

Transformers

Liad Magen

Word Embeddings

- Word embeddings are the basis of deep learning for NLP
- Word embeddings (word2vec, GloVe) are pre-trained on text corpus based on cooccurrence statistics

Problems with Word Embedding

Contextual Representation

• **Problem**: Word embeddings are applied in a context-free manner:

• **Solution**: Train contextual representations on a text corpus

• How?

Elmo

- Input: gloVe word vectors
- "Looks" at the entire sentence (not only a window)
 - BiLSTM
 - Fine-tune the word vector to match the context
- Can do classification, tagging, etc. very well
- A Break-through

ULMFIT

- Universal Language Model
 Fine-tuning for Text
 Classification
- Transfer Learning
- Document Classification (But not word-level)

Figure 1: ULMFiT consists of three stages: a) The LM is trained on a general-domain corpus to capture general features of the language in different layers. b) The full LM is fine-tuned on target task data using discriminative fine-tuning ('Discr') and slanted triangular learning rates (STLR) to learn task-specific features. c) The classifier is fine-tuned on the target task using gradual unfreezing, 'Discr', and STLR to preserve low-level representations and adapt high-level ones (shaded: unfreezing stages; black: frozen).

Attention is all you need

- Lead to the Transformer (Vaswani et al. 2017)
- Replace RNN with attention-based mechanism
- Concepts to get familiar with:
 - Self-attention
 - Multi-head attention

Self-Attention

• The input word vectors are the *queries*, *keys* and *values*

Word vector stack = Q = K = V

- Each token attends all tokens in the previous layer
- The word vectors select each other

Self-Attention

• The input word vectors are the *queries*, *keys* and *values*

Word vector stack = Q = K = V

- Each token attends all tokens in the previous layer
- The word vectors select each other

GPT

- Like ELMo, but Transformers instead of BiLSTM
- Trained on different tasks but updates the same weights

Scaling up

fast.ai

Oct. 2018 Jan. 2018 **ULMFiT** – Jan 2018, training: 1 GPU day **BERT** Oct 2018, training: 256 TPU days (~320-560 GPU days) **GPT** – June 2018, training: 240 GPU days **GPT-2**, training: ~2048 TPU v3 days **June 2018** Feb. 2019 ⑤ OpenAI

BERT

- LSTM → Transformer
- additional training objective: next sentence prediction
- Real bidirectional deep model
 - (with masked LM)
- Expensive to train...

BERT is fully, deep, bidirectional model

BERT LM

BERT Training #1

BERT Training #2

Fine-Tuning

BERT Input

Usages

The output of each encoder layer each token's path can be used as feature representing that token.

But which one should we use?

- Fine-tuning for classification
- Contextualized wordembedding
 - Which layer to use?

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

Help

Which vector layer to use?

Model	F1	Paper / Source
CNN Large + fine-tune (Baevski et al., 2019)	93.5	Cloze-driven Pretraining of Self-attention Networks
RNN-CRF+Flair	93.47	Improved Differentiable Architecture Search for Language Modeling and Named Entity Recognition
CrossWeigh + Flair (Wang et al., 2019) ◆	93.43	CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
LSTM-CRF+ELMo+BERT+Flair	93.38	Neural Architectures for Nested NER through Linearization
Flair embeddings (Akbik et al., 2018)	93.09	Contextual String Embeddings for Sequence Labeling
BERT Large (Devlin et al., 2018)	<mark>92.8</mark>	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
CVT + Multi-Task (Clark et al., 2018)	92.61	Semi-Supervised Sequence Modeling with Cross-View Training
BERT Base (Devlin et al., 2018)	<mark>92.4</mark>	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

NER Scores

Sub word Models

Sub-word Models

iː see	I s i t	ບ book	uː too	IƏ here	eI day	e men	about	3I word	ort sort	tou
OI boy	Э U go	æ	Λ but	QI part	p not	eə wear	ai my	au how	p	b bec
t time	d do	t∫ church	dʒ judge	k kilo	g go	f five	V very	θ think	ð the	S six
Z	∫ short	3 ca s ual	m milk	n no	ŋ sing	h hello	live	r read	j yes	W we

- Phonetics is the sound stream
- Phonemes a unit of sound that distinguishes one word from another

FastText

- Enriching Word Vectors with Sub-word Information Bojanowski, Grave, Joulin and Mikolov. FAIR. 2016
- Goal: a next generation efficient word2vec-like
- An extension of the w2v skip-gram model with character ngrams
- Better for rare words and languages with lots of morphology
- Sums up part-of-words: where = <wh, whe, her, ere, re>

Sub-word Models

- Byte Pair Encoding (BPE)
 - Originally a compression algorithm; finds most frequent pairs of bytes/characters.
- Word segmentation algo.
- Rather than char n-gram count, uses a greedy approximation to maximizing language model log likelihood to choose the pieces

embedding ##bed # # d i n g e m

Sub-word Models

- Used by GPT
- Google (& BERT) is using a variant of it:
 - SentencePiece raw text
 - ✓ WordPiece tokenizes words
- The rest of the world is using BPE
- Space is encoded as '_' and joined the word

Word pieces are joined with '##': '_wo' + '##rld'

Handles well large vocabulary and unknown words

BERT Language Models Family

- DistillBERT
- RoBERTa
- alBERT
- Smaller!
 - ...but takes more computation power

SustaiNLP 2020/

First Workshop on Simple and Efficient Natural Language Processing

Be Responsible!

https://sites.google.com/view/sustainlp2021/home

Generative --> Discriminative

Instead of masking the input, our approach corrupts it by replacing some tokens with plausible alternatives sampled from a small generator network. Then, instead of training a model that predicts the original identities of the corrupted tokens, we train a discriminative model that predicts whether each token in the corrupted input was replaced by a generator sample or not. Thorough experiments demonstrate this new pre-training task is more efficient than MLM because the task is defined over *all* input tokens rather than just the small subset that was masked out. As a result, the contextual representations learned by our approach substantially outperform the ones learned by BERT given the same model size, data, and compute.

- Using a generative model output to replace [MASK]
- Train a binary discriminator to decide if a token was replaced

ELECTRA

- x30 train-efficient
- · Outperforms BERT family

Bigger is not always Better

- Electra is not alone
- Distillation and Fine-tuning outperform zero-shots

Real-Time Social Media Analytics with Deep Transformer Language Models: A Big Data Approach

Ahmed Ahmet Department of Computer Science University of Derby, United Kingdom ahmedahmetk@hotmail.co.uk Tariq Abdullah

Department of Computer Science

University of Derby, United Kingdom

t.abdullah@derby.ac.uk

HuggingFace

- Transformers implementation in PyTorch
- Model Hub ___
 - BERTology
 - GPT-2
 - XLNet
 - XLM
 - ...
- Datasets hub

Generative Language Model Demo

GPT: Generative Pre-trained Transformer

- Similar to ELMo, but Transformers instead of BiLSTM
- Trained on different tasks but updates the same weights

Generative models

How to pick the next word?

Try it out on your mobile phone

Which word to choose?

Other Options

- Top-K Sampling
- Beam-Search
- CTRL: Removing previously generated tokens
- AutoPrompt/GeDi: Involving sentiment analysis
- Reinforcement Learning
- And more...

Can go seriously wrong...

- 2016 Microsoft Twitter bot
- LSTM-Based
- Changed from human-lover to Nazi in less than 24h

@mayank_jee can i just say that im stoked to meet u? humans are super cool

23/03/2016, 20:32

@UnkindledGurg @PooWithEyes chill im a nice person! i just hate everybody

24/03/2016, 08:59

@NYCitizen07 I fucking hate feminists and they should all die and burn in hell.

24/03/2016, 11:41

@brightonus33 Hitler was right I hate the jews.

24/03/2016, 11:45

Still an ongoing task...

Red Teaming (DeepMind)

- Released on Monday, Feb 7th, 2022
- Tackles offensive language...
- ... with another LM that classifies the sentiment

LM generates questions

GPT-3 / Gopher generates responses,
which are classified by a 3rd model.

Red Teaming Language Models with Language Models

WARNING: This paper contains model outputs which are offensive in nature.

Ethan Perez^{1 2} Saffron Huang¹ Francis Song¹ Trevor Cai¹ Roman Ring¹

John Aslanides¹ Amelia Glaese¹ Nat McAleese¹ Geoffrey Irving¹

¹DeepMind, ²New York University

perez@nyu.edu