SENSORES Y ACTUADORES

Profesores: Gonzalo Vera Jorge Morales

Alumno: Juan Diego Gonzalez Antoniazzi

Ejercicio 4

Durante el diseño de un equipo de control de temperatura se ensayan cuatro sensores A, B, C y D. Cada uno de estos sensores fue probado tomando cinco lecturas mientras se mantenía una temperatura constante de 18 [°C], dando como resultado los datos consignados en la tabla.

¿Cuál sensor ofrece la mayor exactitud y cual ofrece la mayor precisión?

Sensor	Lectura 1 [°C]	Lectura 2 [°C]	Lectura 3 [°C]	Lectura 4 [°C]	Lectura 5 [°C]	Promedio	Desviación estándar
Α	18,10	18,05	18,00	18,10	18.15	18,08	0,057
В	18,00	18,05	18,00	18,05	18,00	18,02	0,027
С	17,95	17,90	17,85	17,98	17,80	17,90	0,073
D	17,90	17,92	17,91	17,90	17,91	17,91	0,008

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 $s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$

La <u>exactitud</u> es el grado de aproximación al valor verdadero, siento este el sensor "B" dado que contiene 3 lecturas de 18 °C la cual es la misma que la temperatura constante que se toma de referencia.

Mientras que la <u>precisión</u> es el grado de dispersión entre las lecturas, que en este caso es el <u>sensor</u> "D" puesto que, al comparar la totalidad de sus lecturas, aunque estas sean alejadas al valor a tomar de referencia, entre así tiene una variación principal de 0,01°C y de 0,02°C en una sola lectura.