Lecture 17

CS 131: COMPILERS

Announcements

• Midterm: graded by November 28th

Scope, Types, and Context

STATIC ANALYSIS

Variable Scoping

- Consider the problem of determining whether a programmer-declared variable is in scope.
- Issues:
 - Which variables are available at a given point in the program?
 - Shadowing is it permissible to re-use the same identifier, or is it an error?
- Example: The following program is syntactically correct but not wellformed. (y and q are used without being defined anywhere)

```
int fact(int x) {
  var acc = 1;
  while (x > 0) {
    acc = acc * y;
    x = q - 1;
    }
  return acc;
}
```

Q: Can we solve this problem by changing the parser to rule out such programs?

Inference Rules

- We can read a judgment G ⊢ e as "the expression e is well scoped and has free variables in G"
- For any environment G, expression e, and statements s₁, s₂.

$$G \vdash if (e) s_1 else s_2$$

holds if $G \vdash e$ and $G \vdash s_1$ and $G \vdash s_2$ all hold.

More succinctly: we summarize these constraints as an inference rule:

Premises
$$G \vdash e \qquad G \vdash s_1 \qquad G \vdash s_2$$

Conclusion $G \vdash if (e) s_1 else s_2$

• Such a rule can be used for *any* substitution of the syntactic metavariables G, e, s_1 and s_2 .

Scope-Checking Lambda Calculus

- Consider how to identify "well-scoped" lambda calculus terms
 - Given: G, a set of variable identifiers, e, a term of the lambda calculus
 - Judgment: G \vdash e "the free variables of e are included in G"

"the variable x is free, but in scope"

$$\frac{\mathsf{G} \vdash \mathsf{e}_1 \qquad \mathsf{G} \vdash \mathsf{e}_2}{\mathsf{G} \vdash \mathsf{e}_1 \, \mathsf{e}_2}$$

"G contains the free variables of e_1 and e_2 "

$$G \cup \{x\} \vdash e$$
$$G \vdash \text{fun } x \rightarrow e$$

"x is available in the function body e"

Scope-checking Code

- Compare the OCaml code to the inference rules:
 - structural recursion over syntax
 - the check either "succeeds" or "fails"

```
let rec scope_check (g:VarSet.t) (e:exp) : unit =
  begin match e with
  | Var x -> if VarSet.member x g then () else failwith (x ^ "not in scope")
  | App(e1, e2) -> ignore (scope_check g e1); scope_check g e2
  | Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e
  end
```

$$x \in G$$
 $G \vdash e_1$ $G \vdash e_2$ $G \cup \{x\} \vdash e$ $G \vdash x$ $G \vdash e_1 e_2$ $G \vdash fun x \rightarrow e$
$$G \vdash x \qquad APP \qquad FUN$$

- The inference rules are a *specification* of the intended behavior of this scope checking code.
 - they don't specify the order in which the premises are checked

Judgments

- A judgment is a (meta-syntactic) notation that names a relation among one or more sets.
 - The sets are usually built from object-language syntax elements and other "math" sets (e.g., integers, natural numbers, etc.)
 - We usually describe them using metavariables that range over the sets.
 - Often use domain-specific notation to ease reading.
 - The meaning of judgments, i.e., which sets they represent, is defined by (collections of) inference rules
- Example: When we say "G ⊢ e is a judgment where G is a context of variables and e is a term, defined by these [...] inference rules" that is shorthand for this "math speak":
 - Let Var be the set of all (syntactic) variables
 - Let Exp be the set {e | e is a term of the untyped lambda calculus}
 - Let P(Var) be the (finite) powerset of variables (set of all finite sets)
 - Define well-scoped ⊆ (P(Var), Exp) to be a relation satisfying the properties defined by the associated inference rules [...]
 - Then "G ⊢ e" is notation that means that (G, e) ∈ well-scoped

Checking Derivations

- A derivation or proof tree has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are axioms
 - axiom: rule with no premises that are judgments
 - Example: the VAR rule is an axiom (it doesn't have any ⊢
- Goal of the static checking algorithm: verify that such a tree exists.

Example: we can scope check the following lambda calculus term by finding a derivation tree for it:

(fun $x \rightarrow fun y \rightarrow x y$) (fun $z \rightarrow z$)

Example Derivation Tree

- Note: the OCaml function scope_check verifies the existence of this tree.
 The structure of the recursive calls when running scope_check is the same shape as this tree!
- Note that $x \in E$ is implemented by the function VarSet.mem

Example Failed Derivation

- This program is not well scoped
 - The variable z is not bound in the body of the left function.
 - The typing derivation fails because the VAR rule cannot succeed
 - (The other parts of the derivation are OK, though!)

Uses of the inference rules

- We can do proofs by induction on the structure of the derivation.
- For example:

Lemma: If $G \vdash e$ then $fv(e) \subseteq G$.

Proof.

By induction on the derivation that $G \vdash e$.

x ∈ G G ⊢ x

- case: VAR then we have e = x (for some variable x) and x ∈ G. But $fv(e) = fv(x) = \{x\}$, but then $\{x\} \subseteq G$.
- case: APP then we have $e = e_1 e_2$ (for some $e_1 e_2$) and, by induction, we have $fv(e_1) \subseteq G$ and $fv(e_2) \subseteq G$, so $fv(e_1 e_2) = fv(e_1) \cup fv(e_2) \subseteq G$
- $\frac{G \vdash e_1 \quad G \vdash e_2}{G \vdash e_1 e_2}$
 - $G \cup \{x\} \vdash e_1$
 - $G \vdash \text{fun } x \rightarrow e_1$
- case: FUN then we have $e = (fun x -> e_1)$ for some x, e_1 and, by induction, we have $fv(e_1) \subseteq G \cup \{x\}$, but then we also have $fv(fun x -> e_1) = fv(e_1) \setminus \{x\} \subseteq ((G \cup \{x\}) \setminus \{x\}) \subseteq G$
- fv(x) = $\{x\}$ fv(fun x \rightarrow exp) = fv(exp) \ $\{x\}$ ('x' is a bound in exp) fv(exp₁ exp₂) = fv(exp₁) U fv(exp₂)

See tc.ml

STATICALLY RULING OUT PARTIALITY: TYPE CHECKING

Adding Integers to Lambda Calculus

$$\exp_1 \Downarrow n_1 \exp_2 \Downarrow n_2$$

$$\exp_1 + \exp_2 \Downarrow (n1 [+] n2)$$
Object-level '+'
Meta-level '+'

NOTE: there are no rules for the case where exp1 or exp2 evaluate to functions! The semantics is *undefined* in those cases.

Type Checking / Static Analysis

Recall the interpreter from the Eval3 module:

- The interpreter might fail at runtime.
 - Not all operations are defined for all values (e.g., 3/0, 3 + true, ...)
- A compiler can't generate sensible code for this case.
 - A naïve implementation might "add" an integer and a function pointer

Type Judgments

- In the judgment: E ⊢ e : t
 - E is a typing environment or a type context
 - E maps variables to types. It is just a set of bindings of the form:

```
x_1 : t_1, x_2 : t_2, ..., x_n : t_n
```

- For example: x : int, b : bool ⊢ if (b) 3 else x : int
- What do we need to know to decide whether "if (b) 3 else x" has type int in the environment x : int, b : bool?

```
- b must be a bool i.e. x : int, b : bool \vdash b : bool
```

- 3 must be an int i.e. x : int, b : bool 3 : int
- x must be an int i.e. $x : int, b : bool \vdash x : int$

Simply-typed Lambda Calculus

- Consider how to identify "well-scoped" lambda calculus terms
 - Recall the free variable calculation
 - Given: G, a map of variable identifiers to types, e, a term of the lambda calculus
 - Judgment: G ⊢ e : T means "the expression e computes a value of type T, assuming its free variables have the types given in G"

$$x:T \in G$$
 "the variable x has type T an is in scope" $G \vdash x : T$

$$G \vdash e_1 : T \rightarrow S$$
 $G \vdash e_2 : T$
 $G \vdash e_1 e_2 : S$

" e_1 is a function from T2 to T and e_2 is an expression of type T2"

G, x : T
$$\vdash$$
 e : S
G \vdash fun (x:T) \rightarrow e : T \rightarrow S

"Given an input of type T, this function computes a result of type S"

Adding Integers

• For the language in "tc.ml" we have five inference rules:

VAR $X:T \in G$ $G \vdash e_1: int$ $G \vdash e_2: int$ $G \vdash i: int$ $G \vdash x:T$ $E \vdash e_1 + e_2: int$

FUN

 $G, x : T \vdash e : S$

 $G \vdash fun(x:T) \rightarrow e : T \rightarrow S$

APP

 $G \vdash e_1 : T \rightarrow S G \vdash e_2 : T$

 $G \vdash e_1 e_2 : S$

- Note how these rules correspond to the code.
- By convention, if G is empty we leave that spot blank.

Type Checking Derivations

- A derivation or proof tree has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are axioms (i.e. rules with no premises)
 - Example: the INT rule is an axiom
- Goal of the typechecker: verify that such a tree exists.
- Example: Find a tree for the following program using the inference rules on the previous slide:

 \vdash (fun (x:int) \rightarrow x + 3) 5 : int

Example Derivation Tree

- Note: the OCaml function typecheck verifies the existence of this tree.
 The structure of the recursive calls when running typecheck is the same shape as this tree!
- Note that x: int ∈ E is implemented by the function lookup

Ill-typed Programs

Programs without derivations are ill-typed

```
Example: There is no type T such that \vdash (fun (x:int) \rightarrow x 3) 5 : T
```


Type Safety

"Well typed programs do not go wrong."

– Robin Milner, 1978

Theorem: (simply typed lambda calculus with integers)

If \vdash e:t then there exists a value v such that e \Downarrow v.

- Note: this is a very strong property.
 - Well-typed programs cannot "go wrong" by trying to execute undefined code (such as 3 + (fun x -> 2))
 - Simply-typed lambda calculus is guaranteed to terminate!
 (i.e. it isn't Turing complete)

Notes about this Typechecker

- The interpreter evaluates the body of a function only when it's applied.
- The typechecker always checks the body of the function
 - even if it's never applied
 - We assume the input has some type (say t_1) and reflect this in the type of the function $(t_1 -> t_2)$.
- Dually, at a call site $(e_1 e_2)$, we don't know what *closure* we're going to get.
 - But we can calculate e_1 's type, check that e_2 is an argument of the right type, and determine what type e_1 will return.
- Question: Why is this an approximation?
- Question: What if well_typed always returns false?

oat.pdf

TYPECHECKING OAT