Et vilkårlig 4-bits tall abcd ganget med 10 ser slik ut:

abcd * 1010	Det betyr at funksjonsuttrykkene for F, G og H blir:
0.0.0	F: C
abcd	G: d
0 0 0 0	H: 0
abcd	
****Cd0	

Resten løste jeg ved hjelp av sannhetsverditabellen og karnaughdiagrammer:

A: abd + abc

ab	00	01	11	10
00				
01			1	
11			1	
10			1	

B: ab' + ac'd' + a'bcd

ab	00	01	11	10
00			1	1
01				1
11		1		1
10				1

C: a'bc' + bc'd' + ab'c + a'bd'

ab	00	01	11	10
00		1	1	
01		1		
11				1
10		1		1

D: a'b'c + ab'c' + a'cd' + ac'd' + a'bc'd + abcd

ab	00	01	11	10
00			1	
01		1		1
11	1		1	
10	1	1		

E: b'd + bd'

ab	00	01	11	10
00		1	1	
01	1			
11	1			1
10		1	1)

F, G og H som skrevet tidligere er:
F = c, G = d, H = 0
(men her er altså karnaughdiagrammene
for disse.. just in case.

F: c

ab	00	01	11	10
00				
01				
11	1	1	1	1
10	1	1	1	

G: d

ab	00	01	11	10
00				
01	1	1	1	1
11	1	1	1	1
10				

Inngang Sign bestemmer om kretsen velger å gå den vanlige veien (når Sign er 0 (10 er positiv)) eller om 2er-komplement skal brukes for å få ut et negativt resultat. Selektorene sjekker hvert bit. Er Sign høy, skjer konverteringen (2er kompl. tar 8 bit inn og kan gi ut 9). 2er-kompl: Invertere hvert bit og legge til 1. OR-portene rett før utgangene sørger for at bare ett signal går gjennom.

Sannhetsverditabell for (+10):
= 0 (trenger bare 8 bit)

а	b	С	d	A	В	С	D	Е	F	G	Н
0	0	0	0	0	0	0	0	0	0	0	0
<u> </u>		0	-		_	-	_		_	_	
0	0	0	1	0	0	0	0	1	0	1	0
0	0	1	0	0	0	0	1	0	1	0	0
0	0	1	1	0	0	0	1	1	1	1	0
0	1	0	0	0	0	1	0	1	0	0	0
0	1	0	1	0	0	1	1	0	0	1	0
0	1	1	0	0	0	1	1	1	1	0	0
0	1	1	1	0	1	0	0	0	1	1	0
1	0	0	0	0	1	0	1	0	0	0	0
1	0	0	1	0	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	0	1	0	0
1	0	1	1	0	1	1	0	1	1	1	0
1	1	0	0	0	1	1	1	1	0	0	0
1	1	0	1	1	0	0	0	0	0	1	0
1	1	1	0	1	0	0	0	1	1	0	0
1	1	1	1	1	0	0	1	0	1	1	0

Sannhetsverditabellen Sign
fra Selector: (v = vanlig)

A	S	2's	v
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	0

Sannhetsverditabell for (-10): Sign = 1 (trenger 9 bit)
S = Sign, Sb = Sign_bit

S	a	b	С	d	Sb	A	В	С	D	E	F	G	Н
1	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	1	1	1	0	1	1	0
1	0	0	1	0	0	1	1	1	0	1	1	0	0
1	0	0	1	1	0	1	1	1	0	0	0	1	0
1	0	1	0	0	0	1	1	0	1	1	0	0	0
1	0	1	0	1	0	1	1	0	0	1	1	1	0
1	0	1	1	0	0	1	1	0	0	0	1	0	0
1	0	1	1	1	0	1	0	1	1	1	0	1	0
1	1	0	0	0	0	1	0	1	1	0	0	0	0
1	1	0	0	1	0	1	0	1	0	0	1	1	0
1	1	0	1	0	0	1	0	0	1	1	1	0	0
1	1	0	1	1	0	1	0	0	1	0	0	1	0
1	1	1	0	0	0	1	0	0	0	1	0	0	0
1	1	1	0	1	0	0	1	1	1	1	1	1	0
1	1	1	1	0	0	0	1	1	1	0	1	0	0
1	1	1	1	1	0	0	1	1	0	1	0	1	0