$Solutions \ Exercices \ MP/MP^*$

Table des matières

1	Algèbre Générale	2
2	Séries numériques et familles sommables	38
3	Probabilités sur un univers dénombrable	93
4	Calcul matriciel	94
5	Réduction des endomorphismes	95
6	Espaces vectoriels normés	98
7	Fonction d'une variable réelle	138
8	Suites et séries de fonctions	149
9	Séries entières	150
10	Intégration	151
11	Espaces préhilbertiens	152
12	Espaces euclidiens	153
13	Calcul différentiel	154
14	Équation différentielles linéaires	155

1 Algèbre Générale

Solution 1.1. Soit $(x,y) \in G^2$. On a d'abord

$$x \cdot y = (x \cdot y)^{p+1} (x \cdot y)^{-p}$$

$$= x^{p+1} \cdot y^{p+1} \cdot y^{-p} \cdot x^{-p}$$

$$= x^{p+1} \cdot y \cdot x^{-p}$$
(1.1)

On cherche maintenant à montrer que x^{p+1} et y commutent. On a

$$y^{p+2} \cdot x^{p+2} = (y \cdot x)^{p+2}$$
$$= (y \cdot x)^{p+1} \cdot y \cdot x$$
$$= y^{p+1} \cdot x^{p+1} \cdot y \cdot x$$

Donc on a $y \cdot x^{p+1} = x^{p+1} \cdot y$. En reportant dans (1.1), on a $x \cdot y = y \cdot x$ et donc G est abélien.

Remarque 1.1.

- Pour (Σ_3, \cdot) , on a f_0, f_1 et f_6 des morphismes mais Σ_3 n'est pas commutatif.
- Si f_2 est un morphisme, alors on a $(x \cdot y)^2 = x \cdot y \cdot x \cdot y = x^2 \cdot y^2$ d'où $y \cdot x = x \cdot y$.

Solution 1.2. A est non vide car $\omega(e_G) = 1$ et $e_G \in A$. Soit $x \in A$ tel que $\omega(x) = 2p + 1$. Soit $k \in \mathbb{Z}$, on a

$$x^{2k} = e_G \Leftrightarrow 2p + 1 \mid 2k$$
$$\Leftrightarrow 2p + 1 \mid k$$

d'après le théorème de Gauss.

Ainsi,
$$\omega(x^2) = 2p + 1$$
 et $x^2 \in A$, donc

$$\varphi: A \to A$$
$$x \mapsto x^2$$

est bien définie. Soit $x \in A$, il existe $p \in \mathbb{N}$ tel que $x^{2p+1} = e_G$ donc $x^{2p+2} = x$ d'où $(x^{p+1})^2 = x$. Il suffit donc de vérifier que x^{p+1} pour montrer que l'application est surjective. Comme A est fini, elle sera bijective.

On a $gr\{x^{p+1}\} \subset gr\{x\}$ et $(x^{p+1})^2 = x$ donc $gr\{x\} = gr\{x^{p+1}\}$ donc $\omega(x) = \omega(x^{p+1}) = 2p + 1$ et donc $x^{p+1} \in A$.

Solution 1.3. On note $m = \theta(\sigma)$. On suppose que σ se décompose en produit de cycle de longueur l_1, \ldots, l_m avec $l_1 + \cdots + l_m = n$. Comme

$$(a_1, \ldots, a_l) = [a_1, a_2] \circ [a_2, a_3] \circ \cdots \circ [a_{l-1}, a_l]$$

Donc σ se décompose en $\sum_{i=1}^{m} (l_i - 1) = n - m$ transpositions. Montrons par récurrence sur k, $\mathcal{H}(k)$:

"Un produit de k transpositions possède au moins n - k orbites".

Pour k = 0, $\sigma = id$ possède n orbites.

Pour k = 1, soit τ une transposition, on a $\theta(\tau) = n - 2 + 1 = n - 1$.

Soit $k \in \mathbb{N}$, supposons \mathcal{H}_k , soit $\sigma \in \Sigma_n$ qui se décompose en produit de k+1 transpositions.

$$\sigma = \underbrace{\tau_1 \circ \dots \tau_k}_{\sigma'} \circ \tau_{k+1}$$

D'après \mathcal{H}_k , on a $\theta(\sigma') \geqslant n - k$. Notons $\tau_{k+1} = [a, b]$.

Si a et b appartiennent à la même orbite. On note (a_1, \ldots, a_r) le cycle correspondant avec $a_r = a$ et $a_s = b$ où $s \in \{1, \ldots, n-1\}$. On a

$$\begin{cases} (a_1, \dots, a_{r-1}, a_r) \circ [a, b](a_i) = a_{i+1} & \text{où } i \notin \{r, s\} \\ (a_1, \dots, a_{r-1}, a_r) \circ [a, b](a_r) = a_{s+1} \\ (a_1, \dots, a_{r-1}, a_r) \circ [a, b](a_s) = a_1 \end{cases}$$

On n'a pas perdu d'orbites, donc $\theta(\sigma) \geqslant n - k - 1$.

Si a et b n'appartiennent pas à la même orbite, notons (a_1, \ldots, a_r) et (b_1, \ldots, b_s) ces orbites avec $a = a_r$ et $b = b_s$. On a

$$\begin{cases}
\underbrace{(a_1, \dots, a_{r-1}, a_r) \circ (b_1, \dots, b_s) \circ [a_r, b_s]}_{\sigma''}(a_i) = a_{i+1} & où i \in \{1, \dots, r-1\} \\
(a_1, \dots, a_{r-1}, a_r) \circ (b_1, \dots, b_s) \circ [a_r, b_s](b_j) = b_{j+1} & où j \in \{1, \dots, s-1\} \\
(a_1, \dots, a_{r-1}, a_r) \circ (b_1, \dots, b_s) \circ [a_r, b_s](a_r) = b_1 \\
(a_1, \dots, a_{r-1}, a_r) \circ (b_1, \dots, b_s) \circ [a_r, b_s](b_s) = a_1
\end{cases}$$

Donc

$$\sigma'' = (a_1, \dots, a_r, b_1, \dots, b_s)$$

On a perdu une orbite et donc $\theta(\sigma) \geqslant n-k-1$. D'où le résultat par récurrence sur k.

Solution 1.4. On note par \overline{k} les éléments de $\mathbb{Z}/n\mathbb{Z}$ et par \widetilde{l} les éléments de $\mathbb{Z}/m\mathbb{Z}$.

Soit f un morphisme. On pose $f(\overline{1}) = \widetilde{x}$ où $x \in \{0, \dots, m-1\}$. On a donc $nf(\overline{1}) = f(\overline{0}) = \widetilde{0}$.

On a donc $\widetilde{nx} = \widetilde{0}$ donc $m \mid nx$. On écrit $m = m_1(m \wedge n)$ et $n = n_1(m \wedge n)$. D'après le théorème de Gauss, on a donc $m_1 \mid x$. Donc $x = km_1$ avec $k \in \{0, \dots, (n \wedge m) - 1\}$.

Réciproquement, soit $k \in \{0, ..., (n \land m) - 1\}$. On définit

$$f_k: \ \mathbb{Z}/n\mathbb{Z} \ \to \ \mathbb{Z}/m\mathbb{Z}$$
$$\bar{l} \ \mapsto \ \widetilde{lkm_1}$$

 $Si\ \overline{l} = \overline{l'}$, alors $n \mid l - l'$ et donc $nm_1 \mid (l - l')km_1$ puis $n_1(n \land m)m_1 \mid (l - l')km_1$ donc $m \mid (l - l')km_1$ d'où $\widetilde{lkm_1} = \widetilde{l'km_1}$ donc f est bien définie et c'est évidemment un morphisme.

Soit $k, k' \in \{0, \ldots, n \land m-1\}$ avec $k \neq k'$. Si $\widetilde{km_1} = \widetilde{k'm_1}$ alors $m \mid (k-k')m_1$ et donc $n \land m \mid k-k'$ et $|k-k'| < n \land m$ donc k=k' ce qui est absurde. Ainsi, les f_k sont distincts, on a donc $n \land m$ morphismes.

Remarque 1.2. Exemple pour l'exercice précédent : morphisme de $\mathbb{Z}/4\mathbb{Z}$ dans $\mathbb{Z}/6\mathbb{Z}$. On a $f(\overline{1}) = \widetilde{x}$ d'où $\widetilde{4x} = \widetilde{0}$ donc $3 \mid x$ d'où $x \in \{0,3\}$. On a donc le morphisme trivial $f_0 : \overline{l} \mapsto \widetilde{0}$ et $f_1 : \overline{l} \mapsto \widetilde{3l}$.

Solution 1.5. On considère $H = \{x \in G \mid x^2 = e_G\}$. Si $x \notin H$, alors $x^{-1} \neq x$ et donc $P = \prod_{x \in H} x$. H est le noyau du morphisme $x \mapsto x^2$ (morphisme car G est abélien) donc H est un sous-groupe. Soit K un sous-groupe de H et $a \in H \setminus K$. Montrons que $K \cup aK$ est un sous-groupe de H.

On $a \ e_G \in K \cup aK$. Soit $x \in K \cup aK \subset H$, on $a \ x^{-1} = x \in K \cup aK$. Soit $(x_1, x_2) \in (K \cup aK)^2$, si $(x_1, x_2) \in K^2$, c'est ok. Si $(x_1, x_2) \in (aK)^2$, on note $x_1 = a \cdot k_1$ et $x_2 = a \cdot k_2$ avec $(k_1, k_2) \in K^2$. On $a \ x_1 \cdot x_2 = a^2 \cdot k_1 \cdot k_2 = k_1 \cdot k_2 \in K$. Si $x_1 \in K$ et $x_2 \in aK$, alors $x_1 \cdot x_2 = a \cdot k_1 \cdot k_2 \in aK$. Donc $K \cup aK$ est un sous-groupe de H.

Soit $x \in K \cap aK$, il existe $(k_1, k_2) \in K^2$ tel que $k_1 = a \cdot k_2$ et $a \in K$ ce qui est impossible. Donc $K \cap aK = \emptyset$. On construit alors par récurrence K_n : on pose $K_0 = \{e_G\}$ et à l'étape n, si $K_n = H$ on arrête, sinon il existe $a_{n+1} \in H \setminus K_n$ et on pose $K_{n+1} = K_n \cup a_{n+1}K$. Alors $|K_{n+1}| = 2|K_n|$. Comme H est fini, il existe $n_0 \in \mathbb{N}$ tel que $H = K_{n_0}$. On a alors $|H| = 2^{n_0}$.

Ainsi, si $n_0 = 0$, on a $H = \{e_G\}$ et $P = e_G$. Si $n_0 = 1$, on a $H = \{e_G, a_1\}$ et $P = a_1 \neq e_G$. Si $n_0 \ge 2$, comme chaque a_k apparaît un nombre pair de fois dans le produit, on a $P = e_G$.

Solution 1.6. Soit $x_0 \in \mathbb{R}$. $(\overline{kx_0})_{0 \le k \le n}$ ne sont pas deux à deux distincts. Donc il existe $l \ne l' \in \{0,\ldots,n\}^2$ tel que $\overline{lx_0} = \overline{l'x_0}$ d'où $0 < |l-l'| \le n$. Donc il existe $j \in \{1,\ldots,n\}$ avec $jx_0 \in G$. Ainsi, $n!x_0 \in G$ (itéré de jx_0). Ce raisonnement est vrai pour $x = \frac{x_0}{n!}$ donc $x_0 \in G$. Ainsi, $G = \mathbb{R}$.

Solution 1.7. Soit f un isomorphisme de $\mathbb{Z}/n\mathbb{Z}$ dans lui-même. Soit $k \in \{0, ..., n-1\}$, on a $f(\overline{k}) = kf\overline{1}$). Par isomorphisme, $\omega(f(\overline{1})) = \omega(\overline{1}) = n$. Notons alors $\overline{x} = f(\overline{1})$ avec $x \in \{0, dots, n-1\}$.

Si $x \wedge n = 1$, il existe $(u, v) \in \mathbb{Z}^2$ tel que ux + vn = 1, donc $u\overline{x} = \overline{1} \in gr\{\overline{x}\}$. Ainsi, $Zn\mathbb{Z} = gr\{\overline{x}\}$ (car les éléments de $\mathbb{Z}/n\mathbb{Z}$ sont des itérés de $\overline{1}$) donc $\omega(\overline{x}) = n$.

Réciproquement, si $\omega(\overline{x}) = n$, $\overline{1} \in gr\{\overline{x}\}$ donc il existe $u \in \mathbb{Z}$ tel que $u\overline{x} = 1 = \overline{ux}$. Donc $n \mid ux - 1$, c'est-à-dire qu'il existe $v \in \mathbb{Z}$ tel que ux - 1 = vn, d'où ux + vn = 1. D'après Bézout, on $a \ x \wedge n = 1$. Finalement, on $a \ \omega(\overline{x}) = n$ si et seulement si $x \wedge n = 1$.

Ainsi, les isomorphismes sont nécessairement de la forme

$$f_x: \ \mathbb{Z}/n\mathbb{Z} \to \ \mathbb{Z}/n\mathbb{Z}$$
$$\overline{k} \mapsto \overline{kx}$$

 $où x \in \{0, ..., n-1\} \ et \ x \land n = 1.$

Réciproquement, si $x \in \{0, ..., n-1\}$ est tel que $x \wedge n = 1$, f_x est évidemment un morphisme. Si $\overline{k} \in \ker(f_x)$, on a $f_x(\overline{k}) = \overline{0}$ si et seulement si $\overline{kx} = \overline{0}$ si et seulement si $n \mid kx$ et comme $n \wedge x = 1$, d'après le théorème de Gauss, on a $n \mid k$ donc $\overline{k} = \overline{0}$ donc $\ker(f_x) = \{\overline{0}\}$. Donc f_x est injective, donc bijective car $|\mathbb{Z}/n\mathbb{Z}| = |\mathbb{Z}/n\mathbb{Z}| = n$.

Solution 1.8. $Si \ y \in Im \varphi, \ y \ possède \ | \ker \varphi | \ antécédents. \ En \ effet, \ il \ existe \ x_0 \in G \ tel \ que \ y = \varphi(x_0).$ Pour tout $x \in G$, on a $\varphi(x) = y$ si et seulement si $\varphi(x) = \varphi(x_0)$ si et seulement si $\varphi(x_0^{-1} \cdot x) = e_G$ si et seulement si $x_0^{-1} \cdot x \in \ker \varphi$ si et seulement si $x \in x_0 \ker \varphi$. Comme

$$g: \ker \varphi \to x_0 \ker \varphi$$
$$x \mapsto x \cdot x_0$$

est bijective, on a $|\ker \varphi| = |x_0\varphi|$. Ainsi, on a $|G| = |\operatorname{Im} \varphi| \times |\ker \varphi|$.

Dans tous les cas, on a ker $\varphi \subset \ker \varphi^2$ et $\operatorname{Im} \varphi^2 \subset \operatorname{Im} \varphi$. On a ensuite

$$\operatorname{Im} \varphi^{2} = \operatorname{Im} \varphi \iff |\operatorname{Im} \varphi^{2}| = |\operatorname{Im} \varphi|$$

$$\iff |\ker \varphi^{2}| |\operatorname{Im} \varphi^{2}| = |\ker \varphi^{2}| |\operatorname{Im} \varphi| = |G| = |\ker \varphi| |\operatorname{Im} \varphi|$$

$$\iff |\ker \varphi^{2}| = |\ker \varphi|$$

$$\iff \ker \varphi^{2} = \ker \varphi$$

Solution 1.9. On considère

$$f: G \to G$$
$$x \mapsto x^m$$

l'exercice revient à montrer que f est bijective. D'après le théorème de Bézout, il existe $(a,b) \in \mathbb{Z}^2$ tel que am + bn = 1. Soit $y \in G$, on a

$$y^{1} = y = y^{am+bn} = y^{am} \cdot \underbrace{y^{bn}}_{=aa} = y^{am} = (y^{a})^{m}$$

Donc f est surjective et comme G est fini, f est bijective.

Solution 1.10.

- 1. On a $e_G \in S_g$, $si(x,y) \in S_g^2$ alors $x \cdot y \cdot g = x \cdot g \cdot y = g \cdot x \cdot y$ donc $x \cdot y \in S_g$ et $si(x) \in S_g$ alors $x \cdot g = g \cdot x$ implique $g \cdot x^{-1} = x^{-1} \cdot g$ en multipliant par l'inverse de x à gauche et à droite donc $x^{-1} \in S_g$.
- 2. Soit $(h, h') \in G^2$. On a $h \cdot g \cdot h^{-1} = h' \cdot g \cdot h'^{-1}$ si et seulement si $g \cdot h^{-1} \cdot h' = h^{-1} \cdot h \cdot g$ si et seulement si $h' \cdot h \in S_g$ si et seulement si $h' \in hS_g$. Or $|hS_g| = |S_g|$ car

$$I_h: S_g \rightarrow hS_g$$

$$x \mapsto h \cdot x$$

est bijective de réciproque $I_{h^{-1}}$. Soit la relation d'équivalence \mathcal{R}_0 sur G définie par $h\mathcal{R}_0h'$ si et seulement si $h \cdot g \cdot h^{-1} = h' \cdot g \cdot h'^{-1}$. Chaque classe à $|S_g|$ éléments et il y y a |C(g)| classes dans G d'où $|G| = |S_g||C(g)|$.

- 3. On a $Z(G) = \bigcap_{g \in G} S_g$ donc Z(G) est un sous-groupe et pour tout $g \in G$, $Z(G) \subset S_g$.
- 4. Pour $x \in G$, on note $\overline{x} = \{h \cdot x \cdot h^{-1} \mid h \in G\} = C(x)$.

On a $|\overline{x}|=1$ si et seulement si pour tout $h\in G$, $h\cdot x\cdot h^{-1}=x$ si et seulement si $x\in Z(G)$.

Soit A une partie de G telle que $(\overline{x})_{x\in A}$ forme une partition de $G\setminus Z(G)$. On a

$$|G| = p^{\alpha} = |Z(G)| + \sum_{x \in \mathcal{A}} |C(x)|$$

Si $x \in \mathcal{A}$, $x \notin Z(G)$ donc $|S_x| < |G|$ (car $x \in Z(G)$ si et seulement si $S_x = G$) et donc

$$|C(x)| = \frac{|G|}{|S_x|}$$

d'après 2. Donc $|C(x)| = p^{\beta}$ avec $\beta \in \{1, ..., \alpha\}$ car $|C(x)| \neq 1$. Donc

$$p \mid \sum_{x \in \mathcal{A}} |C(x)|$$

d'où

$$p \mid |Z(G)|$$

 $donc |Z(G)| \neq 1.$

5. On a

$$p^2 = |Z(G)| + \sum_{x \in A} |C(x)|$$

D'après la question 4, on a $|Z(G)| \neq 1$ et $|Z(G)| \mid |G|$.

 $Si \ Z(G) \neq G$, alors |Z(G)| = p. Pour $x \in \mathcal{A}$, $Z(G) \subset S_x \neq G$ donc $|S_x| = p$ (car $|S_x| \mid |G|$) et donc $Z(G) = S_x$. Or $x \in S_x$ et $x \notin Z(G)$ ce qui n'est pas possible, donc $|Z(G)| = p^2$ et Z(G) = G. Donc G est abélien.

S'il existe un élément d'ordre p^2 . G est cyclique et est isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$. Sinon, pour tout $x \in G \setminus \{e_G\}$, on a $\omega(x) = p$. Soit $x_1 \in G \setminus \{e_G\}$ et $x_2 \in G \setminus gr\{x_1\}$. Soit

$$f: \left(\mathbb{Z}/p\mathbb{Z}\right)^2 \to G$$

$$(\overline{k}, \overline{l}) \mapsto x_1^k \cdot x_2^l$$

f est bien définie car si $\overline{k} = \overline{k'}$ et $\overline{l} = \overline{l'}$, on a $p \mid k - k'$ et $p \mid l - l'$ donc $x_1^k \cdot x_2^l = x_1^{k'} \cdot x_2^{l'}$. Comme G est abélien, f est un morphisme.

Montrons que f est injective. Soit $(\overline{k},\overline{l}) \in \ker(f)$ avec $(k,l) \in \{0,\ldots,p-1\}^2$, on a $x_1^k \cdot x_2^l = e_G$ donc $x_2^l = x_1^{-k}$. Si $l \in \{1,\ldots,p-1\}$ or p est premier donc $l \wedge p = 1$ donc il existe $(u,v) \in \mathbb{Z}^2$ tel que lu + pv = 1. Alors on a

$$x_2 = x_2^{lu+pv} = x_2^{lu} \cdot x_2^{pv} = x_2^{lu} = x_1^{-k} \in gr\{x_1\}$$

ce qui n'est pas possible. Donc $\bar{l} = \bar{0}$ et de même $\bar{k} = \bar{0}$ donc f est injective et ainsi $|\mathbb{Z}/p^2\mathbb{Z}| = |G|$ donc f est un isomorphisme.

Remarque 1.3. Les groupes de cardinal p^3 ne sont pas nécessairement abélien, par exemple le groupe des isométries du carré \mathcal{D}_4 de cardinal 8.

Solution 1.11. Soit f un morphisme de $(\mathbb{Z}, +)$ dans (\mathbb{Q}_+^*, \times) . Pour tout $n \in \mathbb{Z}$, $f(n) = f(1)^n$ donc il existe $r_0 \in \mathbb{Q}_+^*$ tel que $f(1) = r_0$ donc $f: n \mapsto r_0^n$.

Soit f un morphisme de $(\mathbb{Q}, +)$ dans (\mathbb{Q}_+^*, \times) . Pour tout $a \in \mathbb{N}^*$, $f(1) = f(\frac{1}{a})^a$. Pour tout p premier, on a $\nu_p(f(1)) = a\nu_p(f(\frac{1}{a}))$ donc pour tout $a \in \mathbb{N}^*$, $a \mid \nu_p(f(1))$ donc $\nu_p(f(1)) = 0$ pour tout p premier, donc f(1) = 1. Ainsi, pour tout $p \in \mathbb{Z}$, $f(n) = f(1)^n = 1$ et $f(b \times \frac{a}{b}) = f(a) = 1 = f(\frac{a}{b})^b$ donc $f(\frac{a}{b}) = 1$. Donc $f: r \mapsto 1$.

Solution 1.12. On a $xy = y^2x$, $x^2y = xy^2x = y^4x^2$, $x^3y = x^2y^2x = xy^4x^2 = y^8x^3$, $x^5y = y^{32}x^5$ donc $y^{31} = e_G$ et $\omega(y) = 31$. Tout élément de G peut s'écrire $y^{\lambda}x^{\mu}$ avec $(\lambda, \mu) \in \{0, \dots, 30\} \times \{0, \times 4\}$. Soit

$$f: \{0, \dots, 30\} \times \{0, \times 4\} \rightarrow G$$

 $(\lambda, \mu) \mapsto y^{\lambda} x^{\mu}$

est surjective par construction. Soit $((\lambda, \mu), (\lambda', \mu')) \in (\{0, \dots, 30\} \times \{0, \times 4\})^2$ tel que $y^{\lambda}x^{\mu} = y^{\lambda'}x^{\mu'}$ donc $y^{\lambda-\lambda'} = x^{p'-p}$ d'où $y^{5(\lambda-\lambda')} = x^{5(\mu'-\mu)} = e_G$. Or $\omega(y) = 31$ donc $31 \mid 5(\lambda - \lambda')$ et d'après le théorème de Gauss, $31 \mid \lambda - \lambda'$. Or $(\lambda, \lambda') \in \{0, \dots, 30\}^2$ donc $\lambda = \lambda'$ et de même $\mu = \mu'$ donc f est injective donc bijective et |G| = 155. Soit G' un autre tel groupe engendré par x' et y', on forme

$$g: \quad G \quad \to \quad G$$
$$y^p x^\mu \quad \mapsto \quad y'^\lambda x'^\mu$$

et on vérifie que g est un isomorphisme.

Solution 1.13.

- 1. Soit $i \in \{1, ..., r\}$, il existe nécessairement $y_i \in G$ tel que $\nu_{p_i}(\omega(y_i)) = p_i^{\alpha_i}$ (où ν_p est la valuation p-adique), sinon on ne pourrait pas avoir ce terme dans le ppcm. Donc $p_i^{\alpha_i} \mid \omega(y_i)$.
- 2. Il existe $n \in \mathbb{N}$ tel que $\omega(y_i) = p_i^{\alpha_i} n$. Posons $x_i = y_i^n \in G$. Alors pour $k \in \mathbb{N}$,

$$x_i^k = e_G \iff y_i^{nk} = e_G \iff \omega(y_i) \mid nk \iff p_i^{\alpha_i} \mid k$$

Donc $\omega(x_i) = p_i^{\alpha_i}$.

3. On pose $x = \prod_{i=1}^r x_i$. Soit $k \in \mathbb{N}$, alors

$$x^k = e_G \Longleftrightarrow \prod_{i=1}^r x_i^k = e_G$$

Pour $i \in \{1, ..., r\}$, on met le tout à la puissance $M_i = \prod_{\substack{j=1 \ j \neq i}}^r p_j^{\alpha_j}$. On a alors, pour tout $i \in \{1, ..., r\}$,

$$x_i^{kM_i} = e_G \iff p_i^{\alpha_i} \mid kM_i \iff p_i^{\alpha_i} \mid k$$

la dernière équivalence venant du théorème de Gauss. Donc pour tout $i \in \{1, ..., r\}$, $p_i^{\alpha_i} \mid k$, ce qui équivaut donc à $N \mid k$ et donc $\omega(x) = N$.

Solution 1.14. Sur un corps commutatif, un polynôme de degré n admet au plus n racines. Montrons qu'il existe $x_1 \in \mathbb{K}^*$ tel que $\omega(x_i) = |\mathbb{K}^*|$. Par définition de N, pour tout $x \in \mathbb{K}^*$, $\omega(x) \mid N$. D'où $x^N = 1_{\mathbb{K}}$. Donc x est racine de $X^N - 1$. Ainsi, $|\mathbb{K}^*| \leq N$. Par ailleurs, $N \mid |\mathbb{K}^*|$ car pour tout $x \in \mathbb{K}^*$, $x^{|\mathbb{K}^*|} = 1_{\mathbb{K}^*}$. Donc $|\mathbb{K}^*| = N$ et donc $\mathbb{K}^* = gr\{x_1\}$.

On a $|\mathbb{Z}/13\mathbb{Z}^*| = 12$ donc pour tout $\overline{x} \in (\mathbb{Z}/13\mathbb{Z})^*$, $\omega(\overline{x}) \in \{1, 2, 3, 4, 6, 12\}$. On a $\overline{2}^2 = \overline{4}$, $\overline{2}^3 = \overline{8}$, $\overline{2}^4 = \overline{16} = \overline{3}$, $\overline{2}^6 = \overline{12}$ donc $\omega(\overline{2}) = 12$ et

$$\mathbb{Z}/13\mathbb{Z}^* = gr\{\overline{2}\} = \left\{\overline{2}^k \mid k \in \{0, \dots, 11\}\right\}$$

Solution 1.15.

- 1. Soit $(x, y) \in G^2$, on a $(x \cdot y)^2 = (x \cdot y) \cdot (x \cdot y) = e_G$ donc $x \cdot y = y^{-1} \cdot x^{-1}$ et comme $x^2 = e_G$, $x^{-1} = x$ d'où xy = yx et G est abélien.
- 2. Soit (x_1, \ldots, x_n) une famille génératrice minimale de G: pour tout $x \in G$, il existe $(\varepsilon_i) \in \{0,1\}^n$ tel que $x = \prod_{i=1}^n x_i^{\varepsilon_i}$ (car G est abélien). Soit

$$f: \quad (\mathbb{Z}/2\mathbb{Z})^n \quad \to \quad G$$
$$(\overline{\varepsilon_1}, \dots, \overline{\varepsilon_n}) \quad \mapsto \quad \prod_{i=1}^n x_i^{\varepsilon_i}$$

Si pour tout $i \in \{1, ..., n\}$ on a $\overline{\varepsilon_i} = \overline{\varepsilon_i'}$, alors $x^{\varepsilon_i} = x^{\varepsilon_i'}$ car $x_i^2 = e_G$ et $2 \mid \varepsilon_i - \varepsilon_i'$. Donc f est bien définie.

f est clairement un morphisme (car G est abélien). D'après la première question, f est surjective. Montrons que f est injective. Soit $(\overline{\varepsilon_1}, \dots, \overline{\varepsilon_n})$ tel que $\prod_{i=1}^n x_i^{\varepsilon_i} = e_G$. Soit $i \in \{1, \dots, n\}$, supposons ε_i impair, on a alors $x_i = \varepsilon_i = x_i$. D'où $x_i = \prod_{j=1}^n x_j^{-\varepsilon_j} = \prod_{j=1}^n x_j^{\varepsilon_j}$ car $x^2 = e_G$. Donc $x_i \in gr(x_j, j \in \{1, \dots, n\}, j \neq i)$, ce qui contredit le caractère minimal de (x_1, \dots, x_n) . Ainsi, f est injective donc est un isomorphisme.

Remarque 1.4. En $notant + la \ loi \ sur \ G$, on peut définir

$$f: \ \mathbb{Z}/2\mathbb{Z} \times G \to G$$

 $(\varepsilon, x) \mapsto x^{\varepsilon}$

. Alors $(G, +, \cdot)$ est un $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel, de dimension finie n car G est fini, et le choix d'une base réalise un isomorphisme de $((\mathbb{Z}/2\mathbb{Z})^n, +)$ dans (G, +).

Remarque 1.5. Par isomorphisme, on a

$$\prod_{x \in G} x = f(\sum_{(\overline{\varepsilon_1}, \dots, \overline{\varepsilon_n}) \in (\mathbb{Z}/2\mathbb{Z})^n} (\overline{\varepsilon_1}, \dots, \overline{\varepsilon_n}))$$

Pour n=1, on a $\overline{0}+\overline{1}=\overline{1}$, pour n=2, on a $(\overline{0},\overline{0})+(\overline{0},\overline{1})+(\overline{1},\overline{0})+(\overline{1},\overline{1})=(\overline{0},\overline{0})$. Pour n>2, $\overline{1}$ apparaît 2^{n+1} fois sur chaque coordonnée (donc un nombre pair de fois), donc la somme fait $(\overline{0},\ldots,\overline{0})$.

Solution 1.16.

- 1. Si G est abélien, on a $D(G) = \{e_G\}$.
- 2. Soit $\sigma \in \mathcal{A}_n$, σ se décompose en un produit d'un nombre pair de transpositions. Soient [a,b] et [c,d] deux transpositions.
 - $Si \{a, b\} = \{c, d\}, \ alors [a, b] \circ [c, d] = id.$
 - Si $a \in \{c, d\}$, supposons par exemple a = c et $b \neq d$. On a alors $[a, b] \circ [c, d] = [a, b] \circ [a, d] = [b, a, d]$.
 - $Si \{a,b\} \cap \{c,d\} = \emptyset, on a$

$$[a,b] \circ [c,d] = [a,b] \circ \underbrace{[b,c] \circ [b,c]}_{=id} \circ [c,d] = [a,b,c] \circ [b,c,d]$$

Donc les 3-cycles engendrent A_n .

3. On a

$$\sigma \circ (a_1, a_2, a_3) \circ \sigma^{-1} = (\sigma(a_1), \sigma(a_2), \sigma(a_3))$$

On peut trouver $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$ telle que a_i soit envoyé sur b_i pour $i \in \{1, 2, 3\}$ et les éléments $\{1, \ldots, n\} \setminus \{a_1, a_2, a_3\}$ dans $\{1, \ldots, n\} \setminus \{b_1, b_2b_3\}$. Donc les 3-cycles sont conjugués dans Σ_n .

Si $n \ge 5$ et σ impair, soit $(c_1, c_2) \in \{1, \ldots, n\} \setminus \{a_1, a_2, a_3\}$. $\sigma' = \sigma \circ [c_1, c_2]$ est pair et $\sigma'(a_i) = b_i$. Donc les trois cycles sont conjugués dans \mathcal{A}_n pour $n \ge 5$. C'est cependant faux pour n = 3 et n = 4.

4. Soit $(\sigma, \sigma') \in \Sigma_n^2$. En notant \mathcal{E} la signature d'une permutation (morphisme de (Σ_n, \circ) dans $(\{-1, 1\}, \times)$), on a

$$\mathcal{E}(\sigma \circ \sigma^{-1} \circ \sigma' \circ \sigma'^{-1}) = 1$$

donc $\sigma \circ \sigma^{-1} \circ \sigma' \circ \sigma'^{-1} \in \mathcal{A}_n$. Donc $D(\Sigma_n) \subset \mathcal{A}_n$.

Soit ensuite (a_1, a_2, a_3) un 3-cycle. On a $(a_1, a_3, a_2)^2 = (a_1, a_2, a_3)$ et $(a_1, a_3, a_2)^{-1} = (a_1, a_2, a_3)$. Ainsi, on a

$$\sigma \circ (a_1, a_3, a_2) \circ \sigma^{-1} \circ (a_1, a_2, a_3) = (a_1, a_3, a_2)^2 = (a_1, a_2, a_3)$$

On pose $\sigma = [a_2, a_3]$, et alors (a_1, a_2, a_3) est un commutateur. Ainsi, $(a_1, a_2, a_3) \in D(\Sigma_n)$ et donc $\mathcal{A}_n \subset D(\Sigma_n)$ (d'après la première question).

Finalement, on a $D(\Sigma_n) = A_n$.

Remarque 1.6. Pour $n \ge 5$, on a $D(A_n) = A_n$.

Solution 1.17.

- Pour g ∈ G, τ_g est bijective de réciproque τ_{g-1}. On a notamment τ_{g·g'} = τ_g ∘ τ_{g'} donc τ est un morphisme. Si g ∈ G est tel que τ_g = id, pour tout x ∈ G, on a gx = x donc g = e_G. Donc τ est un morphisme injectif et G est isomorphe à Imτ = τ(G), sous-groupe de Σ(G), lui-même isomorphe à Σ_n.
- 2. Soit

$$f: \Sigma_n \to GL_n(\mathbb{C})$$

 $\sigma \mapsto (\delta_{i,\sigma(j)})_{1 \leq i,j \leq n} = P_{\sigma}$

 P_{σ} est la matrice de permutation associée à σ . f est un morphisme, et est injectif, donc G est isomorphe à un sous-groupe de $GL_n(\mathbb{C})$.

Solution 1.18. Soit $(x, y, z, t) \in \mathbb{N}^4$ tel que $x^2 + y^2 + z^2 = 8t + 7$. Dans $\mathbb{Z}/8\mathbb{Z}$, on a $\overline{0}^2 = \overline{0}$, $\overline{1}^2 = \overline{1}$, $\overline{2}^2 = \overline{4}$, $\overline{3}^2 = \overline{1}$, $\overline{4}^2 = \overline{0}$, $\overline{5}^2 = \overline{1}$, $\overline{6}^2 = \overline{4}$ et $\overline{7}^2 = \overline{1}$. Donc la somme de 3 de ces classes ne donnent pas $\overline{7}$.

Par récurrence, prouvons la propriété. Soit $(x,y,z,t) \in \mathbb{N}^4$ tel que $x^2+y^2+z^2=(8t+7)4^{n+1}$. Parmi x,y,z les trois sont pairs ou deux d'entre eux sont impairs. Si x,y impairs et z pair, on écrit x=2x'+1,y=2y'+1,z=2z', alors $x^2+y^2+z^2\equiv 2[4]$ mais $(8t+7)4^{n+1}\equiv 0[4]$: contradiction. Nécessairement, x,y et z sont pairs. En divisant par 4, on se ramène donc à l'hypothèse de récurrence.

Solution 1.19. On raisonne sur $\mathbb{Z}/7\mathbb{Z}$. On a $\overline{10^{10^n}} = \overline{3^{10^n}}$. Dans le groupe $((\mathbb{Z}/7\mathbb{Z})^*, \times)$, $\overline{3}$ a un ordre qui divise $|\mathbb{Z}/7\mathbb{Z}^*| = 6$. On a $\overline{3}^2 = \overline{2}$, $\overline{3}^3 = \overline{-1}$ et $\overline{3}^6 = \overline{1}$. Donc $\overline{3}^{6k} = \overline{1}$, $\overline{3}^{6k+1} = \overline{3}$, $\overline{3}^{6k+2} = \overline{2}$, $\overline{3}^{6k+3} = \overline{-1}$, $3^{6k+4} = \overline{4}$ et $3^{6k+5} = \overline{5}$..

On se place maintenant dans $\mathbb{Z}/6\mathbb{Z}$: $\overline{10} = \overline{4}$, $\overline{10}^2 = \overline{4}$ et donc par récurrence sur $n \in \mathbb{N}^*$, $\overline{10}^n = \overline{4}$. Donc il existe $k \in \mathbb{Z}$ tel que $10^n = 6k + 4$. Ainsi, $\overline{10^{10^n}} = \overline{4}$.

Solution 1.20.

1. On a $F_1 = 5$ et $2 + \prod_{k=0}^{0} F_k = 2 + 3 = 5$. Soit $n \ge 1$, supposons que $F_n = 2 + \prod_{k=0}^{n-1} F_k$. Alors

$$F_{n+1} - 2 = 2^{2^{n+1}} - 1 = (2^{2^n})^2 - 1$$

$$= (2^{2^n} + 1)(2^{2^n} - 1)$$

$$= F_n(F_n - 2)$$

$$= F_n \times \prod_{k=0}^{n-1} F_k$$

$$= \prod_{k=0}^n F_k$$

d'où le résultat par récurrence.

2. Soit p un facteur premier de F_n . S'il existe $k \in \{0, ..., n-1\}$ tel que $p \mid F_k$, alors d'après la première question on a $p \mid F_n - \prod_{k=0}^{n-1} F_k = 2$. Donc p = 2. Or F_n est impair, donc

non divisible par deux, ce qui est absurde. Donc p ne divise aucun F_k pour $k \in \{0, n-1\}$ et il existe donc une infinité de nombres premiers (car les F_n sont tous différents deux à deux).

Remarque 1.7. Si $n \neq m$ alors $F_n \wedge F_m = 1$.

Solution 1.21.

- 1. On teste uniquement les puissances qui divisent 32:2,4,8,16,32. On a $\overline{5}^2=\overline{-7},\overline{5}^4=\overline{-15},\overline{5}^8=\overline{1}$. Donc $\omega(\overline{5})=8$.
- 2. On note

$$\psi: \ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \to U$$
$$(\dot{k}, \tilde{l}) \mapsto \overline{-1}^k \times \overline{5}^l$$

3. On $a \omega(\overline{-1}) = 2$ et $\gamma(\overline{5}) = 8$ donc ψ est bien définie. ψ est bien un morphisme de groupes. Soit $(\dot{k}, \tilde{l}) \in \ker(\psi)$, on $a \overline{-1}^k \times \overline{5}^l = \overline{1}$. Si $\dot{k} = \dot{1}$, alors $\overline{-1}^k = \overline{-1} = \overline{5}^{-l} = \overline{5}^l \in gr\{\overline{5}\}$. Donc $\overline{5}^{2l} = \overline{1}$ et ainsi $8 \mid 2l$ d'où $4 \mid l$. Mais alors $l \in \{0, 4\}$ ce qui est impossible. Donc $\dot{k} \neq \dot{1}$. De ce fait, $\dot{k} \neq \dot{1}$. Ainsi, $\overline{5}^l = \overline{1}$ donc $\tilde{l} = \tilde{0}$. Ainsi, $\ker(\psi) = \{(\dot{0}, \tilde{0})\}$ donc ψ est injective, puis bijective car $|\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}| = |U|$.

Remarque 1.8. U n'est pas cyclique car, par isomorphisme, ses éléments ont un ordre qui divise 8. Solution 1.22.

1. Soit

$$f: G_n \times G_m \to U_{nm}$$

 $(\xi, \xi') \mapsto \xi \times \xi'$

Soit $(\xi, \xi') \in G_n \times G_m$, Soit $k \in \mathbb{Z}$ tel que $(\xi \times \xi')^k = 1$. Alors $(\xi \times \xi')^{km} = 1$ d'où $\xi^{km} = 1$ donc $n \mid km$ et $n \mid k$ d'après le théorème de Gauss. De même pour n, on a $m \mid k$ et donc $nm \mid k$. La réciproque est immédiate : $\xi \times \xi' \in G_{nm}$. Donc $f(G_n \times G_m) \subset G_{nm}$ et $|G_n \times G_m| = \varphi(n) \times \varphi(m) = \varphi(nm) = |G_{nm}|$ où φ est l'indicatrice d'Euler.

Montrons que f est injective : soit $(x, y, x', y') \in G_n^2 \times G_m^2$ tel que xx' = yy'. On a alors $x^m = y^m$ et $x'^n = y'^n$ d'où $(xy^{-1})^m = 1$ d'où $\omega(xy^{-1}) \mid m$ et $\omega(xy^{-1}) \mid n$. Donc $\omega(xy^{-1}) = 1$ donc x = y et en reportant, on a x' = y'. Donc f est injective puis bijective (égalité des cardinaux).

On a alors

$$\mu(n)\mu(m) = \sum_{\xi \in G_n} \xi \times \sum_{\xi' \in G_m} \xi'$$

$$= \sum_{(\xi,\xi') \in G_n \times G_m} \xi \xi'$$

$$= \sum_{\xi \in G_{nm}} \xi \text{ [f est bijective]}$$

$$= \mu(nm)$$

2. On a $\mu(1) = 1$. Soit p premier. On a

$$\sum_{k=0}^{p-1} e^{\frac{2ik\pi}{p}} = 0$$

donc

$$\mu(p) \sum_{k=1}^{p-1} e^{\frac{2ik\pi}{p}} = -1$$

. Soit alors $\alpha \in \mathbb{N}$ avec $\alpha \geqslant 2$, on a

$$\mu(p^{\alpha}) = \sum_{\substack{k=1\\k \land p=1}}^{p^{\alpha}} e^{\frac{2ik\pi}{p^{\alpha}}} = \sum_{k=1}^{p^{\alpha}} e^{\frac{2ik\pi}{p^{\alpha}}} - \sum_{k=1}^{p^{\alpha-1}} e^{\frac{2ik\pi}{p^{\alpha-1}}} = 0$$

Si $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, s'il existe $i \in \{1, \dots, r\}$ tel que $\alpha_i \geqslant 2$ alors $\mu(n) = 0$. Sinon, on a

$$\mu(n) = \prod_{i=1}^{r} \mu(p_i) = (-1)^r$$

3. Soit $(f,g) \in (\mathbb{C}^{\mathbb{N}^*})^2$, on a

$$(f \star g)(n) = \sum_{d_1 d_2 = n} f(d_1)g(d_2)$$
$$= \sum_{d_1 d_2 = n} g(d_1)f(d_2)$$
$$= (g \star f)(n)$$

 $Donc \star est \ commutative.$

Soit $(f, g, h) \in (\mathbb{C}^{\mathbb{N}^*})^3$, on a

$$(f \star (g \star h))(n) = \sum_{d_1 d = n} f(d_1)(g \star h)(d)$$

$$= \sum_{d_1 d = n} \left[f(d_1) \times \sum_{d_2 d_3 = d} g(d_2)h(d_3) \right]$$

$$= \sum_{d_1 d_2 d_3 = n} f(g_1)g(d_2)h(d_3)$$

$$= ((f \star g) \star h)(n)$$

 $donc \star est associative.$

On vérifie maintenant que l'élément neutre est $e: \mathbb{N}^* \to \mathbb{C}$ qui à 1 associe 1 et 0 si $n \geqslant 2$. Soit

$$\psi: \mathbb{N} \to \mathbb{Z}$$

$$n \mapsto \sum_{d|n} \mu(d)$$

On a $\psi(1) = 1$. Soit $n \ge 2$ avec $n = \prod_{i=1}^r p_i^{\alpha_r}$. Les diviseurs de n sont dans $D = \{\prod_{i=1}^r p_i^{\beta_i} \mid \beta_i \le \alpha_i\}$. Ainsi, $\psi(n) = \sum_{d \in D} \mu(d)$. Or $\mu(d)$ vaut 0 s'il existe $\beta_i \ge 2$ et $(-1)^k$ si k β_i valent 1 et les autres 0. Il y a $\binom{r}{k}$ choix possibles pour que k β_i valent 1. Ainsi,

$$\psi(n) = \sum_{k=0}^{r} 1^{r-k} (-1)^k \binom{r}{k} = 0$$

 $Donc \ \mu \star 1 = e, \ et \ \mu^{-1} = 1 \colon n \mapsto 1 \ pour \ tout \ n \in \mathbb{N}.$

4. On note

$$\begin{array}{ccc} id: & \mathbb{N}^* & \to & \mathbb{N}^* \\ & n & \mapsto & n \end{array}$$

Alors

$$\sum_{d|n} d\mu(\frac{n}{d}) = (\mu \star id)(n)$$

$$= (id \star \mu)(n)$$

$$= (1 \star (\varphi \star \mu))(n)$$

$$= \varphi(n)$$

la troisième égalité venant du fait que $id = 1 \star \varphi \ car \ n = \sum_{d|n} \varphi(d)$.

Solution 1.23. *Pour* $k \in \{1, ..., p-1\}$, *on* a

$$\binom{p+k}{k} = \frac{(p+k) \times \dots \times (p+1)}{k \times \dots \times 1} = 1 + \alpha kp$$

 $car(p+k) \times \cdots \times (p+1) = k! + p \times qqchose. \ On \ a \ p \mid \binom{p}{k} \ donc$

$$\sum_{k=1}^{p-1} \binom{p}{k} \binom{p+k}{k} \equiv \sum_{k=1}^{p-1} \binom{p}{k} [p^2]$$

Pour k = 0, on $a\binom{p}{0}\binom{p}{0} = 1$ et pour k = p, on $a\binom{p}{p}\binom{2p}{p} = \binom{2p}{p}$. Et

$$\sum_{k=1}^{p-1} \binom{p}{k} = \sum_{k=0}^{p} \binom{p}{k} - 2 = 2^p - 2$$

Il reste donc à prouver que $\binom{2p}{p} \equiv 2[p^2]$.

Or

$$\binom{2p}{p} = \sum_{k=0}^{p} \binom{p}{k} \binom{p}{p-k} \equiv 2[p^2]$$

la première égalité venant de l'égalité du terme en X^p dans $(1+X)^{2p} = (1+X)^p(1+X)^p$, et la deuxième venant du fait que seuls les termes en k=0 et k=p ne contiennent pas de p^2 , et valent chacun 1.

Finalement, on a

$$\sum_{k=0}^{p} \binom{p}{k} \binom{p+k}{k} \equiv 2^p - 2 + 1 + 2[p^2] \equiv 2^p + 1[p^2]$$

Solution 1.24.

- 1. Soit G un sous-groupe de (\mathbb{U}, \times) . On note |G| = d. On a donc $G \subset \mathbb{U}_d$ car pour tout $x \in G$, $x^d = 1$. Donc $G = \mathbb{U}_d$ est cyclique.
- 2. On pose

$$\psi: SO_2(\mathbb{R}) \to (\mathbb{U}, \times)$$

$$R_{\theta} \mapsto e^{i\theta}$$

qui est un isomorphisme. Donc les sous-groupes de $SO_2(\mathbb{R})$ sont les G_n pour $n \geqslant 1$ avec

$$G_n = \{R_{\frac{2k\pi}{n}} \mid k \in \{0, \dots, n-1\}\}$$

3. φ est bilinéaire et symétrique. Pour tout $X \in \mathbb{R}^2$, on $\varphi(X,X) = \sum_{M \in G} \|MX\|^2 \geqslant 0$ et si $\varphi(X,X) = 0$, on a pour tout $M \in G$, X = 0. Notamment, $I_2 \in G$ et donc X = 0. Donc φ est bien un produit scalaire.

Pour tout $(M_0, X, Y) \in G \times (\mathbb{R}^2)^2$, on a $\varphi(M_0X, M_0Y) = \sum_{M \in G} \langle MM_0X, MM_0Y \rangle$ et $M \mapsto MM_0$ est bijective de G dans G donc $\varphi(M_0X, M_0Y) = \varphi(X, Y)$.

Soit \mathcal{B}_0 la base canonique de \mathbb{R}^2 et \mathcal{B}_1 une base orthonormée pour φ . On note $P_0 = \max_{\mathcal{B}_0 \to \mathcal{B}_1}$.

Pour tout $M \in G$, $P_0^{-1}MP_0$ est la matrice d'une isométrie pour φ dans une base orthonormée pour φ . Donc $P_0^{-1}MP_0$ est orthogonale, et $\det(P_0^{-1}MP_0) = 1$ car pour tout $M \in G$, $\det(M) = 1$. Ainsi, $\{P_0^{-1}MP_0 \mid M \in G\}$ est un sous-groupe fini de $SO_2(\mathbb{R})$, donc cyclique. Il est isomorphe à G donc G est cyclique.

Solution 1.25.

1. On a $1 = 1 + 0\sqrt{2} \in E$. On remarque ensuite que pour tout $s = x + y\sqrt{2} \in E$, on a $ss^{-1} = 1$ avec $s^{-1} = x - y\sqrt{1} \in E$. Soit $(s, s') \in E^2$ avec $s = x + y\sqrt{2}$ et $s' = x' + y'\sqrt{2}$. Notons déjà que $x + y\sqrt{2} > 0$ car $x = \sqrt{1 + 2y^2} > |y|\sqrt{2}$. On a donc

$$ss' = \underbrace{xx' + 2yy'}_{\in \mathbb{Z}} + \sqrt{2} \underbrace{(yx' + y'x)}_{\in \mathbb{Z}}$$

On a $xx' \in \mathbb{N}$ et $x > \sqrt{2}|y| \ge 0$ et $x' > \sqrt{2}|y'| \ge 0$ donc xx' > 2|yy'| et ainsi $xx' + 2yy' \in \mathbb{N}^*$. Enfin, on a

$$(xx' + 2yy')^{2} - 2(yx' + y'x)^{2} = (xx')^{2} + 4(yy')^{2} - 2(yx')^{2}2(y'x)^{2}$$
$$= (x^{2} - 2y^{2})(x'^{2} - 2y'^{2})$$
$$= 1$$

Donc $ss' \in E$. Finalement, E est un sous-groupe de (\mathbb{R}_+^*, \times) .

2. In est un isomorphisme de E sur $\ln(E)$, sous-groupe de $(\mathbb{R},+)$. On sait que si

$$\underbrace{\inf(\ln(E)\cap\mathbb{R}_+)}_{\alpha}>0$$

alors $\ln(E) = \alpha \mathbb{Z}$ (sous-groupe de $(\mathbb{R}, +)$ dans le cas $\alpha > 0$, pour rappel si $\alpha = 0$ alors le sous-groupe est dense dans \mathbb{R}). On cherche la borne inférieure de $E \cap]1 + \infty[$ que l'on note β . β existe car cet ensemble est non vide, par exemple $3 + 2\sqrt{2}$ y appartient.

Si $\beta = 1$, on peut trouver une suite de termes de E strictement décroissante convergeant vers 1. Alors pour tout $n \in \mathbb{N}$, on a

$$1 < x_{n+1} + y_{n+1}\sqrt{2} < x_n + y_n\sqrt{2}$$

On sait que

$$x_n - y_n\sqrt{2} = (x_n + y_n\sqrt{2})^{-1} < 1 < x_n + y_n\sqrt{2}$$

 $donc - y_n\sqrt{2} < 1 - x_n < 0 \ donc \ y_n > 0.$ Ainsi,

$$y_n = \sqrt{\frac{x_n^2 - 1}{2}}$$

Si $x_{n+1} \geqslant x_n$, alors $y_{n+1} \geqslant y_n$ d'où $x_{n+1} + \sqrt{2}y_{n+1} > x_n + \sqrt{2}y_n$ ce qui est absurde. Donc $x_{n+1} < x_n$ et on obtient une suite strictement décroissante d'entiers naturels ce qui est impossible. Donc $\beta > 1$ et $E = \{(x_0 + y_0\sqrt{2})^n \mid n \in \mathbb{Z}\}$ est monogène.

On peut identifier β :

$$x_0 = \min\{x \in \mathbb{N}^* \setminus \{1\}, \exists y \in \mathbb{Z}, x + y\sqrt{2} \in E \cap], +\infty[\}$$

Donc $\beta = 3 + 2\sqrt{2}$ Finalement, $x^2 - 2y^2 = 1$ avec $x \in \mathbb{N}, y \in \mathbb{N}$ si et seulement s'il existe $n \in \mathbb{N}$ tel que $x_n + y_n\sqrt{2} = \beta^n$.

Remarque 1.9. En fait, on a

$$\begin{cases} x_n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} 2^{2k} 3^{n-2k} \\ y_n = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2k+1} 2^{2k+1} 3^{n-2k-1} \end{cases}$$

Solution 1.26. On a 7 | $n^n - 3$ si et seulement si $\overline{n}^n = \overline{3}$ dans $\mathbb{Z}/7\mathbb{Z}$. $(\mathbb{Z}/7\mathbb{Z}^*, \times)$ est un groupe de cardinal 6. Donc l'ordre de ses éléments divisent 6, et sont donc 1,2,3 ou 6. Notamment, on vérifie que $\omega(\overline{3}) = 6$ et donc le groupe engendré par $\overline{3}$ est exactement $(\mathbb{Z}/7\mathbb{Z}^*, \times)$. Ainsi,

$$(\mathbb{Z}/7\mathbb{Z}^*, \times) = \{\overline{3}^{k \mid k \in \{0, \dots, 5\}}\}\$$

(c'est un groupe cyclique). Les générateurs sont $\{\overline{3}^k, k \wedge 6 = 1\} = \{\overline{3}, \overline{3}^5 = \overline{-2} = \overline{5}\}$. Donc $\overline{n} = \overline{3}$ ou $\overline{n} = \overline{5}$.

 $Si \ \overline{n} = 3, \ \overline{3}^n = \overline{3} \ si \ et \ seulement \ si \ n \equiv 1[6] \ donc \ n \equiv 3[7] \ et \ n \equiv 1[6].$ D'après le théorème des restes chinois, on vérifie que ceci équivaut à $n \equiv 31[42]$. La réciproque est immédiate.

Si $\overline{n} = 5$, $\overline{5}^n = \overline{3}$ si et seulement si $n \equiv 5[6]$ et $n \equiv 5[7]$. D'après le théorème des restes chinois, on vérifie que ceci équivaut à $n \equiv 5[42]$.

Donc les solutions sont $n \in \mathbb{N}^*$ tels que $n \equiv 31[42]$ ou $n \equiv 5[42]$.

Solution 1.27. On a

$$\sum_{k=1}^{p-1} \frac{1}{k} + \frac{1}{p-k} = \frac{2a}{(p-1)!} \iff \sum_{k=1}^{p-1} \frac{p}{k(p-k)} = \frac{2a}{(p-1)!}$$

$$\iff \sum_{k=1}^{p-1} \frac{p(p-1)!}{k(p-k)} = 2a$$

$$\iff p \sum_{k=1}^{p-1} \frac{(p-1)!^3}{k(p-k)} = 2a \underbrace{(p-1)!^2}_{p \land (p-1)!^2 = 1}$$

donc p | a d'après le théorème de Gauss.

On écrit alors $a = p \times b$ avec $b \in \mathbb{N}$. On a alors

$$\sum_{k=1}^{p-1} \frac{1}{k(p-k)} = \frac{2b}{(p-1)!}$$

comme (p-1)!, k et p-k $(1 \le k \le p)$ sont inversibles dans $\mathbb{Z}/p\mathbb{Z}$, on a alors

$$\sum_{k=1}^{p-1} \overline{-k}^{-2} = \overline{2b} \times \underbrace{(p-1)!}_{=\overline{-1} \ d'après \ le \ th\acute{e}or\grave{e}me \ de \ Wilson}^{-1}$$

Donc

$$\overline{2b} = \sum_{k=1}^{p-1} \overline{k}^{-2}$$

Comme

$$\begin{array}{cccc} f: & \mathbb{Z}/p\mathbb{Z}^* & \to & \mathbb{Z}/p\mathbb{Z}^* \\ & \overline{k} & \mapsto & \overline{k}^{-1} \end{array}$$

est bijective, on a

$$\overline{2} \times \overline{b} = \sum_{k=1}^{p-1} \overline{k}^2 = \frac{\overline{p(p-1)(2p-1)}}{6}$$

Or $p \geqslant 5$ est premier, donc p-1 est pair et p est congru) 1 ou 2 modulo 3. Donc $p-1 \equiv 0[3]$ ou $2p-1 \equiv 0[3]$ donc $\frac{(p-1)(2p-1)}{6} \in \mathbb{N}$. Ainsi,

$$\overline{2} \times \overline{b} = \sum_{k=1}^{p-1} \overline{k}^2 = \overline{p} \times \frac{\overline{(p-1)(2p-1)}}{6} = 0$$

et donc $p \mid b$ par le théorème de Gauss. Donc $p^2 \mid a$.

Solution 1.28. Les racines réelles de P ont une multiplicité paire, le coefficient dominant est positif (car la limite en $+\infty$ est positive) et les racines complexes non réelles sont 2 à 2 conjuguées :

$$(X - \alpha)(X - \overline{\alpha}) = X^2 - 2\Re(\alpha)X + |\alpha|^2 = (X - \Re(\alpha))^2 + |\Im(\alpha)|^2$$

avec $\Im(\alpha) \neq 0$. D'où le résultat en décomposant P sur $\mathbb{C}[X]$.

Solution 1.29.

- 1. $G = \mathbb{Z} + \alpha \mathbb{Z}$ est un sous-groupe de \mathbb{R} engendré par α et 1. S'il existait $a \in \mathbb{R}_+^*$ tel que $G = a\mathbb{Z}$, alors il existait $(n,m) \in (\mathbb{Z}^*)^2$ tel que 1 = na et $\alpha = ma$, d'où $\alpha = \frac{m}{n} \in \mathbb{Q}$ ce qui est absurde. Donc G est dense dans \mathbb{R} . Le fait que $\mathbb{Z} + \alpha \mathbb{N}$ est dense dans \mathbb{R} est alors immédiate.
- 2. Posons $\beta = \frac{\alpha}{2\pi} \notin \mathbb{Q}$. Alors $\mathbb{Z} + \beta \mathbb{N}$ est dense dans \mathbb{R} . Soit $c < d \in \mathbb{R}^2$. Comme $\frac{c}{2\pi} < \frac{d}{2\pi}$, il existe $x \in \mathbb{Z} + \beta \mathbb{N} \cap]\frac{c}{2\pi}, \frac{d}{2\pi}[$ et alors $2\pi x \in 2\pi \mathbb{Z} + \alpha \mathbb{N} \cap]c, d[$. On pose $c = \arcsin(a)$ et $d = \arcsin(b)$ avec a < b. On a bien c < d car arcsin est strictement croissante.

Alors il existe $(m,n) \in \mathbb{Z} \times \mathbb{N}$ tel que $2\pi m + \alpha m = 2\pi x \in]c,d[$ donc $\sin(2\pi x) = \sin(2\pi m + \alpha n) = \sin(\alpha n) \in]a,b[$.

Donc $(\sin(n\alpha))_{n\in\mathbb{N}}$ est dense dans] -1,1[. En particulier, cela vaut pour $\alpha=1$ car $\pi\notin\mathbb{Q}$. Donc $(\sin(n))_{n\in\mathbb{N}}$ est dense dans [-1,1].

3. Soit $n \in \mathbb{N}$. 2^n commence par 7 en base 10 si et seulement s'il existe $p \in \mathbb{N}$ avec

$$7 \times 10^{p} \leqslant 2^{n} < 8 \times 10^{p} \iff \ln(7) + p \ln(10) \leqslant n \ln(2) < \ln(8) + p \ln(10)$$
$$\iff \frac{\ln(7)}{\ln(10)} \leqslant \frac{n \ln(2)}{\ln(10)} - p < \frac{\ln(8)}{\ln(10)}$$

On a alors

$$p = \left\lfloor \frac{n \ln(2)}{\ln(10)} \right\rfloor \in \mathbb{N}$$

On étudie donc $\mathbb{N}\frac{\ln(2)}{\ln(10)} + \mathbb{Z}$. Supposons que $\frac{\ln(2)}{\ln(10)} = \frac{p}{q} \in \mathbb{Q}$. Alors on a $2^q = 10^p$ mais $comme \ p \neq 0$, on a $5 \mid 10^p$ mais $5 \nmid 2^q$, donc $\frac{\ln(10)}{\ln(2)} \notin \mathbb{Q}$.

On sait que

$$u_n = n \frac{\ln(2)}{\ln(10)} - \left\lfloor \frac{n \ln(2)}{\ln(10)} \right\rfloor \in \left\lfloor \frac{\ln(7)}{\ln(10)}, \frac{\ln(8)}{\ln(10)} \right\rfloor$$

Par densité, on peut donc construire par récurrance $(u_{n_p})_{p\in\mathbb{N}}$ telle que

$$\frac{\ln(7)}{\ln(10)} < u_{n_{p+1}} < u_{n_p} < \frac{\ln(8)}{\ln(10)}$$

Donc on a bien une infinité de puissance de 2 commençant par 7 en base 10.

Remarque 1.10. $(e^{in\alpha})_{n\in\mathbb{N}}$ est de la même façon dense dans \mathbb{U} . On peut montrer qu'elle est équirépartie, c'est à dire que pour tout $a < b \in [0, 2\pi[^2, on a]]$

$$\lim_{N \to +\infty} \left| \left\{ n \in \{1, \dots, N\} \mid n\alpha - \frac{\lfloor 2\pi n\alpha \rfloor}{2\pi} \in]a, b[\right\} \right| \times \frac{1}{N} = \frac{b-a}{2\pi}$$

Remarque 1.11. Par équirépartition dans [0,1] des

$$\left\{ n \frac{\ln(2)}{\ln(10)} - \left\lfloor \frac{n \ln(2)}{\ln(10)} \right\rfloor \mid n \in \mathbb{N} \right\}$$

la probabilité pour qu'une puissance de 2 commence par k en base 10 est $(k \in \{1, \dots, 9\})$

$$\frac{\ln(k+1) - \ln(k)}{\ln(10)} = \frac{\ln(1 + \frac{1}{k})}{\ln(10)}$$

Solution 1.30.

1. Pour $\alpha = a + ib$, on définit le module au carré : $|\alpha|^2 = a^2 + b^2$. Soit $\beta = c + id \neq 0$. Si $\alpha = \beta q + r$ avec $q, r \in \mathbb{Z}[i]^2$ et $|r|^2 < |\beta|^2$, alors $|\alpha - \beta q|^2 < |\beta|^2$ et $\beta \neq 0$ donc

$$\left|\underbrace{\frac{\alpha}{\beta}}_{\in\mathbb{C}} - \underbrace{q}_{\in\mathbb{Z}[\mathrm{i}]}\right| < |1|$$

On pose $\frac{\alpha}{\beta} = x + iy$. On pose

$$u_x = \begin{cases} \lfloor x \rfloor & si \ x \in \lfloor \lfloor x \rfloor, \lfloor x \rfloor + \frac{1}{2} \lfloor x \rfloor + 1 \\ \lfloor x \rfloor + 1 & si \ x \in \lfloor \lfloor x \rfloor + \frac{1}{2}, \lfloor x \rfloor + 1 \rfloor \end{cases}$$

et de même pour u_y . On a alors $q = u_x + iu_y \in \mathbb{Z}[i]$ et

$$\left|\frac{\alpha}{\beta} - q\right|^2 = |x - u_x|^2 + |y - u_y|^2 \le 2 \times \left(\frac{1}{2}\right)^2 = \frac{1}{2} < 1$$

On pose donc $r = \alpha - \beta q \in \mathbb{Z}[i]$ et ainsi l'anneau $\mathbb{Z}[i]$ est euclidien.

2. Soit A un anneau euclidien et I un idéal de A non réduit à $\{0\}$. Il existe $x \in I$ tel que

$$v(x_0) = \min\{v(x) \mid x \in I\{0\}\}\$$

On a $x_0A \subset I$. Soit $x \in I$. Il existe $q, r \in A$ tel que

$$x = x_0 q + r$$

avec $v(r) < v(x_0)$ ou r = 0. Or $r \in I$ donc r = 0. Ainsi $x \in x_0A$ et donc $I = x_0A$. Donc tout anneau euclidien est principal.

Remarque 1.12. C'est encore vrai avec $\mathbb{Z}[i\sqrt{2}] = \{a + ib\sqrt{2} \mid (a,b) \in \mathbb{Z}^2\}.$

Solution 1.31.

1. Si $\overline{x} = \overline{y}^2$ est un carré, d'après le petit théorème de Fermat, on a $\overline{x}^{\frac{p-1}{2}} = \overline{y}^{p-1} = \overline{1}$. Soit

$$\begin{array}{cccc} f: & \mathbb{Z}/p\mathbb{Z}^* & \to & \mathbb{Z}/p\mathbb{Z}^* \\ & \overline{y} & \mapsto & \overline{y}^2 \end{array}$$

f est un morphisme multiplicatif, $\operatorname{Im}(f)$ est un sous-groupe de $\left(\mathbb{Z}/p\mathbb{Z}^*,\times\right)$.

Comme \mathbb{F}_p est un corps, chaque carré possède exactement deux antécédents. Il y a p-1 antécédents, donc il y a $\frac{p-1}{2}$ carrés dans $\mathbb{Z}/p\mathbb{Z}^*$. Donc $|\mathrm{Im}(f)| = \frac{p-1}{2}$ et si \overline{x} est un carré, x est racine de $X^{\frac{p-1}{2}} - \overline{1}$. Le polynôme $X^{\frac{p-1}{2}} - \overline{1}$ possède au plus $\frac{p-1}{2}$ racines et tout carré est racine. Donc les racines sont exactement les carrés et $\overline{x}^{\frac{p-1}{2}} = \overline{1}$ si et seulement si \overline{x} est un carré.

2. On a $p \equiv 1[4]$ si et seulement si $\frac{p-1}{2}$ est pair si et seulement si $(\overline{-1})^{\frac{p-1}{2}} = \overline{1}$ si et seulement si $\overline{-1}$ est un carré dans \mathbb{F}_p . Supposons qu'il y ait un nombre fini de nombres premiers p_1, \ldots, p_r tous congrus à 1 modulo 4. On pose $n = (p_1 \times \cdots \times p_r)^2 + 1$. Soit p un facteur premier de n, on a $n \equiv 1[n_i]$ donc $p \notin \{p_1, \ldots, p_r\}$. Dans $\mathbb{Z}/p\mathbb{Z}$, on a $\overline{n} = \overline{0}$ donc $\overline{-1} = \overline{p_1 \times \cdots \times p_r}^2$ donc $p \equiv 1[4]$ ce qui est une contradiction.

Donc il y a une infinité de nombres premiers congrus à 1 modulo 4.

Solution 1.32.

1. On pose $P_1 = \sum_{i=0}^n r_i' X^i$, et $\nu_p(r_i')$ est positif par définition de c(P). Donc $P_1 \in \mathbb{Z}[X]$.

Pour tout $p \in \mathcal{P}$, il existe $i_0 \in \{1, ..., n\}$ tel que

$$\min_{i \in \{1, \dots, n\}} \nu_p(r_i) = \nu_p(r_{i_0})$$

 $et \ \nu_p(r'_{i_0}) = 0 \ donc \ p \nmid r'_{i_0} \ donc$

$$\bigwedge_{i=1}^{n} r_i' = 1$$

Si on a $P = \alpha_1 P_1 = \alpha_2 P_2$ avec les conditions requises, soit $p \in \mathcal{P}$, si $\nu_p(\alpha_2) > \nu_p(\alpha_1)$, alors p divise tous les coefficients de P_1 ce qui n'est pas possible, donc $\nu_p(\alpha_2) = \nu_p(\alpha_1)$. Ceci étant vrai pour tout $p \in \mathcal{P}$, on a aussi $\alpha_1 = \alpha_2$ et donc $P_1 = P_2$.

- 2. On a $P = c(P)P_1$ et $Q = c(Q)Q_1$ donc $PQ = c(P)c(Q)P_1Q_1$ et $P_1Q_1 \in \mathbb{Z}[X]$. Soit $p \in \mathcal{P}$ divisant tous les coefficients de P_1Q_1 . On définit, si $R = \sum_{i \in \mathbb{N}} \gamma_i X^i \in \mathbb{Z}[X]$, $\overline{R} = \sum_{i \in \mathbb{N}} \overline{\gamma_i} X^i \in \mathbb{Z}/p\mathbb{Z}[X]$. $R \mapsto \overline{R}$ est un morphisme d'anneaux. Par hypothèse, on a $\overline{P_1Q_1} = \overline{0} = \overline{P_1Q_1}$ et par intégrité de $\mathbb{Z}/p\mathbb{Z}[X]$, on a $\overline{P_1} = \overline{0}$ ou bien $\overline{Q_1} = \overline{0}$, ce qui est exclu par les hypothèses. Donc c(PQ) = c(P)c(Q).
- 3. Soit alors P irréductible dans $\mathbb{Z}[X]$ (les inversibles de $\mathbb{Z}[X]$ étant -1 et 1). Posons

$$P = QR \in \mathbb{Q}[X]^2$$
$$= c(Q)c(R)\underbrace{Q_1R_1}_{\in \mathbb{Z}[X]}$$

 $OR\ c(Q)c(R)=c(P)\ c$ 'après le lemme de Gauss et nécessairement, c(P)=1. Donc $P=Q_1R_1$, et alors $Q_1=\pm 1$ et $R_1=\pm 1$, et Q ou R est constant, donc P est irréductible $sur\ \mathbb{Q}[X]$.

Pour la réciproque, on a 2X est irréductible sur $\mathbb{Q}[X]$ car de degré 1, mais pas sur $\mathbb{Z}[X]$ car ni 2 ni X ne sont inversibles.

4. Soit $\theta = \frac{2\pi p}{q}$ avec $p \wedge q = 1$ et $\cos(\theta) \in \mathbb{Q}$. Sur $\mathbb{C}[X]$, on a $P = (X - e^{i\theta})(X - e^{-i\theta}) = X^2 - 2\cos(\theta)X + 1 \in \mathbb{Q}[X]$.

Et $e^{i\theta} \neq e^{-i\theta}$ car $\theta \not\equiv 0[\pi]$. On a $\theta = \frac{2\pi p}{q}$ donc $e^{i\theta} \in \mathbb{U}_q$, et $e^{i\theta}$ et $e^{-i\theta}$ sont des racines de A. Donc, dans $\mathbb{C}[X]$, on a $P \mid A$ et $A \in \mathbb{Q}[X]$, donc il existe $B \in \mathbb{Q}[X]$ tel que

$$\underbrace{A}_{\in \mathbb{Q}[X]} = \underbrace{B}_{\in \mathbb{C}[X]} \times \underbrace{P}_{\in \mathbb{Q}[X]}$$

Or B s'obtient par la division euclidienne de A par P, qui est indépendante du corps de référence, il vient $B \in \mathbb{Q}[X]$ et donc $A \mid P$ dans $\mathbb{Q}[X]$.

On a c(A) = 1 = c(B)c(P) et $A = c(B)c(P)B_1P_1 = B_1P_1 \in \mathbb{Z}[X]$ et le coefficient dominant de A est donc 1. Donc le coefficient dominant de B_1 et de P_1 est aussi 1. En reportant, on a $P = P_1 \in \mathbb{Z}[X]$.

Donc $2\cos(\theta) \in \mathbb{Z} \cap [-2,2]$ donc $\cos\{\theta\} \in \{-\frac{1}{2},\frac{1}{2},0\}$ (-1 et 1 ne peuvent y être car on a supposé $\theta \not\equiv 0[\pi]$). Les solutions sont donc

$$\theta \in \left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}\right\}$$

(en rajoutant $\theta = 0$ et π).

Remarque 1.13. On a $\frac{\arccos(\frac{1}{3})}{\pi} \notin Q$ car $\cos(\theta) = \frac{1}{3}$ n'est pas dans l'ensemble solutions.

Solution 1.33.

1. Soit $P = a \prod_{i=1}^{s} (X - a_i)^{\alpha_i}$ avec les a_i distincts et $\alpha_i \geqslant 1$. a_i est racine de P' de multiplicité $\alpha_i - 1$. Il manque donc s racines. Si $\alpha = 0$, le résultat est évident, sinon on pose

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto P(x)e^{\frac{x}{\alpha}}$$

et on a pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{e^{\frac{x}{\alpha}}}{\alpha} (P(x) + \alpha P'(x))$$

Comme P est scindé sur \mathbb{R} , P' est scindé sur \mathbb{R} (appliquer le théorème de Rolle entre les racines distinctes de P), donc f' s'annule s-1 fois entre les racines de P donc $P+\alpha P'$ aussi.

La dernière racine est réelle car sinon, le conjugué de la racine complexe supposée serait aussi racine.

2. On pose $R = \mu \prod_{i=0}^{r} (X - \beta_i)$. On pose

$$\Delta: \ \mathbb{R}[X] \ \to \ \mathbb{R}[X]$$

$$P \ \mapsto \ P'$$

On a alors

$$\sum_{i=0}^{r} a_i P^{(i)} = \sum_{i=0}^{r} a_i \Delta^i(P) = R(\Delta)(P) = \mu \prod_{i=0}^{r} (\Delta - \beta_i id)(P)$$

Par récurrence sur r, on montre que $\prod_{i=0}^{r} (\Delta - \beta_i id)(P)$ est scindé d'après la première question.

Remarque 1.14. On a aussi pour tout $\lambda \in \mathbb{R}$, $P' + \lambda P$ est aussi scindé sur \mathbb{R} si P est scindé sur \mathbb{R} .

Solution 1.34. Soit $F = \frac{P'}{P}$ définie sur $\mathbb{R} \setminus \{a_1, \dots, a_n\}$ où a_i sont les racines de P. On note α le coefficient dominant de P, et on a

$$P' = \alpha \sum_{i=1}^{n} \left(\prod_{\substack{j=1\\j\neq i}}^{n} (X - a_j) \right)$$

On a donc $F = \sum_{i=1}^{n} \frac{1}{X - a_i}$ et on a

$$F' = -\sum_{i=1}^{n} \frac{1}{(X - a_i)^2} = \frac{P''P - P'P'}{P^2}$$

Pour $x \notin \{a_1, \ldots, a_n\}$, on a

$$(n-1)(P'^2(x))(x) \geqslant nP(x)P''(x) \iff n(P''(x)P(x) - P'^2(x)) \leqslant -P'^2(x)$$

$$\iff \frac{P'^2(x)}{P^2(x)} \leqslant n(P''(x)P(x) - P'^2(x)) \times \frac{1}{P^2(x)}$$

$$\iff F^2(x) \leqslant n(-F'(x))$$

$$\iff \left(\sum_{i=1}^n \frac{1}{(X-a_i)}\right)^2 \leqslant n \times \sum_{i=1}^n \frac{1}{(X-a_i)^2}$$

qui est l'inégalité de Cauchy-Schwarz dans \mathbb{R}^2 avec (1...1) et $(\frac{1}{x-a_1}...\frac{1}{x-a_n})$.

Remarque 1.15. Si $P = \alpha (X - a_1)^{m_1} (X - a_r)^{m_r}$, alors

$$\frac{P'}{P} = \sum_{i=1}^{r} \frac{m_i}{X - a_i}$$

Solution 1.35.

- 1. $P' \in \mathbb{C}[X]$ et $\deg(P') = \deg(P) 1$. On a $P \wedge P' = 1$ car P est irréductible sur $\mathbb{Q}[X]$. Comme le pgcd est obtenu par l'algorithme d'Euclide qui est indépendant du corps de référence, on a $P \wedge P' = 1$ sur $\mathbb{C}[X]$ donc P n'a que des racines simples sur \mathbb{C} .
- 2. Notons $P \in \mathbb{Q}[X]$ le polynôme minimal de α sur \mathbb{Q} (défini car $A(\alpha) = 0$ donc α est algébrique). Comme $A(\alpha) = 0$, on a $P \mid A$ et P est irréductible sur $\mathbb{Q}[X]$. Si $\alpha \notin \mathbb{Q}$, on a $\deg(P) \geqslant 2$, on peut donc décomposer sur $\mathbb{Q}[X]$:

$$A = P^r \times P_1^{r_1} \times \dots P_s^{r_s}$$

avec les P_i irréductibles sur $\mathbb{Q}[X]$ non associés.

 α n'est pas racine d'un P_i car sinon $P \mid P_i$ ce qui est impossible. α est racine simple de P donc $m(\alpha) = r > \frac{\deg(A)}{2}$. Par ailleurs, $\deg(P)^r \geqslant 2r > \deg(A)$ ce qui est impossible. Donc $\alpha \in \mathbb{Q}$.

Solution 1.36. Soit $x \in A$. Il existe $(n, m) \in \mathbb{N}^2$ avec n < m tel que $x^n = x^m$. Alors $x^{m-n} = e_G \in A$.

$$f: \mathbb{N}^* \to A$$
$$n \mapsto x^r$$

n'est pas injective, car \mathbb{N}^* est infini et A est fini. Or $m-n \in \mathbb{N}^*$ donc

$$x^{m-n} = e_G \Rightarrow x = x \cdot x^{m-n-1} = e_G$$

 $donc \ x^{-1} = x^{m-n-1} \in A \ et \ ainsi \ A \ est \ un \ sous-groupe.$

Solution 1.37. Pour $\alpha = 0$, on a $1 + p \equiv 1 + p[p^2]$. Pour $\alpha = 1$, on a

$$(1+p)^p = \sum_{k=0}^p \binom{p}{k} p^k = 1 + p^2 + \binom{p}{2} p^2 \sum_{k=3}^p \binom{p}{k} p^k$$

 $Or \binom{p}{2}p^2 = \frac{p(p-1)p^2}{2} \equiv 0[p^3]$ car p est premier plus grand que trois donc impair, et la somme est aussi congru à 0 modulo p^3 .

Soit $\alpha \geqslant 1$, supposons que l'on ait

$$(1+p)^p \equiv 1 + p^{\alpha+1}[p^{\alpha+2}]$$

Il existe $l \in \mathbb{N}$ tel que

$$(1+p)^{p^{\alpha}} = 1 + p^{\alpha+1} + lp^{\alpha+2}$$

Alors

$$(1+p)^{p^{\alpha+1}} = (1+\underbrace{p^{\alpha+1}+lp^{\alpha+2}}_{r})^{p}$$

Or

$$(1+x)^p = \sum_{k=0}^p \binom{p}{k} x^k = 1 + px + \sum_{k=2}^p \binom{p}{k} x^k = 1 + p^{\alpha+2} + lp^{\alpha+3} + \underbrace{\sum_{k=2}^p \binom{p}{k} x^k}_{divisible \ par \ x^2}$$

Comme $p^{\alpha+1}\mid x,\ p^{2\alpha+2}\mid x^2\ avec\ 2\alpha+2\geqslant \alpha+3\ (\alpha\geqslant 1).$ D'où

$$p^{\alpha+3} \mid x^2 \mid \sum_{k=2}^p \binom{p}{k} x^k$$

et

$$(1+p)^{p^{\alpha+1}} \equiv 1 + p^{\alpha+2}[p^{\alpha+3}]$$

Remarque 1.16. Pour p = 2, $\alpha = 1$, on $a 3^2 = 9 \not\equiv 5[8]$.

Solution 1.38. Si $7 = 2x^2 - 5y^2$, on a $\overline{0} = 2\overline{x}^2 - 5\overline{y}^2 = \overline{2}(\overline{x}^2 + \overline{y}^2)$ dans $\mathbb{Z}/7\mathbb{Z}$. Comme 2 et 7 sont premiers entre eux donc $\overline{2}$ est inversible. Donc $\overline{x}^2 + \overline{y}^2 = \overline{0}$. La seule possibilité est $\overline{x} = \overline{0}$ et $\overline{y} = \overline{0}$. Donc $7 \mid x$ et $y \mid y$. Si x = 7k alors $x^2 = 49k^2$ donc $49 \mid x^2$ et $49 \mid y^2$ donc $47 \mid 2x^2 - 5y^2 = 7$ ce qui est faux.

Solution 1.39. \mathbb{F}_{19} est un corps car 19 est premier. On a donc $\overline{x}^3 = \overline{1}$ si et seulement si $(x - \overline{1})(x^2 + x - \overline{1}) = \overline{0}$. On a donc $x = \overline{1}$ ou $x^2 + x + \overline{1} = \overline{0}$. On a

$$x^{2} + x + \overline{1} = (x + \overline{2}^{-1})^{2} + \overline{3} \times \overline{4}^{-1} = (x + \overline{10})^{2} + \overline{3} \times \overline{50}$$

 $Donc\ (x+\overline{10})^2=\overline{4}\ d'où\ x=\overline{-8}=\overline{11}\ ou\ x=\overline{-12}=\overline{7}.$

Solution 1.40.

1. m est inversible si et seulement si $m \wedge 2^n = 1$ si et seulement si $m \wedge 2 = 1$ si et seulement si m est impair. IL y a donc 2^{n-1} inversibles.

2. On a $5^{2^{3-3}} = 5 \equiv 1 + 2^2[2^3]$. Par récurrence, soit $n \geqslant 3$. Il existe $k \in \mathbb{Z}$ avec $5^{2^{n-3}} = 1 + 2^{n-1} + k2^n$ donc

$$5^{2^{n-1}} = 1 + 2^n + k2^{n+1} + 2^{2n-2}(1+2k)^2 \equiv 1 + 2^n[2^{n+1}]$$

 $car \ 2n - 2 \ge n + 1 \ (n \ge 3).$

- 3. On a $5^{2^{n-2}} \equiv 1 + 2^n[2^{n+1}] \equiv 1[2^n]$ et $5^{2^{n-3}} \not\equiv 1[2^n]$. Donc l'ordre de $\overline{5}$ est 2^{n-2} .
- 4. $gr\{\overline{-1}\} = \{\overline{-1}, \overline{1}\}$. $\overline{5}$ n'engendre pas $\overline{-1}$ car si $\overline{5}^k = \overline{-1}$, on a $\overline{5}^{2k} = \overline{1}$ d'où $2^{n-2} \mid 2k$ donc $2^{n-3} \mid k$. Ainsi, $k \in \{2^{n-3}, 2^{n-2}, 2^{n-1}\}$. Mais $\overline{5}^{2^{n-2}} = \overline{1}, \overline{5}^{2^{n-3}} = \overline{1+2^{n-1}} \neq \overline{-1}$ donc un tel k n'existe pas.

Posons

$$\varphi: \left(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}, +\right) \to \left(\mathbb{Z}/2^{n}\mathbb{Z}^{\times}, \times\right)$$
$$(\widetilde{a}, \dot{b}) \mapsto \overline{-1}^{a}\overline{5}^{b}$$

Elle est bien définie car $\omega(\overline{-1}) = 2$ et $\omega(\overline{5}) = 2^{n-2}$. C'est évidemment un morphisme, on a égalité des cardinaux des ensembles de départ et d'arrivée, et on vérifie qu'elle est injective, et donc c'est un isomorphisme.

Solution 1.41. Soit $(x, x') \in G^2$ tel que $x \cdot x' = e$. Alors

$$e \cdot x = x \cdot x' \cdot x = x \cdot e \cdot x' \cdot x$$

 $si\ et\ seulement\ si$

$$e \cdot x \cdot x' = e = x \cdot e \cdot x' \cdot x \cdot x' = x \cdot e \cdot x'$$

Soit $(x, x', x'') \in G^3$ tel que $x \cdot x' = e$ et $x' \cdot x'' = e$. On a alors

$$x \cdot x' \cdot x'' = x \cdot e = x = e \cdot x''$$

Donc $x = e \cdot x''$ et $e = e \cdot x'' \cdot x'$. Si on prouve que $e \cdot x'' = x''$, alors x = x'' et $x' \cdot x = e$.

Montrons donc que pour tout $x \in G$, $e \cdot x = x$. Notons que s'il existe $e' \in G$ tel que pour tou $tx \in G$, $e' \cdot x = x$, alors $e' \cdot e = e' = e$. Il vient donc

$$x' \cdot x = x' \cdot e \cdot x'' = x' \cdot x'' = e$$

Donc pour tout $x \in G$, l'élément x' est inverse à droite et à gauche : $x \cdot x' = e$.

Donc

$$x \cdot x' \cdot x = e \cdot x = x \cdot x' \cdot x = x \cdot e = x$$

Et donc e est neutre à gauche. Finalement, (G, \cdot) est un groupe.

Remarque 1.17. Si $f: \mathbb{R} \to \mathbb{R}$ est surjective, on peut définir

$$g: \mathbb{R} \to \mathbb{R}$$
$$y \mapsto f(x)$$

pour un certain $x \in \mathbb{R}$. On a $f \circ g = id$. Si f n'est pas injective : s'il existait $h : \mathbb{R} \to \mathbb{R}$ telle que $h \circ f = id$, soit $(x, x') \in \mathbb{R}^2$ telle que f(x) = f(x'). En composant par h, on aurait x = x' donc f serait injective ce qui n'est pas.

On on peut avoir un inverse à droite mais pas à gauche.

Solution 1.42. Soit $n \in \mathbb{N}^*$.

$$\underbrace{1\dots1}_{n \text{ fois en base } 10} = 1 + 10 + \dots + 10^{n-1} = \frac{10^n - 1}{9}$$

On a

$$21 \mid \frac{10^{n} - 1}{9} \iff 3 \mid \frac{10^{n} - 1}{9} \text{ et } 7 \mid \frac{10^{n} - 1}{9}$$

$$\iff 27 \mid 10^{n} - 1 \text{ et } 7 \mid 10^{n} - 1$$

 $\operatorname{car} 7 \wedge 9 = 1$. $\operatorname{Dans} \mathbb{Z}/7\mathbb{Z}$, on a $\overline{10} = \overline{3}$ donc pour tout $k \in \mathbb{N}$, $\overline{10}^{6k} = \overline{1}$ d'après le petit théorème de Fermat. $\operatorname{Dans} \mathbb{Z}/27\mathbb{Z}$, $\widetilde{10}$ est inversible $\operatorname{car} 10 \wedge 27 = 1$. $\left((\mathbb{Z}/27\mathbb{Z})^{\times}, +, \times \right)$ comporte 18 éléments donc pour tout $k' \in \mathbb{N}$, on a $\widetilde{10}^{18k'} = \widetilde{1}$.

Lorsque 81 | n, on a 21 | 1...1.

Cherchons plus précisément les ordres de $\overline{10}$ dans $((\mathbb{Z}/7\mathbb{Z})^*, \times)$ et de $\widetilde{10}$ dans $((\mathbb{Z}/27\mathbb{Z})^{\times}, \times)$. Dans $(\mathbb{Z}/7\mathbb{Z})^*$, groupe de cardinal 6, on vérifie que l'ordre de 10 est 6. Dans l'autre groupe, on vérifie que l'ordre de $\widetilde{10}$ est 3. Ainsi, $21 \mid 1 \dots 1$ si et seulement si $6 \mid n$.

Il y a donc une infinité de multiples de 21 qui s'écrivent avec uniquement des 1 en base 10.

Remarque 1.18. Il suffit de trouver l'ordre de 10 dans les deux ensembles et de prendre le ppcm.

Solution 1.43.

- X^d-1 a au plus d racines dans K. Pour tout k ∈ {0,...,d-1}, x₀^k est racine de X^d-1_K car gr{x₀} a pour cardinal d. Donc les racines sont exactement les puissances de x₀.
 Soit x ∈ K* d'ordre d. On a x ∈ gr{x₀} car x^d = 1 (racine du polynôme de X^d = 1_K).
 Or, dans le groupe cyclique engendré par x₀, il y a φ(d) éléments.
- 2. On a ou bien $\varphi(d)$ ou bien aucun élément d'ordre d dans \mathbb{K} . Soit d tel que $d \mid n$, on note $H_d = \{x \in K \mid \omega(x) = d\}$. On a

$$\mathbb{K}^* = \bigcup_{d|n} H_d$$

Alors

$$n = \sum_{d|n} |H_d| \leqslant \sum_{d|n} \varphi(d) = n$$

Alors pour tout d tel que d | n, on a $|H_d| = \varphi(d)$. En particulier, on a $|H_n| = \varphi(n) \geqslant 1$ donc H_n est non vide. Donc il existe (au moins) un élément d'ordre n, on (\mathbb{K}^*, \times) est cyclique.

Solution 1.44.

1. Soit $x \in M$. On a $\overline{1} - \overline{x}^{-1}$ si et seulement si $\overline{x} = \overline{1}$ et $\overline{1} - \overline{x}^{-1} = \overline{1}$ si et seulement si $\overline{x} = \overline{0}$, ce qui n'est pas possible pour les deux cas. Donc f est bien définie. Soit $x \in M$, on a

$$f^{2}(x) = f(\overline{1} - \overline{x}^{-1})$$

$$= \overline{1} - (\overline{1} - \overline{x}^{-1})^{-1}$$

$$= (\overline{1} - \overline{x}^{-1})^{-1}(\overline{1} - \overline{x}^{-1} - \overline{1})$$

$$= -\overline{x}^{-1}(\overline{1} - \overline{x}^{-1})^{-1}$$

Donc

$$f^{3}(x) = \overline{1} - (\overline{1} - (\overline{1} - \overline{x}^{-1})^{-1})^{-1}$$

$$= \overline{1} - (-x\overline{x}^{-1}(\overline{1} - \overline{x}^{-1})^{-1})^{-1}$$

$$= \overline{1} + \overline{x}(\overline{1} - \overline{x}^{-1})$$

$$= \overline{1} + \overline{x} - \overline{1}$$

$$= \overline{x}$$

Donc $f^3 = id_M$.

2. Soit $x \in M$, on a

$$f(x) = x \iff \overline{1} - \overline{x}^{-1} = x$$

$$\iff \overline{x}^2 - \overline{x} + \overline{1} = \overline{0}$$

$$\iff (\overline{x} - \overline{2}^{-1})^2 + \overline{3} \times \overline{4}^{-1} = \overline{0}$$

$$\iff \overline{-3} = (\overline{2}\overline{x} - \overline{1})^2$$

f admet un point fixe si et seulement $\overline{-3}$ est un carré dans $\mathbb{Z}/p\mathbb{Z}$ car $\overline{y} = \overline{2}\overline{x} - \overline{1}$ si et seulement si $\overline{x} = \overline{2}^{-1}(\overline{y} + \overline{1})$.

3. Comme p est premier plus grand que 5, on a $p \equiv 1$ ou 2[3] donc $p - 2 \equiv 0$ ou 2[3] car $f^3 = id_M$, les longueurs des cycles qui composent f valent 1 ou 3.

Si f n'a pas de point fixe, tous les cycles sont de longueur 3, donc $3 \mid p-2$ donc $p \equiv 2[3]$. Si $p \equiv 2[3]$, alors $3 \mid p-2$, le nombre de points fixes est un multiple de 3 donc aussi du nombre de racine carrés de $\overline{-3}$. Et puisque l'on est dans un corps, il y a au plus 2 racines de $\overline{-3}$. Donc si $p \equiv 2[3]$, il n'y a pas de point fixe.

Solution 1.45. Soit $x \in \mathbb{R}$. Supposons que x possède un développement décimal périodique. Alors il existe $(n_0, T) \in \mathbb{N} \times \mathbb{N}^*$ tels que pour tout $n \geqslant n_0$, $a_{n+T} = a_n$. On a alors

$$|x| = \underbrace{b_m \dots b_0, a_0 \dots a_{n_0 - 1}}_{\in \mathbb{Q}} + \underbrace{\frac{1}{10^{n_0 - 1}}}_{=y} \underbrace{(0, a_{n_0} \dots a_{n_0 + T - 1} a_{n_0} \dots)}_{=y}$$

$$10^T y - y = a_{n_0} \dots a_{n_0 + T - 1} \in \mathbb{N}$$

 $et\ donc$

$$y = \frac{a_{n_0} \dots a_{n_0 + T - 1}}{10^T - 1} \in \mathbb{Q}$$

 $Donc \ x \in Q.$

Réciproquement, soit $x = \frac{p}{q} \in \mathbb{Q}$ avec $q \in \mathbb{N}^*$. Il existe $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$ tel que p = aq + b avec $b \in \{0, \dots, q-1\}$. Si b = 0, on arrête. On a sinon

$$x = a + \frac{1}{10^k} \frac{10^k b}{q}$$

où $k = \min\{m \ge 1 \mid 10^m b > q\}$. On réitère l'algorithme avec $\frac{10^k b}{q}$ car on a $\left\lfloor \frac{10^k b}{q} \right\rfloor \in \{1, \dots, 9\}$ par définition de k.

Il y a q restes possibles dans la division euclidienne par q. Ainsi, au bout d'au plus de q+1 itérations, on retrouve un reste précédent. Par unicité de la division euclidienne, on obtient un développement décimal périodique.

Remarque 1.19. On peut écrire $q=2^a5^bq'$ avec $q'\wedge 2=q'\wedge 5=1$. On se ramène alors à $q\wedge 2=q\wedge 5=1$. En reportant dans l'écriture décimale de x, on a

$$\frac{\alpha}{q} = \frac{\beta}{10^T - 1}$$

avec $\alpha \wedge q = 1$. On a donc $q \mid 10^T - 1$ d'après le lemme de Gauss. T revient donc à l'ordre de $\overline{10}$ dans $(\mathbb{Z}/q\mathbb{Z}^{\times}, \times)$ qui contient $\varphi(q)$ éléments. Par défaut, on a donc $T = \varphi(q)$.

Solution 1.46.

1. Soit $m \in \mathbb{Z}$. Si $m \in \{0, \dots, n-1\}$, on a $H_n(m) = 0 \in \mathbb{Z}$. Si $m \geqslant n$, on a $H_n(m) = \binom{m}{n} \in \mathbb{Z}$. Si m < 0, on a

$$H_n(m) = \frac{m(m-1)\dots(m-n+1)}{n!} = (-1)^n {\binom{-m+n-1}{-m-1}} \in \mathbb{Z}$$

Donc $H_n(\mathbb{Z}) \subset \mathbb{Z}$.

2. Supposons qu'il existe $n \in \mathbb{N}$ et $(a_0, \ldots, a_n) \in \mathbb{Z}^{n+1}$ et $P = \sum_{k=0}^n a_k H_k$. On a $H_k(\mathbb{Z}) \subset \mathbb{Z}$ donc $P(\mathbb{Z}) \subset \mathbb{Z}$. Supposons $P(\mathbb{Z}) \subset \mathbb{Z}$. $(H_k)_{k \in \mathbb{N}}$ est une base étagée en degré de $\mathbb{C}[X]$. Donc il existe $(a_0, \ldots, a_n) \in \mathbb{C}^{n+1}$ tel que $P = \sum_{k=0}^n a_k H_k$. Par récurrence, on a $P(0) = \mathbb{C}^n$

 $a_0 \in \mathbb{Z}$. Soit $k \in \{0, n-1\}$, supposons $(a_0, \ldots, a_k) \in \mathbb{Z}^{k+1}$. On a alors

$$P(k+1) = \underbrace{\sum_{i=0}^{k} \underbrace{a_k}_{\in \mathbb{Z}} H_k + a_{k+1} \underbrace{H_{k+1}(k+1)}_{=1}}_{=1}$$

Donc $a_{k+1} \in \mathbb{Z}$.

Remarque 1.20. Les translation $X + \alpha$ sont les seules pour lesquelles on a $(X + \alpha)(\mathbb{Z}) = \mathbb{Z}$. En effet, si $P \in \mathbb{C}[X]$ est tel que $P(\mathbb{Z}) = \mathbb{Z}$, on a $P \in \mathbb{Q}[X]$ d'après ce qui précède. Si $\deg(P) \geqslant 2$, quitte à remplacer P par -P, on peut supposer le coefficient dominant de P strictement positif. On a alors $\lim_{x \to +\infty} P'(x) = +\infty$ donc il existe A > 0 tel que P est strictement croissant sur $[A, +\infty[$. De plus, $P(x+1) - P(x) \to +\infty$ quand $x \to +\infty$. Donc il existe A' > 0 tel que P(x+1) > P(x) + 1. Pour $n \geqslant \max(A, A')$, on a $P(n+1) \geqslant P(n) + 2$ ce qui contredit $P(\mathbb{Z}) = \mathbb{Z}$. Donc le degré de P est inférieur à 1.

Solution 1.47. Le coefficient en X^k s'écrit $a_{k-1} - \alpha a_k \in \mathbb{Q}$. Si $a_k \in \mathbb{Q}$, on a donc $a_{k-1} \in \mathbb{Q}$. Il est donc impossible d'avoir deux coefficients consécutifs rationnels. Or $x_{n-1} \in \mathbb{Q}$ car c'est le coefficient dominant de P. Donc α est nécessairement racine simple.

Solution 1.48. Soit $\Delta = P \wedge P' = \Delta$. On $a \operatorname{deg}(\Delta) \in \{1, 2, 3, 4\}$ car $\Delta \mid P'$.

 $Si \deg(\Delta) = 4$, $alors \Delta = P'$ (car associé). $Donc \ il \ existe \ \beta \in \mathbb{C} \ d'où \underbrace{P}_{\in \mathbb{Q}[X]} = (X - \beta) \underbrace{P'}_{\in \mathbb{Q}[X]}$. $Par \ division \ euclidienne, \ X - B \in \mathbb{Q}[X] \ et \ \beta \in \mathbb{Q} \ d'après \ l'algorithme \ de \ la \ division \ euclidienne.$

 $Si \deg(\Delta) = 1$, on a $P = X - \beta$ avec $\beta \in \mathbb{Q}$ racine de P.

 $Si \deg(\Delta) = 2$, $si \Delta = (X - \beta)^2$, on $a \Delta' = 2(X - \beta) \in \mathbb{Q}[X]$ donc $\beta \in \mathbb{Q}$ racine de Δ donc de P. $Si \Delta = (X - \alpha_1)(X - \alpha_2)$ avec $\alpha_1 \neq \alpha_2$. α_1 et α_2 sont racines doubles de P donc $P = (X - \beta)\underbrace{(X - \alpha_1)^2(X - \alpha_2)^2}_{=\Delta^2 \in \mathbb{Q}[X]}$ Par division euclidienne, $X - \beta \in \mathbb{Q}[X]$ et donc $\beta \in \mathbb{Q}$.

 $Si \deg(\Delta) = 3$, $si \Delta = (X - \beta)^3$, on $a \Delta^{(2)} = 6(X - \beta) \in \mathbb{Q}[X]$ donc $\beta \in \mathbb{Q}$. $Si \Delta = (X - \alpha_1)(X - \alpha_2)(X - \alpha_3)$ avec α_1, α_2 et α_3 distinctes. α_1, α_2 et α_3 seraient racines doubles de P ce qui contredit $\deg(P) = 5$. $Si \Delta = (X - \alpha)^2(X - \beta)$, α est racine triple de P et β racine double de P

donc $P = (X - \alpha)^3 (X - \beta)^2 \in \mathbb{Q}[X]$. Par division euclidienne, $(X - \alpha)(X - \beta) \in \mathbb{Q}[X]$ et

$$X - \alpha = \frac{\Delta}{(X - \alpha)(X - \beta)} \in \mathbb{Q}[X]$$

 $donc \ \alpha \in \mathbb{Q}.$

Solution 1.49.

1. $1 \in \mathbb{Z}[i], 0 \in \mathbb{Z}[i], i \in \mathbb{Z}[i]$. Soit $(a, b, a', b') \in \mathbb{Z}^4$:

$$\begin{cases} (a+ib) - (a'+ib') = (a-a') + i(b-b') \in \mathbb{Z}[i] \\ (a+ib) \times (aa'-bb') + i(ab'+ba') \in \mathbb{Z}[i] \end{cases}$$

 $Donc \mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} contenant i

Soit A un sous anneau de \mathbb{C} contenant i. A est stable par x donc $i^4 = 1 \in A$. A est stable par + donc $\mathbb{Z} \subset A$, puis $i\mathbb{Z} \subset A$ donc $\mathbb{Z}[i] \subset A$. $\mathbb{Z}[i]$ est donc le plus petit sous anneau de \mathbb{C} contenant i.

2. $Si |z|^2 = 1 \text{ c'est-à-dire } a^2 + b^2 = 1, \text{ alors}$

$$\frac{1}{z} = \frac{a - ib}{|z|^2} = a - ib \in \mathbb{Z}[i]$$

Si z est inversible dans $\mathbb{Z}[i]$, il existe $' \in \mathbb{Z}[i]$ tel que zz' = 1 donc $|z|^2|z'|^2 = 1$ donc $|z|^2 = 1$.

Soit $(a,b) \in \mathbb{Z}^2$. Si $|a| \ge 2$ ou $|b| \ge 2$, alors $a^2 + b^2 \ge 4$ donc si $|z|^2 = 1$, alors $a^2 + b^2 = 1$ et (|a| = 1 et |b| = 0) ou (|a| = 0 et |b| = 1). Donc

$$U=\{1,-1,\mathbf{i},-\mathbf{i}\}$$

- 3. (a) Si $x \in \mathbb{R}$, il existe $n \in \mathbb{Z}$ tel que $|x n| \leqslant \frac{1}{2}$ (faire un dessin et le montrer grâce aux parties entières). Soit alors $z_0 = x_0 + iy_0 \in \mathbb{C}$, on prend un $(a,b) \in \mathbb{Z}^2$ tel que $|x_0 a| \leqslant \frac{1}{2}$, $|y_0 b| \leqslant \frac{1}{2}$. Et pour $z = a + ib \in \mathbb{Z}[i]$, on $a |z z_0|^2 = (x_0 a)^2 + (y_0 b)^2 \leqslant \frac{1}{2}$.
 - (b) Soit $(q,r) \in \mathbb{Z}[i]^2$, on a $z_1 = qz_2 + r$ si et seulement si $\frac{z_1}{z_2} q = \frac{r}{z_2}$. On a $|r| < |z_1|$ si et seulement si $\left|\frac{z_1}{z_2} q\right| < 1$. On a $\frac{z_1}{z_2} \in \mathbb{C}$ donc d'après 3.(a), il existe $q \in \mathbb{Z}[i]$ tel $que\left|\frac{z_1}{z_2} q\right| \leqslant \frac{\sqrt{2}}{2} < 1$. On pose alors $r = z_1 qz_2 \in \mathbb{Z}[i]$ par stabilité. Il vient donc $|r| < |z_2|$

Il n'y a pas unicité : par exemple $z_2=1$ et $z_1=\frac{1+i}{2}$. On peut prendre $q\in\{0,1,i,1+i\}$.

(c) Soit $I \neq \{0\}$ un idéal de $\mathbb{Z}[i]$. On note $n_0 = \min\{|z|^2 \mid z \in I \setminus \{0\}\}$ (partie non vide de \mathbb{N}^*). Soit $z_0 \in I \setminus \{0\}$ tel que $|z_0|^2 = n_0$. On a directement $z_0\mathbb{Z}[i] \subset I$ (I est un idéal).

Réciproquement, soit $z \in I$, d'après 3.(b), il existe $(q,r) \in \mathbb{Z}[i]^2$ tel que

$$r = \underbrace{z}_{\in I} - \underbrace{z_0}_{\in I} \underbrace{q}_{\in \mathbb{Z}[i]} \in I$$

et $|r|^2 < n_0$. Nécessairement, r = 0 et $z = z_0 q \in z_0 \mathbb{Z}[i]$. Donc $I = z_0 \mathbb{Z}[i]$. Finalement, $\mathbb{Z}[i]$ est principal.

4. Si $|z|^2 = 1$, alors $z \in U$ donc c'est bon. On travaille ensuite par récurrence sur $n \in \mathbb{N}^*$. Supposons que la décomposition existe pour $z \in \mathbb{Z}[i]$ avec $|z|^2 \leqslant n$. Soit $z \in \mathbb{Z}[i]$ tel que $|z|^2 = n + 1$. On a $|z|^2 \geqslant 2$ donc $z \in U$. Si z est irréductible, c'est bon. Sinon, il existe $(z_1, z_2) \in \mathbb{Z}[i]^2$ tel que $z = z_1 z_2$ et z_1 et z_2 non inversibles. Alors $|z_1|^2 \geqslant 2$ et $|z_2|^2 \geqslant 2$. Or $|z|^2 = n + 1 = |z_1|^2 |z_2|^2$ donc $|z_1|^2 \leqslant n$ et $|z_2|^2 \leqslant n$. Par hypothèse de récurrence, on peut décomposer z_1 et z_2 , donc z est décomposable.

Pour l'unicité, soit $z \in \mathbb{Z}[i] \setminus \{0\}$ tel que $z = u \prod_{\rho \in \mathcal{P}_0} \rho^{\nu_{\rho}(z)} = v \prod_{\rho \in \mathcal{P}_0} \rho^{\mu_{\rho}(z)}$. Le théorème de Gauss est valable dans $\mathbb{Z}[i]$, car c'est un anneau principal. S'il existe $\rho_0 \in \mathcal{P}_0$ tel que $\nu_{\rho_0}(z) < \mu_{\rho_0}(z)$, alors

$$\rho_0 \mid \prod_{p \in \mathcal{P}_0 \setminus \{\rho_0\}} \rho^{\nu_{\rho}(z)}$$

ce qui est proscrit par le théorème de Gauss. On a donc pour tout $\rho \in \mathcal{P}_0$, $\nu_{\rho}(z) = \mu_{\rho}(z)$. En reportant, on a u = v. D'où l'unicité de la décomposition.

Solution 1.50.

1. On a $\overline{1} \in R$. Soit $(\overline{x_1}, \overline{x_2}) \in R^2$, il existe $(\overline{y_1}, \overline{y_2}) \in (\mathbb{F}_p^*)^2$ tel que $\overline{x_1} = \overline{y_1}^2$ et $\overline{x_2} = \overline{y_2}^2$.

On a alors

$$\overline{x_1 x_2}^{-1} = (\overline{y_1 y_2}^{-1})^2 \in R$$

donc R est un sous groupe de (\mathbb{F}_p^*, \times) . Soit

$$\varphi: \ \mathbb{F}_p^* \ \to \ \mathbb{F}_p^*$$

$$\overline{y} \ \mapsto \ \overline{y}^2$$

On a $\operatorname{Im}(\varphi) = R$. Comme \mathbb{F}_p est un corps, chaque éléments de R a exactement 2 antécédents par φ . Donc $|R| = \frac{|\mathbb{F}_p^*|}{2} = \frac{p-1}{2}$.

 $S'il\ existe\ \overline{y}\in \mathbb{F}_p^*\ tel\ que\ \overline{a}=\overline{y}^2,\ on\ a\ \overline{a}^{\frac{p-1}{2}}=\overline{y}^{p-1}=\overline{1}\ par\ le\ th\'eor\`eme\ de\ Fermat.$

Réciproquement, si $\overline{a}^{\frac{p-1}{2}} = \overline{1}$, $X^{\frac{p-1}{2}} - \overline{1}$ admet au plus $\frac{p-1}{2}$ racines dans \mathbb{F}_p^* . Tous les éléments de R sont racines de ce polynôme, ce sont donc ses seules racines. Donc $a \in R$.

- 2. Si $p = a^2 + b^2$, alors $\overline{0} = \overline{a}^2 + \overline{b}^2$. Si $\overline{a} = \overline{b} = \overline{0}$, on a $p \mid a$ et $p \mid b$ donc $p^2 \mid p$ ce qui est exclu. Par exemple, si $\overline{a} \neq \overline{0}$, on a $\overline{1} = -\overline{b}^2 \overline{a}^{-2}$ donc $\overline{-1} = (\overline{a}^{-1}\overline{b})^2 \in R$ d'après 1. On a donc $(\overline{-1})^{\frac{p-1}{2}} = \overline{1}$ si et seulement si $2 \mid \frac{p-1}{2}$ (car p est premier plus grand que 3) d'où $4 \mid p-1$ donc $p \equiv 1[4]$.
- 3. On a $|\mathbb{F}_p| = p$, $E(\sqrt{p}) \leqslant \sqrt{p} < E(\sqrt{p}) + 1$ et $|\{0, \dots, E(\sqrt{(p)})\}|^2 = (E(\sqrt{p}) + 1)^2 > p$ (p est premier, ce n'est pas un carré) donc f n'est pas injective (cardinalité).

 Donc il existe

$$((a_1, b_1), (a_2, b_2)) \in (\{0, \dots, E(\sqrt{p})\}^2)^2$$

avec $(a_1, b_1) \neq (a_2, b_2)$ et $f(a_1, b_1) = f(a_2, b_2)$. Donc

$$\overline{a_1} - \overline{kb_1} = \overline{a_2} - \overline{kb_2} \Rightarrow \overline{a_1} - \overline{a_2} = \overline{k}(\overline{b_1} - \overline{b_2})$$

Si $\overline{b_1} = \overline{b_2}$, alors $\overline{a_1} = \overline{a_2}$ donc $p \mid b_1 - b_2$ et $p \mid a_1 - a_2$ donc $(a_1, b_1) = (a_2, b_2)$ ce qui n'est pas vrai. Donc $\overline{b_1} \neq \overline{b_2}$. Posons $b_0 = b_1 - b_2$ et $a_0 = a_1 - a_2$. On a $\overline{b_0} \neq \overline{0}$. Il vient donc $(|a_0|, |b_0|) \in \{1, \ldots, E(\sqrt{p})\}^2$, $\overline{a_0} = \overline{kb_0}$ donc $\overline{k} = \overline{a_0}\overline{b_0}^{-1}$.

4. Si $p \equiv 1[4]$, en remontant les calculs, on a $(\overline{-1})^{\frac{p-1}{2}} = \overline{1}$ donc $\overline{-1} \in R$ et il existe $\overline{k} \in \mathbb{F}_p^*$ tel que $\overline{-1} = \overline{k}^2$. Alors d'après 3., il existe (a_0, b_0) tels que $\overline{k} = \overline{a_0}\overline{b_0}^{-1}$. Il vient alors $\overline{-1} = \overline{a_0}^2(\overline{b_0}^{-1})^2$ donc $\overline{-b_0}^2 = \overline{a_0}^2$. On a

$$p \mid a_0^2 + b_0^2 \in \{2, \dots, 2E(\sqrt{p})\}^2 \subset \{2, \dots, 2p-1\}$$

Nécessairement, $a_0^2 + b_0^2 = p$ et p est somme de deux carrés.

Solution 1.51.

1. Soit $(m, n) \in A^2$. Il existe $(a, b, c, d) \in \mathbb{N}^4$ tel que $m = a^2 + b^2 = |a + ib|^2$ et $n = c^2 + d^2 = |c + id|^2$. Donc

$$m \times n = |ac - bd6i(bc + ad)|^2 = (ac - bd)^2 + (bc + ad)^2 \in A$$

2. On a

$$n = \prod_{\substack{p \in \mathcal{P}_1 \\ \in A \ car \ \mathcal{P}_1 \subset A}} p^{\nu_p(n)} \times \prod_{\substack{p \in \mathcal{P}_2 \\ = \prod_{p \in \mathcal{P}_2} p^{2\alpha_p} \in A}} p^{\nu_p(n)} \in A$$

3. Soit $n \in A$, il existe $(a,b) \in \mathbb{N}^2$ avec $n = a^2 + b^2$. Soit $p \in \mathcal{P}_1 \cup \mathcal{P}_2$, on $a p \mid a^2 + b^2$ donc $\overline{a^2 + b^2} = \overline{0}$ dans $\mathbb{Z}/p\mathbb{Z}$. Si $p \nmid a$ ou $p \nmid b$, alors $\overline{1 + \frac{b^2}{a^2}} = \overline{0}$ donc $\overline{-1} \in R$ (résidus quadratiques, voir exercice précédent). Donc p = 2 ou $p \equiv 1[4]$.

Si $p \mid a$ et $p \mid b$, $a = p^k a', b = p^l b'$ avec $p \nmid a'$ et $p \nmid b'$. On suppose $1 \leqslant k \leqslant l$ (quitte à échanger a et b). On a

$$a^{2} + b^{2} = p^{2k}(a'^{2} + p^{2(l-k)}b'^{2}) = n$$

donc

$$p \mid a'^2 + p^{2(l-k)b'^2}$$

et $\overline{a'}^2 + \overline{p^{2(l-k)}}\overline{b'}^2 = \overline{0}$. Nécessairement, l = k. De même $p \in \mathcal{P}_1$. Par contraposée, ν_p est pair.

2 Séries numériques et familles sommables

Solution 2.1.

1. On $a b_0 = a_1 = 5, b_1 = a_3 = 13$ et pour $p \ge 2, b_p = 2b_{p-1} + 3b_{p-2}$.

On a donc l'équation caractéristique $x^2 - 2x - 3 = 0$. Les deux solutions sont 3 et -1.

Donc il existe $(\lambda, \mu) \in \mathbb{R}^2$, $b_p = \lambda 3^p + \mu (-1)^p$.

On a alors $b_0 = 5 = \lambda + \mu$ et $b_1 = 13 = 3\lambda - \mu$. On trouve alors

$$\lambda = \frac{9}{2} \ et \ \mu = \frac{1}{2}$$

- 2. On le montre par récurrence sur $p \in \mathbb{N}$.
- 3. Si $3^p \le n < 3^{p+1}$, on a $a_n = b_p = \frac{9}{2}3^p + \frac{1}{2}(-1)^p$. Alors

$$\frac{3}{2} + \frac{1}{2}(-1)^p \frac{1}{3^{p+1}} < \frac{a_n}{n} \leqslant \frac{9}{2} + \frac{1}{2}(-1)^p \frac{1}{3^p}$$

Soit $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que

$$\frac{a_{\sigma(n)}}{\sigma(n)} \xrightarrow[n \to +\infty]{} \lambda$$

Soit $p_n \in \mathbb{N}$ tel que $3^{p_n} \leqslant \sigma(n) < 3^{p_n+1}$. On a

$$p_n = \lfloor \log_3(\sigma(n)) \rfloor \xrightarrow[n \to +\infty]{} +\infty$$

En reportant, on $a^{\frac{3}{2}} \leqslant \lambda \leqslant \frac{9}{2}$.

 $Si \ \sigma(n) = 3^n$, on a

$$\frac{a_{3^n}}{3^n} = \frac{b_n}{3^n} = \frac{9}{2} + \frac{1}{2} \frac{(-1)^n}{3^n} \xrightarrow[n \to +\infty]{} \frac{9}{2}$$

 $Si \ \sigma(n) = 3^{n+1} - 1, \ on \ a$

$$\frac{a_{3^n}}{3^n} = \frac{b_n}{3^{n+1} - 1} \xrightarrow[n \to +\infty]{} \frac{3}{2}$$

Soit $\mu \in [1, 3[$ et $\sigma(n) = \lfloor 3^n \mu \rfloor \underset{n \to +\infty}{\sim} 3^n \mu$. Alors

$$\frac{a_{\sigma(n)}}{\sigma(n)} = \frac{b_n}{\left\lfloor 3^n \mu \right\rfloor} \underset{n \to +\infty}{\sim} \frac{b_n}{3^n \mu} = \frac{9}{2\mu} + \frac{1}{2\mu} \frac{(-1)^n}{3^n} \xrightarrow[n \to +\infty]{} \frac{9}{2\mu}$$

Donc tout réel compris dans $\left[\frac{3}{2}, \frac{9}{2}\right]$ est valeur d'adhérence.

Solution 2.2.

1.

$$g: [a,b] \rightarrow \mathbb{R}$$

$$x \mapsto f(x) - x$$

est continue, $g(a) \ge 0$ et $g(b) \le 0$, donc le théorème des valeurs intermédiaires affirme qu'il existe $l \in [a,b]$ avec g(l) = 0, d'où

$$f(l) = l$$

2. On note $A = \{\lambda \mid \lambda \text{ est valeur d'adhérence}\}$. Le théorème de Bolzano-Weierstrass indique que A est non vide. De plus, A est borné car $A \subset [a,b]$. Soit $\lambda = \inf(A)$ et $\mu = \sup(A)$.

Si
$$\lambda = b$$
, on a $\mu = b$ et $A = \{b\} = \{\lambda\} = \{\mu\}$.

Si $\lambda < b$, soit $\varepsilon > 0$. Si $\lambda \notin A$, $\{k \in \mathbb{N} \mid x_k \in]\lambda, \lambda + \varepsilon[\}$ est infini. Par définition, λ est valeur d'adhérence. Donc $\lambda \in A$, et de même $\mu \in A$.

Soit $\nu \in]\lambda, \mu[$ avec $\lambda < \mu$. Si $\nu \notin A$, il existe $\varepsilon_0 > 0$ tel que $\{k \in \mathbb{N} \mid |x_k - \nu| < \varepsilon_0\}$ est fini. Donc il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$, $x_n \notin]\nu - \varepsilon_0, \nu + \varepsilon_0[$. Comme $\lim_{n \to +\infty} |x_{n+1} - x_n| = 0$, il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geqslant N_1$, $|x_{n+1} - x_n| < 2\varepsilon_0$. Soit alors $n \geqslant \max(N_0, N_1)$. Si $x_n \leqslant \nu - \varepsilon_0$, alors $x_{n+1} \leqslant \nu - \varepsilon_0$. Si $x_n \geqslant \nu + \varepsilon_0$, alors $x_{n+1} \geqslant \nu + \varepsilon_0$. Ceci contredit que λ et μ sont valeur d'adhérence.

Ainsi, $\nu \in A$ et

$$[\lambda,\mu]$$
 est le segment des valeurs d'adhérence.

3. Si (x_n) converge, alors $\lim_{n \to +\infty} x_{n+1} - x_n = 0$. Réciproquement, si $\lim_{n \to +\infty} x_{n+1} - x_n = 0$, d'après 2., on a $A = [\lambda, \mu]$. On suppose $\lambda < \nu$. Ainsi, $\frac{\lambda + \nu}{2} = \alpha$ est valeur d'adhérence. Donc il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $x_{\sigma(n)} \xrightarrow[n \to +\infty]{} \alpha$. Alors $\lim_{n \to +\infty} x_{\sigma(n)+1} = f(\alpha)$ par continuité de f et c'est aussi égale à $\lim_{n \to +\infty} x_{\sigma(n)} = \alpha$ car $\lim_{n \to +\infty} x_{n+1} - x_n = 0$. Ainsi,

$$f(\alpha) = \alpha$$

Par ailleurs, il existe $n_0 \in \mathbb{N}$ tel que $x_{n_0} \in [\lambda, \mu]$ et $f(x_{n_0}) = x_{n_0} \in A$, alors pour tout $n \geqslant n_0$, on a $x_n = x_{n_0}$. Donc $(x_n)_{n \in \mathbb{N}}$ converge et $\lambda = \mu : (x_n)_{n \in \mathbb{N}}$ est bornée et a une

unique valeur d'adhérence.

Donc
$$(x_n)_{n\in\mathbb{N}}$$
 converge.

Solution 2.3. On a $u_n = e^{i2^n\theta}$ pour tout $n \in \mathbb{N}$.

Si $(u_n)_{n\in\mathbb{N}}$ converge vers l, alors $\lim_{n\to+\infty}u_n=1$ car $l=l^2$ et |l|=1.

Si $(u_n)_{n\in\mathbb{N}}$ est périodique au-delà d'un certain rang, il existe $T\in\mathbb{N}^*$, il existe $N_0\in\mathbb{N}$ tel que pour tout $n\geqslant N_0$, $u_{n+T}=u_n$. En particulier, $u_{N_0+T}=u_{N_0}$. On veut alors $2^{N_0+T}\theta\equiv 2^{N_0}\theta[2\pi]$. D'où $2^{N_0+T}\theta=2\theta+2k\pi$ donc $2^{N_0}(2^T-1)\theta=2k\pi$. Donc $\frac{\theta}{2\pi}\in\mathbb{Q}$.

Réciproquement, si $\frac{\theta}{2\pi} \in \mathbb{Q}$, son développement binaire est périodique à partir d'un certain rang, et donc $(u_n)_{n \in \mathbb{N}}$ l'est aussi.

 $Si\ (u_n)_{n\in\mathbb{N}}$ est stationnaire, il existe $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$, $U_{N+1}=U_N=U_{N^2}$. $Comme\ |U_N|=1$, alors $2^n\theta\in 2\pi\mathbb{N}$ et $\frac{\theta}{2\pi}$ est dyadique.

Réciproquement, s'il existe $p \in \mathbb{N}$, $u_0 \in \mathbb{N}$ tel que $\frac{\theta}{2\pi} = \frac{p}{2^{n_0}}$ (nombre dyadique). Alors pour tout $n \geqslant n_0$, $2^n \theta \in 2\pi \mathbb{N}$ et $u_n = u_{n_0} = 1$.

Pour la densité, on prend une suite $(a_n)_{n\in\mathbb{N}}$ en écrivant successivement, pour tout $k\in\mathbb{N}^*$, tous les paquets de k entiers sont dans $\{0,1\}^k$. Soit $x\in[0,1[$ tel que

$$x = \sum_{n=1}^{+\infty} \frac{a_n}{2^n}$$

Soit $N \in \mathbb{N}$, il existe $p_N \in \mathbb{N}$,

$$2^{p_N}\theta = 2\pi \underbrace{(\dots)}_{\in \mathbb{N}} + 2\pi \left(\frac{a_1}{2} + \dots + \frac{a_N}{2^N} + \dots\right)$$

On a alors

$$e^{i2^{p_N}\theta} = e^{i2\pi(\frac{a_1}{2} + \dots + \frac{a_N}{2^N} + \dots)}$$

et

$$\left| \frac{a_1}{2} + \dots + \frac{a_N}{2^N} - x \right| \leqslant \frac{1}{2^N}$$

 $D'o\dot{u}\lim_{N\to+\infty}u_{p_N}=e^{\mathrm{i}2\pi x}\ et\ (u_n)_{n\in\mathbb{N}}\ est\ dense\ dans\ \mathbb{U}.$

Solution 2.4. Si a = 0 et b = 0, $u_n \xrightarrow[n \to +\infty]{} 0$.

Si a = 0 et $b \neq 0$ (ou inversement), $u_n \underset{n \to +\infty}{\sim} \left(\frac{1}{2}\right)^{n^2} \xrightarrow[n \to +\infty]{} 0$.

 $Si \ a > 0 \ ou \ b > 0, \ on \ a$

$$u_n = \exp\left(n^2 \ln\left(\frac{e^{\frac{1}{n}\ln(a)} + e^{\frac{1}{n}\ln(b)}}{2}\right)\right)$$

$$= \exp\left(n^2 \ln\left(1 + \frac{1}{2n}\ln(ab) + \frac{1}{4n^2}(\ln(a)^2 + \ln(b)^2)\right) + o\left(\frac{1}{n^2}\right)\right)$$

$$= \exp\left(\frac{n}{2}\ln(ab) + \frac{1}{4}(\ln(a)^2 + \ln(b)^2 + o(1))\right)$$

 $Si\ ab > 1$, on a

$$\lim_{n \to +\infty} u_n = +\infty$$

 $Si\ ab < 1,\ on\ a$

$$\lim_{n \to +\infty} u_n = 0$$

 $Si\ ab = 1,\ on\ a$

$$\lim_{n \to +\infty} u_n = e^{\frac{1}{2}\ln(a)^2}$$

Solution 2.5.

1. Soit
$$M = \sup_{n \in \mathbb{N}} x_n > 0$$
 (car $\sum_{n \in \mathbb{N}} x_n = +\infty$).

$$J = \left\{ k \in \mathbb{N} \mid x_k \geqslant \frac{M}{2} \right\}$$

est fini car $x_n \xrightarrow[n \to +\infty]{} 0$ et est non vide. On définit

$$\varphi(0) = \min \left\{ k \in J \mid x_k = \max\{x_n \mid n \in J\} \right\}$$

Pour tout $n \in J$, $x_{\varphi(0)} \geqslant x_n$. Si $n \notin J$, $x_n \leqslant \frac{M}{2} < x_{\varphi(0)}$. Ainsi,

$$x_{\varphi(0)} = \max\{x_n \mid n \in \mathbb{N}\}$$

Puis on recommence avec

$$\left\{ x_n \mid n \in \mathbb{N} \setminus \{\varphi(0)\} \right\}$$

2. Pour l = 0, pour tout $\varepsilon > 0$, il existe $n \in \mathbb{N}$ tel que $x_N < \varepsilon$. On pose

$$\boxed{I = \{N\}}$$

et on a bien

$$\left| \sum_{k \in I} x_k - l \right| \leqslant \varepsilon$$

Si $l = +\infty$, soit A > 0. Il existe $N \in \mathbb{N}$ tel que $\sum_{k=0}^{N} x_k > A$ (car $\sum_{n \in \mathbb{N}} x_n = +\infty$). Donc on peut prendre

$$\boxed{I = \{0, \dots, N\}}$$

Si $l \in \mathbb{R}_+^*$. Soit $\varepsilon > 0$, on peut supposer sans perte de généralité que $\varepsilon < l$. Il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \ge N_0$, on a $x_n < \varepsilon$ et $\sum_{n=N_0}^{+\infty} x_n = +\infty$. Donc il existe un plus petit entier N_1 tel que $\sum_{n=N_0}^{N_1} x_n \ge l - \varepsilon$. Comme $x_{N_1} < \varepsilon$, on a $\sum_{n=N_0}^{N_1} x_n \le l + \varepsilon$. Donc

$$I = \{N_0, \dots, N_1\}$$

Solution 2.6. On pose

$$S_n = \sum_{k=0}^n u_k^2$$

Montrons que $S_n \xrightarrow[n \to +\infty]{} +\infty$. D'abord, il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} > donc \lim_{n \to +\infty} S_n = l \in \overline{R}_+^*$. Si $l < +\infty$, on a $u_n \xrightarrow[n \to +\infty]{} \frac{1}{l}$ et donc $u_n^2 \xrightarrow[n \to +\infty]{} \frac{1}{l^2}$ et la série diverge. Donc $l = +\infty$ et comme $u_n \xrightarrow[n \to +\infty]{} \frac{1}{S_n}$, on a $u_n \xrightarrow[n \to +\infty]{} 0$.

On observe ensuite que $S_n - S_{n-1} = u_n^2 = o(1)$ donc $S_{n-1} \underset{n \to +\infty}{\sim} S_n$. Ainsi,

$$\underbrace{u_n^2 S_n^2}_{n \to +\infty} \xrightarrow[n \to +\infty]{} 1$$

$$= (S_n - S_{n-1}) S_n^2$$

et on a

$$\frac{S_n^2 + S_n S_{n-1} + S_{n-1}^2}{S_n^2} = 1 + \frac{S_{n-1}}{S_n} + \frac{S_{n-1}^2}{S_n^2} \xrightarrow[n \to +\infty]{} 3$$

donc

$$\underbrace{(S_n - S_{n-1})(S_n^2 + S_n S_{n-1} + S_{n-1}^2)}_{= S_n^3 - S_{n-1}^3} \xrightarrow[n \to +\infty]{} 3$$

On applique le théorème de Césaro à la suite $S_n^3 - S_{n-1}^3$:

$$\frac{S_n^3 - S_0^3}{n} \xrightarrow[n \to +\infty]{} 3$$

donc $S_n \underset{n \to +\infty}{\sim} \sqrt[3]{3n}$, et comme $u_n \underset{n \to +\infty}{\sim} \frac{1}{S_n}$, on a bien

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{\sqrt[3]{3n}}$$

Réciproquement, soit $u_n = \frac{1}{\sqrt[3]{3n}}$ avec $u_0 = 1$. On a

$$u_n^2 = \frac{1}{(3n)^{\frac{2}{3}}}$$

Par comparaison série-intégrale, on a

$$\sum_{k=0}^{n} u_k^2 \underset{n \to +\infty}{\sim} \frac{1}{3^{\frac{2}{3}}} \times 3n^{\frac{1}{3}} = (3n)^{\frac{1}{3}}$$

et donc

$$u_n \times \sum_{k=0}^n u_k^2 \underset{n \to +\infty}{\sim} \frac{\sqrt[3]{3n}}{\sqrt[3]{3n}} = 1$$

Remarque 2.1. On rappelle que l'on a la comparaison série-intégrale, pour $\alpha < 1$,

$$\sum_{k=1}^{N} \frac{1}{k^{\alpha}} \underset{n \to +\infty}{\sim} \int_{1}^{N} \frac{dt}{t^{\alpha}} \underset{n \to +\infty}{\sim} \frac{1}{1-\alpha} N^{1-\alpha}$$

Solution 2.7. Tout d'abord, on montre que pour tout $x \in [0, 1]$,

$$0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant x^4$$

en posant

$$f: [0,1] \to \mathbb{R}$$

$$x \mapsto \cosh(x) - 1 - \frac{x^2}{2}$$

de classe C^{∞} sur [0,1] et on a $f''(x) = \cosh(x) - 1 \ge 0$ et f'(0) = 0. Comme f(0) = 0, on a pour tout $x \in [0,1], f(x) \ge 0$.

Avec l'inégalité de Taylor-Lagrange à l'ordre 4 sur f, on a

$$0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant \frac{x^4}{24} \times \underbrace{\sup_{t \in [0,1]} |\cosh^{(4)}(t)|}_{\leqslant \cosh(1)} \leqslant x^4$$

Figure $1 - 0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant x^4$ pour $x \in \mathbb{R}$.

On a

$$-x_n = \sum_{k=1}^{n} \left[\cosh\left(\frac{1}{\sqrt{k+n}}\right) - 1 \right]$$

Ainsi,

$$0 \leqslant x_n - \sum_{k=1}^n \frac{1}{2n+k} \leqslant \sum_{k=1}^n \frac{1}{(n+k)^2} \leqslant \frac{n}{(n+1)^2} \xrightarrow[n \to +\infty]{} 0$$

On a

$$\sum_{n=1}^{n} \frac{1}{n+k} = H_{2n} - H_n = \ln(2n) + \gamma + o(1) - \ln(n) - \gamma = \ln(2) + o(1)$$

Donc

$$\lim_{n \to +\infty} x_n = -\frac{\ln(2)}{2}$$

Solution 2.8. φ est dérivable sur \mathbb{R} et on a pour tout $x \in \mathbb{R}$, $\varphi'(x) = e^x - 1$.

On a

$$0\varphi(a_n) \leqslant \varphi(a_n) + \varphi(b_n) + \varphi(c_n) \xrightarrow[n \to +\infty]{} 0$$

donc

$$\lim_{n \to +\infty} \varphi(a_n) = 0$$

Par l'absurde, soit $\varepsilon > 0$. Supposons qu'il existe une infinité d'entiers $k \in \mathbb{N}$ tel que $|a_k| > \varepsilon$. Cela implique alors

$$\varphi(a_k) \geqslant \min(\varphi(\varepsilon), \varphi(-\varepsilon)) > 0$$

Figure $2 - e^x - x - 1 \geqslant -x - 1$ pour $x \in \mathbb{R}$.

ce qui contredit $\lim_{n\to+\infty} \varphi(a_n) = 0$. Donc

$$\lim_{n \to +\infty} a_n = 0$$

et c'est pareil pour b_n et c_n .

Solution 2.9.

1. Soit

$$f: \]0,1[\ \rightarrow \ \mathbb{R}$$
$$x \ \mapsto \ x(1-x)$$

On a $f(x) \in]0, \frac{1}{4}]$. Pour tout $n \in \ge 1$, $u_n \in]0, \frac{1}{4}]$. Par récurrence, on a donc $u_{n+1} \le u_n$ et $\lim_{n \to +\infty} u_n = 0$.

Donc v_n est bien définie.

2. On a

$$\frac{1}{u_{n+1}} = \frac{1}{u_n} \times \frac{1}{1 - u_n} = \frac{1}{u_n} (1 + u_n + o(u_n)) = \frac{1}{u_n} + 1 + o(1)$$

Donc $v_{n+1} - v_n \xrightarrow[n \to +\infty]{} 1$. D'après le théorème de Césaro, on a

$$\frac{v_n - v_0}{n} \xrightarrow[n \to +\infty]{} 1$$

donc $v_n \underset{n \to +\infty}{\sim} n$ et $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.

FIGURE $3 - x(1 - x) \in \left]0, \frac{1}{4}\right]$ pour $x \in]0, 1[$.

On a

$$\frac{1}{u_{n+1}} = \frac{1}{u_n} (1 + u_n + u_n^2 + O(u_n^3)) = \frac{1}{u_n} + 1 + u_n + \underbrace{O(u_n^2)}_{= O(\frac{1}{n^2})}$$

donc

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = 1 + u_n + O\left(\frac{1}{n^2}\right)$$

et $u_n \underset{n \to +\infty}{\sim} \frac{1}{n} donc \sum_{k=0}^n u_k \underset{n \to +\infty}{\sim} \ln(n)$. En sommant, on a donc

$$v_n - v_0 = n + \ln(n) + o(\ln(n))$$

On a alors

$$u_n = \frac{1}{n + \ln(n) + o(\ln(n))}$$

$$= \frac{1}{n} \times \frac{1}{1 + \frac{\ln(n)}{n} + o(\frac{\ln(n)}{n})}$$

$$= \frac{1}{n} \left(1 - \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)\right)$$

$$= \frac{1}{n} - \underbrace{\frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)}_{= n}$$

 α_n est le terme genéral d'une série à termes positifs convergentes car $\alpha_n = O\left(\frac{1}{n^{\frac{3}{2}}}\right)$.

$$v_{n+1} - v_n = 1 + \frac{1}{n} + \alpha_n + O\left(\frac{1}{n^2}\right)$$

et en sommant,

$$v_n = n + \ln(n) + O(1)$$

et comme montré auparavant,

$$u_n = \frac{1}{n} - \frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)$$

Solution 2.10.

1. Soit

$$f_n: \mathbb{R}^+ \to \mathbb{R}$$

$$x \mapsto x^n - x - n$$

On a $f'_n(x) = nx^{n-1} - 1 = 0$ si et seulement si

$$x = \left(\frac{1}{n}\right)^{\frac{1}{n-1}} = \alpha_n$$

 $f_n(0) = 0$ et $f_n(x) \xrightarrow[x \to +\infty]{} +\infty$. f_n est monotone strictement sur $]\alpha_n, +\infty[$.

Donc il existe un unique
$$x_n \in \mathbb{R}^+$$
 tel que $f_n(x_n) = 0$

On a $f_n(1) = -n < 0$ donc $x_n > 1$ et $f_n(2) = 2^n - 2 - n > 0$ pour $n \ge 3$ (on a $x_2 = 2$). Donc pour $n \ge 3$, $x_n \in]1, 2[$.

FIGURE $4-x\mapsto x^3-x-3$ a exactement un zéro sur \mathbb{R}_+ .

2. On a $x_n^n = x_n + n \leq 2 + n \ donc$

$$1 \leqslant x_n \leqslant (2+n)^{\frac{1}{n}} = e^{\frac{1}{n}\ln(2+n)} \xrightarrow[n \to +\infty]{} 1$$

Donc

$$\lim_{n \to +\infty} x_n = 1$$

3. On peut poser $x_n = 1 + \varepsilon_n$ avec $\varepsilon_n > 0$ et $\lim_{n \to +\infty} \varepsilon_n = 0$. On a

$$(1 + \varepsilon_n)^n = 1 + \varepsilon_n + n$$

donc

$$n\ln(1+\varepsilon_n) = \ln(1+\varepsilon_n+n) = \ln(n) + \underbrace{\ln\left(1+\frac{1+\varepsilon_n}{n}\right)}_{\substack{n \to +\infty}}$$

 $et\ donc$

$$\varepsilon_n \underset{n \to +\infty}{\sim} \frac{\ln(n)}{n}$$

On a donc

$$x_n = 1 + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

On a enfin

$$(1 + \varepsilon_n)^n = 1 + \varepsilon_n + n = 1 + n + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

d'où

$$\ln(1+\varepsilon_n) = \frac{1}{n}\ln(n+1+\frac{\ln(n)}{n}+o\left(\frac{\ln(n)}{n}\right))$$

$$= \frac{1}{n}\left[\ln(n)+\ln\left(1+\frac{1}{n}+\frac{\ln(n)}{n^2}+o\left(\frac{\ln(n)}{n^2}\right)\right)\right]$$

$$= o\left(\frac{1}{n}\right)$$

$$= \frac{\ln(n)}{n}+\frac{1}{n^2}+o\left(\frac{1}{n^2}\right)$$

donc

$$1 + \varepsilon_n = e^{\frac{\ln(n)}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)} = 1 + \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right)$$

puis

$$\varepsilon_n = \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right)$$

et ainsi

$$x_n = 1 + \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right)$$

Solution 2.11. On note

$$v_n = \lim_{n \to +\infty} \frac{u_n a_0 + u_{n-1} a_1 + \dots + u_0 a_n}{u_0 + \dots + u_n}$$

Si pour tout $n \in \mathbb{N}$, $a_n = a$ alors $v_n = a \xrightarrow[n \to +\infty]{} a$. De manière générale, on a

$$v_n - a = v_n - a \frac{u_n + \dots + u_0}{u_0 + \dots + u_n} = \frac{\sum_{k=0}^n u_{n-k}(a_k - a)}{u_0 + \dots + u_n}$$

Ainsi,

$$|u_n - a| \le \frac{\sum_{k=0}^n u_{n-k} |a_k - a|}{u_0 + \dots + u_n}$$

Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $k \ge N$, $|a_k - a| \le \frac{\varepsilon}{2}$. Comme $(a_k)_{k \in \mathbb{N}}$ converge, on note $M = \sup_{k \in \mathbb{N}} |a_k - a|$. Soit $n \ge N$, on a

$$|v_{n} - a| \leqslant \frac{\sum_{k=0}^{N-1} u_{n-k} |a_{k} - a| + \sum_{k=N}^{n} |a_{k} - a|}{u_{0} + \dots + u_{n}}$$

$$\leqslant \frac{\sum_{k=n-N+1}^{n} u_{k} M}{u_{0} + \dots + u_{n}} + \underbrace{\sum_{k=N}^{n} u_{n-k} \frac{\varepsilon}{2}}_{\leqslant \frac{\varepsilon}{2}}$$

car les u_i sont positifs.

On remarque enfin que

$$u_{n} = o(u_{0} + \dots + u_{n})$$

$$u_{n-1} = o(u_{0} + \dots + u_{n-1}) = o(u_{0} + \dots + u_{n})$$

$$\vdots$$

$$u_{n-N+1} = o(u_{0} + \dots + u_{n})$$

Donc

$$M \frac{\sum_{k=n-N+1}^{n} u_k}{u_0 + \dots + u_n} \xrightarrow[n \to +\infty]{} 0$$

et il existe $N' \in \mathbb{C}$ tel que pour tout $n \geqslant N'$, on a

$$M\frac{\sum_{k=n-N+1}^{n} u_k}{u_0 + \dots + u_n} \leqslant \frac{\varepsilon}{2}$$

et donc pour tout $n \ge \max(N, N')$, on $a |v_n - a| \le \frac{\varepsilon}{2}$ et ainsi

$$\lim_{n \to +\infty} v_n = a$$

Solution 2.12.

1. Pour $n \ge 2$, (iii) donne

$$x - \frac{a_2}{2} - \dots - \frac{a_n}{n!} = \sum_{k=n+1}^{+\infty} \frac{a_k}{k!}$$

Ainsi,

$$0 \leqslant x - \frac{a_2}{2} - \dots - \frac{a_n}{n!} < \sum_{k=n+1}^{+\infty} \frac{k-1}{k!} = \sum_{k=n+1}^{+\infty} \frac{1}{(k-1)!} - \frac{1}{k!} = \frac{1}{n!}$$

où l'inégalité est stricte d'après (ii). Pour $n \ge 2$, on a

$$x - \frac{a_2}{2} < \frac{1}{2!}$$

donc

$$0 \leqslant 2x - \underbrace{a_2}_{\in \mathbb{N}} < 1$$

Donc $a_2 = \lfloor 2x \rfloor$. On a ensuite

$$0 \leqslant n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) - \underbrace{a_n}_{\in \mathbb{N}} < 1$$

donc

$$a_n = \left\lfloor n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) \right\rfloor$$

On a donc bien unicité.

Soit maintenant $(a_n)_{n\in\mathbb{N}}$ définie comme ci-dessus. On a, pour tout $n\geqslant 2$, on a

$$0 \leqslant n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) - \underbrace{a_n}_{C_N} < 1$$

Or

$$0 - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \leqslant \frac{1}{(n-1)!}$$

donc

$$a_n \in \{0, \dots, n-1\}$$

et (i) est vérifié.

On a

$$0 \leqslant x - \sum_{k=2}^{n} \frac{a_k}{k!} < \frac{1}{n!} \xrightarrow[n \to +\infty]{} 0$$

donc (iii) est vérifié, et supposons qu'il existe $n_0 \ge 2$ tel que pour tout $m \ge n_0 + 1$, on $a \ a_m = m - 1$. Alors

$$x = \sum_{k=0}^{n_0} \frac{a_k}{k!} + \sum_{k=n_0+1}^{+\infty} \frac{k-1}{k!}$$

et

$$x - \sum_{k=0}^{n_0} \frac{a_k}{k!} = \sum_{k=n_0+1}^{+\infty} \frac{k-1}{k!} = \frac{1}{n_0!}$$

donc

$$n_0! \left(x - \sum_{k=0}^{n_0} \frac{a_k}{k!} \right) = 1$$

et

$$n_0! \left(x - \sum_{k=0}^{n_0 - 1} \frac{a_{n_0 - 1}}{(n_0 - 1)!} \right) - a_{n_0} = 1$$

En prenant la partie entière, on a donc 0 = 1 ce qui est absurde.

Donc (ii) est vérifié.

2. S'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $a_n = 0$ alors $x \in \mathbb{Q}$.

$$Si \ x = \frac{p}{q} \in \mathbb{Q}, \ on \ a$$

$$x = \frac{a_2}{2} + \dots + \frac{a_n}{n!}$$

si et seulement si

$$a_n = n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right)$$

si et seulement si

$$n!\left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!}\right) \in \mathbb{N}$$

ce qui est vrai dès que $n \ge q$. Donc pour tout n > q, on a $a_n = 0$ par unicité.

3. Soit $l \in [-1, 1]$. Soit $x \in [0, 1[$ avec

$$x = \sum_{k=2}^{+\infty} \frac{a_k}{k!}$$

On a alors

$$n!2\pi x = \underbrace{\sum_{k=2}^{n} \frac{2\pi a_{k} n!}{k!}}_{\in 2\pi \mathbb{Z}} + \frac{2\pi a_{n+1}}{n+1} + \underbrace{\sum_{k \geqslant n+2} \frac{2\pi a_{k} n!}{k!}}_{= \varepsilon_{n}}$$

On a

$$0 \leqslant \varepsilon_n < \frac{2\pi n!}{(n+1)!} = \frac{2\pi}{n+1} \xrightarrow[n \to +\infty]{} 0$$

Donc

$$\sin(n!2\pi x) = \sin\left(\frac{2\pi a_{n+1}}{n+1} + \varepsilon_n\right)$$

et il suffit d'avoir, comme $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$,

$$\frac{a_n}{n} \xrightarrow[n \to +\infty]{} \frac{\arcsin(l)}{2\pi} \in \left[0, \frac{1}{4}\right]$$

On pose alors

$$a_n = \left\lfloor \frac{n \arcsin(l)}{2\pi} \right\rfloor$$

pour $n \ge 2$ et on a $0 \le a_n \le \frac{n}{4} < n-1$ pour tout $n \ge 2$. On a donc le résultat.

Remarque 2.2. Il n'y a pas unicité. Par exemple, pour l=0, x=0 ou $x=\frac{1}{2}$ convient. Plus généralement, pour tout $\frac{p}{q} \in \mathbb{Q}$, pour tout $n \geqslant q$, on a

$$\sin\left(n!2\pi\left(x+\frac{p}{q}\right)\right) = \sin(n!2\pi x)$$

Solution 2.13. Par récurrence, on a $u_n > 0$ pour tout $n \in \mathbb{N}$. Soit

$$g: \mathbb{R}_+ \to \mathbb{R}$$

$$x \mapsto 2\ln(1+x) - x$$

et

$$f: \mathbb{R}_+ \to \mathbb{R}$$

$$x \mapsto 2\ln(1+x)$$

g est dérivable est

$$g'(x) = \frac{1-x}{1+x}$$

donc g est croissante sur [0,1] et décroissante sur $[1,+\infty[$. Comme g(0)=0 et $\lim_{x\to+\infty}g(x)=-\infty$, d'après le théorème des valeurs intermédiaires, il existe un unique réel $l\in]0,+\infty[$ tel que g(l)=0 d'où f(l)=l.

Pour tout $x \in]0, l]$, on a $x \leq f(x) \leq l$ et pour tout x > l, on a $l \leq f(x) \leq x$.

Soit $n \ge 1$. Si $u_n \ge l$ et $u_{n-1} \ge l$, on a $m_n = l$ et $M_n \in \{u_n, u_{n-1}\}$. Il vient donc

$$u_{n+1} = \frac{1}{2}(f(u_n) + f(u_{n-1})) \geqslant f(l) = l$$

FIGURE $5 - x \mapsto 2 \ln(1 + x)$ admet un unique point fixe sur \mathbb{R}_+^* .

et

$$u_{n+1} \leqslant \frac{1}{2}(u_n + u_{n-1}) \leqslant M_n$$

Donc $m_{n+1} = l = m_n$ et $M_{n+1} \leqslant M_n$.

Par récurrence, on a pour tout $k \ge n$, $u_k \ge l$ et $(M_k)_{k \ge n}$ converge vers $\lambda \ge l$ (car décroissante et plus grande que l) et $m_k = l$ pour tout $k \ge n$.

De plus pour tout $k \ge n$, on a

$$u_{k+1} = \frac{1}{2}(f(u_k) + f(u_{k-1})) \leqslant f(M_k)$$

car f est croissante et donc

$$u_{k+2} \leqslant f(M_{k+1}) \leqslant f(M_k)$$

Par passage à la limite, on a $\lambda \leqslant f(\lambda)$ donc $\lambda = f(\lambda)$ et donc $\lambda = l$. Or pout tout $k \geqslant n$, on a

$$\underbrace{m_k}_{=\ l} \leqslant u_k \leqslant M_k \xrightarrow[k \to +\infty]{} l$$

donc

$$u_k \xrightarrow[k \to +\infty]{} l$$

S'il existe $n_0 \in \mathbb{N}^*$ tel que $u_{n_0-1} \geqslant l$ et $u_{n_0} \geqslant l$ alors $\lim_{n \to +\infty} u_n = l$. Or même s'il existe $n_1 \in \mathbb{N}^*$ tel que $u_{n_1-1} \leqslant l$ et $u_{n_1} \leqslant l$, alors on inverse les rôles de M_{n_1} et m_{n_1} .

Si pour tout $n \in \mathbb{N}$,

$$(u_n - l)(u_{n+1} - l) \leqslant 0$$

Supposons par exemple $u_0 \geqslant l$ et $u_1 \leqslant l$. Alors

$$0 \leqslant u_2 - l \leqslant \frac{u_0 - l}{2}$$

et par récurrence, pour tout $k \in \mathbb{N}$, on a $0 \leqslant u_{2k} - l \leqslant \frac{u_0 - l}{2^k}$. Donc $u_{2k} \xrightarrow[k \to +\infty]{} l$ et de même $u_{2k+1} \xrightarrow[k \to +\infty]{} l$ (par valeurs inférieures). Donc

$$u_k \xrightarrow[k \to +\infty]{} l$$

Solution 2.14. Soit $(\theta, \theta') \in [2, 2\pi[^2 \text{ tel que}]$

$$\lim_{k \to +\infty} e^{ipx_n} = e^{i\theta}$$

et

$$\lim_{k \to +\infty} e^{iqx_n} = e^{i\theta'}$$

Soient x, x' deux valeurs d'adhérence de $(x_n)_{n \in \mathbb{N}}$ distinctes. On a

$$\begin{cases} e^{ipx} = e^{i\theta} = e^{ipx'} \\ e^{iqx} = e^{i\theta'} = e^{iqx'} \end{cases}$$

Il existe $(k, k') \in \mathbb{Z}^2$ tel que

$$\begin{cases} px = px' + 2k\pi \\ qx = qx' + 2k\pi \end{cases}$$

et donc $p(x-x')=2k\pi$ et $q(x-x')=2k'\pi$ et alors $\frac{p}{q}\in\mathbb{Q}$ ce qui contredit l'hypothèse. Donc $(u_n)_{n\in\mathbb{N}}$ possède une unique valeur d'adhérence. Comme elle est bornée,

$$(x_n)_{n\in\mathbb{N}}$$
 converge.

 $Si(x_n)_{n\in\mathbb{N}}$ n'est pas bornée, on peut prendre

$$x_n = n!$$

On a

$$e^{2\mathrm{i}\pi n!} = 1$$

et

$$n!e = n! \sum_{k=0}^{+\infty} \frac{1}{k!} = \underbrace{\sum_{k=0}^{n} \frac{n!}{k!}}_{\in \mathbb{N}} + \underbrace{\sum_{k=n+1}^{+\infty} \frac{n!}{k!}}_{\stackrel{k \to +\infty}{\longrightarrow} 0}$$

Si on veut x_n divergente dans $\overline{\mathbb{R}}$, on peut prendre

$$x_n = (-1)^n n!$$

Solution 2.15.

1. On a

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k!} \leqslant \boxed{\frac{n^k}{k!}}$$

2. On a

$$\left(1 + \frac{z}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{z}{n}\right)^k$$

donc

$$\left| \sum_{k=0}^{n} \frac{z^k}{k!} - \binom{n}{k} \frac{z^k}{n^k} \right| \leqslant \sum_{k=0}^{n} |z|^k \underbrace{\left| \frac{1}{k!} - \binom{n}{k} \frac{1}{n^k} \right|}_{\geqslant 0}$$

$$\leqslant \sum_{k=0}^{n} \frac{|z|^k}{k!} - \sum_{k=0}^{n} \binom{k}{n} \frac{|z|^k}{n^k}$$

$$= \sum_{k=0}^{n} \frac{|z|^k}{k!} - \left(1 + \frac{|z|}{n}\right)^n$$

3. On sait que

$$\sum_{k=0}^{n} \frac{|z|^k}{k!} \xrightarrow[k \to +\infty]{} e^{|z|}$$

et

$$\left(1 + \frac{|z|}{n}\right)^n = e^{n\ln\left(1 + \frac{|z|}{n}\right)} = e^{n\left(\frac{|z|}{n} + o\left(\frac{|z|}{n}\right)\right)} = e^{|z|}e^{o(1)} \xrightarrow[n \to +\infty]{} e^{|z|}$$

En reportant dans la question précédente, on a donc

$$\lim_{n \to +\infty} \left(1 + \frac{z}{n} \right)^n = \sum_{k=0}^{+\infty} \frac{z^k}{k!} = e^z$$

Remarque 2.3. Une autre méthode est d'écrire, pour z = a + ib,

$$1 + \frac{z + ib}{n} = 1 + \frac{a}{n} + i\frac{b}{n} = \rho_n e^{i\theta_n}$$

. On a alors

$$\left| 1 + \frac{a + ib}{n} \right| = \sqrt{\left(1 + \frac{a}{n}\right)^2 + \frac{b^2}{n^2}} = \rho_n$$

et alors

$$\rho_n^n = \left| \left(1 + \frac{z}{n} \right) \right|^n$$

$$= e^{\frac{n}{2} \ln \left(\left(1 + \frac{a}{n} \right)^2 + \frac{b^2}{n^2} \right)}$$

$$= e^{\frac{n}{2} \ln \left(1 + \frac{2a}{n} + o\left(\frac{1}{n} \right) \right)}$$

$$= e^{a + o(1)} \xrightarrow[n \to +\infty]{} e^a = |e^z|$$

On écrit ensuite

$$1 + \frac{a + ib}{n} = \rho_n \left(\underbrace{\frac{1 + \frac{a}{n}}{\rho_n}}_{= \cos(\theta_n)} + i \underbrace{\frac{b}{n\rho_n}}_{= \sin(\theta_n)} \right)$$

On a alors

$$\lim_{n \to +\infty} \frac{b}{n\rho_n} = 0 \ et \ \lim_{n \to +\infty} \frac{1 + \frac{a}{n}}{\rho_n} = 1$$

On peut imposer $\theta_n \in]-\pi,\pi]$ et il existe alors $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $\cos(\theta_n) \geqslant 0$. Pour $n \geqslant N$, on a alors $\theta_n \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc

$$\theta_n = \arcsin\left(\frac{b}{n\rho_n}\right)$$

et $n\theta_n = n \arcsin\left(\frac{b}{n\rho_n}\right) \underset{n \to +\infty}{\sim} b$. Finalement, on a bien

$$\left(1 + \frac{z}{n}\right)^n = \rho_n^n e^{i\theta_n} \xrightarrow[n \to +\infty]{} e^a e^{ib} = e^z$$

Solution 2.16. Pour tout $n \ge 2$, $u_n > 0$. On a

$$u_{n+1} = \underbrace{\frac{\sqrt{n+1} - 1}{\sqrt{n+1} + 1}}_{<1} u_n$$

 $donc\ (u_n)_{n\in\mathbb{N}}$ est décroissante donc converge. On a

$$\ln(u_n) = \sum_{k=2}^{n} \underbrace{\ln(1 - \frac{1}{\sqrt{k}}) - \ln(1 + \frac{1}{\sqrt{k}})}_{= v_k} < 0$$

Ensuite,

$$v_k = -\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k}} + o\left(\frac{1}{\sqrt{k}}\right) \underset{k \to +\infty}{\sim} -\frac{2}{\sqrt{k}}$$

Comme $\sum_{k\geqslant 2} \frac{1}{\sqrt{k}}$ diverge, on $a \lim_{n\to +\infty} \ln(u_n) = -\infty$.

Ainsi,

$$\lim_{n \to +\infty} u_n = 0$$

On a ensuite

$$u_n = \exp\left(\sum_{k=2}^n \left[\ln\left(1 - \frac{1}{\sqrt{k}}\right) - \ln\left(1 + \frac{1}{\sqrt{k}}\right)\right]\right)$$

et

$$\ln\left(1 \pm \frac{1}{\sqrt{k}}\right) = \pm \frac{1}{\sqrt{k}} - \frac{1}{2k} + O\left(\frac{1}{k^{\frac{3}{2}}}\right)$$

Donc

$$v_k = -\frac{2}{\sqrt{k}} + O\left(\frac{1}{k^{\frac{3}{2}}}\right)$$

Le terme dans le O est le terme générale d'une série absolument convergent donc convergent, on note ce terme α_k . On a alors

$$\sum_{k=2}^{n} v_k = \sum_{k=2}^{n} \left(-\frac{2}{\sqrt{k}} + \alpha_k \right) = -2 \sum_{k=2}^{n} \frac{1}{\sqrt{k}} + \sum_{k=2}^{+\infty} \alpha_k + o(1)$$

Par comparaison série-intégrale, on a

$$\sum_{k=2}^{n} \frac{1}{\sqrt{k}} \mathop{\sim}_{k \to +\infty} \int_{2}^{n} \frac{dt}{\sqrt{t}} \mathop{\sim}_{k \to +\infty} 2\sqrt{n}$$

Posons

$$w_n = \sum_{k=2}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$$

On étudie la série de terme général $w_n - w_{n-1}$. On a

$$w_{n} - w_{n-1} = \frac{1}{\sqrt{n}} - 2\left(\sqrt{n} - \sqrt{n-1}\right)$$

$$= \frac{1}{\sqrt{n}} - 2\left(1 - \sqrt{1 - \frac{1}{n}}\right)$$

$$= \frac{1}{\sqrt{n}} - 2\left(1 - \left(1 - \frac{1}{2n} + O\left(\frac{1}{n^{2}}\right)\right)\right)$$

$$= \frac{1}{\sqrt{n}} - \frac{\sqrt{n}}{n} + O\left(\frac{1}{n^{\frac{3}{2}}}\right)$$

$$= O\left(\frac{1}{n^{\frac{3}{2}}}\right)$$

Donc la série de terme général $w_n - w_{n-1}$ converge et ainsi $(w_n)_{n \geqslant 2}$ converge : il existe $C' \in \mathbb{R}$ tel que

$$\sum_{k=2}^{n} \frac{1}{\sqrt{n}} = 2\sqrt{n} + C' + o(1)$$

On a donc

$$\ln(u_n) = \sum_{k=2}^{n} v_k = -4\sqrt{n} - 2C' + C + o(1)$$

Ainsi,

$$u_n = \exp(-4\sqrt{n} - 2C' + C + o(1)) \sim Ke^{-4\sqrt{n}}$$

 $où \ K = e^{-2C' + C} > 0.$

Donc

$$u_n^{\alpha} \underset{n \to +\infty}{\sim} K^{\alpha} e^{-4\alpha\sqrt{n}}$$

 $Si \ \alpha \leqslant 0, \lim_{n \to +\infty} u_n^{\alpha} \not\to 0 \ donc$

$$\sum u_n^{\alpha} \ diverge.$$

Si $\alpha > 0$, $u_n^{\alpha} = o\left(\frac{1}{n^2}\right)$ donc d'après le critère de Riemann,

$$\sum u_n^{\alpha} \ converge.$$

Solution 2.17. Soit $S_n = \sum_{k=0}^n u_k$. On a

$$u_{n+1} + \dots + u_{2n} \geqslant nu_{2n} \geqslant 0$$

 $Si(S_n)$ converge alors $S_{2n} - S_n \xrightarrow[n \to +\infty]{} 0$. Alors $\lim_{n \to +\infty} nu_{2n} = 0$ et $\lim_{n \to +\infty} 2nu_{2n} = 0$.

Comme on a $(2n+1)u_{2n} \geqslant (2n+1)u_{2n+1} \geqslant 0$, on a aussi $\lim_{n\to+\infty} (2n+1)u_{2n} = 0$. Finalement, on a bien

$$\lim_{n \to +\infty} n u_n = 0 \text{ et donc } u_n = o\left(\frac{1}{n}\right)$$

Si $\{p \in \mathbb{N} | pu_p \geqslant 1\}$ est infini, alors $u_p \neq o\left(\frac{1}{p}\right)$ donc

$$\boxed{ \sum u_p \ diverge. }$$

Remarque 2.4. Ce n'est pas vrai si $(u_n)_{n\in\mathbb{N}}$ n'est pas décroissante, par exemple si $u_n = \frac{1}{n}$ si n est un carré et 0 sinon.

Solution 2.18.

1. C'est une série à termes positifs. On a

$$n^{\frac{1}{n}} = e^{\frac{1}{n}\ln(n)} \xrightarrow[n \to +\infty]{} 1$$

Ainsi

$$n^{-1-\frac{1}{n}} \underset{n \to +\infty}{\sim} \frac{1}{n}$$

et donc

2. C'est une série à termes positifs. On a

$$u_n \geqslant \int_1^{\frac{\pi}{2}} t^n \sin(1) dt = \frac{\sin(1)}{n+1} \times \left(\left(\frac{\pi}{2} \right)^{n+1} - 1 \right) \xrightarrow[n \to +\infty]{} + \infty$$

donc

$$\sum u_n \ diverge \ grossi\`erement.$$

3. On écrit

$$\frac{n!}{e} = \sum_{k=0}^{+\infty} \frac{n!}{k!} (-1)^k = \underbrace{\sum_{k=0}^{n} \frac{n!}{k!} (-1)^k}_{\in \mathbb{Z}} + \frac{(-1)^{n+1}}{n+1} + \sum_{k=n+2}^{+\infty} \frac{n!}{k!} (-1)^k$$

et

$$\left| \sum_{k=n+2}^{+\infty} \frac{n!}{k!} (-1)^k \right| < \frac{1}{(n+1)(n+2)}$$

d'après le critère spécial des séries alternées.

Donc

$$\sin\left(2\pi\frac{n!}{e}\right) = \sin\left(\frac{2\pi(-1)^{n+1}}{n+1} + O\left(\frac{1}{n^2}\right)\right)$$

$$= \underbrace{\frac{2\pi(-1)^{n+1}}{n+1}}_{terme\ g\acute{e}n\acute{e}ral\ d'une\ s\acute{e}rie\ altern\acute{e}}_{convergente} + \underbrace{O\left(\frac{1}{n^2}\right)}_{terme\ g\acute{e}n\acute{e}ral\ d'une\ s\acute{e}rie\ absolument\ convergente}$$

Donc

$$\sum u_n$$
 converge.

4. Si $\alpha \leqslant 0$, $u_n \underset{n \to +\infty}{\sim} \frac{1}{\ln(n)}$ et comme $\frac{1}{n} = O\left(\frac{1}{\ln(n)}\right)$,

$$\sum u_n \ diverge.$$

Si $\alpha > 1$, $|u_n| \underset{n \to +\infty}{\sim} \frac{1}{n^{\alpha}}$ donc d'après le critère de Riemann,

$$\sum u_n$$
 convegre absolument donc converge.

 $Si \ \alpha \in]0,1], \ on \ \acute{e}crit$

$$u_{n} = \frac{(-1)^{n}}{n^{\alpha}} \times \frac{1}{1 + (-1)^{n} \frac{\ln(n)}{n^{\alpha}}}$$

$$= \frac{(-1)^{n}}{n^{\alpha}} \left(1 - (-1)^{n} \frac{\ln(n)}{n^{\alpha}} + o\left(\frac{\ln(n)}{n^{\alpha}}\right)\right)$$

$$= \underbrace{\frac{(-1)^{n}}{n^{\alpha}}}_{terme général} \underbrace{-\frac{\ln(n)}{n^{2\alpha}} + o\left(\frac{\ln(n)}{n^{2\alpha}}\right)}_{terme général}$$

$$d'une série alternée convergente
$$\frac{-\frac{\ln(n)}{n^{2\alpha}} < 0}{terme général}$$

$$d'une série convergente
$$ssi \alpha > \frac{1}{2}$$$$$$

$$\sum u_n \ converge \ si \ et \ seulement \ si \ \alpha > \frac{1}{2}.$$

Figure 6 – $\sin(t) \geqslant \frac{2}{\pi}t$ pour $t \in \left[0, \frac{\pi}{2}\right]$.

Remarque 2.5. Soit $\alpha \in [0,1]$ et

$$u_n = \int_0^\alpha t^n \sin(t) dt \geqslant 0$$

Si $\alpha < 1$, $u_n \leqslant \alpha^{n+1}$, terme général d'une série convergente donc $\sum u_n$ converge.

 $Si \alpha = 1$, on utilise

$$\forall t \in \left[0, \frac{\pi}{2}\right], \sin(t) \geqslant \frac{2}{\pi}t$$

Alors $u_n \geqslant \frac{2}{\pi(n+2)}$, terme générale d'une série divergente donc $\sum u_n$ diverge.

Solution 2.19.

On a

$$u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k}$$

 u_n est le reste d'ordre n d'une série alternée, donc u_n est du signe de $\frac{(-1)^n}{n}$. Donc on a

$$u_{n+1} \times u_n \leqslant 0$$

Par ailleurs,

$$|u_n| = \underbrace{\frac{1}{n} - \frac{1}{n+1}}_{= \frac{1}{n(n+1)}} + \underbrace{\frac{1}{n+2} - \frac{1}{n+3}}_{= \frac{1}{(n+2)(n+3)}} + \dots = \sum_{p=0}^{+\infty} \frac{1}{(n+2p)(n+2p+1)}$$

Donc $(|u_n|)_{n\geqslant 1}$ est décroissante.

D'après le critère des séries alternées,

$$\sum u_n$$
 converge.

Pour calculer la somme, on peut chercher si la famille $(u_{n,p})_{\substack{n \geq 1 \ p \in \mathbb{N}}}$ est sommable où

$$u_{n,p} = \frac{(-1)^n}{(n+2p)(n+2p+1)}$$

Soit $p \ge 0$, on a

$$\sum_{n=1}^{+\infty} \frac{1}{(n+2p)(n+2p+1)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n+2p} - \frac{1}{n+2p+1} \right) = \frac{1}{2p+1}$$

Donc

$$\sum_{n\in\mathbb{N}}\sum_{n\geqslant 1}|u_{n,p}|=+\infty$$

Ainsi, cette famille n'est pas sommable. Essayons plutôt de calculer u_n d'abord : soit $n \ge 1$ fixé et $N \ge n$. On a

$$\sum_{k=n}^{N} \frac{(-1)^k}{k} = \sum_{k=n}^{N} (-1)^k \int_0^1 t^{k-1} dt$$

$$= -\sum_{k=n}^{N} \int_0^1 (-t)^{k-1} dt$$

$$= -\int_0^1 \sum_{k=n}^{N} (-t)^{k-1} dt$$

$$= \int_0^1 (-t)^n \frac{1 - (-t)^{N-n+1}}{1+t} dt$$

Ainsi,

$$\sum_{k=n}^{N} \frac{(-1)^k}{k} = -\int_0^1 \frac{(-t)^n}{1+t} dt + \int_0^1 \frac{(-t)^{N+1}}{1+t} dt$$

et

$$\left| \int_0^1 \frac{(-t)^{N+1}}{1+t} dt \right| \leqslant \int_0^1 t^{N+1} dt = \frac{1}{N+2}$$

Donc

$$u_n = -\int_0^1 \frac{(-t)^n}{1+t} dt$$

Soit alors $M \geqslant 1$. On a

$$\sum_{n=1}^{M} u_n = \sum_{n=1}^{M} \left(-\int_0^1 \frac{(-t)^n}{t+1} dt \right)$$

$$= -\int_0^1 \frac{1}{1+t} \sum_{n=1}^{M} (-t)^n dt$$

$$= -\int_0^1 \frac{-t}{1+t} \frac{1 - (-t)^M}{1+t} dt$$

$$= \int_0^1 \frac{t}{(1+t)^2} dt + \int_0^1 \frac{(-t)^{M+1}}{(1+t)^2} dt$$

Comme

$$\left| \int_0^1 \frac{(-t)^{M+1}}{(1+t)^2} dt \right| \leqslant \int_0^1 t^{M+1} dt = \frac{1}{M+2} \xrightarrow[M \to +\infty]{} 0$$

on a

$$\sum_{n=1}^{+\infty} u_n = \int_0^1 \frac{t}{(1+t)^2} dt$$

$$= \int_0^1 \frac{(t+1)-1}{(1+t)^2} dt$$

$$= \int_0^1 \frac{1}{1+t} dt - \int_0^1 \frac{1}{(1+t)^2} dt$$

$$= \left[\ln (1+t)\right]_0^1 + \left[\frac{1}{2} - 1\right]$$

$$= \ln(2) - \frac{1}{2}$$

Finalement,

$$\sum_{n=1}^{+\infty} u_n = \ln(2) - \frac{1}{2}$$

$$\frac{1}{(3n)!} = \left(\frac{1}{n^2}\right)$$

donc d'après le critère de Riemann,

$$\sum u_n$$
 converge.

Posons

$$\begin{cases} S_0 = \sum_{n=0}^{+\infty} \frac{1}{(3n)!} \\ S_1 = \sum_{n=0}^{+\infty} \frac{1}{(3n+1)!} \\ S_2 = \sum_{n=0}^{+\infty} \frac{1}{(3n+2)!} \end{cases}$$

 $On \ a$

$$\begin{cases} S_0 + S_1 + S_2 &= e \\ S_0 + jS_1 + j^2S_2 &= \exp(j) \\ S_0 + j^2S_1 + jS_2 &= \exp(j^2) \end{cases}$$

où $j = \exp\left(\frac{2i\pi}{3}\right)$. En sommant les trois lignes, on a

$$3S_0 = e + \exp(j) + \exp(j^2) = e + e^{-\frac{1}{2}} \left(2\cos\left(\frac{\sqrt{3}}{2}\right) \right)$$

Donc

$$\sum_{n=0}^{+\infty} u_n = \frac{1}{3} \left(e + e^{-\frac{1}{2}} \left(2 \cos \left(\frac{\sqrt{3}}{2} \right) \right) \right)$$

S'il existe $p \ge 0$ tel que $n = p^3$, alors

$$\left| n^{\frac{1}{3}} \right| = p$$

et

$$\left| (n-1)^{\frac{1}{3}} \right| = \left| (p^3 - 1)^{\frac{1}{3}} \right| = p - 1$$

Sinon, $n^{\frac{1}{3}} \notin \mathbb{N}$. Soit $k = \lfloor n^{\frac{1}{3}} \rfloor$. Alors $k^3 < n \leqslant (k+1)^3$ donc $k^3 \leqslant n-1 < (k+1)^3$ d'où $k \leqslant (n-1)^{\frac{1}{3}} < k+1$. Donc $\lfloor (n-1)^{\frac{1}{3}} \rfloor = k$.

Donc $\sum u_n$ est une série lacunaire. Comme $u_{p^3} = O\left(\frac{1}{p^3}\right)$, d'après le critère de Riemann,

Sa somme vaut

$$\sum_{n=1}^{+\infty} u_n = \sum_{p=1}^{+\infty} \frac{1}{4p^3 - p}$$

On décompose en éléments simples :

$$\frac{1}{4x^3 - x} = \frac{1}{x(4x^2 - 1)} = \frac{-1}{x} + \frac{1}{2x - 1} + \frac{1}{2x + 1}$$

Donc la somme partielle jusqu'au rang n vaut

$$S_{n} = -\sum_{p=1}^{n} \frac{1}{p} + \sum_{p=1}^{n} \frac{1}{2p-1} + \sum_{p=1}^{n} \frac{1}{2p+1}$$

$$= -H_{n} + 1 + \frac{1}{2n+1} + 2\sum_{p=1}^{n-1} \frac{1}{2p+1}$$

$$= -H_{n} + 1 + \frac{1}{2n+1} + 2\left(\sum_{k=1}^{2n-1} \frac{1}{k} - 1 - \sum_{k=1}^{n-1} \frac{1}{2k}\right)$$

$$= -H_{n} + 2H_{2n-1} - H_{n-1} - 1 + \frac{1}{2n+1}$$

$$= -\ln(n) + 2\ln(2n-1) - \ln(n-1) - 1 + \underbrace{\frac{1}{2n+1}}_{=o(1)} + o(1)$$

$$= \ln\left(\frac{(2n-1)^{2}}{n(n-1)}\right) - 1 + o(1) \xrightarrow[n \to +\infty]{} \ln(4) - 1$$

Donc

$$\sum_{n=1}^{+\infty} u_n = \ln(4) - 1$$

Solution 2.20. Soit $\varepsilon > 0$ tel que $a + \varepsilon < 0$. Il existe A > 0 tel que pour tout x > A,

$$a - \varepsilon \leqslant \frac{f'(x)}{f(x)} \leqslant a + \varepsilon$$

Alors

$$(a-\varepsilon)f(x) \leqslant f'(x) \leqslant (+\varepsilon)f(x)$$

On voit donc que

$$f'(x) - f(x)(a + \varepsilon) \le 0$$

On pose alors (sorte d'inéquation différentielle)

$$g_1(x) = f(x)e^{-(a+\varepsilon)x}$$

 $On \ a$

$$g_1'(x) = e^{-(a+\varepsilon)x} \left(f'(x) - f(x)(a+\varepsilon) \right) \le 0$$

pour tout $x \ge A$. Donc g_1 est décroissante sur $[A, +\infty[$. Alors

$$0 < g_1(x) \leqslant g_1(A) = f(A)e^{-(a+\varepsilon)A}$$

Alors

$$0 < f(x) \le (f(A)e^{-(a+\varepsilon)A})e^{(a+\varepsilon)x}$$

De même, pour $x \geqslant A$,

$$(f(A)e^{-(a+\varepsilon)A})e^{(a-\varepsilon)x} \leqslant f(x)$$

 $car g_2(x) = f(x)e^{-(a-\varepsilon)x}$ est croissante sur $[A, +\infty[$.

Donc

$$f(n) \leqslant (f(A)e^{-(a+\varepsilon)A}) e^{(a+\varepsilon)n}$$

Comme $a + \varepsilon < 0$,

$$\sum_{n\geqslant 1} f(n) \ converge.$$

De plus

$$f(A)e^{-(a-\varepsilon)A}\frac{e^{(a-\varepsilon)N}}{1-e^{a-\varepsilon}} \leqslant R_N = \sum_{n=N}^{+\infty} f(n) \leqslant f(A)e^{-(a+\varepsilon)A}\frac{e^{(a+\varepsilon)N}}{1+e^{a+\varepsilon}}$$

Donc

$$R_N = O_{n \to +\infty} (e^{aN}) \text{ et } e^{aN} = O_{n \to +\infty} (R_N)$$

Solution 2.21. On a

$$S_n = \sum_{k=1}^n \underbrace{\frac{e^k}{k}}_{\substack{k \to +\infty}} \xrightarrow[n \to +\infty]{} + \infty$$

On utilise la règle d'Abel : on écrit $e^k = B_k - B_{k-1}$ avec

$$\begin{cases} B_k = \sum_{j=0}^k e^j = \frac{e^{k+1}-1}{e-1} \\ B_{-1} = 0 \end{cases}$$

Alors

$$S_{n} = \sum_{k=1}^{n} \frac{B_{k}}{k} - \sum_{k=0}^{n-1} \frac{B_{k}}{k+1} = -1 + \sum_{k=1}^{n-1} \underbrace{\frac{B_{k}}{k(k+1)}}_{\substack{k \to +\infty}} + \underbrace{\frac{B_{n}}{n}}_{\substack{n \to +\infty}} + \underbrace{\frac{B_{n}}{n}}_{\substack{n \to +\infty}}$$

Donc

$$S_n \underset{n \to +\infty}{\sim} \frac{e^{n+1}}{n(e-1)}$$

Solution 2.22.

1. $u_n > 0$ et

$$u_n = e^{n^{\alpha} \ln\left(1 - \frac{1}{n}\right)} = e^{n^{\alpha}\left(-\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right)} = e^{-n^{\alpha - 1}} + O\left(n^{\alpha - 2}\right)$$

 $Si \ \alpha < 1, \ u_n \xrightarrow[n \to +\infty]{} 1 \ donc$

 $Si \ \alpha = 1, \ u_n \xrightarrow[n \to +\infty]{\frac{1}{2}} donc$

$$\sum u_n$$
 diverge grossièrement.

 $Si \alpha > 1$, on a

$$-n^{\alpha-1} + O\left(n^{\alpha-2}\right) \underset{n \to +\infty}{\sim} -n^{\alpha-1}$$

donc il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$,

$$-n^{\alpha-1} + O\left(n^{\alpha-1}\right) \leqslant \frac{-n^{\alpha-1}}{2}$$

d'où

$$u_n \leqslant e^{-\frac{n^{\alpha-1}}{2}} = o_{n \to +\infty} \left(\frac{1}{n^2}\right)$$

donc

$$\boxed{\sum u_n \ converge.}$$

2. On a $u_n > 0$ et

$$\left(\frac{1}{k}\right)^{\frac{1}{k}} e^{-\frac{1}{k}\ln(k)} \xrightarrow[k \to +\infty]{} 1$$

donc par comparaison des sommes partielles, on a

$$\sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\frac{1}{k}} \underset{n \to +\infty}{\sim} n$$

Donc $u_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$ et

$$\sum u_n \ diverge.$$

3. On écrit $n!e = \lfloor n!e \rfloor + \alpha_n$. Alors

$$\sin(n!\pi e) = (-1)^{\lfloor n!e\rfloor} \sin(\alpha_n \pi)$$

On écrit

$$n!e = \sum_{k=0}^{n-2} \frac{n!}{k!} + n + 1 + \frac{1}{n+1} + \sum_{k=n+1}^{+\infty} \frac{n!}{k!}$$

On pose $v_n = \sum_{k=0}^n \frac{1}{k!}$ et $w_n = v_n + \frac{1}{n \times n!}$. On a

$$v_n \leqslant e \leqslant w_n$$

donc

$$0 \leqslant e - v_n \leqslant \frac{1}{n \times n!}$$

d'où

$$0 \leqslant \sum_{k=n+1}^{+\infty} \frac{n!}{k!} \leqslant \frac{n!}{(n+1)(n+1)!} = \frac{1}{(n+1)^2}$$

Donc

$$n!e\pi = \sum_{k=0}^{n-2} \frac{n!}{k!} \pi + (n+1)\pi + \frac{\pi}{n+1} + O\left(\frac{1}{n^2}\right)$$

Finalement, a

$$\frac{\sin(n!e\pi)}{\ln(n)} = (-1)^{n+1} \frac{\sin\left(\frac{\pi}{n+1} + O\left(\frac{1}{n^2}\right)\right)}{\ln(n)} = \underbrace{\frac{(-1)^{n+1}\pi}{\ln(n)(n+1)}}_{terme\ g\acute{e}n\acute{e}ral\ d'une\ s\acute{e}rie\ altern\acute{e}e}} + \underbrace{O\left(\frac{1}{n^2\ln(n)}\right)}_{terme\ g\acute{e}n\acute{e}ral\ d'une\ s\acute{e}rie\ absolument}}$$

Donc

$$\sum u_n$$
 converge.

Solution 2.23.

1. On a

$$u_n = (a+b+c)\ln(n) + b\ln\left(1 + \frac{1}{n}\right) + c\ln\left(1 + \frac{2}{n}\right) = (a+b+c)\ln(n) + \frac{b+2c}{n} + O\left(\frac{1}{n^2}\right)$$

 $Donc \sum u_n$ converge si et seulement si

$$\begin{cases} a+b+c = 0 \\ b+2c = 0 \end{cases}$$

si et seulement si

$$\begin{cases} a = c \\ b = -2c \end{cases}$$

Donc

$$\sum u_n \text{ converge si et seulement sia} = b \text{ et } b = -2c \text{ avec } c \in \mathbb{R}$$

Prenons c = 1 pour calculer la somme. On a

$$\sum_{n=1}^{N} u_n = \sum_{n=1}^{N} \ln(n) - 2\ln(n+1) + \ln(n+2)$$

$$= \sum_{n=1}^{N} \ln(n) - \ln(n+1) + \sum_{n=1}^{N} \ln(n+2) - \ln(n+1)$$

$$= -\ln(N+1) - \ln(2) + \ln(N+2)$$

$$= \ln\left(\frac{N+2}{N+1}\right) - \ln(2) \xrightarrow[n \to +\infty]{} - \ln(2)$$

Donc

$$\sum_{n=1}^{+\infty} u_n = -\ln(2)$$

2. On a $u_n = \bigcup_{n \to +\infty} \left(\frac{1}{n^2}\right)$ donc d'après le critère de Riemann,

$$\sum u_n \ converge.$$

On écrit

$$u_n = \frac{2^n \left(3^{2^{n-1}} - 1\right)}{\left(3^{2^{n-1}} + 1\right)\left(3^{2^n} - 1\right)} = \frac{2^n \left(3^{2^{n-1}} + 1 - 2\right)}{3^{2^n} - 1} = \underbrace{\frac{2^n}{3^{2^{n-1}} - 1}}_{= v_n} - \underbrace{\frac{2^{n+1}}{3^{2^n} - 1}}_{= v_{n+1}}$$

Donc

$$\sum_{n=1}^{+\infty} u_n = v_1 = 1$$

3. On remarque que $k-n\left\lfloor\frac{k}{n}\right\rfloor$ est le reste de la division euclidienne de k par n. Donc ce reste est borné par k-1. Donc $u_n=\mathop{O}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)$. D'après le critère de Riemann,

$$u_n$$
 converge.

On note alors

$$J_r = \{ n \in \mathbb{N}^* | n \equiv r[k] \}$$

 $(J_r)_{r\in\{0,\dots,k-1\}}$ forme une partition de \mathbb{N}^* . On a

$$\sum_{n \in J_r} \frac{r}{n(n+1)} = 0$$

 $si \ r = 0. \ Si \ r \in \{1, \dots, k-1\}, \ on \ a$

$$S_r = r \sum_{p=0}^{+\infty} \frac{1}{(kp+r)(kp+r+1)}$$

et par sommabilité on a

$$S = \sum_{k=1}^{+\infty} \frac{n - k \left\lfloor \frac{n}{k} \right\rfloor}{n(n+1)} = \sum_{r=1}^{k-1} S_r = \sum_{p=0}^{+\infty} \sum_{r=1}^{k-1} \frac{1}{(kp+r)(kp+r+1)}$$

Soit $p \in \mathbb{N}$ fixé. On a

$$v_p = \sum_{r=1}^{k-1} \frac{r}{(kp+r)(kp+r+1)}$$

$$= \sum_{r=1}^{k-1} \frac{r}{kp+r} - \sum_{r=1}^{k-1} \frac{r}{kp+r+1}$$

$$= \sum_{r=1}^{k-1} \frac{r}{kp+r} - \sum_{r=2}^{k} \frac{r-1}{kp+r}$$

$$= \frac{1}{kp+1} + \sum_{r=2}^{k-1} \frac{1}{kp+r} - \frac{k-1}{k(p+1)}$$

$$= \sum_{r=1}^{k} \frac{1}{kp+r} - \frac{1}{p+1}$$

Ainsi,

$$\sum_{p=0}^{N} v_p = \sum_{n=1}^{k(N+1)} \frac{1}{n} - \sum_{n=1}^{N+1} \frac{1}{n} = \ln\left(\frac{k(N+1)}{N+1}\right) + \underset{n \to +\infty}{o}(1) = \ln(k) + \underset{n \to +\infty}{o}(1)$$

Donc

$$\sum_{n=1}^{+\infty} u_n = \ln(k)$$

4. On a

$$\arctan(u) + \arctan(v) = \arctan\left(\frac{u+v}{1-uv}\right)$$

donc

$$\arctan\left(\frac{1}{n^2+n+1}\right) = \arctan(n+1) - \arctan(n)$$

Ainsi,

$$\sum_{n=0}^{+\infty} \arctan\left(\frac{1}{n^2 + n + 1}\right) = \frac{\pi}{2}$$

Solution 2.24. On a

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} k u_k - \sum_{k=2}^{n+1} (k-1)u_k = u_1 - nu_{n+1} + \sum_{k=2}^{n} u_k = \sum_{k=1}^{n} u_k - nu_{n+1}$$

 $Si\ (nu_n)_{n\geqslant 1}$, on a donc évidemment d'après ce qui précède

$$\sum_{k=1}^{+\infty} v_k = \sum_{k=1}^{+\infty} u_k$$

 $Si(u_n)_{n\geqslant 1}$ décroît, $v_n\geqslant 0$ et on a

$$\frac{v_k}{k} = u_k - u_{k+1}$$

et donc

$$\sum_{k=n}^{+\infty} \frac{v_k}{k} = u_n = \sum_{k=1}^{+\infty} w_{k,n}$$

en définissant $w_{n,k} = \frac{v_k}{k}$ si $k \ge n$ et 0 sinon. On a $w_{k,n} \ge 0$ car $(u_n)_{n \ge 1}$ est décroissante.

Ainsi, $\sum_{n\geqslant 1} u_n$ converge si et seulement si $(u_n)_{n\in\mathbb{N}^*}$ sommable si et seulement si $(w_{n,k})_{k\in\mathbb{N}^*}$ si et seulement si $(d'après\ le\ th\'eor\`eme\ de\ Fubini)$

$$\sum_{k=1}^{+\infty} \sum_{n=1}^{+\infty} w_{n,k} < +\infty$$

$$\sum_{k=1}^{\infty} \frac{v_k}{k} = v_k$$

Et dans ce cas (toujours d'après le théorème de Fubini),

$$\sum_{n=1}^{+\infty} \underbrace{\sum_{k=1}^{+\infty} w_{n,k}}_{= u_n} = \sum_{k=1}^{+\infty} \underbrace{\sum_{n=1}^{+\infty} w_{n,k}}_{= v_k} < +\infty$$

donc

$$\sum_{k=1}^{+\infty} v_k = \sum_{k=1}^{+\infty} u_k$$

On pose

$$u_n = \frac{1}{n(n+1)\dots(n+p)}$$

et

$$v_n = \frac{1}{(n+1)\dots(n+p)} - \frac{n}{(n+1)\dots(n+p+1)} = \frac{p+1}{(n+1)\dots(n+p+1)}$$

Soit

$$S_p = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+p)} = (p+1)\sum_{n=2}^{+\infty} \frac{1}{n(n+1)\dots(n+p)} = (p+1)\left(S_p - \frac{1}{p!}\right)$$

Ainsi,

$$\left|\sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+p)}\right| = \frac{p+1}{p(p!)}$$

En effet, on a alors $\lim_{k\to +\infty} \frac{u_{k+1}}{u_k} = +\infty$ et d'après la règle de d'Alembert, $\sum u_k$ diverge. Soit ensuite $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $k \geqslant N$,

$$0 \leqslant \frac{u_k}{u_{k+1}} \leqslant \varepsilon$$

Soit $n \ge N$. Pour $k \ge N + 1$, on a

$$u_k \leqslant \varepsilon u_{k+1} \leqslant \cdots \leqslant \varepsilon^{n-k} u_n$$

 $pour \ k \leq n-1.$

Alors

$$0 \leqslant \sum_{k=0}^{n-1} u_k \leqslant \sum_{k=0}^{N} u_k + \sum_{k=N+1}^{n-1} u_k \leqslant \left(\varepsilon + \varepsilon^2 + \dots + \varepsilon^{n-N-1} u_n\right)$$

On peut supposer que $\varepsilon < \frac{1}{2}$ et alors

$$0 \leqslant \sum_{k=0}^{n-1} u_k \leqslant \frac{\varepsilon}{1-\varepsilon} u_n \leqslant 2\varepsilon u_n$$

Donc on a bien le résultat voulu.

Pour revenir à l'exercice, on a alors

$$v_n \underset{n \to +\infty}{\sim} \frac{n!}{(n+q)!} \underset{n \to +\infty}{\sim} \frac{1}{n^q}$$

qui est le terme général d'une série absolument convergente. Donc

$$\sum v_n$$
 converge.

Solution 2.26. On a

$$\left| \frac{z^{nb}}{z^{na+c} + 1} \right| = \frac{|z|^{nb}}{|1 + z^{na+c}|} \underset{n \to +\infty}{\sim} |z|^{nb}$$

 $car |z| < 1. |z|^{nb}$ est le terme général d'une série absolument convergente.

Pour n fini, on a

$$\frac{1}{1+z^{na+c}} = \sum_{k=0}^{+\infty} (-z^{na+c})^k$$

Montrons donc que $\left(z^{nb}\left(\left(-z^{na+c}\right)^k\right)\right)_{(k,n)\in\mathbb{N}^2}$ est sommable. On a

$$\sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} |z|^{nb} |z|^{k(na+c)} = \sum_{n=0}^{+\infty} \frac{|z|^{nb}}{1 - |z|^{na+c}} < +\infty$$

d'après ce qui précède. On a sommabilité, donc d'après le théorème de Fubini,

$$\sum_{n=0}^{+\infty} \frac{z^{nb}}{1+z^{na+c}} = \sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} z^{nb} (-z^{na+c})^k$$

$$= \sum_{k=0}^{+\infty} (-1)^k z^{ck} \left(\sum_{n=0}^{+\infty} z^{n(b+ak)}\right)$$

$$= \sum_{k=0}^{+\infty} \frac{(-1)^k z^{ck}}{1-z^{b+ak}}$$

Ainsi, on a bien

$$\sum_{n=0}^{+\infty} \frac{z^{nb}}{1+z^{na+c}} = \sum_{k=0}^{+\infty} \frac{(-1)^k z^{ck}}{1-z^{b+ak}}$$

Solution 2.27. On a

$$b_q = \sum_{n=1}^q u_{n,q} = \sum_{n=1}^{+\infty} u_{n,q}$$

Montrons donc que la famille des $(u_{n,q})_{(n,q)\in(\mathbb{N}^*)^2}$ est sommable. On a

$$\sum_{n=1}^{+\infty} \sum_{q=1}^{+\infty} |u_{n,q}| = \sum_{n=1}^{+\infty} \sum_{q=n}^{+\infty} \frac{n|a_n|}{q(q+1)}$$

$$= \sum_{n=1}^{+\infty} n|a_n| \left(\sum_{q=n}^{+\infty} \frac{1}{q} - \frac{1}{q+1}\right)$$

$$= \sum_{n=1}^{+\infty} |a_n| < +\infty$$

Donc le théorème de Fubini s'applique et on a

$$\sum_{q=1}^{+\infty} \sum_{n=1}^{+\infty} u_{n,q} = \sum_{q=1}^{+\infty} b_q = \sum_{n=1}^{+\infty} \sum_{q=1}^{+\infty} u_{n,q} = \sum_{n=1}^{+\infty} a_n$$

Donc

$$\sum_{q=1}^{+\infty} b_q = \sum_{n=1}^{+\infty} a_n$$

Solution 2.28. D'après l'exercice précédent, $\sum v_n$ converge et

$$\sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} u_n$$

On applique l'inégalité de la moyenne géométrique et arithmétique à $(u_1, 2u_2, \dots, nu_n)$:

$$\sqrt[n]{u_1 \times 2u_2 \times \dots \times nu_n} = w_n \sqrt[n]{n!} \leqslant \frac{1}{n} (u_1 + 2u_2 + \dots + nu_n) = (n+1)v_n$$

Donc on a

$$w_n \leqslant \frac{(n+1)v_n}{\sqrt[n]{n!}}$$

On étudie donc $\sqrt[n]{n!}$:

$$\sqrt[n]{n!} = \exp\left(\frac{1}{n}\ln(n!)\right)$$

$$= \exp\left(\frac{1}{n}\ln\left(n^n e^{-n}\sqrt{2\pi n}\left(1 + \underset{n \to +\infty}{o}(1)\right)\right)\right)$$

$$= \exp\left(\frac{1}{n}\left(n\ln(n) - n + \frac{1}{2}\ln(\pi n) + \ln\left(1 + \underset{n \to +\infty}{o}(1)\right)\right)\right)$$

$$= n\exp\left(-1 + \underset{n \to +\infty}{o}(1)\right)$$

$$\underset{n \to +\infty}{\sim} \frac{n}{e}$$

Donc

$$\lim_{n \to +\infty} \frac{n+1}{\sqrt[n]{n!}} = e$$

Ainsi, $w_n = \underset{n \to +\infty}{O}(v_n) \ donc$

$$\sum w_n$$
 converge.

Montrons que pour tout $n \geqslant 1$,

$$\frac{n+1}{\sqrt[n]{n!}} \leqslant e$$

Cela équivaut à $(n+1)^n \leq e^n n!$ si et seulement si

$$\sum_{k=0}^{n} \binom{n}{k} n^k \leqslant n! e^n$$

ce qui est vrai car pour tout $k \in \{0, ..., n\}$ on a $\frac{1}{(n-k)!} \leq 1$. Donc $w_n \leq ev_n$ pour tout $n \geq 1$ et donc

$$\left| \sum_{n=1}^{+\infty} w_n \leqslant e \sum_{n=1}^{+\infty} v_n = e \sum_{n=1}^{+\infty} u_n \right|$$

Pour montrer que e est la meilleure constante possible, on forme pour $N \in \mathbb{N}^*$, $u_{n,N} = \frac{1}{n}$ si $n \leq N$ et 0 sinon. On a

$$\sum_{n=1}^{+\infty} = H_n < +\infty$$

Dans ce cas, on a

$$w_{n,N} = \sqrt[n]{u_{1,N} \dots w_{n,N}} = \frac{1}{\sqrt[n]{n!}} = \frac{n+1}{\sqrt[n]{n!}} v_n$$

pour $n \leq N$ et 0 sinon. On a alors

$$\sum_{n=1}^{+\infty} w_{n,N} = \sum_{n=1}^{N} w_{n,N} = \sum_{n=1}^{N} \frac{n+1}{\sqrt[n]{n!}} v_n$$

En divisant par $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$, on a donc

$$\frac{\sum_{n=1}^{+\infty} w_{n,N}}{\sum_{n=1}^{+\infty} u_{n,N}} = \frac{\sum_{n=1}^{N} v_{n,N} \times \frac{n+1}{\sqrt[N]{n!}}}{\sum_{n=1}^{+\infty} v_{n,N}} \xrightarrow[n \to +\infty]{} e$$

d'après le théorème de Césaro.

On a trouvé une suite donc la constante C est égale à e. D'après ce qui précède,

e est la meilleure constante possible.

Remarque 2.6. Pour la fin de l'exercice précédent, on peut utiliser le fait que $H_N \underset{N \to +\infty}{\sim} \ln(N)$ et alors

$$\sum_{n=1}^{N} w_{n,N} \sum_{n=1}^{N} \underbrace{\frac{n+1}{\sqrt[n]{n!}}}_{n \to +\infty} \times \underbrace{\frac{1}{n+1}}_{N \to +\infty} \sim e^{-\frac{N}{n}} \underbrace{\frac{1}{n}}_{N \to +\infty} \sim e^{-\frac{N}{n}} \ln(N)$$

par le théorème de sommation des relations de comparaison.

Solution 2.29.

1. Soit $n \in \mathbb{N}^*$ et

$$I_n = \{(p,q) \in \mathbb{N}^2 \setminus \{(0,0)\} | p+q=n \}$$

On a alors

$$\Sigma_n = \sum_{(p,q)\in I_n} \frac{1}{(p+q)^{\alpha}} = \sum_{(p,q)\in I_n} \frac{1}{n^{\alpha}} = \frac{n+1}{n^{\alpha}} \underset{n\to+\infty}{\sim} \frac{1}{n^{\alpha-1}}$$

Donc la condition nécessaire et suffisante est $\alpha > 2$.

Dans ce cas, par le théorème des sommation par paquets, on a

$$\sum_{(p,q)\in\mathbb{N}^2\setminus\{(0,0)\}} \frac{1}{(p+q)^{\alpha}} = \sum_{n=0}^{+\infty} \frac{1}{n^{\alpha-1}} + \frac{1}{n^{\alpha}} = \zeta(\alpha-1) + \zeta(\alpha)$$

2. Pour tout $(p,q) \in \mathbb{N}^2 \setminus \{(0,0)\}$, on a

$$\frac{(p+q)^2}{2} \le p^2 + q^2 \le (p+q)^2$$

Pour $\alpha \leq 0$, il est clair que l'on a divergence. Pour $\alpha > 0$, on a donc

$$\frac{1}{(p+q)^{2\alpha}} \leqslant \frac{1}{(p^2+q^2)^{\alpha}} \leqslant \frac{2^{\alpha}}{(p+q)^{2\alpha}}$$

Donc la condition nécessaire et suffisante est $\alpha > 1$.

d'après le 1.

Solution 2.30. On fixe $n \in \mathbb{N}^*$. On a

$$\sum_{m=0}^{+\infty} \frac{1}{(m+n^2)(m+n^2+1)} = \sum_{m=0}^{+\infty} \frac{1}{m+n^2} - \frac{1}{m+n^2-1} = \frac{1}{n^2} = \Sigma_n$$

par téléscopage. $\sum_{n\geqslant 1} \Sigma_n$ converge et

$$\sum_{n\geq 1} \Sigma_n = \frac{\pi^2}{6}$$

$$\boxed{Donc \left(\frac{1}{(m+n^2)\left(m+n^2+1\right)}\right)_{(m,n)\in\mathbb{N}\times\mathbb{N}^*} \text{ est sommable et la somme vaut } \frac{\pi^2}{6}.}$$

Posons, pour $k \geqslant 1$,

$$I_k = \{(m, n) \in \mathbb{N} \times \mathbb{N}^* | m + n^2 = k \}$$

On a $n^2 \in \{1, ..., k\}$ si et seulement si $n \in \{1, ..., \lfloor \sqrt{k} \rfloor\}$ et $(m, n) \in I_k$ si et seulement si $m = k - n^2$.

On a $|I_k| = \lfloor \sqrt{k} \rfloor$ et par sommation par paquets,

$$\boxed{\frac{\pi^2}{6} = \sum_{k=1}^{+\infty} \sum_{(m,n) \in I_k} \frac{1}{(m+n^2)(m+n^2+1)} = \sum_{k=1}^{+\infty} \frac{\lfloor k \rfloor}{k(k+1)}}$$

Remarque 2.7. Grâce à une transformation d'Abel, on a aussi, pour $N \ge 1$,

$$\begin{split} \sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k(k+1)} &= \sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k} - \sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k+1} \\ &= 1 + \sum_{k=2}^{N} \underbrace{\frac{\lfloor k \rfloor - \lfloor k-1 \rfloor}{k}}_{\neq 0 \ ssi \ k = p^2} + \underbrace{\frac{\lfloor N \rfloor}{N+1}}_{N \to +\infty} \end{split}$$

et on retrouve le résultat.

Solution 2.31.

1.

$$\prod_{k \geqslant 1} \frac{1}{1 - \frac{1}{p_k}}$$

converge si et seulement si

$$\sum_{k \geqslant 1} -\ln\left(\frac{1}{1 - \frac{1}{p_k}}\right)$$

converge si et seulement si

$$\sum_{k\geqslant 1} -\ln\left(1 - -\frac{1}{p_k}\right)$$

converge si et seulement si $(car - \ln\left(1 - \frac{1}{p_k}\right) \underset{k \to +\infty}{\sim} p_k > 0$ vu que $p_k \geqslant k$ pour tout $k \geqslant 1$)

$$\sum_{k \geqslant 1} \frac{1}{p_k}$$

converge.

Donc

$$\prod_{k\geqslant 1}\frac{1}{1-\frac{1}{p_k}}\ converge\ si\ et\ seulement\ si\ \sum_{k\geqslant 1}\frac{1}{p_k}\ converge.$$

Fixons alors $N \in \mathbb{N}^*$. On a

$$\prod_{k=1}^{N} \frac{1}{1 - \frac{1}{p_k}} = \prod_{k=1}^{N} \left(\sum_{n_k=0}^{+\infty} \frac{1}{p_k^{n_k}} \right)$$

où la série est à termes positifs et est convergent. Par produit de Cauchy,

$$\left(\frac{1}{p_1^{n_1}\dots p_N^{n_N}}\right)_{n_1,\dots,n_N\in\mathbb{N}^N}$$

est sommable et on a

$$\prod_{k=1}^{N} \frac{1}{1 - \frac{1}{p_k}} = \sum_{(n_1, \dots, n_N) \in \mathbb{N}^N} \frac{1}{p_1^{n_1} \dots p_N^{n_N}}$$

$$\geqslant \sum_{k=1}^{p_{N+1}-1} \frac{1}{k} \xrightarrow[N \to +\infty]{} + \infty$$

car dans la première somme, tous les inverses (et une seule fois) des nombres dont les facteurs premiers sont dans $\{p_1, \ldots, p_N\}$ apparaissent.

Donc

$$\boxed{ \sum_{k \geqslant 1} \frac{1}{p_k} \ diverge. }$$

2. Posons

$$\Pi_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k^n}}$$

On a

$$\ln\left(\Pi_n\right) = \sum_{k=1}^n -\ln\left(1 - \frac{1}{1 - \frac{1}{p_k^s}}\right)$$

$$\underset{k \to +\infty}{\sim} \frac{1}{p_k^s} = \underset{k \to +\infty}{O}\left(\frac{1}{k^s}\right)$$

 $car p_k \geqslant k$. Donc

$$(\Pi_n)$$
 converge dans \mathbb{R}_+^* .

Par produit de Cauchy,

$$\left(\frac{1}{(p_1^s)^{j_1}\dots(p_n^s)^{j_n}}\right)_{(j_1,\dots,j_n)\in\mathbb{N}^n}$$

Ainsi, on a

$$\Pi_n = \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^s \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^s}$$

$$= \zeta(s)$$

car dans la première somme, par unicité de la décomposition en facteurs premiers, chaque k n'apparaît qu'une unique fois. Comme on a

$$\sum_{k=1}^{p_{n+1}-1} \frac{1}{k^s} \leqslant \Pi_n$$

Donc $\Pi_n \xrightarrow[n \to +\infty]{} \zeta(s)$ et ainsi

$$\prod_{k=1}^{+\infty} \frac{1}{1 - \frac{1}{p_k^s}} = \zeta(s)$$

3. Soit $z = a + ib \in \mathbb{C}$. Si a > 1, on a

$$\left| \frac{1}{n^z} \right| = \frac{1}{n^a}$$

Donc $\sum \frac{1}{n^z}$ converge absolument. On peut donc prolonger ζ à $\{z \in \mathbb{C} | \Re(z) > 1\}$.

De même que précédemment, puisque

$$\left| \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z \right| = \frac{1}{\left(p_1^{j_1} \dots p_n^{j_n} \right)^a}$$

la famille

$$\left(\left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z \right)_{(j_1, \dots, j_n) \in \mathbb{N}^n}$$

est sommable. On peut aussi développer et

$$\Pi_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k^z}} = \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z$$

On a

$$|\Pi_n - \zeta(z)| = \left| \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z - \sum_{k=1}^{+\infty} \frac{1}{k^z} \right|$$

$$= \left| \sum_{k \in \mathbb{N} \setminus J_n} \frac{1}{k^z} \right|$$

$$\leqslant \sum_{k \in \mathbb{N} \setminus J_n} \frac{1}{k^a} \xrightarrow[n \to +\infty]{} 0$$

où l'on a noté $J_n = \{k \ge 1 | \text{ les facteurs premiers de } k \text{ sont dans } \{p_1, \dots, p_n\}\}$ et où l'on a appliqué l'inégalité triangulaire et le résultat de 2. pour conclure.

Ainsi, on a bien

$$\zeta(z) = \prod_{k=1}^{+\infty} \frac{1}{1 - \frac{1}{p_k^s}}$$

Solution 2.32. Pour $\alpha > 2$, puisque $\varphi(n) \geqslant n$, on a

$$\frac{\varphi(n)}{n^{\alpha}} \leqslant \frac{1}{n^{\alpha - 1}}$$

qui est le terme général d'une série absolument convergente.

Pour $\alpha = 2$, si $n = p_k$ est premier, on a $\varphi(p_k) = p_k - 1$ et

$$\frac{\varphi(p_k)}{p_k^2} = \frac{p_k - 1}{p_k^2} \underset{k \to +\infty}{\sim} \frac{1}{p_k}$$

et $\sum_{k\geqslant 1} \frac{1}{p_k}$ diverge.

De même pour $\alpha < 2$, $\sum \frac{\varphi(n)}{n^{\alpha}}$ diverge car $\frac{\varphi(n)}{n^2} = \bigcap_{n \to +\infty} \left(\frac{\varphi(n)}{n^{\alpha}}\right)$.

Donc

$$\sum \frac{\varphi(n)}{n^{\alpha}} \text{ converge si et seulement si } \alpha > 2.$$

Pour $\alpha > 1$, on calcule

$$S = \sum_{n_1=1}^{+\infty} \frac{\varphi(n_1)}{n_1^{\alpha}} \times \sum_{n_2=1}^{+\infty} \frac{1}{n_2^{\alpha}} = \sum_{(n_1, n_2) \in \mathbb{N}^2} \frac{\varphi(n_1)}{(n_1 n_2)^{\alpha}}$$

ce qui est légitime car il s'agit de deux séries à termes positifs convergentes. Soit, pour $n \ge 1$, $D_n = \{(n_1, n_2) \in (\mathbb{N}^*)^2 | n = n_1 n_2 \}$. Par sommation par paquets, on a,

$$S = \sum_{n=1}^{+\infty} \sum_{(n_1, n_2) \in D_n} \frac{\varphi(n_1)}{n^{\alpha}} = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \left(\sum_{n_1 \mid n} \varphi(n_1) \right)$$

et grâce à la formule d'Euler-Möbius, on a

$$\sum_{n_1|n} \varphi(n_1) = n$$

Ainsi, $S = \zeta(\alpha - 1)$ et donc

$$\sum_{n\geqslant 1} \frac{\varphi(n)}{n^{\alpha}} = \frac{\zeta(\alpha-1)}{\zeta(\alpha)}$$

Solution 2.33. Soit $A \in \mathbb{C}$ et R > 0. S'il y a n indices $k \in \mathbb{N}$ tels que $z_k \in B(A, R)$, alors pour ces indices k, on a $B(z_k, \frac{1}{2}) \subset B(A, R + \frac{1}{2})$. Donc (faire un dessin!), on a

$$n\frac{\pi}{4} \leqslant \pi \left(R + \frac{1}{2}\right)^2$$

On pose, pour tout $n \in \mathbb{N}$, $B_n = \{i \in \mathbb{N} | z_i \in B(0,n)\}$. De l'inégalité précédente, pour tout $n \in \mathbb{N}$, D_n est fini. Il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ bijective qui permet d'ordonner les z_n par module croissante et à même module par indice croissant.

Pour $n \in \mathbb{N}$ et $R = |z_{\sigma(n)}|$, on a pour tout $k \leq n$, $z_{\sigma(k)} \in B(0, R)$.

Donc

$$n\frac{\pi}{4} \leqslant \pi \left(\left| z_{\sigma(n)} \right| + \frac{1}{2} \right)^2$$

d'où

$$\left|z_{\sigma(n)}\right| \geqslant \left|z_{\sigma(n)} + \frac{1}{2}\right| - \frac{1}{2} \geqslant \frac{\sqrt{n}}{2} - \frac{1}{2}$$

Donc

$$\left|\frac{1}{z_{\sigma(n)}}\right|^3 = \mathop{O}_{n \to +\infty}\left(\frac{1}{n^{\frac{3}{2}}}\right)$$

Donc

$$\boxed{\sum \frac{1}{z_{\sigma(n)}^3} \ est \ absolument \ convergente.}}$$

Solution 2.34. On a $k = \lfloor n \rfloor$ si et seulement si $k^2 \leqslant n < (k+1)^2$. Il y a $(k+1)^2 - k^2 = 2k+1$ entiers.

Posons

$$B_p = \sum_{n=1}^p (-1)^{\lfloor n \rfloor}$$

et $B_{-1} = 0$. Si $k^2 \le p \le (k+1)^2$, on a

$$B_p = \underbrace{B_k^2}_{signe\ de\ (-1)^k} + (-1)^k \underbrace{(p-k)^2}_{|\cdot| \le 2k+1}$$

Par récurrence, pour tout $p \in \mathbb{N}$,

$$|B_p| \leqslant 2 \lfloor p \rfloor + 1$$

Donc avec une transformation d'Abel, on a

$$\sum_{n=1}^{N} \frac{(-1)^{\lfloor n \rfloor}}{n} = \sum_{n=1}^{N} \frac{(B_n - B_{n-1})}{n}$$

$$= \sum_{n=1}^{N} \frac{B_n}{n} - \sum_{n=0}^{N-1} \frac{B_n}{n+1}$$

$$= \underbrace{\frac{B_N}{N}}_{N \to +\infty} -B_0 + \underbrace{\sum_{n=1}^{N-1} \frac{B_n}{n(n+1)}}_{= \frac{O}{N \to +\infty} \left(\frac{1}{\frac{3}{2}}\right)}$$

D'après le critère de Riemann, la dernière somme converge absolument et donc

$$\sum_{n\geqslant 1} \frac{(-1)^{\lfloor n\rfloor}}{n} \ converge.$$

Solution 2.35.

1. Pour tout $n \in \mathbb{N}$, on a $u_n \neq 0$. Il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$, $u_n u_{n+1} > 0$.

On a

$$\ln\left(\frac{u_n}{u_{N_0}}\right) = \sum_{k=N_0+1}^n \ln\left(\frac{a+k}{n+k}\right) = \sum_{k=N_0+1} \ln\left(1+\frac{a}{k}\right) - \ln\left(1+\frac{b}{k}\right)$$

Alors

$$\ln\left(\frac{u_n}{u_{N_0}}\right) = \sum_{k=N_0+1}^n \frac{a-b}{k} + \underbrace{O\left(\frac{1}{k^2}\right)}_{k\to+\infty} = (a-b)\ln(n) + \underbrace{C}_{\in\mathbb{R}} + \underbrace{O}_{n\to+\infty}(1)$$

terme général d'une série convergente

Ainsi,

$$u_n = u_{N_0} n^{a-b} \underbrace{k^{1+ o(1)}_{n \to +\infty}}_{N_0} \sim U_{N_0} n^{a-b} k$$

Donc

$$\boxed{\sum u_n \ converge \ si \ et \ seulement \ si \ b-a>1}$$

2. On a

$$u_{n+1}(b+n+1) = u_n(a+n+1)$$

donc

$$(a+1)u_n = bu_{n+1} + (n+1)u_{n+1} - nu_n$$

En sommant sur \mathbb{N} , on a

$$(a+1)\sum_{n=0}^{+\infty} u_n = b\sum_{n=1}^{+\infty} u_n + u_1 = b\sum_{n=1}^{+\infty} + \underbrace{u_1 - bu_0}_{b(b+1) - a}$$

Ainsi,

$$\sum_{n=0}^{+\infty} u_n = \frac{a(a+1-b(b+1))}{b(b+1)(a+1-b)} = a\left(\frac{1}{b(b+1)} - \frac{b}{(b+1)(a+1-b)}\right)$$

3. Pour $a = -\frac{1}{2}$ et b = 1, on a

$$u_n = \frac{\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)\dots\left(n-\frac{1}{2}\right)}{(n+1)!} = \frac{-\frac{(2n)!}{2^{2n+1}n!}}{(n+1)!} = -\frac{1}{2^{2n+1}(n+1)} {2n \choose n}$$

Solution 2.36.

1. u_n est une série à termes positifs et

$$\frac{1}{n} = O_{n \to +\infty} \left(\frac{\ln(n)}{n} \right)$$

donc

$$\sum u_n \ diverge.$$

 $\sum v_n$ est une série alternée. On a $\lim_{n\to+\infty}v_n=0$ et en formant

$$f: [2, \infty[\to \mathbb{R}]$$

$$x \mapsto \frac{\ln(x)}{x}$$

On a $f'(x) = \frac{1-\ln(x)}{x^2}$ qui est négatif dès que x > e. Donc $(v_n)_{n\geqslant 3}$ décroît. D'après le critère des séries alternées,

$$\sum v_n$$
 converge.

2. f décroît $sur [, +\infty [$ donc pour tout $k \ge 4$, on a

$$\int_{k}^{k+1} \frac{\ln(x)}{x} dx \leqslant \frac{\ln(k)}{k} \leqslant \int_{k-1}^{k} \frac{\ln(x)}{x} dx$$

d'où

$$\underbrace{\int_{4}^{N+1} \frac{\ln(x)}{x} dx}_{=\frac{1}{2} \left[\ln^2(N+1) - \ln^2(4)\right]} \leqslant \sum_{k=4}^{N} \frac{\ln(k)}{k} \leqslant \underbrace{\int_{3}^{N} \frac{\ln(x)}{x} dx}_{=\frac{1}{2} \left[\ln^2(N) - \ln^2(3)\right]}$$

Donc

$$S_N \underset{N \to +\infty}{\sim} \frac{1}{2} \ln^2(N)$$

Formons $w_n = S_n - \frac{\ln^2(n)}{2}$. $(w_n)_{n \in \mathbb{N}}$ converge si et seulement si $\sum_{n \in \mathbb{N}^*} w_n - w_{n-1}$ converge.

On a

$$w_n - w_{n-1} = \frac{\ln(n)}{n} - \frac{\ln^2(n)}{2} + \frac{\ln^2(n-1)}{2}$$

On a

$$\ln(n-1) = \ln(n) + \ln\left(1 - \frac{1}{n}\right) = \ln(n) - \frac{1}{n} + \mathop{O}_{n \to +\infty}\left(\frac{1}{n^2}\right)$$

et

$$\ln^{2}(n-1) = \ln^{2}(n) - \frac{2\ln(n)}{n} + \underbrace{O}_{n \to +\infty} \left(\frac{\ln(n)}{n^{2}}\right)$$
$$= \underbrace{O}_{n \to +\infty} \left(\frac{\frac{1}{3}}{n^{\frac{3}{2}}}\right)$$

Donc

$$w_n - w_{n-1} = \underbrace{O}_{n \to +\infty} \left(\frac{1}{n^{\frac{3}{2}}} \right)$$

terme général d'une série absolument convergente

Donc il existe $L \in \mathbb{R}$ tel que

$$S_n = \frac{\ln^2(n)}{2} + L + \underset{n \to +\infty}{o}(1)$$

3. On a

$$\sum_{n=2}^{2N} v_n = \underbrace{\sum_{k=1}^{N} \frac{\ln(2k)}{2k}}_{= I_N} - \underbrace{\sum_{k=1}^{N-1} \frac{\ln(2k+1)}{2k+1}}_{= J_N}$$

Donc

$$\sum_{n=2}^{2N} v_n = I_N - (S_{2N} - I_N)$$

On a

$$S_{2N} = \frac{\ln^2(2N)}{2} + L + \underset{N \to +\infty}{o}(1) = \frac{\ln^2(2)}{2} + \frac{\ln^2(N)}{2} + \ln(2)\ln(N) + L + \underset{N \to +\infty}{o}(1)$$

De plus,

$$I_{N} = \sum_{k=1}^{N} \frac{\ln(2)}{2k} + \sum_{k=1}^{N} \frac{\ln(k)}{2k}$$

$$= \frac{\ln(2)}{2} \left(\ln(N) + \gamma + \underset{N \to +\infty}{o} (1) \right) = \frac{1}{2} S_{N} = \frac{\ln^{2}(N)}{4} + \frac{L}{2} + \underset{N \to +\infty}{o} (1)$$

Finalement, on a bien

$$\sum_{n=2}^{2N} v_n = 2I_n - S_{2N}$$

$$= \ln(2)\gamma - \frac{\ln^2(2)}{2} + \underset{N \to +\infty}{o}(1)$$

Donc

$$\sum_{n=2}^{+\infty} v_n = \ln(2)\gamma - \frac{\ln^2(2)}{2}$$

Solution 2.37. Si $\alpha_0 = 2$ et $\alpha_{n+1} = 10^{\alpha_n - 1}$. Alors $q_1(\alpha_{n+1}) = \alpha_n$, $q_k(\alpha_n) = \alpha_{n-k}$, $q_n(\alpha_n) = 2$ et $q_{n+1}(\alpha_n) = 1$.

 $Si \ k < \alpha_n, \ q_n(k) = 1. \ Soit$

$$S_n = \sum_{k=\alpha_n}^{\alpha_{n+1}-1} u_k$$

Comme c'est une série à termes positifs, $\sum_{k\geqslant 1} u_k$ converge si et seulement $\sum_{n\geqslant 0} S_n$ converge.

Par définition, pour tout $k \in \{\alpha_n, \dots, \alpha_{n+1} - 1\}$, on a $q_{n+1}(k) = 1$ et pour tout $p \ge n + 1$, $q_p(k) = 1$. Donc

$$S_n = \sum_{k=\alpha_n}^{\alpha_{n+1}-1} \frac{1}{kq_1(k) \dots \underbrace{q_n(k)}_{\geqslant 2}}$$

Posons

$$f: \mathbb{R}_{+}^{*} \to \mathbb{R}$$

$$t \mapsto \log_{10}(t) = \frac{\ln(t)}{\ln(10)}$$

Il vient $q_1(t) = \lfloor f(t) \rfloor + 1 > f(t)$. Par récurrence, on a

$$q_n(t) \geqslant f^n(t)$$

défini pour $t \geqslant \alpha_n$. On a donc

$$S_n \sum_{k=\alpha_n}^{\alpha_{n+1}-1} \frac{1}{k(f(k))\dots f^n(k)}$$

On forme

$$g_n: [\alpha_n, \alpha_{n+1} - 1 \rightarrow \mathbb{R}]$$

$$t \mapsto \frac{1}{tf(t)...f^n(t)}$$

qui est décroissante. Ainsi, pour tout $k \in \{\alpha_n, \alpha_{n+1} - 1\}$, on a

$$\int_{k}^{k+1} g_n(t) \leqslant u_k \leqslant \int_{k-1}^{k} g_n(t)$$

d'où en faisant le changement de variables $u = \log_{10}(t)$, on a

$$\int_{\alpha_{n-1}-1}^{\alpha_n-1} g_{n-1}(u) du(\ln(10)) \leqslant S_n \leqslant \int_{\alpha_n-1}^{\alpha_{n+1}-1} g_n(t) dt$$

On obtient donc une minoration par $C \times (\ln(10))^n$ donc

Solution 2.38.

1. Montrons le résultat par récurrence sur $n \in \mathbb{N}^*$. On a $P_0 = 1 > 0$ et $P_1(x) = 1 + x$ s'annule en -1. Soit $n \in \mathbb{N}^*$, supposons le résultat au rang n. On a $P'_{2n+2}(x) = P_{2n+1}(x)$, par hypothèse P_{2n+1} s'annule uniquement en $\alpha_{2n+1} < 0$. Donc $P_{2n+2}(\alpha_{2n+1}) = \frac{(\alpha_{2n+1})^{2n+2}}{(2n+2)!} > 0$ donc $P_{2n+2} > 0$. Comme $P'_{2n+3} = P_{2n+2} > 0$ donc P_{2n+3} est strictement croissante sur \mathbb{R} . On a $\lim_{x \to \pm \infty} P_{2n+3} = \pm \infty$. Donc il existe un unique $\alpha_{2n+3} \in \mathbb{R}$ tel que $P_{2n+3}(\alpha_{2n+3}) = 0$. Comme $P_{2n+3}(0) = 1 \ge 1$, $\alpha_{2n+3} < 0$.

D'où le résultat par récurrence.

2. Soit x < 0, on a $\lim_{n \to +\infty} P_n(x) = e^x > 0$. Donc il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $P_{2n+1}(x) > 0$. En particulier, $\alpha_{2n+1} < x$ donc

$$\lim_{n \to +\infty} \alpha_{2n+1} = -\infty$$

Solution 2.39. On pose $f_n(x) = e^x - x - n$, on a $f'_n(x) = e^x - 1$. Donc $x_1 = 0$ et ainsi

$$\forall n \geqslant 2, \exists ! x_n \geqslant 0 \colon e^{x_n} = x_n + n$$

Pour tout $x \ge 0$, on a $f_{n+1}(x) - f_n(x) = -1 < 0$ donc $f_{n+1}(x) < f_n(x)$ et ainsi $f_{n+1}(x_n) < 0$ et $x_n < x_{n+1}$.

 $(x_n)_{n\in\mathbb{N}}$ est strictement croissante, de plus $e^{x_n}=x_n+n\geqslant n$ donc $x_n\geqslant \ln(n)$ et donc

$$\lim_{n \to +\infty} x_n = +\infty$$

De plus, $x_n = \ln(x_n + n)$ et $f_n(n) = e^n - 2n > 0$ (par récurrence), donc $x_n < n$ par stricte croissante de f_n donc

$$x_n = \ln(x_n + n) \leqslant \ln(2n) = \ln(n) + \ln(2)$$

Ainsi, $x_n = \underset{n \to +\infty}{O}(\ln(n))$. En reportant, on a

$$x_n = \ln(n + O(\ln(n))) = \ln(n) + \ln(1 + O(\ln(n))) = \ln(n) + O(\ln(n)) = \ln(n) + O(\ln(n))$$

donc

$$\boxed{n \underset{n \to +\infty}{\sim} \ln(n)}$$

En reportant, on a

$$x_n = \ln(n) + \frac{\ln(n)}{n} + \mathop{o}_{n \to +\infty} \left(\frac{\ln(n)}{n}\right)$$

Solution 2.40.

1. Si
$$S_n \xrightarrow[n \to +\infty]{} S \in \mathbb{R}_+^+$$
, on a

$$v_n \underset{n \to +\infty}{\sim} \frac{u_n}{S^{\alpha}}$$

Comme u_n est le terme générale d'une série convergente donc

$$\sum v_n$$
 converge.

2. On a $\alpha = 1$ donc $v_n = \frac{u_n}{S_n}$, soit $(n, p) \in \mathbb{N}^2$. On a

$$\sum_{i=n+1}^{n+p} v_i = \sum_{i=1}^{n+p} \frac{u_i}{S_i}$$

où $(S_i)_{i\in\mathbb{N}}$ est croissante donc pour tout $i\in\{n+1,n+p\}$, $S_i\leqslant S_{n+p}$ donc

$$\sum_{i=n+1}^{n+p} v_i \geqslant \frac{1}{S_{n+p}} \sum_{i=n+1}^{n+p} u_i = \frac{1}{S_{n+p}} \left(S_{n+p} - S_n \right) = 1 - \frac{S_n}{S_{p+n}}$$

et ainsi,

$$\sum_{i=n+1}^{n+p} v_i \geqslant 1 - \frac{S_n}{S_{n+p}}$$

Supposons que $\sum v_n$ converge. Pour n fixé, on a $\lim_{p\to+\infty} S_{n+p} = +\infty$ (car $\sum u_n$ diverge). Donc lorsque $p\to+\infty$, on a pour tout $n\in\mathbb{N}$,

$$\sum_{i=n+1}^{+\infty} v_i \geqslant 1$$

ce qui est absurde puisque la limite en $+\infty$ du reste est 0. Ainsi,

$$\sum v_n \ diverge.$$

3. On $a \lim_{n \to +\infty} S_n = +\infty$ et

$$v_n = \frac{1}{\alpha - 1} \left(S_{n-1}^{1-\alpha} - S_n^{1-\alpha} \right)$$

avec $(S_n^{1-\alpha})_{n\in\mathbb{N}}$ tend vers 0 quand $n\to +\infty$. Donc $\sum w_n$ est une série télescopique convergente. Comme $t\mapsto \frac{1}{t^{\alpha}}$ est décroissante, on a

$$\frac{u_n}{S_n^{\alpha}} \leqslant w_n \leqslant \frac{u_n}{S_{n-1}^{\alpha}}$$

 $car u_n = S_n - S_{n-1}$. Comme $\sum w_n$ converge,

$$\overline{\sum \frac{u_n}{S_n^{\alpha}} converge.}$$

Si $\alpha < 1$, comme $\lim_{n \to +\infty} S_n^{\alpha - 1} = 0$,

$$\frac{u_n}{S_n} = \underset{n \to +\infty}{o} \left(\frac{u_n}{S_n^{\alpha}} \right)$$

donc

$$\sum v_n \ diverge.$$

4. On a $\lim_{n\to+\infty} R_n = 0$ par convergence et $\lim_{n\to+\infty} u_n = 0$ et de plus $u_n = R_n - R_{n+1}$. On pose

$$\alpha_n = \int_{R_{n+1}}^{R_n} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1} \left(R_{n+1}^{1-\alpha} - R_n^{1-\alpha} \right)$$

 $si \ \alpha \neq 1.$

Si $0 < \alpha < 1$, $\lim_{n \to +\infty} R_n^{1-\alpha} = 0$ donc $\sum \alpha_n$ est une série télescopique convergente et de même que précédemment, on a

$$\frac{u_n}{R_n^{\alpha}} \leqslant \alpha_n$$

 $donc w_n \leqslant \alpha_n \ et$

$$\sum w_n$$
 converge.

 $Si \alpha = 1$, on a

$$\alpha_n = \ln(R_n) - \ln(R_{n+1})$$

où $\ln(R_n) \xrightarrow[n \to +\infty]{} -\infty$. Donc $\sum \alpha_n$ est une série télescopique divergente. De plus

$$\frac{u_n}{R_n} = \frac{R_n - R_{n+1}}{R_n} = 1 - \frac{R_{n+1}}{R_n}$$

donc

$$\ln\left(\frac{R_{n+1}}{R_n}\right) = \ln\left(1 - \frac{u_n}{R_n}\right) \underset{n \to +\infty}{\sim} \frac{-u_n}{R_n}$$

 $On\ a\ donc$

$$\frac{u_n}{R_n} \underset{n \to +\infty}{\sim} \alpha_n$$

donc

$$\sum w_n \ diverge.$$

 $Si \alpha > 1$, on a

$$\frac{u_n}{R_n} = \underset{n \to +\infty}{o} \left(\frac{u_n}{R_n^{\alpha}} \right)$$

donc

Solution 2.41.

1. Pour tout $x \in [0,1[$ il existe un unique $q_x \in \{0,\ldots,n-1\}$ tel que $x \in [\frac{q_x}{n},\frac{q_x+1}{n}]$ avec $q_x = \lfloor nx \rfloor$ et

$$h: \{0,\ldots,n\} \rightarrow \{0,\ldots,n-1\}$$

$$k \mapsto q_{x_k} = |nx_k|$$

n'est pas injective donc il existe k > k' tel que $|x_k - x_{k'}| < \frac{1}{n}$ avec $(k, k') \in \{0, \dots, n\}^2$ d'où

$$|kx - \lfloor kx \rfloor - (k'x - \lfloor k'x \rfloor)| < \frac{1}{n}$$

d'où

$$|(k-k')x-p|<\frac{1}{n}$$

avec $p \in \mathbb{Z}$ et pour $q = (k - k') \in \{1, \dots, n\}$, on a

$$\left| \left| x - \frac{p}{q} \right| < \frac{1}{qn} \right|$$

2. D'après ce qui précède, pour tout $n \ge 1$, il existe $(p_n, q_n) \in \mathbb{Z} \times \{1, \dots, n\}$ tels que

$$\left| x - \frac{p_n}{q_n} \right| < \frac{1}{nq_n} \leqslant \frac{1}{q_n^2}$$

 $car \ n \geqslant q_n$. Donc

$$\left| \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n^2} \right|$$

On a donc $\frac{p_n}{q_n} \xrightarrow[n \to +\infty]{} x \in \mathbb{R} \setminus \mathbb{Q}$. Si q_n ne tend pas $vers + \infty$, il existe A > 0 tel que pour tout $N \in \mathbb{N}$ il existe n > N avec $q_n < A$. Donc $\{n \in \mathbb{N} | q_n < A\}$ est infini : on peut extraire $(q_{\sigma(n)})$ telle que pour tout $n \in \mathbb{N}$, on a $q_{\sigma(n)} < A$. D'après le théorème de Bolzano-Weierstrass, on peut extraire $(q_{\varphi(n)})$ qui converge vers $q \in \mathbb{R}$. Notons que toute suite d'entiers relatifs qui converge est stationnaire à partir d'un certain rang donc $q \in \mathbb{N}^*$. Or pour tout $n \in \mathbb{N}$, on a $p_{\varphi(n)} = \frac{p_{\varphi(n)}}{q_{\varphi(n)}} q_{\varphi(n)} \xrightarrow[n \to +\infty]{} \alpha q$. $(p_{\varphi(n)})_{n \in \mathbb{N}}$ est une suite convergente d'entiers relatifs stationnaire, donc $\alpha q \in \mathbb{Z}$ et $\alpha \in \mathbb{Q}$ ce qui est absurde.

Donc

$$\lim_{n \to +\infty} q_n = +\infty$$

3. On sait qu'il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ croissante telle que $\sin(\sigma(n)) \xrightarrow[n \to +\infty]{} 1$ alors

$$\lim_{n \to +\infty} \frac{1}{\sigma(n)\sin(\sigma(n))} = 0$$

donc si la suite converge, alors elle converge vers 0.

Appliquons ce qui précède à $\alpha = \frac{1}{\pi} \notin \mathbb{Q}$. Il existe $(p_n, q_n) \in \mathbb{Z}^{\mathbb{N}} \times (\mathbb{N}^*)^{\mathbb{N}}$ avec $\lim_{n \to +\infty} q_n = 0$ et

$$\left| \frac{1}{\pi} - \frac{p_n}{q_n} \right| < \frac{1}{q_n^2}$$

Alors

$$|q_n - \pi p_n| < \frac{\pi}{q_n} \leqslant \frac{\pi}{2}$$

pour n suffisamment grand. Quitte à extraire, on peut supposer que $(q_n)_{n\in\mathbb{N}}$ est croissante. On a

$$|\sin(x)| = |\sin(q_n - \pi q_n)|$$

donc

$$|\sin(q_n)| \leqslant \left|\sin\left(\frac{\pi}{q_n}\right)\right| \leqslant \frac{\pi}{q_n}$$

 $car \sin \ est \ croissant \ sur \ \left[0, \tfrac{\pi}{2}\right] \ et \ |\sin(x)| \leqslant |x|.$

Donc

$$\underbrace{\frac{1}{|q_n \sin(q_n)|}}_{\stackrel{n \to +\infty}{\longrightarrow} 0} \geqslant \frac{1}{\pi}$$

ce qui est absurde.

Donc

$$\left(\frac{1}{n\sin(n)}\right)_{n\geqslant 1} ne converge pas.$$

3	Probabilités sur un univers dénombrable

4 Calcul matriciel

5 Réduction des endomorphismes

Solution 5.1. Si on a (i), soit x un vecteur propre associé à $\rho(u) = \rho e^{i\theta}$. On a $||u(x)|| = ||\rho(u)x|| = \rho(u)||x||$ et comme $x \neq 0$, on a $\rho(u) \leq |||\rho(u)||| < 1$ d'où (ii).

Si (ii), on utilise la décomposition de Dunford u = n + d avec n nilpotent, d diagonalisable et dn = nd. Soit $m = \dim(E)$. Pour tout $p \geqslant m$, on a

$$u^{p} = \sum_{k=0}^{p} \binom{p}{k} n^{k} d^{p-k} = \sum_{k=0}^{m-1} \binom{p}{k} n^{k} \underbrace{d^{p-k}}_{n \to +\infty} 0$$

En effet, on a $k \ge m-1$ fixé, il existe une base \mathcal{B} de E telle que

$$\binom{p}{k} \operatorname{mat}_{\mathcal{B}}(d^p) = \binom{p}{k} \operatorname{diag}(\lambda_1^p, \dots, \lambda_m^p) \xrightarrow[p \to +\infty]{} 0$$

 $car |\lambda_i| < 1 \ pour \ tout \ i \in \{1, \dots, m\} \ et$

$$\binom{p}{k} \underset{p \to +\infty}{\sim} \frac{p^k}{k!} = \underset{p \to +\infty}{o} \left(\frac{1}{\rho(u)^p}\right)$$

donc on a (iii).

Si (iii), soit x un vecteur propré associé à $\lambda \in \mathbb{C}$, on a $u^p \xrightarrow[p \to +\infty]{} 0$ donc en particulier, $u^p(x) = \lambda^p \xrightarrow[p \to +\infty]{} 0$, donc $\rho(u)^p \xrightarrow[p \to +\infty]{} 0$ et $\rho(u) \geqslant 0$ donc $\rho(u) < 1$. Posons encore u = d + n la décomposition de Dunford de u. Soit $\varepsilon > 0$, il existe $\mathcal{B}_0 = (e_1, \ldots, e_n)$ base de E dans laquelle les coefficients de $\text{mat}_{\mathcal{B}_0}(n)$ sont en module $\leqslant \varepsilon$. Définissons sur E

$$\left\| \sum_{i=1}^{m} x_i e_i \right\|_{\infty} = \max_{1 \leqslant i \leqslant m} |x_i|$$

Soit $M = \max_{\mathcal{B}_0}(u) = (m_{i,j})_{1 \leq i,j \leq m}$ triangulaire supérieure avec $m_{ii} = \lambda_i$ et pour tout $j \neq i$, $|m_{i,j}| < \varepsilon$. Soit donc $x = \sum_{i=1}^m x_i e_i \in \mathbb{C}^m$, on a

$$||Mx||_{\infty} = \max_{1 \leqslant i \leqslant n} \left[\sum_{j=1}^{m} m_{i,j} x_j \right]_{(|\lambda_i| + (m-1)\varepsilon)||x||_{\infty}}$$

donc

$$|||u||| \leq \underbrace{\rho(u)}_{\leq 1} + (m-1)\varepsilon$$

et on choisit

$$\varepsilon < \frac{1 - \rho(u)}{\underbrace{m - 1}_{>0}}$$

d'où ||u|| < 1 et donc on a (i) et finalement on a bien l'équivalence.

Remarque 5.1. $u \mapsto \rho(u)$ n'est pas une norme car pour u nilpotente non nulle, $\rho(u) = 0$.

Solution 5.2. Supposons (i), soit Y un vecteur propre de A avec $AY = \lambda Y$ pour $\lambda \in \mathbb{C}$. Pour tout $k \in \mathbb{N}, BA^kY = \lambda^k BY$ et il existe $k_0 \in \mathbb{N}$ tel que $\lambda^{k_0} BY \neq 0$ et $BY \neq 0$ donc on a (ii).

Si (ii), supposons qu'il existe $Y \in \mathbb{C}^n \setminus \{0\}$ tel que $\varphi = 0$. On note

$$\chi_A = \prod_{i=1}^r (X - \lambda_i)^{m_i}$$

avec les λ_i distincts. Alors $Y = \sum_{i=1}^r Y_i$ où $Y_i \in \ker(A - \lambda_i I_n)$. Il existe $i_0 \in \{1, \dots, n\}$ tel que $Y_{i_0} \neq 0$ car $Y \neq 0$. On a alors, pour $t \in \mathbb{R}$,

$$B \exp(tA)Y = \sum_{i=1}^{r} B \exp(t\lambda_i)Y_i = 0$$

Pour tout $k \in \{0, \dots, r-1\}$, on a $\varphi^{(k)}(t) = \sum_{i=1}^r B\lambda_i^k \exp(t\lambda_i) Y_i = 0$. Pour t = 0 on a $\sum_{i=1}^r \lambda_i^k BY_i = 0$ ce qui, pour t = 0, donne le système

$$\begin{cases} BY_1 + \dots + BY_r &= 0\\ \lambda_1 BY_1 + \dots + \lambda_r BY_r &= 0\\ &\vdots\\ \lambda_1^{r-1} BY_1 + \dots + \lambda_r^{r-1} BY_r &= 0 \end{cases}$$

Pour tout $P \in \mathbb{C}_{r-1}[X]$, on a donc $\sum_{i=1}^r P(\lambda_i)BY_i = 0$. Pour $i \in \{0, \dots, r-1\}$ et $P = \prod_{i \neq j} \frac{(X-\lambda_j)}{\lambda_i - \lambda_j}$, on obtient pour tout $i \in \{1, \dots, r\}$, $BY_i = 0$. En particulier, $BY_{i_0} = 0$ et Y_{i_0} est un vecteur propre de A car non nul. C'est une contradiction. On a donc (iii).

Soit $Y \in \mathbb{C}^n \setminus \{0\}$, supposons que pour tout $k \in \{0, ..., n-1\}$, $BA^kY = 0$. Soit $k \geqslant n$, il existe $(Q_k, R_k) \in \mathbb{C}[X] \times \mathbb{C}_{n-1}[X]$ tel que

$$X^k = Q_k \chi_A + R_k$$

et le théorème de Cayley-Hamilton donne donc $A^k = R_k(A)$ d'où $BA^kY = BR_k(A)Y = 0$. Alors pour tout $t \in \mathbb{R}$,

$$B \exp(tA)Y = B \sum_{k=0}^{+\infty} \frac{t^k A^k}{k!} Y$$
$$= \sum_{k=0}^{+\infty} \frac{t^k (BA^k Y)}{k!}$$
$$= 0$$

Par contraposée, on a bien ce qu'il faut, d'où l'équivalence.

6 Espaces vectoriels normés

Solution 6.1.

1. $A(x,y) \in \mathbb{R}^2$ fixé, la fonction

$$\varphi: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto x\cos(t) + y\sin(2t)$$

est bornée, donc le sup sur \mathbb{R} existe. Pour la séparation, prendre t=0 et $t=\frac{\pi}{4}$. Pour l'inégalité triangulaire, montrer l'inégalité à t fixé puis passer au sup sur \mathbb{R} .

2. $Si |x| + |y| \le 1$, alors $N(x,y) \le 1$ donc on a la première inclusion. $Si N(x,y) \le 1$, utiliser t=0 pour avoir $|x| \le 1$ et $t=\frac{\pi}{4}$ puis $t=-\frac{\pi}{4}$ pour pouvoir justifier

$$|2y| \leqslant \left| x \frac{\sqrt{2}}{2} + y \right| + \left| y - x \frac{\sqrt{2}}{2} \right| \leqslant 2$$

et donc $|y| \leq 1$. D'où la deuxième inclusion.

3. On fixe $(x,y) \in S_N(0,1) \cap (\mathbb{R}_+)^2$. φ est 2π -périodique, $\varphi(\pi-t) = \varphi(t)$ et $\sup_{t \in \mathbb{R}} |\varphi(t)| = 1$. On peut donc se limite à un intervalle de longueur 2π pour l'étude de φ .

On note que si $t \in [-\pi, 0]$, $\cos(t)$ et $\sin(2t)$ sont de signes opposés. Donc

$$|\varphi(t)| \le x|\cos(t)| + y|\sin(2t)| = |\varphi(-t)|$$

 $et -t \in [0, \pi]$. Donc le sup est atteint sur $[0, \pi]$.

On note maintenant, comme $|\varphi(\pi - t)| = |\varphi(t)| \ sur \ [0, \frac{\pi}{2}], \ que \ si \ t \in [\frac{\pi}{4}, \frac{\pi}{2}],$

$$0\leqslant \varphi(t)=x\underbrace{\cos(t)}_{\in [0,\frac{\sqrt{2}}{2}]}+y\sin(2t)\leqslant x\underbrace{\cos(\frac{\pi}{2}-t)}_{\in [\frac{\sqrt{2}}{2},1]}+y\sin(2\times(\frac{\pi}{2}-t))=\varphi(\frac{\pi}{2}-t)$$

Donc le sup est atteint sur $[0, \frac{\pi}{4}]$. Soit maintenant $t_0 \in [0, \frac{\pi}{4}]$ tel que $\varphi(t_0)$ réalise le sup (existe car φ est continue sur un compact). Comme c'est aussi le sup sur \mathbb{R} qui est ouvert, on a la condition d'Euler du premier ordre : $\varphi'(t_0) = 0$.

On a donc $x\cos(t_0) + y\sin(2t_0) = 1$ et $-x\sin(t_0) + 2y\cos(2t_0) = 0$. On en déduit les valeurs de x et y en fonction de t_0 , en faisant attention que $\cos(t_0) \neq 0$ sinon $\sin(t_0) = 0$ aussi ce qui n'est pas le cas, et au cas où $t_0 = 0$.

Réciproquement, s'il existe $t_0 \in [0, \frac{\pi}{4}]$ tel que x et y s'écrivent de la façon demandée, alors t_0 est l'unique point satisfaisant $\varphi(t_0) = 1$ et $\varphi'(t_0) = 0$. Mais alors le sup de φ sur $[0, \frac{\pi}{4}]$ est atteint en un point t_1 qui vérifie les mêmes choses, donc $t_1 = t_0$ d'où N(x, y) = 1.

Solution 6.2.

1. Pour l'inégalité triangulaire, introduire la forme bilinéaire symétrique positive sur E

$$\varphi: E \times E \rightarrow \mathbb{R}$$

$$(f,g) \mapsto f(0)g(0) + \int_0^1 f'(t)g'(t)dt$$

Alors $N(f) = \sqrt{\varphi(f,f)}$ et on utilise l'inégalité de Minkowski.

- 2. Pour $x \in [0,1]$, écrire |f(x)| = |f(0) + f(x) f(0)|, $f(x) f(0) = \int_0^x f'(t)dt$, utiliser Cauchy-Schwarz avec f' et 1 puis que $\sqrt{a} + \sqrt{b} \leqslant \sqrt{2}\sqrt{a+b}$, pour enfin passer au sup sur x.
- 3. Utiliser, pour $n \in \mathbb{N}^*$, la fonction

$$f_n: [0,1] \to \mathbb{R}$$

$$t \mapsto t^n$$

Solution 6.3. Si f est ouverte, $f(\mathbb{R}^n)$ est un sous-espace vectoriel ouvert de \mathbb{R}^p . Donc f est surjective.

Si f est surjective, on prend F un supplémentaire de $\ker(f)$ dans \mathbb{R}^n avec $\dim(\ker(f)) = n - p$ et $\dim(F) = p$. Soit (e_1, \ldots, e_p) une base de F et (e_{p+1}, \ldots, e_n) une base de $\ker(f)$. On vérifie que $(f(e_1, \ldots, f(e_p))$ est une base de \mathbb{R}^p . On définit

$$N_1: \mathbb{R}^n \to \mathbb{R}$$

$$\sum_{i=1}^n x_i e_i \mapsto \max_{1 \leq i \leq n} |x_i|$$

norme sur \mathbb{R}^n et

$$N_2: \mathbb{R}^p \to \mathbb{R}$$

$$\sum_{i=1}^p y_i f(e_i) \mapsto \max_{1 \leqslant i \leqslant p} |y_i|$$

norme sur \mathbb{R}^p .

Soit Θ un ouvert de \mathbb{R}^n , soit $y_0 \in f(\Theta)$, il existe $x_0 \in \Theta$: $y_0 = f(x_0)$. Si $x_0 = \sum_{i=1}^n \alpha_i e_i$, alors $y_0 = \sum_{i=1}^p \alpha_i f(e_i)$. Comme Θ est un ouvert, il existe $r_0 > 0$ tel que

$$B_{N_1}(x_0,r_0)\subset\Theta$$

Soit $y = \sum_{i=1}^{p} \beta_i f(e_i) \in \mathbb{R}^p$, si $N_2(y - y_0) < r_0$, pour tout $i \in \{1, ..., p\}$, $|\beta_i - \alpha_i| < r_0$ et

$$y = f\left(\sum_{i=1}^{p} \beta_i e_i + \sum_{i=p+1}^{n} \alpha_i e_i\right) \stackrel{def}{=} f(x)$$

avec $N_1(x-x_0) = \max_{1 \leq i \leq p} |\beta_i - \alpha_i| < r_0$. Ainsi $x \in \Theta$ et $y \in f(\Theta)$, donc $B_{N_2}(y_0, r_0) \subset f(\Theta)$ et $f(\Theta)$ est un ouvert.

Solution 6.4.

1. Classique.

2.

$$|f(x)| \le |f(0)| + |f(x) - f(0)| \le |f(0)| + \kappa(f)x \le N(f)$$

 $car \ x \leq 1$, $donc \ N_{\infty} \leq N$. Pour la non-équivalence, prendre

$$f_n: [0,1] \rightarrow \mathbb{R}$$

$$t \mapsto t^n$$

3. On a $|f(0)| \leq N_{\infty}(f)$ donc $N(f) \leq N'(f)$. Ensuite, $N_{\infty} \leq N$ donne $N' \leq N + \kappa \leq 2N$.

Donc N est N' sont équivalentes.

Remarque 6.1. Exemple de normes qui, en dimension infinie, ne se dominent pas mutuellement. On prend $(e_i)_{i\in I}$ une base (de Hamel), $J=(i_n)_{n\in\mathbb{N}}\subset I$ dénombrable. Si $x=\sum_{i\in I}x_ie_i$, on peut vérifier que

$$N_1(x) = \sum_{n \in \mathbb{N}} |x_{i_n}| + \sum_{i \in I \setminus J} |x_i|$$

et

$$N_2(x) = \sum_{n \in \mathbb{N}} n|x_{i_{2n}}| + \sum_{n \in \mathbb{N}} \frac{1}{n+1} |x_{i_{2n+1}}| + \sum_{i \in I \setminus I} |x_i|$$

ne se dominent pas.

Solution 6.5. Il existe $\alpha > 0$ tel que $B_{\|\cdot\|_{\infty}}(I_n, \alpha) \subset G$. Soient $i \neq j$ et $\lambda \in \mathbb{C}$. Il existe $p \in \mathbb{N}^*$ tel que $\frac{|\lambda|}{p} < \alpha$. Alors

$$\left\| T_{i,j} \left(\frac{\lambda}{p} \right) - I_n \right\|_{\infty} = \left| \frac{\lambda}{p} \right| < \alpha$$

donc $T_{i,j}(\lambda) \in G$ ($T_{i,j}$ est la matrice de transvection : $T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$).

Ainsi,

$$T_{i,j}(\lambda) = \left(T_{i,j}\left(\frac{\lambda}{p}\right)\right)^p \in G$$

 $Soit \ \delta = \rho e^{\mathrm{i}\theta} \in \mathbb{C}^*. \ On \ a \lim_{n \to +\infty} \rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} = 1 \ donc \ il \ existe \ p \in \mathbb{N}^* \ tel \ que \ |\rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} - 1| < \alpha.$

On a alors

$$\left\| D_n \left(\rho^{\frac{1}{p}} e^{\mathrm{i} \frac{\theta}{p}} \right) - I_n \right\|_{\infty} < \alpha$$

donc $D_n(\delta) = D_n(\rho^{\frac{1}{p}}e^{i\frac{\theta}{p}})^p \in G$ (matrice de dilatation).

Comme les matrices de transvection et de dilatation engendrent $GL_n(\mathbb{C})$, on a bien $G = GL_n(\mathbb{C})$.

Remarque 6.2. C'est faux sur \mathbb{R} . Contre-exemple : matrices de déterminant positif.

Solution 6.6. Si f n'est pas continue en 0, il existe $\varepsilon_0 > 0$ tel que pour tout $\alpha > 0$, il existe $h \in E$ avec $||h|| \le \alpha$ et $||f(h)|| > \varepsilon_0$. On prends $\alpha_n = \frac{1}{n+1}$, d'où $||nh_n|| \le 1$ mais $\underbrace{||f(nh_n)||}_{\le M} > n\varepsilon_0 \xrightarrow[n \to +\infty]{} +\infty$. Donc f est continue en 0. Comme f est linéaire, pour tout $x \in E$,

$$\lim_{\|h\| \to 0} f(x+h) = \lim_{\|h\| \to 0} f(x) + f(h) = f(x)$$

 $donc \ f \ est \ continue.$

On a f(px) = p(fx) pour tout $p \in \mathbb{Z}$ puis $qf(\frac{p}{q}x) = f(px) = pf(x)$ pour tout $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ donc pour tout $r \in \mathbb{Q}$, f(rx) = rf(x). Soit $\lambda \in \mathbb{E}$, il existe une suite de rationnels telle que

 $\lim_{n\to+\infty} r_n = \lambda$. Comme f est continue, on a

$$f(\lambda x) = \lim_{n \to +\infty} f(r_n x)$$
$$= \lim_{n \to +\infty} r_n f(x)$$
$$= \lambda f(x)$$

Donc f est linéaire.

Remarque 6.3. Soit $e_0 = 1$ et $e_1 = \sqrt{2}$ et $(e_i)_{i \in I}$ une \mathbb{Q} -base de \mathbb{R} $(0 \in I)$. On définie

$$f\left(\sum_{i\in I}\lambda_i e_i\right) = \lambda_0 e_0 + \sqrt{2} \sum_{i\in I\setminus\{0\}} \lambda_i e_i$$

f vérifie f(x+y) = f(x) + f(y), mais si $(r_n)_{n \in \mathbb{N}}$ est une suite de rationnels tendant vers $\sqrt{2}$, $f(r_n) = r_n \to \sqrt{2} \neq f(\sqrt{2}) = 2$.

Solution 6.7.

- 1. On a $\alpha(A) \subset \overline{A}$ donc $\overline{\overline{A}} \subset \overline{A}$ donc $\alpha(\alpha(A)) \subset \alpha(A)$. Comme $\alpha(A)$ est un ouvert inclus dans $\overline{\overline{A}} \subset \overline{A}$ donc $\alpha(A) \subset \alpha(\alpha(A))$.
- 2. Si $\beta(A) = \overline{\mathring{A}}$, on montre aussi que $\beta(\beta(A)) = \beta(A)$. On a donc $A, \overline{A}, \mathring{A}, \overline{\mathring{A}}, \overline{\mathring{A}}, \overline{\mathring{A}}$ et $\overline{\mathring{A}}$ et c'est tout.

Solution 6.8.

1. $Si d_A = d_B$,

$$\overline{A} = \{x \in E \mid d_A(x) = 0\} = \{x \in E \mid d_B(x) = 0\} = \overline{B}$$

Réciproquement, soit $x \in E$ et $\varepsilon > 0$, il existe $a_1 \in \overline{A}$, $||x - a_i|| \le d_{\overline{A}}(x) + \frac{\varepsilon}{2}$ (par définition de l'inf). Il existe $a_2 \in A$, $||a_1 - a_2|| \le \frac{\varepsilon}{2}$ (par définition de la fermeture). Ainsi,

$$d_A(x) \le ||x - a_2|| \le ||x - a_1|| + ||a_1 - a_2|| \le d_{\overline{A}}(x) + \varepsilon$$

Ceci valant pour tout $\varepsilon > 0$, $d_A(x) \leq d_{\overline{A}}(x)$. Comme $A \subset \overline{A}$, $d_{\overline{A}} \leq d_A$, on a $d_A = d_{\overline{A}} = d_{\overline{B}} = d_B$.

2. Soit $x \in A$, on a $d_B(x) = |d_B(x) - d_A(x)| \leqslant \rho(A, B)$ donc $\sup_{x \in A} d_B(x) \leqslant \rho(A, B)$, de même pour $\sup_{y \in B} d_A(y)$ donc on on a un première inégalité.

Réciproquement, soit $x \in E$ et $\varepsilon > 0$, il existe $a \in A$ et $b \in B$ tel que $||x - a|| \le d_A(x) + \varepsilon$ et $||x - b|| \le d_B(x) + \varepsilon$. On a alors

$$d_A(x) \le ||x - a|| \le ||a - b|| + ||x - b|| \le d_B(x) + \varepsilon + \alpha(A, B)$$

Ceci vaut pour tout $\varepsilon > 0$, donc $d_A(x) \leq d_B(x) + \alpha(A, B)$. De même, $d_B(x) \leq d_A(x) + \alpha(A, B)$ donc $\rho(A, B) \leq \alpha(A, B)$.

Solution 6.9.

- 1. Soit $(y_n)_{n\in\mathbb{N}}\in P(F)^{\mathbb{N}}$ qui converge vers $y\in\mathbb{C}$ donc il existe $(x_n)\in F^{\mathbb{N}}$ telle que l'on ait pour tout $n\in\mathbb{N}$, $P(x_n)=y_n$. $(x_n)_{n\in\mathbb{N}}$ est bornée car $\lim_{z\to+\infty}|P(z)|=+\infty$ (car P est non constant), donc on peut extraire (Bolzano-Weierstrass) $x_{\sigma(n)}\to x$ et $x\in F$ car F est fermé. Par continuité de $z\mapsto P(z)$ sur \mathbb{C} , on a $y=P(x)\in P(F)$.
- 2. Soit Θ un ouvert de \mathbb{C} , soit $y \in P(\Theta), \exists x \in \Theta$ tel que P(x) = y et il existe r > 0, $B(x,r) \subset \Theta$. Soit $y' \in \mathbb{C}$, supposons que pour tout $x' \in \mathbb{C}$ tel que P(x') = y', on a |x x'| > r. Soit $Q(X) = P(X) y' = a \prod_{i=1}^{n} (X x_i)$ non constant où a est le coefficient dominatrice de P. Par hypothèse, pour tout $i \in \{1, \ldots, n\}: |x_i x| > r$ (car $P(x_i) = y'$), ainsi

$$|Q(x)| = |y - y'| \geqslant |a|r^n$$

Par contraposée, si $|y-y'| \leq \frac{|a|r^n}{2}$, alors il existe $x' \in \mathbb{C}$ tel que P(x') = y' et |x'-x| < r. Ainsi, $x' \in B(x,r) \subset \Theta$ et $y' \in P(\Theta)$. Donc $B(y,|a|r^n) \subset P(\Theta)$ et $P(\Theta)$ est un ouvert.

Solution 6.10.

1. Si $P \notin \mathcal{S}$, il existe $z_0 \in \mathbb{C} \setminus \mathbb{R}$ tel que $P(z_0) = 0$ et $|\Im(z_0)|^n > 0 = P(z_0)$. Par contraposée, si pour tout $z \in \mathbb{C}$, $|P(z)| \geqslant |\Im(z)|^n$, alors $P \in \mathcal{S}$.

Réciproquement, si $P = \prod_{i=1}^{n} (X - \lambda_i) \in \mathcal{S}$ avec $(\lambda_i)_{1 \leq i \leq n}$ réels, soit $z = a + ib \in \mathbb{C}$. On

$$|P(z)| = \prod_{i=1}^{n} |a - \lambda_i + ib| \geqslant |b|^n$$

2. Soit $(P_p)_{p\in\mathbb{N}} \in \mathcal{S}^{\mathbb{N}}$ telle que $P_p \xrightarrow[p\to+\infty]{} P \in F$. Soit $z \in \mathbb{C}$, on a pour tout $p \in \mathbb{N}$, $|P_p(z)| \geqslant |\Im(z)|^n$ donc quand $p \to +\infty$, $|P(z)| \geqslant |\Im(z)|^n$ donc $P \in \mathcal{S}$ et S est fermé.

3. Soit $(M_p)_{p\in\mathbb{N}}$ une suite de matrice trigonalisable sur \mathbb{R} qui converge vers $M\in\mathcal{M}_n(\mathbb{R})$. Ib bite χ_p le polynôme caractéristique de M_p . Pour tout $p\in\mathbb{N}$, $\chi_p\in\mathcal{S}$ et $\chi_p\xrightarrow[p\to+\infty]{}\chi_M$. Comme \mathcal{S} est fermé, $\chi_M\in\mathcal{S}$ et M est trigonalisable sur \mathbb{R} .

Solution 6.11.

- \$\varphi\$ est linéaire et dim(\$\mathbb{K}_{m-1}[X] \times \mathbb{K}_{n-1}[X]\$) = m + n + = dim(\$\mathbb{K}_{n+m-1}[X]\$).
 \$Si\$ \$\varphi\$ est bijective, elle est surjective et il existe \$(U,V) \in \mathbb{K}[X]^2\$ tel que \$UA + BV = 1\$ et d'après le théorème de Bézout, on a \$A \lambda B = 1\$.
 \$Réciproquement, \$si\$ \$\varphi\$ n'est pas surjective, il existe \$(U,V) \in (\mathbb{K}_{m-1}[X] \times \mathbb{K}_{n-1}[X]\$)\{(0,0)\}\$ tel que \$\varphi(U,V)\$ = 0 d'où \$AU = -BV\$. Soit \$\delta = A \lambda B\$, on écrit \$A = \delta A_1\$ et \$B = \delta B_1\$ avec \$A_1 \lambda B_1 = 1\$ et on a \$A_1U = -B_1V\$. D'après le théorème de Gauss, on a \$A_1 \ | V\$ et \$B_1 \ | U\$. \$Si\$ \$U = 0\$, on a \$V = 0\$ et de même si \$V = 0\$, on a \$U = 0\$. On peut donc supposer \$U \neq 0\$ et \$V \neq 0\$, et on a alors \$\delta g(A_1) \leq \delta g(V) \leq n 1 < n = \delta g(A)\$ mais \$A = \delta A_1\$ donc \$\delta g(\delta) \geq 1\$.
- 2. Φ est continue car $R_{A,B}$ est un polynôme en les coefficients de A et B.
- 3. Comme on est dans \mathbb{C} , $\Delta = \{P \in \mathbb{C}_p[X] \mid P \wedge P' = 1\} = \{P \in \mathbb{C}_p[X] \mid R_{P,P'} \neq 0\}$. $\Phi_{P,P'}$ est continue d'après la question précédente, $\delta = \Phi_{P,P'}^{-1}(\mathbb{C}^*)$ donc Δ est ouvert. Sur \mathbb{R} , on n'a pas la caractérisation de scindé à racines simples si et seulement si $P \wedge P' = 1$ (contre-exemple : $P = X^2 + 1$). Dans $\mathbb{R}_3[X]$, X est scindé à racines simples et $X(1 + \varepsilon X)^2 \xrightarrow{\varepsilon \to 0} X$ et $-\frac{1}{\varepsilon}$ est racine double, donc Δ n'est pas ouvert.

Remarque 6.4. On peut cependant considérer

$$\Delta_n = \{ P \in \mathbb{C}_p[X] \mid P \text{ scind\'e à racines simples sur } \mathbb{R} \text{ et } \deg(P) = n \}$$

 $Si \ \lambda_1 < \lambda_2 < \cdots < \lambda_n \ sont \ les \ racines \ (distinctes) \ de \ R \ sur \mathbb{R}, \ on \ choisit \ \alpha_0 \in]-\infty, \lambda_1, \ \alpha_n \in]\lambda_n, +\infty[$ et $\alpha_i \in]\lambda_i, \lambda_{i+1}[\ si \ i=1,\ldots,n-1.$

Pour tout $k \in \{0, ..., n-1\}$, on a $P(\alpha_k)P(\alpha_{k+1}) < 0$ (car les racines de P provoquent des changements de signe). Soit

$$\Psi: \mathbb{R}_n[X] \to \mathbb{R}^n$$

$$Q \mapsto (Q(\alpha_k)Q(\alpha_{k+1}))_{0 \le k \le n-1}$$

 Ψ est continue $sur \mathbb{R}_n[X]$ et $\Psi(P) \in (\mathbb{R}_+^*)^n$ qui est ouvert, donc il existe r > 0 tel que $si \|P - Q\| < r$, alors $\Psi(Q) \in (\mathbb{R}_+^*)^n$. Donc Q change n fois de signe, et admet au moins n racines. Mais $\deg(Q) = n$, donc Q est scindé à racines simples $sur \mathbb{R}$, donc Δ_n est ouvert dans $\{P \in \mathbb{R}[X] \mid \deg(P) = n\}$.

Remarque 6.5.

 $\{M \in \mathcal{M}_n(\mathbb{C}) \mid M \text{ diagonalisable à racines simples}\} = \{M \in \mathcal{M}_n(\mathbb{C}) \mid \chi_M \text{ sciné à racines simples}\}$ est un ouvert de $\mathcal{M}_n(\mathbb{C})$ car $M \mapsto \chi_M$ est continue sur $\mathcal{M}_n(\mathbb{C})$, et c'est aussi vrai sur \mathbb{R} .

Solution 6.12.

1. Soit

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$

$$A \mapsto A^n$$

f est continue et $F = f^{-1}(\{0\})$ donc $F = \overline{F}$.

Soit $M_0 \in F$, X^n annule M_0 donc M_0 est trigonalisable : on écrit M_0 dans une base où les coefficients diagonaux sont tous nuls. Soit alors M_{ε} la même matrice dans la même base en rajoutant simplement ε en première position de la diagonale. Alors $M_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} M_0$ et $M_{\varepsilon} \notin F$ donc $\mathring{F} = \emptyset$. Notons que cela signifie que F est dense.

2. La norme dérive du produit scalaire $(A|B) \mapsto \operatorname{Tr}(A^{\mathsf{T}}B)$. Soit $M \in F$, on a $||M - I_n||^2 = ||M||^2 + ||I_n||^2 - 2(M|I_n)$. On a $(M|I_n) = \operatorname{Tr}(M) = 0$ car M est nilpotente. Donc $||M - I_n||^2$ est minimale pour $||M||^2$ minimale, donc pour $M = 0 \in F$. Donc $d(I_n, F) = ||I_n|| = \sqrt{n}$ (et la distance est atteinte pour $0_{\mathcal{M}_n(\mathbb{R})}$).

Solution 6.13.

- 1. $A \mapsto \det(A)$ est continue et $GL_n(\mathbb{K}) = \det^{-1}(\mathbb{K}^*)$ est donc ouvert. Si $A \in \mathcal{M}_n(\mathbb{K})$, pour $p \in \mathbb{N}$, on pose $A_p = A \frac{1}{p+1}I_n$. Comme $\operatorname{Sp}(A)$ est fini, il existe $N \in \mathbb{N}$, tel que pour tout $p \geqslant N$, $\frac{1}{p+1} \notin \operatorname{Sp}(A)$. Donc pour tout $p \geqslant N$, $A_p \in GL_n(\mathbb{K})$, et $A_p \xrightarrow[p \to +\infty]{} A$ donc $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.
- 2. On fixe $B \in \mathcal{M}_n(\mathbb{K})$. Soit $A \in GL_n(\mathbb{K})$. On écrit $BA = A^{-1}(AB)A$ donc AB et BA sont semblables donc $\chi_{AB} = \chi_{BA}$. Comme, à B fixé, $A \mapsto \chi_{AB}$ et $A \mapsto \chi_{BA}$ sont continues sur $\mathcal{M}_n(\mathbb{K})$, on a le résultat par densité.

Solution 6.14.

1. On $a \ v_p \circ (id_E - u) = (id_E - u) \circ v_p = \frac{1}{p} (id_E - u^p), \ donc \ \|v_p \circ (id_E - u)\| \leqslant \frac{1}{p} (\|id_E\| + \|u^p\|) \xrightarrow[p \to +\infty]{} 0.$ Soit $x \in \ker(u - id_E) \cap \operatorname{Im}(u - id_E), \ on \ a \ u(x) = x \ et \ il \ existe \ y \in E, \ x = (u - id_E)(y).$

On a $v_p(x) = \frac{1}{p}(px) = x$ et $v_p(x) = v_p \circ (u - id_E)(y) \xrightarrow[p \to +\infty]{} 0$ d'où x = 0. Le théorème du rang permet de conclure.

2. Soit $x \in E$, on écrit $x = x_1 + x_2$ avec $\Pi(x) = x_1$ et $x_2 = (u - id_E)(y_2)$. Alors $v_p(x) = x_1 + v_p \circ (u - id_E)(y_2) \xrightarrow[p \to +\infty]{} x_1 = \Pi(x)$.

Solution 6.15.

1. Pour tout $x \in A$, $f_n(x) \in A$ car A est convexe. Soit $(x,y) \in A^2$, on a

$$||f_n(x) - f_n(y)|| = \left(1 - \frac{1}{n}\right)||f(x) - f(y)|| \le \left(1 - \frac{1}{n}\right)||x - y||$$

Donc f_n est $(1-\frac{1}{n})$ -lipschitzienne. On forme

$$g_n: A \to \mathbb{R}$$

$$x \mapsto \|f_n(x) - x\|$$

qui est continue. Soit $x_n \in A$ telle que $g_n(x_n) = \min_{x \in A} g_n(x)$ (existe car A est compact et g_n continue). On a $x_n \in A$, d'où $f_n(x_n) \in A$ et

$$g_n(f_n(x_n)) = \|f_n(f_n(x_n)) - f_n(x_n)\| \le \left(1 - \frac{1}{n}\right) \|f_n(x_n) - x_n\| = \left(1 - \frac{1}{n}\right) g_n(x_n)$$

Si $g_n(x_n) \neq 0$, alors on aurait $g_n(f(x_n)) < g_n(x_n)$ ce qui n'est pas possible. Donc $g_n(x_n) = 0$ et $f_n(x_n) = x_n$.

Soit y_n un autre point fixe, on a

$$||f_n(x_n) - f_n(y_n)|| = ||x_n - y_n|| \le \left(1 - \frac{1}{n}\right) ||x_n - y_n||$$

 $donc \ x_n = y_n.$

2. On a $(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ et on extrait (car A est compact) et on a

$$x_{\sigma(n)} \xrightarrow[n \to +\infty]{} x \in A$$

On a

$$f_{\sigma(n)}(x_{\sigma(n)}) = x_{\sigma(n)} = \underbrace{\frac{1}{\sigma(n)} f(x_0)}_{n \to +\infty} + \underbrace{\left(1 - \frac{1}{\sigma(n)}\right) f(x_{\sigma(n)})}_{n \to +\infty}$$

par continuité de f. Donc f(x) = x.

3. Soit $(x,y) \in A^2$, points fixes de f, et $t \in [0,1]$, on pose z = tx + (1-t)y. On a

$$||x - y|| = ||f(x) - f(y)||$$

$$\leq ||f(x) - f(z)|| + ||f(z) - f(y)||$$

$$\leq ||x - z|| + ||z - y||$$

$$= (1 - t)||x - y|| + t||x - y||$$

$$= ||x - y||$$

On a donc égalité partout : ||f(x) - f(y)|| = ||f(x) - f(z)|| + ||f(z) - f(y)|| et ||f(x) - f(z)|| = ||x - z||, ||f(z) - f(y)|| = ||z - y|| car f est 1-lipschitzienne.

Comme la norme est euclidienne, il existe $\lambda \in \mathbb{R}_+$ tel que $f(x) - f(z) = \lambda(f(z) - f(y))$ d'où $f(x) + \lambda f(y) = (\lambda + 1)f(z)$ d'où $f(z) = \frac{x + \lambda y}{\lambda + 1} = t'x + (1 - t')y$ avec $t' = \frac{1}{\lambda + 1} \in [0, 1]$. En reportant, on a

$$||f(x) - f(z)|| = ||x - t'x - (1 - t')y|| = (1 - t')||x - y|| = ||x - z|| = (1 - t)||x - y||$$

Si $x \neq y$, alors $t = t'$ et $f(z) = tx + (1 - t)y = z$.

4. Soit dans \mathbb{R}^2 , $\overline{B_{\|\cdot\|}(0,1)} = [-1,1]^2 = A$. Soit

$$f: \quad A \quad \to \quad A$$
$$(x,y) \quad \mapsto \quad (x,|x|)$$

On a

$$||f(x_1, y_1) - f(x_2, y_2)||_{\infty} = ||(x_1, |x_1|)(x_2, |x_2|)||_{\infty}$$

$$= \max\{|x_1 - x_2|, ||x_1| - |x_2||\}$$

$$= |x_1 - x_2|$$

$$\leq ||(x_1, y_1) - (x_2, y_2)||_{\infty}$$

Donc f est 1-lipschitzienne, on a f(x,y) = (y,x) si et seulement si y = |x|. Donc ici, F n'est pas convexe.

Solution 6.16.

1. On a pour tout $(x,y) \in E^2$, f(x+y) = f(x) + f(y) et par récurrence, pour tout $n \in \mathbb{Z}$, f(nx) = nf(x). Pour $r = \frac{p}{q} \in \mathbb{Q}$, on a f(qrx) = qf(rx) = f(px) = pf(x) donc f(rx) = rf(x). Par densité de \mathbb{Q} dans \mathbb{R} et continuité de f, on a pour tout $\lambda \in \mathbb{R}$, $f(\lambda x) = \lambda f(x)$. Donc f est linéaire.

Pour $\mathbb{K} = \mathbb{C}$, cela ne marche pas. Contre-exemple : la conjugaison dans \mathbb{C} .

2. On étudie la série, pour x fixé de terme général

$$||v_{n+1}(x) - v_n(x)|| = \frac{1}{2^n} ||f(2^{n+1}x) - 2f(2^nx)|| \le \frac{M}{2^{n+1}}$$

qui est donc convergente. Donc $(v_n)_{n\in\mathbb{N}}$ converge.

- 3. On a $v_0(x) = f(x)$, donc $\sum_{n=0}^{+\infty} v_{n+1}(x) v_n(x) = g(x) f(x)$. f étant continue, v_n l'est aussi, et pour tout $n \in \mathbb{N}$, comme pour tout $x \in E$, $||(v_{n+1} v_n)(x)|| \leq \frac{M}{2^{n+1}}$, donc g est continue.
- 4. On a, pour tout $(x,y) \in E^2$,

$$||v_n(x+y) - v_n(x) - v_n(y)|| = ||\frac{1}{2^n} f(2^n(x+y)) - \frac{1}{2^n} (f(2^nx) + f(2^ny))|| \le \frac{M}{2^n}$$

Donc quand $n \to +\infty$, g(x+y) = g(x) + g(y).

On a pour tout $x \in E$,

$$||g(x) - f(x)|| = \left\| \sum_{n=0}^{+\infty} v_{n+1}(x) - v_n(x) \right\| || \leqslant \sum_{n=0}^{+\infty} ||v_{n+1}(x) - v_n(x)|| \leqslant \sum_{n=0}^{\infty} \frac{M}{2^n} = M$$

Soit maintenant h linéaire continue telle que h-f soit bornée, soit $M'=\sup_{x\in E}\|h(x)-f(x)\|$. On a donc

$$||v_n(x) - h(x)|| = \left\| \frac{1}{2^n} f(2^n x) - \frac{1}{2^n} h(2^n x) \right\| \leqslant \frac{M'}{2^n}$$

 $car\ h\ est\ lin\'eaire.\ Donc\ quand\ n\to +\infty,\ g(x)=h(x)\ car\ \lim_{n\to +\infty}v_n(x)=g(x).$

Solution 6.17. En particulier, pour t = f(0), $f^{-1}(\{f(0)\}) = \{x \in E \mid f(x) = f(0)\}$ est borné (car compact). Donc il existe A tel que $f^{-1}(\{f(0)\}) \subset \overline{B(0,A)}$. Par contraposée, pour tout $x \in E$, si ||x|| > A, alors $f(x) \neq f(0)$.

On montre alors que $E \setminus \overline{B(0,A)}$ est connexe par arcs (faire le tour de la boule par l'extérieur).

f étant continue, d'après le théorème des valeurs intermédiaires, on a soit pour tout $x \in E \setminus \overline{B(0,A)}$, f(x) > f(0) soit f(x) < f(0). Quitte à remplacer f par -f, on se place dans le cas f(x) > f(0). Comme on est en dimension finie sur $\overline{B(0,A)}$ compact, f atteint son minimum et ce minimum est plus petit que f(0), c'est donc un minimum global.

Remarque 6.6. C'est faux pour n = 1. Contre-exemple : $f = id_{\mathbb{R}}$.

Solution 6.18. Si c'était le cas, on prend un cercle C compact (et connexe par arcs). f(C) est compact connexe par arc dans \mathbb{R} . On note f(C) = [a,b] (avec a < b car f injective). Si $x \in C$ est tel que $f(x) = \frac{a+b}{2}$, on $\underbrace{f(C \setminus \{x\})}_{connexe\ par\ arc} = \underbrace{[a,b] \setminus \left\{\frac{a+b}{2}\right\}}_{pas\ connexe\ par\ arc}$ donc une telle fonction n'existe pas.

Solution 6.19.

1. Pour tout $n \in \mathbb{N}$, $||e_n||_{l^1} = 1$ et $|K_n| = |\varphi(e_n)| \leq |||\varphi|||$ donc $(K_n)_{n \in \mathbb{N}}$ est bornée. On note $M = \sup |K_n| \leq |||\varphi|||$.

Soit maintenant $u = (u_n)_{n \in \mathbb{N}} \in l^1$. On a, pour $N \in \mathbb{N}$,

$$\left\| u - \sum_{n=0}^{N} u_n e_n \right\|_{1} \leqslant \sum_{n=N+1}^{\infty} |u_n| \xrightarrow[N \to +\infty]{} 0$$

(reste d'une série convergente). Par continuité de φ , on a donc

$$|\varphi(u)| \leqslant \sum_{n=0}^{\infty} |u_n||K_n| \leqslant M||u||_1$$

Ainsi, $\||\varphi|| \le M$ et donc $\||\varphi|| = M$.

 $2. \ F \ est \ lin\'eaire \ et \ une \ isom\'etrie \ d'apr\`es \ la \ question \ pr\'ec\'edente, \ donc \ injective.$

Soit $(K_n)_{n\in\mathbb{N}}\in l^{\infty}$. On définit

$$\varphi: l^1 \to \mathbb{R}$$

$$u = (u_n)_{n \in \mathbb{N}} \mapsto \sum_{n=0}^{\infty} u_n K_n$$

Elle est bien définie car $\sum_{n=0}^{+\infty} |u_n| < +\infty$ et $(K_n)_{n \in \mathbb{N}}$ est bornée. Elle est linéaire, et continue car $|\varphi(u)| \leq \|(K_n)_{n \in \mathbb{N}}\|_{\infty} \|u\|_1$.

Enfin, pour tout $n \in \mathbb{N}$, $\varphi(e_n) = K_n$. Donc $F(\varphi) = (K_n)_{n \in \mathbb{N}}$ et F est surjective. Donc F est une isométrie bijective et le dual topologique de l^1 est équivalent à l^{∞} .

Solution 6.20.

1. Soit φ une forme linéaire non nulle telle que $K = \ker(\varphi)/Si$ F est dense, φ est discontinue. Soit $(a,b) \in (E \setminus H)^2$ et $(x_n)_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ qui converge vers b-a (existe car H est dense). La suite $(a+x_n)_{n \in \mathbb{N}}$ converge vers b. Pour $n \in \mathbb{N}$, on a $\varphi(a+x_n) = \varphi(a) \neq 0$, et pour $t \in [0,1]$, $\varphi(t(a+x_n)+(1-t)(a+x_{n+1})) = \varphi(a) \neq 0$. Donc $[a+x_n,a+x_{n+1}] \subset E \setminus H$. Soit $\gamma:[0,1] \to E \setminus H$ telle que

$$\begin{cases} \gamma(t) = \alpha_n t + \beta_n \in [a + x_n, a + x_{n+1}] \subset E \setminus H & si \ t \in [1 - \frac{1}{n}, 1 - \frac{1}{n+1}] \\ \gamma(1) = b \\ \gamma(t) = a + tx_0 & si \ t \in [0, \frac{1}{2}] \end{cases}$$

On cherche à définir α_n et β_n : on veut $\gamma(1-\frac{1}{n})=a+x_n$ et $\gamma(1-\frac{1}{n+1})=a+x_{n+1}$ (pour la continuité en se raccordant au x_n). En résolvant le système, on trouve $\alpha_n=n(n+1)(x_n-x_{n+1})$ et $\beta_n=a+x_n-(n-1)(n+1)(x_n-x_{n+1})$.

Soit alors $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$: $||x_n + a - b|| < \varepsilon$ et pour tout $n \ge N$, pour tout $t \in [1 - \frac{1}{n}, 1 - \frac{1}{n+1}[, \gamma(t) \in [a + x_n, a + x_{n+1}] \subset B(b, \varepsilon)$ par convexité de la boule. Donc $\lim_{t \to 1} \gamma(t) = b$ et γ est continue. Donc $E \setminus H$ est connexe par arcs.

- 2. Soit φ une forme linéaire telle que ker(f) = H est fermé. Alors φ est continue (à redémontrer). Soit x ∈ E \ H, on a φ(x)φ(-x) < 0 et d'après le théorème des valeurs intermédiaires, si E \ H était connexe par arcs, φ s'annulerait sur E \ H ce qui n'est pas vrai. Donc E \ H n'est pas connexe par arcs.</p>
- Si K = C, si H est dense alors E \ H est connexe par arc d'après la première question.
 Si H est fermé, soit φ une forme linéaire continue telle que ker(f) = H. Soit (x₁, x₂) ∈ (E \ H)².
 - $Si \frac{\varphi(x_1)}{\varphi(x_2)} \notin \mathbb{R}_{-}^*$, alors pour tout $t \in [0,1]$, $\varphi(\underbrace{tx_1 + (1-t)x_2}_{\in E \setminus H}) \neq 0$ et on peut relier directement x_1 et x_2 .
 - Sinon, il existe $\theta \in \mathbb{R}$, $(\rho, \rho') \in (\mathbb{R}_+^*)^2$ avec $\varphi(x_1) = \rho e^{i\theta}$ et $\varphi(x_2) = \rho' e^{i(\theta + \pi)}$. Alors $x_3 = ix_1$ est tel que $[x_1, x_3] \subset E \setminus H$ et $[x_2, x_3] \subset E \setminus H$ (on contourne l'origine par une rotation de l'angle $\frac{\pi}{2}$). Par conséquent, on peut utiliser x_3 pour relier x_1 et x_2 donc $E \setminus H$ est connexe par arcs.

Solution 6.21. Soit

$$\varphi: \mathbb{R}_+^* \to \mathbb{R}$$
$$x \mapsto ((x, \sin(\frac{1}{x})))$$

 φ est continue et $\Gamma)\varphi(\mathbb{R}_+^*)$ est connexe par arcs.

 $On \ a \ \overline{\Gamma} = \Gamma \cup \Gamma' \ avec \ \Gamma' = \{(0,y) \ \big| \ y \in [-1,1]\}. \ En \ effet, \ pour \ tout \ y \in [-1,1], \ on \ pose \\ x_k = \frac{1}{\arcsin(y) + 2k\pi}. \ On \ a \ \sin(\frac{1}{x_k}) = y \xrightarrow[k \to +\infty]{} y \ donc \ (0,y) = \lim_{k \to +\infty} (x_k, \sin(\frac{1}{x_k})) \in \overline{\Gamma}.$

Réciproquement, si $(x,y) \in \overline{\Gamma}$, il existe $(x_k) \in (\mathbb{R}_+^*)^{\mathbb{N}}$ avec $x = \lim_{k \to +\infty} x_k$ et $y = \lim_{k \to +\infty} \sin(\frac{1}{x_k})$. Si x > 0, par continuité, $y = \sin(\frac{1}{x})$ et $(x,y) \in \Gamma$. Si x = 0, $y \in [-1,1]$ donc $(x,y) \in \Gamma'$.

 $Si \overline{\Gamma}$ est connexe par arcs, il existe

$$\begin{array}{cccc} \gamma: & [0,1] & \to & \overline{\Gamma} \\ & t & \mapsto & (x(t),y(t)) \end{array}$$

continue telle que $\gamma(0) = (0,0)$ et $\gamma(1) = (\frac{1}{\pi},0)$. La première projection $t \mapsto x(t)$ est continue avec x(0) = 0 et $x(1) = \frac{1}{\pi}$. On définit maintenant $t_1 = \sup\{t \in [0,1] \mid x(t) = 0\}$. Par continuité, $x(t_1) = 0$ et donc $t_1 < 1$. Donc pour tout $t > t_1$, x(t) > 0 et $\gamma(t) = (x(t), \sin(\frac{1}{x(t)}))$ pour $t > t_1$ et $\gamma(t_1) = (0, y_1)$ avec $y_1 \in [-1, 1]$.

Or, -1 et 1 n'appartiennent pas simultanément à $]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. On peut supposer que $1 \notin]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. Comme γ est continue, il existe $t_2 > t_1$ tel que pour tout $t \in]t_1, t_2]$, $\sin(\frac{1}{x(t)}) \in]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. Or $x(t_2) > 0$ et $x(t_1) = 0$ donc il existe $k \in \mathbb{N}^*$, $t_0 \in]t_1, t_2]$ tel que $x(t_0) = \frac{1}{2k\pi + \frac{\pi}{2}}$ (théorème des valeurs intermédiaires). Mais alors $\sin(\frac{1}{x(t_0)}) = 1 \notin]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$ ce qui contredit ce qui précède.

Donc $\overline{\Gamma}$ n'est pas connexe par arcs.

Solution 6.22.

1. Pour tout $n \in \mathbb{N}$, $u_n \in K$ car u_n est le barycentre de $(a, T(a), \dots, T^n(a))$ et K est convexe. Comme K est compact, on peut extraire $u_{\sigma(n)} \xrightarrow[n \to +\infty]{} u \in K$. Alors

$$(id_E - T)(u_{\sigma(n)}) = \frac{1}{\sigma(n) + 1}(id_E - T^{\sigma(n)+1})(a)$$

d'où

$$||(id_E - T)(u_{\sigma(n)})|| \leqslant \frac{1}{\sigma(n) + 1} \times 2M \xrightarrow[n \to +\infty]{} 0$$

avec $M = \sup_{x \in K} ||x||$ (existe car K est compact donc borné). Par continuité de T, on a T(u) = u.

2. Posons $F' = \{u \in K \mid T(u) = u\}$ fermé car $K' = K \cap \left(\underbrace{(id_E - T)^{-1}}_{continu} \{0\}\right)$. Donc K' est compact et non vide d'après la première question. De plus, pour tout $(u_1, u_2) \in K'^2$, pour tout $t \in [0, 1]$, par linéarité de T, on a

$$T(tu_1 + (1-t)u_2) = tu_1 + (1-t)u_2$$

donc K' convexe. De plus, comme $U \circ T = T \circ U$, pour tout $u \in K'$, on a T(U(u)) = U(T(u)) = U(u) donc $U(u) \in K'$. On applique alors la question 1 à K' est il existe $y \in K'$: U(y) = y et T(y) = y.

Solution 6.23.

- 1. C'est le théorème du rang car $\operatorname{rg}(u) \leqslant n \leqslant p-2$, et $H = \{(\alpha_1, \ldots, \alpha_p) \mid \sum_{i=1}^p \alpha_i = 0\}$ est de dimension p-1 donc $H \cap \ker(u) \neq \{0\}$ (formule de Grassmann).
- 2. On a

$$\sum_{i=1}^{p} (\lambda_i + t\alpha_i) x_i = \sum_{i=1}^{p} \lambda_i x_i + t \sum_{i=1}^{p} \alpha_i x_i = x$$

et

$$\sum_{i=1}^{p} (\lambda_i + t\alpha_i) = \sum_{i=1}^{p} \lambda_i + t \sum_{i=1}^{p} \alpha_i = 1$$

Soit $I_{+} = \{i \in \{1, \dots, p\} \mid \alpha_{i} > 0\}$ et $I_{-} = \{i \in \{1, \dots, p\} \mid \alpha_{i} < 0\}$. On a $I_{+} \neq \emptyset$ et $I_{-} \neq \emptyset$ car $\sum_{i=1}^{p} \alpha_{i} = 0$ et $(\alpha_{1}, \dots, \alpha_{p}) \neq (0, \dots, 0)$. Soit $t \geqslant 0$. Pour tout $i \in I_{+}$, $\lambda_{i} + t\alpha_{i} \geqslant 0$. Pour $i \in I_{-}$, $\lambda_{i} + t$ $\alpha_{i} \geqslant 0$ si et seulement si $t \leqslant -\frac{\lambda_{i}}{\alpha_{i}}$. Prenons alors

$$t = \min_{i \in I_{-}} \left(-\frac{\lambda_i}{\alpha_i} \right)$$

On au aussi pour tout $i \in I_-$, $\lambda_i + t\alpha_i \geqslant 0$ et il existe $i_0 \in I_-$ tel que $\lambda_{i_0} + t\alpha_{i_0} = 0$.

3. Par récurrence descendante, on se ramène à n+1 points car si x est barycentre de p points avec $p \ge n+2$, alors il est barycentre de p-1 points.

4. Soit $A = \{(\lambda_1, \dots, \lambda_{n+1}) \in \mathbb{R}^{n+1}_+ \mid \sum_{i=1}^{n+1} \lambda_i = 1\}$ fermé et borné en dimension finie donc compact. Soit

$$f: A \times K^{n+1} \to \operatorname{conv}(K)$$
$$((\lambda_1, \dots, \lambda_n), (x_1, \dots, x_{n+1})) \mapsto \sum_{i=1}^{n+1} \lambda_i x_i$$

f est surjective et continue, donc conv(K) est l'image continue d'un compact donc conv(K) est compact.

Solution 6.24. Pour tout $u \in A_p$, $\operatorname{Sp}(u) \subset \{\alpha_1, \ldots, \alpha_r\}$ distincts et u est diagonalisable. Réciproquement, si u est diagonalisable et $\operatorname{Sp}(u) \subset \{\alpha_1, \ldots, \alpha_r\}$ alors dans une base la matrice de u est diagonale avec des α_i (éventuellement plusieurs selon leur multiplicités), donc $u \in A_p$.

Si $u \in A_p$, on écrit donc le polynôme caractéristique de u

$$\chi_u = \prod_{i=1}^r (X - \alpha_i)^{m_i}$$

avec $0 \le m_i \le \dim(E) = n$ et $\sum_{i=1}^r m_i = n$. $u \mapsto \chi_u$ est continue. Pour $(m_1, \dots, m_r) \in \{0, \dots, n\}^r$ tel que $\sum_{i=1}^r m_i = n$, notons

$$A_{m_1,...,m_r} = \left\{ u \in A_p \mid \chi_u = \prod_{i=1}^r (X - \alpha_i)^{m_i} \right\}$$

et

$$\left[u \mapsto \chi_u(A_p)\right] = \left\{ \bigcup_{(m_1, \dots, m_r) \in D_{n,r}} \left\{ \prod_{i=1}^r (X - \alpha_i)^{m_i} \right\} \right\}$$

οù

$$D_{n,r} = \left\{ (m_1, \dots, m_r) \in \{0, \dots, n\}^r \mid \sum_{i=1}^r m_i = n \right\}$$

Donc d'après la contraposée du théorème des valeurs intermédiaires, $si\ (m_1,\ldots,m_r) \neq (m'_1,\ldots,m'_r)$, alors A_{m_1,\ldots,m_r} et $A_{m'_1,\ldots,m'_r}$ ne sont pas dans la même composante connexe par arcs car

$$\left[u \mapsto \chi_u \left(A_{m_1,\dots,m_p} \bigcup A_{m'_1,\dots,m'_r}\right)\right] = \underbrace{\left\{\prod_{i=1}^r (X - \alpha_i)^{m_i}\right\}\right\} \bigcup_{pas \ connexe \ par \ arcs}}_{pas \ connexe \ par \ arcs}$$

 $Si \ \gamma \colon [0,1] \to A_p \ est \ continue, \ t \mapsto \chi_{\gamma(t)} = a_0(t) + a_1(t)X + \dots + a_{n-1}(t)X^{n-1} + X^n \ est$ continue $sur \ [0,1] \ et \ prend \ un \ nombre \ fini \ de \ valeurs \ donc \ est \ constante.$ $a_i \colon [0,1] \to \mathbb{R}$ continues et $prend \ un \ nombre \ fini \ de \ valeurs \ donc \ est \ constante.$

Soit $u_0 \in A_{m_1,\dots,m_r}$, soit $u \in A_{m_1,\dots,m_r}$, alors il existe une base \mathcal{B}_0 base de E telle que $\operatorname{mat}_{\mathcal{B}_0}(u_0) = M_0$ soit diagonale avec des α_1 sur les m_1 premières lignes de la diagonale, α_2 sur les m_2 lignes suivantes, etc. Soit $M = \operatorname{mat}_{\mathcal{B}_0}(u)$. M est semblable à M_0 donc il existe $P \in GL_n(\mathbb{C})$ telle que $M = PM_0P^{-1}$.

Or $GL_n(\mathbb{C})$ est connexe par arcs, donc il existe $\varphi \colon [0,1] \to GL_n(\mathbb{C})$ continue telle que $\varphi(0) = P$ et $\varphi(1) = I_n$. On pose alors

$$\Phi: [0,1] \to A_{m_1,\dots,m_r}$$

$$t \mapsto \varphi(t)M_0\varphi^{-1}(t)$$

Alors $A_{m_1,...,m_r}$ est connexe par arcs.

Le nombre de composantes est donc égal au cardinal de

$$D_{n,r} = \left\{ (m_1, \dots, m_r) \in \{0, \dots, n\}^r \mid \sum_{i=1}^r m_i = n \right\}$$

qui vaut $\binom{m+r-1}{r-1}$ possibilités (place n points sur une droite et les séparer avec r-1 barres : le nombre de points dans chaque segment donne un m_i , il y a m+r-1 possibilités pour placer les r-1 barres).

Solution 6.25.

- 1. Pour tout $i \in \{1, ..., n\}$, $|AX|_i = \sum_{j=1}^n \underbrace{a_{i,j} x_j}_{>0} \geqslant 0$. Si $|AX|_i = 0$ alors pour tout $j \in \{1, ..., n\}$, $\underbrace{a_{i,j}}_{>0} x_j = 0$ donc $x_j = 0$, impossible car $X \neq 0$.
- 2. Si |AX| = A|X|. On a pour tout $i \in \{1, ..., n\}$,

$$\left| \sum_{j=1}^{n} a_{i,j} x_j \right| = \sum_{j=1}^{n} a_{i,j} |x_j|$$

donc les $(a_{i,j}x_j)_{1 \le j \le n}$ ont tous même argument. On prend $\theta = \arg(x_j)$.

3. K est fermé et borné en dimension finie : c'est un compact. On a $I_x \neq \emptyset$ car $AX \geqslant 0$ donc $0 \in I_x$. Soit $(t_n)_{n \in \mathbb{N}} \in I_x^{\mathbb{N}}$ convergeant vers $t \in \mathbb{R}$. Pour tout $k \in \mathbb{N}$, $AX - t_k X \geqslant 0$

donc pour tout $i \in \{1, ..., n\}$, $(AX - t_k X)_i \ge 0$ et par passage à la limite, $AX - tX \ge 0$ donc I_x est fermé.

 $Si \ t \in I_x$,

$$|tX|_1 = t = \sum_{i=1}^n t \underbrace{x_i}_{\geqslant 0} \leqslant \sum_{i=1}^n \sum_{j=1}^n a_{i,j} x_j \leqslant n \max_{1 \leqslant i,j \leqslant n} |a_{i,j}|$$

 $car \sum_{j=1}^{n} x_j = 1$. On note $M = n \max_{1 \le i, j \le n} |a_{i,j}|$.

- 4. Pour tout $x \in K$, $\theta(X) \leqslant M$ donc θ est bien borné sur K. Par définition de r_0 , il existe $(X_k)_{k \in \mathbb{N}} \in K^{\mathbb{N}}$ tel que $\lim_{k \to +\infty} \theta(X_k) = r_0$. On note $\theta(X_k) = t_k$. Comme K est compact, il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $X_{\sigma(k)}$ converge vers $X^+ \in K$. A priori, $\theta(X^+) \leqslant r_0$. On a $AX_{\sigma(k)} t_{\sigma(k)}X_{\sigma(k)} \geqslant 0$ pour tout $k \in \mathbb{N}$ donc par passage à la limite, $AX^+ r_0X^+ \geqslant 0$ et donc $r_0 \leqslant \theta(X^+)$ donc $r_0 = \theta(X^+)$.
- 5. Soit $Y = A^+ r_0 X^+ \geqslant 0$. Si $Y \neq 0$, alors AY > 0 d'après la question 1 donc

$$AY = A\underbrace{(AX^+)}_{>0} - r_0\underbrace{(AX^+)_{>0}}_{>0} > 0$$

On a $AY > \varepsilon AX^+$ si et seulement si pour tout $i \in \{1, ..., n\}$, $|AY|_i > \varepsilon |AX^+|_i$ (car AY > 0). On pose alors

$$\varepsilon = \frac{1}{2} \min_{1 \le i \le n} \frac{|AY|_i}{|AX^+|_i}$$

On a alors $AY - \varepsilon AX^+ > 0$ d'où

$$A \underbrace{\frac{AX^{+}}{\|AX^{+}\|_{1}}}_{\in K} - (r_{0} + \varepsilon) \frac{AX^{+}}{\|AX^{+}\|_{1}} > 0$$

 $donc \ r_0 + \varepsilon \in I_{\frac{AX^+}{\|AX^+\|_1}} \ c'est-\grave{a}-dire$

$$r_0 + \varepsilon \leqslant \theta \left(\frac{AX^+}{\|AX^+\|_1} \right) \leqslant r_0$$

ce qui est impossible. Nécessairement Y=0.

6. Pour tout $i \in \{1, \ldots, n\}$, on a

$$|AV|_i = \left|\sum_{j=1}^n a_{i,j} v_j\right| \leqslant \sum_{i=1}^n a_{i,j} |v_j| = (A|V|)_i$$

donc $|\lambda| = |AV| \leqslant A|V|$. De plus, $|V| \in K$ donc $|\lambda| \leqslant \theta(|V|) \leqslant r_0$. Notons que cela implique que le rayon spectral de A est $\rho(A)$ est plus petit que r_0 et que l'on a même égalité.

7. Si $|\lambda| = r_0$, on a $|\lambda| = \theta(|V|) = r_0$ et d'après la question 5 on a $A|V| = r_0|V| = |AV|$.

D'après la question 2, il existe $\theta \in \mathbb{R}$ tel que $V = e^{i\theta}|V|$. Or

$$AV = \lambda V = e^{i\theta} A|V| = e^{i\theta} r_0|V|$$

et comme $|K| \in K, |V| \neq 0$ et on a donc $\lambda = r_0$.

8. Soit $V \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $||V||_1 = 1$ et $AV = r_0V$. D'après la question précédente, on a $V = e^{i\theta}|V|$ et $A|V| = r_0|V|$. Soit alors $t \in \mathbb{R}$, on a

$$A(X^{+} + t|V|) = r_0(X^{+} + t|V|)$$

Notons maintenant que si $Y \ge 0$ avec $Y \ne 0$ vérifie $AY = r_0Y$, alors Y > 0. En effet, d'après la première question, AY > 0. On a $r_0 \ne 0$ car sinon $\operatorname{Sp}_{\mathbb{C}} = \{0\}$ et $A^n = 0$ ce qui est impossible car ses coefficients sont strictement positifs. D'où Y > 0.

Ainsi, par définition de X^+ , on a $X^+ > 0$ et |V| > 0. On a alors

$$(X^+)_i + t|v_i| \geqslant 0$$

si et seulement si

$$t \geqslant -\frac{|X^+|_i}{|v_i|}$$

On prend

$$t = \min_{1 \leqslant i \leqslant n} - \frac{|X^+|_i}{|v_i|}$$

Finalement, on a $X^+ + t|V| \ge 0$ et une de ses coordonnées vaut 0 (car on a pris le minimum sur les i). Nécessairement, $X^+ + t|V| = 0$ (car $A(X^+ + t|V|) = r_0(X^+ + t|V|)$) et donc $|V| \in \mathbb{R}X^+$. Donc $V = e^{i\theta}|V| \in \mathbb{C}X^+$ et ainsi

$$\dim(\ker(A - r_0 I_n)) = 1$$

Solution 6.26. Soit

$$\varphi: \ U \times V \ \to \ \mathbb{R}$$
$$(x,y) \ \mapsto \ \|x-y\|$$

On a

 $|\varphi(x,y) - \varphi(x',y')| = |||x-y|| - ||x'-y'|| \le ||(x-y) - (x'-y')|| \le ||x-x'|| + ||y-y'|| \le 2||(x,y) - (x',y')||_{\infty}$ $donc \ \varphi \ est \ continue.$

 $U \times V$ est compact, donc il existe $(x_1, y_1) \in (U \times V)$ telle que $\varphi(x_1, y_1) = \min_{(x,y) \in U \times V} \varphi(x,y)$. Comme U et V sont disjoints, $x_1 \neq y_1$ et $\varphi(x_1, y_1) = 0$.

Soit $\alpha = \frac{d(U,V)}{3}$. On pose $U' = \{x \in E \mid d(x,U) < \alpha\}$ et $V' = \{x \in E \mid d(x,V) < \alpha\}$. $x \mapsto \|x\|$ est continue car 1-lipschitzienne donc U' est V' sont des ouverts et on a bien $U \subset U'$ et $V \subset V'$. Soit ensuite $x \in U' \cap V'$, on a $d(x,U) < \alpha$ et $d(x,V) < \alpha$ donc il existe $(u,v) \in U \times V$, $d(x,u) < \alpha$ et $d(x,v) < \alpha$. Alors $d(u,v) \leqslant 2\alpha$ ce qui est absurde. Donc $U' \cap V' = \emptyset$.

Solution 6.27.

1. f est 1-lipschitzienne donc est continue. On forme

$$g: K \to \mathbb{R}$$

$$x \mapsto \|x - f(x)\|$$

g est continue, K est compact donc il existe $a \in K$ tel que $g(a) = \min_{x \in K} g(x)$. Si $a \neq f(a)$, alors $||f(a) - f^2(a)|| = g(f(a)) < ||a - f(a)|| = g(a)$ ce qui est impossible par définition de a. Donc f(a) = a. S'il existe $a' \neq a$ tel que f(a') = a', alors ||f(a) - f(a')|| = ||a - a'|| < ||a - a'|| ce qui est impossible. Donc a est unique.

2. S'il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} = a$ alors pour tout $n \ge n_0$, $u_n = a$ et $\lim_{n \to +\infty} u_n = a$. Si pour tout $n \in \mathbb{N}$, $u_n \ne a$, alors pour tout $n \in \mathbb{N}$, on a

$$||u_{n+1} - a|| = ||f(u_n) - f(a)|| < ||u_n - a||$$

donc la suite $(\|u_n - a\|)_{n \in \mathbb{N}}$ est strictement décroissante dans \mathbb{R}_+ donc elle converge vers $l \geqslant 0$. Par compacité de K, il existe une extraction σ telle que $\lim_{n \to +\infty} u_{\sigma(n)} = \alpha \in K$. Par continuité,

$$\lim_{n \to +\infty} ||u_{\sigma(n)} - a|| = ||\alpha - a|| = l$$

et

$$\lim_{n \to +\infty} \|\underbrace{u_{\sigma(n)+1}}_{f(u_{\sigma(n)}} - f(a)\| = \|f(\alpha) - f(a)\| = l = \|\alpha - a\|$$

par continuité de f. Ainsi, on $a \alpha = a$ et l = 0 donc $\lim_{n \to +\infty} u_n = a$.

3. f est C^1 sur \mathbb{R} . Soit $x < y \in \mathbb{R}^2$, il existe $z \in]x,y[$ tel que (égalité des accroissements finis)

$$\left| \frac{f(x) - f(y)}{x - y} \right| = |f'(z)| = \left| \frac{z}{\sqrt{z^2 + 1}} \right| < 1$$

donc f vérifie bien l'hypothèse de contraction. Cependant, pour tout $a \in \mathbb{R}$, on a $\sqrt{a^2+1} > a$ donc pas de point fixe. La démonstration tombe en défaut car \mathbb{R} n'est pas compact.

Solution 6.28. La condition est équivalente à pour tout $(M_1, M_2, M_3) \in K_1 \times K_2 \times K_3$, M_1, M_2 et M_3 ne sont pas alignés.

On forme alors

$$f: K_1 \times K_2 \times K_3 \to \mathbb{R}_+$$

 $(M_1, M_2, M_3) \mapsto R(M_1, M_2, M_3)$

où $R(M_1, R_2, M_3)$ est le rayon du cercle circonscrit au triangle formé par M_1, M_2 et M_3 .

On note $M_i = (x_i, y_i)$ et Δ_i la médiatrice de $[M_j M_k]$. Établissons une équation de Δ_i . On a $M = (x, y) \in \Delta_i$ si et seulement si $\|M\vec{M}_j\|_2^2 = \|M\vec{M}_k\|_2^2$ si et seulement si $(M\vec{M}_j + M\vec{M}_k)$ $\|M\vec{M}_j - M\vec{M}_k\|_2 = \|M\vec{M}_k\|_2^2$ si et seulement si $(M\vec{C}_i \mid M_j\vec{M}_k) = 0$ où C_i est le milieu de $[M_j M_k]$, si et seulement si (calculer le produit scalaire)

$$\left(\frac{x_j + x_k}{2} - x\right)(x_k - x_j) + \left(\frac{y_j + y_k}{2} - y\right)(y_k - y_j) = 0$$

Soit alors $M_0 = (x_0, y_0)$ le centre du cercle circonscrit. $M_0 \in \Delta_i \cap \Delta_j$ avec $i \neq j$. Par exemple, $M_0 \in \Delta_3 \cap \Delta_1$ si et seulement si

$$\begin{cases} \left(\frac{x_2 + x_1}{2} - x_0\right)(x_2 - x_1) + \left(\frac{y_2 + y_1}{2} - y_0\right)(y_2 - y_1) &= 0\\ \left(\frac{x_3 + x_2}{2} - x_0\right)(x_3 - x_2) + \left(\frac{y_3 + y_2}{2} - y_0\right)(y_3 - y_2) &= 0 \end{cases}$$

si et seulement si $(L_2 \leftarrow L_1(x_3 - x_2) + L_2(x_1 - x_2))$

$$\begin{cases} x_0(x_1 - x_2) + y_0(y_1 - y_2) &= \frac{x_1^2 - x_2^2 + y_1^2 - y_2^2}{2} \\ x_0(x_2 - x_3) + y_0(y_2 - y_3) &= \frac{x_2^2 - x_3^2 + y_2^2 - y_3^2}{2} \end{cases}$$

 $si\ et\ seulement\ si\ (L_1 \leftarrow L_2(y_2 - y_1) + L_1(y_2 - y_3))$

$$\begin{cases} x_0 = \frac{x_1^2 - x_2^2 + y_1^2 - y_2^2}{2} (y_2 - y_3) - (y_1 - y_2) \frac{x_2^2 - x_3^2 + y_2^2 - y_3^2}{2} \\ (x_1 - x_2) (y_2 - y_3) - (x_2 - x_3) (y_1 - y_2) \end{cases}$$

$$y_0 = \frac{\frac{x_2^2 - x_3^2 + y_2^2 - y_3^2}{2} (x_1 - x_2) - (x_2 - x_3) \frac{x_1^2 - x_2^2 + y_1^2 - y_2^2}{2}}{(x_1 - x_2) (y_2 - y_3) - (x_2 - x_3) (y_1 - y_2)}$$

et $R(M_1, M_2, M_3) = \sqrt{(x_0 - x_3)^2 + (y_0 - y_3)^2}$. En reportant, f est continue sur $K_1 \times K_2 \times K_3$ compact donc f atteint son minimum.

Solution 6.29.

1. Pour tout $f \in E$, T(f) est C^1 et (T(f))' = f, T(f)(0) = 0. T est clairement linéaire, soit ensuite $x \in [0,1]$, on a

$$|T(f)(x)| = \left| \int_0^x f(t)dt \right| \le \int_0^x |f(t)|dt \le x ||f||_{\infty} \le ||f||_{\infty}$$

Donc $||T(f)||_{\infty} \le ||f||_{\infty}$ donc T est continue et $||T||| \le 1$. Pour f = 1, on a $||f||_{\infty} = 1$ et pour tout $x \in [0,1]$, T(f)(x) = x donc $||T(1)||_{\infty} = 1$. Ainsi, |||T||| = 1.

2. $id_E - T$ est continue. Soit $(f, g) \in E^2$, on a g = f - T(f) si et seulement si g = y' - y et y(0) = 0. On $a g(x)e^{-x} = \underbrace{e^{-x}(y'(x) - y(x))}_{(e^{-x}y(x))'}$ donc en intégrant de 0 à x on a

$$y(x) = e^x \int_0^x e^{-t} g(t) dt$$

Donc T(f) vérifie le problème de Cauchy si et seulement si pour tout $x \in \mathbb{R}$, $T(f)(x) = e^x \int_0^x e^{-t} g(t) dt$ si et seulement si pour tout $x \in [0,1]$,

$$f(x) = g(x) + e^x \int_0^x e^{-t} g(t) dt$$

Donc $id_E - T$ est bijective. Enfin, on a pour tout $x \in [0, 1]$,

$$|f(x)| \le |g(x)| + \left| \int_0^x g(t)e^{x-t}dt \right| \le ||g||_{\infty}(1+xe^x) \le ||g||_{\infty}(1+e)$$

Ainsi,

$$||f||_{\infty} = ||(id_E - T)^{-1}(g)||_{\infty} \le ||g||_{\infty}(1 + e)$$

 $donc (id_E - T)^{-1}$ est continue. Ainsi, $id_E - T$ est un homéomorphisme.

Solution 6.30.

- $(i) \Rightarrow (ii) \ f^{-1}(K)$ est fermé car f est continue. K est borné, donc il existe M > 0, tel que pour tout $y \in K$, $||y|| \leqslant M$. Donc pour tout $x \in f^{-1}(K)$, $||f(x)|| \leqslant M$. Par contraposée de (i) pour A = M + 1, il existe B > 0 tel que $||f(x)|| < A \Rightarrow ||x|| < B$. Donc pour $x \in f^{-1}(K)$, ||x|| < B donc $f^{-1}(K)$ est borné. C'est donc un compact.
- (ii) \Rightarrow (i) Soit $A \geqslant 0$. Soit $K = \overline{B(0,A)}$ compact car fermé et borné en dimension finie. D'après (ii), $f^{-1}(K)$ est compact donc borné : il existe B > 0 tel que pour tout $x \in f^{-1}(K)$, $\|x\| \leqslant B$. Par contraposée, si $\|x\| > B$ alors $x \notin f^{-1}(K)$ et $f(x) \notin K$ donc $\|f(x)\| > A$. Ainsi, $\lim_{\|x\| \to +\infty} \|f(x)\| = +\infty$.

Remarque 6.7. Exemple pour l'exercice précédent : les fonctions polynômiales non constantes. Contre-exemple : l'exponentielle, cf $\exp([0,1]) = \mathbb{R}_-$ non compact.

Solution 6.31.

1. Soit $(x,y) \in K^2$ compact. Soit σ un extraction telle que

$$(f^{\sigma(n)}(x), f^{\sigma(n)}(y)) \xrightarrow[n \to +\infty]{} (l, l') \in K^2$$

On a

$$f^{\sigma(n+1)}(x) - f^{\sigma(n)}(x) \xrightarrow[n \to +\infty]{} 0$$

de même pour y. Soit $\varepsilon > 0$,

$$\begin{cases}
\exists N_1 \in \mathbb{N}, \forall n \geqslant N_1, ||f^{\sigma(n+1)}(x) - f^{\sigma(n)}(x)|| \leqslant \varepsilon \\
\exists N_1 \in \mathbb{N}, \forall n \geqslant N_1, ||f^{\sigma(n+1)}(y) - f^{\sigma(n)}(y)|| \leqslant \varepsilon
\end{cases}$$

Pour $N = \max(N_1, N_2)$ et $p = \sigma(N+1) - \sigma(N) \in \mathbb{N}^*$, on a

$$d(x, f^p(x)) \leqslant d(f^{\sigma(n+1)}(x), f^{\sigma(n)}(x)) \leqslant \varepsilon$$

et de même pour y avec le même p.

2. On a

$$d(x,y) \leqslant d(f(x), f(y))$$

$$\leqslant d(f^p(x), f^p(y))$$

$$\leqslant d(f^p(x), x) + d(x, y) + d(y, f^p(y))$$

$$\leqslant 2\varepsilon + d(x, y)$$

Ceci valant pour tout $\varepsilon > 0$, on a égalité tout du long. On a donc notamment, ||x - y|| = ||f(x) - f(y)|| et donc f est une isométrie.

3. f est 1-lipschitzienne donc continue. Donc f(K) est compact donc fermé. Il suffit donc de montrer que f(K) est dense dans K. Soit $x \in K$ et $\varepsilon > 0$, il existe $p \in \mathbb{N}^*$ tel que $||x - \underbrace{f^p(x)}|| \le \varepsilon$ d'après la première question. Donc f(K) est dense dans K et $f(K) = \overline{f(K)} = K$.

Remarque 6.8. Exemple pour l'exercice précédent : une rotation sur la sphère unité.

Solution 6.32. Soit

$$f: K \to \mathbb{R}$$

$$M \mapsto f(M) = rayon \ du \ cercle \ circonscrit \ au \ triangle \ MAB$$

On a F = f(K). Soit (C, i, j) un repère orthonormé où C est le milieu de [AB] et $A(-\alpha, 0)$ et $B(\alpha, 0)$ avec $\alpha > 0$. La médiatrice Δ de [A, B] a pour équation x = 0. Si M(x, y), soit $\varphi(M)$ le centre du cercle circonscrit. On a $\varphi(M) \in \Delta$ donc $\varphi(M)(0, y_1)$ et $\varphi(M)$ appartient à la médiatrice de [MA]. On a $y_1 \neq 0$ car $M \notin (AB)$.

Notons M' le milieu de [MA]. On a $M'(\frac{x-\alpha}{2}, \frac{y}{2})$ d'où $M'\vec{\varphi(M)} \cdot \vec{MA} = 0$ d'où (en développant le produit scalaire),

$$y_1 = \left((\alpha + x) \left(\frac{\alpha - x}{2} \right) - \frac{y^2}{2} \right) \left(-\frac{1}{y} \right)$$

 φ est donc continue donc f également et f(K) = F est compact.

Solution 6.33.

- Soit λ ∈ Sp(τ) et P ∈ ℝ[X] \ {0} avec τ(P) = λP. Si P n'est pas constant, notons α ∈ ℂ alors P(α) = 0. Alors P(α + 1) = 0. En itérant, pour tout n ∈ ℕ, P(α + n) = 0, impossible car P n'est pas constant donc pas nul. Finalement, P est constant et λ = 1 : Sp(τ) = {1}.
- 2. $f: x \mapsto P(x)e^{-x}$ est continue et $\lim_{x \to +\infty} f(x) = 0$ donc le sup est bien défini. Il est ensuite facile de vérifier que ||P|| est une norme.
- 3. On a

$$\|\tau(P)\| = \sup_{x\geqslant 0} |P(x+1)e^{-x}| = \sup_{x'\geqslant 1} |P(x')e^{-x'}e| \leqslant \sup_{x'\geqslant 0} |P(x')e^{-x'}e| \leqslant e\|P\|$$

4. Utiliser P = X.

Solution 6.34.

1. Pour x fixé, $\min(x, \varphi(t)) = \frac{x + \varphi(t) - |x - \varphi(t)|}{2}$ est continue. Donc T(f) est définie.

$$Si \ x \leqslant \varphi(0),$$

$$T(f)(x) = \int_0^1 x f(t)dt = x \int_0^1 f(t)dt$$

et si $x \geqslant \varphi(1)$,

$$T(f)(x) = \int_0^1 \varphi(t)f(t)dt$$

et si $\varphi(0) \leqslant x \leqslant \varphi(1)$, il existe un unique $t_1 = \varphi^{-1}(x)$ (car φ induit un homéomorphisme de [0,1] dans $\varphi([0,1])$).

Si $t \leqslant t_1$, on $a \varphi(t) \leqslant x$, donc $\min(x, \varphi(t)) = \varphi(t)$. Si $t \geqslant t_1$, on $a \min(x, \varphi(t)) = x$. On $a \operatorname{donc}$

$$T(f)(x) = \int_{0}^{t_{1}} \varphi(t)f(t)dt + \int_{t_{1}}^{1} xf(t)dt$$

$$= \underbrace{\int_{0}^{\varphi^{-1}(x)} \varphi(t)f(t)dt}_{=F_{1}(\varphi^{-1}(x))} + x \underbrace{\int_{\varphi^{-1}(x)}^{1} f(t)dt}_{=F_{2}(\varphi^{-1}(x))}$$

et f et φ étant continues, F_1 et F_2 sont continues.

Donc T(f) continue et T linéaire, c'est un endomorphisme de E.

2. On a

$$|T(f)(x)| \le ||f||_{\infty} \underbrace{\int_{0}^{1} \min(x, \varphi(t)) dt}_{=A(x)}$$

donc

$$||T(f)||_{\infty} \leqslant ||f||_{\infty} ||A||_{\infty}$$

donc T est continue et $||T|| \le ||A||_{\infty}$. De plus pour f = 1, on a $||T|| = ||A||_{\infty}$.

3. On a

$$A(x) = \int_0^1 \min(x, \varphi(t)) dt = \begin{cases} x & \text{si } x \leq \varphi(0) \\ \int_0^1 \varphi(t) dt & \text{si } x \geq \varphi(1) \end{cases}$$

Dans tous les cas,

$$||A||_{\infty} \leqslant \int_0^1 \varphi(t)dt$$

donc

$$||A||_{\infty} = \int_0^1 \varphi(t)dt$$

Solution 6.35.

1. φ est une forme linéaire, et on a

$$|\varphi(P)| \leqslant \sum_{k \in \mathbb{N}} \left| \frac{a_k}{2^k} \right| \leqslant 2||P|_{\infty}$$

donc φ est continue et $\|\|\varphi\|\| \leqslant 2$. Pour $p \neq 0$, $|\varphi(P)| < 2\|P\|_{\infty}$: pour avoir égalité, il faudrait pour tout $k \in \mathbb{N}$, $a_k = constante \neq 0$ ce qui n'est pas possible. Pour $P_n = \sum_{k=0}^n X^k$, on a $\|P_n\|_{\infty} = 1$ et $\lim_{n \to +\infty} |\varphi(P_n)| \xrightarrow[n \to +\infty]{} 2$ donc $\|\|\varphi\|\| = 2$. De plus, $\ker(\varphi) = \varphi^{-1}(\{0\})$ est fermé.

2. Soit $P = \sum_{k \in \mathbb{N}} a_k X^k \in \ker(\varphi)$. On a $\varphi(P) = 0$ d'où $a_0 = -\sum_{k=1}^{+\infty} \frac{a_k}{2^k}$ (et il existe $N_0 \in \mathbb{N}, \forall n \geqslant N_0, a_n = 0$). On a donc

$$P(X) - 1 = (a_0 - 1) + \sum_{k \in \mathbb{N}^*} a_k X^k$$

et si $||P-1||_{\infty} \leqslant \frac{1}{2}$, on a

$$\begin{cases} |a_0 - 1| \leqslant \frac{1}{2} \\ \forall k \in \mathbb{N}^*, |a_k| \leqslant \frac{1}{2} \end{cases}$$

et

$$|a_0| = \left| \sum_{k=1}^{+\infty} \frac{a_k}{2^k} \right| \le \sum_{k=1}^{+\infty} \frac{|a_k|}{2^k} \le \sum_{k=1}^{+\infty} \frac{1}{2^{k+1}} = \frac{1}{2}$$

 $Et \ \frac{1}{2} \leqslant 1 - |a_0| \leqslant |1 - a_0| \leqslant \frac{1}{2}$. $Donc \ |a_0| = \frac{1}{2} \ et \ |1 - a_0| = \frac{1}{2}$.

$$a_0 = \frac{1}{2}e^{i\theta} \Rightarrow \left|1 - \frac{1}{2}e^{i\theta}\right|^2 = \frac{1}{4}$$

$$\Rightarrow \left(1 - \frac{1}{2}\cos(\theta)\right)^2 + \left(\frac{1}{2}\sin(\theta)\right)^2 = \frac{1}{4}$$

$$\Rightarrow 1 - \cos(\theta) + \frac{1}{4} = \frac{1}{4}$$

$$\Rightarrow \cos(\theta) = 1$$

et donc $a_0 = \frac{1}{2}$.

Par ailleurs, on a

$$\frac{1}{2} = \sum_{k=1}^{+\infty} \frac{|a_k|}{2^k} = \sum_{k=1}^{+\infty} \frac{1}{2^{k+1}}$$

Donc pour tout $k \in \mathbb{N}$, $|a_k| = \frac{1}{2}$, impossible car $P \in \mathbb{C}[X]$, ainsi $||P - 1||_{\infty} > \frac{1}{2}$.

3. On définit, pour $n \ge 1$, $P_n = \frac{1}{2} + \sum_{k=1}^n (-\frac{1}{2} + \varepsilon_n) X^k$ avec $\varepsilon_n \in \mathbb{R}$ tel que $P_n \in \ker(\varphi)$. On a

$$P_n \in \ker(\varphi) \Rightarrow \frac{1}{2} + \sum_{k=1}^n \left(-\frac{1}{2} + \varepsilon_n \right) \frac{1}{2^k} = 0$$
$$\Rightarrow \varepsilon_n = -\frac{1}{2^{n+1}} \times \frac{1}{1 - \frac{1}{2^n}}$$

et donc $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$ (et $\varepsilon_n < 0$). On a donc $||P_n - 1||_{\infty} = \frac{1}{2} - \varepsilon_n \xrightarrow[n \to +\infty]{} \frac{1}{2}$. Donc $d(1, \ker(\varphi)) = \frac{1}{2}$ et cette distance n'est pas atteinte.

Solution 6.36. Prouvons d'abord l'existence. Soit $M \in \mathbb{R}^n$, on définit $r(M) = \sup\{\|M - A\| \mid A \in K\}$ et $\varphi \colon A \mapsto \|M - A\|$ est continue sur K compact donc le sup est en fait un max. On a notamment $r(M) = \{R > 0 \mid K \subset B(M, R)\}$. Soit

$$r: \mathbb{R}^n \to \mathbb{R}$$

$$M \mapsto r(M)$$

Soit $(M, M') \in (\mathbb{R}^n)^2$. Pour tout $A \in K$, on a

$$||M - A|| \le ||M - M'|| + ||M' - A|| \le ||M - M'|| + r(M')$$

En particulier, on a

$$r(M) \leqslant \|M - M'\| + r(M')$$

et en échangeant M et M', on a $|r(M) - r(M')| \leq ||M - M'||$. Donc r est 1-lipschitzienne donc continue. Soit $A_0 \in K$, $R(M) \geq ||M - A_0|| \geq ||M|| - ||A_0|| \xrightarrow{||M|| \to +\infty} +\infty$. Donc il existe $M_0 \in \mathbb{R}^n$ tel que $r(M_0) = \min_{M \in \mathbb{R}^n} r(M) = r_0$, d'où l'existence d'une boule fermée de rayon minimal.

Pour l'unicité, soit $(M_1, M_2) \in (\mathbb{R}^n)^2$ tel que $r(M_1) = r(M_2) = r_0$. On suppose que $||M_1 - M_2|| = \varepsilon > 0$. Soit M_3 le milieu de $[M_1M_2]$. On a $K \subset B_{M_1,r_0} \cap B_{M_2,r_0}$. On prend $r^2 + \left(\frac{\varepsilon}{2}\right)^2 = r_0^2$ d'où

$$r = \sqrt{r_0^2 - \frac{\varepsilon^2}{4}} < r_0$$

Soit $M \in B(M_1, r_0) \cap B(M_2, r_0)$, on a

$$||M - M_3||^2 = \frac{1}{4} (||M - M_1 + M - M_2||^2)$$

$$= \frac{1}{4} (2||M - M_1||^2 + 2||M - M_2||^1 - \underbrace{||M_1 - M_2||^2}_{=\varepsilon^2})$$

$$\leqslant \frac{1}{4} (2r_0^2 + 2r_0^2 - \varepsilon^2)$$

$$\leqslant r_0^2 - \frac{\varepsilon^2}{4} = r^2$$

 $Donc \ B_1 \cap B_2 \subset \overline{B(M_3,r)} \ d'où \ K \subset \overline{B(M_3,r)}, \ ce \ qui \ est \ absurde \ car \ r < r_0. \ Donc \ M_1 = M_2.$

Solution 6.37. φ est évidemment définie et linéaire. Soit $f \in C^0([0,1],\mathbb{R})$.

$$|\varphi(f)| = \left| \int_0^{\frac{1}{2}} f - \int_{\frac{1}{2}}^1 f \right|$$

$$\leqslant \left| \int_0^{\frac{1}{2}} f \right| + \left| \int_{\frac{1}{2}}^1 f \right|$$

$$\leqslant \int_0^{\frac{1}{2}} |f| + \int_{\frac{1}{2}}^1 |f|$$

$$\leqslant \int_0^1 ||f||_{\infty} = ||f||_{\infty}$$

Donc φ est continue et $\|\|\varphi\|\| \le 1$. Notons que si l'on a $|\varphi(f)| = \|f\|_{\infty}$, alors on a égalité partout au-dessus et pour tout $t \in [0,1]$, $|f(t)| = \|f\|_{\infty}$ et comme $\left|\int f\right| = \int |f|$ implique que f est de signe constant sur l'intervalle d'intégration, si l'on a $|\varphi(f)| = \|f\|_{\infty}$, alors f est de signe constant sur $[0,\frac{1}{2}]$ et sur $[\frac{1}{2},1]$. Or $|\int_0^{\frac{1}{2}} f - \int_{\frac{1}{2}}^1 f| = |\int_0^{\frac{1}{2}} f| + |\int_{\frac{1}{2}}^1 |f| = \sup_{0 \in \mathbb{Z}} |f| + |f| = \sup_{0 \in \mathbb{Z}} |f| + |f| = \sup_{0 \in \mathbb{Z}} |f| = \sup_{0 \in \mathbb{Z}} |f| = \sup_{0 \in \mathbb{Z}} |f| + \sup_{0 \in \mathbb{Z}} |f| = \sup_{0 \in \mathbb{Z}}$

$$f_n(t) = \begin{cases} 1 & \text{si } t \in [0, \frac{1}{2} - \frac{1}{n}] \\ (\frac{1}{2} - t)n & \text{si } t \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}] \\ -1 & \text{si } t \in [\frac{1}{2} + \frac{1}{n}, 1] \end{cases}$$

On a bien $||f_n||_{\infty} = 1$.

Solution 6.38.

- 1. Non car on applique l'application trace.
- 2. On a le résultat par récurrence.
- 3. On a

$$(n+1)||v^n|| = ||u \circ v^n \circ v - v^n \circ v \circ r|| \leqslant 2||u|| ||v|| ||v^n||$$

Si pour tout $n \in \mathbb{N}$, on a $v^n = 0$, alors pour tout $n \in \mathbb{N}$,

$$n+1 \leq 2||u|| ||v||$$

ce qui est impossible. Donc il existe $n \in \mathbb{N}^*$ tel que $v^n = 0$. Alors $u \circ v^n - v^n \circ u = nv^{n-1} = 0$ donc $v^{n-1} = 0$ et de proche en proche v = 0: contradiction.

4. Pour tout $P \in \mathbb{R}[X]$,

$$(D \circ T - T \circ D)(P) = (XP)' - XP' = P$$

donc $D \circ T - T \circ D = id$. D'après ce qui précède, T et D ne peuvent pas être continus simultanément.

Solution 6.39.

1. $\sum_{k\geqslant 0} (A-I_n)^k$ converge absolument car $||A-I_n||^k \leqslant \alpha_k$ et $\alpha <$. Si AX = 0, $||(A-I_n)X|| = ||X|| \leqslant \alpha ||X||$ donc ||X|| = 0 et X = 0 donc $A \in GL_n(\mathbb{C})$, idem pour B. On a alors

$$A\sum_{k=0}^{+\infty} (I_n - A)^k = ((A - I_n) + I_n)\sum_{k=0}^{+\infty} (I_n - A)^k = I_n$$

par téléscopage. Donc

$$A^{-1} = \sum_{k=0}^{+\infty} (I_n - A)^k$$

et

$$|||A^{-1}||| \le \sum_{k=0}^{+\infty} \alpha^k = \frac{1}{1-\alpha}$$

et de même pour B. On écrit alors

$$ABA^{-1}B^{-1} - I_n = (AB - BA)A^{-1}B^{-1} = ((A - I_n)(B - I_n) - (B - I_n)(A - I_n))A^{-1}B^{-1}$$

d'où

$$|||ABA^{-1}B^{-1} - I_n||| \le \frac{2|||A - I_n||| |||B - I_n|||}{(1 - \alpha)(1 - \beta)}$$

- 2. On prend $\alpha = \beta = \frac{1}{4}$.
- 3. Pour tout $M \in G$, il existe r > 0 tel que $B(M,r) \cap G = \{M\}$. Montrons que G est discret si et seulement si I_n est isolé. En effet, si I_n est isolé, il existe $r_0 > 0$ tel que $B(I_n, r_0) \cap G = \{I_n\}$. Soit $M \in G$, alors pour tout $M' \in G$, $M M' = M(I_n M^{-1}M')$ d'où $I_n M^{-1}M' = M^{-1}(M M')$. Si

$$||M - M'|| < \frac{r_0}{||M^{-1}||}$$

on a $||I_n - M^{-1}M'|| < r_0$ et donc M' = M et M est isolé. Ainsi G est isolé. La réciproque est évidente.

C est dans le commutant si et seulement si C commute avec A et B si et seulement si

$$\begin{cases} ACA^{-1}C^{-1} = I_n \\ BCB^{-1}C^{-1} = I_n \end{cases}$$

Notons maintenant que

$$\overline{B_{\|\cdot\|}(I_n,\frac{1}{4})}\cap G=\mathcal{A}$$

est fini. En effet, si cet ensemble était infini, il existerait $(M_p)_{p\in\mathbb{N}}$ une suite injective dans \mathcal{A} . La suite étant bornée, on peut extraite $(M_{\sigma(p)})_{p\in\mathbb{N}}$ qui converge et alors pour tout $p\in I_n$

$$\underbrace{M_{\sigma(p)}M_{\sigma(p+1)}^{-1}}_{\stackrel{pto+\infty}{\longrightarrow}I_n} \in G \setminus \{I_n\}$$

ce qui est impossible car I_n est isolé.

Comme $A \in \mathcal{A} \setminus \{I_n\}$, il existe $C \in \mathcal{A} \setminus \{I_n\}$ telle que $||C - I_n||$ soit minimale et $||C - I_n|| \leq \frac{1}{4}$. D'après la question 2 on a

$$|||ACA^{-1}C^{-1} - I_n||| < |||C - I_n|||$$

et même chose pour B. Donc nécessairement, $ACA^{-1}C^{-1} = I_n$ et de même pour B. Ainsi, C commute avec toutes les matrices de G.

Solution 6.40.

1. $\mathbb{C}_{n-1}[A]$ est un sous-espace vectoriel de dimension finie donc c'est un fermé. Par division euclidienne par χ_A , d'après le théorème de Cayley-Hamilton, $\mathbb{C}[A] = \mathbb{C}_{n-1}[A]$. Comme

$$\exp(A) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{A^k}{k!}$$

$$\exp(A) \in \mathbb{C}[A] = \mathbb{C}_{n-1}[A].$$

2. Si A est diagonalisable, il existe $P \in GL_n(\mathbb{C})$ tel que

$$A = P^{-1} \operatorname{diag}(\lambda_1, \dots, \lambda_n) P$$

et donc

$$\exp(A) = P^{-1} \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n}) P$$

 $et \exp(A)$ est diagonalisable.

 $Si \exp(A)$ est diagonalisable, on utilise la décomposition de Dunford : A = D + N avec DN = ND, D diagonalisable et N nilpotente. On a donc

$$\exp(A) = \exp(D) \underbrace{\exp(N)}_{=\sum_{k=0}^{n-1} \frac{N^k}{k!}} = \exp(D) + \exp(D) \Big(\sum_{k=1}^{n-1} \frac{N^k}{k!} \Big) = \exp(D) + N'$$

avec N' nilpotente et $\exp(D)$ est diagonalisable d'après le sens direct. N' commute avec $\exp(D)$. Par unicité de la décomposition de Dunford, $\exp(A)$ étant diagonalisable, on a N' = 0. Comme $\exp(D)$ est inversible,

$$N \times \sum_{k=1}^{n-1} \frac{N^{k-1}}{k!} = 0$$

avec N'' nilpotente. $I_n + N''$ est donc inversible et ainsi N = 0 et A est diagonalisable.

3. D'après ce qui précède, $\exp(A) = I_n$ est diagonalisable et

$$\operatorname{Sp}_{\mathbb{C}}(\exp(A)) = \{e^{\lambda} \mid \lambda \in \operatorname{Sp}_{\lambda}(\mathbb{C})\} = \{I_n\}$$

 $Donc \operatorname{Sp}_{\mathbb{C}}(A) \subset 2i\pi \mathbb{Z}.$

Réciproquement, si A est diagonalisable avec $\operatorname{Sp}(A) \subset 2i\pi\mathbb{Z}$, en diagonalisant, on a bien $\exp(A) = I_n$.

4. Sur \mathbb{R} , si A est diagonalisable, $\exp(A)$ l'est aussi. Cependant, la réciproque n'est pas vrai, par exemple

$$M = \begin{pmatrix} 2i\pi & 0\\ 0 & -2i\pi \end{pmatrix} \quad semblable \quad \grave{a} \quad \begin{pmatrix} 0 & -4\pi^2\\ 1 & 0 \end{pmatrix} = A$$

On a $\chi_M = X^2 + 4\pi^2$, $\exp(A) = I_2$ et A n'est pas diagonalisable sur \mathbb{C} .

Solution 6.41.

1. On $a \ln(1-x) = P(x) + x^2 O(1)$ et $\exp(y) = Q(y) + y^n O(1)$ d'où

$$\exp(\ln(1+x)) = 1 + x = Q(\ln(1+x)) + \underbrace{\ln(1+x)^n O(1)}_{O(x^n)}$$

alors $1 + x = Q(P(x) + O(x^n)) + O(x^n) = Q(P(x)) + O(x^n)$. Soit $B(X) = Q(P(X)) + O(x^n) \in \mathbb{R}[X]$, on a $\frac{B(x)}{x^n} = O(1)$ donc $X^n \mid B$ et

$$Q(P(X)) = 1 + X + B(X) = 1 + X + X^{n}A(X)$$

2. On a $N^n = 0$ donc P(N) est aussi nilpotente et on a

$$\exp(P(N)) = \sum_{k=0}^{n-1} \frac{P(N)^k}{k!} = Q(P(N)) = I_n + N + 0$$

3. Soit $M \in GL_n(\mathbb{C})$ et sa décomposition de Dunford : M = D + N avec D diagonalisable, N nilpotente et DN = ND. On a $\operatorname{Sp}(D) = \operatorname{Sp}(M) \subset \mathbb{C}^*$ et on écrit

$$M = D\left(I_n + \underbrace{D^{-1}N}_{nilpotente}\right)$$

$$= \exp(P(D^{-1}N))$$

 $si\ D = P_1\operatorname{diag}(\lambda_1,\ldots,\lambda_n)P_1^{-1}$, pour tout $k \in \{1,\ldots,n\}$ il existe $\mu_k \in \mathbb{C}$ tel que $\lambda_k = \exp(\mu_k)$ (car exp est surjectif sur \mathbb{C}^*). Alors

$$D = \exp(P_1 \operatorname{diag}(\mu_1, \dots, \mu_n) P_1^{-1}) \in \mathbb{C}[D]$$

puis

$$M = \exp\left(P_1 \operatorname{diag}(\mu_1, \dots, \mu_n) P_1^{-1}\right) \exp\left(P(D^{-1}N)\right)$$
$$= \exp\left(P_1 \operatorname{diag}(\mu_1, \dots, \mu_n) P_1^{-1} + P(D^{-1}N)\right)$$

car les matrices commutent.

Donc exp est surjective.

Solution 6.42. On $a \ A \subset \overline{A}$, $0 = \lim_{n \to +\infty} (\frac{2}{n})^{2n} \in \overline{A}$ et $e = \lim_{n \to +\infty} (1 + \frac{1}{n})^{n+1} \in \overline{A}$.

Si $n \ge 2$ et $p \ge 2$, $(\frac{1}{n} + \frac{1}{p})^{n+p} \le 1$. Donc si $(\frac{1}{n} + \frac{1}{p})^{n+p} \ge 1$, alors n = 1 ou p = 1.

Si x > e, à partir d'un certain rang, on a $(1 + \frac{1}{n})^{n+1} \leqslant \frac{e+x}{2}$ et si $x \notin A$, $x \notin \overline{A}$. Si $1 \leqslant x < e$, à partir d'un certain rang, on a $(1 + \frac{1}{n})^{n+1} > x$ donc si $x \notin A$, $x \notin \overline{A}$.

Soit x < 1, si $n \ge 2$ et $p \ge 3$ ou $n \ge 3$ et $p \ge 2$, on a $\frac{1}{n} + \frac{1}{p} \leqslant \frac{5}{6}$ et

$$\left(\frac{1}{n} + \frac{1}{p}\right)^{n+p} = \exp\left((n+p)\ln\left(\frac{1}{n} + \frac{1}{p}\right)\right)$$

$$\leqslant \exp\left((n+p)\ln\left(\frac{5}{6}\right)\right)$$

$$\leqslant \max\left(\underbrace{\left(\frac{5}{6}\right)^n}_{n\to+\infty}, \underbrace{\left(\frac{5}{6}\right)^p}_{p\to+\infty}\right)$$

Il existe N_0 tel que pour tout $n \geqslant N_0$, $(\frac{5}{6})^n \leqslant \frac{x}{2}$. Si n ou p est plus grand que N_0 , on a donc

$$\left(\frac{1}{n} + \frac{1}{p}\right)^{n+p} \leqslant \frac{x}{2}$$

Donc il n'y a qu'un nombre fini d'éléments de A plus grand que $\frac{x}{2}$. Ainsi,

$$\overline{A} = A \cup \{e, 0\}$$

Solution 6.43. On note

$$\mathbb{V} = \bigcup_{m \geqslant 1} \mathbb{U}_m = \left\{ e^{\frac{2ik\pi}{m}} \mid m \geqslant 1, k \in \{0, \dots, m-1\} \right\}$$

Soit $M \in H$. $X^m - 1$ est scindé à racines simples sur \mathbb{C} donc M est diagonalisable sur \mathbb{C} avec ses valeurs propres dans \mathbb{V} . Réciproquement, si M est diagonalisable sur \mathbb{C} et $\mathrm{Sp}_{\mathbb{C}}(M) \subset \mathbb{V}$. Alors pour tout $\lambda \in \mathrm{Sp}_{\mathbb{C}}(M)$, $\exists m_{\lambda} \in \mathbb{N}^*, \lambda \in \mathbb{U}_{m_{\lambda}}$ et soit $m = \mathrm{ppcm}_{\lambda \in \mathrm{Sp}_{\mathbb{C}}(M)}(m_{\lambda})$. Alors $M^m = I_n$.

Soit $A \in \overline{H}$, il existe $(M_p)_{p \in \mathbb{N}} \in H^{\mathbb{N}}$ telle que $\lim_{p \to +\infty} M_p = A$. Comme le polynôme caractéristique est une fonction continue des coefficients, pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, on a

$$\lim_{p \to +\infty} \chi_{M_p}(\lambda) = \chi_A(\lambda) = 0$$

Or

$$|\chi_{M_p}(\lambda)| = |\lambda - \lambda_{1,p}| \dots |\lambda - \lambda_{n,p}| \geqslant d(\lambda, \mathbb{U})^n$$

avec $\lambda_{i,p} \in \mathbb{V}$ pour tout $i \in \{1, \dots, n\}$. Donc $d(\lambda, \mathbb{U}) = 0$ et comme \mathbb{U} est fermé, $\lambda \in \mathbb{U}$.

Réciproquement, soit $A \in \mathcal{M}_n(\mathbb{C})$ tel que $\operatorname{Sp}_{\mathbb{C}}(A) \subset \mathbb{U}$. Soit

$$\left\{e^{\mathrm{i}\theta_1},\ldots,e^{\mathrm{i}\theta_r}\right\}$$

les valeurs propres distinctes de A de multiplicités m_1, \ldots, m_r . Il existe $Q \in GL_n(\mathbb{C})$ tel que

$$A = Q \operatorname{diag}(\underbrace{e^{i\theta_1}, \dots, e^{i\theta_1}}_{m_1 \text{ fois}}, \dots, \underbrace{e^{i\theta_r}, \dots, e^{i\theta_r}}_{m_r \text{ fois}})Q^{-1}$$

 $On \ a$

$$\theta = \lim_{k \to +\infty} \frac{2\pi}{k} \lfloor k \frac{\theta}{2\pi} \rfloor$$

donc on peut former, pour $p \in \mathbb{N}^*$,

$$A = Q \operatorname{diag}(\underbrace{e^{i\theta_{1,p}}, \dots, e^{i\theta_{1,p}}}_{m_1 \text{ fois}}, \dots, \underbrace{e^{i\theta_{r,p}}, \dots, e^{i\theta_{r,p}}}_{m_r \text{ fois}})Q^{-1}$$

avec $\theta_{i,p} = \frac{2\pi}{p} \lfloor p \frac{\theta_j}{2\pi} \rfloor + \frac{2j\pi}{p}$. Pour p suffisamment gand, les $(\theta_{j,p})$ sont deux à deux distincts donc A_p est diagonalisable et $A_p \in H$, et donc $A \in \overline{H}$.

Solution 6.44.

- On a l'inégalité triangulaire et l'homogénéité. On a cependant N_a(X^k) = |a_k| et pour tout k ∈ N, X^k ≠ 0. Donc N_a est une norme implique que a ne s'annule pas sur N. Réciproquement, si pour tout k ∈ N, a_k ≠ 0, si P ≠ 0, il existe k ∈ N avec p_k et donc N_a(P) > 0. Donc N_a est une norme si et seulement si pour tout k ∈ N, a_k ≠ 0.
- 2. Si N_a et N_b sont équivalentes, alors il existe $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ tel que pour tout $k \in \mathbb{N}$,

$$\beta N_b(X^k) \leqslant N_a(X^k) \leqslant \alpha N_b(X^k)$$

d'où

$$\beta|b_k| \leqslant N_a(X^k) \leqslant \alpha|b_k|$$

Donc a = O(b) et b = O(a).

Réciproquement, si a = O(b) et b = O(a), alors on a l'inégalité précédente sur les a_k et b_k , d'où

$$\beta \sum_{k=0}^{+\infty} |p_k b_k| \leqslant \sum_{k=0}^{+\infty} |p_k a_k| \leqslant \alpha \sum_{k=0}^{+\infty} |p_k b_k|$$

et donc pour tout $P \in \mathbb{C}[X]$

$$\beta N_b(P) \leqslant N_a(P) \leqslant \alpha N_b(P)$$

et N_a et N_b sont équivalentes.

3. Δ est continue pour N_a si et seulement s'il existe $c \geqslant 0$ tel que pour tout $P \in \mathbb{C}[X]$, $N_a(\Delta P) \leqslant CN_a(P)$. Si Δ est continue alors il existe $c \geqslant 0$ tel que $N_a(kX^k) \leqslant cN_a(X^k)$ alors pour tout $k \in \mathbb{N}^*$,

$$|ka_{k-1}| \leqslant c|a_k| \tag{6.1}$$

Réciproquement, si on a (6.1), pour tout $P \in \mathbb{C}[X] = N_a(\Delta P) \leqslant cN_a(P)$. Pour tout $k \in \mathbb{N}$, $a_k = k!$, (6.1) est vérifiée pour c = 1. Si $b_k = 1$ pour tout $k \in \mathbb{N}$, (6.1) n'est pas vérifiée donc Δ n'est pas continue pour N_b .

Solution 6.45.

1. On a d(x,A)=0 si et seulement si $\inf_{a\in A}\|x-a\|=0$ si et seulement si $\varepsilon>0, \exists a\in A: \|x-a\|<\varepsilon$ si et seulement si $x\in\overline{A}$.

On a $A \subset \overline{A}$ donc $d(x, \overline{A}) \leq d(x, A)$. Soit $\varepsilon > 0$, il existe $a' \in \overline{A}$ tel que $||x - a'|| < d(x, \overline{A}) + \varepsilon$ et il existe $a \in A$ tel que $||a - a'|| < \varepsilon$. Ainsi,

$$d(x, A) \le ||x - a|| \le d(x, \overline{A}) + 2\varepsilon$$

Ceci calant pour tout $\varepsilon > 0$, on a $d(x, A) \leq d(x, \overline{A})$ et donc on a égalité.

2. $A \times B \subset \overline{A} \times \overline{B}$ donc $d(A, B) \geqslant d(\overline{A}, \overline{B})$. De plus, pour tout $\varepsilon > 0$, il existe $(a', b') \in \overline{A} \times \overline{B}$ tel que $||a' - b'|| < d(\overline{A}, \overline{B}) + \varepsilon$ et il existe $(a, b) \in A \times B$ tel que $||a - a'|| < \varepsilon$ et $||b - b'|| \varepsilon$. En utilisant l'inégalité triangulaire, on a donc

$$d(A, B) \le ||a - b|| < d(\overline{A}, \overline{B}) + 3\varepsilon$$

Ceci valant pour tout $\varepsilon > 0$, on a bien l'égalité.

Solution 6.46. φ_{x_0} est une forme linéaire. Elle est continue si et seulement C > 0 tel que pour tout $P \in \mathbb{C}[X]$,

$$|P(x_0)| \leqslant C||P||_{\infty}$$

Si $P = \sum_{k=0}^{n} a_k X^k$, on a

$$|P(x_0)| \le ||P||_{\infty} \sum_{k=0}^{n} |x_0|^k$$

 $Si |x_0| < 1, \ on \ a$

$$|P(x_0)| \leqslant ||P||_{\infty} \frac{1}{1 - |x_0|}$$

donc φ_{x_0} est continue et si $x_0 = |x_0|e^{i\theta_0}$, soit $n \in \mathbb{N}$ et $P_n = \sum_{k=0}^n e^{-ik\theta_0} X^k$, on $a \|P_n\|_{\infty} = 1$ et

$$|\varphi_{x_0}(P_n)| = \sum_{k=0}^n |x_0|^k \xrightarrow[n \to +\infty]{} \frac{1}{1 - |x_0|}$$

 $donc \| \varphi_{x_0} \| = \frac{1}{1 - |x_0|}.$

$$Si |x_0| \geqslant 1$$
,

$$|\varphi_{x_0}(P_n)| = \sum_{k=0}^n |x_0|^k \xrightarrow[n \to +\infty]{} +\infty$$

donc φ_{x_0} n'est pas continue.

Solution 6.47. Pour le sens indirect, soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)$. Pour tout $p \in \mathbb{N}$, $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M_p)$ donc $\det(M_p - \lambda I_n) = 0$. Par continuité du déterminant, on a $0 = \det(M_p - \lambda I_n) \xrightarrow[p \to +\infty]{} \det(-\lambda I_n)$. Donc $\lambda = 0$ et $\operatorname{Sp}_{\mathbb{C}}(M) = \{0\}$ donc M est nilpotente.

Pour le sens direct, soit $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associée à M. On trigonalise u sur une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ avec $u(\varepsilon_1) = 0, u(\varepsilon_2) = a_{1,2}\varepsilon_1, \dots, u(\varepsilon_n) = a_{1,n}\varepsilon_1 + \dots + a_{n-1,n}\varepsilon_{n-1}$. Posons pour $i \in \{1, \dots, n\}$, $\varepsilon_{i,p} = \frac{\varepsilon_i}{p^{i-1}}$. On pose $\mathcal{B}_p = (\varepsilon_{1,p}, \dots, \varepsilon_{n,p})$ et $M_p = \operatorname{mat}_{B_p}(u)$, semblable à M et $M_p \xrightarrow[p \to +\infty]{} 0$ car $\|M_p\| \leqslant \frac{1}{p} \|M_1\|$.

Solution 6.48. On pose $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associée à M.

Pour le sens indirect, si M n'est pas diagonalisable, il existe une base $B = (\varepsilon_1, \dots, \varepsilon_n)$ de \mathbb{C}^n telle que

$$mat_{\mathcal{B}}(u) = D + N$$

où D est diagonale et N est nilpotente (décomposition de Dunford). En reprenant les bases \mathcal{B}_p définies à l'exercice précédent, on a

$$\operatorname{mat}_{\mathcal{B}_p}(u) = D + N_p \xrightarrow[p \to +\infty]{} D$$

 $Si D \in S_M$, alors M est diagonalisable ce qui est exclu par hypothèse. Donc S_M n'est pas fermé.

Pour le sens direct, si M est diagonalisable, soit $(M_p)_{p\in\mathbb{N}}\in (S_M)^{\mathbb{N}}$ avec $M_p\xrightarrow[p\to+\infty]{}M'$. Soit $\lambda\in\mathbb{C}$. On a $\chi_{M_p}(\lambda)=\det(\lambda I_n-M_p)=\chi_M(\lambda)$ car M et M_p sont semblables. Par continuité du déterminant, on a $\chi_{M'}(\lambda)=\chi_M(\lambda)$, donc $\chi_{M'}=\chi_M$. De plus, $A\mapsto \Pi_M(A)$ (polynôme minimal) est continue sur $\mathcal{M}_n(\mathbb{C})$ et pour tout $p\in\mathbb{N}$, on a $\Pi_M(M_p)=0$ donc $\Pi_M(M')=0$. M' est donc annulée par Π_M , donc M' est diagonalisable et comme $\chi_M=\chi_{M'}$, M et M' ont les mêmes valeurs propres avec les mêmes multiplicités. Donc $M'\in S_M$.

Remarque 6.9. Le polynôme caractéristique est une fonction continue de la matrice, mais c'est faux pour le polynôme minimal, par exemple pour

$$M_p = \begin{pmatrix} \frac{1}{p} & 0\\ 0 & \frac{2}{p} \end{pmatrix}$$

On a $M_p \xrightarrow[p \to +\infty]{} 0$ et $\Pi_{M_p} = (X - \frac{1}{p})(X - \frac{2}{p}) \xrightarrow[p \to +\infty]{} X^2 \neq X = \Pi_{M_\infty}$ donc $\lim_{p \to +\infty} \Pi_{M_p} \neq \prod_{\substack{\lim p \to +\infty}{}} M_p$.

Solution 6.49. On note $A_h = \{ |\varphi(x) - \varphi(y)| \mid (x, y) \in I^2 \text{ et } |x - y| \leqslant h \}.$

- 1. ω_{φ} est bien défini car $|\varphi(x) \varphi(y)| \leq 2||\varphi||_{\infty}$). Si $0 < h \leq h'$, alors $A_h \subset A_{h'}$ donc $\sup(A_h) \leq \sup(A_{h'})$ donc $\omega_{\varphi}(h) \leq \omega_{\varphi}(h')$.
- 2. Soit $(h, h') \in (\mathbb{R}_+^*)^2$, soit $(x, y) \in I^2$ tel que $|x y| \leq h + h'$ (où on peut supposer que $x \leq y$).
 - Si $y \in [x, x + h]$, alors $|x y| \le h$ donc $|\varphi(x) \varphi(y)| \le \omega_{\varphi}(h) \le \omega_{\varphi}(h) + \omega_{\varphi}(h')$
 - $Si \ y \in [x+h,x+h+h'], \ |\varphi(x)-\varphi(y)| \leqslant |\varphi(x)-\varphi(x+h)| + |\varphi(x+h)-\varphi(y)| \leqslant$ $\omega_{\varphi}(h) + \omega_{\varphi}(h') \ car \ |x-(x+h)| \leqslant h \ et \ |x+h-y| \leqslant h'.$

Donc $\omega_{\varphi}(h+h') \leqslant \omega_{\varphi}(h) + \omega_{\varphi}(h')$.

3. Par récurrence sur $n \in \mathbb{N}$, on a $\omega_{\varphi}(nh) = n\omega_{\varphi}(h)$. Si $\lambda \in \mathbb{R}_{+}^{*}$, on a $\lambda h \leqslant (\lfloor \lambda \rfloor + 1)h$ et par croissance et ce qui précède, on a

$$\omega_{\varphi}(\lambda h) \leqslant (\lfloor \lambda \rfloor + 1)\omega_{\varphi}(h) \leqslant (\lambda + 1)\omega_{\varphi}(h)$$

4. Soit $\varepsilon > 0$. φ étant uniformément continue, il existe $\alpha > 0$ tel que pour tout $(x, y) \in I^2$, si $|x - y|\alpha$ on a $|\varphi(x) - \varphi(y)| \le \varepsilon$ et on a pour $h \le \alpha$, $\omega_{\varphi}(h) \le \varepsilon$ d'où $\lim_{h \to 0} \omega_{\varphi}(h) = 0$. Soit alors $h_0 > 0$ fixé et h > 0,

- $si h_0 \leqslant h$, on $a 0 \leqslant \omega_{\varphi}(h) \omega_{\varphi}(h_0) \leqslant \omega_{\varphi}(h h_0)$.
- $si h \leqslant h_0$, on $a 0 \leqslant \omega_{\varphi}(h_0) \omega_{\varphi}(h) \leqslant \omega_{\varphi}(h_0 h)$.

Dans tous les cas, on a $|\omega_{\varphi}(h) - \omega_{\varphi}(h_0)| \leq \omega_{\varphi}(|h_0 - h|)$. Donc on a bien $\lim_{h \to h_0} \omega_{\varphi}(h) = \omega_{\varphi}(h_0)$. Donc ω_{φ} est continue (et même uniformément).

Solution 6.50. G est borné car si $M \in G$, $||M||| \leq ||I_n||| + \mu = 1 + \mu$. Montrons donc que si G_0 est un sous-groupe borné de $GL_n(\mathbb{C})$, alors les valeurs propres de ses éléments sont de module 1, et ceux-ci sont diagonalisables.

En effet, soit $M \in G$ et $\lambda \in \operatorname{Sp}(M)$, soit X un vecteur propre associé. On a $||MX|| = |\lambda|||X|| \le ||M||||X||$ donc $|\lambda| \le ||M||| \le \sup_{M \in G} ||M|||$. Pour tout $k \in \mathbb{Z}$, $M^k \in G$ et $\lambda^k \in \operatorname{Sp}(M^k)$, donc $si |\lambda| > 1$, on a $\lim_{k \to +\infty} |\lambda|^k = +\infty$, et $si |\lambda|^{\lambda} < 1$, on a $\lim_{k \to -\infty} |\lambda|^k = +\infty$. Comme G est borné, $|\lambda| = 1$.

On utilise ensuite la décomposition de Dunford pour M: M=D+N avec DN=ND, D diagonalisable et N nilpotente. Grâce au binôme de Newton, pour $k\geqslant r$ p^*r est l'indice de nilpotence de N, on a

$$M^{k} = \sum_{p=0}^{k} \binom{k}{p} N^{p} D^{k-p} = \underbrace{D^{k}}_{born\acute{e}} + kND + \sum_{p=2}^{r-1} \underbrace{\binom{k}{p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{born\acute{e} \\ k \to +\infty}} P^{k-p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}} N^{p} \underbrace{D^{k-p}}_{\substack{p \text{born\acute{e} } car \text{ } \operatorname{Sp}(D) \subset \mathbb{U}}}$$

Donc

$$M^{k} \underset{k \to +\infty}{\sim} \underbrace{\frac{k^{r-1}}{(r-1)!} \underbrace{N^{r-1}}_{\neq 0} D^{k-r+1}}_{non\ borne\ si\ N \neq 0}$$

Donc N = 0 et M = D est diagonalisable.

Revenons donc à l'exercice. Soit $M \in G$ et $\lambda = e^{i\theta} \in \operatorname{Sp}(M)$ avec $\theta \in]-\pi, pi]$. Si X est un vecteur propre associé à λ , on a

$$(\lambda - 1)||X|| = ||(M - I_n)X|| \le \mu ||X||$$

$$donc \ |\lambda - 1| = 2 |\underbrace{\sin(\frac{\theta}{2})}_{\geq 0}| \leq \mu. \ Donc \ \theta \in [-\theta_0, \theta_0] \ où \ \theta_0 = \arcsin(\frac{\mu}{2}) \in [0, \pi[.$$

 $Si \ ^{\theta}_{\pi} \notin \mathbb{Q}, \ e^{\mathrm{i}k\pi} \in \mathrm{Sp}(M^k), \ |e^{\mathrm{i}k\theta}-1| \leqslant \mu. \ Alors \ \{k\theta+2l\pi \ \big| \ (k,l) \in \mathbb{Z}^2\} \ est \ un \ sous-groupe \ de \\ (\mathbb{R},+) \ non \ monogène \ et \ donc \ dense, \ et \ alors \ (e^{\mathrm{i}k\theta})_{k\in\mathbb{Z}} \ est \ dense \ dans \ \mathbb{U}, \ donc \ il \ existe \ k_0 \in \mathbb{Z} \ tel \ que \\ |e^{\mathrm{i}k_0\theta}+1| = |2-(1-e^{\mathrm{i}k_0\theta_0})| < 2-\mu, \ ce \ qui \ est \ impossible \ car \ |2-(1-e^{\mathrm{i}k_0\theta})| \geqslant 2-|1-e^{\mathrm{i}k_0\theta_0}| \geqslant 2-\mu.$

Ainsi, $\frac{\theta}{\pi} \in \mathbb{Q}$ et il existe $m \in \mathbb{N}^*$ tel que $\lambda = e^{i\theta} \in \mathbb{U}_m$. Ce n'est pas forcément le même m pour tout les M dans G. Notons alors pour

$$\lambda \in \bigcup_{M \in G} \operatorname{Sp}(M) = \mathcal{A}$$

 $\omega(\lambda)$ l'ordre (multiplicatif) de λ dans \mathbb{U} .

 $Si\ \omega(\lambda)=m,\ on\ a\ gr(\lambda)=\mathbb{U}_m\ donc\ il\ existe\ k\in\mathbb{Z}\ tel\ que\ \lambda^k=e^{\frac{2i\pi}{m}}\in\mathcal{A}\ (car\ \lambda^k\in\mathrm{Sp}(M^k)).$ Supposons que $\{\omega(\lambda)\ |\ \lambda\in\mathcal{A}\}\ non\ born\'e.$ Alors il existe $(m_k)_{k\in\mathbb{N}}\ tel\ que\ m_k\xrightarrow[k\to+\infty]{}+\infty$ et $e^{\frac{2i\pi}{m_k}}\in\mathcal{A}.$ Alors

$$\underbrace{e^{2\mathrm{i}\lfloor\frac{m_k}{2}\rfloor\frac{\pi}{m_k}}}_{\substack{k \to +\infty}} \in \mathcal{A}$$

ce qui est impossible car $|\lambda+1|\geqslant 2-\mu>0$. On peut donc noter

$$m = \bigvee_{\lambda \in \mathcal{A}} \omega(\lambda)$$

et pour tout $M \in G$, pour tout $\lambda \in \operatorname{Sp}(M)$, $\lambda^m = 1$. Or M est diagonalisable, donc $M^m = I_n$.

Solution 6.51. Si $M \in \mathcal{G}_q$, $P(X) = X^q - 1$ annule M donc M est diagonalisable à valeurs propres dans \mathbb{U}_q . Réciproquement, si M est diagonalisable et $\mathrm{Sp}_{\mathbb{C}}(M) \subset \mathbb{U}_q$ alors il existe $P \in GL_n(\mathbb{C})$ avec

$$M = P \operatorname{diag}(\lambda_1, \dots, \lambda_n) P^{-1}$$

et donc

$$M^q = P \operatorname{diag}(\lambda_1^q, \dots, \lambda_n^q) P^{-1} = I_n$$

Si $M \in \mathcal{G}_q$ n'est pas une homothétie, il existe $\lambda \neq \mu \in \operatorname{Sp}_{\mathbb{C}}(M)^2$ et $P \in GL_n(\mathbb{C})$ tel que

$$M = P \begin{pmatrix} \lambda & & \\ & \mu & \\ & & \ddots & \end{pmatrix} P^{-1}$$

Soit $k \in \mathbb{N}^*$ tel que

$$M = P \begin{pmatrix} \lambda & \frac{1}{k} \\ \mu & \\ & \ddots & \end{pmatrix} P^{-1} \xrightarrow[k \to +\infty]{} M$$

Or

$$\begin{pmatrix} \lambda & \frac{1}{k} \\ 0 & \lambda \end{pmatrix} \quad est \ semblable \quad \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

 $car \chi_A = (X - \lambda)(X - \mu) \ donc \ est \ diagonalisable. \ Donc \ M_k \sim M \ \ et \ M_k \in \mathcal{G}_q \ \ et \ M \ \ n'est \ pas \ isolé.$

Montrons le petit lemme suivante : soit $\|\cdot\|$ une norme sur \mathbb{C}^n et $\|\cdot\|$ la norme subordonnée, soit $\lambda \in \mathbb{C}$ et $M \in \mathcal{M}_n(\mathbb{C})$ et $\varepsilon > 0$. Si $\|M - \lambda I_n\| \le \varepsilon$ alors $\operatorname{Sp}_{\mathbb{C}}(M) \subset \overline{B(\lambda, \varepsilon)}$. En effet, soit X un vecteur propre de M associé à $\mu \in \operatorname{Sp}_{\mathbb{C}}(M)$. On a

$$||(M - \lambda I_n)X|| = |\mu - \lambda|||X|| \leqslant ||M - \lambda I_n||||X|| \leqslant \varepsilon ||X||$$

 $donc |\mu - \lambda| \leq \varepsilon$.

Pour $\varepsilon = \sin(\frac{\pi}{q}) > 0$ et $\lambda \in \mathbb{U}_q$; si $M \in B_{\|\cdot\|}(\lambda I_n, \varepsilon) \cap \mathcal{G}_q$ alors pour tout $\mu \in \operatorname{Sp}_{\mathbb{C}}(M)$, on a $|\lambda - \mu| \leqslant \sin(\frac{\pi}{q})$ donc $\lambda = \mu$. Donc si $M = \lambda I_n$ alors M est isolé (avec $\lambda \in \mathbb{U}_q$). Donc les matrices scalaires sont isolées.

7 Fonction d'une variable réelle

Solution 7.1. Tout d'abord, $deg(L_n) = n$ et son coefficient dominant et $\frac{(2n)!}{2^n(n!)^2}$.

1. Soit $f \in C^0([0,1],\mathbb{R})$. -1 et 1 sont racines d'ordre n de P_n donc pour tout $k \in \{0,\ldots,n-1\}$ $P_n^{(k)}(-1) = P_n^{(k)}(-1) = 0$. Ainsi, on a par intégrations par parties successives :

$$(f|L_n) = (-1)^n \int_{-1}^1 f^{(n)}(t) P_n(t) dt$$

Notamment, si $P \in \mathbb{R}_{n-1}[X]$, $P^{(n)} = 0$ et $(P|L_n) = 0$. En particulier, pour tout m < n, $\deg(L_m) \leq n - 1$ et $(L_m|L_n) = 0$ donc $(L_n)_{n \in \mathbb{N}}$ est orthogonale. Notons dès maintenant que l'on peut calculer la norme de L_n grâce aux intégrales de Wallis :

$$||L_n||_2^2 = (L_n|L_n)$$

$$= (-1)^n \int_{-1}^1 L_n^{(n)} (t^2 - 1)^n dt$$

$$= \frac{(2n)!}{2^{2n} (n!)^2} \int_{-1}^1 (1 - t^2)^n dt$$

On pose $t = \cos(\theta)$ d'où $dt = -\sin(\theta)d\theta$, d'où

$$\int_{-1}^{1} (1 - t^2)^n dt = \int_{0}^{\pi} \sin(\theta)^{2n+1} d\theta$$
$$= 2I_{2n+1} / Wallis /$$

On a classiquement $I_{n+2} = \frac{n+1}{n+2}I_n$. D'où

$$I_{2n+1} = \frac{2n}{2n+1} \times \frac{2n-2}{2n-1} \times \dots \times \frac{2}{3} \times \underbrace{I_1}_{} = 1$$
$$= \frac{2^{2n}(n!)^2}{(2n+1)!}$$

d'où

$$||L_n||_2^2 = \frac{(2n)!}{2^{2n}(n!)^2} \times 2 \times \frac{2^{2n}(n!)^2}{(2n+1)!} = \frac{2}{2n+1}$$

- 2. On utilise la formule de Leibniz en écrivant $X^2 1 = (X+1)(X-1)$.
- 3. On montre le résultat par récurrence sur $k \in \{0, ..., n\}$ en invoquant le théorème de Rolle. On trouve donc que $L_n = P_n^{(n)}$ s'annule au moins n fois sur]-1, 1[. Or $\deg(L_n) = n$, donc ces zéros sont simples et ce sont les seuls.

4. (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$ (étagée en degré). Donc il existe $(\alpha_{n,0}, \ldots, \alpha_{n,k}) \in \mathbb{R}^{k+1}$ tel que $XL_{n-1} = \sum_{k=0}^n \alpha_{n,k} L_k$. Si $k \leq n-3$, on a

$$(XL_{n-1}L_k) = \alpha_{n,k} ||L_k||_2^2 = (L_{n-1}XL_k) = 0$$

 $car \deg(XL_k) = k + 1 \leqslant n - 2$. Donc

$$XL_{n-1} = \alpha_{n,n-2}L_{n-2} + \alpha_{n,n-1}L_{n-1} + \alpha_{n,n}L_n$$

Pour calculer les coefficients, on fait tout simplement les produits scalaires :

$$(Xl_{n-1}|L_{n-1}) = \int_{-1}^{1} tL_{n-1}(t)^2 dt$$

Or P_n est paire, donc L_n est de la parité de n et donc L_n^2 est paire puis XL_n^2 est impaire. Donc $\alpha_{n,n-1} = 0$.

$$(XL_{n-1}|L_{n-2}) = \alpha_{n,n-2} \underbrace{\|L_{n-2}\|_{2}^{2}}_{=\frac{2}{2n-3}}$$

$$= (-1)^{n} \int_{-1}^{1} P_{n-1}(t) \underbrace{(XL_{n-2})^{(n-1)}(t)}_{\frac{(2n-4)!(n-1)}{2n-2(n-2)!}}$$

Par ailleurs,

$$(-1)^{n-1} \int_{-1}^{1} P_{n-1}(t)dt = \frac{1}{2^{n-1}(n-1)!} \underbrace{\int_{-1}^{1} (1-t^2)^{n-1}dt}_{2I_{2n-1}}$$
$$= \frac{1}{2^{n-1}(n-1)!} \times 2 \times \frac{2^{2n-2}(n-1)!)^2}{(2n-1)!}$$
$$= \frac{2^n(n-1)!}{(2n-1)!}$$

donc $\frac{\alpha_{n,n-2}}{\alpha_{n,n}} = \frac{n-1}{n}$. D'où le résultat.

Solution 7.2. On forme

$$g: [a,b] \rightarrow \mathbb{R}$$

$$x \mapsto \underbrace{\Delta f(x_0, \dots, x_{n-1}, x)}_{\varphi(x)} - \underbrace{\prod_{i=0}^{n-1} (x - x_i) A}_{P(x)}$$

On a $g(x_n) = 0$. On suppose les $(x_i)_{1 \le i \le n}$ distincts, et on pose

$$A = \frac{V(x_0, \dots, x_n)}{\prod_{i=0}^{n-1} (x_n - x_i)}$$

g est de classe C^n et pour tout $i \in \{0, ..., n\}$, on a $g(x_i) = 0$. Donc il existe $\xi \in]a, b[$ tel que $g^{(n)}(\xi) = 0$ (théorème de Rolle appliqué n fois. $\deg(P) = n$ et son coefficient dominant est A donc $P^{(n)}(\xi) = An! = \varphi^{(n)}(\xi)$.

On développe maintenant $\varphi(x)$ par rapport à la dernière colonne :

$$\varphi(x) = f(x) \times V_n(x_0, \dots, x_{n-1}) + Q(X)$$

avec $deg(Q) \leq n-1$ et $V_n(x_0, \dots, x_{n-1}) = \prod_{0 \leq j < i \leq n-1} (x_i - x_j)$ (déterminant de Vandermonde). On a donc

$$\varphi^{(n)}(x) = f^{(n)}(x) \prod_{0 \le j < i \le n-1} (x_j - x_i)$$

et en reportant, on a

$$\frac{f^{(n)}(\xi)}{n!} = \frac{A}{\prod_{0 \le i < j \le n-1} (x_j - x_i)} = \Delta f(x_0, \dots, x_n)$$

Solution 7.3. On utilise le développement de Taylor avec reste intégral.

$$f(0) = f\left(\frac{1}{2}\right) - \frac{1}{2}f'\left(\frac{1}{2}\right) + \int_{\frac{1}{2}}^{0} -tf''(t)dt$$

et de même

$$f(1) = f\left(\frac{1}{2}\right) - \frac{1}{2}f'\left(\frac{1}{2}\right) + \int_{\frac{1}{2}}^{1} (1-t)f''(t)dt$$

D'où

$$A(f) = f(0) - f\left(\frac{1}{2}\right) + f(1) - f\left(\frac{1}{2}\right)$$

$$= \int_0^{\frac{1}{2}} t f''(t) dt + \int_{\frac{1}{2}}^1 (1 - t) f''(t) dt$$

$$\leq \int_0^{\frac{1}{2}} t dt + \int_{\frac{1}{2}}^1 (1 - t) dt$$

$$= \frac{1}{4}$$

Et c'est atteint pour $f(t) = \frac{t^2}{4}$.

Solution 7.4. Pour tout $(x,h) \in \mathbb{R}^2$, f(x+h) - f(x-h) = 2hf'(x) donc

$$f'(x) = \frac{1}{2}(f(x+1) - f(x-1)) \tag{7.1}$$

donc f' est C^1 et donc f est C^2 . On fixe alors x et on dérive deux fois (7.1) en fonction de h. On a alors

$$f''(x+h) = f''(x-h)$$

pour tout $(x,h) \in \mathbb{R}^2$ donc f'' est constante et f est polynômiale de degré 2.

Réciproquement, si $f(x) = ax^2 + bx + c$, on a bien la relation de l'énoncé.

Solution 7.5.

1. Soit a > 0,

$$\tau_a: \mathbb{R} \to]a, +\infty[$$

$$x \mapsto \frac{f(x) - f(a)}{x - a}$$

est croissante. Donc il existe $l = \lim_{x \to +\infty} \tau_a(x) \in \overline{\mathbb{R}}$. On écrit alors

$$\frac{f(x)}{x} = \frac{f(x) - f(a)}{x - a} \times \frac{x - a}{x} + \frac{f(a)}{x} \xrightarrow[x \to +\infty]{} l$$

- 2. S'il existe $a < b \in (\mathbb{R}_+^*)^2$ tel que f(a) < f(b), alors $\tau_a(b) > 0$. Comme τ_a est croissante, $l \geqslant \tau_a(b) > 0$. Par contraposée, si $l \geqslant 0$, f est décroissante.
- 3. Posons pour tout $x \in \mathbb{R}_+^*$, $\varphi(x) = f(x) lx$. Pour x < y, on a

$$\frac{\varphi(y) - \varphi(x)}{y - x} = \frac{f(y) - f(x)}{y - x} - l \leqslant 0$$

Donc φ est décroissante et $\lim_{x \to +\infty} \varphi(x) \in \overline{\mathbb{R}}$ existe.

Solution 7.6.

1. On forme

$$g: \ [0,1] \ \rightarrow \ \mathbb{R}$$

$$x \quad \mapsto \ \tfrac{1}{\frac{1}{p}+x}$$

Alors

$$\sum_{k=0}^{np} \frac{1}{n+k} = \frac{1}{np} \sum_{k=0}^{np} \frac{1}{\frac{1}{n} + \frac{k}{np}} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{dx}{\frac{1}{n} + x} = \ln(p+1) = l_{p}$$

2. On note $f(x) = f(0) + xf'(0) + x\varepsilon(x)$ avec $\varepsilon(x) \xrightarrow[\varepsilon \to 0]{} 0$.

Soit $\varepsilon_0 > 0$. Il existe $\alpha_0 > 0$ tel que si $0 < x < \alpha_0$, alors $|\varepsilon(x_0)| \le \varepsilon_0$, et il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \ge N_0$, $\frac{1}{n} \le \alpha_0$. Alors pour tout $n \ge N_0$, pour tout $k \in \{0, \dots, np\}$,

$$\left| \frac{1}{k+n} \Rightarrow \left| \varepsilon \left(\frac{1}{k+n} \right) \right| \leqslant \frac{\varepsilon_0}{p}$$

et

$$\left| \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{k+n})}{k+n} \right| \leqslant \sum_{k=0}^{np} \frac{\frac{\varepsilon_0}{p}}{k+n} \leqslant \frac{\varepsilon_0}{p} \frac{np+1}{n+1} \leqslant \varepsilon_0$$

 $On \ a \ donc$

$$v_n = \sum_{k=0}^{np} \frac{1}{n+k} f'(0) + \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{n+k} \xrightarrow[n \to +\infty]{} \ln(p+1) f'(0)$$

3. On peut penser à $f: x \mapsto \sqrt{x}$ continue et f(0) = 0. De plus,

$$\sum_{k=0}^{np} \frac{1}{\sqrt{n+k}} \geqslant \frac{np+1}{\sqrt{n(p+1)}} \xrightarrow[n \to +\infty]{} +\infty$$

 $donc \ v_n \ diverge.$

4. On écrit $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + x^2\varepsilon(x)$ avec $\varepsilon(x) \xrightarrow{\varepsilon \to +\infty} 0$. Ainsi,

$$v_n = \sum_{k=0}^{np} \frac{f''(0)}{2(n+k)^2} + \sum_{k=0}^{bp} \frac{\varepsilon(\frac{1}{k+n})}{(k+n)^2}$$

Soit $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, pour tout $k \in \{0, \dots, np\}$, $|\varepsilon(\frac{1}{n+k})| \le \varepsilon$ et donc

$$\left| \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{(n+k)^2} \right| \leqslant \sum_{k=0}^{np} \frac{\varepsilon}{(n+k)^2}$$

donc

$$\sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{(n+k)^2} = O\left(\sum_{k=0}^{np} \frac{f''(0)}{2} \times \frac{1}{(n+k)^2}\right)$$

puis

$$v_n \underset{n \to +\infty}{\sim} \sum_{k=0}^{np} \frac{f''(0)}{2(n+k)^2}$$

Or

$$\sum_{k=0}^{np} \frac{1}{(n+k)^2} = \frac{1}{(np)^2} \sum_{k=0}^{np} \frac{1}{(\frac{1}{p} + \frac{k}{np})^2}$$
$$= \frac{1}{np} \times \underbrace{\frac{1}{np} \sum_{k=0}^{np} \frac{1}{(\frac{1}{p} + \frac{k}{np})^2}}_{\xrightarrow[n \to +\infty]{}} \int_0^1 \frac{dx}{(\frac{1}{p} + x)^2}$$

donc

$$v_n \underset{n \to +\infty}{\sim} \frac{f''(0)p}{n(p+1)}$$

Solution 7.7. Supposons que f' ne tend pa vers 0 en $+\infty$: il existe $\varepsilon_0 > 0, \forall A > 0, \exists x_A \geqslant A, |f'(x_A)| \geqslant \varepsilon_0 > 0$. Par continuité uniforme, il existe $\alpha_0 \geqslant 0, \forall (x,y) \in (\mathbb{R}_+)^2$, si $|x-y| \leqslant \alpha_0$ alors $|f'(x) - f'(y)| \leqslant \frac{\varepsilon_0}{2}$. Alors pour tout $t \in [x_A - \alpha, x_A + \alpha]$, on a

$$|f'(t)| \ge |f'(x_A)| - |f'(x_A) - f'(t)| \ge \varepsilon_0 - \frac{\varepsilon_0}{2} \ge \frac{\varepsilon_0}{2}$$

et pour A = n, pour tout $n \in \mathbb{N}$, $\exists x_n \ge n, \forall t \in [x_n - \alpha, x_n + \alpha], |f'(t)| \ge \frac{\varepsilon_0}{n}$. D'après le théorème des valeurs intermédiaires, f' est de signe constant sur $[x_n - \alpha, x_n + \alpha]$. Quitte à changer f en -f, on peut supposer qu'il existe une infinité de $n \in \mathbb{N}$ tels que f' > 0 sur les $[x_n - \alpha, x_n + \alpha]$. Alors

$$f(x_n + \alpha_0) - f(x_n - \alpha_0) = \int_{x_n - \alpha_0}^{x_n + \alpha_0} f'(t)dt \geqslant \varepsilon_0 \alpha_0 > 0$$

mais comme $\lim_{x\to+\infty} f(x) \in \mathbb{R}$, on a

$$\lim_{n \to +\infty} f(x_n + \alpha_0) - f(x_n - \alpha_0) = 0$$

d'où la contradiction.

Si $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{C})$, on applique ce qui précède à $\Im(f)$ et $\Re(f)$.

Si f' n'est pas uniformément continue, ce n'est plus valable, par exemple

$$f(x) = \frac{\sin(x^2)}{x} \xrightarrow[x \to +\infty]{} 0$$

 $car |f(x)| \leq \frac{1}{x} et$

$$f'(x) = \underbrace{-\frac{1}{x^2}\sin(x^2)}_{x \to +\infty} + \underbrace{\frac{2x\cos(x^2)}{x}}_{n'a \ pas \ de \ limite \ en \ +\infty}$$

Solution 7.8. Soit $x \in \mathbb{R}$ et $h \neq 0$, on a

$$\frac{f(x+h) - f(x)}{h} = g(x + \frac{h}{2}) \xrightarrow[h \to 0]{} g(x)$$

par continuité de g. Donc f est dérivable et f' = g. Par ailleurs, pour $y = \frac{1}{2}$, on a

$$f'(x) = f(x + \frac{1}{2}) - f(x - \frac{1}{2})$$

par récurrence f est C^{∞} .

En outre, en fixant x et en dérivant la relation de départ deux fois par rapport à y, on a

$$f''(x+y) - f''(x-y) = 0$$

Donc f'' est constante donc f est un polynôme de degré plus petit que 2.

Réciproquement, on vérifie que ces fonctions marchent (avec f' = g).

Solution 7.9. On a

$$S_n = \sum_{k=1}^{n-1} \frac{1}{2} (f(k) + f(k+1)) - \int_k^{k+1} f(t)dt$$

On note $F(x) = \int_1^x f(t)dt$ de classe C^2 .

 $On \ a$

$$F(b) = F(a) + F'(a)(b - a) + \int_{a}^{b} F''(t)(b - t)dt$$

Pour a = k et $b = k + \frac{1}{2}$, on a

$$F(k+\frac{1}{2}) = F(k) + \frac{1}{2}F'(k) + \int_{k}^{k+\frac{1}{2}} (k+\frac{1}{2}-t)f'(t)dt = F(k) + \frac{1}{2}F'(k) + \int_{0}^{\frac{1}{2}} uf'(k+\frac{1}{2}-u)du$$

et pour $a = k + 1, b = k + \frac{1}{2}$,

$$F(k+\frac{1}{2}) = F(k+1) - \frac{1}{2}F'(k+1) + \int_{k+1}^{k+\frac{1}{2}} (k+\frac{1}{2}-t)f'(t)dt = F(k+1) - \frac{1}{2}F'(k+1) + \int_{0}^{\frac{1}{2}} uf'(k+\frac{1}{2}+u)du$$

On a donc

$$\frac{1}{2}(f(k) - f(k+1)) - \int_{k}^{k+1} f(t)dt = \int_{0}^{\frac{1}{2}} u(f'(k+\frac{1}{2}+u) - f'(k+\frac{1}{2}-u))du$$

d'où

$$S_n = \int_0^{\frac{1}{2}} u \sum_{k=1}^{n-1} \underbrace{f'(k + \frac{1}{2} + u) - f'(k + \frac{1}{2} - u)}_{\geqslant 0 \ car \ u \geqslant 0 \ et \ f' \ croissante} du$$

et
$$f'(k + \frac{1}{2} + u) - f'(k + \frac{1}{2} - u) \le f'(k + 1) - f'(k) \ d'où$$

$$S_n \leqslant \underbrace{\int_0^{\frac{1}{2}} u du}_{=\frac{1}{8}} (f'(n) - f'(1))$$

Solution 7.10.

1. D'après l'inégalité de Taylor-Lagrange, on a

$$\begin{cases} ||A|| \leqslant \frac{h^2}{2} M_2 \\ ||B|| \leqslant \frac{h^2}{2} M_2 \end{cases}$$

On a B - A - f(x - h) + f(x + h) = 2hf'(x) d'où

$$||f'(x)|| \le \frac{hM_2}{2} + \frac{M_0}{h}$$

Donc f' est bornée sur \mathbb{R} . On a ensuite un majorant qui dépend de h que l'on peut optimiser, et on trouve la borne demandée.

2. L'inégalité de Taylor-Lagrange donne à nouveau

$$\forall k \in \{1, \dots, n-1\}, ||A_k|| \leqslant \frac{k^n}{n!} M_n$$

On forme alors

$$\begin{pmatrix} A_1 - f(x+1) \\ \vdots \\ A_k - f(x+k) \\ \vdots \\ A_n - f(x+n) \end{pmatrix} = \underbrace{\begin{pmatrix} -1 & -1 & \dots & \frac{-1}{(n-1)!} \\ \vdots & \vdots & & \vdots \\ -1 & -k & \dots & \frac{-k^{n-1}}{(n-1)!} \\ \vdots & \vdots & & \vdots \\ -1 & -n & \dots & \frac{-n^{n-1}}{(n-1)!} \end{pmatrix}}_{=M} \begin{pmatrix} f(x) \\ \vdots \\ f^{(k)}(x) \\ \vdots \\ f^{(n-1)}(x) \end{pmatrix}$$

On a

$$\det(M) = \frac{(-1)^n}{1! \times 2! \times \cdots \times (n-1)!} V(1, \dots, n)$$

où V est le déterminant de Vandermonde. Donc $det(M) \neq 0$. On peut former les $f^{(j)}(x)$ en fonction $des (A_i - f(x+i))_{1 \leq i \leq n}$: il existe $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ tel que pour tout $x \in \mathbb{R}$, $f^{(j)}(x) = \sum_{i=1}^n \alpha_i (A_i - f(x+i))$. Donc

$$||f^{(j)}(x)|| \le \sum_{i=1}^{n} |\alpha_i| \left(\frac{n}{n!} M_n + M_0\right)$$

Donc $f^{(j)}$ est bornée pour tout $j \in \{1, \dots, n-1\}$.

Solution 7.11.

1.

$$l_{\sigma,\gamma} = \sum_{i=0}^{n-1} \left\| \int_{a_i}^{a_{i+1}} \gamma'(t) dt \right\| \leqslant \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} \|\gamma'(t)\| dt = \int_a^b \|\gamma'(t)\| dt$$

2. On a

$$\left| l_{\sigma,\gamma} - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| = \left| \sum_{i=0}^{n-1} \|\gamma(a_{i+1}) - \gamma(a_i)\| - \|\underbrace{(a_{i+1} - a_i)}_{>0} \gamma'(a_i)\| \right| \\
\leqslant \sum_{i=0}^{n-1} \|\gamma(a_{i+1}) - \gamma(a_i) - (a_{i+1} - a_i)\gamma'(a_i)\| \\
\leqslant \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} \|\gamma'(t) - \gamma'(a_i)\| dt$$

3. $\|\gamma'\|$ est continue donc

$$\int_{a}^{b} \|\gamma'(t)\| dt = \lim_{\delta(\sigma) \to 0} \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i)$$

Donc α_0 existe.

 γ' est continue sur [a,b] donc uniformément continue sur [a,b], et il existe $\alpha_1 > 0$ tel que pour tout $(x,y) \in [a,b]^2$, on a

$$|x - y| \le \alpha \Rightarrow ||\gamma'(x) - \gamma'(y)|| \le \frac{\varepsilon}{2(b - a)}$$

Alors si $\delta(\sigma) \leqslant \alpha_1$, pour tout $i \in \{0, \dots, n-1\}$, pour tout $t \in [a_i, a_{i+1}]$, on a

$$|t - a_i| \leqslant (a_{i+1} - a_i) \leqslant \alpha_1$$

d'où

$$\|\gamma'(a_i) - \gamma'(t)\| \leqslant \frac{\varepsilon}{2(b-a)}$$

et d'après la question 2, on a donc

$$\left| l_{\sigma,\gamma} - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| \leqslant \frac{\varepsilon}{2}$$

Finalement, si $@d(\sigma) \leq \min(\alpha_0, \alpha_1)$, on a

$$\left| l_{\sigma,\gamma} - \int_{a}^{b} \|\gamma'(t)\| dt \right| \leqslant \varepsilon$$

Donc

$$l(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt$$

4. On a

$$\gamma'(t) = \begin{pmatrix} -R\sin(t) \\ R\cos(t) \end{pmatrix}$$

 $donc \|\gamma'(t)\| = R \ et \ l(\gamma) = 2\pi R.$

Solution 7.12.

1. Pour tout $t \in I$, on a

$$\gamma(t) = |\gamma(t)|e^{i\theta_1(t)} = |\gamma(t)|e^{i\theta_2(t)}$$

donc

$$e^{\mathrm{i}(\theta_1(t) - \theta_2(t))} = 1$$

Ainsi, pour tout $t \in I$, il existe $k(t) \in \mathbb{Z}$ telle que $\theta_2(t) - \theta_1(t) = 2k(t)\pi$. On a

$$k(t) = \frac{\theta_2(t) - \theta_1(t)}{2\pi}$$

qui est continue et à valeurs entières, donc constante égale à k_0 d'après le théorème des valeurs intermédiaires.

2. $Si \gamma(t) = x(t) + iy(t)$,

$$|\gamma(t)| = \sqrt{x(t)^2 + y(t)^2}$$

Comme $\sqrt{\cdot}$ est \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} , par composition, f est \mathcal{C}^{k} . On a alors

$$f(t) = e^{i\theta(t)} \Rightarrow f'(t) = i\theta'(t)e^{i\theta(t)} = i\theta'(t)f(t)$$

Donc

$$\theta(t) = -i\frac{f'(t)}{f(t)}$$

De plus, on a

$$\theta(t) = \theta(t_0) - i \int_{t_0}^t \frac{f'(u)}{f(u)} du$$

pour $t_0 \in I$.

3. On fixe $t_0 \in I$. Soit θ_0 un argument de $\gamma(t_0)$, on pose

$$\theta(t) = \theta_0 - i \int_{t_0}^t \frac{f'(u)}{f(u)} du$$

Comme $\frac{f'}{f}$ est \mathcal{C}^{k-1} , θ est bien \mathcal{C}^k . On forme $g(t) = e^{i\theta(t)}$ qui est de classe \mathcal{C}^k . On a

$$g'(t) = i\theta'(t)g(t) = \frac{f'(t)}{f(t)}g(t)$$

 $donc \left(\frac{g}{f}\right)' = 0$, $donc \frac{g}{f}$ est constante sur I et $g(t_0) = e^{i\theta_0} = f(t_0)$ donc g = f sur I. Ainsi, pour tout $t \in I$, on a $|f(t)| = |e^{i\theta(t)}| = 1$ et $si \theta(t) = a(t) + i(t)$, on a donc

$$e^{\mathrm{i}\theta(t)} = e^{-b(t)}e^{\mathrm{i}a(t)}$$

 $donc\ b(t) = 0\ et\ \theta(t) \in \mathbb{R}.$

8 Suites et séries de fonctions

9 Séries entières

10 Intégration

11 Espaces préhilbertiens

12 Espaces euclidiens

13 Calcul différentiel

14 Équation différentielles linéaires

Table des figures

1	$0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant x^4 \text{ pour } x \in \mathbb{R}.$	44
2	$e^x - x - 1 \geqslant -x - 1$ pour $x \in \mathbb{R}$	45
3	$x(1-x) \in \left]0, \frac{1}{4}\right] \text{ pour } x \in]0, 1[. \dots \dots$	46
4	$x \mapsto x^3 - x - 3$ a exactement un zéro sur \mathbb{R}_+	47
5	$x \mapsto 2\ln(1+x)$ admet un unique point fixe sur \mathbb{R}_+^*	53
6	$\sin(t) \geqslant \frac{2}{t} \text{ pour } t \in \left[0, \frac{\pi}{2}\right]. \dots$	61