Continuity of Functions

[Neighborhood] $U_{\varepsilon}(a) = \{x \in X : d(a,x) < \varepsilon\}$ [Acc. Point a of S] 3.1: $(\forall \varepsilon > 0)(\exists s \in S) s \in U_{\varepsilon}(a) \setminus \{a\}$

[Open/Closed] 3.4: A subset S of a metric space X is...

... closed iff S contains all it's Acc. Points: $(\forall x \in X \setminus S)(\exists \varepsilon > 0)U_{\varepsilon}(x) \cap S = \emptyset$

... open iff $X \setminus S$ is closed: $(\forall s \in S)(\exists \varepsilon > 0)U_{\varepsilon}(s) \subseteq S$

[Topology] 3.5: Let O denote the set of open subsets of X then (X, O) is a topological space iff it satisfies

(O1)
$$\emptyset \subseteq O \land X \subseteq O$$

$$(O2) \ F \subseteq O \Rightarrow \bigcup F \in O$$

(O2)
$$F \subseteq O \Rightarrow \bigcup F \in O$$
 (O3) $F \subseteq O \land F$ finite $\Rightarrow \bigcap F \in O$

[Connected] 3.8: A nonempty metric space X is...

... disconnected iff: $(\exists S \subseteq X) S \neq \emptyset \land S \neq X \land S$ open \land closed

... connected otherwise: $(\forall S \subseteq X)$ S open \land closed $\Rightarrow S = \emptyset \lor S = X$

[Preservance] 3.15: $(\forall f: X \mapsto Y)C \subseteq X$ connected $\land f$ continuous $\Rightarrow f(C) \subseteq Y$ connected

[Topological Characterization of Real Intervals] 3.9: $(\forall S \subseteq \mathbb{R})S$ connected $\Leftrightarrow S$ is an interval

[Inverse Image] 3.13: For $f: X \mapsto Y: (\forall S \subseteq Y) f^{-1}(S) = \{x \in X: f(x) \in S\}$

[Continuity] 3.12: A function $f: X \mapsto Y$ between metric spaces is continuous iff any of the three defs:

... metric:
$$(\forall \varepsilon > 0)(\exists \delta > 0) f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$$

 $(\forall S \subseteq Y)S$ open in $Y \Rightarrow f^{-1}(S)$ open in X...topological 3.13:

... convergence 3.13: $(\forall (x_n)_n : \mathbb{N} \mapsto X) \lim_n x_n = x \Rightarrow \lim_n f(x_n) = f(x)$

[Comp] 3.20: $f: X \mapsto Y, g: Y \mapsto Z$ continuous $\Rightarrow g \circ f: X \mapsto Z$ continuous

[Metric] the metric function with a fixed point $(\forall c \in X) f : X \mapsto \mathbb{R} : x \mapsto d(x,c)$ is continuous

[Add, Mult] 3.21: $f, g: X \mapsto \mathbb{C}$ continuous $\Rightarrow f + g, fg, (f/g)$ iff $0 \notin g(X)$ continuous

[Intermediate Value] 3.17: For $f: X \mapsto \mathbb{R}$ continuous with $X \subseteq \mathbb{R}$ the following holds

 $(\forall [a,b] \subseteq X) f(a) \le y \le f(b) \Rightarrow (\exists x \subseteq [a,b]) y = f(x)$

[Surjectivity] 3.18: For $f: I \mapsto J$ continuous with nonempty real intervals I, J the following holds $J \text{ open } \land f(I) \text{ unbounded} \Rightarrow f \text{ surjective}$

[Special Functions: Exp, Sin, Cos, Log]

$$e^{ix} = \cos(x) + i\sin(x)$$

$$\exp: \mathbb{C} \mapsto \mathbb{C}: x \mapsto e^{x} = \lim_{n} \left(1 + \frac{x}{n} \right)^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \approx 2.7182...^{x} \qquad e^{x+y} = e^{x} e^{y}; e^{x*\ln(a)} = a^{x}$$

$$\cos: [0, 2\pi] \mapsto [-1, 1]: x \mapsto \cos(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} = \frac{1}{n!} (e^{xi} + e^{-xi}) \qquad \cos(x + y) = \cos(x) \cos(x)$$

$$e^{x+y} = e^x e^y; e^{x-\operatorname{In}(a)} = a^x$$

$$\cos: [0, 2\pi] \mapsto [-1, 1]: x \mapsto \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = \frac{1}{2} \left(e^{xi} + e^{-xi} \right)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

 $\sin:[0,2\pi] \mapsto [-1,1]: x \mapsto \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = \frac{1}{2i} \left(e^{xi} - e^{-xi} \right) \quad \sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$ $\ln : \mathbb{R}^+ \mapsto \mathbb{R} : x \mapsto \ln(x)$ is the inverse of $\exp : \mathbb{R} \mapsto \mathbb{R}^+ : x \mapsto e^x$

 $\ln(xy) = \ln(x) + \ln(y); \frac{\ln y}{\ln a} = \log_a y$

All X are metric spaces, S subsets, $(c \in \mathbb{C})$ $(\varepsilon \in \mathbb{R})$ $(N, n, m \in \mathbb{N})$