Chapter 5

The real numbers

5.1 Cauchy sequences

Definition 5.1.1 (Sequences).

Let m be an integer. A sequence $(a_n)_{n=m}^{\infty}$ of rational numbers is any function from the set $\{n \in \mathbf{Z} : n \geq m\}$ to \mathbf{Q} , i.e., a mapping which assigns to each integer n greater than or equal to m, a rational number a_n . More informally, a sequence $(a_n)_{n=m}^{\infty}$ of rational numbers is a collection of rationals a_m , a_{m+1} , a_{m+2} , ...

Definition 5.1.3 (ε -steadiness).

Let $\varepsilon > 0$. A sequence $(a_n)_{n=0}^{\infty}$ is said to be ε -steady iff each pair a_j, a_k of sequence elements is ε -close for every natural number j, k. In other words, the sequence a_0, a_1, a_2, \ldots is ε -steady iff $|a_j - a_k| \le \varepsilon$ for all j, k.

Definition 5.1.6 (Eventual ε -steadiness).

Let $\varepsilon > 0$. A sequence $(a_n)_{n=0}^{\infty}$ is said to be eventually ε -steady iff the sequence $a_N, a_{N+1}, a_{N+2}, \ldots$ is ε -steady for some natural number $N \geq 0$. In other words, the sequence a_0, a_1, a_2, \ldots is eventually ε -steady iff there exists an $N \geq 0$ such that $|a_j - a_k| \leq \varepsilon$ for all $j, k \geq N$.

Definition 5.1.8 (Cauchy sequences).

A sequence $(a_n)_{n=0}^{\infty}$ of rational numbers is said to be a Cauchy sequence iff for every rational $\varepsilon > 0$, the sequence $(a_n)_{n=0}^{\infty}$ is eventually ε -steady. In other words, the sequence a_0, a_1, a_2, \ldots is a Cauchy sequence iff for every $\varepsilon > 0$, there exists an $N \geq 0$ such that $d(a_j, a_k)$ for all $j, k \geq N$.

Proposition 5.1.11

The sequence a_1, a_2, a_3, \ldots defined by $a_n := 1/n$ (i.e., the sequence $1, 1/2, 1/3, \ldots$) is a Cauchy sequence.

Definition 5.1.12 (Bounded sequences).

Let $M \geq 0$ be rational. A finite sequence a_1, a_2, \ldots, a_n is bounded by M iff $|a_i| \leq M$ for all $1 \leq i \leq n$. An infinite sequence $(a_n)_{n=1}^{\infty}$ is bounded by M iff $|a_i| \leq M$ for all $i \geq 1$. A sequence is said to be bounded iff it is bounded by M for some rational $M \geq 0$.

Lemma 5.1.14 (Finite sequences are bounded).

Every finite sequence a_1, a_2, \ldots, a_n is bounded.

Lemma 5.1.15 (Cauchy sequences are bounded).

Every Cauchy sequence $(a_n)_{n=1}^{\infty}$ is bounded.

Exercise 5.1.1

Prove Lemma 5.1.15.

Proof. Suppose $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence. So for $\varepsilon = 1$, there exists an $N \geq 1$ such that $d(a_j, a_k) \leq 1$ for all $j, k \geq N$. Then the sequence can be splite into two parts: a_1, \ldots, a_N and a_{N+1}, a_{N+2}, \ldots . The former is a finite sequence, by Lemma 5.1.14, it is bounded. Suppose this finite sequence is bounded by M_1 . Consider a_{N+1}, a_{N+2}, \ldots . Since it is 1-steady, for any i > N+1, we have $|a_i - a_{N+1}| \leq 1$. Rearrange the inequalities, we have $a_{N+1} - 1 \leq a_i \leq a_{N+1} + 1$. Let $M_2 = a_{N+1} + 1$. Then $a_{N+1} < M_2$ and for every i > N+1, we have $a_i \leq M_2$. So sequence a_{N+1}, a_{N+2}, \ldots is bounded by M_2 . Let $M = \max\{M_1, M_2\}$. Then the Cauchy sequence $(a_n)_{n=1}^{\infty}$ is bounded by M.

5.2 Equivalent Cauchy sequences

Definition 5.2.1 (ε -close sequences).

Let $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ be two sequences, and let $\varepsilon > 0$. We say that the sequence $(a_n)_{n=0}^{\infty}$ is ε -close to $(b_n)_{n=0}^{\infty}$ iff a_n is ε -close to b_n for each $n \in \mathbb{N}$. In other words, the sequence a_0, a_1, a_2, \ldots is ε -close to the sequence b_1, b_1, b_2, \ldots iff $|a_n - b_n| \leq \varepsilon$ for all $n = 0, 1, 2, \ldots$

Definition 5.2.3 (Eventually ε -close sequences).

Let $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ be two sequences, and let $\varepsilon > 0$. We say that the sequence $(a_n)_{n=0}^{\infty}$ is eventually ε -close to $(b_n)_{n=0}^{\infty}$ iff there exists an $N \geq 0$ such that the sequences $(a_n)_{n=N}^{\infty}$ and $(b_n)_{n=N}^{\infty}$ are ε -close. In other words, a_0, a_1, a_2, \ldots is eventually ε -close to b_0, b_1, b_2, \ldots iff there exists an $N \geq 0$ such that $|a_n - b_n| \leq \varepsilon$ for all $n \geq N$.

Definition 5.2.6 (Equivalent sequences).

Two sequences $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ are equivalent iff for each rational $\varepsilon > 0$, the sequences $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ are eventually ε -close. In other words, a_0, a_1, a_2, \ldots and b_0, b_1, b_2, \ldots are equivalent iff for every for every rational $\varepsilon > 0$, there exists an $N \geq 0$ such that $|a_n - b_n| \leq \varepsilon$ for all $n \geq N$.

Proposition 5.2.8

Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be the sequences $a_n = 1 + 10^{-n}$ and $b_n = 1 - 10^{-n}$. Then the sequences a_n , b_n are equivalent.

Exercise 5.2.1

Show that if $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent sequences of rationals, then $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence.

Proof. Assume $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent sequences of rationals, and $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence. We want to show that for any rational $\varepsilon > 0$, there exists $N \geq 1$ such that b_N, b_{N+1}, \ldots is ε -steady.

Since $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence and $\frac{\varepsilon}{3} > 0$, there exists $N_1 \geq 1$ such that for all $i, j \geq N_1$, $|a_i - a_j| \leq \frac{\varepsilon}{3}$. Since $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent, and $\frac{\varepsilon}{3} > 0$, there exists $N_2 \geq 1$ such that for all $i \geq N_2$, $|b_i - a_i| \leq \frac{\varepsilon}{3}$. Let $N = \max\{N_1, N_2\}$. Consider arbitrary $i, j \geq N$. Since $N \geq N_1$, we have

$$|a_i - a_j| \le \frac{\varepsilon}{3}.$$

Since $N \geq N_2$, we have

$$|b_i - a_i| \le \frac{\varepsilon}{3}$$

and

$$|a_j - b_j| \le \frac{\varepsilon}{3}.$$

Since

$$|a_i - a_j| \le \frac{\varepsilon}{3}$$

and

$$|b_i - a_i| \le \frac{\varepsilon}{3},$$

we have

$$|b_i - a_j| \le |a_i - a_j| + |b_i - a_i| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3}.$$

Since

$$|a_j - b_j| \le \frac{\varepsilon}{3}$$

and

$$|b_i - a_j| \le \frac{2\varepsilon}{3},$$

we have

$$|b_i - b_j| \le |a_j - b_j| + |b_i - a_j| \le \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon.$$

Thus, for any $\varepsilon > 0$, we can find $N = \max\{N_1, N_2\}$ such that $b_N, b_{N+1}, dotsc$ is ε -steady. Therefore, $(b_n)_{i=1}^{\infty}$ is a Cauchy sequence.

Similarly, we can show that if $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent sequences of rationals and $(b_n)_{i=1}^{\infty}$ is a Cauchy sequence, then $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence. Thus, if $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent sequences of rationals, then $(a_n)_{n=1}^{\infty}$ is a Cauchy

sequence if and only if $(b_n)_{n=1}^{\infty}$ is a Cauchy sequence.

Exercise 5.2.2

Let $\varepsilon > 0$. Show that if $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are eventually ε -close, then $(a_n)_{n=1}^{\infty}$ is bounded if and only if $(b_n)_{n=1}^{\infty}$ is bounded.

Proof. Suppose $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are eventually ε -close and $(a_n)_{n=1}^{\infty}$ is bounded. Since $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are eventually ε -close, for any $\varepsilon > 0$, there exists $N \ge 1$ such that for any $i \ge N$, $|a_i - b_i| \le \varepsilon$. Consider an arbitrary $\varepsilon > 0$. We can find $N \ge 1$ such that for any $i \ge N$, $|a_i - b_i| \le \varepsilon$. Then

$$a_i - \varepsilon \le b_i \le a_i + \varepsilon$$
.

Split $(b_n)_{n=1}^{\infty}$ to b_1, \ldots, b_N and b_{N+1}, b_{N+2}, \ldots . The former is a finite sequence, so it is bounded by some rational number M_1 . Since $(a_n)_{n=1}^{\infty}$ is bounded, there exists M such that $|a_i| \leq M$ for all $i \geq 1$. Then

$$-M < a_i < M$$
.

So

$$-M - \varepsilon \le b_i \le M + \varepsilon.$$

Therefore, $|b_i| \leq M + \varepsilon$ for all $i \geq N + 1$. Let $M_0 = \max(M, M_1)$. For any $i \geq 1$, we have $|b_i| \leq M_0$. Thus, $(b_n)_{n=1}^{\infty}$ is bounded.

Similarly, we can show that if $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are eventually ε -close, and $(b_n)_{n=1}^{\infty}$ is bounded, then $(a_n)_{n=1}^{\infty}$ is bounded.

Thus, if $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are eventually ε -close, then $(a_n)_{n=1}^{\infty}$ is bounded if and only if $(b_n)_{n=1}^{\infty}$ is bounded.

5.3 The construction of the real numbers

Definition 5.3.1 (Real numbers).

A real number is defined to be an object of the form $LIM_{n\to\infty}a_n$, where $LIM_{n\to\infty}a_n$ is a Cauchy sequence of rational numbers. Two real numbers $LIM_{n\to\infty}a_n$ and $LIM_{n\to\infty}b_n$ are said to be equal iff $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent Cauchy sequences. The set of all real numbers is denoted \mathbf{R} .

Proposition 5.3.3 (Formal limits are well-defined).

Let $x = \text{LIM}_{n\to\infty} a_n$, $y = \text{LIM}_{n\to\infty} b_n$, and $z = \text{LIM}_{n\to\infty} c_n$ be real numbers. Then, with the above definition of equality for real numbers, we have x = x. Also, if x = y, then y = x. Finally, if x = y and y = z, then x = z.

Definition 5.3.4 (Addition of reals).

Let $x = \text{LIM}_{n \to \infty} a_n$ and $y = \text{LIM}_{n \to \infty} b_n$ be real numbers. Then we define the sum x + y to be $x + y := \text{LIM}_{n \to \infty} (a_n + b_n)$.

Lemma 5.3.6 (Sum of Cauchy sequences is Cauchy).

Let $x = \text{LIM}_{n\to\infty} a_n$ and $y = \text{LIM}_{n\to\infty} b_n$ be real numbers. Then x+y is also a real number (i.e., $(a_n + b_n)_{n=1}^{\infty}$ is a Cauchy sequence of rationals).

Lemma 5.3.7 (Sums of equivalent Cauchy sequences are equivalent).

Let $x = \text{LIM}_{n \to \infty} a_n$, $y = \text{LIM}_{n \to \infty} b_n$, and $x' = \text{LIM}_{n \to a'_n}$ be real numbers. Suppose that x = x'. Then we have x + y = x' + y.

Lemma 5.3.9 (Multiplication of reals).

Let $x = \text{LIM}_{n \to \infty} a_n$ and $y = \text{LIM}_{n \to \infty} b_n$ be real numbers. Then we define the product xy to be $xy := \text{LIM}_{n \to \infty} a_n b_n$.

Proposition 5.3.10 (Multiplication is well defined).

Let $x = \text{LIM}_{n\to\infty} a_n$, $y = \text{LIM}_{n\to\infty} b_n$, and $x' = \text{LIM}_{n\to\infty} a'_n$ be real numbers. Then xy is also a real number. Furthermore, if x = x', then xy = x'y.

Proposition 5.3.11

All the laws of algebra from Proposition 4.1.6 hold not only for the integers, but for the reals as well.

Definition 5.3.12 (Sequences bounded away from zero).

A sequence $(a_n)_{n=1}^{\infty}$ of rational numbers is said to be bounded away from zero iff there exists a raional number c > 0 such that $|a_n| > c$ for all $n \ge 1$.

Lemma 5.3.14.

Let x be a non-zero real number. Then $x = \text{LIM}_{n \to \infty} a_n$ for some Cauchy sequence $(a_n)_{n=1}^{\infty}$ which is bounded away from zero.

Lemma 5.3.15.

Suppose that $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence which is bounded away from zero. Then the sequence $(a_n^{-1})_{n=1}^{\infty}$ is also a Cauchy sequence.

Definition 5.3.16 (Reciprocals of real numbers).

Let x be a non-zero real number. Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence bounded away from zero such that $x = \text{LIM}_{n \to \infty} a_n$. Then we define the reciprocal x^{-1} by the formula $x^{-1} := \text{LIM}_{n \to \infty} a_n^{-1}$.

Lemma 5.3.17 (Reciprocation is well defined).

Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be two Cauchy sequences bounded away from zero such that $\text{LIM}_{n\to\infty}a_n=\text{LIM}_{n\to\infty}b_n$ (i.e., the two sequences are equivalent). Then $\text{LIM}_{n\to\infty}a_n^{-1}=\text{LIM}_{n\to\infty}b_n^{-1}$.

Exercise 5.3.1

Prove Proposition 5.3.3.

Proof. Reflexivity. Since $x = \text{LIM}_{n \to \infty} a_n$, $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence. Obviously, $(a_n)_{n=1}^{\infty}$ and $(a_n)_{n=1}^{\infty}$ are equivalent. Therefore, $\text{LIM}_{n \to \infty} a_n = \text{LIM}_{n \to \infty} a_n$ (x = x).

Symmetry. Assume x = y, then Cauchy sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent. So for every $\varepsilon > 0$, there exists $N \ge 1$ such that for every $i \ge N$, $|a_i - b_i| = |b_i - a_i| \le \varepsilon$. Therefore, $(b_n)_{n=1}^{\infty}$ and $(a_n)_{n=1}^{\infty}$ are equivalent. Thus, $\text{LIM}_{n\to\infty}b_n = \text{LIM}_{n\to\infty}a_n$ (y = x).

Transitivity. Assume x=y and y=z. We want to show that the Cauchy sequences $(a_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ are equivalent, that is, for any $\varepsilon>0$, there exists $N\geq 1$ such that for all $i\geq N$, we have $|a_i-c_i|\leq \varepsilon$. Suppose ε is an arbitrary positive rational number. Since x=y, the Cauchy sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent. Then there exists N_1 such that for every $i\geq N_1$, we have $|a_i-b_i|\leq \frac{\varepsilon}{2}$. Since y=z, the Cauchy sequences $(b_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ are equivalent. Then there exists N_2 such that for every $i\geq N_2$, we have $|b_i-c_i|\leq \frac{\varepsilon}{2}$. Let $N=\max(N_1,N_2)$, then for all $i\geq N$, $|a_i-c_i|\leq |a_i-b_i|+|b_i-c_i|\leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\epsilon$. Thus, $(a_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ are equivalent. So x=z.

Exercise 5.3.2

Prove Proposition 5.3.10.

Proof. xy is a real number. We want to show that for any $\varepsilon > 0$, there exists $N \ge 1$ such that $|a_ib_i - a_jb_j| \le \varepsilon$ for any $i, j \ge N$. Consider an arbitrary $\varepsilon > 0$. Since $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are Cauchy sequences, by Lemma 5.1.15, they are both bounded. Assume $(a_n)_{n=1}^{\infty}$ is bounded by M_1 and $(b_n)_{n=1}^{\infty}$ is bounded by M_2 . Since a_n is a Cauchy sequence, there exists $N_1 \ge 1$ such that for all $i, j \ge N_1$, we have

$$|a_i - a_j| \le \frac{\varepsilon}{2M_1}.$$

Similarly, since $(b_n)_{n=1}^{\infty}$ is a Cauchy sequence, there exists $N_2 \geq 1$ such that for all

 $i, j \geq N_2$, we have

$$|b_i - b_j| \le \frac{\varepsilon}{2M_2}.$$

Let $N = \max(N_1, N_2)$, consider an arbitrary pair of $i, j \geq N$. Then we have

$$\begin{aligned} |a_jb_j-a_ib_i| &= |a_jb_j-a_jb_i+a_jb_i-a_ib_i| \\ &\leq |a_jb_j-a_jb_i| + |a_jb_i-a_ib_i| \\ &= |a_j|\cdot |b_j-b_i| + |b_i|\cdot |a_j-a_i| \\ &\leq M_1\cdot \frac{\varepsilon}{2M_1} + M_2\cdot \frac{\varepsilon}{2M_2} \\ &= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon. \end{aligned}$$

Therefore, for every $\varepsilon > 0$, we can find an $N = \max(N_1, N_2)$ such that $a_N b_N, a_{N+1} b_{N+1}, \dots$ is ε -close. Thus, $(a_n b_n)_{n=1}^{\infty}$ is a Cauchy sequence and xy is a real number.

Since $(b_n)_{n=1}^{\infty}$ is a Cauchy sequence, it must be bounded by some rational number M. Since $(a_n)_{n=1}^{\infty}$ and $(a'_n)_{n=1}^{\infty}$ are equivalent, for every $\varepsilon > 0$, there exists $N \ge 1$ such that for all $i \ge N$, we have

$$|a_i - a_i'| \le \frac{\varepsilon}{M}.$$

Therfore, for all $i \geq N$,

$$|a_i b_i - a_i' b_i| = |b_i| \cdot |a_i - a_i'|$$

$$\leq M \cdot \frac{\varepsilon}{M}$$

$$= \varepsilon.$$

Thus, $(a_n b_n)_{n=1}^{\infty}$ and $(a'_n b_n)_{n=1}^{\infty}$ are equivalent and that xy = x'y.

Exercise 5.3.3

Let a, b be rational numbers. Show that a = b if and only if $LIM_{n\to\infty}a_n = LIM_{n\to\infty}b_n$ (i.e., the Cauchy sequences a, a, a, a, \ldots and b, b, b, b, \ldots are equivalent if and only if a = b). This allows us to embed the rational numbers inside the real numbers in a well-defined manner.

Proof. Suppose the Cauchy sequences a, a, a, a, \ldots and b, b, b, \ldots are equivalent. Assume $a \neq b$, then |a - b| > 0. Since the two sequences are equivalent, for every $\varepsilon > 0$, there exists $N \geq 1$ such that $|a_i - b_i| \leq \varepsilon$. Let $\varepsilon = \frac{|a - b|}{2} > 0$. Then no matter what value i is, we have

$$|a_i - b_i| = |a - b| > \frac{|a - b|}{2} = \frac{\varepsilon}{2}$$

which contradicts the definition of equivalent sequences. Therefore, a = b.

Suppose a = b. Then for any $\varepsilon > 0$, let N = 1, we have

$$|a_i - b_i| = |a - b| = 0 < \varepsilon$$

for all $i \geq N$. Therefore, $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent.

Thus,
$$a = b$$
 if and only if $LIM_{n\to\infty}a_n = LIM_{n\to\infty}b_n$.

Exercise 5.3.4

Let $(a_n)_{n=0}^{\infty}$ be a sequence of rational numbers which is bounded. Let $(b_n)_{n=0}^{\infty}$ be another sequence of rational numbers which is equivalent to $(a_n)_{n=0}^{\infty}$. Show that $(b_n)_{n=0}^{\infty}$ is also bounded.

Proof. Suppose $(a_n)_{n=0}^{\infty}$ is bounded by M. Similar to Exercise 5.2.2, we can split $(b_n)_{n=1}^{\infty}$ to b_0, \ldots, b_N and b_{N+1}, b_{N+2}, \ldots such that the former is bounded by some rational number M_1 and the latter is bounded by $M + \varepsilon$ for any $\varepsilon > 0$. Let $M_0 = \max(M, M_1)$, then $(b_n)_{n=0}^{\infty}$ is bounded by M_0 .

Exercise 5.3.5

Show that $LIM_{n\to\infty}1/n=0$.

Proof. We want to show that $a_n = 1/n$ and $0, 0, 0, \ldots$ are equivalent. Consider an arbitrary $\varepsilon > 0$. Let $N = \lceil \frac{1}{\varepsilon} \rceil$, we have

$$|a_i - 0| = a_i \le a_N = \frac{1}{N} \le \varepsilon$$

5.4 Ordering the reals

Definition 5.4.1.

Let $(a_n)_{n=1}^{\infty}$ be a sequence of rationals. We say that this sequence is positively bounded away from zero iff we have a positive rational c > 0 such that $a_n \ge c$ for all $n \ge 1$ (in particular, the sequence is entirely positive). The sequence is negatively bounded away from zero iff we have a negative rational -c < 0 such that $a_n \le -c$ for all $n \ge 1$ (in particular, the sequence is entirely negative).

Definition 5.4.3.

A real number x is said to be positive iff it can be written as $x = \text{LIM}_{n\to\infty} a_n$ for some Cauchy sequence $(a_n)_{n=1}^{\infty}$ which is positively bounded away from zero. x is said to be negative iff it can be written as $x = \text{LIM}_{n\to\infty} a_n$ for some sequence $(a_n)_{n=1}^{\infty}$ which is negatively bounded away from zero.

Proposition 5.4.4 (Basic properties of positive reals).

For every real number x, exactly one of the following three statements is true: (a) x is zero; (b) x is positive; (c) x is negative. A real number x is negative if and only if -x is positive. If x and y are positive, then so are x + y and xy.

Definition 5.4.5 (Absolute value).

Let x be a real number. We define the absolute value |x| of x to equal x if x is positive, -x when x is negative, and 0 when x is zero.

Definition 5.4.6 (Ordering of the real numbers).

Let x and y be real numbers. We say that x is greater than y, and write x > y, iff x - y is a positive real number, and x < y iff x - y is a negative real number. We define $x \ge y$ iff x > y or x = y, and similarly define $x \le y$.

Proposition 5.4.7.

All the claims in Proposition 4.2.9 which held for rationals, continue to hold for real numbers.

Proposition 5.4.8.

let x be a positive real number. Then x^{-1} is also positive. Also, if y is another positive number and x > y, then $x^{-1} < y^{-1}$.

Proposition 5.4.9 (The non-negative reals are closed).

Let a_1, a_2, a_3, \ldots be a Cauchy sequence of non-negative rational numbers. Then $\text{LIM}_{n\to\infty}a_n$ is a non-negative real number.

Corollary 5.4.10.

Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be Cauchy sequences of rationals such that $a_n \geq b_n$ for all $n \geq 1$. Then $\text{LIM}_{n \to \infty} a_n \geq \text{LIM}_{n \to \infty} b_n$.

Proposition 5.4.12 (Bounding of reals by rationals).

Let x be a positive real number. Then there exists a positive rational number q such that $q \le x$, and there exists a positive integer N such that $x \le N$.

Corollary 5.4.13 (Archimedean property).

Let x and ε be any positive real numbers. Then there exists a positive integer M such that $M\varepsilon > x$.

Proposition 5.4.14.

Given any two real numbers x < y, we can find a rational number q such that x < q < y.

Exercise 5.4.1.

Prove Proposition 5.4.4.

Proof. Assume $x = LIM_{n \to \infty} a_n$.

At least one of the three statements is true. If $(a_n)_{n=1}^{\infty}$ is equivalent to $(0)_{n=1}^{\infty}$, x is 0. If the Cauchy sequence $(a_n)_{n=1}^{\infty}$ is not equivalent to $(0)_{n=1}^{\infty}$, by Lemma 5.3.14, $(a_n)_{n=1}^{\infty}$ is bounded away from zero. Then there exists a rational number c>0 such that $|a_i| \geq c$ for all $i \geq 1$. Since $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence, let $\varepsilon = c/2$, then there exists an there exists $N \geq 1$ such that $|a_i - a_j| \leq \varepsilon = c/2$ for all $i, j \geq N$. Let j = N, we have $|a_i - a_N| \leq c/2$ for all $i \geq N$. Since $(a_n)_{n=1}^{\infty}$ is bounded away from 0 by c, a_N cannot be 0. If $a_N > 0$, we have $a_N \geq c$ and $a_N - c/2 \leq a_i \leq a_N + c/2$. So $a_i \geq a_N - c/2 \geq c/2 > 0$, and $(a_n)_{n=1}^{\infty}$ is eventually positively bounded away from zero. In particular, $a_i \geq c$ for all $i \geq N$. Let $b_i = c$ when i < N and $b_i = a_i$ when $i \geq N$. Then $(b_n)_{n=1}^{\infty}$ is equivalent to $(a_n)_{n=1}^{\infty}$ and $x = \text{LIM}_{n \to \infty} a_n = \text{LIM}_{n \to \infty} b_n$ is a positive real number. Similarly, we can show that if $a_N < 0$, x would be negative. Thus, at least one of the three statements is true.

At most one of the three statements is true. Suppose x is zero. For any c > 0, there exists $N \ge 1$ such that $|a_i - 0| = |a_i| \le \frac{c}{2} < c$. Therefore, $(a_n)_{n=1}^{\infty}$ is not bounded away from zero. Thus, x is not positive nor negative. Suppose x is positive. Then there exists c > 0 such that $a_i > c > 0$ for all $i \ge 1$. So for any c' > 0, $a_i > 0 > -c'$. Therefore, x cannot be negative. Similarly, if x is negative, it cannot be positive. Thus, at most one of the three statements is true.

x is negative \iff -x is positive. We know that $-x = \text{LIM}(-a_n)_{n=1}^{\infty}$. Suppose x is negative. Then there exists c > 0 such that $-a_i < -c$ for all $i \ge 1$. So $a_i > c$ for all $i \ge 1$. Thus, $(a_n)_{n=1}^{\infty}$ is positively bounded away from zero, and $x = \text{LIM}_{n \to \infty} a_n$ is positive. Similarly, we can show that if -x is positive, then x is negative.

Assume $y = \text{LIM}_{n\to\infty}b_n$. Suppose x and y are positive. Then there exist $c_1, c_2 > 0$ such that $a_i \geq c_1$ and $b_i \geq c_2$ for all $i \geq 1$. Let $c = c_1 + c_2$, we have $(a_i + b_i) \geq c = c_1 + c_2$ for all $i \geq 1$. Therefore, x + y is positive. Let $c' = c_1 c_2$, we have $a_i b_i \geq c' = c_1 c_2$ for all $i \geq 1$. Therefore, xy is positive.

Exercise 5.4.2.

Prove the remaining claims in Proposition 5.4.7.

- (a) *Proof.* Since x-y is a real number, by Proposition 5.4.4, exactly one of the three statements x-y=0, x-y>0, or x-y<0 is true. Thus, exactly one of x=y, x>y, or x< y is true.
- (b) *Proof.* Since x y is a real number, by Proposition 5.4.4, x y is negative iff -(x y) = y x is positive. Thus, x < y iff y > x.
- (c) *Proof.* Since x < y, we have y > x, hence, y x is positive. Similarly, since y < z, z y is positive. By Proposition 5.4.4, z x = (y x) + (z y) is positive. Therefore, x < z.
- (d) Proof. Since x < y, we have x-y=x-y+0=x-y+z-z=(x+z)-(y+z)<0. Therefore, x+z< y+z.

Exercise 5.4.3.

Show that for every real number x there is exactly one integer N such that $N \le x < N+1$. (This integer N is called the integer part of x, and is sometimes denoted $N = \lfloor x \rfloor$.)

Proof. Denote $x = (a_n)_{n=1}^{\infty}$ where $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence. Let $\varepsilon = \frac{1}{2}$. Then there exists an $N \geq 1$ such that $|x_i - x_N| \leq \varepsilon = \frac{1}{2}$ for all $i \geq N$. Therefore, $|x - x_N| \leq \frac{1}{2}$. So

$$-\frac{1}{2} \le x - x_N \le \frac{1}{2} \implies x_N - \frac{1}{2} \le x \le x_N + \frac{1}{2}.$$

Since x_N is rational, $x_N - \frac{1}{2}$ and $x_N + \frac{1}{2}$ are also rational. Then there exists exactly one integer n such that

$$n \le x_N - \frac{1}{2} < n + 1$$

and

$$n+1 \le x_N + \frac{1}{2} < n+2.$$

Then there are two cases. If x < n + 1, there exists exactly one integer N such that

$$N = n \le x_N - \frac{1}{2} \le x < n + 1 = N + 1.$$

If $x \geq n+1$, there exists exists exactly one integer N such that

$$N = n + 1 \le x \le x_N + \frac{1}{2} < n + 2 = N + 1.$$

Therefore, for every real number x there is exactly one integer N such that $N \leq x < N+1$.

Exercise 5.4.4.

Show that for any positive real number x > 0 there exists a positive integer N such that x > 1/N > 0.

Proof. Let $x = \text{LIM}_{n \to \infty} a_n$. Since x is a positive real number, it is positively bounded away from zero. Then there exists a positive rational number c > 0, such that $a_n \ge c > 0$ for $n \ge 1$. By Corollary 5.4.10, we have $x = \text{LIM}_{n \to \infty} a_n \ge c > 0$. Since c > c/2 > 0, we have $x \ge c > c/2 > 0$. Let $N = \frac{2}{c} + 1$, then $0 < \frac{1}{N} < \frac{c}{2}$. Then we have $x > \frac{1}{N} > 0$.

Exercise 5.4.5.

Prove Proposition 5.4.14.

Proof. $y-x>0 \implies y-x>0$. By Exercise 5.4.4, there exists a positive integer N such that y-x>1/N>0. Then we have Ny>Nx+1>Nx. And by Exercise 5.4.3, there exists exactly one integer n such that $n \le Nx < n+1$. Then we also have $n+1 \le Nx+1 < n+2$. Therefore, $n \le Nx < n+1 \le Nx+1 < Ny$. Therefore, there exists an integer between Nx and Ny. Divide the inequalities by N, we have $x < \frac{n+1}{N} < y$ where $\frac{n+1}{N}$ is a rational number. Therefore, if x < y, we can find a rational number q such that x < q < y.

Exercise 5.4.6.

Let x, y be real numbers and let $\varepsilon > 0$ be a positive real. Show that $|x - y| < \varepsilon$ if and only if $y - \varepsilon < x < y + \varepsilon$, and that $|x - y| \le \varepsilon$ if and only if $y - \varepsilon \le x \le y + \varepsilon$.

• $|x - y| < \varepsilon \iff y - \varepsilon < x < y + \varepsilon$.

Proof. Suppose $|x - y| < \varepsilon$. By definition, if x - y > 0, we have $x - y < \varepsilon \implies x < y + \varepsilon$, and if x - y < 0, we have $y - x < \varepsilon \implies y - \varepsilon < x$. Combining the two inequalities, we have $y - \varepsilon < x < y + \varepsilon$.

Suppose $y - \varepsilon < x < y + \varepsilon$. Then $-\varepsilon < x - y < \varepsilon$. So if x - y is positive, $|x - y| = x - y < \varepsilon$. Otherwise, $|x - y| = y - x < \varepsilon$. Therefore, $|x - y| < \varepsilon$.

Thus,
$$|x - y| < \varepsilon \iff y - \varepsilon < x < y + \varepsilon$$
.

• $|x - y| \le \varepsilon \iff y - \varepsilon \le x \le y + \varepsilon$.

Proof. The proof is almost identical to the previous one. \Box

Exercise 5.4.7.

Let x and y be real numbers. Show that $x \leq y + \varepsilon$ for all real numbers $\varepsilon > 0$ if and only if $x \leq y$. Show that $|x - y| \leq \varepsilon$ for all real numbers $\varepsilon > 0$ if and only if x = y.

• $x \le y + \varepsilon$ for all $\varepsilon > 0 \iff x \le y$.

Proof. Suppose $x \leq y + \varepsilon$ for all $\varepsilon > 0$. Assume x > y. Then we have $x - y > \frac{x-y}{2} > 0$. Let $\varepsilon = \frac{x-y}{2}$. We have Then we have $x \leq y + \varepsilon = y + \frac{x-y}{2} \implies x \leq y$. (contradiction) Therefore, we must have $x \leq y$.

Suppose $x \leq y$. For all $\varepsilon > 0$, we have $x \leq y < y + \varepsilon$.

Thus,
$$x \le y + \varepsilon$$
 for all $\varepsilon > 0 \iff x \le y$.

• $|x-y| \le \varepsilon$ for all real numbers $\varepsilon > 0 \iff x = y$.

Proof. Suppose $|x - y| \le \varepsilon$ for all real numbers. By Exercise 5.4.6, we have $-\varepsilon < x - y < \varepsilon$. Since $x < y + \varepsilon$, we have $x \le y$. Since $y < x + \varepsilon$, we have $y \le x$. And since $y \le x$ and $x \le y$, we have x = y.

Suppose x = y. Then $|x - y| = 0 \le \varepsilon$ for all $\varepsilon > 0$.

Thus, $|x-y| \le \varepsilon$ for all real numbers $\varepsilon > 0 \iff x = y$.

Exercise 5.4.8.

Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence of rationals, and let x be a real number. Show that if $a_n \leq x$ for all $n \geq 1$, then $\text{LIM}_{n \to \infty} a_n \leq x$. Similarly, show that if $a_n \geq x$ for all $n \geq 1$, then $\text{LIM}_{n \to \infty} a_n \geq x$.

Proof. Suppose $a_n \leq x$ for all $n \geq 1$. Assume $\text{LIM}_{n \to \infty} a_n > x$. Let $y = \text{LIM}_{n \to \infty} a_n$. If $y = \text{LIM}_{n \to \infty} a_n > x$, by Proposition 5.4.14, ther exists a rational number q such that $y = \text{LIM}_{n \to \infty} a_n > q > x$. On the other hand, we have $a_n \leq x < q$ for all $n \geq 1$. By Corollary 5.4.10, we have $y = \text{LIM}_{n \to \infty} a_n \leq q$ which contradicts y > q. Therefore, $\text{LIM}_{n \to \infty} a_n \leq x$. The second statement can be proved in a similar way.

5.5 The least upper bound property

Definition 5.5.1 (Upper bound).

Let E be a subset of \mathbf{R} , and let M be a real number. We say that M is an upper bound for E, iff we have $x \leq M$ for every element x in E.

Definition 5.5.5 (Least upper bound).

Let E be a subset of \mathbf{R} , and M be a real number. We say that M is a least upper bound for E iff (a) M is an upper bound for E, and also (b) any other upper bound M' for E must be larger than or equal to M.

Proposition 5.5.8 (Uniqueness of least upper bound).

Let E be a subset of \mathbb{R} . Then E can have at most one least upper bound.

Theorem 5.5.9 (Existence of least upper bound).

Let E be a non-empty subset of \mathbf{R} . If E has an upper bound, (i.e., E has some upper bound M), then it must have exactly one least upper bound.

Definition 5.5.10 (Supremum).

Let E be a subset of the real numbers. If E is non-empty and has some upper bound, we define $\sup(E)$ to be the least upper bound of E (this is well-defined by Theorem 5.5.9). We introduce two additional symbols, $+\infty$ and $-\infty$. If E is non-empty and has no upper bound, we set $\sup(E) := +\infty$; if E is empty, we set $\sup(E) := -\infty$. We refer to $\sup(E)$ as the supremum of E, and also denote it by $\sup E$.

Exercise 5.5.1.

Let E be a subset of the real numbers \mathbf{R} , and suppose that E has a least upper bound M which is a real number, i.e., $M = \sup(E)$. Let -E be the set

$$-E := \{-x : x \in E\}.$$

Show that -M is the greatst lower bound of -E, i.e., $-M = \inf(-E)$.

Proof. For all $-x \in -E$, since $M \ge x$, we have $-M \le -x$. Therefore, -M is a lower bound for -E. Assume there exists some $\varepsilon > 0$ such that $-M + \varepsilon$ is also a lower bound for -E. Then for all $-x \in -E$, we have $-M + \varepsilon \le -x \implies M - \varepsilon \ge x$, hence $M - \varepsilon$ is an upper bound for E which contradicts the fact that M is the least upper bound for E. Therefore, -M is the least lower bound for -E.

Exercise 5.5.2.

Let E be a non-empty subset of \mathbb{R} , let $n \geq 1$ be an integer, and let L < K be integers. Suppose that K/n is an upper bound for E, but that L/n is not an upper bound for E. Without using Theorem 5.5.9, show that there eixsts an integer $L < m \leq K$ such that m/n is an upper bound for E, but that (m-1)/n is not an upper bound for E. Proof. Since L < K and K/n is an upper bound for E, there exists an integer m such that $L < m \le K$ and m/n is an upper bound for E (for example, we can let m = K). Suppose for all such m, (m-1)/n is also an upper bound for E. Since such (m-1)/n is an upper bound for E, we must have (m-1) > L. (Then since (m-1)/n is an upper bound for E and $L < (m-1) \le K$, (m-2)/n is also an upper bound for E and for similar reason, $L < (m-2) \le K$.)

Let P(i) be (m-i)/n is an upper bound for E (and $L < m-i \le K$). We want to show that P(i) is true for all natural number i. Then the base case is true since there exists an m that satisfies the conditions. Assume inductively P(i) is true. Since (m-i)/n is an upper bound for E and $L < (m-i) \le K$, by our assumption, (m-i-1)/n = (m-(i+1))/n is also an upper bound for E and it is less than (m-i)/n, hence $K \ge (m-(i+1)) > L$. Therefore, P(i+1) is true which closes the induction.

Thus, $L < (m-i) \le K$ and (m-i)/n is an upper bound for E for all natural number i. Let $i = \lceil m-L \rceil \ge m-L$. Then $(m-i)/n \le L/n$ is an upper bound for E which contradicts the fact that L/n is not an upper bound for E.

Thus, there exists $L < m \le K$ such that m/n is an upper bound for E, but that (m-1)/n is not an upper bound for E.

Exercise 5.5.3.

Let E be a non-empty subset of \mathbf{R} , let $n \geq 1$ be an integer, and let m, m' be integers with the properties that m/n and (m'-1)/n are not upper bounds for E. Show that m = m'.

Proof. Assume $m \neq m'$. Without loss of generality, suppose m' > m, since m, m' are integers, we have $m' > m' - 1 \ge m \implies \frac{m'}{n} > \frac{m'-1}{n} \ge \frac{m}{n}$. By Theorem 5.5.9, E has the least upper bound, denote it by M. Then we have

$$\frac{m-1}{n} < M \le \frac{m}{n} \le \frac{m'-1}{n} < \frac{m'}{n}.$$

But since (m'-1)/n is not an upper bound for E, $\frac{m'-1}{n} < M$, a contradiction. Therefore, m=m'.

Exercise 5.5.4.

Let q_1, q_2, q_3, \ldots be a sequence of rational numbers with the property that $|q_n - q'_n| \le \frac{1}{M}$ whenever $M \ge 1$ is an integer and $n, n' \ge M$. Show that q_1, q_2, q_3, \ldots is a Cauchy sequence. Furthermore, if $S := \text{LIM}_{n \to \infty} q_n$, show that $|q_M - S| \le \frac{1}{M}$ for every $M \ge 1$.

Proof. We need to show that for every rational $\varepsilon > 0$, there exists $N \ge 1$ such that for $|x_i - x_j| \le \varepsilon$ for all $i, j \ge N$. When $\varepsilon \ge 1$, let M = N = 1, we have $|q_i - q_j| \le 1 \le \varepsilon$ for all $i, j \ge N$. If $0 < \varepsilon < 1$, Let $M = N = \lceil \frac{1}{\varepsilon} \rceil \ge \frac{1}{\varepsilon}$. Then

$$|q_i - q_j| \le \frac{1}{\lceil \frac{1}{\varepsilon} \rceil} \le \frac{1}{\frac{1}{\varepsilon}} = \varepsilon$$

for all $i, j \geq N$. Therefore, for every rational $\varepsilon > 0$, there exists $N \geq 1$ such that for $|x_i - x_j| \leq \varepsilon$ for all $i, j \geq N$. Hence, q_1, q_2, q_3, \ldots is a Cauchy sequence.

Let N=M, we have $|q_M-q_n| \leq \frac{1}{M}$ for all $n \geq N$. Let $a_n=q_n$ for $n \geq M$ and $a_n=q_M$ for n < M. Then we have $q_M-\frac{1}{M} \leq a_n \leq q_M+\frac{1}{M}$. for all $n \geq 1$. By Exercise 5.4.8, $q_M-\frac{1}{M} \leq S=\mathrm{LIM}_{n\to\infty}a_n=\mathrm{LIM}_{n\to\infty}q_n \leq q_M+\frac{1}{M}$. Therefore, $|q_M-S| \leq \frac{1}{M}$ for every $M \geq 1$.

Exercise 5.5.5.

Establish an analogue of Proposition 5.4.14, in which "rational" is replaced by "irrational".

Proof. Assume for any x < y, there does not exist an irrational number z such that x < z < y. Suppose x < z < y where z is a rational number. Then $x + \sqrt{2} < z + \sqrt{2} < y + \sqrt{2}$. By assumption, $z + \sqrt{2}$ is a rational number. So $z + \sqrt{2} = \frac{m}{n}$ for some integers $m, n \ (n \neq 0)$. Suppose $z = \frac{a}{b}$ for integers $a, b \ (b \neq 0)$. Then $\sqrt{2} = \frac{m}{n} - \frac{a}{b} = \frac{bn - ma}{bn}$ where bn - ma and bn are integers $(bn \neq 0)$. By definition, $\sqrt{2}$ is a rational number (a contradiction). Therefore, for any x < y, there exists an irrational number z such that x < z < y.

5.6 Real exponentiation, part I

Definition 5.6.1 (Exponentiating a real by a natural number).

Let x be a real number. To raise x to the power 0, we define $x^0 := 1$. Now suppose recursively that x^n has been defined for some natural number n, then we define $x^{n+1} := x^n \times x$.

Definition 5.6.2 (Exponentiating a real by an integer).

Let xbe a non-zero real number. Then for any negative integer -n, we define $x^{-n} := 1/x^n$.

Proposition 5.6.3.

All the properties in Propositions 4.3.10 and 4.3.12 remain valid if x and y are assumed to be real numbers instead of rational numbers.

Definition 5.6.4.

Let $x \ge 0$ be a non-negative real, and let $n \ge 1$ be a positive integer. We define $x^{1/n}$, also known as the n^{th} root of x, by the formula

$$x^{1/n} := \sup\{y \in \mathbf{R} : y > 0 \text{ and } y^n < x\}.$$

Lemma 5.6.5 (Existence of n^{th} roots).

Let $x \ge 0$ be a non-negative real, and let $n \ge 1$ be a positive integer. Then the set $E := \{y \in \mathbf{R} : y \ge 0 \text{ and } y^n \le x\}$ is non-empty and is also boounded above. In particular, $x^{1/n}$ is a real number.

Lemma 5.6.6.

Let $x, y \ge 0$ be non-negative reals, and let $n, m \ge 1$ be positive integers.

- (a) If $y = x^{1/n}$, then $y^n = x$.
- (b) Conversely, if $y^n = x$, then $y = x^{1/n}$.

- (c) $x^{1/n}$ is a non-negative real number, and is positive iff x is positive.
- (d) We have x > y if and only if $x^{1/n} > y^{1/n}$.
- (e) If x > 1, then $x^{1/k}$ is a decreasing function of k. If x < 1, then $x^{1/k}$ is an increasing function of k. If x = 1, then $x^{1/k} = 1$ for all k.
- (f) We have $(xy)^{1/n} = x^{1/n}y^{1/n}$.
- (g) We have $(x^{1/n})^{1/m} = x^{1/nm}$.

Definition 5.6.7.

Let x > 0 be a positive real number, and let q be a rational number. To define x^q , we write q = a/b for some integer a and positive integer b, and define

$$x^q := (x^{1/b})^a.$$

Lemma 5.6.8.

Let a, a' be integers and b, b' be positive integers such that a/b = a'/b', and let x be a positive real number. Then we have $(x^{1/b'})^{a'} = (x^{1/b})^a$.

Lemma 5.6.9.

Let x, y > 0 be positive reals, and let q, r be rationals.

- (a) x^q is a positive real.
- (b) $x^{q+r} = x^q x^r$ and $(x^q)^r = x^{qr}$.
- (c) $x^{-q} = 1/x^q$.
- (d) If q > 0, then x > y if and only if $x^q > y^q$.
- (e) If x > 1, then $x^q > x^r$ if and only if q > r. If x < 1, then $x^q > x^r$ if and only if q < r.

Exercise 5.6.1.

Prove Lemma 5.6.6.

Suppose $y^n > x$. Similar to the proof of Proposition 5.5.12, we want to show that there exists a real number r and $\varepsilon > 0$ such that $y^n > (y-\varepsilon)^n \ge y^n - r\varepsilon \ge x$. Hence y is not the least upper bound for E, a contradiction. Use induction to show that there exists a real number $r \ge 0$ such that $(y-\varepsilon)^n \ge y^n - r\varepsilon$. When n = 0, let r = 0, we have $1 \ge 1$ which proves the base case. Assume inductively that the statement is true for n. Then $(y-\varepsilon)^{n+1} \ge (y^n - r\varepsilon)(y-\varepsilon) \ge y^{n+1} - (y^n + y^n)$

(a) Proof. We need to show that both $y^n > x$ and $y^n < x$ lead to contradictions.

ry) ε where $y^n + ry$ is a non-negative real number. Thus, the statement is true for all natural number n. Let $\varepsilon \leq \frac{y^n - x}{r}$, we have $y^n > (y - \varepsilon)^n \geq y^n - r\varepsilon \geq x$.

We thus have y not being the least upper bound for E, a contradiction.

Suppose $y^n < x$. We want to show that there exists positive numbers ε, r such that $y^n < (y+\varepsilon)^n \le y^n + r\varepsilon \le x$ so that y is not an upper bound for E. Since we have $(y+\varepsilon)^n \le y^n + ny^{n-1}\varepsilon$, for any $\varepsilon > 0$, we can let $r = ny^{n-1}$. For any fixed r, we let $0 < \varepsilon \le \frac{x-y^n}{r}$, so $y^n + r\varepsilon \le x$. Therefore, y^n is not an upper bound for E, a contradiction.

Thus, $y^n = x$.

- (b) Proof. Since $y^n = x$, for every $y' \in E$, we have $x = y^n \ge y' \implies y$ is an upper bound for E. And $\forall \varepsilon > 0$, $(y \varepsilon)^n < y^n = x$. Therefore, for all $\varepsilon > 0$, $(y \varepsilon)$ is not an upper bound for E Hence y is the least upper bound for E, by definition, we have $y = x^{1/n}$.
- (c) Proof. For all $y \in E$, we have $x \ge y \ge 0$. Therefore, $x^{1/n}$ is non-negative. Suppose $x^{1/n} > 0$. We have $y = x^{1/n} > 0$. By (a), we have $x = y^n > 0$. Suppose x > 0. We then have $y^n = x > 0$. So $y = x^{1/n} > 0$. Thus, $x^{1/n} > 0 \iff x > 0$.
- (d) Proof. Denote $x = a^n$ and $y = b^n$. If $x = a^n > b^n = y$, we have $x^{1/n} = a > b = y^{1/n}$ (otherwise there will be contradictions). On the other hand, if a > b, we have $x = a^n > b^n = y$. Thus, $x > y \iff x^{1/n} > y^{1/n}$.

(e) Proof. x > 1. Suppose $k_1 > k_2$, then $k_1 \ge k_2 + 1$. $x^{1/k} = y_1 \iff y_1^{k_1} = x$, $x^{1/k} = y_1 \iff y_1^{k_1} = x$, the remaining part is to show that $y_1 < y_2$. Since x > 1, we have $y_1, y_2 > 1$. Then

$$y_2^{k_2} = y_1^{k_1} \ge y_1^{k_2+1} = y_1^{k_2} \cdot y_1,$$
$$\left(\frac{y_2}{y_1}\right)^{k_2} \ge y_1 > 1.$$

Therefore,

$$\frac{y_2}{y_1} > 1 \implies y_1 < y_2.$$

Thus, $x^{1/k}$ is a decreasing function of k when x > 1.

x < 1. In this case, we have $0 \le y_1, y_2 < 1$, and we need to show that $y_1 > y_2$. Then

$$y_2^{k_2} = y_1^{k_1} \le y_1^{k_2+1} = y_1^{k_2} \cdot y_1,$$
$$\left(\frac{y_2}{y_1}\right)^{k_2} \le y_1 < 1.$$

Therefore,

$$\frac{y_2}{y_1} < 1 \implies y_1 > y_2.$$

Thus, $x^{1/k}$ is an increasing function of k when x > 1.

If
$$x = 1$$
, we have $y^n = 1$ so $y = 1$. Therefore, $x^{1/n} = y = 1$.

- (f) Proof. Denote $(xy)^{1/n}$ by a. Then $a=(xy)^{1/n}\iff a^n=xy$. Suppose $b^n=x$ and $c^n=y$. We need to show that a=bc. By substitution, we have $a^n=b^nc^n=(bc)^n$, hence a=bc. Therefore, $(xy)^{1/n}=x^{1/n}y^{1/n}$.
- (g) *Proof.* Let $a = x^{1/nm}$, then $a^{nm} = x$. Let $b = (x^{1/n})^{1/m}$, then $b^m = x^{1/n}$. We want to show that a = b. Since $(b^m)^n = b^{mn} = b^{nm} = a^{nm}$, we have a = b. Thus, $(x^{1/n})^{1/m} = x^{1/nm}$.

Exercise 5.6.2.

Prove Lemma 5.6.9.

(a) Proof. Write q = a/b for some integer a and some positive integers b. Then

 $x^{q} = x^{a/b} = (x^{1/b})^{a}$. By Lemma 5.6.6, since x > 0, $x^{1/b} > 0$. Therefore, $x^{q} = (x^{1/b})^{a} > 0$. Thus, x^{q} is a positive real.

(b) Proof. Write q=a/b and r=c/d for some integers a,c and some positive integers b,d. Then

$$x^{q+r} = (x^{\frac{a}{b} + \frac{c}{d}})$$

$$= x^{\frac{ad+bc}{bd}}$$

$$= (x^{\frac{1}{bd}})^{ad+bc}$$

$$= x^{\frac{ad}{bd}} \cdot x^{\frac{bc}{bd}}$$

$$= x^{\frac{a}{b}} \cdot x^{\frac{c}{d}}$$

$$= x^{q} \cdot x^{r}.$$

$$((x^{q})^{r})^{bd} = ((x^{\frac{a}{b}})^{\frac{c}{d}})^{bd}$$

$$= ((((x^{\frac{1}{b}})^{a})^{\frac{1}{d}})^{c})^{bd}$$

$$= ((((x^{\frac{1}{b}})^{a})^{\frac{1}{d}})^{d})^{bc}$$

$$= ((x^{\frac{1}{b}})^{a})^{bc}$$

$$= ((x^{\frac{1}{b}})^{b})^{ac}$$

$$= x^{ac}$$

$$= (x^{\frac{ac}{bd}})^{bd}$$

$$= (x^{qr})^{bd},$$

hence $(x^q)^r = x^{qr}$.

(c) Proof. Write q = a/b for some integer a and some positive integer b. Then

$$x^{-q} = x^{-\frac{a}{b}}$$

$$= (x^{\frac{1}{b}})^{-a}$$

$$= \frac{1}{(x^{\frac{1}{b}})^a}$$

$$= \frac{1}{x^a}.$$

(d) *Proof.* Write q = a/b for some positive integers a, b.

Suppose x > y. By Lemma 5.6.6, we have $x^{\frac{1}{b}} > y^{\frac{1}{b}}$. By Proposition 4.3.10, we have $(x^{\frac{1}{b}})^a > (y^{\frac{1}{b}})^a$. Therefore, $x^q = (x^{\frac{1}{b}})^a > (y^{\frac{1}{b}})^a = x^r$.

Suppose $x^q = (x^{\frac{1}{b}})^a > (y^{\frac{1}{b}})^a = x^r$. By Lemma 5.6.6, $x^{\frac{1}{b}} = ((x^{\frac{1}{b}})^a)^{1/a} > ((y^{\frac{1}{b}})^a)^{1/a} = y^{1/b}$. Apply Lemma 5.6.6 once again, we have x > y.

(e) Proof. Write q=a/b and r=c/d for some integers a,c and some positive integers b,d. $q-r=\frac{a}{b}-\frac{c}{d}=\frac{ad-bc}{bd}$.

x > 1. $x^q = x^{\frac{a}{b}} > x^{\frac{c}{d}} = x^r \iff (x^{\frac{a}{b}})^{\frac{1}{ac}} = x^{\frac{1}{bc}} > x^{\frac{1}{ad}} = (x^{\frac{c}{d}})^{\frac{1}{ac}} \iff bc < ad$ (since x > 1). Therefore, $x^q \iff q > r$.

 $x < 1. \ x^q = x^{\frac{a}{b}} > x^{\frac{c}{d}} = x^r \iff (x^{\frac{a}{b}})^{\frac{1}{ac}} = x^{\frac{1}{bc}} > x^{\frac{1}{ad}} = (x^{\frac{c}{d}})^{\frac{1}{ac}} \iff bc > ad$ (since x < 1). Therefore, $x^q \iff q < r$.

Exercise 5.6.3.

If x is a real number, show that $|x| = (x^2)^{1/2}$.

Proof. If
$$x > 0$$
, $(x^2)^{1/2} = x = |x|$. If $x < 0$, $(x^2)^{1/2} = ((-x)^2)^{1/2} = -x = |x|$. If $x = 0$, $(x^2)^{1/2} = 0 = |0|$. Thus, $|x| = (x^2)^{1/2}$.