DO: Vector identities cheatsheet DECIDE: Use bold or vector ntation? REDO: General concepts and skills

1. numerical methods: Euler $y_{i+1} = y_i + f(t_i, y_i)\Delta t$

REDO: Data analysis **REDO:** Mathematicasa

- 1. $\frac{d}{dt} \int_0^t f(x) dx = f(t) + \int_0^t \frac{d}{dt} f(x) dx$
- 2. Derivations: $\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}, \frac{d}{dx} \arccos(x) = \frac{-1}{\sqrt{1-x^2}}$ $\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}, \frac{d}{dx} \operatorname{arccot}(x) = \frac{-1}{1+x^2}$ $\frac{d}{dx} \operatorname{arcsinh}(x) = \frac{1}{\sqrt{x^2+1}}, \frac{d}{dx} \operatorname{arccosh}(x) = \frac{1}{\sqrt{x^2-1}}$ $\frac{d}{dx} \operatorname{arctanh}(x) = \frac{1}{1-x^2} \text{ and } 1 > x^2$ $\frac{d}{dx} \operatorname{arccoth}(x) = \frac{1}{1-x^2} \text{ and } 1 < x^2$
- 3. Fourier: $f(x) = \sum c_n e^{inx} \text{ where } c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$
- 4. Dot and Cross products are distributive.
- 5. $\nabla \cdot (\nabla \times \vec{A}) = 0$ and $\nabla \times (\nabla f) = 0$
- 6. Triple product $\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$
- 7. BAC-CAB rule: $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) \vec{C}(\vec{A} \cdot \vec{B})$

I. KINEMATICS

- 1. $\vec{v} = d\vec{x}/dt$, $\vec{a} = d\vec{v}/dt$, $t = \int v_x^{-1} dx = \int a_x^{-1} dv_x$, $x = \int v_x/a_x dv_x$, where integrals could be found from plot as an area under graph.
- 2. If a = Const., then: $x = (v^2 v_0^2)/2a$.
- 3. Do we want here eqs. for movement in g field?

- 4. Rotational motion: $\omega = d\phi/dt$, $\varepsilon = d\omega/dt$ $\vec{a} = dv/dt\hat{e}_{\tau} + v^2/R\hat{e}_n$
- 5. Motion of a rigid body. **a)** $v_a \cos \alpha = v_b \cos \beta$; $\vec{v_a}, \vec{v_b}$ velocities of points A and B; **b)** The instanteous center of rotation can be found as the intersection pt. of perpediculars to $\vec{v_a}$ and $\vec{v_b}$ from the points A and B, or(if $\vec{v_a}, \vec{v_b} \perp AB$) as the ntersection pt. of AB whith the line connecting endpoints of v_a and v_b
- 6. Centrifugal force $\vec{F} = m\omega^2\vec{r}$, Coriolis force $\vec{F} = m\vec{v} \times \vec{\omega}$

7. Ballistic problem reachable region

- $y \le v_0^2/(2g) gx^2/(2v_0^2)$ For and optimal balistic trajectory, initial and final velocities are perpendiculars.
- 8. Parabola is equidistant from focus and directrix (or use line parallel to directrix passing throught focus). Rays parallel to y-axis are reflected to focal point.
- 9. Elastic bounce of ball from moving wall: $\vec{v}_n' = -\vec{v}_n + 2\vec{u}$
- 10. For findings fastest paths, Snell's, Fermat's and Huygen's principles can be used.
- 11. To find a vector (velocity, acceleration) its enought to find its direction and projection to single axes.
- 12. Methods of solving prob.: Vector and Geometry, Differentiat. approach (calc. infinitezimal change of system), Equations of motion, Investigation in specific frame.

II. STATICS

- 1. For a 2D equilibrium of a rigid body: 2 eqns. for Forces, 1 eq. for torque. 1(2) eq. for force can be substituted whith 1(2) for torque. Torque is often better then boring forces.
- 2. Normal and frictional force can be combined into a sngle force, applied under $\arctan \mu$ with respect to the normal.
- 3. $F_t \le \mu mg$, there are several types: static, kinetic (sliding, dynamic).
- 4. Pulleys: a) Force in pulley axis = Σ forces from rope.
 - b) Σ of center shifts of all the rope parts = 0 c) If you draw a line through system of pulleys, then Σ of forces "acting" on the line is in the equilirium zero. d) Virtual work e) Noether theorem
- 5. Virtual work: in equilibrium $\delta W = \Delta \Pi \Sigma F \Delta x = 0$
- For studying stability (instability) use principle of minimum (maximum/saddle point) of potential energy or principle of virtual work (small displacement).

III. LAWS OF CONSERVATION

- 1. Momentum: no net external forces or conseved along axis \perp to the net external force.
- 2. Energy: elastic bodies, no friction, conservative fields $\nabla \times \vec{F} = 0$
- 3. Angular momentum: no net external torque (arm = 0), can be written rel. to 2(3) pts. then substitutes conservation of lin. mom.
- 4. Number of nucleons and total charge.

IV. DYNAMICS

- 1. Newton's 1 law: There exists a frame of reference (called inertial), in which each isolated point mass moves uniformly in a straight line.
- 2. Newton's 2 law: For each point mass there exists a constant m and a vector function \vec{F} such that its motion with respect to the inertial system is given by $m\vec{x} = \vec{F}$, $(\vec{F}_{\Sigma} = \mathrm{d}\vec{p}/\mathrm{d}t)$.
- 3. Mass accretion (dm > 0) / ejection: (dm < 0) $m\vec{a} = \vec{F}_{ext} + \vec{v}_{rel} \frac{dm}{dt}$.
- 4. Index C denotes quantities rel. to the centre of mass: $\vec{P}_C = \sum m_i \vec{v}_i$, $K = \sum m_i v_i^2 / 2$ $\vec{P}_i = \vec{P}_{Ci} - M_{\Sigma} \vec{v}_C$, $K_i = K_{Ci} + M_{\Sigma} v_C^2 / 2$
- 5. If forces are applied only to 2 points, the net force application lines coincide; for 3 points, the lines meet at a single point.
- 6. Tilted coordinates (motion on an inclined plane).
- 7. Generalized coordinate *q*: $\mathcal{M}\ddot{q} = -d\Pi(q)/dq$ and $T = \mathcal{M}\dot{q}^2/2$
- 8. Non-inertial frames of ref.: inertial force $-m\vec{a}$, centrifugal force $m\omega^2\vec{r}$, Coriolis force $2m\vec{v}\times\vec{\Omega}$ (better to avoid it, it does not create any work)
- 9. Stoke's drag: force of viscosity on a small sphere moving through a viscous fluid $F = 6\pi\eta Rv$
- 10. Drag equation: $F = \rho CSv^2/2$, where ρ density of the fluid, S reference area, C drag coeficient.
- 11. Collision of 2 bodies: conserved are
 - a) net momentum b) net angular mom.
 - c) total enery (for elastic collisions)
 - d) if sliding stops during the impact, final velocities of the contact points will have equal projections to the contact plane;

- e) if sliding doesn't stop, the momentum delivered during the impact from angle $\arctan \mu$ with the normal.
- 12. Tension T in a string: horizontal component is conctant, vertical \propto mass underneath. On pulley with friction tension change $e^{\mu\phi}$ times. Presure force N per unit length (resting on a smooth surface) is \propto its radius R: N = T/R
- 13. Adiabatic invariant: if a relative change of an oscillating system is small during one period, the area I of the loop drawn in p-x coordinates is conversed with a very high accuracy.
- 14. Continuity condition: $dm/dt = \rho Sv$

V. ROTATIONAL MOTION

- 1. $\vec{\tau} = I\vec{\epsilon} = d\vec{L}/dt$, where $\vec{L} = \sum \vec{r}_i \times \vec{P}_i$
- 2. $\vec{L} = I\vec{\omega}$, $\vec{L} = \sum m_i \vec{r}_i \times \vec{v}_i$, $\vec{L}_i = \vec{L}_{Ci} + M_{\Sigma} \vec{R}_C \times \vec{v}_C$
- 3. Point masses & fixed origin: $\vec{\tau} = \vec{r} \times \vec{F}^{ext}$
- 4. System of point masses & fixed origin: $\vec{\tau} = \sum \vec{r}_i \times \vec{F}_i^{ext}$
- 5. System of point masses & non-fixed origin: $\vec{\tau} = \sum (\vec{r}_i \vec{r}_0) \times \vec{F}_i^{ext} (\vec{r}_C \vec{r}_0) \times (M_C \vec{r}_0) \hat{r}_0$ There are 3 cases when the second term is zero.
- 6. Rotation of body can be discribed by ortogonal $(A^T = A^{-1})$ matrix $A_{ij}(t)$ such, that $\hat{e}'_i = A_{ij}\hat{e}_j$, where \hat{e}'_i is co-rotating and \hat{e}_j inertial basis.
- 7. Tensor of angular veloc.: $\Omega = \frac{dA}{dt}A^T = -A^T\frac{dA}{dt}$.
- 8. $\Omega_{ij} = -\Omega_{ji}$, $\omega_k = \frac{1}{2}\epsilon_{kij}\Omega_{ij}$, $\Omega_{ij} = \epsilon_{ijk}\omega_k$
- 9. $\Omega^A = -\Omega^{-A}$ where *A* denotes rotational-defining matrix of angular vel. tensor.

- 10. $\Omega^C = \Omega^B + \Omega^A$, where $\hat{e}_k'' = C_{ki}\hat{e}_i = B_{ki}A_{ii}\hat{e}_i$.
- 11. Ω has same components in the inertial and corotating frame (it points in the direction of invariant axis).
- 12. $\frac{d\vec{w}}{dt}\big|_{prostor} = \frac{d\vec{w}}{dt}\big|_{teleso} + \vec{\omega} \times \vec{w}$
- 13. Coeficients for *I*: cylinder 1/2; solid sphere 2/5; thin spherical shell 2/3; rod 1/12 (rel. to endpoint 1/3); square 1/6;
- 14. $I = \sum r^2 m_i = \int r^2 dm$ where r is distance from the axis. Its possible to use scaling when finding I.
- 15. Steiner's (Parallel axis) theorem (a distance of the mass center from rot. axis): $I = I_C + ma^2$ $I_{ij} = I_{ij}^C + (\delta_{ij}a_ka_k a_ia_j)m$
- 16. Perpendicular axis theorem: if body lies in the xy plane, then $I_z = I_x + I_y$. The axis xyz must all intersect in a single point in the plane.
- 17. Mom. of inertia rel. to the z-axis through the mass center $I_{z0} = \sum m_i m_j r_{ij}^2 / 2M_{\Sigma}$
- 18. Mom. of inertia tensor component def.:

While of inertial tensor - component definition
$$\tilde{I} = \int \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -yx & x^2 + y^2 & -yz \\ -zx & -zy & y^2 + z^2 \end{pmatrix} dm$$

$$I_{ij} = \int \left(\delta_{ij} x_k x_k - x_i x_j \right) \rho dV$$

- 19. Mom. of inertia tensor algebraric def.: $I(\vec{\xi}, \vec{\omega}) = \sum_{a} m_{a} (\vec{\xi} \times \vec{r}^{a}) \cdot (\vec{\omega} \times \vec{r}^{a}) = \vec{L} \cdot \vec{\xi}$
- 20. $I(\vec{\omega}, \vec{\omega}) = 2T$, $I(\vec{\xi}, \vec{\omega}) = I_{ij}\xi_i\omega_j$, $I_{ij} = I(\hat{e}_i, \hat{e}_j)$
- 21. Rot. energy $T = \frac{1}{2}I_{ij}\omega_i\omega_j$, ang. mom. $L_i = I_{ij}\omega_j$
- 22. Principal axis along ω_i with principal mom. I_i must satisfy $\tilde{I}\vec{\omega}_i = I_i\vec{\omega}_i$. Principal axis are \perp .

- 23. If two principal moments are equal $(I_1 = I_2 = I)$, then any axis (through the chosen origin) in the plane of the corresponding principal axes is a principal axis (and its moment is also I). If all three principal moments are equal $(I_1 = I_2 = I_3 = I)$, then any axis (through the chosen origin) in space is a principal axis (and its moment is also I).
- 24. $\tilde{I}_{\hat{u}}$ in the direction of unit vector \hat{u} : $\tilde{I}_{\hat{u}} = \hat{u}^T \tilde{I} \hat{u}$ $I_u = I_{ii} u_i u_i = \int (\vec{r} \cdot \vec{r} (\vec{r} \cdot \vec{u})^2) \rho dV$
- 25. Elipsoid of inertia $I_1\xi_1^2 + I_2\xi_2^2 + I_3\xi_3^2 = 1$ an elipsoid whose semi-axis are equal to $1/\sqrt{\text{principal mom.}}$. Then $I_u = 1/|\vec{\xi}|^2$ where $\vec{u} = \vec{\xi}/|\vec{\xi}|$.
- 26. If a pancake object is symmetric under a rotation through an angle $\theta \neq \pi$ in the x-y plane (for example a hexagon), then every axis in the x-y plane (with the origin chosen to be the center of the symmetry rotation) is a principal axis.
- 27. Strike a rigi body with an impulse, what is the motion immediately after? Solution: Find the \vec{L} rel. to the CM using the angular impulse, then calc. principal mom. and find $\vec{\omega}$ then add on the CM motion (lin. impulse);
- 28. Frequency due to torque? Solution: Calc. principal mom., find \vec{L} , find $d\vec{L}/dt$, calc. torque and equate it with $d\vec{L}/dt$;
- 29. $\frac{d\vec{L}}{dt}|_{prostor} = \frac{d\vec{L}}{dt}|_{teleso} + \vec{\omega} \times \vec{L}_{r} + \vec{L}_{r}$
- 30. Euler's equations: in reference frame connected with principal axis of body: $\vec{\tau} = \vec{I}\dot{\vec{\omega}} + \vec{\omega} \times \vec{I}\vec{\omega}$ or $(1 \to 2 \to 3)$: $\tau_1 = I_1\dot{\omega}_1 (I_2 I_3)\omega_2\omega_3$; usefull when $\tau = 0$, precession of free spining top.

- 31. Tenis racket theorem: rotation of an object ($I_1 > I_2 > I_3$) around its first and third principal axes is stable, while rotation around its second principal axis (or intermediate axis) is not. (prove by Euler's eqs.)
- 32. Acceleration in non-inertial rotating frame: $\vec{a}_p = \vec{a}_t + \dot{\vec{\omega}} \times \vec{r} + 2\vec{\omega} \times \vec{v}_t + \vec{\omega} \times (\vec{\omega} \times \vec{r}).$
- 33. Euler angles: φ preces., ϑ nutation, ψ rotat. For co-rotating frame x, y, z $\omega_x = \dot{\varphi} \sin \vartheta \sin \psi + \dot{\vartheta} \cos \psi,$ $\omega_y = \dot{\varphi} \sin \vartheta \cos \psi \dot{\vartheta} \sin \psi,$ $\omega_z = \dot{\varphi} \cos \vartheta + \dot{\psi}.$
- 34. For gyroscope precession assume no nutation.
- 35. Nutation: assume that precesion and nutation is small $\dot{\theta}$, $\dot{\Phi}$ << 1.

VI. OSCILLATIONS AND WAVES

- 1. Damped oscillator: $\ddot{x} + 2\gamma\dot{x} + \omega_0^2x = 0$ General sol.: $x = e^{-\gamma t}(Ae^{i(\omega t + \varphi)} + Be^{-i(\omega t + \psi)})$ where $\omega = \sqrt{\omega_0^2 \gamma^2}$ Underdapmed $\gamma < \omega_0$: $x = x_0e^{-\gamma t}\cos(\omega t + \phi)$ Critically damped $\gamma = \omega_0$: $x = (A + Bt)e^{-\omega_0 t}$ Overdamped $\gamma > \omega_0$.
- 2. Energy of spring: $E = kx^2/2$.
- 3. Energy decay: $d\langle E \rangle/dt = -2\gamma \langle E \rangle$, what has a sol: $\langle E \rangle = \frac{1}{2}kA^2e^{-2\gamma t} = E_0e^{-\frac{\omega_0}{Q}t}$
- 4. Factor of quality $Q=2\pi \frac{\text{Energy stored}}{\text{En. lost per cycle}}=\frac{\omega_0}{2\gamma}$
- 5. Driven oscillations: $\ddot{x} + 2\gamma\dot{x} + \omega_0^2 x = \frac{F}{m}\cos\omega t$. Particular solution is $x = Ae^{i(\omega t + \varphi)}$, solve for A and φ .

- 6. If a system described with a generalized coordinate ξ and $T=\mu\xi^2/2$ has an equilibrium state at $\xi=0$ for small oscillations $\Pi\approx\kappa\xi^2/2$ then $\kappa=\Pi''(0)$ and $\omega_0^2=\kappa/\mu$.
- 7. Eq. of motion for a system of coupled oscillators: $\ddot{x}_i = \sum_j K_{ij} x_j$, in tensor notat. $(\tilde{K} m\omega_i^2 \tilde{I}) \vec{A}_i = 0$, $m\omega_i^2$ are eigenvalues and A_i eigenvectors of \tilde{K} , thf. $\det(\tilde{K} m\omega_i^2 \tilde{I}) = 0$ and sol. is $\vec{x} = \vec{A}_i \exp(-i\omega_i t)$.
- 8. A system of N coupled oscillators has N different eigenmodes when all the oscillators oscillate with the same frequecy ω_i , $\vec{x}_j = \vec{x}_{j0} \cos(\omega_i t + \varphi_j)$, and each eigenmode has its own eigenfrequency ω_i (which can be same for more eigenmodes). General sol. is superposition of all eigenmodes with 2N integration constants x_{j0} , φ_j .
- 9. Wave equation $\Delta u \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} = 0$ has general solution $u(x,t) = f(x \pm vt)$, special case $u(x,t) = Ae^{\pm i(kx \omega t)}$.
- 10. D'Alembert method: if $\xi = x ct$, $\eta = x + ct$ then wave equation has a form $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$.
- 11. D'Alembert solution of oscillating infinite string with initial wave $u(x,0) = U_0(x)$ such, that $\int u_{,t}(x,0) dx = V_0(x)$ is $u(x,t) = \frac{1}{2} \left[U_0(\xi) + U_0(\eta) \frac{1}{c} V_0(\xi) + \frac{1}{c} V_0(\eta) \right].$
- 12. Bernoulli-Fourier sol. of oscillating infinite string is u(x,t) = X(x)T(t) where $\omega_n = n\pi c/l$ and $u(x,t) = \sum_n \sin(\omega_n x/c) \left[a_n \cos(\omega_n t) + b_n \cos(\omega_n t)\right]$, and for initial wave $u(x,0) = U_0(x)$ such, that $\int u_{,t}(x,0) dx = V_0(x)$ we have $a_n = \frac{2}{l} \int_0^l U_0(x) \sin(\omega_n x) dx$, $b_n = \omega_n \frac{2}{l} \int_0^l V_0(x) \sin(\omega_n x) dx$.

- 13. For zero initial speed Bernoulli-Fourier sol. gives all $b_n = 0$.
- 14. The phase of wave is $\varphi(x,t) = kx \omega t + \varphi_0$. Phase velocity $v = \omega/k$ and group velocity $v_g = d\omega/dk$.
- 15. Standing wave is the sum of two identical counterpropagating waves: $e^{i(kx-\omega t)} + e^{i(-kx-\omega t)} = 2e^{-i\omega t}\cos(kx)$.
- 16. Speed of transverse waves: $v = \sqrt{T/\mu}$ where T is tension and μ is linear mass density.
- 17. Sp. of sound in gas: $v^2 = (\partial p/\partial \rho)_{adb} = \gamma p/\rho = \gamma RT/M$
- 18. Speed of sound in elastic materal: $v = \sqrt{Y/\rho}$.
- 19. Speed of shallow $h \ll \lambda$ water waves: $v = \sqrt{gh}$.

VII. CELESTIAN MECHANICS AND GRAVITY

- 1. $F = GMm/R^2$, $\Pi = -GMm/R$, $\alpha = GMm$
- 2. Kepler's I law: $F \propto R^{-2}$ interaction of 2 point masses: trajectory of each of them is a circle, eclipse, parabola or hyperbola, with a focus at the center of mass of the system.
- 3. Kepler's II law (conserv. of angular. mom.): for a point mass in a central force fiels, radius vector cover equal areas in equal times: dS/dt = L/2m
- 4. Kepler's III law: for two point masses at elliptic orbits in $F \propto r^{-2}$, periods and longer semi-axes obey: $T_1^2/T_2^2 = a_1^3/a_2^3$, generaly: $T^2/a^3 = 4\pi^2/G(M+m) \approx 4\pi^2/GM_{\odot}$
- 5. $L = mR^2\dot{\phi}$, $m(\dot{R}^2 + \dot{\phi}^2R^2)/2 + V(R) = E$, $m\dot{R}^2/2 + V_{eff}(R) = E$; where eff. potental is $V_{eff}(R) = L^2/2mR^2 + V(R)$ (For gravity $V(R) = -\alpha/R$).

6. Celestain motion is possible only if $V_{eff}(R) \leq E$.

- 7. Binet's equation: $\frac{\mathrm{d}^2 u}{\mathrm{d} \varphi^2} + u = -\frac{m}{L^2} \frac{\mathrm{d} V}{\mathrm{d} u}$ where V(u) is a central potential and u inverse distance. Solutions to $F(u) \sim u^3$ are Cotes spirals.
- 8. $r = p/(1 + \epsilon \cos \varphi)$, where $p = L^2/\alpha m$ and $\epsilon^2 1 = 2L^2E/\alpha^2m$.
- 9. Full energy $K + \Pi$ of a body in a gravity field: E = -GMm/2a
- 10. Vis-Viva equation: $v^2 = GM(2/r 1/a)$.
- 11. For small eccentricities $\epsilon = f/a \ll 1$, trajectories can be considered as ahaving a circular shapes, with shifted foci.
- 12. Properties of an ellipse: $l_1 + l_2 = 2a$ (l distances from the foci), light from one focus is reflected to the other (angles with normal are same), $S = \pi ab$
- 13. A circle and an ellipse with a focus at the circle's center can touch each other only at the longer axis.
- 14. Gauss's law for gravity field \vec{g} : $\oint_{\partial V} \vec{g} \cdot d\vec{S} = -4\pi GM \text{ or } \nabla \cdot \vec{g} = -4\pi G\rho$ $\oint_{\partial S} \vec{g} \cdot d\vec{l} = 0 \text{ or } \nabla \times \vec{g} = 0 \text{ (conservative field)}$

15. Laplace-Runge-Lenz vector (LRL or the eccentricity vector), where $\alpha = GMm$ and $\epsilon = A/m\alpha$

$$\vec{\epsilon} = \frac{\vec{v} \times \vec{L}}{GMm} - \vec{e}_R$$
 or $\vec{A} = \vec{p} \times \vec{L} - m\alpha \vec{e}_R$

- 16. Reduced mass: 2 body interaction lagrangian in CM: $\mathcal{L} = \mu \dot{r}^2/2 + V(r)$, where $1/\mu = 1/m_1 + 1/m_2$ is the reduced mass and r is distance between them.
- 17. Bertrand's theorem: only central forces $F \propto R^{-2}$ and $F \propto R$ (Harmonic osc.) give rise to closed orbits independently of initial conditions.
- 18. Virial theorem for finite movement: If $F \propto r^n$, then $n\langle K \rangle = \langle \Pi \rangle$ (time avarages)
- 19. Tsiolkovsky rocket equation: $\Delta v = u \ln(M_{init}/M_{fin})$
- 20. Rutheford scattering $\frac{d\sigma}{d\Omega} = \left(\frac{Q_1 Q_2 e^2}{8\pi\epsilon_0 m v_\infty^2}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}$
- 21. add Tidal forces

VIII. LAGRANGIAN FORMALISM

- 1. Generalized coordinate q: $\mathcal{M}\dot{q}^2/2 + \Pi(q) = E$ $\mathcal{M}\ddot{q} = -d\Pi(q)/dq$ and $T = \mathcal{M}\dot{q}^2/2$
- 2. Constraints are **a)** two-side $\phi = 0$ or one-side $\phi \geq 0$, **b)** Scleronomic $\phi(q_i) = 0$ or Reonomic $\phi(q_i,t) = 0$, **c)** Holonomic $\phi(q_i,t) = 0$ or non-holonomic (kinetic) $\phi(q_i,\dot{q}_i,t) = 0$.
- 3. Lagrange eqs. of 1st kind: $m\ddot{x}_i = F_i + T_i + \lambda \partial_i \phi$, where $\phi(x^j, t) = 0$, F_i is net ext. force and T_i is net friction force. In vector notation: $m\ddot{\vec{x}} = \vec{F} + \vec{T} + \lambda \nabla \phi$.

- 4. Lagrange eqs. of 1st kind for N particles and V constraints: $m\ddot{x}_i = F_i + \sum_{v=1}^V \lambda^v \partial \phi_v / \partial x^i$ for $i \in \{1, \ldots, 3N\}$ and $\phi_v(x^1, \ldots, x^{3N}, t) = 0$ for $v \in \{1, \ldots, V\}$.
- 5. Stationary constrained particle under an action of force \vec{F} obeys: $\vec{F} + \lambda \nabla \phi = 0$ and $\vec{F} \times \nabla \phi = 0$.
- 6. Virtual work: in equilibrium $\delta W = \delta \Pi \sum_{i=1}^{3N} F_i \delta x^i = 0$
- 7. Differential principles: **a)** D'Alembert's principle: $\sum_{i=1}^{3N} (F_i m\ddot{x}_i) \delta x^i = 0$, **b)** Jourdain principle: $\sum_{i=1}^{3N} (F_i m\ddot{x}_i) \delta \dot{x}^i = 0$, **c)** Gauss's principle of least constraint: $\sum_{i=1}^{3N} (F_i m\ddot{x}_i) \delta \ddot{x}^i = 0$. All virtual displacements have to obey constraints and be reversible (for every δx^i there exists $-\delta x^i$).
- 8. D'Alembert's principle in geometrical form: $(m\vec{x} \vec{F}) \cdot \vec{t} = 0$, $\forall \vec{t} \in T_P Q$.
- 9. D'Alembert's principle for all virtual displacements: $\sum_{i=1}^{3N} (m\ddot{x}_i F_i \sum_{v=1}^{V} \lambda_v \partial \phi_v / \partial x^i) \delta x^i = 0$
- 10. $\partial q^i/\partial \dot{q}^j = 0 = \partial \dot{q}^i/\partial q^j$, $\partial q^i/\partial q^j = \delta^i_i = \partial \dot{q}^i/\partial \dot{q}^j$
- 11. Generalized force: $Q_j = \frac{\partial x^i}{\partial q^j} F_i$ and $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}^j} \right) \frac{\partial T}{\partial q^j} = Q_j = -\frac{\partial V}{\partial q^j}$
- 12. Generalized potential of force Q_j : $\frac{d}{dt} \left(\frac{\partial V}{\partial \dot{a}^j} \right) \frac{\partial V}{\partial a^j} = Q_j$
- 13. Lagrange's eqs. of 2nd kind: $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^j} \right) \frac{\partial L}{\partial q^j} = 0 \text{ where } L = T \Pi.$
- 14. *L* is a function on *TQ*.
- 15. Trajectory of system in $t \in [t_1, t_2]$ is such, that action $S = \int_{t_1}^{t_2} L(q^j(t), \dot{q}^j(t), t) dt$ is stationary, $\delta S = 0$.

- 16. $f(q_j(t), \dot{q}_j(t))$ is an integral of motion if it is constant in time over the trajectory $q_j(t)$. $(\mathrm{d}f(t)/\mathrm{d}t=0)$.
- 17. If q^i is a cyclic coordinate (L is not a funct. of q^i), then $\partial L/\partial \dot{q}^i$ is an integral of motion.
- 18. If *L* is not a funct. of *t*, then generalized energy $h(q^i, \dot{q}^i) = \frac{\partial L}{\partial \dot{q}^i} \dot{q}^j L$ is an integral of motion.
- 19. If forces are conservative and constraints are both holonomic and coleronomic, then $h = T + \Pi = const.$
- 20. Lagrangian for a system of coupled oscillators: $L = \frac{1}{2} (T_{ij}\dot{q}_i\dot{q}_j \Pi_{ij}q_iq_j)$ which yields $\tilde{T}\ddot{q} \tilde{\Pi}\vec{q} = 0$ what can be solved using eigendecomposition.
- 21. Euler-Ostrogradsky eq. for $L(y(x^i), y_{,i}(x^i), x^i)$: $\sum_i \frac{\partial}{\partial x^i} \left(\frac{\partial L}{\partial y_{,i}} \right) \frac{\partial L}{\partial y} = 0 \text{ where } y_{,i} = \frac{\partial y}{\partial x^i}.$
- 22. Euler-Poisson eq. for $L(q^j, \dot{q}^j, \dots, q^{(k)j}, t)$: $-(-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial q^{(k)j}} \right) + \dots + \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^j} \right) \frac{\partial L}{\partial q^j} = 0.$
- 23. Euler-Lagrange constrained eq. $\frac{d}{dt} \left(\frac{\partial (L + \lambda \phi)}{\partial \dot{q}^j} \right) \frac{\partial (L + \lambda \phi)}{\partial q^j} = 0$
- 24. $S = \int_{\Omega} \mathcal{L}(\Phi, \Phi_{,\mu}, x^{\mu}) d\Omega$ where $d\Omega = dV dt$ and \mathcal{L} is Lagrangian density.
- 25. $\frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial \Phi_{,\mu}} \right) \frac{\partial \mathcal{L}}{\partial \Phi} = 0$
- 26. Noether's theorem: if change of coord. $t' = t + \epsilon T(q^j,t)$, $q'^j = q^j + \epsilon Q^j(q^j,t)$ does not change L, $(L(q^j(t),\dot{q}^j(t),t) = L'(q'^j(t'),\dot{q}'^j(t'),t'))$ then the integral of motion is $\mathcal{Z} = \sum_j \frac{\partial L}{\partial \dot{a}^j}(Q^j \dot{q}^jT) + LT$.
- 27. L + dF/dt where F is any smooth function gives the same eqs. of motion as L.

- 28. For EM. field $L = mv^2/2 e(\varphi \vec{v} \cdot \vec{A})$.
- 29. Calibration of EM. fields: $\varphi' = \varphi e^{-1}\partial F/\partial t$, $\vec{A}' = \vec{A} + e^{-1}\nabla F$.
- 30. Add my coordinate transform of E-L equation.

IX. HAMILTONIAN FORMALISM

- 1. Canonical (generalized) momentum: $p_j = \frac{\partial L}{\partial \dot{q}^j}$
- 2. $\partial p_i/\partial q^j = 0$, $\partial q^i/\partial q^j = \delta^i_i$, $\partial p_i/\partial p_j = \delta^j_i$
- 3. The physical state of a system is given by a point in the phase space.
- 4. Canonical variables q^i and p_i are implicit functs. of t: they depend on trajectory $q^i = q^i(\gamma(t))$, $p_i = p_i(\gamma(t))$. Hence $\partial q^i/\partial t = \partial p_i/\partial t = 0$.
- 5. Every singular point in the phase space is a stable equilibrium state of the system.
- 6. Hamiltonian is defined as $H(q^j, p_j, t) = \sum p_i \dot{q}^i L(q^j, \dot{q}^i, t)$ where $\dot{q}^i = \dot{q}^i(q^j, p_j, t)$ is an inverse of $p_j = p_j(q^i, \dot{q}^i, t)$.
- 7. H is a function on T^*Q .
- 8. Lagrange's and Hamilton's formalisms are equivalent \Leftrightarrow if L has no inflex points, $\det\left(\frac{\partial^2 L}{\partial \dot{q}^i \partial \dot{q}^j}\right) \neq 0.$
- 9. $L(q^j, \dot{q}^j, t) = \sum p_i \dot{q}^i H$ where p_i is an inverse of $\dot{q}^i = \partial H / \partial p_i$.
- 10. Hamilton's canonical equations: $dq^i/dt = \frac{\partial H}{\partial p_i}$ and $dp_i/dt = -\frac{\partial H}{\partial q^i}$.
- 11. Legendre transformation: Let $I \subset \mathbb{R}$ be an interval, and $f: I \to \mathbb{R}$ a convex function; then its Legendre transform is the function $f^*: I^* \to \mathbb{R}$ defined by $f^*(x^*) = \sup_{x \in I} (x^*x f(x))$ where $x^* \in I^*$.

- 12. Legedre transformation $TQ \leftrightarrow T^*Q$ is given by $L(q^j, \dot{q}^i, t) \leftrightarrow H(q^j, p_j, t)$, hence $H = p_i \dot{q}^i L \leftrightarrow L = p_i \dot{q}^i H$ and $p_i = \partial L/\partial \dot{q}^i$, $\dot{q}^i = \partial L/\partial p_i$.
- 13. Point mass in potential *V*:

a)
$$H = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2) + V(x, y, z)$$

b)
$$H = \frac{1}{2m} (p_R^2 + \frac{p_\theta^2}{R^2} + p_z^2) + V(R, \theta, z)$$

c)
$$H = \frac{1}{2m} (p_R^2 + \frac{p_{\theta}^2}{R^2} + \frac{p_{\varphi}^2}{R^2 \sin^2 \theta}) + V(R, \theta, \varphi)$$

- 14. For EM. field $H = (\vec{p} e\vec{A})^2 / 2m + e\varphi$.
- 15. Poisson brackets: $\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}} \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q^{i}}\right)$
- 16. **a)** $\{f,g\} = -\{g,f\}$
 - **b)** $\{c_1f_1 + c_2f_2, g\} = c_1\{f_1, g\} + c_2\{f_2, g\}$
 - c) $\{\{f,g\},h\}+\{\{g,h\},f\}+\{\{h,f\},g\}=0$
 - **d)** $\{f, f\} = 0$
 - **e)** $\{fg,h\} = \{f,h\}g + f\{g,h\}$
 - **f)** $\frac{\partial}{\partial t} \{f, g\} = \{\frac{\partial f}{\partial t}, g\} + \{f, \frac{\partial g}{\partial t}\}$
- 17. Fundamental Poisson brackets: $\{q^i, q^j\} = 0, \{p_i, p_i\} = 0, \{q^i, p_i\} = \delta^i$
- 18. $\{x_i, L_j\} = \epsilon_{ijk}x_k$, $\{p_i, L_j\} = \epsilon_{ijk}p_k$, $\{L_i, L_j\} = \epsilon_{ijk}L_k$ where $L_i = \epsilon_{ijk}x_ip_k$ is an angular mom.
- 19. $\frac{\mathrm{d}f}{\mathrm{d}t} = \{f, H\} + \frac{\partial f}{\partial t}$
- 20. Function $f(q^i, p_i)$ is an integral of motion if $\{f, H\} = 0$.
- 21. Constant of motion.
- 22. If H is not a funct. of t, $H = H(q^i, p_i)$ is an integral of motion.
- 23. If f and g are integrals of motion, then also $\{f,g\}$ is an integral of motion.
- 24. $dq^{i}/dt = \{q^{i}, H\}$ and $dp_{i}/dt = \{p_{i}, H\}$

- 25. $H(q^i, p_i, t) \rightarrow H'(Q^j(q^i, p_i, t), P_j(q^i, p_i, t), t)$ is a canonical transformation if it preserves the form of Hamilton's canonical eqs.
- 26. Canonical transformations are generated by functions in 1st col. Requirements for canonicity are in 2nd col. and for integrability are in 3rd col.

$F_1(q^j,Q^j,t)$	$\frac{\partial F_1}{\partial q^i} = p_i \frac{\partial F_1}{\partial Q^k} = -P_k$	$\frac{\partial p_i}{\partial Q^k} = -\frac{\partial P_k}{\partial q^i}$
$F_2(q^j, P_j, t)$	$\frac{\partial F_2}{\partial q^i} = p_i \frac{\partial F_2}{\partial P_k} = Q^k$	$\frac{\partial p_i}{\partial P_k} = \frac{\partial Q^k}{\partial q^i}$ 1
$F_3(p_j,Q^j,t)$	$\frac{\partial F_3}{\partial p_i} = -q^i \frac{\partial F_3}{\partial Q^k} = -P_k$	$\frac{\partial q^i}{\partial Q^k} = \frac{\partial P_k}{\partial p_i}$
$F_4(p_j, P_j, t)$	$\frac{\partial F_4}{\partial p_i} = -q^i \frac{\partial F_4}{\partial P_k} = Q^k$	$\frac{\partial q^i}{\partial P_k} = -\frac{\partial Q^k}{\partial p_i} 2$

First test if transformation is integrable (3rd col.), then find F_a (2nd col.), finally use gen. funct. as $H'(Q^j, P_j, t) = H(q^j, p_j, t) + \partial F_a / \partial t$.

- 27. Solving for generating function is analogic to solving for potential of conservative force.
- 28. Generating functions F_a are connected with Legendre dual transformation: $F_1(q,Q)$, $F_2(q,P) = F_1 + P_iQ^i$, $F_3(p,Q) = F_1 p_iq^i$, $F_4(p,P) = F_1 + P_iQ^i p_iq^i$.
- 29. Transformation is canonical \Leftrightarrow $\{Q^i, P_j\} = \delta^I_j \text{ and } \{Q^i, Q^j\} = 0 = \{P_i, P_j\}.$
- 30. Set of all canonical transformations is a group, which group operation is composition of two transformations.
- 31. Poisson brackets are invariant under canonical transformations. $\{f,g\}_{q,p} = \{f,g\}_{Q,P}$
- 32. Volume of phase-space is invariant under canonical transformations.
- 33. Phase space distribution $\rho(p,q)$ determines the probability $\rho(p,q) d^n q d^n p$ that the system will be

- found in the infinitesimal phase space volume $d^n q d^n p$.
- 34. Liouville theorem: the phase-space distribution function is constant along the trajectories of the system, $\partial \rho / \partial t + \{\rho, H\} = 0$.
- 35. Hamilton-Jacobbi theory

X. PROPERTIES OF MATERIALS

Hooke's law: $\sigma = Y\epsilon = F/S$; where σ is tensile stress, $\epsilon = \Delta L/L$ is extension, Y = kL/S is Young's modulus;

2. Energy density of deformation: $w = E/V = Y\epsilon^2/2$

- 3. $l = l_0(1 + \alpha \Delta T)$, $V = V_0(1 + \beta \Delta T)$, $\rho = \rho_0(1 \beta \Delta T)$; for isotropic materials $\beta \approx 3\alpha$
- 4. Speed of sound in elastic material: $c_s = \sqrt{Y/\rho}$

XI. FLUID MECHANICS

- 1. Pouzivaj stramlines ked nejde vyintegrovat rychlosti.
- 2. Hydrostatic pressure: $p_h = h\rho g$; NB! atmospheric pressure $p = p_A + p_h$; Buoyancy: $F_B = V\rho g$, (*V*-sunked);
- 3. Continuity equation: $S\rho v = const.$; Special case continuity condition: $S\rho v = dm/dt$
- 4. Bernoulli eq. incompr. fluid: $p + \rho \varphi + \rho v^2/2 = const.$ In homog. fiels, in gravit. potential: $\varphi = gh$;
- 5. Torricelli's law: $v = \sqrt{2gh}$ if Energy is conserved or $v = \sqrt{gh}$ if momentum is conserved;
- 6. Liquid surface takes equipot. shape (neglecting σ); in incompr. liquid: $p = p_0 w$, w is vol. dens. of pot. en.

- 7. Speed of shallow $(h \ll \lambda)$ water waves: $v = \sqrt{gh}$ derivation via Bernoulli and Continuity eqs;
- 8. Surface tension: $U = S\sigma$, $F = l\sigma$, $p = 2\sigma/R$; Generally $p = \sigma \sum 1/R_i$, In case of 2 surfaces F, p times 2;
- 9. Young-Laplace eq: $\Delta p = \sigma \nabla \cdot \vec{n}$
- 10. Jurin's law: liquid height $h = 2\sigma \cos \theta / \rho g r_0$ r_0 tube radius; θ contact angle;
- 11. Contact angle of droplet with the underlay: $\cos \theta = (\sigma_{SG} \sigma_{SL})/\sigma_{GL}$