# CIS 770: Formal Language Theory

Pavithra Prabhakar

Kansas State University

Spring 2015

## Finite Languages

### Definition

A language is finite if it has finitely many strings.

### Example

 $\{0,1,00,10\}$  is a finite language, however,  $(00 \cup 11)^*$  is not.

# Finiteness and Regularity

### Proposition

If L is finite then L is regular.

### Proof.

Let  $L = \{w_1, w_2, \dots w_n\}$ . Then  $R = w_1 \cup w_2 \cup \dots \cup w_n$  is a regular expression defining L.

# Are all languages regular?

### Proposition<sup>b</sup>

The language

 $L_{\mathrm{eq}} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$  is not regular.

#### Proof?

No DFA has enough states to keep track of the number of 0s and 1s it might see.  $\hfill\Box$ 

Above is a weak argument because  $E = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 01 and 10 substrings}\}$  is regular!

# Proving Non-Regularity

### Proposition

The language

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$  is not regular.

#### Proof.

Suppose (for contradiction)  $L_{\rm eq}$  is recognized by DFA

 $M = (Q, \{0, 1\}, \delta, q_0, F)$ , where |Q| = n.

- There must be  $j < k \le n$  such that  $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$  (= q say).
- Let  $x = 0^j$ ,  $y = 0^{k-j}$ , and  $z = 0^{n-k}1^n$ ; so  $xyz = 0^n1^n$ . ...

# Proving Non-Regularity

## Proof (contd).

$$y = 0^{k-j}$$

$$q_0 \qquad x = 0^j \qquad q$$

$$y = 0^{k-j}$$

$$q_0 \qquad x = 0^j \qquad z = 0^{n-k}1^n \qquad q'$$

- ullet We have  $\hat{\delta}(q_0,0^j)=\hat{\delta}(q_0,0^k)=q$
- Since  $0^n 1^n \in L_{eq}$ ,  $\hat{\delta}(q_0, 0^n 1^n) \in F$ .

## Pumping Lemma: Overview

### **Pumping Lemma**

The lemma generalizes this argument. Gives the template of an argument that can be used to easily prove that many languages are non-regular.

# Pumping Lemma

The Statement

#### Lemma

If L is regular then there is a number p (the pumping length) such that  $\forall w \in L$  with  $|w| \geq p$ ,  $\exists x, y, z \in \Sigma^*$  such that w = xyz and

- |y| > 0
- $|xy| \leq p$
- $3 \forall i \geq 0. xy^i z \in L$

## Proving the Pumping Lemma

#### Proof.

Let  $M=(Q,\Sigma,\delta,q_0,F)$  be a DFA such that L(M)=L and let p=|Q|. Let  $w=w_1w_2\cdots w_n\in L$  be such that  $n\geq p$ . For  $1\leq i\leq n$ , let  $s_i=\hat{\delta}(q_0,w_1\cdots w_i)$ ; define  $s_0=q_0$ .

- Since  $s_0, s_1, \ldots, s_i, \ldots s_p$  are p+1 states, there must be j, k,  $0 \le j < k \le p$  such that  $s_j = s_k$  (= q say).
- Take  $x = w_1 \cdots w_j$ ,  $y = w_{j+1} \cdots w_k$ , and  $z = w_{k+1} \cdots w_n$
- Observe that since  $j < k \le p$ , we have  $|xy| \le p$  and |y| > 0.



## Proof ...

**Technical Claim** 

#### Claim

For all  $i \geq 1$ ,  $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ .

#### Proof.

We will prove it by induction on i.

- Base Case: By our assumption that  $s_j = s_k$  and the definition of x and y, we have  $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$ .
- Induction Step: We have

$$\hat{\delta}(q_0, xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0, xy^{\ell}), y) 
= \hat{\delta}(\hat{\delta}(q_0, x), y) 
= \hat{\delta}(q_0, xy) = \hat{\delta}(q_0, x)$$

# Completing the Proof

## Proof (contd).



- We have  $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$  for all  $i \ge 1$
- Since  $w \in L$ , we have  $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$
- Observe,  $\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, xy), z) = \hat{\delta}(q_0, w)$ . So  $xz \in L$
- Similarly,  $\hat{\delta}(q_0, xy^iz) = \hat{\delta}(\hat{\delta}(q_0, xy^i), z) = \hat{\delta}(\hat{\delta}(q_0, x), z)$  (from previous claim)  $= \hat{\delta}(q_0, xz) \in F$  and so  $xy^iz \in L$

# Finite Languages and Pumping Lemma

### Question

Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that  $\forall w \in L$  with  $|w| \ge p$ ,  $\exists x, y, z \in \Sigma^*$  such that w = xyz and

- |y| > 0
- $|xy| \leq p$
- $3 \forall i \geq 0. xy^i z \in L$

#### Answer

Yes, they do. Let p be larger than the longest string in the language. Then the condition " $\forall w \in L$  with  $|w| \geq p$ , ..." is vaccuously satisfied as there are no strings in the language longer than p!

# Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma. If L is not regular pumping lemma says nothing about L!

### Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

### Pumping ConditionNegation of the Pumping Condition

- $\begin{array}{ll} (1) & |y| > 0 \\ (2) & |xy| \leq p \\ (3) & \forall i \geq 0. \ xy^iz \in L \end{array} \right\} \ \text{not all of them hold}$

Equivalent to showing that if (1), (2) then (3) does not. In other words, we can find i such that  $xy^iz \notin L$ 

### Game View

Think of using the Pumping Lemma as a game between you and an opponent.

```
L Task: To show that L is not regular
```

$$\forall p$$
. Opponent picks  $p$ 

$$\exists w$$
. Pick w that is of length at least p

$$\forall x, y, z$$
 Opponent divides w into x, y, and z such that

$$|y| > 0$$
, and  $|xy| \le p$ 

$$\exists k$$
. You pick  $k$  and win if  $xy^kz \notin L$ 

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do).

Contrapositive: If you can beat the opponent, *L* not regular.

Your strategy should work for any p and any subdivision that the opponent may come up with.

## Example I

### Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$  is not regular.

#### Proof.

Suppose  $L_{0n1n}$  is regular. Let p be the pumping length for  $L_{0n1n}$ .

- Consider  $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz,  $|xy| \le p$ , |y| > 0, and  $xy^iz \in L_{0n1n}$ , for all i.
- Since  $|xy| \le p$ ,  $x = 0^r$ ,  $y = 0^s$  and  $z = 0^t 1^p$ . Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Since r + t < p,  $xy^0z \notin L_{0n1n}$ . Contradiction!



## Example II

### Proposition

 $L_{\mathrm{eq}} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$  is not regular.

#### Proof.

Suppose  $L_{eq}$  is regular. Let p be the pumping length for  $L_{eq}$ .

- Consider  $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz,  $|xy| \le p$ , |y| > 0, and  $xy^iz \in L_{eq}$ , for all i.
- Since  $|xy| \le p$ ,  $x = 0^r$ ,  $y = 0^s$  and  $z = 0^t 1^p$ . Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Since r + t < p,  $xy^0z \notin L_{eq}$ . Contradiction!

## A Tale of two Proofs

### Non Pumping Lemma

Suppose  $L_{\rm eq}$  is recognized by DFA M with p states. Consider the input  $0^p1^p$ . There exist j,k and state q such that

- j < k and  $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since  $0^p 1^p \in L_{eq}$ ,  $0^k 0^{(p-k)} 1^p$  is accepted by M and so is  $0^j 0^{(p-k)} 1^p$ .
- But  $0^{j}0^{(p-k)}1^{p} \notin L_{eq}$ .

### Pumping Lemma

Suppose  $L_{\rm eq}$  is regular. Let p be pumping length for  $L_{\rm eq}$ . Consider  $w=0^p1^p$ . There exist x,y,z such that

- w = xyz,  $|xy| \le p$ , |y| > 0: so for some  $r, s, t, x = 0^r$ ,  $y = 0^s$  and  $z = 0^t 1^p$ , with s > 0.
- $xy^iz \in L_{eq}$  for all i: so  $xy^0z \in L_{eq}$ .
- But  $xy^0z = 0^{p-s}1^p \notin L_{eq}$

## Example III

### Proposition

 $L_p = \{0^i \mid i \text{ prime}\}$  is not regular

### Proof.

Suppose  $L_p$  is regular. Let p be the pumping length for  $L_p$ .

- Consider  $w = 0^m$ , where  $m \ge p + 2$  and m is prime.
- Since |w| > p, there are x, y, z such that w = xyz,  $|xy| \le p$ , |y| > 0, and  $xy^iz \in L_p$ , for all i.
- Thus,  $x=0^r$ ,  $y=0^s$  and  $z=0^t$ . Further, as |y|>0, we have s>0.  $xy^{r+t}z=0^r(0^s)^{(r+t)}0^t=0^{r+s(r+t)+t}$ . Now r+s(r+t)+t=(r+t)(s+1). Further  $m=r+s+t\geq p+2$  and s>0 mean that  $t\geq 2$  and  $s+1\geq 2$ . Thus,  $xy^{r+t}z\not\in L_p$ . Contradiction!

## Example IV

#### Question

Is  $L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$  is regular?

Suppose  $L_{xx}$  is regular, and let p be the pumping length of  $L_{xx}$ .

- Consider  $w = 0^p 0^p \in L$ .
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider  $x = \epsilon, y = 00, z = 0^{2p-2}$ .
- Does this mean  $L_{xx}$  satisfies the pumping lemma? Does it mean it is regular?
  - No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit some w that cannot be pumped.
- Another bad choice  $(01)^p(01)^p$ .

### Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$  is not regular.

#### Proof.

Suppose  $L_{xx}$  is regular. Let p be the pumping length for  $L_{xx}$ .

- Consider  $w = 0^p 10^p 1$ .
- Since |w| > p, there are x, y, z such that w = xyz,  $|xy| \le p$ , |y| > 0, and  $xy^iz \in L_p$ , for all i.
- Since  $|xy| \le p$ ,  $x = 0^r$ ,  $y = 0^s$  and  $z = 0^t 10^p 1$ . Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 10^p 1 = 0^{r+t} 10^p 1$$

Since r + t < p,  $xy^0z \notin L_{xx}$ . Contradiction!

## Lessons on Expressivity

### Limits of Finite Memory

Finite automata cannot

- "keep track of counts": e.g.,  $L_{0n1n}$  not regular.
- "compare far apart pieces" of the input: e.g.  $L_{xx}$  not regular.
- do "computations that require it to look at global properties" of the input. e.g. L<sub>prime</sub> not regular.

...and pumping lemma provides one way to find out some of these limitations.