Гауссові випадкові вектори.

1 Теоретичні відомості

Надалі позначимо $||x||:=\sqrt{\langle x,x\rangle},\,\langle x,y\rangle=x^Ty,$ де $x,y\in\mathbb{R}^n$ є вектор-стовпчиками.

Трохи про математичне сподівання та коваріацію випадкового вектора.

Математичним сподіванням випадкового вектора $\vec{\xi} = (\xi_1, \dots, \xi_n)^T$ є вектор математичних сподівань координат:

 $E[\vec{\xi}] = (E[\xi_1], \dots, E[\xi_n])^T$

Зокрема лінійність математичного сподівання тут узагальнюється на рівні лінійних перетворень: $E[A\vec{\xi}] = AE[\vec{\xi}]$ для довільної матриці $A \in \mathbb{R}^{d \times n}$.

Нагадаємо, що коваріацією випадкового вектора $\vec{\xi} = (\xi_1, \dots, \xi_n)^T$ є матриця попарних коваріацій координат:

$$\Sigma := \text{Cov}(\vec{\xi}) = E[(\vec{\xi} - E[\vec{\xi}])(\vec{\xi} - E[\vec{\xi}])^T] = (\text{cov}(\xi_i, \xi_j))_{i,j=1}^n.$$

Очевидно, $\Sigma^T = \Sigma$ (тобто є симетричною). Зокрема Σ є невід'ємно напіввизначеною: для всіх $\vec{u} \in \mathbb{R}^n$

$$\vec{u}^T \Sigma \vec{u} = \vec{u}^T [(\vec{\xi} - E[\vec{\xi}])(\vec{\xi} - E[\vec{\xi}])^T] \vec{u} = E[\vec{u}^T (\vec{\xi} - E[\vec{\xi}])(\vec{\xi} - E[\vec{\xi}])^T \vec{u}] = E[\langle \vec{u}, (\vec{\xi} - E[\vec{\xi}]) \rangle^2] \geq 0$$

Гауссові вектори.

Попередньо ми мали справу з нормальними випадковими величинами. Це поняття можна узагальнити до випадкових векторів.

Розглянемо деякий вектор $\mu \in \mathbb{R}^n$ та *невироджену* симетричну невід'ємно напіввизначену матрицю $\Sigma \in \mathbb{R}^{n \times n}$.

Чому такий вибір параметрів?

Випадковий вектор $\vec{\xi} = (\xi_1, \dots, \xi_n)^T$ називають гауссовим (або нормальним) вектором з вектором середніх μ та коваріаційною матрицею Σ , якщо він має щільність розподілу

$$\begin{split} f_{\vec{\xi}}(\vec{x}) &= \frac{(\det(\Sigma^{-1}))^{1/2}}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}((\vec{x}-\mu)^T \Sigma^{-1}(\vec{x}-\mu))\right) = \\ &= \frac{1}{(2\pi)^{n/2}(\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2}((\vec{x}-\mu)^T \Sigma^{-1}(\vec{x}-\mu))\right), \; \vec{x} \in \mathbb{R}^n. \end{split}$$

Позначення: $\vec{\xi} \sim N(\mu, \Sigma)$.

Насправді поняття випадкового вектора на випадок виродженої коваріаційної матриці Σ , в термінах $xapakmepucmuuhoï функції <math>\varphi_{\vec{\xi}}(\vec{x}) := E[e^{i\left\langle \vec{x}, \vec{\xi} \right\rangle}] = \exp(i\left\langle \vec{x}, \vec{\mu} \right\rangle - \frac{1}{2}\vec{x}^T \Sigma \vec{x})$. Але тут не піде мова про характеристичні функції, це згодом.

Гауссів вектор $\vec{\xi}$ називають стандартним гауссовим, якщо $\mu=\vec{0}$ та $\Sigma=I_n$, де I_n – одинична матриця.

Взагалі розрізняють випадкові вектори на ізотропні та анізотропні. Випадковий вектор $\vec{\eta} \in \mathbb{R}^n$ називають ізотропним, якщо $\text{Cov}(\vec{\eta}) = \sigma^2 I_n$ для деякого $\sigma > 0$. Інакше випадковий вектор називають анізотропним.

Ізотропний гауссів вектор $\vec{\xi} \sim N(\mu, \sigma^2 I_n)$ має щільність:

$$f_{\vec{\xi}}(\vec{x}) = \frac{1}{(2\pi)^{n/2}\sigma} \exp\left(-\frac{1}{2\sigma} \cdot ||\vec{x}||^2\right)$$

Ізотропні гауссові вектори хороші тим, що їх розподіл є інваріантним відносно ортогональних перетворень (зокрема поворотів на площині / у просторі). А також відмітимо те, що координати ізотропного гауссового вектора є незалежними в сукупності.

Рекламна пауза у перетворення випадкових векторів.

Для розв'язання задач, пов'язаних із гладкими перетвореннями випадкового вектора, стане у нагоді наступна теорема.

Теорема (про щільність перетвореного вектора). Нехай ξ є n-вимірний абсолютно неперервним випадковим вектором, а функція $h: \mathbb{R}^n \to \mathbb{R}^n$ кусково взаємно-однозначна та кусково неперервно диференційовна, тобто існує таке розбиття $\mathbb{R}^n = \bigcup_{k \geq 1} A_k$, A_k — попарно несумісні, що для довільного $k \geq 1$ $h \in C^1(A_k)$ та на A_k існує обернена до h функція $g^k = (g_1, \dots, g_n^k): h(A_k) \to A_k$. Тоді вектор $\eta = h(\xi)$ має щільність

$$f_{\eta}(\vec{y}) = \sum_{k: \vec{y} \in h(A_k)} f_{\xi}(g^k(\vec{y})) |J_{g^k}(\vec{y})|,$$

де $J_{g^k}(\vec{y}) = \det \left(\frac{\partial g_i^k}{\partial y_j} (\vec{y}) \right)_{i,j=1}^n$ – якобіан функції g^k .

Зауваження: $|J_{g^k}(\vec{y})| = 1/|J_h(g^k(\vec{y}))|$.

Доведення наведемо далі, а зараз приклад.

Приклад. Нехай $\vec{\xi} = (\xi_1, \xi_2)^T$ — двовимірний випадковий вектор з щільністю $f(x_1, x_2)$, а $(\rho, \varphi)^T \in (0, +\infty) \times [0, 2\pi)$ — його представлення у полярних координатах. Введемо перетворення $g: \mathbb{R}^2 \to (0, +\infty) \times [0, 2\pi)$ з декартових координат у полярні. Для g відоме обернене перетворення:

$$g^{-1}(r,\theta) = (r\cos(\theta), r\sin(\theta)), (r,\theta) \in (0, +\infty) \times [0, 2\pi).$$

Якобіан g^{-1} дорівнює $J_{g^{-1}}(r,\theta)=r>0$. Отже, щільність полярних координат h можна виразити через початкову щільність згідно теореми

$$h(r, \theta) = f(r\cos(\theta), r\sin(\theta))r.$$

Доведення теореми.

Візьмемо довільну підмножину $A \in \mathbb{R}^n$. Тоді

$$P(\eta \in A) = \sum_{k=1}^{+\infty} P(h(\vec{\xi}) \in A, \xi \in A_k) = \sum_{k=1}^{+\infty} P(\vec{\xi} \in g^k(A), \xi \in A_k) =$$

$$= \sum_{k=1}^{+\infty} P(\vec{\xi} \in g^k(A) \cap A_k) = \sum_{k=1}^{+\infty} \int_{g^k(A) \cap A_k} f_{\vec{\xi}}(\vec{u}) d\vec{u} = |\vec{x} = h(\vec{u})| =$$

$$= \sum_{k=1}^{+\infty} \int_{A \cap h(A_k)} f_{\vec{\xi}}(g^k(\vec{x})) |J_{g^k}(\vec{x})| d\vec{x} = \int_{A} \sum_{k=1}^{+\infty} 1\{\vec{x} \in h(A_k)\} f_{\vec{\xi}}(g^k(\vec{x})) |J_{g^k}(\vec{x})| d\vec{x} =$$

$$= \int_{A} \sum_{k \ge 1: \vec{x} \in h(A_k)} f_{\vec{\xi}}(g^k(\vec{x})) |J_{g^k}(\vec{x})| d\vec{x}$$

Оскільки A – довільне, то значить підінтегральна функція в останньому виразі задає щільність розподілу перетвореного вектора $\eta = h(\xi)$.

2 Задачі

2.1 Задача 1 (позбуваємося залежності)

Нехай
$$\vec{\xi}=(\xi_1,\xi_2)^T\sim N((0,0)^T,A),$$
 де $A=\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},$ $|\rho|<1.$

- 1. Довести, що вектор $\vec{\eta} = (\xi_1, \xi_2 a\xi_1)^T$ є гауссовим вектором.
- 2. При яких $a \in \mathbb{R}$ координати вектора з попереднього пункту є некорельованими? Незалежними?

Розв'язання.

По суті
$$\vec{\eta} = A\vec{\xi}$$
, де $A = \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix}$.

А довільне лінійне перетворення нормального вектора є нормальним вектором. Залишається визначити параметри перетвореного вектора:

$$E[\vec{\eta}] = E[A\vec{\xi}] = AE[\vec{\xi}] = A\vec{0} = \vec{0},$$

$$Cov(\vec{\eta}) = E[(\vec{\eta} - E[\vec{\eta}])(\vec{\eta} - E[\vec{\eta}])^T] = E[A\vec{\xi}(A\vec{\xi})^T] = AE[\xi\xi^T]A^T = ACov(\vec{\xi})A^T =$$

$$= \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix} \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \rho - a \\ \rho - a & 1 - 2a\rho + a^2 \end{pmatrix}$$

Тобто $Var[\eta_1]=1,\ Var[\eta_2]=1-2a\rho+a^2$ та $cov(\eta_1,\eta_2)=\rho-a$. Для того, щоб η_1 та η_2 були некорельованими, неважко побачити що $a=\rho$. Зокрема, за цієї умови ці координати є незалежними, оскільки тоді $\Sigma:=\mathrm{Cov}(\vec{\eta})=\begin{pmatrix}1&0\\0&1-\rho^2\end{pmatrix}$, і звідси $\det\Sigma=(1-\rho^2)$ та

$$f_{\vec{\eta}}(u_1, u_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \cdot \exp\left(-\frac{1}{2}\left(u_1^2 + u_2^2/(1-\rho^2)\right)\right) = \varphi(u_1) \cdot \frac{\varphi(u_2/\sqrt{1-\rho^2})}{\sqrt{1-\rho^2}},$$

тобто сумісна щільність розпадається на добуток щільностей розподілів координат. В записі вище $\varphi(t)$ є щільністю стандартного нормального розподілу.

Komenmap. В принципі умови на a досить і витягти без протягування за собою усіх параметрів перетвореного вектора. Досить розглянути коваріацію координат:

$$cov(\eta_1, \eta_2) = cov(\xi_1, \xi_2 - a\xi_1) = cov(\xi_1, \xi_2) - acov(\xi_1, \xi_1) = \rho - aVar[\xi_1] = \rho - a.$$

4

2.2 Задача 2 (перетворення Бокса-Мюллера)

Нехай $\vec{\xi} = (\xi_1, \xi_2)^T \sim N((0, 0)^T, I_2)$, де I_2 – одинична матриця.

- 1. Знайдіть розподіл полярних координат $\vec{\nu} = (\rho, \varphi)^T$ вектора $\vec{\xi}$.
- 2. Нехай $u_1, u_2 \sim U(0,1)$ незалежні випадкові величини та введемо $R = \sqrt{-2\ln(u_1)},$ $A = 2\pi \cdot u_2$. Довести, що $(R \cdot \cos(A), R \cdot \sin(A))^T = d \vec{\xi}$.

Розв'язання.

Спочатку запишемо щільність розподілу випадкового вектора $\vec{\xi}$:

$$f_{\vec{\xi}}(u,v) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(u^2 + v^2)\right) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(u^2 + v^2)\right) \cdot 1_{\mathbb{R}^2}((u,v)).$$

Знайдемо представлення вектора $\vec{\xi}$ у полярних координатах. Нехай $g: \mathbb{R}^2 \to (0, +\infty) \times [0, 2\pi)$ є переходом з декартової системи координат в полярну. Неважко пригадати (переконатися), що обернене перетворення має вигляд:

$$g^{-1}(r,\theta) = (r\cos(\theta), r\sin(\theta))^T, (r,\theta)^T \in (0, +\infty) \times [0, 2\pi).$$

Якобіан оберненого перетворення дорівнює $J_{g^{-1}}(r,\theta) = r > 0$ при всіх (r,θ) . Відображення є неперервно диференційовним та взаємно однозначним, що дозволяє скористатися теоремою про щільність перетвореного вектора:

$$f_{\vec{\nu}}(r,\theta) = f_{\vec{\xi}}(r\cos(\theta),r\sin(\theta))|r| = \frac{r}{2\pi} \exp\left(-\frac{1}{2}((r\cos(\theta))^2 + (r\sin(\theta))^2)\right) \mathbf{1}_{(0,+\infty)\times[0,2\pi)}((r,\theta))$$
$$= \mathbf{1}_{[0,2\pi)}(\theta) \frac{1}{2\pi} \cdot \mathbf{1}_{(0,+\infty)}(r)r\exp(-r^2/2),$$
оскільки $(\sin(x))^2 + (\cos(x))^2 = 1$ та $\mathbf{1}_{\mathbb{R}^2}(g^{-1}(r,\theta)) = \mathbf{1}_{g(\mathbb{R}^2)}((r,\theta)) = \mathbf{1}_{(0,+\infty)\times[0,2\pi)}((r,\theta)).$

Отже, полярні координати вектора $\vec{\xi}$ є незалежними, зокрема радіус ρ має розподіл Релея:

$$f_{\rho}(r) = 1_{(0,+\infty)}(r)re^{-r^2/2},$$

а кут φ має рівномірний розподіл на $[0,2\pi)$: $f_{\varphi}(\theta)=1_{[0,2\pi)}(\theta)\frac{1}{2\pi}$.

Тепер доведемо другий пункт задачі. Неважко помітити, що $A \sim U(0,2\pi)$, а R має розподіл Релея (переконайтеся самостійно, або подивіться матеріали занять з випадкових величин). Зокрема R та A незалежні. Сумісна щільність матиме вигляд

$$f_{(R,A)}(r,a) = f_R(r)f_A(a) = 1_{(0,2\pi)}(a)\frac{1}{2\pi} \cdot 1_{(0,+\infty)}(r)r\exp(-r^2/2)$$

Так це ж по суті майже скрізь є сумісним розподілом стандартного нормального вектора в полярних координатах, тобто $(R,A)^T=^d \vec{\nu}$. А $(R\cdot\cos(A),R\cdot\sin(A))^T=g^{-1}(R,A)$, отже має місце твердження другого пункта задачі.

Коментар. Умова незалежності координат u_1, u_2 вагома. Інакше ми би не могли запросто взяти і подати сумісний розподіл (u_1, u_2) добутком щільностей координат, у вихідному сумісному розподілі вийшла б 'нероздільна' частина.

2.3 Задача 3 (про добуток корельованих координат)

Нехай
$$\vec{\xi}=(\xi_1,\xi_2)^T\sim N((0,0)^T,A),$$
 де $A=\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},$ $|\rho|<1.$

1. Нехай $\vec{\eta} = (\eta_1, \eta_2)^T \sim N((0, 0)^T, I_2)$, де I_2 – одинична матриця. Показати наступне:

$$P(\xi_1 > 0, \xi_2 > 0) = P(\eta_1, \eta_2 > -\rho/\sqrt{1-\rho^2} \cdot \eta_1) = \frac{1}{2\pi} \cdot \left(\frac{\pi}{2} + \arcsin(\rho)\right)$$

2. Скористатися попереднім пунктом задачі, щоби отримати

$$P(\xi_1 \cdot \xi_2 < 0) = \frac{\arccos(\rho)}{\pi}$$

Розв'язання.

Спочатку покажемо, що з анізотропного вектора $\vec{\xi}$ можна отримати ізотропний $\vec{\eta}$. Пригадаємо, що таку процедуру можна отримати завдяки лінійному перетворення, як показано в першій задачі: для $A = \begin{pmatrix} 1 & 0 \\ -\rho & 1 \end{pmatrix}$ маємо

$$A\vec{\xi} = (\xi_1, \xi_2 - \rho \xi_1)^T \sim N \left(\vec{0}, \begin{pmatrix} 1 & 0 \\ 0 & 1 - \rho^2 \end{pmatrix} \right).$$

Але це ще не відповідає розподілу $\vec{\eta}$: треба підкоригувати дисперсію другої координати. Домножимо другий рядок матриці A на $\sqrt{Var[\xi_2-\rho\xi_1]}$: $A_*=\begin{pmatrix}1&0\\-\rho/\sqrt{1-\rho^2}&1/\sqrt{1-\rho^2}\end{pmatrix}$, тоді вже $A_*\vec{\xi}=(\xi_1,(\xi_2-\rho\xi_1)/\sqrt{1-\rho^2})^T$ матиме такий самий розподіл, що і $\vec{\eta}$. Звідси

$$P(\xi_1 > 0, \xi_2 > 0) = P(\eta_1 > 0, \sqrt{1 - \rho^2}\eta_2 + \rho\eta_1 > 0) = P(\eta_1 > 0, \eta_2 > -\rho/\sqrt{1 - \rho^2}\eta_1)$$

Залишається обчислити останню імовірність шляхом інтегрування. Менш болючим підходом, напевно, буде перехід до полярних координат. Спочатку зауважимо, що ми інтегруємо на множині $A = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y > -\rho/\sqrt{1-\rho^2}x\}.$

$$P(\eta_{1} > 0, \eta_{2} > -\rho/\sqrt{1-\rho^{2}}\eta_{1}) = \int_{A}^{+\infty} f_{\vec{\eta}}(\vec{u})d\vec{u} = \int_{0}^{+\infty} \int_{-\rho/\sqrt{1-\rho^{2}}u_{1}}^{+\infty} \frac{1}{2\pi} \exp\left(-\frac{1}{2}(u_{1}^{2} + u_{2}^{2})\right) du_{2}du_{1} =$$

$$= |(u_{1}, u_{2}) := (r\cos(a), r\sin(a)), r > 0, a \in [0, 2\pi)| = \int_{0}^{+\infty} \int_{\arctan(-\rho/\sqrt{1-\rho^{2}})}^{\pi/2} \frac{1}{2\pi} \exp(-r^{2}/2) dadr =$$

$$= \frac{1}{2\pi} \left(\frac{\pi}{2} + \arctan(\rho/\sqrt{1-\rho^{2}})\right) \times \int_{-\infty}^{+\infty} 1_{(0, +\infty)}(r) re^{-r^{2}/2} dr = \frac{1}{2\pi} \left(\frac{\pi}{2} + \arctan(\rho/\sqrt{1-\rho^{2}})\right).$$

$$= 1, \text{ sk interpal identity tha } \mathbb{R}$$

Нехай $|\varphi| < \pi/2, \; \varphi := \arctan(\rho/\sqrt{1-\rho^2}).$ Побачимо таке:

$$\tan(\varphi) = \frac{\sin(\varphi)}{\cos(\varphi)} = \frac{\rho}{\sqrt{1-\rho^2}} \Leftrightarrow \sin(\varphi) = \rho \Rightarrow \arctan(\rho/\sqrt{1-\rho^2}) = \arcsin(\rho).$$

Це вже дозволяє отримати результат першої підзадачі:

$$P(\xi_1 > 0, \xi_2 > 0) = \frac{1}{2\pi} \left(\frac{\pi}{2} + \arcsin(\rho) \right).$$

Для розв'язання другої частини задачі, перейдемо до доповнення

$$P(\xi_1 \cdot \xi_2 < 0) = 1 - P(\xi_1 \cdot \xi_2 \ge 0) = 1 - 2P(\xi_1 > 0, \xi_2 > 0) =$$

$$= 1 - \frac{1}{\pi} \left(\frac{\pi}{2} + \arcsin(\rho) \right) = \frac{1}{\pi} \left(\frac{\pi}{2} - \arcsin(\rho) \right) = \frac{\arccos(\rho)}{\pi},$$

що завершує розв'язок задачі. Зауважимо, ми додатково скористалися наступним:

$$P(\xi_1 < 0, \xi_2 < 0) = P(\eta_1 < 0, \eta_2 < -\rho/\sqrt{1 - \rho^2}\eta_1) = P((-\eta_1) < 0, (-\eta_2) < -\rho/\sqrt{1 - \rho^2}(-\eta_1)) =$$

$$= P(\eta_1 > 0, \eta_2 > -\rho/\sqrt{1 - \rho^2}\eta_1) = P(\xi_1 > 0, \xi_2 > 0),$$

бо
$$-\vec{\eta} = d \vec{\eta}$$
.