	(1-x2) (1+x2) (1-x)-4			
	(1 (4 m) (4 m ²)	1 4 (1-4 -4	
Fall 2023: CSE 221	Discrete Mathe	ematic()]k (1)x	4 Akdeniz	University
10/01/2024	Final Exam	(3)x (3) x*	Duration: 9	90 minutes
Name:		Student No:		
P1 [15pts] How many positive	e integers n less than 600	satisfy $gcd(n, 600)$	= 1? Show your	J calculation.
Note that 600 = 23.3.5	5. So, if n is no	+ div. 65 2.	3-15 90	d(n,600) = 1
Then, let Cq: divby 2 ca	2: dr 53 (3: du 6) 5	Then up 1.E.	with ci ben	sor and
N=So-S1+52-53 is a	or answ. So = 600	$S_1 = \frac{600}{2} + \frac{9}{3}$	3 + 620 5	2= 600 +600 -600
$S_3 = \frac{6a}{30}$ $\hat{N} = 600$) - 620 + 200 - 20	= 160/1 300 3	D 125	100 60 40
P2 [15pts] In how many ways and 3 white balls. Show your o	s can Alice select 9 balls	from a bag that co	ntains 3 red, 3 b	lue, 3 green
$\chi_1 + \chi_2 + \chi_3 + \chi_4 = 9$	0 ξ γ _i ξ3	: X+74 /1+x.	$+x^{2}+x^{3})^{4}$	x ?] =?
N=SS,+SS_3+S4 = (12)	-(1)(3)+(1)(3)	220-274 (1-x	4)4(1-X)-4	
N=5,-5,+52-53+54 = (12) X4+x6+x3+X=3 0 (Ki x)	16, 11.10	+24= 151 + 68.78 46 (63) 24	$-\lambda^{9} \longrightarrow (-5)$) (12) (8)
P3 [15pts] Alice, Bob, and C			/)	/ 4)
Then, they examine these perm	nutations and find that the	here are no indices	containing the sa	ıme number
in any pair of permutations. (Fin $[15,3,11,]$ and $[17,3,5,]$).	for example, there is no n	natch like the numb	per three in the se	econd index
(a) Using the derangement f ring. Explain your calculation		e upper bound for t	the probability of	f this occur-
		s)=1 = .	, A	5 c
$P(A \times B) = \frac{1}{e}$ $P(A \times C)$	- e // ~~	e -,	$\frac{1}{e^3}$	5 4
			3	5 4 17 5 10 ::
			·	9 :
(b) Why is this not an exact	_	-	000.01 7/1	ha marth -
	em P(AxB) and			e zons
less the 1/2. They	of he are fulle .	end les hom by	<i>e</i> 3	
P4 [15pts] Find the rook polyr	nomial for the board below	v. Clearly write it in	the format $1+a$	$x+bx^2+\cdots$
?(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(田,x)+R(E		(1+2x+2x2	()+
		((1+6x+6x2)	
- v , L	.1. 7 2 . 4		Importat	- hotize - want to
	$x^{1} + 2x^{3} + 1 +$	6x+6x2	attempt by one, you'll p	country one
=1+3	1x+10x2+2x3		by one, you'll go SKIP instead	

P5 [20 points] A florist needs to prepare a bouquet that contains 20 flowers with

- at least 4 roses at rost 17
- positive even number of tulips
- odd number of daisies
- zero or one orchid
- zero or one lily
- a positive multiple of five of jasmines

$$(1-x)^{-1} (1-x^2)^{-2} (1+x)^2 (1-x^5)^{-1} = (1-x)^{-3} (1+x^5+x^6+...)$$

$$(x^6) = (1-x)^2 (1+x^5)^{-1}$$

$$(x^6) = (1-x)^3 (1+x^5+x^6+...)$$

$$(x^6) = (1-x)^3 (1+x^6+x^6+...)$$

P6 [20 points] Let the series $\{a_n\}$ be defined with the recursive definition: $a_0 = 0, a_1 = 1$ and $\forall n \geq 2 : a_n = 5a_{n-1} - 6a_{n-2}$. By using generating functions, find a closed formula for a_n (A formula that depends only on n, so that if we need a_{10000} we can just substitute n with 10000 and calculate the result.) Make your calculations below and clearly write the final result.

Note that
$$\forall n \ge 2$$

$$G(x) = \alpha_0 + \alpha_1 \times + \alpha_2 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = \alpha_0 + \alpha_1 \times + \alpha_2 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_0 \times -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_0 \times -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_0 \times -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_0 \times -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_0 \times -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_0 \times -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_1 \times 2 + \alpha_2 \times 3 + \cdots$$

$$G(x) = -5\alpha_1 \times$$

Table 1: Some generating functions that can be useful. For all $m, n \in \mathbb{Z}^+$, $a \in \mathbb{R}$

1)
$$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$$

2)
$$(1+ax)^n = \binom{n}{0} + \binom{n}{1}ax + \binom{n}{2}a^2x^2 + \cdots + \binom{n}{n}a^nx^n$$

3)
$$(1+x^m)^n = \binom{n}{0} + \binom{n}{1}x^m + \binom{n}{2}x^{2m} + \dots + \binom{n}{n}x^{nm}$$

4)
$$(1-x^{n+1})/(1-x) = 1+x+x^2+x^3+\cdots+x^n$$

5)
$$1/(1-x) = 1 + x + x^2 + x^3 + \cdots$$

6)
$$(1/(1-2x)) = 1 + ax + (a^2)x^2 + (x^3)x^3 + \cdots$$