Independence of the Axiom of Choice, Permutation models Seminar Mengenlehre PD. C. Gassner

Lars Berling

Institut für Mathematik und Informatik

June 5, 2020

Outline

Introduction

Historical Remarks
Definitions

Permutation models

Motivation
Facts with Proof
Definition Normal Filter
Definition Permutation Model
TMH 4.1
Definition Normal Ideal

First and Second Fraenkel Model

Basic Fraenkel Model Second Fraenkel Model

Sources and further reading

Historical Remarks

- Permutation Models were introduced by Fraenkel 1922-37
- ▶ Precise version by Motowski 1938-39
- A Version with Filters by Specker 1957
- Additional Contributions Doss (1945), Mendelson (1948,1956), Jesenin-Vol'pin (1954), Shoenfield (1955), Fraisse (1958)

Goal of this Talk

- Want to show that the Axiom of Choice is independent from the other Axioms
- ► See Chapter 5 of [1] for the result in ordinary set theory
- This talk will introduce Set theory with atoms
- Establish the independence of the Axiom of Choice in this context

ZFA

Recall Axiom of Choice

For every family \mathscr{F} of nonempty sets, there is a function f such that $f(s) \in S$ for each set S in the family \mathscr{F} . We call f a *choice function* on \mathscr{F} .

Well-ordering Principle

Also known as Zermelo's Theorem.

Every set can be well-ordered, i.e. for an ordering < of a set S every nonempty set $X \subseteq S$ has a least element regarding <.

Definition ZFA

The set theory with atoms is a modified version of set theory, and is characterized by the fact that it admits objects other than sets, atoms.

ZFA

- Atoms are objects without any elements
- ightharpoonup Language of ZFA consists of = and \in
- ▶ Includes constant symbols \emptyset (empty set) and A (set of Atoms)
- ▶ Empty set ∅

$$\exists x \ (x \in \emptyset)$$

Atoms A

$$\forall z[z \in A \leftrightarrow z \neq \emptyset \land \nexists x \ (x \in z)]$$

Elements of A are called *atoms*, sets are all objects which are not atoms

Axioms of ZF

- ► A1. Extensionality
- ► A2. Pairing
- ► A3. Comprehension
- ► A4. Union
- ► A5. Power-Set
- ► A6. Replacement
- ► A7. Infinity
- ► A8. Regularity

Changes to the Axioms

► A1. Extensionality

$$(\forall \ set \ X)(\forall \ set \ Y)[\forall \ u \ (u \in X \ \leftrightarrow \ u \in Y) \ \leftrightarrow \ X = Y]$$

instead of:

$$\forall u \ (u \in X \leftrightarrow u \in Y) \rightarrow X = Y$$

► A8. Regularity

$$(\forall nonempty S)(\exists x \in S)[x \cap S = \emptyset]$$

▶ instead of

$$(\forall S \neq \emptyset)(\exists x \in S)[x \cap S = \emptyset]$$

Note

'X is nonempty' is not the same as ' $X \neq \emptyset$ ', only if X is a set. Some options only make sense for sets: $\cup X \mathcal{P}(X)$ Some also for atoms: $\{x,y\}$

Problem 1

- ▶ If $A = \emptyset$ we get ZF
- ▶ But we are more interested in the case A is not empty

Problem 1

 $(ZFA+Axiom\ of\ Choice+A\ is\ infinite)$ is consistent provided that ZF is consistent

Developement of ZFA

Recall

A set S is *transitive* if $\forall x (x \in S \rightarrow x \subseteq S)$ The ordinal numbers are representatives of well-ordered sets, ordinal α is the set of all smaller ordinals $\alpha = \{\beta : \beta < \alpha\}$

- Ordinals in ZFA do not contain Atoms
- lacktriangle A transitive set does not necessarily contain \emptyset

Kernel

Define rank of sets

For any set S, let $\mathcal{P}^{\alpha}(S)$ defined as

$$\mathcal{P}^{0}(S) = \emptyset$$
 $\mathcal{P}^{\alpha+1}(S) = \mathcal{P}^{\alpha}(S) \cup \mathcal{P}(\mathcal{P}^{\alpha}(S))$
 $\mathcal{P}^{\alpha}(S) = \bigcup_{\beta < \alpha} \mathcal{P}^{\beta}(S)$
 $\mathcal{P}^{\infty}(S) = \bigcup_{\alpha \in On} \mathcal{P}^{\alpha}(S)$

- ▶ We then have $V = \mathcal{P}^{\infty}(A)$
- ▶ The class $\mathcal{P}^{\infty}(\emptyset)$ is called the *kernel*
- all ordinals are in the kernel

Part 1

- Set theory with atoms, ZFA
- ► Changes to regular ZF
- ► Consistency of ZFA (Problem 1)
- ► Developement of ZFA
- Kernel

Motivation Permutation models

Idea behind Permutation models

Axioms of ZFA do not distinguish between the atoms, use them to construct models in which the set A has no well-ordering.

Reminder

The Well-ordering Principle and the Axiom of Choice are equivalent, [1, p. 10] Theorem 2.1

Definition Permutation model

Let π be a permutation of the set A. Using the hierarchy of $\mathcal{P}^{\alpha}(A)$'s, we can define πx for every x as follows :

$$\pi(\emptyset) = \emptyset, \qquad \pi(x) = \pi'' x = \{\pi(y) : y \in X\}$$

Some facts about Permutation models

- (a) $x \in y \leftrightarrow \pi x \in \pi y$.
- (b) $\Phi(x_1,...,x_n) \leftrightarrow \Phi(\pi x_1,...,\pi x_n)$.
- (c) $rank(x) = rank(\pi x)$.
- (d) $\pi\{x,y\} = \{\pi x, \pi y\}, \ \pi(x,y) = (\pi x, \pi y).$
- (e) If R is a relation, then πR is a relation and $(x,y) \in R \leftrightarrow (\pi x, \pi y) \in \pi R$.
- (f) If f is a function on X, then πf is a function on πX and $(\pi f)(\pi x) = \pi(f(x))$.
- (g) $\pi x = x$ for every x in the kernel.
- (h) $(\pi * \rho)x = \pi(\rho(x)).$

Definiton Normal Filter

Normal Filter

Let \mathscr{G} be a group of permutations of A. A set \mathscr{F} of subgroups of \mathscr{G} is a normal filter on \mathscr{G} if for all subgroups H,K of \mathscr{G} .

- (i) $\mathscr{G} \in \mathscr{F}$
- (ii) if $H \in \mathscr{F}$ and $H \subseteq K$, then $K \in \mathscr{F}$
- (iii) if $H \in \mathscr{F}$ and $K \in \mathscr{F}$, then $H \cap K \in \mathscr{F}$
- (iv) if $\pi \in \mathscr{G}$ and $H \in \mathscr{F}$, then $\pi H \pi^{-1} \in \mathscr{F}$
- (v) for each $a \in A$, $\{\pi \in \mathscr{G} : \pi a = a\} \in \mathscr{F}$

Definition Permutation Model

Transitivity

A set S is transitive if

$$\forall x (x \in S \rightarrow x \subseteq S)$$

.

Similarly, a transitive class is a class which satisfies this condition.

Symmetric of x

For each x, let

$$sym_{\mathscr{G}}(x) = \{ \pi \in \mathscr{G} : \pi x = x \}$$

 $sym_{\mathscr{G}}(x)$ is a subgroup of \mathscr{G} .

Let $\mathscr G$ and $\mathscr F$ be fixed. We say that x is symmetric if $sym(x) \in \mathscr F$

THM 4.1

Permutation Model

The class

$$\mathscr{V} = \{x : x \text{ is symmetric and } x \subseteq \mathscr{V}\}$$

consists of all hereditarily symmetric objects.

We all \mathscr{V} apermutation model

Theorem 4.1

 $\mathscr V$ is a transitive model of ZFA; $\mathscr V$ contains all the elements of the kernel and also $A\in\mathscr V$.

Definition Normal Ideal

Normal ideal

Let \mathscr{G} be a group of permutations of A. A family I of subsets of A is a *normal ideal* if for all subsets E, F of A:

- (i) ∅ ∈ *I*
- (ii) if $E \in I$ and $F \subseteq E$, then $F \in I$
- (iii) if $E \in I$ and $F \in I$, then $E \cup F \in I$
- (iv) if $\pi \in \mathscr{G}$ and $E \in I$, then $\pi''E \in I$
- (v) for each $a \in A$, $\{a\} \in I$

Fix

Fix

For each x, let

$$fix_{\mathscr{G}}(x) = \{\pi \in \mathscr{G} : \pi y = y \text{ for all } y \in x\},\$$

 $fix_{\mathscr{G}}(x)$ is a subgroup of \mathscr{G} .

Fix Permutation Model

Let \mathscr{F} be the filter on \mathscr{G} generated by the subgroups $\mathit{fix}_{\mathscr{G}}(E)$, $E \in I$.

 \mathscr{F} is a normal filter, and so it defines a permutation model \mathscr{V} . Note that x is symmetric if and only if there exists $E \in I$ such that

$$fix_{\mathscr{G}}(E)\subseteq sym(x)$$

. We say that E is a support of x.

Well ordered?

- \blacktriangleright Let $\mathscr V$ be a permutation model
- \mathcal{Y} contains all elements of the kernel
- this implies that the Axiom of Choice holds in the kernel

$$\forall x \in \mathscr{P}^{\infty}(\emptyset)$$
 can be well-ordered

Therefore any $x \in \mathscr{V}$ can be well-ordered \Leftrightarrow there exists a one-to-one mapping $f: x \to \mathscr{P}^{\infty}(\emptyset)$ But $\pi f = f \Leftrightarrow \pi \in \mathit{fix}_{\mathscr{G}}(x)$ Concluding together with Theorem 4.1

$$\mathscr{V} \vDash (\mathsf{x} \mathsf{ can be well-ordered}) \leftrightarrow \mathit{fix}_{\mathscr{G}}(x) \in \mathscr{F}$$

Problem 2

Use equation above

If x can be well ordered in $\mathscr V$ then $\mathscr P(x)$ can be well ordered in $\mathscr V$.

Part 2

- Permutation models
- Properties/Facts of Permutation models
- Normal Filter
- ightharpoonup Symmetric of x sym $_{\mathscr{G}}(x)$
- ▶ Theorem 4.1
- Normal Ideal
- ightharpoonup Fix $fix_{\mathcal{G}}(x)$
- ▶ Well ordered ?
- ▶ Problem 2

Basic Fraenkel Model

Motivation

Simple example of a permutation model that does not satisfy the Axiom of Choice

- Assume that the set of Atoms A is countable (infinite)
- \blacktriangleright \mathscr{G} is the group of all permuations of A
- ▶ I be the set of all finite subsets of A
- \blacktriangleright Let $\mathscr V$ be the corresponding permutation model
- ightharpoonup x is symmetric if and only if there is a finite $E\subseteq A$ such that

$$\pi x = x$$
 whenever $\pi a = a \ \forall a \in E$

- ► The subgroup $fix_{\mathscr{G}}(A)$ is not in the filter generated by $\{fix_{\mathscr{G}}(E): E \subset A \text{finite}\}$
- ▶ For every finite $E \subset A$, one can easily find $\pi \in \mathscr{G}$ such that

$$\pi \in \mathit{fix}_{\mathscr{G}}(E)$$
 and $\pi \notin \mathit{fix}_{\mathscr{G}}(A)$

 \blacktriangleright Together with the earlier result, it follows that the set has no well-ordering in the model $\mathscr V$

Theorem 4.2

The Axiom of Choice is unprovable in set theory with atoms.

Problem 3

In this model, the family $S = \{\{a, b\} : a, b \in A\}$ has no choice function. Consequently, A cannot be linearly ordered.

Second Fraenkel Model

Motivation

Constructing a model in which the Axiom of Choice fails even for countable families of pairs.

Assume that A is countable and divide it into countably many disjoint pairs :

$$A = \bigcup_{i=1}^{\infty} P_n, P_n = \{a_n, b_n\}, n = 0, 1, ...$$

▶ Let \mathscr{G} be the group of all permutations of A which preserve the pairs P_n

$$\pi({a,b}) = {a,b}, n = 0,1,...$$

Let I be the ideal of finite subsets of $A \rightarrow$ normal ideal

A set x is symmetric if and only if there is k such that $\pi x = x$ whenever $\pi \in \mathcal{G}$ and

$$\pi a_0 = a_0, \pi b_0 = b_0, ..., \pi a_k = a_k, \pi b_k = b_k$$

- \blacktriangleright Let $\mathscr V$ be the permutation model determined by $\mathscr G$ and I.
 - Then \mathscr{V} has the following properties:
 - (a) Each P_n is in Ψ
 (b) The sequence ⟨P_n : n ∈ ω⟩ is in Ψ, thus the set {P_n : n ∈ ω} is countable
 - (c) There is no function $f \in \mathcal{V}$ such that $dom(f) = \omega$ and $f(n) \in P_n$ for each n

Thus in the model $\mathscr V$ there is no choice function on the countable family $\{P_n:n\in\omega\}$ and we get the following Theorem :

Theorem 4.3

The Axiom of Choice for countable families of pairs is unprovable in set theory with atoms.

Part 3

- ► Basic Fraenkel Model
- ► Theorem 4.2
- ▶ Problem 3
- Second Fraenkel Model
- ► Theorem 4.3

Summary

- Set Theory with Atoms, ZFA
- Normal Filters and Normal Ideal
- Permutation models in ZFA
- First and second Fraenkel model

Outlook

Chapter 4.5 in [1] The ordered Mostowski model violates the Axiom of Choice but preserves the weaker Ordering Principle.

Shows that the Axiom of Choice is independent from the Ordering Principle in ZFA.

Chapter 5 in [1] establishes these properties for 'normal' set theory, ZF.

See also [2, 4, 3] for further reading.

Sources

The Axiom of Choice, North-Holland Publishing Company/ American Elsevier Publishing Company, 1973

ncatlab.org

https://ncatlab.org/nlab/show/ZFA
https://ncatlab.org/nlab/show/Fraenkel-Mostowski+model
https://ncatlab.org/nlab/show/basic+Fraenkel+model
https://ncatlab.org/nlab/show/second+Fraenkel+model

Ulrich Felgner

Models of ZF-Set Theory, Lecture Notes in Mathematics, Springer 1971

PD. C. Gassner

Mathematische Logik (Entwurf), Chapter. Formalisierung des Auswahlaxioms, WS 19/20