WHAT IS CLAIMED IS:

1	1. A process for minimizing energy consumption during the		
2	production of polyethylene terephthalate where amorphous pellets are crystallized		
3	at elevated temperature and subsequently introduced into a solid state polymerization		
4	reactor, comprising		
5	removing heat from hot pellets from the solid state polymerization		
6	reactor, transferring heat removed to heat cool pellets which constitute a feed to a		
7	crystallizer.		
1	2. The process of claim 1, wherein a heat exchanger is		
2	employed, wherein hot pellets exiting a solid state polymerization reactor are		
3	introduced into a cooling zone of a first heat exchanger and cool pellets to be		
4	introduced into a crystallizer are introduced into a heating zone of a second heat		
5	exchanger, heat removed from hot pellets in said first heat exchanger supplied to		
6	said second heat exchanger.		
1	3. The process of claim 2 wherein said first heat exchanger and		
2	said second heat exchanger are physically located in one device.		
1	4. The process of claim 2, wherein said heat exchanger is a		
2	direct contact heat exchanger.		
1	5. The process of claim 2, wherein said heat exchanger is a		
2	plate-plate heat exchanger.		
1	6. The process of claim 2, wherein said heat exchanger is a plate		
2	and shell heat exchanger.		
1	7. The process of claim 2, wherein pellet flow in at least one		
2	portion of said heat exchanger is accompanied with a concurrent or countercurrent		
3	flow of gas.		

1	8.	The process of claim 2, wherein said heat exchanger is a	
2	remote contact heat exchanger.		
1	9.	The process of claim 2, wherein said heat exchanger	
2	comprises a heating zone located remote from a cooling zone, and heat is transferred		
3	from said cooling zo	one to said heating zone by means of a fluid.	
1	10.	The process of claim 9, wherein said fluid is a gas which	
2	traverses said heating zone and said cooling zone in a closed loop.		
1	11.	The process of claim 10, wherein cooled pellets are	
2	mechanically separated from heated gas in or after a cooling zone and said heated		
3	gas entrains cool pellets in or before a heating zone.		
1	12.	The process of claim 10, wherein said heat exchanger	
2	comprises a continue	ous loop of piping through which said gas is circulated.	
1	13.	The process of claim 12, wherein said continuous loop of	
2	piping has contained therein or is interrupted by at least one pellet separator which		
3	separates pellets from flowing gas.		
1	14.	The process of claim 9, wherein hot pellets are cooled by a	
2		uidized or agitated bed, and the stream of gas is directed to a	
3	further fluidized bed in which cool pellets are heated by said gas.		
1	15.	The process of claim 14, wherein said stream of gas and said	
2	fluidized beds consti	tute a continuous loop through which said gas is circulated.	
1	16.	The process of claim 1, wherein a portion of heat removed	
2	from pellets exiting	the solid state polymerization reactor is used to heat pellets	
3	exiting a crystallizer prior to their entry into a solid state polymerization reactor,		
4	and a remaining portion of said heat removed is used to heat pellets prior to entry		
5	into said crystallizer.		