Effectivess comparison report

Raphael Rodrigues Campos January 17, 2016

Eu implementei o BROOF usando Extremely Randomized Trees no lugar da RF, gerando o algoritmo que chamei de BERT (Boosted Extremely Randomized Trees).

A própria ERT se sai melhor em alguns datasets do que a RF. Portanto, era de se esperar que a BERT se saísse um pouco melhor que o BROOF, como pode-se verificar no arquivo anexo.

O arquivo anexo possui uma tabela comparando todos os métodos rodados até agora.

Além da implementação do BERT, eu também implementei método de ensemble "Stacked Generalization" descrito em [1] David H. Wolpert, "Stacked Generalization", Neural Networks, 5, 241–259, 1992.

O método comb1 na tabela é o stacking de 2 níveis para combinação dos métodos LazyNN_RF e BROOF. No nível do zero do stacking foram utilizados os classificadores LazyNN_RF e BROOF para gerar o conjunto de treino do nível 1. No nível 1 foi utilizado uma RF com 200 árvores.

Os resultados apresentados são promissores. Sobretudo quando se trata de métrica microf1, onde tivemos mais ganhos significativos.

```
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN RF/release/results/results grid/
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN RF/release/results/results grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
   [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
   [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN RF/release/results/results grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
  [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
```

[1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/

```
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_grid/
```

Resultados

% latex table generated in R 3.2.4 by xtable 1.8-0 package % Sun Apr 10 16:32:36 2016

V1	V2	20NG	4UNI	ACM	REUTERS90
BERT	microF1	82.12 ± 0.51	$\textbf{84.61} \pm \textbf{0.98}$	$\textbf{74.8}\pm\textbf{0.59}$	67.33 ± 0.72
	macroF1	81.86 ± 0.54	$\textbf{73.61}\pm\textbf{1.85}$	$\textbf{62.1}\pm\textbf{0.99}$	$\textbf{29.24}\pm\textbf{1.4}$
BROOF	microF1	86.77 ± 0.39	84.41 ± 1.07	$\textbf{73.35}\pm\textbf{0.79}$	66.79 ± 0.97
	macroF1	86.25 ± 0.49	$\textbf{73.23}\pm\textbf{1.1}$	$\textbf{60.76}\pm\textbf{0.8}$	$\textbf{28.48}\pm\textbf{2.17}$
KNN	microF1	87.53 ± 0.69	75.63 ± 0.94	70.99 ± 0.96	68.07 ± 1.07
	macroF1	87.22 ± 0.66	60.34 ± 1.36	55.85 ± 0.97	$\textbf{29.93}\pm\textbf{2.48}$
LAZY	microF1	87.96 ± 0.37	82.34 ± 0.61	$\textbf{74.02}\pm\textbf{0.79}$	66.3 ± 1.07
	macroF1	87.39 ± 0.37	68.33 ± 1.6	59.46 ± 1.35	26.61 ± 2.12
LXT	microF1	88.39 ± 0.51	81.24 ± 0.71	69.63 ± 0.91	65.92 ± 0.82
	macroF1	$\textbf{88.05}\pm\textbf{0.44}$	66.89 ± 1.23	57.33 ± 1.48	26.71 ± 2.53
NB	microF1	88.99 ± 0.54	62.63 ± 1.7	$\textbf{73.54}\pm\textbf{0.71}$	65.32 ± 1.13
	macroF1	$\textbf{88.68}\pm\textbf{0.55}$	51.38 ± 3.19	58.03 ± 0.85	$\textbf{27.86}\pm\textbf{0.79}$
RF	microF1	83.64 ± 0.29	81.52 ± 1	71.05 ± 0.31	63.92 ± 0.81
	macroF1	83.08 ± 0.35	65.44 ± 1.91	56.56 ± 0.45	24.36 ± 1.98
SVM	microF1	88.35 ± 0.37	81.36 ± 1.01	$\textbf{73.82}\pm\textbf{0.78}$	$\textbf{67.6}\pm\textbf{1.1}$
	macroF1	$\textbf{88.3}\pm\textbf{0.38}$	68.01 ± 2.39	$\textbf{62.55}\pm\textbf{1.53}$	$\textbf{31.73}\pm\textbf{3.13}$
XT	microF1	0 ± 0	81.66 ± 1.03	71.94 ± 0.66	64.33 ± 0.86
	macroF1	0 ± 0	65.44 ± 2.41	57.4 ± 1.13	24.47 ± 2.22

Table 1: Comparação entre todos os métodos

Legenda para os métodos:

- BERT: Boosted Extremely Randomized Trees
- LXT: Lazy Extremely Randomized Trees
- RF: Random Forest com 200 árvores
- RF1000: Random Forest com 1000 árvores
- XT: Extremely Randomized Trees com 200 árvores
- XT1000: Extremely Randomized Trees com 1000 árvores
- COMB1: Stacking (Lazy + BROOF)
- COMB2: Stacking (LXT + BERT)
- COMB3: Stacking (Lazy + BROOF + LXT + BERT)
- COMBSOTA: Stacking (KNN + RF + SVM + NB)