Piotr Fonferek

12 stycznia 2024

Rozkład jednostajny

Załóżmy, że istnieje ciąg niezależnych zmiennych losowych U_1, U_2, \ldots , takich że:

$$P(U_i \leqslant u) = \begin{cases} 0, & u < 0 \\ u, & 0 \leqslant u \leqslant 1 \\ 1, & u > 1 \end{cases}$$

Czyli te zmienne mają rozkład U[0,1].

Twierdzenie

Załóżmy, że mamy rozkład Φ , jego dystrybuantę F i zmienną losową U o rozkładzie U[0,1]. Wtedy dla zmiennej losowej

$$X := F^{-1}(U)$$

zachodzi $P(X \leqslant x) = F(x)$ dla każdego x.

Czyli możemy uzyskać próbkę o dowolnym rozkładzie, znając tylko wzór na jego odwróconą dystrybuantę i mając generator liczb losowych U[0,1].

- I Jeśli w dystrybuancie F występują skoki, to $u_1 = F(x-) \le u \le u_2 = F(x+)$ są odwzorywane przez F^{-1} na x_0 ;
- 2 Jeśli w dystrybuancie F występują spłaszczenia, to przyjmujemy $F^{-1}(u) = \inf\{x : F(x) \ge u\}$.

Sprawdzenie, że ta metoda rzeczywiście zwraca próbkę o rozkładzie Φ.

$$P(X \leqslant x) = P(F^{-1}(U) \leqslant x)$$

= $P(U \leqslant F(x))$
= $F(x)$.

Percentyle

Definicja

Percentyle są podziałem liczb rzeczywistych na rozłączne zbiory A_1, \ldots, A_{100} , takie że $\bigcup_{i=1}^{100} A_i = \mathbb{R}$, dla których zachodzi

$$\Phi(A_k) = \Phi(A_i) \tag{1}$$

dla dowolnych $k, i \in \{1, \dots, 100\}$.

Uwaga

Równość (1) zachodzi również, jeśli zbiory A_k i A_i składają się z sumy n różnych zbiorów A_1, \ldots, A_{100} .

Percentyle

Przykład

Uzyskanie wyniku losowania z rozkładu Φ pomiędzy dwudziestym a trzydziestym percentylem jest równie prawdopodobne, jak uzyskanie wyniku pomiędzy osiemdziesiątym, a dziewięćdziesiątym percentylem.

- Metoda odwrotnej dystrybuanty pozwala na szybkie znalezienie percentyli.
- Ze wzoru (1) wynika, że percentyle mają rozkład jednostajny.

Przykład - rozkład wykładniczy

Dystrybuanta F rozkładu wykładniczego o średniej θ wynosi

$$F(x) = 1 - e^{-x/\theta}, \ x \geqslant 0.$$

Teraz obliczamy F^{-1} :

$$egin{aligned} U &= 1 - e^{-rac{x}{ heta}} \ e^{-rac{x}{ heta}} &= 1 - U \ X &= - heta \ln(1-U) = - heta \ln(U) \end{aligned}$$

Przykład - rozkład wykładniczy

```
1 #Metoda odwrotnej dystrybuanty dla rozkładu wykładniczego
2 x = seq(from=0.01, to=20, by=0.01)
3 theta <- 0.5 #średnia
4 lambda <- 1/theta
5 probka_wykladniczego <- c()
6 probka_wykladniczego <- -theta*log(runif(100))
7 hist(probka_wykladniczego, breaks = seq(0, 20, 0.5),
8 main="Histogram próbki rozkładu wykładniczego", prob=TRUE)
9 lines(x, lambda*exp(-lambda*x), col="red", lwd=2)
10</pre>
```

Przykład - rozkład wykładniczy

Rozkład arcus sinusa

Rozkład arcus sinusa

Rozkład o dystrybuancie $F(x) = \frac{2}{\pi} \arcsin(\sqrt{x}), \ 0 \le x \le 1$ jest nazywany rozkładem arcus sinusa.

Jego gęstość wynosi $f(x) = \frac{1}{\pi \sqrt{x(1-x)}}$.

Prawa arcus sinusa

Niech zmienna losowa M określa czas, w którym proces Wienera osiągnął maksimum w czasie [0,1]:

$$W_M=sup\{W_s:\ s\in[0,1]\}.$$

Wtedy M ma rozkład arcus sinusa.

Prawo arcus sinusa

```
sigma <- 0.2
   p <- 500 # the number of samples
   delta <- 0.001 # delta*n=T in years
9 n <- 999 # the number of steps
   wektor_max <- c() #wektor maksimów
13 - for (k in 1:p) {
     S <- 0
     t <- 0
     wektorS <- c()
     for (i in 1:n) {
       y <- rnorm(1) # Generate a random number from a standard normal distribution
       S <- S + sigma * y * sqrt(delta)
       wektorS[i] <- S
     wektor_max[k] <- which.max(wektorS)/1000</pre>
25 4 }
   hist(wektor max, col = "lightblue", main = "Histogram", prob=TRUE)
   x < - seg(from = 0.001, to = 0.999, by = 0.001)
   y <-1 / (pi * sqrt(x * (1 - x)))
34 lines(x, y, col = "red", lwd = 2)
```

Prawo arcus sinusa

Bez obliczania F^{-1}

Metoda odwrotnej dystrybuanty jest stosowana, nawet jeśli nie można analitycznie wyznaczyć odwzorowania F^{-1} . Wtedy obliczenie $F^{-1}(u)$ jest równoważne znalezieniu miejsca zerowego równania F(x)-u=0. Jeżeli f(x) jest gęstością naszego rozkładu, to korzystając z metody Newtona dostajemy:

$$x_{n+1} = x_n - \frac{F(x_n) - u}{f(x_n)},$$

gdzie, przy rozpoczęciu iteracji w punkcie x_0 , x_n zbiega do szukanego pierwiastka.

Przykład - rozkład dyskretny

Rozważmy zmienną losową X o wartościach dyskretnych $c_1 < c_2 < \cdots < c_n$. Niech p_i będzie prawdopodobieństwem osiągnięcia c_i . Następnie ustalmy $q_0 = 0$ oraz

$$q_i = \sum_{j=1}^i p_j, \ i = 1, \ldots, n.$$

Zauważmy, że $q_i = F(c_i), i = 1, ..., n$. Teraz stosujemy metodę odwrotnej dystrybuanty:

- 1 losujemu liczbę $U \sim U[0,1]$;
- 2 szukamy $K \in \{1, \ldots, n\}$, takie że $q_{K-1} \leq U \leq q_K$;
- \blacksquare przypisujemy $X = c_k$.

Rozkład warunkowy

Rozważmy zmienną losową X i losowanie warunkowane $a < X \le b$, gdzie $a,b \in \mathbb{R}$ są, takie że F(a) < F(b). Zdefiniujmy zmienną losową V:

$$V = F(a) + (F(b) - F(a))U.$$

Zauważmy, że V ma rozkład U[F(a), F(b)] i rozkład:

$$P(F^{-1}(V) \le x) = P(F(a) + (F(b) - F(a))U \le F(x))$$

= $P(U \le [F(x) - F(a)]/[F(b) - F(a)]$
= $[F(x) - F(a)]/[F(b) - F(a)]$.

Dostaliśmy rozkład warunkowy dla $a < X \le b$.

Zadanie

Zadanie

Napisz program, który, przy pomocy metody odwrotnej dystrybuanty, wygeneruje próbkę 20 liczb z rozkładu arcus sinusa.

Rozwiązanie:

- **1** znaleźć funkcję $F^{-1}(u) = \sin^2(u\frac{\pi}{2}) = \frac{1}{2} \frac{1}{2}\cos(u\pi);$
- napisać kod.

```
#Metoda odwrotnej dystrybuanty dla rozkładu arcsin
probka_arcsin <- c()
probka_arcsin <- 0.5-0.5*cos(runif(20)*pi)

hist(probka_arcsin, col = "lightblue", main = "Próbka arcsin", prob=TRUE)
    x <- seq(from = 0.001, to = 0.999, by = 0.001)
    y <- 1 / (pi * sqrt(x * (1 - x))) #gestość arcsin
    lines(x, y, col = "red", lwd = 2)</pre>
```

Zadanie

nrint(nrohka arcsin)

- [1] 0.006881820 0.827185241 0.901494517 0.933918682 0.867600915 0.467945633 0.230592614 0.581440301 0.978017077
- [10] 0.491967789 0.062035470 0.755816095 0.111089756 0.167381695 0.895387184 0.838456811 0.997979273 0.272097322 [19] 0.002545446 0.742030710

Źródła

- Paul Glasserman: "Monte Carlo Methods in Financial Engineering";
- 2 https:
 //en.wikipedia.org/wiki/Arcsine_distribution
- 13 https://en.wikipedia.org/wiki/Arcsine_laws_
 (Wiener_process)