

# Python para a Análise de Dados Prof. Matheus de Oliveira Mendonça





# SUMÁRIO

| Capítulo 1. | Introdução à análise de dados        | 4   |
|-------------|--------------------------------------|-----|
| Capítulo 2. | Pandas e numpy para análise de dados | 7   |
| Numpy pa    | ra análise de dados                  | 7   |
| Pandas pa   | ra análise de dados                  | 15  |
| Capítulo 3. | Introdução ao scikit-learn           | .24 |
| Introduçã   | o ao machine learning                | 25  |
| Capítulo 4. | Conclusão                            | .29 |
| Referências |                                      | .30 |





# > Capítulo 1



## Capítulo 1. Introdução à análise de dados

A análise de dados pode ser definida como processo de coleta, tratamento, análise e apresentação de dados, de forma a trazer novas informações e agregar valor ao processo de tomada de decisão de qualquer negócio (ver figura 1).

Esse processo nasce a partir de uma dor do negócio, na qual os conhecimentos empíricos não são suficientes para uma tomada de decisão assertiva e imparcial. Assim, faz-se necessária a utilização de um processo metodológico bem definido para munir o tomador de decisão com informações adicionais relevantes, muitas vezes desconhecidas até então.

Definição do problema Oual a dor? Definição do escopo Visualização Coleta de dados Visualização Etapa crucial: quanto mais dados, Story telling melhor! Análise de dados Tratamento dos dados Limpeza dos dados Interpretação dos resultados Gerar dataset para análise

Figura 1 – Ciclo de um trabalho de análise de dados

Existem diversas ferramentas para análise de dados, mas, sem dúvida alguma, o Python, em conjunto com diversas bibliotecas disponíveis,



é uma ferramenta poderosíssima que vem ganhando cada vez mais popularidade entre a comunidade científica e os desenvolvedores. A Figura 2 mostra o resultado expressivo da pesquisa conduzida pelo StackOverflow, que mostra o Python figurando entre as 5 linguagens de programação mais populares, desbancando o Java.

Figura 2 – Popularidade das linguagens de programação em 2019 no StackOverflow



Este curso dedica-se à introdução – de maneira prática – de algumas das ferramentas fundamentais de análise de dados em Python, a saber:

- 1. NumPy;
- 2. Pandas;
- 3. Scikit-learn.





# > Capítulo 2



# Capítulo 2. Pandas e numpy para análise de dados

#### Numpy para análise de dados

O numpy é uma das principais bibliotecas para computação científica em Python. Ela disponibiliza um objeto de array multidimensional de alta performance e diversas ferramentas para se trabalhar com esses objetos.

Como a maioria das bibliotecas em Python, a instalação do numpy é bem simples e pode ser executada através dos comandos:

Figura 3 – Instalação do numpy

| CONDA                                      |  |  |  |
|--------------------------------------------|--|--|--|
| If you use conda, you can install it with: |  |  |  |
| conda install numpy                        |  |  |  |
|                                            |  |  |  |
| PIP                                        |  |  |  |
| If you use pip , you can install it with:  |  |  |  |
| pip install numpy                          |  |  |  |

Fonte: <a href="https://numpy.org/install/">https://numpy.org/install/</a>

Para utilizá-la, é necessário, inicialmente, importar o pacote com o comando:

#### import numpy as np

#### Arrays

Uma array em numpy é uma grade de valores, todos do mesmo tipo, indexada por uma tupla de inteiros não negativos. O número de dimensões de uma array é chamado de rank do array; o shape de uma array é



representada através de uma tupla de inteiros, que indicam o tamanho da array em cada dimensão. A Figura a seguir ilustra alguns exemplos de arrays.

Figura 4 – Ilustração de arrays multidimensionais



Fonte: https://fgnt.github.io/python\_crashkurs\_doc/include/numpy.html

É possível criar arrays em numpy utilizando listas de Python aninhadas, e o acesso dos elementos é feito utilizando colchetes:

```
# cria um array de 2 dimensões: matrix 3x3
a = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
print("Array criado:\n", a)
print("shape:", a.shape)
Array criado:
 [[1 2 3]
 [2 3 4]
 [3 4 5]]
shape: (3, 3)
```

A biblioteca numpy também oferece várias funções para a criação de arrays:

> np.zeros(tuple): cria uma array com todos os valores iguais a O. As dimensões da array são definidas pela tupla passada por parâmetro.



- np.ones(tuple): semelhante à função acima, porém cria uma array com todos os valores iguais a 1.
- np.eye(n): cria uma matriz identidade de tamanho n x n. O tipo de *n* deve ser int.
- np.random.random(tuple): cria uma matriz com valores aleatórios. As dimensões são definidas pela tupla passada por parâmetro.
- np.linspace(start, stop, num): cria um vetor contendo num elementos, linearmente espaçados dentro do intervalo [start, stop].

Alguns exemplos de implementação estão listados a seguir:

```
# criação de uma matriz 3x2 de 0's
print("Criação de uma matriz 3x2 de 0's:")
print(np.zeros((3, 2)))
# criação de uma matriz 3x2 de 1's
print("Criação de uma matriz 3x2 de 1's:")
print(np.ones((3, 2)))
# criação de uma matriz identidade 3x3
print("Criação de uma matriz identidade 3x3:")
print(np.eye(3))
# criação de uma matriz 3x3 com números aleatórios
print("Criação de uma matriz 3x3 com números aleatórios:")
print(np.random.random((3, 3)))
Criação de uma matriz 3x2 de 0's:
[[0. 0.]
 [0. 0.]
 [0. 0.]]
Criação de uma matriz 3x2 de 1's:
[[1. 1.]
[1. 1.]
[1. 1.]]
Criação de uma matriz identidade 3x3:
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
Criação de uma matriz 3x3 com números aleatórios:
[[0.91566385 0.41521502 0.3004463 ]
 [0.94635743 0.40210197 0.58536861]
 [0.17914514 0.75828708 0.83239962]]
```



#### Indexação de arrays

Assim como listas em Python, arrays em numpy podem ser fatiadas (slicing, termo comum em inglês). Dado que arrays podem ser multidimensionais, é necessário especificar uma fatia para cada uma das dimensões da array:

```
# Criação de uma matriz bidimensional de tamanho (3, 4)
# [[ 1 2 3 4]
# [5 6 7 8]
# [ 9 10 11 12]]
print("A:")
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(A)
# indexação do array A para extracação de um sub-array consistindo
# dasa primeiras 2 linhas de A e das colunas de índice 1 e 2,
# resultando em um novo array B de tamanho (2, 2):
# [[2 3]
# [6 7]]
print("B:")
B = A[:2, 1:3]
print(B)
Α:
[[1 2 3 4]
[5 6 7 8]
[ 9 10 11 12]]
В:
[[2 3]
[6 7]]
```

Repare que um slice de uma array é uma visualização do mesmo dado, ou seja, ao alterar um slice, o dado original também será alterado:

```
# B[0, 0] aponta para a mesma posição de memória de A[0, 1]
print("A[0,1] antes:")
print(A[0, 1])
B[0, 0] = 77
print("A[0,1] depois:")
print(A[0, 1])
A[0,1] antes:
A[0,1] depois:
77
```



Para a criação de um sub-array que não compartilha memória com o array original, faz-se necessária a utilização do método copy() durante a indexação (slicing):

```
# Criação de uma matriz bidimensional de tamanho (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
# indexação do array A para extracação de um sub-array consistindo
# dasa primeiras 2 linhas de A e das colunas de índice 1 e 2,
# resultando em um novo array B de tamanho (2, 2):
# [[2 3]
# [6 7]]
B = A[:2, 1:3].copy() # slicing com cópia do objeto
# B[0, 0] agora N\bar{A}0 aponta para a mesma posição de memória de A[0, 1] print("A[0,1] antes:")
print(A[0, 1])
B[0, 0] = 77
print("A[0,1] depois:")
print(A[0, 1])
A[0,1] antes:
A[0,1] depois:
```

Funções aritméticas

Funções aritméticas básicas operam sobre cada elemento em arrays, e estão disponíveis tanto como sobrecarga de operadores quanto como funções no módulo numpy. Elas podem ser implementadas tanto entre arrays quanto entre um array e um escalar (exemplo: int e float). Exemplos:

#### – Soma:

```
# arrays
x = np.array([[1,2], [3,4]])
y = np.array([[5,6], [7,8]])
# Soma por elemento;
print("Sobrecarga de operador:")
print(x + y)
print("Função do múdulo:")
print(np.add(x, y))
print("Soma entre um array e um escalar:")
print(x + 10)
Sobrecarga de operador:
[[ 6 8]
 [10 12]]
Função do múdulo:
[[ 6 8]
 [10 12]]
Soma entre um array e um escalar:
[[11 12]
 [13 14]]
```



#### Subtração:

```
# Diferença por elemento
print (x - y)
print (np.subtract(x, y))
[[-4. -4.]
[-4. -4.]]
[[-4. -4.]
 [-4. -4.]]
```

- Multiplicação:

```
# Produto por elemento
print (x * y)
print (np.multiply(x, y))
[[ 5. 12.]
[ 21. 32.]]
[[ 5. 12.]
[ 21. 32.]]
```

Repare que o operador \* representa a multiplicação por elemento, e não a multiplicação de matrizes. Para calcular o produto interno de vetores, multiplicar um vetor por uma matriz ou multiplicar matrizes, a função utilizada é *dot*, conforme exemplificado a seguir:

```
# matrizes
x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])
# vetores
v = np.array([5, 5])
w = np.array([2, 3])
# Produto interno de vetores
print(v.dot(w))
print(np.dot(v, w))
25
25
```



```
# Produto de um vetor e uma matriz
print (x.dot(v))
print (np.dot(x, v))
[15 35]
[15 35]
# Produto de matrizes
print (x.dot(y))
print (np.dot(x, y))
[[19 22]
 [43 50]]
[[19 22]
 [43 50]]
```

Divisão:

```
# Divisão por elemento
print (x / y)
print (np.divide(x, y))
              0.33333333]
[[ 0.2
[ 0.42857143 0.5
[[ 0.2
              0.33333333
 [ 0.42857143 0.5
                        11
```

Outras operações:

```
# Raiz quadrada por elemento
print(np.sqrt(x))
[[1.
             1.41421356]
[1.73205081 2.
                       -11
# Exponenciação por elemento
print(x**2)
[[1 4]
[ 9 16]]
# Logarítmo por element
print(np.log(x))
             0.69314718]
 [1.09861229 1.38629436]]
```



#### Comparações

Comparações booleanas também são possíveis em numpy arrays e são executadas elemento por elemento, retornando um outro numpy array com o resultado da comparação. A seguir, alguns exemplos de comparações que podem ser executadas:

Maior/Maior ou igual:

```
# maior
print("Comparação maior:")
print(A > B)
print(A > s)
# maior ou igual
print("Comparação maior ou igual:")
print(A >= B)
print(A >= s)
Comparação maior:
[False True True]
[False False False]
Comparação maior ou igual:
[False True True]
[False False True]
```

– Menor/Menor ou igual:

```
# comparações booleanas
A = np.array([1, 2, 3])
B = np.array([2, 0, 2])
s = 3
# menor
print("Comparação menor:")
print(A < B)</pre>
print(A < s)
# menor ou igual
print("Comparação menor ou igual:")
print(A <= B)</pre>
print(A <= s)</pre>
Comparação menor:
[ True False False]
[ True True False]
Comparação menor ou igual:
[ True False False]
[ True True True]
```



#### – Igualdade:

```
# igual
print("Comparação de igualdade:")
print(A == B)
print(A == s)
Comparação de igualdade:
[False False False]
[False False True]
```

Indexação booleana:

```
# indexação booleana: um novo subarray contendo uma
# cópia dos elementos em que a condição de verificação se aplica
cond = A \le 2
D = A[cond]
print("A:", A)
print("condição:", cond)
print("D:", D)
A: [1 2 3]
condição: [ True True False]
D: [1 2]
```

#### Pandas para análise de dados

Pandas é um pacote em Python desenvolvido para disponibilizar estruturas de dados rápidas e flexíveis para se trabalhar com dados "relacionais" ou "rotulados" (ver Figura 5). Ele é adequado para diversos tipos de dados:

- Dados tabulares com colunas de tipos heterogêneos, como em tabelas SQL ou planilhas Excel;
- Dados de séries temporais ordenados ou não ordenados;
- Dados matriciais arbitrários, com linhas e colunas rotuladas;
- Qualquer outro tipo de conjunto de dados estatísticos ou observados. Os dados não necessariamente precisam estar rotulados para serem utilizados com a estrutura de dados do Pandas.



Columns Position Name Team Number Age **Avery Bradley Boston Celtics** 0.0 PG 25.0 John Holland **Boston Celtics** 30.0 SG 27.0 8.0 PF 29.0 Jonas Jerebko **Boston Celtics** Rows Jordan Mickey Boston Celtics NaN PF 21.0 Terry Rozier **Boston Celtics** 12.0 PG 22.0 **Boston Celtics** Jared Sullinger 7.0 C NaN 27.0 **Evan Turner Boston Celtics** 11.0 SG Data-₽G

Figura 5 – Exemplo de um DataFrame

Fonte: <a href="https://www.geeksforgeeks.org/python-Pandas-dataframe/">https://www.geeksforgeeks.org/python-Pandas-dataframe/</a>

O Pandas utiliza dois tipos principais de estruturas de dados: Series (unidimensional) e DataFrame (bidimensional), que são abstrações de vetores e matrizes, respectivamente, assim como no numpy, porém com características mais versáteis e mais próximas dos dados do mundo real. Essas duas estruturas são capazes de representar a maioria dos casos de uso em finanças, em estatística, em ciências sociais e em várias áreas da engenharia. A próxima Figura ilustra esse conceito:

Series 1 Series 2 Series 3 DataFrame Banana Mango Apple Banana Mango Apple 2 2 6 3 6 3 5 0

Figura 6 – Exemplo de um DataFrame

Fonte: http://www.datasciencemadesimple.com/create-series-in-python-Pandas/



Algumas das tarefas que o Pandas faz com eficiência são:

- Tratamento de dados faltantes (representados por NaN);
- Tamanhos mutáveis: colunas podem ser inseridas e excluídas de *DataFrames* com facilidade;
- Grupo de funcionalidades poderoso e flexível para operações de split-apply-combine, para agregar e transformar conjuntos de dados;
- Ferramentas de IO robustas para leitura de dados de arquivos como CSV, Excel, bancos de dados, além da possibilidade de se utilizar o formato HDF5;
- Entre outros.

Para leitura dos dados, existem diversas funções, a depender do formato do dado de entrada. Algumas da mais usadas estão listados abaixo:

- read\_csv: leitura de arquivos CSV;
- read\_ison: leitura de arquivos JSON;
- read\_html: leitura de arquivos HTML;
- read\_clipboard: leitura de dados da área de transferência (CTRL + C, por exemplo);
- read\_hdf: leitura de arquivos HDF5;
- read\_sql: leitura de arquivos SQL;
- read\_excel: leitura de arquivos Excel.

Uma das principais características do Pandas é a possibilidade de lidar com diferentes formatos de uma maneira muito simples e similar ao que já está implementado no numpy (slicing, indexação, comparações, etc.).



2 2020-03-01

28.5

Entre os tipos de dados suportados e como eles se relacionam com os formatos nativos do Python, têm-se:

Tabela 1 – Tipos de dados suportados no Pandas

| Pandas dtype  | Python type  | Uso                                               |
|---------------|--------------|---------------------------------------------------|
| object        | str ou mixed | Texto ou valores mistos numéricos e não-numéricos |
| int64         | int          | Números inteiros                                  |
| float64       | float        | Números ponto flutuantes                          |
| bool          | bool         | Valores True/False                                |
| datetime64    | NA           | Valores em formato de data e hora                 |
| timedelta[ns] | NA           | Diferença de dois datetimes                       |
| category      | NA           | Lista finita de texto                             |

A instalação do Pandas é análoga à instalação do numpy e, para sua utilização, basta a importação da biblioteca no ambiente de desenvolvimento, conforme descrito a seguir:

```
# importando as bibliotecas
import numpy as np
import pandas as pd
```

Para carregar uma base de dados em memória, basta utilizar um dos métodos de leitura disponíveis conforme o formato do arquivo que contém os dados a serem analisados. Segue um exemplo de leitura de um arquivo com extensão .csv:

```
# leitura dos dados
df = pd.read csv("https://pycourse.s3.amazonaws.com/temperature.csv")
# visualizando as primeiras 3 linhas
df.head(3)
        date temperatura classification
0 2020-01-01
                             quente
                   29.1
1 2020-02-01
                   31.2
                         muito quente
```

quente



Esse DataFrame possui 3 colunas dos seguintes tipos:

```
# tipos de dados
df.dtypes
date
                   object
                  float64
temperatura
classification
                   object
dtype: object
```

Note que a coluna date claramente é uma representação de datas, mas como não explicitamos na leitura do arquivo quais os tipos de cada coluna, o Pandas inferiu que essa coluna é do tipo object. Para que possamos usufruir das funcionalidades de comparações de datetimes, precisamos forçar a conversão da coluna date para o tipo datetime:

```
# transformando o tipo da coluna date para datetime
df['date'] = pd.to datetime(df['date'])
```

Também é conveniente definir qual coluna do DataFrame será utilizada como "referência" para as demais. No Pandas, essa "referência" é denominada index e é especialmente útil quando temos uma coluna de datetime, pois ela serve para determinar os labels do eixo de todos os outros objetos do *DataFrame*:

```
# setando o índice
df = df.set index('date')
# visualizando o indice
print(df.index)
DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01', '2020-05-01', '2020-06-01'],
                dtype='datetime64[ns]', name='date', freq=None)
```

Algumas das manipulações mais comuns são listadas a seguir:



#### - Estatísticas básicas:

# estatísticas básicas de dados númericos df.describe()

|       | temperatura |
|-------|-------------|
| count | 6.000000    |
| mean  | 26.800000   |
| std   | 4.075782    |
| min   | 20.000000   |
| 25%   | 25.000000   |
| 50%   | 28.250000   |
| 75%   | 28.950000   |
| max   | 31.200000   |

- Indexação por índice (método iloc):

```
# indexação por índice
# selecionado todas as linhas e a coluna 1
# coluna 1: temperatura
df.iloc[:, 1]
0
     29.1
1
     31.2
2
     28.5
3
     28.0
4
     24.0
5
     20.0
Name: temperatura, dtype: float64
```

Indexação por nome (método loc):

```
# indexação por nome
# selecionado todas as linhas e a coluna 1
df.loc[:, 'temperatura']
     29.1
0
1
     31.2
2
    28.5
3
     28.0
4
     24.0
     20.0
Name: temperatura, dtype: float64
```



### - Ordenação por coluna:

# ordenando por uma coluna
df.sort\_values(by='temperatura')

|            | temperatura | classification |
|------------|-------------|----------------|
| date       |             |                |
| 2020-06-01 | 20.0        | frio           |
| 2020-05-01 | 24.0        | confortavel    |
| 2020-04-01 | 28.0        | quente         |
| 2020-03-01 | 28.5        | quente         |
| 2020-01-01 | 29.1        | quente         |
| 2020-02-01 | 31.2        | muito quente   |

### - Ordenação por índice:

# ordenando pelo índice df.sort\_index(ascending=False)

| date       | temperatura | classification |
|------------|-------------|----------------|
| 2020-06-01 | 20.0        | frio           |
| 2020-05-01 | 24.0        | confortavel    |
| 2020-04-01 | 28.0        | quente         |
| 2020-03-01 | 28.5        | quente         |
| 2020-02-01 | 31.2        | muito quente   |
| 2020-01-01 | 29.1        | quente         |

### Indexação booleana:

# indexação booleana # seleção de exemplos acima de 25 graus
df[df['temperatura'] >= 25]

|            | temperatura | classification |
|------------|-------------|----------------|
| date       |             |                |
| 2020-01-01 | 29.1        | quente         |
| 2020-02-01 | 31.2        | muito quente   |
| 2020-03-01 | 28.5        | quente         |
| 2020-04-01 | 28.0        | quente         |



# indexação booleana considerando datetime # seleção de entradas até Março de 2020 df[df.index <= '2020-03-01']

|            | temperatura | classification |
|------------|-------------|----------------|
| date       |             |                |
| 2020-01-01 | 29.1        | quente         |
| 2020-02-01 | 31.2        | muito quente   |
| 2020-03-01 | 28.5        | quente         |

- Visualização: além de ser escrito em cima do numpy, o Pandas também herda os métodos de visualização do matplotlib, uma biblioteca de visualização de dados muito versátil e utilizada. Alguns plots podem ser feitos com apenas uma linha de código no Pandas:

# plot de linhas df.plot(style='-o', figsize=(10, 5), grid=True);



df['classification'].value\_counts().plot.pie(autopct='%1.1f%', shadow=True,
figsize=(10, 7));







# > Capítulo 3



### Capítulo 3. Introdução ao scikit-learn

O scikit-learn é um dos mais utilizados frameworks de aprendizado de máquinas em Python. Ele possui interfaces para a execução de diversas atividades inerentes às atividades de um cientista de dados:

- Classificação: identificação de qual categoria um novo exemplo pertence.
- Regressão: predição de um valor contínuo associado a um determinado exemplo.
- Agrupamento: agrupamento automático de exemplos em conjuntos.
- Redução de dimensionalidade: redução do número de variáveis presentes em um dataset.
- Seleção de modelos: comparação, validação e calibração de parâmetros de modelos.
- Pré-processamento: extração/seleção de atributos, normalização e tratamento de dados faltantes.

Para exemplificação, resolveremos um problema simples de machine learning baseado no dataset que estamos utilizando até o momento:

| temperatura | classification |
|-------------|----------------|
|             |                |
| 20.0        | frio           |
| 24.0        | confortavel    |
| 28.0        | quente         |
| 28.5        | quente         |
| 31.2        | muito quente   |
| 29.1        | quente         |



Baseado nesse conjunto de seis exemplos de pares (temperatura, classification), treinaremos um modelo para nos dizer qual será a classificação de uma temperatura que não está presente nessa tabela. Exemplo: para a temperatura de 9°C, qual classificação o modelo irá retornar? Esperamos que seja frio...

O modelo matemático irá aprender, a partir dessa pequena base de dados, a inferir (generalizar) a classificação de uma temperatura nunca vista antes pelo modelo. Daí o nome aprendizado de máquinas.

#### Introdução ao machine learning

No scikit-learn, é comum adotar a nomenclatura x para variáveis preditoras e y para a variável alvo. No nosso exemplo, x é a temperatura e y é a classificação. Sendo assim, o seguinte trecho de código executa esse slicing.

```
# extração de x e y
x, y = df[['temperatura']].values, df[['classification']].values
print("x:\n", x)
print("y:\n", y)
 [[29.1]
 [31.2]
 [28.5]
 [28.]
 [24.]
 [20.]]
 [['quente']
 ['muito quente']
 ['quente']
 ['quente']
 ['confortavel']
 ['frio']]
```

Observe que a variável resposta é uma string, mas modelos matemáticos necessitam de valores numéricos para funcionarem. Sendo assim, umas das funcionalidades presentes no scikit-learn é a codificação de variáveis categóricas em variáveis numéricas, que pode ser feita pelo seguinte trecho:



```
# pré-processamento
from sklearn.preprocessing import LabelEncoder
# conversão de y para valores numéricos
le = LabelEncoder()
y = le.fit transform(y.ravel())
print("y:\n", y)
 [3 2 3 3 0 1]
```

Após o pré-processamento, partiremos para o treinamento do modelo. (Existem outras etapas em um fluxo normal de machine learning. Aqui, para fins de exemplificação, não as realizaremos):

```
# modelo
from sklearn.linear model import LogisticRegression
# classificador
clf = LogisticRegression()
clf.fit(x, y)
```

Com o modelo treinado, podemos inferir a classificação de novas temperaturas. Para isso, iremos gerar uma sequência de 100 valores de temperatura entre 0 e 45 para avaliarmos o resultado da generalização do modelo:

```
# gerando 100 valores de temperatura
# linearmente espaçados entre 0 e 45
predição em novos valores de temperatura
x test = np.linspace(start=0., stop=45., num=100).reshape(-1, 1)
# predição desses valores
y pred = clf.predict(x test)
```

De posse da predição, podemos realizar a conversão inversa dos valores numéricos de y para os seus valores originais (frio, confortável, quente, muito quente):

```
# conversão de y pred para os valores originais
y pred = le.inverse transform(y pred)
```

Salvando os resultados em um DataFrame:



```
# output
output = {'new temp': x test.ravel(),
         'new_class': y_pred.ravel()}
output = pd.DataFrame(output)
# estatisticas
output.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 2 columns):
new temp
             100 non-null float64
new class
             100 non-null object
dtypes: float64(1), object(1)
memory usage: 1.7+ KB
```

De posse dos resultados, vamos visualizar as classificações inferidas pelo modelo através de um plot de caixa (boxplot, em inglês), que nos mostra a distribuição dos valores de cada uma das classes para o novo conjunto de valores de temperatura gerados. Observe que o comportamento está como o esperado e que o modelo conseguiu aprender corretamente partindo de uma base de dados bem pequena.

```
# distribuição do output produzido
# conseguimos inferir a classificação novas temperaturas
# a partir de um dataset com 6 exemplos
output.boxplot(by='new class', figsize=(10, 5));
```







# > Capítulo 4



# Capítulo 4. Conclusão

Esse módulo dedicou-se à introdução de conceitos fundamentais da análise de dados e apresentou 2 das bibliotecas mais utilizadas no cotidiano de um profissional de dados: Pandas e numpy. Além disso, foi apresentada de forma simplificada a ideia de geral de um problema de aprendizado de máquinas, através da resolução de um problema de classificação com a biblioteca scikit-learn.



#### Referências

JAMES, G. et al. An introduction to statistical learning. New York: Springer, 2013.

NUMPY. Disponível em: <a href="https://numpy.org/">https://numpy.org/</a>. Acesso em: 01 abr. 2022.

PANDAS. Disponível em: <a href="https://Pandas.pydata.org/">https://Pandas.pydata.org/</a>. Acesso em: 01 abr. 2022.

SCIKIT-LEARN. Disponível em: <a href="https://scikit-learn.org/stable/">https://scikit-learn.org/stable/</a>. Acesso em: 01 abr. 2022.