MTH1102D Calcul II

Chapitre 6, section 3 : Les coordonnées polaires

Courbes polaires

Introduction

- Comment tracer des courbes polaires.
- Comment trouver l'équation cartésienne d'une courbe polaire.

Pour tracer dans le plan une courbe polaire d'équation $r = f(\theta)$:

- tracer le graphe (cartésien) de f dans le plan des (r, θ)
- si nécessaire, construire un tableau de valeurs pour f
- superposer les coordonnées polaires et cartésiennes
- utiliser les informations données par le graphe de f et le tableau de valeurs pour tracer la courbe.

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

$$r = 1 + \cos(\theta)$$

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

Lorsque θ varie de $\pi/2$ à π , r diminue de 1 à 0.

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

Lorsque θ varie de π à $3\pi/2$, r augmente de 0 à 1.

Exemple : Tracer la cardioïde d'équation $r = 1 + \cos(\theta)$.

Lorsque θ varie de $3\pi/2$ à 2π , r augmente de 1 à 2.

Équations cartésienne de la cardioïde :

$$r = 1 + \cos(\theta)$$

$$\Rightarrow r^2 = r + r\cos(\theta)$$

$$\Rightarrow x^2 + y^2 = \sqrt{x^2 + y^2} + x$$

$$\Rightarrow (x^2 + y^2 - x)^2 = x^2 + y^2$$

Résumé

- Comment tracer une courbe dont l'équation polaire est donnée.
- Comment trouver, si possible, l'équation cartésienne d'une courbe polaire sous forme polynomiale.