Diszkrét matematika II. 4. előadás

Fancsali Szabolcs Levente nudniq@inf.elte.hu

ELTE IK Komputeralgebra Tanszék

Mérai László diái alapján

Definíció (Művelet)

Egy X halmazon értelmezett (r-változós, "r-ér") művelet alatt egy $*: X^r \to X$ függvényt értünk.

Egy X halmazon értelmezett binér (kétváltozós) művelet egy

 $*: X \times X \to X$ függvény. Gyakran *(x, y) helyett x * y-t írunk.

Egy X halmazon értelmezett unér (egyváltozós) művelet egy $*: X \to X$ függvény.

Példa

- \mathbb{C} halmazon az + is, és · is binér műveletek.
- \mathbb{C} halmazon az \div (osztás) nem művelet, mert $\mathrm{dmn}(\div) \neq \mathbb{C} \times \mathbb{C}$.
- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ halmazon az \div binér művelet.
- C halmazon a 0 illetve 1 konstans kijelölése nullér művelet.
- \mathbb{R}^n (n > 1) vektortéren a vektorok skaláris szorzása nem művelet, mert $\operatorname{rng}(\langle,\rangle) = \mathbb{R} \neq \mathbb{R}^n$ (a szorzás eredménye nem vektor)
- \mathbb{R}^n vektortéren egy adott $\lambda \in \mathbb{R}$ skalárral való szorzás unér művelet

Műveleti tulajdonságok (múlt heti anyag!)

Definíció

 $A * : X \times X \rightarrow X$ művelet:

- asszociatív, ha $\forall a, b, c \in X : (a * b) * c = a * (b * c);$
- kommutatív, ha $\forall a, b \in X : a * b = b * a$.

Példa

- C-n az + ill. a · műveletek asszociatívak, kommutatívak.
- A függvények halmazán a kompozíció művelete asszociatív: $(f \circ g) \circ h = f \circ (g \circ h)$.
- A függvények halmazán a kompozíció művelete nem kommutatív: f(x) = x + 1, $g(x) = x^2$: $x^2 + 1 = (f \circ g)(x) \neq (g \circ f)(x) = (x + 1)^2$.
- A kivonás az egész számok halmazán nem asszociatív: $-1 = (1-1) 1 \neq 1 (1-1) = 1$.

Művelettartó leképezések (múlt heti anyag!)

Definíció

Legyen X halmaz a * művelettel, Y a \circ művelettel. Az $f: X \to Y$ függvény művelettartó, ha $\forall x, y \in X$ esetén

$$f(x*y) = f(x) \circ f(y).$$

Példa

- Legyen $X = \mathbb{R}$ az + művelettel, $Y = \mathbb{R}^+$ a · művelettel. Ekkor az $x \mapsto a^x$ művelettartó: $a^{x+y} = a^x \cdot a^y$.
- Legyen $X = Y = \mathbb{C}$ az + művelettel. Ekkor a $z \mapsto \overline{z}$ művelettartó: $\overline{z+w} = \overline{z} + \overline{w}$.
- Legyen $X = \mathbb{Z}$ a + művelettel, $Y = \mathbb{Z}_m$ a $+_m$ (összeadás modulo m) művelettel.

Ekkor a $n \mapsto n \mod m$ művelettartó: $(k+n) \mod m = (k \mod m) +_m (n \mod m).$

• Legyen $X = \{I, H\}$ a XOR/ \land művelettel, \mathbb{Z}_2 a $+/\cdot$ művelettel. Ekkor a $H \mapsto 0$, $I \mapsto 1$ hozzárendelés művelettartó (XOR-nak +).

Algebrai struktúrák (múlt heti anyag!)

Definíció (Algebrai struktúra)

A (H; M) pár algebrai struktúra, ha H egy halmaz, M pedig H-n értelmezett műveletek halmaza.

A $(H; \{*, +, \circ\})$ jelölés helyett a $(H; *, +, \circ)$ jelölést is használhatjuk.

Definíció (Grupoid)

Ha az M művelethalmaz egyetlen műveletet tartalmaz, és az egy binér művelet, akkor a (H; M) struktúrát grupoidnak nevezzük.

- (ℕ; +) algebrai struktúra, mert természetes számok összege természetes szám (ld. Diszkrét matematika 1.), és grupoid is.
- $(\mathbb{N}; -)$ nem algebrai struktúra, mert például $0 1 = -1 \notin \mathbb{N}$.
- $(\mathbb{Z}; +, \cdot)$ algebrai struktúra, mert egész számok összege és szorzata egész szám (ld. Diszkrét matematika 1.), de nem grupoid.
- $(\mathbb{Z}_m; +, \cdot)$ algebrai struktúra (ld. Diszkrét matematika 1.), de nem grupoid, mert két művelet van.

Félcsoportok (múlt heti anyag!)

Definíció (Félcsoport)

A (G; *) grupoid félcsoport, ha * asszociatív G-n.

Definíció (egységelem, semleges elem)

Ha létezik olyan $s \in G$ elem, amire $\forall g \in G : s * g = g * s = g$, akkor az s elemet semleges elemnek (más néven egységelemnek) nevezzük.

Definíció (Monoid)

Ha (G;*) félcsoportban létezik s semleges elem, akkor G-t semleges elemes félcsoportnak, egységelemes félcsoportnak, más néven monoidnak nevezzük.

- \mathbb{N} az + művelettel egységelemes félcsoport n=0 egységelemmel.
- \mathbb{Q} a · művelettel egységelemes félcsoport n=1 egységelemmel.
- $\mathbb{C}^{k \times k}$ a mátrixszorzással egységelemes félcsoport az egységmátrixszal mint egységelemmel.

Csoportok (itt kezdődik az új anyag)

Definíció (elem inverze)

Legyen (G;*) egy egységelemes félcsoport e egységelemmel. A $g \in G$ elem inverze az a $g^{-1} \in G$ elem, melyre $g * g^{-1} = g^{-1} * g = e$.

Egy elemnek nem feltétlenül létezik inverze, de ha létezik, akkor egyértelmű. (Miért is? Kell hozzá a művelet asszociativitása!)

Definíció (Csoport)

Ha a (G;*) egy egységelemes félcsoportban minden $g \in G$ elemnek létezik inverze, akkor (G;*) csoport.

Definíció (Abel-csoport)

Ha a (G;*) csoportban a * csoportművelet kommutatív, akkor (G;*) Abel-csoport.

 \mathbb{Z} a legszűkebb olyan (Abel-) csoport, mely tartalmazza \mathbb{N} -et.

Csoportok

 \mathbb{Z} megkonstruálható \mathbb{N} -ből: az $(r,s) \sim (p,q)$, ha r+q=p+s ekvivalenciareláció osztályai az egész számok.

Példák csoportokra:

- $(\mathbb{Q}; +)$ a 0 egységelemmel Abel-csoport.
- $\bullet \ (\mathbb{Q}^*;\cdot) \ \text{az} \ 1 \ \text{egys\'egelemmel Abel-csoport, ahol} \ \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}.$
- $(\mathbb{Z}_m; +)$ a $\overline{0}$ egységelemmel Abel-csoport.
- $(\mathbb{Z}_p^*;\cdot)$ az $\overline{1}$ egységelemmel Abel-csoport.
- $\{M \in \mathbb{C}^{k \times k} : \det M \neq 0\}$ a mátrixszorzással, és az egységmátrixszal mint egységelemmel, csoport (de k > 1 esetén nem Abel).
- X → X bijektív függvények a kompozícióval, és az id_X : x → x identikus leképzéssel mint egységelemmel.

Gyűrűk

Definíció (disztributivitás)

Legyen $(R; \oplus, \otimes)$ algebrai struktúra, ahol \oplus és \otimes binér műveletek. Azt mondjuk, hogy teljesül a \otimes -nak a \oplus -ra vonatkozó bal oldali disztributivitása, illetve jobb oldali disztributivitása, ha $\forall k, l, m \in R$ -re: $k \otimes (l \oplus m) = (k \otimes l) \oplus (k \otimes m)$, illetve $\forall k, l, m \in R$ -re: $(l \oplus m) \otimes k = (l \otimes k) \oplus (m \otimes k)$.

Példa

 $(\mathbb{Z};+,\cdot)$ esetén teljesül a szorzás összeadásra vonatkozó mindkét oldali disztributivitása.

Szokásos elnevezések, bevett jelölések

 $(R; \oplus, \otimes)$ két binér műveletes algebrai struktúra esetén szokás az \oplus műveletet "összeadásnak" és a \otimes műveletet "szorzásnak" nevezni (ha nem okoz félreértést). Az \oplus -ra vonatkozó semleges elemet ekkor nullelemnek, a \otimes -ra vonatkozó semleges elemet egységelemnek nevezzük. A nullelem szokásos jelölése 0, az egységelemé 1, esetleg e.

Gyűrűk

Definíció (Gyűrű)

Az $(R; \oplus, \otimes)$ két binér műveletes algebrai struktúra gyűrű, ha

- (R; ⊕) Abel-csoport (kommutatív csoport a 0 egységelemmel);
- $(R; \otimes)$ félcsoport;
- teljesül a ⊗-nak a ⊕-ra vonatkozó mindkét oldali disztributivitása.

 $(R; \oplus, \otimes)$ gyűrű 0 nulleleme tehát $(R; \oplus)$ Abel-csoport egységeleme.

Definíció (Egységelemes gyűrű)

Az $(R; \oplus, \otimes)$ gyűrű egységelemes gyűrű, ha R-en a \otimes műveletre nézve is van egységelem: 1 vagy e. Azaz ha $(R; \otimes)$ egységelemes félcsoport.

Definíció (Kommutatív gyűrű)

Az $(R; \oplus, \otimes)$ gyűrű kommutatív gyűrű, ha a \otimes művelet is kommutatív. Azaz ha $(R; \otimes)$ kommutatív félcsoport.

Gyűrűk

Algebrai struktúrák

Példa

- (ℤ; +, ·) egységelemes kommutatív gyűrű.
- $(2\mathbb{Z}; +, \cdot)$ kommutatív gyűrű, de nem egységelemes.
- ℚ, ℝ, ℂ a szokásos műveletekkel egységelemes kommutatív gyűrűk.
- \bullet ($\mathbb{C}^{k \times k}, +, \cdot$) a szokásos mátrixösszeadással és mátrixszorzással egységelemes gyűrű, de nem kommutatív, ha k > 1.
- $(\mathbb{R}^3; +, \times)$ a 3-dim Euklideszi vektortér a vektoriális szorzással NEM gyűrű mert \times nem asszociatív, ezért (\mathbb{R}^3 ; \times) nem félcsoport.

A gyűrűkben általában nem lehet elvégezni az osztást:

- \mathbb{Z} -ben nem oldható meg a 2x = 1 egyenlet.
- $\mathbb{R}^{2\times 2}$ -ben nem oldható meg az alábbi egyenlet

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \cdot X = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

• \mathbb{Z}_4 -ben nem oldható meg a $2x \equiv 1 \mod 4$.

Nullosztómentes gyűrűk

Definíció (Nullosztómentes gyűrű)

Ha egy (R, \oplus, \otimes) gyűrűben $\forall r, s \in R, r \neq 0, s \neq 0$ esetén $r \otimes s \neq 0$, akkor R nullosztómentes gyűrű. (Ilyenkor $r \otimes s = 0 \Rightarrow r = 0$ vagy s = 0)

Példa

Nem nullosztómentes gyűrű

$$\bullet \ (\mathbb{R}^{2\times 2};+,\cdot): \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

Állítás

Nullosztómentes gyűrűben a nem-nulla elemek additív rendje megegyezik, és vagy egy p prímszám vagy végtelen. (Mi is az az additív rend?!)

Definíció (Gyűrű karakterisztikája)

Ha az előző állításban szereplő közös rend p, akkor azt mondjuk, hogy a gyűrű karakterisztikája p (jelölése: $\operatorname{char}(R) = p$), ha pedig ez a közös rend végtelen, akkor a gyűrű karakterisztikája $\operatorname{char}(R) = 0$.

Nullosztómentes gyűrűk

Definíció

A kommutatív, nullosztómentes gyűrűt integritási tartománynak nevezziik.

Példa

• $(\mathbb{Z};+,\cdot)$

Definíció

Az $(R; \oplus, \otimes)$ egységelemes integritási tartományban az $a, b \in R$ elemekre azt mondjuk, hogy a osztója b-nek, ha van olyan $c \in R$, amire $b = a \otimes c$. Jelölése: a b.

Definíció

Az egységelem osztóját egységnek nevezzük.

Ne keverjük az egységelem és az egység fogalmát! Egységelemből csak egyetlen egy van (az 1 jelöli), egységből esetleg (tipikusan) több is. (Persze az egységelem mindig egység is, hiszen 1|1 mivel $1=1\otimes 1$.)

14.

Definíció (Ferdetest)

Az $(R; \oplus, \otimes)$ egységelemes gyűrű ferdetest, ha $(R \setminus \{0\}; \otimes)$ csoport.

Definíció (Test)

A kommutatív ferdetestet (azaz amiben nemcsak az összeadás, hanem a szorzás is kommutatív) testnek nevezzük.

Példa

- ℚ, ℝ, ℂ a szokásos műveletekkel testek,
- \mathbb{Z}_p a szokásos műveletekkel test, ha p prím.
- a kvaterniók (Lin.alg.) nem kommutatív ferdetestet alkotnak.

yuruk

Állítás

Legyen $(R; \oplus, \otimes)$ gyűrű $0 \in R$ nullelemmel. Ekkor $\forall r \in R$ esetén $0 \otimes r = r \otimes 0 = 0$.

Bizonyítás

$$0 \otimes r = (0 \oplus 0) \otimes r = (0 \otimes r) \oplus (0 \otimes r) \Longrightarrow 0 = 0 \otimes r.$$

A másik állítás bizonyítása ugyanígy.

Állítás

Test nullosztómentes.

Bizonyítás

Legyen $(F; \oplus, \otimes)$ test $0 \in F$ nullelemmel, és $1 \in F$ egységelemmel. Indirekt tfh. léteznek $a, b \in F$ nem-nulla elemek, amikre $a \otimes b = 0$. Ekkor $b = 1 \otimes b = a^{-1} \otimes a \otimes b = a^{-1} \otimes 0 = 0$, ami ellentmondás.

Polinomok alapfogalmai

Definíció

Legyen $(R; +, \cdot)$ gyűrű. A gyűrű elemeiből képzett $f = (f_0, f_1, f_2, \dots)$ $(f_j \in R)$ végtelen sorozatot R fölötti polinomnak nevezzük, ha csak véges sok eleme nem-nulla.

Az R fölötti polinomok halmazát R[x]-szel jelöljük.

R[x] elemein definiáljuk az összeadást és a szorzást.

$$f = (f_0, f_1, f_2, ...), g = (g_0, g_1, g_2, ...)$$
 és $h = (h_0, h_1, h_2, ...)$ esetén $f + g = (f_0 + g_0, f_1 + g_1, f_2 + g_2, ...)$ és $f \cdot g = h$, ahol

$$h_k = \sum_{i+j=k} f_i g_j = \sum_{i=0}^k f_i g_{k-i} = \sum_{j=0}^k f_{k-j} g_j.$$

Két polinom pontosan akkor egyenlő, ha minden tagjuk egyenlő:

$$f = g \Leftrightarrow \forall j \in \mathbb{N} : f_i = g_i$$
.

Megiegyzés

Könnyen látható, hogy polinomok összege és szorzata is polinom.

Polinomok alapfogalmai

Állítás (NB)

Ha $(R; +, \cdot)$ gyűrű, akkor $(R[x]; +, \cdot)$ is gyűrű, és R fölötti polinomgyűrűnek nevezzük.

Megjegyzés

Gyakran az $(R;+,\cdot)$ gyűrűre szimplán R-ként, az $(R[x];+,\cdot)$ gyűrűre R[x]-ként hivatkozunk.

Állítás

Ha az R gyűrű kommutatív, akkor R[x] is kommutatív.

Bizonyítás

$$(f \cdot g)_k = f_0 g_k + f_1 g_{k-1} + \ldots + f_{k-1} g_1 + f_k g_0 =$$

= $g_k f_0 + g_{k-1} f_1 + \ldots + g_1 f_{k-1} + g_0 f_k =$
= $g_0 f_k + g_1 f_{k-1} + \ldots + g_{k-1} f_1 + g_k f_0 = (g \cdot f)_k$

Mérai László diái alapján

Polinomok alapfogalmai

Állítás

 $1 \in R$ egységelem esetén $e = (1, 0, 0 \dots)$ egységeleme lesz R[x]-nek.

Bizonyítás

$$(f \cdot e)_k = \sum_{j=0}^k f_j e_{k-j} = \sum_{j=0}^{k-1} f_j e_{k-j} + f_k e_0 = f_k$$

Állítás

Ha az R gyűrű nullosztómentes, akkor R[x] is nullosztómentes.

Bizonvítás

Legyen n, illetve m a legkisebb olyan index, amire $f_n \neq 0$, illetve $g_m \neq 0$.

$$(f \cdot g)_{n+m} = \sum_{j=0}^{n+m} f_j g_{n+m-j} = \sum_{j=0}^{n-1} f_j g_{n+m-j} + f_n g_m + \sum_{j=n+1}^{n+m} f_j g_{n+m-j} = \sum_{j=0}^{n+m} f_j g_{n+m-j} = \sum_{j=0$$

$$= 0 + f_n g_m + 0 = f_n g_m \neq 0$$

Polinomok alapfogalmai

Jelölés

Az
$$f = (f_0, f_1, f_2, ..., f_n, 0, 0, ...), f_n \neq 0 (f_m = 0 : \forall m > n)$$
 polinomot $f(x) = f_0 + f_1 x + f_2 x^2 + ... + f_n x^n, f_n \neq 0$ alakba írjuk.

Definíció

Az előző pontban szereplő polinom esetén f_i -t az i-ed fokú tag együtthatójának nevezzük, f_0 a polinom konstans tagja, f_n a főegyütthatója. A polinom tagjai az $f_j x^j$ alakú kifejezések, $f_n x^n$ a főtagja, n pedig a foka. f fokának jelölésére deg(f) használatos.

Példa

Az f = (1, 0, 2, 0, 0, 3, 0, ...) polinom felírható $f(x) = 1 + 0x + 2x^2 + 0x^3 + 0x^4 + 3x^5$ alakban. Ugyanezen f további alakjai: $f(x) = 1 + 2x^2 + 3x^5$, $f(x) = 3x^5 + 2x^2 + 1$.