Problem Set: Functional Equations

Problem 1. Find $f: \mathbb{R} \to \mathbb{R}$ if f(x)f(y) - f(xy) = x + y for all $x, y \in \mathbb{R}$.

Problem 2. Find all functions f, defined on the nonnegative real numbers and taking nonnegative real values, such that:

- (i) f(xf(y))f(y) = f(x+y) for all $x, y \ge 0$,
- (ii) f(2) = 0,
- (iii) $f(x) \neq 0 \text{ for } 0 \leq x < 0.$

Problem 3. Let (f(n)) be a strictly increasing sequence of positive integers such that f(2) = 2 and f(mn) = f(m)f(n) for every relatively prime pair of positive integers m and n (the greatest common divisor of m and n is equal to 1). Prove that f(n) = n for every positive integer.

Problem 4. Find, with proof, all real-valued functions f(x) satisfying the equation

$$xf(x) - yf(y) = (x - y)f(x + y)$$

for all real numbers x, y.

Problem 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that

(i) For all $x, y \in \mathbb{R}$,

$$f(x) + f(y) + 1 \ge f(x+y) \ge f(x) + f(y),$$

- (ii) For all $x \in [0,1)$, $f(0) \ge f(x)$,
- (iii) -f(-1) = f(1) = 1.

Find all such functions f.

Problem 6. Find all functions f from the positive reals to the positive reals such that

$$f(x+f(y)) = \frac{y}{xy+1}$$

for all x, y > 0.

Problem 7. Find all functions f from the reals to the reals such that

$$(f(x) + f(z))(f(y) + f(t)) = f(xy - zt) + f(xt + yz)$$

for all real x, y, z, t.

Problem 8. Find all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying the equation

$$f(x + y) + f(x)f(y) = f(xy) + 2xy + 1$$

for all real x and y.

Problem 9. Let \mathbb{R}^* be the set of nonzero real numbers. Find all functions $f: \mathbb{R}^* \to \mathbb{R}^*$ such that

$$f(x^2 + y) = f^2(x) + \frac{f(xy)}{f(x)}$$

for all $x, y \in \mathbb{R}^*, y \neq -x^2$.

Problem 10. Find all the functions $f: \mathbb{R} \to \mathbb{R}$ satisfying

$$f(f(x) - y^2) = f(x)^2 - 2f(x)y^2 + f(f(y))$$

for all $x, y \in \mathbb{R}$.