HPC Overview

SHWETA DAS shwetad@cdac.in

Agenda

- ▶ HPC History
- ▶ HPC Global Scenario
- **▶** Recent Trends
- ► Importance of multi core and many core architecture
- ► Application Areas of HPC in Science & Engineering

Supercomputing and High Performance Computing (HPC)

Supercomputing

- Use of the fastest and biggest machines to solve large problems
- Supercomputer (in the 1980's and 1990's)
 - Very expensive, custom-built computer systems
- Supercomputer (since end of 1990's)
 - Large number of "off-the-shelf" components
 - "Parallel Computing"

 Solving a problem via supercomputers + fast networks + large storage + visualization

Complementing theory and experimentation, HPC now offers the third paradigm of scientific discovery and innovation enabling faster, safer and economical path

Why High Performance Computing?

- ► High speed because of Grand Challenge problems
- Novel applications which are not possible otherwise
- Strategic and Technology advancement
- Scalability: More processors more power
- Human Advancement: Economy

Why High Performance Computing?

To simulate a bio-molecule of 10000 atoms

Non-bond energy term ~ 10⁸ operations

For 1 microsecond simulation ~ 10⁹ steps

~ 10¹⁷ operations

 On a 500 MFLOPS machine (5x10⁸ operations per second) takes 2x10⁹ secs (About 60 years)

(This may be on a machine of 5000 MFLOPS peak)

Need to do large no of simulations for even larger molecules

If we focus on some set of priorities, HPC can be guaranteed to produce important results. The grand challenge applications should not be regarded as problems that can be "solved". Instead they should be regarded as focus areas in which improved products, new products, and new engineering or scientific insights can be generated. Additionally, we can guarantee that eventually fallout will occur in other computational science and engineering areas.

David J. Kuck

HPC: Challenges for Future Systems

HPC Global scenario

Performance development

Projected Performance Development

Performance

Architecture

Countries share

Processor Family/systems

Operating systems family

Operating system Family System Share

Recent trends

10 Biggest HPC Systems from Top500 Trends

Rank	System	Cores	(TFlop/s)	(TFlop/s)	(kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	•	200,794.9	
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
5	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR , Dell EMC Texas Advanced Computing Center/Univ. of Texas United States	448,448	23,516.4	38,745.9	
6	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100, Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	27,154.3	2,384
7	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect, Cray Inc. D0E/NNSA/LANL/SNL United States	979,072	20,158.7	41,461.2	7,578
8	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR, Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0	32,576.6	1,649
9	SuperMUC-NG - ThinkSystem SD650, Xeon Platinum 8174 24C 3.1GHz, Intel Omni-Path , Lenovo Leibniz Rechenzentrum Germany	305,856	19,476.6	26,873.9	
10	Lassen - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla V100 , IBM / NVIDIA / Mellanox	288,288	18,200.0	23,047.2	

Importance of multicore and manycore architecture

Sea Change in Chip Design Today

- Moore's law has hit the wall!
- ► Reduced to 20% improvement of Processor Performance per year from 2002(earlier 52%).
- Brick Wall = (Heat Wall + ILP Wall + Memory Wall)
- Maximum Power Dissipation of Air-Cooled Chips reached its limits ~ 130 Watts
- ► Little Instruction Level Parallelism (ILP) left to exploit efficiently.
- Memory wall has been hit, unchanged memory latency
- 2, 4, 8, 16 Cores/Chip are Common.
- ▶ 100 Cores chip have already been announced!
- Thousands of cores chips already at Drawing Board Level!

Multicore & ManyCore

Many Core

GPU

NVIDIA V100 GPU: 100 TFLOPs

Intel Xeon Processor Roadmap

GPU Roadmap

Application Areas of HPC in Science & Engineering

HPC in science

Space Science

 Applications in Astrophysics and Astronomy

Earth Science

 Applications in understanding Physical Properties of Geological Structures, Water Resource Modelling, Seismic Exploration

Atmospheric Science

 Applications in Climate and Weather Forecasting, Air Quality

HPC in engineering

Crash Simulation

 Applications in Automobile and Mechanical Engineering

Aerodynamics Simulation & Aircraft Designing

 Applications in Aeronautics and Mechanical Engineering

Weapon Designing &Testing

 Applications in Developing New Warfare Capabilities, High Technology Weapons, Precision Testing

HPC in engineering

Structural Analysis

 Applications in Civil Engineering and Architecture

Image Processing

 Applications in Remote Sensing, Medical, Real-time processing, Surveillance

Signal Processing

Applications in Communications,
 Intelligence, Radio Astronomy

Multimedia and animation

DreamWorks Animation SKG produces all its animated movies using HPC graphic technology

Graphical Animation Application in Multimedia and Animation

Some impacts in business

HPC Drives a "Can-Do" Attitude at Alcoa

- Alcoa is world's leading producer of aluminium products and components for a variety of industries such as aerospace, automotive, building & construction and packaging, with \$30 billion revenue in 2006
- Was founded in 1888 and one of the first companies to make major use of HPC in 1987
- Tough business competition!
 - Plastic bottles with different sizes were replacing Tab-top Aluminium containers
 - Designing cans with new volume sizes required about 15 different dimensions to be handled.
 - Used complex, non-symmetric modelling techniques called Monte Carlo simulations.
 - On Alcoa systems a simulation would have taken weeks while on HPC system* simulation containing 1000 designs took just a day or two.

This enabled Alcoa to offer customers a wide variety of options in order to compete with plastic and glass containers

* Done at Pittsburgh Supercomputing Center

Oil and Gas Exploration

- ► Finding oil forty years ago was mainly hit or miss. A wrong drill decision can incur losses of hundreds of millions of bucks, more than the cost of a supercomputer!
- Seismic surveys is the principal tool for identification of Oil & Gas reserves. The practice of interpretation of resultant data is revolutionized by HPC
- Compute-intensive Algorithms in use: Reverse Time Migration (RTM), Lattice Boltzmann Method (LBM)
- Some Companies: BP, Exxon, Shell, China Petroleum & Chemical Corporation, Schlumberger
- Some Facts:
 - This was one of the first industries to make use of supercomputing, as early as 1980s.
 - Comprises about 10% of top supercomputers
 - 5 PFLOPS supercomputer coming up in Norway

Goodyear puts the Rubber to the Road with HPC

Slump

 Goodyear Tire and Rubber company found itself in definite slump in 2003 and 2004 because of competitors

Mileage by HPC

 In response, rather than designing, building and testing physical prototypes, Goodyear engineers used HPC to test virtual models and significantly cut time to market

Success

 The result was the huge hit Assurance® allweather tire featuring TripleTred Technology®

More Examples

Portland Cement Association

GE Aviation and Energy

The NASDAQ Stock Exchange

Texaco

Walmart

Procter & Gamble

References

- www.wikipedia.org
- www.compete.org
- http://www.forbes.com
- http://insidehpc.com
- http://www.militaryaerospace.com
- www.pg.com
- http://scienceandtechnology.jpl.nasa.gov/research/
- http://www.top500.org/files/Supercomputers_London_Paper_H WM_HG.pdf

Outcompete is to Outcompute!

Thank You