Teoria Sterowania Laboratorium 4 Obserwator Luenbergera

Konrad Borowik 141023 25.04.2021

1 Model dynamiki układu z rysunku

```
b = 0.5
_{2} k = 1
m = 1
5 	ext{ Tp} = 0.1
6 	ext{ Tf} = 10
_{7} samples = int(Tf/Tp + 1)
8 T = np.linspace(0,Tf,samples)
U = np.sin(T) # wejscie
V = np.random.normal(0,1,samples) #szum wyjscia
W =np.random.normal(0,1,samples) #szum modelowania
14 A = np.array([[0, 1], [-k/m, -b/m]])
B = np.array([[0], [1/m]])
17
18 C = np.array([[1, 0]])
19
20 D = np.array([[0]])
res = signal.lsim([A,B,C,D],U,T)
X = res[2]
Y = res[1]
```

2 Obserwator Lunebergera

```
1  w0 = 4
2  l1 = 2*w0 - 1/2
3  l2 = w0**2 -w0 - 3/4
4  L = np.array([[l1],[l2]])
5  H = A - L@C
6
7  estX = np.array([[0],[0]]).T
8  for i in range(0,samples - 1):
9     preX = np.array([estX[-1,:].T]).T
10     curX = np.array([Tp*H @ estX[-1,:].T]).T + Tp*B * U[i] + Tp*L* Y[i] + preX
11     estX = np.vstack([estX, curX.T])
```

3 Obserwowalność układu

Rząd macierzy G wynosi 2, czyli tyle ile jest zmiennych stanu - z tego wynika, że układ jest obserwowalny.

```
G = ct.obsv(A,C) #utworzenie macierzy obserwowalności
np.linalg.matrix_rank(G) #wyliczenie rzędu macierzy G
```

4 Wartości wzmocnień obserwatora

$$H = A - LC \tag{1}$$

$$L = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} \tag{2}$$

$$H = \begin{bmatrix} -l_1 & 1\\ -l_2 - 1 & -\frac{1}{2} \end{bmatrix} \tag{3}$$

Równanie charakterystyczne odniesienia dla tego układu ma postać:

$$(\lambda + \omega_0)^2 = \lambda^2 + 2\omega_0\lambda + \omega_0^2 \tag{4}$$

$$det(\lambda I - H) = \dots = \lambda^2 + \lambda(0, 5 + l_1) + 0, 5l_1 + l_2 + 1$$
(5)

Po porównaniu współczynników równań (4) oraz (5) otrzymałem:

$$l_1 = 2\omega_0 - 0.5 \tag{6}$$

$$l_2 = \omega_0^2 - \omega_0 + 0.75 \tag{7}$$

Wzmocnienia obserwatora zależne od ω_0 należy dobierać według powyższych warunków. Należy również pamiętać, aby wartości własne macierzy H znajdowały sie w lewej połowie płaszczyzny zespolonej, aby H zachowała stabilność. Dla ω_0 <0 obserwator nie zadziała.

5 Wpływ doboru ω_0 na estymację

5.1

Przy zbyt małym ω_0 otrzymałem podobny kształt przebiegów estymowanych stanów do realnych, jednak z różniącymi się amplitudami.

Dla $\omega_0=4$ estymowane x_1 pokrywa się z realnym, a estymowane x_2 nadal przyjmuje zbyt duże amplitudy.

Dla $\omega_0=10$ estymowane stany właściwie dokładnie pokrywają się z przebiegami realnych stanów.

Przy ω_0 =20 estymowane x_2 traci swoją stabilność.

 ω_0 wpływa na amplitudy estymowanych przebiegów zmienn
cyh stanu.

5.2

Zmiana $\hat{x}(0)$ tak, aby: $\mathbf{x}(0) \neq \hat{x}(0)$ wpływa na początkową fazę. Estymowane przebiegi zaczynają z innym wzmocnieniem i dążą po chwili do przebiegów realnych.

5.3

Tak, dobór wzmocnień wpłynie na jakość estymacji w $t \to \infty$, ponieważ l_2 zależy od kwadratu ω_0 i w związku z tym estymowane x_2 może po czasie zacząć coraz bardziej różnić się od realnego x_2

6 Estymacja z szumem pomiarowym

W przypadku zaszumionego sygnału wyjściowego niemożliwa jest dokładna estymacja. Dla mniejszych ω_0 można się jeszcze dopatrzeć pożądanego przebiegu. Dla większych ω_0 estymowane przebiegi przypominają szum i nie da się z nich wyciągnąć wniosków dotyczących fizycznego układu.

7 Estymacja zaszumionego pomiaru

Pierwszy wykres przedstawia zaszumiony pomiar układu, następne prezentują estymację. Łatwo można zauważyć, że im większe ω_0 tym lepiej odwzorowywane są rzeczywiste stany układu (należy pamiętać, aby H była stabilna). Wniosek: Można estymować zaszumiony pomiar za pomocą obserwatora Luenberga.

8 Sprawdzenie dokładności drugiej metody

Zakładając, że:

$$x_1 = y; x_2 = \dot{x_1}$$

i że x_2 wynosi:

$$x_2[n] = \frac{x_1[n] - x_1[n-1]}{T_p}$$

Układ zaimplementowałem w anstępujący sposób:

Otrzymałem następujący przebieg:

Postanowiłem edytować drugi element z wektora x_2 , ponieważ zbytnio odbiegał od pozostałych obliczeń (być może jakiś błąd liczenia numerycznego się wkradł).

Poniżej prezentuję skorygowane oczekiwane przebiegi x_1 oraz x_2 liczone numerycznie (po lewej) oraz porównanie ich z estymowanymi przebiegami za pomocą obserwatora Luneberga (po prawej).

Można zauważyć, że przebiegi drugiej pochodnej odbiegają od siebie. Na podstawie przeprowadzonych badań wiem już, że do estymacji stanów lepiej posłużyć się obserwatorem Lubenergera niż obliczać je numerycznie. Dla układu o większej liczbie zmiennych stanu, metoda numeryczna nie sprawdziłaby się. Błąd przy obliczaniu drugiej pochodnej miałby wpływ na trzecią i otrzymywałbym wtedy coraz gorsze estymaty stanów.