BỘ GIÁO DỤC VÀ ĐÀO TẠO **TRƯỜNG ĐẠI HỌC CẦN THƠ**KHOA CÔNG NGHỆ BỘ MÔN TỰ ĐỘNG HÓA

____o0o____

BÁO CÁO BÀI TẬP LỚN MÔ HÌNH HÓA VÀ MÔ PHỔNG

Sinh viên thực hiện: Trần Nhựt Quang

Mã số: B1907058

Khoá: 45

Cần thơ, 12/2020

BỘ GIÁO DỤC VÀ ĐÀO TẠO **TRƯỜNG ĐẠI HỌC CẦN THƠ** KHOA CÔNG NGHỆ BỘ MÔN TỰ ĐỘNG HÓA

BÁO CÁO BÀI TẬP LỚN MÔ HÌNH HÓA VÀ MÔ PHỔNG

Giảng viên: Sinh viên thực hiện: TRẦN NHỰT QUANG

TS. NGUYỄN HỮU CƯỜNG Mã số: B1907058

Khoá: 45

Cần thơ, 12/2020

Mục lục

1	Bài 1	1	1
	1.1	Yêu cầu	1
	1.2	Tính toán giá trị đề cho	1
	1.3	Tính mô hình bài toán	2
		1.3.1 Vật 1	2
		1.3.2 Vật 2	3
	1.4	Mô phỏng bằng simulink	3
2	Bài 2	2	5
	2.1	Yêu cầu	5
	2.2	Tính toán giá trị đề cho	5
	2.3	Tính mô hình bài toán	6
	2.4	Mô phỏng simulink	6

Danh sách hình vẽ

1.1	Sơ đồ bài 1	1
1.2	Vật 1	2
1.3	Vật 2	3
1.4	Sơ đồ simulink bài 1	3
1.5	Kết quả mô phỏng trên Oscilloscope bài 1	4
2.1	Sơ đồ bài 2	5
2.2	Sơ đồ simulink bài 2	6
2.3	Kết quả mô phỏng trên Oscilloscope bài 2 với $V_i = sin(\omega t)$	7
2.4	Kết quả mô phỏng trên Oscilloscope bài 2 với $V_i = u(t)$	7

Danh sách bảng

1.1	Bảng các thông số dựa trên MSSV bài 1	2
1.2	Bảng các thông số cần thiết bài 1	2
2.1	Bảng các thông số dựa trên MSSV bài 2	5
2.2	Bảng các thông số cần thiết bài 2	6

Chương 1

Bài 1

Hình 1.1: Sơ đồ bài 1

1.1 Yêu cầu

- Xác định mô hình bài toán
- Mô phỏng bằng simulink

1.2 Tính toán giá trị đề cho

$k_1 = [1+2]$	$k_2 = [6]$	$k_3 = [3+1]$
$m_1 = 10[1+2]$	$m_2 = 10[1+3]$	$b_1 = [5]$

Bảng 1.1: Bảng các thông số dựa trên MSSV bài 1

Dựa vào bảng trên với MSSV là B1907058, ta dễ dàng tính được các thông số cần thiết như bảng sau:

$k_1 = 13 \text{ N/m}$	$k_2 = 9 \text{ N/m}$	$k_3 = 8 \text{ N/m}$
$m_1 = 130 \text{ Kg}$	$m_2 = 80 \text{ kg}$	$b_1 = 0$

Bảng 1.2: Bảng các thông số cần thiết bài 1

1.3 Tính mô hình bài toán

1.3.1 Vật 1

Ta chọn độ dịch chuyển của vật nặng theo tọa độ x:

Hình 1.2: Vật 1

Áp dụng định luật II Newton theo chiều x:

$$\sum F = ma,$$

$$F_1 - k_1 x_1 + k_2 (x_2 - x_1) = m_1 \ddot{x}_1$$

Biểu diễn dạng chuẩn của mô hình toán:

$$\ddot{x}_1 = \frac{1}{m_1} \left[F_1 - k_1 x_1 + k_2 (x_2 - x_1) \right]$$

$$\Rightarrow \ddot{x}_1 = \frac{1}{130} \left[F_1 - 13 x_1 + 9 (x_2 - x_1) \right]$$

1.3.2 Vật 2

Ta chọn độ dịch chuyển của vật nặng theo tọa độ x:

Hình 1.3: Vật 2

Áp dụng định luật II Newton theo chiều x:

$$\sum F = ma,$$

$$F_2 - k_3 x_2 - k_2 (x_2 - x_1) = m_2 \ddot{x}_2$$

Biểu diễn dạng chuẩn của mô hình toán:

$$\ddot{x}_2 = \frac{1}{m_2} [F_2 - k_3 x_2 - k_2 (x_2 - x_1)]$$

$$\Rightarrow \ddot{x}_2 = \frac{1}{80} [F_2 - 8 x_2 + 9 (x_2 - x_1)]$$

1.4 Mô phỏng bằng simulink

Hình 1.4: Sơ đồ simulink bài 1

Với $F_1=$ u(t) trong đó u(t) là hàm step đơn vị, $F_2=sin(\omega t)$. Giả sử các điều kiện đầu bằng 0. Các thông số được thấy từ bảng 1.2 ở trang 2.

Hình 1.5: Kết quả mô phỏng trên Oscilloscope bài 1

Chương 2

Bài 2

Hình 2.1: Sơ đồ bài 2

2.1 Yêu cầu

- Xác định mô hình bài toán
- Mô phỏng bằng simulink

2.2 Tính toán giá trị đề cho

$$L_1 = [1+5]$$
 $L_2 = [2+3]$ $C = [6]$ $R = [7+5]$

Bảng 2.1: Bảng các thông số dựa trên MSSV bài 2

Dựa vào bảng trên với MSSV là B1907058, ta dễ dàng tính được các thông số cần thiết như bảng sau:

$$L_1 = 8 \text{mH}$$
 $L_2 = 5 \text{mH}$ $C = 9 \mu \text{F}$ $R = 6 \Omega$

Bảng 2.2: Bảng các thông số cần thiết bài 2

2.3 Tính mô hình bài toán

Áp dụng định luật Kirchhoff về dòng điện:

$$\begin{cases} i_{L1} - i_{L2} - i_C = 0 \\ i_{L_2} - i_R = 0 \end{cases}$$

Biểu diễn dạng chuẩn của mô hình toán:

$$\begin{cases} \ddot{V}_1 &= \frac{1}{L_1 C} V_i + \frac{1}{L_2 C} V_0 - \left(\frac{1}{L_1 C} + \frac{1}{L_2 C}\right) V_1 \\ \dot{V}_0 &= \frac{\frac{1}{L_2} V_1 - \frac{1}{L_2} V_0}{R} \end{cases}$$

2.4 Mô phỏng simulink

Hình 2.2: Sơ đồ simulink bài 2

Với $V_i = sin(\omega t)$.

Giả sử các điều kiện đầu bằng 0. Các thông số được thấy từ bảng 2.2 ở trang 6.

Hình 2.3: Kết quả mô phỏng trên Oscilloscope bài 2 với $V_i = sin(\omega t)$

Với $V_i = u(t)$ trong đó u(t) là hàm step đơn vị. Giả sử các điều kiện đầu bằng 0. Các thông số được thấy từ bảng 2.2 ở trang 6.

Hình 2.4: Kết quả mô phỏng trên Oscilloscope bài 2 với $V_i = \mathbf{u}(\mathbf{t})$