Chamber filler profiles of recycled plastic material for vibration damping and/or electric insulation of rail tracks are provided with a water-tight coating or cover

Patent number:

DE19940483

Publication date:

2001-03-01

Inventor:

POEPPEL RAINER (DE)

Applicant:

BERLEBURGER SCHAUMSTOFFWERK (DE)

Classification:

- international:

E01B19/00; E01B21/02; E01B19/00; E01B21/00;

(IPC1-7): E01B19/00; E01B21/02

- european:

E01B19/00A; E01B21/02

Application number: DE19991040483 19990826 Priority number(s): DE19991040483 19990826

Report a data error here

Abstract of **DE19940483**

The chamber filler profiles (5, 6) of recycled plastic material for vibration damping and/or electric insulation of rail tracks are provided with a watertight coating or cover (7).

Data supplied from the **esp@cenet** database - Worldwide

(9) BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 199 40 483 A 1

(5) Int. Cl.⁷: **E 01 B 19/00** E 01 B 21/02

DEUTSCHES
PATENT- UND
MARKENAMT

Aktenzeichen:

199 40 483.6

② Anmeldetag:

26. 8. 1999

43 Offenlegungstag:

1. 3. 2001

(1) Anmelder:

Berleburger Schaumstoffwerk GmbH, 57319 Bad Berleburg, DE

(4) Vertreter:

Solms, J., Dipl.-Ing., Pat.-Anw., 57074 Siegen

② Erfinder:

Pöppel, Rainer, 57319 Bad Berleburg, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (A) Kammerfüllprofil für Gleise
- Tur Schwingungsdämpfung und elektrischen Isolation von Gleisen für Schienenfahrzeuge wird ein Kammerfüllprofil (5, 6) vorgeschlagen, das aus einem gepreßten, mit einem Bindemittel vermischten Granulat aus recyceltem Kunststoff besteht und von einer wasserdichten Beschichtung bzw. Ummantelung umgeben ist. Durch die wasserdichte Beschichtung bzw. Ummantelung wird die Wasseraufnahmefähigkeit des gepreßten Kunststoffgranulates so weit abgesenkt, daß keine durch den abgeleiteten Strom des Schienenfahrzeuges verursachten Kriech- bzw. Streuströme mehr auftreten, die zu Korrosionserscheinungen an der Schiene oder in Schienennähe befindlichen Stahlarmaturen führen können.

Beschreibung

Die Erfindung betrifft Kammerfüllprofile aus recyceltem Kunststoff zur Schwingungsdämpfung und/oder elektrischen Isolation von Gleisen für Schienenfahrzeuge sowie 5 ein Verfahren zu deren Herstellung.

Sogenannte Kammerfüllprofile für Gleisanlagen werden in erster Linie zur Vibrationsdämpfung und damit zur Verringerung des abgestrahlten Schallpegels verwendet. Die aus recyceltem, gepreßtem Kunststoffgranulat bestehenden 10 Profile werden seitlich, ggfs. auch unterhalb der Schienen in deren Längsrichtung verlegt und können durch ihre elastische Verformung die auftretenden Vibrationen und bleibende Verformung aufnehmen, so daß entsprechende Schallemissionen verringert werden. Insbesondere bei 15 Gleisanlagen wie z. B. für Straßenbahnen, die durch dicht besiedelte Gebiete und Innenstädte führen, werden derartige schalldämmende Profile verwendet.

Die Kammerfüllprofile können unterschiedliche geometrische Gestaltung aufweisen, wobei sie an die jeweils ver- 20 wendeten Rillen- oder Kopfschienen angepaßt und in deren seitliche, längs verlaufende nutförmige Aussparungen (Kammern) eingesetzt werden. Sie können dort ggfs. verklebt oder mit entsprechenden Halteeinrichtungen befestigt werden. Als Vergußmasse, der den oberen Abschluß zum 25 Pflaster, Asphalt oder Beton bildet, wird ein üblicher Fugenverguß beispielsweise auf Bitumenbasis verwendet.

Als weiterer Vorteil der Kammerfüllprofile hat sich ihre elektrisch isolierende Eigenschaft herausgestellt. Bei stromangetriebenen Gleisfahrzeugen wie Straßenbahnen wird 30 der von der Oberleitung über Kontakte abgenommene Strom nach Durchgang durch die elektrischen Antriebsaggregate über die Räder in die Gleise abgeleitet. Dabei kommt es zum Auftreten von sogenannten Streu- oder Kriechströmen, die im gleisnahen Bodenbereich vagabun- 35 dieren und aufgrund elektrochemischer Prozesse zu einer verstärkten Korrosion von Stahlarmaturen führen, die im gleisnahen Bereich im Erdboden verankert sind. Diese elektrochemische Korrosion kann dazu führen, daß beispielsweise Ampelmasten, Masten für Straßenlaternen und der- 40 gleichen bereits nach wenigen Jahren im Verankerungsbereich im Boden bereits so stark verrostet sind, daß die Standsicherheit u. U. nicht mehr gegeben ist. Besonders nachteilig ist hierbei, daß der Korrosionszustand nicht überprüft werden kann und somit eine erhebliche Gefährdung auch für 45 den Schienenverkehr selber besteht. Auch die Schienen selber korrodieren verstärkt durch den Einfluß der Streuströme.

Die Abschirmung der auftretenden Streuströme gelingt mit den bekannten Kammerfüllprofilen jedoch nur unvollständig, da der gepreßte Granulatkörper der Kammerfüll- 50 profile aufgrund der vorhandenen Poren eine nicht unbeträchtliche Wasseraufnahmefähigkeit hat, die etwa bei 10% des Eigengewichtes der Kammerfüllprofile liegt.

Aufgrund der hervorragenden elektrischen Leitfähigkeit Kunststoffbarriere durchdringen und zu den erwähnten Korrosionsschäden führen.

Der Erfindung liegt die Aufgabe zugrunde, ein Kammerfüllprofil zu schaffen, das verbesserte Isoliereigenschaften bzgl. der abgeleiteten Ströme aufweist.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die gepreßten Kunststoffprofile eine wasserdichte Beschichtung bzw. Ummantelung aufweisen.

Aufgrund der wasserdichten Ummantelung wird das Eindringen von Feuchtigkeit in die Kammerfüllprofile verhin- 65 dert, so daß als Sekundäreffekt eine Barriere entsteht, die für Strom undurchlässig ist und somit eine seitliche Isolierung besteht, die das Auftreten von Streu- und Kriechströmen

wirksam verhindert.

Die handelsüblichen Kammerfüllprofile bestehen aus recyceltem Kunststoffgranulat, das z. B. Polyethylen, Ethylvenylacetat, Polyvenylchlorid oder Gummi enthalten kann. Die unterschiedlichen Kornfraktionen des Granulates werden mit einem ein- oder zweikomponentigen Bindemittel, vorzugsweise Polyurethan, vermischt und in einem Formennest unter Druck verpreßt, so daß sich ein formbeständiges Profil ergibt. Dieses Profil kann nun im Prinzip in einem zusätzlichen Arbeitsgang mit einer wasserdichten Beschichtung versehen werden, die z. B. durch Tauchen oder Aufspritzen aufgebracht wird.

Vorzugsweise werden die Kunststoffprofile jedoch mittels einer Polyurethanfolie ummantelt, die in das Formennest eingelegt werden kann, so daß kein zusätzlicher Arbeitsgang erforderlich ist. Die Schichtdicke der eingelegten Folie beträgt vorzugsweise 25 µm, wobei ihre Dehnungs- und Reißfestigkeitswerte so gewählt sind, daß beim Preßvorgang bzw. der späteren Verwendung keine Risse oder Ablösungen auftreten.

Dieses Ziel wird auch dadurch erreicht, daß als Folie ein Material verwendet wird, das mit dem Bindemittel für das Kunststoffgranulat reagieren kann, so daß eine chemischphysikalische Verklammerung der Ummantelung erfolgt, die ein andauerndes Haften der Folie am Kammerfüllprofil bewirkt.

Bei der Herstellung der ummantelten Kammerfüllprofile wird, wie bereits erwähnt, zunächst das Formennest derart ausgelegt, daß die Folie seitlich und kopfseitig übersteht. In das ausgelegte Formennest wird nun das mit dem entsprechenden Bindemittel vermischte Granulat eingefüllt und die überstehenden Ränder der Folie zur Abdeckung des Profiles umgeschlagen. Nach dem anschließenden Preßvorgang mit Hilfe eines Preßstempels wird das verfestigte und verklebte Profil aus dem Formennest entnommen, wobei ggfs. überstehende Folienränder durch Abschneiden entfernt werden.

Die Wasseraufnahme derart ummantelter Kammerfüllprofile lag bei Langzeitversuchen bei etwa 0,006 Gew.-%. Diese geringfügige Wasseraufnahme ist durch die Diffusionsfähigkeit der verwendeten Polyurethanfolie gegenüber Wasser erklärbar, wobei eine derart geringe Wasseraufnahme nicht zu einer Verschlechterung der elektrischen Isolationsfähigkeit führt.

Es sei erwähnt, daß neben Polyurethanfolie bzw. Polyurethan als Bindemittel auch andere Bindemittel und Folienmaterialien vorstellbar sind. Beispielsweise kommen hier Kunststoffe auf Acrylatbasis in Frage.

Die Erfindung ist in der Zeichnung beispielsweise veranschaulicht und wird im nachfolgenden anhand der Zeichnung im einzelnen erläutert.

Die Zeichnung zeigt in einem Schnitt eine Rillenschiene 1 für Straßenbahnen, die mittels seitlicher Befestigungselemente auf einem Gleisunterbau befestigt ist.

In den rechts und links zum Mittelsteg 2 der Schiene 1 in von Wasser können daher die abgeleiteten Elektronen die 55 Längsrichtung verlaufenden Kammern 3, 4 sind Kammerfüllprofile 5, 6 eingelegt, die aus einem gepreßten Kunststoffgranulat mit einem PU-Bindemittel bestehen.

> Das Kammerfüllprofil 5, 6 ist jeweils von einer PU-Folie 7 umgeben, die eine Wandstärke von 25 µm aufweist.

> Beidseitig zu den Kammerfüllprofilen 5, 6 erstreckt sich eine Kies- oder Sandschicht 8, die als Abschluß ein oberes Pflaster 9 trägt. Die Fuge zwischen Pflaster 9 und dem Kopf der Rillenschiene 1 ist mit einer Bitumenmasse 10 ausgegossen.

> Die Länge der Kammerfüllprofile 5, 6 ist so gewählt, daß sie paßgenau zwischen zwei benachbarten Spurstangen, die zur Aufrechterhaltung der Spurparallelität im Abstand von üblicherweise 1,5 m die Schienen verbinden, eingesetzt

4

werden können.

Kammerfüllprofil für Gleise

Bezugszeichenliste	5
Rillenschiene	
2 Mittelsteg	
3 Kammer	
Kammer	10
Kammerfüllprofil	
Kammerfüllprofil	
PU-Folie	
Kiesschicht Kiesschicht	
Pflaster Pflaster	15
0 Bitumenmasse	

Patentansprüche

- 1. Kammerfüllprofil aus recyceltem Kunststoff zur 20 Schwingungsdämpfung und/oder elektrischen Isolation von Gleisen für Schienenfahrzeuge, wobei die Profile (5, 6) seitlich oder unterhalb der Gleise (1) in deren Längsrichtung angeordnet sind und eine wasserdichte Beschichtung bzw. Ummantelung (7) aufwei- 25
- 2. Kammerfüllprofil nach Anspruch 1, dadurch gekennzeichnet, daß die Profile (5, 6) aus mit Polyurethan (PU) gebundenen Elastomeren wie Polyethylen (PE), Ethylvenylacetat (EVA), Polyvenylchlorid (PVC) oder 30 Gummi oder Mischungen derartiger Kunststoffe bestehen und die wasserdichte Beschichtung bzw. Ummantelung (7) aus einer Polyurethanfolie besteht.
- 3. Kammerfüllprofil nach Anspruch 2, dadurch gekennzeichnet, daß das Bindemittel aus einem ein- oder 35 zweikomponentigem Polyurethan besteht.
- 4. Kammerfüllprofil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Profile (5, 6) als Preßkörper ausgebildet sind.
- 5. Kammerfüllprofil nach einem der Ansprüche 1 bis 40 4, dadurch gekennzeichnet, daß die Beschichtung bzw. Ummantelung (7) eine Schichtdicke zwischen 20 und 50 µm aufweist.
- 6. Verfahren zur Herstellung der Kammerfüllprofile gemäß einem der Ansprüche 1 bis 5, gekennzeichnet 45 durch folgende Verfahrensschritte:
 - a) Auslegen eines Formennestes mit einer PU-Folie,
 - b) Befüllen des ausgelegten Formennestes mit einem mit einem Bindemittel aus PU vermischten 50 Kunststoffgranulat aus recyceltem Kunststoff,
 - c) Abdecken der Oberseite des eingefüllten Granulats mit den überstehenden Seiten der eingelegten PU-Folie,
 - d) Verpressen des ummantelten Kunststoffgranu- 55
 - e) Entfernen des verpreßten Profiles aus dem Formennest.
- 7. Verfahren zur Herstellung der Kammerfüllprofile gemäß Anspruch 6, dadurch gekennzeichnet, daß als 60 Beschichtungs- bzw. Ummantelungsmaterial ein Kunststoff verwendet wird, der mit dem Bindemittel für das Kunststoffgranulat zur Erzeugung einer Oberflächenverbindung reagiert oder mit dem Bindemittel identisch ist.

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 40 483 A1 E 01 B 19/00 1. März 2001

