NMFk example: Mapping variables

A problem demonstrating how **NMFk** can be applied to learn mapping between variables.

The test problem is related to predicting pressure transients observed in wells based on various attributes (e.g., well-logs, fracking stages, proppant mass, etc.) associated with the well construction.

The machine-lerning problem described here relates to clasical history matching problems.

If **NMFk** is not installed, first execute import Pkg; Pkg.add("NMFk"); Pkg.add("Mads").

We start by loading the necessary Julia modules:

```
In [1]: import NMFk
```

Unable to load WebIO. Please make sure WebIO works for your Jupyter client. For troubleshooting, please see the WebIO/IJulia documentation (https://juliagizmos.github.io/WebIO.jl/latest/providers/ijulia/).

Info: Installing pyqt package to avoid buggy tkagg backend.

@ PyPlot /Users/vvv/.julia/packages/PyPlot/XHEG0/src/init.jl:118

```
In [2]: import Mads
In [3]: import Statistics
```

Load test matrices $\, A \,$, $\, B \,$, $\, X \,$, $\, Y \,$ and $\, Z \,$ that will be applied for the ML analyses presented below:

In [5]:	A = permutedims([0.168427		0.0499	914	0.031383	0.020747
	0.959030	0.203276		0.095674	0.043699	0.00
	0.208403	0.064995		0.039014	0.019713	0.00
	0.948621	0.217649		0.101904	0.049093	0.02
	B = permutedims([0.654060		0.142	989	0.043485	0.000000
	1.000000	0.090943		0.048150	0.018898	0.00
	0.076188	0.020636		0.011489	0.006166	0.00
	0.378206	0.098391		0.041083	0.009261	0.00
	0.055413	0.021730		0.010460	0.004788	0.00
	<pre>X = permutedims([0]</pre>	.500 0	.002	0.667	0.40	
	0.800	0.200	0.667	0.	76	
	0.800	0.100	0.400	0.	80	
	0.600	0.010	1.000	0.	40])	
	Y = permutedims([1.000 0.		.600	0.267 1.00		
	0.700	0.020	0.333	0.	60	
	1.000	0.020	0.200	0.	72	
	0.700	1.000	0.233	0.	60	
	1.000	0.060	0.133	0.	80])	
	z = permutedims([0	.800 0	.400	0.100	0.60]);	

- A: pressure transients over time observed in a group of 5 wells
- B: pressure transients over time observed in a group of 4 wells
- X: 4 attributes representing well properties of the group of 4 wells
- Y: 4 attributes representing well properties of the group of 5 wells
- z : 4 attributes representing well properties of a new well which does not have any transient production data observed yet

Pressure matrix A is associated with attribute matrix Y.

Pressure matrix $\, {\tt B} \,$ is associated with attribute matrix $\, {\tt X} \,$.

Pressure transients over time observed in the group of 5 wells (matrix A) are:

In [6]: Mads.plotseries(A; name="Well", logy=true, title="Well Group A (matrix A)")

Pressure transients over time observed in the group of 4 wells (matrix B) are:

Well attributes for the group of 5 wells (matrix Y) are:

```
In [27]: NMFk.plotmatrix(Y; title="Attribute matrix Y (Well Group A)", xticks=["W$i"
```

Out[27]: W1 W2 W3 W4 W5 1.0 0.5 0.0 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates? for help? Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute matrix Y (Well Group A)

Well attributes for the group of 4 wells (matrix X) are:

```
In [28]: NMFk.plotmatrix(X; title="Attribute matrix X (Well Group B)", xticks=["W$i"
```

Out [28]: W1 W2 W3 W4 1.0 0.5 0.0 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates? for help? Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute matrix X (Well Group B)

We learn how the well attributes associated with the 2 well groups are related.

We achieve this by discovering how the x and y matrices are mapped.

After that we can apply the discovered mapping betweent the x and y matrices (i.e., well attributes) to predict the transients.

The ML analyses is performed as follows:

```
In [10]: W, H, of, sil, aic = NMFk.mapping(X, Y, A, B; method=:ipopt, save=false);

[ Info: Mapping matrix size: 4 x 5
    @ NMFk /Users/vvv/.julia/dev/NMFk/src/NMFkMapping.jl:51
```

The extracted mapping between the x and y matrices is encoded in H.

In this case, we assume that none of the transinets of well in group are known; this is completely blind prediction.

The prediction error is:

```
In [11]: NMFk.normnan(B .- (A * H))
Out[11]: 1.032261490452482
```

Blind predictions of the transients for the 5 wells (Group $\,^{\mathrm{B}}$) based on the transinets of the 4 wells (Group $\,^{\mathrm{A}}$) are:

Blind predictions of the transients for the 5 wells (dashed lines) are compared against the true values (solid lines):

In [18]: eries(A * H; linestyle=:dash, name="Well (est.)", logy=true, gl=Mads.plotse

