Solubilidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 Solubilidade em Nível Molecular

- 1. Solvatação.
- 2. Interações soluto-solvente.
- **3.** *Semanhante-dissolve-semelhante.*
- 4. Espécies hidrofílicas e hidrofóbicas.
- 5. Micelas.
- 6. Surfactantes.

1.0.1 Habilidades

a. **Comparar** a solubilidades com base na estrutura molecular.

2 Limites da Solubilidades

- Soluções saturadas.
- 2. Solubilidade e temperatura.
- 3. Curvas de solubilidades.
- 4. Soluções supersaturadas.

2.0.1 Habilidades

 a. Determinar a solubilidade de uma substância a partir da curva de solubilidade.

3 Solubilidade de Gases

1. Lei de Henry:

$$s = k_H P$$

2. Solubulidade de gases e temperatura.

3.0.1 Habilidades

 a. Calcular a solubilidade de um gás em um líquido a partir da Lei de Henry.

4 Termodinâmica da Dissolução

- 1. Entalpia rede.
- 2. Ciclo de Born-Haber.
- 3. Entalpia de hidratação.
- 4. Entalpia de dissolução.

4.0.1 Habilidades

- a. Calcular a entalpia de rede utilizando o ciclo de Born-Haber.
- b. **Calcular** a entalpia de dissolução em função das entalpias de rede e de hidratação.

5 Coloides

- 1. Movimento Browniano.
- 2. Definição de coloides:

$$1\,nm < d < 1\,\mu m$$

- 3. Classificação de coloides.
- 4. Efeito Tyndall.

5.0.1 Habilidades

a. **Identidicar** os tipos de coloides e suas propriedades.

Nível I

PROBLEMA 5.1

2E01

Assinale a alternativa que mais se aproxima da solubilidade do dióxido de carbono em uma solução sob 500 Torr desse gás a 20 °C.

Dados

 $\bullet \ k_H(CO_2) = 0.023 \, mol \, L^{-1} \, atm^{-1}$

PROBLEMA 5.2

2E02

A concentração mínima em massa de oxigênio necessária para a vida dos peixes é 4 ppm.

Assinale a alternativa que mais se aproxima da pressão atmosférica mínima que forneceria a concentração mínima em massa de oxigênio na água para permitir a vida dos peixes a 20 °C.

Dados

• $k_H(O_2) = 0,0013 \, \text{mol L}^{-1} \, \text{atm}^{-1}$

PROBLEMA 5.3

2E03

Compressas frias contendo nitrato de amônio, podem ser utilizadas para amenizar a dor. Essas compressas consistem em cristais de nitrato de amônio e água, e esfriam à medida que o nitrato de amônio se dissolve na água.

Assinale a alternativa que explica porque dissolução do nitrato de amônio em água é espontânea.

PROBLEMA 5.4 2E04

Considere as proposições.

- O valor absoluto da entalpia de hidratação do Na⁺ é maior que o do K⁺.
- O valor absoluto da entalpia de hidratação do Br⁻ é maior que o do Cl⁻.
- O valor absoluto da entalpia de hidratação do Ca²⁺ é maior que o do Al³⁺.
- O valor absoluto da entalpia de hidratação do Ga³⁺ é maior que o do Al³⁺.

Assinale a alternativa que relaciona as proposições *corretas*.

PROBLEMA 5.5 2E05

O gás dióxido de carbono dissolvido em uma amostra de água em um recipiente parcialmente cheio e lacrado entrou em equilíbrio com sua pressão parcial no ar que está acima da solução. Considere as operações.

- A pressão parcial do gás CO₂ dobra por adição de mais CO₂.
- 2. A pressão total do gás sobre o líquido dobra por adição de nitrogênio.
- **3.** A pressão parcial de CO_2 é aumentada por compressão do gás até um terço do volume original.
- **4.** A temperatura é aumentada mantendo a pressão total constante.

Assinale a alternativa que relaciona as operações que levam ao aumento da concentração de CO₂ em solução.

PROBLEMA 5.6 2E06

Considere as curvas de solubilidade de duas substâncias A e B.

Assinale a alternativa correta.

Considere as curvas de solubilidade.

Assinale a alternativa incorreta.

PROBLEMA 5.8 2E08

Considere as curvas de solubilidade.

Considere as proposições.

- Ao dissolver 130 g de KNO₃ em 200 g de água, a 40 °C, a solução obtida é saturada e possui 70 g de corpo de fundo.
- **2.** Ao dissolver $20 \, g$ de $Ce_2(SO_4)_3$ em $300 \, g$ de água a $10 \, ^{\circ}C$ e, posteriormente, aquecer a solução até $90 \, ^{\circ}C$ haverá gradativa precipitação da substância.
- **3.** A menor quantidade de água necessária para dissolver completamente 140 g de $K_2Cr_2O_7$ a 90 °C é cerca de 150 g.
- **4.** O nitrato de sódio é a substância mais solúvel a 100 °C.

Assinale a alternativa que relaciona as proposições corretas.

Considere as curvas de solubilidade do brometo de potássio em água.

Assinale a alternativa *incorreta*.

PROBLEMA 5.10

2E12

A dissolução do sulfato de lítio ocorre com aumento de temperatura da solução, já a dissolução do nitrato de amônio ocorre com o resfriamento da solução.

- **1.** A entalpia de rede do sulfato de lítio é menor que sua entalpia de hidratação.
- 2. A entalpia de rede do nitrato de amônio é maior que sua entalpia de hidratação.
- A dissolução do sulfato de lítio aumenta a entropia do sistema.
- A dissolução do nitrato de amônio diminui a entropia do sistema.

Assinale a alternativa que relaciona as proposições *corretas*.

PROBLEMA 5.11

2E13

Assinale a alternativa que mais se aproxima da entalpia de solução do cloreto de sódio.

Dados

- $\Delta H_{hid}(NaCl) = 784 \, kJ \, mol^{-1}$
- $\Delta H_{rede}^{\circ}(NaCl) = 787 \, kJ \, mol^{-1}$

PROBLEMA 5.12

2E14

Assinale a alternativa que mais se aproxima da entalpia de rede do brometo de cálcio.

Dados

- $\Delta H_{hid}(Ca^{2+}) = -1579 \, \text{kJ mol}^{-1}$
- $\Delta H_{sol}(CaCl_2) = -103 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

PROBLEMA 5.13

2E15

Uma amostra de 4 g de MgBr $_2$ é dissolvida em 100 g de água a 25 $^{\circ}\text{C}.$

Assinale a alternativa que mais se aproxima da temperatura final da solução.

Dados

- $\Delta H_R(MgBr_2) = -2406 \, kJ \, mol^{-1}$
- $\Delta H_{hid}(MgBr_2) = -2591,6 \, kJ \, mol^{-1}$
- $C_P(H_2O, 1) = 75,3 \, \text{J K}^{-1} \, \text{mol}^{-1}$

PROBLEMA 5.14

2E16

Uma amostra de 10 g de $\rm NH_4NO_3$ é dissolvida em 100 g de água a 25 °C.

Assinale a alternativa que mais se aproxima da temperatura final da solução.

Dados

- $\Delta H_R(NH_4NO_3) = -628 \text{ kJ mol}^{-1}$
- $\bullet \Delta H_{hid}(NH_4^+) = -307 \, kJ \, mol^{-1}$
- $\Delta H_{hid}(NO_3^-) = -314 \, kJ \, mol^{-1}$
- $C_P(H_2O, 1) = 75.3 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

PROBLEMA 5.15

2E17

Assinale a alternativa que mais se aproxima da entalpia de formação do cloreto de potássio.

Dados

- $AE(Cl) = -349 \, kJ \, mol^{-1}$
- $EI(K) = 419 \, kJ \, mol^{-1}$
- $\Delta H_R(KCl) = -690 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\text{sub}}(K) = 90 \,\text{kJ mol}^{-1}$

PROBLEMA 5.16

2E18

Assinale a alternativa que mais se aproxima da entalpia de rede do cloreto de cálcio.

Dados

- $AE(Cl) = -349 \, kJ \, mol^{-1}$
- $EI_1(Ca) = 590 \, kJ \, mol^{-1}$
- $EI_2(Ca) = 1146 \, kJ \, mol^{-1}$
- $\Delta H_{sub}(Ca) = 190 \, kJ \, mol^{-1}$
- $\Delta H_f^{\circ}(CaCl_2, s) = -796 \, kJ \, mol^{-1}$

PROBLEMA 5.17

2E19

Assinale a alternativa que mais se aproxima da entalpia de sublimação do lítio.

Dados

- $AE_1(I) = -295 \, kJ \, mol^{-1}$
- $\bullet \ EI(Li) = 520 \, kJ \, mol^{-1}$
- $\Delta H_R(LiI) = -753 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_f(LiI) = -292 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_L(I_2) = 151 \,\text{kJ mol}^{-1}$

PROBLEMA 5.18

2E20

Assinale a alternativa que mais se aproxima da segunda afinidade eletrônica do enxofre.

Dados

- $AE_1(S) = 2,1 eV$
- EI(K) = 4,4 eV
- $\Delta H_R(K_2S) = 2052 \, kJ \, mol^{-1}$
- $\Delta H_{\text{sub}}(K) = 90 \,\text{kJ mol}^{-1}$
- $\bullet \ \Delta H_{sub}(S) = 277 \, kJ \, mol^{-1}$
- $\Delta H_f^{\circ}(K_2S, s) = -381 \, kJ \, mol^{-1}$

PROBLEMA 5.19

2F21

Os mingaus contêm grandes moléculas de amido que fazem a mistura engrossar por um mecanismo semelhante ao da gelatina.

Assinale a alternativa com a descrição para o mecanismo de endurecimento dos mingaus.

Nível II

PROBLEMA 5.20

2E22

Quando submersos em águas profundas, os mergulhadores necessitam voltar lentamente à superfície para evitar a formação de bolhas de gás no sangue.

- a. Explique o motivo da não formação de bolhas de gás no sangue quando o mergulhador desloca-se de regiões próximas à superfície para as regiões de águas profundas.
- Explique o motivo da não formação de bolhas de gás no sangue quando o mergulhador desloca-se muito lentamente de regiões de águas profundas para as regiões próximas da superfície.
- c. Explique o motivo da formação de bolhas de gás no sangue quando o mergulhador desloca-se muito rapidamente de regiões de águas profundas para as regiões próximas da superfície.

PROBLEMA 5.21

2E23

O volume de sangue no corpo de um mergulhador de mar profundo é cerca de 6 L. As células sanguíneas compõem cerca de 55% do volume do sangue. Os restantes 45% formam a solução em água conhecida como plasma. A solubilidade do N_2 no sangue a uma pressão parcial de 1 atm é $5.8 \times 10^{-4} \, \mathrm{mol} \, \mathrm{L}^{-1} \, \mathrm{atm}^{-1}$.

Assinale a alternativa que mais se aproxima do volume de nitrogênio, medido sob 1 atm e 37 °C, eliminado por um mergulhador em profundidade de 90 m em seu retorno à superfície.

PROBLEMA 5.22

2E24

Um recipiente ${\bf A}$, dotado de uma válvula na parte superior, está totalmente preenchido por uma solução de n mols de ${\rm CO}_2$ em 1800 g de água. O recipiente ${\bf A}$ foi, então, conectado ao recipiente ${\bf B}$ previamente evacuado, fechado por válvula e com volume de 1,64 L. Em um dado momento, as válvulas foram abertas deixando o sistema nesta condição durante tempo suficiente para atingir o equilíbrio. Após o equilíbrio, as válvulas foram fechadas e os recipientes foram desconectados. Todo o processo ocorreu à temperatura constante de 300 K. A constante de Henry para a solubilidade do ${\rm CO}_2$ na água, $k_{\rm H}=33,3$ atm $^{-1}$.

Determine o número de mols de CO₂ que migraram para o recipiente **B** em função de n.

PROBLEMA 5.23

2E28

Considere as propriedades dos sólidos iônicos.

- a. **Explique** porque o valor absoluto da entalpia de rede cresce na ordem $Na_2Te < Na_2Se < CaTe < CaSe$.
- b. **Ordene** os compostos FeCl₃, FeCl₂ e Fe₂O₃ em função do valor absoluto de entalpia de rede.

PROBLEMA 5.24

2E29

Considere as propriedades dos sólidos iônicos.

- a. Explique porque, mesmo sendo a primeira afinidade eletrônica do oxigênio exotérmica e a segunda é endotérmica, na maioria dos compostos iônicos o oxigênio está na forma de óxido.
- b. **Explique** porque o composto NaCl₂ é improvável, supondo que sua entalpia de rede seja igual à do MgCl₂.

Gabarito

Nível I

1.	C	2.	В	3.	D	4.	C	5.	C
6.	E	7.	В	8.	В	9.	В	10.	D
11.	C	12.	C	13.	C	14.	В	15.	C
16.	D	17.	В	18.	E	19.	D		

Nível II

- a. O aumento da solubilidade do gás no sangue devido ao aumento da pressão é o motivo de não haver a formação de bolhas de gás no sangue quando o mergulhador se desloca de regiões próximas à superfície para as regiões de águas profundas.
 - b. O motivo de não se formarem bolhas de gás no sangue quando o mergulhador se desloca muito lentamente de regiões de águas profundas para as regiões próximas da superfície é o fato da variação de pressão ocorrer lentamente e, portanto, a liberação de gás ser pequena.
 - c. A formação de bolhas de gás no sangue quando o mergulhador se desloca muito rapidamente de regiões de águas profundas para águas superficiais é a repentina variação de pressão, diminuindo a solubilidade do gás no sangue. Ocorre intensa liberação do gás, com formação de bolhas.
- 2. D

3.
$$\frac{102 + n + \sqrt{(102 + n)^2 - 8n}}{2}$$

- 4. -
- 5. -