Práctica 1 de Intro

D. Garraz

Actualizado: 08/04/2024

1. Lógica Binaria (Verdadero o Falso)

Fórmulas según teórica:

- 1. True y False son fórmulas.
- 2. Cualqueir variable proposicional es una fórmula.
- 3. Si A es una fórmula, $\neg A$ es una fórmula.
- 4. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \wedge A_2 \wedge \cdots \wedge A_n)$ es una fórmula.
- 5. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \vee A_2 \vee \cdots \vee A_n)$ es una fórmula.
- 6. Si A y B son fórmulas, $(A \to B)$ es una fórmula.
- 7. Si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula.

Ejercicio 1. \bigstar Sean p y q variables proposicionales. Siguiendo las reglas de formación de fórmulas, ¿Cuánles de las siguientes expresiones son *fórmulas bien formadas*?

- a) $(p \neg q)$ No es fórmula, si bien p y $\neg q$ son fórmulas. Esa forma de juntarlas no obedece a ninguna de las siete reglas.
- b) $p \lor q \lor True$ No es fórmula, faltan paréntesis para saber como evaluar.
- c) $(p \to \neg p \to q)$ No es fórmula,. Si bien se parece a una extensión de la regla 6, faltarían los paréntesis, ejemplo: $((p \to \neg p) \to q)$ o $(p \to (\neg p \to q))$
- d) $\neg(p)$ Dudoso. Diría que **no** es una fórmula, porque el agregar paréntesis al pedo no lo tenemos definido en la lista de reglas.
- e) $p \vee \neg p \wedge q$) No es fórmula, se parece a una mezcla de las reglas 4 y 5 pero faltan paréntesis onda $((p \vee \neg p) \wedge q)$ o $(p \vee (\neg p \wedge q))$ ¿Mejores palabras para describir lo que pasa?
- f) $(True \wedge True \wedge True)$ Es fórmula por regla 4.

Ejercicio 2. * Determinar el valor de verdad de las siguiente fórmulas:

1. Cuando el valor de verdad de a, b y c es verdadero, mientras que el de x e y es falso.

2. Cuando el valor de verdad de a, b y c es falso, mientras que el de x e y es verdadero.

a) $(\neg a \lor b)$

1. V

2. V

b) $(c \lor (y \land x) \lor b)$

1. V

2. V

c) $\neg (c \lor y)$ Hacer!

d) Hacer!

e) Hacer!

f) $(((c \lor y) \land (x \lor b)) \leftrightarrow (c \lor (y \land x) \lor b))$

1. V

2. V

g) $(\neg c \land \neg y)$

1. F

2. F

p	q	$p \wedge q$	$p \vee q$	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Ejercicio 3. Determinar, utilizando tablas de verdad, si las siguientes fórmulas son tautologías, contradicciones o contingencias.

Nota: Contigencia es que depende de los valores que le de a las proposiciones.

p	q	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
V	V	V	V	V	V
V	F	F	V	F	F
F	V	F	V	V	F
F	F	F	F	V	V

- a) $(p \lor q)$
- b)
- c)
- d)
- e)
- f)
- g)
- h)
- i)

 $j) \ (p \to (q \to r)) \to ((p \to q) \to (p \to r)))$

	\ <u>+</u>	- (-	//	((1	(1	, , ,		
	p	q	r	$(q \rightarrow r)$	$(p \to (q \to r))$	$(p \rightarrow q)$	$(p \rightarrow r)$	$(p \to q) \to (p \to r))$	$(p \to (q \to r) \to (p \to q) \to (p \to r))$
	V	V	V	V	V	V	V	V	V
ı	V	V	F	F	F	V	F	F	V
	V	F	V	V	V	F	V	V	V
	V	F	F	V	V	F	F	V	V
	F	V	V	V	V	V	V	V	V
İ	F	V	F	F	V	V	V	V	V
İ	F	F	V	V	V	V	V	V	V
	F	F	F	V	V	V	V	V	V

Ejercicio 4. \bigstar Dadas las proposiciones lógicas α y β , se dice que α es más fuerte que β si y solo si $\alpha \to \beta$ es una tautología. En este caso, también decimos que β es más débil que α . Determinar la relación de fuerza de los siguientes pares de fórmulas:

a) True, False

 $True \to False \leftrightarrow False \xrightarrow[\text{tanto}]{\text{por lo}} True$ es más débil que False. En particular True es la fórmula más débil del mundo.

b) $(p \wedge q), (p \vee q).$ Chequeo si $(p \wedge q) \to (p \vee q)$ es tautología.

p	q	$(p \wedge q)$	$(p \lor q)$	$(p \land q) \to (p \lor q)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

Concluyendo que es una tautología, y $(p \land q)$ es más fuerte que $(p \lor q)$, la fuerza o $(p \lor q)$ es más débil.

c) True, True.

Sale que True es más débil que ella misma y se me explotó la cabeza. revisar!

- d) Hacer!
- e) False, False.

Sale que False es más débil que ella misma y se me explotó la cabeza. revisar!

- f) Hacer!
- g) p, q. En este caso no hay una tautología. Cómo se responde? Ninguna? o p es más débil que q
- h) Hacer!

Ejercicio 5. ¿Cuál es la fórmula proposicional más fuerte y cuál la más débil de las que aparecen en el ejercicio anterior? True y False

Ejercicio 6. ★

a)	k)			
b)	1)			
c)	m)			
d)	n)			
e) $(p \land p) \equiv p$ (Idempotencia de la conjunción)	$ ilde{ m n})$			
$egin{array}{ c c c c c }\hline p & p & p \wedge p \\\hline T & T & T \\\hline F & F & F \\\hline \end{array}$	0)			
f) $(p \lor p) \equiv p$ (Idempotencia de la disyunción)	p)			
$ \begin{array}{c cccc} p & p & p \lor p \\ \hline T & T & T \end{array} $	q)			
$egin{bmatrix} I & I & I \\ F & F & F \end{bmatrix}$	r)			
g)	s)			
h)	$\mathrm{t})$			
i)	u)			
j)	v)			
Ejercicio 7.				
Ejercicio 8. ★				
Ejercicio 9.				
Ejercicio 10. ★				
Ejercicio 11.				
Ejercicio 12.				
2. Lógica ternaria o trivalente	(Verdadero, Falso o Indefinido)			
Ejercicio 13. ★ fdsf				
Ejercicio 14. ★				
Ejercicio 15. ★				
Eiercicio 16. ★				

Ejercicio 17. ★

Ejercicio 18.

3. Fórmulas del lenguaje de especificación

Ejercicio 20. ★

Ejercicio 21.