CHAPTER 8

LAN TECHNOLOGIES

OBJECTIVES

At the end of this chapter, you should be able to:

- Identify the network architecture specified by Project 802.
- Identify and understand the access method used in each standard specified.
- Implementation of each standards.

8.1 INTRODUCTION TO NETWORK ARCHITECTURE

4 architectures of LANs:

i	Ethernet	
-		

- ii. Token Bus
- iii. Token Ring
- iv. FDDI

Standards of the IEEE & part of its Project 802

An ANSI standard

8.2 ETHERNET (IEEE 802.3)

- Ethernet is a LAN standard using CSMA/CD access method.
- Supported by IEEE 802.3
- IEEE 802.3 defines 2 categories:
 - i. Baseband:
 - Specifies a digital signal (Manchester encoding)
 - ii. Broadband:
 - Specifies an analog signal (PSK encoding)

Baseband

- A technology in which a signal is transmitted directly onto a channel without modulating a carrier.
- It send single signal over the cable.

- 5 different standards:
 - i. 10Base5

iv. 1Base5

ii. 10Base2

v. 100Base-T

iii. 10Base-T

 A technology in which a signal shares the bandwidth of a medium

- IEEE defines only one specification for the broadband:
 - 10Broad36

Access Method: CSMA/CD

- Ethernet uses Carrier Sense Multiple Access with Collision Detection access mechanism.
- Evolution of CSMA/CD:

Evolution of CSMA/CD

MA:

- every workstation had equal access to a link
- access to the line was open to any node at any time.

CSMA:

- any workstation wish to transmit must first listen for existing traffic on the line. (check for a voltage).
- if no voltage detected, the line is considered idle and transmission is initiated.
- CSMA cuts down on the number of collisions but does not eliminate them.

Evolution of CSMA/CD (continue)

CSMA/CD:

- Station wish to transmit:
 - First listen to make certain link is free
 - Then transmits its data
 - Then listens again
- During transmission:
 - Station checks the line for the extremely high voltages that indicate a collision.
 - If collision detected, the station quits the current transmission and wait for the line to clear.
 - Then sends its data again

THE BASIC ETHERNET BUS

COLLISIONS

- A LAN using a ring topology & token-passing access method.
- In CSMA/CD, stations may attempt to send data multiple times before a transmission makes it onto the link.
- Token ring allows stations take turn sending data.
- Each station may transmit only during its turn & may send only one frame during each turn.

Access Method: Token Passing

- An access method in which a token is circulated in the network.
- The station that captures the token can send data.

Token is traveling along the ring.

Figure (i): Token Passing

Station A captures the token and sends its data to D.

Figure (ii): Token Passing

Station D copies the frame and sends the data back to the ring.

Figure (iii): Token Passing

Station A receives the frame and releases the token.

Figure (iv): Token Passing

TOKEN RING SIMULATION

- A free Token is circulating on the ring for transporting data.
- To use the network, a machine first has to capture the free Token and replace the data with its own message.
- Machine 1 wants to send some data to machine 4, so it first has to capture the free Token.
- □ It then writes its data and the recipient's address onto the Token (represented by the yellow flashing screen.)
- □ The packet of data is then sent to machine 2 who reads the address, realizes it is not its own, so passes it on to machine 3.
- Machine 3 does the same and passes the Token on to machine 4.

 Copyright© Firqah Ibadi Insani. 2002-2007. All rights reserved.®

- This time it is the correct address and so number 4 reads the message (represented by the yellow flashing screen).
- It cannot, release a free Token on to the ring, it must first send the message back to number 1 with an acknowledgement to say that it has received the data (represented by the purple flashing screen).

- □ The receipt is then sent to machine 5 who checks the address, realizes that it is not its own and so forwards it on to the next machine in the ring, number 6.
- Machine 6 does the same and forwards the data to number 1, who sent the original message.

■ Machine 1 recognizes the address, reads the acknowledgement from number 4 (represented by the purple flashing screen) and then releases the free Token back on to the ring for the next machine to use.

Priority and Reservation

- □ The next station on the ring with data to send has the right to take charge of the ring.
- The busy token can be reserved use priority code by each station.
- Among stations of equal priority, the process is first-come, first-served.

Signaling

Uses differential Manchester encoding.

Data Rate

Token Ring supports data rates up to 16 Mbps.

- Wireless LAN is a local area network that uses high frequency radio signals to transmit and receive data over distances of a few hundred feet; uses Ethernet protocol.
- 2 wireless LAN solutions:
 - HomeRF
 - 2. Wi-Fi (IEEE 802.11b)

Advantages

Mobility:

 provide users access to real-time information anywhere within the organization.

Flexibility & Scalability:

 eliminates the need to pull wires or cables through walls and ceilings.

Cost Savings:

 save network management costs related to adds, moves and changes.

Comparison of Wireless LAN Technologies

HomeRF

Designed exclusively for the home environment

IEEE802.11b

 Being deployed in homes, small and medium businesses and large enterprises and in a growing number of public wireless networking hot spots.

	IEEE 802.11b	HomeRF
Major Industry Support	Cisco, Lucent, 3Com WECA	Apple, Compaq, HomeRF Working Group
Range	50 – 300 feet	150 feet
Speed	11 Mbps	1, 2, 10 Mbps
Use	Home, Small Office, Campus, Enterprise	Home

Wireless LAN Topologies

Access Point (Infrastructure) Mode Network:

- extends an existing wired LAN to wireless devices by providing a base station (access point).
- access point bridges the wireless and wired LAN and acts as a central controller.

Figure 1: An Infrastructure Mode Network

Ad Hoc Network

- A LAN is created solely by the wireless devices themselves with no central controller or access point.
- Each device communicates directly with other devices in the network rather than through a central controller.

Figure 2: An Ad Hoc Network