ADAPINE FL

ADAPTIVE FEDERATED OPTIMIZATION

REFERENCE

Reddi, Sashank, et al.
 "Adaptive Federated Optimization."
 arXiv preprint arXiv:2003.00295 (2020).

- ▶ 연합 학습(Federated Learning, FL)은 분산 머신 러닝 패러다임
 - 많은 수의 클라이언트들이 중앙 서버에게
 - 자신의 훈련 데이터를 공유하지 않고 학습에 협력

- 클라이언트 데이터셋들의 이종적인 특성 때문에
 - ▶ 연합 평균(Federated Averaging, FEDAVG)과 같은
 - 표준 연합 최적화 방법은 조율이 힘든 경우에 종종 처함
 - 수렴 양상이 바람직못한 경우들

- 비-연합 환경에서는
 - > 적응형(adaptive) 최적화 기법이 이러한 이슈를 잘 다룸

- > 저자들은 적응형 최적화기의 연합 버전을 제안
 - ADAGRAD
 - ADAM
 - YOGI

- 이종적인 환경에서의 수렴성 분석
 - 클라이언트의 이종성과 통신 효율 사이의 상호 영향을 조명
- 적응형 최적화기들이 연합 학습의 성능을 매우 향상

- FL은
 - 중앙 서버의 조율 하에서
 - 많은 수의 클라이언트가 모델 학습에 협력하는
 - > 엣지(edge) 디바이스
 - 어러 기관 등
 - 머신 러닝 패러다임

- FL의 핵심은
 - ▶ 원(raw) 클라이언트의 데이터가
 - ▶ 절대로 서버나 다른 클라이언트에게
 - 공유되지 않는다는 것

- 기존의 분산 최적화와는 달리
 - FL은 이종적인 데이터를 다룬다는 점이
 - 문제이자 쟁점

- ▶ 미니배치(mini-batch) SGD를 사용하는
 - 표준적인 접근법은
 - 높은 통신 비용을 초래하므로
 - 많은 FL 환경에 적합하지 않음

- 이에 FL을 위한 많은 최적화 기법은
 - ▶ 로컬(local) 클라이언트 업데이트를 활용
 - ▶ 클라이언트가 통신 전에 로컬 모델을 수 차례 업데이트
- FL에 널리 쓰이는 로컬 최적화 기법 중 하나인
 - FEDAVG

- FEDAVG의 각 라운드에서
 - 클라이언트의 일부는 병렬적으로
 - SGD의 몇 에폭을 수행
- 클라이언트는 모델 업데이트 정보를 서버와 통신
 - 서버는 평균을 통해 새 글로벌 모델을 계산

- FEDAVG가 큰 성공을 거뒀음에도
 - ▶ 최근의 연구들로부터 단점이 조명됨
- 본 논문에서는 두 문제를 다름
 - 클라이언트 드리프트(client drift)
 - > 적응적 학습률(adaptive learning rate)의 부재

- 클라이언트 드리프트(client drift)
 - 이종적 환경에서 여러 로컬 SGD 에폭의 수행은
 - ▶ 글로벌한 최적 모델로부터 멀리 떨어지게(drift) 만듦

- 적응적 학습률(adaptive learning rate)의 부재
 - 학습 과정 중의 Heavy-tail 노이즈 분포 등
 - Zhang, Jingzhao, et al. "Why ADAM beats SGD for attention models." arXiv preprint arXiv:1912.03194 (2019).
 - 필연적으로 적응적 학습률이 필요한 환경들이 있음

- 적응적 학습률(adaptive learning rate)의 부재
 - 필연적으로 적응적 학습률이 필요한 환경들이 있음
 - 이는 과거의 반복(iteration)들로부터 정보에 기반한
 - ▶ 그래디언트 기반의 최적화를 수행하도록 함

- ▶ 그러나 정보 공유를 하지 않는 FL의 기본 속성에 따르면
 - 저응형 학습률은 도전적인 문제임

- ▶ 클라이언트들이 모델을 업데이트
 - 어러 에폭을
 - 임의의 클라이언트 최적화기를 이용해
 - ▶ 로컬 데이터의 손실(loss)을 줄이기 위해

- ▶ 서버는 글로벌 모델을 업데이트
 - 모델 업데이트의 평균으로부터
 - 그라디언트 기반
 - 서버 최적화기를 이용
 - 클라이언트들에 걸친 손실을 최소화하기 위해

- 클라이언트와 서버의 학습률을 분리하는 자연스러운 방법을 제시
 - FEDAVG는 클라이언트와 서버가 SGD를 쓰고, 서버의 학습률이 1인 경우
 - 즉, FEDAVG의 일반화
- 클라이언트와 서버가 다른 학습률을 활용할 수 있도록 함
 - 클라이언트 드리프트를 해결할 방법을 제공

- 적응형 방법들인
 - ADAGRAD, ADAM, YOGI
 - 등은 머신 러닝 커뮤니티에서 유명한 기법들
 - 학습률을 튜닝할 수고를 덜고
 - ▶ Heavy-tail 노이즈 분포 등을 잘 다룸

- 이들 프레임워크 위에서
 - FL을 위한 적응형 최적화 기술들을 개발

CONTRIBUTIONS

- 일반화된 FL 최적화 프레임워크
 - 서버와 클라이언트 최적화기 양 쪽에 대한
 - FEDAVG를 포함한 FL의 주 최적화 기법들을 캡슐화/일반화

CONTRIBUTIONS

- 이 프레임워크에 기반해 FL을 위한 적응형 최적화 기법들을 제안
 - 또한, 수렴성 분석
 - "최초"의 FL을 위한 적응형 최적화 기법

CONTRIBUTIONS

- 6개의 실험을 통해
 - 모멘텀(momentum)의 중요성과
 - → 클라이언트의 학습률 감소 스케쥴의
 - 중요성을 보임
- 제안하는 방법을 통해
 - 기존 FEDAVG 대비
 - ▶ 4개의 실험에서 극적인 향상을 보임

FL&FEDAVG

주로 다음 문제를 풀고자 함:

$$\arg\min_{x\in\mathbb{R}^d} f(x) = \frac{1}{m} \sum_{i=1}^m F_i(x)$$

- 파라미터 x
- $F_i(x) = \mathbb{E}_{z \sim D_i}[f_i(x, z)] : i$ 번째 클라이언트의 손실 함수
 - Non-convex
 - ▶ f(x) 역시 non-convex
- D_i : i번째 클라이언트의 데이터 분포

- 가정들
 - ▶ 1. 립시츠 그라디언트(Lipschitz Gradient)
 - > 2. 유계 분산(Bounded Variance)
 - ▶ 3. 유계 그라디언트(Bounded Gradients)
- ▶ 1과 3은 non-convex 최적화 얘기에서는 흔한 가정
- ▶ 서로 다른 클라이언트 데이터셋에 대한 추가 가정은 논의하지 않음
 - ▶ 가정 2는 목적 함수의 분산에 관한 내용
 - ▶ 여러 FL 연구에서 두는 가정

- ▶ 1. 립시츠 그라디언트(Lipschitz Gradient)
- 함수 F_i 는 L-smooth
- ▶ 모든 x, y에 대해 $\|
 abla F_i(x)
 abla F_i(y)\| \leq L\|x-y\|$

- > 2. 유계 분산(Bounded Variance)
- > 함수 F_i 는 σ_l -bounded 로컬 분산을 가짐
 - $\mathbb{E}[\|\nabla [f_i(x,z)]_j [\nabla F_i(x)]_j\|^2] = \sigma_{l,j}^2$
- 글로벌 분산 역시 유계
 - $\sum_{i=1}^{m} \|\nabla [F_i(x)]_j [\nabla f(x)]_j\|^2 \le \sigma_{g,j}^2$

- > 2. 유계 분산(Bounded Variance)
- 나일 $\sigma_g^2 = \Sigma \sigma_{g,j}^2$ 에서 $\sigma_g = 0$ 이라면 i.i.d.한 상황
 - ▶ 독립항등분포(independent and identically distributed)

- > 3. 유계 그라디언트(Bounded Gradients)
- 한 학수 $f_i(x, z)$ 는 G-bounded 그라디언트를 가짐
- 어떠한 i,x,z에 대해, 모든 j에 대해 $|[\nabla f_i(x,z)]_j| \leq G$

주로 다음 문제를 풀고자 함:

$$rg \min_{x \in \mathbb{R}^d} f(x) = rac{1}{m} \sum_{i=1}^m F_i(x)$$

가장 유명한 접근법은 FEDAVG

- FEDAVG 기법
 - 각 라운드에서 클라이언트들의 서브셋이 선택되고(주로 무작위로)
 - 서버가 그들에게 글로벌 모델을 브로드캐스트
 - ▶ 병렬적으로 클라이언트들이 고유의 손실 함수를 통해 SGD를 수행
 - 서버에게 모델을 전송
 - 서버는 로컬 모델들의 평균을 구해 글로벌 모델을 업데이트

FEDAVG 기법

$$x_i^t = \operatorname{SGD}_K(x_t, \eta_l, F_i)$$

- → 그라디언트 $\nabla f_i(x,z)$ 에 대해
- ightharpoonup로컬 학습률 η_l 을 통해
- x_t 에서 시작해
- K 스텝만큼 SGD

FEDAVG 기법

Algorithm 1 Simplified FEDAVG

Initialization: x_0

for
$$t=0,\cdots,T-1$$
 do

Sample subset S of clients

$$x_{i,0}^{t} = x_{t}$$

for each client $i \in \mathcal{S}$ in parallel do

$$x_i^t = \operatorname{SGD}_K(x_t, \eta_l, F_i)$$
$$x_{t+1} = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} x_i^t$$

FEDAVG 기법의 재작성:

$$x_{t+1} = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} x_{i,K}^t = x_t - \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \left(x_t - x_{i,K}^t \right)$$

- $\Delta^t = \frac{1}{|S|} \Sigma \Delta_i^t$
- 서버는
 - ▶ 평균을 통한 수도-그라디언트(pseudo-gradient)를
 - ▶ 학습률 1로 SGD함과 동일

수도-그라디언트 관점에서 일반화

Algorithm 2 Generalized FEDAVG

```
Initialization: x_0
for t=0,\cdots,T-1 do
   Sample subset S of clients
   x_{i,0}^t = x_t
   for each client i \in \mathcal{S} in parallel do
       for k=0,\cdots,K-1 do
          Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
          x_{i,k+1}^t = \text{CLIENTOPT}(x_{i,k}^t, g_{i,k}^t, \eta_l, t)
       \Delta_i^t = x_{i,K}^t - x_t
   \Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t
   x_{t+1} = SERVEROPT(x_t, -\Delta_t, \eta, t)
```

- 수도-그라디언트 관점에서 일반화
- CLIENTOPT는 로컬 데이터에 기반한 목적을 최적화함에 초점
- SERVEROPT는 글로벌 관점

- 일반화한 알고리즘 2에 기반
 - 다음과 같이 세팅
 - SERVEROPT = {ADAGRAD, ADAM, YOGI}
 - CLIENTOPT = SGD
- 다음 알고리즘 3과 4는
 - > 각각 FEDADAGRAD, FEDYOGI와 FEDADAM에 해당:

```
Initialization: x_0, \tau > 0 and v_{-1} \ge \tau^2
for t=0,\cdots,T-1 do
    Sample subset S of clients
    x_{i,0}^t = x_t
    for each client i \in \mathcal{S} in parallel do
       for k=0,\cdots,K-1 do
            Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
           x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t
       \Delta_i^t = x_{i,K}^t - x_t
   \Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t
   v_t = v_{t-1} + \Delta_t^2
x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}
```

```
Initialization: x_0, \tau > 0 and v_{-1} \ge \tau^2
for t=0,\cdots,T-1 do
   Sample subset S of clients
   x_{i,0}^{t} = x_{t}
   for each client i \in \mathcal{S} in parallel do
       for k = 0, \dots, K - 1 do
           Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
           x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t \quad \text{CLIENTOPT} = \text{SGD}
        \Delta_i^t = x_{i.K}^t - x_t
   v_t = v_{t-1} + \Delta_t^2x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}
```

Initialization:
$$x_0, \tau > 0$$
 and $v_{-1} \ge \tau^2$ for $t = 0, \cdots, T-1$ do Sample subset \mathcal{S} of clients $x_{i,0}^t = x_t$ for each client $i \in \mathcal{S}$ in parallel do for $k = 0, \cdots, K-1$ do Compute an unbiased estimate $g_{i,k}^t$ of $\nabla F_i(x_{i,k}^t)$
$$x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t$$

$$\Delta_t^t = x_{i,K}^t - x_t$$

$$\Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t$$

$$v_t = v_{t-1} + \Delta_t^2$$

$$x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}$$

```
Initialization: x_0, \tau > 0 and v_{-1} \ge \tau^2
for t=0,\cdots,T-1 do
   Sample subset S of clients
   x_{i,0}^t = x_t
   for each client i \in \mathcal{S} in parallel do
       for k = 0, \dots, K - 1 do
           Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
           x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t
       \Delta_i^t = x_{i.K}^t - x_t
   v_{t} = v_{t-1} + \Delta_{t}^{2}
x_{t+1} = x_{t} + \eta \frac{\Delta_{t}}{\sqrt{v_{t}} + \tau}
                                         ADAGRAD
```

Algorithm 4 FEDYOGI (and FEDADAM) Initialization: $x_0, v_{-1} \ge \tau^2$, decay $\beta_2 \in (0, 1)$ for $t=0,\cdots,T-1$ do Sample subset S of clients $x_{i,0}^t = x_t$ for each client $i \in \mathcal{S}$ in parallel do for $k = 0, \dots, K - 1$ do Compute an unbiased estimate $g_{i,k}^t$ of $\nabla F_i(x_{i,k}^t)$ $x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t$ $\Delta_i^t = x_{i,K}^t - x_{t-1}$ $\Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t$ $v_t = v_{t-1} - (1 - \beta_2) \Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2)$ (FEDYOGI) $v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta_t^2$ (FEDADAM) $x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}$

```
Algorithm 4 FEDYOGI (and FEDADAM)
   Initialization: x_0, v_{-1} \ge \tau^2, decay \beta_2 \in (0, 1)
   for t = 0, \cdots, T - 1 do
       Sample subset S of clients
       x_{i,0}^t = x_t
       for each client i \in \mathcal{S} in parallel do
          for k = 0, \dots, K - 1 do
              Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
              x_{i,k+1}^t = x_{i,k}^t - \eta_i g_{i,k}^t
          \Delta_i^t = x_{i,K}^t - x_{t-1}
                                               CLIENTOPT = SGD
       \Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^\iota
       v_t = v_{t-1} - (1 - \beta_2) \Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2) (FEDYOGI)
        v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta_t^2 (FEDADAM)
       x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}
```

```
Algorithm 4 FEDYOGI (and FEDADAM)
   Initialization: x_0, v_{-1} \ge \tau^2, decay \beta_2 \in (0, 1)
   for t = 0, \cdots, T - 1 do
       Sample subset S of clients
       x_{i,0}^t = x_t
       for each client i \in \mathcal{S} in parallel do
          for k = 0, \dots, K - 1 do
              Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
              x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t
          \Delta_i^t = x_{i,K}^t - x_{t-1}
                                               통합 후 평균
       \Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t
        v_t = v_{t-1} - (1 - \beta_2)\Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2) (FEDYOGI)
       v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta_t^2 (FEDADAM)
       x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}
```

```
Algorithm 4 FEDYOGI (and FEDADAM)

Initialization: x_0, v_{-1} \ge \tau^2, decay \beta_2 \in (0, 1)

for t = 0, \dots, T - 1 do

Sample subset \mathcal{S} of clients

x_{i,0}^t = x_t

for each client i \in \mathcal{S} in parallel do

for k = 0, \dots, K - 1 do

Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)

x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t

\Delta_i^t = x_{i,K}^t - x_{t-1}

\Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t
```

$$v_t = v_{t-1} - (1 - \beta_2) \Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2)$$
 (FEDYOGI)
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta_t^2$$
 (FEDADAM)
$$x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}$$

YOGI 또는 ADAM

- 수렴성 분석
 - 생략

- CIFAR-100
 - > 500명의 클라이언트에게 트레이닝 데이터를 무작위로 할당
 - 보다 현실적인 이종성을 주기 위해
 - ▶ 계층적 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA) 프로세스를 사용
- 수정된 ResNet-18을 사용
 - ▶ 배치 정규화 레이어를 그룹 정규화(group normalization) 레이어로 대체
 - Feature의 일부를 묶어 표준화

- EMNIST
 - ▶ 숫자와 영문자 데이터셋, 총 62개 분류
 - FL을 위해 저자에 따라 데이터 분류: 글씨체가 서로 다르므로 이종적
- 오토인코더(Autoencoder, AE)
 - MNIST 오토인코더 사용
- 문자 인식(Character Recognition, CR)
 - CNN 모델

- Shakespeare
 - 세익스피어의 글들
 - 다음 ASCII 문자를 예측
 - RNN으로 임베딩, LSTM으로 연결

- StackOverflow
 - ▶ Q&A와 태그를 포함한 메타데이터 제공
 - > 342,477 유니크한 사용자를 포함, 각자를 클라이언트로 사용
- 태그 예측
 - > 로지스틱 회귀(Logistic Regression, LR)
- 다음 단어 예측 (Next-word Prediction, NWP)
 - RNN으로 저차원 임베딩, LSTM으로 연결

DATASET	CLIENTS	EXAMPLES	
CIFAR-100	500	50,000	
EMNIST-62	3,400	671,585	
SHAKESPEARE	715	16,068	
STACKOVERFLOW	342,477	135,818,730	

IMPLEMENTATION

- TensorFlow Federated 사용
- 클라이언트 샘플링
 - 모든 훈련 클라이언트들에 대해 uniformly random하게
 - 라운드별로 교체

IMPLEMENTATION

- ightharpoonup각 클라이언트들이 K 상수 스텝을 수행하는 대신
 - E 클라이언트 에폭을 수행
 - 각 클라이언트의 데이터셋에 대해
 - 각 라운드마다

IMPLEMENTATION

- ▶ 가중 평균(weighted average)를 사용
 - 클라이언트의 훈련 샘플의 수에 따른
 - Uniform한 평균 대비 일반적으로 좋은 성능

- FEDAVG 대비 FEDADAGRAD, FEDADAM, FEDYOGI를 비교
 - 서버의 학습률이 조정된다는 특징
 - 학습률이 1고정이 아님
- 서버 최적화기가
 - > 조정된 학습률과
 - ▶ 모멘텀 파라미터 0.9를 가지는 SGD와도 비교
 - FEDAVGM으로 표기

- 서버 학습률 η 와
- ightharpoonup 클라이언트의 저마다의 학습률 η_l 을
 - ▶ 적당한 크기의 그리드(grid)로부터 선출
- ▶ 가령 CIFAR-100의 경우:

$$\eta_l \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1\}$$

$$\eta \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10\}$$

- ▶ 배치 크기는 고정
 - 중앙화된 훈련과 비교할 때,
 - ▶ 마찬가지로 같은 배치 크기를 사용

TASK	BATCH SIZE
CIFAR-100	20
EMNIST AE	20
EMNIST CR	20
SHAKESPEARE	4
STACKOVERFLOW LR	100
STACKOVERFLOW NWP	16

- ▶ 실제 디바이스-간 FL 개발에서는
 - ▶ 통신 대역폭이 기본 제약이 됨
- > 모든 알고리즘들이 동일한 사이즈의 오브젝트를 주고받기 때문에
 - 통신의 횟수를 대략적으로 추산

RESULT CONSTANT

RESULT

- ▶ 결과를 크게 두 부류로 분석
 - ▶ 클라이언트 및 서버의 학습률이 상수
 - ▶ 클라이언트 학습률을 라운드 수에 따라 가변

CONSTANT LEARNING RATES

- 각 최적화기에 대해
 - 클라이언트 및 서버의 학습률을
 - 지난 100 라운드에 대한
 - 형균 검증 성능으로 선택

CONSTANT LEARNING RATES

- ▶ 마지막 100 라운드 성능에 대한 요약:
 - 1-4행: 정확도 높으면 좋음
 - > 5행: 확률 (로지스틱 회귀) 1에 가까우면 좋음
 - ▶ 6행: MSE 낮으면 좋음

FED	Adagrad	ADAM	Yogi	AvgM	Avg
CIFAR-100	23.9	42.3	41.6	37.3	26.5
EMNIST CR	85.7	86.0	86.1	86.3	85.9
SHAKESPEAR	E 57.1	57.4	57.6	57.5	57.0
STACKOV N	IWP 11.3	22.1	22.2	13.7	9.5
STACKOV I	.R 0.68	0.62	0.64	0.22	0.19
EMNIST AE	7.29	16.99	0.98	1.21	2.63

CONSTANT LEARNING RATES

> 적응형 최적화만 사용해도 FEDAVG의 성능이 크게 오름

FED	Adagrad	ADAM	Yogi	AvgM	Avg
CIFAR-100	23.9	42.3	41.6	37.3	26.5
EMNIST CR	85.7	86.0	86.1	86.3	85.9
SHAKESPEAR	E 57.1	57.4	57.6	57.5	57.0
STACKOV N	IWP 11.3	22.1	22.2	13.7	9.5
STACKOV L	R 0.68	0.62	0.64	0.22	0.19
EMNIST AE	7.29	16.99	0.98	1.21	2.63

▶ 테스트셋 성능

- ▶ 클라이언트 학습률과 서버 학습률의 비(ratio)
- 직관적으로
 - 클라이언트 학습률이 크면
 - 서버는 학습률을 줄여 드리프트를 방지

- ▶ 직관을 검증하기 위해 최적의 서버 학습률을 찾음
- ▶ 대부분의 경우 역(inverse)의 관계에 있음

- 일부의 예외
- StackOverflow LR
 - ▶ 각 최적화기에 대해 선호되는 서버 학습률이 존재
- EMNIST AE
 - 학습률 간의 관계가 보다 복잡해보임
 - ▶ Saddle point 때문으로 예상

RESULT RATE DECAY

- INVSQRT
 - Inverse Square Root Decay

$$\eta_l$$
 \sqrt{t}

- EXPDECAY
 - Staircase (Discrete) exponential decay schedule
 - > 500 라운드마다 $\eta_l = 0.1$ 씩 감소

- ▶ 클라이언트 에폭을 10으로,
- ▶ 라운드마다 10 클라이언트를 샘플링

- EMNIST CR
- 중앙화된 학습과 비교
 - ▶ 100 에폭마다 중앙화된 최적화기를 정밀히 튜닝
 - 정확도 88%를 획득

- Centralized vs. INVSQRT vs. EXPDECAY 비교
 - 정확도
 - ▶ 마지막 100 라운드

CENTRALIZED		ADAM 87.9		SGDM 87.7	SGD 87.7
FED AD	AGRAD	ADAM	Yogi	AvgM	Avg
CONSTANT η_l INVSQRT	85.7 84.8	86.0 86.8	86.1 86.6		85.9 85.5
EXPDECAY	87.1	87.1	87.6		87.1

- ▶ EXPDECAY가 모든 연합 최적화기 중 가장 좋은 성능
 - 중앙화된 학습과 거의 유사한 정확도
- EXPDECAY를 사용한 FEDYOGI와 FEDAVGM이 가장 좋은 성능
 - > 상수의 클라이언트 학습률에서도 그랬음

▶ EXPDECAY를 사용한 적응형 최적화기들과 바닐라 FEDAVG의 비교

- ▶ EXPDECAY를 사용한 적응형 최적화기들과 바닐라 FEDAVG의 비교
- ▶ EXDECAY를 사용한 적응형 최적화기가 모든 버전의 FEDAVG를 압도
 - ▶ 비록 FEDAVG에서 에폭 수에 따라서도 성능 차이를 보이지만

- > 적응형 최적화기가
 - 어합 학습의 수렴성을 증대시키는
 - > 강력한 도구가 될 수 있음

- ▶ 본 논문에서의 일반화된 방법으로
 - ▶ 다른 (적응형) 최적화기를 구축할 수 있음

- 추후 연구에서는
 - ▶ 학습률이나 다른 하이퍼파라미터 세팅에 관련된 연구
 - 등이 가능할 것

ADAPINE FL

ADAPTIVE FEDERATED OPTIMIZATION