Read-only Prompt Optimization for Vision-Language Few-shot Learning (ICCV 2023)

Dongjun Lee* Seokwon Song* Jihee Suh Joonmyeong Choi Sanghyeok Lee Hyunwoo J. Kim† Korea University

Yurim Lee

yurimmy65@gmail.com

2024. 2. 7

I . Introduction

(1) Contrastive pre-training

I . Introduction

(a) Conventional Prompt Tuning

(c) Read-only Prompt Optimization

"Internal Representation Shift"

CoOp, CoCoOp: High Variance

-> may have negatively impact robustness & generalization in data-deficient setting

Linear probing: Parameter inefficient(262k), Lack of generalizability in domain-shift task

I . Introduction

Contributions

- We propose Read-only Prompt Optimization (RPO), which allows prompts only to read information from the attention-based interactions of a pre-trained vision language model, thereby preventing the internal representation shift.
- We develop a simple yet effective initialization method for our read-only prompts, leveraging the special token embeddings of the pre-trained CLIP vision-language model.
- Our extensive experiments and analyses demonstrate the generalization of RPO on domain and label shift in few-shot adaptation settings, achieving the best performance in 9 benchmarks on base to new generalization and in 4 benchmarks on domain generalization, at the same time reducing variance depending on the few-shot sample

II. Related works

Vision-Language Models

Especially good on zero-shot image classification But, adapting to specific tasks is challenging

Prompt Learning

Incorporating additional tokens (handcrafted instruction, learnable prompts)
Visual prompt & Text prompt

Zero-shot Learning & Domain Generalization

Learning general knowledge from 'base' -> adapt to novel classes

Domain – invariant representations are needed

Figure 3: **Overall architecture of RPO.** We use the default prompt "A photo of a [CLASS]" for all datasets. Then in both encoders, our read-only prompts are concatenated to the original features and fed into a frozen encoder. Attention within these encoders are masked so that our prompts can be learned, but not shift the original feature interactions. We compute similarity scores between the outputs of each encoder corresponding to each of K prompts and average them to produce final classification scores \bar{s}^1 to \bar{s}^C , where C denotes the number of classes.

3.1. Read-only Prompts

$$\mathbf{x}^{(0)} = \left[x^{(0)}; E_x^{(0)}; \{ p_i^v \}_{i=1}^K \right], \tag{1}$$

<Visual prompt>

[Special Token embedding(CLS); Visual embedding; ith learnable prompt], K= number of Prompts

$$\mathbf{y}^{(0)} = \left[y^{(0)}; E_y^{(0)}; \{ p_i^t \}_{i=1}^K \right], \tag{2}$$

<Text prompt>

[Special Token embedding(EOS); Text embedding; ith learnable prompt]

3.2. Special token-based initialization

$$p_i^v \sim \mathcal{N}(x^{(0)}, \sigma^2 I), \quad p_i^t \sim \mathcal{N}(y^{(0)}, \sigma^2 I),$$
 (3)

Visual Encoder: [CLS]

Text Encoder: [EOS]

: Feature aggregator

 $\sigma = 0.1$ -> Avoid constant initialization

3.3. Masked attention

Figure 4: The visualization of attention masks for each encoder.

$$M_v^{i,j} = \begin{cases} -\infty, & \text{if } j > 1 + N_x \\ 0, & \text{otherwise} \end{cases}$$
 (4)

[Mask]

$$M_t^{i,j} = \begin{cases} -\infty, & \text{if } j > 1 + N_y \text{ or } i > j \\ 0, & \text{otherwise} \end{cases}$$
 (5)

$$\mathbf{x}^{(l+1)} = \mathcal{V}_{l+1}(\mathbf{x}^{(l)}, M_v)$$
[Masked = $\mathbf{softmax} \left(\frac{QK^T}{\sqrt{d_v}} + M_v \right) \cdot V$, attention Operation]
$$\mathbf{y}^{(l+1)} = \mathcal{T}_{l+1}(\mathbf{y}^{(l)}, M_t)$$
= $\mathbf{softmax} \left(\frac{QK^T}{\sqrt{d_v}} + M_t \right) \cdot V$, (6)

[Final
$$\mathbf{y}^{(L)}$$
 outputs]

$$\mathbf{x}^{(L)} = \left[e_0; E_x^{(L)}; \{e_i\}_{i=1}^K\right],$$
inal
$$\mathbf{y}^{(L)} = \left[s_0; E_y^{(L)}; \{s_i\}_{i=1}^K\right],$$
utputs]
$$v_i = \mathbf{P}_v \cdot e_i,$$

$$t_i = \mathbf{P}_t \cdot s_i,$$
(8)

3.4. Pairwise Scoring Function

$$sim(x,y) = \frac{1}{K} \sum_{i=1}^{K} \frac{v_i \cdot t_i}{|v_i||t_i|}$$
 (9)

$$p(y_k|x) = \frac{\exp(\operatorname{sim}(x, y_k)/\tau)}{\sum_{i=1}^{C} \exp(\operatorname{sim}(x, y_i)/\tau)}$$
(10)

Averaging logits -> same effect as an ensemble of K independent models (separate perspectives about image & text)

IV. Experiments

(a) Aver	age over	11 datasets		(b) ImageNet.			(c) Caltech101.				
Methods	Base	Novel	Н	Methods	Base	Novel	Н	Methods	Base	Novel	H
CLIP	69.34	74.22	71.70	CLIP	72.43	68.14	70.22	CLIP	96.84	94.00	95.40
+LP	81.80	69.17	74.65	+LP	73.13	57.10	64.13	+LP	98.03	93.50	95.71
+CoOp	82.69	63.22	71.66	+CoOp	76.47	67.88	71.92	+CoOp	98.00	89.81	93.73
+CoCoOp	80.47	71.69	75.83 77.78	+CoCoOp	75.98	70.43	73.10 74.00	+CoCoOp	97.96	93.81	95.84 96.03
+RPO	81.13	75.00	77.76	+RPO	76.60	71.57	/4.00	+RPO	97.97	94.37	90.03
(d	(d) OxfordPets.				(e) StanfordCars.			(f) Flowers 102.			
Methods	Base	Novel	Н	Methods	Base	Novel	Н	Methods	Base	Novel	Н
CLIP	91.17	97.26	94.12	CLIP	63.37	74.89	68.65	CLIP	72.08	77.08	74.83
+LP	94.87	92.50	93.67	+LP	78.60	65.50	71.45	+LP	97.87	65.87	78.74
+CoOp	93.67	95.29	94.47	+CoOp	78.12	60.40	68.13	+CoOp	97.60	59.67	74.06
+CoCoOp	95.20	97.69	96.43	+CoCoOp	70.49	73.59	72.01	+CoCoOp	94.87	71.75	81.71
+RPO	94.63	97.50	96.05	+RPO	73.87	75.53	74.69	+RPO	94.13	76.67	84.50
((g) Food1	01.		(h) FGVCAircraft.			(i) SUN397.				
Methods	Base	Novel	Н	Methods	Base	Novel	Н	Methods Base Novel H			Н
CLIP	90.10	91.22	90.66	CLIP	27.19	36.29	31.09	CLIP	69.36	75.35	72.23
+LP	88.30	88.03	88.17	+LP	41.37	31.13	35.53	+LP	79.47	69.73	74.28
+CoOp	88.33	82.26	85.19	+CoOp	40.44	22.30	28.75	+CoOp	80.60	65.89	72.51
+CoCoOp	90.70	91.29	90.99	+CoCoOp	33.41	23.71	27.74	+CoCoOp	79.74	76.86	78.27
+RPO	90.33	90.83	90.58	+RPO	37.33	34.20	35.70	+RPO	80.60	77.80	79.18
	(j) DTD			(k) EuroSAT.				(l) UCF101.			
Methods	Base	Novel	Н	Methods	Base	Novel	Н	Methods	Base	Novel	Н
CLIP	53.24	59.90	56.37	CLIP	56.48	64.05	60.03	CLIP	70.53	77.50	73.85
+LP	80.63	55.97	66.07	+LP	82.30	68.00	74.47	+LP	85.27	73.53	78.97
+CoOp	79.44	41.18	54.24	+CoOp	92.19	54.74	68.69	+CoOp	84.69	56.05	67.46
+CoCoOp	77.01	56.00	64.85	+CoCoOp	87.49	60.04	71.21	+CoCoOp	82.33	73.45	77.64
+RPO	76.70	62.13	68.61	+RPO	86.63	68.97	76.79	+RPO	83.67	75.43	79.34

IV. Experiments

Table 2: Comparison of RPO, CoCoOp, CoOp and manual prompt in domain generalization. RPO learns from ImageNet (16 images per class) and is evaluated by 4 datasets with distribution shift and ImageNet itself. RPO performs better on 4 out of 5 datasets compared to CoCoOp.

		Source	Target						
	Learnable?	ImageNet	ImageNetV2	ImageNet-Sketch	ImageNet-A	ImageNet-R			
CLIP		66.73	60.83	46.15	47.77	73.96			
+CoOp	✓	71.51	64.20	47.99	49.71	75.21			
+CoCoOp	✓	71.02	64.07	48.75	50.63	76.18			
+RPO	✓	71.67	65.13	49.27	50.13	76.57			

Figure 6: Computational Cost of CoCoOp an RPO.

IV. Experiments

4.3. Analysis

Table 3: Ablation result averaged over 11 datasets.

[Masked attention & ST-initialization]

Methods	Base	Novel	Н
RPO w.o mask/init	78.63	69.56	73.29
RPO w.o mask	78.55	71.34	74.59
RPO w.o init	82.00	72.94	76.82
RPO	81.13	75.00	77.78

Table 4: Analysis of RPO on extreme few shot settings. We report RPO's averaged base accuracy, novel accuracy, and their harmonic mean on 10 benchmark datasets. RPO consistently outperforms CoCoOp on 1, 2, 4, and 8 shot setting evaluated by harmonic mean.

	1 shot		2 shot		4 shot		8 shot		16 shot	
	CoCoOp	RPO	CoCoOP	RPO	CoCoOp	RPO	CoCoOp	RPO	CoCoOp	RPO
Base	71.45±1.58	71.69±0.30	73.93±1.26	73.82± 0.57	76.50±0.96	77.18±0.71	78.46±1.02	79.66±0.36	80.57±0.60	81.31±0.30
Novel	72.47±2.00	$73.82 \!\pm\! 0.73$	71.91 ± 2.25	73.83 ± 0.64	72.50±2.06	73.43 ± 0.67	72.78 ± 2.10	73.66 ± 0.50	72.51±2.19	75.47±0.25
	71.70 1.00	E2 (0 0 2E	72.70 1.00		74.00 1.60	== 0= 1 0 4=	25.12.1.24	E	25.01.1.22	E0.44 : 0.46

[Extreme few-shot setting]

Table 5: Generalizability of uni-modal RPO.

[Uni-modal prompts]

Methods	Base	Novel	Н
CoOp	82.69	63.22	71.66
CoCoOp	80.47	71.69	75.83
text-RPO	79.54	74.84	77.01
RPO	81.13	75.00	77.78

[Variance]

Figure 5: Variance and generalization of RPO compared with CoCoOp. RPO is more generalizable and robust than CoCoOp in the perspective of base to new generalization and lower performance variance.

V. Conclusion

Proposed RPO, no internal representation shift, which results in better Generalization & Robustness Initialized to special tokens Good in base-to-new generalization and domain generalization with remarkably lower variance

Further research is needed to fully understand the efficiency and effectiveness of this method compared to other adaptation strategies

VI. Future works / Q & A

Thank you!