Universidade da Beira Interior

Departamento de Informática

Nº 47050 - 2023: COPD Web App

Elaborado por:

Tomás Gomes Santos

Orientador:

Professor Doutor Paulo Fazendeiro

3 de julho de 2023

Agradecimentos

Gostaria de expressar os meus sinceros agradecimentos a todas as pessoas que contribuíram para a realização deste projeto. O vosso apoio, orientação e encorajamento foram fundamentais para o sucesso deste projeto.

Em primeiro lugar, gostaria de agradecer à minha família. Aos meus pais e irmãs, sou imensamente grato pelo amor, apoio incondicional e incentivo ao longo da minha jornada académica. Obrigado por acreditarem sempre em mim e me proporcionarem condições necessárias para realizar os meus objetivos. Sou eternamente grato por tudo o que fizeram por mim.

Gostaria de estender meus agradecimentos aos meus amigos próximos. Palavras de encorajamento, momentos de descontração e apoio emocional foram inestimáveis durante os desafios enfrentados ao longo do projeto. Obrigado por estarem sempre ao meu lado e por me lembrarem da importância do equilíbrio entre o trabalho e a vida pessoal.

À Universidade da Beira Interior, expresso meu apreço por fornecerem um ambiente académico estimulante e saudável, e também por disponibilizarem os recursos necessários para o desenvolvimento deste projeto. Agradeço a todos os professores pelo seu ensino, orientação e suporte ao longo do curso.

Gostaria de agradecer especialmente ao Professor Paulo Fazendeiro, o meu orientador. A sua experiência, conhecimento e orientação foram essenciais para a realização deste projeto. Agradeço sinceramente pelo seu tempo, paciência e valiosas contribuições. Obrigado também pelas sugestões e feedbacks, pois foram essenciais para o meu crescimento académico e profissional.

Também gostaria de agradecer ao meu colega de projeto, João Martins. Trabalhar ao teu lado foi uma experiência enriquecedora. A tua dedicação, colaboração e disposição em enfrentar desafios juntos foram fundamentais para o sucesso deste projeto.

Por fim, gostaria de expressar minha gratidão a todas as outras pessoas que direta ou indiretamente contribuíram para este projeto, mas que não foram mencionadas aqui. O vosso apoio e contribuições foram valiosas e são sinceramente apreciadas.

Tomás Santos

Conteúdo

Co	nteú	do	iii
Lis	sta de	e Figuras	v
1	Intr	odução	1
	1.1	Enquadramento	1
		1.1.1 Doença Pulmonar Obstrutiva Crónica	1
		1.1.2 Factos Chave	2
		1.1.3 A importância do conhecimento da Doença Pulmonar	
		Obstrutiva Crónica (DPOC)	2
	1.2	Motivação	3
	1.3	Objetivos	4
2	Esta	do da Arte	5
	2.1	Introdução	5
	2.2	Aplicações para Gestão da DPOC	6
	2.3	Fontes de Dados e Datasets	7
	2.4	Tecnologias e Ferramentas	8
	2.5	Desafios e Oportunidades	8
	2.6	Conclusão	9
3	Tecı	nologias e Ferramentas Utilizadas	11
	3.1	Introdução	11
	3.2	Arquitetura do sistema	12
		3.2.1 Diagrama de caso de uso	13
		3.2.2 Diagrama Atividade	14
		3.2.3 Diagramas de Sequência	15
	3.3	Desenvolvimento do frontend	16
	3.4	Desenvolvimento do backend	16
	3.5	Análise de Dados e Cálculo do Valor de Bem-Estar (<i>Wellness Value</i>) da DPOC	16
	3.6	Conclusões	18

iv CONTEÚDO

4	Imp	lement	ação	19
	4.1	Introd	lução	19
	4.2	Entrac	da e Análise de Dados	20
	4.3		ionário COPD Assessment Test (CAT)	20
	4.4		ão do Valor de Bem-Estar da DPOC	20
	4.5	-	as do Painel Médico Web	21
		4.5.1	Dashboard	21
		4.5.2	Your Charts	22
		4.5.3	Test Results	24
		4.5.4	CAT	26
		4.5.5	Education	27
		4.5.6	FAQ	28
	4.6		onentes utilizados	29
		4.6.1	ValueWidget	29
		4.6.2	Gráficos	29
		4.6.3	Ícones	31
	4.7	1.0.0	usão	31
5	Con	clusões	s e Trabalho Futuro	33
	5.1	Concl	usões Principais	33
	5.2		lho Futuro	34
Bi	bliog	rafia		35

Lista de Figuras

3.1	Diagrama de Classes	12
3.2	Diagrama de caso de uso	13
3.3	Diagrama de Atividade Geral para a aplicação	14
3.4	Diagrama de Sequência para a visualização do valor de Saúde	15
4.1	Dashboard	21
4.2	Your Charts	22
4.3	Your Charts Accordion Open	23
4.4	Test Results	25
4.5	CAT	26
4.6	Education Page	27
4.7	FAQ Page	28

Lista de Excertos de Código

3.1	criação das rondas de salt para criptografia da password	16
4.1	Cálculo do valor de bem estar	20
4.2	Visualização do valor de bem estar utilizando um Widget	21
4.3	Exemplo Componentes de gráficos	22
4.4	Exemplo de configuração dos gráficos	23
4.5	Formatação do gráfico 6 Minute Walk Test (6MWT) com multi-	
	plos dados	24
4.6	Value Widget	29
4.7	Função do BarChart	30
4.8	Importação de alguns ícones	31

Acrónimos

1MSTST 1 Minute Sit to Stand Test

PaCO2 Pressão arterial de Dióxido de Carbono

MUI Material UI

6MWT 6 Minute Walk Test

DPOC Doença Pulmonar Obstrutiva Crónica

CAT COPD Assessment Test

FAQ Frequently Asked Questions

PaO2 Pressão arterial do Oxigénio

Capítulo

1

Introdução

1.1 Enquadramento

1.1.1 Doença Pulmonar Obstrutiva Crónica

A Doença Pulmonar Obstrutiva Crónica (DPOC) é uma condição de saúde caracterizada pela obstrução persistente e progressiva do fluxo de ar nos pulmões. Os principais sintomas incluem falta de ar, tosse crónica e produção excessiva de muco.

Estes sintomas tendem a piorar com o tempo e tornam a respiração mais difícil. A DPOC é uma condição incapacitante que afeta milhões de pessoas no mundo. A causa mais comum de DPOC é o tabagismo, mas também pode provir da exposição a poeiras, poluentes no ar e outras substâncias nocivas ao ser humano. A Doença Pulmonar Obstrutiva Crónica pode ter um impacto significativo na qualidade de vida das pessoas afetadas, pois limita a sua capacidade de realizar atividades do quotidiano e aumenta o risco de saúde.

2 Introdução

1.1.2 Factos Chave

[1]

• A doença pulmonar obstrutiva crónica é a terceira causa de morte mais comum no mundo, causou 3.23 milhões de mortes em 2019.

- Aproximadamente 90% das mortes relacionadas com a DPOC em pessoas com idade inferior a 70 anos acontecem em países com um rendimento baixo-médio.
- Com um diagnóstico atempado e um tratamento apropriado, que inclui principalmente suporte na suspensão de fumar.
- Exposição ambiental a fumo de tabaco, gases prejudiciais, fumos e químicos são fatores de risco importantes na DPOC.
- Resultados de exposição prolongada a fumos nocivos, combinados com outros fatores individuais, mostram que esta doença pode influenciar no crescimento dos pulmões na infância e dados genéticos.
- A DPOC causa sintomas progressivos e persistentes, incluindo dificuldade em respirar, tosse e produção de muco.

1.1.3 A importância do conhecimento da DPOC

A importância da DPOC como um problema de saúde pública reside na sua alta prevalência e no seu impacto significativo na qualidade de vida das pessoas afetadas. A DPOC é uma das principais causas de morte no mundo e tem implicações substanciais tanto no setor económico como social.

A prevenção da DPOC é crucial, sendo a redução do tabagismo e exposição a poluentes no ar as principais medidas a tomar.

1.2 Motivação 3

1.2 Motivação

A Doença Pulmonar Obstrutiva Crónica é uma condição de saúde que afeta um número significativo de pessoas, causando uma redução na qualidade de vida e limitando a sua capacidade de realizar atividades quotidianas. Atualmente, a gestão da DPOC enfrenta desafios significativos, uma vez que não existem aplicações eficazes para ajudar os pacientes a auto-gerirem a doença.

Falta de ferramentas adequadas de auto-gestão e monitorização da DPOC é um problema relevante, pois os pacientes dependem principalmente de consultas médicas para obter informações sobre sua condição e não possuem meios efetivos de realizar auto-diagnóstico ou monitorizar as variáveis corporais relevantes para a saúde pulmonar.

Diante deste problema, o objetivo deste projeto é desenvolver um *website dashboard* para a gestão da DPOC. Através da plataforma, os pacientes terão acesso a uma variedade de recursos, incluindo visualização de dados provenientes de dispositivos de rastreamento de variáveis pulmonares, testes, uma página educativa, o COPD Assessment Test e um Frequently Asked Questions (FAQ).

Este projeto traz benefícios significativos, pois contribui para a sensibilização da DPOC na sociedade de um modo geral. Além disso, capacita os pacientes, permitindo-lhes ter um papel ativo na gestão da sua doença. Através do acesso a informações e recursos relevantes, os pacientes podem tomar medidas para melhorar sua saúde pulmonar e procurar um estilo de vida mais saudável. Além disso, este projeto pode estimular a competição no campo da gestão da DPOC, incentivando o desenvolvimento de soluções cada vez mais eficazes.

Além de relevância social e impacto positivo, este projeto também proporciona uma oportunidade pessoal de crescimento e desenvolvimento. O desenvolvimento de técnicas de programação web é um aspecto crucial desta iniciativa, uma vez que requer habilidades no desenvolvimento de aplicações *fullStack*. A aquisição destas habilidades é fundamental para o ingresso no mercado de trabalho, fornecendo uma base sólida para futuras oportunidades profissionais.

Resumindo, a falta de ferramentas adequadas para a gestão da DPOC e a importância de melhorar a qualidade de vida dos pacientes são os principais impulsionadores deste projeto. Através do desenvolvimento de um website dashboard abrangente, espera-se capacitar os pacientes, aumentar a sensibilização sobre a doença e promover uma competição saudável nesta área, ao mesmo tempo em que proporciona uma oportunidade de crescimento pessoal no campo da programação.

4 Introdução

1.3 Objetivos

O objetivo principal deste projeto é desenvolver um *website dashboard* para auxiliar os pacientes com DPOC na gestão eficaz da sua doença, fornecendo ferramentas e recursos que lhes permitam monitorizar e controlar melhor os sintomas e melhorar a sua qualidade de vida. Além disso, existem objetivos específicos a serem alcançados:

Desenvolver uma interface intuitiva e amigável: O *website dashboard* será projetado de forma a ser facilmente compreendido e utilizado pelos pacientes, mesmo por aqueles com pouca experiência em tecnologia. A usabilidade e a experiência do utilizador serão priorizadas.

Integrar a coleta de dados de dispositivos de rastreamento: Será implementada a integração de dispositivos que monitorizam as variáveis relevantes para a DPOC, permitindo que os pacientes visualizem e acompanhem suas medições em tempo real.

Disponibilizar testes e avaliações: Será incorporado um conjunto de testes e avaliações, incluindo o COPD Assessment Test, que permitirá aos pacientes realizar autoavaliações periódicas e acompanhar o progresso do seu estado de saúde.

Criar uma página educativa sobre DPOC: Será desenvolvida uma página informativa sobre a DPOC, fornecendo aos pacientes informações essenciais sobre a doença, seus sintomas, fatores de risco e estratégias de gestão.

FAQ: Uma seção de perguntas frequentes será incluída no *website dash-board*, abordando as dúvidas mais comuns dos pacientes e fornecendo respostas claras e concisas.

Implementar recursos de autodiagnóstico: Serão desenvolvidas funcionalidades que permitam aos pacientes realizar autodiagnóstico com base nos sintomas e nos dados coletados, fornecendo sugestões e recomendações personalizadas.

Avaliar a eficácia do *website dashboard*: Será conduzida uma avaliação da eficácia do *website dashboard*, envolvendo a participação dos pacientes e a coleta de *feedback* para identificar áreas de melhoria e realizar ajustes necessários.

Contribuir para a sensibilização e competição: O projeto tem como objetivo contribuir para a sensibilização sobre a DPOC na sociedade e estimular a competição na área de gestão da doença, incentivando o desenvolvimento contínuo de soluções inovadoras.

Os objetivos acima mencionados servem como diretrizes para o desenvolvimento do projeto e visam fornecer uma solução abrangente para a gestão da DPOC, com foco na melhoria da qualidade de vida dos pacientes.

Capítulo

2

Estado da Arte

2.1 Introdução

Neste capítulo, analisei o estado atual das aplicações e recursos disponíveis para a gestão da DPOC. Explorei as funcionalidades oferecidas por diferentes aplicações, assim como outras fontes de dados relevantes. Além disso, discutirei os desafios e oportunidades na área e identificarei lacunas que podem ser abordadas por este projeto.

6 Estado da Arte

2.2 Aplicações para Gestão da DPOC

Existem poucas aplicações disponíveis no mercado destinadas à gestão da DPOC. Estas são as principais aplicações :

- COPD [2]: Esta aplicação oferece informações básicas sobre a DPOC e permite que os utilizadores registem manualmente os seus dados médicos. No entanto, a sua funcionalidade é limitada em termos de automonitorização e recursos mais avançados.
- myMHealth [3]: Esta aplicação fornece informações detalhadas sobre a DPOC, incluindo guias educacionais e ferramentas de autoavaliação, através da resposta a algumas perguntas no entanto, e os utilizadores precisam inserir manualmente os seus dados médicos, o que pode ser inconveniente e propenso a erros.
- Epa's Air Now [4]: Embora não seja especificamente uma aplicação para gestão da DPOC, esta aplicação permite aos utilizadores verificar a qualidade do ar em diferentes localizações utilizando o sistema operativo Android. Informações sobre a qualidade do ar podem ser relevantes para os pacientes com DPOC, pois a poluição do ar pode agravar os sintomas.
- Air Quality App BreezoMeter [5]: Semelhante à aplicação anterior, o BreezoMeter também fornece informações sobre a qualidade do ar em tempo real, no entanto é para IOS. Os pacientes com DPOC podem utilizar essas informações para evitar áreas com alta poluição do ar.
- COPD Manager [6]: Esta aplicação permite aos utilizadores registar e monitorizar os seus sintomas de DPOC, bem como acompanhar a medicação. No entanto, também requer inserção manual de dados.

Estas aplicações destacam-se pela sua acessibilidade e disponibilidade, mas apresentam bastantes limitações em termos de funcionalidades de automonitorização, integração de dispositivos médicos, facilidade e conveniência de utilização.

2.3 Fontes de Dados e Datasets

Para além das aplicações, é importante considerar outras fontes de dados relevantes para a gestão da DPOC. Embora a disponibilidade de datasets específicos para a DPOC seja limitada, existe um conjunto de dados chamado "The COPD Dataset" disponível no *Kaggle* [7]. Este dataset oferece uma variedade de variáveis relacionadas à DPOC, como idade, histórico de tabagismo, volume expiratório forçado (VEF1), capacidade vital forçada (CVF), dispneia, saturação de oxigênio, comorbidades e distância percorrida num teste de caminhada de 6 minutos (6MWT). Estas variáveis são relevantes para o estudo da DPOC e podem ser utilizadas no desenvolvimento do projeto.

8 Estado da Arte

2.4 Tecnologias e Ferramentas

O desenvolvimento de um *website dashboard* para a gestão da DPOC envolve o uso de várias tecnologias e ferramentas. Alguns pontos importantes a considerar são:

- Tecnologias para o desenvolvimento full-stack: Para o desenvolvimento de uma aplicação web completa, é necessário utilizar tecnologias como HTML, CSS e JavaScript para o frontend, além de um framework de desenvolvimento web, como React, Angular ou Vue.js. Para o backend, é possível utilizar tecnologias como Node.js, Python ou Java, juntamente com uma base de dados para armazenamento e recuperação dos dados.
- Ferramentas de visualização de dados: A visualização de dados desempenha um papel fundamental na apresentação de informações relevantes para os pacientes com DPOC. Ferramentas populares, como D3.js, Chart.js e Plotly, podem ser utilizadas para criar gráficos interativos e visualmente atraentes.
- Integração de dispositivos médicos: Um dos objetivos do projeto é permitir que os pacientes com DPOC se auto-diagnostiquem e realizem testes utilizando dispositivos médicos. A integração destes dispositivos com a aplicação web requer o uso de APIs e tecnologias de comunicação, como Bluetooth ou Wi-Fi, dependendo das tecnologias do dispositivo em questão.
- Segurança e privacidade dos dados: Ao lidar com informações médicas dos pacientes, é fundamental garantir a segurança e privacidade dos dados. Isto envolve a implementação de práticas de segurança adequadas, como criptografia de dados, autenticação e controlo de acesso.

2.5 Desafios e Oportunidades

No desenvolvimento de um *website dashboard* para a gestão da DPOC, encontramos desafios e oportunidades. Alguns dos principais desafios incluem a falta de informação sobre o tema, integração de dispositivos médicos, segurança e privacidade dos dados dos pacientes, além da necessidade de uma interface amigável e de fácil utilização. Por outro lado, o projeto também apresenta oportunidades para trazer inovação, oferecer maior autonomia aos pacientes e sensibilizar a sociedade acerca da importância do gestão da DPOC.

2.6 Conclusão 9

2.6 Conclusão

Este capítulo explorou o estado da arte das aplicações existentes para a gestão da DPOC, destacando as suas funcionalidades e limitações. Também foram discutidas fontes de dados relevantes, tecnologias e ferramentas necessárias para o desenvolvimento do *website dashboard*. Além disso, desafios e oportunidades foram identificados e serão abordados no desenvolvimento do projeto. Com base nestas informações, podemos avançar para o próximo capítulo, onde serão apresentadas as tecnologias e ferramentas utilizadas no desenolvimento deste projeto.

Capítulo

3

Tecnologias e Ferramentas Utilizadas

3.1 Introdução

Este capítulo apresenta a arquitetura do sistema e as tecnologias e ferramentas utilizadas no desenvolvimento do sistema do painel médico web para a aplicação de DPOC. Será fornecida uma visão geral das decisões tomadas e como estas tecnologias e ferramentas se relacionam com a arquitetura e funcionalidades do sistema, através de diagramas. Irá também ser aprofundado o desenvolvimento do *frontend*, do *backend* e o cálculo do valor de bem estar(*Wellness Value*).

3.2 Arquitetura do sistema

Figura 3.1: Diagrama de Classes

A arquitetura do sistema do painel médico web para a aplicação de DPOC é centrada no paciente. Os dados pessoais do paciente são armazenados na própria tabela, enquanto os dados médicos e de sensores são armazenados noutras tabelas. O paciente pode aceder a estes dados por meio do website *dashboard*, onde pode editar as suas informações pessoais e visualizar os seus dados médicos para ter consciência da sua situação de saúde atual. A arquitetura envolve o uso de serviços AWS com PostgresSQL como base de dados e a utilização do Express.js como API.

3.2.1 Diagrama de caso de uso

Figura 3.2: Diagrama de caso de uso

O diagrama de caso de uso descreve as funcionalidades e interações entre os atores e o sistema. Ele demonstra todas as ações que um utilizador pode realizar na plataforma, incluindo a autenticação, visualização de resultados de testes, educação sobre a doença, realização do CAT (COPD Assessment Test) e qualquer outra funcionalidade relevante. Cada caso de uso representa uma função específica do sistema e mostra as relações entre os atores e as ações que podem ser executadas.

3.2.2 Diagrama Atividade

Figura 3.3: Diagrama de Atividade Geral para a aplicação

O diagrama de atividade representa o fluxo de atividades que um utilizador segue ao entrar no *dashboard* e visualizar o valor de bem-estar. Inclui as etapas necessárias para autenticação, como fornecer os credenciais corretos, e, de seguida, mostra as opções disponíveis para o utilizador após o login, visualizar resultados de testes, educar-se sobre a doença e realizar o CAT. O diagrama de atividade também pode incluir decisões ou bifurcações no fluxo, dependendo das ações do utilizador.

3.2.3 Diagramas de Sequência

Figura 3.4: Diagrama de Sequência para a visualização do valor de Saúde

O diagrama de sequência descreve a interação entre os diferentes componentes do sistema, no caso do login e cálculo do valor de bem-estar. Ele mostra a sequência de eventos desde o momento em que o utilizador faz o login até o cálculo e exibição do valor de bem-estar. Isto inclui o envio de uma solicitação da interface do utilizador para a API, que por sua vez pede os dados mais recentes dos testes, dos sensores e do resultado do CAT na base de dados. Em seguida, são realizados os cálculos necessários para obter o valor de bem-estar e retorna o resultado para ser exibido no *dashboard*. O utilizador também tem a opção de enviar o valor de bem-estar para a base de dados para fins de histórico e acompanhamento da evolução ao longo do tempo.

3.3 Desenvolvimento do frontend

No desenvolvimento do *frontend*, as tecnologias principais utilizadas foram o *HTML*, *CSS* e *JavaScript*, combinadas com o framework *React* e o ambiente de execução *Node.js*. O uso do *React* proporciona benefícios como modularidade de componentes e facilidade de atualização do interface do utilizador. Além disso, foram empregados recursos adicionais, como o *Chart.js* para visualização de gráficos, o *Material UI (MUI)* para acelerar o desenvolvimento da página web com componentes pré-estabelecidos, o *Formik* para criação de formulários.

3.4 Desenvolvimento do backend

Para o *backend*, foi utilizado a base de dados relacional *PostgresSQL*, aproveitando suas vantagens em projetos desse tipo. Os serviços AWS foram escolhidos para hospedar a base de dados, garantindo escalabilidade, segurança e disponibilidade. O *PgAdmin4* foi adotado como sistema de gestão de base de dados devido ao seu interface amigável e recursos abrangentes. A autenticação do utilizador é tratada com segurança, utilizando o e-mail e uma senha definida pelo próprio utilizador, que são encriptadas e armazenadas de forma segura.

```
const crypto = require("crypto");

// Generate a random salt value
const generateSalt = () => {
   return crypto.randomBytes(16).toString("hex");
};

// Example usage
const salt = generateSalt();
```

Excerto de Código 3.1: criação das rondas de salt para criptografia da password

3.5 Análise de Dados e Cálculo do Valor de Bem-Estar (*Wellness Value*) da DPOC

Neste projeto na análise de dados de pacientes com DPOC, são consideradas variáveis como temperatura, frequência respiratória, Pressão arterial do

3.5 Análise de Dados e Cálculo do Valor de Bem-Estar (*Wellness Value*) da DPOC 17

Oxigénio (PaO2) e Pressão arterial de Dióxido de Carbono (PaCO2). Estas informações, juntamente com dados como a frequência cardíaca resultados de testes de função pulmonar e apitadão física, são avaliadas por meio de testes físicos realizados na aplicação desenvolvida pelo colega João Martins. A evolução desses dados ao longo do tempo pode ser visualizada no *dashboard*. O valor de bem-estar da DPOC é calculado por meio da normalização das variáveis e da soma ponderada das diferentes partes, seguindo a fórmula simplificada: (Vars * 0.4) + (Testes * 0.3) + (CAT * 0.3).

3.6 Conclusões

Neste capítulo, foram apresentadas as principais tecnologias e ferramentas utilizadas no desenvolvimento do sistema do painel médico web para a aplicação de DPOC. A escolha do React para o *frontend* proporcionou modularidade e facilidade de atualização da interface do utilizador. O uso do Postgres-SQL como base de dados relacional e a adoção dos serviços AWS garantiram a segurança, escalabilidade e disponibilidade do sistema. A análise de dados e cálculo do valor de bem-estar da DPOC permitiram uma avaliação abrangente da condição de saúde dos pacientes. Essas escolhas e implementações fornecem uma base sólida para o sistema e contribuem para uma experiência positiva para os utilizadores.

Capítulo

4

Implementação

4.1 Introdução

Este capítulo descreve a implementação do painel médico web para pacientes com DPOC. Serão apresentadas as diferentes funcionalidades e secções desenvolvidas, incluindo a entrada e análise de dados, o questionário COPD Assessment Test (CAT) (COPD Assessment Test), a exibição do valor de bemestar da DPOC e as páginas específicas do painel médico web. Cada secção abordará aspetos importantes da implementação e como contribuem para a melhoria da experiência do utilizador.

4.2 Entrada e Análise de Dados

Os pacientes com DPOC têm a capacidade de realizar o questionário CAT no painel médico web, permitindo que registem informações relevantes sobre a sua condição. Além disso, os dados provenientes de testes físicos e dos sensores instalados no corpo do paciente são recolhidos e armazenados na base de dados. Estes são posteriormente processados por algoritmos específicos, que realizam análises e retornam um valor geral sobre o estado de saúde do paciente, o valor de bem-estar.

4.3 Questionário CAT

O questionário CAT é uma parte essencial do painel médico web, pois permite que os pacientes avaliem sua condição de DPOC. O questionário consiste numa série de perguntas em que os pacientes respondem com base nos seus sintomas e perceções pessoais. As respostas ao questionário têm um impacto direto no cálculo do valor de bem-estar do paciente e influenciam as informações e recomendações fornecidas pelo sistema.

4.4 Exibição do Valor de Bem-Estar da DPOC

A exibição do valor de bem-estar da DPOC é uma parte fundamental do painel médico web, pois permite que os pacientes acompanhem e compreendam o seu estado de saúde. Nesta secção, serão apresentadas as diferentes visualizações e elementos de interface do usuário utilizados para representar o valor de bem-estar. Gráficos, tabelas e outras representações visuais serão explorados para fornecer aos pacientes uma visão clara e compreensível de seu estado de saúde. Além disso, serão discutidas as maneiras pelas quais os pacientes podem interpretar essas informações e tomar medidas preventivas para evitar exacerbações da doença.

```
const valorFinal =
      ((sitWvTestResults + walkWvTestResults) / 2) * 0.3 +
      catResults * 0.3 +
      varResults * 0.4;
    setWellnessValue(valorFinal)
```

Excerto de Código 4.1: Cálculo do valor de bem estar

4.5 Páginas do Painel Médico Web

O painel médico web possui várias páginas projetadas para fornecer uma experiência abrangente aos pacientes com DPOC. Estas páginas incluem "Dashboard" "Your Charts", "Test Results", "Education" e "FAQ". Cada página possui funcionalidades específicas que visam auxiliar os pacientes em diferentes aspetos da sua jornada de gestão da DPOC.

4.5.1 Dashboard

Esta é a página principal do painel médico, e contém apenas o valor de saúde com uma pequena descrição e um botão de redirecionamento para a realização do CAT. É também disponibilizado gráficos que demonstram a evolução do valor de bem estar do paciente ao longo do tempo.

Excerto de Código 4.2: Visualização do valor de bem estar utilizando um Widget

Figura 4.1: Dashboard

4.5.2 Your Charts

Esta página exibe os gráficos das variáveis provenientes dos sensores instalados no corpo do paciente. As variáveis, como PaO2, PaCO2, temperatura e frequência respiratória, são mostradas em gráficos de barras ou linhas, representando os valores do paciente nos últimos 7 dias. As cores diferenciadas nos gráficos ajudam o paciente a interpretar facilmente os bons e maus valores para cada variável.

```
<BarChart className="charts" chartData={paco2ChartData}/>)
: (<LineChart className="charts" chartData={paco2ChartData} />)
```

Excerto de Código 4.3: Exemplo Componentes de gráficos

Figura 4.2: Your Charts

```
const paco2ChartData = {
   labels: paco2 ? paco2.map((data) => data.timestamp) : [],
   datasets: [
        label: "Carbon Dioxide Blood Pressure",
        data: paco2 ? paco2.map((data) => data.value) : [],
        backgroundColor: paco2
          ? paco2.map(
              (data) =>
                data.value > 70
                  ? "#ef4655" // Red
                  : data.value > 58
                  ? "#f7aa38" // Orange
                  : data.value > 48
                  ? "#fffa50" // Yellow
                  : "#5ee432" // Green
            )
          : [],
        pointRadius: 7,
        pointHoverRadius: 12,
        borderColor: colors.grey[100],
        border: "1px solid ",
      },
   ],
 };
```

Excerto de Código 4.4: Exemplo de configuração dos gráficos

Figura 4.3: Your Charts Accordion Open

4.5.3 Test Results

Nesta página, os pacientes podem visualizar os resultados dos últimos testes realizados, como o 6 Minute Walk Test (6MWT) e o 1 Minute Sit to Stand Test (1MSTST) Test. Os resultados são exibidos em gráficos, permitindo que os pacientes analisem seu desempenho e acompanhem seu progresso ao longo do tempo. Os parâmetros medidos, como pulsação, número de passos e distância percorrida, são apresentados de forma clara e compreensível, em dois gráficos diferentes, representando cada teste.

```
const walkChartData = {
  labels: walkData ? walkData.map((walk) => walk.timestamp) : null,
  datasets: [
      label: "6 Min Walk Test - Average Heart Rate",
      data: walkData
        ? walkData.map(
            (walk) => (walk.initialpulsation + walk.finalpulsation) /
          )
        : [],
      backgroundColor: colors.green[300],
      pointRadius: 7,
      pointHoverRadius: 12,
      borderColor: colors.grey[100],
      label: "6 Min Walk Test - n Steps",
      data: walkData ? walkData.map((walk) => walk.numbersteps) : [],
      backgroundColor: colors.blue[300],
      pointRadius: 7,
      pointHoverRadius: 12,
      borderColor: colors.grey[100],
    },
  ],
};
```

Excerto de Código 4.5: Formatação do gráfico 6MWT com multiplos dados

Figura 4.4: Test Results

4.5.4 CAT

O *COPD Assessment Test* é integrado na aplicação , apresentando as perguntas de forma intuitiva e acompanhado de explicações e vídeos para auxiliar os pacientes durante o processo de resposta.

Figura 4.5: CAT

4.5.5 Education

A página de educação oferece aos pacientes informações detalhadas sobre a DPOC. Por meio de textos explicativos e um vídeo simples e fácil de entender, os pacientes podem aprender mais sobre sua condição, seus sintomas, tratamentos e estratégias de manejo da doença. Essa página visa fornecer recursos educacionais essenciais para capacitar os pacientes a tomar decisões informadas sobre sua saúde.

Figura 4.6: Education Page

4.5.6 FAQ

A página FAQ contém perguntas frequentemente feitas sobre a DPOC, acompanhadas de respostas claras e concisas. Os pacientes podem encontrar informações úteis e esclarecer suas dúvidas sobre a doença. Essa página serve como um recurso prático e de fácil acesso para obter informações relevantes sobre a DPOC.

Figura 4.7: FAQ Page

4.6 Componentes utilizados

Nesta secção irei demonstrar alguns dos componentes desenvolvidos e utilizados ao longo do projeto para melhorar a experiência do utilizador, como por exemplo o *Value Widget* que serve para demonstrar valores de uma maneira mais compreensiva, o componente de gráficos de barras e linhas, para analise mais intrínseca.

4.6.1 ValueWidget

```
const Gauge = (props) => {
  const gaugeEl = useRef(null);
  const gaugeRef = useRef(null);
  const {defaultOptions} = props
  useEffect(() => {
    if (!gaugeRef.current) {
      const options = { ...defaultOptions, ...props };
      gaugeRef.current = SvgGauge(gaugeEl.current, options);
      gaugeRef.current.setValue(options.initialValue);
    }
    gaugeRef.current.setValueAnimated(props.value, 1);
    }, [props]);
    return (
      <div ref={gaugeEl} className="gauge-container two" />
    );
};
```

Excerto de Código 4.6: Value Widget

4.6.2 Gráficos

Para os gráficos foi utilizado, como mencionado já anteriormente, o *plugin* de chart.js, devido à simplicidade e familiaridade do software, e também a facil personalização foi o que levou a esta escolha.

Aqui está o exemplo das opções por defeito de um gráfico de barras

```
function BarChart ({chartData}) {
const theme = useTheme();
const colors = tokens(theme.palette.mode);
  return (
    <Bar
      data={chartData}
      options = {{
        responsive: true,
        maintainAspectRatio: false,
        plugins: {
            legend: {
                labels: {
                  color: colors.grey[100],
                     font: {
                         size: 14
                }
            }
        },
        layout: {
          padding: 5,
        },
        scales: {
          y: {
            ticks: {
              color: colors.grey[100],
              font: {
                size: 12,
              },
            grid: {
              color: colors.grey[100],
              borderColor: colors.grey[100],
            },
          },
          x: {
            ticks: {
              color: colors.grey[100],
              font: {
                size: 12,
                border: 1,
                borderColor: colors.grey[100],
              },
            },
```

Excerto de Código 4.7: Função do BarChart

4.7 Conclusão 31

4.6.3 Ícones

São utilizados os ícones do MUI devido à sua fácil personificação e acesso

Excerto de Código 4.8: Importação de alguns ícones

4.7 Conclusão

Este capítulo descreveu a implementação do painel médico web para pacientes com DPOC. Através da entrada e análise de dados, do questionário CAT, da exibição do valor de bem-estar da DPOC e das páginas específicas do painel médico web, os pacientes têm acesso a informações relevantes sobre sua condição e ferramentas para acompanhar o seu progresso. A implementação destas funcionalidades visa proporcionar uma experiência abrangente e empoderadora para os pacientes, permitindo que eles compreendam melhor a sua condição, tomem medidas preventivas e adotem estratégias de gestão adequadas. O próximo capítulo apresentará os resultados obtidos e discutirá as considerações finais do projeto.

Capítulo

5

Conclusões e Trabalho Futuro

5.1 Conclusões Principais

Neste trabalho, foi desenvolvido um painel médico web para pacientes com DPOC, com o objetivo de fornecer recursos de monitorização e gestão da doença. Ao longo do projeto, foram realizadas pesquisas, análises de requisitos, design de interface e implementação das funcionalidades do painel médico. Com base neste processo, foram obtidas as seguintes conclusões principais:

O painel médico web fornece aos pacientes com DPOC uma plataforma centralizada para aceder a informações relevantes sobre a sua condição, realizar a monitorização dos seus dados e receber recomendações. Tudo isto contribui para o empoderamento do paciente e para uma melhor compreensão da sua saúde e condição.

A entrada e análise de dados provenientes do dispositivo instalado no corpo do paciente, juntamente com os dados inseridos manualmente, permitem uma avaliação mais abrangente e simples do estado de saúde. Os diferentes gráfico ajudam a identificar padrões e tendências, auxiliando na deteção precoce de exacerbações e na monitorização do progresso ao longo do tempo.

O questionário CAT desempenha um papel importante na avaliação dos sintomas e no cálculo do valor de bem-estar da DPOC. Esta abordagem subjetiva complementa as informações objetivas recolhidas pelo dispositivo, fornecendo uma visão mais completa da condição do paciente.

As páginas adicionais, como a de educação e FAQ, fornecem recursos adicionais para os pacientes aprenderem mais acerca da DPOC, esclarecerem dúvidas e tomarem decisões informadas sobre a sua saúde. Estas informações complementares contribuem para uma melhor autogestão da doença.

5.2 Trabalho Futuro

Embora o painel médico web tenha sido desenvolvido com sucesso, existem algumas áreas que podem ser exploradas no trabalho futuro:

- A integração com dispositivos *wearable*: Atualmente, os dados dos sensores são coletados por meio de dispositivos instalados no corpo do paciente. Seria interessante explorar a integração com dispositivos *wearable*, como *smartwatches* ou pulseiras de monitorização, para facilitar a coleta contínua de dados e melhorar a experiência do paciente.
- Análise avançada de dados: Embora o painel médico web forneça análises básicas dos dados coletados, há potencial para a implementação de algoritmos avançados de análise de dados. Isso poderia ajudar a identificar padrões complexos, correlações e predições mais precisas relacionadas à progressão da DPOC e ao impacto do tratamento, podendo dar ao paciente uma experiência mais personalizada.
- Recursos de comunicação: A inclusão de recursos de comunicação, como um sistema de mensagens ou videochamadas, poderia permitir que os pacientes se conectassem com profissionais de saúde de forma mais fácil e rápida. Isso facilitaria a troca de informações, o esclarecimento de dúvidas e o acompanhamento remoto.
- Expansão para outras doenças respiratórias: O painel médico web pode servir como base para o desenvolvimento de soluções semelhantes para outras doenças respiratórias, como asma ou fibrose pulmonar. Adaptando e personalizando o painel de acordo com as necessidades específicas de cada condição, seria possível ampliar seu impacto e benefício para um público mais amplo.

Resumindo, o painel médico web desenvolvido neste trabalho apresenta um grande potencial para melhorar a gestão da DPOC e o bem-estar dos pacientes. O trabalho futuro pode concentrar-se na expansão das funcionalidades, integração com dispositivos *wearable*, análise avançada de dados e exploração de outras doenças respiratórias. Ao abordar estas áreas, será possível aprimorar ainda mais a experiência dos pacientes e promover um melhor cuidado de saúde respiratória.

Bibliografia

- [1] Centers for Disease Control and Prevention. Copd data and statistics, 2023. URL: https://www.cdc.gov/copd/data.html.
- [2] Copd. URL: https://play.google.com/store/apps/details?id=com.focusmedica.ud.copd&hl=pt_PT.
- [3] my mhealth. URL: https://mymhealth.com/mycopd.
- [4] Epa's air now. URL: https://play.google.com/store/apps/details?id=com.saic.airnow&hl=en&gl=US&pli=1.
- [5] Air quality app breezometer. URL: https://apps.apple.com/us/app/air-quality-app-breezometer/id989623380.
- [6] Copd manager. URL: https://apps.apple.com/us/app/copd-manager/id875482616.
- [7] Anapharm. The copd dataset, 2023. URL: https://www.kaggle.com/code/anapharm/the-copd-dataset/notebook.