## BoolNet Inference MCF-7 breast (GSE47533)

Integrated analysis of microRNA and mRNA expression and association with HIF binding in MCF-7 cells under hypoxia (GSE47533)

Camps C, Saini HK, Mole DR, Choudhry H et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer 2014 Feb 11;13:28. PMID: 24517586

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47533

This SuperSeries is composed of the following SubSeries:

GSE47532 MCF-7 cells under hypoxia [miRNA] - Samples (11) - 822 miRNA

GSE47533 MCF-7 cells under hypoxia [mRNA] - GPL6884 - Samples (12)

GSE47602 MCF-7 cells under hypoxia (miRNA-Seq) - Samples (8) - missing

```
packages_cran = c("igraph", "BoolNet", "BiocManager", "tidyverse", "fs", "ff", "effectsize")
# Install and load packages
package.check <- lapply(packages_cran, FUN = function(x) {</pre>
  if (!require(x, character.only = TRUE)) {
    install.packages(x, dependencies = TRUE)
   library(x, character.only = TRUE)
 }
})
# For oligo and ArrayExpress First install:
#install.packages('https://cran.r-project.org/src/contrib/Archive/ff/ff_2.2-14.tar.gz',repos=NULL)
# packages_bioconductor = c("Biobase", "GEOquery", "affyPLM", "ArrayExpress", "illuminaHumanv3.db")
# # Install and load packages
# package.check <- lapply(packages_bioconductor, FUN = function(x) {</pre>
    if (!require(x, character.only = TRUE)) {
      BiocManager::install(x, dependencies = TRUE)
#
      library(x, character.only = TRUE)
#
   7
# })
rm(package.check, packages_bioconductor, packages_cran)
```

### Load the pre-processed data

```
load("../data/data.GSE47533.Rdata")
cols <- colnames(expr.GSE47533)
rows <- rownames(expr.GSE47533)
expr.GSE47533 <- as.data.frame(matrix(effectsize::normalize(as.matrix(expr.GSE47533)), ncol = length(co
colnames(expr.GSE47533) <- cols
rownames(expr.GSE47533) <- rows</pre>
```

#### Selecting the HIF Genes

```
# Selected genes from HIF Axis
hif.symbols <- c("TP53", "HIF1A", "EP300", "MDM2", "VHL")
hif.probes <- anno.GSE47533$probes[anno.GSE47533$symbol %in% hif.symbols]

# Select the probes and genes
expr.GSE47533.hif <- data.frame(expr.GSE47533) %>%
   rownames_to_column('probes') %>%
   filter(probes %in% hif.probes) %>%
   merge(anno.GSE47533[anno.GSE47533$symbol %in% hif.symbols, c("probes", "symbol")], by = "probes") %>%
   #distinct(symbol, .keep_all = TRUE) %>% # Take the first one
   dplyr::select(!(probes)) %>%
   arrange(symbol)
```

### Example of Binarizing

| symbol | No.0.MC   | Hy.16h.MC | Hy.32h.MC | Hy.48h.MC |
|--------|-----------|-----------|-----------|-----------|
| EP300  | 0.3905888 | 0.4059010 | 0.3807511 | 0.3843123 |
| HIF1A  | 0.3425241 | 0.2580229 | 0.2966044 | 0.3318575 |
| HIF1A  | 0.4544587 | 0.3946856 | 0.4195721 | 0.4575903 |
| HIF1A  | 0.3373892 | 0.2539398 | 0.3155750 | 0.3127921 |
| MDM2   | 0.2387532 | 0.2707557 | 0.2344911 | 0.2914341 |
| MDM2   | 0.1046909 | 0.0953542 | 0.1050768 | 0.1024391 |
| MDM2   | 0.0802744 | 0.0708871 | 0.0802306 | 0.0856708 |
| TP53   | 0.4333610 | 0.4631014 | 0.4197433 | 0.4349020 |
| VHL    | 0.2860114 | 0.2518470 | 0.2895173 | 0.3811038 |
| VHL    | 0.6636049 | 0.6479165 | 0.6242634 | 0.6568183 |
| VHL    | 0.4648981 | 0.4494688 | 0.4277231 | 0.4031015 |
| VHL    | 0.4393973 | 0.3727216 | 0.4281843 | 0.4088407 |

```
binarizeTimeSeries(breast1_MCF7[,-1], method="kmeans")$binarizedMeasurements %>%
  data.frame(.) %>%
  add_column(symbol = breast1_MCF7$symbol, .before=0) %>%
  knitr::kable(.)
```

| symbol | No.0.MC | Hy.16h.MC | Hy.32h.MC | Hy.48h.MC |
|--------|---------|-----------|-----------|-----------|
| EP300  | 0       | 1         | 0         | 0         |
| HIF1A  | 1       | 0         | 0         | 1         |
| HIF1A  | 1       | 0         | 0         | 1         |
| HIF1A  | 1       | 0         | 1         | 1         |
| MDM2   | 0       | 1         | 0         | 1         |
| MDM2   | 1       | 0         | 1         | 1         |
| MDM2   | 1       | 0         | 1         | 1         |
| TP53   | 0       | 1         | 0         | 0         |
| VHL    | 0       | 0         | 0         | 1         |
| VHL    | 1       | 1         | 0         | 1         |
| VHL    | 1       | 1         | 0         | 0         |
| VHL    | 1       | 0         | 1         | 1         |

```
binarizeTimeSeries(breast1_MCF7[,-1], method="kmeans")$binarizedMeasurements %>%
  data.frame(.) %>%
  aggregate(., list(symbol = breast1 MCF7$symbol), mean) %>%
 mutate_at(vars(-symbol), funs(ifelse(. >= 0.5, 1, 0))) %>%
 rbind(., c("02", 1,0,0,0)) %>%
 knitr::kable(.)
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
     # Simple named list:
##
##
     list(mean = mean, median = median)
##
     # Auto named with `tibble::lst()`:
##
    tibble::lst(mean, median)
##
##
##
    # Using lambdas
    list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
```

| symbol | No.0.MC | Hy.16h.MC | ${ m Hy.32h.MC}$ | Hy.48h.MC |
|--------|---------|-----------|------------------|-----------|
| EP300  | 0       | 1         | 0                | 0         |
| HIF1A  | 1       | 0         | 0                | 1         |
| MDM2   | 1       | 0         | 1                | 1         |
| TP53   | 0       | 1         | 0                | 0         |
| VHL    | 1       | 1         | 0                | 1         |
| O2     | 1       | 0         | 0                | 0         |

```
# Function to binarize according an consensus mean of probes, add the O2 state and rename
binNet <- function(b){

cols <- data.GSE47533$codes %in% names(b)

binarizeTimeSeries(b[,-1], method="kmeans")$binarizedMeasurements %>%

as.data.frame(.) %>%

aggregate(., list(symbol = b$symbol), mean) %>% # mean of binarized probes
```

```
mutate_at(vars(-symbol), funs(ifelse(. >= 0.5, 1, 0))) %>% # consensus with a bies to 1 (>= 0.5)
  rbind(., c("02", 1,0,0,0)) %>%
   rename_at(vars(data.GSE47533$codes[cols]),
            ~paste0(substr(data.GSE47533$condition[cols],1,2),".",
                    data.GSE47533$time[cols],".",
                    substr(data.GSE47533$cell_line[cols],1,2), ".",
                    data.GSE47533$rep[cols])) %>%
  column to rownames("symbol")
}
breast_MCF7.1 <-</pre>
expr.GSE47533.hif %>%
  dplyr::select(c("symbol", data.GSE47533$codes[data.GSE47533$rep == 1])) %>%
  binNet(.)
breast_MCF7.2 <-</pre>
expr.GSE47533.hif %>%
  dplyr::select(c("symbol", data.GSE47533$codes[data.GSE47533$rep == 2])) %>%
  binNet(.)
breast_MCF7.3 <-</pre>
expr.GSE47533.hif %>%
  dplyr::select(c("symbol", data.GSE47533$codes[data.GSE47533$rep == 3])) %>%
  binNet(.)
breast MCF7.mean <-
cbind(breast_MCF7.1, breast_MCF7.2,breast_MCF7.3) %>%
  tibble::rownames_to_column('gene') %>%
  mutate_at(vars(-gene), as.numeric) %>%
  mutate(No.0.MC = rowMeans(select(.,starts_with("No.0.MC")), na.rm = TRUE)) %>%
  mutate(Hy.16h.MC = rowMeans(select(.,starts_with("Hy.16h.MC")), na.rm = TRUE)) %>%
  mutate(Hy.32h.MC = rowMeans(select(.,starts_with("Hy.32h.MC")), na.rm = TRUE)) %>%
  mutate(Hy.48h.MC = rowMeans(select(.,starts_with("Hy.48h.MC")), na.rm = TRUE)) %>%
  dplyr::select(c("No.0.MC", "Hy.16h.MC", "Hy.32h.MC", "Hy.48h.MC", "gene")) %>%
  mutate_at(c("No.0.MC", "Hy.16h.MC", "Hy.32h.MC", "Hy.48h.MC"), funs(ifelse(. >= 0.5, 1, 0))) %>% #
  tibble::column_to_rownames('gene')
# All breast cancer nets merged:
all.nets <- reconstructNetwork(list(breast MCF7.1, breast MCF7.2, breast MCF7.3),
                               method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
all.p <- plotNetworkWiring(all.nets, plotIt=F)</pre>
# Mean of replicate breast cancer net :
mean.net <- reconstructNetwork(breast_MCF7.mean,</pre>
                               method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
```

#### MCF7 breast cancer

```
# MCF7 breast cancer - 4 time-points
breast_MCF7.1.net <- reconstructNetwork(breast_MCF7.1, method="bestfit",returnPBN=TRUE,readableFunction
breast_MCF7.2.net <- reconstructNetwork(breast_MCF7.2, method="bestfit",returnPBN=TRUE,readableFunction
breast_MCF7.3.net <- reconstructNetwork(breast_MCF7.3, method="bestfit",returnPBN=TRUE,readableFunction
breast_MCF7.1.p <- plotNetworkWiring(breast_MCF7.1.net, plotIt=F)</pre>
breast_MCF7.2.p <- plotNetworkWiring(breast_MCF7.2.net, plotIt=F)</pre>
breast_MCF7.3.p <- plotNetworkWiring(breast_MCF7.3.net, plotIt=F)</pre>
# MCF7 breast - 4 steps, replicate 1
print(breast_MCF7.1.net)
## Probabilistic Boolean network with 6 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL O2
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = (02) ( probability: 0.5, error: 0)
## EP300 = (HIF1A) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene HIF1A:
## HIF1A = (!VHL) ( probability: 1, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (!02) ( probability: 0.5, error: 0)
## MDM2 = (!HIF1A) ( probability: 0.5, error: 0)
## Alternative transition functions for gene TP53:
## TP53 = (02) ( probability: 0.5, error: 0)
## TP53 = (HIF1A) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene VHL:
```

```
## VHL = (!TP53) ( probability: 0.3333333, error: 0)
## VHL = (MDM2) ( probability: 0.3333333, error: 0)
## VHL = (!EP300) ( probability: 0.3333333, error: 0)
##
## Alternative transition functions for gene 02:
## 02 = 0 (probability: 1, error: 0)
## Knocked-out and over-expressed genes:
## 02 = 0
# MCF7 breast - 4 steps, replicate 2
print(breast_MCF7.2.net)
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
## Transition functions:
## Alternative transition functions for gene EP300:
## EP300 = (MDM2) ( probability: 1, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = (!TP53) ( probability: 0.5, error: 0)
## HIF1A = (EP300) ( probability: 0.5, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (02) ( probability: 0.3333333, error: 0)
## MDM2 = (VHL) ( probability: 0.3333333, error: 0)
## MDM2 = (HIF1A) ( probability: 0.3333333, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = (02) ( probability: 0.3333333, error: 0)
## TP53 = (VHL) ( probability: 0.3333333, error: 0)
## TP53 = (HIF1A) ( probability: 0.3333333, error: 0)
## Alternative transition functions for gene VHL:
## VHL = (!TP53) ( probability: 0.5, error: 0)
## VHL = (EP300) ( probability: 0.5, error: 0)
## Alternative transition functions for gene 02:
## 02 = 0 ( probability: 1, error: 0)
## Knocked-out and over-expressed genes:
## 02 = 0
# MCF7 breast - 4 steps, replicate 3
print(breast_MCF7.3.net)
## Probabilistic Boolean network with 6 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL O2
## Transition functions:
```

```
## Alternative transition functions for gene EP300:
## EP300 = (!EP300 & !O2) ( probability: 0.1666667, error: 0)
## EP300 = (!EP300 & !O2) | (EP300 & O2) ( probability: 0.1666667, error: 0)
## EP300 = (!EP300 & !VHL) ( probability: 0.1666667, error: 0)
## EP300 = (!EP300 & !VHL) | (EP300 & VHL) ( probability: 0.1666667, error: 0)
## EP300 = (!EP300 & !HIF1A) ( probability: 0.1666667, error: 0)
## EP300 = (!EP300 & !HIF1A) | (EP300 & HIF1A) ( probability: 0.1666667, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = (EP300) ( probability: 1, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (EP300) ( probability: 1, error: 0)
## Alternative transition functions for gene TP53:
## TP53 = (!EP300) ( probability: 1, error: 0)
##
## Alternative transition functions for gene VHL:
## VHL = (EP300) ( probability: 1, error: 0)
## Alternative transition functions for gene 02:
## 02 = 0 (probability: 1, error: 0)
## Knocked-out and over-expressed genes:
# MCF7 breast - 4 steps, all replicates
print(all.nets)
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
## Transition functions:
## Alternative transition functions for gene EP300:
## EP300 = (!EP300 & !TP53 & 02) | (!EP300 & TP53 & !O2) ( probability: 0.1, error: 0)
## EP300 = (!EP300 & !TP53 & 02) | (!EP300 & TP53 & !O2) | (EP300 & TP53 & O2) ( probability: 0.1, erro
## EP300 = (!TP53 & O2) | (!EP300 & TP53 & !O2) ( probability: 0.1, error: 0)
## EP300 = (!TP53 & O2) | (!EP300 & TP53 & !O2) | (EP300 & O2) ( probability: 0.1, error: 0)
## EP300 = (!EP300 & !TP53 & VHL) | (!EP300 & TP53 & !VHL) ( probability: 0.1, error: 0)
## EP300 = (!TP53 & VHL) | (!EP300 & TP53 & !VHL) ( probability: 0.1, error: 0)
## EP300 = (!EP300 & !HIF1A & TP53) | (!EP300 & HIF1A & !TP53) ( probability: 0.1, error: 0)
## EP300 = (!EP300 & !HIF1A & TP53) | (!EP300 & HIF1A & !TP53) | (EP300 & HIF1A & TP53) ( probability:
## EP300 = (!EP300 & !HIF1A & TP53) | (HIF1A & !TP53) ( probability: 0.1, error: 0)
## EP300 = (!EP300 & !HIF1A & TP53) | (HIF1A & !TP53) | (EP300 & HIF1A) ( probability: 0.1, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = (!TP53 & !VHL) | (EP300 & !VHL) ( probability: 0.5, error: 0)
## HIF1A = (!TP53 & !VHL) | (EP300 & !TP53) | (EP300 & !VHL) ( probability: 0.5, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (!EP300 & !TP53 & !O2) | (EP300 & TP53 & !O2) ( probability: 0.05, error: 1)
```

```
## MDM2 = (!EP300 & !TP53 & !O2) | (EP300 & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !TP53 & !O2) | (EP300 & !TP53 & O2) | (EP300 & TP53 & !O2) ( probability: 0.05, err
## MDM2 = (!EP300 & !TP53 & !O2) | (EP300 & O2) | (EP300 & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !TP53 & !O2) | (!EP300 & TP53 & O2) | (EP300 & TP53 & !O2) ( probability: 0.05, err
## MDM2 = (!EP300 & !TP53 & !O2) | (TP53 & O2) | (EP300 & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !TP53 & !O2) | (!EP300 & TP53 & O2) | (EP300 & !TP53 & O2) | (EP300 & TP53 & !O2) (
## MDM2 = (!EP300 & !TP53 & !O2) | (TP53 & O2) | (EP300 & O2) | (EP300 & TP53) ( probability: 0.05, err
## MDM2 = (!EP300 & !TP53 & !VHL) | (EP300 & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !TP53 & !VHL) | (EP300 & VHL) | (EP300 & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !TP53 & !VHL) | (TP53 & VHL) | (EP300 & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !TP53 & !VHL) | (TP53 & VHL) | (EP300 & VHL) | (EP300 & TP53) ( probability: 0.05,
## MDM2 = (!EP300 & !HIF1A & !TP53) | (EP300 & !HIF1A & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !HIF1A & !TP53) | (EP300 & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !HIF1A & !TP53) | (EP300 & !HIF1A & TP53) | (EP300 & HIF1A & !TP53) ( probability:
## MDM2 = (!EP300 & !HIF1A & !TP53) | (EP300 & TP53) | (EP300 & HIF1A) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !HIF1A & !TP53) | (!EP300 & HIF1A & TP53) | (EP300 & !HIF1A & TP53) ( probability:
## MDM2 = (!EP300 & !HIF1A & !TP53) | (HIF1A & TP53) | (EP300 & TP53) ( probability: 0.05, error: 1)
## MDM2 = (!EP300 & !HIF1A & !TP53) | (!EP300 & HIF1A & TP53) | (EP300 & !HIF1A & TP53) | (EP300 & HIF1A
## MDM2 = (!EP300 & !HIF1A & !TP53) | (HIF1A & TP53) | (EP300 & TP53) | (EP300 & HIF1A) ( probability:
## Alternative transition functions for gene TP53:
## TP53 = (!EP300 & !MDM2) | (!EP300 & 02) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (MDM2 & O2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & 02) | (EP300 & MDM2 & !O2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (MDM2 & 02) | (EP300 & MDM2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & 02) | (!MDM2 & 02) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (02) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & 02) | (!MDM2 & 02) | (EP300 & MDM2 & !O2) ( probability: 0.05, e
## TP53 = (!EP300 & !MDM2) | (02) | (EP300 & MDM2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & VHL) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (MDM2 & VHL) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & VHL) | (EP300 & MDM2 & !VHL) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (MDM2 & VHL) | (EP300 & MDM2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & HIF1A) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (HIF1A & MDM2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & HIF1A) | (HIF1A & !MDM2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (HIF1A) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & HIF1A) | (EP300 & !HIF1A & MDM2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (HIF1A & MDM2) | (EP300 & MDM2) ( probability: 0.05, error: 0)
## TP53 = (!EP300 & !MDM2) | (!EP300 & HIF1A) | (EP300 & !HIF1A & MDM2) | (HIF1A & !MDM2) ( probability
## TP53 = (!EP300 & !MDM2) | (HIF1A) | (EP300 & MDM2) ( probability: 0.05, error: 0)
## Alternative transition functions for gene VHL:
## VHL = (!TP53 & !VHL) | (!EP300 & !TP53) | (EP300 & !VHL) ( probability: 0.5, error: 0)
## VHL = (!TP53) | (EP300 & !VHL) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene 02:
## 02 = 0 (probability: 1, error: 0)
## Knocked-out and over-expressed genes:
## 02 = 0
# MCF7 breast - 4 steps, all replicates
print(mean.net)
```

```
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL O2
## Transition functions:
## Alternative transition functions for gene EP300:
## EP300 = (TP53 & !O2) ( probability: 0.08333333, error: 0)
## EP300 = (!TP53 & 02) | (TP53 & !02) ( probability: 0.08333333, error: 0)
## EP300 = (TP53 & !VHL) ( probability: 0.08333333, error: 0)
## EP300 = (!TP53 & VHL) | (TP53 & !VHL) ( probability: 0.08333333, error: 0)
## EP300 = (!HIF1A & TP53) ( probability: 0.08333333, error: 0)
## EP300 = (!HIF1A & TP53) | (HIF1A & !TP53) ( probability: 0.08333333, error: 0)
## EP300 = (!EP300 & !O2) ( probability: 0.08333333, error: 0)
## EP300 = (!EP300 & !O2) | (EP300 & O2) ( probability: 0.08333333, error: 0)
## EP300 = (!EP300 & !VHL) ( probability: 0.08333333, error: 0)
## EP300 = (!EP300 & !VHL) | (EP300 & VHL) ( probability: 0.08333333, error: 0)
## EP300 = (!EP300 & !HIF1A) ( probability: 0.08333333, error: 0)
## EP300 = (!EP300 & !HIF1A) | (EP300 & HIF1A) ( probability: 0.08333333, error: 0)
##
## Alternative transition functions for gene HIF1A:
## HIF1A = (!TP53) ( probability: 0.5, error: 0)
## HIF1A = (EP300) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene MDM2:
## MDM2 = (!TP53) ( probability: 0.5, error: 0)
## MDM2 = (EP300) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = (02) ( probability: 0.3333333, error: 0)
## TP53 = (VHL) ( probability: 0.3333333, error: 0)
## TP53 = (HIF1A) ( probability: 0.3333333, error: 0)
##
## Alternative transition functions for gene VHL:
## VHL = (!TP53) ( probability: 0.5, error: 0)
## VHL = (EP300) ( probability: 0.5, error: 0)
## Alternative transition functions for gene 02:
## 02 = 0 (probability: 1, error: 0)
## Knocked-out and over-expressed genes:
# MCF7 breast cancer - 4 time-points
par(mfrow = c(1,3))
plot(breast_MCF7.1.p, vertex.label.color="#440154ff", vertex.color="lightblue", vertex.frame.color="whi
     main="MCF7 breast\n 4 time-points, replicate 1")
plot(breast_MCF7.2.p, vertex.label.color="#440154ff", vertex.color="lightblue", vertex.frame.color="whi
     main="MCF7 breast\n 4 time-points, replicate 2")
plot(breast_MCF7.3.p, vertex.label.color="#440154ff", vertex.color="lightblue", vertex.frame.color="whi
     main="MCF7 breast\n 4 time-points, replicate 3")
```

## MCF7 breast 4 time-points, replicate 1

## MCF7 breast 4 time-points, replicate 2

MCF7 breast 4 time-points, replicate 3



## MCF7 breast 4 time-points, all replicates



## MCF7 breast 4 time-points, Mean replicates



# MCF7 breast 4 time-points, without O2



# MCF7 breast 3 time-points, without Normoxia time-point

