的容量改成p-q就行了.

3.12 Prufer序列

3.12 Prufer序列

对一棵有 $n \ge 2$ 个结点的树,它的Prufer编码是一个长为n - 2,且每个数都在[1, n]内的序列.

构造方法:每次选取编号最小的叶子结点,记录它的父亲,然后把它删掉,直到只剩两个点为止. (并且最后剩的两个点一定有一个是n号点.)

相应的,由Prufer编码重构树的方法:按顺序读入序列,每次选取编号最小的且度数为1的结点,把这个点和序列当前点连上,然后两个点剩余度数同时-1.

Prufer编码的性质

- 每个至少2个结点的树都唯一对应一个Prufer编码. (当然也就可以做无根树哈希.)
- 每个点在Prufer序列中出现的次数恰好是度数-1. 所以如果给定某些点的度数然后求方案数, 就可以用简单的组合数解决.

最后,构造和重构直接写都是 $O(n\log n)$ 的,想优化成线性需要一些技巧。

线性求Prufer序列代码:

```
// 0-based
   vector<vector<int>> adj;
   vector<int> parent;
   void dfs(int v) {
       for (int u : adj[v]) {
           if (u != parent[v]) parent[u] = v, dfs(u);
10
   vector<int> pruefer_code() { // pruefer是德语
11
       int n = adj.size();
12
       parent.resize(n), parent[n - 1] = -1;
13
       dfs(n - 1);
       int ptr = -1;
       vector<int> degree(n);
17
       for (int i = 0; i < n; i++) {
           degree[i] = adj[i].size();
           if (degree[i] == 1 && ptr == -1) ptr = i;
       vector<int> code(n - 2);
       int leaf = ptr;
       for (int i = 0; i < n - 2; i++) {
           int next = parent[leaf];
           code[i] = next;
           if (--degree[next] == 1 && next < ptr)</pre>
               leaf = next;
           else {
30
31
               ptr++;
               while (degree[ptr] != 1)
                 ptr++;
               leaf = ptr;
35
36
       return code;
37
```

线性重构树代码:

```
vector<int> degree(n, 1);
       for (int i : code) degree[i]++;
       int ptr = 0;
       while (degree[ptr] != 1) ptr++;
       int leaf = ptr;
       vector<pair<int, int>> edges;
       for (int v : code) {
       edges.emplace_back(leaf, v);
       if (--degree[v] == 1 && v < ptr) {</pre>
14
           leaf = v;
15
       } else {
16
           ptr++;
           while (degree[ptr] != 1) ptr++;
           leaf = ptr;
20
21
       edges.emplace_back(leaf, n - 1);
22
       return edges;
```

3.13 弦图相关

Forked from templates of NEW CODE!!.

- 1. 团数 \leq 色数 , 弦图团数 = 色数
- 2. 设 next(v) 表示 N(v) 中最前的点 . 令 w* 表示所有满足 $A\in B$ 的 w 中最后的一个点,判断 $v\cup N(v)$ 是否为极大团,只需判断是 否存在一个 w, 满足 Next(w)=v 且 $|N(v)|+1\le |N(w)|$ 即可
- 3. 最小染色: 完美消除序列从后往前依次给每个点染色,给每个点染上可以染的最小的颜色
- 4. 最大独立集: 完美消除序列从前往后能选就选
- 5. 弦图最大独立集数 = 最小团覆盖数,最小团覆盖: 设最大独立集为 $\{p_1,p_2,\dots,p_t\}$,则 $\{p_1\cup N(p_1),\dots,p_t\cup N(p_t)\}$ 为最小团覆盖

4. 数据结构

4.1 线段树

4.1.1 非递归线段树

让fstqwq手撕

- 如果 $M = 2^k$,则只能维护[1, M 2]范围
- 找叶子: i对应的叶子就是i+M
- 单点修改: 找到叶子然后向上跳
- 区间查询: 左右区间各扩展一位, 转换成开区间查询

```
int query(int 1, int r) {
       1 += M - 1;
2
       r += M + 1;
3
      int ans = 0;
       while (1 ^ r != 1) {
           ans += sum[1 ^ 1] + sum[r ^ 1];
           1 >>= 1;
9
           r >>= 1;
10
11
12
13
       return ans;
14
```

区间修改要标记永久化,并且求区间和和求最值的代码不太一样

区间加,区间求和

```
void update(int 1, int r, int d) {
      int len = 1, cntl = 0, cntr = 0; // cntl, cntr是左右两
2
        → 边分别实际修改的区间长度
      for (1 += n - 1, r += n + 1; 1 ^ r ^ 1; 1 >>= 1, r >>=
        \hookrightarrow 1, len <<= 1) {
          tree[1] += cnt1 * d, tree[r] += cntr * d;
          if (~l & 1) tree[l ^ 1] += d * len, mark[l ^ 1] +=
           if (r & 1) tree[r ^ 1] += d * len, mark[r ^ 1] +=
6
           for (; 1; 1 >>= 1, r >>= 1)
9
         tree[1] += cnt1 * d, tree[r] += cntr * d;
10
11
12
  int query(int 1, int r) {
13
      int ans = 0, len = 1, cntl = 0, cntr = 0;
14
      for (1 += n - 1, r += n + 1; 1 ^ r ^ 1; 1 >>= 1, r >>=
15
       ans += cntl * mark[1] + cntr * mark[r];
          if (~1 & 1) ans += tree[1 ^ 1], cntl += len;
          if (r & 1) ans += tree[r ^ 1], cntr += len;
18
19
      for (; 1; 1 >>= 1, r >>= 1)
21
         ans += cntl * mark[1] + cntr * mark[r];
22
23
      return ans;
24
25
```

区间加,区间求最大值

```
tree[1] = max(tree[1 << 1], tree[1 << 1 | 1]) +</pre>
                  \hookrightarrow mark[1];
                tree[r] = max(tree[r << 1], tree[r << 1 | 1]) +
                   → mark[r];
            if (~1 & 1) {
                tree[1 ^ 1] += d;
                mark[1 ^ 1] += d;
10
11
            if (r & 1) {
                tree[r ^ 1] += d;
13
                mark[r ^ 1] += d;
15
16
17
        for (; 1; 1 >>= 1, r >>= 1)
18
           if (1 < N) tree[1] = max(tree[1 << 1], tree[1 << 1</pre>
19
              \hookrightarrow | 1]) + mark[1],
                tree[r] = max(tree[r << 1], tree[r << 1</pre>
20
                            \hookrightarrow | 1]) + mark[r];
21
22
   void query(int 1, int r) {
23
       int maxl = -INF, maxr = -INF;
25
        for (1 += N - 1, r += N + 1; 1 ^ r ^ 1; 1 >>= 1, r >>=
26
         \hookrightarrow 1) {
            maxl += mark[1];
            maxr += mark[r];
29
            if (~1 & 1)
30
                maxl = max(maxl, tree[l ^ 1]);
31
            if (r & 1)
32
                maxr = max(maxr, tree[r ^ 1]);
33
35
       while (1) {
36
            max1 += mark[1];
37
            maxr += mark[r];
            1 >>= 1;
40
            r >>= 1;
41
42
43
       return max(max1, maxr);
44
45
```

4.1.2 线段树维护矩形并

为线段树的每个结点维护 $cover_i$ 表示这个区间被完全覆盖的次数. 更新时分情况讨论,如果当前区间已被完全覆盖则长度就是区间长度,否则长度是左右儿子相加.

```
constexpr int maxn = 100005, maxm = maxn * 70;
   int lc[maxm], rc[maxm], cover[maxm], sum[maxm], root,

    seg cnt;

   int s, t, d;
   void refresh(int 1, int r, int o) {
      if (cover[o])
           sum[o] = r - 1 + 1;
       else
           sum[o] = sum[lc[o]] + sum[rc[o]];
10
11
12
   void modify(int 1, int r, int &o) {
13
      if (!o)
14
           o = ++seg_cnt;
15
```

```
16
       if (s <= 1 \&\& t >= r) {
17
           cover[o] += d;
18
           refresh(1, r, o);
19
20
           return;
21
22
23
       int mid = (1 + r) / 2;
24
25
       if (s <= mid)</pre>
26
           modify(l, mid, lc[o]);
27
       if (t > mid)
28
          modify(mid + 1, r, rc[o]);
29
30
       refresh(1, r, o);
31
32
   struct modi {
35
       int x, 1, r, d;
36
       bool operator < (const modi &o) {</pre>
37
         return x < o.x;
   } a[maxn * 2];
40
41
   int main() {
42
43
       int n;
44
       scanf("%d", &n);
45
46
       for (int i = 1; i <= n; i++) {
47
           int lx, ly, rx, ry;
48
           scanf("%d%d%d%d", &lx, &ly, &rx, &ry);
49
50
           a[i * 2 - 1] = \{lx, ly + 1, ry, 1\};
51
           a[i * 2] = \{rx, ly + 1, ry, -1\};
52
53
54
       sort(a + 1, a + n * 2 + 1);
55
56
       int last = -1;
57
       long long ans = 0;
58
       for (int i = 1; i <= n * 2; i++) {
60
           if (last != -1)
61
               ans += (long long)(a[i].x - last) * sum[1];
62
           last = a[i].x;
63
64
           s = a[i].1;
65
           t = a[i].r;
66
           d = a[i].d;
67
68
           modify(1, 1e9, root);
69
70
71
       printf("%11d\n", ans);
72
73
       return 0;
74
```

4.1.3 主席树离线求区间mex(待完成)

4.2 陈丹琦分治

4.2.1 动态图连通性(分治并查集)

```
vector<pair<int, int> > seg[(1 << 22) + 5];
</pre>
```

```
pair<int, int> d;
   void add(int 1, int r, int o) {
       if (s > t)
7
          return;
       if (s <= 1 \&\& t >= r) {
10
           seg[o].push_back(d);
           return;
12
13
14
15
       int mid = (1 + r) / 2;
16
       if (s <= mid)</pre>
17
           add(1, mid, o * 2);
18
       if (t > mid)
19
20
           add(mid + 1, r, o * 2 + 1);
21
22
   int ufs[maxn], sz[maxn], stk[maxn], top;
23
24
   int findufs(int x) {
25
26
       while (ufs[x] != x)
         x = ufs[x];
27
29
       return ufs[x];
30
31
  void link(int x, int y) {
32
33
       x = findufs(x);
34
       y = findufs(y);
35
36
       if (x == y)
37
      return;
38
39
       if (sz[x] < sz[y])
40
       swap(x, y);
41
42
       ufs[y] = x;
43
       sz[x] += sz[y];
44
       stk[++top] = y;
45
46
   int ans[maxm];
47
48
   void solve(int 1, int r, int o) {
49
       int tmp = top;
50
       for (auto pi : seg[o])
52
           link(pi.first, pi.second);
53
54
       if (1 == r)
55
56
           ans[1] = top;
       else {
57
       int mid = (1 + r) / 2;
58
           solve(1, mid, o * 2);
60
           solve(mid + 1, r, o * 2 + 1);
61
62
       for (int i = top; i > tmp; i--) {
64
           int x = stk[i];
65
           sz[ufs[x]] -= sz[x];
67
           ufs[x] = x;
68
69
70
71
       top = tmp;
72 }
```

```
73 map<pair<int, int>, int> mp;
```

4.2.2 四维偏序

```
// 四维偏序
2
   void CDQ1(int l, int r) {
3
4
       if (1 >= r)
5
           return;
6
       int mid = (1 + r) / 2;
       CDQ1(1, mid);
9
       CDQ1(mid + 1, r);
10
11
       int i = 1, j = mid + 1, k = 1;
12
13
       while (i <= mid && j <= r) {
14
            if (a[i].x < a[j].x) {
15
                a[i].ins = true;
16
                b[k++] = a[i++];
17
19
            else {
                a[j].ins = false;
                b[k++] = a[j++];
22
23
25
       while (i <= mid) {
26
           a[i].ins = true;
           b[k++] = a[i++];
28
       while (j \leftarrow r) \{
30
           a[j].ins = false;
31
           b[k++] = a[j++];
32
33
34
       copy(b + 1, b + r + 1, a + 1); // 后面的分治会破坏排序,
35
         → 所以要复制一份
36
37
       CDQ2(1, r);
38
39
   void CDQ2(int 1, int r) {
40
       if (1 >= r)
41
           return:
42
43
       int mid = (1 + r) / 2;
44
45
       CDQ2(1, mid);
46
       CDQ2(mid + 1, r);
47
48
       int i = 1, j = mid + 1, k = 1;
49
50
       while (i <= mid \&\& j <= r) {
51
            if (b[i].y < b[j].y) {</pre>
52
                if (b[i].ins)
53
                    add(b[i].z, 1); // 树状数组
                t[k++] = b[i++];
56
            }
57
            else{
                if (!b[j].ins)
59
                    ans += query(b[j].z - 1);
60
61
                t\lceil k++\rceil = b\lceil j++\rceil;
62
63
```

```
64
65
       while (i <= mid) {
66
            if (b[i].ins)
67
                add(b[i].z, 1);
68
69
            t[k++] = b[i++];
70
71
72
73
       while (j \leftarrow r) {
            if (!b[j].ins)
74
                ans += query(b[j].z - 1);
75
76
            t[k++] = b[j++];
77
78
        for (i = 1; i <= mid; i++)
80
            if (b[i].ins)
81
                add(b[i].z, -1);
82
83
       copy(t + 1, t + r + 1, b + 1);
84
85
```

4.3 整体二分

修改和询问都要划分,备份一下,递归之前copy回去.

如果是满足可减性的问题(例如查询区间k小数)可以直接在划分的时候把询问的k修改一下. 否则需要维护一个全局的数据结构, 一般来说可以先递归右边再递归左边, 具体维护方法视情况而定.

以下代码以ZJOI K大数查询为例(区间都添加一个数,询问区间k大数).

```
int op[maxn], ql[maxn], qr[maxn]; // 1: modify 2: query
  long long qk[maxn]; // 修改和询问可以一起存
  int ans[maxn];
  void solve(int 1, int r, vector<int> v) { // 如果想卡常可以
    → 用数组, 然后只需要传一个数组的L, r<sup>®</sup> 递归的时候类似归并
    → 反过来, 开两个辅助数组, 处理完再复制回去即可
      if (v.empty())
          return;
      if (1 == r) {
10
          for (int i : v)
11
              if (op[i] == 2)
12
                  ans[i] = 1;
13
          return;
15
16
17
      int mid = (1 + r) / 2;
18
      vector<int> vl, vr;
21
      for (int i : v) {
          if (op[i] == 1) {
              if (qk[i] <= mid)</pre>
                  vl.push_back(i);
25
26
                  update(ql[i], qr[i], 1); // update是区间加
27
                  vr.push_back(i);
29
30
          else {
31
              long long tmp = query(ql[i], qr[i]);
32
33
              if (qk[i] <= tmp) // 因为是k大数查询
34
```

```
vr.push_back(i);
                else {
36
                    qk[i] -= tmp;
37
                    vl.push_back(i);
38
39
40
41
       }
42
       for (int i : vr)
43
           if (op[i] == 1)
44
               update(ql[i], qr[i], -1);
45
46
       v.clear():
47
48
       solve(1, mid, v1);
49
       solve(mid + 1, r, vr);
50
51
52
   int main() {
53
       int n, m;
54
       scanf("%d%d", &n, &m);
55
       while (M < n + 2)
          M *= 2;
59
       for (int i = 1; i <= m; i++)
61
           scanf("%d%d%d%lld", &op[i], &ql[i], &qr[i],
             \hookrightarrow &qk[i]);
       vector<int> v;
       for (int i = 1; i <= m; i++)
           v.push_back(i);
       solve(1, 1e9, v);
69
       for (int i = 1; i <= m; i++)
70
           if (op[i] == 2)
               printf("%d\n", ans[i]);
73
       return 0;
```

4.4 平衡树

pb_ds平衡树在misc(倒数第二章)里.

4.4.1 Treap

```
// 注意: 相同键值可以共存
  struct node { // 结点类定义
     int key, size, p; // 分别为键值, 子树大小, 优先度
     node *ch[2]; // θ表示左儿子, 1表示右儿子
     node(int key = 0) : key(key), size(1), p(rand()) {}
     void refresh() {
        size = ch[0] \rightarrow size + ch[1] \rightarrow size + 1;
     } // 更新子树大小(和附加信息, 如果有的话)
  } null[maxn], *root = null, *ptr = null; // 数组名叫
   → 做null是为了方便开哨兵节点
13 // 如果需要删除而空间不能直接开下所有结点,则需要再写一个
   →垃圾回收
  // 注意:数组里的元素一定不能deLete,否则会导致RE
  // 重要!在主函数最开始一定要加上以下预处理:
_{17} | null -> ch[0] = null -> ch[1] = null;
18 | null -> size = 0;
```

```
// 伪构造函数 O(1)
  // 为了方便, 在结点类外面再定义一个伪构造函数
22 node *newnode(int x) { // 键值为x
       *++ptr = node(x);
       ptr -> ch[0] = ptr -> ch[1] = null;
       return ptr;
26
27
  // 插入键值 期望O(\Log n)
28
  // 需要调用旋转
29
  void insert(int x, node *&rt) { // rt为当前结点, 建议调用时
    → 传入root, 下同
       if (rt == null) {
          rt = newnode(x);
33
           return;
34
       int d = x > rt \rightarrow key;
36
37
       insert(x, rt -> ch[d]);
      rt -> refresh();
38
40
       if (rt -> ch[d] -> p < rt -> p)
41
          rot(rt, d ^ 1);
42 }
   // 删除一个键值 期望0(\Log n)
  // 要求键值必须存在至少一个, 否则会导致RE
  // 需要调用旋转
46
47
   void erase(int x, node *&rt) {
       if (x == rt \rightarrow key) {
48
           if (rt -> ch[0] != null && rt -> ch[1] != null) {
49
               int d = rt \rightarrow ch[0] \rightarrow p \langle rt \rightarrow ch[1] \rightarrow p;
50
               rot(rt, d);
51
               erase(x, rt -> ch[d]);
52
53
54
          else
               rt = rt -> ch[rt -> ch[0] == null];
55
56
57
          erase(x, rt -> ch[x > rt -> key]);
59
       if (rt != null)
60
        rt -> refresh();
61
62
63
   // 求元素的排名(严格小于键值的个数 + 1) 期望O(\Log n)
64
   // 非递归
65
   int rank(int x, node *rt) {
       int ans = 1, d;
67
       while (rt != null) {
68
           if ((d = x > rt \rightarrow key))
69
               ans += rt -> ch[0] -> size + 1;
70
           rt = rt -> ch[d];
72
73
75
       return ans;
78 // 返回排名第k(从1开始)的键值对应的指针 期望O(\Log n)
79 // 非递归
80 | node *kth(int x, node *rt) {
       int d;
81
       while (rt != null) {
82
           if (x == rt \rightarrow ch[0] \rightarrow size + 1)
83
              return rt;
84
85
           if ((d = x > rt \rightarrow ch[0] \rightarrow size))
86
87
               x \rightarrow rt \rightarrow ch[0] \rightarrow size + 1;
```

4

```
88
            rt = rt -> ch[d];
89
90
91
       return rt;
92
93
    // 返回前驱(最大的比给定键值小的键值)对应的指针 期望O(\Log
95
     \hookrightarrow n)
   // 非递归
96
   node *pred(int x, node *rt) {
97
       node *y = null;
98
       int d;
99
100
       while (rt != null) {
101
           if ((d = x > rt \rightarrow key))
102
               y = rt;
103
104
           rt = rt -> ch[d];
105
106
107
        return y;
108
109
    // 返回后继@最小的比给定键值大的键值@对应的指针 期望O(\Log
   // 非递归
112
   node *succ(int x, node *rt) {
113
       node *y = null;
114
       int d;
115
116
        while (rt != null) {
117
           if ((d = x < rt \rightarrow key))
118
119
           y = rt;
120
           rt = rt -> ch[d ^ 1];
121
122
123
       return y;
124
125
    // 旋转(Treap版本) 0(1)
127
    // 平衡树基础操作
128
   // 要求对应儿子必须存在, 否则会导致后续各种莫名其妙的问题
129
   void rot(node *&x, int d) { // x为被转下去的结点, 会被修改
130
     → 以维护树结构
       node *y = x \rightarrow ch[d ^ 1];
131
       x \rightarrow ch[d ^ 1] = y \rightarrow ch[d];
133
       y \rightarrow ch[d] = x;
134
        x -> refresh();
136
        (x = y) \rightarrow refresh();
137
```

4.4.2 无旋Treap/可持久化Treap

```
struct node {
   int val, size;
   node *ch[2];

   node(int val) : val(val), size(1) {}

   inline void refresh() {
       size = ch[0] -> size + ch[1] -> size;
   }

   null[maxn];
}
```

```
node *copied(node *x) { // 如果不用可持久化的话,直接用就行
       return new node(*x);
15
16
17
18
   node *merge(node *x, node *y) {
19
       if (x == null)
            return y
        if (y == null)
            return x;
23
24
       node *z;
25
        if (rand() % (x \rightarrow size + y \rightarrow size) < x \rightarrow size) {
            z = copied(y);
            z \rightarrow ch[0] = merge(x, y \rightarrow ch[0]);
       else {
29
            z = copied(x);
30
            z \rightarrow ch[1] = merge(x \rightarrow ch[1], y);
31
32
33
        z -> refresh(); // 因为每次只有一边会递归到儿子, 所
34
         → 以z不可能取到null
       return z;
   pair<node*, node*> split(node *x, int k) { // 左边大小为k
38
       if (x == null)
39
            return make_pair(null, null);
40
41
       pair<node*, node*> pi(null, null);
42
43
       if (k \le x \rightarrow ch[0] \rightarrow size) {
44
            pi = split(x \rightarrow ch[0], k);
45
46
            node *z = copied(x);
47
            z -> ch[0] = pi.second;
48
            z -> refresh():
49
            pi.second = z;
50
51
       else {
            pi = split(x \rightarrow ch[1], k \rightarrow x \rightarrow ch[0] \rightarrow size \rightarrow 1);
            node *y = copied(x);
            y -> ch[1] = pi.first;
            y -> refresh();
            pi.first = y;
59
       return pi;
61
62
63
   // 记得初始化null
64
   int main() {
65
       for (int i = 0; i <= n; i++)
66
            null[i].ch[0] = null[i].ch[1] = null;
67
       null -> size = 0;
69
       // do something
70
71
       return 0;
72
73
```

4.4.3 Splay

如果插入的话可以直接找到底然后splay一下,也可以直接splay前驱后继.

```
#define dir(x) ((x) == (x) -> p -> ch[1])
   struct node {
        int size:
        bool rev:
        node *ch[2],*p;
        node() : size(1), rev(false) {}
10
        void pushdown() {
11
             if(!rev)
12
                return;
13
             ch[0] -> rev ^= true;
             ch[1] -> rev ^= true;
15
             swap(ch[0], ch[1]);
17
             rev=false;
19
20
        void refresh() {
21
            size = ch[0] -> size + ch[1] -> size + 1;
22
   } null[maxn], *root = null;
24
25
   void rot(node *x, int d) {
26
        node *y = x \rightarrow ch[d ^1];
27
28
        if ((x -> ch[d ^ 1] = y -> ch[d]) != null)
29
            y \rightarrow ch[d] \rightarrow p = x;
30
        ((y \rightarrow p = x \rightarrow p) != null ? x \rightarrow p \rightarrow ch[dir(x)] :
31
          \hookrightarrow root) = y;
        (y -> ch[d] = x) -> p = y;
32
33
        x -> refresh();
        y -> refresh();
35
36
37
   void splay(node *x, node *t) {
38
39
        while (x \rightarrow p != t) {
             if (x -> p -> p == t) {
                 rot(x \rightarrow p, dir(x) ^ 1);
                  break;
42
             if (dir(x) == dir(x \rightarrow p))
                  rot(x \rightarrow p \rightarrow p, dir(x \rightarrow p) ^ 1);
46
                 rot(x \rightarrow p, dir(x) ^ 1);
             rot(x \rightarrow p, dir(x) ^ 1);
49
50
51
   node *kth(int k, node *o) {
        int d;
        k++; // 因为最左边有一个哨兵
56
        while (o != null) {
             o -> pushdown();
59
             if (k == o \rightarrow ch[0] \rightarrow size + 1)
60
             return o;
62
             if ((d = k > o \rightarrow ch[0] \rightarrow size))
63
                 k \rightarrow o \rightarrow ch[0] \rightarrow size + 1;
             o = o \rightarrow ch[d];
67
        return null;
```

```
69
70
   void reverse(int 1, int r) {
       splay(kth(1 - 1));
72
       splay(kth(r + 1), root);
73
74
       root -> ch[1] -> ch[0] -> rev ^= true;
75
76
77
78
   int n, m;
79
   int main() {
80
81
       null → size = 0;
       null \rightarrow ch[0] = null \rightarrow ch[1] = null \rightarrow p = null;
82
83
       scanf("%d%d", &n, &m);
84
       root = null + n + 1;
85
86
       root \rightarrow ch[0] = root \rightarrow ch[1] = root \rightarrow p = null;
87
88
       for (int i = 1; i <= n; i++) {
           null[i].ch[1] = null[i].p = null;
89
           null[i].ch[0] = root;
90
           root -> p = null + i;
91
            (root = null + i) -> refresh();
92
93
94
       null[n + 2].ch[1] = null[n + 2].p = null;
95
       null[n + 2].ch[0] = root; // 这里直接建成一条链的, 如果
96
         → 想减少常数也可以递归建一个平衡的树
       root -> p = null + n + 2; // 总之记得建两个哨兵, 这
97
         → 样splay起来不需要特判
       (root = null + n + 2) \rightarrow refresh();
98
       // Do something
100
101
102
       return 0:
103
```

4.5 树链剖分

4.5.1 动态树形DP(最大权独立集)

```
#include <bits/stdc++.h>
   using namespace std;
 3
   constexpr int maxn = 100005, maxm = 262155, inf =
     \rightarrow 0x3f3f3f3f;
   struct binary_heap {
 7
       priority_queue<int> q, t;
       binary_heap() {}
10
11
12
        void push(int x) {
13
            q.push(x);
14
15
       void erase(int x) {
16
            t.push(x);
17
       }
18
19
20
        int top() {
            while (!t.empty() && q.top() == t.top()) {
21
22
                q.pop();
23
                t.pop();
24
25
26
            return q.top();
```

```
27
   } heap;
28
   int pool[maxm][2][2], (*pt)[2][2] = pool;
30
31
   void merge(int a[2][2], int b[2][2]) {
32
       static int c[2][2];
33
       memset(c, 0, sizeof(c));
34
35
       for (int i = 0; i < 2; i++)
36
            for (int j = 0; j < 2; j++)
37
                for (int k = 0; k < 2; k++)
                    if (!(j && k))
39
                         for (int t = 0; t < 2; t++)
40
                             c[i][t] = max(c[i][t], a[i][j] +
41
                               \hookrightarrow b[k][t]);
42
       memcpy(a, c, sizeof(c));
43
44
45
   vector<pair<int, int> > tw;
47
48
   struct seg_tree {
49
       int (*tr)[2][2], n;
50
51
       int s, d[2];
52
       seg_tree() {}
53
54
       void update(int o) {
55
           memcpy(tr[o], tr[o * 2], sizeof(int) * 4);
56
           merge(tr[o], tr[o * 2 + 1]);
57
58
59
       void build(int 1, int r, int o) {
60
            if (1 == r) {
61
62
                tr[o][0][0] = tw[1 - 1].first;
63
                tr[o][0][1] = tr[o][1][0] = -inf;
64
                tr[o][1][1] = tw[1 - 1].second;
65
66
                return;
67
68
            int mid = (1 + r) / 2;
69
70
            build(1, mid, o * 2);
71
           build(mid + 1, r, o * 2 + 1);
72
73
           update(o);
74
75
76
       void modify(int 1, int r, int o) {
77
            if (1 == r) {
78
                tr[0][0][0] = d[0];
79
                tr[o][0][1] = tr[o][1][0] = -inf;
80
81
                tr[o][1][1] = d[1];
82
83
               return:
84
85
           int mid = (1 + r) / 2;
86
87
            if (s <= mid)
88
89
                modify(1, mid, o * 2);
90
            else
               modify(mid + 1, r, o * 2 + 1);
91
92
            update(o);
93
94
95
```

```
int getval() {
            int ans = 0;
97
            for (int i = 0; i < 2; i++)
98
                 for (int j = 0; j < 2; j++)
99
                     ans = max(ans, tr[1][i][j]);
100
101
            return ans;
102
103
104
        pair<int, int> getpair() {
105
            int ans[2] = \{0\};
106
            for (int i = 0; i < 2; i++)
107
                 for (int j = 0; j < 2; j++)
108
                     ans[i] = max(ans[i], tr[1][i][j]);
109
110
            return make_pair(ans[0], ans[1]);
111
112
113
        void build(int len) {
114
            n = len;
115
            int N = 1;
116
            while (N < n * 2)
                N *= 2;
119
            tr = pt;
120
            pt += N;
121
122
            build(1, n, 1);
123
124
125
        void modify(int x, int dat[2]) {
126
127
            s = x;
            for (int i = 0; i < 2; i++)
128
                d[i] = dat[i];
            modify(1, n, 1);
132
    } seg[maxn];
133
    vector<int> G[maxn];
134
135
    int p[maxn], d[maxn], sz[maxn], son[maxn], top[maxn];
136
137
    int dp[maxn][2], dptr[maxn][2], w[maxn];
138
    void dfs1(int x) {
139
        d[x] = d[p[x]] + 1;
140
        sz[x] = 1;
141
142
        for (int y : G[x])
143
            if (y != p[x]) {
144
145
                 p[y] = x;
                 dfs1(y);
147
                 if (sz[y] > sz[son[x]])
149
                     son[x] = y;
150
                 sz[x] += sz[y];
151
152
153
154
    void dfs2(int x) {
155
        if (x == son[p[x]])
156
            top[x] = top[p[x]];
157
        else
158
            top[x] = x;
159
160
        for (int y : G[x])
161
            if (y != p[x])
162
                dfs2(y);
163
164
```

```
dp[x][1] = w[x];
165
        for (int y : G[x])
166
            if (y != p[x] \&\& y != son[x]) {
167
                dp[x][1] += dptr[y][0];
168
                 dp[x][0] += max(dptr[y][0], dptr[y][1]);
169
170
171
        if (top[x] == x) {
172
            tw.clear():
173
174
            for (int u = x; u; u = son[u])
175
                tw.push_back(make_pair(dp[u][0], dp[u][1]));
176
177
            seg[x].build((int)tw.size());
178
179
            tie(dptr[x][0], dptr[x][1]) = seg[x].getpair();
180
181
            heap.push(seg[x].getval());
182
183
184
185
    void modify(int x, int dat) {
187
        dp[x][1] -= w[x];
        dp[x][1] += (w[x] = dat);
189
        while (x) {
191
            if (p[top[x]]) {
                 dp[p[top[x]]][0] -= max(dptr[top[x]][0],
                   \hookrightarrow dptr[top[x]][1]);
                 dp[p[top[x]]][1] = dptr[top[x]][0];
195
            heap.erase(seg[top[x]].getval());
            seg[top[x]].modify(d[x] - d[top[x]] + 1, dp[x]);
            heap.push(seg[top[x]].getval());
            tie(dptr[top[x]][0], dptr[top[x]][1]) =
              → seg[top[x]].getpair();
201
            if (p[top[x]]) {
202
                 dp[p[top[x]]][0] += max(dptr[top[x]][0],
203
                   \hookrightarrow dptr[top[x]][1]);
                 dp[p[top[x]]][1] += dptr[top[x]][0];
204
205
206
            x = p[top[x]];
207
208
209
210
    int main() {
211
        int n, m;
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; i++)
            scanf("%d", &w[i]);
        for (int i = 1; i < n; i++) {
            int x, y;
            scanf("%d%d", &x, &y);
            G[x].push_back(y);
            G[y].push_back(x);
        dfs1(1);
        dfs2(1);
229
        while (m--) {
            int x, dat;
```

```
scanf("%d%d", &x, &dat);

scanf("%d%d", &x, &dat);

modify(x, dat);

printf("%d\n", heap.top());

return 0;

return 0;

and printf("%d\n", heap.top());

return 0;

and printf("%d\n", heap.top());

scanf("%d%d", &x, &dat);

modify(x, dat);

printf("%d\n", heap.top());

and printf("%d\n", heap
```

4.6 树分治

4.6.1 动态树分治

```
1// 为了减小常数,这里采用bfs写法,实测预处理比dfs快将近一
  // 以下以维护一个点到每个黑点的距离之和为例
  // 全局数组定义
  vector<int> G[maxn], W[maxn];
  int size[maxn], son[maxn], q[maxn];
  int p[maxn], depth[maxn], id[maxn][20], d[maxn][20]; //
    → id是对应层所在子树的根
  int a[maxn], ca[maxn], b[maxn][20], cb[maxn][20]; // 维护距
    → 离和用的
  bool vis[maxn], col[maxn];
10
11 // 建树 总计O(n\Log n)
  // 需要调用找重心和预处理距离,同时递归调用自身
12
  void build(int x, int k, int s, int pr) { // 结点, 深度, 连
    → 通块大小,点分树上的父亲
14
      x = getcenter(x, s);
15
      vis[x] = true;
16
      depth[x] = k;
17
      p[x] = pr;
18
19
      for (int i = 0; i < (int)G[x].size(); i++)
          if (!vis[G[x][i]]) {
20
             d[G[x][i]][k] = W[x][i];
21
             p[G[x][i]] = x;
22
23
             getdis(G[x][i],k,G[x][i]); // bfs每个子树, 预处
24
               → 理距离
25
      for (int i = 0; i < (int)G[x].size(); i++)
28
          if (!vis[G[x][i]])
29
             build(G[x][i], k + 1, size[G[x][i]], x); // 递
               → 归建树
30
31
  // 找重心 O(n)
32
  int getcenter(int x, int s) {
33
      int head = 0, tail = 0;
34
      q[tail++] = x;
35
36
      while (head != tail) {
37
          x = q[head++];
38
          size[x] = 1; // 这里不需要清空,因为以后要用的话一
39
           → 定会重新赋值
          son[x] = 0;
40
41
          for (int i = 0; i < (int)G[x].size(); i++)
42
             if (!vis[G[x][i]] && G[x][i] != p[x]) {
43
                 p[G[x][i]] = x;
44
                 q[tail++] = G[x][i];
45
46
47
48
```

```
for (int i = tail - 1; i; i--) {
49
           x = q[i];
50
           size[p[x]] += size[x];
51
52
           if (size[x] > size[son[p[x]]])
53
              son[p[x]] = x;
54
55
56
       x = q[0];
57
       while (son[x] \&\& size[son[x]] * 2 >= s)
58
          x = son[x];
59
60
       return x;
61
62
63
   // 预处理距离 O(n)
64
   // 方便起见, 这里直接用了笨一点的方法, O(n\Log n)全存下来
65
   void getdis(int x, int k, int rt) {
66
       int head = 0, tail = 0;
67
       q[tail++] = x;
68
69
       while (head != tail) {
70
           x = q[head++];
71
           size[x] = 1;
72
           id[x][k] = rt;
73
74
           for (int i = 0; i < (int)G[x].size(); i++)
75
               if (!vis[G[x][i]] && G[x][i] != p[x]) {
76
77
                   p[G[x][i]] = x;
                   d[G[x][i]][k] = d[x][k] + W[x][i];
79
                   q[tail++] = G[x][i];
80
81
83
       for (int i = tail - 1; i; i--)
84
           size[p[q[i]]] += size[q[i]]; // 后面递归建树要用到
85
             → 子问题大小
86
87
   // 修改 O(\Log n)
88
   void modify(int x) {
       if (col[x])
           ca[x]--;
       else
92
           ca[x]++; // 记得先特判自己作为重心的那层
93
       for (int u = p[x], k = depth[x] - 1; u; u = p[u], k--)
95
           if (col[x]) {
               a[u] -= d[x][k];
               ca[u]--;
98
               b[id[x][k]][k] -= d[x][k];
100
               cb[id[x][k]][k]--;
101
           }
102
           else {
103
               a[u] += d[x][k];
104
               ca[u]++;
105
106
               b[id[x][k]][k] += d[x][k];
107
                cb[id[x][k]][k]++;
108
109
110
111
       col[x] ^= true;
112
113
   // 询问 O(\Log n)
int query(int x) {
```

```
int ans = a[x]; // 特判自己是重心的那层
117
118
        for (int u = p[x], k = depth[x] - 1; u; u = p[u], k--)
119
            ans += a[u] - b[id[x][k]][k] + d[x][k] * (ca[u] -
120
              \hookrightarrow cb[id[x][k]][k]);
121
        return ans;
122
123
```

4.6.2 紫荆花之恋

稍微重构了一下,修改了代码风格.

另外这个是BFS版本, 跑得比DFS要快不少. (虽然主要复杂度并不 在重构上)

```
#include <bits/stdc++.h>
   using namespace std;
   constexpr int maxn = 100005, maxk = 49;
   constexpr double alpha = .75;
   mt19937 rnd(233333333);
   struct node {
       int key, size, p;
11
       node *ch[2];
13
       node() {}
       node(int key) : key(key), size(1), p(rnd()) {}
16
17
       inline void update() {
18
           size = ch[0] -> size + ch[1] -> size + 1;
19
   } null[maxn * maxk], *pt = null;
21
22
   vector<node*> pool;
23
24
   node *newnode(int val) {
       node *x;
        if (!pool.empty()) {
            x = pool.back();
            pool.pop_back();
       else
           x = ++pt;
       *x = node(val);
       x -> ch[0] = x -> ch[1] = null;
36
38
       return x;
39
40
   void rot(node *&x, int d) {
41
       node *y = x -> ch[d ^1];
42
       x \rightarrow ch[d ^ 1] = y \rightarrow ch[d];
43
       y \rightarrow ch[d] = x;
44
45
       x -> update();
46
47
       (x = y) \rightarrow update();
48
49
   void insert(node *&o, int x) {
50
       if (o == null) {
51
            o = newnode(x);
52
            return;
53
54
```

```
55
        int d = (x > o \rightarrow key);
56
57
        insert(o -> ch[d], x);
58
        o -> update();
59
60
        if (o \rightarrow ch[d] \rightarrow p < o \rightarrow p)
61
            rot(o, d ^ 1);
62
63
    int get_order(node *o, int x) {
66
        int ans = 0;
67
        while (o != null) {
            int d = (x > o \rightarrow key);
69
             if (d)
                ans += o -> ch[0] -> size + 1;
73
             o = o \rightarrow ch[d];
 75
76
        return ans;
77
78
79
    void destroy(node *x) {
        if (x == null)
81
            return;
82
        pool.push_back(x);
        destroy(x -> ch[0]);
85
        destroy(x \rightarrow ch[1]);
86
87
    struct my_tree { // 封装了一下,如果不卡内存直接换成PBDS就
90
        node *rt;
91
        my_tree() : rt(null) {}
92
93
        void clear() {
94
            ::destroy(rt);
95
96
             rt = null;
97
98
        void insert(int x) {
99
             ::insert(rt, x);
100
101
102
        int order_of_key(int x) { // less than x
103
104
            return ::get_order(rt, x);
105
106
    } tr[maxn], tre[maxn][maxk];
107
    vector<pair<int, int> > G[maxn];
108
109
    int p[maxn], depth[maxn], d[maxn][maxk], rid[maxn][maxk];
    int sz[maxn], siz[maxn][maxk], q[maxn];
111
    bool vis[maxn];
112
113
    int w[maxn];
114
115
    void destroy(int o) {
        int head = 0, tail = 0;
117
        q[tail++] = o;
118
        vis[o] = false;
119
        while (head != tail) {
             int x = q[head++];
122
             tr[x].clear();
123
```

```
for (int i = depth[o]; i \leftarrow depth[x]; i++) {
125
                 tre[x][i].clear();
126
                 d[x][i] = rid[x][i] = siz[x][i] = 0;
127
128
129
130
             for (auto pi : G[x]) {
                 int y = pi.first;
131
132
                 if (vis[y] && depth[y] >= depth[o]) {
133
                      vis[y] = false;
134
                      q[tail++] = y;
135
136
137
138
139
140
141
    int getcenter(int o, int s) {
        int head = 0, tail = 0;
142
        q[tail++] = o;
143
144
        while (head != tail) {
145
             int x = q[head++];
146
             sz[x] = 1;
47
48
             for (auto pi : G[x]) {
149
                 int y = pi.first;
150
51
                 if (!vis[y] && y != p[x]) {
152
                      p[y] = x;
153
                      q[tail++] = y;
154
55
56
57
58
        for (int i = s - 1; i; i--)
159
            sz[p[q[i]]] += sz[q[i]];
160
161
        int x = 0;
162
        while (true) {
163
            bool ok = false;
164
165
             for (auto pi : G[x]) {
166
                 int y = pi.first;
167
                 if (!vis[y] \&\& y != p[x] \&\& sz[y] * 2 > s) {
168
169
                      x = y;
170
                      ok = true;
171
                      break;
172
174
             if (!ok)
175
176
                break;
178
179
        return x;
180 }
181
    void getdis(int st, int o, int k) {
182
        int head = 0, tail = 0;
183
        q[tail++] = st;
184
185
        while (head != tail) {
186
            int x = q[head++];
187
             sz[x] = 1;
188
             rid[x][k] = st;
189
190
             tr[o].insert(d[x][k] - w[x]);
191
             tre[st][k].insert(d[x][k] - w[x]);
192
```

```
193
            for (auto pi : G[x]) {
194
                int y = pi.first, val = pi.second;
195
196
                 if (!vis[y] && y != p[x]) {
197
                     p[y] = x;
198
                     d[y][k] = d[x][k] + val;
199
                     q[tail++] = y;
200
201
202
203
204
        for (int i = tail - 1; i; i--)
205
            sz[p[q[i]]] += sz[q[i]];
206
207
        siz[st][k] = sz[st];
208
209
210
211
    void rebuild(int x, int s, int pr) {
212
        x = getcenter(x, s);
        vis[x] = true;
213
        p[x] = pr;
214
        depth[x] = depth[pr] + 1;
215
        sz[x] = s;
216
217
        tr[x].insert(-w[x]);
218
        for (auto pi : G[x]) {
220
            int y = pi.first, val = pi.second;
221
             if (!vis[y]) {
223
                 p[y] = x;
                 d[y][depth[x]] = val;
225
                 getdis(y, x, depth[x]);
226
227
228
229
        for (auto pi : G[x]) {
230
            int y = pi.first;
231
232
            if (!vis[y])
233
                rebuild(y, sz[y], x);
234
235
236
237
238
    long long add_node(int x,int nw) { // nw是边权
239
        depth[x] = depth[p[x]] + 1;
        sz[x] = 1;
240
        vis[x] = true;
241
        tr[x].insert(-w[x]);
        long long tmp = 0;
        int goat = 0; // 替罪羊
        for (int u = p[x], k = depth[x] - 1; u; u = p[u], k--)
            d[x][k] = d[p[x]][k] + nw;
            rid[x][k] = (rid[p[x]][k] ? rid[p[x]][k] : x);
            tmp += tr[u].order_of_key(w[x] - d[x][k] + 1);
            tmp -= tre[rid[x][k]][k].order_of_key(w[x] - d[x]
              \hookrightarrow [k] + 1);
254
            tr[u].insert(d[x][k] - w[x]);
255
            tre[rid[x][k]][k].insert(d[x][k] - w[x]);
256
257
            sz[u]++;
258
             siz[rid[x][k]][k]++;
259
260
```

```
if (siz[rid[x][k]][k] > sz[u] * alpha + 5)
                 goat = u;
262
263
        if (goat) {
265
             destroy(goat);
266
             rebuild(goat, sz[goat], p[goat]);
267
268
269
        return tmp;
270
271
273
    int main() {
274
        null \rightarrow ch[0] = null \rightarrow ch[1] = null;
275
        null → size = 0;
276
277
        int n;
        scanf("%*d%d", &n);
279
        scanf("%*d%*d%d", &w[1]);
281
        vis[1] = true;
        sz[1] = 1;
        tr[1].insert(-w[1]);
285
        printf("0\n");
287
        long long ans = 0;
289
        for (int i = 2; i <= n; i++) {
290
             int nw:
291
             scanf("%d%d%d", &p[i], &nw, &w[i]);
293
            p[i] ^= (ans % 1000000000);
294
295
            G[i].push_back(make_pair(p[i], nw));
296
            G[p[i]].push_back(make_pair(i, nw));
297
298
             ans += add_node(i, nw);
300
             printf("%11d\n", ans);
301
302
303
        return 0;
304
305
```

4.7 LCT动态树

4.7.1 不换根(弹飞绵羊)

```
1 \#define\ isroot(x)\ ((x)\ !=\ (x)\ ->\ p\ ->\ ch[0]\ \&\&\ (x)\ !=\ (x)
    → -> p -> ch[1]) // 判断是不是Splay的根
  #define dir(x) ((x) == (x) -> p -> ch[1]) // 判断它是它父亲
    → 的左 / 右儿子
  struct node { // 结点类定义
      int size; // Splay的子树大小
      node *ch[2], *p;
      node() : size(1) {}
      void refresh() {
          size = ch[0] -> size + ch[1] -> size + 1;
      } // 附加信息维护
11
  } null[maxn];
  // 在主函数开头加上这句初始化
  null -> size = 0;
15
16
```

```
// 初始化结点
   void initalize(node *x) {
      x \rightarrow ch[0] = x \rightarrow ch[1] = x \rightarrow p = null;
19
21
  // Access 均摊O(\Log n)
22
  // LCT核心操作,把结点到根的路径打通,顺便把与重儿子的连边
    → 变成轻边
  // 需要调用splay
  node *access(node *x) {
       node *y = null;
       while (x != null) {
          splay(x);
           x \rightarrow ch[1] = y;
           (y = x) \rightarrow refresh();
           x = x \rightarrow p;
36
       return y;
38
39
   // Link 均摊O(\Log n)
40
   // 把x的父亲设为y
41
   // 要求×必须为所在树的根节点@否则会导致后续各种莫名其妙的
  // 需要调用splay
   void link(node *x, node *y) {
44
45
      splay(x);
46
      x \rightarrow p = y;
47
48
  // Cut 均摊O(\Log n)
  // 把x与其父亲的连边断掉
  // x可以是所在树的根节点,这时此操作没有任何实质效果
  // 需要调用access和splay
  void cut(node *x) {
53
54
      access(x);
55
      splay(x);
56
      x \rightarrow ch[0] \rightarrow p = null;
57
      x \rightarrow ch[0] = null;
58
59
       x -> refresh();
60
61
62
   // Splay 均摊O(\log n)
   // 需要调用旋转
   void splay(node *x) {
65
       while (!isroot(x)) {
66
67
           if (isroot(x \rightarrow p)) {
               rot(x \rightarrow p, dir(x) ^ 1);
               break;
           if (dir(x) == dir(x \rightarrow p))
               rot(x \rightarrow p \rightarrow p, dir(x \rightarrow p) ^ 1);
               rot(x \rightarrow p, dir(x) ^ 1);
           rot(x \rightarrow p, dir(x) ^ 1);
76
77
78
   // 旋转(LCT版本) O(1)
  // 平衡树基本操作
  // 要求对应儿子必须存在, 否则会导致后续各种莫名其妙的问题
  void rot(node *x, int d) {
83
       node *y = x -> ch[d ^ 1];
84
```

```
y \rightarrow p = x \rightarrow p;
          if (!isroot(x))
87
             x \rightarrow p \rightarrow ch[dir(x)] = y;
88
89
          if ((x -> ch[d ^ 1] = y -> ch[d]) != null)
90
               y \rightarrow ch[d] \rightarrow p = x;
91
          (y \rightarrow ch[d] = x) \rightarrow p = y;
92
93
94
          x -> refresh();
          v -> refresh();
95
96
```

4.7.2 换根/维护生成树

```
_{1} | #define isroot(x) ((x) -> p == null | | ((x) -> p -> ch[0] !
     \Rightarrow = (x) && (x) -> p -> ch[1] != (x)))
   #define dir(x) ((x) == (x) -> p -> ch[1])
   using namespace std;
   const int maxn = 200005;
   struct node{
        int key, mx, pos;
        bool rev;
        node *ch[2], *p;
12
13
        node(int key = \emptyset): key(key), mx(key), pos(-1),
          → rev(false) {}
14
        void pushdown() {
15
             if (!rev)
16
17
                 return;
             ch[0] -> rev ^= true;
             ch[1] -> rev ^= true;
             swap(ch[0], ch[1]);
22
             if (pos != -1)
23
                 pos ^= 1;
24
25
             rev = false;
26
27
28
        void refresh() {
29
30
            mx = key;
31
             pos = -1;
             if (ch[0] -> mx > mx) {
                 mx = ch[0] \rightarrow mx;
                 pos = 0;
             if (ch[1] \rightarrow mx \rightarrow mx) {
36
                 mx = ch[1] \rightarrow mx;
                 pos = 1;
38
39
40
   } null[maxn * 2];
41
   void init(node *x, int k) {
43
        x \rightarrow ch[0] = x \rightarrow ch[1] = x \rightarrow p = null;
44
        x \rightarrow key = x \rightarrow mx = k;
45
46
47
   void rot(node *x, int d) {
48
        node *y = x -> ch[d ^ 1];
49
        if ((x -> ch[d ^ 1] = y -> ch[d]) != null)
50
            y \rightarrow ch[d] \rightarrow p = x;
51
52
```

```
y \rightarrow p = x \rightarrow p;
                                                                                      123
 53
          if (!isroot(x))
                                                                                      124
54
              x \rightarrow p \rightarrow ch[dir(x)] = y;
55
                                                                                      125
 56
                                                                                      126
          (y -> ch[d] = x) -> p = y;
 57
                                                                                      127
58
                                                                                      128
          x -> refresh();
59
                                                                                      129
          y -> refresh();
                                                                                       130
60
 61
                                                                                      131
 62
                                                                                      132
63
     void splay(node *x) {
                                                                                       133
64
          x -> pushdown();
                                                                                       134
65
                                                                                      135
 66
          while (!isroot(x)) {
                                                                                      136
               if (!isroot(x -> p))
 67
                                                                                       137
                    x \rightarrow p \rightarrow p \rightarrow pushdown();
                                                                                      138
               x -> p -> pushdown();
                                                                                      139
 70
               x -> pushdown();
                                                                                      140
 71
                                                                                      141
                                                                                      142
 72
               if (isroot(x \rightarrow p)) {
                                                                                      143
                    rot(x \rightarrow p, dir(x) ^ 1);
                    break;
                                                                                      145
                                                                                      146
 76
                                                                                      147
               if (dir(x) == dir(x \rightarrow p))
                                                                                      148
                    rot(x \rightarrow p \rightarrow p, dir(x \rightarrow p) ^ 1);
                                                                                      149
               else
                                                                                      150
                    rot(x \rightarrow p, dir(x) ^ 1);
 80
                                                                                      151
                                                                                      152
               rot(x \rightarrow p, dir(x) ^ 1);
                                                                                      153
 83
 84
                                                                                      154
 85
                                                                                      155
    node *access(node *x) {
 86
          node *y = null;
 87
                                                                                      157
 88
                                                                                      158
          while (x != null) {
 89
                                                                                      159
 90
               splay(x);
                                                                                      160
91
                                                                                      161
               x \rightarrow ch[1] = y;
 92
                                                                                      162
               (y = x) \rightarrow refresh();
 93
                                                                                      163
94
                                                                                      164
               x = x \rightarrow p;
 95
                                                                                      165
                                                                                      166
 96
97
          return y;
98
99
100
     void makeroot(node *x) {
          access(x);
102
          splay(x);
103
          x -> rev ^= true;
104
106
107
     void link(node *x, node *y) {
108
          makeroot(x);
          x \rightarrow p = y;
109
110
111
     void cut(node *x, node *y) {
112
          makeroot(x);
113
                                                                                       10
          access(y);
114
                                                                                       11
          splay(y);
115
                                                                                       12
116
          y \rightarrow ch[0] \rightarrow p = null;
117
                                                                                       13
          y \rightarrow ch[0] = null;
118
                                                                                       14
          y -> refresh();
119
                                                                                       15
120
                                                                                       16
121
122 node *getroot(node *x) {
```

```
x = access(x);
    while (x \rightarrow pushdown(), x \rightarrow ch[0] != null)
        x = x \rightarrow ch[0];
    splav(x):
    return x:
node *getmax(node *x, node *y) {
    makeroot(x);
    x = access(y);
    while (x \rightarrow pushdown(), x \rightarrow pos != -1)
       x = x \rightarrow ch[x \rightarrow pos];
    splay(x);
    return x;
// 以下为主函数示例
for (int i = 1; i <= m; i++) {
    init(null + n + i, w[i]);
    if (getroot(null + u[i]) != getroot(null + v[i])) {
        ans[q + 1] -= k;
        ans[q + 1] += w[i];
        link(null + u[i], null + n + i);
        link(null + v[i], null + n + i);
        vis[i] = true;
    else {
        int ii = getmax(null + u[i], null + v[i]) - null -

→ n;

        if (w[i] >= w[ii])
             continue;
        cut(null + u[ii], null + n + ii);
        cut(null + v[ii], null + n + ii);
        link(null + u[i], null + n + i);
        link(null + v[i], null + n + i);
        ans[q + 1] -= w[ii];
        ans[q + 1] += w[i];
```

4.7.3 维护子树信息

```
1 // 这个东西虽然只需要抄板子但还是极其难写,常数极其巨大,
   → 没必要的时候就不要用
2 // 如果维护子树最小值就需要套一个可删除的堆来维护,复杂度
   → 会变成0(n\Log^2 n)
  // 注意由于这道题与边权有关,需要边权拆点变点权
  // 宏定义
6 \#define\ isroot(x)\ ((x)\ ->\ p\ ==\ null\ //\ ((x)\ !=\ (x)\ ->\ p\ ->
   \hookrightarrow ch[0]\&\&(x) != (x) -> p -> ch[1]))
  #define dir(x) ((x) == (x) -> p -> ch[1])
  // 节点类定义
  struct node { // 以维护子树中黑点到根距离和为例
     int w, chain_cnt, tree_cnt;
     long long sum, suml, sumr, tree_sum; // 由于换根需要子
       → 树反转,需要维护两个方向的信息
     bool rev, col;
     node *ch[2], *p;
     node() : w(∅), chain_cnt(∅),
       \hookrightarrow tree cnt(\emptyset), sum(\emptyset), suml(\emptyset), sumr(\emptyset),
         tree_sum(0), rev(false), col(false) {}
```

```
18
       inline void pushdown() {
19
           if(!rev)
20
               return:
21
22
           ch[0]->rev ^= true;
23
           ch[1]->rev ^= true;
24
           swap(ch[0], ch[1]);
25
           swap(suml, sumr);
26
27
           rev = false;
28
29
30
       inline void refresh() { // 如果不想这样特判就pushdown-
31
           // pushdown();
32
33
           sum = ch[0] \rightarrow sum + ch[1] \rightarrow sum + w;
34
           suml = (ch[0] \rightarrow rev ? ch[0] \rightarrow sumr : ch[0] \rightarrow
             \hookrightarrow suml) + (ch[1] -> rev ? ch[1] -> sumr : ch[1]
             \hookrightarrow (ch[0] -> sum + w) + tree_sum;
           sumr = (ch[0] \rightarrow rev ? ch[0] \rightarrow suml : ch[0] \rightarrow
             \hookrightarrow sumr) + (ch[1] -> rev ? ch[1] -> suml : ch[1]
             \hookrightarrow (ch[1] -> sum + w) + tree_sum;
           chain_cnt = ch[0] -> chain_cnt + ch[1] -> chain_cnt
             \hookrightarrow + tree_cnt;
  } null[maxn * 2]; // 如果没有边权变点权就不用乘2了
   // 封装构造函数
  node *newnode(int w) {
42
       node *x = nodes.front(); // 因为有删边加边, 可以用一个
         → 队列维护可用结点
44
       nodes.pop();
       initalize(x);
45
       X \rightarrow W = W;
46
       x -> refresh();
47
       return x;
49
50
   // 封装初始化函数
51
   // 记得在进行操作之前对所有结点调用一遍
52
   inline void initalize(node *x) {
       *x = node();
54
       x \rightarrow ch[0] = x \rightarrow ch[1] = x \rightarrow p = null;
55
56
57
   // 注意一下在Access的同时更新子树信息的方法
58
  node *access(node *x) {
59
       node *y = null;
60
61
       while (x != null) {
62
           splay(x);
63
64
           x -> tree_cnt += x -> ch[1] -> chain_cnt - y ->
65
             x\rightarrow tree\_sum += (x \rightarrow ch[1] \rightarrow rev ? x \rightarrow ch[1] \rightarrow
66
             \hookrightarrow sumr : x -> ch[1] -> suml) - y -> suml;
           x \rightarrow ch[1] = y;
67
           (y = x) \rightarrow refresh();
69
           x = x \rightarrow p;
70
71
72
       return y;
73
74
76 // 找到一个点所在连通块的根
```

```
77 // 对比原版没有变化
    node *getroot(node *x) {
        x = access(x);
79
80
        while (x \rightarrow pushdown(), x \rightarrow ch[0] != null)
81
            x = x \rightarrow ch[0];
82
        splay(x);
83
85
        return x;
86
87
    // 换根,同样没有变化
88
    void makeroot(node *x) {
89
        access(x):
90
        splay(x);
91
        x -> rev ^= true;
92
        x -> pushdown();
93
94 }
95
   // 连接两个点
   /// !!! 注意这里必须把两者都变成根,因为只能修改根结点
    void link(node *x, node *y) {
        makeroot(x);
100
        makeroot(y);
101
        x \rightarrow p = y;
        y -> tree_cnt += x -> chain_cnt;
        y -> tree_sum += x -> suml;
        y -> refresh();
106
107
   // 删除一条边
108
   // 对比原版没有变化
109
    void cut(node *x, node *y) {
110
111
        makeroot(x);
        access(y);
112
113
        splay(y);
114
115
        y \rightarrow ch[0] \rightarrow p = null;
116
        y \rightarrow ch[0] = null;
        y -> refresh();
117
118
119
120 // 修改/询问一个点,这里以询问为例
121 // 如果是修改就在换根之后搞一些操作
122 long long query(node *x) {
123
        makeroot(x);
        return x -> suml;
124
125 }
126
<sub>127</sub> // Splay函数
128 // 对比原版没有变化
129 void splay(node *x) {
        x -> pushdown();
131
132
        while (!isroot(x)) {
             if (!isroot(x \rightarrow p))
                 x \rightarrow p \rightarrow p \rightarrow pushdown();
             x -> p -> pushdown();
135
136
             x -> pushdown();
             if (isroot(x \rightarrow p)) {
138
                 rot(x \rightarrow p, dir(x) ^ 1);
139
140
                 break:
141
143
             if (dir(x) == dir(x \rightarrow p))
144
                 rot(x \rightarrow p \rightarrow p, dir(x \rightarrow p) ^ 1);
             else
145
                 rot(x \rightarrow p, dir(x) ^ 1);
146
```

68

71

72

73

76

77

78

79

80

83

89

90

91

92

94

95

96

100

101

102

103

106

107

108

long long a = top();

```
rot(x \rightarrow p, dir(x) ^ 1);
                                                                                   46
148
                                                                                   47
149
                                                                                   48
150
                                                                                   49
151
     // 旋转函数
                                                                                   50
152
    // 对比原版没有变化
153
    void rot(node *x, int d) {
154
         node *y = x -> ch[d ^ 1];
155
156
                                                                                   55
         if ((x -> ch[d^1] = y -> ch[d]) != null)
157
                                                                                   56
             y \rightarrow ch[d] \rightarrow p = x;
158
                                                                                   57
159
         y \rightarrow p = x \rightarrow p;
160
         if (!isroot(x))
161
              x \rightarrow p \rightarrow ch[dir(x)] = y;
162
                                                                                  61
163
                                                                                   62
         (y -> ch[d] = x) -> p = y;
164
                                                                                   63
165
         x -> refresh();
166
         y -> refresh();
167
168
```

4.7.4 模板题:动态QTREE4(询问树上相距最远点)

```
#include <bits/stdc++.h>
  #include <ext/pb_ds/assoc_container.hpp>
  #include <ext/pb_ds/tree_policy.hpp>
   #include <ext/pb_ds/priority_queue.hpp>
4
5
   #define isroot(x) ((x) -> p==null||((x)!=(x) -> p ->
6
    \hookrightarrow ch[0]\&\&(x)!=(x) \to p \to ch[1])
   #define dir(x) ((x)==(x) -> p -> ch[1])
   using namespace std;
10
   using namespace __gnu_pbds;
11
   const int maxn = 100010;
   const long long INF = 100000000000000000011;
13
14
   struct binary heap {
15
       __gnu_pbds::priority_queue<long long, less<long long>,
16

    binary_heap_tag>q1, q2;

       binary_heap() {}
       void push(long long x) {
19
           if (x > (-INF) >> 2)
20
                q1.push(x);
21
22
       void erase(long long x) {
24
           if (x > (-INF) >> 2)
25
                q2.push(x);
26
27
28
       long long top() {
29
           if (empty())
30
                return -INF:
31
32
           while (!q2.empty() && q1.top() == q2.top()) {
33
                q1.pop();
                q2.pop();
36
37
           return q1.top();
38
39
40
       long long top2() {
41
           if (size() < 2)
42
                return -INF;
43
44
```

```
erase(a);
            long long b = top();
            push(a);
            return a + b;
        int size() {
           return q1.size() - q2.size();
       bool empty() {
           return q1.size() == q2.size();
   } heap; // 全局堆维护每条链的最大子段和
   struct node {
       long long sum, maxsum, prefix, suffix;
       binary_heap heap; // 每个点的堆存的是它的子树中到它的最
         → 远距离, 如果它是黑点的话还会包括自己
       node *ch[2], *p;
       bool rev;
       node(int k = 0): sum(k), maxsum(-INF), prefix(-INF),
           suffix(-INF), key(k), rev(false) {}
        inline void pushdown() {
           if (!rev)
                return;
            ch[0] -> rev ^= true;
            ch[1] -> rev ^= true;
            swap(ch[0], ch[1]);
            swap(prefix, suffix);
           rev = false;
        inline void refresh() {
            pushdown();
            ch[0] -> pushdown();
            ch[1] -> pushdown();
            sum = ch[0] \rightarrow sum + ch[1] \rightarrow sum + key;
            prefix = max(ch[0] -> prefix,
                         ch[0] -> sum + key + ch[1] -> prefix);
            suffix = max(ch[1] -> suffix,
                         ch[1] \rightarrow sum + key + ch[0] \rightarrow suffix);
            maxsum = max(max(ch[0] \rightarrow maxsum, ch[1] \rightarrow maxsum),
                         ch[0] \rightarrow suffix + key + ch[1] \rightarrow
                           → prefix);
            if (!heap.empty()) {
                prefix = max(prefix,
                             ch[0] -> sum + key + heap.top());
                suffix = max(suffix,
                             ch[1] -> sum + key + heap.top());
                maxsum = max(maxsum, max(ch[0] \rightarrow suffix,
                                          ch[1] -> prefix) + key
                                            if (heap.size() > 1) {
                    maxsum = max(maxsum, heap.top2() + key);
            }
   } null[maxn << 1], *ptr = null;</pre>
   void addedge(int, int, int);
   void deledge(int, int);
   void modify(int, int, int);
   void modify_color(int);
110 | node *newnode(int);
   node *access(node *);
   void makeroot(node *);
   void link(node *, node *);
```

113

```
void cut(node *, node *);
                                                                                       tmp = newnode(z);
    void splay(node *);
                                                                          186
                                                                                   else {
115
    void rot(node *, int);
                                                                          187
                                                                                       tmp = freenodes.front();
117
                                                                          188
                                                                                       freenodes.pop();
    queue<node *>freenodes;
                                                                                       *tmp = node(z);
118
                                                                          189
    tree<pair<int, int>, node *>mp;
119
                                                                          190
                                                                          191
120
    bool col[maxn] = {false};
                                                                                   tmp \rightarrow ch[0] = tmp \rightarrow ch[1] = tmp \rightarrow p = null;
121
                                                                          192
                                                                          193
    int n, m, k, x, y, z;
                                                                          194
                                                                                   heap.push(tmp -> maxsum);
123
                                                                                   link(tmp, null + x);
124
                                                                          195
                                                                                   link(tmp, null + y);
    int main() {
                                                                          196
125
        null \rightarrow ch[0] = null \rightarrow ch[1] = null \rightarrow p = null;
                                                                                   mp[make_pair(x, y)] = tmp;
                                                                          197
126
        scanf("%d%d%d", &n, &m, &k);
127
                                                                          198
                                                                          199
        for (int i = 1; i <= n; i++)
                                                                              void deledge(int x, int y) {
                                                                          200
129
                                                                                   node *tmp = mp[make_pair(x, y)];
             newnode(0):
130
                                                                          201
                                                                          202
131
        heap.push(∅);
                                                                          203
                                                                                   cut(tmp, null + x);
132
                                                                                   cut(tmp, null + y);
133
                                                                          204
        while (k--) {
                                                                          205
134
             scanf("%d", &x);
135
                                                                          206
                                                                                   freenodes.push(tmp);
                                                                                   heap.erase(tmp -> maxsum);
136
                                                                          207
             col[x] = true;
                                                                                   mp.erase(make_pair(x, y));
                                                                          208
137
             null[x].heap.push(0);
                                                                          209
138
                                                                          210
139
140
                                                                          211
                                                                              void modify(int x, int y, int z) {
                                                                                   node *tmp = mp[make_pair(x, y)];
141
        for (int i = 1; i < n; i++) {
                                                                          212
             scanf("%d%d%d", &x, &y, &z);
                                                                                  makeroot(tmp);
142
                                                                          213
                                                                                  tmp -> pushdown();
143
                                                                          214
             if (x > y)
                                                                          215
144
                  swap(x, y);
                                                                          216
                                                                                   heap.erase(tmp -> maxsum);
             addedge(x, y, z);
                                                                                   tmp \rightarrow key = z;
                                                                          217
147
                                                                          218
                                                                                   tmp -> refresh();
148
                                                                          219
                                                                                   heap.push(tmp -> maxsum);
        while (m--) {
149
                                                                          220
             scanf(" %c%d", &c, &x);
                                                                          221
150
                                                                              void modify_color(int x) {
151
                                                                          222
             if (c == 'A') {
                                                                          223
                                                                                   makeroot(null + x);
152
                  scanf("%d", &y);
                                                                          224
                                                                                  col[x] ^= true;
154
                                                                          225
                  if (x > y)
                                                                          226
                                                                                   if (col[x])
155
                      swap(x, y);
                                                                                       null[x].heap.push(0);
                                                                          227
156
                  deledge(x, y);
157
                                                                          228
                                                                                       null[x].heap.erase(0);
                                                                          229
             else if (c == 'B') {
                                                                          230
159
                 scanf("%d%d", &y, &z);
                                                                                   heap.erase(null[x].maxsum);
160
                                                                          231
                                                                                   null[x].refresh();
161
                                                                          232
                  if (x > y)
                                                                          233
                                                                                   heap.push(null[x].maxsum);
162
                      swap(x, y);
                                                                          234
163
                  addedge(x, y, z);
                                                                          235
                                                                          236
                                                                              node *newnode(int k) {
165
                                                                                   *(++ptr) = node(k);
166
             else if (c == 'C') {
                                                                          237
                 scanf("%d%d", &y, &z);
                                                                                  ptr \rightarrow ch[0] = ptr \rightarrow ch[1] = ptr \rightarrow p = null;
167
                                                                          238
                                                                                   return ptr;
                                                                          239
168
                  if (x > y)
                                                                          240
169
                      swap(x, y);
                                                                          241
                                                                              node *access(node *x) {
171
                  modify(x, y, z);
                                                                          242
                                                                                  splay(x);
172
                                                                          243
             else
                                                                                  heap.erase(x -> maxsum);
173
                                                                          244
                 modify_color(x);
                                                                                  x -> refresh();
                                                                          245
174
                                                                          246
175
             printf("%11d\n", (heap.top() > 0 ? heap.top() :
                                                                                   if (x -> ch[1] != null) {
                                                                          247
               \hookrightarrow -1));
                                                                          248
                                                                                       x -> ch[1] -> pushdown();
                                                                                       x -> heap.push(x -> ch[1] -> prefix);
177
                                                                          249
                                                                          250
                                                                                       x -> refresh():
178
        return 0;
                                                                                       heap.push(x -> ch[1] -> maxsum);
                                                                          251
179
                                                                          252
180
                                                                          253
    void addedge(int x, int y, int z) {
                                                                          254
                                                                                  x \rightarrow ch[1] = null;
182
        node *tmp;
183
                                                                          255
                                                                                   x -> refresh();
                                                                                  node *y = x;
        if (freenodes.empty())
                                                                          256
184
```

```
x = x \rightarrow p;
257
         while (x != null) {
260
              splay(x);
261
              heap.erase(x -> maxsum);
262
              if (x -> ch[1] != null) {
263
                   x -> ch[1] -> pushdown();
                   x \rightarrow heap.push(x \rightarrow ch[1] \rightarrow prefix);
                   heap.push(x \rightarrow ch[1] \rightarrow maxsum);
266
267
268
              x -> heap.erase(y -> prefix);
269
              x \rightarrow ch[1] = y;
              (y = x) \rightarrow refresh();
              x = x \rightarrow p;
273
274
         heap.push(y -> maxsum);
275
276
         return y;
277
278
     void makeroot(node *x) {
279
         access(x);
280
         splay(x);
281
         x -> rev ^= true;
282
284
    void link(node *x, node *y) { // 新添一条虚边, 维护y对应的
285
         makeroot(x);
286
         makeroot(y);
289
         x -> pushdown();
290
         x \rightarrow p = y;
         heap.erase(y -> maxsum);
291
         y -> heap.push(x -> prefix);
292
         y -> refresh();
         heap.push(y -> maxsum);
295
296
     void cut(node *x, node *y) { // 断开一条实边,一条链变成两
297
      → 条链, 需要维护全局堆
         makeroot(x);
298
         access(y);
         splay(y);
300
301
         heap.erase(y -> maxsum);
302
         heap.push(y -> ch[0] -> maxsum);
303
         y \rightarrow ch[0] \rightarrow p = null;
304
         y \rightarrow ch[0] = null;
         y -> refresh();
307
         heap.push(y -> maxsum);
308
309
     void splay(node *x) {
310
         x -> pushdown();
311
312
         while (!isroot(x)) {
313
              if (!isroot(x \rightarrow p))
314
                   x \rightarrow p \rightarrow p \rightarrow pushdown();
315
316
              x -> p -> pushdown();
              x -> pushdown();
319
              if (isroot(x \rightarrow p)) {
320
                   rot(x \rightarrow p, dir(x) ^ 1);
321
                   break:
322
324
              if (dir(x) == dir(x \rightarrow p))
325
                   rot(x \rightarrow p \rightarrow p, dir(x \rightarrow p) ^ 1);
326
```

```
327
                     rot(x \rightarrow p, dir(x) ^ 1);
328
329
330
               rot(x \rightarrow p, dir(x) ^ 1);
331
332
333
    void rot(node *x, int d) {
334
          node *y = x \rightarrow ch[d ^ 1];
336
          if ((x -> ch[d ^ 1] = y -> ch[d]) != null)
337
               y \rightarrow ch[d] \rightarrow p = x;
338
339
          y \rightarrow p = x \rightarrow p;
340
341
          if (!isroot(x))
342
               x \rightarrow p \rightarrow ch[dir(x)] = y;
343
344
          (y -> ch[d] = x) -> p = y;
345
346
347
          x -> refresh();
348
          y -> refresh();
349
```

4.8 K-D树

4.8.1 动态K-D树(定期重构)

```
int 1[2], r[2], x[B + 10][2], w[B + 10];
   int n, op, ans = 0, cnt = 0, tmp = 0;
   int d;
   struct node {
       int x[2], 1[2], r[2], w, sum;
6
        node *ch[2];
        bool operator < (const node &a) const {
            return x[d] < a.x[d];
10
11
12
        void refresh() {
13
            sum = ch[0] \rightarrow sum + ch[1] \rightarrow sum + w;
14
            l[0] = min(x[0], min(ch[0] \rightarrow l[0], ch[1] \rightarrow
15
              \hookrightarrow 1[0]);
            l[1] = min(x[1], min(ch[0] \rightarrow l[1], ch[1] \rightarrow
16
               r[0] = max(x[0], max(ch[0] \rightarrow r[0], ch[1] \rightarrow
17
               \hookrightarrow r[0]));
            r[1] = max(x[1], max(ch[0] -> r[1], ch[1] ->
18
               \hookrightarrow r[1]));
   } null[maxn], *root = null;
   void build(int 1, int r, int k, node *&rt) {
22
        if (1 > r) {
23
            rt = null;
24
25
            return;
27
        int mid = (1 + r) / 2;
28
29
        nth_element(null + 1, null + mid, null + r + 1);
31
32
        rt = null + mid;
33
        build(1, mid - 1, k ^1, rt -> ch[0]);
34
        build(mid + 1, r, k ^ 1, rt -> ch[1]);
35
36
        rt -> refresh();
37
38
```

```
39
   void query(node *rt) {
40
        if (l[0] <= rt -> l[0] && l[1] <= rt -> l[1] && rt ->
41
          \hookrightarrow r[0] <= r[0] \&\& rt -> r[1] <= r[1]) {
             ans += rt -> sum;
42
             return;
43
44
        else if (l[0] > rt -> r[0] || l[1] > rt -> r[1] || r[0]
45
          \hookrightarrow \langle rt - \rangle 1[0] | | r[1] \langle rt - \rangle 1[1])
46
            return;
        if (1[0] \leftarrow rt \rightarrow x[0] \&\& 1[1] \leftarrow rt \rightarrow x[1] \&\& rt \rightarrow
          \hookrightarrow x[0] \leftarrow r[0] \& rt \rightarrow x[1] \leftarrow r[1]
49
             ans += rt -> w;
50
        query(rt → ch[0]);
51
52
        query(rt -> ch[1]);
53
54
   int main() {
55
56
        null \rightarrow 1[0] = null \rightarrow 1[1] = 10000000;
57
        null \rightarrow r[0] = null \rightarrow r[1] = -100000000;
58
        null \rightarrow sum = 0;
59
        null \rightarrow ch[0] = null \rightarrow ch[1] = null;
60
        scanf("%*d");
61
62
        while (scanf("%d", &op) == 1 && op != 3) {
63
             if (op == 1) {
64
                   tmp++:
65
                   scanf("%d%d%d", &x[tmp][0], &x[tmp][1],
66
                     \hookrightarrow &w[tmp]);
                  x[tmp][0] ^= ans;
67
                   x[tmp][1] ^= ans;
                   w[tmp] ^= ans;
69
70
                   if (tmp == B) {
                        for (int i = 1; i <= tmp; i++) {
72
                            null[cnt + i].x[0] = x[i][0];
73
                            null[cnt + i].x[1] = x[i][1];
                             null[cnt + i].w = w[i];
                        build(1, cnt += tmp, ∅, root);
                        tmp = 0;
82
                   scanf("%d%d%d%d", &l[0], &l[1], &r[0], &r[1]);
83
                   1[0] ^= ans;
84
                   l[1] ^= ans;
85
                   r[0] ^= ans;
86
                   r[1] ^= ans;
87
                   ans = 0;
88
89
                   for (int i = 1; i <= tmp; i++)
90
                       if (1[0] \le x[i][0] \&\& 1[1] \le x[i][1] \&\&
91
                          \hookrightarrow x[i][0] \leftarrow r[0] \&\& x[i][1] \leftarrow r[1]
                            ans += w[i];
92
93
                   query(root);
94
                   printf("%d\n", ans);
95
96
97
98
        return 0:
99
```

4.9 LCA最近公共祖先

4.9.1 Tarjan LCA O(n+m)

```
vector<pair<int, int> > q[maxn];
  int lca[maxn];
  void dfs(int x) {
       dfn[x] = ++tim; // 其实求LCA是用不到DFS序的,但是一般其
        → 他步骤要用
       ufs[x] = x;
       for (auto pi : q[x]) {
          int y = pi.first, i = pi.second;
9
           if (dfn[y])
10
              lca[i] = findufs(y);
11
12
13
       for (int y : G[x])
14
           if (y != p[x]) {
15
16
              p[y] = x;
17
               dfs(y);
18
19
      ufs[x] = p[x];
20
21
```

4.10 虚树

```
struct Tree {
       vector<int>G[maxn], W[maxn];
       int p[maxn], d[maxn], size[maxn], mn[maxn], mx[maxn];
       bool col[maxn];
       long long ans_sum;
       int ans_min, ans_max;
       void add(int x, int y, int z) {
9
            G[x].push_back(y);
            W[x].push_back(z);
10
       }
11
12
13
       void dfs(int x) {
            size[x] = col[x];
            mx[x] = (col[x] ? d[x] : -0x3f3f3f3f3f);
15
            mn[x] = (col[x] ? d[x] : 0x3f3f3f3f);
16
17
            for (int i = 0; i < (int)G[x].size(); i++) {
18
                d[G[x][i]] = d[x] + W[x][i];
19
                dfs(G[x][i]);
                ans_sum += (long long)size[x] * size[G[x][i]] *
21
                  \hookrightarrow d[x];
                ans_max = max(ans_max, mx[x] + mx[G[x][i]] -
22
                  \hookrightarrow (d[x] << 1));
                ans_min = min(ans_min, mn[x] + mn[G[x][i]] -
                  \hookrightarrow (d[x] << 1));
                size[x] += size[G[x][i]];
                mx[x] = max(mx[x], mx[G[x][i]]);
25
                mn[x] = min(mn[x], mn[G[x][i]]);
26
27
       }
28
       void clear(int x) {
30
            G[x].clear();
31
            W[x].clear();
32
33
            col[x] = false;
34
35
       void solve(int rt) {
36
            ans sum = 0:
37
            ans_max = 1 << 31;
38
```

```
ans_min = (\sim 0u) \gg 1;
39
             dfs(rt);
40
            ans_sum <<= 1;
42
    } virtree;
43
44
    void dfs(int);
45
   int LCA(int, int);
47
   vector<int>G[maxn];
48
   int f[maxn][20], d[maxn], dfn[maxn], tim = 0;
49
50
   bool cmp(int x, int y) {
51
        return dfn[x] < dfn[y];</pre>
52
53
54
    int n, m, lgn = 0, a[maxn], s[maxn], v[maxn];
55
56
    int main() {
57
        scanf("%d", &n);
58
59
        for (int i = 1, x, y; i < n; i++) {
60
            scanf("%d%d", &x, &y);
61
            G[x].push back(y);
62
            G[y].push_back(x);
63
64
        G[n + 1].push_back(1);
66
        dfs(n + 1);
67
68
        for (int i = 1; i <= n + 1; i++)
69
            G[i].clear();
71
72
        lgn--;
73
        for (int j = 1; j <= lgn; j++)
74
             for (int i = 1; i <= n; i++)
75
                 f[i][j] = f[f[i][j - 1]][j - 1];
76
        scanf("%d", &m);
78
79
        while (m--) {
80
            int k;
81
            scanf("%d", &k);
82
            for (int i = 1; i <= k; i++)
84
                 scanf("%d", &a[i]);
85
86
             sort(a + 1, a + k + 1, cmp);
87
             int top = 0, cnt = 0;
88
             s[++top] = v[++cnt] = n + 1;
             long long ans = 0;
90
91
             for (int i = 1; i <= k; i++) {
92
                 virtree.col[a[i]] = true;
93
                 ans += d[a[i]] - 1;
                 int u = LCA(a[i], s[top]);
96
                 if (s[top] != u) {
97
                     while (top > 1 && d[s[top - 1]] >= d[u]) {
98
                         virtree.add(s[top - 1], s[top],
99
                            \hookrightarrow d[s[top]] - d[s[top - 1]]);
                          top--;
102
                     if (s[top] != u) {
103
                         virtree.add(u, s[top], d[s[top]] -
104
                          s[top] = v[++cnt] = u;
                     }
106
                 }
107
108
```

```
109
                 s[++top] = a[i];
110
111
             for (int i = top - 1; i; i--)
112
                 virtree.add(s[i], s[i + 1], d[s[i + 1]] -
113
                   \hookrightarrow d[s[i]]);
114
             virtree.solve(n + 1);
115
             ans *= k - 1;
116
             printf("%11d %d %d\n", ans - virtree.ans_sum,
117

    virtree.ans_min, virtree.ans_max);
118
             for (int i = 1; i <= k; i++)
119
                 virtree.clear(a[i]);
120
121
             for (int i = 1; i <= cnt; i++)
122
                 virtree.clear(v[i]);
123
124
125
126
        return 0:
127
    }
128
    void dfs(int x) {
129
        dfn[x] = ++tim;
130
        d[x] = d[f[x][0]] + 1;
131
132
133
        while ((1 << lgn) < d[x])
134
            lgn++;
135
        for (int i = 0; i < (int)G[x].size(); i++)
136
             if (G[x][i] != f[x][0]) {
137
                 f[G[x][i]][0] = x;
138
                 dfs(G[x][i]);
139
140
             }
141
142
    int LCA(int x, int y) {
143
        if (d[x] != d[y]) {
144
             if (d[x] < d[y])
145
146
                 swap(x, y);
147
             for (int i = lgn; i >= 0; i--)
148
                 if (((d[x] - d[y]) >> i) & 1)
149
                      x = f[x][i];
150
        }
151
152
        if (x == y)
153
            return x;
154
155
156
        for (int i = lgn; i >= 0; i--)
157
             if (f[x][i] != f[y][i]) {
158
                 x = f[x][i];
159
                 y = f[y][i];
             }
160
161
162
        return f[x][0];
163
```

4.11 长链剖分

```
// 顾名思义,长链剖分是取最深的儿子作为重儿子

// O(n)维护以深度为下标的子树信息

vector<int> G[maxn], v[maxn];
int n, p[maxn], h[maxn], son[maxn], ans[maxn];

// 原题题意:求每个点的子树中与它距离是几的点最多,相同的
→ 取最大深度

// 由于vector只能在后面加入元素,为了写代码方便,这里反过
→来存

// 或者开一个结构体维护倒过来的vector
```

```
void dfs(int x) {
       h[x] = 1;
11
12
        for (int y : G[x])
13
            if (y != p[x]){
14
                p[y] = x;
15
                 dfs(y);
16
17
                 if (h[y] > h[son[x]])
18
                     son[x] = y;
19
20
21
        if (!son[x]) {
22
            v[x].push_back(1);
23
            ans[x] = 0;
24
25
            return;
26
27
       h[x] = h[son[x]] + 1;
28
       swap(v[x],v[son[x]]);
29
30
       if (v[x][ans[son[x]]] == 1)
31
           ans[x] = h[x] - 1;
32
33
       else
            ans[x] = ans[son[x]];
34
35
       v[x].push_back(1);
36
37
       int mx = v[x][ans[x]];
38
        for (int y : G[x])
39
            if (y != p[x] \&\& y != son[x]) {
40
                 for (int j = 1; j \leftarrow h[y]; j++) {
41
                     v[x][h[x] - j - 1] += v[y][h[y] - j];
42
43
                     int t = v[x][h[x] - j - 1];
44
                     if (t > mx \mid | (t == mx \&\& h[x] - j - 1 >
                       \hookrightarrow ans[x])) {
46
                         mx = t;
                          ans[x] = h[x] - j - 1;
47
50
51
                v[y].clear();
52
```

4.11.1 梯子剖分

```
// 在线求一个点的第k祖先 O(n\Log n)-O(1)
  // 理论基础: 任意一个点x的k级祖先y所在长链长度一定>=k
  // 全局数组定义
  vector<int> G[maxn], v[maxn];
  int d[maxn], mxd[maxn], son[maxn], top[maxn], len[maxn];
  int f[19][maxn], log_tbl[maxn];
  // 在主函数中两遍dfs之后加上如下预处理
  log_tbl[0] = -1;
10
  for (int i = 1; i <= n; i++)
      log_tbl[i] = log_tbl[i / 2] + 1;
  for (int j = 1; (1 << j) < n; j++)
      for (int i = 1; i <= n; i++)
14
         f[j][i] = f[j - 1][f[j - 1][i]];
15
  // 第一遍dfs, 用于计算深度和找出重儿子
  void dfs1(int x) {
18
      mxd[x] = d[x];
19
20
      for (int y : G[x])
```

```
if (y != f[0][x]){
               f[0][y] = x;
23
               d[y] = d[x] + 1;
24
25
               dfs1(y);
26
               mxd[x] = max(mxd[x], mxd[y]);
28
               if (mxd[y] > mxd[son[x]])
29
                   son[x] = y;
30
31
32
33
   // 第二遍dfs,用于进行剖分和预处理梯子剖分(每条链向上延伸
    → 一倍)数组
  void dfs2(int x) {
35
       top[x] = (x == son[f[0][x]] ? top[f[0][x]] : x);
36
37
       for (int y : G[x])
38
           if (y != f[0][x])
39
40
              dfs2(y);
41
       if (top[x] == x) {
42
43
           int u = x;
           while (top[son[u]] == x)
44
45
               u = son[u];
46
           len[x] = d[u] - d[x];
47
           for (int i = 0; i < len[x]; i++, u = f[0][u])
               v[x].push_back(u);
           for (int i = 0; i < len[x] && u; i++, u = f[0][u])
              v[x].push_back(u);
55
56
  // 在线询问x的k级祖先 0(1)
  // 不存在时返回@
  int query(int x, int k) {
       if (!k)
60
           return x;
61
       if (k > d[x])
           return 0;
63
       x = f[log_tbl[k]][x];
65
       k ^= 1 << log_tbl[k];</pre>
66
       return v[top[x]][d[top[x]] + len[top[x]] - d[x] + k];
67
68
```

4.12 左偏树

(参见k短路板子.)

4.13 莫队

注意如果n和q不平衡, 块大小应该设为 $\frac{n}{\sqrt{q}}$.

另外如果裸的莫队要卡常可以按块编号奇偶性分别对右端点正序或者倒序排序,期望可以减少一半的移动次数.

4.13.1 回滚莫队(无删除莫队)(待完成)

4.13.2 莫队二次离线

适用范围:询问的是点对相关(或者其它可以枚举每个点和区间算贡献)的信息,并且可以离线;更新时可以使用一些牺牲修改复杂度来改善询问复杂度的数据结构(如单点修改询问区间和).

先按照普通的莫队将区间排序. 考虑区间移动的情况, 以(l,r)向右移动右端点到(l,t)为例.

对于每个 $i \in (r,t]$ 来说,它都要对区间[l,i)算贡献. 可以拆 58 成[1,i)和[1,l)两部分,那么前一部分因为都是i和[1,i)做贡献的形 59 式所以可以直接预处理.

考虑后一部分,i和(1,l]做贡献,因为莫队的性质我们可以保证这样的 61 询问次数不超过 $O((n+m)\sqrt{n})$,因此我们可以对每个l记录下来哪 62 些i要和它询问. 并且每次移动时询问的i都是连续的, 所以对每个l开 一个vector记录下对应的区间和编号就行了.

剩余的三种情况(右端点左移或者移动左端点)都是类似的, 具体可以 66

例: Yuno loves sqrt technology II (询问区间逆序对数)

```
#include <bits/stdc++.h>
3
  using namespace std;
4
  constexpr int maxn = 100005, B = 314;
   struct Q {
      int 1, r, d, id;
       Q() = default;
11
       Q(int 1, int r, int d, int id) : 1(1), r(r), d(d),
12
        \hookrightarrow id(id) \{\}
13
       friend bool operator < (const Q &a, const Q &b) {
14
15
           if (a.d != b.d)
           return a.d < b.d;
16
17
18
          return a.r < b.r;
19
   } q[maxn]; // 结构体可以复用, d既可以作为左端点块编号, 也
20
    → 可以作为二次离线处理的倍数
21
   int global_n, bid[maxn], L[maxn], R[maxn], cntb;
22
23
   int sa[maxn], sb[maxn];
24
25
   void addp(int x) { // sqrt(n)修改 0(1)查询
26
       for (int k = bid[x]; k \le cntb; k++)
27
          sb[k]++:
28
29
       for (int i = x; i \leftarrow R[bid[x]]; i++)
30
          sa[i]++;
31
32
33
   int queryp(int x) {
      if (!x)
36
         return 0;
       return sa[x] + sb[bid[x] - 1];
39
40
   void adds(int x) {
41
      for (int k = 1; k \leftarrow bid[x]; k++)
42
          sb[k]++;
43
44
       for (int i = L[bid[x]]; i \le x; i++)
45
         sa[i]++;
46
47
48
   int querys(int x) {
49
50
       if (x > global_n)
          return 0; // 为了防止越界就判一下
51
       return sa[x] + sb[bid[x] + 1];
52
53
   vector<Q> vp[maxn], vs[maxn]; // prefix, suffix
56
57 long long fp[maxn], fs[maxn]; // prefix, suffix
```

```
int a[maxn], b[maxn];
long long ta[maxn], ans[maxn];
int main() {
   int n, m;
   scanf("%d%d", &n, &m);
   global_n = n;
    for (int i = 1; i <= n; i++)
       scanf("%d", &a[i]);
   memcpy(b, a, sizeof(int) * (n + 1));
   sort(b + 1, b + n + 1);
    for (int i = 1; i <= n; i++)
       a[i] = lower_bound(b + 1, b + n + 1, a[i]) - b;
    for (int i = 1; i <= n; i++) {
       bid[i] = (i - 1) / B + 1;
       if (!L[bid[i]])
          L[bid[i]] = i;
       R[bid[i]] = i;
       cntb = bid[i];
    for (int i = 1; i <= m; i++) {
       scanf("%d%d", &q[i].1, &q[i].r);
       q[i].d = bid[q[i].1];
       q[i].id = i;
    sort(q + 1, q + m + 1);
   int l = 2, r = 1; // L, r是上一个询问的端点
    for (int i = 1; i <= m; i++) {
       int s = q[i].l, t = q[i].r; // s, t是当前要调整到的
         →端点
       if (s < 1)
           vs[r + 1].push_back(Q(s, 1 - 1, 1, i));
       else if (s > 1)
       vs[r + 1].push_back(Q(1, s - 1, -1, i));
       1 = s;
       if (t > r)
           vp[1 - 1].push_back(Q(r + 1, t, 1, i));
       else if (t < r)
       vp[l - 1].push_back(Q(t + 1, r, -1, i));
       r = t;
   for (int i = 1; i <= n; i++) { // 第一遍正着处理, 解决
     → 关于前缀的询问
       fp[i] = fp[i - 1] + querys(a[i] + 1);
       adds(a[i]);
       for (auto q : vp[i]) {
           long long tmp = 0;
           for (int k = q.1; k <= q.r; k++)
```

68

70

77

97

100

102

103

104

105

106 107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

```
tmp += querys(a[k] + 1);
126
127
               ta[q.id] -= q.d * tmp;
128
129
130
131
       memset(sa, 0, sizeof(sa));
132
       memset(sb, 0, sizeof(sb));
133
134
       for (int i = n; i; i--) { // 第二遍倒着处理,解决关于后
135
         → 缀的询问
           fs[i] = fs[i + 1] + queryp(a[i] - 1);
           addp(a[i]);
           for (auto q : vs[i]) {
               long long tmp = 0;
               for (int k = q.1; k <= q.r; k++)
                   tmp += queryp(a[k] - 1);
143
               ta[q.id] -= q.d * tmp;
        for (int i = 1; i <= m; i++) { // 求出fs和fp之后再加上
         → 这部分的贡献
           int s = q[i].1, t = q[i].r;
154
           ta[i] += fs[s] - fs[l];
155
           ta[i] += fp[t] - fp[r];
157
           1 = s;
158
           r = t;
160
           ta[i] += ta[i - 1]; // 因为算出来的是相邻两个询问之
161
             → 间的贡献, 所以要前缀和
           ans[q[i].id] = ta[i];
162
163
164
       for (int i = 1; i <= m; i++)
165
           printf("%11d\n", ans[i]);
166
167
       return 0:
168
169
```

4.13.3 带修莫队在线化 $O(n^{\frac{5}{3}})$

最简单的带修莫队: 块大小设成 $n^{\frac{2}{3}}$, 排序时第一关键字是左端点块编 45 号,第二关键字是右端点块编号,第三关键字是时间. (记得把时间压 46 缩成只有修改的时间.)

现在要求在线的同时支持修改,仍然以 $B=n^{\frac{2}{3}}$ 分一块,预处理出两块之间的贡献,那么预处理复杂度就是 $O(n^{\frac{5}{3}})$.

修改时最简单的方法是直接把 $n^{\frac{2}{3}}$ 个区间全更新一遍. 嫌慢的话可以 $_{51}$ 给每个区间打一个懒标记,询问的时候如果解了再更新区间的信息. $_{52}$ 注意如果附加信息是可减的(比如每个数的出现次数),那么就只需要 $_{53}$ 存 $O(n^{\frac{1}{3}})$ 个.

总复杂度仍然是 $O(n^{\frac{5}{3}})$,如果打懒标记的话是跑不太满的. 如果附加信息可减则空间复杂度是 $O(n^{\frac{4}{3}})$,否则和时间复杂度同阶.

4.13.4 莫队二次离线 在线化 $O((n+m)\sqrt{n})$

和之前的道理是一样的,i和[1,i)的贡献这部分仍然可以预处理掉,而前后缀对区间的贡献那部分只保存块端点处的信息.

按照莫队二次离线的转移方法操作之后发现只剩两边散块的贡献没 63 有解决. 这时可以具体问题具体解决,例如求逆序对的话直接预处理 64

出排序后的数组然后归并即可.

时空复杂度均为 $O(n\sqrt{n})$.

以下代码以强制在线求区间逆序对为例(洛谷上被卡常了,正常情况下极限数据应该在1.5s内.)

```
constexpr int maxn = 100005, B = 315, maxb = maxn / B + 5;
   int n, bid[maxn], L[maxb], R[maxb], cntb;
   struct DS { // O(sqrt(n))修改 O(1)查询
       int total:
       int sa[maxn], sb[maxb];
       void init(const DS &o) {
           total = o.total;
10
           memcpy(sa, o.sa, sizeof(int) * (n + 1));
11
           memcpy(sb, o.sb, sizeof(int) * (cntb + 1));
12
13
14
       void add(int x) {
15
           total++:
16
           for (int k = 1; k \leftarrow bid[x]; k++)
17
                sb[k]++;
           for (int i = L[bid[x]]; i \leftarrow x; i++)
19
               sa[i]++;
23
       int querys(int x) {
24
           if (x > n)
               return 0;
26
           return sb[bid[x] + 1] + sa[x];
27
28
29
       int queryp(int x) {
           return total - querys(x + 1);
   } pr[maxb];
33
34
   int c[maxn]; // 树状数组
35
36
   void addc(int x, int d) {
37
       while (x) {
38
           c[x] += d;
39
           x -= x & -x;
40
41
42
   int queryc(int x) {
       int ans = 0;
       while (x <= n) {
           ans += c[x];
           x += x \& -x;
       return ans:
   long long fp[maxn], fs[maxn];
54
   int rnk[maxn], val[maxn][B + 5];
55
   long long dat[maxb][maxb];
   int a[maxn];
   int main() {
       cin >> n >> m;
```

4

```
65
        for (int i = 1; i <= n; i++) {
66
            cin >> a[i];
67
68
            bid[i] = (i - 1) / B + 1;
69
            if (!L[bid[i]])
70
                L[bid[i]] = i;
71
            R[bid[i]] = i;
72
            cntb = bid[i];
73
74
            rnk[i] = i;
75
76
77
        for (int k = 1; k \leftarrow cntb; k++)
78
            sort(rnk + L[k], rnk + R[k] + 1, [](int x, int y)
79
              → {return a[x] < a[y];}); // 每个块排序
80
        for (int i = n; i; i--)
81
            for (int j = 2; i + j - 1 \leftarrow R[bid[i]]; j++) {
82
                val[i][j] = val[i + 1][j - 1] + val[i][j - 1] -
83
                  \hookrightarrow val[i + 1][j - 2];
                if (a[i] > a[i + j - 1])
84
                    val[i][j]++; // 块内用二维前缀和预处理
85
86
87
        for (int k = 1; k <= cntb; k++) {
88
            for (int i = L[k]; i \le R[k]; i++) {
89
                 dat[k][k] += queryc(a[i] + 1); // 单块内的逆序
90
                  → 对直接用树状数组预处理
                addc(a[i], 1);
91
92
93
            for (int i = L[k]; i \leftarrow R[k]; i \leftrightarrow)
94
                addc(a[i], -1);
95
96
        for (int i = 1; i <= n; i++) {
98
            if (i > 1 && i == L[bid[i]])
                pr[bid[i]].init(pr[bid[i] - 1]);
100
101
            fp[i] = fp[i - 1] + pr[bid[i]].querys(a[i] + 1);
102
103
            pr[bid[i]].add(a[i]);
104
105
106
        for (int i = n; i; i--) {
107
            fs[i] = fs[i + 1] + (n - i - queryc(a[i] + 1));
108
            addc(a[i], 1);
109
110
        for (int s = 1; s <= cntb; s++)
112
            for (int t = s + 1; t <= cntb; t++) {
113
                 dat[s][t] = dat[s][t - 1] + dat[t][t];
114
115
                 for (int i = L[t]; i <= R[t]; i++) // 块间的逆
116
                  → 序对用刚才处理的分块求出
                    dat[s][t] += pr[t - 1].querys(a[i] + 1) -
117
                       \hookrightarrow pr[s - 1].querys(a[i] + 1);
        long long ans = 0;
        while (m--) {
            long long s, t;
            cin >> s >> t;
            int l = s ^ ans, r = t ^ ans;
126
127
            if (bid[1] == bid[r])
```

```
ans = val[1][r - 1 + 1];
129
             else {
130
                 ans = dat[bid[1] + 1][bid[r] - 1];
131
132
                  ans += fp[r] - fp[L[bid[r]] - 1];
133
                  for (int i = L[bid[r]]; i <= r; i++)
134
                      ans -= pr[bid[1]].querys(a[i] + 1);
135
136
                 ans += fs[1] - fs[R[bid[1]] + 1];
137
                  for (int i = 1; i <= R[bid[1]]; i++)
138
                      ans -= (a[i] - 1) - pr[bid[r] -
139
                        \hookrightarrow 1].queryp(a[i] - 1);
140
                  int i = L[bid[1]], j = L[bid[r]], w = 0; // 手
141
                    →写归并
142
                 while (true) {
                      while (i <= R[bid[1]] && rnk[i] < 1)
145
                      while (j \leftarrow R[bid[r]] \&\& rnk[j] > r)
                      if (i > R[bid[1]] && j > R[bid[r]])
149
150
                      int x = (i <= R[bid[1]] ? a[rnk[i]] :</pre>
                        \hookrightarrow (int)1e9), y = (j <= R[bid[r]] ?
                        \hookrightarrow a[rnk[j]] : (int)1e9);
153
                      if (x < y) {
154
                           ans += w:
155
                           i++;
                      else {
             cout << ans << '\n';
165
        return 0;
168
169
```

4.14 常见根号思路

1. 通用

- 出现次数大于 \sqrt{n} 的数不会超过 \sqrt{n} 个
- 对于带修改问题, 如果不方便分治或者二进制分组, 可以考虑对操作分块, 每次查询时暴力最后的 \sqrt{n} 个修改并更正答案
- 根号分治: 如果分治时每个子问题需要O(N)(N是全局问题的大小)的时间,而规模较小的子问题可以 $O(n^2)$ 解决,则可以使用根号分治
 - 规模大于 \sqrt{n} 的子问题用O(N)的方法解决,规模小于 \sqrt{n} 的子问题用 $O(n^2)$ 暴力
 - 规模大于 \sqrt{n} 的子问题最多只有 \sqrt{n} 个
 - 规模不大于 \sqrt{n} 的子问题大小的平方和也必定不会超过 $n\sqrt{n}$
- 如果输入规模之和不大于n(例如给定多个小字符串与大字符串进行询问),那么规模超过 \sqrt{n} 的问题最多只有 \sqrt{n} 个

2. 序列

- 某些维护序列的问题可以用分块/块状链表维护
- 对于静态区间询问问题,如果可以快速将左/右端点移动一位,可以考虑莫队
 - 如果强制在线可以分块预处理, 但是一般空间需要 $n\sqrt{n}$

- * 例题: 询问区间中有几种数出现次数恰好为k,强制在线
- 如果带修改可以试着想一想带修莫队,但是复杂度高达 $n^{\frac{5}{3}}$
- 线段树可以解决的问题也可以用分块来做到O(1)询问或是O(1)修改,具体要看哪种操作更多

3. 树

- 与序列类似, 树上也有树分块和树上莫队
 - 一 树上带修莫队很麻烦,常数也大,最好不要先考虑
 - 树分块不要想当然
- 树分治也可以套根号分治, 道理是一样的

4. 字符串

• 循环节长度大于 \sqrt{n} 的子串最多只有O(n)个,如果是极长子串则只有 $O(\sqrt{n})$ 个

5. 字符串

5.1 KMP

```
char s[maxn], t[maxn];
   int fail[maxn];
4
   void init() { // 注意字符串是0-based, 但是fail是1-based
       // memset(fail, 0, sizeof(fail));
7
       for (int i = 1; i < m; i++) {
           int j = fail[i];
9
           while (j && t[i] != t[j])
10
11
               j = fail[j];
12
           if (t[i] == t[j])
13
               fail[i + 1] = j + 1;
14
           else
15
               fail[i + 1] = 0;
16
18
19
   int KMP() {
20
       int cnt = 0, j = 0;
21
22
       for (int i = 0; i < n; i++) {
23
           while (j && s[i] != t[j])
24
               j = fail[j];
25
26
           if (s[i] == t[j])
27
               j++;
28
           if (j == m)
29
30
               cnt++;
31
32
       return cnt;
33
34
```

5.1.1 ex-KMP

```
//全局变量与数组定义
  char s[maxn], t[maxn];
3
  int n, m, a[maxn];
  // 主过程 O(n + m)
  // 把t的每个后缀与s的LCP输出到a中, s的后缀和自己的LCP存

→ 在nx中

  // 0-based, s的长度是m, t的长度是n
  void exKMP(const char *s, const char *t, int *a) {
      static int nx[maxn];
10
      memset(nx, 0, sizeof(nx));
11
13
      int j = 0;
      while (j + 1 < m \&\& s[j] == s[j + 1])
          j++;
15
      nx[1] = j;
16
17
      for (int i = 2, k = 1; i < m; i++) {
          int pos = k + nx[k], len = nx[i - k];
19
          if (i + len < pos)
              nx[i] = len;
          else {
23
              j = max(pos - i, 0);
24
              while (i + j < m \&\& s[j] == s[i + j])
25
                  j++;
26
```

```
nx[i] = j;
28
                k = i;
29
30
31
32
33
       while (j < n \&\& j < m \&\& s[j] == t[j])
34
35
           j++;
       a[0] = j;
36
       for (int i = 1, k = 0; i < n; i++) {
38
            int pos = k + a[k], len = nx[i - k];
39
            if (i + len < pos)
40
                a[i] = len;
41
            else {
                j = max(pos - i, 0);
                while(j < m \&\& i + j < n \&\& s[j] == t[i + j])
                a[i] = j;
                k = i:
50
51
```

5.2 AC自动机

```
int ch[maxm][26], f[maxm][26], q[maxm], sum[maxm], cnt = 0;
  // 在字典树中插入一个字符串 O(n)
  int insert(const char *c) {
      int x = 0;
      while (*c) {
           if (!ch[x][*c - 'a'])
              ch[x][*c - 'a'] = ++cnt;
          x = ch[x][*c++ - 'a'];
10
       return x;
11
12
  // 建AC自动机 O(n * sigma)
14
  void getfail() {
      int x, head = 0, tail = 0;
      for (int c = 0; c < 26; c++)
          if (ch[0][c])
19
               q[tail++] = ch[0][c]; // 把根节点的儿子加入队列
20
21
      while (head != tail) {
22
          x = q[head++];
          G[f[x][0]].push_back(x);
25
          fill(f[x] + 1, f[x] + 26, cnt + 1);
27
           for (int c = 0; c < 26; c++) {
               if (ch[x][c]) {
                  int y = f[x][0];
                  f[ch[x][c]][0] = ch[y][c];
32
                  q[tail++] = ch[x][c];
33
34
              else
                   ch[x][c] = ch[f[x][0]][c];
37
38
      fill(f[0], f[0] + 26, cnt + 1);
39
40
```

5.3 后缀数组

5.3.1 倍增

```
constexpr int maxn = 100005;
   void get_sa(char *s, int n, int *sa, int *rnk, int *height)
     \hookrightarrow { // 1-base
       static int buc[maxn], id[maxn], p[maxn], t[maxn * 2];
       int m = 300;
       for (int i = 1; i <= n; i++)
         buc[rnk[i] = s[i]]++;
       for (int i = 1; i <= m; i++)
10
         buc[i] += buc[i - 1];
11
       for (int i = n; i; i--)
12
        sa[buc[rnk[i]]--] = i;
13
14
       memset(buc, 0, sizeof(int) * (m + 1));
15
16
       for (int k = 1, cnt = 0; cnt != n; k *= 2, m = cnt) {
17
           cnt = 0;
18
           for (int i = n; i > n - k; i--)
19
             id[++cnt] = i;
20
21
           for (int i = 1; i <= n; i++)
22
               if (sa[i] > k)
23
               id[++cnt] = sa[i] - k;
24
25
           for (int i = 1; i <= n; i++)
26
               buc[p[i] = rnk[id[i]]]++;
27
           for (int i = 1; i <= m; i++)
              buc[i] += buc[i - 1];
           for (int i = n; i; i--)
             sa[buc[p[i]]--] = id[i];
           memset(buc, 0, sizeof(int) * (m + 1));
           memcpy(t, rnk, sizeof(int) * (max(n, m) + 1));
35
36
37
           cnt = 0;
           for (int i = 1; i <= n; i++) {
               if (t[sa[i]] != t[sa[i - 1]] || t[sa[i] + k] !=
                 \hookrightarrow \mathsf{t}[\mathsf{sa}[\mathsf{i} - \mathsf{1}] + \mathsf{k}])
              cnt++;
40
41
               rnk[sa[i]] = cnt;
42
43
44
45
       for (int i = 1; i <= n; i++)
46
47
         sa[rnk[i]] = i;
48
       for (int i = 1, k = 0; i <= n; i++) { // 顺便求height
49
           if (k)
50
           k--;
51
52
           while (s[i + k] == s[sa[rnk[i] - 1] + k])
53
54
           k++:
55
           height[rnk[i]] = k; // height[i] = Lcp(sa[i], sa[i
56
             \hookrightarrow - 11)
57
58
   char s[maxn];
   int sa[maxn], rnk[maxn], height[maxn];
63 int main() {
```

```
cin \gg (s + 1);
65
       int n = strlen(s + 1);
66
       get_sa(s, n, sa, rnk, height);
68
       for (int i = 1; i <= n; i++)
70
           cout << sa[i] << (i < n ? ' ' : '\n');</pre>
       for (int i = 2; i <= n; i++)
73
           cout << height[i] << (i < n ? ' ' : '\n');</pre>
75
76
       return 0;
77
```

5.3.2 SA-IS

```
1 // SA-IS求完的SA有效位只有1~n,但它是0-based,如果其他部分
    → 是1-based就抄一下封装
3 constexpr int maxn = 100005, l_type = 0, s_type = 1;
  |// 判断一个字符是否为LMS字符
6 bool is_lms(int *tp, int x) {
      return x > 0 \&\& tp[x] == s_type \&\& tp[x - 1] == l_type;
10 // 判断两个LMS子串是否相同
  bool equal_substr(int *s, int x, int y, int *tp) {
11
      do {
12
          if (s[x] != s[y])
13
             return false;
14
15
          X++;
16
          y++;
      } while (!is_lms(tp, x) && !is_lms(tp, y));
17
18
      return s[x] == s[y];
19
20 | }
21
  // 诱导排序(从*型诱导到L型,从L型诱导到S型)
  // 调用之前应将*型按要求放入SA中
  void induced_sort(int *s, int *sa, int *tp, int *buc, int
    \hookrightarrow *lbuc, int *sbuc, int n, int m) {
      for (int i = 0; i \leftarrow n; i++)
25
          if (sa[i] > 0 && tp[sa[i] - 1] == l_type)
26
              sa[lbuc[s[sa[i] - 1]]++] = sa[i] - 1;
28
      for (int i = 1; i <= m; i++)
29
        sbuc[i] = buc[i] - 1;
30
31
32
      for (int i = n; ~i; i--)
         if (sa[i] > 0 && tp[sa[i] - 1] == s_type)
33
             sa[sbuc[s[sa[i] - 1]]--] = sa[i] - 1;
34
35
36
  // s是输入字符串, n是字符串的长度, m是字符集的大小
37
  int *sais(int *s, int len, int m) {
38
      int n = len - 1;
39
      int *tp = new int[n + 1];
      int *pos = new int[n + 1];
      int *name = new int[n + 1];
43
      int *sa = new int[n + 1];
      int *buc = new int[m + 1];
45
      int *lbuc = new int[m + 1];
46
      int *sbuc = new int[m + 1];
47
48
      memset(buc, 0, sizeof(int) * (m + 1));
49
      memset(lbuc, 0, sizeof(int) * (m + 1));
50
```

```
memset(sbuc, 0, sizeof(int) * (m + 1));
51
52
        for (int i = 0; i \leftarrow n; i++)
53
           buc[s[i]]++;
54
55
        for (int i = 1; i <= m; i++) {
56
           buc[i] += buc[i - 1];
57
            lbuc[i] = buc[i - 1];
59
            sbuc[i] = buc[i] - 1;
60
61
        tp[n] = s_type;
63
        for (int i = n - 1; \sim i; i--) {
64
            if (s[i] < s[i + 1])
65
               tp[i] = s_type;
66
            else if (s[i] > s[i + 1])
67
               tp[i] = l_type;
68
            else
69
                tp[i] = tp[i + 1];
70
71
72
        int cnt = 0;
73
        for (int i = 1; i <= n; i++)
74
           if (tp[i] == s_type && tp[i - 1] == l_type)
75
                pos[cnt++] = i;
76
77
        memset(sa, -1, sizeof(int) * (n + 1));
78
        for (int i = 0; i < cnt; i++)
79
            sa[sbuc[s[pos[i]]]--] = pos[i];
80
        induced_sort(s, sa, tp, buc, 1buc, sbuc, n, m);
81
82
        memset(name, -1, sizeof(int) * (n + 1));
83
        int lastx = -1, namecnt = 1;
84
        bool flag = false;
86
        for (int i = 1; i <= n; i++) {
87
          int x = sa[i];
89
            if (is_lms(tp, x)) {
90
                if (lastx >= 0 && !equal_substr(s, x, lastx,
91
                  → tp))
                    namecnt++;
92
93
                if (lastx >= 0 && namecnt == name[lastx])
94
                    flag = true;
95
96
                name[x] = namecnt;
97
                lastx = x;
98
99
100
        name[n] = 0;
101
102
        int *t = new int[cnt];
103
104
        int p = 0;
        for (int i = 0; i <= n; i++)
          if (name[i] >= 0)
         t[p++] = name[i];
108
        int *tsa;
109
        if (!flag) {
110
          tsa = new int[cnt];
            for (int i = 0; i < cnt; i++)
            tsa[t[i]] = i;
115
116
        else
        tsa = sais(t, cnt, namecnt);
117
```

```
lbuc[0] = sbuc[0] = 0;
        for (int i = 1; i <= m; i++) {
120
            lbuc[i] = buc[i - 1];
121
            sbuc[i] = buc[i] - 1;
122
123
124
       memset(sa, -1, sizeof(int) * (n + 1));
125
        for (int i = cnt - 1; ~i; i--)
126
           sa[sbuc[s[pos[tsa[i]]]]--] = pos[tsa[i]];
127
       induced_sort(s, sa, tp, buc, lbuc, sbuc, n, m);
128
129
       // 多组数据的时候最好delete掉
130
       delete[] tp;
131
       delete[] pos;
132
       delete[] name;
133
       delete[] buc;
134
       delete[] lbuc;
       delete[] sbuc;
       delete[] t;
       delete[] tsa;
       return sa;
140
141
142
   // 封装好的函数, 1-based
143
   void get_sa(char *s, int n, int *sa, int *rnk, int *height)
144
145
       static int a[maxn];
146
       for (int i = 1; i <= n; i++)
148
          a[i - 1] = s[i];
149
       a[n] = '$';
152
       int *t = sais(a, n + 1, 256);
153
        memcpy(sa, t, sizeof(int) * (n + 1));
       delete[] t;
        sa[0] = 0;
        for (int i = 1; i <= n; i++)
           rnk[++sa[i]] = i;
        for (int i = 1, k = 0; i \leftarrow n; i++) { // 求height
161
           if (k)
               k--;
162
           while (s[i + k] == s[sa[rnk[i] - 1] + k])
165
           height[rnk[i]] = k; // height[i] = lcp(sa[i], sa[i
168
169
```

5.3.3 SAMSA

```
for (int c = 0; c < 26; c++)
13
           if (ch[x][c])
14
               dfs(ch[x][c]);
15
16
       last = par[x];
17
18
19
   int main() {
20
       last = ++cnt;
22
       scanf("%s", s + 1);
23
       n = strlen(s + 1);
25
       for (int i = n; i; i--) {
           expand(s[i] - 'a');
           id[last] = i;
       vis[1] = true;
       for (int i = 1; i <= cnt; i++)
           if (id[i])
                for (int x = i, pos = n; x & vis[x]; x =
                  \hookrightarrow par[x]) 
                    vis[x] = true;
36
                    pos -= val[x] - val[par[x]];
                    ch[par[x]][s[pos + 1] - 'a'] = x;
38
40
       dfs(1);
       for (int i = 1; i <= n; i++) {
43
           if (i > 1)
               printf(" ");
           printf("%d", sa[i]); // 1-based
45
46
       printf("\n");
47
48
       for (int i = 1; i < n; i++) {
49
           if (i > 1)
50
               printf(" ");
51
           printf("%d", height[i]);
52
53
       printf("\n");
54
55
       return 0;
56
```

5.4 后缀平衡树

如果不需要查询排名,只需要维护前驱后继关系的题目,可以直接用二分哈希+set去做.

一般的题目需要查询排名,这时候就需要写替罪羊树或者Treap维护tag. 插入后缀时如果首字母相同只需比较各自删除首字母后的tag大小即可.

(Treap也具有重量平衡树的性质,每次插入后影响到的子树大小期望是 $O(\log n)$ 的,所以每次做完插入操作之后直接暴力重构子树内tag就行了.)

5.5 后缀自动机

```
8 // 在主函数开头加上这句初始化
  last = sam_cnt = 1;
  // 以下是按val进行桶排序的代码
11
  for (int i = 1; i <= sam_cnt; i++)
12
       c[val[i] + 1]++;
13
  for (int i = 1; i <= n; i++)
14
      c[i] += c[i - 1]; // 这里n是串长
15
  for (int i = 1; i <= sam_cnt; i++)
16
      q[++c[val[i]]] = i;
17
18
  //加入一个字符 均摊0(1)
19
  void extend(int c) {
       int p = last, np = ++sam_cnt;
22
       val[np] = val[p] + 1;
23
       while (p \&\& !go[p][c]) {
           go[p][c] = np;
26
           p = par[p];
       if (!p)
          par[np] = 1;
       else {
          int q = go[p][c];
32
           if (val[q] == val[p] + 1)
34
               par[np] = q;
35
           else {
36
               int nq = ++sam_cnt;
37
               val[nq] = val[p] + 1;
38
               memcpy(go[nq], go[q], sizeof(go[q]));
39
40
               par[nq] = par[q];
41
               par[np] = par[q] = nq;
42
43
               while (p \&\& go[p][c] == q){
44
                   go[p][c] = nq;
45
                   p = par[p];
46
47
48
49
50
51
       last = np;
52
```

5.5.1 广义后缀自动机

下面的写法复杂度是 Σ 串长的,但是胜在简单.

如果建字典树然后BFS建自动机可以做到 $O(n|\Sigma|)(n$ 是字典树结点数),但是后者写起来比较麻烦.

```
int extend(int p, int c) {
      int np = 0;
       if (!go[p][c]) {
           np = ++sam_cnt;
           val[np] = val[p] + 1;
           while (p \&\& !go[p][c]) \{
               go[p][c] = np;
               p = par[p];
10
       if (!p)
13
           par[np] = 1;
14
15
       else {
           int q = go[p][c];
16
17
```

```
if (val[q] == val[p] + 1) {
18
                if (np)
19
                    par[np] = q;
20
               else
21
22
                    return a:
23
           else {
24
               int nq = ++sam_cnt;
25
               val[nq] = val[p] + 1;
26
               memcpy(go[nq], go[q], sizeof(go[q]));
27
28
                par[nq] = par[q];
29
                par[q] = nq;
30
                if (np)
31
                    par[np] = nq;
33
               while (p \&\& go[p][c] == q){
34
                    go[p][c] = nq;
35
                    p = par[p];
38
                if (!np)
39
                    return nq;
43
       return np;
45
   // 调用的时候直接Last = 1然后一路调用Last = extend(Last,
46
    → c)就行了
```

```
x -> lazy = true;
            update(x \rightarrow val - val[x \rightarrow r] + 1, x \rightarrow val -
              \hookrightarrow val[par[x -> 1]], 1);
19
            x \rightarrow ch[1] = y;
20
21
22
            (y = x) \rightarrow refresh();
23
24
            x = x \rightarrow p;
25
26
27
       return y;
28
29
   // 以下是main函数中的用法
   for (int i = 1; i <= n; i++) {
       tim++;
        access(null + id[i]);
       if (i >= m) // 例题询问长度是固定的,如果不固定的话就
          → 按照右端点离线即可
            ans[i - m + 1] = query(i - m + 1, i);
36
37
```

问题:给定一个字符串s,多次询问[l,r]区间的本质不同的子串个数, 可能强制在线.

区间本质不同子串计数(后缀自动机+LCT+线段树)

做法:考虑建出后缀自动机,然后枚举右端点,用线段树维护每个左 端点的答案.

显然只有right集合在[l,r]中的串才有可能有贡献, 所以我们可以只 考虑每个串最大的right.

每次右端点+1时找到它对应的结点u,则u到根节点路径上的每个点, 它的right集合都会被r更新.

对于某个特定的左端点1,我们需要保证本质不同的子串左端 11 点不能越过它;因此对于一个结点p,我们知道它对应的子串长 度 $(val_{par_n}, val_p]$ 之后,在p的right集合最大值减去对应长度,这样 12 对应的l内全部+1即可;这样询问时就只需要查询r对应的线段树 13 中[l,r]的区间和.(当然旧的right对应的区间也要减掉)

实际上可以发现更新时都是把路径分成若干个整段更新right集合, 因此可以用LCT维护这个过程.

时间复杂度 $O(n \log^2 n)$, 空间O(n), 当然如果强制在线的话, 就把线 段树改成主席树, 空间复杂度就和时间复杂度同阶了.

```
int tim; // tim实际上就是当前的右端点
2
   node *access(node *x) {
3
        node *y = null;
5
        while (x != null) {
 6
            splay(x);
            x \rightarrow ch[1] = null;
            x -> refresh();
10
11
            if (x -> val) // val记录的是上次访问时间, 也就
12
              → 是right集合最大值
                 update(x \rightarrow val - val[x \rightarrow r] + 1, x \rightarrow val -
13
                   \hookrightarrow val[par[x \rightarrow 1]], -1);
14
            x \rightarrow val = tim;
15
```

5.6 回文树

```
// 定理: 一个字符串本质不同的回文子串个数是0(n)的
  // 注意回文树只需要开一倍结点, 另外结点编号也是一个可用
   → 的bfs序
  // 全局数组定义
  int val[maxn], par[maxn], go[maxn][26], last, cnt;
  char s[maxn]:
  // 重要!在主函数最前面一定要加上以下初始化
  par[0] = cnt = 1;
  val[1] = -1;
10
  // 这个初始化和广义回文树不一样,写普通题可以用,广义回文
   → 树就不要乱搞了
  // extend函数 均摊0(1)
  // 向后扩展一个字符
  // 传入对应下标
  void extend(int n) {
     int p = last, c = s[n] - 'a';
     while (s[n - val[p] - 1] != s[n])
         p = par[p];
      if (!go[p][c]) {
         int q = ++cnt, now = p;
22
         val[q] = val[p] + 2;
23
            p=par[p];
26
         while (s[n - val[p] - 1] != s[n]);
27
         par[q] = go[p][c];
         last = go[now][c] = q;
30
31
32
     else
33
         last = go[p][c];
34
     // a[last]++;
35
36
```

5.6.1 广义回文树

```
(代码是梯子剖分的版本,压力不大的题目换成直接倍增就好了,常数 ,只差不到一倍)
```

```
#include <bits/stdc++.h>
   using namespace std;
   constexpr int maxn = 1000005, mod = 1000000007;
   int val[maxn], par[maxn], go[maxn][26], fail[maxn][26],
    \hookrightarrow pam_last[maxn], pam_cnt;
   int weight[maxn], pow_26[maxn];
   int trie[maxn][26], trie_cnt, d[maxn], mxd[maxn],
    char chr[maxn];
11
   int f[25][maxn], log_tbl[maxn];
   vector<int> v[maxn];
13
   vector<int> queries[maxn];
16
   char str[maxn];
17
   int n, m, ans[maxn];
18
19
   int add(int x, int c) {
       if (!trie[x][c]) {
           trie[x][c] = ++trie_cnt;
22
23
           f[0][trie[x][c]] = x;
           chr[trie[x][c]] = c + 'a';
24
25
26
       return trie[x][c];
27
28
29
   int del(int x) {
30
31
       return f[0][x];
32
   void dfs1(int x) {
34
       mxd[x] = d[x] = d[f[0][x]] + 1;
35
36
       for (int i = 0; i < 26; i++)
37
           if (trie[x][i]) {
38
39
               int y = trie[x][i];
               dfs1(y);
41
42
               mxd[x] = max(mxd[x], mxd[y]);
43
               if (mxd[y] > mxd[son[x]])
44
                   son[x] = y;
45
           }
46
47
48
   void dfs2(int x) {
49
       if (x == son[f[0][x]])
50
           top[x] = top[f[0][x]];
       else
           top[x] = x;
53
54
       for (int i = 0; i < 26; i++)
55
           if (trie[x][i]) {
56
               int y = trie[x][i];
57
               dfs2(y);
59
60
       if (top[x] == x) {
61
62
           int u = x;
           while (top[son[u]] == x)
63
               u = son[u];
64
65
           len[x] = d[u] - d[x];
66
```

```
for (int i = 0; i < len[x]; i++) {
                 v[x].push_back(u);
70
                 u = f[0][u];
72
73
            for (int i = 0; i < len[x]; i++) { // 梯子剖分,要延
              → 长一倍
                v[x].push_back(u);
                 u = f[0][u];
76
77
78
79
80
81
   int get_anc(int x, int k) {
        if (!k)
82
            return x:
83
        if (k > d[x])
84
            return 0:
        x = f[log_tbl[k]][x];
87
        k ^= 1 << log_tbl[k];</pre>
88
89
        return v[top[x]][d[top[x]] + len[top[x]] - d[x] + k];
90
91
92
   char get_char(int x, int k) { // 查询x前面k个的字符是哪个
93
        return chr[get_anc(x, k)];
94
95
96
   int getfail(int x, int p) {
97
        if (get_char(x, val[p] + 1) == chr[x])
98
99
            return p;
        return fail[p][chr[x] - 'a'];
100
101
102
   int extend(int x) {
103
104
        int p = pam_last[f[0][x]], c = chr[x] - 'a';
105
106
        p = getfail(x, p);
107
108
109
        int new_last;
110
111
        if (!go[p][c]) {
            int q = ++pam_cnt, now = p;
112
            val[q] = val[p] + 2;
113
114
115
            p = getfail(x, par[p]);
116
117
            par[q] = go[p][c];
118
            new_last = go[now][c] = q;
119
            for (int i = 0; i < 26; i++)
120
                 fail[q][i] = fail[par[q]][i];
121
123
            if (get_char(x, val[par[q]]) >= 'a')
                 fail[q][get_char(x, val[par[q]]) - 'a'] =
124
                  → par[q];
125
            if (val[q] \leftarrow n)
126
                 weight[q] = (weight[par[q]] + (long long)(n -
127
                   \rightarrow val[q] + 1) * pow_26[n - val[q]]) % mod;
            else
128
                 weight[q] = weight[par[q]];
129
130
131
            new_last = go[p][c];
132
133
134
        pam_last[x] = new_last;
135
```

```
return weight[pam_last[x]];
136
137
139
    void bfs() {
140
        aueue<int> a:
141
142
        q.push(1);
143
        while (!q.empty()) {
145
             int x = q.front();
146
             q.pop();
147
148
             sum[x] = sum[f[0][x]];
149
             if (x > 1)
                 sum[x] = (sum[x] + extend(x)) \% mod;
152
             for (int i : queries[x])
153
                 ans[i] = sum[x];
154
155
             for (int i = 0; i < 26; i++)
                 if (trie[x][i])
157
                      q.push(trie[x][i]);
158
159
160
161
    int main() {
163
164
        pow_26[0] = 1;
165
        log_tbl[0] = -1;
166
167
        for (int i = 1; i \le 1000000; i++) {
             pow_26[i] = 2611 * pow_26[i - 1] % mod;
169
             log_tbl[i] = log_tbl[i / 2] + 1;
170
171
172
        int T;
        scanf("%d", &T);
        while (T--) {
176
             scanf("%d%d%s", &n, &m, str);
177
178
             trie_cnt = 1;
179
             chr[1] = '#';
181
             int last = 1;
182
             for (char *c = str; *c; c++)
183
                 last = add(last, *c - 'a');
184
185
             queries[last].push_back(0);
             for (int i = 1; i \leftarrow m; i++) {
188
                 int op:
189
                 scanf("%d", &op);
190
191
                 if (op == 1) {
                      char c;
193
                      scanf(" %c", &c);
194
195
                      last = add(last, c - 'a');
196
197
                 else
                      last = del(last);
200
                 queries[last].push_back(i);
201
             }
202
203
             dfs1(1);
             dfs2(1);
205
206
             for (int j = 1; j <= log_tbl[trie_cnt]; j++)</pre>
207
```

```
for (int i = 1; i <= trie_cnt; i++)
208
                      f[j][i] = f[j - 1][f[j - 1][i]];
209
210
211
             par[0] = pam_cnt = 1;
212
213
             for (int i = 0; i < 26; i++)
214
                 fail[0][i] = fail[1][i] = 1;
215
216
217
             val[1] = -1;
             pam_last[1] = 1;
218
219
             bfs();
220
221
222
             for (int i = 0; i \leftarrow m; i++)
                 printf("%d\n", ans[i]);
223
224
             for (int j = 0; j <= log_tbl[trie_cnt]; j++)</pre>
225
                 memset(f[j], 0, sizeof(f[j]));
226
             for (int i = 1; i <= trie_cnt; i++) {
                 chr[i] = 0;
229
                 d[i] = mxd[i] = son[i] = top[i] = len[i] =
230
                   \hookrightarrow pam_last[i] = sum[i] = 0;
                 v[i].clear();
231
232
                 queries[i].clear();
233
                 memset(trie[i], 0, sizeof(trie[i]));
234
235
             trie_cnt = 0;
236
237
             for (int i = 0; i <= pam_cnt; i++) {
                 val[i] = par[i] = weight[i];
240
                 memset(go[i], 0, sizeof(go[i]));
241
                 memset(fail[i], 0, sizeof(fail[i]));
242
243
             pam_cnt = 0;
244
245
246
247
        return 0;
248
249
```

5.7 Manacher马拉车

```
//n为串长,回文半径输出到p数组中
  //数组要开串长的两倍
  void manacher(const char *t, int n) {
      static char s[maxn * 2];
       for (int i = n; i; i--)
          s[i * 2] = t[i];
       for (int i = 0; i <= n; i++)
          s[i * 2 + 1] = '#';
10
      S[0] = '$';
11
      s[(n + 1) * 2] = ' (0';
12
      n = n * 2 + 1;
13
14
      int mx = 0, j = 0;
15
16
       for (int i = 1; i <= n; i++) {
17
          p[i] = (mx > i ? min(p[j * 2 - i], mx - i) : 1);
18
          while (s[i - p[i]] == s[i + p[i]])
19
              p[i]++;
20
21
           if (i + p[i] > mx) {
22
              mx = i + p[i];
23
               j = i;
24
```

5.8 字符串原理

KMP和AC自动机的fail指针存储的都是它在串或者字典树上的最长后缀,因此要判断两个前缀是否互为后缀时可以直接用fail指针判断. 当然它不能做子串问题, 也不能做最长公共后缀.

后缀数组利用的主要是LCP长度可以按照字典序做RMQ的性质,与某个串的LCP长度 \geq 某个值的后缀形成一个区间。另外一个比较好用的性质是本质不同的子串个数 = 所有子串数 - 字典序相邻的串的height.

后缀自动机实际上可以接受的是所有后缀,如果把中间状态也算上的话就是所有子串。它的fail指针代表的也是当前串的后缀,不过注意每个状态可以代表很多状态,只要右端点在right集合中且长度处在 $(val_{par_p}, val_p]$ 中的串都被它代表.

后缀自动机的fail树也就是**反串**的后缀树.每个结点代表的串和后缀自动机同理,两个串的LCP长度也就是他们在后缀树上的LCA.

6. 动态规划

6.1 决策单调性 $O(n \log n)$

```
int a[maxn], q[maxn], p[maxn], g[maxn]; // 存左端点,右端点
     → 就是下一个左端点 - 1
   long long f[maxn], s[maxn];
3
4
   int n, m;
   long long calc(int 1, int r) {
       if (r < 1)
           return 0;
10
       int mid = (1 + r) / 2;
11
       if ((r - 1 + 1) \% 2 == 0)
12
           return (s[r] - s[mid]) - (s[mid] - s[l - 1]);
13
14
           return (s[r] - s[mid]) - (s[mid - 1] - s[1 - 1]);
15
16
17
   int solve(long long tmp) {
18
       memset(f, 63, sizeof(f));
19
       f[0] = 0;
21
       int head = 1, tail = 0;
22
23
       for (int i = 1; i <= n; i++) {
24
            f[i] = calc(1, i);
25
            g[i] = 1;
26
27
           while (head < tail && p[head + 1] <= i)</pre>
28
                head++;
29
            if (head <= tail) {</pre>
30
                if (f[q[head]] + calc(q[head] + 1, i) < f[i]) {
31
                    f[i] = f[q[head]] + calc(q[head] + 1, i);
32
                    g[i] = g[q[head]] + 1;
34
                while (head < tail && p[head + 1] \leftarrow i + 1)
35
                    head++;
36
                if (head <= tail)</pre>
37
                    p[head] = i + 1;
38
40
            f[i] += tmp;
41
            int r = n;
42
43
           while(head <= tail) {</pre>
45
                if (f[q[tail]] + calc(q[tail] + 1, p[tail]) >
                  \hookrightarrow f[i] + calc(i + 1, p[tail])) 
46
                    r = p[tail] - 1;
                    tail--;
47
48
                else if (f[q[tail]] + calc(q[tail] + 1, r) <=
49
                  \hookrightarrow f[i] + calc(i + 1, r)) {
                    if (r < n) {
50
                         q[++tail] = i;
51
                         p[tail] = r + 1;
52
                    }
53
                    break;
                else {
56
                    int L = p[tail], R = r;
57
                    while (L < R) {
58
                         int M = (L + R) / 2;
59
60
                         if (f[q[tail]] + calc(q[tail] + 1, M)
61
                           \hookrightarrow \langle = f[i] + calc(i + 1, M))
                             L = M + 1;
62
                         else
63
```

```
R = M;
64
65
66
                     q[++tail] = i;
67
                     p[tail] = L;
68
69
                     break;
72
            if (head > tail) {
73
                 q[++tail] = i;
74
                 p[tail] = i + 1;
75
76
77
        return g[n];
79
80
```

6.2 例题(待完成)

7. 计算几何

7.1 Delaunay三角剖分 Voronoi图(待完成)

8. Miscellaneous

8.1 O(1)快速乘

如果对速度要求很高并且不能用指令集,可以去看fstqwq的模板.

```
// Long double 快速乘
  // 在两数直接相乘会爆Long Long时才有必要使用
  // 常数比直接Long Long乘法 + 取模大很多, 非必要时不建议使
  long long mul(long long a, long long b, long long p) {
4
      a %= p;
5
      b %= p;
6
      return ((a * b - p * (long long)((long double)a / p * b
       \hookrightarrow + 0.5)) % p + p) % p;
8
  // 指令集快速乘
  // 试机记得测试能不能过编译
  inline long long mul(const long long a, const long long b,
    \hookrightarrow const long long p) {
13
      long long ans;
      __asm__ _volatile__ ("\tmulq %%rbx\n\tdivq %%rcx\n" :
14
       15
      return ans;
16
17
  // int乘法取模,大概比直接做快一倍
18
  inline int mul_mod(int a, int b, int p) {
20
              __volatile__ ("\tmull %%ebx\n\tdivl %%ecx\n" :
21
       \Rightarrow "=d"(ans) : "a"(a), "b"(b), "c"(p));
      return ans;
23
```

8.2 Kahan求和算法(减少浮点数累加的误差)

当然一般来说是用不到的, 累加被卡精度了才有必要考虑.

```
double kahanSum(vector<double> vec) {
    double sum = 0, c = 0;
    for (auto x : vec) {
        double y = x - c;
        double t = sum + y;
        c = (t - sum) - y;
        sum = t;
    }
    return sum;
}
```

8.3 Python Decimal

```
import decimal

decimal.getcontext().prec = 1234 # 有效数字位数

x = decimal.Decimal(2)
x = decimal.Decimal('50.5679') # 不要用float, 因为float本身
→ 就不准确

x = decimal.Decimal('50.5679'). \
quantize(decimal.Decimal('0.00')) # 保留两位小数, 50.57
x = decimal.Decimal('50.5679'). \
quantize(decimal.Decimal('0.00'), decimal.ROUND_HALF_UP)
→ # 四舍五入
# 第二个参数可选如下:
# ROUND_HALF_UP 四舍五入
# ROUND_HALF_DOWN 五舍六入
```

```
15 # ROUND_HALF_EVEN 银行家舍入法,舍入到最近的偶数
  # ROUND_UP 向绝对值大的取整
  # ROUND_DOWN 向绝对值小的取整
18 # ROUND_CEILING 向正无穷取整
19 # ROUND_FLOOR 向负无穷取整
20 # ROUND_05UP (away from zero if last digit after rounding
   → towards zero would have been 0 or 5; otherwise towards
  print('%f', x ) # 这样做只有float的精度
  s = str(x)
23
24
  decimal.is_finate(x) # x是否有穷(NaN也算)
  decimal.is_infinate(x)
  decimal.is_nan(x)
  decimal.is_normal(x) # x是否正常
  decimal.is_signed(x) # 是否为负数
  decimal.fma(a, b, c) # a * b + c, 精度更高
  x.exp(), x.ln(), x.sqrt(), x.log10()
  # 可以转复数, 前提是要import complex
```

8.4 $O(n^2)$ 高精度

```
// 注意如果只需要正数运算的话
  // 可以只抄英文名的运算函数
  // 按需自取
  // 乘法0(n ^ 2), 除法0(10 * n ^ 2)
  const int maxn = 1005;
  struct big_decimal {
9
      int a[maxn];
10
      bool negative;
      big_decimal() {
          memset(a, 0, sizeof(a));
          negative = false;
14
      big_decimal(long long x) {
          memset(a, 0, sizeof(a));
          negative = false;
          if (x < 0) {
              negative = true;
              x = -x;
          while (x) {
              a[++a[0]] = x \% 10;
              x /= 10;
30
      big_decimal(string s) {
          memset(a, 0, sizeof(a));
          negative = false;
          if (s == "")
              return;
          if (s[0] == '-') {
              negative = true;
              s = s.substr(1);
41
42
          a[0] = s.size();
43
          for (int i = 1; i <= a[0]; i++)
44
```

```
a[i] = s[a[0] - i] - '0';
 45
 46
                                                                            114
              while (a[0] \&\& !a[a[0]])
 47
                                                                            115
                 a[0]--;
                                                                             116
 48
                                                                             117
 49
 50
                                                                             118
         void input() {
                                                                             119
 51
             string s;
                                                                            120
 52
              cin >> s;
 53
              *this = s;
                                                                             121
 54
                                                                             122
 55
                                                                             123
 56
         string str() const {
                                                                             124
 57
             if (!a[0])
                                                                            125
 58
                 return "0";
 59
                                                                             126
 60
             string s;
                                                                             127
 61
                                                                             128
             if (negative)
 62
                                                                             129
                 s = "-";
 63
                                                                             130
 64
              for (int i = a[0]; i; i--)
                                                                             131
 65
                 s.push_back('0' + a[i]);
                                                                             132
 66
                                                                             133
 67
             return s;
                                                                             34
 68
                                                                             135
 69
                                                                             136
 70
         operator string () const {
                                                                             137
 71
             return str();
                                                                             138
 72
                                                                             139
 73
                                                                             140
 74
         big_decimal operator - () const {
                                                                             141
 75
             big_decimal o = *this;
                                                                             142
 76
             if (a[0])
                                                                             143
 77
                                                                             144
                  o.negative ^= true;
 78
                                                                             145
 79
                                                                             146
             return o:
 80
                                                                             147
 81
 82
         friend big_decimal abs(const big_decimal &u) {
                                                                             48
 83
             big_decimal o = u;
                                                                             149
 84
                                                                             150
              o.negative = false;
 85
                                                                             151
             return o;
 86
 87
                                                                             152
 88
         big_decimal &operator <<= (int k) {</pre>
                                                                             153
 89
                                                                             154
             a[0] += k;
 90
                                                                            155
 91
              for (int i = a[0]; i > k; i--)
 92
                a[i] = a[i - k];
                                                                            156
 93
                                                                             157
 94
                                                                            158
             for(int i = k; i; i--)
 95
                                                                            159
                 a[i] = 0;
 96
 97
                                                                             160
             return *this;
 98
                                                                             161
 99
                                                                            162
100
                                                                            163
         friend big_decimal operator << (const big_decimal &u,
101
           \hookrightarrow int k) {
                                                                            164
             big decimal o = u;
102
                                                                            165
             return o <<= k;
103
                                                                            166
104
                                                                            167
105
         big_decimal &operator >>= (int k) {
106
              if (a[0] < k)
107
                                                                            168
                 return *this = big_decimal(0);
108
                                                                             169
109
                                                                            170
             a[0] -= k:
110
                                                                            171
              for (int i = 1; i <= a[0]; i++)
111
                                                                            172
                  a[i] = a[i + k];
112
```

```
for (int i = a[0] + 1; i \leftarrow a[0] + k; i++)
        a[i] = 0;
    return *this;
friend big_decimal operator >> (const big_decimal &u,
 \hookrightarrow int k) {
   big_decimal o = u;
    return o >>= k;
friend int cmp(const big_decimal &u, const big_decimal
    if (u.negative || v.negative) {
        if (u.negative && v.negative)
            return -cmp(-u, -v);
        if (u.negative)
            return -1;
        if (v.negative)
            return 1;
    if (u.a[0] != v.a[0])
        return u.a[0] < v.a[0] ? -1 : 1;
    for (int i = u.a[0]; i; i--)
        if (u.a[i] != v.a[i])
            return u.a[i] < v.a[i] ? -1 : 1;
    return 0;
friend bool operator < (const big_decimal &u, const
 → big_decimal &v) {
   return cmp(u, v) == -1;
friend bool operator > (const big_decimal &u, const
 \hookrightarrow big_decimal &v) {
   return cmp(u, v) == 1;
friend bool operator == (const big_decimal &u, const
 \hookrightarrow \texttt{big\_decimal \&v)} \ \{
   return cmp(u, v) == 0;
friend bool operator <= (const big_decimal &u, const</pre>
 \hookrightarrow big_decimal &v) {
   return cmp(u, v) <= 0;
friend bool operator >= (const big_decimal &u, const
 → big_decimal &v) {
   return cmp(u, v) >= 0;
friend big_decimal decimal_plus(const big_decimal &u,
 → const big_decimal &v) { // 保证u, v均为正数的话可以
 → 直接调用
    big_decimal o;
   o.a[0] = max(u.a[0], v.a[0]);
    for (int i = 1; i \leftarrow u.a[0] \mid | i \leftarrow v.a[0]; i++) {
```

```
o.a[i] += u.a[i] + v.a[i];
                                                                     238
173
                                                                                 big_decimal o;
                                                                     239
                 if (o.a[i] >= 10) {
                                                                                 o.a[0] = u.a[0] - v.a[0] + 1;
                                                                     240
                     o.a[i + 1]++;
                                                                     241
176
                     o.a[i] -= 10;
                                                                                 int m = v.a[0];
                                                                     242
                                                                                 v <<= u.a[0] - m;
                 }
                                                                     243
178
                                                                     244
179
                                                                                 for (int i = u.a[0]; i >= m; i--) {
                                                                     245
180
            if (o.a[o.a[0] + 1])
                                                                                     while (u >= v) {
                                                                     246
181
                o.a[0]++;
                                                                                          u = u - v;
                                                                     247
182
                                                                                          o.a[i - m + 1]++;
183
                                                                     248
            return o;
184
                                                                     249
                                                                     250
185
                                                                                     v >>= 1;
186
                                                                     251
        friend big_decimal decimal_minus(const big_decimal &u,
187
                                                                     252
          → const big_decimal &v) { // 保证u, v均为正数的话可以
                                                                    253
          → 直接调用
                                                                                 while (o.a[0] && !o.a[o.a[0]])
                                                                     254
            int k = cmp(u, v);
                                                                                     o.a[0]--;
                                                                     255
                                                                     256
            if (k == -1)
190
                                                                                 return make_pair(o, u);
                                                                     257
                return -decimal_minus(v, u);
                                                                     258
            else if (k == 0)
                                                                     259
                return big_decimal(0);
                                                                             friend big_decimal operator + (const big_decimal &u,
                                                                     260
                                                                               big_decimal o;
                                                                                 if (u.negative | | v.negative) {
                                                                     261
                                                                                      if (u.negative && v.negative)
                                                                     262
            o.a[0] = u.a[0];
197
                                                                                          return -decimal plus(-u, -v);
                                                                     263
198
                                                                     264
            for (int i = 1; i <= u.a[0]; i++) {
199
                                                                                      if (u.negative)
                                                                     265
                o.a[i] += u.a[i] - v.a[i];
200
                                                                                          return v - (-u);
                                                                     266
201
                                                                     267
                 if (o.a[i] < 0) {
202
                                                                     268
                                                                                     if (v.negative)
                    o.a[i] += 10;
203
                                                                                          return u - (-v);
                                                                     269
                     o.a[i + 1]--;
                                                                     270
                                                                     271
                                                                     272
                                                                                 return decimal_plus(u, v);
                                                                     273
            while (o.a[0] && !o.a[o.a[0]])
                o.a[0]--;
                                                                     275
                                                                             friend big_decimal operator - (const big_decimal &u,
210
                                                                               211
            return o;
                                                                                 if (u.negative || v.negative) {
                                                                     276
                                                                                      if (u.negative && v.negative)
213
                                                                                          return -decimal_minus(-u, -v);
                                                                     278
        friend big_decimal decimal_multi(const big_decimal &u,
214
                                                                     279
          if (u.negative)
                                                                     280
215
            big_decimal o;
                                                                     281
                                                                                          return -decimal_plus(-u, v);
216
                                                                     282
            o.a[0] = u.a[0] + v.a[0] - 1;
217
                                                                     283
                                                                                      if (v.negative)
218
                                                                     284
                                                                                          return decimal_plus(u, -v);
            for (int i = 1; i <= u.a[0]; i++)
219
                                                                     285
                 for (int j = 1; j \le v.a[0]; j++)
220
                                                                     286
                     o.a[i + j - 1] += u.a[i] * v.a[j];
221
                                                                                 return decimal_minus(u, v);
                                                                     287
222
                                                                     288
            for (int i = 1; i <= 0.a[0]; i++)
223
                                                                     289
                 if (o.a[i] >= 10) {
224
                                                                             friend big_decimal operator * (const big_decimal &u,
                    o.a[i + 1] += o.a[i] / 10;
225
                                                                               \hookrightarrow const big_decimal &v) {
                     o.a[i] %= 10;
                                                                                 if (u.negative || v.negative) {
226
                                                                     291
                                                                                     big_decimal o = decimal_multi(abs(u), abs(v));
227
228
                                                                     293
            if (o.a[o.a[0] + 1])
229
                                                                                      if (u.negative ^ v.negative)
230
                o.a[0]++;
                                                                                          return -o;
                                                                     295
231
                                                                                     return o;
                                                                     296
232
            return o;
                                                                     297
233
234
                                                                                 return decimal_multi(u, v);
                                                                     299
        friend pair <br/>big decimal, big decimal>
235
                                                                     300
          \hookrightarrow \texttt{decimal\_divide(big\_decimal u, big\_decimal v)} ~\{~//
                                                                     301
          → 整除
                                                                             big_decimal operator * (long long x) const {
            if (v > u)
236
                 return make_pair(big_decimal(0), u);
237
```

```
if (x >= 10)
                return *this * big_decimal(x);
304
            if (negative)
306
                return -(*this * x);
307
            big_decimal o;
            o.a[0] = a[0];
311
            for (int i = 1; i \leftarrow a[0]; i++) {
                o.a[i] += a[i] * x;
                if (o.a[i] >= 10) {
                    o.a[i + 1] += o.a[i] / 10;
                    o.a[i] %= 10;
319
320
            if (o.a[a[0] + 1])
                o.a[0]++;
323
            return o;
        friend pair<big_decimal, big_decimal> decimal_div(const
          if (u.negative | | v.negative) {
329
                pair<big_decimal, big_decimal> o =
                  \hookrightarrow decimal_div(abs(u), abs(v));
331
                if (u.negative ^ v.negative)
332
                    return make_pair(-o.first, -o.second);
333
                return o;
336
337
            return decimal_divide(u, v);
339
        friend big_decimal operator / (const big_decimal &u,
340
          \hookrightarrow const big_decimal &v) { // \nu不能是\theta
            if (u.negative || v.negative) {
341
                big_decimal o = abs(u) / abs(v);
342
343
                if (u.negative ^ v.negative)
344
345
                    return -o;
346
                return o;
348
349
            return decimal_divide(u, v).first;
350
351
        friend big_decimal operator % (const big_decimal &u,
352
          if (u.negative || v.negative) {
353
                big_decimal o = abs(u) % abs(v);
354
355
                if (u.negative ^ v.negative)
356
                    return -o;
357
358
                return o;
360
            return decimal_divide(u, v).second;
361
362
363
   };
```

303

笛卡尔树 8.5

```
int s[maxn], root, lc[maxn], rc[maxn];
  int top = 0;
3
  s[++top] = root = 1;
  for (int i = 2; i <= n; i++) {
      s[top + 1] = 0;
       while (a[i] < a[s[top]]) // 小根笛卡尔树
           top--;
       if (top)
10
11
          rc[s[top]] = i;
       else
12
          root = i;
13
14
15
      lc[i] = s[top + 1];
       s[++top] = i;
16
17
```

GarsiaWachs算法 $(O(n \log n)$ 合并石子)

设序列是 $\{a_i\}$,从左往右,找到一个最小的且满足 $a_{k-1} \leq a_{k+1}$ 的k, 找到后合并 a_k 和 a_{k-1} ,再从当前位置开始向左找最大的j满足 $a_j \geq$ $a_k + a_{k-1}$ (当然是指合并前的), 然后把 $a_k + a_{k-1}$ 插到j的后面就行. 一直重复,直到只剩下一堆石子就可以了.

另外在这个过程中,可以假设 a_{-1} 和 a_n 是正无穷的,可省略边界的判 别. 把 a_0 设为INF, a_{n+1} 设为INF-1, 可实现剩余一堆石子时自动结 束.

常用NTT素数及原根

$p = r \times 2^k + 1$	r	k	最小原根
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
985661441	235	22	3
998244353	119	23	3
1004535809	479	21	3
1005060097*	1917	19	5
2013265921	15	27	31
2281701377	17	27	3
31525197391593473	7	52	3
180143985094819841	5	55	6
1945555039024054273	27	56	5
4179340454199820289	29	57	3

*注: 1005060097有点危险, 在变化长度大于 $524288 = 2^{19}$ 时不可 用.

8.8 xorshift

```
ull k1, k2;
  const int mod = 10000000;
  ull xorShift128Plus() {
      ull k3 = k1, k4 = k2;
       k1 = k4:
       k3 ^= (k3 << 23);
       k2 = k3 ^ k4 ^ (k3 >> 17) ^ (k4 >> 26);
       return k2 + k4;
9
  void gen(ull _k1, ull _k2) {
10
11
       k1 = _k1, k2 = _k2;
       int x = xorShift128Plus() % threshold + 1;
12
       // do sth
13
14
15
16
```

8.9 枚举子集

(注意这是 $t \neq 0$ 的写法, 如果可以等于0需要在循环里手动break)

```
1 for (int t = s; t; (--t) &= s) {
2      // do something
3 }
```

8.10 STL

8.10.1 vector

- vector(int nSize): 创建一个vector, 元素个数为nSize
- vector(int nSize, const T &value): 创建一个vector, 元素个数为nSize, 且值均为value
- vector(begin, end): 复制[begin, end)区间内另一个数组的元素到vector中
- void assign(int n, const T &x): 设置向量中前n个元素的值为x

8.10.2 list

- assign() 给list赋值
- back() 返回最后一个元素
- begin() 返回指向第一个元素的迭代器
- clear() 删除所有元素
- empty() 如果list是空的则返回true
- end() 返回末尾的迭代器
- erase() 删除一个元素
- front()返回第一个元素
- insert() 插入一个元素到list中
- max_size() 返回list能容纳的最大元素数量
- merge() 合并两个list
- pop_back() 删除最后一个元素
- pop_front() 删除第一个元素
- push_back() 在list的末尾添加一个元素
- push_front() 在list的头部添加一个元素
- rbegin()返回指向第一个元素的逆向迭代器
- remove() 从list删除元素
- remove_if() 按指定条件删除元素
- rend() 指向list末尾的逆向迭代器
- resize() 改变list的大小
- reverse() 把list的元素倒转
- size() 返回list中的元素个数
- sort() 给list排序
- splice() 合并两个list
- swap() 交换两个list
- unique() 删除list中重复的元

8.10.3 unordered_set / unordered_map

• unordered_map<int, int, hash>: 自定义哈希函数, 其中hash是一个带重载括号的类.

8.11 Public Based DataStructure(PB_DS)

8.11.1 哈希表

```
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
using namespace __gnu_pbds;

cc_hash_table<string, int> mp1; // 拉链法
gp_hash_table<string, int> mp2; // 查探法(快一些)
```

8.11.2 堆

默认也是大根堆,和std::priority_queue保持一致.

效率参考:

- * 共有五种操作: push、pop、modify、erase、join
- * pairing_heap_tag: push和join为O(1), 其余为均摊 $\Theta(\log n)$
- * binary_heap_tag: 只支持push和pop, 均为均摊Θ(log n)
- * binomial_heap_tag: push为均摊O(1), 其余为 $\Theta(\log n)$
- * rc_binomial_heap_tag: push为O(1), 其余为 $\Theta(\log n)$
- * thin_heap_tag: push为O(1), 不支持join, 其余为 $\Theta(\log n)$; 果只有increase_key, 那么modify为均摊O(1)
- * "不支持"不是不能用,而是用起来很慢。csdn. net/TRiddle 常用操作:
- push(): 向堆中压入一个元素, 返回迭代器
- pop(): 将堆顶元素弹出
- top(): 返回堆顶元素
- size(): 返回元素个数
- empty(): 返回是否非空
- modify(point_iterator, const key): 把迭代器位置的 key 修改 为传入的 key
- erase(point iterator): 把迭代器位置的键值从堆中删除
- join(__gnu_pbds::priority_queue &other): 把 other 合并到 *this, 并把 other 清空

8.11.3 平衡树

注意第五个参数要填tree_order_statistics_node_update才能使用排名操作.

insert(x): 向树中插入一个元素x,返回pair<point_iterator, bool>

- erase(x): 从树中删除一个元素/迭代器x,返回一个 bool 表明是否删除成功
- order_of_key(x): 返回x的排名, 0-based
- find_by_order(x): 返回排名(0-based)所对应元素的迭代器
- lower_bound(x) / upper_bound(x): 返回第一个≥或者>x的元素的迭代器
- join(x): 将x树并入当前树, 前提是两棵树的类型一样, 并且二者 值域不能重叠, x树会被删除
- split(x,b): 分裂成两部分, 小于等于x的属于当前树, 其余的属于b树
- empty(): 返回是否为空
- size(): 返回大小

(注意**平衡树不支持多重值**,如果需要多重值,可以再开一个unordered_map来记录值出现的次数,将x<<32后加上出现的次数后插入. 注意此时应该为long long类型.)

8.12 rope

8.13 其他C++相关

8.13.1 <cmath>

- std::log1p(x): (注意是数字1)返回ln(1+x)的值, x非常接近0时比直接exp精确得多.
- std::hypot(x, y[, z]): 返回平方和的平方根, 或者说到原点的欧几里德距离.

8.13.2 <algorithm>

- std::all_of(begin, end, f): 检查范围内元素调用函数f后是否全返回真. 类似地还有std::any_of和std::none_of.
- std::for_each(begin, end, f): 对范围内所有元素调用一次f. 如果传入的是引用, 也可以用f修改. (例如for_each(a, a + n, [] (int &x){cout << ++x << "\n";}))
- std::for_each_n(begin, n, f): 同上, 只不过范围改成了从begin开始的n个元素.
- std::copy(), std::copy_n(): 用法谁都会,但标准里说如果元素是可平凡复制的(比如int),那么它会避免批量赋值,并且调用std::memmove()之类的快速复制函数.(一句话总结:它跑得快)
- std::rotate(begin, mid, end): 循环移动, 移动后mid位置的元素会跑到first位置. C++11起会返回begin位置的元素移动后的位置.
- std::unique(begin, end): 去重, 返回去重后的end.
- std::partition(begin, end, f): 把f为true的放在前面, false的放在后面,返回值是第二部分的开头,**不保持相对顺序**.如果要保留相对顺序可以用std::stable_partition(),比如写整体二分.
- std::partition_copy(begin, end, begin_t, begin_f, f): 不修改原数组, 把true的扔到begin_t, false的扔到begin_f. 返回值是两部分结尾的迭代器的pair.
- $std::equal_range(begin, end, x):$ 在已经排好序的数组里找到等于x的范围.
- std::minmax(a, b): 返回pair(min(a, b), max(a, b)). 比如tie(1, r) = minmax(1, r).

8.13.3 std::tuple

- std::make_tuple(...): 返回构造好的tuple
- std::get<i>(tup): 返回tuple的第i项
- std::tuple_cat(...): 传入几个tuple, 返回按顺序连起来的tuple
- std::tie(x, y, z, ...): 把传入的变量的左值引用绑起来作为tuple返回, 例如可以std::tie(x, y, z) = std::make_tuple(a, b, c).

8.13.4 < complex >

- complex<double> imaginary = 1i, x = 2 + 3i: 可以这样直接构造复数.
- real/imag(x): 返回实部/虚部.
- conj(x): 返回共轭复数.
- arg(x): 返回辐角.
- norm(x): 返回模的平方. (直接求模用abs(x).)
- polar(len, theta): 用绝对值和辐角构造复数.

8.14 一些游戏

8.14.1 炉石传说

两个随从 (a_i, h_i) 和 (a_j, h_j) 皇城PK,最后只有 $a_i \times h_i$ 较大的一方才有可能活下来,当然也有可能一起死.

8.15 OEIS

如果没有特殊说明,那么以下数列都从第0项开始,除非没有定义也没有好的办法解释第0项的意义.

8.15.1 计数相关

1. 卡特兰数(A000108)

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, ... 性质见"数学"部分.

2. (大)施罗德数(A006318)

 $1,\ 2,\ 6,\ 22,\ 90,\ 394,\ 1806,\ 8558,\ 41586,\ 206098,\ 1037718,\ 5293446,\ 27297738,\ 142078746,\ 745387038,\ \dots\ (0-based)$ 性质同样见"数学"部分,和卡特兰数放在一起。

3. 小施罗德数(A001003)

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373, 372693519, ... (0-based) 性质位置同上.

小施罗德数除了第0项以外都是施罗德数的一半.

4. 默慈金数(Motzkin numbers, A001006)

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, 2356779, ... (0-based) 性质位置同上.

5. 将点按顺序排成一圈后不自交的树的个数(A001764)

$$a_n = \frac{\binom{3n}{n}}{2n+1}$$

也就是说, 在圆上按顺序排列的n个点之间连n-1条不相交(除端点外)的弦, 组成一棵树的方案数.

也等于每次只能向右或向上,并且不能高于y = 2x这条直线,从(0,0)走到(n,2n)的方案数.

扩展: 如果改成不能高于y=kx这条直线, 走到(n,kn)的方案数, 那么答案就是 $\frac{\binom{(k+1)n}{n}}{kn+1}$.

6. n个点的圆上画不相交的弦的方案数(A054726)

 $\begin{array}{c} 1,\ 1,\ 2,\ 8,\ 48,\ 352,\ 2880,\ 25216,\ 231168,\ 2190848,\ 21292032,\\ 211044352,\ 2125246464,\ 21681954816,\ \dots\ (0\text{-}\mathrm{based}) \end{array}$

 $a_n = 2^n s_{n-2} \ (n > 2), s_n$ 是上面的小施罗德数.

和上面的区别在于, 这里可以不连满n-1条边. 另外默慈金数画的弦不能共享端点, 但是这里可以.

7. Wedderburn-Etherington numbers(A001190)

0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, ... (0-based)

每个结点都有0或者2个儿子,且总共有n个叶子结点的二叉树方案数. (无标号)

同时也是n-1个结点的无标号二叉树个数.

$$A(x) = x + \frac{A(x)^2 + A(x^2)}{2} = 1 - \sqrt{1 - 2x - A(x^2)}$$

8. 划分数(A00041)

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, … (0-based)

9. 贝尔数(A000110)

10. 错位排列数(A0000166)

1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 32071101049, ... (0-based)

11. 交替阶乘(A005165)

0, 1, 1, 5, 19, 101, 619, 4421, 35899, 326981, 3301819, 36614981, 442386619, 5784634181, 81393657019, ...

$$n! - (n-1)! + (n-2)! - \dots 1! = \sum_{i=0}^{n-1} (-1)^i (n-i)!.$$

$$a_0 = 0, \ a_n = n! - a_{n-1}.$$

8.15.2 线性递推数列

1. Lucas数(A000032)

 $2,\ 1,\ 3,\ 4,\ 7,\ 11,\ 18,\ 29,\ 47,\ 76,\ 123,\ 199,\ 322,\ 521,\ 843,\ 1364,\ 2207,\ 3571,\ 5778,\ 9349,\ 15127,\ \dots$

2. 斐波那契数(A000045)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...

3. 泰波那契数(Tribonacci, A000071)

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, ...

 $a_0 = a_1 = 0$, $a_2 = 1$, $a_n = a_{n-1} + a_{n-2} + a_{n-3}$.

4. Pell数(A0000129)

 $0,\ 1,\ 2,\ 5,\ 12,\ 29,\ 70,\ 169,\ 408,\ 985,\ 2378,\ 5741,\ 13860,\ 33461,\ 80782,\ 195025,\ 470832,\ 1136689,\ \dots$

$a_0 = 0, \ a_1 = 1, \ a_n = 2a_{n-1} + a_{n-2}.$

5. 帕多万(Padovan)数(A0000931)

 $\begin{array}{c} 1,\,0,\,0,\,1,\,0,\,1,\,1,\,1,\,2,\,2,\,3,\,4,\,5,\,7,\,9,\,12,\,16,\,21,\,28,\,37,\,49,\,65,\\ 86,\,\,114,\,\,151,\,\,200,\,\,265,\,\,351,\,\,465,\,\,616,\,\,816,\,\,1081,\,\,1432,\,\,1897,\\ 2513,\,\,3329,\,\,4410,\,\,5842,\,\,7739,\,\,10252,\,\,13581,\,\,17991,\,\,23833,\\ 31572,\,\,\ldots\end{array}$

 $a_0 = 1$, $a_1 = a_2 = 0$, $a_n = a_{n-2} + a_{n-3}$.

6. Jacobsthal numbers (A001045)

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, ...

 $a_0 = 0, \ a_1 = 1. \ a_n = a_{n-1} + 2a_{n-2}$ 同时也是最接近 $\frac{2^n}{3}$ 的整数.

7. 佩林数(A001608)

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, ...

 $a_0 = 3$, $a_1 = 0$, $a_2 = 2$, $a_n = a_{n-2} + a_{n-3}$

8.15.3 数论相关

1. Carmichael数, 伪质数(A002997)

 $\begin{array}{c} 561,\ 1105,\ 1729,\ 2465,\ 2821,\ 6601,\ 8911,\ 10585,\ 15841,\ 29341,\\ 41041,\ 46657,\ 52633,\ 62745,\ 63973,\ 75361,\ 101101,\ 115921,\\ 126217,\ 162401,\ 172081,\ 188461,\ 252601,\ 278545,\ 294409,\\ 314821,\ 334153,\ 340561,\ 399001,\ 410041,\ 449065,\ 488881,\\ 512461,\ \ldots\end{array}$

满足 \forall 与n互质的a, 都有 $a^{(n-1)} = 1 \pmod{n}$ 的所有**合数**n被称为Carmichael数.

Carmichael数在 10^8 以内只有255个.

2. 反质数(A002182)

 $\begin{array}{c} 1,\,2,\,4,\,6,\,12,\,24,\,36,\,48,\,60,\,120,\,180,\,240,\,360,\,720,\,840,\,1260,\\ 1680,\,\,2520,\,\,5040,\,\,7560,\,\,10080,\,\,15120,\,\,20160,\,\,25200,\,\,27720,\\ 45360,\,\,50400,\,\,55440,\,\,83160,\,\,110880,\,\,166320,\,\,221760,\,\,277200,\\ 332640,\,\,498960,\,\,554400,\,\,665280,\,\,720720,\,\,1081080,\,\,1441440,\\ 2162160,\,\,\ldots\end{array}$

比所有更小的数的约数数量都更多的数.

3. 前n个质数的乘积(A002110)

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, ...

4. 梅森质数(A000668)

170141183460469231731687303715884105727

p是质数,同时 $2^p - 1$ 也是质数.

8.15.4 其他

1. 伯努利数(A027641)

见"数学/常见数列"部分.

2. 四个柱子的汉诺塔(A007664)

0, 1, 3, 5, 9, 13, 17, 25, 33, 41, 49, 65, 81, 97, 113, 129, 161, 193, 225, 257, 289, 321, 385, 449, ...

差分之后可以发现其实就是1次+1, 2次+2, 3次+4, 4次+8...的规律

3. 乌拉姆数(Ulam numbers, A002858)

 $\begin{array}{c} 1,\ 2,\ 3,\ 4,\ 6,\ 8,\ 11,\ 13,\ 16,\ 18,\ 26,\ 28,\ 36,\ 38,\ 47,\ 48,\ 53,\ 57,\\ 62,\ 69,\ 72,\ 77,\ 82,\ 87,\ 97,\ 99,\ 102,\ 106,\ 114,\ 126,\ 131,\ 138,\\ 145,\ 148,\ 155,\ 175,\ 177,\ 180,\ 182,\ 189,\ 197,\ 206,\ 209,\ 219,\ 221,\\ 236,\ 238,\ 241,\ 243,\ 253,\ 258,\ 260,\ 273,\ 282,\ 309,\ 316,\ 319,\ 324,\\ 339\ \dots\end{array}$

 $a_1 = 1$, $a_2 = 2$, a_n 表示在所有> a_{n-1} 的数中,最小的,能被表示成(前面的两个不同的元素的和)的数.

8.16 编译选项

- -02 -g -std=c++14: 狗都知道
- -Wall -Wextra -Wshadow -Wconversion: 更多警告
 - -Werror: 强制将所有Warning变成Error
- -fsanitize=(address/undefined): 检查有符号整数溢出($\mathrm{\hat{g}ub}$)/数组越界
 - 注意无符号类型溢出不算ub.
- -fno-ms-extensions: 关闭一些和msvc保持一致的特性, 例如, 不标返回值类型的函数会报CE而不是默认为int.
 - 但是不写return的话它还是管不了.

8.17 注意事项

8.17.1 常见下毒手法

- 0/1base是不是搞混了
- 高精度高低位搞反了吗
- 线性筛抄对了吗
- 快速乘抄对了吗
- i <= n, j <= m
- sort比较函数是不是比了个寂寞
- 该取模的地方都取模了吗
- 边界情况(+1-1之类的)有没有想清楚
- 特判是否有必要,确定写对了吗

8.17.2 场外相关

- 安顿好之后查一下附近的咖啡店,打印店,便利店之类的位置,以备不时之需
- 热身赛记得检查一下编译注意事项中的代码能否过编译,还有熟悉比赛场地,清楚洗手间在哪儿,测试打印机(如果可以)
- 比赛前至少要翻一遍板子,尤其要看原理与例题
- 比赛前一两天不要摸鱼,要早睡,有条件最好洗个澡;比赛当天不要起太晚,维持好的状态
- 赛前记得买咖啡,最好直接安排三人份,记得要咖啡因比较足的;如果主办方允许,就带些巧克力之类的高热量零食
- 入场之后记得检查机器,尤其要逐个检查键盘按键有没有坏的;如果可以的话,调一下gedit设置
- 开赛之前调整好心态,比赛而已,不必心急.

8.17.3 做题策略与心态调节

- 拿到题后立刻按照商量好的顺序读题, 前半小时最好跳过题意太复杂的题(除非被过穿了)
- 签到题写完不要激动,稍微检查一下最可能的下毒点再交,避免无谓的罚时
 - 一两行的那种傻逼题就算了
- 读完题及时输出题意,一方面避免重复读题,一方面也可以让队友有一个初步印象,方便之后决定开题顺序
- 如果不能确定题意就不要贸然输出甚至上机,尤其是签到题,因为 样例一般都很弱
- 一个题如果卡了很久又有其他题可以写,那不妨先放掉写更容易的题,不要在一棵树上吊死

不要被一两道题搞得心态爆炸,一方面急也没有意义,一方面你 很可能真的离AC就差一步

- 榜是不会骗人的,一个题如果被不少人过了就说明这个题很可能并没有那么难;如果不是有十足的把握就不要轻易开没什么人交的题;另外不要忘记最后一小时会封榜
- 想不出题/找不出毒自然容易犯困,一定不要放任自己昏昏欲睡,最好去洗手间冷静一下,没有条件就站起来踱步
- 思考的时候不要挂机,一定要在草稿纸上画一画,最好说出声来最不容易断掉思路
- 出完算法一定要check一下样例和一些trivial的情况,不然容易写了半天发现写了个假算法
- 上机前有时间就提前给需要思考怎么写的地方打草稿, 不要浪费机时
- 查毒时如果最难的地方反复check也没有问题, 就从头到脚仔仔细细查一遍, 不要放过任何细节, 即使是并查集和sort这种东西也不能想当然
- 后半场如果时间不充裕就不要冒险开难题,除非真的无事可做如果是没写过的东西也不要轻举妄动,在有其他好写的题的时候就等一会再说
- 大多数时候都要听队长安排,虽然不一定最正确但可以保持组织性
- 任何时候都不要着急,着急不能解决问题,不要当詰国王
- 输了游戏,还有人生;赢了游戏,还有人生.

8.18 附录: vscode相关

8.18.1 插件

- Chinese (Simplified) (简体中文语言包)
- C/C++
- C++ Intellisense (前提是让用)
- Better C++ Syntax
- Python
- Pylance (前提是让用)
- Rainbow Brackets (前提是让用)

8.18.2 设置选项

- Editor: Insert Spaces (取消勾选, 改为tab缩进)
- Editor: Line Warp (开启折行)
- 改配色, "深色+: 默认深色"
- 自动保存(F1 → "auto")

8.18.3 快捷键

- F1 / Ctrl+Shift+P: 万能键, 打开命令面板
- F8: 下一个Error Shift+F8: 上一个Error
- Ctrl+\: 水平分栏, 最多3栏
- Ctrl+1/2/3: 切到对应栏
- Ctrl+[/]: 当前行向左/右缩进
- Alt+F12: 查看定义的缩略图(显示小窗, 不跳过去)
- Ctrl+H: 查找替换
- Ctrl+D: 下一个匹配的也被选中(用于配合Ctrl+F)
- Ctrl+U: 回退上一个光标操作(防止光标飞了找不回去)
- Ctrl+/: 切换行注释
- Ctrl+'(键盘左上角的倒引号): 显示终端

8.19 附录: 骂人的艺术 ──梁实秋

古今中外没有一个不骂人的人. 骂人就是有道德观念的意思, 因为在骂人的时候, 至少在骂人者自己总觉得那人有该骂的地方. 何者该骂, 何者不该骂, 这个抉择的标准, 是极道德的. 所以根本不骂人, 大可不必. 骂人是一种发泄感情的方法, 尤其是那一种怨怒的感情. 想骂人的时候而不骂, 时常在身体上弄出毛病, 所以想骂人时, 骂骂何妨? 但是, 骂人是一种高深的学问, 不是人人都可以随便试的. 有因为骂人挨嘴巴的, 有因为骂人吃官司的, 有因为骂人反被人骂的, 这都是不会骂人的原故. 今以研究所得, 公诸同好, 或可为骂人时之一助乎?

1. 知己知彼

骂人是和动手打架一样的,你如其敢打人一拳,你先要自己忖度下,你吃得起别人的一拳否.这叫做知己知彼.骂人也是一样.譬如你骂他是"屈死",你先要反省,自己和"屈死"有无分别.你骂别人荒唐,你自己想想曾否吃喝嫖赌.否则别人回敬你一二句,你就受不了.所以别人有着某种短处,而足下也正有同病,那么你在骂他的时候只得割爱.

2. 无骂不如己者

要骂人须要挑比你大一点的人物,比你漂亮一点的或者比你坏得万倍而比你得势的人物,总之,你要骂人,那人无论在好的一方面或坏的一方面都要能胜过你,你才不吃亏.你骂大人物,就怕他不理你,他一回骂,你就算骂着了.因为身份相同的人才肯对骂.在坏的一方面胜过你的,你骂他就如教训一般,他既便回骂,一般人仍不会理会他的.假如你骂一个无关痛痒的人,你越骂他他越得意,时常可以把一个无名小卒骂出名了,你看冤与不冤?

3. 适可而止

骂大人物骂到他回骂的时候,便不可再骂 再骂则一般人对你必无同情,以为你是无理取闹. 骂小人物骂到他不能回骂的时候,便不可再骂 再骂下去则一般人对你也必无同情,以为你是欺负弱者.

4. 旁敲侧击

他偷东西, 你骂他是贼 他抢东西, 你骂他是盗, 这是笨伯. 骂人必须 先明虚实掩映之法, 须要烘托旁衬, 旁敲侧击, 于要紧处只一语便得, 所谓杀人于咽喉处着刀. 越要骂他你越要原谅他, 即便说些恭维话亦 不为过, 这样的骂法才能显得你所骂的句句是真实确凿, 让旁人看起 来也可见得你的度量.

5. 态度镇定

骂人最忌浮躁.一语不合,面红筋跳,暴躁如雷,此灌夫骂座,泼妇骂街之术,不足以言骂人.善骂者必须态度镇静,行若无事.普通一般骂人,谁的声音高便算谁占理,谁的来势猛便算谁骂赢,惟真善骂人者,乃能避其锋而击其懈.你等他骂得疲倦的时候,你只消轻轻的回敬他一句,让他再狂吼一阵.在他暴躁不堪的时候,你不妨对他冷笑几声,包管你不费力气,把他气得死去活来,骂得他针针见血.

6. 出言典雅

骂人要骂得微妙含蓄,你骂他一句要使他不甚觉得是骂,等到想过一遍才慢慢觉悟这句话不是好话,让他笑着的面孔由白而红,由红而紫,由紫而灰,这才是骂人的上乘. 欲达到此种目的,深刻之用意固不可少,而典雅之言词则尤为重要. 言词典雅可使听者不致刺耳. 如要骂人骂得典雅,则首先要在骂时万万别提起女人身上的某一部分,万万不要涉及生理学范围. 骂人一骂到生理学范围以内,底下再有什么话都不好说了. 譬如你骂某甲,千万别提起他的令堂令妹. 因为那样一来,便无是非可言,并且你自己也不免有令堂令妹,他若回敬起来,岂非势均力敌,半斤八两? 再者骂人的时候,最好不要加人以种种难堪的名词,称呼起来总要客气,即使他是极卑鄙的小人,你也不妨称他先生,越客气,越骂得有力量. 骂得时节最好引用他自己的词句,这不但可以使他难堪,还可以减轻他对你骂的力量. 俗话少用,因为俗话一览无遗,不若典雅古文曲折含蓄.

7. 以退为进

两人对骂,而自己亦有理屈之处,则处于开骂伊始,特宜注意,最好是毅然将自己理屈之处完全承认下来,即使道歉认错均不妨事. 先把自己理屈之处轻轻遮掩过去,然后你再重整旗鼓,着着逼人,方可无

后顾之忧.即使自己没有理屈的地方,也绝不可自行夸张,务必要谦逊不遑,把自己的位置降到一个不可再降的位置,然后骂起人来,自有一种公正光明的态度.否则你骂他一两句,他便以你个人的事反唇相讥,一场对骂,会变成两人私下口角,是非曲直,无从判断.所以骂人者自己要低声下气,此所谓以退为进.

8. 预设埋伏

你把这句话骂过去,你便要想想看,他将用什么话骂回来.有眼光的骂人者,便处处留神,或是先将他要骂你的话替他说出来,或是预先安设埋伏,令他骂回来的话失去效力.他骂你的话,你替他说出来,这便等于缴了他的械一般.预设埋伏,便是在要攻击你的地方,你先轻轻的安下话根,然后他骂过来就等于枪弹打在沙包上,不能中伤.

9. 小题大做

如对方有该骂之处, 而题目身小, 不值一骂, 或你所知不多, 不足一骂, 那时节你便可用小题大做的方法, 来扩大题目. 先用诚恳而怀疑的态度引申对方的意思, 由不紧要之点引到大题目上去, 处处用严谨的逻辑逼他说出不逻辑的话来, 或是逼他说出合于逻辑但不合乎理的话来, 然后你再大举骂他, 骂到体无完肤为止, 而原来惹动你的小题目, 轻轻一提便了.

10. 远交近攻

一个时候,只能骂一个人,或一种人,或一派人.决不宜多树敌.所以骂人的时候,万勿连累旁人,即使必须牵涉多人,你也要表示好意,否则回骂之声纷至沓来,使你无从应付.

骂人的艺术,一时所能想起来的有上面十条,信手拈来,并无条理.我做此文的用意,是助人骂人.同时也是想把骂人的技术揭破一点,供爱骂人者参考.挨骂的人看看,骂人的心理原来是这样的,也算是揭破一张黑幕给你瞧瞧!

8.20 附录: Cheat Sheet

见最后几页.

	Theoretical	Computer Science Cheat Sheet	
Definitions		Series	
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$	
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	$ \begin{array}{ccc} $	
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$	
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{k=1}^{n} i^{m} = \frac{1}{m+1} \sum_{k=1}^{m} {m+1 \choose k} B_{k} n^{m+1-k}.$	
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	i=1 $k=0$ Geometric series:	
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$	
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$	
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$	
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	i=1 $i=1$	
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$	
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,	
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $	
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$	
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,	
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,	
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)^n$	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$	
		${n \choose n-1} = {n \choose n-1} = {n \choose 2}, 20. \sum_{k=0}^n {n \brack k} = n!, 21. \ C_n = \frac{1}{n+1} {2n \choose n},$	
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle$	$\begin{pmatrix} n \\ -1 \end{pmatrix} = 1,$ 23. $\begin{pmatrix} n \\ k \end{pmatrix} = \langle$	$\binom{n}{n-1-k}$, $24. \ \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,	
$25. \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0 \text{ otherwise}} \right. 26. \left\langle {n \atop 1} \right\rangle = 2^n - n - 1, \qquad 27. \left\langle {n \atop 2} \right\rangle = 3^n - (n+1)2^n + {n+1 \choose 2},$			
28. $x^n = \sum_{k=0}^n \binom{n}{k} \binom{x+k}{n}$, 29. $\binom{n}{m} = \sum_{k=0}^m \binom{n+1}{k} (m+1-k)^n (-1)^k$, 30. $m! \binom{n}{m} = \sum_{k=0}^n \binom{n}{k} \binom{k}{n-m}$,			
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n} \left\langle {n \atop m} \right\rangle = \sum_{k=0}^$	$ \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!, $	32. $\left\langle \left\langle {n\atop 0}\right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle {n\atop n}\right\rangle \right\rangle = 0$ for $n \neq 0,$	
34. $\left\langle \!\! \left\langle \!\! \right\rangle \!\! \right\rangle = (k + 1)^n$	-1) $\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle + (2n-1-k)\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle$	$ \begin{array}{c c} -1 \\ -1 \\ \end{array} $ 35. $ \sum_{k=0}^{n} \left\langle \!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\! \right\rangle = \frac{(2n)^n}{2^n}, $	
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{\infty}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$	

$$\mathbf{38.} \begin{bmatrix} n+1\\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n\\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k\\ m \end{bmatrix} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k\\ m \end{bmatrix}, \qquad \mathbf{39.} \begin{bmatrix} x\\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\!\! \begin{pmatrix} n\\ k \end{pmatrix} \!\!\! \right\rangle \binom{x+k}{2n},$$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

44.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$$

$$\mathbf{46.} \ \left\{ \begin{array}{l} n \\ n-m \end{array} \right\} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad \mathbf{47.} \ \left[\begin{array}{l} n \\ n-m \end{array} \right] = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k},$$
 49.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{\infty} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0} g_{i+1} x^i = \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$$

We choose $G(x) = \sum_{i>0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

	Theoretical Computer Science Cheat Sheet				
	$\pi \approx 3.14159,$	$e \approx 2.7$	$\gamma 1828, \qquad \gamma \approx 0.57721,$	$\phi = \frac{1+\sqrt{5}}{2} \approx 1.61803,$	$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$
i	2^i	p_i	General		Probability
1	2	2	Bernoulli Numbers ($B_i =$	$= 0, \text{ odd } i \neq 1)$: Continu	ious distributions: If
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 =$	$=\frac{1}{6}, B_4=-\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}$	$B_{10} = \frac{1}{66}$.	Ja
4	16	7	Change of base, quadrati	c formula: then p is X . If	s the probability density fund
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b}{a}$	$b \pm \sqrt{b^2 - 4ac}$	$\Pr[X < a] = P(a),$
6	64	13	108a 0	$\frac{}{2a}$. then P	is the distribution function of
7	128	17	Euler's number e:	P and p	both exist then
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$	120	$P(a) = \int_{-\infty}^{a} p(x) dx.$
9	512	23	$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$	$e^x = e^x$.	$I(u) = \int_{-\infty} p(x) dx.$
10	1,024	29	$(1+\frac{1}{n})^n < e < (1)$	Expects	ation: If X is discrete
11	2,048	31	(167	" / F	$\mathbb{E}[g(X)] = \sum g(x) \Pr[X = x]$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{1}{24}$	$\frac{1e}{\ln^2} - O\left(\frac{1}{n^3}\right)$. If $X \in \mathbb{R}$	ntinuous then
13	8,192	41	Harmonic numbers:	11 11 001	
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{36}{14}$	$\frac{3}{9}, \frac{761}{999}, \frac{7129}{9799}, \dots$ $E[g(X)]$	$ =\int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x)$
15	32,768	47	-7 27 67 127 60 7 207 14	Varianc	e, standard deviation:
16	65,536	53	$\ln n < H_n < \ln$	n+1,	$VAR[X] = E[X^2] - E[X]^2,$
17	131,072	59	$H_n = \ln n + \gamma +$	$O(\frac{1}{2})$	$\sigma = \sqrt{\text{VAR}[X]}.$
18	262,144	61		For ever	A and B :
19	524,288	67	Factorial, Stirling's appro	eximation: $\Pr[A \setminus A]$	$\forall B] = \Pr[A] + \Pr[B] - \Pr[A]$
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 4	$\Pr[A]$	$\wedge B] = \Pr[A] \cdot \Pr[B],$
21	2,097,152	73	$ (n)^n$	(1))	iff A and B are independent
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1\right)^n$	$+\Theta\left(\frac{1}{n}\right)$.	$A B] = \frac{\Pr[A \land B]}{\Pr[B]}$
23	8,388,608	83	Ackermann's function an	d inverse:	11[2]
24	16,777,216	89	$\int 2^j$	i=1 For range $i=1$	dom variables X and Y :
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j \\ a(i-1,2) \\ a(i-1,a(i,j)) \end{cases}$	j=1	$[Y \cdot Y] = E[X] \cdot E[Y],$ if X and Y are independent
26	67,108,864	101		[77	[X] and $[Y]$ are independently $[X] + [Y] = E[X] + E[Y],$
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j)\}$	— ·)	[cX] = E[X] + E[Y], [cX] = cE[X].
28	268,435,456	107	Binomial distribution:	Darrag', 4	$c[cA] = c_{E[A]}.$ theorem:
29	536,870,912	109	$\Pr[X = k] = \binom{n}{k} p^k q^{n-k}$:	
30	1,073,741,824	113		11[$A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}$
31	2,147,483,648	127	$E[X] = \sum_{i=1}^{n} k \binom{n}{k} p^{k}$	$k^k q^{n-k} = np.$ Inclusio	on-exclusion:
32	4,294,967,296	131	k=1		n.
	Pascal's Triangl	e	Poisson distribution: $e^{-\lambda \lambda k}$	$ \Pr \bigcup_{i=1}^{r} V_i $	$\left[X_i \right] = \sum_{i=1}^{\infty} \Pr[X_i] +$
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!},$	$E[X] = \lambda.$	
	1 1		Normal (Gaussian) distri		$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} \right]$
	1 2 1		$p(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2}$		
	1 2 2 1		$P(x) = \frac{1}{\sqrt{2}} \epsilon$	$, \mathbf{E}[\mathbf{x}] - \mu. \text{Momen}$	t inequalities:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \quad E[X] = \mu.$$

The "coupon collector": We are given a random coupon each day, and there are ndifferent types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is

 nH_n .

$$\Pr[a < X < b] = \int_a^b p(x) \, dx,$$

ility density function of

$$\Pr[X < a] = P(a),$$

ution function of X. If hen

$$P(a) = \int_{-\infty}^{a} p(x) \, dx.$$

$$\mathbb{E}[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

$$\mathrm{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x)\,dx = \int_{-\infty}^{\infty} g(x)\,dP(x).$$

$$VAR[X] = E[X^{2}] - E[X]^{2},$$

$$\sigma = \sqrt{VAR[X]}.$$

$$\begin{split} \Pr[A \vee B] &= \Pr[A] + \Pr[B] - \Pr[A \wedge B] \\ \Pr[A \wedge B] &= \Pr[A] \cdot \Pr[B], \end{split}$$

 ${\cal B}$ are independent.

$$\Pr[A|B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$E[X \cdot Y] = E[X] \cdot E[Y],$$

Y are independent.

$$E[X+Y] = E[X] + E[Y],$$

$$E[cX] = c E[X].$$

$$\Pr[A_i|B] = \frac{\Pr[B|A_i]\Pr[A_i]}{\sum_{i=1}^{n} \Pr[A_i]\Pr[B|A_i]}.$$

$$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$$

$$\sum_{k=2}^n (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr \Big[\bigwedge_{j=1}^k X_{i_j} \Big].$$

$$\Pr\left[|X| \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$$

$$\Pr\left[\left|X - \mathrm{E}[X]\right| \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$$

Geometric distribution:
$$\Pr[X=k] = pq^{k-1}, \qquad q=1-p,$$

$$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$$

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$.

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{\pi}{2} - \cot x,$$

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y.$

 $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

$$\cos 2x = \cos^2 x - \sin^2 x,$$
 $\cos 2x = 2\cos^2 x - 1,$
 $\cos 2x = 1 - 2\sin^2 x,$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}.$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}, \qquad \cot 2x = \frac{\cot^2 x - 1}{2\cot x},$$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 © 1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

Matrices

Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants: $\det A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$= \frac{aei + bfg + cdh}{-ceq - fha - ibd}.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \mathrm{sech}^2 x = 1,$$

$$\coth^2 x - \mathrm{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh 2x = 2\sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

$\sin \theta$	$\cos \theta$	$\tan \theta$
0	1	0
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
		$\sqrt{3}$
1	0	∞
	0	$ \begin{array}{ccc} 0 & 1 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array} $

... in mathematics you don't understand things, you just get used to them.

– J. von Neumann

More Trig.

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area:

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}.$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

more identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{1 + \cos x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

 $\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$

 $\sin x = \frac{\sinh ix}{i}$

 $\cos x = \cosh ix,$

 $\tan x = \frac{\tanh ix}{i}.$

Theoretical Computer Science Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There ex-Definitions: ists a number C such that: Loop An edge connecting a vertex to itself. $C \equiv r_1 \mod m_1$ DirectedEach edge has a direction. SimpleGraph with no loops or : : : multi-edges. $C \equiv r_n \bmod m_n$ WalkA sequence $v_0e_1v_1\dots e_\ell v_\ell$. if m_i and m_j are relatively prime for $i \neq j$. TrailA walk with distinct edges. Path trail with distinct Euler's function: $\phi(x)$ is the number of vertices. positive integers less than x relatively ConnectedA graph where there exists prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime faca path between any two torization of x then vertices. $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ ComponentΑ $_{ m maximal}$ connected subgraph. Euler's theorem: If a and b are relatively TreeA connected acyclic graph. prime then Free tree A tree with no root. $1 \equiv a^{\phi(b)} \bmod b$. DAGDirected acyclic graph. Eulerian Graph with a trail visiting Fermat's theorem: each edge exactly once. $1 \equiv a^{p-1} \bmod p$. Hamiltonian Graph with a cycle visiting The Euclidean algorithm: if a > b are ineach vertex exactly once. tegers then CutA set of edges whose re $gcd(a, b) = gcd(a \mod b, b).$ moval increases the number of components. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x Cut-setA minimal cut. $Cut\ edge$ A size 1 cut. $S(x) = \sum_{d|n} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ k-Connected A graph connected with the removal of any k-1Perfect Numbers: x is an even perfect numk-Tough $\forall S \subseteq V, S \neq \emptyset$ we have ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. $k \cdot c(G - S) \le |S|.$ Wilson's theorem: n is a prime iff k-Regular A graph where all vertices $(n-1)! \equiv -1 \mod n$. have degree k. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$ Möbius inversion: k-regular k-Factor Α spanning subgraph. Matching A set of edges, no two of which are adjacent. CliqueA set of vertices, all of If which are adjacent. $G(a) = \sum_{d|a} F(d),$ A set of vertices, none of Ind. set which are adjacent. then Vertex cover A set of vertices which $F(a) = \sum_{u} \mu(d) G\left(\frac{a}{d}\right).$ cover all edges. Planar graph A graph which can be embeded in the plane. Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$ Plane graph An embedding of a planar $+O\left(\frac{n}{\ln n}\right),$ $\sum_{v \in V} \deg(v) = 2m.$ $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$ If G is planar then n-m+f=2, so $f \le 2n - 4, \quad m \le 3n - 6.$

 $+O\left(\frac{n}{(\ln n)^4}\right).$

Notatio	n:
E(G)	Edge set
V(G)	Vertex set
c(G)	Number of components
G[S]	Induced subgraph
deg(v)	Degree of v
$\Delta(G)$	Maximum degree
$\delta(G)$	Minimum degree
$\chi(G)$	Chromatic number
$\chi_E(G)$	Edge chromatic number
G^c	Complement graph
K_n	Complete graph
K_{n_1, n_2}	Complete bipartite graph
$\mathrm{r}(k,\ell)$	Ramsey number
	Geometry

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$ Cartesian Projective

Cartesian	1 To jective
(x,y)	(x, y, 1)
y = mx + b	(m,-1,b)
x = c	(1, 0, -c)
D	

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$(x_2, y_2)$$

$$(0, 0) \qquad \ell_1 \qquad (x_1, y_1)$$

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$$

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Any planar graph has a vertex with de-

gree ≤ 5 .

Wallis' identity:
$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)}$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1} \frac{du}{dx},$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \mathbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \quad \mathbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

Calculus

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1 + u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx},$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

29.
$$\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

1.
$$\int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
, $n \neq -1$, **4.** $\int \frac{1}{x}dx = \ln x$, **5.** $\int e^x dx = e^x$,

$$4. \int \frac{1}{x} dx = \ln x,$$

$$\mathbf{5.} \int e^x \, dx = e^x,$$

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

$$\mathbf{13.} \int \csc x \, dx = \ln|\csc x + \cot x|.$$

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad$$
27. $\int \sinh x \, dx = \cosh x, \quad$ **28.** $\int \cosh x \, dx = \sinh x,$

29.
$$\int \tanh x \, dx = \ln|\cosh x|, \ \mathbf{30.} \ \int \coth x \, dx = \ln|\sinh x|, \ \mathbf{31.} \ \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \mathbf{32.} \ \int \operatorname{csch} x \, dx = \ln|\tanh \frac{x}{2}|,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34. $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$ **35.** $\int \operatorname{sech}^2 x \, dx = \tanh x,$

$$\mathbf{35.} \int \operatorname{sech}^2 x \, dx = \tanh x$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

38.
$$\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ **45.** $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} \, dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2}$$

72.
$$\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$\mathbf{E} f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \mathbf{E}\,v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v)\,\delta x = \sum u\,\delta x + \sum v\,\delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{n+1}}, \qquad \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$=1/(x+1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$= 1/(x-1)^{-n},$$

$$x^{n} = \sum_{k=1}^{n} {n \choose k} x^{\underline{k}} = \sum_{k=1}^{n} {n \choose k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{9}x^5 - \frac{1}{17}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{10}x^3 + \frac{25}{21}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power serie

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^i,$$

$$A(x) + A(-x) = \sum_{i=0}^{\infty} a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1 - x} A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker

Escher's Knot

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^i,$$

$$x^{\overline{n}} = \sum_{i=0}^{\infty} \begin{bmatrix} n \\ i \end{bmatrix} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^i}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)!}$$

$$\tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x},$$

$$\frac{1}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\mu(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{\phi(i)}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac$$

$$(e^{x} + i)x^{i}, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i},$$

$$(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i}B_{2i}x^{2i}}{(2i)!},$$

$$-\frac{1}{2}B_{2i}x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$

 $= \sum_{i=0}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be A with column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}$$
.

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

William Blake (The Marriage of Heaven and Hell)

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i$$
.

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$
 Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$