Aufgaben zur Vorlesung "Mathematik I"

Aufgabe 1: Zeigen Sie, dass für jede Primzahl p

$$\sqrt{p} \notin \mathbb{Q}$$

gilt. Welches in der Vorlesung bewiesene Lemma müssen Sie in Ihrem Beweis verwenden?

Lösung: Wir führen den Beweis indirekt und nehmen an, dass $\sqrt{p} \in \mathbb{Q}$ gilt. Dann gibt es zwei natürliche Zahlen $a, b \in \mathbb{N}$, so dass

$$\frac{a}{b} = \sqrt{p}$$

gilt. Da wir einen eventuellen gemeinsamen Teiler von a und b aus dem Bruch $\frac{a}{b}$ herauskürzen können, können wir ohne Beschränkung der Allgemeinheit voraussetzen, dass a und b teilerfremd sind, es gilt dann

$$ggt(a,b) = 1.$$

Aus der Annahme $\frac{a}{b} = \sqrt{p}$ folgt durch Quadrieren, dass

$$\frac{a^2}{b^2} = p$$

gilt. Multiplikation dieser Gleichung mit b^2 liefert die Gleichung

$$a^2 = p \cdot b^2.$$

Diese Gleichung zeigt, dass p ein Teiler von a^2 ist. Nach Satz 72 aus dem Skript, der dort leider als "Lemma von Euklid" (richtig wäre "Lemma von Euler") bezeichnet wird, teilt p einen der Faktoren des Produkts $a \cdot a$. Also teilt p die Zahl a. Somit gibt es eine Zahl c, so dass $a = p \cdot c$ gilt. Setzen wir dies in die Gleichung $a^2 = p \cdot b^2$ ein, so erhalten wir

$$p^2 \cdot c^2 = p \cdot b^2.$$

Dividieren wir diese Gleichung durch p, so erhalten wir die Gleichung

$$p \cdot c^2 = b^2.$$

Also ist p ein Teiler von b^2 . Mit dem Lemma von Euler können wir nun schließen, dass p ein Teiler von b ist. Damit ist p aber ein gemeinsamer Teiler von a und b, was im Widerspruch zu ggt(a,b)=1 steht. Dieser Widerspruch zeigt, dass die Annahme $\sqrt{p} \in Q$ falsch ist.

Aufgabe 2: Welche Bedingungen müssen die Zahlen α , β , γ und δ erfüllen, damit das Gleichungssystem

$$\alpha \cdot x + \beta \cdot y = b_1, \quad (I)$$

$$\gamma \cdot x + \delta \cdot y = b_2.$$
 (II)

für beliebige Zahlen b_1 und b_2 eine eindeutige Lösung hat?

Lösung: Wir multiplizieren zunächst die erste Gleichung mit γ und die zweite Gleichung mit α . Wir erhalten:

$$\alpha \cdot \gamma \cdot x + \beta \cdot \gamma \cdot y = \gamma \cdot b_1,$$

$$\alpha \cdot \gamma \cdot x + \alpha \cdot \delta \cdot y = \alpha \cdot b_2.$$

Ziehen wir die erste dieser Gleichungen von der zweiten ab, so erhalten wir die Gleichung

$$(\alpha \cdot \delta - \beta \cdot \gamma) \cdot y = \alpha \cdot b_2 - \gamma \cdot b_1,$$

die wir zu

$$y = \frac{\alpha \cdot b_2 - \gamma \cdot b_1}{\alpha \cdot \delta - \beta \cdot \gamma}$$

auflösen. Multiplizieren wir Gleichung (I) mit δ und Gleichung (II) mit β so erhalten wir die Gleichungen

$$\alpha \cdot \delta \cdot x + \beta \cdot \delta \cdot y = b_1 \cdot \delta,$$

$$\beta \cdot \gamma \cdot x + \beta \cdot \delta \cdot y = b_2 \cdot \beta.$$

Ziehen wir jetzt die zweite der Gleichungen von der ersten ab, so erhalten wir

$$(\alpha \cdot \delta - \beta \cdot \gamma) \cdot x = b_1 \cdot \delta - b_2 \cdot \beta,$$

was wir zu

$$x = \frac{b_1 \cdot \delta - b_2 \cdot \beta}{\alpha \cdot \delta - \beta \cdot \gamma}$$

auflösen können. Damit sehen wir, dass das ursprüngliche Gleichungssystem genau dann eindeutig lösbar ist, wenn

$$\alpha \cdot \delta - \beta \cdot \gamma \neq 0$$

ist.

Aufgabe 3: Bestimmen Sie alle komplexe Zahlen z, für die die Gleichung $z^3 = -1$ gilt. Machen Sie dazu den Ansatz $z = a + b \cdot i$ mit $a, b \in \mathbb{R}$ und bestimmen Sie a und b.

Lösung: Setzen wir $z = a + b \cdot i$, so erhalten wir aus $z^3 = -1$ die Gleichung

$$a^{3} + 3 \cdot a^{2} \cdot b \cdot i + 3 \cdot a \cdot b^{2} \cdot i^{2} + b^{3} \cdot i^{3}$$

die wir wegen $i^2 = -1$ zu

$$a^{3} - 3 \cdot a \cdot b^{2} + (3 \cdot a^{2} \cdot b - b^{3}) \cdot i = -1$$

vereinfachen können. Vergleich von Real- und Inmaginärteil beider Seiten dieser Gleichung führt auf die beiden Gleichungen

$$a^3 - 3 \cdot a \cdot b^2 = -1$$
 und $3 \cdot a^2 \cdot b - b^3 = 0$.

Aus der letzen Gleichung erhalten wir

$$b = 0$$
, $b = \sqrt{3} \cdot a$ oder $b = -\sqrt{3} \cdot a$.

Wir untersuchen diese drei Möglichkeiten getrennt.

(a) Fall: b = 0. Dann liefert die erste Gleichung

$$a^3 = -1$$
,

woraus sofort a=-1 folgt, denn es soll ja $a\in\mathbb{R}$ gelten. In diesem Fall gilt also

$$z = -1$$

(b) Fall: $b = \sqrt{3} \cdot a$. Jetzt liefert die erste Gleichung

$$a^3 - 9 \cdot a^3 = -1$$
,

was wir zu

$$a^3 = \frac{1}{8}$$

vereinfachen. Insgesamt finden wir dann

$$a = \frac{1}{2}$$
 und $b = \frac{\sqrt{3}}{2}$.

Also lautet die Lösung in diesem Fall:

$$z = \frac{1}{2} \cdot \left(1 + \sqrt{3} \cdot i\right).$$

(c) Fall: $b = -\sqrt{3} \cdot a$. Eine zum zweiten Fall analoge Rechnung liefert

$$z = \frac{1}{2} \cdot \left(1 - \sqrt{3} \cdot i\right).$$

Aufgabe 4:

(a) Lösen Sie die Rekurrenz-Gleichung

$$a_{n+2} = a_{n+1} + 6 \cdot a_n$$

für die Anfangs-Bedingungen $a_0 = 5$ und $a_1 = 0$. (6 Punkte)

(b) Lösen Sie die Rekurrenz-Gleichung

$$a_{n+2} = 4 \cdot a_n + 3$$

für die Anfangs-Bedingungen $a_0 = 0$ und $a_1 = 1$. (10 Punkte)

Lösung:

(a) Das charakteristische Polynom lautet

$$\chi(x) = x^2 - x - 6 = (x - 3) \cdot (x + 2).$$

Damit lautet die allgemeine Lösung

$$a_n = \alpha \cdot 3^n + \beta \cdot (-2)^n.$$

Einsetzen der Anfangsbedingungen liefert das Gleichungssystem

$$5 = \alpha + \beta$$
 und $0 = 3 \cdot \alpha - 2 \cdot \beta$.

Die Lösung dieses Gleichungssystems ist

$$\alpha = 2$$
 und $\beta = 3$.

Also lautet die Lösung der Rekurrenz-Gleichung

$$a_n = 2 \cdot 3^n + 3 \cdot (-2)^n$$
.

Aufgabe 5: Lösen Sie die Rekurrenz-Gleichung

$$n \cdot a_{n+1} = (n+1) \cdot a_n + n \cdot (n+1)$$
 für $n \ge 1$

für die Anfangs-Bedingungen $a_1 = 1$.

(12 Punkte)

Lösung: Wir teilen beide Seiten der Rekurrenz-Gleichung durch den Term $n \cdot (n+1)$ und erhalten

$$\frac{a_{n+1}}{n+1} = \frac{a_n}{n} + 1.$$

Wir definieren

$$b_n := \frac{a_n}{n}$$

und erhalten dann für \boldsymbol{b}_n die Rekurrenz-Gleichung

$$b_{n+1} = b_n + 1$$
 mit der Anfangs-Bedingung $b_1 = 1$.

Diese Rekurrenz-Gleichung hat offenbar die Lösung $b_n = n$, was wir aber auch durch das Teleskop-Verfahren nachrechnen könnten, denn es gilt

$$b_{n+1} = b_1 + \sum_{i=1}^{n} 1 = 1 + n.$$

Damit lautet die Lösung der ursprünglichen Rekurrenz-Gleichung

$$a_n = n^2$$
.

Aufgabe 6: Zeigen Sie, dass es kein $n \in \mathbb{N}$ gibt, so dass $6 \cdot n + 2$ eine Quadratzahl ist.

Lösung: Wir führen den Beweis indirekt und nehmen an, dass es ein $n \in \mathbb{N}$ gibt, so dass $6 \cdot n + 2$ eine Quadratzahl ist. Dann gibt es also ein $a \in \mathbb{N}$ so dass

$$6 \cdot n + 2 = a^2$$

ist. Wir bilden auf beiden Seiten dieser Gleichung den Rest bei der Division durch 3 und sehen, dass dann

$$2 =_3 a^2$$

gelten muss. Wir betrachten den Wert von a % 3. Es sind prinzipiell drei Fälle möglich.

- (a) $a =_3 0$. Dann gilt $a^2 =_3 0$.
- (b) $a =_3 1$. Dann gilt $a^2 =_3 1$. $\frac{1}{2}$
- (c) $a =_3 2$. Dann gilt $a^2 =_3 4 =_3 1$. $\mnormal{1}$

Aufgabe 7: Es sei $G := \mathbb{Q} \setminus \{1\}$. Wir definieren auf G eine Operation

$$\circ:G\times G\to G$$

durch die Festlegung

$$a \circ b := a + b - a \cdot b$$
.

Zeigen Sie, dass die Struktur $\langle G, 0, \circ \rangle$ eine Gruppe ist.

Lösung:

(a) Assoziativ-Gesetz: Einerseits gilt

$$\begin{array}{lll} (a\circ b)\circ c &=& (a+b-a\cdot b)\circ c\\ &=& (a+b-a\cdot b)+c-(a+b-a\cdot b)\cdot c\\ &=& a+b+c-a\cdot b-a\cdot c-b\cdot c+a\cdot b\cdot c. \end{array}$$

Andererseits gilt

$$\begin{array}{rcl} a \circ (b \circ c) & = & a \circ (b + c - b \cdot c) \\ & = & a + (b + c - b \cdot c) - a \cdot (b + c - b \cdot c) \\ & = & a + b + c - b \cdot c - a \cdot b - a \cdot c + a \cdot b \cdot c. \end{array}$$

Da beide Terme auf das selbe Ergebnis führen, ist das Assoziativ-Gesetz gezeigt.

(b) 0 ist links-neutrales Element. Es gilt

$$0\circ a=0+a-0\cdot a=a.$$

(c) Für $a \neq 1$ ist $\frac{a}{a-1}$ ein links-neutrales Element:

$$\frac{a}{a-1} \circ a = \frac{a}{a-1} + a - \frac{a}{a-1} \cdot a$$
$$= \frac{a}{a-1} \cdot \left(1 + (a-1) - a\right)$$
$$= 0.$$

Aufgabe 9: Es sei $\langle G, e, \cdot \rangle$ eine kommutative Gruppe, für welche die Menge G endlich ist. Weiter sei n := card(G), G hat also die Form

$$G = \{a_1, a_2, \cdots, a_n\}$$

Zeigen Sie, dass

$$g^n = e$$
 für alle $g \in G$ gilt.

Hinweis 1: Betrachten Sie die beiden Produkte

$$p_1 := a_1 \cdot a_2 \cdot \ldots \cdot a_n$$
 und $p_2 := (a_1 \cdot g) \cdot (a_2 \cdot g) \cdot \ldots \cdot (a_n \cdot g)$

und zeigen Sie, dass die beiden Produkte gleich sind. Überlegen Sie sich dazu, wie die Menge der Faktoren des Produkts p_2 aus der Menge der Faktoren des Produkts p_1 hervorgeht.

Hinweis 2: In der Vorlesung wurde gezeigt, dass für eine endliche Menge M jede injektive Funktion $f: M \to M$ auch surjektiv ist.

Lösung: Wir definieren eine Funktion $f: G \to G$ durch

$$f(x) := g \cdot x$$
 für alle $x \in G$.

Die Funktion f ist injektiv, denn aus f(x) = f(y) folgt nach Definition von f

$$g \cdot x = g \cdot y.$$

Multiplizieren wir diese Gleichung mit g^{-1} , so folgt daraus sofort x = y. Da die Menge g endlich ist, ist die Funktion f auch surjektiv und damit insgesamt bijektiv. Folglich gilt

$${a_1, a_2, \cdots, a_n} = {f(a_1), f(a_2), \cdots, f(a_n)} = {g \cdot a_1, g \cdot a_2, \cdots, g \cdot a_n}.$$

Multiplizieren wir die Elemente dieser Mengen mit einander, so erhalten wir die Gleichung

$$a_1 \cdot a_2 \cdot \ldots \cdot a_n = (a_1 \cdot g) \cdot (a_2 \cdot g) \cdot \ldots \cdot (a_n \cdot g).$$

was wir aufgrund der Kommutativität (und Assoziativität) zu

$$a_1 \cdot a_2 \cdot \ldots \cdot a_n = (a_1 \cdot a_2 \cdot \ldots \cdot a_n) \cdot g^n$$

vereinfachen können. Multiplizieren wir beide Seiten dieser Gleichung mit $(a_1 \cdot a_2 \cdot \ldots \cdot a_n)^{-1}$, so folgt

$$e = q^n$$
.