Towards Generalized Fiducial Inference for Finite Mixtures

Derek S. Young

Dr. Bing Zhang Department of Statistics University of Kentucky

Joint work with Jan Hannig (UNC-Chapel Hill)

WGMBC 2023, Pittsburgh, PA July 20th, 2023

Outline of Topics

The Fiducial Paradigm

Gaussian Mixture Models (GMMs)

Sketch of Topics Under Consideration

Outline of Topics

The Fiducial Paradigm

Gaussian Mixture Models (GMMs)

Sketch of Topics Under Consideration

Some History

- ▶ Origins of fiducial inference can be traced back to Fisher (1922), who introduced a fiducial distribution for a parameter in place of the Bayesian posterior for interval estimation of said parameter
- Single-parameter families of distributions: Fiducial intervals coincide with classical confidence intervals
- ▶ Multi-parameter families of distributions: Fiducial approach yields confidence sets with frequentist coverage probabilities close to the nominal level, but are not exact in the repeated sampling frequentist sense
- Mid-20th century: Prominent statisticians penned many critical discussions about the fiducial argument
- Late-20th century: Infrequent publications on the topic, with it seemingly becoming a topic of mere historical interest
- ► Early-21st century: A revival of interest in modern modifications of fiducial inference
- ► See Hannig et al. (2016) for a contemporary review on the topic, including key references traversing the timeline stated above

Generalized Fiducial Inference (Hannig, 2009)

- ► **Generalized fiducial inference (GFI)** aims to define a distribution for parameters of interest that contains all the information from data
 - ► The paradigm carefully uses an inverse of a deterministic data-generating equation without the use of Bayes' theorem
- ► Inference for the parameters can therefore be made from this (generalized) fiducial distribution, which can further be interpreted as a posterior distribution without assuming a prior distribution (Efron, 1998)
- ► The random variable having a derived fiducial distribution is called a **generalized fiducial quantity (GFQ)**
- ► The tenet of the GFI framework is to switch the role of the parameters and the data
- ▶ Unfortunately, there is typically no unique way to define a fiducial distribution

Brief Mathematical Setup

- Suppose the data **X** are generated through the structural equation $\mathbf{X} = G(\boldsymbol{\xi}, U)$
 - ▶ $\xi \in \Xi$ is a vector of parameters
 - ightharpoonup U is some random variable with a known distribution independent of ξ
 - ▶ The structural equation can be regarded as a data generation process where the noise process U=u and the signal $\boldsymbol{\xi}$ will produce observed data $\mathbf{X}=\mathbf{x}$
- lacktriangle Hence, the distribution of f X can be determined via the structural equation given a fixed parameter $m \xi$ and the distribution U
- After the data **X** are observed, switch the position of the data and parameters by solving the structural equation (conditioned on the existence of the solution)
- ▶ Thus, we get $\boldsymbol{\xi} = Q(\mathbf{X}, U)$, where $Q(\mathbf{X}, U)$ is the inverse function used to define the following generalized fiducial distribution on $\boldsymbol{\Xi}$: $V(Q(\mathbf{x}, U^*))|\{Q(\mathbf{x}, U^*) \neq \emptyset\}$, where U^* is an independent copy of U
- ightharpoonup A random element generated from this fiducial distribution, say $\mathcal{R}_{\varepsilon}(\mathbf{x})$, is a GFQ

Outline of Topics

The Fiducial Paradigm

Gaussian Mixture Models (GMMs)

Sketch of Topics Under Consideration

Model and Notation

- ► Hannig (2009) considered the generalized fiducial distribution for the parameters of a two-component GMM
- Let X_1, \ldots, X_n be independent random variables drawn from a classic five-parameter, two-component GMM:

$$(1-\pi)\mathcal{N}(\mu_1,\sigma_1^2) + \pi\mathcal{N}(\mu_2,\sigma_2^2)$$

- ► Assumptions:
 - $\mu_1 < \mu_2$ (identifiability constraint)
 - ▶ We observe at least two data points from each distribution
- ▶ Goal: Find the generalized fiducial distribution of $\boldsymbol{\xi} = (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \pi)^T$

Structural Equations

 \blacktriangleright We can write a set of structural equations for X_1, \ldots, X_n as

$$X_i = (\mu_1 + \sigma_1 Z_i) \operatorname{I}_{\{(0,\pi)\}}(U_i) + (\mu_2 + \sigma_2 Z_i) \operatorname{I}_{\{(\pi,1)\}}(U_i), \quad i = 1, \dots, n,$$

where $Z_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and $U_i \stackrel{iid}{\sim} \mathcal{U}(0,1)$

- \blacktriangleright When finding the inverse (set-valued) function Q, this inversion will be stratified based on the possible assignment of the observed x_i to one of the two components
- ▶ The Q function, which is omitted for brevity (see p. 528 of Hannig (2009)), is an extension to the framework for finding the generalized fiducial distribution of (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$ setting
- ▶ The sums in the generalized fiducial distribution have a total of $2^n 2 2n n(n-1)$ terms, so we are unable to get a closed-form generalized fiducial density
- ► Turn to a Metropolis-Hastings algorithm to simulate observations from the derived generalized fiducial distribution to perform inference

k-Component GMMs

Now let X_1, \ldots, X_n be independent random variables drawn from a k-component (k > 2) GMM:

$$X_i \sim \mathcal{N}(\mu_j, \sigma_j^2)$$
 with probability $P\{W_i = j\} = \pi_j$,

where the W_i is a membership variable

- ► Assumptions:
 - $\blacktriangleright \mu_1 < \mu_2 < \cdots < \mu_k$ (identifiability constraint)
 - ► We observe at least two data points from each distribution
- ▶ The number of occurrences of the outcome j among W_1, \ldots, W_n is denoted by n_j ; i.e., $\sum_{i=1}^n \mathbb{I}\{W_i=j\}=n_j$, such that $\sum_{j=1}^k n_j=n$
- ▶ We can apply the recipe used in Hannig (2009) for the k=2 setting to the above k>2 setting

GFQ for π_j

lacktriangle The $W_i,\ i=1,\ldots,n$, can be treated as outcomes from the following data-generating equation:

$$W_i = \sum_{j=0}^k \mathbf{I} \left\{ U_i \in \left[\sum_{l=0}^j \pi_l, 1 \right] \right\},\,$$

where $U_i \stackrel{iid}{\sim} \mathcal{U}(0,1)$ and $\pi_0 = 0$

▶ A GFQ for π_j can be expressed as

$$\mathcal{R}_{\pi_j} = \begin{cases} U_{(r_j)} + D_j [U_{(r_j+1)} - U_{(r_j)}] & j = 1; \\ U_{(r_j)} + D_j [U_{(r_j+1)} - U_{(r_j)}] - \mathcal{R}_{\pi_{j-1}} & j = 2, \dots, k-1; \\ 1 - \sum_{l=1}^{k-1} \mathcal{R}_{\pi_l} & j = k, \end{cases}$$

where $U_{(1)}, \ldots, U_{(n)}$ are the order statistics of U_1, \ldots, U_n , $r_j = \sum_{l=1}^j n_l$, and $D_j \stackrel{iid}{\sim} \mathcal{U}(0,1)$

▶ In the formula for \mathcal{R}_{π_j} , we set $U_{(0)} = 0$ and $U_{(n+1)} = 1$

GFQs for μ_j and σ_j^2

- \blacktriangleright We extend the set of structural equations for X_1, \ldots, X_n used in the two-component setting to the k-component setting
- ▶ A GFQ for σ_j^2 can be expressed as

$$\mathcal{R}_{\sigma_j^2} = \frac{(n_j - 1)s_j^2}{V_j},$$

where s_j^2 denotes the sample variance and $V_j \sim \chi_{n_j-1}^2$

▶ A GFQ for μ_j can be expressed as

$$\mathcal{R}_{\mu_j} = \bar{x}_j - Z_j \sqrt{\frac{\mathcal{R}_{\sigma_j^2}}{n_j}},$$

where $ar{x}_j$ denotes the sample mean and $Z_j \sim \mathcal{N}(0,1)$

Sketch of MCMC Sampler

- Initialize the sampler by determining an arbitrary assignment to the k components, say, $\mathbf{w}^{(0)}=(w_1^{(0)},\dots,w_n^{(0)})^{\mathrm{T}}$
- @ Generate a proposal configuration by taking the previous assignment, randomly choose one data point, and switch it to another component (accept/reject based on usual Metropolis-Hastings rule)
- **3** Based on the current assignment, $\mathbf{w}^{(t)}$, generate realizations of \mathcal{R}_{μ_j} , $\mathcal{R}_{\sigma_j^2}$, and \mathcal{R}_{π_j} , $j=1,\ldots,k$
- The stationary distribution of the assignment-valued Markov chain is the generalized fiducial distribution of the assignment

Using the Results

- ► Since a generalized fiducial distribution provides us with a distribution on the parameter space, its use is similar to the practical use of a Bayesian posterior
- After a burn-in period, we can take, for example, the mean to get a point estimator of the full parameter vector $\boldsymbol{\xi} = (\mu_1, \dots, \mu_k, \sigma_1^2, \dots, \sigma_k^2, \pi_1, \dots, \pi_{k-1})^T$
 - ► Posterior membership probabilities can then be calculated for doing model-based clustering
- ▶ We can find $C(\mathbf{x})$ with fiducial probability $P\left\{\mathcal{R}_{\boldsymbol{\xi}}(\mathbf{x}) \in C(\mathbf{x})\right\} = 1 \alpha$ to get approximate $100 \times (1 \alpha)\%$ fiducial confidence sets
 - ► These confidence sets, though not exact, often have very good coverages and expected length properties in small sample simulations, but can be exact asymptotically

Example: Simulated Data

- ightharpoonup k = 3 components
- $\xi = (\mu_1, \mu_2, \mu_3, \sigma_1^2, \sigma_2^2, \sigma_3^2, \pi_1, \pi_2)^{\mathrm{T}} = (0, 6, 12, 1, 1, 1, 0.50, 0.25)^{\mathrm{T}}$
- ightharpoonup n = 100
- lacktriangle Generated M=5000 fiducial samples after dropping 5000 for burn-in
- ► Computed point estimates based on the fiducial approach and compared with the maximum likelihood solutions using EM
- ► Code is available at my GitHub repo: https://github.com/dsy109/ Supplemental/blob/main/WGMBC/MixNormFid.R

Example: Simulated Data (ctd.)

Figure 1: Trace plots of the generalized fiducial distributions

Example: Simulated Data (ctd.)

Parameter	Fiducial	EM
μ_1	0.0980	0.1004
μ_2	6.1604	6.1657
μ_3	12.0699	12.0693
σ_1^2	0.7236	0.6774
σ_2^2	1.3740	1.1749
σ_3^2	0.7533	0.6626
π_1	0.4998	0.5000
π_2	0.2530	0.2500

Table 1: Fiducial and EM estimates of ξ for the simulated data

Example: 1872 Hidalgo Stamp Data

- Analyzed the famous 1872 Hidalgo stamp data (n=485) assuming k=4 components (Izenman & Sommer, 1988)
- ightharpoonup Generated M=50000 fiducial samples after dropping 50000 for burn-in
- ► Trace plots indicate convergence

Figure 2: Histogram of Hidalgo stamp data

Example: 1872 Hidalgo Stamp Data (ctd.)

Parameter	Fiducial	EM
μ_1	0.0729	0.0712
μ_2	0.0790	0.0786
μ_3	0.0935	0.0980
μ_4	0.1021	0.1034
σ_1	0.0028	0.0013
σ_2	0.0031	0.0024
σ_3	0.0143	0.0151
σ_4	0.0131	0.0054
π_1	0.0789	0.1926
π_2	0.4620	0.3722
π_3	0.2278	0.3613

Table 2: Fiducial and EM estimates of ξ for the Hidalgo stamp data

Example: 1872 Hidalgo Stamp Data (ctd.)

Figure 3: (a) Fiducial fits and (b) EM fits for GMM with k=4 components

Outline of Topics

The Fiducial Paradigm

Gaussian Mixture Models (GMMs)

Sketch of Topics Under Consideration

Model Selection

- lacktriangle Consider a finite collection of models ${\mathcal M}$
- ▶ Data-generating equation is $\mathbf{X} = G(M, \boldsymbol{\xi}_M, U), M \in \mathcal{M}, \boldsymbol{\xi}_M \in \boldsymbol{\Xi}_M$, where M is the model considered and $\boldsymbol{\xi}_M$ are the parameters associated with model M
- ► Similar to maximum likelihood estimation, GFI tends to favor models with more parameters over ones with fewer parameters
- ► Therefore, an outside penalty accounting for our preference toward parsimony (e.g., in terms of number of components) needs to be incorporated in the model
- ► Hannig and Lee (2009) developed model selection in the GFI paradigm for wavelet regression and Lai et al. (2015) did it for ultra-high dimensional regression
- ► A fiducial factor is available, akin to a Bayes factor
- ► An outside penalty tailored towards mixture distributions could be derived, and, perhaps, some notion like a BIC difference (Raftery, 1995) can give us an indication of strength of a particular model

Determining the Number of Components

- A generalized fiducial model selection criterion could be used to determine the number of components, k
- We might include k in the parameter vector and find that generalized fiducial distribution
- Big challenge with this is that we are looking at deriving generalized fiducial quantities for parameters of varying dimensions
- ▶ A possibility is to use an extension of a Bernoulli factory (Latuszyński et al., 2011), which uses martingale approaches to simulate a Bernoulli variable with success probability f(p) from independent Bernoulli variables with success probability p
- ▶ Here, $p \in \mathcal{P} \subseteq [0,1]$ is unknown, but $f : \mathcal{P} \to [0,1]$ is known
- ▶ A Bernoulli factory could be used in an algorithm where f(p) is the probability that a component is "born" or "dies", or we might consider developing something along the lines of a "multinoulli factory," where we simulate a multinoulli variable with success probability $f(\mathbf{p})$ from independent multinoulli variables with success probability \mathbf{p}

Computing

- ▶ Quick search of all R packages on CRAN yields only four packages with "fiducial" in the package name, each of which is focused on a specific class of models (e.g., logistic regression or normal linear mixed models), although other packages have some limited fiducial capabilities
- ► A realistic goal is to develop flexible, fiducial-based mixture functions for which we could employ S3 methods
 - ► A pipe dream is to develop a comprehensive fiducial modeling architecture akin to Stan
- Generating observations from generalized fiducial distributions for conducting GFI is often computationally intensive, so efficiency in computational routines will be important

References I

- Efron, B. (1998). R. A. Fisher in the 21st Century. Statistical Science, 13(2), 95-114.
- Fisher, R. A. (1922). On the Mathematical Foundations of Theoretical Statistics. *Philosophical Transactions of the Royal Society of London, Series A, 222,* 309–368.
- Hannig, J. (2009). On Generalized Fiducial Inference. Statistica Sinica, 19(2), 491-544.
- Hannig, J., Iyer, H., Lai, R. C. S., & Lee, T. C. M. (2016). Generalized Fiducial Inference: A Review and New Results. *Journal of the American Statistical Association*, 111(515), 1346–1361.
- Hannig, J., & Lee, T. C. M. (2009). Generalized Fiducial Inference for Wavelet Regression. *Biometrika*, 96(4), 847–860.
- Izenman, A. J., & Sommer, C. J. (1988). Philatelic Mixtures and Multimodal Densities. *Journal of the American Statistical Association*, 83(404), 941–953.
- Lai, R. C. S., Hannig, J., & Lee, T. C. M. (2015). Generalized Fiducial Inference for Ultra-High Dimensional Regression. *Journal of the American Statistical Association*, 111(510), 760–772.
- Łatuszyński, K., Kosmidis, I., Papaspiliopoulos, O., & Roberts, G. O. (2011). Simulating Events of Unknown Probabilities via Reverse Time Martingales. *Random Structures & Algorithms*, 38(4), 441–452.
- Raftery, A. E. (1995). Bayesian Model Selection in Social Research. *Sociological Methodology*, 25, 111–163

Contact Information

derek.young@uky.edu

http://young.as.uky.edu

https://github.com/dsy109

