Related Work

$$\mathbb{E}_{(x,y)\sim p}[\mathbb{E}_{s} \ [(l_{s}-l_{b})+\lambda\|s\|_{0}]]$$

$$x_{i}^{1}$$

$$\vdots$$

$$Approximator$$

$$A_{s}$$

$$\vdots$$

$$x_{i}^{n}$$

$$Approximator$$

$$A_{b}$$

Training Time

Does longer training lead to better performance of the explainer?

Sensitivity of Hyper-parameter

• How sensitive is the explainer's performance to the choice of hyperparameter λ ?

Necessity of a Baseline Model

Does the presence of a baseline model always enhance the explainer's performance?

INVASE (Actor-Critic Based)

Related Work

INVASE (Actor-Critic Based)

* Training Time

Does longer training lead to better performance of the explainer?

Sensitivity of Hyper-parameter

• How sensitive is the explainer's performance to the choice of hyperparameter λ ?

* Necessity of a Baseline Model

Does the presence of a baseline model always enhance the explainer's performance?

Contents

- 1. Backgrounds & Related Work
- 2. Research Questions
- 3. Preliminaries
- 4. Analysis of Performance Influencing Factors in INVASE
- 5. Exploration of Potential Improvements to INVASE
- 6. D-ACES Framework Proposal and Analysis
- 7. Conclusion