FIRST TALK

BY IVAN

Contents

1.	Locally Profinite Groups	1
2.	Characters of Locally Profinite Groups	2
References		2

1. Locally Profinite Groups

Definition 1. A topological group G is called locally profinite if it is Hausdorff, locally compact, totally disconnected and has a basis of neighborhoods of the identity consisting of open compact subgroups.

Equivalently, A locally profinite group is a topological group G such that every open neighbourhood of the identity in G contains a compact open subgroup of G. In fact, we can write

$$G = \operatorname*{proj\,lim}_K G/K$$

where the limit runs over all open normal subgroups K of G.

Definition 2. A local field F is a field with a non-trivial absolute value $|\cdot|$, that is locally compact under the topology induced by $|\cdot|$ and whose topology is not discrete.

If $(F,|\cdot|)$ is a valued field, then we say that it is archimedean if the absolute value $|\cdot|$ is archimedean, i.e., if for every $x,y\in F$ with |x|<|y|, there exists an integer n such that |nx|>|y|. Otherwise, we say that $(F,|\cdot|)$ is non-archimedean.

We say that F is a non-archimedean local field if the topology on F is induced by a non-archimedean absolute value. Examples of non-archimedean local fields are finite extensions of \mathbb{Q}_p and $\mathbb{F}_q(t)$. Examples of archimedean local fields are \mathbb{R} and \mathbb{C} .

Let F be a non-Archimedean local field. Thus F is the field of fractions of a discrete valuation ring \mathcal{O} . Let \mathfrak{p} be the maximal ideal of \mathcal{O} and $k = \mathcal{O}/\mathfrak{p}$ the residue class field. We will always assume that k is finite, and we will generally denote the cardinality |k| by q.

Let π be a prime element of F, that is, an element satisfying

$$\pi \mathcal{O} = \mathfrak{p}$$
.

where \mathfrak{p} is the maximal ideal of the ring of integers \mathcal{O} of F. Every element $x \in F^{\times}$ admits a unique factorization

$$x = u\pi^n$$
,

with $u \in \mathcal{O}^{\times} = U_F$ a unit and $n \in \mathbb{Z}$. We write $n = \nu_F(x)$ for the normalized valuation of x. The field F carries the absolute value

$$||x|| = q^{-n} = q^{-\nu_F(x)},$$

where $q = |\mathcal{O}/\mathfrak{p}|$. We set ||0|| = 0, so that ||x|| > 0 for $x \neq 0$. This absolute value defines a metric under which F is complete, making F a topological field.

For each $n \in \mathbb{Z}$, the fractional ideal

$$\mathfrak{p}^n = \pi^n \mathcal{O} = \{ x \in F : ||x|| \le q^{-n} \}$$

Date: June 25, 2025.

2 BY IVAN

is an open additive subgroup of F, and the collection $\{\mathfrak{p}^n\}_{n\in\mathbb{Z}}$ forms a fundamental system of neighborhoods of 0.

Because F is complete and the residue field $k = \mathcal{O}/\mathfrak{p}$ is finite, the canonical map

$$\mathcal{O} \longrightarrow \varprojlim_n \mathcal{O}/\mathfrak{p}^n$$

is a topological isomorphism. Each quotient $\mathcal{O}/\mathfrak{p}^n$ is finite, hence the inverse limit is compact. Moreover, each fractional ideal \mathfrak{p}^n is topologically isomorphic to \mathcal{O} and is therefore compact. It follows that the additive group (F,+) is *locally profinite*, and F is the union of its compact open subgroups.

The same reasoning shows that the multiplicative group F^{\times} is locally profinite. Standard arguments then imply that for every $n \geq 1$, the groups

$$F^n$$
, $M_n(F)$, $\operatorname{GL}_n(F)$, $\operatorname{SL}_n(F)$, $\operatorname{SO}_n(F)$, $\operatorname{GO}_n(F)$, $\operatorname{Mp}_n(F)$

are all locally profinite as well.

2. Characters of Locally Profinite Groups

Definition 3. Let G be a locally profinite group. A character of G is a continuous homomorphism $\chi: G \to \mathbb{C}^{\times}$. We say that a character is unitary if its image lies in the unit circle $S^1 \subset \mathbb{C}^{\times}$.

For a local field F we write \hat{F} for the group of unitary characters of the additive group (F, +). [1]

References

1. Colin J. Bushnell and Guy Henniart, The local langlands conjecture for gl(2), Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006.