

September 1983 Revised July 2004

MM74HC595 8-Bit Shift Registers with Output Latches

General Description

The MM74HC595 high speed shift register utilizes advanced silicon-gate CMOS technology. This device possesses the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads.

This device contains an 8-bit Serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has 8 3-STATE outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Low quiescent current: 80 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- 8-bit serial-in, parallel-out shift register with storage
- Wide operating voltage range: 2V–6V
- Cascadable
- Shift register has direct clear
- Guaranteed shift frequency: DC to 30 MHz

Ordering Code:

Order Number	Package Number	Package Description
MM74HC595M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC595SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC595MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC595N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

RCK	scĸ	SCLR	G	Function			
Х	Х	Х	Н	Q _A thru Q _H = 3-STATE			
Х	Х	L	L	Shift Register cleared			
				Q' _H = 0			
Х	1	Н	L	Shift Register clocked			
				$Q_N = Q_{n-1}, \ Q_0 = SER$			
1	Х	Н	L	Contents of Shift			
				Register transferred			
				to output latches			

Absolute Maximum Ratings(Note 1)

(Note 2)

,	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V _{CC} or GND Current,	
per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125^{\circ}$		Units
Symbol		Conditions		Тур		Guaranteed L	imits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	
	Q' _H	$V_{IN} = V_{IH}$ or V_{IL}						
		I _{OUT} ≤ 4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 5.2 mA	6.0V	5.2	5.48	5.34	5.2	V
	Q _A thru Q _H	$V_{IN} = V_{IH}$ or V_{IL}						
		I _{OUT} ≤ 6.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	0	0.1	0.1	0.1	
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	
	Q' _H	$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
	Q _A thru Q _H	$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
loz	Maximum 3-STATE	V _{OUT} = V _{CC} or GND	6.0V		±0.5	±5.0	±10	μА
	Output Leakage	$\overline{G} = V_{IH}$						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μА
	Supply Current	$I_{OUT} = 0 \mu A$						
	1		_			1		

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating		50	30	MHz
	Frequency of SCK				
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 45 pF	12	20	ns
	Delay, SCK to Q'H				
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 45 pF	18	30	ns
THE TEN	Delay, RCK to Q _A thru Q _H				
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$			
	Time from \overline{G} to Q_A thru Q_H	$C_L = 45 pF$	17	28	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = k\Omega$	15	25	ns
	Time from \overline{G} to Q_A thru Q_H	$C_L = 5 pF$			
t _S	Minimum Setup Time			20	ns
	from SER to SCK				
t _S	Minimum Setup Time			20	ns
	from SCLR to SCK				
t _S	Minimum Setup Time			40	ns
	from SCK to RCK				
	(Note 5)				
t _H	Minimum Hold Time			0	ns
	from SER to SCK				
t _W	Minimum Pulse Width			16	ns
	of SCK or RCK				

Note 5: This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together in which case the storage register state will be one clock pulse behind the shift register.

AC Electrical Characteristics

 $\rm V_{CC} = 2.0 - 6.0 V, \ C_L = 50 \ pF, \ t_r = t_f = 6 \ ns$ (unless otherwise specified)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units
Syllibol			▼CC	Тур		Guaranteed L	imits	Units
f _{MAX}	Maximum Operating	C _L = 50 pF	2.0V	10	6	4.8	4.0	
	Frequency		4.5V	45	30	24	20	MHz
			6.0V	50	35	28	24	
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	2.0V	58	210	265	315	ns
	Delay from SCK to Q'H	C _L = 150 pF	2.0V	83	294	367	441	115
		C _L = 50 pF	4.5V	14	42	53	63	
		C _L = 150 pF	4.5V	17	58	74	88	ns
		C _L = 50 pF	6.0V	10	36	45	54	
		C _L = 150 pF	6.0V	14	50	63	76	ns
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	2.0V	70	175	220	265	ns
	Delay from RCK to Q _A thru Q _H	C _L = 150 pF	2.0V	105	245	306	368	115
		C _L = 50 pF	4.5V	21	35	44	53	
		C _L = 150 pF	4.5V	28	49	61	74	ns
		C _L = 50 pF	6.0V	18	30	37	45	
		C _L = 150 pF	6.0V	26	42	53	63	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V		175	221	261	
	Delay from SCLR to Q'H		4.5V		35	44	52	ns
			6.0V		30	37	44	
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$						
	from G to Q _A thru Q _H	C _L = 50 pF	2.0V	75	175	220	265	ns
		C _L = 150 pF	2.0V	100	245	306	368	ns
		C _L = 50 pF	4.5V	15	35	44	53	no
		C _L = 150 pF	4.5V	20	49	61	74	ns
		C _L = 50 pF	6.0V	13	30	37	45	
		C _L = 150 pF	6.0V	17	42	53	63	ns

AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units
Syllibol			*CC	Тур		Guaranteed L	imits	Units
t_{PHZ},t_{PLZ}	Maximum Output Disable	$R_L = 1 k\Omega$	2.0V	75	175	220	265	
	Time from G to QA thru QH	$C_L = 50 pF$	4.5V	15	35	44	53	ns
			6.0V	13	30	37	45	
t _S	Minimum Setup Time		2.0V		100	125	150	
	from SER to SCK		4.5V		20	25	30	ns
			6.0V		17	21	25	
t _R	Minimum Removal Time		2.0V		50	63	75	
	from SCLR to SCK		4.5V		10	13	15	ns
			6.0V		9	11	13	
t _S	Minimum Setup Time		2.0V		100	125	150	
	from SCK to RCK		4.5V		20	25	30	ns
			6.0V		17	21	26	
t _H	Minimum Hold Time		2.0V		5	5	5	
	SER to SCK		4.5V		5	5	5	ns
			6.0V		5	5	5	
t _W	Minimum Pulse Width		2.0V	30	80	100	120	
	of SCK or SCLR		4.5V	9	16	20	24	ns
			6.0V	8	14	18	22	
t _r , t _f	Maximum Input Rise and		2.0V		1000	1000	1000	
	Fall Time, Clock		4.5V		500	500	500	ns
			6.0V		400	400	400	
t _{THL} , t _{TLH}	Maximum Output		2.0V	25	60	75	90	
	Rise and Fall Time		4.5V	7	12	15	18	ns
	Q _A –Q _H		6.0V	6	10	13	15	
t _{THL} , t _{TLH}	Maximum Output		2.0V		75	95	110	
	Rise & Fall Time		4.5V		15	19	22	ns
	Q' _H		6.0V		13	16	19	
C _{PD}	Power Dissipation	$\overline{G} = V_{CC}$		90				_
10	Capacitance, Outputs	$\overline{G} = GND$		150				pF
	Enabled (Note 6)							
C _{IN}	Maximum Input		1	5	10	10	10	pF
	Capacitance							
C _{OUT}	Maximum Output		+	15	20	20	20	pF
501	Capacitance							

Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com