BEYOND THE SEA

Protocoles Mesures Expérimentales

Kite Design

Rapport -

beyond the sea° by Yves Parlier

Contents

1	Inti	$\operatorname{roduction}$	3
2	Tra	Travaux précédents (Zoé Marcelet)	
	2.1	Modèle Lagragien	4
3	Mesure de l'angle d'incidence au Zénith		6
	3.1	Problème de l'angle de calage α_0	6
	3.2	Utiliser un capteur de tension pour les A et les B au niveau du kite .	7
	3.3	La sonde pitot	8
	3.4	Conclusion	10
4	Mesure de l'angle d'incidence au Zénith		11
	4.1	Calcul de la finesse en pleine fenêtre	11
	4.2	Influence des lignes	12

Introduction

Ce bureau d'étude a pour sujet l'identification expérimentale des coéfficients aérodynamiques. L'objectif final étant de déterminer un protocol expérimental permetant de mesurer l'angle d'incidence d'un kite; en vue d'obtenir une polaire expérimentale des voiles.

Travaux précédents (Zoé Marcelet)

2.1 Modèle Lagragien

D'après le document "Dynamics and Control of Single-Line Kites" de Gonzalo Sanchez-Arriaga (2006), les formules suivantes permettent d'obtenir l'élévation Γ et l'angle d'incidence du vent θ , en fonction du vent et des coefficients aérodynamiques du kite :

Figure 2.1: Schéma du kite au Zénith.

La première équation donne l'angle d'incidence θ :

$$cos(\delta - \theta) + \beta(\sigma - cos(\delta))C_N(\theta) = 0$$
(2.1)

La deuxieme équation donne l'angle d'élévation Γ :

$$\Gamma = tan^{-1} \left(\frac{\beta C_N(\theta) cos(\theta) - 1}{\beta C_N(\theta) sin(\theta)} \right)$$
 (2.2)

Avec
$$\beta = \frac{\rho A W_0^2}{2mg}$$
 et $\sigma = \frac{X_{cp}}{r}$

Ces équations ont été codées (disponible sur Nextcloud : 06-RESSOURCE/AC-Admin Commun/4-Rapports Stagiaires/Stage Zoé Marcelet/Rapport_zozo/06_Topic_modèle_aéro_zer Elles restent cependant peut concluantes car requièrent les coéfficients aérodynamiques du kite.

Mesure de l'angle d'incidence au Zénith

3.1 Problème de l'angle de calage α_0

Une première intuition nous amène à penser que la connaissance de l'angle d'élévation et de la géométrie des bridages permet de remonter à l'angle d'incidence α

Figure 3.1: Schéma des angles qui paramètres le Zénith.

La figure 3.1, l'angle α_0 dépend de considération aérodynamique, car :

$$\frac{L}{D} = \frac{1}{\tan(\theta)} = \frac{1}{\tan(\alpha + \alpha_0)}$$
 (3.1)

Ainsi, l'angle que fait le cône de bridage avec les lignes qui le relient au sol s'adapte (via l'angle α_0) de sorte à aligner les efforts aérodynamiques avec les lignes des avants. Ainsi, cette angle permet de lier "géométrie" et "aérodynamique" :

Figure 3.2: Graphique du lien entre finesse (aérodynamique) et l'angle α_0

Cependant, la formule à l'équilibre suivante (voir "equilibre kite" pour demo) :

$$x_T = \frac{Lx_F - Px_G - C_{M_0}}{L - P} \tag{3.2}$$

montre qu'en vent fort, pour $C_{M_0}=0, x_T=x_F,$ et donc on peut déterminer géométriquement α_0 ! Donc la mesure de l'angle θ permet de remonter à α et à la finesse $\frac{L}{D}$

3.2 Utiliser un capteur de tension pour les A et les B au niveau du kite

L'idée est que notre système {kite+bridages} se comporte comme un pendule inversé. Mesurer les tensions dans les A et les B permet de mesurer la position de la résultante aérodynamique le long du kite et ainsi de prédire son angle d'incidence α en s'affranchissant de la polaire aérodynamique du kite.

Figure 3.3: Schéma des tensions dans les bridages

Le graphe 3.3 permet d'écrire la relation suivante :

$$T_A cos(\delta_A) - T_B cos(\delta_B) = T cos(\frac{\pi}{2} + \alpha - \theta)$$
(3.3)

et ainsi d'en déduire :

$$\alpha = \theta + \sin^{-1}\left(\frac{T_B \cos(\delta_B) - T_A \cos(\delta_A)}{T}\right)$$
 (3.4)

Ainsi, on peut déterminer l'angle d'incidence α à partir de :

- T: la tension des avants (capteur "3 axes")
- θ : $\frac{\pi}{2}$ l'angle d'élévation (capteur "IMU")
- T_A : la tension dans les A au point d'attache du kite (capteur "cyclops")
- T_B : la tension dans les B au point d'attache du kite (capteur "cyclops")
- δ_A : l'angle des A par rapport à la corde moyenne du kite (surfplan ou au laser)
- δ_B : l'angle des B par rapport à la corde moyenne du kite (surfplan ou au laser)

3.3 La sonde pitot

L'équilibre au Zéntih permet d'obtenir :

$$\begin{cases}
L = P + Tsin(\theta) \\
D = Tcos(\theta) \\
0 = C_{M_0} + (x_T - x_F)(Lcos(\alpha) + Dsin(\alpha)) - Pcos(\alpha)(x_T - x_G)
\end{cases}$$
(3.5)

Ainsi, couplé avec les résultats du chapitre $\ref{eq:condition}$, on peut mesure $L(\alpha), D(\alpha)$ et α à partir des capteurs cités dans ce même chapitre. Cependant, la connaissance du vent en altitude, à 50m de haut, est incertaine et l'ajout de la sonde pitot, fixée à un kite stable, permet d'obtenir avec précision les coéfficients SC_L et SC_D via :

$$\begin{cases}
L = \frac{1}{2}\rho V^2 S C_L \\
D = \frac{1}{2}\rho V^2 S C_D
\end{cases}$$
(3.6)

Les modèles de couches limites sont de la forme

$$u(z) = -C\mu e^{\frac{z}{\lambda}} sin(\frac{z}{\lambda})$$
 (3.7)

où les différents coéfficients sont charactéristiques du lieu. (Source: Sébastien Blein. Observation et modélisation de couche limite atmosphérique stable en relief complexe: le processus turbulent d'écoulement catabatique. Météorologie. Université Grenoble Alpes, 2016. Français. ffNNT: 2016GREAI023ff. fftel-01622676f - équation 2.69 du chapitre 2.3.1 (modèle de Prandtl)).

Un autre modèle est celui proposé par Fechner et Schmehl dans "Model-Based Efficiency Analysis ofWind Power Conversion by a Pumping Kite Power System":

$$v_w = v_{w,g} \left(\frac{\overline{h}}{10m}\right)^{\alpha} \tag{3.8}$$

Avec $v_{w,g}$ la ground wind speed à 10 m, \overline{h} la hauteur moyenne du kite, et α un coefficient dont la valeurs standard est 1/7, là où en offshore α vaut plutôt 0.11

Aussi, la connaissance de ρ est nécessaire. La formule suivante peut être utilisée

$$\rho = \rho_0 e^{-\frac{\bar{h}}{H_\rho}} \tag{3.9}$$

avec $H_{\rho}=8:55km$ et $\rho_0=1.225Kg.m^{-3}$

:

Ainsi, on propose de mesurer les vitesses à différentes hauteurs grâce à la sonde pitot afin d'établir un modèle de couche limite pour un lieu (plage de Pereire) et une provenance de vent (Nord-Ouest-Sud) [l'état. de la couche limite dépend des obstacles qui précèdent le lieu de mesure]

3.4 Conclusion

Muni des capteurs

- 3 axes
- IMU
- Cyclops
- Sonde pitot

On propose de :

- Mesurer α grace à l'équation 3.4, et le couple $(L(\alpha); D(\alpha))$ grace à l'équation 3.5. Répéter l'essai pour différentes valeurs de **TowPoint**
- Déterminer un modèle de couche limite grâce à la sonde pitot en mesurant des valeurs de vitesse vent à différentes hauteurs (réunion avec Delft mercredi 16/10 et voir avec mecatro pour filtrer/moyenner mesures)
- Déduire grâce à 3.6 les coéfficients aéro au zénith.

Mesure de l'angle d'incidence au Zénith

4.1 Calcul de la finesse en pleine fenêtre

En l'absence d'angle de calage ($\alpha_0=90^\circ$), on a l'équilibre dynamique qui devient .

$$Lsin(\theta) - Dcos(\theta) = tsin(\alpha_0) \Rightarrow \frac{D}{L} = tan(\alpha)$$
 (4.1)

ainsi, Fechner et Schmehl dans "Model-Based Efficiency Analysis ofWind Power Conversion by a Pumping Kite Power System" proposent :

$$v_a^2 = (v_w cos(\beta) cos(\Phi) - v_{t,0})^2 (1 + (\frac{L}{D})^2)$$
(4.2)

par relation de pythagore, avec ici β est l'angle d'élévation, Φ l'angle azimuth, et $v_{t,0}$ la reel_out speed utilisée par kite-power (nul dans notre cas d'un point fixe)

Finalement on obtient la relation:

$$v_{a} = (\cos(\beta)\cos(\Phi) - \frac{v_{t,0}}{v_{w}})v_{w}\sqrt{1 + (\frac{L}{D})^{2}}$$
(4.3)

Cette relation permet d'obtenir la finesse du kite, en shoot (vitesse max) en focntion de l'élévation, du vent réel, et du vent relatif!

4.2 Influence des lignes

Quand on parle de finesse, on parle en rélalité de la finesse de l'ensemble du système Kite + Ligne, soit $finesse = \frac{C_L^k}{C_D^k + C_D^{lignes}}$

Fechner et Schmehl dans "Model-Based Efficiency Analysis ofWind Power Conversion by a Pumping Kite Power System" proposent pour prendre en compte la trainée des lignes supérieures uniquement, la portion des lignes qui se déplace à la vitesse du kite, la portion inférieur étant alors considérée fixe :

$$C_{D,eff}^{lignes} \approx 0.31 \bar{l} \frac{d}{A_{kite}} C_D^{lignes}$$
 (4.4)

Dès lors on a $C_D = C_D^k + C_{D,eff}^{lignes}$ et en l'absence d'angle de calage:

$$F_{t,max} = \frac{1}{2} \rho v_a^2 A_{kite} C_D \sqrt{1 + (\frac{L}{D})^2}$$
 (4.5)