회귀분석팀

6팀

김보근

김민주

서유진

하희나

INDEX

- 1. 회귀 기본 가정
- 2. 선형성 진단과 처방
- 3. 정규성 진단과 처방
- 4. 등분산성 진단과 처방
 - 5. 독립성 진단과 처방
 - 6. 다중공선성
 - 7. Appendix

1

회귀 기본 가정

1 회귀 기본 가정

회귀 기본 가정이 갖는 의미

회귀분석은 **적은 수의 관측치**만으로도 모델을 구성할 수 있고, **좋은 예측과 추정**이 가능

그만큼 <mark>많은 제약들</mark>이 **예측력과 설명력을 뒷받침**하고 있기 때문

선형회귀모델이 만족해야 하는 제약들 → 선형회귀의 기본 가정

1 회귀 기본 가정

선형 회귀분석의 기본 가정

[선형회귀의 기본 가정]

모델의 선형성

설명변수와 반응변수의 관계가 <mark>선형</mark>이다

오차의 등분산성

오차항의 분산은 상수이다

오차의 정규성

오차항은 <mark>정규분포</mark>를 따른다

오차의 독립성

오차항은 서로 독립이다

2

선형성 진단과 처방

선형성 가정이란?

반응 변수가 설명 변수의 <mark>선형 결합</mark>으로 이루어졌다는 가정

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

$$y = \beta_0 + \beta_1 \log x_1 + \epsilon$$

$$y = \beta_0 + \beta_1 x_1^2 + \epsilon$$

$$y = \beta_0 e^{\beta_1 x_1} \to y^* = \log y = \log \beta_0 + \beta_1 x_1 = {\beta_0}^* + {\beta_1} x_1$$

치환의 과정을 통해 변화된 x를 새로운 x로 취급한다면,

위 결합들을 모두 <mark>선형 결합</mark>으로 이해 가능

선형성 만족!

선형성 가정 위배

선형성 가정이 위배되었다고 판단되는 경우, 모든 **선형회귀모델은 모델 자체가 성립하지 않음!**

대부분 실제 모델보다 과소추정되어 예측 성능이 떨어질 것

진단 | ① Residuals vs Fitted Plot

빨간 실선은 전체적인 **잔차들의 추세선!**

 \blacktriangle x축 : 예측값(\hat{y}) , y축 : 잔차($e = y - \hat{y}$)

추세선이 평균 0을 중심으로 하는 **x축에 평행한 상태가 아니라면 선형성이 위배**된 것! 선형성이 위배된 경우, 일반적으로 추세선이 이차함수 혹은 삼차함수 꼴

2 선형성 진단과 처방

진단 | ① Residuals vs Fitted Plot

lot

빨간 실선은 전체적인

잔차들의 추세선!

 \blacktriangle x축 : 예측값(\hat{y}) , y축 : 잔차($e = y - \hat{y}$)

선형성 만족

→ 추세선이 x축에 평행

선형성 위배

→ 추세선이 이차함수 형태

진단 | ② Partial Residual Plot

개별 독립 변수와 종속 변수 간의 선형성 확인 가능

파란 점선과 분홍색 실선이 서로 비슷하면 선형성이 만족되었다고 판단

진단 | ② Partial Residual Plot

개별 독립 변수와 종속 변수 간의 선형성 확인 가능

처방 | ① 변수변환

변수의 변환을 통해 비선형 관계를 해결할 수 있음 지환의 과정을 통해 x를 변화시켜 이를 새로운 x로 취급하면 선형결합 만족

Function	Transformations of x and/or y	Resulting model
$y = \beta_0 x^{\beta_1}$	y' = log(y), x' = log(x)	$y' = log(\beta_0) + \beta_1 x'$
$y = \beta_0 e^{\beta_1 x}$	y' = ln(y)	$y' = \ln(\beta_0) + \beta_1 x$
$y = \beta_0 + \beta_1 log(x)$	x' = log(x)	$y = \beta_0 + \beta_1 x'$
$y = \frac{x}{\beta_0 x - \beta_1}$	$y' = \frac{1}{y}, x' = \frac{1}{x}$	$y' = \beta_0 - \beta_1 x'$
$\rho_0\omega = \rho_1$	g w	

변수 변환을 통해 선형성을 확보할 수 있는 모델도, 넓은 의미에서 선형모델이라 부름

처방 | ② 다항 회귀 (Polynomial Regression)

회귀식의 독립 변수가 2차, 3차와 같은 다항식으로 표현되는 것

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_k X^k + \epsilon$$

처방 | ② 다항 회귀 (Polynomial Regression)

의 과적합 방지를 위해 <mark>적절한 차수 k를</mark> 선정해야 하며, X의 거듭제곱 꼴이므로 변수들 간 상관관계가 높아진다는 문제

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_k X^k + \epsilon$$

2 선형성 진단과 처방

처방 | ③ 국소 회귀 (Local Regression)

비선형 문제여도 작은 범위(Local)에서 관찰하면 선형 문제라고 보는 접근 방법

Target data x_0 을 중심으로 그 주변 **대역폭 내의 데이터** $x_i \in N(x_0)$ 들만을 사용하여 **부분적으로 선형 회귀** 모델을 구성

3

정규성 진단과 처방

정규성 가정이란?

반응 변수를 측정할 때 발생하는 오차는 정규분포를 따를 것이라는 가정

회귀식이 데이터를 잘 표현한다면

- 1) 잔차들은 단순한 측정 오차(noise)로 여겨짐
- 2) 잔차들의 분포는 정규분포와 흡사한 형태가 됨

정규성 가정 위배

But 정규성 가정이 위배된다면?

가설 검정 결과가 p-value에 의해 유의하게 나오더라도,

검정 결과와 예측 결과를 신뢰할 수 없음

검정통계량이 F분포 혹은 t분포를 따르지 않게 되기 때문!

진단 | ① Normal Q-Q Plot

▲ 정규성 **불만족**

▲ 정규성 **만족**

☑ X축 : 정규분포의 분위수 값, Y축 : 표준화 잔차

Normal Q-Q Plot이 y = x에 가까울수록 잔차가 <mark>정규성</mark>을 만족

진단 | ② 통계적 검정

Plot으로 확인하는 경우 판단이 주관적일 수 있으므로, 명확한 경우가 아니라면 **통계적 방법에 의한 가설검정**으로 확인!

가설

 H_0 : 주어진 데이터는 정규분포를 따른다.

 H_1 : 주어진 데이터는 정규분포를 따르지 않는다.

귀무가설을 기각하지 못해 정규성이 만족되는 것이 바람직함

진단 | ② 통계적 검정 : Empirical CDF

관측치들을 작은 순서대로 나열한 후 누적 분포 함수를 그린 것

진단 | ② 통계적 검정: Empirical CDF

관측치들을 작은 순서대로 나열한 후 누적 분포 함수를 그린 것

잔차의 Empirical CDF와 정규분포의 CDF를 비교하여 검정

Kolmogorov Smirnov Test

Darling Test

Anderson

3 정규성 진단과 처방

진단 | ② 통계적 검정: Empirical CDF

1. Kolmogorov-Smirnov Test (K-S 검정)

하나의 모집단이 어떤 특정한 분포함수를 갖는지 알아보는 검정법

귀무가설 하에서 표본분포함수(sample distribution function)가 어떤 이론적 분포함수(theoretical distribution)와 유사한지 검정

진단 | ② 통계적 검정 : Empirical CDF

1. Kolmogorov-Smirnov Test (K-S 검정)

▲ 이론분포함수 ▲ 표본분포함수

검정통계량!!

이론분포함수와 표본분포함수의 차(D)가 크면 H_0 기각

[표본분포와 이론분포함수는 같지 않다]

진단 | ② 통계적 검정: Empirical CDF

2. Anderson-Darling Test (A-D 검정)

K-S 검정을 수정한 방식으로, 특정 분포의 꼬리(tail)에 K-S보다 더 가중치를 둠

꼬리 부분의 데이터에 민감하게 반응

A-D 검정 vs. K-S 검정

A-D 검정은 0.05로, K-S 검정은 0.15로 유의수준 설정

A-D 검정이 K-S 검정에 비해서 더 엄격함

3 정규성 진단과 처방

진단 | ② 통계적 검정: 정규분포의 분포적 특성 이용

1. Shapiro Wilk Test

표본이 정규분포로부터 추출된 것인지를 확인하기 위한 검정 방법

- ✓ 정규분포 **분위수 값**과 **표준화 잔차** 사이의 **선형관계** 확인 (Q-Q Plot 아이디어와 동일)
 - ✓ 관측치가 5000개 이하인 데이터에서만 검정 가능

진단 | ② 통계적 검정 : 정규분포의 분부 특성 이용

1. Shapiro Wilk Test

표본이 정규분포로부터 추출는 기를 확인하기 위한 검정 방법

기무가설 H_0 를 기각하지 못했다는 것은 정규분포를 따르지 않는다고 말할 근거가 부족하다는 의미

✓ 정규분포 **분위수 값**과 표준<mark>가 잔차</mark> 사이의 **선형관계** 확인 (Q-Q Plot 아이디어와 동일)

100% 정규성이 만족된다는 의미는 아남!!

정규성 진단과 처방

진단 | ② 통계적 검정: 정규분포의 분포적 특성 이용

2. Jarque-Bera Test

정규분포의 왜도가 0, 첨도가 3이라는 사실에서 기인한 검정 방법

$$JB = n\left(\frac{\left(\sqrt{skew}\right)^2}{6} + \frac{(kurt - 3)^2}{24}\right)$$

n: 데이터 개수

skew: 표본의 왜도

kurt: 표본의 첨도

잔차의 분포가 정규분포와 달라질수록 왜도/첨도 변화
→ 통계량 값이 커져 유의수준을 넘어서면 귀무가설 기각

진단 | ② 통계적 검정 : 정규분포의 분 (적 특성 이용

2. Jarque-Be<mark>변수변환</mark>을 통해 정규성을 처방해줄 수 있음!

→ 통계량 값이 커져 유의수준을 넘어서면 귀무가설 기각

진단 | ② 통계적 검정: 정규분포의 분포적 특성 이용

2. Jarque-Bera Test

집But 단순 변수 변환은 <mark>주관적인</mark> 판단 하에 이루어지므로를

<u>객관성을 확보하기 힘듦</u>

잔차의 분포가 정규분포와 달라질수록 왜도/첨도 변화

→ 통계량 값이 커져 유의수준을 넘어서면 귀무가설 기각

처방 | ① Box-cox Transformation

반응변수 (Y)를 변환함으로써 정규성과 등분산성을 해결해주는 방법

♪를 변화시키면서 y 가 정규성, 등분산성을 만족하도록 함

$$y(\lambda) = \begin{cases} (y^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0\\ \log(y) & \text{if } \lambda = 0 \end{cases}$$

- 일반적으로 λ는 -5에서 5 사이의 값
- 변환된 y가 모든 실수 λ에 대해 연속

처방 | ① Box-cox Transformation

최대우도함수(ML)을 통해 신뢰구간을 구한 후 신뢰구간 내의 로그우도함수를 <mark>최대화</mark>하는 λ를 최적의 값으로 선택

 $ex. \lambda = 2$ 이면 이차함수, $\lambda = 0.5$ 이면 루트, $\lambda = 0$ 이면 로그, $\lambda = -1$ 이면 역수변환을 의미

- 일반적으로 λ는 -5에서 5 사이의 값
- 변환된 y가 모든 실수 λ에 대해 연속

처방 | ① Box-cox Transformation

λ를 정수로 택하면 변수 변환 관계 쉽게 파악 가능!

하지만 Box-cox Transformation은 Y가 0 이하일 경우 사용할 수 없음

 λ =0이 되면 y가 $\log(y)$ 로 변환되기 때문!

3 정규성 진단과 처방

처방 | ① Box-cox Transformation

λ를 정수로 택하면 변수 변환 관계 쉽게 파악 가능!

처방 | ② Yeo-Johnson Transformation

■ Box-cox Transformation과 같은 아이디어

$$\psi(\lambda, y) = \begin{cases} \left((y+1)^{\lambda} - 1 \right) / \lambda, & \text{if } \lambda \neq 0, y \geq 0 \\ \log(y+1), & \text{if } \lambda = 0, y \geq 0 \\ -\frac{\left[\left((-y+1)^{2-\lambda} - 1 \right) \right]}{2 - \lambda}, & \text{if } \lambda \neq 2, y < 0 \\ -\log(-y+1), & \text{if } \lambda = 2, y < 0 \end{cases}$$

Box-cox와 달리 변수 범위에 대한 제약 없음

처방 | ② Yeo-Johnson Transformation

■ Box-cox Transformation과 같은 아이디어

Yeo-Johnson Transformation이 전체 범위에서 사용 가능한데 Box-cox Transformation도 사용하는 이유?

- ✓ Box-cox Transformation은 전체 범위에 대한 해석에 용이하기 때문!
 - ✓ Yeo-Johnson Transformation은 제곱이 λ, 2-λ로 달라
 전체 범위에 대한 해석이 모호해질 수 있음

4

등분산성 진단과 처방

등분산성 가정이란?

오차의 모든 분산은 동일해야 한다는 가정

등분산성 가정이란?

오차의 모든 분산은 동일해야 한다는 가정

등분산성 가정이란?

오차의 모든 분산은 동일해야 한다는 가정

이분산성은 회귀식과 회귀계수 검정에 대한 신뢰도를 떨어뜨려, 유의하지 않은 변수가 유의하다고 나타날 수 있음

충분히 유의할 수 있는 귀무가설을 기각하게 됨!

▲ 등분신체 1종 오류(Type 1 Error)가 0.05로 고정되지 못하고 상승

진단 | ① 잔차 플랏 : Scale-Location

▲ X축 : 예측값(ŷ), Y축 : 표준화 잔차

- 잔차에 절댓값이 씌워진 형태!
 - 등분산성이 위배된 경우,

잔차와 예측값 사이에 random한 형태이외의 어떠한 관계가 나타남

진단 | ① 잔차 플랏 : Residual vs Fitted

Versus Fits
(response is AccidentRate)

Value of the property of the property

▲ 등분산성 **만족**

▲ 등분산성 <mark>위배</mark>

 \hat{y} 값에 상관없이 잔차 퍼짐의 정도가 일정 \hat{y} 값이 커지면서 잔차 퍼짐의 정도가 일정하지 않음

진단 | ① 잔차 플랏 : Residual vs Fitted

▲ 등분산성 **만족**

▲ 등분산성 **위배**

 \hat{y} 값에 상관없이 잔차 퍼짐의 정도가 일정 \hat{y} 값이 커지면서 잔차 퍼짐의 정도가 일정하지 않음 진단 | ② 통계적 검정 : BP(Breusch-Pagan) Test

잔차가 <mark>독립변수</mark>들의 선형결합으로 표현되는지를 검정

설명변수의 증감에 따른 **오차의 분산 변화**를 통해 **등분산성** 판단 가능!

BP test의 기본 가정

- ① sample 수가 많아야 함
- ② 오차항은 독립이고 정규분포를 따라야 함
- ③ 오차의 분산은 설명변수와 연관이 있어야 함

진단 | ② 통계적 검정 : BP(Breusch-Pagan) Test

잔차가 <mark>독립변수</mark>들의 선형결합으로 표현되는지를 검정

설명변수의 증감에 따른 **오차의 분산 변화**를 통해 **등분산성** 판단 가능!

- ① sample 수가 많아야 함
- ② 오차항은 독립이고 정규분포를 따라야 함
- ③ 오차의 분산은 설명변수와 연관이 있어야 함

진단 | ② 통계적 검정 : BP(Breusch-Pagan) Test

가설

 H_0 : 주어진 데이터는 등분산성을 지닌다.

 H_1 : 주어진 데이터는 등분산성을 지니지 않는다 (이분산이다).

귀무가설을 기각하지 못해 등분산성이 만족되는 것이 바람직함

진단 | ② 통계적 검정 : BP(Breusch-Pagan) Test

$$e^2 = \gamma_0 + \gamma_1 x_1 + \dots + \gamma_p x_p + \epsilon'$$

잔차를 종속변수로 한 회귀 모형에서 결정계수(R^2)를 구함

오차가 독립변수에 의해 충분히 표현된다면 결정계수와 검정 통계량이 커질 것!

결정계수를 통해 오차의 제곱(오차의 분산)이 독립변수의 선형결합으로 표현되는지와 그 때의 설명력을 파악

진단 | ② 통계적 검정 : BP(Breusch-Pagan) Test

검정통계량

$$\chi^2_{stat} = nR^2 \sim \chi^2_{P-1}$$

임계값

 $\chi^2_{P-1,\alpha}$

if $\chi^2_{stat} > \chi^2_{P-1,\alpha}$, reject H_0

즉, 등분산성을 <mark>만족하지 않음</mark>을 의미

진단 | ② 통계적 검정 : BP(Breusch Paran) Test

처방 | ① 변수 변환(Box-cox Transformation)

정규성 만족을 위한 처방과 동일하게 변수변환 방법을 적용할 수 있음

처방 | ② 가중회귀제곱 (WLS: Weighted Least Square)

관측치마다 다른 가중치를 주어서 등분산을 만족하게 해주는 '일반화된 최소제곱법'의 형태 중 하나

분산이 큰 부분의 관측치에는 가중치를 적게 주어 전체적인 분산을 비슷하게 맞춰줌!

$$\sum w_i (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2$$
, $w_i \propto \frac{1}{\sigma_i^2}$

 W_i 는 가중치이며, 분산에 반비례

처방 | ② 가중회귀제곱 (WLS: Weighted Least Square)

[가중치 선정 방식]

1. 잔차 플랏 이용

Residual Plot에서 분산이 점점 커질 경우,

 $w_i \propto \frac{1}{\sigma_i^2}$ 와 같은 방식으로 가중치 부여

2. 모델 기반 선정

다중선형회귀 모델을 OLS로 추정 후

(종속변수: 잔차의 절댓값, 독립변수: 오차 분산에 영향을 주는 변수들)

적합값을 이용해 가중치 부여

적합값 제곱의 역수

처방 | ② 가중회귀제곱 (WLS: Weighted Least Square)

[가중치 전정 방식]

1. 잔차 플랏 이용 가중회귀제곱(WLS)의 장점

회귀식의 기본 가정 하에 구한

가중회귀제곱(WLS) 추정량은 BLUE를 만족!

. 모델 기반 선정

다중선영외귀 모델을 OLS로 주정 위

(종속변수: 잔차의 절댓값, 독립변수: 오차 분산에 영향을 주는 변수들)

적합값을 이용해 가중치 부여

5

독립성 진단과 처방

독립성 가정

오차항들은 서로 독립이라는 가정

개별 관측치에서 i번째 오차와 j번째 오차가 발생하는 것에 서로 영향을 미치지 않는다

독립성 가정이 위배되었다면, 오차들 간 자기상관(Autocorrelation) 존재

▶ 오차들 간 상관성의 pattern이 있다는 것

독립성 가정

자기상관(Autocorrelation)이란?

오차한들은 서로 독립이라는 가정

모델이 데이터를 잘 설명한다면, 설명하고 남은 잔차가 특정 패턴을 지니지 않아야 함

시각적/공간적으로 인접한 관측치들은

독립성회귀식만으로2<mark>설명할수 없는 패턴</mark>이 남아있을 수 있음 1) 존재

독립성 가정

오차항들은 서로 독립이라는 가정

개별 관측치에서 i번째 오차와 j번째 오차가 발생하는 것에

서로 영향을 미치지 않는다

오차 간 자기상관이 존재하면, σ^2 의 추정량과 회귀계수의 표준오차가 실제보다 **과소추정**됨

독립성 가정이 위배되었다면, 오차들 간 자기상관(Autocorrelation) 존재

유의성 검정의 결과를 신뢰할 수 없고,

Prediction Interval도 넓어짐

5 독립성 진단과 처방

진단 | 더빈-왓슨 검정(Durbin Watson Test)

앞 뒤 관측치의 1차 자기상관성을 확인하는 검정 방법

1차 자기상관성: 연이어 등장하는 오차들이 상관성을 지니는 것

귀무가설 H_0 : 잔차들 간에 1차 자기상관이 없다. $(\hat{\rho}_1 = 0)$

대립가설 H_1 : 잔차들 간에 1차 자기상관이 있다.

진단 | 더빈-왓슨 검정(Durbin Watson Test)

검정 통계량

$$d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

First order autocorrelation

$$\hat{\rho}_{1} = \frac{\widehat{Cov}(e_{i} - e_{i-1})}{\sqrt{V(e_{i})} \sqrt{V(e_{i-1})}} \approx \frac{\sum_{i=1}^{n} e_{i} e_{i-1}}{\sum_{i=1}^{n} e_{i}^{2}}$$

$$\therefore d \approx 2(1-\hat{\rho}_1), 0 < d < 4$$

 $\hat{\rho}_1$: 표본 잔차 자기상관

진단 | 더빈-왓슨 검정(Durbin Watson Test)

더빈 왓슨 검정표

 d_L : 경계의 하한, d_U : 경계의 상한

데이터의 개수 n과 변수의 개수 p에 따라

귀무가설 기각 여부를 판단하는 cut-off 값을 알려줌

5 독립성 진단과 처방

진단 | 더빈-왓슨 검정(Durbin Watson Test)

 d_L : 경계의 하한, d_U : 경계의 상한

 $d < d_L$ 이거나 $d > (4 - d_L)$ 일 경우 귀무가설 기각

잔차들 간 1차 자기상관이 있음 (= 앞 오차에 영향을 받음)

5 독립성 진단과 처방

진단 | 더빈-왓슨 검정(Durbin Watson Test)

 d_L : 경계의 하한, d_U : 경계의 상한

 $d_L < d < (4 - d_L)$ 일 경우 귀무가설 기각 불가

잔차들 간 1차 자기상관 없음

진단 | 더빈-왓슨 검정(Durbin Watson Test)

- ① d가 상한과 하한 사이에 위치하면 자기상관성 판단 불가
- ② 바로 인접한 오차와의 1차 자기상관만 고려
- → 자기상관이 오래 지속되거나, 계절성이 있는 경우 확인이 어려움

5 독립성 진단과 처방

처방

1) 설명변수 추가

자기상관을 유발하는 변수를 설명변수로 모형에 추가

2) 분석 모델 변경

- ✓ 시간에 따른 자기상관
- → 자기 상관을 고려하는 AR(p) 같은 **시계열 모델** 사용
- ✓ 공간에 따른 자기상관
- → 공간의 인접도를 고려하는 <mark>공간회귀모델</mark> 사용

6

다중공선성

6 다중공선성

다중공선성(Multicollinearity)

설명변수 X_j 들 사이에 선형적인 상관관계가 존재하는 것

다중공선성이 없는 경우

다중공선성이 <mark>있는</mark> 경우

다중공선성(Multicollinearity)

설명변수 X;들 사이에 **선영석인 상관관계**가 존재하는 것

Y: 학기별 성적

 X_1 : 집에서 학교까지의 거리, X_2 : 통학 시간, X_3 : 공부 시간

 X_2 변수는 $X_2 = aX_1$ 과 같은 식으로 X_1 에 의해 완벽히 설명됨

 X_2 의 정보는 완전히 <mark>필요하지 않은</mark> 정보

6 다중공선성

다중공선성의 문제 | ① 추정량의 문제

1) OLS method를 이용한 모수 추정이 어려워진다

최소제곱법(OLS)을 통한 LSE로 적합된 모형

$$\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'y$$

다중공선성이 존재하면?

선형종속이 되어 X는

full rank를

만족하지 않음

X'X 역시

full rank를

만족하지 않음

 $(X'X)^{-1}$ 존재하지 않아

정규방정식의 유일해

계산 불가능

다중공선성의 문제 | ① 추정량의 문제

2) 추정량을 불안정하게 만든다

$$Var\big(\hat{\beta}\big) = \sigma^2(X'X)^{-1}$$

$$(X'X)^{-1} = \frac{1}{\det(X'X)} adj(X'X)$$

이때, 다중공선성이 존재한다면 $\det(X'X) \approx 0$

추정량의 분산($Var(\hat{\beta})$) 또한 매우 커져 **계수의 추정이 불안정**해지는 문제 발생

→ Prediction Accuracy 심각하게 감소

6 다중공선성

다중공선성의 문제 | ② 모델의 문제

1) 모델의 검정 결과를 신뢰할 수 없다

다중공선성이 존재할 때 F-test는 통과하고, 적합성 검정을 위한 R^2 값도 괜찮은 수준

그러나 **유의한 개별 계수가 하나도 존재하지 않는 상황** 발생

개별 변수의 유의성 검정에서!

회귀계수들의 분산 커짐

t 검정통계량 감소

귀무가설 기각 못함

6 다중공선성

다중공선성의 문제 | ② 모델의 문제

2) 모델 해석에 영향을 준다

개별 베타 계수 β_i 의 해석

변수 x_j 를 제외한 **나머지 변수가 고정**되어 있을 때, x_i 가 한 단계 증가했을 때의 증가량

다중공선성이 있다면?

나머지 변수가 고정되어 있다는 가정이 불가능해짐!

다중공선성의 문제 | ② 모델의 문제

2) 모델 해석에 영향을 준다

개별 베타 계수 β_j 의 해석

변수 x_j 를 제외한 **나머지 변수가 고정**되어 있을 때, x_i 가 한 단계 증가했을 때의 증가량

다중공선성이 있다면?

나머지 변수가 고정되어 있다는 가정이 불가능해짐!

6 다중공선성

다중공선성의 진단 | ① 직관적인 판단

✓ F-test는 유의했지만, 개별 회귀계수들에 대한 T-test가 귀무가설을 대부분 기각하지 못하는 경우

- ✓ 상식적으로 유의한 회귀계수가, 유의하지 않은 경우
 - → 이미 비슷한 설명변수가 모델에 포함되어 있을 것임!

- ✓ 추정된 회귀계수의 부호가 상식과 다를 경우
- → 이미 비슷한 설명변수가 모델에 포함되어 있을 것임!

다중공선성의 진단 | ② 상관계수 plot

✔ 변수들 사이의 선형관계 파악 가능

✓ 상관계수 절댓값이 0.7 이상일때 다중공선성 의심!

다중공선성의 진단 | ③ VIF (분산팽장인자)

$$VIF_j = \frac{1}{1 - R_j^2}$$
 , $j = 1, ..., p$

$$R_j^2$$
: 선형회귀식 $x_j = \gamma_1 x_1 + \dots + \gamma_{j-1} x_{j-1} + \gamma_{j+1} x_{j+1} + \dots + \gamma_p x_p$ 을 적합했을 때의 결정계수로, **나머지 변수가** x_i 를 설명하는 정도를 의미

 R_i^2 가 크다

 x_j 가 나머지 변수들의선형결합으로표현될 수 있다

다<mark>중공선성</mark> 존재

다중공선성의 진단 | ③ VIF (분산팽경<mark>인</mark>가)

다중공선성의 진단 | ④ (X'X)의 고유값 조사

설명변수들 간 선형종속 관계가 있는 경우, X의 rank가 줄어들고 (X'X)의 rank도 p보다 줄어들게 됨

Rank는 **0보다 큰 고유값의 개수**로도 볼 수 있으므로 만약 **0에 가까운 고유값**이 있다면 <mark>다중공선성 의심</mark> 필요!

이 방법은 고유벡터를 통해 선형종속의 관계 형태를 대략적으로 알 수 있음

다중공선성의 해결방법

변수선택법, 차원축소, 정규화 등과 같은 방법 존재

회귀팀 3주차 클린업 예정

대건 다음주에 만나요 ~

7

내생성과 측정 오차

내생성(Endogeneity)

- ① 오차들의 평균은 0
- ② 오차들의 분산은 σ^2 로 동일
- ③ 오차 간 자기 상관 X (No autocorrelation)
- ④ 설명변수와 오차의 상관관계 X(Cov(X,e)=0)

위배될 경우, 내생성 문제 발생

→ LSE 추정량에 attenuation bias를 일으킴

내생성(Endogeneity)

- ① 오차들의 평균은 0
- ② 오차들의 분산은 σ^2 로 동일
- ③ 오차 간 자기 상관 X (No autocorrelation)
- ④ 설명변수와 오차의 상관관계 X(Cov(X, e) = 0)

위배될 경우, 내생성 문제 발생

→ LSE 추정량에 편향(bias)을 일으킴

내생성이 발생하는 원인 내생성(Endogeneity)

설명변수와 오차 사이의 상관관계가 존재하는 것

내생성이 발생하는 원인

- ① 모델에 반영하지 않은 제3의 요인이 X와 Y에 영향을 미치는 경우
 - ② X, Y가 서로 영향을 미치는 경우
 - ③ X에 Measurement Error가 존재하는 경우

내생성이 발생하는 원인 내생성(Endogeneity)

설명변수와 오차 사이의 상관관계가 존재하는 것

내생성이 발생하는 원인

- ① 모델에 반영하지 않은 제3의 요인이 X와 Y에 영향을 미치는 경우
 - ② X, Y가 서로 영향을 미치는 경우
 - ③ X에 Measurement Error가 존재하는 경우

Measurement Error

내생성이 발생하는 원인

내생성문조사 등에서 응답자가 잘못 응답하거나, 설문 집단을 잘못 선정하여 회귀 모델에서 <mark>변수에 대해 정확하지 않은 측정 값을 사용할 때 발생하는 Error</mark> Classical Error라고 가정

내생성이 발생하는 원인

① 모델에 반영하지 않<mark>은 지동되었는 K 사이 영향을 미치는 경우 X를 잘못 측정된 값, X 를 X의 참 값, μ 를 측정 오차라고 했을 때,</mark>

 $(3 \times 1) E(\mu) = 0$, $(2 \times 2) E(\mu) = 0$ 경우 를 만족하는 오차

모델 설정

$$y = \beta_0 + \beta_1 X^* + e$$

= $\beta_0 + \beta_1 (X - \mu) + e$
= $\beta_0 + \beta_1 X - \beta_1 \mu + e$

 $-\beta_1\mu + e$ 를 새로운 오차항 e'로 가정

참값(X^*)은 모르는 값이므로 측정한 X 로 위의 모델을 세우게 되고, $Cov(X, e') \neq 0$ 이면 내생성 문제 발생

$$Cov(X, \mu)$$
= $E(X\mu) - E(X)E(\mu)$
= $E(X\mu) = E[(X^* + \mu)\mu)]$
= $E(X^*\mu) + E(\mu^2) = \sigma_{\mu}^2$

Cov(X,e')

$$Cov(X, e - \beta \mu) = E(Xe) - E(X\beta\mu)$$

$$= -\beta E(X\mu)$$

$$= -\beta Cov(X, \mu)$$

$$= -\beta \sigma_{\mu}^{2} \neq 0$$

 $Cov(X, e') \neq 0$


```
Cov(X,\mu) = E(X\mu) - E(X)EX에 발생하는 Measurement Error는 E(X\mu) = E(X\mu) = E(X\mu) 를 다 하는 E(X\mu) = E(X\mu) = E(X\mu) 를 되었다. E(X\mu) = E(X\mu)
```

$$Cov(X, e') \neq 0$$

내생성 문제의 처방 | 도구 변수

도구 변수

X와는 상관관계가 있지만, 오차와는 상관관계가 없는 변수를 찾아 모델에 넣는 방법

제거하고자 하는 요인 u 와 관계가 없는 변수 z 를 찾아 z 와 x 로 회귀 모델을 세워 \hat{x} 을 구하고, x 대신 \hat{x} 을 회귀 모델에 사용

감사합니다!

