

Predictive Modeling

ACSC412/512

Fall 2017

Richard Xu

- About me Richard (Qichun) Xu, PhD, FSA
 - education background
 - work experience
- Course syllabus
 - Goals & Over view
 - Time, schedule
 - Homework; communication
 - Question?
- Today's contents
 - 1. Predictive Modeling Introduction
 - Review of Ordinary Least Squares & maximum likelihood; why OLS is not effective in insurance
 - 3. Introduction of R

Introduction

Know where to find the information and how to use it - That's the secret of success

Albert Einstein

What is Predictive Modeling?

What?

Data
High quality data

2 Modeling
Statistical model

Prediction

Business decisions

Why?

- Grow Business
 - Identify potential customers, new & existing
 - Create demand of insurance products
 - Enhance sales process
- Improve efficiency
 - Accurate & granular view of driven risk factors
 - Better risk selection
 - Improve pricing capabilities
- Create an advantage hard for competitors to replicate

PM is about statistics, but more about data & business

- What about "data mining"?
- Heard about "Big Data"?
 - 3Vs Volume, Velocity, Varity
 - Structured vs. unstructured
 - How about insurance application?
- Why statistical modeling?
- Actuary, data scientist, etc.
- Correlation vs. causation

Why are Predictive Analytics becoming so popular?

Increasing ease of access to enablers plus demand pull

Data Sources

Financial & Socioeconomic Data

Property Ownership Income & Wealth

Banking Data Financial Credit

Data

Insurance

Data

Medical

Prescription
Histories

Laboratory Profiles

Third-Party Data (MIB)

Physician Reports/EHR

(Potential) Customer

Application Disclosures

Underwriting Data

Policy values

Claim/Lapse Experience

Consumer Spending

Driving Violations

Hobbies & Interests

Physical Activity

Behavioral & Lifestyle Data

Build Models & Make Predictions

- Likelihood to buy new product
- ✓ Probability to qualify for new product by SI/GI
- ✓ Likelihood to lapse
- ✓ Likelihood to be fraudulent
 - ✓ ...and more

Opportunity

Underwriting

Identify best risks

Be fast & consistent

Prioritize cases

Reduce not-taken rates

Claims

Predict claim frequency
Identify claim severity
Prioritize resources
Identify claims most likely
fraudulent/rescinded

Pricing/ Reserves

Improve pricing accuracy

Identify deviation of pricing variables

Reserve more accurate

Compute reserve variance

Experience Analysis

Identify drivers in experience
Handle low credibility data
Create own mortality/lapse
tables

Sales & Marketing

Make effective campaigns
Recommend products
Select new agents
Monitor existing agents

In Force Business

Predict lapses

Design retention strategies

Offer other products

- Regression study
 - Linear(OLS), general linear
 - Generalized LM (GLM)
 - Survival Models (Cox Proportional Hazard)
 - Generalized Additive Models (GAM)
 - Multilevel/Hierarchical Linear Model(HLM)
- Time series analysis
- Some other advanced tools
 - Data clustering similarity between data
 - Decision tree based: CART, Random Forest, MARS, Ada-Boosting, etc.
 - Other machine learning algorithms
 - Neural network, Genetic programming, Support vector machine,
 Bayesian inference, Cluster analysis, K-nearest neighbor

Terminology

- Supervised vs. Unsupervised Learning
 - Supervised: estimate expected value of Y given values of X.
 - GLM(OLS), Cox, CART, MARS, Random Forests, SVM, NN, etc.
 - Unsupervised: find interesting patterns amongst X; no target variable
 - Clustering, Correlation / Principal Components / Factor Analysis

Classification vs. Regression

- Classification: to segment observations into 2 or more categories
 - GLM, CART, RF, SVM, NN
- Regression: to predict a continuous amount.
 - GLM(OLS), COX, SVM,

Parametric vs. Non-Parametric

- Parametric Statistics: probabilistic model of data
 - GLM
- Non-Parametric Statistics: no probability model specified
 - classification trees, NN