

Max K-armed Bandits: on the ExtremeHunter Algorithm and an Alternative Approach

Stéphan Clémençon¹ Aurélien Garivier² Anne Sabourin¹ Claire Vernade¹ Mastane Achab¹ ¹ LTCI, Télécom ParisTech, Université Paris-Saclay ² IMT, Université de Toulouse

Max K-Armed Bandits

- The max K-armed bandit problem (Cicirello and Smith, 2005) is a sequential decisionmaking problem in an uncertain environment. At each time t = 1, ..., n
 - choose arm $k_t \in \{1, ..., K\}$
 - observe reward $X_{k_t,t} \sim \nu_{k_t}$.
- Objective: maximize $\mathbb{E}\left[\max_{1 < t < n} X_{k_t, t}\right]$.
- Or equivalently: minimize the *expected* extreme regret

$$\mathbb{E}\left[R_n\right] \triangleq \mathbb{E}\left[\max_{1 \le t \le n} X_{k^*,t}\right] - \mathbb{E}\left[\max_{1 \le t \le n} X_{k_t,t}\right],$$

where $k^* \triangleq \arg\max_{1 \le k \le K} \mathbb{E}[\max_{1 \le t \le n} X_{k,t}]$ is the optimal arm.

SECOND-ORDER PARETO

• An (α, β, C, C') -second order Pareto with cdf F verifies $\forall x \geq 0$

$$|1 - Cx^{-\alpha} - F(x)| \le C'x^{-\alpha(1+\beta)}$$
.

• As in [1], rewards $X_{k,t} \sim \nu_k$ with ν_k an $(\alpha_k, \beta_k, C_k, C')$ -second order Pareto distribution, $\alpha_k > 1$, $\beta_k > 0$, $C_k > 0$ and C' > 0.

Theorem 1. If $\alpha > 1$ then

$$\left| \mathbb{E} \left[\max_{1 \le t \le n} X_t \right] - (nC)^{1/\alpha} \Gamma \left(1 - 1/\alpha \right) \right|$$

$$= \mathcal{O} \left(n^{-(\min(1,\beta) - 1/\alpha)} \right),$$

sharper than $\mathcal{O}\left(n^{\frac{1}{(1+\beta)\alpha}}\right)$ in [1].

ExtremeETC Algorithm

We propose ExtremeETC, an Explore-Then-Commit version of ExtremeHunter [1]. Both use the optimism-in-the-face-of-uncertainty principle through indices

$$B_k \triangleq (n(\widehat{C}_k + \Lambda_2))^{\widehat{1/\alpha_k} + \Lambda_1} \Gamma(1 - \widehat{1/\alpha_k} - \Lambda_1)$$

$$\left(\geq \mathbb{E} \left[\max_{1 \leq t \leq T} X_{k,t} \right] \text{ with high probability} \right). \tag{1}$$

EXTREMEETC VS EXTREMEHUNTER

- 1: Input: n: time horizon, K: number of arms, b > 0 such that $b \leq \min_k \beta_k$.
- 2: **Initialize:** Pull N times each arm k and compute index B_k (see Eq. (1)).
- 3: $k_0 = \arg\max_k B_k$
- 3: for t > KN do
- 4: for t > KN do
- 4: Pull $k_t = \arg\max_k B_k$.
- 5: Pull arm k_0 .
- 5: Update index B_{k_t} .
- 6: end for
- 6: end for

Complexity	Ex.ETC	Ex.Hunt.
Time	$\mathcal{O}(K(\log n)^{\frac{2(2b+1)}{b}})$	$\mathcal{O}(n^2)$
Memory	$\mathcal{O}(K(\log n)^{\frac{2(2b+1)}{b}})$	$\mathcal{O}(n)$

TIGHT REGRET BOUNDS

Theorem 2. (i) Upper bound for ExtremeETC and ExtremeHunter

$$\mathbb{E}[R_n] = \mathcal{O}\left((\log n)^{\frac{2(2b+1)}{b}} n^{-(1-1/\alpha_{k^*})} + n^{-(b-1/\alpha_{k^*})}\right),$$

sharper than $\mathcal{O}\left(n^{\frac{1}{(1+b)\alpha_{k^*}}}\right)$ in [1].

(ii) Lower bound for any algorithm pulling each arm at least N times

$$\mathbb{E}[R_n] = \Omega\left((\log n)^{\frac{2(2b+1)}{b}} n^{-(1-1/\alpha_{k^*})} \right) .$$

When $b \ge 1$, (i) and (ii) are tight!

REDUCTION TO MULTI-ARMED BANDITS (MAB)

- Truncated rewards: $Y_{k,t} \triangleq X_{k,t} \mathbb{1}_{\{X_{k,t} > u\}}$.
- $\mathbb{E}[Y_{k,1}] \sim_{u \to \infty} C_k \left(1 + \frac{1}{\alpha_k 1}\right) u^{-\alpha_k + 1}$.
- For $u > \max\left(1, \left(\frac{2C'}{C_{(1)}}\right)^{\frac{1}{b}}, \left(\frac{3C_{(K)}}{C_{(1)}}\right)^{\frac{1}{\alpha_{(2)}-\alpha_{(1)}}}\right)$ and n large enough

$$\underset{1 \le k \le K}{\operatorname{arg \, max}} \mathbb{E}[Y_{k,1}] = \underset{1 \le k \le K}{\operatorname{arg \, min}} \alpha_k = k^*.$$

- MAB objective: maximize $\mathbb{E}\left[\sum_{t=1}^{n} Y_{k_t,t}\right]$.
- We use Robust UCB with truncated mean estimator [4]
 - parameters: $\epsilon < \min_{1 \le k \le K} \alpha_k 1$, $v \ge \max_{k \in [K]} \mathbb{E}\left[|Y_{k,1}|^{1+\epsilon}\right]$
 - $-\mathbb{E}\left[\# \text{ pulls arm } k \neq k^*\right] = \mathcal{O}(\log n) < N.$

EXPERIMENTS

- time horizon $n = 10^5$
- K = 3 exact Pareto distributions $(\beta = +\infty)$

Arm	1	$k^* = 2$	3
lpha	15	1.5	10
C	10^{8}	1	10^{5}
$\mathbb{E}\left[X ight]$	3.7	3	3.5
$\mathbb{E}\left[\max_{1\leq t\leq n}X_{t}\right]$	7.7	$5.8 \cdot 10^3$	11

(a) ExtremeETC vs Robust UCB vs uniform random

(b) same in log-log plot

Figure 1: Extreme regret averaged over 1000 independent trajectories.

- Fig. 1b: linear regression for ExtremeETC over $t = 5 \cdot 10^4, ..., 10^5 \text{ has slope} \approx -0.333$
- \rightarrow validation of Theorem 2!

Estimation of $1/\alpha$ and C (see resp. [2] and [3])

Assume $T \ge N \triangleq A(\log n)^{\frac{2(2b+1)}{b}}$ with b known s.t. $b \le \beta$.

•
$$\widehat{1/\alpha} \triangleq \min \left(1, \left[\log \left(\frac{\sum_{t=1}^{T} \mathbb{1}_{\{X_t > e^r\}}}{\sum_{t=1}^{T} \mathbb{1}_{\{X_t > e^{r+1}\}}} \right) \right]^{-1} \right)$$
 • $\widehat{C} \triangleq T^{-\frac{2b}{2b+1}} \sum_{t=1}^{T} \mathbb{1}_{\{X_t \geq T^{\widehat{1/\alpha}/(2b+1)}\}}$

With probability larger than $1-\delta$,

•
$$|\widehat{1/\alpha} - 1/\alpha| \le \Lambda_1(T) \triangleq D\sqrt{\log(1/\delta)}T^{-\frac{b}{2b+1}}$$
 • $|\widehat{C} - C| \le \Lambda_2(T) \triangleq E\sqrt{\log(T/\delta)}\log(T)T^{-\frac{b}{2b+1}}$.

References

REFERENCES

- [1] Alexandra Carpentier and Michal Valko. Extreme bandits (2014).
- [2] Alexandra Carpentier and Arlene KH Kim. Adaptive and minimax optimal estimation of the tail coefficient (2014).
- Alexandra Carpentier, Arlene KH Kim, et al. Honest and adaptive confidence interval for the tail coefficient in the pareto model (2014).
- [4] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with heavy tail (2013).