Previously.

This Section.

- Kernels

- Rings

- The first isomorphism theorem

- Commutative Rings

- Fields

- Subrings

- Ring Isomorphisms

Definition. Suppose R is a set and it has two binary operations on it (written as + and \cdot), then the set R is a ring if

1. (R, +) is an abelian group

2. · is associative (i.e., $r_1(r_2r_3) = (r_1r_2)r_3$)

3. the distributive laws hold:

• $r_1(r_2+r_3)=r_1r_2+r_1r_3$

 $\bullet \ (r_1 + r_2)r_3 = r_1r_3 + r_2r_3$

Example. Some rings we know and love.

1. $(\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$

2. $(2\mathbb{Z}, +, \cdot)$

3. $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$

4. $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \leftarrow \text{The book calls this } \mathbb{Z}(i)$

5. $(\mathbb{Z}_n,+,\cdot)$

6. $M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$

Example. The direct product $R_1 \times R_2$ of rings R_1 and R_2 is also a ring with componentwise operations:

- (a,b) + (c,d) = (a+c,b+d)
- $\bullet \ (a,b) \cdot (c,d) = (ac,bd)$

Definition. Given a ring $(R, +, \cdot)$,

- 1. If \cdot is commutative, then we call R a commutative ring.
- **2.** The additive identity element in R is denoted 0 or 0_R .
- **3.** If there exists a multiplicative identity element in R, it is denoted 1 or 1_R . A ring that has a 1_R is called a ring with unity.
- **4.** A non-zero element $a \in R$ is called a **zero-divisor** if there is some non-zero $b \in R$ such that ab = 0 or ba = 0.
- **5.** An element $a \in R$ is called **nilpotent** if there is some $n \in \mathbb{Z}^+$ such that $a^n = 0$.
- **6.** Suppose R is a rings with unity. Then an element $a \in R$ is called a **unit** if there is some $b \in R$ such that ab = ba = 1.
- 7. The center Z(R) of a ring R is defined to be

$$Z(R) = \{x \in R \mid xr = rx \; \forall r \in R\}.$$

Question 1. Why don't we care about all the $x \in R$ such that x + r = r + x for all $r \in R$?

- 8. A ring $R \neq \{0\}$ is called a division ring if every non-zero element in R is a unit.
- 9. A field is a commutative division ring.

Exercise 2. Examine these definitions for $(\mathbb{Z}_6, +, \cdot)$?

- 1. commutative
- 2. additive identity
- 3. multiplicative identity
- 4. zero-divisors
- 5. nilpotent elements
- **6.** units
- 7. trivial ring
- 8. center
- 9. division ring
- **10.** field

Example. A non-commutative ring called the quaternions \mathbb{H} . Is defined similar to a vector space, or \mathbb{R}^4 , with a twist:

$$\mathbb{H} = \{ a + bi + cj + dk \mid a, b, c, d \in \mathbb{R} \}$$

with multiplication working as follows:

$$i^2 = j^2 = k^2 = -1$$
, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.

Example (Some popular commutative division rings.). \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p where p is prime

Mckenzie West

Theorem 3.1.1. If 0 is the zero of a ring R, then 0r = 0 = r0 for every $r \in R$.

Theorem 3.1.2. Let r and s be arbitrary elements of a ring R.

- 1. (-r)s = r(-s) = -rs
- **2.** (-r)(-s) = rs
- **3.** (mr)(ns) = (mn)(rs) for all integers m and n

Definition. A subset S of a ring $(R, +, \cdot)$ is called a subring if $(S, +, \cdot)$ is also a ring.

Example. $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

The Subring Test. Let $(R, +, \cdot)$ be a ring and S a non-empty subset of R. Then S is a subring of R if

- 1. $r_1 r_2 \in S$ for all $r_1, r_2 \in S$
- **2.** $r_1r_2 \in S$ for all $r_1, r_2 \in S$
- **3.** $1_R \in S$

Section 3.1: Rings

Mckenzie West

Example. Prove $\mathbb{Z}[i]$ is a subring of \mathbb{C} .

Example. Prove $T_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$ is a subring of $M_2(\mathbb{R})$.

Definition. Let R and S be rings. A ring isomorphism is a bijective map $\phi: R \to S$ such that for all $r_1, r_2 \in R$,

1.
$$\phi(r_1 + r_2) =$$

2.
$$\phi(r_1r_2) =$$

3.
$$\phi(1_R) = 1_S$$

In this case we say R and S are isomorphic and write $R \cong S$.

Mckenzie West

Some Observations. Let $\phi: R \to S$ be a ring isomorphism.

1.
$$\phi(0_R) = 0_S$$

2.
$$\phi(-r) = -\phi(r)$$

3.
$$\phi(kr) = k\phi(r)$$
 for all $k \in \mathbb{Z}$

- **4.** If R and S are rings with unity, then $\phi(1_R) = 1_S$.
- 5. If ϕ is an isomorphism, then it preserves the addition and multiplication tables of both rings.

Example. Prove that \mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_3$ are isomorphic as rings.

Definition. If there is some finite n for which

$$n(1_R) = \underbrace{1_R + 1_R + \dots + 1_R}_{n \text{ times}}$$

then we say the characteristic of a ring R is the smallest such n (aka, the order of 1_R in the additive group (R, +).) Otherwise we say the characteristic of R is 0. Denote this value by char R.

Exercise 3. (a) char $\mathbb{Z}_3 =$

(b)
$$\operatorname{char} \mathbb{R} =$$

(c) char
$$\mathbb{Z}_4 \times \mathbb{Z}_6 =$$

Mckenzie West

Theorem 3.1.3. If R is a ring and char R = n, then

- **1.** If char R = n > 0, then $kR = \{0\}$ if and only if n divides k.
- **2.** If char R = 0, then kR = 0 if and only if k = 0.

Fun Fact. If $r \in R$ is nilpotent, then 1 - r is a unit.