## Indução de Faraday

LCET/MEFT - 2º ano, 2º Semestre - 2013/2014 Turno de Sexta-feira Professor João Figueirinhas

#### Grupo D

João Lourenço (75382)/ Miguel Mora (75399)/ Miguel Levy (75516)/ Ana Almeida (75986) 02/05/2014

#### Resumo

Esta actividade tem como objectivo verificar a lei de indução de Faraday em circuitos móveis na presença de campos magnéticos estáticos. Assim, determinou-se o coefiente de indução para um campo magnético estático e uniforme através de dois processos, mantendo uma intensidade de corrente constante ( $L_i = 1, 16 \pm 0, 04mH$ ) e tendo uma velocidade de oscilação constante ( $L_{\omega} = 1, 25 \pm 0, 17mH$ ). Outro objectivo era a analise do circuito com transformador, para isso impôs-se uma tensão constante, determinando-se através do modelo teórico  $L_M = 42, 6 \pm 0, 2mH$  e k = 0, 879. Através da diferença de fase obteve-se, novamente, a constante de acoplamento ( $k = 1, 098 \pm 0, 003mH$ ). Para concluir, ainda se analisou a relação entre a tensão à entrada e saída do transformador, comparando com o caso do transformador ideal.

## 1 Introdução

A indução de Faraday é uma lei que nos diz que irá aparecer uma corrente num circuito caso este seja colocado sob o efeito de uma campo magnético, sob certas condições. A força eletromotriz induzida  $\epsilon_i$ , que quantifica o efeito da indução de Faraday, é dada pela seguinte relação:

$$\epsilon_i = -\frac{d\phi}{dt} \tag{1}$$

sendo  $\phi$  o fluxo de campo magnético  $\vec{B}$ :

$$\phi = \int_{S} (\vec{B}.\vec{n})dS \tag{2}$$

Nesta parte do trabalho, iremos analisar o caso em que foi colocado um circuito em rotação no espaço entre duas bobines de Helmholtz. A rotação do circuito será feita no plano perpendicular ao eixo das bobines e a normal da superfície será colocada na mesma direcção que o eixo central. Como temos que a rotação do circuito é feita num plano perpendicular à normal, significa que o ângulo  $\alpha$  entre estes irá variar em cada instante de tempo. Assim, o produto interno do campo magnético produzido com a referida normal é dado por:

$$\phi = \int_{S} |\vec{B}| \cos(\alpha) dS \tag{3}$$

Como no eixo central entre as bobinas o campo magnético é constante e como  $\alpha$  é independente do integral de superfície:

$$\phi = |\vec{B}|\cos(\alpha)S\tag{4}$$

Se em vez de se colocar apenas um circuito em rotação, se colocarem n espiras, temos que o fluxo ao longo das n espiras é dado pelo produto do número das espiras com o fluxo a atravessar apenas uma delas:

$$\phi_n = n\phi \iff \phi_n = n|\vec{B}|\cos(\alpha)S \tag{5}$$

Colocando o circuito em rotação com velocidade angular constante  $\omega$  , podemos substituir  $\alpha$  por:

$$\phi_n = n|\vec{B}|\cos(\omega t)S\tag{6}$$

Tendo o fluxo do campo de indução, substitui-se em (1) e obtém-se:

$$\epsilon_i = n|\vec{B}|\omega\sin(\omega t)S\tag{7}$$

O valor de  $|\vec{B}|$  é obtido aplicando Biot-Savart no interior das bobinas:

$$|\vec{B}| = \frac{8\mu_0 Ni}{5\sqrt{5}r} \tag{8}$$

em que N é o número de espiras das bobinas e r é o seu raio. A tensão criada por efeito de indução nos terminais do enrolamento em rotação é dada por:

$$V = Ri_{ind} + \frac{d\phi}{dt} + L\frac{di_{(ind)}}{dt} \tag{9}$$

sendo R a resistência interna do enrolamento, L o seu coeficiente de auto-indução e  $i_{(ind)}$  a corrente induzida por efeito da indução de Faraday. Como podemos desprezar a auto-indução e a resistência interna de um enrolamento, temos que será apenas a derivada temporal do fluxo que descreverá a tensão aos terminais do enrolamento. Para se eliminar a função trigonométrica e os sinais, obtivémos a seguinte expressão para o módulo máximo da tensão:

$$|V| = L_M \omega i \tag{10}$$

em que:

$$L_M = \frac{8\mu_0 NnS}{5\sqrt{5}r} \tag{11}$$

Prossegue-se agora para a análise de outra montagem que dá origem ao efeito de indução magnética, a situação de condutores fixos num campo magnético variável. Para tal iremos utilizar um transformador, que é constituído por um núcleo de ferro maciço fechado e dois enrolamentos com números diferentes de espiras. O campo magnético no seu interior, criado pelas espiras quando percorridas por corrente, é aproximadamente 3 a 4 ordens de grandeza superior ao campo criado no exterior (ar), isto porque o ferro tem uma elevada permeabilidade magnética relativa. As linhas de força do campo permanecem e fecham-se no interior do núcleo. Nesta parte do trabalho considerou-se que o transformador era ideal, ou seja considerou-se que não existe fluxo de dispersão para o exterior do núcleo. Ao fazermos um dos enrolamentos ser percorrido por uma corrente variável no tempo, obtemos então um campo magnético variável no tempo e consequentemente o seu fluxo também. Utilizando o facto de que  $\phi_n=n\phi$ , temos que o fluxo através dos en rolamentos é directamente proporcional ao nº de espiras e que (as grandezas com índice

1 referem-se às espiras que são percorridas com a corrente por nós fornecida):

$$\left| \frac{\epsilon_1}{\epsilon_2} \right| = \frac{n_1}{n_2} \tag{12}$$

Ou seja, a razão entre as forças eletromotrizes induzidas é igual ao quociente entre o número de espiras de cada enrolamento. Como se desprezam as resistências internas dos enrolamentos, as tensões aos seus terminais são:

$$V_1 = L_1 \frac{di_1}{dt} + L_M \frac{di_2}{dt} \tag{13}$$

$$V_2 = L_M \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \tag{14}$$

sendo  $L_1$  e  $L_2$  os coeficientes de auto-indução do primeiro e segundo enrolamento, respetivamente e  $L_M$  o coeficiente de indução mútua. Introduz-se agora uma outra grandeza, a constante de acoplamento magnético, que descreve a dispersão das linhas de força do campo:

$$k = \frac{L_M}{\sqrt{L_1 L_2}} \tag{15}$$

Como num transformador ideal k=1, podemos relacionar as tensões aos terminais dos enrolamentos, obtendo assim o módulo do seu quociente e a diferença de fase entre ambos, respetivamente:

$$\left| \frac{\bar{V_2}}{\bar{V_1}} \right| = \frac{L_M}{L_1 \sqrt{1 + \omega L_2 \frac{1 - k^2}{R}}} \tag{16}$$

$$\Delta \delta = -\arctan(\omega L_2 \frac{1 - k^2}{R}) \tag{17}$$

# 2 Montagem e Procotocolo experimental

Nesta experiência recorre-se a um campo magnético estático e uniforme gerado por bobinas de Helmholtz, sendo colocada no meio destas bobinas uma terceira bobina que efectua um movimento de rotação perpendicular ao campo de indução.

#### I - Campo magnético estático e uniforme

1. Faça a montagem conforme o esquema abaixo:



Esquema 1: Montagem experimental - parte I.

- Imponha uma tensão por forma a obter uma corrente nas bobinas de Helmholtz de cerca de 800mA;
- 3. Varie a tensão fornecida à pequena bobine em rotação:
- 4. Faça o ajuste (regressão linear) para (10), em que a intensidade é constante;

- 5. Obtenha  $L_i$  através da divisão do declive da regressão (m) pela intensidade de corrente  $(I \approx 800mA)$ ;
- 6. Para uma velocidade de rotação ( $\omega$ ) constante, varie as correntes entre os 300mA e 1.5A (em passos de 150mA);
- 7. Faça a regressão linear segundo (10), obtendo  $L_{\omega}$  através da divisão do declive da regressão (m) pela velocidade de rotação  $(\omega)$ ;

#### II - Transformador

 Monte o circuito conforme a figura a baixo, em que o enrolamento primário tem 600 espiras e o secundário 72:



Esquema 2: Montagem experimental - parte II.

- 2. Ajuste o gerador para que produza uma tensão alternada sinusoidal de frequência f = 50Hz;
- 3. Varie a amplitude máxima da tensão produzida pelo gerador desde 1V até 9V (em passos de 1V), registando as amplitudes máximas da tensão produzida pelo gerador e aplicada ao enrolamento primário do transformador  $(V_1)$  e da tensão de saída do transformador  $(V_2)$  que se encontra aplicada sobre a resistência  $(R=10\Omega)$ .
- 4. Repita os passos anteriores para frequências do gerador iguais a 100Hz, 500Hz, 1000Hz e 2500Hz;
- 5. Mantenha a tensão gerada pelo gerador no seu valor máximo (V=9V) e varie a sua frequência de modo a registar V2;
- 6. Represente graficamente a tensão  $V_2$  em função de  $V_1$  (regressão linear com declive m);
- A partir das regressões lineares, compare m com a razão do número de espiras entre os enrolamentos secundário e primário (12);
- 8. Com f=10kHz retire a resistência de  $10\Omega$  do secundário, deixando o circuito em aberto, registe V1 e V2 e a diferença de fase entre ambas as tensões;
- Meça os coeficientes de autoindução do primário e do secundário utilizando o medidor de inductâncias;
- 10. Represente graficamente: V2(V1) e V2/V1(f), ajustando este ultimo ao modelo do transformador em regime linear (16);
- 11. Determine a constante de acoplamento magnético do transformador (k);
- 12. Ajuste a diferença de fase para V = 9V em função da frequência segundo (17) e obtenha k.

## 3 Análise de Resultados

### 3.1 Campo magnético estático e uniforme

Com as bobinas de Helmholtz percorridas por uma corrente de 800mA, liga-se o motor acopolado ao eixo central, variando-se a sua velocidade de rotação, obtendo-se a tensão aos terminais e a frequência de rotação, vindo:

| $V_{entrada}$ $(V)$ | f(Hz)            | $\omega(rads^{-1})$ | $V_{terminais}(V)$                 |
|---------------------|------------------|---------------------|------------------------------------|
| $10,00 \pm 0,25$    | $27, 2 \pm 0, 3$ | $171 \pm 2$         | $(1,60\pm0,04)\times10^{-1}$       |
| $9,50 \pm 0,25$     | $26, 3 \pm 0, 3$ | $165 \pm 2$         | $(1,56\pm0,04)\times10^{-1}$       |
| $9,00 \pm 0,25$     | $24, 8 \pm 0, 3$ | $156 \pm 2$         | $(1,51\pm0,04)\times10^{-1}$       |
| $8,50 \pm 0,25$     | $24,0 \pm 0,2$   | $151 \pm 2$         | $(1,42\pm0,04)\times10^{-1}$       |
| $8,00 \pm 0,25$     | $21,9 \pm 0,2$   | $138 \pm 1$         | $(1, 31 \pm 0, 04) \times 10^{-1}$ |
| $7,50 \pm 0,25$     | $20,5 \pm 0,2$   | $129 \pm 1$         | $(1, 22 \pm 0, 04) \times 10^{-1}$ |
| $7,00 \pm 0,25$     | $18,9 \pm 0,2$   | $119 \pm 1$         | $(1, 12 \pm 0, 04) \times 10^{-1}$ |
| $6,50 \pm 0,25$     | $17, 5 \pm 0, 2$ | $110 \pm 1$         | $(1,03\pm0,04)\times10^{-1}$       |
| $6,00 \pm 0,25$     | $15, 6 \pm 0, 2$ | $98 \pm 1$          | $(0,94 \pm 0,04) \times 10^{-1}$   |
| $5,50 \pm 0,25$     | $14,0 \pm 0,2$   | $88 \pm 1$          | $(0,84 \pm 0,04) \times 10^{-1}$   |
| $5,00 \pm 0,25$     | $12,0 \pm 0,2$   | $75 \pm 1$          | $(0,72\pm0,04)\times10^{-1}$       |
| $4,50 \pm 0,25$     | $10, 8 \pm 0, 2$ | $68 \pm 1$          | $(0,66\pm0,04)\times10^{-1}$       |

**Tabela 1:** Valores de frequência e tensão medidos no osciloscópio, para uma intensidade de corrente nas bobinas de Helmholtz de  $\approx 803mA$ , bem como valores da velocidade de rotação calculados.

Para verificar a relação de linearidade (10) entre a tensão e a velocidade de rotação, realizou-se um ajuste segundo y=mx+b, em que o factor m corresponde a Li, dado pela expressão (11). Desta forma calculou-se  $L_{teorico}=1,01mH$ , sendo possível fazer o ajuste para i=803mA, obtendo-se uma curva teórica e outra com os dados experimentais, vindo:



Gráfico 1: Ajuste  $V(\omega)$ , segundo y=mx+b, sendo  $m_{experimental}=(9,35\pm0,34)\times10^{-4} \text{ e}$   $b_{experimental}=(1,82\pm4,4)\times10^{-3} \text{ e } m_{teorico}=8,1\times10^{-4}.$ 

Daqui retirou-se o valor de L (divisão de m por i):

### $L_i = 1, 16 \pm 0, 04mH$

Com a velocidade de rotação  $(\omega)$  constante, varia-se a corrente aplicada ás bobinas de Helmholtz (300mA-1.5A) em passos de 150mA, por forma a se estudar a variação da tensão com a corrente.

| I(A)              | $V_{terminais}(V)$ |
|-------------------|--------------------|
| $0,299 \pm 0,001$ | $0,061 \pm 0,004$  |
| $0,449 \pm 0,001$ | $0,091 \pm 0,004$  |
| $0,599 \pm 0,001$ | $0,120 \pm 0,004$  |
| $0,750 \pm 0,001$ | $0,154 \pm 0,004$  |
| $0,900 \pm 0,001$ | $0,186 \pm 0,008$  |
| $1,048 \pm 0,001$ | $0,220 \pm 0,008$  |
| $1,200 \pm 0,001$ | $0,254 \pm 0,008$  |
| $1,347 \pm 0,001$ | $0,288 \pm 0,008$  |
| $1,497 \pm 0,001$ | $0,324 \pm 0,008$  |

**Tabela 2:** Variação da tensão (V) com a intensidade (I) para  $f=27,8\pm3,1(Hz),$  ou seja  $\omega=175\pm19(rads^{-1})$ 

Com os dados da tabela 2, e usando um procedimento análogo ao anterior, mas agora para  $\omega = const$ , fez-se um novo ajuste experimental segundo (10), por forma a determinar  $L_{\omega}$ , vindo:



Gráfico 2: Ajuste  $V(\omega)$ , segundo y=mx+b, sendo  $m_{experimental}=0.218\pm0.005,\ b_{experimental}=-0.007\pm0.004$  e  $m_{teorico}=0.176.$ 

Obtendo-se  $L_{\omega}$  (divisão de m por  $\omega$ ) de:

 $L_{\omega} = 1,25 \pm 0,17mH$ 

#### 3.2 Transformador

Com uma onda sinusoidal de frequências distintas (50Hz, 100Hz, 500Hz, 1000Hz, 2500Hz), variou-se a amplitude do sinal de 1V a 9V, registando-se a tensão no enrolamento primário e à saída do transformador, bem como a fase entre os dois sinais  $(V_1 \ e\ V_2)$ .

No gráfico 3, encontram-se representadas as relações  $V_{saida}(V_{entrada}) \iff V_2(V_1)$ , para as frequências referidas anteriormente.



|   | f = 50          | (Hz)              |  |  |
|---|-----------------|-------------------|--|--|
| # | $V_1(V)$        | $V_2(V)$          |  |  |
| 1 | $1,02 \pm 0,04$ | $0,116 \pm 0,008$ |  |  |
| 5 | $5,00 \pm 0,08$ | $0,570 \pm 0,016$ |  |  |
|   | f = 100(Hz)     |                   |  |  |
| # | $V_1(V)$        | $V_2(V)$          |  |  |
| 1 | $1,00 \pm 0,02$ | 0,1120,004        |  |  |
| 5 | $4,96 \pm 0,08$ | $0,560 \pm 0,008$ |  |  |
|   | f = 500(Hz)     |                   |  |  |
| # | $V_1(V)$        | $V_2(V)$          |  |  |
| 1 | $1,01 \pm 0,02$ | $0,098 \pm 0,004$ |  |  |
| 5 | $5,10 \pm 0,08$ | $0,520 \pm 0,008$ |  |  |
|   | f = 100         | 0(Hz)             |  |  |
| # | $V_1(V)$        | $V_2(V)$          |  |  |
| 1 | $1,00 \pm 0,02$ | $0,079 \pm 0,002$ |  |  |
| 5 | $5,00 \pm 0,08$ | $0,412 \pm 0,008$ |  |  |
|   | f = 2500(Hz)    |                   |  |  |
| # | $V_1(V)$        | $V_2(V)$          |  |  |
| 1 | $1,01 \pm 0,02$ | $0,050 \pm 0,002$ |  |  |
| 5 | $5,00 \pm 0,08$ | $0,240 \pm 0,004$ |  |  |
|   | · ·             | •                 |  |  |

**Gráfico 3:** Ajuste  $V_2(V_1)$ , segundo y=mx+b para frequências de 50Hz, 100Hz, 500Hz, 1000Hz e 2500Hz.

| f(Hz) | m     | d.exactidão (%) |
|-------|-------|-----------------|
| 50    | 0,116 | 3, 3            |
| 100   | 0,113 | 5, 8            |
| 500   | 0,104 | 13, 3           |
| 1000  | 0,082 | 31, 7           |
| 2500  | 0,047 | 60,8            |

**Tabela 3:** Valores de m para diferentes frequências (f), obtidos nos ajustes y=mx+b do gráfico 3, bem como desvios à exactidão de  $m_{ideal}=0,12.$ 

Para um transformador ideal, a relação entre a tensão à entrada e à saída é proporcional à divisão entre o número de espiras do enrolamento secundário e o número de espiras do enrolamento primário  $(\frac{n^2}{n1}=0,12)$ . Desta forma se tivessemos um transformador ideal, os valores para m da tabela 3, seriam iguais a 0,12, o que não acontece uma vez que o transformador não é ideal.

E de notar, que para valores de frequência baixa (50 Hz, 100Hz e 500 Hz), a m não se encontra muito afastado do valor esperado caso o transformador fosse ideal.

Para terminar, aplicou-se uma tensão de 9V varia-se a frequência e registando-se  $V_2$ , vindo:

| f(Hz)         | $V_2(V)$        |
|---------------|-----------------|
| $100 \pm 1$   | $1,02 \pm 0,02$ |
| $160 \pm 1$   | $1,02 \pm 0,02$ |
| $250 \pm 1$   | $0,99 \pm 0,02$ |
| $400 \pm 1$   | $0,95 \pm 0,02$ |
| $649 \pm 1$   | $0,87 \pm 0,02$ |
| $1008 \pm 1$  | $0,72 \pm 0,02$ |
| $1594 \pm 1$  | $0,60 \pm 0,02$ |
| $2497 \pm 1$  | $0,43 \pm 0,02$ |
| $4005 \pm 1$  | $0,29 \pm 0,02$ |
| $5990 \pm 1$  | $0,23\pm 0,02$  |
| $9990 \pm 1$  | $0,15 \pm 0,02$ |
| $*9987 \pm 1$ | $0,91 \pm 0,02$ |

**Tabela 4:** Para uma tensão  $V_1 = 9V$ , variou-se a frequência, registando-se os valores da tensão à saída  $V_2$ , sendo o último valor apresentado (\*) para o caso em que se retira a resistência.

| L(mH)             |
|-------------------|
| $370, 4 \pm 0, 1$ |
| $6,338 \pm 0,001$ |
|                   |

Tabela 5: Coeficientes de auto-indução.

Com os valores da tabela 4, realizou-se um ajuste segundo a expressão 16, em que  $L_1$  e  $L_2$  foram fixos com os valores presentes na tabela 5, obtendo-se:



**Gráfico 4:** Ajuste,em escala logaritmica, de  $V_2/V_1$  em função de f segundo 16 em que  $L1=370,4\pm0,1mH,\ L2=6,338\pm0,001mH$  e  $R=10\Omega.$  Do ajuste obtém-se  $L_M=42,6\pm0,2mH.$ 

Com os valores de L1 e L2 (tabela 5) e  $L_M=42,6\pm0,2mH$  obtido através do ajuste do gráfico 4, obtem-se a constante de acoplamento a partir de (15):

 $k = 0,879 \pm 0,004$ 

Para concluir, fez-se um ajuste segundo (17), a fase entre  $V_1$  e  $V_2$  para diferentes frequências, vindo:



**Gráfico 5:** Ajuste  $\Delta\theta(f)$  segundo (17) com  $L_2 = 6,338 \pm 0,001 (mH)$  e  $R = 10\Omega$ .

Do ajuste obteve-se:

 $k = 1.098 \pm 0.003$ 

## 4 Conclusão

A primeira parte da experiência permite verificar a Lei de Indução de Faraday, no caso de ter um circuíto a rodar sobre o seu eixo na presença de um campo magnético constante. Os resultados obtidos para o coeficiente de indução mútua,  $L_m$ , em ambos os casos estudados (variação da frequência de rotação e da intensidade) foram próximos e coerentes um com o outro atendendo ao valor da incerteza. É de notar que ambos os métodos apresentam erros muito semelhantes, pelo que não se pode afirmar que um método será mais fidedigno que o outro, com base em apenas esta análise. No entanto, nenhum dos valores obtidos encorpora o valor teórico na sua gama de erro, apresentando em ambos os casos um valor superior ao esperado. Assim, existindo coerência entre os métodos mas não com o valor esperado, podemos supor que existe um erro sistemático a afectar as medições, de forma a comprometer a sua exactidão mas não a sua exactidão. Notou-se que para frequências baixas, como o valor de tensão a ser medido diminuia, o ruído lido se tornava mais significativo, aumentando possíveis erros na experiência. Contudo, o segundo método realizou-se para um frequência constante e elevada, pelo que é possível excluir este facto como principal causa de erro. Assim, é necessário referir que as elevadas frequências de rotação provocavam um vibração do sistema mecânico, e que este movimento contribui para a variação de fluxo magnético e, por conseguinte, para o aumento da força electromotriz. Assim, este facto pode ter influenciado a nossa experiência.

Relativamente à segunda parte da experiência, analisouse o funcionamento de um transformador. Idilicamente, a tensão na segunda bobine seria proporcional à tensão na

segunda bobine por um factor determinado pela razão do número de espiras das bobines ( $\frac{N_2}{N_1} = 0.12$ ). Contudo, isto significa que se assume a resistência dos fios das espiras desprezáveis, e o coeficiente de acoplamento magnético ideal (k = 1). Ao analisar os resultados obtidos deparamo-nos com um crescente afastamento dos resultados obtidos em relação ao esperado consoante o aumento da frequência. Enquanto que para a frequência mais baixa analisada (50Hz)o desvio à exactidão máximo é de 5.72%, para a frequência estudada de maior valor ( $\simeq 2500Hz$ ) este valor é de 61.67%. Esta deteorização do funcionamento do transformador pode ser verificada pela análise do declive das diferentes rectas do gráfico W. Com o aumento da frequência é também notório um aumento da diferença de fase entre o sinal de saída e o sinal de entrada, quase atingido os 60° de diferença. É relevante então relembrar a Lei de Lenz que postula que o sentido da corrente induzida é tal que o campo magnético por ela cirado tende a contrariar a variação de fluxo que Îhe dá origem. Para frequências mais baixas, este efeito é desprezável pelo que produzirá apenas pequenos desvios à formulação do transformador ideal, ao passo que se tornará mais significativo com o aumento da frequência. Este efeito de interferência entre o campo secundário criado e o campo que lhe deu origem é também a razão pela qual se verifica uma diferença de fase que se torna mais significativa com o aumento da frequência.

Posteriormente, repetiu-se esta análise para um valor de tensão fixo, variando apenas o valor de frequência do sinal de entrada. Como seria expectável, verificou-se que a relação entre a tensão de entrada e a tensão de saída ia diminuindo, afastando-se da razão do número de espiras, mostrando coerência com os dados anteriores. No entanto, foi estendida a gama de frequências e, para a mais elevada ( $\simeq 10kHz$ ) retirou-se a resistência que fechava o circuito secundário. Assim, deixando o circuito secundário em aberto, a relação entre a tensão de entrada e a tensão de saída ficou próxima do valor ideal (0.12), tendo também ficado em fase com o sinal de entrada. Este facto vem a confirmar a hipótese explicada acima, pois ao abrir o circuito não é possível gerar a corrente induzida no circuito secundário e, como tal, não existirá o efeito de contra-fluxo explicado. Assim, a diferença de fase será nula e a relação seria a ideal. Contudo, o valor obtido foi menor do que o obtido para frequências baixas com o circuito fechado, pelo que o efeito de Lenz não é a única razão por detrás da degradação da relação das tensões com a frequência. O aumento da frequência pode também ser responsável por uma maior dispersão das linhas de campo, de forma a que estas não fiquem constrangidas à zona dentro do material de alta permeabilidade magnética, fechando no ar em torno das espiras.

Por fim, analisou-se a diferença de fases criada pelo efeito de contra-fluxo, tal como o ganho de tensão do transformador por relação à frequência de forma a obter o valor do coeficiente de acoplamento magnético k. Não nos é possível concluir nada acerca deste coeficiente através do gráfico de fases visto o resultado obtido ser fora da gama de valores possíveis para o coeficiente (é impossível esta grandeza tomar valores superiores à unidade). Contudo, podemos afirmar que o erro apresentado, embora apresentado pelo ajuste, se encontra muito subvalorizado, vendo até o pobre ajuste que a curva ajustada tem aos pontos experimentais. Desta forma, é necessário também afirmar que os erros apresentados para a diferença de fases também não possuem significado, visto terem igualmente sido subvalorizados. Contudo, a segunda análise permitiu a obtenção de um valor coerente para k e com um pequeno erro relativo. Assim, através do resultado obtido podemos afirmar que este circuito se classifica enquanto um circuito fortemente acoplado.

#### 5 Referências

- FIGUEIRINHAS, João. "Protocolos dos trabalhos práticos de Laboratório de Complementos de Electromagnetismo e Termodinâmica", 2014 IST