

Question statement:

A 4:1 multiplexer is to be used for generating the output carry of a full adder. A and B are the bits to be added while C_{in} is the input carry and C_{out} is the output carry. A and B are to be used as select bits with A being more significant select bit.

Which one of the following statement correctly describes the choice of signals to be connected to the inputs I_0 , I_1 , I_2 and I_3 so that the output is C_{out} ?

options

$$\bullet$$
 $I_0 = 0, I_1 = C_{in}, I_2 = C_{in}, I_3 = 1$

$$\bullet$$
 $I_0 = 1, I_1 = C_{in}, I_2 = C_{in}, I_3 = 1$

$$\bullet$$
 $I_0 = 0, I_1 = C_{in}, I_2 = 1, I_3 = C_{in}$

MUX Diagram

Figure: question MUX diagram

Solution TRUTH TABLE

Table: TRUTH TABLE

Explanation:

Figure: k-map for Sum

Boolean expression for Sum - Sum= $A\overline{B} \overline{C_{in}} + \overline{A} \overline{B} C_{in} + \overline{A} B \overline{C_{in}} + ABC_{in}$

Explanation

Figure: k-map for Cout

Boolean expression for C_{out} - C_{out} = B C_{in} + AB + A C_{in}

Explanation:

Α	В	Cout
0	0	0
0	1	Cin
1	0	C_{in}
1	1	1

Table: TRUTH TABLE for C_{out} to be output

So, our final answer is=
$$I_0 = 0, I_1 = C_{in}, I_2 = C_{in}, I_3 = 1$$

