Projeto de biomimética

Título do projeto

Uso de redes neurais baseadas em YOLO para tomada de decisão na transposição de obstáculos para autônomos biomiméticos não guiados

The Use of YOLO-Based Neural Networks for Decision-Making in Obstacle Transposition for Unmanned Biomimetic Autonomous Vehicles

Sumário

eto de biomimética	1
ulo do projeto	1
rodução	2
O Desafio dos robôs atuais de exploração espacial	2
Visão geral de caso: Marte	2
Rodas e terrenos	2
Alternativas evolucionárias	3
Aprendizado e mobilidade	3
Proposta geral do projeto	4
Proposta deste documento	4
etodologia	4
Descrição do experimento	4
Montagem do cartão de dados do modelo	4
Amostra & coleta dos dados	4
Procedimentos	5
Considerações éticas	5
Limitações	5
ferências Acadêmicas	5
ferências gerais (Extras)	5
ferências técnicas (Como fazer)	6

Introdução

O Desafio dos robôs atuais de exploração espacial

A exploração e mapeamento de terrenos desconhecidos, sejam acidentados, altamente irregulares, ravinas, encostas e mesmo cavernas é um desafio para robôs de exploração.

Visão geral de caso: Marte

Mesmo os mais avançados robôs de exploração enviados a marte têm limitações quando considerado seu envelope de mobilidade, desempenhando assim missões de campo aberto e excluindo de seu roteiro de mapeamento testes e coleta em cavernas, ravinas e encostas pelo perigo de perder contato ou mesmo acidentar o robô. Por mais engenhosas que sejam as soluções empregadas em rodas, aderência, estabilidade e controle nestes robôs, seu envelope de mobilidade torna a espeleologia nestes equipamentos, ainda que terrestre, um desafio quanto a solução de problemas de transposição de terreno e mobilidade.

São também em sua maioria veículos guiados remotamente, o que nos equipamentos movidos a energia solar subtrai ainda mais tempo útil do período de exposição ao sol, sendo 13 minutos o tempo médio de ida e volta de um sinal de rádio da Terra a Marte para cada conjunto de comandos, com mínimo de 3 minutos e máximo de 22 minutos.

Abaixo uma visão geral das últimas missões americanas com veículos guiados a Marte

Missão	Data de Lançament o	Data de Chegada	Objetivos	Veículo Utilizado	Fonte de Energia	Númer o de Rodas	Tempo de Vida Esperado do Veículo	Dimensõe s do Veículo
Mars Pathfinder	4 de dezembro de 1996	4 de julho de 1997	Coleta de dados geológicos e atmosféricos	Sojourner Rover	Painéis solares	6	Cerca de 7 sols (cerca de 3 meses)	65 cm x 48 cm x 30 cm
Spirit	10 de junho de 2003	4 de janeiro de 2004	Coleta de dados geológicos e atmosféricos	Mars Exploration Rover	Painéis solares	6	90 sols (cerca de 90 dias)	2,3 m x 1.5 m x 1.6 m
Opportunity	7 de julho de 2003	25 de janeiro de 2004	Coleta de dados geológicos e atmosféricos	Mars Exploration Rover	Painéis solares	6	90 sols (cerca de 90 dias)	2,3 m x 1.5 m x 1.6 m
Curiosity	26 de novembro de 2011	6 de agosto de 2012	Coleta de dados geológicos e atmosféricos	Curiosity Rover	Gerador termoelétrico de radioisótopos	6	Mais de 14 anos	3,0 m x 2,7 m x 2,2 m
Perseverance	30 de julho de 2020	18 de fevereiro de 2021	Coleta de amostras de solo e rocha, busca por sinais de vida passada	Perseveranc e Rover	Gerador termoelétrico de radioisótopos	6	Mais de 14 anos	3,0 m x 2,7 m x 2,2 m

Tabela 1: Missões americanas com veículos guiados a Marte desde 1996

Rodas e terrenos

Um robô com rodas é reconhecidamente eficiente em terreno plano com pouca ou nenhuma quebra de terreno grave, tem boa estabilidade com 6 rodas, tem boa eficiência energética por roda e pode se mover do ponto A para o ponto B sem interferência constante se os dois tiverem acesso limpo e visada.

Por outro lado quando encontra obstáculos íngremes mesmo dos mais simples como degrais positivos e negativos com parede quase vertical, ou obstáculos mais difíceis como acessos reduzidos a cavernas e galerias ou ravinas curtas mas sem fundo, a capacidade de exploração desse tipo de autônomo dependendo da sua construção e número de rodas, fica seriamente comprometida.

Se for autônomo e não reconhecer seu envelope de mobilidade, pode perder locomoção, se acidentar ou mesmo perder contato com a base, dependendo da profundidade e grossura das paredes da estrutura que estiver explorando ou tiver caído.

Numa outra frente, mesmo guiado interativamente sua construção em geral não permite uma liberdade de movimento e recursos para vencer o obstáculo para o qual não foi previamente projetado para transpor, o que pode se tornar um fim da linha para a exploração naquele sentido do terreno ainda que interativa e para todos os efeitos, seu centro de gravidade é fixo na sua geometria.

Alternativas evolucionárias

Consideremos agora um robô semi autônomo de exploração espacial para terreno hostil, mas diferente do usual, que seja baseado na forma de animais bem adaptados a sobreviver em terrenos hostis e desconhecidos como os artrópodes chilopoda ou diplopoda terrestres, estamos falando de utilizar princípios de biomimética na sua concepção e construção.

Biomimética

Biomimética é um campo de estudo que se baseia na observação e no aprendizado da natureza para desenvolver soluções tecnológicas inovadoras e eficientes. A biomimética envolve a análise e a compreensão de como as formas de vida na Terra evoluíram e se adaptaram às suas condições ambientais, e como esses princípios podem ser aplicados para resolver problemas complexos em diferentes áreas, como engenharia, arquitetura, medicina e design.

Um autônomo baseado num artrópode possui uma construção mais complexa em termos energéticos, mas com um envelope de mobilidade radicalmente superior. Suas articulações o tornam um equipamento de geometria variável, com recursos de mobilidade para transpor uma variedade ampla de obstáculos e mesmo alterar seu centro de gravidade para vencer determinados desafios, algo impossível a um robô de geometria fixa atual.

Aprendizado e mobilidade

Consideremos agora que esse autônomo que já tem a geometria de um artrópode, possa aprender os movimentos de um. Aprender com movimentos reais que artrópodes terrestres usam para vencer ravinas sem fundo, degraus positivos e negativos, fazer nado curto serpenteado, entre outros. Ainda que esse robô seja semi-autonomo, solto num terreno completamente não mapeado, uma galeria fechada por exemplo, ele teria em teoria a capacidade de mapear o terreno, reconhecendo obstáculos a sua frente e determinando o melhor movimento para transpô-lo, e em caso extremo, entender que aquele obstáculo não é transponível, reconhecendo seu próprio envelope de manobra.

Proposta geral do projeto

Um projeto com este teria várias fases de estudo de viabilidade antes da construção propriamente dita:

- Viabilidade da impressão do exoesqueleto em 3D
- Viabilidade da construção do conjunto de mobilidade de cada seção do corpo
- Viabilidade da inteligência artificial de mapeamento
- Viabilidade da inteligência artificial de manobra
- Viabilidade do embarque do núcleo de código, processamento de sinais e IA's em microcomputadores RaspberryPi ou similares

Este conjunto de estudos é capaz de demonstrar a viabilidade ou não dos itens críticos do projeto, permitindo traçar um plano de construção em fases e com orçamento previsível em cada fase.

Proposta deste documento

Este documento se propõe ao item "Viabilidade da inteligência artificial de manobra", onde se determina se as redes neurais artificiais no estado-da-arte para detecção de objetos em imagens são capazes de detectar diferentes tipos de obstáculos na altura de visão do autônomo e gerar uma saída que permita determinar um movimento para transpor esse obstáculo.

Metodologia

Descrição do experimento

A proposta consiste em criar rede neural artificial de detecção de objetos baseada na YOLO e uma camada de determinação de movimentos, que juntas e ativadas nessa ordem, sejam capazes de reconhecer um obstáculo e determinar o movimento necessário para transpô-lo (ou num caso limite, determinar que ele não é transponível pela capacidade de manobra do autonomo).

Montagem do cartão de dados do modelo

O cartão de dados do modelo deverá ser montado determinando fontes de dados, limites, entradas e saídas do modelo proposto, baseado no padrão do artigo "Model Cards for Model Reporting":

Uma implementação deste trabalho para um modelo de detecção de Iris está dispopnivel em https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view

Uma outra implementação feita pelo Google para modelos de detecção de objetos está disponível em https://modelcards.withgoogle.com/object-detection

Amostra & coleta dos dados

Captura

A amostra de imagens para detecção de obstáculos deverá ser capturada com câmera DSLR, na altura de 10 centímetros do solo com luz ambiente durante o dia e luz artificial de 500 lumens com fonte diretamente acima da lente durante a noite. O equipamento é uma Câmera Canon EOS Rebel T100 com balanço de brancos e ISO no automático.

Quantidade e local

Serão capturadas 100 imagens de dia e 100 imagens de noite para 5 tipos de obstáculos diferentes em campo no parque CERET na cidade de São Paulo.

Processamento

As imagens serão reduzidas para 128x128, com profundidade de 3 em padrão RGB

Aumento dos dados

As imagens serão multiplicadas com variações de angulação, perspectiva e iluminação

Procedimentos

Será utilizada a YOLOv8, com o método de "transfer learning", onde será adicionada uma última camada de treinamento a rede já treinada YOLO correspondente aos dados obtidos em campo.

Considerações éticas

Imagens com pessoas ou rostos que forem capturadas em campo que não puderem ser cortadas serão descartadas

Limitações

O número de imagens capturadas em campo e a baixa variedade de obstáculos podem fazer com que a rede neural não seja capaz de generalizar novos obstáculos.

Referências Acadêmicas

Object Detection with Deep Learning: A Review

https://arxiv.org/pdf/1807.05511.pdf&usg=ALkJrhhpApwNJOmg83O8p2Ua76PNh6tR8A

Recent Advances in Deep Learning for Object Detection

https://arxiv.org/pdf/1908.03673.pdf

Model Cards for Model Reporting

https://arxiv.org/pdf/1810.03993.pdf

Referências gerais (Extras)

Biomimética

A **biomimética** é uma área da ciência que tem por objetivo o estudo das estruturas biológicas e das suas funções, procurando aprender com a Natureza, suas estratégias e soluções, e utilizar esse conhecimento em diferentes domínios da ciência.

https://pt.wikipedia.org/wiki/Biomim%C3%A9tica

Redes neurais artificiais

Em ciência da computação e campos relacionados, redes neurais artificiais (português brasileiro) ou redes neuronais artificiais (português europeu) (RNAs) são modelos computacionais inspirados pelo sistema nervoso central de um animal (em particular o cérebro) que são capazes de realizar o aprendizado de máquina bem como o reconhecimento de padrões. Redes neurais artificiais geralmente são apresentadas como sistemas de "neurônios interconectados, que podem computar valores de entradas", simulando o comportamento de redes neurais biológicas.

https://pt.wikipedia.org/wiki/Rede neural artificial

Transfer Learning (Transferência de aprendizado)

Transfer learning é um campo de pesquisa em aprendizado de máquina que se concentra em aplicar o conhecimento adquirido ao resolver uma tarefa a uma tarefa relacionada. Por exemplo, o conhecimento adquirido ao aprender a reconhecer carros poderia ser aplicado ao tentar reconhecer caminhões. Esse tópico está relacionado à literatura psicológica sobre transferência de aprendizagem, embora as ligações práticas entre os dois campos sejam limitadas. Reutilizar/transferir informações de tarefas previamente aprendidas para novas tarefas tem o potencial de melhorar significativamente a eficiência de aprendizado.

https://en.wikipedia.org/wiki/Transfer_learning

Referências técnicas (Como fazer)

Object detection

https://towardsdatascience.com/object-detection-with-neural-networks-a4e2c46b4491

https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9

YOLO

https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006