HW3-Exercise 5

Zining Fan(zf2234), Mutian Wang(mw3386), Siyuan Wang(sw3418)

1.

1)

The scatterplot of data pollution with 16 variables.

Scatterplot of Pollution

2)

The scatterplot which shows the association of mortality with weather.

Association of Mortality with Weather

In the plot, we include 4 varibales about weather.

- 1) prec: Average annual precipitation in inches
- 2) jant: Average January temperature in degrees F
- 3) jult: Average July temperature in degrees F
- 4) humid: Annual average percentage relative humidity at 1pm

From the plot above, we could find that:

- 1) The temperature in January and July are highly positive correlated.
- 2) The mortality is not strongly related to the weather.
- 3) The data points in the plots at the bottom seems random.
- 4) There are outliers in the data.

3)

The scatterplot which shows the association of mortality social factors.

Association of Mortality with Social Factors

In the plot, we include 8 varibales about social factors.

- 1) ovr95: Percentage of 1960 SMSA population aged 65 or older
- 2) popn: Average household size
- 3) educ: Median school years completed by those over 22
- 4) hous: percentage of housing units which are sound and with all facilities
- 5) dens: Population per square mile in urbanized areas, 1960
- 6) nonw: Percentage non-white population in urbanized areas, 1960
- 7) wwdrk: Percentage employed in white collar occupations
- 8) poor: Percentage of families with income < 3000 dollars

From the plot above, we could find that:

- 1) The mortality is not strongly related to the social factors.
- 2) There are some outliers within the data.

4)

The scatterplot which shows the association of mortality with pollution measures.

Association of Mortality with Pollution Measures

In the plot, we include 3 varibales about pullution measures.

- 1) hc: Relative hydrocarbon pollution potential
- 2) nox: Relative nitric oxides pollution potential
- 3) so: Relative sulphur dioxide pollution potential

From the plot above, we could find that:

- 1) We might transform the variable mortality to move the data points from bottom to the center of the scatter plot.
- 2) The sulphur dioxide pollution is positively related with mortality.
- 3) We might transform variables hydrocarbon and nitric oxides to move the datapoints from corner to center.

2.

1)

This model includes all the variables,

summary(fit1)

```
##
  glm(formula = log(mort) ~ prec + jant + jult + ovr95 + popn +
##
##
      educ + nonw + hc + nox, data = pollution)
##
## Deviance Residuals:
##
        Min
                          Median
                                        3Q
                                                  Max
## -0.078122 -0.023591
                        0.002894
                                   0.017840
                                             0.075813
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
                        0.3513514 22.624 < 2e-16 ***
## (Intercept)
               7.9491203
## prec
               0.0021323
                         0.0008821
                                    2.417 0.019332 *
              -0.0026029
                         0.0007329
                                   -3.552 0.000846 ***
## jant
## jult
              -0.0035889
                         0.0014719
                                   -2.438 0.018353 *
## ovr95
```

```
## popn
               -0.1571025
                           0.0629750
                                       -2.495 0.015956 *
  educ
               -0.0248652
                           0.0074400
                                       -3.342 0.001580 **
##
## nonw
                0.0049152
                            0.0010208
                                        4.815
                                               1.4e-05 ***
               -0.0009916
                            0.0003363
                                       -2.948 0.004847 **
## hc
##
  nox
                0.0020210
                            0.0006421
                                        3.147 0.002777 **
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
##
   (Dispersion parameter for gaussian family taken to be 0.001228892)
##
##
       Null deviance: 0.259349
                                 on 59
                                        degrees of freedom
## Residual deviance: 0.061445
                                 on 50
                                        degrees of freedom
  AIC: -220.77
##
## Number of Fisher Scoring iterations: 2
```

plot.glm.diag(fit1)

From the results above, we could see that:

- 1) Not all the variables are needed.
- 2) The most important variables are: jant, nonw, educ, hc, nox.
- 3) This model seems satisfies the random residuals assumption.

2)

This model only include variables about pollution measures: hc,nox,so.

summary(fit2)

##

```
## Call:
## glm(formula = log(mort) ~ hc + nox, data = pollution)
##
## Deviance Residuals:
##
          Min
                               Median
                                                3Q
                                                            Max
   -0.117765
               -0.035629
                             0.000526
                                          0.038709
                                                      0.154534
##
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                              0.0084081 812.561 < 2e-16 ***
##
   (Intercept)
                 6.8320999
                 -0.0022966
                              0.0004358
                                           -5.270 2.17e-06 ***
                              0.0008651
                                            5.049 4.86e-06 ***
                  0.0043678
##
##
                     0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## (Dispersion parameter for gaussian family taken to be 0.003038591)
##
##
       Null deviance: 0.25935
                                   on 59
                                           degrees of freedom
## Residual deviance: 0.17320
                                  on 57 degrees of freedom
   AIC: -172.59
##
## Number of Fisher Scoring iterations: 2
plot.glm.diag(fit2)
                                                  Quantiles of standard normal
Residuals
     0
                                                        0
     ņ
                                                        ņ
                 6.80 6.85 6.90
                                                                -2
                                                                             0
                                                                                    1
                                                                                          2
           6.75
                                   6.95
                    Linear predictor
                                                                 Ordered deviance residuals
                                                       0.8
Cook statistic
                                                  Cook statistic
     0.4
                                                       4.0
                                                                                  0
     0.0
                                                        0.0
                   1.0
                            2.0
                                      3.0
         0.0
                                                             0
                                                                  10
                                                                       20
                                                                            30
                                                                                  40
                                                                                       50
                                                                                             60
                       h/(1-h)
                                                                           Case
```

From the results above, we could see that: This model is not apropriate for this problem.

3)

This model includes all the variables except those about pollution measures,

summary(fit3)

```
##
## Call:
## glm(formula = log(mort) ~ prec + jant + jult + popn + educ +
##
      dens + nonw, data = pollution)
##
## Deviance Residuals:
##
        Min
                    1Q
                           Median
                                         3Q
## -0.081625 -0.021889 -0.001382
                                   0.021198
                                              0.078037
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.495e+00 2.450e-01 30.588 < 2e-16 ***
## prec
              1.436e-03 6.446e-04 2.227 0.030290 *
## jant
              -2.423e-03 6.462e-04 -3.749 0.000447 ***
              -2.928e-03 1.357e-03 -2.158 0.035561 *
## jult
## popn
              -8.240e-02 5.150e-02 -1.600 0.115617
             -2.115e-02 7.548e-03 -2.802 0.007125 **
## educ
              5.767e-06 3.788e-06 1.523 0.133906
## dens
## nonw
              6.307e-03 8.560e-04
                                    7.368 1.28e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.001385035)
##
##
      Null deviance: 0.259349 on 59 degrees of freedom
## Residual deviance: 0.072022 on 52 degrees of freedom
## AIC: -215.24
## Number of Fisher Scoring iterations: 2
plot.glm.diag(fit3)
```


0

10

20

30

Case

40

50

60

From the results above, we could see that:

0.1

1) This model seems satisfies the random residuals assumption.

h/(1-h)

0.5

0.7

2) This model is reasonable for this problem.

0.3

3.

pairs(resid(lm(cbind(log(mort),hc,nox,so)~.,data=pollution)))

From the plot above, we could see that:

- 1) Log mort is not positively correlated with the pollution variables.
- 2) Variable hc and noc are highly correlated.
- 3) There are outliers.

4.

```
rfit <- lm.ridge(mort~.-hc-nox,data=pollution,lambda=seq(0,20,0.01))
plot(rfit)</pre>
```


select(rfit)

```
## modified HKB estimator is 4.116757
## modified L-W estimator is 4.659869
## smallest value of GCV at 6.27
```

From the plot above, we could see that:

- 1) Some coefficients are about 0 no matter what value λ is, which means these variables are not needed.
- 2) All the variables go to 0 when λ increases, which makes sense for ridge regression.

5.

1) least trimmed squares regression

```
tfit <- ltsReg(mort~.-hc-nox,data=pollution,lambda=seq(0,20,0.01))
plot(tfit)</pre>
```

Normal Q-Q Plot

Residuals vs Fitted

Regression Diagnostic Plot

summary(tfit)

```
##
## Call:
## ltsReg.formula(formula = mort ~ . - hc - nox, data = pollution,
## lambda = seq(0, 20, 0.01))
##
```

```
## Residuals (from reweighted LS):
##
                 10
       Min
                     Median
                                   3Q
                                           Max
## -57.5390 -12.9518 -0.7345 12.3532 69.5978
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## Intercept 1.527e+03 3.759e+02
                                  4.064 0.000207 ***
             2.959e+00 7.241e-01
## prec
                                  4.087 0.000193 ***
## jant
            -1.904e+00 8.000e-01 -2.380 0.021918 *
## jult
            -1.777e+00 1.499e+00 -1.186 0.242362
## ovr95
            -1.667e+01 6.695e+00 -2.490 0.016812 *
            -1.010e+02 5.678e+01
## popn
                                   -1.778 0.082629
## educ
             6.383e-01 9.993e+00
                                   0.064 0.949371
## hous
            -1.547e+00 1.658e+00 -0.933 0.356078
            1.626e-02 4.189e-03
## dens
                                    3.882 0.000360 ***
## nonw
             6.569e-01 1.129e+00
                                    0.582 0.563718
## wwdrk
            -1.305e+00 1.323e+00
                                   -0.986 0.329784
## poor
             3.866e+00 2.899e+00
                                    1.334 0.189524
## so
             2.719e-01 8.096e-02
                                    3.359 0.001674 **
## humid
             2.462e-01 8.852e-01
                                    0.278 0.782316
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.71 on 42 degrees of freedom
## Multiple R-Squared: 0.8042, Adjusted R-squared: 0.7436
## F-statistic: 13.27 on 13 and 42 DF, p-value: 6.116e-11
```

From the results above, we could see that:

- 1) The most important variables are prec, jant, dens and so, which is different from the results above.
- 2) This model is very plausible.

2) robust M-estimation

```
mfit <- rlm(mort~.-hc-nox,data=pollution,lambda=seq(0,20,0.01))
## Warning in rlm.default(x, y, weights, method = method, wt.method =
## wt.method, : some of ... do not match
plot(mfit)</pre>
```


Residuals:

```
##
       Min
                1Q Median
                                 ЗQ
                                         Max
## -71.738 -17.276 -2.769
                            19.524 108.462
##
## Coefficients:
##
               Value
                          Std. Error t value
## (Intercept) 1672.3291
                          379.2052
                                         4.4101
## prec
                  2.0616
                             0.7252
                                         2.8427
## jant
                 -1.6291
                             0.8507
                                        -1.9150
## jult
                 -2.6195
                             1.5811
                                        -1.6568
## ovr95
                 -7.2603
                             7.0738
                                       -1.0264
## popn
                -78.8129
                            61.5684
                                        -1.2801
                 -10.7272
                             9.9884
                                        -1.0740
## educ
## hous
                 -1.5532
                             1.5554
                                        -0.9986
                  0.0055
## dens
                             0.0036
                                         1.5353
## nonw
                  4.0195
                             1.0820
                                         3.7147
## wwdrk
                 -1.0775
                             1.3982
                                        -0.7706
## poor
                 -0.9276
                             2.8156
                                        -0.3294
## so
                  0.2459
                             0.0837
                                         2.9372
## humid
                  -0.2518
                             0.9404
                                        -0.2677
```

Residual standard error: 26.51 on 46 degrees of freedom

From the results of this model, we coold see that variables hc and nox does not have much significance.