#### EECS 545: Machine Learning

#### Lecture 14. Markov Networks

Honglak Lee 2/23/2011





#### Midterm Student Feedback

- Ending classes on time!
- More high-level intuitions and applications
  - I will try to incorporate as much as possible.
     However, it is important to point out that the goal of this course is to provide you sufficient depth.
- More interactions
  - I will try to incorporate some short (1 min) quizes that include discussions between pair of students and the instructor.

#### Outline

- Directed vs Undirected graphical models
- Inference in graphical models

#### Converting Directed to Undirected Graphs (1)



#### Converting Directed to Undirected Graphs (2)

#### Additional links

Moralizing: "Moral Graph"



$$p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$= \frac{1}{Z}\psi_A(x_1, x_2, x_3)\psi_B(x_2, x_3, x_4)\psi_C(x_1, x_2, x_4)$$

# Directed vs. Undirected Graphs (1)



# Directed vs. Undirected Graphs (2)

E.g., Markov Network, but cannot be represented by Bayesian Network



Q. Can this graph be converted into an equivalent directed graph? If not, why?

$$A \not\perp\!\!\!\perp B \mid \emptyset$$
 
$$A \perp\!\!\!\perp B \mid C \cup D$$
 
$$C \perp\!\!\!\perp D \mid A \cup B$$

# Directed vs. Undirected Graphs (3)

E.g., Bayesian Network, but cannot be represented by Markov Network



Q. Can this graph be converted into an equivalent undirected graph? If not, why?

$$A \perp \!\!\!\perp B \mid \emptyset$$
  $A \not\perp \!\!\!\perp B \mid C$ 

# Inference in graphical models

### Inference in Graphical Models



Marginal probability

$$p(y) = \sum_{x'} p(y|x')p(x')$$
  $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$ 

Posterior probability

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

$$x_1 \qquad x_2 \qquad x_{N-1} \qquad x_N$$

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

$$\frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

$$\sum_{x_N} \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$







$$\mu_{\alpha}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2)$$

$$\mu_{\beta}(x_{N-1}) = \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)$$

$$Z = \sum_{x_n} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

Q. Can you understand why three recursion rules hold?

- To compute local marginals:
  - Compute and store all forward messages,  $\mu_{\alpha}(x_n)$ .
  - Compute and store all backward messages,  $\mu_{\beta}(x_n)$ .
  - Compute Z at any node  $X_m$
  - Compute

$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

for all variables required.

#### **Trees**



#### **Factor Graphs**



$$p(\mathbf{x}) = \prod_{s} f_s(\mathbf{x}_s)$$

### Factor Graphs from Directed Graphs



### Factor Graphs from Undirected Graphs



# The Sum-Product Algorithm (1)

- Objective:
  - to obtain an efficient, exact inference algorithm for finding marginals;
  - ii. in situations where several marginals are required, to allow computations to be shared efficiently.
- Key idea: Distributive Law

$$ab + ac = a(b+c)$$

# The Sum-Product Algorithm (2)



# The Sum-Product Algorithm (3)



 $X_s$ : the set of all variables in the subtree (connected to x via the factor node  $f_s$ )  $F_s(x,X_s)$ : the product of all the factors in the group associated with factor fs.



$$\begin{array}{lll}
M_{f_{S} \to X}(X) &=& \sum_{X_{1}, \dots, X_{M}} \sum_{X_{S_{2}}} & \dots & \sum_{X_{S_{M}}} \overline{f_{S}}(X_{1} X_{1} X_{2}) & \dots & \sum_{X_{S_{M}}} \overline{f_{S}}(X_{1} X_{2} X_{3}) & \dots & G_{M}(X_{M} X_{M}) \\
&=& \sum_{X_{1} \dots X_{M}} f_{S}(X_{1} \dots X_{M}) & \sum_{X_{S_{1}}} G_{1}(X_{1} X_{S_{1}}) & \sum_{X_{S_{2}}} G_{2}(X_{2}, X_{S_{2}}) & \dots & \sum_{X_{S_{M}}} G_{1}(X_{M} X_{S_{M}}) \\
&=& \sum_{X_{1} \dots X_{M}} f_{S}(X_{1} \dots X_{M}) & \sum_{X_{S_{1}}} G_{1}(X_{1} X_{S_{1}}) & \sum_{X_{S_{2}}} G_{2}(X_{2}, X_{S_{2}}) & \dots & \sum_{X_{S_{M}}} G_{1}(X_{M} X_{S_{M}}) \\
&=& \sum_{X_{1} \dots X_{M}} f_{S}(X_{1} \dots X_{M}) & \sum_{X_{S_{1}}} G_{1}(X_{1} X_{S_{1}}) & \sum_{X_{S_{2}}} G_{2}(X_{2}, X_{S_{2}}) & \dots & \sum_{X_{S_{M}}} G_{1}(X_{M} X_{S_{M}}) \\
&=& \sum_{X_{1} \dots X_{M}} f_{S}(X_{1} \dots X_{M}) & \sum_{X_{S_{1}}} G_{1}(X_{1} X_{S_{1}}) & \sum_{X_{S_{1}}} G_{2}(X_{2} X_{S_{2}}) & \dots & \sum_{X_{S_{M}}} G_{1}(X_{M} X_{S_{M}}) \\
&=& \sum_{X_{1} \dots X_{M}} f_{S}(X_{1} \dots X_{M}) & \sum_{X_{1} \dots X_{M}} G_{1}(X_{M} X_{S_{M}}) & \sum_{X_{1} \dots X_{M}} G_{1}(X_{M} X_{S_{M}}) & \sum_{X_{1} \dots X_{M}} G_{1}(X_{M} X_{S_{M}}) \\
&=& \sum_{X_{1} \dots X_{M}} f_{S}(X_{1} \dots X_{M}) & \sum_{X_{1} \dots X_{M}} G_{1}(X_{M} X_{S_{M}}) & \sum_{X_{2} \dots X_{M}} G_{1}(X_{M} X_{S_{M}}) & \sum_{X_{2} \dots X_{M}} G_{1}(X_{M} X_{S_{M}}) \\
&=& \sum_{X_{1} \dots X_{M}} f_{S}(X_{1} \dots X_{M}) & \sum_{X_{1} \dots X_{M}} G_{1}(X_{M} X_{S_{M}}) & \sum_{X_{2} \dots X_{M}} G_{2}(X_{M} X_{M} X_{M}) & \sum_{X_{2} \dots X_{M}} G_{2}(X_{M} X_{M} X_{M} X_{M}) & \sum_{X_{2} \dots X_{M}} G_{2}(X_{M} X_{M} X_{M} X_{M} X_{M}) & \sum_{X_{2} \dots X_{M}} G_{2}(X_{M} X_{M} X_{M} X_{M}) & \sum_{X_{2} \dots X_{M}} G_{2}$$

The Sum-Product Algorithm (5)



$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[ \sum_{X_{sm}} G_m(x_m, X_{sm}) \right]$$

$$= \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

$$\mathcal{M}_{X \to S''(X)} = \mathcal{M}_{f_s \to X} (X) \cdot \mathcal{M}_{f_{S'} \to X} (X) = \mathcal{M}_{f_s \to X} (X)$$

$$M_{fs\rightarrow x} = \int_{s} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

$$= \int_{x_{t}} f_{s}(x_{N(x)}) \prod_{j \in N(t_{s}) \setminus x} \mu_{x_{j}\rightarrow f_{s}}(x_{j})$$

### The Sum-Product Algorithm (6)



$$\mu_{x_m \to f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm}) = \sum_{X_{sm}} \prod_{l \in \text{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml})$$

$$= \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)$$

#### The Sum-Product Algorithm (7)

Initialization





### The Sum-Product Algorithm (8)

- To compute local marginals:
  - Pick an arbitrary node as root
  - Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
  - Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
  - Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

# Sum-Product: Example (1)



# Sum-Product: Example (2)



# Sum-Product: Example (2)

# Sum-Product: Example (3)



# Sum-Product: Example (4)

# The Max-Sum Algorithm (1)

- Objective: an efficient algorithm for finding
  - i. the value  $X^{max}$  that maximises p(X);
  - ii. the value of  $p(x^{max})$ .
- In general, maximum marginals ≠ joint maximum.

$$\underset{x}{\operatorname{arg\,max}} p(x,y) = 1 \qquad \underset{x}{\operatorname{arg\,max}} p(x) = 0$$

# The Max-Sum Algorithm (2)

Maximizing over a chain (max-product)



$$p(\mathbf{x}^{\max}) = \max_{\mathbf{x}} p(\mathbf{x}) = \max_{x_1} \dots \max_{x_M} p(\mathbf{x})$$

$$= \frac{1}{Z} \max_{x_1} \dots \max_{x_N} \left[ \psi_{1,2}(x_1, x_2) \dots \psi_{N-1,N}(x_{N-1}, x_N) \right]$$

$$= \frac{1}{Z} \max_{x_1} \left[ \max_{x_2} \left[ \psi_{1,2}(x_1, x_2) \left[ \dots \max_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \dots \right] \right]$$

# The Max-Sum Algorithm (3)

Generalizes to tree-structured factor graph

$$\max_{\mathbf{x}} p(\mathbf{x}) = \max_{x_n} \prod_{f_s \in ne(x_n)} \max_{X_s} f_s(x_n, X_s)$$

maximizing as close to the leaf nodes as possible

# The Max-Sum Algorithm (4)

- Max-Product → Max-Sum
  - For numerical reasons, use

$$\ln\left(\max_{\mathbf{x}} p(\mathbf{x})\right) = \max_{\mathbf{x}} \ln p(\mathbf{x}).$$

Again, use distributive law

$$\max(a+b, a+c) = a + \max(b, c).$$

### The Max-Sum Algorithm (5)

Initialization (leaf nodes)

$$\mu_{x \to f}(x) = 0 \qquad \qquad \mu_{f \to x}(x) = \ln f(x)$$

Recursion

$$\mu_{f \to x}(x) = \max_{x_1, \dots, x_M} \left[ \ln f(x, x_1, \dots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f}(x_m) \right]$$

$$\phi(x) = \arg \max_{x_1, \dots, x_M} \left[ \ln f(x, x_1, \dots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f}(x_m) \right]$$

$$\mu_{x \to f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \to x}(x)$$

# The Max-Sum Algorithm (6)

Termination (root node)

$$p^{\max} = \max_{x} \left[ \sum_{s \in ne(x)} \mu_{f_s \to x}(x) \right]$$
 $x^{\max} = \arg\max_{x} \left[ \sum_{s \in ne(x)} \mu_{f_s \to x}(x) \right]$ 

Back-tracking to get the full assignment.

#### The Max-Sum Algorithm (7)

Example: Markov chain



### The Junction Tree Algorithm (sketch)

- Exact inference on general graphs.
- Works by turning the initial graph into a junction tree and then running a sum-productlike algorithm.
  - 1. Convert to undirected graph
  - 2. Triangulate the graph
  - 3. Construct a junction tree (where the nodes are cliques of the triangulated graph)
  - 4. Run belief propagation (e.g., sum-product)
- Intractable on graphs with large cliques.

# Loopy Belief Propagation (sketch)

- Sum-Product on general graphs.
- Initial unit messages passed across all links, after which messages are passed around until convergence (not guaranteed!).
- Approximate but tractable for large graphs.
- Sometime works well, sometimes not at all.
- Read the Bishop book.

#### Next class

- Learning in graphical models
  - Maximum likelihood for fully observed variables
  - EM for partially observed variables