1 Introduction

The work described here is the result of a collaboration of Andrea Censi, who

1.1 Previous Work

2 Formalization

Definition 2.1 (Policy). A decision policy is a tuple $\langle \mathcal{C}, \mathcal{U}, T, \mathcal{Y} \rangle$, where \mathcal{U} is a set of actions, \mathcal{Y} is a set of observations, \mathcal{C} is the set of finite sequences in \mathcal{Y} , and and $T: \mathcal{C} \to \mathcal{U} \cup \{\epsilon\}$.

A given

Definition 2.2 (Finite State Machine). A finite state machine is a tuple

$$\langle \Sigma, \Gamma, S, S_0, \delta, \omega \rangle$$
,

where Σ and Γ are finite input and output alphabets, S is a finite set of states, $s_0 \in S$ is an initial state, $\delta : S \times \Sigma \to S$ is a state-transition function, and $\omega : S \times \Sigma \to \Gamma$ is an output function.

this generalizes to

Definition 2.3 (Incompletely-Specified Finite State Machine (ISFSM)). An incompletely-specified finite state machine is a tuple

$$\langle \Sigma, \Gamma, S, s_0, \delta, \omega \rangle$$
,

where Σ and Γ are finite input and output alphabets, S is a finite set of states, $s_0 \in S$ is an initial state, $\delta: S \times \Sigma \to S \cup \{\phi\}$ is a state-transition function, and $\omega: S \times \Sigma \to \Gamma \cup \{\epsilon\}$ is an output function. The extra symbols $\phi \notin S$ and $\epsilon \notin \Gamma$ denote "unspecified" outputs, whose associated input and state are not expected to occur.

Example 2.1 (Equivalent Decision Tables). Suppose $\mathcal{Y} = \{1, 2\}$, $\mathcal{U} = \{A, B\}$, $\mathcal{C} = \bigcup_{i=1}^{2} \mathcal{Y}^{i}$ and

$$\mathcal{T}(c) = \begin{cases} A & c \in \{(1), (1, 2)\} \\ B & c \in \{(2), (2, 1)\} \end{cases},$$

$$\mathcal{T}'(c) \text{ otherwise.}$$

is an optimal policy, for arbitrary $\mathcal{T}':\mathcal{C}\to\mathcal{U}$. However, depending on the choice of \mathcal{T}' (highlighted in the tables below), the completed policy can have differently-sized minimal representations:

Instead, we propose an "incompletely-determined" formalization:

Definition 2.4 (Policies). Given a set \mathcal{Y} of observations, recursively construct

$$C_0 = \{\emptyset\} \text{ and } C_{i+1} = \{(c, y_{i+1}) : c \in C_i, y_{i+1} \in \mathcal{Y}_c\},$$
 (1)

where $\mathcal{Y}_c \subseteq \mathcal{Y}$ are the observations that may be seen in context c. Let $\mathcal{C} = \bigcup_{i=0}^{\infty} \mathcal{C}_i$. A **policy** P is then a tuple $\langle \mathcal{C}, \mathcal{U}, \mathcal{T}, \mathcal{Y} \rangle$, where \mathcal{U} is some decision set and $\mathcal{T} : \mathcal{C} \setminus \{\emptyset\} \to \mathcal{U}$.

Definition 2.5 (Completely-Determined Policies). If $\mathcal{Y} = \bigcup_{\mathcal{C}} \mathcal{Y}_c$ and $\mathcal{C} = \mathcal{Y}^{\leq n}$ for some $n \in \mathbb{N}$, then $P = \langle \mathcal{C}, \mathcal{U}, \mathcal{T}, \mathcal{Y} \rangle$ is **completely determined**. A **completion** of P is a policy $P' = \langle \mathcal{C}', \mathcal{U}', \mathcal{T}', \mathcal{Y} \rangle$ such that

$$\mathcal{Y} \subseteq \mathcal{Y}', \quad \mathcal{C}' = \bigcup_{i=0}^{\infty} (\mathcal{Y}')^i, \quad \mathcal{U} \subseteq \mathcal{U}', \quad \text{and} \quad \mathcal{T}'|_{\mathcal{C}} = \mathcal{T}.$$
 (2)

Let Comp(P) be the set of completions of the policy P.

Definition 2.6 (FSM Representations). An **FSM representation** (or just **representation**) is a tuple $\langle \mathcal{C}, \mathcal{R}, \mathcal{U}, \mathcal{S}, \mathcal{T}, \mathcal{Y} \rangle$ (abbreviated to $\langle \mathcal{R}, \mathcal{S} \rangle$ when $P = \langle \mathcal{C}, \mathcal{U}, \mathcal{T}, \mathcal{Y} \rangle$ is given), with "states" $\mathcal{S} \subseteq \mathbb{N}$ and state assignments $\mathcal{R}: \mathcal{C} \to \mathcal{S}$, such that

$$\mathcal{R}(c) = \mathcal{R}(c')$$
 and $y \in \mathcal{Y}_c \cap \mathcal{Y}_{c'} \implies \mathcal{T}(c, y) = \mathcal{T}(c', y)$. (3)

Let Rep(P) be the set of representations of the policy P.

Definition 2.7 (Minimal Representations). The **size** of an FSM representation is the cardinality of its state set. A representation $\langle \mathcal{R}, \mathcal{S} \rangle$ of P is **minimal** if $|\mathcal{S}| = \min\{|\mathcal{S}'| : \langle \mathcal{R}', \mathcal{S}' \rangle \in \text{Rep}(P)\}$. A representation $\langle \mathcal{R}', \mathcal{S}' \rangle$ is a **reduction** of the representation $\langle \mathcal{R}, \mathcal{S} \rangle$ if there is a surjection $\phi : \mathcal{S} \to \mathcal{S}'$ such that $\mathcal{R}' = \phi(\mathcal{R})$.

Example 2.2. If $C = \{c_1, c_2, \ldots\}$, then we have a canonical representation $(\mathcal{R}, \mathcal{S})$, where

$$S = \{1, \dots, |C|\}$$
 and $R: c_k \mapsto k.$ (4)

It can be shown that the size of a minimal representation of a policy P is equal to the minimum size of the minimal representations of its completions, i.e.

$$\min\{|\mathcal{S}'| : \langle \mathcal{R}', \mathcal{S}' \rangle \in \operatorname{Rep}(P)\} = \min\{|\mathcal{S}'| : \langle \mathcal{R}', \mathcal{S}' \rangle \in \operatorname{Rep}(P'), P' \in \operatorname{Comp}(P)\}$$
(5)

Incompletely-determined policies allow more freedom in representation reduction, as shown in the next example.

Example 2.3 (Incompletely-Determined Policies). Let $C = \{\emptyset, (1), (2), (1, 2), (2, 1)\}$, $\mathcal{U} = \{A, B\}$, and

$$\mathcal{T}(c,y) = \begin{cases} A & c \in \{(1), (1,2)\} \\ B & c \in \{(2), (2,1)\} \end{cases}.$$

Observe that the minimal policy is the same as that of the completely-determined policy in Example 1(f).

2.1 FSM Reduction

Given a decision policy (or an ISFSM) how do we find an obedient (or equivalent) ISFSM with the smallest possible state set?

for completely-specified FSM, this is

3 Representation Reduction Strategies

To find a minimum representation of a given policy, we first compute a graph of reducibility relations, then compute a minimal clique-covering.

For practical computation of reducibility, we'll start with the weaker condition of compatibility.

Figure 4: Greedy Reduction Algorithm A "running clique" is kept, to which new states are added until all remaining states are incompatible with at least one state in the clique. Then, a new clique is begun. Here, the cliques are $\{1,2,3,6,8,9,10,11,12,13,14,16,19,22,26,27,28,29,30,31,32\}$ (red), $\{4,15,18\}$ (blue), $\{5,17,21,22,23\}$ (yellow), and $\{7\}$ (green). (d) shows the resulting policy graph once

3.1 Reducibility Relations

Definition 3.1 (Reducibility). For a given policy $P = \langle \mathcal{C}, \mathcal{U}, \mathcal{T}, \mathcal{Y} \rangle$, two contexts $c_1, c_2 \in \mathcal{C}$ are **reducible** (write $c_1 \sim c_2$) if there exists a representation $\langle \mathcal{R}, \mathcal{S} \rangle$ of P such that $\mathcal{R}(c_1) = \mathcal{R}(c_2)$. Likewise, for a given representation $R = \langle \mathcal{R}, \mathcal{S} \rangle$, two states $s_1, s_2 \in \mathcal{S}$ are **reducible** if there exists a reduction $(\phi, \langle \mathcal{R}', \mathcal{S}' \rangle)$ of R such that $\phi(s_1) = \phi(s_2)$.

Observe that for any representation $\langle \mathcal{C}, \mathcal{R}, \mathcal{U}, \mathcal{S}, \mathcal{T}, \mathcal{Y} \rangle$, the contexts $c_1, c_2 \in \mathcal{C}$ are reducible if and only if the states $\mathcal{R}(c_1)$ and $\mathcal{R}(c_2)$ are reducible. Observe also that for incompletely-determined policies, reducibility is a symmetric but not-necessarily-transitive relation

Example 3.1 (Non-Transitive Reducibility). Suppose $\mathcal{Y} = \{1, 2, 3\}$, $\mathcal{C} = \{\emptyset, (1), (2), (1, 3), (2, 3)\}$, $\mathcal{U} = \{A, B\}$, and

$$\mathcal{T}(c) = \begin{cases} A & c \in \{(1), (1,3)\} \\ B & c \in \{(2), (2,3)\} \end{cases}$$
 (6)

Observe that, under this policy, $\emptyset \sim (1)$ and $\emptyset \sim (2)$, but $(1) \not\sim (2)$, since $\mathcal{T}(1,3) \neq \mathcal{T}(2,3)$.

However, it can be shown that, under a completely-determined policy, reducibility induces an equivalence relation. In either case, we compute reducibility using the following criterion:

Lemma 3.1. Two contexts $c_1, c_2 \in \mathcal{C}$ are reducible iff

$$\mathcal{T}(c_1, s) = \mathcal{T}(c_2, s)$$
 for all $s \in \mathcal{Y}^*$ such that $(c_1, s), (c_2, s) \in \mathcal{C}$ (7)

This informs the following algorithm

Algorithm 1: Compute Reducibility Relations

```
Input: A representation \langle \mathcal{C}, \mathcal{R}, \mathcal{U}, \mathcal{S}, \mathcal{T}, \mathcal{Y} \rangle
Output: A reducibility matrix A: \mathcal{S} \times \mathcal{S} \to \{\mathbf{true}, \mathbf{false}\}.
    A(s_1, s_2) \Leftarrow \mathbf{true} for all s_1, s_2 \in \mathcal{S}.
    repeat
        isChanged \Leftarrow \mathbf{false}
        for s_1 < s_2 \in \mathcal{S} do
           if A(s_1, s_2) = true then
                for c_1 \in \mathcal{R}^{-1}(s_1), c_2 \in \mathcal{R}^{-1}(s_2) do
                    for y \in \mathcal{Y}_{c_1} \cap \mathcal{Y}_{c_2} do
                        if \mathcal{T}(c_1,y) \neq \mathcal{T}(c_2,y) or {}^{\sim}A(\mathcal{R}(c_1,y),\mathcal{R}(c_2,y)) then
                            A(s_1, s_2) \Leftarrow \mathbf{false}.
                            isChanged \Leftarrow \mathbf{true}.
                        end if
                    end for
                end for
            end if
        end for
   until ^{\sim}isChanged
```

3.2 Bit-at-a-Time

Proposed by Andrea Censi, MIT-LIDS: Greedily separate ambiguous contexts along decision tree.

3.3 Greedy Covering

Now, although reducibility is not an equivalence relation, any reduction $\phi: \mathcal{S} \to \mathcal{S}'$ induces an equivalence relation, partitioning \mathcal{S} into cliques of mutually-reducible states, i.e.

$$S = \bigsqcup_{s' \in S'} \phi^{-1}(s'), \quad \text{where} \quad \phi(s_1) = \phi(s_2) \implies A(s_1, s_2)$$
 (8)

Thus, a minimum ¹ reduction induces a minimum clique partition of the reducible states of a representation.

3.4 Assembling Cliques

Notation 1 (Arrow notation). For a policy $P = \langle \mathcal{C}, \mathcal{U}, \mathcal{T}, \mathcal{Y} \rangle$, write $c \to c'$ if $c = (c_1, \ldots, c_i) \in \mathcal{C}_i \subseteq \mathcal{C}$ and $c' = (c_1, \ldots, c_i, y) \in \mathcal{C}_{i+1} \subseteq \mathcal{C}$, for some i. For a representation $\langle \mathcal{R}, \mathcal{S} \rangle$ of P, write $s_1 \to s_2$ if there are $c_1 \in f^{-1}(s_1)$ and $c_2 \in f^{-1}(s_2)$ such that $c_1 \to c_2$.

We propose the following, greedy, approximate algorithm Although we have

```
Algorithm 2: Greedy Clique Covering
```

```
Input: A representation \langle \mathcal{C}, \mathcal{R}, \mathcal{U}, \mathcal{S}, \mathcal{T}, \mathcal{Y} \rangle with s_1 < s_2 only if s_2 \not\to s_1.
Input: A reducibility matrix A: \mathcal{S} \times \mathcal{S} \to \{\mathbf{true}, \mathbf{false}\} as computed by Algo-
Output: A partition function \phi: \mathcal{S} \to \mathcal{S}' with \phi(s_1) = \phi(s_2) only if A(s_1, s_2).
   S' \Leftarrow S
   \phi \Leftarrow id_{\mathcal{S}}
    unused \Leftarrow S
    while |unused| > 0 do
       s_1 \Leftarrow \min(unused)
       unused \Leftarrow unused \setminus \{s_1\}
       for s_2 \in unused do
          if A(s_1, s_2) then
              \phi(s_2) \Leftarrow s_1
               unused \Leftarrow unused \setminus \{s_2\}
           end if
       end for
   end while
```

no proof that this algorithm produces minimal representations of a given policy, it is not inconceivable that this or another greedy policy could work. In general, the Minimal Clique Covering problem is NP-Complete, but the tree structure of the decision policy is an a constraint that may simplify the problem.

3.5 Alberto and Simão

3.5.1 Maximal Anticlique

3.5.2 Limitations

3.6 Exhaustive Search

In order find the absolute minimum representation of a given policy, it suffices to run the greedy algorithm on all possible orderings of its states: Given a minimum clique covering $S = \{s_{c_{11}}, s_{c_{12}}, \ldots, s_{c_{1N_1}}\} \cup \{s_{c_{21}}, s_{c_{22}}, \ldots, s_{c_{2N_2}}\} \cup \{s_{c_{21}}, s_{c_{22}}, \ldots, s_{c_{2N_2}}\}$

¹Here, we distinguish "minimal" from "minimum" reductions. A minimal reduction is one that cannot be further reduced by combining any of its states

Figure 5: In

Figure 6: Poisson Random Tree Generated by recursively adding $X \sim \text{Poisson}(\lambda)$ children to each new node. Result is conditioned on process not terminating before depth H. Models a birth/death process where individuals continuously produce offspring at a rate of λ per lifetime.

Figure 7: Pathological Tree This tree was designed to frustrate the algorithm of Alberto and Simão. Each of its states at depth 1 is incompatible with exactly two others. The resulting distinction graph consists of disjoint rings.

 $\cdots \cup \{s_{c_{K1}}, s_{c_{K2}}, \ldots, s_{c_{KN_K}}\}$, feed states to the greedy algorithm in the order in which they are written. Failure to add states to a running clique will occur only once per clique in the minimal covering (exactly K times) 2 , so the greedy algorithm will produce a minimum covering.

3.7 Comparisons

3.7.1 Poisson Random Tree

3.7.2 Pathological Tree

we can

 $^{^{2}}$ If more than K times, then some running clique

Figure 8: Typical Reductions Here we contrast the results of the various reduction algorithms introduced above. The Bit-at-a-Time method (b) produces a minimal sub-tree of the canonical policy. The last three methods are equivalent up to a reordering of states, so reductions (c) and (d) are practically identical.

Figure 9: Red bars pertain to Alberto and Simão's method, blue bars pertain to the bit-at-a time method, green bars pertain to the greedy clique completion method, and black bars pertain to an exhaustive search for a minimal reduction.