Semiclassical Analysis of Quantum Mechanical Calculations of Rotationally Inelastic Collisions of He and Ar with NaK

Ashley Towne

Background

- Experiment Prof. Huennekens' group
 - Rotationally inelastic collisions at thermal energies

$$He+NaK(v,j,m) \rightarrow He+NaK(v,j',m')$$

 $Ar+NaK(v,j,m) \rightarrow Ar+NaK(v,j',m')$

Theory – Prof. Hickman's group

NaK potential curves

NaK potential curves

Experimental Measurements

- Cross sections for $j \rightarrow j'$ transitions
- Fraction of orientation preserved in collisions
 - Typically orientation is random, <m>=0
 - Laser polarization can create nonrandom <m>

$$O^{j} = \frac{\langle m \rangle}{\sqrt{j(j+1)}}$$

Vector Model

$$\cos\theta = \frac{m}{\sqrt{j(j+1)}}$$

$$O^{j} = \frac{\langle m \rangle}{\sqrt{j(j+1)}}$$

Creating nonzero orientation

- Use polarized lasers
- Pump creates an orientation in the A state
- Probe is used to measure polarization after collisions

Creating nonzero orientation

• Selection rule $\Delta m = +1$ leads to preferential population of large m

Comparison for $\sigma(j \rightarrow j')$

- Propensity for Δj to be even
 - Strict selection rule for homonuclear molecules
 - Detailed calculations necessary for each system

Theory – quantum mechanical

$$\sigma(j \to j') = \frac{\pi}{(2j+1)k_j^2} \sum_{\lambda=|j-j'|}^{j+j'} (2\lambda+1)B_{\lambda}(j,j')$$

 λ is related to transfer of angular momentum from projectile (He or Ar) to target NaK

Theory – semiclassical

• λ is related to the tipping angle α between j and j'

$$\lambda(\lambda+1)=j(j+1)+j'(j'+1)-2\sqrt{j(j+1)j'(j'+1)}\cos\alpha$$

Approximate cross sections

$$\sigma(j \rightarrow j') = \frac{\pi(j' + 1/2)}{k_j^2} \int_0^{\pi} B(j, j', \cos \alpha) \sin \alpha d\alpha$$

B(j,j',cosα) gives the distribution of tipping angles

He + NaK; $\Delta j=2$

Distribution of tipping angles a

Comparison $\Delta j=2$

He + NaK

Ar + NaK

Distribution of tipping angles a

Trends in B(j,j,cosα)

Helium

- Larger average tipping angle for odd Δj than even Δj
- $-\alpha$ tends to be small for the more probable transitions

Argon

- Larger $<\alpha>$ as Δj increases
- No even/odd Δj propensities

Comparison

- Argon B values are larger
- As \bar{j} (mean value of j) increases, $<\alpha>$ decreases

Relation between $\Delta\theta$, Δm , B

- $\sigma(jm \rightarrow j'm')$
- $\Delta\theta$ is related to Δm
 - If $\Delta\theta$ is small, and j changes, m must also change

$$\cos\theta = \frac{m}{\sqrt{j(j+1)}}$$

$$\Delta \theta = \theta' - \theta \neq \alpha$$

$$\Delta \theta = \cos^{-1} \left(\frac{m'}{\sqrt{j'(j'+1)}} \right) - \cos^{-1} \left(\frac{m}{\sqrt{j(j+1)}} \right)$$

Methods for $\Delta\theta$ analysis

- Quantum mechanical model
 - Compute Δθ from j, j', m, m'
 - Create histogram angle bins
 - Convolve with Gaussian
- Compute semiclassical model

$$P(\theta,\theta')\sin\theta' = \frac{\sin\theta'}{\pi} \int_{-1}^{1} \frac{B(j,j';\cos\theta\cos\theta' + y\sin\theta\sin\theta')}{\sqrt{1-y^2}} dy$$

Semiclassical $\theta \rightarrow \theta'$

$$\bar{j}=30, \Delta j=4$$

He + NaK

Ar + NaK

Distribution of $\Delta\theta$ averaged over all collisions

$$\bar{j}=20$$
, $\Delta j=4$

He + NaK

Ar + NaK

Distribution of $\Delta\theta$ averaged over all collisions

$$\bar{j}=10$$
, $\Delta j=4$

He + NaK

Ar + NaK

Distribution of $\Delta\theta$ averaged over all collisions

Quantum m → m'

Conclusions

- $\Delta\theta$ tends to be small
- m tends to change
- Physical interpretations
 - Vector model
 - Semiclassical model

Acknowledgements

- NSF (Physics grant, REU program)
- Lehigh University
- XSEDE for computer time at TACC (Texas Advanced Computation Center)
- Prof. Hickman, Prof. Huennekens, Teri Price, Kara Richter, Prof. McSwain

Citation

Malenda, R. F., T. J. Price, J. Stevens, S. L. Uppalapati, A. Fragale, P. M. Weiser, A. Kuczala, D. Talbi, and A. P. Hickman. "Theoretical Calculations of Rotationally Inelastic Collisions of He with NaK(A¹Σ⁺): Transfer of Population, Orientation, and Alignment." J. Chem. Phys. 142, 224301 (2015).