Class 7: Machine Learning 1

Kathy Gu (PID: A16362055)

Today we will start out our multi-part exploration of some key machine learning methods. We will begin with clustering - finding groupings in data, and then dimensionality reduction.

Clustering

Let's start with "k-means" clustering. The main function in base R for this 'kmeans()'.

```
#Make up some data
hist(rnorm(1000))
```

Histogram of rnorm(1000)

Histogram of rnorm(1e+05, mean = 3)


```
tmp <- c(rnorm(30,-3),rnorm(30,+3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


Now let's try out 'kmeans()'

```
km <- kmeans(x, centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 -2.805827 3.038850
2 3.038850 -2.805827
```

Clustering vector:

Within cluster sum of squares by cluster:
[1] 77.20361 77.20361
 (between_SS / total_SS = 86.9 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Q. How mant points in each cluster?

km\$size

[1] 30 30

Q. What component of your result object details cluster assignment/membership?

km\$cluster

Q. What are centers/mean values of each cluster?

km\$centers

х

1 -2.805827 3.038850

2 3.038850 -2.805827

Q. Make a plot of your data showing your clustering retsults (grouping/clusters and cluster centers).

plot(x, col=c("lightblue", "pink"))

Warning in c(1:5) + c(100, 1): longer object length is not a multiple of shorter object length

[1] 101 3 103 5 105

plot(x,col=c(1,2))

plot(x,col=km\$cluster)


```
plot(x,col=km$cluster)
points(km$centers, col="yellow", pch=15, cex=3)
```


Q. Run 'kmeans()' again and cluster in 4 groups and plot the results.

```
km4 <- kmeans(x, centers= 4)
plot(x, col=km4$cluster)</pre>
```


Hierachical Clustering

This form of clustering aims to reveal the structure in your data by progressively grouping points into a ever smaller number of clusters.

The main function in base R for this called 'hclust()'. This function does not take our input data directly but wants a "distance matrix" that details how (dis)similar all our input points are to each other.

```
hc <- hclust( dist(x) )
hc</pre>
```

Call:

hclust(d = dist(x))

 $\begin{array}{lll} \hbox{\tt Cluster method} & : & \hbox{\tt complete} \\ \hbox{\tt Distance} & : & \hbox{\tt euclidean} \end{array}$

Number of objects: 60

The print out above is not very useful (unlike that from kmeans) but there is a useful 'plot()' method.

```
plot(hc)
abline(h=10,col="red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

To get my main result (my cluster membership vector) I need to "cut" my tree using the function 'cutree()'

```
grps <- cutree(hc, h=10)
grps</pre>
```

```
plot(x, col=grps)
```


plot(x, col=cutree(hc, h=6))

Principal Component Analysis (PCA)

The goal of PCA is to reduce the dimensionality of a dataset down to some smaller subset of new variables (called PCs) that are a useful bases for further analysis, like visualization, clustering, etc.

Data import

Read data about crazy eating trends in the UK and N. Ireland

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

```
barplot(as.matrix(x),col=rainbow(nrow(x)))
```


barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

The so-called "pairs" plot can be useful for small datasets;

```
#rainbow(nrow(x))
pairs(x, col=rainbow(nrow(x)), pch=16)
```


So the pairs plot is useful for small datasets but it can be lots of work to interpret and gets intractable for larger datasets.

So PCA to the rescue....

The main function to do PCA in base R is called 'prcomp()'. This function wants the transpose of our data in this case.

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

```
attributes(pca)
```

```
$names
[1] "sdev"          "rotation" "center"          "scale"          "x"
$class
[1] "prcomp"
    pca$x
```

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

A major PCA result viz is called a "PCA plot" (a.k.a. a soure plot, biplot, PC1 vs PC2 plot, ordination plot)

Another important output from PCA is called the "loading" vector or the "rotation" component - this tells us how much the original variables (the food in this case) contribute to the new PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	-0.090972715
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	-0.039901917
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.016719075
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	0.030125166
Processed_Veg	-0.036488269	-0.045451802	0.05289191	-0.013969507
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.184072217
Cereals	-0.047702858	-0.212599678	-0.35884921	0.191926714
Beverages	-0.026187756	-0.030560542	-0.04135860	0.004831876
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.103508492

PCA looks to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways.

PCA of RNAseq

Data input

```
url2 <- "https://tinyurl.com/expression-CSV"</pre>
  rna.data <- read.csv(url2, row.names=1)</pre>
  head(rna.data)
       wt1 wt2 wt3 wt4 wt5 ko1 ko2 ko3 ko4 ko5
      439 458 408 429 420 90 88 86 90
gene1
gene2 219 200
                204 210 187 427 423 434 433 426
gene3 1006 989 1030 1017 973 252 237 238 226 210
      783 792 829 856 760 849 856 835 885 894
gene4
                204 244 225 277 305 272 270 279
gene5
      181 249
gene6
      460 502 491 491 493 612 594 577 618 638
  ## Again we have to take the transpose of our data
  pca <- prcomp(t(rna.data), scale=TRUE)</pre>
  summary(pca)
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       9.6237 1.5198 1.05787 1.05203 0.88062 0.82545 0.80111
Proportion of Variance 0.9262 0.0231 0.01119 0.01107 0.00775 0.00681 0.00642
Cumulative Proportion 0.9262 0.9493 0.96045 0.97152 0.97928 0.98609 0.99251
                           PC8
                                   PC9
                                            PC10
Standard deviation
                       0.62065 0.60342 3.457e-15
Proportion of Variance 0.00385 0.00364 0.000e+00
Cumulative Proportion 0.99636 1.00000 1.000e+00
```

Q.How many genes in this dataset?

```
nrow(rna.data)
[1] 100
  attributes(pca)
$names
[1] "sdev"
               "rotation" "center"
                                     "scale"
$class
[1] "prcomp"
  head(pca$x)
          PC1
                     PC2
                                PC3
                                           PC4
                                                       PC5
                                                                  PC6
wt1 -9.697374 1.5233313 -0.2753567 0.7322391 -0.6749398 1.1823860
wt2 -9.138950  0.3748504  1.0867958 -1.9461655  0.7571209 -0.4369228
wt3 -9.054263 -0.9855163  0.4152966  1.4166028  0.5835918  0.6937236
wt4 -8.731483 -0.7468371 0.5875748 0.2268129 -1.5404775 -1.2723618
wt5 -9.006312 -0.2945307 -1.8498101 -0.4303812 0.8666124 -0.2496025
ko1 8.846999 2.2345475 -0.1462750 -1.1544333 -0.6947862 0.7128021
            PC7
                        PC8
                                    PC9
wt1 -0.24446614 1.03519396 0.07010231 3.073930e-15
wt2 -0.03275370  0.26622249  0.72780448  1.963707e-15
wt3 -0.03578383 -1.05851494 0.52979799 2.893519e-15
wt4 -0.52795595 -0.20995085 -0.50325679 2.872702e-15
wt5 0.83227047 -0.05891489 -0.81258430 1.693090e-15
ko1 -0.07864392 -0.94652648 -0.24613776 4.052314e-15
I will make a main result figure use ggplot:
  library(ggplot2)
Warning: package 'ggplot2' was built under R version 4.3.3
  res <- as.data.frame(pca$x)
```

```
ggplot(res)+
  aes(PC1,PC2)+
  geom_point()
```



```
mycols <- c(rep("blue",5),rep("red",5))
mycols</pre>
```

[1] "blue" "blue" "blue" "blue" "red" "red" "red" "red" "red"

```
ggplot(res) +
  aes(x=PC1, y=PC2, label=row.names(res))+
  geom_point(col=mycols) +
  geom_label(col=mycols)
```



```
colnames(rna.data)
```

```
[1] "wt1" "wt2" "wt3" "wt4" "wt5" "ko1" "ko2" "ko3" "ko4" "ko5"
```

```
kmeans(pca$x[,1],centers=2)
```

K-means clustering with 2 clusters of sizes 5, 5

Cluster means:

[,1]

1 -9.125676

2 9.125676

Clustering vector:

wt1 wt2 wt3 wt4 wt5 ko1 ko2 ko3 ko4 ko5 1 1 1 1 1 2 2 2 2 2

Within cluster sum of squares by cluster:

[1] 0.5017505 0.2648467

(between_SS / total_SS = 99.9 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"