VIBRATION ANALYSIS OF ISOTROPIC AND ORTHOTROPIC PLATES AND ROTATING DISCS USING FINITE ELEMENT METHOD

Ву

N. SHRIRANGA ACHAR

ME
1904

M TH

ME | LASU | MY

ACH ACHIN

VIB

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR NOVEMBER, 1984

VIBRATION ANALYSIS OF ISOTROPIC AND ORTHOTROPIC PLATES AND ROTATING DISCS USING FINITE ELEMENT METHOD

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

By

N. SHRIRANGA ACHAR

to the

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR NOVEMBER, 1984

88 JUN 1985

87194

ME-1984 - M-ACH-VIB

DEDICATED

TO

MY MOTHER

CERTIFICATE

This is to certify that the thesis entitled VIBRATION ANALYSIS OF ISOTROPIC AND ORTHOTROPIC PLATES AND ROTATING DISCS USING FINITE ELEMENT METHOD, by Mr. N. Shriranga Achar has been carried out under my supervision and has not been submitted elsewhere for a degree.

November, 1934

Prof. B. Sahay
Dept. of Mechanical Engg.
Indian Institute of Tech.
Kanpur.

POST GRADE LE OFFI

con.)

Masert

regu.

Dates.

ACKNOWLEDG EMENTS

I express my deep sense of gratitude to Dr. B. Sahay for his valuable guidance, constant encouragement and co-operation in successful completion of this work.

I am grateful to Dr. B.P. Singh for his valuable quidance and inspiration throughout.

I am thankful to Mr. D.P. Saini for his excellent typing and Mr. Verma for tracing the figures.

I would also like to thank all my friends for their help in proof reading and preparing the manuscript.

N. Shriranga Achar

CONTTITS

		Page
LIST OF TABLE	ES	V.
LIST OF FIGUR	RES	vii
NOMENCLATURE		ix
ABSTRACT		жi
CHAPTER-I :	INTRODUCTION	1
	1.1 : General	
	1.2 : Literature survey	
	1.3 : Present work	
CHAPTER-II :	VIBRATION ANALYSIS OF RECTANGULAR AND ANNULAR PLATES	7
	2.1 : Introduction	
	2.2 : Assumptions	
	2.3: Formulation of the problem	
	2.3.1 : Rectangular plate	
	2.3.2 : Shape functions	
	2.3.3 : Annular plate	
	2.3.4 : Numerical integration	
	2.4 : Solution procedure	
CHAPTER-III:	VIBRATION ANALYSIS OF CIRCULAR AND ANNULAR PLATES WITH VARYING THICKNESS	13
	3.1 : Introduction	
	3.2 : Finite element formulation	,
	3.3 : Solution technique	

				<u>P</u>	ag e
CHAPTER-IV	:	VIBR		FION ANALYSIS OF ROTATING	23
		4.1	:	Introduction	
		4.2	90	Formulation	
		4.3	0	Determination of inplane stresses	
CHAPTER-V		RESU	L	rs and discussion	27
		5.1		Rectangular	
		5.2	9 0	Annular sector element	
		5.3	8	Annular element	
				5.3a : Isotropic plates	
				5.3b : Orthotropic plates	
				5.3c : Rotating isotropic disc	
				5.3d : Rotating orthotropic disc	
CHAPTER-VI	0	CONC	IJ	JSIONS	62
		6.1	9	Conclusion	
		6.2	•	Scope for future work	
REFERENCES					64
APPENDICES					67

LIST OF TABLES

- 1a. Comparison of the frequency parameter $\lambda 1^2 (Ph/D)^{1/2}$ for a rectangular plate with answers from ref.[4].
- 1b. Comparison of the frequency parameter for a clamped square plate with a square hole of side length 1/2, located at the centre, with answers from ref. [4].
- 1c. Comparison of the frequency parameter $\lambda R_2^2 (\rho h/D)^{1/2}$ of a clamped annular sector plate with answers from ref. [26].
- 1d. Comparison of the frequency parameter $\lambda R_2^2(\rho h/D)^{1/2}$ for a F-F annular plate with answers from ref.[4].
- 2. Comparison of the frequency parameter $\lambda R_2^2 (\ell h/D)^{1/2}$ for a solid circular isotropic plate for various boundary conditions with answers from ref. [4].
- 3. Comparison of the frequency parameter $\lambda R_2^2 (\nu h/D_r)^{1/2}$ with the answers from ref. [20].
- Verification of the convergence of the frequency parameter $\lambda \ R_2^2 (12 \, l (1 \nu_r \ \nu_\theta) / (E_r \ h_1^2))^{1/2}$ for orthotropic plates with linearly varying thickness.
- 5. Comparison of the frequency parameter $\lambda \ R_2^2 (12^p \ (1-\nu_r \ \nu_\theta)/(E_r \ h_1^2))^{1/2} \ \text{of orthotropic} \\ \text{plate with answers from ref. [20].}$
- Verification of the convergence of the frequency parameter λ R₂²(12 ρ (1- ν_r ν_θ)/(E_r h₁²))^{1/2} for orthotropic plates with linearly varying thickness.
- 7. Frequency parameter $\lambda R_2^2 (12 \rho (1-\nu_r \nu_e)/(E_r h_2^2))^{1/2}$ of a S-C plate.

3.	Frequency parameter $\lambda R_2^2 (12 f (1-v_r v_\theta)/(E_r h_2^2))^{1/2}$ of a C-C plate.	48
9 .	Frequency parameter λ R_2^2 (12 ρ (1- $\nu_{\rm r}$ $\nu_{\Theta})/(E_{\rm r}$ $h_2^2))^{1/2}$ of a F-C plate.	49
10,	Variation of the frequency parameter λ R ₂ (ℓ h/D) $^{1/2}$ with angular velocity Ω for different radii ratio.	53
11.	Verification of convergence of the frequency parameter λ R_2^2 (Ph/D) $^{1/2}$ for the rotat ing disc.	54
12.	Comparison of the frequency parameter λ $R_2^2(\rho h.'D_R)^{1/2}$ determined using inplane stresses from exact solutions and finite element methods.	55
13.	Variation of frequency parameter $\lambda R_2^2 (\ell h/D_R)^{1/2}$ with angular velocity 0 for different radii ratio are D_{Θ}/D_R ratio.	59

LIST OF FIGURES

Figure No.		Page
1	Rectangular element	8
2	Sector element	8
3	Annular element	19
4	Variation of the frequency parameter with radii ratio for an isotropic annular plate	34
5	Variation of the frequency parameter with radii ratio for an isotropic annular plate	35
6	Variation of the frequency parameter with radii ratio for different $D_{\rm e}/D_{\rm r}$ ratios for a F-C plate	37
7	Variation of the frequency parameter with radii ratio for different $D_{\rm e}/D_{\rm r}$ ratios for a C-C plate	33
8	Variation of the frequency parameter with radii ratio for different D _e /D _r ratios for a S-C plate	39
9	Variation of the frequency parameter with radii ratio for a plate with thickness ratio 0.8	41
10	Variation of the frequency parameter with radii ratio for a plate with thickness ratio 1.2	42
11	Variation of the frequency parameter with thickness ratio for different Do/Dr ratios	43

Figure No	· ·	Page
12	Variation of the frequency parameter with radii ratio for different speeds for a F-F case	51
13	Variation of the frequency parameter with radii ratio for different speeds for a F-C case	52
14	Variation of the frequency parameter of an orthotropic disc of radii ratio 0.5 with speed.	56
15	Variation of the frequency parameter of an orthotropic disc of radii ratio 0.3 with speed	57
16	Variation of the frequency parameter of an orthotropic disc of radii ratio 0.1 with speed	. 58
17	Distribution of implane stresses (or and to) along the radius for a rotating disc.	61

NOMENCLATURE

a	Outer radius of the element
a_{1} , a_{2} , a_{3} and a_{4}	Constants
b	Inner radius of the element
С	Constant, 2 ^T for m = 0
	^π for m ≥ 1
D _r ,D _e ,D _{re} ,	Regidity ratios of orthotropic material in principal directions of orthotropy in polar and cartesian co-ordinate systems respectively
五	Young's modulus
G	Shear modulus
h	Thickness of the plate
^h 1	Thickness at the inner edge of the annular plate
h ₂	Thickness at the outer edge of the annular plate
[K]	Stiffness matrix
1	Length of the element
$^{\mathrm{L}}\mathrm{x}$	Half the width of rectangular element
${\mathtt r}^{\lambda}$	Half the breadth of rectangular element
[M]	Mass matrix
m	Number of nodal diameters
n	Number of nodal circles

[N]	Vector containing the shape functions
Ne	Number of element
R ₁	Inner radius of annular plate
R ₂	Outer radius of annular plate
T	Kinetic energy
U	Strain energy
u	Displacement in radial direction
W	Displacement in lateral direction
$^{\mathrm{W}}$ J .	Displacement in lateral direction at node J
$^{\mathtt{W}}\mathtt{s}_{\mathtt{J}}$	Derivative of W w.r.t. S at node J
₩̄	Velocity in lateral direction
W	Acceleration in lateral direction
(ne)	Vector containing the nodal degrees of freedom of an element
[ε]	Strain matrix
P	Mass density
ν	Poisson's ratio
λ	Natural frequency
• o	Stress
Ω	Angular velocity
α	Frequency parameter
в-с	Boundary conditions
S-C	Simple-clamped
F-C	Free-clamped
C-C	Clamped-clamped

First boundary condition refers to outer edge Second boundary condition refers to inner edge

ABSTRACT

The vibration analysis of various types of plates namely rectangular (with and without cut outs), annular, annular sector, circular and rotating discs has been done. For the case of rectangular plate, a four noded rectangular element with four degrees of freedom at each node, namely lateral displacement, two bending rotations about two co-ordinate axes respectively and twist has been used.

A circular sector element with same number of degrees of freedom and an annular element (semianalytical method) have been used in case of circular plates. The annular element takes into consideration the thickness variation in the radial direction. The vibration analysis of rotating discs has been done using the semianalytical method.

Nowadays the higher stiffness to weight ratio of orthotropic plates is drawing much attention. Hence throughout the formulation and analysis of results, orthotropic plates are given emphasis.

CHAPTER - I

INTRODUCTION

1.1 GENERAL

One of the commonly used structural component in the industrialised world is a plate. In many of the design problem specifications merely ensuring that plates will withstand the applied static loads will prove to be inadequate since a variety of structures used in land, see, air and space are subjected to dynamic stresses and displacements induced by periodic forces acting on the lateral surface of the plate. Random forces are expected, for example, on the surfaces of the plates exposed to tangential gas flow as in aircraft components or stationary structures exposed to high wind velocity. Such forces can also be expected when a fluid flow takes place along the plates as in the case of rectangular plates used as the hull of a ship.

Periodic forces are likely to be experienced when plates form a part of the rotating machinery operating at a specified speed. To ensure mechanical integrity it is also necessary to predict the influence of stresses

in the discs which are due to the centrifugal force arising in the rotating disc due to its own mass.

Turbomachines and superchargers are typical examples where such rotating discs are used.

Usually little can be done to change the nature of the driving forces. Hence the most commonly used design technique for solving such problems where matching of the driving forces and natural frequencies is to be done is to alter the plate geometry or boundary conditions, so that the natural frequency zone is away from the frequency zone of the driving energy and hence the resonance is avoided. The importance, of the knowledge of the natural frequencies of plates in such applications is obvious.

1.2 LITERATURE SURVEY

In literature one finds an extensive treatment of the problems on the flexural vibration of isotropic plates - both rectangular and circular. The problem of vibration of isotropic plates having free edges was investigated long back by Kirchhoff, Lamb and Rayleigh using Poisson-Kirchhoff theory. Timshenko [1] used energy method for solving the case of isotropic plate with clamped edges. Their Wah [2] investigated the case of simply supported edge using Poisson-Kirchhoff

theory for the basic formulation. Numerical results are also given for the frequency parameter, for modes of vibration consisting of model circles and diameters. An extensive study of uniform annular isotropic plates has been done by Vogel et al. [3]. Here the classical theory of flexural motions of elastic plates was used to determine the natural frequencies for various boundary conditions of annular plates. An investigation was also made into the effects of Poisson's ratio on frequency parameters by taking different values of Poisson's ratio. Its effect has been found to be insignificant on natural frequencies. Hence in reference [3] the analysis has been done taking the value of Poisson's ratio as 0.3.

Blevins [4] has given numerical results for rectangular, annular and circular plates for various boundary conditions. Zinckiewicz [5] has given applications of finite element method to the vibration analysis of plates. The common elements used are triangular and rectangular [6] ones. Triangular elements are more useful since they can be used to represent curved boundaries.

Ergutoudis [7] has developed quadrilateral element with curved sides. Olson et al. [8] have developed two plate bending finite elements in polar co-ordinates to study the vibration of circular plates.

The first element has three modal corners and is in the shape of the sector of a circle. The second element has four modal corners and forms an annular sector. The transverse displacement and two rotations about the two co-ordinate axes respectively are the three degrees of freedom used at each mode in both the cases. Non-dimensional frequency parameter for a circular plate with clamped, free and simply supported boundary conditions are tabulated and compared with the exact values. Kirkhope et al. [9] have used semianalytical method to study the dynamic behaviour of isotropic circular plates and rotating discs for various boundary conditions. Kultar Singh [10] and Benjamin [11] have also used the annular element to study the dynamic behaviour of plates.

Even though the literature contains various types of solution techniques of vibration analysis of isotropic plates, that of orthotropic plates needs some more attention. Kirmser et. al. [12], Pandalai et al. [13], Minkarah et al. [14], Joung [15], Bellini [16] Huang [17] and Nowinski et al. [18] have attempted some problems on orthotropic bodies subjected to dynamic loading. The existance of material singularity has been reported by many of them. This is due to fact that circumferential and radial modulai can not be different at the centre. In order to overcome the above problem

some have assumed an isotropic core of small radius at the centre.

Ramaiah and Vijayakumar [19] have found out the lowest eigen values for various boundary conditions using Rayleigh-Ritz method with simple polynomials as admissible functions. In an attempt to find out the natural frequencies of higher modes of vibration, Ramaiah et al. 20 have used the classical Rayleigh-Ritz method by introducing the co-ordinate transformation. They have obtained the natural frequencies corresponding to the asymmetric modes (modes with one nodal circle and two nodal diameters). However application of this method is generally cumbersome since the method involves solution of a large set of simultaneous equations for higher accuracy of results. They have given the results for free-free, clamped-free and simply supported - free annular plates of radii ratio 0.5 and 0.1. Regarding the vibration of rotating discs Evessham's [21] work can be mentioned here where a series solution has been obtained.

1.3 PRESENT WORK

The study of nature of the natural frequencies of plates (mainly orthotropic) for various boundary conditions with varying thickness and rotating discs is the aim of the present work. Using rectangular and

annular sector elements (described in Chapter II) vibration analysis of plates ith geometrical nonlinearity like plates with cut-outs can be made. It can also take into account different types of loading.

For plates where there is linearity in material property as well as symmetry in geometry semianalytical method is more efficient reducing the problem to a one dimensional one. In the present work vibration analysis of orthotropic plates with varying thickness and rotating orthotropic discs has been done using the above method (Chapter III and IV). For uniform thickness plates good results are obtained with few elements (2 to 4). But slightly more number of elements (8 to 10) are required for plates with varying thickness.

CHAPTER - II

VIBRATION ANALYSIS OF RECTANGULAR AND ANNULAR PLATES

2.1 INTRODUCTION

For vibration analysis of rectangular plates, rectangular elements have been used. A typical rectangular element is shown in Fig. 1. The element chosen is a conforming element with four degrees of freedom per node, they being deflection W, two rotations $W_{\mathbf{x}}$, $W_{\mathbf{y}}$ and twist $W_{\mathbf{x}\mathbf{y}}$. This rectangular element with these sixteen degrees of freedom is compatible in displacement and its first derivatives i.e. it is a C1 element. For circular plates an annular sector element, shown in Fig. 2 has been chosen with same sixteen nodal degrees of freedom in polar co-ordinates.

2.2 ASSUMPTIONS

The present formulation is based on the thin plate theory (for small deflections) which makes the following assumptions [22].

1. The plates deform through flexural deformation only.

Nodel degrees of freedom are Wi, Wx; ,Wy; & Wxy; , 1 = 1,4

Fig.1 Rectangular element

Nodal degrees of freedom are Wi, Wri, We; & Wroi,

Fig 2 Sector element

- 2. Deformations are small in comparison with the plate thickness.
- 3. Normals to the mid-surface of the undeformed plate remain straight and normal to the middle plane during bending.
- 4. Rotary inertia and shear deformation are negligible.
- 5. The inplane stresses (membrane stresses) are negligible.

2.3 FORMULATION OF THE PROBLEM

Following formulation is easily available in literature and is given here for easy reference. For an elastic linear material strain energy is

$$U = \frac{1}{2} \quad I \quad [\epsilon] \quad [D'] \quad \{\epsilon\} \quad dv \qquad (2.1)$$

and the kinetic energy is

$$T = \frac{1}{2} \int_{A} \rho h \dot{W}^{2} dA \qquad (2.2)$$

Assuming
$$W^{(e)} = \lfloor N \rfloor \{ W^{(ne)} \}$$
 (2.3a)

Using eqn. (2.3a)
$$\begin{bmatrix} \mathcal{E} \end{bmatrix} = \begin{bmatrix} \mathcal{B}^* \end{bmatrix} \begin{bmatrix} \mathcal{W} \end{bmatrix}^{(\text{ne})}$$
 (2.3b)

$$U^{(e)} = \frac{1}{2} \left[W \right]^{(ne)} V \left[B' \right]^{T} \left[D' \right] \left[B' \right] dv \left[W \right]^{(ne)}$$

$$T^{(e)} = \frac{1}{2} \left[\dot{w} \right]^{(ne)} \int_{A} \rho h \left\{ N \right\} \left[N \right] dA \left\{ \dot{w} \right\}^{(ne)}$$
(2.4)

Now applying the Hamilton principle

$$\partial f^{\frac{t_2}{t_1}}$$
 (T - U) dt = 0 (2.6)

Substituting eqns. (2.4) and (2.5) in eqn. (2.6) one gets

$$[M]^{(e)} \left\{ \tilde{W} \right\}^{(ne)} + [K]^{(e)} \left\{ W \right\}^{(ne)} = [0]$$
(2.7a)

where $[M]^{(e)} = \int_{A} \rho h \left\{ N \right\} \left[N \right] dA$ and

Assuming harmonic motion, eqn. (2.7) becomes

$$([K]^{(e)} - \lambda^2 [M]^{(e)}) \{W\}^{(ne)} = \{0\} (2.8)$$

which are the equations of a motion for any element.

2.3.1 Rectangular Plate

For a rectangular plate strain matrix $[\epsilon]$ is [22]

$$\begin{bmatrix} \varepsilon \end{bmatrix} = \begin{bmatrix} \varepsilon_{x} & \varepsilon_{y} & \gamma_{xy} \end{bmatrix}$$

$$= \begin{bmatrix} -z \frac{\partial^{2}w}{\partial x^{2}} & -z \frac{\partial^{2}w}{\partial y^{2}} & -2z \frac{\partial^{2}w}{\partial x \partial y} \end{bmatrix}$$
(2.9)

Using eqn. (2.3) and eqn. (2.9), [B'] matrix for rectangular elements becomes

becomes

$$[K]^{(e)} = II [B]^T [D] [B] dx dy$$
 (2.11)

For orthotropic plates [D] matrix is

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} D_{x} & D_{1} & O \\ D_{1} & D_{y} & O \\ O & O & D_{xy} \end{bmatrix}$$

$$D_{x} = \frac{E_{x} h^{3}}{12(1-v_{x}v_{y})}$$
(2.12)

$$D_{y} = \frac{12(1-v_{x} v_{y})}{12(1-v_{y} v_{y})}$$

$$D_1 = D_x v_y$$
, $D_{xy} = G_{xy} h^3/12$

Eqn. (2.12) reduces to

$$[D] = \frac{E h^{3}}{12(1-v^{2})} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix}$$
 (2.13)

Consistent mass matrix $[M]^{(e)}$ of eqn. (2.7b) becomes

2.3.2 Shape Functions

As said plate bending element needs the compatibility of displacements and slopes. The shape functions satisfying these conditions can be obtained from the following matrices product [23].

$$W^{(e)} = \lfloor N_{1x} & N_{2x} & N_{3x} & N_{4x} \rfloor \begin{pmatrix} W_{3} & W_{y_{3}} & W_{2} & W_{y_{2}} \\ W_{x_{3}} & W_{xy_{3}} & W_{x_{2}} & W_{xy_{2}} \end{pmatrix} \begin{pmatrix} N_{1y} \\ N_{2y} \\ W_{4} & W_{y_{4}} & W_{1} & W_{y_{1}} \\ W_{x_{4}} & W_{xy_{4}} & W_{x_{1}} & W_{xy_{1}} \end{pmatrix} \begin{pmatrix} N_{3y} \\ N_{4y} \end{pmatrix}$$
where N_{1} and N_{2} and N_{3} and N_{2} are N_{3} and N_{3} and N_{3} are N_{3} are N_{3} are N_{3} and N_{3} are $N_$

where N_{ix} and N_{iy} are the standard beam shape functions and are given in Appendix-A. Rearranging eqn. (2.15)

$$W^{(e)} = [N_1 \quad N_2 \cdots N_{16}] \quad [W]^{(ne)} = [N] \quad [W]^{(ne)}$$

where $\{W\}^{(ne)}$ is nodal displacement matrix $(W_i, W_{x_i}, W_{y_i}, W_{xy_i}, i = 1,4)$

It may be noted that shape functions [N] are represented interms of local co-ordinates ξ and η using the transformation

$$\dot{\xi} = \frac{x - x_{\underline{c}}}{L_{\underline{x}}} \qquad \eta = \frac{y - y_{\underline{c}}}{L_{\underline{y}}} \qquad (2.17)$$

2.3.3 Annular Plates

For circular plates the strain matrix $\lfloor \mathcal{S} \rfloor$ from ref. [4] is

$$\begin{bmatrix} \varepsilon \end{bmatrix} = \begin{bmatrix} -z \frac{\partial^2 w}{\partial r^2} & -z(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial e^2}) & -2z(\frac{1}{r} \frac{\partial^2 w}{\partial r \partial e} - \frac{1}{r^2} \frac{\partial w}{\partial e}) \end{bmatrix}$$

$$(2.18)$$

As said earlier sector element shown in Fig. 2 has been chosen for circular plates. Requirements of shape functions being same as earlier case, the shape functions used for rectangular plates can be used. Using eqns. (2.16) and (2.18), one gets from eqn. (2.3b)

$$\begin{bmatrix} B' \end{bmatrix} = Z \begin{bmatrix} -\lfloor N, rr \rfloor \\ -\lfloor \frac{1}{r} N, r + \frac{1}{r^2} N, \Theta \end{bmatrix} = Z \begin{bmatrix} B \end{bmatrix}$$

$$\begin{bmatrix} -2\lfloor \frac{1}{r} N, r\Theta - \frac{1}{r^2} N, \Theta \end{bmatrix}$$

$$(2.19)$$

Using eqn. (2.19), stiffness matrix $[K]^{(e)}$ of eqn. (2.7b) becomes

$$[K]^{(e)} = 11 [B]^{T} [D] [B] r dr de$$
 (2.20)

where [D] matrix for orthotropic plates is

$$\begin{bmatrix} D \end{bmatrix} = \frac{h^3}{12(1-\nu_r \ \nu_{\Theta})} \qquad \begin{bmatrix} E_r & E_r \ \nu_{\Theta} & O \\ E_r \ \nu_{\Theta} & E_{\Theta} & O \\ O & O & G_{r\Theta}(1-\nu_r \nu_{\Theta}) \end{bmatrix}$$
... (2.21)

and for isotropic plates it becomes

Consistent mass matrix [M] (e) of eqn. (2.7b) becomes

In order to do the numerical integration, the sector element has to be mapped into a square of side 2 units. This is done using the following relations [25]

$$\frac{1}{b} = \frac{2 (r - b)}{a - b} - 1$$
 and $\eta = \frac{2 (\theta - \theta_1)}{(\theta_2 - \theta_1)} - 1$ (2.24)

From eqn. (2.24), r can be written as

$$r = \frac{1}{2} (1 + \frac{5}{9}) (a - b) + b$$
 (2.25)

2.3.4 Numerical Integration

For this Gauss Legendre quadrature has been used.

Rectangular Elements: For evaluating stiffness [K] (e) and consistent mass matrix [M] (e), one needs the second derivatives of the displacement with reference to global co-ordinates and global differential area in terms of local co-ordinates ξ , η , This is done as follows:

First, derivates of the displacement with reference to global co-ordinates are given by [5]

where [J] is the Jacobi matrix and is given by

$$[J] = \begin{bmatrix} \frac{\partial x}{\partial x} & \partial y \\ \frac{\partial x}{\partial y} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$
(2.27)

Differentiating eqn. (2.26), (first eqn. w.r.t.

and second eqn. w.r.t.),

$$\begin{cases}
\frac{\partial^{2}N_{i}}{\partial \xi^{2}} = [J] \begin{cases}
\frac{\partial^{2}N_{i}}{\partial x^{2}} \frac{\partial x}{\partial \xi} + \frac{\partial^{2}N_{i}}{\partial y^{2}} \frac{\partial y}{\partial \xi} \\
\frac{\partial^{2}N_{i}}{\partial \eta^{2}} \frac{\partial x}{\partial \eta} + \frac{\partial^{2}N_{i}}{\partial y^{2}} \frac{\partial y}{\partial \eta}
\end{cases}$$

$$= [J] [J] \begin{cases}
\frac{\partial^{2}N_{i}}{\partial x^{2}} \\
\frac{\partial^{2}N_{i}}{\partial y^{2}}
\end{cases} (2.28)$$

Differentiating first eqn. of eqns. (2.26) w.r.t.

), one gets

$$\frac{\partial^{2}N_{i}}{\partial \beta \partial \eta} = (\frac{\partial x}{\partial \beta} \frac{\partial y}{\partial \eta} + \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \beta}) \frac{\partial^{2}N_{i}}{\partial x \partial y} + \frac{\partial^{2}x}{\partial \beta \partial \eta} \frac{\partial N_{i}}{\partial x} + \frac{\partial^{2}x}{\partial \beta \partial \eta} \frac{\partial N_{i}}{\partial x}$$

For rectangular elements this equation simplifies to

$$\frac{\partial^2 N_i}{\partial x \partial y} = \frac{\partial^2 N_i}{\partial \xi \partial \eta} / \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta}$$
 (2.29)

For this rectangular element, using eqn. (2.17), [J] matrix given by eqn. (2.27) becomes

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} L_{x} & 0 \\ 0 & L_{y} \end{bmatrix}$$

$$(2.30)$$

It is well known that

Sector Elements: For these elements the above derivation is valid except that x and y should be replaced by r and θ ; and Jacobian matrix

becomes
$$\begin{bmatrix} \underline{a-b} & 0 \\ 0 & \frac{\theta_2-\theta_1}{2} \end{bmatrix}$$
 (2.32)

and

$$11 \, dx \, dy = |J| \, 11 \, r \, d\xi \, dn$$
 (2.33)

2.4 SOLUTION PROCEDURE

Stiffness $[K]^{(e)}$ and consistent mass $[M]^{(e)}$ matrices have been calculated using the numerical integration explained above. It may be noted that

the elements used are subparametric elements. These elemental matrices are assembled as banded matrices after applying the relevant boundary conditions. Eigenvalues are calculated from these using the NAG subroutine available on DEC 1090.

CHAPTER - III

VIBRATION ANALYSIS OF CIRCULAR AND ANNULAR PLATES WITH VARYING THICKNESS

3.1 INTRODUCTION

The standard finite element method described earlier is no doubt capable of dealing with any plate problem. Nevertheless the cost of solution increases rapidly with higher number of elements which are required for higher accuracy of the results. So in the case of circular or annular plates where along θ -direction there is no change either in geometry or material property semianalytical method can be used [5,9]. It reduces the two dimensional problem to a one dimensional one and hence very economical. Here we express the field variable in θ -direction in Fourier series.

3.2 FINITE ELEMENT FORMULATION

Strain energy of a finite element is given by

$$U^{(e)} = \frac{1}{2} \quad [\epsilon] \quad [D'] \quad [\epsilon] \quad \text{av}$$
 (3.1)

Taking the displacement $W^{(e)}$ corresponding to the m^{th} harmonic over the element (Fig. 3) as

Nodal degrees of freedom are W_i and W_{r_i} ; i=1,2

Fig. 3 Annular element

$$w^{(e)} = (a_1 + a_2 r + a_3 r^2 + a_4 r^3) \cos m \theta$$
or
$$w^{(e)} = \lfloor s \rfloor \lceil R \rceil \cos m \theta \geqslant w \rceil \text{ (ne)}$$
where
$$\lfloor s \rfloor = \lfloor 1 \ r \ r^2 \ r^3 \rfloor$$

$$\lfloor w \rfloor \text{ (ne)} = \lfloor w_1 \ w_1 \ w_2 \ w_2 \rfloor$$
and
$$\lceil R \rceil \text{ is given in Appendix-B.}$$

Using eqn. (3.2), strain matrix becomes

$$\begin{cases} \varepsilon \\ = (-Z) \end{cases} \begin{bmatrix} \frac{1}{r} S_{r} - \frac{m^{2}}{r^{2}} S \end{bmatrix} \cos m \theta \\ 2L - \frac{m}{r} S_{r} + \frac{m}{r^{2}} S \end{bmatrix} \sin m \theta \end{cases}$$
or
$$\begin{cases} \varepsilon \\ = (-Z) - \frac{m^{2}}{r^{2}} \cos m\theta + (\frac{1-m^{2}}{r^{2}}) \cos m\theta + (2-m^{2}) \cos m\theta + (3-m^{2}) \cos m\theta \\ \frac{m}{r} \sin m\theta = 0 - m \sin m\theta - 2m r \sin m\theta \end{cases}$$

or
$$\left\{ \varepsilon \right\} = (-Z) \left[F' \right] \left[R \right] \left\{ W \right\} (ne)$$
 (3.3)

Substituting eqn. (3.3) in eqn. (3.1), and integrating w.r.t. Z and 9 one gets

$$U^{(e)} = \frac{1}{2} [W]^{(ne)} [R]^{T} \int_{b}^{a} h^{3} [F]^{T} [D] [F] r dr [R] [W]^{(ne)}$$

$$(3.4)$$

where

$$\begin{bmatrix} D \end{bmatrix} = \frac{C}{12(1-v_r v_{\Theta})} \begin{bmatrix} E_r & E_r v_{\Theta} & O \\ E_r v_{\Theta} & E_{\Theta} & O \end{bmatrix}$$

$$\begin{bmatrix} C & C & C & C \\ C & C & C \\ C & C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C & C \\ C & C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C & C \\ C & C \\ C & C \end{bmatrix}$$

$$\begin{bmatrix} C & C & C \\ C$$

$$C = 2^{\pi}$$
 when $m = 0$
 $C = \pi$ when $m > 1$ (3.6)

and

by

$$[F] = \begin{bmatrix} 0 & 0 & 2 & 6 \text{ r} \\ -\frac{m^2}{r^2} & (\frac{1-m^2}{r}) & (2-m^2) & (3-m^2)r \\ \frac{m}{r} & 0 & -m & -2mr \end{bmatrix}$$
(3.7)

Eqn. (3.4) gives us the stiffness matrix $[K]^{(e)}$ as

$$[K]^{(e)} = [R]^{T} \int_{b}^{a} h^{3} [F]^{T} [D] [F] r dr [R]$$
or
$$= [R]^{T} [x]^{(e)} [R]$$
(3.8)

Coefficients of $[k]^{(e)}$ are determined by closed form integration and are given in Appendix-B.

Kinetic energy of a finite element is given

$$T^{(e)} = \frac{1}{2} II \rho h \dot{W}^2 r dr d\theta$$
 (3.9)

Substituting eqn. (3.2) in eqn. (3.9) one gets

$$T^{(e)} = \frac{1}{2} C \left[\mathring{N}\right]^{(ne)} \left[R\right]^{T} \int Ph \left\{s\right\} \left[s\right] r dr \left[R\right] \left\{\mathring{w}\right\}^{(ne)}$$

from which one gets the consistent mass matrix [M] (e) as

Elemental stiffness [K] (e) and consistent mass [M] (e) matrices are assembled into global matrices.

After applying the boundary conditions, the eigenvalues are obtained using the IMSL subroutine EIGZF.

CHAPTER - IV

FREE VIBRATION OF ROTATING DISCS

4.1 INTRODUCTION

The vibration of rotating discs is of much practical significance. In cases Fike symmetric discs used in axial flow turbomachines, formulation of the previous chapter can not be used. Now centrifugal force becomes an important factor. Its contribution to stiffness matrix must be included. To do so one needs the implane stresses. First these implane stresses arising due to the centrifugal force are determined. In the present work there stresses have been calculated using finite element method. The formulation is applicable to both isotropic and orthotropic discs. inplane stresses make the disc more stiffer to flexural vibrations and hence natural frequency increases. ing the additional stiffness matrix, obtained due to these stress, to the original stiffness matrix given in Chapter-III we get the stiffness matrix for rotating discs.

The formulation below is a generalised one which can be used for variable thickness discs (isotropic and orthotropic).

4.2 FORMULATION

The strain energy due to the implane stresses during flexural vibration [9] is

$$U_{p}^{(e)} = \frac{1}{2} \int_{0}^{2\pi} \int_{b}^{a} \left[\sigma_{r} \left(\frac{\partial W}{\partial r} \right)^{2} + \frac{\sigma_{\theta}}{r^{2}} \left(\frac{\partial W}{\partial \theta} \right)^{2} \right] h r dr d\theta$$
(4.1)

Substituting $W^{(e)}$ from eqn. (3.2), we get stiffness matrix $[K_p]^{(e)}$ as

$$[K_{\mathbf{p}}]^{(\mathbf{e})} = \mathbf{C} [\mathbf{R}]^{\mathbf{T}} \int_{\mathbf{b}}^{\mathbf{a}} \mathbf{h} (\sigma_{\mathbf{r}} \{\mathbf{s}, \mathbf{r}\}) [\mathbf{s}, \mathbf{r}] + \sigma_{\mathbf{\theta}} \frac{\mathbf{m}^2}{\mathbf{r}^2} \{\mathbf{s}\} [\mathbf{s}]) \mathbf{r} d\mathbf{r} [\mathbf{R}]$$

$$= \mathbf{C} [\mathbf{R}]^{\mathbf{T}} [\mathbf{k}_{\mathbf{p}}]^{(\mathbf{e})} [\mathbf{R}]$$

$$(4.2)$$

where
$$C = 2\pi$$
 for $m = 0$ (4.3)
 $C = \pi$ for $m \ge 1$

The coefficients of the matrix $[k_p]^{(e)}$ are calculated by closed form integration and are given in Appendix-C.

4.3 DETERMINATION OF INPLANE STRESSES

The inplane stresses σ_r and σ_{Θ} needed for eqn. (4.2) can be obtained using the same annular element. The strain energy $U_i^{(e)}$ of the annular element is

$$U_{i}^{(e)} = \frac{1}{2} 2\pi \ln [E] [D] E$$
 rdr (4.4)

where

$$\begin{bmatrix} D \end{bmatrix} = \frac{1}{1 - v_r} \begin{bmatrix} E_r & E_r & v_{\Theta} \\ & & & \\ E_r & v_{\Theta} & E_{\Theta} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} E \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial r} & \frac{u}{r} \end{bmatrix}$$

Taking u (e) over the element as

$$u^{(e)} = (a_1 + a_2r + a_3r^2 + a_4r^3) = [N_1 N_2 N_3 N_4] \begin{cases} u_1 \\ u_r_1 \\ u_2 \\ u_r_2 \end{cases}$$

$$= [N] \{u\}^{(ne)} \qquad (4.6)$$

where [N] = [S][R]

Substituting eqn. (4.6) in eqn. (4.4) one gets

Eqn. (4.7) gives the stiffness matrix

$$[K_{i}]^{(e)} = 2\pi \int h [B]^{T} [D] [B] r dr$$

$$= [R]^{T} [k_{i}]^{(e)} [R] \qquad (4.9)$$

Coefficients of matrix $[k_i]^{(e)}$ are obtained using closed form integration and are given in Appendix-C.

The load matrix $[F]^{(ne)}$ due to body force (centrifugal force) is

$$[[F]^{(ne)} = 2\pi \rho h \, \varrho^2 \, J \, r^2 \, [N] \, dr$$
 (4.10)

where ρ is the mass density, \wp is the angular velocity. These elemental matrices are assembled and displacements are obtained. Using these displacements, stresses σ_r and σ_{Θ} are calculated using eqn. (4.5).

Using these values of σ_r and σ_θ , stiffness matrix $[K_p]^{(e)}$ for the disc is calculated. While calculating the $[K_p]^{(e)}$ stress distribution inside the element is taken linear.

i.e.

where
$$\sigma_{r} = E_{1} + E_{2} r$$

$$\sigma_{\theta} = D_{1} + D_{2} r$$

$$E_{1} = \frac{\sigma_{1} a^{-\sigma_{1}} b}{a - b} \qquad E_{2} = \frac{\sigma_{2}^{-\sigma_{1}} \sigma_{1}}{a - b}$$

$$D_{1} = \frac{\sigma_{\theta_{1}} a^{-\sigma_{\theta_{2}}} b}{a - b} \qquad D_{2} = \frac{\sigma_{\theta_{2}}^{-\sigma_{\theta_{1}}} \sigma_{\theta_{1}}}{a - b}$$

By adding $[K_p]^{(e)}$ to $[K]^{(e)}$ of plate (Chapter-III) one gets the stiffness matrix for the rotating disc. This is solved for finding out the natural frequencies of the rotating discs.

Results for isotropic plates are also calculated using the closed form solution of stresses of the rotating disc [24], i.e.

$$C_{r} = C_{1} + \frac{C_{2}}{r^{2}} - \frac{(3+\nu)}{3} \rho \varrho^{2} r^{2}$$

$$C_{\Theta} = C_{1} - \frac{C_{2}}{r^{2}} - \frac{(1+3\nu)}{3} \rho \varrho^{2} r^{2}$$
(4.11)

For a free free disc

$$C_{1} = \frac{3 + \nu}{3} \rho \Omega^{2} (a^{2} + b^{2})$$

$$C_{2} = -\frac{3 + \nu}{3} \rho \Omega^{2} a^{2} b^{2}$$
(4.12)

For a clamped free disc

$$C_{2} = (\sqrt[3]{\frac{9}{8}}(R_{2}^{2} R_{1}(3 + P_{r})(1-P_{r}) - (1-P_{r}^{2})R_{1}^{3})) / ((1-P_{r}) \frac{R_{1}}{R_{2}^{2}} + \frac{(1+P_{r})}{R_{1}}))$$

$$C_{1} = \sqrt[3]{9} \frac{R_{2}^{2}}{8}(3+P_{r}) - \frac{C_{2}}{R_{2}^{2}}$$

CHAPTER - V

RESULTS AND DISCUSSION

5.1 RECTANGULAR ELEMENT

The finite element program developed has been verified for convergence and accuracy. Natural frequencies of square plates with all edges free and clamped are determined and compared with results from ref. [4]. The convercence is checked by varying the number of elements taken (Pable 1a). The natural frequency of a plate with a centrally located squre hole is also determined. With 12 elements the answer is found very close to the results from ref. [4]. (Table 1b). In all the cases, the natural frequency is expressed in non-dimensional form

$$\alpha = \lambda 1^2 (\rho h/D)^{1/2}$$

where $D = E h^3/12(1-v^2)$ and l is the width of the plate.

5.2 ANNULAR SECTOR ELEMENT

Here the element is used for the determination of natural frequencies of anannular sector plate with all edges clamped having a radii of 0.4 and sectorial angle of 90°. The convergence can be verified by

Comparison of the frequency parameter λ 1²(ρ h/D)^{1/2} for a rectangular plate with answers from ref. [4]*

		(Microsoft - July 1 - May - May - May - May 1 (May) - May 2 ***		
B-C	Mode	2 x 2	3 x 3	4 x 4	*
F-F	1 2 3 4	7.54 20.23 48.83 56.09	13.67 19.82 24.76 35.43		13.49 19.79 24.43 35.02
C-C	1 2 3 4		36.75 76.01 76.33 113.61	74.03	35.99 73.41 73.41 103.30

Table 1a.

Comparison of frequency parameter for a clamped square plate with a square hole of side length 1/2 located at the centre with answers from ref. [4]*

SACTOR AND THREE PROCESS AND ADDRESS OF A SUPERIOR CONTRACT AND ADDRESS AND AD	epingagang dang among salitations of the resident palabolists of depind the commence of the residence of the comment of the salitation of		ACADAMA MUNIC MUNIC ORDER CONTRA
B ₊ C	grid size	F.E.M.	*
C-C	4 x 4	66.09	62.40

Table 1b.

Comparison of the frequency parameter $\lambda R_2^2(\rho h/D)^{1/2}$ of a clamped annular sector plate with answers from ref.[26]*

months of the care of	Personal Security of the party of the contract			
26 2		id size	indere de massarage i assume unes mis mis un gelie de accide i una	pr- eag an
Mode	4×4	5 x 5	*	
the Wilder Town Latter Specietist Association	Sentum - Printe is the morning attended to the comment of the comm	Miller (Marcolland) is there arise to destroy a seal of the conjugate frame of the conjugate conjugate conjugate frame of the conjugate conjugate frame of the conjugate frame of th	Other Means manager and server and server and server and	
1	53,68	53.41	52.70	
2	91.90	91.60	38.30	
·* 3	123.10	122.07	125.10	
4	153.70	152.76	140.00	
5	162.30	157.12	170.40	

Table ic.

Comparison of the frequency parameter λ $R_2^2(h/D)^{1/2}$ for F-F annular plate with answers from ref. [4]*

terment the right of the process of the residence of the second of the s	eritetika a silikuutuset, ja riiketa Piata Piata Piata Piata (1981), saakki saakki saakki saakka 2.000	Grid	se i ser ingo i deu deus deuseneum generales uns chiese de
Mode	R_1/R_2	7×2	*
الأندار المراجع	en gelek i sagi at daga senang sagang daka tang di sakat sagi di Ang Pakasalika i sakataha	et the contract of the contrac	a parametria del
1		4.51	4.23
2	0.5	12.10	9.32

Table 1d.

comparing the results tabulated with 1 x 4 grid and 5 x 5 grid (Table 1c). The answers from T.E.M. are expected to be higher than the exact values. Here it is violated for some of the modes. This may be due to the unequal size of the elements used. By increasing the number of elements, required accuracy in answers can be obtained. Natural frequencies of a free-free annular plate is tabulated in Table 1d.

5.3 ANNULAR ELEMENT

5.3a Isotropic Plates

Because of the non-availability of the results for orthotropic plates for all the boundary conditions, first the results obtained by the semianalytical method for isotropic plates are compared with exact values wherever available as a verification of une program. In other cases only the convergence of the results is verified.

The vibration analysis of a solid circular plate can also be carried out using this method making an assumption that a small hole $(R_1/R_2=0.001)$ exists at the centre. It is found that the natural frequency of an annular plate with radii ratio 0.01 itself is very close to that of a solid plate. As the ratio decreases further the frequency parameter remains almost stationary. These results are tabulated in Table 2.

Frequency parameter λ $R_2^2(\rho_h/D)^{1/2}$ for a solid circular isotropic plate for various boundary conditions with answers from ref. $[4]^{*}$

			Ne =	4		
			R	$^{/R}2$	and the second section of the section of t	anne se
B-C	n	m	0.01	0.001	*	
	1	0	9.00	9.00	9.03	me.isd
Free	1	1	20.43	20.43	20.52	
- 1 00	0	2	5.35	5.35	5.25	
being supply and the second supply and the s	0	3	12.43	12.44	12.23	
Squared to produce character (1920). Miles (2023) that can be used	0	0	4.93	4.93	4.97	*
	· O	1	13.90	13.90	13.94	
Simple	0	2	2 5.62	25.62	25.65	
	1	1	29.74	29.74	29.76	
Bautich Mathabas — Morte Mater 786, 77 ft yr ygder troft.	recritique à latter i titales committantes i que t	0	10.21	10.21	10.22	-
			21.26	21.26	21.26	
Clamped	0	2	34.91	34.91	34.38	
	1	1	40.24	40.24	39.77	

Table 2

In case of annular plates the variation of frequency parameter with radii ratio is shown in Figs. 4 and 5. In case of a free-free plate the frequency decreases with increase in radii ratio. In all other cases considered it goes on increasing with the radii ratio.

5.3b Orthotropic Plates

The orthotropic plates are studied with three cases of boundary conditions namely simple-clamped, clamped-clamped and free-clamped. The above combination is chosen because of the availability of the results for the above mentioned boundary conditions [20]. The results are tabulated in Table 3.

Orthotropic plates having different D_{Θ}/D_R ratios are studied keeping D_r constant. From Figs. 6, 7 and 8 it is clear that the frequency parameter $\alpha = \lambda$ (R_2^2) $(Ph/D_R)^{1/2}$ increases with D_{Θ}/D_R . But variation is very small. This shows that the material property D_r has the maximum influence on α compared to D_{Θ} and $D_{r\Theta}$. It can also be observed from Figs. 6, 7 and 3 that α increases with D_{Θ}/D_R ratio linearly.

The natural frequency of annular plates (both isotropic and orthotropic) with varying thickness is also determined using the same element. Here a linear

Fig.4 Variation of the frequency parameter with radii ratio for an isotropic annular plate

Comparison of the frequency parameter λ $R_2^2(\rho\,h/D_{_{\bf T}})$ with the answers from ref. [20]**

		$D_{p}/D_{r} =$	2.0	D _{re} /D _{r =}	0.35 V ₀ =	0.3	
		en and the second se	timentimen industr	Committee and Committee and Section and Se	R ₁ /R ₂	or and services the constraint on the constraints of	* *. **
B-C	n	M	Nе	0.1	0.3	0.5	en com
	0	2	1 2 4	6.516 6.502 6.497	6.220 6.210 6.205	5.570 5.567 5.666	
F -F	¥÷ 2	0	1 2	11.599 11.583	11.383 11.337	13.453 13.444	
	⊁		<u>4</u> 1	11.513 11.470 15.365	11.303 15.667	13.436 13.503 15.036	
	1 **	3	2 4	15.675 15.672 15.760	15.620 16.610	15.025 15.021 15.600	
gen maken suppression have suppression of the	MARIONIN' - MACO	ago deservir en	ar had a special section	1980 - 1980 in Wat in Macro Homes Arthur County and County County (PROC 1-200
	0 1	0	1 2 4	6.261 6.213 6.203	6.516 6.459 6.449	7.294 7.269 7.226	
	*		1	6.250 15.433	14.774	7 .3 00 13 .7 90	
S-F	0	1	2	14.923 14.900	14.423 14.330	13.668 13.654	
	*		1	31.694	23.927	26.602	
	0	2	2 4	28 .8 03 28 . 650	27.740 27.699	26.123 26.083	
Mark 1	*			28.500		26.210	
page and a folial company of the confinctions	0	0	1 2 4	11.826 11.700 11.663	13.252 13.136 13.107	19.156 19.039 19.075	
	*			11.690	22.3.0	19.075 24.205	
C-F	0	1	1 2 4	24.142 22.436 22.353	21.656 21.537	23.954	
	0	2	1 2 4	53.137 33.613 33.394 38.300	40.619 37.103 36.954	37.205 36.159 36.045 36.090	
	*	Commence of the Party of the Commence of the C	Tak	ble 3.	Mineral Section (Management of the Control of the		

Fig.6 Variation of the frequency parameter with radii ratio for different D_{θ}/D_R ratios for a F-C plate

Fig.7 Variation of the frequency parameter with radii ratio for different D_{θ}/D_R ratio for a C-C plate

Fig.8 Variation of the frequency parameter with radii ratio for different (D_{θ}/D_r) ratios for a S-C plate

variation in thickness along the radial direction is considered. The thickness at outer radius R_2 is kept constant $(h_2 \pm 0.1 \text{ cm})$. The thickness at the inner radius R_1 (h_1) is varied from 0.08 to 0.12 cm in steps of 0.01 cm. In this case frequency parameter α is expressed as $\alpha = \lambda R_2^2 (12 + (1 - \nu_r \nu_\theta)/(h_2^2 E_r))^{1/2}$. Figs. 9 and 10 show the variation of α with radii ratio for different thickness ratios. From Fig. 11 it can be noticed that variation with thickness ratio is almost linear when thickness variation is small.

When D_{Θ}/D_R and h_1/h_2 are = 1 it is the case of isotropic uniform thickness plates. Hence in this case values are compared with exact values (Table 5). It is a verification of the program for its dependibility. In Table 4 and 6 convergence of the results for varying thickness plates is verified.

Table 7, 8 and 9 give the values of frequency parameter for different D_{Θ}/D_{R} and h_{1}/h_{2} ratios for simple-clamped, clamped-clamped and free-clamped plates respectively.

5.3c Rotating Isotropic Discs

The dynamic behaviour of rotating discs are studied for the two most commonly used boundary conditions. They are inner edge clamped or free and outer

Fig. 9 Variation of the frequency parameter with radii ratio for a plate with thickness ratio 0.8

Fig.10 Variation of frequency parameter with radii ratio for a plate with thickness ratio 12

Fig.11 Variation of frequency parameter with thickness ratio (h_1/h_2) for different (D_θ/D_R) ratios

Verification of the convergence of frequency parameter $\lambda R_2^2 (12 \, \text{P} \, (1-\nu_{_{\mbox{\footnotesize T}}} \, \nu_{_{\mbox{\footnotesize O}}})/(E_{_{\mbox{\footnotesize T}}} \, h_1^2))^{1/2}$ for orthotropic plates with linearly varying thickness

with linearly varying thickness $D_{\theta}/D_{r} = 0.4 D_{r\theta}/D_{r} = 0.35 v_{\theta} = 0.3$ $h_{1}/h_{2} = 0.8$

Management and the second	$\frac{1}{R_1/R_2}$								
B-C	n	m	Nе	-		1_2			* .
Self-198 SELT MOTEUROSE AND	endo Proposacio de Proposacio	State of the Property of the		0.1	0.2	0.3	0.4	0.5	Mirina (MIC), a addin stalingumenykem singulgare
	0	O _n	3 10	3.74 3.76	6.22 6.22	8.39 8.39	11.77 11.77	17.43 17.43	Algorical Particles on Morror and Material Section (1988)
	0	1	8 10	4.45	6.40	3.79	12.34	18.14	
F-C	0	2	8	4.47 6.66	6.40 8.34	8.79 10.77	22.34 14.46	18.14 20.46	•
	0	3	10 8 10	6.66 12.88 12.87	8.34 13.37 13.72	10.77 15.56 15.56	14.46 18.89 18.89	20.46 24.77 24.77	
	0	0	8 10	32.95 33.01	47.49 47.51	62.71 62.71	36.05 86.21	124.25 124.18	Mai, Milliomani, Pilast vilkt addresse
C-C	0	- 1	8 10	39.13 39.21	49.80 49.78	64.61 64.61	87.87 87.83	125.64 125.57	
<u></u>	0	2	8 10	43.49	56.84	70.42 70.42	92.57 92.74	129.33 129.75	
	0	3	8 1 0		68.89 68.86		101.05 100.86	136.87 136.79	
ager of telephone, annual day, in	er agreement		arista i stanismus mitos in	and the second section of the section of t	h ₁ /h ₂	=-0.9			THE THE PERSON NAMED IN THE PERSON NAMED IN
Section of the sectio	0	0	8 1 0	3.56 3.56	5.22 5.22	7.03 7.03	9.36 9.36	14.60 14.60	
TP. C	0	1	8 1 0	3.78 3.79	5.36 5.36	7.36 7.36	10.34 10.34	15.20 15.20	
F-C	0	2	8 10	5.59 5.58	6.99 6.98	9.03 9.02	12.12 12.12	17.15 17.15	
	0	3	8 1 0	10.79 10.79	11.50 11.50	13.04 13.04	15.83 15.83	20.76 20.75	
partied by turping a degraph of the	0	0	8 1 0	29.25 29.27		52.57 52.58	72.08 72.21	104.13 104.44	
0.0	0	1	8 . 10	33.00 33.02		54.16 54.17	73 .4 4 73 . 57	105.29 105.61	
C-C	0	2	8 10	40.66 40.64	47.66 47.61	59.04 59.05	74.53 77.68		
	0	3	8 1 0	53.17	57.77	67.31 67.34	84.45 84.63	114.74 115.07	January and American State of

Table 4.

Comparison of the frequency parameter $\lambda R_2^2 (12 \ \text{P} (1-\nu_r \nu_\theta)/(E_r h_1^2))^{1/2}$ of orthotropic plate answers from ref.[20]*

			$D_{p}/D_{r} = 10$	D _{re} /	$D_{\mathbf{r}} = 0.35$	ν _Θ = (0.3 Ne	= 8
B-C	n	m	3.4		R ₁ /R ₂	3		
			0.1	0.2	0.3	0.4	0.5	
A. 146		0	27.31	34.61	45.37	62,00	89.16	
		*	27.30	-	45.20		89.20	
		1		36.11	46.67	63.13	90.14	
C-C	0	*	28.40	-	45,60	-	90.20	. •
		2	36.65	41.83	51. 18	66.82	93.22	
		米	36.70		51.00		93.30	
		3	51.25	53 .3 8	60.09	73.80	98.80	
		*	51.20	-	60.00		99.00	
		0	17.80	22.71	29.98	41.26	59.82	-
		*	17.80		29.90	-	59.80	
		1	19.42	24.27	31.40	42.56	60.99	
s-c	0	*			31.40		61.00	
D C	•	2		3 0 . 09	36.25	56.72	64.64	
		*			36.20	-	64.60	
		3	·	41.32	45 - 47	54.38	71.10	
		*	40.00	***	45 • 40	***	71.00	
		0	4.23	5.18	6.66	9.02	13.02	
		¥		-	6.66	-	13.00	
		1		4.81	6.55	9.11	13,29	
F-C	0	*		***	6.63	-	13.30	
		2		6.45	7.95	10.46	14.70	
		*	· ·	***	7 . 9 5	_	14.70	
		3		12.61	13.27	14.96	18.56	
		Ж	12.40		13.30	-	18.50	· ·
								-

Table 5

Verification of the convergence of frequency parameter $\lambda R_2^2 (12 \,^{\rho} (1-\nu_r \,^{\nu_{\Theta}})/(E_r \,^2_1))^{1/2}$ for orthotropic plates with linearly varying thickness ${}^{D_p/D_r} = {}^{0.4} \,^{D_r/D_r} = 0.35 \,^{\nu_{\Theta}} = 0.3 \,^{h_1/h_2} = 1.1 \,^{h_2}$

***************************************	and the second second second	The state of the s		Carlo Property Control Name		R /R		neriganis anticologica democración de l'Americanis que
B-C	n	m	Ne	0.1	0.2	R_1/R_2		
C-F	0	0 1 2	8 10 8 10 8 10 8	3.28 3.27 2.88 2.87 4.14 4.14 7.99 7.98	3.86 3.86 3.97 3.96 5.17 5.17 8.51 8.51	5.20 5.20 5.45 5.45 6.68 6.68 9.65 9.65	7.30 7.29 7.65 7.65 8.96 11.72 11.71	0.5 10.81 10.81 11.25 11.25 12.69 12.69 15.36 15.36
C-C	0	0 1 2 3	8 10 8 10 8 10 8	24.03 23.98 24.72 24.67 30.13 30.10 39.35 39.34	29.45 29.46 30.88 30.88 35.27 35.27 42.74 42.72	38.90 28.87 40.08 40.05 43.69 43.64 49.81 49.75	53.34 53.48 54.36 54.49 57.38 57.54 62.50 62.69	77.07 78.12 77.94 79.00 80.53 81.67 84.89 86,16
				h,	$/h_2 = 1$. 2 -		
C-F		0 1 2 3	3 10 8 10 8 10 8	3.18 3.17 2.56 2.55 3.64 3.63 7.01 7.01	3.39 3.48 3.48 4.55 4.53 7.47 7.47	4.57 4.57 4.78 4.78 5.86 5.86 8.47 8.47	6.40 6.40 6.71 6.71 7.87 7.87 10.28	9.48 9.48 9.87 9.87 11.13 11.13 13.48 13.48
C-C	•	0 · 1 2 3	8 10 8 10 8 10 8	22.12 22.05 21.83 21.75 26.47 26.43 34.53 34.54	35.86 25.85 27.09 27.09 30.94 30.95 37.51 37.48	34.15 34.13 35.18 35.17 38.34 38.32 43.71 43.70	46.81 46.92 47.69 47.80 50.35 50.47 54.85 54.99	67.64 67.58 68.40 68.34 70.68 70.62 74.51 74.45

Table 6.

Frequency parameter λ R $_2^2$ (12) (1-v $_{\rm r}$ v $_{\rm e})/(\rm E_{\rm r}$ $\rm h_2^2))^{1/2}$ of a S-C plate

ת/ ת	ъ Љ	AND	R_1/R_2					
D _O /D _r	h ₁ /h ₂	0.1	0.2	0.3	0.4	0.5		
0.4	0.8 0.9 1.0 1.1 1.2	14.47 15.67 16.86 18.04 19.21	21.66 21.85 22.04 22.24 22.43	29.39 29.43 29.45 29.50 29.50	40.73 40.76 40.82 40.71 40.75	59.32 59.53 59.45 59.71 59.14		
o •7	0.8 0.9 1.0 1.1 1.2	14.90 16.13 17.34 18.55 19.75	21.99 22.18 22.38 22.58 22.77	29.65 39.70 29.72 29.77 29.77	40.95 40.98 41.04 41.02 40.97	59.50 59.71 59.63 59.90 59.32		
1.0	0.8 0.9 1.0 1.1	15.31 16.56 17.30 19.04 20.26	22.32 22.51 22.71 22.92 23.11	29.91 29.96 29.98 30.03 30.03	41.46 41.20 41.26 41.24 41.19	59.69 59.90 59.82 60.09 59.51		
1.3	0.8 0.9 1.0 1.1 1.2	15.71 16.98 18.25 19.51 20.76	22.64 22.84 23.04 23.25 23.44	30.17 30.22 30.24 30.29 30.29	41.38 41.41 41.48 41.46 41.41	59.88 60.09 60.01 60.28 59.70		
1.6	0.8 0.9 1.0 1.1	16.09 17.39 18.68 19.97 21.25	22.96 23.16 23.36 23.57 23.76	30.43 30.48 30.50 30.55 30.55	41.60 41.63 41.70 41.68 41.62	60.07 60.28 60.20 60.47 59.88		

Table 7

Frequency parameter λ R₂ (12 ρ (1- ν_r ν_{Θ})/(E h_2^2)) 1/2 of a C-C plate

Ne = 8 $D_{re}/D_{r} = 0.35$ $v_{e} = 0.3$

D _o /D _r	h ₁ /h ₂	And the Antibular Committee of the Antibular Com		R ₁ /R ₂	· .	
Months of Chair Administrator Calculates report	in distance has y contains a partie, respectively, and security	0.1	0.3	0.3	0.4	0.5
0.4	0.8 0.9 1.0 1.1 1.2	23.58 24.98 26.36 27.72 29.08	33.53 33.76 33.98 34.21 34.43	44.82 44.83 44.90 44.93 44.95	61.47 61.51 61.62 61.29 61.95	88.54 88.62 88.35 89.29 88.04
- · · 7	0.8 0.9 1.0 1.1 1.2	23.98 25.42 26.84 28.24 29.63	33.85 34.07 34.30 34.53 34.75	45.06 45.12 45.14 65.17 45.18	61.66 61.70 61.81 61.83 61.73	88.69 88.77 89.01 89.45 88.19
1.0	0.8 0.9 1.0 1.1	24.40 25.86 27.31 28.74 30.16	34.15 34.38 34.61 34.85 35.07	45.30 45.36 45.37 45.40 45.42	61.85 61.89 62.00 62 02 61.92	88.85 88.93 89.16 89.60 88.34
1.3	0.8 0.9 1.0 1.1	24.79 26.28 27.76 29.23 30.68	34.46 34.69 34.92 35.16 35.39	45.53 45.54 45.61 45.64 45.66	62.04 62.08 62.19 62.21 62.11	89.00 89.08 89.32 89.76 89.49
1.6	0.8 0.9 1.0 1.1 1.2	25.17 26.70 28.21 29.70 31.19	34.76 34.99 35.23 35.47 35.70	45.76 45.82 45.84 45.87 45.89	62.23 62.27 62.38 62.39 62.29	89.16 89.24 89.48 89.92 89.65

Table 8

Frequency parameter λ R_2^2 (12 $/\!\!\!/$ (1- $\nu_{\rm r}$ $\nu_{\rm e})/(E_{\rm r}$ $h_2^2))^{1/2}$ of a F-C plate

Ne = 8 $D_{re}/D_{r} = 0.35$ $v_{\theta} = 0.3$

D _e /D _r	h ₁ /h ₂			R ₁ /R ₂		·	
<u> </u>		0.1	0.2	0.3	0.4	0.5	
0.4	0.8 0.9 1.0 1.1 1.2	2.68 3.03 3.40 3.79 4.18	4.33 4.39 4.45 4.52 4.58	5.98 5.99 6.00 6.02 6.03	3.42 8.42 8.42 8.42 8.42	12.47 12.47 12.47 12.46 12.47	
0.7	0.8 0.9 1.0 1.1 1.2	3.08 3.45 3.84 4.24 4.66	4.70 4.77 4.83 4.89 4.96	6.322 6.33 6.34 6.35 6.36	8.72 8.72 8.72 8.72 8.73	12.74 12.75 12.75 12.75 12.75	
1.0	0.8 0.9 1.0 1.1 1.2	3.43 3.83 4.23 4.66 5.09	5.04 5.11 5.18 5.24 5.31	6.63 6.61 6.66 6.67 6.68	9.01 9.02 9.02 9.02 9.02	13.02 13.02 13.02 13.02 13.02	
1.3	0.8 0.9 1.0 1.1	3.75 4.16 4.59 5.04 5.49	5.37 5.43 5.40 5.57 5.64	6.94 6.95 6.96 6.97 6.98	9.30 9.30 9.30 9.30 9.30	13.28 13.29 13.29 13.28 13.29	
1.5	0.8 0.9 1.0 1.1 1.2	4.04 4.48 4.93 5.39 5.86	5.67 5.74 5.81 5.88 5.95	7.22 7.24 7.25 7.26 7.27	9.57 9.57 9.57 9.57 9.58	13.55 13.55 13.55 13.55	

Table 9

edge free.

Due to the extra stiffness provided by the inplane stresses the value of α increases as expected. The variation of frequency parameter with different radii ratio is shown in Figs. 12 and 13 for different speeds: for the two boundary conditions, free-free and free-clamped respectively. The fundamental frequency parameter is considered in both the cases.

As in the case of free plates, the frequency decreases with radii ratio. The influence of rotation is more in the case of free-free disc than free-clamped disc. In Table 10 frequency parameters for free-clamped and free-free discs for various speeds and radii ratio are tabulated. In Table 11 convergence is verified by comparing the values obtained by 4 and 6 elements. The frequency parameters obtained using the implane stresses from F.E.M. and exact solutions are compared in Table 12.

5.3d Rotating Orthotropic Discs

The variation of frequency parameter with speed is similar to that of isotropic plate, but for the change in magnitude. As in the case of isotropic plates it can be observed from Figs. 14, 15 and 16 that variation is more in the case of free-free discs than free-clamped discs. The frequency parameters for various D_{Θ}/D_{Γ} ratios and radii ratios are given in Table 13.

Fig. 12 Variation of frequency parameter with radii ratio for different speeds

ANTHA LIBRARY

Fig. 13 Variation of frequency parameter with radii ratio for different speeds

Variation of the frequency parameter λ R₂²(fh/D)^{1/2} with angular velocity g for different radii ratio(R₁/R₂) (inplane stresses from exact solution)

Ne = 5

B-C	Ω	R ₁ /R ₂					
Name of the State		0.1	0.2	0.3	0.4	0.5	
	100	4.29	5.23	6.71	9.06	13.06	-
	200	4.44	5 , 38	6.85	9.19	13.16	
F-C	300	4.67	5.62	7.08	9.40	13.33	
m=0, n=0	400	4.97	5.94	7.39	9.68	13.57	
	500	5.31	6.31	7.76	10.02	13.87	
Andrew Springstein and Market Springstein and	100	5 .3 9	5.24	5.01	4.71	4 .3 8	
	200	5.66	5.52	5 .3 0	5.03	4.71	
F-F	300	6.07	5,95	5.76	5 •5⊖	5.17	
m=2,n=0	400	6.61	6.51	6.34	6.07	5.71	
	500	7.24	7.16	6.99	6.69	6.26	
			-				-

Table 10

Verification of convergence of the frequency parameter λ R₂² (fh/D)^{1/2} for the rotating disc (Inplane stresses from exact solution)

$$v_r = 0.3 R_1/R_2 = 0.5$$

ternal discreptions (This college discress in page			
B-C	R.P.M.	$\frac{m = 2}{Ne = 4}$	n = 0 Ne = 6
·	100	4.38	4.38
	200	4.71	4.71
F-F	300	5.17	5.17
	400	5.70	5.71
	500	6.26	6.27
	100	14.74	14.74
	200	14.86	14.85
F-C	300	15.04	15.04
	400	15.30	15.31
	500	15.63	15.63
			

Table 11

Comparison of the frequency parameter λ R₂² (ϕ h/D_r)^{1/2} determined using implane stresses from exact solutions and finite element methods.

Q	==	300,	ν	=	0.3	£	Ne	=	14
		to the state of							

		•	•
B-C	R ₁ /R ₂	F.E.M.	Exact
Annie goupenalencompour	0.1	4.74	4.67
F-C	0.3	7.14	7.08
m=0, n=0	0.5	13.37	13.33
	0.1	6.30	6.07
F-F	0.3	5.94	5.76
m=2 n=0	0.5	5.25	5.19

Table 12

Fig. 4 (details to b) frequency parameter of an

Fig.15 Variation of frequency parameter of an orthotropic disc with speed

Fig.16 Variation of frequency parameter of an orthotropic disc with speed

Variation of frequency parameter λ $R_2^2(-h/D_r)^{1/2}$ with angular velocity Ω for different radii ratio and D_Θ/D_r ratio

$D_r = 180$	0.00 D _{re} /I	r = 0.35	ν _e =	0.3	Ne =	12
-------------	-------------------------	----------	------------------	-----	------	----

The state of the s					¥-			
n a	ח לח	D \D	No. of the last of	Angular velocity Q				
D-C	R ₁ /R ₂	D _e /D _r	100	200	300	400	500	
		0.4 1.0 1.6	3.46 3.30 4.99	3.61 4.48 5.17	3.86 4.75 5.44	4.16 5.11 5.79	4.52 5.51 6.19	
F-C	*Ne=19	0.4 1.0 1.6	6.04 6.71 7.32	6.16 6.87 7.51	6.32 7.12 7.83	6.57 7.47 8.24	6.85 7.88 8.72	THE ARTIST LANGUE CONTROL OF THE PROPERTY OF T
(m,m) 0,0	0.5	0.4 1.0 1.6	12.49 13.06 13.60				13.10 13.99 14.77	
	0.1	0.4 1.0 1.6	4.02 5.43 6.21		5.15 6.35 7.07	5.97 7.06 7.73	6.88 7.87 8.50	
F-F	*Ne=19	0.4 1.0 1.6	3.47 5.02 5.90	3.87 5.35 6.26	4.1 8 5.84 6.80	5.13 6.47 7.4	5.89 7.17 8.26	
(n,m) 0,2	0.5	0.4 1.0 1.6	2.90 4.40 5.27	3.32 4.77 5.67	3.88 5.28 6.24	4.49 5.87 6.91	5.09 6.48 7.61	

Table 13

In Fig. 17 implane stresses from F.E.M. and exact solutions are plotted. It is observed that convergence is not so rapid as it was for vibration of plates. Hence higher number of elements (25) are required for better accuracy in case of rotating discs. However since stiffness due to implane stresses forms a part of the overall stiffness, at low speeds, with lower number of elements (12) frequency parameter α is very close to the values obtained using the implane stresses from exact solution. But it is obvious to go on increasing the number of elements till the values become almost stationary since convergence depends on other factors like boundary conditions and radii ratio also.

Fig.17 Distribution of inplane stresses ($\sigma_{\rm f}$ and $\sigma_{\rm g}$) along the radius for a rotating disc

CHAPTER - VI

CONCLUSIONS

6.1 CONCLUSIONS

Using semianalytical method vibration analysis of circular and annular plates for various boundary conditions has been done, both for isotropic and orthotropic plates. In the present analysis the problem of material singularity occurring in orthotropic plates is avoided by assuming a small hole at the centre and even then the answers are in good agreement with that of solid plates. The same element has also been used for the study of dynamic behaviour of annular plates with varying thickness. In case of orthotropic plates it has been observed in all cases that the frequency parameter is mainly dependent upon the regidity modulus in radial direction compared to the material properties in other directions. It is because of this reason that when the frequency parameter is determined for a constant D, with varying D_e frequency parameter does not vary much. conclusion to be drawn here is that, by providing sufficient reinforcement in radial direction (polar-orthotropic plates), frequency parameter as high as that for an

isotropic material can be obtained and these orthotropic plates are preferred due to their higher stiffness to weight ratio.

In case of rotating discs the influence of D_{Θ} is more significant. So, for a rotating disc with constant $D_{\mathbf{r}}$, when $D_{\Theta}/D_{\mathbf{r}}$ is increased, it is found that frequency parameter increases more rapidly than that of a stationary plate. This is due to the obvious reason that implane stresses increase as the regidity modulus D_{Θ} increases.

6.2 SCOPE FOR FUTURE WORK

Since the semianalytical method is quite powerful giving very good results (required for all engineering purposes) further application of the method should
be directed towards practical problems like rotating
discs with periferal load (turbine disc with blades)and
thermal stresses.

Secondly in case of orthotropic plates with varying thickness exact results are not available. So it is necessary to determine the frequency parameter through experiments and compare with the finite element method results.

REFERENCES

- 1. S. Timoshenko, D.H. Young and W. Weaver, VIBRATION PROBLEMS IN ENGINEERING, Fourth edition, Joh Willey and Sons, 1974.
- 2. Their Wah, VIBRATION OF CIRCULAR PLATES, The Journal of Acoustical Society of America, Vol. 34, No.3, March 1962, P. 275.
- 3. S.M. Vogel and D.W. Skinner, NATURAL FREQUENCIES
 OF TRANSVERSLY VIBRATING UNIFORM ANNULAR PLATES,
 Journal of Applied Mechanics, December 1965, P.926.
- 4. R.D. Blevins, FORMULAS FOR NATURAL FREQUENCIES
 AND MODE SHAPES, Van Nostrand, Reinhold Company,
 1979.
- 5. O.C. Zienkiewicz and Y.K. Cheung, FINITE ELEMENT METHOD IN STRUCTURAL AND CONTINUUM MECHANICS, McGraw-Hill, 1967.
- 6. C.S. Desai and J.F. Abel, INTRODUCTION TO THE FINITE ELEMENT METHOD, Litton Educational Publishing, Inc., 1972.
- 7. I. Ergatoudis, CURVED ISOPARAMATRIC QUADRILATERAL ELEMENTS FOR FINITE ELEMENT ANALYSIS, International Journal of Solids and Structures, Vol. 4, 1968, P. 31.
- 8. M.D. Olson and G.M. Lindberg, ANNULAR AND CIRCULAR SECTOR FINITE ELEMENTS FOR PLATE BENDING, International Journal of Mechanical Sciences, Vol. 12, 1970, P. 17.

- 9. J. Kirkhope and G.I. Wilson, VIBRATION AND STRESS ANALYSIS OF THIN ROTATING DISCS USING ANNULAR FINITE ELEMENTS, Journal of Sound and Vibration, Vol. 44, 1976, P. 461.
- 10. Kultar Singh, FREE VIBRATION ANALYSIS OF SOME STRUCTURAL COMPONENTS WITH TIMOSHENKO EFFECTS USING FINITE ELEMENT METHOD, Ph. D. Thesis, Aug.82, I.I.T., Kanpur.
- J. Benjamin, VIBRATION ANALYSIS OF ISOTROPIC AND POLAR ORTHOTROPIC CIRCULAR AND ANNULAR PLATES USING FINITE ELEMENTS, M. Tech Thesis, July 84, I.I.T., Kanpur.
- 12. P.G. Kirmser, C.L. Huang and H.K. Woo, VIBRATION OF CYLINDRICALLY ORTHOTROPIC CIRCULAR PLATES, AIAA Journal, Dec. 1972, P. 1960.
- 13. K.A.V. Pandalai and A. Sharad Patel, NATURAL FREQUENCIES OF ORTHOTROPIC CIRCULAR PLATES, AIAA Journal, Vol. 3, 1965, P. 780.
- 14. I.A. Minkarah and W.H. Hopman, FLEXURAL VIBRATIONS
 OF CYLINDRICALLY AEOLOTROPIC CIRCULAR PLATES, J. of
 Acoustical Society of America, II, 36, 1964, P.430.
- 15. K.S. Joung, DERIVATION OF AXISYMMETRIC FLEXURAL VIBRATION EQUATIONS OF A CYLINDRICALLY-AEOLOTROPIC CIRCULAR PLATES, AIAA J., Vol. 7, No. 7, Part II, July 1969, P. 1386.
- 16. P.X. Belline and F.J. Dzialo, FORCED VIBRATION
 OF CYLINDRICALLY ORTHOTROPIC CIRCULAR PLATES, J.
 of-Acoustical Society of America, Part I, Vol.47,
 1970, P. 940.
- 17. Haung and Chi Hung, NON-LINEAR AXISYMMETRIC FLEXU-RAL VIBRATION EQUATION OF CYLINDRICALLY ANISOTROPIC CIRCULAR PLATES, AIAA Journal, Vol.10, 1972, P.1378.

- 18. J.L. Nowinski and S.R. Woodall, VIBRATION OF A FREE ROTATING ANISOTROPIC MEMBRANE, J. of Acoustical Society of America, Vol. 36, No. 11, Nov. 1964, P. 2113.
- 19. G.K. Ramaiah and K. Vijayakumar, NATURAL FREQUENCIES OF POLAR ORTHOTROPIC ANNULAR PLATES, J. of Sound and Vibration, Vol. 26, 1973, P. 517.
- 20. G.K. Ramaiah and K. Vijayakumar, ESTIMATION OF THE HIGHER NATURAL FREQUENCIES OF POLAR ORTHOTROPIC ANNULAR PLATES, J. of Sound and Vibration, Vol.32, 1974, P. 265.
- 21. W.Eversman and R.D. Dodson Jr., FREE VIBRATION OF A CENTRALLY CLAMPED SPINNING CIRCULAR DISC, AIAA J. Vol. 7, No. 10, Oct. 1969, P. 2010.
- 22. S. Timoshenko and S.W. Krieger, THEORY OF PLATES AND SHELLS, Second edition, McGraw-Hill Book Company, Inc., 1959.
- 23. R.H. Gallagher, FINITE ELEMENT ANALYSIS FUNDAMENTALS, Prentice Hall, Englewood Cliffs, New Jersy, 1975.
- 24. S. Timoshenko and J.N. Goodier, THEORY OF ELASTICITY, Third edition, McGraw Hill Book Company, Inc., 1970.
- 25. O.C. Zienkievicz and K. Morgan, FINITE ELEMENTS AND APPROXIMATIONS, John Wiley and Sons, 1983.
- P. Guruswamy and T.Y. Yang, A SECTOR FINITE ELEMENT FOR DYNAMIC ANALYSIS OF THICK PLATES, J. of Sound and Vibration, 1979, P. 505.

APPENDIX-A

BEAM SHAPE FUNCTIONS ARE AS FOLLOWS [23]

$$N_{1x} = \frac{1}{2} - \frac{3}{4} \frac{1}{5} + \frac{1}{4} \frac{1}{5} \frac{3}{5}$$

$$N_{2x} = \frac{1}{4} - \frac{1}{4} \frac{1}{5} - \frac{1}{4} \frac{1}{5} \frac{2}{5} + \frac{1}{4} \frac{1}{5} \frac{3}{5}$$

$$N_{3x} = \frac{1}{2} + \frac{3}{4} \frac{1}{5} - \frac{1}{4} \frac{1}{5} \frac{3}{5}$$

$$N_{4x} = -\frac{1}{4} - \frac{1}{4} \frac{1}{5} + \frac{1}{4} \frac{1}{5} \frac{2}{5} + \frac{1}{4} \frac{1}{5} \frac{3}{5}$$

$$N_{1y} = \frac{1}{2} + \frac{3}{4} \eta - \frac{\eta^{3}}{4}$$

$$N_{2y} = -\frac{1}{4} - \frac{1}{4} \eta + \frac{1}{4} \eta^{3} + \frac{1}{4} \eta^{3}$$

$$N_{3y} = \frac{1}{2} - \frac{3}{4} \eta + \frac{1}{4} \eta^{3}$$

$$N_{4y} = \frac{1}{4} - \frac{1}{4} \eta - \frac{1}{4} \eta^{2} + \frac{1}{4} \eta^{3}$$

APPENDIX-B

B.1 [R] MATRIX OF EQN. (3.2) IS [11]

$$[R] = \begin{bmatrix} \frac{a^2(a-b)}{1^3} & \frac{a^2b}{1^2} & \frac{b^3(3a-b)}{1^3} & \frac{a b^2}{1^2} \\ \frac{6a b}{1^3} & -a(a+2b) & -6a b & -b(2a+b) \\ \frac{-3(a+b)}{1^3} & \frac{2a+b}{1^2} & \frac{3(a+b)}{1^3} & \frac{(a+2b)}{1^2} \\ \frac{2}{1^3} & \frac{-1}{1^2} & \frac{-2}{1^3} & \frac{-1}{1^2} \\ where & 1 = a - b \end{bmatrix}$$

B.? COEFFICIENTS OF $[k]^{(e)}$ OF EQN. (3.8)

$$k_{11} = (D_{\Theta} m^{4} + 4 D_{r\Theta} m^{2}) P_{-3}$$

$$k_{12} = D_{\Theta} (m^{4} - m^{2}) P_{-2}$$

$$k_{13} = (-2v_{\Theta} D_{r} m^{2} + D_{\Theta} (m^{4} - 2m^{2}) - 4 D_{r\Theta} m^{2}) P_{-1}$$

$$k_{14} = (-6v_{\Theta} D_{r} m^{2} + D_{\Theta} (m^{4} - 3m^{2}) - 8 D_{r\Theta} m^{2}) P_{\Theta}$$

$$k_{22} = D_{\Theta} (m^{2} - 1)^{2} P_{-1}$$

$$k_{23} = (-2v_{\Theta} D_{r} (m^{2} - 1) + D_{\Theta} (m^{2} - 1) (m^{2} - 2)) P_{\Theta}$$

$$k_{24} = (-6v_{\Theta} D_{r} (m^{2} - 1) + D_{\Theta} (m^{4} - 4m^{2} + 3)) P_{1}$$

$$k_{33} = (4 D_{r} - 4v_{\Theta} D_{r} (m^{2} - 2) + D_{\Theta} (m^{2} - 2)^{2} + 4 D_{r\Theta} m^{2}) P_{1}$$

$$k_{34} = (12D_{r} - 6v_{\theta} D_{r}(m^{2} - 2) - 2v_{\theta} D_{r}(m^{2} - 3) + D_{\theta}(m^{2} - 3)^{2} + 16D_{r\theta}(m^{2}) P_{3}$$

where

$$P_{i} = \int_{b}^{a} h^{3} r^{i} dr$$

For linearly varying thickness plate i.e.

$$h = \alpha + \beta r$$

these constants are

$$P_{-3} = \alpha^{3} (a^{2}-b^{2})/2ab + \beta^{3}(a-b) + 3\alpha^{2}\beta (a-b)/ab + 3\alpha \beta^{2} \log (a/b)$$

$$P_{-2} = \alpha^{3} (a-b)/ab + \beta^{3} (a^{2}-b^{2})/2 + 3\alpha^{2}\beta \log (a/b) + 3\alpha \beta^{2} (a-b)$$

$$P_{-1} = \alpha^{3} \log (a/b) + \beta^{3} (a^{3}-b^{3})/3 + 3\alpha^{2}\beta (a-b) + 3\alpha \beta^{2} (a^{2}-b^{2})/2$$

$$P_{0} = \alpha^{3} (a-b) + \beta^{3} (a^{4}-b^{4})/4 + 3\alpha^{2}\beta (a^{2}-b^{2})/2 + 3\alpha \beta^{2} (a^{3}-b^{3})/3$$

$$P_{1} = \alpha^{3} (a^{2}-b^{2})/2 + \beta^{3} (a^{5}-b^{5})/5 + 3\alpha^{2}\beta (a^{3}-b^{3})/3 + 3\alpha \beta^{2} (a^{4}-b^{4})/4$$

$$P_{2} = \alpha^{3} (a^{3}-b^{3})/3 + \beta^{3} (a^{6}-b^{6})/6 + 3\alpha^{2} \beta (a^{4}-b^{4})/4$$

$$+ 3\alpha \beta^{2} (a^{5}-b^{5})/5$$

$$P_{3} = \alpha^{3} (a^{4}-b^{4})/4 + \beta^{3} (a^{7}-b^{7})/7 + 3\alpha^{2} \beta (a^{5}-b^{5})/5$$

$$+ 3\alpha \beta^{2} (a^{6}-b^{6})/6$$
where $\alpha^{1} = -h_{2} b \beta^{1} = -h_{1}$

where
$$\alpha = \frac{h_1 a - h_2 b}{a - b}$$
, $\beta = \frac{h_2 - h_1}{a - b}$

These relations can be used for uniform plate by putting β = 0 in the above equations.

B.3 COEFFICIENTS OF [m] (e) OF EQN. (3.10)

where

$$Q_{i} = \rho \int_{b}^{a} h r^{i} dr$$

For a plate with linearly varying thickness i.e.

 $h = \alpha + \beta r$, these coefficients are

$$Q_1 = \int (\alpha (a^2-b^2)/2 + \beta (a^3-b^3)/3)$$

$$\Omega_2 = \int (\alpha (a^3-b^3)/3 + \beta (a^4-b^4)/4)$$

$$Q_3 = \int (\alpha (a^4-b^4)/4 + \beta (a^5-b^5)/5)$$

$$\Omega_{4} = \frac{1}{3} (\alpha (a^{5}-b^{5})/5 + \beta (a^{6}-b^{6})/6)$$

$$\Omega_{5} = \frac{1}{3} (\alpha (a^{6}-b^{6})/6 + \beta (a^{7}-b^{7})/7)$$

$$\Omega_{6} = \frac{1}{3} (\alpha (a^{7}-b^{7})/7 + \beta (a^{8}-b^{8})/8)$$

$$\Omega_{7} = \frac{1}{3} (\alpha (a^{8}-b^{8})/8 + \beta (a^{9}-b^{9})/9)$$

These coefficients can be used for uniform thickness plate by substituting $\beta = 0$ in the above equations.

APPENDIX-C

C.1 COEFFICIENTS OF $[k_p]^{(e)}$ OF EQN. (4.2) $[k_p]^{(e)} = \int\limits_{b}^{a} [\sigma_r \{s,_r\} [s,_r] + m^2 \sigma_{\theta} / r^2 \{s\} [s]] h r dr$ For a uniform thickness plate

For a uniform thickness plate
$$\begin{bmatrix} Q_1 & Q_0 & Q_1 & Q_2 \\ P_1+Q_1 & 2P_2+Q_3 & 3P_3+Q_3 \end{bmatrix}$$

$$\begin{bmatrix} k_p \end{bmatrix}^{(e)} = \begin{bmatrix} sym & 4P_3+Q_3 & 6P_4+Q_4 \\ 9P_5+Q_5 & 9P_5+Q_5 \end{bmatrix}$$

where

$$Q_{-1} = h (D_1 \log (a/b) + D_2 (a-b))$$

$$Q_0 = h (D_1 (a-b) + D_2 (a^2-b^2)/2)$$

$$Q_1 = h (D_1 (a^2-b^2)/2 + D_2 (a^3-b^3)/3)$$

$$Q_2 = h (D_1 (a^3-b^3)/3 + D_2 (a^4-b^4)/4)$$

$$Q_3 = h (D_1 (a^4-b^4)/4 + D_2 (a^5-b^5)/5)$$

$$Q_4 = h (D_1 (a^5-b^5)/5 + D_2 (a^6-b^6)/6)$$

$$Q_5 = h (D_1 (a^6-b^6)/6 + D_2 (a^7-b^7)/7) \text{ and}$$

$$P_1 = h m^2 (E_1 (a^2-b^2)/2 + E_2 (a^3-b^3)/3)$$

$$P_2 = h m^2 (E_1 (a^3-b^3)/3 + E_2 (a^4-b^4)/4)$$

$$P_3 = h m^2 (E_1 (a^4-b^4)/4 + E_2 (a^5-b^5)/5)$$

$$P_4 = h m^2 (E_1 (a^5-b^5)/5 + E_2 (a^6-b^6)/6)$$

 $P_5 = h m^2 (E_1 (a^6-b^6)/6 + E_2 (a^7-b^7)/7)$

where

$$D_{1} = \frac{\sigma_{1} - \sigma_{0}}{a - b}, \quad D_{2} = \frac{\sigma_{2} - \sigma_{0}}{a - b}$$

$$E_{1} = \frac{\sigma_{1} - \sigma_{r_{2}}}{a - b}, \quad E_{2} = \frac{\sigma_{1} - \sigma_{r_{2}}}{a - b}$$

C.2 COEFFICIENTS OF [k, OF EQN. (4.9)

$$k_{i_{11}} = C_5 \log (a/b)$$

$$k_{i_{12}} = (c_5 + c_6) (a-b)$$

$$k_{i_{13}} = (2C_6 + C_5) (a^2 - b^2)/2$$

$$k_{1_{14}} = (3C_6 + C_5) (a^3 - b^3)/3$$

$$k_{1_{22}} = (2C_6 + C_4 + C_5)(a^2 - b^2)/2$$

$$k_{i_{23}} = (2C_4 + C_5 + 3C_6) (a^3 - b^3)/3$$

$$k_{i_{24}} = (3C_4 + C_5 + 4C_6) (a^4 - b^4)/4$$

$$k_{133} = (4C_4 + C_5 + 4C_6) (a^4 - b^4)/4$$

$$k_{134} = (6C_7 + C_5 + 5C_6) (a^5 - b^5)/5$$

$$k_{144} = (9C_4 + C_5 + 6C_6) (a^6 - b^6)/6$$

$$k_{i_{mn}} = k_{i_{nm}}$$

where

$$C_4 = \frac{2\pi E_r h}{(1-v_r v_{\Theta})}$$

$$C_5 = \frac{2\pi E_{\Theta} h}{(1-v_r v_{\Theta})}$$

$$c_6 = c_4 v_{\Theta}$$

A 87401

DATE SLIPA 87494

This book is to be returned on the date last stamped.

the date last stamped:					

ME-1984-M-ACH-VIB