

Comunicación celular 2

Receptores acoplados a proteína G

Receptores de membrana

Receptores acoplados a canales iónicos (dependientes de ligando)

Receptores ionotrópicos

Receptores acoplados a proteína G

Existen 3 grandes clases de receptores de superficie

Receptor con actividad enzimática o acoplados a enzimas

Objetivos

1. Conocer la estructura del los receptores acoplados a proteína G y comprender su mecanismo de acción.

2. Comprender cómo estos receptores transducen una señal hacia el interior de la célula a través de proteína G para generar segundos mensajeros y una respuesta celular.

Receptores acoplados a proteína G y transducción de señales

Estructura de los Receptores acoplados a proteína G

Proteína G trimérica: Transductor

Proteína G trimérica y la activación del Efector

Proteína G: interruptor molecular

SIGNALING BY GTP-BINDING

Familia de proteínas G

Proteína G	Función	
Gs	activa adenilato ciclasa y canales de Ca ²⁺	
Golf	activa adenilato ciclasa en olfato	
Gi	inhibe adenilato ciclasa	
Go	Activa canales de K	
Gt	Activa fosfodiesterasa de cGMP	
Gq	Activa fosfolipasa C	

Si una proteína $G\alpha$ tiene una mutación que le impide hidrolizar GTP, ésta estará <u>siempre</u>:

- 1. Inactiva, y por lo tanto será incapaz de señalizar cuando una señal se una al receptor.
- 2. Activa, y por lo tanto continuará señalizando aún en ausencia de una señal extracellular.

Señalización vía proteína G

Receptores acoplados a proteína G: Vía del AMP cíclico (cAMP)

Adenilato ciclasa: Efector

cAMP: 2° mensajero

adenilato ciclasa

fosfodiesterasa

Proteína quinasa A (PKA)

Fosforila proteínas en aminoácidos serinas y treoninas

Ejemplo 1: Regulación del metabolismo por PKA (rápido)

Ejemplo 2: Regulación de la transcripción por PKA (lento)

Extracellular Space

Respuestas a hormonas mediadas por cAMP

Tejido	Hormona (señal)	Respuesta
tiroides	TSH	síntesis hormona tiroidea
ovario	luteinizante	secreción progesterona
músculo	adrenalina	degradación glicógeno
corazón	adrenalina	aumento latidos
hígado	glucagón	degradación glucógeno
riñón	vasopresina	reabsorción de agua

Señalización vía proteína G

Receptores acoplados a proteína G: Vía del Ca⁺⁺ o del fosfolípido de inositol

La enzima efectora es la Fosfolipasa C

Fosforila proteínas blanco en serinas y treoninas

2º mensajeros: IP3-DAG

2º mensajero: Ca²⁺

Respuestas a hormonas mediadas por IP3

TEJIDO	HORMONA	RESPUESTA
hígado	vasopresina	degradación glucógeno
páncreas	acetilcolina	secreción amilasa
músc. liso	acetilcolina	contracción
plaquetas	trombina	agregación

?

¿Cómo funciona IP₃ en la vía del fosfolípido inositol?

1. Activa directamente la PKC (proteína kinasa C).

2.Se une a canales de Ca²⁺ del RE, los abre y Ca⁺⁺ se libera hacia el citosol.

Segundos mensajeros

Las vías de transducción de señales pueden amplificar la respuesta celular a una señal externa

Copyright© 2006 Pearson Benjamin Cummings. All rights reserved.

Resumen

- -Los receptores asociados con proteínas G responden a señales extracelulares con el inicio de cascadas de reacciones de señalización intracelular que alteran el comportamiento de la célula.
- Estos receptores activan un tipo de proteínas de unión a GTP triméricas (proteínas G). Estas proteínas funcionan como interruptores moleculares, transmiten la señal por un breve período y luego se inactivan por hidrólisis de GTP a GDP.
- Algunas proteínas G activan la enzima <u>Adenilato ciclasa</u> y aumentan la concentración de <u>cAMP</u>. Otras activan la enzima <u>Fosfolipasa C</u> (PLC), la cual genera las moléculas mensajeras IP₃ y <u>diacilglicerol</u>.

- El aumento de cAMP activa la proteína quinasa A (PKA).
- El IP₃ abre los canales iónicos del RE y libera un flujo de iones de Ca²⁺ hacia el citosol. El <u>Ca²⁺</u> actúa como 2º mensajero intracelular y altera la actividad de muchas proteínas.
- El Ca²⁺ y el diacilglicerol combinados activan la proteína quinasa C (PKC).
- La PKA y la PKC fosforilan residuos de serina y treonina en proteínas blanco específicas y alteran la actividad de las mismas. Los distintos tipos celulares contienen distintos grupos de proteínas blanco y son afectadas de manera diferente.
- -En **general** la estimulación de los receptores asociados con proteínas G producen respuestas celulares rápidas y reversibles.