Facultad de Filosofía,

Educación y

Ciencias Humanas

Práctica calificada 1

Curso: Lógica y Argumentación

Sección: 8

Nombre y apellidos: Salvador Elvis Martin Esquivel Rosales

Parte I. Sintaxis y semántica de LC

[6 puntos]

Desarrolla los siguientes:

A) Indica cuáles de las siguientes secuencias de símbolos son mal formadas. Además, debes indicar qué error se comete en cada una de ellas (0.75 puntos c/u).

a.
$$\neg \left(\neg R \land \neg \left(\neg P \neg \left(\neg S \lor \neg (Q \equiv T) \right) \right) \right)$$

b. $\left(\left(\neg P \lor \neg (T \equiv \neg S) \right) \supset \left((Q < \neg R) \lor \neg Q \right) \right)$
c. $\neg \left(\neg (R \lor (\neg (\neg (S \equiv Q) \land P))) \supset (S \lor \neg T) \right)$

b.
$$(\neg P \lor \neg (T \equiv \neg S)) \supset ((Q < \neg R) \lor \neg Q)$$

c.
$$\neg (\neg (R \lor (\neg (\neg (S \equiv Q) \land P))) \supset (S \lor \neg T))$$

d.
$$((P \land \neg Q) \equiv \neg R) \supset (\neg S \equiv \neg (P \lor T))$$

Secuencia mal formada	Error cometido
а	$\neg \left(\neg R \land \neg \left(\neg P \neg \left(\neg S \lor \neg (Q \equiv T)\right)\right)\right)$ - La negación "¬" no genera paréntesis "()" Falta un conector lógico.
b	$\left(\left(\neg P \lor \neg (T \equiv \neg S)\right) \supset \left(\left(Q < \neg R\right) \lor \neg Q\right)\right)$ La variable "<" no existe entre las proposiciones lógicas.
С	$\neg (\neg (R \lor (\neg (S \equiv Q) \land P))) \supset (S \lor \neg T))$ Hay un par de paréntesis de mas

B) Construye el árbol sintáctico de la fórmula bien formada. Además, señala cuál es su operador principal, cuál es su grado de complejidad y cuántas subfórmulas tiene. (1.75 puntos)

C) Elabora un modelo y un contramodelo para la fórmula bien formada. Debes consignar el cálculo lineal de valores de la fila correspondiente (1 punto c/u):

	Modelo			.0		Cálculo
I) (Q	R	S	T	$\left(\left((P \land \neg Q) \equiv \neg R \right) \supset \left(\neg S \equiv \neg (P \lor T) \right) \right)$
F	= \	V	٧	F	F	F F F V V F V V F V V F F F

Contramodelo			Contramodelo Cálculo																		
P	Q	R	S	T	($\left(\left((P \land \neg Q) \equiv \neg R \right) \supset \left(\neg S \equiv \neg (P \lor T) \right) \right)$															
٧	F	F	F	٧		V	V	V	F	V	V	F	F	V	F	F	F	V	٧	V	

Parte II. Tablas de verdad y conceptos semánticos

[8 puntos]

Considera las siguientes reglas extra para el conector ∝ que se añaden a la LC:

Reglas de formación extra

rf5. Si ϕ y ψ son fbf's, entonces (ϕ # ψ) es una fbf.

Reglas de interpretación extra

ri7.
$$U(\phi \# \psi) = V \operatorname{sii} U(\phi) = F \operatorname{y} U(\psi) = V$$

A continuación, desarrolla los siguientes ítems:

A) Crea la tabla de verdad compartida por ϕ y ψ . Debes consignar, como mínimo, todos los valores de los conectores lógicos. (2 puntos)

			φ	ψ
P	Q	R	$\left(\left(P \supset \neg (R \equiv Q) \right) \# \left((R \lor P) \land \neg Q \right) \right)$	$\left(\left(\left(P \# \neg P\right) \land \left(\neg Q \# Q\right)\right) \land \neg R\right)$
V	٧	٧	VF FVVV F VVV FFV	VFFV <mark>F</mark> FVVV <mark>F</mark> FV
٧	٧	F	V <mark>V</mark> VFFV <mark>F</mark> FVV <mark>F</mark> FV	VFFV <mark>F</mark> FVVV <mark>F</mark> VF
٧	F	٧	V <mark>V</mark> VVFF <mark>F</mark> VVV <mark>V</mark> VF	VFFV <mark>F</mark> VFFF <mark>F</mark> FV
٧	F	F	V <mark>F</mark> FFVF <mark>V</mark> FVV <mark>V</mark> VF	VFFV <mark>F</mark> VFFF <mark>F</mark> VF
F	٧	٧	F <mark>V</mark> FVVV <mark>F</mark> VVF <mark>F</mark> FV	FVVF <mark>V</mark> FVVV <mark>F</mark> FV
F	٧	F	F <mark>V</mark> VFFV <mark>F</mark> FFF <mark>F</mark> FV	FVVF <mark>V</mark> FVVV <mark>V</mark> VF
F	F	٧	F <mark>V</mark> VVFF <mark>F</mark> VVF <mark>V</mark> VF	FVVF <mark>F</mark> VFFF <mark>F</mark> FV
F	F	F	F <mark>V</mark> FFVF <mark>F</mark> FFF <mark>F</mark> VF	FVVF <mark>F</mark> VFFF <mark>F</mark> VF

- A) Responde las siguientes preguntas (2 puntos c/u):
 - i. $\dot{z}(\phi \supset \neg(\neg \psi \land \phi))$ es tautológica? De no serlo, señala un contraejemplo. **Respuesta: No es tautología.**

Tabla para el contraejemplo (de no ser tautológica)

P	Q	R	$(\phi \supset \neg(\neg \psi \land \phi))$
٧	F	F	V F F V F V V

ii. $\[\[\] \{ \neg \psi, \neg (\phi \supset \neg \psi) \} \]$ es consistente? De serlo, señala un ejemplo. Respuesta: No es consistente, no hay algún ejemplo donde ambas preposiciones sean consistentes con el mismo modelo.

Tabla para el ejemplo (de ser consistente)

P	Q	R	$ eg\psi$	$\neg(\phi \supset \neg\psi)$
-	-	-	1	-

Respuesta: <u>Si es válido. No existe un contraejemplo porque, en este caso, si ambas premisas son verdaderas la conclusión también lo seria.</u>

Tabla para el contraejemplo (de ser inválido)

P	Q	R	$(\neg \phi \land \neg \psi)$	$(\phi \equiv \psi)$	$\neg(\neg\phi \supset \psi)$
-	-	1	-	-	-

Parte III. Propiedades de la LC

[6 puntos]

Considera las siguientes afirmaciones:

- a. $(\phi \supset \neg \chi)$ implica a $(\phi \land \neg \chi)$.
- b. Si ψ es tautológica e implica a ω , entonces $\phi : (\psi \wedge \omega)$ es válido.

A continuación, señala si expresan propiedades cumplidas por cualquier fórmula en LC o no. Justifica tu respuesta. (3 puntos c/u)

	¿Expresa una propiedad de la LC?	Justificación
a.	No implica. Por lo tanto, no es una fórmula de LC.	3. a. (\$\pi 2 - \times \) implies a (\$\pi 1 - \times \). b. P X . Q P Q P 2 TQ P 1 - \times \) V V V V F F V F F V F F V V F F V F F V F F V F F No implies y pur tanto ne es Formula de LC. b. S; Y es tautológico e implies a as, entonces \$\phi . \cdots \((2\pi \) \(\alpha \) es vodido Asummos 2p & tautológico Asummos 2p & tautológico implies of a tautológico P; Si empre V e implies of a tautológico 2p :
b.	No es válido. Por lo tanto, no es una propiedad de LC.	PQR7(RDR) 7(QNTQ) N(PBP) FVVVVVVVVV A FVF No es válido porque nada me asegura que o vaya a sor siempre verdad y como exite esa posibilidad Enton(e) no es válido y no es propredad de CC.