2004 Higher School Certificate Trial Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used
- Write using black or blue pen
- A table of standard integrals is provided at the back of the paper
- All necessary working should be shown in every question
- Write your student number and/or name at the top of every page

Total marks - 120

- Attempt Questions 1 10
- All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

Marks

Question 1 (12 marks)

(a) Evaluate correct to 3 significant figures: $\log_e \left(\frac{1}{2.75}\right)$

2

(b) Simplify: $\frac{x}{x^2-4} - \frac{2}{x-2}$

2

(c) Differentiate $3x + e^{3x}$ with respect to x.

2

(d) Kate gets a $7\frac{1}{2}$ % discount from the clothing store where she works. The discount on a pair of jeans was \$6.00. What did she pay for the jeans?

2

(e) Solve the pair of simultaneous equations

2

$$3x - y = 5$$
$$x + 2y = -3$$

(f) Find a primitive for: $\frac{3}{x} - \sin 3x$

2

Marks

Question 2 (12 marks)

Start a new page

(a)

The diagram above shows two points A(3,2) and B(-2,3) on the number plane.

Copy the diagram onto your worksheet.

(i) Find the gradient of the line BO.

1

(ii) Show that AO is perpendicular to BO.

- 1
- (iii) OACB is a trapezium in which OB is parallel to AC. Show that the equation of AC is 3x + 2y 13 = 0.
- 2
- (iv) The point C lies on the line x = -1. Find the coordinates of C and mark the position of C on your diagram on your worksheet.

1

(v) Show that the length of the line AC is $2\sqrt{13}$ units.

1

(vi) Find the area of trapezium OACB

- 2
- (b) Find the equation of the tangent to the curve $y = \cos x$ at the point $(\frac{\pi}{2}, 0)$
- 2

2

(c) Connor bought a new car costing \$19 600. The value of the car depreciates by 15% of the new price in its first year and at 12.5% of the previous year's value in each succeeding year. What is the value of the car (to the nearest \$10) after 8 years?

Marks

Question 3 (12 marks)

Start a new page

(a) Differentiate:

(i)
$$x e^{\sin x}$$

2

(ii)
$$\frac{1}{(5-3x)^5}$$

2

(b)

3

In the diagram above, AE is parallel to BC. \angle BDC = 40°, \angle BCD = 25° and \angle EAC = 65°. Copy this diagram onto your worksheet.

Prove that triangle ABC is isosceles.

(c) Find:

(i) $\int e^{3x} dx$

1

(ii)
$$\int_{0}^{\frac{\pi}{4}} (\sec^2 x - x) dx$$

2

(d) Solve: $5 - \frac{2-3x}{3} = -1$

2

Question 4 (12 marks)

Start a new page

In the diagram above, ABCD is a rectangle. X and Y are points on diagonal DB such that AX and CY are perpendicular to DB.

Copy the diagram onto your worksheet.

(i) Explain why $\angle ADX = \angle CBY$.

1

(ii) Prove that $\triangle ADX \equiv \triangle CBY$

3

(iii) Show that AX = CY

1

(iv) What type of quadrilateral is AXCY? (Give reasons)

1

(b)

3

NOT TO SCALE

In $\triangle ABC$, $\angle B = 45^{\circ}$, $\angle C = 15^{\circ}$ and AC = 12 metres.

Find the length of BC, giving your answer in exact form.

(c)

3

NOT TO SCALE

AB and CD are arcs of concentric circles with centre O. OA = AC = 2 metres. The shaded section has area π centimetres². Calculate the size of $\angle AOB$ (in degrees).

1

Question 5 (12 marks)

Start a new page

(a) In a novelty egg-and-spoon race, a series of *n* buckets are placed in a straight line as in the diagram below. The first bucket is placed 10 metres from the start while each successive bucket is 5 metres from the previous one.

Contestants run from the starting point carrying an egg on a spoon and place the egg in the first bucket. They run back to the start, pick up a second egg and run to place it in the second bucket. This process continues until they have placed an egg in each bucket and returned to the starting point. Thus a contestant runs 20 metres to place the first egg in the first bucket, 30 metres for the second egg and so on. A contestant who drops an egg is disqualified

- (i) How far does a contestant run to place the fifth egg in its bucket and return to the start?
- (ii) How far does a contestant run to place the *n*th egg in its bucket and return?
- (iii) Express, in terms of n, the distance a contestant runs to complete the race. 1
- (iv) To complete the race, a contestant runs 900 metres. How many eggs are carried to complete the race?
- (b) Solve $2\cos^2\theta 1 = 0$, where $0^{\circ} \le \theta \le 360^{\circ}$.
- (c) Solve: $|7-2x| \ge 5$ and graph your solution on the number line.
- (d) The roots of the equation $2x^2 5x + 12 = 0$ are α and β .

Find the value of:

(i)
$$\alpha + \beta$$

(ii)
$$\alpha \beta$$

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$

2

2

Question 6 (12 marks)

Start a new page

(a) The diagram below shows the graphs $y = \frac{2}{x}$ and y = 3 - x, which intersect at A and B.

- (i) Find the coordinates of A and B.
- (ii) Calculate the shaded area bounded by y = 3 x and $y = \frac{2}{x}$.
- (b) Consider the parabola $4y = 12 4x x^2$. Find
 - (i) the coordinates of the vertex.
 - (ii) the minimum value of the quadratic expression $x^2 + 4x 12$.
- (c) A farmer is constructing an open rectangular tank with a square base of side x metres. The tank is to be made from sheet metal with a capacity of 4 metres³.
 - (i) Show that the height, h metres, of the tank is given by $h = \frac{4}{x^2}$.
 - (ii) Find an expression for the surface area of the tank, in terms of x. 1
 - (ii) Calculate the minimum area of sheet metal which can be used to construct the tank

DIUDENI MANE/NUNDEN	STU	JDENT NAME /	NUMBER	
---------------------	-----	---------------------	--------	--

Question 7 (12 marks)

Start a new page

(a) (i) Copy and complete the table of values below for the function $y = \log_{10}(x+2)$ 1

$$y = \log_{10}(x+2)$$

х	-1	-0.5	0	+0.5	+1
у					

(ii) State the domain of $log_{10}(x+2)$

1

(iii) Sketch the graph of $y = \log_{10}(x+2)$

1

3

- (iv) Using the five function values in the table and Simpson's Rule, find an approximate value for $\int_{-1}^{1} \log_{10}(x+2)dx$ (correct to 3 significant figures)
- (b) The local model power boat club has eight equally matched boats, 3 green, 4 blue and 1 red

 If two races are held, find the probability that:
 - (i) both winners are blue

1

(ii) neither winner is green

2

(iii) the winners are different colours.

1

2

(iv) assuming that the winner of the first race is not allowed to compete in the second, both winners are the same colour.

Ques	tion 8	(12 marks) Start a new page	Marks	
(a) Consi		ider the function $f(x) = 3x^2 - x^3$		
	(i)	Find the values of x for which $f'(x) = 0$.		
	(ii) Find the coordinates of the stationary points of the curve $y = (x)$ and determine their nature		2	
	(iii) Sketch the graph of the curve $y = f(x)$, showing these stationary points.		1	
	(iv) Determine the values of x for which $f'(x) \ge 0$		1	
(b)	A water tank holds 12 500 litres of water when full. The water is allowed to flow of the tank through a valve. If the volume of water in the tank is V litres at time t minutes, the flow rate is given by the formula:			
		$\frac{dV}{dt} = -10(50 - t)$		
	(i)	Find an expression for the volume of water V in the tank at time t	2	
	(ii)	How long does it take for the tank to empty?	1	
	(iii)	iii) What is the initial flow rate?		
	(iv)	Find the time taken for 80% of the water in the tank to flow out. Give your answer correct to the nearest minute.		

ST	UDENT	NAME /	NUMBER	

Question 9 (12 marks)

Start a new page

(a) A wood turner is making a wooden bowl. He determines the shape by rotating the curve $y = e^{2x}$ from x = 1 to x = 3 about the x-axis as shown in the diagram below.

Calculate the volume of the above solid, leave your answer in exact form.

(b) Scientists studying a colony of moths in the Northern Territory, have found that the number of moths, W, after t days, is given by

$$W = W_0 e^{kt}$$

where W_0 and k are constants.

Initially they estimated that the colony contained 800 moths. Three days later, the number had increased by 50%.

(i) Find the values of W_0 and k.

- 2
- (ii) How many moths (to the nearest 10) were present after a further 3 days?
- 1
- (iii) How many days will it take for the number of moths to increase to 8 000? Give your answer correct to the nearest day.

 $\sec \theta$

 $\tan \theta + \cot \theta$

2

(c) Simplify: $\frac{1+\cot\theta}{\csc\theta}$

3

Marks

1

1

1

Question 10 (12 marks)

Start a new page

- (a) Emilie has decided that she needs to set up a superannuation fund. Her financial advisor told her that she needs \$500 000 in the fund when she retires in 25 years time. She decides that she will make equal payments of \$P\$ at the beginning of each year. The fund pays 6%p.a. interest compounded annually.
 - (i) Show that at the end of the first year (before she makes her payment for the second year) her account balance, \$B, is given by:

$$B = P(1.06)$$

(ii) Show that her account balance after 3 years (before making the fourth payment) is given by:

$$B = P(1.06)(1.06)^2 + (1.06) + 1$$

- (iii) Find a similar expression for the balance when she retires after 25 years.
- (iv) Hence find the amount Emilie will need to pay each year to satisfy her retirement requirements (to the nearest dollar).
- (b) A particle is moving in a straight line. Its distance x metres at time t seconds from a fixed point O is given by

$$x = t + 2\sin t$$
 for $0 \le t \le 2\pi$.

- (i) Find an expression for the velocity, v metres per second, of the particle.
- (ii) At what times is the particle at rest?
- (iii) Sketch the graph of x as a function of t.
- (iv) What important feature on the graph indicates those times when the particle is at rest. Show this feature on the graph.
- (v) Describe the motion of the particle for the first π seconds.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0