

Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis

Reporter: Zhao Junzhe

Date: 2023.11.02

Paper Information

Title: Cost allocation of cooperative autonomous truck platooning:

Efficiency and stability analysis

- Published on Transportation research part B: methodological
 - Received: 24 August 2022
 - Revised: 20 March 2023
 - Accepted: 22 April 2023
 - Keywords: truck platooning; autonomous vehicle; cooperative game; cost allocation; stability; efficiency
 - Authors: Shukai Chen, Hua Wang, Qiang Meng*

0. Authors

陈书恺(教授,合肥工业大学,汽车与交通工程学院)

Education

• PhD, Department of Civil and Environmental Engineering (CEE), National University of Singapore

■ Publications (567 citations)

- Transportation Science
- Transportation research part B (3)
- Transportation research part E

■ Research Areas

- Transportation network modelling
- Autonomous vehicles
- Container drayage

0. Authors

王华 (教授, 合肥工业大学)

■ Education

 PhD, School of Transportation Engineering, Tongji University

■ Publications (1305 citations)

- Transportation research part B
- Transportation research part E
- Transportation research part C

■ Research Areas

- Transportation network modelling
- Liner container shipping
- Electric-vehicle infrastructure planning

0. Authors

Meng Qiang (Professor, Director of CTR of CEE, National University of Singapore)

■ Education

- PhD, Hong Kong University of Science and Technology, 1997-2000
- MSc, Chinese Academy of Sciences, 1989
- BS, East China Normal University, 1984

■ Publications (17420 citations)

TITLE	CITED BY	YEAR
Sailing speed optimization for container ships in a liner shipping network S Wang, Q Meng Transportation Research Part E: Logistics and Transportation Review 48 (3	472	2012
Containership routing and scheduling in liner shipping: overview and future research directions Q Meng, S Wang, H Andersson, K Thun Transportation Science 48 (2), 265-280	446	2014

Research Areas

- Transportation network modelling
- Liner container shipping
- Electric-vehicle infrastructure planning

- ✓ Co-Editor-in-Chief, TRE
- ✓ Associate Editor, TRB

1. Background

- Vehicle platooning: an autonomous vehicle (AV) technology
 - A group of vehicles traveling with small headway by means of advanced automated driving systems and vehicle-to-vehicle communication.

https://xiaotongsun.com/

- Some important facts:
- (i) The leading vehicle may save less fuel consumption than the following vehicle in a platoon.
- (ii) The formation of platoons requires a reasonable synchronization of AT departure time.

1. Background

Cooperative AT platooning

Fig. 1. The platform of carrier alliance for cooperative AT platooning.

- Budget balance constraint: $\alpha(N) = \pi(N)$
- (i) Efficiency: the total cost is allocated to each carrier without a budget deficit.
- Coalition stability constraints: $\alpha(S) \le \pi(S)$
- (ii) Stability: all carriers form a grand alliance and do not form sub-alliance.

1. Background

■ Basic problem My understanding: Fuel consumption cost VS Schedule deviation cost

Fig. 2. An illustrative example.

The fuel consumption cost is set as $c_i^l = 50$ and $c_i^f = 40$.

The schedule deviation coefficients for earliness and lateness are set as $p_i^l = p_i^e = 0.5$.

The total cost of carriers 1 and 2 is $\underline{50+50=100}$ and $\underline{90+50+5*0.5=142.5}$. The total cost of the alliance is 130+90+0.5*(10+5+10)=232.5<100+142.5

2. Related literature

Research Gap

Related area	Research content	Published research	Research Gap	
Vehicle platooning	The truck platooning on a given route.	Boysen et al. (2018) Zhang et al. (2017) Chen et al. (2019, 2020)	Multiple carriers	
	Vehicle platooning in networks.	Larson et al. (2016) Abdolmaleki et al. (2021)		
Cost/profit allocation	near-optimal cost allocation	Faigle and Kern (1993) Shapley and Shubik (1966) Caprara and Letchford (2010) Liu et al. (2018)	Stability and efficiency	
	profit/cost allocation for truck platooning.	Johansson and Mårtensson (2019) Sun and Yin (2019) Bouchery et al. (2022)		

Cooperative AT platooning game fuel consumption cost schedule deviation cost

$$(P1) \quad v_1(S) = \min \sum_{i,j \in \mathcal{N}_S} z_{ij} c_j^f + \sum_{i \in \mathcal{N}_S} z_{ii} (c_i^l - c_i^f) + \sum_{i \in \mathcal{N}_S} p_i^l \delta_i^l + p_i^e \delta_i^e$$

s.t.
$$\sum_{j \in \mathcal{N}_S} z_{ji} = 1$$
, $\forall i \in \mathcal{N}_S$,
Every request should be assigned to one AT platoon.

$$\begin{split} \sum_{j \in \mathcal{N}_S} z_{ij} &\leq Q \cdot z_{ii}, \quad \forall i \in \mathcal{N}_S, \\ \text{The length of platoons is limited.} \end{split}$$

$$s_i - s_j \ge (z_{ij} - 1) \cdot M$$
, $\forall i, j \in \mathcal{N}_S$, All ATs in one platoon depart simultaneously. $\forall i, j \in \mathcal{N}_S$, $\forall i, j \in \mathcal{N}_S$,

$$\delta_i^e \ge d_i - s_i, \quad \forall i \in \mathcal{N}_S,$$

$$\delta_i^l \ge s_i - d_i$$
, $\forall i \in \mathcal{N}_S$, The schedule earliness and lateness.

$$z_{ij} \in \{0,1\}, \quad \forall i, j \in \mathcal{N}_S,$$

$$s_i, \delta_i^e, \delta_i^l \in \mathbb{R}_+, \quad \forall i \in \mathcal{N}_S.$$

s.t.
$$\sum_{j \in \mathcal{N}_S} y_{ji} = 1$$
, $\forall i \in \mathcal{N}_S$,

$$\sum_{j \in \mathcal{N}_S} y_{ij} \leq Q \cdot y_{ii}, \quad \forall i \in \mathcal{N}_S,$$

$$\sum_{j \in \mathcal{N}_S} w_{ij} = y_{ii}, \quad \forall i \in \mathcal{N}_S,$$

$$w_{ij} \leq y_{ij}, \quad \forall i, j \in \mathcal{N}_S,$$

$$y_{ij}, w_{ij} \in \{0,1\}, \quad \forall i,j \in \mathcal{N}_S.$$

Proposition 1. Consider the optimal departure time s^* to model P1. For an AT platoon serving a set of requests Γ , there exists a request $j \in \Gamma$ such that the optimal platoon departure time is at the scheduled departure time of request j, namely, $s_i^* = d_i, \forall i \in \Gamma$.

Proposition 1

■ Cooperative AT platooning game Goemans and Skutella (2004)

Proposition 2. There is no integrality gap for the linear relaxation of model P2 if the following two conditions are satisfied, namely,

- (i) Homogeneous cost coefficients, i.e., $c^f = c_i^f$, $c^l = c_i^l$, $p^l = p_i^l$, and $p^e = p_i^e$ for each $i \in \mathcal{N}$;
- (ii) The number of requests whose scheduled departure time falls into the interval $[d_i \frac{c^l c^f}{p_{\mu}^l}, d_i + \frac{c^l c^f}{p_{\mu}^e}]$ for any $i \in \mathcal{N}$ is less or equal to Q.
- homogeneous cooperative AT platooning game
- (i) The schedule deviation coefficients are zero, namely, $p_i^e = p_i^l = 0$.
- (ii) The coefficients of fuel consumption are homogeneous, i.e., $c^l = c^l_i$ and $c^f = c^f_i$ for each i.

$$v_2(S) = \alpha_S \cdot c^l + (N_S - \alpha_S) \cdot c^f,$$

where N_S is the number of requests in the coalition S and $\alpha_S = \left\lceil \frac{N_S}{Q} \right\rceil$ represents the number of AT platoons (leading vehicles).

The closed-form formula of characteristic function allows us to derive the analytical results.

Extension

- (i) A common origin and multiple destinations.
- (ii) A longer platoon saves more fuel consumption.

Fig. 3. Corridor with one origin and three destinations.

$$(P3) \quad v_{3}(S) = \min \sum_{i,j \in \mathcal{N}_{S}} r_{ij} y_{ij} + \sum_{b \in \mathcal{B}} \sum_{i \in \mathcal{N}_{S}} \sum_{j \in \mathcal{N}_{S}(b)} \sum_{q=1}^{\varepsilon} (D_{b} - D_{b+1}) (c_{j,q}^{l} \cdot \sigma_{ij,b}^{l,q} + c_{j,q}^{f} \cdot \sigma_{ij,b}^{f,q})$$

s.t. (11)–(12),

$$\sum_{j \in \mathcal{N}_S(b)} y_{ij} = \sum_{q=1}^Q \pi_{i,b}^q \cdot q, \quad \forall i \in \mathcal{N}_S, b \in \mathcal{B}, \quad \text{The length of the platoon}$$

$$\begin{split} &\sigma_{ij,b}^{l,q} + \sigma_{ij,b}^{f,q} \geq \pi_{i,b}^q + y_{ij} - 1, \quad \forall b \in \mathcal{B}, i \in \mathcal{N}_S, j \in \mathcal{N}_S(b), q = 1, 2, \dots, Q, \\ &\sigma_{ij,b}^{l,q} + \sigma_{ij,b}^{f,q} \leq \pi_{i,b}^q, \quad \forall b \in \mathcal{B}, i \in \mathcal{N}_S, j \in \mathcal{N}_S(b), q = 1, 2, \dots, Q, \\ &\sigma_{ij,b}^{l,q} + \sigma_{ij,b}^{f,q} \leq y_{ij}, \quad \forall b \in \mathcal{B}, i \in \mathcal{N}_S, j \in \mathcal{N}_S(b), q = 1, 2, \dots, Q, \end{split}$$

$$\sum_{j \in \mathcal{N}_S(b)} \sigma_{ij,b}^{l,q} = \pi_{i,b}^q, \quad \forall b \in \mathcal{B}, i \in \mathcal{N}_S, q = 1, 2, \dots, Q, \quad \text{There exists a leading AT in the specified platoon.}$$

$$y_{ij} \in \{0,1\}, \quad \forall i,j \in \mathcal{N}_S,$$

$$\pi_{i,b}^q \in \{0,1\}, \quad \forall b \in \mathcal{B}, i \in \mathcal{N}_S, q = 1, 2, \dots, Q,$$

$$\sigma_{ij,b}^{l,q}, \sigma_{ij,b}^{f,q} \in \{0,1\}, \quad \forall b \in \mathcal{B}, i \in \mathcal{N}_S, j \in \mathcal{N}_S(b), q = 1,2,\dots,Q.$$

■ Cost allocations models

• The approximate core

$$\sum_{k \in S} x_k \le v(S) + \epsilon, \quad \forall S \subset \mathcal{K},$$

$$\sum_{k \in \mathcal{K}} x_k = v(\mathcal{K}) - \gamma,$$

$$efficiency violation$$

Single-objective models

$$\begin{split} &(\mathsf{CAM}\text{-}1) \quad h(\gamma, v) = \min_{\varepsilon, \mathbf{x}} \{\varepsilon \ : \ \mathbf{x} \in \Pi(\varepsilon, \gamma, v), \varepsilon \in \mathbb{R}_+, \mathbf{x} \in \mathbb{R}^K \}, \\ &(\mathsf{CAM}\text{-}2) \quad u(\varepsilon, v) = \min_{\gamma, \mathbf{x}} \{\gamma \ : \ \mathbf{x} \in \Pi(\varepsilon, \gamma, v), \gamma \in \mathbb{R}_+, \mathbf{x} \in \mathbb{R}^K \}, \end{split}$$

Propositions:

- 3. The function $h(\gamma, v)$ is decreasing with respect to γ .
- 4. $h(0, v) \le \mu(0, v)$.
- 5 & 6. The upper bounds of $\mu(0, v_2)$ and $h(0, v_2)$.

Fig. 4. Illustration of lower bound of $v_2(K)$

■ Cost allocations models

Bi-objective models

(CAM-3)
$$\min_{\mathbf{x}, \gamma, \epsilon} \begin{pmatrix} \gamma \\ \epsilon \end{pmatrix}$$

If the cost allocation $\hat{\mathbf{x}}$ is *Pareto-optimal* to model CAM-3, then there does not exist another cost allocation \mathbf{x}' such that $\epsilon(\mathbf{x}') \leq \epsilon(\hat{\mathbf{x}})$ and $\gamma(\mathbf{x}') \leq \gamma(\hat{\mathbf{x}})$ with at least one inequality strictly holding.

Proposition 7. Suppose $\hat{\mathbf{x}} = \{\hat{x}_k, k \in \mathcal{K}\}$ is a Pareto-optimal cost allocation for any cooperative AT platooning game (\mathcal{K}, v) , then the cost allocation $\hat{\mathbf{x}}$ is individually rational, i.e., $\hat{\mathbf{x}}_k \leq v(\{k\})$ for each player $k \in \mathcal{K}$.

Proposition 8. Suppose $\hat{\mathbf{x}} = \{\hat{x}_k, k \in \mathcal{K}\}$ is a Pareto-optimal cost allocation for the game (\mathcal{K}, v_2) , then we have $\hat{\mathbf{x}}_k \geq \bar{\alpha}_{\{k\}} c^l + (N_{\{k\}} - \bar{\alpha}_{\{k\}}) c^f$ for each player $k \in \mathcal{K}$ where $\bar{\alpha}_{\{k\}} = \lceil \frac{N_{\{k\}} - (Q-1)}{O} \rceil$.

4. Solution method

Row-generation

Algorithm 1: Row-generation-based solution method.

Input: Initial restricted coalition set $\Xi = \{\{1\}, \{2\}, ..., \{K\}\}.$

Output: Optimal solution to model CAM-1 or CAM-2.

- 1 Solve the initial master problem and separation problem;
- 2 while $\Phi < 0$ do
- Update the restricted coalition set: $\Xi \leftarrow \Xi \cup \{k \in \mathcal{K} \mid \phi_k = 1\}$;
- Given the coalition set Ξ , solve the master problem and obtain the optimal solution $\bar{x}_k \ \forall k \in \mathcal{K}$;
- Solve the separation problem and obtain the optimal solution $\phi_k \ \forall k \in \mathcal{K}$;
- 6 Record the optimal cost allocation as $x_k = \bar{x}_k \ \forall k \in \mathcal{K}$
- separation problem

(SP)
$$\Phi = \min_{S \subset \mathcal{K}} v(S) + \bar{\epsilon} - \sum_{k \in S} \bar{x}_k$$
,

$$(\text{SP-IP}) \quad \boldsymbol{\varPhi} = \min \sum_{i,j \in \mathcal{N}} y_{ij} (r_{ij} + c_j^f) + \sum_{i,j \in \mathcal{N}} w_{ij} (c_j^l - c_j^f) + \bar{\epsilon} - \sum_{k \in \mathcal{K}} \bar{x}_k \phi_k$$

s.t. (12)–(15),
$$\phi_k = \sum_{j \in \mathcal{N}} y_{ji}, \quad \forall k \in \mathcal{K}, i \in \mathcal{N}_k,$$
$$\sum_{k \in \mathcal{K}} \phi_k \le K - 1,$$
$$\phi_k \in \{0, 1\}.$$

5. Numerical experiments

Optimal solution

S	$v_1(S)$	CAM-1		CAM-2		Shapley	
		Cost	Diff	Cost	Diff	Cost	Diff
{1}	447.00	440.76	-6.24	442.76	-4.24	441.18	-5.82
{1, 2}	651.20	648.38	-2.82	648.00	-3.20	648.82	-2.38
{1, 2, 3}	1056.74	1057.50	0.76	1056.74	0.00	1057.49	0.75
{1, 2, 3, 4}	1355.50	1355.50	0.00	1354.36	-1.14	1355.50	0.00
{1, 2, 4}	945.62	946.38	0.76	945.62	0.00	946.83	1.21
{1, 3}	851.50	849.88	-1.62	851.50	0.00	849.85	-1.65
{1, 3, 4}	1150.30	1147.88	-2.42	1149.12	-1.18	1147.86	-2.44
{1, 4}	741.46	738.76	-2.70	740.38	-1.08	739.19	-2.27
{2}	213.50	207.62	-5.88	205.24	-8.26	207.64	-5.86
{2, 3}	621.50	616.74	-4.76	613.98	-7.52	616.31	-5.19
{2, 3, 4}	913.98	914.74	0.76	911.60	-2.38	914.32	0.34
{2, 4}	509.82	505.62	-4.20	502.86	-6.96	505.65	-4.17
(3)	413.50	409.12	-4.38	408.74	-4.76	408.67	-4.83
{3, 4}	706.36	707.12	0.76	706.36	0.00	706.68	0.32
{4}	303.50	298.00	-5.50	297.62	-5.88	298.01	-5.49

Fig. 5. Pareto frontiers of instances under different (a) players/requests; and (b) maximum platoon length.

 (\mathcal{K}, v_1)

0.76<1.14, which is consistent with Proposition 4.

Shapley method fulfills the efficiency condition but causes a larger stability violation.

 (\mathcal{K}, v_2)

Pareto frontier

5. Numerical experiments

Optimal solution

The UB is tighter than LB.

5. Numerical experiments

Computational performance

Table 7
Computational performance of medium instances for the game (\mathcal{K}, v_1) .

Instance	Core	CAM-1			CAM-2		
		Obj	#Row	T	Obj	#Row	T
K15-N45-L-1	E	1.97	78	6971	2.63	76	1393
K15-N45-L-2	E	1.44	69	302	1.87	68	195
K15-N45-L-3	E	2.76	71	1929	3.27	76	2742
K15-N45-L-4	E	2.37	71	441	2.77	73	376
K15-N45-L-5	E	2.26	68	2074	2.83	69	1995
K15-N45-M-1	NE	0	409	324	0	390	296
K15-N45-M-2	NE	0	205	134	0	232	165
K15-N45-M-3	NE	0	357	237	0	322	216
K15-N45-M-4	NE	0	136	71	0	147	80
K15-N45-M-5	NE	0	529	438	0	397	306
K15-N60-L-1	-	-	19	7200	-	20	7200
K15-N60-L-2	-	-	17	7200	-	26	7200
K15-N60-L-3	- 1	-	26	7200	-	18	7200
K15-N60-L-4	23	2	23	7200	_	19	7200
K15-N60-L-5	 /3	-	21	7200	1 - 2	19	7200
K15-N60-M-1	NE	0	203	319	0	194	311
K15-N60-M-2	NE	0	321	503	0	335	526
K15-N60-M-3	NE	0	125	228	0	112	178
K15-N60-M-4	NE	0	139	179	0	192	266
K15-N60-M-5	NE	0	166	263	0	175	292

The schedule deviation coefficients impose a significant impact on computational performance.

5. Comments

Negative comments:

- ✓ To solve a larger size of instances, an efficient heuristic solution method needs to be developed in the future study.
- ✓ Multiple origins and destinations.

My comments:

- ✔ 没有写Core的概念,对非合作博弈领域的读者更友善,同时概念迁移,可解释性强。
- ✓ 应用类的文章,更关注问题和模型的性质,而不是算法的可行性和复杂度。但相比 于纯OM的文章,管理启示的笔墨少。
- ✓ 技术难度小,框架可模仿性强。做了模型的Extension,和大量的数值实验。
- ✔ 一些想法: 外卖配送?

Thank You!

Reporter: Zhao Junzhe