Linear Algebr

You are observing starfish that made their way to a previously uninhabited tide-pool. You'd like to predict the year-on-year population of these starfish.

You start with a simple assumption

#new children per year \sim size of current population

- 1.1 Come up with a mathematical model for the number of star fish in a given year. Your model should
 - Define any notation (variables and parameters) you use
 - Include at least one formula/equation
 - Explain how your formula/equation relates to the starting assumption

Let

(Birth Rate) K = 1.1 children per starfish per year (Initial Pop.) $P_0 = 10$ star fish

and define the model \mathbf{M}_1 to be the model for starfish population with these parameters.

2.1 Simulate the total number of starfish per year using Excel.

Recall the model M_1 (from the previous question).

Define the model \mathbf{M}_{1}^{*} to be

$$P(t) = P_0 e^{0.742t}$$

- 3.1 Are \mathbf{M}_1 and \mathbf{M}_1^* different models or the same?
- 3.2 Which of \mathbf{M}_1 or \mathbf{M}_1^* is better?
- 3.3 List an advantage and a disadvantage for each of M_1 and M_1^* .

In the model M_1 , we assumed the starfish had K children at one point during the year.

- 4.1 Create a model \mathbf{M}_n where the starfish are assumed to have K/n children n times per year (at regular intervals).
- 4.2 Simulate the models M_1 , M_2 , M_3 in Excel. Which grows fastest?
- 4.3 What happens to \mathbf{M}_n as $n \to \infty$?

Exploring \mathbf{M}_n

We can rewrite the assumptions of \mathbf{M}_n as follows:

- At time t there are $P_n(t)$ starfish.
- $P_n(0) = 10$
- During the time interval (t, t + 1/n) there will be (on average) K/n new children per starfish.
- 5.1 Write an expression for $P_n(t+1/n)$ in terms of $P_n(t)$.
- 5.2 Write an expression for ΔP , the change in population from time t to $t + \Delta t$.
- 5.3 Write an expression for $\frac{\Delta P}{\Delta t}$.
- 5.4 Write down a differential equation relating P'(t) to P(t) where $P(t) = \lim_{n \to \infty} P_n(t)$.

Define the model \mathbf{M}_{∞} by

- P(0) = 10
 - P'(t) = kP(t)

and recall the model M_1 defined by

- $P_1(0) = 10$

• $P_1(t+1) = KP(t)$ for $t \ge 0$ years and K = 1.1.

6.2 Suppose that M_1 accurately predicts the population.

6.1 If k = K = 1.1, does the model \mathbf{M}_{∞} produce the same

Can you find a value of k so that \mathbf{M}_{∞} accurately pre-

population estimates as M_1 ?

dicts the population?

models M_1 and M_{∞} ?

- 6.3 What are some advantages and disadvantages of the

- 6

After more observations, scientists notice a seasonal effect on starfish. They propose a new model called S:

- P(0) = 10
- $P'(t) = k \cdot P(t) \cdot |\sin(2\pi t)|$
- 7.1 What can you tell about the population (without trying to compute it)?
- 7.2 Assuming k = 1.1, estimate the population after 10 years.
- 7.3 Assuming k = 1.1, estimate the population after 10.3 years.

Consider the following argument:

At t = 0, the change in population $\approx P'(0) = 0$, so

$$P(1) \approx P(0) + P'(0) \cdot 1 = P(0) = 10.$$

At t = 1, the change in population $\approx P'(1) = 0$, so

$$P(2) \approx P(2) + P'(2) \cdot 1 = P(0) = 10.$$

And so on.

So, the population of starfish remains constant.

8.1 Do you believe this argument? Can it be improved?

(Simulating \mathbf{M}_{∞} with different Δs) Time | Pop. ($\Delta = 0.1$)

0.0	10	0.0	10
0.1	11.1	0.2	12.2
0.2	12.321	0.4	14.884
0.3	13.67631	0.6	18.15848
0.4	15.1807041	0.8	22.1533456
	!	•	I

Time

Pop. $(\Delta = 0.2)$

9.2 Graph the population estimates for $\Delta = 0.1$ and $\Delta = 0.2$ on the same plot. What does the graph show?

9.3 What Δs give the largest estimate for the population

© Bernardo Galvao-Souza & Jason Siefken, 2024

Compare $\Delta = 0.1$ and $\Delta = 0.2$. Which approximation

9.4 Is there a limit as $\Delta \rightarrow 0$?

at time *t*?

grows faster?

(Simulating \mathbf{M}_{∞} with different Δs)

- 9.1 Compare $\Delta = 0.1$ and $\Delta = 0.2$. Which approximation grows faster?
- 9.2 Graph the population estimates for $\Delta=0.1$ and $\Delta=0.2$ on the same plot. What does the graph show?

- 9.3 What Δs give the largest estimate for the population at time t?
- 9.4 Is there a limit as $\Delta \rightarrow 0$?

Consider the following models for starfish growth

- **M** # new children per year ∼ current population
- N # new children per year ∼ resources available per individual
- **O** # new children per year ~ current population times the fraction of total resources remaining
- 10.1 Guess what the population vs. time curves look like for each model.
- 10.2 Create a differential equation for each model.
- 10.3 Simulate population vs. time curves for each model (but pick a common initial population).

Recall the models

- **M** # new children per year ∼ current population
- N # new children per year ∼ resources available per individual
- **O** # new children per year ~ current population times the fraction of total resources remaining
- 11.1 Determine which population grows fastest in the short term and which grows fastest in the long term.
- 11.2 Are some models more sensitive to your choice of Δ when simulating?
- 11.3 Are your simulations for each model consistently underestimates? Overestimates?
- 11.4 Compare your simulated results with your guesses from question 10.1. What did you guess correctly? Where were you off the mark?