

TI Precision Labs – PCle

Presented by Nicholaus Malone

What is PCle?

Peripheral Component Interconnect Express

PCle topology

PCle components

Root Complex

PCle signaling – control

PCle signaling – reference clock

PCle link initialization – rx detect

PCle link initialization – polling

PCle link training – configuration

PCle link training – configuration

PCle communication – gen1

PCle link equalization – presets

PCle link equalization – phase 0

PCle link equalization – phase 0

PCle link equalization – phase 1

PCle link equalization – phase 2 and 3

PCle communication – gen3

Thank you

TI Precision Labs - What is a Signal Conditioner?

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

- What describes the function of the PERST# signal in a PCIe link?
 - a) A low pulse on this signal will begin a transition to a low power state.
 - b) A transition from low to high will indicate that power rails are stable and link initialization is ready to begin.
 - c) This signal, held low, will cause the PCIe link to transition into a recovery state.
 - d) This is used to request a clock from the upstream port.

- What describes the function of the PERST# signal in a PCIe link?
 - a) A low pulse on this signal will begin a transition to a low power state.
 - b) A transition from low to high will indicate that power rails are stable and link initialization is ready to begin.
 - c) This signal, held low, will cause the PCIe link to transition into a recovery state.
 - d) This is used to request a clock from the upstream port.
- b) A transition from low to high on the PERST# line indicates that the PCIe power rails are stable and that link initialization should begin.

- What is the first step in the PCIe link initialization process?
 - a) Receiver Detect
 - b) Configuration
 - c) Polling
 - d) Link Equalization

- What is the first step in the PCIe link initialization process?
 - a) Receiver Detect
 - b) Configuration
 - c) Polling
 - d) Link Equalization

a) Before transmission can begin, the receiver detect circuit in a PCIe device must first confirm that there is a link partner to pair with.

- What is the term for a large PCIe link split into multiple smaller links?
 - a) Segmented
 - b) Bifurcated
 - c) Split
 - d) Reduced Link

- What is the term for a large PCIe link split into multiple smaller links?
 - a) Segmented
 - b) Bifurcated
 - c) Split
 - d) Reduced Link

b) A bifurcated PCIe link refers to a larger PCIe link split into multiple smaller links. For example, a 16 lane PCIe link can be divided into 4 links 4 lanes wide.

- At what PCIe data rate(s) does link initialization include a link equalization step?
 - a) PCIe Gen 4
 - b) PCIe Gen 1
 - c) PCIe Gen 3
 - d) PCIe Gen 5

- At what PCIe data rate(s) does link initialization include a link equalization step?
 - a) PCIe Gen 4
 - b) PCIe Gen 1
 - c) PCIe Gen 3
 - d) PCIe Gen 5

a, c, and d) Link EQ is a required link training step for PCIe communication above Gen3 data rates.

- What is "normal" state for PCIe link that sends and processes packets?
 - a) Loopback
 - b) L0
 - c) L2
 - d) Forwarding

- What is "normal" state for PCIe link that sends and processes packets?
 - a) Loopback
 - b) L0
 - c) L2
 - d) Forwarding

b) L0 describes a PCIe link that is active and able to send on process packets regularly.

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com