1 Matrici

1.1 Cos'è una matrice?

Una matrice è una tabella di numeri, composta da m righe e n colonne, con $m,n\in\mathbb{N}$. Nel caso in cui il numero di righe e quello di colonne coincidono la matrice è detta quadrata. Facendo un esempio, $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ è una matrice 2×2 , $B=\begin{pmatrix}1&\sqrt{2}&1\\-1&\pi&-1\end{pmatrix}$ è una matrice 3×3 e $C=\begin{pmatrix}1&2&3\\4&5&6\end{pmatrix}$ è una matrice 2×3 . Generalmente, una matrice è denotata nella forma

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

dove a_{ij} indica l'elemento sull'*i*-esima riga e sulla *j*-esima colonna. Dato il campo \mathbb{K} , si indica con $\mathbb{K}^{m,n} = \mathbb{K}^{m \times n}$ l'insieme delle matrici (a_{ij}) con m righe, n colonne tali che $\forall_{i \in 1...n} \forall_{j \in 1...m} a_{ij} \in \mathbb{K}$. Per esempio, $A \in \mathbb{Q}^{2,2}$, $B \in \mathbb{C}^{3,3}$, $C \in \mathbb{Q}^{2,3}$.

1.2 Sottospazi di una matrice

Data una matrice $M \in \mathbb{K}^{m,n}$, le sue righe sono vettori di \mathbb{K}^n e le sue colonne vettori di \mathbb{K}^m . È dunque possibile considerare i sottospazi vettoriali $R = \mathcal{L}(\mathbf{r_1}, \dots, \mathbf{r_m}) \subset \mathbb{K}^n$, detto spazio delle righe e $C = \mathcal{L}(\mathbf{c_1}, \dots, \mathbf{c_n}) \subset \mathbb{K}^m$, detto spazio delle colonne. La loro dimensione corrisponde al numero di vettori linearmente indipendenti. Per esempio, data $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, si ha $\dim(\mathcal{L}((1,2),(3,4))) \subset \mathbb{R}^2 = 2$, essendo (1,2) e (3,4) vettori linearmente indipendenti in \mathbb{R}^2 (da notare che dim $R = \dim \mathbb{R}^2$); data $B = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$, essendo $(3,6) = 3 \cdot (1,2)$, si ha $(\dim R = 1) \leq \dim \mathbb{R}^2$.

1.3 Rango di una matrice e calcolo

Sia $A \in \mathbb{K}^{m,n}$ il cui spazio delle righe è R. Il rango di A è definito come

$$\rho(A) = \dim R$$

Inoltre — verrà dimostrato in seguito — vale l'uguaglianza $\varrho(A) = \dim C$, dove C corrisponde allo spazio delle colonne di A. Come si calcola il rango di A?

Esempio 1. Sia
$$A = \begin{pmatrix} 1 & 1 & 2 & 0 & -1 \\ 0 & 9 & 2 & -5 & 5 \\ 0 & 4 & 0 & 8 & 7 \end{pmatrix} \in \mathbb{R}^{3,5}$$
.

Soluzione. Per definizione, si ha che $\varrho(A) = \dim \mathcal{L}(\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}) \subset \mathbb{R}^3$. Verifichiamo quindi che i vettori dello spazio delle righe siano linearmente indipendenti.

$$a(1,1,2,0,-1) + b(0,9,2,-5,5) + c(0,4,0,8,7) = 0 \implies$$
$$(a, a + 9b + 4c, 2a + 2b, -5b + 8c, -a + 5b + 7c) = (0,0,0,0,0)$$

implica che

$$\begin{cases} a = 0 \\ a + 9b + 4c = 0 \\ 2a + 2b = 0 \\ -5b + 8c = 0 \\ -a + 5b + 7c = 0 \end{cases} \implies \begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}$$

Pertanto, essendo $\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}$ linearmente indipendenti, risulta che $\varrho(A) = 3$. \square

Un metodo più agile per determinare il rango di una data matrice consiste nell'operare una *riduzione per righe*.

Definizione 1 (matrice ridotta per righe). Una matrice $A \in \mathbb{K}^{m,n}$ si dice ridotta per righe se ogni riga non nulla di A contiene un elemento diverso da zero sotto al quale compaiono soltanto zeri.

Proposizione 1. Data una matrice A ridotta per righe, le righe non nulle sono linearmente indipendenti.

Dimostrazione. Si supponga che tutte le righe di A siano non nulle; in caso contrario, è possibile omettere le righe nulle dal ragionamento. Per verificare la tesi, deve valere la relazione

$$c_1\mathbf{r_1} + \dots + c_m\mathbf{r_m} = \mathbf{0}_{\mathbb{K}^n} \iff c_1 = \dots = c_m = 0$$

Poiché A è ridotta per righe per ipotesi, esiste $a_{1j} \neq 0$ tale che $a_{2j} = \cdots = a_{mj} = 0$; si ha che $c_1 a_{1j} + c_2 0 + \cdots + c_n 0 = 0 \implies c_1 = 0$. Analogamente, esiste $a_{2k} \neq 0$ tale che $a_{3k} = \cdots = a_{mk} = 0$, da cui si deduce $c_1 = 0 \wedge c_1 a_{1k} + c_2 a_{2k} + c_3 0 + \cdots + c_m 0 = 0 \implies c_2 = 0$. Iterando il ragionamento, ovvero ragionando per induzione su $1 \leq i \leq m$, si ottiene che $c_1 + \cdots + c_m = 0$, quindi i vettori non nulli appartenenti allo spazio delle righe sono linearmente indipendenti.

Teorema 1 (rango di una matrice ridotta per righe). Sia A una matrice ridotta per righe. Allora, il rango di A è uquale al numero di righe non nulle di A.

Osservazione. L'ipotesi che A sia ridotta per righe è essenziale. Per esempio, $A=\left(\begin{smallmatrix} 1 & 2 \\ 3 & 6 \end{smallmatrix} \right)$ ha due righe non nulle; tuttavia, essendo esse linearmente dipendenti, in quanto $(3,6)=3\cdot(1,2)$, si ha $\varrho(A)=1$

Data una matrice $A \in \mathbb{K}^{m,n}$, esiste una matrice ridotta $B \in \mathbb{K}^{m,n}$ tale che $\varrho(A) = \varrho(B)$?

1.4 Trasformazioni elementari

Considerate i vettori-riga $\mathbf{r_i}, \mathbf{r_j} \in R$, è possibile applicare delle *trasformazioni* elementari che mantengono il rango della matrice invariato (attenzione, il rango non cambia, la matrice sì).

E1 $\mathbf{r_i} \to a\mathbf{r_i}$, $(a \neq 0) \in \mathbb{K}$. Ad una riga si sostituisce la stessa, moltiplicata per un coefficiente non nullo.

$$\mathcal{L}(\mathbf{r_1}, \dots, \mathbf{r_i}, \dots, \mathbf{r_m}) = \left\{ c_1 \mathbf{r_1} + \dots + c_i \mathbf{r_i} + \dots + c_m \mathbf{r_m} \right\} =$$

$$= \left\{ c_1 \mathbf{r_1} + \dots + \left(\frac{c_i}{a} \cdot a \right) \mathbf{r_i} + \dots + c_m \mathbf{r_m} \right\} =$$

$$= \mathcal{L}(\mathbf{r_1}, \dots, a\mathbf{r_i}, \dots, \mathbf{r_m}) \operatorname{con} \frac{c_i}{a} \in \mathbb{K}$$

E2 $\mathbf{r_i} \longleftrightarrow \mathbf{r_j}.$ Lo spazio delle righe è invariato a meno dell'ordine.

E
3 $\mathbf{r_i} \rightarrow a\mathbf{r_j}.$ E3 risulta dalla combinazione di E1 e E2.

Esempio 2. Si calcoli il rango della matrice $M = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 6 & 4 \\ 1 & 2 & 1 \end{pmatrix}$.

Soluzione.

$$M = \left(\begin{smallmatrix} 1 & 2 & 3 \\ 3 & 6 & 4 \\ 1 & 2 & 1 \end{smallmatrix}\right) \xrightarrow[\mathbf{r_2} \rightarrow \mathbf{r_2} - 3\mathbf{r_1}]{} \left(\begin{smallmatrix} 1 & 2 & 3 \\ 0 & 0 & -5 \\ 1 & 2 & 1 \end{smallmatrix}\right) \xrightarrow[\mathbf{r_3} \rightarrow \mathbf{r_3} - \mathbf{r_1}]{} \left(\begin{smallmatrix} 1 & 2 & 3 \\ 0 & 0 & -5 \\ 0 & 0 & -2 \end{smallmatrix}\right) \xrightarrow[\mathbf{r_3} \rightarrow \mathbf{r_3} - \frac{2}{5}\mathbf{r_2}]{} \left(\begin{smallmatrix} 1 & 2 & 3 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{smallmatrix}\right) =: N$$

La matrice N è ridotta per righe. Avendo due righe non nulle, $\varrho(N)=2$. Essendo N ottenuta da M tramite trasformazioni elementari, si ha che $\varrho(M)=\varrho(N)=2$.