Question 1. (a) (25 marks) Let (X,d), (Y,ρ) , and (Z,σ) be metric spaces. Suppose that $f: X \to Y$ and $g: Y \to Z$ are uniformly continuous mappings. Show that $h = g \circ f : X \to Z$ is uniformly continuous.

(b) (25 marks) Let (X, d) be a metric space. Prove that X is complete if and only if for each r > 0, the closed ball $\overline{B}(x, r)$ is complete.

Question 2. Let (X, d) and (Y, ρ) be metric spaces.

(a) (25 marks) Define
$$\sigma: (X \times Y) \times (X \times Y) \to \mathbb{R}$$
 by
$$\sigma((x, y), (x', y')) = \max \{d(x, x'), \rho(y, y')\}.$$

Show that σ is a metric on $X \times Y$.

(b) (10 marks) Let $(x_0, y_0), (x_n, y_n) \in X \times Y, n \in \mathbb{N}$. Show that

$$\lim_{n \to \infty} (x_n, y_n) = (x_0, y_0) \iff \lim_{n \to \infty} x_n = x_0 \text{ and } \lim_{n \to \infty} y_n = y_0.$$

(c) (15 marks) Let f: X → Y be a mapping. The graph of the mapping f is the set of ordered pairs

$$Gr(f) := \{(x, y) \in X \times Y : x \in X \text{ and } f(x) = y\}.$$

Show that if f is continuous and X is compact, then Gr(f) is a compact set in the metric space $(X \times Y, \sigma)$.