MODFLOW-USG原理

非结构网格离散

上式的CVFD离散近似,实施空间和时间的离散。MODFLOW-USG的空间离散是3D的,使用矩形的有限差分网格。非结构网格下,网格单元连接是可变的。CVFD离散格式的单元连接与公共面的数目有关。为使CVFD格式达到一定精度,要求两个单元中心连线与公共面的角度接近直角,交点应接近公共面的中点。例如,嵌套网格会违背此准则,使用GNC软件改善精度。

图2两种不同的单元中心连线与公共边的相交形式

非结构网格离散

图4展示了MODFLOW-USG可以使用的不同网格类型。

Unwrapping结构网格是推荐使用的,因为不违反CVFD要求。

Wrapped 三角形和四边形网格,图4(F)和(G)的三角形和四边形结构网格需要使用GNC软件改善求解精度。

结构网格

C~G网格归入结构网格???

STRUCTURED GRIDS

B. Rectangular grid, irregular domain

C. Triangular grid, isosceles triangles

D. Triangular grid, equilateral triangles

B. Hexagonal grid

F. Warped triangular grid

6. Warped quadrilateral grid

Wrapped 三角形和四边形网格,图4(F)和(G)的三角形和四边形结构网格需要使用GNC软件改善求解精度。

非结构网格

UNSTRUCTURED GRIDS

H. Rectangular, nested grid

I. Triangular, nested grid

J. Radial grid

K. Rectangular, quadtree grid, no smoothing

L. Rectangular, quadtree grid, with smoothing

M. Irregular polygon grid

垂向分层网格

- ●MODFLOW-USG要求顶部和底部的单元面是水平的,侧向面是垂直的。因此,单元在垂向上是棱柱。定义顶部单元面的节点与底部单元面的节点必须有相同的 xy坐标。
- ●不透水层和透水层的处理与MODFLOW-2005一样。MODFLOW-USG使用分层的概念,分层之间的单元数可以不同。2D多层网格还可以作为一个单层输入到MODFLOW-USG,需要额外的前后处理分析结果。
- ●如果使用层的概念做模拟,单元内的网格单元从顶层向下需要连续编号。因此,最低编号的单元必须在网格顶部,单元编号向下增加。MODFLOW-USG内部编号结构识别单元连接的向下方向。MODFLOW-USG分层在垂向上还可以子离散(subdiscretization),此功能对局部加密穿透井的垂向分辨率有用。

艰苦樸素 求真务案

不同分层格式如图5,假设含水系统的上部含水层与下部含水层中间被承压单元隔离。最简单的格式中,网格设置与两个含水层和承压单元相同(图5a)。

图5 MODFLOW-USG中的分层网格类型: A 所有分层的网格设置一样; B 不同分层的网格设置不同; C 一个或多层包含垂向子离散

32

艰苦樸素求真务實

水平向,网格可以是非结构的,但所有垂向分层都使用相同的非结构网格。 MODFLOW-USG也允许对不同分层使用不同的网格,例如图5b,上部含水层包含一个不连续的承压单元。这种设置下,上部含水层表示为3层。标记为18~24的单元对应一个不透水层,且分配到layer2。标记为25~31对应上层含水层区域,在不连续不透水层的下部。

艰苦樸素求真务實

图5c显示了垂向子离散,对上部和下部含水层增加垂向分辨率。当使用垂向子离散时,一个分层内的单元不必从上至下连续编号,相反,MODFLOW-USG需要额外的输入数组来表示2个单元连接是否是垂向的。并且,较小的节点号下方还要有更大的节点号,来识别向下的方向。

CVFD和有限差分近似

在结构网格上的地下水控制方程的离散式:

$$\begin{split} &CV_{i,j,k-1/2}h_{i,j,k-1} + CR_{i-1/2,j,k}h_{i-1,j,k} + CC_{i,j-1/2,k}h_{i,j-1,k} + \\ &(-CV_{i,j,k-1/2} - CR_{i-1/2,j,k} - CC_{i,j-1/2,k} - CV_{i,j,k+1/2} - \\ &CR_{i+1/2,j,k} - CC_{i,j+1/2,k} + HCOF_{i,j,k})h_{i,j,k} + CV_{i,j,k+1/2}h_{i,j,k+1} \\ &+ CR_{i+1/2,j,k}h_{i+1,j,k} + CC_{i,j+1/2,k}h_{i,j+1,k} = RHS_{i,j,k} \end{split}$$

重新组织,写成对单元n相连接的相邻单元m的一般形式为:

$$HCOF_n(h_n) + \sum_{m \in \eta_n} C_{nm}(h_m - h_n) = RHS_n$$

 $HCOF_n$ 中的时间相关存储项和 RHS_n 项,可以单元体积直接表述为非矩形单元:

$$HCOF_n = \frac{-SS_n V_n}{\Delta t}$$

$$RHS_n = \frac{-SS_n V_n h_n^{t-1}}{\Delta t}$$

单元间的传导度

单元n与单元m之间的水力传导项Cnm为:

$$C_{nm} = \frac{a_{nm}K_{nm}}{\left[L_{nm} + L_{mn}\right]}$$