

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{33} - 2u^{32} + \dots + u^2 + 1 \rangle$$

 $I_2^u = \langle u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 34 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{33} - 2u^{32} + \dots + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{10} + 5u^{8} - 8u^{6} + 3u^{4} + u^{2} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{21} - 10u^{19} + \dots + 2u^{3} + u \\ u^{21} - 9u^{19} + 33u^{17} - 62u^{15} + 62u^{13} - 33u^{11} + 13u^{9} - 6u^{7} + u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{17} - 8u^{15} + 25u^{13} - 36u^{11} + 19u^{9} + 4u^{7} - 2u^{5} - 4u^{3} + u \\ -u^{19} + 9u^{17} - 32u^{15} + 55u^{13} - 43u^{11} + 9u^{9} + 4u^{5} - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class =-1

(iii) Cusp Shapes

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{33} - 2u^{32} + \dots - 2u + 1$
c_2	$u^{33} - 6u^{32} + \dots + 128u - 23$
c_3, c_4, c_8	$u^{33} - 2u^{32} + \dots + u^2 + 1$
c_5	$u^{33} + u^{31} + \dots - 8u + 1$
c_7, c_{10}	$u^{33} + 10u^{32} + \dots - 2u + 1$
<i>C</i> 9	$u^{33} + 3u^{32} + \dots + 32u + 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{33} - 10y^{32} + \dots - 2y - 1$
c_2	$y^{33} + 14y^{32} + \dots - 2062y - 529$
c_3, c_4, c_8	$y^{33} - 30y^{32} + \dots - 2y - 1$
<i>C</i> 5	$y^{33} + 2y^{32} + \dots - 2y - 1$
c_7, c_{10}	$y^{33} + 26y^{32} + \dots + 6y - 1$
<i>C</i> 9	$y^{33} - 3y^{32} + \dots + 394y - 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.145930 + 0.199234I	2.02163 - 5.40417I	-1.16809 + 6.21521I
u = -1.145930 - 0.199234I	2.02163 + 5.40417I	-1.16809 - 6.21521I
u = 1.226990 + 0.119877I	2.93624 + 0.57729I	-61.088687 + 0.10I
u = 1.226990 - 0.119877I	2.93624 - 0.57729I	-61.088687 + 0.10I
u = -0.313132 + 0.699748I	1.61043 - 8.54919I	-1.81653 + 8.15424I
u = -0.313132 - 0.699748I	1.61043 + 8.54919I	-1.81653 - 8.15424I
u = 0.325114 + 0.672913I	2.49948 + 2.85888I	0.03469 - 3.31371I
u = 0.325114 - 0.672913I	2.49948 - 2.85888I	0.03469 + 3.31371I
u = -0.592603 + 0.413344I	2.74796 + 4.66940I	0.86326 - 2.61989I
u = -0.592603 - 0.413344I	2.74796 - 4.66940I	0.86326 + 2.61989I
u = -0.225806 + 0.667717I	-3.60419 - 3.13953I	-8.34254 + 5.36114I
u = -0.225806 - 0.667717I	-3.60419 + 3.13953I	-8.34254 - 5.36114I
u = 0.529781 + 0.441659I	3.40197 + 0.91195I	2.34870 - 3.13722I
u = 0.529781 - 0.441659I	3.40197 - 0.91195I	2.34870 + 3.13722I
u = 1.323560 + 0.186117I	3.02759 + 0.73587I	-0.673126 + 0.769843I
u = 1.323560 - 0.186117I	3.02759 - 0.73587I	-0.673126 - 0.769843I
u = -0.065742 + 0.645142I	-1.19428 + 2.21654I	-6.16344 - 2.48417I
u = -0.065742 - 0.645142I	-1.19428 - 2.21654I	-6.16344 + 2.48417I
u = -0.596679	-1.73897	-4.71290
u = 1.387740 + 0.260179I	1.53217 + 6.51294I	-2.89383 - 5.98872I
u = 1.387740 - 0.260179I	1.53217 - 6.51294I	-2.89383 + 5.98872I
u = -1.396540 + 0.216616I	5.26725 - 4.07711I	4.72201 + 3.88410I
u = -1.396540 - 0.216616I	5.26725 + 4.07711I	4.72201 - 3.88410I
u = 0.245019 + 0.527971I	0.007405 + 1.282000I	-0.00329 - 5.16805I
u = 0.245019 - 0.527971I	0.007405 - 1.282000I	-0.00329 + 5.16805I
u = -1.42908 + 0.26025I	8.11565 - 6.26770I	4.18982 + 3.24511I
u = -1.42908 - 0.26025I	8.11565 + 6.26770I	4.18982 - 3.24511I
u = 1.44655 + 0.13460I	9.14238 - 2.78863I	4.90822 + 2.57820I
u = 1.44655 - 0.13460I	9.14238 + 2.78863I	4.90822 - 2.57820I
u = 1.42746 + 0.27209I	7.18048 + 12.09090I	2.43573 - 8.11579I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.42746 - 0.27209I	7.18048 - 12.09090I	2.43573 + 8.11579I
u = -1.44503 + 0.15402I	9.63768 - 3.04389I	5.82618 + 2.90426I
u = -1.44503 - 0.15402I	9.63768 + 3.04389I	5.82618 - 2.90426I

II.
$$I_2^u = \langle u+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}	u+1
c_2	u-1
<i>c</i> ₉	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_{10}	y-1
c_9	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000	-1.64493	-6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u+1)(u^{33}-2u^{32}+\cdots-2u+1)$
c_2	$(u-1)(u^{33} - 6u^{32} + \dots + 128u - 23)$
c_3, c_4, c_8	$(u+1)(u^{33} - 2u^{32} + \dots + u^2 + 1)$
<i>C</i> ₅	$(u+1)(u^{33}+u^{31}+\cdots-8u+1)$
c_7, c_{10}	$(u+1)(u^{33}+10u^{32}+\cdots-2u+1)$
<i>C</i> 9	$u(u^{33} + 3u^{32} + \dots + 32u + 7)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y-1)(y^{33}-10y^{32}+\cdots-2y-1)$
c_2	$(y-1)(y^{33} + 14y^{32} + \dots - 2062y - 529)$
c_3, c_4, c_8	$(y-1)(y^{33}-30y^{32}+\cdots-2y-1)$
<i>C</i> ₅	$(y-1)(y^{33}+2y^{32}+\cdots-2y-1)$
c_7, c_{10}	$(y-1)(y^{33} + 26y^{32} + \dots + 6y - 1)$
<i>c</i> ₉	$y(y^{33} - 3y^{32} + \dots + 394y - 49)$