

David Ricardo Martinez
Kevin Farith Garcia Chaparro
Nixon Cortes Tabares
Nelson Torres Alvarez
Samuel David Penilla
Sebastián Villamizar Saavedra

Universidad Industrial de Santander

INTRODUCCIÓN

La exploración espacial es un reto científico y tecnológico que requiere simulaciones precisas para planificar viajes interestelares.

Este proyecto busca simular el viaje de un cohete desde la Tierra hasta Marte, considerando la influencia de la gravedad y la presencia de obstáculos en el espacio.

Se utiliza un modelo computacional basado en autómatas celulares para representar el entorno espacial y el comportamiento dinámico del cohete.

Los autómatas celulares son modelos matemáticos que simulan sistemas complejos a través de reglas locales en una cuadrícula de celdas. En esta simulación, cada celda puede representar diferentes elementos:

- El Sol (fuente de gravedad)
- La Tierra (punto de partida)
- Marte (destino final)
- Asteroides y obstáculos(peligros en la trayectoria)
- El cohete (objeto en movimiento)

Descripción del problema

- El objetivo es guiar el cohete desde la Tierra hasta Marte, evitando colisiones con asteroides y obstáculos.
- El cohete está sujeto a fuerzas gravitacionales que modifican su trayectoria.
- El desafío es modelar y simular este escenario para prever el comportamiento del cohete en un entorno dinámico y cambiante.

METOdología

Se implementa un autómata celular en una cuadrícula bidimensional que representa el espacio alrededor de la Tierra y Marte.

Cada paso de tiempo actualiza el estado de cada celda según reglas que reflejan:

- Movimiento del cohete influenciado por la gravedad
- Movimiento y generación de asteroides como obstáculos
- Detección de colisiones y llegada a destino

La simulación evoluciona iterativamente para observar la trayectoria y eventos.

Implementación del Códiqo

El proyecto se desarrolló en Python usando librerías como Numpy para el manejo de matrices y Pygame para la visualización gráfica.

Funciones clave:

- Inicialización de la cuadrícula con planetas y obstáculos
- Aplicación del modelo gravitacional para modificar velocidad y dirección del cohete
- Control del movimiento y detección de colisiones
- Visualización animada con actualización en tiempo real

Reglas locales principales de tu autómata celular

1. El Sol genera gravedad (regla de fuente de campo)

Las celdas que contienen el Sol
(STATE_SUN) siempre emiten gravedad
máxima (MAX_GRAVITY_SOURCE = 1.0).

Esta gravedad se propaga a celdas
vecinas, disminuyendo con la distancia

2. El cohete se mueve hacia Marte Tendencia (bias) del cohete a moverse hacia Marte: ROCKET_MARS_ATTRACTION_BIAS = 0.9.

También trata de evitar asteroides: ROCKET_AVOID_ASTEROID_BIAS = 0.7.

En los primeros pasos, se mueve con impulso inicial: ROCKET_INITIAL_IMPULSE_STEPS.

3. Los asteroides se mueven por gravedad
Se sienten atraídos por el Sol y se mueven en esa dirección con una probabilidad proporcional al campo gravitacional en su celda.

También hay una pequeña probabilidad de movimiento aleatorio (RANDOM_MOVE_BIAS = 0.02).

4. Colisiones provocan efectosCohete + Asteroide → Explosión(ROCKET_COLLIDES_ASTEROID_EXPLODES = True)

Asteroide + Planeta:

Puede causar explosión (ASTEROID_COLLISION_EXPLODES_PLANET = True)

O ser absorbido con una probabilidad (PLANET_ABSORBS_ASTEROID_PROB = 0.2)

Visualización y Resultados

La simulación muestra la cuadrícula con símbolos para representar:

- Sol
- Tierra 🍪
- Marte
- Explosiones por colisiones **
- Cohete 💋
- Asteroides

Se observan movimientos dinámicos del cohete adaptándose a la gravedad y sorteando obstáculos, logrando finalmente llegar a Marte en varios escenarios.

Primera versión del proyecto

Sequnda versión del proyecto

Conclusiones

El proyecto permitió comprender a fondo el funcionamiento de los autómatas celulares y su potencial para modelar sistemas complejos mediante reglas simples y estructuras locales.

A lo largo del proceso, se replantearon y mejoraron varias ideas iniciales, lo que permitió optimizar el enfoque del proyecto. Esto demuestra la importancia de la revisión continua y la adaptación

Posibles mejoras a futuro

1

2

3

Implementar traslaciones más precisas para los planetas

Simular un movimiento más realista para los asteroides

Optimizar y mejorar la interfaz gráfica del sistema

Thank you Very much!