Approximation Algorithms

Max-3SAT, Max-k-Coverage, Set Cover, Max-Cut

Max-3SAT

[Max-3SAT]

- Input: a 3-CNF Boolean formula ϕ
- Output: an assignment satisfying maximum number of clauses

Assumption:

- 1. Each clause contains exactly 3 literals
- 2. Each clause contains 3 distinct variables

What if we assign values randomly?

- For each x_i , assign
 - x_i = true with probability 0.5;
 - x_i = false with probability 0.5.
- What is the probability that a clause is satisfied?
- What is the number of satisfied clauses in expectation?

Linearity of Expectation

- Theorem. Let
 - $-X_1,...,X_n$ be n random variables that may be dependent, and
 - $-c_1, \dots, c_n$ be n constants.
- We have

$$\mathbb{E}\left[\sum_{i=1}^n c_i X_i\right] = \sum_{i=1}^n c_i \mathbb{E}[X_i].$$

Max-3SAT Random Assignment

- For each i = 1, ..., m, define random variable $Y_i = \begin{cases} 1, & \text{if } i \text{th clause is satisfied} \\ 0, & \text{otherwise} \end{cases}$
- We have $\mathbb{E}[Y_i] = 1 \times \Pr(Y_i = 1) + 0 \times \Pr(Y_i = 0) = \frac{7}{8}$.
- $Y = \sum_{i=1}^{m} Y_i$: total number of satisfied clauses
- We want to compute $\mathbb{E}[Y]$.
- By Linearity of Expectation:

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbb{E}[Y_i] = \frac{7}{8}m.$$

A $\frac{7}{8}$ -Approximation Algorithm?

- m is clearly an upper bound to OPT.
- If we can satisfied $\geq \frac{7}{8}m$ clauses, we get a $\frac{7}{8}$ -Approximation Algorithm!

Let's try to assign value to x_1

We have

$$\mathbb{E}[Y] = \mathbb{E}[Y|x_1 = \text{true}] \cdot \Pr(x_1 = \text{true}) + \mathbb{E}[Y|x_1 = \text{false}] \cdot \Pr(x_1 = \text{false})$$

$$= \frac{1}{2} \cdot \mathbb{E}[Y|x_1 = \text{true}] + \frac{1}{2} \cdot \mathbb{E}[Y|x_1 = \text{false}]$$

which implies

$$\mathbb{E}[Y|x_1 = \text{true}] + \mathbb{E}[Y|x_1 = \text{false}] = 2 \cdot \mathbb{E}[Y].$$

- Thus, either $\mathbb{E}[Y|x_1 = \text{true}] \ge \mathbb{E}[Y]$ or $\mathbb{E}[Y|x_1 = \text{false}] \ge \mathbb{E}[Y]$.
- The two conditional expectations can be computed in O(m) time.
- We can assign value to x_1 with larger conditional expectation!

Example

- Assigning $x_1 = \text{true}$ results in
 - $\phi = \text{true } \land \text{true } \land (\neg x_2 \lor x_4)$
 - $-\mathbb{E}[Y|x_1 = \text{true}] = 1 + 1 + \frac{3}{4} = 2.75$
- Assigning $x_1 =$ false results in
 - $-\phi = (x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land \text{true}$
 - $\mathbb{E}[Y|x_1 = \text{false}] = \frac{3}{4} + \frac{3}{4} + 1 = 2.5$
- We shall assign $x_1 = \text{true}$.

Continue for x_2 ...

- After assigning some value for x_1 :
- $x_1 = v_1$ where $v_1 \in \{\text{true, false}\}$
- We assign value for x_2 by comparing
- $\mathbb{E}[Y|x_1 = v_1, x_2 = \text{true}], \mathbb{E}[Y|x_1 = v_1, x_2 = \text{false}]$
- Assign $x_2 = v_2 \in \{\text{true}, \text{false}\}\$ with larger conditional expectation.

An Approximation Algorithm

- 1. for i = 1, ..., n:
- 2. compute $\mathbb{E}[Y|x_1=v_1,...,x_{i-1}=v_{i-1},x_i=\text{true}], \mathbb{E}[Y|x_1=v_1,...,x_{i-1}=v_{i-1},x_i=\text{false}]$
- 3. assign $x_i = v_i \in \{\text{true}, \text{false}\}$ with the larger conditional expectation
- 4. endfor

Expectation Monotonicity

In each iteration:

$$\mathbb{E}[Y|x_1 = v_1, \dots, x_{i-1} = v_{i-1}]$$

$$= \frac{1}{2}\mathbb{E}[Y|x_1 = v_1, \dots, x_{i-1} = v_{i-1}, x_i = \text{true}] + \frac{1}{2}\mathbb{E}[Y|x_1 = v_1, \dots, x_{i-1} = v_{i-1}, x_i = \text{false}]$$

Thus, either

- $\mathbb{E}[Y|x_1=v_1,...,x_{i-1}=v_{i-1},x_i=\text{true}] \geq \mathbb{E}[Y|x_1=v_1,...,x_{i-1}=v_{i-1}]$, or
- $\mathbb{E}[Y|x_1 = v_1, \dots, x_{i-1} = v_{i-1}, x_i = \text{false}] \ge \mathbb{E}[Y|x_1 = v_1, \dots, x_{i-1} = v_{i-1}]$

The algorithm always choose $x_i = v_i \in \{\text{true}, \text{false}\}$ with larger expectation: $\mathbb{E}[Y|x_1 = v_1, \dots, x_{i-1} = v_{i-1}, x_i = v_i] \ge \mathbb{E}[Y|x_1 = v_1, \dots, x_{i-1} = v_{i-1}]$

The conditional expectation for *Y* is non-decreasing!

Expectation Monotonicity

- The conditional expectation for Y is non-decreasing!
- Thus, $\mathbb{E}[Y|x_1 = v_1, ..., x_n = v_n] \ge \mathbb{E}[Y] = \frac{7}{8}m$.
- $\mathbb{E}[Y|x_1=v_1,...,x_n=v_n]$ is already deterministic.
 - With assignment $x_1 = v_1, ..., x_n = v_n$, this is exactly the number of satisfied clauses!
- We have a $\frac{7}{8}$ -approximation algorithm!
- Running Time: O(mn)

Possible Improvements?

- Can this algorithm do better than $\frac{7}{8}$ -approximation?
- No...
- Easy to come up with a tight example...

Possible Improvements?

- Exist other better algorithms?
- Assuming P ≠ NP, no...
- [Håstad, 2001] Max-3SAT is NP-hard to approximate to within $\frac{7}{8} + \varepsilon$ for any $\varepsilon > 0$.

Maximum Independent Set (Clique)

- For any $\varepsilon > 0$, Maximum Independent Set/Clique is NP-hard to approximate to within factor $(|V|^{1-\varepsilon})$.
 - [Håstad, 1999], [Khot, 2001] and [Zuckerman, 2006]
- Can you give a |V|-approximation algorithm?
- An $O\left(\frac{|V|(\log \log |V|)^2}{(\log |V|)^3}\right)$ -approximation algorithm...
 - [Feige, 2004]

Greedy-Based Approximation Algorithm

- Greedy algorithm may not output optimal solutions for some optimization problems.
- However, it may be a good approximation algorithm!

Max-k-Coverage and Set Cover Problems

- Let $U = \{1, ..., n\}$ be a ground set of elements.
- Let $T = \{A_1, A_2, ..., A_m\}$ be a collection of subsets of U with $\bigcup_{A_i \in T} A_i = U$.
- [Set Cover] Find a sub-collection $S \subseteq T$ with minimum |S| such that $\bigcup_{A_i \in S} A_i = U$.
- [Max-k-Coverage] Given $k \in \mathbb{Z}^+$, find a sub-collection $S \subseteq T$ with $|S| \le k$ that maximizes $|\bigcup_{A_i \in S} A_i|$.

NP-Hardness

- Given $k \in \mathbb{Z}^+$, it is NP-complete to decide if there exists $S \subseteq T$ with $|S| \le k$ such that $\bigcup_{A_i \in S} A_i = U$.
- Exercise: Prove it!
- Therefore, both max-k-coverage and set cover are NP-hard.

Notation

- Denote $f(S) = |\bigcup_{A_i \in S} A_i|$: the number of elements covered by S.
- [Set Cover] Find minimum-sized S with f(S) = |U| = n.
- [Max-k-Coverage] Maximize f(S) subject to $|S| \le k$.

Greedy Algorithm

- 1. Initialize $S \leftarrow \emptyset$
- 2. Repeat the followings:
- 3. find $A \in T \setminus S$ that maximizes $f(S \cup \{A\}) f(S)$
- 4. update $S \leftarrow S \cup \{A\}$
- 5. Until:
 - f(S) = |U| = n (for set cover)
 - |S| = k (for max-k-coverage)
- 6. Return S

- $U = \{1, ..., n\}$: ground set of elements
- $T = \{A_1, A_2, ..., A_m\}$: a collection of subsets of U

 \leftarrow The ground set U

Optimal solution:

5 subsets covers all elements

- Let $S = (A_1, ..., A_5)$ be the output of the greedy algorithm.
- $\{A_1\}$ covers $\frac{1}{5}$ fraction
- $\{A_1, A_2\}$ covers $\frac{1}{5} + \frac{1}{5} \left(1 \frac{1}{5}\right) = 1 \left(1 \frac{1}{5}\right)^2$ fraction
- $\{A_1, A_2, A_3\}$: $1 \left(1 \frac{1}{5}\right)^2 + \frac{1}{5}\left(1 \left(1 \left(1 \frac{1}{5}\right)^2\right)\right) = 1 \left(1 \frac{1}{5}\right)^3$
- $\{A_1, A_2, A_3, A_4\}$: $1 \left(1 \frac{1}{5}\right)^4$
- $\{A_1, A_2, A_3, A_4, A_5\}$: $1 \left(1 \frac{1}{5}\right)^5$

- Let $S^* = \{O_1, O_2, ..., O_k\}$ be any collection of k subsets.
- Let $S = \{A_1, A_2, ..., A_\ell\}$ be the output of greedy after ℓ iterations.
- Lemma. $f(S) \ge \left(1 \left(1 \frac{1}{k}\right)^{\ell}\right) f(S^*).$
- Greedy gives a $\left(1 \frac{1}{e}\right)$ -approximation for max-k-coverage:
 - For optimal S^* , we have $f(S) \ge \left(1 \left(1 \frac{1}{k}\right)^k\right) f(S^*) \ge \left(1 \frac{1}{e}\right) f(S^*)$.
- Greedy gives a $(\ln n)$ -approximation for set cover:
 - Suppose S^* with $|S^*| = k$ is optimal.
 - For $\ell = k \cdot \ln n$, $f(S) \ge \left(1 \left(1 \frac{1}{k}\right)^{k \cdot \ln n}\right) f(S^*) > \left(1 \frac{1}{e^{\ln n}}\right) f(S^*) = n 1$
 - This implies f(S) = n, as $f(S) \in \mathbb{Z}^+$

Proving
$$f(S) \ge \left(1 - \left(1 - \frac{1}{k}\right)^{\ell}\right) f(S^*)$$

- Let $S_t = \{A_1, ..., A_t\}$
- Prove lemma by Induction...
- Base Step $\ell = 1$:
- By greedy nature, $f(S_1 = \{A_1\}) \ge f(\{O_i\})$ for all O_i .
- Thus, $f(S_1) \ge \frac{1}{k} \sum_{i=1}^k f(\{O_i\}) \ge \frac{1}{k} f(S^*) = \left(1 \left(1 \frac{1}{k}\right)^1\right) f(S^*)$
- Middle inequality: Elements in more than one O_i is counted more than once in $\sum_{i=1}^k f(\{O_i\})$, and only once in $f(S^*)$.

Proving
$$f(S) \ge \left(1 - \left(1 - \frac{1}{k}\right)^{\ell}\right) f(S^*)$$

- Now, $S_t = \{A_1, ..., A_t\}$ after t iterations.
- For each O_i , consider $\Delta(O_i \mid S_t) = f(S_t \cup \{O_i\}) f(S_t)$.
- By greedy nature, $\Delta(A_{t+1}|S_t) \ge \Delta(O_i|S_t)$ for each O_i .
- $\Delta(A_{t+1}|S_t) \ge \frac{1}{k} \sum_{i=1}^k \Delta(O_i|S_t) \ge \frac{1}{k} \Delta(S^*|S_t)$

Proving
$$f(S) \ge \left(1 - \left(1 - \frac{1}{k}\right)^{\ell}\right) f(S^*)$$

• We have
$$\Delta(A_{t+1}|S_t) \ge \frac{1}{k} \sum_{i=1}^k \Delta(O_i|S_t) \ge \frac{1}{k} \Delta(S^*|S_t)$$

• Inductive step:
$$f(S_{t+1}) - f(S_t) \ge \frac{1}{k} (f(S^* \cup S_t) - f(S_t))$$

$$\geq \frac{1}{k} (f(S^*) - f(S_t)) \qquad \text{(monotonicity of } f)$$

(yellow)

•
$$f(S_{t+1}) \ge \frac{1}{k} f(S^*) + \left(1 - \frac{1}{k}\right) f(S_t)$$
 (rearranging inequality)

$$\geq \frac{1}{k}f(S^*) + \left(1 - \frac{1}{k}\right)\left(1 - \left(1 - \frac{1}{k}\right)^t\right)f(S^*) \qquad \text{(induction hypothesis)}$$

$$= \left(1 - \left(1 - \frac{1}{k}\right)^{t+1}\right) f(S^*)$$

- Greedy gives a $\left(1-\frac{1}{e}\right)$ -approximation for max-k-coverage.
 - For optimal S^* , we have $f(S) \ge \left(1 \left(1 \frac{1}{k}\right)^k\right) f(S^*) \ge \left(1 \frac{1}{e}\right) f(S^*)$.
- Greedy gives a $(\ln n)$ -approximation for set cover.
 - Suppose S^* with $|S^*| = k$ is optimal.
 - For $\ell = k \cdot \ln n$, $f(S) \ge \left(1 \left(1 \frac{1}{k}\right)^{k \cdot \ln n}\right) f(S^*) > \left(1 \frac{1}{e^{\ln n}}\right) f(S^*) = n 1$
 - This implies f(S) = n, as $f(S) \in \mathbb{Z}^+$

Can greedy do better (by better analysis)?

This is also a Tight Example:

- Max-k-Coverage:
 - Greedy can do at best $1 \frac{1}{e}$
- Set Cover:
 - Greedy can do at best $\ln n$

Better Algorithms?

Max-k-Coverage

• No $\left(1 - \frac{1}{e} + \varepsilon\right)$ -approximation algorithm unless **P** = **NP**. – [Feige, 1998]

Set Cover

- No $(1 o(1)) \ln n$ -approximation algorithm unless **NP** \subseteq DTIME $(n^{O(\log \log n)})$.
 - [Feige, 1998]
- No $(1 o(1)) \ln n$ -approximation algorithm unless P = NP.
 - [Moshkovitz, 2012] [Dinur & Steurer, 2014]

Local Search

- Start with an arbitrary solution.
- Improve it by "local updates".
- Until no more update improves the objective.

Max-Cut

• [Max-Cut] Given an undirected graph G = (V, E), find a cut (A, B) with maximum value c(A, B) = |E(A, B)|.

• [Karp, 1972] Max-Cut is NP-hard.

A Local Search Algorithm

- 1. Start with any partition (A, B).
- 2. If moving a vertex u from A to B or from B to A increases c(A,B), move it.
- 3. Terminate until no such movement is possible.

B

 \boldsymbol{A}

R

No more update can improve. Terminate...

Time Complexity?

- Each update searches for at most $O(|V|^2)$ pairs.
- For each pair, decide if the update is beneficial takes at most O(|E|) time.
- Total number of updates is at most |E|.
 - Each update increases the cut size by at least 1.
- Overall: $O(|V|^2|E|^2)$ polynomial time!

Approximation Guarantee?

- Each vertex u: at least $\frac{1}{2} deg(u)$ incident edges in the cut.
- Thus,

$$c(A, B) \ge \frac{1}{2} \sum_{u \in V} \frac{1}{2} \deg(u) = \frac{1}{2} |E|.$$

- |E| is an obvious upper bound to OPT.
- Therefore, the local search algorithm is a 0.5-approximation.

Can the algorithm do better than 0.5-approximation?

- No...
- Can you give a tight example?

Are there better approximation algorithms?

- Yes!
- Next lecture...

Approximability Spectrum

EASY

- Poly-time Solvable: Shortest-Path, Max-Flow, Min-Cut, Matching, LP
- FPTAS (fully poly-time approximation scheme): Knapsack
 - $(1 \pm \varepsilon)$ -approximation for any $\varepsilon > 0$, running time $poly(n, 1/\varepsilon)$
- PTAS (poly-time approximation scheme): Makespan minimization, Euclidean TSP
 - $(1 \pm \varepsilon)$ -approximation for any constant $\varepsilon > 0$, running time may be something like $n^{1/\varepsilon}$
- Constant approximability: Max-3SAT, Vertex Cover, Metric TSP, Max-Cut, Max-k-Coverage, k-Means
- Sub-linear approximability: Set Cover, Dominating Set
- (Almost-)linear inapproximability: Independent Set/Clique, Longest Path on Directed Graphs
- Totally inapproximable: IP, TSP

This Lecture

- More approximation Algorithms:
 - Max-3SAT
 - Max-k-Coverage
 - Set Cover
 - Max-Cut
- Three techniques:
 - Expectation boosting
 - Greedy
 - Local Search
- For maximization problem, there is a natural "maximum possible value" as upper bound to OPT.

Extra – Naming for P and NP

- P: polynomial-time
- NP: non-deterministic polynomial-time

- Deterministic Turing Machine (the normal TM we have seen):
 - Transition $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$
- Non-deterministic Turing Machine
 - Specify two transitions δ_1 , δ_2 for each state-alphabet tuple.

Image from: https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine

Polynomial Time NTM

• A non-deterministic Turing machine runs in polynomial time if, upon receiving input x, all branches reach halting states within $O(|x|^c)$ steps for some constant c > 0.

Original Definition for NP

- Definition. A decision problem $f: \Sigma^* \to \{0,1\}$ is in **NP** if there is a polynomial time NTM \mathcal{A} such that
 - There is a branch of $\mathcal{A}(x)$ that reaches the accepting state if f(x) = 1
 - All branches of $\mathcal{A}(x)$ reach the rejecting state if f(x) = 0

- This definition is equivalent to the "certificate definition":
 - Each bit of the certificate corresponds to the "instruction" for which of δ_1 , δ_2 we are following.
 - For the yes instance, the certificate "instructs" us to move along the branch that reach the accepting state.
 - For the no instance, no "instruction" can help us reach the accepting state.

SAT ∈ **NP**

- We consider the NTM that enumerates the values of $x_1, ..., x_n$ in the first n steps.
- Now we have 2^n "terminals" after first n steps.
- For each terminal, verify if ϕ is satisfied; go to the accepting state if it is, and go to the rejecting state if not.