Learning to Switch: A Weekly RL Meta-Controller over HRP/HERC Portfolio Experts

Payam Taebi 1

¹Sharif University of Technology

Motivation

- Market regimes shift; covariance estimates are noisy; naïve optimization produces unstable weights.
- Practical portfolios must respect **costs** and **limits** (turnover, per-asset caps).
- Objective: a **transparent**, **constraint-aware** allocator that adapts to regimes without overfitting.

Methodology Overview

Expert set. Construct long-only HRP and HERC portfolios over multiple daily lookbacks (e.g., 60, 120, 252, 504, 756, 1008 days).

- HRP (Hierarchical Risk Parity): (i) build correlation distance tree, (ii) quasi-diagonalize covariance, (iii) allocate risk top-down by cluster variance; no Σ^{-1} inversion.
- HERC (Hierarchical Equal Risk Contribution): on the same tree, solve for weights that equalize risk contribution at each split (downside-aware sizing variants allowed).

Meta-controller. Weekly (Friday) a PPO policy selects one *expert* or *HOLD*. The selection is discrete (13 actions: 12 experts + HOLD), making behavior interpretable.

State s_t . Compact features using information up to t only:

- For each expert: realized performance over past {1, 4, 12} weeks (36 dims).
- Regime cues (4 dims): EWMA volatility proxy; trend flags for SPY and TLT; a simple weekly stress flag (e.g., SPY down and IEF up).

Execution. Map action \rightarrow target weights w_t^* ; enforce:

- L1 turnover cap \leq 20% per week; per-asset cap 35%; up to 5% cash if caps bind.
- Trading cost: 2 bps per unit turnover.

Reward (net). Decide at t, realize at t+1:

$$r_{t+1} = w_t^{\top} r_{t+1} - c_{\text{bps}} \| w_t - w_{t-1} \|_1 - \kappa \| w_t - w_{t-1} \|_1 + b_{\text{hold}} \cdot \mathbf{1} \{ \text{stress \& HOLD} \}.$$

Here w_t are executed weights after caps; c_{bps} is the cost rate (2 bps); κ shapes turnover; b_{hold} is a small stress-only nudge.

Data & Protocol

- Universe: 10 ETFs (SPY, IEFA, EEM, IEI, IEF, TLT, LQD, HYG, GLD, DBC).
- Cadence: Weekly decisions; returns from adjusted close.
- Splits: Train 2010–2018, Validate 2019, Out-of-Sample (OOS) 2020–2025.
- Training: PPO with small MLP; select learning rate by validation Sharpe; fixed seed; identical frictions across methods.

OOS Equity (Net of Costs)

Figure 1. Growth of \$1 (2020-2025), net of costs. All strategies share identical caps and cost model.

Quantitative Results (OOS)

Strategy	Ann.%	Sharpe	CVaR5%	MaxDD	Avg TO	Weeks
PPO_Meta	1.45	0.236	-2.28%	_	8.62%	295
BestExpert (HERC_CDaR5_L60)	1.54	0.251	-2.18%	-15.14%	12.13%	295
EqualWeight	5.21	0.591	-2.99%	-17.02%	0.00%	295
60/40	3.39	0.420	-2.62%	-20.40%	0.43%	295
RandomSwitch	0.44	0.099	-2.05%	-17.65%	16.67%	295

CVaR5%: mean of the worst 5% weekly returns (lower is better). MaxDD: maximum peak-to-trough drawdown on net equity. Avg TO: mean weekly L1 turnover.

Policy Behavior

Figure 2. Action timeline: expert choice or HOLD by week. Blocks indicate regime persistence; HOLD appears in

Figure 3. PPO drawdown over OOS. Shallower declines and occasional cap hits occur after regime transitions. steady recoveries support the smoother equity path.

Portfolio Weights Over Time

Figure 5. Executed weights heatmap (OOS). Rotations across equity, duration, credit, and diversifiers with caps respected.

Interpretation

- Discrete switching among robust experts yields **interpretable** decisions and **controlled** trading.
- Compared with static baselines, the meta-controller emphasizes drawdown and tail control with modest cost drag.
- Equal-Weight attains higher Sharpe in this window; the RL approach prioritizes path stability under identical frictions.

Limitations & Future Work

- Explore mild downside-aware shaping in reward; small action-change penalty; expand expert set (include 1/N).
- Walk-forward validation and capacity analysis for deployment.