

. d 3n ucc 27 14318:11 1784

•

	in DNA Strand ssarv2 lib/6mers' file. nown at open reading frames.	FIGURE 4 Page 1 of 12
-il -i		i ii xmnipsti bini mboi1-1
pst1 pvu11 ttb1114-2	_ _ _pst1 iii hindi sphi	
mbo11-2 mbo11-2 mbo11-1 bstx mbo11-1 bstx mbo11-1 bg111 mbo11-1 bg111 mbo11-1 mbo11-1	I=1	ava3 tthTIII1-2 ecor5 bstXI binI
binI pvu11 tthIII1-2	.5511=1 hpa1 aha111	int1-1-1-1- mboi1-1 ava3
kpni mboli-i lostx scal pvuli ava3	I	hIndiff mbo11-1
-nde1lavr2lavr2- sca1		T-
scal		
 m55ff=f-1	mbo11-1	msEII binI avr2

Figure 4
Page 2 of 12

- 1 CTGGAAGGGCTAATTTGGTCCCAAAGAAGACAAGAGATCCTTGATCTGTGGATCTACCACAC GACCTTCCCGATTAAACCAGGGTTTCTTCTGTTCTCTAGGAACTAGACACCTAGATGGTGTG 26 mbo11, 50 bin1,
- ACAAGGCTACTTCCCTGATTGGCAGAATTACACACCAGGGCCAGGGATCAGATATCCACT TGTTCCGATGAAGGGACTAACCGTCTTAATGTGTGGTCCCGGTCCCTAGTCTATAGGTGA 107 bini, 113 ecors,
- 6ACCTTTGGATGGTGCTTCAAGCTAGTACCAGTTGAGCCAGAGAAGGTAGAAGAGGCCAA CTGGAAACCTACCACGAAGTTCGATCATGGTCAACTCGGTCTCTTCCATCTTCTCCGGTT
- 183 TGAAGGAGACAACAGCTTGTTACACCCTATGAGCCTGCATGGGATGGAGGACGCGGAACTTCCTCTTGTTGTCGAACAATGTGGGATACTCGGACGTACCCTCCTGCGCCT
- 6AAAGAAGTGTTAGTGTGGAGGTTTGACAGCAAACTAGCATTTCATCACATGGCCCGAGA CTTTCTTCACAATCACCCCCCAAACTGTCGTTTGATCGTAAAGTAGTGTACCGGGCTCT 296 ava1,
- GCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTTCTACAAGGGACTTTCCGCCGACGTAGGCCTCATGATGTTTCTGACGACTGTAGCTCGAAAGATGTTCCCTGAAAGGCG
- 363 TGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGTCCCTCAGATGC ACCCCTGAAAGGTCCCTCCGCACCGGACCCGCCCTGACCCCTCACCGCAGGGAGTCTACG
- TGCATATAAGCAGACTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGACGTATATTCGTCTGACGAAAAACGGACATGACCCAGAGAGACCAATCTGGTCTAGACTC
- 483 CCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTT GGACCCTCGAGAGACCGATTGATCCCTTGGGTGACGAATTCGGAGTTATTTCGAACGGAA. 488 sac1, 518 af111, 532 hind111,
- 603 GACCCTTTTAGTCAGTGTGGAAAAATCTCTAGCAGTGGCGCCCGAACAGGGACGCGAAAG CTGGGAAAATCAGTCACACCTTTTTAGAGATCGTCACCGCGGGCTTGTCCCTGCGCTTTC
- CGAAAGTAGAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACAG GCTTTCATCTTGGTCTCCTCGAGAGAGCTGCGTCCTGAGCCGAACGACTTCGCGCGTGTC
 - 723 CAAGAGGCGAGGGGGGGGGGGGTGACTGGTGAGTACGCCAATTTTTGACTAGCGGAGGCTAGAAGGTTCTCCGCTCCCGCCGCCGCTGACCACTCATGCGGTTAAAAACTGATCGCCTCCGATCTTC

Figure 4
Page 3 of 12

- LysileargleuargProglyGlyLysLysLysTyrLysLeuLysHisileValTrpala AAAATTCGGTTAAGGCCAGGGGGAAAGAAAAATATAAGTTAAAACATATAGTATGGGCA TTTTAAGCCAATTCCGGTCCCCCTTTCTTTTTATATTCAATTTTGTATATCATACCCGT
- 903 SerArgGluLeuGluArgPheAlaValAsnProGlyLeuLeuGluThrSerGluGlyCys
 AGCAGGGAGCTAGAACGATTCGCAGTCAATCCTGGCCTGTTAGAAACATCAGAAGGCTGC
 TCGTCCCTCGATCTTGCTAAGCGTCAGTTAGGACCGGACAATCTTTGTAGTCTTCCGACG
 959 pst1,
- 963 ArgGinileLeuGlyGinLeuGinProSerLeuGinThrGlySerGluGluLeuArgSer AGACAAATATTGGGACAGCTACAGCCATCCCTTCAGACAGGATCAGAAGAACTTAGATCA TCTGTTTATAACCCTGTCGATGTCGGTAGGGAAGTCTGTCCTAGTCTTCTTGAATCTAGT 1002 bini, 1008 mbo11,
- LeuTyrAsnThrvalAlaThrLeuTyrCysValHis6lnArgIleAspValLysAspThr TTATATAATACAGTAGCAACCCTCTATTGTGTACATCAAAGGATAGATGTAAAAGACACC AATATATTATGTCATCGTTGGGAGATAACACATGTAGTTTCCTATCTACATTTTCTGTGG
- LysglualaLeugluLysilegluglugluglnAsnLysSerLysLysLysAlaglngln
 AAGGAAGCTTTAGAGAAGATAGAGGAAGGAAGACAAAACTAAGAAAAAGCCACAGCAA
 TTCCTTCGAAATCTCTTCTATCTCCTTCTCGTTTTTCATTCTTTTTCCGTGTCGTT

 1087 hind111, 1097 mbo11, 1107 mbo11, p25
- AlaAlaAlaAlaAlaGlyThr6lyAsnSerSerGlnValSerGlnAsnTyrProlleVal
 6CAGCAGCTGCAGCTGGCACAGGAAACAGCAGGCCAGGTCAGCCAAAATTACCCTATAGTG
 CGTCGTCGACGTCGACCGTGTCCTTTGTCGTCGGTCCAGTCGGTTTTAATGGGATATCAC
 1147 pvu11, 1150 pst1, 1153 pvu11, 1156 tthIII1,
- 6lnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp CAGAACCTACAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGG GTCTTGGATGTCCCCGGTTACCATGTAGTCCGGTATAGTGGATCTTGAAATTTACGTACC 1250 aha111, 1255 ava3,
- VallysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu GTAAAAGTAGTAGAAAAAGGCTTTCAGCCCAGAAGTAATACCCATGTTTTCAGCATTA CATTTTCATCATCTTTTTCCGAAAGTCGGGTCTTCATTATGGGTACAAAAGTCGTAAT 1275 mbo11,
- SerGluglyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln
 TCAGAAGGAGCCACCCCCACAAGATTTAAACACCATGCTAAACACAGTTGGGGGGACATCAA
 AGTCTTCCTCGGTGGGGTGTTCTAAATTTGTGGTACGATTTGTGTCACCCCCCTGTAGTT
 1346 aha111,
- AlaalaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal GCAGCCATGCAAATGTTAAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG CGTCGGTACGTTTACAATTTTCTCTGATAGTTACTCCTTCGACGTCTTACCCTATCTCAC
- HisprovalHisAlaGlyProlleAlaProGlyGlnMetArgGluProArgGlySerAsp CATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAAATGAGAGAACCAAGGGGAAGTGAC GTAGGTCACGTACGTCCCGGATAACGTGGTCCGGTTTACTCTCTTTGGTTCCCCTTCACTG

- 1623 ATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCTTTAGAGATTAAGACAAAGAACCAAAGGAACCCTTTAGAGATTAAGACAAAGACCAAAGGAACCCTTTAAGACAAAGAACCAAAGGAACCCTTTAAGAGATTAAGACATTTCTGTTCCTTGGGAAATCTCTAAAGACAAAGAACCTTAAAGACCTGTATTCTGTTCCTTGGGAAATCTCTAAAGACCTGTATTCTGTTCCTTGGGAAATCTCTAA
- TyrvalAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn TATGTAGACCGGTTCTATAAAACTCTAAGAGCCGAACAAGCTTCACAGGATGTAAAAAAT ATACATCTGGCCAAGATATTTTGAGATTCTCGGCTTGTTCGAAGTGTCCTACATTTTTTA 1720 hind111,

Figure 4 Page 4 of 12

- pMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys GATGACAGAAACCTTGTTGGTCCAAAATGCAAACCCAGATTGTAAGACTATTTTAAAA CTACTGTCTTTGGAACAACCAGGTTTTACGTTTGGGTCTAACATTCTGATAAAATTTT 1743 1796 aha111.
- 1803 1827 mbo11,
- 1863
- 1923
- GlyLysGluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysGlyCysTr 1983 GGCAAAGAAGGGCACATAGCCAAAAATTGCAGGGCCCCTAGGAAAAATTGCAGGGCCCCCCTAGGAAAAATTGCAGGGGATCCTTTTTCCCGACAACCTCT 2014 apa1, 2019 avr2,
- 2043 2102 mbo11,
- LysileTrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluPro AAGATCTGGCCTTCCTACAAGGGAAGCCAGGGAATTTTCTTCAGAGCAGACCAGAGCCA TTCTAGACCGGAAGGATGTTCCCTTCCGGTCCCTTAAAAGAAGTCTCGTCTGGTCTCGGT 2104 bgl11, 2141 mbo11,
- ThralaproprogluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLys ACAGCCCCACCAGAAGAGAGCTTCAGGTTTGGGGAGGAGAAACAACTCCCTCTCAGAAG TGTCGGGGTGGTCTTCTCCCAAAGCCCCTCCTCTTTTGTTGAGGGAGAGTCTTC 2163 2175 mbo11.
- 61nGluProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsn CAGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGATCACTCTTTGGCAAC GTCCTCGGCTATCTGTTCCTTGACATAGGAAATTGAAGGGAGTCTAGTGAGAAACCGTTG 2223
- ASPPROSERSERGINOC GACCCCTCGTCACAATAAGGATAGGGGGGGCAACTAAAGGAAGCTCTATTAGATACAGGA CTGGGGAGCAGTGTTATTCCTATCCCCCCGTTGATTTCCTTCGAGATAATCTATGTCCT 2283
- 2342 ECAGATGATACAGTATTAGAAGAAATGAATTTGCCAGGAAAATGAAACCAAAAATGATA 2360 mbo11, 2375 bstXI,
- GlyGlyIleGlyGlyPheIleLysValArqGlnTyrAsp6lnIleProValGluIleCys GGGGGAATTGGAGGTTTTATCAAAGTAAGACAGTACGATCAGATACCTGTAGAAATCTGT CCCCCTTAACCTCCAAAATAGTTTCATTCTGTCATGCTAGTCTATGGACATCTTTAGACA 2402
- 2462 ĞĞÁCATAÄÄĞĞTÄTÄĞĞTACAĞTATTAĞTAĞĞÁCCTACACCTĞTCAACATAATTĞĞÂAĞÁ CCTGTATTTCGATATCCATGTCATAATCATCCTGGATGTGGACAGTTGTATTAACCTTCT 2517 mbo11,
- AsnleuleuThrGlnileGlyCysThrLeuAsnPheProIleSerProIleGluThrVal AATCTGTTGACTCAGATTGGTTGTACTTTAAATTTCCCCATTAGTCCTATTGAAACTGTA TTAGACAACTGAGTCTAACCAACATGAAATTTAAAGGGGTAATCAGGATAACTTTGACAT 2522 2548 aha111, 2577 tthIII1,
- ysleulysPro61yMetAsp61yProLysVallys61nTrpProLeuThr61u 2582 EGTCATTTTAATTTCGGTCCTTACCTACCGGGTTTTCAATTCGTTACCGGTAACTGTCTT 2627 ball, 2639 mboll,
- 2642

LysileglyProgluAsnProTyrAsnThrProValPheAlaIleLysLysAspSer
AAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCTATAAAGAAAAAAAGACAGT
TTTTAACCCGGACTTTTAGGTATGTTATGAGGTCATAAACGATATTTCTTTTTTCTGTCA
2759 scal,

- ThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLysArgThrGlnAspPheTrp
 TGATTTACCTCTTTTGATCATCTAAAGTCTCTTGAATTATTTTCTTGAGTTCTGAAGACCC

- 2943 CATTTACCATACCTAGTATAAACAATGAGACACCAGGGATTAGATATCAGTACAATGTGGGTAAAATGAGATATCAGTACAATGTGGGATAAATGTGGGATAAATGTGGGTACAATGTGGGTCCCTAATCTATAGTCATGTTACACCC
- LeuproginglyTrpLysglySerProalallePheGinSerSerMetThrLyslieLeu
 CTGCCACAGGGATGGAAAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTA
 GACGGTGTCCCTACCTTTCCTAGTGGTCGTTATAAGGTTTCATCGTACTGTTTTTAGAAT
 3003 tthiii1, 3006 bstxi, 3021 bini,
- ValGlySerAspLeuGluIleGlyGlnHisArgThrLysIleGluGluLeuArgGlnHis GTAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAACTGAGACAGCAT CATCCTAGACTGAATCTTTATCCCGTCGTATCTTGTTTTTATCTCCTTGACTCTGTCGTA
- TrpMetGlyTyrGluLeuHisProAspLysTrpThrValGlnProIleMetLeuProGlu TGGATGGGTTATGAACTCCATCCTGATAAATGGACAGTACAGCCTATAATGCTGCCAGAA ACCTACCCAATACTTGAGGTAGGACTATTTACCTGTCATGTCGGATATTACGACGGTCTT
- 2303 LysaspserTrpThrvalAsnaspIleGlnLysLeuValGlyLysLeuAsnTrpAlaSer TITCTGTCGACCTGACAGTTACTGTATGTCTTCAATCACCCTTTTAACTTGACAGTTACTGTCAATCACCCGTTCA 3308 pvu11,
- GINII ETYPAL AGIYIL ELYSVALLYSGINL EUCYSLYSL EUL EUAFGGIYTHPLYSALA GTCTAAATACGTCCCTAAATTAAAGCAGTTATTAAACTCCTTAGAGGAACCAAAGCA GTCTAAATACGTCCCTAATTTCGTCAATACATTTGAGGAATCTCCTTGGTTTCGT
- 3423 LeuThreluvalileProleuThrelueluAlaeluLeuGluLeuAlaeluAsnargelu
 GATTGTCTTCATTATGGTGATTGTCTTCTTCGTCTCGATCTTGACCGTCTTTTGTCCCTC
 3447 mbo11,
- 3483 IleLeuLysGluProValHisGluValTyrTyrAspProSerLysAspLeuValAlaGlu
 TAAGATTTTCTTGGTCATGTACTTCATATATATCTGGGTAGTTTTCTGAATCATCGTCTT
- 3543 IleGinLysGinGlyGinTrpThrTyrGinIleTyrGinGluProPheLysAsn
 TATGTCTTCGTCCCCGTTCCGGTTACCTGTATAGTTTAAAAATTTATCAAGAGCCATTTAAAAAT
 3594 aha111.
- 3603 LeulysthrglyLystyrAlaArgMetArgGlyAlaHisThrAsnAspVallysGlnLeu GACTTTTGTCCTTTCATACGTTCCTACTCCCCACGGGTGTGATACTACTTTTGTCAAT 3659 hpa1,

Figure 4
Page 5 of 1:

POL

Figure 4
Page 6 of 12

- Threlualavaleintysvalse. hreluserilevaliletrpelytysil. rolys
 ACAGAGGCAGTGCAAAAAGTATCCACAGAAAGCATAGTAATATGGGGAAAGATTCCTAAA
 TGTCTCCGTCACGTTTTTCATAGGTGTCTTTCGTATCATTATACCCCTTTCTAAGGATTT

- LeuGluLysGluProlleValGlyAlaGluThrPheTyrValAspGlyAlaAlaAsnArg
 TTAGAGAAAGAACCCATAGTAGGAGCAGAAACTTTCTATGTAGATGGGGCAGCTAATAGG
 AATCTCTTTCTTGGGTATCATCCTCGTCTTTGAAAGATACATCTACCCCGTCGATTATCC
- 61uThrLysLeuGlyLysAlaGlyTyrValThrAspArgGlyArgGlnLysValValSer GAGACTAAATTAGGAAAAGCAGGATATGTTACTGACAGAGGAAGACAAAAAGTTGTCTCC CTCTGATTTAATCCTTTTCGTCCTATACAATGACTGTCTCCCTTCTGTTTTTCAACAGAGG 3943 mbo11,
- IlealaaspThrThrAsnGlnLysThrGluLeuGlnAlaIleHisLeuAlaLeuGlnAspATAGCTGACACAAAATCAGAAGACTGAATTACAAGCAATTCATCTAGCTTTGCAGGATTATCGACTGTGTTGTTTTAGTCTTCTGACTTAATGTTCGTTAAGTAGATCGAAACGTCCTA
 3983 mbo11,
- SerGlyLeuGluValAsmileValThrAspSerGlmTyrAlaLeuGlyIleIleGlmAla TCGGGATTAGAAGTAAACATAGTAACAGACTCACAATATGCATTAGGAATCATTCAAGCA AGCCCTAATCTTCATTTGTATCATTGTCTGAGTGTTATACGTAATCCTTAGTAAGTTCGT 4060 ava3,
- 61nProAspLysSerGluSerGluLeuValSerGlnIleIleGluGlnLeuIleLysLys CAACCAGATAAGAGTGAATCAGAGTTAGTCAGTCAAATAATAGAGCAGTTAATAAAAAAG GTTGGTCTATTCTCACTTAGTCTCAATCAGTCAGTTTATTATCTCGTCAATTATTTTTTC
- 61uLysValTyrLeuAlaTrpValProAlaHisLysGlyIleGlyGlyAsnGluGlnVal 6AAAAGGTCTACCTGGCATGGGTACCAGCACACAAAGGAATTGGAGGAAATGAACAAGTA CTTTTCCAGATGGACCGTACCCATGGTCGTGTTTTCCTTAACCTCCTTTACTTGTTCAT 4163 kpn1,
- 4203 AsplysleuValSerAlaGlyIleArigLysValLeuPheleuAsnGlyIleAsplysAla GATAAATTAGTCAGTGCTGGAATCAGGAAAGTACTATTTTTGAATGGAATAGATAAGGCC CTATTTAATCAGTCACGACCTTAGTCCTTŢCATGATAAAAACTTACCTTATCCGG 4232 scal,
- 61nGluGluHisGluLysTyrHisSerAsnTrpArgAlaMetAlaSerAspPheAsnLeu CAAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTTTAACCTG GTTCTTCTTGTACTCTTTATAGTGTCATTAACCTCTCGTTACCGATCACTAAAATTGGAC 4266 mbo11,
- Proprovalvalalatysglullevalalasercysasplyscysglnleutysglyglu CCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAATGTCAGCTAAAAGGAGAA GGTGGACACTATTTACAGTCGATTTTCCTCTT 4352 pvu11.
- Alamethis61y61nValAspCysSerPro61y11eTrp61nLeuAspCysThrHisLeu
 GCCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCAACTAGATTGTACACATCTA
 CGGTACGTACCTGTTCATCTGACATCAGGTCCTTATACCGTTGATCTAACATGTGTAGAT
 4386 ava3, 4410 bstXI, 4439 xba1,
- GluGlyLysileIleLeuValAlaValHisValAlaSerGlyTyrIleGluAlaGluVal
 GAAGGAAAATTATCCTGGTAGCAGTTCATGTAGCCAGTGGATATATAGAAGCAGAAGTT
 CTTCCTTTTTAATAGGACCATCGTCAAGTACATCGGTCACCTATATATCTTCGTCTTCAA
 4497 xmn1.
- 4503 IleproAlaGluThr6lyGlnGluThrAlaTyrPheLauLeuLysLeuAlaGlyArgTrp
 ATTCCAGCAGAGACAGGGCAGGAAACAGCATATTTTCTCTTAAAATTAGCAGGAAGATGG
 TAAGGTCGTCTCTGTCCCGTCCTTTGTCGTATAAAAGAGAAATTTTAATCGTCCTTCTACC
 4555 mbo11, 4560 ball,

Pigare 4 Page 7 of 12

- ProvallysthrileHisthraspasnGlySerAsnPhethrSerThrThrvallysAla CCAGTAAAAACAATACATACAGACAATGCCAGCAATTTCACCAGTACTACGGTTAAAGGCC GGTCATTTTTGTTATGTATGTCTGTTACCGTCGTTAAAGTGGTCATGATGCCAATTCCGG 4605 scal,
- AlacystrptrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsnProGlnSerGlnGCCTGTTGGTGGGCAGGGATCAAGCAGGAATTTGGCATTCCCTACAATCCCCAAAGTCAACCACCACCCCCTAGTTCGTCCTTAAACCGTAAGGGATGTTAGGGGTTTCAGTT
- 61yValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGlnValArgAspGln
 4683 GGAGTAGTAGAATCTATGAATAATGAATTAAAGAAAATTATAGGACAGGTAAGAGATCAG
 CCTCATCATCTTAGATACTTAATTTCTTTTAATATCCTGTCCATTCTCTAGTC
- AlaGluHisLeuLysThrAlaValGInMetAlaValPheIleHisAsnPheLysArgLys
 GCTGAACACCTTAAGACAGCAGTACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAA
 CGACTTGTGGAATTCTGTCGTCATGTTTACCGTCATAAGTAGGTGTTAAAATTTTCTTTT
 4752 afl11, 4791 aha111,
- GlyGlyIleGlyGlyTyrSerAlaGlyGluArgIleValAspIleIleAlaThrAspIle
 -4803 GGGGGGATTGGGGGGATACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATA
 CCCCCCTAACCCCCTATGTCACGTCCCCTTTCTTATCATCTGTATTATCGTTGTCTGTAT
- GlnThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArqValTyrTyrArq
 CAAACTAAAGAACTACAAAAGCAAATTACAAAAATTCAAAAATTTTCGGGTTTATTACAGG
 GTTTGATTTCTTGATGTTTTCGTTTTAATGTTTTTAAAAAGCCCAAATAATGTCC
- AspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLysGlyGluGlyAla
 GACAACAAGATCCCCTTTGGAAAGGACCAGCAAAGCTTCTCTGGAAAGGTGAAGGGGCA
 CTGTTGTTTCTAGGGGAAACCTTTCCTGGTCGTTTCGAAGAGACCTTTCCACTTCCCCGT
 4956 hind111,
- ValVallleGlnAspAsnSerAspIleLysValValProArgArgLysAlaLysIleIle
 GTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAAAAGCAAAAATCATT
 CATCATTATGTTCTATTATCACTGTATTTTCATCACGGTTCTTCTTTTCGTTTTTAGTAA
 5023 mbo11,
- MetGluAsnArgTrpGlnValMetIleValTrpGlnValAspArgMetArgIle
 ArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArgGlnAspGluAsp
 AGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTGGCAAGTAGACAGGATGAGGAT
 TCCCTAATACCTTTTGTCTACCGTCCACTACTACACACCCGTTCATCTGTCCTACTCCTA
- - Phetyrarghishistyrgluserthrhisproargvalsersergluvalhisile
 TTTTATAGACATCACTATGAAAGTACTCATCCAAGAGTAAGTTCAGAAGTACACATC
 AAAATATCTGTAGTGATACTTTCATGAGTAGGTTCTCATTCAAGTCTTCATGTGTAG
 5185 scal,
- ProleuglyAspAlaLysLeuVallleThrThrTyrTrpGlyLeuHisThrGlyGluArg CCCCTAGGGGATGCTAAATTGGTAATAACAACATATTGGGGTCTGCATACAGGAGAAAGA GGGATCCCCTACGATTTAACCATTATTGTTATAACCCCAGACGTATGTCCTCTTTCT 5223 avr2,
- 61uTrpHisLeuGlyGlnGlyValAlalleGluTrpArgLysLysLysTyrSerThrGln GAATGCATTTGGGCCAGGGAGTCGCCATAGAATGGAGGAAAAAGAAATATAGCACAAA CTTACCGTAAACCCGGTCCCTCAGCGGTATCTTACCTCCTTTTTCTTTATATCGTGTGTT
- ValasproglyLeuAlaAspGinLeuIleHisLeuHisTyrPheAspCysPheSerGlu
 5341 GTAGACCCTGGCCTAGCAGACCAACTAATTCATCTGCATTATTTTGATTGTTTTTCAGAA
 CATCTGGGACCGGATCGTCTGGTTGATTAAGTAGACGTAATAAAAACTAACAAAAAGTCTT
- SerAlaileLysAsnAlaileLeuGlyTyrArqValSerProArqCysGluTyrGlnAla TCTGCTATAAAAAATGCCATATTAGGATATAGAGTTAGTCCTAGGTGTGAATATCAAGCA AGACGATATTTTTTACGGTATAATCCTATATCTCAATCAGGATCCACACTTATAGTTCGT S440 avr2.
- 61yHisAsnLysValGlySerLeuGlnTyrLeuAlaLeuAlaLeuIleThrProLys
 66ACATAACAAGGTAGGATCTCTACAATACTTGGCACTAGCAGCATTAATAACACCAAAA
 CCTGTATTGTTCCATCCTAGAGATGTTATGAACCGTGATCGTCGTAATTATTGTGGTTTT
 5476 binl.

Figure 4

Page 8 of 12

CONFIDENTIAL

LysThrLysProProLeuProSerValLysLysLeuThrGluAspArgTrpAsnLysPro
AAGACAAAGCCACCTTTGCCTAGTGTTAAGAAACTGACAGAGGATAGATGGAACAAGCCC
TTCTGTTTCGGTGGAAACGGATCACAATTCTTTGACTGTCTCCTATCTACCTTGTTCGGG

.6G .6G

- AGCTTAAGAGAGAAGCTGTTAGACATTTTCCTAGGCCATGGCTCCATAGCTTAGGACAAT TCGAATTCTCTCTGACAATCTGTAAAAAGGATCCGGTACCGAGGTATCGAATCCTGTTA 5643 af111, 5670 avr2, 5676 nco1,
- ATATCTATGAAACTTATGGGGATACTTGGGCAGGAGTGGAAGCCATAATAAGAATTCTGC
 TATAGATACTTTGAATACCCCTATGAACCCGTCCTCACCTTCGGTATTATTCTTAAGACG

 5752 ecof1.
- 5761 AACAACTECTETTTATTCATTTCAGAATTEGETGTCAACATAGCAGAATAGGCATTATTC
 TTETTGACGACAAATAAGTAAAGTCTTAACCCACAGTTETATCGTCTTATCCGTAATAAG
- AACAGAGGAGAGAAGAAGAAATGGAGCCAGTAGATCCTAATCTAGAGCCCTGGAAGCAT TTGTCTCCTCTCTTTCTTTACCTCGGTCATCTAGGATTAGATCTCGGGACCTTCGTA 5836 mbo11, 5862 xba1,
- CCAGGAAGTCAGCCTAGGACTGCTTGTAACAATTGCTATTGTAAAAAGTGTTGCTTTCAT GGTCCTTCAGTCGGATCCTGACGAACATTGTTAACGATAACATTTTTCACAACGAAAGTA 5893 avr2,
- TGCTACECGTGTTTCACAAGAAAAGGCTTAGGCATCTCCTATGGCAGGAAGAAGCGGAGA ACGATGCGCACAAAGTGTTCTTTTCCGAATCCGTAGAGGATACCGTCCTTCTTCGCCTCT 5945 mlu1, 5988 mbo11,
- 6001 CAGCGACGAAGAGCTCCTCAGGACAGTCAGACTCATCAAGCTTCTCTATCAAAGCAGTAA GTCGCTGCTTCTCGAGGAGTCCTGTCAGTCTGAGTAGTTCGAAGAGATAGTTTCGTCATT 6008 mbo11, 6011 sac1, 6016 mstll, 6038 hind111,
- 6061 GTAGTAAATGTAATGCAATCTTTACAAATATTAGCAATAGTATCATTAGTAGTAGTAGCA CATCATTTACATTACGTTAGAAATGTTTATAATCGTTATCATAGTAATCATCATCGT
- ATAATAGCAATAGTTGTGTGGACCATAGTACTCATAGAATATAGGAAAATATTAAGACAA
 TATTATCGTTATCAACACACCCTGGTATCATGAGTATCTTATATCCTTTTATAATTCTGTT
 6147 8c21,
- AGAAAATAGACAGATTAATTGATAGAATAAGAGAAAAAGCAGAAGACAGTGGCAATGAAA
 TCTTTTATCTGTCTAATTAACTATCTTTTTTCGTCTTCTGTCACCGTTACTTT
 6222 mbo11,
- 4241 VallysglythrargargasntyrglnHisLeuTrpArgTrpGlythrLeuLeuGly GTGAAGGGACCAGGAGGAATTATCAGCACTTGTGGAGATGGGGCACCTTGCTCCTTGGG CACTTCCCCTGGTCCTCTTAATAGTCGTGAACACCTCTACCCCGTGGAACGAGGAACCC
- ATGTTGATGATCTGTAGTGCTACAGAAAATTGTGGGTCACAGTTTATTATGGAGTACCT
 TACAACTACTAGACATCACGATGTCTTTTTTAACACCCCAGTGTCAAATAATACCTCATGGA
- ValTrpLysGluAlaThrThrThrLeuPheCysAlaSerAspAlaArgAlaTyrAspThr GTGTGGAAAGAAGCAACTACCACTCTATTTTGTGCATCAGATGCTAGAGCATATGATACA CACACCTTTCTTCGTTGATGGTGAGATAAAACACGTAGTCTACGATCTCGTATACTATGT
- 61uValHisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGlnGlu GAGGTACATAATGTTTGGGCCACACATGCCTGTGTACCCACAGACCCCCAAGAA CTCCATGTATTACAAACCCGGTGTGTACGGACACATGGGTGTGGGGTTGGGGTGTACTA
- 4481 ValleuGlyAsnvalThrGluAshPheAsnMetTrpLysAsnAsnMetValGluGln
 GTAGTATTGGGAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACATGGTAGAACAG
 CATCATAACCCTTTACACTGTCTTTTAAAATTGTACACCTTTTTATTGTACCATGTTGTACACTTTTTATTGTACCATGTTGTACACTTTTTATT
- ATGCAGGAGATATAATCAGTTTATGGGATCAAAGCCTAAAGCCATGTGTAAAATTAACCTACGTCCTCCTATATTAGTCAAATACCCTAGTTTCGGATTTCGGTACACATTTTAATTGG

ENV

ProLeuCysValThrEeuAsnCysThrAspLeuGlyLysAlaThrAsnThrAsnSerSer CCACTCTGTGTTACTTTAAATTGCACTGATTTGGGGAAGGCTACTAATACCAATAGTAGT GGTGACAAACCCCTTCCGATGATTATGGTTATCATCA

6615 aha111,

5601

AshTrpLysGluGluIleLysGlyGluIleLysAshCysSerPheAshIleThrThrSer
AATTGGAAAGAAGAAAAAAAGGAGAAAATAAAAAACTGCTCTTTCAATATCACCACAAGC
TTAACCTTTCTTCTTTATTTTCCTCTTTATTTTTTGACGAGAAAGTTATAGTGGTGTTCG
6670 mbo11,

- ValileThrGlnAlaCysProLysValSerPheGluProlleProlleHisTyrCysThr GTCATTACACAGGCCTGTCCAAAGGTATCATTTGAGCCAATTCCCATACATTATTGTACC CAGTAATGTGTCCGGACAGGTTTCCATAGTAAACTCGGTTAAGGGTATGTAATAACATGG 6851 stu1,
- ProalaglyPhealalleLeuLysCysAsnAsnLysThrPheAsnGlyLysGlyProCys
 CCGGCTGGTTTTGCGATTCTAAAGTGTAATAAAACGTTCAATGGAAAAGGACCATGT
 GGCCGACCAAAACGCTAAGATTTCACATTATTTTTGCAAGTTACCTTTTCCTGGTACA
- ThrasnvalSerThrvalGlnCysThrHisGlyIleArgProIleValSerThrGlnLeu
 ACAAATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAATAGTGTCAACTCAACTG
 TGTTTACAGTCGTGTCATGTTACATGTGTACCTTAATCCGGTTATCACAGTTGAGTTGAC
- 7021 LeuleuAsnGlySerLeuAlaGluGluGluValVallleArgSerAspAsnPheThrAsn CTGTTAAATGGCAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTGACAATTTCACGAAC GACAATTTACCGTCAGATCGTCTTCTTCTCCATCATTAATCTAGACTGTTAAAGTGCTTG 7042 mbo11, 7045 mbo11, 7060 bg111,
- AsnalaLysThrIleIleValGlnLeuAsnGluSerValAlaIleAsnCysThrArgPro
 AATGCTAAAACCATAATAGTACAGCTGAATGAATCTGTAGCAATTAACTGTACAAGACCC
 TTACGATTTTGGTATTATCATGTCGACTTACTTAGACATCGTTAATTGACATGTTCTGGG
 7102 pvu11,
- AsnasnasnThrargLysSerIleTyfIleGlyProGlyArgAlaPheHisThrThrGly
 AACAACAATACAAGAAAAAGTATCTATATAGGACCAGGGAGAGCATTTCATACAACAGA
 TTGTTGTTATGTTCTTTTTCATAGATATATCCTGGTCCCTCTCGTAAAGTATGTTGTCCT
 7199 mbo11,
- ThreugluglnileValLysLysLeuArgGluglnPheGlyAsnAsnLysThrlleVal
 ACTTTAGAACAGATAGTTAAAAAATTAAGAGAACAGTTTGGGAATAATAAAACAATAGTC
 TGAAATCTTGTCTATCAATTTTTTAATTCTCTTGTCAAACCCTTATTATTTTGTTATCAG
- 7321 PheasingInserserGlyGlyAspProGluIleValMetHisserPheasinCysArgGly
 AAATTAGTTAGGAGTCCTCCCCTGGGTCTTTAACATTCCAAAATTATTAGAGGT
 AAATTAGTTAGGAGTCCTCCCCTGGGTCTTTAACATTACGTGTCAAAATTAACATCTCCC
 7331 mstil.
- GluphePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrpArgLeuAsnHisThr
 GAATTTTTCTACTGTAATACAACACAACTGTTTAATACATGGAGGTTAAATCACACT
 CTTAAAAAGATGACATTATGTTGTTGTTGACAAATTATTATGTACCTCCAATTTAGTGTGA
- 7501 MettrpgingluvalglyLysalaMettyralaProProIleGlyGlyGlnIleSercys
 ATGTGGCAGGAAGTAGGAAAAGCAATGTATGCCCCTCCCATTGGAGGACAAATTAGTTGT
 TACACCGTCCTTCATCCTTTTCGTTACATACGGGGAGGGTAACCTCCTGTTTAATCAACA
- 7561 SerserAsnileThrGlyLeuLeuLeuThrArgAspGlyGlyThrAsnValThrAsnAsp
 TCATCAAATATTACAGGGCTGCTATTAACAAGAGATGGTGGTACAAATGTAACTAATGAC
 AGTAGTTTATAATGTCCCGACGATAATTGTTCTCTACCACCATGTTTACATTGATTACTG

Figure 4
Page 9 of 12

- 7741 ValVal61nArg61uLysArgAlaVal61yIleVal61yAlaMetPheLeuGlyPheLeu GTGGTGCAGAGAGAAAAAGAGCAGTGGGAATAGTAGGAGCTATGTTCCTTGGGTTCTTG CACCACGTCTCTTTTTCTCGTCACCCTTATCATCCTCGATACAAGGAACCCAAGAAC
- 7801 GGAGCAGGAAGCACTATGGGCGCAGTGTCATTGACGCTGACGGTACAGGCCAGACAA
 CCTCGTCGTCCTTCGTGATACCCGCGTCACAGTAACTGCGACTGCCATGTCCGGTCTGTT
- 7861 LeuLeuSerGlyIleValGlnGlnGlnAsnAsnLeuLeuArgAlaIleGluAlaGlnGln
 TTATTGTCTGGTATAGTGCAACAGCAGCAGCAACAA
 AATAACAGACCATATCACGTTGTCGTCTTGTTAAACGACTCCCGATAACTCCGCGTTGTT
- 7921 HISLEULEUGINLEUTHTVAITTPGIYIIELYSGINLEUGINAIAATGVAILEUAIAVAI
 CATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAGTCCTGGCTGTG
 GTAGACAACGTTGAGTGTCAGACCCCGTAGTTCGTCGAGGTCCGTTCTCAGGACCGACAC
- 7981 GIUATGTYTLBUATGASPGINGINLBULEUGIYIIBTTPGIYCYSSETGIYLYSLBUILB GAAAGATACCTAAGGGATCAACAGCTCCTAGGGATTTGGGGTTGCTCTGGAAAACTCATT CTTTCTATGGATTCCCTAGTTGTCGAGGATCCCTAAACCCCAACGAGACCTTTTGAGTAA 7989 BStII, 7995 bini, 8007 avr2,
- CysThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluAspIleTrp
 TGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAAGACATTTGG
 ACGTGGTGACGACACGGAACCTTACGATCAACCTCATTATTTAGAGACCTTCTGTAAACC
 8089 mbo11,
- ThreuleuGluGerGlnAsnGlnGlnGluLysAsnGluGlnGluLeuLeuGluLeu
 ACCTTACTTGAAGAATCGCAGAACCAACAAGAAAAGAATGAACAAGAATTATTAGAATTG
 TGGAATGAACTTCTTAGCGTCTTGGTTGTTCTTACTTGTTCTTAATAATCTTAAC
 8170 mbo11,
- ASPLYSTIPALESELEUTIPASHTIPPHESEILETHIASHTIPLEUTIPTYILELYS
 GATAAGTGGGCAAGTTTGTGGAATTGGTTTAGCATAACAAACTGGCTGTGGTATATAAAG
 CTATTCACCCGTTCAAACACCTTAACCAAATCGTATTGTTTGACCGACACCATATATTTC
- B281 IlePheIleMetIleValGlyGlyLeuValGlyLeuArgIleValPheAlaValLeuSer TATAAGTATACTATCATCCTCCGAACCATCCAAATTCTTATCAAAAACGACACGAAAACGACACGAAACGACACGAAAACGACACGAAAACGACACGAAAACGACACGAAAACGACACGAAAACGACACGAAAACGACACGAAAACGACACGA
- 8341 IlevalasmarqvalarqginglytyrserProLeuSerPheGlmThrarqLeuProVal ATAGTGAATAGAGTTAGGCAGGGATACTCACCATTGTCATTTCAGACCCGCCTCCCAGTC TATCACTTATCTCAATCCGTCCCTATGAGTGGTAACAGTAAAGTCTGGGCGGAGGGTCAG 8400 aval,
- ArgservalargleuvalaspflyPheleualaleuIleTrpfluaspleuargSerleu AGATCCGTTCGATTAGTGGATGGATTCTTAGCACTTATCTGGGAAGATCTGCGGAGCCTG TCTAGGCAAGCTAATCACCTACCTAAGAATCGTGAATAGACCCTTCTAGACGCCTCGGAC 8503 mbo11, 8505 bg111,
- CysleuPheserTyrArgArgLeuArgAspleuLeuleuIleAlaAlaArgThrValGlu
 TGCCTCTTCAGCTACCGCCGCTTGAGAGACTTACTCTTGATTGCAGCGAGGACTGTGGAA
 ACGGAGAAGTCGATGGCGGCGAACTCTCTGAATGAGAACTAACGTCGCTCCTGACACCTT
 8525 mbo11,

Figure 4 Page 10 of 12

- BS81 IleLeuGlyHisArgGlyTrpG._AlaLeuLysTyrTrpTrpSerLeuLeuG.nTyrTrp
 ATTCTGGGGCACAGGGGGTGGGAAGCCCTCAAATATTGGTGGAGTCTCCTGCAGTATTGG
 TAAGACCCCGTGTCCCCCACCCTTCGGGAGTTTATAACCACCTCAGAGGACGTCATAACC
 8629 pst1,
- IleGingluLeuLysAsnSerAlaValSerTrpLeuAsnAlaThrAlaIleAlaValThr
 B641 ATTCAGGAACTAAAGAATAGTGCTGTTAGCTGGCTCAACGCCACAGCTATAGCAGTAACT
 TAAGTCCTTGATTCCTTATCACGACAATCGACCGAGTTGCGGTGTCGATATCGTCATTGA
- 61uGlyThrAspArqVallleGluValAlaGlnArqAlaTyrArqAlaIleLeuHislle 6AGGGGACAGATAGGGTTATAGAAGTAGCACAAAGAGCTTATAGAGCTATTCTCCACATA CTCCCCTGTCTATCCCAATATCTTCATCGTGTTTCTCGAATATCTCGATAAGAGGTGTAT
- HisargargileargGinGlyLeuGluargLeuLeuOC MetGlyGlyLysTrpSer CATAGAAGAATTAGACAGGGCTTGGAAAGGCTTTTGCTATAAGATGGGTGGCAAGTGGTCA GTATCTTCTTAATCTGTCCCGAACCTTTCCGAAAACGATATTCTACCCACCGTTCACCAGT 8765 mbo11,
- AlaGluproAlaAlaAspGlyValGlyAlaValSerArgAspLeuGluLysHisGlyAla
 GCTGAGCCAGCAGCAGATGGGGTGGGAGCAGTATCTCGAGACCTGGAAAAACATGGAGCA
 CGACTCGGTCGTCGTCTACCCCACCCTCGTCATAGAGCTCTGGACCTTTTTGTACCTCGT
 8883 tthIII1, 8916 avai xhoi,
- IleThrSerSerAsnThrAlaAlaThrAsnAlaAspCysAlaTrpLeuGluAlaGln
 - F1002 61uGluVal61yPheProValArgPro61nValProLeuArgProMetThrTyrLys
 GAGGAAGAGGTGGGTTTTCCAGTCAGACCTCAGGTACCTTTAAGACCAATGACTTACAAG
 CTCCTTCTCCACCCAAAAGGTCAGTCTGGAGTCCATGGAAATTCTGGTTACTGAATGTTC

 9005 mbo11, 9029 mstII, 9034 kpn1,

- TreadpheaseserlysleualapheHisHisHetalaargGluleuHisProGluTyr
 TGGAGGTTTGACAGCAAACTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGAGTAC
 ACCTCCAAACTGTCGTTTGATCGTAAAGTAGTGTACCGGGGCTCTCGACGTAGGCCTCATG
 9399 ava1, 9417 sca1,
- 9422 TACAAAGACTGCTGACATCGAGCTTTCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGATGTTTCTGACAAGGTCCCTGAAAGGTCCCTGAAAGGTCCC

Figure 4
Page 11 of 12

7542 CTTTTTECCTETACTEGGTCTC' - GETTAGACCAGATCTEAGCCTGEGAEC. TCTEGC GAAAAACGGACATGACCCAGAGAGACCAATCTEGTCTAGACTCGGACCCTCGAGAGACCG

Figure 4 Page 12 of 12

. \$

9602 9620 af111, 9634 hind111,

9662 TETECCCETCTETTETETEACTCTEGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGACACGGGCAGACAACACACTGAGACCATTGATCTCTAGGGAGTCTGGGAAAATCAGTCAC 9722

TEGAAAAATCTCTAGCAG ACCTTTTTAGAGATCGTC

1228

1348

1108

986

699

1468

1588

3

ç

2

368

389 508 628

-453 -333 -214

CTU ACCITITO DA TOCTICA MOCTA OTRICO CONTROLO CA GARA MOSTA DA MOSTA CANTO ANGORA CA ACACATO TITA CANTO CONTROLO CANTO A CANTO A CANTO CONTROLO CANTO A CANTO CANTO A CANTO CANTO A CANTO CANTO CANTO A CANTO CANTO CANTO A CANTO CA U3 — Ctodaagooctaatttootoccaaagaagacaagagatocttgatotogaatotaccacacacaaggotacttocctgattggcagaattacacgaggcaggatcagatatoca

Therlaptoptogluglusarphaktgohaglyglugludysthetheptosaetglnlysglugluglughysglulandyfptolauthesaelauktgsaelauphaglyra Atrococcaocaotaglulaugluvaltyglyglyglubankansaetlausaetgluklaglyklarsplyglnglythevalsaetharphaptoglnilathelautyglu Atrococcaocaotaanaaraetecaogtetosocaagaarancaactecetetearaetagaacaatagaetagaatagatatheetetraaeteteagaetetetet 1708

AspProSerSerG1nOC

ang projekte i engijedijujuju dieniyagi ualalenisptikoj yalarapasptikval lengi udi metarilenprodiylystiplyap polyametila. 103 Orocotootorantaagan mogagoolaactaan gaarata paratara paratara paratara kalarakan torakaan kalarakan kalaraka da iniieptovaidiuiiecysolyhisiysalaiiediythivalleuvaidiyptothiptovalashileileciyakg 143 agatacctotagaatototogacataaagctataggtacagtatagtagacctacacctotoacataattogaagaa olyglylleglyglyphellelysvelatgolmfy ggggaattggaggttttatcaaagtaagacagta 1948 1628

0 -1

Lollythediyiystylaligigdiylishististabababyaliysginloltheginlayaiginlysysissetheginssetiovaliistepgiylysiispedys Tolankrogannothtochnoshtonoggtocckcktartortaancagttarcagaggragtocabaargtattccagaaggatagtagtagtagggaargattcctaa

ilelediyedibirtehiniedivreiyityirseptoseityersetegisevelileginiyedindiydindiydirtytoiniletyidindupirpehelyere 503 Tictrakaranceathirtatanatatatatanccatcarakaratactarakaracarakararararacaraccaatgaratatatakarakaracattirakantic

gibil**atytalegiyiletystilyeginlevicyelyelsevlevatgolythely**ealelevitholuvalileptolevitholugivaleugivlevalagivlevit Natittatockoogattaangchottattataanctocttagaganccaargcactaacagaagtaatacactaacagaagaagaggaggingaactogcagaaaacagga

ttmetalytytolukaulisptomspiystytmysiainprolismetlouprolulysrspssytytmysinshilsalniyslouvalalytysloursmyspalsse Ganggattmaartechtottammanggaraarctatambetgecarraargarketssytytemigkemirkararaksitytemissaarattarartesselaatto

laud kodindiytepiyadiybarfkonlailefhadinbarbarthethetiyailelaudiud koğhanydiyadinnan Promingili ilety kolintykat Asparfartyr 143 Tocchonggartgarangancenochatattochangtagcatanchanantottrarachtarananchangarthothattattattattatattatatatatatata

2548

2428

2668

2788

2908

3028

3148

3268

3388

Assignianthidisisediyoysthilanashaphapideserprossediythiyasprossyspeediyaprossystadysvasiyasirtpprosaythidiu 183 2068 - Attivituaritoanttoottivitaaattivooccattaotoottattoaaactofaccastaaattaaaaccaootaaaaattaaaaattaaaattaacaaa

giulybilbiyarlbiauvalgiuliacyathtgiumbigiulybgiuglylybilasetlybiogiuhanptotytrbathtptovaiphealbilalybiybrapsat Anamatramacattrotagrgatatotromantogranaggaranatttomamittggocctgarattcatacatrotocastatttgctatargaranagaragta

2188 2308

thelystepatgiyslowyslaspysluloubsniyysatytheginaspypotivaiginlougiyilspychispyralygulyslyslyslysssevaitheys 163 Ctrantogrgamaactrotrogrgaacttaataaagactcaagacttegggaagtteggtrogatrogacacaceccocagggtaaaaaaaaaaaaaacacaataaaga lenasykajojyaspajetyfyrskege tyajprojenasykasykykyytytatajsphetatakijspiose ijsarakangjuthykoojyijsakytytojityk Togatotogotontocatactiticagitoccttagataagaktyttagaaagtatactocatitaccatactagataaacaatgagacaccaggattagatatcagacaa yaldıyberamınındalıdınının ariymilyeli ediudililenkiydirki elenlenkiytipdiydhetkitrir proketyeti edirliyedir profiophelen 183 Trogrictorcitraaningoocrackingircananana rogractorak cacitcittorogrocortitric cacacaranancıtorgana arkolitetiti

ppelybleuprollegleigtsplunlettspiunlettspiunystipglenletheliepiogluttspiuppevalrestiktspoprolenyallybleuttspysdi Tyranctricciatananggarcytoggracytogatogatotattsgcaactroctsgrittstsgrafitststratscicttrotsaanttriggiacytet

giydiyiləgiytiyetberliəgiydinlegiləvəlrəfilətlərləthrabiləgirthiyaginlərginiyaginiləthliyətləginrəhərlyyəliyityrlug Gocggattgocogatklagtgorogggangantrotroktartrackacktrokartrokargkorakargoraktrokarattokarattttoggottirtikorgg abpabliybapptolenttylyedlyptoalblyblententtylybolygluglyblyblyblibolirbpabrensefabpliblybyblyblybrygatglybalblyb Klacaragatccctttydaragglocacaragcttctcgraaggggaaggggagtaatacargataratagggatataraggagtagtggcgaggaagaaagaatatta provallywthrilekietherapardlyberrappetheserthrthryllysalaalacystrptrpladlyllelysgingluphedlylleprotyrrapprodinserdin 863 Cagtalararacatrcatrcagacantogcaathctrccagthargeccocctstrgggggggggggggaaggaattrgggattecctacaateccaaratearg giyyaivaigiusethelarnargiulaulysiysiisiisgiyginyaiatgaspgiraisgiuhisleulysthtairvairhetaisvaipheiiehisasrphelysatyiya 903 Gagtataraatatatgaatantaaraataatataragacaggaaraggataggctgaacagcttaagacaggagaaataatggcagtattcatgcaaatttfaaaagaaa giudiyiysilətlələriyalalavalalasərdiyiytiləgiualagiuvaliləproalagliytirgiygingiytirilətyrphələliyaləriyaləriləg Anggaaratatectogtactatiytatotraccastosatatatasangcasanstattecassasasasassassasasasasatattatatatasangangasassas ilealeaeptattareeginiyetatojuleuginaleilehisleunisleuginaesettiyleugiuvaiasotisvaitatasegsetgitytaleleugiyileileginala 663 Fagttarcacarcaatcagaattatotattattattatotaggittgcagatttgcagatttgcagaattagaagtaatagtaacagactcacaatatocattaggaatca asplyslavysisatalsolshydishysvallaudhslaudsholyiishspiysalsoluoluhisolulystythisselastrolokysalsmetalsselaspers 1748 - Atramtrotocotoolatonogalaotetattittoaatogaatagaataacoocaagaacaacatogaaaatatogaagaagaatoocaatogatattaacooc proprovelyelaletyeglullevelalegergyeargiglelewlygglyglunlehethigglyglinvelaspcysserproglylletyglinlewaspcysthrhisleu 783 Cacctotagtagtagtaaratagtagtagttaattagttagttaaaaggagaaggestggacaagtagactgagtgagtgagtagtagtagtagtagttgtagatttag laigiulyagiutroiiayaigiyaiagiutatyataiaaggiyaiaalaabaatggiutatyalaugiylyaaiagiytykvaitatagatyggiyatggiblyayaisae 623 Taramamanoocatratagaracamanottictatotagagacactaataggacactaatagaaaagagastatgotagagagagagagaaagatgotoca gibprompiyasargiusergiulenvaisergidiieliegiugidieulielyskalulysvaityrleualattpvaipromiahisysgiyliegiygiyargiuginval 703 Ancchgatamotromattykotromotramatamogggagtamatamamaggaanaggictagggatgggaggggggggggggaggalagamattgggggangangtag atgasptytolydygisdimellisgiyaspaspcysvalalasgenetgginaspam Geonttatoganacagantgatgattgattgatggcaagtagacaggatgaggattagaacatggaanagtttagtaaaacaggatatgtatattgaaagaaaggtaaag

3988

3868

3628

3508

FIGURE

4468

4348

4228

4108

4588

of

山スフ

ypolythkygagantyrolihiselanttparyttpolythklouloudaudaudahetiologasoralathkolulyslouttyvalthkyaltyrolyvalproyal Aagogaeeroorgaantateroeretyotogagatogogeaetteeteettogatottogagatettototagagataetakaaaattotogoteaeattattatogaataeetoto

Helly system or the process of the contraction of t

coacoaranceteckoakenterakeanetetetetetetangeaotagaastastaateataataateantettakeaatattageatagtataataatagaata

<u>ttaadargaractottaarckttttoctargactettagactetagaearaatatatetatgaaattatggggatettggggaggergagtggaagccataatåagaatetggaag</u>

aactoctotttattcatttcaaattooototcaacatrocagatrocchtattcaacagrogecaagaggeggeggeggeggtaatctaatctaaggegetogaageateca <u>ogaanteacctrogactottataacaattoctattotaaaaatottcctt</u>tcattoctaccctottttcacaagaaaagocttagocatctcctatogcagaagaagagacag

oct rtaaaaatoccatattroortattagtectagtgtaatattearcrogropeatataaea ncardocencetitocetratatragaractgacagagagtagaacaagceceagagaccagaggecencagggecencagaggagecatagatgaatggacaetagagag

<u>ttttining mentemetriktgaangtrepenangtangttengaattengaateeceeetagogatoetaattootaattatatapeetteekteengaaaaaaaaa</u>

100

918 5068 5166 5308 5428 <u>Itplyadiuliethtththauthactalaegalaealachtagaiatythapthtdiuvaihiabanvaittpaiaththiablachachtagtroththapptonanptodiudiuvai 83</u> Toganagangcanctagcttattttgtgcatcagatoctagagcatätgatacagagataataggestattoggscacacacaggescancagacccangaagta

8069

8038

6140

6369

6368

6628

5508

6748

603 ilethicinalecyatelystalbeitheollepiollehistyicysthip roalaciyphealalieleulyscyaasnaysthipheanglylysciythic cys Kitacacaccotocaaaagaatcaittigaccaattoccaatacattaitgiacocccccoctistyccaattoraaaataaaaaacsticaatggaaaagaacattaka ampalbetiktalgingystikhiggiyileatgptoilevalbetiktginleuleuleuangiysetleualagiugiugiutaileatgsekapaaphetikaraan Attotoagoroatkoatataroartitggocaatagtoroakotoaktoottaattgoorgetagoargaagaagtaattagatotgacaatttokoaacaat iigiigijaapiigarylybalghagysabiiigserargalgointepababantaleugiuginiigvbiiyblybeleurggiuginphegiyaanbellyfitigvbipm 363 Ataatroorgatataagaanaangacattagtaacattagtaggaataacactttagaacagataataaaaattaagaacagttgggaataataaaacaattagtett aboliserserolyolyapprodullayalmethisserphembosaryolyolubhephetyrcyaabithribibleubhemsemmitytparyleumenhisethrol Arcantoctoagagagacoomaanttotantockompitithatigtagagagaattittotactgtaatacaacacactottaataatacatgagasttaateacagaa 563 lancysvalthilaudancysthilaplaudlylysalathirabhessalasittelysöluölullalysölyölullalysasncyssafpaashilathithissill Cictototteltaaattocactorittogogaaggctactaataccaatagtagtaattogaaagaaaataaaaggaaataaaaaggctctticaatatcacaaggata argasilsilotinistikanilalangkanlangsilangsilangsilangsilangsarthathakantyaharatyanglanilahiscyssankaserai 203 Magataagatacaaaagacantittodaacattongsilangtangtangtangtangtangtangtangkangtancaactanggatangtangtangkangkat 203 berge il etiloj kaulautergrepoj yoj ytergenye itergenye in den samuen eta samuen samuen samuen samuen samuen s Perreposator in samuen sam laulaudi nlauthiyai titoly ilalyadinlaudinala aryvallaudi ayaldi uaryty flaudakapolindi nlaulaudiyi lattydiycys Ctottocaacterrogoocaterarocacetechoocarokteetooctotooanaan actaracoartearen actaracoatti oogatisetetooaaaa act thether) evalpeoterabablabbetabberband umbpli eterbarbarethetheterberderegebarggeuterbarathetrenthet i etyethe Accactoctotocctogganoctagtiggagtartargaratectoggargacattoggatarctoggatgactoggagggargggarattgagarttrckgargacattarckg ojythetygojyandaptileijelendvocygaltyjelygojnijejjagoteneetteojnojuvajojytaalametytalaptoptojjeojyojojajojasetysset Oganctaangaantaachochtotentataancaattataancaattataancatogocaggaagtaggaaaggaatgentoccotocoattogaggacaaattagtich

FIGURE 3 of

7469

7348

108

7599

1708

7828

7948

8908

TAACHAGGANCCCHCTTANGCCTCLAKTAAGGCTTGCCTTGAGTGCTTCA AGTAGTGTGTGCCCGTCTGTTGTGTGACTCGGTAACTAGAGATCCCTCAGACCTTTTAGTCAGT

OTGGAMAAATCTCTAGCAG

9027 9146

ologiuleulybarsetalaybileatitpleuksaalathkalailealaybithtoluolythkaspakyybiileoluvaialagaalatykasyalaileleudig Caggaactaargaathatoctocttagcocccacacctatagcastaactoaggascagatagggtataagaagascacaagagcttataggggtattctccacatagt Laupasatyratgarglauligasjaulauteutlalaalaatgilitalgiutlelaugiyilaaligiytegiualalaulystytetitegialauguntyetetis Cicticastacsecectigagastircictisaitseassaassististasaaaticisssessessaassessaassesteaaatatississessestessaittis laulaudiudiuserdinaendindiulyskendiudindiulaulaudiulauhepiysttpaleseritparettparettpapaseriiethearttpiauttyriielyeiie 683 Ttacttoaadaatccadaaccaacaagaangaatgaacaagaattattagaattattogataagttogggaagttogggattagcataacaagtoggtotogtatataagata ODANDADOPICIONITITICENOTICINA INCCITITANO INCCINITA INCINICA DE CONTITA DE CONTITA DE CONTITA DE CONTITA DE CONTITA DE CONTITA DE CONTIDE DE CO QAAQOTITICAKAACAAKTITCATCACATOGOCCGAQAGCTGCATCCGGAGTACTACAAAGACTGCGGACTITICTACAAGGACTITICCGCTGGGACTITICCAGGAC argairgiirgiylərgiralalargləriləride Agaagattrorcagggettogaaaggettitegetataagatgggeaagtggeaaancetaetatatoggegatggtegtettataaggaaagaaagaggggggggeegg TOROCCIOCIOCIO INTOGO TO CONTINE CONTO CONTO CINO DA ANCINGO ACANTACA ANTINCA CACA CONTINE CONTO CONTO CONTO A I 1 — II 1 — II tca*nathathceagttanacchanaghadttannaanac*chatghagaranchachachachcecttstathacctecatggghtgargacgagaranahanahathatat

918

8426

8308

1999 8787 8907

9246

FIGURE 5 4 of 4

F16._6.

EcoRL

p 54-7c/70

-> 🕏

en esta 🕮 est

Figure 7

CONFIDENCIA

FIG. 8

	אנפ שנפ שנפ שנפ שנפ שנפ שנפ שנפ שנפ שנפ ש	
748	GINASALOUGINGIJEINMEVAIMIEGINAIGIJOSOFPFOAFGTHLOUANAIGTFPVAILJEVAIVAIGIUGIUGIAPHOSOFPFOGIUVAIIIOPFOMELPHOSOFAIALOU 181 8 cagaate igeaggegaaatgateateaggegatateaettagatttaaatgeatgagaaagaa	=
89	SOF GIUGIPAISTREPEGINASPLOVASHTRERLOVASHTREVAIGIFGIFGIFHISGINAISHARGINMOLLOVLYSGIUTRETIOASHGIWGIWAISAISGIUTEPASPAFFE 221 B teagaaggegeeceecearaagatttaarcaccatgetaarcacagggggggacatcaaggacaatgitaaagagactatcaatgaggagetgecaaatgggataaag	.
884	MISPLOYOIMISAIOGIPPLOIIGAIOPLOGIGIMPETALGIUPLOALGGIJSELASPIIGAIOGIJINLINLSOLINLIUGINGIUGIA IIOGIJILPNOLINLASAALADLO 261 Catclagiglaiglagggcetatiglaclaggccaatgagagaagggaagtgalascaggaaltaclagaaggaagaagaagaagaagaagaagaagaagaagaag	5
1108	IIOPTOVAIGIYGIUIIOIYTLYSARGITPIIOIIOLOUGIYLOUASALYAIIOVAIARGMELTYRSOFPROTARSOFIIOLOUASPIIOARGSIAGIYPPOLYSGIUPTOPHOARGAS B atcccagtaggagaatctataaaagatggataatcctgggattaaataaa	
1228	Tyrvolaspargpholyrlysthrlowargaloglughalosorghaspyollysasmirphetthrgluthrusulowyolghasmaloasmproasptyslysthriloloulys 341 9 tatgtagaccogtictataaaactctaagaccgaacaacatcaagastgtaaaaattggatgacagaaccitgtiggiccaaatgcaaaccagattgtaagactatttaaaa	=
1340		•
		COKF
•		ide Ide
		k .!

Ø						_		_										۵		
	Serticipalitherediaasteranthereteeratheridigirinistaliritettisteleetystiterediatalistiteteerediatalististergis 868 Kababgadeeteeteerabattareetaaataetaataeteeteeteetaataetaatettaaarabattateataabateeteeasteerataata	Risprotoimisalagippeolisaloprosipgiamoid-peluprod-geipisarosipilatisipihethysorihelugiselogipipmetihrassandsopropo 261 Pod Caiccaeigcaigcaegeccialigcaccaaatagagagaaccaaccaacigacaagagaactactagaacccaticaggaacaaaagaatagaagaataataatc	IIOProtoisiysiuloirijudestpiloilotousiytoudutjiilotoikigustroroikiyetiloodugilookuginsiyrelyssiuprobbadaan 1981 IIOB Aleeeastastastaatastastaateestaataataataaata	Tyrothigialighetyitilitadistalidistalidestalahipianipistyilingi inclisticalahibalahibang palythilolouli 301 1828 - Interaccogiicininanaticinanadeccancancalicalabananicalakakanacciitiiteicanatecnantecnalibinabaciniitinan	# # # # # # # # # # # # # # # # # # #	110 motbeitlatgelpingkatrgianelairgijilkriölljitjikkainelitjiljilitlitilialaijiaktatrgikantatatataungipelpepipene 1988 ataateraksaseseaatittassaarceaagaaarestiaksistiteaatisiseeaaagaseserataseeaaaatiseasseeeeeegistissasa	Cysdlydrgdiwdlyniadingoltysdaptyslardiwdrgdiadladardoudlytysllotrprosertyrlyddynddynaabbaloudlabardrgfradiwda Paethafiadaetaccadagaaagatigcactgagaaagatigcagagacagacadactgaladagaaattcaccacaagaccagaaattsicticagaagaagaccagaaccagaaagattsicticagaagaacca	Thratsfrediudiuserphedryphedipdiusiyitrikreserdiatupseladiusiyasiyesiyesiyesiyerdiusprateutuseserledagserleophediyas del Anssepredikratagiuloudiupdiydiyanaanasinserleopordiusiyaiaapargdimdiyikrediserbaanbabredialidikreutybele 63 Arasecececaecaececticagiiigggaesaecaaacaalicecicicaeaacecegeaceceatagacaagaacigiaiceiiaaciicecteaateciiiisecae	dopfrosoriordinoc Arpprocovojihritoarpijocipgipgialoripecialistorio-Aspibrolydiadopibrotiouciociometacatoriocprociptysprolydmotilo 1828 – Akceeteseakaataackalaececekeaktaakseaketetattacataekaekaetaataataaateaattachatigeaakteaaaataaataata	OTYCTTIOCTYCTYPHOITOLYTVOIA-GOIMTYFAUGGINIOPPOVOTOICTOCTUCTUCTURANICITATATIOCTYPHONIOCTOCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUC	Asal-eleatressisciptystateteessaapapesisserpesisesesissississaatississaatisstaatissespesissistyssistyppississa Pood attistisstitestississistatiisaattieteetassettestestaattaatstaats	SIULYTIOLYTAIOLOVOISTUINELYTYNEIDWOISIULYISIUSIYTIIOSOKLYIIOSTYPOININPYOTYTAINTHYPYOTOTOONIOTIOLYTYTYIOPSEN 128 Eise aaaaataaageattastasagatatstaegaaaatseaaaageaaaatteegaaaatteegeesaaatteegeaaaateeteegaataagaaaaaaaagaesta	Theignfrakgisicoutabapheatgetoloutanigaatgineenaisphetroloutaceigieopromisprealesigioutalgalgalgusscroiterei 109 1988 - Ciaatesbaaaciasiasaiticabasaaciiaataaanasaaciicassaasiicastassaaiaccaccececestaaaaabaahaaaaacsaiacasiat	Loudiptillipdiptiptebasorvalptoloudoptpanopbadegtpitptbrathelippetosorteminatoptoblyticatyficatyficatoptatopts 1928 iscatetscalcataltiticaticcettmanamaacittmanamatatececatitaccatactanamanamancanomamacacacacassatunaminatat	Loubrodindipfrohjudipjeroraniojiophadinjeroranithriprijolondiuprophadrytjudindinprodipjiotijiojyrdimpyrotapdisteroranionije jod Biod ieccafagesaigeanagsaicaccacamiaticcanagiaccaibacananictiagagectijioganakaganickacatamiatistaicaniathanionak	Volbiysoraigloubisindigismidatgibriytilobisctolourgelaminloulourgatybolbribrprodoplythumisblytbibppppppppploulo BBBB idecatcibactidadaataecacacaaaaaaaaaaaaaaaaaacaccibaccicolibacoicocatitaccacaccaaaaaaacatcabaaaaaacciccaticciit	Tramestiffreiuleomietraagigstrathrobeintreilomeileotrasialysaspertrainenapiosialyslootaipteunaitraisser 423 2798 — Gemissestimisaaciccasiamantsaarssacasiacasceriamaiscisceraananskasciscacisicaniacasaastiasissenantisantissactasie	Giniiofyraiodiyiiolysvollyddialoufyslyslouloungdiyhrlysalaloothrdiiopriioproloothrdiodlastadloudiudoungdio 463 1996 — agaiitaigegaggasiaaaggaaaggastiatgiaaagiecitagaggaaggaaaggagaaggaaaggagaaggaaagga		Loulpitheliptpripratiatephiatianistheasaspreitheliatheatacis and interview of the control of the
~	•	•	Ξ	~	2	Ξ	Ē	Ē	=	=	=	Ξ	2	=	=	=	=	=	=	Ξ

ARV GAG p16 - synthetic Parts A and B

Figure 10

- ArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGlyLysIle AGAGAAGGTCACCAAATGAAGGACTGTACCGAAAGACAAGCTAACTTCTTGGGTAAGATC TCTCTTCCAGTGGTTTACTTCCTGACATGGCTTTCTGTTCGATTGAAGAACCCATTCTAG 129 bstE2, 131 hph, 148 rsaI, 161 alu1, 178 bgl11 xho2, 179 sau3a,

- ProlleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsnAspPro CCAATCGACAAGGAATTGTACCCATTGACCTCTTTGAGATCCTTGTTCGGTAACGATCCC GGTTAGCTGTTCCTTAACATGGGTAACTGGAGAAACTCTAGGAACAAGCCATTGCTAGGG 307 taq1, 320 rsal, 331 mnl1, 339 xho2, 340 sau3a, 357 sau3a
- SerserGlnOP AM
 TCGAGCCAATGATAG
 AGCTCGGTTACTATCAGCT
 363 taq1, 377 acc1 hind11 sal1

= = LeuCysbelThrleudsnCysThraspleuGlyLysdleThrasnThrasnSerSerasnTrpLysGluGlulleLysGlyGlulleLysAsnCysSerPheAsnIleThrThrSerlle 171 Cicigigitacitiaaatigcactgattiggggaaggctaataataccaatagtagtagtiggaaagaagaagaagagagagaaataaaaaggcicitigaatatcaccacaaggata Argaiptysfleginlysglwarmiolouphoargainlouaspyolvolloaspasnaloserthrthrasmlyrthrasmlyrargloullomiscysarnargsorvol Agagaiaagaticagaaagaaaatgcactitttcgiaacctigaigtaccaatacataatgctactactactaccaactatacgataggigullomiscysaaraagatc llellegiyaspilearglysalemiscysasmileserargaiscintrpasmasmintleuginilevailyslyslewarggiuginphegiyasmasmlysihrilevaiphe 371 Ataataggagatataagaaagcacattgtaacattagaagcacaatggaataacactttagaacagntagaaaaattaagagaatagttgggaataatagagagtgttt 2 AsnVelserThrVelbinCysThrMisclyIleargrieIleVelserThrCinLeuleuleuasnblySerleualecleualecheslubiusIVellieArgserAsg Aatgicagcacagtacaatgtacacatgggattagggcaatagtgtgattaactggtgttaaatggcagtgtagcagaagaggtaattagatggaatttcacgaacaat 5 Ξ Velloubijanveithfeluasnpreanmettplysanasnretvoibiubigiubigespiopiesiesetloutpaspoimsolloutyspiolysvollyslouthf Gtattoscaaatotgaaaatttaacatotgaaaaataacatgetagaacagatgaaggaggatataatcagttatgggatgaagcctaagccatgtgtaaattaaccca Asneinserserstystyaspprestuttevalmermisserpheasncysargetystuppeppetyrcysasnthrthrethrempearanthrtrpargleubsmuss Aatcaatcetcassassesccassaattetaatscacaetttvaattetasassessaattittetactstaatacaactetttaataataatssassetaaatcacactsa giythelysgiyasrasptette ii oloupeopsafgii olysgirii oli oashmettipgi ngi utoi giysaloholtali opengijosi yelygi Ggarctaa ggaatgacacaatcatactcccatgia gaataa acaattataa acag ggagga ggaagtaga agagga agatagccctcccattga gaagtag Seraemileinteuteuthratgaspelyelythranvelthrandspihrelevelpheargpreelyelyasphelargaspasnirpargsereluleutyrlys Icaantatacaeeetiectatiaacaagastesteetaantetaactaateacaeeeeetticaeaeetegageagaagaagaagaaastaaaagteaattatahaa met Serarelleaspeys Seralethrelulysloutrpyelthryeltyrelyyetprevel atbitetada alcoal gtagtectacagaaaatteteegicacagittattategagtacetote PYK Terminator PYK Promoter Tyrlysvelitelysliediupreass Servel Ser Tataagtaataaaattgaccaaattgggtatct 1ga.

1065

6029

6148

8929

6388

6508

£7.18

9299

8989

8969

7106

1

Ш

; (

7226

-1G. *1*

	areielyteeirpvol Acagaaaattgigggic
Mar Caracal Jahran	ATBICTAGA ATC GAT GIACIGCIACAGAAAATTGIGGGICACA
	PYK Promoter

C Promoter Argicraparic de faracectacadada attende activative su	Trplysblualethrthrteupheckealesgraepaleargaletyraspincbluvelkisasnveltrpalethrhisalecysvelprethraeppreaserblebluvel gl Tegaargaagcaactaccactctatittbecatcabaagcatatgatatgatacabaggtacataatgittgggccaccatagctcaccacacacccacacccacagagia	Velleubly AsnVellhr GludsnPhe AsnNet Trplys AsnAsnNet Vels Edin Gludia Aspile Ile Serieu Truben Gloserieu in Profesiune in Inches
PYK Promoter	Trplysgiwai ethrthrtowphecysal esoraspai eargal ety Tegaargaaggaagtaggagggattttgtggatggatggtagaggata	Vollous I ydsavol Threi udsaphedsamet Trpl ysdsadsame t y o

1005

TAACATGTEEAAAAATAACATEETAGAACAGATGCAGGGGTATAATCAGTTTATGGGATCAAAGCCTAAAGCCATGTGTAAAATTAACCCCA	LeudiytysaiothrasnthrasnSerasnTrpLysGiusiesjagiyGiysielysasnCysSerPheasnIiethrthrSerite 171 FigGGGAAGGCTACTAATACCAATAGTAGTAATTGGAAGAAGAATAAAGGAGAAATAAAAAGCTGCTGTTTGATATGACGCAGGCATA
	LewCysVelThrLewAsmCysThrAsplewGlyLysAleThrAsmThrAsmSerSerAsmTrp
O28	148 CTCIGIGITACTITAAATIGCACTGATTIGGGAAGGCIACTAATACCAATAGTAGTAGTAGTAGT

ilethreinalecystrelystelserthegluprelleprellemistyrcysthrprealaclythealelleulyscysasnasnlysthrpheasnelylyselyprecysthr 281 6368 attacacacacctgiccaaaggiaicaittcagccaattacattaitgiacccccccccc	ASOVOISETTHTVEIGINCYSTHTMISGIYIIOATGYTOIIEVOISETHTGINLEULEUASOGIYSETLEUAIOGIUGIUGIUGIUTOITOATGSETASPASOPHETHTASOAIN 291 6508 — AATGICAGCACAGTACAATGAACATGGAATTAGGCCAATAGTGTCAACTGATTAATGGCAGCTAGAAGAAGGTAGTAATTAGATGTGACAATTTCAGGAAGAAT
6368	6508
, -	•

	33
6508 AATGICAGCACAGTACAATGAATTAGAATTAGACCAATAGIGTCAACTGATTAATGAATGAGAGAAGAAGAAGAAGAAGTAATTAGATTTGACGAACAATTTAGAATTTAGAAATTTAATTTAGAACAACAA	Alelysthrileilevelsnatussatuservelaleileasnaysthrafyreasnasnasnatuselysserileäyrregiyargiehemisthrihraiyary 331 6628 – Bataaaccataatagtacagagaatgaatagagaattaactgtacaacaacaatacaagaaagtacaagatatagagagag
	=

ysainilosorargalogintrpainainthrlougiuginilovollyslouarggiuginphoglyainainlysthrilovolpho 371	levelmetmisserpheasncysargslyslyphophetyrcysasnihrihrsinleupheasnasnihritpargleuasnmigihrsiu 411
Gtaacattagtagagcacaatggaataacactttagaacagataagagaattaagagaacagtttgggaataataaagagtgttt	Tistaatscacastittaattstasassesaattittstaststaatacaacaaststitaataatassessitaatsakstsassessia
IIeilegiyaspilearglysalemiscysasmileserargalecintrpasmasmihrteesi	Asmbinsofsofstybiyaspproblusiovelmetmissofpmentejacjeppiuppmotyrbysanthrihrbinloupheasmasnthriparylouasmmisthrbiu 411
6748 ataatagaatataagaaaagcacattgtaacattagtagagcacaatggaatacacttagg	6868 — aatcaatcetabbacecabaaattetaatecacabttttaattetabbegebaatttttetactetaataacaactetttaataatalbegebegeteaa
674	7989

euprocysargiiolysginiiolioasnmettrpcinciuvoiciylysaiometyraiopropiogiyciyginiiosorcyssor 451 Icccatgtagaataaaacaaattataaacatgtgggaggaagtaggaaagaaggaatgtatgcccctcccattggaggagaaattagttgttca	Serasnijethebiyleuleuthrargaspelybiylaranvalthrasnaspthreluvalpheargreeiyelyelyasphetargaspasntrpargserdiuleutyrlys 491 7108 ICAATATACAGGGCTGCTATTAACAAGAGGTGGTGGTGCTAATGTGACGAGGGGGGGG
6989 GEACTAAAGEAATGACAATCATACTCCCATGTAGAATAA	Serasniie Tarbialeureureutargaspriyely tara Traaatattararrentertattaaraararrentertara
	7108

Tyrlystellielysilegiupreasmisettel ser Tataagtaataaaattgaccaaattgagtatctiga 7228

PYK Terminator

1 of 2

		•	COLUMN TO ELIA ELIA EL
Nickehide positions relative to. Figure 5		MetlleAspLysAlaGlnGluGluHi	is6luLysTyrHisSerAsnTrp
FIGUR 5	1	AGGXAACAG::::ATGAT:GA:AAGGCACAAGAAGAACA TCCXTTGTC:::TACTA:CT:TTCCGTGTTCTTCTTGT	ATRAGAAATATCACAGTAATT66
		32 mbo11, 38 nla111,	
3820	62	ArgalaMetAlaSerAspPheAsnLeuProProValVa AGAGCCATGGCTAGTGATTTTAACCTGCCACCTGTAGT TCTCGGTACCGATCACTAAAATTGGACGGTGGACATCA	I AGCAAAAGAAA I AG I AGCCAGC.
		66 nco1, 67 nla111, 118 nsp8II pvu11,	
3880	122	CysAspLysCysGlnLeuLysGlyGluAlaMetHisG TGTGATAAATGTCAGCTAAAAGGAGAAGCCATGCATGC ACACTATTTACAGTCGATTTTCCTCTTCGGTACGTAC	CTGTTCATCTGACATCAGGTCCT
		135 alui, 151 nlaiii, 152 nsii ava3, 176 apyi bstXI ecorii scrFi,	155 nla111, 164 acc1, 1
3940	182	IleTrpGInLeuAspCysThrHisLeuGluGlyLysI ATATGGCAACTAGATTGTACACATCTAGAAGGAAAAA TATACCGTTGATCTAACATGTGTAGATCTTCCTTTTT	A C C C C A C A C C
		198 rsaI, 205 xba1, 223 apy1 ecor11 se	·
4000	242	AlaSerGlyTyrIleGluAlaGluValIleProAlaG GCCAGTGGATATATAGAAGCAGAAGTTATTCCAGCAG CGGTCACCTATATATCTTCGTCTTCAATAAGGTCGTC	AGACAGGGCAGGAAACAGCAIAI
	•	263 xmn1,	
4060	302	PheLeuLeuLysLeuAlaGlyArgTrpProValLysTi TTTCTCTTAAAATTAGCAGGAAGATGGCCAGTAAAAA AAAGAGAATTTTAATCGTCCTTCTACCGGTCATTTTT	CAATACATACAGACAATGGCAGC
		321 mbo11, 326 bal1 cfr1 hae1, 327 ha	e111, 357 bbv fnu4h1,
4120	362	AsnPheThrSerThrThrValLysAlaAlaCysTrpT AATTTCACCAGTACTACGGTTAAGGCCGCCTGTTGGT TTAAAGTGGTCATGATGCCAATTCCGGCGGACAACCA	GGGCAGGGAICAAGCAGGAAIII
		366 hph, 371 scal, 372 rsal, 385 hae1 O5 binl, 406 dpn1 sau3a,	11, 386 fnu4h1 nsb11, 4
4180	422	61y11eProTyrAsnPro61nSerGlnGlyValVal6 66CATTCCCTACAATCCCCAAAGTCAAGGAGTAGTAG CCGTAAGGGATGTTAGGGGTTTCAGTTCCTCATCATC	AATCTATGAATAATGAATTAAAG
		423 bsm1, 458 hinf1,	
4240	482	LysilelleGlyGlnValArgAspGlnAlaGluHisL AAAATTATAGGACAGGTAAGAGATCAGGCTGAACACC TTTTAATATCCTGTCCATTCTCTAGTCCGACTTGTGG	I I AAGACAGCAG I ACAAA I GOOD
	•	503 dpn1 sau3a, 518 afl11, 530 rsal,	
4300	542	ValPheileHisAsnPheLysArgLysGlyGlyIleG GTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTG CATAAGTAGGTGTTAAAAATTTTCTTTTC	GGGGATACAGIGCAGGGGAAAGA
		547 fok1, 557 aha111,	; <u> </u>
4360	602	IlevalaspileilealathraspileGlnThrLysG ATAGTAGACATAATAGCAACAGACATACAAACTAAAG TATCATCTGTATTATCGTTGTCTGTATGTTTGATTTC	AACIACAAAAGCAAAIIACAAAA
		605 acc1,	
	662	IleGlnAsnPheArgValTyrTyrArgAspAsnLysA ATTÇAAAATTTTCGGGTTTATTACAGGGACAACAAAG	SPProLeuTrpLys61yProAla ATCCCCTTTGGAAAGGACCAGCA

Ayrò 722 LysteuleuirplysuivdiudiyalavalvallleginaspasnSerAspilelysvaí AAGCTTCTCTGGAAAGGTGAAGGGGCAGTAGTAATACAASATAATAGTGACATAAAAGTA TTCGAAGAGACCTTTCCACTTCCCCGTCATCATTATGTTCTATTATCACTGTATTTTCAT 722 hind111, 723 alu1, 737 hph.

ValproArgArgLysAlaLysIleIleArgAspTyr6lyLys6lnMetAlaGlyAspAsp
6TGCCAAGAAGAAAAGCAAAAATCATTAGGGATTATGGAAAACAGATGGCAGGTGATGAT
CACGGTTCTTCTTTTCGTTTTTAGTAATCCCTAATACCTTTTGTCTACCGTCCACTACTA
789 mbo11, 833 hph,

CysValAlaSerArgGlnAspGluAspAM
TGTGTGGCAAGTAGACAGGATGAGGATTAGTCGACGGAATTCTTTAGTAAAACACC
ACACACCGTTCATCTGTCCTACTCCTAATCAGCTGCCTTAAGAAATCATTTTGTGG

852 acc1, 859 fok1, 863 mnl1, 871 acc1 hind11 sal1, 872 taq1
, 878 ecor1,

FIGURE 12

2 of 2

ATG N-terminal domain gp120 C-terminal TAA domain

Fok-1 Bgi-2 Ava-1 Hga-1 gp41 Xho

lysargi

env-2

env-1

env-4

env-5

env expression in yeast and bacteria

FIGURE 13

9

:> **≸**

FIGURE 14

CONTECTATIVE

- GluGlyLeuHisGlyPheHisValHisGluPheGlyAspAspThrAlaGlyCysThrSer
 122 GAAGGCCTGCATGGATTCCATGTTCATGAGTTTGGAGATAATACAGCAGGCTGTACCAGT
 CTTCCGGACGTACCTAAGGTACAAAGTTACTCAAACCTCTATTATGTCGTCCGACATGGTCA
- Hisvalgiyaspleugiyasnvalthralaasplysaspgiyvalalaaspvalserile
 CATGTTGGAGACTTGGGCAATGTGACTGACAAAGATGGTGTGGCCGATGTGTCTATT
 GTACAACCTCTGAACCCGTTACACTGACGACTGTTTCTACCACACCGGCTACACAGATAA
- GluAspSerVallleSerLeuSerGlyAspHisCysIleIleGlyArgThrLeuValVal
 302 GAAGATTCTGTGATCTCACTCTCAGGAGACCATTGCATCATTGGCCGCACACTGGTGGTC
 CTTCTAAGACACTAGAGTGAGAGTCCTCTGGTAACGTAGTAACCGGCGTGTGACCACCAG
- HisGluLysAlaAspAspLeuGlyLysGlyGlyAsnGluGluSerThrLysThrGlyAsn
 CATGAAAAAGCAGATGACTTGGGCAAAGGTGGAAATGAAGAAAGTACAAAGACAGGAAAC
 GTACTTTTTCGTCTACTGAACCGGTTTCCACCTTTACTTCTTCATGTTTCTTGTCCTTTG

ENV 53
AlaGlySerArgLeuAlaCysGlyValIleGlyIleAlaMetAlaIleGluAlaGlnGln
GCTGGAAGTCGTTTGGCTTGTGTGTAATTGGGATCGCCATGGCTATCGAAGCTCAACAA
CGACCTTCAGCAAACCGAACACCACATTAACCCTAGCGGTACCGATAGCTTCGAGTTGTT

- HisleuleuGlmleuThrValTmpGlyIleLysGlmleuGlmAlaAmyValLeuAlaVal
 482 CACTTGCTGCAGTTGACCGTTTGGGGTATCAAGCAGTTGCAGGCTAGAGTTTTGGCTGTT
 GTGAACGACGTCAACTGGCAAACCCCATAGTTCGTCAACGTCCGATCTCAAAACCGACAA
- GluargtytleuargaspglugluleudeuglylletrigglyCysserglyLysleulle 542 GAAAGATACTTGAGAGATCAACAATTGTTGGGTATCTGGGGTTGTTCTGGTAAGTTGATT CTTTCTATGAACTCTCTAGTTGTTAACAACCCATAGACCCCAACAAGACCATTCAACTAA
- CysthrthralavalProtrpAsnalaSerTrpSerAsnLysSerLeuGluAspIleTrp
 602 TGTACCACCGCTGTTCCCTGGAACGCTTCTTGGTCTAACAAGTCTTTGGAAGACATCTGG
 ACATGGTGGCGACAAGGGACCTTGCGAAGAACCAGATTGTTCAGAAACCTTCTGTAGACC
- Aspasimentaltipmenglutipgluarggluileaspasity:Thrasothriletyr

 662 GACACATGACCTGGATGCAATGGGAAAGGAAATCGACAACTACACCAACACCATCTAC
 CTGTTGTACTGGACCTACGTTACCCTTTCTCTTTAGCTGTTGATGTGGTTGTGGTAGATG
- Asplystrphlaserleutrphsntrpheserllethrhsntrphy
 782 GACAGTGGGCAAGCTTGTGGAACTGGTTCTCTATCACCAACTGGTAG
 CTGTTCACCCGTTCGAACACCTTGACCAAGAGATAGTGGTTGACCATCAGCT

Translated Mol. Weight - 30414.22

FIGURE 15

FIGURE 16

3 **\$**

FIGURE 16

2 of 2

CORFEDENTIAL

FIGURE 17

FIGURE 18

PIGURE 19

FIGURE 20

FIGURE 21

Ala lle Ser Pro Arg Thr Leu Ash Ala Trp Val Lys Val Val Glu GCC ATA TCA CCT AGA ACT TTA AAT GCT TGG GTA AAA GTA GTA GAA Ser Glu Gly Ala Thr Pro Gla Asp Leu Asn Thr Met Leu Asn Thr TCA GAA GGA GCC ACC CCT CAA GAT TTA AAC ACC ATG CTA AAC ACA ASA GIU GIU AIA AIA GIU TEP ASP AEG VAI HIS PED VAI HIS AIA AAT GAG GAG GCT GCC GAA TGG GAT AGA GTG CAT CCA GTG CAT GCA 90
Giy Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp
GGG CCT ATT GCA CCA GGC CAA ATG AGA GAA CCA AGG GGA AGT GAC 110
Lie Ala Gly The The See The Leu Gla Glu Gla Ile Gly Tep Het
ATA GCA GGA ACT ACT AGT ACC CTT CAG GAA CAA ATA GGA TGG ATG 120
The Ash Ash Ped Ped lle Ped Val Gly Glu Ile Tye Lys Arg Tep ACA AAT AAT CCA CCT ATC CCA GTA GGA GAA ATC TAT AAA AGA TGG 140
The file Leu Gly Leu Ash Lys file Val Ang Het Tyr Ser Pro Thrata ATC CTG GGA TTA AAT AAA ATA GTA AGA ATG TAT AGC CCT ACC 150 Ser the Leu Aso The Arg Glo Gly Pro Lys Glu Pro Phe Arg Asp AGC ATT CTG GAC ATA AGA CAA GGA CCA AAG GAA CCC TTT AGA GAT 170
Tyr Yal Asp arg Phe Tyr Lys Thr Lew Arg Ala Glw Glm Ala Ser TAT GTA GAC CGG TTC TAT AAA ACT CTA AGA GCC GAA CAA GCT TCA 190 Gin Asp Yai Lys Asn Trp Met Thr Giu Thr Leu Leu Yai Gin Asn CAG GAT GTA AAA AAT IGG ATG ACA GAA ACC TIG TIG GTC CAA AAT 200
Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala
AAC CCA GAT TGT AAG ACT ATT TTA AAA GCA TTG GGA CCA GCA Ala Thr Leu Glu Glu Net Met Thr Ala Cys Gla Gly Val Gly Gly GCT ACA CTA GAA GAA ATG ATG ACA GCA TGT CAG GGA GTG GGG GGA

FIGURE 22

へつく(何をの何を)でしる`も

SOD -->
MetalaThrtysAla
ATGGCTACAAAGGCT
TACCGAIGTITCCGA

		•							· TACCGA	16111666
1363	6111	6161	TITE	LAGGGI	GAEGGE	CCCAST	TCAAGGT.	ATTATTA	CTTCGAG	61nLysGle Cagaaggae 67C11CC1
1443	AGTA	ATGG	ACCAC	SIGAAG	GIGIGO	GGGAAG	CATTAAA	GGACTGAC	TGAAGGC	Leuni eg 1 C1GCA1GG GACG1ACC1
1503	TICC	ATGT	TCATO	AGTTT	GGAGAI	TAATAC	AGCAGGC'	TGTACCAG	TGCAGGT	Francefin CC1CAC111 GGAG1GAA
1543	MATC	CTCT	ATCCA	MAAAA	CACGG1	GGGCC	AAAGGATI	GAAGAGAG	GCATGTT(GlyAsplei GGAGACTIC CCTCTGAAC
1423	GGCA.	AT6T	GACTO	CTGAC	AAAGAT	GGTGT	GGCCGAT	GIGICTAT	TGAAGATI	Servalile ICTGTGAT(AGACACTA(
1683	TCAC	TCTC	AGGÁG	ACCAT	TĞCATC	ATTGG	CCGCACA	CTGGTGGT	CCATGAA	LYBALAAS AAAGCAGAI ITTCGTCIA
1743	GACT	7666	CAAAG	STEGA	AATGAA	GAAAG	TACAAAG	ACAGGAAA	CGCTGGA	Serargleu Agtcgtttg Tcagcaaa
1503	GCTTC	TGG	TGTAA	TTEGG	ATCGCC	GINAS	TTCAGGT	STIGGAGE	AMERALA!	931> Hetalaser Atggctag1 Taccgatca
1863	AspP: GATT:	TAA!	nL euf	rofro'	/alval Stagta	AlaLy	EGIUII#	/AIAIASe STAGCCAG	CTGTGAT	 LysCysG1# MAATGTCAG TTTACAGTG
1923	CTAA	نههد	AGAAG	CCATGO	ATGGA	CAAGTA	AGACTETA	AGTCCAGG	AATATGG	SINLOUAS P CAACTAGAT STIGATCIA
1983	TOTAC	ACA	TCTAG	AAGGAA	TTAKK	ATCCTO	SGTAGEAG	STICATGE.	AGCCAGTO	SIYTYFIIG GATATATA CTATATAT
2043.	GAAG	AGA	GTTA	TTCCAE	CAGAG	ACAGGO	CAGGAAA	CAGCATA	******	.eulysleu TTAAAATTA AATTTTAAT
2103	GCAGI	AAGA	TGGC	CAGTAA	MAAACA	ATACAT	TACAGACA	LATGGCAG:	CAATTICA	INCSECTNO ACCAGTACT IGGT CATGA
2163	ACSGT	TAAG	GCCG	CCTGTI	GGTGG	GCAGGG	SATCAAGO	AGGAATT	TGGCATT(ProTyrasa CCTACAAT GGATGTTA
2223	CCCCA	AAGT	CAAG	EAGTAG	TAGAA	TCTATE	BAATAATG	MARTTANA	GAAAATTA	lleGlyGla NTAGGACAG NATCCTGTG
2263	GTAAG	AGAI	CAGG	CTEAAC	ACCTT	AAGACA	NGCAGTAC	CAAATGGC	AGTATTC/	LICHLSAST ATCCACAAT IAGGTGTTA
2343	TTTAA	AAGA	AAAG	GGGGGA	TTEGG	GGATAC	AGTECAG	66GAAAG	AATAGTAG	Asplielie Gacataata Etgtattai
2403	GCAAC	AGAC	ATAC	AAACTA	AAGAA	CTACAA	MAGCAAA	TTACAAA	AATT CAAA	ATTTTEG AATTTTEG TAAAAGC
5443	STTTA	TTAC	AGGG	ACAACA	AAGAT	CCCCTI	TGGAAAG	GACCAGC	MAAGETTO	eutrpLye TCTGGAAA AGACCTTI
2523	GGTGA	AGGG	GCAG'	TAGTAA	TACAA	GATAAT	AGTGACA	TAAAAGT	AGTGCCAA	AFQAFQLY1 AGAAGAAA ICTTCTTTT
2583	SCAAA	AATC	ATTA	GÉGATT	ATEGA	AAAEAE	ATGGCAG	GTGATGA	******	LI ASGRAPQ SCAAGTAGA SGTTCATCI
	ELAAS	061 u	A & D A	H						

CAGEATGAGGATTAG GTCCTACTCCTAATC

FIGURE 24

pBR322

tac

FIGURE 25

900 —>
Hetalaftirtysalavalcysvalizeutysdlykspolyfrovaldindlyileilean
Catoocokodakogocototocotoctoakogocokococokotocako
Coctocticoocokokogokoakoticococtocogokotokotokatika

Sequence of 500/env-

Phedludiniyadluserandiyproyaliyayalitrodyserilelyadiyleuthr Trodacadaaogaaactaatogaccactgaaggorogogogaocattaaaggactgact Aactogictitoctittoattaoctgotoactrocacocottogtaatttoctgactga

2

Gludiylərdi ədiyphətlisvaldi odlubhədiy həphatitaral adiycyəthicələr Garoocctocatocatocatoticatcatoratitisələrinin kacacasotistacator Cittoggacotroctaagoticaacticaaactotatitisisələri

122

AledlyProfilePheAenProLeuSerArgly#fileQlydlyProLyeAepgludluArg GCAGGTCCTCACTTTAATCCTCTATCCAGAAAACAGGGTGGGCCAAAGGATGAAGAGG CGTCCAGGAAGTGAAATTAGGAGATAGGTCTTTTGTGCCACCGGTTTCCTACTTCTCTCC

182

Higyaldiyaapleudiyanyaithiralahapiyakapdiyyalalahapyalserile Chiditodagacitogocantotoactoctoacaaagatostotococostototott Giacaactotoaacocottacactoacgactottotacacaccococtacacataa

252

GlubepSerValileSexLeuSerOlyhepHisCysileileGlyhrythrLeuValVal GAGGATTCTGTGATCTCACTCTCAGGAGACATTGCATCATTGGCGCCACTGTGACTGCTC CTTCTAAGACACTAGAGTGCTCTGGTAACGTAGTAACGGGGTGTGACCAG

302

362

AsphanPhethlabananalalyethetletletlatalantacheudangluservalalatie Gacaattycacgaacaatgasaaccataatagtacaactgaatgaatcheccaatt Ctottaaagtgctycytacgatytyggyattaytchgtcgactyactyrgchecytta

482

Abricyetherreptoranabarantherrepyaser i letyr i leglyreglyatyala Ametetrolagroccaacaacaatrolagaarahatretretrepsorocraggagacs tigacatottectrogettottetretretretretretratratratretregetectoetes

3

8

662

Env4 —>
AladlySerArgLeuNlaCysOlyVall1e0ly11eAlaHetGluValVall1eArgSer
GCTGGAAGTCGTTTGGCTTGTGGTGTAATTGGGATCGCCATGGAGTAGTAATTAGATCT
GGACCTTCAGCAACCGAACACACACATTAACCTTAGGGTACTAGATCTTAGT

122

| LysGln | Let | Lehan Hettrpd | Lysdl | Lysdln | Lysdln

CONFIDENTIAL

Phelisther The Total of the Second Se

Ashlysthrilsvalphsandinsersardiydiyasprodluilsvalhethisser 722 antaaacathotctthatcancotcagaacacacathattatatacacacatha finitytigtatcacaantangtracaatacacacacathacacathastracacathacathaca

Argicaulantiightelluglyfhrlysglyhanspfhrileileleutrocyskrylle
n42 Aggtralathchanghanchanghanthanthanthrhythrenthrhydhanth
rccharthandrdhiachthchrithchinghydinthankkindhynnigh

FIGURE 27

o ≰ .

FIGURE 28

FIGURE 29

