

A Framework for the Analysis of File Infection Malware

09/2023 - 03/2024

Lorenzo Ippolito

Promo 2024 – Digital Security

Malware

Categories:

- Worm
- Grayware
- Backdoor
- Ransomware
- Clickwa

Families:

- Expiro
- Melissa
- Zeus
- Emotet
- Conficker
- Nimda
- Ramnit
- Slammer
- Wannacry
- Maze
- Ryuk

File Infection

Detection & Classification

Families:

- Rovnix
- Zlob
- Gator
- Look2Me
- Rustock

Findectors are Hard Petect/Classify

Class	7	y class. Dyn.	Recall Comb.	Far S'		core Com.
Adware		-	0.981		11د	0.925
Backdoor	b.	,	0.0		J.730	0.838
Clicker	0.9,		•		0.692	0.821
Dialer	0.994			68	0.888	0.984
Downloader	0.974	0.		J.864	0.695	0.874
Grayware	0.932			832	0.675	0.852
Miner	0.989			77	0.807	0.962
Ransomware	0.9		<u> </u>		0.580	0.853
Rogueware			0.95		401	0.663
Spyware		وم	0.998		4	0.879
Tool		J.929	1.000	L.		0.830
Virus		0.939	0.971	0.81		809
Wor	/8	0.899	0.996	0.922		Y
	0.967	0.920	0.9907	0.848	0.	

Dambra et al. «Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extra don, and Model Performance». CCS '23.

Our Problem

Approach Overview

PE Structural Diffing

DOS Header

DOS Stub

Rich Header (OPT)

COFF File Header
Standard Fields
Windows Specific Fields
Data Directories

Section Table

Section 1

Section 2

Attribute Certificate Table (OPT)

Overlay (OPT)

Attribute Certificate Table (OPT)

Overlay (OPT)

DOS Header
DOS Stub
Rich Header (OPT)

COFF File Header
Standard Fields
Windows Specific Fields
Data Directories

Section Table
Section 1
Section 2
Section 3
Section added

Related Work

File infectors

- Vast literature on manual analysis of file infector families (i.e., Memery, Neshta, Triusor [VirusBulletin])
- Concept of Computer Virus [Cohen1987, Szor2005, Filiol2006]
- Overview of malwares [Skoudis2004]

Executable Diffing

 Unlike existing tool such as BinDiff, we developed a component based PE Structural Diffing

Fuzzy Hashes

We implied TLSH [Azab2014] and SSDeep [Kornblum] for PE Structural Diffing

Our work

 To our knowledge, there are no existing studies on automated file infector classification based on infection behavior

Dataset

Dambra et al. Dataset

- 67,000 samples
- 670 families
- 100 samples per families

Collected between 2021-2022

AVClass2

Subset Dataset

- 7,000 samples
- 70 families
- 100 samples per families

Analyzed Dataset

• 350 samples

Analysis

- 70 families
- 5 samples per families

First Seen Years

Contributions

- A novel framework for the analysis of file infection malware
- A PE Executable Differ
- Evaluation on 350 malware samples

Outline

- Introduction
- → Approach
- Results

Approach

Cuckoo Sandbox

- Input : Sample
- Output:

Cuckoo report

```
JS report.js
      "added": 1707408441.368206,
      "started": 1707408454.89419,
      "ended": 1707408880.598961,
      "owner": null,
      "score": 3.8,
      "id": 1,
      "category": "file",
      "git": {
           "head": "13cbe0d9e457be3673304533043e992ead1ea9b2",
          "fetch_head": "13cbe0d9e457be3673304533043e992ead1ea9b2"
      "monitor": "2deb9ccd75d5a7a3fe05b2625b03a8639d6ee36b",
      "package": "",
      "route": "internet",
      "custom": null,
      "machine": {
          "status": "stopped",
          "name": "Win7",
          "label": "Win7",
          "manager": "VirtualBox",
          "started_on": "2024-02-08 16:07:35",
          "shutdown_on": "2024-02-08 16:14:40"
```

Disk Image (after exe)

Image Differ

- Input : Disk Image (orig.) & Disk Image (infect.) & Cuckoo report
- Output : Permanent modified executable dictionary

Is it a File Infector?

Fuzzy Hashes

- Fuzzy hashes allow to compute similarities between executables
- Similarity score range from 0 to 100
- Fuzzy hashes used are TLSH and SSDeep

T134537C21B981C073C446107A592DC6B19F 7BBC312675C983BB961BBB9F313D1E72E24A

Similarity: 67

T1BA666B02B69DBCF8C4765030477793F25B 29FC211560EA5F73D4BB252E34683BA29B26

PE Differ

- Input : Original EXE & Infected EXE
- Output : Diff file

Classifier Features

Ground Truth Labels

family	type	\mathbf{st}	\mathbf{st}	\mathbf{st}	orig	$\mathbf{e}\mathbf{p}$	overlay	
		added	extend	remov	es	mod	ratio	
					mod			
expiro	Α	0	1	0	✓	Х	Х	
triusor	A	4	0	1	Х	✓	Х	
wapomi	Α	1	0	0	X	✓	Х	
wlksm	A	0	1	0	✓	Х	Х	
lamer	Р	3	0	all	-	-	637.2	
induc	Р	3	0	all	-	-	1.0	
neshta	Р	8	0	all	-	-	1.0	
shodi	Р	4	0	all	-	-	6.4	
sinau	Р	8	0	all	-	-	1.0	
sivis	Р	3	0	all	-	-	4.8	
soulclose	Р	3	0	all	-	-	1.0	
xiaobaminer	Р	7	0	all	-	-	53.3	
memery	Р	4	0	all	-	-	55.9	
pidgeon	Р	26	0	all	-	-	0.8	
detroie	Р	8	0	all	-	-	20.3	
gogo	Р	3	0	all	-	-	33.1	
lmir	Р	8	0	all	-	-	0.1	
stihat	Р	18	0	all	-	-	13.4	
xolxo	Р	70	0	all	-	-	82.6	
xorer	Р	3	0	all	-	-	1.8	
virlock	Ι	2	0	all	-	-	Х	
grenam	I	10	0	all	-	-	Х	

22 file infector families 4 Appenders, 16 Prependers, 2 Impersonators

Classifier

- Random Forest Classifier on 4 different labels (A, P, I, U)
- Training Set and Testing Set divided as 70 % and 30 %

Outline

- Introduction
- Approach
- → Results

Results: Execution

- 350 samples analyzed, 5 for each family
- 2 families with 0 Windows API calls
- About 97% of the samples detonated (>50 Win API)
- 94 samples of 22 families permanently modified executables, thus labelled as file infectors

Results: Classifier

	Accuracy	Macro	Weighted	\mathbf{A}	P	I	U
		Avg	Avg				
Precision	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Recall	1.0	1.0	1.0	1.0	1.0	1.0	1.0
F1-score	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Limitations

- A fraction of samples may not have detonated
- The 70 families may not capture all file infector types, e.g., we did not encounter Cavity infectors
- Only 350 samples analyzed
- Overfitting in the random forest classifier

Conclusions

- A novel framework for the analysis of file infection malware
- A PE Executable Differ
- Evaluation on 350 malware samples

Future work

- Analysis of a more extensive sample pool
- Additional features beyond similarity scores
- Improving the capabilities of PE Differ

Questions?

Thanks!