Sistemas de Locomoción de robots móviles

CONTROL Y PROGRAMACIÓN DE ROBOTS

Grado en Electrónica, Robótica y Mecatrónica

Modos de desplazamiento

- Depende del terreno (plano, suave, irregular,...) y del rendimiento posible en este terreno.
- Influye sobre la estructura del robot.
- Influye sobre el movimiento de las masas implicadas.
 - caminar o correr requiere levantar patas y no solamente una masa horizontalmente.
 - los robots con patas requieren un control constante de la estabilidad e involucran más fuentes de consumo de energía.

Modos de desplazamiento

Aspectos fundamentales:

- Estabilidad: número de puntos de contacto con el piso, centro de gravedad, estabilidad estática y dinámica, pendiente del terreno
- Características del contacto: punto o área de contacto, ángulos de contacto, fricción
- Tipo de ambiente: estructurado o no estructurado, fijo o variable

Consideraciones de diseño

- Maniobrabilidad
- Controlabilidad
- Tracción
- Capacidad de subir pendientes
- Estabilidad
- Eficiencia
- Mantenimiento
- Impacto ambiental
- Consideraciones de 'Navegabilidad'

Tipos de Locomoción

- Con ruedas/cintas de deslizamiento
 - Diferencial
 - Síncrona
 - Triciclo
 - Ackerman
 - Omnidireccionales
 - Otras
- Con patas
- Otros

- Rueda motriz: La que proporciona fuerza de tracción al robot
- Rueda directriz: Ruedas de direccionamiento de orientación controlable.
- Ruedas fijas: Sólo giran en torno a su eje sin tracción motriz.
- •Ruedas locas o ruedas de castor. Ruedas orientables no controladas.

a) Rueda Fija

b) Rueda orientable descentrada (Rueda de Castor)

b) Rueda orientable centrada

c) Ruedas Suecas: Ruedas omnidireccionales

 Centro instantáneo de Rotación (CIR) o centro instantáneo de curvatura (CIC): El punto de intersección de todos los ejes de las ruedas

Restricciones no holónomas

¿Qué significa?

Restricciones no holónomas

MATEMÁTICAMENTE

$$G(p, \dot{p}, t) = 0$$

R. Holónoma no depende de $\,\dot{p}\,$

R. No Holónoma depende de \dot{p} y no es integrable

$$-\dot{x}\sin\phi + \dot{y}\cos\phi = \dot{\theta} \cdot R$$
$$\dot{x}\cos\phi + \dot{y}\sin\phi = 0$$

NO INTEGRABLE

Locomoción diferencial

No hay ruedas directrices. El cambio de dirección se realiza modificando la velocidad relativa de las ruedas a Izquierda y Derecha

Locomoción diferencial

Ventajas:

- Sistema Barato
- Fácil de implementar
- Diseño simple

Inconvenientes:

- Difícil de controlar
- Requiere control de precisión para trayectorias rectas

Problemas con locomoción diferencial:

Deformación de neumáticos

El cambio de diámetro de las ruedas distorsiona el control de dirección del vehículo Locomoción síncrona (Synchro Drive)

- Motores separados para traslación y rotación simplifican el movimiento
- El control en línea recta está garantizado mecánicamente
- Restricciones holónomas

•Inconvenientes:

• Diseño complejo y difícil implementación

Triciclo

Ventajas:

• No hay deslizamiento

Inconvenientes:

• Se requiere guiado no holonómico

Locomoción Ackerman

Ventajas:

- Fácil de implementar
- Un sistema simple de 4 barras controla la dirección

Desventajas:

• Restricciones no holonómicas

Otros sistemas: Omniwheels

- Diseños complejos que permiten mayor libertad de movimiento que los sistemas de ruedas clásicos
- Ej : Ruedas Suecas

Omni Wheels

Ventajas:

• Permiten Movimientos complicados (reducen restricciones cinemáticas)

Ruedas Suecas

Inconvenientes:

- El movimiento en línea recta no está garantizado por restricciones mecánicas: Es necesario control
- Implementación Complicada

Otros sistemas: Omniwheels

Sistemas omnimóviles

mecanum wheels

rueda sueca

otros sistemas

RollMobs (UCL-PRM)

Otros sistemas: Omniwheels

El movimiento en el plano tiene 3
 GDL.

Sólo 3 ruedas pueden controlarse de forma independiente.

Locomoción por cintas de deslizamiento

Ventajas:

• Sistema simple de controlar

Inconvenientes:

- Deslizamiento conduce a resultados pobres en odometría
- No se dispone de modelo preciso de giro
- Consume mucha potencia para girar.

Robots con pistas de deslizamiento

- buena estabilidad
- movimientos similares a ruedas diferenciales
- problemas de fricción

sistema skid-steer

Robots con patas

Ventajas:

• Pueden moverse por cualquier terreno que un ser humano pueda (Ej : suben escaleras)

Inconvenientes:

- Muchos grados de libertas → Difícil de controlar
- Mantener la estabilidad es complicado.
- Consumen mucha energía

¿ Son mejores las patas que las ruedas?

Robots con patas.

- Grados de libertad por pata
 - minimó 2 para poder levantar y mover la pata
 - Usualmente 3
 - más grados de libertad permiten mejorar la forma de caminar pero aumentan el número de articulaciones motorizadas: diseño y control más complejos
- La morfología y la forma de caminar ("walking pattern") son usualmente copias de la naturaleza
- Menos patas implica menos estabilidad y control complejo

Robots con patas.

© R. Siegwart, I. Nourbakhsh

Una pata

(MIT)

- robot saltando sin parar
- estabilidad dinámica
- requiere un sistema de control rápido
- poca precisión de movimientos
- ninguna aplicación industrial

Dos patas

- estabilidad dinámica
- requiere un sistema de control rápido
- poca precisión de movimientos
- ninguna aplicación industrial
- muchos diseños posibles

Dos patas. Humanoides

Bip 2000 (7GDL en cada pata)

Asimo (Honda)

- mejor estabilidad porque area de contacto más grande
- control y diseño muy complejo
- aplicación ???
- varios diseños según el número de GDL por pata

Cuatro patas

Titan VIII
(Tokyo Institute of Technology)

- estabilidad estática
- varios diseños según la estructura de las patas

Seis patas

Lauron II (Karlsruhe, Alemania)

- lo más popular porque permite marcha estática
- gran variedad de diseños y de walking pattern
- mucha inspiración con insectos
- control más avanzado
- algunas aplicaciones para trabajar en el campo o en bosques

Otros sistemas:

Locomoción articulada (Nomad)

Ventajas:

• Fácil de implementar excepto por el mecanismo

de giro

Inconvenientes:

Restricciones no holónomas

Otros sistemas: Robots Serpiente

Ventajas:

- Muchas aplicaciones potenciales
- Hyper-redundantes

Inconvenientes:

- Complejos de diseñar e implementar
- Control complejo

Otros. Robots trepadores

Michigan State University

- pueden subir paredes verticales, por ejemplo para lavar vidrios
- con ventosa de succión o ventosa magnética
- con sistema de garras