Summary of Equations to Accompany

INTRODUCTORY CIRCUIT ANALYSIS, Thirteenth Edition, by Robert L. Boylestad

© Copyright 2016 by Pearson Education. All Rights Reserved.

ac

Sinusoidal Alternating Waveforms

Sine wave $v = V_m \sin \alpha$, $\alpha = \omega t = 2\pi f t$, f = 1/T, $1 \text{ radian} = 57.3^\circ$, radians = $(\pi/180^\circ) \times (\text{degrees})$, degrees = $(180^\circ/\pi) \times (\text{radians})$ Identities $\sin(\omega t + 90^\circ) = \cos \omega t$, $\sin \omega t = \cos(\omega t - (\pi/2))$, $\sin(-\alpha) = -\sin \alpha$, $\cos(-\alpha) = \cos \alpha$ Average value G = algebraic sum of areas/length of curveEffective (rms) value $I_{\text{rms}} = 0.707 I_m$, $I_m = \sqrt{2} I_{\text{rms}}$, $I_{\text{rms}} = \sqrt{4} = \frac{1}{2} [i(t)]^2 I_{\text{rms}}$

The Basic Elements and Phasors

R: $I_m = V_m/R$, in phase L: $X_L = \omega L$, v_L leads i_L by 90° C: $X_C = 1/\omega C$, i_C leads v_C by 90° Power $P = (V_m I_m/2)\cos\theta = V_{rms}I_{rms}\cos\theta$ R: $P = V_{rms}I_{rms} = I_{rms}^2R = V_{rms}^2R$ Power factor $F_p = \cos\theta = P/V_{rms}I_{rms}$ Rectangular form $C = A \pm jB$ Polar form $C = C \angle \theta$ Conversions $C = \sqrt{A^2 + B^2}$, $\theta = \tan^{-1}(B/A)$, $A = C\cos\theta$, $B = C\sin\theta$ Operations $f = \sqrt{-1}$, $f^2 = -1$, f = -1, f =

Series and Parallel ac Circuits

Elements $R \angle 0^{\circ}$, $X_L \angle 90^{\circ}$, $X_C \angle -90^{\circ}$ Series $Z_T = Z_1 + Z_2 + Z_3 + \cdots + Z_N$, $I_s = E/Z_T$, $F_p = R/Z_T$ Voltage divider rule $V_x = Z_x E/Z_T$ Parallel $Y_T = Y_1 + Y_2 + Y_3 + \cdots + Y_N$, $Z_T = Z_1 Z_2/(Z_1 + Z_2)$, $G \angle 0^{\circ}$, $B_L \angle -90^{\circ}$, $B_C \angle 90^{\circ}$, $F_p = \cos \theta_T = G/Y_T$ Current divider rule $I_1 = Z_2 I_T/(Z_1 + Z_2)$, $I_2 = Z_1 I_T/(Z_1 + Z_2)$ Equivalent circuits $R_s = R_p X_p^2/(X_p^2 + R_p^2)$, $X_s = R_p^2 X_p/(X_p^2 + R_p^2)$, $R_p = (R_s^2 + X_s^2)/R_s$, $X_p = (R_s^2 + X_s^2)/R_s$

Series-Parallel ac Networks:

Employ block impedances and obtain general solution for reduced network. Then substitute numerical values. General approach similar to that for dc networks.

Methods of Analysis and Selected Topics (ac)

Source conversions $E = IZ_p, Z_s = Z_p, I = E/Z_s$ Bridge networks $Z_1/Z_3 = Z_2/Z_4$ Δ -Y, Y- Δ conversions See dc coverage, replacing R by Z.

Network Theorems

Review dc content on other side.

Thévenin's theorem (dependent sources) $\mathbf{E}_{oc} = \mathbf{E}_{Th}$, $\mathbf{Z}_{Th} = \mathbf{E}_{oc}/\mathbf{I}_{sc}$, $\mathbf{Z}_{Th} = \mathbf{E}_{g}/\mathbf{I}_{g}$ Norton's theorem (dependent sources) $\mathbf{I}_{sc} = \mathbf{I}_{N}$, $\mathbf{Z}_{N} = \mathbf{E}_{oc}/\mathbf{I}_{sc}$, $\mathbf{Z}_{N} = \mathbf{E}_{g}/\mathbf{I}_{g}$ Maximum power transfer theorem $\mathbf{Z}_{L} = \mathbf{Z}_{Th}$, $\theta_{L} = -\theta_{Th}$, $\rho_{L} = -\theta_{Th}$, $\rho_{$

Power (ac)

R: $P = VI = V_m I_m / 2 = l^2 R = V^2 / R$ Apparent power S = VI, $P = S \cos \theta$, $F_p = \cos \theta = P / S$ Reactive power $Q = VI \sin \theta$ L: $Q_L = VI = l^2 X_L = V^2 / X_L$, C: $Q_C = VI = l^2 X_C = V^2 / X_C$, $S_T = \sqrt{P_T^2 + Q_T^2}$, $F_p = P_T / S_T$

Resonance

$$\begin{split} & \mathbf{Series} \ X_L = X_C, f_s = 1/(2\pi\sqrt{LC}), \ Z_{Ts} = R, \ Q_l = X_L/R_l, \ Q_s = X_L/R = \\ & (1/R)\sqrt{L/C}, \ V_{L_s} = Q_sE, \ V_{Cs} = Q_sE, \ P_{\mathrm{HPF}} = (1/2)P_{\mathrm{max}}, \\ & f_1 = (1/2\pi)[-R/2L + (1/2)\sqrt{(R/L)^2 + 4/LC}], f_2 \ (\mathrm{use} - R/2L), \\ & BW = f_2 - f_1 = R/2\pi L = f_s/Q_s \quad \mathbf{Parallel} \quad X_{Lp} = X_C, X_{Lp} = \\ & (R_l^2 + X_L^2)/X_L, f_p = [1/(2\pi\sqrt{LC})]\sqrt{1 - (R_l^2C/L)}, Z_{Tp} = R_s \| R_p, R_p = \\ & (R_l^2 + X_L^2)/R_l, \ Q_p = (R_s \| R_p)/X_{Lp}, BW = f_2 - f_1 = f_p/Q_p \\ & Q \geq \mathbf{10} \colon \ Z_{Tp} \cong R_s \| Q^2R_l, X_{Lp} \cong X_L, X_L = X_C, f_p \cong 1/(2\pi\sqrt{LC}), \\ & Q_p = Q_l, \ I_L = I_C \cong QI_T, BW = f_p/Q_p = R_l/2\pi L \end{split}$$

Decibels, Filters, and Bode Plots

 $\begin{array}{ll} \textbf{Logarithms} & N = b^{x}, x = \log_{b} N, \log_{e} x = 2.3 \log_{10} x, \log_{10} ab = \\ \log_{10} a + \log_{10} b, \log_{10} a/b = \log_{10} a - \log_{10} b, \log_{10} a'' = n \log_{10} a, \\ \text{dB} &= 10 \log_{10} P_{2}/P_{1}, \text{dB}_{v} = 20 \log_{10} V_{2}/V_{1} \\ \end{array}$

R-C filters (high-pass) $f_c = 1/(2\pi RC)$, $V_o/V_i = R\sqrt{R^2 + X_C^2} \angle \tan^{-1}(X_C/R)$ (low-pass) $f_c = 1/(2\pi RC)$, $V_o/V_i = X_C/\sqrt{R^2 + X_C^2} \angle -\tan^{-1}\frac{R}{X_C}$ Octave 2: 1, 6 dB/octave Decade 10: 1, 20 dB/decade

Transformers

Mutual inductance $M = k\sqrt{L_pL_s}$ Iron-core $E_p = 4.44fN_p\Phi_m$, $E_s = 4.44fN_p\Phi_m$, $E_p/E_s = N_p/N_s$, $a = N_p/N_s$, $I_p/I_s = N_s/N_p$, $I_p/I_s =$

Polyphase Systems

Y-Y system $I_{\phi g} = I_L = I_{\phi L}, V_{\phi} = E_{\phi}, E_L = \sqrt{3} V_{\phi}$ Y- Δ system $V_{\phi} = E_L, I_L = \sqrt{3} I_{\phi}$ Δ - Δ system $V_{\phi} = E_L = E_{\phi}, I_L = \sqrt{3} I_{\phi}$ Δ -Y system $E_L = \sqrt{3} V_{\phi}, I_{\phi} = I_L, E_L = E_{\phi}$ Power $P_T = 3P_{\phi}, Q_T = 3Q_{\phi}, S_T = 3S_{\phi} = \sqrt{3} E_L I_L, F_p = P_T / S_T$

Pulse Waveforms and the R-C Response

% tilt = $[(V_1 - V_2)/V] \times 100\%$ with $V = (V_1 + V_2)/2$ Pulse repetition frequency (prf) = 1/TDuty cycle = $(t_p/T) \times 100\%$ V_{av} = (duty cycle)(peak value) + $(1 - \text{duty cycle}) \times (V_b)$ R-C circuits $v_C = V_i + (V_f - V_i)(1 - e^{-t/RC})$ Compensated attenuator $R_p C_p = R_s C_s$

Nonsinusoidal Circuits

Fourier series $f(\alpha) = A_0 + A_1 \sin \omega t + A_2 \sin 2\omega t + \cdots + A_n \sin n\omega t + B_1 \cos \omega t + B_2 \cos 2\omega t + \cdots + B_n \cos n\omega t$ Even function $f(\alpha) = f(-\alpha)$, no B_n terms Odd function $f(\alpha) = -f(-\alpha)$, no A_n terms, no odd harmonics if f(t) = f[(T/2) + t], no even harmonics if f(t) = -f((T/2) + t)Effective (rms) value

 $V_{(\text{rms})} = \sqrt{V_0^2 + (V_{m_1}^2 + \dots + V_{m_n}^{\prime 2} + V_{m_1}^{\prime 2} + \dots + V_{m_n}^{\prime 2})/2}$ $Power P_T = V_0 I_0 + V_1 I_1 \cos \theta + \dots + V_n I_n \cos \theta_n = I_{\text{rms}}^2 R = V_{\text{rms}}^2 / R$

Standard Resistor Values

Ohms (Ω)					Kilohms (kΩ)		Megohms (MΩ)	
0.10	1.0	10	100	1000	10	100	1.0	10.0
0.11	1.1	11	110	1100	11	110	1.1	11.0
0.12	1.2	12	120	1200	12	120	1.2	12.0
0.13	1.3	13	130	1300	13	130	1.3	13.0
0.15	1.5	15	150	1500	15	150	1.5	15.0
0.16	1.6	16	160	1600	16	160	1.6	16.0
0.18	1.8	18	180	1800	18	180	1.8	18.0
0.20	2.0	20	200	2000	20	200	2.0	20.0
0.22	2.2	22	220	2200	22	220	2.2	22.0
0.24	2.4	24	240	2400	24	240	2.4	
0.27	2.7	27	270	2700	27	270	2.7	
0.30	3.0	30	300	3000	30	300	3.0	
0.33	3.3	33	330	3300	33	330	3.3	
0.36	3.6	36	360	3600	36	360	3.6	
0.39	3.9	39	390	3900	39	390	3.9	
0.43	4.3	43	430	4300	43	430	4.3	
0.47	4.7	47	470	4700	47"	470	4.7	
0.51	5.1	51	510	5100	51	510	5.1	
0.56	5.6	56	560	5600	56	560	5.6	
0.62	6.2	62	620	6200	62	620	6.2	
0.68	6.8	68	680	6800	68	680	6.8	- 25
0.75	7.5	75	750	7500	75	750	7.5	
0.82	8.2	82	820	8200	82	820	8.2	
0.91	9.1	91	910	9100	.91	910	9.1	ú

Summary of Equations to Accompany

INTRODUCTORY CIRCUIT ANALYSIS, Thirteenth Edition, by Robert L. Boylestad

© Copyright 2016 by Pearson Education. All Rights Reserved.

dc

Introduction

Conversions 1 meter = 100 cm = 39.37 in., 1 in. = 2.54 cm, 1 yd = $0.914 \text{ m} = 3 \text{ ft, 1 mile} = 5280 \text{ ft, } ^{\circ}\text{F} = 9/5^{\circ}\text{C} + 32, ^{\circ}\text{C} = 5/9(^{\circ}\text{F} - 32), \text{ K} = 273.15 + ^{\circ}\text{C}$ Scientific notation $10^{12} = \text{tera} = \text{T, } 10^9 = \text{giga} = \text{G, } 10^6 = \text{mega} = \text{M, } 10^3 = \text{kilo} = \text{k, } 10^{-3} = \text{milli} = \text{m, } 10^{-6} = \text{micro} = \mu, 10^{-9} = \text{nano} = \text{n, } 10^{-12} = \text{pico} = \text{p}$ Powers of ten $1/10^n = 10^{-n}, 1/10^{-n} = 10^n, (10^n)(10^m) = 10^{n+m}, 10^n/10^m = 10^{n-m}, (10^n)^m = 10^{nm}$

Voltage and Current

Coulomb's law $F = kQ_1Q_2/r^2$, $k = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$, Q = coulombs (C), r = meters (m) Current I = Q/t (amperes), t = seconds (s), $Q_e = 1.6 \times 10^{-19} \text{ C}$ Voltage V = W/Q (volts), W = joules (J)

Resistance

Circular wire $R = \rho l / A$ (ohms), $\rho = {\rm resistivity}, l = {\rm feet},$ $A_{\rm CM} = (d_{\rm mils})^2, \rho({\rm Cu}) = 10.37$ Metric units $l = {\rm cm}, A = {\rm cm}^2,$ $\rho({\rm Cu}) = 1.724 \times 10^{-6}$ ohm-cm Temperature $(|T_i| + T_1) / R_1 = (|T_i| + T_2) / R_2, R_1 = R_{20} [1 + \alpha_{20} (T_1 - 20^{\circ}{\rm C})], \alpha_{20} ({\rm Cu}) = 0.00393$ Color code Bands 1 - 3: $0 = {\rm black}, 1 = {\rm brown}, 2 = {\rm red}, 3 = {\rm orange}, 4 = {\rm yellow}, 5 = {\rm green}, 6 = {\rm blue}, 7 = {\rm violet}, 8 = {\rm gray}, 9 = {\rm white},$ Band 3: $0.1 = {\rm gold}, 0.01 = {\rm silver},$ Band 4: $5\% = {\rm gold}, 10\% = {\rm silver},$ $20\% = {\rm no}$ band, Band 5: $1\% = {\rm brown}, 0.1\% = {\rm red}, 0.01\% = {\rm orange},$ $0.001\% = {\rm yellow}$ Conductance G = 1/R siemens (S)

Ohm's Law, Power, and Energy

Ohm's law I = E/R, E = IR, R = E/I Power $P = W/t = VI = I^2R = V^2/R$ (watts), 1 hp = 746 W Efficiency $\eta\% = (P_o/P_i) \times 100\%$, $\eta_T = \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot \cdot \cdot \cdot \eta_n$ Energy W = Pt, W (kWh) = $[P(W) \cdot t(h)]/1000$

Series Circuits

 $R_T = R_1 + R_2 + R_3 + \cdots + R_N, R_T = NR, I = E/R_T, V = IR$ Kirchhoff's voltage law $\Sigma_C V = 0, \Sigma_C V_{\text{rises}} = \Sigma_C V_{\text{drops}}$ Voltage divider rule $V_x = R_x E/R_T$

Parallel dc Circuits

 $R_T = 1/(1/R_1 + 1/R_2 + 1/R_3 + \cdots + 1/R_N), R_T = R/N,$ $R_T = R_1 R_2/(R_1 + R_2), I = EG_T = E/R_T$ Kirchhoff's current law $\sum I_{\text{entering}} = \sum I_{\text{leaving}}$ Current divider rule $I_x = (R_T/R_x)I$, (Two parallel elements): $I_1 = R_2 I/(R_1 + R_2), I_2 = R_1 I/(R_1 + R_2)$

Series-Parallel Circuits

Potentiometer loading $R_L >> R_T$ Ammeter $R_{\rm shunt} = R_m I_{CS}/(I_{\rm max} - I_{CS})$ Voltmeter $R_{\rm series} = (V_{\rm max} - V_{VS})/I_{CS}$ Ohmmeter $R_s = (E/I_{CS}) - R_m - {\rm zero-adjust}/2$

Methods of Analysis and Selected Topics (dc)

Source conversions $E = IR_p$, $R_s = R_p$, $I = E/R_s$

 $\begin{array}{ll} \textbf{Determinants} & D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1 \\ \textbf{Bridge networks} & R_1/R_3 = R_2/R_4 & \Delta\text{-Y conversions} & R' = \\ R_A + R_B + R_C, R_3 = R_AR_B/R', R_2 = R_AR_C/R', R_1 = R_BR_C/R', R_Y = R_\Delta/3 \\ \textbf{Y-}\Delta \text{ conversions} & R'' = R_1R_2 + R_1R_3 + R_2R_3, R_C = R''/R_3, R_B = R''/R_2, \\ R_A = R''/R_1, R_\Delta = 3R_Y \\ \end{array}$

Network Theorems

Superposition Voltage sources (short-circuit equivalent), current sources (open-circuit equivalent) Thévenin's Theorem R_{Th} : (all sources to zero), E_{Th} : (open-circuit terminal voltage)

Maximum power transfer theorem $R_L = R_{Th} = R_N$, $P_{max} = E^2_{Th}/4R_{Th} = I^2_N R_N/4$

Capacitors

Capacitance $C = Q/V = \epsilon A/d = 8.85 \times 10^{-12} \epsilon_r A/d$ farads (F), $C = \epsilon_r C_o$ Electric field strength $\mathscr{E} = V/d = Q/\epsilon A$ (volts/meter) Transients (charging) $i_C = (E/R)e^{-il\tau}$, $\tau = RC$, $v_C = E(1 - e^{-il\tau})$, (discharge) $v_C = Ee^{-il\tau}$, $i_C = (E/R)e^{-iRC}$ i_C $i_{Cav} = C(\Delta v_C/\Delta t)$ Series $Q_T = Q_1 = Q_2 = Q_3$, $1/C_T = (1/C_1) + (1/C_2) + (1/C_3) + \cdots + (1/C_N)$, $C_T = C_1C_2/(C_1 + C_2)$ Parallel $Q_T = Q_1 + Q_2 + Q_3$, $C_T = C_1 + C_2 + C_3$ Energy $W_C = (1/2)CV^2$

Inductors

Self-inductance $L = N^2 \mu A/l$ (henries), $L = \mu_r L_o$ Induced voltage $e_{L_{aV}} = L(\Delta i/\Delta t)$ Transients (storage) $i_L = I_m (1 - e^{-it/\tau}), I_m = E/R, \tau = L/R, v_L = E e^{-it/\tau}$ (decay), $v_L = [1 + (R_2/R_1)] E e^{-it/\tau'}, \tau' = L/(R_1 + R_2), i_L = I_m e^{-it/\tau}, I_m = E/R_1$ Series $L_T = L_1 + L_2 + L_3 + \cdots + L_N$ Parallel $1/L_T = (1/L_1) + (1/L_2) + (1/L_3) + \cdots + (1/L_N), L_T = L_1 L_2/(L_1 + L_2)$ Energy $W_L = 1/2(LI^2)$

Magnetic Circuits

Flux density $B = \Phi/A$ (webers/m²) Permeability $\mu = \mu_r \mu_o$ (Wb/A·m) Reluctance $\Re = l/\mu A$ (rels) Ohm's law $\Phi = \mathcal{F}/\Re$ (webers) Magnetomotive force $\mathcal{F} = Nl$ (ampere-turns) Magnetizing force $H = \mathcal{F}/l = Nl/l$ Ampère's circuital law $\Sigma_{\rm C}\mathcal{F} = 0$ Flux $\Sigma \Phi_{\rm entering} = \Sigma \Phi_{\rm leaving}$ Air gap $H_g = 7.96 \times 10^5 \, B_g$

Greek Alphabet

Letter	Capital	Lowercase	Letter	Capital	Lowercase
Alpha	Α	α	Nu	N	υ
Beta	В	β	Xi	Ξ	ξ
Gamma	Γ	. γ	Omicron	0	o
Delta	Δ	δ	Pi 🔍	П	π
Epsilon	E	€	Rho	P	ρ
Zeta	Z	ζ	Sigma	Σ	σ
Eta	Н	η	Tau	T	au
Theta	θ	θ	Upsilon	γ	υ
Iota	I	L	Phi	Φ	ϕ
Kappa	K	κ	Chi	X	X
Lambda	Λ	λ	Psi	Ψ	ψ
Mu	M	μ	Omega	Ω	ω

Prefixes

Multiplication Factors	SI Prefix	SI Symbol
1 000 000 000 000 000 000 = 10 ¹⁸	exa	E
$1\ 000\ 000\ 000\ 000\ 000 = 10^{15}$	peta	P
$1\ 000\ 000\ 000\ 000 = 10^{12}$	tera	T
$1\ 000\ 000\ 000 = 10^9$	giga	G
$1\ 000\ 000 = 10^6$	"mega	M
$1\ 000 = 10^3$	kilo	k
$0.001 = 10^{-3}$	milli	m
$0.000\ 001 = 10^{-6}$	micro	μ
$0.000\ 000\ 001 = 10^{-9}$	nano	п
$0.000\ 000\ 000\ 001 = 10^{-12}$	pico	р
$0.000\ 000\ 000\ 000\ 001 = 10^{-15}$	femto	f
$0.000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$	atto	a A