

低噪声、低功耗、16/24 位Σ-ΔADC

产品简述

MS5192T/MS5193T 为适合高精度测量应用的低功耗、低噪声、三通道差分输入的 16bit/24bit 模数转换器。其内部集成了输入缓冲器、仪表放大器,当增益设置为 64,更新速率为 4.17Hz时,均方根噪声为 25nV。集成了精密低噪声、低漂移内部带隙基准,也可采用外部差分基准电压。片内还集成可编程激励电流源、burnout 电流源和偏置电压发生器。偏置电压发生器可将通道共模电压设置为 0.5*AVDD。芯片采用外部时钟或内部时钟,输出数据速率可通过软件设置为 4.17Hz 到 470Hz。电源电压范围为 2.7V 到 5.25V。 MS5192T/MS5193T 采用了 TSSOP16 封装。

TSSOP16

主要特点

- RMS 噪声: 在 4.17Hz 为 25nV; 在 16.7Hz 为 30nV;
- 功耗: 典型值为 380uA
- 集成可编程增益放大器
- 集成低温漂电压基准
- 更新速率: 4.17Hz 到 470Hz
- 集成 50Hz/60Hz 限波滤波器
- 集成可编程电流源
- 集成偏置电压发生器
- 电源电压: 2.7V 到 5.25V
- 工作温度范围: -40℃~105℃

应用

- 热电偶和 RTD 测量
- 衡器应力检测
- 气体分析和血液分析
- 工业过程控制和仪器仪表
- 液相和气相色谱仪
- 智能发射机
- 6位 DVM

产品规格分类

产品	封装形式	丝印名称
MS5192T	TSSOP16	MS5192T
MS5193T	TSSOP16	MS5193T

管脚排列图

管脚排列

管脚编号	管脚名称	管脚属性	管脚描述
1	SCLK	I	串行时钟输入。
2	CLK	I	时钟输入/时钟输出,通过此引脚可提供内部时钟,或禁用内部时钟。
3	CS	I	片选输入引脚。
4	IOUT1	0	内部激励电流源的输出引脚。
5	AIN1+	I	模拟通道1正输入引脚。
6	AIN1-	I	模拟通道1负输入引脚。
7	AIN2+	I	模拟通道 2 正输入引脚。
8	AIN2-	I	模拟通道 2 负输入引脚。
9	REFIN+/AIN3+	I	正基准电压输入引脚。此外,此引脚可作为模拟通道 3 正输入引脚
10	REFIN-/AIN3-	I	负基准电压输入引脚。此外,此引脚可作为模拟通道 3 负输入引脚
11	IOUT2	0	内部激励电流源的输出引脚。
12	GND	I	地
13	AVDD	POWER	模拟电源电压(2.7V 至 5.25 V)。
14	DVDD	POWER	数 字接口电源引脚。
15	DOUT/RDY	0	串行数据输出/数据就绪输出引脚。
16	DIN	I	串行数据输入。

内部框图

极限参数

绝对最大额定值

注意:应用中任何情况下都不允许超过下表中的最大额定值

开家: 压制性的		114.140 1300 E	
参数	符号	额定值	单位
模拟电源电压范围	AVDD	-0.3 到+7.0	V
数字电源电压范围	DVDD	-0.3 到+7.0	V
模拟输入电压范围	AIN	-0.3 到 AVDD+0.3	V
参考电压范围	VREFIN	-0.3 到 AVDD+0.3	V
数字输入电压范围		-0.3 到 DVDD+0.3	V
数字输出电压范围	V (LE)	-0.3 到 DVDD+0.3	V
输入端口电流		10	mA
工作温度范围		-40 至 105	${\mathbb C}$
储存温度范围	T _{stg}	-60 至 150	${\mathbb C}$
焊接温度(10 sec)		260	$^{\circ}\mathbb{C}$
ESD 电压(HBM)		4000	V

电气参数

AVDD=2.7V到5.25V; DVDD=2.7V到5.25V; GND=0V; REFIN(+)=AVDD; REFIN(-)=0V。除非另外标注,参数为全温度范围。

温度范围。					
参数	测试条件	最小值	典型值	最大值	单位
	ADC通道				
输出速率			4.17-470		Hz
无失码精度			24/16		Bits
精度	见表5和表8				
输出噪声和速率	见表5和表8				
积分非线性				±15	ppmofFS R
失调误差			±1		uV
失调误差温漂			±10		nV/℃
满幅误差			±10		uV
增益温漂			1		ppm/℃
电源抑制比	AIN=1V/gain,增益大于4	100			dB
	模拟输入				
差分输入电压范围			±VREF/gain		V
共模电压	VCM= (AINP + AINN)/2, 增益= 4 to 128	0.5			V
	关闭输入 buffer,Gain=1 或 2	GND- 30mV		AVDD+ 30mV	V
模拟输入最小电压	打开输入 buffer,Gain=1 或 2	GND+ 100mV		AVDD+ 30mV	V
	打开输入仪表放大器,Gain=4 到	GND+		AVDD-	V
	128	300mV		1.1	A
buffered模式或打开	Gain = 1 or 2, update rate < 100 Hz			±1	nA
内部仪表放大器时 模拟输入电流	Gain = 4 to 128, update rate < 100 Hz AIN3(+)/AIN3(-), update rate < 100 Hz			±250 ±1	pA nA

		ı		i	
buffered模式或打开					
内部仪表放大器时			±2		pA/℃
模拟输入电流温漂					
关闭输入buffer时模					
拟输入电流相对于			±400		nA/V
电压					
关闭输入buffer时模			.50		~ ^ /\//°C
拟输入电流温漂			±50		pA/V/℃
	直流状态,				
	AIN = 1 V/gain, gain ≥ 4	100			dB
共模抑制	50 ± 1 Hz, 60 ± 1 Hz (FS[3:0] = 1010)	100			dB
	50 ± 1 Hz (FS[3:0] = 1001), 60 ± 1 Hz				
	(FS[3:0] = 1000)	100			dB
	内部参考电压				
内部参考电压初始			1.17±		
精度			0.01%		V
内部参考电压温漂			10	15	ppm/℃
	外部参考电压				
参考电压值		0.1	2.5	AVDD	V
参考电压输入平均					
电流			400		nA/V
参考电压输入平均					
电流温漂			±0.03		nA/V/℃
共模抑制			100		dB
参考电压检测电平		0.3V		0.65V	V
	激励电流源(IEXC1和I	IEXC2)			
			10/210		
输出电流			/1000		uA
初始容差			±5		%
温漂			200		ppm/℃
电流匹配			±0.5		%

温漂匹配			50		ppm/℃
电压调整率			2		%/V
负载调整率			0.2		%/V
	输出电流为10uA、210uA	GND-		AVDD- 0.65	V
输出电流电压	输出电流为1mA	30mV GND- 30mV		0.65 AVDD-	V
	温度传感器	30111	<u> </u>	1.1	
精度			±2		$^{\circ}$ C
灵敏度			0.82		mV/℃
,	偏置电压发生	32.		ı	
偏置电压			AVDD/2		V
	时钟				
内部时钟频率			64±3%		KHz
内部时钟占空比			50:50		%
外部时钟频率			64		KHz
外部时钟占空比		45:55		55:45	%
	逻辑输入				
	DVDD=5V			0.8	V
CS输入低电压	DVDD=3V			0.4	V
CS输入高电压		2.0			V
SCLK和DIN输入高电	DVDD=5V	1.4		2	V
平阈值	DVDD=3V	0.9		2	V
SCLK和DIN输入低电	DVDD=5V	0.8		1.7	V
平阈值	DVDD=3V	0.4		1.35	V
SCLK和DIN输入迟滞	DVDD=5V	0.1		0.17	V
窗口	DVDD=3V	0.06		0.13	V
输入电流				±10	uA
输入电容			10		pF
	数字逻辑输出	l I			

输出高电平	AVDD=3 V, ISOURCE=100 μA	DVDD- 0.6			V
	AVDD=5 V, ISOURCE=200 μA	4			V
	AVDD=3 V, ISINK=100 μA			0.4	V
输出低电平	AVDD=5 V, ISINK=1.6mA			0.4	V
悬空态漏电流				±10	uA
悬空态输出电容			10		pF
	系统校准				
满幅校准				1.05*FS	V
零点校准		-1.05*FS		1.05*FS	V

		电源功耗				
		AVDD	2.7		5.25	V
电源电	基	DVDD	2.7		5.25	V
	AVDD=			110	140	uA
	3V	关闭输入buffer		110	140	UA
	AVDD=	大例制入burrer		125	140	
	5V			125	140	
	AVDD=			130	180	uA
	3V	打开输入buffer,增益设置1和2		150	100	u/\
	AVDD=	11月個/Chullel,增血以直和2		165	180	uA
由源由法	5V			103	100	uA .
电源电流	AVDD=			300	400	uA
	3V	NACE 4.0.0		300	400	uA
	AVDD=	MS5192,增益设置4到128		350	400	
	5V			350	400	uA
	AVDD=			200	F00	
	3V	143/11 W - 71-55		380	500	uA
	AVDD=	MS5193,增益设置4到128		440	F00	
5V				440	500	uA
关断电	1流				1	uA

输出噪声和分辨率(外部参考电压)

下表给出了一些更新速率和增益设置下的 MS5192T 和 MS5193T 的输出均方根噪声。所提供的数据是针对双极性输入范围 以及采用 2.5V 外部基准电压源而言。这些数值为典型,条件为差分输入电压为 0V。必须注意,有效分辨率是利用均方根噪声计算得出。这些数据为典型值,四舍五入到最接近的 LSB。

表5 MS5192T和MS5193T采用2.5V参考电压时,输出噪声有效值(uV)相对于增益和转换速率的关系

转换速率	增益1	增益2	增益4	增益8	增益16	增益32	增益64	增益128
4.17Hz	0.496	0.361	0.282	0.225	0.101	0.056	0.023	0.021
8.33Hz	0.541	0.518	0.372	0.270	0.177	0.052	0.028	0.030
16.7Hz	0.992	0.902	0.439	0.237	0.161	0.069	0.034	0.029
33.2Hz	1.488	1.037	0.552	0.366	0.172	0.075	0.044	0.040
62Hz	2.344	1.893	0.890	0.473	0.220	0.096	0.062	0.054
123Hz	3.922	2.209	1.071	0.563	0.369	0.187	0.069	0.080
242Hz	5.409	4.778	2.490	1.104	0.589	0.344	0.147	0.173
470Hz	7.753	5.567	2.671	1.155	0.687	0.373	0.180	0.158

表6 MS5193T采用2.5V参考电压时,有效精度相对于增益和转换速率的关系

转换速率	增益1	增益2	增益4	增益8	增益16	增益32	增益64	增益128
4.17Hz	23.0	22.4	21.8	21.1	21.3	21.1	21.4	20.5
8.33Hz	22.8	21.9	21.4	20.8	20.5	21.2	21.1	20.0
16.7Hz	22.0	21.1	21.1	21.0	20.6	20.8	20.8	20.1
33.2Hz	21.4	20.9	20.8	20.4	20.5	20.7	20.5	19.6
62Hz	20.7	20.0	20.1	20.0	20.1	20.3	20.0	19.2
123Hz	20.0	19.8	19.9	19.8	19.4	19.4	19.8	18.6
242Hz	19.5	18.7	18.6	18.8	18.7	18.5	18.7	17.5
470Hz	19.0	18.5	18.5	18.8	18.5	18.4	18.4	17.6

表7 MS5192T采用2.5V参考电压时,有效精度相对于增益和转换速率的关系

转换速率	增益1	增益2	增益4	增益8	增益16	增益32	增益64	增益128
4.17Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
8.33Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
16.7Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
33.2Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
62Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
123Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
242Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
470Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0

输出噪声和分辨率(内部参考电压)

下表给出了一些更新速率和增益设置下的 MS5192T 和 MS5193T 的输出均方根噪声。所提供的数据是针对双极性输入范围 以及采用 1.17V 内部基 准电压源而言。这些数值为典型,条件为差分输入电压为 0V。必须注意,有效分辨率是利用均方根噪声计算得出。这些数据为典型值,四舍五入到最接近的 LSB。

表8 MS5192T和MS5193T采用1.17V内部参考电压,输出噪声有效值(uV)相对增益和转换速率的关系

					., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
转换速率	增益1	增益2	增益4	增益8	增益16	增益32	增益64	增益128
4.17Hz	0.607	0.553	0.260	0.200	0.112	0.047	0.025	0.025
8.33Hz	0.845	0.607	0.385	0.200	0.141	0.045	0.029	0.038
16.7Hz	1.257	1.528	0.396	0.366	0.167	0.083	0.030	0.031
33.2Hz	1.712	1.365	0.623	0.317	0.183	0.078	0.043	0.035
62Hz	2.363	2.363	0.759	0.447	0.219	0.110	0.070	0.059
123Hz	3.901	2.417	1.235	0.764	0.336	0.133	0.074	0.071
242Hz	5.267	6.762	1.804	0.986	0.607	0.261	0.110	0.105
470Hz	7.673	7.727	2.108	1.151	0.578	0.436	0.146	0.079

表9 MS5193T采用内部参考电压时,有效精度相对于增益和转换速率的关系

转换速率	增益1	增益2	增益4	增益8	增益16	增益32	增益64	增益128
4.17Hz	22.7	21.8	21.9	21.3	21.1	21.4	21.3	20.3
8.33Hz	22.2	21.7	21.3	21.3	20.8	21.4	21.1	19.7
16.7Hz	21.6	20.4	21.3	20.4	20.5	20.5	21.0	20.0
33.2Hz	21.2	20.5	20.6	20.6	20.4	20.6	20.5	19.8
62Hz	20.7	19.7	20.4	20.1	20.2	20.1	19.8	19.0
123Hz	20.0	19.7	19.7	19.4	19.5	19.9	19.7	18.8
242Hz	19.6	18.2	19.1	19.0	18.7	18.9	19.2	18.2
470Hz	19.0	18.0	18.9	18.8	18.8	18.2	18.7	18.6

表10 MS5192T采用内部参考电压时,有效精度相对于增益和转换速率的关系

转换速率	增益1	增益2	增益4	增益8	增益16	增益32	增益64	增益128
4.17Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
8.33Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
16.7Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
33.2Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
62Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
123Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
242Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
470Hz	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0

典型特性曲线

MS5193T 噪声(AVDD=4V,VREF = 2.048, Gain = 64, Update Rate = 4.17 Hz)

MS5193T 噪声分布柱状图(AVDD=4V,VREF = 2.048, Gain = 64, Update Rate = 4.17 Hz)

MS5193T 噪声(AVDD=4V,VREF = 2.048, Gain = 64, Update Rate = 16.7 Hz)

MS5193T 噪声分布柱状图(AVDD=4V,VREF = 2.048, Gain = 64, Update Rate = 16.7 Hz)

典型应用图

下图是 MS5192T/MS5193T 用作热电偶测量应用的示意图。

封装外形图

TSSOP16:

	毫米					
符号	最小	典型	最大			
А	-	-	1.20			
A1	0.05	-	0.15			
A2	0.90	1.00	1.05			
A3	0.39	0.44	0.49			
b	0.20	-	0.29			
b1	0.19	0.22	0.25			
С	0.13	-	0.18			
c1	0.12	0.13	0.14			
D	4.86	4.96	5.06			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
e	0.65BSC					
L	0.45	0.60	0.75			
L1	1.00BSC					
θ	0	-	8°			

包装规范

一、印章内容介绍

MS5192T/MS5193T: 产品型号

XXXXXXX: 生产批号

二、印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

三、包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/ 箱	只/箱
MS5192T	TSSOP16	3000	1	3000	8	24000
MS5193T	TSSOP16	3000	1	3000	8	24000

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com