Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

Lecture #18 – Hypothesis Testing I

The Pepsi Challenge

Analogy between Hypothesis Testing and a Criminal Trial

Steps in a Hypothesis Test

The Pepsi Challenge

Our expert claims to be able to tell the difference between Coke and Pepsi. Let's put this to the test!

- Eight cups of soda
 - Four contain Coke
 - Four contain Pepsi
- The cups are randomly arranged
- How can we use this experiment to tell if our expert can really tell the difference?

The Results:

of Cokes Correctly Identified:

What do you think? Can our expert really tell the difference?

- (a) Yes
- (b) No

If you just guess randomly, what is the probability of identifying *all* four cups of Coke correctly?

- $\binom{8}{4} = 70$ ways to choose four of the eight cups.
- ▶ If guessing randomly, each of these is equally likely
- Only one of the 70 possibilities corresponds to correctly identifying all four cups of Coke.
- ▶ Thus, the probability is $1/70 \approx 0.014$

Probabilities if Guessing Randomly

# Correct	0	1	2	3	4
Prob.	1/70	16/70	36/70	16/70	1/70

If you're just guessing, what is the probability of identifying at least three Cokes correctly?

- Probabilities of mutually exclusive events sum.
- ▶ P(all four correct) = 1/70
- ▶ P(exactly 3 correct) = 16/70
- ▶ $P(\text{at least three correct}) = 17/70 \approx 0.24$

The Pepsi Challenge

- Even if you're just guessing randomly, the probability of correctly identifying three or more Cokes is around 24%
- In contrast, the probability of identifying all four Cokes correctly is only around 1.4% if you're guessing randomly.
- ▶ We should probably require the expert to get them all right. . .
- ▶ What if the expert gets them all wrong? This also has probability 1.4% if you're guessing randomly...

That was a hypothesis test! We'll go through the details in a moment, but first an analogy...

Criminal Trial

- The person on trial is either innocent or guilty (but not both!)
- "Innocent Until Proven Guilty"
- Only convict if evidence is "beyond a reasonable doubt"
- Not Guilty rather than Innocent
 - ► Acquit ≠ Innocent
- Two Kinds of Errors:
 - Convict the innocent
 - Acquit the guilty
- Convicting the innocent is a worse error. Want this to be rare even if it means acquitting the guilty.

Hypothesis Testing

- Either the null hypothesis H₀ or the alternative H₁ hypothesis is true.
- ightharpoonup Assume H_0 to start
- Only reject H₀ in favor of H₁ if there is strong evidence.
- ► Fail to reject rather than Accept H₀
 - (Fail to reject H_0) \neq (H_0 True)
- Two Kinds of Errors:
 - ► Reject true *H*₀ (Type I)
 - ▶ Don't reject false H₀ (Type II)
- ► Type I errors (reject true H₀) are worse: make them rare even if that means more Type II errors.

How is the Pepsi Challenge a Hypothesis Test?

Null Hypothesis H_0

Can't tell the difference between Coke and Pepsi: just guessing.

Alternative Hypothesis H_1

Able to tell which ones are Coke and which are Pepsi.

Type I Error – Reject H_0 even though it's true

Decide expert can tell the difference when she's really just guessing.

Type II Error – Fail to reject H_0 even though it's false

Decide expert just guessing when she really can tell the difference.

How do we carry out a hypothesis test?

Step 1 – Specify H_0 and H_1

- ▶ Pepsi Challenge: H_0 our "expert" is guessing randomly
- ▶ Pepsi Challenge: *H*₁ our "expert" can tell which is Coke

Step 2 – Choose a Test Statistic T_n

- ▶ T_n uses sample data to measure the plausibility of H_0 vs. H_1
- ▶ Pepsi Challenge: T_n = Number of Cokes correctly identified
- ► Lots of Cokes correct ⇒ implausible that you're just guessing

Step 3 – Calculate Distribution of T_n under H_0

- ▶ Under the null = Under H_0 = Assuming H_0 is true
- ▶ To carry out our test, need sampling dist. of T_n under H_0
- \blacktriangleright H_0 must be "specific enough" that we can do the calculation.
- ► Pepsi Challenge:

# Correct	0	1	2	3	4
Prob.	1/70	16/70	36/70	16/70	1/70

Step 4 – Choose a Critical Value c

# Correct	0	1	2	3	4
Prob.	1/70	16/70	36/70	16/70	1/70

- ▶ Pepsi Challenge: correctly identify many cokes ⇒ implausible you're guessing at random.
- ▶ Decision Rule: reject H_0 if $T_n > c$, where c is the critical value.
- Choose c to ensure $P(\mathsf{Type} \mid \mathsf{Error})$ is small. But how small?
- ▶ Significance level $\alpha = \max$. prob. of Type I error we will allow
- Choose c so that if H_0 is true $P(T_n > c) \le \alpha$
- ▶ Pepsi Challenge: if you are guessing randomly, then
 - $P(T_n > 3) = 1/70 \approx 0.014$
 - $P(T_n > 2) = 16/70 + 1/70 \approx 0.23$

Econ 103

How do we carry out a hypothesis test?

# Correct	0	1	2	3	4
Prob.	1/70	16/70	36/70	16/70	1/70

- Step 1 Specify Null Hypothesis H_0 and alternative Hypothesis H_1
- Step 2 Choose Test Statistic T_n
- Step 3 Calculate sampling dist of T_n under H_0
- Step 4 Choose Critical Value c
- Step 5 Look at the data: if $T_n > c$, reject H_0 .

Pepsi Challenge

If $\alpha = 0.05$ we need c = 3 so that $P(T_n > 3) \le \alpha$ under H_0 .

Based on the results for our expert, would we reject H_0 ?

Lecture #19 – Hypothesis Testing II

Test for the mean of a normal population (variance known)

Relationship Between Confidence Intervals and Hypothesis Tests

P-values

One-Sided Tests

A Simple Example

Suppose
$$X_1,\ldots,X_{100}\sim \text{ iid } N(\mu,\sigma^2=9)$$
 and we want to test

$$H_0$$
: $\mu = 2$

$$H_1$$
: $\mu \neq 2$

Step 1 – Specify Null Hypothesis H_0 and alternative Hypothesis $H_1 \checkmark$

Step 2 – Choose Test Statistic T_n

If \bar{X} is far from 2 then $\mu=2$ is implausible. Why?

If \bar{X}_n is far from 2, then $\mu = 2$ is implausible

Since $X_1, \ldots, X_{100} \sim \text{ iid N}(\mu, 9)$, if $\mu = 2 \text{ then } \bar{X} \sim N(2, 0.09)$

$$P(a \le \bar{X} \le b) = P\left(\frac{a-2}{3/10} \le \frac{X-2}{3/10} \le \frac{b-2}{3/10}\right)$$
$$= P\left(\frac{a-2}{0.3} \le Z \le \frac{b-2}{0.3}\right)$$

where $Z \sim N(0,1)$ so we see that if H_0 : $\mu=2$ is true then

$$P(1.7 \le \bar{X} \le 2.3) = P(-1 \le Z \le 1) \approx 0.68$$

 $P(1.4 \le \bar{X} \le 2.6) = P(-2 \le Z \le 2) \approx 0.95$
 $P(1.1 \le \bar{X} \le 2.9) = P(-3 \le Z \le 3) > 0.99$

Step 2 – Choose Test Statistic T_n

- ▶ Reject H_0 : $\mu = 2$ if the sample mean is far from 2.
- $ightharpoonup
 ightharpoonup T_n$ should depend on the distance from \bar{X} to 2, i.e. $|\bar{X}-2|$.
- ▶ We can make our subsequent calculations much easier if we choose a scale for T_n that is convenient under H_0 ...

$$\mu=2 \Rightarrow \quad ar{X}-2 \quad \sim \quad {\it N}(0,0.09)$$
 $\dfrac{ar{X}-2}{0.3} \quad \sim \quad {\it N}(0,1)$

So we will set
$$T_n = \left| \frac{\bar{X} - 2}{0.3} \right|$$

A Simple Example: $X_1, \ldots, X_{100} \sim \text{iid N}(\mu, \sigma^2 = 9)$

Step 1 -
$$H_0$$
: $\mu = 2$, H_1 : $\mu \neq 2$ \checkmark
Step 2 - $T_n = \left|\frac{\bar{X}-2}{0.3}\right|$ \checkmark
Step 3 - If $\mu = 2$ then $\left(\frac{\bar{X}-2}{0.3}\right) \sim N(0,1)$ \checkmark
Step 4 - Choose Critical Value c

- (i) Specify significance level of
 - (i) Specify significance level α .
 - (ii) Choose c so that $P(T_n > c) = \alpha$ under H_0 : $\mu = 2$.

Choose c so that $P(T_n > c) = \alpha$ under H_0

$${\cal T}_n = \left| rac{ar X - 2}{0.3}
ight|$$
 and $\mu = 2 \implies rac{ar X - 2}{0.3} \sim {\it N}(0,1)$

$$P\left(\left|\frac{\bar{X}-2}{0.3}\right| > c\right) = \alpha$$

$$1 - P\left(\left|\frac{\bar{X}-2}{0.3}\right| \le c\right) = \alpha$$

$$P\left(\left|\frac{\bar{X}-2}{0.3}\right| \le c\right) = 1 - \alpha$$

$$P\left(-c \le \frac{\bar{X}-2}{0.3} \le c\right) = 1 - \alpha$$

Hence: $c = \text{gnorm}(1 - \alpha/2)$ which should look familiar!

A Simple Example: $X_1, \ldots, X_{100} \sim \text{iid N}(\mu, \sigma^2 = 9)$

Step 1 -
$$H_0$$
: $\mu = 2$, H_1 : $\mu \neq 2$
Step 2 - $T_n = \left| \frac{\bar{X} - 2}{0.3} \right|$

Step 3 - If
$$\mu=2$$
 then $\left(rac{ar{X}-2}{0.3}
ight)\sim extstyle extstyle N(0,1)$ \checkmark

Step 4 -
$$c = qnorm(1 - \alpha/2)$$
 \checkmark

- Step 5 Look at the data: if $T_n > c$, reject H_0
 - ▶ Suppose I choose $\alpha = 0.05$. Then $c \approx 2$.
 - ▶ I observe a sample of 100 observations. Suppose $\bar{x} = 1.34$

$$T_n = \left| \frac{\bar{x} - 2}{0.3} \right| = \left| \frac{1.34 - 2}{0.3} \right| = 2.2$$

▶ Since $T_n > c$, I reject H_0 : $\mu = 2$.

Reporting the Results of a Test

Our Example: $X_1, \ldots, X_{100} \sim \mathsf{iid} \ \mathsf{N}(\mu, 1)$

- H_0 : $\mu = 2$ vs. H_1 : $\mu \neq 2$
- $T_n = |(\bar{X}_n 2)/0.3|$
- ho $\alpha = 0.05 \implies c \approx 2$

Suppose $\bar{x} = 1.34$

Then $T_n=2.2$. Since this is greater than c for $\alpha=0.05$, we reject $H_0: \mu=2$ at the 5% significance level.

Suppose instead that $\bar{x} = 1.82$

Then $T_n=0.6$. Since this is less than c for $\alpha=0.05$, we fail to reject H_0 : $\mu=2$ at the 5% significance level.

General Version of Preceding Example

 $X_1, \ldots, X_n \sim \text{iid N}(\mu, \sigma^2)$ with σ^2 known and we want to test:

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

where μ_0 is some specified value for the population mean.

- ▶ $|\bar{X}_n \mu_0|$ tells how far sample mean is from μ_0 .
- ▶ Reject H_0 : $\mu = \mu_0$ if sample mean is far from μ_0 .
- ▶ Under H_0 : $\mu = \mu_0$, $\frac{\bar{X}_n \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$.
- ▶ Test statistic $T_n = \left| \frac{\bar{X}_n \mu_0}{\sigma / \sqrt{n}} \right|$
- ▶ Reject H_0 : $\mu = \mu_0$ if $T_n > \text{qnorm}(1 \alpha/2)$

What is this test telling us to do?

Return to specific example where H_0 : $\mu=2$ vs. H_1 : $\mu\neq 2$ and $X_1,\ldots,X_{100}\sim \text{iid N}(\mu,1)$ with $\alpha=0.05$:

Reject
$$H_0$$
 if $\left|\frac{X_n-2}{0.3}\right|>2$
Reject H_0 if $|\bar{X}_n-2|>0.6$
Reject H_0 if $(\bar{X}_n<1.4)$ or $(\bar{X}_n>2.6)$

Reject H_0 : $\mu=2$ if \bar{X}_n is far from 2. How far? Depends on choice of α along with sample size and population variance.

This looks suspiciously similar to a confidence interval. . .

$$X_1,\ldots,X_n\sim \mathsf{iid}\ \mathsf{N}(\mu,\sigma^2)$$
 where σ^2 is known

$$T_n = \left| \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} \right|, c = \text{qnorm}(1 - \alpha/2), \text{ Reject } H_0: \mu = \mu_0 \text{ if } T_n > c$$

Another way of saying this is don't reject H_0 if:

$$(T_n \le c) \iff \left(\left| \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} \right| \le c \right) \iff \left(-c \le \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} \le c \right)$$

$$\iff \left(\bar{X}_n - c \times \frac{\sigma}{\sqrt{n}} \le \mu_0 \le \bar{X}_n + c \times \frac{\sigma}{\sqrt{n}} \right)$$

In other words, don't reject H_0 : $\mu = \mu_0$ at significance level α if μ_0 lies inside the $100 \times (1 - \alpha)\%$ confidence interval for μ .

Cls and Hypothesis Tests are Intimately Related

Our Simple Example

$$X_1,\ldots,X_{100}\sim \mathsf{iid}\,\,\mathsf{N}(\mu,\sigma^2=9)$$
 and observe $\bar{x}=1.34$

Test
$$H_0$$
: $\mu = 2$ vs. H_1 : $\mu \neq 2$ with $\alpha = 0.05$

$$T_n = 2.2$$
, $c = qnorm(1 - 0.05/2) \approx 2$. Since $T_n > c$ we reject.

95% Confidence Interval for μ

 $1.34\pm2 imes3/10$ i.e. 1.34 ± 0.6 or equivalently (0.74,1.94)

Another way to carry out the test...

Since 2 lies outside the 95% confidence interval for μ , if our significance level is $\alpha = 0.05$ we reject $H_0: \mu = 2$.

$$X_1,\ldots X_{100}\sim \mathsf{iid}\ \mathsf{N}(\mu_X,1)\ \mathsf{and}\ Y_1,\ldots,Y_{100}\sim \mathsf{iid}\ \mathsf{N}(\mu_Y,1)$$

Two researchers: H_0 : $\mu=2$ vs. H_1 : $\mu\neq 2$ with $\alpha=0.05$

Researcher 1

- $\bar{x} = 1.34$
- $T_n = 2.2 > 2$
- Reject H_0 : $\mu_X = 2$

Researcher 2

- $\bar{y} = 11.3$
- ► $T_n = 31 > 2$
- ▶ Reject H_0 : $\mu_Y = 2$

Both researchers would report "reject H_0 at the 5% level" but Researcher 2 found much stronger evidence against H_0 ...

What if we had chosen a different significance level α ?

$$T_n=2.2, \quad c= ext{qnorm}(1-lpha/2), \quad ext{Reject } H_0\colon \mu=2 ext{ if } T_n>c$$

$$lpha=0.32 \Rightarrow c=\operatorname{qnorm}(1-0.32/2) \approx 0.99$$
 Reject $lpha=0.10 \Rightarrow c=\operatorname{qnorm}(1-0.10/2) \approx 1.64$ Reject $lpha=0.05 \Rightarrow c=\operatorname{qnorm}(1-0.05/2) \approx 1.96$ Reject $lpha=0.04 \Rightarrow c=\operatorname{qnorm}(1-0.04/2) \approx 2.05$ Reject $lpha=0.03 \Rightarrow c=\operatorname{qnorm}(1-0.03/2) \approx 2.17$ Reject $lpha=0.02 \Rightarrow c=\operatorname{qnorm}(1-0.02/2) \approx 2.33$ Fail to Reject $lpha=0.01 \Rightarrow c=\operatorname{qnorm}(1-0.01/2) \approx 2.58$ Fail to Reject

Result of Test Depends on Choice of α !

```
\begin{array}{lll} \alpha = 0.32 & \Rightarrow & \text{Reject} \\ \alpha = 0.10 & \Rightarrow & \text{Reject} \\ \alpha = 0.05 & \Rightarrow & \text{Reject} \\ \alpha = 0.04 & \Rightarrow & \text{Reject} \\ \alpha = 0.03 & \Rightarrow & \text{Reject} \\ \alpha = 0.02 & \Rightarrow & \text{Fail to Reject} \\ \alpha = 0.01 & \Rightarrow & \text{Fail to Reject} \end{array}
```

- ▶ If you reject H_0 at a given choice of α , you would also have rejected at any larger choice of α .
- If you fail to reject H₀ at a given choice of α, you would also have failed to reject at any smaller choice of α.

Question

If α is large enough we will reject; if α is small enough, we won't.

Where is the dividing line between reject and fail to reject?

P-Value: Dividing Line Between Reject and Fail to Reject

$$T_n=2.2, \quad c= ext{qnorm}(1-lpha/2), \quad ext{Reject $H_0:$} \ \mu=2 \ ext{if $T_n>c$}$$

Question

Given that we observed a test statistic of 2.2, what choice of α would put us just at the cusp of rejecting H_0 ?

Answer

Whichever α makes c = 2.2! At this α we just barely fail to reject.

Calculating the P-value

Definition of a P-value

Significance level α such that the critical value c exactly equals the observed value of the test statistic. Equivalently: α that lies exactly on boundary between Reject and Fail to Reject.

Our Example

The observed value of the test statistic is 2.2 and the critical value is $qnorm(1 - \alpha/2)$, so we need to solve:

$$2.2 = \operatorname{qnorm}(1 - \alpha/2)$$

$$\operatorname{pnorm}(2.2) = \operatorname{pnorm}(\operatorname{qnorm}(1 - \alpha/2))$$

$$\operatorname{pnorm}(2.2) = 1 - \alpha/2$$

$$\alpha = 2 \times [1 - \operatorname{pnorm}(2.2)] \approx 0.028$$

How to use a p-value?

Alternative to Steps 4–5

Rather than choosing α , computing critical value c and reporting "Reject" or "Fail to Reject" at $100 \times \alpha\%$ level, just report p-value.

Example From Previous Slide

P-value for our test of H_0 : $\mu=2$ against H_1 : $\mu\neq 2$ was ≈ 0.028

Using P-value to Test H_0

Using the p-value we can test H_0 for any α without doing any new calculations! For p-value $< \alpha$ reject; for p-value $\ge \alpha$ fail to reject.

Strength of Evidence Against H_0

P-value measures strength of evidence against the null. Smaller p-value = stronger evidence against H_0 . P-value does not measure size of effect.

One-sided Test: Different Decision Rule

Same Example as Above

 $X_1, \ldots, X_{100} \sim \text{iid N}(\mu, 1) \text{ and } H_0 \colon \mu = 2.$

Three possible alternatives:

Two-sided One-sided (<) One-sided (>)

 $H_1: \mu \neq 2$ $H_1: \mu < 2$ $H_1: \mu > 2$

Three corresponding decision rules:

- ▶ Two-sided: reject $\mu = 2$ whenever $|\bar{X}_n 2|$ is too large.
- ▶ One-sided (<): only reject $\mu = 2$ if \bar{X}_n is far below 2.
- ▶ One-sided (>): only reject $\mu = 2$ if \bar{X}_n is far above 2.

One-sided (>) Example: $X_1, \ldots, X_{100} \sim \text{iid N}(\mu, 1)$

Null and Alternative

Test H_0 : $\mu = 2$ against H_0 : $\mu > 2$ with $\alpha = 0.05$.

Test Statistic

Drop absolute value for one-sided test: $T_n = \frac{\bar{X}_n - 2}{0.3}$

Decision Rule

Reject H_0 : $\mu=2$ if test statistic is large and positive: $T_n>c$

Critical Value

Choose c so that $P(\mathsf{type}\;\mathsf{I}\;\mathsf{error}) = P(\mathit{T}_n > c | \mu = 2) = 0.05$

Under H_0 , $T_n \sim N(0,1)$

If $Z \sim N(0,1)$ what value of c ensures P(Z > c) = 0.05?

One-sided (<) Example: $X_1, \ldots, X_{100} \sim \text{iid N}(\mu, 1)$

Null and Alternative

Test H_0 : $\mu = 2$ against H_0 : $\mu < 2$ with $\alpha = 0.05$.

Test Statistic

Drop absolute value for one-sided test: $T_n = \frac{\bar{X}_n - 2}{0.3}$

Decision Rule

Reject H_0 : $\mu = 2$ if test statistic is large and negative: $T_n < c$

Critical Value

Choose c so that $P(\text{type I error}) = P(T_n < c | \mu = 2) = 0.05$

Under H_0 , $T_n \sim N(0,1)$

If $Z \sim N(0,1)$ what value of c ensures P(Z < c) = 0.05?

Critical Values – Two-sided vs. One-sided Tests: $\alpha = 0.05$

Two-Sided

Splits $\alpha = 0.05$ between two tails: $c = qnorm(1 - 0.05/2) \approx 1.96$

One-Sided

One tail: $c = \mathtt{qnorm}(0.05) \approx -1.64$ for (<); $\mathtt{qnorm}(0.95) \approx 1.64$ for (>)

Example: $X_1, ..., X_{100} \sim \text{iid N}(\mu, 1), \alpha = 0.05$

Suppose
$$\bar{x}=1.5 \implies (\bar{x}-2)/0.3 \approx -1.67$$

Two-sided One-sided (
$$<$$
) One-sided ($>$) One-sided ($>$)
 $H_1\colon \mu \neq 2$ $H_1\colon \mu < 2$ $H_1\colon \mu > 2$
Reject if $T_n > 1.96$ Reject if $T_n < -1.64$ Reject if $T_n > 1.64$
 $T_n = 1.67$ $T_n = -1.67$ Fail to reject Reject Fail to reject

- ▶ If One-sided (<) rejects, then one-sided (>) doesn't and vice-versa.
- ► Two-sided and one-sided sometimes agree but sometimes disagree.
- One-sided test is "less stringent."

Testing H_0 : $\mu = \mu_0$ when $X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2)$

Reject
$$H_0$$
 whenever $\left| rac{ar{X}_n - \mu_0}{\sigma/\sqrt{n}}
ight| > ext{qnorm} (1 - lpha/2)$

One-Sided (<)

Reject
$$H_0$$
 whenever $\frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} < \mathtt{qnorm}(\alpha)$

One-Sided (>)

Reject
$$H_0$$
 whenever $\frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} > \mathtt{qnorm}(1-\alpha)$

One-sided P-value

- Only makes sense to calculate one-sided p-value when sign of test stat. agrees with alternative:
 - Preceding example: $T_n = -1.67$
 - ► Calculate p-value for test vs. H_1 : μ < 2 but not H_1 : μ > 2
- Just as in two-sided test, p-value equals value of α for which c exactly equals the observed test statistic:
 - $c = \operatorname{qnorm}(\alpha)$ for (<)
 - $c = qnorm(1 \alpha)$ for (>)
 - Example: $-1.67 = qnorm(\alpha) \iff \alpha = 0.047$
- Use and report one-sided p-value in same way as two-sided p-value

Final Notes on One-sided vs. Two-sided Tests

- Two-sided test is the default.
- Don't use one-sided unless you have a good reason!
- Relationship between CI and test only holds for two-sided.
- ▶ Why and when should we consider a one-sided test?
 - ▶ Suppose we know a priori that μ < 2 is crazy/uninteresting
 - ► Test of H_0 : $\mu = 2$ against H_1 : $\mu > 2$ with significance level α has lower type II error rate than test against H_1 : $\mu \neq 2$.
- ▶ If you use a one-sided test you must choose (>) or (<) before looking at the data. Otherwise the results are invalid.</p>

Roadmap

Next Time

More examples of hypothesis testing using relationship to CIs to help us avoid re-inventing the wheel.

Building Intuition

Now that you know a simple example of a hypothesis test and its relationship to a CI, think about the following:

- ▶ If we reject H_0 does that mean that H_0 is false?
- ▶ How does testing relate to random sampling?
- ▶ How does critical value of two-sided test relate to width of CI?
- ▶ In a given test, which is larger: the one-sided or two-sided p-value?