## Chap 11 補充

**Table 11.2** The MD4 family of hash functions

| Algorithm |         | Output | Input | No. of | Collisions |
|-----------|---------|--------|-------|--------|------------|
|           |         | [bit]  | [bit] | rounds | found      |
| MD5       |         | 128    | 512   | 64     | yes        |
| SHA-1     |         | 160    | 512   | 80     | not yet    |
| SHA-2     | SHA-224 | 224    | 512   | 64     | no         |
|           | SHA-256 | 256    | 512   | 64     | no         |
|           | SHA-384 | 384    | 1024  | 80     | no         |
|           | SHA-512 | 512    | 1024  | 80     | no         |

## 11.3.2 Hash Functions from Block Ciphers



Fig. 11.6 The Matyas–Meyer–Oseas hash function construction from block ciphers

The function can be expressed as:

$$H_i = e_{g(H_{i-1})}(x_i) \oplus x_i$$



**Fig. 11.7** Davies–Meyer (left) and Miyaguchi–Preneel hash function constructions from block ciphers

The expressions for the two hash functions are:

$$H_i = H_{i-1} \oplus e_{x_i}(H_{i-1})$$
 (Davies–Meyer)  
 $H_i = H_{i-1} \oplus x_i \oplus e_{g(H_{i-1})}(x_i)$  (Miyaguchi–Preneel)

All three hash functions need to have initial values assigned to  $H_0$ .

## 11.4.2 Hash Computation

Each message block  $x_i$  is processed in four stages with 20 rounds each as shown in Figure 11.11. The algorithm uses

■ a message schedule which computes a 32-bit word  $W_0, W_1, ..., W_{79}$  for each of the 80 rounds. The words  $W_j$  are derived from the 512-bit message block as follows:

$$W_{j} = \begin{cases} x_{i}^{(j)} & 0 \le j \le 15 \\ (W_{j-16} \oplus W_{j-14} \oplus W_{j-8} \oplus W_{j-3})_{\infty 1} & 16 \le j \le 79, \end{cases}$$

where  $X_{\ll n}$  indicates a circular left shift of the word X by n bit positions.