CÔNG THỰC LƯỢNG GIÁC CẦN NHỚ

1. Công thức lượng giác cơ bản nên nhớ

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

$$1 + \tan^{2} \alpha = \frac{1}{\cos^{2} \alpha}, \alpha \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

$$1 + \cot^{2} \alpha = \frac{1}{\sin^{2} \alpha}, \alpha \neq k\pi, k \in \mathbb{Z}$$

$$\tan \alpha . \cot \alpha = 1, \alpha \neq k \frac{\pi}{2}, k \in \mathbb{Z}$$

$$\sin^3 \alpha + \cos^3 \alpha = (\sin \alpha + \cos \alpha)(1 - \sin \alpha \cos \alpha)$$

$$\sin^3 \alpha - \cos^3 \alpha = (\sin \alpha - \cos \alpha)(1 + \sin \alpha \cos \alpha)$$

$$\sin^4 \alpha + \cos^4 \alpha = 1 - 2\sin^2 \alpha \cos^2 \alpha$$

$$\sin^4 \alpha - \cos^4 \alpha = \sin^2 \alpha - \cos^2 \alpha = -\cos 2\alpha$$

$$\sin^6 \alpha + \cos^6 \alpha = 1 - 3\sin^2 \alpha \cos^2 \alpha$$

$$\sin^6 \alpha - \cos^6 \alpha = -\cos 2\alpha(1 - \sin^2 \alpha \cos^2 \alpha)$$

2. Giá trị lượng giác của cung có liên quan đặc biệt

Cung đối nhau: α và $-\alpha$

$$cos(-\alpha) = cos \alpha$$

$$sin(-\alpha) = -sin \alpha$$

$$tan(-\alpha) = -tan \alpha$$

$$cot(-\alpha) = -cot \alpha$$

Cung bù nhau: α và π $-\alpha$

$$\sin(\pi - \alpha) = \sin \alpha$$

$$\cos(\pi - \alpha) = -\cos \alpha$$

$$\tan(\pi - \alpha) = -\tan \alpha$$

$$\cot(\pi - \alpha) = -\cot \alpha$$

Cung hơn kém π : α và $\alpha + \pi$

$$\sin(\alpha + \pi) = -\sin \alpha$$

$$\cos(\alpha + \pi) = -\cos \alpha$$

$$\tan(\alpha + \pi) = \tan \alpha$$

$$\cot(\alpha + \pi) = \cot \alpha$$

Cung phụ nhau: α và $\frac{\pi}{2}$ – α

Cung hơn kém $\frac{\pi}{2}$: α và $\alpha + \frac{\pi}{2}$

Đường tròn lượng giác

3. Công thức lượng giác

Công thức cộng

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Công thức nhân đôi, nhân ba

Công thức hạ bậc

$$\cos^{2} \alpha = \frac{1 + \cos 2\alpha}{2}; \cos^{3} \alpha = \frac{3\cos \alpha + \cos 3\alpha}{4}$$
$$\sin^{2} \alpha = \frac{1 - \cos 2\alpha}{2}; \sin^{3} \alpha = \frac{3\sin \alpha - \sin 3\alpha}{4}$$
$$\tan^{2} \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$$

Công thức biến tích thành tổng

$$\cos a \cos b = \frac{1}{2} \left[\cos(a-b) + \cos(a+b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin(a-b) + \sin(a+b) \right]$$

Công thức biến đổi tổng thành tích

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$\sin \alpha + \cos \alpha = \sqrt{2} \sin(\alpha + \frac{\pi}{4})$$

$$= \sqrt{2} \cos(\alpha - \frac{\pi}{4})$$

$$\sin \alpha - \cos \alpha = \sqrt{2} \sin(\alpha - \frac{\pi}{4})$$

$$= -\sqrt{2} \cos(\alpha + \frac{\pi}{4})$$

Tọa độ điểm $M(\cos\alpha; \sin\alpha)$ trên đường tròn lượng giác

Giá trị lượng giác của một số cung đặc biệt cần ghi nhớ

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
	0_0	30^{0}	45°	60^{0}	90^{0}	120°	135°	150^{0}	180^{0}
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	=	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
$\cot \alpha$		$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	