### **Data Communication**

**Analog to Digital Conversion** 

### **ANALOG TO DIGITAL CONVERSION**

• A digital signal is superior to an analog signal because it is more robust to noise and can easily be recovered, corrected and amplified.

- Therefore, the tendency today is to convert an analog signal to digital data. conversion technique.
- Pulse code modulation (PCM) is considered as the most common conversion technique.

## Pulse Code Modulation (PCM)

PCM consists of three steps to digitize an analog signal:

#### Sampling

- Converts signal into discrete format over time.
- ✓ The sampled signals can be generated without distortion.

#### Quantization

- Transforms signal discrete in amplitude.
- ✓ Efficient quantization process uses minimum number of bits subject to limited distortion.

## **Pulse Code Modulation (PCM)**

#### **Encoding**

- Compresses digital data and eliminates redundant information.
- ✓ Does not cause distortion.

# **Pulse Code Modulation (PCM)**

- Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.
- Filtering should ensure that we do not distort the signal, i.e remove high frequency components that affect the signal shape.



### **SAMPLING**

- Analog signal is sampled every  $T_s$  secs.
- $T_S$  is referred to as the sampling interval.
- $f_s = \frac{1}{T_s}$  is called the sampling rate or sampling frequency.

There are 3 sampling methods:

Ideal - an impulse at each sampling instant

Natural - a pulse of short width with varying amplitude

**Flattop** - sample and hold, like natural but with single amplitude value

The process is referred to as **pulse amplitude modulation (PAM)** and the outcome is a signal with analog (non integer) values

### **SAMPLING**





a. Ideal sampling

b. Natural sampling



c. Flat-top sampling

### **SAMPLING**

 According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal.



## **NYQUIST RATE**



For an intuitive example of the Nyquist theorem, let us sample a sine wave at three sampling rates:  $f_s = 4f$  (2 times the Nyquist rate),  $f_s = 2f$  (Nyquist rate), and  $f_s = f$  (one-half the Nyquist rate).

### **NYQUIST RATE**

c. Undersampling:  $f_{\epsilon} = f$ 

It can be seen that sampling at the Nyquist rate can create a good approximation of the original sine wave (part a).

Oversampling in part b can also create the same approximation.

Sampling below the Nyquist rate (part c) does not produce a signal that looks like the original sine wave.



Telephone companies digitize voice by assuming a maximum frequency of 4000 Hz. The sampling rate therefore is 8000 samples per second.

### MATHEMATICAL PROBLEMS

Q1: A complex bandpass signal has a bandwidth of 200 kHz. What is the minimum sampling rate for this signal?

#### **Solution:**

We cannot find the minimum sampling rate in this case because we do not know where the bandwidth starts or ends. Because the maximum frequency in the signal is unknown.

### MATHEMATICAL PROBLEMS

Q2: A complex low-pass signal has a bandwidth of 200 kHz. What is the minimum sampling rate for this signal?

## **MATHEMATICAL PROBLEMS**

**Q3:** A signal,  $x(t) = \sin(2\pi 20t) + \sin(2\pi 50t) + \sin(2\pi 100t)$  is given. For successful reconstruction of the signal, what should be the minimum sampling frequency?

#### **Solution:**

In this mathematical problem, the existing frequencies are  $f_1 = 20Hz$ ,  $f_2 = 50Hz$  and  $f_3 = 100Hz$ . Thus,  $f_m = 100Hz$ .

According to Nyquist theorem,  $f_s = 2 \times f_m = 200 \text{ Hz}$ Therefore, minimum allowable sampling frequency for the

## Quantization

 Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.

 The amplitude values are infinite between the two limits.

 We need to map the *infinite* amplitude values onto a finite set of known values.

## Quantization

• This is achieved by dividing the distance between min and max into L zones, each of height  $\Delta$ .

Δ = (max - min)/L
 The midpoint of each zone is assigned a value from 0 to L-1 (resulting in L values)

• Each sample falling in a zone is then approximated to the value of the midpoint.

## **Quantizing an Analog Signal**





# **Quantizing an Analog Signal**





## **Quantizing an Analog Signal**



# **Quantization** Zones

- Assume we have a voltage signal with amplitudes  $V_{min}$ =-20V and  $V_{max}$ =+20V.
- We want to use L=8 quantization levels. Zone width  $\Delta = (20 -20)/8 = 5$
- The 8 zones are: -20 to -15, -15 to -10, -10 to -5, -5 to 0, 0 to +5, +5 to +10, +10 to +15, +15 to +20
- The midpoints are: -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5

## **Assigning Codes to Zones: Encoding**

- Each zone is then assigned a binary code.
- The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows:

$$n_b = \log_2 L$$

- Given our example,  $n_h = 3$
- The 8 zone (or level) codes are therefore: 000, 001, 010, 011, 100, 101, 110, and 111
- Assigning codes to zones:
  - 000 will refer to zone -20 to -15
  - 001 to zone -15 to -10, etc.

```
* n = log2L
* L= 2^n
```

## **Quantization Error**

- The difference between actual and coded value (midpoint) is referred to as the quantization error.
- The more zones, the smaller  $\Delta$  which results in smaller errors.
- But, the more zones the more bits required to encode the samples -> higher bit rate

## **PCM Decoder**

- To recover an analog signal from a digitized signal we follow the following steps:
  - We use a hold circuit that holds the amplitude value of a pulse till the next pulse arrives.
  - We pass this signal through a low pass filter with a cutoff frequency that is equal to the highest frequency in the pre-sampled signal.
- The higher the value of L, the less distorted a signal is recovered.



Figure 4.27 Components of a PCM decoder