The Quantum Combination Lock

Our quantum combination lock is a finite, structured space \mathcal{L} modeled on the Cartesian product \mathbb{Z}_5^3 , where all coordinates are taken modulo 5. Each element $s \in \mathcal{L}$ is called a *setting*, and the zero element is defined as $(0,0,0) \in \mathcal{L}$. For any two settings $s_1, s_2 \in \mathcal{L}$, we define

$$s_1 + s_2 := ((s_1^1 + s_2^1) \bmod 5, (s_1^2 + s_2^2) \bmod 5, (s_1^3 + s_2^3) \bmod 5),$$

and -s by

$$-s := (5 - s^1, 5 - s^2, 5 - s^3) \mod 5.$$

Multiplication of a scalar $a \in \mathbb{Z}_5$, and a setting $s \in \mathcal{L}$, is defined by

$$a \cdot s := ((as^1) \mod 5, (as^2) \mod 5, (as^3) \mod 5),$$

which endows \mathcal{L} with the structure of a vector space over \mathbb{Z}_5 . We next define the norm of a setting $s = (x, y, z) \in \mathcal{L}$ as:

$$||s|| := \min(x, 5 - x) + \min(y, 5 - y) + \min(z, 5 - z),$$

and a metric between two settings $s_1, s_2 \in \mathcal{L}$ by

$$d(s_1, s_2) := ||s_1 - s_2||,$$

where subtraction is taken in the group \mathbb{Z}_5^3 . We define an inner product:

$$\langle s_1, s_2 \rangle := (s_1^1 s_2^1 + s_1^2 s_2^2 + s_1^3 s_2^3) \bmod 5,$$

which is bilinear and symmetric but does not induce a norm over $\mathbb{R}_{\geq 0}$ (and thus the space is thus not a Hilbert space in the classical sense).

If we let c = (0, 0, 0) be the canonical code configuration, we can define a potential or deviation energy of a setting $s \in \mathcal{L}$

$$\mathtt{weak_field}(s) := d(c,s) = \|s\|,$$

and the energy stratum at level $\ell \in \{0, 1, \dots, 6\}$ is the set:

$$\mathtt{stratum}(\ell) := \{ s \in \mathcal{L} \mid \|s\| = \ell \},\$$

where the degeneracy (cardinality of each shell) is given by the sequence $\{1, 6, 18, 32, 36, 24, 8\}$ which corresponds to the self-convolution of the coordinate-wise Manhattan profile on \mathbb{Z}_5 . We can then define the neighbor set of a setting $s = (x, y, z) \in \mathcal{L}$ as:

$$neighbors(s) := \{(x \pm 1, y, z), (x, y \pm 1, z), (x, y, z \pm 1) \mod 5\}$$

This defines the 3-dimensional toroidal Cayley graph of \mathbb{Z}_5^3 with generator set:

$$S = \{(\pm 1, 0, 0), \ (0, \pm 1, 0), \ (0, 0, \pm 1)\}$$

The dual vector $s^* \in \mathcal{L}^*$ is defined trivially as

$$s^* := s$$

and is interpreted as a bra $\langle s|$ in the sense of Dirac notation.