Introduction to Regression with R

February 5, 2019

The Regression Model

This is a linear regression model

$$Y = \beta_0 + \beta_1 X + U \tag{1}$$

where

Y: Dependent variable (also called respond, regressand and explained variable).

X : Independent variable (also called covariate, regressor and explanatory variable).

U: Error term, E(U)=0. The error term includes all factors that affects Y except for X.

The Regression model

The regression line as a conditional average

Let us take the conditional mean of Y w.r.t. X

$$E(Y|X) = E(\beta_0 + \beta_1 X + U|X) = \beta_0 + \beta_1 X, \qquad (2)$$

 $\beta_0 + \beta_1 X$ is the regression line.

- For the regression line to actually be a **conditional average**, we have to assume that E(U|X) = E(U) = 0.
- If this assumption is wrong, the regression line is not a conditional average but merely a linear projection
 - A linear approximation to the conditional average

Least squares (LS)

First, we collect a (random) sample of data (X_i, Y_i) , i = 1, ..., n

- ► Carl Friedrich Gauss realized, in the late 18th century, that we need a measure between the observation points and the line.
- His choice was

$$\sum_{i=1}^{n} U_i^2 = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

and the LS estimators are based on the minimization problem:

$$\min_{\beta_0,\beta_1} \sum_{i=1} (Y_i - \beta_0 - \beta_1 X_i)^2$$

The LS estimators

$$\hat{\beta}_1 = \frac{\sum (Y_i - \bar{Y})(X_i - \bar{X})}{\sum (X_i - \bar{X})^2},$$
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X},$$

the fitted (predicted) values $(\hat{E}(Y_i|X_i))$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i,$$

and the residuals

$$\hat{U}_i = Y_i - \hat{Y}_i.$$

Exercise

Use the data *Prestige* in the package *car*. Consider the following model:

prestige =
$$\beta_0 + \beta_1$$
income + U

- 1. We compute $\hat{\beta}_1$ using the formula from the previous slide and then you compute:
- 2. $\hat{\beta}_0$
- 3. and \hat{Y}_i
- 4. and \hat{U}_i

Distributions of $\hat{\beta}_0$ and $\hat{\beta}_1$

- ▶ The $\hat{\beta}_0$ and $\hat{\beta}_1$ are estimators and random variables.
- ► They will vary between different samples and have distributions with probabilities of each possible outcome
- ▶ In small samples we have to assume $U \sim N(0, \sigma^2)$, then

$$T = \frac{\hat{\beta}_j - \beta_j}{S_{\hat{\beta}_j}} \sim t_{n-2}$$

► However if *n* is large we don't need the normality assumption, then

$$T = rac{\hat{eta}_j - eta_j}{\mathcal{S}_{\hat{eta}_j}} \stackrel{a.}{\sim} \mathcal{N}(0,1)$$

▶ We will come back to the details in coming lectures

T-testing of hypotheses about the parameters in a regression model (P-values)

1.
$$H_0$$
: $\beta_j = \beta_{j0}$

2.

$$H_a: \left\{ \begin{array}{ll} \beta_j > \beta_{j0} & \text{(upper-tail alternative)} \\ \beta_j < \beta_{j0} & \text{(lower-tail alternative)} \\ \beta_j \neq \beta_{j0} & \text{(two-tailed alternative)} \end{array} \right.$$

3. Test statistic: $T=T_0=\frac{\hat{\beta}_j-\beta_{0j}}{S_{\hat{\beta}_j}}$ under H_0

4.

$$\text{P-value} = \left\{ \begin{array}{l} P\left(T > t_0\right) & \text{(upper-tail alternative)} \\ P\left(T < t_0\right) & \text{(lower-tail alternative)} \\ 2P\left(T > |t_0|\right) & \text{(two-tailed alternative)} \end{array} \right.$$

T-tests given by default by Statistical packages

- 1. H_0 : $\beta_i = 0$
- 2. H_a : $\beta_j \neq 0$
- 3. Test statistic: $T = T_0 = \frac{\hat{\beta}_j}{S_{\hat{\beta}_i}}$ under H_0
- 4. P-value = $2P(T > |t_0|)$

i.e. for the coefficient on X the H_0 is: X does not have an effect on Y.

If one rejects H_0 it is common to say that X has a significant effect on Y.

Example using the lm() function

Now we will use the Im() function in R for computing the estimates in the previous exercise. Check the help file for Im() (?Im()).

Use the data *Prestige* in the package *car*. Consider the following model:

$$prestige = \beta_0 + \beta_1 income + U$$

Does income have a significant effect on prestige?

Why LS?

1. Practical

- Most researchers know how LS works and how to interpret the results.
- ▶ All computing softwares have preprogrammed functions for LS estimation (Excel, Minitab, Matlab, R, gretl ...).

2. Theoretically attractive

 LS is consistent, asymptotic normal and also BLUE ("Best Linear Unbiased Estimator") under a special assumption (more about this latter).

Why not LS?

- ▶ A major concern is that we assume a linear functional form.
 - ▶ Why? Because it is simple, mathematically
- Because more general models requires more data to give significant results.
 - ► There is often a choice between a general specification and no significant results and a linear model and significant results

▶ How well does the linear relationship explains the data? One measure of fit is the so called R^2 value.

$$R^2 = \frac{\sum (\hat{Y}_i - \bar{Y})^2}{\sum (Y_i - \bar{Y})^2} = \frac{ESS}{TSS} = 1 - \frac{\sum (Y_i - \hat{Y}_i)^2}{\sum (Y_i - \bar{Y})^2} = 1 - \frac{RSS}{TSS}.$$

where

ESS: Explained (variation) sum of squares

RSS: Residual (variation) sum of squares

TSS: Total (variation) sum of squares, and

$$TSS = ESS + RSS$$

 R^2 is a consistent estimator of the following measure:

$$1 - \frac{\sigma_U^2}{\sigma_V^2}$$

- R² is interpreted as the relative fraction of 'variation' of Y explained by X
- ▶ The range of R^2 is limited to

$$0 \le R^2 \le 1$$

▶ If X do not explain any variation in $Y \Leftrightarrow \hat{eta}_1 = 0 \Rightarrow$

$$\sum (\hat{Y}_i - \bar{Y})^2 = \sum (\hat{\beta}_0 + \hat{\beta}_1 X_i - \bar{Y})^2 = \sum (\hat{\beta}_0 - \bar{Y})^2 =$$

$$\underbrace{=}_{\left[\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}\right]} \sum (\bar{Y} - \bar{Y})^2 = 0 \Rightarrow \underline{R^2 = 0}$$

▶ If X explains all variation in $Y \Rightarrow \hat{Y}_i = Y_i \Rightarrow R^2 = 1$

The Standard Error of the Regression

▶ The Standard Error of the Regression is defined as

$$S_U = \sqrt{S_U^2} = \sqrt{\frac{\sum \hat{U}_i^2}{n-2}} = \sqrt{\frac{\sum (Y_i - \hat{Y}_i)^2}{n-2}}$$

This is an estimator of the standard deviation of U, and thus measures the spread around the E(Y|X) – line.

Exercise

Compute R^2 for the Prestige regression in the previous example. Compare your r^2 to the ones reported by Im().

Remarks

- ▶ A relatively small R^2 value (e.g 0.1) and a large S_U do not imply that X is not important; only that there is other factors accumulated in U that also explain variation in Y
- ▶ X could still be the single variable that explains most variation in Y, but of course the probability for this decreases with R².
- ▶ How large R^2 is supposed to be is arbitrary and differs between different research disciplines and applications.

Regression when the explanatory variables is binary

Binary variables, also called Dummy or indicator variables, e.g.

$$D=\left\{egin{array}{lll} 1 & {
m if} & {
m Female} & {
m or} \\ 0 & {
m if} & {
m Male} \end{array}
ight. \quad D=\left\{egin{array}{lll} 1 & {
m if} & {
m Medicine} \\ 0 & {
m if} & {
m Placebo} \end{array}
ight.$$
 $Y=eta_0+eta_1D+U$

$$E(Y|D=0) = \beta_0$$

 $E(Y|D=1) = \beta_0 + \beta_1$
 $E(Y|D=1) - E(Y|D=0) = \beta_1$

▶ Thus in the simple regression framework, with one binary regressor, the interpretation of β_1 is the difference in average of Y given group belonging, D=1 or D=0.

Next

- Next time we start with the second exercise set. You will mainly work with the lm() function in R. Estimate regressions and interpret results based on today's lecture.
- Next lecture we will examine some matrix algebra related to least-squares regression (when the number of X-variables are more than one).