# **CPU (Central Process Unit)**

# Índex de conceptes

- Unitat de Procés (ALU + Registre)
- Unitat de Control (comptador + ROM)



Arquitectura (Von Neumann) d'un Processador



- Memòria Principal
- Dispositius d'E/S
- CPU (Central Process Unit)
  - ✓UC (Unitat de Control)
  - ✓UP (Unitat de Procés)





on M, N i són quantitats de 4 bits. Aquesta CPU ha de tenir una **ALU** i un **registre (REG)**. Com que l'operació no es pot fer de cop, és necessari fer diverses operacions en el temps (fer un algoritme). Per tant cal un registre on desar el resultat de les operacions intermèdies i el resultat final. L'ordre de les operacions no està definit i hi ha diverses possibilitats, per exemple:

- Carregar l'operand M al registre (M => REG)
- Multiplicar per 2 l'operand del registre i desar el resultat al registre (2M => REG)
- Sumar l'operand N al contingut del registre i desar el resultat al registre (2M+N => REG)
- Restar l'operand P al contingut del registre i i desar el resultat al registre (2M+N-P => REG)
- Sumar 1 al contingut del registre i desar el resultat al registre (2M+N-P+1 => REG)
- Dividir el contingut del registre per 2 (2M+N-P+1)/2 => REG)
- Dividir el contingut del registre per 2 (2M+N-P+1)/4 => REG)



Implementarem una CPU senzilla que realitza la següent operació

$$W = \frac{2M + N - P + 1}{4}$$

Amb l'ALU es faran les sumes i restes i la multiplicació per 2 i la divisió per 4 es poden fer realitzant desplaçaments a l'esquerra i a la dreta amb el registre. A aquest circuit que realitza aquesta operació se l'anomena **Unitat de Procés (UP).** 



Es disposa d'un senyal d'entrada de 4 bits per poder introduir els operands M, N i P de manera següencial

Implementarem una CPU senzilla que realitza la següent operació



Amb l'ALU es faran les sumes i restes i la multiplicació per 2 i la divisió per 4 es poden fer realitzant desplaçaments a l'esquerra i a la dreta amb el registre. A aquest circuit que

realitza aquesta operació se l'anomena Unitat de Procés (UP).

Aquesta taula conté una llista de tots els senyals de la UP.

| Nom     | Descripció                                                  | E/S     | Longitud |
|---------|-------------------------------------------------------------|---------|----------|
| ENTRADA | Operand d'entrada.                                          | Entrada | 4b       |
| ENTRADA | Cin d'entrada.                                              | Entrada | 1b       |
| f2      | Senyal de control d'operacions de l'ALU                     | Entrada | 1b       |
| f1      | Senyal de control d'operacions de l'ALU                     | Entrada | 1b       |
| f0      | Senyal de control d'operacions de l'ALU                     | Entrada | 1b       |
| CLK     | Senyal de rellotge                                          | Entrada | 1b       |
| CLRN    | Senyal de <i>clear</i> . Actiu per nivell baix. Posa a zero | Entrada | 1b       |
|         | el REG.                                                     |         |          |
| S1      | Senyal de control del registre de desplaçament.             | Entrada | 1b       |
| S0      | Senyal de control del registre de desplaçament.             | Entrada | 1b       |
| OUTALU  | Contingut del ALU.                                          | Sortida | 4b       |
| OUTREG  | Contingut del registre. Conté el resultat final i           | Sortida | 4b       |
|         | permet monitoritzar l'execució de la UP.                    |         |          |



Implementarem una CPU senzilla que realitza la següent operació



Amb l'ALU es faran les sumes i restes i la multiplicació per 2 i la divisió per 4 es poden fer realitzant desplaçaments a l'esquerra i a la dreta amb el registre. A aquest circuit que

realitza aquesta operació se l'anomena Unitat de Procés (UP).

| f2 | f1        | f0  | Operació              | Descripció operació            |
|----|-----------|-----|-----------------------|--------------------------------|
| 0  | 0         | 0   | A + B + Cin           | Suma aritmètica                |
|    | U         | b   | A + B + CIII          | (operació aritmètica)          |
| 0  | 0         | 1   | A – B                 | Resta aritmètica               |
|    | U         | 1   | А-Б                   | (operació aritmètica)          |
| n  | 1         | 0   | A + 1                 | Increment d'A en una unitat    |
|    | 0   1   0 | ATI | (operació aritmètica) |                                |
| 0  | 1         | 1   | A - 1                 | Decreixement de A en una       |
|    |           | 1   | ^-1                   | unitat (operació aritmètica)   |
| 1  | 0         | 0   | Α                     | Transferir A (operació lògica) |
| 1  | 0         | 1   | В                     | Transferir B (operació lògica) |
| 1  | 1         | 0   | A and B               | AND (operació lògica)          |
| 1  | 1         | 1   | A or B                | OR (operació lògica)           |



Taula funcionament ALU









Clk

Sortida sèrie

Esquerra

 $Q_{n-1}$   $Q_{n-2}$ 

Sortida Paral·lel

| Selecc | ió | Senyals de Sortio |      |                                                  |       |  |  |  |
|--------|----|-------------------|------|--------------------------------------------------|-------|--|--|--|
| S1 S0  |    | Operació          | 1    | Q <sub>n-1</sub> Q <sub>n-2</sub> Q <sub>1</sub> | $Q_0$ |  |  |  |
| 0 0    | N  | Mantenir          | HOLD | Q <sub>n-1</sub> Q <sub>n-2</sub> Q <sub>1</sub> | $Q_0$ |  |  |  |
| 0 1    | [  | Despl. esquerra   | SHL  | $Q_{n-2} Q_{n-3} Q_0$                            | DR    |  |  |  |
| 1 0    | [  | Despl. Dreta      | SHR  | DL Q <sub>n-1</sub> Q <sub>2</sub>               | $Q_1$ |  |  |  |
| 1 1    |    | Càrrega           | LOAD | D <sub>n-1</sub> D <sub>n-2</sub> D <sub>1</sub> | $D_0$ |  |  |  |

UNIVERSITATDE BARCELONA

**Disseny Digital Bàsic** 

Sortida sèrie

Dreta

Implementarem una CPU senzilla que realitza la següent operació



A[3..0]

CLK

**CLRN** 

Amb l'ALU es faran les sumes i restes i la multiplicació per 2 i la divisió per 4 es poden fer realitzant desplaçaments a l'esquerra i a la dreta amb el registre. A aquest circuit que

realitza aquesta operació se l'anomena Unitat de Procés (UP).

| f2                  | f1        | f0  | Operació              | Descripció operació            |                             |   |   |       |                          |
|---------------------|-----------|-----|-----------------------|--------------------------------|-----------------------------|---|---|-------|--------------------------|
| 0                   | 0         | 0   | A + B + Cin           | Suma aritmètica                |                             |   |   |       |                          |
| $\lfloor 0 \rfloor$ | O         | 0   | AFBFCIII              | (operació aritmètica)          |                             |   |   |       |                          |
|                     | 0         | 1   | A – B                 | Resta aritmètica               |                             |   |   |       |                          |
|                     | 0         |     | А-Б                   | (operació aritmètica)          |                             |   |   |       |                          |
|                     | 1         | ٨   | 0                     | A + 1                          | Increment d'A en una unitat |   |   |       |                          |
| L                   | '   1   0 | ATI | (operació aritmètica) |                                |                             |   |   |       |                          |
|                     | 1         | 1   | 1                     | 1                              | 1                           | 1 | 1 | A - 1 | Decreixement de A en una |
|                     |           |     | A - 1                 | unitat (operació aritmètica)   |                             |   |   |       |                          |
| 1                   | 0         | 0   | Α                     | Transferir A (operació lògica) |                             |   |   |       |                          |
| 1                   | 0         | 1   | В                     | Transferir B (operació lògica) |                             |   |   |       |                          |
| 1                   | 1         | 0   | A and B               | AND (operació lògica)          |                             |   |   |       |                          |
| 1                   | 1         | 1   | A or B                | OR (operació lògica)           |                             |   |   |       |                          |

 $\leftarrow$ 

Taula funcionament ALU

|           |                 |                                       | OUTREG[30]                            |
|-----------|-----------------|---------------------------------------|---------------------------------------|
| •         | als de<br>ntrol | Funcionalitat                         | Senyals de sortida<br>dels FFs        |
| <b>S1</b> | S0              |                                       | $Q_3 Q_2 Q_1 Q_0$                     |
| 0         | 0               | Manté dada                            | $Q_3 Q_2 Q_1 Q_0$                     |
| 0         | 1               | Desplaça a l'esquerra                 | $Q_2 Q_1 Q_0 DR$                      |
| 1         | 0               | Desplaça a la dreta                   | $DL Q_3 Q_2 Q_1$                      |
|           |                 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |

Càrrega en paral·lel

Taula funcionament Registre de desplaçament

 $D_3 D_2 D_1 D_0$ 

**ENTRADA** 

B[3..0]

OUTALU[3..0]

Cin

ALU

4 bits

**REG\_DESP** 

Implementarem una CPU senzilla que realitza la següent operació



Amb l'ALU es faran les sumes i restes i la multiplicació per 2 i la divisió per 4 es poden fer realitzant desplaçaments a l'esquerra i a la dreta amb el registre. A aquest circuit que

realitza aquesta operació se l'anomena Unitat de Procés (UP).

| f2 | f1        | f0  | Operació              | Descripció operació            |     |                              |       |                          |
|----|-----------|-----|-----------------------|--------------------------------|-----|------------------------------|-------|--------------------------|
| 0  | 0         | C   | A + B + Cin           | Suma aritmètica                |     |                              |       |                          |
| O  | O         | 0   | AFBFCIII              | (operació aritmètica)          |     |                              |       |                          |
| 0  | 0         | 1   | A – B                 | Resta aritmètica               |     |                              |       |                          |
| U  | U         | 1   | A-B                   | (operació aritmètica)          |     |                              |       |                          |
| _  | 1         | 0   | A + 1                 | Increment d'A en una unitat    |     |                              |       |                          |
| O  | 0   1   0 | ATI | (operació aritmètica) |                                |     |                              |       |                          |
| (  | 1         | 1   | 1                     | 1                              | 1   | 1                            | A - 1 | Decreixement de A en una |
| U  | 1         |     |                       |                                | A-1 | unitat (operació aritmètica) |       |                          |
| 1  | 0         | 0   | Α                     | Transferir A (operació lògica) |     |                              |       |                          |
| 1  | 0         | 1   | В                     | Transferir B (operació lògica) |     |                              |       |                          |
| 1  | 1         | 0   | A and B               | AND (operació lògica)          |     |                              |       |                          |
| 1  | 1         | 1   | A or B                | OR (operació lògica)           |     |                              |       |                          |

 $\leftarrow$ 

Taula funcionament ALU

Senyals de control

SU

| LU       |             | ,    | OUTALU[30]           |
|----------|-------------|------|----------------------|
|          | C <u>Lk</u> | REG_ | DESP S0              |
|          | CLF         | RN   | ∨ OUTREG[30]         |
| Funciona | alitat      | l -  | de sortida<br>ls FFs |
|          |             | Q₃ Q | $Q_2 Q_1 Q_0$        |
| N / +    |             |      |                      |

A[3..0]

Taula funcionament Registre de desplaçament •

| 31 | 30 |                       | $L_{3}L_{2}L_{1}L_{0}$                           |
|----|----|-----------------------|--------------------------------------------------|
| 0  | 0  | Manté dada            | $Q_3 Q_2 Q_1 Q_0$                                |
| 0  | 1  | Desplaça a l'esquerra | $Q_2 Q_1 Q_0 0$                                  |
| 1  | 0  | Desplaça a la dreta   | $0 \ \mathbf{Q}_3 \ \mathbf{Q}_2 \ \mathbf{Q}_1$ |
| 1  | 1  | Càrrega en paral·lel  | $D_3 D_2 D_1 D_0$                                |
| 1  | 1  | Càrrega en paral·lel  | $D_3 D_2 D_1 D_1$                                |

**ENTRADA** 

B[3..0]

Cin

ALU

4 bits

Implementarem una CPU senzilla que realitza la següent operació

$$W = \frac{2M + N - P + 1}{4}$$

Amb l'ALU es faran les sumes i restes i la multiplicació per 2 i la divisió per 4 es poden fer realitzant desplaçaments a l'esquerra i a la dreta amb el registre. A aquest circuit que

realitza aquesta operació se l'anomena Unitat de Procés (UP).

Per fer funcionar la **UP** caldrà controlar els diversos controls seguint una seqüència determinada tal i com es mostra a la taula:

| Operació      | DL | DR | f2 | f1 | f0 | <b>S1</b> | S0 | Cin | ENTRADA | Sortida al Registre |
|---------------|----|----|----|----|----|-----------|----|-----|---------|---------------------|
| Carregar M    | 0  | 0  | 1  | 0  | 1  | 1         | 1  | Х   | М       | M                   |
| Mult. M per 2 | 0  | 0  | Х  | Х  | Х  | 0         | 1  | Х   | XXXX    | 2M                  |
| Sumar N       | 0  | 0  | 0  | 0  | 0  | 1         | 1  | 0   | Ν       | 2M + N              |
| Restar P      | 0  | 0  | 0  | 0  | 1  | 1         | 1  | Х   | Р       | 2M + N – P          |
| Sumar 1       | 0  | 0  | 0  | 1  | 0  | 1         | 1  | Х   | XXXX    | 2M + N – P + 1      |
| Dividir per 2 | 0  | 0  | Х  | Х  | Х  | 1         | 0  | Х   | XXXX    | (2M + N - P + 1)/2  |
| Dividir per 2 | 0  | 0  | Х  | Х  | Х  | 1         | 0  | Х   | XXXX    | 2M + N - P + 1)/2/2 |



Aquesta tasca és realitzarà amb una **Unitat de Control (UC)** que generarà seqüencialment tots els senyals de control necessaris tal i com surten a la taula.

#### **Unitat de Control**

Implementarem una CPU senzilla que realitza la següent operació

$$\longrightarrow W = \frac{2M + N - P + 1}{4}$$

Ara l'objectiu és fer una **UC microprogramada** que generi automàticament els senyals de control de l'ALU i del registre i la senyal Cin externa (amb la taula es pot veure que en aquest cas es pot fixar a 0), de manera que només s'han d'introduir els operands i generar el senyal de rellotge. Cada pas a realitzar per executar la operació es pot considerar una micro-operació. L'estructura d'una **microinstrucció (UINST)** serà la següent:

$$UNIST[7] = DL$$

$$UNIST[6] = DR$$

$$UINST[5] = f2$$

$$UNIST[4] = f1$$

$$UINST[3] = f0$$

$$UINST[2] = S1$$

$$UNIST[1] = S0$$

$$UNIST[0] = Cin$$

| Operació      | DL | DR | f2 | f1 | f0 | <b>S1</b> | S0 | Cin | ENTRADA | Sortida al Registre |
|---------------|----|----|----|----|----|-----------|----|-----|---------|---------------------|
| Carregar M    | 0  | 0  | 1  | 0  | 1  | 1         | 1  | Х   | М       | M                   |
| Mult. M per 2 | 0  | 0  | Х  | Х  | Х  | 0         | 1  | Х   | XXXX    | 2M                  |
| Sumar N       | 0  | 0  | 0  | 0  | 0  | 1         | 1  | 0   | Ν       | 2M + N              |
| Restar P      | 0  | 0  | 0  | 0  | 1  | 1         | 1  | Х   | Р       | 2M + N – P          |
| Sumar 1       | 0  | 0  | 0  | 1  | 0  | 1         | 1  | Х   | xxxx    | 2M + N – P + 1      |
| Dividir per 2 | 0  | 0  | Х  | Х  | Х  | 1         | 0  | Х   | XXXX    | (2M + N - P + 1)/2  |
| Dividir per 2 | 0  | 0  | Х  | Х  | Х  | 1         | 0  | Х   | XXXX    | 2M + N – P + 1)/2/2 |

#### **Unitat de Control**

Implementarem una CPU senzilla que realitza la següent operació

$$\longrightarrow W = \frac{2M + N - P + 1}{4}$$

El valor de cada microinstrucció per cada pas a realitzar dependrà per tant dels senyals de control. Aquests s'han d'introduir en una memòria de 16x8 bits de manera que cada posició de memòria contingui una microinstrucció. Com que cada posició de memòria és de 8 bits (1 byte) els utilitzarem tots per codificar la microinstrucció. Per exemple, la primera microinstrucció serà "00101110".

UINST[5] = f2

UNIST[4] = f1

UINST[3] = f0

UINST[2] = S1

UNIST[1] = S0

UNIST[0] = Cin

| Operació      | DL | DR | f2 | f1 | f0 | <b>S1</b> | S0 | Cin | ENTRADA | Sortida al Registre |
|---------------|----|----|----|----|----|-----------|----|-----|---------|---------------------|
| Carregar M    | 0  | 0  | 1  | 0  | 1  | 1         | 1  | 0   | М       | M                   |
| Mult. M per 2 | 0  | 0  | 0  | 0  | 0  | 0         | 1  | 0   | XXXX    | 2M                  |
| Sumar N       | 0  | 0  | 0  | 0  | 0  | 1         | 1  | 0   | Ν       | 2M + N              |
| Restar P      | 0  | 0  | 0  | 0  | 1  | 1         | 1  | 0   | Р       | 2M + N – P          |
| Sumar 1       | 0  | 0  | 0  | 1  | 0  | 1         | 1  | 0   | xxxx    | 2M + N – P + 1      |
| Dividir per 2 | 0  | 0  | 0  | 0  | 0  | 1         | 0  | 0   | XXXX    | (2M + N - P + 1)/2  |
| Dividir per 2 | 0  | 0  | 0  | 0  | 0  | 1         | 0  | 0   | XXXX    | 2M + N – P + 1)/2/2 |

#### **Unitat de Control**

Implementarem una CPU senzilla que realitza la següent operació

$$W = \frac{2M + N - P + 1}{4}$$

Per seqüencialitzar les microinstruccions una rere l'altra s'utilitzarà un circuit generador d'adreces de la memòria ROM que s'anomena *Program Counter* (PrC). Aquest circuit funciona com a comptador, i conté un registre on s'emmagatzema l'adreça de la memòria ROM. A cada cicle de rellotge, el PrC s'incrementa en una unitat de manera que les microinstruccions surten de forma seqüencial i per tant a cada cicle s'executarà una nova operació en la unitat de procés. Per fer el PrC es pot utilitzar un registre i la sortida S (suma) d'un sumador complet modificat de 4 bits.





Implementarem una CPU senzilla que realitza la següent operació



