

Gamma – Architecture

Presentation Overview

Hardware / Physical View

- Components
- Scope
- Interfaces
- Building Blocks

HW Integration Scenarios

- Legacy Train (with and without Legacy CCS Peripherals)
- NG-TCN (Separate Networks / Common Network)

Network Topology / Integration

- Legacy Train
- NG-TCN (Separate Networks / Common Network)
- Connecting Multiple Consists

Functional / Logical View

- SW Components
- Scope
- Interfaces
- Building Blocks

Computing Platform

- High-Level Architecture
- Approaches

Functional Vehicle Adapter

Modular Safety

Security

Supporting Slides

Hardware Components

Hardware Components – Scope

Hardware Components – Interfaces

Hardware Components – Building Blocks (tentative)

Scenario 1a: Legacy Train – OCORA Compliant CCS Peripherals

Scenario 1b: Legacy Train – Legacy CCS Peripherals with Adapters 🔷 🔤

Scenario 1c: Legacy Train – Legacy CCS Peripherals w/o Adapters 😂 🚾

Scenario 2: NG-TCN Train (Separate Network)

* MCG CCS / VCS / PIS may be combined

Environment (e.g. Signals)

Train HW

Driver

Nat. Systems

EURO Balise

Technician

Evaluator

Loc. Tag

EURO Loop

Trackside

Scenario 3: NG-TCN Train (Common Network)

Network Topology Scenarios

Scenario 2: NG-TCN Train – Two Separate Networks

Scenario 2a: NG-TCN Train – Two Separate Networks

Scenario 2b: NG-TCN Train – Two Separate Networks

Scenario 3: NG-TCN Train – Common Network (Virtual LANs)

Remarks:

- -Security experts need to assess, if this is a feasible scenario.
- -RAM experts need to assess, what components need a redundant network connection.

Remarks:

- The network topology depicted in the consists correspond to the «Common Network (Virtual LANs)» scenario. However, others network topology scenarios are also possible.
- Refer also to remarks on previous slides.

Functional / Logical View

Functional SW Components

Functional SW Components – Scope

Functional SW Components – Interfaces

Functional SW Components – Building Blocks (tentative)

Computing Platform

Computing Platform – Approaches

Platform options where applications are programmed against PI API. Approaches depicted in the above diagram are non-exhaustive. The industry may propose different state-of-the-art solutions

Mapping OCORA with TOBA Architecture

Cab Radio

Functional Vehicle Adapter (FVA)

Functional Vehicle Adapter (FVA) — Functional IFs

OCORA – Functional Vehicle Adapter

Details in Document: OCORA-40-005-Functional Vehicle Adapter – Introduction & Overview

OCORA – Functional Vehicle Adapter: Extensions

Details in Document:

OCORA-40-006-CCS-TCMS Interface - ETCS Functionality SS119 OCORA-40-007-CCS-TCMS Interface - ATO Functionality SS139

Modular Safety

OCORA – Modular Safety

- Modular Safety defines the hierarchy between safety cases from building blocks to specific application(s).
- One of the main goal is to reduce the certification efforts (initial- and re-certification) at all levels without degrading the safety level of the analyses.
- Modular Safety shall also defines the safety elements to allow the homologation of stand-alone building blocks:
 - Hazardous events based on TSI CCS SUBSET-088
 - TFFR (Tolerable Functional Failure Rate) based on TSI CCS SUBSET-088
 - Safety requirements based on OCORA Gamma release
 - Harmonised and generic set of SRAC

Security

OCORA – Security Asset Classification

Name of data or data group	Description of data or data group	SIL	Confidentiality	Integrity	Availability	Privacy
CCU data	Computing data	SIL4	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
Location data	Vehicle location data	SIL4	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
BTM data	Balise data, location data	SIL4	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
LTM data	EURO Loop data	SIL4	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
NTC data	National Train Control data	SIL4	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
JRU/TRU/DRU data	Speed, position, communication, audio, video signals	noSIL	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P1 - Personal
I/O Module (EB/TCO) data	Command and monitor data	SIL4	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
DMI data	Supervised Distance Info (active braking curve), speed info (braking curve, speed monitoring), Supplementary Driving Info (ETCS L or NTC), Planning info (train speed profile crossing station), Monitoring (technical systems), driver input	SIL2	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P1 - Personal
Cab Voice data	Driver communication, audio data	noSIL	C1 - Internal	I1 - Basic Integrity	A2 - High availability	P0 - Anonymous
Radio data GSM-R	RBC communication	SIL0**	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
Radio data FRMCS	RBC communication	SIL0*	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
Vehicle Control data	Command and monitor data	SIL2	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous
Passenger data	Audio and video data for the passengers	noSIL	C1 - Internal	I1 - Basic Integrity	A1 - Business hours	P0 - Anonymous
Gateway data	Communication between networks	noSIL	C2 - Confidential	I2 - Special Integrity	A2 - High availability	P0 - Anonymous

x0 = no requirements

x1 = standard requirements

x2 = enhanced requirements

^{*} The functions and SIL for the FRMCS radio are not yet defined.

^{**} SIL for GSM-R radio depends on the view. In the integration phase 'basic integrity' is needed. Indication 'SILO' is equivalent to 'Basic Integrity' Indication 'noSIL' notes a function that has no functional safety requirements

OCORA – Security Zones

Zones:

- Train
- Vehicle
- Driver Cab
- Wagon (passenger area)
- CCU
- **Device Sensors and Actors**
- Gateway
- Radios (GSM-R, FRMCS)
- Cab Radio
- DMI
- **Control and Command**
- PIS
- Auxiliary
- **Public Services***

^{*} Not in OCORA scope

OCORA – Security Zones and Conduits

Conduits

- PIS
- VCN/TCN
- **UVCCB**
- Auxiliary
- Radio (GSM-R, FRMCS)
- Public Radio (secured)
- Cab Radio
- **PS Radio**
- **Public Services***

* Not in OCORA scope

Passenger Information Network

Vehicle Control Network

Universal Vital Control and Command Bus (UVCCB; CCS-On-Board Network)

Supporting Slides

Level of Modularity 0 (current situation): the integrated proprietary subsystem subsystem subsystem subsystem subsystem CCS system is (again) fully integrated constituent constituent in the proprietary vehicle environment, driving costs and risks subsystem subsystem subsystem and complicating obsolescence issue Project proposal: SS119 and SS139 Compliant ETCS and ATO GoA 2 Interface Specification (June 2020) Level of Modularity 1 (imminent CCS sub system retrofit projects): the interface between the proprietary CCS system is isolated from the fully integrated proprietary vehicle environment, enabling exchange of the CCS constituent environment without affecting the vehicle and vice versa, simplifying obsolescence issues Project proposals: Modular ETCS and GOA 2 Semi Formal Functional Model (December 2020); Modular ETCS and GOA 2 Full Formal Functional Model (December 2021); Modular ETCS and ATO GoA 2 Executable Software (December 2021); MVP - Prototype (starting from May 2021) Level of Modularity 2 (short term Vehicle Vehicle OCORA objective): the interface subsystem subsystem between proprietary constituents of the CCS system are isolated, enabling exchange of those constituents Vehicle subsystem subsystem subsystem constituent constituent constituent without affecting either the vehicle or other CCS constituents, simplifying obsolescence and migration issues

OSI Layer		Protocol			
		Protocol for hard-real- time data	Protocol for soft- or non-real-time data		
	(Safety*)	(SDTv2 / SDTv4)			
5	Session	TRDP - OPC-UA Pub/Sub - DDS-RTPS			
4	Transport	UDP (for process and message data) TCP (for message data)			
3	Network	IPv4			
2	Data Link	Time-Sensitive Networking (TSN) IEEE 802.1	Standard Ethernet IEEE 802.3		
1	Physical	100BASE-TX or 1000BASE-T			

^{*}Safety layer is only applicable for safety function related data traffic

Details im Dokument: OCORA-40-003-Beta UVCC Bus Evaluation

Requirements Engineering

Structuring the Requirements

OCORA Set of Requirements

Problem Statement

I addition, the OCORA initiative has defined its own vision and objectives that lead to requirements for the initiative and the on-board system to be developed.

Further more, program, technical, functional, and nonfunctional requirements are developed in the different OCORA workstreams.

- While building the system's architecture, the different requirements need to be apportioned to the identified subsystems.
- These apportioned requirements, together with the specifications of the system architecture define the requirements applicable for the different subsystems and can be used as tender templates.

Requirements engineering is an important and difficult task, requiring dedicated resources and therefore a separate workstream.

Actors

External Systems

Hardware Interfaces – CCS On-Board

Functional Interfaces – CCS On-Board

Hardware Interfaces – OCORA Core

Functional Interfaces – OCORA Core

