Jira Board

Code Drop

Apart from our MapReduce programs (cleaning and counting bad records), we have extended our code for visualizations and analysis.

```
import numpy as np
import pandas as pd
import random
data = pd.read_csv('EMS_Incident_Dispatch_Data.csv')
df = pd.DataFrame(data)
sample_df = df.sample(frac = 0.2)
cleaned =
sample_df[['CAD_INCIDENT_ID','FINAL_CALL_TYPE','FINAL_SEVERITY_LEVEL_CODE','DIS
PATCH RESPONSE SECONDS QY', 'INCIDENT RESPONSE SECONDS QY', 'INCIDENT T
RAVEL TM SECONDS QY', 'BOROUGH', 'ZIPCODE', 'POLICEPRECINCT']]
cleaned = cleaned.dropna()
# Figure 1
import matplotlib.pyplot as plt
f = plt.figure(figsize=(19, 15))
plt.matshow(cleaned.corr(), fignum=f.number)
plt.xticks(range(cleaned.select_dtypes(['number']).shape[1]),
cleaned.select dtypes(['number']).columns, fontsize=14, rotation=45)
plt.yticks(range(cleaned.select_dtypes(['number']).shape[1]),
cleaned.select_dtypes(['number']).columns, fontsize=14)
cb = plt.colorbar()
```

```
cb.ax.tick params(labelsize=14)
plt.title('Correlation Matrix', fontsize=16);
response time =
cleaned.groupby(by=['FINAL_CALL_TYPE','FINAL_SEVERITY_LEVEL_CODE']).mean().reset_i
ndex()
# Figure 2
# Scatter plot with day against tip
plt.scatter(cleaned['FINAL SEVERITY LEVEL CODE'],
cleaned['DISPATCH_RESPONSE_SECONDS_QY'])
# Adding Title to the Plot
plt.title("Scatter Plot")
# Setting the X and Y labels
plt.xlabel('Severity Code')
plt.ylabel('Dispatch Response Time')
plt.show()
# Figure 3
plt.scatter(cleaned['FINAL_SEVERITY_LEVEL_CODE'],
cleaned['INCIDENT_RESPONSE_SECONDS_QY'])
# Adding Title to the Plot
plt.title("Scatter Plot")
# Setting the X and Y labels
plt.xlabel('Severity Code')
plt.ylabel('Incident Response Time')
plt.show()
# Figure 4
import seaborn as sns
sns.scatterplot(x='DISPATCH RESPONSE SECONDS QY',
y='INCIDENT_RESPONSE_SECONDS_QY', data=cleaned,
        hue='FINAL_SEVERITY_LEVEL_CODE')
plt.show()
# Figure 5
```

```
sns.scatterplot(x='POLICEPRECINCT', y='INCIDENT RESPONSE SECONDS QY',
data=cleaned,
        hue='FINAL SEVERITY LEVEL CODE')
plt.show()
boroughs = cleaned.groupby(by=['BOROUGH']).mean().reset index()
boroughs final =
boroughs[['BOROUGH','DISPATCH RESPONSE SECONDS QY','INCIDENT RESPONSE S
ECONDS QY', 'INCIDENT TRAVEL TM SECONDS QY']]
# Figure 6
plt.scatter(cleaned['FINAL SEVERITY LEVEL CODE'],
cleaned['INCIDENT RESPONSE SECONDS QY'], color='red')
plt.title('Severity Code Vs Incident Response Time', fontsize=14)
plt.xlabel('Severity Rate', fontsize=14)
plt.ylabel('Incident Response Time Price', fontsize=14)
plt.grid(True)
plt.show()
# Figure 7
plt.scatter(cleaned['DISPATCH RESPONSE SECONDS QY'].
cleaned['INCIDENT_RESPONSE_SECONDS_QY'], color='red')
plt.title('Dispatch Response Time Vs Incident Response Time', fontsize=14)
plt.xlabel('Dispatch Response Time', fontsize=14)
plt.ylabel('Incident Response Time Price', fontsize=14)
plt.grid(True)
plt.show()
#OLS
from sklearn import linear_model
import statsmodels.api as sm
X = cleaned[['FINAL_SEVERITY_LEVEL_CODE','DISPATCH_RESPONSE_SECONDS_QY']]
y = cleaned['INCIDENT_RESPONSE_SECONDS_QY']
regr = linear model.LinearRegression()
regr.fit(X, y)
print('Intercept: \n', regr.intercept )
print('Coefficients: \n', regr.coef_)
# with statsmodels
X = sm.add constant(X) # adding a constant
```

```
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
print_model = model.summary()
print(print_model)
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
X = cleaned[['FINAL_SEVERITY_LEVEL_CODE','DISPATCH_RESPONSE_SECONDS_QY']]
y = cleaned['INCIDENT_RESPONSE_SECONDS_QY']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)
regr = linear_model.LinearRegression()
regr.fit(X, y)
y_prediction = regr.predict(X_test)
score=r2_score(y_test,y_prediction)
print('R^2 score: ',score)
print('MSE: ', mean_squared_error(y_test,y_prediction))
print('RMSE: ', np.sqrt(mean_squared_error(y_test,y_prediction)))
```


Intercept:

271.1995982854357

Coefficients:

[43.49949337 1.07161985]

OLS Regression Results

============							==	
Dep. Variable:	INCIDENT_RESPONSE_SECONDS_QY			R-squared:		0.720		
Model:			OLS	Adj. R-squar	ed:	0.7	20	
Method: Le			Squares	F-statistic:		5.615e+	06	
Date:	Wed, 16 Nov 2022			Prob (F-statistic):		0.	00	
Time:	18:23:39			Log-Likelihood:		-3.1562e+07		
No. Observations:	4376996			AIC:		6.312e+	6.312e+07	
Df Residuals:	4376993			BIC:		6.312e+	6.312e+07	
Df Model:			2					
Covariance Type:		no	nrobust					
				=========				
		coef	std er	r t	P> t	[0.025	0.975]	
const		271.1996	0.41	7 650.328	0.000	270.382	272.017	
FINAL_SEVERITY_LEVE	L_CODE	43.4995	0.09	4 462.990	0.000	43.315	43.684	
DISPATCH_RESPONSE_S	SECONDS_QY	1.0716	0.00	0 3260.675	0.000	1.071	1.072	
Omnibus:	5937314.162 Durbin-Wa		atson:		==== .999			
Prob(Omnibus):	0.000 Jarque-		Jarque-Be	era (JB): 105856826		.985		
Skew:	7.057 Prob		Prob(JB):		0.00			
Kurtosis:		243.509	Cond. No.		1.32	e+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.32e+03. This might indicate that there are strong multicollinearity or other numerical problems.

R^2 score: 0.7203704041380895

MSE: 108600.12941593894

RMSE: 329.5453374210276