Pesquisa Operacional / Programação Matemática

Modelagem: introdução.

Exemplos de problemas: dieta, mix de produção, mistura, transporte, transbordo, designação.

Objetivos

- Apresentar um primeiro contato com modelação de problemas lineares.
- Apresentar alguns problemas clássicos.

- Ao final deste módulo, o aluno deverá:
 - □ Saber definir variáveis adequadas, escrever restrições e funções objetivo de maneira adequada para problemas simples.

Modelos

algumas

■ Modelo: estrutura construída com o intuíto de exibir/demonstrar/reproduzir características de outros objetos.¹

Modelos

Concretos

Abstratos

$$\text{Max } 2x_1 + x_2$$

s.a.

$$x_1 + x_2 \le 5$$

Para que construir modelos?

- Maior entendimento (do processo físico)
- Análises matemáticas
- Experimentação (economia de custo)

Problemas/críticas

- Parâmetros
 - □ precisão / como obtê-los / ...
- Fé cega
 - □ a resposta fornecida através de um método matemático deve ser analisada e, se necessário, correções no modelo devem ser efetuadas... iterativamente!

Modelos de programação linear

Problema da dieta: Sabendo que cada alimento tem um certo custo e uma certa quantidade de nutrientes. Qual a dieta (de menor custo) que atende as restrições nutricionais?

		Qtd Mínima		
Nutriente	1	2	3	Mínima
\mathbf{A}	2	3	7	10
В	4	2	1	15
\mathbf{C}	1	8	1	10
D	30	1	1	2
$\mathrm{Custo}/\mathrm{Kg}$	20	10	10	

		Qtd Mínima		
Nutriente	1	2	3	Mínima
A	2	3	7	10
В	4	2	1	15
\mathbf{C}	1	8	1	10
D	30	1	1	2
Custo/Kg	20	10	10	

- Perguntas:
 - □ O que precisamos decidir ?
 - Variáveis
 - □ Quais são as condições sobre estas decisões?
 - Restrições
 - \square O que queremos ?

Variáveis: x_1 , x_2 , x_3 $x_i = qtd. do grão i.$

		Qtd		
Nutriente	1	2	3	Mínima
A	2	3	7	10
В	4	2	1	15
C	1	8	1	10
D	30	1	1	2
m Custo/Kg	20	10	10	

■ Variáveis?

- $\hfill \square$ Quanto do grão 1 vamos incluir na dieta: x_1
- $\hfill \square$ Quanto do grão 2 vamos incluir na dieta: \mathbf{x}_2
- $\hfill \square$ Quanto do grão 3 vamos incluir na dieta: \mathbf{x}_3

Variáveis: x_1 , x_2 , x_3 $x_i = qtd.$ do grão i.

Restrições:

$$N_A, N_c \ge 10$$

$$N_B \ge 15$$

$$N_D \ge 2$$

		Qtd		
Nutriente	1	2	3	Mínima
A	2	3	7	10
В	4	2	1	15
\mathbf{C}	1	8	1	10
D	30	1	1	2
Custo/Kg	20	10	10	

■ Restrições?

- □ Quantas unidades do nutriente A, no mínimo: 10
- □ Quantas unidades do nutriente B, no mínimo: 15
- □ Quantas unidades do nutriente C, no mínimo: 10
- □ Quantas unidades do nutriente D, no mínimo: 2

Variáveis:
$$x_1$$
, x_2 , x_3
 $x_i = qtd.$ do grão i.

Restrições:

$$\begin{split} N_{\rm A}, N_{\rm c} &\geq 10 \\ N_{\rm B} &\geq 15 \\ N_{\rm D} &\geq 2 \end{split}$$

		Qtd		
Nutriente	1	Mínima		
A	2	3	7	10
В	4	2	1	15
C	1	8	1	10
D	30	1	1	2
$\mathrm{Custo}/\mathrm{Kg}$	20	10	10	

Pecisamos escrever N_A...N_D em função das variáveis (tudo precisa ser escrito em função das variáveis usadas)

$$\square$$
 $N_A = 2x_1 + 3x_2 + 7x_3$

$$\square$$
 $N_B = 4x_1 + 2x_2 + x_3$

$$\square N_{C} = x_{1} + 8x_{2} + x_{3}$$

$$\square \ N_D = 30x_1 + x_2 + x_3$$

Variáveis: x_1 , x_2 , x_3 $x_i = qtd.$ do grão i.

Restrições:

$$N_A, N_c \ge 10$$

$$N_B \ge 15$$

$$N_D \ge 2$$

Objetivo:

$$Min 20x_1 + 10x_2 + 10x_3$$

- Objetivo
 - □ Min Custo:

$$20x_1 + 10x_2 + 10x_3$$

		Qtd		
Nutriente	1	2	3	Mínima
A	2	3	7	10
В	4	2	1	15
\mathbf{C}	1	8	1	10
D	30	1	1	2
m Custo/Kg	20	10	10	

Min
$$20x_1 + 10x_2 + 7x_3$$

s.a.
 $2x_1 + 3x_2 + 7x_3 \ge 10$
 $4x_1 + 2x_2 + x_3 \ge 15$
 $x_1 + 8x_2 + x_3 \ge 10$
 $30x_1 + x_2 + x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

Testando soluções

Obj	70		Grão			Qtd
Limites Inf.		Nutrient	e 1	2	3	Mínima
10 14	ok ok	A	2	3	7	10
10 2	ok ok	В	4	2	1	15
	OK .	С	1	8	1	10
		D	30	1	1	2
		Custo/K	g 20	10	10	
		Custo/K	g 20	10	10	

Exercício (Móveis I)

■ Uma indústria moveleira dispõe de dois tipos de peças de madeira, A e B, usadas para construir mesas e cadeiras.

Mesas (Lucro \$90): usa duas peças do tipo A e duas do tipo B

Cadeiras (Lucro \$60): usa duas peças do tipo A e uma peça do tipo B

Total disponível: 14 peças A, 8 peças B.

Solução

 x_1 - quantidade produzida de mesas

 x_2 - quantidade produzida de cadeiras

$$Max 90x_1 + 60x_2$$

s.a.

 $2x_1 + 2x_2 \le 14$ (restrição nas peças do tipo A)

 $2x_1 + x_2 \le 8$ (restrição nas peças do tipo B)

Exercício (Móveis II)

- Além das restrições sobre as peças, temos limites sobre o tempo de produção:
 - □ A produção de cada mesa precisa de três horas de fresa e duas horas de torno.
 - □ A produção de cada cadeira precisa de duas horas de fresa e duas horas de torno.

Horas de torno disponíveis: 11

Horas de fresa disponíveis: 10

O problema destes exercícios é conhecido como **problema do mix de produção**.

Problemas de mistura

Um certo óleo é refinado a partir da mistura de outros óleos, vegetais ou não vegetais:

V1 V2 (óleos vegetais)

NV1 NV2 NV3 (óleos não vegetais)

Por restrições da fábrica, um máximo de 200 ton. de óleos vegetais podem ser refinados por mês, e um máximo de 250 ton. de óleos não vegetais. A acidez do óleo desejado deve estar entre 3 e 6 (dada uma unidade de medida) e a acidez depende linearmente das quantidades/acidez dos óleos brutos usados. O preço de venda de uma tonelada do óleo é R\$150. Calcule a mistura que maximiza o lucro, dado que:

Óleo	V1	V2	NV1	NV2	NV3
Custo/ton	110	120	130	110	115
Acidez	8.8	6.1	2.0	4.2	5.0

Solução

 x_1 - qtd do óleo V1

 x_2 - qtd do óleo V2

 x_3 - qtd do óleo NV1

 x_4 - qtd do óleo NV2

 x_5 - qtd do óleo NV3

y - quantidade produzida

Função objetivo: Max 150
y - 110 \mathbf{x}_1 -120 \mathbf{x}_2 - 130 \mathbf{x}_3 -110
 \mathbf{x}_4 -115 \mathbf{x}_5

Restrições de conservação da massa:

$$x_1 + x_2 + x_3 + x_4 + x_5 - y = 0$$

Restrições de capacidade:

$$x_1 + x_2 \le 200$$

$$x_3 + x_4 + x_5 \le 250$$

Solução

Restrições de acidez:

$$(8.8x_1 + 6.1x_2 + 2.0x_3 + 4.2x_4 + 5.0x_5)/y \le 6$$

$$(8.8x_1 + 6.1x_2 + 2.0x_3 + 4.2x_4 + 5.0x_5)/y \ge 3$$

(Na forma linear)

$$8.8x_1 + 6.1x_2 + 2.0x_3 + 4.2x_4 + 5.0x_5 - 6y \le 0$$

$$8.8x_1 + 6.1x_2 \cdot 2.0x_3 + 4.2x_4 + 5.0x_5$$
) $-3y \ge 0$

Excell

Problemas de transporte

Problema de transporte: uma certa empresa tem m fábricas espalhadas pelo país (cada uma com uma capacidade a_i). Os consumidores desta empresa estão em n cidades, também espalhados pelo país (cada um com uma demanda d_i). Sabendo que o custo de transporte de uma fábrica a uma cidade é c_{ij} , que fábricas devem servir que consumidores, de modo a minimizar o custo de transporte ?

M

Problema de transporte (sol.)

 \mathbf{x}_{ij} - quantidade de produto transportada da fábrica i para o consumidor j

Min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij}$$
 s.a. $\sum_{j=1}^{n} x_{ij} \leq a_i$, para todo i =1...m $\sum_{i=1}^{m} x_{ij} = d_j$, para todo j=1...n $x_{ij} \geq 0$

capacidade
demanda

Exercício (Arenales et al)

Considere uma companhia distribuidora de bebidas que tem duas fábricas (em Araraquara e S.J. dos Campos) e três centros consumidores (São Paulo, Belo Horizonte e Rio de Janeiro). Os custos de transporte, demandas e capacidades de produção são dados abaixo. Escreva o problema linear que minimiza os custos de transporte.

Fábrica		Cap.		
	SP	Cap. Produção		
Arar.	4	2	5	800
S.J.C.	11	7	4	1000
Demanda	500	400	900	

NA.

Problemas de transbordo

■ Em muitos casos, o transporte não é feito diretamente da fábrica aos consumidores. Há uma etapa intermediária (centros de distribuição).

Como reformular o problema, dados os custos de transporte?

Custos de transporte

Fábrica	Depósitos				
	Campinas	B. Mansa			
Araraquara (1)	1	3			
S. J. Campos (2)	1	2			

Depósitos	Consumidores						
	SP (5) BH (6) RJ (7)						
Campinas (3)	1	3	3				
B. Mansa (4)	3	4	1				

Modelo

$$\begin{aligned} \text{Minimizar} \, f\!(x_{13},\,...,\,x_{47}) &= \, 1x_{13} + \, 3x_{14} + \, 1x_{23} + \, 2x_{24} + \, 1x_{35} + \, 3x_{36} + \, 3x_{37} + \, 3x_{45} + \, 4x_{46} + \, 1x_{47} \\ x_{13} \, + \, x_{14} &\leq \, 800 \\ x_{23} \, + \, x_{24} &\leq \, 1000 \\ x_{35} \, + \, x_{45} &= \, 500 \\ x_{36} \, + \, x_{46} &= \, 400 \\ x_{37} \, + \, x_{47} &= \, 900 \\ x_{13} \, + \, x_{23} &= \, x_{35} + \, x_{36} + \, x_{37} \\ x_{14} \, + \, x_{24} &= \, x_{45} + \, x_{46} + \, x_{47} \\ x_{13} &\geq \, 0, \, \, x_{14} \geq \, 0, \, \ldots \, \, x_{46} \geq \, 0, \, x_{47} \geq \, 0. \end{aligned}$$

Problema de designação

■ Pequenas variações no problema de transporte podem adaptá-lo para resolver o problema de designação:

Problema de designação: Há n pessoas e n tarefas. Cada pessoa deve executar uma única tarefa e todas as tarefas devem ser executadas. Cada pessoa i tem um interesse em efetuar cada tarefa j, dado por p_{ij} . Queremos fazer a alocação de modo que a soma dos interesses seja maximizada.

MA.

Problema de designação

Maximizar
$$f(x_{11}, ..., x_{mn}) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad i = 1, 2, ..., n.$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad j = 1, 2, ..., n$$

$$x_{ij} = 0 \text{ ou } 1, \qquad i = 1, 2, ..., n, j = 1, 2, ..., n.$$

Exercício (maximizando notas)

Um estudante, na véspera de seus exames finais, dispõe de 100 horas de estudo para dedicar às disciplinas A, B e C. Cada um destes exames é formado por 100 questões, e ele (aluno) espera acertar, alternativamente, uma questão em A, duas em B ou três em C, por cada hora de estudo. Suas notas nas provas anteriores foram 6, 7 e 10 respectivamente, e sua aprovação depende de atingir uma média mínima de 5 pontos em cada disciplina. O aluno deseja distribuir seu tempo de forma a ser aprovado com a maior soma total de notas.

(retirado de: http://www.lia.ufc.br/~mcampelo/CursoPL.htm)