

Indian Institute of Technology, Kanpur Department of Earth Sciences

ESO213A: Fundamentals of Earth Sciences

Lecture 36. Atmosphere

Santanu Misra

Department of Earth Sciences
Indian Institute of Technology, Kanpur
smisra@iitk.ac.in http://home.iitk.ac.in/~smisra/

Aims of this lecture

- Early Atmosphere
- Present Atmosphere, composition and layers

Reading:

• Grotinger & Jordan's book (Chapter 15)

The Atmosphere

- The gaseous envelope that surrounds a planet and/or other celestial body
- AIR: Mixture of gasses and suspended particles that surrounds Earth
- The composition of Atmosphere is important as
 - (1) we breath it;
 - (2) maintains Earth's surface temperature; control the weather and overall climate.
 - (3) ozone to protect from UV

The Aerosols

Smoke Sea-salt crystals Ice-crystals Dust Volcanic emissions Industrial pollution

- Some aerosols (soot) absorb solar radiation: heating
- Some aerosols (sulfur) reflect incoming radiation: cooling
- Some aerosols form clouds..

The surface of the Earth since it's birth

- Molten surface, very hot, silicate rain!
- The carbons also left by degassing and the concentration of carbon in the atmosphere was very high!
- The greenhouse effect was enormous.
- What brought back the carbons inside the Earth again? When?

The early Atmosphere

- Earth's first atmosphere was most likely comprised of hydrogen and helium (two most abundant gases found in the universe!)
- Through the process of *outgassing*, the outpouring of gases from the earth's interior, many other gases were injected into the atmosphere -
 - Water vapour
 - Carbon dioxide
 - Nitrogen
 - Oxygen (not a product of degassing!)
- As outgassing occurred over a period of millions of years, the atmosphere evolved to its current state

The Contributions from Volcanoes

GNS Science, NZ

The Contributions from Volcanoes

	Volcano Tectonic Style Temperature	Kilauea Summit Hot Spot 1170°C	Erta` Ale Divergent Plate 1130°C	Momotombo Convergent Plate 820°C	
	Water Vapor H₂₀	37.1	77.2	97.1	
	Carbon Dioxide C0:	48.9	11.3	1.44	
	Sulfur Dioxide S0 ₂	11.8	8.34	0.50	
	Hydrogen H₂	0.49	1.39	0.70	
	Carbon Monooxide CO	1.51	0.44	0.01	
	Hydrogen Sulfide H₂s	0.04	0.68	0.23	
	Hydrochloric Acid HCl	0.08	0.42	2.89	
	Hydrofluoric Acid HF			0.26	

Examples of volcanic gas compositions, in volume percent concentrations (from <u>Symonds et. al., 1994</u>)

The Contributions from Volcanoes

Gas	Percentage by Volume
Nitrogen (N ₂)	78.084
Oxygen (O ₂)	20.946
Argon (Ar)	0.934
Carbon dioxide (CO ₂)	0.037
Neon (Ne)	0.00182
Helium (He)	0.00052
Methane (CH ₄)	0.00015
Krypton (Kr)	0.00011

Less, but also important

What happened with all CO₂ and H₂O that come from volcanoes?

Fate of Volcano generated water

Atmosphere cannot hold all water vapour injected from volcanoes

The water vapour condensed into clouds and over time formed the oceans

If we consider the volume, it would be a very small ball in front of the total mass of the earth.

Reservoir	Volume (million Km3)	Percent of Total	Reproduction Rate Cu.Km/year
Oceans & Seas	1370	96.5	452
Ice caps & Glaciers	24	1.74	3
Ground water	60	1.74	12
Rivers, Lakes & Swamp	0.2812	0.0132	39
Soil moisture	0.083	0.001	83
Water vapour	0.014	0.001	525
Biosphere	0.0011	0.0001	39
Total	1454.3793	99.9953	1153

HH Lamb, 1972

Fate of Volcano generated CO₂

CO2 is removed from the atmosphere by

- Biosphere
- · Dissolution in oceans
- · Chemical weathering
- · Tectonic processes
- Into the rocks

Relative units	
Biosphere	2
Atmosphere (as CO ₂)	70
Oceans (as dissolved CO ₂)	4000
Fossil Fuels	800
Shales	800,000
Carbonate Rocks	2,000,000

PK weys, 197o

Source of Nitrogen, Argon and Oxygen

Very small amount injected from volcanoes, but nitrogen is almost chemically inert and also not soluble in sea water

Nitrogen stays in the atmosphere and there is almost no removal

Radioactive decay in the rocks

Similar process of nitrogen

Photosynthesis

Now the O2 concentration is about 20% and it was maximum (~35%) 550 myr ago.

The Atmosphere

The atmosphere is comprised of layers based on temperature. These layers are the troposphere, stratosphere, mesosphere and thermosphere. A further region at about 500 km above the Earth's surface is called the exosphere.

The Troposphere Temperature decreases with height (lapse rate: 6.5 °C/km). Extends from surface to about 10-12 km (increases in summer). 100 The height of the troposphere varies from the equator to the H 80 E 70 I 70 G km H 60 T poles. At the equator it is around 11-12 miles (18-20 km) high, at 50°N and 50°S, 5½ miles and at the poles just under four miles high. top of troposphere is called the tropopause that separates 40 troposphere from stratosphere. Very unstable, where all the weather occurs. -40 -20 0 °C Temperature

The Mesosphere Temperature decreases with height. 110 100 Extends from the stratosphere to about 40-50 km H 80 E 70 G km H 60 T The gases, including the oxygen molecules, continue to become thinner and thinner with height. 50 stratosphere the gases in the mesosphere are thick enough to slow down meteorites hurtling into the atmosphere, where they burn up, leaving fiery trails in the night sky. 20 10 the mesopause is the coolest layer in the atmosphere.

Additional readings

Short- and Long-term variations of climate (Regional and Global)

Pages 417-423; Grotinger & Jordan's book