Progress on Mazur's program B

David Zureick-Brown

Emory University
Slides available at http://www.mathcs.emory.edu/~dzb/slides/

Northwestern University

November 19, 2018

Background - Galois Representations

$$G_{\mathbb{Q}} := \operatorname{\mathsf{Aut}}(\overline{\mathbb{Q}}/\mathbb{Q})$$
 $E[n](\overline{\mathbb{Q}}) \cong (\mathbb{Z}/n\mathbb{Z})^2$

$$ho_{E,n} \colon \ G_{\mathbb{Q}} o \operatorname{\mathsf{Aut}} E[n] \cong \operatorname{\mathsf{GL}}_2(\mathbb{Z}/n\mathbb{Z})$$
 $ho_{E,\ell^{\infty}} \colon \ G_{\mathbb{Q}} o \operatorname{\mathsf{GL}}_2(\mathbb{Z}_{\ell}) = \varprojlim_n \operatorname{\mathsf{GL}}_2(\mathbb{Z}/\ell^n\mathbb{Z})$
 $ho_E \colon \ G_{\mathbb{Q}} o \operatorname{\mathsf{GL}}_2(\widehat{\mathbb{Z}}) = \varprojlim_n \operatorname{\mathsf{GL}}_2(\mathbb{Z}/n\mathbb{Z})$

Background - Image of Galois

$$\rho_{E,n} \colon G_{\mathbb{Q}} \twoheadrightarrow H(n) \hookrightarrow \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$$

$$G_{\mathbb{Q}} \left\{ \begin{array}{c} \overline{\mathbb{Q}} \\ | \\ \overline{\mathbb{Q}}^{\ker \rho_{E,n}} = \mathbb{Q}(E[n]) \\ | \\ \mathbb{Q} \end{array} \right\} H(n)$$

Problem (Mazur's "program B")

Classify all possibilities for H(n).

Example - torsion on an ellitpic curve

If E has a K-rational **torsion point** $P \in E(K)[n]$ (of exact order n) then:

$$H(n) \subset \left(\begin{array}{cc} 1 & * \\ 0 & * \end{array}\right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = P$$

$$\sigma(Q) = a_{\sigma}P + b_{\sigma}Q$$

Example - Isogenies

If *E* has a *K*-rational, **cyclic isogeny** $\phi \colon E \to E'$ with $\ker \phi = \langle P \rangle$ then:

$$H(n) \subset \left(\begin{array}{cc} * & * \\ 0 & * \end{array} \right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = a_{\sigma}P$$

$$\sigma(Q) = b_{\sigma}P + c_{\sigma}Q$$

Example - other maximal subgroups

Normalizer of a split Cartan:

$$N_{\mathsf{sp}} = \left\langle \left(egin{array}{cc} * & 0 \ 0 & * \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight)
ight
angle$$

$H(n) \subset N_{\mathsf{sp}}$ and $H(n) \not\subset C_{\mathsf{sp}}$ iff

- there exists an unordered pair $\{\phi_1, \phi_2\}$ of cyclic isogenies,
- whose kernels intersect trivially,
- neither of which is defined over K
- but which are both defined over some quadratic extension of K
- and which are Galois conjugate.

Background - Image of Galois

$$\rho_{E,n} \colon G_{\mathbb{Q}} \twoheadrightarrow H(n) \hookrightarrow \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$$

$$G_{\mathbb{Q}} \left\{ \begin{array}{c} \overline{\mathbb{Q}} \\ | \\ \overline{\mathbb{Q}}^{\ker \rho_{E,n}} = \mathbb{Q}(E[n]) \\ | \\ \mathbb{Q} \end{array} \right\} H(n)$$

Problem (Mazur's "program B")

Classify all possibilities for H(n).

Modular curves

Definition

- $X(N)(K) := \{(E/K, P, Q) : E[N] = \langle P, Q \rangle\} \cup \{\text{cusps}\}$
- $X(N)(K) \ni (E/K, P, Q) \Leftrightarrow \rho_{E,N}(G_K) = \{I\}$

Definition

 $\Gamma(N) \subset H \subset \mathsf{GL}_2(\widehat{\mathbb{Z}})$ (finite index)

- $X_H := X(N)/H$
- $X_H(K) \ni (E/K, \iota) \Leftrightarrow H(N) \subset H \mod N$

Stacky disclaimer

This is only true up to twist; there are some subtleties if

- $j(E) \in \{0, 12^3\}$ (plus some minor group theoretic conditions), or
- ② if -I ∈ H.

Rational Points on modular curves

Mazur's program B

Compute $X_H(\mathbb{Q})$ for all H.

Remark

- Sometimes $X_H \cong \mathbb{P}^1$ or elliptic with rank $X_H(\mathbb{Q}) > 0$.
- Some X_H have sporadic points.
- Can compute $g(X_H)$ group theoretically (via Riemann–Hurwitz).

Fact

$$g(X_H), \gamma(X_H) \to \infty$$
 as $\left[\mathsf{GL}_2(\widehat{\mathbb{Z}}) : H \right] \to \infty$.

Mazur's Program B

As presented at Modular functions in one variable V in Bonn

Theorem 1 also fits into a general program:

B. Given a number field K and a subgroup H of
$$\operatorname{GL}_2\widehat{\mathbf{z}} = \prod_p \operatorname{GL}_2 \mathbf{z}_p$$
 classify all elliptic curves $\operatorname{E}_{/K}$ whose associated Galois representation on torsion points
$$\operatorname{maps} \operatorname{Gal}(\overline{K}/K) \quad \operatorname{into} \quad \operatorname{H} \subset \operatorname{GL}_2\widehat{\mathbf{z}} \quad .$$

Mazur - Rational points on modular curves (1977)

Sample subgroup (Serre)

$$\ker \phi_2 \ \subset \ H(8) \ \subset \ \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_2 = 3$$

$$\downarrow^{\phi_2} \qquad \qquad \downarrow$$

$$I + 2M_2(\mathbb{Z}/2\mathbb{Z}) \ \subset \ H(4) \ = \ \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_1 = 4$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow$$

$$H(2) \ = \ \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$$

$$\chi\colon\operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z})\to\operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/8\mathbb{Z})^*\to\mathbb{Z}/2\mathbb{Z}\times(\mathbb{Z}/8\mathbb{Z})^*\cong\mathbb{F}_2^3.$$

$$\chi = \operatorname{sgn} \times \operatorname{det}$$

$$H(8) := \chi^{-1}(G), G \subset \mathbb{F}_2^3.$$

Sample subgroup (Dokchitser²)

$$H(2) = \left\langle \left(egin{array}{cc} 0 & 1 \ 3 & 0 \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ 1 & 1 \end{array}
ight)
ight
angle \cong \mathbb{F}_3
times D_8.$$

$$\operatorname{im}
ho_{E,4} \subset H(4) \Leftrightarrow j(E) = -4t^3(t+8).$$
 $X_H \cong \mathbb{P}^1 \xrightarrow{j} X(1).$

A typical subgroup

$$\begin{split} \ker\phi_4 &\subset H(32) &\subset \operatorname{GL}_2(\mathbb{Z}/32\mathbb{Z}) & \dim_{\mathbb{F}_2}\ker\phi_4 = 4 \\ & \downarrow^{\phi_4} & \downarrow \\ \ker\phi_3 &\subset H(16) &\subset \operatorname{GL}_2(\mathbb{Z}/16\mathbb{Z}) & \dim_{\mathbb{F}_2}\ker\phi_3 = 3 \\ & \downarrow^{\phi_3} & \downarrow \\ \ker\phi_2 &\subset H(8) &\subset \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) & \dim_{\mathbb{F}_2}\ker\phi_2 = 2 \\ & \downarrow^{\phi_2} & \downarrow \\ \ker\phi_1 &\subset H(4) &\subset \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) & \dim_{\mathbb{F}_2}\ker\phi_1 = 3 \\ & \downarrow^{\phi_1} & \downarrow \\ & H(2) &= \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \end{split}$$

Non-abelian entanglements

There exists a surjection $\theta \colon \operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$.

$$\operatorname{im} \rho_{E,6} \subset H(6) \Rightarrow K(E[2]) \subset K(E[3])$$

Classification of Images - Mazur's Theorem

Theorem

Let E be an elliptic curve over \mathbb{Q} . Then for $\ell > 11$, $E(\mathbb{Q})[\ell] = \{0\}$.

In other words, for $\ell > 11$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left(\begin{array}{cc}1&*\\0&*\end{array}\right).$$

Classification of Images - Mazur; Bilu, Parent, Rebolledo

Theorem (Mazur)

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell>37$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left(\begin{array}{cc} * & * \\ 0 & * \end{array}\right).$$

Theorem (Bilu, Parent, Rebolledo)

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell>13$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left\langle \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right\rangle.$$

Main conjecture

Conjecture (Serre)

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell>37$, $\rho_{E,\ell}$ is surjective.

Serre's Open Image Theorem

Theorem (Serre, 1972)

Let E be an elliptic curve over K without CM. The image of $\rho_{\rm E}$

$$\rho_E(G_K) \subset \mathsf{GL}_2(\widehat{\mathbb{Z}})$$

is open.

Note:

$$\mathsf{GL}_2(\widehat{\mathbb{Z}}) \cong \prod_p \mathsf{GL}_2(\mathbb{Z}_p)$$

"Vertical" image conjecture

Conjecture

There exists a constant N such that for every E/\mathbb{Q} without CM

$$\left[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \rho_{\mathsf{E}}(\mathsf{G}_{\mathbb{Q}})\right] \leq \mathsf{N}.$$

Remark

This follows from the " $\ell > 37$ " conjecture.

Problem

Assume the " $\ell > 37$ " conjecture and compute N.

Main Theorem

Rouse, ZB (2-adic)

The index of $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$ divides 64 or 96; all such indices occur.

- All indices dividing 96 occur infinitely often; 64 occurs only twice.
- ② The 2-adic image is determined by the mod 32 image
- 1208 different images can occur for non-CM elliptic curves
- There are 8 "sporadic" subgroups.

Subgroups of $GL_2(\mathbb{Z}_2)$

Cremona Database, 2-adic images

Index, # of isogeny classes

- 1,727995
- 2,7281
- 3, 175042
- 4, 1769
- 6,57500
- 8.577
- 12.29900
- 16,235
- 24,5482
- 32, 20
- JZ , ZU
- 48, 1544
- 64, 0 (two examples)
- 96 , 241 (first example $X_0(15)$)
- CM , 1613

Cremona Database

Index, # of isogeny classes

64, 0
$$j = -3 \cdot 2^{18} \cdot 5^3 \cdot 13^3 \cdot 41^3 \cdot 107^3 \cdot 17^{-16}$$

$$j = -2^{21} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13^3 \cdot 23^3 \cdot 41^3 \cdot 179^3 \cdot 409^3 \cdot 79^{-16}$$

Rational points on $X_{ns}^+(16)$ (Heegner, Baran)

Applications

Theorem (R. Jones, Rouse, ZB)

- **1** Arithmetic dynamics: let $P \in E(\mathbb{Q})$.
- **2** How often is the order of $\widetilde{P} \in E(\mathbb{F}_p)$ odd?
- **3** Answer depends on $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$.
- Examples: 11/21 (generic), 121/168 (maximal), 1/28 (minimal)

Theorem (Various authors)

Computation of $S_{\mathbb{O}}(d)$ for particular d.

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland)

Classification of $E(\mathbb{Q}(3^{\infty}))_{tors}$

Theorem (Gonzalez–Jimenez, Lozano–Robledo)

Classify E/\mathbb{Q} with $\rho_{E,N}(G_{\mathbb{Q}})$ abelian.

More applications

Theorem (Sporadic points)

Najman's example $X_1(21)^{(3)}(\mathbb{Q})$; "easy production" of other examples.

Theorem (Jack Thorne)

Elliptic curves over \mathbb{Q}_{∞} are modular.

(One step is to show $X_0(15)(\mathbb{Q}_{\infty})=X_0(15)(\mathbb{Q})=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}$.)

Recent theorems

Zywina (mod ℓ)

Classifies $\rho_{E,\ell}(G_{\mathbb{Q}})$ (modulo some conjectures).

Zywina (indices occuring infinitely often; modulo conjectures)

The **index** of $\rho_{E,N}(G_{\mathbb{Q}})$ divides 220, 336, 360, 504, 864, 1152, 1200, 1296 or 1536.

Sutherland-Zywina

Parametrizations in all **prime power** levels, g = 0 and g = 1, r > 0 cases.

Brau-N. Jones, N. Jones-McMurdy (in progress)

Equations for X_H for entanglement groups H.

In progress

Morrow; Camacho-Li-Morrow-Petok-ZB (composite level)

Classifies $\rho_{E,\ell_1^n\cdot\ell_2^m}(G_{\mathbb{Q}})$ (partially).

Rouse-ZB for other prime powers (in progress)

Partial progress; e.g. for $N = 3^n$.

Proof template

- **1** Compute all arithmetically minimal $H \subset GL_2(\mathbb{Z}_2)$
- 2 Compute equations for each X_H
- 3 Find (with proof) all rational points on each X_H .

Subgroups of $GL_2(\mathbb{Z}_2)$

Finding Equations – Basic idea

- **1** The canoncial map $C \hookrightarrow \mathbb{P}^{g-1}$ is given by $P \mapsto [\omega_1(P) : \cdots : \omega_g(P)]$.
- ② For a general curve, this is an embedding, and the relations are quadratic.
- For a modular curve,

$$M_k(H) \cong H^0(X_H, \Omega^1(\Delta)^{\otimes k/2})$$

given by

$$f(z) \mapsto f(z) dz^{\otimes k/2}$$
.

Equations – Example: $X_1(17) \subset \mathbb{P}^4$

$$q - 11q^{5} + 10q^{7} + O(q^{8})$$

 $q^{2} - 7q^{5} + 6q^{7} + O(q^{8})$
 $q^{3} - 4q^{5} + 2q^{7} + O(q^{8})$
 $q^{4} - 2q^{5} + O(q^{8})$
 $q^{6} - 3q^{7} + O(q^{8})$

$$xu + 2xv - yz + yu - 3yv + z^{2} - 4zu + 2u^{2} + v^{2} = 0$$
$$xu + xv - yz + yu - 2yv + z^{2} - 3zu + 2uv = 0$$
$$2xz - 3xu + xv - 2y^{2} + 3yz + 7yu - 4yv - 5z^{2} - 3zu + 4zv = 0$$

Equations – general

- **1** $H' \subset H$ of index 2, $X_{H'} \to X_H$ degree 2.
- 2 Given equations for X_H , compute equations for $X_{H'}$.
- **3** Compute a new modular form on H', compute (quadratic) relations between this and modular forms on H.
- **Main technique** if $X_{H'}$ has "new cusps", then write down Eisenstein series which vanish at "one new cusp, not others".

Rational points rundown, $\ell=2$

318 curves (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	56	18	20	4
Rank of Jacobian						
0		25	46	_	_	??
1		27	3	9	10	??
2			7	_	_	??
3				9	_	??
4					_	??
5					10	??

More 2-adic facts

- 1 There are 8 "sporadic" subgroups
 - Only one genus 2 curve has a sporadic point
 - Six genus 3 curves each have a single sporadic point
 - The genus 1, 5, and 7 curves have no sporadic points
- ② Many accidental isomorphisms of $X_H \cong X_{H'}$.
- **1** There is one H such that $g(X_H) = 1$ and $X_H \in X_H(\mathbb{Q})$.

Subgroups of $GL_2(\mathbb{Z}_2)$

Subgroups of $GL_2(\mathbb{Z}_{13})$

Subgroups of $GL_2(\mathbb{Z}_{11})$

Subgroups of $GL_2(\mathbb{Z}_3)$

Subgroups of $GL_2(\mathbb{Z}_5)$

Subgroups of $GL_2(\mathbb{Z}_7)$

Rational Points rundown: $\ell = 3$

3	g = 0	Handled by Sutherland–Zywina
	g = 1	all rank zero
	g = 4	$map\;to\;g=1$
	g = 2	Chabauty works
	g = 4	no 3-adic points
	g = 3	Picard curves; map to rank 0 AV
	g = 4	Admits étale triple cover
	g = 6	Admits étale triple cover
	g = 12	$X_{ns}(27)$
	g = 43	no 3-adic points

Rational Points: summary of remaining work.

3	g = 12
5	g = 2, 4, 14
7	g = 9, 12, 69
11	g = 41, 511
13	$X_{S_4}(13)$ (genus 3)

Rational Points: summary of remaining work – more info.

The Untouchables	$X_{ns}^{+}(27), X_{ns}^{+}(25), X_{ns}^{+}(49), X_{ns}^{+}(121)$		
	g = 12, 14, 69, 511		
Also probably untouchable $(r \geq g)$	X_{13}, X_{21}, X_{14}		
	g = 9, 9, 41		
	level 7, 7 11		
Cautiously optimistic $(r \geq g)$	$X_{11}, X_{15}, X_{16}, X_{S_4}$		
	g = 2, 2, 4, 3 level 5, 5, 5, 13		
	level 5, 5, 5, 13		
Optimistic $(r = 3 < g)$	g=12, level 7		

Explicit methods: highlight reel

- Local methods
- Chabauty
- Elliptic Chabauty
- Mordell–Weil sieve
- étale descent
- Pryms
- Equationless descent via group theory.
- New techniques for computing Aut C.

Pryms (via Nils Bruin)

$$D \xrightarrow{\iota - \mathsf{id} - (\iota(P) - P)} imes \mathsf{ker}_0(J_D o J_C) =: \mathsf{Prym}(D o C)$$
 $\mathsf{et} \bigvee_{C} \bigcup_{C} \mathcal{L}$
 $C(\mathbb{Q}) = \bigcup_{\delta \in \{\pm 1, \pm 2\}} \mathsf{im} \, D_\delta(\mathbb{Q})$

Pryms
$$D \xrightarrow{\iota - id - (\iota(P) - P)} \ker_0(J_D \to J_C) =: \Prym(D \to C)$$

$$et \bigvee_{C} U$$

Example (Genus $C = 3 \Rightarrow \text{Genus } D = 5$)

- C: Q(x, y, z) = 0
- $Q = Q_1 Q_3 Q_2^2$

$$D_{\delta}: Q_1(x, y, z) = \delta u^2$$

$$Q_2(x, y, z) = \delta uv$$

$$Q_3(x, y, z) = \delta v^2$$

- $Prym(D_{\delta} \to C) \cong Jac_{H_{\delta}}$,
- H_{δ} : $v^2 = -\delta \det(M_1 + 2xM_2 + x^2M_3)$.

Thanks

Thank you!