BIOCATALYSIS AND METABOLIC ENGINEERING

ChBE 4760/6760, CHEM 4760/6760 Spring 2008

LECTURES: Tuesday/Thursday, 9:30-11:00 am; classroom: ES&T L1125

INSTRUCTOR: Dr. Andreas Bommarius, IBB 3310, x5-1334,

andreas.bommarius@chbe.gatech.edu, office hours: TTh 11-12

TEACHING Thomas Rogers, IBB 3412, x5-3089

ASSISTANT: <u>thomas.rogers@chbe.gatech.edu</u>; office hours: MW 3-4

WEBSITE: https://swiki.chbe.gatech.edu/biocatalysis

COURSE DESCRIPTION:

Biocatalysis and Metabolic Engineering are in revolutionizing the areas of pharmaceuticals, fine chemistry, and biofuels over the next years, as biologically derived synthesis and processes will diffuse across ever more industries. This course for graduate and advanced undergraduate students provides an in-depth coverage of various topics in biocatalysis. The only requirements are prior knowledge in biochemistry as well as kinetics and/or reactor design. provides an in-depth coverage of various topics in biocatalysis and metabolic engineering. Goals of this course are the development of an understanding of proteins as catalysts, their functioning in metabolic networks, their application in various industries, and recognition of their potential for addressing future challenges in science and engineering.

REQUIRED Biotransformations in Organic Chemistry, Kurt Faber

TEXTS: Springer, 5th edition, **2004**, ISBN 3-540-20097

RECOMMENDED Biocatalysis – Fundamentals and Applications, A.S. Bommarius and B.R.

TEXTS: Riebel, Wiley-VCH, **2004**, ISBN: 3-527303-448

Biochemistry, Donald Voet and Judith G. Voet, John Wiley & Sons,

New York, 3rd edition, **2004**, ISBN: 0-471-25090-2

Structure and Mechanism in Protein Science, Alan Fersht

Freeman, New York, **1999**, ISBN 0-7167-3268-8

Metabolic Engineering, Principles and Methodologies, Gregory N.

Stephanopoulos, Aristos A. Aristidou, and Jens Nielsen Academic Press, San Diego, **1999**, ISBN: 0-12-666260-6

COURSE Homework (20%), Midterm exam (25%), Term project (25%), Final exam

GRADING: (30%)

BIOCATALYSIS AND METABOLIC ENGINEERING

ChBE 4760A/6760A, CHEM 4760A/6760A

Spring 2008, TuTh, 9:30-11 am

Course Outline

No.	Date	Course outline
	01/08	no class (instructor at conference)
1	01/10	Purpose, status, perspective, and challenges of biocatalysis
2 3	01/15 01/17	Why and how do enzymes work? What is a good biocatalyst? Features of a biocatalyst: sequence, structure, type of reaction, mechanism, rate
4 5	01/22 01/24	Metabolic engineering basics: metabolic pathways Metabolic engineering basics: fluxes and networks
6 7	01/29 01/31	Important biocatalytic reactions I: hydrolases Important biocatalytic reactions II: oxidoreductases, lyases, isomerases
8 9	02/05 02/07	Activity: advanced enzyme kinetics Selectivity: chemo- & regiospecificity, enantioselectivity (E-value)
10 11	02/12 02/14	Stability: thermo vs kinetics: unfolding and deactivation Stability: enzyme denaturation, aggregation, instability factors
12 13	02/19 02/21	Medium engineering: biocatalysis in non-aqueous media Mid-term (open book, open notes)
14 15	02/26 02/28	Enzymes as products in detergents, textiles, and pulp and paper Biocatalysis in biofuels: hydrolysis of cellulose
16 17	03/04 03/06	Biocatalysis in the synthesis of pharmaceutical intermediates I Biocatalysis in the synthesis of pharmaceutical intermediates II
18 19	03/11 03/13	Biocatalysis in agriculture and in the food industry Biocatalysis in fine chemicals and specialties
20 21	03/25 03/28	03/18,20: <i>no class</i> (Spring break) Optimization of biocatalytic reactions: synthesis vs hydrolysis Optimization of biocatalytic reactions: reaction engineering tools
22 23	04/01 04/03	Advanced Metabolic Engineering: overcoming challenges of pathway regulation Advanced Metabolic Engineering: designed metabolic pathways (Term projects due)
24 25	04/08 04/10	Presentations of term projects I Presentations of term projects II
26 27	04/15 04/17	Protein engineering: rational vs combinatorial vs data-driven design Evolution of enzyme activity: creation of novel functions
28 29	04/22 04/24	Biocatalysis on surfaces: cellulase revisited Review; Unsolved problems and challenges in biocatalysis

Mon, 04/28; 8:00 - 10:50 am: Final (comprehensive; open book, open notes)

BIOCATALYSIS AND METABOLIC ENGINEERING

ChBE 4760A/6760A, CHEM 4760A/6760A

Spring 2008, TuTh, 9:30-11 am

HOMEWORK ASSIGNMENTS:

20% of total grade, 20 points per problem set; no late homework accepted except in emergencies

Problem set topic	Hand-out date	Due date
Basics in enzyme catalysis	01/15	01/22
2. Basics in Metabolic Engineering	01/22	01/29
3. Important biocatalytic reactions	01/29	02/05
4. Biocatalytic activity and selectivity	02/05	02/12
5. Biocatalytic stability	02/12	02/19
6. Biocatalysis in biofuels, pulp & paper, and textiles	02/26	03/04
7. Biocatalysis in pharma	03/04	03/11
8. Optimization of biocatalytic reactions	03/25	04/01
9. Advanced Metabolic Engineering	04/01	04/08
10. Protein engineering	04/15	04/22

TERM PROJECT:

Critical, suitably in-depth review of a biocatalysis-based topic agreed upon between student and instructor. The purpose of the term project is i) exploration of a topic in more depth than possible during class hours, ii) creation of excitement within the student's mind, and iii) honing of written and oral presentation skills.

Requirements: topic of term project must be based:

i) on ≥ 1 papers with <u>original</u> experimental data or model, i.e. not just on reviews;

ii) not cover any previous paper or any topic of past or current research.

6760 sections: pick your own topic

4760 sections: pick from a list of suitable topics with one paper suggested as a starting point

<u>Timeline</u>: suggestions for topics due: 03/06, agreement on topics by: 03/13

3-page critique and Powerpoint presentations due: 04/03 presentations to class (15 min, incl. Q&A): 04/08,10

Deliverables: **due 04/03**: i) \leq 3 (incl. cover!) pages of critique, single-sided, 12pt font, 1 in margins,

ii) Powerpoint slides, in "handout, 3 slides per page" format

MIDTERM EXAM: Thu, 02/21, 9:30-11:00 am (open book, open notes)

FINAL EXAM: Mon, 04/28; 8:00 - 10:50 am (comprehensive; open book, open notes)