Similar Right Triangles

Two proofs.

Problem 1 Adapted from Ohio's 2017 Geometry released item 17.

Complete the following proof that $\triangle DAC$ is similar to $\triangle DBA$:

- (a) $\triangle DBA \sim \triangle \boxed{ABC}$ by (AA similarity \checkmark / CPCTC/ right triangle similarity) because they share $\angle B$ and they each have a right angle.
- (b) $\triangle DAC \sim \triangle ABC$ for the same reason because they share $(\angle A/\angle B/\angle C \checkmark)$ and they each have a right angle.
- (c) $\triangle DAC \sim \triangle DBA$ because (CPCTC/ right triangle similarity/ they are both similar to $\triangle ABC$ \checkmark).

Problem 2 A different proof, also adapted from Ohio's 2017 Geometry released item 17.

Author(s): Brad Findell

Complete the following proof that $\triangle DAC$ is similar to $\triangle DBA$:

- (a) $\angle B$ and $\angle BAD$ are complementary because they are acute angles in a right triangle.
- (b) $\angle DAC$ and $\angle BAD$ are complementary because they are adjacent angles that form $\angle BAC$, which is (right \checkmark) acute/obtuse).
- (c) $\angle B \cong \angle DAC$ because they are both complementary to $\angle BAD$.
- (d) $\triangle DAC \sim \triangle DBA$ by (AA similarity \checkmark / CPCTC/ right triangle similarity) because $\angle B \cong \angle DAC$ and they each have a right angle.