DEVOIR MAISON 8 - CONIQUES

Le plan euclidien est rapporté à un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$.

- 1. On considère les points I(1,0) et J(0,1).
 - a. Soit M(x,y) un point du plan. Donner l'expression de la distance du point M à la droite (OI), puis de la distance du point M à la droite (OJ), et enfin de la distance du point M à la droite (IJ).

Dans la suite, on désigne par $\mathscr C$ l'ensemble des points M(x,y) du plan tels que la somme des carrés des distances du point M aux trois côtés du triangle 0IJ soit égale à $\frac{1}{3}$.

- **b.** Donner une équation cartésienne de \mathscr{C} .
- c. Donner une équation réduite de \mathscr{C} , préciser sa nature.
- **d.** Montrer que \mathscr{C} n'a qu'un point d'intersection avec les droites (OI) et (OJ). $(On\ dit\ qu'elles\ lui\ sont\ tangentes.)$
- **e.** Tracer \mathscr{C} .
- 2. On considère les ellipses \mathscr{E} et \mathscr{E}' d'équations respectives :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 et $\frac{x^2}{4a^2} + \frac{y^2}{4b^2} = 1$,

où a et b désignent deux réels strictement positifs.

On considère la représentation paramétrique de \mathscr{E} :

$$\begin{cases} x(t) = a \cos t \\ y(t) = b \sin t \end{cases}$$

et les points N et P de paramètres respectifs t et θ .

- a. Déterminer une relation entre t et θ exprimant que la tangente à $\mathscr E$ en P est parallèle à la droite (ON).
- **b.** La condition précédente étant vérifiée, déterminer l'aire du triangle NOP.
- c. On considère la droite Δ d'équation $\alpha x + \beta y + \gamma = 0$. Montrer que Δ est tangente à $\mathscr E$ si, et seulement si

$$a^2\alpha^2 + b^2\beta^2 - \gamma^2 = 0$$

- **d.** Soient u et v deux réels, on considère $U(2a \cos u, 2b \sin u)$ et $V(2a \cos v, 2b \sin v)$ deux points distincts de l'ellipse \mathcal{E}' .
 - Déterminer la relation que doivent vérifier u et v pour que la droite (UV) soit tangente à l'ellipse \mathscr{E} .
- e. Soient A, B, C trois points distincts de \mathcal{E}' tels que (AB) et (AC) soient tangentes à \mathcal{E} . Montrer que (BC) est tangente à \mathcal{E} .
- 3. Les points P et Q décrivent respectivement m'axe des abscisses et l'axe des ordonnées tout en vérifiant l'égalité PQ = a + b.

On considère un point M du segment [PQ] tel que MP = b et MQ = a.

- a. Quel est l'ensemble des points du plan décrit par le point M?
- **b.** Faire une figure pour a = 5 et b = 3.