Algoritma BFS dan DFS wijanarto

Algoritma Graph

- Algoritma traversal di dalam graf adalah mengunjungi simpul-simpul dengan cara yang sistematik.
- Pencarian Melebar (Breadth First Search atau BFS),
- Pencarian Mendalam (Depth First Search atau DFS).

Pencarian Melebar (Breadth First Search atau BFS)

- Idenya mirip dengan algo prim dan dijkstra
- Traversal dimulai dari simpul v.
- Algoritma:
 - Kunjungi simpul v,
 - Kunjungi semua simpul yang bertetangga dengan simpul v terlebih dahulu.
 - Kunjungi simpul yang belum dikunjungi dan bertetangga dengan simpul-simpul yang tadi dikunjungi, demikian seterusnya.
- Jika graf berbentuk pohor berakar, maka semua simpul pada aras d dikunjungi lebih dahulu sebelum simpul-simpul pada aras d+1.

Graph Searching Algorithm

- Pencarian Sistemik pada setiap edge dan vertek dari graph G
- Graph G=(V,E), directed atau undirected
- Aplikasi
 - Compiler
 - Graphics
 - Maze
 - Mapping
 - Network : routing, searching, clustering, dsb

Representasi BFS

- Pada umumnya graf di representasikan baik secara array ataupun list
- Dalam kuliah ini menggunakan Link LIST dan queue

```
struct node {
  int data;
  struct node *link;
};
```

Contoh bfs

Q	r	t	X
	1	2	2

Contoh bfs

)	u	у	
	3	3	

u

Contoh bfs

- 1,2,3 adalah label vertek dalam G
- 1 merupakan panjang shortest path dari s

 $(source) \rightarrow (s-w,s-r)$

- 2 berarti ada 2 edge
 - (s-t,s-x,s-v)
- 3 berarti ada 3 edge
 - (s-u,s-y)

Bfs secara grafikal

Algoritma bfs 1

BFS (G, s)

```
For each vertek u \in V[G] - \{s\} do
   color[u] ←putih
                                                         INIT semua
   d[u] ←∞ {tdk di labeli}
                                                        VERTEK
   pi[u]←nil {predesesor vertek}
Color[s] ←abu2
                                                        INIT BFS
D[s] \leftarrow 0
                                                        dengan s
Pi[s] ←nil
                                                        (source)
Q←{s}
While Q≠o do
   u←head[0]
                                                       Tangani
   for each v \in adj[u] do
                                                       seluruh anak s
        if color[v]←putih then
                                                       SEBELUM
                 color[v] ←abu2
                                                       menangani
                                                       anak dari
                 d[v] \leftarrow d[u] + 1
                                                       anaknya
                 pi[v]←u
                 ENQUEUE (Q, v)
   DEQUEUE (Q)
   color[u] ← Hitam
```

Algoritma bfs 2

```
Bfs(v){
   Q←∅;
   mark[v] \leftarrow visited;
   Q \leftarrow enqueue(v);
   while Q≠Ø do {
       u \leftarrow first(Q)
        dequeue (u)
        for w adj pada u do {
          if mark[w]≠ visited then
               mark[w] ← visited
          Q \leftarrow Enqueue (w)
```

Algoritma Dalam List (1)

```
void BFS(VLink G[], int v) {
   int w; VISIT(v); /*visit vertex v*/
   visited[v] = 1; /*tandai v, telah di kunjungi dengan : 1 */
   ADDO(O,v);
   while(!QMPTYQ(Q)) {
       v = DELQ(Q); /*Dequeue v*/
       w = FIRSTADJ(G,v); /*cari tetangga pertama, return -1 if tidak ada */
       while (w != -1) {
            if(visited[w] == 0) {
                 VISIT(w); /*visit vertex v*/
                 ADDQ(Q,w); /*Enqueue vertek yang sedang di kunjungi w*/
                 visited[w] = 1; /*tandai w telah di kunjungi*/
            /*cari tetangga selanjutnya, return -1 if tidak ada*/
           W = NEXTADJ(G, V);
```

Algoritma Dalam List (2)

```
void TRAVEL BFS(VLink G[], int visited[], int n) {
   int i;
   /* Inisialisasi seluruh vertek
      dengan visited[i] = 0 */
   for(i = 0; i < n; i ++) {
      visited[i] = 0;
  /* Lakukan BFS ke seluruh vertek dlm G*/
   for (i = 0; i < n; i ++)
           if(visited[i] == 0) BFS(G,i);
```

BFS

Properti dan running time

- O(V+E)
- G=(V,E), bfs mencari seluruh vertek yg dapat di raih dari source s
- Untuk setiap vertek pada level I, path bfs tree antara s dan v mempunyai I edge dan selain path dlm G antara s dan v setidaknya mempunyai i edge
- Jika (u,v) adalah edge maka jumlah level u dan v di bedakan setidaknya satu tingkat
- Bfs menghitung seluruh jarak terpendek ke seluruh vertek yang dapat di raihnya.

Kegunaan BFS

- Memerikasa apakah graph terhubung
- menghitung spanning forest graph
- Menghitung, tiap vertex dlm graph, jalur dg jumlah edge minimum antara vertex awal dan current vertex atau ketiadaan path.
- Menghitung cycle dlm graph atau ketiadaan cycle.
- O(V + E).

```
void buildadjm(int adj[][MAX], int n) {
  int i,j;
  printf("enter adjacency matrix \n",i,j);
  for(i=0;i<n;i++)
     for(j=0;j<n;j++)
     scanf("%d",&adj[i][j]);
}</pre>
```

```
struct node *addqueue(struct node *p,int val) {
struct node *temp;
if(p == NULL) {
  p = (struct node *) malloc(sizeof(struct node));
   /* insert the new node first node*/
  if(p == NULL) { printf("Cannot allocate\n"); exit(0); }
  p->data = val; p->link=NULL;
} else {
  temp= p;
  while(temp->link != NULL) { temp = temp->link; }
  temp->link = (struct node*)malloc(sizeof(struct node));
  temp = temp->link;
  if(temp == NULL) { printf("Cannot allocate\n"); exit(0); }
  temp->data = val; temp->link = NULL;
return(p);
```

```
struct node *deleteq(struct node *p,int *val) {
struct node *temp;
 if(p == NULL) {
  printf("queue is empty\n");
  return (NULL);
 *val = p->data;
temp = p;
p = p->link;
free(temp);
return(p);
```

```
void bfs
 (int adj[][MAX],int x,int visited[],int n, struct node **p){
 int y, j, k;
 *p = addqueue(*p,x);
 do\{ *p = deleteq(*p,&y);
        if(visited[y] == 0){
           printf("\nnode visited = %d\t",y);
           visited[y] = 1;
           for (j=0; j<n; j++)
              if((adj[y][j] ==1) && (visited[j] == 0))
                   *p = addqueue(*p,j);
  }while((*p) != NULL);
```

Contoh pada Matrik 9X9

123456789

1 010010000

2 101100000

3 010000100

4 010011000

5 100100000

6 000100001

7 001000011

8 000000100

9 000001100

node visited = 0

node visited = 1

node visited = 4

node visited = 2

node visited = 3

node visited = 6

node visited = 5

node visited = 7

node visited = 8

Contoh lain

- Awal simpul adalah V1, dari graf G di bawah
- Kunjungan BFS menghasilkan :
- v1,v2,v5,v3,v4,v7,v6,v8,v9

Aplikasi bfs (connected component)

- Jika ada label yang elemennya sama berarti terdapat CC dan Sebaliknya
- BAGAIMANA KITA MEMBUATNYA ??

Aplikasi bfs (connected component)

- Inisialkan seluruh Vertek dlm G dengan 0
- Mulai dari sembarang vertek dengan nilai 0 dalam CC lalu lakukan bfs
- Cari vertek dg nilai 0 selanjutnya dan lakukan bfs lagi

Aplikasi bfs (connected component)

- Running Time = O(m+n)
- M= # edge
- N=scanning array untuk mecari CC
- Terdapat m saat kita melakukan bfs, sekaligus n saat melabeli CC dalam array

Aplikasi bfs (Bipartite graph)

Bipartite graph: undirected graph G = (V, E) dimana V dapat di bagi menjadi 2 himpunan V₁ dan V₂ sehingga (u, v) menyebabkan baik u ∈V₁ dan v ∈ V₂ atau u ∈ V₂ dan v ∈ V₁. Sehingga seluruh edge ada diantara 2 himpunan V₁ dan V₂.

Algoritma

```
ALGORITHM: BIPARTITE (G, S)
For each vertex U \in V[G] - \{s\} do
    Color[u] = WHITE
              d[u] = \infty
       partition[u] = 0
Color[s] = gray
   partition[s] = 1
   d[s] = 0
   Q = [s]
   While Queue 'Q' is not empty do
       u = head [Q]
       for each v in Adj[u] do
            if partition [u] = partition [v] then
                    return 0
            else
                if color[v] WHITE then
                    color[v] = gray
                    d[v] = d[u] + 1
                    partition[v] = 3 - partition[u]
                    ENQUEUE (Q, V)
   DEQUEUE (Q)
   Color[u] = BLACK
   Return 1
```

Bipartite Graph

- G=(V,E) undirected graph
- G adalah BG jika ada suatu partisi dari V ke dalam V,W
- sedemikian rupa sehingga
- Setiap edge memiliki satu end point dalam U dan lainnya dalam W

 $U \cap V = \emptyset$

contoh

Pencarian Mendalam (Depth First Search atau DFS).

- Traversal dimulai dari simpul v.
- Algoritma:
 - Kunjungi simpul v,
 - Kunjungi simpul w yang bertetangga dengan simpul v.
 - Ulangi DFS mulai dari simpul w.
 - Ketika mencapai simpul u sedemikian sehingga semua simpul yang bertetangga dengannya telah dikunjungi, pencarian dirunut-balik ke simpul terakhir yang dikunjungi sebelumnya dan mempunyai simpul w yang belum dikunjungi.
 - Pencarian berakhir bila tidak ada lagi simpul yang belum dikunjungi yang dapat dicapai dari simpul yang telah dikunjungi.

Representasi Array

- •Salah satu representasi graph adalah dengan matrik n^2 (matrik dengan n baris dan n kolom, artinya baris dan kolom berhubungan ke setiap vertex pada graph).
- •Jika ada edge dari v_i ke v_j maka entri dalam matrik dengan index baris sebagai v_i dan index kolom sebagai v_j yang di set ke 1 (adj[v_i , v_i] = 1, jika (v_i , v_i) adalah suatu edge dari graph G).
- •Jika e adalah total jumlah edge dalam graph, maka ada entri 2e yang di set ke 1, selama G adalah graph tak berarah.
- •Jika G adalah graph berarah, hanya entri e yang di set ke-1 dalam matrik keterhubungan.

Representasi Array

Representasi Linked List

Contoh Lain directed

0

Contoh Lain directed

$$6 \rightarrow |4$$

Contoh Lain directed

Performa

	Adjacency Matrix	Adjacency Linked List	Edge List
Memory Storage	O(V ²)	O(V+E)	O(V+E)
Check whether (u,v) is an edge	O(1)	O(deg(u))	O(deg(u))
Find all adjacent vertices of a vertex <i>u</i>	O(V)	O(deg(u))	O(deg(u))

deg(u): # edge terhubung dg vertex u

DFS Graph

- -Jika node ini putih maka explorasi node tersebut
- -Jumlah edge merah sama dengan n-1
- -Edge merah membentuk subgraf terhubung
- -Edge merah membentuk suatu tree (dfs tree)

Dfs tree

Egde tree

Back tree adalah Suatu edge dari node ke ancestornya

DFS menentukan setiap edge sebagai suatu tree atau back tree

Depth First Search

Properti tikus:

Tahu arah Memori node

Backtrack:

Kembali ke node sebelumnya yang sudah di kunjungi

Model Graph

DFS graph

Setiap kali kita mengunjungi node, perlu di catat dan di naikan nilai labelnya

Contoh lain Dfs graph

Edge yang terbentuk dari dfs ini Adalah n-1, n adalah node

Dfs tree

Garis biru adalah **tree edge**Garis merah putus adalah **back edge ?**

back edge: suatu edge dari node ke ancestor

Jadi DFS, mengklasifikasikan setiap edge seba TREE atau BACK EDGE

Implementasi dfs rekursif

- Stack dan rekursi
- Buat array, visited=1, not visited=0

```
V 0/1
DFS (v) {
  visited[v]=1; {source}
  for all w adj. to v do
        if !visited[w] then
                                                  Dfs(v)
           DFS(w)
                                                     dfs(x)
           Bagaimana kalo kita akan menghitung
                                                    dfs(y)
           Kunjungan pada tiap node?
```

Modifikasi dfs rekursif

- Buat 2 array utk menandai setiap edge
 - a(arrival), untuk a[v] adalah saat kunjungan vertek
 - d(departure), dan d[v] adal saat meninggalkan vertek
 - time untuk counter tiap kunjungan dan saat meninggalkan vertek

```
a;d;time=0;
DFS (v) {
    visited[v]=1; {source}
    a[v]=time++;
    for all w adj. to v do
        if !visited[w] then
            DFS(w); (v,w)=tree edge
    d[v]=time++;
}
```

Algoritma DFS iteratif

```
Dfs(v){
  P
  mark[v] \(\sigma\) visited; //boolean value
  P \leftarrow Push (v);
  While P≠Ø do{
        while (Ada vertek w yg mrp adj top P dan
                 mark[w] ≠visited) do {
                 mark[w] \leftarrow visited;
                 P \leftarrow push(w);
  pop(P);
```

Contoh dengan stack iteratif

Anak root kiri

Anak root kanan

Stack yang tebentuk

Operation	Adjacent Vertic	es Discovery (Visit) Order	Finish Order		
Visit 0	1, 2, 3, 4	0			
Visit 1	0, 3, 4	0, 1			
Visit 3	0, 1, 4	0, 1, 3			
Visit 4	0, 1, 3	0, 1, 3, 4			
Finish 4	Masuk stack		4 stack		
Finish 3	Masuk stack		4,3 stack		
Finish 1	Masuk stack	>	4, 3, 1 stack		
Visit 2	0, 5, 6	0, 1, 3, 4, 2			
Visit 5	2, 6	0, 1, 3, 4, 2, 5			
Visit 6	2, 5	0, 1, 3, 4, 2, 5, 6	V		
Finish 6	Masuk stack		4, 3, 1, 6		
Finish 5	Masuk stack	>	4, 3, 1, 6, 5		
Finish 2	Masuk stack		4, 3, 1, 6, 5, 2		
Finish 0	Masuk stack	<u>-</u>	4, 3, 1, 6, 5, 2, 0		

Lanjutan

Garis putus adalah Back edge

Algoritma DFS dg matrik

```
void buildadjm(int adj[][max], int n)
 int i, j;
 for(i=0;i<n;i++)
   for (j=0; j< n; j++) {
    printf ("Masukan 1 jika ada edge
            dari %d ke %d, kalau tidak
            0 \ n'', i, j);
    scanf("%d", &adj[i][j]);
```

Algoritma DFS dg matrik

Contoh

Input

	0	1	2	3	4	5	6	7	8
0	0	1	0	0	1	0	0	0	0
1	1	0	1	1	0	0	0	0	0
2	0	1	0	0	0	0	1	0	0
3	0	1	0	0	1	1	0	0	0
4	1	0	0	1	0	0	0	0	0
5	0	0	0	1	0	0	0	0	1
6	0	0	1	0	0	0	0	0	1
7	0	0	0	0	0	0	1	0	1
8	0	0	0	0	0	1	1	0	0

Output

0, 1, 2, 6, 8, 5, 3, 4, 7

source

<u>simulasi</u>

Gambarkan Graph yang mungkin dg algoritma DFS?

Contoh Lain

- Kunjungan Awal vertex 0
- Hasilnya
 - -012678534
 - -043586721

Transformasikan ke dalam Matrik ?

Analisis DFS

- **Jika** graph G di aplikasikan dengan depth-first search (dfs) yang di representasikan dengan list keterhubungan, maka vertek y yang berhubungan ke x dapat di tentukan dengan list keterhubungan dari setiap vertek yang berhubungan.
- Dengan demikian pencarian for loop untuk vertek keterhubungan memiliki total cost $d_1 + d_2 + ... + d_n$, dimana d_i adalah derajat vertek v_i , karena jumlah node dalam list keterhubungan dari vertek v_i adalah d_i .

Analisis DFS

- Jika graph G memiliki vertek n dan edge e, maka jumlah derajat tiap vertek $(d_1 + d_2 + ... + d_n)$ adalah 2e. Dengan demikian, ada total 2e node list dalam list keterhubungan G . Jika G adalah directed graph, maka jumlah total e adalah node list saja.
- Waktu tempuh yang di perlukan untuk melakukan pencarian secara lengkap adalah O(e), dengan n <= e. Jika menggunakan matrik keterhubungan untuk merepresentasikan graph G, maka waktu tempuh untuk menentukan seluruh vertek adalah O(n), dan karena seluruh vertek di kunjungi, maka total waktunya adalah $O(n^2)$.

Soal

- Cari Edge Tree, Back Edge dan gambarkan dfs tree
- Labeli setiap edge/node berurutan abjad
- Buatlah matrik keterhubungannya

solusi

Problem: Finding Area

Cari area
 yang dapat
 ditemukan
 dari A.

Aplikasi dfs pd directed graph strongly connected

1. If dfs(v) visit all vertek dalam G, then ∃ path dari v ke setiap vertek dalam G

2. ∃ path dari setiap vertek dalam G ke v

Misal ini benar

Jadi 1+2 = strongly connected, kenapa?

Karena jika ada vertek x, y, maka dari x→v→y

(2)

(1)ad yang di perlukan adalah meyakinkan Ada suatu <u>PATH</u> dari v ke setiap vertek di G

Bagaimana melihat bahwa ada path dari setiap vertek dari v dalam G

G Reverse edge GR

Procedurenya : Ambil vertek dalam G

Lakukan dfs (v)

Reverse G

Lakukan dfs(v) dalam GR

Lakukan dfs(v)

If seluruh vertek telah di kunjungi maka Mengakibatkan di dalam G ada path

GR

Dari setiap vertek ke v

If seluruh vertek telah dikunjungi dengan dfs dalam G dan G^R
Maka G adalah **strongly connected** else G **bukan strongly connected**

Cara lain melihat strongly connected pada G

```
dfsSC(v) {
    a[v]=time++; visited[v]=1;
    mini=a[v];
    for all w adj to v do
        if !visited[w] then
            mini=min(mini,dfsSc(w))
        else mini=min(mini,a[w])
    if mini==a[v] then STOP {not strongly connected}
}
```

Aplikasi dfs dan bfs dalam G

- strongly connected (dfs dir.)
- Memeriksa acyclic dalam G (dfs dir.)
- Topologi SORT (dfs dir.)
- 2 edge connectivity (dfs undir.)
- Connected component (bfs undir)
- Bipartite graph (bfs undir)
- Semuanya berada dalam order linear

Tugas Simulasi

- Buat Simulasi Algoritma DFS dan BFS
- Hitung Order Fungsi dan kompleksitasnya
- Presentasikan