ДЗ №14. Компьютерные сети. Теория

Светлана Шмидт

28 мая 2022 г.

Задача №1. Пусть $x=\mathbf{E}X$, где X — случайная величина равная числу последовательных непродуктивных квантов. Вероятность успешной передачи равна $q=Np(1-p)^{N-1}$. При этом $\mathbf{P}(X=m)=q(1-q)^m$, то есть это геометрическое распределение с матожиданием $\mathbf{E}X=\frac{1-q}{q}=$

$$\frac{1 - Np(1-p)^{N-1}}{Np(1-p)^{N-1}}$$

- $Np(1-p)^{N-2}$ а) Тогда эффективность равна $\frac{k}{k+x} = \frac{kNp(1-p)^{N-1}}{1+(k-1)Np(1-p)^{N-1}}.$
- б) Эффективность максимизируется, когда минимизируется x, то есть q максимизируется. Максимальное q достигается при $p=\frac{1}{N}$.
- в) Максимальная эффективность при фиксированном N равна $\frac{k(1-\frac{1}{N})^{N-1}}{1+(k-1)(1-\frac{1}{N})^{N-1}}.$

Тогда
$$\lim_{N\to\infty} \frac{k(1-\frac{1}{N})^{N-1}}{1+(k-1)(1-\frac{1}{N})^{N-1}} = \lim_{N\to\infty} \frac{k}{k-1+(1-\frac{1}{N})^{-N}(1-\frac{1}{N})} = \frac{k}{k-1+e}.$$

г) При увеличении размера пакета растет k. Из пункта 3 видно, что при $k \to \infty$, эффективность стремится к единице.

Задача №2. а)
$$\frac{8L}{128\cdot 10^3} = \frac{L}{16}$$
 миллисекунд.

- 6) При L=1500 задержка пакетирования равна 93.75 мс, а для L=50 задержка пакетирования равна 3.125 мс.
- в) Задержка перенаправления с промежуточным хранением равна $\frac{(L+5)\cdot 8}{R}$. То есть для L=1500 это $19.36\cdot 10^{-6}$ с. А для L=50 это $0.71\cdot 10^{-6}$ с.
- г) Хотя задержка перенаправления с промежуточным хранением невелика и для L=1500, задержка пакетирования при L=1500 слишком большая, что может вызывать, например, неприятное эхо (как говорится в пункте б).