_	1.3		#- H
	内容		作业
1	绪论,样本空间和随机事件	习题1	1. 3
2	频率与概率定义,概率的主要性质	习题1	13~15
3	古典概型,几何概型	习题1	1.4 1.7,
	日天196至,7017196至		1.8 1.9
4	乘法定理,全概率公式与贝叶斯公式	习题2	8, 11, 12
5	事件的独立性 小结	习题2	2~5, 18

3. 概率的主要性质

- (1) $0 \le P(A) \le 1$, P(S) = 1, $P(\emptyset) = 0$;
- (2) 若 A_1,A_2,\cdots,A_n 是两两互不相容的事件,则有 $P(A_1\cup A_2\cup\cdots\cup A_n)=P(A_1)+P(A_2)+\cdots+P(A_n);$

- (3) $P(\overline{A}) = 1 P(A);$
- (4) P(A-B) = P(A) P(AB);
- (5) $P(A \cup B) = P(A) + P(B) P(AB)$.

第3节台典梳型 (等可能梳型)

1. 定义

- (1) 试验的样本空间只包含有限个元素;
- (2) 试验中每个基本事件发生的可能性相同. 具有以上两个特点的试验称为等可能概型或 古典概型.

样本有限:
$$S = \{e_1, e_2, \dots, e_n\}$$

等可能性: $P(\{e_1\}) = P(\{e_2\}) = \cdots = P(\{e_n\})$

问题1: 每个基本事件出现的可能性(概率)为大?

因为: $\{e_1\}, \{e_2\}, \dots \{e_n\}$ 两两不相容

由有限可加性:

$$1 = P(S) = P(\bigcup_{i=1}^{n} \{e_i\}) = \sum_{i=1}^{n} P(\{e_i\}) = nP(\{e_i\})$$

$$\therefore P(\lbrace e_i \rbrace) = \frac{1}{n}, \quad i = 1, 2 \cdots, n$$

ii') 不放回抽样 ——用组合进行求解

分析:

$$n = 100 \cdot 99 \cdot 98 = A_{100}^{3} = C_{100}^{3} \cdot 3!$$

$$k = 3 \cdot 40 \cdot 39 \cdot 60 = 3 \cdot A_{40}^{2} \cdot C_{60}^{1}$$

$$= 3 \cdot C_{40}^{2} \cdot 2! \cdot C_{60}^{1} = C_{40}^{2} \cdot C_{60}^{1} \cdot 3!$$

$$C_{40}^{2} \cdot C_{40}^{1} \cdot 3! = C_{40}^{2} \cdot C_{40}^{1} \cdot 3!$$

因此: $P(A) = \frac{C_{40}^2 \cdot C_{60}^1 \cdot 3!}{C_{100}^3 \cdot 3!} = \frac{C_{40}^2 \cdot C_{60}^1}{C_{100}^3}$

可以看出,一次一件无放回,相当于一次取3件!

说明:

- 1) 抽取方式不同时,结果也不同。
- 2) 抽取对象<u>数目较大</u>,抽取数<u>量相对较小</u>时, 100 3

不放回抽样当作放回抽样处理,结果相近。

3)可能数中考虑顺序,有利数也要考虑顺序, 否则4中少可能事件。

4)组合:不放回抽样,且事件与顺序无关。 计算中常见问题。

5) 常用情形:

E——从n个产品中(甲 n_1 、乙 n_2 、丙 n_3) 不放回取k个。

A——取出的k件中,甲 k_I 、乙 k_2 、丙 k_3

则: $P(A) = \frac{C_{n_1}^{k_1} \cdot C_{n_2}^{k_2} \cdot C_{n_3}^{k_3}}{C_n^k}$ 乘法原理, 都取完事件A 才完成。

解: E——抽签(不放回)。

 A_i ——第 i 次抽中"特征签"。

法一: E——对 10个卡片做全排列。 n=10!

求k: 只要第 i 个位置"特征签"卡片,其余随便。

所以,
$$k = C_2^1 \cdot (10-1)! = 2 \cdot (10-1)!$$

$$P(A_i) = \frac{2 \cdot (10 - 1)!}{10!} = \frac{2}{10}$$

 $i = 1, 2 \cdots, 10$

法二: (仅对前i个卡片进行考虑) $E \longrightarrow 在 10个卡片中任取 <math>i$ 个进行排列。 $n = A_{10}^{i}$ $k = 2 \cdot A_{10-1}^{i-1}$ $P(A_{i}) = \frac{2 \cdot A_{(10-1)}^{i-1}}{A_{(10)}^{i}} = \frac{2}{10}$ $i = 1, 2 \cdots, 10$

