Table 1: Aggregate Consumption Dynamics in Rep Agent Economy

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon$							
Expe	ctations : De	p Var	OLS	(2nd Stage)	F p -val		
Inde	pendent Vari	ables	or IV	$ar{R}^2$	IV OID		
Stie	$cky : \Delta \log C$	't+1					
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.820			OLS	0.673	0.000		
(0.004)							
0.784			IV	0.250	0.000		
(0.006)							
	3.598		IV	0.099	0.236		
	(1.248)						
		-0.0004	IV	0.119	0.000		
		(0.0000)					
0.749	0.093	-0.0000	IV	0.250	999.000		
(0.006)	(0.038)	(0.0000)					
				<u> </u>			

Horserace coefficient on $\Delta \log \mathbf{C}_{t+1}$ significant at 95% level for 1 of 1 subintervals. Horserace coefficient on $\mathbb{E}[\Delta \log \mathbf{Y}_{t+1}]$ significant at 95% level for 1 of 1 subintervals.

	$\operatorname{cky}:\Delta\log\widehat{C}$	S_{t+1}			
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.382			OLS	0.146	0.000
(0.006)					
0.780			IV	0.155	0.000
(0.014)					
	2.926		IV	0.044	0.227
	(0.960)				
		-0.0004	IV	0.079	0.000
		(0.0000)			
0.741	0.117	-0.0000	IV	0.156	999.000
(0.019)	(0.109)	(0.0000)			
				~	

Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.156$

Table 2: Aggregate Consumption Dynamics in Rep Agent Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon$							
Exped	etations : De	p Var	OLS	(2nd Stage)	F p -val		
Inde	pendent Vari	ables	or IV	$ar{R}^2$	IV OID		
Sticky: $\Delta \log \mathbf{C}_{t+1}$							
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.863			OLS	0.745	0.000		
(0.003)							
0.906			IV	0.487	0.000		
(0.005)							
	0.877		IV	0.444	0.000		
	(0.011)						
		-0.0002	IV	0.335	0.000		
		(0.0000)					
0.803	-0.012	-0.0000	IV	0.492	999.000		
(0.013)	(0.019)	(0.0000)					

Horserace coefficient on $\Delta \log \mathbf{C}_{t+1}$ significant at 95% level for 1 of 1 subintervals. Horserace coefficient on $\mathbb{E}[\Delta \log \mathbf{Y}_{t+1}]$ significant at 95% level for 0 of 1 subintervals.

Stie	$\operatorname{cky}: \Delta \log \widetilde{C}$	t+1			
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.411			OLS	0.169	0.000
(0.006)					
0.914			IV	0.300	0.000
(0.012)					
	0.863		IV	0.283	0.000
	(0.013)				
		-0.0002	IV	0.223	0.000
		(0.0000)			
0.855	-0.098	-0.0000	IV	0.304	999.000
(0.044)	(0.057)	(0.0000)			
		(0.0000)			

Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.304$

Table 3: Aggregate Consumption Dynamics in Small Open Economy

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon$							
Expect	tations : De	p Var	OLS	(2nd Stage)	F p -val		
Indep	endent Vari	ables	or IV	$ar{R}^2$	IV OID		
Sticky: $\Delta \log \mathbf{C}_{t+1}$							
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.580			OLS	0.336	0.000		
(0.009)							
0.718			IV	0.112	0.000		
(0.013)							
	1.224		IV	0.003	0.643		
	(0.384)						
		-0.0042	IV	0.015	0.000		
		(0.0002)					
0.717	0.164	-0.0003	IV	0.112	999.000		
(0.010)	(0.095)	(0.0002)					

Horserace coefficient on $\Delta \log \mathbf{C}_{t+1}$ significant at 95% level for 1 of 1 subintervals. Horserace coefficient on $\mathbb{E}[\Delta \log \mathbf{Y}_{t+1}]$ significant at 95% level for 0 of 1 subintervals.

	cky : $\Delta \log \widetilde{C}$				
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.223			OLS	0.050	0.000
(0.007)					
0.703			IV	0.066	0.000
(0.021)					
	2.565		IV	0.002	0.630
	(1.092)				
		-0.0044	IV	0.011	0.000
		(0.0003)			
0.706	0.234	-0.0002	IV	0.067	999.000
(0.024)	(0.211)	(0.0004)			
				~	

Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.067$

Table 4: Aggregate Consumption Dynamics in Small Open Markov Economy (11 states)

	$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon$								
Expe	ctations : De	p Var	OLS	(2nd Stage)	F p -val				
Inde	pendent Vari	ables	or IV	$ar{R}^2$	IV OID				
Sticky: $\Delta \log \mathbf{C}_{t+1}$									
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t							
0.895			OLS	0.801	0.000				
(0.003)									
0.876			IV	0.475	0.000				
(0.004)									
	0.988		IV	0.420	0.000				
	(0.013)								
		-0.0011	IV	0.210	0.000				
		(0.0000)							
0.819	0.009	-0.0002	IV	0.478	999.000				
(0.012)	(0.021)	(0.0000)							

Horserace coefficient on $\Delta \log \mathbf{C}_{t+1}$ significant at 95% level for 1 of 1 subintervals. Horserace coefficient on $\mathbb{E}[\Delta \log \mathbf{Y}_{t+1}]$ significant at 95% level for 0 of 1 subintervals.

)
,

Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.296$

Table 5: Aggregate Consumption Dynamics in HA-DSGE Economy

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon$							
Exped	etations : De	p Var	OLS	(2nd Stage)	F p -val		
Indep	pendent Vari	ables	or IV	$ar{R}^2$	IV OID		
Sticky: $\Delta \log \mathbf{C}_{t+1}$							
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.542			OLS	0.294	0.000		
(0.014)							
0.791			IV	0.173	0.000		
(0.012)							
	1.845		IV	0.067	0.018		
	(0.351)						
		-0.0009	IV	0.107	0.000		
		(0.0000)					
0.730	0.120	-0.0001	IV	0.174	999.000		
(0.017)	(0.128)	(0.0001)					
0.730	(0.351) 0.120	(0.0000) -0.0001	IV	0.107	0.000		

Horserace coefficient on $\Delta \log \mathbf{C}_{t+1}$ significant at 95% level for 1 of 1 subintervals. Horserace coefficient on $\mathbb{E}[\Delta \log \mathbf{Y}_{t+1}]$ significant at 95% level for 0 of 1 subintervals.

		L O	, , ,		
Stie	$\operatorname{cky}:\Delta\log\widetilde{C}$	t+1			
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.198			OLS	0.039	0.000
(0.008)					
0.781			IV	0.108	0.000
(0.019)					
	2.302		IV	0.044	0.017
	(0.489)				
		-0.0009	IV	0.071	0.000
		(0.0000)			
0.705	0.056	-0.0001	IV	0.109	999.000
(0.031)	(0.221)	(0.0001)			

Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.109$

Table 6: Aggregate Consumption Dynamics in HA-DSGE Markov Economy (11 states)

$\Delta \log \mathbf{C}$	$t_{t+1} = \varsigma + \gamma$	$\chi\Delta\log\mathbf{C}_t$ -	$+ \eta \mathbb{E}_t[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon$	
tations : De	p Var	OLS	(2nd Stage)	F p -val
endent Vari	ables	or IV	$ar{R}^2$	IV OID
Sticky: $\Delta \log \mathbf{C}_{t+1}$				
$\Delta \log \mathbf{Y}_{t+1}$	A_t			
		OLS	0.834	0.000
		IV	0.615	0.000
0.958		IV	0.593	0.000
(0.010)				
	-0.0006	IV	0.464	0.000
	(0.0000)			
-0.026	-0.0001	IV	0.619	999.000
(0.025)	(0.0000)			
)	tations: Dependent Variable V	tations : Dep Var endent Variables ky : $\Delta \log \mathbf{C}_{t+1}$ $\Delta \log \mathbf{Y}_{t+1}$ A_t 0.958 (0.010) -0.0006 (0.0000) -0.026 -0.0001	$egin{array}{llllllllllllllllllllllllllllllllllll$	endent Variables or IV \bar{R}^2 ky : $\Delta \log \mathbf{C}_{t+1}$ $\Delta \log \mathbf{Y}_{t+1}$ A_t OLS 0.834 IV 0.615 0.958 IV 0.593 (0.010) -0.0006 IV 0.464 (0.0000) -0.026 -0.0001 IV 0.619

Horserace coefficient on $\Delta \log \mathbf{C}_{t+1}$ significant at 95% level for 1 of 1 subintervals. Horserace coefficient on $\mathbb{E}[\Delta \log \mathbf{Y}_{t+1}]$ significant at 95% level for 0 of 1 subintervals.

Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.396$