

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Фундаментальные науки» КАФЕДРА «Вычислительная математика и математическая физика» (ФН-11)

ОТЧЕТ по домашнему заданию №2

Дисциплина: <u>Геометриче</u>	ское моделирование	
Студент группы ФН11-62Б	 (Подпись, дата)	<u>Л.В.Ладыгина</u> (И.О.Фамилия)
Преподаватель	(Подпись, дата)	<u>А.А.Захаров</u> (И.О.Фамилия)
	Опенка	

Задание:

Используя построенный в домашнем задании №1 сплайн, осуществите расчёт его точек таким образом, чтобы аппроксимирующий этот сплайн полигон, отклонялся от него на величину не больше заданной. Проведите сравнение полученной визуализации с визуализацией с постоянным шагом.

Требуется найти параметр t1 следующей точки полигона, так чтобы отклонение кривой от её полигона не превышало заданную величину δ.

Для этого используем формулы:

$$\rho = \frac{|\mathbf{r}'|^3}{|\mathbf{r}' \times \mathbf{r}''|}.$$

$$\Delta t \approx \frac{h}{|\mathbf{r}'|} = 2 \frac{\sqrt{\delta(2\rho - \delta)}}{|\mathbf{r}'|}.$$

$$t_1 = t_0 + \Delta t.$$

и формулы для производных:

$$\frac{d\mathbf{r}(t)}{dt} = n \sum_{i=0}^{n-1} B_i^{n-1}(t) \mathbf{a}_i.$$

$$a_i = p_{i+1} - p_i$$

$$\frac{d^2 \mathbf{r}(t)}{dt^2} = n(n-1) \sum_{i=0}^{n-2} B_i^{n-2}(t) \mathbf{b}_i,$$

$$\mathbf{b}_i = \mathbf{a}_{i+1} - \mathbf{a}_i.$$

Расчет первой производной в rt_diff:

```
for(i=0; i<n-1; i++) {
B_in=C(i,n-2) *Math.pow(t,i) *Math.pow(1-t, n-2-i);
a_x[i]=this.pointsCtr[i+1].x-this.pointsCtr[i].x;
a_y[i]=this.pointsCtr[i+1].y-this.pointsCtr[i].y;
s_x0+=(n-1) *B_in*a_x[i];
s_y0+=(n-1) *B_in*a_y[i];
}
const rt_diff=vec3.fromValues(s_x0,s_y0,0);</pre>
```

```
Расчет второй производной в rt 2diff:
```

```
for(i=0; i<n-2; i++){
  B in=C(i,n-3)*Math.pow(t,i)*Math.pow(1-t, n-3-i);
  b x[i]=a x[i+1]-a x[i];
  b y[i]=a y[i+1]-a y[i];
   s x1+=(n-1)*(n-2)*B in*b x[i];
   s y1+=(n-1)*(n-2)*B in*b y[i];
   const rt 2diff=vec3.fromValues(s x1,s y1,0);
Объявим
вектор normal- вектор векторного произведения r' \times r''
  const normal = vec3.create();
  vec3.cross(normal,rt diff,rt 2diff);
 переменные
ro = \rho,
rt\_diff\_norm — норма rt diff,
normal\ norm\ -\ hopma\ вектора\ normal,\ посчитаем\ rt\ diff\ norm:
let ro,rt diff norm, normal norm;
rt diff norm=Math.sqrt(Math.pow(s x0,2)+Math.pow(s y0,2));
Найдем норму вектора normal
normal norm=Math.sqrt(Math.pow(normal[0],2)+Math.pow(normal[1],2)+Math.pow(normal[2],2));
и найдем го по формуле:
                                  \rho = \frac{|\mathbf{r}'|^3}{|\mathbf{r}' \times \mathbf{r}''|}.
 ro=Math.pow(rt diff norm, 3) / normal norm;
                                              \Delta t pprox rac{h}{|\mathbf{r}'|} = 2 rac{\sqrt{\delta(2
ho - \delta)}}{|\mathbf{r}'|}.
Введем параметр \delta и посчитаем \Delta t по формуле
 let delta=0.1:
 delta t=2*Math.sqrt(delta*(2*ro-delta))/rt diff norm;
текущее t будет изменяться на \Delta t:
t+=delta t;
```

```
let B in,s x=0,s y=0;
var a_x=[],a_y=[],b_x=[],b_y=[];
t=0; j=0;
while (t<1) {
    for(i=0; i<n; i++){</pre>
    B_{in}=C(i,n-1)*Math.pow(t,i)*Math.pow(l-t, n-l-i);
    s x+=B in*this.pointsCtr[i].x;
    s_y+=B_in*this.pointsCtr[i].y;
    rt=new Point(s x,s y);
    this.pointsSpline[j]=rt;
    s_x=0; s_y=0;
    let s x0=0, s x1=0, s y0=0, s y1=0;
    //производная
    for(i=0; i<n-1; i++){</pre>
    B_{in}=C(i,n-2)*Math.pow(t,i)*Math.pow(1-t, n-2-i);
    a_x[i]=this.pointsCtr[i+1].x-this.pointsCtr[i].x;
    a_y[i]=this.pointsCtr[i+1].y-this.pointsCtr[i].y;
    s \times 0 + = (n-1) *B in*a x[i];
    s_y0+=(n-1)*B_in*a_y[i];
    const rt_diff=vec3.fromValues(s_x0,s_y0,0);
    console.log('rt_diff',rt_diff);
    //вторая производная
    for(i=0; i<n-2; i++){
    B_{in}=C(i,n-3)*Math.pow(t,i)*Math.pow(l-t, n-3-i);
    b x[i]=a x[i+1]-a x[i];
    b_y[i]=a_y[i+1]-a_y[i];
    s_x1+=(n-1)*(n-2)*B_in*b_x[i];
    s_yl+=(n-1)*(n-2)*B_in*b_y[i];
    const rt 2diff=vec3.fromValues(s_x1,s_y1,0);
    console.log('rt_2diff',rt_2diff);
    let ro,rt diff norm, normal norm;
    rt_diff_norm=Math.sqrt(Math.pow(s_x0,2)+Math.pow(s_y0,2));
    const normal = vec3.create();
    vec3.cross(normal,rt_diff,rt_2diff);
    console.log(normal[0], normal[1],normal[2]);
    normal_norm=Math.sqrt(Math.pow(normal[0],2)+Math.pow(normal[1],2)+Math.pow(normal[2],2));
    console.log('normal',normal_norm);
    ro=Math.pow(rt diff norm, 3)/normal norm;
   let delta=0.1:
   delta_t=2*Math.sqrt(delta*(2*ro-delta))/rt_diff_norm;
   console.log('delta t',delta t);
   t+=delta_t;
```

Результаты работы программы:

Для $\delta = 0.1$

Для $\delta=0.001$