Lecture 14: Deep Generative Models III: VAE & GAN

Lan Xu SIST, ShanghaiTech Fall, 2023

Outline

- VAEs
 - □ Inverse graphics network
 - ☐ Attribute2Image
- Generative Adversarial Networks
 - Implicit generative models
 - □ Adversarial learning

Acknowledgement: Feifei Li et al's cs231n notes

The Variational Autencoder: overview

Learning:

- \square Given a large dataset of observations $\mathbf{X} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(N)}\}$
- Estimating the parameters in Deep LVM

$$p(x) = \int p(x, z) dz$$
 where $p(x, z) = p(x \mid z)p(z)$

□ Based on Maximum Likelihood

$$\max \sum_{i=1}^{N} \log p(x^{(i)})$$

- □ Direct optimization is challenging: use EM learning strategy
- Jointly learning inference model with the deep latent variable model

VAE objective

Recall lower bound of the data log likelihood

$$\begin{split} \log p_{\theta}(x) &= \log \int_{z} p_{\theta}(x,z) dz \\ &= \log \int_{z} q_{\phi}(z|x) \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} dz \\ &\geq \int_{z} q_{\phi}(z|x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} dz \quad \text{(Jensen's Inequality)} \\ &= \mathbf{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x,z) - \log q_{\phi}(z|x) \right] = \mathcal{L}(x;\theta,\phi) \\ &\log p_{\theta}(x) = \boxed{\mathcal{L}(x;\theta,\phi)} + D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) \end{split}$$

- Learning: maximize the lower bound of data likelihood
- ☐ The evidence lower bound (ELBO)

Review: VAEs

Main ideas:

- $\hfill\Box$ Introduce a parametric model $\;q_{\phi}(z\mid x)$ to approximate the true posterior $p_{\theta}(z\mid x)$
- Jointly learn approximate posterior with the deep latent variable model
- Variational EM: lower-bound of the Maximum Likelihood

$$\log p_{ heta}(x) = \mathcal{L}(x; heta, \phi) + D_{KL}(q_{\phi}(z|x)||p_{ heta}(z|x))$$

Review: VAEs

Main ideas:

- $\hfill\Box$ Introduce a parametric model $\;q_{\phi}(z\mid x)$ to approximate the true posterior $p_{\theta}(z\mid x)$
- Jointly learn approximate posterior with the deep latent variable model
- Variational EM: lower-bound of the Maximum Likelihood

$$\mathcal{L}(\theta, \phi, x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x, z) - \log q_{\phi}(z \mid x) \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) + \log p_{\theta}(z) - \log q_{\phi}(z \mid x) \right]$$

$$= \left(-D_{\text{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) \right) + \left(\mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) \right] \right)$$

regularization term

reconstruction term

VAE learning

- EM perspective
 - Expectation Maximization alternately optimizes the ELBO, $\mathcal{L}(q,\theta)$, with respect to q (the E step) and θ (the M step)
 - Initialize $\theta^{(0)}$
 - At each iteration t=1,...
 - E step: Hold $\theta^{(t-1)}$ fixed, find $q^{(t)}$ which maximizes $\mathcal{L}(q, \theta^{(t-1)})$
 - M step: Hold $q^{(t)}$ fixed, find $\theta^{(t)}$ which maximizes $\mathcal{L}ig(q^{(t)}, hetaig)$

$$\mathcal{L}(x, \phi, \theta) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x, z) - \log q_{\phi}(z|x)]$$

Two views of Learning VAE

- Optimization interpretation
 - ☐ Stochastic gradient-based

- Network interpretation
 - □ Backpropagation

Optimization interpretation

Recall VAE objective

$$\mathcal{L}(x, \phi, \theta) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x, z) - \log q_{\phi}(z|x)]$$

- \square Or rewrite as $\mathcal{L}(x,\phi,\theta)=E_{q_{\phi}(z|x)}[f_{\phi,\theta}(x,z)]$
- Often no analytic solution to exact gradient

$$\nabla_{\phi,\theta} \mathcal{L}(x,\phi,\theta)$$

- □ Solution: stochastic gradient ascent
- Requires unbiased estimates of gradient
- □ Can use small minibatches or single point of data

$$\nabla_{\phi} \mathcal{L}(x, \phi, \theta) \approx \nabla_{\phi} f_{\phi, \theta}(x, z^{(i)}), \quad z^{(i)} \sim q_{\phi}(z|x)$$

High variance for gradient estimation

Reparameterization trick

■ Reparameterize $\mathbf{z}^{(i)} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$ using a differentiable transformation of an auxiliary noise variable ϵ

$$\mathbf{z} = g_{\phi}(\epsilon, \mathbf{x})$$
 with $\epsilon \sim q(\epsilon)$

□ Then we can write the ELBO as

$$\mathcal{L}(x,\phi,\theta) = E_{q_{\phi}(z|x)}[f_{\phi,\theta}(x,z)] = E_{q(\epsilon)}[f_{\phi,\theta}(x,g_{\phi}(\epsilon,\mathbf{x}))]$$

□ And its gradient estimation with L samples

$$\nabla_{\phi} \mathcal{L}(x, \phi, \theta) = E_{q(\epsilon)}[\nabla_{\phi} f_{\phi, \theta}(x, z)] \approx \frac{1}{L} \sum_{i=1}^{L} \nabla_{\phi} f_{\phi, \theta}(x, g_{\phi}(\epsilon^{(i)}, x)), \quad \boxed{\epsilon^{(i)} \sim q(\epsilon)}$$

VAE Example

Univariate Gaussian $z \sim p(z|x) = \mathcal{N}(\mu, \sigma^2)$

$$z \sim p(z|x) = \mathcal{N}(\mu, \sigma^2)$$

$$z = \mu + \sigma \epsilon$$
 $\epsilon \sim \mathcal{N}(0, 1)$

$$\mathbb{E}_{\mathcal{N}(z;\mu,\sigma^2)}\left[f(z)\right] = \mathbb{E}_{\mathcal{N}(\epsilon;0,1)}\left[f(\mu+\sigma\epsilon)\right] \simeq \frac{1}{L} \sum_{l=1}^{L} f(\mu+\sigma\epsilon^{(l)})$$

Autoencoder Interpretation

Objective $\mathcal{L}(x,\phi,\theta) = -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) + E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)]$

Regularization term Reconstruction term

VAE Example

Learning objective

Putting it all together: maximizing the likelihood lower bound

VAE Example

Learning objective

Autoencoder Interpretation

• Objective $\mathcal{L}(x,\phi,\theta) = -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) + E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)]$

Regularization term

Reconstruction term

The objective function can be represented as an Autoencoderlike computation graph.

Network interpretation

$$\begin{split} \mathcal{L}(x,\phi,\theta) &= E_{q_{\phi}(z|x)}[f_{\phi,\theta}(x,z)] \\ & \qquad \qquad \downarrow \\ \mathcal{L}(x,\phi,\theta) &= E_{q(\epsilon)}[f_{\phi,\theta}(x,z)] \approx \frac{1}{L} \sum_{i=1}^{L} f_{\phi,\theta}(x,g_{\phi}(\epsilon^{(i)},x)), \quad \epsilon^{(i)} \sim q(\epsilon) \end{split}$$

Original form

Reparameterised form

(: C

: Deterministic node

: Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014] [Rezende et al 2014]

Training with Backpropagation

Due to reparametrization trick, we can simultaneously train both the generative model and the inference model by optimizing the variational bound using the gradient backpropagation.

1D Gaussian Case

We can compute the KL regularization in close form

Use N(0,1) as prior for p(z) $q(z|x^{(i)})$ is Gaussian with parameters $(\mu^{(i)}, \sigma^{(i)})$ determined by NN

$$-D_{\text{KL}}\left(q(z|x^{(i)})||p(z)\right) = \frac{1}{2}\sum_{j=1}^{J}\left(1 + \log(\sigma_{z_j}^{(i)^2}) - \mu_{z_j}^{(i)^2} - \sigma_{z_j}^{(i)^2}\right)$$

1D Gaussian Case

Overall loss function for BP

Prior $p(z) \sim N(0,1)$ and p, q Gaussian, extension to dim(z) > 1 trivial

Cost: Regularisation

$$-D_{\text{KL}}\left(q(z|x^{(i)})||p(z)\right) = \frac{1}{2}\sum_{j=1}^{J}\left(1 + \log(\sigma_{z_j}^{(i)^2}) - \mu_{z_j}^{(i)^2} - \sigma_{z_j}^{(i)^2}\right)$$

Cost: Reproduction

$$-\log(p(x^{(i)}|z^{(i)})) = \sum_{i=1}^{D} \frac{1}{2}\log(\sigma_{x_i}^2) + \frac{(x_j^{(i)} - \mu_{x_j})^2}{2\sigma_{x_j}^2}$$

We use mini batch gradient decent to optimize the cost function over all x⁽ⁱ⁾ in the mini batch

Least Square for constant variance

Interpreting the latent space

https://arxiv.org/pdf/1610.00291.pdf

Main ideas

Mini-batch training

Figure 3: Training on a minibatch in which only ϕ , the azimuth angle of the face, changes. During the forward step, the output from each component $z_i \neq z_1$ of the encoder is altered to be the same for each sample in the batch. This reflects the fact that the generating variables of the image (e.g. the identity of the face) which correspond to the desired values of these latents are unchanged throughout the batch. By holding these outputs constant throughout the batch, the single neuron z_1 is forced to explain all the variance within the batch, i.e. the full range of changes to the image caused by changing ϕ . During the backward step z_1 is the only neuron which receives a gradient signal from the attempted reconstruction, and all $z_i \neq z_1$ receive a signal which nudges them to be closer to their respective averages over the batch. During the complete training process, after this batch, another batch is selected at random; it likewise contains variations of only one of ϕ , α , ϕ_L , intrinsic; all neurons which do not correspond to the selected latent are clamped; and the training proceeds. Lan Xu – CS 280 Deep Learning

Results

MoFA: Model-based Face Autoencoder (ICCV2017)

International Conference on Computer Vision

Venice, Italy October 22-29, 2017

FML: Face model learning from videos (CVPR2019)

DVP: Deep Video Portraits (SIGGRAPH 2018)

Deep Video Portraits

Hyeongwoo Kim¹ Pablo Garrido² Ayush Tewari¹ Weipeng Xu¹ Justus Thies³ Matthias Nießner³ Patrick Pérez² Christian Richardt⁴ Michael Zollhöfer⁵ Christian Theobalt¹

¹ MPI Informatics ² Technicolor ³ Technical University of Munich ⁴ University of Bath ⁵ Stanford University

Live Speech Portraits (SIGGRAPHAISA 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation

Vision task II – Attribute2Image

Main ideas

Vision task II – Attribute2Image

Network structure

Vision task II – Attribute2Image

Results

Problems of VAE

- Model capacity
 - Note that the VAE requires 2 tractable distributions to be used:
 - The prior distribution p(z) must be easy to sample from
 - The conditional likelihood $p(x|z,\theta)$ must be computable
 - In practice this means that the 2 distributions of interest are often simple, for example uniform, Gaussian, or even isotropic Gaussian

Problems of VAE

Blurry images

https://blog.openai.com/generative-models/

- The samples from the VAE look blurry
- Three plausible explanations for this
 - Maximizing the likelihood
 - Restrictions on the family of distributions
 - The lower bound approximation

Problems of VAE

Blurry images

- Recent investigations suggest that both the simple probability distributions and the variational approximation lead to blurry images
- Kingma & colleages: Improving Variational Inference with Inverse Autoregressive Flow
- Zhao & colleagues: Towards a Deeper Understanding of Variational Autoencoding Models
- Nowozin & colleagues: f-gan: Training generative neural samplers using variational divergence minimization

VQ-VAE

- Vector-Quantized Variational Autoencoder
- Combining VAE + Autoregressive: VQ-VAE1,2

Train a VAE-like model to generate multiscale grids of latent codes

Use a multiscale PixelCNN to sample in latent code space

Aaron van den Oord et al, "Neural Discrete Representation Learning", NeurIPS 2017 Razavi et al, "Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurIPS 2019

VQ-VAE

■ 1024 x 1024 generated faces, trained on FFHQ

Outline

- Vision applications of VAEs
 - □ Inverse graphics network
 - □ Attribute2Image
- Generative Adversarial Networks
 - Implicit generative models
 - Adversarial learning

Acknowledgement: Feifei Li et al's cs231n notes

м

Taxonomy of Generative Models

Implicit Generative Models

- Working with explicit model p(x) could be expensive
 - □ Variational Autoencoder (variational inference)
 - □ Boltzmann Machines (MCMC)
- Representation learning may not require p(x)
 - Sometimes we are more interested in taking samples from p(x) instead of p itself

Implicit Generative Models

- Implicitly define a probability distribution
- Start by sampling the code vector z from a fixed, simple distribution
- A generator network computes a differentiable function G mapping z to an x in data space

M

Implicit Generative Models

Intuition: 1D example

Implicit Generative Models

Intuition

advocate/penalize samples within the blue/white region.

Learning by comparison

Basic idea

For some models, we only have access to an unnormalised probability, partial knowledge of the distribution, or a simulator of data.

We compare the estimated distribution q(x) to the true distribution p*(x) using samples.

Generative Adversarial Networks

Using a neural network to generate data

Output: Sample from training distribution Generator Network

Input: Random noise

Generative Adversarial Networks

 Using another neural network to determine if the data is real or not

м

Typical generator architecture

For images

- Unit Gaussian distribution on z, typically 10-100 dim.
- Up-convolutional deep network (reverse recognition CNN)

Typical discriminator architecture

For images

- ► Recognition CNN model
- Binary classification output: real / synthetic

Adversarial learning

- GAN objective for the generator is some complicated objective function defined by a neural network.
 - This means a new way of thinking about "distance".
 - We are training networks to minimize the "distance" or "divergence" between generated images and real images.
 - □ Instead of some hand-crafted distance metric like L1 or L2, we can make something completely new.
 - □ A neural network, with the right architecture, is arguably the definition of perceptual similarity (assuming our visual system is some sort of neural network).

Adversarial Learning

Adversarial loss

Adversarial Learning

- Let D denote the discriminator's predicted probability of being real data
- Discriminator's cost function: cross-entropy loss for task of classifying real vs. fake images

$$\mathcal{J}_D = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[-\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z}}[-\log(1 - D(G(\mathbf{z})))]$$

 One possible cost function for the generator: the opposite of the discriminator's

$$\mathcal{J}_{G} = -\mathcal{J}_{D}$$

$$= \operatorname{const} + \mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$$

Two-player game

- Minimax formulation
 - The generator and discriminator are playing a zero-sum game against each other

$$\min_{G} \max_{D} \mathcal{J}_{D}$$

Using parametric models

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Discriminator output for for real data x generated fake data G(z)

Learning procedure

Minimax objective function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Learning procedure

Updating the discriminator

Learning procedure

Updating the generator

The minimax cost function for the generator

$$\mathcal{J}_G = \mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$$

One problem is saturation

A better cost function

Changing the generator cost

Original minimax cost:

$$\mathcal{J}_G = \mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$$

Modified generator cost:

$$\mathcal{J}_G = \mathbb{E}_{\mathbf{z}}[-\log D(G(\mathbf{z}))]$$

This fixes the saturation problem.

Adversarial loss

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{x \sim data} \log D(x) - \frac{1}{2} \mathbb{E}_{z} \log(1 - D(G(z)))$$
 (1)
$$J^{(G)} = -J^{(D)}$$
 (2)

- ▶ The optimal discriminator $D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}$.
- ▶ In this case, $J^{(G)} = 2D_{JS}(p_{data}||p_{model}) + const.$
- ▶ Jenson-Shannon divergence: $D_{JS}(p||q) = \frac{1}{2}D_{KL}(p||\frac{p+q}{2}) + \frac{1}{2}D_{KL}(q||\frac{p+q}{2}).$

Adversarial loss for the optimality

$$\begin{aligned} & \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right) \\ & = \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right) \\ & = \min_{G} \int_{Y} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx \end{aligned}$$

Adversarial loss for the optimality

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right)$$

$$= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx$$

$$f(y) = a \log y + b \log (1 - y) \qquad f'(y) = 0 \iff y = \frac{a}{a + b} \text{ (local max)}$$

$$f'(y) = \frac{a}{y} - \frac{b}{1 - y} \quad \text{Optimal Discriminator:} \qquad D_{G}^{*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)}$$

Adversarial loss for the optimality

$$D_{G}^{*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)}$$

$$\begin{aligned} & \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right) \\ & = \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right) \\ & = \min_{G} \int_{X} \left(p_{data}(x) \log D_{G}^{*}(x) + p_{G}(x) \log \left(1 - D_{G}^{*}(x) \right) \right) dx \\ & = \min_{G} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} + p_{G}(x) \log \frac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right) dx \end{aligned}$$

Adversarial loss for the optimality
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

$$\begin{split} & \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right) \\ & = \min_{G} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} + p_{G}(x) \log \frac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right) dx \\ & = \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2}{2} \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2}{2} \frac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] \right) \\ & = \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right) \end{split}$$

Adversarial loss for the optimality

$$D_{G}^{*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)}$$

$$\begin{aligned} & \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right) \\ &= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right) \\ &= \min_{G} \left(KL \left(p_{data}, \frac{p_{data} + p_{G}}{2} \right) + KL \left(p_{G}, \frac{p_{data} + p_{G}}{2} \right) - \log 4 \right) \\ &= \min_{G} \left(2 * JSD(p_{data}, p_{G}) - \log 4 \right) \end{aligned}$$

Jensen-Shannon Divergence:

$$JSD(\mathbf{p},q) = \frac{1}{2}KL\left(\mathbf{p},\frac{\mathbf{p}+q}{2}\right) + \frac{1}{2}KL\left(q,\frac{\mathbf{p}+q}{2}\right)$$

Kullback-Leibler Divergence:

$$KL(\mathbf{p}, q) = E_{x \sim \mathbf{p}} \left[\log \frac{\mathbf{p}(x)}{q(x)} \right]$$

Adversarial loss for the optimality

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} (2 * JSD(p_{data}, p_G) - \log 4)$$

Summary: the global minimum of the minimax game happens when:

1.
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$
 (Optimal discriminator for any G)
2. $p_G(x) = p_{data}(x)$ (Optimal generator for optimal D)

Caveats:

- 1. G and D are neural nets → depend on the network optimization!
- 2. "Theoretical" convergence to the optimal solution,

Stationary point

There is a theoretical point in this game at which the game will be stable and both players will stop changing.

- If the generated data exactly matches the distribution of the real data, the generator should output 0.5 for all points (argmax of loss function)
- If the discriminator is outputting a constant value for all inputs, then there is no gradient that should cause the generator to update

We rarely reach a completely stable point in practice due to practical issues

Convergence

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))]$$

- Theoretical properties (assuming infinite data, infinite model capacity, direct updating of generator's distribution):
 - Unique global optimum.
 - Optimum corresponds to data distribution.
 - Convergence to optimum guaranteed.

If discriminator is finite and modest-sized, this message is incorrect. (regardless of training time, # samples, training objective etc..) See Sanjeev Arora, CVPR 2018 Tutorial

Training GANs

Training GANs

Training GANs

- Since GANs were introduced in 2014, there have been hundreds of papers introducing various architectures and training methods
- GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo
- In general, training a GAN is tricky and unstable
- Many tricks:
 - □ S. Chintala, How to train a GAN, ICCV 2017 tutorial
 - □ https://github.com/soumith/talks/blob/master/2017- ICCV Venice/How To Train a GAN.pdf

Generated Samples

Celebrities:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation

Generated Samples

Objects:

The GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo

- 3D-ED-GAN Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks
- · 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)
- 3D-IWGAN Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)
- 3D-PhysNet 3D-PhysNet Learning the Intuitive Physics of Non-Rigid Object Deformations
- 3D-RecGAN 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)
- ABC-GAN ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks (github)
- ABC-GAN GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- acGAN Face Aging With Conditional Generative Adversarial Networks
- ACGAN Coverless Information Hiding Based on Generative adversarial networks
- · acGAN On-line Adaptative Curriculum Learning for GANs
- ACtuAL ACtuAL: Actor-Critic Under Adversarial Learning
- AdaGAN AdaGAN: Boosting Generative Models
- Adaptive GAN Customizing an Adversarial Example Generator with Class-Conditional GANs
- AdvEntuRe AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
- · AdvGAN Generating adversarial examples with adversarial networks
- · AE-GAN AE-GAN: adversarial eliminating with GAN
- AE-OT Latent Space Optimal Transport for Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AF-DCGAN AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization System
- · AffGAN Amortised MAP Inference for Image Super-resolution
- AIM Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization

The GAN Zoo

- Use various Divergence
- https://arxiv.org/abs/1606.00709

Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$\frac{1}{2}\int p(x)-q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{p(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\dot{q}(x)}{\dot{p}(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x) - p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{\langle p(x) - q(x) \rangle^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$(\sqrt{u}-1)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{\nu(x)+g(x)} + q(x) \log \frac{2q(x)}{\nu(x)+g(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$

Name	Conjugate $f^*(t)$
Total variation	t
Kullback-Leibler (KL)	$\exp(t-1)$
Reverse KL	$-1 - \log(-t)$
Pearson χ^2	$\frac{1}{4}t^2 + t$
Neyman χ^2	$\vec{2} - 2\sqrt{1-t}$
Squared Hellinger	1 1
Jeffrey	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2 - \log(2 - \exp(t))$
Jensen-Shannon	$-\log(2 - \exp(t))$
Jensen-Shannon-weighted	$(1 - \pi) \log \frac{1 - \pi}{1 - \pi e^{t/\pi}}$
GAN	$-\log(1-\exp(t))$ 37

Summary

- Variational Autoencoders (VAEs)
 - □ VAE objective
 - □ VAE: Vision applications
- Generative Adversarial Networks (GAN)
 - Adversarial learning
- Next time:
 - □ GAN going on
- Reading material
 - https://arxiv.org/pdf/1503.03167.pdf (Deep Convolutional Inverse Graphics Network)
 - https://arxiv.org/pdf/2011.10063.pdf (Dual Contradistinctive Generative Autoencoder)
 - https://taesung.me/SwappingAutoencoder/ (Swapping Autoencoder for Deep Image Manipulation)