Сборник задач по курсу "Машинное обучение"

авторы: Кантонистова Е.О., Титов В.В., Широков А., Поликарпов К. $26\ \mbox{ноября}\ 2020\ \mbox{г}.$

Содержание

1	Ma'	тричное дифференцирование	2
	1.1	Теория	2
	1.2	Семинар	2
	1.3	Домашнее задание	
2	Ли	нейные классификаторы часть 1	4
	2.1	Семинар	4
	2.2	Домашнее задание	4
3	Ли	нейные классификаторы часть 2	6
	3.1	Семинар	6
	3.2	Домашнее задание	7
4	Ядј	pa	9
			9
			9
5	Сни	ижение размерности 1	.1
	5.1	Семинар	1
	5.2	Домашнее задание	. 1
6	Pen	пающие деревья	.3
	6.1	Семинар	.3
7	Бэг	тинг и бустинг	4
		Семинар	4
		Домашнее задание	

1 Матричное дифференцирование

1.1 Теория

Иногда при взятии производных по вектору или от вектор-функций удобно оперировать матричными операциями. Это сокращает запись и упрощает вывод формул. Введём следующие определения:

- При отображении вектора в число $f(x): \mathbb{R}^n \to \mathbb{R}$ $\nabla_x f(x) = [\frac{\partial f}{\partial x_1},...,\frac{\partial f}{\partial x_n}]^T.$
- При отображении матрицы в число $f(A): \mathbb{R}^{n \times m} \to \mathbb{R}$ $\nabla_A f(A) = (\frac{\partial f}{\partial A_{ij}})_{i,j=1}^{n,m}.$

Мы хотим оценить, как функция изменяется по каждому из аргументов по отдельности. Поэтому производной функции по вектору будет вектор, по матрице — матрица.

Полезные свойства:

- 1) $d(XY) = dX \cdot Y + X \cdot dY$
- 2) Если A матрица константа, то dA=0
- 3) d(X') = dX'
- 4) $d \det X = \det X tr(X^{-1} dX)'$

1.2 Семинар

Задача 1.1. Пусть $a \in \mathbb{R}^n$ — вектор параметров, а $x \in \mathbb{R}^n$ — вектор переменных. Необходимо найти производную их скалярного произведения по вектору переменных $\nabla_x a^T x$.

Задача 1.2. Пусть $A \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_A det A$.

Задача 1.3. Пусть $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_A tr(AB)$.

Задача 1.4. Пусть $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times m}$, $y \in \mathbb{R}^m$. Необходимо найти $\nabla_A x^T A y$.

1.3 Домашнее задание

Задача 1.5. Пусть t — скалярная переменная, r, s — векторные переменные, R, S — матричные переменные. Кроме того, a, b — векторы констант, A, B — матрицы констант. Применив базовые правила дифференцирования найдите:

- 1. d(ARB)
- 2. d(r'r)

3. d(r'Ar)4. $d(R^{-1})$, воспользовавшись тем, что $R^{-1}R=I$ 5. $d(\cos(r'r))$ 6. d(r'Ar/r'r)

Задача 1.6. Пусть $A \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_x x^T A x$

2 Линейные классификаторы часть 1

2.1 Семинар

Задача 2.1. Линейный классификатор выдал следующие значения для объектов из набора данных: $b_i = \mathbb{P}(y_i = 1|x_i)$.

y_i	\mathbf{b}_i
1	0.7
-1	0.2
-1	0.3
-1	0.8
1	0.6

Необходимо:

- 1. Построить ROC-кривую
- 2. Найти площадь под ROC-кривой и индекс Джини
- 3. Построить PR-кривую (кривая точность-полнота)
- 4. Найти площадь под РК-кривой

Задача 2.2. Дан алгоритм классификации, который выдаёт вероятность принадлежности объекта к положительному классу $b_i = \mathbb{P}(y_i = 1|x_i)$. Также есть набор данных с объектами двух типов: 100 китов и 900 муравьев. В качестве признака алгоритм использует количество глаз у объекта (у китов и муравьёв 2 глаза). После применения алгоритма к набору данных для каждого объекта было получено число $b_i = f(x_i) \in [0; 1]$, оценка вероятности того, что наблюдение является китом.

Решите задачу минимизации эмпирической функции риска и найдите все b_i для функций потерь:

- 1. $L(y_i, b_i) = (y_i b_i)^2$, если для муравьёв $y_i = 0$;
- 2. $L(y_i, b_i) = |y_i b_i|$, если для муравьёв $y_i = 0$;

2.2 Домашнее задание

Задача 2.4. Рассмотрим плоскость в \mathbb{R}^3 , задаваемую уравнением $5x_1+6x_2-7x_3+10=0$ и две точки, A=(2,1,4) и B=(4,0,4).

- 1. Найдите любой вектор, перпендикулярный плоскости;
- 2. Правда ли, что отрезок AB пересекает плоскость?
- 3. Найдите длину отрезка AB;
- 4. Не находя расстояние от точек до плоскости, определите, во сколько раз точка A дальше от плоскости, чем точка B;

5. Найдите расстояние от точки A до плоскости.

Задача 2.5. Закончите предложения:

- 1. accuracy это доля правильных ответов. . .
- 2. точность (precision) это доля правильных ответов. . .
- 3. полнота (recall) это доля правильных ответов. . .
- 4. TPR это доля правильных ответов. . .

Задача 2.6. Алгоритм бинарной классификации выдаёт оценки вероятности $b_i = \mathbb{P}(y_i = 1|x_i)$. Всего проведено 10000 наблюдений. Если ранжировать их по возрастанию b_i , то окажется что наблюдения с $y_i = 1$ занимают ровно места с 5501 по 5600. Найдите площадь по ROC-кривой и площадь под PR-кривой.

Задача 2.7. Для условия задачи 2.2. минимизируйте эмпирическую функцию риска и найдите все b_i для функций потерь:

1.
$$L(y_i, b_i) = \begin{cases} -\log b_i, \text{ если } y_i = 1 \\ -\log (1 - b_i), \text{ иначе} \end{cases}$$
;

2.
$$L(y_i,b_i) = \begin{cases} 1/\mathbf{b}_i, \text{ если } y_i = 1 \\ 1/(1-\mathbf{b}_i), \text{ иначе} \end{cases}$$
;

3 Линейные классификаторы часть 2

3.1 Семинар

Задача 3.1. Построить персептон, реализующий логическое ИЛИ.

Задача 3.2. На плоскости имеются точки двух цветов. Красные: (1,1),(1,-1) и синие: (-1,1),(-1,-1).

- 1. Найдите разделяющую полосу методом опорных векторов при разных C;
- 2. Укажите опорные вектора.

Задача 3.3. По картинке качественно решите задачу разделения точек:

Целевая функция имеет вид:

$$\min_{w,w_0} \frac{1}{2}w'w + C\sum_{i=1}^n \epsilon_i$$

Уравнение разделяющей поверхности: $w'x = w_0$, уравнения краёв полосы: $w'x = w_0 + 1$ и $w'x = w_0 - 1$. Нарушителями считаются наблюдения, которые попали на нейтральную полосу или на чужую территорию. Здесь $\epsilon_i = |w| \cdot d_i$, где d_i - заступ наблюдения за черту.

- 1. Как пройдёт разделяющая полоса при C=1? Найдите w,w_0 , величины штрафов ϵ_i .
- 2. Как пройдёт разделяющая полоса при $C=+\infty$? Найдите w,w_0 , величины штрафов ϵ_i .

Задача 3.4. Дана таблица сопряженности x и y:

Будем использовать логистическую регрессию с константой для прогнозирования y с помощью x.

- 1. Какие оценки коэффициентов мы получим?
- 2. Какой прогноз вероятности y=1 при значении признака x=0 даёт логистическая модель? Как это число можно посчитать без рассчитывания коэффициентов?

Задача 3.5. Показать, что из формулы логистической регрессии

$$p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$$

следует, что (w, x) - это логарифм отношения шансов (log-odds).

Задача 3.6. Показать, что квадратичная функция потерь

$$L(y,z) = ([y=+1]-z)^2$$

позволяет предсказывать корректные вероятности.

3.2 Домашнее задание

Задача 3.7. Построить персептон, реализующий логическое НЕ.

Задача 3.8.* Построить двухслойный персептон, реализующий ХОР.

Задача 3.9. На плоскости имеются точки двух цветов. Красные: (1,1), (1,-1) и синие: (-1,1), (-1,-1) и (2,0).

- 1. Найдите разделяющую гиперплоскость методом опорных векторов при разных C.
- 2. Укажите опорные вектора.

Задача 3.10. Покажите, что абсолютная функция потерь

$$L(y,z) = |[y = +1] - z|, z \in [0;1]$$

не позволяет предсказывать корректные вероятности.

Задача 3.11. Рассмотрим целевую функцию логистической регрессии с константой

$$Q(w) = \frac{1}{l} \sum_{i=1}^{n} L(y_i, b_i),$$

где
$$b_i=1$$
 / $(1+exp(-\langle w,x_i\rangle))$ и $L(y_i,b_i)=egin{cases} -log\ b_i,\ \text{если}\ y_i=1\\ -log(1-b_i),\ \text{иначе} \end{cases}$

Найдите градиент Q(w).

Задача 3.12. Оценка логистической модели для прогнозирования y_i , в зависимости от x_i и z_i : $\ln odds_i=2+0.3x_i-0.5z_i$. Оцените вероятность того, что $y_i=1$ для x=15, z=3.5.

4 Ядра

4.1 Семинар

Задание 4.1. Переход из двумерного пространства в расширяющее задан функцией

$$f:(x_1,x_2)\longrightarrow (1,x_1,x_2,3x_1x_2,2x_1^2,4x_2^2).$$

Найдите соответствующую ядерную функцию.

Задание 4.2. Ядерная функция имеет вид

$$K(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2.$$

Как может выглядеть функция $f:R^2\longrightarrow R^3$ переводящие исходные векторы в расширенное пространство?

Задание 4.3. Является ли функция $K(x,z)=\begin{cases} 1 & \text{if } x=z \\ 0 & \text{otherwise} \end{cases}$; ядром?

Задание 4.4. Докажите, что произведение ядер является ядром.

Задание 4.5. Докажите, что RBF-ядро это ядро.

4.2 Домашнее задание

Задание 4.6. Ядерная функция, скалярное произведение в расширяющем пространстве, имеет вид $K(a,b) = exp(-|a-b|^2)$. Имеются вектора a=(1,1,1) и b=(1,2,0).

Найдите длину векторов и косинус угла между ними в исходном и расширяющем (спрямляющем) пространстве.

Задание 4.7. Рассмотрим два вектора, $v_1 = (1,1,2)$ и $v_2 = (1,1,1)$. Переход в спрямляющее пространство осуществляется с помощью гауссовской ядерной функции с параметром γ , $k(v,v') = exp(-\gamma|v-v'|^2)$.

- 1. Как от γ зависят длины векторов в спрямляющем пространстве?
- 2. Как от γ зависит угол между векторами в спрямляющем пространстве?

Задание 4.8. Имеются три наблюдения A, B и C:

$$\begin{array}{c|cc} & x & y \\ \hline A & 1 & -2 \\ B & 2 & 1 \\ C & 3 & 0 \\ \end{array}$$

- 1. Найдите расстояние AB и косинус угла ABC.
- 2. Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью гауссовского ядра с $K(x,x')=exp(-|x-x'|^2)$.
- 3. Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью полиномиального ядра второй степени.

Задание 4.9. Является ли функция K(x, z) ядром?

1.
$$K(x,z) = \begin{cases} 0 & \text{if } x = z \\ 1 & \text{otherwise} \end{cases}$$

2.
$$K(x,z) = cos(x^Tx)sin(z^Tz);$$

3.
$$K(x, z) = sin(x^T z);$$

5 Снижение размерности

5.1 Семинар

Задание 5.1. Найдите SVD-разложение матриц.

1.
$$X = \begin{pmatrix} 0 & -7 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$2. \ \mathrm{X} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Задание 5.2. Дано сингулярное разложение матрицы X

$$X = U \cdot \begin{pmatrix} 7 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \cdot V'$$

Если возможно найдите сингулярное разложение для

- 1. X', 10X;
- 2. X'X, XX';

Задание 5.3. Найдите прямую, у которой сумма квадратов расстояний до точек (0,0),(1,1),(2,1) будет минимальной. Чему равна при этом доля объяснённого разброса точек?

Задание 5.4. Есть две переменных, x = (1,0,0,3)', z = (3,2,0,3)'. Найдите первую и вторую главные компоненты (то есть, собственные векторы матрицы X^TX).

5.2 Домашнее задание

Задание **5.5.** Найдите SVD-разложение матриц.

1.
$$X = {3 \choose 4}$$

$$2. \ X = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 2 & 2 \end{pmatrix}$$

3.
$$X = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix}$$

Задание 5.6. Дано сингулярное разложение матрицы X

$$X = U \cdot \begin{pmatrix} 7 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \cdot V'$$

Если возможно, найдите сингулярное разложение для

- 1. $(X'X)^4$, $(XX')^{-1}$, 5I + X'X; 2. $X'(XX')^{-1}X$;
- 3. $X(X'X)^{-1}X'$;

Задание 5.7. Известна матрица выборочных ковариаций трёх переменных. Для удобства будем считать, что переменные уже центрированы.

$$\begin{pmatrix} 11 & 2 & -8 \\ 2 & 2 & 10 \\ -8 & 10 & 5 \end{pmatrix}$$

Найдите первую и вторую главные компоненты. Какую долю дисперсии они объяс-?токн

6 Решающие деревья

6.1 Семинар

Задание 6.1. Постройте регрессионное дерево для прогнозирования y с помощью x на обучающей выборке:

\mathbf{x}_i	0	1	2	3
y_i	5	6	4	100

Критерий деления узла на два — минимизация RSS. Дерево строится до трёх терминальных узлов.

Задание 6.2. В мешке находятся 20 белых шаров, 40 черных, 2 красных и 8 синих. Как изменился индекс Джини и энтропия после того, как все черные шары перенесли в новый мешок?

Задание 6.3. Приведите примеры наборов данных, для которых индекс Джини равен 0, 0.5 и 0.999.

7 Бэггинг и бустинг

7.1 Семинар

Задание 7.1. В мешке есть 100 разных шаров. Равновероятно вытаскиваем из мешка по одному шару и кладем его обратно. Сколько в среднем шаров оказываются невытащенными ни разу за 100 таких действий.

Задание 7.2. Есть выборка из четырёх наблюдений:

\mathbf{x}_i	1	2	3	4
y_i	6	6	12	18

Есть два дерева:

Используем бэггинг. Первому дереву достались наблюдения номер 1, 1, 2 и 3. А второму дереву -2, 3, 4 и 4. Прогнозы в каждом листе строятся минимизируя сумму квадратов ошибок. Какие прогнозы внутри обучающей выборки мы получим с помощью такого леса?

Задание 7.3. Истинная зависимость имеет вид $y_i = x_i^2 + u_i$, где y_i - прогнозируемая переменная, x_i - предиктор и u_i - ненаблюдаемая случайная составляющая. Величины x_i независимы и равновероятно принимают значения 1 и 2. Величины u_i независимы и равновероятно принимают значения -1 и 1. Обучающая выборка состоит из двух наблюдений.

Разложите ожидание квадрата ошибки прогноза на шум, смещение и разброс, если: 1. Вне зависимости от обучающей выборки из-за ошибки в коде в качестве прогноза всегда выдаётся 0.

2. в качестве прогноза алгоритм всегда выдает последний y из обучающей выборки.

Задание 7.4. Есть выборка из четырёх наблюдений:

\mathbf{x}_i	1	2	3	4
y_i	6	6	12	18

Есть два дерева:

Используем бустинг с темпом обучения ν . Прогнозы в каждом листе конкретного дерева строим минимизируя функцию:

$$Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{T} w_j^2$$

где y_i — прогнозируемое значение для i-го наблюдения, n — количество наблюдений, w_j — прогноз в j-ом листе, T — количество листов на дереве. Какие прогнозы внутри обучающей выборки получатся при $\nu=1$ и $\lambda=1$?

7.2 Домашнее задание

Задание 7.5. Постройте регрессионное дерево для прогнозирования y с помощью x на обучающей выборке:

y_i	\mathbf{x}_i
100	1
102	2
103	3
50	4
55	5
61	6
70	7

Критерий деления узла на два — минимизация RSS. Узлы делятся до тех пор, пока в узле остаётся больше двух наблюдений.

Задание 7.6. Есть выборка из пяти наблюдений:

y_i	\mathbf{x}_i
1	10
2	11
2	12
3	13
3	14

Постройте классификационное дерево для прогнозирования y_i с помощью x_i на обучающей выборке. Дерево строится до идеальной классификации. Критерий деления узла на два — максимальное падение индекса Джини.

Задание 7.7. Построим классификационное дерево для бинарной переменной y_i . Может ли при разбиении узла на два расти индекс Джини? Энтропия?

Задание 7.8. Рассмотрим задачу построения классификационного дерева для бинарной переменной y_i . Приведите пример такого набора данных, что никакое разбиения стартового узла на два не снижает индекс Джини, однако двух разбиений достаточно, чтобы снизить индекс Джини до нуля.

Задание 7.9. Постройте классификационное дерево для прогнозирования y с помощью x и z на обучающей выборке:

x_i	0	0	0	1	1
z_i	1	2	3	3	5
y_i	0	1	1	0	0

Критерий деления узла на два — минимизация индекса Джини. Дерево строится до идеальной классификации.

Задание 7.10. Есть выборка из четырёх наблюдений:

\mathbf{x}_i	1	1 2		4
y_i	6	6	12	18

Есть два дерева:

Используем бэггинг. Первому дереву достались наблюдения номер $1,\ 1,\ 2$ и 3. А второму дереву $-2,\ 3,\ 4$ и 4. Прогнозы в каждом листе конкретного дерева строим минимизируя функцию:

$$Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{T} w_j^2$$

Какие прогнозы внутри обучающей выборки мы получим с помощью такого леса?

Задание 7.11. Истинная зависимость имеет вид $y_i = 3x_i^2 + u_i$, где y_i - прогнозируемая переменная, x_i - предиктор и u_i - ненаблюдаемая случайная составляющая. Величины x_i независимы и равновероятно принимаю значения 0, 1, 2. Величины u_i независимы и равновероятно принимают значения -1 и 1.

Оценим модель линейной регрессии $y_i = \hat{\beta}x_i$ с помощью МНК. Разложите ожидание квадрата ошибки прогноза на шум, смещение и разброс.