ВВЕДЕНИЕ

В рамках научно-исследовательской деятельности была поставлена задача провести сравнительный анализ габаритных и энергетических параметров теплообменных аппаратов для предварительного охлаждения гелия. Вопрос предварительного охлаждения в гелиевых криогенных системах имеет большое значение, поскольку применение азотной ванны позволяет без значительных капитальных затрат понизить температуру гелия до азотного уровня.

Основная проблема, возникающая при применении азотной ступени предварительного охлаждения, — теплообмен в двухфазной среде. Формулы для расчета коэффициента теплоотдачи при кипении на горизонтальной трубе несут эмпирический характер, минимальная погрешность расчета составляет 20%, что является причиной больших коэффициентов запаса по площади теплообменной поверхности. Рассмотрим процесс кипения жидкого азота при подводе к нему теплоты от нагревателя с температурным потенциалом Δt — разность температур между стенкой нагревателя и жидкостью [1, стр. 154].

Рисунок 1.1. Кривая зависимости теплового потока от температурного напора при кипении азота в большом объеме. І — пузырьковое кипение, ІІ — переходное кипения, ІІІ — пленочное кипение; 1 — точка первого кризиса кипения, 2 — точка второго кризиса кипения.

На рис. 1.1 при тепловом потоке менее $6000~\mathrm{Bt/m^2}$ наблюдается область однофазной свободной конвекции при малых значениях Δt и q. Плотность центров

парообразования в этой области невелика вследствие малых перегревов жидкости, поэтому теплоотвод от стенки осуществляется в режиме свободной конвекции $(\alpha \sim \Delta t^{0.25} \text{ или } \alpha \sim \Delta t^{\frac{1}{3}} \text{ [2, п. 18.1]}).$

Режим I — область развитого пузырькового кипения. Интенсивный теплообмен в этой области обусловлен пульсационным движением жидкости у стенки, вынужденным быстрорастущими пузырьками пара. Этот режим наиболее важный в практическом отношении, поскольку характеризуется процессом интенсивной теплоотдачи, при котором $\alpha \sim \Delta t^2$; $\alpha \sim q^{\frac{2}{3}}$; $q \sim \Delta t^3$ [2, п. 18.1].

Режим II — область, в которой наблюдается парадоксальное, противоречащее обычному опыту явление: тепловой поток уменьшается с ростом температурного напора. Это область расположена между двумя характерными точками кризиса теплообмена и возникает из-за перемещающегося во времени и по поверхности пузырькового и пленочного кипения.

Режим III — область пленочного кипения. Паровая пленка изолирует горячую стенку от жидкости. Для этой области $\alpha \sim \Delta t^{-0.25}$. Термическое сопротивление пленки пара весьма велико из-за низкой теплопроводности пара. Отсутствует перемешивание. В результате коэффициент теплоотдачи при пленочном кипении на порядок ниже, чем при пузырьковом кипении.

Из рассмотрения кривой кипения следует, что при первом контакте трубки с газообразным «горячим» гелием теплообмен будет происходит в условиях пленочного кипения. Исходя из конструкции теплообменного аппарата возможно снижение влияние паровой пленки на поверхности змеевика.

В том случае, если в радиальном направлении будет только один слой змеевика или радиальный шаг навивки будет много больше характерного размера ($t\gg 1.5d_{\rm H}$), возможно обеспечить непрерывную подачу жидкости к поверхности стенки с учетом земной гравитации. Руководствуясь данным решением и методикой расчета разработанной С.С. Будневичем [3. стр. 127] для азотных ванн предварительного охлаждения, применяемых в сателлитных рефрижераторах, был рассчитан, спроектирован и конструктивно проработан змеевиковый теплообменный аппарат, чертеж которого представлен в Приложении А.

1. Выбор уравнения состояния

Поскольку для расчета термодинамических циклов режимов работы и альтернативных вариантов реализации ожижения гелия применяется программный комплекс HYSYS, был проведен анализ уравнений состояния и обоснована возможность применения выбранного пакета свойств.

На инженерном вебинаре 17 октября 2006 года компания AspenTech представила презентацию, в которой приведены основные положения по применяемым в HYSYS термодинамическим моделям [8]. В рамках данной работы для моделирования процессов используются чистые вещества. Процессы смешения и разделения не рассчитываются, поэтому требуется пакет свойств, параметры которого обеспечивают сходимость термодинамических свойств в широком диапазоне температуры и давления. Наиболее подходящий и рекомендуемый AspenTech пакет свойств – MBWR.

МВWR — моделированное уравнение Бенедикта-Вебба-Рубина, названное в честь Мэнсона Бенедикта, Дж. Б. Вебба и Л.С. Рубина. Разработка велась компанией М.W. Kellogg. В результате удалось модифицировать уравнение Битти-Бриджмена с увеличением определенных коэффициентов уравнения до 8. [9]. Базовое уравнение состояния МВWR:

$$P = \rho RT + \left(B_0 RT - A_0 - \frac{C_0}{T^2}\right) \rho^2 + (bRT - a)\rho^3 +$$

$$+ \alpha a \rho^6 + \frac{c\rho^3}{T^2} (1 + \gamma \rho^2) \exp(-\gamma \rho^2),$$
(1)

где R — универсальная газовая постоянная;

T — температура;

P — давление;

 ρ — молярная плотность.

Модифицированное уравнение, используемое в HYSYS:

$$P = \rho RT + \left(B_0 RT - A_0 - \frac{C_0}{T^2} + \frac{D_0}{T^3} - \frac{E_0}{T^4}\right) \rho^2 + \left(bRT - a - \frac{d}{T}\right) \rho^3 + \alpha \left(a + \frac{d}{T}\right) \rho^6 + \frac{c\rho^3}{T^2} (1 + \gamma \rho^2) \exp(-\gamma \rho^2),$$
(2)

Значения коэффициентов:

$$A_0 = \sum_{i} \sum_{j} x_i x_j A_{0i}^{\frac{1}{2}} A_{0j}^{\frac{1}{2}} (1 - k_{ij})$$
(3)

$$B_0 = \sum_i x_i B_{0i} \tag{4}$$

$$C_0 = \sum_{i} \sum_{j} x_i x_j C_{0i}^{\frac{1}{2}} C_{0j}^{\frac{1}{2}} (1 - k_{ij})^3$$
 (5)

$$D_0 = \sum_{i} \sum_{j} x_i x_j D_{0i}^{\frac{1}{2}} D_{0j}^{\frac{1}{2}} (1 - k_{ij})^4$$
 (6)

$$E_0 = \sum_{i} \sum_{j} x_i x_j E_{0i}^{\frac{1}{2}} E_{0j}^{\frac{1}{2}} (1 - k_{ij})^5$$
 (7)

$$\alpha = \left[\sum_{i} x_i \alpha_i^{\frac{1}{3}}\right]^3 \tag{8}$$

$$\gamma = \left[\sum_{i} x_i \gamma_i^{\frac{1}{3}}\right]^2 \tag{9}$$

$$a = \left[\sum_{i} x_{i} a_{i}^{\frac{1}{3}}\right]^{3} \tag{10}$$

$$b = \left[\sum_{i} x_i b_i^{\frac{1}{3}}\right]^3 \tag{11}$$

$$c = \left[\sum_{i} x_i c_i^{\frac{1}{3}}\right]^3 \tag{12}$$

$$d = \left[\sum_{i} x_i d_i^{\frac{1}{3}}\right]^3,\tag{13}$$

где i, j — индексы компонентов, суммирование осуществляется по всем компонентам;

 B_{0i} , A_{0i} ... и т.д. — параметры чистых компонентов для i-того компонента;

 x_i — мольная доля i-того компонента;

 k_{ij} — коэффициент бинарного взаимодействия.

Значения параметров и коэффициентов приведены в [10].

Область применимости уравнения состояния MBWR [11] для веществ, применяемых в расчетах, отражена в таблице 1.1:

Таблица 1.1 – Область допустимых параметров для уравнения MBWR

Компонент	Диапазон температур, К	Максимальное давление, МПа
Не	0.8 - 1500	200
N_2	63 – 1900	1000

Для обоснования применимости уравнения состояния проводится сравнение значение термодинамических свойств, рассчитанных с применением уравнения и полученных из справочника [12]. Результат представлен в таблице 1.2:

Таблица 1.2 – Относительные отклонения значений теплофизических свойств

Вещество	Не	Не	N_2	N_2
Парметр	Табл.	MBWR	Табл.	MBWR
Плотность при 0 °C и 1013 гПа, кг/м ³	0.17846	0.1785	1.2505	1.250
Отклонение, %	0.02	2	0.0	040
Теплоемкость изобарная при 20 °С и 1013 гПа, кДж/(кг · K)	5.276	5.193	1.041	1.041
Отклонение, %	1.57	3	0	
Теплоемкость изохорная при 20 °С и 1013 гПа, кДж/(кг · K)	3.182	3.115	0.737	0.7438
Отклонение, %	2.106		0.914	
Температура кипения при 1013 гПа, К	4.215	4.221	77.35	77.36
Отклонение, %	1.421		0.129	
Теплота испарения при температуре кипения, кДж/кг	20.43	20.712	197.6	198.63
Отклонение, %	1.362		0.519	
Плотности жидкости (в скобках температура, K), кг/м ³	125.0 (4.215)	125.1 (4.215)	807 (77.36)	808.5 (77.36)
Отклонение, %	0.080		1.854	
Критическая температура, К	5.189	5.190	126.2	126.2
Отклонение, %	0.519		0	
Критическое давление, МПа	0.229	0.227	3.4	3.394
Отклонение, %	0.873		0.176	
Плотность, кг/м ³	69.64	69.83	313.1	311.22
Отклонение, %	0.27	2	0.0	600

На основании проведенного анализа для моделирования процессов и проведения расчетов циклов принимается уравнение термодинамического состояния MBWR. Погрешность определения теплофизических свойств менее 2% удовлетворяет инженерной точности расчета.

2. Расчет змеевиковой азотной ванны

Схема термодинамического цикла и таблица значений параметров точек сателлитного рефрижератора представлены на рис. 2.1 и в табл. 2.1:

Рис. 2.1. Упрощенная схема рефрижератора в сателлитном режиме работы

Таблина 2	1 - Параме	гры точек уг	прошенного	пикпа (сателлитного	пефпиж	enatona
1 аолица 2.	1 Hapame	ipbi to tek yi	прощенного	циили ч	caresistini i i i o	рефрим	Sparopa

Точка	Доля пара	Температура, К	Давление, МПа	Расход, кг/ч
100	1,0	300,0	0,1	180,0
1'	1,0	663,3	0,5	180,0
2	1,0	300,0	2,0	180,0
2'	1,0	641,8	2,0	180,0
1"	1,0	300,0	0,5	180,0
3'	1,0	177,9	2,0	180,0
3"	1,0	84,2	2,0	180,0
GHe	1,0	300,0	0,1	0,0
N_2	0,9	79,2	0,1	500,0
N_3	1,0	282,5	0,1	500,0
N_1	0,0	79,2	0,1	500,0
101	1,0	300,0	0,1	180,0

Поток газообразного гелия с массовым расходом $G_{He}=180\frac{\kappa\Gamma}{q}$ сжимается в винтовом компрессоре «Каскад-110/30» от давления p_0 до давления p. Сжатый гелий, охлажденный до температуры окружающей среды, проходит предварительный теплообменный аппарат LNG-100, где охлаждается до состояния 3' и затем проходит

ванну с жидким азотом LNG-101, кипящем при давлении $p_{N_2} = 0.125$ МПа, охлаждаясь до состояния 3", захолаживает криостаты с магнитами до температуры $T_{\rm M} = 90$ °К. По мере понижения температуры обратного потока из магнитов включается прямой поток гелия, установка переходит на пусковой режим с подачей дополнительного расхода жидкого гелия из центрального ожижителя ОГ-1000.

- Температура гелия на входе в азотную ванну: $T_{He_{\text{BX}}} = 177.9 \ K;$
- Температура жидкого азота при давлении 0.125 МПа: $T_{N_2} = 79.2~K$;
- Недорекуперация на холодном конце: $\Delta T_2 = 5.18 \ K$;
- Максимальный температурный напор: $T_1 = 98.72 K$;
- Расход гелия: $G_{He} = 180 \text{ кг/ч}$;
- Расход жидкого азота: $G_{N_2}=500~{\rm kr/ч},~{\rm c}$ учетом рекуперации холода паров.

Давление. Давление сжатого гелия на входе в криогенный блок принимается равным $p_2=2$ МПа. Давление на входе в азотную ванну считаем равным p_2 , т.к. практически величина потеря давления невелика.

 $Temnepamypы \ u \ paзность тemnepamyp.$ Температура кипения жидкого азота $T_{0N_2}=79.18\ K.$ Разность тemпepaтур на тeплом кoнце предварительного тeплoобменника между потоком сжатого гелия и обратным потоком сжатого гелия, и обратным потоком низкого давления $\Delta T^{II}=15\ K.$ Разность тeмпepaтур между кипящим азотом и гелием, выходящим из азотной вaнны, $\Delta T_{79K}=4K$. Тeмпepaтура азота на выходе из вaнны предварительного охлаждения $T_{1N_2}=81\ K.$

Теплопритоков по данным [3, табл. 1.6]: для цикла жидкого азота – 20%.

Tеплоемкая масса. Теплоемкая масса сателлитного рефрижератора и элементов ускорителя — 80 тонн. Расчетное время захолаживания — 80-100 часов (предпусковой и пусковой режимы).

Расходы потоков. Расход сжимаемого гелия $G_{He}=180\frac{\kappa\Gamma}{\tau}$, расход жидкого азота в ванне предварительного охлаждения $G_{N_2}=500\frac{\kappa\Gamma}{\tau}$ (в режиме реконденсации). Поток жидкого азота, идущего на предварительное охлаждение, расходуется на

компенсацию тепловой нагрузки, которая складывается из тепла, отнимаемого от сжатого гелия при предварительном охлаждении, холодопроизводительности, вводимой в цикл в интервале изменения температуры от T_3 до T_{0N_2} , а также теплопритоков извне к азотному экрану, азотной ванне и к части работающей на этом уровне сателлитному рефрижератору. Теплоприток из окружающей среды к той части рефрижератора, которая расположенной в зоне температур T_3 до T_{0N_2} :

$$q_3^{T>79^{\circ}K} = 0.2 \cdot (h_3 - h_4)$$

$$q_3^{T>79^{\circ}K} = 0.2 \cdot (-969.4 + 1123) = 0.2 \cdot 148.6 \approx 29.72 \frac{\kappa \text{Дж}}{\kappa \Gamma_{He}}$$
(14)

Расход жидкого азота на увеличение холодопроизводительности:

$$G_{xN_2} = \frac{G_{N_2}}{G_{He}} + \frac{q_3^{T > 79^{\circ}K}}{h_{1N_2} - h_{0N_2}}$$

$$G_{xN_2} = \frac{500}{180} + \frac{29.72}{-224 + 422.2} \approx 2.78 + 0.15 \approx 2.93 \frac{K\Gamma_{LN_2}}{K\Gamma_{He}}$$
(15)

Пересчитанный расход жидкого азота:

$$G_{N_2} = G_{xN_2} \cdot G_{He} = 2.93 \cdot 180 = 527.4 \text{ Kr}_{LN_2}$$
 (16)

Таблица 2.2 – Сводные данные материальных и тепловых потоков азотной ванны

Аппарат/Х-ка	Поток	Расход,	Температура, К		Тепловая	
74mapa1/74 Ku	HOTOK	кг/ч	Вход	Выход	нагрузка	
Азотная ванна	Гелий высокого давления	180	177.9	84.36	25.61 кВт	
(предпусковой режим)	Азот	527.4	79.2	79.2		
Аппарат/Х-ка	Поток	Расход,	Температура, К		Тепловая	
7 mnapa 1/7 Ka	HOTOK	кг/ч	Вход	Выход	нагрузка	
Азотная ванна	Гелий высокого давления	180	109.3	84.2	6.89 кВт	
(пусковой режим)	Азот	527.4	79.2	79.2		

Охлаждение гелия высокого давления в азотной ванне осуществляется за счет кипения жидкого азота при $p_{N_2}=0.125$ МПа. Для подобного аппарата характерно наличие высокого значения коэффициента теплоотдачи со стороны кипящего азота $\alpha_{\text{кип}}=(1750\div 2300)\frac{\text{Вт}}{\text{м}^2\cdot K}$ и более низкого α от потока газа к стенке, который и является определяющим при расчете коэффициента теплопередачи.

Среднелогарифмическая разность температур:

$$\tau_m = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)} = \frac{98.7 - 5.18}{\ln\left(\frac{98.7}{5.18}\right)} = 31.74 \, K \tag{17}$$

 ΔT_1 — разность температур между входящим в азотную ванну потоком гелия высокого давления и кипящим азотом на входе, $\Delta T_1 = T_3 - T_{0N_2} = 177.9 - 79.2 = 98.7 \, K$, ΔT_2 — разность температур между потоками гелия высокого давления и азота, выходящим из ванны: $\Delta T_2 = T_4 - T_{1N_2} = 84.18 - 79.18 = 5.18 \, K$.

Основные параметры гелия высокого давления:

Средняя температура

$$T_{\text{cpHe}} = \frac{T_3 + T_4}{2} = \frac{177.9 + 84.18}{2} = 131.1 \, K$$
 (18)

Среднее значение теплоемкости

$$C_{P_{He}} = 5.21 \frac{\kappa \angle M}{\kappa \Gamma \cdot K}$$

Среднее значение теплопроводности

$$\lambda_{He} = 0.0903 \frac{BT}{M \cdot K}$$

Среднее значение вязкости

$$\mu_{He} = 1.16 \cdot 10^{-5} \, \text{\Pia} \cdot \text{c}$$

Удельный объем

$$\nu_{He} = 0.139 \frac{\text{M}^3}{\text{K}\Gamma}$$

Параметры трубок:

$$d_{\text{BH}} = 16 \text{ MM}; \ \ \delta = 1 \text{MM}; \ \ D_{\text{3M}} = 480 \text{ MM}$$

$$d_{\rm H} = d_{\rm RH} + 2 \cdot \delta = 16 + 2 = 18 \text{ MM} \tag{19}$$

Определим критический удельный тепловой поток для обоснования принимаемых в дальнейшем формул [3, стр. 109]:

$$q_{\text{kp}} = 1.7 \cdot 10^{4} \cdot \frac{0.138^{0.5} \cdot (\gamma_{1} - \gamma_{2})^{\frac{13}{24}} \cdot (\gamma_{2} \cdot 48 \cdot 80.1)^{\frac{1}{3}} \cdot (1.12 \cdot 10^{-3})^{\frac{1}{24}}}{\gamma_{1}^{\frac{5}{12}} \cdot 0.48^{\frac{1}{6}}}$$

$$q_{\text{kp}} = 178974.9 \frac{\text{KKa} \pi}{\text{M}^{2} \cdot \text{Y}}$$
(20)

где:
$$\gamma_1 = \frac{1}{0.001192};$$
 $\gamma_2 = \frac{1}{1.3};$ $q_{\mathrm{Kp}} = 208008.6 \frac{\mathrm{BT}}{\mathrm{M}^2}.$

Заходность змеевика: $n_3 = 5$

Скорость потока в трубках:

$$w = \frac{4 \cdot G_{He} \cdot \nu_{He}}{n_3 \cdot \pi \cdot d_{BH}^2} = \frac{4 \cdot 180 \cdot 0.139}{5 \cdot 3.14 \cdot 0.016^2} = 6.92 \frac{M}{c}$$
 (21)

Критерий Рейнольдса:

$$Re = \frac{w \cdot d_{\rm BH}}{\mu_{He} \cdot \nu_{He}} = \frac{6.92 \cdot 0.016}{1.16 \cdot 10^{-5} \cdot 0.139} = 68351.3 \tag{22}$$

тогда, течение – турбулентное.

Критерий Прандтля:

$$Pr = \frac{\mu_{He} \cdot C_{P_{He}}}{\lambda_{He}} = \frac{1.16 \cdot 10^{-5} \cdot 5.21}{0.0903} = 0.672$$
 (23)

Критерий Нуссельта:

$$Nu = 0.023 \cdot Re^{0.8} \cdot Pr^{0.4} = 0.023 \cdot 68351.3^{0.8} \cdot 0.672^{0.4} = 114.68$$
 (24)

Коэффициент теплоотдачи:

$$\alpha_{He} = \frac{Nu \cdot \lambda_{He}}{d_{\text{BH}}} = \frac{114.68 \cdot 0.0903}{0.016} = 816.2 \frac{\text{BT}}{\text{M}^2 K}$$
 (25)

Величину удельной тепловой нагрузки определим графически. При этом исходим из того, что удельные тепловые потоки со стороны гелия и азота равны между собой. Для удобства относим удельный тепловой поток к единице внешней поверхности трубки [3, стр. 108]:

Рис. 2.2. Графическое определение ΔT_1 , ΔT_2 и q

Из графического решения:

$$q = 21389.1 \frac{\text{BT}}{\text{M}^2}; \quad \Delta T_{1\text{cp}} = 26.2 \text{ K}; \quad \Delta T_{2\text{cp}} = 5.53 \text{ K}$$

Коэффициент теплоотдачи от стенки к кипящему азоту:

$$\alpha_{N_2} = A_1 \cdot q^{0.7} = 3.6 \cdot 21389.1^{0.7} = 3867.3 \frac{\text{Bt}}{\text{M}^2 \cdot K}$$
 (26)

где, A_1 [3, стр. 107], с учетом пересчета в Вт из ккал:

$$A_{1} = 7.22 \cdot 10^{-3} \left(\frac{\gamma_{2} \cdot 48}{\gamma_{1} \cdot \gamma_{2}} \right)^{\frac{1}{30}} \cdot \left(\frac{\gamma_{1}}{1.12 \cdot 10^{-3}} \right)^{\frac{1}{3}}$$

$$\cdot \frac{0.138^{0.75}}{(2.25 \cdot 10^{-5})^{0.45} \cdot 0.48^{\frac{7}{60}} \cdot 80.1^{0.37}}$$
(27)

Коэффициент теплопередачи:

$$k = \frac{1}{\frac{1}{\alpha_{He}} + \frac{1}{\alpha_{N_2}}} = \frac{1}{\frac{1}{816.2} + \frac{1}{3867.3}} = 673.98 \frac{BT}{M^2 K}$$
(28)

Площадь теплообменной поверхности одной трубки:

$$F = \frac{Q}{n_3 \cdot k \cdot \tau_m} = \frac{25610}{5 \cdot 673.98 \cdot 31.74} = 0.239 \text{ m}^2$$
 (29)

Длина одной трубки:

$$l_1 = \frac{F}{\pi \cdot d_{\text{BH}}} = \frac{0.239}{3.14 \cdot 0.016} = 4.76 \text{ M}$$
 (30)

С учетом запаса 50% [3, стр. 109]:

$$L = 1.5 \cdot l_1 = 1.5 \cdot 4.76 = 7.14 \text{ M} \tag{31}$$

Принимается: L = 7.15 м

Число витков одной трубки:

$$n_{\rm B} = \frac{L}{\pi \cdot D_{\rm 2M}} = \frac{7.15}{3.14 \cdot 0.48} = 4.74 \tag{32}$$

Принимается: $n_{\rm B} = 4.8$

Принимаем пятизаходный двухслойный змеевик, тогда высота навивки и диаметры навивок – из решения системы уравнений:

$$\begin{cases} L_{\rm H} + L_{\rm B} = L; & H_{\rm H} = H_{\rm B} \\ H_{\rm H} = \frac{L_{\rm H}}{\pi \cdot D_{\rm 3M}} \cdot d_{\rm H} \cdot n_{\rm 3M} + 2 \cdot \delta \cdot \frac{L_{\rm H}}{\pi \cdot D_{\rm 3M}} \cdot n_{\rm 3M} \\ H_{\rm B} = \frac{L_{\rm B}}{\pi \cdot D_{\rm BH3M}} \cdot d_{\rm H} \cdot n_{\rm 3M} + 2 \cdot \delta \cdot \frac{L_{\rm B}}{\pi \cdot D_{\rm BH3M}} \cdot n_{\rm 3M} \end{cases}$$
(33)

$$H = 0.31 \text{ m}; \ D_{3M} = 480 \text{ mm}; D_{BH3M} = 400 \text{ mm}$$
 (34)

Падение напора при прохождении змеевика. Коэффициент Дарси [3, стр. 110]:

$$\zeta = \frac{1}{(1.82 \cdot \lg(Re) - 1.64)^2}$$

$$\zeta = \frac{1}{(1.82 \cdot \lg(68351.3) - 1.64)^2} = 0.0195$$
(35)

Падение давления:

$$\Delta p = \zeta \cdot \frac{w^2}{2 \cdot \nu_{He}} \cdot \frac{L}{d_{\text{BH}}} = 0.0195 \cdot \frac{6.92^2}{2 \cdot 0.139} \cdot \frac{7.15}{0.018} = 1.47 \text{ } \kappa \Pi a \tag{36}$$

Методика расчета, приведенная выше, основывается на определении коэффициента теплоотдачи для среднего логарифмического температурного напора, значение которого на кривой кипения попадает в область переходного режима кипения. Данное допущение способствует завышенному коэффициенту запаса по теплообменной поверхности – 50%.

Габаритные размеры спроектированного аппарата: высота — 865 мм; ширина — 640 мм.

3. Расчет витой азотной ванны

Для расчета витой азотной ванны используются исходные данные, описанные в разделе 2. Расчет условно разбит на две части, в первой представлены зависимости для построения кривой кипения азота по методике, изложенной в [4] и [5]. Во второй – расчет коэффициента теплоотдачи от гелия к стенке, и на основе двух частей проведен расчет коэффициента теплопередачи.

Особенностью расчета является то, что для определения площади теплообмена применяются численные методы. Располагаемый температурный напор разбивается на *п* частей, на каждой из которых находятся величины необходимые для расчета коэффициента теплопередачи, затем определяется необходимая площадь поверхности для выбранного внешнего диаметра трубок и числа слоев трубок в радиальном направлении.

Параметры трубок витой азотной ванны:

- Наружный диаметр трубок: $D_{\rm H} = 12$ мм;
- Толщина стенки трубки: $\delta = 0.8$ мм;
- Число трубок в радиальном направлении: $n_{cn} = 6$;
- Число трубок в трубном пучке: $n_{\rm II}=12$;

Полный расчет представлен в Приложении Б, ниже рассмотрены основные соотношения, принятые для расчета. Первый критический тепловой поток — переход развитого пузырькового кипения в переходную область, рассчитывается по формуле:

$$q_{\text{Kp1}}(p) = 0.145 \cdot r(p) \cdot \rho'(p)^{0.5} \cdot \left[\sigma(p) \cdot \left(\rho'(p) - \rho''(p) \right) \cdot g \right]^{0.25}$$
(37)

где: r(p) – теплота парообразования;

ho'(p), ho''(p) — плотность жидкости и пара соответственно;

 $\sigma(p)$ – поверхностное натяжения;

g — ускорение свободного падения.

Для унификации и обеспечения возможности дальнейшего использования расчетных соотношений критический поток определен в виде функции от давления над поверхностью кипящей жидкости.

Далее определяется приведенная скорость парообразования:

$$W_{\rm kp}(p) = \frac{q_{\rm kp1}(p)}{r(p) \cdot \rho''(p)} \tag{38}$$

Характерный линейный размер пузырькового кипения:

$$l_{\text{пуз}}(p) = c'(p) \cdot \rho'(p) \cdot \sigma(p) \cdot \frac{T_{\text{H}}(p)}{\left(r(p) \cdot \rho''(p)\right)^2}$$
(39)

где: c'(p) – теплоемкость жидкости;

 $T_{\rm H}(p)$ — температура насыщения жидкости при давлении p.

Критерий Рейнольдса:

$$Re(p) = \frac{W_{\text{Kp}}(p) \cdot \lambda'(p)}{v'(p)} \tag{40}$$

где: $\lambda'(p)$ – коэффициент теплопроводности жидкости;

v'(p) – удельный объем жидкости.

Критерий Нуссельта:

$$Nu(p) = \begin{cases} 0.125 \cdot Re(p)^{0.65} \cdot \Pr(p)^{\frac{1}{3}}, & Re(p) > 0.01\\ 0.065 \cdot Re(p)^{0.5} \cdot \Pr(p)^{\frac{1}{3}}, & Re(p) \le 0.01 \end{cases}$$
(41)

где: Pr(p) – число Прандтля, определенное по параметрам жидкости. Коэффициент теплоотдачи при пузырьковом кипении:

$$\alpha_{\text{Kp1}}(p) = \frac{Nu(p) \cdot \lambda'(p)}{l_{\text{ny3}}(p)} \tag{42}$$

Первый критический температурный напор:

$$\Delta t_{\text{Kp1}}(p) = \frac{q_{\text{Kp1}}(p)}{\alpha_{\text{Kp1}}(p)} \tag{43}$$

Второй критический тепловой поток:

$$q_{\text{kp2}}(p) = 0.125 \cdot r(p) \cdot \rho'' \cdot \left[\sigma(p) \cdot \frac{\left(\rho'(p) - \rho''(p)\right)}{\rho'(p)^2} \right]^{0.25}$$

$$(44)$$

Второй критический температурный напор:

$$\Delta t_{\text{kp2}}(p) = \left[\frac{q_{\text{kp1}}(p)}{0.62 \cdot \left[\frac{\lambda''(p)^3 \cdot r(p) \cdot (\rho'(p) - \rho''(p)) \cdot g}{v''(p) \cdot D_{\text{H}}} \right]^{0.25}} \right]^{\frac{4}{3}}$$
(45)

где: v''(p) – удельный объем пара;

 $\lambda^{\prime\prime}(p)$ – коэффициент теплопроводности пара.

Коэффициент теплоотдачи при пленочном кипении:

$$\alpha_{\text{kp2}}(p) = \frac{q_{\text{kp2}}(p)}{\Delta t_{\text{kp2}}(p)} \tag{46}$$

Коэффициент теплоотдачи при закритическом режиме:

$$\alpha_{3\mathrm{Kp}}(\Delta t) = 0.62 \cdot \frac{\lambda''(p)^3}{D_{\mathrm{H}}} \left[\frac{g \cdot \left(h_p'' + 0.8 \cdot c'' \cdot \Delta t\right) \cdot \left(\rho' - \rho''\right) \cdot D_{\mathrm{H}}^3}{\mu_p \cdot \lambda'' \cdot \Delta t} \right]^{0.25}$$
(47)

где: h_p'' – энтальпия пара;

c'' - теплоемкость пара;

 μ_p – динамическая вязкость пара.

Объединение определенных функций для тепловых потоков позволяет построить кривую кипения в логарифмическом масштабе:

Рис. 3.1. Кривая кипения азота при давлении 0.1 МПа

Для потока гелия расчет аналогичен представленному в разделе 2. Тогда:

Рис. 3.2. Коэффициент теплоотдачи для гелия

Рис. 3.3. Коэффициент теплопередачи

Полный располагаемый температурный напор разбивается на 10 равных интервалов, для которых с учетом определенного коэффициента теплопередачи необходимая площадь поверхности теплообмена:

Рис. 3.4. Распределение поверхности теплообмена по слоям. Слева направо – уменьшение температурного напора.

Переход от слоев к температурному напору:

Рис. 3.5. Распределение поверхности теплообмена по температурному уровню поверхности стенки

Требуемая расчетная площадь поверхности: $F_{\rm rp}=23.97~{\rm M}^2$

Расчетная длина трубки: $l_{\rm Tp1} = 52.99$ м;

Длина трубки с учетом запаса 20% (отклонения формул от экспериментальных данных): $l_{\mathrm{Tp1}} = 63.6 \ \mathrm{M};$

Конструктивные параметры витого теплообменника:

- Диаметр сердечника: $D_c = 320$ мм;
- Средний диаметр намотки: $D_{cp} = 371$ мм;

- Продольный шаг намотки: $t_2 = 18$ мм;
- Число витков одной трубки в слое: $n_{\mathrm{тp}_{\mathrm{c}\mathrm{n}}}=0.5.$

Ниже представлена таблица намотки аппарата, рассчитанного по изложенной методике:

Таблица 3.1 – Таблица намотки аппарата

No॒	$D_{ m cлоя}$, мм	$l_{{ m Tp}_{{ m c}{\scriptscriptstyle {\it I}}}}$, мм	$l_{ m 1тp}_{ m cn}$, мм
1	326	1029.8	514.9
2	344	1086.1	543.1
3	362	1142.4	571.2
4	380	1198.7	599.3
5	398	1255.0	627.5
6	416	1311.4	655.7

где: $D_{\text{слоя}}$ — диаметр і-того слоя;

 $l_{{
m Tp}_{
m cn}}$ – длина витка трубки в слое;

 $l_{\mathrm{1тp}_{\mathrm{cn}}}$ – длина одной трубки в слое.

Число продольных слоев навивки: $n_{\rm np}=36;$

Высота навивки: $h_{\text{HB}} = 648 \text{ мм};$

Высота аппарата с учетом подвода и отвода трубного пучка от трубной доски до намотки: $H\cong 1050$ мм;

Ширина аппарата с учетом свободного погружения навивки в область, заполненную жидким азотом: $D\cong 480$ мм.

Гидравлические потери в трубном пространстве: $\Delta p = 25.9 \text{ кПа.}$

4. Выводы

Анализируя полученные результаты по двум методикам, можно прийти к выводу, что конструктивно аппараты будут иметь схожие габаритные и массовые характеристики.

С одной стороны, в случае витого теплообменного аппарата гидравлическое сопротивление выше, поскольку длина трубного пучка значительно больше. С другой - для змеевиковой ванны принимается значительный коэффициент запаса, составляющий 50%, по сравнению с витым вариантом, где погрешность расчетных формул $\pm 20\%$.

Для формирования строгих выводов необходимо изготовление двух вариантов различных типоразмеров с последующим проведением испытаний и определением истинных значений коэффициентов теплопередачи.

Поскольку в ОАО «НПО «ГЕЛИЙМАШ», который выполняет заказы на производство криогенного оборудования ОИЯИ, отработана технология и налажено производство витых аппаратов, то для разрабатываемых криогенных систем целесообразно проектирование и производство теплообменного оборудования именно такой конфигурации, но для единичного производства наиболее предпочтителен вариант ванны змеевикового типа из-за относительной простоты изготовления и низкой стоимости.

СПИСОК ЛИТЕРАТУРЫ

- 1. Иванов В.И. Безмасляные вакуумные насосы. Л.: Машиностроение, Ленингр. Отд-ние, 1980. 160 с., ил.
- 2. Солодов. А.П. Тепломассообмен в энергетических установках. Электронный курс. twt.mpei.ac.ru: [сайт]. URL: twt.mpei.ac.ru/ ochkov/Diff_MC/web_HMT/index_HMT_E-Book.htm (дата обращения 16.02.2020).
- 3. Будневич С.С., Акулова Л. А., Борзенко Е.И., Головко Г.А. Примеры расчетов установок глубокого охлаждения. Уч. пос. для вузов по специальности «Компрессорные и холодильные машины и установки». Под ред. д-ра техн. наук проф. С.С. Будневича. Л., «Машиностроение». 1972 г. 288 стр. Табл. 117. Илл. 82. Библ. 66 назв.
- 4. Шаров Ю.И., Бородихин И.В. Построение кривой кипения жидкости. Методические указания к РГР для студентов 3 курса ФЭН: учеб.-метод. пособие / Ю.И. Шаров, И.В. Бородихин. —: Новосибирск: НГТУ, 2002. 18 с.
- 5. Шаров Ю.И. Расчет кривой кипения жидкости: учеб.-метод. пособие / Ю.И. Шаров. —: Новосибирск: НГТУ, 2011. 16 с.
- 6. Агеев А.И., Шамичев. А.Н. Термодинамический анализ рефрижераторного цикла с избыточным обратным потоком. Серпухов, 1982. 12 стр. с рис. Библиогр. 6.
- 7. Иньков А.Г., Коваленко В.Д., Морковник. И.М. Анализ схем криогенных рефрижераторных установок с избыточным обратным потоком / Сб. науч. тр.: Процессы в криогенных установках и системах. М.: НПО «Криогенмаш», 1981. С. 14-22.
- 8. Aspen Process Engineering Webinar. Aspen HYSYS Property Packages: Overview and Best Practices for Optimum Simulations//POLI.USP.BR: Политехническая школа обучения инженеров и лидеров (Escola Politécnica da USP). URL:

- http://sites.poli.usp.br/d/pqi2408/BestPracticesOptimumSimulationsHYSYSPropertyPackages.pdf (дата обращения 14.04.2020).
- 9. Benedict, Manson; Webb, George B.; Rubin, Louis C. (1940), «An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: I. Methane, Ethane, Propane, and n-Butane», Journal of Chemical Physics, doi:10.1063/1.1750658, ISSN 0021-9606.
- 10. Starling, Kenneth E. (1973), Fluid Properties for Light Petroleum Systems, Gulf Publishing Company, p. 270, ISBN 978-0872012936.
- 11. Robert P. Hesketh. Which Property Package should I use? Rowan University, стр. A-41.
- 12. Справочник по физико-техническим основам криогеники/ М. П. Малков, И. Б. Данилов, А. Г. Зельдович, А. Б. Фрадков; Под ред. М. П. Малкова. 3-е изд., перераб. и доп. –М.: Энергоатомиздат, 1985. –432 с., ил.

Приложение А. Змеевиковая ванна ПО

Þ

Давление кипения, Па: $p_{boil} := 1 \cdot 10^5$

Диаметр трубы, м: $D_{\text{TD}} := 0.012$ $\delta := 0.0008$

Свойства кипящего вещества

Плотность насыщенной жидкости $\rho'(p) := \frac{\rho_{s_px}(p,xN2)}{\kappa_{\Gamma} \cdot M}$

Плотность насыщенного пара $\rho''(p) := \frac{\rho_{s_py}(p\,,xN2)}{\binom{}{K\Gamma \cdot M}-3}$

Температура насыщенной жидкости $T_{_{H}}(p) := \frac{T_{s_px}(p\,,xN2)}{K}$

Теплоемкость (изобарная)

жидкости:
$$C'(p) := \frac{C_{p_Tdx} \left[T_{s_px}(p,xN2), \rho'(p) \cdot \left(\kappa_{\Gamma} \cdot M^{-3}\right), xN2 \right]}{\mathcal{J}_{\mathcal{W}} \cdot \kappa_{\Gamma}^{-1} \cdot K^{-1}}$$

Энтальпия жидкости $h'(p) := \frac{h_{Tdx} \! \left[T_{s_px}(p\,,xN2)\,, \rho'(p) \cdot \left(\kappa_{\Gamma} \cdot \text{м}^{-3}\right), xN2 \right]}{\left(\text{Дж} \cdot \kappa_{\Gamma}^{-1} \right)}$

Энтальпия пара $h''(p) := \frac{h_{Tdx} \! \left[T_{s_py}(p \,, xN2) \,, \rho''(p) \cdot \left(\kappa_{\Gamma} \cdot \text{м}^{-3}\right), xN2 \right]}{\left(\text{Дж} \cdot \kappa_{\Gamma}^{-1} \right)}$

Теплота парообразования $r(p) := \left| h'(p) - h''(p) \right|$

Поверхностное нагяжение $\sigma(p) := \frac{\sigma_{Tdx} \! \left[T_{_H}(p) \cdot K \,, \rho'(p) \cdot \left(\kappa_{\Gamma} \cdot M^{-3} \right), xN2 \right]}{H \cdot M}$

Коэфф. теплопроводности

жидкости: $\lambda'(p) := \frac{\lambda_{Tdx} \! \left[T_{_H}(p) \cdot K \, , \rho'(p) \cdot \left(_{K\Gamma} \cdot {_M}^{-3}\right), xN2 \right]}{B_T \cdot {_M}^{-1} \cdot K^{-1}}$

пара: $\lambda''(p) := \frac{\lambda_{Tdx} \! \left[T_{_H}(p) \cdot K \, , \rho''(p) \cdot \left(_{K\Gamma \, \cdot \, M}^{-3} \right) , xN2 \right]}{\left(_{BT \, \cdot \, M}^{-1} \cdot K^{-1} \right)}$

Динамическая вязкость

жидкости:
$$\mu'(p) := \frac{\mu_{Tdx} \! \left[T_{_H}(p) \cdot K \, , \rho'(p) \cdot \left(_{K\Gamma} \cdot _{M} ^{-3} \right) , xN2 \right]}{\Pi a \cdot c}$$

пара:
$$\mu''(p) := \frac{\mu_{Tdx} \! \left[T_{_H}(p) \cdot K \, , \rho''(p) \cdot \left(\kappa_{\Gamma} \cdot {_M}^{-3} \right) , xN2 \right]}{(\Pi a \cdot c)}$$

Кинематическая вязкость

жидкости:
$$v'(p) := \frac{\mu'(p)}{\rho'(p)}$$

пара:
$$v''(p) := \frac{\mu''(p)}{\rho''(p)}$$

Коэфф. темп. проводности жидкости:
$$a'(p) := \frac{\lambda'(p)}{C'(p) \cdot \rho'(p)}$$

Число Прандтля:
$$Pr'(p) := \frac{v'(p)}{a'(p)}$$

Первый критический тепловой поток:

$$q_{\kappa p1}(p) := 0.145 \cdot r(p) \cdot \rho'(p)^{0.5} \cdot \left[\sigma(p) \cdot (\rho'(p) - \rho''(p)) \cdot g\right]^{0.25}$$

Здесь:

$$r(p_{boil} \cdot \Pi a) = 199319.68$$
 Дж · кг $^{-1}$
 $\rho''(p_{boil} \cdot \Pi a) = 4.56$ кг · м $^{-3}$
 $\rho'(p_{boil} \cdot \Pi a) = 806.59$ кг · м $^{-3}$
 $\sigma(p_{boil} \cdot \Pi a) = 0.0089$ Н · м $^{-1}$

$$q_{kp1}(p_{boil} \cdot \Pi a) = 2374444.61$$
 $p_{H} \cdot M^{-2}$

Приведенная скорость парообразования (кипения):

$$W_k(p) := \frac{q_{kp1}(p)}{r(p) \cdot \rho''(p)}$$

$$W_k(p_{boil} \cdot \Pi a) = 2.61446 \qquad M \cdot c^{-1}$$

Характерный линейный размер для пузырькового кипения:

$$l_{\pi y_3}(p) := C'(p) \cdot \rho'(p) \cdot \sigma(p) \cdot \frac{T_{\scriptscriptstyle H}(p)}{\left(r(p) \cdot \rho''(p)\right)^2}$$

Здесь:

$$C'(p_{boil} \cdot \Pi a) = 2040.96$$
 Дж · кг⁻¹ · K⁻¹
 $T_H(p_{boil} \cdot \Pi a) = 77.24$ К

$$l_{\text{пу3}}(p_{\text{boil}} \cdot \Pi a) = 1.372 \times 10^{-6}$$
 м

Число Рейнольдса

$$Re_{pacu}(p) := \frac{W_k(p) \cdot l_{\pi y3}(p)}{v'(p)}$$

Здесь:

$$v'(p_{boil} \cdot \Pi a) = 2.001 \times 10^{-7} \quad m^2 \cdot c^{-1}$$

$$Re_{pacy}(p_{boil} \cdot \Pi a) = 17.931$$

Число Нуссельта

$$Nu(p) := \begin{vmatrix} 0.125 \cdot Re_{pacy}(p)^{0.65} \cdot Pr'(p)^{\frac{1}{3}} & \text{if } Re_{pacy}(p) > 0.01 \\ 0.0625 \cdot Re_{pacy}(p)^{0.5} \cdot Pr'(p)^{\frac{1}{3}} & \text{if } Re_{pacy}(p) \leq 0.01 \end{vmatrix}$$

$$Nu(p_{boil} \cdot \Pi a) = 1.0728$$

Здесь:

$$Pr'(p_{boil} \cdot \Pi a) = 2.27$$

Коэфф. теплоотдачи при пузырьковом кипении

$$\alpha_{\kappa p1}(p) := \frac{Nu(p) \cdot \lambda'(p)}{l_{\pi y3}(p)}$$

$$\alpha_{\text{kp1}}(p_{\text{boil}} \cdot \Pi a) = 113364.83$$
 BT · M⁻² · K

Здесь:

$$\lambda'(p_{boil} \cdot \Pi a) = 0.145 \text{ Bt} \cdot \text{M}^{-1} \cdot \text{K}^{-1}$$

Температурный напор

$$\Delta t_{\kappa p1}(p) := \frac{q_{\kappa p1}(p)}{\alpha_{\kappa p1}(p)}$$

$$\Delta t_{\kappa p1} (p_{boil} \cdot \Pi a) = 20.95$$
 K

Второй критический тепловой поток:

$$\begin{aligned} q_{\kappa p2}(p) &:= 0.125 \cdot r(p) \cdot \rho''(p) \cdot \left[\frac{[\sigma(p) \cdot (\rho'(p) - \rho''(p))]}{\rho'(p)^2} \right]^{0.25} \\ q_{\kappa p2}(p_{boil} \cdot \Pi a) &= 6533.76 \quad \text{Bt} \cdot \text{m}^{-2} \end{aligned}$$

Температурный напор

$$\Delta t_{\kappa p2}(p) := \begin{bmatrix} q_{\kappa p2}(p) \\ \hline 0.62 \cdot \left[\frac{\lambda''(p)^3 \cdot r(p) \cdot (\rho'(p) - \rho''(p)) \cdot g}{v''(p) \cdot D_{Tp}} \right]^{0.25} \end{bmatrix}$$

$$\Delta t_{\kappa p2}(p_{boil} \cdot \Pi a) = 67.3 \quad K$$

Коэфф. теплоотдачи при пленочном кипении

$$\alpha_{\kappa p2}(p) := \frac{q_{\kappa p2}(p)}{\Delta t_{\kappa p2}(p)}$$

$$\alpha_{\rm kp2}(p_{\rm boil} \cdot \Pi a) = 97.08$$

Расчетные значения

$$\begin{array}{ll} Pr_p \coloneqq Pr' \big(p_{boil} \cdot \Pi a \big) & l_{\pi y_3_p} \coloneqq l_{\pi y_3} \big(p_{boil} \cdot \Pi a \big) \\ \\ r_p \coloneqq r \big(p_{boil} \cdot \Pi a \big) & v'_p \coloneqq v' \big(p_{boil} \cdot \Pi a \big) \\ \\ \rho''_p \coloneqq \rho'' \big(p_{boil} \cdot \Pi a \big) & \lambda'_p \coloneqq \lambda' \big(p_{boil} \cdot \Pi a \big) \\ \\ \rho'_p \coloneqq \rho' \big(p_{boil} \cdot \Pi a \big) & \lambda''_p \coloneqq \lambda'' \big(p_{boil} \cdot \Pi a \big) \\ \\ v''_p \coloneqq v'' \big(p_{boil} \cdot \Pi a \big) & \mu'_p \coloneqq \mu' \big(p_{boil} \cdot \Pi a \big) \\ \\ h''_p \coloneqq h'' \big(p_{boil} \cdot \Pi a \big) & c''_p \coloneqq C'' \big(p_{boil} \cdot \Pi a \big) \\ \\ T_{H_p} \coloneqq T_H \big(p_{boil} \cdot \Pi a \big) & \Delta t_{\kappa p_1_p} \coloneqq \Delta t_{\kappa p_1} \big(p_{boil} \cdot \Pi a \big) \\ \\ \Delta t_{\kappa p_2_p} \coloneqq \Delta t_{\kappa p_2} \big(p_{boil} \cdot \Pi a \big) \end{array}$$

Зависимости для построения кривой кипения (пузырьковое):

$$Nu_{pacq}(Re) := \begin{bmatrix} 0.125 \cdot Re^{0.65} \cdot Pr_p^{\frac{1}{3}} & \text{if } Re > 0.01 \\ 0.0625 \cdot Re^{0.5} \cdot Pr_p^{\frac{1}{3}} & \text{if } Re \leq 0.01 \end{bmatrix}$$

q1 := 1000000

Given

$$q1 = \Delta t \cdot \frac{Nu_{pacq} \left(\frac{q1}{r_p \cdot \rho''_p} \cdot l_{\pi y_3 p} \right) \cdot \lambda'_p}{l_{\pi y_3 p}}$$

$$q1(\Delta t) := Find(q1)$$

Зависимости для построения кривой кипения (пленочное):

$$q2 := 100000$$

Given

$$\Delta t = \left[\frac{q2}{\left[0.62 \cdot \left[\frac{\lambda''_{p}^{3} \cdot r_{p} \cdot \left(\rho'_{p} - \rho''_{p}\right) \cdot g}{v''_{p} \cdot D_{Tp}}\right]^{0.25}\right]}\right]^{\frac{4}{3}}$$

$$q2(\Delta t) := Find(q2)$$

Зависимости для построения кривой кипения (закритическое):

$$\alpha_{FilmBoil}(\Delta t) := 0.62 \cdot \frac{{\lambda''}_p}{D_{Tp}} \cdot \left[\frac{g \cdot \left| h''_p + 0.8 \cdot c''_p \cdot \Delta t \right| \cdot \left(\rho'_p - \rho''_p \right) \cdot D_{Tp}^{-3}}{\mu'_p \cdot \lambda''_p \cdot \Delta t} \right]^{\frac{1}{4}}$$

$$\begin{split} q(\Delta t) &:= \begin{bmatrix} q1(\Delta t) & \text{if } 0.1 \leq \Delta t \leq \Delta t_{\kappa p1_p} \\ q2(\Delta t) & \text{if } \Delta t_{\kappa p1_p} \leq \Delta t \leq \Delta t_{\kappa p2_p} \\ q2(\Delta t) + c_{St_Bo} \cdot \left[\left(T_{H_p} + \Delta t \right)^4 - T_{H_p}^{\quad \ \ \, 3} \right] & \text{if } \Delta t_{\kappa p2_p} \leq \Delta t \\ 1 & \text{otherwise} \end{split}$$

$$\alpha_{N2}(T) := \frac{q \big(T - T_{\text{H_p}} \big)}{\big(T - T_{\text{H_p}} \big)} \cdot \frac{B_T}{{_M}^2 \cdot K}$$

$$\Delta t1 := \, 0.1 \, , 0.1 + 0.25 \, .. \, \Delta t_{\kappa p1_p} + 0.1$$

$$\Delta t2 := \Delta t_{\kappa p1_p}\,, \Delta t_{\kappa p1_p} + 1\,..\,\Delta t_{\kappa p2_p}$$

$$\Delta t3 := \Delta t_{\kappa p2_p}, \Delta t_{\kappa p2_p} + 10..1000$$

