Trabalho Computacional LABORATÓRIO DE MATEMÁTICA COMPUTACIONAL / LMAC 2° Sem. 20/21

Ι

Prazo de entrega: 6 de Junho. O relatório e os códigos deverão ser entregues, como habitualmente, através de um projecto no Fenix. Pretende-se aproximar uma função f(t), no intervalo [0,1], por um polinómio interpolador nos nós $t_i = i/n$, i = 0,...,n. Para tal, consideram-se os polinómios $\{\phi_0(t), \phi_1(t), \ldots, \phi_n(t)\}$, que formam uma base em \mathcal{P}_n (conjunto dos polinómios de grau $\leq n$), procura-se o polinómio interpolador na forma

$$P_n(t) = \sum_{i=0}^{n} a_i \phi_i(t)$$

e obtêm-se os coeficientes a_i resolvendo um sistema de equações lineares. No caso de se considerar a base canónica ($\phi_0(t) = 1, \ \phi_1(t) = t, \dots, \phi_n(t) = t^n$) a matriz desse sistema é chamada a matriz de Vandermonde.

A par da base canónica, iremos neste problema considerar a base de $Bernstein^1$, constituída pelos polinómios $B_{0,n}, B_{1,n}, \ldots B_{n,n}$), os quais são definidos pelas expressões

$$B_{k,n}(t) = \binom{n}{k} t^k (1-t)^{n-k}, \text{ para } k = 0, 1, \dots, n,$$
 (1)

onde

$$\left(\begin{array}{c} n\\ k \end{array}\right) = \frac{n!}{k! \left(n-k\right)!}$$

designa um coeficiente binomial.

- 1. Escreva o programa que permite calcular a matriz de Vandermonde necessária para a construção do polinómio interpolador, de grau menor ou igual a n, assumindo que os nós de interpolação são $t_i = i/n, i = 0, ..., n$. O dado de entrada deverá ser valor de n.
- 2. Escreva o programa que permite calcular a matriz para construir o polinómio interpolador, quando se usa a base de Bernstein (os nós de interpolação são os mesmos que na alínea anterior).
- 3. Construa uma tabela com os números de condição das matrizes associadas aos problemas de interpolação considerados, com n=2,...,20, comparando o caso da base canónica (matriz de Vandermonde) com o da base de Bernstein. Baseando-se nessa tabela, discuta as vantagens e desvantagens da utilização da base de Bernstein na interpolação polinomial.
- 4. Se em vez da base de Bernstein ou da canónica usasse uma base constituída pelos polinómios de Lagrange, qual seria a forma da matriz correspondente? Escreva a expressão do polinómio interpolador nesse caso.
- Vamos agora aplicar os dois métodos (base canónica e base de Bernstein) à resolução de um problema concreto.

O traçado de uma curva plana, representando um determinado trajecto entre um ponto inicial P_0 e um ponto final P_3 encontra-se na Figura $\ref{eq:total_selection}$ a seguir. Pretende-se determinar expressões analíticas para uma função $r:[0,1]\subset I\!\!R\mapsto I\!\!\!R^2$, tal que r(t)=(x(t),y(t)) represente a curva figurada, para qualquer valor do parâmetro $t\in[0,1]$. Para aproximar x(t) e y(t) vamos usar interpolação polinomial de grau adequado à tabela dada.

¹Sergei Natanovich Bernstein, (1880–1968), matemático russo.

Figure 1: Curva r(t), passando pelos pontos P_0 a P_3 .

As coordenadas dos pontos figurados são as seguintes:

Valor do parâmetro t	Coordenadas
$t_0 = 0$	$P_0 = (0,0)$
$t_1 = 1/3$	$P_1 = (2,2)$
$t_2 = 2/3$	$P_2 = (0,3)$
$t_3 = 1$	$P_3 = (2,4)$

- (a) Usando o programa construído na alínea 1, para o caso da base canónica, obtenha a matriz do sistema linear, com o valor de n adequado. Levando em consideração os dados (??), resolva os sistemas lineares que permitem calcular as funções x(t) e y(t), componentes da curva r(t) da Figura ??,
- (b) Resolva o mesmo problema da alínea anterior, mas usando a base de Bernstein. Compare com o resultado anteriormente obtido.
- (c) Mediante uma rotina gráfica do sistema computacional que utilizar, apresente um gráfico contendo os pontos da curva r(t) que obteve, num gráfico análogo ao da Figura 1.

Considere o seguinte problema de valores iniciais:

$$y'(x) = \sin(\exp(y(x))), \quad y(0) = 0.$$

- 1. Escreva um programa que permita aproximar a solução y(x) desta equação pelo método dos trapézios, num certo intervalo [0, a], e com um certo passo h.
- 2. Sabendo que existe um único valor $z \in \mathbb{R}^+$, tal que y(z) = 1, pretende-se aproximar este valor, utilizando o programa da alínea interior e interpolação linear. Escolhendo o passo h adequado, obtenha uma aproximação de z com erro absoluto inferior a 10^{-3} . Justifique a escolha do passo h.