

Grundlagen der Informatik

Prof. Dr. J. Schmidt

Fakultät für Informatik

GDI – WS 2020/21 Codesicherung und Kanalcodierung Fehlertolerante Codes

Leitfragen 4.1

- Wie ist die Stellendistanz und die Hamming-Distanz eines Codes definiert?
- Was ist ein m-aus-n-Code?
- Welche charakteristischen Merkmale haben Codes mit Paritäts-Bits?

Motivation

- Beim Übertragen von Nachrichten und Speichern bzw. Lesen von Daten können Fehler auftreten
- Suche nach fehlertoleranten Codes
 - ermöglichen es dem Empfänger zu erkennen, ob bei Übertragung ein Fehler aufgetreten ist
 - und wenn ja, diesen evtl. selbst zu korrigieren
- → gezieltes Hinzufügen von Redundanz
- Fehlererkennende Codes
 - Fehler kann erkannt werden
- Fehlerkorrigierende Codes
 - Empfänger kann erkannte Fehler korrigieren

Hamming-Distanz eines Codes (1)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Stellendistanz d

- Anzahl der Binärstellen, an denen sich zwei gleich lange Codewörter x und y unterscheiden
- Für unterschiedlich lange Codewörter ist die Stellendistanz nicht definiert

Hamming-Distanz h

- Minimale paarweise Stellendistanz eines Codes
- Maß für die Störsicherheit eines Codes

Hamming-Distanz eines Codes (2) – Beispiel

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

 Bestimmung der Hamming-Distanz durch Vergleich der einzelnen Codewörter

Hamming-Distanz = 2

Hamming-Distanz eines Codes (3)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

- Für eine gegebene Hamming-Distanz h gilt
 - Sind maximal h 1 Bit in einem Wort fehlerhaft, so kann dies erkannt werden
 - Sind maximal (h 1)/2 Bit fehlerhaft, so können diese Fehler korrigiert werden

oder anders formuliert

- Hat ein Code die Hamming-Distanz h, können alle Fehler
 - erkannt werden, die weniger als h Bits betreffenODER
 - korrigiert werden, die weniger als h/2 Bits betreffen

Hamming-Distanz eines Codes (4)

- h=1
 - Fehlerhafte Binärstellen können nicht erkannt werden (Bsp.: ASCII-Code)
- h=2
 - 1-Bit-Fehler können erkannt, aber nicht korrigiert werden
- h=3
 - 1-Bit-Fehler können korrigiert werden
 ODER
 - 1-Bit- und 2-Bit-Fehler können erkannt, aber nicht korrigiert werden
- h=4
 - 1-Bit-Fehler können korrigiert und 2-Bit-Fehler erkannt werden ODER
 - 1-Bit-, 2-Bit- und 3-Bit-Fehler können erkannt, aber nicht korrigiert werden

Hamming-Distanz eines Codes (5)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

In Abhängigkeit von der Anzahl n von falsch übertragenen Bits, die bei einem Code automatisch erkannt bzw. korrigiert werden können, spricht man von einem

n-erkennenden bzw. n-korrigierenden Code.

Hamming-Distanz eines Codes (6) – Beispiel

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

 Bestimmung der Hamming-Distanz durch Vergleich der einzelnen Codewörter

Hamming-Distanz = 2

1-erkennender Code

Beispiel: Bestimmung Hamming-Distanz (1)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Gegeben

- Ziffern 1 bis 4 in direkter binärer Codierung
- \bullet 1 = 001, 2 = 010, 3 = 011, 4 = 100

	001	010	011	100
001	-	-	-	_
010	2	-	-	-
011	1	1	-	-
100	2	2	3	-

- Hamming-Distanz = 1
 - → Fehler nicht immer erkennbar

Beispiel: Bestimmung Hamming-Distanz (2)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Gegeben

- Ziffern 1 bis 4 in anderer binärer Codierung
- \bullet 1 = 000, 2 = 011, 3 = 101, 4 = 110

	000	011	101	110
000	-	-	-	_
011	2	-	-	-
101	2	2	-	-
110	2	2	2	-

- Hamming-Distanz = 2
 - → Erkennung von 1-Bit-Fehlern immer möglich

m-aus-n-Codes

- Nur eine Teilmenge aller möglichen Codes wird verwendet
- Block-Codes mit einer Wortlänge von n
- In jedem Code-Wort kommen genau
 - m Einsen und
 - n m Nullen vor
- Spezialfall 1-aus-n-Code: "one-hot" Codierung
- Bei gegebenem m und n gibt es genau

$$\binom{n}{m}$$
 Codewörter

Beispiele von m-aus-n-Code

<u>Ziffer</u>	2-aus-5-Code	1-aus-10-Code
0	00011	000000001
1	00101	000000010
2	00110	000000100
3	01001	000001000
4	01010	0000010000
5	01100	0000100000
6	10001	0001000000
7	10010	001000000
8	10100	010000000
9	11000	100000000

Codes mit Paritäts-Bits

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

 Häufig verwendetes Verfahren zur Fehlererkennung und Fehlerkorrektur

Paritäts-Prüfung ("parity check")

- Vorgehen
 - Einführung eines Zusatz-Bits (Paritäts-Bit)
 - Anzahl der Einsen von Codewörtern werden
 - auf eine gerade Anzahl (gerade Parität, "even parity")
 - oder ungerade Anzahl (ungerade Parität, "odd parity") ergänzt.

Eindimensionale Paritäts-Prüfung – Beispiel (1)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Eindimensionale Paritäts-Prüfung

Beispiel: 7 Bit-ASCII-Code mit Paritäts-Bit

Α	10000010	G 10001110	м 10011010	s 1010011 0	Y 10110010
В	10000100	Н 10010000	N 10011100	T 1010100 1	Z 10110100
C	10000111	I 1001001 1	0 10011111	U 1010101 0	
D	10001000	J 1001010 1	P 10100000	V 1010110 0	
E	10001011	К 10010110	Q 1010001 1	W 1010111 1	
F	10001101	L 1001100 1	R 1010010 1	X 1011000 1	

Eindimensionale Paritäts-Prüfung – Beispiel (2)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Einlesen eines Bitmusters und Identifizierung von einzelnen Zeichen

```
10010000 H
11000011 a
11011000 |
11011000 |
11011110 o
01000001 (Leerzeichen)
10101111 W
11001010 e
11001000 ← Fehler: ungerade Parität!
```


Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Zweidimensionale Paritäts-Prüfung

- Wird verwendet bei der Übertragung von Blöcken
- Erweiterung der eindimensionalen Paritäts-Prüfung
 - Für jedes einzelne Zeichen wird ein Paritäts-Bit verwendet
 - Nachdem der gesamte Block von Codewörtern übertragen wurde, wird noch ein weiteres Codewort übertragen, dass die Paritäts-Bits zu allen Spalten des übertragenen Blocks enthält

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Zweidimensionale Paritäts-Prüfung

```
a
b
e
g
h
             Spalten-Paritäts-Bits
```

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

 Kippt bei der Übertragung nur ein Bit, so kann dieses bei der zweidimensionalen Paritäts-Prüfung korrigiert werden

- Kippt bei der Übertragung nur ein Bit, so kann dieses bei der zweidimensionalen Paritäts-Prüfung korrigiert werden
 - Lokalisierung falscher Zeilen- und Spalten-Paritäts-Bits
 - Spalten-Paritäts-Bits: 00010001
 - richtige Spalten-Paritäts-Bits: 00000001
 - Korrektur des 3. Wortes
 - falsch: 11010110
 - korrigiert: $11000110 \rightarrow c$

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Erkennen eines Doppelfehlers

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Erkennen eines Doppelfehlers

```
anhand 2
                          falscher
                          Paritäts-Bits
                          Korrektur nicht
                          möglich
1 1
                  Spalten-Paritäts-Bits
```

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Erkennen eines Dreierfehlers

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Erkennen eines Dreierfehlers

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Erkennen eines Viererfehlers

```
... ist nicht
         garantiert!
Spalten-Paritäts-Bits
```

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Code mit zweidimensionaler Paritäts-Prüfung ist

- 1-fehlerkorrigierend
 - Korrektur von Einzelfehlern und Erkennung von Doppelfehlern

ODER

- 3-fehlererkennend
 - Erkennung von Einzel-, Doppel- und Dreifachfehlern

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Andere Darstellung

- Prüfbit P
 - wird üblicherweise so gesetzt, dass es die Anzahl der Einsen im gesamten Datenblock auf die gewünschte Parität ergänzt

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Folgende Möglichkeiten können bei 1-Bit-Fehler auftreten

- Fehler tritt im Block auf
 - 1 Bit in Prüfzeile und Prüfspalte sind falsch
 - Position des fehlerhaften Bits bekannt
 - Korrektur: ermitteltes Bit wird invertiert
- Fehler tritt in einem der beiden Prüfwörter auf, nicht aber in Prüfbit P
 - Fehlerhaftes Paritäts-Bit
 - Keine Korrektur der Daten notwendig
- Fehler tritt in Prüfbit P auf
 - P selbst muss fehlerhaft sein
 - Keine Korrektur der Daten notwendig

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Redundanzerzeugung

- Durch die Paritäts-Bits wird zusätzliche Redundanz eingeführt,
 - die von der Anzahl s der Bits pro Wort und
 - von der Anzahl k der Worte pro Block abhängt
- R = (k + s + 1) / k [Bit/Wort]

Beispiel (1)

- Binäre Codierung des Worts INFORMATIK im ASCII-Code
 - die Anzahl der Einsen wird zu einer geraden Zahl in einem Paritäts-Bit ergänzt
 - die Anzahl der Einsen wird nach jedem vierten Wort in einem Längsprüfwort ergänzt
- Übertragung erfolgt in Blöcken
 - 1. und 2. Block enthalten 4 Zeichen
 - 3. Block enthält 2 Zeichen
- Bei Übertragung treten 1-Bit-Fehler auf und das Wort ANFORMAPIK wird empfangen

Beispiel (2)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Empfangene	Längsprüf-	Empfangene	Längsprüf-	Empfangene	Längsprüf-			
Daten	wort	Daten	wort	Daten	wort			
1111	0	1111	0	1100	0			
0000	0	0000	0	0000				
0000	0	1001	0	0000				
0101	1	0100	1	1100				
0111	1	0100	0	0000				
0111	1	1000	1	0100				
1001	0	0110	0	1000				
ANFO		RMAP T		IK	Empfangener Text Korrekturen			
1000001 (A) → 1001001 (I)		10100 → 10101	000 (P) 00 (T)					

Tetraden mit drei Paritäts-Bits (1)

- Erweiterung des Konzepts der Paritäts-Bits
 - Für ein Codewort werden mehrere Paritäts-Bits zur Verfügung gestellt
- Vorteil
 - Jedes Wort kann für sich geprüft werden

Tetraden mit drei Paritäts-Bits (2)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Direkter binärer Tetraden-Code der Ziffern von 0 bis 9

- Mit 3 Paritäts-Bits
- Die vier h\u00f6herwertigen Bits (b₆ bis b₃) sind direkt bin\u00e4r codierte Ziffern
- Niederwertige Bits (b₂ bis b₀) sind Paritäts-Bits
 - b₂=1, wenn Anzahl der Einsen in b₆,b₅,b₄ gerade
 - b₁=1, wenn Anzahl der Einsen in b₆,b₅,b₃ gerade
 - b₀=1, wenn Anzahl der Einsen in b₆,b₄,b₃ gerade

Tetraden mit drei Paritäts-Bits (3)

Kapitel 4.1: Codesicherung und Kanalcodierung – Fehlertolerante Codes

Direkter binärer Tetraden-Code der Ziffern von 0 bis 9 mit drei Paritäts-Bits

Ziffer	Code	Э						Ziffer	Code	Э					
	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀		b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀
0	0	0	0	0	1	1	1	5	0	1	0	1	0	1	0
	b ₆	b ₅	b_4	b_3	b_2	b ₁	b ₀		b ₆	b ₅	b_4	b_3	b_2	b ₁	b ₀
1	0	0	0	1	1	0	0	6	0	1	1	0	1	0	0
	b ₆	b ₅	b_4	b_3	b ₂	b ₁	b ₀		b ₆	b ₅	b ₄	b_3	b ₂	b ₁	b ₀
2	0	0	1	0	0	1	0	7	0	1	1	1	1	1	1
	b_6	b_5	b_4	b_3	b_2	b_1	b_0		b ₆	b ₅	b_4	b_3	b_2	b_1	b_0
3	0	0	1	1	0	0	1	8	1	0	0	0	0	0	0
	b ₆	b_5	b_4	b_3	b_2	b₁	b ₀		b ₆	b ₅	b_4	b_3	b ₂	b ₁	b ₀
4	0	1	0	0	0	0	1	9	1	0	0	1	0	1	1

Tetraden mit drei Paritäts-Bits (3)

- Annahme, dass alle Ziffern mit derselben Wahrscheinlichkeit $p = \frac{1}{10}$ auftreten
 - Entropie $H = \operatorname{ld} \frac{1}{p} = \operatorname{ld} 10 \approx 3.322 \frac{Bit}{Zeichen}$
 - Redundanz $R = L H = 7 3.322 = 3.678 \frac{Bit}{Zeichen}$
- Hamming-Distanz der Tetraden alleine
 - h = 1
- Hamming-Distanz des Codes mit drei Paritäts-Bits
 - h = 3
 - 1-Bit-Fehler können erkannt und korrigiert werden
 - 1-Bit- und 2-Bit-Fehler können erkannt, aber nicht korrigiert werden