الجبر

(٥ - ١) حل المعادلة التربيعية بالتحليل

إجابة السؤال ١

- أ) تربيعية.
- ب) ليست تربيعية.
 - ج) تربيعية.
- د) ليست تربيعية.

$$|a| : o - Tm = ...$$
 $e \text{ original } m = \frac{o}{T}$

$$\cdot = (1 - \omega) (\omega - \omega)$$

$$[a] = a - a = a$$

$$l = 0$$
 . ومنها: س

$$\cdot = (m + m) (m - m)$$

$$| [a] : m_{m-1} = 0$$
, $| [a] : m_{m-1} = 0$

$$\gamma \cdot = \gamma + \gamma$$
د) س

$$\lambda = \gamma \lambda - \omega \lambda + \gamma \omega$$

$$\cdot = (\Upsilon - \omega) (\Upsilon - \omega)$$

أو:
$$m - 7 = 0$$
، ومنها: $m = 7$

(a) -
$$w' + rw + rv = .$$

 $w' - rw - rv = .$
(m - A) (m + Y) = .
[al: $w - A = .$; e origin: $w = A$]

أفرض العدد الأول س، فيكون العدد الثاني:
$$1.7 - m$$
حاصل ضرب العددين = $1.5 - m$
 $m(17 - m) = 1.5 - m$
 $m' - m' = 1.5 - m$
 $m' - m' - 1.5 - m$
 $m' - 1.5 - m$

ارتفاع المثلث = س، طول القاعدة = س + ۳ مساحة المثلث =
$$\frac{1}{Y}$$
 × القاعدة × الارتفاع $Y = \frac{1}{Y}$ × $Y = \frac{$

(٥-٢) حل المعادلات التربيعية بطريقة إكمال المربع

1)
$$m^{7} - 7m = .$$

($m - 7$) ($m + 7$) = .

($m - 7$) ($m + 7$) = .

[ali $m - 7 = .$ and $m = 7$]

1. and $m + 7 = .$ and $m = -7$]

($m + \frac{1}{m} = \frac{3}{m}$) = $\frac{3}{m}$

($m + \frac{1}{m} = \frac{7}{m}$) and $m = \frac{1}{m}$

($m + \frac{1}{m} = \frac{7}{m}$) and $m = \frac{1}{m}$

($m + \frac{1}{m} = \frac{7}{m}$) and $m = -7$

($m + \frac{3}{m} = \frac{7}{m}$) and $m = -3 + \sqrt{m}$

($m + \frac{3}{m} = \frac{7}{m}$) and $m = -3 + \sqrt{m}$

($m + \frac{3}{m} = \frac{7}{m}$) and $m = -3 + \sqrt{m}$

($m + \frac{3}{m} = -3 + \sqrt{m}$) and $m = -3 + \sqrt{m}$

($m + \frac{3}{m} = -3 + \sqrt{m}$) and $m = -3 + \sqrt{m}$

c)
$$mw' - o = .$$

$$w' = \frac{o}{m}$$

$$w = \pm \sqrt{\frac{o}{m}}$$

i)
$$o^{\gamma} - o^{\gamma} = -3$$

i) $o^{\gamma} - o^{\gamma} = -3$

i) $o^{\gamma} - o^{\gamma} =$

$$[ali: w + 3 = \sqrt{\gamma}] \quad , \text{ easibl: } w = -3 + \sqrt{\gamma}]$$

$$[b]: w + 3 = -\sqrt{\gamma}] \quad , \text{ easibl: } w = -3 - \sqrt{\gamma}]$$

$$[c]: w + 3 = -\sqrt{\gamma}] \quad , \text{ easibl: } w = -3 - \sqrt{\gamma}]$$

$$[c]: w + 3 = \sqrt{\gamma}] \quad , \text{ easibl: } w = 0$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma]$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma]$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma]$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = \gamma$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = \gamma$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = \gamma$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = \gamma$$

$$[c]: w + \gamma] \quad , \text{ easibl: } w = -\gamma$$

$$[c]: w - \gamma] \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: w - \gamma] \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: w - \gamma] \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: (w - \gamma) \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: (w - \gamma) \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: (w - \gamma) \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: (w - \gamma) \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: (w - \gamma) \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$[c]: (w - \gamma) \quad , \text{ easibl: } w = -\gamma + \sqrt{\gamma}$$

$$A = 1 + mm - 7mm + 1 = 0$$

أقسمُ جميع الحدود على -۲ لأجعل معامل س' = ۱، فتصبح المعادلة بالصورة:
$$m'+\frac{\pi}{V}$$
 س $-\frac{1}{V}=$ ، أكتب المعادلة على الصورة س' + $\frac{\pi}{V}$ س = $\frac{1}{V}$ أجد: $\frac{n^2+\sqrt{N}}{V}=\frac{m^2+\sqrt{N}}{V}=\frac{N}{V}$

أضيف مربعه إلى طرفيّ المعادلة، فتصبح:

$$\frac{\gamma}{1} \left(\frac{\mu}{\xi}\right) + \frac{1}{\gamma} = \frac{\gamma}{\xi} \left(\frac{\mu}{\xi}\right) + \omega \frac{\mu}{\gamma} + \gamma \omega$$

$$\frac{\mu}{1} + \frac{1}{\gamma} = \frac{\mu}{1} + \omega \frac{\mu}{\gamma} + \gamma \omega$$

$$\frac{1}{\gamma} = \gamma \left(\frac{\mu}{\xi}\right) + \omega \gamma$$

$$\frac{1}{2}\sqrt{\frac{1}{\xi}} \pm = (\frac{\gamma}{\xi} + \omega)$$

$$\frac{1}{10}(m+\frac{7}{3}) = -\frac{1}{3}(m+\frac{7}{3}) = -\frac{1}{3}(m+\frac{7}{3}) = -\frac{7}{3}(m+\frac{7}{3}) = -\frac{7}{3}(m+\frac{7}{3})$$

$$m \cdot - m^{2} + m^{2} = m^{2} + m^{2} = m^{2} + m^{2} + m^{2} + m^{2} = m^{2} + m^{2}$$

$$17 + m + 7 = (3 + 4 + 4) + 7 = 7 + 10 + 10 + 10$$
 مساحة المستطيل

أكتب المعادلة على الصورة:
$$m'$$
 - m = ٢٤

$$\frac{1-}{Y} = (\frac{\text{valab} w}{Y}) = \frac{1-}{Y}$$

$$w' - w + (\frac{1}{Y})' = Y + (\frac{1}{Y})'$$
 $w' - w + (\frac{1}{Y})' = Y + (\frac{1}{Y})'$
 $w' - w + (\frac{1}{Y})' = Y + (\frac{1}{Y})'$
 $w' - w + (\frac{1}{Y})' = \frac{179}{Y} + (\frac{1}{Y})'$
 $w' - (\frac{1}{Y})' = \frac{179}{Y} + (\frac{1}{Y})' = \frac{179}{Y} + (\frac{1}{Y})' = \frac{179}{Y} + (\frac{1}{Y})' = \frac{1}{Y}'$
 $w' - (\frac{1}{Y})' = \frac{179}{Y} + (\frac{1}{Y})' = \frac{1}{Y}' + (\frac{1}{Y})' =$

$$\dot{b} = \pm \sqrt{70}$$
 م.

(٣-٥) حل المعادلة التربيعية باستخدام القانون العام

إجابة السؤال ١

$$l = 0$$
، $\psi = \gamma$ ، ج

المميز =
$$(-7^{7} - 3)^{1}$$
 المميز = $(-7^{7} - 3)^{1}$ المميز = $(-7^{7} - 3)^{1}$

المميز سالب، لا يوجد جذور حقيقية للمعادلة.

المميز =
$$-7$$
 - 3 أ جـ = -7 - -7 المميز = -7 - -7 ا -7 المميز = -7 - -3 أ

المميز موجب، يوجد للمعادلة جذران حقيقيان مختلفان.

ج)
$$.3ص = 07 + 71ص7$$
 $\dot{1} = 71, \quad \psi = -.3, \quad \varphi = 07$

المميز = $\psi^7 - 3$ أ $\varphi = -.3^7 - (.3 \times 71 \times 70)$

المميز صفر ، يوجد للمعادلة جذر واحد مكرر.

1)
$$Y o'' + 1 = F o$$

1 = Y' , $y = -F'$, $z = 1$

2 $e^{\alpha i \beta 1}$: $e^{\alpha i \beta 1$

(2)
$$\Gamma w^7 + 11 = -07w - 10$$

$$\Gamma w^7 + 07w + 17 = .$$

$$\Gamma w^7 + 07w + 10 = .$$

$$\Gamma w^7 + 07w + 17 = .$$

$$\Gamma w = -07, = .$$

$$\Gamma w = -07, = .$$

$$\Gamma w = -0.$$

جذرا المعادلة متساویان، الممیز یساوي صفراً
أ=
$$\pi$$
، ψ = - π ، φ = ψ الممیّز = $(-7)^{7} - \xi$ (π) (ψ) الممیّز = π = π + π + π ومنها: ψ = π

(ه - ٤) تحليل الفرق بين مكعبين

إجابة السؤال

$$\frac{1}{1} (7m - 1) (p m^{7} + 7m + 1) = y7m^{7} - 1$$

$$\frac{1}{2} (U - \frac{1}{2}) (U^{7} + \frac{1}{2} U + \frac{1}{11}) = U^{7} - \frac{1}{37}$$

$$\frac{1}{2} (U^{7} - 1) (U^{3} + U^{7} + 1) = U^{7} - 1$$

إجابة السؤال (١

$$m = m + 3$$
, easily: $m - m = 3$

$$m^{7} - m^{7} = (m - m)(m^{7} + m + m^{7}) = 3 \times 93 = 197$$

إجابة السؤال ٥

الطريقة الأولى:
$$(1,\Lambda)^7 - 27 \times (2,1)^7 = 2,7$$
 $\times (2,1)^7 = 2,7$ $\times (2,1)^7 = 2,7$ $\times (2,1)^7 = 2,7$ الطريقة الثانية: $(1,\Lambda)^7 - (2,1)^7 = 2,1$ $\times (2,1)^7 - (2,1)^7 = 2,1$ $\times (2,1)^7 - (2,1)^7 = 2,1$

(ه - ه) تحليل مجموع مكعبين

$$\frac{1}{2} 3^{7} + 1 = (3 + 1)(3^{7} - 3 + 1)$$

$$\frac{1}{2} 3^{7} + 1 = (3 + 1)(3^{7} - 3 + 1)$$

$$\frac{1}{2} 3^{7} + 1 = (7 + 3 + 3 + 1)(9 - 71 + 1 + 71 + 1)$$

$$\frac{1}{2} 3^{7} + 1 = (7 + 3 + 1) + (7 + 1 + 1)$$

$$\frac{1}{2} 3^{7} + 1 = (7 + 3 + 1)$$

$$\frac{1}{2} 3^{7} + 1 = (7 + 1)$$

$$\frac{1}{2} 3^{7}$$

$$\frac{m_0}{r_1 r_1} = (\frac{V}{r_1}) (\frac{1}{r_1} + \frac{1}{r_1} - \frac{1}{r_1}) (\frac{1}{r_1} + \frac{1}{r_1}) = (\frac{1}{r_1} + \frac{V}{r_1}) = (\frac{1}{r_1} + \frac{V}{r_1}) = (\frac{1}{r_1} + \frac{V}{r_1}) = \frac{m_0}{r_1 r_1} = \frac{N}{r_1} + \frac{V}{r_1} + \frac{V}{r_1} = \frac{m_0}{r_1} + \frac{V}{r_1} + \frac{V}{r_1} = (\frac{1}{r_1} + \frac{V}{r_1} + \frac{V}{r_1}) = \frac{m_0}{r_1} = (\frac{1}{r_1} + \frac{V}{r_1} + \frac{V}{r_1}) = \frac{m_0}{r_1} = \frac{V}{r_1} + \frac{V}{r_1} = \frac{V}{r_1} + \frac{V}{r_1} = \frac{m_0}{r_1} = \frac{V}{r_1} + \frac{V}{r_1} = \frac{V}{r_1} + \frac{V}{r_1} = \frac{V}{r_1}$$

إجابة السؤال ٣

إجابة السؤال ٤

$$w^{7} - w^{7} + w^{7} - w^{7} = 0$$

$$= (w + w) (w^{7} - w + w^{7}) + (w - w) (w + w)$$

$$= (w + w) (w^{7} - w + w^{7} + w - w)$$

$$= (w + w) (w^{7} - w + w^{7} + w - w)$$

الطريقة ۱: حجم الخزان الجديد =
$$(0,0)^7 + (1)^7 = 0.77$$
عم الطريقة 1: حجم الخزان الجديد = $(0,0)^7 + (1)^7 = (0,0) + (1,0) + (1,0)$ الطريقة 1: حجم الخزان الجديد = $(0,0)^7 + (1)^7 = 0.77$ الطريقة 2: حجم الخزان الجديد = $(0,0)^7 + (0.0)^7 = 0.77$ الطريقة 1: حجم الخزان الجديد = $(0,0)^7 + (0.0)^7 = 0.77$

(٥ - ٦) حلّ معادلتَيْن خَطِّيَّتَيْن بمتغيريْن:

إجابة السؤال

اً) کس + ۳ص = ۱
$$(1)$$

$$(\gamma)$$
 $\gamma = \gamma$ هس $\gamma = \gamma$

أختارُ المعادلة (٢)، وأجعلُ س موضوع القانون فيها،

$$(")$$
 ومنها: $m = \frac{(V + V)}{M}$

أُعَوِّضُ قيمة س في المعادلة (١)، فيَنْتُج أنَّ:

$$1 = m + \frac{(m+v)}{2}$$

ومنها: $3(V + \Sigma_{\infty}) + 0$ ص = ه

لإيجاد قيمة س، أُعَوِّض قيمة ص في المعادلة (٣)، فيَنْتُج أنَّ:

$$(r)$$
 $=$ $(r + V)$ $=$ (r)

$$\frac{\lambda}{A} = \frac{\xi \cdot}{0} = \frac{77 + 77}{0} = \frac{77 + 77}{0} = \frac{1}{0} = \frac{1}{0}$$

$$(1)$$
.... $+ o \omega = 1$

أختارُ المعادلة(٢)، وأجعلُ س موضوع القانون فيها،

$$("")$$
 ومنها: ص $= 7$ س $- ٥$

لإيجاد قيمة ص، أُعَوِّض قيمة س في المعادلة(٣)، فيَنْتُج أنّ:

```
إجابة السؤال ٢
```

$$(1) \dots + \pi_{\alpha} = \pi$$

$$1. - 7 = 0$$
 أطرح المعادلتين: س – س + ٣ص – ٤ص = ٦

أعوض قيمة ص في المعادلة (١):

$$\gamma_{\bullet} = \xi \times \xi + \omega$$

$$\gamma$$
اً + γ ب = -۸ بر γ

ألاحظ أن معاملات أو ب غير متساوية في كل من المعادلتين، أضرب طرفيّ المعادلة(١) في العدد (-٢)، ونجمع المعادلتين:

أعوض قيمة ب في المعادلة (١)

$$1. = 7 \Lambda - + 1$$

ومنها: أ
$$= \pi$$

$$(1)$$
 $\pi = 1$ $+ 3$ $+ 3$ $+ 3$

ألاحظ أنّ معاملات أو ب غير متساوية في كل من المعادلتين، أضرب طرفي المعادلة(٢) بالعدد (٢)، ونجمع المعادلتين:

$$\frac{0}{1}$$
 و منها أ = $\frac{0}{1}$

أعوض قيمة أفي المعادلة (١):

$$\gamma = \frac{0}{\sqrt{\pi}}$$
 + غب

$$\frac{1}{2}$$
 عب = $\frac{7}{1}$ ، و منها ب

المثلث متساوي الأضلاع : أي جميع أضلاعه متساوية أكون المعادلتين، وأحلهما بطريقة الحذف أو التعويض $7 m + 7 m = 1 \dots (1)$ $7 m + 7 m = 1 \dots (1)$ $7 m + 7 m = 1 \dots (1)$ $7 m + 7 m = 1 \dots (1)$ $7 m + 7 m = 1 \dots (1)$ $7 m + 7 m = 1 \dots (1)$ $7 m + 7 m = 1 \dots (1)$ $9 m + 7 m = 1 \dots (1)$ $9 m + 7 m = 1 \dots (1)$ $9 m + 7 m = 1 \dots (1)$ $9 m + 7 m = 1 \dots (1)$

أعوض قيمة س في المعادلة (١) $1 \times Y \times Y + T$

ينتج أنَّ: ٣ ص = ٦

ومنها: ص = ٢

إجابة السؤال (٤

٥	٤	٣	۲	١	رقم السؤال
د	ب	ج	Í	Í	رمز الإجابة الصحيحة

إجابة السؤال ٢

$$17 = \xi + \psi \xi - \gamma \psi$$
 (أ

$$\cdot = 17 - 0 \cdot \xi - 0$$

$$-$$
 ب $-$ ۲ ص $+$ ۳۲ $+$ ه تصبح المعادلة ص $-$ ۲ ص $+$ ۳۲ $+$ ۳۱ $+$ ۳

باستخدام القانون العام

ومنها: المميّز =
$$(-1,1)^{1} - 3(1)(1)$$

$$\gamma \cdot = 17\xi - 1\xi\xi =$$

$$\frac{1 \times \sqrt{\pm (1 \times -) - + \pm (1 \times -) - \pm (1$$

ومنها إمّا:
$$ص = \frac{7 \cdot \sqrt{+17}}{7}$$
 أو: $ص = \frac{7 \cdot \sqrt{+17}}{7}$

$$77 = m - 7$$

$$\left(\frac{1-}{Y}\right) = \left(\frac{v}{Y}\right)$$
 أجل:

أضيفُ مربّعه إلى طرفيّ المعادلة، فينتج:

$$\sqrt{\frac{1-r}{r}} + rr = \sqrt{\frac{1-r}{r}} + rr + rr$$

$$\frac{1}{3} + 77 = \frac{1}{3} + \omega - \frac{7}{3}$$

$$(m - \frac{1}{\gamma})^{7} = \frac{\rho \Lambda}{\frac{3}{2}}$$

$$(m - \frac{1}{\gamma}) = \pm \frac{\sqrt{\rho \Lambda}}{\gamma}$$

$$[al: (m - \frac{1}{\gamma}) = \frac{\sqrt{\rho \Lambda}}{\gamma}$$

$$[al: (m - \frac{1}{\gamma}) = -\frac{\sqrt{\rho \Lambda}}{\gamma}$$

$$[be: (m - \frac{1}{\gamma}) = -\frac{\sqrt{\rho \Lambda}}{\gamma}$$

$$[be: (m - \frac{1}{\gamma}) = -\frac{\sqrt{\rho \Lambda}}{\gamma}$$

س ٔ – هس + ن =، ، العدد ٢ أجد جذريّ المعادلة .

$$. 7 = 0 + (7) + (7) - (7)$$

$$m^{7}-o$$
 $m+7=.$ ومنها ($m-7$) ($m-7$) = . ومنها: $m=7$ أو $m=7$

إجابة السؤال ع

السيارة الأولى قطعت مسافة (س) والثانية مسافة (س + ٢٠) .

نطبق نظرية فيثاغورس:

$$\boldsymbol{x}_{1} = \boldsymbol{y}_{2} + \boldsymbol{y}_{3} + \boldsymbol{y}_{3}$$

$$\cdot = \xi \wedge \cdot \cdot - \omega + \gamma \omega$$

بالحل على القانون العام:

أو:
$$m = \frac{1 \cdot 7 - 7 \cdot 7}{7} = - 1.0$$
 مرفوض.

$$(\frac{1}{17} + \frac{9m^{2}}{17} + \frac{71}{70}) + \frac{7m^{2}}{170} + \frac{71}{170} + \frac{71}{170} + \frac{71}{170} + \frac{71}{170} + \frac{1}{170} + \frac$$

$$U(z, \bigcap z_{\gamma}) = w' - \frac{3}{r} w + \frac{m}{r}$$

$$U(z, \bigcap z_{\gamma}) = .$$

$$e^{\text{origh}}: w' - \frac{3}{r} w + \frac{m}{r} = .$$

$$(w - \frac{1}{r}) (w - \frac{m}{r}) = .$$

$$e^{\text{origh}}: w - \frac{1}{r} = .$$

$$e^{\text{origh}}: w = \frac{m}{r}$$

$$e^{\text{origh}}: w = \frac{m}{r}$$

$$e^{\text{origh}}: w = \frac{m}{r}$$

الهندسة والقيساس

(٦- ٦) متوازي الأضلاع

إجابة السؤال

مساحة متوازي الأضلاع أ ب ج د = Υ × مساحة المثلث أ د ب Υ × Υ × Υ = Υ × Υ × Υ = Υ م Υ

إجابة السؤال ٢

مساحة المثلث أ م $\psi = \text{مساحة المثلث م } \psi = \text{مساحة المثلث م أ و = ١٠ سم' (مساحة المثلث تساوي نصف مساحة متوازي الأضلاع المشترك معه في القاعدة والارتفاع) مساحة الشكل الرباعي أ و <math>\psi = \psi = \psi = \psi$ سم'

إجابة السؤال ٣

مساحة المنطقة المظللة = Y + Y = T دونم

إجابة السؤال ٤

أ د جـ ب متوازي أضلاع مساحة قطعة (١) = مساحة الحديقة أ جـ ب هـ متوازي أضلاع مساحة قطعة (٢) = مساحة الحديقة أ جـ و ب متوازي أضلاع مساحة قطعة (٣) = مساحة الحديقة ، مساحة القطع الثلاث متساوية

(۲-٦) القطاع الدائري

إجابة السؤال

$$\frac{deb}{de}$$
 وس القطاع $\frac{de}{de}$ مساحة القطاع $\frac{de}{de}$ مساحة الدائرة مساحة الدائرة مساحة القطاع الدائري $\frac{1}{V} \times \frac{1}{V} \times \frac{1}{V}$ مساحة $\frac{1}{V} \times \frac{1}{V} \times \frac{1}{V}$

اجابة السؤال ٢

زاوية القطاع =
$$\frac{\text{مساحة القطاع}}{\text{مساحة الله الرة}} \times \text{۳۲۰}^\circ = \frac{50.7}{\text{V(10)}} \times \text{770}^\circ$$
 = $\frac{177...}{\text{V.7.0}} \approx 770^\circ$

اً) أجد مساحة سطح المسبح.
$$\frac{i_{legs} i_{legs} i_{legs}}{i_{legs} i_{legs}} = \frac{n_{legs} i_{legs} i_{legs}}{n_{legs}}$$

$$\frac{n_{legs} i_{legs} i_{legs} i_{legs} i_{legs}}{n_{legs} i_{legs} i_{legs}} \times n_{legs} \times n_{legs}$$

$$\frac{n_{legs} i_{legs} i_{legs}}{n_{legs} i_{legs}} \times n_{legs} \times n_{legs} \times n_{legs}$$

$$= \frac{n_{legs} i_{legs} i_{legs}}{n_{legs} i_{legs}} \times n_{legs} \times n_{legs} \times n_{legs}$$

$$\frac{U}{18 \times \pi} = \frac{^{\circ} \circ }{^{\circ} \pi \circ }$$
 حيط الدائرة $\frac{U}{18 \times \pi} = \frac{ ^{\circ} \circ }{^{\circ} \pi \circ }$

محیط الحدیقة =
$$.$$
 + ۱۲ + ۱۲ + ۲۲ = ۸۲ محیط

إجابة السؤال ٥

م، = مساحة المربع – مساحة القطاع الدائري.

م، =
$$9 \cdot 3 - \frac{1}{7} \times \frac{1}{3} \times$$

م، = $9 \cdot 3 - \frac{1}{7} \times \frac{1}{3} \times$

م، = $9 \cdot 3 - \frac{1}{7} \times \frac{1}{3} \times$

م، = $9 \cdot 3 - \frac{1}{7} \times \frac{1}{3} \times$

م، = $9 \cdot 3 - \frac{1}{7} \times \frac{1}{3} \times$
 $= 9 \cdot 3 - \frac{1}{7} \times$
 $= 9 \cdot 3 - \frac{1}{7} \times$

زاوية القطاع ٣٦٠ = ٣٠٠

راوية القطاع
$$=$$
 طول قوس القطاع ~ 2 مساحة الدائرة ~ 2 مساحة الدائرة ~ 2 مساحة الدائرة ~ 2 مساحة الدائرة ~ 2 ~ 2

(٣-٦) القطعة الدائرية

إجابة السؤال ١

بما أن زاوية القطاع = زاوية القطعة الدائرية طول قوس القطاع = طول قوس القطعة $\frac{\text{زاوية القطاع}}{\text{77.0}} = \frac{\text{deb القوس}}{\text{2000 Pare substitution}}$

طول القوس =
$$\frac{187}{10}$$
 = ۱۳٫۲ سم

- ۱) أرسم دائرة نصف قطرها ۳٫۷سم
- ٣) أرسم القطاعات الدائرية التي زاوية كل منها ٤٥°، وأصل الأوتار

٤) أقص الشكل على الأوتار، فينتج الشكل الثماني المتظم

إجابة السؤال ٣

بما أن زاوية القطعة الدائرية أك ب = زاوية القطعة الدائرية س هـ ص مساحة القطعة الدائرية أك ب = مساحة القطعة الدائرية س هـ ص = ٥ سم٢ مساحة المثلث م س ص = مساحة القطاع الدائري ص م س هـ - مساحة القطعة الدائرية س هـ ص مساحة المثلث م س ص= 11 - 0 = 7 سم

(۲ - ٤) الأسطوانة

إجابة السؤال

المساحة الجانبية = محيط القاعدة × الارتفاع $1. \times \pi_{1}. =$ π۲۰۰ =

حجم الأسطوانة (۱) = حجم الأسطوانة (۲)
(نق،
$$\pi \times \pi \times 3$$
 = (نق، $\pi \times 7$ $\times 3$ $\times 3$ $\times 7$ $\times 7$

إجابة السؤال ٤

المساحة الكلية للخزان =
$$7 \times$$
 مساحة الدائرة + مساحة المستطيل $\pi \times 17 \times 1,0 \times 7 + \pi \times (1,0) \times 7 =$
$$\pi \times 17 \times 1,0 \times 7 + \pi \times 1,0 =$$

$$\pi \times 17 \times 1,0 \times 10 =$$

$$\pi \times 17 \times 10 \times 10 =$$

$$\pi \times 17 \times 10 \times 10 =$$
 التكلفة = $\pi \times 17 \times 10 \times 10 =$ التكلفة = $\pi \times 17 \times 10 \times 10 =$ التكلفة = $\pi \times 17 \times 10 \times 10 =$ التكلفة = $\pi \times 17 \times 10 \times 10 =$ التكلفة = $\pi \times 17 \times 10 \times 10 =$ التكلفة = $\pi \times 17 \times 10 \times 10 =$ التكلفة = $\pi \times 17 \times 10 \times 10 =$ التكلفة = $\pi \times 17 \times 10 =$

إجابة السؤال ٥

حجم الأسطوانة = نق
7
 × π × ع = 7 × 7 × 7 × 7 = 7 ×

طول القوس ب جـ = محیط الدائرة
$$\pi \times \mathbf{x} = \mathbf{x} \times \mathbf{x} \times \mathbf{x}$$

$$= \mathbf{x} \times \mathbf{x}, \mathbf{x} \times \mathbf{x} \times \mathbf{x}$$

$$= \mathbf{x} \times \mathbf{x}$$

إجابة السؤال ٢

حجم المخروط

إجابة السؤال ٣

حجم الماء = حجم المخروط
$$= \frac{1}{\pi} \times \text{مساحة القاعدة} \times \text{الارتفاع}$$
 محیط القاعدة = $\mathbf{r} \times \mathbf{u} \times \mathbf{m}$

المساحة الجانبية للمخروط =
$$b \times i \pi$$
 (حيث $b : c$ راسم المخروط، نق: نصف قطر القاعدة)

$$\pi \times v \times r =$$
محيط الدائرة

$$\pi \times \gamma \times \gamma = \pi \times \gamma \times \gamma$$
 کټې $\times \gamma$

$$^{r}(1\xi) + ^{r}V =$$

المساحة الجانبية للمخروط $= b \times i$ قطر القاعدة) (حيث π (حيث ل: راسم المخروط، نق : نصف قطر القاعدة)

$$= \sqrt{037} \times V \times \frac{77}{V}$$

$$= 77 \sqrt{037}$$

مساحة القاعدة
$$=$$
 مساحة الدائرة $=$ نق $^{\mathsf{Y}}$ ط

$$\frac{\gamma\gamma}{\gamma} \times \gamma = \frac{\gamma\gamma}{\gamma} \times \gamma = \frac{\gamma\gamma$$

المساحة الكلية = القاعدة + المساحة الجانبية
$$\sqrt{0}$$
 سم $\sqrt{0}$ ١٥٤ - $\sqrt{0}$ سم $\sqrt{0}$ سم $\sqrt{0}$ سم $\sqrt{0}$ سم $\sqrt{0}$ سم $\sqrt{0}$

٤	٣	۲	١	رقم السؤال
ب	<i>-</i> >	ب	ج	رمز الإجابة الصحيحة

مساحة القطاع الدائري
$$=\frac{1}{m} \times$$
مساحة الدائرة $\pi \times \frac{1}{m} = \frac{1}{m} \times \frac{1}{m} \times \frac{1}{m} \times \frac{1}{m} = \frac{1}{m} \times \frac$

إجابة السؤال (١

محیط الدائرة
$$(1) = 7$$
 نق $\pi = 7$ نق $\pi = 10$ نق $\pi = 10$ نق $\pi = 0.7$ سم نق $\pi = 0.7$ سم الدائرة $\pi = 1$ نق $\pi = 1$ سم نكتشف النمط نصف قطر الدائرة السادسة $\pi = 1$ سم مناك طرق أخرى للحل.

إجابة السؤال ٥

حجم الأسطوانة = حجم المخروط (نصف قطر الأسطوانة) $^{\prime}$ × ارتفاع الأسطوانة $^{\prime}$ × الماء $^{\prime}$ × قطر الأسطوانة) $^{\prime}$ × ارتفاع الأسطوانة π × π

المسافة بين المدينتين = طول القوس الدائري
$$\frac{i_0}{\pi i_0} \times \frac{i_0}{\pi i_0}$$

(١-٧) النِّسَب المُثَاَّثِيَّة للزوايا الحادّة (١):

إجابة السؤال ١

جاأ =
$$\frac{1 \text{ لقابل}}{1,0} = \frac{Y}{Y,0} = 0.0$$

جتاأ = $\frac{1 \text{ labele}}{1 \text{ leg}} = \frac{0.0}{Y,0} = 7.0$

ظاأ = $\frac{1 \text{ labele}}{1 \text{ labele}} = \frac{Y}{Y,0} = \frac{3}{Y,0}$

ظام = $\frac{1}{1 \text{ labele}} = \frac{Y}{1,0} = \frac{3}{Y}$

إجابة السؤال ٢

جاأ= المقابل =
$$\frac{7}{1}$$
 = 7 .

الوتر $\frac{7}{1}$ = 4 .

جاج = $\frac{1}{1}$ الوتر $\frac{7}{1}$ = 4 .

جتاأ = $\frac{1}{1}$ الوتر $\frac{7}{1}$ = 4 .

تطبيق نظرية فيثاغورس أولاً: نجد أج

أ) جاأ =
$$\frac{1 \text{ لقابل}}{1 \text{ الوتر}} = \frac{7}{8} = \frac{7}{8}$$

الوتر $\frac{3}{8}$

ب) ظاد هـ ج = $\frac{1 \text{ لقابل}}{1 \text{ للجاور}} = \frac{3}{8}$

ج) ظاج = $\frac{1 \text{ لقابل}}{1 \text{ lلجاور}} = \frac{7}{8}$

(٧-٧) النِّسَبُ المُثَلَّثِيَّة (٢):

إجابة السؤال ١

جا ۳۳° = ۶۶۶۰۰۰

جتا ۷۰° = ۳٤۲۰.

ظا ۱۰° = ۲۲۷۱۳.

$$\frac{7}{7}\sqrt{7} + \frac{1}{7} = \frac{7}{7}\sqrt{7} + \frac{1}{7} = 7 \cdot 1 + 7 \cdot$$

$$\frac{1}{1} = \frac{\lambda}{1} \times \frac{\lambda}{1} = \frac{\lambda}$$

إجابة السؤال ٤

$$\frac{7,1}{1} = \frac{1}{7}$$
 = °٤٥١ = °١٥٤ ومنها: أب $= \frac{71}{7}$ م $= \frac{71}{7}$ م $= \frac{71}{7}$ م $= \frac{7}{7}$ م $= \frac{7}{7}$ م متا ٥٤° = $= \frac{7}{7}$

$$\frac{\frac{1}{\sqrt{1}}}{\sqrt{1}} = \frac{1}{\sqrt{1}}$$

$$\Rightarrow \dot{\gamma} \frac{\lambda}{\lambda \times 1} = \frac{\lambda}{\lambda \cdot 1} \leftarrow \frac{\lambda}{\lambda \cdot 1} = \frac{\lambda}{\lambda \cdot 1} = \frac{\lambda}{\lambda \cdot 1}$$

محیط المثلث =
$$\frac{1}{\sqrt{1 \cdot 1}}$$
 = ۲,۱ + ۱,۰۰ محیط المثلث

$$\frac{\xi}{\omega} = \frac{1}{2\pi \sqrt{2\pi}}$$

ومنها س
$$> 2\sqrt{2}$$
م

(٧-٣) زوايا الارتفاع وزوايا الانخفاض:

إجابة السؤال

اً) جا٠٦ =
$$\frac{|لقابل}{|لوتر|}$$

$$\frac{\sqrt{\gamma}}{\gamma} = \frac{\gamma}{1+\gamma}$$
ومنها: أج = $\frac{\gamma}{\sqrt{\gamma}}$ كم

إجابة السؤال ٢

ومنها: ع = ۲,۷٤٧ س
ظا۲۲° =
$$\frac{3}{m+1}$$

ظا۲۲، = $\frac{3}{m+1}$

$$(1.+m) \times ., \xi_{NV} = \xi$$

$$\xi, \lambda \vee + \omega$$
, $\xi \wedge \vee = \chi, \vee \xi \vee$

(۲-۷) تمارین عامّة:

إجابة السؤال

٥	٤	٣	۲	١	رقم الفقرة
<u>ج</u>	<u>ب</u>	ج	د	ج	رمز الإجابة

إجابة السؤال ٢

1
 جاس = $\frac{\Lambda}{1}$ = $\frac{\Lambda}{1}$ = $\frac{\Lambda}{1}$ الوتر

ب) ظا
$$= \frac{1 لقابل}{1 + 1} = \frac{9}{1 + 1} = 9$$
ور، المجاور

ج) جاب=
$$\frac{1 ext{ القابل}}{10} = \frac{17}{10} = ...$$

$$-, \lambda = \frac{\Lambda}{1} = \frac{\Lambda}{1} = \frac{\Lambda}{1} = \frac{\Lambda}{1}$$
 د) جتاجہ = $\frac{\Lambda}{1}$ الو تر

إجابة السؤال ٣

ب) جتا۳۳° – جا۷۰° = جا
$$(0.9^\circ - 70^\circ)$$
 – جا۷۰° = جا۷۰° – جا۷۰° = صفر

$$\frac{1}{1} = \frac{1}{1}$$

طول المسار =
$$7 \times \times \times \times = 2$$
م

طول الشجرة = ۱,٥ + أب = م
$$4 + 1,0$$

الاحتمالات

(۱-۸) احتمال الحادث

إجابة السؤال ١

$$\frac{\Psi}{1}$$
 المظلة المختارة ملونة برسوم الأطفال) = $\frac{\Psi}{1}$

$$\frac{V}{V} = \frac{V}{V}$$
 المظلة المختارة ملونة بالأزرق)

$$\frac{1}{\sqrt{1}} = \frac{\sqrt{1 + \gamma}}{\sqrt{1 + \gamma}} = \frac{\sqrt{1 + \gamma}}{\sqrt{1 + \gamma}} = \frac{1}{\sqrt{1 + \gamma}}$$
 ج) ل(المظلة المختارة غير ملونة برسوم الأطفال)

إجابة السؤال ٢

$$\frac{1}{0} = \frac{0}{0} = \frac{0}{10}$$
 المنطقة الملونة باللون الأحمر

اجابة السؤال ٣

$$\frac{1}{\lambda} = \frac{1}{\lambda} = \frac{1}$$

اجابة السؤال ٤

$$\frac{1}{\xi} = \frac{\Psi}{1 + \chi} = \{(\omega, \Upsilon), (\omega, \xi), (\omega, \Gamma)\}, \ U(\zeta_{\gamma}) = \frac{\Psi}{1 + \chi} = \frac{1}{\chi}$$
 $\frac{1}{\xi} = \frac{\Psi}{1 + \chi} = \frac{1}{\chi} = \frac{1}{\chi} = \frac{1}{\chi}$
 $\frac{1}{\xi} = \frac{1}{\chi} = \frac{1}{\chi} = \frac{1}{\chi} = \frac{1}{\chi} = \frac{1}{\chi}$

$$U(\zeta_{\gamma}) = \frac{3(\zeta_{\gamma})}{3(\Omega)} = ., \quad = \frac{7}{3(\Omega)} = ., \quad = 0$$

$$U(\zeta_{\gamma}) = \frac{3(\zeta_{\gamma})}{3(\Omega)} = \frac{3}{3(\Omega)} = ., \quad = 0$$

$$U(\zeta_{\gamma}) = \frac{3(\zeta_{\gamma})}{3(\Omega)} = \frac{3}{3(\Omega)} = ., \quad = 0$$

(۲-۸) قوانين الاحتمالات

إجابة السؤال

نفرض الطلاب الذين يتابعون كرة القدم = ح،، ومتابعين كرة السلة = ح،
$$\frac{\Lambda}{m}$$
 ، $\frac{15}{m}$ ، $\frac{1}{m}$ ، $\frac{1}{m}$ ، $\frac{1}{m}$. $\frac{1}{m}$.

إجابة السؤال ٢

نفرض نجاحها في الرياضيات
$$=$$
ح,، ونجاحها في الفيزياء $=$ ح, $U(\sigma_{\gamma}) = 0$, $U(\sigma_{\gamma}) = U(\sigma_{\gamma}) + U(\sigma_{\gamma}) - U(\sigma_{\gamma}) = 0$, $U(\sigma_{\gamma}) = 0$,

$$U(\zeta_{1}, \cup \zeta_{2}) = U(\zeta_{1}) + U(\zeta_{2}) - U(\zeta_{2}, \cup \zeta_{2})$$

$$v, \cdot = v \quad U(\zeta_{2}) + U(\zeta_{2}) - v, \cdot$$

$$v \quad U(\zeta_{2}) = v, \cdot + v, \cdot = v$$

$$U(\zeta_{2}) = \frac{v}{v} \quad U(\zeta_{2}) = v \quad V(\zeta_{2}) = v$$

$$\mathcal{L}(\zeta_{1}, \zeta_{2}, \zeta_{3}) = \mathcal{L}(\zeta_{1}) + \mathcal{L}(\zeta_{2}) - \mathcal{L}(\zeta_{3}, \zeta_{3}) - \zeta_{3}$$

$$= \frac{3}{\Lambda} + \frac{7}{\Lambda} - \cdot = \frac{7}{\Lambda}$$

$$\mathcal{L}(\zeta_{2}, \zeta_{3}) = \mathcal{L}(\zeta_{3}) + \mathcal{L}(\zeta_{3}) - \mathcal{L}(\zeta_{3}, \zeta_{3})$$

$$= \frac{7}{\Lambda} + \frac{\circ}{\Lambda} - \frac{1}{\Lambda} = \frac{7}{\Lambda}$$

$$\mathcal{L}(\zeta_{1}, \zeta_{2}) = \mathcal{L}(\zeta_{3}) + \mathcal{L}(\zeta_{3}) - \mathcal{L}(\zeta_{3}, \zeta_{3})$$

$$\mathcal{L}(\zeta_{1}, \zeta_{2}) = \mathcal{L}(\zeta_{3}) + \mathcal{L}(\zeta_{3}) - \mathcal{L}(\zeta_{3}, \zeta_{3})$$

$$= \frac{3}{\Lambda} + \frac{\circ}{\Lambda} - \frac{7}{\Lambda} = \frac{V}{\Lambda}$$

$$\frac{1}{\Lambda} = (\zeta_{7} \cap \zeta_{7}) = \frac{1}{\Lambda}$$

$$(\zeta_{7} \cap \zeta_{7}) = \zeta_{7} = \zeta_{7} + \zeta_{7} = \zeta_{7}$$

$$= \frac{7}{\Lambda} + \frac{3}{\Lambda} - \frac{1}{\Lambda} = \frac{7}{\Lambda}$$

(٣-٨) احتمال المتممة لحادث والفرق بين حادثين

إجابة السؤال ١

i)
$$U(\overline{\zeta}_{1}) = I - U(\zeta_{1}) = I - U(\zeta_{2}) = I - \frac{\gamma}{\Lambda} = \frac{\delta}{\Lambda}$$

$$(\overline{\zeta}_{1}) = I - U(\zeta_{2}) = I - \frac{3}{\Lambda} = \frac{3}{\Lambda}$$

$$(\overline{\zeta}_{2}) = U(\zeta_{2}) - U(\zeta_{2}) = \frac{\gamma}{\Lambda} - \frac{I}{\Lambda} = \frac{\gamma}{\Lambda}$$

$$(\overline{\zeta}_{1}) = U(\zeta_{2}) - U(\zeta_{2}) = \frac{3}{\Lambda} - \frac{I}{\Lambda} = \frac{\gamma}{\Lambda}$$

$$(\overline{\zeta}_{1}) = U(\zeta_{2}) - U(\zeta_{2}) = \frac{3}{\Lambda} - \frac{I}{\Lambda} = \frac{\gamma}{\Lambda}$$

إجابة السؤال ٢

 $i\dot{a}_{0}(\dot{c}_{0}) = \rho, \quad i\dot{b}_{0}(\dot{c}_{1}) = \rho, \quad i\dot{b}_{0}(\dot{c}_{1})$

i)
$$U(\overline{\zeta}_{1}) = 1 - U(\zeta_{1}) = 1 - 0, . = 0, .$$

$$U(\zeta_{2}) = 1 - 7, . = 3, .$$

$$U(\overline{\zeta}_{1}) = 1 - U(\zeta_{2}) = 1 - V(\zeta_{3}) = 1$$

(۸- ٤) تمارين عامة:

إجابة السؤال ١

٥	٤	٣	۲	١	رقم الفقرة
د	د	د	د	ب	رمز الإجابة

إجابة السؤال ٢

إجابة السؤال ٣

i)
$$U(z_{1} \cup z_{2}) = U(z_{1}) + U(z_{2}) = V, \cdot + V, \cdot = \rho, \cdot$$

 $V(z_{1} \cup z_{2}) = V, \cdot + V, \cdot = \rho, \cdot =$

$$U(\varsigma_{r} \cup \varsigma_{r}) = U(\varsigma_{r}) + U(\varsigma_{r})$$

$$ov_{r} \cdot = \beta U(\varsigma_{r}) + U(\varsigma_{r})$$

$$ov_{r} \cdot = o U(\varsigma_{r})$$

$$U(\varsigma_{r}) = ov_{r} \cdot \div o = ov_{r}$$

$$U(\varsigma_{r}) = \beta U(\varsigma_{r}) = \beta \times ov_{r} \cdot = r_{r}$$

i)
$$U(\overline{\zeta_{\gamma}}) = 1 - U(\zeta_{\gamma}) = 1 - 00, \cdot = 03, \cdot$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) - U(\zeta_{\gamma} - \zeta_{\gamma}) = 07, \cdot - 7, \cdot = 03, \cdot$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma}) - U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma} - \zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{\gamma}) + U(\zeta_{\gamma})$$

$$(-1) U(\zeta_{\gamma} - \zeta_{\gamma}) = U(\zeta_{\gamma}) + U(\zeta_{$$

لتحميل المزيد من موقع المكتبة الفلسطينية الشاملة http://sh-pal.blogspot.com

تابعنا على صفحة الفيس بوك : https://www.facebook.com/shamela.pal

أقسام موقع المكتبة الفلسطينية الشاملة:

الصف الأول: https://sh-pal.blogspot.com/p/blog-page 24.html

الصف الثاني: https://sh-pal.blogspot.com/p/blog-page_46.html

الصف الثالث : https://sh-pal.blogspot.com/p/blog-page 98.html

الصف الرابع: https://sh-pal.blogspot.com/p/blog-page 72.html

الصف الخامس : https://sh-pal.blogspot.com/p/blog-page_80.html

الصف السادس: https://sh-pal.blogspot.com/p/blog-page_13.html

الصف السابع : https://sh-pal.blogspot.com/p/blog-page 66.html

الصف الثامن : https://sh-pal.blogspot.com/p/blog-page 35.html

الصف التاسع: https://sh-pal.blogspot.com/p/blog-page 78.html

الصف العاشر: https://sh-pal.blogspot.com/p/blog-page 11.html

الصف الحادي عشر: https://sh-pal.blogspot.com/p/blog-page_37.html

الصف الثاني عشر: https://sh-pal.blogspot.com/p/blog-page_33.html

ملازم للمتقدمين للوظائف: https://sh-pal.blogspot.com/p/blog-page 89.html

مكتبة الكتب : https://sh-pal.blogspot.com/p/blog-page 19.html

شارك معنا: https://sh-pal.blogspot.com/p/blog-page 40.html

اتصل بنا: https://sh-pal.blogspot.com/p/blog-page 9.html