Lösungshinweise zur 9. Übung

Differential- und Integralrechnung für Informatiker

(A 36)

- a) Aus der Divergenz der Folge $((-1)^k)_{k\in\mathbb{N}^*}$ ergibt sich die Divergenz der Folge $(x^k)_{k\in\mathbb{N}^*}$.
- b) Die Gleichheiten $\lim_{k\to\infty}\frac{2^k}{k!}=0$, $\lim_{k\to\infty}\frac{1-4k^7}{k^7+12k}=-4$ und $\lim_{k\to\infty}\frac{\sqrt{k}}{e^{3k}}=0$ implizieren, dass $(x^k)_{k\in\mathbb{N}^*}$ gegen (0,-4,0) konvergiert.
- c) Die Divergenz der Folge $(-k^3+k)_{k\in\mathbb{N}^*}$ impliziert auch die Divergenz von $(x^k)_{k\in\mathbb{N}^*}$.
- d) Es gelten

$$\lim_{k \to \infty} \frac{2^{2k}}{\left(2 + \frac{1}{k}\right)^{2k}} = \lim_{k \to \infty} \frac{1}{\left(1 + \frac{1}{2k}\right)^{2k}} = \frac{1}{e} \text{ und } \lim_{k \to \infty} \frac{1}{\sqrt[k]{k!}} = 0.$$

Man bezeichne mit $a_k := (e^k + k)^{\frac{1}{k}}$, für $k \in \mathbb{N}^*$. Dann ist $\ln a_k = \frac{\ln(e^k + k)}{k}$. L'Hospitals Regel verwendend, erhält man

$$\lim_{x\to\infty}\frac{\ln(e^x+x)}{x}=\lim_{x\to\infty}\frac{e^x+1}{e^x+x}=\lim_{x\to\infty}\frac{e^x}{e^x+1}=1.$$

Also ist $\lim_{k\to\infty} \ln a_k = 1$, was $\lim_{k\to\infty} a_k = e$ zur Folge hat. Außerdem ist

$$\lim_{k \to \infty} \frac{\alpha^k}{k} = \begin{cases} 0, \text{ falls } \alpha \in [0, 1] \\ \infty, \text{ falls } \alpha > 1. \end{cases}$$

Wir schließen also, dass, für $\alpha > 1$, die Folge $(x^k)_{k \in \mathbb{N}^*}$ divergent ist, und sie, für $\alpha \in [0,1]$, gegen $(\frac{1}{e}, 0, e, 0)$ konvergiert.

(A 37)

a)
$$A' = \mathbb{R} \times \{1\}$$
, b) $A' = \emptyset$.

(A 38)

Als rationale Funktion ist f auf $\mathbb{R}^2 \setminus \{0_2\}$ stetig. Wir untersuchen die Existenz des Grenzwertes von f in 0_2 . Für die Folge mit dem allgemeinen Glied $a^k = (\frac{1}{k}, 0), k \in \mathbb{N}^*$, gelten $\lim_{k \to \infty} a^k = 0_2$

und
$$\lim_{k\to\infty} f(a^k) = \lim_{k\to\infty} \frac{\left(\frac{1}{k}\right)^4 - 0}{2\left(\left(\frac{1}{k}\right)^4 + 0\right)} = \lim_{k\to\infty} \frac{1}{2} = \frac{1}{2}$$
. Für die Folge mit dem allgemeinen Glied

 $b^k = (\frac{1}{k}, \frac{1}{k})$ $k \in \mathbb{N}^*$, gelten $\lim_{k \to \infty} b^k = 0_2$ und $\lim_{k \to \infty} f(b^k) = 0$. Nach **Th2** aus der 9. Vorlesung folgt nun, dass f keinen Grenzwert bei 0_2 hat. **Th3** (Charakterisierungen für die Stetigkeit einer Funktion in einem Punkt) aus der 9. Vorlesung impliziert, dass f in 0_2 nicht stetig ist.

(A 39)

a) Aus $\lim_{n\to\infty} f\left(\frac{1}{n},0\right) = 0$ und $\lim_{n\to\infty} f\left(0,\frac{1}{n}\right) = 1$ folgt, aufgrund von **Th2** aus der 9. Vorlesung, dass f keinen Grenzwert bei 0_2 hat.

b) 1. Methode: Es ist $(|x|-|y|)^2 \ge 0$, für alle $x,y \in \mathbb{R}$. Also gilt $|xy| \le \frac{1}{2}(x^2+y^2)$, woraus

$$0 \le g(xy) = \frac{|xy| \cdot |xy|}{x^2 + y^2} \le \frac{|xy|}{2}, \ \forall \ (x,y) \in \mathbb{R}^2 \setminus \{0_2\},$$

folgt. Wegen

$$\lim_{\substack{x \to 0 \\ y \to 0}} |xy| = 0$$

impliziert das Sandwich-Theorem, dass $\lim_{(x,y)\to 0_2} g(x,y) = 0$ ist.

2. Methode: Es ist $(x^2 - y^2)^2 \ge 0$, für alle $x, y \in \mathbb{R}$. Also ist $(x^2 + y^2)^2 \ge 4x^2y^2$, woraus

$$0 \le g(xy) = \frac{x^2y^2}{x^2 + y^2} \le \frac{x^2 + y^2}{4}, \ \forall \ (x, y) \in \mathbb{R}^2 \setminus \{0_2\},\$$

folgt. Wegen

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 + y^2}{4} = 0$$

impliziert das Sandwich-Theorem, dass $\lim_{(x,y)\to 0_2} g(x,y) = 0$ ist.

(A 40)

Sei $(x^k)_{k\in\mathbb{N}}$ eine Folge in \mathbb{R}^n , die einen Grenzwert hat. Wir nehmen widerspruchshalber an, $x, y \in \mathbb{R}^n$, $x \neq y$, wären beide Grenzwerte dieser Folge. Nach **L1** in der 8. Übung gibt es $U \in \mathcal{U}(x)$ und $V \in \mathcal{U}(y)$ mit $U \cap V = \emptyset$. Zweimal die Definition des Grenzwertes einer Folge verwendend, erhält man die Indizes $k_1, k_2 \in \mathbb{N}$, so dass $x^k \in U$, für alle $k \geq k_1$, und $x^k \in V$, für alle $k \geq k_2$. Für $k := \max\{k_1, k_2\}$ ist also $x^k \in U \cap V$, was einen Widerspruch darstellt. Also hat die Folge $(x^k)_{k \in \mathbb{N}}$ genau einen Grenzwert.