

Optimization Problems for Blockers and Transversals in a Graph

D. de Werra (EPFL, Lausanne)

Shenyang October 2012

Optimization Problems for Blockers and Transversals in a Graph

D. de Werra (EPFL, Lausanne)

Joint work with

C.Bentz (Uni Paris Sud)

M.C. Costa (ENSTA, Paris)

C. Picouleau (CNAM, Paris)

B.Ries (Uni Dauphine, Paris)

R.Zenklusen (MIT)

• Find most vital elements of a system (for protection)

Player A chooses any optimal action plan Player P wants to prevent this Example: G = (V,E) graph

$$Q(V) = (S \mid S \subseteq V \text{ stable set in } G)$$

 $\alpha(G) = \max(|S| S : \text{ stable})$

Player A: Find a maximum stable set S in G (set of possible « independent » stores to open)

Example: G = (V,E) graph

$$Q(V) = (S \mid S \subseteq V \text{ stable set in } G)$$

 $\alpha(G) = \max |S| S \text{: stable})$

Player A: Find a maximum stable set S in G (set of possible « independent » stores to open)

Player P: Find a minimum $T \subseteq V$ with $|S \cap T| \ge d \quad \forall S$ stable with $|S| = \alpha(G)$ $\ll d$ -transversal \gg Example: G = (V,E) graph

$$Q(V) = (S \mid S \subseteq V \text{ stable set in } G)$$

 $\alpha(G) = \max |S| S \text{: stable})$

Player A: Find a maximum stable set S in G (set of possible « independent » stores to open)

Player P: Find a minimum
$$T \subseteq V$$

with $|S \cap T| \ge d \quad \forall S$ stable with $|S| = \alpha(G)$
 $\ll d$ -transversal \gg

After removal of T all maximum action plans have lost at least *d stores*

Another option for P:

Find smallest subset B of V such that after removal of B no action plan (maximum set of windependent » stores) has more than $\alpha(G)-d$ stores.

Player P: Find a minimum
$$B \subseteq V$$

with $\alpha(G' = (V - B, E')) \le \alpha(G) - d$
 $\ll d\text{-blocker}$

Illustration: $T = \{ \bullet \} = B$

 $\alpha(G) = 3$ d = 1

Illustration:
$$T = \{ \bullet \} = B$$

$$T = \{ \bullet \}$$
2-transversal

$$\alpha(G)=3$$

$$d = 1$$

$$d = 2$$

$$\alpha(G)-d = 1$$

Other examples: shortest *s-t* paths

every arc is in a shortest *s-t* path

Other examples: shortest *s-t* paths

every arc is in a shortest *s-t* path

T is an (inclusionwise) minimal d-transversal $\Leftrightarrow T = d$ disjoint s-t cuts

Other examples: shortest *s-t* paths

every arc is in a shortest *s-t* path

T is an (inclusionwise) minimal d-transversal $\Leftrightarrow T = d$ disjoint *s-t* cuts

Finding a minimum d-transversal \leftrightarrow finding disjoint *s-t* cuts $C_1,..., C_d$ with $|C_1|+...+|C_d|$ minimum.

∃polynomial algorithm (D. Wagner, 90)

d-blocker *B*: subset of arcs whose removal increases $\ell(G=(V,E))$

by at least d

where ℓ (G = (V, E)) = length of shortest s-t path in G

we have
$$\ell$$
 $(G' = (V, E - B)) \ge \ell (G = (V, E)) + d$

NP-hard (Khachiyan et al, 08)

Fact 1: A subset $T \subseteq V$ is a 1-transversal $\Leftrightarrow T$ is a 1-blocker

Fact 2: For d > 1

\mathcal{C} : Stable sets in bipartite graphs G=(V,E)

v is **forced** if $v \in S$ v is **excluded** if $v \notin S$ $V \notin S$ V

More General Formulation

Given finite ground set V, integer d

$$\mathbf{C}(V) = (C \mid C \subseteq V, C \text{ has property } P^*)$$

(ex. P* : S is a stable set in G)

Each element v in V has a **weight** w(v) and a **cost** c(v)

$$h(S) = \sum (h(v)|v \in S)$$
 for $h = w, c$

Player A: Find a $C \in \mathcal{C}$ with maximum weight w(C)

$$\alpha_{w}(\mathbf{C}(V)) = \max\{w(C) | C \in \mathbf{C}\}$$

Player P: Find a subset $T \subseteq V$ with minimum cost c(T) such that $|T \cap C| \ge d$ for all max weight C in $ext{C}$ egeneralized $ext{d}$ -transversal $ext{>}$

Given finite ground set V, integer d $\mathcal{C}(V) = (C \mid C \subseteq V, C \text{ has property } P)$

Player A: Find a $C \in \mathcal{C}$ with maximum weight w(C)

Player P: Find a subset $B \subseteq V$ with minimum cost c(B) such that $\alpha_w(C(V-B)) \leq \alpha_w(C(V)) - d$

« generalized *d*-blocker »

GENTRANS

Find a generalized d-transversal T (of the maximum weight subsets C in \mathbf{C}) with minimum cost c(T)

GENBLOCK

Find a generalized d-blocker B (of the maximum weight subsets C in (C)) with minimum cost c(B)

NB if w(v)=c(v)=1 d-transversals and d-blockers

GENTRANS(\mathbf{C} , w, c=1, i=w, d) polynomially solvable if G is cobipartite

GENTRANS(\mathbf{C} , w, c=1, i=w, d) polynomially solvable if G is cobipartite

$$|S| \le 2 \qquad 1 \le d \le \alpha_{w}(G)$$

Introduce all vertices v with $w(v) = \alpha_w(G)$ into T

$$a + b = \alpha_w(G)$$

$$a \ge b \ge d \quad \text{min VC of H into } T$$

$$a \ge d > b \quad V_1 \quad \text{into } T$$

$$d > a \ge b$$

$$V \quad \text{into } T$$

connected component of \overline{G}

GENBLOCK(\mathbf{C} , w, c=1, d) is polynomially solvable if G is cobipartite

DGENBLOCK(\mathcal{C} , w, c, d, k): Is there a generalized d-blocker B of all max weight sets in \mathcal{C} with $c(B) \le k$?

NB: As shown before

DGENBLOCK(\mathbf{C} , w=1, c=1, d, k=d) is NP-complete if G is a split graph (2010)

DGENBLOCK($\mathbf{C}, w=1, c=1, d, k$) and DGENTRANS($\mathbf{C}, w=1, c=1, d, k$) are NP-complete if G is line graph of a bipartite graph (2009)

DGENBLOCK(\mathbf{C} , w,c=1, d,k) is NP-complete if G is a bipartite graph (S.Toubaline, 2010)

GENBLOCK(\mathbf{C} , w, c=1, d, k) is polynomially solvable if G is a tree or a cograph (S.Toubaline, 2010)

GENBLOCK($\mathbf{C}, w=1, c=1, d$,) and GENTRANS($\mathbf{C}, w=1, c=1, d$,) can be solved in polynomial time if G is a grid graph (2010).

GENTRANS(C, w, c, d) is polynomially solvable if G is bipartite

Minimum cost d-transversal of maximum weight stable sets in a bipartite graph

Minimum cost d-transversal of maximum weight stable sets in a bipartite graph

Remove all forbidden vertices
Discard all forced vertices

In remaining graph all vertices are free

$$G = (B, W, E)$$
 B= black vertices

W= white vertices

graph G with weights

network N with capacities

graph G with weights

network N with capacities

In G all vertices are free if and only if in N there is a flow from s to t with value

$$w(W) = w(B)$$

network N with capacities

 $F^* =$ forbidden arcs (f(x,y) = 0for every maximum flow from s to t if arc(x,y) is forbidden)

network N with capacities

 $F^* =$ forbidden arcs (f(x,y) = 0for every maximum flow from s to t if arc(x,y) is forbidden)

The red arc is in F*

In G=(B,W,E) connected where all vertices are free, B and W are the only maximum weight stable sets if and only if $F^*=\emptyset$ (no forbidden arcs in associated N) In G=(B,W,E) connected where all vertices are free, B and W are the only maximum weight stable sets if and only if $F^*=\emptyset$ (no forbidden arcs in associated N)

Remove from G all edges associated with forbidden arcs of N.

It remains connected components inducing partition $V_1, V_2, ..., V_q$ of V.

In each V_i the only maximum weight stable sets are

$$V_i \cap B$$
 and $V_i \cap W$

In G = (B,W,E) with only free vertices, S is a maximum weight stable set if and only if S is stable and for any i $(1 \le i \le q)$ $S \cap V_i = V_i \cap B$ or $V_i \cap W$

In each V_i the only maximum weight stable sets are

$$V_i \cap B$$
 and $V_i \cap W$

In G = (B,W,E) with only free vertices, S is a maximum weight stable set if and only if S is stable and for any i $(1 \le i \le q)$ $S \cap V_i = V_i \cap B$ or $V_i \cap W$

NB: Since B and W are two disjoint maximum weight stable sets in G, every d-transversal T must satisfy $|T \cap W| \ge d$, $|T \cap B| \ge d$ and hence $|T| \ge 2d$.

Construct auxiliary graph $G^* = (V^*, A^*)$ where

$$V^* = \{V_1, ..., V_q\}$$

$$A^* = \{ (V_i, V_j) | \exists uv \in E, u \in V_i \cap B, v \in V_j \cap W, i \neq j \}$$

NB: G* has no oriented circuit

One can define relation \prec on V by: $u \prec v$ if $u \in W, v \in B$ and either u,v are in the same V_j or there is a directed path from V_i to V_j in G*

NB: If $u \prec v$ then for any maximum weight stable set S in G we have $S \cap \{u, v\} \neq \emptyset$

Construct bipartite graph $^G=(B,W,\hat{E})$ with $\hat{E} = \{uv : u \in W, v \in B, u \prec v\}$

Each edge uv has cost c(uv) = c(u) + c(v)

NB: If $u \prec v$ then for any maximum weight stable set S in G we have $S \cap \{u, v\} \neq \emptyset$

Construct bipartite graph
$$^G=(B,W,\hat{E})$$
 with $\hat{E} = \{uv : u \in W, v \in B, u \prec v\}$

Each edge uv has cost c(uv) = c(u) + c(v)

T is a minimum cost d-transversal in G if and only if it consists of the endvertices of a minimum cost matching of size d in ^G.

Weighted trees for illustration

Weighted trees

maximum-weight stable sets S

$$S \cap V_i = W \cap V_i$$
 or $B \cap V_i$

Weighted bipartite graph (all vertices are free)

Partition into V_1, V_2, V_3

Verification: ad,je matching with cost 1+4 +2+2 and size 2.

Is {a,d,j,e} a 2-transversal?

¿ And if there are forced vertices in G?

Introduce into G every forced vertex x with weight w(x) as an isolated edge xx' with cost c(xx') = w(x).

¿ And if there are forced vertices in G?

```
Introduce into ^G every forced vertex x with weight w(x) as an isolated edge xx' with cost c(xx') = w(x).
```

Polynomial algorithm

(minimum cost bipartite matching)

The end...

...but much more is to be discovered.