PYTHON FOR DATA ANALYSIS

Project 2023

ESILV DIA 4 : Paul RUNAVOT, Eleonor KIOULOU, Adèle MONTOYA

OBJECTIVE

➤ Analyze a dataset and choose the best model

PLAN

1. EXPLORE THE DATASET

Cleaning, encoding, normalization, imputation

2. DATA VISUALIZATION

show the link between the variables and the target

3. MODELING

Try several algorithms,
change the
hyper parameters, do a grid
search, compare the results
of our models using
graphics

4. API

Transformation of the model into an API

OUR DATASET

SUBJECT

Specificities of molecules

EXAMPLE

```
col names=[
"1) SpMax_L: Leading eigenvalue from Laplace matrix",
"2) J Dz(e): Balaban-like index from Barysz matrix weighted by Sanderson electronegativity",
"3) nHM: Number of heavy atoms",
"4) F01[N-N]: Frequency of N-N at topological distance 1",
"5) F04[C-N]: Frequency of C-N at topological distance 4",
'6) NssssC: Number of atoms of type ssssC',
'7) nCb-: Number of substituted benzene C(sp2)',
'8) C%: Percentage of C atoms',
'9) nCp: Number of terminal primary C(sp3)',
'10) nO: Number of oxygen atoms',
'11) F03[C-N]: Frequency of C-N at topological distance 3',
'12) SdssC: Sum of dssC E-states',
'13) HyWi_B(m): Hyper-Wiener-like index (log function) from Burden matrix weighted by mass',
'14) LOC: Lopping centric index',
'15) SM6 L: Spectral moment of order 6 from Laplace matrix',
'16) F03[C-0]: Frequency of C - O at topological distance 3',
'17) Me: Mean atomic Sanderson electronegativity (scaled on Carbon atom)',
'18) Mi: Mean first ionization potential (scaled on Carbon atom)',
'19) nN-N: Number of N hydrazines',
```

DIMENSIONS

Number of columns: 42

Number of rows: 1 055

CLEANING

SIMPLIFY COLUMN NAMES

CHECK NULL VALUES

RangeIndex: 1055 entries, 0 to 1054

```
col acr=[]
for a in col names:
    col acr.append(re.findall('(?<=\))(.*?)(?=\:)',a))</pre>
col acr
                       [['SpMax L'],
                         'J Dz(e)'],
                         'nHM'],
                        ['F01[N-N]'],
                         ['F04[C-N]'],
                         'NssssC'],
                         'nCb-'],
                         'C%'],
                         'nCp'],
                         'n0'],
                         'F03[C-N]'],
                         'SdssC'],
                         ['HyWi_B(m)'],
                        ['LOC'],
                        ['SM6 L'],
                        ['F03[C-0]'],
                        ['Me'],
                        ['Mi'],
                        ['nN-N'].
```

Data columns (total 42 columns): Column Non-Null Count Dtype SpMax L 1055 non-null float64 J_Dz(e) 1055 non-null float64 nHM int64 1055 non-null 1055 non-null int64 F01[N-N] F04[C-N] 1055 non-null int64 int64 NssssC 1055 non-null nCbint64 1055 non-null C% float64 1055 non-null nCp 1055 non-null int64 9 n0 1055 non-null int64 10 F03[C-N] 1055 non-null int64 11 SdssC 1055 non-null float64 12 HyWi_B(m) 1055 non-null float64 1055 non-null float64 13 LOC

PROBLEMATIC

Can we predict whether a molecule is biodegradable in light of these characteristics?

BOXPLOT

OBJECTIF

Show the link between the variables and the target

CODE

```
sns.boxplot(df["experimental class"],df['C%'])
plt.show()
```

RESULT

- The carbon level for non-biodegradable molecules is higher.
- It can be assumed that the carbon content has an impact on the bio/non-bio decision

BOXPLOT

OBJECTIF

Show the link between the variables and the target

CODE

```
sns.boxplot(df["experimental class"],df['nO'])
plt.show()
```

RESULT

- The number of oxygen atoms for biodegradable molecules is higher.
- It can be assumed that the oxygen content has an impact on the bio/non-bio decision

PREPROCESSING

TRAIN TEST SPLIT

Data separation: train and set (80%/20%)

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(df.drop('experimental class',axis=1),df['experimental class'],test_size=0.2, random_state=42)
```

SCALING

Scaling, which helps standardize data and can help speed up algorithm computations

```
from sklearn import preprocessing
scaler=preprocessing.StandardScaler().fit(X_train)
X_train_scale=scaler.transform(X_train)
X_test_scale=scaler.transform(X_test)
```


ETAPES MODELING

1. CHOOSE A CLASSIFER MODEL

Choose an adapted model, and try to optimize their parameters.

2. SCORE

We chose the accuracy metrics, To evaluate our models.

3. VISUALISATION

A method for graphically summarizing statistical data in order to show the links between data sets

4. CONCLUSION

All analyses and graphs need an explanation to be understood.

Conclusions are then drawn to move forward in the process

SUPPORT VECTOR MACHINE CLASSIFIER

SCORE – MODEL WITH OPTIMIZED PARAMETERS AFTER GRIDSEARH

```
cl_svm=svm.SVC(kernel='rbf',C=1,coef0=0.01,degree=1,gamma='auto')
cl_svm.fit(X_train_scale,y_train)

print(cl_svm.score(X_train_scale,y_train))
print(cl_svm.score(X_test_scale,y_test))

0.9028436018957346
0.8815165876777251
```

PLOTTING CONFUSION MATRIX:

CONCLUSION:

Somewhat satisfactory result

K-NEAREST NEIGHBORS CLASSIFIER

Validation Curve

KNN SCORE

```
cl_knn= KNeighborsClassifier(n_neighbors=20)
cl_knn.fit(X_train_scale,y_train)
print(cl_knn.score(X_train_scale,y_train))
print(cl_knn.score(X_test_scale,y_test))
0.8649289099526066
0.8483412322274881
```

DECISION TREE CLASSIFIER

```
from sklearn.tree import DecisionTreeClassifier
cl dt= DecisionTreeClassifier()
cl_dt.fit(X_train_scale,y_train)
print(cl_dt.score(X_train_scale,y_train))
print(cl_dt.score(X_test_scale,y_test))
1.0
0.8246445497630331
```

Parameters optimization allowed us to reduce a lot overfitting and made our accuracy better.

```
model=DecisionTreeClassifier()
k=np.arange(1,50)
train_scores,val_scores=validation_curve(model,X_train_scale,y_train,param_name='max_depth',param_range=k,cv=5)
plt.plot(k,val scores.mean(axis=1),label='validation')
plt.plot(k,train scores.mean(axis=1),c='orange',label='train')
plt.xlabel('max depth')
plt.legend()
plt.show()
1.00
 0.95
 0.90
 0.85
 0.80
                       max depth
cl dt= DecisionTreeClassifier(criterion='entropy', max depth=5, splitter='random')
cl dt.fit(X train scale,y train)
print(cl dt.score(X train scale,y train))
print(cl_dt.score(X_test_scale,y_test))
0.816350710900474
0.8341232227488151
```

DECISION TREE CLASSIFIER WITH ADABOOSTING

SCORE

```
cl_ada = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(criteri
cl_ada.fit(X_train_scale,y_train)

print(cl_ada.score(X_train_scale,y_train))
print(cl_ada.score(X_test_scale,y_test))

0.9834123222748815
0.8672985781990521
```

Not bad, we again have overfitting

PLOTTING CONFUSION MATRIX

We didn't manage how to reduce overfitting here.

RANDOM FOREST CLASSIFIER

SCORE

```
cl_rf= RandomForestClassifier()
cl_rf.fit(X_train_scale,y_train)
print(cl_rf.score(X_train_scale,y_train))
print(cl_rf.score(X_test_scale,y_test))
```

1.0 0.8909952606635071

After trying to optimize parameters, we find out that default parameters were the best for our problem.

COMPARISON

Accuracy comparison between our models on validation sets

COMPARISON

ROC curve plotting of our models

CHOSEN MODEL

WHY?

- Best average validation score
- Best accuracy on test set
- Best ROC curve
- No overfitting

```
cl_svm=svm.SVC(kernel='rbf',C=1,coef0=0.01,degree=1,gamma='auto')
cl_svm.fit(X_train_scale,y_train)
print(cl_svm.score(X_train_scale,y_train))
print(cl_svm.score(X_test_scale,y_test))

0.9028436018957346
0.8815165876777251
```


API

RAPPEL API:

Programming interface that provides access to support (data or functionality) provided by a third-party system. It is therefore a matter of making software programs easily dialogue between a service-consuming application and another application that will produce this service.

CONCLUSION

OUR SUBJECT

Thanks to our model, we can say that we can predict whether a molecule is biodegradable or not, by looking at these characteristics.

WHAT WE WOULD HAVE LIKED TO DO MORE

If we had had more time, we would have liked to go deeper into the API part.