```
def Euler2(k, Ta, t0, T0, tn, h):
    # print headings and initial conditions
    print(f"values of t approximations v(t)\n")
    print(f"{'%8.3f'%t0} {'%19.4f'%T0}")

# set t, v, to the initial values
    t = t0
    T = T0

# compute v(t) over n time steps using Euler's method
while (t < tn):
    T = -k * (T - Ta) * h + T
    t = t + h;
    print(f"{'%8.3f'%t} {'%19.4f'%T}")
return T</pre>
```

values of t approximations v(t)

0.000	68.0000
0.125	67.8860
0.250	67.7723
0.375	67.6588
0.500	67.5456
0.625	67.4327
0.750	67.3200
0.875	67.2077
1.000	67.0955
1.125	66.9837
1.250	66.8721
1.375	66.7608
1.500	66.6497
1.625	66.5389
1.750	66.4284
1.875	66.3181
2.000	66.2081
2.125	66.0984
2.250	65.9889
2.375	65.8797
2.500	65.7707
2.625	65.6620
2.750	65.5536
2.875	65.4454
3.000	65.3374
3.125	65.2298
3.250	65.1223
3.375	65.0152
3.500	64.9083
3.625	64.8016
3.750	64.6952
3.875	64.5891
4.000	64.4832
4.125	64.3775
4.250	64.2721
4.375	64.1670
4.500	64.0621
4.625	63.9574
4.750	63.8530
4.875	63.7489
5.000	63.6450
5.125	63.5413
5.250	63.4379

5.375	63.3347
5.500	63.2318
5.625	63.1291
5.750	63.0267
5.875	62.9245
6.000	62.8226
6.125	62.7209
6.250	62.6194
6.375	62.5182
6.500	62.4172
6.625	62.3165
6.750	62.2160
6.875	62.1157
7.000	62.0157
7.125	61.9159
7.250	61.8163
7.375	61.7170
7.500	61.6179
7.625	61.5191
7.750	61.4205
7.875	61.3221
8.000	61.2240
8.125	61.1261
8.250	61.0284
8.375	60.9310
8.500	60.8337
8.625	60.7368
8.750	60.6400
8.875	60.5435
9.000	60.4472
9.125	60.3511
9.250	60.2553
9.375	
	60.1597
9.500	60.0643
9.625	59.9692
9.750	59.8742
9.875	59.7795
10.000	59.6851
10.125	59.5908
10.250	50 1060
	59.4968
10.375	59.4030
10.500	59.3094
10.625	59.2160
10.750	59.1229
10.875	59.0300
11.000	58.9373
11.125	58.8448

```
11.25058.752611.37558.660511.50058.568711.62558.477111.75058.385711.87558.294612.00058.2036
```

2c)

```
temp = 20 + 48 * math.exp(-0.019 * (12))
print(temp)
print(abs(1 - (final_temp/temp)))
```

58.21396447210178 0.0001779888569950483