Karnaugh Maps

- Applications of Boolean logic to circuit design
 - The basic Boolean operations are AND, OR and NOT
 - These operations can be combined to form complex expressions, which can also be directly translated into a hardware circuit
 - Boolean algebra helps us simplify expressions and circuits
- Karnaugh Map: A graphical technique for simplifying an expression into a minimal sum of products (MSP) form:
 - There are a minimal number of product terms in the expression
 - Each term has a minimal number of literals
- Circuit-wise, this leads to a minimal two-level implementation

Review: Minterm

- A product term in which all the variables appear exactly once, either complemented or uncomplemented, is called a minterm
- A minterm represents exacly one combination of the binary variables in a truth table. It has the value of 1 for that combination and 0 for the others

Х	Υ	z	Product Term	Symbol	m _o	m₁	m ₂	m ₃	m_4	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m ₅	0	0	0	O	0	1	0	0
1	1	0	$XY\overline{Z}$	m ₆	0	0	0	O	0	0	1	0
1	1	1	XYZ	m ₇	0	0	0	0	0	0	0	1

Table 2-6 Minterms for Three Variables

Review: Maxterm

- A sum term in which all the variables appear exactly once, either complemented or uncomplemented, is called a maxterm
- A maxterm represents exacly one combination of the binary variables in a truth table. It has the value of 0 for that combination and 1 for the others

X	Υ	Z	Sum Term	Symbol	Μ _o	M₁	M_2	Мз	M ₄	M_5	M ₆	M_7
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	$\overline{\mathrm{M}_3}$	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

Table 2-7 Maxterms for Three Variables

• A minterm and maxterm with the same subscript are the complements of each other, i.e., $M_i = m'_i$

3

Review: Sum of Minterms

 A Boolean function can be represented algebraically from a given truth table by forming the logical sum of all the minterms that produce a 1 in the function. This expression is called a sum of minterms

(a)	Χ	Υ	Z	F	F
-					
	0	0	0	1	0
	0	0	1	0	1
	0	1	1	0	0 1
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	1	1	0

Review: Product of Maxterms

 A Boolean function can be represented algebraically from a given truth table by forming the logical product of all the maxterms that produce a 0 in the function. This expression is called a product of maxterms

(a)	Х	Υ	Z	F	F
	0	0	0	4	0
	0	0	0	1	0
	0	0	1	0	1
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	1	1	0

- To convert a Boolean function F from SoM to PoM:
 - Find F' in SoM form
 - Find F= (F')' in PoM form

Review: Important Properties of Minterms

- There are 2ⁿ minterms for n Boolean variables. These minterms can be evaluated from the binary numbers from 0 to 2ⁿ-1
- Any Boolean function can be expressed as a logical sum of minterms
- The complement of a function contains those minterms not included in the original function

$$F(X,Y,Z) = \sum m(0,2,5,7) \Rightarrow F'(X,Y,Z) = \sum m(1,3,4,6)$$

A function that includes all the 2ⁿ minterms is equal to logic 1

$$G(X,Y) = \Sigma m(0,1,2,3) = 1$$

Review: Sum-of-Products

- The sum-of-minterms form is a standard algebraic expression that is obtained from a truth table
- When we simplify a function in SoM form by reducing the number of product terms or by reducing the number of literals in the terms, the simplified expression is said to be in Sum-of-Products form
- Sum-of-Products expression can be implemented using a two-level circuit

Fig. 2-5 Sum-of-Products Implementation

Review: Product-of-Sums

- The product-of-maxterms form is a standard algebraic expression that is obtained from a truth table
- When we simplify a function in PoM form by reducing the number of sum terms or by reducing the number of literals in the terms, the simplified expression is said to be in Product-of-Sums form
- Product-of-Sums expression can be implemented using a two-level circuit

Fig. 2-7 Product-of-Sums Implementation

Re-arranging the Truth Table

 A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map

X	У	minterm	У
0	0	x'y'	0 1
0	1	x'y	. [0 x'y' x'y
1	0	xy'	$X \downarrow 1 \qquad xy' \qquad xy$
1	1	ху	

- Now we can easily see which minterms contain common literals
 - Minterms on the left and right sides contain y' and y respectively
 - Minterms in the top and bottom rows contain x' and x respectively

Karnaugh Map Simplifications

Imagine a two-variable sum of minterms:

$$x'y' + x'y$$

• Both of these minterms appear in the top row of a Karnaugh map, which means that they both contain the literal \mathbf{x}'

What happens if you simplify this expression using Boolean algebra?

$$x'y' + x'y = x'(y' + y)$$
 [Distributive]
= $x' \cdot 1$ [$y + y' = 1$]
= x' [$x \cdot 1 = x$]

More Two-Variable Examples

- Another example expression is x'y + xy
 - Both minterms appear in the right side, where y is uncomplemented
 - Thus, we can reduce x'y + xy to just y

- How about x'y' + x'y + xy?
 - We have x'y' + x'y in the top row, corresponding to x'
 - There's also x'y + xy in the right side, corresponding to y
 - This whole expression can be reduced to x' + y

A Three-Variable Karnaugh Map

• For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky:

		ΥZ						
		00	01	11	10			
V	0	m_0	m_1	m ₃	m ₂			
^	1	m ₄	m ₅	m ₇	m_6			

Another way to label the K-map (use whichever you like):

			,	У
	x'y'z'	x'y'z	x'yz	x'yz'
X	xy'z'	xy'z	xyz	xyz'
,		Z		

Why the funny ordering?

 With this ordering, any group of 2, 4 or 8 adjacent squares on the map contains common literals that can be factored out

"Adjacency" includes wrapping around the left and right sides:

We'll use this property of adjacent squares to do our simplifications.

Example K-map Simplification

- Let's consider simplifying f(x,y,z) = xy + y'z + xz
- First, you should convert the expression into a sum of minterms form, if it's not already
 - The easiest way to do this is to make a truth table for the function, and then read off the minterms
 - You can either write out the literals or use the minterm shorthand
- Here is the truth table and sum of minterms for our example:

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f(x,y,z) = x'y'z + xy'z + xyz' + xyz$$

= $m_1 + m_5 + m_6 + m_7$

Unsimplifying Expressions

- You can also convert the expression to a sum of minterms with Boolean algebra
 - Apply the distributive law in reverse to add in missing variables.
 - Very few people actually do this, but it's occasionally useful.

$$xy + y'z + xz = (xy \cdot 1) + (y'z \cdot 1) + (xz \cdot 1)$$

= $(xy \cdot (z' + z)) + (y'z \cdot (x' + x)) + (xz \cdot (y' + y))$
= $(xyz' + xyz) + (x'y'z + xy'z) + (xy'z + xyz)$
= $xyz' + xyz + x'y'z + xy'z$

- In both cases, we're actually "unsimplifying" our example expression
 - The resulting expression is larger than the original one!
 - But having all the individual minterms makes it easy to combine them together with the K-map

Making the Example K-map

- Next up is drawing and filling in the K-map
 - Put 1s in the map for each minterm, and 0s in the other squares
 - You can use either the minterm products or the shorthand to show you where the 1s and 0s belong
- In our example, we can write f(x,y,z) in two equivalent ways

f(x,y,z) =	m_1	+	m_5	+	m_6	+	m_7
------------	-------	---	-------	---	-------	---	-------

			>	/
	m_0	m_1	m ₃	m_2
X	m_4	m ₅	m ₇	m ₆
		Z	<u> </u>	

• In either case, the resulting K-map is shown below

			•	У
	0	1	0	0
X	0	1	1	1
·		Z	7	

K-maps From Truth Tables

- You can also fill in the K-map directly from a truth table
 - The output in row i of the table goes into square m_i of the K-map
 - Remember that the rightmost columns of the K-map are "switched"

Grouping the Minterms Together

- The most difficult step is grouping together all the 1s in the K-map
 - Make rectangles around groups of one, two, four or eight 1s
 - All of the 1s in the map should be included in at least one rectangle
 - Do not include any of the Os

- Each group corresponds to one product term. For the simplest result:
 - Make as few rectangles as possible, to minimize the number of products in the final expression.
 - Make each rectangle as large as possible, to minimize the number of literals in each term.
 - It's all right for rectangles to overlap, if that makes them larger.

Reading the MSP from the K-map

- Finally, you can find the minimal SoP expression
 - Each rectangle corresponds to one product term
 - The product is determined by finding the common literals in that rectangle

• For our example, we find that xy + y'z + xz = y'z + xy. (This is one of the additional algebraic laws from last time.)

Practice K-map 1

• Simplify the sum of minterms $m_1 + m_3 + m_5 + m_6$

			>	/
	m_0	m_1	m ₃	m ₂
X	m ₄	m ₅	m ₇	m ₆
		Z	7	

Solutions for Practice K-map 1

- Here is the filled in K-map, with all groups shown
 - The magenta and green groups overlap, which makes each of them as large as possible
 - Minterm m_6 is in a group all by its lonesome

The final MSP here is x'z + y'z + xyz'

K-maps can be tricky!

• There may not necessarily be a *unique* MSP. The K-map below yields two valid and equivalent MSPs, because there are two possible ways to include minterm m_7

Remember that overlapping groups is possible, as shown above

Four-variable K-maps

- We can do four-variable expressions too!
 - The minterms in the third and fourth columns, and in the third and fourth rows, are switched around.
 - Again, this ensures that adjacent squares have common literals

- Grouping minterms is similar to the three-variable case, but:
 - You can have rectangular groups of 1, 2, 4, 8 or 16 minterms
 - You can wrap around all four sides

Four-variable K-maps

Example: Simplify $m_0 + m_2 + m_5 + m_8 + m_{10} + m_{13}$

The expression is already a sum of minterms, so here's the K-map:

			>	/	_
	1	0	0	1	
	0	1	0	0	_
\A/	0	1	0	0	X
W	1	0	0	1	
·		Z			-

			<u> </u>	/	_
	m_0	m_1	m_3	m ₂	
	m_4	m ₅	m_7	m_6	_
\^/	m ₁₂	m ₁₃	m ₁₅	m ₁₄	X
W	m ₈	m ₉	m ₁₁	m ₁₀	
		Z	<u>7</u>		_

We can make the following groups, resulting in the MSP x'z' + xy'z

			l ,	/	_
_	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
W -	wxy'z'	wxy'z	wxyz	wxyz'	
VV -	wx'y'z'	wx'y'z	wx'yz	wx'yz'	
		Z	7		_

Five-variable K-maps

			`	/	_
	m ₁₆	m ₁₇	m ₁₉	m ₈	
	m ₂₀	m ₂₁	m ₂₃	m ₂₂	Y
W	m ₂₈	m 29	m ₃₁	m ₃₀	^
VV	m ₂₄	m ₂₅	m ₂₇	m ₂₆	
		Z	7		-

Simplify $f(V,W,X,Y,Z)=\Sigma m(0,1,4,5,6,11,12,14,16,20,22,28,30,31)$

PoS Optimization from SoP

$$F(W,X,Y,Z) = \Sigma m(0,1,2,5,8,9,10)$$
$$= \prod M(3,4,6,7,11,12,13,14,15)$$

$$F(W,X,Y,Z) = (W' + X')(Y' + Z')(X' + Z)$$

SoP Optimization from PoS

$$F(W,X,Y,Z) = \prod M(0,2,3,4,5,6)$$

$$= \sum m(1,7,8,9,10,11,12,13,14,15)$$

$$F(W,X,Y,Z)=W+XYZ+X'Y'Z$$

I don't care!

- You don't always need all 2ⁿ input combinations in an n-variable function
 - If you can guarantee that certain input combinations never occur
 - If some outputs aren't used in the rest of the circuit
- We mark don't-care outputs in truth tables and K-maps with Xs.

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	X
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	X
1	1	1	1

 Within a K-map, each X can be considered as either 0 or 1. You should pick the interpretation that allows for the most simplification.

Practice K-map 3

Find a MSP for

$$f(w,x,y,z) = \sum m(0,2,4,5,8,14,15), d(w,x,y,z) = \sum m(7,10,13)$$

This notation means that input combinations wxyz = 0111, 1010 and 1101 (corresponding to minterms m_7 , m_{10} and m_{13}) are unused.

Solutions for Practice K-map 3

Find a MSP for:

$$f(w,x,y,z) = \sum m(0,2,4,5,8,14,15), d(w,x,y,z) = \sum m(7,10,13)$$

$$f(w,x,y,z)=x'z'+w'xy'+wxy$$

AND, OR, and NOT

	Graphics Symbols	i .	
Name	Distinctive shape	Algebraic equation	Truth table
AND	х <u> </u>	F - XY	X Y F 0 0 0 0 1 0 1 0 0 1 1 1
or	х <u> </u>	F = X + Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 1
NOT (inverter)	х — Б	$F - \overline{X}$	X F 0 1 1 0

Buffer and 3-State Buffer

- Buffer is used to amplify an electrical signal
 - Reconstructing the signal
 - More gates to be attached to the output
- Three state buffer
 - E (Enable): Controls the output
 - Hi-Z: High impedance

NAND and NOR

- NAND: Not AND, NOR: Not OR
- Both NAND and NOR are universal gates
- Universal gate: A gate that alone can be used to implement all Boolean functions
- It is sufficient to show that NAND (NOR) can be used to implement AND, OR, and NOT operations

NANDs are special!

- The NAND gate is universal: it can replace all other gates!
 - NOT

$$(xx)' = x'$$

[because xx = x]

- AND

$$((xy)'(xy)')' = xy$$

((xy)'(xy)')' = xy [from NOT above]

- OR

$$((xx)'(yy)')' = (x'y')' [xx = x, and yy = y]$$

$$= x + y [DeMorgan's law]$$

XOR and XNOR

	Graphics Symbols		
Name	Distinctive shape symbol	Algebraic equation	Truth table
Exclusive-OR (XOR)	Х —) — F	$F = \mathbf{X}\overline{\mathbf{Y}} + \overline{\mathbf{X}}\mathbf{Y}$ $= \mathbf{X} \oplus \mathbf{Y}$	X Y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR (XNOR)	Х Y — F	$F = \underbrace{XY + \overline{XY}}_{= \overline{X} \bigoplus \overline{Y}}$	X Y F 0 0 1 0 1 0 1 0 0 1 1 1

- Exclusive-OR (XOR): $X \oplus Y = XY' + X'Y$
- Exclusive-NOR (XNOR): $(X \oplus Y)' = XY + X'Y'$

$$X \oplus 0 = X$$

$$X \oplus X = 0$$

$$X \oplus X' = 1$$

$$X \oplus Y' = (X \oplus Y)'$$
 $X' \oplus Y = (X \oplus Y)'$

$$X' \oplus Y = (X \oplus Y)'$$

$$X \oplus Y = Y \oplus X$$

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$$

More on XOR

- The general XOR function is true when an odd number of its arguments are true
- For example, we can use Boolean algebra to simplify a three-input XOR to the following expression and truth table.

```
x \oplus (y \oplus z)

= x \oplus (y'z + yz') [Definition of XOR]

= x'(y'z + yz') + x(y'z + yz')' [Definition of XOR]

= x'y'z + x'yz' + x(y'z + yz')' [Distributive]

= x'y'z + x'yz' + x((y'z)'(yz')') [DeMorgan's]

= x'y'z + x'yz' + x((y + z')(y' + z)) [DeMorgan's]

= x'y'z + x'yz' + x(yz + y'z') [Distributive]

= x'y'z + x'yz' + xyz + xy'z' [Distributive]
```

_			
X	У	Z	x⊕y⊕z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

High-Impedance Outputs

- Gates with only output values logic 0 and logic 1
 - The output is connected to either Vcc or Gnd
- A third output value: High-Impedance (Hi-Z, Z, or z)
 - The output behaves as an open-circuit, i.e., it appears to be disconnected
- Gates with Hi-Z output values can have their outputs connected together if no two gates drive the line at the same time to opposite 0 and 1 values
- Gates with only logic 0 and logic 1 outputs cannot have their outputs connected together

Three-State Buffers

(a)	Logic	symb	ool

EN	IN	OUT
0	X	Hi-Z
1	0	0
1	1	1

(b) Truth table

Three-State Buffers

EN1	EN0	IN1	IN0	OL
0	0	Χ	Χ	Hi-Z
(S) 0	(\overline{S}) 1	Χ	0	0
0	1	X	1	1
1	0	0	X	0
1	0	1	X	1
1	1	0	0	0
1	1	1	1	1
1	1	0	1	-
1	1	1	0	

(b) Truth table

Transmission Gate

If
$$C= 1 (C'= 0) \Rightarrow Y = X$$

Transmission Gate XOR

A C	TG1	TG0 F		
0 0	No path	Path 0		
0 1	Path	No path 1		
1 0	No path	Path 1		
1 1	Path	No path 0		
(b)				

K-map Summary

- K-maps are an alternative to algebra for simplifying expressions
 - The result is a minimal sum of products, which leads to a minimal twolevel circuit
 - It's easy to handle don't-care conditions
 - K-maps are really only good for manual simplification of small expressions...
- Things to keep in mind:
 - Remember the correct order of minterms on the K-map
 - When grouping, you can wrap around all sides of the K-map, and your groups can overlap
 - Make as few rectangles as possible, but make each of them as large as possible. This leads to fewer, but simpler, product terms
 - There may be more than one valid solution