First steps: Prepare reference databases and trees

TRAITS project meeting: 7-10 September 2021 – CNB, Madrid

Install software:

Install Miniconda:

https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html

```
configure channels
$ conda config --add channels defaults
$ conda config --add channels bioconda
$ conda config --add channels conda-forge

create a new environment and install programs:
$ conda create -n traits
$ conda install python=3.9.6
```

\$ conda install -c bioconda seqkit prodigal hmmer muscl iqtree epa-ng gappa

Install Papara
https://cme.h-its.org/exelixis/web/software/papara/index.html

\$ conda install -c conda-forge biopython

Download MAR databases:

https://mmp.sfb.uit.no/databases/

DOCUMENTATION COMMUNITY HELP

The MAR databases and resources can be downloaded using the MAR browser. All data including contextual, sequence and other sequence data resources are open and freely available.

Download DNA versions

- Click on CDS Nucleotides
- Next page: look for most recent version and copy link

Index of /MarDB/BLAST/nucleotides/

CDS Proteins

/-			
mardb	nucleotides	V1.fna	
mardb	nucleotides	V2.fna	
mardb	nucleotides	V3.fna	
mardb	nucleotides	V4.fna	
mardb	nucleotides	V5.fna	
mardb	nucleotides	V6.fna	

Click here for earlier versions.

03-Aug-2020	15:25	15176125055
03-Aug-2020	14:59	28828182406
03-Aug-2020	15:19	35194610194
03-Aug-2020	15:37	41423146433
03-Aug-2020	18:57	42395420201
21-Sep-2020	12:03	53647939208

Back to your terminal:

```
$ wget 'https://public.sfb.uit.no/MarDB/BLAST/nucleotides/mardb_nucleotides_V6.fna' &
$ wget 'https://public.sfb.uit.no/MarRef/BLAST/nucleotides/marref_nucleotides_V6.fna' &
```

```
nfernandez@zobel1:/mnt/nfelbrus/mar_db/temp$ wget 'https://public.sfb.uit.no/MarRef/BLAST/nucleotides/marref_nucleotides_V6.fna' & [2] 12946
nfernandez@zobel1:/mnt/nfelbrus/mar_db/temp$
Redirecting output to 'wget-log'.

nfernandez@zobel1:/mnt/nfelbrus/mar_db/temp$ wget 'https://public.sfb.uit.no/MarDB/BLAST/nucleotides/mardb_nucleotides_V6.fna' & [3] 12948
nfernandez@zobel1:/mnt/nfelbrus/mar_db/temp$
Redirecting output to 'wget-log.1'.

nfernandez@zobel1:/mnt/nfelbrus/mar_db/temp$
```

Other databases:

Paoli's dataset contains MAR databases – discuss Use of JGI-GOLD

Prepare databases:

Databases seem to contain duplicates – removing them

```
$ conda activate traits
```

Do not run (MarRef – no duplicates):

```
$ cat marref_nucleotides_V6.fna | seqkit rmdup -n -o marrefnoDup_nucleotides.fna -d
duplicates_marref.fna -D duplicates_marref_info.txt
[INFO] 0 duplicated records removed
```

MarDB - seqkit tool:

- n: duplicates identification by name (not by sequence)
- d: fasta with duplicated sequences
- D: text file with information
- \$ cat mardb_nucleotides_V6.fna | seqkit rmdup -n -o mardbnoDup_nucleotides.fna -d
 duplicates_mardb.fna -D duplicates_mardb_info.txt 1>log_rmdup.txt 2>&1 &
- \$ cat log_rmdup.txt
 [INFO] 12890 duplicated records removed
- \$ less duplicates_mardb_info.fna

```
PQBW01000006.1, PQBW01000006.1, PQBW01000006.1, PQBW01000006.1, PQBW01000006.1
QILR01000152.1, QILR01000152.1, QILR01000152.1
NZ_QITQ01000007.1_cds_WP_111733841.1_3492_MMP09279561, NZ_QITQ01000007.1_cds_WP_111733841.1_3492_MMP09279561
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692, NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692
NZ_QITQ01000001.1_cds_WP_111732063.1_980_MMP09279561, NZ_QITQ01000001.1_cds_WP_111732063.1_980_MMP09279561
NZ_QNGB01000001.1_cds_WP_113256320.1_228_MMP09508687, NZ_QNGB01000001.1_cds_WP_113256320.1_228_MMP09508687
NZ_QGTW01000018.1_cds_WP_110067373.1_4839_MMP09074692, NZ_QGTW01000018.1_cds_WP_110067373.1_4839_MMP09074692
NZ QGTW01000001.1 cds WP 110063018.1 298 MMP09074692, NZ QGTW01000001.1 cds WP 110063018.1 298 MMP09074692
NZ_QITQ01000002.1_cds_WP_111732379.1_1988_MMP09279561, NZ_QITQ010000002.1_cds_WP_111732379.1_1988_MMP09279561
NZ_QNGB01000058.1:complement(<1->168), NZ_QNGB01000058.1:complement(<1->168)
NZ QGTW01000002.1 cds WP 110063810.1 1127 MMP09074692, NZ QGTW01000002.1 cds WP 110063810.1 1127 MMP09074692
NZ QITQ01000005.1 cds WP 111733244.1 3109 MMP09279561, NZ QITQ01000005.1 cds WP 111733244.1 3109 MMP09279561
NZ_QNGB01000023.1_cds_WP_113258766.1_1577_MMP09508687, NZ_QNGB01000023.1_cds_WP_113258766.1_1577_MMP09508687
NZ_QNGB01000052.1_cds_WP_113259626.1_2999_MMP09508687, NZ_QNGB01000052.1_cds_WP_113259626.1_2999_MMP09508687
NZ_QNGB01000022.1_cds_WP_113258740.1_1548_MMP09508687, NZ_QNGB01000022.1_cds_WP_113258740.1_1548_MMP09508687
NZ QITQ01000010.1 cds WP 111734266.1 18 MMP09279561, NZ QITQ01000010.1 cds WP 111734266.1 18 MMP09279561
NZ_QNGB01000011.1_cds_WP_113257876.1_451_MMP09508687, NZ_QNGB01000011.1_cds_WP_113257876.1_451_MMP09508687
NZ_QGTW01000023.1_cds_WP_110067657.1_5194_MMP09074692, NZ_QGTW01000023.1_cds_WP_110067657.1_5194_MMP09074692
NZ_QITQ01000008.1_cds_WP_111733931.1_3537_MMP09279561, NZ_QITQ010000008.1_cds_WP_111733931.1_3537_MMP09279561
NZ QITQ01000022.1 cds WP 111735261.1 1411 MMP09279561, NZ QITQ01000022.1 cds WP 111735261.1 1411 MMP09279561
NZ QGTW01000018.1 cds WP 110067322.1 4822 MMP09074692, NZ QGTW01000018.1 cds WP 110067322.1 4822 MMP09074692
NZ_QGTW01000012.1_cds_WP_110066453.1_3913_MMP09074692, NZ_QGTW01000012.1_cds_WP_110066453.1_3913_MMP09074692
NZ QGTW01000011.1_cds_WP_110066271.1_3724_MMP09074692, NZ_QGTW01000011.1_cds_WP_110066271.1_3724_MMP09074692
NZ_QGTW01000020.1_cds_WP_110067492.1_5002_MMP09074692, NZ_QGTW01000020.1_cds_WP_110067492.1_5002_MMP09074692
NZ_QNGB01000001.1_cds_WP_113256151.1_24_MMP09508687, NZ_QNGB01000001.1_cds_WP_113256151.1_24_MMP09508687
NZ_QNGB01000019.1_cds_WP_113258540.1_1123_MMP09508687, NZ_QNGB01000019.1_cds_WP_113258540.1_1123_MMP09508687
NZ_QITQ01000001.1_cds_WP_111731816.1_1008_MMP09279561, NZ_QITQ01000001.1_cds_WP_111731816.1_1008_MMP09279561
NZ_QGTW01000003.1_cds_WP_110064238.1_1573_MMP09074692, NZ_QGTW01000003.1_cds_WP_110064238.1_1573_MMP09074692
NZ QNGB01000012.1 cds WP 113257974.1 543 MMP09508687, NZ QNGB01000012.1 cds WP 113257974.1 543 MMP09508687
NZ QNGB01000024.1 cds WP 113258841.1 1656 MMP09508687, NZ QNGB01000024.1 cds WP 113258841.1 1656 MMP09508687
NZ_QITQ01000008.1_cds_WP_111733951.1_3548_MMP09279561, NZ_QITQ010000008.1_cds_WP_111733951.1_3548_MMP09279561
NZ_QGTW01000018.1:complement(66718-67058), NZ_QGTW01000018.1:complement(66718-67058)
```

```
(traits) nfernandez@zobel1:/media/disk5/nfernandez/mar_db$ grep -A 15 -F "QILR01000152.1" mardb_nucleotides_V6.fna
>QILR01000152.1 [mmp_id=MMP09239998] [mmp_db=mardb]
ATTTTTCAATCAAACCACAACAATCAAACCACAACCCAGATCGCCGAAGCCGGTCAGAA
GCCATTAATATCGTTAATCCATTTTTTCAATCAAACCACAACTAAATCGTCGTGAAACCT
TGATTTACCGCAAGGTAGGCCAATCGCTAGAATATCGTTAATCCATTTTTTCAATTGCCA
GCGGCT
>0ILR01000152.1 [mmp id=MMP09239998] [mmp db=mardb]
TATCGTTAATCCATTTTTTCAATCAAACCACAACAAGTCACCTGCGGTGCCAGCGGCTA
AGAAAATATCGTTAATCCATTTTTTCAATCAAACCACAACGACAACATACTGACAACCTG
ACAACTGACAAATATCGTTAATCCATTTTTTCAATCAAACCACAACGACAACCATACTTC
CAACATCCCAATAGCAATGCATCGCTCTACTACAAATATCGTTAATCCA
AAACCACAACAGTTTAACGGGGGAGTAGTAGAGAGGGATAAATATCGTTAATCCATTTTT
TCAATCAAACCACAACCTTTGAACTGGCGGACGTGGCCAAGTACATAATATCGTTAATCC
ATTTTTTCAATCAAACCACAACATTGAAGTTCATTGAACCGCTTGCGGGCTTAATATCGT
TAATCCATTTTTTCAATCCACCTGGCTG
>0ILR01000152.1 [mmp id=MMP09239998] [mmp db=mardb]
AATATCGTTAATCCATTTTTTCAATCAAACCACAACGTAGTGGGCATAGCAAAGAACGCA
GTAAAAAATATCGTTAATCCATTTTTTCAATCAAACCACAACATTGAAGTTCATTGAACC
GCTTGCGGGCTTAATATCGTTAATCCATTTTTTCAATCCACAACAAAAGATTGGGGATAT
ACGTAACACCTGGTGCAGTGATCGCAAGTAAAATATCGTTAATCCCTTTTTTGAAAAACC
ACCTAA
```

```
(traits) nfernandez@zobel1:/media/disk5/nfernandez/mar_db$ grep -A 15 -F "PQBW01000006.1" mardb nucleotides V6.fna
>PQBW01000006.1 [mmp id=MMP08380958] [mmp db=mardb]
GTTTCTACTGCCTAAACGGCGGGGGTTGATGCAACCAACATCCAATAGCTTTGGTAGACT
TTGATAATATGTTTCTACTGCCTAAACGGCGGGGTTGATGCAACATCAAAGTTCTCACT
TTATTACTGAAGTTTACAGTTTCTACTGCCTAAACGGCGGGGGTTGATGCAACTCTAAAC
AACAGCTTGCCATTTACGAGTTCTCCAGTTTCTACTGCCTAAACGGCGGGGGTTGATGCA
ACAGTATCCTATCAGAGAATATTTGAAGGGGCCTTTGTTTCTACTGCCTAAACGGCGGGG
GTTGATGCAACTGTGGATTATCTAAAATTTTTTGTGGCAATAATTGTTTCTACTGCCTAA
TACTGCCTAAACGGCGGGGGTTGATGCAAC
>POBW01000006.1 [mmp id=MMP08380958] [mmp db=mardb]
GTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAACCAATAGATATTGGTCATAATTTCGA
ACATTATCTGTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAACAAATAATGATTTTTCT
ATTTCCAGCATATTTAAGTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAAC
>PQBW01000006.1 [mmp id=MMP08380958] [mmp db=mardb]
GTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAACCAATAGATATTGGTCATAATTTCGA
ACATTATCTGTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAACAAATAATGATTTTTCT
ATTTCCAGCATATTTAAGTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAAC
>POBW01000006.1 [mmp id=MMP08380958] [mmp db=mardb]
TTATCTTAAGCCTAAACAGCGGGGATTAAGGCAACTGGCATATTTTGTATTTTGGATAGC
ATCAATAGTTGTTTCTACTGCCTAAACGGCTGGGGGTAATGCAACAAGCTGTACATCAAT
CAGGAAGCCAAAACTCGTTGTTTCTACTGCCTAAACGGCGAGGGGTAATGCAACCATACC
TAGCTGATGATATGCCATTTGCTAATGAGTTTCTACTGCCTAAACGGCGGGGGTTAGTGC
AACTAAATGTGTTGACCGAGACTGAAAATAAAGAAGATGTTTCTACTGTCTAAACGGCGG
GGGTTAGTGCAACTAATCGAACGCTGCGATATTTCTAATGGAGATGAGTTTCTACTGCCT
AAACGGCGGGGGTTAGTGCAACTAGCTACCAGATTAGAAAAACCATTTGAACTTTTGTTT
|CTACTGCCTAAACGGCGGGGTTAGTGCAACACAGAGCTAGTAAATTTGCTCTACGAAA
TAAGTGTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAAC
>POBW01000006.1 [mmp id=MMP08380958] [mmp db=mardb]
TGTTTCTACTGCCTAAACGGCTGGGGCTAGTGCAACTTAACCATGCCAATCACAGAGGAA
TGGCTGCCAGAATGTGAAGTTTCTACTGCCTAAGCGGCGGGGGGTAATGCAACTCAAGAC
AAATAAAGAGGATGATAGGGTTAATTTAGTTTCTACTGCCTAAACGGCGGGGGGTAATGC
AACAACTGCGACGAGGATTTTAACCTAGCTGTTTTAGTTTCTACTGCCTAAACGGCGGGG
GGTAATGCAACAAAGATAGTGGGAATTACAATTGAGTCAATAAGTTTCCACTGCCTAAA
CGGCGGGGGGTAATGCAAC
>PQBW01000006.1 [mmp id=MMP08380958] [mmp db=mardb]
GTTTCTACTGCCTAAACGGCGGGGTTAGTGCAACTTACACCGTGATGTTAAAGGACAGA
|GAATTAGTAGTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAACGTTTTCCAGCATCCTA
CGTAAAAGCAAGCTAGAGGTTTCTACTGCCTAAACGGCGGGGGTTAGTGCAACCCTTTGA
```

GAAGTTCTTCAAAGGGCAATCTGAAGGAGTTTCTACTGCCTAAACGGCGAGGGTTAATGC AACCCTTACAAATTCGAAGTATCCGAGAGTGACTTTAGTTTCTACTGCCTAAACGGCGAG

>GCA_002964565.1_04865_MMP08380958 CRISPR-associated endonuclease Cas2 2 [mmp_id=MMP08380958] [mmp_db=mardb]

GGTTAATGCAAC

>NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 [gene=pdaA] [locus_tag=DF07: 819)] [gbkey=CDS] [mmp_id=MMP09074692] [mmp_db=mardb] CGCGGCTATTCATTTAAAAGCCTTGATGATCTAACCTGGGAACAGGCGATTAAAGAGAGAATGCTGTACTGA

>NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 [gene=pdaA] [locus_tag=DF07: 2NZ_ 819)] [gbkey=CDS] [mmp id=MMP09074692] [mmp db=mardb] CGCGGCTATTCATTTAAAAGCCTTGATGATCTAACCTGGGAACAGGCGATTAAAGAGAGAATGCTGTACTGA (traits) nfernandez@zobel1:/media/disk5/nfernandez/mar_db\$

Almost all sequences are real duplicates

CLUSTAL 0(1.2.4) multiple sequence alignment		
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 2NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692	ATGAAAAAACTAAGCATCGTCCTGAGTGCTTTTTTCCTGTTTTTTTCTGGAACAGCATAC ATGAAAAAACTAAGCATCGTCCTGAGTGCTTTTTTCCTGTTTTTTTCTGGAACAGCATAC	60 60
NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692 2NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692	GCGGACTATGGAAACTCTCCGATCCACTGGGGGTTTAAAAAAGCAAAGGATGAGGTGCCG GCGGACTATGGAAACTCTCCGATCCACTGGGGGTTTAAAAAAGCAAAGGATGAGGTGCCG	120 120
NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692 2NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692	GCTGAAGCAGGGAAACCGCTGGATTCATTGCTTGAAAGGCATGGCTCGTATTATAAAGGC GCTGAAGCAGGGAAACCGCTGGATTCATTGCTTGAAAGGCATGGCTCGTATTATAAAGGC	180 180
NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692 2NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692	GACACAAGCAAAAAGTATATTTATTTAACTTTTGATAATGGTTATGAAAACGGATATACA GACACAAGCAAAAAGTATATTTATTTAACTTTTGATAATGGTTATGAAAACGGATATACA ********************************	240 240
NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692 2NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692	GGTCAGATTTTGGACGTTTTAAAAAAGGAAGAAGTTCCGGCTGCATTTTTTTGTAACAGGA GGTCAGATTTTGGACGTTTTAAAAAAGGAAGAAGTTCCGGCTGCATTTTTTGTAACAGGA ********************************	300 300
NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692 2NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692	CATTATTTAAAAAGTGCGCCAGATCTTGTTAAAAGGATGGCTGCTGAAGGGCATATTATT CATTATTTAAAAAGTGCGCCAGATCTTGTTAAAAGGATGGCTGCTGAAGGGCATATTATT ******************************	360 360
NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692 2NZ QGTW01000013.1 cds WP 110066703.1 4178 MMP09074692	GGCAACCATTCCTGGCATCATCCAGATATGACAAGAGTCAGCGATGAGAAATTTGTAAAA GGCAACCATTCCTGGCATCATCCAGATATGACAAGAGTCAGCGATGAGAAATTTGTAAAA	420 420
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 2NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692	GAGCTTGAAATGGTCCGGGCAGAGACCGAAAAGCTGACAGGTGTTAAGCAAATGGCCTAT GAGCTTGAAATGGTCCGGGCAGAGACCCGAAAAGCTGACAGGTGTTAAGCAAATGGCCTAT	480 480
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 2NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692	TTGCGCCCGCCTCGCGGAATTTTCAGCGAAAGGACACTGGCTCTAGCCAAAAAAGAAGGC TTGCGCCCGCTCGCGGAATTTTCAGCGAAAGGACACTGGCTCTAGCCAAAAAAGAAGGC	540 540
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 2NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692	TATACCCATGTATTTTGGTCACTGGCTTTTGTTGACTGGAACACGGATCGGCAAAAAGGC TATACCCATGTATTTTGGTCACTGGCTTTTGTTGACTGGAACACGGATCGGCAAAAAGGC	600 600
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 2NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692	TGGCAACACTCTTATGATAATATTATGCGCCAAATTCATCCTGGCTGTATCCTGCTTCTT TGGCAACACTCTTATGATAATATTATGCGCCAAATTCATCCTGGCTGTATCCTGCTTCTT	660 660
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 2NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692	CACACTGTTTCGAAGGATAATGCCGATGCATTGGAAAAAGCCATTCAGGATTTAAAAAAG CACACTGTTTCGAAGGATAATGCCGATGCATTGGAAAAAGCCATTCAGGATTTAAAAAAG	720 720
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 2NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692	CGCGGCTATTCATTTAAAAGCCTTGATGATCTAACCTGGGAACAGGCGATTAAAGAGAGA CGCGGCTATTCATTTAAAAGCCTTGATGATCTAACCTGGGAACAGGCGATTAAAGAGAGA	780 780
NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692 2NZ_QGTW01000013.1_cds_WP_110066703.1_4178_MMP09074692	ATGCTGTACTGA 792 ATGCTGTACTGA 792	

Join MarRef and MarDB without nucleotides in a single fasta:

\$ cat marref_nucleotides_V6.fna mardbnoDup_nucleotides.fna > mar_nucleotides.fna &

Rename sequences to avoid long names:

Custom python script rename_mar_seqs.py
Copy to folder where sequences are, check permissions, and run it:

```
$ chmod u+x rename_mar_seqs.py
$ python rename_mar_seqs.py 1>log_rename.txt 2>&1 &
```

```
from Bio.SeqIO.FastaIO import SimpleFastaParser
newseqs = \{\}
equivalent = {}
# parse fasta file with the low-level SimpleFastaParser, reads it as a tuple
with open("marref sample10pc.fna") as sequences:
for k, seg in enumerate(SimpleFastaParser(sequences)):
newseqs[k]=seq[1]
equivalent[k]=seq[0]
ofile = open("marsample.fna", "w")
for i in newseqs.keys():
ofile.write(">{}\n{}\n".format(i, newseqs[i]))
ofile.close()
ofile = open("marsample names equivalence.txt", "w")
for i in equivalent.keys():
ofile.write("{}\t{}\n".format(i, equivalent[i]))
ofile.close()
```

Translate from DNA to proteins:

With gene prediction - using Prodigal (full database takes ~3 days):

\$ prodigal -i mar_renamed_nucleotides.fna -o mar_gene_coords.gbk -a mar_proteintrans.faa -p meta
2>log_prodigal.err &

Small dataset as example for this meeting - 10% of MarRef database:

```
$ prodigal -i marsample.fna -o marsample_gene_coords.gbk -a marsample_proteintrans.faa -p meta
2>log_sample_prod.txt &
```

Without gene prediction – using seqkit:

- -T 11: genetic code to use: 11 is The Bacterial, Archaeal and Plant Plastid Code
- --trim: remove the stop codón (just done because MUSCLE complains)

```
$ seqkit translate -T 11 --trim mar_renamed_nucleotides.fna > mar_proteintrans_v2.faa
2>log_seqkit.txt &
```


Clean fasta headers of Prodigal output

MONRTVPYSELPTSKVLNAGSATNEDTLGTTHHETGOTTWLSVNAYSEKYEVNGKTPSEV

```
>0 1 # 1 # 1122 # 1 # ID=1 1;partial=10;start type=Edge;rbs motif=None;rbs spacer=None;gc cont=0.495
              MTDSVLFSSFDWASNTLONRMVLAPMTRGRAGEDRIPNKIMGDHYVORADAGLIITEATA
              ISEEGIGWVDTPGIYTDDMVEGWRSIVNRVHEAGGKIVLOLWHTGRASHSDFHNGDLPLS
              ASAIKIEGDEIHTPKGKKPYEVPKAMTLDDIKRTVEDYKKAAINAKAAGFDGVEVHAANG
              YLINOFLDSRSNOREDSYGGNLENRYRFLAEVMDAVLGVWPEENVGVRLSPNGAFNDMGA
              DDFRETFTYVA00LNKLKVGYLHVMDGLAFGFHERGEAMTLVEFRALYDGMLMGNCGYTK
              EDAEKRLADGDADMIAFGRPWITNPDLPTRFKHDYPLASFDDPSTWYGGGEEGYNDYETY
              0EKSGKEAMTSLT*
              >1_1 # 1 # 450 # 1 # ID=2_1;partial=10;start_type=Edge;rbs_motif=None;rbs_spacer=None;gc_cont=0.431
              MIKKLLGGATFLFFASSAFANDCAVTVESNDAMOFNTSNVVIPASCDEFTVTLKHTGOLP
              KOSMGHNWVMTAKADGOAVATDGMSAGLDNNYIKPNDERVIGATEIIGGGEETSTTFSVK
              GLSKDEDYMFFCSFPGHIGIMOGTVTLES*
$ gawk 'BEGUIN{FS="#"}{if ($1 ~ /^>/) print $1; else print $0}' marsample proteintrans.faa |\
 sed 's/ 1//g' >marsample proteintrans clean.faa
$ gawk 'BEGUIN{FS="#"}{if ($1 ~ /^>/) print $1; else print $0}' mar proteintrans.faa |\
 sed 's/ 1//g' > mar proteintrans clean.faa 2>err gawk.txt &
>0 1
                                                                  MTDSVLFSSFDWASNTLONRMVLAPMTRGRAGEDRIPNKIMGDHYVORADAGLIITEATA
MTDSVLFSSFDWASNTLQNRMVLAPMTRGRAGEDRIPNKIMGDHYVQRADAGLIITEATA
                                                                  ISEEGIGWVDTPGIYTDDMVEGWRSIVNRVHEAGGKIVLOLWHTGRASHSDFHNGDLPLS
ISEEGIGWVDTPGIYTDDMVEGWRSIVNRVHEAGGKIVLQLWHTGRASHSDFHNGDLPLS
                                                                  ASAIKIEGDEIHTPKGKKPYEVPKAMTLDDIKRTVEDYKKAAINAKAAGFDGVEVHAANG
ASAIKIEGDEIHTPKGKKPYEVPKAMTLDDIKRTVEDYKKAAINAKAAGFDGVEVHAANG
                                                                  YLINOFLDSRSNQREDSYGGNLENRYRFLAEVMDAVLGVWPEENVGVRLSPNGAFNDMGA
YLINQFLDSRSNQREDSYGGNLENRYRFLAEVMDAVLGVWPEENVGVRLSPNGAFNDMGA
                                                                  DDFRETFTYVA00LNKLKVGYLHVMDGLAFGFHERGEAMTLVEFRALYDGMLMGNCGYTK
DDFRETFTYVAQQLNKLKVGYLHVMDGLAFGFHERGEAMTLVEFRALYDGMLMGNCGYTK
                                                                   EDAEKRLADGDADMIAFGRPWITNPDLPTRFKHDYPLASFDDPSTWYGGGEEGYNDYETY
EDAEKRLADGDADMIAFGRPWITNPDLPTRFKHDYPLASFDDPSTWYGGGEEGYNDYETY
0EKSGKEAMTSLT*
                                                                  0EKSGKEAMTSLT*
>1 1
                                                                  >1
MIKKLLGGATFLFFASSAFANDCAVTVESNDAMQFNTSNVVIPASCDEFTVTLKHTGQLP
                                                                  MIKKLLGGATFLFFASSAFANDCAVTVESNDAMQFNTSNVVIPASCDEFTVTLKHTGQLP
KOSMGHNWVMTAKADGOAVATDGMSAGLDNNYIKPNDERVIGATEIIGGGEETSTTFSVK
                                                                  KQSMGHNWVMTAKADGQAVATDGMSAGLDNNYIKPNDERVIGATEIIGGGEETSTTFSVK
GLSKDEDYMFFCSFPGHIGIMQGTVTLES*
                                                                  GLSKDEDYMFFCSFPGHIGIMOGTVTLES*
>2 1
MSIDNVNLFNLLENTHIGVVIHNESGAVEYANPAALAILNLNIE0LKEKNLDVDAWEFID
                                                                  MSIDNVNLFNLLENTHIGVVIHNESGAVEYANPAALAILNLNIE0LKEKNLDVDAWEFID
```

MONRTVPYSELPISKVLNAGSAINEQILGTTHHETGQITWLSVNAYSEKYEVNGKTPSFV

Search for a specific protein – Nitrous oxide reductase (NosZ) – N₂O reduction trait

- high diversity (12 phyla)
- mostly vertical inheritance
- Two clades (I and II). Differences:
 - associated N₂O membrane translocation pathway
 - nos gene cluster organization
 - frequencies of co-ocurrence with other denitrification or respiratory ammonification pathway genes

Hallin et al. 2018

Trends in Microbiology

Build a reliable nosZ database and reference tree: search nosZ in the full database

Hiden Markov Models (HMMs) – look for them:

- NCBI conserved domain database: https://www.ncbi.nlm.nih.gov/cdd/
- Fungene database: http://fungene.cme.msu.edu/

Two TIGRfams: type I and II

Protocol for building our own HMMs??

Conserved Protein Domain Family nitrous_NosZ_Gp

HOME SEARCH SITE MAP Entrez CDD Structure Protein Help

TIGR04246: nitrous_NosZ_Gp

Download alignment

?

nitrous-oxide reductase, Sec-dependent

This model represents the nitrous-oxide reductase protein NosZ as characterized in Geobacillus thermodenitrificans. In contrast to the related form in Pseudomonas stutzeri, this version lacks a recognizable twin-arginine translocation (TAT) signal at the N-terminus. Consequently, its accessory protein may differ. Some members of this family have an additional cytochrome c-like domain at the C-terminus.

= Links

Source: tigr

Taxonomy: Bacteria
PubMed: 1 link

_ . . _

Protein: Representatives

Specific Protein Related Protein Related Structure

Architectures

Superfamily: cl30234

PubMed References 2

The nos gene cluster from gram-positive bacterium Geobacillus thermodenitrificans NG80-2 and functional characterization of the recombinant NosZ. FEMS Microbiol Lett 2008 Dec; 289(1):46-52

TIGR04246 is the only member of the superfamily cl30234

Details

NCBI HMM accession	TIGR04246.1
Source identifier	JCVI TIGR04246
Product name ②	Sec-dependent nitrous-oxide reductase
Label ②	nitrous_NosZ_Gp
Gene symbol	nosZ
Family type ②	equivalog_domain
EC number(s)	1.7.2.4
GO term(s) 🕖	Biological process: denitrification pathway (GO:0019333) Molecular function: nitrous-oxide reductase activity (GO:0050304)
HMM length ②	578 aa
Sequence cutoff ②	625
Domain cutoff ②	625
Number of RefSeq protein hits ②	1501
HMM profile ②	
HMM seed ②	Multiple Sequence Alignment of seed sequences

\$ wget https://ftp.ncbi.nlm.nih.gov/hmm/current/hmm_PGAP.HMM/TIGR04246.1.HMM

```
HMMs beginning $ less TIGR04246.1.HMM
```

```
HMMER3/f [3.1b2 | February 2015]
NAME nitrous_NosZ_Gp
ACC
      TIGR04246.1
      JCVI: Sec-dependent nitrous-oxide reductase
LENG
      578
ALPH
      amino
RF
      no
MM
      no
CONS
     yes
CS
      no
MAP
      yes
DATE
      Fri Nov 2 18:35:17 2018
NSEQ
     12
EFFN 0.752930
CKSUM 3512071975
      625 625
GA
      625 625
      550 550
STATS LOCAL MSV
                     -12.1578
                              0.69737
STATS LOCAL VITERBI -12.8688
                              0.69737
STATS LOCAL FORWARD
                      -6.5548
                              0.69737
HMM
                                                                   Н
                                       i->m
                              m->d
                                                i->i
                                                         d->m
                     M->i
                                                                  d->d
            m->m
  COMPO
                   4.36438
                           2.91312
                                    2.68624
          2.57151
                                              3.21412
                                                       2.74946
                                                                3.56511
          2,68618
                   4.42225
                            2.77519
                                    2.73123
                                              3.46354
                                                       2.40513
                                                                3.72494
          0.02635 4.04528 4.76762 0.61958
                                              0.77255
                                                       0.00000
          0.79075 4.28668 3.64571 3.44884
                                              4.23188
                                                      3.10586
```

2 HMMs: put them toguether in a single file:

\$ cat TIGR04244.1.HMM TIGR04246.1.HMM > TIGRnosZ.HMM

I used the 27 seed sequences to check the diversity used to build those HMMs: Missing a lot of known diversity – i.e. *Archaea*

Search nosZ in MAR databases - HMMER:

- Command: hmmsearch
- --noali: don 't keep alignment
- --domtblout: output type domain hits table (when there is more than 1 domain)
- --cut-ga: use HMM gathering threshold as cutoff
- --cpu: number of threads

Small dataset:

```
$ hmmsearch --noali --domtblout marsample_nosZ_tigrfam.hmm --cut_ga --cpu 15 TIGRnosZ.HMM
marsample_proteintrans_clean.faa > /dev/null 2>hmmerrlog.txt &
```

Full database:

```
$ hmmsearch --noali --domtblout /mnt/nfelbrus2/mar_db/mar_nosZ_tigrfam.hmm --cut_ga --cpu 15
/media/disk5/nfernandez/nosZ/TIGRnosZ/TIGRnosZ.HMM /mnt/nfelbrus2/mar_db/mar_proteintrans_clean.faa > /dev/null
2>/mnt/nfelbrus2/mar_db/hmmerrlog.txt &
```

```
$ wc -l mar_nosZ_tigrfam.hmm
1482 mar_nosZ_tigrfam.hmm. (-13 lines from file header and end): 1469 nosZ sequences
```

HMMER output table:

# # target name target	accession	tlen query name	accession	qlen	full sequ E-value sco	ore bi	as	#	of	c-Evalue		score	bias			ali from		env from		acc descri	iption of
294944	_	638 nitrous NosZ RR	TIGR04244.1	627	0 1121	1.6 0	.1	1	1	0	0	1121.4	0.1	2	627	12	633	11	633 (0.98 -	
343115	-	635 nitrous_NosZ_RR	TIGR04244.1	627	0 1110	0.7 0	.2	1	1	0	0	1110.5	0.2	2	627	11	631	10	631 (0.97 -	
178109	-	640 nitrous_NosZ_RR	TIGR04244.1	627	0 1075	5.2 0	.9	1	1	0	0	1075.0	0.9	2	627	19	637	18	637 €	0.97 -	
420602	-	632 nitrous_NosZ_RR	TIGR04244.1	627	0 1073	3.3 1	.2	1	1	0	0	1073.1	1.2	2	627	19	629	18	629 €	0.99 -	
181627	-	629 nitrous_NosZ_RR	TIGR04244.1	627	0 1067	7.5 0	.2	1	1	0	0	1067.3	0.2	1	627	11	626	11	626 0	/ . 98 -	
215287	-	640 nitrous_NosZ_RR	TIGR04244.1	627	3.3e-214 717	7.6 0	.1	1	1	4.9e-219	3.9e-214	717.4	0.1	2	627	32	636	31	636 0	/ . 96 -	
216591	-	657 nitrous_NosZ_Gp	TIGR04246.1	578	1e-280 936	6.7 4	.2	1	1	1.2e-285	1.2e-280	936.5	4.2	1	577	39	639	39	640 0	/ . 99 –	
480440	-	654 nitrous_NosZ_Gp	TIGR04246.1	578	2.2e-280 935	5.6 0	.5	1	1	2.7e-285	2.6e-280	935.4	0.5	1	577	38	638	38	639 0	/ . 99 –	
310593	-	655 nitrous_NosZ_Gp	TIGR04246.1	578	5.3e-280 934	4.3 2	.1	1	1	6.4e-285	6.1e-280	934.1	2.1	1	578	39	640	39	640 €	0.99 -	
90020	-	866 nitrous_NosZ_Gp	TIGR04246.1	578	2e-271 906	6.0 3	.2	1	1	2.6e-276	2.5e-271	905.7	3.2	1	578	45	642	45	642 €	0.99 -	
55085	-	664 nitrous_NosZ_Gp	TIGR04246.1	578	1.7e-262 876	6.5 0	.0	1	1	2e-267	1.9e-262	876.3	0.0	1	578	56	663	56	663 €	0.99 -	
4																					

Hits: potential NosZ sequences IDs

Retrieve found nosZ sequences.

Get list of IDs into a text file:

```
$ python parse_marsampleHMM.py
$ less hits_marsample.txt
$ wc -1 hits_mar_nosZ.txt
1469 hits_mar_nosZ.txt
```

Output:

```
294944
343115
178109
420602
181627
215287
216591
480440
310593
90020
55085
```

```
from Bio import SearchIO
import csv
# Read the output table of database search with TIGRFAMs HMMs for nosZ
hmm qresult = SearchIO.parse('marsample nosZ tigrfam.hmm', 'hmmsearch3-domtab')
# Filter table to make a list of hits IDs
hit ids = []
for gresult in hmm gresult:
    for i in range(len(gresult)):
        hit ids.append(qresult[i].id)
# Write list to a text file
file = open('hits nosZ marsample.txt', 'w')
for index in range(len(hit ids)):
    file.write(str(hit ids[index]) + "\n")
file.close()
```

Retrieve found nosZ sequences.

Create fasta file with MAR nosZ sequences

Filter database to keep only nosZ sequences by their ID:

```
$ segkit grep -f hits nosZ marsample.txt marsample proteintrans clean.faa -o hits nosZ marsample.faa
$ seqkit grep -f hits mar nosZ.txt mar proteintrans clean.faa -o mar nosZ.faa &
                >55085
                MKRHTLRGLTGLALVALLLIGLIGCOGGGOTGAVVSEDPMEIARARGLSPADVVAAVKTY
                OPTGTYDEYIMFASGGHSGOVLVIGIPSMRLLKVIGVFTPEPW0GWGFSKETKEVLAQGN
                YDGKELTWGDVHHPALSETNGDYDGQFLFVNEKANSRVAVIDLRDFETKQIVKNPLSLSD
                HGGTFVTPNTEWVIEGGOYAAPFEGYAPLDOYKEKYRGLVTFWKFDRERGRIIPEOSFAL
                ELPPYWQDLCDAGKQVSEGWVFCNSFNTEMATGGVEKGNPPFEAGASQRDMDYLHLINLR
                KAAELVEAGRTRTIKGFKVLPLDVAAAEGVLYFVPEPKSPHGVDVSPDGNYLVVSGKLDP
                HATIYNFOKIODAIANERFSGRDDYGVPILDFDAVVETOIELGLGPLHTOFDPNGYAYTS
                LFLESAVVRWTLGGPWAEKHGRDPWTVVDKVSVHYNIGHLAVAEGDNVNPDGRYLVAMNK
                WSVDRFANVGPLLPQNFQLVDIGNPNGPMQLLYDMPIALGEPHYAQIIKADKLQPWEVYP
                EVGWDPTT0SRHPAATRPGEERIERRGNTVEIWMTATRSHFTPEHVEVRKGDRVIWHITN
                IERARDATHGFALPGYNFNLSIEPGETATIEFVADRDGVFAFYCTEFCSALHLEMAGYFL
                VRP*
                >90020
                MTKHSKILVSLLVGASVAVSVSSADGELQKVMKARGLSEVDVVRAAKTYNPSGVKDEFVV
                FSSAGQAGQVIVYGVPSMRILKYIGVFTPEPWQGYGFDEESKKVLRQGNIRGREINWGDT
                HHPALSEKDGKYDGKWLAINDKANPRIAIIDLADFETKOIVVNPVFKSAHGGAFFTONSD
                YIIEACOYAAPLDNNYHPIEDYKEAYRGGATMWRFDPAKGKINVKESFTIEMPPYMODLS
```

DSGKGVSDGWGFTNSFNSEMYTGGIEVGMPPNEAGMSRNDTDFLHVYNWKKLAELAKDSK

Multiple sequence alignment of MAR nosZ sequences – MUSCLE – small dataset

```
$ mkdir alignments
$ muscle -in hits_nosZ_marsample.faa -phyiout alignments/hits_nosZ_aligned.phy -fastaout
alignments/hits_nosZ_aligned.faa
```

Save output in two formats: fasta and phylip (we might need only one)

>215287
MSNDTQRPTDAGESGEQTTDSTDGFDSMLPGVRRRDFMKAGAAAGGLSGLAG
-CTSLLSEDDVQGTASASGVDNSVPPGEHDEYYAILSGGQAGDVRVYGLPSMRELIRIPV
FNRDASRGYGFDDESEQMLEDAGGYTWGDTHHPRISQTDGDYDGRF
AYVNDKANGRMARIDLTYFETDAIVNIPNQQGTHGACAQ-LPDTDLIFGVGEFRTPIPND
GTGDLEDP-DSYGSVLAAIDPESMNVEWEVLIDGNMDNGDGSKEGRYFF
TSAYNTEEAATE-SGMTRADRDDVKAFDIPRIEAAVEAG-NYETIN
EVPVVDGRKD-SPLNQGDDPIVHYIPTPKSPHGVSVTPDNEYVI
VSGKLDPTASVIDIDKIDEVDDPADAIVGQPK-LGLGPLHTAY-
DGRGHAYTTLFIDSQVVKWDIEEAVEAENRSES-PVIEKIDVHYNPGHLIASESYTENPA
GDWLVSLNKLSKDRFLPVGPQHPENDQLIYIGDDEEGMQLVKDSP-AQAEPHDASICHKS
KINPK-EVYDPEDLELSHTAEGESSMERVGDDRVEIEMYSTRNHYGFQ
EMV-VREGDEVEMQVTNVETTSDMLHSVAIPNHDVH-MRVAPQETRKATFTADEPGVYWI
YCAHFCSALHLEMRSRLIVKPEE
 >181627
MSDDKKRELKDIGRRHFLRNSAVTGVAGAGLAGGF
MSDDKKRELKDIGRRHFLRNSAVTGVAGAGLAGGF
MSDDKKRELKDIGRRHFLRNSAVTGVAGAGLAGGF
MSDDKKRELKDIGRRHFLRNSAVTGVAGAGLAGGF
MSDDKKRELKDIGRRHFLRNSAVTGVAGAGLAGGFGSAAALLQSQKARAASENGEVAIAPGELDEYYGFWSGGHSGEVRILGVPSMRELMRIPV FNIDSATGWGITNESRQVLGESAKFLNGDAHHPHISMTDGRYDGKY LFINDKANTRVARIRLDIMKTDKITTIPNVQAIHGLRLQKVPKTKYVFANAEYFIPHPND GQ-NMEDTANHYTMFSAIDAESMDVAWQVIVDGNLDNTDADYTGRFVA
MSDDKKRELKDIGRRHFLRNSAVTGVAGAGLAGGFGSAAALLQSQKARAASENGEVAIAPGELDEYYGFWSGGHSGEVRILGVPSMRELMRIPV FNIDSATGWGITNESRQVLGESAKFLNGDAHHPHISMTDGRYDGKY LFINDKANTRVARIRLDIMKTDKITTIPNVQAIHGLRLQKVPKTKYVFANAEYFIPHPND GQ-NMEDTANHYTMFSAIDAESMDVAWQVIVDGNLDNTDADYTGRFVA STCYNSEKATQLAGTMREERDWAVVFDVEAIEAAVAAG-DYQTLGES
MSDDKKRELK

11 964					
215287	MSNDTQRPTD	AGESGEQTTD	STDGFDSMLP	GVRRRDFMK-	-AGAAAGGLS
181627	MSDDKKRELK			DIGRRHFLRN	SAVTGVAGAG
178109	MKDADKSSHT	TPDARD	S	GISRRGFL	-GGAAVTGVS
420602	MSKQDDLNKG	TPEVPE	S	GLSRRRFM	-GAAALAGVA
294944					
343115					
480440					
216591					
310593					
55085					
90020				MTKHSKIL	VSLLVGAS
GLAG	-CTSLLSEDD	VQGTASASGV	DNSVPPGEHD	EYYAILSGGQ	AGDVRVYGLP
LAGGF	-GSAAALLQS	QKARAASENG	EVAIAPGELD	EYYGFWSGGH	SGEVRILGVP
AVTGMAAMTG	FGSSIMSPES	WAAAAKTAHQ	KASVEPGELD	EYYGFWSGGH	SGEVRVLGVP
GATGL	-GTTMMTRES	FAAAARDARN	KAHIGPGELD	EYYGFWSGGH	QGEVRVLGVP
AAAG	-GAGLLG	SAGKANAASG	AFNLAPGELD	EYYGFWSSGQ	SGEIRILGFP
VVSATHI	-GNALADTKK	APNGQ	NAHIEPGELD	QYYAFNSGGQ	SGEIRIMGLP
ILA	-GSCGQQGNK	SGALGSNMAE	RAYVAPGEHD	EFYAFISGGY	SGQLSIYGLP
VTFSSC	-NNSSNSGQK	SGALASNVAE	RVYVAPGEYD	SHYAFLSGGY	SGNLTVYGLP
LVFSGC	-GNGGTKGSS	NGALGSSAAE	KVYVAPGQQD	EFYAFLSGGY	SGNLTVYGLP
QTGAVVSED-	-PMEIARARG	LSPADVVAAV	KTYQPTGTYD	EYIMFASGGH	SGQVLVIGIP
VAVSVSSADG	ELQKVMKARG	LSEVDVVRAA	KTYNPSGVKD	EFVVFSSAGQ	AGQVIVYGVP

Build a tree of nosZ MAR sequences – iqTREE – small dataset

Two main steps:

- 1. Find the best substitution model for the dataset (user can specify it)
- 2. Build the ML tree

```
$ iqtree -nt AUTO -ntmax 15 -s alignments/hits_nosZ_aligned.faa
```

Options:

```
-nt AUTO: number of threads
```

- -ntmax 15: If AUTO, max number of threads
- -s: aligned sequences to build the tree
- -pre: prefix for output files (not used here)
- -m: model (not used here)

```
IQ-TREE multicore version 1.6.12 for Linux 64-bit built Aug 15 2019
Developed by Bui Quang Minh, Nguyen Lam Tung, Olga Chernomor,
Heiko Schmidt, Dominik Schrempf, Michael Woodhams.
        zobel1 (AVX, 251 GB RAM)
Host:
Command: iqtree -nt AUTO -ntmax 15 -s alignments/hits_nosZ_aligned.faa
Seed:
        737510 (Using SPRNG - Scalable Parallel Random Number Generator)
        Fri Sep 3 15:15:50 2021
Time:
Kernel: AVX - auto-detect threads (24 CPU cores detected)
Reading alignment file alignments/hits_nosZ_aligned.faa ... Fasta format detected
Alignment most likely contains protein sequences
Alignment has 11 sequences with 964 columns, 681 distinct patterns
463 parsimony-informative, 138 singleton sites, 363 constant sites
       Gap/Ambiguity Composition p-value
   1 215287
             33.71%
                        failed
                                    1.48%
   2 181627 34.85%
                        passed
                                   92.22%
   3 178109 33.71%
                                   97.53%
                        passed
   4 420602
              34.54%
                        passed
                                   90.46%
   5 294944
              33.92%
                        passed
                                   66.52%
   6 343115
              34.23%
                        passed
                                   95.63%
  7 480440
              32.26%
                                   66.07%
                        passed
   8 216591
              31.95%
                                   14.52%
                        passed
   9 310593
              32.16%
                        passed
                                   12.97%
              31.22%
  10 55085
                        passed
                                    5.63%
     90020
              10.27%
                        failed
                                    1.45%
     TOTAL
              31.17% 2 sequences failed composition chi2 test (p-value<5%; df=19)
```

MSA of MAR nosZ sequences and tree - full database

Align with MUSCLE

```
$ mkdir alignments
$ muscle -in mar_nosZ.faa -phyiout alignments/mar_nosZ_aligned.phy -fastaout
alignments/mar_nosZ_aligned.faa 1>muscle_log.txt 2>&1 &
```

Tree with iqTREE

```
$ iqtree -nt AUTO -ntmax 18 -s alignments/mar_nosZ_aligned.phy 1>log_iqtree.txt 2>&1 &
```


Retrieve and prepare environmental sequences

I have cheated...protocol not developed yet. My turnaround:

http://fungene.cme.msu.edu/

Mock environmental nosZ sequences

I have downloaded the three nosZ datasets available, put them together and removed duplicates:

```
$ cat fungene_nosZ.faa | seqkit rmdup -n -o fungene_nosZ_noDup.faa -d
duplicated_fungene_nosZ.faa -D duplicated_fungene_nosZ_detail.txt
[INFO] 12926 duplicated records removed
```

Avoid long names. Remove everything but the nucleotide GI that is the first field

```
$ gawk 'BEGIN{FS=" "}{if ($1 ~ /^>/) print $1; else print $0 }' fungene_nosZ_noDup.faa >
fungeneTest.faa
$ wc -l fungeneTest.faa
89856 fungeneTest.faa
```

Prepare a small subsample of Fungene sequences. Notice that fungene sequences are lowercase, but mardbs are in uppercase. Fix it with seqkit

```
$ head -n 55 fungeneTest.faa | seqkit seq -u > query.faa
```

Phylogenetic placement of environmental sequences

- 1. MSA of environmental sequences against reference database (PaPaRa)PaPaRa requires:
 - aligned reference database in phylip format
 - reference tree in newick format (default output of iqTREE)
- 2. Phylogenetic placement in the reference tree (EPA-ng)
- 3. Analysis of results (gappa)

1 – Multiple Sequence Alignment with PaPaRA

```
PaPaRa options:
-r no additional gaps are included in the original MSA
-a sequences are aminoacid
-t reference tree,
-s reference alignment
-q sequences to align (query sequences),
-j threads
n sufix for output
```

```
$ cd alignments/
$ papara -t hits_nosZ_aligned.phy.treefile -a -r -s hits_nosZ_aligned.phy -q
../query.faa -j 4 -n papout 1>log_papara.txt 2>&1 &
```

1 – Multiple Sequence Alignment with PaPaRA

PaPaRa output, in phylip format:

```
16 964
215287 MSNDTQRPTDAGESGEQTTDSTDGFDSMLPGVRRRDFMK—AGAAAGGLSGLAG———CTSLLSEDDVQGTASASGVDNSVPPGEHDEYYAILSGGQAGDVRVY
GLPSMRELIRIPVFNRDASRGYGFDDESEQMLEDA———GGYTWGDTHHPRISQTDGDYDGRFAYVNDKANGRMARIDLTYFETDAIVNIPNQQGTHGACAQ—LPDTD
LIFGVGEFRTPIPNDGTGDLEDP—DSY—GSVLAAIDPES—MNVE—WEVLIDGNMDNGDGSKEGR——YFFTSAYNT——EEAATE—SGMTRADRDDVKAFDIPRIEAA
VEAG—NYETIN———EVPVVDGRKD—SPLNQGDDPIVHYIPTPKSPHGVSVTPDNEYYIVSGKLDPTASVIDIDKIDE————VDDPAD
AIVGQPK—LGLGPLHTAY—DGRGHAYTTLFIDSQVVKWDIEEAVEAENRSES—PVIEKIDVHYNPGHLIASESYTENPAGDWLVSLNKLSKDRFLPVGPQHPENDQLIYIGDDEEGMQ
LVKDSP—AQAEPHDASICHKSKINPK—EVYDPEDLELSHTAE———GESSMERVGDDRVEIEMYSTRNHYGFQEMV—VREGDEVEMQVTNVETTSDMLHSVAIPNHDVH—
MRVAPQETRKATFTADEPGVYWIYCAHFCSALHLEMRSRLIVKPEE—————GSSAALLQSQKARAASENGEVAIAPGELDEYYGFWSGGHSGEVRIL
GVPSMRELMRIPVFNIDSATGWGITNESRQVLGES———AKFLNGDAHHPHISMTDGRYDGKYLFINDKANTRVARIRLDIMKTDKITTIPNVQAIHGLRLQKVPKTK
YVFANAEYFIPHPNDGQ—NMEDTANHY—TMFSAIDAES—MDVA—WQVIVDGNLDNTDADYTGR——FVASTCYNS———EKATQL—AGTMREERDWAVVFDVEAIEAA
VAAG—DYQTLGES————QVPVVDGRHG—SKL——TRYIPVPKNPHGLNTSPDGKYFIANGKLSPTCSIIAIDKLPDLFDDK————IEPRD
AVVGEPE—LGLGPLHTTF—DGRGNAYTTLFIDSQVAKWNIEDAIRAYNGEEVNYLRQKIDVHYQPGHNHASLTESRDADGKWLVVLSKFSKDRFLPVGPLRPENDQLIDISGEQ—MK
```

Reference and query sequences are together in this output, separate them for EPA-ng

It produces two files: reference.fasta + query.fasta

2. - Phylogenetic placement in the reference tree (EPA-ng)

Need to know the replacement model used in the tree

\$ less hits_nosZ_aligned.phy.iqtree

```
$ mkdir epa-ng-test
$ epa-ng --tree hits_nosZ_aligned.phy.treefile --ref-msa reference.fasta --query
query.fasta --out-dir epa-ng-test --model LG+F+R10 > log_epang.txt 2>&1 &
```

epa-ng options:

- --tree: reference tree
- --ref-msa: reference multiple sequence alignment, used for tree
- --query: sequences to place in the tree, must be aligned against -ref-msa
- --out-dir: output directory
- --model: substitution model used to build the tree

```
(traits) nfernandez@zobell:/media/disk5/nfernandez/jamclass/alignments/epa-ng-test$ ll
total 16
drwxrwxr-x 2 nfernandez nfernandez 4096 sep 6 10:44 ./
drwxrwxr-x 3 nfernandez nfernandez 4096 sep 6 10:45 ../
-rw-rw-r-- 1 nfernandez nfernandez 2879 sep 6 10:44 epa_info.log
-rw-rw-r-- 1 nfernandez nfernandez 1337 sep 6 10:44 epa_result.jplace
(traits) nfernandez@zobell:/media/disk5/nfernandez/jamclass/alignments/epa-ng-test$ []
```

3. - Analysis of results (gappa)

Type II

\$ gappa examine graft --jplace-path epa_result.jplace --name-prefix FUNGEN --out-dir
gappaout

```
(traits) nfernandez@zobel1:/media/disk5/nfernandez/jamclass/alignments/epa-ng-test$ ll gappaout/
total 12
drwxrwxr-x 2 nfernandez nfernandez 4096 sep 6 10:49 ./
drwxrwxr-x 3 nfernandez nfernandez 4096 sep 6 10:49 ../
-rw-rw-r-- 1 nfernandez nfernandez 423 sep 6 10:49 epa_result.newick
```

Tree scale: 1

