Przykład 2

Zadanie: Mamy następujący zbiór treningowy złożony z atrybutów określających warunki pogodowe i decyzji o wyjściu na spacer. Mamy sklasyfikować przypadek X= (deszczowo, 21° C, słaby).

id	pogoda	temperatura	wiatr	decyzja
1	słonecznie	23°C	umiarkowany	tak
2	deszczowo	15°C	mocny	nie
3	pochmurno	17°C	słaby	tak
4	pochmurno	21°C	umiarkowany	nie
5	słonecznie	20°C	mocny	tak
6	słonecznie	25°C	słaby	tak
7	deszczowo	22°C	słaby	tak
8	słonecznie	14°C	mocny	nie
9	pochmurno	19°C	mocny	nie
10	deszczowo	16°C	słaby	nie

Najpierw potrzebujemy dokonać pewnego podziału atrybutu drugiego (temperatury) w zależności o jego wartości. Atrybut przyjmuje za dużo różnych wartości, dlatego dokonamy umownego podziału na 3 grupy w taki sposób, że

- do grupy chłodno zaliczymy temperatury poniżej 16°C,
- do grupy ciepło zaliczymy temperatury pomiędzy 16°C a 20°C,
- do grupy gorąco zaliczymy temperatury powyżej 20°C.

Najpierw potrzebujemy dokonać pewnego podziału atrybutu drugiego (temperatury) w zależności o jego wartości. Atrybut przyjmuje za dużo różnych wartości, dlatego dokonamy umownego podziału na 3 grupy w taki sposób, że

- do grupy chłodno zaliczymy temperatury poniżej 16°C,
- do grupy ciepło zaliczymy temperatury pomiędzy 16°C a 20°C,
- do grupy *gorąco* zaliczymy temperatury powyżej 20°C.

Dodatkowo niech C_1 oznacza decyzję pozytywną, a C_2 – negatywną.

Po tej modyfikacji zbiór treningowy przedstawia się nastepująco

Po tej modyfikacji zbiór treningowy przedstawia się nastepująco

id	pogoda	temperatura	wiatr	decyzja
1	słonecznie	gorąco	umiarkowany	tak
2	deszczowo	chłodno	mocny	nie
3	pochmurno	ciepło	słaby	tak
4	pochmurno	gorąco	umiarkowany	nie
5	słonecznie	ciepło	mocny	tak
6	słonecznie	gorąco	słaby	tak
7	deszczowo	gorąco	słaby	tak
8	słonecznie	chłodno	mocny	nie
9	pochmurno	ciepło	mocny	nie
10	deszczowo	ciepło	słaby	nie

Po tej modyfikacji zbiór treningowy przedstawia się nastepująco

id	pogoda	temperatura	wiatr	decyzja
1	słonecznie	gorąco	umiarkowany	tak
2	deszczowo	chłodno	mocny	nie
3	pochmurno	ciepło	słaby	tak
4	pochmurno	gorąco	umiarkowany	nie
5	słonecznie	ciepło	mocny	tak
6	słonecznie	gorąco	słaby	tak
7	deszczowo	gorąco	słaby	tak
8	słonecznie	chłodno	mocny	nie
9	pochmurno	ciepło	mocny	nie
10	deszczowo	ciepło	słaby	nie

Natomiast obiekt do sklasyfikowania jest teraz postaci X = (deszczowo, gorąco, słaby).

Musimy ustalić, które z poniższych prawdopodobieństw jest większe

- $P(C = C_1|X)$ czyli P(decyzja=tak|pogoda=deszczowo, temperatura=gorąco, wiatr=słaby),
- $P(C = C_2|X)$ czyli P(decyzja=nie|pogoda=deszczowo, temperatura=gorąco, wiatr=słaby).

Musimy ustalić, które z poniższych prawdopodobieństw jest większe

- $P(C = C_1|X)$ czyli P(decyzja=tak|pogoda=deszczowo, temperatura=gorąco, wiatr=słaby),
- $P(C = C_2|X)$ czyli P(decyzja=nie|pogoda=deszczowo, temperatura=gorąco, wiatr=słaby).

Więc wystarczy, że obliczymy $P(C = C_1) \cdot P(C = C_1|X)$ oraz $P(C = C_2) \cdot P(C = C_2|X)$ i porównamy te wyniki.

Dla ułatwienia dalszych obliczeń przypadki, w których końcowa decyzja jest pozytywna zaznaczymy na zielono, a tam gdzie negatywna – na czerwono.

id	pogoda	temperatura	wiatr	decyzja
1	słonecznie	gorąco	umiarkowany	tak
2	deszczowo	chłodno	mocny	nie
3	pochmurno	ciepło	słaby	tak
4	pochmurno	gorąco	umiarkowany	nie
5	słonecznie	ciepło	mocny	tak
6	słonecznie	gorąco	słaby	tak
7	deszczowo	gorąco	słaby	tak
8	słonecznie	chłodno	mocny	nie
9	pochmurno	ciepło	mocny	nie
10	deszczowo	ciepło	słaby	nie

$$P(C = C_1) = \frac{5}{10} = \frac{1}{2},$$

2
$$P(a_1 = \text{deszczowo}|C = C_1) = \frac{1}{5},$$

$$P(C = C_1) = \frac{5}{10} = \frac{1}{2},$$

2
$$P(a_1 = \text{deszczowo}|C = C_1) = \frac{1}{5}$$

3
$$P(a_2 = \text{gorąco}|C = C_1) = \frac{3}{5}$$

Obliczamy składowe szukanych prawdopodobieństw

$$P(C = C_1) = \frac{5}{10} = \frac{1}{2},$$

2
$$P(a_1 = \text{deszczowo}|C = C_1) = \frac{1}{5}$$

3
$$P(a_2 = \text{goraco}|C = C_1) = \frac{3}{5}$$

4
$$P(a_3 = \text{slaby}|C = C_1) = \frac{3}{5}$$

$$P(C = C_1) = \frac{5}{10} = \frac{1}{2},$$

2
$$P(a_1 = \text{deszczowo}|C = C_1) = \frac{1}{5}$$

3
$$P(a_2 = \text{gorąco}|C = C_1) = \frac{3}{5}$$

4
$$P(a_3 = \text{slaby}|C = C_1) = \frac{3}{5}$$

6
$$P(C = C_2) = \frac{5}{10} = \frac{1}{2}$$

$$P(C = C_1) = \frac{5}{10} = \frac{1}{2},$$

2
$$P(a_1 = \text{deszczowo}|C = C_1) = \frac{1}{5}$$

3
$$P(a_2 = \text{gorąco}|C = C_1) = \frac{3}{5}$$

4
$$P(a_3 = \text{slaby}|C = C_1) = \frac{3}{5}$$

6
$$P(C = C_2) = \frac{5}{10} = \frac{1}{2}$$

6
$$P(a_1 = \text{deszczowo}|C = C_2) = \frac{2}{5}$$

Obliczamy składowe szukanych prawdopodobieństw

$$P(C = C_1) = \frac{5}{10} = \frac{1}{2},$$

2
$$P(a_1 = \text{deszczowo}|C = C_1) = \frac{1}{5}$$
,

3
$$P(a_2 = \text{gorąco}|C = C_1) = \frac{3}{5}$$

4
$$P(a_3 = \text{slaby} | C = C_1) = \frac{3}{5},$$

6
$$P(C = C_2) = \frac{5}{10} = \frac{1}{2}$$

6
$$P(a_1 = \text{deszczowo}|C = C_2) = \frac{2}{5}$$

$$P(a_2 = \text{goraco}|C = C_2) = \frac{1}{5},$$

Obliczamy składowe szukanych prawdopodobieństw

$$P(C = C_1) = \frac{5}{10} = \frac{1}{2},$$

2
$$P(a_1 = \text{deszczowo}|C = C_1) = \frac{1}{5}$$

3
$$P(a_2 = \text{gorąco}|C = C_1) = \frac{3}{5}$$

4
$$P(a_3 = \text{slaby}|C = C_1) = \frac{3}{5}$$

6
$$P(C = C_2) = \frac{5}{10} = \frac{1}{2}$$

6
$$P(a_1 = \text{deszczowo}|C = C_2) = \frac{2}{5}$$

•
$$P(a_2 = \text{goraco}|C = C_2) = \frac{1}{5},$$

8
$$P(a_3 = \text{slaby}|C = C_2) = \frac{1}{5}$$

Podstawiamy obliczone wartości do wzorów i otrzymujemy

Podstawiamy obliczone wartości do wzorów i otrzymujemy

•
$$P(C = C_1) \cdot \prod_{j=1}^{3} P(a_j = x_j | C = C_1) = \frac{1}{2} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} = \frac{9}{250}$$

Podstawiamy obliczone wartości do wzorów i otrzymujemy

•
$$P(C = C_1) \cdot \prod_{i=1}^{3} P(a_i = x_i | C = C_1) = \frac{1}{2} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} = \frac{9}{250}$$

•
$$P(C = C_2) \cdot \prod_{j=1}^{3} P(a_j = x_j | C = C_2) = \frac{1}{2} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{2}{250}$$

Podstawiamy obliczone wartości do wzorów i otrzymujemy

•
$$P(C = C_1) \cdot \prod_{j=1}^{3} P(a_j = x_j | C = C_1) = \frac{1}{2} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} = \frac{9}{250}$$

•
$$P(C = C_2) \cdot \prod_{j=1}^{3} P(a_j = x_j | C = C_2) = \frac{1}{2} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{2}{250}$$

Zatem $P(C = C_1|X) > P(C = C_2|X)$.

Podstawiamy obliczone wartości do wzorów i otrzymujemy

•
$$P(C = C_1) \cdot \prod_{j=1}^{3} P(a_j = x_j | C = C_1) = \frac{1}{2} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} = \frac{9}{250}$$

•
$$P(C = C_2) \cdot \prod_{j=1}^{3} P(a_j = x_j | C = C_2) = \frac{1}{2} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{2}{250}$$

Zatem $P(C = C_1|X) > P(C = C_2|X)$.

Wniosek

Obiekt X= (deszczowo, 21° C, słaby) powinien zostać przydzielony do klasy C_1 oznaczającej pozytywną decyzję o wyjściu na spacer.