ADVANCED QUANTUM PHYSICS

Examples Sheet 1 - Revision

1. Operator methods and measurement

The Hamiltonian \hat{H} has two normalized eigenstates $|\psi_1\rangle$ and $|\psi_2\rangle$, corresponding to different eigenvalues E_1 and E_2 .

- (a) Show that $|\psi_1\rangle$ and $|\psi_2\rangle$ are orthogonal.
- (b) An observable \hat{A} has the properties $\hat{A}|\psi_1\rangle = |\psi_2\rangle$ and $\hat{A}|\psi_2\rangle = |\psi_1\rangle$; calculate its eigenvalues and eigenvectors (as combinations of $|\psi_1\rangle$ and $|\psi_2\rangle$).
- (c) At time t=0, a measurement of \hat{A} results in the measured value -1. Find the state of the system $|\psi(t)\rangle$ at times t>0, and show that the probability that a measurement of \hat{A} again gives the value -1 is given by $P(t)=\cos^2[(E_1-E_2)t/2\hbar]$.

2. Probability Flux

Consider the state $\psi(x) = Ae^{ikx} + Be^{-ikx}$. Show that the probability flux is $j = (|A|^2 - |B|^2)(\hbar k/m)$. (The cross terms vanish, so we can associate the two parts of j with the corresponding parts of ψ .)

3. Ladder operators

The potential energy of a one-dimensional harmonic oscillator of mass m and angular frequency ω is given by $V(\hat{x}) = m\omega^2\hat{x}^2/2$. Using the raising and lowering operators,

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2m\hbar\omega}}(-i\hat{p} + m\omega\hat{x}), \qquad \hat{a} = \frac{1}{\sqrt{2m\hbar\omega}}(i\hat{p} + m\omega\hat{x}),$$

show that:

- (a) The expectation values of the position and momentum are zero for an energy eigenstate $|\psi_n\rangle$.
- (b) The expectation values of the potential and kinetic energies are each equal to $(n+1/2)(\hbar\omega/2)$ where n is the quantum number of the state $|\psi_n\rangle$.
- (c) The uncertainties Δx and Δp in position and momentum are related by $\Delta x \, \Delta p = (n+1/2)\hbar$.

[The ladder operators have the properties $\hat{a}^{\dagger}|\psi_n\rangle = \sqrt{n+1}|\psi_{n+1}\rangle$ and $\hat{a}|\psi_n\rangle = \sqrt{n}|\psi_{n-1}\rangle$.]

4. Matrix methods

Show that for a system with orbital angular momentum $\ell = 1$, for the basis of states $|\phi_1\rangle = |Y_{11}\rangle$, $|\phi_2\rangle = |Y_{10}\rangle$, $|\phi_3\rangle = |Y_{1-1}\rangle$, the angular momentum operators may be represented by the matrices

$$\hat{L}_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \hat{L}_y = \frac{i\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \hat{L}_z = \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

A rotating body has the Hamiltonian

$$\hat{H} = \frac{\hat{L}_x^2}{2I_x} + \frac{\hat{L}_y^2}{2I_y} + \frac{\hat{L}_z^2}{2I_z} \,.$$

Find the energy levels and corresponding eigenstates when $\ell = 1$.

5. Spin

In terms of the Pauli matrices $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$, the operator corresponding to the component of spin along the axis (θ, ϕ) in spherical polar coordinates for a spin-half particle is $(\hbar/2)\boldsymbol{\sigma}\cdot\boldsymbol{n}$, where \boldsymbol{n} is the unit vector $\boldsymbol{n} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$. Show that the eigenvalues of spin in this direction are $\pm\hbar/2$ (as expected), and deduce the corresponding wavefunctions. Hence, infer the wavefunctions for particles whose spins are aligned along the +x, -x, +y and -y directions.

6. Identical particles

Two non-interacting, indistinguishable particles of mass m move in the one-dimensional potential V(x) given by

$$V(x) = \begin{cases} 0 & 0 < x < L \\ \infty & \text{otherwise} \end{cases}.$$

Show that the energy of the system is of the form $E = (n_1^2 + n_2^2)\varepsilon$, where n_1 and n_2 are integers, and find an expression for ε .

Consider the state with $E = 5\varepsilon$ for each of the following three cases:

- (a) spin-zero particles;
- (b) spin-1/2 particles in a spin-singlet state;
- (c) spin-1/2 particles in a spin-triplet state.

In each case, state the symmetries of the spin and spatial components of the two-particle wavefunction. Write down the spatial wavefunction $\psi(x_1, x_2)$, and sketch the probability density $|\psi(x_1, x_2)|^2$ in the (x_1, x_2) plane.

Describe qualitatively how the energies of these states would change if the particles carried electric charge and hence interacted with each other.

7. Heisenberg picture

In the Heisenberg picture, time dependent operators $\hat{A}(t) \equiv e^{i\hat{H}t/\hbar} \hat{A} e^{-i\hat{H}t/\hbar}$ are introduced. For the one-dimensional harmonic oscillator of question 3, show that the ladder operators $\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$ in the Heisenberg representation satisfy

$$\hat{a}(t) \equiv e^{i\hat{H}t/\hbar} \hat{a}(0) e^{-i\hat{H}t/\hbar} = e^{-i\omega t} \hat{a}(0) ,$$

$$\hat{a}^{\dagger}(t) \equiv e^{i\hat{H}t/\hbar} \hat{a}^{\dagger}(0) e^{-i\hat{H}t/\hbar} = e^{i\omega t} \hat{a}^{\dagger}(0) .$$

Use this result to demonstrate that the position operator in the Heisenberg representation obeys the equation of motion

$$\frac{\mathrm{d}\hat{x}(t)}{\mathrm{d}t} = \frac{\hat{p}(t)}{m} \,.$$

Show that this last result holds also for the more general case $\hat{H} = \hat{p}^2/2m + V(\hat{x})$.

ANSWERS

1. (b)
$$\pm 1$$
; $(|\psi_1\rangle \pm |\psi_2\rangle)/\sqrt{2}$;

4. (b)
$$(\hbar^2/2)(I_x^{-1} + I_y^{-1})$$
, $(\hbar^2/2)(I_x^{-1} + I_z^{-1})$, $(\hbar^2/2)(I_y^{-1} + I_z^{-1})$, $|Y_{10}\rangle$, $(|Y_{11}\rangle + |Y_{1,-1}\rangle)/\sqrt{2}$, $(|Y_{11}\rangle - |Y_{1,-1}\rangle)/\sqrt{2}$.

5.
$$+\hbar/2$$
: $|\psi\rangle = \cos(\theta/2)|\uparrow\rangle + e^{i\phi}\sin(\theta/2)|\downarrow\rangle$; $-\hbar/2$: $|\psi\rangle = \sin(\theta/2)|\uparrow\rangle - e^{i\phi}\cos(\theta/2)|\downarrow\rangle$