This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/29, 15/82

(11) International Publication Number: WO 96/38560

(43) International Publication Date: 5 December 1996 (05.12.96)

(21) International Application Number: PCT/GB96/01332

(22) International Filing Date: 3 June 1996 (03.06.96)

(30) Priority Data: 9511196.9 2 June 1995 (02.06.95) GB

(71) Applicant (for all designated States except US): JOHN INNES CENTRE INNOVATIONS LIMITED [GB/GB]; Norwich Research Park, Colney Lane, Norwich NR4 7UH (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DEAN, Caroline [GB/GB]; John Innes Centre, Molecular Genetics Dept., Norwich Research Park, Colney, Norwich NR4 7UH (GB). MACKNIGHT, Richard, Colin [NZ/GB]; John Innes Centre, Molecular Genetics Dept., Norwich Research Park, Colney, Norwich NR4 7UH (GB). BANCROFT, Ian [GB/GB]; John Innes Centre, Molecular Genetics Dept., Norwich Research Park, Colney, Norwich NR4 7UH (GB). LISTER, Clare, Katharine [GB/GB]; John Innes Centre, Molecular Genetics Dept., Norwich Research Park, Colney, Norwich NR4 7UH (GB).

(74) Agents: WALTON, Seán, M. et al.; Mewburn Ellis, York House, 23 Kingsway, London WC2B 6HP (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GENETIC CONTROL OF FLOWERING

(57) Abstract

FCA genes of Arabidopsis thaliana and Brassica napus are provided, enabling flowering characteristics, particularly timing of flowering, to be influenced in transgenic plants. Timing of flowering may be delayed or hastened using sense and antisense expression, also various mutants and alleles, including alternatively spliced forms.

BNSDOCID: <WO 9638560A2 1 3

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus .	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	Ll	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

10

15

20

25

1

GENETIC CONTROL OF FLOWERING

This invention relates to the genetic control of flowering in plants and the cloning and expression of genes involved therein. More particularly, the invention relates to the cloning and expression of the FCA gene of Arabidopsis thaliana, and homologues from other species, and manipulation and use of these genes in plants.

Efficient flowering in plants is important, particularly when the intended product is the flower or the seed produced therefrom. One aspect of this is the timing of flowering: advancing or retarding the onset of flowering can be useful to farmers and seed producers. An understanding of the genetic mechanisms which influence flowering provides a means for altering the flowering characteristics of the target plant. Species for which flowering is important to crop production are numerous, essentially all crops which are grown from seed, with important examples being the cereals, rice and maize, probably the most agronomically important in warmer climatic zones, and wheat, barley, oats and rye in more temperate climates. Important seed products are oil seed rape, sugar beet, maize, sunflower, soybean and sorghum. Many crops which are harvested for their roots are, of course, grown annually from seed and the production of seed of any kind is very dependent upon the ability of the plant to flower, to be pollinated and to set seed. In horticulture, control of the timing of flowering is important. Horticultural plants whose flowering may be

controlled include lettuce, endive and vegetable brassicas including cabbage, broccoli and cauliflower, and carnations and geraniums.

Arabidopsis thaliana is a facultative long day

5 plant, flowering early under long days and late under short days. Because it has a small, well-characterized genome, is relatively easily transformed and regenerated and has a rapid growing cycle, Arabidopsis is an ideal model plant in which to study flowering and its control.

10 One of the genes required for rapid floral induction is the FCA gene (Koornneef et al 1991). Plants carrying mutations of this gene flower much later than wild-type under long photoperiods and short photoperiods. There is a considerable range in flowering time within different 15 mutant fca alleles. The most extreme (fca-1) flowers under long photoperiods with up to 40 leaves whereas fca-3, fca-4 flower with ~20 rosette leaves compared to 9 for wild-type Landsberg erecta). The late flowering of all the fca mutants can be overcome to early flowering in 20 both long and short photoperiods if imbibed seeds, or plants of different developmental ages, are given 3-8 weeks at 4°C - a vernalization treatment (Chandler and Dean 1994).

We have cloned and sequenced the FCA gene of

Arabidopsis thaliana, a homologue from Brassica and
mutant sequences.

According to a first aspect of the present invention there is provided a nucleic acid molecule comprising a

10

15

20

25

nucleotide sequence encoding a polypeptide with FCA function. Those skilled in the art will appreciate that "FCA function" refers to the ability to influence the timing of flowering phenotypically like the FCA gene of Arabidopsis thaliana, especially the ability to complement an fca mutation in Arabidopsis thaliana.

Nucleic acid according to the invention may encode a polypeptide comprising the amino acid sequence shown in Figure 2, or an allele, variant, derivative or mutant thereof. Particular variants include those wherein the amino acid residues up-stream of the third methionine and/or up-stream of the second methionine in the amino acid sequence of Figure 2 are not included. Variants, mutants and derivatives of nucleic acid encoding such shorter polypeptide are of course provided by various embodiments of the present invention.

Nucleic acid according to the present invention may have the sequence of an FCA gene of Arabidopsis thaliana, or be a mutant, variant (or derivative) or allele of the sequence provided. Preferred mutants, variants and alleles are those which encode a protein which retains a functional characteristic of the protein encoded by the wild-type gene, especially the ability to promote flowering as discussed herein. Promotion of flowering may advance, hasten or quicken flowering. Other preferred mutants, variants and alleles encode a protein which delays flowering compared to wild-type or a gene with the sequence provided. Changes to a sequence, to

produce a mutant or variant, may be by one or more of insertion, deletion or substitution of one or more nucleotides in the nucleic acid, leading to the insertion, deletion or substitution of one or more amino acids. Of course, changes to the nucleic acid which make no difference to the encoded amino acid sequence are included. Particular variants, mutants, alleles and variants are discussed further below.

A preferred nucleic acid sequence covering the

region encoding the FCA gene is shown in Figure 1 and the

predicted amino acid sequence encoding the FCA ORF is

shown in Figure 2. Nucleic acid may be subject to

alteration by way of substitution of nucleotides and/or a

combination of addition, insertion and/or substitution of

one or more nucleotides with or without altering the

encoded amino acids sequence (by virtue of the degeneracy

of the genetic code).

Nucleic acid according to the present invention may comprise an intron, such as an intron shown in Figure 1, for instance intron 3 (as in various embodiments e.g. as illustrated herein), whether or not the encoded amino acid sequence is altered. For example, the variant FCA α_B, whose nucleic acid sequence is shown in Figure 3, comprises intron 3 of the sequence of Figure 1, such that translation of the sequence results in a different amino acid sequence from that of Figure 2 (intron 3 of Figure 1 contains a stop codon at 3026-3028 that is potentially used in transcripts).

10

15

20

25

The present invention also provides a vector which comprises nucleic acid with any one of the provided sequences, preferably a vector from which polypeptide encoded by the nucleic acid sequence can be expressed. The vector is preferably suitable for transformation into a plant cell. The invention further encompasses a host cell transformed with such a vector, especially a plant cell. Thus, a host cell, such as a plant cell, comprising nucleic acid according to the present invention is provided. Within the cell, the nucleic acid may be incorporated within the chromosome. There may be more than one heterologous nucleotide sequence per haploid genome. This, for example, enables increased expression of the gene product compared with endogenous levels, as discussed below.

A vector comprising nucleic acid according to the present invention need not include a promoter, particularly if the vector is to be used to introduce the nucleic acid into cells for recombination into the genome.

Nucleic acid molecules and vectors according to the present invention may be provided isolated and/or purified from their natural environment, in substantially pure or homogeneous form, or free or substantially free of nucleic acid or genes of the species of interest or origin other than the sequence encoding a polypeptide able to influence flowering, eg in Arabidopsis thaliana nucleic acid other than the FCA sequence. Nucleic acid

according to the present invention may comprise cDNA, RNA, genomic DNA and may be wholly or partially synthetic. The term "isolate" may encompass all these possibilities.

5 The present invention also encompasses the expression product of any of the nucleic acid sequences disclosed and methods of making the expression product by expression from encoding nucleic acid therefore under suitable conditions in suitable host cells, e.g. E. coli 10 (see Example 7). Those skilled in the art are well able to construct vectors and design protocols for expression and recovery of products of recombinant gene expression. Suitable vectors can be chosen or constructed, containing one or more appropriate regulatory sequences, including 15 promoter sequences, terminator fragments, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. For further details see, for example, Molecular Cloning: a Laboratory Manual: 2nd edition, Sambrook et al, 1989, Cold Spring Harbor 20 Laboratory Press. Transformation procedures depend on the host used, but are well known. Many known techniques and protocols for manipulation of nucleic acid, for example in preparation of nucleic acid constructs, mutagenesis, sequencing, introduction of DNA into cells and gene 25 expression, and analysis of proteins, are described in detail in Short Protocols in Molecular Biology, Second Edition, Ausubel et al. eds., John Wiley & Sons, 1992.

10

15

20

25

The disclosures of Sambrook et al. and Ausubel et al. are incorporated herein by reference.

Purified FCA protein, or a fragment, mutant or variant thereof, e.g. produced recombinantly by expression from encoding nucleic acid therefor, may be used to raise antibodies employing techniques which are standard in the art, as exemplified in Example 7.

Antibodies and polypeptides comprising antigen-binding fragments of antibodies may be used in identifying homologues from other species as discussed further below.

Methods of producing antibodies include immunising a mammal (eg human, mouse, rat, rabbit, horse, goat, sheep or monkey) with the protein or a fragment thereof.

Antibodies may be obtained from immunised animals using any of a variety of techniques known in the art, and might be screened, preferably using binding of antibody to antigen of interest. For instance, Western blotting techniques or immunoprecipitation may be used (Armitage et al, 1992, Nature 357: 80-82). Antibodies may be polyclonal or monoclonal.

As an alternative or supplement to immunising a mammal, antibodies with appropriate binding specificity may be obtained from a recombinantly produced library of expressed immunoglobulin variable domains, eg using lambda bacteriophage or filamentous bacteriophage which display functional immunoglobulin binding domains on their surfaces; for instance see WO92/01047.

Antibodies raised to a polypeptide or peptide can be used in the identification and/or isolation of homologous polypeptides, and then the encoding genes. Thus, the present invention provides a method of identifying or isolating a polypeptide with FCA function (in accordance with embodiments disclosed herein), comprising screening candidate polypeptides with a polypeptide comprising the antigen-binding domain of an antibody (for example whole antibody or a fragment thereof) which is able to bind an 10 FCA polypeptide or fragment, variant or variant thereof or preferably has binding specificity for such a polypeptide, such as having the amino acid sequence shown in Figure 2 or Figure 8b. Specific binding members such as antibodies and polypeptides comprising antigen binding 15 domains of antibodies that bind and are preferably specific for a FCA polypeptide or mutant, variant or derivative thereof represent further aspects of the present invention, as do their use and methods which employ them.

Candidate polypeptides for screening may for instance be the products of an expression library created using nucleic acid derived from an plant of interest, or may be the product of a purification process from a natural source.

A polypeptide found to bind the antibody may be isolated and then may be subject to amino acid sequencing. Any suitable technique may be used to sequence the polypeptide either wholly or partially (for

10

instance a fragment of the polypeptide may be sequenced). Amino acid sequence information may be used in obtaining nucleic acid encoding the polypeptide, for instance by designing one or more oligonucleotides (e.g. a degenerate pool of oligonucleotides) for use as probes or primers in hybridisation to candidate nucleic acid, or by searching computer sequence databases, as discussed further below.

The present invention further encompasses a plant comprising a plant cell comprising nucleic acid according to the present invention e.g. as a result of introduction of the nucleic acid into the cell or an ancestor thereof, and selfed or hybrid progeny and any descendent of such a plant, also any part or propagule of such a plant, progeny or descendant, including seed.

15 The FCA gene encodes a large protein (796 amino acids shown in Figure 2) with homology to a class of proteins identified as RNA-binding proteins (Burd and Dreyfuss 1994). These proteins contain 80 amino acid, RNA recognition motifs (RRMs) and have a modular structure-20 they can contain several RNA binding domains and auxiliary domains rich in amino acids such as glycine, glutamine and proline. The RRM proteins can be divided into subfamilies based on homology within and around the RRM domains. The FCA protein is most homologous to a 25 subfamily of RNA-binding proteins (cluster 1028.16; identified using the BEAUTY database search, Worley et al., 1995) exemplified by the Drosophila elav gene (Robinow et al., 1988). Other members of this family

include the Drosophila sexlethal protein; the human nervous system proteins HuD, HuC, Hel-N1, and Hel-N2; and the Xenopus proteins elrA, elrB, elrC, elrD and etr-1.

FCA has two RNA-binding domains while most of the members of elav gene family have three RNA-binding domains. The first two RNA-binding domains of elav family (and the spacing between the domains) is similar to the RNA-binding domains in the FCA protein. In common with the FCA protein the elav has a region with high glutamine content. There is also a 20 amino acid region near the C terminus of the FCA protein which shows strong homology to ORFs from two genes of unknown function from yeast and C. elegans.

The FCA transcript is alternatively spliced. Five 15 forms of the transcript are generated in cells. One, herein called FCA transcript β is ~ 2kb and represents premature termination and polyadenylation within intron 3. FCA $\alpha_{\rm A}$ and $\alpha_{\rm B}$ has 19 of 20 introns spliced out but intron 3 (2kb) remaining. FCA $\alpha_{\rm h}$ is the same as $\alpha_{\rm h}$ except 20 at intron 11 where different 5' and 3' exon/intron junctions are used. FCA $\alpha_{\rm A}$ uses the 5' exon/intron junction at 7055 bp (genomic sequence Fig.1) and 3' exon/intron junction at 7377 bp. FCA $\alpha_{\rm B}$ uses the 5' exon/intron junction at 7130 bp (genomic sequence Fig.1) and 3' exon/intron junction at 7295 bp. FCA transcripts γ_A 25 and γ_B ,both have intron 3 removed and γ_A and γ_B ,use the same junctions around intron 11 as α_A and α_B ,

respectively. Only γ_{B} encodes both RNA-binding domains and the conserved C-terminal domain (Figure 10).

RNA-binding proteins have been shown to be involved in several facets of post-transcriptional regulation. The 5 RNP motif forms a β sheet RNA binding surface engaging the RNA as an open platform for interaction with either other RNA molecules or other proteins. One of the most well characterized genes encoding an RNP motif-containing protein is the Drosophila SEX-LETHAL gene (Bell et al 10 1988). The SEX-LETHAL protein is involved in altering the splicing of its own and other transcripts within the pathway that determines sex in Drosophila. Only the alternatively spliced product gives an active protein. Thus this gene product is responsible for determining and maintaining the female state. Other RNA-binding proteins 15 have been shown to function by localizing specific transcripts in the nucleus or preventing translation of specific transcripts. Six independently isolated fca mutants have been described, and we have identified the 20 sequence changes causing a reduction in FCA activity in three cases. The fca-1 mutation converted a C nucleotide at position 6861 (Figure 1) into a T. Thus a glutamine codon (CAA) is changed into a stop codon (TAA). The fca-3 mutation converted a G nucleotide at position 5271 into an A. The effect of this mutation is to alter the 3' splice junction of intron 7 such that a new 3' splice junction is used 28 nucleotides into exon 8. The fca-4 mutation is the result of a rearrangement (an inversion

25

15

20

25

taking the 3' end of the gene 250kb away) with the breakpoint at position 4570 (within intron 4).

A further aspect of the present invention provides a method of identifying and cloning FCA homologues from plant species other than Arabidopsis thaliana which method employs a nucleotide sequence derived from that shown in Figure 1. Nucleic acid libraries may be screened using techniques well known to those skilled in the art and homologous sequences thereby identified then tested. The provision of sequence information for the FCA gene of Arabidopsis thaliana enables the obtention of homologous sequences from Arabidopsis and other plant species. In Southern hybridization experiments a probe containing the FCA gene of Arabidopsis thaliana hybridises to DNA extracted from Brassica rapa, Brassica napus and Brassica oleraceae. In contrast to most Arabidopsis genes, which are normally present on the B. napus genome in 6 copies, the FCA gene is present twice, on only one pair of chromosomes. An FCA homologue from Brassica napus has been isolated and sequenced and shows 86.1% average nucleotide sequence homology within the exons, 65.8% within introns and 78% identity at the amino acid level (87% similarity). This Brassica gene fully complements a mutation in the Arabidopsis FCA gene and can thus be considered as a fully functional homologue. Homologues have also been detected by Southern blot analysis from Antirrhinum, tobacco, sugarbeet, tomato, pea, wheat, maize, rice, rye, Lolium and oats.

10

15

20

25

The Brassica FCA homologue whose nucleotide sequence is given in Figure 8a, including the coding sequence, and whose amino acid sequence encoded by the sequence of Figure 8a is shown in Figure 8b, represents and provides further aspects of the present invention in accordance with those disclosed for the Arabidopsis FCA gene. For example, mutants, alleles and variants are included, e.g. having at least 80% identity with the sequence of Figure 8b, though high levels of amino acid identity may be limited to functionally significant domains or regions as discussed.

The present invention also extends to nucleic acid encoding an FCA homologue obtained using a nucleotide sequence derived from that shown in Figure 1, or the amino acid sequence shown in Figure 2. Preferably, the nucleotide sequence and/or amino acid sequence shares homology with the sequence encoded by the nucleotide sequence of Figure 1, preferably at least about 50%, or at least about 60%, or at least about 70%, or at least about 75%, or at least about 78%, or at least about 80% homology, most preferably at least about 90% homology, from species other than Arabidopsis thaliana and the encoded polypeptide shares a phenotype with the Arabidopsis thaliana FCA gene, preferably the ability to influence timing of flowering. These may promote or delay flowering compared with Arabidopsis thaliana FCA and mutants, variants or alleles may promote or delay

15

20

25

flowering compared with wild-type. "Homology" may be used to refer to identity.

In certain embodiments, an allele, variant, derivative, mutant or homologue of the specific sequence may show little overall homology, say about 20%, or about 25%, or about 30%, or about 35%, or about 40% or about 45%, with the specific sequence. However, in functionally significant domains or regions the amino acid homology may be much higher. Comparison of the amino acid sequences of the FCA polypeptides of the Arabidopsis thaliana and Brassic napus genes, as in Figure 9, reveals domains and regions with functional significance, i.e. a role in influencing a flowering characteristic of a plant, such as timing of flowering. Deletion mutagenesis, for example, may be used to test the function of a region of the polypeptide and its role in or necessity for influence of flowering timing.

The nucleotide sequence information provided herein, or any part thereof, may be used in a data-base search to find homologous sequences, expression products of which can be tested for ability to influence a flowering characteristic. These may have FCA function or the ability to complement a mutant phenotype, which phenotype is delayed flowering, where the delay can be reversed by a vernalization treatment.

Vernalization is well known in the art and appropriate conditions are at the disposal of skilled artisans. Plants may be vernalized at the seed stage,

10

15

20

25

immediately after sowing. It may be carried out for 8 weeks, in an 8 hour photoperiod (e.g fluorescent light, PAR 9.5mmol $m^{-2}s^{-1}$, R/FR ratio 3.9) at a temperature of $5 \circ C + / - 1 \circ C$.

In public sequence databases we recently identified several Arabidopsis cDNA clone sequences that were obtained in random sequencing programmes and share homology with FCA within both the RRM domains and in the C-terminal regions. BLAST and FASTA searches of databases have identified 23 Arabidopsis expressed sequence tags (ESTs) identified. These clones have been obtained and used in low stringency hybridization experiments with different regions of the FCA gene (central and 3'). Eight clones show good homology to the 3' part of the FCA gene, two clones show good homology to the central part and one clone shows good homology to both (42 A 4 - another RNAbinding protein). Similarly, among randomly sequenced rice cDNAs we have identified 10 rice ESTs. These hybridise to FCA genomic and cDNA clones under low stringency conditions. Five clones show good hybridization to FCA, particularly C1480.

By sequencing homologues, studying their expression patterns and examining the effect of altering their expression, genes carrying out a similar function to FCA in regulating flowering time are obtainable. Of course, mutants, variants and alleles of these sequences are included within the scope of the present invention in the

same terms as discussed above for the *Arabidopsis* thaliana FCA gene.

The high level of homology between the FCA genes of Arabidopsis thaliana and Brassica napus, as disclosed herein, may also be exploited in the identification of further homologues, for example using oligonucleotides (e.g. a degenerate pool) designed on the basis of sequence conservation.

According to a further aspect, the present invention 10 provides a method of identifying or a method of cloning a FCA homologue from a species other than Arabidopsis thaliana, the method employing a nucleotide sequence derived from that shown in Figure 1 or that shown in Figure 8a. For instance, such a method may employ an 15 oligonucleotide or oligonucleotides which comprises or comprise a sequence or sequences that are conserved between the sequences of Figures 1 and 8a to search for homologues. Thus, a method of obtaining nucleic acid whose expression is able to influence a flowering 20 characteristic of a plant is provided, comprising hybridisation of an oligonucleotide or a nucleic acid molecule comprising such an oligonucleotide to target/candidate nucleic acid. Target or candidate nucleic acid may, for example, comprise a genomic or cDNA 25 library obtainable from an organism known to contain or suspected of containing such nucleic acid. Successful

hybridisation may be identified and target/candidate

10

nucleic acid isolated for further investigation and/or use.

Hybridisation may involve probing nucleic acid and identifying positive hybridisation under suitably stringent conditions (in accordance with known techniques) and/or use of oligonucleotides as primers in a method of nucleic acid amplification, such as PCR. For probing, preferred conditions are those which are stringent enough for there to be a simple pattern with a small number of hybridisations identified as positive which can be investigated further. It is well known in the art to increase stringency of hybridisation gradually until only a few positive clones remain.

As an alternative to probing, though still employing

15 nucleic acid hybridisation, oligonucleotides designed to

amplify DNA sequences may be used in PCR reactions or

other methods involving amplification of nucleic acid,

using routine procedures. See for instance "PCR

protocols; A Guide to Methods and Applications", Eds.

20 Innis et al, 1990, Academic Press, New York.

Preferred amino acid sequences suitable for use in the design of probes or PCR primers are sequences conserved (completely, substantially or partly) between at least two FCA polypeptides able to influence a flowering characteristic, such as timing of flowering, e.g. with the amino acid sequences of Figures 2 and 8b herein.

25

15

20

25

On the basis of amino acid sequence information oligonucleotide probes or primers may be designed, taking into account the degeneracy of the genetic code, and, where appropriate, codon usage of the organism from the candidate nucleic acid is derived.

Preferably an oligonucleotide in accordance with the invention, e.g. for use in nucleic acid amplification, has about 10 or fewer codons (e.g. 6, 7 or 8), i.e. is about 30 or fewer nucleotides in length (e.g. 18, 21 or 24).

Assessment of whether or not such a PCR product corresponds to resistance genes may be conducted in various ways. A PCR band from such a reaction might contain a complex mix of products. Individual products may be cloned and each one individually screened. It may be analysed by transformation to assess function on introduction into a plant of interest.

Generally, nucleic acid according to the invention may comprise a nucleotide sequence encoding a polypeptide able to complement a mutant phenotype which is delayed in flowering, where that delay can be corrected by a vernalization treatment. Also the present invention provides nucleic acid comprising a nucleotide sequence which is a mutant or variant of a wild-type gene encoding a polypeptide with ability to influence the timing of flowering, the mutant or variant phenotype being delayed in flowering with the timing of flowering being corrected by vernalization. These are distinguished from the CO

gene reported by Putterill et al 1995, Putterill et al 1993 and the LD gene reported by Lee et al 1994. LD shows similar characteristics to the FCA gene in that a mutation in the gene confers late flowering that is 5 corrected by a vernalization treatment, but LD requires a second gene product to influence flowering time in the Arabidopsis thaliana Landsberg erecta ecotype (Lee et al 1994, Koornneef et al 1994). Thus in many plant species manipulation of the LD gene alone may not influence 10 flowering time. The action of FCA is opposite in action to that of phytochromeB, in that mutations in PHYB (hy3) confer early flowering and introduction of an intact PHYB gene into hy3 mutants restores normal flowering time (Wester] et al 1994). LD and CO are excluded from the 15 ambit of the present invention. FCA and mutants, variants and alleles thereof may not complement an LD mutation. LD and mutants, variants and alleles thereof may not complement an FCA mutation.

The FCA amino acid sequence is totally different from those of CO and LD.

The action of FCA can also be distinguished from ectopic expression of meristem identity or MADS box genes that alter flowering time (Weigel and Nilsson 1995, Chung et al 1994, Mandel and Yanofsky 1995, Mizukama and Ma 1992). Apart from an early flowering phenotype, ectopic or overexpression of meristem identity or MADS box genes produces many additional perturbations to both the

25

15

20

25

vegetative and floral phenotype of the plant (eg. short stature, reduced apical dominance, sterile flowers).

Also according to the invention there is provided a plant cell having incorporated into its genome a sequence of nucleotides where different introns have been removed. A further aspect of the present invention provides a method of making such a plant cell involving introduction of a vector comprising the sequence of nucleotides into a plant cell and causing or allowing recombination between the vector and the plant cell genome to introduce the sequence of nucleotides into the genome.

Plants which comprise a plant cell according to the invention are also provided, along with any part or propagule thereof, seed, selfed or hybrid progeny and descendants and any part or propagate thereof.

The invention further provides a method of influencing the flowering characteristics of a plant comprising expression of a heterologous FCA gene sequence (or mutant, allele, variant or homologue thereof, as discussed) within cells of the plant. The term "heterologous" indicates that the gene/sequence of nucleotides in question have been introduced into said cells of the plant or an ancestor thereof, using genetic engineering, ie by human intervention. The gene may be on an extra-genomic vector or incorporated, preferably stably, into the genome. The heterologous gene may replace an endogenous equivalent gene, ie one which normally performs the same or a similar function in

10

15

20

control of flowering, or the inserted sequence may be additional to the endogenous gene. An advantage of introduction of a heterologous gene is the ability to place expression of the gene under the control of a promoter of choice, in order to be able to influence gene expression, and therefore flowering, according to preference. Furthermore, mutants and variants of the wild-type gene, eg with higher or lower activity than wild-type, may be used in place of the endogenous gene.

The principal flowering characteristic which may be altered using the present invention is the timing of flowering. Under-expression of the gene product of the FCA gene leads to delayed flowering (as indicated by the fca mutant phenotype and Example 3, antisense experiments) that can be overcome to early flowering by a vernalization treatment; over-expression may lead to earlier flowering (Examples 2, 4 and 5). This degree of control is useful to ensure synchronous flowering of male and female parent lines in hybrid production, for example. Another use is to advance or retard the flowering in accordance with the dictates of the climate so as to extend or reduce the growing season. This may involve use of anti-sense or sense regulation.

The nucleic acid according to the invention, such as

25 a FCA gene or homologue, may be placed under the control

of an externally inducible gene promoter thus placing the

timing of flowering under the control of the user. This

is advantageous in that flower production, and subsequent

10

15

20

25

Winner CAR SECTION

events such as seed set, may be timed to meet market demands, for example, in cut flowers or decorative flowering pot plants. Delaying flowering in pot plants is advantageous to lengthen the period available for transport of the product from the producer to the point of sale and lengthening of the flowering period is an obvious advantage to the purchaser.

In a further aspect the present invention provides a gene construct comprising an inducible promoter operatively linked to a nucleotide sequence provided by the present invention, such as the FCA gene or Arabidopsis thaliana, a homologue from another plant species, e.g. a Brassica such as Brassica napus, or any mutant, variant or allele thereof. As discussed, this enables control of expression of the gene. The invention also provides plants transformed with said gene construct and methods comprising introduction of such a construct into a plant cell and/or induction of expression of a construct within a plant cell, by application of a suitable stimulus, an effective exogenous inducer.

The term "inducible" as applied to a promoter is well understood by those skilled in the art. In essence, expression under the control of an inducible promoter is "switched on" or increased in response to an applied stimulus. The nature of the stimulus varies between promoters. Some inducible promoters cause little or undetectable levels of expression (or no expression) in the absence of the appropriate stimulus. Other inducible

promoters cause detectable constitutive expression in the absence of the stimulus. Whatever the level of expression is in the absence of the stimulus, expression from any inducible promoter is increased in the presence of the correct stimulus. The preferable situation is where the level of expression increases upon application of the relevant stimulus by an amount effective to alter a phenotypic characteristic. Thus an inducible (or "switchable") promoter may be used which causes a basic level of expression in the absence of the stimulus which level is too low to bring about a desired phenotype (and may in fact be zero). Upon application of the stimulus, expression is increased (or switched on) to a level which brings about the desired phenotype.

Suitable promoters include the Cauliflower Mosaic
Virus 35S (CaMV 35S) gene promoter that is expressed at a
high level in virtually all plant tissues (Benfey et al,
1990a and 1990b); the cauliflower meri 5 promoter that is
expressed in the vegetative apical meristem as well as
several well localised positions in the plant body, eg
inner phloem, flower primordia, branching points in root
and shoot (Medford, 1992; Medford et al, 1991) and the
Arabidopsis thaliana LEAFY promoter that is expressed
very early in flower development (Weigel et al, 1992).

When introducing a chosen gene construct into a cell, certain considerations must be taken into account, well known to those skilled in the art. The nucleic acid to be inserted should be assembled within a construct

which contains effective regulatory elements which will drive transcription. There must be available a method of transporting the construct into the cell. Once the construct is within the cell membrane, integration into the endogenous chromosomal material either will or will not occur. Finally, as far as plants are concerned the target cell type must be such that cells can be regenerated into whole plants.

Plants transformed with the DNA segment containing 10 the sequence may be produced by standard techniques which are already known for the genetic manipulation of plants. DNA can be transformed into plant cells using any suitable technology, such as a disarmed Ti-plasmid vector carried by Agrobacterium exploiting its natural gene 15 transfer ability (EP-A-270355, EP-A-0116718, NAR 12(22) 8711 - 87215 1984), particle or microprojectile bombardment (US 5100792, EP-A-444882, EP-A-434616) microinjection (WO 92/09696, WO 94/00583, EP 331083, EP 175966), electroporation (EP 290395, WO 8706614) or other 20 forms of direct DNA uptake (DE 4005152, WO 9012096, US 4684611). Agrobacterium transformation is widely used by those skilled in the art to transform dicotyledonous species. Although Agrobacterium has been reported to be able to transform foreign DNA into some monocotyledonous 25 species (WO 92/14828), microprojectile bombardment, electroporation and direct DNA uptake are preferred where Agrobacterium is inefficient or ineffective. Alternatively, a combination of different techniques may

15

20

be employed to enhance the efficiency of the transformation process, eg bombardment with Agrobacterium coated microparticles (EP-A-486234) or microprojectile bombardment to induce wounding followed by co-cultivation with Agrobacterium (EP-A-486233).

The particular choice of a transformation technology will be determined by its efficiency to transform certain; plant species as well as the experience and preference of the person practising the invention with a particular methodology of choice. It will be apparent to the skilled person that the particular choice of a transformation system to introduce nucleic acid into plant cells is not essential to or a limitation of the invention.

In the present invention, over-expression may be achieved by introduction of the nucleotide sequence in a sense orientation. Thus, the present invention provides a method of influencing a flowering characteristic of a plant, the method comprising causing or allowing expression of the polypeptide encoded by the nucleotide sequence of nucleic acid according to the invention from that nucleic acid within cells of the plant.

Under-expression of the gene product polypeptide may be achieved using anti-sense technology or "sense regulation".

The use of anti-sense genes or partial gene sequences to down-regulate gene expression is now well-established. Double-stranded DNA is placed under the control of a promoter in a "reverse orientation" such

that transcription of the "anti-sense" strand of the DNA yields RNA which is complementary to normal mRNA transcribed from the "sense" strand of the target gene. The complementary anti-sense RNA sequence is thought then to bind with mRNA to form a duplex, inhibiting 5 translation of the endogenous mRNA from the target gene into protein. Whether or not this is the actual mode of action is still uncertain. However, it is established fact that the technique works. See, for example, 10 Rothstein et al, 1987; Smith et al, 1988; Zhang et al, 1992, English et al 1996. The complete sequence corresponding to the coding sequence in reverse orientation need not be used. For example fragments of sufficient length may be used. It is a routine matter 15 for the person skilled in the art to screen fragments of various sizes and from various parts of the coding sequence to optimise the level of anti-sense inhibition. It may be advantageous to include the initiating methionine ATG codon, and perhaps one or more nucleotides 20 upstream of the initiating codon. A suitable fragment may have about 14-23 nucleotides, e.g. about 15, 16 or 17.

Anti-sense regulation may itself be regulated by employing an inducible promoter in an appropriate construct.

Thus, the present invention also provides a method of influencing a flowering characteristic of a plant, the method comprising causing or allowing anti-sense

25

transcription from nucleic acid according to the invention within cells of the plant.

When additional copies of the target gene are inserted in sense, that is the same, orientation as the 5 target gene, a range of phenotypes is produced which includes individuals where over-expression occurs and some where under-expression of protein from the target gene occurs. When the inserted gene is only part of the endogenous gene the number of under-expressing 10 individuals in the transgenic population increases. The mechanism by which sense regulation occurs, particularly down-regulation, is not well-understood. However, this technique is also well-reported in scientific and patent literature and is used routinely for gene control. See, 15 for example, van der Krol, 1990; Napoli et al, 1990; Zhang et al, 1992.

Thus, the present invention also provides a method of influencing a flowering characteristic of a plant, the method comprising causing or allowing expression from nucleic acid according to the invention within cells of the plant to suppress activity of a polypeptide with ability to influence a flowering characteristic. Here the activity of the polypeptide is preferably suppressed as a result of under-expression within the plant cells.

25 Modified version of FCA may be used in influencing a flowering characteristic of a plant. For example a mutant identified herein as fca-1, fca-3 or fca-4 may be

20

employed. The sequence changes resulting in these mutants and the resulting phenotypes are discussed above.

Mutations that reduce FCA activity cause late flowering under both long and short day conditions, indicating FCA involvement in promoting flowering constitutively. Double mutant experiments have also indicated that FCA function may be required both upstream and downstream of the gene products involved in conferring inflorescence/floral meristem identity eg.

LEAFY, APETALA1 and TERMINAL FLOWER. Thus FCA function may be involved in the ability of meristems to respond to LEAFY, APETALA1 and TERMINAL FLOWER gene products.

15 The fully spliced FCA transcript is present at very low abundance in all conditions so far analysed. Although the fca mutation is recessive transgenic fca plants homozygous for an introduced wild-type FCA gene flowered slightly earlier than plants carry one copy (Example 2), 20 suggesting that under some conditions the level of the FCA transcript is limiting to flowering time. This indicates that flowering may be manipulated by using foreign promoters to alter the expression of the gene. In addition, the majority of the transcript is present in a 25 form that cannot make active protein. Thus alternative splicing may be a specific control mechanism to maintain relatively low levels of the FCA protein. Alteration of this splicing pattern, for example by introducing an FCA

gene lacking introns into plants, may give much higher levels of the FCA protein which in turn would give accelerated flowering.

5 Causing early flowering under non-inductive or inductive conditions

Wild-type Arabidopsis plants flower extremely quickly under inductive conditions and the FCA gene is expressed prior to flowering, although at a low level. The level of the FCA product may be increased by introduction of promoter, eg CaMV35S or meri 5, fusions. In addition, introduction of an FCA gene lacking introns may increase the level of FCA protein and cause early flowering in all conditions.

15

20

10

Inhibition of FCA activity to cause late flowering

fca mutations cause late flowering of Arabidopsis.

Transgenic approaches may be used to reduce FCA activity
and thereby delay or prevent flowering in a range of
plant species. A variety of strategies may be employed.

This late flowering can then be overcome, if so desired,
by giving the imbibed seed or plants of different ages, a
vernalization treatment.

25 Expression of sense or anti-sense RNAs

In several cases the activity of endogenous plant genes has been reduced by the expression of homologous antisense RNA from a transgene, as discussed above.

10

15

Similarly, the expression of sense transcripts from a transgene may reduce the activity of the corresponding endogenous copy of the gene, as discussed above.

Expression of an antisense transcript from the FCA gene has been shown reduce activity of the endogenous gene and cause late flowering (Example 3).

Expression of modified versions of the FCA protein

RNA binding proteins have a modular structure in which amino acid sequences required for binding different RNA molecules are separate domains of the protein (Burd and Dreyfuss 1994). This permits the construction of truncated or fusion proteins that display only one of the functions of the RNA binding protein. In the case of FCA, modification of the gene in vitro and expression of modified versions of the protein may lead to dominant inhibition of the endogenous, intact protein and thereby delay flowering. This may be accomplished in various ways, including the following:

20

25

Expression of a truncated FCA protein.

Some multi-RNP motif proteins can bind different RNA sequences simultaneously. U1 A for example, binds to U1 small nuclear RNA through its first RNA-binding domain and to pre-mRNA sequences through its second, thus controlling splicing (Burd and Dreyfuss 1994). Expression of an FCA protein with only one of these RNP motifs may dominantly block FCA action, by preventing binding of the

full size FCA protein. Also expression of a mutant FCA protein not encoding the C terminal sequences may prevent the correct alignment of the binding of the RNA molecule and so again block wild-type FCA binding.

5

10

Aspects and embodiments of the present invention will now be illustrated, by way of example, with reference to the accompanying figures. Further aspects and embodiments will be apparent to those skilled in the art. All documents mentioned in this text are incorporated herein by reference.

In the Figures:

- 25 Figure 2 shows the predicted amino acid sequence derived from the nucleotide sequence encoding the FCA ORF.

10

RNISHOCITY - MICH

163856042

intron 3.

Figure 3 shows the nucleotide sequence of the FCA $\alpha_{\rm B}$ gene, including 5' and 3' flanking sequences. The sequence within the ORF is that of one of the abundant transcripts, that is 18 introns have been spliced out but intron 3 remains. The position of termination of the other abundant transcript is indicated. Primer sequences are given in Table 2. Restriction sites: SalI - 352; HindIII - 776; XbaI - 1157; HindIII - 3125; BglII - 3177; ClaI - 3293; BamHI - 3549; HindIII - 4728; SpeI - 5003. Other important landmarks: 1293-poly A tail added after this nucleotide in cDNA clone 77B or FCA transcript α ;

Figure 4 compares the FCA RRM motifs with those from the Drosophila SEX-LETHAL and TRA-2 genes. Also shown are the C-terminal amino acids with homology to yeast and C. elegans proteins.

897-5' splice site of intron 3: 2973 3' splice site of

Figure 5 shows the recombination analysis to position the FCA gene.

20 Figure 6 shows the complementation analysis to localize the FCA gene.

Figure 7 shows the complexity and position of the FCA gene on the complementing cosmids.

Figure 8 shows the nucleotide sequence of the

25 Brassica napus FCA homologue and encoded polypeptide:
Figure 8a - Brassica FCA nucleotide sequence including coding sequence; Figure 8b - polypeptide amino acid sequence encoded by coding sequence of Figure 8a.

Figure 9 shows an alignment of the Arabidopsis and Brassica FCA amino acid sequences. Topline is Arabidopsis; bottom line is Brassica.

Figure 10 shows the different transcripts produced from the FCA gene. ___ open reading frame; * conserved region in C. elegans and yeast ESTs; R1, R2 RNA-binding domains 1 and 2.

EXAMPLE 1 - CLONING AND ANALYSIS OF THE FCA GENE

10 Identification of a 300kb genomic region carrying the FCA
gene of Aribidopsis thaliana.

The fca mutation had been mapped relative to visible markers to 29cM on chromosome 4. In order to map the locus relative to molecular markers as a starting point for cloning by chromosome walking, the segregation pattern of RFLP markers mapping to the top half of chromosome 4 was analysed in 171 late (homozygous recessive class) flowering individuals from the F2 of a cross between the late flowering mutant fca-1 (in a Landsberg erecta background) and the polymorphic early flowering ecotype Columbia. This analysis positioned the FCA locus in a 5.2cM interval between markers m326 and m226.

These markers were then used as the starting points

for the chromosome walk. YAC clones containing these RFLP

markers were identified by colony hybridization

experiments. In the initial experiments, the YAC

libraries used were the EG, EW and ABI libraries but as

15

10

another became available (yUP-May1992) they were incorporated into the analysis. Positively hybridizing YAC clones were confirmed using Southern blot analysis. They were sized using PFGE and Southern blot analysis and then end-probes were generated using either inverse PCR or left-end rescue for use in chromosome walking experiments. In the majority of cases, each step in the walk was covered by two independent YAC clones to avoid false linkages generated by chimaeric YAC clones. These constituted a significant fraction of the EG, EW and yUP libraries and complicated the assembly of the YAC contig. The result of the generation and analysis of 65 end-probes was a YAC contig covering the m326-m226 interval that included 57 YAC clones.

Polymorphisms between Landsberg erecta and Columbia were determined for the left end-probe of EG9D2, right end-probe of YAC clone yUP13C7, right end-probe of YAC clone yUP3F7 and right end-probe of YAC clone EW20B3.

Analysis of the segregation pattern of these markers on pooled progeny of recombinants with cross-over points mapping in the m326-m226 interval defined the region carrying the FCA gene to between the polymorphisms identified by yUP3F7RE and m226. This interval was covered by two overlapping YAC clones EW20B3 and ABI10C10.

In order to further define the position of the FCA gene, more probes were required that mapped within the two overlapping YAC clones. This was achieved by using

end-probes from YAC clones ABI3C4, ABI6C3, a random Sau3A fragment from YAC clone EW20B3 (W5) and two cosmids cAtA2 and g19247. Restriction maps for SmaI, MluI and PacI were constructed and used to position the probes within the YAC clones.

Additional recombinants, where the cross-over point mapped close to the FCA locus, were generated by selecting individual plants that were arabinose resistant and had an early/intermediate flowering from the F2 generation of a cross between fca (in Landsberg erecta) and aral (in Columbia). Progeny of these were checked to confirm that they were homozygous for the arabinose resistance allele and heterozygous for the fca mutation. Three of these individuals (A2/7, A1/8 and A4/7) were analysed with the RFLP markers 3F7RE, W5, cAtA2, 19247, 3C4LE, 6C3LE and 226. This defined the north end of the genomic region carrying the FCA gene as within the cosmids cAtA2 and 19247. This information is summarized in Fig.5.

20

25

5

10

15

Complementation analysis to define the FCA gene.

The two YAC clones EW20B3 and ABI10C10 were gelpurified and hybridized to filters carrying 25500 cosmid
clones that contained 15-20kb of Arabidopsis thaliana
Landsberg erecta genomic DNA. This cosmid library was
constructed in a new vector (04541) by cloning a 1.6kb
BglII fragment from pHC79 carrying the lambda cos
fragment into in the vector pSLJ1711. The resulting

10

15

DESCRIPTION AND OFFICE AND AREA

highly stable cosmid cloning vehicle carries

Agrobacterium border sequences for transfer of DNA into
plant chromosomes, a 35S-NPTII plant selectable marker,
lacz-laci sequences for the blue/white insert selection
in E.coli and a polylinker with 7 cloning sites.

Positively hybridizing colonies were analysed by hybridizing each clone to Southern blots carrying all the cosmid clones digested with a HindIII, EcoRI and BamHI. This generated a restriction map for the insert of each cosmid and indicated which clones carried overlapping inserts. The cosmids were also run alongside plant DNA and hybridized with the cosmid to confirm that the cosmid insert was colinear with the plant DNA. The two cosmid clones, cAtA2 and cAtB1, mapping to this interval were isolated from a different cosmid library (Olszewski and Ausubel 1988). The result of this analysis was a cosmid contig covering the 300kb interval in which the FCA locus had been defined.

Six mutant fca alleles were available, two of which

20 had been generated by FN irradiation and one by X-ray
irradiation. Irradiation-induced mutations are frequently
associated with genomic rearrangements or deletions. In
case this would further refine the location of the FCA
gene, the genomic region covered by the YAC clones EW20B3

25 and ABI10C10 was examined in all six alleles. The two YAC
clones were hybridized to PFGE Southern blots carrying
DNA from the different alleles digested with SmaI and
MluI. A ~50kb MluI fragment was found to be slightly

smaller in the fca-4 allele. Further analysis by hybridization of cosmid clones, corresponding to the region showing the difference, indicated that part of the alteration had occurred in a 1.9kb BamHI fragment carried in cosmids cAtA2 and 19247. This focused our efforts in the first complementation experiments to cosmid clones at the north end of the contig.

Eleven cosmid clones shown in Fig 6, starting with those at the left end, were introduced into the Arabidopsis fca-1 mutant using the root explant transformation procedure (Valvekens et al 1988). Seed were collected from self-fertilized kanamycin resistant individuals and analysed with respect to their kanamycin segregation and flowering time. The number of transformants showing complementation to early flowering for each cosmid is shown in Figure 6. The four cosmids that resulted in complementation mapped to the end of the genomic region where the inversion in the fca-4 allele mapped.

20

25

10

15

Identification of the FCA gene.

The complete genomic sequence of Columbia allele corresponding to the genomic region within the complementing cosmid clones was obtained through the efforts of the *Arabidopsis* sequencing initiative centred within this department (G. Murphy pers. comm.). The majority of the genomic region contained in the complementing cosmids is carried on three BamHI

restriction fragments, 4, 1.9 and 2kb. These were isolated and hybridized either separately or pooled to 1x106 phage clones of the PRL-2 cDNA library. This library had been made from pooled RNA samples and was 5 made available by Tom Newman (Michigan). Four clones hybridizing to the 2kb BamHI fragment and 3 to the 4 and 1.9kb fragments were isolated and characterized. They identified two cDNA clones with insert sizes ~1700bp and 1350bp. Analysis of the sizes of the transcripts 10 hybridizing to these two cDNA clones showed that one (in fca-4) was reduced in size relative to the other alleles and wild-type and so this cDNA clone was assigned to the FCA gene. The other clone showed no differences and was termed 77B

15 The transcript size of the putative FCA gene was >3kb indicating that the cDNA clone was not full length. The cDNA clone was sequenced and found to encode an insert of 1811bp. Primers were designed from the genomic sequence (marked BamX primer on Figure 3) and the 5' end 20 of the cDNA sequence (marked IanRT1 and IanRT2 on Figure 3). First strand cDNA was made using the IanRT2 primer to prime RNA isolated from wild-type seedlings (2 leaf stage). This was used with primers BamX and IanRT2 to PCR amplify a fragment detected as a faint band on an 25 ethidium bromide stained gel. The PCR product was diluted 1/300 and reamplified using primers BamX and IanRT1. The product from this reaction was end-filled using T4 DNA polymerase and cloned into the EcoRV site of the general

cloning vector Bluescript KSII (Stratagene). The product was sequenced and found to be colinear with the genomic sequence and extend the sequence of the cDNA clone by 735bp.

5 The sequence was compared to all available sequences using BlastX, BlastN and TBlastN. Significant homologies were detected in the TBlastN search to a class of proteins previously defined as RNA binding proteins. The characteristic of these proteins is the presence of one 10 or more RRM motifs made up of conserved amino acids covering an 80 amino acid region (shown in Fig. 4). The positioning of sub-motifs RNP2 and RNP1 and individual conserved amino acids is always maintained within the whole RRM motif. Translation of the sequence of the FCA 15 cDNA clone extended in the RT-PCR experiments showed the presence of multiple translation stop codons in the 5' region of the sequence. The first methionine residue downstream of the last translation stop codon and in frame with the rest of the FCA protein was located in the 20 middle of the RRM motif, splitting RNP2 and RNP1. The strong homology of the RRM motif to other RNA binding proteins suggested that this MET residue was not the beginning of the FCA protein. In addition, the transcripts of a large number of RNA-binding proteins are 25 alternatively spliced to yield active and inactive products. The splicing is then regulated, often in an autoregulatory fashion, to control the production of the active protein. These facts suggested that the FCA

transcript generated in the RT-PCR experiments contained an intron, just upstream of the RRM motif.

In order to test this hypothesis, several primers were designed from the genomic sequence for use in further RT-PCR experiments. First strand cDNA was made from RNA isolated from seedlings (4 leaf stage), primed with random hexamers (Boehringer). Primers lying within the sequence 5' to the FCA cDNA up to the 3' end of the 77B cDNA (the other cDNA clone hybridizing to the 10 complementing cosmid clones), together with IanRT1 gave amplification products of the expected size from the genomic sequence but did not yield smaller products as would be expected from a transcript in which an intervening intron had been spliced out. A primer lying 15 within the 77B cDNA clone marked as cDNAII-BamHI (in Fig. 3) was then used in conjunction with the IanRT1 primer. No band was visible on an ethidium bromide stained agarose gel after 30 cycles of amplification. The PCR reaction was then diluted 1/300 and re-amplified 20 using primers cDNAII-1 and RevEx4 (shown in Figure 3). The PCR product was digested with SalI and BglII restriction enzymes and cloned into SalI and BamHI digested BluescriptKSII plasmid. Sequence analysis of the 760bp product and comparison to the genomic sequence 25 revealed that a 2kb intron had been spliced out to join the ORF within the 77B cDNA to that carrying the RRM motif in the FCA gene. This splicing revealed the

10

15

20

25

presence of a second intact RRM motif interrupted by intron 3.

Direct comparison of the FCA sequence with that of LUMINIDEPENDENS and CO, the other flowering time genes cloned from Arabidopsis (Lee et al, 1994, Putterill et al 1995), detected no significant homology.

Mutations in the fca mutant alleles.

cDNA was made from RNA isolated from the mutant alleles. This was amplified using cDNAII-BamHI and cDNA-3'a: BamX and IanRT1; fca5'-1 and fca3'-a (positions indicated on Fig 3). The resulting PCR fragments were cloned and sequenced and compared to the sequence of the wild-type Landsberg erecta transcript. The fca-1 mutation converted a C nucleotide at position 6861 into a T. Thus a glutamine codon (CAA) is changed into a stop codon (TAA). The fca-3 mutation converted a G nucleotide at position 5271 into an A. The effect of this mutation is to alter the 3' splice junction of intron 7 such that a new 3' splice junction is used 28 nucleotides into exon 8. The fca-4 mutation is the result of a rearrangement with the break-point at position 4570 (within intron 4).

EXAMPLE 2 - ISOLATION AND SEQUENCE ANALYSIS OF THE BRASSICA NAPUS HOMOLOGUE.

A Brassica napus genomic library constructed from Sau3A partially digested DNA cloned into lambda DASHRII/BamHI vector (Stratagene) was obtained. The

library was screened using the 1811bp FCA cDNA clone. A clone carrying a 12kb insert was isolated which hybridized to the FCA cDNA clone and the 77B cDNA clone. The lambda clone was digested with SalI which released the full length 12kb Brassica insert and this was cloned into Bluescript KSII. Restriction fragments of this clone (a combination of EcoRI, SacI and BamHI) were subcloned into BluescriptKSII and sequenced.

The 12kb Brassica fragment was also subcloned into

the XhoI restriction site of the Agrobacterium binary
vector pSLJ1714 (Jones et al 1992), for transformation
into the fca mutant. When introduced into the fca-4
mutation, using root explant transformation, progeny of
the transformant segregated early flowering plants. These

flowered with a mean of 8.3 leaves compared to wild-type
Landsberg erecta grown alongside with 9.1 leaves and fca4 with 24.1 leaves. Thus the Brassica FCA gene fully
complements the fca-4 mutation.

20 Expression of FCA mRNA

PolyA mRNA was isolated from a range of developmental stages: 2 leaf, 4 leaf, 6 leaf and 10 leaf, roots and inflorescences, fractionated on Northern blots and hybridized with the 1811bp FCA cDNA clone. The combined FCA transcript γ was present at approximately the same amount in all tissues examined except for the inflorescences where expression was slightly lower. The prematurely polyadenylated transcript β was detected

10

using 77B cDNA clone as a probe. The β transcript was ~20-fold more abundant than γ_{A+B} . Transcripts α_{A+B} containing intron 3 were not detected on a northern blot and could only be found using RT-PCR.

FCA expression has also been analysed using RNase protection assays. Using a probe (725 bp to 1047 bp from $\gamma_{\rm B}$ construct) the $\gamma_{\rm A+B}$ transcripts were detected at similar levels in a range of developmental stages in both long and short day photoperiods, and at lower levels in rosettes and inflorences of mature plants. The β transcript was at a higher level in these tissues consistent with the northern blot analysis.

METHODS FOR EXAMPLES 1 AND 2

15 Growth conditions and measurement of flowering time Flowering time was measured under defined conditions by growing plants in Sanyo Gallenkamp Controlled Environment rooms at 20°C. Short days comprised a photoperiod of 10 hours lit with 400 Watt metal halide 20 power star lamps supplemented with 100 watt tungsten halide lamps. This provided a level of photosynthetically active radiation (PAR) of 113.7 μ moles photons m-2s-1 and a red:far red light ratio of 2.41. A similar cabinet and lamps were used for the long day. The photoperiod was for 25 10 hours under the same conditions used for short days and extended for a further 8 hours using only the tungsten halide lamps. In this cabinet the combination of lamps used for the 10 hour period provided a PAR of 92.9

 μ moles photons m-2 s-1 and a red:far red ratio of 1.49. The 8 hour extension produced PAR of 14.27 μ moles m-2 s-1 and a red:far-red ratio of 0.66.

The flowering times of large populations of plants were measured in both greenhouse and cabinet conditions. Flowering time was measured by counting the number of leaves, excluding the cotyledons, in the rosette and on the inflorescence. Leaf numbers are shown with the standard error at 95% confidence limits. The number of days from sowing to the appearance of the flower bud was also recorded, but is not shown. The close correlation between leaf number and flowering time was previously demonstrated for Landsberg erecta and fca alleles (Koorneef et al, 1991).

15

10

Cosmid and RFLP markers.

DNA of lambda clones m210, m326, m580, m226 were obtained from Elliot Meyerowitz (Caltech, Pasadena).

Total DNA was used as radiolabelled probe to YAC library colony filters and plant genomic DNA blots. Cosmids g10086, g4546, g4108, g19247 were obtained from Brian Hauge and Howard Goodman (MGH, Boston), cultured in the presence of 30 mg/l kanamycin, and maintained as glycerol stocks at - 70°C. Total cosmid DNA was used as

25 radiolabelled probe to YAC library colony filters and plant genomic DNA blots. Cosmid clones cAtA2 and cATB1 were obtained from Chris Cobbett (University of Melbourne) and cultured in the presence of 10mg/l

15

20

tetracycline. Cosmid pCITd23 was provided by Elliot Meyerowitz (Caltech, Pasadena), cultured in the presence of 100 μ g/ml streptomycin/spectinomycin and maintained as a glycerol stock at - 70° C. pCIT30 vector sequences share homology to pYAC4 derived vectors, and therefore YAC library colony filters were hybridised with insert DNA extracted from the cosmid. Total DNA of pCITd23 was used as radiolabelled probe to plant genomic DNA blots.

10 YAC libraries.

The EG and ABI libraries were obtained from Chris Somerville (Michigan State University). The EW library was obtained from Jeff Dangl (Max Delbruck Laboratory, Cologne) and the yUP library from Joe Ecker (University of Pennsylvania). Master copies of the libraries were stored at -70°C (as described by Schmidt et al. Aust. J. Plant Physiol. 19: 341-351 (1992)). The working stocks were maintained on selective Kiwibrew agar at 4°C. Kiwibrew is a selective, complete minimal medium minus uracil, and containing 11% Casamino acids. Working stocks of the libraries were replated using a 96-prong replicator every 3 months.

Yeast colony filters.

25 Hybond-N (Amersham) filters (8cm x 11cm) containing arrays of yeast colony DNA from 8-24 library plates were produced and processed (as described by Coulson et al.

Nature 335:184-186 (1988) and modified (as described by

Schmidt and Dean Genome Analysis, vol.4: 71-98 (1992)).

Hybridisation and washing conditions were according to the manufacturer's instructions. Radiolabelled probe DNA was prepared by random-hexamer labelling.

5

10

15

20

25

Yeast chromosome preparation and fractionation by pulsed field gel electrophoresis (PFGE).

Five millilitres of Kiwibrew was inoculated with a single yeast colony and cultured at 30°C for 24 h. Yeast spheroplasts were generated by incubation with 2.5mg/ml Novozym (Novo Biolabs) for 1 h at room temperature. Then 1 M sorbitol was added to bring the final volume of spheroplasts to 50 μ l. Eighty microlitres of molten LMP agarose (1% InCert agarose, FMC) in 1 M sorbitol was added to the spheroplasts, the mixture was vortexed briefly and pipetted into plug moulds. Plugs were placed into 1.5ml Eppendorf tubes and then incubated in 1 ml of 1 mg/ml Proteinase K (Boehringer Mannheim) in 100 mMEDTA, pH 8, 1% Sarkosyl for 4 h at 50°C. The solution was replaced and the plugs incubated overnight. The plugs were washed three times for 30 min each with TE and twice for 30 min with 0.5 x TVBE. PFGE was carried out using the Pulsaphor system (LKB). One-third of a plug was loaded onto a 1% agarose gel and electrophoresed in 0.5 \times TBE at 170 V,20 s pulse time, for 36 h at 4°C. DNA markers were concatemers of lambda DNA prepared as described by Bancroft and Wolk, Nucleic A Res. 16:7405-7418 (1988). DNA was visualised by staining with ethidium bromide.

BNGDOCID- MIO DESDEEDAS I

The second of the second second

Yeast genomic DNA for restriction enzyme digestion and inverse polymerase chain rection (IPCR).

Yeast genomic DNA was prepared essentially as described by Heard et al. (1989) except that yeast spheroplasts were prepared as above. Finally, the DNA was extracted twice with phenol/chloroform, once with chloroform and ethanol precipitated. The yield from a 5ml culture was about $10\mu g$ DNA.

10 Isolation of YAC left-end probes by plasmid rescue.

Plasmid rescue of YAC left-end fragments from EG,
ABI and EW YACs was carried out as described by Schmidt
et al. (1992). IPCR was used to generate left and right
end fragments using the protocol and primers described in
Schmidt et al (1992).

Gel transfer to Hybond-N, hybridisation and washing

Gel blotting and hybridisation conditions.

conditions were according to the manufacturer's

instructions, except that DNA was fixed to the filters by

UV Stratalinker treatment and/or baked at 80°C for 2 h.

Radiolabelled DNA was prepared by random hexamer

labelling.

25 RFLP analysis.

Two to three micrograms of plant genomic DNA was prepared from the parental plants used in the crosses and cleaved in a 300 μl volume. The digested DNA was ethanol

Section 1997 August 1997

precipitated and separated on 0.7% agarose gels and blotted onto Hybond-N filters. Radiolabelled cosmid, lambda or YAC end probe DNA was hybridised to the filters to identify RFLPs.

5

RNA extractions

RNA was extracted using a method described by Dean et al (1985) polyA RNA was isolated using the polyAtract $^{\rm R}$ mRNA isolation system (Promega).

DNA extractions

Arabidopsis DNA was performed by a CTAB extraction method described by Dean et al (1992).

15

10

Isolation of cDNA by RT-PCR

Total RNA was isolated from whole seedlings at the 2-3 leaf stage growing under long days in the greenhouse. For first strand cDNA synthesis, 10 µg of RNA in a volume of 10 µl was heated to 65°C for 3 minutes, and then quickly cooled on ice. 10 µl of reaction mix was made containing 1 µl of RNAsin, 1 µl of standard dT17-adapter primer (1 µg/µl; Frohman et al, 1988), 4µl of 5x reverse transcriptase buffer (250mM TrisHCl pH8.3, 375mM KCl, 15mM MgCl2), 2µl DTT (100mM), 1µl dNTP (20mM), 1µl reverse transcriptase (200 units, M-MLV Gibco). This reaction mix was then added to the RNA creating a final

10

volume of $20\mu l$. The mixture was incubated at 42°C for 2 hours and then diluted to 200 μl with water.

10 μ l of the diluted first strand synthesis reaction was added to 90 μ l of PCR mix containing 4 μ l 2.5mM dNTP, 10 μ l 10xPCR buffer (Boehringer plus Mg), 1 μ l of a 100ng/ μ l solution of each of the primers, 73.7 μ l of water and 0.3 μ l of 5 units/ μ l Taq polymerase (Boehringer or Cetus Amplitaq). The reaction was performed at 94°C for 1 minute, 34 cycles of 55°C for 1 minute, 72°C for 2 minutes and then finally at 72°C for 10 minutes.

DNA sequencing

The Sanger method was used to sequence fragments of interest inserted in a Bluescript plasmid vector.

Reactions were performed using a Sequenase kit (United States Biochemical Corporation).

Screening the Landsberg erecta cosmid library and the PRL-2 cDNA library.

20 26000 clones arrayed in microtitre plates were screened by gridding offsets from 16 microtitre plates onto LB-tet (10μg/ml) plates and then taking colony lifts onto Hybond N filters. 1x106 plaques of the CD4-71-PRL2 library (supplied by the Arabidopsis Biological Resource 25 Center at Ohio State University) were screened by plating 20 plates of 50000 plaques and then taking plaque lifts onto Hybond N filters.

Transformation of Arabidopsis

The cosmids containing DNA from the vicinity of FCA were mobilised into Agrobacterium tumefaciens C58C1, and the T-DNA introduced into Arabidopsis plants as described by Valvekens et al, 1988. Roots of plants grown 5 in vitro were isolated and grown on callus-inducing medium (Valvekens et al, 1988) for 2 days. The roots were then cut into short segments and co-cultivated with Agrobacterium tumefaciens carrying the plasmid of 10 interest. The root explants were dried on blotting paper and placed onto callus-inducing medium for 2-3 days. The Agrobacterium were washed off, the roots dried and placed onto shoot inducing medium (Valvekens et al, 1988) containing vancomycin to kill the Agrobacterium and 15 kanamycin to select for transformed plant cells. After approximately 6 weeks green calli on the roots start to produce shoots. These are removed and placed in petri dishes or magenta pots containing germination medium (Valvekens et al, 1988). These plants produce seeds in 20 the magenta pots. These are then sown on germination medium containing kanamycin to identify transformed seedlings containing the transgene (Valvekens et al, 1988).

25 EXAMPLE 3 - PLANTS HOMOZYGOUS FOR THE T-DNA INSERTION
CARRYING FCA FLOWER EARLIER THAN HETEROZYGOTES.

Two transformants of each of the four cosmid clones that complemented the fca mutant phenotype were selfed

10

51

and seed of late and early flowering individuals were collected and plated on kanamycin-containing medium. All the late flowering progeny were kanamycin sensitive whilst progeny from the early flowering individuals were either homozygous or heterozygous for kanamycin resistance. This demonstrates that the kanamycin marker on the T-DNA carrying the region containing the FCA gene completely co-segregated with the early flowering phenotype. Thus, complementation to early flowering was due to sequences within the insert of the cosmid. LN was counted for the early flowering individuals either homozygous or heterozygous for the T-DNA insert.

TABLE 1

<u>15</u>	cosmid	<u>K/K</u>	<u>K/-</u>
	CL58I16	10.3 (9)	13 (4)
		9.7 (4)	10.4 (10)
20	CL44B23	9,5 (2)	11.8 (6)
		12 (2)	11.1 (6)
	cAtA1	14.2 (5)	15 (3)
		9.6 (3)	10.8 (5)
	cAtA2	9.1 (7)	9.3 (3)

10

15

52

12.5 (3)

14.4 (7)

Analysis of flowering time (as measured by total LN) in transformants showing complementation of the fca mutant phenotype. For each cosmid two independent transformants were analysed. The leaf number was counted on F2 individuals (the number of which is shown in the bracket) which were then selfed and progeny sown on kanamycin-containing medium to establish whether the plant was homozygous (K/K) or heterozygous (K/-) for the T-DNA insert.

The results, shown in Table 1 above, indicate that the homozygotes flowered significantly earlier than the heterozygotes in all 8 transformants analysed. Thus increasing the FCA gene dosage and therefore most likely the amount of gene product causes earlier flowering.

EXAMPLE 4 - ANTISENSE EXPERIMENTS.

A 1184bp BamHI (bp3547, Fig 3)/HindIII (bp4731 Fig
3) restriction fragment from the FCA cDNA clone was
20 subcloned into the BamHI/HindIII restriction sites of
pBluescriptKSII. The insert was released with the enzymes
BamHI and XhoI and subcloned into an Agrobacterium binary
vector pSLJ6562 (J.Jones, Sainsbury Laboratory). The
resulting plasmid contains the CaMV 35S promoter
25 transcribing the FCA cDNA fragment to produce antisense
RNA, terminated with 3' sequences from the nopaline
synthase gene. This plasmid also carries LB and RB
Agrobacterium sequences for delivery into plant cells and

10

15

and a nos5'-kan-ocs3' fusion to allow kanamycin selection for transformants. The construct was introduced into Arabidopsis thaliana ecotype Landsberg erecta using the root explant transformation procedure of Valvekens et al (1988).

Selfed seed from five transformants were collected, sown on kanamycin-containing medium and and 10 kanamycin resistant individuals transplanted to soil. Three of the transformants segregated for a single T-DNA insertion, the other had two or more. Flowering time, assayed as rosette leaf number was measured. Progeny from four of the five transformants were late flowering, producing 12 rosette leaves, compared to 4 for the fifth transformant. Grown alongside, in these particular conditions, nontransformed Landsberg erecta and fca-1 plants flowered with ~4 and 11 rosette leaves respectively. Thus the antisense construct (as a single locus) effectively reproduced the late flowering phenotype of the fca-1 mutation.

20

EXAMPLE 5 - CONSTRUCTION OF PROMOTER FUSIONS TO THE FCA
OPEN READING FRAME.

A genomic SalI-XhoI fragment carrying the whole FCA gene plus 64 bp upstream of the putative start of

25 translation and 500 bp downstream of the site of polyadenylation was cloned into the XhoI site of the Agrobacterium binary vector pSLJ 6562 (described above).

This resulted in a vector carrying a nos-kan fusion for

transformant selection and a fusion where the 35S promoter is driving the FCA genomic region (21 exons, 20 introns). Tranformants have been made using this construct.

This construct when introduced into fca-4 plants corrected the late flowering phenotype causing the plants to flower with 6.4 leaves under a long-day photoperiod. This was similar to wild-type Landsberg erecta which flowered with 6.2 leaves when grown alongside.

10

5

EXAMPLE 6 - CONSTRUCTION OF AN FCA GENE LACKING INTRONS - TRANSCRIPTS γ_A AND γ_B .

The $\gamma_{\mathtt{A}}$ construct was created by cloning together seven fragments:

- i. an EcoRI (a site present to the insert junction in the multiple cloning site of the vector) SalI fragment from the cosmid CL43B23. This fragment contains the 5' promoter and untranslated region of FCA and the 5' region of the ORF.
- ii. a 425 bp SalI-HindIII restriction fragment from cDNA clone 77B.
- iii. the region of the spliced transcript covering
 the 5' splice site of intron 3 was generated using RT-PCR
 with primers cDNAII-BamHI and IanRT1. The product was
 reamplified using cDNAII-1 and RevEx4, digested with SalI
 and BglII and cloned into pBluescriptKSII digested with
 SalI and BamHI. A 270 bp HindIII fragment from this

15

plasmid was then used in the reconstruction of the fully spliced transcript.

iv. a region of the spliced transcript was amplified using RT-PCR and primers BamX and IanRT1. This was digested with HindIII and BglII and the 52 bp fragment used in the reconstruction of the fully spliced transcript.

v. a region of the spliced transcript was amplified using RT-PCR and primers BamX and Rev404 (position indicated on Fig.3). A 256 bp ClaI - BamHI fragment was released and gel-purified for use in the reconstruction of the fully spliced transcript.

vi. a ClaI-SpeI fragment was excised from the FCA cDNA clone (the 1811 bp clone isolated from the PRL-2 library)

vii. a SpeI-XhoI fragment, carrying the last ~140bp of 3' untranslated region plus ~500 bp of 3' genomic sequence, was isolated from the FCA genomic clone.

The seven fragments used to construct the FCA gene lacking introns were assembled in two parts, 5' region and then 3' region, which were then combined.

A. 5' region. Fragment iv was cloned into pBluescriptKSII as a HindIII/ClaI insert. Fragment ii was then cloned into this as an EcoRI/HindIII fragment (the EcoRI site coming from the multi-cloning site in the cDNA cloning vector). Fragment iii was then cloned into the HindIII site between fragments ii and iv, the correct orientation being determined using an asymmetrically

20

positioned RsaI site. Fragment i was then cloned into the EcoRI/SalI sites.

B. 3' region. Fragment vii was cloned into the SpeI/XhoI sites present in fragment vi (the XhoI- site coming from the multiple cloning site in the vector). Fragment v was then cloned into the BamHI site, the correct orientation being determined using an asymmetrically positioned ClaI site.

The 3' region containing fragments v, vi and vii was

then cloned into the plasmid containing the 5' fragments

as a ClaI/XhoI fragment.

The $\gamma_{\rm B}$ construct was generated by replacing the EcoNI fragment (1503 bp to 2521 bp of spliced transcript) with an EcoNI fragment from a clone derived from RT-PCR from Ler RNA that contained the alternatively spliced form encoding the full length protein.

The resulting constructs were released from the vector using EcoRI and XhoI and cloned into the EcoRI/XhoI sites of the Agrobacterium binary vector pSLJ1714 (Jones et al 1992). Transformants carrying this construct have been generated.

Construct γ_A when introduced into Landsberg erecta caused it to flower with 5.6 leaves under a long-day photoperiod. This was slightly earlier than wild-type Landsberg erecta which flowered with 6.2 leaves when grown alongside. When grown under short-day photoperiod 1/4 of the progeny from the tranformant flowered early (with an average of 8.7 leaves). This is significantly

earlier than wild-type Landsberg erecta which flowers with 23.5 leaves under these conditions.

EXAMPLE 7 - EXPRESSION IN E.COLI.

5 The γ_B construct, described in Example 6, was digested with Sall and KpnI and cloned into the XhoI-KpnI sites of the E. coli expression vector pRSETC (Invitrogen Corp.). The resulting vector has the FCA cDNA cloned in frame with a polyhistidine metal binding domain, which 10 enables the recombinant protein to be purified away from native E.coli proteins using a metal affinity resin (ProBond TM Ni²⁺, Invitrogen Corp.). The FCA protein did not bind well to the affinity columns and so was separated from the E.coli proteins by excision from an 15 SDS-polyacrylamide gel. Protein was extracted from the gel slice and used to inject rabbits. A booster jab was given and then two bleeds taken. The antibodies produced detect the FCA protein dot blotted onto nylon membrane at >1/10,000 dilution.

20

25

EXAMPLE 8 - PRIMERS DESIGNED TO AMPLIFY GENES CONTAINING RRM DOMAINS WITH HIGH HOMOLOGY TO FCA.

Based on the homology between etr-1, an EST derived from a human brain mRNA (dbest H1995); the *Drosophila* sexlethal protein; the human nervous system proteins HuD, HuC, Hel-N1, and Hel-N2; and the *Xenopus* proteins elrA, elrB, elrC, elrD a set of degenerate PCR primers were designed containing two regions of very high homology.

WO 96/38560

PCT/GB96/01332

58

Amino acid OLIGO 1 5'	F TTT C C T C	V STG - A T C	G GGG A T C	S AGG TCA T C	L CTG T A	N AAC T	K AAG A	C 3′
Amino acid OLIGO 1 3'	R G TCC GAC A T C	C G GCC A	F GAA A T C	V GCA A	K GTT A T C	Y TAT C	5′	

EXAMPLE 9 - CONSTRUCTION OF FCA DERIVATIVES TO GENERATE

DOMINANT NEGATIVE MUTATIONS AND TO ANALYSE THE EXPRESSION

AND SPLICING PATTERN OF THE FCA GENE.

A construct expressing the second open reading frame of transcript α_B under the control of the FCA promoter, was constructed by deleting the first open reading frame (from 450 bp to 1206 bp). This was done using oligo mutagenesis to introduce a SphI site at the two positions, digesting and religating the vector.

To examine FCA expression FCA promoter-GUS fusion constructs have been made. FCA promoter + exons 1-4 of FCA fused to the β -glucuronidase (GUS) gene have been constructed to monitor the splicing within intron 3. The entire FCA spliced cDNA ($\gamma_{\rm B}$) with GUS fused in frame at the C-terminus has been made to monitor FCA protein localization within the cell.

5

10

15

20

EXAMPLE 10 - IDENTIFICATION OF FCA HOMOLOGUES WITHIN THE ARABIDOPSIS GENOME.

A four genome equivalent Landsberg erecta cosmid 5 library was screened using low stringency conditions (40oC overnight, 1% SDS, 5 x SSC, 0.5% milk powder) with the complete FCA genomic clone. The filters were washed 2 x 20 min at 45°C in 2 x SSC, 0.5% SDS. After exposure they were then rewashed 2 x 20 min, 50°C in 2 x SSC, 0.5% SDS. 10 61 cosmid clones were picked, plus two negative control cosmids. Five of these were additional FCA clones, leaving 56 putative FCA homologues. Minipreps were prepared from 10 ml o/n cultures of cosmids, digested with EcoRI, run on 0.8% gels with positive and negative 15 controls on each gel and Southern blotted. The blots were hybridised separately to 77B and FCA cDNA (originally called 61A) (Fig. 7) using the conditions described above and then washed at 45°C only.

Of the putative homologues:-

- 20 (a) 2 cosmids hybridized only to 77B
 - (b) 11 cosmids hybridized only to 61A
 - (c) 31 cosmids hybridized to both cDNAs
 - (d) 13 cosmids difficult to score or showed no detectable hybridized

- (a) 2 cosmids appear not to be related
- (b) \sim 49 C 22 and 67 I 3 share common EcoRI fragments

- 18 G 16 and 7 L 2
- (c) 39 G 10, 46 H 15, 56 F 2 and 59 A 8 share common EcoRI fragments,
 - 39 G 10 and 56 F 2 share additional frag
- 5 4 H 4 and 45 K 24 share two frags
 - at least nine other pairs of cosmids may have at least one EcoRI fragment in common.

Table 2

Primers	Sequence	bp start	
		Figure 3	
cDNAII-BamHI	5' CAGGATCCTTCATCATCTTCGATACTCG 3'	25	
cDNAII-1	5' GTCCCTCAGATTCACGCTTC 3'	228	
cDNAII-3'a	5' CACTTTCAAACACATC 3'	1167	
cDNAII-3'b	5' GTTCTCTGTACATTAACTC 3'	1213	
BamX	5' ATTGAGATTCTTACATACTG 3'	2568	
RevEx1A	5' TAAGACATGTCTGACAG 3'	2838	
RevEx1B	5' GTGATCTGATTGTGCAG 3'	3030	
RevEx4	5' TAGACATCTTCCACATG 3'	3145	
IanRT1	5' CAATGGCTGATTGCAACCTCTC	3320	
IanRT2	5' TCTTTGGCTCAGCAAACCG 3'	3348	
Rev404	5' CAATGTGGCAGAAGATG 3'	3673	
fca-3'a	5' AGGCCATTGTTTGGCAGCTC	4941	
fca-3'b	5' CCCAGCTAAGTTACTACTAG 3'	5003	

REFERENCES

Bancroft et al. (1988) Nucl. Acids Res. 16:7405-7418
Benfey et al. EMBO J 9: 1677-1684 (1990a).

Becker, et al. (1994) The Plant Journal 5, 299-307.

- Bell et al. (1988) Cell 55, 1037-1046.
 Benfey et al. EMBO J 9: 1685-1696 (1990b).
 Bower et al. (1992) The Plant Journal 2, 409-416.
 Burd et al. (1994) Science 265, 615-621.
 Cao et al. (1992) Plant Cell Reports 11, 586-591.
- 10 Chandler et al. (1994) J. Exp. Bot. 45, 1279-1288.

 Chang et al. (1988) Proc Natl Acad Sci USA 85:6856-6860

 Christou et al. (1991) Bio/Technol. 9, 957-962.

 Chung et al. (1994) Plant Mol. Biol. 26, 657-665.

 Coulson et al. (1988) Nature 335:184-186
- Dale et al. (1994) Murphy D.J. VCH, Weinheim, Germany.

Datta et al. (1990) Bio/Technol. 8, 736-740.

Dean et al. (1985) EMBO.J. 4, 3055-3061.

Dean et al. (1992) Plant Journal 2, 69-82.

20 English et al. (1996) The Plant Cell. 8, 179-188.

Frohman et al. (1988) Proc Natl Acad Sci USA 85, 89989002.

Gordon-Kamm et al. Plant Cell 2, 603-618.

Heard et al. (1989) Nucl Acids Res 17:5861

25 Jones et al. (1992) Transgenic Research 1, 285-297.

Koornneef et al. (1991) Mol Gen Genet 229, 57-66.

Koornneef et al. (1983) Heredity 74, 265-272.

Koornneef et al. (1994) The Plant J. 6, 911-919.

Koziel et al. (1993) Bio/Technol. 1, 194-200.

Lee et al. (1994) The Plant Cell 6, 75-83.

Lee et al. (1994) The Plant J. 6, 903-909.

Mandel et al. (1995) Nature 377, 522-524.

5 Medford, J.I. (1992) Plant Cell 4, 1029-1039.

Medford et al. (1991) Plant Cell 3, 359-370.

Mitzukama et al. (1992) Cell 71, 119-131.

Moloney et al. (1989) Plant Cell Reports 8, 238-242.

Napoli et al. (1990) The Plant Cell 2, 279-289.

10 Olszewski *et al.* (1988) Nucleic Acids Res. 16, 10765-10782.

Potrykus (1990) Bio/Technology 8, 535-542.

Putterill et al. (1993) Mol Gen. Genet. 239, 145-157.

Putterill et al. (1995) Cell 80, 847-857.

Radke et al. (1988) Theoretical and Applied Genetics 75, 685-694.

Rhodes et al. (1988) Science 240, 204-207.

Robinow et al. (1988) Science 242: 1570-1572.

Rothstein et al. (1987) Proc. Natl. Acad. Sci. USA 84,

20 8439-8443.

Sambrook et al. (1989). Molecular Cloning: A laboratory Manual. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory).

Schmidt et al. (1992) Physical mapping of the

25 Arabidopsis thaliana genome. Genome Analysis Vol.4
Strategies for physical mapping Cold Spring Harbour
Laboratory Press 71-98

Schmidt et al. (1992) Aust J Plant Physiol 19: 341-351

Shimamoto et al. (1989) Nature 338, 2734-2736.

Smith et al. (1988) Nature 334, 724-726.

Somers et al. (1992) Bio/Technol. 10, 1589-1594.

Stiekema et al. (1988) Plant Molecular Biology 11, 255-

- 5 269.
 van der Krol et al. (1990) The Plant Cell 2, 291-299.
 Vasil et al. (1992) Bio/Technol. 10, 667-674.
 Valvekens et al. (1988). Proc. Natl. Acad. Sci. USA 87, 5536-5540.
- Weigel et al. (1992) Cell 69, 843-859.
 Weigel et al. (1995) Nature 377, 495-500.
 Wester et al. (1994) Plant J. 5, 261-272.
 Worley et al. (1995) Genome Research 5: 173-184
 Zhang et al. (1992) The Plant Cell 4, 1575-1588.

CLAIMS:

 A nucleic acid isolate comprising a nucleotide sequence coding for a polypeptide comprising the amino acid sequence shown in Figure 2.

5

- Nucleic acid according to claim 1 wherein the coding sequence comprises a sequence shown as an exon in Figure
- 3. Nucleic acid according to claim 2 wherein the coding sequence comprises the sequences shown as exons in Figure 1.
- Nucleic acid according to claim 1 wherein the coding
 sequence is a mutant, allele or variant of the coding
 sequence of Figure 1.
 - 5. Nucleic acid according to any of claims 1 to 3 comprising an intron.

- 6. Nucleic acid according to claim 5 comprising an intron as shown in Figure 1.
- 7. Nucleic acid according to claim 6 wherein said intron is intron 3 of Figure 1.
 - 8. A nucleic acid isolate comprising a nucleotide sequence coding for a polypeptide comprising an amino

acid sequence mutant, allele or variant of the FCA amino acid sequence of the species Arabidopsis thaliana shown in Figure 2, by way of insertion, deletion, addition or substitution of one or more amino acids, or a homologue from another species, wherein expression of said nucleic acid in a transgenic plant influences a flowering characteristic of said plant.

- Nucleic acid according to claim 8 wherein said
 flowering characteristic is the timing of flowering.
 - 10. Nucleic acid according to claim 9 wherein said mutant, allele or variant has the ability to advance flowering in a plant.

15

5

- 11. Nucleic acid according to claim 9 wherein said mutant, allele or variant has the ability to delay flowering in a plant.
- 20 12. Nucleic acid according to any of claims 8 to 11 comprising an intron.
 - 13. Nucleic acid according to claim 12 comprising an intron as shown in Figure 1.

25

14. Nucleic acid according to claim 13 wherein said intron is intron 3 of Figure 1.

- 15. Nucleic acid according to claim 14 comprising the nucleotide sequence of FCA $\alpha_{\rm B}$, i.e. that of Figure 3.
- 16. Nucleic acid according to claim 8 that has the
 5 nucleotide sequence of FCA α_A, i.e. intron 3 of Figure 1 and all the exons of Figure 1 except for the exon nucleotides indicated in Figure 1 to be within the alternative intron splicing sites around intron 11.
- 17. Nucleic acid according to claim 8 that has the nucleotide sequence of FCA $\gamma_{\rm A}$, i.e. all the exons of Figure 1 except for the exon nucleotides indicated in Figure 1 to be within the alternative intron splicing sites around intron 11.

- 18. Nucleic acid according to claim 8 wherein said species other than Arabidopsis thaliana is a Brassica.
- 19. Nucleic acid according to claim 18 wherein said
 20 homologue comprises the amino acid sequence shown in
 Figure 8b.
 - 20. Nucleic acid according to claim 19 comprising the coding sequence shown in Figure 8a.

25

21. Nucleic acid according to claim 19 wherein the coding sequence is a mutant, allele or variant of the coding sequence of Figure 8a.

22. A nucleic acid isolate comprising a nucleotide sequence coding for a polypeptide comprising an amino acid sequence mutant, allele or variant of the amino acid sequence encoded by the nucleic acid of claim 19, by way of insertion, deletion, addition or substitution of one or more amino acids, which mutant, allele or variant has at least 80% amino acid identity with the sequence of Figure 8b and ability to influence a flowering characteristic of a plant.

10

20

- 23. Nucleic acid according to any of claims 1 to 22 further comprising a regulatory sequence for expression of said polypeptide.
- 15 24. Nucleic acid according to claim 23 comprising an inducible promoter.
 - 25. A nucleic acid isolate comprising a nucleotide sequence complementary to a coding sequence of any of claims 1 to 22, or a fragment of a said coding sequence suitable for use in anti-sense regulation of expression.
- 26. Nucleic acid according to claim 25 which is DNA and wherein said nucleotide sequence complementary to a said
 25 coding sequence or a fragment thereof is under control of a regulatory sequence for anti-sense transcription.

- 27. Nucleic acid according to claim 26 comprising an inducible promoter.
- 28. A nucleic acid vector suitable for transformation ofa plant cell and comprising nucleic acid according toany preceding claim.
 - 29. A host cell containing heterologous nucleic acid according to any preceding claim.

- 30. A host cell according to claim 29 which is bacterial.
- 31. A host cell according to claim 29 which is a plant cell.
 - 32. A plant cell according to claim 31 having said heterologous nucleic acid within its genome.
- 33. A plant cell according to claim 32 having more than one said nucleotide sequence per haploid genome.
 - 34. A plant comprising a plant cell according to any of claims 31 to 33.

25

35. Selfed or hybrid progeny or a descendant of a plant according to claim 34, or any part or propagule of such a plant, progeny or descendant, such as seed.

5

10

- 36. A method of influencing a flowering characteristic of a plant, the method comprising causing or allowing expression of the polypeptide encoded by heterologous nucleic acid according to any of claims 1 to 24 within cells of the plant.
- 37. A method of influencing a flowering characteristic of a plant, the method comprising causing or allowing transcription from heterologous nucleic acid according to any of claims 1 to 24 within cells of the plant.
- 38. A method of influencing a flowering characteristic of a plant, the method comprising causing or allowing anti-sense transcription from nucleic acid according to any of claims 25 to 27 within cells of the plant.
 - 39. Use of nucleic acid according to any of claims 1 to 24 in the production of a transgenic plant.
- 40. Use of nucleic acid according to any of claims 25 to 27 in the production of a transgenic plant.

Figure 1

1	gatctaggtg	aaattaatct	gaagtttaga	aatagatttt	cttggaactt
51	cggagaaaat	atgcttcact	caacttttt	ttggtgctat	atgaacaaag
101	ataatggtca	tatgaatgta	aacgtgtttt	gggatgatgt	tatcttgttc
151	catagatgcg	gttggaagaa	ttgcatttgg	actgcaaaaa	ctgatggcct
201	ttatctttgg	aattcagcga	gcggtgaaga	tgtattgtca	agaaaatggg
251	aagttggatg	gtgaagccat	atttttgctt	ttgggtaatt	ttttagtaca
301	tgtatcttgt	tgtttttggc	aaaaaaaaa	ttgaaataat	aaaaaacatt
351	tgttttaact	ttctctctta	ttttgtgtat	ttttcatcaa	tgatagattt
401	tttgttttag	ttctttattt	ataggtcatt	taattattag.	attaatttcc
451	tgagataata	agatcataga	ttaaataaca	atattgtgtt	tgtgatatat
501	agagattaca	ttttacactt	atatatagtg	gtaagatttc	tttttgcttt
551	caaaccatta	aaaacctgtt	aaacgattaa	cttgactcaa	gacaaagcca
601	ttgattattg	actcatgaat	ctagtgactc	atgatgaagg	agacgaacag
651	taaatattca	tttgattatt	ttaggtaaaa	ggtagttcag	acctagtcat
701	atatcctcta	aattcatata	gtgatgcaag	tattttgcat	tacttagaac
751	tttatattat	tgatcaccca	acacatgatt	taataaacgc	catgaaatgc
801	atgtactata	tcaaaatgtt	tctgaagcat	atagttgaca	tgagaatttt
851	ggattggact	taagaatgtg	agagttacct	gaaatgtcaa	ttttttccc
901	tttgttaacg	aaaactcatt	ggaacaattg	tatccccctt	ttggcagtat
951	ataaatatat	tgatggccca	agtagctgta	ttttccgtta	tcagccaaga
1001	ctcaataaag	tctaccggtc	caaatttcaa	ctgaatcacc	ggtccaacca
1051	ctattaccgt	aactagaccg	ctttttcttt	tttacattcg	gacaaaaaaa
1101	tcaaaatttc	gagcaactaa	attgatctca	tcttcaatcA	AATTCATCAT
1151	CTTCGATACT	CGTTTCTTCT	CTCTTTGGTT	TCATACAGAT	СССААЛТТС
1201	TAGGGCTCCT	AGTCCTTTGA	TTTCTTCGAC	TGGAATCGCA	ATTCCCCACT
1251	ACG1\(CAAGC1	'GGACAGACAC	CGAAGGGATC	GCCATGAGAG	TGGCGGCTAC
1301	GAGGATTCCT	' ACCATAACCA	CCGAGCCCAT	CCCAGAGGTC	CATCTCGTCC
1351	CTCAGATTCA	CGCTTCGAAG	AGGATGATGA	TGATTTTCGC	CGCCACCGTC
1401	GTCGTCGTG	AAGCAGCCCT	' AGCAATTATC	GAATTGGAAT	TGGGGGCGA

Figur	e 1 Continue	<u>d</u>	2/26		
1451	GGAGGAGGTA	ATGGTGGTCG	ACGCTGGGAA	GATGACACTC	CTAAGGATTT
1501	TGATGGTCCC	GGAGATGGAG	GTTTCCGGCA	GATGAATGGT	CCCCCAGATA
1551	GAGTAGATTT	TAAGCCTATG	GGTCCTCACC	ATGGTGGAAG	TTTTCGGCCT
·1601	ATGGGGTTTG	CCTACGATGA	TGGTTTTCGT	CCAATGGGTC	CTAACGGTGG
1651	TGTGGGAGGA	GAAGGGACAC	GGTCAATTGT	TGGAGCTCGG	TATAACTATC
1701	CCGCGAAGTA	TCCTCCTTCA	GAGAGTCCAG	ACAGGAGGAG	ATTTATCGGT
1751	AAAGCAATGG	AGTCTGATTA	TTCTGTAAGA	CCGACTACAC	CGCCGGTCCA
1801	GCAGCCTCTT	TCCGGTCAGA	AAAGAGGGTA	TCCTATCTCA	GACCATGGCA
1851	GCTTTACTGG	AACTGgtaag	catgagttca	ctcttcttc	ttctatgtat
1901	atttattctt	gtagtctgtt	aaggttcctg	agtgtctctt	atttttgtgg
1951	gaatcaatga	ttagagtatt	gaaaggtagt	atggttgtta	tgttactgţa
2001	ttgttgaagg	tttttcatgg	gatcgactct	agaggatcct	ttcgattttc
2051	ccatgtatgt	gataatcaaa	actatatgcc	atcttcatgt	gtatccttat
2101	ctggttaatt	tgatttgcag	ATGTCTCTGA	TCGTAGCAGT	ACAGTCAAGC
2151	TTTTTTTTGG	ATCTGTACCA	AGGACAGCTA	CAGAAGAAGA	Agtgagttaa
2201	tcttggaaat	cattgttatc	tatatactca	ttactgagaa	ccttttctaa
2251	attttttctg	ttggttttca	tattgtagAT	CCGTCCCTAT	TTCGAACAGC
2301	ATGGAAATGT	TCTGGAGGTT	GCTCTGATCA	AGGACAAGAG	AACTGGACAG
2351	CAGCAAGgta	tgtcaatctc	cattttatta	ggaaatagtc	gtgaattata
2401	ctttttaaaa	tttcaggtct	ccctgaaaag	gctgatggga	agcaacccca
2451	gtctcatcat	tggcctccaa	ttgtttgcaa	caattttcgg	gcttattgct
2501	tatgcttgcc	agcgtcttat	ctgtgttcga	ttctgtcaca	gaagaaggct
2551	acctgtgcta	agaaagggtt	tatgtactta	tgttgggcaa	atagatttcg
2601	ctacttgtgt	gtattctaga	actttagatg	tgtttgaaaa	gtgtagaatt
2651	tattgagggt	gttttagagt	tggagttaat	gtacagagaa	ctgaattttg
2701	ctgttgcctt -B	tatagtggga	attggttata	agaacatcgc	tattttcctc
2751	tectattgaa	atteattte	titactette	ctctagatgg	attgaagatg
2801	ttgtgtatgg	j tettgacage	, algaalgtat	. ttttttaagt	tggtagtttg
2851	ataaggacat	: gaggttcaaa	agatggtttc	ttgatttgcc	actectgetg
2901	gtcaaagat	tggccgtctl	: tctaatttta	ı tcatgttgya	ggtttggcgt

Figure 1 Continued

2951 cutcautuuc uuucatauca auutaugggu gugcugucta uuggutaaug atggcattcc ttttaccttt ttggatgagt gatgctggaa tgaatgcgtt 3001 totootttto tittigttgat ggootgagga actatgatgg ctatatttot 3051 ttccactctc tttgaatggc ctgaaatgtg tgctttctgt atggtcgtcc 3101 ctctcaattt cttggatggc ttgtgatgtg atataccatc tctcgtcata 3151 ggtgaatgaa tgatttgttt agtagttctt atgtatgtat tttgtatgtt 3201 cccacgtctc tattccttgg atggcttgtg atgtgatata ccatctctcg 3251 tcatagatga atgaatattt tgttgagtag ctcttatgtc tgtatggtgg 3301 cccttgcagt gctgatcgat atttatgtgg aagaaatgtt tgatgataga 3351 tttttttgt atgctccctt ttcgctaatc aagcctttgt gcttgcaagg 3401 tgcaactgtt attttattat tgaatttcct gttctactac tccatttagt 3451 tetgteteta ttttgteagt gtgaagaaat actagacgat gaatggtgtg 3501 tttgtacgtg catagttatt tataaattct tgactttcca agaagttatt 3551 atttctataa ctgctacacc tttgtggatg gcagaacaaa tgcatctgat 3601 tgtggtgaca taaacacttt tgatcgcggt tgaatgtact agattccata 3651 caactettte tteageettg tgaaatatta ttatgttagg tggtgcaaae 3701 atatggaagg aacctgattg ttttagtttc ttagaatagt ttctgatgtt 3751 aatacagcat gttgacttca ctctcttgcc cttgatcaat cagcatcagg 3801 caggggccta attatgtatt acatgaagca atcgtattct tttctgaatt 3851 agattttttt ccaatgagtt atcttgccca taactgtagt tctttatttg 3901 aagtottcaa atgottgatg tatggtgacg aaaatgtgta tatgttttgg 3951 ttttgattat ccgctactca tcaattattg agattcttac atactgaatc 4001 cgttactttg gacctatagt tatgttttat gttgctaatt aacttgtaca 4051 tgtttctaga ttttctttca aatggatcct gcttggacaa atgcagccac 4101 cettigicig aaaggeeete tigtagatat gitaleigea gataetgaet 4151 qtqttcaatt ttttaatatt tqttttttgcc atattctcca tttgaagaca 4201 ttaatttatt ctctccaaca actttacatc aatatttaag tggaggctgt 4251 cagacatgic trangatitt cotactgaac trangigett tgagtagtac 4301 atcttgttac tagtacaatt tgatggtaga aggaaaagtt gaaccctgaa 4351. acagataget taagtateag tetttaatge agGCTGTTGT TTTGTAAAAT 4401 ATGCAACTTC GAAAGATGCG GATAGAGCCA TCAGAGCACT GCACAATCAG 4451

r		1	Continued
T.	rgure		Continued

4501	ATCACTCTTC	CTGGGgtaat	taccctgagg	ctttctctta	tcaagaacag
4551	gaaactatag	gttgtttcac	cttttataat	tttgttgatt	cccagGGAAC
4601	TGGTCCTGTT	CAAGTTCGAT	ATGCTGACGG	GGAGAGAGAA	CGCATAGgta
4651	atcaacttcc	acacagagta	tctaatgtgg	ctgtcattgt	ctagtgttca
4701	tagccaagac	catacgctgc	ataagttcag	attacaaaaa	ttaagaaaat
4751	gtgggaaatg	atatgaactt	tatggatgtt	gatccttttc	tttccctgtt
4801	ttctttgcct	tactatcaag	tgatatagtt	ctcttcttct	gaagGCACCC
4851	TAGAGTTTAA	GCTTTTTGTT	GGTTCACTAA	ACAAGCAAGC	CACTGAAAAA
4901	GAAGTTGAGG	AGgtatgttt	cgtatcttac	tttttgaagt	tgttacttat
4951	gtcagattaa	cggaacaggg	aagagttcta	aacttggata	ttattgtgtc
5001	ccctgttacc	tgagttgata	attttaaatg	actctttgat	aaattttgtt
5051	agtcttacca	aagggtgagt	gtctagaaaa	tctgtgtcaa	taatgcaagc
5101	gcttggacat	tctacttact	gtgtaatctc	ttcttccaat	tgatccaact
5151	gtttgactgt	cataatagat	aaaattaata	aatgtgaacg	gctaccttcc
5201	cagttcaact	tatgtgtttc	aatttctcat	gtaatctttt	aacaaactgt
5251	tttattgtta	ttgctttaac	agATCTTTTT	ACAATTTGGT	CATGTGGAAG
5301	ATGTCTATCT	CATGCGGGAT	GAATATAGAC	AGAGTCGTGg	tatgttttgt
5351	aatttgtact	agattctata	aattatttgt	tgtgtgatga	tgttgagatg
5401	gtgaaactgt	gtttttcact	ttgtagGATG	TGGGTTTGTT	AAATATTCAA
5451	GCAAAGAGAC	GGCAATGGCA	GCTATCGATG	GTCTCAACGG	AACTTATACC
5501	ATGAGAGtaa	gctgtgaatc	acataagtat	ctcagtttct	ctcattatca
5551	ccctttggac	ctgttttgtt	tactggcctc	tatectttee	ccagGGTTGC
5601	AATCAGCCAT	TGATTGTTCG	GTTTGCTGAG	CCAAAGAGGC	CTAAACCTGG
5651	CGAGTCAAG	g taatgeette	ggtactatat	: tttgattaat	cctaatactc
5701	ttatcaagta	aattgtatat	accttcatto	titgttetgt	ctgagttata
5751	tttgtggaga	a atcttttgga	a catggtggad	g agttgggaac	cctgttcctt
5801	ctccagttal	tactggaatq	g tgaagcatte	g ctttctagat	atccttaagt
5851	agtttctgt	t tccagGGAA.	A TGGCACCTC	C TGTTGGACTT	' GGTTCAGGGC
5901	CTCGTTTTC	A AGCTTCAGG	A CCAAGgtaa	c tggtgtgaaa	ggagatcatg
5951	attatgctc	a ttaggtaat	t atatatgtt	g acttacccc	gtctcctcat

Figure 1 Continued

6001 ctctatttgt tagGCCTACC TCTAACTTTG GTGACTCTAG TGGGGATGTA AGCCACACAA ATCCTTGGCG TCCAGCTACT TCACGAAACG TAGGCCCACC 6051 6101 TAGTAACACT GGGATCCGTG GTGCCGGTAG TGACTTTCCC CCTAAACCAG qtcaagcaac attgccttca aatcaggtga gaacaggttg atgatcatgt 6151 6201 atatcatctt aaatctgcac attcatataa gtaagcgcat agagtttqca 6251 tgtattgtgc gagacaaata aaaagaaagt acttcatata ctgcacacat 6301 gggcttatga caggtgaaaa gaagcatgaa gttctgacct ttcaactttt 6351 catataatgc aacaaacacg atgtgtgttg ctcaaatgat atggccttaa 6401 tttgcagttt gtcagttact gaggcaattt tttttttgaa taatttctag 6451 ccctgatgtg agctttttta aatgtaacat tctatattgt tagGGTGGCC 6501 CGTTAGGTGG TTATGGTGTT CCTCCCCTTA ACCCTCTCCC AGTCCCTGGA 6551 GTTTCATCTT CTGCCACATT GCAACAGgta ctttagctat atttttccaa 6601 ttaagcaaat ctgaaaatgt tgtgatgatt aacttggatt ttcaattgtt 6651 totattocat agCAAAATCG GGCAGCTGGC CAGCATATAA CACCATTAAA 6701 AAAACCTCTT CACAGTCCAC AGGGTCTCCC TCTCCCCCTC CGTCCGCAAA 6751 CTAATTICCC TGGGGCCCAG GCACCCTTGC AGAATCCTTA TGCTTATAGC 6801 AGCCAGTTGC CTACCTCTCA GCTGCCACCA CAGCAAAACA TCAGTCGTGC 6851 AACTGCTCCT CAAACTCCTT TGAACATTAA TCTACGGCCA ACAACTGTGT 6901 CTTCTGCAAC TGTTCAATTT CCCCCTCGTT CCCAGCAGCA ACCGCTACAA 6951 AAGATGCAAC ATCCTCCTTC TGAGCTAGCT CAGCTCTTGT CGCAGCAAAC 7001 TCAGAGTCTA CAAGCAACAT TCCAATCGTC TCAGCAAGCA ATTTCTCAGC 7051 TGCAGCAGCA GGTGCAGTCT ATGCAGCAAC CAAACCAAAA TTTACCACTC 7101 TCACAGAATG GCCGAGCTGG TAAACAACAG gtatgaatat agtototoag 7151 ttgcatctgc ccagacgggt tcttcagctg ctattgtgtt gttttaactt aaaattattt cotgatagac atcoogtttt ttatcottca tgtgttttag 7201 7251 tattetece titteetaatg treetetegg etgettettt ateagTGGGC 7301. TEGATETECA ATTECANGAG TEGETAGENE CACTEGITES ACACCAGIGA 7351 GCTATGTGCA AACAGCTGCA CCTGCAGTAA GTCAGAGCGT AGGTTCTGTC AAATGTACCT GGACCGAGCA TACCTCGCCT GATGGATTTA AATATTATTA 7451 CANTGGTCTA ACGGGTGAAA GCAAGgtgag aaacgtggtt cetetttaat 7501 atatttcctt gtgagtttca ggagtattcc tcctggttta ttgtgctatt

Figure	2 1 Continue	<u>ed</u>	6/26		
7551	gataatcctt	acacatgtat	attttatatt	tgaagtcctt	cagtacgtgc
7601	catattatgt	atataattca	cttttgcagT	GGGAAAAACC	TGAGGAAATG
7651	ATAGTGTTCG	AACGAGAGCA	ACAGAAACAG	CAACAACATC	AAGAGAAGCC
7701	AACTATACAG	CAGTCCCAGA	CCCAATTACA	GCCGTTGCAG	CAACAACCAC
7751	AACAAGTTCA	GCAGCAATAT	CAGGGCCAGC	AATTACAGCA	GCCGTTTTAT
7801	TCTTCACTG g	ttggtttcgt	tttcatgctg	gttacattca	aatatttttg
7851	tcacatggtt	tctaatttgc	atatttactc	ttgttcattt	ggagttgcag
7901	tatccaactc	caggggccag	ccataatact.	caggtgtata	tctgtttaat
7951	ctgtttactt	atttttcatt	tcaagatttg	attcttgata	tgctaatctt
8001	gtggtagaag	gagattgacc	accttaaagt	aaaattcagt	agccatggtt
8051	ttgccagcat	tttgaaatac	agataacaaa	tctctaacgt	gaatgcctat
8101	tttcctttct	aaaatgcagT	ATCCATCATT	GCCAGTAGGT	CAAAATAGCC
8151	AGgtacatat	ctgaatctgt	ggacttattt	ttcattgaac	tgattgattc
8201	tcagttacaa	cattgacttc	ctctgatgcg	tagtttttgt	aacatatcag
8251	aataacaaaa	acttcatctg	attcgtatat	tctctggttg	aaaatctttt
8301	tttctttct	ggaaaatgca	gTTTCCTATG	TCAGGAATTG	GTCAGAATGC
8351	TCAGgtatat	atctcatttt	gtattaacaa	tttcccatac	cttctgtacc
8401	tttgaattta	atcacagaac	ataatgagtt	cttggattta	atgtcatttt
8451	aaaaagaaac	atcagtgata	tgacttcctt	ccttggttaa	aaatggttta
8501	ggcagagctt	attttctatt	ctgtttggat	tgtctagGAT	TATGCTCGGA
8551	CACATATACO	CGTGGGAGCT	GCTTCAATGA	ATGATATATC	AAGAACTCCA
8601	CAGgtagtta	tggtttttat	cagtgattca	gaacttctct	ctgttcataa
8651	ttegteetti	ggtattcaga	tgttctttt	cgttgaaacc	gtttttttcc
8701	ttaattctct	: ttacaatcat	atctctttt	cccagAGCCG	TCAATCTCCC
8751	CAAGAACTC	A TGTGGAAGAA	A TANAGCTTGA	Ggttcatatc	taccetttet
8801	ctcctctct	c ttgtatttt	c tocatacoga	aacacattco	aatgtatgtg
8851	gtttcttta	g ttgaagtta	c chatgtgitg	g atcgatacto	: tacttcagGT
8901	ACATGAGAC	G AGGAGCTAA	A CTATCTCAGT	r AGCTAGATAG	AAATTTCTGG
8951	AACTAATTA	G TCAAGGAGA	G GAAAAGCAGG	OF DATE OF LAN	TCCTTAGTCT
9001	CTGATTITI	T TAGTTAACC	C CTTCAGTTAT	ODATAGATAA T	G CGATCGTAGA

Figure 1 Continued

9051	CCATCTGCAT	TCTATCTTTT	CTCTAATCAG	ATATCTCCTC	CTTTTCCATT
9101	TTAAGAGCTG	CCAAACAATG	GCCTGTTGTA	ACATAGCTAG	CGCAAGTTAT
9151	GTCTCATGTT	GTGTTACTAG	TAGTAACTTA	GCTGGGTAAA	CCAAACTTTG
9201	ATCCAGATTA	GGAGTCATAT	ATAATTATAT	AAATAGAATA	TGTACATTCA
9251	TAGATAgete	atcacttata	atgagactag	atcttagcaa	aatccaactc
9301	taattgtcat	tttcagagat	ctatcaattt	gtagtttcct	gatcttcata
9351	tatgtgttcg	ctcttctaat	gattacgtaa	aatcagagtc	ctacgtaggt
9401	ggacttcttt	aatttttata	tagataatta	gatatcattc	aataagtcgg
9451	gcttttattt	ttagttaatc	attctacaat	tcttcctaat	ctcgctatta
9501	ctaccaccgg	gtatccctcc	cattttaacc	atagcgttct	taaaatcctc
9551	aaagaaaacc	gactgatctg	ttgcgtaggt	ctcaacaatc	gcccttgtcc
9601	ctgggtcttg	aaccgctaaa.	gcctggtctg	atggaagcaa	tccctcaccc
9651	gagaggaggt	ttacatagta	ctggttgtca	aatgttgatg	gagtcaccaa
9701	gtcaagctga	gtgataccta	cactgggccc	aacagtcgag	cataactgtt
9751	gcagtgactc				

Figure 2

	1	MNGPPDRVDF	KPMGPHHGGS	FRPMGFAYDD	GFRPMGPNGG	VGGEGTRSIV
5	51	GARYNYPAKY	PPSESPDRRR	FIGKAMESDY	SVRPTTPPVQ	QPLSGQKRGY
10	1	PISDHGSFTG	TDVSDRSSTV	KLFVGSVPRT	ATEEEIRPYF	EQHGNVLEVA
15	1	LIKOKRIGQQ	QGCCFVKYAT	SKDADRAIRA	LHNQITLPGG	TGPVQVRYAD.
20	1	GERERIGTLE	FKLFVGSLNK	QATEKEVEEI	FLQFGHVEDV	YLMRDEYRQS
25	1	RGCGFVKYSS	KETAMAAIDG	LNGTYTMRGC	NQPLIVRFAE	PKRPKPGESR
30	1	DMAPPVGLGS	GPRFQASGPR	PTSNEGDSSG	DVSHTNPWRP	ATSRNVGPPS
35	1	NTGIRGAGSD	FSPKPGQATL	PSNQGGPLGG	YGVPPLNPLP	VPGVSSSATL
40	1		ITPLKKPLHS			
45	1		NISRATAPQT			
50	1		LSQQTQSLQA			
SS	1		GSAIPRVAST			
60	1		NGLTGESKWE			
65	1		VQQQYQGQQL			
70	1		QDYARTHIPV			

Figure 3

1	AAATTGATCT	CATCTTCAAT	CAAATTCATC	ATCTTCGATA	CTCGTTTCTT
51	CTCTCTTTGG	TTTCATACAG	ATCCCAAATT	TCTAGGGCTC	CTAGTCCTTT
101	GATTTCTTCG	ACTGGAATCG	CAATTCCCCA	CTACGTCAAG	CTGGACAGAC
151	ACCGAAGGGA	TCGCCATGAG	AGTGGCGGCT	ACGAGGATTC	CTACCATAAC
201	CACCGAGCCC	ATCCCAGAGG	TCCATCTCGT	CCCTCAGATT	CACGCTTCGA
251	AGAGGATGAT	GATGATTTTC	GCCGCCACCG	TCGTCGTCGT	GGAAGCAGCC
301	CTAGCAATTA	TCGAATTGGA	ATTGGGGGCG	GAGGAGGAGG	TAATGGTGGT
351	CGACGCTGGG	AAGATGACAC	TCCTAAGGAT	TTTGATGGTC	CCGGAGATGG
401	AGGTTTCCGG	CAGATGAATG	GTCCCCAGA	TAGAGTAGAT	TTTAAGCCTA
451	TGGGTCCTCA	CCATGGTGGA	AGTTTTCGGC	CTATGGGGTT	TGCCTACGAT
501	GATGGTTTTC	GTCCAATGGG	TCCTAACGGT	GGTGTGGGAG	GAGAAGGGAC
551	ACGGTCAATT	GTTGGAGCTC	GGTATAACTA	TCCCGCGAAG	TATCCTCCTT
601	CAGAGAGTCC	AGACAGGAGG	AGATTTATCG	GTAAAGCAAT	GGAGTCTGAT
651	TATTCTGTAA	GACCGACTAC	ACCGCCGGTC	CAGCAGCCTC	TTTCCGGTCA
701	GAAAAGAGGG	TATCCTATCT	CAGACCATGG	CAGCTTTACT	GGAACTGATG
751	TCTCTGATCG	TAGCAGTACA	GTCAAGCTTT	TTGTTGGATC	TGTACCAAGG
801	ACAGCTACAG	AAGAAGAAAT	CCGTCCCTAT	TTCGAACAGC	ATGGAAATGT
851	TCTGGAGGTT	GCTCTGATCA	AGGACAAGAG	AACTGGACAG	CAGCAAGGTA
901	TGTCAATCTC	CATTTTATTA	GGAAATAGTC	GTGAATTATA	CTTTTTAAAA
951	TTTCAGGTCT	CCCTGAAAAG	GCTGATGGGA	AGCAACCCCA	GTCTCATCAT
1001	TGGCCTCCAA	TTGTTTGCAA	CAATTTTCGG	GCTTATTGCT	TATGCTTGCC
1051	AGCGTCTTAT	CTGTGTTCGA	TTCTGTCACA	GAAGAAGGCT	ACCTGTGCTA
1101	AGAAAGGGTT	TATGTACTTA	TGTTGGGCAA	ATAGATTTCG	CTACTTGTGT
1151	GTATTCTAGA	ACTTTAGATO	TGTTTGAAAA	. GTGTAGAATT	TATTGAGGGT
1201	GTTTTAGAGT	TGGAGTTAAT	: GTACAGAGAA	CTGAATTTTC	CTGTTGCCTT
1251	TATAGTGGGA	ATTGGTTAT/	A AGAACATCGC	TATTTTCCTC	TCCCTATTGA
1301	AATTCATTT	CTTTACTCT	CCTCTAGATO	GATTGAAGA1	GTTGTGTATG

Figure 3 Continued

1351	GTCTTGACAG	GATGAATGTA	TTTTTTTAAG	TTGGTAGTTT	GATAAGGACA
1401	TGAGGTTCAA	AAGATGGTTT	CTTGATTTGC	CACTCCTGCT	GGTCAAAGAT
1451	TTGGCCGTCT	TTCTAATTTT	ATCATGTTGG	AGGTTTGGCG	TCTTCATTTT
1501	CTTTCATATC	AATTTATGGG	TGTGCTGTCT	ATTGGTTAAT	GATGGCATTC
1551	CTTTTACCTT	TTTGGATGAG	TGATGCTGGA	ATGAATGCGT	TTCTCCTTTT
1601	CTTTTGTTGA	TGGCCTGAGG	AACTATGATG	GCTATATTTC	TTTCCACTCT
1651	CTTTGAATGG	CCTGAAATGT	GTGCTTTCTG	TATGGTCGTC	CCTCTCAATT
1701	TCTTGGATGG	CTTGTGATGT	GATATACCAT	CTCTCGTCAT	AGGTGAATGA
1751	ATGATTTGTT	TAGTAGTTCT	TATGTATGTA	TTTTGTATGT	TCCCACGTCT
1801	CTATTCCTTG	GATGGCTTGT	GATGTGATAT	ACCATCTCTC	GTCATAGATG
1851	AATGAATATT	TTGTTGAGTA	GCTCTTATGT	CTGTATGGTG	GCCCTTGCAG
1901	TGCTGATCGA	TATTTATGTG	GAAGAAATGT	TTGATGATAG	ATTTTTTTTG
1951	TATGCTCCCT	TTTCGCTAAT	CAAGCCTTTG	TGCTTGĊAAG	GTGCAACTGT
2001	TATTTTATTA	TIGAATTTCC	TGTTCTACTA	CTCCATTTAG	TTCTGTCTCT
2051	ATTTTGTCAG	TGTGAAGAAA	TACTAGACGA	TGAATGGTGT	GTTTGTACGT
2101	GCATAGTTAT	TTATAAATTC	TTGACTTTCC	AAGAAGTTAT	TATTTCTATA
2151	ACTGCTACAC	CTTTGTGGAT	GGCAGAACAA	ATGCATCTGA	TTGTGGTGAC
2201	ATAAACACTT	TTGATCGCGG	TTGAATGTAC	TAGATTCCAT	ACAACTCTTT
2251	CTTCAGCCTT	GTGAAATATT	ATTATGTTAG	GTGGTGCAAA	CATATGGAAG
2301	GAACCTGATT	GTTTTAGTTT	CTTAGAATAG	TTTCTGATGT	TAATACAGCA
2351	TGTTGACTTC	ACTCTCTTGC	CCTTGATCAA	TCAGCATCAG	GCAGGGGCCT
2401	AATTATGTAT	TACATGAAGC	AATCGTATTC	TTTTCTGAAT	TAGATTTTTT
2451	TCCAATGAGT	TATCTTGCCC	ATAACTGTAG	TTCTTTATTT	GAAGTCTTCA
2501	AATGCTTGAT	GTATGGTGAC	СААААТСТСТ	ATATGTTTTG	GTTTTGATTA
2551	TCCGCTACTC	CATCAATTATT	GAGATTCTTA	CATACTGAAT	CCGTTACTTT
2601	GGACCTATAC	TTATGTTTT	TGTTGCTAAT	TAACTTGTAC	ATGTTTCTAG
2651	ATTTTCTTT	C AAATGGATCO	TGCTTGGACA	AATGCAGCCA	CCCTTTGTCT
2701	GYVYGGCCC.	T CTTGTAGATA	A TGTTATCTGO	AGATACTGAC	TGTGTTCAAT
2751			CATATTCTCC		

Figure 3 Continued

2801	TCTCTCCAAC	AACTTTACAT	CAATATTTAA	GTGGAGGCTG	TCAGACATGT
2851	CTTATGATTT	TCCTACTGAA	CTTATGTGCT	TTGAGTAGTA	-CATCTTGTTA
2901	CTAGTACAAT	TTGATGGTAG	AAGGAAAAGT	TGAACCCTGA	AACAGATAGC
2951	TTAAGTATCA	GTCTTTAATG	CAGGCTGTTG	TTTTGTAAAA	TATGCAACTT
3001	CGAAAGATGC	GGATAGAGCC	ATCAGAGCAC	TGCACAATCA	GATCACTCTT
3051	CCTGGGGGAA	CTGGTCCTGT	TCAAGTTCGA	TATGCTGACG	GGGAGAGAGA
3101	ACGCATAGGC	ACCCTAGAGT	TTAAGCTTTT	TGTTGGTTCA	CTAAACAAGC
3151	AAGCCACTGA	AAAAGAAGTT	GAGGAGATCT	TTTTACAATT	TGGTCATGTG
3201	GAAGATGTCT	ATCTCATGCG	GGATGAATAT	AGACAGAGTC	GTGGATGTGG
3251	GTTTGTTAAA	TATTCAAGCA	AAGAGACGGC	AATGGCAGCT	ATCGATGGTC
3301	TCAACGGAAC	TTATACCATG	AGAGGTTGCA	ATCAGCCATT	GATTGTTCGG
3351	TTTGCTGAGC	CAAAGAGGCC	TAAACCTGGC	GAGTCAAGGG	ACATGGCACC
3401	TCCTGTTGGA	CTTGGTTCAG	GGCCTCGTTT	TCAAGCTTCA	GGACCAAGGC
3451	CTACCTCTAA	CTTTGGTGAC	TCTAGTGGGG	ATGTAAGCCA	CACAAATCCT
3501	TGGCGTCCAG	CTACTTCACG	AAACGTAGGC	CCACCTAGTA	ACACTGGGAT
3551	CCGTGGTGCC	GGTAGTGACT	TTTCCCCTAA	ACCAGGTCAA	GCAACATTGC
3601	CTTCAAATCA	GGGTGGCCCG	TTAGGTGGTT	ATGGTGTTCC	TCCCCTTAAC
3651	CCTCTCCCAG	TCCCTGGAGT	TTCATCTTCT	GCCACATTGC	AACAGGAAAA
3701		GGCCAGCATA			
3751		CCCTCTCCCC			
3801		TGCAGAATCC			
3851		CCACAGCAAA			
3901	CTTTGAACAT	TAATCTACGG	CCAACAACTG	TGTCTTCTGC	AACTGTTCAA
3951		GTTCCCAGCA			
1001		GCTCAGCTCT			
405]		GTCTCAGCAA			
4101		C AACCAAACC!			
4151	TGGTAAACA	A CAGTGGGCT	G GATCTGCAAT	TCCAAGAGTG	GCTAGCACCA

Figure 3 Continued

4201	CTGGTTCGAC	ACCAGTGAGC	TATGTGCAAA	CAGCTGCACC	TGCAGTAAGT
4251	CAGAGCGTAG	GTTCTGTCAA	ATGTACCTGG	ACCGAGCATA	CCTCGCCTGA
4301	TGGATTTAAA	TATTATTACA	ATGGTCTAAC	GGGTGAAAGC	AAGTGGGAAA
4351	AACCTGAGGA	AATGATAGTG	TTCGAACGAG	AGCAACAGAA	ACAGCAACAA
4401	CATCAAGAGA	AGCCAACTAT	ACAGCAGTCC	CAGACCCAAT	TACAGCCGTT
4451	GCAGCAACAA	CCACAACAAG	TTCAGCAGCA	ATATCAGGGC	CAGCAATTAC
4501	AGCAGCCGTT	TTATTCTTCA	CTGTATCCAA	CTCCAGGGGC	CAGCCATAAT
4551	ACTCAGTATC	CATCATTGCC	AGTTGGTCAA	AATAGCCAGT	TTCCTATGTC
4601	AGGAATTGGT	CAGAATGCTC	AGGATTATGC	TCGGACACAT	ATACCCGTGG
4651	GAGCTGCTTC	AATGAATGAT	ATATCAAGAA	CTCAACAGAG	CCGTCAATCT
4701	CCCCAAGAAC	TCATGTGGAA	GAATAAAACT	TGAGGTACAT	GAGACGAGGA
4751	GCTAAACTAT	CTCAGTAGCT	AGATAGAAAT	TTCTGGAACT	AATTAGTCAA
4801	GGAGAGGAAA	AGCAGCAATG	GTAGTGTCCT	TAGTCTCTGA	TTTTTTTAGT
4851	TAACCCCTTC	AGTTATAATA	GATAGGCGAT	CGTAGACCAT	CTGCATTCTA
4901	TCTTTTCTCT	AATCAGATAT	CTCCTCCTTT	TTCATTTTAA	GAGCTGCCAA
4951	ACAATGGCCT	GTTGTAACAT	AACTAGCGCA	AGTTATGTCT	CATGTTGTGT
5001	TACTAGTAGT	AACTTAGCTG	GGTAAACCAA	ACTTTGATCC	AGATTAGGAG
5051			AGAATATGTA		
5101	AAAAAAAA	AAA			

Domain
Binding
RNA

Figure 4

RNP 1 QGCCFVKX ATSKDADRAIRALHNQITLPG RGCGFVKX SSKETAMAAID GLNG' KTGXSFGX AFVDFTSEMDSQRAIKVLNG: RGVAFYRX NKREEAQEAISALNNVIPEGG, RGFCFIXF EKLSDARAAKD SCSGIEVDG;	A L G
RNP 1 QGCCFVXX RGCGFVXX KTGYSFGY RGVAFVXX RGVAFVXX	kgrgevxf r xa x
RNP 2 DVSDRSSTVK LFVGSV PRTATEEEIRPYFEQHGNVLEVALIKDKRTGQQ QGCCFVKX ATSKDADRAIRALHNQITLPGG RESIGTLEFK LFVGSL NKQATEKEVEEIFLQFGHVEDVYLMRDEYRQS RGCGFVKX SSKETAMAAID GLNGG RNDPRASNTN LIVNXL PQDMTDRELYALFRAIGPINTCRIMRDX RTGXSFGX AFVDFTSEMDSQRAIKVLNG: PPGGESIKDTN LYVTNL PRTITDDQLDTIFGKXGSIVQKNILRDKLTGRP RGVAFVRX NKREEAQEAISALNNVIPEGG, SREHPQASRC IGVFGL NTNTSQHKVRELFNKXGPIERIQMVIDAQTQRS RGFCFIYF EKLSDARAAKD SCSGIEVDG;	E V F FG I K
ANP 2 DVSDRSSTVK LFVGSV RERIGTLEFK LFVGSL MNDPRASNTN LIVNXL PGGESIKDTN LXVTNL SREHPQASRC IGVFGL	lfygne Ixikg
Frotein Domein fre fre 2 Sex lethel 1 tran2	

HTZHTSPDGFKXXXNGL¶GESKHEKPEBBILVFEREQ HKEAKDASGRIXXXN¶L¶KKSTWEKPKELISQEELL HKZFMSDDGKPXXXN¶L¶KK¶QWVKPDGEEI¶KGEQ C-terminal region Homology in *fca* Yeast C.elegans

W KP :=

XXXX LT O មា

Fig.6.

COMPLEMENTING COSMIDS IN FCA REGION

Figure_8a

1	GTTAACGGAT	CACACAGTAT	AATATAAAAC	TAGGTGTTTT	GCCCGCACAT
51	GCGAGCATAA	TTTTCTCATC	AATACTTATT	AGTTTATATC	TTATTAATCT
101	AAAACCAGCA	TGATAAGTTA	TTATTTATGT	TTTCAGATAG	ТТАААТСААА
151	CATCAAAGTA	TTTATATATG	TCAAATATTT	TATCAAAAAT	ATATACTTAT
201	TATTGTGTTA	AATTTTTTAA	AACACTCATA	TCTTAGAAAT	AGTTTAGAAA
251	ATATCTTTAT	ATAAATGTTT	TTTAACTTTT	АТААТАААА	TATTGTTTTC
301	AGATAGCAAC	AAAATATATA	TAGAATTAAC	TTATTTTTAA	ATTTTTTGAT
351	ATTTTTATA	TATTATTTAA	GAATCAATTA	TTTATATTAA	TATAACATAT
401	AATTTTCACT	GATTAAATAA	AATTCGTTTT	ТААТТАТАТА	AATTCATTAA
451	GAGTATTGTT	TTAATAACAC	ATTAGCGAAC	ATCAGCTAGA	AATTAATAAT
501	AAATCAATAA	CCTAGCTAAA	AGTCTAAAAC	СТААТААААТ	ATGACAAATA
551	AGAAAAATTA	ACTAAATTTT	ААТАТААААТ	ATAAATTTAA	ТАТТАСТААА
601	ATAAAATTCA	TTTTTAATAT	ATATAAGATT	CTTAAGGGTA	TAAATTTTTTT
651	TAATAAATTA	GTGACTTAGC	TAAAAATAAA	ТААТАААТСА	ATGATTTAGC
701	TAAAACCTAA	TAAAAACATG	ACAAATAAGC	AAATTTACTA	AAATTATTGA
751	ТААТАТАААА	TATGATTGAT	TCTTTAATAC	AAAATTAAAA	TAAGAGTTTT
801	TTTAAATCAA	ACATAAGTCT	GCCGTATCGG	TGTTAAAAAA	AAAATCATTA
851	ATAGTGTCGT	AGGAATTATG	TATTTCCATT	AGCGAATAAA	ATTGAAGCAG
901	AGTGTTGGAG	GATAGCTCAA	CGTATAGGCG	AGATTATGGA	GATTGATATG
951	GGAGTTGÇCG	TAACGGACAC	AACTGTTCCT	CTGCAAAGAA	ACGCTCCTAC
1001	TAGATGGACA	TGTCAAGTTG	ATGCATCCTG	GATAAATGAA	AGAAACATAT
1051	CTGGACTTGG	CTTTGTGTTA	ATGGATGGTG	ACTTCCCAAT	ACTGTTTGTA
1101	TCAACGGCCC	S ATATACACGO	ACCAAATCAC	CACTGCAAGC	GGAACGTGAA
1151	GGTTTGCTAT	r gggcaatgca	AGAGATACTG	AAGTTTGGAC	GCAGAGTGAT
1201	GGTCTTTCAA	A TEGACTATE	A ACAACTGGTT	' ATACTCATTC	AAAAGGAGGA
1251	AGATGGCCTY	G CTTGGACTCO	GAGCTCGACG	AAATACAAGT	TGTATCAAAG
1301	AATTTTCTG	TATTICTAL A	I GCTTATATTC	CTAGATCTTT	' AAAATTCCGT
1351	ACGAATAGC	C TAGCAAAAG	G TGTCGATCAC	CCGCATCACG	ATCAGCTTTT

Figure 8a Continued

1401	GTAACCCTTT	GCACCAGTGG	CTAGCCCACA	GCTAGCATGA	GGGTGCAAAA
1451	GAGAATAAGT	CGAAACAAGC	TAGCATGAGG	GTGCCAAAAA	AGAGAATAAA
1501	GTCGAAAGTA	AAACTGAATA	TCCAATGAAC	AAAATTATCA	GAAATCCATA
1551	TTTATGTGGA	TGTCTATATG	GGACAAACAA	TTTTTTTAGA	TCAATCCTAA
1601	AATATATAAT	TTAAAAAAAC	CATTTAAACA	AACCATCAAA	ATTTTGAATA
1651	TTACACCAAA	AAAAAATATA	AAGACCAACT	ATATTATATT	CATGTATAAT
1701	GTGTAGTGGT	AAGATTCAAA	AAAATTAACT	TACTTTACAG	TAAGGGAAAA
1751	TTAGATTTTT	TATTCCATAT	TTACAGTAAA	AACATAACAT	TTTATAAAAC
1801	TAAACAATTG	ACATAATAGT	ACAAAATATG	ТААААААА	СААААТАСТА
1851	AGAACCTACT	ATTAGTTAAA	TTAÁGTACAG	TCAAGTCAAC	TAGTATGTGA
1901	ATGAGATTTA	ACTTACAAAT	TCATTACGAG	ACAATAGCAC	ATTTAGAAGA
1951	ATAACATGTA	GATTGATGTG	CACACAAAAA	AAAACCAACG	GGTACAAATG
2001	TTAACCGCTC	CACCGGTCGA	ACCATAATCC	AGACCGGTTT	TGCTATTTAA
2051	ACCGCTCAAA	TCGCAAAGTA	CGTTTCGCTT	ACTTCCAGCA	AACCACCATT
2101	GATCTCTCCT	CCAATTCACA	AATCCAATTT	CTCTAGGGTT	TGATTTCTTC
2151	GACTTGAATT	GCATTTCCAT	CCGAATTTCC	CCAAATTCGT	CAAGCTGGAT
2201	AGGCACCGAG	GGGATCGCCA	CGAGAGTGCC	TTACGACGAT	TCCTACCGTA
2251	ACCACCGAGC	TCACCTAGAG	GTCCCCCTCT	ACTCTCAGAT	TCACÇCTCCA
2301	TGTCACGTTT	CGGCGAGGAT	GACGAAGGTT	TCAGCCGCCG	TCGTCGCCGT
2351	GGAAACAGCC	TAGCAATTAT	CAGTTGGATG	GGACAGAGGA	GGTGGCGATC
2401	GACGCTGGGA	AGATGACGGC	CACGATCGTA	TTTCACAGAG	AGGCGTGGGA
2451	GAGTAGAATT	TYCAGCCTATG	GGTTATGGCT	TCGACGGAGG	TTTTCCGCCG
2501	ATGAGTCGC	S ACGGAGGATI	TTGGCCTAAC	GTGCCAGTGA	ATTTTCCGCC
2551	ATCGGAAAG'	I' CCAGA'I'GCAC	GGGGATATTC	CGGCGGCAGG	GGATTTCAAT
2601	CAACGGGGC	C TACTLY CTAL	' GTGAGATTGA	CTTCACCGCC	GATCGAGCAG
2651	CCTCTTTCT	G GUCAGAAAA	AGGTCGTCCT	CTCTCGGAGC	AGAGTAGCTT
2701	TACTGGAAC	T GGTAAGCTTY	GGC'ICACTCI	· ACTGTAATCG	AGTTGTTTAG
2751	AGT1'AACAG	T GGTTCATTT	l, Valvellalu	GTGATAATCA	GGCTATTTCC
2801	AAACTAAAT	T ACCUTTACTY	G GATCATTCGT	TTTGCAGATT	TACTGATAGT

Figure 8a Continued

2851	AGCAGTATGG	TGAAGCTTTT	TGTTGGCTCT	GTACCAAGGA	CAGCTACAGA
2901	AGAAGAAGTG	AGTTCATCTT	TTTCTTATTT	TCCTAATTTC	TTCTCAATAT
2951	ATATGCACTT	TCTTGAGGCA	ATCTAAACCA	CGAAGCTCGT	AGACTCTGTT
3001	CATAAGCCGT	TCTTGTTTAT	CATTTTGGTT	TTCATAGGTC	CGTCCCTTTT
3051	CGAACAACAC	GGTAAATGTT	CTTGAGGTTG	CTTTTATCAA	GGACAAGAGA
3101	ACAGGACAGC	AGCAAGGTAT	GTTTATCTCC	ATTTTACTAG	GAACAGTCGT
3151	GATTTATGCT	TCTAAATTTT	TCAGGTCTCC	TGAAAAGGCT	GATGGGAACG
3201	AACCCCAGTC	TCATCATTGG	CCTCCATTAG	TTTTCAACAA	TTTTCGGGCT
3251	TTTGCTTATG	CTAGCGAGCG	TCTTATCTGT	GTTGCTTTGG	CACAGAAGAA
3301	GGCTGCCTGT	TTAGTTTACT	AAGAAAGGGT	TTTTGTATTG	ACCTTGGTAA
3351	AATAGTTTTT	GCGACTTGTG	TCCATCCTAG	AACCTTAGTT	GTGTTTGAAC
3401	AGTGTAGCAG	ACTTTATCAT	GTTTTAGAGT	TGGAGTTAAT	GTACATAAAA
3451	TTGAACAGAT	GTTTTACTGT	TGCCTTTTAG	TTGGCACTGG	TTTAAAGAAC
3501	GTTGTTTTCT	CCTTTCCTAT	TGAATTCAGT	ATCTCTTTAC	TCTTCCTTTC
3551	GATGAATGAA	AATGGTGTAT	ATGGTCTTGA	CTGGATGAAT	GTATTTTTAC
3601	TTGGTAGTCT	TACAACGTTC	ATAAAATGGT	TTGATTGATA	AACCACCCT
3651			TTCTTAGTGA		
3701	TGTTTCTTTA	GTTTCTTTAA	TATCAACTTT	GGATGTACCG	TCTCTATTGG
3751	TTGATGATGA	AATTATTTTT	TACCATTTTG	GATGCTTGAT	GCCTTAATGA
3801	ATGGATCTTT	CCTTTTTTTC	TTATTGTGGA	TGGCCGAGGA	ACTATAATGA
3851.			GAATGGCCTG		
3901			TGACTGTTTC		
3 95 1.	TGTATGGTAA	CGCTAACACT	GCTGATCTAC	ATTATGTGGA	AGAGATCATA
4001.	TGTCTAATGA	ባ'ለባ'ባ'ጥጥጥጥ	CTATGTACCT	TTC 2 CC 2 2 CC	
4051			GGTCTTATTC		
4101			TATATIGAGA		
4151			GCAAGTGTGA		
4201			GGGACTTTCC		
				CONMOTTAT	TGTACGGTGA

Figure 8a Continued

					•
4251	CATAAAAGCT	TTTACTCATC	CCGTTATCAC	GGTTTGACTG	TAGTAGATTT
4301	GACACATTCC	TTGGTTTGAA	ATGTTACATG	GTGCTAAGAT	ATGGAAGGCA
4351	ACGATTATTA	TAATTTCTTA	GAAATACGTC	TTAGCTTTCA	CTCGCTCTCA
4401	TIGCTICGAT	CAGCATCAGG	CATGAGCCGC	CTTAGTATGT	ATTTAATGAA
4451	GCAAGTGTCA	TTCTTCTCTA	TATGCAACTA	TTACCAATGA	ATTGACGTTG
4501	GGTTGTGGTT	ATGTCTCTCA	GAACTGTAAT	TCTTTTTGTG	AATGTCGTCA
4551	AATGTGTGGT	GTATGTTGTA	TGGTGTATGG	TGACGAAAAT	GTGATGTATG
4601	GCTCTAGTTT	TAATTATATC	ATTTGTTACT	TAGCAGTGAT	TGAGAACTCT
4651	TAACTTGTAA	TTTTATCTAA	TTTTTTTTG	CAGTGATTGG	ATTCTTTTTG
4701	CGTAATATAT	ATTTTATTTG	CAAATACCGA	CIGIGITICIT	TTTAAATAGT
4751	TTAAAGGCAT	ATGCTTTATT	TGAAGCACAT	TAGTTTATTA	TTCTCTCCAT
4801	CAAATCTACT	ACAGTAATGT	AAGTCGAGGC	TGTCAGGACA	TGTCTTATGA
4851	TTTTCGTACT	GAAACTTATG	TGCTTTCAAT	GTGGTCGTGG	CTTGTACATT
4901	TGTAAAGAAA	CTATTTACTA	GTATCTCTTG	ATGTTTGATG	GAGGGACAAG
4951	TGGAACCTTG	AACAGAAGCT	TATGTAGCAG	TCTTTAATGC	AGGCTGTTGT
5001	TTTGTAAAAT	ATGCAACTTC	TGAAGATGCG	GATAGGGCCA	TTAGAGCATT
5051	GCACAATCAG	ATCACTCTTC	CTGGGGTAAC	TACCATTGAT	GCCTTCTCTT
5101	ATCAAGGACA	GGAAAATACA	GGTTAACTCT	ATCTTTACAA	TTTGCTGATT
5151	CCCAGGGAAC	TGGCCTTGTT	CAAGTTCGAT	ATGCTGATGG	GGAGAGAGAA
5201	CGCATAGGTA	ATCAACTTTC	GCGCCATATT	ATCTGAATCT	GGCCTTCATT
5251	GTCTGGTATA	CATAGGGTGA	CCATACGCTG	TACAAATTCA	AATTACGAGA
5301	ATTGAGATAA	TGTGGGAAAC	TATATGAATC	TTAAGGAAGT	GGATCCTTTT
5351	TTCTGTGGTC	CTTGCCTCAC	TCTCAAGTAT	TAACTGATTG	AATTTACTTC
5401.	TTCTGAAGGT	GCGGTAGAGT	TTAAGCTTTT	TGTTGGTTCC	TTAAACAAGC
5451.	AAGCCACTGA	AAACGAGGTT	GAGGAGGTAT	GTCTCATATC	CTACTTTTTG
5501.	ATGGAAAGTA	ATTACTTATG	TCTGATTTAC	AAAGAGGGAA	GCGTTCTAAA
5551.	TTTAGATATT	' ACAGTATCCC	CTGTCGCCTT	AGCTGGTAAT	ТТАОТСАТТ
5601	ATATGACAA1	' TTAGTAGTCC	TCTTGGAAGG	GTCAGCGGCT	TGAAATTTTG
5651	TGTCAACTAT	TCGAGCGCTT	' ACACATTTTA	CTAACTGAGT	GATCTCTTCT

Figure 8a Continued

5701	TTCAAATGGA	CTGACTGAGT	GATCTCTTCT	TCCAAATGGA	TGTAACTTTT
5751	TGGCTGTCAG	CTTTCTTTTC	TCAGTAAATA	TGATGAAGAT	GTGAACGGCT
5801	ACTTTGTCCT	GTTGTTGCTT	TAACAGCTCT	TTTTGCAATT	TGGTCGCGTG
5851	GAGGATGTCT	ATCTCATGCG	TGATGAATAT	AGACAGAGTC	GTGGTATGTC
5901	TGGTAACTGC	CACTAGACTC	TATAACTCGT	TTGATGGTGT	TGATATGGTC
5951	AAACTGTTTT	TGACACTCAT	TTAGGATGCG	GGTTTGTTAA	ATATTCAAGC
6001	AAAGAGACGG	CCATGGCAGC	TATCGATGGT	CTCAATGGAA	CTTATACCAT
6051	GAGAGTAAGC	TGTGAAATCA	CATGAGTATC	TCACTTTCTC	TCATTATCCC
6101	CTCTAGACCT	GTTTTGTTTA	CTGGCCTCTT	TCCCTTCTCC	AGGGTTGCAA
6151	TCAGCCATTG	ATTGTTCGGT	TIGCTGATCC	AAAGAGGCCT	AAACCGGGCG
6201	AGTCAAGGTA	TTGCCTTGGA	GACTATATTT	TGAATTCATT	ATAATGCTAA
6251	TATCAAAAAA	ATTGTGTCTA	CTGTCATTGT	TTGTTCTATT	GAGTTACATT
6301	TATGAGAATC	TTTTGGGGCA	TGGGTGGAGG	AGAGCTGCGA	ACCTTATTCC
· 6351	TTCTCCAGTT	ATTACTTGAA	TGCGATGAAT	TTCTTTCTAT	ATATCCTTAA
6401	CTAGTTTCTG	TTTCCAGGGA	AGTGGCACAT	CCTGTTGGAC	TTTGTTCAGG
6451	GCCTCGTTTT	CAAGCTTCAG	GACCAAGGTG	ACTGGGGTGA	AAGGAGATCG
6501	TTGTTTTTGT	CATCAATTAA	TTATATATTT	TGACTAAACG	TGGTCTCCTT
6551	ATCTTCATTT	GTTAGGCCTA	CATCTAACCT	TGGTGACCTT	AGTGTGGATG
6601	TGAGCCACAC	AAATCCTTGG	CGTCCTATGA	ATTCACCAAA	CATGGGGCCA
6651	CCTGGTAACA	CTGGGATCCG	TGGTACCGGA	AGTGACTTGG	CTCCTAGGCC
6701	AGGTCAAGCC	ACATTACCTI	CAAATCAGGT	' AAGAACAGCT	TGATGATCAT
6751	GTATATTATC	TTATATGTAC	ACACCCAATC	ACACATAAAG	TAATCGGGCA
6801	TAAGGTTTT	CATGTATTG1	GTGAGTAGGA	CGAACATAAT	TTATATGCTG
6851	CACATATATY	G AGCGTATGGA	CTCTTGAAAA	GAAGCATGAA	GTTCCGACCT
6901	TCCAGCT"I"I"	r caratgatg	C AGCAAACTTC	ATGTGTTTTG	CATTGAAATG
6951	AT'AT'GGCT"L"	T GATTTGCAT	r tigtcagtii	r ctaaggagti	' TTTTTCTTCA
7001	ATAATTICT	A CTTCTGATG	T TAGCTTTAT	r igiggeatic	TATAATGTTA
7,051	GGGAGGTYCC	A TYGGGYGT	T ATGTTGTTC	C TGCCATTAAC	CCTCTACCAG
7101	TCTCATCCT	C TGCCACATC	G CAACAGGTA	C TTCAGCTGA	TTTTTCCAAT

Figure 8a Continued

7151			GTGTTGATCA		
7201	TTCCATAGCA	AAACCGGGGA	GCTGGCCAGC	ATATGTCACC	ATTACAAAAA
7251	CCTCTTCACA	GTCCACAGGA	TGTGCCCCTT	CGACCACAAA	CTAATTTCCC
7301	TGGGGCCCAA	GCATCCTTGC	AGAATCCTTA	TGGTTATAGC	AGCCAGTTGC
7351	CTACTTCTCA	GCTGCGGCCA	CAACAAAACG	TCACTCCTGC	AACAGCTCCT
7401	CAAGCTCCTT	TGAACATCAA	CCTACGGCCA	ACACCTGTAT	CTTCTGCAAC
7451	TGATCAATTG	CGCCCTCGTG	CTCAGCAGCC	ACCGCCACAA	AAGATGCAAC
7501	ATCCTCCTTC	TGAGCTAGTT	CAGCTCTTGT	CACAACAGAC	TCAGACTCTA
7551	CAAGCAACCT	TCCAATCATC	TCAGCAAGCA	TTTTCTCAAC	TGCAGGAGCA
7601	GGTGCAGTCC	ATGCAGCAAC	CAAACCAAAA	ATTACCAGGC	TCACAGACTG
7651	GCCATGGTAA	ACAGCAGGTA	CAAACATAGT	TCCCTGTTGC	ATCTGTCCAG
7701	TCCAGTTCCT	CAGCTGTTTT	TGTTGTTTTA	ACTTACAATT	ATTTCCTGAT
7751	GTCTAAGTAT	TCAATCCTTC	ATATATTTA	GTAGTCCCTC	TTTTTTATTA
7801	TGTTTTTCTC	GGTTGCTTCT	CTATCAGTGG	GCTGGATCTG	CAATTCCGAC
7851	AGTTGTTAGC	ACCACTGCTT	CTACACCAGT	TAGCTATATG	CAAACAGCTG
7901	CACCTGCAGC	AACTCAGAGT	GTTGTTTCTC	GCAAATGTAA	CTGGACCGAG
7951	CATACCTCGC	CTGATGGATT	TAAGTATTAT	TACAACGGTC	AAACCGGTGA
8001	AAGCAAGGTG	AGAAACGTGG	TTCCTCTTTA	GTTATGTTCT	CTTGTGAGTT
8051	TCAGGAGGAT	TCCTTGTATT	TGCTGTGCTA	TTTATTATCC	TTGAACATGT
8101	ATATGTATAG	ATTTCATATT	TGAAGTTCAT	CAATACGTGT	CGTAATATAA
8151	TTGACTTTTC	CAGTGGGAAA	AACCTGAGGA	AATGGTATTG	TTCGAACGTC
8201	AGCAACAGC	GCCAACTATA	AATCAGCCCC	AGACCCAATC	ACAGCAGGCT
8251	CTTTATTCCC	AGCCGATGC	GCAACAACCA	CAACAGGTTC	ACCAGCAATA
8301	TCAGGGCCAA	NUNTET ACAGO	C AGCCTATTTA	TTCTTCAGTG	GTTGGTTCTG
8351	TTTTCTTGC	r gchracarco	ATATAGTTT	CTCACATGGT	CTCTXACTTG
8401.	AATATGTAT"	T CHITTCCAT	r rggagrrgca	GTATCCAACT	CCAGGGGTCA
8451	GCCAGAATG	C TCAGGTGTA	r attragetax	A ATTATTTGCT	TATCTTTCAT
8501			G TEACCAATCT		
8551			A TGGTTTTAC		

Figure 8a Continued

8601	ACAAACATCT	AAATTTGATC	ATTTCAAAAT	TTGATCATCG	AGTTCCCTT
			ATTGGGAGTT		
			TGGGACTAAT		
			TTGATGAGTG		
			CTCTAGTTGA		
			CACCGGTCAA		
			ATTAACTTCA		
			AAATCGATAT		
			CTAATGTGTT		

Figure 8b

MGYGFDGGFP	PMSRDGGFWP	NVPVNFPPSE	SPDAGGYSGG	RGFQSTGPAY
SVRLTSPPIQ	QPLSGQKRGR	PLSEQSSFTG	TGLLIVAVMV	KLFVGSVPRT
ATEEEVRPFS	NNTVNVLEVA	FIKDKRTGQQ	QGCCFVKYAT	SEDADRAIRA
LḤNQITLPGG	TGLVQVRYAD	GERERIGAVE	FKLFVGSLNK	QATENEVEEL
FLQFGRVEDV	YLMRDEYRQS	RGCGFVKYSS	KETAMAAIDG	LNGTYTMRGC
NQPLIVRFAD	PKRPKPGESK	EVAHPVGLCS	GPRFQASGPK	PTSNLGDLSV
DVSHTNPWRP	MNSPNMGPPG	NTGIRGTGSD	LAPRPGQATL	PSNQGGPLGG
YVVPAINPLP	VSSSATSQQQ	NRGAGQHMSP	LQKPLHSPQD	VPLRPQTNFP
GAQASLQNPY	GYSSQLPTSQ	LRPQQNVTPA	TAPQAPLNIN	LRPTPVSSAT
DQLRPRAQQP	PPQKMQHPPS	ELVQLLSQQT	QTLQATFQSS	QQAFSQLQEQ
VQSMQQPNQK	LPGSQTGHGK	QQWAGSAIPT	VVSTTASTPV	SYMQTAAPAA
TQSVVSRKCN	WTEHTSPDGF	KYYYNGQTGE	SKWEKPEEMV	LFERQQQQPT
INQPQTQSQQ	ALYSQPMQQQ	PQQVHQQYQG	QYVQQPIYSS	VYPTPGVSQN
AQYPPPLGVS	QNSQFPMSGT	GQNAQ		
	SVRLTSPPIQ ATEEEVRPFS LḤNQITLPGG FLQFGRVEDV NQPLIVRFAD DVSHTNPWRP YVVPAINPLP GAQASLQNPY DQLRPRAQQP VQSMQQPNQK TQSVVSRKCN INQPQTQSQQ	SVRLTSPPIQ QPLSGQKRGR ATEEEVRPFS NNTVNVLEVA LḤNQITLPGG TGLVQVRYAD FLQFGRVEDV YLMRDEYRQS NQPLIVRFAD PKRPKPGESK DVSHTNPWRP MNSPNMGPPG YVVPAINPLP VSSSATSQQQ GAQASLQNPY GYSSQLPTSQ DQLRPRAQQP PPQKMQHPPS VQSMQQPNQK LPGSQTGHGK TQSVVSRKCN WTEHTSPDGF INQPQTQSQQ ALYSQPMQQQ	SVRLTSPPIQ QPLSGQKRGR PLSEQSSFTG ATEEEVRPFS NNTVNVLEVA FIKDKRTGQQ LHNQITLPGG TGLVQVRYAD GERERIGAVE FLQFGRVEDV YLMRDEYRQS RGCGFVKYSS NQPLIVRFAD PKRPKPGESK EVAHPVGLCS DVSHTNPWRP MNSPNMGPPG NTGIRGTGSD YVVPAINPLP VSSSATSQQQ NRGAGQHMSP GAQASLQNPY GYSSQLPTSQ LRPQQNVTPA DQLRPRAQQP PPQKMQHPPS ELVQLLSQQT VQSMQQPNQK LPGSQTGHGK QQWAGSAIPT TQSVVSRKCN WTEHTSPDGF KYYYNGQTGE	MGYGFDGGFP PMSRDGGFWP NVPVNFPPSE SPDAGGYSGG SVRLTSPPIQ QPLSGQKRGR PLSEQSSFTG TGLLIVAVMV ATEEEVRPFS NNTVNVLEVA FIKDKRTGQQ QGCCFVKYAT LHNQITLPGG TGLVQVRYAD GERERIGAVE FKLFVGSLNK FLQFGRVEDV YLMRDEYRQS RGCGFVKYSS KETAMAAIDG NQPLIVRFAD PKRPKPGESK EVAHPVGLCS GPRFQASGPK DVSHTNPWRP MNSPNMGPPG NTGIRGTGSD LAPRPGQATL YVVPAINPLP VSSSATSQQQ NRGAGQHMSP LQKPLHSPQD GAQASLQNPY GYSSQLPTSQ LRPQQNVTPA TAPQAPLNIN DQLRPRAQQP PPQKMQHPPS ELVQLLSQQT QTLQATFQSS VQSMQQPNQK LPGSQTGHGK QQWAGSAIPT VVSTTASTPV TQSVVSRKCN WTEHTSPDGF KYYYNGQTGE SKWEKPEEMV INQPQTQSQQ ALYSQPMQQQ PQQVHQQYQG QYVQQPIYSS AQYPPPLGVS QNSQFPMSGT GQNAQ

Figure 9

	MGFAYDDGFRPMGPNGGVGGEGTRSIVGARYNYPAKYPPSESPDRRRFIG ::: : . ::: ### MGYGFDGGFPPMSRDGGF	61 39
62	KAMESDYSVRPTTPPVQQPLSGQKRGYPISDHGSFTGTDVSDRSST	
	: . : ::: :: GRGFQSTGPAYSVRLTSPPIQQPLSGQKRGRPLSEQSSFTGTGLLIVAVM	
	VKLFVGSVPRTATEEEIRPYFEQHGNVLEVALIKDKRTGQQQGCCFVKYA	
	TSKDADRAIRALHNQITLPGGTGPVQVRYADGERERIGTLEFKLFVGSLN	-
140	TSEDADRAIRALHNQITLPGGTGLVQVRYADGERERIGAVEFKLFVGSLN	189
208		257
190	KQATENEVEELFLQFGRVEDVYLMRDEYRQSRGCGFVKYSSKETAMAAID	239
258	GLNGTYTMRGCNOPLIVRFAEPKRPKPGESRDMAPPVGLGSGPRFQASGP	307
240		289
308	RPTSNFGDSSGDVSHTNPWRPATSRNVGPPSNTGIRGAGSDFSPKPGQAT	357
290	: : . . . : : KPTSNLGDLSVDVSHTNPWRPMNSPNMGPPGNTGIRGTGSDLAPRPGQAT	339
358		407
340	LPSNQGGPLGGYVVPAINPLPVSSSATSQQQNRGAGQHMSPLQKPLH	386
408	SPOGLPLPLRPETNFPGGOAPLONPYAYSSOLPTSOLPBOONTSDATES	457
387	- 111: - :	434
458	TPLNINLRPTTVSSATVOFPPRSOOOPLOKMOHPPSFL DOLLSOOTSSLO	507
435		
508		484
485	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	TTGSTPVSYVOTAAPAVSOSVGSVKCTWTEHTSPDGFKYYYNGLTGESKW	
534		
	THE THEOTICES IN THE THEOTICES IN	
608	111111::111:11	651
584	•	
	2 QYQQQQQQPFYSSLYPTPGASHNTQY.PSLPVGQNSQFPMSGIGQNAQ (
62	7 QYQGQYVQQPIYSSVYPTPGVSQNAQYPPPLGVSQNSQFPMSGTGQNAQ	575

The state of the s

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/29, 15/82, C07K 14/415, A01H 5/00

A3

(11) International Publication Number:

WO 96/38560

(43) International Publication Date:

5 December 1996 (05.12.96)

(21) International Application Number:

PCT/GB96/01332

(22) International Filing Date:

3 June 1996 (03.06.96)

(30) Priority Data:

9511196.9

2 June 1995 (02.06.95)

GR

(71) Applicant (for all designated States except US): JOHN INNES CENTRE INNOVATIONS LIMITED [GB/GB]; Norwich Research Park, Colney Lane, Norwich NR4 7UH (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DEAN, Caroline [GB/GB]; John Innes Centre, Molecular Genetics Dept., Norwich Research Park, Colney, Norwich NR4 7UH (GB). MACKNIGHT, Richard, Colin [NZ/GB]; John Innes Centre, Molecular Genetics Dept., Norwich Research Park, Colney, Norwich NR4 7UH (GB). BANCROFT, Ian [GB/GB]; John Innes Centre, Molecular Genetics Dept., Norwich Research Park, Colney, Norwich NR4 7UH (GB). LISTER, Clare, Katharine [GB/GB]; John Innes Centre, Molecular Genetics Dept., Norwich Research Park, Colney, Norwich NR4 7UH (GB).
- (74) Agents: WALTON, Seán, M. et al.; Mewburn Ellis, York House, 23 Kingsway, London WC2B 6HP (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 9 January 1997 (09.01.97)

(54) Title: GENETIC CONTROL OF FLOWERING

(57) Abstract

FCA genes of Arabidopsis thaliana and Brassica napus are provided, enabling flowering characteristics, particularly timing of flowering, to be influenced in transgenic plants. Timing of flowering may be delayed or hastened using sense and antisense expression, also various mutants and alleles, including alternatively spliced forms.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU -	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DΕ	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Мопасо	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of Americ
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

RNSCOCIO- -WO 9638560A3 1 >

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/29 C12N15/82

C07K14/415 A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ll} \text{Minimum documentation searched} & \text{(classification system followed by classification symbols)} \\ IPC 6 & C12N & C07K & A01H \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ANNUAL MEETING OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY, BIRMINGHAM, ALABAMA, USA, APRIL 7-12, 1991. J EXP BOT 42 (238 SUPPL.). 1991. 48., XP002018457 BANCROFT I ET AL: "THE DEVELOPMENT OF SYSTEMS FOR THE ISOLATION OF GENES FROM ARABIDOPSIS-THALIANA BY CHROMOSOME WALKING IN YAC LIBRARIES TOWARDS THE ISOLATION OF THE FLORAL INDUCTION GENE FCA." see abstract P8.62	1-14,28, 29, 31-37,39

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filing date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
21 November 1996	2 9. 11. 96
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Maddox, A

Form PCT/ISA/210 (second sheet) (July 1992)

	PO	PUT/GB 96/01332	
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
0,X	JOURNAL OF EXPERIMENTAL BOTANY, vol. 45, no. 278, September 1994, pages 1279-1288, XP000609516 CHANDLER, J., ET AL.: "Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh." see page 1288, right-hand column & THIRD INTERNATIONAL CONGRESS OF PLANT MOLECULAR BIOLOGY: MOLECULAR BIOLOGY OF PLANT GROWTH AND DEVELOPMENT. TUCSON, ARIZONA. ABSTRACT NO. 508, 1991, WESTPHAL, L., ET AL.: "Cloning FCA, a late-flowering locus of Arabidopsis thaliana (L.) Heynh."	1-14,28, 29, 31-37,39	
X	EMBL SEQUENCE DATABASE, REL.42, 31-JAN-19995, ACCESSION NO. T42029, XP002018288 NEWMAN, T., ET AL.: "5292 Arabidopsis thaliana cDNA clone 110C13T7" see sequence	1-4, 28-30	
P,X	SEMIN. CELL DEV. BIOL. (1996), 7(3), 435-440, XP000609514 WILSON, ALLISON ET AL: "Analysis of the molecular basis of vernalization in Arabidopsis thaliana" see page 436, right-hand column - page 437, left-hand column	1-4, 8-10,29, 30	
0,P, X	ANNUAL MEETING OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY: PLANT BIOLOGY ABSTRACTS, LANCASTER, ENGLAND, UK, MARCH 24-29, 1996. JOURNAL OF EXPERIMENTAL BOTANY 47 (SUPPL.). 1996. 7., XP000609515 MACKNIGHT R ET AL: "Characterisation of the Arabidopsis FCA gene: Required for the early transition to flowering." see abstract CP2.3	1-4, 8-10,29, 30	
A	MOLECULAR AND GENERAL GENETICS, vol. 229, 1991, pages 57-66, XP002018289 KOORNNEEF, M., ET AL.: "A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana" cited in the application see the whole document	1-40	

	PC1/GB 96/01332	
(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT ategory Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.		
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
THE PLANT CELL, vol. 6, no. 1, January 1994, pages 75-83, XP002018290 LEE, I., ET AL.: "Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopis" cited in the application see the whole document	1-40	
CELL, vol. 80, 24 March 1995, pages 847-857, XP002004926 PUTTERILL J ET AL: "THE CONSTANS GENE OF ARABIDOPSIS PROMOTES FLOWERING AND ENCODES A PROTEIN SHOWING SIMILARITIES TO ZINC FINGER TRANSCRIPTION FACTORS" see the whole document	1-40	
DATABASE WPI Section Ch, Week 9243 Derwent Publications Ltd., London, GB; Class C06, AN 92-354683 XP002018484 & JP,A,04 258 292 (JAPAN TOBACCO INC) , 14 September 1992 see abstract	1-40	
PLANT MOLECULAR BIOLOGY, vol. 25, 1994, pages 335-337, XP002019105 AN, G., ET AL.: "Regulatory genes controlling flowering time or floral organ development" see page 335, left-hand column	25,26	
MOLECULAR AND GENERAL GENETICS, vol. 226, 1991, pages 484-490, XP002018458 GRILL, E., ET AL.: "Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking"		
MOLECULAR AND GENERAL GENETICS, vol. 239, 1993, pages 145-157, XP002018459 PUTTERILL, J., ET AL.: "Chromosome walking with YAC clones in Arabidopsis: isolation of 1700 kb of contiguous DNA on chromosome 5, including a 300 kb region containing the flowering-time gene CO" see the whole document		
	THE PLANT CELL, vol. 6, no. 1, January 1994, pages 75-83, XP002018290 LEE, I., ET AL.: "Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopis" cited in the application see the whole document CELL, vol. 80, 24 March 1995, pages 847-857, XP002004926 PUTTERILL J ET AL.: "THE CONSTANS GENE OF ARABIDOPSIS PROMOTES FLOWERING AND ENCODES A PROTEIN SHOWING SIMILARITIES TO ZINC FINGER TRANSCRIPTION FACTORS" see the whole document DATABASE WPI Section Ch, Week 9243 Derwent Publications Ltd., London, GB; Class COG, AN 92-354683 XP002018484 & JP,A,04 258 292 (JAPAN TOBACCO INC) , 14 September 1992 see abstract PLANT MOLECULAR BIOLOGY, vol. 25, 1994, pages 335-337, XP002019105 AN, G., ET AL.: "Regulatory genes controlling flowering time or floral organ development" see page 335, left-hand column MOLECULAR AND GENERAL GENETICS, vol. 226, 1991, pages 484-490, XP002018458 GRILL, E., ET AL.: "Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking" MOLECULAR AND GENERAL GENETICS, vol. 239, 1993, pages 145-157, XP002018459 PUTTERILL, J., ET AL.: "Chromosome walking with YAC clones in Arabidopsis: isolation of 1700 kb of contiguous DNA on chromosome 5, including a 300 kb region	

THIS PAGE BLANK (USPTO)