High-Precision Semantics Extraction in STEM

Jan Frederik Schaefer Supervisor: Michael Kohlhase

FAU Erlangen-Nürnberg

CICM 2020 — **Doctoral Program** remotely from Erlangen, Germany

My Situation

- Finishing up my master studies
- Did already some research
 - Symbolic natural language semantics
 - Controlled natural languages for mathematics
- Going to start my PhD soon
 - Supervisor: Michael Kohlhase

kwarc group

- Tentative topic: high-precision semantics extraction in STEM
- Topic still very flexible
- → Any feedback appreciated!

Motivation

- We have large corpora of STEM knowledge e.g. arxiv
- Computers can make it more accessible:
 - Unit conversion
 - Applicable theorem search
 - Screen readers
 - . . .
- Such services require/benefit from semantic information
- Authors often don't provide much semantic T_FX macros
- → Semantics extraction

Approaches to Semantics Extraction

- Machine learning—based
 - Training data?
 - Low precision
- Symbolic
 - Low coverage

Approaches to Semantics Extraction

- Machine learning—based
 - Training data?
 - Low precision
- Symbolic
 - Low coverage

Approaches to Semantics Extraction

- Machine learning-based
 - Training data?
 - Low precision
- Symbolic
 - Low coverage

Plan

- Symbolic approaches offer high precision
- Often, high precision is more important than coverage "each has the mass $\frac{1}{2}m$ " vs "each has the mass 1.64ft"
- We already have a tool: GLIF
- Use statistical methods to increase coverage

Use cases:

- Designing controlled natural languages
- Prototyping approaches to natural-language semantics

Idea: Combine existing frameworks

- ullet GF (Grammatical Framework): \mathcal{NL} grammars
- MMT: Logic, knowledge representation
- ELPI ($\supseteq \lambda Prolog$): Inference
- Jupyter: Intuitive UI

"... has a mass of
$$2m$$
" $\longrightarrow AST_1 \longrightarrow \lambda x.mass(x, quant(2, meters))$

$$\longrightarrow AST_2 \longrightarrow \lambda x.mass(x, mul(2, mVar))$$

Lexicon Extension

"Therefore, A is clopen."

Different options:

- 1 Use a dynamic parser
- ② Generate lexicon automatically:

```
clopen_Adj : Adjective = "clopen" clopen : \iota \to o
```

3 Replace lexicon entries with tokens: "Therefore, A is ADJ-1."

DynGenPar

Blanking out Unparsable Parts

This may be impossible:

"Let X denote a data set where all entries $x \in X$ are normalized as described above."

This would still be useful:

"Let X denote a data set where SUB-CLAUSE."

Semantic Representation?

- Open question
- VIP, Naproche use DRT
- DRT not really supported by GLIF/MMT yet

Late Disambiguation

1 Syntactic disambiguation:

"2m" \rightarrow unit?

② Semantic disambiguation:

"a mass of 2m" \rightarrow not a unit

3 Later semantic disambiguation:

"it has a length of 2m, where m is the length of a module" \rightarrow not a unit

Data Set

- $> 10^6$ documents
- aims to preserve any semantic information from LATEX sources
- have some experience with processing arXMLiv documents

https://sigmathling.kwarc.info/

Work Plan

- Prototype GLIF pipeline
 - Target: variable declarations and uses
 - Use generated lexicon
- Prototype pipeline for corpus work
 - Load document
 - Enter pre-processed sentences into GLIF pipeline
 - Export results
- 3 Introduce blanking out
- 4 Scaling
 - Larger grammar
 - More semantic phenomena
- 6 Build example semantic services
- 6 Can we replace more with ML? Can the results be used as training data?

Discussion

Is it desirable?

I think so

- Could this work?
- Other ideas?
- Anything else?

I haven't started yet \rightarrow any feedback is welcome!