Questions de cours

- 1 Énoncer et démontrer la caractérisation séquentielle de la limite.
- 2 Énoncer et démontrer le théorème des bornes atteintes.
- 3 Énoncer et démontrer l'égalité et l'inégalité des accroissements finis.

Exercices

Soit $f: x \longmapsto \frac{2x+1}{\sqrt{x^2+x+1}}$

- 1 Montrer que f est une bijection de $\mathbb R$ dans un ensemble J à préciser.
- 2 On note q l'application réciproque de f.
 - a) Représenter f et q sur le même dessin.
 - b) Montrer que q est dérivable sur J.
 - c) On note A le point de la courbe de q d'abscisse 0.

Préciser l'ordonnée de A et une équation de la tangente en A à la courbe de a.

Exercice 2:

Soit $f: x \longmapsto \ln(1+x^2) - \operatorname{Arctan}(x)$.

1 - Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et préciser f'(x) et f''(x) pour $x \in \mathbb{R}$. On pose pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$:

$$P_n(x) = f^{(n)}(x) (1 + x^2)^n$$

- 2 Préciser P_1 et P_2 et donner leurs racines.
- 3 Donner une relation entre $P_{n+1}(x)$ et $x, n, P_n(x)$ et $P'_n(x)$.
- 4 Montrer que P_n est une fonction polynomiale de degré au plus n.

Exercice 3:

Soit f une fonction continue sur \mathbb{R} telle que :

$$\forall x \in \mathbb{R}, \ f(x) = f\left(x^{2^{-n}}\right)$$

- 1 Vérifier que f est paire.
- 2 Soit x > 0.

Montrer que pour tout $n \in \mathbb{N}^*$, $f(x) = f(x^{2^{-n}})$.

3 - En déduire que f est constante sur \mathbb{R} .

Exercice 4:

Soient f et q des fonctions dérivables sur un intervalle [a;b].

- 1 Montrer qu'il existe $c \in a$; b[tel que (f(b) f(a))q'(c) = (g(b) g(a))f'(c).
- 2 On suppose de plus que q' ne s'annule pas sur a; b.

Montrer que si $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R}$, alors $\lim_{x\to a^+} \frac{f(x)-f(a)}{g(x)-g(a)} = \ell$. 3 - En déduire la valeur de $\lim_{x\to 0^+} \frac{\cos(x)+x\sin(x)-1}{e^x-x-1}$.

Dans cet exercice, on cherche à déterminer toutes les fonctions continues $f:\mathbb{R}\longrightarrow\mathbb{R}$ telles que, pour tout $(x, y) \in \mathbb{R}^2$:

$$f(x + y) + f(x - y) = 2(f(x) + f(y))$$

Soit f une telle fonction.

- 1 Que faut f(0)? Démontrer que f est paire.
- 2 Démontrer que, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$, $f(nx) = n^2 f(x)$.
- 3 Démontrer que, pour tout $p \in \mathbb{N}^*$, $f\left(\frac{1}{p}\right) = \frac{f(1)}{p^2}$.
- 4 Démontrer que, pour tout $n \in \mathbb{Z}$ et tout $p \in \mathbb{N}^*$, $f\left(\frac{n}{n}\right) = \frac{n^2}{n^2}f(1)$.
- 5 Conclure.

Soit $f:[0;1] \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 telle que f(0)=f'(0)=f'(1)=0.

L'objectif de cet exercice est de démontrer qu'il existe $c \in]0;1]$ tel que $f'(c) = \frac{f(c)}{c}$.

1 - Soient $c \in]0;1]$ et M le point de coordonnées (c, f(c)).

Rappeler une équation de la tangente à la courbe représentative de f en M ainsi qu'une équation de la corde reliant (0, f(0)) à M. Donner une interprétation géométrique du résultat que l'on veut démontrer, et illustrer le sur un dessin.

2 - On définit $g:[0;1] \longrightarrow \mathbb{R}$ par $g(x) = \frac{f(x)}{x}$ si $x \neq 0$ et g(0) = 0.

Vérifier que g est continue sur [0;1] et de classe \mathcal{C}^1 sur [0;1].

- 3 Calculer q'(x) pour $x \in]0;1]$.
- 4 Démontrer le résultat dans le cas f(1) = 0.
- 5 Dans cette question, on suppose que f(1) > 0.
 - a) Calculer q(0), q(1) et q'(1).
 - b) En déduire que q' s'annule sur]0;1[et conclure.
- 6 Comment procéder si f(1) < 0.

Exercice 7:

On considère l'équation (E_a) , d'inconnue x > 0,

$$\ln(x) = ax$$

- 1 Démontrer que si $a \leq 0$, l'équation (E_a) admet une unique solution et que cette solution appartient à [0; 1].
- 2 Démontrer que si $a \in]0; e^{-1}[$, l'équation (E_a) admet exactement deux solutions. 3 Démontrer que si $a = e^{-1}$, l'équation (E_a) admet une unique solution dont on précisera la valeur.
- 4 Démontrer que si $a > e^{-1}$, l'équation (E_a) n'admet pas de solution.