决策树

OutLine

以策树简介
ID3算法
C4.5、CART算法

【实践】决策树

决策树

- 树形结构决策规则
- 分类问题,对样本:
 - 从根节点出发
 - 根据节点规则决定走哪个子节点
 - 一直走到叶子节点
 - 根据叶子节点的输出规则输出

• 如何做到?

计数	年龄	收入	学生	信誉	是否购买
64	青	卽	否	良	否
64	青	高	否	优	否
128	中	高	否	良	买
60	老	中	否	良	买
64	老	低	是	良	买
64	老	低	是	优	否
64	中	低	是	优	买
128	青	中	否	良	否
64	青	低	是	良	买
132	老	中	是	良	买
64	青	-	是	优	买
32	中	中	否	优	买
32	中	间	是	良	买
64	老斗大数	婦内部资料	否盗版必	沈 一一	否

- 年龄作为根节点
 - 青年, {否, 买}
 - 中年, {买}
 - 老年, {否, 买}
- "中年"停止分解, "青年"、"老年"继续分解

• 对 "青年" 分解

计数	年龄	收入	学生	信誉	是否购买
64	青	高	否	良	否
64	青	高	否	优	否
128	青	中	否	良	否
64	青	低	是	良	买
64	青	中	是	优	买

经分析, 高收入和低收入, 只对应一个标签, 停止分裂, 直接将该标签作为叶子节点

• 对"中收入人群"继续分解

计数	年龄	收入	学生	信誉	是否购买
128	青	中	否	良	否
64	青	中	是	优	买

• 经分析, 学生特征可以完全区分标签, 停止分裂

特征离散化

- 提前将各个特征值离散化
 - 年龄: 0 (青年),1 (中年),2 (老年)
 - 收入: 0 (高收入), 1 (中收入), 2 (低收入)
 - 学生: 0 (是) , 1 (否)
 - 信誉: 0 (优) , 1 (良)

信息熵,香农定理

• 不确定性函数I称为事件的信息量,事件U发生概率p的单调递减函数:

$$I(U) = \log\left(\frac{1}{p}\right) = -\log(p)$$

• 信息熵: 一个信源中,不能仅考虑单一事件发生的不确定性,需要考虑所有可能情况的平均不确定性,为-log(p)的统计平均值E

$$H(U) = E\left[-\log(p(u_i))\right] = -\sum_{i} p(u_i)\log(p(u_i))$$

- 信息熵是事物不确定性的度量标准
- 决策树中,不仅可用来度量类别不确定性,也可以度量包含不同特征的数据样本与 类别的不确定性。
- 熵越大,不确定性越大,即混乱度越大

学习算法简介

- 学习算法
 - 给定训练数据,决定树的结构
 - 节点分裂规则
 - 叶子结点输出规则
- 著名算法
 - ID3
 - C4.5
 - 连续变量、缺省值、剪枝等

OutLine

决策树简介 ID3算法 C4.5、CART算法 【实践】决策树

- ID3
 - 输入: 离散值 (属性)
 - 使用信息增益来学习分裂规则
- 信息熵 (Entropy)

$$H(S) = -\sum_{i} p(u_i) log(p(u_i))$$

- S是样例集合
- p(ui)表示S中第i类样例的比例
- 信息增益:
 - 用规则r将样例集合S分为k个子集S1、.....、Sk
 - | · |表示集合元素个数

- 节点分裂规则:
 - 按属性: k种可能的属性值->k个子集
- 学习问题: 挑那种属性?
 - ID3算法: 信息增益最大的!

• 设S是s个数据样本的集合,假定类别标签具有m个不同值,定义m个不同类 $C_i(i=1,2,...,m)$,设 S_i 是 C_i 的样本数,对于一个给定的样本分类所需要的信息熵由下式给出:

$$I(s_1, s_2, \dots, s_m) = -\sum_i p_i log(p_i)$$

• p_i 是任意样本属于 C_i 的概率,并用 $p_i = \frac{s_i}{|S|}$ 估计

- 用信息熵来度量每种特征不同取值的不确定性
- 设A具有v个不同的值 $\{a_1, a_2, \ldots, a_v\}$
- 某一特征A将S划分为v个不同的子集 $\{S_1, S_2, \dots, S_v\}$,
- 其中 S_j 包含S中这样一些样本:他们在A上具有值 a_j ,若选A作测试特征,即最优划分特征,那么这些子集就是S节点中生长出来的决策树分支。设 s_{ij} 是子集 S_j 中类 C_i 的样本数。

• 由A划分成子集的熵或期望信息由下式给出:

$$E(A) = \sum_{j=1}^{\nu} \frac{s_{1j} + s_{2j} + \dots + s_{mj}}{s} I(s_{1j}, s_{2j}, \dots, s_{mj})$$

- 其中, $\frac{s_{1j}+s_{2j}+\cdots+s_{mj}}{s}$ 是第j个子集的权,并且等于子集(即A值为 a_{j})中的样本个数除以S中的样本总数,其信息熵值越小,子集划分的纯度越高
- 其中, $I(s_{1j}, s_{2j}, ..., s_{mj}) = -\sum_{i=1}^{m} p_{ij} log(p_{ij}) \qquad p_{ij} = \frac{s_{ij}}{|s_{j}|}$

• 最后,实用信息增益确定决策树分支的划分依据

$$Gain(A) = I(s_1, s_2, ..., s_m) - E(A)$$

- 接前面例子:
- 类别标签S划分为两类: 买或不买

$$S_1(买) = 640$$

$$S_1(买) = 640$$
 $S_1(不买) = 384$

• 总体S=S1+S2=1024

$$p_1 = \frac{640}{1024} = 0.625$$

$$p_1 = \frac{640}{1024} = 0.625$$
 $p_2 = \frac{384}{1024} = 0.375$

根据公式:

$$I(s_1, s_2, ..., s_m) = -\sum_{i=1}^m p_i log(p_i)$$

- 接下来计算每个特征的信息熵
- 1、先计算"年龄"特征的熵,共分3组,青年(0),中年(1),老年(2)
- 其中青年占总样本的概率为p(0)=384/1024=0.375
- 青年中的买/不买=128/256
- 所以: S1(买)=128, p1=128/384
- S2(不买)=256, p2=256/384
- S=S1+S2=384
- 根据公式 $I(s_1, s_2, ..., s_m) = -\sum p_i log(p_i)$ $I(s_1, s_2) = 0.9183$

- 其中中年占总样本的概率为p(1)=256/1024=0.25
- 中年中的买/不买=256/0
- 所以: S1(买)=256, p1=1
- S2(不买)=0, p2=0
- S=S1+S2=256
- 根据公式

$$I(s_1, s_2, ..., s_m) = -\sum_{i=1}^m p_i log(p_i)$$
 $I(s_1, s_2) = 0$

- 其中老年占总样本的概率为p(1)=384/1024=0.375
- 老年中的买/不买=256/128
- 所以: S1(买)=256, p1=256/384
- S2(不买)=128, p2=128/384
- S=S1+S2=384
- 根据公式

$$I(s_1, s_2, ..., s_m) = -\sum_{i=1}^m p_i log(p_i)$$
 $I(s_1, s_2) = 0.9157$

- 所以汇总
- "年龄"的平均信息期望:
- E(年龄)=0.375*0.9183+0.25*0+ 0.375*0.9157=0.6877
- G(年龄)=0.9544-0.6877=0.2667

- 同理:
- E(学生)=0.7811 G(学生)=0.1733
- E(收入)=0.9361 G(收入)=0.0183
- E(信誉)=0.9048 G(信誉)=0.0496

从所有特征中选择信息增益最大的作 为根节点或者内部节点,根据计算, 首次选取"年龄"来划分

八斗大数据培训 分类算法-决策树

信息增益计算举例

- ID3(Dataset, attrList)
- 1、创建根节点R
- 2、如果当前Dataset中数据是"纯"的:将R的节点类型标记为当前类型
- 3、如果当attrList为空:将R的节点类型标记为当前Dataset中,样例个数最多的类型
- 4、其余情况:
 - 1) 从attrList中选择属性A
 - 2) 按照属性A所有的不同值 V_i ,将Dataset分为不同的子集 D_i ,对于每个 D_i
 - a) 创建节点C
 - b) 如果 D_i 为空: 节点C标记为Dataset中,样例个数最多的类型
 - c) D_i 不为空: 节点C=ID3(D_i , attrList-A)
 - d) 将节点C添加为R的子节点
- 5、返回R

终止条件

- ID3(Dataset, attrList)
- 1、创建根节点R
- 2. 如果当前Dataset中数据是"纯"的:将R的节点类型标记为当前类型
- 3、如果当attrList为空:将R的节点类型标记为当前Dataset中,样例个数最多的类型
- 4、其余情况:
 - 1) 从attrList中选择属性A
 - 2) 按照属性A所有的不同值 V_i ,将Dataset分为不同的子集 D_i ,对于每个 D_i
 - a) 创建节点C
 - b) 如果 D_i 为空: 节点C标记为Dataset中,样例个数最多的类型
 - c) D_i 不为空: 节点C=ID3(D_i , attrList-A)
 - d) 将节点C添加为R的子节点
- 5、返回R

终止条件

递归条件

- ID3(Dataset, attrList)
- 1、创建根节点R
- 2、如果当前Dataset中数据是"纯"的:将R的节点类型标记为当前类型
- 3、如果当attrList为空:将R的节点类型标记为当前Dataset中,样例个数最多的类型
- 4、其余情况:
 - 1) 从attrList中选择属性A
 - 2) 按照属性A所有的不同值 V_i ,将Dataset分为不同的子集 D_i ,对于每个 D_i
 - a) 创建节点C
 - b) 如果 D_i 为空: 节点C标记为Dataset中,样例个数最多的类型
 - c) D_i 不为空: 节点C=ID3(D_i , attrList-A)
 - d) 将节点C添加为R的子节点
- 5、返回R

ID3算法

- 缺点?
 - 倾向于挑选属性值较多的属性, 有些情况可能不会提供太多有价值的信息
 - 贪婪性
 - 奥卡姆剃刀原理: 尽量用较少的东西做更多的事
 - 不适用于连续变量

OutLine

决策树简介 ID3算法 C4.5、CART算法 【实践】决策树

C4.5算法

- 相对于ID3:
 - 克服了用信息增益选择属性时偏向选择取值多的属性的不足
 - 支持连续变量

信息增益率

• 信息增益率:

$$H(S) = -\sum_{i=1}^{m} p(u_i) log(p(u_i))$$

$$Gain(S, A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$GainRatio(A) = \frac{Gain(A)}{Entropy(A)}$$

属性A的分布情况,混乱度越大, ratio越小,越纯净,ratio越大

八斗大数据培训 分类算法-决策树

C4.5算法

- C4.5(Dataset, attrList)
- 1、创建根节点R
- 2、如果当前Dataset中数据是"纯"的或其他终止条件:将R的节点类型标记为当前类型
- 3、如果当attrList为空:将R的节点类型标记为当前Dataset中,样例个数最多的类型
- 4、其余情况:
 - 1) 从attrList中选择gainratio最大的属性A
 - 2) 按照属性A所有的不同值 V_i ,将Dataset分为不同的子集 D_i ,对于每个 D_i
 - a) 创建节点C
 - b) 如果 D_i 为空: 节点C标记为Dataset中,属性值个数最多的类型
 - c) D_i 不为空: 节点C=C4.5(D_i , attrList-A)
 - d) 将节点C添加为R的子节点
- 5、返回R

停止条件

- 信息增益(比例)增长低于阈值,则停止
 - 阈值需要调校
- 将数据分为训练集和测试集
 - 测试集上错误率增长,则停止
 - 没有用全部样本训练

剪枝

- 先较为充分地生长——过拟合
- 剪枝:
 - 相邻的叶子节点, 如果合并后不纯度增加在允许范围内, 则合并
 - 测试集错误率下降,则合并
 - 等等其他条件
- 反复尝试, 较耗时间

叶子输出规则

• 叶子节点输出大多数样例所属的类别

• CART:

- 二叉回归树
- Gini系数

$$Gini(D) = \sum_{k=1}^{|y|} \sum_{k' \neq k} p_k p_{k'} = 1 - \sum_{k=1}^{|y|} p_k^2$$

$$Gini_Index(D, a) = \sum_{v=1}^{V} \frac{D^{v}}{D} Gini(D^{v})$$

在候选属性集合中, 选取使得划分后基尼系数最小的属性

有房者	婚姻状况	年收入	拖欠贷款者
是	单身	125K	否
否	已婚	100K	否
否	单身	70K	否
是	已婚	120K	否
否	离异	95K	是
否	已婚	60K	否
是	离异	220K	否
否	单身	85K	是
否	已婚	75K	否
否	单身	90K	是

• 按 "有房" 情况来分析:

	有房	无房
否	3	4
是	0	3

有房者	婚姻状况	年收入	拖欠贷款者
是	单身	125K	否
否	已婚	100K	否
否	单身	70K	否
是	已婚	120K	否
否	离异	95K	是
否	已婚	60K	否
是	离异	220K	否
否	单身	85K	是
否	已婚	75K	否
否	单身	90K	是

• 按"婚姻"情况来分析:

	单身或已婚	离异
否	6	1
是	2	1

$Gini(t_1)=1-(6/8)^2-(2/8)^2=0.375$
Gini(t ₂)=1- $(1/2)^2$ - $(1/2)^2$ =0.5
Gini=8/10×0.375+2/10×0.5=0.4

	单身或离异	已婚
否	3	4
是	3	0

Gini(t ₁)= $1-(3/6)^2-(3/6)^2=0.5$
Gini(t ₂)=1- $(4/4)^2$ - $(0/4)^2$ =0
Gini=6/10×0.5+4/10×0=0.3

	离异或已婚	单身	
否	5	2	
是	1	2	

Gini(t₁)=1-(5/6)²-(1/6)²=0.2778 Gini(t₂)=1-(2/4)²-(2/4)²=0.5 Gini=6/10×0.2778+4/10×0.5=0.3667

有房者	婚姻状况	年收入	拖欠贷款者
是	单身	125K	否
否	已婚	100K	否
否	单身	70K	否
是	已婚	120K	否
否	离异	95K	是
否	已婚	60K	否
是	离异	220K	否
否	单身	85K	是
否	已婚	75K	否
否	单身	90K	是

• 按 "收入" 情况来分析:

	60	7	0	7	5	8	5	9	0	9	5	10	00	12	20	12	5	22 0
	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	1	72
	≤	>	≤	>	≤	>	≤	>	≤	>	≤	>	≤	>	≤	>	≤	>
是	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0
否	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1
Gini	0.4	00	0.3	375	0.3	343	0.4	17	0.4	100	0.3	300	0.3	43	0.3	375	0.	400

CART算法逻辑

输入样本: $D = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots (x_n, y_n)\}$

选择最优切变量j和切分点s: $\min_{j,s} [\min_{c_1} \sum_{x_i \in R_i(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_i(j,s)} (y_i - c_1)^2]$

用选定的(j,s),划分二区域,并决定输出值: $R_1(j,s) = \{x|x^{(j)} \leq s\}, R_2(j,s) = \{x|x^{(j)} > s\}$

$$\hat{c}_m = rac{1}{N_m} \sum_{x_i \epsilon R_m(j,s)} y_i$$

$$x \in R_m, m = 1, 2$$

对两个子区域调用上述步骤,将输入空间划分为M个区域:R1、R2、...、Rm,生成决策树

当空间划分确定,用平方误差表示预测方法,用平方误差最小的准则,求解每个单元上的最优输出值:

$$f(x) = \sum_{m=1}^M \hat{c}_m I(x \epsilon R_m) \qquad \sum_{x_i \epsilon R_m} (y_i - f(x_i))^2$$

八斗大数据培训 分类算法-决策树

CART算法逻辑

x_i	1	2	3	4	5	6	7	8	9	10
y_i	5.56	5.70	5.91	6.40	6.80	7.05	8.90	8.70	9.00	9.05

切分点: 1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5

 $R1=\{1\}$

对各切分点依次求出R1,R2,c1,c2及m(s)

当: s=1.5

$$c_1 = rac{1}{N_m} \sum_{x_i \epsilon R_m(j,s)} y_i = rac{1}{1} \sum_{x_i \epsilon R_1(1,1.5)} 5.56 = 5.56$$

$$c_1 = rac{1}{N_m} \sum_{x_i \epsilon R_m(j,s)} y_i = rac{1}{1} \sum_{x_i \epsilon R_1(1,1.5)} 5.56 = 5.56 \hspace{0.5cm} c_2 = rac{1}{N_m} \sum_{x_i \epsilon R_m(j,s)} y_i = rac{1}{9} \sum_{x_i \epsilon R_2(1,1.5)} (5.70 + 5.91 + \ldots + 9.05) = 7.50$$

$$m(s) = \min_{j,s} [\min_{c_1} \sum_{x_i \in R_i(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_i(j,s)} (y_i - c_1)^2] = 0 + 15.72 = 15.72$$

$$\sum_{x_i \in R_i(j,s)}^{} (y_i - c_1)^2] = 0 + 15.72 = 15.72$$

依次改变j,s:

八斗大数据培训 分类算法-决策树

CART算法逻辑

x_i	1	2	3	4	5	6	7	8	9	10
y_i	5.56	5.70	5.91	6.40	6.80	7.05	8.90	8.70	9.00	9.05

依次改变j,s:

					7				
S	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5
m(s)	15.72	12.07	8.36	5.78	3.91	1.93	8.01	11.73	15.74

R1={1,2,3,4,5,6**}** 当: s=6.5

R2={7,8,9,10}

$$T_1(x) = \left\{egin{array}{cc} 6.24, x < 6.5 \ 8.91, x \geq 6.5 \end{array}
ight.$$

x_i	1	2	3	4	5	6	7	8	9	10
y_i	-0.68	-0.54	-0.33	0.16	0.56	0.81	-0.01	-0.21	0.09	0.14

$$f_1(x) = T_1(x)$$

此时f1(x)拟合数据得到平方误差:
$$L(y,f_1(x))=\sum_{i=1}^{10}(y_i-f_1(x_i))^2=1.93$$

八斗大数据培训 分类算法-决策树

CART算法逻辑

x_i	1	2	3	4	5	6	7	8	9	10
y_i	-0.68	-0.54	-0.33	0.16	0.56	0.81	-0.01	-0.21	0.09	0.14

第二步: 求T2(x)参考T1(x)

$$T_1(x) = \left\{egin{array}{cc} 6.24, x < 6.5 \ 8.91, x \geq 6.5 \end{array}
ight.$$

$$f_1(x)=T_1(x)$$

$$T_2(x) = \left\{egin{array}{c} -0.52, x < 3.5 \ 0.22, x \geq 3.5 \end{array}
ight.$$

$$f_2(x) = f_1(x) + T_2(x) = \left\{egin{array}{cc} 5.72, x < 3.5 \ 6.46, 3.5 \leq x \leq 6.5 \ 9.13, x \geq 6.5 \end{array}
ight.$$

——八斗大数据内部

以此类推:

$$T_3(x) = \left\{egin{array}{ll} 0.15, x < 6.5 \ -0.22, x \geq 6.5 \end{array} L(y, f_3(x)) = 0.47
ight.$$

$$T_4(x) = \left\{egin{array}{ll} -0.16, x < 4.5 \ 0.11, x \geq 4.5 \end{array} L(y, f_4(x)) = 0.30
ight.$$

$$T_5(x) = \left\{egin{array}{ll} 0.07, x < 6.5 \ -0.11, x \geq 6.5 \end{array} L(y, f_5(x)) = 0.23
ight.$$

$$T_6(x) = \left\{egin{array}{ll} -0.15, x < 2.5 \ 0.04, x \geq 2.5 \end{array}
ight.$$

$$f_6(x) = f_5(x) + T_6(x) = T_1(x) + \ldots + T_6(x) = \left\{egin{array}{ccc} 5.63, x < 2.5 \ 5.82, 2.5 \le x \le 3.5 \ 6.56, 3.5 \le x \le 4.5 \ 6.83, 4.5 \le x \le 6.5 \ 8.95, x \ge 6.5 \end{array}
ight.$$

OutLine

决策树简介 ID3算法 C4.5、CART算法 【实践】决策树

Q&A

@八斗学院