Weekly Report

This week	Next week		
 Visualization Activation Maximization Evaluate (Implement) Evaluate (Softmax) Evaluate (Softmax to Linear) 	 Visualization Apply 1-D model More clearly The other model(tanh, long filter) The other label CAM(Class Activation Map) 		

Interesting and new finding

- Visualization
- Activation Maximization

The aim of this month / Discussion

The aim of this month: To investigate about CNN and visualization.

- Data is low-waveform.
 - sec: 1, sampling rate: 16000, type: float32, channel: mono
- 16 class data.
 - 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'bed', 'bird', 'tree', 'cat', 'house', 'dog'
- Train: 40851(≒80%), Validation: 4796(≒10%), Test: 5297(≒10%)

- For example, '5Conv, 2FC' baseline model's detail.
- It just flatten 2D model. (5X5 filter->1X25 filter, 2X2 stride->1X4 stride)
- Input: 16000X1 low waveform.
- Output:1x16 labeled one hot vector. ('zero', ..., 'eight', ..., 'house', 'dog')
- Loss: cross entropy loss
- Obtimizer: Adam

Fine tuning task in 1D-CNN

This is SOTA(State Of The Art) in current research.

	Architecture (i = 0,1,2)	1D DO(0.5)	1D BN	1D DO+BN	Params	
	baseline					
base model	5 Conv(25, 8*2 ⁱ), 5 Pool(4), 2 FC	0.9090	0.9072	0.9240	1,855,056	
	Accuracy and Number of parameters					
Custom channel 32 DO(0.75) Custom channel 64 DO(0.75) Custom VGG style DO(0.75)	8 CONV(5, 64)	0.9533	0.9285	0.9391	94,768	
	8 CONV(5, 128)	0.9589	X	0.9497	363,600	
	16 CONV(3, 128), 8 Pool	0.9620	0.9423	0.9136	470,736	
	Only Accuracy					
Custom channel 128 DO(0.25)+BN	9 CONV(5, 512)	0.9535	X	0.9701	2,071,184	

Activation Maximization

- Synthesize an input pattern image that can maximize a specific neurons activation in arbitrary layers.
- The preferred input can indicate what features of a neuron has learned.

$$x^* = \operatorname*{argmax}_{x} a_{i,l}(\theta, x),$$

$$x \leftarrow x + \eta \cdot \frac{\partial a_{i,l}(\theta, x)}{\partial x}$$

a: filter

i: layer index

I: filter index

θ: weight, bias

x: input noise image

 $x \leftarrow x + \eta \cdot \frac{\partial a_{i,l}(\theta,x)}{\partial x} \qquad \text{(if η is low => focus on texture)}$ (if η is high => focus on shape)

AM – Pretrained Model (VGG 16)

- Input: imagenet data (224*224*3)
- Output: 1000 class (ex. zebra, slug, hen, gold fish, etc...)

AM – 1th Conv layer (VGG 16)

AM – 2th Conv layer (VGG 16)

AM – 3th Conv layer (VGG 16)

AM – 4th Conv layer (VGG 16)

AM – 5th Conv layer (VGG 16)

AM – Evaluate (implement)

- Synthesize an input pattern image that can maximize a specific neurons activation in arbitrary layers.
- The preferred input can indicate what features of a neuron has learned.

```
def get activation maximization(model, layer name, filter index, step=2, epochs=200):
    layer dict = dict([(layer.name, layer) for layer in model.layers])
    layer output = layer dict[layer name].output
    loss = K.mean(layer output[:, :, :, filter index])
   # compute the gradient of the input picture wrt this loss
    grads = K.gradients(loss, model.input)[0]
   # normalization trick: we normalize the gradient
   grads /= (K.sqrt(K.mean(K.square(grads))) + K.epsilon())
    # this function returns the loss and grads given the input picture
    iterate = K.function([model.input], [loss, grads])
    output dim=(224_224)
   input img data = np.random.random(
                                                          x \leftarrow x + \eta
        (1, *output dim, 3))
   input_img_data = (input_img_data - 0.5) * 20 + 128
    # we start from a gray image with some noise
    for i in range(epochs):
        loss value, grads value = iterate([input img data])
        input img data += grads value * step <
    return input img data
```


AM – Evaluate (Softmax)

In Softmax layer, if target node's activation is higher, that is representation of target label

AM – Evaluate (Softmax)

• In Softmax layer, if target node's activation is higher, that is representation of target label

AM – Evaluate (Softmax)

- We can find each pattern or shape or both.
- But, Is it well done...?
- The most of result is not clear.

- Because of softmax range, Image is no longer updated
- To solve this, Change Softmax function to Linear function (It's Just trick)

To the next level

- There are many ways to improve the quality of visualization.
 - Zitter
 - Regularization (L1, L2... Lp space)
 - TotalVariation
 - GAN

Any Question?

Thank you

