Towards Multidimensional Atmospheric Retrievals of Exoplanet Transmission Spectra

Ryan MacDonald

+ Nikole Lewis, Jayesh Goyal

Exo-Webbinar
22 July 2020

THE BIG PICTURE: EXOPLANETS VS. THE SOLAR SYSTEM

- 1. Which planets are most common?
- 2. How do planetary systems form?
- 3. Is our Solar System common or rare?
- 4. How Earth-like are rocky exoplanets?
- 5. Is there life in the Universe?

Terrestrial

INFERRING PROPERTIES OF EXOPLANET ATMOSPHERES

3D GENERAL CIRCULATION MODEL VS. RETRIEVAL MODEL

GCM temperature structure (Ultra-hot Jupiter HAT-P-7b)

Strong variation (temperature, chemistry, clouds, etc.) with **longitude**, **latitude**, **and altitude**

Standard retrieval temperature structure

Uniform properties in longitude and latitude
Vertical variation sometimes included
(for computational speed)

Ryan MacDonald — Exo-Webbinar — July 2020

WHEN DO 1D RETRIEVALS GO WRONG?

INHOMOGENEOUS ('PATCHY') CLOUDS

Observer perspective

Transmission spectra of planets with 2D patchy clouds can mimic a 1D clear high mean molecular weight atmosphere

Transmission spectrum

Mainly an issue for near-infrared wavelengths (e.g. HST WFC3); visible data resolves degeneracy

ASYMMETRIC TERMINATOR BIASES

Ryan MacDonald – Exo-Webbinar – July 2020

MacDonald+(2020)

DAY-NIGHT ATMOSPHERIC PROPERTY GRADIENTS

Retrieved temperatures are biased towards the dayside temperature (greater extent, stronger features)

Temperature profiles are too hot

Retrieved abundances also biased towards the dayside composition

C/O can be biased by orders of magnitude

Ryan MacDonald – Exo-Webbinar – July 2020

THE SOLUTION: MULTIDIMENSIONAL RETRIEVALS

1+1D RETRIEVAL: PATCHY CLOUD APPLICATION

Retrieved Hubble spectrum of HD 209458b

Linear superposition of two 1D transmission spectra models (clear and cloudy) allows **successful patchy cloud retrieval**:

$$\Delta_{\lambda} = \bar{\phi} \, \delta_{\lambda, \, cloudy} + (1 - \bar{\phi}) \, \delta_{\lambda, \, clear}$$

Retrieved cloud properties

Patchy clouds detected (> 4.5σ) Cloud fraction constrained ($\bar{\phi} \approx 55\%$)

2D Patchy clouds can be detected with existing telescopes (e.g. Hubble)

2D RETRIEVAL: DAY-NIGHT GRADIENTS

2D geometry within retrieval model

Retrieved properties

Accounting for **changing geometry** along **slant path** allows retrieval of **day-night gradients**

Dayside, nightside temperatures + terminator opening angle can be constrained with JWST

Some outstanding questions:

- 1. Free chemical gradients vs. equilibrium chemistry
- 2. Free cloud parametrisation vs. equilibrium clouds
- 3. Non-isothermal vertical temperature structures
- 4. Non-linear day-night transition region
- . Axial asymmetry (morning / evening, poles etc.)

Ryan MacDonald – Exo-Webbinar – July 2020

3D RETRIEVAL OF EXOPLANET TRANSMISSION SPECTRA

We are developing a general **3D atmospheric retrieval technique**

Retrieved properties

3D atmospheric properties can be extracted from transmission spectra **without biases**

KEY TAKEAWAYS

- 1. 1D atmospheric retrievals suffer many biases
- 2. Some existing transmission spectra suggest 2D effects
- 3. 3D properties of exoplanet atmospheres can be retrieved from transmission spectra without biases

The **3D** nature of exoplanet atmospheres is an opportunity for retrievals

