

Abrindo a Caixa-Preta — Aplicando IA Explicável para Aprimorar a Detecção de Sequestros de Prefixo

Adriano B. de Carvalho, Brivaldo A. da Silva Jr, Carlos Alberto da Silva e Ronaldo A. Ferreira

Universidade Federal de Mato Grosso do Sul

Motivação

ROUTING SECURITY | ROUTING SECURITY INCIDENTS

BGP Security in 2021

By Aftab Siddiqui • 21 Feb 2022

- October 25: AS212046 MEZON hijacked 3786 prefixes Qrator Labs
- October 13: AS212046 MEZON hijacked 1029 prefixes Qrator Labs
- September 21: AS62325 HDHK hijacked 89 prefixes Qrator Labs
- May 18: AS48467 PRANET hijacked 454 prefixes Qrator Labs
- April 16: AS55410 Vodafone Idea Ltd hijacked 30,000 prefixes MANRS Blog
- February 5: AS136168 Campana MYTHIC hijacked Twitter prefixes MANRS Blog

Falha ou erro

Censura

https://www.manrs.org/2022/02/bgp-security-in-2021/

Motivação

Furto de criptomoedas

Aprox. 235 mil dólares

https://arstechnica.com/information-technology/2022/09/how-3-hours-of-inaction-from-amazon-cost-cryptocurrency-holders-235000/

Aprox. 1,9 milhão dólares

https://www.manrs.org/2022/02/klayswap-another-bgp-hijack-targeting-crypto-wallets/

Como é possível ocorrer o sequestro de prefixo?

Primeiro é necessário saber como a Internet é formada

Voltamos a pergunta, como é possível ocorrer o sequestro de prefixo?

BGP carece de segurança, pois não possui mecanismos nativos de validação e autenticação

A System to Detect Forged-Origin BGP Hijacks

- Random Forest
- 28 Features
- 18 Topológicas
- 5 Peering

- 3 padrão do AS path (geradas por Random Forest)
- 2 Bidirecionalidade
- Amostras de treinamento baseadas em agrupamento
- Uso de enlaces forjados de forma sintética para treinamento

Thomas Holterbach, Thomas Alfroy, Amreesh Phokeer, Alberto Dainotti and Cristel Pelsser

NSDI 2024

A System to Detect Forged-Origin BGP Hijacks

- Conjunto de dados
- 300 dias de observação (coletores (RIB + Updates) + CAIDA)
- 60 dias de amostras para treinamento
- 2.000 amostras por dia (mil de cada classe)
- 200 VPs (Vantage Points)
- Foco na classificação dos novos enlaces

eXplainable Artificial Intelligence - XAI

- Random Forest
- Extra-trees

Árvore de Decisão

- Aprendizado por imitação
- Amostras classificadas pelo modelo caixa-preta para treinamento da Árvore de Decisão

Abrindo o modelo Caixa-Preta do DFOH

Usando a ferramenta Trustee

28 execuções com parâmetros distintos

56 Árvores de Decisão

28 Árvores completas

28 Árvores com podas

Features ordenadas com base na

presença nas Árvores

cone degree ≤ 0.457

Abrindo o modelo Caixa-Preta do DFOH

aini = 0.038

class = Hijacker

class = Hijacker

Usando a ferramenta Trustee

28 execuções com parâmetros distintos

56 Árvores de Decisão

- 28 Árvores completas
- 28 Árvores com podas
- Features ordenadas com base na

presença nas Árvores

- 4 modelos criados com redução de features (baseado na relevância);
- Todos os modelos (4 criados + original) obtiveram resultados dentro do Intervalo de Confiança;
- Selecionados os 2 menores para uma análise mais detalhada;

Categoria	M1	M4	Redução em M4	M5	Redução em M5
Topológica	18	5	72,22%	2	88,89%
Peering	5	2	60,00%	1	80,00%
Padrão AS path	3	2	33,33%	1	66,67%
Bidirecionalidade	2	2	0,00%	1	50,00%
Total de features	28	11	60,71%	5	82,14%

- 40 dias de avaliação (2 periodos de 20 dias);
- 2.000 amostras por dia para avaliação dos modelos;
- Redução de tempo (média dos 40 dias, tempo em segundos):

	M1 ± IC	M4 ± IC	Redução em M4	M5 ± IC	Redução em M5
Cálculo das features	1875 ± 45	1291 ± 36	31,15%	1180 ± 32	37,04%

IC = Intervalo de Confiança (95%)

Redução de espaço de armazenamento (160 dias = 2 x (60 dias para o treino + 20 dias de avaliação), valores em bytes):

	M1	M4	Redução em M4	M5	Redução em M5
Arquivos das features	144141619	57872896	59,85%	41575973	71,16%

Resultados obtidos com avaliação similar ao artigo original

	Legítimos						
Modelos	Precisão ± IC		Recall ± IC		F1-Score ± IC		
M1	0,9570	0,0018	0,9590	0,0022	0,9580	0,0014	
M4	0,9582	0,0020	0,9580	0,0022	0,9581	0,0015	
M5	0,9488	0,0020	0,9488	0,0025	0,9488	0,0015	

	Suspeitos						
Modelos	Precisão ± IC		Recall ± IC		F1-Score ± IC		
M1	0,9590	0,0021	0,9569	0,0019	0,9579	0,0013	
M4	0,9581	0,0021	0,9581	0,0021	0,9581	0,0015	
M5	0,9488	0,0024	0,9488	0,0021	0,9488	0,0015	

- Novos enlaces observados nos 40 dias 16.107;
- 968 enlaces inferidos diferente entre M1 e M4 (6,0%)
- 1.256 enlaces inferidos diferente entre M1 e M5 (7,8%)
- Como não há uma verdade sobre os novos enlaces observados, foi considerado o seguinte:
- Os sequestros costumam durar curtos períodos de tempo;
- Foi verificado se o novo enlace foi observado nos 5 meses seguintes;
- Foram analisadas somente as duas primeiras horas de RIB do mês.

• Foi considerada a necessidade do enlace ser observado de 1 a 5 meses posteriores para ele ser considerado legítimo (eixo X do gráfico).

Considerações finais

Código utilizado disponível

O sequestro de prefixo continua sendo um problema

- Os operadores de rede são relutantes no uso de modelos caixa-preta em cenários críticos
- XAI pode ajudar a entender o modelo caixa-preta (se há generalização)
- Usando XAI, pode-se observar que diversas features do atual estado-da-arte na detecção de sequestro com origem forjada são irrelevantes.

Trabalhos futuros

- Comparar os resultados obtidos com outras técnicas de seleção de features
- Buscar novas fontes de dados para incrementar o modelo
- Verificar a possibilidade de se obter uma outra forma de treinamento do modelo

Obrigado!

- Adriano B. de Carvalho (adriano.bastos@ufms.br)
- Brivaldo A. da Silva Jr (brivaldo.junior@ufms.br)
- Carlos Alberto da Silva (carlos.silva@ufms.br)
- Ronaldo A. Ferreira (ronaldo.ferreira@ufms.br)

FAPESP

Campo Grande - MS