Discussion with Prof. Chi-Jen Lu (Election Game)

Joseph Chuang-Chieh Lin

22nd October 2021

Outline

1 The Setting

The Setting (1/4)

- The society (voters): $V = V_A \cup V_B$.
- Strategy profile for the two parties: $z = (z_A, z_B)$.
 - Party A's strategy $z_A : z_A \in [-1, 1]^k$.
 - Party B's strategy $z_B : z_B \in [-1, 1]^k$.
 - * E.g., k = 10.
- Utilities:
 - z_A for for A's supporters: $u_A(z_A) = \sum_{v \in V_A} \langle z_A, v \rangle$. z_A for B's supporters: $u_B(z_A) = \sum_{v \in V_B} \langle z_A, v \rangle$.
 - z_B for B's supporters: $u_B(z_B) = \sum_{v \in V_B} \langle z_B, v \rangle$. z_B for for A's supporters: $u_A(z_B) = \sum_{v \in V_A} \langle z_B, v \rangle$.
- Let $u(z_A) := u_A(z_A) + u_B(z_A)$ and $u(z_B) := u_A(z_B) + u_B(z_B)$.

The Setting (2/4)

• Let p_{AwB} denote the probability that A wins against B.

We set
$$p_{AwB} := \frac{1}{2} + \frac{u(z_A) - u(z_B)}{2|V|}$$
.

- | *V*|: the number of total voters.
- The reward (or payoff) of A:

$$r_A(z) = p_{AwB} \cdot u_A(z_A) + (1 - p_{AwB}) \cdot u_A(z_B).$$

The reward (or payoff) of B:

$$r_B(z) = (1 - p_{AwB}) \cdot u_B(z_B) + p_{AwB} \cdot u_B(z_A).$$

The Setting (3/4)

• The gradient of z_A :

$$\begin{split} \frac{\partial r_{A}(z)}{\partial z_{A}} &= p_{AwB} \frac{\partial u_{A}(z_{A})}{\partial z_{A}} + u_{A}(z_{A}) \frac{\partial p_{AwB}}{\partial z_{A}} \\ &+ (1 - p_{AwB}) \frac{\partial u_{A}(z_{B})}{\partial z_{A}} - u_{A}(z_{B}) \frac{\partial p_{AwB}}{\partial z_{A}} \\ &= p_{AwB} \sum_{v \in V_{A}} v + u_{A}(z_{A}) \frac{1}{2|V|} \sum_{v \in V} v - u_{A}(z_{B}) \frac{1}{2|V|} \sum_{v \in V} v \\ &= \frac{1}{2} \sum_{v \in V_{A}} v + \frac{\sum_{v \in V_{A}} v}{2|V|} \left(u(z_{A}) - u(z_{B}) \right) + \frac{\sum_{v \in V} v}{2|V|} \left(u_{A}(z_{A}) - u_{A}(z_{B}) \right). \end{split}$$

- Policy updating by gradient ascent (GA): $z_A = z_A + \eta \frac{\partial r_A(z)}{\partial z_A}$
 - Maybe take $\eta = 0.0001$ at first.

The Setting (4/4)

Remark & Issues:

- The two party update their policy simultaneously (based on the state in the previous round).
- The issue: The updated policy needs to be projected into $[-1,1]^k$ and satisfy $||z_A||, ||z_B|| \le 1$.

To Do List

- Try to derive the gradient of z_B . Make clear the deductions and also verify the given equations.
- Investigate how to do the optimization task: project the updated policy onto the feasible solution space.
 - $[-1,1]^k$.
 - $||z_A||, ||z_B|| \leq 1.$