NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA THEORY EXAMINATION

Question Paper

		Roll No.		
Prog Subj Cour Num Tota Unle Subj The Que	th and Year of Examination: DEC. 2022 ramme: B.Tech ect: Field and Waves rse No: ECPC-31 aber of Questions to be Attempted: 5 al No. of Questions: 6 ess stated otherwise, the Symbols have their usect. Assume suitably and state, additional data Candidates, before starting to write the sestion Paper for any discrepancy, and also ensuration paper of right course no. and right subjects	required, if any. blutions, should please check the that they have been delivered the	ne	
	Note: Attempt any five questions. All questions	В		
la.	Given $\mathbf{F} = \mathbf{a}_x xy - \mathbf{a}_y 2x$, evaluate the scalar line integral $\int \mathbf{F} \cdot d\mathbf{l}$ along the			
	quarter circle shown in Fig. 1 using Cartes systems. Comment.	sian and Cylindrical coordinate		
	"			
	7-3	Fig. 1		
	10	×	2	
lb.	Two infinitely long coaxial cylindrical surf			
	carry surface charge densities ρ_{sa} and ρ_{sb} ,	respectively.		
	i. Determine E everywhere.			
1	ii. What must be the relation between a for $r > b$	and b in order that E vanishes		
lc.	Determine the E field both inside and outsi	de a spherical cloud of electrons	3	
	with a uniform volume charge density ρ	$=-\rho_0$ (where ρ_0 is a positive		
	quantity) for $0 \le R \le b$ and $\rho = 0$ for R	a > b by solving Poisson's and		
	Laplace's equation for V .		5	
2a.	Determine the capacitance per unit length	of a two wire transmission line		
	with parallel conducting cylinders of diffe			
	being separated by a distance D (where D		3	
2b.	Derive equation of continuity for electric	charge. Explain its significance		
2c.	and consequences with the help of a suitable A very long, thin conducting strip of width		3	
	$x = \pm w/2$. A surface current $J_s = \mathbf{a}_s J_{s0}$	flows in the strip Find the		
	3 -2 s0	and the		

magnetic flux density at an arbitrary point outside the strip.

6

5

- 3a. A conducting circular loop of a radius 0.1m is situated in the neighborhood of a very long power line carrying a 60-Hz current as shown in Fig. 2 with d = 0.15m. An ac millimeter inserted in the loop reads 0.3mA. Assume the total impedance of the loop including the milliammeter to be 0.01Ω .
 - i. Find the magnitude of the current in the power line
 - To what angle about the horizontal axis should the circular loop be rotated in order to reduce the milliammeter reading to 0.2mA.

- 3b. Describe briefly Faraday disk generator and the principle behind its working. Draw its neat labeled sketch and derive the expression for generated emf.
- Derive the general wave equations for E and H in a non conducting simple medium where a charge distribution ρ and a current distribution J exist. Convert the wave equations to Helmholtz's equations for sinusoidal time dependence. Write the general solutions for E(R,t) and H(R,t) in terms of ρ and J.
- 4b. It is known that \mathbf{E} and \mathbf{B} can be determined from the potentials V and \mathbf{A} . The vector potential \mathbf{A} was introduced through the relation $\mathbf{B} = \nabla \times \mathbf{A}$ because of the solenoidal nature of \mathbf{B} . In a source free region, $\nabla \cdot \mathbf{E} = 0$, we can define another type of vector potential \mathbf{A}_e , such that $\mathbf{E} = \nabla \times \mathbf{A}_e$. Assuming harmonic time dependence
 - i. Express H in terms of A_e
 - ii. Show that A_e is a solution of a homogeneous Helmholtz's equation.
- For a harmonic, uniform plane wave propagating in a simple medium, both E and H vary in accordance with the factor $e^{-jk\cdot R}$. Show that the four Maxwell's equations for uniform plane wave in a source-free region reduce to the following:
 - i. $\mathbf{k} \times \mathbf{E} = \omega \mu \mathbf{H}$
 - ii. $\mathbf{k} \times \mathbf{H} = -\omega \varepsilon \mathbf{E}$
 - iii. $\mathbf{k} \cdot \mathbf{E} = 0$
- iv. $\mathbf{k} \cdot \mathbf{H} = 0$
- 5b. State and prove Poynting theorem. Explain its significance with the help of a suitable numerical example.
- Show that a plane wave with an instantaneous expression for the electric field $\mathbf{E}(z,t) = \mathbf{a}_x E_{10} \sin(\omega t kz) + \mathbf{a}_y E_{20} \sin(\omega t kz + \psi)$ is elliptically polarized. Find the polarization ellipse.

	NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA	ani-
5b.	A uniform plane wave of angular frequency ω in medium 1 having a refractive index n_1 is incident on a plane interface at $z=0$ with medium 2 having a refractive index n_2 ($< n_1$) at the critical angle. Let E_{i0} and E_{i0} denote the amplitudes of the incident and refracted electric filed intensities, respectively. i. Find the ratio E_{i0} / E_{i0} for perpendicular polarization. iii. Find the ratio E_{i0} / E_{i0} for parallel polarization iii. Write the instantaneous expressions of $E_i(x,z;t)$ and $E_i(x,z;t)$ for perpendicular polarization in terms of the parameters ω , n_1 , n_2 , θ_i and E_{i0} .	
6a. 6b.	Demonstrate mathematically that the field quantities in free space manifest themselves as circuit quantities when bounded by infinite parallel conductors. Derive TE mode field expressions in a rectangular waveguide. Also give expressions for cut-off frequency and corresponding wavelength. Explain which	
	mode is the dominant mode and reason thereof.	
6a.	a Smith chart to find the input impedance at 200 MHz of such a line that is i. 1 m long and open circuited ii. 0.8 m long and short circuited iii. Determine the corresponding input admittances also. Write a short note on cavity resonator and explain its practical significance with	
	the help of an example.	