UNIVERSIDAD DEL VALLE DE GUATEMALA

Procesamiento de Lenguaje Natural Sección 20 Ing. Luis Esturbán

Proyecto 1: Pipeline completo de NLP

Integrantes:

- Pablo Orellana
- Diego Leiva
- Renatto Guzmán

Guatemala, 05 de octubre de 2025

1. Introducción

Este trabajo construye y evalúa un sistema de clasificación supervisada de sentimiento para reseñas de películas en español. Se compara un clasificador lineal SVM y un Naive Bayes Multinomial sobre representaciones TF-IDF de palabras y de caracteres. Además, se explora modelado probabilístico con n-gramas y una representación semántica con Word2Vec. Se reportan métricas estándar, matrices de confusión y análisis crítico.

2. Justificación del dataset

Se utiliza **IMDB Dataset of 50K Movie Reviews – Spanish**, una versión en español de 50 000 reseñas con etiquetas binarias {positivo, negativo}.

Ventajas:

- Tamaño suficiente para entrenar y validar modelos clásicos.
- Dominio estable y ampliamente estudiado, útil para comparar contra referencias.
- Etiquetado balanceado a gran escala (supuesto común en IMDB), lo que reduce sesgos de clase.

Riesgos y supuestos:

- Posible ruido de traducción o variación dialectal del español.
- Reseñas centradas en cine; la generalización a otros dominios es limitada.
- Etiquetado automático en variantes del dataset puede introducir ruido.

3. Metodología

3.1. Preparación del corpus

- Carga del CSV y depuración: eliminación de columnas auxiliares, rename(review_es→review), mapeo de etiquetas positivo→1, negativo→0, drop_duplicates, dropna.
- División posterior estratificada 80/20 para evaluación.

3.2. Normalización y limpieza

- Minúsculas y *strip*.
- Eliminación de diacríticos con unicode NFD.
- Remoción de URLs, correos, menciones y hashtags.
- Eliminación de puntuación, guiones bajos y dígitos; colapsado de espacios.

3.3. Stopwords con protección semántica

- Base NLTK (es/en) + listas externas.
- Protección: negaciones, conectores contrastivos e intensificadores no se eliminan.
- Aplicación con expresión regular basada en bordes de palabra.
- Filtrado de textos vacíos tras limpieza.

3.4. Tokenización y stemming

- nltk.word tokenize (idioma: es)
- SpanishSnowballStemmer.
- Persistencia de: tokens y tokens stem.

3.5. Corrección ortográfica puntual (opcional)

- Implementación de distancia de Levenshtein.
- Se usa para inspección y ejemplos sobre vocabulario raro; **no** se aplica masivamente por costo $(O(n^2))$.

3.6. Representaciones

• Conteo y TF-IDF

- Texto con *stems* para palabras; texto sin stopwords para caracteres.
- o **BoW / TF-IDF de palabras**: 1–2-gramas, min_df=5, max_df=0.5 o 0.95 según etapa, sublinear tf=True cuando aplica.
- o **TF-IDF de caracteres**: 3–5-gramas, min df=5, max df=0.95.
- o **Fusión**: concatenación dispersa [TF-IDF palabras | TF-IDF caracteres].

• Co-ocurrencias v PPMI

- \circ Vocabulario top-V=10 000 y ventana simétrica ± 4 .
- o Matriz COO simétrica de co-ocurrencias.
- \circ **PPMI**: ((i,j)=2), (=(,0)).

• Embeddings Word2Vec

- o Skip-gram, vector size=100, window=5, min count=5, negative=10, epochs=5.
- O Vector de documento: promedio de vectores de palabras presentes.
- O Visualización exploratoria con PCA y t-SNE sobre subconjuntos.

3.7. Modelado probabilístico de lenguaje

- Construcción de unigramas, bigramas y trigramas con marcadores <s>, </s> y <unk> para rareza.
- **Suavizado add-k** en bi/tri-gramas (k=0.1 por defecto).
- Kneser-Ney para bigramas con descuento D=0.75 y probabilidad de continuación.
- Cálculo de entropía (H) y perplejidad (PP=2^H) a nivel de corpus y de oración.

3.8. Clasificación supervisada

- Variable objetivo: sentimiento $\in \{0,1\}$.
- **Partición**: train_test_split(test_size=0.20, stratify=y, random_state=42).
- **Representación final**: concatenación de TF-IDF de palabras (1–2-gramas) y de caracteres (3–5-gramas).
- Modelos:
 - o LinearSVC(C=1.0, random state=42
 - o MultinomialNB(alpha=0.5)
- Métricas: accuracy, macro-F1, classification_report por clase, y matriz de confusión para el mejor modelo.

3.9. Reproducibilidad y consideraciones prácticas

- Semillas: random state=42 y random.seed(0) donde aplica.
- Control de esparsidad y memoria mediante min df y límite de vocabulario.
- Visualizaciones con Matplotlib; reducción con PCA/t-SNE de *sklearn*.

4. Resultados

4.1. Estadísticas de representación

BoW / TF-IDF

Documentos: 49 599

• Términos distintos: 151 860

• Densidad promedio: 0.000777

• Entradas no nulas (nnz): 5 854 820

• Promedio de términos no nulos por documento: 118.0

Co-ocurrencias y PPMI

• Dimensión: (10 000, 10 000)

nnz: 11 637 960

• Densidad: **0.11637960**

• Total de co-ocurrencias: 65 419 004

• Media de conteo por par: 5.62

• PPMI medio (>0): **2.0399**

• PPMI máximo: **12.4341**

Ejemplos de normalización

- "Uno de los otros críticos..." → "uno de los otros criticos..."
- "Una pequeña pequeña producción..." → "una pequena pequena produccion..."
- "Pensé que..." → "pense que..."

Stopwords

ES base: 313 | ES extra: 608
EN base: 198 | EN extra: 1 298

• Finales: 1844

• Ceros tras limpieza de stopwords: 0

4.2. Modelado probabilístico

Modelo	k/D	H (bits/token)	PP
Bigram Add-k	0.1	13.450	11 191.71
Trigram Add-k	0.1	15.849	59 040.98
Bigram Kneser-Ney	0.75	12.642	6 389.73

Tabla 1: N-gramas

Ejemplos de oraciones:

- la pelicula fue excelente
 - o Bigram Add-k \rightarrow H = 7.458 bits, PP = 175.80
 - o Trigram Add-k \rightarrow H = 11.322 bits, PP = 2 559.64
 - o Bigram KN \rightarrow H = 7.799 bits, PP = 222.76
- la trama resulto aburrida
 - o Bigram Add-k \rightarrow H = 10.409 bits, PP = 1 359.84
 - Trigram Add-k \rightarrow H = 16.310 bits, PP = 81 252.76
 - o Bigram KN \rightarrow H = 10.115 bits, PP = 1 109.24

4.3. Clasificación supervisada

Modelo	Representación	Accuracy	F 1
LinearSVC	TF-IDF palabras + caracteres	0.8873	0.8884
MultinomialNB	TF-IDF palabras + caracteres	0.8550	0.8558

Tabla 2: Comparación de métricas entre modelos

Mejor modelo: LinearSVC basado en F1.

4.4. Visualizaciones semánticas

Word2Vec

• Vocabulario: 51 380

• Dimensión: 100

• Palabras similares (muestra):

- o excelente → {excepcional, sobresaliente, fantastica, maravilloso, brillante}
- o *terrible* → {horrible, atroz, horrenda, atroçada, execrable}
- o divertido → {entretenido, humoristico, gracioso, hilarante, sketismo}
- o *aburrido* → {tedioso, inimaginativo, hackneado, rutinario, repetitivo}

W2V palabras - PCA (muestra común)

5. Discusión crítica

Fortalezas

- Limpieza robusta y protección de negaciones e intensificadores.
- Uso combinado de n-gramas de palabras y de caracteres mejora cobertura OOV.
- Línea base sólida con SVM y NB.

Limitaciones

- Sin validación cruzada ni *tuning* sistemático de hiperparámetros.
- Stemming puede degradar matices semánticos; no se ensayó lematización.
- Corrección ortográfica no integrada al pipeline.
- PPMI y co-ocurrencias son costosos en memoria y no alimentan al clasificador.
- Posible sesgo del dataset y ruido de traducción.

Mejoras propuestas

- Validación cruzada estratificada y búsqueda de hiperparámetros (p. ej., C en SVM, alpha en NB, min df, ngram range).
- Sustituir stemming por lematización en español y tokenización con spaCy.
- Incorporar **FastText** o modelos **transformers** en español (p. ej., BETO) con *fine-tuning* y *early stopping*.
- Análisis de errores por longitud, polaridad mixta y negación; ajuste de umbrales y calibración.sin
- Interpretabilidad: pesos de SVM, n-gramas más informativos, y SHAP sobre versiones densas.
- Pipelines reproducibles con Pipeline/ColumnTransformer y exportación con joblib.

6. Conclusiones

El pipeline clásico con TF-IDF de palabras y caracteres logró un rendimiento competitivo (F1 = 0.8884) usando LinearSVC, superando a Naive Bayes. La limpieza, normalización y protección de negaciones fueron claves para mantener coherencia lingüística.

Los modelos probabilísticos mostraron que Kneser-Ney reduce entropía y perplejidad frente a add-k, aunque los trigramas incrementan la sparsidad. Las visualizaciones de Word2Vec revelaron agrupamientos semánticos claros entre términos positivos y negativos, confirmando la capacidad del modelo para capturar relaciones léxicas.