Algebra

Jaroslav Langer *

$\check{\mathbf{R}}$ íjen 2020

Contents

1	Přednáška 1.			
	1.1	Úvod	L	
	1.2	Hierarchie	L	
	1.3	Neutrální a inverzní prvky	2	
	1.4	Znázornění grup	2	
2	Přednáška 2.			
	2.1	Podgrupy	3	
	2.2	Lagrangeova věta	1	
	2.3	Generující množiny a generátor grup	1	
	2.4	Cyklické grupy	5	
	2.5	(Malá) Fermatova věta	Ó	
3	Přednáška 3.			
	3.1	Homomorfismy a izomorfismy	3	
	3.2	Aplikace teorie grup v kryptografii)	
4	Přednáška 4.		3	
5	Přednáška 5.		3	

Abstract

Definice, pojmy a znalosti z předmětu NI-MPI. Odkaz na courses.

^{*}z přednášek NI-MPI/FIT/ČVUT

1 Přednáška 1.

Grupoid, grupa, Cayleyho tabulka; podgrupa

1.1 Úvod

Věta 1.1: Pro všechna $b, c \in R \setminus \emptyset$ pro rovnici $b \cdot x = c$ existuje právě jedno řešení $x = \frac{c}{b}$

Poznámka: Dvojici (M, \circ) , kde $\circ : M \times M \to M$, \circ je asociativní na M, neutrální prvek náleží M a pro každý prvek M inverzní prvek náleží M, říkáme grupa.

1.2 Hierarchie

Definice 2.1: Grupoid (magma) je uspořádaná dvojice (M, \circ) , kde M je neprázdná množina a \circ je binární operace na M.

- Pologrupa (semigrupa) je grupoid (M, \circ) , kde operace \circ je asociativní pro všechny prvky M.
- Monoid je pologrupa (M, \circ) , kde $\exists e, \forall a, e, a \in M$,

$$a \circ e = e \circ a = a$$

.

• Grupa je monoid (M, \circ) a $e \in M$ je neutrální prvek, kde $\forall a \exists a^{-1}, e, a \in M$,

$$a \circ a^{-1} = a^{-1} \circ a = e$$

.

• Komutativní (abelovská) grupa je grupa (M, \circ) , kde operace \circ je komutativní na M.

Poznámka: O množině Mmluvíme také jako o nosiči grupy (M,\circ)

Poznámka: Binární operace je $na\ M$ což znamená, že $\circ: M \times M \to M$, také můžeme říci, že množina M ja uzavřená vůči operaci \circ .

1.3 Neutrální a inverzní prvky

Věta 4.1: V monoidu existuje právě jeden neutrální prvek.

Věta 4.2: V grupě má každý prvek právě jeden inverzní prvek.

1.4 Znázornění grup

Poznámka: Pokud má množina M konečný počet prvků, pak strukturu dvojic (M, \circ) , lze kompletně zachytit Cayleyho tabulkou. Cayleyho tabulka pro $(M, \circ), |M| = n$ je tabulka $n \times n$, kde záhlaví sloupců i řádků jsou stejně seřazené prvky M, políčko $p_{a,b}$ pro a-tý řádek a b-tý sloupec má hodnotu $a \circ b$

Poznámka: Latinský čtverec pro n prvkovou množinu M je tabulka $n \times n$, kde v každém řádku a sloupci, je každý prvek M právě jednou.

Věta 5.2: Cayleyho tabulka každé grupy tvoří latinský čtverec.

Věta 5.3: V každé grupě (M, \circ) jde jednoznačně dělit. Tzn. $\forall a, b \in M$ mají rovnice

$$a \circ x = b, y \circ a = b$$

jediné řešení.

Poznámka: Grupu (M, \circ) s konečným počtem prvků M lze vizualizovat pomocí textitCayleyho orientovaného grafu. Cayleyho orientovaný graf

$$(V, E), V = M, E = \{(a, b) : b = a \circ c, \forall a \in M, \forall c \in N \subset V\}$$

2 Přednáška 2.

dodělávka Algebry I; Algebra II : podgrupy; Lagrangeova věta; cyklické grupy

2.1 Podgrupy

Poznámka: Hledáme-li podgrupu (N, \circ) grupy (M, \circ) tak aby obsahovala prvek m, těleso musí zůstat grupou, proto musí také obsahovat všechny prvky tak, aby množina N byla uzavřená na operaci \circ , dále musí obsahovat neutrální prvek e, a inverzní prvek pro všechny prvky N. Takovou podgrupu nazýváme **podgrupa generovaná množinou** $\{m\}$.

Definice 6.2: Podgrupa (subgroup) (N, \circ) buď grupa $G = (M, \circ)$, podgrupa $H = (N, \circ)$ je libovolná dvojice, kde

- $N \subset M$
- (N, \circ) je grupa.

Poznámka: Každá grupa (M, \circ) , kde $|M| \ge 2$ má vždy podrgrupy

- $(\{e\}, \circ), e \in M$
- $(N, \circ), N = M$

těmto dvěma podgrupám říkáme **triviální podgrupy**. Ostatní podgrupy nazýváme **valstní (proper)**.

Věta 6.3: Buď grupa $G=(M,\circ)$, pro každé i z indexové množiny I buď H_i podgrupa G, pak

$$H' = \bigcap_{i \in I} H_i$$

je také podgrupa G.

Věta 6.4: Buď grupa $G = (M, \circ), N \subset M \wedge N \neq \emptyset$, pak libovolná dvojice (N, \circ) je podgrupa právě tehdy když

$$\forall a, b \in N, a \circ b^{-1} \in N$$

2.2 Lagrangeova věta

Definice 7.1 Řád (order): **Řádem grupy** $G = (M, \circ)$ nazýváme počet prvků M, jeli počet prvků nekonečný, i řád je nekonečný, podle řádů rozdělujeme grupy na **konečné** a **nekonečné**. Řád grupy G značíme #G (nebo také |G| = ord(G)).

Věta 7.3 Lagrangeova: Buď $H=(N,\circ)$ podgrupa konečné grupy $G=(M,\circ)$, potom řád H dělí řád G.

Věta 7.4 Sylowova: Buď grupa konečná G řádu n a p prvočíselný dělitel n. Pokud p^k dělí n (pro k přírozená), potom existuje podgrupa G řádu p^k . (Pro k=1 též Cauchyho věta).

2.3 Generující množiny a generátor grup

Věta 8.1 Buď grupa $G = (M, \circ)$ a $N \subset M \land N \neq \emptyset$, pak množina

$$\langle N \rangle = \bigcap \{ H : H \text{ je podgrupa grupy } G \text{ obsahující } N \}$$

spolu s operací o tvoří podgrupu grupy Gobsahující prvekN.

Věta 8.2 Podgrupu $\langle N \rangle$ grupy $G = (M, \circ), N \subset M \land N \neq \emptyset$ nazýváme **podgrupou generovanou množinou** N. O množinu N pak nazýváme jako **generující množinu** grupy $\langle N \rangle$. V případě jednoprvkové generující

množiny zavádíme značení $\langle a \rangle = \langle \{a\} \rangle$ nazýváme jednoprvkovou množinu **generátor** grupy $\langle a \rangle$.

Poznámka: Pro grupu $G=(M,\circ)$ s neutrálním prvkem $e\in M$ pro každý prvek $g\in M$ a $n\in\mathbb{N}$ zavádíme n-tou a -n-tou mocninu takto.

$$g^{0} = e$$

$$g^{1} = g$$

$$g^{2} = g \circ g$$

$$g^{n} = g \circ g \circ g \dots \circ g \quad (n\text{-krát})$$

$$g^{-2} = g^{-1} \circ g^{-1}$$

$$g^{-n} = (g^{-1})^{n}$$

Věta 8.5 Buď grupa $G=(M,\circ)$ a podmnožina $N\subset M\wedge N\neq\emptyset$, potom všechny prvky grupy $\langle N\rangle$ lze získat pomocí grupového obalu

$$\langle N \rangle = \{a_1^{k_1} \circ a_2^{k_2} \circ \dots a_n^{k_n} \circ : n \in \mathbb{N}, k_i \in \mathbb{Z}, a_i \in N\}$$

Důsledek: $\langle N \rangle = \{ a^k : k \in \mathbb{Z} \}$

2.4 Cyklické grupy

Věta 9.1 Grupa \mathbb{Z}_n^+ je rovna $\langle k \rangle, k \in mathbbZ_n^+$ tehdy a jen tehdy, když k a n jsou nesoudělná čísla.

Definice 9.4 Cyklická grupa (cyclic group) Grupa $G=(M,\circ)$ se nazývá cyklická, pokud existuje $a\in M, \langle a\rangle=G$. Prvek a se nazývá generátor cyklické grupy G.

Definice 9.5 Buď g prvek grupy $G = (M, \circ)$, existuje-li $m \in \mathbb{N}$ takové, že $g^m = e$, pak nejmenší takové m nazýváme **řádem prvku g**. Neexistuje-li takové m, pak prvek g má řád nekonečno. Řád prvku g značíme ord(g).

 $\mathbf{Poznámka}$ Rád prvku gse rovná řádu množiny generované g, platí tedy rovnost

$$ord(g) = \#\langle g \rangle$$

Dále platí, že $g^k = e \Leftrightarrow k = l \cdot ord(g), l \in \mathbb{Z}$

Věta 9.6 Grupa \mathbb{Z}_n^{\times} je cyklická právě tehdy když $n\in\{2,4,p^k,2p^k\},k\in\mathbb{N}$ a p je liché prvočíslo.

Poznámka Obecně najít generátor grupy není jednoduché, (třeba pro grupy \mathbb{Z}_n^{\times}). Pokud však jeden známe, je jednoduché najít všechny ostatní.

Věta 9.7 Je-li $G=(M,\circ)$ cyklická grupa řádu n a a nějaký její generátor. Potom a^k je také její tehdy a jen tehdy, když n a k jsou nesoudělné, tedy $\gcd(n,k)=1$

!!! Důkaz !!! brutus

Poznámka $\varphi(n)$ je Eulerova funkce, každému $n \in \mathbb{N}$ přiřazuje počet menších přirozených čísel, která jsou s ním nesoudělná.

Věta 9.8 V cyklické grupě řádu n je počet generátorů roven $\varphi(n)$.

Věta 9.9 Libovolná podgrupa cyklické grupy je opět cyklická grupa.

2.5 (Malá) Fermatova věta

Věta 10.1 V grupě $G = (M, \circ)$ řádu n pro libovolný prvek $a \in M$ platí $a^n = e$, kde e je neutrální prvek.

Poznámka Grupa \mathbb{Z}_p^{\times} je cyklická a řádu p-1.

Věta 10.2 Pro libovolné p a libovolné 1 < a < p

$$a^{p-1} \equiv 1 \pmod{p}$$
. $(a^n \equiv a \pmod{p})$

3 Přednáška 3.

3.1 Homomorfismy a izomorfismy

Definice 11.1 Bud $G = (M, \circ_G), H = (N, \circ_H)$ dva grupoidy, zobrazení $h: M \to N$, nazveme **homomorfismem G do H**, jestliže

$$\forall a, b \in M, h(a \circ_G b) = h(a) \circ_H h(b)$$

Je-li navíc h injektivní, resp. surjektivní, resp. bijektivní, říkáme, že jde o monomorfismus, resp. epimorfismus, resp. izomorfismus.

Definice 11.2 Grupy $G = (M, \circ_G), H = (N, \circ_H)$ nazýváme **izomorfní**, právě tehdy když existuje izomorfismus $h : M \to N$, také říkáme, že G je izomorfní s H.

Poznámka: vlastnost dvou grup být izomorfní je relace ekvivalence na množině všech grup.

Věta 11.3: buď homomorfismus grupy $G = (M, \circ_G)$ do grupoidu $H = (N, \circ_H) \ h : M \to N$, potom $h(G) = (h(M), \circ_H) grupa$

- 3.2 Aplikace teorie grup v kryptografii
- 4 Přednáška 4.
- 5 Přednáška 5.