第二章一维随机变量及其分布

第一节 随机变量 第二节 离散型随机变量及其分布 第三节 随机变量的分布函数 第四节 连续型随机变量及其分布 第五节 随机变量函数的分布

要求:会求一维随机变量函数的分布

- 一. 随机变量的函数的定义(见书)
- 二. 离散型随机变量的函数的分布

若 X是离散型随机变量,则 Y = g(X)也是一个离散型随机变量,Y = g(X)的分布可直接求出.

例1. 已知 X 的概率分布为:

X	5	10
P_{ι}	1_	2
K	3	$\overline{3}$

求: Y = 2X 的概率分布(分布律).

解: Y的可能取值 $y_1 = 10, y_2 = 20$

X	5	10	
\overline{Y}	10	20	
P	1	2	
* k	${3}$	3	

4

例2. 已知 X 的概率分布为:

X	0	1	2	3	4	5	
P_{k}	$\frac{1}{12}$	1/6	1/3	$\frac{1}{12}$	2 9	1 9	

求: $Y = (X - 2)^2$ 的概率分布(分布律)

解:
$$X$$
 0 1 2 3 4 5 Y 4 1 0 1 4 9 P_k $\frac{1}{12}$ $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{12}$ $\frac{2}{9}$ $\frac{1}{9}$

Y	0	1	4	9
P_k	1	1	11	1
	3	4	36	9

归纳:

若X 是离散型 随机变量,X 的概率分布为

X	\boldsymbol{x}_1	$x_2 \cdots$	$x_n \cdots$
P_{k}	p_1	$p_2 \cdots$	$p_n \cdots$

则 Y = g(X) 的概率分布为:

$$\begin{array}{|c|c|c|c|c|c|c|}\hline Y & g(x_1) & g(x_2) & \cdots & g(x_n) & \cdots \\\hline P_k & p_1 & p_2 & \cdots & p_n & \cdots \\\hline \end{array}$$

注意: 如果 $g(x_k)$ 中有一些是相同的,把它们作适当并项即可.

三. 连续型随机变量的函数的分布

问题: 已知 Y = g(X)和 $f_X(x)$,求 $f_Y(y)$

分布函数法: (1) 求 $F_Y(y)$

(2) $F'_{Y}(y) = f_{Y}(y)$

例3. 设X服从区间(0,2)上的均匀分布.

求: $Y = X^2$ 的概率密度

解:
$$(1)$$
 求 $F_{Y}(y)$

 \mathbf{M} : (1) 求 $F_Y(y)$:: X非零密度函数的取值区间(0,2)

当
$$y < 0$$
时

当
$$y < 0$$
时
$$F_Y(y) = P(Y \le y) = P(\phi) = 0$$

当
$$0 \le y < 4$$
 时 $F_Y(y) = P(Y \le y) = P(X^2 \le y)$

$$= P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx = \int_0^{\sqrt{y}} f_X(x) dx = \frac{1}{2} \sqrt{y}$$

当
$$y \ge 4$$
 时 $F_Y(y) = P(Y \le y) = 1$

例3. 设X服从区间(0,2)上的均匀分布.

求: $Y = X^2$ 的概率密度

解: (1) 求 $F_{Y}(y)$

$$F_{Y}(x) = \begin{cases} 0 & y < 0 \\ \frac{1}{2}\sqrt{y} & 0 \le y < 4 \\ 1 & 4 \le y \end{cases}$$

(2)
$$f_{Y}(y) = F_{Y}'(y)$$

$$f_{Y}(y) = \begin{cases} \frac{1}{4}y^{-\frac{1}{2}} & 0 < y < 4 \\ 0 & \sharp \dot{\Xi} \end{cases}$$

例3. 设X服从区间(0,2)上的均匀分布.

求: $Y = X^2$ 的概率密度

解:

$$f_X(x) = \begin{cases} \frac{1}{2} & 0 < x < 2 \\ 0 & 其它 \end{cases}$$

$$f_Y(y) = \begin{cases} \frac{1}{4}y^{-\frac{1}{2}} & 0 < y < 4 \\ 0 & 其它 \end{cases}$$

当
$$y < 0$$
时 $f_y(y) = 0$

当
$$0 \le y < 4$$
 时 $F_Y(y) = P(Y \le y) = P(X^2 \le y)$

$$= P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx = \int_0^{\sqrt{y}} f_X(x) dx$$

$$f_Y(y) = \frac{1}{2}(\sqrt{y})' = \frac{1}{4}y^{-\frac{1}{2}}$$

当
$$y \ge 4$$
 时 $f_Y(y) = 0$

$$f_{Y}(y) = \frac{1}{2}(\sqrt{y})' = \frac{1}{4}y^{-\frac{1}{2}} \int_{X} f_{X}(x)dx = \int_{0}^{y} f_{X}(x)dx$$

$$(\int_{a}^{g(x)} f(t)dt)' = f(g(x))g'(x)$$

列4 设 $X \backsim N(0,1)$ $Y = X^2 \longrightarrow f_Y(y)$

解
$$Y=X^2\geq 0$$

$$y \le 0$$
时, $F_Y(y) = 0 \Rightarrow f_Y(y) = 0$

$$y > 0$$
 by, $F_Y(y) = P\{Y \le y\} = P\{X^2 \le y\}$

$$= P\left\{-\sqrt{y} \le X \le \sqrt{y}\right\} = 2\Phi\left(\sqrt{y}\right) - 1$$

求导得

$$f_{Y}(y) = 2\varphi(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} = \frac{1}{\sqrt{y}} \varphi(\sqrt{y}) = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}$$

$$f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}, & y > 0, \\ 0, & 其他 \end{cases}$$

例5 设 $f_X(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$ $Y = e^X$ 求 $f_Y(y)$ $\forall y \leq 1, \quad F_{V}(y) = P\{Y \leq y\} = 0$ $\Rightarrow f_{V}(y) = 0$ \boldsymbol{x} $\forall y > 1$, $F_Y(y) = P\{Y \le y\} = P\{e^X \le y\}$ $= P\{X \le \ln y\} = F_X(\ln y)$ 求导得 $f_Y(y) = f_X(\ln y) \cdot \frac{1}{v} = \frac{1}{v^2}$ $\therefore f_Y(y) = \begin{cases} \frac{1}{y^2}, & y > 1, \\ 0, & y \leq 1. \end{cases}$

例6. 设随机变量
$$X \sim N(\mu, \sigma^2)$$

求: Y = aX + b 的概率密度

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

解: 当
$$a > 0$$
时

$$F_{Y}(y) = P(Y \le y) = P(aX + b \le y) = P(X \le \frac{y - b}{a})$$

$$= P(\frac{X - \mu}{\sigma} \le \frac{y - a\mu - b}{a\sigma}) = \Phi(\frac{y - (a\mu + b)}{a\sigma})$$

当a < 0时

$$F_{Y}(y) = P(aX + b \le y) = P(X \ge \frac{y - b}{a}) = 1 - P(X \le \frac{y - b}{a})$$
综上求导
$$= 1 - \Phi(\frac{y - (a\mu + b)}{a\sigma})$$

$$f_{Y}(y) = F'_{Y}(y)$$

$$= \frac{1}{|a|\sigma} \varphi(\frac{y - (a\mu + b)}{a\sigma}) = \frac{1}{|a|\sigma\sqrt{2\pi}} e^{\frac{[y - (a\mu + b)]^{2}}{2(a\sigma)^{2}}}$$

例6. 设随机变量
$$X \sim N(\mu, \sigma^2)$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

求: Y = aX + b 的概率密度

解: 当
$$a > 0$$
时

$$F_{Y}(y) = P(Y \le y) = P(aX + b \le y) = P(X \le \frac{y - b}{a})$$

$$= P(\frac{X - \mu}{\sigma} \le \frac{y - a\mu - b}{a\sigma}) = \Phi(\frac{y - (a\mu + b)}{a\sigma})$$

当a < 0时

$$F_{Y}(y) = P(aX + b \le y) = P(X \ge \frac{y - b}{a}) = 1 - P(X \le \frac{y - b}{a})$$

$$= 1 - \Phi(\frac{y - (a\mu + b)}{a\sigma})$$

$$\frac{1}{a\sigma}\varphi(\frac{y-(a\mu+b)}{a\sigma})$$

$$-\frac{1}{a\sigma}\varphi(\frac{y-(a\mu+b)}{a\sigma})$$

例6. 设随机变量
$$X \sim N(\mu, \sigma^2)$$

求:
$$Y = aX + b$$
 的概率密度

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

解: 当
$$a > 0$$
时

$$F_{Y}(y) = P(Y \le y) = P(aX + b \le y) = P(X \le \frac{y - b}{a})$$

$$= P(\frac{X - \mu}{\sigma} \le \frac{y - a\mu - b}{a\sigma}) = \Phi(\frac{y - (a\mu + b)}{a\sigma})$$

当a < 0时

$$F_{Y}(y) = P(aX + b \le y) = P(X \ge \frac{y - b}{a}) = 1 - P(X \le \frac{y - b}{a})$$
综上求导
$$= 1 - \Phi(\frac{y - (a\mu + b)}{a})$$

$$f_{V}(y) = F'_{V}(y)$$

$$= \frac{1}{|a|\sigma} \varphi(\frac{y - (a\mu + b)}{a\sigma}) = \frac{1}{|a|\sigma\sqrt{2\pi}} e^{-\frac{[y - (a\mu + b)]^2}{2(a\sigma)^2}}$$

例6. 设随机变量
$$X \sim N(\mu, \sigma^2)$$
 $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 求: $Y = a X + b$ 的概率密度

解:

$$f_{Y}(y) = \frac{1}{|a|\sigma\sqrt{2\pi}}e^{-\frac{[y-(a\mu+b)]^{2}}{2(a\sigma)^{2}}}$$

得到:
$$Y = aX + b \sim N(a\mu + b, (a\sigma)^2)$$
,

结论:正态分布的线性函数仍服从正态分布。

1、(8分)设随机变量X在[2,5]上服从均匀分布,现在对X 进行三次独立观测,试求至少有两次观测值大于3的概率。

解: X的密度函数为
$$f(x) = \begin{cases} \frac{1}{3}, & 2 \le x \le 5 \\ 0, & \pm \end{cases}$$

$$p = P\{X > 3\} = \int_{3}^{+\infty} f(x)dx = \int_{3}^{5} \frac{1}{3}dx + \int_{5}^{+\infty} 0dx = \frac{2}{3}$$

Y = "三次独立观测中观测值大于3的次数",

$$P{Y \ge 2} = C_3^2 (\frac{2}{3})^2 \frac{1}{3} + C_3^3 (\frac{2}{3})^3 = \frac{4}{9} + \frac{8}{27} = \frac{20}{27}$$

2、(9分)设随机变量X在(1,2)上服从均匀分布, 试求随机变量 $Y = e^{2X}$ 的概率密度 f(y)

解 X的概率密度 $f(x) = \begin{cases} 1, & 1 < x < 2 \\ 0, & \text{其他} \end{cases}$ $Y = e^{2X} \in (e^2, e^4)$ 分布函数法:

$$y \le e^2$$
和 $y \ge e^4$ 时, $f_Y(y) = 0$

$$e^{2} < y < e^{4}$$
 For $F(y) = P\{Y \le y\} = P\{e^{2X} \le y\} = P\{X \le \frac{1}{2} \ln y\}$

$$= \int_{-\infty}^{\frac{1}{2}\ln y} f(x)dx = \int_{1}^{\frac{1}{2}\ln y} 1dx = \frac{1}{2}\ln y - 1 \quad \text{$\Re $\$$}$$

$$f(y) = F'(y) = \begin{cases} \frac{1}{2y}, & e^2 < y < e^4 \\ 0, & \text{#} \text{ } \text{ } \end{cases}$$

3(9分) 设随机变量**X** 的分布密度函数为 $f(x) = ax^2, 0 \le x \le 2$

,其中a是常数。随机变量 $Y = \sqrt{X}$

问: (1) 试确定常数a

(2) 求Y的概率密度函数。

1)由于
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
 所以 $\int_{0}^{2} ax^{2} dx = 1$ 解得: $a = \frac{3}{8}$

2) Y对应的非零密度函数区间为 $0 \le Y \le \sqrt{2}$

対
$$y \in [0, \sqrt{2}]$$
 , 有 $F_Y(y) = P\{Y \le y\}$
= $P\{\sqrt{X} \le y\} = P\{X \le y^2\} = \int_0^{y^2} \frac{3}{8} x^2 dx = \frac{y^6}{8}$

所以,概率密度函数

度函数
$$f_{Y}(y) = \begin{cases} (F_{Y}(y))_{y}' = \frac{3}{4}y^{5}, 0 \le y \le \sqrt{2} \\ 0, \quad \text{其他} \end{cases}$$

总结

随机变量

连续型随机变量

分布函数 $F(x) = P(X \le x)$

$$F(x) = \sum_{x_k \le x} p_k$$

$F(x) = \int_{-\infty}^{x} f(t)dt$

概率的累加,不直观

右连续

连续

概率分布

概率1分布情况,直观

概率计算

$$P(x_1 < X \le x_2) = \sum_{x_1 < x_k \le x_2} p_k$$

$$= F(x_2) - F(x_1)$$

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t)dt$$
$$= F(x_2) - F(x_1)$$

总结

随机变量

	离散型随机变量	连续型随机变量
重要分布	1) 0-1分布 $P(X = k) = p^{k} (1-p)^{1-k}$ 2) $B(n, p)$ $P(X = k) = C_{n}^{k} p^{k} (1-p)^{n-k}$ 3) $P(\lambda)$ $P(X = k) = \frac{\lambda^{k} e^{-\lambda}}{k!}$	1) $U(a,b)$ $f(x) = \begin{cases} 1/(b-a), & a < x < b \\ 0, & \sharp $ 它 2) 指数分布 $f(x) = \begin{cases} 1/\theta e^{-x/\theta}, & x > 0 \\ 0, & \sharp $ 它 3) $N(\mu, \sigma^2)$ $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
函数的分布 $Y = g(X)$	X的分布律 → Y的分布律	$f_X(x) \longrightarrow f_Y(y) = F_Y'(y)$