experiences no film thickness loss after development, and has a high sensitivity, minimized LWR and improved CDU.

In one aspect, the invention provides a chemically amplified resist composition comprising a quencher containing a quaternary ammonium salt selected from the group consisting of a quaternary ammonium iodide, quaternary ammonium dibromoiodide, quaternary ammonium bromodiiodide, and quaternary ammonium triiodide, and an acid generator.

In one preferred embodiment, the quaternary ammonium $_{10}$ salt has the formula (1) or (2).

$$R^{6} - N^{+} - R^{11} - N^{+} - R^{9} \quad 2X^{-}$$

$$R^{7} \quad R^{10}$$

Herein R^1 to R^4 and R^5 to R^{10} are each independently a 25 C_1 - C_{24} straight, branched or cyclic alkyl group, C_2 - C_{24} straight, branched or cyclic alkenyl group, C_2 - C_{24} straight, branched or cyclic alkynyl group, or C_6 - C_{24} aryl group, which may contain a halogen, hydroxyl, carboxyl, ether, ester, thiol, thioester, thionoester, dithioester, amino, nitro, sulfone or ferrocenyl moiety, a pair of R^1 and R^2 , R^1 and R^4 , R^2 and R^3 , and/or R^3 and R^4 may bond together to form a ring, or a pair of R^1 and R^2 , R^1 and R^4 , or R^3 and R^4 , taken together, may form a double bond, R^{11} is a C_2 - C_{12} straight, branched or cyclic alkylene group which may contain an ether and/or ester moiety, X^- is an anion selected from the group consisting of I^- , Br_2I^- , BrI_2^- and I_3^- .

In one preferred embodiment, the acid generator is capable of generating sulfonic acid, imidic acid or methide acid.

The resist composition may further comprise a base polymer.

In owe preferred embodiment, the base polymer comprises recurring units of at least one type selected from 45 recurring units having the formulae (f1) to (f3).

60

4

-continued

$$\begin{array}{c}
 & R^4 \\
 & Z^3 \\
 & Z^3 \\
 & Z^3 \\
 & Z^3 \\
 & Z^5 \\
 & Z$$

Herein R⁴ is each independently hydrogen or methyl. Z¹ is a single bond, phenylene, —O—Z¹¹—, or —C(—O)—Z¹²—Z¹¹—, Z¹¹ is a C₁-C₆ straight, branched or cyclic alkylene group or C₂-C₆ straight, branched or cyclic alkylene group which may contain a carbonyl, ester, ether or hydroxyl moiety, or phenylene group, Z¹² is —O— or —NH—. R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, and R⁵⁸ are each independently a C₁-C₁₂ straight, branched or cyclic alkyl group which may contain a carbonyl, ester or ether moiety, 20 or a C₆-C₁₂ aryl, C₇-C₂₀ aralkyl, or mercaptophenyl group. Z² is a single bond, —Z²¹—C(O)O—, —Z²¹—O—, or —Z²¹—O—C(—O)—, Z²¹ is a C₁-C₁₂ straight, branched or cyclic alkylene group which may contain a carbonyl, ester or ether moiety. Z³ is a single bond, methylene, ethylene, phenylene, fluorinated phenylene, —O—Z³¹—, or —C(—O)—Z³²—Z³¹—, Z³¹ is a C₁-C₆ straight, branched or cyclic alkylene group or C₂-C₆ straight, branched or cyclic alkylene group which may contain a carbonyl, ester, ether or hydroxyl moiety, or a phenylene, fluorinated phenylene or trifluoromethyl-substituted phenylene group, Z³² is —O— or —NH—. A¹ is hydrogen or trifluoromethyl, and M⁻ is a non-nucleophilic counter ion.

In one preferred embodiment, the acid generator also functions as a base polymer. In this case, the acid generator is a polymer comprising recurring units of at least one type selected from recurring units having the formulae (f1) to (f3) defined above.

In one preferred embodiment, the base polymer comprises recurring units having the formula (a1) or recurring units having the formula (a2).

$$(a1)$$

$$X^{1}$$

$$X^{0}$$

$$X^{1}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$\begin{array}{c}
\mathbb{R}^{A} \\
\mathbb{R}^{2}
\end{array}$$

$$\begin{array}{c}
\mathbb{R}^{22}
\end{array}$$

Herein R⁴ is each independently hydrogen or methyl, R¹¹ and R¹² are each independently an acid labile group, X¹ is a single bond, phenylene, naphthylene, or a C₁-C₁₂ linking group containing ester moiety or lactone ring, and X² is a single bond or ester group.