0.2
1. The merge cost of away is 2×2^i maximum
2 x 2° maximum.
For n insertions,
arr[0] will merge 1/2 times
arr [1] will merge n/4 times
to contract the larger to the state of the contract of the con
and so on.
So, O(logn) arrays will merge with O(n) cost
: total cost = O(n logn) But the amortized cost for the insertion will be O(logn
•

ï

1

_

2. For search we go through all levels. Present in Odifferent So : we have log(n+1) arrays

Estatching a sorted array

takes log(i) time where i

is the no. of elements. The longest array will be so flength of E manimum log(n+1) arrays will be searched bushere each searche of Ologn i. Total cost ≈ O(log²n)

1).3 1. $T(n) = 8 \times T(y_3) + 2^n$ $a = 8 b = 3 f(n) = 2^n$ Case 1: $f(n) = O(n^{\log_b a - \epsilon})$ 2" + nlog38-e So case I down't hold Case 2: $\log \alpha = \log 8 = 3 \log 2$ f(n) + x So case 2 doesn't hold (asl 3: $f(n) = \Omega(n^{\log a + \varepsilon}) \in 0$ Now since exponential function grows faster than polynomial function so,

 $\binom{u}{b} \leq cf(n)$ a 1 $\begin{pmatrix} n \\ 3 \end{pmatrix} \leqslant C2^n$ $2^{n/3} \leqslant C2^n$ 8 / condition will
for C = 0×2 ×1

2.
$$T(n) = 3 \times T(\sqrt{3}) + n/2$$

Case 1: $a = 3$ $b = 3$ $f(n) = n/2$
 $loga = log3 = 1$

$$f(n) = O(n^{log_b}a - \epsilon) = O(n^{l-\epsilon})$$

i. ϵ should be > 0

but in this case if ϵ > 0

then $n^{l-\epsilon} \neq n/2$

Then this doesn't hold

8 Case 2:

If $f(n) = O(n^{log_b}a)$

then,

 $T(n) = O(n^{log_b}a)$

Then this case, $O(n^{log_b}a)$
 $f(n) = n$ where $1/2$ is constant

 $f(n) = n = n^{log_b}a$

.', $T(n) = O(n^{log_b}a)$

.', $T(n) = O(n^{log_b}a)$

3.
$$T(n) = 2 \times T(\frac{n}{4}) + \sqrt{n}$$

$$a = 2 \quad b = 4 \quad f(n) = \sqrt{n}$$

$$Case 1: \quad \text{If } f(n) = 0 \quad (n^{\log_2 a - e})$$

$$\log_2 a = \log_2 2 = 0.5$$

$$\therefore \quad n^{\log_2 a - e} = n^{0.5 - e}$$

$$\therefore \quad e \quad \text{Should be > 0 } \quad \text{this }$$

$$case \quad won't \quad hold$$

$$Case 2: \quad \log_2 a = \log_4 2 = 0.5$$

$$\text{if } f(n) = 0 \quad (n^{\log_2 a})$$

$$\text{Then } \int f(n) = 0 \quad (n^{\log_2 a})$$

$$\text{Then } \int f(n) = \int f(n) = \int f(n) = \int f(n) = \int f(n)$$

$$\therefore \quad T(n) = \int f(n) \quad \int f(n) \log_n f(n) = \int f(n) \log_n f(n)$$

4.
$$T(n) = 4 \times T(n/2) + 3n$$

$$a = 4 \qquad b = 2 \qquad f(n) = 3n$$

Case 1:
$$f(n) = O(n \log^{2} a - \epsilon) \qquad \text{for } \epsilon > 0$$

$$T(n) = O(n \log^{2} a)$$

In this case, $\log_{2} 4 = 2$

$$\log_{2} a - \epsilon = n^{2-\epsilon}$$

$$f(n) = O(n^{2})$$

$$T(n) = O(n^{2})$$

operations operation cost 0 9 every 2 x i +1 operation amortized cost