Fields

Definition: A field is a set F equipped with two operations, addition and multiplication, and satisfies these axioms

Field Axioms

Definition: A field is a set F equipped with two operations, addition and multiplication which satisfies the following axioms

- $(F1) \forall a, b \in F \ a + b = b + a$
- $(F2) \forall a, b, c \in F (a+b) + c = a + (b+c)$
- $(F3) \exists 0 \in F \ s.t \ a + 0 = 0 + a = a \ \forall a \in F$
- $(F4) \ \forall a \in F \ \exists -a \in F \ s.t \ a + (-a) = (-a) + a = 0$
- $(F5) \ \forall a, b \in F \ a \cdot b = b \cdot a$
- $(F6) \forall a, b, c \in F (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (F7) $\exists 1 \in F \text{ s.t } 1 \neq 0 \text{ and } a \cdot 1 = 1 \cdot a = a \ \forall a \in F$
- $(F8) \forall a \in F \setminus \{0\} \exists a^{-1} \ s.t \ a \cdot a^{-1} = a^{-1} \cdot a = 1$
- $\forall a, b, c \in F \ (a+b) \cdot c = a \cdot c + b \cdot c$

Definition: An ordered field is a field F equipped with a binary relation < and satisfies these axioms

Order Axioms

- (O1) If a < b and b < c, then a < c
- (O2) $\forall a, b \in F$, exactly one of the following is true: a = b or a < b or b < a
- (O3) $\forall a, b, c \in F$, if a < b then a + c < b + c
- $(O4) \forall a, b, c \in F$, if a < b and 0 < c, then $a \cdot c < b \cdot b$

Definition: Let F be an ordered field, $S \subseteq F$, $a \in F$. Then a is an upper bound for S if for any $x \in S$ $x \leq a$

a is a lowerbound for S if for any $x \in S$, $a \le x$. S is bounded if it bounded above and below.

Suprema

When a is a least upper bound for S, we write

$$a = \sup S$$

Infima

When a is the greatest lower bound for S, we write

$$a = \inf S$$

Boundedness

Completeness

Definition: If $S \subseteq F$ is nonempty and bounded above, then $\sup S$ exists.

The Archimedean Property

Theorem: The set $\mathbb{N}_{\geq 1}$ is not bounded above.

Absolute Value and Distance

The absolute value of a real number $a \in \mathbb{R}$ is defined by

$$|a| \coloneqq \begin{cases} a, & \text{if } a \ge 0 \\ -a, & \text{if } a < 0 \end{cases}$$

Properties:

- (i) |-x| = |x|
- (iv) $|x + y| \le |x| + |y|$
- (ii) $-|x| \le x \le |x|$
- (iii) $|xy| = |x| \cdot |y|$
- (v) $||x| |y|| \le |x y|$

Definition:Let $x, y \in \mathbb{R}$. The distance between x, y is

$$d(x,y) \coloneqq |x - y|$$

Properties:

- (i) d(x,y) = d(y,x)
- (ii) $d(x,y) = 0 \iff x = y$
- (iii) $d(x, z) \le d(x, y) + d(y, z)$

Sequences

Definition: A sequence $(a_n)_{n=1}^{\infty}$ is bounded if the set $\{a_n : n \in \mathbb{N}\}$ is bounded

Convergenc

Definition: Let $(a_n)_{n=1}^{\infty}$ be a sequence, and $L \in R$. We say that the sequence converges to L if $\forall \epsilon > 0$ $\exists n_0 \in \mathbb{N}$ s.t $\forall n \geq n_0$

$$|a_n - L| < \epsilon$$

Definition: We say that $(a_n)_{n=1}^{\infty}$ diverges to ∞ if for every R > 0, $\exists n_0 \in \mathbb{N}$, $s.t \forall n \geq n_0$

$$a_n > R$$

Proposition: If $(a_n)_{n=1}^{\infty}$ converges, then it is bounded.

Limits

Proposition: (Uniqueness) Let $(a_n)_{n=1}^{\infty}$ be a sequence and $L_1, L_2 \in \mathbb{R}$

$$\lim_{n \to \infty} a_n = L_1 \wedge \lim_{n \to \infty} a_n = L_2 \implies L_1 = L_2$$

Algebra of Limits

- (i) $(a_n + b_n)_{n=1}^{\infty}$ converges to $L_a + L_b$
- (ii) $(ca_n)_{n=1}^{\infty}$ converges to cL_n
- (iii) $(a_n b_n)_{n=1}^{\infty}$ converges to $L_a L_b$
- (iv) $a_n \neq 0 \ \forall n \land L_a \neq 0 \implies \left(\frac{1}{a_n}\right)_{n=1}^{\infty} \to \frac{1}{L_a}$

Properties of Limits

Proposition: Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be converging sequences

$$\forall n \ a_n \leq b_n \implies \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$$

Corollary: Let $(a_n)_{n=1}^{\infty}$ be a converging sequence

$$\forall n \ m \le a_n \le M \implies m \le \lim_{n \to \infty} a_n \le M$$

Squeeze Theorem

Let $(a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty}, (c_n)_{n=1}^{\infty}$ be sequences such that

- (i) $(a_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ converge to same number L
- (ii) $a_n \leq b_n \leq c_n \ \forall n$

Then $(b_n)_{n=1}^{\infty}$ also converges to L.

Monotone Convergence Criterion

Let $(a_n)_{n=1}^{\infty}$ be a monotone sequence, it converges if and only if it is bounded. If it is increasing, then

$$(a_n)_{n=1}^{\infty} \to \sup\{a_n : n \in \mathbb{N}_{\geq 1}\}\$$

If it is decreasing, $(a_n)_{n=1}^{\infty} \to \inf\{a_n : n \in \mathbb{N}_{\geq 1}\}$

Subsequences

Proposition: If $(a_n)_{n=1}^{\infty}$ converges to L, then any subsequence also converges to L

Proposition: Every sequence contains a monotone subsequence

Bolzano-WeierStrass Theorem: Every bounded sequence has a convergent subsequence

Cauchy Convergence Criterion: $(a_n)_{n=1}^{\infty}$ converges \iff it is Cauchy

Limit Superior and Limit Inferior

Definition: Let $(a_n)_{n=1}^{\infty}$ be a sequence. The limit superior and inferior of $(a_n)_{n=1}^{\infty}$ is

$$\limsup_{n \to \infty} a_n \coloneqq \inf \{ \beta \in \mathbb{R} \ \exists n_0 \ s.t \ a_n \le \beta \ \forall n \ge n_0 \}$$

$$\liminf_{n \to \infty} a_n := \sup \{ \beta \in \mathbb{R} \ \exists n_0 \ s.t \ a_n \ge \beta \ \forall n \ge n_0 \}$$

Propositions and Theorems

Proposition: For any sequence $(a_n)_{n=1}^{\infty}$

$$\liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n$$

Proposition: Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence. Then

$$\lim \sup_{n \to \infty} a_n = \lim_{n \to \infty} \sup \{a_n, a_{n+1}, a_{n+2}, \ldots\}$$

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf \{ a_n, a_{n+1}, a_{n+2}, \ldots \}$$

Theorem: Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Then $(a_n)_{n=1}^{\infty}$ converges if and only if

$$-\infty < \limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n < \infty$$

Then

$$\lim_{n \to \infty} a_n = \limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n$$

Series

Definition: Let $(a_n)_{n=1}^{\infty}$ be a sequence.

$$S_N \coloneqq \sum_{n=1}^N a_n = a_1 + \dots + a_N$$

called the N^{th} partial sum. $\sum_{n=1}^{N} a_n$ converges to L if $(S_N)_{N=1}^{\infty}$ to L. Then

$$\sum_{n=1}^{\infty} a_n = L$$

Propositions and Theorems

Proposition: Let $(a_n)_{n=1}^{\infty}$, $(a_n)_{n=1}^{\infty}$ be sequences s.t $a_n \leq b_n \ \forall n$. If both series converge then

$$\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n$$

Proposition: Let $(a_n)_{n=1}^{\infty}$ be a sequence and $m \in \mathbb{N}_{\geq 1}$. Then

$$\sum_{n=1}^{\infty} a_n \ converges \iff \sum_{n=m}^{\infty} a_n \ converges$$

Proposition: Let $(a_n)_{n=1}^{\infty}$ be a sequence.

$$\sum_{n=1}^{\infty} a_n \ converges \implies \lim_{n \to \infty} a_n = 0$$

Convergence Tests

Boundedness Test: If

- (i) $a_n \geq 0 \ \forall n$
- (ii) There is a bound $M \in \mathbb{R}$ on the partials sums so that $\forall N \in \mathbb{N}$,

$$\sum_{n=1}^{N} a_n \le M$$

Then $\sum_{n=1}^{\infty}$ converges.

Comparison Test: $(b_n)_{n=1}^{\infty}$ s.t $0 \le a_n \le b_n \ \forall n, then$

- (i) if $\sum_{n=1}^{\infty} b_n$ converges, then so does $\sum_{n=1}^{\infty} a_n$
- (ii) if $\sum_{n=1}^{\infty} a_n$ diverges, then so does $\sum_{n=1}^{\infty} a_n$

Absolute Convergence Test:

$$\sum_{n=1}^{\infty} |a_n| \ converges \implies \sum_{n=1}^{\infty} a_n \ converges$$

Ratio Test: If

$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

Then $\sum_{n=1}^{\infty} a_n$ converges absolutely. No conclusion can be made if = 1, diverges otherwise.

Root Test: If

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

Then $\sum_{n=1}^{\infty} a_n$ converges (absolutely). If = 1 the test in inconclusive, diverges otherwise.

Alternating Series Test: Suppose

- (i) $(a_n)_{n=1}^{\infty}$ is a decreasing sequence
- (ii) $\lim_{n\to\infty} = 0$

Then

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges. Moreover,

$$\sum_{n=1}^{2N} (-1)^{n+1} a_n \le \sum_{n=1}^{\infty} (-1)^{n+1} a_n \le \sum_{n=1}^{2N-1} a_n$$

Integral Test: Let $f:[1,\infty)\to\mathbb{R}$ be a function. Suposee that

- (i) $f(x) \ge 0 \ \forall x \in [1, \infty)$
- (ii) f is decreasing: $f(x) \ge f(y)$ whenever $x \le y$

Then

$$\sum_{n=1}^{\infty} f(n) \ converges \iff \int_{1}^{\infty} f(x) dx \ converges$$

More Series

Proposition: Let $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ be sequence and $c \in \mathbb{R}$. Suppose their series' converges, then

(a)
$$\sum_{n=1}^{\infty} (a_n + b_n)$$
 converges and

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(b) $\sum_{n=1}^{\infty} ca_n$ converges and

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

Cauchy Convergence Criterion For Series

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if for ever $\epsilon > 0$, $\exists N_0$ s.t $\forall N \geq M \geq N_0$

$$\left| \sum_{n=M}^{N} a_n \right| < \epsilon$$

Norms

Definition: A norm on \mathbb{R}^d is a function $||\cdot||:\mathbb{R}^d\to[0,\infty)$ satisfying the following

Properties of Norms

- (i) ||a|| = 0 if and only if a = (0, ..., 0)
- (ii) $||ca|| = |c| \cdot ||a||$
- (iii) $||a+b|| \le ||a|| + ||b||$

Euclidean Norm

$$||(a_1,\ldots,a_d)||_2 \coloneqq \sqrt{a_1^2 + \cdots + a_2^2}$$

Proposition: Let $a, b \in \mathbb{R}^d$ and let $||\cdot||$ denote the Euclidean norm

(i) (Cauchy-Schwarz Inequality)

$$|a \cdot b| \le ||a||_2 \cdot ||b||_2$$

(ii) (Triangle Inequality)

$$||a+b||_2 \le ||a||_2 + ||b||_2$$

(iii) Therefore, $||\cdot||_2$ is a norm in \mathbb{R}^d .

Convergence in \mathbb{R}^d

Definition: Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^d and let $L \in \mathbb{R}^d$. We say that $(a_n)_{n=1}^{\infty}$ converges to L if $\lim_{n \to \infty} ||a_n - L||_2 = 0$. In this case we write $\lim_{n \to \infty} a_n = L$ or $a_n \to L$ as $n \to \infty$

Proposition: Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^d with $a_n = (a_n^{(1)}, \dots, a_n^{(d)})$. Let $L = (L_1, \dots, L_d) \in \mathbb{R}^d$. Then $\lim_{n \to \infty} a_n = L \iff \lim_{n \to \infty} a_n^{(i)} = L_i$ for each i

Cauchy Convergence

Definition: A sequence in \mathbb{R}^d is Cauchy if for every $\epsilon > 0$, $\exists n_0 \ s.t \ \forall m, n \geq n_0$

$$||a_m - a_n||_2 < \epsilon$$

Cauchy Convergence Criterion: A sequence in \mathbb{R}^d converges if and only if it is Cauchy.

Definition: A subset S of \mathbb{R}^d is bounded if $\exists M > 0$ s.t $||x||_2 < M$

Bolzano-Weierstrass Theorem for \mathbb{R}^d

Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence in \mathbb{R}^d . Then it has a subsequence which converges

Open and Closed Sets

Definition: Let $a \in \mathbb{R}^d$ and let r > 0. The open ball centered at a with a radius r is

$$B(a;r) := \{x \in \mathbb{R}^d : ||x - a||_2 < r\}$$

Definition: Let $A \subseteq \mathbb{R}^d$ be a set

(i) A is open if for every $x \in A$, there exists $\epsilon > 0$ such that

$$B(x;\epsilon) \subseteq A$$

(ii) A is closed if its complement

$$\mathbb{R}^d \setminus A = \{ x \in \mathbb{R}^d : x \notin A \}$$

is oner

It is not the case that a set is either open or closed

Proposition:

- (i) The sets \emptyset and \mathbb{R}^d are open
- $(ii) \ \ For \ any \ finite \ collection \ of \ open \ sets, \ their \ union \ is \\ open$
- (iii) For any finite collection of open sets, their intersection is open

Types of Points

Definition: Let $A \subseteq \mathbb{R}^d$ be a set and let $a \in \mathbb{R}^d$

(i) a is an interior point of A if $\exists \epsilon > 0$ s.t $B(a; \epsilon) \subseteq A$

$$A^{\circ} := \{x \in \mathbb{R}^d : x \text{ is an interior point}\}$$

(ii) a in an accumulation point of A if there is a sequence in A s.t $a = \lim_{n \to \infty} a_n$. The closure of A is

$$\bar{A} \coloneqq \{x \in \mathbb{R}^d : x \text{ is an accumulation point}\}$$

(iii) a is a boundary point of A if it is an accumulation point of A and it is not an interior point. The boundary of A is

$$\partial A \coloneqq \{x \in \mathbb{R}^d : x \text{ is a boundary point}\} = \bar{A} \setminus A^{\circ}$$

- (iv) a is an isolated point of A if $\exists \epsilon > 0$ s.t $B(a; \epsilon) \cap A = \{a\}$
- (v) a is a limit point of A if it an accumulation point and not an isolated point

Compactness

Definition: Let $K \subseteq \mathbb{R}^d$ be a set. We say that K is compact if every sequence in K has a subsequence that converges to a point in K.

Heine-Borel Theorem

Let $K \subseteq \mathbb{R}^d$

 $K \ is \ compact \iff K \ is \ closed \ and \ bounded$

Proposition:

- (i) For any finite collection of compact sets, their union is compact
- (ii) For any arbitrary collection of compact sets, their intersection is compact

Continuous Functions

Definition: We write

$$\lim_{x \to a} f(x) = L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that if $x \in X \setminus \{a\}$ and $||x - a||_2 < \delta$, then $||f(x) - L||_2 < \epsilon$.

Proposition: Let $X \subseteq \mathbb{R}^d$, $Y \subseteq Y^m$, $f: X \mapsto Y$, $g: Y \mapsto \mathbb{R}^n$. Suppose that f is continuous at a and g is continuous at f(a), then $g \circ f: X \mapsto \mathbb{R}^n$ is continuous at a.

Properties of Continuous Functions

Proposition: Let $X \subseteq \mathbb{R}^d$ and let $a \in \mathbb{R}^d$ be a limit point. Let $f, g: X \mapsto \mathbb{R}^m$ and $\gamma: X \mapsto \mathbb{R}$ be functions which are all continuous at a. Let $c \in \mathbb{R}$. Then

- (i) f + g is continuous at a
- (ii) $c \cdot f$ is continuous at a
- (iii) $\gamma \cdot f$ is continuous at a
- (iv) if $\gamma(x) \neq 0$ for all $x \in X$, then $\frac{1}{\gamma}$ is continuous at a.

Sequential Characterization of Limits

Let $X \subseteq \mathbb{R}^d$ and let $a \in \mathbb{R}^d$ be a limit point. Let $f: X \mapsto \mathbb{R}^m$ and let $L \in \mathbb{R}^m$. Then $\lim_{x \to a} f(x) = L$ if and only if for every sequence $(a_n)_{n=1}^{\infty}$ in $X \setminus a$ which converges to a, we have

$$\lim_{n \to \infty} f(a_n) = L$$

Algebra of Limits

Let $X\subseteq\mathbb{R}^d$ and let $a\in\mathbb{R}^d$ be a limit point. Let $f,g:X\mapsto\mathbb{R}^m$ and $\gamma:X\mapsto\mathbb{R}$ be functions which all have limits at a. Let $c\in\mathbb{R}$, then

(i)
$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right) + \left(\lim_{x \to a} g(x)\right)$$

(ii)
$$\lim_{x \to a} (cf(x)) = c \left(\lim_{x \to a} f(x) \right)$$

(iii)
$$\lim_{x \to a} (\gamma(x)f(x)) = \left(\lim_{x \to a} \gamma(x)\right) \left(\lim_{x \to a} f(x)\right)$$

(iv) If $\gamma(x) \neq 0$ for all $x \in X$ and $\lim_{x \to a} \gamma(x) \neq 0$, then $\lim_{x \to a} \frac{1}{\gamma(x)} = \frac{1}{\lim_{x \to a} \gamma(x)}$

Proposition (Squeeze Theorem). Let $X \in \mathbb{R}^d$ and let $a \in \mathbb{R}^d$ be a limit point. Let $f, g, h : X \mapsto \mathbb{R}$ with

$$f(x) \le g(x) \le h(x)$$
 for all $x \in X$

Then if

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L$$

Continuity

Definition. Let $X \subseteq \mathbb{R}^d$ and let $a \in X$ be a point which is not isolated. Let $f: X \mapsto \mathbb{R}^m$. We say f is continuous at a if

$$\lim_{x \to a} f(x) = f(a)$$

Properties of Continuous Functions

Definition. Let $X \subseteq \mathbb{R}^d$ and let $f: X \mapsto \mathbb{R}^m$ be a function. We say f is continuous on X if f is continuous at a for every $a \in X$.

Theorem. Let $K \subseteq \mathbb{R}^d$ be compact and let $f: K \mapsto \mathbb{R}^m$ be a continuous function. Then its image f(K) is also compact.

Extreme Value Theorem

Let $K \subset \mathbb{R}^d$ be compact and nonempty, and let $f: K \mapsto \mathbb{R}$ be a continuous function. Then there exists $x_{\min}, x_{\max} \in K$ such that for all $x \in K$,

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$

In other words, the image of f is bounded and attains its bounds.

Intermediate Value Theorem

Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Let $y \in \mathbb{R}$ be any value between f(a) and f(b). Then there exists $z \in [a,b]$ such that f(z) = y.

Let $f:[a,b] \mapsto \mathbb{R}$ be a continuous function. Then f([a,b]) = [c,d] for some $c,d \in \mathbb{R}$

More on Continuous Functions

When f is bijective, it follows that is has an inverse.

Definition. Let $X \subseteq \mathbb{R}$ and let $f: X \mapsto \mathbb{R}$ be a function.

- (i) We say f is weakly increasing if for $x, y \in X$ $x \le y \implies f(x) \le f(y)$
- (ii) We say f is strictly increasing if for $x, y \in X$, $x < y \implies f(x) < f(y)$

Similarly for weakly and strictly decreasing.

Lemma. Let a < b and let $f : [a, b] \mapsto \mathbb{R}$ be a continuous function. The following equivalent.

- (i) f is either strictly increasing or strictly decreasing.
- (ii) f is injective

Theorem. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \mapsto \mathbb{R}$ be an injective continuous function. Then $f^{-1}: f(I) \mapsto \mathbb{R}$ is continuous.

Uniform Continuity

Let $X \subseteq \mathbb{R}^d$ and $f: X \mapsto \mathbb{R}^m$ be a function. We say that f is uniformly continuous on X if for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $x, y \in X$, if $||x - y||_2 < \delta$, then $||f(x) - f(y)||_2 < \epsilon$

Theorem. Let $K \subseteq \mathbb{R}^d$ be compact and let $f: K \mapsto \mathbb{R}^m$ be continuous. Then f is uniformly continuous.

Infinite Limits and Limits at Infinity

Definition. Let $A \subseteq \mathbb{R}^d$ and $f: A \mapsto \mathbb{R}^m$

• If m=1 and $a \in \mathbb{R}^d$ is a limit point of A, then we write $\lim_{x \to a} f(x) = \infty$ if for every R > 0, there exists $\delta > 0$ such that if $x \in A \setminus \{a\}$ and $||x - a||_2 < \delta$ then

• Similarly, If m=1 and $a \in \mathbb{R}^d$ is a limit point of A, then we write $\lim_{x \to a} f(x) = -\infty$ if for every R > 0, there exists $\delta > 0$ such that if $x \in A \setminus \{a\}$ and $||x-a||_2 < \delta$ then

$$f(x) < -R$$

• If d=1, A is not bounded above, and $L \in \mathbb{R}^m$, we write $\lim_{x \to \infty} f(x) = L$ if for every $\epsilon > 0$ there exists R > 0 such that if $x \in A$ and x > R, then

$$||f(x) - L||_2 < \epsilon$$

• Similarly, If d=1, A is not bounded above, and $L \in \mathbb{R}^m$, we write $\lim_{x \to -\infty} f(x) = L$ if for every $\epsilon > 0$ there exists R > 0 such that if $x \in A$ and x < -R, then

$$||f(x) - L||_2 < \epsilon$$

• If A is not bounded and $L \in \mathbb{R}^m$, we write $\lim_{\|x\|_2 \to \infty} f(x) = L$ if for every $\epsilon > 0$ there exists R > 0 such that if $x \in A$ and $\|x\|_2 > R$, then

$$||f(x) - L||_2 < \epsilon$$

Differentiation

The Derivative

Let $X\subseteq\mathbb{R},\ f:X\mapsto\mathbb{R}$ be a function, let $a\in X$ be a non-isolated point. We write

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Proposition: If f is differentiable at a then f is continuous at a.

Computation Rules for Derivatives

Let $X \subseteq \mathbb{R}$, let $f, g: X \mapsto \mathbb{R}$ be functions, let $a \in X$ be a non-isolated point. Suppose that f and g are both differentiable at a, and let $c \in \mathbb{R}$. Then

- (i) **Linearity:** (cf)'(a) = c(f'(a)) and (f+g)'(a) = f'(a) + g'(a)
- (ii) **Product:** (fg)'(a) = f'(a)g(a) + f(a)g'(a)

More on Computing Derivatives

Chain Rule

Let $X,Y\subseteq\mathbb{R}$, let $f:X\mapsto\mathbb{R}$ and $g:Y\mapsto\mathbb{R}$ be functions, let $a\in X$ be a non-isolated point. Suppose that $f(X)\subseteq Y$ and that f(a) is a non-isolated point of Y. Suppose also that f is differentiable at a and g is differentiable at f(a). Then $g\circ f$ is differentiable at f(a).

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

Inverse Rule

Let $X \subseteq \mathbb{R}$ be an interval, let $f: X \mapsto \mathbb{R}$ be a continuous injective function. Let $a \in X$. If f is differentiable at a and $f'(0) \neq 0$ then $f^{-1}(a) \neq 0$ then $f^{-1}: f(X) \mapsto \mathbb{R}$ is differentiable at f(a) and

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

Optimizing Differentiable Functions

Definition. Let $X \subseteq \mathbb{R}$, let $f: X \mapsto \mathbb{R}$, and let $a \in X$ be an interior point

(i) a is a local minimum of f if there exists r>0 such that $(a-r,a+r)\subseteq X$ and

$$f(a) \le f(x)$$
 for all $x \in (a-r, a+r)$

(ii) a is a local minimum of f if there exists r > 0 such that $(a - r, a + r) \subseteq X$ and

$$f(a) \ge f(x)$$
 for all $x \in (a - r, a + r)$

Theorem. Let $X \subseteq \mathbb{R}$, let $f: X \mapsto \mathbb{R}$ and let $a \in X$ be an interior point. If f has a local maximum or local minimum at a and f is differentiable at a, then f'(a) = 0

The Mean Value Theorem

Theorem (Rolle's Theorem). Let $f : [a, b] \mapsto \mathbb{R}$ be a continuous function that is differentiable on (a, b). If f(a) = f(b) then there exists $x_0 \in (a, b)$ such that

$$f'(x_0) = 0$$

Theorem (Cauchy's Mean Value Theorem). Suppose that $f, g : [a, b] \mapsto \mathbb{R}$ are continuous functions that are differentiable on (a, b). Then there exists $x_0 \in (a, b)$ such that

$$(f(b) - f(a))g'(x_0) = (g(b) - g(a))f'(x_0)$$

Corollary (Mean Value Theorem). Let $f : [a,b] \mapsto \mathbb{R}$ be a continuous function that is differentiable on (a,b). There there exists $x_0 \in (a,b)$ such that

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Darboux Sums

A partition of an interval [a, b] is a finite set $\{t_0, t_1, \ldots, t_n\}$ such that

$$a = t_0 < t_1 < \dots < t_n = b$$

A partition breaks up the interval [a, b] into n subintervals

$$[t_0, t_1], [t_1, t_2], \ldots, [t_{n-1}, t_n]$$

Let = $\{t_0, t_1, \dots, t_n\}$ be a partition and let $f : [a, b] \mapsto \mathbb{R}$ be a bounded function. For $i = 1, \dots, n$, define

$$m_1(P, f) := \inf f([t_{i-1}, t_i]) = \inf \{ f(t) : t \in [t_{n-1}, t_1] \}$$

$$M_1(P, f) := \sup f([t_{i-1}, t_i]) = \sup \{f(t) : t \in [t_{n-1}, t_1]\}$$

Darboux Sum

Let $P = \{t_0, t_1, \dots, t_n\}$ be a partition and let $f : [a, b] \mapsto \mathbb{R}$ be a bounded function. The lower Darboux sum of f for P is

$$L(P, f) := \sum_{i=1}^{n} m_i(P, f)(t_i - t_{i-1})$$

The upper Darboux sum of f for P is

$$U(P,f) := \sum_{n=1}^{n} M_i(P,f)(t_i - t_{i-1})$$

Definition. Let P, P' be partitions. We say that P' refines P if for all $X \in P'$, there exists $Y \in P$ such that $X \subseteq Y$.

Lemma. Let $f:[a,b] \mapsto \mathbb{R}$ be a bounded function and let P, P' be partitions of [a,b] such that P' refines P, then

$$L(P,f) \le L(P',f)$$
 and $U(P',f) \le U(P,f)$

To understand this conceptually, consider f restricted to the interval [a, b], then take $c \in [a, b]$

$$\inf f|_{[a,b]}(b-a) = \inf f|_{[a,b]} \cdot (b-c) + \inf f|_{[a,b]}(c-a)$$

you can see this by factoring out $\inf f|_{[a,b]}$ and you will have the left side of the equality, then we have

$$\inf f|_{[a,b]}(b-a) \le \inf f|_{[c,b]}(b-c) + \inf f|_{[a,c]}(c-a)$$

To understand this, consider the infimum of [a,b]. We have that either the infimum either occurs in $f|_{[c,b]}$, so inf $f|_{[c,b]} = \inf f|_{[a,c]}$ or it occurs only in $f|_{[a,b]}$, so in this case $\inf f|_{[a,c]} < \inf f|_{[b,c]}$, and thus $\inf f|_{[a,c]} \le \inf f|_{[b,c]}$. The same argument can be applied to the supremum to get $\sup f|_{[a,c]} \ge \sup f|_{[b,c]}$. So as the number of intervals increases, the lower Darboux sum increases and the upper Darboux sum decreases.

The Riemman Integral

Corollary. Let $f:[a,b] \mapsto \mathbb{R}$ be a bounded function and let P,P' be partitions of [a,b]. Then

Definition. A bounded function $f : [a, b] \mapsto \mathbb{R}$ is (Riemann) integrable if for all partitions P of [a, b]

$$\sup\{L(P,f)\} = \inf\{U(P,f)\}$$

Then we set

$$\int_a^b f(t)dt = \sup\{L(P,f)\} = \inf\{U(P,f)\}$$

Proposition. Let $f:[a,b] \mapsto \mathbb{R}$ be a bounded function. Then f is integral if and only if for every $\epsilon > 0$, there exists a partition P such that

$$U(P, f) - L(P, f) < \epsilon$$

Theorem. If $f:[a,b]\mapsto \mathbb{R}$ is continuous then f is integrable.

Properties of the Integra

Proposition (Additive Property). Let $f:[a,b] \mapsto \mathbb{R}$ be a bounded function and let $c \in (a,b)$. Then f is integrable if and only if $f|_{[a,c]}$ and $f|_{[c,b]}$ are both integrable. In this case,

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Proposition (Linearity). Let $f,g:[a,b]\mapsto \mathbb{R}$ be bounded integrable functions and let $c\in \mathbb{R}$. Then cf+g is integrable and

$$\int_{a}^{b} cf(t) + g(t)dt = c \int_{a}^{b} f(t)dt + \int_{a}^{b} g(t)dt$$

Proposition. Let $f,g:[a,b]\mapsto\mathbb{R}$ be integrable. If $f(t)\leq g(t)$ for all $t\in[a,b]$ then

$$\int_{a}^{b} f(t)dt \le \int_{a}^{b}$$

Corollary. Let $f:[a,b]\mapsto \mathbb{R}$ be integrable. If $m,M\in\mathbb{R}$ are such that

$$m \le f(t) \le M$$

for all $x \in [a, b]$ then

$$m(b-a) \le \int_a^b f(t)dt \le M(b-a)$$

The Fundamental Theorem of Calculus

Fundemental Theorem of Calculu

Let $f:[a,b]\mapsto \mathbb{R}$ be an integrable function. Define $F:[a,b]\mapsto \mathbb{R}$ by

$$F(x) := \int_{a}^{x} f(t)dt$$

For any $x \in [a, b]$, if f is continuous at x then F is differentiable at x and

$$F'(x) = f(x)$$

Theorem. Let $F:[a,b]\mapsto\mathbb{R}$ be a differentiable function, such that $F':[a,b]\mapsto\mathbb{R}$ is continuous. Then

$$\int_{a}^{b} F'(t)dt = F(b) - F(a)$$

Improper Integrals

Definition. Let $f:(a,b]\mapsto \mathbb{R}$ be a function such that, for every $x\in (a,b], f|_{[x,b]}$ is Riemann integrable. Then we define

$$\int_{a}^{b} f(t)dt := \lim_{x \to a^{+}} \int_{x}^{b} f(t)dt$$

provided that this limit exists. Likewise, if $f:[a,b)\mapsto \mathbb{R}$ is such that $f|_{[a,b]}$ is integrable for all $x\in [a,b)$, then

$$\int_{a}^{b} f(t)dt := \lim_{x \to b^{-}} \int_{a}^{x} f(t)dt$$

Sequences and Series of Functions

Pointwise Limits

Let X be a set, let $(f_n : X \mapsto \mathbb{R}^m)_{n=1}^{\infty}$ be a sequence of functions, and let $f : X \mapsto \mathbb{R}^m$. We say that $(f_n)_{n=1}^{\infty}$ converges pointwise to f if for every $x \in X$,

$$\lim_{n \to \infty} f_n(x) = f(x)$$

Jniform Convergence

Let X be a set, let $(f_n : X \mapsto \mathbb{R}^m)_{n=1}^{\infty}$ be a sequence of functions, and let $f : X \mapsto \mathbb{R}^m$. We say that $(f_n)_{n=1}^{\infty}$ converges uniformly to f if for every $\epsilon > 0$, there exists n_0 such that for all $n \geq n_0$ and $x \in X$,

$$||f_n(x) - f(x)||_2 < \epsilon$$

Note: The uniform convergence of f_n to f implies that f_n converges pointwise to f.

Series of Functions

Let X be a set, let $(f_n : X \mapsto \mathbb{R}^m)_{n=1}^{\infty}$ be a sequence of functions, and let $f : X \mapsto \mathbb{R}^m$. We define

$$u - \sum_{n=1}^{\infty} f_n := u - \lim_{N \to \infty} \sum_{n=1}^{N} f_n$$

provided that this limit exists. When this limit exists, we say that the series $\sum_{n=1}^{\infty}$ converges uniformly.

The Weierstrass M-test

Let X be a set, let $(f_n: X \mapsto \mathbb{R}^m)_{n=1}^{\infty}$ be a sequence of functions, and let $(M_n)_{n=1}^{\infty}$ be a sequence of nonnegative real numbers. Suppose that the following hold:

- (i) $|f_n(x)| \leq M_n$ for all $x \in X$ and
- (ii) $\sum_{n=1}^{\infty} M_n$ converges

Then $\sum_{n=1}^{\infty} f_n$ converges uniformly

Properties of Uniform Convergence

Theorem. Let X be a set, let $(f_n : X \mapsto \mathbb{R}^m)_{n=1}^{\infty}$ be a sequence of functions which uniformly converge to $f : X \mapsto \mathbb{R}^m$. If each f_n is continuous at a, then so is f. Hence if each f_n is continuous on X, then so is f.

Corollary. Let $X \subseteq \mathbb{R}^d$ and suppose $(f_n : X \mapsto \mathbb{R}^m)_{n=1}^{\infty}$ is a sequence of continuous functions. If $\sum_{n=1}^{\infty} f_n$ converges uniformly, then the function $\sum_{n=1}^{\infty} f_n$ is continuous.

Theorem. Let $(f_n : [a, b] \mapsto \mathbb{R})_{n=1}^{\infty}$ be a sequence of continuous functions which converges uniformly to $f : [a, b] \mapsto \mathbb{R}$. Then

$$\int_{a}^{b} f(t)dt = \lim_{n \to \infty} \int_{a}^{b} f_{n}(t)dt$$

Corollary. Let $(f_n:[a,b]\mapsto\mathbb{R})_{n=1}^\infty$ be a sequence of continuous. If the series $\sum\limits_{n=1}^\infty f_n$ converges uniformly, then

$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(t)dt = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(t)dt$$

Theorem. Let $(f_n : [a, b] \to \mathbb{R})_{n=1}^{\infty}$ be a sequence of differentiable functions such that f'_n is continuous for each n. Suppose that the sequence $(f'_n)_{n=1}^{\infty}$ converges uniformly to some function $g : [a, b] \to \mathbb{R}$ and that $(f_n)_{n=1}^{\infty}$ converges pointwise to f. Then f is differentiable and f' = g.

Series of Functions Continued

Properties of Uniform Convergence

Let $(f_n: [a,b] \mapsto \mathbb{R}^m)_{n=1}^{\infty}$ be a sequence of differentiable functions such that f'_n is continuous for each n, and let $f = \sum_{n=1}^{\infty} f_n$. If the series $\sum_{n=1}^{\infty} f'_n$ converges uniformly, then

$$f' = \sum_{n=1}^{\infty} f'_n$$

Power Series

A power series is a series of the form

$$\sum_{n=0}^{\infty} a_n (x-c)^n$$

where $(a_n)_{n=1}^{\infty}$ is a sequence of real numbers $c \in \mathbb{R}$ and x is a variable. The numbers a_0, a_1, \ldots are the coefficients of the power series, and c is called the center of the power series.

Convergence of a Power Series

Let $\sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series. The interval of convergence of this power series is the set

$$\left\{b \in \mathbb{R} : \sum_{n=0}^{\infty} a_n (b-c)^n \text{ converges}\right\}$$

Theorem. Let $\sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series and define

$$R := \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

(interpreted as 0 if \limsup is ∞ and ∞ if \limsup is 0) Then for $b\in\mathbb{R}$

- (i) If |b-c| < R, then $\sum_{n=0}^{\infty} a_n (b-c)^n$ converges, while
- (ii) if |b-c| < R, then $\sum_{n=0}^{\infty} a_n (b-c)^n$ diverges

Note: R is called the radius of convergence

Proposition. Let $\sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series and let R be its radius of convergence. Let [a,b] be any closed bounded interval contained in (c-R,c+R) (which is \mathbb{R} when $R=\infty$). Then the series converges uniformly on [a,b]

Continuity, Integration, and Differentiation

Theorem. Let $\sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series with interval of convergence I, and define $f: I \mapsto \mathbb{R}$ by

$$f(x) := \sum_{n=0}^{\infty} a_n (b-c)^n$$

Then f is continuous on I and for any $a, b \in I$,

$$\int_{a}^{b} f(t)dt = \sum_{n=1}^{\infty} \frac{a_n}{n+1} \left((b-c)^{n+1} - (a-c)^{n+1} \right)$$

Theorem. Let $\sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series with radius of convergence R > 0, and define $f: (c-R, c+R) \mapsto \mathbb{R}$ by

$$f(x) := \sum_{n=0}^{\infty} a_n (x-c)^n$$

Then the power series $\sum_{n=0}^{\infty} na_n(x-c)^{n-1}$ also has a radius of convergence R, and for $x \in (c-R, c+R)$,

$$f'(x) = \sum_{n=0}^{\infty} na_n (x-c)^{n-1}$$

Corollary. Let $\sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series with radius of convergence R > 0, and define $f: (c-R, c+R) \mapsto \mathbb{R}$ by

$$f(x) := \sum_{n=0}^{\infty} a_n (x - c)^n$$

Then for each n,

$$a_n = \frac{f^{(n)}(c)}{n!}$$

Taylor Series

Let $I \subseteq \mathbb{R}$ be an open interval and $f: I \mapsto \mathbb{R}$ be a function which is infinitely differentiable. Meaning that $f^{(n)}$ exists for all n. For $c \in I$, the Taylor Series of f centered at c is the power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

For $N \in \mathbb{N}_{\geq 0}$ the N^{th} Taylor polynomial of f is

$$P_N(x) := \sum_{n=0}^{N} \frac{f^{(n)}(c)}{n!} (x - c)^n$$

Lagrange Remainder Theoren

Let $f:(a,b)\mapsto\mathbb{R}$ be a function which $f',f^{(2)},\ldots,f^{(N+1)}$ all exist on (a,b), let $c\in(a,b)$, and let $P_N(x)$ be the N^{th} Taylor polynomial of f centered at c. Then for $x\in(a,b)$, there exists z between c and x such that

$$f(x) - P_N(x) = \frac{f^{(N+1)}(z)}{(N+1)!} (x-c)^{N+1}$$