Feuille d'exercice n° 18 : **Dérivabilité des fonctions** vectorielles

Exercice 1 Soient E un \mathbb{R} -espace vectoriel et $f: \mathbb{R} \to E$ une fonction dérivable en $a \in \mathbb{R}$. Étudier $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$.

Exercice 2 Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f: \mathbb{R} \to E$ dérivable en 0. On suppose que pour tout $x \in \mathbb{R}$, f(2x) = 2f(x). Montrer que f est linéaire.

Exercice 3 Soit $f: \mathbb{R} \to E$ de classe \mathscr{C}^{∞} . Etablir que pour tout $t \neq 0$, $(t^{n-1}f(1/t))^{(n)} = \frac{(-1)^n}{t^{n+1}}f^{(n)}(1/t)$.

Exercice 4 Soit E un espace vectoriel euclidien et $f:[a,b] \to E$ continue sur [a,b] et dérivable sur]a,b[. En considérant $\varphi(t) = \langle f(b) - f(a), f(t) \rangle$, démontrer qu'il existe $c \in]a,b[$ tel que

$$||f(b) - f(a)|| \le (b - a) ||f'(c)||.$$

Exercice 5 Soient u, v, w trois fonctions de classe \mathscr{C}^2 de [a, b] vers \mathbb{R} (avec a < b). On suppose

$$\begin{vmatrix} u(a) & v(a) & w(a) \\ u(b) & v(b) & w(b) \\ u'(a) & v'(a) & w'(a) \end{vmatrix} = 0$$

Montrer qu'il existe $c \in]a,b[$ vérifiant

$$\begin{vmatrix} u(a) & v(a) & w(a) \\ u(b) & v(b) & w(b) \\ u''(c) & v''(c) & w''(c) \end{vmatrix} = 0$$

Exercice 6 Soit $E = \mathbb{R}^3$, muni de sa structure euclidienne canonique. Soit $R \in]0; +\infty[$ et $\mathscr{S} = \mathscr{S}(0,R)$ la sphère de centre 0 et de rayon R. I un intervalle de \mathbb{R} et $f: I \to E$ deux fois dérivable. On suppose que $: \forall t \in I, \ f(t) \in \mathscr{S}$ (autrement dit, pour tout t, le point f(t) est sur la sphère \mathscr{S}).

- 1) Montrer que : (i) $\forall t \in I$, $f'(t) \perp f(t)$ et (ii) $\forall t \in I$, $\langle f''(t), f(t) \rangle \leq 0$.
- 2) Interpréter cinématiquement ces résultats.

Exercice 7 Soit I un intervalle, E un espace vectoriel euclidien muni de la norme $\|\cdot\|$ issue du produit scalaire et $f:I\to E$ dérivable. On suppose de plus que f ne s'annule pas et on pose, pour tout $t\in I$, $g(t)=\|f(t)\|$. Démontrer que g est dérivable et donner g'.

Exercice 8 Montrer que : $\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{vmatrix}$ est divisible par $(x-1)^3$.

Exercice 9 On donne :
$$D = \begin{vmatrix} 1 & 0 & 1 & 0 & 0 \\ a & 1 & b & 1 & 0 \\ a^2 & 2a & b^2 & 2b & 2 \\ a^3 & 3a^2 & b^3 & 3b^2 & 6b \\ a^4 & 4a^3 & b^4 & 4b^3 & 12b^2 \end{vmatrix}$$

Montrer que $D \neq 0$ si et seulement si $a \neq b$. Indication : On pourra considérer le polynôme

$$D(X) = \begin{vmatrix} 1 & 0 & 1 & 0 & 0 \\ X & 1 & b & 1 & 0 \\ X^2 & 2a & b^2 & 2b & 2 \\ X^3 & 3a^2 & b^3 & 3b^2 & 6b \\ X^4 & 4a^3 & b^4 & 4b^3 & 12b^2 \end{vmatrix}$$
 et l'étudier.

Exercice 10 Calculer le déterminant

$$\begin{vmatrix} a_1 + x & (x) \\ & \ddots & \\ (x) & a_n + x \end{vmatrix}$$

où x, a_1, \ldots, a_n réels.

