

Luminance modulates sensorimotor delay in refuge tracking of Glass Knifefish

Huanying (Joy) Yeh^{1*}, Yu Yang², Noah J. Cowan²

¹ Department of Electrical and Computer Engineering, Johns Hopkins University; ² Department of Mechanical Engineering, Johns Hopkins University

Introduction

- Weakly electric fish readily track a linearly-moving refuge with high gain and low phase lag
- Visual sensory feedback plays an essential role in tracking
- This research explores changes in fish refuge-tracking locomotion as a function of visual salience

Experiment Tank Set-Up

Experiment Procedure

- Sum-of-sines (0.1 2.05 Hz) reference trajectory
- 15 20 randomized 20s trials with varying illuminance
- Fish movement trajectories tracked with DeepLabCut

Illuminance Range Tested

Refuge Input FFT

DLC Tracking

Block Diagram

r(t) = Reference trajectory, sum-of-sines

y(t) = Fish position

Tracking Variance Decreases with Increased Illuminance

Luminance-Dependent Switch in Tracking

- At low frequencies, fish track nearly perfectly, but the gain and phase "roll off" at increasing frequencies.
- For high-frequency components (1.15 2.05Hz), phase lag decreases as a function of illuminance.
- This suggests an "illuminance threshold" at 5.5 9 lux, where the fish switches sensorimotor modes.

CP Model Fitting

The system²:

$$\frac{k_1s + k_2}{s^2 + k_3s}e^{-\tau s}$$

If k_1 , k_2 , and k_3 are kept constant, only changing the delay term¹ is not sufficient for modeling CP changes as a function of illuminance.

Discussion & Outlook

Conclusions:

- Fish movement variance decreases as illuminance increases.
- Above illuminance threshold, tracking lag sharply decreases.

Future work: Investigate changes in tail movement and other system dynamics above and below illuminance threshold.

References:

- 1. Sponberg S et al., Science (2015)
- 2. Uyanik I et al., Elife (2020)