So it follows from (5.9) and the dominated convergence theorem that ${\rm CD_h}\theta({\rm f})$, $\phi>=\lim_{t\to 0+} 1/t <(|{\rm f}+{\rm th}|-|{\rm f}|)$, $\phi>=0$

 $= \int_{K} \operatorname{Re}(\operatorname{sign}(\overline{f}(x))h(x)) d\mu(x) = \langle \operatorname{Re}((\operatorname{sign} \overline{f})h), \phi \rangle$

(the last identity holds since by the definition of sign $\overline{f} \in L(E)$, we have (sign \overline{f}) h $\in E_{\left\lfloor \frac{f}{f} \right\rfloor} = C(K)$ whenever h $\in C(K)$ and ((sign \overline{f}) h) (x) = (sign $f(\overline{x})$) h(x) (see C-I,Sec.8)).

Consequently, $D_h\theta(f) = \text{Re}(\text{sign }\overline{f})\,h$ whenever $h \in E_{|f|}$. Since $D_h\theta(f)$ is continuous in h (in fact, $|D_h\theta(f) - D_k\theta(f)| \le |h-k|$ for all $h,k \in E$) and $E_{|f|}$ is dense in $\{f\}^{dd}$, it follows that (5.8) holds for all $h \in \{f\}^{dd}$.

Remark 5.7. a) By the same argument as given in the proof one sees that θ is left-sided Gateaux differentiable and

$$D_{g}^{-}\Theta(f) = Re((sign \overline{f})g) - P_{f}^{\overline{d}}|g|$$

for all f, g \in E , where $D_g^-\Theta(f) = \lim_{t \to 0} 1/t(\Theta(f + tg) - \Theta(f))$ and P_f^d denotes the band projection onto $\{f\}^d$. In particular,

(5.10)
$$D_g^+ \circ (f) = D_g^- \circ (f) \quad \text{whenever } g \in \{f\}^{dd}.$$

b) The proof of Prop.5.6 shows that every convex function θ : $E \to E_{\mathbb{R}}$ (where E is a Banach lattice with order continuous norm) is right-(and left-) sided Gateaux differentiable (cf. Arendt (1982)).

<u>Proof of Theorem 5.5</u>. Assume that (i) holds. Let $f \in D(B)$. Then S(t)f is differentiable in t . By the chain rule B-II, Prop. 2.3,

T(t)|f| = |S(t)f| is also differentiable and $d/dt_{|t=0}$ $T(t)|f| = d/dt_{|t=0}$ |S(t)f| = Re(sign f)Bf (by Prop. 5.6). Hence $|f| \in D(A)$ and A|f| = Re(sign f)Bf.

Conversely, assume that (ii) holds. Let s>0, $f\in E$. We show that |S(s)f|=T(s)|f|. This implies that S(s) is disjointness preserving and |S(s)|=T(s) (by Proposition 5.1)). Since D(B) is dense we can assume that $f\in D(B)$. Let $\xi(t)=T(s-t)|S(t)f|$ ($t\in [0,s]$). Since by assumption $|S(t)f|\in D(A)$ one obtains

= 0 by the assumption (ii).

Hence $\xi(0) = \xi(s)$; i.e., |S(s)f| = T(s)|f|.

П