1 Approximating Functions

What do we mean when we say that a polynomial approximates f(x)?

Can we say what we definitely do not mean by polynomial approximation? Yes! For example, in case of discontinuous functions, we cannot find a suitable continuous function *close enough* to be similar.

We have already shown that $f(x) = e^x$, a polynomial $P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ is a good approximation. What we mean by good in a special case is, for instance, that for greater n, $P_n(1)$ gets closer to e.

Suppose now $g(x) = \log x$.

Note that, for n > 0, $g^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{x^n}$.

Therefore, $Q_n(x) = f(a) + \sum_{k=1}^n \frac{-1^{k-1}}{ka^k} (x-a)^k$. However, this is a *very slow* approximation, which is not *good*.

For another example, take $h(x) = \arctan x$. Since $h'(x) = \frac{1}{1+x^2}$, to find $h^{(k)}(x)$ is a nontrivial task.

Suppose now f(x) is n-time differentiable at x = a.

Let
$$P_n(x) = \sum_{k=0}^n \frac{f^k(x)}{k!} (x-a)^k$$
.

To make an approximation good, one of the methods is to minimise $|P_n(x) - f(x)|$. However, it does not account for where the approximation is centered. Therefore, it makes intuitive sense to consider $\frac{P_n(x) - f(x)}{(x-a)^n}$. Thus, for polynomials,

$$\lim_{x \to a} \frac{P_n(x) - f(x)}{(x - a)^n} = 0.$$

The great news is that it is also true for any function f.

Theorem 1.1

 $\lim_{x\to a} \frac{P_n(x)-f(x)}{(x-a)^n} = 0$ for all f and corresponding Taylor polynomials $P_n(x)$.

Proof.

Note the following:

$$\frac{P_n(x) - f(x)}{(x-a)^n} = \frac{\sum_{k=0}^{n-1} \frac{f^k(x)}{k!} (x-a)^k - f(x) + \frac{f^n(x)}{n!} (x-a)^n}{(x-a)^n}$$
(1)

$$= \frac{\sum_{k=0}^{n-1} \frac{f^k(x)}{k!} (x-a)^k - f(x)}{(x-a)^n} + \frac{f^n(x)}{n!}.$$
 (2)

We know that the consecutive derivatives of $\sum_{k=0}^{n-1} \frac{f^k(x)}{k!} (x-a)^k$ at a are equal to the derivatives of f at a up to the (n-1)-degree.

Therefore, by recursive application of the l'Hospital rule,

$$\lim_{x \to a} \frac{\sum_{k=0}^{n-1} \frac{f^k(x)}{k!} (x-a)^k - f(x)}{(x-a)^n} = \lim_{x \to a} \frac{f^{n-1}(a) - f^{n-1}(x)}{n!(x-a)}$$
(3)

$$= -\frac{f^n(a)}{n!}. (4)$$

Therefore, $\lim_{x\to a} \frac{P_n(x)-f(x)}{(x-a)^n}=0$, and thus close to $x=a,\,f(x)$ behaves like $P_n(x)$. \square