Böl ve Fethet (Hüknet) Metodu Divide & Conquer

- 1) Problem alt problemlere bol Bol
- 2) Alt problemleri özyineleneli olarak Hükmet Göz ve hükmet
- 3) Alt problemlerin sözümlerini birleştir

Merge Sort

1) Bölnek:

- 2) Hukmetmek 2 alt problem ozyinelemel; bol
- 3) Brilestirmek: Doğrusal zamanda, O(n)

T(n)= $2T(n/2)+\Theta(n)$ all problem all problemless Birlestisme boyutu zamoni

Moster metod ile $n \stackrel{?}{\leftrightarrow} n^{\log_2 2} = n$ $n = \Theta(n)$ durum 2, $T(n) = \Theta(n \mid g_n)$

Problem: Ikili Arama (Binary Search)

Siralanmis bir dizide x elemanini bulma

Saf Algoritma: 1 (n)

Bål ve Fethet

- 1. BBI Orta elemans bul x ile bassilastis.
- 2 Hülmet 1 alt dæide ozyjnelemeli avama gap 3 Birlestir Yok

Galana Zaman: $T(n)=1.T(n/2)+\Theta(1)$ 1 alt problem

vor

Moster metod ile: $1 \stackrel{?}{\longleftrightarrow} n^{\log_2 1} = n^2 1$ $1=\Theta(1)$ durum 2, $T(n)=\Theta(\log n)$

Ikili Arama isin stozdekod

1) iteratif:

ikili_Arama (A, X)

p=1
q=n
while $P \le 9$ orfa= $\left[\frac{p+9}{2}\right]$ if A[orta] = Xreturn frue
if A[orta] < X p = Orta+1else q = orfa-1return false

2. Rel'orsif (recursive)

Ikili_ Amma_Rec(A, X, P,9)

if $P \le 9$ orta = $\left[\frac{p+9}{2}\right]$ if $A[orta] = \times$ return true

if $A[orta] < \times$ ikili. Arama_Rec (A, x, orta+1, 9)

else

ikili. Arama_Rec (A, x, p, orta-1)

else return false

Ille Gazirim: Ikili_Aroma_Rec(A,x,1,n)

Problem: Bir saymin kuvvetini hesaplama x bir sayn ve n pozitif bir sayn isin x^n bul. Sof Algoritma: $x^n = \underbrace{x \times x}_{n \text{ defa}} x^n$ $T(n) = \Theta(n)$

Böl ve Fethet Alg: $x^{n/2} \cdot x^{n/2} = \begin{cases} x^{n/2} \cdot x^{n/2} & \text{eges } n \text{ sift ise} \\ x^{n-1} \cdot x^{n-1}$

UsAl(x,n)

if n=1
return x

if n cift ise
return UsAl(x,n/2)*UsAl(x,n/2)

if n tek ise
return UsAl(x,(n-1)/2)*UsAl(x,(n-1)/2);

 $U_{SAI}(2,7)$ $U_{SAI}(2,3) * U_{SAI}(2,3) * X$ $U_{SAI}(2,1) * U_{SAI}(2,1) *$

Dogrusu

Us Al (x,n)

if n=1
return X

if n sift ise
result = Us Al(x,n/2)
return result * result

if n tek ise
result = Us Al(x,(n-1)/2)
return result * result * x

Matrislerde çarpma

$$c_{ij} = \begin{bmatrix} a_{21} & a_{22} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{i=1}^{n} a_{ik} \cdot b_{kj}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Standart algoritma

for
$$i \leftarrow 1$$
 to n (i 1'den n'ye kadar)

do for $j \leftarrow 1$ to n (j 1'den n'ye kadar)

do $c_{ij} \leftarrow 0$

for $k \leftarrow 1$ to n

do $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$

for i=1 to n

for
$$J=1$$
 to \sqrt{n}

for $k=1$ to \sqrt{n}
 $T(n)=\frac{\theta(n^{3/2}\log n)}{\log n}$
 $\log k=k/2$

for i=1 to
$$n/2$$

for $j=1$ to n

$$\frac{n}{2} \begin{bmatrix}
 for j=1 \\
 j=j+2
\end{bmatrix}$$

$$T(n) = \frac{n}{2} \cdot \frac{n}{2} + n$$

$$T(n) = \Theta(n^2)$$