6.041/6.431 Spring 2007 Quiz 2 Wednesday, April 16, 7:30 - 9:30 PM

DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO

Name:	
Recitation Instructor:	
TA:	

Question		Score	Out of
0			3
1a	(i)		5
	(ii)		5
	(iii)		6
	(iv)		6
1b			9
1c			9
1d			9
1e			9
2 a	(i)		6
	(ii)		6
	(iii)		6
2 b	(i)		7
	(ii)		7
2c			7
Your Grade			100

Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Spring 2007)

General Instructions:

- This quiz has 3 problems, worth a total of 100 points.
- Write your solutions in this quiz booklet, only solutions in this quiz booklet will be graded.
- You are allowed two double sided, handwritten, 8.5 by 11 formula sheet plus a calculator.
- You may give an answer in the form of an arithmetic expression (sums, products, ratios, factorials) of <u>numbers</u> that could be evaluated using a calculator. Expressions like $\binom{8}{3}$ or $\sum_{k=0}^{5} (1/2)^k$ are also fine.
- A standard normal table is attached at the last page of this quiz.
- You have 2 hours to complete the quiz.
- Be neat! You will not get credit if we can't read it.

Problem 0: (3 points) Write your name, your <u>assigned</u> recitation instructor's name, and <u>assigned</u> TA's name on the cover of the quiz booklet. The <u>Instructor/TA</u> pairing is listed below.

Recitation Instructor	TA	Recitation Time
Shawn Staker	Said Francis	10 AM
Shivani Agarwal	Ahmad Zamanian	10 & 11 AM
Premal Shah	Sherman Jia	11 & 12 PM
Peter Hagelstein	James Sun & Mabel Feng	1 & 2 PM
Arthur Baggeroer (6.431)	Faisal Kashif	10 & 11 AM

Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Spring 2007)

Problem 1: Xavier and Wasima are participating in the 6.041 MIT marathon, where race times are defined by random variables¹. Let X and W denote the race time of Xavier and Wasima respectively. All race times are in hours. Assume the race times for Xavier and Wasima are independent (i.e. X and W are independent). Xavier's race time, X, is defined by the following density

$$f_X(x) = \begin{cases} 2c, & \text{if } 2 \le x < 3, \\ c, & \text{if } 3 \le x \le 4, \\ 0, & \text{otherwise,} \end{cases}$$

where c is an unknown constant. Wasima's race time, W, is uniformly distributed between 2 and 4 hours. The density of W is then

$$f_W(w) = \begin{cases} \frac{1}{2}, & \text{if } 2 \le w \le 4, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) (i) (5 pts) Find the constant c
 - (ii) (5 pts) Compute $\mathbf{E}[X]$
 - (iii) (6 pts) Compute $\mathbf{E}[X^2]$
 - (iv) (6 pts) Provide a fully labeled sketch of the PDF of 2X + 1
- (b) (9 pts) Compute $P(X \leq W)$.
- (c) (9 pts) Wasima is using a stopwatch to time herself. However, the stopwatch is faulty; it overestimates her race time by an amount that is uniformly distributed between 0 and $\frac{1}{10}$ hours, which is independent of the actual race time. Thus, if T is the time measured by the stopwatch, then we have

$$f_{T|W}(t|w) = \begin{cases} 10, & \text{if } w \le t \le w + \frac{1}{10} \text{ and } 2 \le w \le 4, \\ 0, & \text{otherwise.} \end{cases}$$

Find $f_{W|T}(w|t)$, when t=3.

- (d) (9 pts) Wasima realizes her stopwatch is faulty and buys a new stopwatch. Unfortunately, the new stopwatch is also faulty; this time, the watch adds random noise N that is normally distributed with mean $\mu = \frac{1}{60}$ hours and variance $\sigma^2 = \frac{4}{3600}$. Find the probability that the watch overestimates the actual race time by more than 5 minutes, $\mathbf{P}(N > \frac{5}{60})$. For full credit express your final answer as a number.
- (e) (9 pts) Wasima has a sponsor for the marathon! If Wasima finishes the marathon in w hours, the sponsor pays her $\frac{24}{w}$ thousand dollars. Define

$$S = \frac{24}{W}$$

Find the PDF of S.

¹A runner's race time is defined as the time required for a given runner to complete the marathon.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Spring 2007)

Problem 2. Consider the following family of **independent** random variables $N, A_1, B_1, A_2, B_2, \ldots$, where N is a nonnegative discrete random variable and each A_i or B_i is normal with mean 1 and variance 1. Let $A = \sum_{i=1}^{N} A_i$ and $B = \sum_{i=1}^{N} B_i$. Recall that the sum of a fixed number of independent normal random variables is normal.

- (a) Assume N is geometrically distributed with a mean of 1/p.
 - (i) (6 pts) Find the mean, μ_a , and the variance, σ_a^2 , of A.
 - (ii) (6 pts) Find c_{ab} , defined by $c_{ab} = \mathbf{E}[AB]$.
 - (iii) (6 pts) We observe B (but not N) and wish to estimate A, using a linear estimator of the form c+dB, where c and d are constants. Find values for c and d that result in the smallest possible mean squared error. Express your answer in terms of constants such as μ_a , c_{ab} , etc., without plugging in the values found in parts (i) and (ii).
- (b) Now assume that N can take only the values 1 (with probability 1/3) and 2 (with probability 2/3).
 - (i) (7 pts) Give a formula for the PDF of A.
 - (ii) (7 pts) Find the conditional probability $P(N = 1 \mid A = a)$.
- (c) (7 pts) Is it true that $\mathbf{E}[A \mid N] = \mathbf{E}[A \mid B, N]$? Either provide a proof, or an explanation why the equality does not hold.