Nuclear Magnetic Ressonance III

Purpose:

- Run H NMR on 3 unknown organic molecules samples (13,20, and 21)
- Analyse N NMR spectra
 - O Determine number of signals due to number of types of H bonds
 - o Determine chemical shift due to environment around H bonds
 - O Determine ratio of area under the peak due to the ratio of H's of each type
 - O Determine splitting due to spin-spin coupling within 3 bonds using the n+1 rule
- Identify unknown samples 13, 20, and 21 using NMR spectra and predictions
- Predict NMR Spectra based in table of H chemical shifts

Reference:

- (1) Kateley, L. J., *Introduction to Chemistry in the Laboratory*, 20th Ed., Lake Forest College, **2021**, Experiment NMR III, Appendix C_Spectroscopy and G_60MHzNMR.
- (2) Sigma Aldrich

STRUCTURES AND 1H NMR PREDICTIONS

Name	H NMR PREDICTION	Structure	total # of signals	shift, ppm a) 3.8	ratio a) 3	a) singlet b) doublet
p-anisaldehyde	Diffe formula	(H) (H) (A)		b) 7	b) 2 c) 2	b)doublet c)doublet d)singlet
and ac	CIII 66 IF 6110	(-ō-(i) -i) (i) (i) (i) (i) (i) (ii)	4	c) 8 d) (0	d) [e)
	CH3OCGHY CHO	m(5-0-4) 136-6 (1)		e)	a) 9	a) singlet
tert-butyl acetoacetate		HHHH		a)1. 4 b)2.2	b) 3 c) 2	a) singlet b) singlet c) singlet
outy accidacetate	CH3(6CH2C(CH3043	H) HI HECHHA	3	b)2.2 c)2.2-4.6 d)	d)	d) e)
	Electrical I	H 6, 410, HAGH H		e)	e)	
		H S HO HACH H		a)	a) & b) 4	a) quertet b) triplet c)
diethyl ether	CzH5OCzbls	H) (H) = (A) M	12	6)3,1	(c) (d)	(c) (d)
	2 2 20.5	(H-C) 7(-) -0- (-) (-)) -	d) e)	e)	e)
		THE WAY		a)1 b) 4,1	a) 3	a) triplet
ethyl 4- bromobenzoate	06116664	1 1 10 H	n	b) 4.1 c) 6.5-8 d) 6.5-8	b) Z c) Z d) Z	b) querte t c) double d) double
	Br CoH4COzCzH5	Brfc + 2-0-6-6-4)	9	d) 6.5-8	d) 2 e)	(a) 900 (b)
		h h		a) 1	a) 3	a) Triplet
1-iodopropane		THE H		b) 1. 5	b) 2 c) 2	6) sextet c) Triplet
	CH3CH2CHI	HEC + C + C - I	3	c) 3,4 d)	d)	d) e)
1		() in la		e)	e)	
3-pentanone		THE WAST		a) \ b) 2, 4	a) G b) 4	a) triplet b) quartet
	CH3CH2COCH2013	(H-c+c+c+c-H)	2	(c) (d)	c) d)	c) d)
	CH3CH2COCTOZ-3	Cally Cally		(e)	(e)	e)

Name	Line Formula	Structure	Total # of signals	Chemical shift, ppm	Proton ratio	a) Singlet
Methyl p-bromo- benzoate	BrC6HyCO2CH3	Br - (1) - 0 - 0 - 0 + 1	3	a) 3.7 b) G c) 7 d) e)	a) 5 b) 2 c) 2 d) e)	a) Singlet b) Devisit c) Devisit d) e)
3-methyl-2-butanone	CH3CHCOCH3	H-C-H O H H-C-H H	3	a)G.9 b)2.2 c)2.7 d) e)	a) 6 b) 3 c) 1 d) e)	a)dorble b)singlet c)septet d)
Methyl ethyl ketone	CH3CH2COCH3	H (A)	3	a) 1 b) 7.7 c) 2.4 d)	a) 3 b) 3 c) 2 d)	a)triplet b) single c) que te d) e)
2-pentanone	CH3COCH2CH2CH3	H 10 H H H H H H H H H H H H H H H H H H	4	a)0,9 b)1,3 c)2,2 d)2,4	a) 3 b) 2 c) 3 d) 2 e)	a) triple b) sexte c) sing d) triple e)
Propyl -hydroxy-benzoate	40C6H4CO2CH2- CH2CH3	D-5-C	6	a) 1.3 c) 1.1 d) 1.8	a) 3 b) 2 c) 2 d) 1 e) 2	a) triple b) sext c) triple d)single e) deb
phenacetin	H3CONHCH7-1	n H /C=C H H H	4 6	a) 1.4 b) 2.2 c) 3.4-4.3 d) 5	a) 3 b) 3 c) 2 d) 2	a) triple b) single c) quart d) single e) deub

NMR SPECTRA

Calculations: (insert sample calculation here, if relevant. Otherwise, delete this section entirely).

Conclusion: (restate the quantitative values (percent error and/or CV) to indicate how well the goals of the experiment have been met; answer any questions in the experimental instructions, too).