

Modelagem Geométrica

André Tavares da Silva

andre.silva@udesc.br

Capítulo 12 do "Foley" Capítulo 4 de Azevedo e Conci Capítulo 11 de Mortenson

Representações

- Decomposição Espacial
 - Quadtrees
 - Octrees
 - BSPtree
- CSG Geometria Sólido-Construtiva
- B-Rep (Boundary Representation)

Representação por Enumeração da Ocupação Espacial ou Decomposição

- Existem duas formas de representação por decomposição:
 - Representação uniforme (Enumera)
 - Representação não-uniforme (Decompõe).

Enumeração Espacial

- Os objetos são descritos por meio de cubos dispostos matricialmente;
- Cada cubo é chamado de "voxel" (volume element);
- A representação por enumeração é muito usada em aplicações biomédicas, pois permitem a descrição fiel de espaço interior altamente irregular.

Enumeração Espacial (Decomposição)

• Objetos são representados por uma coleção de objetos primitivos, geralmente cubos.

Representação Uniforme

- Na representação uniforme, a subdivisão espacial mais utilizada é a que se baseia em um reticulado uniforme.
- Esse esquema dá origem a uma representação matricial.

Representação Matricial

- Essa representação estende a representação matricial de regiões 2D.
 - Estrutura de dados é uma MATRIZ 3D!!
- Nela definimos um reticulado a partir do produto cartesiano de partições uniformes de intervalos dos eixos coordenados.
- Cada célula do reticulado está associada a um paralelepípedo que é denominada voxel (volume element), da mesma forma que pixel é um picture element...

Voxels (células quadrangulares)

(ver Foley:549)

Representação Matricial

- Cada *voxel* possui uma amostra dos valores de atributos na região associada, pertencente ao sólido.
- A representação matricial é também denominada representação volumétrica.
- Pode ser entendida como uma *imagem 3D* onde os *voxels* fazem o papel dos *pixels*.

Representação matricial Vantagens (A&C:135):

- Para determinar se um ponto pertence ao sólido, basta verificar se pertence a algum dos seus *voxels*;
- É fácil determinar se dois objetos se interceptam;
- É fácil realizar operações booleanas.
- É fácil obter propriedades de massa e volume.

Representação matricial

Vantagens:

- Diversas técnicas de análise e processamento de imagens podem ser aplicadas.
- A visualização é simples devido a sua estrutura simples (*volumetric rendering*)
- É uma representação utilizada pela grande maioria dos equipamentos de captura de objetos volumétricos.

Operações Booleanas de Voxels (exemplo em 2D)

Operações Booleanas de Voxels (exemplo em 2D)

- União: +/OR; Interseção: */AND
- E a diferença?

Características de Voxels

- Muito utilizado em Visualização Volumétrica
- Eficiente (para operações booleanas regularizadas)
 - Trabalha no domínio dos números inteiros
- Tem unicidade
- Domínio: Representa qualquer sólido.
- A precisão depende do tamanho/forma do voxel
- Não é ambígua, fácil de validar
- Não é concisa
 - Muito espaço é perdido (na matriz) para representar o vazio.
 - Pode ser otimizado pela representação de matrizes espaças ou técnicas associadas

Representação por Decomposição **Não Uniforme** com Variação de Tamanho

Decomposição LUC Recursiva/Adaptativa

- 2D Quadtree (árvore de quadrantes)
- 3D Octree (árvore de octantes)
- Caracterizam-se por uma estrutura de dados hierárquica, espacialmente endereçável e naturalmente pré-ordenada (Árvore);
- Simplifica operações tais como: a detecção de interseção de objetos, localização de um ponto ou de um bloco no espaço, remoção de superfícies escondidas.

Árvore de Quadrantes (Quadtree)

Convenção (neste caso):

FULL = onde tem objeto ou parte do objeto EMPTY = onde não tem nada do objeto

Quadtrees

- Subdivisão do <u>plano</u> de forma adaptativa;
- Subdivisão contínua até que um determinado nível de detalhe seja atingido.

Octree

Árvore de Octantes (Octree)

Octrees

- Extensão para 3D
 - Voxels correspondem a pixels em 3D
 - Enumeração força-bruta classificando as células do espaço como cheias ou vazias.

Octrees

BSP Tree

(Azevedo e Conci, pg 139)

Características (Foley 1996:555)

- Criada como algoritmo de visibilidade em 1980
- Posteriormente usada para representar poliedros quaisquer
- É uma árvore binária que indica que o objeto está em um dos lados das ramificações
- Permite representar côncavos e convexos
- Potencialmente não compacta
- Elegante e simples conceitualmente

BSP Trees

- A ideia é basicamente a mesma de Octree
- Entretanto o espaço é sucessivamente dividido em 2 partes (daí o nome) convexas por um plano de corte
- O algoritmo específico de subdivisão varia conforme o propósito de aplicação do modelo final (detecção de colisão, visibilidade, operações booleanas,...)

Polygon-Aligned BSP Trees

(Foley 1996 12.6 p555)

Partição Espacial Binária

Lado direito da **árvore** (não da divisora) = não tem objeto Lado esquerdo da **árvore** = tem (parte do) objeto Sequencia de divisão: maior aresta, depois segue CCW

Representação por Geometria Sólida Construtiva

CSG (Foley 1996 12.7)

CSG (Constructive Solid Geometry)

Geometria Sólido Construtiva

Primitivas Geométricas Cilindro Cone Cubo Esfera

Operações Booleanas

- União
- Intersecção
- Diferença

Transformações Geométricas

- Escala
- Rotação
- Translação

CSG

Definição do CSG

- Armazenam as Operações Booleanas
- Armazenam a história da construção do objeto, as "intenções de projeto"

 Não armazena os resultados intermediários (nem finais)

Exemplo de Árvore CSG

Exemplo de Árvore CSG

Exemplo de Árvore CSG Regularizada

Objeto CSG Em Wireframe com HiddenLine (Zeid:344)

Árvore CSG Respectiva (Zeid:344)

Árvore CSG

- Um modelo CSG é codificado por uma <u>árvore binária</u>.
 - Os **nós** internos contêm operações *booleanes* regularizadas, **ou** transformações lineares afim, **ou** uma sub árvore
 - Folhas contêm objetos primitivos (tipicamente, quádricas)
 - Em alguns modelos, unem-se Transformações às Primitivas (instâncias)

T = Translação

S = Escalamento

+ = União de Conjuntos

- = Diferença de Conjunto

Característica da Modelagem CSG

 Tem que ser ordenada pois nem as TGLR nem as Operações Booleanas são comutativas

• Uma sub-árvore pode ser repetida na estrutura (grafo acíclico)

Sólidos CSG Renderizados

Motor Diesel CSG 3D Completo

