Data-Driven Inventory Management

Angel Wei Huang STOR 892 Final Project November 5, 2020

The problem

Grewal et al. (2015)

Data preprocessing

ORDERNU	QUANTITY	PRICEEAC	ORDERLIN	SALES	ORDERDATE	STATUS	QTR_ID	MONTH_I	YEAR_ID	PRODUCTLINE
10112	29	100	1	7209.11	3/24/2003 0:00	Shipped	1	3	2003	Classic Cars
10126	38	100	11	7329.06	5/28/2003 0:00	Shipped	2	5	2003	Classic Cars
10140	37	100	11	7374.1	7/24/2003 0:00	Shipped	3	7	2003	Classic Cars
10150	45	100	8	10993.5	9/19/2003 0:00	Shipped	3	9	2003	Classic Cars
10163	21	100	1	4860.24	10/20/2003 0:00	Shipped	4	10	2003	Classic Cars

Data from https://www.kaggle.com/kyanyoga/sample-sales-data7

- Pick one product: classic cars
- Combine different sub-models (orderline) of classic cars
- Ignore price differences between sub-models
- Aggregate quantity sold by month

Year	Month	Sale		
2003	1	334		
2003	2	120		
2003	3	929		
2003	4	465		

Sales data

FIGURE 1. Toy classic car sales data

Models

- 1. Linear programming based on all time periods
- 2. Linear programming with m-policy
- 3. Neural network demand forecasting

Model 1. Linear programming based on all time periods

- At the beginning of each time period i ($1 \le i \le n$ total number of time periods)
- We have X_i quantity of inventory on-hand
- There will be D_i amount of demand during this period
- We do not know the real demand, so use the sales data to simulate the demand
- Goal: to decide A_i , the amount to order at the end of period i.

Model 1. Linear programming based on all time periods

Policy: if the inventory on hand falls below a certain threshold x, we will order A_i to make up the difference, otherwise we will not order.

$$A_{i} = \begin{cases} x - (X_{i} - D_{i}), & \text{if } X_{i} - D_{i} < x \\ 0, & \text{if } X_{i} - D_{i} \ge x \end{cases}$$
 (1)

Thus, we have inventory X_{i+1} at the beginning of period i + 1:

$$X_{i+1} = \max(X_i - D_i, 0) + A_i \tag{2}$$

Then the unsatisfied demand at the end of period *i* is:

$$L_i = \max(D_i - X_i, 0) \tag{3}$$

Model 1. Target function

Optimizing -Minimizing inventory

$$G = \sum_{i=1}^{n} X_i$$

Satisficing –

No more than 5% unfulfilled demands

$$\sum_{i=1}^{n} L_i \le .05(\sum_{i=1}^{n} D_i)$$

Model 1. Optimal policy

FIGURE 2. *Optimal policy to minimize inventory*

Models

- 1. Linear programming based on all time periods
- 2. Linear programming with m-policy
- 3. Neural network demand forecasting

Model 2. Linear programming with m-policy

- 1. Choose a time window m ($2 \le m \le 15$ months)
- 2. Use data from previous m time periods (periods k-m+1, k-m+2,..., k, $k \ge m$) as training data
- 3. Use data from the next time period (k+1) as test data
- 4. Find *x* for each time window *m* as described in model 1 with small modification (6) with constraint (7)

$$\min_{X}(G) = \frac{1}{m} \sum_{i=k-m+1}^{k} X_{i}$$
 (6)

$$\frac{1}{m} \sum_{i=k-m+1}^{k} L_i \le \frac{.05}{m} \sum_{i=k-m+1}^{k} D_i \tag{7}$$

Model 2. Linear programming with m-policy

FIGURE 3. *Optimal policy to minimize inventory*

Models

- 1. Linear programming based on all time periods
- 2. Linear programming with m-policy
- 3. Neural network demand forecasting

Model 3. Neural Network¹

Wout

Let $\mathbf{r}^{(n)} = \begin{bmatrix} r_1^{(n)} & r_2^{(n)} & \dots & r_N^{(n)} \end{bmatrix}^T$ denote the vector of sales data from the previous N months in the nth training set. We built a neural network that is described by the following set of equations:

$$\mathbf{h}^{(n)} = \mathbf{W}^{in} \mathbf{r}^{(n)} + \mathbf{b}^{in}, \qquad [\mathbf{W}^{in} : M \times N], \tag{8}$$

$$y^{(n)} = \mathbf{W}^{out} \mathbf{h}^{(n)} + \mathbf{b}^{out}, \qquad [\mathbf{W}^{out} : 1 \times M], \tag{9}$$

where $y^{(n)}$ denotes the scalar output of the network: the next month's order quantity. The M-dimensional vector $\mathbf{h}^{(n)}$ denotes the activation of the hidden layer of the network.

$$\mathbf{h}^{(n)} = \phi(\mathbf{W}^{in}\mathbf{r}^{(n)} + \mathbf{b}^{in}) \tag{10}$$

^{1.} McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. *The Bulletin of Mathematical Biophysics*, *5*(4), 115–133.

Model 3. Neural Network – Gradient Descent²

- 1. Evaluate the loss on the training data.
- 2. Compute the gradient of the loss with respect to each of the network weights.
- 3. Update the network weights by descending the gradient that was calculated in step 2.

$$Loss = \frac{1}{P} \sum_{n=1}^{P} \left(y^{(n)} - \tilde{y}^{(n)} \right)^2$$

$$\frac{\partial L}{\partial \mathbf{W}^{in}}, \frac{\partial L}{\partial \mathbf{b}^{in}}, \frac{\partial L}{\partial \mathbf{W}^{out}}, \frac{\partial L}{\partial \mathbf{b}^{out}}$$

$$\mathbf{W}^{in} \leftarrow \mathbf{W}^{in} - \alpha \frac{\partial L}{\partial \mathbf{W}^{in}}$$

$$\mathbf{b}^{in} \leftarrow \mathbf{b}^{in} - \alpha \frac{\partial L}{\partial \mathbf{b}^{in}}$$

$$\mathbf{W}^{out} \leftarrow \mathbf{W}^{out} - \alpha \frac{\partial L}{\partial \mathbf{W}^{out}}$$

$$\mathbf{b}^{out} \leftarrow \mathbf{b}^{out} - \alpha \frac{\partial L}{\partial \mathbf{b}^{out}}$$

2. Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv Preprint ArXiv:1609.04747.

Model 3. Neural Network – training example (m=11)

Model 3. Neural Network – result

- 60:20:20 training:validation:test split
- 100 iteration to calculate performance on test set
- Much lower inventory, but with higher unsatisfied demand

Conclusion

- 1. Linear programming based on all time periods
 - Not realistic, demands more data
- 2. Linear programming with m-policy
 - More sensible and applicable, less demand for data storage (just moving window)
- 3. Neural network demand forecasting
 - Limited performance on small dataset
 - Add sequence information might help (eg. Long short-term memory RNN)

Future Direction

• Choose different target function or a combination of target functions

• Instead of weighing all *m* previous months equally in m-policy, one can choose different weights for the previous months (eg. weight recent months more heavily) when trying to predict the inventory.

• Other methods for time series forecasting given enough data: eg. autoregression, recurrent neural network, to better predict the future inventory.

Thank you!

Questions?

