ÜBUNGSBLATT 6

Aufgabe 1. Es sei $X := V(z_0^4 + z_1^4 + z_2^4 + z_3^4) \subset \mathbb{P}^3$. Man zeige, dass X triviales kanonischen Bündel hat, in den folgenden Schritten.

(i) Auf $X_0 := X \cap U_0$ bezeichne $x_i := z_i/z_0$ die affinen Koordinaten. Man zeige, dass für $\{i,j,k\}=\{1,2,3\}$ und j< k

$$\eta_i = (-1)^i \frac{1}{x_i^3} dx_j \wedge dx_k$$

auf X_0 nicht verschwindene reguläre 2-Formen definieren. Analog definieren sich 2-Formen für die übrigen affinen Koordinaten, siehe (ii).

(ii) Auf $X_1 := X \cap U_1$ bezeichne $w_1 = z_0/z_1, w_2 = z_2/z_1$ und $w_3 = z_3/z_1$ die affinen Koordinaten. Dann gilt auf $X_0 \cap X_1$ und $x_3 \neq 0$

$$\eta_3 = \frac{1}{w_3^3} dw_1 \wedge dw_2 \,.$$

Analog für die anderen Fälle.

Bemerkung: Dies liefert eine nirgends verschwindene reguläre 2-Form auf X.

Aufgabe 2. Es sei $0 \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H} \to 0$ eine exakte Sequenz von Garben abelscher Gruppen auf einem topologischen Raum mit abzählbarer Topologie und seien \mathcal{F} und \mathcal{G} welk. Man zeige, dass auch \mathcal{H} welk ist.

Aufgabe 3. Es seien f und g zwei Morphismen $A^{\bullet} \to B^{\bullet}$ zwischen Kokettenkomplexen von Moduln über einen kommutativen Ring mit Eins (oder allgemeiner in einer abelschen Kategorie). Man nennt f und g homotop äquivalent, falls eine Familie $h^i:A^i\to B^{i-1}$ von Morphismen existiert, so dass $f^i-g^i=h^{i+1}\circ d_A^i+d_B^{i-1}\circ h^i$. Hier bezeichnen d_A^i bzw. d_B^i die Differentiale von A^{\bullet} bzw. B^{\bullet} . Man zeige, dass f und g die gleichen Morphismen auf der Kohomologie induzieren.

Aufgabe 4. Es sei \mathcal{F} eine \mathcal{O}_X -Modulgarbe auf einer Varietät X. Man nehme an, dass der Funktor hom (\cdot, \mathcal{F}) exakt ist. Man zeige, dass \mathcal{F} welk ist.