

Outline

- Sensors for Mobile Robots
- Beam-based Sensor Models
- Scan-based Sensor Models
- Landmark-based Sensor Models

Sensors for Mobile Robots

- Contact sensors: Bumpers
- Internal sensors
 - Accelerometers (spring-mounted masses)
 - Gyroscopes (spinning mass, laser light)
 - Compasses, inclinometers (earth magnetic field, gravity)
- Proximity sensors
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range-finders (triangulation, tof, phase)
 - Infrared (intensity)
- Visual sensors: Cameras
- Satellite-based sensors: GPS

Proximity Sensors

- The central task is to determine P(z|x), i.e., the probability of a measurement z given that the robot is at position x.
- Question: Where do the probabilities come from?
- Approach: Let's try to explain a measurement.

Outline

- Sensors for Mobile Robots
- Beam-based Sensor Models
- Scan-based Sensor Models
- Landmark-based Sensor Models

Beam-Based Sensors

Scan z consists of K measurements.

$$z = \{z_1, z_2, ..., z_K\}$$

 Individual measurements are independent given the robot position.

$$P(z \mid x, m) = \prod_{k=1}^{\infty} P(z_k \mid x, m)$$

Beam-based Sensor Model

$$P(z \mid x, m) = \prod_{k=1}^{\infty} P(z_k \mid x, m)$$

Typical Errors of Range Measurements

- 1. Beams reflected by obstacles
- Beams reflected by persons / caused by crosstalk
- Random measurements
- 4. Maximum range measurements

Proximity Measurement

- Measurement can be caused by ...
 - a known obstacle.
 - cross-talk.
 - an unexpected obstacle (people, furniture, ...).
 - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
 - in measuring distance to known obstacle.
 - in position of known obstacles.
 - in position of additional obstacles.
 - whether obstacle is missed.

Beam-Based Proximity Sensor

Measurement noise

Unexpected obstacles

$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2}\frac{(z - z_{exp})^2}{b}}$$

$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2}\frac{(z - z_{\text{exp}})^2}{b}} \begin{vmatrix} P_{\text{unexp}}(z \mid x, m) = \begin{cases} \eta \lambda e^{-\lambda z} & z < z_{\text{exp}} \\ 0 & otherwise \end{cases}$$

Beam-Based Proximity Sensor

Random measurement

$$P_{rand}(z \mid x, m) = \eta \frac{1}{z_{\text{max}}}$$

Max range

$$P_{\max}(z \mid x, m) = \eta \frac{1}{z_{small}}$$

Resulting Density Mixture

$$P(z \mid x, m) = \begin{pmatrix} \alpha_{\text{hit}} \\ \alpha_{\text{unexp}} \\ \alpha_{\text{max}} \end{pmatrix} \cdot \begin{pmatrix} P_{\text{hit}}(z \mid x, m) \\ P_{\text{unexp}}(z \mid x, m) \\ P_{\text{max}}(z \mid x, m) \\ P_{\text{rand}}(z \mid x, m) \end{pmatrix}$$

How can we determine the model parameters?

Raw Sensor Data

Measured distances for expected distance of 300 cm.

Approximation

Maximize log likelihood of the data

$$P(z \mid z_{\rm exp})$$

- Search space of n-1 parameters.
 - Hill climbing
 - Gradient descent
 - Genetic algorithms
 - ...
- Deterministically compute the n-th parameter to satisfy normalization constraint.

Approximation Results

Example

z P(z|x,m)

Discrete Model of Proximity Sensors

- Instead of densities, consider discrete steps along the sensor beam.
- Consider dependencies between different cases.

Approximate Results

Laser

Sonar

Summary of Beam-Based Model

Assumes independence between beams.

- Justification?
- Overconfident!

Models physical causes for measurements.

- Mixture of densities for these causes.
- Assumes independence between causes. Problem?

Implementation

- Learn parameters based on real data.
- Different models should be learned for different angles at which the sensor beam hits the obstacle.
- Determine expected distances by ray-tracing.
- Expected distances can be pre-processed.

Outline

- Sensors for Mobile Robots
- Beam-based Sensor Models
- Scan-based Sensor Models
- Landmark-based Models

Scan-based Model

- Beam-based model is ...
 - not smooth for small obstacles and at edges.
 - not very efficient.

 Idea: Instead of following along the beam, just check the end point.

Scan-based Model

- Probability is a mixture of ...
 - a Gaussian distribution with mean at distance to closest obstacle,
 - a uniform distribution for random measurements, and
 - a small uniform distribution for max range measurements.
- Again, independence between different components is assumed.

Example

Map *m*

Likelihood field

Example

Occupancy grid map

Likelihood field

Scan Matching

 Extract likelihood field from scan and use it to match different scan.

Scan Matching

 Extract likelihood field from scan and use it to match different scan.

Scan-based Model

- Highly efficient, uses 2D tables only.
- Smooth w.r.t. to small changes in robot position.
- Allows gradient descent, scan matching.
- Ignores physical properties of beams.
- Will it work for ultrasound sensors?

Additional Models

- Map matching (sonar, laser): generate small, local maps from sensor data and match local maps against global model.
- Scan matching (laser): map is represented by scan endpoints, match scan into this map.
- Features (sonar, laser, vision): Extract features such as doors, hallways from sensor data.

Outline

- Sensors for Mobile Robots
- Beam-based Sensor Models
- Scan-based Sensor Models
- Landmark-based Models

Landmarks

- Active beacons (e.g., radio, GPS)
- Passive (e.g., visual, retro-reflective)
- Standard approach is triangulation

- Sensor provides
 - distance, or
 - bearing, or
 - distance and bearing.

Landmarks

Probabilistic Model

1. Algorithm landmark_detection_model(z,x,m): $z = \langle i, d, \alpha \rangle, x = \langle x, y, \theta \rangle$

2.
$$\hat{d} = \sqrt{(m_x(i) - x)^2 + (m_y(i) - y)^2}$$

3. $\hat{a} = \operatorname{atan2}(m_{y}(i) - y, m_{x}(i) - x) - \theta$

4.
$$p_{\text{det}} = \text{prob}(\hat{d} - d, \varepsilon_d) \cdot \text{prob}(\alpha - \alpha, \varepsilon_\alpha)$$

5. Return $z_{\text{det}} p_{\text{det}} + z_{\text{fp}} P_{\text{uniform}}(z \mid x, m)$

Probabilistic Model

Distances Only

$$P_1 = (0,0)$$

$$P_2 = (a,0)$$

$$x = (a^{2} + d_{1}^{2} - d_{2}^{2})/2a$$
$$y = \pm \sqrt{(d_{1}^{2} - x^{2})}$$

Bearings Only

Law of cosine

$$D_1^2 = z_1^2 + z_2^2 - 2 z_1 z_2 \cos \alpha$$

$$D_1^2 = z_1^2 + z_2^2 - 2 z_1 z_2 \cos(\alpha)$$

$$D_2^2 = z_2^2 + z_3^2 - 2 z_1 z_2 \cos(\beta)$$

$$D_3^2 = z_1^2 + z_3^2 - 2 z_1 z_2 \cos(\alpha + \beta)$$

Bearings Only with Uncertainty

Most approaches attempt to find estimation mean.

Summary of Sensor Model

- Explicitly modeling uncertainty in sensing is key to robustness.
- In many cases, good models can be found by the following approach:
 - 1. Determine parametric model of noise free measurement.
 - 2. Analyze sources of noise.
 - 3. Add adequate noise to parameters (eventually mix in densities for noise).
 - 4. Learn (and verify) parameters by fitting model to data.
 - 5. Likelihood of measurement is given by "probabilistically comparing" the actual with the expected measurement.
- This holds for motion models as well.
- It is extremely important to be aware of the underlying assumptions!

Homework 5

Problem 1: Please generate the beam-based measurement models with a mixture of four distributions (by choosing five different sets of parameters).

$$P(z \mid x, m) = \begin{pmatrix} \alpha_{\text{hit}} \\ \alpha_{\text{unexp}} \\ \alpha_{\text{max}} \end{pmatrix}^{T} \cdot \begin{pmatrix} P_{\text{hit}}(z \mid x, m) \\ P_{\text{unexp}}(z \mid x, m) \\ P_{\text{max}}(z \mid x, m) \\ P_{\text{rand}}(z \mid x, m) \end{pmatrix}$$

Homework 5

Problem 2: Given the following map, please generate scan measurement probability model and the beam measurement probability model.

Homework 5

Problem 3: Please generate the following landmark measurement probability model by using 3 ranging sensors.

