Robust Human Capital Investment under Risk and Ambiguity

Philipp Eisenhauer^a Rafael Suchy^b

^a Institute for Applied Microeconomics | University of Bonn, Germany

^b Department of Economics | University of Oxford, United Kingdom

DSE2021

18th August

Introduction

Human capital investment decisions have long term consequences and involve a substantial degree of uncertainty

Human capital investment decisions have long term consequences and involve a substantial degree of uncertainty

- Uncertainties about own abilities and tastes
- Uncertainties about future demographic, economic and technological trends

Human capital investment decisions have long term consequences and involve a substantial degree of uncertainty

- Uncertainties about own abilities and tastes
- Uncertainties about future demographic, economic and technological trends
 Thomas Watson, IBM, 1946: "I think there is a world market for maybe five computers."

Human capital investment decisions have long term consequences and involve a substantial degree of uncertainty

- Uncertainties about own abilities and tastes
- Uncertainties about future demographic, economic and technological trends
 Thomas Watson, IBM, 1946: "I think there is a world market for maybe five computers."

Workhorse model Keane and Wolpin (1997); whole literature builds on their framework (Blundell, Costa Dias, et al., 2016; Adda, Dustmann, and Stevens, 2017)

Human capital investment decisions have long term consequences and involve a substantial degree of uncertainty

- Uncertainties about own abilities and tastes
- Uncertainties about future demographic, economic and technological trends
 Thomas Watson, IBM, 1946: "I think there is a world market for maybe five computers."

Workhorse model Keane and Wolpin (1997); whole literature builds on their framework (Blundell, Costa Dias, et al., 2016; Adda, Dustmann, and Stevens, 2017)

Caveat: Treatment of uncertainty remains sparse and mostly restricted to risk (Hartog and Diaz-Serrano, 2013)

Uncertainty includes risk and ambiguity

Uncertainty includes risk and ambiguity

Probabilities either do not exist or are not known exactly

Uncertainty includes risk and **ambiguity**

Probabilities either do not exist or are not known exactly

Ambiguity-aversion has already been documented in

- Lab experiments
 (Ahn, Choi, Gale, and Kariv, 2010; Hey and Pace, 2014; Carbone, Dong, and Hey, 2017)
- Static real-life situations (Easley and O'Hara, 2009; Berger, Bleichrodt, and Eeckhoudt, 2013)

Uncertainty includes risk and ambiguity

Probabilities either do not exist or are not known exactly

Ambiguity-aversion has already been documented in

- Lab experiments
 (Ahn et al., 2010; Hey and Pace, 2014; Carbone, Dong, and Hey, 2017)
- Static real-life situations (Easley and O'Hara, 2009; Berger, Bleichrodt, and Eeckhoudt, 2013)

Educational and occupational choices are subject to risk and ambiguity

Contributions in this presentation

1. Incorporation of robust decision-making into the workhorse model of human capital investment (Keane and Wolpin, 1997)

Contributions in this presentation

 Incorporation of robust decision-making into the workhorse model of human capital investment (Keane and Wolpin, 1997)

Figure 1. Stylized illustration robust decision-making

Contributions in this presentation

- Incorporation of robust decision-making into the workhorse model of human capital investment (Keane and Wolpin, 1997)
- 2. Out-of-sample validation outside the support of the estimation sample

Contributions in this presentation

- Incorporation of robust decision-making into the workhorse model of human capital investment (Keane and Wolpin, 1997)
- 2. Out-of-sample validation outside the support of the estimation sample
 - Preliminary result: Robust human capital model leads to a much better out-of-sample performance

Economic Model

Sequential decision making under uncertainty

Notation

- State $s_t \in \mathcal{S}$ of economic environment
- Action $a_t \in \mathcal{A}$ from set of admissible alternatives
- Policy $\pi = \left(a_1^{\pi}(\mathsf{s}_1), \ldots a_T^{\pi}(\mathsf{s}_T)\right) \in \Pi$

Figure 1. Timing of events

Figure 1. Timing of events

Sequential decision making under uncertainty

Notation

- State $s_t \in \mathcal{S}$ of economic environment
- Action $a_t \in \mathcal{A}$ from set of admissible alternatives
- Policy $\pi = \left(a_1^{\pi}(\mathsf{s}_1), \ldots a_T^{\pi}(\mathsf{s}_T)\right) \in \Pi$

Beliefs about the transition probabilities

- Risk-only: Unique (objective) transition probability distribution $p(s_t, a_t)$
- Ambiguity: Some transition probability distribution $p(s_t, a_t) \in \mathcal{P}(s_t, a_t)$

Sequential decision making under uncertainty

Notation

- State $s_t \in \mathcal{S}$ of economic environment
- Action $a_t \in \mathcal{A}$ from set of admissible alternatives
- Policy $\pi = \left(a_1^{\pi}(\mathsf{s}_1), \ldots a_T^{\pi}(\mathsf{s}_T)\right) \in \Pi$

Beliefs about the transition probabilities

- Risk-only: Unique (objective) transition probability distribution $p(s_t, a_t)$
- Ambiguity: Some transition probability distribution $p(s_t, a_t) \in \mathcal{P}(s_t, a_t)$

Multiple-prior paradigm: Multiple beliefs, i.e. set of probability distributions

We use maxmin expected utility preferences (Gilboa and Schmeidler, 1989)

Mathematical Framework

for
$$t = T, ..., 1$$
 do
if $t == T$ then

$$v_T^{\pi^*}(s_T) = \max_{\alpha_T \in \mathcal{A}} \left\{ u(s_T, \alpha_T) \right\} \qquad \forall s_T \in \mathcal{S}$$

```
\begin{aligned} &\text{for } t = T, \dots, 1 \text{ do} \\ &\text{if } t = T \text{ then} \\ &v_T^{\pi^*}(s_T) = \max_{a_T \in \mathcal{A}} \left\{ u(s_T, a_T) \right\} & \forall \, s_T \in \mathcal{S} \\ &\text{else} \\ &\text{Compute } v_t^{\pi^*}(s_t) \text{ for each } s_t \in \mathcal{S} \text{ by} \\ &v_t^{\pi^*}(s_t) = \max_{a_t \in \mathcal{A}} \left\{ u(s_t, a_t) + \min_{p \in \mathcal{P}(s_t, a_t)} \delta \, \mathbb{E}_p \left[ v_{t+1}^{\pi^*}(s_{t+1}) \, \middle| \, s_t \right] \right\} \end{aligned}
```

```
for t = T, \ldots, 1 do
       if t == T then
               v_T^{\pi^*}(s_T) = \max_{\alpha_T \in \mathcal{A}} \{u(s_T, \alpha_T)\} \quad \forall s_T \in \mathcal{S}
        else
                Compute v_{\star}^{\pi^*}(s_t) for each s_t \in \mathcal{S} by
                          v_t^{\pi^*}(s_t) = \max_{a_t \in A} \left\{ u(s_t, a_t) + \min_{p \in \mathcal{P}(s_t, a_t)} \delta E_p \left[ v_{t+1}^{\pi^*}(s_{t+1}) \mid s_t \right] \right\}
                and set
                          a_t^{\pi^*}(s_t) = \arg\max_{\alpha_t \in \mathcal{A}} \left\{ u(s_t, \alpha_t) + \min_{\alpha_t \in \mathcal{P}(s_t, \alpha_t)} \delta \operatorname{E}_p \left[ v_{t+1}^{\pi^*}(s_{t+1}) \mid s_t \right] \right\}
        end if
end for
```

*p*₀ ●

Figure 1. Stylized illustration ambiguity set, where *D* denotes a probability divergence measure (Pardo, 2005)

$$\begin{array}{c} p_0 \\ \bullet \end{array}$$

$$\mathcal{P}(p_0,\eta) \equiv \left\{ p: D(p \mid\mid p_0) \leq \eta \right\}$$

Figure 1. Stylized illustration ambiguity set, where *D* denotes a probability divergence measure (Pardo, 2005)

Figure 1. Stylized illustration ambiguity set, where *D* denotes a probability divergence measure (Pardo, 2005)

Figure 1. Stylized illustration ambiguity set, where *D* denotes a probability divergence measure (Pardo, 2005)

Figure 1. Stylized illustration ambiguity set, where *D* denotes a probability divergence measure (Pardo, 2005)

Figure 2. Selection of worst case probability distribution, implemented via robupy

Computational Implementation

Workhose model: Keane and Wolpin (1997)

Workhose model: Keane and Wolpin (1997)

Structure of utility functions

$$u(\cdot) = \begin{cases} w_{a}(\mathbf{k}_{t}, h_{t}, t, a_{t-1}, e_{j,a}, \varepsilon_{a,t}) & \text{if} \quad a_{t} \in \{1, 2, 3\} \\ \xi_{a}(\mathbf{k}_{t}, h_{t}, t, a_{t-1}, e_{j,a}, \varepsilon_{a,t}) & \text{if} \quad a_{t} \in \{4, 5\} \end{cases}$$

Structure of utility functions

$$u(\cdot) = \begin{cases} w_a(\mathbf{k}_t, h_t, t, a_{t-1}, e_{j,a}, \varepsilon_{a,t}) & \text{if} \quad a_t \in \{1, 2, 3\} \\ \xi_a(\mathbf{k}_t, h_t, t, a_{t-1}, e_{j,a}, \varepsilon_{a,t}) & \text{if} \quad a_t \in \{4, 5\} \end{cases}$$

Work experience k_t and years of completed schooling h_t evolve deterministically

$$\begin{aligned} k_{\alpha,t+1} &= k_{\alpha,t} + \mathbb{I}[\alpha_t = \alpha] \quad \text{if} \quad \alpha \in \{1,2,3\} \\ h_{t+1} &= h_t + \mathbb{I}[\alpha_t = 4] \end{aligned}$$

Productivity and taste shocks

$$\boldsymbol{\varepsilon}_t \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \equiv \mathcal{N}_{\mathbf{0}}$$

Unrestricted covariance matrix, serially uncorrelated

Productivity and taste shocks

$$\boldsymbol{\varepsilon}_t \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \equiv \mathcal{N}_{\mathbf{0}}$$

Unrestricted covariance matrix, serially uncorrelated

Let ambiguity in

Operationalize ambiguity set with Kullback-Leibler divergence D_{KL} (Kullback and Leibler, 1951)

$$\mathcal{P}(\mathcal{N}_0, \eta) = \{ p : D_{\mathsf{KL}}(p \mid\mid \mathcal{N}_0) \leq \eta \}$$

Productivity and taste shocks

$$\boldsymbol{\varepsilon}_t \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \equiv \mathcal{N}_{\mathbf{0}}$$

Unrestricted covariance matrix, serially uncorrelated

Let ambiguity in

Operationalize ambiguity set with Kullback-Leibler divergence $D_{\rm KL}$ (Kullback and Leibler, 1951)

$$\mathcal{P}(\mathcal{N}_0, \eta) = \{ p : D_{\mathsf{KL}}(p \mid\mid \mathcal{N}_0) \leq \eta \}$$

Productivity and taste shocks

$$\boldsymbol{\varepsilon}_t \sim p \in \mathcal{P}(\mathcal{N}_0, \boldsymbol{\eta})$$

Productivity and taste shocks

$$\boldsymbol{\varepsilon}_t \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \equiv \mathcal{N}_{\mathbf{0}}$$

Unrestricted covariance matrix, serially uncorrelated

Let ambiguity in

Operationalize ambiguity set with Kullback-Leibler divergence $D_{\rm KL}$ (Kullback and Leibler, 1951)

$$\mathcal{P}(\mathcal{N}_0, \eta) = \{ p : D_{\mathsf{KL}}(p \mid\mid \mathcal{N}_0) \leq \eta \}$$

Productivity and taste shocks

$$\boldsymbol{\varepsilon}_t \sim p \in \mathcal{P}(\mathcal{N}_0, \eta)$$

Special case $\eta=0$ leads to decision-making under risk, i.e. $m{arepsilon}_t\sim m{\mathcal{N}_0}$

Computational Implementation: Admissible Value Functions

Computational Implementation: Admissible Value Functions

Computational Implementation: Admissible Value Functions

Data

Data: Estimation and Validation Sample

Estimation sample: Original Keane and Wolpin (1997) data set (11 periods of NLSY79)

• Estimate model parameters via Method of Simulated Moments procedure

Data: Estimation and Validation Sample

Estimation sample: Original Keane and Wolpin (1997) data set (11 periods of NLSY79)

• Estimate model parameters via Method of Simulated Moments procedure

Validation sample: Extended Keane and Wolpin (1997) data set (35 periods of NLSY79)

Used for out-of-sample validation exercise only

Results

Within–sample: Robust human capital model ($\eta = 1.60$) achieves best fit

- Simulate choice probabilities
- Compare against simulated choice probabilities from risk-only model ($\eta = 0.00$)
- Compare against observed choice probabilities from estimation sample

Within-sample fit

Figure 4. Choice probabilities white-collar

Within-sample fit

Figure 4. Choice probabilities white-collar

Figure 5. Choice probabilities blue-collar

Within-sample: Robust human capital model ($\eta = 1.60$) achieves best fit

- Simulate choice probabilities
- Compare against simulated choice probabilities from risk-only model ($\eta = 0.00$)
- Compare against observed choice probabilities from estimation sample

Out–of–sample: Robust human capital model ($\eta = 1.60$) achieves best fit

- Simulate choice probabilities
- Compare against simulated choice probabilities from risk-only model ($\eta=0.00$)
- Compare against observed choice probabilities from validation sample

Out-of-sample fit

Figure 6. Choice probabilities white-collar

Figure 7. Choice probabilities blue-collar

Out-of-sample fit

Figure 6. Choice probabilities white-collar

Figure 7. Choice probabilities blue-collar

Out-of-sample fit

Figure 6. Choice probabilities white-collar

Figure 7. Choice probabilities blue-collar

Out-of-sample fit

Figure 6. Model reconciliation

Data-driven explanation of the remaining gap: Residual category home

- Health-related factors (Hokayem and Ziliak, 2014; Capatina, 2015; Blundell, Britton, Costa Dias, and French, 2016)
- Employment-inhibiting effects, e.g. incarceration (Mueller-Smith, 2015; Bhuller, Dahl, Loken, and Mogstad, 2020)

Out-of-sample fit

Figure 6. Model reconciliation

Data-driven explanation of the remaining gap: Residual category home

- Health-related factors and retirement (Hokayem and Ziliak, 2014; Capatina, 2015; Blundell, Britton, et al., 2016)
- Structural breaks that replaced whitecollar with blue-collar work around the year 2000 (Beaudry, Green, and Sand, 2016)

Conclusion

Our contributions

1. We have generalized the standard human capital investment model to account for risk and ambiguity by relying on results from robust optimization

Our contributions

- 1. We have generalized the standard human capital investment model to account for risk and ambiguity by relying on results from robust optimization
 - Our extension is computationally tractable and a framework for further applications

Our contributions

- 1. We have generalized the standard human capital investment model to account for risk and ambiguity by relying on results from robust optimization
 - Our extension is computationally tractable and a framework for further applications
- 2. Our out-of-sample validation reveals shortcomings of the risk-only approach and shows a much better ouf-of-sample fit of the robust human capital model

Our contributions

- 1. We have generalized the standard human capital investment model to account for risk and ambiguity by relying on results from robust optimization
 - Our extension is computationally tractable and a framework for further applications
- 2. Our out-of-sample validation reveals shortcomings of the risk-only approach and shows a much better ouf-of-sample fit of the robust human capital model
- 3. Ambiguity leads to novel economic model mechanisms and different policy responses

Thank you!

References

References (1/2)

- Adda, Jerome, Christian Dustmann, and Katrien Stevens. 2017. "The Career Costs of Children." Journal of Political Economy 125 (2): 293–337. [PDF pp. 3–7]
- Ahn, David, Syngjoo Choi, Douglas Gale, and Shachar Kariv. 2010. "Estimating Ambiguity Aversion in a Portfolio Choice Experiment." *Quantitative Economics* 5 (2): 195–223. [PDF pp. 10, 11]
- Beaudry, Paul, David A Green, and Benjamin M Sand. 2016. "The Great Reversal in the Demand for Skill and Cognitive Tasks." Journal of Labor Economics 34 (S1): 199–247. [PDF p. 62]
- Berger, Loic, Han Bleichrodt, and Louis Eeckhoudt. 2013. "Treatment Decisions under Ambiguity." Journal of Health Economics 32 (3): 559–69. [PDF pp. 10, 11]
- Bhuller, Manudeep, Gordon B Dahl, Katrine V Loken, and Magne Mogstad. 2020. "Incarceration, Recidivism, and Employment." Journal of Political Economy 128 (4): 1269–324. [PDF p. 61]
- Blundell, Richard, Monica Costa Dias, Costas Meghir, and Jonathan Shaw. 2016. "Female Labor Supply, Human Capital, and Welfare Reform." *Econometrica* 84 (5): 1705–53. [PDF pp. 3–7]
- Blundell, Richard W., Jack Britton, Monica Costa Dias, and Eric French. 2016. "The Dynamic Effects of Health on the Employment of Older Workers." Michigan Retirement Research Center Research Paper, (2016-348): [PDF pp. 61, 62]
- Capatina, Elena. 2015. "Life-Cycle Effects of Health Risk." Journal of Monetary Economics 74: 67-88. [PDF pp. 61, 62]
- Carbone, Enrica, Xueqi Dong, and John Hey. 2017. "Elicitation of Preferences Under Ambiguity." *Journal of Risk and Uncertainty* 54 (2): 87–102. [PDF pp. 10, 11]
- Easley, David, and Maureen O'Hara. 2009. "Ambiguity and Nonparticipation: The Role of Regulation." Review of Financial Studies 22 (5): 1817–43. [PDF pp. 10, 11]
- Epstein, Larry G, and Martin Schneider. 2003. "Recursive Multiple Priors." Journal of Economic Theory 113 (1): 1-31. [PDF p. 76]

References (2/2)

- Gilboa, Itzhak, and David Schmeidler. 1989. "MaxMin Expected Utility With Non-Unique Prior." Journal of Mathematical Economics 18 (2): 141–53. [PDF p. 26]
- Hartog, Joop, and Luis Diaz-Serrano. 2013. "Schooling as a risky investment: A survey of theory and evidence." Foundations and Trends in Microeconomics 9 (3–4): edited by W. Kip Viscusi, 159–331. [PDF pp. 3–7]
- Hey, John D., and Noemi Pace. 2014. "The explanatory and predictive power of non two-stage-probability theories of decision making under ambiguity." Journal of Risk and Uncertainty 49 (1): 1–29. [PDF pp. 10, 11]
- Hokayem, Charles, and James P Ziliak. 2014. "Health, Human Capital, and Life Cycle Labor Supply." *American Economic Review* 104 (5): 127–31. [PDF pp. 61, 62]
- Iyengar, Garud N. 2005. "Robust Dynamic Programming." Mathematics of Operations Research 30 (2): 257–80. [PDF p. 76]
- Keane, Michael P, and Kenneth I Wolpin. 1997. "The Career Decisions of Young Men." Journal of Political Economy 105 (3): 473–522. [PDF pp. 3–7, 12–15, 39, 40, 51, 52]
- Kullback, Solomon, and Richard A. Leibler. 1951. "On Information and Sufficiency." *Annals of Mathematical Statistics* 22 (1): 79–86. [PDF pp. 44–46, 89, 90]
- Mueller-Smith, Michael. 2015. "The Criminal and Labor Market Impacts of Incarceration." Unpublished Working Paper 18: [PDF p. 61]
- Nilim, Arnab, and Laurent El Ghaoui. 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices." Operations Research 53 (5): 780–98. [PDF p. 76]
- Pardo, Leandro. 2005. Statistical inference based on divergence measures. London, UK: Chapman & Hall. [PDF pp. 32–36]

Appendix: Bellman Optimality Equations

Bellman Optimality Equations

• Compute $\pi^* = (a_1^{\pi^*}(s_1), \dots, a_T^{\pi^*}(s_T))$ by solving inductively defined single-stage problems

Bellman Optimality Equations

- Compute $\pi^* = (a_1^{\pi^*}(s_1), \dots, a_T^{\pi^*}(s_T))$ by solving inductively defined single-stage problems
- Standard human capital investment model: At each s_t retrieve

$$\alpha_t^{\pi^*}(s_t) = \underset{a_t \in \mathcal{A}}{\arg\max} \left\{ u(s_t, a_t) + \delta \operatorname{E}_{\rho^{\pi^*}} \left[v_{t+1}^{\pi^*}(s_{t+1}) \mid s_t \right] \right\}$$

Bellman Optimality Equations

- Compute $\pi^* = (a_1^{\pi^*}(s_1), \dots, a_T^{\pi^*}(s_T))$ by solving inductively defined single-stage problems
- Robust human capital investment model: At each s_t retrieve

$$a_{t}^{\pi^{*}}(s_{t}) = \underset{a_{t} \in \mathcal{A}}{\arg \max} \left\{ u(s_{t}, a_{t}) + \delta \underset{\rho \in \mathcal{P}^{\pi}(s_{t}, a_{t})}{\min} E_{\rho^{\pi^{*}}} \left[v_{t+1}^{\pi^{*}}(s_{t+1}) \mid s_{t} \right] \right\}$$

Bellman Optimality Equations

- Compute $\pi^* = (a_1^{\pi^*}(s_1), \dots, a_T^{\pi^*}(s_T))$ by solving inductively defined single-stage problems
- Robust human capital investment model: At each s_t retrieve

$$a_{t}^{\pi^{*}}(s_{t}) = \underset{a_{t} \in \mathcal{A}}{\arg \max} \left\{ u(s_{t}, a_{t}) + \delta \underset{\rho \in \mathcal{P}^{\pi}(s_{t}, a_{t})}{\min} \mathbb{E}_{\rho^{\pi^{*}}} \left[v_{t+1}^{\pi^{*}}(s_{t+1}) \mid s_{t} \right] \right\}$$

Solution

- Choose $P(s_t, a_t)$ such that it satisfies rectangularity condition (Epstein and Schneider, 2003, Definition 3.1)
- Implementation of backward induction procedure for robust Bellman equations (Iyengar, 2005; Nilim and El Ghaoui, 2005)

Appendix: Estimation Data Set

Figure 7. Sample size by age

Appendix: Estimation Data Set

Figure 7. Sample size by age

Figure 8. Observed choices by age

Appendix: Estimation Data Set

Figure 7. Observed wages by age

Figure 8. Observed choices by age

Appendix: Validation Data Set

Figure 9. Sample size by age

Appendix: Validation Data Set

Figure 10. Observed choices by age

Appendix: Validation Data Set

Figure 11. Observed wages by age

Appendix: Policy Evaluation

Appendix: Policy Evaluation

Figure 12. Effect \$2,000 college tuition subsidy

Main Insight: Sluggish policy response in case of ambiguity – tuition subsidy less effective

Main idea: Increase risk by dispersing distribution of productivity and taste shocks

Example for two-dimensional normal distribution

Figure 13. Baseline case

Main idea: Increase risk by dispersing distribution of productivity and taste shocks

Example for two-dimensional normal distribution

Figure 13. Baseline case

Figure 14. Dispersed case

Main idea: Increase risk by dispersing distribution of productivity and taste shocks

Implementation

Calibrate **dispersion factor** $\varphi(\eta)$ such that

$$D_{\mathsf{KL}}\Big(\mathcal{N}ig(\mathbf{0},oldsymbol{arSigma}_{oldsymbol{\eta}}ig)\mid\mid \mathcal{N}ig(\mathbf{0},oldsymbol{arSigma}ig)\Big)=\eta,$$

where D_{KL} is the Kullback and Leibler (1951) divergence

Main idea: Increase risk by dispersing distribution of productivity and taste shocks

Implementation

Calibrate **dispersion factor** $\varphi(\eta)$ such that

$$D_{\mathsf{KL}}\Big(\mathcal{N}ig(\mathbf{0},oldsymbol{arSigma}_{oldsymbol{\eta}}ig)\mid\mid \mathcal{N}ig(\mathbf{0},oldsymbol{arSigma}ig)\Big)=\eta,$$

where D_{KL} is the Kullback and Leibler (1951) divergence

Direct link between ambiguity and risk

Can we replace ambiguity with risk?

Appendix: Comparative Statics – Choice Shares under Risk and Ambiguity

Figure 13. Standard model under risk

Appendix: Comparative Statics – Choice Shares under Risk and Ambiguity

Figure 13. Standard model under risk

Figure 14. Standard model with increased risk

Insight: Home acts as an absorbing career

Appendix: Comparative Statics – Choice Shares under Risk and Ambiguity

Figure 13. Standard model under risk

Figure 14. Robust human capital model

Insight: Initial schooling and white-collar occupation act as insurance