Teoremas de Geometría

Axel Aveiga Defaz

24 de marzo de 2021

Índice general

Teo	remas de Geometría.
1.1.	Teorema de suma de los ángulos de un triángulo
1.2.	Desigualdad del triángulo
1.3.	Primer teorema de Thales
1.4.	Segundo teorema de Thales
1.5.	Teorema de semejanza $\angle - \angle - \angle$
1.6.	Teorema de semejanza $L-\angle-L$
1.7.	Teorema de semejanza $L-L-L$
1.8.	Teorema de Pitágoras.
1.9.	Teorema del Baricentro
1.10.	. Teorema del Incentro
1.11.	. Teorema del Circuncentro.
	. Teorema del Ortocentro.
	. Teorema de la medida del ángulo inscrito.
1.14.	. Teorema de la medida del ángulo semi-inscrito.
	. Teorema de cuadrilátero cíclico.
	. Ley del paralelogramo.
	. Teorema de la recta de Euler.
	. Teorema de la circunferencia de nueves puntos
	. Teorema del centro de la circunferencia de nueve puntos
1.20.	. Teorema de Ceva
	. Teorema de Menelao
	. Teorema de la bisectriz.
	. Teorema de Pappus
	Teorema de Desargues
	. Teorema recíproco de Desargues.
	Teorema de Desargues con paralelas.
	Teorema del centro de gravedad
1.28	Teorema del triángulo órtico
1.29	Teorema del Excentro.
	. Identidades pitágoricas
	Suma y diferencias de ángulos en el seno y coseno
	Ley de cosenos.
	Ley de senos.
	Teorema de Stewart.
	Fórmulas del área de un triángulo
	1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8. 1.9. 1.10. 1.11. 1.12. 1.13. 1.14. 1.15. 1.16. 1.17. 1.18. 1.19. 1.20. 1.21. 1.22. 1.23. 1.24. 1.25. 1.26. 1.27. 1.28. 1.29. 1.31. 1.32. 1.33. 1.34.

ÍNDICE GENERAL 2

	1.36. Desigualdad geométrica.	8
	1.37. Desigualdad de Nesbitt.	8
	1.38. Transformación de Ravi	8
	1.39. Desigualdad geométrica	9
	1.40. Teorema de Potencia de Punto	9
	1.41. Teorema del Centro Radical	9
	1.42. Teorema de Fórmula de Euler	9
	1.43. Teorema de Homotecia	9
	1.44. Teorema de la Circunferencia de Apolonio	9
	1.45. Teorema de Inversión.	9
	1.46. Teorema de circunferencias ortogonales	10
	1.47. Fórmula de Inversión	10
	1.48. Teorema de Varignon.	10
	1.49. Teorema de Ptolomeo.	10
	1.50. Teorema extendido de Ptolomeo.	10
	1.51. Teorema de Simson	10
	1.52. Teorema del perímetro de un cuadrilátero	10
	1.53. Teorema de Pitot	11
	1.54. Teorema de Brahmagupta	11
	1.55. Teorema de Brahmagupta (Área)	11
	1.56. Teorema del Punto de Miquel	11
	1.57. Teorema de Gergonne.	11
	1.58. Teorema de Nagel	11
	1.59. Teorema de Blanchet	11
	1.60. Teorema de la Mariposa	12
	1.61. Teorema de Viviani.	12
	1.62. Teorema de Vecten	12
	1.63. Teorema de Van Aubel	12
	1.64. Teorema de la cuaterna armónica	12
	1.65. Teorema del punto cicloceviano conjugado	12
	1.66. Teorema de Monge	12
	1.67. Teorema del Hexágono Místico de Pascal	13
	1.68. Teorema de los círculos de Jhonson	13
	1.69. Teorema de Bevan	13
	1.70. Teorema de Brocard.	13
	1.71. Teorema de Adam	13
	1.72. Teorema de la Hire	13
2 .	Demostraciones	14
	2.1. Teorema de suma de los ángulos de un triángulo.	14
	2.2. Desigualdad del triángulo	14

Capítulo 1

Teoremas de Geometría.

1.1. Teorema de suma de los ángulos de un triángulo.

La suma de los ángulos internos de un triángulo es 180°.

1.2. Desigualdad del triángulo.

Sean a, b y c las longitudes de los lados de un triángulo, si y sólo si,

$$a+b>c$$
,

$$a+c>b$$
,

$$b + c > a$$

1.3. Primer teorema de Thales.

En un triángulo ABC, sean D y E puntos en AB y AC respectivamente, DE es paralela a BC si y sólo si

$$\frac{AB}{AD} = \frac{AC}{AE}$$

1.4. Segundo teorema de Thales.

Se considera tres rectas y dos rectas transversales a éstas como se muestra en la figura. AD, BE y CF son paralelas si y sólo si $\frac{AB}{BC} = \frac{DE}{EF}$.

1.5. Teorema de semejanza $\angle - \angle - \angle$.

Si dos triángulos tienen todos sus ángulos correspondientes iguales entonces sus lados correspondiente son proporcionales y los triángulos son semejantes.

1.6. Teorema de semejanza $L - \angle - L$.

Si dos triángulos tienen dos lados correspondientes proporcionales y el ángulo comprendido entre éstos es igual, entonces son semejantes.

1.7. Teorema de semejanza L-L-L.

Si dos triángulos tienen sus lados correspondientes proporcionales entonces los triángulos son semejantes.

1.8. Teorema de Pitágoras.

Un triángulo es rectángulo si y sólo si el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

1.9. Teorema del Baricentro.

Las medianas de un triángulo son concurrentes en un punto conocido como el Baricentro.

1.10. Teorema del Incentro.

Las bisectrices internas de un triángulo son concurrentes en un punto conocido como el Incentro.

1.11. Teorema del Circuncentro.

Las mediatrices de los lados de un triángulo son concurrentes en un punto conocido como el Circuncentro.

1.12. Teorema del Ortocentro.

Las alturas de un triángulo son concurrentes en un punto conocido como el Ortocentro.

1.13. Teorema de la medida del ángulo inscrito.

La medida de un ángulo inscrito en una circunferencia es igual a la mitad del arco comprendido entre sus lados, es decir, es la mitad del ángulo central que abre del mismo arco.

1.14. Teorema de la medida del ángulo semi-inscrito.

Todo ángulo semi-inscrito es igual a la mitad del ángulo central que abarca el mismo arco.

1.15. Teorema de cuadrilátero cíclico.

- 1. Un cuadrilátero convexo es cíclico si sólo si sus ángulos opuestos son suplementarios.
- 2. Un cuadrilátero convexo es cíclico si sólo si el ángulo entre un lado y una diagonal es igual al ángulo entre el lado opuesto y la otra diagonal.

1.16. Ley del paralelogramo.

La suma de los cuadrados de las diagonales de un paralelogramo es igual a la suma de los cuadrados de sus lados, es decir, si d_1 y d_2 son las diagonales y a,b los lados, entonces tenemos que

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

1.17. Teorema de la recta de Euler.

En un triángulo ABC el ortocentro, el centroide y el circuncentro son colineales. La recta donde se encuentran estos puntos se conoce como la recta de Euler.

1.18. Teorema de la circunferencia de nueves puntos.

Los pies de las tres alturas de un triángulo, los puntos medios de los tres lados y los puntos medios de los segmentos que van de los vértices al ortocentro, están en una circunferencia de radio $\frac{1}{2}R$, donde R es el radio del circuncentro del triángulo ABC.

1.19. Teorema del centro de la circunferencia de nueve puntos.

El centro de la circunferencia de nueve puntos se encuentra en la recta de Euler y es el punto medio del segmento HO, donde H y O es el ortocentro y circuncentro, respectivamente.

1.20. Teorema de Ceva.

En un triángulo ABC los puntos D, E, F sobre los lados BC, AC, y AB, respectivamente. Las rectas AD, BE y CF concurren en un punto si y sólo si

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1$$

1.21. Teorema de Menelao.

En un triángulo ABC, una recta intersecta las rectas BC, CA y AB en los puntos D, E y F si y sólo si

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = -1$$

1.22. Teorema de la bisectriz.

Sea un triángulo ABC, la bisectriz AL, donde L es la intersección de la bisectriz con BC, del ángulo en A divide al lado opuesto BC de tal forma que

$$\frac{BL}{LC} = \frac{AB}{CA}$$

1.23. Teorema de Pappus.

Si A, C, E son tres puntos en una recta, B, D, F tres puntos en otra recta AB, CD, EF intersectan a las rectas DE, FA y BC respectivamente, entonces los tres puntos de intersección L, M y N son colineales.

1.24. Teorema de Desargues.

Si dos triángulos están perspectivas desde un punto y si sus pares de lados correspondientes si intersectan, entonces los tres puntos de intersección.

1.25. Teorema recíproco de Desargues.

Si dos triángulos están en perspectivas desde una recta, entonces las rectas que unen dos pares de vértices correspondientes son concurrentes; por lo que los triángulos están en perspectiva desde el punto de intersección de estas rectas.

1.26. Teorema de Desargues con paralelas.

Si PQR y P'Q'R' son dos triángulos en perspectiva desde un punto y éstos tienen dos pares de lados correspondientes paralelos entonces los otros dos lados correspondientes paralelos entonces los otros dos lados correspondientes son paralelos. Recíprocamente, si los triángulos PQR y P'Q'R' tienen lados correspondientes paralelos y dos rectas que unen puntos correspondientes se intersectan en un punto O entonces los triángulos están en perspectiva desde O.

1.27. Teorema del centro de gravedad.

El centroide G es el único punto dentro del triángulo ABC que tiene la propiedad de que los triángulos BCG, CAG y ABG tienen la misma área.

1.28. Teorema del triángulo órtico.

El ortocentro de un triángulo acutángulo es el incentro del triángulo órtico.

1.29. Teorema del Excentro.

Las bisectrices externas de cualesquiera dos ángulos de un triángulo son concurrentes con la bisectriz interna del tercer ángulo.

1.30. Identidades pitágoricas.

Sea α un ángulo cualquiera,

$$\cos^2 \alpha + \sin^2 \alpha = 1$$

1.31. Suma y diferencias de ángulos en el seno y coseno.

Sea α y β dos ángulos cualesquiera, se cumple que:

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \alpha \mp \sin \alpha \sin \beta$$

$$\sin(\alpha \pm \beta) = \cos \alpha \sin \beta \pm \cos \beta \sin \alpha$$

1.32. Ley de cosenos.

Sea un triángulo con a, b y c las longitudes de los lados y β el ángulo opuesto al lado b.

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

1.33. Ley de senos.

Sea ABC un triángulo inscrito en una circunferencia de radio R. Si a, b y c son los lados del triángulo opuestos a los vértices A, B y C respectivamente, entonces

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

1.34. Teorema de Stewart.

Sean ABC un triángulo y AX una ceviana de longitud p, que divide al segmento BC en dos segmentos BX = m y XC = n;

$$a(p^2 + mn) = b^2m + c^2n$$

1.35. Fórmulas del área de un triángulo.

Sea ABC un triángulo con lados de longitud a, b, y c. Si s, r y R son el semiperímetro, el inradio y el circunradio del triángulo, respectivamente: Entonces su área las podemos calcular como:

$$(ABC) = \frac{ac \sin \angle CBA}{2}$$

$$(ABC) = \frac{abc}{4R}$$

$$(ABC) = sr$$

$$(ABC) = \sqrt{s(s-a)(s-b)(s-c)}$$

1.36. Desigualdad geométrica.

Si a, b, c son los lados de un triángulo de área (ABC) entonces

$$4\sqrt{3}(ABC) \le a^2 + b^2 + c^2$$

con igualdad si y sólo si a, b, c es equilátero.

1.37. Desigualdad de Nesbitt.

Sea a, b y c números positivos, se cumple que:

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \geq \frac{3}{2}$$

1.38. Transformación de Ravi.

Sea a, b y c lados del triángulo, entonces a = x + y, b = y + z, c = z + x con x, y, z pertenecientes a los reales positivos.

1.39. Desigualdad geométrica.

Sean A, B y C ángulos de un triángulo,

$$\cos A + \cos B + \cos C \le \frac{3}{2}$$

1.40. Teorema de Potencia de Punto.

Si las cuerdas AB y CD son cuerdas; A,B,C,D están sobre una misma circunferencia, si y sólo si intersectan en un punto P y cumple que

$$PA \cdot PB = PC \cdot PD$$

1.41. Teorema del Centro Radical.

Los ejes radicales de tres circunferencias se intersectan en un punto P.

1.42. Teorema de Fórmula de Euler.

Una condición necesaria y suficiente para la existencia de un triángulo con circuncírculo (O, R) e incírculo (I, r) es la igualdad

$$OI^2 = R^2 - 2Rr$$

1.43. Teorema de Homotecia.

Dos circunferencias de radio y centros distintos, son figuras homotéticas.

1.44. Teorema de la Circunferencia de Apolonio.

Si A, B son dos puntos fijos y $\frac{p}{q}$ es una razóin fija, el lugar geométrico de los puntos P que sastifacen $\frac{AP}{PB}=\frac{p}{q}$ es una circunferencia.

1.45. Teorema de Inversión.

Sea C = (O, r) una circunferencia de inversión.

- 1. Una recta que pasa por O, se invierte en ella misma.
- 2. El inverso de una recta que no pasa por O, es una circunferencia que pasa por O
- 3. El inverso de una circunferencia que pasa por O, es una recta que no pasa por O.
- 4. El inverso de una circunferencia que no pasa por el centro de inversión O es una circunferencia que no pasa por O.

1.46. Teorema de circunferencias ortogonales.

Circunferencias ortogonales se invierten en circunferencias ortogonales.

1.47. Fórmula de Inversión.

Sean C(O.r) una circunferencia de inversión, P, Q dos puntos del plano y P', Q' sus puntos inversos, entonces.

$$Q'P' = \frac{r^2PQ}{OP \cdot OQ}$$

1.48. Teorema de Varignon.

Los puntos medios de los lados de un cuadrilátero son los vértices de un paralelogramo. El perímetro del paralelogramo es igual a la suma de las longitudes de la diagonales y su área es igual a la mitad del área del cuadrilátero.

1.49. Teorema de Ptolomeo.

El cuadrilátero ABCD es cíclico si y sólo si

$$AC \cdot BD = AB \cdot CD + BC \cdot AD$$

.

1.50. Teorema extendido de Ptolomeo.

Para cuatros puntos A, B, C y D siempre es válida la desigualdad:

$$AB \cdot DC + BC \cdot DA > CA \cdot DB$$

y la igualdad se da solamente en el caso que A, B, C y D sean concíclicos.

1.51. Teorema de Simson.

Las proyecciones de un punto sobre los lados de un triángulo son colineales si y sólo si el punto se encuentra sobre el circuncírculo del triángulo.

1.52. Teorema del perímetro de un cuadrilátero.

Entre los cuadriláteros de perímetro dado el cuadrado es el de mayor área.

1.53. Teorema de Pitot.

El cuadrilátero ABCD es circunscrito si y sólo si

$$AB + CD = BC + DA$$

1.54. Teorema de Brahmagupta.

En un cuadrilátero cíclicos con diagonales perpendiculares, al que llamamos ortodiagonal, la recta que pasa por el punto de intersección de las diagonales y es perpendicular a un lado biseca al lado opuesto.

1.55. Teorema de Brahmagupta (Área).

El área A de un cuadrilátero cíclico de lados a, b, c, d y semiperímetro s está dada por

$$A^{2} = (s - a)(s - b)(s - c)(s - d)$$

1.56. Teorema del Punto de Miquel.

Sea ABC un triángulo, con puntos arbitrarios A', B' y C' en lados BC, AC y AB, respectivamente. Dibuje tres circunferencias circunscritas a los triángulos AB'C', A'BC' y A'B'C. Estos círculos se intersectan en un punto M.

1.57. Teorema de Gergonne.

Si el incircírculo de un triángulo ABC es tangente a los lados BC, CA y AB en los puntos X, Y y Z, respectivamente, entonces las cevianas AX, BY y CZ son concurrentes en un punto G.

1.58. Teorema de Nagel.

Sea un triángulo ABC. Los puntos L, M y N están sobre los lados BC, CA y AB tales que AB+BL=LC+CA, BC+CM=MA+AB y CA+AN=NB+BC, entonces AL, BM y CN son concurrentes.

1.59. Teorema de Blanchet.

Sea un triángulo ABC y sea H la base de la altura C. AX, BY y CH se intersectan un punto P, con X y Y puntos sobre los lados BC y CA, respectivamente, entonces

$$\angle CHY = \angle CHX$$

1.60. Teorema de la Mariposa.

Sea M el punto medio de la cuerda AB. Las cuerdas CD y EF pasan por M. CF y ED intersectan a AB en U y V respectivamente, entonces M también el punto medio de UV.

1.61. Teorema de Viviani.

Sea ABC un triángulo equilátero, P un punto arbitrario y h la altura del triángulo. Si X, Y y Z son las perpendiculares que van desde hacia BC, CA y AB, respectivamente, entonces

$$PX + PY + PZ = h$$

1.62. Teorema de Vecten.

Sea un triángulo ABC. Se construye cuadrados externamente al triángulo sobre los lados BC, CA, AB con centros X, Y, Z, respectivamente. Entonces AX, BY y CA son concurrentes.

1.63. Teorema de Van Aubel.

Sea un cuadrilátero ABCD. Se trazan cuadrado externos al cuadrilátero sobre los lados AB, BC, CD, DA con centros W, X, Y, Z respectivamente. Entonces WY = XZ y WY es perpendicular XZ

1.64. Teorema de la cuaterna armónica.

Sea un triángulo ABC. Los puntos X, Y están sobre AC y BC y D es la intersección de XY con AB. Entonces se cumple que

$$AD \cdot BC = AB \cdot CD$$

1.65. Teorema del punto cicloceviano conjugado.

Sea ABC un triángulo con puntos puntos X, Y, Z sobre BC, CA y AB, respectivamente, tales que AX, BY y CZ sean colineales. Los puntos X', Y', Z' son las intersecciones del circuncírculo del triángulo XYZ con AX, BY y CZ respectivamente. Entonces AX', BY' y CZ' son colineales.

1.66. Teorema de Monge.

Sean 3 circunferencias con centro A, B, C no colineales, que cumple que sus centros y radios son diferentes. Los puntos X, Y, Z son la intersección de la tangentes externas de los círculos con centro A y B, B y C, C y A respectivamente. Entonces X. Y, Z son colineales.

1.67. Teorema del Hexágono Místico de Pascal.

Sea ABCDEF un hexágono cíclico. Los puntos X, Y, Z son las intersecciones de AF con CD, AB con DE, BC con EF; respectivamente. Entonces X, Y, Z son colineales.

1.68. Teorema de los círculos de Jhonson.

Sean tres circunferencias de radio iguales que pasan por un punto P. Sin perdida de generalidad, sean X, Y, Z las intersecciones de los pares de circunferencias diferentes P. El circuncírculo del triangulo XYZ es congruente con las 3 circunferencias.

1.69. Teorema de Bevan.

Sea un triángulo ABC con excentros E_A , E_B y E_C . Las rectas L_A , L_B y L_C que pasan por los excentros y son perpendiculares al correspondientes lado del triángulo, son concurrentes.

1.70. Teorema de Brocard.

Sea ABCD un triángulo cíclico. Sea O el centro de la circunferencia del cuadrilátero ABCD. Los puntos P, Q y R son las intersecciones de AB con CD, BC con AD y AC con BD. Entonces el ortocentro del triángulo PQR es O.

1.71. Teorema de Adam.

El incircírculo con incentro I de un triángulo ABC es tangente a los lados BC, CA y AB en los puntos X, Y, Z respectivamente. Las cevianas AX, BY y CZ son concurrentes en un punto G. Las rectas paralelas a XY, YZ, ZX que pasan por G, intersectan a AB, BC y CA en P y Q, R y S, T y U; respectivamente. Entonces el hexagono PQRSTUV es concíclico con centro I.

1.72. Teorema de la Hire.

Si Q pertenece a la polar de P, entonces P pertenece a la polar de Q.

Capítulo 2

Demostraciones

Teorema de suma de los ángulos de un triángulo. 2.1.

La suma de los ángulos internos de un triángulo es 180°.

Sea un triángulo ABC, por el vértice A trazamos una recta paralela al lado BC.

Definimos el $\angle A = \alpha, \angle B = \beta$ y $\angle C = \theta$ y definimos respectivamente los ángulos alternos internos que están en la paralela a BC como β' y θ' .

(1)

Por definición y ser ángulo alternos internos,
$$\beta = \beta'$$
 y $\theta = \theta'$ (2)

Por (1), los ángulos
$$\alpha, \beta'$$
 y θ' forman un ángulo llano. (3)

Por (2) y (3),
$$\alpha + \beta + \theta = \alpha + \beta' + \theta' = 180^{\circ}$$
 (4)

Por (4), los ángulos internos de un triángulo sumas 180°

2.2. Desigualdad del triángulo.

Sean a, b y c las longitudes de los lados de un triángulo, si y sólo si,

$$a+b>c$$
,

$$a+c>b$$
,

$$b + c > a$$

Sea D un punto sobre la prolongación del lado BC del triángulo ABC, tal que AC = CD (1)

Por (1),
$$BD = BC + CD = a + b$$
 (2)

Por
$$(2)$$
, el triángulo ADC es isósceles (3)

Por (3)
$$y \angle BAD = \angle BAC + \angle CAD, \angle BAD > \angle CAD = \angle CDA$$
 (4)

Se demostrará lo siguiente, si un triángulo ABC se cumple que $\angle A > \angle B$ entonces a > b. (*) Sea D un punto sobre AC tal que CD = CB.

Como
$$\angle A > \angle B$$
, el punto D no está sobre \overline{AC} (5)

Por (5) y definición de
$$D$$
, $CA < CD = BC$ (6)

Por (6), se cumple que a > b.

Por (4) y (*),
$$a + b > c$$
. (7)

De manera análoga se demuestra que, a + c > b y b + c > a.

Construimos un triángulo con lados iguales a a, b y c.

Podemos suponer que $a \le b \le c$ y consideramos un segmento AB de longitud c.

Trazamos ahora dos circunferencias una con centro en A y radio b y otra con centro en B y radio a.

Como c < a + b, las dos circunferencias se intersectan (en caso contrario se tendría que $a + b \le c$). Uno de los puntos de intersección sirve como el tercer vértice C, del triángulo buscando ABC.

Construimos un triángulo con lados iguales a $a, b \ y \ c$.

Podemos suponer que $a \le b \le c$ y consideramos un segmento AB de longitud c.

Trazamos ahora dos circunferencias una con centro en A y radio b y otra con centro en B y radio a.

Como c < a+b, las dos circunferencias se intersectan (en caso contrario se tendría que $a+b \le c$). Uno de los puntos de intersección sirve como el tercer vértice C, del triángulo buscando ABC.