Exercice 1:

1. Soit $(a,b,c) \in \mathbb{R}^3$ et (S) le système linéaire $\begin{cases} x+y-2z=a\\ 3x+2y+z=b \end{cases}$ d'inconnues $(x,y,z) \in \mathbb{R}^3$. 2x+y+2z=c

Échelonner le système (S). En déduire son rang et son nombre de solution(s).

2. Soit $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites réelles définies par $u_0=v_0=u_0=1$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} + v_{n+1} - 2w_{n+1} = 3w_n \\ 3u_{n+1} + 2v_{n+1} + w_{n+1} = w_n \\ 2u_{n+1} + v_{n+1} + 2w_{n+1} = -3 \end{cases}.$$

- (a) Montrer que $(w_n)_{n\in\mathbb{N}}$ est arithmético-géométrique.
- (b) En déduire w_n , v_n puis u_n en fonction de n pour tout entier naturel n.

Exercice 2:

Pour tout entier naturel n et pour tout réel $x \in [-1, 1]$, on pose :

$$\begin{cases} T_0(x) = 1 \\ T_1(x) = x \end{cases} .$$

$$\forall n \in \mathbb{N}, \ T_{n+2}(x) = 2xT_{n+1}(x) - T_n(x)$$

- 1. (a) Soit $x \in [-1,1]$. De quel type est la suite $(T_n(x))_{n \in \mathbb{N}}$?
 - (b) En déduire : $\forall x \in]-1,1[$, $\forall n \in \mathbb{N}$, $T_n(x) = \cos(n\arccos(x))$. Montrer que cette égalité reste vraie si $x \in \{-1,1\}$.
- 2. On se propose ici de vérifier le précédent résultat et, pour $x \in [-1, 1]$, on pose $S_n(x) = \cos(n \arccos(x))$.
 - (a) Soit $x \in [-1, 1]$. Calculer $S_0(x)$ et $S_1(x)$.
 - (b) Soit $(a, b) \in \mathbb{R}^2$. Linéariser $\cos(a)\cos(b)$.
 - (c) En déduire : $\forall x \in [-1,1]$, $\forall n \in \mathbb{N}^*$, $xS_n(x) = \frac{S_{n+1}(x) + S_{n-1}(x)}{2}$ puis $\forall x \in [-1,1]$, $\forall n \in \mathbb{N}$, $S_n(x) = T_n(x)$.

Exercice 3:

On pose $f_0 = 0$, $f_1 = 1$ et, pour tout entier naturel n, $f_{n+2} = f_{n+1} + f_n$.

- 1. Démontrer par une récurrence simple : $\forall n \in \mathbb{N}, f_{n+1}^2 f_n f_{n+2} = (-1)^n$.
- 2. (a) Calculer explicitement f_n en fonction de n. En déduire l'existence d'un réel a tel que

$$\forall n \in \mathbb{N}, \ f_n = \frac{1}{\sqrt{5}} \left(a^n - (-a)^{-n} \right)$$

puis calculer $\lim_{n\to+\infty} f_n$ ainsi que $\lim_{n\to+\infty} \frac{f_{n+1}}{f_n}$.

- (b) Écrire une fonction Python calculant f_n et f_{n+1} en fonction de n. La fonction devra retourner la liste $[f_{n+1}, f_n]$ en sortie.
- (c) En déduire une fonction Python prenant en entrée un réel $\varepsilon > 0$ et déterminant le premier entier $n \geqslant 1$ tel que le rationnel $\frac{f_{n+1}}{f_n}$ soit une approximation de $\frac{1+\sqrt{5}}{2}$ à ε près.