化学第一讲 氧化还原反应

【核心考点梳理】

考点一、氧化还原反应的基本概念之间的关系

考点二、常见的氧化剂和还原剂

1. 常见氧化剂及对应的还原产物

氧化剂	Cl ₂ (X ₂)	O_2	Fe ³⁺	酸性 KMr	1O ₄ \	MnO ₂
还原						
产物						
		<u> </u>				
氧化剂	HClO	浓 H ₂ SO ₄	HNO ₃	H ₂ O ₂	PbO ₂	FeO ₄ ²⁻
还原						
产物						

2. 常见还原剂及对应的氧化产物

还原剂	金属単质	Fe ²⁺	H ₂ S/ S ²⁻	SO ₂ / SO ₃ ²⁻	HI/I ⁻	NH ₃	СО
氧化 产物	金属离子						

- 3. 理清常考氧化剂(还原产物)与还原剂(氧化产物)
- (1)氧化剂及还原产物。

氧化剂	Cr ₂ O ^{?~} 或 CrO ^{2~}	ClO ⁻	ClO ₃	H ₂ O ₂	O ₃	$\mathrm{MnO_4^-}$
还原产物						

(2)还原剂及氧化产物。

	还原剂	H_2SO_3 , SO_2 , SO_3^{2-}	H_2O_2	S ₂ O 3 ⁻ 或 S ₂ O ₅ ⁻	H ₂ C ₂ O ₄ 或	AsO3 ⁻	CN^-	
--	-----	----------------------------------	----------	--	--	-------------------	--------	--

考点三、几种特殊元素的转化

考点四、常见六个问题辨析

考点五、氧化还原反应"四大规律"的应用

規律	应用
强弱律	
价态律	
优先律	
优先律	
守恒律	

熟记反应先后两大规律

- (1)同一还原剂与多种氧化剂发生氧化还原反应的先后顺序:
- (2)同一氧化剂与多种还原剂发生氧化还原反应的先后顺序:

考点六、氧化还原反应的解题技巧

1. 正确理解氧化还原反应的实质

理解概念抓实质,解题应用靠特征,即从氧化还原反应的实质——电子转移去分析理解有关概念,而在实际解题过程中,应从分析元素化合价有无变化这一氧化还原反应的特征入手。 具体方法是找变价、判类型、分升降、定其他。其中"找变价"是非常关键的一步,特别是不同反应物中含有同种元素的氧化还原反应,必须弄清元素化合价的变化情况。

2. 解答氧化还原反应题目的3个步骤

第一步:依据题意,分析概念

"升失氧,降得还;剂性一致,其他相反"。"剂性一致"是指氧化剂具有氧化性,还原剂具有

还原性。"其他相反"是指氧化剂被还原,发生氧化反应,生成还原产物;还原剂被氧化,发 生氧化反应, 生成氧化产物。

第二步: 依据规律判断反应的合理性

氧化还原反应遵循化合价互不交叉规律,强弱规律等。同时要掌握化合价与氧化性的关系, "高价氧,低价还,中间价态两面转。"

第三步: 利用电子守恒进行定量判断

有关氧化还原反应的定量问题,利用得、失电子守恒法可以简化计算过程。对于生疏的或多 步氧化还原反应,可直接找出起始的氧化剂、还原剂和最终的还原产物、氧化产物,利用原 子守恒和电子守恒,建立已知量与未知量的关系,快速列等式求解。

【真题回顾练】

- 1. (2021:北京真题) 用电石(主要成分为 CaC₂, 含 CaS 和 Ca₃P₂等) 制取乙炔时, 常用 CuSO₄ 溶液除去乙炔中的杂质。反应为:
 - \bigcirc CuSO₄+H₂S=CuS\+H₂SO₄
 - 211PH₃+24CuSO₄+12H₂O=3H₃PO₄+24H₂SO₄+8Cu₃P_↓

下列分析不正确的是

A. CaS、Ca₃P₂发生水解反应的化学方程式: CaS+2H₂O=Ca(OH)₂+H₂S↑、

 $Ca_3P_2+6H_2O=3Ca(OH)_2+2PH_3\uparrow$

- B. 不能依据反应①比较硫酸与氢硫酸的酸性强弱
- C. 反应②中每 24 mol CuSO4 氧化 11 mol PH3
- D. 用酸性 KMnO₄溶液验证乙炔还原性时, H₂S、PH₃有干扰
- 2. (2021·天津真题) 关于反应 H,SO₄+Na,SO₃+Na,SO₃+SO,↑+H,O 所涉及的物质,下列说法 错误的是
- A. H₂SO₄在该反应中为氧化剂
- B. Na₂SO₃ 容易被空气中的 O₂ 氧化变质
- C. Na₂SO₄是含有共价键的离子化合物 D. SO₂是导致酸雨的主要有害污染物
- 3. (2021·山东真题)实验室中利用固体 KMnO4 进行如图实验,下列说法错误的是

- A. G与 H 均为氧化产物
- B. 实验中 KMnO₄ 只作氧化剂
- C. Mn 元素至少参与了 3 个氧化还原反应 D. G 与 H 的物质的量之和可能为 0.25mol
- 4. (2021·湖南真题) KIO,常用作食盐中的补碘剂,可用"氯酸钾氧化法"制备,该方法的第

一步反应为 $6I_2$ +11KCIO₃+3H₂O $\stackrel{\Delta}{=}$ 6KH (IO₃)₂+5KCl+3Cl₂↑。下列说法错误的是

- A. 产生 22.4L(标准状况)Cl₂时,反应中转移10mole-
- B. 反应中氧化剂和还原剂的物质的量之比为 11: 6
- C. 可用石灰乳吸收反应产生的Cl₂制备漂白粉
- D. 可用酸化的淀粉碘化钾溶液检验食盐中IO; 的存在
- 5. (2021.6·浙江真题) 关于反应 $K_2H_3IO_6+9HI=2KI+4I_2+6H_2O$,下列说法正确的是
- A. K₂H₃IO₆发生氧化反应
- B. KI 是还原产物
- C. 生成 $12.7g I_2$ 时,转移 0.1 mol 电子 D. 还原剂与氧化剂的物质的量之比为 7: 1
- 6. (2021.1·浙江真题) 关于反应 8NH₃+6NO₂=7N₂+12H₂O, 下列说法正确的是
- A. NH₃中H元素被氧化
- B. NO₂在反应过程中失去电子
- C. 还原剂与氧化剂的物质的量之比为 3: 4
- D. 氧化产物与还原产物的质量之比为 4: 3
- 原产物的物质的量之比是
- A. 1:2
- B. 1:1
- C. 2:1 D. 4:1
- 8. (2020·北京真题) 水与下列物质反应时, 水表现出氧化性的是
- A. Na
- B. Cl₂
- C. NO₂ D. Na₂O
- 9. (2020·海南真题)含有下列有害组分的尾气,常用 NaOH 溶液吸收以保护环境。吸收过 程中发生歧化反应的是
- A. SO_3
- B. Cl₂
- $C. NO_2$
- D. HBr
- 10. (2020:山东真题)下列叙述不涉及氧化还原反应的是
- A. 谷物发酵酿造食醋

- B. 小苏打用作食品膨松剂
- C. 含氯消毒剂用于环境消毒 D. 大气中 NO₂ 参与酸雨形成

【模拟仿直练】

- 1. $(2022 \cdot 湖南岳阳 \cdot 一模)$ 过二硫酸是一种疏的含氧酸,化学式 $H_2S_2O_8$ 。它的结构可以表示 成HO,SOOSO,H。它的盐称为过二硫酸盐,在工业上用途广泛,用作强氧化剂等。下列反 应分别是Cr3+与过二硫酸盐和高锰酸盐反应的离子方程式(未配平),下列说法中错误的是 I. $Cr^{3+}+S_2O_8^{2-}+H_2O \xrightarrow{Ag^+\text{##}(k)} Cr_2O_7^{2-}+SO_4^{2-}+H^+$
- II. $Cr^{3+} + MnO_4^{-} + H_2O \xrightarrow{\Delta} Cr_2O_7^{2-} + Mn^{2+} + H^+$
- A. 过二硫酸根中显-2价的氧原子和显-1价的氧原子的数目比是3:1
- B. 反应I中氧化剂和还原剂物质的量之比是3:2
- C. 反应II中每生成1mol $Cr_2O_7^2$, 转移电子的物质的量为6mol

- D. 若反应I和反应II中消耗的 Cr^{3+} 的物质的量相同,则I和II中消耗的氧化剂的物质的量之比为 2:5
- 2. (2022·重庆·一模) Cu₂HgI₄是一种红色固体,常用作示温涂料。制备反应为:

 $2CuSO_4 + SO_2 + K_2HgI_4 + 2H_2O = Cu_2HgI_4 \downarrow + K_2SO_4 + 2H_2SO_4$ 。 己知: N_A 表示阿伏加德罗常数的值。下列有关方程式中的物质说法正确的是

- A. 上述反应中生成 $1 \text{mol } \text{Cu}_2 \text{HgI}_4$ 时,转移的电子数为 2N_A
- B. 标准状态下,44.8L 水中所含 O 原子数为2NA
- C. 标准状态下, 22.4L SO, 与足量的O, 反应, 生成SO, 的分子数为 N。
- D. 1L 0.1mol/LCuSO₄溶液中Cu²⁺数目为0.1N_A
- 3.(2022·湖南长沙·一模)雄黄($A_{S4}S_4$)和雌黄(As_2S_3)是提取砷的主要矿物原料,二者在自然界中共生, As_2S_3 和HNO $_3$ 有如下反应:

 $As_2S_3 + 10H^+ + 10NO_3^- = 2H_3AsO_4 + 3S + 10NO_2 \uparrow + 2H_2O$ 。下列说法错误的是

- A. 生成1mol H₃AsO₄,则反应中转移电子的物质的量为 5 mol
- B. 若将该反应设计成原电池,则 NO。应该在负极附近逸出
- C. 反应产生的 NO, 可用 NaOH 溶液吸收
- D. 氧化剂和还原剂的物质的量之比为 10: 1
- 4. (2022·湖南长沙·一模) 处理工业废水中 $Cr_2O_7^{2-}$ 和 $Cr_2O_4^{2-}$ 的工艺流程如下:

$$\operatorname{CrO}_{4}^{2-} \xrightarrow{\operatorname{H}^{+}} \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} \xrightarrow{\operatorname{E}^{2}^{+}} \operatorname{Cr}^{3+} \xrightarrow{\operatorname{OH}^{-}} \operatorname{Cr} \left(\operatorname{OH} \right)_{3} \downarrow$$

已知: (1) Cr₂O₄²⁻(黄色), Cr₂O₇²⁻(橙色)

(2)常温下, $Cr(OH)_3$ 的溶度积 $Ksp = 10^{-32}$

下列说法错误的是

- A. 第①步存在平衡: 2CrO₄²⁻ + 2H⁺ ← Cr₂O₇²⁻ + H₂O
- B. 常温下, pH > 5时 Cr³⁺ 沉淀完全
- C. 第②步能说明氧化性: $Cr_2O_7^{2-} > Fe^{3+}$
- D. 稀释 K, Cr, O, 溶液时, 溶液中各离子浓度均减小
- 5.(2022·山西吕梁·一模)下列关于反应 $MnO_4^*+Cu_2S+H^*\longrightarrow Cu^{2^+}+SO_2\uparrow +Mn^{2^+}+H_2O$ (未配平)的说法中不正确的是
- A. 被氧化的元素 Cu和 S
- B. 氧化剂与还原剂的物质的量之比为8:5
- C. 生成 2.24L (标况下) SO_2 , 转移电子的物质的量是 0.8 mol
- D. 还原性的强弱关系是: $Mn^{2+} > Cu_{2}S$

6. $(2022 \cdot \text{重庆} \cdot - \text{模})$ 天然气中含有有毒气体 H_2S ,用下图所示流程可实现天然气在氧化亚铁硫杆菌 $(T \cdot F \ \text{菌})$ 作用下催化脱硫。下列说法不正确的是

- A. 过程①的 pH 降低,过程②的 pH 升高
- B. 该脱硫过程可以在中性环境中进行
- C. 该脱硫过程不需要补充 FeSO₄溶液
- D. 该脱硫过程的总反应中氧化剂与还原剂的物质的量之比为 1:2
- 7. (2022·安徽·淮北市教育科学研究所一模)高铜酸钠(NaCuO₂)是黑色难溶于水的固体,具有强氧化性,在中性或碱性环境下稳定。一种制备高铜酸钠的原理为:

2Cu+3NaClO+2NaOH=2NaCuO₂+3NaCl+H₂O。下列说法错误的是

- A. NaCuO₂ 中铜的化合价为+3 价
- B. 1molClO-参加反应转移 2mol 电子
- C. 反应中氧化产物和还原产物的物质的量之比为 2:3
- D. NaCuO₂与稀硫酸反应的离子方程式为: 4CuO₂+12H+=4Cu²⁺+O₂↑+6H₂O
- 8. $(2022 \cdot 湖南邵阳 \cdot 一模)$ 酸性环境中,纳米 Fe/Ni 去除 NO_3 过程中的含氮微粒变化如图所示,溶液中铁以 Fe^{2+} 形式存在。下列有关说法不正确的是

- A. 反应ii的离子方程式为: NO₂+3Fe+8H⁺=NH₄+3Fe²⁺+2H₂O
- B. 增大单位体积水体中纳米 Fe/Ni 的投入量,可提高 NO; 的去除效果
- C. 假设反应过程都能彻底进行,反应i、ii消耗的铁的物质的量之比为 3:1
- D. a mol NO₃ 完全转化为 NH₄ 至少需要 4a mol 的铁
- 9. (2022·河南郑州·一模)甲酸钙[(HCOO)₂Ca]是一种新型猪饲料添加剂。实验室制取甲酸

钙方法之一,是将 $Ca(OH)_2$ 和甲醛溶液依次加入质量分数为 $30\%\sim70\%$ 的 H_2O_2 中。下列说法错误的是

- A. 反应温度不宜过高
- B. 该反应中被还原的元素只有 O
- C. 参加反应的氧化剂与还原剂的物质的量之比为1:1
- D. 每生成 26 g (HCOO)₂Ca, 反应转移电子的物质的量为 0.4 mol

化学第二讲 离子反应

【核心考点梳理】

考点一 四种离子反应类型

反应类型		不能大量共存的离子
复分	生成沉淀	
解反	生成气体	
应	生成弱电解	
,	质	
氧化还原反应		
盐的双水解		
终	合反应	

考点二 离子方程式正误判断

考点三 离子共存的四大题设"陷阱"

条件类型	常见表述	误点点拨
	"无色"	
常见的限	"pH=1"或"pH=13"	
制条件	"因发生氧化还原反应而不	
	能大量共存"	
	"透明"	
	"与 Al 反应放出 H ₂ "	
常见的隐	"由水电离出的 $c(H^+)=$	
含条件	1×10 ⁻¹² mol·L ⁻¹ "的溶液	
	"通入足量的 NH ₃ "	

	含有大量 Fe ³⁺ 的溶液	
	含有大量 AlO ₂ 、S ²⁻ 的溶液	
	含有大量 NO 3 的溶液	
	NH ⁺ 与 CH ₃ COO ⁻ 、CO ₃ ⁻ ,	
相互促进	Mg ²⁺ 与 HCO ⁻ 3等组合	
	Al ³⁺ 与CO ₃ ⁻ 、HCO ₃ 、AlO ₂ 、	
水解	$HS^-, S^{2-}; Fe^{3+} = CO_3^{2-}, HCO_3^-,$	
	AlO_2^- , ClO^-	
	(1)"一定大量共存"	
题干要求	(2)"可能大量共存"	审清关键字词
	(3)"不能大量共存"	

考点四 离子推断

- 1.肯定性原则:根据现象推断溶液中肯定存在或肯定不存在的离子(记住常见有色离子)。
- 2.互斥性原则:在肯定某些离子存在的同时,结合离子共存规律,否定一些离子的存在(注意题目中的隐含条件,如酸性、碱性、指示剂变化、水的电离情况等)。
- 3.电中性原则:溶液呈电中性,一定既有阳离子,又有阴离子,且溶液中正电荷总数与负电荷总数相等(这一原则可帮助我们确定一些隐含的离子)。
- 4.进出性原则: 指在实验过程中反应生成的离子或引入的离子对后续实验的干扰。

【真题回顾练】

- 1. (2021·广东真题) 宏观辨识与微观探析是化学学科核心素养之一。下列物质性质实验对 应的反应方程式书写正确的是
- A. Na₂O₂放入水中: Na₂O₂ + H₂O = 2NaOH + O₂ 个
- B. $H_2O(g)$ 通过灼热铁粉: $3H_2O + 2Fe = Fe_2O_3 + 3H_2$
- C. 铜丝插入热的浓硫酸中: $Cu + H_2SO_4 = CuSO_4 + H_2 \uparrow$
- D. SO_2 通入酸性 $KMnO_4$ 溶液中: $5SO_2 + 2H_2O + 2MnO_4^- = 5SO_4^{2-} + 4H^+ + 2Mn^{2+}$
- 2. (2021·北京真题)使用如图装置(搅拌装置略)探究溶液离子浓度变化,灯光变化不可能出现"亮→暗(或灭)→亮"现象的是

选项	A	В	С	D
试剂 a	CuSO ₄	NH ₄ HCO ₃	H ₂ SO ₄	CH₃COOH
试剂 b	Ba(OH) ₂	Ca(OH) ₂	Ba(OH) ₂	NH ₃ ·H ₂ O

- 3. (2021·福建真题)室温下,下列各组离子一定能与指定溶液共存的是
- A. 0.2mol·L⁻¹的 NH₄Cl溶液: Na⁺、K⁺、SO₄²⁻、SiO₃²⁻
- B. 0.1mol·L⁻¹的 FeCl₃溶液: NH₄⁺、Ca²⁺、Br⁻、SCN⁻
- C. 0.2mol·L⁻¹的H₂SO₄溶液: Mg²⁺、Fe²⁺、NO₃、Cl⁻¹
- D. 0.1mol·L¹的 Ba(OH)₂溶液: Na⁺、K⁺、Cl⁻、ClO⁻
- 4. (2021·湖北真题)对于下列实验,不能正确描述其反应的离子方程式是
- A. 向氢氧化钡溶液中加入盐酸: H++OH=H2O
- B. 向硝酸银溶液中滴加少量碘化钾溶液: Ag++I=AgI↓
- C. 向烧碱溶液中加入一小段铝片: 2Al+2OH-+6H₂O=2[Al(OH)₄]-+3H₂↑
- D. 向次氯酸钙溶液中通入少量二氧化碳气体: CIO-+CO₂+H₂O=HCIO+HCO₃
- 5. (2021·天津真题) 常温下,下列各组离子在给定溶液中能大量共存的是
- A. pH=1 的溶液: Fe²⁺、Mg²⁺、SO₄²⁻、NO₃⁻
- B. pH=12 的溶液: K+、Na+、NO₃、CO₃²
- C. pH=7 的溶液: Na+、Cu²⁺、S²⁻、Cl-
- D. pH=7 的溶液: Al3+、K+、Cl-、HCO3
- 6. (2021·湖南真题)对下列粒子组在溶液中能否大量共存的判断和分析均正确的是

	粒子组	判断和分析
A	Na^+ 、 Al^{3+} 、 Cl^- 、 $NH_3 \cdot H_2O$	不能大量共存,因发生反应: $Al^{3+} + 4NH_3 \cdot H_2O = AlO_2^- + 4NH_4^+ + 2H_2O$

В	$H^+ \ K^+ \ S_2O_3^{2-} \ SO_4^{2-}$	不能大量共存,因发生反应: $2H^+ + S_2O_3^{2-} = S \downarrow + SO_2 \uparrow + H_2O$
С	Na^+ , Fe^{3+} , SO_4^{2-} , H_2O_2	能大量共存,粒子间不反应
D	H^+ Na^+ $Cl^ MnO_4^-$	能大量共存,粒子间不反应

- 7. (2020.1·浙江真题) 某固体混合物 X, 含有 Al₂(SO₄)₃、FeCl₃、Na₂CO₃和 CuSO₄中的几
- 种,进行如下实验:
- ①X 与水作用有气泡冒出,得到有色沉淀 Y 和弱碱性溶液 Z;
- ②沉淀 Y 与 NaOH 溶液作用, 无变化。

下列说法不正确的是()

- A. 往溶液 Z 中加入 Cu 粉, 若不溶解, 说明 X 中不含 FeCl₃
- B. 混合物 X 中必定含有 Na₂CO₃, 不含 Al₂(SO₄)₃
- C. 溶液 Z 中溶质主要是钠盐,且必含 NaHCO₃
- D. 灼烧沉淀 Y, 可以得到黑色物质
- 8. (2021.6·浙江真题) 不能正确表示下列变化的离子方程式是
- A. 碳酸镁与稀盐酸反应: CO₃²⁻ + 2H⁺=CO₂ ↑ +H₂O
- B. 亚硫酸氢钠的水解: $HSO_3^- + H_2O \rightleftharpoons H_2SO_3 + OH^-$
- C. 锌溶于氢氧化钠溶液: Zn+2OH⁻+2H₂O=[Zn(OH)₄]²⁻+H₂↑
- D. 亚硝酸钠与氯化铵溶液受热反应: NO₂ + NH₄ ≜ N₂ ↑ +2H₂O
- 9. (2021.1·浙江真题)下列反应的方程式不正确的是
- A. 石灰石与醋酸反应: CO²⁻+2CH₃COOH=2CH₃COO⁻+CO₂↑+H₂O
- B. 铜片上电镀银的总反应(银作阳极,硝酸银溶液作电镀液): Ag(阳极) ^{通电} Ag(阴极)
- C. 铜与稀硝酸反应: 3Cu+2NO₃+8H+=3Cu²⁺+2NO↑+4H₂O
- D. 明矾溶液中加入少量氢氧化钡溶液: 2Al³++3SO⁴-+3Ba²++6OH⁻=2Al(OH)₃↓+3BaSO₄↓
- 10. (2020·北京真题)下列说法不正确的是
- A. 用碳酸钠溶液处理锅炉水垢: CaSO₄(s)+CO₃²⁻ ⇌CaCO₃(s)+SO₄²⁻
- B. 湿润的淀粉碘化钾试纸遇氯气变蓝: 3Cl₂+I-+3H₂O=6Cl-+IO₃+6H+
- C. 铝粉和氧化铁组成的铝热剂用于焊接钢轨: 2Al+Fe₂O₃——Al₂O₃+2Fe
- D. 淡黄色的过氧化钠敞口放置变成白色: $2Na_2O_2+2CO_2=2Na_2CO_3+O_2$;

 $2Na_2O_2+2H_2O=4NaOH+O_2\uparrow$

【模拟仿真练】

- 1. (2022·广西柳州·二模)下列指定反应的离子方程式正确的是
- A. AlCl, 溶液中加入过量浓氨水: Al3++4NH, ·H2O=AlO2+4NH4+2H2O
- B. 向BaCl₂溶液中通入SO₂: Ba²⁺+H₂O+SO₂=BaSO₃ ↓+2H⁺
- C. 澄清石灰水中通入过量的二氧化碳: CO,+OH-=HCO,
- D. 将铜插入稀硝酸中: Cu+4H++2NO₃=Cu²⁺+2NO₂↑+H₂O
- 2. (2022·山西吕梁·一模) 常温下,下列各组离子在指定溶液中可能大量共存的是

A. 在
$$\frac{c(OH^{-})}{c(H^{+})}$$
=1×10¹²的溶液中: HCO_{3}^{-} 、 K^{+} 、 Na^{+} 、 SO_{4}^{2-}

- B. 含有大量 Fe³⁺的溶液中: Na⁺、OH⁻、Br⁻、Na⁺
- C. pH = 0的溶液中: $Na^+, K^+, SO_4^{2-}, S_2O_3^{2-}$
- D. 在 $\frac{K_{w}}{c(OH^{-})} = 1 \times 10^{-12} \text{mol} \cdot L^{-1}$ 的溶液中: Na⁺、Ba²⁺、Cl⁻、Br⁻
- 3. (2022·湖南岳阳·一模)下列离子组中加(或通)入相应试剂后,判断和分析均正确的是

选项	离子组	加(或通)入试剂	判断和分析
A	Na ⁺ 、K ⁺ 、AlO ₂ ·、Cl ⁻	足量 NaHCO ₃ 溶液	不能大量共存,因 AlO ₂ 和 HCO ₃ 之间会发生完全双水解生成 CO ₂ 气体和 Al(OH) ₃ 沉淀
В	Na ⁺ 、Mg ²⁺ 、SO ₄ ²⁻ 、HCO ₃	足量 NaOH 溶 液	不能大量共存,会发生下列反应 Mg ²⁺ +HCO ₃ +OH ⁻ =MgCO ₃ ↓+H ₂ O
С	NH ₄ ⁺ , Ca ²⁺ , Cl ⁻ , NO ₃ ⁻	足量 CO ₂	能大量共存,粒子间不反应
D	Na ⁺ 、K ⁺ 、ClO ⁻ 、Cl ⁻	少量 SO ₂	不能大量共存,会发生下列氧化还原反应 ClO ⁻ +H ₂ O+SO ₂ =Cl ⁻ +SO ₄ ²⁻ +2H ⁺

- 4. (2022·重庆·一模) 常温下,下列各组离子在指定环境中一定能大量共存的是
- A. 澄清透明的中性溶液: Fe³⁺、Ba²⁺、Cl⁻、NO₃
- B. 能使 pH 试纸变深红的溶液: K^+ 、 Na^+ 、 I^- 、 CrO_4^{2-}
- C. pH = 13 的 NaOH 溶液: Na^+ 、 Cl^- 、 SO_4^{2-} 、 AlO_2^-
- D. $c(OH^-) < \sqrt{K_w}$ 的溶液: Ca^{2+} 、 K^+ 、 NO_2^- 、 $CHCOO^-$
- 5. (2022·广东肇庆·二模) 宏观辨识与微观探析是化学学科核心素养之一。下列对应离子方

程式书写正确, 且能完整解释对应实验现象的是

- A. 将小块钠颗粒投入水中,快速游动直至消失: Na+H₂O=OH⁻+Na⁺+H₂↑
- B. 向硫代硫酸钠溶液中滴加稀硫酸,产生淡黄色沉淀和刺激性气味气体:

 $S_2O_3^{2-}+2H^+=S\downarrow+SO_2\uparrow+H_2O$

C. 向滴有酚酞的 Ba(OH)₂溶液中加入 NaHSO₄溶液, 至溶液恰好变为无色:

 $Ba^{2+} + OH^{-} + SO_4^{2-} + H^{+} = BaSO_4 \downarrow + H_2O$

D. NaAlO₂溶液中通入过量 CO₂,产生白色沉淀: 2 AlO₂+CO₂+3H₂O=2Al(OH)₃↓+CO₃-

无机化学基本理论

一、化学方程式的书写

1、非氧化还原反应

非氧化还原反应可将反应物看做由离子组成,反应物先分解为离子,离子之间按照电性规则重新组合,得到生成物。可用以下通式表示机理

$$A_{+}B_{-} + C_{+}D_{-} = A_{+}D_{-} + C_{+}B_{-}$$

2、氧化还原反应

元素化合价改变的化学反应叫做氧化还原反应。因非溶液反应机理复杂,此处仅讨论水溶液中进行的氧化还原反应。溶液中进行的氧化还原反应可分为两步,第一步,化合价升降(电子转移反应),即

第二步,酸碱反应。酸碱反应的作用是,解决在第一步中生成或消耗 H⁺、OH⁻、O²⁻的问题。

生成或消耗 O²-在第一步电子转移过程中是很常见的现象。根据溶液酸碱性不同,用来 解决生成或消耗 O²-的酸碱反应也不同,示例如下

	反应物多 O2-	示例
	$O^{2-} + 2H^+ = H_2O$	MnO_4 + Fe^{2+}
中性	$O^{2-} + H_2O = 2OH^{-}$	MnO_4 + SO_3 ²
减性	$O^{2-} + H_2O = 2OH^{-}$	$MnO_4^{2-} + ClO^{-}$
	反应物缺 O²-	示例
竣性	$H_2O = O^{2-} + 2H^+$	MnO_4 + Cr^{3+}
中性	$H_2O = O^{2-} + 2H^+$	MnO_4 + Mn^{2+}
减性	$2OH^{-} = O^{2-} + H_2O$	I2 碱性歧化

二、元素周期律

1、原子结构

原子包括原子核和核外电子,可用原子结构示意图简单表达。决定原子性质的最根本参数是核电荷数,等于原子序数。核电荷数又决定了原子的最外层电子数和电子层数,后两者直接地、共同地决定原子的得失电子性。

2、元素周期表

元素周期表是原子按原子序数由小到大排列形成的表格。元素周期表一行元素电子层数相同,最外层电子数从左到右依次增大,称为一个周期;一列元素最外层电子数相同,电子层数从上到下依次增大,称为一个族。

思考:为什么第一周期只有两个元素?过渡元素、镧系锕系元素为什么性质相似?得失电子性的变化规律是什么?为什么分金属和非金属元素?为什么大多数元素是金属元素?金属非金属分界线有什么规律?

3、元素周期律

元素的性质随着元素原子序数的递增而呈周期性变化。元素性质的周期性变化是元素原

子核外电子排布周期性变化的必然结果。

元素的性质包括化合价、原子半径、原子得失电子性、单质氧化还原性、氧化物的酸碱性、氧化物的水化物的酸碱性等。

4、原子的得失电子性

得失电子性是原子最根本的化学性质,得电子性与失电子性此消彼长。

(1) 得失电子性的影响因素和变化规律

最外层电子数和电子层数都影响得失电子性。最外层电子数和电子层数对得失电子性的影响相反。

(2) 得失电子性的定量标度——电负性

电负性是得失电子性的定量标度,值越大,说明原子越易得电子。常见原子得电子能力: F > O > Cl > N > Br > I > S > C, 失电子能力: K > Na > Li > Ca > Mg > Be > Al > H.

Н	Li	Be	В	С	N	0	F	Na	Mg
2.20	0.98	1.57	2.04	2.55	3.04	3.44	3.98	0.93	1.31
Al	Si	P	s	Cl	K	Ca	Br	I	
		2.19	2.58			1.00	2.96		

电负性的应用:

- ①判断元素的金属非金属性强弱;
- ②判断化学键的类型(离子、共价);
- ③判断元素在化合物中的价态。
- 5、单质的氧化还原性

单质的氧化还原性由得失电子性决定。得电子性越强,单质氧化性越强;失电子性越强,单质还原性越强。

6、非金属氢化物的稳定性(单质与氢气反应的难易)

非金属氢化物的稳定性由得失电子性决定。得电子性越强,非金属氢化物越稳定;失电子性越强,非金属氢化物越不稳定。

- 7、最高价氧化物的水化物的酸碱性
- (1) 最高价氧化物水化物的组成和结构

最高价氧化物的水化物要么是氢氧化物,要么由氢氧化物脱水而来,根据脱水量不同可有多种存在形态。结构上,最高价氧化物的水化物由中心原子,羟基,和非羟基氧组成,其中的氢都是以羟基的形式存在,剩余的氧即是非羟基氧。

氢氧化物	NaOH	Mg(OH) ₂	Al(OH) ₃ H ₃ AlO ₃	H ₄ SiO ₄	H ₅ PO ₅	H ₆ SO ₆	H ₇ ClO ₇
原酸			ПзАІОз				
酸	-	-	H_3AlO_3	$\mathrm{H}_{2}\mathrm{SiO}_{3}$	H_3PO_4	$\mathrm{H}_2\mathrm{SO}_4$	$HClO_4$
偏酸	-	-	HAlO_2		HPO_3		
酸酐	-	-	Al_2O_3	SiO_2	$\mathrm{P_4O_{10}}$	SO_3	Cl_2O_7

(2) 显示酸碱性的原因

羟基有两种电离方式,酸式电离产生 H⁺,对应的最高价氧化物的水化物显酸性,碱式电离产生 OH⁻,对应的最高价氧化物的水化物显碱性。如果两种电离程度接近,则最高价氧化物的水化物显两性。

 $MOH = MO_{-} + H_{+}$ $MOH = MO_{-} + H_{+}$

M表示最高价氧化物的水化物除羟基之外的部分。

(3) 最高价氧化物的水化物的酸碱性规律

最高价氧化物的水化物的酸碱性由得失电子性决定。得电子性强,酸式电离为主,最高价氧化物的水化物显酸性;失电子性强,碱式电离为主,最高价氧化物的水化物显碱性;得失电子性相近,最高价氧化物的水化物体现两性。

思考:最高价氧化物的水化物中,酸性和碱性最强的是?两性物质有哪些?比较元素最高价氧化物水化物的碱性: Na, Be, Mg, Ca; 比较元素最高价氧化物水化物的酸性: B, Al; C, Si, Ge; N, P, As; S, Se; Cl, Br, I。

(4) 含氧酸的命名

原酸、偏酸、酸酐用于区分含"水"量的多少。焦酸或重酸表示酸双分子脱水形成的二聚酸,多酸表示酸多分子脱水形成的多聚酸。次、亚、正、高表示酸的中心原子价态依次升高。 8、物质的氧化还原性

(1) 物质的氧化还原性的影响因素

物质中元素的价态、原子的得失电子性和分子的稳定性都影响氧化还原性。前两者决定物质具有氧化性还是还原性,而分子的不稳定性会加强本身的氧化性或还原性。

(2) 氧化性物质

判断下列物质具有氧化性的原因

- $(1)X_2, O_2, O_3$
- (2)KMnO₄, K₂Cr₂O₇, HClO, KClO₃, HNO₃
- $\textcircled{3}NO_2$, SO_3 , ClO_2
- 4 H_2O_2 , CH_3COOOH , $K_2S_2O_8$
- (3) 还原性物质

判断下列物质具有还原性的原因

- ①Na, Mg; H₂, C, Si, P
- ②FeCl₂, SnCl₂
- (3)CH₄, NH₃, H₂S, HI, N₂H₄
- (4)CO, SO₂, Na₂SO₃
- 5NaH, LiAlH₄, NaBH₄, SiH₄, B₂H₆

三、酸碱电离理论

由瑞典科学家阿伦尼乌斯于 1887 年提出。

1、酸碱定义

在水溶液中电离出的阳离子全部都是 H^{+} 的物质叫酸,电离出的阴离子全部都是 OH 的物质叫碱。 H^{+} 在水中实际以 $H_{3}O^{+}$ 的形式存在,简写为 H^{+} 。酸和碱发生中和反应,生成盐和水。

2、典型反应

电离反应: 物质在水中解离出自由移动的离子的过程。

 $HCl = H^+ + Cl^ H_2CO_3 \rightleftharpoons HCO_3^- + H^+$

$$HCO_3$$
 $\rightleftharpoons CO_3^{2-} + H^+$
 $NH_3 \cdot H_2O \rightleftharpoons NH_4^+ + OH^-$

根据电离反应的完全程度可将酸碱分为强酸强碱和弱酸弱碱。完全电离即为强,不完全为弱。

中和反应:本质是H⁺和OH⁻重新结合成H₂O的过程

$$H^+ + OH^- = H_2O$$

水解反应: 弱酸的酸根有夺取水中 H⁺的倾向, 因此可以和水反应; 弱碱的阳离子有夺取水中 OH 的倾向, 也可以和水反应。这些反应都叫水解反应

$$CO_3^{2 \cdot} + H_2O \rightleftharpoons HCO_3^{\cdot} + OH^{\cdot}$$

 $NH_4^+ + H_2O \rightleftharpoons NH_3 \cdot H_2O + H^+$

3、酸碱强弱的比较

酸碱的强度分别用酸式电离常数 K_a 、碱式电离常数 K_b 表示。K 越大,表明电离越完全,相应的酸碱性就越强。

4、理论优缺点

提出了物质的酸、碱、盐分类法,通过水解反应解释了某些盐溶液非中性的现象。但反应体系局限于溶液,气相的某些反应,如氨气和氯化氢的反应,无法用本理论解释。物质分类较复杂,不利于反应机理的探讨。

四、酸碱质子理论

1、酸碱的定义

能够给出质子的物质称为酸,如 HCl, H₃O⁺, H₂O, NH₄⁺, H₂CO₃, HCO₃。

能够接受质子的物质称为碱,如Cl,H2O,OH,NH3,HCO3,CO32。

既能给出又能接受质子的物质称为两性物质,如 H2O, HCO3。

既不能给出也不能接受质子的物质不属于酸和碱。该理论中没有盐的概念。

相差一个质子的一对酸碱称为共轭酸碱对。

2、典型反应

酸和碱发生的质子转移反应是中和反应,在酸碱电离理论中的水解反应本质也是中和反应,只不过进行程度比较小

$$H_2CO_3 + OH^* = HCO_3^* + H_2O$$

 $NH_3 + HCl = NH_4Cl$

3、酸碱强弱的比较

酸的强弱可以用 K_a 比较,碱的强弱可以通过比较其共轭酸的酸性得到,碱的共轭酸酸性越强,则碱越弱。

4. 理论优缺点

适用范围较广,不仅限于溶液范围。对物质的分类简单,没有盐的概念,仅有一个典型 反应,易于进行反应机理的探讨。

五、氧化物的酸碱性

1、酸碱的定义:

酸性氧化物:能够接受 O^2 的物质或离子,和水反应生成酸,如 CO_2 , SiO_2 , SO_3 , SO_3

$$CO_2 + O^{2-} = CO_3^{2-} (CO_2 + Na_2O = Na_2CO_3)$$

碱性氧化物:能够给出 O²的物质或离子,和水反应生成碱,如 Na₂O, MgO, CaO

$$Na_2O = 2Na^+ + O^{2-} (Na_2O + CO_2 = Na_2CO_3)$$

$$Na_2O + H_2O = 2NaOH$$

两性氧化物: 既能给出又能接受 O^{2-} , 和水反应生成两性水化物, 如 Al_2O_3 , BeO, Cr_2O_3 , H_2O

$$Al_2O_3 = 2Al^{3+} + 3O^{2-} (Al_2O_3 + 3SO_3 = Al_2(SO_4)_3)$$

 $Al_2O_3 + O^{2-} = 2AlO_2^- (Al_2O_3 + BaO = Ba(AlO_2)_2)$
 $Al_2O_3 + 3H_2O = 2Al(OH)_3$

剩余氧化物为不成盐氧化物,如NO,NO2,CO,N2O,N2O4

2、典型反应

中和反应: 氧离子转移反应

$$Na_2O + CO_2 = Na_2CO_3$$
; $Na_2O + H_2O = 2NaOH$

3. 氧化物酸碱性的比较

可以用氧化物的水化物比较酸碱性,水化物酸性强,则其对应的氧化物酸性也强,例如酸性 $H_2SO_4 > H_2CO_3 > H_2SiO_3$,因此酸性 $SO_3 > CO_2 > SiO_2$ 。碱性 $NaOH > Ca(OH)_2$,因此碱性 $Na_2O > CaO$ 。

4、理论优缺点

仅适用于氧化物之间的反应, 一般是固体反应。

六、酸碱溶剂理论

一些极性溶剂能够发生自偶电离,如水,乙醇,液氨,HF(I),BrF3,N2O4:

溶剂 与 特征阳离子 + 特征阴离子

能在溶剂中电离出特征阳离子的物质叫做酸,在溶剂中电离出特征阴离子的物质叫做碱。中和反应:酸+碱=盐+溶剂。

思考:请写出液态 SO_2 中 $SOCl_2$ 和 Cs_2SO_3 的反应。为什么 PCl_5 , PBr_5 , N_2O_5 常温下是固体?该理论有哪些优缺点?

七、路易斯酸碱理论(酸碱电子理论)

路易斯酸:接收电子对: H⁺, Ag⁺, Cu²⁺, Fe²⁺, Zn²⁺, Fe³⁺, BF₃, FeCl₃, AlCl₃, SbF₅。

路易斯碱: 给出电子对: NH₃, CN, F, Cl, CO, S₂O₃²。

中和反应:酸+碱=酸碱加合物。

路易斯酸碱理论进一步扩大了酸碱范围,可把酸碱概念用于许多有机反应和无溶剂反应。 但是范围太大的结果是酸碱特征不明显,酸碱的强弱没有统一的标度,对酸碱的反应方向难以判断。

元素及其化合物的性质

一、钠

- 1、金属钠
- (1) 化学性质: 强还原性

与 O₂ 反应: 常温、加热。

	与含有活泼	氢的物	勿质反应:H₂O、C₂H₅OH、I	NH ₃ (1)
	2)制备:电角	解法_		-
()	3) 用途:			
	①制取 Na ₂			
				已知 K、Na、KCl、NaCl 沸点依次是 774、
88.				_,为什么能够用 Na 制备 K?
	③Na 的焰(色为_	,透雾能力强,可以做	放光源 。
2,	氧化物			
			Na ₂ O	Na ₂ O ₂
	电子			
	物理性	-		
	与水质			
	与 CO ₂			
	转化质			
	——用i ————	金 		
2	+1			
3、	盐		NI GO	N HGO
	In th		Na ₂ CO ₃	NaHCO ₃
	俗称			
	物理性质			
	溶解度			
-	热稳定性			
-	水溶液碱性			
	与 Ca(OH) ₂			
	相互转化			
	用途			
	工业制备	** = }= 4=	1.4-ts	
4、	碱金属元素:			
~(J4)				立剧烈程度、最高价氧化物水化物的碱性、
	酸盐的溶解度	如何?	发化?	
5,	对角线规则	r 1	1 7 / 4 1 7 - 4 7 mal & 10 1) E	
	仕 兀	表上外	业于"左上和右下"对角线位置	置的元素具有相似的性质。
_	占書			
_	、卤素			
,		+1, +	3、+4、+5、+7,各举一例。	
	单质 · > /4-15	/A → 1	· → // →	
	1) 结构: 共	阶双原	.丁分丁	
	2)物理性质	ا عديد	10 to the 12 1/1 1/2 1 1/2 1 1/2 1 1/2 1	
				分子质量增加,分子间作用力增强。 是红棕色液体、In是紫黑色固体。

溶解性方面,除 F₂ 与水反应外,其他的在水中溶解度不高,而易溶于有机溶剂 CS₂、

 CCl_4 中。另外, I_2 可溶于 KI 溶液,这是由于发生了反应: $I_2+I_1=I_3$ 。

- (3) 化学性质: 氧化性从 F₂ 到 I₂ 依次降低: F₂ 极为活泼,能与所有金属和大多数非金属反应,且总能氧化到最高价态。Cl₂、Br₂ 不如 F₂ 反应剧烈,且 I₂ 往往只能把金属氧化到低价态。
 - ①与 Fe、Cu 反应
 - ②与 H₂ 反应及现象
 - ③卤素置换反应
 - ④与水反应
 - ⑤与碱反应
- (4) 制备
 - ①工业制氯气
 - ②实验室制氯气,收集、干燥、检验、尾气处理。
- ③工业制溴: 先在 pH=3.5 条件下用氯气置换海水中的溴, 然后用碳酸钠吸收以后, 再加酸重新进行归中反应。请写出相关离子方程式
 - ④实验室制 I2: 氯气氧化法, 氯气不能过量
- 2、氢化物
- (1) 制备

氟化氢通过 CaF2 和浓硫酸加热反应制备。

氯化氢工业上由 H2和 Cl2直接化合制备。

溴化氢和碘化氢: 工业上由 H₂ 和 Br₂、I₂ 在催化剂存在下加热制备;实验室由 NaBr, NaI 和浓磷酸反应制备。

(2) 物理性质

都是无色刺激性气味的气体,极易溶于水,潮湿空气中可形成雾。溶沸点从 HCl 到 HI 逐渐升高,HF 溶沸点反常的高(沸点 19.5℃)。

(3) 酸性

从 HF 到 HI 酸性逐渐增强, HF 是弱酸, 酸性比醋酸强但比磷酸弱, 其余氢卤酸都是强酸。

- 3、卤化物
- (1) 分类

其余元素和卤素形成的卤素显负价的化合物叫做卤化物。分为离子型和共价型,对应离子化合物和共价化合物。

- 一般电荷低或半径大的阳离子和卤素形成的卤化物是离子型卤化物,如碱金属、碱土金属卤化物(除 BeCl₂)。电荷高或半径小的阳离子形成的卤化物是共价型卤化物,如 BeCl₂,AlCl₃,SiCl₄。低价过渡金属易形成共价型卤化物,如 AgCl, HgCl₂。
- 一般氟易形成离子型卤化物,而碘易形成共价型卤化物。如 AgF 离子性很强,易溶于水,而 AgI 共价性很强,难溶于水。
- (2) 离子型卤化物的性质

溶沸点高,无色,易溶于水,水中稳定,不易水解。如 NaCl 熔点 801℃, CaCl₂ 熔点 782℃。

- (3) 共价型卤化物的性质
 - ①溶沸点明显低,有的室温下是液态,如 SiCl4, TiCl4,有的加热可以升华,如 AlCl3,

PCl₅ °

- ②有些有颜色,如 AlCl3 浅黄色,AgI 黄色,HgI2 红色。
- ③低价过渡金属卤化物难溶于水,如 AgCl, AgBr, AgI, HgI2。
- ④高价卤化物强烈水解,如 AlCl₃, SiCl₄, PCl₅, TiCl₄均强烈水解,生成氢氧化物和卤化氢,空气中发烟

 $SiCl_4 + 4H_2O = H_4SiO_4 + 4HCl$

4、氧化物

(1) 一氧化二氯 Cl₂O

Cl₂O 是次氯酸的酸酐,因此水中可以水解为次氯酸。

(2) 二氧化氯 ClO₂

黄绿色气体, 氯显+4价, 因此分子内有单电子, 有强氧化性, 常用于净水剂。

(3) 七氧化二氯 Cl₂O₇

无色油状液体,强氧化剂,加热易发生爆炸,是高氯酸的酸酐,遇水可反应生成高氯酸。

- 5、含氧酸及其盐
- (1) 次卤酸及其盐

次氯酸钙是漂白粉的主要成分,由含微量水分的消石灰和 Cl2 制得。

次氯酸钠碱性条件下也有强氧化性,用于制备高铁酸钠等强氧化剂。

(2) 卤酸及其盐

最重要的卤酸盐是氯酸钾,具有强氧化性。碘酸钾也是重要的卤酸盐,食盐中添加的碘即是碘酸钾。

(3) 高卤酸及其盐

纯的高氯酸是无色液体。室温时氧化性较弱, 加热时氧化性大大增强。

三、铁

1、单质

- (1) 氧气中燃烧
- (2) 加热条件下与硫、氯反应
- (3) 与水蒸气高温反应
- (4) 与酸反应 (稀盐酸、稀硫酸、稀硝酸、浓硫酸、浓硝酸)
- (5) 与盐溶液反应(FeCl3、CuSO4)
- (6) 工业制法
- 2、氧化物

FeO 和 Fe₂O₃ 是碱性氧化物,都可溶于强酸。Fe₃O₄ 是混合氧化物,溶于盐酸得到 Fe²⁺ 和 Fe³⁺。

3、氢氧化物

	Fe(OH) ₂	Fe(OH) ₃
颜色		
水溶性		
稳定性		
与稀硝酸反应		
与稀硫酸反应		
制备		

4、铁盐

FeCl₃, Fe(NO₃)₃, NH₄Fe(SO₄)₂.

Fe³⁺的氧化性:氧化 Zn、Fe、Cu 等金属;溶液中氧化 S²⁻、I⁻、SO₃²⁻、H₂S、SO₂。 Fe³⁺的检验: KSCN

5、亚铁盐

 $FeSO_4 \cdot 7H_2O$, $(NH_4)_2Fe(SO_4)_2$.

Fe2+的还原性:

①实验室所用的 FeSO4 溶液(或 FeCl₂ 溶液)必须是新制的,久置会发生变质。请写出溶液中 Fe²⁺变质的离子方程式。实验室保存 FeCl₂ 或 FeSO₄ 溶液,必须往溶液中加入少量和。。

- ②Fe(NO₃)₂溶液加酸会发生变质,写出离子方程式。
- ③Fe²⁺可使酸性高锰酸钾溶液紫色褪去,写出离子方程式。
- ④如何除去 FeCl3 溶液中少量 FeCl2, 写出方程式。

6、高铁酸盐

一般是 K_2FeO_4 或 Na_2FeO_4 。紫红色晶体,可溶于水,氧化性极强(比 $KMnO_4$ 还强)。用 Cl_2 在 KOH 或 NaOH 溶液中氧化 $Fe(OH)_3$ 可制备 K_2FeO_4 或 Na_2FeO_4 。高铁酸盐遇到酸性溶液立即分解,一般在碱性溶液中使用。

用高铁酸盐和镁可以组成碱性电池,写出电极反应。

7、配合物

铁氰化钾 $K_3[Fe(CN)_6]$,俗名赤血盐,因为晶体呈血红色,其水溶液常用于检验 Fe^{2+} 。亚铁氰化钾 $K_4[Fe(CN)_6]$,俗名黄血盐,因为晶体呈黄色,其水溶液常用于检验 Fe^{3+} 。

 $K^+ + Fe(CN)_6^{3-} + Fe^{2+} == KFeFe(CN)_6$ 」(普鲁士蓝)

K++Fe(CN)64+Fe³⁺ == KFeFe(CN)61 (滕氏蓝), 两者是一种物质。