Digital Systems Design and Laboratory [4. Applications of Boolean Algebra]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Outline

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Objectives

- Design a combinational logic circuit starting with a **word description (specification)** of the desired circuit behavior
- ☐ Steps
 - > Translate the word description into a switching function
 - Boolean expression or truth table
 - > Simplify the function
 - Realize it using available logic gates
- Example
 - Mary watches TV if and only if it is Monday night and she has finished her homework
 - F: Mary watches TV
 - A: It is Monday night
 - B: Mary has finished her homework
 - F = A B

Another Example

- ☐ The alarm will ring <u>if and only if</u> the alarm switch is turned on <u>and</u> the door is <u>not</u> closed, <u>or</u> it is after 6pm <u>and</u> the window is <u>not</u> closed)
 - > Z: The alarm will ring
 - > A: the alarm switch is on
 - > B: The door is closed
 - C: It is after 6pm

Outline

- Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- Design of Binary Adders and Subtracters

Threshold Detector (1/2)

- ☐ Design a detector that outputs 1 when input is greater than 2
 - > Inputs (A, B, C)₂ represent a binary number N
 - \rightarrow If N = (A, B, C)₂ \geq 3, output F = 1; otherwise F = 0

Α	В	С	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Show the condition to make output = 1

$$\triangleright$$
 F = A'BC + AB'C' + AB'C + ABC' + ABC (SOP)

$$= \underline{A'BC + ABC} + \underline{AB'C' + AB'C + ABC' + ABC}$$

$$= A + BC$$

7 到每日

ラ ((後月) 11年c=1

$$F = A'BU + AB'C' + AB'C + ABC' + ABC'$$

$$= A'BU + ABU + AB'C' + AB'C + ABC' + ABC'$$

$$= (A'A)BU + AB'(C'+C) + AB(C'+C)$$

= BU + (AB'+AB)(U+c)

= BC + $(AB^{\dagger} + AB)$

= BC + A(B'+B)

= BC + A

Threshold Detector (2/2)

- ☐ By counting 1's, we have SOP
- ☐ What if counting 0's

Α	В	С	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Show the condition to make output = 0

- F = (ABC ≠ 000) (ABC ≠ 001) (ABC ≠ 010) = (Å'B'C')' • (Å'B'C)' • (Å'BC')' = (A + B + C) • (A + B + C') • (A + B' + C)

$$F = \frac{(A'B'C')' \cdot (A'B'C)' \cdot (A'BC')}{(A+B+C') \cdot (A+B'+C)} = \frac{(X'+X''+\dots+X'')}{(Y'')}$$

$$= \frac{(A+B+C)}{(Y'')} \cdot \frac{(A+B+C')}{(A+B+C')} \cdot \frac{(X''+X'')}{(A+B'+C')} = \frac{(X''+X''+\dots+X'')}{(Y'')}$$

$$= \frac{(A+B+C)}{(Y'')} \cdot \frac{(A'B'C')'}{(Y'')} \cdot \frac{(A'B'C')}{(Y'')} = \frac{(X''+X''+\dots+X'')}{(Y'')}$$

Logic Design Using a Truth Table

■ Steps

- ➤ Make a truth table according to the word description
- Generate a Boolean expression
 - Sum-of-products (SOP): check 1's 模型 output = 1 的情況
 - Product-of-sums (POS): check 0's \(\cdots \)
 - Have F' in SOP and then derive F in POS
- Simplify the Boolean expression

Outline

- Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- **☐** Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

nvariables 等了 literals, 且有何 variable 例如出现一次

Minterm and Maxterm

- ☐ Definition: A minterm/maxterm of n variables is a product/sum of n literals in which each variable appears exactly once in either true or complement form (but not both)
 - ➤ A literal is a variable or its complement (A or A')
- Examples of 3 variables

 Minterm: A'BC, AB'C' 是 是

 Maxterm: A + B + C, A + B + C'

 (m_i)' = M_i

 $2^3 = F \frac{\text{minferms}}{\text{muxterms}}$

Row No.	ABC	Minterm m _i ←	→ Maxterm M _i
0	000	m ₀ = A'B'C'	$M_0 = A + B + C$
1	001	m ₁ = A'B'C	$M_1 = A + B + C'$
2	010	m ₂ = A'BC'	$M_2 = A + B' + C$
3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
4	100	m ₄ = AB'C'	$M_4 = A' + B + C$
5	101	$m_5 = AB'C$	$M_5 = A' + B + C'$
6	110	m ₆ = ABC'	$M_6 = A' + B' + C$
7	111	$m_7 = ABC$	$M_7 = A' + B' + C'$

Minterm Expansion

☐ A <u>minterm expansion</u> or a <u>standard sum of products</u> is a function written as a sum of minterms

```
> Counting 1's minferm expansion ( $\overline{A} \tau n 12 variables $\overline{A} = \overline{A} = \overline{A
```


Am = minter

Row No.	ABC	Minterm m _i	Maxterm M _i
0	000	$m_0 = A'B'C'$	$M_0 = A + B + C$
1	001	m ₁ = A'B'C	$M_1 = A + B + C'$
2	010	$m_2 = A'BC'$	$M_2 = A + B' + C$
3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
4	100	m ₄ = AB'C'	$M_4 = A' + B + C$
5	101	$m_5 = AB'C$	$M_5 = A' + B + C'$
6	110	m ₆ = ABC'	$M_6 = A' + B' + C$
7	111	$m_7 = ABC$	$M_7 = A' + B' + C'$

Maxterm Expansion

☐ A <u>maxterm expansion</u> or a <u>standard product of sums</u> is a function written as a product of maxterms

	Row No.	ABC	Minterm m _i	Maxterm M _i
4 3 cl	0	000	$m_0 = A'B'C'$	$M_0 = A + B + C$
表。66	7 1	001	m ₁ = A'B'C	$M_1 = A + B + C'$
情视	2	010	$m_2 = A'BC'$	$M_2 = A + B' + C$
\downarrow	3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
前面例 7:	4	100	$m_4 = AB'C'$	$M_4 = A' + B + C$
< 2 03 output o	5	101	$m_5 = AB'C$	$M_5 = A' + B + C'$
	6	110	$m_6 = ABC'$	$M_6 = A' + B' + C$
	7	111	$m_7 = ABC$	$M_7 = A' + B' + C'$

Complement by Minterms/Maxterms

F= ZM(3, P, 5, 6,7)

```
\square (m<sub>i</sub>)' = M<sub>i</sub>
```

Complement of F

$$\triangleright$$
 Counting 0's in F (find F' directly) $/ = m_3 + m_V + m_S + m_L + m_M$

•
$$F' = m_0 + m_1 + m_2 = \sum m(0, 1, 2)$$

•
$$F' = M_0 + M_1 + M_2 = \sum M(0, 1, 2)$$
• $F' = M_3 M_4 M_5 M_6 M_7 = \prod M(3, 4, 5, 6, 7)$

$$= M_0 M_1 M_2$$

Counting 1's in F (find F and then complement it)

•
$$F' = (m_3 + m_4 + m_5 + m_6 + m_7)'$$

 $= m_3' m_4' m_5' m_6' m_7'$
 $= M_3 M_4 M_5 M_6 M_7$
 $= \prod M(3, 4, 5, 6, 7)$

•
$$F' = (M_0M_1M_2)'$$

 $= M_0' + M_1' + M_2'$
 $= m_0 + m_1 + m_2$
 $= \sum m(0, 1, 2)$

Α	В	С	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Another Example

```
□ Example: F(A, B, C, D) = A'(B' + D) + ACD' → 持 mintern expansion

= sum of products (条例)
       F(A, B, C, D)
    = A'(B' + D) + ACD'
    = A'B' + A'D + ACD'
    = A'B'(C + C')(D + D') + A'D(B + B')(C + C') + ACD'(B + B')
    = A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + A'BC'D + A'BCD + ABCD' + AB'CD'
    0000 0001 0010 0011 0101 0111 1110 \sum_{0}^{0} (0, 1, 2, 3, 5, 7, 10, 14) ... Minterm Expansion
                                                                                                1010
       F(A, B, C, D)
A'[B'+D) + ACD' \qquad (x+Y)(x+Z) = x+YZ \quad (autistive)
    = (A' + CD')(A + B' + D) = (A' + C)(A' + D')(A + B' + D)
    = (A' + BB' + C + DD')(A' + BB' + CC' + D')(A + B' + CC' + D)

\int_{0}^{1} = \prod_{0}^{1} M(4, 6, 8, 9, 11, 12, 13, 15) \qquad ... \text{ Maxterm Expansion}

(A' + BB' + C + DD') = (A' + B + C + DD') (A' + B' + C + DD')

(X + YZ) = (X + Y)(X + Z)
```

=
$$[(A'+B+C+D)(A'+B+C+D')](A'+B'+C+D)(A'+B'+C+D')]$$

Summary

To makerm (product of sums)

- Convert a Boolean expression to a minterm/maxterm expansion

 minterm = 有168放乳 = の発表

 Duse truth table

 minterm = 有168放乳 = の放光 = AND及来
 - - Sometimes there are too many terms
- Use Boolean algebra
 - > SOP: multiply out and use $(X + X') = 1 \rightarrow$ minterm expansion $(50)^2$)
 - \triangleright POS: factor and use $XX' = 0 \rightarrow$ maxterm expansion (POS)

Outline

- Conversion of English Sentences to Boolean Equations
- Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

General Truth Table

☐ Given n Boolean variables, how many different Boolean functions can you produce?

Each a can be assigned with either 0 or 1

function & 2(2n) find are JA %

1113 variables

7 mi cases

А	В	С	F	0	× 16
0	0	0	$a_0 <$	- 1 -	97154
0	0	1	a ₁ <	70 /	$\int_{0}^{\infty} A_{i} \int_{0}^{\infty} \int_{0}^{\infty$
0	1	0	a ₂		都有约翰廷伍
0	1	1	a_3	(
1	0	0	a ₄		
1	0	1	a ₅		
1	1	0	a ₆		
1	1	1	a ₇ <	1	

AND of Minterm Expansions

```
\square Given F_1 = \sum m(0, 2, 3, 5, 9, 11) and F_2 = \sum m(0, 3, 9, 11, 13, 14),
    find F_1F_2 = ? 表例 身面迅气压力 F_2F_2 = F_1F_2 = \sum m(0, 3, 9, 11)
  ■ AND for two maxterm expansions? 智涛男ーや当れの故ず、
プロ OR for two minterm expansions? とかり一次永多です
   コ OR for two maxterm expansions? かまぴょちまれ
HI = Mo + M2 + m) + Ms + M9+ M11
Fz = mut Myt mg+ mu + m13+ m14
Fi. F2 = (Mo+M)+mn+ M) + M>+ Ms) (Mo+M)+ Mn+ My + My + My)
       = Mo+MJ+M9+ M1/ + (M2+M5)(M13+M14)
```

Conversion of Forms

☐ Convert between a minterm and a maxterm expansion

~ :	sired orm	Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'
Minterm Expansion o	f F		The nos. not on the minterm list for F	The minterms not present in F	The same as minterm nos. of F
Maxterm Expansion o	f F	The nos. not on the maxterm list for F			The maxterms not present in F
C :	sired orm	Minterm Expansion of F	Maxterm	Minterm	Maxterm
. 51111		Expansion of t	Expansion of F	Expansion of F'	Expansion of F'
F = ∑ m(3, 4, 5,	6, 7)		П M(0, 1, 2)	∑ m(0, 1, 2)	\prod M(3, 4, 5, 6, 7)

MUX券MIN リ科一ク ショシアーなので、19

Outline

- Conversion of English Sentences to Boolean Equations
- Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- **☐** Incompletely Specified Functions
- Examples of Truth Table Construction
- Design of Binary Adders and Subtracters

Incompletely Specified Functions (1/2)

- ☐ A large digital system is usually divided into subcircuits
- \square Assume N₁ never generates ABC = 001/110 for any W, X, Y, Z

Α	В	С	F	
0	0	0	1	$W \longrightarrow A \longrightarrow $
0	0	1	X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	1	0	0	$z \longrightarrow c \longrightarrow$
0	1	1	1	
1	0	0	0	(段設 NI output) 不養 そ 001/110
1	0	1	0 /	
1	1	0	X	101/110
1	1	1	1	不管四式 1000年 1000年
				1. AND /110 BS MULT. ALX Wowlast > X

- ☐ F: Incompletely specified function
- ☐ A'B'C, ABC': don't care terms
 - > "don't care" (DC) terms can be assigned with either 0 or 1

Incompletely Specified Functions (2/2)

- Impact of don't care terms on Boolean simplification
 - > Try exhaustive combinations of DCs to find the best
 - "001/110 W odg l 3 0/1 67 • (may be stupid but works for now) 罗凯明月6时有3
 - Assign 0 to both "X"
 - F = A'B'C' + A'BC + ABC = A'B'C' + BC
 - Assign 1 to 1st "X" and 0 to 2nd "X" (seems to be the simplest)
 - F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC

Maxtell 7 AND

- Assign 1 to both "X"
 - F = A'B'C' + A'B'C + A'BC + ABC' + ABC = A'B' + BC + AB
- **>** ...
- > 2. is the simplest solution

Notation	minterm > OR
\triangleright F = \sum m(0, 3, 7)	d(1, 6)
$F = \prod M(2, 4, 5)$	TD(1, 6)

Α	В	С	F
0	0	0	1
0	0	1	Х
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	Х
1	1	1	1

Outline

- Conversion of English Sentences to Boolean Equations
- Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- **☐** Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Error Detector for 6-3-1-1 Codes (1/2)

n invalid by output F=1

Design an error detector for 6-3-1-1 codes:

The output F = 1 iff inputs (A, B, C, D) represent an <u>invalid</u> code combination

> Step 1: construct the truth table

Decimal Digit	6-3-1-1 Code
0	0000
1	0001
2	0011
3	0100
4	0101
5	0111
6	1000
7	1001
8	1011
9	1100

		L ?		
		ABCD	F	
	0	0000 \hbar	0	
A	1	0001 📶	0	
6		0010	1	A'B'CD'
	2	0011 🐠	0	
	3	0100 ///	0	
A	4	0101/15	0	
6	A	0110	1	ABOD)
	5	0111 🙌	0	
	6	1000 🧥	0	
7	1	1001 🙌	0	
16	9	1010	1	AB'CD'
	F	1011 <i>Mu</i>	0	
	9	1100 🛝	0	
1	19	1101	1	ABC'D
2	19	1110	1	ABCD1
		1111	1	ABCD
L				

$$m_2$$
 or m_6 or m_{10} or

$$= A'CO'(B'+B) + ACO'(B+B) + ABD(C+C')$$

$$= A/cD' + AcO' + ABD$$

$$= CD^{0} + ABD$$

$$= CD' + ABD$$

Error Detector for 6-3-1-1 Codes (2/2)

☐ Design an error detector for 6-3-1-1 codes:

- The output F = 1 iff inputs (A, B, C, D) represent an <u>invalid</u> code combination
- > Step 2: simplify the function

```
F(A, B, C, D)
= \sum m(2, 6, 10, 13, 14, 15)
= \underline{A'B'CD' + A'BCD'} + \underline{AB'CD' + ABCD'} + \underline{ABC'D + ABCD}
= \underline{A'CD' + ACD'} + ABD
```

> Step 3: realize it

= CD' + ABD

ABCD	F
0000	0
0001	0
0010	1
0011	0
0100	0
0101	0
0110	1
0111	0
1000	0
1001	0
1010	1
1011	0
1100	0
1101	1
1110	1
1111	1

Another Example

- The output Z = 1 iff the 8-4-2-1 BCD number (A, B, C, D) is divisible by 3

 Decimal 8-4-2-1

 ABCD
 - > Step 1: construct the truth table
 - > Step 2: simplify the function

$$= \sum m(0, 3, 6, 9) +$$

- > Step 3: realize it
 - ?
 - Unit 5!

Decimal Digit	8-4-2-1 Code	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	۲
6	0110	
7	0111	
8	1000	
9	1001	

ABCD	Z
0000	1
0001	0
0010	0
0011	1
0100	0
0101	0
0110	1
0111	0
1000	0
1001	1
/ b 1010	X
// 1011	X
/2 1100	X
<i> </i> } 1101	X
1110 אן	X
15 1111	X

Outline

- Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- **☐** Design of Binary Adders and Subtracters

1-Bit Half Adder (HA)

☐ Step 1: construct the truth table

X	Υ	Carry	Sum	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

☐ Step 2: simplify the function

$$\triangleright$$
 C = XY

$$\triangleright$$
 S = X'Y + XY' = X \bigoplus Y

☐ Step 3: realize it

1-Bit Full Adder (FA)

X

- ☐ Step 1: construct the truth table/
- ☐ Step 2: simplify the function

$$> S = X'Y'C_{in} + X'YC_{in}' + XY'C_{in}' + XYC_{in}'$$

☐ Step 3: realize it

ize it	कार्य • -112 । भर्ने	3113 1 m
	ある1月 =1	\$v=1
/	•	′

in	1	0	0	0	1
7	1	0	1	1	0
3113] 1 113 50=1	1	1	0	1	0
A0=1	1	1	1	1	1

Cout

S

Cont =
$$\chi' \gamma C n + \chi \gamma' C n + \chi \gamma C n' + \chi \gamma C n$$

= $\gamma C n + \chi (\gamma' C n + \gamma C n')$
= $\gamma C n + \chi \gamma' C n + \chi \gamma C n'$

> Y (Gn + x Gin')

= Y((in+x)

= Y(in + XY

4-Bit Parallel Adder (1/3)

 \Box A = (A₃A₂A₁A₀), B = (B₃B₂B₁B₀)

Example

- ☐ How?
 - > Step 1: construct the truth table
 - **>** ...

4-Bit Parallel Adder (2/3)

3784 bit addw \$584112 , bit \$8 subcomponent

V, RP full adder

- Decompose the 4 bit adder into four modules
 - ➤ Each module adds two bits and a carry → use full adder
 - Extend to negative numbers
 - > Consider 1's complement
 - Add just as if all numbers are positive
 - Add the carry out back to the rightmost bit
 - ➤ How to detect overflow?
 - Check the sign
 - -(+) + (+) becomes (-)
 - -(-) + (-) becomes (+)

	Case 1	Case 2	Case 3		Case 4	Case 5		Case 6	
	+3 0011	+5 0101	+5 0101	- 5	1010	- 3	1100	- 5	<mark>1</mark> 010
ı	+4 0100	+6 ₁ 0110	-6 1001	+6	0110	<u>-4</u>	1011	<u>-6</u>	<u>1</u> 001
	+7 0111	$\frac{-}{1011}$	$\overline{-1}$ $\overline{1110}$	+1	$(1) \overline{0000}$	-7	$(1) \overline{0111}$		$(1) \frac{0}{0}$
				1		1		1	
	JODZ JONN JONN				0001		1000		0100
		8240	J						31

4-Bit Parallel Adder (3/3)

end-around carry for 1's complement

■ Overflow detection?

$$V = A_3'B_3'S_3 + A_3B_3S_3'$$

$$Why? \qquad J$$

$$A_3'B_3' \rightarrow Z+Z$$

$$S_3 \rightarrow \emptyset$$

Binary Subtracter (1/2)

FM的计交通来取加了

- \square Consider A B = A + (-B) in 2's complement
 - \rightarrow A B = A + (-B) = A + B* = A + \overline{B} + 1
 - Convert B to 2's complement: inverse and then add 1
- ☐ Discard the carry from the sign bit

Binary Subtracter (2/2)

☐ Or design a full subtracter

- \triangleright D = X Y: difference
- ➤ B: borrow

Q&A