МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота

з дисципліни «Дискретна математика»

Виконав: студент групи КН-109 Гавришків Олексій Викладач: Бойко Н. І.

ЛАБОРАТОРНА РОБОТА З ТЕМИ № 1

Моделювання основних логічних операцій

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Варіант 2 Хід роботи

Завдання 1. Формалізувати речення

Якщо Олег ляже сьогодні пізно, він буде вранці в отупінні, якщо він ляже не пізно, то йому здаватиметься, що не варто жити, отже або Олег буде завтра в отупінні, або йому здаватиметься, що не варто жити.

Позначимо наступні вирази відповідними буквами:

Р: Олег ляже сьогодні пізно;

Q: Він буде вранці в отупінні;

R: Йому здаватиметься, що не варто жити.

Тоді складаємо відповідні вирази.

1. Якщо Олег ляже сьогодні пізно, він буде вранці в отупінні.

$$P \ \to Q$$

2. Якщо він ляже не пізно, то йому здаватиметься, що не варто жити.

$$\neg P \rightarrow R$$

3. Або Олег буде завтра в отупінні, або йому здаватиметься, що не варто жити.

$$Q \vee R$$

р	q	r	p¯	p -> q	p -> r	qvr
1	1	1	0	1	1	1
1	1	0	0	1	1	1
1	0	0	0	0	1	0
0	0	0	1	1	0	0
0	1	1	1	1	1	1
0	0	1	1	1	1	1
1	0	1	0	0	1	1
0	1	0	1	1	0	1

Завдання 2. Побудувати таблицю істинності для висловлювань:

$$(x \vee \overline{y}) \Rightarrow ((y \wedge \overline{z}) \Rightarrow (x \vee (y \Leftrightarrow z)));$$

X	y	Z	\overline{y}	\overline{z}	$x \vee \overline{y}$	$y \wedge \bar{z}$	$x \lor (y \leftrightarrow z)$	$(y \wedge \bar{z}) \longrightarrow (x \vee (y \leftrightarrow z))$	$(x \lor \overline{y}) \to ((y \land \overline{z}) \to (x \lor (y \leftrightarrow z)))$
1	1	1	0	0	1	0	1	1	1
1	1	0	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1
0	0	0	1	1	1	0	1	1	1
0	0	1	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1	1	1
1	0	1	1	0	1	0	1	1	1
0	1	0	0	1	0	1	0	0	1

Завдання 3. Побудовою таблиць істинності вияснити чи висловлювання ϵ тавтологіями або суперечностями:

р	q	r	<u>p</u>	pvq	q <-> r	(p v q) ^ (q <-> r)	p v r	((p v q) ^ (q <-> r)) -> (p v r)
1	1	1	0	1	1	1	1	1
1	1	0	0	1	0	0	0	1
1	0	0	0	1	1	1	0	0
0	0	0	1	0	1	0	1	1
0	1	1	1	1	1	1	1	1
0	0	1	1	0	0	0	1	1
1	0	1	0	1	0	0	1	1
0	1	0	1	1	0	0	1	1

Відповідь: Висловлювання є нейтральним! Якщо б це було тавтологією, то в останньому стовпці все було б істиною, і навпаки для суперечності!

Завдання 4. Побудовою таблиць істинності вияснити чи висловлювання ϵ тавтологіями або суперечностями:

р	q	r	pvq	p -> r	q -> r	(p v q) ^ (p -> r) ^ (q -> r)	((p v q) ^ (p -> r) ^ (q -> r)) -> r
1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	1
1	0	0	1	0	1	0	1
0	0	0	0	1	1	0	1
0	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1
1	0	1	1	1	1	1	1
0	1	0	1	1	0	0	1

Відповідь: **Це тавтологія.** При будь-яких інтерпретаціях всі значення істинні.

Завдання 5. Довести, що формули еквівалентні: $p \to (q \land r)$ та $(p \land q) \to (p \land r)$

р	q	r	q ^ r	p -> (q ^ r)
1	1	1	1	1
1	1	0	0	0
1	0	0	0	0
0	0	0	0	1
0	1	1	1	1
0	0	1	0	1
1	0	1	0	0
0	1	0	0	1

р	q	r	p ^ q	p ^ r	(p ^ q) -> (p ^ r)
1	1	1	1	1	1
1	1	0	1	0	0
1	0	0	0	0	1
0	0	0	0	0	1
0	1	1	0	0	1
0	0	1	0	0	1
1	0	1	0	1	1
0	1	0	0	0	1

Відповідь: Формули $p \to (q \land r)$ та $(p \land q) \to (p \land r)$ не еквівалентні, тому що їх значення не збігаються!

Додаток 2

Реалізувати програмно визначення значень таблиці істинності логічних висловлювань при різних інтерпретаціях, формули:

$$(x \vee \overline{y}) \Rightarrow ((y \wedge \overline{z}) \Rightarrow (x \vee (y \Leftrightarrow z)));$$

Програма пропонує ввести 3 значення для змінних:

```
Введіть наступні значення(0/1):
X:1
Y:1
Z:1
```

(Приклад 1. Введення даних)

Після введення даних програма виводить наступну таблицю і нижче результат виразу:

```
| x | y | z | x v <sub>|</sub>y | y ^ <sub>|</sub>z | x v (y <-> z) | (x v <sub>|</sub>y) -> ((y ^ <sub>|</sub>z) -> (x v (y <-> z))) |
| 1 | 1 | 1 | 0 | 1 | 1 | Result: 1
```

Висновок:

Працювавши над лабораторною роботою, я ознайомився на практиці із основними поняттями математичної логіки, навчився будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.