UOM Exam Second half 2021_Question paper_R2019/CSC302 - Discrete Structures & Graph Theory /Sem-III / COMPUTER ENGINEERING / ARTIFICIAL INTELLIGENCE AND DATA SCIENCE / ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING / COMPUTER SCIENCE AND ENGINEERING (Artificial Intelligence and Machine Learning / COMPUTER SCIENCE AND ENGINEERING (Data Science) / COMPUTER SCIENCE AND ENGINEERING (Internet of Things and Cyber Security Including Block Chain Technology) / CYBER SECURITY / DATA ENGINEERING / INTERNET OF THINGS (IoT)

Dear Student,

Please note before you attempt this section of examination:

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format only.
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration of the exam.

*	* Required	
1.	Email *	
2	Student Name (As per evem form filled) *	
2.	Student Name (As per exam form filled) *	

3. Seat No *

Refer Hall ticket

Solve Questions as per the instructions given separately.

- Please upload a single PDF for Q1 to Q4
- For MCQs Question write Question number & correct option with complete text in option.
- Q2 to Q4 are subjective questions Solve Questions as per the instructions and marks allotted.

Page 1/5

1.	Let a set S = {2, 3, 4, 6, 9, 12, 18, 24, 54} and R be the partial order relation of divisibility. Number of edges in its hasse diagram are
Option A:	10
Option B:	12
Option C:	14
Option D:	8
2.	The number of elements in the nexter set of $A = \{a, f, a, h\}$ is
Option A:	The number of elements in the power set of A= {e, f, g, h} is
	8
Option B:	_
Option C:	16
Option D:	12
3.	Which of the following Poset is a Distributed Lattice?
Option A:	D ₅₀
Option B:	D ₁₀₅
Option C:	D ₂₀
Option D:	D ₇₅
4.	Let f and g be the functions from the set of integers to itself, defined by $f(x) = 3x + 1$ and $g(x) = 4x + 4$. Then the composition of f and g is
Option A:	12x+4
Option B:	12x+5
Option C:	12x + 13
Option D:	12x+8
5.	How many strings of length 8 either begin with 2 zeros or end with 4 ones?
Option A:	80
Option B:	42
Option C:	76
Option D:	64
option D.	T T T T T T T T T T T T T T T T T T T

Page 2/5

	<u> </u>
6.	If every vertex of simple graph has same degree then it is called as
Option A:	Bipartite Graph
Option B:	Regular Graph
Option C:	Planner Graph
Option D:	Sub graph
7.	What is the identity element in the group $G = \{1, 2, 3, 4, 5, 6, 7, 8\}$ under multiplication modulo 9?
Option A:	1
Option B:	5
Option C:	4
Option D:	9
8.	Total how many Cut Vertices exist in the following graph?
Option A:	2
Option B:	4
Option C:	3
Option D:	1
	1
9.	A planer graph with 10 edges & 5 vertices has regions.
Option A:	5
Option B:	7
Option C:	15
Option D:	
Option D:	13
10.	Consider the following subsets of the positive integers N. Which of the following
	is not closed under multiplication operation?
Option A:	A={0,1}
Option B:	E={1,3,5,}
Option C:	C={x: x is prime}
Option D:	F={0,1,2}
	[- (->->-)

Page 3/5

Q2 (20 Marks Each)	
A	Solve any Two 5 marks each
i.	Prove using Mathematical Induction that $7^{2n}+2^{3n-3}*3^{n-1}$ is divisible by 25 for all $n \in \mathbb{N}$
ii.	What is a lattice? Draw the hasse diagram of D_{66} . Whether it is a distributive lattice? Justify your answer.
iii.	What are the isomorphic graphs? Determine whether following graphs G & H are isomorphic.
В	Solve any One 10 marks each
i.	Define the transitive property of a relation. Find the transitive closure of R using Warshall's algorithm where A={1, 2, 3, 4, 5, 6} & R={(1, 2), (2, 3), (3, 5), (5, 6), (5,2)}
ii.	Describe the following terms with suitable example- a) Disjunctive Normal Form (DNF) b) partition set c) Complement of a relation d) Ring e) Bipartite graphs

Page 4/5

Q3	
(20 Marks	
Each)	
A	Solve any Two 5 marks each
i.	Define the equivalence relation. Let R be the relation on Z which is defined as
	xRy if 3x+5y is divisible by 8. Determine whether this is an equivalence relation.
ii.	What is a linearly ordered set? Draw the hasse diagram of D ₆₂₅ . Determine
	whether it is the linearly ordered set or not.
iii.	Let $A = \{1, 2, 3, 4, 6, 9\}$ and let R be the relation on A defined by "x divides y"
	written x/y.
	a) Write R as a set of ordered pairs.
	b) Drawits directed graph.
	c) Find indegree & outdegree of each vertex.
	d) Write the relation matrix of it.
	e) Find the inverse relation of R.
	-,
В	Solve any One 10 marks each
i.	a) Show that if 6 colors are used to paint 37 bicycles, then 7 of them must have
	same color
1	Same Color.
	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures
	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from
	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures
ii	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen?
ii.	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen? Define minimum hamming distance. Find the code words generated by the parity
ii.	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen? Define minimum hamming distance. Find the code words generated by the parity check matrix H given below.
ii.	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen? Define minimum hamming distance. Find the code words generated by the parity check matrix H given below.
ii.	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen? Define minimum hamming distance. Find the code words generated by the parity check matrix H given below. 1 0 1
ii.	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen? Define minimum hamming distance. Find the code words generated by the parity check matrix H given below. To 1
ii.	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen? Define minimum hamming distance. Find the code words generated by the parity check matrix H given below. To 1
ii.	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen? Define minimum hamming distance. Find the code words generated by the parity check matrix H given below. To 1
ii.	b) There are 6 Mathematics books, 8 Discrete Structures books, 9 Data Structures books. How many ways can be used by the student so that 2 books from different categories can be chosen? Define minimum hamming distance. Find the code words generated by the parity check matrix H given below. To 1

Page 5/5

Q4	
(20 Marks	
Each)	
	Color and Torr
A	Solve any Two 5 marks each
i.	How many integers between 1 & 250 are divisible by 3,5 or 7?
ii.	f: $R \rightarrow R$ is defined as $f(x) = x^3$
	g: $R \rightarrow R$ is defined as $f(x) = 4x^2 + 1$
	h: $R \rightarrow R$ is defined as $h(x) = 7x - 1$
	find the rule of defining (hog)of, go(hof).
iii.	What is an adjacency matrix & incidence matrix? Give the suitable examples of both.
В	Solve any One 10 marks each
i.	a) Define the term bijective function.
	Let $f: R \to (7/5) \to R - \left(\frac{2}{5}\right)$ be defined by $f(x) = \frac{2x-3}{5x-7}$.
	Prove that it is a bijection. Hence find f ⁻¹ .
ii.	What is a group? Let S= {0,3,6,9,12}
	Prepare the composition table w.r.t. the operation of addition modulo 15.
	Show that it is an abelian group.
	Find the inverses of all the elements.
	Whether it is a cyclic group?
	whether it is a cyclic group:

4. Please Upload complete scanned answer copy in a single PDF file. *

Files submitted: