Ejercicios inventados Geoestadística

Juan David Gonzalez Hernandez - 20151025060 Raúl Camilo Martín Bernal - 20151025909 agosto 2020

1. Semivariograma experimental Indicador en el cual obtenemos los mismos resultados para los 2 azimuts de 0 y 90 grados respectivamente

h		azimut 0	azimut 90
Г	0	0	0
l	1	0,2500	0,2500
l	2	0,1667	0,1667

Para calcular la probabilidad en el punto s0 mediante Krigin indicador Se obtiene el valor indicador para cada variable Z

ID	Х	Y	Z
1	1	1	0,66
2	2	1	0,64
3	3	1	0,47
4	1	2	0,54
5	2	2	0,49
6	3	2	0,56
7	1	3	0,43
8	2	3	0,49
9	3	3	0,45
50	0	0	0,948

	X	Y	Z	I(Zi)
1	1	1	0,47	1
2	2	1	0,56	0
3	3	1	0,43	1
4	1	2	0,49	1
5	2	2	0,45	1
7	1	3	0,43	1

Parámetros esférico					
Co					
C1	0,55				
a	2				
Zc	0,49				

Se calcula el gamma para cada distancia con el modelo esférico y los parámetros dados.

Rel	Dist	Y(h)
1-2	1	0,428125
1-3	2	0,6
1-4	1	0,428125
1-5	1,414213562	0,536135912
1-7	2	0,6
2-3	1	0,428125
2-4	1,414213562	0,536135912
2-5	1	0,428125
2-7	2,236067977	0,6
3-4	2,236067977	0,6
3-5	1,414213562	0,536135912
3-7	2,828427125	0,6
4-5	1	0,428125
4-7	1	0,428125
5-7	1,414213562	0,536135912
So-1	1,414213562	0,536135912
50-2	2,236067977	0,6
50-3	3,16227766	0,6
So-4	2,236067977	0,6
So-5	2,828427125	0,6
So-7	3,16227766	0,6

	Matriz de semivarianza γij								
	3	3 6 7 8 9 10 MT							
3	0	0,428125	0,6	0,428125	0,536135912	0,6	1		
6	0,428125	0	0,428125	0,536135912	0,428125	0,6	1		
7	0,6	0,428125	0	0,6	0,536135912	0,6	1		
8	0,428125	0,536135912	0,6	0	0,428125	0,428125	1		
9	0,536135912	0,428125	0,536135912	0,428125	0	0,536135912	1		
10	0,6	0,6	0,6	0,428125	0,536135912	0	1		
Insesgamiento	1	1	1	1	1	1	0		

γίο
0.504405040
0,536135912
0,6
0,6
0,6
0,6
1

Ponderacione	S	Pronostico
0,31253037		0,31253037
0,05229295		0
0,22106997		0,22106997
0,05229295		0,05229295
0,14074379		0,14074379
0,22106997		0,22106997
0,15061831		

Pronostico	0,94770705		
Va	Varianza		

2. Creamos la relaciones y calculamos las semivarianzas

Relaciones	Distancia	Semivarianza
u1-u2	h1 + h2	$1 - e^{-\left(\frac{h1 + h2}{a}\right)^{1,5}}$
u0-u1	h1	$1 - e^{-\left(\frac{h1}{a}\right)^{1,5}}$
u0-u1	h2	$1 - e^{-\left(\frac{h2}{a}\right)^{1,5}}$

a) se crea la matriz γ_{ij} y γ_{i0}

$$\gamma_{ij} = \begin{pmatrix} 0 & 1 - e^{-\left(\frac{h1 + h2}{a}\right)^{1,5}} \\ 0 & 1 - e^{-\left(\frac{h1 + h2}{a}\right)^{1,5}} & 1 \\ 1 - e^{-\left(\frac{h1 + h2}{a}\right)^{1,5}} & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 (1)

$$\gamma_{i0} = \begin{pmatrix} -\left(\frac{h1}{a}\right)^{1,5} \\ 1 - e^{-\left(\frac{h2}{a}\right)^{1,5}} \\ 1 - e^{-\left(\frac{h2}{a}\right)^{1,5}} \end{pmatrix}$$
(2)

b)
para facilitar cálculos se procede a $R=1-e^{-\left(\dfrac{h1+h2}{a}\right)^{1,5}}$

se encuentra la matriz inversa de γ_{ij}

$$\gamma_{ij}^{-1} = \begin{pmatrix} \frac{-1}{2R} & \frac{1}{2R} & \frac{1}{2} \\ \frac{1}{2R} & \frac{-1}{2R} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{-R}{2} \end{pmatrix}$$
(3)

c) multiplicamos la matriz γ_{ij}^{-1} con la matriz γ_{i0} en donde los 2 primeros términos serán los ponderadores λ_1 y λ_2

$$\lambda_{1} = -\left[\frac{1 - e^{-\left(\frac{h1}{a}\right)^{1,5}}}{1 - e^{-\left(\frac{h1 + h2}{a}\right)^{1,5}}}\right] + \left[\frac{1 - e^{-\left(\frac{h2}{a}\right)^{1,5}}}{1 - e^{-\left(\frac{h1 + h2}{a}\right)^{1,5}}}\right] + \frac{1}{2}$$

$$(4)$$

$$\lambda_{2} = \left[\frac{1 - e^{-\left(\frac{h1}{a}\right)^{1,5}}}{1 - e^{-\left(\frac{h1 + h2}{a}\right)^{1,5}}} \right] - \left[\frac{1 - e^{-\left(\frac{h2}{a}\right)^{1,5}}}{1 - e^{-\left(\frac{h1 + h2}{a}\right)^{1,5}}} \right] + \frac{1}{2}$$
 (5)

- 3. Primero se obtuvieron las distancias mediante trigonometría y se procede a la realización de los métodos.
 - a) Kriging Simple Se obtienen los valores de gamma con el modelo esférico de los parámetros dados.

	Z		rel	distancia	Gamma h
s1	2		s1 a s2	1	0,851851852
s2	-3		s1 a s3	1,414213562	0,995187322
s3	3		s1 a s4	2,061552813	1
s4	-4		s1 a s5	1,414213562	0,995187322
s5	2		s2 a s3	1	0,851851852
s0	?		s2 a s4	2,061552813	1
			s2 s s5	2,236067977	1
			s3 a s4	1,118033989	0,910990657
			s3 a s5	2	1
esfe	erico		s4 a s5	1,802775638	1
c0	0				
c1	1		s0 a s1	1	0,851851852
a	1,5		s0 a s2	1,414213562	0,995187322
			s0 a s3	1	0,851851852
			s0 a s4	1,118033989	0,910990657
			s0 a s5	1	0,851851852
$\gamma(h) = \begin{cases} \gamma(h) = \begin{cases} 1 & \text{if } h > 1 \end{cases} \end{cases}$	$c_0 + c_s \left(\frac{3}{2}\right)$ $c_0 + c_s$	$\left(\frac{h}{a_s}\right)^3$	si h = $si 0 < $ $si h >$	$h \leq a_s$	

Se obtiene la matriz de gamma ij y el vector gamma io

			Gamma io				
1 2 3 4 5							
1	0	0,851851852	0,995187322	1	0,995187322		0,851851852
2	0,851851852	0	0,851851852	1	1		0,995187322
3	0,995187322	0,851851852	0	0,910990657	1		0,851851852
4	1	1	0,910990657	0	1		0,910990657
5	0,995187322	1	1	1	0		0,851851852

Se multiplican las matrices Gamma ij inversa con Gamma io para obtener las ponderaciones, estas se multiplican por los valores Z y se obtiene el pronostico y la varianza para el punto S_0

Ponderaciones	pronostico	varianza
0,288127379	0,576254759	0,245441842
0,076132768	-0,2283983	0,075766366
0,269996149	0,809988446	0,229996719
0,21898222	-0,87592888	0,199490756
0,300766541	0,601533082	0,256208535
	pronostico	0,883449102
	varianza	1,006904218

b) Para la predicción mediante IDW Se calculan las ponderaciones de las distancias y se multiplican por los valores Z para obtener el valor Z en el punto S_0

	Z	rel	distancia	$d_{i0}^{-1,8}$	λ _{p=1,8}	Pronostico
s1	2	s0 a s1	1	1	0,229677087	0,459354175
s2	-3	s0 a s2	1,414213562	0,535886731	0,123080904	-0,36924271
s3	3	s0 a s3	1	1	0,229677087	0,689031262
s4	-4	s0 a s4	1,118033989	0,818052146	0,187887834	-0,75155134
s5	2	s0 a s5	1	1	0,229677087	0,459354175
s0	?		SUMA	4,353938877	1	
P	1,8				Pronostico	0,486945564

c) Para la predicción mediante RBF CRS se consideran los valores de η, ρ y la constante de euler dados y se calcula el valor de phi

	Z	rel	distancia	phi
s 1	2	s1 a s2	1	4,37598E-07
s2	-3	s1 a s3	1,414213562	4,40098E-07
s3	3	s1 a s4	2,061552813	4,45723E-07
54	-4	s1 a s5	1,414213562	4,40098E-07
s5	2	s2 a s3	1	4,37598E-07
s0	?	s2 a s4	2,061552813	4,45723E-07
		s2 s s5	2,236067977	4,47598E-0
		s3 a s4	1,118033989	4,38223E-0
		s3 a s5	2	4,45098E-0
RBF	CRS	s4 a s5	1,802775638	4,43223E-0
eta	0,0001			
ro	0,01	s0 a s1	1	4,37598E-0
Ce	0,5772161	s0 a s2	1,414213562	4,40098E-0
		s0 a s3	1	4,37598E-0
		s0 a s4	1,118033989	4,38223E-0
		s0 a s5	1	4,37598E-0
$\phi(\delta)$	$\delta (t) = egin{cases} \ln(\eta \cdot \delta_t) \ 0 \end{cases}$	$(2)^2 + E_1(\eta \cdot \delta/2)^2 + C_E$	si $\delta > 0, \tau$ si $\delta = 0$	$\eta > 0$
donde ln	es el logaritmo	natural, $E_1(x)$ es la fur	ción integral e	exponencial
$_{-}$ y C_{E} es l	a constante d	e Euler.		

Se obtiene la matriz Phi ij y el vector Phi io.

		PHI IJ					
	1	2	3	4	5	M.LAG	phi io
1	0	4,37598E-07	4,40098E-07	4,45723E-07	4,40098E-07	1	4,37598E-07
2	4,37598E-07	0	4,37598E-07	4,45723E-07	4,47598E-07	1	4,40098E-07
3	4,40098E-07	4,37598E-07	0	4,38223E-07	4,45098E-07	1	4,37598E-07
4	4,45723E-07	4,45723E-07	4,38223E-07	0	4,43223E-07	1	4,38223E-07
5	4,40098E-07	4,47598E-07	4,45098E-07	4,43223E-07	0	1	4,37598E-07
INSESG	1	1	1	1	1	0	1

Se multiplican las matrices Phi ij inversa con Phi io para obtener las ponderaciones, estas se multiplican por los valores Z y se obtiene el pronostico. S_0

Ponderaciones	pronostico	
0,199225121	0,398450242	
0,195890032	-0,5876701	
0,198109294	0,594327882	
0,201996092	-0,80798437	
0,204779461	0,409558922	
8,45322E-08		
pronostico	0,00668258	

4. Cokriging

a) se conocen las medias m_z y m_w

$$Z(X_0') = m_z + \varepsilon(X_0) \tag{6}$$

$$\varepsilon(X_0') = \lambda_1 \varepsilon_{Z(X_1)} + \theta_1 \varepsilon_{W(X_1)} + \theta_2 \varepsilon_{W(X_2)}$$
(7)

Donde:
$$\varepsilon_{Z(X_1)} = Z_1 - m_z$$
 y $\varepsilon_{W(X_1)} = w_1 - m_w$, $\varepsilon_{W(X_2)} = w_2 - m_w$

 $\lambda_1 \ \ y \ \ \theta_1, \theta_2 \ \ son \ ponderadores$

b) Solución:

$$Z(X_0') = m_z$$

$$Z(X_0'') = m_z + 1,31(Z_1 - m_z) + 0,96(w_1 - m_w) + 0,40(w_2 - m_w)$$

$$Z(X_2) = m_z + 6(Z_1 - m_z) + 4{,}67(w_1 - m_w) + 1{,}67(w_2 - m_w)$$

procedimiento:

	Relaciones	Distancia	Covarianza
Z	X1-X1	0	2
W	X1-X1	0	1
W	X1-X2	2	2
W	X2-X2	0	1
ZW	X1-X1	0	-1
ZW	X1-X2	2	-2
ZW	X2-X2	0	-1

a partir de los datos anteriores se forma una matriz de covarianzas Cokriging y una matriz C_{i0} para cada punto a calcular el valor de la variable primaria

$$= \begin{pmatrix} 2,00 & -1,00 & -2,00 \\ -1,00 & 1,00 & 2,00 \\ -2,00 & 2,00 & 1,00 \end{pmatrix}$$
 (8)

matriz C_{i0} para X'_0

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{9}$$

matriz C_{i0} para X_0''

$$= \begin{pmatrix} 0,875\\ 0,4375\\ -0,3125 \end{pmatrix} \tag{10}$$

matriz C_{i0} para X_2

$$= \begin{pmatrix} 4,00\\2,00\\-1,00 \end{pmatrix} \tag{11}$$

Al multiplicar la matriz inversa de covarianzas Cokriging con las matrices C_{i0} obtenemos los ponderadores para estimar el valor del error que se sumara la media para obtener un valor estimado de la variable primaria Z en cada uno de los puntos.

Como las medias son conocidas para el punto $Z(X_0^{\prime})$ se tiene:

$$Z(X_0') = m_z + \varepsilon(X_0') \tag{12}$$

$$\varepsilon(X_0') = 0\varepsilon_{Z(X_1)} + 0\varepsilon_{W(X_1)} + 0\varepsilon_{W(X_2)} \tag{13}$$

Donde: $\varepsilon_{Z(X_1)} = Z_1 - m_z$ y $\varepsilon_{W(X_1)} = w_1 - m_w$, $\varepsilon_{W(X_2)} = w_2 - m_w$ $\lambda_1 = 0$ y $\theta_1 = 0, \theta_2 = 0$ son ponderadores y por lo tanto $Z(X_0') = m_z$.

Como las medias son conocidas para el punto $Z(X_0'')$ se tiene:

$$Z(X_0'') = m_z + \varepsilon(X_0'') \tag{14}$$

$$\varepsilon(X_0'') = 1,31\varepsilon_{Z(X_1)} + 0,96\varepsilon_{W(X_1)} + 0,40\varepsilon_{W(X_2)}$$
(15)

Donde: $\varepsilon_{Z(X_1)} = Z_1 - m_z$ y $\varepsilon_{W(X_1)} = w_1 - m_w$, $\varepsilon_{W(X_2)} = w_2 - m_w$ $\lambda_1 = 1, 31$ y $\theta_1 = 0, 96, \theta_2 = 0, 40$ son ponderadores y por lo tanto: $Z(X_0'') = m_z + 1, 31(Z_1 - m_z) + 0, 96(w_1 - m_w) + 0, 40(w_2 - m_w)$

Como las medias son conocidas para el punto $Z(X_2)$ se tiene:

$$Z(X_2) = m_z + \varepsilon(X_2) \tag{16}$$

$$\varepsilon(X_2) = 6\varepsilon_{Z(X_1)} + 4{,}67\varepsilon_{W(X_1)} + 1{,}67\varepsilon_{W(X_2)}$$

$$\tag{17}$$

Donde: $\varepsilon_{Z(X_1)} = Z_1 - m_z$ y $\varepsilon_{W(X_1)} = w_1 - m_w$, $\varepsilon_{W(X_2)} = w_2 - m_w$ $\lambda_1 = 6$ y $\theta_1 = 4,67, \theta_2 = 1,67$ son ponderadores y por lo tanto $Z(X_2) = m_z + 6(Z_1 - m_z) + 4,67(w_1 - m_w) + 1,67(w_2 - m_w)$ 5. a) Estadístico del vecino mas cercano De donde partimos con los valores de n es el numero de puntos, para el caso es 7 y el Área A es de 160 km^2 Dada la ecuación

$$R = \frac{R_0}{R_e} = \frac{\bar{x}}{1/(2\sqrt{\lambda}})\tag{18}$$

de donde tenemos que

$$\bar{x} = (5+2+2+4+6+2+7)/7 = 4$$
 (19)

у

$$\lambda = n/A = 7/160 = 0.04 \tag{20}$$

Reemplazando obtenemos

$$R = 1,67 \tag{21}$$

b) Estadístico z

Ya que tenemos que la distancia media teórica es.

$$R_e = \frac{1}{2 * \sqrt{\lambda}} = \frac{1}{2 * \sqrt{0.04}} = 2.39 \tag{22}$$

Ya que.

$$R_0 = \bar{x} = 4 \tag{23}$$

Clark and Evans [1954]

Obtenemos como valor de z

$$z = 3.826(R_0 - R_e)\sqrt{\lambda * n} = 3.826(4 - 2.39)\sqrt{0.04 * 7} = 3.41$$
 (24)

De donde podemos concluir que el patrón es significativamente uniforme.

Referencias

Philip J. Clark and Francis C. Evans. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. *Ecology*, 35(4):445–453, oct 1954. ISSN 1469-8102. doi: 10.2307/1931034. URL http://doi.wiley.com/10.2307/1931034.