A PYTHON PROGRAM TO IMPLEMENT KNN MODEL

Ex.No:9A

Date of Experiment: 18/10/24

AIM:-

To implement a python program using a KNN Algorithm in a model.

ALGORITHM:-

Step1: Import all the other necessary libraries(numpy as np, matplotlib.pyplot as plt and sklearn.tree,pandas as pd and seaborn as sns).

Step2: Select the number K of the neighbors.

Step3: Calculate the Euclidean distance of K number of neighbors of data points.

Step4: Take the K nearest neighbors as per the calculated Euclidean distance.

Step5: Among these k neighbors, count the number of the data points in each category.

Step6: Assign the new data points to that category for which the number of the neighbor is maximum.

Step7: Plot the graph "X" and "y" the values tested and predicted using seaborn.scatterplot() function.

Step8: Print the confusion matrix of the model to know the accuracy of the model with support values for each class.

IMPLEMENTATION:-

import numpy as np import matplotlib.pyplot as plt import pandas as pd

dataset = pd.read_csv('../input/mall-customers/Mall_Customers.csv')

X = dataset.iloc[:,[3,4]].values
print(dataset)

```
CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
0
           1
                Male 19
                                        15
1
            2
                                         15
                                                               81
                 Male
                       21
2
            3 Female
                       20
                                         16
                                                                6
3
            4 Female
                                                               77
                       23
                                         16
                                         17
            5 Female
                       31
                                                               40
                                        . . .
195
          196 Female
                       35
                                        120
                                                               79
                                        126
196
          197 Female
                      45
                                                               28
                                                               74
197
          198
                 Male 32
                                        126
          199
                                        137
                                                               18
198
                 Male
                       32
                      30
                                        137
199
          200
                Male
                                                               83
```

[200 rows x 5 columns]

```
from sklearn.cluster import KMeans
```

wcss = []

for i in range (1,11):

kmeans = KMeans($n_clusters = i$, init = 'k-means++', max_iter = 300, n_i = 10, random state = 0)

kmeans.fit(X)

wcss.append(kmeans.inertia_)

Plot the graph to visualize the Elbow Method to find the optimal number of cluster plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()

kmeans=KMeans(n_clusters= 5, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)

```
y kmeans = kmeans.fit predict(X)
y kmeans
array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
     4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2,
     1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
     0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
     0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
     0, 2], dtype=int32)
type(y kmeans)
numpy.ndarray
y kmeans
 array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
      4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2,
      1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
      0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
      0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
      0, 2], dtype=int32)
```

plt.scatter(X[y kmeans == 0, 0], X[y kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')

<matplotlib.collections.PathCollection at 0x7f2c79858c90>

 $plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')$

<matplotlib.collections.PathCollection at 0x7f2c95155bd0>

 $plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')$

<matplotlib.collections.PathCollection at 0x7f2c95063490>

 $plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')$

<matplotlib.collections.PathCollection at 0x7f2c94feb890>

 $plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')$

<matplotlib.collections.PathCollection at 0x7f2c94f756d0>

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')

<matplotlib.collections.PathCollection at 0x7f2c94f75650>

plt.title('Clusters of customers')
plt.xlabel('Annual Income (k\$)')
plt.ylabel('Spending Score (1-100)')

plt.legend()
plt.show()


```
 plt.scatter(X[y\_kmeans == 0, 0], X[y\_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1') \\ plt.scatter(X[y\_kmeans == 1, 0], X[y\_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2') \\ plt.scatter(X[y\_kmeans == 2, 0], X[y\_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3') \\ plt.scatter(X[y\_kmeans == 3, 0], X[y\_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4') \\ plt.scatter(X[y\_kmeans == 4, 0], X[y\_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5') \\ plt.scatter(kmeans.cluster\_centers\_[:, 0], kmeans.cluster\_centers\_[:, 1], s = 300, c = 'yellow', label = 'Centroids') \\ plt.title('Clusters of customers') \\ plt.title('Clusters of customers') \\ plt.ylabel('Annual Income (k$)') \\ plt.legend() \\ plt.show() \\ \end{cases}
```


RESULT:-

Thus the python program to implement KNN model has been successfully implemented and the results have been verified and analyzed.