Tutorial-3, MA 108 (ODE) Spring 2015, IIT Bombay

- 1. Use Euler method and Improved Euler's method with step size h=1 to find approximate values of the solution of the IVP $y'=\frac{y^2+xy-x^2}{x^2},\ y(1)=2$ at x=2,3. Compare these approximate values with the values of the exact solution $y=\frac{x(1+x^2/3)}{1-x^2/3}$.
- 2. An implicit solution of the IVP $y' = -\frac{4x^3y^3 + 2xy^5 + 2y}{3x^4y^2 + 5x^2y^4 + 2x}$, y(1) = 1 is given by $x^4y^3 + x^2y^5 + 2xy = 4$. Use Euler method and Improved Euler method to find the approximate values of the solution at x = 1, 2.
- 3. Use Euler method and Improved Euler's method with step size h=1 to find approximate values of the solution of the IVP $y'+\frac{(y+1)(y+2)(y+3)}{x+1}=0$, y(1)=0 at x=2,3.
- 4. A radioactive substance with decay constant k is produced at a constant rate of a units of mass per unit time. Assuming $Q(0) = Q_0$, find the mass Q(t) of the substance present at time t.
- 5. Newton's law of cooling states that if an object with temperature T(t) at time t is in a medium with temperature $T_m(t)$, then rate of change of $T(T') = -k(T-T_m)$, where k > 0 is temperature decay constant of the medium.

Aceramic insulator is baked at $400^{\circ}C$ and cooled in a room in which the temperature is $25^{\circ}C$. After 4 minutes the temperature of the insulator is $200^{\circ}C$. What is the temperature after 8 minutes?

- 6. Consider 2nd order **autonomous** ODE y'' = F(y, y'). Convert it to first order ODE in v and y, where v = y'.
 - (a) Solve y'' + p(y) = 0. (b) Solve y'' + y(y 1) = 0.
- 7. Find the general solution of y'' 2y' + 2y = 0. Solve it with initial conditions (a) y(0) = 3, y'(0) = -2. (b) $y(0) = k_0, y'(0) = k_1$.
- 8. (a) Verify that $y_1 = 1/(x-1)$ and $y_2 = 1/(x+1)$ are solutions of $(x^2 1)y'' + 4xy' + 2y = 0$ on $\mathbb{R} \{\pm 1\}$. Find the general solution. (b) Find the solution with initial conditions y(0) = -5, y'(0) = 1. (c) What is the interval of validity of this solution?
- 9. Compute the Wronskians of the given set of functions.
 - (a) $\{e^x, e^x \sin x\}$, (b) $\{x^{1/2}, x^{-1/3}\}$, (c) $\{x \ln |x|, x^2 \ln |x|\}$.

- 10. Find the Wronskian of a given set of solutions of $y'' + 3(x^2 + 1)y' 2y = 0$, given that $W(\pi) = 0$.
- 11. Find the Wronskian of a given set of solutions of $(1 x^2)y'' 2xy' + a(a+1)y = 0$, given that W(0) = 1.
- 12. Find the Wronskian of a given set of solutions of $x^2y'' + xy' + (x^2 \nu^2)y = 0$, given that W(1) = 1.
- 13. Given one solution y_1 , find other solution y_2 s.t. $\{y_1, y_2\}$ is linearly independent set.
 - (a) y'' 6y' + 9y = 0; $y_1 = e^{3x}$, (b) $x^2y'' xy' + y = 0$; $y_1 = x$.
 - (c) $(x-1)y'' xy' + (3-16x^2)y = 0$; $y_1 = e^x$, (d) $(x^2-4)y'' + 4xy' + 2y = 0$; $y_1 = 1/(x-2)$.
- 14. Suppose p_1, p_2, q_1, q_2 are continuous on (a, b) and the equations $y'' + p_1(x)y' + q_1(x)y = 0$ and $y'' + p_2(x)y' + q_2(x)y = 0$ have the same solutions on (a, b). Show that $p_1 = p_2$ and $q_1 = q_2$ on (a, b). [Hint. Use Abel's formula.]
- 15. Find a linear homogeneous ODE for which the given functions form a fundamental set of solutions on some interval.
 - (a) $e^x \cos 2x$, $e^x \sin 2x$; (b) x, e^{2x} (c) $\cos(\ln x)$, $\sin(\ln x)$.
- 16. Solve IVPs. (a) y'' + 14y' + 50y = 0, y(0) = 2, y'(0) = -17. (b) 6y'' y' y = 0, y(0) = 10, y'(0) = 0.
 - (c) 4y'' 4y' 3y = 0, y(0) = 13/12, y'(0) = 23/24; (d) 4y'' 12y' + 9y = 0, y(0) = 3, y'(0) = 5/2.
- 17. Find a particular solution of $x^2y'' + xy' 4y = 2x^4$.
- 18. (Principle of Superposition) Assume y_1 is a solution of $a(x)y'' + b(x)y' + c(x)y = f_1(x)$ and y_2 is a solution of $a(x)y'' + b(x)y' + c(x)y = f_2(x)$. Show that $y_1 + y_2$ is a solution of $a(x)y'' + b(x)y' + c(x)y = f_1(x) + f_2(x)$.
- 19. Find the general solution of (a) $x^2y'' 3xy' + 3y = x$; (b) $y'' 3y' + 2y = 1/(1 + e^{-x})$; (c) $x^2y'' + xy' 4y = -6x 4$;
 - (d) $(1-2x)y'' + 2y' + (2x-3)y = (1-4x+4x^2)e^x$, one solution is $y_1 = e^x$.
- 20. Find a particular solution of (a) $x^2y'' 2xy' + 2y = x^{9/2}$; (b) $y'' 2y' + y = 14x^{3/2}e^x$; (c) $y'' + 4y = \sin 2x \sec^2 2x$; (d) $y'' + 4xy' + (4x^2 + 2)y = 4e^{-x(x+2)}$, given that $y_1 = e^{-x^2}$, $y_2 = xe^{-x^2}$ are solutions of homogeneous part.