МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ПиТФ

Лаборатория № VI-206

Лабораторная работа № 1

Измерение времени соударения упругих тел

 Факультет:
 ФЭН

 Группа:
 ЭН2-31

 Студент:
 Полозов А. А.

 Преподаватель:
 Сейфи В. А.

 Дата выполнения работы:
 02.03.2024

Отметка о защите:

1. Цель лабораторной работы

Сравнение экспериментально полученной зависимости времени соударения τ от диаметра шара D с теоретической зависимостью.

2. Таблица приборов

№	Наименование	Тип или система	Предел измерений	Цена деления	Приборная погрешность
1	Измеритель	электронные	999,9 мкс	0,1 мкс	0,1 мкс
	временных				
	интервалов				

3. Рабочие формулы и исходные данные

k – группа измерения.

n — номер измерения.

D — диаметры шаров.

Выборочное среднее результатов измерений: $\bar{\pmb{\tau}} = \frac{\sum_{n=1}^{N} \tau_n}{N}$.

Выборочное среднеквадратичное отклонение: $s = \sqrt{\frac{\sum_{n=1}^{N} (\tau_n - \overline{\tau})^2}{N-1}}$.

Среднеквадратичное отклонение: $\pmb{\sigma} = \frac{t(P,N)\cdot s}{\sqrt{N}}$; $\pmb{P} = \dots$.

Некоторое значение коэффициента Стьюдента t(P, N): t(0, 95; 3) = 4, 3.

Доверительный интервал для моды многократных измерений времени соударения шаров: $\pmb{ au}_{\text{ист}} = \bar{\pmb{ au}} \pm \pmb{\sigma}.$

4. Таблица измерений

Таблица 1.

k	D,	n	τ_n ,	$\overline{ au}$,	S,	σ,	$ au_{ ext{ iny MCT}}$,
	MM		мкс	мкс	мкс	мкс	мкс
1	22	1	63,5	64,0	0,5	1,2	64,0 ± 1,2
		2	64,5				
		3	63,9				
	30	4	86,9	85,9	1,7	4,2	85,9 ± 4,2
2		5	84,0				
		6	86,9				
	35	7	98,3	97,5	0,7	1,7	97,5 <u>+</u> 1,7
3		8	97,2				
		9	97,0				
4	40	10	113,4	113,8	0,5	1,3	113,8 ± 1,3
		11	113,6				
		12	114,4				

5. Графики экспериментальных зависимостей

6. Выводы

Было установлено на опыте, что время соударения двух шаров линейно зависит от их диаметров.

Контрольные вопросы

1. Какова цель настоящей работы?

Сравнение экспериментально полученной зависимости времени соударения au от диаметра шара D с теоретической зависимостью.

2. Как определяется время соударения шаров на основе второго закона Ньютона?

Для оценки времени соударения шаров используем второй закон Ньютона: $d\overrightarrow{p_1}/dt = \overrightarrow{F_{12}}$. Здесь $\overrightarrow{p_1}$ – импульс шара 1, а $\overrightarrow{F_{12}}$ – сила, с которой шар 2 действует на шар 1. Поскольку движение шаров в процессе соударения будем считать прямолинейным, можно от векторов перейти к проекциям на горизонтальную ось, выбранную в направлении движения: dp/dt = F. Проинтегрируем это соотношение по времени от момента начала соударения (t=0) до момента окончания соударения (t=0). Получим

$$\Delta p_1 = p_1(\tau) - p_1(0) = \int_0^{\tau} F_{12} dt.$$

Правую часть этого равенства можно представить в виде

$$\int_{0}^{\tau} F_{12} dt = \tau \frac{1}{\tau} \int_{0}^{\tau} F_{12} dt = \tau \overline{F_{12}},$$

где $\overline{F_{12}} = \frac{1}{\tau} \int_0^{\tau} F_{12} dt$ — средняя за время соударения сила, действующая на шар 1 (по определению средней величины). Отсюда время соударения шаров

$$\tau = \frac{\Delta p_1}{\overline{F_{12}}} = \frac{|\Delta p_1|}{|\overline{F_{12}}|},$$

где $|\overline{F_{12}}| = \left| \overrightarrow{\overline{F_{12}}} \right|$ — среднее за время соударения значение модуля упругой силы, с которой шар 2 действует на шар 1.

3. Какие силы изменяют суммарный импульс системы тел?

Сила тяжести, сила натяжения нити.

4. Как упругие силы взаимодействия шаров влияют на суммарный импульс шаров?

Силы взаимодействия шаров – внутренние силы этой системы тел – не меняют суммарного импульса шаров в соответствии с третьим законом Ньютона.

5. Когда можно применять закон сохранения импульса приближённо?

ЗСИ можно применять, когда действие внешних сил отсутствует или оно скомпенсировано.

В приближении «мгновенного» ($\tau \to 0$) удара суммарный импульс группы тел сохраняется, даже если результирующая внешних сил отлична от нуля.

<u>6. Почему при расчёте времени соударения мы можем перейти в другую инерциальную систему отсчёта?</u>

В нерелятивистских инерциальных системах отсчёта приращения скоростей (импульсов) как разности двух векторов, промежутки времени и силы являются инвариантными, поэтому при переходе в другую инерциальную систему все величины в $\tau = \Delta p_1/\overline{F_{12}}$ не изменятся.

7. Что такое система центра инерции?

Система центра инерции – система отсчёта, в которой центр инерции системы неполвижен.

8. Что такое упругий удар? Какой закон выполняется при упругом ударе?

Абсолютно упругий удар — это кратковременное взаимодействие тел, при котором выполняется закон сохранения механической энергии и после взаимодействия тела движутся независимо друг от друга.

9. Изобразите диаграмму импульсов шаров в СЦИ и в Л-системе. Покажите векторы изменения импульса каждого шара при ударе.

$$\begin{array}{c|cccc}
\hline
 & \hline
\hline
 & \hline$$

10. Какие этапы можно выделить в процессе упругого соударения?

Процесс упругого соударения шаров в СЦИ можно представить в виде следующих двух этапов:

- 1) на первом этапе оба шара одновременно тормозятся и упруго деформируются до тех пор, пока кинетическая энергия шаров полностью не превратится в энергию упругой деформации;
- 2) на втором этапе величина упругой деформации X уменьшается до нуля, энергия упругой деформации превращается в кинетическую энергию шаров.

11. Перечислите основные допущения, используемые при анализе соударения в системе центра инерции.

- 1) пренебрежение силой трения в подвесе;
- 2) силой тяжести;
- 3) силой натяжения нити;
- 4) углом отклонения нитей подвесов от вертикали;
- 5) потерями кинетической энергии при ударе.

12. Исходя из начальных условий соударения в лабораторной системе отсчёта выведите формулу для изменения импульсов шаров при ударе в СЦИ.

Взаимодействие шаров проще всего рассматривать в системе их центра инерции, т. е. относительно системы отсчёта, в которой центр инерции системы из двух шаров неподвижен. Такую систему обозначают СЦИ или Ц-система. Перейдем в СЦИ, т. е. определим скорости и импульсы шаров в системе их центра инерции.

Скорость центра инерции системы двух тел определяется как суммарный импульс, отнесённый к суммарной массе:

$$\vec{v}_{IJ} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} = \frac{m \vec{v}_0 + 0}{2m} = \frac{\vec{v}_0}{2}.$$

Так как суммарный импульс шаров при ударе сохраняется, то сохраняется и скорость центра инерции. Следовательно, систему отсчёта, связанную с центром инерции, можно в течение удара считать инерциальной.

Радиусы-векторы материальной точки m в Л- и Ц-системах отсчёта \vec{r}_{Π} и \vec{r}_{\parallel} связаны через радиус-вектор переноса начала отсчёта \vec{r}_{Π} , определяющий положение «нового» начала в «старой» системе: $\vec{r}_{\Pi} = \vec{r}_{\parallel} + \vec{r}_{\Pi}$. Продифференцировав это равенство по времени, получим преобразование скоростей Галилея: скорость точки \vec{v}_{\parallel} в движущейся Ц-системе равна разности скорости \vec{v}_{Π} этой точки в неподвижной Л-системе отсчёта и скорости переносного движения \vec{v}_{Π} движущейся системы отсчёта относительно неподвижной:

$$\vec{v}_{\rm II} = \vec{v}_{\rm JI} - \vec{v}_{\rm II}; \ \vec{v}_{\rm II} = \vec{v}_{\rm II} = \frac{\vec{v}_{\rm 0}}{2}.$$

Применим эту формулу к каждому из шаров. Для шара 1 до удара скорость в Ц-системе равна $\vec{v}_{1\text{Ц}} = \vec{v}_0 - \frac{\vec{v}_0}{2} = \frac{\vec{v}_0}{2}$, а для шара 2 $\vec{v}_{2\text{Ц}} = 0 - \frac{\vec{v}_0}{2} = -\frac{\vec{v}_0}{2}$. Обозначим импульсы первого и второго шара в СЦИ до удара $\vec{p}_{1\text{Ц}}$ и $\vec{p}_{2\text{Ц}}$, а после соударения $\vec{p}_{1\text{Ц}}$ и $\vec{p}_{2\text{Ц}}$:

$$\vec{p}_{1 \text{Ц}} = m \frac{\vec{v}_0}{2}$$
, $\vec{p}_{2 \text{Ц}} = -m \frac{\vec{v}_0}{2}$, т. е. $\vec{p}_{1 \text{Ц}} = -\vec{p}_{2 \text{Ц}}$, $p_{1 \text{Ц}} = p_{2 \text{Ц}}$.

Следовательно, закон сохранения импульса в СЦИ имеет вид

$$\vec{p}_{1II} + \vec{p}_{2II} = \vec{p}'_{1II} + \vec{p}'_{2II} = 0.$$

Отсюда $p'_{1\downarrow\downarrow}=p'_{2\downarrow\downarrow}$. Это соотношение можно доказать и в более общем случае неравных масс шаров. Оно имеет простой физический смысл: в системе отсчёта, связанной с центром инерции, сам центр инерции покоится.

Запишем закон сохранения кинетической энергии в СЦИ в приближении абсолютно упругого удара:

$$\frac{p_{111}^2}{2m} + \frac{p_{211}^2}{2m} = 2\frac{p_{111}^2}{2m} = \frac{p_{111}^{\prime 2}}{2m} + \frac{p_{211}^{\prime 2}}{2m} = 2\frac{p_{111}^{\prime 2}}{2m},$$

где были использованы связи длин векторов до и после удара. Из этого следует, что длины всех векторов одинаковы. При ударе меняются только направления векторов. Отсюда:

$$ec{\Delta} \overrightarrow{p}_{1 \parallel} = -ec{\Delta} \overrightarrow{p}_{2 \parallel} = \overrightarrow{p}_{1 \parallel}' - \overrightarrow{p}_{1 \parallel} = -m \, \overrightarrow{v}_0/2 - m \, \overrightarrow{v}_0/2 = m \overrightarrow{v}_0 = \overrightarrow{p_0}.$$

13. Исходя из закономерностей упруго удара в СЦИ выведите зависимость т от D при соударении кубиков.

Кинетическая энергия двух шаров равна работе двух сил упругой деформации, действие которых и привело к полной остановке обоих шаров, поэтому закон сохранения механической энергии для первого этапа соударения шаров имеет вид:

$$2\frac{m\left(\frac{v_0}{2}\right)^2}{2} = 2\frac{m{v_0}^2}{8} = 2\int_{0}^{X_{max}} Fdx,$$

где X_{max} — максимальная величина продольной деформации, одинаковая для каждого из шаров. По определению средней величины $\frac{1}{X_{max}} \int_0^{X_{max}} F dx = \langle F \rangle$, где $\langle F \rangle$ — средняя сила, действующая на отрезке от 0 до X_{max} . Отсюда $\int_0^{X_{max}} F dx = \langle F \rangle X_{max}$ и средняя величина упругой силы

$$\langle F \rangle = \frac{m v_0^2}{8 X_{max}}.$$

Будем считать, что усреднённое по координате x на этом отрезке значение силы $\langle F \rangle$ равно усреднённому по времени соударения \overline{F} , которое входит в выражение $\tau = \frac{\Delta p}{\overline{F}}$. Подставляя одно выражение в другое, получаем, что время соударения шаров

$$\tau = \frac{8X_{max}}{v_0}.$$

Из этого следует, что τ пропорционально X_{max} . Для определения зависимости τ от диаметра D необходимо найти зависимость X_{max} от D. Для этого рассмотрим сначала грубую физическую модель, в которой шар диаметром D заменён телом кубической форсы с ребром D. Считаем, что при упругом соударении двух стальных кубов, когда при соударении соприкасающиеся грани идеально совпадают, справедлив закон Γ ука:

$$\frac{\left|\overrightarrow{F_{12}}(x)\right|}{S} = E\frac{x}{D}$$

— продольная деформация x/D пропорциональна механическому напряжению $|\overrightarrow{F_{12}}|/S$. Здесь E — модуль Юнга; $S=D^2$ — площадь поперечного сечения деформируемого тела.

Тогда работа силы упругой деформации, действующей на один куб от начала соударения до максимальной деформации (что соответствует полной остановке тел в СЦИ), есть

$$\int_{0}^{X_{max}} F dx = \int_{0}^{X_{max}} E \frac{S}{D} x dx = ED \frac{X_{max}^{2}}{2}.$$

Подставив это значение интеграла в закон сохранения механической энергии, получим

$$2\frac{m{v_0}^2}{8} = 2ED\frac{X_{max}^2}{2}.$$

Отсюда $X_{max}=\sqrt{\frac{mv_0^2}{4ED}}$. Так как $m=\rho V=\rho D^3$, где ρ – плотность тела, а $V=D^3$ – его объём, получаем

$$X_{max} = \frac{1}{2} \left(\frac{\rho}{E}\right)^{1/2} D.$$

Подставляя найденное выражение для X_{max} в формулу для времени соударения, получаем

$$au = 4 \left(\frac{
ho}{F}\right)^{1/2} D.$$

14. Получите зависимость т от D при упругом соударении двух сплошных цилиндров, радиусы которых равны радиусу шара, а длина — диаметру шара, в случае, если цилиндры ударяются торцевыми поверхностями.

Закон Гука в виде $\frac{|\overline{F_{12}}(x)|}{S} = E \frac{x}{D}$ справедлив для равномерно сжатого вдоль одного из рёбер прямоугольного параллелепипеда или цилиндра. Поэтому мы можем воспользоваться алгоритмом вывода зависимости τ от D при соударении кубиков, заменив геометрические величины на соответствующие цилиндру. А именно:

$$S = \frac{\pi D^2}{4}$$
; $V = \frac{\pi D^3}{4}$.

Отсюда:

$$\int_{0}^{X_{max}} F dx = \int_{0}^{X_{max}} E \frac{S}{D} x dx = \pi E D \frac{X_{max}^{2}}{8};$$

$$2 \frac{m v_{0}^{2}}{8} = 2\pi E D \frac{X_{max}^{2}}{8};$$

$$X_{max} = \sqrt{\frac{m v_{0}^{2}}{\pi E D}};$$

$$m = \rho V = \frac{\rho \pi D^{3}}{4};$$

$$X_{max} = \sqrt{\frac{\rho \pi D^{3} v_{0}^{2}}{4\pi E D}} = \frac{1}{2} \left(\frac{\rho}{E}\right)^{1/2} v_{0} D;$$

$$\tau = 4 \left(\frac{\rho}{E}\right)^{1/2} D.$$

15. Получили ли вы ожидаемую зависимость времени соударения шаров от их диаметров? Что это означает?

Получил. Это означает, что теоретические расчёты верны.