Analise simples de dois arquivos csv gerados do MySQL. Um desses arquivos é uma consulta

- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib as plt
- 4 import seaborn as sns

Arquivo aluguel_veiculos

1 df = pd.read_csv('/content/aluguel_veiculos.csv', sep=';', encoding='latin1')

1 df.head()

\supseteq		id	valor_total_locacao	qtde_portas	ar_condicionado	data_inicio_locacao	idade_locatario	genero	quilometragem	cotacao_dolar	Esta
	0	1	368.38	2 portas	sem ar condicionado	2021-06-01 00:00:00	23	Masculino	957.44	4.41	Mir Ger
	1	2	446.85	4 portas	com ar condicionado	2021-05-12 00:00:00	18	Feminino	829.53	5.63	Ва
	2	3	414.73	5 portas	sem ar condicionado	2021-04-14 00:00:00	28	Feminino	923.30	8.81	Rio Jane
	4										

1 df.describe()

1 df.shape

(121, 12)

Obs: .shape[0] --> gera a quantidade da consulta.Sem esse comando é gerada uma consulta com todos os dados solicitados

```
1 locacoes_2 = df[df['qtde_diarias'] ==2].shape[0]
2 locacoes_2
     34
1 locatario_menor25 = df[df['idade_locatario'] < 25].shape[0]
2 locatario_menor25
     81
1 locatario_maior25 = df[df['idade_locatario'] > 25].shape[0]
2 locatario_maior25
 1 valor_locacao = df['valor_total_locacao'].sum().round()
 2 valor_locacao
     53536.0
 1 locacoes_totais = df['id'].count()
 2 locacoes_totais
Distribuição de Idades dos Locatários
1 import matplotlib.pyplot as plt
3 # Histograma da idade dos locatários
4 plt.figure(figsize=(8, 6))
5 plt.hist(df['idade_locatario'], bins=20, color='skyblue', edgecolor='black')
```

6 plt.title('Distribuição de Idades dos Locatários')

7 plt.xlabel('Idade do Locatário')8 plt.ylabel('Frequência')

9 plt.show()

10

Locações por Gênero

```
1 # Contagem de locações por gênero
2 locacoes_por_genero = df['genero'].value_counts()
3
4 # Gráfico de barras com números nas barras
5 plt.figure(figsize=(8, 6))
6 bars = plt.bar(locacoes_por_genero.index, locacoes_por_genero, color=['skyblue', 'salmon'])
7
8 # Adiciona números nas barras
9 for bar in bars:
10 plt.text(bar.get_x() + bar.get_width() / 2 - 0.05, bar.get_height() + 0.1, str(bar.get_height()), ha='center')
11
12 plt.title('Locações por Gênero')
13 plt.xlabel('Gênero')
14 plt.ylabel('Quantidade de Locações')
15 plt.show()
16
```


Correlação entre Variáveis

- 1 # Matriz de correlação
- 2 correlation_matrix = df.corr()
- 4 # Mapa de calor
- 5 plt.figure(figsize=(10, 8))
- 6 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
- 7 plt.title('Matriz de Correlação')
- 8 plt.show()

<ipython-input-76-382aea06b271>:2: FutureWarning:

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_

Comparação da idade dos Eocatanos

- 1 # Contagem de locatários com idade maior que 25
- 2 locatario_maior25 = df[df['idade_locatario'] > 25].shape[0]

3

- 4 # Contagem de locatários com idade menor que 25
- 5 locatario_menor25 = df[df['idade_locatario'] < 25].shape[0]

6

- 7 # Criando o gráfico de barras
- 8 plt.figure(figsize=(8, 6))
- 9 plt.bar(['Maior que 25', 'Menor que 25'], [locatario_maior25, locatario_menor25], color=['skyblue', 'salmon'])

10

- 11 # Adicionando números nas barras
- 12 for i, value in enumerate([locatario_maior25, locatario_menor25]):
- 13 plt.text(i, value + 0.1, str(value), ha='center')

14

- 15 plt.title('Comparação de Locatários por Faixa Etária')
- 16 plt.xlabel('Faixa Etária')
- 17 plt.ylabel('Quantidade de Locatários')
- 18 plt.show()

19

11 plt.ylabel('Média do Valor Total de Locação') 12

12 13 # Exibindo o gráfico

14 plt.show()

15

Locações por Gênero

1 locacoes_por_genero = df['genero'].value_counts()

2 locacoes_por_genero

Feminino 71 Masculino 50

Name: genero, dtype: int64

9

1 import matplotlib.pyplot as plt
2
3 locacoes_por_genero = df['genero'].value_counts()
4
5 plt.figure(figsize=(8, 8))
6 plt.pie(locacoes_por_genero, labels=locacoes_por_genero.index, autopct='%1.1f%%', colors=['skyblue', 'salmon'])
7 plt.title('Distribuição de Locações por Gênero')
8 plt.show()

Distribuição de Locações por Gênero

Média de Idade dos Locatários

- 1 media_idade_locatarios = df['idade_locatario'].mean()
- 2 media_idade_locatarios.round()

22.0

Total de Locações por Estado

- 1 locacoes_por_estado = df['Estado'].value_counts()
- 2 locacoes_por_estado

Minas Gerais 33 São Paulo 33 Rio de Janeiro 24 Bahia 21 Goiás 10 Name: Estado, dtype: int64

```
1 locacoes_por_estado = df['Estado'].value_counts()
2
3 # Definindo uma paleta de cores única para cada estado
4 cores_por_estado = sns.color_palette('pastel', n_colors=len(locacoes_por_estado))
6 plt.figure(figsize=(12, 6))
7 bars = plt.bar(locacoes_por_estado.index, locacoes_por_estado, color=cores_por_estado)
8
9 # Adicionando números nas barras
10 for bar in bars:
     plt.text(bar.get_x() + bar.get_width() / 2 - 0.1, bar.get_height() + 0.1, str(int(bar.get_height())), ha='center')
11
12
13 plt.title('Total de Locações por Estado')
14 plt.xlabel('Estado')
15 plt.ylabel('Quantidade de Locações')
16 plt.show()
17
```


Média de Quilometragem percorrida

1 media_quilometragem = df['quilometragem'].mean()

2 media_quilometragem.round(2)

720.03

Locações com Ar-condicionado

1 locacoes_com_ar_condicionado = df[df['ar_condicionado'] == 'com ar condicionado'].shape[0]

2 locacoes_com_ar_condicionado

70

Valor Médio de Locação por Diária

1 valor_medio_diaria = df['valor_total_locacao'].mean() / df['qtde_diarias'].mean()

2 valor_medio_diaria.round(2)

144.3

Locações com Quilometragem Alta (> 300km)

- 1 locacoes_quilometragem_alta = df[df['quilometragem'] > 300].shape[0]
- 2 locacoes_quilometragem_alta

121

Locações mais Caras

- 1 locacoes_mais_caras = df.sort_values(by='valor_total_locacao', ascending=False).head()
- 2 locacoes_mais_caras

	id	valor_total_locacao	qtde_portas	$ar_condicionado$	data_inicio_locacao	idade_locatario	genero	quilometragem	cotacao_dolar	Est
86	87	654.00	89 portas	sem ar condicionado	2021-03-27 00:00:00	0	Masculino	345.79	3.98	F
94	95	654.00	97 portas	com ar condicionado	2021-06-29 00:00:00	0	Masculino	930.70	4.52	E
20	21	551.32	23 portas	com ar condicionado	2021-06-06 00:00:00	21	Feminino	351.55	5.56	F
4										-

Média do Valor de Locação por Faixa Etária

- 1 df['faixa_etaria'] = pd.cut(df['idade_locatario'], bins=[18, 25, 35, 50, 100], labels=['18-25', '26-35', '36-50', '51+'])
- 2 media_valor_por_faixa_etaria = df.groupby('faixa_etaria')['valor_total_locacao'].mean().round()
- 3 media_valor_por_faixa_etaria

faixa_etaria

18-25 456.0

26-35 390.0 36-50 NaN

51+ NaN

Name: valor_total_locacao, dtype: float64

Locações por Mês

- 1 # Convertendo 'data_inicio_locacao' para formato de data
- $2 \ df['data_inicio_locacao'] = pd.to_datetime(df['data_inicio_locacao'])$

3

- 4 # Criando a coluna 'mes'
- 5 df['mes'] = df['data_inicio_locacao'].dt.month

6

- 7 # Contagem de locações por mês
- 8 locacoes_por_mes = df['mes'].value_counts()

9

- 10 # Mostrar resultados
- 11 locacoes_por_mes

12

- 6 41
- 4 37
- 5 36
- 3 3
- 2 2
- 1

Name: mes, dtype: int64

Distribuição de Valores de Locação: Histograma

```
1 plt.figure(figsize=(10, 6))
```

2

- 3 # Histograma
- $4 \ n, bins, patches = plt.hist(df['valor_total_locacao'], bins=20, color='skyblue', edgecolor='black')$

5

- 6 # Adiciona os números nas barras
- 7 for value, count, patch in zip(bins[:-1], n, patches):
- 8 plt.text(value + (bins[1] bins[0]) / 2, count, str(int(count)), ha='center', va='bottom')

9

- 10 plt.title('Distribuição de Valores de Locação')
- 11 plt.xlabel('Valor Total de Locação')
- 12 plt.ylabel('Frequência')
- 13 plt.show()

1/

