	EXAMS OFFICE USE ONLY
UNIVERSITY OF THE WITWA	TERSRAND, JOHANNESBURG
Course or topic No(s)	APPM 2007A, APPM2020A
Course or topic name(s) Paper Number & title	Numerical methods II
Examination/Test to be held during month(s) of (delete as applicable)	JUNE 2022 MAIN EXAMINATION
Year of Study (Art & Science leave blank)	SECOND
Degrees/Diplomas for which This course is prescribed (BSc (Eng) should indicate which bra	nch) BSc
Faculty/ies presenting Candidates	SCIENCE
Internal examiners(s) And telephone extension number(s)	Dr Walter Mudzimbabwe
External examiner(s)	Dr Rodrigue Yves M'pika Massoukou
Special materials required (graph/music/drawing paper) maps, diagrams, tables computer cards, etc.	NONE
Time allowance	Course No.(s) APPM2007, APPM2020A Hours 2 hrs
Instructions to candidates (Examiners may wish to use this space to indicate, inter alia the contribution made by this examination or test towards the year mark if appropriate)	ATTEMPT ALL QUESTIONS CALCULATORS ARE PERMITTED NO CELLPHONES ALLOWED Total Marks Available = 57 100% = 57

University of the Witwatersrand, Johannesburg

School of Computer Science and Applied Mathematics

APPM2007A, APPM2020A: Numerical methods II June 2022, EXAMINATION

Instructions

- 1. This exam is 2 hours long.
- 2. There are 4 questions in this paper.
- 3. Answer all questions.
- 4. Start each question on a new page.
- 5. Where applicable, provide your final answer to 5 decimal places.
- 6. Formulae is given on page 4 and 5.

Total: [57 marks]

Question 1. [15 marks]

- (a) Write down the Taylor series expansion of f(x h) and f(x + 3h). [2 marks]
- (b) Use your answer to Question 1(a) to deduce a formula for f'(x) that uses f(x-h), f(x) and f(x+3h), stating the truncation error and order of approximation. [4 marks]
- (c) Use your answer to Question 1(a) to deduce a formula for f''(x) that uses f(x-h), f(x) and f(x+3h), stating the truncation error and order of approximation. [5 marks]
- (d) Show that the approximation you found in Question 1(a) is exact for $f(x) = x^2 + 2x + 1$. [4 marks]

Question 2. [12 marks]

(a) The formula

$$F_{n+1}(h) = \frac{F_n(h/2) - F_n(h)}{2^n - 1}$$

can be used to extrapolate an n^{th} order approximation F_n to an $(n+1)^{th}$ order approximation F_{n+1} . Use this formula to determine $F_2(h)$, an approximation for f'(x) where $f(x) = 2^x \sin(x)$ at x = 1.05 and h = 0.4. [4 marks]

- (b) Verify the order of your approximation in Question 2(a) by considering Taylor series expansions of f expressions in your approximation. [4 marks]
- (c) Approximate the double integral

$$\int_{1}^{2} \int_{3}^{5} y e^{x} \, dy \, dx$$

using midpoint rule with $n_x = 4$ and $n_y = 5$.

[4 marks]

Question 3. [19 marks]

(a) The following Python code implements a quadrature rule to estimate

$$\int_{a}^{b} f(x) \, \mathrm{d}x.$$

import numpy as np

- (i) State the quadrature method that is being implemented by the Python function. [1 mark]
- (ii) By considering every line of the code, give reasons to support your answer to (a)(i). [3 marks]
- (b) Consider the following data.

(i) Derive the Lagrange polynomial of suitable degree that interpolates the data in the table. [5 marks]

- (ii) Derive the Newton divided differences polynomial of suitable degree that interpolates the data in the table. [6 marks]
- (c) Without doing any calculations, explain how you would determine u such that

$$P(u) = \ln(1.9999).$$

where P(x) is the polynomial you found in Question 3(b)(ii). [4 marks]

Question 4. [11 marks]

(a) Consider the initial value problem (IVP):

$$y' = t + \frac{3y}{t}$$
, $1 \le t \le 2$, $y(1) = 0$.

Use the midpoint rule to determine y_1, y_2, y_3 using h = 0.1. [2 marks]

(b) Consider the boundary value problem (BVP):

$$y'' + xy' - x^2y = 2x^2$$
, $0 \le x \le 1$ $y(0) = 1$, $y(1) = -1$,

and h = 0.25.

(i) Write down the equations that y must satisfy in the form

$$a_i y_{i-1} + b_i y_i + c_i y_{i+1} = d_i,$$

by using a backward difference approximation for y' and central difference approximation for y''. [5 marks]

(ii) Write down the system in the form Ay = e.

[2 marks]

(iii) Given that $AB = I_3$ where

$$\mathbf{B} = \begin{bmatrix} -0.0454 & -0.0303 & -0.0158 \\ -0.0276 & -0.0590 & -0.0308 \\ -0.0123 & -0.0263 & -0.0444 \end{bmatrix},$$

and I_3 is a 3×3 identity matrix, solve the system in Question 4(b)(ii).

[2 marks]

Formulae:

1. Central difference:
$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$
, $f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$

2. Richardson:
$$F_j^i = \frac{1}{4^j - 1} \left(4^j F_{j-1}^i - F_{j-1}^{i-1} \right), \quad j = 1, 2, \dots, m, \ i = 1, 2, \dots, n.$$

3. Trapezoidal rule:

$$I \approx \frac{h}{2} [f_0 + 2(f_1 + f_2 + \dots + f_{n-1}) + f_n], \quad E_T = -\frac{(b-a)h^2}{12} f''(\epsilon), \ \epsilon \in [a,b]$$

4. Simpson rule:

$$I \approx \frac{h}{3} \left[f_0 + 4(f_1 + f_3 + \dots + f_{n-1}) + 2(f_2 + f_4 + \dots + f_{n-2}) + f_n \right], \quad E_S = -\frac{(b-a)h^4}{180} f^{(4)}(\epsilon), \ \epsilon \in [a, b]$$

5. Midpoint for double integration:

$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx \approx h_{x} h_{y} \sum_{i=0}^{n_{x}-1} \sum_{j=0}^{n_{y}-1} f(a + \frac{h_{x}}{2} + ih_{x}, c + \frac{h_{y}}{2} + jh_{y}).$$

- 6. False position: $c = \frac{af(b) bf(a)}{f(b) f(a)}$.
- 7. Newton:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}, \quad i = 0, 1, 2, \cdot$$

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} - J^{-1}(x_i, y_i) \begin{bmatrix} f(x_i, y_i) \\ g(x_i, y_i) \end{bmatrix}, \quad i = 0, 1, 2, \cdot$$

8. Lagrange interpolation:

$$L_k(x) = \prod_{i=0, i \neq k}^{n} \frac{(x-x_i)}{(x_k - x_i)}.$$

- 9. Quadratic Interpolation: $a_0 = f(x_0)$, $a_1 = \frac{f(x_1) f(x_0)}{x_1 x_0}$, $a_2 = \frac{\frac{f(x_2) f(x_1)}{x_2 x_1} \frac{f(x_1) f(x_0)}{x_1 x_0}}{x_2 x_0}$.
- 10 Polynomial least square equations:

$$a_{0}n + a_{1} \sum_{i=1}^{n} x_{i} + \dots + a_{m} \sum_{i=1}^{n} x_{i}^{m} = \sum_{i=1}^{n} y_{i}$$

$$a_{0} \sum_{i=1}^{n} x_{i} + a_{1} \sum_{i=1}^{n} x_{i}^{2} + \dots + a_{m} \sum_{i=1}^{n} x_{i}^{m+1} = \sum_{i=1}^{n} x_{i} y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{0} \sum_{i=1}^{n} x_{i}^{m} + a_{1} \sum_{i=1}^{n} x_{i}^{m+1} + \dots + a_{m} \sum_{i=1}^{n} x_{i}^{2m} = \sum_{i=1}^{n} x_{i}^{m} y_{i}$$

- 11. Euler method: $y_{i+1} = y_i + h f(x_i, y_i)$.
- 12. Midpoint rule: $y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}), \quad y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i)$
- 13. Second order Runge-Kutta method:

$$y_{i+1} = y_i + (w_1k_1 + w_2k_2), \ k_1 = hf(x_i, y_i), \ k_2 = hf(x_i + h/2, y_i + k_1/2).$$

14. Fourth order Runge-Kutta method:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = hf(x_i, y_i), \quad k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$

$$k_3 = hf(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}), \quad k_4 = hf(x_i + h, y_i + k_3).$$