Due Date: Webcampus

How to submit: Webcampus

HW3-1: Rule-Based Classifier

Consider a training set that contains 70 positive examples and 200 negative examples. For each of the following candidate rules,

 $R_1: A \rightarrow +(covers \ 9 \ positive \ and \ 0 \ negatives)$

 R_2 : $B \rightarrow +(covers 65 positive and 40 negatives)$

determine which is the best and the worst candidate rule according to:

- a) The Rule accuracy
- b) The Ratio statistic
- c) The Laplace measure
- d) The m-estimate measure

HW3-2. Naive Bayes Classifier

Consider Table 1.

Instance	A	В	С	Class
1	0	0	0	+
2	1	0	1	+
2 3	1	1	0	+
4	1	1	0	+
4 5 6	1	1	0	+
6	0	1	0	+
7	1	0	0	+
8	0	0	1	-
9	1	1	1	-
10	0	0	1	-

Table 1

- a) Estimate the conditional probability for P(A = 1|+); P(B = 1|+); P(C = 1|+); P(A = 1|-); P(B = 1|-) and P(C = 1|-).
- b) Predict the class label for the test sample (A = 0, B = 1, C = 1).
- c) What is the time complexity for training Naive Bayes classifier?
- d) What is the testing time complexity of Naive Bayes classifier?

HW3-3. Bayesian Belief Network

Consider the following Bayesian belief network for the data set shown in Table 2,

Mileage	Engine	Air Conditioner	Number of Records	Number of Records
			with Car Value=Hi	with Car Value=Lo
Hi	Good	Working	3	4
Hi	Good	Broken	1	2
Hi	Bad	Working	1	5
Hi	Bad	Broken	0	4
Lo	Good	Working	9	0
Lo	Good	Broken	5	1
Lo	Bad	Working	1	2
Lo	Bad	Broken	0	2

Figure 1: Bayesian belief network

Table 2

- (a) Draw the probability table for each node in the network.
- (b) Use the Bayesian network to compute P(Engine = Bad, Air Conditioner = Broken).