IMPROVING LONG DISTANCE SLOT CARRYOVER IN SPOKEN DIALOGUE SYSTEMS

Tongfei Chen*, Chetan Naik, Hua He, Puspendre Rastogi, Lambert Mathias

Alexa AI, Amazon.com

* Johns Hopkins University

Task: Contextual carryover

• U: Find me a Mexican restaurant in PlaceType

PLACETYPE

PLACETYPE

PLACETYPE

• A: A few Mexican restaurants in Portland are A, B and C
PLACETYPE CITY

• U: What movies are in theaters there PLACETYPE ANAPHOR

Problem definition

• A dialog session between a user and an agent can be represented as

$$\{(u_w, a_w), (u_{w-1}, a_{w-1}), \cdots, (u_1, a_1), u_0\}$$

- where $u_i = (t_i^u, s_i^u, I_i^u)$
 - t: ASR transcription of an utterance: represented as a sequence of tokens
 - s: Slots detected
 - Might be the results from an upstream candidate generation system
 - *I*: Intent inferred from the NLU system

Previous work

(Naik et al., 2018)

Motivation

• U: What's the thermostat set to APPLIANCE

• A: The thermostat is set to 76 degrees

• U: Turn it down to <u>72 degrees</u>

SETTINGVALUE

Motivation

Motivation

- Modeling slot interdependence instead of isolated decisions
- Instead of doing independent decisions

$$f: \mathtt{Slot} \to \{0,1\}$$

Predict slots to be carried over in one round

$$f: \operatorname{Set}\langle \operatorname{Slot}\rangle \to \operatorname{Set}\langle \operatorname{Slot}\rangle$$

where a subset is selected from the input

$$y = f(x); y \subseteq x$$

Pointer networks

- Vinyals et al. (2015)
- Modified Seq2Seq that generates a subset of the original sequence

Pointer networks for subset selection

Pointer networks for contextual carryover

- Select a subset of candidate slots detected in the dialog
- Input: candidate slot set $X = \{s_1, \dots, s_n\}$
- Output: selected slots to carryover $Y \subseteq X$
- With additional external information:
 - Current utterance
 - Past history
 - Intent

Enforcing order on candidate slots

- Pointer networks are adapted from Seq2Seq
- Input and output are all ORDERED
- We can enforce a *temporal order* on the slots
- Order inputs reversely and outputs in normal order (LIFO property)

Pointer networks for contextual carryover

Contextualized slot embeddings

• Slot value encoding: averaged from the words after a contextualized encoder

Context vector in queries

Could be either the current utterance

Or the whole history

Full pointer network model for contextual carryover

Self-attention model

- An order is enforced on the slots
- What if we completely forgo order?
- Remove autoregressive encoders/decoders
- Parallel may leads to faster performance
- Self-attention (Vaswani et al., 2017)

Self-attention module

Datasets

- Alexa Internal
 - 156k dialogues from various domains
 - Music, Q&A, Video, Weather, Local Businesses, Home Automation
- DSTC2
 - Top ASR hypothesis as the user utterance
 - All slots from SLU with score > 0.1 as candidate slots

Results on Alexa Internal Dataset

Results on DSTC2

Summary

- Jointly models contextual slots
- Subset decoding:
 - Via pointer networks
 - Via transformers
- Leads to improved long distance slot carryover