NASA-CR-174,763

NASA Contractor Report 174763

NASA-CR-174763 19840025391

Radiative Resistojet Performance Characterization Tests

C. I. Miyake

Rocket Research Company Redmond, Washington

September 1984

LIBRARY GOPY

1984

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Contract NAS3-23868

				•
				~
			.*	
-				
				•
				4

ENTER: 7

1 RN/NASA-CR-174763

DISPLAY 07/2/1 PAGE 3701 CATEGORY 20 RPT#: NASA-CR-174763 NAS R4N33462*# ISSUE 23 1.26:174763 REPT-84-R-958 CNT#: NAS3-23868 84/09/00 55 PAGES

UNCLASSIFIED DOCUMENT

UTTL: Radiative resistojet performance characterization tests TLSP: Final

Report

AUTH: A/MIYAKE, C. I.

SAP: HC A04/MF A01 CORP: Rocket Research Corp., Redmond, Wash. AVAIL.NTIS MAJS: /*AUXILIARY PROPULSION/*ELECTRIC PROPULSION/*SPACE STATIONS/*SPACECRAFT

PROPULSION / GRAPHS (CHARTS)/ HEAT EXCHANGERS/ PERFORMANCE TESTS/ RADIATION SHIELDING / TABLES (DATA)/ THRUST AUGMENTATION MINS:

Author ABA:

The test article, test approach, data analysis and results of a study ABS: undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants are described. This

renewed interest in resistojets is a result of propulsion systems

definition studies which indicate potential application to space station

auxiliary propulsion.

ENTER:

.

:

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION AND SUMMARY	1
2.0	TEST ARTICLE	4
	2.1 Radiative Resistojet Description	4
3.0	TEST FACILITY AND INSTRUMENTATION	7
	3.1 Test Facility Description	7
	3.2 Test Control System	7
	3.3 Thrust Balance	10
	3.4 Instrumentation	10
	3.5 Propellants	13
4.0	TEST RESULTS AND EVALUATION	14
	4.1 Specific Impulse and Thrust	14
	4.2 Efficiency	17
	4.3 Post-Test Hardware Examination	25
5.0	SUMMARY AND CONCLUSION	26
	REFERENCES	27
	APPENDIX A - RAW TEST DATA, REDUCED TEST DATA	29
	APPENDIX B — DATA REDUCTION ASSUMPTIONS AND TECHNIQUES	43

N84-33462#

			•
			-
•			
			•
į.			,

1.0 INTRODUCTION AND SUMMARY

This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojets is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. This report is submitted in fulfillment of the data package requirements of NASA Contract No. NAS3-23868, Statement of Work, Exhibit A. Technical direction and monitoring was provided by Mr. James Sovey of the NASA-Lewis Research Center.

The augmented catalytic thruster is a flight qualified hydrazine resistojet based on use of a catalytic reactor for hydrazine decomposition and thermally isolated radiative heater/heat exchanger subassembly for post decomposition heat addition. This device is illustrated in Figures 1-1 and 1-2 and is described in more detail in Reference 1.

When used to augment the performance of propellant which is already in a gaseous state, the decomposition reactor can be eliminated. This propellant gas is then ducted directly to the augmentation heat exchanger through a simple gas inlet tube. This is the configuration that was tested and reported herein. A production augmentation sub-assembly and mounting structure was used. No attempt was made to modify (other than replace the decomposition reactor with the gas inlet tube) or optimize the design for the selected propellants or for a projected mission application.

Testing, conducted in an altitude chamber with thrust and propellant flow rate measurement, consisted of a matrix of propellant flow rates and augmentation heater power levels for the three propellants. Resultant thrust levels ranged from 57.5 to 496.2 mN (12.9 to 111.5 mlbf) with augmentation power levels up to one kilowatt. Firings were 20-minute steady-state runs with performance data measured at end of run equilibrium conditions.

AUGMENTED CATALYTIC THRUSTER

2.0 TEST ARTICLE

2.1 RADIATIVE RESISTOJET DESCRIPTION

The resistojet thruster, shown conceptually in Figure 2-1, used in the testing was identical to the production ACT augmentation assembly (heat exchanger with nozzle, augmentation heater and heat shielding) presently qualified and in flight service (Reference 2). As the conceptual schematic shows, the augmentation heater is isolated from the propellant stream which eliminates the need for high temperature electrical pass-throughs as well as precluding direct contact of the heating element with the propellant.

As shown in Figure 1-2, the heat exchanger is an annular section surrounding the augmentation heater element. The gas inlet tube discharges into a manifold which provides circumferential distribution of the flow. The gas then flows through the heated axial flutes raising its temperature. Internal heat shielding isolates the external heat exchanger walls to reduce heat losses. The flutes discharge into a plenum and the gas then exits through an insert type nozzle.

The heat exchanger is surrounded by an extensive set of radiation shields contained in a rhodium plated external shell. The Technion, Incorporated augmentation heater also includes multiple radiation shield diskettes to minimize axial heat loss. A production ACT mounting structure and support structure was used to mount the heat exchanger. Figure 2-2 shows the resistojet test article with the augmentation heater removed.

The test augmentation heater was identical in design to the production ACT heater except the heater element length and diameter were slightly adjusted to provide a nominal power of 700 watts at 28 vdc.

RADIATIVE RESISTOJET CONCEPTUAL SCHEMATIC

RESISTOJET AND AUGMENTATION HEATER

3.0 TEST FACILITY AND INSTRUMENTATION

3.1 TEST FACILITY DESCRIPTION

Testing was conducted in a 2.8 cubic meter (98 cubic foot) altitude chamber at the RRC Redmond, Washington facility. A mechanical vacuum pump rated at 1,280 cfm used in this chamber provides the capability of maintaining vacuum levels on the order of one torr during firing.

Figure 3-1 shows the propellant system schematic. Inlet pressure is controlled by a pressure regulator located near the gas source bottle. Flow rate is determined by measuring pressure drop across a calibrated fluid resistor for hydrogen and nitrogen tests. Ammonia flow rate was determined by direct measurement from a mass flowmeter. For ammonia firings only, a heat exchanger was added to the system immediately downstream of the pressure regulator to ensure no condensation occurs due to expansion through the pressure regulator.

Two facility gas solenoid valves were used in the system for propellant flow control and to provide for proper calibration. At run completion, Valve 2 (refer to Figure 3-1) is closed to stop propellant flow. This maintains pressure between the regulator and Valve 2 allowing a mass flowmeter zero to be recorded while pressurized with no propellant flowing. Additionally, this allows the thrust stand to be calibrated while the propellant flex lines are pressurized. Valve 1 is then closed and Valve 2 is opened allowing the system to vent to the test chamber. This allows the pressure transducer zero's to be recorded. The sequencing and calibrations are controlled by the system described below.

3.2 TEST CONTROL SYSTEM

Test control was performed by a Hewlett Packard 9836A desktop computer/controller. The test system schematic is shown in Figure 3-2. The HP9836A interactively controls the augmentation heater by monitoring the voltage-current characteristics of the heater and adjusting the voltage as needed to maintain a constant power. The computer also controls sequencing of the facility valves controlling gas flow.

At the completion of each run, a system calibration was performed under control of the HP9836A. Trasducer zero and spans and thrust stand calibrations were automated. These calibrations, which were performed immediately after each run, were used in the data reduction for the run just completed.

Data was recorded on floppy disc along with run information such as test sequence number and calibration information. Analog pressure transducer, heater characteristic, thermocouple, mass flowmeter, and thrust stand linear displacement transformer output are digitized by the HP3421 Data Logger. Analog data was also displayed on strip chart recorders for visual observation and as a redundant recording system.

3.3 THRUST BALANCE

Steady-state thrust was measured using the RRC compound pendulum thrust balance. The principle of operation is that of a freely suspended pendulum. The pendulum is displaced by the thrust force applied. Thus, steady-state thrust is measured by allowing the balance to reach an equilibrium position with the applied thrust and measuring the displacement with the linear variable differential transformer (LVDT). The balance is calibrated immediately after each run to obtain a "hot" calibration. A schematic of the thrust balance is shown in Figure 3-3.

The resistojet is thermally isolated from the thrust stand by a titanium-kapton sandwich. The sandwich simulates a high resistance conductive path typical of a spacecraft installation.

3.4 INSTRUMENTATION

Table 3-1 shows the instrumentation used for resistojet test firings.

Pressure was measured using Statham PL-288 strain gauge pressure transducers calibrated for the test operating range. Each transducer was dead weight calibrated prior to testing. Transducer span and zero was verified following each firing.

Temperature was measured with Type K (Chromel-Alumel) thermocouples. The HP3421A data logger provides an internal temperature reference.

Table 3-1
RESISTOJET INSTRUMENTATION LIST

Parameter	Туре	Range
Thrust	Linear Variable Differential Transformer	0 - 0.12 lbf
Flow Rate ⁽¹⁾	Mass Flowmeter	0 - 3 lbm/hr
Upstream Visco-Jet ⁽²⁾ Pressure	Strain Gauge Transducer	0 - 500 psia
Downstream Visco-Jet ⁽²⁾ Pressure	Strain Gauge Transducer	0 - 500 psia
Inlet Pressure	Strain Gauge Transducer	0 - 150 psia
Cell Pressure	Strain Gauge Transducer	0 - 0.5 psia
Heater Voltage	Voltmeter	0 - 50 vdc
Heater Current	Current Shunt	0 - 1 vdc
Inlet Temperature (immersion in gas inlet)	Chromel/Alumel Thermocouple	0 - 10 mv
Tube Temperature (on gas delivery tube)	Chromel/Alumel Thermocouple	0 - 10 mv
Structure Temperature (on support structure)	Chromel/Alumel Thermocouple	0 - 50 mv
Mount Temperature (on mounting foot closest to support structure)	Chromel/Alumel Thermocouple	0 – 50 mv
Visco-Jet Inlet Temperature (immersion in gas at fluid resistor inlet)	Chromel/Alumel Thermocouple	0 - 5 mv

⁽¹⁾ Ammonia tests.

⁽²⁾ Nitrogen and hydrogen tests.

Heater current is determined by measuring voltage drop across a low resistance calibrated shunt. Voltage is measured directly using the data logger.

Flow rate measurement for hydrogen and nitrogen was made with a calibrated fluid resistor (Lee Corporation, Visco-Jet, P/N VDCA 6815880D). The fluid resistor was flow calibrated at the Colorado Engineering Experiment Station in Nunn, Colorado with both hydrogen and nitrogen. Calibration data sheets are provided in Appendix B.

Flow rate measurement for ammonia was made with a Micromotion Incorporated Model No. C-6 vibrating U-tube mass flowmeter.

3.5 PROPELLANTS

Ultra high purity nitrogen, hydrogen and ammonia were used as the resistojet propellants. Manufacturers purity specifications are listed in Table 3-2.

Table 3-2
GAS PURITY SPECIFICATION

Gas	Purity	Max.	02	H ₂ O	Dew Point
Hydrogen	99.9995%	5	0.5	1	-105
Nitrogen Ammonia	99.999 % 	10	1.0	1	-105

4.0 TEST RESULTS AND EVALUATION

4.1 SPECIFIC IMPULSE AND THRUST

The primary objective of the performance mapping tests for the three propellants was to characterize the resistojet specific impulse as related to thrust and applied power. Specific impulse was calculated from direct thrust and flow rate measurement as explained in Appendix A. Appendix A also provides tabulated raw test data and reduced data. Appendix B presents the data reduction algorithms and assumptions.

Figure 4-1 shows the relation between thrust and inlet pressure for hydrogen propellant. Inlet pressure is measured at the inlet to the gas delivery tube and provides an approximate measurement of nozzle total pressure. Some pressure drop occurs in the delivery tube and heat exchanger. The magnitude of this pressure drop is dependent on the specific operating parameters and is on the order of a few percent of the maximum pressure. Thrust is seen to be a near linear function of inlet pressure with the unaugmented runs displaying a slightly different trend. This is possibly due to an increase in pressure drop between the inlet pressure and nozzle plenum pressure as the gas temperature increases and/or test cell back pressure effects on the nozzle. Inlet pressure, and therefore nominal chamber pressure, ranges from 0.12 to 0.67 MPa (17 to 97 psia). A maximum of 0.69 MPa (100 psia) was used to limit heat exchanger operating pressure to the nominal ACT design level. Thrust shows no significant dependence on heater power level.

As Figure 4-2 shows the resistojet demonstrated for the test matrix selected, hydrogen specific impulse ranging from 461.1 to 686.9 lbf-sec/lbm. The unaugmented tests showed an almost constant specific impulse of approximately 273 lbf-sec/lbm. For the augmented tests heater powers ranged from 600 to 1,000 watts with corresponding specific power ranging from 1.79 to 7.52 kW/N (7.96 to 33.51 watts/mlbf) for the data obtained. Specific power was limited so as to keep the heater element temperature from exceeding 2,700°K (4,400°F). For the test matrix performed, thrust ranged from 57.5 to 364.9 mN (12.9 to 82 mlbf).

THRUST VS INLET PRESSURE FOR HYDROGEN

RESISTOJET PERFORMANCE WITH HYDROGEN

11153-10

Nitrogen performance trends are similar to those obtained with hydrogen. Figure 4-3 shows the inlet pressure versus thrust relationship. As with hydrogen, the unaugmented runs show a slightly different trend, but to a much lesser degree. Inlet pressure ranges from 0.11 to 0.89 MPa (16.3 to 128.7 psia) while thrust ranges from 58.7 to 496.2 mN (13.2 to 111.5 mlbf). Figure 4-4 shows specific impulse versus thrust. For the matrix performed, heater power was varied from 200 to 600 watts with resultant specific impulse ranging from 143.8 to 191.6 lbf-sec/lbm. Unaugmented runs were also conducted showing specific impulse to be fairly constant at approximately 75 lbf-sec/lbm. For the augmented runs specific power varies between 0.8 to 3.02 kW/N (3.54 to 13.46 watts/mlbf).

Ammonia performance trends are generally the same as with the other propellants. Figure 4-5 shows inlet pressure versus thrust. For the matrix tested, inlet pressure ranges from 0.31 to 0.64 MPa (45.3 to 93.4 psia) while thrust ranges from 161.1 to 363.1 mN (36.2 to 81.6 mlbf). As with the other propellants, no distinct power dependency is seen in the relationship between inlet pressure and thrust. Figure 4-6 shows specific impulse versus thrust. Specific impulse for ammonia ranged from 205.7 to 342 lbf-sec/lbm for heater powers between 400 and 900 watts. Unaugmented mapping was not conducted due to potential condensation in the resistojet. For the augmented portion of the test matrix specific power varied between 1.2 and 4.9 kW/N (5.34 and 21.81 watts/mlbf).

4.2 EFFICIENCY

Conceptually, overall efficiency is the ratio of the exit jet power to total input power where total input power consists of the electrical augmentation power and the chemical energy of the propellant. Overall efficiency, as used in this report, is defined in Appendix B.

Overall resistojet efficiency was calculated for the three propellants and is shown as a function of thrust in Figures 4-7, 4-8, and 4-9.

Figure 4-7 shows overall efficiency versus thrust at various heater powers for hydrogen. Efficiency ranges from 41.2 to 82.9 percent for the powered runs. Efficiency increases as thrust increases for a given heater power level. Conversely, as heater power is increased for a given thrust level, efficiency decreases. Gas temperature is higher at higher power levels increasing heat losses. Drag losses in the nozzle are also higher at the lower Reynolds Numbers typical of low thrust and high augmentation power.

THRUST VS INLET PRESSURE FOR NITROGEN

THRUST VS INLET PRESSURE FOR AMMONIA

RESISTOJET PERFORMANCE WITH AMMONIA

RESISTOJET EFFICIENCY WITH HYDROGEN

Overall efficiency for nitrogen is shown in Figure 4-8 ranging from 28.9 to 73.5 percent. Efficiency trends are the same as hydrogen. Figure 4-9 shows overall efficiency for ammonia ranging from 33 to 67 percent. Efficiency trends are also the same as the other propellants.

For unaugmented runs with both hydrogen and nitrogen efficiency is relatively high and shows a decreasing trend as thrust increases. Since no energy is added to the gas stream, the overall efficiency should primarily be a measure of nozzle efficiency. This trend could be a result of test cell backpressure effects on the nozzle or flow rate measurement errors due to the relatively large calibration density correction that needs to be applied to the unpowered runs.

4.3 POST-TEST HARDWARE EXAMINATION

Post test visual examination verified that no degradation had occurred in the heater or heat exchanger. Thermal control shielding also showed no degradation. The support structure and mounting bracket were slightly discolored due to heating, as expected. The heater element was not affected. Heater circuit resistance remained nominal and visual examination under magnification revealed no material degradation. Visual examination of the nozzle throat reveals no deposition in the throat or material degradation.

5.0 SUMMARY AND CONCLUSION

The flight qualified augmentation assembly from the ACT demonstrated the capability to perform effectively as a resistojet with hydrogen, nitrogen or ammonia. A specific impulse of 687 lbf-sec/lbm was demonstrated with hydrogen. Overall efficiencies as high as 82.9 percent were also verified within the test matrix conducted. Nitrogen specific impulse ranged up to 191.6 lbf-sec/lbm and overall efficiency of up to 73.5 percent was measured. Ammonia specific impulse to 342 lbf-sec/lbm and efficiency up to 67 percent was also demonstrated. All testing was conducted with inlet propellant at ambient conditions to an ummodified ACT augmentation assembly. Testing verified the capability to produce high performance and efficiency in a thrust range of 133.5 mN - 890 mN (30 - 200 mlbf) for potential space station applications.

This test demonstrated the gas resistojet performance capability of the ACT augmentation assembly. Future investigations should address the capability of conceptually similar optimized resistojet designs to survive space station mission life requirements. Life testing combined with the results of the performance mapping, conducted herein, would provide a data base upon which to build required resistojet technology for space station propulsion system planning and application.

REFERENCES

- 1. McKevitt, F. X., "Design and Development Approach for the Augmented Catalytic Thruster (ACT), AIAA 83-1255.
- 2. Feconda, R. T., and Weizman, J.I., "Satellite Reaction Control Subsystem with Augmented Catalytic Thrusters", AIAA 84-1235.

				•
				٠

APPENDIX A — RAW TEST DATA, REDUCED TEST DATA RAW TEST DATA ENGLISH/METRIC UNITS

TEST RESULTS FROM NASA RESISTOJET PERFORMANCE MAPPING TEST FOR HYDROGEN

SEQ	Pinlet	VOLTAGE	CURRENT	THRUST	Tinlet	P1	P2	Ttube	Tstrup	Tarount	FE
	(bsia)	(vde)	(amb)	(mlbf)	(F)	(psia)	(osia)	(F)	(F)	(F)	(asia)
7	87.63	33.60	29.79	71.23	99.4	252.80	86.92	132.3	554.4	252.2	2. 21 5 7
8	81.12	29.39	27.24	68.89	127.5	293.93	62, 88	134.1	485.8	253.7	8. 8152
5	54.78	25.59	27.84	52.45	121.2	205.20	64.30	165.9	£11.7	322.5	6.2112
16	68.10	31.69	28.31	53. 14	125.3	211.02	E7.90	177.1	672.2	352. 8	6. 8111
11	70.62	33.74	25.64	55.26	132.2	212.60	72.52	189.1	735.₹	362.6	e. e. :: =
12	39.42	23.18	24.92	23, 13	150.3	103.92	39.22	279.4	935.7	474.2	e. e.e.
13	41.72	32.45	25.32	29.92	140.6	127.53	41.53	289.5	:2:7.5	524.8	C. 2255
14	37.90	32.03	27, 29	2€.7₹	137.7	91.50	37.28	353.4	1181.7	615.9	2. 2247
15	51.90	29.68	25.98	38.85	122.5	145.02	51.02	211.5	783.6	394.2	0.227E
16	49.90	27.33	25.68	38.52	112.8	146.20	45, 28	173.8	688.3	337.8	e. e274
17	52.48	31.99	28.83	39.02	134.5	141.68	E:.78	251.5	511.9	454.1	e. 227-
31	€9.53	2E.88	25.98	5E.97	122.3	247.42	£5.02	155.8	503.4	287.3	e. e. 74
19	73.23	28.93	27.54	58,52	121.9	251.20	72.58	152.9	546.2	321.1	2. 2135
59	76.30	30.99	28.93	61.20	102.0	253.82	76.23	145.8	57E. E	293.6	2. 2.3E
2:	77.92	32.43	29.69	61.78	110.8	250.02	78.82	155.0	£15.3	3:5.2	e. e. 35
2 2	97.02	28.53	28.04	82.88	104.9	398.58	97.38	123.8	443.7	255.8	e. e===
23	89.50	24.37	24.6:	74.20	188.3	395.10	89.48	119.1	374. g	2:6.2	8. 3111 8. 3111
24	73.20	24.47	24.55	59.25	103.4	293.92	73.22	127.7	412.7	230.2	8. 21EE
25	58.92	24.67	24.32	45.99	115.8	225, 18	56.60	152.2	491.8	269.4	
26	38.40	25.27	23.79	27.38	137.7	105.20	38.40	242.5	792. e		C. 2111
27	42.68	0.03	8.02	33.48	85.8	295.98	42.98	125.7	75.3	395.7	e. ecer
28	36.8€	e. ee	6.66	28.72	89.4	252.10	35.93	15.5	75.3 75.3	71.7	2.2:57
29	29.98	20.9	0.08	23.05	93.8	195.70	38.08	-72.3		73. ¢	2. 2141
30	23.92	6. 65	6.03	18.20	96.7	154.00		97.8	79.9	73. 5	€. €111 0. 0317
31	17.00	8.83	6.66	12.62	104.8	103.20	17.30	95.9	81.4 84.1	74.8 75.7	0.0255 0.0257

TEST RESULTS FROM NASA RESISTOJET PERFORMANCE MAPPING TEST FOR NITROGEN

SEQ	Pirlet	VOLTAGE	CURRENT	THRUST	Tinlet		P2	Ttube	Tstruc	Imount	Pa
	(psia)	(vdc)	(cms)	(mlof)	(F)	(osia)	(psia)	(F)	(F)	(F)	
55	91.78	28.62	19.21	77.80	124.1	295.48	91.30	39:.6	769.9	354.3	0.0042
5 £	98.50	24.89	20.79	84.25	114.7	299.00	55.38	458.4	897.2	427.5	
57	103.50	27.03	22.21	67.82	141.1	382.58	123.53	558.6	1816.5	588.3	e. e239
58	114.70	28.77	19.26	130.24	138.3	397.72	114.62	273.0	679.1	354. 4	2.2233
59	122, 43	23.68	21.19	105.33	142.5	357.92	:22.22	325.2	784.1	427.9	0.0252
62	128.78	25. 98	22.95	111.27	144.7	378.50	128.68	377.2	9.83	481.3	8.227E
:3	105, 32	17.35	17.27	92.97	141.6	298.38	105.22	277.1	577. e	324.3	e. ezei
62	85.42	17.41	17.23	72.83	147.8	322.58	85. 60	222.6	EE2. 0	345. B	8.8353
63	63.60	17. £1	17.02	51.59	162.E	283.98	62.70	545.5	817.2	418.9	8, 8839 8, 8838
64	67.8₹	2:.27	18, 82	55.93	145.8	203.80	57.68	550.1	958.7	475.1	
65	71.38	24.67	22.32	58.68	158.3	204.82	71.23	781.5	1€8£, 8	572.9	0. 2222
55	35.5°	18.25	16.54	25.48	:84.9	184.52	38.38	9:5.3	1222.4		e. eee
£7	38.20	2:.87	18.27	25.61	158.6	103.90	38.10	1678.3	1162.2	533.7 638.5	2. 2214
68	33.3₹	13.85	14.35	26.18	281.S	103.62	23.38	753.5	855.3		2.2214
65	57.10	e. 2 e	e.ee	49.45	85.7	399.88		84.9	74.5	465.1	0.22:4
7e	43, 28	8.82	8. 82	35.47	:01.7	253. &C		97.5		72.6	e. eest
71	28.98	e. ee	6.65	24.02	115.5	196.80	28.78	105.3	73.6	74.8	0. 8241
7 <i>2</i> :	16.30	0. 23	e. eo	13.16	127.9	105.10	16, 28	113.7	84.4	77. E	2.2227
73	9£.58	17.35	17.25	84.37	114.7	352.20	96.52	235,4	87.7	79.3	8.0315
74	105.40	22.76	19.17	92.92	129.5	353.28	185.48	235.4 3 2 9.5	5 88.3	272.2	8, 2047
75	112.50	23.72	21.06	96.45	138.5	353.70	112.78	375.5	717.5 836.7	35€.€	2. 2247
76	116.70	26.28	23.09	99.00	128.4	352.02	116.50	435.5		458.8	8,8748
77	65.30	13.55	14.82	54.51	148.7	245.28	65.40	325. 6	945.5	475.1	0. 0045
78	73.20	17.45	17.05	62.92	155.2	245.48	73, 58	428.4	585.5	353.6	2. 0033
73	78.8₹	21.07	:8.95	65.52	158.6	244.60	76.82	539.7	735.€	350.0	2.0231
8C	82.60	24.42	23.47	68.72	167.6	243.48	82.70		859.3	455.7	6.5535
8:	44.98	13.65	14.57	35.86	121.7	143.48		£51.6	1217.8	534.4	e. 2231
82	50.60	17.76	16.89	42.65		152.30	45. 83 53. 83	494.1	672.3	327.2	8, 8320
83	53.60		18.6:	43.82	169.8		58. 88	637.9	925.7	457.5	€. ₹823
	30100	-1100	10.0.	73.62	.65.0	152.28	53.98	844.4	1055.7	556	0. 8833

TEST RESULTS FROM NASA RESISTOJET PERFORMANCE MAPPING TEST FOR AMMONIA

253	Pinlet (psia)	VOLTASE (vde)	CURRENT (amp)	THRUST (mlbf)	'Tinlet (F)	FLOWRATE (165/hr)	Ttube (F)	Tstruc (F)	Tmount (F)	Pa (osia)
33	8:.30	19.86	20.13	74.5B	101.80	1.3097	165.8	525.5	275.e	e. ee52
34	88.70	22.67	22.13	82.21	105.E0	1.3044	186.3	594.1	318.9	
35	85.20	25, 17	23.83	77.68	122.20	1.1654	232.6	658.3		0.0253
38	92.00	27.43	25.50	81.27	124.20	1.1781	239.5	654.5	361.9	0.0354
37	93.42	29.58	27.13	80.98	132.50	1.1042			358.7	0.0253
38	87.22	31.89	28.28	73.93	112.10		269.4	694.6	373.3	0.8859
25	63.68	22.67				0. 8871	331.3	778.2	385.8	0.0005
			19.54	57.16	129.00	0. 9254	250.9	625.7	352. e	0.2237
42	56.50	22.78	21.97	47.37	147.10	0. 6569	371.0	682.1	355.6	e. 2241
41	57.30	25.28	23.76	46.58	157.70	0. 5946	431.6	737.8	332.8	0.0 243
42	57.9₹	27.94	25.84	46.34	160.90	8.5482	520. 5	851.1	445.:	0.0343
43	58.10	30.79	25.99	46.61	176.30	0. 5035	596.2	1019.4	532.1	6. 5535
44	68.23	22.22	19.77	61.85	145.92	1.0:81	255.€	518.0	359. <i>2</i>	8.8341
47	76.80	27.68	25.31	64.87	:45.93	0.8599	230.1	784.6	377.9	0. 225£
4E	7E.20	25.37	23.69	65.14	137.48	0.9 547	288.7	672.5	354.9	
45	76.40	22.98	21.76	69.12	124.10	1.0535	235.2			2.2251
48	77.40	29.78	26.87	64.03				632.5	341.4	e. 8245
49	73.50				153.80	8.79 12	374. €	752. e	396.9	e. e259
	•	32.29	27.85	68. 13	16E. 20	0.E529	460.3	919.2	450.4	e. et 57
52	45.30	2 2. 2 7	19.92	37.85	118.00	0. 5354	402.9	674.9	3:1.2	2. 2232
51	45.30	22.87	21.82	3E.88	145.00	8.4452	491.4	753.9	373.1	0.222
52	45.40	25.78	23.26	3E. 05	163.7€	8.4274	609.1	9:5.2	454.2	6.6336
53	45.78	28.68	24.34	35.57	176.70	0.3761	7:7.8	1058.3	54E.2	8.8829
54	45.5₽	31.49	25.37	36.47	189.10	0. 3852	793.1	1169.9	620. g	e. eass

TEST RESULTS FROM NASA RESISTOJET PERFORMANCE MAPPING TEST FOR HYDROGEN (metric dnits)

SEQ	Pinlet (MPa)	VOLTAGE (vdc)	CURRENT (amp)	THRUST	Tinlet (C)	P1 (MPa)	P2 (MPa)	Ttube (C)	Tstruc (C)	Tmount (C)	р _а (kPa)
7	8.599	33.60	29.79	316.83	37.4	2.017	0. 599	55.7	290.2	137.9	0 100
8	0.559	29.39	27.24	294.00	41.9	2.825	0.5 57	56.7			9.108
9	0.44 5	29.59	27.04	224.47	49.6				254.3	132.1	0.110
10	8.4£9	31.69	28.31	236.36		1.421	0. 443	74.4	322.1	161.4	8.0 76
11	0.485				52.4	1.454	0.468	80.6	354.6	177.8	0.076
		33.74	29.64	245,82	54.4	1.465	8. 486	87.3	391.1	194.9	0. 077
12	8.271	28.18	24.92	125.14	65.7	0. 716	0. 270	137.4	56 3.7	245.7	0.03 8
13	0. 287	38.4 8	26.32	133.11	60.3	6. 741	0. 287	143.1	547.5	262.7	0.039
14	0. 261	33.09	27.29	118.78	58.7	0.630	6,256	182.4	638.7	324.4	0.032
15	0.3 58	29.68	26.98	173.01	50. 3	1.006	0.3 51	99.7	417.6	195.7	8.652
16	0.344	27.3 3	25.68	171.33	43.8	1.007	0.33 9	81.6	364.6	169.9	0.051
17	0.3 61	31.99	28. 8 9	173.57	56.9	0. 976	9.3 56	121.9	488.8	234.5	0.051
18	0.479	26.88	25.98	253.43	50.2	1.705	0.475	69.3	261.9	141.8	0.092
19	0. 504	28.93	27.64	2 62 .0 7	49.9	1.731	0.500	71.6	285.7	149.5	0.894
29	e. 526	38.99	28 . 9 9	272.21	38.9	1.728	8.525	63.8	301.8	145.3	8.894
21	e. 537	32.43	29.89	274.79	43.B	1.723	0.5 37	71.1	324.1	159. 0	0.094
22	8.668	28.53	28.94	359.78	40.5	2.693	8.678	54.3	232.1	126.0	0.154
23	8.617	24.37	24.61	330.05	37.8	2.722	8.616	48.4	190.0	103.4	0.157
24	0.5 64	24.47	24.55	263.54	39.7	2.004	8.583	53.2	210.4	110.4	0.112
ප	8.405	24.57	24.32	284.58	46.6	1.413	0.404	66.8	255.1	131.9	0.076
26	0. 265	25,27	23.79	121.81	58.7	0.725	0.265	117.2	422.2	202.1	8.839
27	0.294	0.00	0.00	148.94	29.9	2.839	8,296	52.1	24.6	22.1	0.115
28	0. 254	8.89	છ. શ્ટ	127.77	31.9	1.737	0.254	-9 .2	25.7	22.8	0.097
29	9. 206	6.8 0	0.00	182.57	34.3	1.376	6. 287	-57.9	26.6	23.3	0.076
32	0. 165	8.80	8.8 8	80.95	37.1	1.861	0. 166	36.6	27.4	23.8	0.059
31	8.117	e. 8 2	e. e e	5 6.15	40.4	0. 711	8.119	37.2	28.9	24.3	0.039

TEST RESULTS FROM NASA RESISTOJET PERFORMANCE MAPPING TEST FOR NITROGEN (metric units)

SEQ	Pinlet (MPa)	VOLTASE (vdc)	CURRENT (amp)	THRUST (aN)	Tinlet (C)	P1 (MPa)	P2 (MPa)	Ttube (C)	Tstruc (C)	Tmount (C)	Pa (kPa)
5 5	8.632	28.82	19.21	34E. 0 6	51.2	2.835	8.629	199.8	489.9	184.6	0. 628
56	0.679	24.09	20.79	374.60	45.9	2.068	0. 677	235.8	480.7	219.7	
57	0. 713	27.09	22.21	398.65	68.6	2.084	0. 713	292.6	546.9	272.4	9.825
58	0.790	28.77	19.26	445.88	59.1	2.748	8,798	136.7	359.5	184.7	0.6 27 0.03 6
59	8. 843	23.68	21.19	468, 53	68.3	2.742	8. 842	162.9	417.8	208.8	0. 036 0. 036
68	0. 887	25.98	22.95	494.97	62.6	2.746	9. 886	191.8	475.6	238.5	0.03 5
61	0. 726	17.36	17.27	484.65	68.9	2.744	0. 725	115.1	382.8	162.4	0.0 33
62	6.58 8	17.41	17.23	328.42	64.3	2.070	0.5 86	167.0	348.9	174.3	0.027
63	0.431	17.61	17.82	229.49	72.7	1.384	0.432	286.9	436.2	213.8	8.6 18
64	0. 467	21.27	18.88	248.74	63.2	1.484	8.466	343.4	513,7	246.7	0.018
65	8.491	24.67	20.32	261.00	75.7	1.411	0.491	415.4	586.0	388.5	e. 6 18
66	0.251	18.05	16.64	126.67	84.9	0.721	0.250	491.3	549.1	278.7	0.818
67	8. 263	21.87	18.27	131.73	92.2	8.716	8, 263	576.8	627,9	331.4	8. 910
68	0.229	13.86	14.35	116.12	94.4	0.714	0.229	400.8	457.4	241.2	8.010
69	0. 393	0.00	9 . 6 0	219.94	38.4	2.749	0.395	29.4	23.6	22.6	0.0 38
70	8. 298	8.88	8.00	162.21	38.7	2.068	0.296	36.6	26.4	23.8	0.028
71	0. 199	6.65	8. 8 2	196.84	46.4	1.356	0. 198	42.2	29.1	25. 8	0.019
7 2	0.112	8.89	8.90	5 8. 55	53. 3	8.731	3. 112	45.4	30.9	26.3	6.011
73	0.6 65	17.35	17.25	375.28	45.9	2.427	8.665	113.0	296.8	133.4	9.832
74	8. 726	20.76	19.17	484.42	54.2	2.434	0.7 26	154.2	389.8	185.6	0.032
75	0.775	23.72	21.08	429.62	59.2	2.437	0.7 77	192.3	447.1	221.1	8. 832
76	0. 824	26.0 8	23.09	440.38	5 3.6	2.412	0.8 83	224.8	507.5	246.2	0.032
77	0.450	13.55	14.88	242.49	64.8	1.689	0.451	163.1	388.1	162.1	0.023
78	8.5 84	17.45	17.09	270.88	68.4	1.691	8.56 6	221.3	392.2	193.3	0.021
7 9	0.5 43	21.07	18.95	291.45	70.3	1.685	8. 543	282.1	476.3	235.4	0.822
98	0.5 69	24.42	28.47	385.68	75.3	1.677	0. 57 0	344.2	547.2	279.1	8.821
81	0.389	13.65	14.57	159.52	49.8	1.029	0. 310	256.7	355.7	152.9	0.014
82	0.349	17.76	16.89	180.83	66.3	1.049	0. 358	364.4	485.4	236,4	0.014
83	0. 369	21.56	18.61	191.36	76.6	1.849	8. 371	451.3	568.7	290.3	0.014

TEST RESULTS FROM NASA RESISTOJET PERFORMANCE MAPPING TEST FOR AMMONIA (metric units)

SEQ	Pinlet (MPa)	VOLTAGE (vdc)	CURRENT (amp)	THRUST (mN)	Tinlet (C)	FLOWRATE (kg/hr)	Ttube (C)	Tstruc (C)	Tmount (C)	pa (kPa)
33	0.5 60	19.86	20.13	326.97	38.78	0. 5946	74.3	274.2	137.2	0. 036
34	0. 597	22.67	22.13	3 51 .9 3	41.44	8.59 22	85.7	312.3	159.4	0.037
3 5	6. 594	25.17	23, 83	341.46	50.11	0.5291	111.4	349.1	183.3	8. 837
3 6	0. 634	27.43	25.50	355.72	51.22	0.5 312	115.3	351.4	181.5	0.043
3 7	e. 644	29.58	27.13	3 53.85	55.83	0.5 013	131.9	368.1	189.6	9. 848
38	6. 599	31.89	28.28	322.86	44.58	8.48 27	166.3	410.1	196.6	8,845
3 9	9.43 8	20.07	19.94	250.87	53.89	0.4228	127.2	331.5	177.8	9.825
48	0.3 89	22.78	21.97	266.95	63.94	8.38 28	188.3	361.2	185.9	0.028
41	0. 395	25.28	23.76	283, 22	69.83	0. 2699	222.0	392.1	199.3	8. 838
42	0.39 9	27.94	25.04	202.42	71.61	6.2488	271.4	468.6	229.5	0.028
43	0.400	30.79	25.9 9	203.81	88.17	0. 2281	313.4	548.6	277.8	8.826
44	0.478	20.22	19.77	271.37	63.28	0.4622	123.9	325.6	181.8	8.628
47	0. 529	27.68	<i>2</i> 5.31	283.40	63.28	0. 3984	165.6	373.3	192.2	0. 839
46	6.525	25.37	23.69	289.52	58.56	8.433 4	142.6	355.9	184.9	0.035
45	9.5 26	22.98	21.76	38 3.23	51.17	0. 4856	114.6	333.6	171.9	0.032
48	e. 5 33	29.78	26.87	279.38	67.67	6.3 592	190.0	398.9	203.8	8.041
49	0.5 06	32.29	27.86	262,88	74.56	0.3010	238.2	492.8	249.1	8. 834
50	0. 312	20.07	19.92	165.60	47.78	0.2435	206.1	357.2	155.1	0.021
51	0. 312	22.87	21.82	157.42	62.78	0.2035	255.2	401.1	189.5	8.8 23
5 2	0.3 13	25.78	23.26	157.59	73.17	0. 1940	320.6	491.2	234.6	8.0 21
53	9. 315	28.68	24.34	155.57	81.50	8.1787	380.6	575.7	285.7	0.029
54	0.321	31.49	25.37	159.56	87.28	8.1749	422.8	632.2	326.7	0.020

REDUCED TEST DATA ENGLISH/METRIC UNITS

TEST RESULTS FROM NASA RESISTOJET datafile = h2test

RUN	P1	P2	PINLET	POWER	FLOW	THRUST	ISP	PSP	Tin	EFF	Tw	Eh	Ih
_	psia ———	psia 	psia	watts	1b/hr	=lbf	•	w/mlb	F	*	F	vdc	авр
7	292.8	86.9	87.0	1000.9	0.434	72.0	597.7	13.89	99	76, 167	4868	33.68	29.79
8	293.9	80.8	81.1	820.6	8.436	66.9	552.5	11.96	198	78.015	3882	29.39	27.24
9	206.2	64.3	64.7	800.1	0.388	51.0	597.5	15.68	121	68.949	3941	29.59	27.94
10	211.0	67.9	68.1	897.1	0.3 13	53. 7	618.2	16.70	126	68. 839	4836	31.69	28.31
11	212.6	70.5	70.6	1000.1	8.314	55.8	641.0	17.91	139	66.854	4197	33.74	29.64
12	103.9	39.2	39.4	782.2	0.159	28.4		24.71	150	50.679	4079	28.18	24.92
13	107.5	41.6	41.7	882.2	0.164	38.2	664.0	26.55	141	49.164	4182	30.48	26.32
14	91.5	37.2	37.9	983.0	0. 141	26.9	686.9	33.51	138	41.244	4389	33.09	27.29
15	145.0	51.0	51.9	830.8	8.221	39.3	641.2	29.38	123	59.793	3963	29.68	26.98
16	146.2	49.2	49.9	699.6	0.223	38.9	628.8	17.98	111	65. 155	3839	27.33	25.60
17	141.6	51.7	52.4	898.6	0.213	39.4	667.2	22.80	135	56,634	4109	31.99	28, 89
18	247.4	69.0	69.5	698.3	0. 358	57.7	564.1	12, 11	122	79.262	3715	26,88	25.98
19	2 51.2	72.5	73.2	799.6	0.372	59.6	576.8	13.41	122	75.115	3768	28.93	27.64
20	250.8	76.2	76.3	898.4	0.374	61.9	596.4	14.51	182	73.318	3845	38.99	28,99
21	250.0	78. 2	77.9	969.3	0.370	62.5	607.6	15.51	111	70.935	3905	32.43	29.89
22	390.8	97.3	97.0	808.0	8. 578	82.6	511.3	9.75	185	82.533	3650	28.53	28. 84
23	395.1	89.4	89.5	599.7	8.589	75.4	461.1	7.96	100	82.934	3547	24.37	24.61
24	290.9	73. e	73.2	688.7	0.435	60.1	497.1	10.00	103	78.196	3571	24.47	24.55
ස	205.1	58. 6	58.9	500.0	0.309	46.6	542.4	12.88	116	72.000	3638	24.67	24.32
26	105.2	38.4	38.4	601.2	0.162	27.7	613.7	21.72	138	53.843	3819	25, 27	23.79
27	295.9	42.9	42.6	0.8	8.454	34.4	272.3	9.00	86	84.129	70	0.00	8. 90
28	252.1	36.9	36.8	6. 0	0. 389	29.5	272.4	9.80	89	84.228	78	0. 98	8.90
29	199.7	30.0	29.9	0.0	0. 312	23.6	273.1	0.00	94	84.634	70	0.00	0.00
30	154.0	24.1	23.9	0.0	0.244	18.6	275.5	8, 60	99	86.148	70	8. 80	6. 60
31	103.2	17.3	17.0	8.0	0. 168	12.9	277.4	6, 88	105	87.329	78	0.00	8.90

^{*} specific impulse units : lbf-sec/lbm

TEST RESULTS FROM NASA RESISTOJET datafile = n2test

RJ.	_	P2	PINLET		FLOH	THRUST	ISP	PSP	Tin	EFF	Tw	£h	Ih
	psia	psia ———	psia	watts	lb/hr	mlbf	ŧ	w/mlb	F	×	F	vdc	an p
55	295.4	91.3	91.7	488.8	1.642	78.0	171.1	5. 13	124	62,699	3901	20.02	
5 6	299.0	98.3	98.6	500.8	1.656	84.3		5.94	115	59.532			
57	302.5	103.5	103.5	601.7	1.654	68.8		6.84	141				
58	397.7	114.6	114.7	400.0	2.259	100.5		3.98	138	55.177			
59	397.9	122.2	122.4	501.8	2.241	105.6	169.7	4.75	141	71.898			
60	398.5	128.6	128.7	596.2	2.225	111.5		5.35	145	66.285			21.19
61	398.3	105.2	105.3	299.8	2.284	91.2		3.29	142	64.245		25.98	
62	300.5	85. 0	85.4	300.0	1.682	72.2	·	4. 15	148	73.557			
63	202.9	62.7	62.6	299.7	1.103	51.7		5. 79		66.578			17.23
64	203.8	67.6	67.8	399.9	1.110	56.1	181.8	7.13	163	55.550	3715	17.61	17.62
65	294.8	71.2	71.3	501.3	1.165	58.8	191.6	8.52	146	50, 123	4881	21.27	18.80
66	104.5	36.3	36.5	300.5	0.576	28.6	178.4	1 0.5 3	168	45.113	4394	24.67	29. 3 2
67	183.9	38.1	38.2	399.6	0.5 66	29.7	188.7		185	34.382	3907	18.66	16.64
68	183.6	33.3	33.3	198.9	8. 572	26.2	164.8	13.46	198	28.962	4338	21.87	18. 27
69	399.0	57.3	57.1	8.0	2.485	49.7	74.4	7.60 0.00	262	42.568	3454	13.86	14.35
70	239.0	43.0	43.2	8.8	1.768	36.7	75.8		87	86.019	79	8.99	8. 9 0
71	196.8	28.7	28.9	8. 8	1.141	24.2	76.2	9. 90	162	87.331	70	8. 60	e. 8 9
72	106.1	16.2	16.3	6. 0	0.620	13.2	76.9	9. 80	116	90.227	70	0.80	9. 99
73	352.2	96.5	96.5	299.3	2.013	84.6	151.3	9.6 0	128	91.772	78	8. 88	0. 60
74	353.2	185.4	185.4	398.0	1.995	91.2	164.5	3.54	115	73.859	3605	17.35	17.ద
75	353.7	112.7	112.5	500.0	1.973	96.7	176.4	4.37	130	68.697	3898	20.76	19.17
76	350.0	116.5	116.7	682.2	1.936		184.6	5.17	139	64.458	4858	23.72	21.08
77	245.2	65.4	65, 3	200.5	1.372	54.7	143.5	6. 6 7	128	58.919	4074	26.08	23.09
78	245.4	73.5	73.2	298.4	1.357	61.1	162.0	3.67	149	67.337	3264		14.80
79	244.6	78.8	78.8	399.3	1.338		176.7	4.89	155	61.367	3665	17.46	17 .0 9
80	243.4	82.7	82.6	499.9	1.318		188.2	6.68	159	56.848	4867	21.07	18.95
81	149.4	45.8	44.9	198.9	0.839			7.26	168	51.252			28.47
82	152.3	50.8	58.6	300.0	0. 842		154.3	5.53	122	52.245	3344		14.57
83	152.2	53.9	53.6	481.2	6.838		174.3	7.36	151	46.537			16.89
		33. 3	∞. u	401.E	v. 530	43.1	187.0	9.38	178	40.541	4184	21.56	18.61

[#] specific impulse units : lbf-sec/lbm

TEST RESULTS FROM NASA RESISTOJET datafile = nh3test

RLIN	P1	P 2	PINLET	POWER	FLOW	THRUST	ISP	P SP	Tin	EFF	Tw	Eh	Ih
	psia	psia	psia	watts	Ib/hr	ælbf	+	w/mlb	F	*	F	vdc	930 0
33	9.0	8.6	81.3	399.8	1.318	74.9	265.7	5.34	102	67.671	3533	19.86	28. 13
34	0.0	0.0	86.7	501.7	1.394	80.5	222.1	6, 23	167	65, 216	3 676	22.67	22.13
3 5	0.0	0.0	86.2	599.8	1.165	78.2	241.4	7.67	122	60.011	3796	25.17	23.83
3 E	0.0	8.8	92.8	699.5	1.170	81.6	251.1	8.57	124	56.85 6	3870	27.43	25.50
37	8.8	6.8	93.4	882.5	1.184	81.3	265.2	9.87	133	53.2 12	3926	29.58	27.13
3 8	0.9	0.0	87.0	901.8	6.8 87	74.3	301.4	12.14	112	50.459	4867	31.89	28, 28
39	9.8	0.0	63.6	400.2	0.929	57.4	222.1	6.9 8	129	59.278	3688	28.87	19.94
40	8. 8	0.0	56.5	500.5	0. 667	47.6	256.9	18.52	147	48.494	3723	22.78	21.97
41	8.8	8.8	57.3	600.7	8.5 95	46.8	283.4	12.83	158	44.873	382 6	25.28	23.76
42	9.0	8. 8	57.9	699.6	0.548	46.5	305.8	15, 83	161	41.939	4822	27.94	25.84
43	8.9	0.0	58.1	800.2	8.5 93	46.8	335.3	17.18	176	48.866	4283	30.79	25.99
44	0.0	0.0	68.2	399.7	1.018	62.1	219.5	6, 44	146	62.563	3670	29.22	19.77
47	0.0	8.0	76.8	790.6	8.868	65.2	272.8	10.75	146	59. 743	3 938	27.68	25, 31
46	0.0	0.8	76.2	601.0	0. 955	66.4	258.4	9.85	137	54.011	3852	ද5. 37	23.69
45	6.0	8.6	76.4	500.0	1.070	69.4	233.5	7.21	124	68.99 7	37%	22.98	21.76
48	8.0	8.0	77.4	800.2	8.791	64.3	292.7	12.44	154	47.836	3994	29.78	26.87
49	9.0	0.0	73.5	899.6	0. 663	60.4	328.0	14.98	166	45.532	4186	32.29	27.86
58	0.0	0.0	45.3	399.8	0. 536	38.0	255.1	10.52	118	48.110	3612	20.07	19.92
51	6.0	8.8	45.3	499.0	8.44 8	36.2	291.1	13.77	145	43.245	3766	22.87	21.82
52	8. 9	0. 8	45.4	599.6	0.427	36.2	385.0	15.56	164	38.144	3994	25.78	23.26
5 3	0.0	8.8	45.7	698. 1	8.3 76	35.7	342.0	19.54	179	36.699		28.68	24. 34
54	0.6	0.9	46.6	798.9	6. 385	36.6	342.2	21.81	189	3 3. 0 38	4497	31.49	25.37

^{*} specific impulse units : lbf-sec/lbm

TEST RESULTS FROM NASA RESISTOJET

datafile = h2test

(metric units)

RUN	P1 MPa	P2 MPa	PINLET MPa	POMER watts	FLON kg/hr	THRUST	ISP	PSP kw/N	Tin C	EFF \$	Tw C	Eh vdc	Ih amp
7	2.017		6. 599	1000.9	e. 1970	320.5	5856	3.12	37	76.167	2242	33.60	29, 79
8	2.025	0. 557	0.559	800.6	0. 1980	297.7	5413	2.69	42	78.015			27.24
9	1.421	0.44 3	8. 44 5	800 . 1	0. 1396	227.8	5854	3.52	50	68.949	2171	29.59	27.84
18	1.454	0. 458	0.4 69	897. 1	8. 1428	238.9	6857	3.75	52	68. 939	2224	31.69	28. 31
11	1.465	€. 486	8.48 6	1000.1	8. 1424	248.4	6281	4.03	54	66.854	2264	33.74	29.64
12	9.716	e. 270	0. 271	78 2.2	8.0 722	126.4	6388	5.55	66	50.679	2248	28.18	24. 92
13	0.741	0. 287	0. 287	882.2	8.0744	134.4	658 6	5.97	60	49.164	2386	30.48	26.32
14	0. 630	0.25€	8. 261	903.0	0.0641	119.9	6738	7.53	59	41.244	2420	33.89	27.29
15	1.806	0.3 51	0.358	880.8	8. 1 00 2	174.8	6282	4.58	50	59.793	2184	29,68	26.98
16	1.827	0. 339	0. 344	699.6	0.1011	173.1	6161	4.84	44	65.155	2115	27.33	25, 68
17	0. 976	0. 356	0.361	898.6	0.0965	175.3	6537	5. 13	57	56.634	2265	31.99	28.09
18	1.705	8. 475	0. 479	698.3	0. 1671	256.5	5527	2.72	50	79.262	2846	26.88	25. 98
19	1.731	e. 5ee	0. 584	799.6	0.1690	265.2	5 652	3.01	58	75.115	2071	28. 93	27.64
20	1.728	e. 525	9.5 26	898.4	e. 1597	275.4	5843	3.26	39	73, 318	2118	38.99	28. 99
21	1.723	0. 537	0.5 37	969.3	0.1681	278.0	5953	3.49	44	70.935	2152	32.43	29, 89
22	2.693	0.570	9. 668	866. 6	0.2622	365.0	5010	2.19	41	82.533	2010	28.53	28. 64
23	2.722	0. 516	0. 617	599.7	8.2 672	335.4	4518	1.79	38	82.934	1953	24.37	24.61
24	2.004	0.5 03	0. 504	600.7	0.1976	267.3	4871	2.25	48	78.190	1966	24.47	24.55
ක	1.413	0. 484	0. 405	688. 0	0. 1403	207.2	5315	2.99	47	72.000	2063	24.67	24.32
26	e. 725	0. 265	0. 265	601.2	0.0737	123.1	6013	4.88	59	53.843	2184	25.27	23.79
27	2.039	2.296	8.294	8. 8	0. 2062	152.8	2668	8.80	30	84.129	21	8.80	8. 60
28	1.737	8.254	8.254	8.0	0. 1768	131.1	2669	9.00	32	84.228	21	8.90	0.00
29	1.376	8. 207	8.28 6	0. Đ	0. 1415	185.2	2676	8. 88	34	84.634	21	0.80	0.00
38			0. 165	8.8	8. 11 9 6	82.9	2699	0.80	37	86.148	21	8.00	6. 60
31	0.711	e. 119	0. 117	8.6	8. 9 761	57.5	2718	0.00	40	87.329	21	0.88	8. 80

^{*} specific impulse units : N-sec/kg

TEST RESULTS FROM NASA RESISTOJET datafile = n2test (metric units)

RUN	P1 MPa	P2 MPa	PIMLET MPa	POMER watts	FLOH kg/hr	THRUST	ISP	PSP law/N	Tin C	eff \$	Tm C	Eh vdc	Ih amp
55	2. 835	0,629	0.632	488.8	0.7453	347.6	1676	1.15	51	62.699	2149	28.82	19.21
56	2.068	0.677	0.679	500.8	9. 7518	374.9	1795	1.34	46	59.532		24.09	28.79
57	2.084	e. 713	6.713	581.7		391.6	1877	1.54	61	55.177		27.09	22,21
5 8	2.748	6.798	0.798	498. 8	1.0255	447.1	1569	6.89	59	71.898	2138	29.77	19.25
5 9	2.742	8.8 42	0.843	501.8	1.0174	469.7	1662	1.87	68	66.285		23,68	21.19
60	2.746	6.88 6	e. 6 87	59 6.2	1.0102	496.2	1768	1.20	63	64.245		25.98	22.95
61	2.744	8.725	0.726	299.8	1.8369	485.9	1489	0.74	61	73.557	1984	17.36	17.27
62	2.070	0.586	8. 588	398.0	0.7638	321.3	1514	6. 93	64	66.578	1995	17.41	17.23
63	1.384	0.432	0.431	299.7	0.5007	230.1	1654	1.38	73	55.559	2846	17.61	17.62
64	1.484	€. 465	8.467	399.9	8.5848	249.3	1781	1.60	63	50.123	2250	21.27	18.88
క్	1.411	0. 491	0.491	501.3	8,5018	261.6	1877	1.92	76	45.113	2424	24.67	28.32
66	0.721	8,258	8.25 1	399.5	8.2615	127.0	1748	2.37	85	34.382	2153	18.06	16.64
67	8. 716	0.263	0.263	399.6	8.2571	132.1	1849	3. 63	92	28.962	2388	21.87	18.27
68	0. 714	0.229	0.229	198.9	8. 2596	115.4	1614	1.71	94	42.588	1901	13.86	14.35
69	2.749	0. 395	0. 393	8.0	1.0919	221.2	729	0.88	38	86.019	21	8, 60	8. 60
78	2.060	0.296	8. 298	0.0	0.799 2	163.2	735	0.0 0	39	87.331	21	0.00	0. 00
71	1.356	8. 198	0.199	6. 0	8.5179	107.5	747	8. 60	46	98.227	21	0.00	8. 60
72	9. 731	8.112	8.112	0.8	0.2815	58.9	753	0.88	53	91.772	21	0.00	8. 68
<i>7</i> 3	2.427	8. 665	9.6 65	299.3	0.9141	376.4	1482	0.80	46	73.859	1985	17.35	17.25
74	2.434	8. 726	0. 726	398.0	0.98 59	485.5	1612	9.98	54	6 8.697	2148	20.76	19. 17
75	2.437	8. 777	0. 775	500. 0	8.8 956	430.1	1729	1.16	59	64.458	2237	23.72	21.08
76	2.412	e. 883	0.884	682.2	6. 8788	441.5	1888	1.36	54	58.919	2246	26.08	23.09
<i>77</i>	1.689	0. 451	0. 450	200.5	8. 6229	243.3	1486	9.82	65	67.337	1795	13.55	14.80
78	1.691	0.56 6	9. 584	298.4	8.6161	271.6	1587	1.18	68	61.367	2019	17.46	17.09
79	1.685		6.5 43	399.3	8.60 76	292.2	1731	1.37	70	56.048	2268	21.67	18.95
98	1.677		0.5 69	49 9. 9	0.5 983	306.4	1844	1.63	75	51.252	2379	24.42	28. 47
81	1.829		0. 389	198.9	6.3889	16 0. 9	1512	1.24	58	52.245	1840	13.65	14.57
82	1.049		0. 349	300.0	0.38 21	181.3	1708	1.65	66	46.537	2081	17.76	16.89
83	1.649	0. 371	4. 369	491.2	e. 3769	191.8	1832	2.09	77	48.541	2387	21.56	18.61

^{*} specific impulse units : N-sec/kg

TEST RESULTS FROM NASA RESISTOJET datafile = nh3test (metric units)

RUN	P1	P2	PINLET	POWER	FLOW	THRUST	ISP	PSP	Tin	EFF	Tw	£h	Ih
	MPa	MPa ——	MPa	watts	kg/hr	N	•	kor/N	C	×	C	vdc	emp
33	6.600	8. 966	0.560	399.8	8. 5946	333.0	2815	1.20	39	67.671	1945	19.86	20, 13
34	8.0 00	8.000	8.5 97	501.7	€. 5922	358.0	2176	1.48	41	65.216	2824	22.67	22. 13
35	8.800	0.000	8.594	599.8	8,5291	347.7	2366	1.73	58	60.011	2091	25.17	23.83
3 6	8.900	8.888	0.634	699.5	0.5312	363.0	2468	1.93	51	56, 856	2132	27.43	25, 59
37	8. 889	9.000	0. 644	882.5	8.58 13	361.8	2598	2.22	56	53.212		29.58	27.13
38	8.000	8.000	8. 599	981.8	8.4827	339.4	2953	2.73	44	59.459	2242	31.89	28.28
3 9	8.800	8.908	8.438	480.2	0.4220	255.1	2177	1.57	54	59.278	1987	28. 67	19.94
48	8.900	0.000	8.3 89	500.5	0.38 28	211.7	ස 17	2.36	64	48.494	2051	22.78	21.97
41	8.800	0.000	0. 395	688.7	8.2699	288.2	2777	2.89	79	44.873	2188	25.28	23.76
42	8.600	0.000	0.3 99	699.6	0. 2488	297.8	2996	3.38	72	41.938	2217	27.94	25. 84
43	8.000	8.00 0	8.488	888.2	8. 2281	288.2	3285	3, 84	88	40.866	2362	30.79	25.99
44	8.000	8.800	0.470	39 9.7	8,4622	276.1	2158	1.45	63	62.563	2921	28.22	19.77
47	8.000	8.808	0. 529	788.6	9. 3984	289.9	2673	2.42	63	58.743	2178	27.68	25.31
4€	0.0 00	8.000	0.5 25	601.0	0.4334	295.4	2454	2.63	59	54.811	2122	25.37	23.69
45	0.000	8.982	0.526	500.8	0. 4856	308.5	2287	1.62	51	68.997	2091	22.98	21.76
48	0.0 02	0. C20	6.5 33	898.2	0.359 2	286.2	2868	2.80	68	47.836	2201	29.78	26. 87
49	9.002	9.000	0.50 6	899.6	0.3010	268.7	3213	3, 35	<i>7</i> 5	45.532	2388	32.29	27.86
58	0.023	6.688	0.3 12	399.8	0.2435	169.1	2499	2.36	48	48.110	1989	28.67	19.92
51	0.000	9.000	0.312	499.0	0.2035	161.2	2853	3 . 89	63	43.245	2874	22.87	21.82
52	8.000	8.000	0.3 13	599.6	0.1948	161.1	2988	3.72	73	38.144	2281	25.78	23.26
53	9.000	6.800	0.315	698.1	0. 1707	158.9	3351	4.39	81	36.699	2348	28.68	24.34
54	9.00 0	6.88 8	0.3 21	798.9	8.1749	162.9	3353	4.98	87	33.838	2481	31.49	25.37

^{*} specific impulse units : N-sec/kg

APPENDIX B

DATA REDUCTION ASSUMPTIONS AND TECHNIQUES

Analog data is digitized and converted to engineering units directly by the HP9836 desktop computer/controller using calibrations taken after each run. All data presented are end of run equilibrium steady-state parameters.

B₁ THRUST

Thrust is measured directly and is corrected for cell backpressure by:

$$F_{\text{vac}} = F_{\text{meas}} + Pa * Ae$$

where,

 F_{vac} = Vacuum thrust

F_{meas} = Measured thrust determined from thrust stand

Pa = Altitude chamber pressure

Ae = Nozzle exit plane area (cold)

No correction is made for the thermal expansion of the nozzle exit area since the total exit pressure correction is a small fraction of the measured thrust.

B.2 SPECIFIC IMPULSE

Specific impulse is calculated from,

where,

I_{sp} = Specific impulse

F_{vac} = Vacuum thrust (determined above)

m = Propellant flow rate

Propellant flow rate is measured by the calibrated fluid resistor or the mass flowmeter. The fluid resistor calibration is adjusted for density differences between calibration and test as outlined in Section B.3.

B.3 GAS FLOW RATE

For nitrogen and hydrogen tests the calibrated fluid resistor (Lee Corporation, Visco-Jet) was used for gas flow measurement. The fluid resistor was sized to provide a high pressure drop to increase resolution on flow rate measurement. The fluid resistor was calibrated with both nitrogen and hydrogen at the Colorado Engineering Experiment Station in Nunn, Colorado. Calibration accuracy is ±0.5 percent traceable to the National Bureau of Standards. Upstream and downstream pressures and mass flow rates used in the calibration were determined from the predicted resistojet pressure schedule to minimize density corrections. When directly applied, the calibration is only valid if the same upstream pressure and pressure drop is experienced in test. Since the test results vary from the ideal calibration schedule, a correction must be made to account for gas density differences between test and calibration. Since flow through the fluid resistor is determined by,

$$\dot{m} = \rho K_f A \sqrt{\frac{2g \Delta P}{\rho}}$$

taking the ratio of two flow rates at the same pressure drop gives,

$$\frac{\mathring{m}_1}{\mathring{m}_2} = \sqrt{\frac{\rho_2}{\rho_1}}$$

$$\dot{m}_1 = \dot{m}_2 \sqrt{\frac{P_1 T_2}{P_2 T_1}}$$

where,

m = Mass flow rate

 ρ = Gas density

P = Gas pressure

T = Temperature

Since the average gas density through the pressure drop is a function of the average pressure, the following correction was used.

$$\dot{m}_{cor} = \dot{m}_{cal} \sqrt{\frac{P_{avg test} T_{cal}}{P_{avg cal} T_{test}}}$$

where,

= Flow rate corrected for average pressure differences between actual and calibration conditions.

 \dot{m}_{cal} = Calibration flow rate determined by the measured pressure drop.

Pavg test Average of upstream and downstream pressure measures.

= Average pressure at \dot{m}_{cal} from the calibration. Pavg cal T_{test} Temperature of gas inlet to Visco-Jet in test.

 T_{cal} Temperature of gas inlet to Visco-Jet in calibration.

The calibration, for each gas, determines a pressure drop versus flow rate characteristic as shown in Figure B-1. Additionally, the average pressure of the calibration versus flow rate is plotted in Figure B-2. Calibration inlet temperature was constant at 530 R. Actual calibration data sheets are shown as Figures B-3 and B-4. Figures B-1 and B-2 allow the correction for density differences between test and calibration conditions to be determined.

Since the ammonia source bottle pressure was the vapor pressure, using the calibrated fluid resistor would drop the resistojet inlet pressure below desired operating range. The vibrating U-tube mass flowmeter was therefore used for ammonia since very little pressure drop occurs in this type of flowmeter.

B.4 SPECIFIC POWER

Specific power is the ratio of augmentation power applied to thrust delivered.

$$P_{sp} = Hpow F_{vac}$$

where.

= Specific power

= Augmentation heater power calculated from the product of heater

voltage and current.

は ¹ (1¹) (1¹) (1¹) (1¹) (1¹) (1¹) (1¹) (1¹

COLORADO ENGINEERING EXPERIMENT STATION INC.

OFFICE:

LABORATORY: P. O. Box 41 Nunn, Colo. 80648 Phone: 303—897-2340

-

CALIBRATION OF A ROCKET RESEARCH FLOWMETER

SERIAL NUMBER: NONE

FOR: ROCKET RESEARCH CO.

DATA FILE: BAREC1

DRDER: 86066-500 DATE: 2 MARCH 1984

INLET DIA: 0.5 INCHES THROAT DIA: 0.0094 INCHES

TEST GAS: NITROGEN STD DENSITY= 0.072448 LBM/CU-FT

AT STANDARD CONDITIONS OF 529.69 DEG R, AND 14.696 PSIA

DIFF: DIFFERENTIAL PRESSURE IN PSI

E PRESS: EXIT PRESSURE IN PSIA

K FACTOR: DISCHARGE COEFFICIENT

REY NO: THROAT REYNOLDS NUMBER

LBM/HR: MASS FLOWRATE IN POUNDS PER HOUR

PRESS: INLET PRESSURE IN PSIA

TEMP: INLET TEMPERATURE IN DEGREES RANKINE

RATIO OF SPECIFIC HEATS: 1.4

FOR EXP FACTOR, SEE ASME FLUID METERS, 5TH, P 126

L	DIFF	E PRESS	K FACTOR	REY NO	LBM/HR	PRESS	TEMF
1 2 3 4 5 6 7	44.999 35.3 39.327 58.976 39.278 87.463	28.009 22.894 25.015 35.285 24.994 50.002 78.25	1.0685 1.0814 1.0769 1.0512 1.0752 1.0342 1.0112	16131. 13112. 14395. 20369. 14350. 28964. 43290.	0.42248 0.34315 0.37672 0.53332 0.37565 0.7589 1.1348	73.009 58.194 64.342 94.261 64.272 137.47 208.28	530 529.5 529.5 529.8 529.7 530.3
8 9 10 11 12	181.78 219.35 240.56 182.07 87.559	99.996 120.6 132.37 100.07 49.986	1.0254 1.0275 1.0289 1.0261 1.0348	58404. 70622. 77566. 58466. 28935.	1.5316 1.852 2.0347 1.5339 0.75902	281.78 339.94 372.94 282.14 137.55	530.9 530.9 531.1 531.2 531.1
13 14 15 16 17 18 19 20	271.74 313.13 359.35 277.21 272.34 262.2 358.59 422.67	150. 173.53 200.02 152.86 150.16 144.68 199.88 236.75	1.0318 1.035 1.0394 1.0328 1.0325 1.0303 1.0376	87906. 101840. 117680. 89734. 88122. 84945. 117690.	2.308 2.6739 3.0897 2.3556 2.3133 2.226 3.0842 3.6636	421.74 486.66 559.37 430.08 422.5 406.88 558.47 659.42	531.7 531.7 531.7 531.6 531.6 530.4 530.4 529.8

AVERAGE VALUES FOR ABOVE RESULTS:

P= 302.96 PSIA DENSITY= 1.4966 LBM/CU-FT

T= 530.67 DEG R VISCOSITY= 9.8637E-7 LBM/INCH-SEC

Z= 0.99648 COMPRESSIBILITY FACTOR

COLORADO ENGINEERING EXPERIMENT STATION INC.

OFFICE:

LABORATORY: P. O. Box 41 Nunn, Colo. 80648 Phone: 303—897-2340

SERIAL NUMBER: NONE

DATA FILE: 84RBC1 DATE: 2 MARCH 1984								
X POINTS EXCLUDED FROM AVERAGES. K(AVE) = 1.0411 %DEV FROM K(AVE); L(0) R/1000 MTR READ L(0)-10 -5 0 +5 +10%								
0 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 0 2 13.11 35.3 5 14.34 39.278 3								
13 87.9 271.74 17								
SCALE,? 10 LD: 1.31 E+4 R 5.54 E+4 K= 1.05418 E+0 K/K(AVE) = 1.01252 STD DEV= 0.25 E-1 % STD DEV= 2.414 BASED ON B DATA FTE MAX DEV=43 E-1 % MAX DEV=-4.072 AT L= 7 CHAUV= 1.474 MD: 5.54 E+4 R 9.77 E+4 K= 1.02943 E+0 K/K(AVE) = 0.98874 STD DEV= 0.29 E-2 % STD DEV= 0.283 BASED ON B DATA FTS MAX DEV=41 E-2 % MAX DEV=-0.395 AT L= B CHAUV= 2.607 HI: 9.77 E+4 R 1.40 E+5 K= 1.03853 E+0 K/K(AVE) = 0.99748 STD DEV= 0.30 E-2 % STD DEV= 0.288 BASED ON 4 DATA FTS MAX DEV= 0.35 E-2 % MAX DEV= 0.342 AT L=20 CHAUV= 1.881								
R(AVE) = 63622 $K(AVE) = 1.0411$								
R(LO) = 22443. $R(MD) = 76971.$ $R(HI) = 119290.$								
K = A + B*R + C*R*R A= 1.0763 B=-1.1407E-6 C= 6.90B3E-12								
<pre>K = X + Y*(MTR READ) + Z*(MTR READ)*(MTR READ) X= 1.0748 Y=-3.6301E-4 Z= 7.2413E-7 BASED ON ABOVE TEST DATA (F,T,GAS) AND ASSUMING K CORRELATES WITH MTR READ</pre>								

THIS CALIBRATION IS TRACEABLE TO NBS.

THE FLOW MEASUREMENT ACCURACY IS ESTIMATED TO BE: 2.55 P. C. COLO ENGINEERING EXPERIMENT STATION INC. BX 41, NUNN CO 80648 Figure B-3 (Concluded)

COLORADO

ENGINEERING EXPERIMENT STATION INC.

OFFICE:

F80

LABORATORY: P. O. Box 41 Nunn, Colo. #0648 Phone: 303---97-2340

CALIBRATION OF A ROCKET RESEARCH FLOWMETER

SERIAL NUMBER: NONE

FOR: ROCKET RESEARCH CO.

ORDER: 86066-500

DATE: 5 MARCH 1984

DATA FILE: BARRCIA INLET DIA: 0.5 INCHES THROAT DIA: 0.0094 INCHES

TEST GAS: HYDROGEN STD DENSITY= 0.005209 LBM/CU-FT

AT STANDARD CONDITIONS OF 529.69 DEG R, AND 14.696 PSIA

DIFF: DIFFERENTIAL PRESSURE IN PSI

E PRESS: EXIT PRESSURE IN PSIA

K FACTOR: DISCHARGE COEFFICIENT

REY NO: THROAT REYNOLDS NUMBER

LBM/HR: MASS FLOWRATE IN POUNDS PER HOUR

PRESS: INLET PRESSURE IN PSIA

TEMP: INLET TEMPERATURE IN DEGREES RANKINE

RATIO OF SPECIFIC HEATS: 1.4 .

FOR EXP FACTOR, SEE ASME FLUID METERS, 5TH, P 126

L.	DIFF	E PRESS	K FACTOR	REY NO	LBM/HR	PRESS	TEMP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	130.77 178.88 212.5 179.3 254.92 273.04 315.79 273.06 351.85 370.88 393.1 438.95 393.18 31.018 35.385 59.243	75.266 99.927 117.34 100.22 139.26 148.73 170.85 148.79 189.94 199.97 211.88 236.38 211.93 22.451 25.001 38.949	1.0446 1.0345 1.0308 1.0331 1.0275 1.027 1.0259 1.0266 1.0261 1.0262 1.027 1.0284 1.0267 1.1284 1.1215 1.0884	23373. 31105. 36566. 31178. 43457. 46442. 53414. 46481. 59451. 62619. 66381. 74094. 66420. 6748.4 7549.9 11789. 7541.	0.30736 0.40903 0.48071 0.40973 0.57095 0.61001 0.7014 0.61021 0.78018 0.82155 0.87078 0.97184 0.97184 0.08916 0.099761 0.15578 0.099656	206.04 278.81 329.84 279.52 394.19 421.77 486.64 421.85 541.78 570.86 604.98 675.33 605.11 53.469 60.386 98.192 60.266	529 528.8 528.5 528.3 528.3 528.1 527.9 527.7 527.4 527.2 527.1 527.1 527.1 527.1 527.1
17	35.306	24.96	1.1226		- -		

AVERAGE VALUES FOR ABUVE_RESULTS:

DENSITY= 0.12503 LBM/CU-FT P= 358.18 PSIA

VISCOSITY= 4.948E-7 LBM/INCH-SEC T= 529.05 DEG R

Z= 1.0147 COMPRESSIBILITY FACTOR

SUBSONIC VENTURI: FLOW NOZZLE PROG 10

COLORADO ENGINEERING EXPERIMENT STATION INC.

OFFICE:

F100-

LABORATORY: P. O. Box 41 Nunn, Colo. 80648 Phone: 303—897-2340

EXCLUDED FROM AVERAGES: 1 POINTS. SCALE:? 10 L R % DEV 12 74093 -2.16

SERIAL NUMBER: NONE DATA FILE: 84RRC1A

DATE: 5 MARCH 1984

Χ	. PO1	NTS EXCL	JDED FROM	AVER	AGES.	100	AUE)	= 1.0	E11	**		
	L(0)		FR READ L		10	•••	-5	- 1.0		AUEV		"(AVE);
						_			0		+5	+10%
	14	6748.4	31.018		0.4 B	/	65	4 3 2	1 0	1 2 3	4 5 6	7 8 9 U
	17	7541.			• • • • •	• • •	• • • •					0
		· · · ·	35.306	15								DO
	16	11789.	59.243								· • • • • • • • • • • • • • • • • • • •	••••••
	1	23373.	130.77		• • • • • •			• • • •	•••••••••••••••••••••••••••••••••••••••	••••	· • • • •	••••••
	2	31105.	178.88	4			• • • • •	• • • •		• • • • • •	• • • • •	• • • • • • • •
	3	36566.	212.5	·		• • •	• • • • •	••••	U	• • • • • •	••••	• • • • • • • •
	5	43457.	254.92	i			• • • • •	0	• • • • •	•••••	• • • • •	•••••••
	6	46442.	273.04	8					• • • • •	• • • • •	• • • • • •	••••••
	フ	53414.	315.79	_				····	• • • • •	• • • • •	••••	• • • • • • •
	9	59451.	351.85	•					• • • • •	• • • • • •	•••••	• • • • • • • •
	10	62619.	370.88	,			• • • • •	0	• • • • •	• • • • • •	• • • • •	• • • • • • • •
	11	66381.	393.1	13			• • • •	0	• • • • •	• • • • • •	• • • • •	• • • • • • • •
X	12	74094.	438.95		• • • • • •	• • •	• • • • •	X	• • • • •	• • • • • •	• • • • •	• • • • • • • •
					,							

SCALE,? 10 LO: 6.75 E+3 R 2.66.E+4 STD DEV= 0.35 E-1 MAX DEV=57 E-1 MD: 2.66 E+4 R 4.65 E+4 STD DEV= 0.34 E-2 MAX DEV= 0.46 E-2 HI: 4.65 E+4 R 6.64 E+4 STD DEV= 0.45 E-3 MAX DEV= 0.62 E-3	K= 1.10111 E+0 % STD DEV= 3.205 % MAX DEV=-5.136 K= 1.02992 E+0 % STD DEV= 0.329 % MAX DEV= 0.447 K= 1.02640 E+0 % STD DEV= 0.044 % MAX DEV= 0.060	AT L= 1 CHAUV= 1.101 K/K(AVE)= 0.97988 BASED ON 6 DATA PTS AT L= 2 CHAUV= 2.09
--	--	---

R(AVE) = 37532

K(AVE) = 1.0511

R(LD) = 11400. R(MD) = 39205. R(HI) = 61657.

H = A + B*R + C*R*R A= 1.1517 B=-4.9809E-6 C= 4.7828E-11

K = X + Y*(MTR READ) + Z*(MTR READ)*(MTR READ)
X= 1.1426 Y=-7.8526E-4 Z= 1.2794E-6
BASED ON ABOVE TEST DATA (P,T,GAS)
AND ASSUMING K CORRELATES WITH MTR READ

B.5 OVERALL EFFICIENCY

Overall efficiency is the ratio of the exit jet power to total input power. Total input power consists of the electrical augmentation power and the chemical energy of the propellant. Overall resistojet efficiency is defined as,

$$\eta = P_{out}/P_{in} = F I_{sp}/(2(Hpow + \dot{m} h))$$

where,

P_{in} = Input power (chemical and electrical)

P = Useful output power

m = Mass flow rate

Hpow = Augmentation power

h = Propellant inlet enthalpy (Reference condition 0° K)

F = Thrust

 I_{sp} = Specific impulse η = Overall efficiency

B.6 HEATER WIRE TEMPERATURE

Augmentation heater wire temperature may be determined from its electrical resistance. A temperature-resistance calibration was obtained by optical pyrometer temperature measurements during component level testing.

Temperature is estimated as a linear function of resistance. Figure B-5 shows temperature versus resistance for the heater used in testing.

A Title and Substitie Radiative Resistojet Performance Characterization Tests 7. Author(s) C. I. Miyake 8. Performing Organization Report No. 8. AP-958 10. Work Unit No. 9. Performing Organization Report No. 8. AP-958 10. Work Unit No. 11441 Willows Road Redmond, Washington 98052-1012 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 5. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Buggested by Author(s)) Discecraft propulsion Unclassified – unlimited STAR Category 20	1. Report No.	2. Government Accession	no No	0.0-11			
Radiative Resistojet Performance Characterization Tests 7. Author(s) C. I. Miyake 6. Performing Organization Report No. 84 - R-958 10. Work Unit No. 11. Contract or Grant No. 11. Author(s) 12. Sponsoring Agency Name and Address Rocket Research Company 11. Author(s) 11. Author(s) 13. Type of Report and Period Covered 14. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 13. Type of Report and Period Covered 14. Sponsoring Agency Code 506-55-28 15. Supplementary Notes 16. Advance: This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet sa result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Rey Words (Suppensed by Author(s)) 16. Distribution Statement Unclassified — unlimited STAR Category 20 17. No. of pages 22 Price*	• • • • • • • • • • • • • • • • • • • •	2. GOVERNMENT ACCESSIO	л NO.	3. Recipient's Catalo	og No.		
Radiative Resistojet Performance Characterization Tests September 1984 Performing Organization Code R. Author(s) Performing Organization Name and Address Rocket Research Company 11441 Willows Road Redmond, Washington 98052-1012 Sponsoring Agency Name and Address Rother Research Company 11441 Willows Road Redmond, Washington 98052-1012 Sponsoring Agency Name and Address Rational Aeronautics and Space Administration Washington, D.C. 20546 Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet application to space station auxiliary propulsion. Responsoring Agency Code 10. Epidember 1984 Declaration Tests September 1984 Performing Organization Report No. 84-R-958 10. Work Unit No. NASA-23868 13. Type of Report and Period Covered Contractor Report 14. Sponsoring Agency Code 506-55-28 Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using Phydrogen, infrared and ammonia as propellants. This renewed interest in resistojet and application to space station auxiliary propulsion.	4. Title and Subtitle	<u>-</u>	<u>.</u> .	5. Report Date			
Radiative Resistojet Performance Characterization Tests A. Performing Organization Code C. I. Miyake B. Performing Organization Name and Address Rocket Research Company 11.461 Willows Road Redmond, Washington 98052-1012 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 S. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Paceurity Classif, (of this report) Unclassified Inclassified					1004		
7. Author(s) C. I. Miyake 8. Performing Organization Name and Address Rocket Research Company 11441 Willows Road Redmond, Washington 98052-1012 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 5. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abatract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Chacker of the Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Chacker of the Augmented Catalytic China application to Statement Unclassified — unlimited STAR Category 20 22. Price* 11. Contractor Grent No. NAS3-23868 13. Type of Report and Period Covered Contractor Report 14. Sponsoring Agency Technology 15. Delatification Statement 16. Delatification Statement Unclassified — unlimited STAR Category 20	Radiative Resistojet Per	formance Characteri	zation Tests				
C. I. Miyake 8. Performing Organization Name and Address Rocket Research Company 11441 Hillows Road Redmond, Washington 98052-1012 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(9)) Epacecraft propulsion Unclassified Unclassified Unclassified Unclassified 20. Security Classifi, (of this page) Unclassified Unclassified Unclassified Unclassified 22. Price* 22. Price* 11. Contractor Grant No. NAS3-23868 13. Type of Report No. NAS3-23868 14. Stype of Report No. NAS3-23868 15. Type of Report No. NAS3-23868 16. Type of Report No. NAS3-23868 16. Type of Report No. NAS3-23868 18. Type of Report No. NAS4-2186 19. Contractor Grant No. NAS3-23868 19. Contractor Grant No. NAS4-2186 19				or anoming Organ	ization Gode		
C. I. Miyake 84-R-958 10. Work Unit No. 10. Performing Organization Names and Address Rocket Research Company 11441 Willows Road Redmond, Washington 98052-1012 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Noies Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Displacecraft propulsion Unclassified Unclassified Unclassified Unclassified 21. No. of pages 22. Price- Unclassified Unclassified 22. Price-	7. Author(s)			A Davidson London			
Redroming Organization Names and Address Rocket Research Company 11441 Willows Road Redmond, Washington 98052-1012 2. Sponsoring Agency Names and Address National Aeronautics and Space Administration Washington, D.C. 20546 5. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Addrest This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suppessed by Author(b)) Figure (Supplementation Name) Figure (o. Performing Organ	ization Report No.		
Rocket Research Company 11441 Willows Road Redmond, Washington 98052-1012 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet application to space station auxiliary propulsion. Key Words (Supplementary Voice) Contractor Report 14. Sponsoring Agency Code 506-55-28 15. Supplementary Notes 16. Distribution Statement 17. Contract or Grant No. NAS3-23868 17. Type of Report and Period Covered Contractor Report 18. Sponsoring Agency Code 506-55-28 18. Distribution Statement Unclassified - unlimited STAR Category 20 18. Distribution Statement Unclassified - unlimited STAR Category 20 21. No. of pages 22. Price*	C. I. Miyake						
Rocket Research Company 11441 Willows Road Redmond, Washington 98052-1012 2 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3 Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Pacecraft propulsion Luclassified - unlimited STAR Category 20 21. No. of pages 22. Price* 22. Price* 22. Price* 23. No. of pages 22. Price*				10. Work Unit No.			
11441 Willows Road Redmond, Washington 98052-1012 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 506-55-28 5. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Cpacecraft propulsion Luclassified Unclassified Unclassified Unclassified 21. No. of pages 22. Price* No. of pages 22. Price* 21. No. of pages 22. Price* 22. Price* 22. Price* 22. Price* 23. No. of pages 22. Price* 24. No. of pages 24. Price* 24. No. of pages		58					
Redmond, Washington 98052-1012 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Diacecraft propulsion Inclassified — unlimited STAR Category 20 21. No. of pages 22. Price*	Rocket Research Company			11. Contract or Grant	No.		
2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Electric propulsion Auxiliary propulsion Unclassified — Unlimited STAR Category 20 21. No. of pages 22. Price*		_1012		NAS3-23868			
Abstract Abstract Abstract Abstract Abstract Abstract Abstract Approx		-1012	ļ.	13. Type of Report and	Period Covered		
Washington, D.C. 20546 Washington, D.C. 20546 Supplementary Notes Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Security Classified Unclassified Unclassified - unlimited STAR Category 20 Unclassified Unclassified 21. No. of pages 22. Price*				,			
Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Capacecraft propulsion Capa	National Aeronautics and	Space Administratio	on		•		
Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Suggested by Author(s)) Spacecraft propulsion Clectric propulsion Clectric propulsion Auxiliary propulsion Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of pages 22. Price*	wasnington, D.C. 20546		1	14. Sponsoring Agenc	y Code		
Final report. Project Manager, James S. Sovey, Space Propulsion Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Key Words (Supposted by Author(s)) Spacecraft propulsion Clectric propulsion Division (Supposted by Author(s)) Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of pages 22. Price*			į	506-55-28			
Abstract This report describes the test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants. This renewed interest in resistojet is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion. Inclassified - unlimited STAR Category 20 Security Classified Unclassified 21 No. of pages 22 Price Unclassified Uncl	5. Supplementary Notes		<u>-</u>				
Spacecraft propulsion Electric propulsion Auxiliary propulsion Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified Unclassified 21. No. of pages 22. Price*	hydrogen, nitrogen and amm is a result of propulsion	igmented Catalytic Monia as propellant systems definition	Thruster as a s. This renew studies which	gas resistoje ed intonest i	et using		
Spacecraft propulsion Electric propulsion Auxiliary propulsion Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified Unclassified 21. No. of pages 22. Price*	Key Words (Suggested by Authorian)						
Auxiliary propulsion Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 22. Price*		1	18. Distribution Statement				
Unclassified Unclassified 21. No. of pages 22. Price*	Spacecraft propulsion Electric propulsion Auxiliary propulsion		Unclassified STAR Category	- unlimited 20			
Unclassified Unclassified	Security Classif. (of this report)	20. Security Classif. (of this pa	g●)	21. No. of pages	22 Pelasa		
	Unclassified]			

•				
,				
				-
1				
·				
,				

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

SPECIAL FOURTH CLASS MAIL BOOK

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

National Aeronautics and Space Administration Langley Research Center Langley Field Station Hampton, Virginia 23365 Attn: Technical Library

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return