Continuité et compacité

Exercice 1 [01172] [correction]

Soient E un espace vectoriel normé de dimension finie non nulle et $u \in \mathcal{L}(E, F)$. Montrer qu'il existe un vecteur $x_0 \in E$ unitaire tel que

$$||u|| = ||u(x_0)||$$

Exercice 2 [01173] [correction]

Soient E et F deux espaces vectoriels normés de dimensions finies.

Soient K un compact de E et $f: K \to F$ une application continue injective.

- a) On pose L = f(K). Montrer que L est compact.
- b) Montrer que $f^{-1}: L \to K$ est continue.

Exercice 3 [01174] [correction]

Soient K et L deux compacts non vides et disjoints.

Montrer

$$d(K, L) = \inf_{x \in K, y \in L} ||y - x|| > 0$$

Exercice 4 [01175] [correction]

Soit E un espace vectoriel normé de dimension finie.

- a) Soit A une partie non vide de E. Montrer que l'application $x\mapsto d(x,A)$ est continue sur E.
- b) Soit K un compact non vide inclus dans un ouvert U. Montrer qu'il existe $\alpha>0$ tel que

$$\forall x \in K, B(x, \alpha) \subset U$$

Exercice 5 [01176] [correction]

Soit K un compact non vide d'un espace vectoriel normé E de dimension finie. On considère une application $f:K\to K$ vérifiant

$$\forall x, y \in K, x \neq y \Rightarrow d(f(x), f(y)) < d(x, y)$$

Montrer que f admet un unique point fixe.

Exercice 6 [01177] [correction]

Soit $f:A\subset E\to F$ avec F espace vectoriel normé de dimension finie.

On suppose que f est bornée et que

$$\Gamma_f = \{(x, y) \in A \times F/y = f(x)\}\$$

est une partie fermée de $E \times F$.

Montrer que f est continue.

Exercice 7 [02775] [correction]

Soient (E, ||.||) un espace vectoriel normé, K un compact non vide de E et $f: K \to K$ telle que

$$\forall (x,y) \in K^2, x \neq y \Rightarrow ||f(x) - f(y)|| < ||x - y||$$

- a) Montrer qu'il existe un unique point fixe c de f sur K.
- b) Soit (x_n) telle que $x_{n+1} = f(x_n)$ et $x_0 \in K$. Montrer que la suite (x_n) converge vers c.

Exercice 8 [02955] [correction]

Soient E un \mathbb{R} -espace vectoriel de dimension finie, u dans $\mathcal{L}(E)$ et C un compact convexe non vide de E stable par u.

Si $n \in \mathbb{N}^*$, soit

$$u_n = \frac{1}{n} \sum_{i=0}^{n-1} u^i$$

a) Montrer que :

$$\forall n \in \mathbb{N}, u_n(C) \subset C$$

- b) Soit $x \in u_n(C)$. Proposer un majorant de N(x u(x))
- c) Montrer que

$$\bigcap_{n\in\mathbb{N}^{\star}}u_{n}(C)\neq\emptyset$$

d) Montrer que u possède un point fixe dans K.

Exercice 9 [03410] [correction]

Soient f une application de \mathbb{R} dans \mathbb{R} et I un segment inclus dans l'image de f. Montrer qu'il existe un segment J tel que

$$f(J) = I$$

Exercice 10 [03471] [correction]

Soit E un espace normé et f une application vérifiant

$$\forall x, y \in E, ||f(x) - f(y)|| = ||x - y||$$

Soit K une partie compacte de E telle que $f(K) \subset K$.

a) Pour $x \in K$ on considère la suite récurrente (x_n) donnée par

$$x_0 = x \text{ et } \forall n \in \mathbb{N}, x_{n+1} = f(x_n)$$

Montrer que x est valeur d'adhérence de la suite (x_n) .

b) En déduire que f(K) = K.

Exercice 11 [03857] [correction]

Soit K une partie compacte non vide d'un espace vectoriel normé E de dimension finie.

On considère une application $f: K \to K$ vérifiant ρ -lipschitzienne i.e. vérifiant

$$\forall x, y \in K, ||f(y) - f(x)|| \leqslant \rho ||y - x||$$

- a) On suppose $\rho < 1$. Montrer que f admet un point fixe.
- b) On suppose $\rho = 1$ et K convexe. Montrer à nouveau que f admet un point fixe.

On pourra introduire, pour $a \in K$ et $n \in \mathbb{N}^*$, les fonctions

$$f_n: x \mapsto \frac{a}{n} + \frac{n-1}{n} f(x)$$

Corrections

Exercice 1 : [énoncé]

 $||u|| = \sup ||u(x)||$, or $\{x \in E/||x|| = 1\}$ est un compact non vide (car fermé,

image réciproque du fermé {1} par l'application norme et clairement borné en dimension finie) donc l'application $x \mapsto ||u(x)||$ étant à valeurs réelles et continue admet un maximum sur ce compact en un élément x_0 qui résout le problème posé.

Exercice 2 : [énoncé]

a) L est l'image d'un compact par une application continue donc L est compact.

b) Supposons f^{-1} non continue : $\exists y \in L, \exists \varepsilon > 0, \forall \alpha > 0, \exists y' \in L$ tel que

 $|y'-y| \le \alpha$ et $|f^{-1}(y')-f^{-1}(y)| > \varepsilon$. Posons $x = f^{-1}(y)$ et en prenant $\alpha = \frac{1}{n}$ définissons $y_n \in L$ puis $x_n = f^{-1}(y_n)$ tels que $|y_n - y| \le \frac{1}{n}$ et $|x_n - x| > \varepsilon$. (x_n) est une suite d'éléments du compact Kdonc elle possède une sous-suite convergente : $(x_{\varphi(n)})$. Posons $a = \lim x_{\varphi(n)}$. Comme f est continue, $y_{\varphi(n)} = f(x_{\varphi(n)}) \to f(a)$ or $y_n \to y$ donc par unicité de la limite y = f(a) puis $a = f^{-1}(y) = x$. Ceci est absurde puisque $|x_{\varphi(n)} - x| > \varepsilon$.

Exercice 3 : [énoncé]

L'application $x \mapsto d(x, L) = \inf_{y \in L} ||y - x||$ est une fonction réelle continue sur le compact K donc admet un minimum en un certain $a \in K$. Or $y \mapsto ||y - a||$ est une fonction réelle continue sur le compact L donc admet un minimum en un certain $b \in L$. Ainsi

$$d(K, L) = \inf_{x \in K} \inf_{y \in L} \|y - x\| = \inf_{y \in L} \|y - a\| = \|b - a\| > 0$$

car $a \neq b$ puisque $K \cap L = \emptyset$.

Exercice 4 : [énoncé]

a) Soient $x, x' \in E$.

$$\forall y \in A, \ \|x - y\| \le \|x - x'\| + \|x' - y\|$$

donc $d(x, A) \le ||x - x'|| + ||x' - y||$ puis $d(x, A) - ||x - x'|| \le ||x' - y||$ et $d(x, A) - ||x - x'|| \le d(x', A).$

Ainsi $d(x,A) - d(x',A) \le ||x-x'||$ et par symétrie $|d(x,A) - d(x',A)| \le ||x-x'||$. Finalement $x \mapsto d(x, A)$ est 1 lipschitzienne donc continue.

b) Considérons l'application $x \mapsto d(x, \mathcal{C}_E U)$ définie sur le compact K. Cette application est bornée et atteint ses bornes. Posons $\alpha = \min_{x \in K} d(x, C_E U)$ atteint en $x_0 \in K$.

Si $\alpha = 0$ alors $x_0 \in \overline{\mathcal{C}_E U}$ or $\mathcal{C}_E U$ est fermé et donc $x_0 \notin U$ or $x_0 \in K$. Nécessairement $\alpha > 0$ et alors

$$\forall x \in K, B(x, \alpha) \subset U$$

Exercice 5 : [énoncé]

Unicité : Si $x \neq y$ sont deux points fixes distincts on a

$$d(x,y) = d(f(x), f(y) < d(x,y)$$

C'est exclu et il v a donc unicité du point fixe.

Existence : Considérons la fonction réelle $g: x \mapsto d(x, f(x))$ définie sur K. Par composition g est continue et puisque K est une partie compacte non vide, gatteint son minimum en un certain $x_0 \in K$.

Si $f(x_0) \neq x_0$ on a alors

$$g(f(x_0)) = d(f(f(x_0)), f(x_0)) < d(f(x_0), x_0) = g(x_0)$$

ce qui contredit la définition de x_0 . Nécessairement $f(x_0) = x_0$ ce qui résout le problème.

Exercice 6 : [énoncé]

Par l'absurde, supposons qu'il existe $a \in A$ tel que f n'est pas continue en a.

$$\exists \varepsilon > 0, \forall \alpha > 0, \exists x \in A, ||x - a|| \le \alpha \text{ et } ||f(x) - f(a)|| > \varepsilon$$

Cela permet de construire $(x_n) \in A^{\mathbb{N}}$ telle que $x_n \to a$ et $||f(x_n) - f(a)|| > \varepsilon$. La suite $(f(x_n))$ est bornée dans l'espace vectoriel normé F de dimension finie, on peut donc en extraire une suite convergente $f(x_{\varphi(n)})$. Notons b sa limite. Comme

$$\forall n \in \mathbb{N}, ||f(x_{\varphi(n)}) - f(a)|| > \varepsilon$$

à la limite $||b - f(a)|| \ge \varepsilon$ et donc $f(a) \ne b$. Or $(x_{\varphi(n)}, f(x_{\varphi(n)})) \to (a, b)$, $(x_{\varphi(n)}, f(x_{\varphi(n)})) \in \Gamma_f$ et $(a, b) \notin \Gamma_f$ donc Γ_f n'est pas fermée. Absurde.

Exercice 7: [énoncé]

a) Unicité:

Supposons que f possède deux points fixes $x \neq y$.

L'hypothèse de travail donne

$$||f(x) - f(y)|| < ||x - y||$$

ce qui est absurde si f(x) = x et f(y) = y.

Existence:

On introduit la fonction $\delta: x \mapsto ||f(x) - x||$ définie sur K.

La fonction δ est continue sur le compact K, elle admet donc un minimum en un $c \in K$.

Si $f(c) \neq c$ alors

$$\delta(f(c)) = ||f(f(c)) - f(c)|| < ||f(c) - c|| = \delta(c)$$

ce qui contredit la minimalité de c. Il reste f(c) = c ce qui fournit un point fixe. b) Introduisons $d_n = ||x_n - c||$. La suite (d_n) est décroissante et minorée donc elle converge; posons d sa limite. La suite (x_n) évolue dans un compact, il existe donc une extractrice φ telle que $(x_{\varphi(n)})$ converge vers un élément a de K. On a alors $d_{\varphi(n)} \to d$ et donc

$$d = ||a - c||$$

La suite $(x_{\varphi(n)+1})$ converge vers f(a) et aussi $d_{\varphi(n)+1} \to d$ donc

$$d = ||f(a) - c|| = ||f(a) - f(c)||$$

L'hypothèse $a \neq c$ contredirait l'hypothèse faite sur f, nécessairement a = c. Ainsi toutes les suites extraites de (x_n) convergent vers c. Il est alors assez classique de montrer que la suite (x_n) converge aussi vers c. En effet, si tel n'est pas le cas, il existe $\varepsilon > 0$ tel que

$$\forall N \in \mathbb{N}, \exists n \geqslant N, ||x_n - c|| > \varepsilon$$

On peut alors extraire de la suite (x_n) une suite $(x_{\psi(n)})$ vérifiant

$$\forall n \in \mathbb{N}, ||x_{\psi(n)} - c|| > \varepsilon$$

Or cette suite $(x_{\psi(n)})$ évolue dans le compact K, elle admet une suite extraite convergente. Or cette dernière apparaît aussi comme une suite extraite de (x_n) , elle converge donc vers c ce qui est contraire à la propriété quantifiée précédente.

Exercice 8 : [énoncé]

- a) C est stable par tous les u^i et puisque C est convexe et que $u_n(x)$ est une combinaison convexe de $x, u(x), \ldots, u^{n-1}(x)$, on peut assurer que C est stable par u_n .
- b) Il existe $a \in C$ tel que

$$x = u_n(a) = \frac{1}{n} (a + u(a) + \dots + u^{n-1}(a))$$

En simplifiant

$$x - u(x) = \frac{1}{n} \left(a - u^n(a) \right)$$

donc

$$N(x - u(x)) \leqslant \frac{2M}{n}$$

avec $M = \sup_{a \in C} N(a)$.

c) Puisque u_n est linéaire et continue, on peut affirmer que $u_n(C)$ est un compact convexe non vide.

De plus $u_n(C)$ est stable par u et donc pour tout naturel $p, u_p(u_n(C)) \subset u_n(C)$. Considérons alors la suite (x_n) définie à partir de $x_0 \in C$ et de la récurrence $x_n = u_n(x_{n-1})$.

Pour tout $p \geqslant n, x_p \in u_n(C)$ compte tenu de la remarque précédente. La suite (x_n) évoluant dans le compact C, elle admet une valeur d'adhérence x_∞ . Pour tout $n \in \mathbb{N}, x_\infty$ est valeur d'adhérence de la suite $(x_p)_{p\geqslant n}$ d'éléments du fermé $u_n(C)$ donc $x_\infty \in u_n(C)$.

Ainsi $x_{\infty} \in \bigcap_{n \in \mathbb{N}^{*}} u_{n}(C)$ et donc $\bigcap_{n \in \mathbb{N}^{*}} u_{n}(C) \neq \emptyset$.

d) Soit $x \in \bigcap_{n \in \mathbb{N}^*} u_n(C)$.

En vertu de b, on a pour tout $n \in \mathbb{N}$, $N(x - u(x)) \leq \frac{2M}{n}$ donc N(x - u(x)) = 0 puis u(x) = x.

Exercice 9 : [énoncé]

Notons α, β les extrémités de I.

Soient $a, b \in \mathbb{R}$ des antécédents de α, β respectivement. Malheureusement, on ne peut pas déjà affirmer $f([a,b]) = [\alpha,\beta]$ car les variations de f sur [a,b] sont inconnues.

Posons

$$A = \{x \in [a, b] / f(x) = \alpha\} \text{ et } B = \{x \in [a, b] / f(x) = \beta\}$$

Considérons ensuite

$$\Delta = \{ |y - x| / x \in A, y \in B \}$$

 Δ est une partie de \mathbb{R} non vide et minorée. On peut donc introduire sa borne inférieure m. Par la caractérisation séquentielle des bornes inférieures, il existe deux suites $(x_n) \in A^{\mathbb{N}}$ et $(y_n) \in B^{\mathbb{N}}$ vérifiant

$$|y_n - x_n| \to m$$

La partie A étant fermée et bornée, on peut extraire de la suite (x_n) une suite $(x_{\varphi(n)})$ convergeant dans A. De la suite $(y_{\varphi(n)})$, on peut aussi extraire une suite convergeant dans B et en notant x_{∞} et y_{∞} les limites de ces deux suites, on obtient deux éléments vérifiant

$$x_{\infty} \in A, y_{\infty} \in B \text{ et } |y_{\infty} - x_{\infty}| = \min \Delta$$

Autrement dit, on a définit des antécédents des extrémités de I dans [a,b] les plus proches possibles.

Pour fixer les idées, supposons $x_{\infty} \leq y_{\infty}$ et considérons $J = [x_{\infty}, y_{\infty}]$. On a $\alpha, \beta \in f(J)$ et f(J) intervalle (car image continue d'un intervalle) donc

$$I \subset f(J)$$

Soit $\gamma \in f(J)$. Il existe $c \in J$ tel que $f(c) = \gamma$.

Si $\gamma < \alpha$ alors en appliquant le théorème de valeurs intermédiaires sur $[z, y_{\infty}]$, on peut déterminer un élément de A plus proche de y_{∞} que ne l'est x_{∞} . Ceci contredit la définition de ces deux éléments.

De même $\gamma > \beta$ est impossible et donc $f(J) \subset I$ puis l'égalité.

Exercice 10 : [énoncé]

a) La suite (x_n) est évidemment une suite d'éléments du compact K. Elle admet donc une valeur d'adhérence dans K et il existe une extractrice φ telle que la suite $(x_{\varphi(n)})$ converge. La suite $(x_{\varphi(n)})$ est alors de Cauchy et donc

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, \forall p \geqslant 0, \left\| x_{\varphi(n+p)} - x_{\varphi(n)} \right\| \leqslant \varepsilon$$

Or puisque f est une isométrie $||x_{\varphi(n+p)} - x_{\varphi(n)}|| = ||x_{\varphi(n+p)-\varphi(n)} - x||$ et la phrase quantifiée précédente donne

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall p \geqslant 0, \|x_{\varphi(N_{\varepsilon} + p) - \varphi(N_{\varepsilon})} - x\| \leqslant \varepsilon$$

On peut alors construire une suite extraite de (x_n) convergeant vers x de la façon suivante :

Pour $\varepsilon = 1$, on pose $\psi(0) = \varphi(N_1 + 1) - \varphi(N_1)$ de sorte que

$$||x_{\psi(0)} - x|| \leqslant 1$$

Pour $n \in \mathbb{N}^*$, on prend $\varepsilon = 1/(n+1) > 0$ et on pose $\psi(n) = \varphi(N_\varepsilon + p) - \varphi(N_\varepsilon)$ de sorte que

$$\left\|x_{\psi(n)} - x\right\| \leqslant \frac{1}{n+1}$$

avec p choisi suffisamment grand pour que $\psi(n)>\psi(n-1)$ (ce qui est possible car $\varphi(N_\varepsilon+p)-\varphi(N_\varepsilon)\geqslant p$).

On forme ainsi une suite extraite $(x_{\psi(n)})$ convergeant vers x.

b) La partie f(K) est compacte en tant qu'image d'un compacte par une application continue (f est continue car lipschitzienne) donc la partie f(K) est fermée. Puisque x est limite d'une suite d'éléments de f(K) (au moins à partir du rang 1) on peut affirmer que $x \in f(K)$ et ainsi $K \subset f(K)$.

Exercice 11 : [énoncé]

a) La fonction f est continue car lipschitzienne. Considérons $g: x \in K \mapsto ||f(x) - x||$. La fonction g est réelle, continue et définie sur un compact non vide, elle admet donc un minimum en un certain $x_0 \in K$. Puisque

$$g(x_0) \leqslant g(f(x_0)) = ||f(f(x_0)) - f(x_0)|| \leqslant \rho ||f(x_0) - x_0|| = \rho g(x_0) \text{ avec } \rho < 1$$

On a nécessairement $g(x_0) = 0$ et donc $f(x_0) = x_0$ ce qui fournit un point fixe pour f.

b) Par la convexité de K, on peut affirmer que f_n est une application de K vers K. De plus

$$||f_n(y) - f_n(x)|| = \frac{n-1}{n} ||f(y) - f(x)|| \le \rho_n ||y - x||$$

avec $\rho_n < 1$.

Par l'étude ci-dessus, la fonction f_n admet un point fixe x_n . La suite (x_n) est une suite du compact K, il existe donc une suite extraite $(x_{\varphi(n)})$ convergeant vers un élément $x_{\infty} \in K$. La relation

$$f_{\varphi(n)}(x_{\varphi(n)}) = x_{\varphi(n)}$$

donne

$$\frac{a}{\varphi(n)} + \frac{\varphi(n) - 1}{\varphi(n)} f(x_{\varphi(n)}) = x_{\varphi(n)}$$

et donc à la limite

$$f(x_{\infty}) = x_{\infty}$$