Session 2

Seven Segment Display and LED Display using Array

OBJECTIVES:

- Students will be able to use array as a data structure to show output on Seven Segment Display.
- They will also be able to use array to store data in array and use it to show output on LED Display.
- Students will be able to show output using Dot Matrix Display.

Experiment No: 03

Experiment Name: Write an assembly code to display 0-9 in Seven Segment Display (SSD) with array.

- For seven segments display we use 0 for ON and 1 for OFF
- Control register value will be the column headings of the following table:

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	0	0
Control Register 0- BSR mode 1- I/O mode	gr 00	election for oup A 0- I/O ndshaking	Port A 0- Output 1- Input	Upper 4 bit of port C	Mode selection for group B 0- I/O 1- Handshaking	For port B	For lower 4 bit of port C

Assembly Code:

SA SEGMENT PARA PUBLIC 'CODE' ASSUME CS: SA ORG 1000H

START:

;control register turn on

MOV AL,80H

OUT 1FH,AL

MOV SI, OFFSET DATA

;LED turn on

L1:MOV AL, BYTE PTR CS:[SI]

OUT 19H,AL

;for delay

MOV CX,0FFFFH

L2:LOOP L2

INC SI

JMP L1

DATA:

DB 0C0H

DB 0F9H

DB 0A4H

DB 0B0H

DB 099H

DB 092H

DB 032H

DD OUDI

DB 0F8H

DB 080H DB 090H

SA ENDS

END START

Output			g	f	e	d	С	b	a
0	=	1	1	0	0	0	0	0	0
1	=	1	1	1	1	1	0	0	1
2	=	1	0	1	0	0	1	0	0
3	=	1	0	1	1	0	0	0	0
4	=	1	0	0	1	1	0	0	1
5	=	1	0	0	1	0	0	1	0
6	=	1	0	0	0	0	0	1	0
7	=	1	1	1	1	1	0	0	0
8	=	1	0	0	0	0	0	0	0
9	=	1	0	0	1	0	0	0	0

Steps to run code in MDA-8086 through PC:

- At first copy paste the .ASM file in the mda folder of computer
- Then open cmd and write cd\ and press enter
- Then type cd mda and press enter
- Then type MASM and press enter
- Then write the file_name.ASM and press enter. For our example we will write SA.ASM
- Then write the file_name.OBJ and press enter. For our example we will write SA.OBJ
- Then write the file_name.LST and press enter. This step is used for error checking. For our example we will write SA.LST

- Then when it wants .CRF file simply press enter
- If there is any error in the file, then after this line we can see the number of errors.
- If any error is found, then type EDIT file_name.LST and press enter.
- If no error is found, then type LOD186 and press enter
- Then type file_name.OBJ and press enter. For our example we will write SA.OBJ
- Then type file_name.ABS and press enter. For our example we will write SA.ABS
- Then type COMM and press enter.
- Then a blue window will occur
- We will now turn on the kit and we will select PC mode from kit mode
- Then press RESET
- If your kit is ok, then it will show up in the blue screen
- Then type L from keyboard and press enter
- If L does not show up, then it means your PC is not connected and you have to try in different PC
- Otherwise press F3 and in the pop-up screen write filename.ABS and press enter. For our example we will write SA.ABS
- Then in the kit select kit mode from PC mode
- Then press RESET
- After that press AD
- Then Press GO
- Then you can see the output in the seven segments display

Experiment No: 04

Experiment Name: Write an assembly code to glow R1, G, Y and R2 in LED Display respectively using array.

- For LED display we use 1 for ON and 0 for OFF
- Control register value will be the column headings of the following table:

D7	D6	D5	D4	D4 D3 D2		D1	D0
1	0 0		0	0	0	0	0
Control Register 0- BSR mode 1- I/O mode	Mode selection for group A 00- I/O 01- Handshaking		Port A 0- Output 1- Input	Upper 4 bit of port C	Mode selection for group B 0- I/O 1- Handshaking	For port B	For lower 4 bit of port C

Assembly Code:

LA SEGMENT PARA PUBLIC 'CODE' ASSUME CS: LA ORG 1000H

START:

;control register turn on MOV AL,80H
OUT 1FH,AL
;segment address forcefully off MOV AL,0FFH
OUT 19H,AL
MOV SI,OFFSET DATA
;LED turn on
L1:MOV AL,BYTE PTR CS:[SI]
OUT 1BH,AL
;for delay
MOV CX,0FFFFH
L2:LOOP L2

INC SI
JMP L1
DATA:
DB 01H
DB 02H
DB 04H
DB 08H
LA ENDS
END START

				R2	Y	G	R1
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0

Steps to run code in MDA-8086 through PC:

- At first copy paste the .ASM file in the mda folder of computer
- Then open cmd and write cd\ and press enter
- Then type cd mda and press enter
- Then type MASM and press enter
- Then write the file_name.ASM and press enter. For our example we will write LA.ASM
- Then write the file_name.OBJ and press enter. For our example we will write LA.OBJ
- Then write the file_name.LST and press enter. This step is used for error checking. For our example we will write LA.LST
- Then when it wants .CRF file simply press enter
- If there is any error in the file, then after this line we can see the number of errors.
- If any error is found, then type EDIT file_name.LST and press enter.
- If no error is found, then type LOD186 and press enter
- Then type file_name.OBJ and press enter. For our example we will write LA.OBJ
- Then type file_name.ABS and press enter. For our example we will write LA.ABS
- Then type COMM and press enter.
- Then a blue window will occur
- We will now turn on the kit and we will select PC mode from kit mode
- Then press RESET
- If your kit is ok, then it will show up in the blue screen
- Then type L from keyboard and press enter
- If L does not show up, then it means your PC is not connected and you have to try in different PC
- Otherwise press F3 and in the pop-up screen write filename.ABS and press enter. For our example we will write LA.ABS
- Then in the kit select kit mode from PC mode
- Then press RESET
- After that press AD
- Then Press GO
- Then you can see the output in the LED display

Dot Matrix Display

The KMD D1288C is 1.26inch height 3mm diameter and 8×8 dot matrix LED displays. The KMD D1288C are dual emitting color type of red, green chips are contained in a dot with milky and white lens color.

Experiment No: 05

Experiment Name: Write an assembly code to glow dots on Dot Matrix Display scroll bottom to top having red color.

For dot matrix display color combinations are:

Color	Combinations				
	A=0				
Green	B=1				
	C=1				
	A=1				
Red	B=0				
	C=1				
	A=0				
Orange	B=0				
	C=1				
	A=1				
Off	B=1				
	C=0				

• Control register value will be the column headings of the following table:

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	0	0
Control Register 0- BSR mode 1- I/O mode	for g	selection group A I- I/O ndshaking	Port A 0- Output 1- Input	Upper 4 bit of port C	Mode selection for group B 0- I/O 1- Handshaking	For port B	For lower 4 bit of port C

Assembly Code:

DM SEGMENT PARA PUBLIC 'CODE'

ASSUME CS: DM **ORG 1000H** START:

> MOV AL,80H OUT 1EH,AL

OUT 1CH,AL

MOV CX,0FFFFH L3:L00P L3 MOV AL,FFH

;for delay

L

	OUT ILII,AL								
ւ1։			Port	7	6	5	4	3	2
	MOV AL,FFH		A	1	1	1	1	1	1
	OUT 18H,AL	;PORT A	В	1	1	1	1	1	1
	MOV AL, FEH		С	0	0	0	0	0	0
	OUT 1AH,AL	;PORT B	C	10	U	U	U	U	U
	MOV AL,01H					000			
	OUT 1CH,AL	;PORT C			000	000	00		
	;for delay				000	000	00		
	MOV CX,0FFFFH					000			
	L0:LOOP L0			•	• • •	• • •	• •		
	MOV AL,FFH		Port	7	6	5	4	3	2
	OUT 18H,AL	;PORT A	Α	1	1	1	1	1	1
	MOV AL,FDH		В	1	1	1	1	1	1
	OUT 1AH,AL	;PORT B	C	0	0	0	0	0	0
	MOV AL,02H		<u> </u>			1 -			
	OUT 1CH,AL	;PORT C				0000			
	;for delay				000		000		
	MOV CX,0FFFFH				000	000	000		
	L1:L00P L1				• • •		• •		
	MOV AL,FFH				000	0000	000		
	OUT 18H,AL	;PORT A	Port	7	6	5	4	3	2
	MOV AL,FBH		Α	1	1	1	1	1	1
	OUT 1AH,AL	;PORT B	В	1	1	1	1	1	0
	MOV AL,04H		С	0	0	0	0	0	1
	OUT 1CH,AL	;PORT C							1
	;for delay				00	000	000		
	MOV CX,0FFFFH				00	000	000		
	L2:LOOP L2				• •		\bullet		
	MOV AL,FFH				ŏŏ	ŏŏŏ	ŏŏŏ		
	OUT 18H,AL	;PORT A	Port	7	6	5	4	3	2
	MOV AL,F7H	•	A	1	1	1	1	1	1
	OUT 1AH,AL	;PORT B	В	1	1	1	1	0	1
	MOV AL,08H	•	С	0	0	0	0	1	0
				•					

;PORT C

OUT 18H,AL MOV AL,EFH	;PORT A	Port A		7	6	5	4	3	2	1	0
OUT 1AH,AL	;PORT B	В		1	1	1	0	1	1	1	1
MOV AL,10H	,i on b	C		0	0	0	1	0	0	0	0
OUT 1CH,AL ;for delay MOV CX,0FFFFH L4:LOOP L4 MOV AL,FFH	;PORT C			, -	((
OUT 18H,AL	;PORT A	Port		7	6	5	4	3	2	1	0
MOVAL,DFH		Α		1	1	1	1	1	1	1	1
OUT 1AH,AL	;PORT B	В		1	1	0	1	1	1	1	1
MOV AL,20H		С		0	0	1	0	0	0	0	0
OUT 1CH,AL	;PORT C					0000					
;for delay						0000	• • •	•			
MOV CX,0FFFFH						0000		0 0			
L5:LOOP L5						0000	000C	0 0			
MOV AL,FFH	DODT A	Port		7	6	5	4	3	2	1	0
OUT 18H,AL MOV AL,BFH	;PORT A	A		1	1	1	1	1	1	1	1
OUT 1AH,AL	;PORT B	В		1	0	1	1	1	1	1	1
MOV AL,40H	,FUKI D	С		0	1	0	0	0	0	0	0
OUT 1CH,AL	;PORT C	C		10	1	10	U	l O	10	10	
;for delay MOV CX,0FFFFH L6:LOOP L6 MOV AL,FFH	,r orci										
OUT 18H,AL	;PORT A	Port		7	6	5	4	3	2	1	0
MOV AL,7FH		A		1	1	1	1	1	1	1	1
OUT 1AH,AL	;PORT B	В		0	1	1	1	1	1	1	1
MOV AL,01H		С		1	0	0	0	0	0	0	0
OUT 1CH,AL ;for delay MOV CX,0FFFFH L7:LOOP L7 DM ENDS END START	;PORT C										

Steps to run code in MDA-8086 through PC:

- At first copy paste the .ASM file in the mda folder of computer
- Then open cmd and write cd\ and press enter

- Then type cd mda and press enter
- Then type MASM and press enter
- Then write the file_name.ASM and press enter. For our example we will write DM.ASM
- Then write the file_name.OBJ and press enter. For our example we will write DM.OBJ
- Then write the file_name.LST and press enter. This step is used for error checking. For our example we will write DM.LST
- Then when it wants .CRF file simply press enter
- If there is any error in the file, then after this line we can see the number of errors.
- If any error is found, then type EDIT file_name.LST and press enter.
- If no error is found, then type LOD186 and press enter
- Then type file_name.OBJ and press enter. For our example we will write DM.OBJ
- Then type file_name.ABS and press enter. For our example we will write DM.ABS
- Then type COMM and press enter.
- Then a blue window will occur
- We will now turn on the kit and we will select PC mode from kit mode
- Then press RESET
- If your kit is ok, then it will show up in the blue screen
- Then type L from keyboard and press enter
- If L does not show up, then it means your PC is not connected and you have to try in different PC
- Otherwise press F3 and in the pop-up screen write filename. ABS and press enter. For our example we will write DM. ABS
- Then in the kit select kit mode from PC mode
- Then press RESET
- After that press AD
- Then Press GO
- Then you can see the output in the LED display