UPES

UNIVERSITY OF PETROLEUM & ENERGY STUDIES, DEHRADUN

Program	B. Tech SCS	Semester	II	
Course	Mathematics II	Course Code	MATH 1005	
Session	Jan-May 2020	Topic	Unit I, II, III and IV	

- 1. Solve the differential equation $(D^3 5D^2 + 7D 3)y = e^{2x} cosh2x$.
- 2. Solve the differential equation y'' + 4y' + 8y = cosx, y(0) = 1 and y'(0) = 0.
- 3. Apply the method of variation of parameters to solve the differential equation $(D^2 + a^2) y = tanax$.
- **4.** The probability mass function of a discrete random variable *X* is given by

$$p(x) = \begin{cases} k, & x = 0\\ 2k, & x = 1\\ 3k, & x = 2\\ 0, otherwise. \end{cases}$$

- (a) Find k. (b) Evaluate $P(X \ge 2)$, $P(0 < X \le 2)$ (c) find cumulative distribution function of X.
- 5. Out of 2000 families with 4 children each, how many would you expect to have (a) at least 1 boy (b) 2 boys (c) 1 or 2 girls and (d) no girls?
- **6.** X is normally distributed and the mean of X is 12 and S.D. is 4
 - (a) find out the probability of the following:
 - (i) $X \ge 20$, (ii) $X \le 20$ and (iii) $0 \le x \le 12$
 - (b) Find x' when P(X > x') = 0.24
 - (c) Find x'_0 and x'_1 when $P(x'_0 < X < x'_1) = 0.5$ and $P(X > x'_1) = 0.25$.
- 7. Using Newton-Raphson method, find the real root of $f(x) = x \sin x + \cos x = 0$ which is near $x = \pi$ correct to three decimal places.
- **8.** A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of time t seconds. Find the velocity of the slider and its acceleration when t = 0.3 seconds.

t	0.0	0.1	0.2	0.3	0.4	0.5	0.6
х	3.013	3.162	3.287	3.364	3.395	3.381	3.324

- **9.** Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using
 - (i) Simpson's 1/3 rule taking h = 1/4
 - (ii) Simpson's 3/8 rule taking h = 1/6
- 10. Using Runge-Kutta method of fourth order, calculate y(0.1), and y(0.2) of the differential equation

$$\frac{dy}{dx} - \frac{2xy}{1+x^2} = 1$$
, $y(0) = 1$.

11. Draw the Hasse diagram for the "less than or equal to" relation on {0, 2, 5, 10, 11, 15}.

Answer these questions for the partial order represented by this Hasse diagram.

- a) Find the maximal elements.
- b) Find the minimal elements.
- c) Is there a greatest element?
- d) Is there a least element?
- e) Find all upper bounds of $\{a, b, c\}$.
- f) Find the least upper bound of $\{a, b, c\}$, if it exists.
- g) Find all lower bounds of $\{f, g, h\}$.
- h) Find the greatest lower bound of $\{f, g, h\}$, if it exists.
- 13. Determine whether these posets are lattices.
 - a) ({1, 3, 6, 9, 12}, |)
- b) ({1, 5, 25, 125}, |)

- c) (\mathbf{Z}, \geq)
- d) $(P(S), \supseteq)$, where P(S) is the power set of a set S