In [141]:

```
import pandas as pd
import numpy as np
df = pd.read_csv('IPL_Data.csv')
# Displaying First 5 Rows
df.head()
```

Out[141]:

	Name	Team	Туре	ValueinCR	Age	National Side	Batting Style	Bowling	MatchPlayed	N
0	Mayank Agarwal	PBKS	Batsman	12.00	31 Years, 0 Months, 28 Days	India	Right Handed	Off break	100.0	_
1	Liam Livingstone	PBKS	All- Rounder	11.50	28 Years, 7 Months, 11 Days	England	Right Handed	Leg break	9.0	
2	Kagiso Rabada	PBKS	Bowler	9.25	26 Years, 9 Months, 22 Days	South Africa	Left Handed	Right- arm fast	50.0	
3	Shahrukh Khan	PBKS	All- Rounder	9.00	26 Years, 9 Months, 20 Days	India	Right Handed	Off break	11.0	
4	Shikhar Dhawan	PBKS	Batsman	8.25	36 Years, 3 Months, 10 Days	India	Left Handed	Off break	192.0	
5 r	ows × 23 co	lumns								

In [142]:

```
# Displaying Total Numbers of Rows and Columns
df.shape
```

Out[142]:

(237, 23)

In [143]:

```
# Displaying Summary of data
df.describe()
```

Out[143]:

	ValueinCR	MatchPlayed	NotOuts	RunsScored	100s	50s	4s
count	237.000000	162.000000	162.000000	153.000000	162.000000	162.000000	162.000000
mean	3.695781	50.043210	8.179012	792.287582	0.185185	4.148148	65.987654
std	4.238092	53.592359	11.182786	1334.058241	0.652013	8.865610	121.038723
min	0.200000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.400000	10.000000	1.000000	25.000000	0.000000	0.000000	1.000000
50%	1.900000	29.000000	4.000000	148.000000	0.000000	0.000000	8.500000
75%	6.500000	75.250000	11.000000	954.000000	0.000000	3.750000	79.000000
max	17.000000	220.000000	73.000000	6283.000000	5.000000	50.000000	654.000000
1							•

In [144]:

Displaying Column and their Data Type
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 237 entries, 0 to 236
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Name	237 non-null	object
1	Team	237 non-null	object
2	Туре	237 non-null	object
3	ValueinCR	237 non-null	float64
4	Age	231 non-null	object
5	National Side	231 non-null	object
6	Batting Style	227 non-null	object
7	Bowling	206 non-null	object
8	MatchPlayed	162 non-null	float64
9	NotOuts	162 non-null	float64
10	RunsScored	153 non-null	float64
11	100s	162 non-null	float64
12	50s	162 non-null	float64
13	4s	162 non-null	float64
14	6s	162 non-null	float64
15	BattingS/R	162 non-null	float64
16	CatchesTaken	145 non-null	float64
17	StumpingsMade	145 non-null	float64
18	0vers	122 non-null	float64
19	Maidens	122 non-null	float64
20	Wickets	122 non-null	float64
21	EconomyRate	122 non-null	float64
22	S/R	105 non-null	float64
44	£1+C4/1C\	ala = a = + (7)	

dtypes: float64(16), object(7)

memory usage: 42.7+ KB

In [145]:

```
# Checking for missing values
df.isnull().sum()
```

Out[145]:

Name	0
Team	0
Туре	0
ValueinCR	0
Age	6
National Side	6
Batting Style	10
Bowling	31
MatchPlayed	75
NotOuts	75
RunsScored	84
100s	75
50s	75
4s	75
6s	75
BattingS/R	75
CatchesTaken	92
StumpingsMade	92
0vers	115
Maidens	115
Wickets	115
EconomyRate	115
S/R	132
dtype: int64	

In [146]:

```
# Filling the Undefined Data
df["Age"].fillna("Unknown", inplace = True)
df["Batting Style"].fillna("None", inplace = True)
df["Bowling"].fillna("None", inplace = True)
df['MatchPlayed']= df['MatchPlayed'].replace(np.nan, 0)
df['NotOuts'] = df['NotOuts'].replace(np.nan, 0)
df['RunsScored']= df['RunsScored'].replace(np.nan, 0)
df['100s'] = df['100s'].replace(np.nan, 0)
df['50s']= df['50s'].replace(np.nan, 0)
df['4s']= df['4s'].replace(np.nan, 0)
df['6s']= df['6s'].replace(np.nan, 0)
df['BattingS/R'] = df['BattingS/R'].replace(np.nan, 0)
df['CatchesTaken']= df['CatchesTaken'].replace(np.nan, 0)
df['StumpingsMade'] = df['StumpingsMade'].replace(np.nan, 0)
df['Overs'] = df['Overs'].replace(np.nan, 0)
df['Maidens'] = df['Maidens'].replace(np.nan, 0)
df['Wickets'] = df['Wickets'].replace(np.nan, 0)
df['EconomyRate'] = df['EconomyRate'].replace(np.nan, 0)
df['S/R'] = df['S/R'].replace(np.nan, 0)
#Dropping the rows
df = df.dropna(axis = 0, how ='any')
# After removing missing values
df.isnull().sum()
```

Out[146]:

Name 0 0 Team 0 Type 0 ValueinCR 0 Age National Side 0 Batting Style 0 Bowling 0 MatchPlayed 0 NotOuts RunsScored 0 100s 0 0 50s 0 4s 0 6s BattingS/R 0 CatchesTaken StumpingsMade 0 0vers 0 Maidens 0 Wickets EconomyRate 0 S/R dtype: int64

In [147]:

```
import seaborn as sns
import matplotlib.pyplot as plt

# Displaying Graph for Player Values in CR
sns.histplot(x='ValueinCR', data=df, )
plt.show()
```


In [148]:

```
# Grouping the data on basis of team and calculating sum of each rows values for each team
gk = df.groupby('Team').sum()
gk
```

Out[148]:

	ValueinCR	MatchPlayed	NotOuts	RunsScored	100s	50s	4s	6s	BattingS/R	(
Team										
CSK	86.55	1134.0	246.0	19463.0	2.0	88.0	1573.0	793.0	1808.97	
DC	86.40	814.0	114.0	13003.0	5.0	83.0	1224.0	475.0	1856.52	
GT	80.85	762.0	158.0	9033.0	2.0	39.0	735.0	361.0	1725.39	
KKR	80.95	858.0	112.0	12520.0	2.0	79.0	1144.0	524.0	2004.12	
LSG	87.20	798.0	124.0	13443.0	4.0	75.0	1176.0	504.0	1555.41	
MI	89.90	887.0	158.0	13147.0	1.0	78.0	1116.0	604.0	1509.10	
PBKS	84.55	599.0	86.0	9746.0	4.0	62.0	1014.0	285.0	1415.51	
RCB	88.20	907.0	137.0	16187.0	5.0	95.0	1425.0	575.0	1351.34	
RR	88.05	830.0	96.0	9246.0	5.0	46.0	832.0	359.0	1598.91	
SRH	89.90	518.0	94.0	5432.0	0.0	27.0	451.0	203.0	1770.62	
4									•	•

In [149]:

In [150]:

```
# Counting Total no of Players of each team
gk2=df.groupby('Team').count()
gk2['Name']
```

Out[150]:

Team CSK 24 DC 24 GT 22 24 KKR LSG 20 ΜI 25 25 **PBKS** RCB 21 RR 23 23 SRH Name: Name, dtype: int64

In [151]:

In [152]:

```
# Counting Total no of Players of each country
gk3=df.groupby('National Side').count()
gk3['Name']
```

Out[152]:

National Side Afghanistan 4 Australia 13 Bangladesh 1 England 13 India 157 New Zealand 11 Singapore 1 South Africa 10 Sri Lanka 5 West Indies 16 Name: Name, dtype: int64

In [153]:

```
# Extracting dependent and independent variables from the given dataset
x= df.iloc[:, 9:].values
y= df.iloc[:, 8].values
```

In [154]:

```
# Splitting the dataset into training and test dataset
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)
```

In [155]:

```
# Fitting Linear Regression model to the training dataset
from sklearn.linear_model import LinearRegression
regressor= LinearRegression()
regressor.fit(x_train, y_train)
```

Out[155]:

LinearRegression()

In [156]:

```
#Prediction of Test and Training set result
y_pred= regressor.predict(x_test)
x_pred= regressor.predict(x_train)

df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df
```

Out[156]:

	Actual	Predicted
0	3.0	11.765495
1	77.0	62.054032
2	150.0	141.481302
3	0.0	0.435475
4	0.0	0.435475
5	0.0	0.435475
6	26.0	32.650041
7	53.0	39.543418
8	0.0	0.435475
9	0.0	0.435475
10	0.0	0.435475
11	24.0	25.260178
12	0.0	0.435475
13	0.0	0.435475
14	21.0	29.561681
15	23.0	24.971083
16	207.0	221.801123
17	19.0	16.447275
18	0.0	0.435475
19	28.0	34.407511
20	105.0	86.428629
21	0.0	0.435475
22	24.0	28.315753
23	35.0	46.770899
24	0.0	0.435475
25	0.0	0.435475
26	6.0	13.005354
27	100.0	126.282952
28	11.0	10.410902
29	58.0	58.243182
30	3.0	8.412846

,	Actual	Predicted
31	24.0	26.209415
32	11.0	16.764163
33	23.0	22.188844
34	76.0	85.522512
35	4.0	10.116032
36	5.0	10.521139
37	1.0	3.534541
38	0.0	0.435475
39	167.0	137.430840
40	42.0	35.063693
41	72.0	47.480387
42	61.0	57.958699
43	6.0	11.018318
44	56.0	57.924908
45	115.0	99.466799
46	0.0	0.435475
47	2.0	3.174618
48	3.0	4.414933
49	22.0	24.036781
50	0.0	0.435475
51	0.0	0.435475
52	121.0	94.257712
53	151.0	189.481753
54	77.0	58.256292
55	151.0	147.123079
56	99.0	95.348333
57	0.0	0.435475

In [157]:

```
from sklearn import metrics
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

Mean Absolute Error: 6.631552426261754 Mean Squared Error: 117.38676058344303 Root Mean Squared Error: 10.834517090458764

In []:			