Лабораторная работа 1.

Прямые методы минимизации функций одной переменной.

В данной работе рассматриваются методы решения поставленной задачи, не использующие вычисления производных (прямые методы минимизации).

Постановка задачи: Требуется найти безусловный минимум функции одной переменной f(x), т.е. такую точку $x^* \in U$, что $f(x^*) = \min_{x \in U} f(x)$. Значение точки минимума требуется вычислить приближенно с заданной точностью ε .

Предполагается, что для функции f(x) известно, что точка минимума $x^* \in U_0$, $U_0 = [a;b]$, причем на заданном интервале функция является унимодальной.

Метод перебора.

Стратегия поиска: Метод относится к пассивным стратегиям.

В соответствии с заданной точностью исходная область $U_0 = [a;b]$ разбивается на n равных интервалов $[x_0;x_1],[x_1;x_2],\ldots,[x_{n-1};x_n],$ где $x_0=a,\ x_N=b$. Производится вычисление значений функции в точках $x_i,\ i=0,1,...,n$. Путем сравнения величин $f(x_i),\ i=0,1,...,n$ находится точка x_m , в которой значение функции наименьшее. Искомая точка минимума x^* заключена в интервале $[x_{m-1};x_{m+1}].$

Алгоритм:

- 1. Задать начальный интервал неопределенности U_0 = [a;b] и точность ε .
- 2. Задать количество интервалов разбиения $n \ge \frac{b-a}{\varepsilon}$.
- 3. Вычислить точки $x_i = a + i \cdot \frac{b-a}{n}, i = 0,1,...,n.$
- 4. Вычислить значения функции f(x) в точках x_i , i = 0,1,...,n.
- 5. Среди точек x_i , i=0,1,...,n найти такую, в которой функция принимает наименьшее значение: $f(x_m) = \min_{0 < i < n} f(x_i)$.
- 6. Положить $x^* \approx x_m$, $f^* \approx f(x_m)$. Поиск завершен.

Метод поразрядного поиска.

<u>Стратегия поиска:</u> Метод является усовершенствованным вариантом метода перебора (прямой метод последовательного поиска).

В этом методе перебор точек интервала неопределенности U_0 происходит сначала с шагом $\Delta = x_{i+1} - x_i > \varepsilon$, i = 0,1,... (при этом точка x_0 совпадает с концом отрезка a) до тех пор, пока не выполнится условие $f(x_i) \leq f(x_{i+1})$, или пока очередная из точек x_i не совпадет с концом отрезка b. После этого шаг уменьшается в несколько раз (обычно в четыре раза), и производится перебор точек в противоположном направлении (с новым шагом) до тех пор, пока значения f(x) не перестанут уменьшаться, или очередная точка не совпадет с концом отрезка a. Процедура уменьшения шага и смены направления перебора на противоположное повторяется

несколько раз. Поиск прекращается, если текущий шаг дискретизации при последнем проходе алгоритма не превосходит заданной точности ε .

Следует отметить, что в данном методе интервал неопределенности может быть полубесконечным или бесконечным.

Алгоритм:

- 1. Задать начальный интервал неопределенности $U_0 = [a;b]$, точность ε и начальный шаг дискретизации $\Delta > \varepsilon$.
- 2. Положить i = 1, $x_0 = a$. Вычислить значение функции $f(x_0)$.
- 3. Определить точку $x_i = x_{i-1} + \Delta$ и значение функции $f(x_i)$.
- 4. Если $f(x_i) \le f(x_{i-1})$ и $x_i \ne a$, $x_i \ne b$, то положить i = i+1 и вернуться к шагу 3, иначе перейти к шагу 5.
- 5. Если $|\Delta| < \varepsilon$, то прейти к шагу 7, иначе перейти к шагу 6.
- 6. Задать новый шаг дискретизации $\Delta = -\Delta/4$, положить i = i + 1 и перейти к шагу 3.
- 7. Положить $x^* \approx x_i$, $f^* \approx f(x_i)$. Поиск завершен.

Метод дихотомии.

<u>Стратегия поиска:</u> Метод относится к последовательным стратегиям и является одним из вариантов метода исключения отрезков.

Алгоритм опирается на анализ значений функции в двух точках. Для их нахождения текущий интервал неопределенности делится пополам и в обе стороны от середины откладывается по $\delta/2$, где $\delta<2\,\varepsilon$ — малое положительное число. По результатам сравнения значений функции в этих точках из дальнейшего рассмотрения исключается часть текущего интервала неопределенности. Условия окончания итераций для всех вариантов метода исключения отрезков стандартные: поиск заканчивается, когда половина длины текущего интервала неопределенности оказывается меньше установленной величины точности ε .

Алгоритм:

- 1. Задать начальный интервал неопределенности $U_{\scriptscriptstyle 0}$ и точность ε . Выбрать δ < 2 ε .
- 2. Вычислить точки $x_1 = \frac{b+a-\delta}{2}$, $x_2 = \frac{b+a+\delta}{2}$ и значения функции $f(x_1)$, $f(x_2)$.
- 3. Если $f(x_1) \le f(x_2)$., то положить $b = x_2$. В противном случае, т.е. если $f(x_1) > f(x_2)$, положить $a = x_1$.
- 4. Вычислить полудлину нового интервала неопределенности $U = \frac{b-a}{2}$. Если $U > \varepsilon$, то перейти к следующей итерации, вернувшись к шагу 2. Иначе перейти к шагу 5.
- 5. Положить $x^* \approx \overline{x} = \frac{a+b}{2}$, $f^* \approx f(\overline{x})$. Поиск завершен.

Метод золотого сечения.

<u>Стратегия поиска:</u> Метод относится к последовательным стратегиям и является одним из вариантов метода исключения отрезков.

Алгоритм опирается на анализ значений функции в двух точках, являющихся точками золотого сечения текущего интервала неопределенности. Исключение отрезка в данном случае выполняется так же, как и в методе дихотомии. При этом с учетом свойств золотого сечения на каждой итерации, кроме первой, требуется вычислить только одно новое значение функции.

Алгоритм:

- 1. Задать начальный интервал неопределенности U_0 и точность ε .
- 2. Вычислить значение $\tau = \frac{\sqrt{5}-1}{2}$ и точки $x_2 = a + \tau(b-a), \ x_1 = a + b x_2.$

Вычислить значения функций $f(x_1), f(x_2)$.

- 3. Если $f(x_1) \le f(x_2)$, то положить $b = x_2$, $x_2 = x_1$, $f(x_2) = f(x_1)$, $x_1 = a + b x_1$ и вычислить $f(x_1)$,
 - в противном случае положить $a = x_1$, $x_1 = x_2$, $f(x_1) = f(x_2)$, $x_2 = a + b x_2$ и вычислить $f(x_2)$.
- 4. Вычислить полудлину нового интервала неопределенности $U = \frac{b-a}{2}$.

Если $U > \varepsilon$, то перейти к следующей итерации, вернувшись к шагу 3. Иначе перейти к шагу 5.

5. Положить $x^* \approx \overline{x} = \frac{a+b}{2}$, $f^* \approx f(\overline{x})$. Поиск завершен.

Метод парабол.

<u>Стратегия поиска:</u> метод парабол относится к последовательным стратегиям и является одним из вариантов полиномиальной интерполяции, позволяющей учесть информацию, содержащуюся в относительных изменениях значений f(x) в пробных точках.

Алгоритм опирается на анализ значений функции в трех точках текущего интервала неопределенности. По этим точкам строится интерполяционный многочлен (парабола) и ищется его минимум. При этом на каждой итерации, кроме первой, требуется вычислить только одно новое значение функции.

Алгоритм:

- 1. Задать начальный интервал неопределенности U_0 и точность ε .
- 2. Выбрать точки $x_1, x_2, x_3 \in U_0$, удовлетворяющие условиям $x_1 < x_2 < x_3$, $f(x_1) \ge f(x_2) \le f(x_3)$, причем пусть одно из неравенств строгое.
- 3. Найти минимум квадратного трехчлена по формуле $\bar{x} = \frac{1}{2}(x_1 + x_2 \frac{a_1}{a_2})$, где

$$a_1=rac{f_2-f_1}{x_2-x_1}$$
 , $a_2=rac{1}{x_3-x_2}(rac{f_3-f_1}{x_3-x_1}-rac{f_2-f_1}{x_2-x_1})$ - коэффициенты квадратичной функции

 $q(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$. На первой итерации перейти к шагу 5, на остальных – к шагу 4.

- 4. Если модуль разности \bar{x} на данной и предыдущей итерациях $|\Delta| \le \varepsilon$, то поиск завершить, полагая $x^* \approx \bar{x}$, $f^* \approx f(\bar{x})$, иначе перейти к шагу 5.
- 5. Вычислить значение $f(\bar{x})$. Перейти к шагу 6.

6. Выбрать новую тройку чисел x_1, x_2, x_3 . Присвоить обозначениям $f(x_1), f(x_2)$ и $f(x_3)$ соответствующие значения f(x), найденные ранее. Перейти к шагу 3.

Задания

- 1. Написать в среде MATLAB функции, реализующие пять приведенных выше методов.
- 2. Выбрать для выполнения лабораторной работы тестовую функцию, номер которой соответствует номеру Вашего компьютера. Например, для компьютера №3 это будет функция 3), для компьютера №13 функция 4): 13-9=4; для компьютера №23 это будет функция 5): $23-9\times2=5$.
- 1) $f(x) = x^3 3\sin x \rightarrow \min, x \in [0,1].$
- 2) $f(x) = x^4 + x^2 + x + 1 \rightarrow \min, x \in [-1, 0].$
- 3) $f(x) = e^x + \frac{1}{x} \rightarrow \min, x \in [0,5;1,5].$
- 4) $f(x) = x^2 2x + e^{-x} \rightarrow \min, x \in [-1;1,5].$
- 5) $f(x) = x \sin x + 2 \cos x \rightarrow \min, \quad x \in [-6, -4].$
- 6) $f(x) = x + \frac{1}{x^2} \rightarrow \min, x \in [1; 2].$
- 7) $f(x) = 10x \ln x \frac{x^2}{2} \rightarrow \min, x \in [0,1;1].$
- 8) $f(x) = e^x \frac{1}{3}x^3 + 2x \rightarrow \min, x \in [-2,5;-1].$
- 9) $f(x) = x^2 2x 2\cos x \rightarrow \min, x \in [-0,5;1].$
- 3. Для выбранной функции и для каждого рассмотренного выше метода изучить зависимость скорости работы (числа вычислений функции N) от заданного значения точности ε . Провести сравнение методов друг с другом. Объяснить полученные результаты.
- 4. Используя встроенную в MATLAB функцию fminsearch, вычислить координату минимума выбранной функции.
- 5. Определить, сколько вычислений функции потребуется каждому методу для того, чтобы отличие его решения от координаты минимума, полученного в пункте 4. была меньше $\varepsilon = 10^{-4}$.
- 6. Найти минимум функции $f(x) = e^x 1 x \frac{x^2}{2} \frac{x^3}{6}$ с точностью $\varepsilon = 10^{-4}$ на отрезке
- [-5:5] методами золотого сечения и парабол. Объяснить полученные результаты.
- 7. Результаты работы необходимо сохранить для использования в следующей лабораторной работе.
- 8. Сдать лабораторную работу преподавателю, ответив предварительно на все следующие контрольные вопросы.

Контрольные вопросы к лабораторной работе 1.

- 1) Пусть f(x) дифференцируемая унимодальная на отрезке [a;b] функция, причем $|f'(x)| \le M$. Оценить точность $\Delta(N)$ определения минимального значения f^* методом перебора в результате N вычислений f(x).
- 2) Может ли оценка $\varepsilon(N) = \frac{b-a}{N-1}$ для точности определения x^* методом перебора нарушаться для функций, не являющихся унимодальными? Ответ пояснить рисунком.
- 3) Какие прямые методы называются методами пассивного поиска? Последовательного поиска?
- 4) Повысится ли эффективность метода поразрядного поиска, если шаг поиска Δ последовательно уменьшать не в четыре, а в какое-либо другое число раз?
- 5) В чем состоит идея метода исключения отрезков?
- 6) Может ли применение методов исключения отрезков привести к неверному определению x^* , если функция f(x) не унимодальна? Ответ пояснить рисунком.
- 7) Зависит ли точность определения x^* , которую гарантируют методы дихотомии и золотого сечения в результате N вычислений функции f(x), от конкретной функции f(x)?
- 8) Требуется найти точку минимума унимодальной функции на отрезке длины 1 с точностью $\varepsilon = 0.02$. Имеется возможность измерить не более 10 значений f(x). Какой из прямых методов минимизации можно использовать для этого?
- 9) Доказать, что погрешность определения точки минимума x^* функции f(x) методом перебора не превосходит величины $\varepsilon_n = (b-a)/n$.
- 10) Доказать, что в методе дихотомии число итераций, необходимое для определения точки минимума с точностью ε , определяется формулой $n \ge \log_2 \frac{b-a-\delta}{2\varepsilon-\delta}$.
- 11) Доказать, что число итераций, необходимое для достижения заданной точности ε на отрезке [a;b] в методе золотого сечения определяется формулой $n \ge \ln\!\left(\frac{2\varepsilon}{b-a}\right) / \ln \tau \approx 2,\! 1 \cdot \ln\!\left(\frac{b-a}{2\varepsilon}\right).$
- 12) Сравнить необходимые количества вычисленных значений N_{∂} и N_n функции f(x) при поиске ее точки минимума на отрезке длины 1 с точностью 10^{-5} методом деления отрезка пополам и методом перебора.
- 13) Зависит ли точность определения x^* , которую получается методом парабол в результате N вычислений функции f(x), от конкретной функции f(x)?
- 14) Указать класс функций, для точного определения точек минимума которых достаточно одной итерации метода парабол.
- 15) В окрестности точки минимума x^* график функции $f_1(x)$ близок к симметричному относительно вертикальной оси, проходящей через точку x^* , а график функции $f_2(x)$ заметно асимметричен. Для какой из этих функций следует ожидать более высокой скорости сходимости метода парабол?