Gabriel Forien & Elisa Bouvet

présentent...

Plan de la présentation

- 1. Introduction
- 2. Implémentation de TCP-Reno
- 3. Analyse des performances
- 4. Choix des différents paramètres
- 5. Limites et voies d'amélioration

1. Introduction

Introduction

Diagramme UML

Langage choisi : Java

Introduction

Fonctionnement du serveur

structure de données choisie pour la sliding window: HashMap

4TC PRS - 05/01/2020

2. Implémentation de TCP-Reno

Implémentation de TCP-Reno

4 mécanismes de contrôle de congestion

- 1. Slow-Start
- 2. Congestion Avoidance
- 3. Fast Retransmit
- 4. Fast Recovery

3. Analyse des performances

Analyse des performances

Constat n°1

EVOLUTION DE CWND EN SLOW-START

Problème : cwnd ne dépasse jamais 5.

4TC PRS – 05/01/2020

Analyse des performances

Constat n°2

Nombre d'erreurs	ACK dupliqués	Time out
Sans Fast Retransmit	1123	437
Avec Fast Retransmit	711	453

Fast retransmit réduit de beaucoup les erreurs d'ACK dupliqués

Analyse des performances

Conclusion de nos analyses

Paramètres fixes & optimisation des paramètres

Gestion des erreurs dues aux timeouts

Paramètres variables

Pour chaque client, on peut déterminer les valeurs optimales des paramètres suivants :

- Taille de la fenêtre de congestion
- Durée du timeout
- Nombre d'ACK dupliqués avant de retransmettre un paquet
- Nombre de timeout avant de retransmettre un paquet

4TC PRS - 05/01/2020 13

Client 1 - Taille de la fenêtre de congestion

Débit en fonction de la taille de la sliding window

cwnd est optimal avec une taille entre 37 et 52

4TC PRS – 05/01/2020

14

Client 1 - Timeout et Ack

timeout = 3 ms

Débit en fonction de la taille de la sliding window

Client 1 - Timeout et Ack

timeout = 2 ms

Débit en fonction de la taille de la sliding window

Client 1 - Timeout et Ack

timeout optimal = 1 ms

Débit en fonction de la taille de la sliding window

Client 2 & Scénario 3

- Client 2 : beaucoup d'erreurs dues à des timeout
 → nouvelle gestion des erreurs
- Scénario 3 : multi-client avec le client 1, donc mêmes paramètres

4TC PRS – 05/01/2020

5. Limites et voies d'amélioration

Limites et voies d'amélioration

- Implémentation des selective ACK
- Implémentation d'un buffer circulaire
- Optimisation du timeout (avoir un timeout en nanosecondes)
- Quelle est la taille maximale du fichier supportée ?
- Deux clients peuvent-ils accéder au même fichier en même temps?

4TC PRS – 05/01/2020