```
!pip install pyspark
```

Looking in indexes: https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting pyspark

Downloading pyspark-3.3.1.tar.gz (281.4 MB)

281.4/281.4 MB 3.7 MB/s eta 0:00:00

Preparing metadata (setup.py) ... done

Collecting py4j==0.10.9.5

Downloading py4j-0.10.9.5-py2.py3-none-any.whl (199 kB)

199.7/199.7 KB 9.0 MB/s eta 0:00:00

Building wheels for collected packages: pyspark

Building wheel for pyspark (setup.py) ... done

Created wheel for pyspark (setup.py) ... done

Created wheel for pyspark: filename=pyspark-3.3.1-py2.py3-none-any.whl size=281845512 sha256=ecf286b27c06d165cb3c44bbd36c566154f4

Stored in directory: /root/.cache/pip/wheels/43/dc/11/ec201cd671da62fa9c5cc77078235e40722170ceba231d7598

Successfully built pyspark

Installing collected packages: py4j, pyspark

Successfully installed py4j-0.10.9.5 pyspark-3.3.1

from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()

df = spark.read.csv("/content/drive/MyDrive/Memoire/data.csv", inferSchema = True, header = True)
df.show(5)

orst a	rea_worst smo	othness_worst compa	ctness_worst cond	avity_worst conca	+ ve points_worst 	symmetry_worst	fractal_dimension_worst _c32
34.6 58.8 52.5	2019.0 1956.0 1709.0	0.1622 0.1238 0.1444	0.6656 0.1866 0.4245	0.7119 0.2416 0.4504	0.2654 0.186 0.243	0.4601 0.275 0.3613	0.08902 null
3.87 52.2	567.7 1575.0	0.2098 0.1374	0.8663 0.205	0.6869 0.4	0.2575 0.1625	0.6638 0.2364	0.173 null

import vizualiz
vizualiz.pca_viz(df)

vizualiz.plot_corr_matrix(df)

import mylib
train, test = mylib.process1(spark, "/content/drive/MyDrive/Memoire/data.csv")

train.show(3)

```
+----+
             features|label|
    +----
    |[15.46,19.48,101....| 1.0|
    |[12.89,13.12,81.8...| 0.0|
    |[12.94,16.17,83.1...| 0.0|
    only showing top 3 rows
import logisticReg
model = logisticReg.logisticRegress(train)
pred = model.transform(test)
pred.show(3)
             features|label| rawPrediction| probability|prediction|
    <del>|</del>
    |[14.96,19.1,97.03...| 0.0|[0.33562795650608...|[0.58312811193440...|
    |[20.26,23.03,132....| 1.0|[-8.3103904173978...|[2.45887526690253...|
    |[22.27,19.67,152....| 1.0|[-18.229529480162...|[1.21064254995793...|
    only showing top 3 rows
import evaluation
evaluation.evaluate(pred)
    Prediction Accuracy: 0.9866756009806882
    Confusion Matrix:
    [[114 0]
     [ 6 59]]
import linearSVC
model1 = linearSVC.linearSVC(train)
pred = model1.transform(test)
pred.show(3)
    | features|label| rawPrediction|prediction| | | | | |
    |[14.96,19.1,97.03...| 0.0|[0.29874844102278...|
    | [20.26,23.03,132...| 1.0| [-2.8804020293767...| 1.0| | [22.27,19.67,152...| 1.0| [-6.5825620117094...| 1.0|
                    only showing top 3 rows
import evaluation
evaluation.evaluate(pred)
    Prediction Accuracy: 0.9869800479667896
    Confusion Matrix:
    [[114 0]
     [ 8 57]]
import decisionTree
model2 = decisionTree.decisionTreeClassifier(train)
pred = model2.transform(test)
pred.show(3)
    | features|label|rawPrediction| probability|prediction|
    only showing top 3 rows
import evaluation
evaluation.evaluate(pred)
    Prediction Accuracy: 0.9457433103855466
    Confusion Matrix:
    [[112 2]
     7 58]]
import randomForest
model3 = randomForest.randomForestClassifier(train)
```

print('Training set areaUnderROC: ' + str(model.summary.areaUnderROC))

Training set areaUnderROC: 0.9990201842053693