TEST 2 - 2008

1. Which of the following rate equations is/are third order overall?

$(i) v_0 = k[A]^3$	(ii) $V_0 = k[B]^3[C][D]^{-1}$
(<i>iii</i>) $v_0 = k[A]^3[B]$	(iv) $v_0 = k[A][B]^2$

- (A) i, ii, iii
- (B) i, ii, iv
- **(C)** i
- (D) ii
- (E) i, iv

Exam 2010

16. Given the following experimental data for the reduction of nitric oxide with hydrogen gas, which includes initial concentrations and rates, determine the rate law.

Experiment	[NO]	[H ₂]	Rate
1	$6.4 \times 10^{-3} \text{ M}$	2.2 × 10 ⁻³ M	$2.6 \times 10^{-5} \text{ M/s}$
2	12.8 mM	2.2 × 10 ⁻³ M	0.104 mM/s
3	6.4 mM	$4.5 \times 10^{-3} \text{ M}$	5.1 × 10 ⁻⁵ M/s

- a. $v = k[NO]^2$
- b. $V = k[NO]^2[H_2]$
- c. $v = k[NO][H_2]$
- d. $V = k[NO_2]^2[H_2]$
- e. $v = k[HNO_2]^2[H_2]$

EXAM 2009

1. Which of the following statements about the Haber-Bosch reaction $(N_2 + 3H_2 \rightarrow 2NH_3) \text{ must be } \overline{\textbf{TRUE}}?$

(A)
$$3 \Delta [H_2]/\Delta t = 2 \Delta [NH_3]/\Delta t$$

(B)
$$2 \Delta [H_2]/\Delta t = 3 \Delta [NH_3]/\Delta t$$

(C)
$$v_0 = k[N_2][H_2]^3$$

(D)
$$v_0 = -d[N_2]/dt$$

(E)
$$v_0 = d[NH_3]^2/dt$$

2. For a reaction involving reactants A and B, the rate data in the table below were obtained. What is the **reaction rate** when [A] = 0.300 M and [B] = 0.400 M?

Expt. #	[A] (M)	[B] (M)	d[A]/dt (M/s)
1	0.20	0.30	0.24
2	0.40	0.60	1.92
3	0.20	0.60	0.48
4	0.40	0.30	0.96

- (A) 0.56 M/s
- **(B)** 0.72 M/s
- (C) 0.28 M/s
- **(D)** 1.4 M/s
- **(E)** 0.68 M/s

Exam 2008

1. What is the **correct rate law** for a reaction that yields the following initial rates?

Expt. #	[A] (M)	[B] (M)	[C] (M)	v ₀ (M/s)
1	1	1	1	0.054
2	2	1	1	0.108
3	1	1	2	0.216
4	2	2	2	0.432

- (A) $v_0 = k[A][B][C]$
- **(B)** $v_0 = k[A][B][C]^2$
- (C) $v_0 = k[A][B]^{-1}[C]^2$
- $(\mathbf{D}) \qquad v_0 = k[\mathsf{A}][\mathsf{C}]^2$
- (E) $v_0 = k[A][C]$