Chapter 3(part 3)

RELATIONSHIPS OF THE MEAN, MEDIAN AND MODE

- *Variance and standard deviation Letter 2.0 (5.0)
- *the standard deviation is the most used measure dispersion
- *the value of the standard deviation tells how closely the values of a data set are clustered around The mean.

Population

$$\sigma = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n}}$$

$$= \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n}}$$

sample

$$s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{\sum x^2}}$$
$$= \sqrt{\sum^2 x^2}$$

Salma abdel aziz

Page 1

refer to data in table of the 2002 total payroll (in millions of dollars) of five MLB teams, find the variance and standard deviation of these date

Solution

X	X ²
62	3844
93	8649
126	15876
75	5625
34	1156
$\sum x = 390$	$\sum x^2 = 35150$

$$S^{2} = \frac{\sum x^{2} - \frac{(\sum x)^{2}}{n}}{n-1} = \frac{35150 - \frac{390^{2}}{5}}{5-1} = \frac{35150 - 30420}{4} = 1182.50$$

$$S = \sqrt{1182.50} = 34.387498$$

Note two observation

- 1) the values of the variance and the standard deviation are never negative
- 2) the measurement units of variance are always the square of the measurement units of the original data

Grouped Data

Variance

Population

$$\sigma^2 = \frac{\sum m^2 f - \frac{(\sum m f)^2}{n}}{n}$$

sample

$$s^2 = \frac{\sum m^2 f - \frac{(\sum m f)^2}{n}}{n-1}$$

Salma abdel aziz

Page 2

Standard deviation

Population

$$\sigma = \sqrt{\frac{\sum m^2 f - \frac{(\sum mf)^2}{n}}{n}}$$

Sample

$$S = \sqrt{\frac{\sum m^2 f - \frac{(\sum mf)^2}{n}}{n-1}}$$

Example

The next gives the frequency distribution of the daily commuting times in minutes from home to work for all employees of a company. Calculate the variance and standard deviation.

Daily co	A STATE OF THE PARTY OF THE PAR	Number of employees
0 to	ess than 10	4
10 to	less than 20	9
20 to	less than 30	6
30 to	less than 40	4
	ess than 50	2

Solution

Daily commuting time (minutes)	F	M	Mf	M ² f
0 to less than 10	4	5	20	100
10 to less than 20	9	15	135	2025
20 to less than 30	6	25	150	3750
30 to less than 40	4	35	140	4900
40 to less than 50	2	45	90	4050
	N = 25		$\sum mf = 535$	$\sum m^2 f = 14825$

$$\sigma^2 = \frac{\sum m^2 f - \frac{(\sum mf)^2}{n}}{\frac{14825 - \frac{(535)^2}{25}}{25}} = \frac{3376}{25} = 135.04$$

Salma abdel aziz

Page 3

Hence, the standard deviation is

$$\sigma = \sqrt{\sigma^2} = \sqrt{135.04} = 11.62$$
 minutes

Example

The next table gives the frequency distribution of the number of order received each day during the part 50 days at the office of a mail-order company calculate the variance and standard deviation.

Number of orders	F
10 – 12	4
13 – 15	12
16 – 18	20
19 - 21	14

Solution

Number of orders	(F)	(M)	Mf	(100)
10 - 12	4	II	44	M ² f
13 - 15	12	14	168	2352
16 – 18	20	17	340	5780
19 – 21	14	20	280	5600
	N = 50			$\sum m^2 f = 1421$

$$s^{2} = \frac{\sum m^{2} f - \frac{(\sum m f)^{2}}{n}}{n-1} = \frac{14.216 - \frac{(832)^{2}}{50}}{50-1} = 7.8520$$

Hence, the standard deviation is

$$s = \sqrt{s^2} = \sqrt{7.8520} = 2.75$$
 orders

Salma abdel aziz

Page 4

Empirical Rule _ Collin - Lo a &

For a bell-shaped distribution approximately

- 1) 68% of the observations lie within one standard deviation of the mean
- 2) 95% of the observations lie within two standard deviations of the mean
- 3) 99.7% of the observations lie within three standard deviations of the mean

Illustration of the empirical rule

Example

The age distribution of a sample of 5000 persons is bell-shaped with a mean of 40 years and a standard deviation of 12 years determine the approximate percentage of people who are 16 to 64 years old

Solution

From the given information for this distribution

$$X = 40$$
 and $s = 12$ years

$$k = (16-40)/12=-2$$

$$k = (64-40)/12=2$$

Salma abdel aziz

Page 5

each of the two points, 16 and 64, is 24 units away from the mean because the area within two standard deviation of the mean is approximately 95% for a bell-shaped curve, So approximately 95% of the people in the sample are 16 to 64 years old...

The coefficient of variation معامل الدصلاف م

Used to compare two or more distribution

CV (coefficient variation = (5) (100)

حل ما الا فلاف سل بد الـ ernc سريد

Example

Solution

In a small business firm two types' are employed typist A and typist B typist A types out on an average 30 pages per days with a standard deviation of 6 typist B on an average types out 45 pages with standard deviation of 10 which typist show

greater consistency/in his output ?

افتلاف قلیل ے نیاسی عالی

Coefficient of variation for $A = (\frac{\sigma}{\mu} \times 100)$

more Variation

Salma abdel aziz

Coefficient of variation for B = $(\frac{\sigma}{\mu} \times 100)$ B = 10 x 100 = 22.2% more Con Sixtency in (U.B CVA>CVA Typist Ais greater consistency than typist B to standing hire standard scores will english the standard scores Typist Ais greater consistency than typist B Population $z = \frac{x^2}{x^2}$ Sample $z = \frac{1}{x}$ Example A student has scored 68 marks in statistics for which the average marks were 60 and the standard deviation was 10 in the paper on marketing, he scored 74 marks for which the average marks were 68 and the standard deviation was 15 .in which paper , statistics or marketing was his relative standing higher ? Solution The Standardized variable Z measures the deviation of x from the mean x in terms of standard deviation s. For statistics Z = (68 - 60)/10 = 0.8 for marketing, X = (74 - 68) / (15) = 0.4Since the standard score is 0.8 in statistics as compared to 0.4 in marketing his relative standing was higher in statistics. (Salma abdel aziz 01005681563

Mall
2- 12 ft (-)
2- 18 st 3- symmetric (Zero)
mmetry)
e median not equal to the sum of the
median
at point mode
متوزعه بصورة غير متساوية
SK. PL, Person
eness
entime mode siciolal
node
relation -> Population only
Model allo is assission accions-
Le Lam Il Hedian II comer co
the karl person's coefficient of
8 —

Mode =
$$43.7$$
 N = 10

Solution

$$\sigma = \sqrt{\frac{\sum x^2 - \left(\frac{452}{n}\right)^2}{n}}$$

$$\sigma = \sqrt{\frac{24270 - \left(\frac{452}{10}\right)^2}{10}} = 19.59$$

**
$$\bar{x} = \frac{\sum x}{n} = \frac{452}{10} = 45.2$$

Skp =
$$\frac{mean-mode}{\sigma} = \frac{(45.7-43.7)}{19.59} = 0.08$$

So positive skeweness so the extent of skeweness is marginal

Ex 2: from the following data ,calculate the measure of skeweness using the mean median and standard deviation:

X	10 - 2	0	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
F	18	Ť	30	30 - 40 40	55	38	20	16

Solution : Mean >>

	F	M
10 - 20	18	15
20 - 30	80	25
30 - 40	40	35
40 - 50	55	45
50 - 60	38	55
60 - 70	20	.65
70 - 80	16	75
, , , ,	N = 217	

Mean =
$$\frac{\sum mf}{n}$$
 = $\frac{(18\times15)+(30\times25)+(40\times35)+(55\times45)+(38\times55)+(20\times65)+(16\times75)}{217}$

Mean = 43.71

1 median:>>

Salma abdel aziz

X	F	Comulative
10 - 20	18	18
20 - 30	30	48
30 - 40	40	88
40 - 50	55	143
50 - 60	38	181
60 - 70	20	201
70 - 80	16	217

$$M = \frac{n+1}{2} = \frac{217+1}{2} = 109$$

$$Median = L_1 + \frac{L2-L1}{f} (m-c)$$

$$=40+\frac{50-40}{0.5}(109-88)$$
 $+43.82$

Standard deviation

	F	M	Mf	M ² f
10 - 20	18	15	270	4050
20 - 30	30	25	750	18750
30 – 40	40	35	1400	49000
40 – 50	55	45	2475	111375
50 – 60	38	55	2090	114950
60 - 70	20	65	1300	84500
70 – 80	16	75	1200	90000
			9485	472625

$$\sigma = \sqrt{\frac{\sum m2f - \frac{(\sum mf)^2}{n}}{n}}$$

$$\sigma = \sqrt{\frac{472625 - \frac{9485^2}{217}}{217}} = 16.4$$

Salma abdel aziz

Page 10

coefficient of skeweness =
$$\frac{3(mean-median)}{\sigma}$$
$$= \frac{3(43.71-43.82)}{16.4} = -0.02$$

Negative skeweness so the extent of skeweness is extremely negligible

القيمة سالبه لذلك له قيمة لا تذكر

2) bowley's measure

Bowley developed a measure a measure of skeweness, which is based on quartile

values

Skeweness =
$$skp = \frac{Q3+Q1-2M}{Q3-Q1}$$

1) symmetric

skewed

$$Q_3 - Q_2 \neq Q_2 - Q_1$$

$$Q_3 - Q_2 = Q_2 - Q_1$$

Salma abdel aziz

- Page 11 -

Salma abdel aziz

Page 12

coefficient of quartile deviation =
$$\frac{Q_3 - Q_1}{Q_3 + Q_1}$$

$$= \frac{26.4 - 16.4}{26.4 + 16.4} = \frac{10}{42.8} = 0.234 \text{ approx}$$

Ex:

Calculate an appropriate measure o skewness from the following data:

Values in Rs	Frequency
Less than 50	40
50 – 100	80
100 - 150	130
150 - 200	60
200 and	30
above /	

Solution

Open ended > so we use bowely's measure

Value in Rs	Frequency	Cumulative frequency
Less than 50	40	40
50 - 100	80	120
100 - 150	130	250
150 - 200	60	310
200 and above	. 30	340

$$Q_1 = L_1 + \frac{L_2 - L_1}{f} (m - c)$$

Now m =
$$(\frac{n+1}{4})$$
 item = $\frac{341}{4}$ = 85.25 which lies in 50 – 100 class

$$Q_1 = 50 + \frac{100 - 50}{80} (85.25 - 40) = 78.25$$

$$M = (\frac{n+1}{4})$$
 item = $\frac{341}{4}$ = 170.25 which lies in 100 – 150 class

$$M = 100 + \frac{150 - 100}{130} (170.5 - 120) = 119.4$$

$$Q_3 = L_1 + \frac{L_2 - L_1}{f} (m - c)$$

$$M = 3(341)/4 = 255.75$$

$$Q_3 = 150 + \frac{200 - 150}{60} (255.75 - 250) = 154.79$$

Bowley's coefficient of skeweness is ;

$$\frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1} = \frac{154.79 + 78.28 - (2 \times 119.4)}{154.79 - 78.28} = \frac{-5.73}{76.51} = -0.075 \text{ approx}$$

This shows that there is a negative skewness, which has a bery negligible magnitude

Salma abdel aziz

Page 14