Numerical Methods for Differential Equations

Ferran Arqué

2018

Contents

Ordinary Differential Equations

1	Orc	dinary Differential Equations. Basic concepts	3			
	1.1	Introduction and some notation	3			
	1.2	Euler's method	į			
	1.3	Enhanced Euler's method				
2	Rui	nge-Kutta and Linear Multistep Methods	Ę			
	2.1	General Runge-Kutta methods	Ę			
		2.1.1 Embedded R-K	Ę			
	2.2	Linear multistep methods	6			
		2.2.1 Generalities	6			
		2.2.2 Predictor-Corrector method	6			
		2.2.3 Richardson's extrapolation	6			
		2.2.4 Convergence of a linear multistep method	6			
3	Stif	ff Problems	ç			
Pa	artial	l Differential Equations				
4	Partial Differential Equations. Generalities on their solution					
5	Numerical Solution of PDEs with the Finite Difference Method					
6	Introduction to Boundary Value Problems					
7	Quality Control of Solutions					

ORDINARY	DIFFERE	ENTIAL	EQUAT	IONS

1 Ordinary Differential Equations. Basic concepts

1.1 Introduction and some notation

Given
$$y' = f(x, y)$$
, where
$$\begin{cases} y(x) \in \mathbb{R}^n \\ f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \end{cases}$$

Definition. We denote by y(x) the exact solution of the ODE system above.

Definition. y_k is the approximation of $y(x_k)$ (after k steps).

Objective. We want to approximate y(x) within a given interval $[x_0, x_n]$.

$$\text{We know} \begin{cases} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{cases} \qquad \text{We'd like to know} \begin{cases} y(x_0) \\ y(x_1) \\ y(x_2) \\ \vdots \\ y(x_n) \end{cases} \qquad \text{We find} \begin{cases} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{cases} \quad (\text{given by a method})$$

Definition. $||y(x_n) - y_n||$ is the global error.

Definition. We define the **local truncation error** as the error caused by one iteration, i.e.

$$LTE = ||y(x_k) - y_k||$$
 (assuming the localizing assumption: $y_{k-1} = y(x_{k-1})$)

1.2 Euler's method

1.3 Enhanced Euler's method

- 2 Runge-Kutta and Linear Multistep Methods
- 2.1 General Runge-Kutta methods
- 2.1.1 Embedded R-K

2.2 Linear multistep methods

- 2.2.1 Generalities
- 2.2.2 Predictor-Corrector method
- 2.2.3 Richardson's extrapolation
- 2.2.4 Convergence of a linear multistep method

Let's see an example of divergence using a linear multistep method:

Example

Given the method

$$y_{n+2} + a_1 y_{n+1} + a_0 y_n = h(b_1 f_{n+1} + b_0 f_n)$$

- 1) Find a_0, a_1, b_0, b_1 so that the method above has the highest possible order.
- 2) Try it on

$$\begin{cases} y' = -y \\ y(0) = 1 \end{cases} \quad (y_0 = 1, y_1 = e^{-h})$$

and prove the method diverges.

1) We want $y(x_n + 2h) - y_{n+2}$

We assume $y_{n+1} = y(x_n + h), y_n = y(x_n)$ (localizing assumption).

$$y(x_n + 2h) - y_{n+2} = y(x_n + 2h) - \left[-a_1 y_{n+1} - a_0 y_n + h \left(b_1 f(y_{n+1}) + b_0 f(y_n) \right) \right] \underset{\text{loc.as.}}{=}$$

$$= y(x_n + 2h) - \left[-a_1 y(x_n + h) - a_0 y(x_n) + h b_1 \underbrace{f(y(x_n + h))}_{y'(x_n + h)} + h b_0 \underbrace{f(y(x_n))}_{y'(x_n)} \right]$$

As usual, we expand in powers of h. We'll expand to order 3

$$y(x_n) + 2hy'(x_n) + \frac{4h^2}{2}y''(x_n) + \frac{8h^3}{6}y'''(x_n) + o(h^4) -$$

$$-\left[-a_1\left(y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + o(h^4)\right) -$$

$$-a_0y(x_n)$$

$$+ hb_1\left(y'(x_n) + hy''(x_n) + \frac{h^2}{2}y'''(x_n) + o(h^3)\right) +$$

$$+ hb_0y'(x_n)\right]$$

Let's group by powers of h and assume the right conditions to obtain the highest possible order:

$$h^{0} \longrightarrow y(x_{n}) + a_{1}y(x_{n}) + a_{0}y(x_{n}) = 0$$

$$h^{1} \longrightarrow 2hy'(x_{n}) + a_{1}hy'(x_{n}) - hb_{1}y'(x_{n}) - hb_{0}y'(x_{n}) = 0$$

$$h^{2} \longrightarrow 2h^{2}y''(x_{n}) + a_{1}\frac{1}{2}h^{2}y''(x_{n}) - b_{1}h^{2}y''(x_{n}) = 0$$

$$h^{3} \longrightarrow \frac{8h^{3}}{6}y'''(x_{n}) + a_{1}\frac{h^{3}}{6}y'''(x_{n}) - b_{1}h\left(\frac{h^{2}}{2}y'''(x_{n})\right) = 0$$

With that, we get the system of equations

$$\begin{cases} 1 + a_1 + a_0 = 0 \\ 2 + a_1 - b_1 - b_0 = 0 \\ 2 + \frac{a_1}{2} - b_1 = 0 \\ \frac{8}{6} + \frac{a_1}{6} - \frac{b_1}{2} = 0 \end{cases}$$

And we end up with

$$a_0 = -5$$
, $a_1 = 4$, $b_0 = 2$, $b_1 = 4$

2) Our method is

$$y_{n+2} + 4y_{n+1} - 5y_n = h(4f_{n+1} + 2f_n)$$

and with

$$\begin{cases} y' = -y \\ y(0) = 1, \ y(h) = e^{-h} \end{cases}$$
 $(y(x) = e^{-x})$

we have

$$y_{n+2} + 4y_{n+1} - 5y_n = h(-4y_{n+1} - 2y_n)$$

We'll find a solution of the form

$$y_n = c_1(\quad)^n + c_2(\quad)^n$$

and we'll see that it diverges.

$$\lambda^{2} + 4\lambda - 5 + 4h\lambda + 2h = 0$$
$$\lambda^{2} + (4(1+h))\lambda + (2h-5) = 0$$

$$\lambda = \frac{-4(1+h) \pm \sqrt{4^2(1+h)^2 - 4(2h-5)}}{2}$$

Let's expand the discriminant

$$\sqrt{4^2(1+2h+h^2)-8h+20} = \sqrt{36+24h+16h^2} = 6\sqrt{1+\frac{4}{6}h+\frac{4^2}{6^2}h^2} = 6\left(1+\frac{1}{2}\left(\frac{4}{6}h+\frac{4^2}{6^2}h^2\right)+o(h^2)\right) = 6\left(1+\frac{1}{3}h+o(h^2)\right)$$

So

$$\lambda = \frac{-4 - 4h \pm (6 + 2h + o(h^2))}{2} = \underbrace{\qquad} \begin{array}{c} 1 - h + o(h^2) \\ -5 - 3h + o(h^2) \end{array}$$

$$\implies y_n = c_1 (1 - h + o(h^2))^n + c_2 (-5 - 3h + o(h^2))^n$$

Let's find c_1 and c_2 imposing the initial conditions

$$\begin{cases} 1 = c_1 + c_2 \implies c_1 = 1 - c_2 \\ e^{-h} = c_1 (1 - h + o(h^2)) + c_2 (-5 - 3h + o(h^2)) \end{cases}$$

$$\implies e^{-h} = (1 - h + o(h^2)) + c_2 (\underbrace{-5 - 3h + o(h^2) - 1 + h + o(h^2)}_{-6 - 2h + o(h^2)})$$

$$\implies c_2 = \frac{e^{-h} - 1 + h + o(h^2)}{-6 - 2h + o(h^2)} \underset{\text{Taylor } e^{-h}}{=} \frac{1 - h + o(h^2) - 1 + h + o(h^2)}{-6 - 2h + o(h^2)} \cong \frac{-1}{6 + 2h}$$

$$\implies c_1 \simeq 1 + \frac{1}{6 + 2h} = \frac{7 + 2h}{6 + 2h}$$

So

$$y_n = \frac{7+2h}{6+2h} (1-h+o(h^2))^n + \frac{-1}{6+2h} (-5-3h+o(h^2))^n$$

and the term $(-5)^n$ will cause the solution to diverge.

3 Stiff Problems

PARTIAL	$oldsymbol{I}$) $oldsymbol{I}$ $oldsymbol{H}$	$H(C) \cap \Delta \cap C \cap X \subseteq X$
	DIFFERENTIAL	

4 Partial Differential Equations. Generalities on their solution

5 Numerical Solution of PDEs with the Finite Difference Method

6 Introduction to Boundary Value Problems

7 Quality Control of Solutions