TASK 5

I have used Titanic.csv dataset for this Task.

Input:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Loading the Titanic dataset
df = pd.read_csv('Titanic.csv')
# Displaying first few rows
df.head()
# Basic information
print(df.info())
# Statistical description
print(df.describe(include='all'))
# Check data types
print(df.dtypes)
# Find missing values
print(df.isnull().sum())
```

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

Column Non-Null Count Dtype

--- ----- -----

- O PassengerId 891 non-null int64
- 1 Survived 891 non-null int64
- 2 Pclass 891 non-null int64
- 3 Name 891 non-null object
- 4 Sex 891 non-null object
- 5 Age 714 non-null float64
- 6 SibSp 891 non-null int64
- 7 Parch 891 non-null int64
- 8 Ticket 891 non-null object
- 9 Fare 891 non-null float64
- 10 Cabin 204 non-null object
- 11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

None

Pas	ssengerId	Survived	Pclass	Name	Sex \
count	891.00000	0 891.000	0000 891.000000)	891 891
unique	NaN	NaN	NaN	891	2
top	NaN	NaN	NaN Braund, M	r. Owen H	larris male
freq	NaN	NaN	NaN	1 577	
mean	446.00000	0.383	838 2.308642		NaN NaN
std 2	257.353842	0.48659	2 0.836071	N	laN NaN

min	1.000000 0	0.000000 1	1.000000	NaN 1	NaN
25%	223.500000	0.000000	2.000000	NaN	NaN
50%	446.000000	0.000000	3.000000	NaN	NaN
75%	668.500000	1.000000	3.000000	NaN	NaN
max	891.000000	1.000000	3.000000	NaN	NaN

Age SibSp Parch Ticket Fare Cabin \ count 714.000000 891.000000 891.000000 891 891.000000 204 681 unique NaN NaN NaN NaN 147 NaN 347082 NaN B96 B98 top NaN NaN 7 freq NaN NaN NaN NaN 4 mean 29.699118 0.523008 0.381594 NaN 32.204208 NaN 14.526497 1.102743 0.806057 NaN 49.693429 std NaN 0.420000 0.000000 0.000000 NaN 0.000000 min NaN 25% 20.125000 0.000000 0.000000 NaN 7.910400 NaN 28.000000 0.000000 50% 0.000000 NaN 14.454200 NaN 38.000000 1.000000 NaN 31.000000 75% 0.000000 NaN 80.000000 8.000000 6.000000 NaN 512.329200 NaN max

Embarked

count 889

unique 3

top S

freq 644

mean NaN

std NaN

min NaN

25% NaN

50% NaN

75% NaN

max NaN

PassengerId int64

Survived int64

Pclass int64

Name object

Sex object

Age float64

SibSp int64

Parch int64

Ticket object

Fare float64

Cabin object

Embarked object

dtype: object

PassengerId 0

Survived 0

Pclass 0

Name 0

Sex 0

Age 177

SibSp 0

Parch 0

Ticket 0

Fare 0

Cabin 687

Embarked 2

dtype: int64

Code is been continued but for better viewing the code I have divided it in parts .

Input:

```
# Visualize missing data

plt.figure(figsize=(10,6))

sns.heatmap(df.isnull(), cbar=False, cmap='viridis')

plt.title('Missing Values Heatmap')

plt.show()
```

Output:

Input:

```
# Count of survival
sns.countplot(x='Survived', data=df)
plt.title('Survival Count')
plt.show()
```

Percentage

survival_rate = df['Survived'].mean() * 100

print(f"Survival Rate: {survival_rate:.2f}%")

Output:

Input:

sns.countplot(x='Sex', data=df)
plt.title('Gender Count')

plt.show()

Input:

```
plt.figure(figsize=(10,6))
sns.histplot(df['Age'].dropna(), bins=30, kde=True)
plt.title('Age Distribution')
plt.show()
```

Output:

Input:

sns.countplot(x='Pclass', data=df)
plt.title('Passenger Class Count')
plt.show()

Output:

Input:

sns.barplot(x='Sex', y='Survived', data=df)
plt.title('Survival Rate by Gender')
plt.show()

Input:

sns.barplot(x='Pclass', y='Survived', data=df)
plt.title('Survival Rate by Passenger Class')
plt.show()

Output:

Input:

```
plt.figure(figsize=(10,6))
sns.histplot(data=df, x='Age', hue='Survived', bins=30, kde=True, multiple="stack")
plt.title('Age vs Survival')
plt.show()
```

Output:

Input:

sns.barplot(x='Embarked', y='Survived', data=df)
plt.title('Survival Rate by Port of Embarkation')
plt.show()

Input:

Create new feature

df['FamilySize'] = df['SibSp'] + df['Parch']

sns.barplot(x='FamilySize', y='Survived', data=df)

plt.title('Family Size vs Survival')

plt.show()

