UWAGA: W zadaniach o numerach od 1 do 4 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu.

Zadanie 1. (0 - 1pkt.)

...../1

Podczas zbliżania magnesu do żelaznego gwoździa zaobserwujemy, że gwóźdź

- A. będzie odpychany przez magnes.
- B. będzie przyciągany przez magnes.
- C. będzie przyciągany lub odpychany przez magnes.
- D. nie będzie reagował na zbliżanie magnesu.

Zadanie 2. (0 - 1pkt.)

Przeczytaj uważnie poniższe stwierdzenia dotyczące wad wzroku.

- 1. Może ostro widzieć tylko bliskie przedmioty.
- 2. Soczewka w jego oku za silnie załamuje światło.
- 3. Promienie biegnące od bliskich przedmiotów przecinają się za siatkówką jego oka.
- 4. Wadę tą korygować można przez zastosowanie okularów z soczewkami rozpraszającymi.

Krótkowidza dotyczą odpowiedzi o numerach

A. 1 i 3.

B. 2 i 3.

C. 3 i 4.

D. 1, 2 i 4.

Zadanie 3. (0 - 1pkt.)

Powiększenie obrazu uzyskanego przy użyciu soczewki skupiającej jest równe 3. Wyraźny obraz przedmiotu powstał na ekranie umieszczonym w odległości 36 cm od soczewki. Odległość przedmiotu od soczewki oraz dwie brakujące w opisanej wyżej sytuacji cechy obrazu są wymienione w odpowiedzi

- A. 12 cm i obraz jest rzeczywisty i odwrócony.
- B. 12 cm i obraz jest pozorny i prosty.
- C. 108 cm i obraz jest rzeczywisty i odwrócony.
- D. 108 cm i obraz jest pozorny i prosty.

Zadanie 4. (0 - 1 pkt.)

Podczas naprawy zegarków zegarmistrz używa lupy. Jest to przyrząd optyczny, w którym zastosowano soczewkę skupiającą i który daje możliwość uzyskania obrazu powiększonego

- A. rzeczywistego i nieodwróconego.
- B. rzeczywistego i odwróconego.
- C. pozornego i odwróconego.
- D. pozornego i nieodwróconego.

Zadanie 5. (0 - 1 pkt.)

...../1

Oceń prawdziwość zdań w poniższej tabeli i zaznacz (otaczając kółkiem) **P**, jeżeli zdanie jest prawdziwe lub **F**, jeżeli jest fałszywe.

Zjawisko powstawania cienia i półcienia nie zachodzi wtedy, gdy przedmioty oświetlane są punktowym źródłem światła.	P	F
Długość fali mechanicznej to suma maksymalnych wychyleń z położenia równowagi drgających cząsteczek ośrodka, w którym fala się rozchodzi.	P	F
Fala morska zmienia prędkość rozchodzenia się gdy na swej drodze zmieni się głębokość morza.	P	F

UWAGA: W zadaniach o numerach 6. i 7. wybierz i zaznacz (otaczając kółkiem odpowiednią literę i cyfrę) właściwe stwierdzenie oraz jego poprawne uzasadnienie tworzące dokończenie rozpoczętego zdania.

Zadanie 6. (0 - 1 pkt)

...../1

Podczas badania ruchu drgającego uczniowie stwierdzili, że okres drgań wahadła (metalowa kulka zawieszona na długiej i nierozciągliwej nitce) zależy od jego długości. Następnie zawiesili na rozciągniętej między statywami lince pięć wahadeł, których długości spełniały następujące zależności: $l_1 = l_2$; $l_3 = \frac{3}{4} l_1$; $l_4 = l_5 = \frac{1}{3} l_1$. Wahadło o długości l_3 wychylono o niewielki kąt i puszczono. Uczniowie zaobserwowali, że po pewnym czasie

A.	wahadła krótsze od l_3 zaczęły się wahać,	ponieważ energia drgań	1.	większą niż częstotliwość wahadła l_3 .
В.	wahadła dłuższe od l_3 zaczęły się wahać,	może zostać przekazana wahadłom, których częstotliwość drgań	2.	taką samą jak częstotliwość wahadła l_3 .
C.	tylko wahadło l_3 wahało się,	własnych jest	3.	mniejszą niż częstotliwość wahadła l_3 .

Zadanie 7. (0 - 1pkt.)

...../1

Podczas przechodzenia promieni światła przez granicę między dwoma ośrodkami (np. gdy światło przechodzi z wody do powietrza) mamy do czynienia ze zjawiskiem

A.	odbicia,	noniovoj	1.	jest taka sama we wszystkich ośrodkach przezroczystych.
В.	załamania,	ponieważ prędkość światła	2.	zależy od ośrodka, w którym się rozchodzi.
C.	rozproszenia,		3.	zależy od kąta padania na powierzchnię graniczną między ośrodkami.

Zadanie 8. Statek badawczy wyznaczający głębokość morza używa tzw. sonaru aktywnego. J urządzenie, które emituje falę akustyczną i po odbiciu się jej od przeszkody (np. od dna r rejestruje sygnał odbity. Średnia prędkość fali emitowanej przez sonar w wodzie morski równa 1500 m/s.	norza)													
Zadanie 8.1. (0 - 4 pkt.) Podczas jednego z badań, gdy statek poruszał się z szybkością 10 m/s, otrzymano, że czas, jaki														
upłynął od wysłania fali emitowanej przez sonar do odebrania sygnału odbitego od dna był równy 3 sekundy. Oblicz głębokość morza w miejscu badania z dokładnością do miejsc po przecinku.														
imejse po przecinku.	/4													
Zadanie 8.2. (0 - 2 pkt.)														
Oblicz głębokość morza, gdyby statek nie poruszał się. Na podstawie wyników otrzym	-													
dla sytuacji opisanej w zadaniu 8.1. i dla nieporuszającego się statku określ, c wyznaczenia głębokości morza z dokładnością do 1 metra można nie uwzględniać fak	_													
statek z sonarem porusza się po powierzchni wody. Uzasadnij swoją odpowiedź.														
	/2													

Zadanie 9
W dokumentacji technicznej elektrycznego zespołu trakcyjnego PESA DART (dalej zwanego
pociągiem) zawarte są następujące informacje: masa całkowita: 400 ton; napięcie zasilające
silnik: 3000 V; moc silnika: 400 kW; liczba silników: 6; szybkość maksymalna: 200 $\frac{km}{h}$;
szybkość eksploatacyjna: 120 km/h.

szybkość eksploatacyjna: 120 $\frac{\text{km}}{\text{h}}$.													
Zadanie 9.1. (0 - 2 pkt.)													
Zakładając, że pociąg podczas ruszania ze stacji porusza się ze stałym przyspieszeniem ró	wnym												
0,6 $\frac{m}{s^2}$, oblicz czas, po którym osiągnąłby szybkość eksploatacyjną.													
3-	/2												
Zadanie 9.2. (0 - 3 pkt.)													
Przyjmując, że podczas ruszania pociągu można zaniedbać wszelkie opory ruchu,	oblicz												
wartość siły potrzebnej do nadania pociągowi przyspieszenia 0,6 $\frac{m}{s^2}$. Zapisz, czy i jak	będzie												
się zmieniało przyspieszenie pociągu podczas dalszego zwiększania jego szybkośc	i przy												
zachowaniu stałej siły napędowej. Zapisz uzasadnienie swojej odpowiedzi.													
	/3												

Zadanie 9.3. (0 - 3 pkt.)	• •													
Silniki pociągu mogą pracować pełną mocą tylko przez pewien czas z uwagi na możliwoś przegrzania się. Pociąg wtedy porusza się z maksymalną prędkością ruchem jednostajnym oblicz wystaćć silv popadzejąci wystania przez wystania pokaci po w silników.														
Oblicz wartość siły napędzającej uzyskanej przy wykorzystaniu pełnej mocy silników	r.													
		/3												
	• •													
	• •													
Zadanie 9.4. (0 - 4 pkt.)														
Oblicz natężenie prądu płynącego przez każdy z sześciu silników pociągu oraz energi wydzielaną w silniku w czasie 10 sekund dla przypadku, gdy wykorzystywana jest i moc.	ich p													
		/ т												
	• •													
		· ·												

	Zadanie 10. (0 - 5 pkt.) W celu wyznaczenia ciepła właściwego aluminium do naczynia zawierającego 400 g wod															/ody	y																																							
o te	temperaturze 20°C wrzucono kulkę z aluminium o masie 140 g i temperaturze 97°C.															. Pc)																																							
ust	ale	en	iu	S	ię	r	óν	Vľ	10	W	a	gi	t	eı	m	10	d	yr	ıa	m	ic	Ζľ	1e	j ,	W	n	ac	Z	yr.	ii	ı t	er	nţ	e	rat	ur	a	W	od	y	by	yła	a r	ÓΙ	wr	ıa	2	5°C								
Prz	zyj	m	uj	ąc), z	że	S	tra	at	y	er	ne	rg	gii	S	ą	rć	W	'n	e	10) 9	%	eı	ne	rg	gii	o	do	la	ne	j 1	or	ze	z k	cu.	k) , (ob	li	cz	ci	eŗ	ołc	V	vła	aściwe									
alu																																															_		./5							
• •	•					•		•	•	•	•		•	•	•		•	•			•			•		•	•		•					•					•	•		•		•												
• •																																																								
																																											•													
																																											•													
• •																																																								
																																											•					•								
	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•								
	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•									
• •	•	•	•	•	•	•	•	•	•	٠	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•								