Análise de algoritmos

SCE-181 Introdução à Ciência da Computação II

Alneu Lopes Thiago A. S. Pardo

Algoritmo

- Noção geral: conjunto de instruções que devem ser seguidas para solucionar um determinado problema
- Cormen et al. (2002)
 - Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores de entrada e produz algum valor ou conjunto de valores de saída
 - Ferramenta para resolver um problema computacional bem especificado
 - Assim como o hardware de um computador, constitui uma tecnologia, pois o desempenho total do sistema depende da escolha de um algoritmo eficiente tanto quanto da escolha de um hardware rápido

Algoritmo

- Comen et al. (2002)
 - Deseja-se que um algoritmo termine e seja correto

- Perguntas
 - Mas um algoritmo correto vai terminar, não vai?
 - A afirmação está redundante?

- Além de um algoritmo correto, busca-se também um algoritmo eficiente para resolver um determinado problema
- Pergunta: como 'medir' eficiência de um algoritmo?
- Obs. existem problemas para os quais não se conhece nenhum algoritmo eficiente para obter a solução: NP-completos

Recursos de um algoritmo

- Uma vez que um algoritmo está pronto/disponível, é importante determinar os recursos necessários para sua execução
 - Tempo
 - Memória

Qual o principal quesito? Por que?

- Um algoritmo que soluciona um determinado problema, mas requer o processamento de um ano, não deve ser usado
- O que dizer de uma afirmação como a abaixo?
 - "Desenvolvi um novo algoritmo chamado TripleX que leva 14,2 segundos para processar 1.000 números, enquanto o método SimpleX leva 42,1 segundos"
- Você trocaria o SimpleX que roda em sua empresa pelo TripleX?

Análise de algoritmos

- A afirmação tem que ser examinada, pois há diversos fatores envolvidos
 - Características da máquina em que o algoritmo foi testado
 - Quantidade de memória
 - Linguagem de programação
 - Compilada vs. interpretada
 - Alto vs. baixo nível
 - Implementação pouco cuidadosa do algoritmo SimpleX vs. "super" implementação do algoritmo TripleX
 - Quantidade de dados processados
 - Se o TripleX é mais rápido para processar 1.000 números, ele também é mais rápido para processar quantidades maiores de números, certo?

Análise de algoritmos

- A comunidade de computação começou a pesquisar formas de comparar algoritmos de forma independente de
 - Hardware
 - Linguagem de programação
 - Habilidade do programador
- Portanto, quer-se comparar algoritmos e não programas
 - Área conhecida como "análise/complexidade de algoritmos"

Eficiência de algoritmos

- Sabe-se que
 - Processar 10.000 números leva mais tempo do que 1.000 números
 - Cadastrar 10 pessoas em um sistema leva mais tempo do que cadastrar 5
 - Etc.
- Então, pode ser uma boa idéia <u>estimar a eficiência</u> de um algoritmo em função do tamanho do <u>problema</u>
 - Em geral, assume-se que "n" é o tamanho do problema, ou número de elementos que serão processados
 - E calcula-se o número de operações que serão realizadas sobre os n elementos

Eficiência de algoritmos

- O melhor algoritmo é aquele que requer menos operações sobre a entrada, pois é o mais rápido
 - O tempo de execução do algoritmo pode variar em diferentes máquinas, mas o número de operações é uma boa medida de desempenho de um algoritmo
- De que operações estamos falando?
- Toda operação leva o mesmo tempo?

- TripleX: para uma entrada de tamanho n, o algoritmo realiza n²+n operações
 - Pensando em termos de função: f(n)=n²+n

- SimpleX: para uma entrada de tamanho n, o algoritmo realiza 1.000n operações
 - g(n)=1.000n

 Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada

Tamanho da entrada (n)	1	10	100	1.000	10.000
$f(n)=n^2+n$					
g(n)=1.000n					

 Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada

Tamanho da entrada (n)	1	10	100	1.000	10.000
$f(n)=n^2+n$	2	110	10.100	1.001.000	100.010.000
g(n)=1.000n	1.000	10.000	100.000	1.000.000	10.000.000

- A partir de n=1.000, f(n) mantém-se maior e cada vez mais distante de g(n)
 - Diz-se que f(n) cresce mais rápido do que g(n)

Análise assintótica

- Deve-se preocupar com a eficiência de algoritmos quando o tamanho de n for grande
- Definição: a <u>eficiência assintótica</u> de um algoritmo descreve a sua eficiência relativa quando n torna-se grande
- Portanto, para comparar 2 algoritmos, determinamse as taxas de crescimento de cada um: o algoritmo com menor taxa de crescimento rodará mais rápido quando o tamanho do problema for grande

Análise assintótica

- Atenção
 - Algumas funções podem não crescer com o valor de n
 - Quais?
 - Também se pode aplicar os conceitos de análise assintótica para a quantidade de memória usada por um algoritmo
 - Mas não é tão útil, pois é difícil estimar os detalhes exatos do uso de memória e o impacto disso

Expoentes

- $x^a x^b = x^{a+b}$
- $x^{a}/x^{b} = x^{a-b}$
- $(x^a)^b = x^{ab}$
- $x^n + x^n = 2x^n$ (differente de x^{2n})
- $2^{n}+2^{n}=2^{n+1}$

- Logaritmos (usaremos a base 2, a menos que seja dito o contrário)
 - $x^a=b \rightarrow log_xb=a$
 - $log_ab = lob_cb/log_ca$, se c>0
 - log ab = log a + log b
 - $\log a/b = \log a \log b$
 - log(a^b) = b log a

- Logaritmos (usaremos a base 2, a menos que seja dito o contrário)
 - E o mais importante
 - log x < x para todo x>0
 - Alguns valores
 - log 1 = 0, log 2 = 1,
 log 1.024 = 10,
 log 1.048.576 = 20

Função exponencial vs. logarítmica

Na palma da mão direita

Séries

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \approx \frac{n^2}{2}$$

Algumas notações

- Notações que usaremos na análise de algoritmos
 - f(n) = O(g(n)) (lê-se big-oh, big-o ou "da ordem de") se existirem constantes c e n₀ tal que f(n) ≤ c * g(n) quando n ≥ n₀
 - A taxa de crescimento de f(n) é menor ou igual à taxa de g(n)
 - f(n) = Ω(g(n)) (lê-se "ômega") se existirem constantes c e n₀ tal que f(n) ≥ c * g(n) quando n ≥ n₀
 - A taxa de crescimento de f(n) é maior ou igual à taxa de g(n)

Algumas notações

- Notações que usaremos na análise de algoritmos
 - $f(n) = \Theta(g(n))$ (lê-se "theta") se e somente se f(n) = O(g(n))e $f(n) = \Omega(g(n))$
 - A taxa de crescimento de f(n) é igual à taxa de g(n)
 - f(n) = o(g(n)) (lê-se *little-oh* ou *little-o*) se e somente se f(n) = O(g(n)) e $f(n) \neq O(g(n))$
 - A taxa de crescimento de f(n) é menor do que a taxa de g(n)

- O uso das notações permite comparar a taxa de crescimento das funções correspondentes aos algoritmos
 - Não faz sentido comparar pontos isolados das funções, já que podem não corresponder ao comportamento assintótico

- Para 2 algoritmos quaisquer, considere as funções de eficiência correspondentes 1.000n e n²
 - A primeira é maior do que a segunda para valores pequenos de n
 - A segunda cresce mais rapidamente e eventualmente será uma função maior, sendo que o ponto de mudança é n=1.000
 - Segundo as notações anteriores, se existe um ponto n₀ a partir do qual c*f(n) é sempre pelo menos tão grande quanto g(n), então, ignorados os fatores constantes f(n) é pelo menos tão grande quanto g(n)
 - No nosso caso, g(n)=1.000n, $f(n)=n^2$, $n_0=1.000$ e c=1 (ou, ainda, $n_0=10$ e c=100)
 - Dizemos que 1.000n = O(n)

 Ao dizer que g(n) = O(f(n)), garante-se que g(n) cresce numa taxa não maior do que f(n), ou seja, f(n) é seu limite superior

Ao dizer que f(n) = Ω(g(n)), tem-se que g(n) é
 o limite inferior de f(n)

- A função n³ cresce mais rapidamente que n²
 - $n^2 = O(n^3)$
 - $n^3 = \Omega(n^2)$
- Se f(n)=n² e g(n)=2n², então essas duas funções têm taxas de crescimento iguais
 - Portanto, f(n) = O(g(n)) e $f(n) = \Omega(g(n))$

- Algumas regras
 - Se $T_1(n) = O(f(n))$ e $T_2(n) = O(g(n))$, então
 - $T_1(n) + T_2(n) = max(O(f(n)), O(g(n)))$
 - $T_1(n) * T_2(n) = O(f(n) * g(n))$
 - Para que precisamos desse tipo de cálculo?

- Algumas regras
 - Se T(x) é um polinômio de grau n, então
 - $T(x) = \Theta(x^n)$
 - Relembrando: um polinômio de grau n é uma função que possui a forma abaixo

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$$

seguindo a seguinte classificação em função do grau

- Grau 0: polinômio constante
- Grau 1: função afim (polinômio linear, caso a₀ = 0)
- Grau 2: polinômio quadrático
- Grau 3: polinômio cúbico

Se f(x)=0, tem-se o polinômio nulo

- Algumas regras
 - log^kn = O(n) para qualquer constante k, pois logaritmos crescem muito vagarosamente

Funções e taxas de crescimento

As mais comuns

Função	Nome		
С	constante		
log n	logarítmica		
log ² n	log quadrado		
n	linear		
n log n	quadrática		
n ²			
n ³	cúbica		
2 ⁿ	exponencial		
a ⁿ			

Funções e taxas de crescimento

- Apesar de às vezes ser importante, não é comum incluir constantes ou termos de menor ordem em taxas de crescimento
 - Queremos medir a taxa de crescimento da função, o que torna os "termos menores" irrelevantes
 - As constantes também dependem do tempo exato de cada operação; como ignoramos os custos reais das operações, ignoramos também as constantes
- Não se diz que T(n) = O(2n²) ou que T(n) = O(n²+n)
 - Diz-se apenas T(n) = O(n²)

- Um algoritmo tradicional e muito utilizado é da ordem de n^{1,5}, enquanto um algoritmo novo proposto recentemente é da ordem de n log n
 - $f(n)=n^{1,5}$
 - g(n)=n log n
- Qual algoritmo você adotaria na empresa que está fundando?
 - Lembre-se que a eficiência desse algoritmo pode determinar o sucesso ou o fracasso de sua empresa

Exercício

Uma possível solução

•
$$f(n) = n^{1.5}$$

•
$$f(n) = n^{1,5}$$
 $\rightarrow n^{1,5}/n = n^{0,5}$

$$\rightarrow$$
 $(n^{0,5})^2 = n$

•
$$g(n) = n \log n$$
 \rightarrow $(n \log n)/n = \log n$ \rightarrow $(\log n)^2 = \log^2 n$

 Como n cresce mais rapidamente do que qualquer potência de log, temos que o algoritmo novo é mais eficiente e, portanto, deve ser o adotado pela empresa no momento

 Para proceder a uma análise de algoritmos e determinar as taxas de crescimento, necessitamos de um modelo de computador e das operações que executa

- Assume-se o uso de um computador tradicional, em que as instruções de um programa são executadas sequencialmente
 - Com memória infinita, por simplicidade

Análise de algoritmos

- Repertório de instruções simples: soma, multiplicação, comparação, atribuição, etc.
 - Por simplicidade e viabilidade da análise, assume-se que cada instrução demora exatamente uma unidade de tempo para ser executada
 - Obviamente, em situações reais, isso pode não ser verdade: a leitura de um dado em disco pode demorar mais do que uma soma
 - Operações complexas, como inversão de matrizes e ordenação de valores, não são realizadas em uma única unidade de tempo, obviamente: devem ser analisadas em partes

- Considera-se somente o algoritmo e suas entradas (de tamanho n)
- Para uma entrada de tamanho n, pode-se calcular T_{melhor}(n), T_{média}(n) e T_{pior}(n), ou seja, o melhor tempo de execução, o tempo médio e o pior, respectivamente
 - Obviamente, $T_{melhor}(n) \le T_{média}(n) \le T_{pior}(n)$
- Atenção: para mais de uma entrada, essas funções teriam mais de um argumento

- Geralmente, utiliza-se somente a análise do pior caso T_{pior}(n), pois ela fornece os <u>limites</u> para todas as entradas, incluindo particularmente as entradas ruins
 - Logicamente, muitas vezes, o tempo médio pode ser útil, principalmente em sistemas executados rotineiramente
 - Por exemplo: em um sistema de cadastro de alunos como usuários de uma biblioteca, o trabalho difícil de cadastrar uma quantidade enorme de pessoas é feito somente uma vez; depois, cadastros são feitos de vez em quando apenas
 - Dá mais trabalho calcular o tempo médio
 - O melhor tempo não tem muita utilidade

Pergunta

 Idealmente, para um algoritmo qualquer de ordenação de vetores com n elementos

- Qual a configuração do vetor que você imagina que provavelmente geraria o melhor tempo de execução?
- E qual geraria o pior tempo?

- Soma da subseqüência máxima
 - Dada uma seqüência de inteiros (possivelmente negativos) a₁, a₂, ..., a_n, encontre o valor da máxima soma de quaisquer números de elementos consecutivos; se todos os inteiros forem negativos, o algoritmo deve retornar 0 como resultado da maior soma
 - Por exemplo, para a entrada -2, 11, -4, 13, -5 e -2, a resposta é 20 (soma de a₂ a a₄)

- Há <u>muitos algoritmos</u> propostos para resolver esse problema
- Alguns são mostrados abaixo juntamente com seus tempos de execução

Algoritmo	1	2	3	4 O(n)
Tempo	$O(n^3)$	$O(n^2)$	$O(n \log n)$	
Tamanho da entrada				
n =10	0.00103	0.00045	0.00066	0.00034
n =100	0.47015	0.01112	0.00486	0.00063
=1.000 448.77		1.1233	0.05843	0.00333
$n = 10.000$ ND^*		111.13	0.68631	0.03042
n =100.000	ND	ND	8.0113	0.29832

^{*}ND = Não Disponível

- Deve-se notar que
 - Para entradas pequenas, todas as implementações rodam num piscar de olhos
 - Portanto, se somente entradas pequenas são esperadas, não devemos gastar nosso tempo para projetar melhores algoritmos
 - Para entradas grandes, o melhor algoritmo é o 4
 - Os tempos n\u00e3o incluem o tempo requerido para leitura dos dados de entrada
 - Para o algoritmo 4, o tempo de leitura é provavelmente maior do que o tempo para resolver o problema: característica típica de algoritmos eficientes

Gráfico (n x milisegundos) das taxas de crescimento dos 4 algoritmos com entradas entre 10 e 100.

47