(Recall) Bag of Words Representation

- Simple strategy for representing documents
- Count how many times each term occurs
 - Binary mode uses only 0 & 1
- A 'term' is any lexical item that you chose such as:
 - A word (delimited by 'white space' or punctuation)
 - Some conflated 'root form' of each word (e.g. a stem)
 - An n-gram (a sequence of any consecutive n chars)
- Doesn't consider the ordering of words in a document
 - John is quicker than Mary and Mary is quicker than John have the same representation
 - This could be a set back: **positional information** allows to distinguish these 2 docs
- For now: Bag of Words Model (BoW)

What is a bag of word representation? ssignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Vector Space Model

LET'S LOOK AT THIS PROCESS **DIFFERENTLY**

https://powcoder.com

Document Vectors One vector for each document

Document ids

ļ	diet	film	fur	galaxy	heat	h'wood	nova	role
Α				5	3		10	
В	5	10						
С				10	8	7		
D				9	10	5		
Ε							10	10
F							9	10
G	5	7			9			
Н		6	10	2	8			
1	1	5	3			7		

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Vector Space Model

- Documents are also treated as a "bag" of words or terms
- Each document is represented as a vector in a *t-dimensional* vector space (*t* is the number of index terms)
- Each term weight is computed based on some variations of TF or TF-IDF scheme

|--|

Oocum	ent ids							
ļ	diet	film	fur	galaxy	heat	h'wood	nova	role
Α				8	.5		.6	
В	4	1						
С				3	4	2.8		
D				2.7	5	2		
Ε							9	1.5
F							8.1	1.5
G	4	2.8			3.6			
Н		.6	4		1			
ı	2.1	2.5	.9				.45	

Sparse Matrix

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

More Formally

- Documents and queries are represented by vectors of term weights
- A collection is represented by a matrix of term weights

t is the number of index terms (words, stems, etc)

https://powcoder.com

Add WeChat powcoder Retrieval in Vector Space Model

- Vector space model represents both query and documents using term sets (term vectors)
- Documents and queries are represented in a high dimensional space (Bag of Words)
 - Each dimension of the space corresponds to a term in the document collection (t-dimensional vector space)
- Relevance Estimation is performed by identifying documents **similar** to the query
 - Relevance of \mathbf{d}_i to \mathbf{q} : Compare the **similarity** of query \mathbf{q} and document \mathbf{d}_i

Geometrically: Vector Space Model

Assumption: Documents that are "close together" in vector space "talk about" the same things

NB: 3D diagrams useful, but can be misleading for Assignmenthi Primited stam He

https://powcoder.com

Add WeChat powcoder

Geometrically: Vector Space Model

Assumption: Documents that are "close together" in vector space "talk about" the same things

Therefore, retrieve documents based on **how close the document** is to the query (i.e., similarity ~ "closeness")

Vector Space

- $X = (t_1, t_2, ..., t_t)$
 - The number t_i is called the **i**-th component of the vector
 - Magnitude: is defined by the square root of the sum of the squares of the components
 - that is, $\sqrt{\sum t_i^2}$
 - $\text{ If } ||X|| = 1 \text{ then } X \text{ is a } \mathbf{unit \ vector}$
 - Concept of length normalization

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Summary: Document Vectors

- Documents are represented as "bags of words"
- Represented as vectors when used computationally
 - A vector is like an array of floating point
 - Has direction and magnitude
 - Each vector holds a (unique) place for every term in the collection
 - Therefore, most vectors are sparse

https://powcoder.com

Vector Space Model

- The relevant documents for a query are expected to be those represented by the vectors closest to the query
- t2 $\begin{array}{c}
 d^2 \\
 Q \\
 \end{array}$ t1
- Documents ranked by distance between points representing query and documents
 - Similarity measure more common than a distance or dissimilarity measure $e.g. \qquad Cosine(D_i, Q) = \frac{\sum_{j=1}^{t} d_{ij} \cdot q_j}{\sum_{j=1}^{t} d_{ij} \cdot q_j}$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Cosine Measure

In IR we consider only the similarity range from 0 to 1 Why? Why not -1 to 1?

- It measures cosine of the angle between the vectors
- Cosine ranges from 1 for vectors pointing in the same direction over zero for orthogonal vectors and -1 for vectors pointing in opposite directions
- If Cosine is applied to normalised (unit) vectors it gives the same ranking as Euclidean distance does

$$\cos 0' = 1$$
 $\cos 90' = 0$
 $\cos 180' = -1$

Similarity Calculation

- -Consider two documents D_1 , D_2 and a query Q
 - $D_1 = (0.5, 0.8, 0.3), D_2 = (0.9, 0.4, 0.2), Q = (1.5, 1.0, 0)$

WITHELD

How could we implement a cosine similarity-based measure using inverted index?

Assignmenta Projecta Exam Help

https://powcoder.com

Add WeChat powcoder

Algorithm (Reminder)

For each document I, Score(I) = 0; I = 1 to N For each query term t_k

- Search the vocabulary list
- Pull out the postings list
- For each document J in the list,
 - $Score(J) = Score(J) + w_{kj}$

Example

- D1 = $(T1 \Rightarrow 12, T2 \Rightarrow 23, T3 \Rightarrow 3)$
- D2 = $(T1 \Rightarrow 3, T2 \Rightarrow 2, T3 \Rightarrow 1)$

• Sim(D1,Q) = 12*0 + 23*0 + 3*2 = 6• Sim(D2,Q) = 3*0+3*0+1*2

N?? Ssignment Project Exam Help
https://pa

Add WeChat powcoder

Matching Coefficient (Coordination Level)

- Simply counts the number of dimensions on Is this familiar? which both vectors are non-zero
- $|X \cap Y| \equiv \sum x_i * y_i$
- Number of shared index terms (binary vectors)
- Does not take into account the sizes of the vectors

Some Problems ...

- Normalisation
- Consider a single word query and a single word document (In Binary mode...)
 - If that matches
 - · Coefficient is 1
- Same query against a thousand word document
 - If that matches
 - Coefficient is 1

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dice Coefficient

- 2 $| X \cap Y | / (|X| + |Y|)$
- Normalises for length by dividing by the total number of non-zero entries.
- We multiply by 2 so that we get a measure that What is a dice coefficient? ranges from 0 to 1.0

Query Term Weighting

- Boolean representation
 - Just have a weight of zero or 1
- Short queries
 - Typical of web searches
- Discuss three query term Discuss three strategies! Weighting strategies! - Multiple keyword occurrences are rare
 - $W_{ka} = idf_k$
- Long queries
 - Result of **relevance feedback** (will talk about it later)
 - $W_{kq} = f_{kq} \cdot idf_k$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Advantages and Disadvantages of a Vector-space Model

Advantages

- Simple geometric interpretation of retrieval readily comprehensible to nonspecialist and a uniform basis for wide range of operations
- Easy to compute measure (any similarity measure can be used)
- Easy to adapt to various weighting schemes
- Provision for *ranked output*

Disadvantages

- High dimensionality
- Term independence assumption
- Adhoc similarity metric: Cosine, Dice, etc. (which one to use?)
- -Adhoc term weighting (not theoretically founded)
- -No guidance on when to stop ranking