MPI: Microprocessors and Interfacing Academic Year: 2021 - 22

Dr. Praveen Kumar Alapati praveenkumar.alapati@mechyd.ac.in

Department of Computer Science and Engineering Ecole Centrale School of Engineering

CS309: Lab-6 (Due Date: November 7, 2021)

- Write an assembly language program (8086) to sort n numbers $(n \ge 10)$ using Merge-Sort
- Write an assembly language program to sort n numbers $(n \ge 10)$ using Quick-Sort.

CS309: Lab-5 (Due Date: October 20, 2021)

- Write an assembly language program (8086) to perform the addition of two *n*-byte numbers (n > 10) and store the result in third one.
- Write an assembly language program to sort $n \ (n > 10)$ numbers using selection sort.
- **Bonus**: Write an assembly language program to find the factorial of *n*, where n > 10.

CS309: Lab-4 (Due Date: October 11, 2021)

- Write an assembly language program (8086) to find the addition to two 3 X 3 matrices.
- Write an assembly language program to perform the multiplication to two 3×3 matrices.

Lab3- Due Date: September 26, 2021

- Write an Assembly Language Program (ALP) to count the number of even numbers from a given series of 8-bit hexadecimal numbers. Assume that number of elements in that series is ten.
- We are given with a series of 8-bit signed numbers (represented using hexadecimal notation). Write an ALP to count the number of values > 0, < 0, and = 0. Assume that number of elements in that series is twenty.
- We are given with a series of 8-bit signed numbers (represented using hexadecimal notation). Assume that number of elements in that series is sixteen. Write an ALP to find the parity of each number: odd parity should be represented using 01 and even parity using 00.

Lab2- Due Date: September 11, 2021

- Write one page report on MASM assembler.
- Install MASM assembler in your System.
- Write assembly language programs to compute the following (use MASM assembler).
 - Addition of 5 Integers
 - Multiplication of 3 Integers
 - Sevaluate $1 + x + x^2 + x^3 + ... + x^n$ (Assume that x and n are positive integers)

Note: Properly handle all corner cases and clearly state all your assumptions.

Sample C Code

```
// Example1: Addition (eg1.c)
#define A 10
#define B 20
int main(){
int a=A;
int b=B;
a=a+b;
return a;
}
```

Table 1: Addition of Two Integers

```
// Example2: Addition (eg2.c)
#include<stdio.h>
#define A 10
#define B 20
int main(){
int a=A:
int b=B:
a=a+b:
printf("Result is %d",a);
return a:
```

Table 2: Addition of Two Integers

```
\begin{array}{l} gcc \text{ -E eg1.c} > eg1.i \\ gcc \text{ -S eg1.i} > eg1.s \\ as eg1.s \text{ -o eg1.o} \\ gcc \text{ -o eg1.exe eg1.o} \\ ./eg1.exe \end{array}
```

Lab1 - Due date: September 1, 2021.

Develop C-Programs for the following problem statements and generate assembly code using that C-code.

- Print the internal representation (2's complement form) of data stored in primary data types (int, float, and double).
- Perform addition and multiplication of two 32-bit numbers (Please remember that the input is 32-bit binary number). The numbers can either be integers or real numbers. Assume that the integers are represented in 2's complement form and the real numbers are represented using single-precision IEEE 754 standard.
- Convert a decimal number into an equivalent BCD number, and vice versa.

8 / 19

Submission Guide Lines

- ► Max. team size is 3.
- ► Mail-ID: cs309.mpi.2021@gmail.com
- Sub:TEAM_NUM_LAB1/_ASSIGN1
- Attach.Name and Type: (Sub.).zip
- ► Late Submission<=3-Days:50%.
- Write a readme file to understand your solutions.

Number Systems

- Representation of Integer Numbers
 - Signed Magnitude Representation
 - ▶ 1's Complement Representation
 - 2's Complement Representation
- Representation of Real Numbers
 - Fixed Point Representation
 - ► Floating Point Representation

Resolution is difference between two successive numbers.

Representation of Integer Numbers

Let $A = a_{n-1}a_{n-2}a_{n-3}...a_0$ is an n-bit binary number if A is an **unsigned integer**, then value of A is : $\sum_{i=0}^{n-1} (2^i \times a_i)$. if A is a **signed integer**:

- Signed Magnitude Representation:
 - $A = \sum_{i=0}^{n-2} (2^i \times a_i)$, if $a_{n-1} = 0$
 - $A = -\sum_{i=0}^{n-2} (2^i \times a_i)$, if $a_{n-1} = 1$
- ▶ 1's Complement Rep.: $A = -(2^{n-1} 1) \times a_{n-1} + \sum_{i=0}^{n-2} (2^i \times a_i)$
- ightharpoonup 2's Complement Rep.: A $= -2^{n-1} imes a_{n-1} + \sum_{i=0}^{n-2} (2^i imes a_i)$

Resolution: 1

Range of Numbers

Let $A = a_{n-1}a_{n-2}a_{n-3}...a_0$ is an n bit binary number if A is an **unsigned integer**, then range of A is : 0 to $(2^n - 1)$. if A is a **signed integer**:

- ► Signed Magnitude Rep., range of A is : $-(2^{n-1}-1)$ to $(2^{n-1}-1)$.
- ▶ 1's Complement Rep., range of A is : $-(2^{n-1}-1)$ to $(2^{n-1}-1)$.
- ▶ 2's Complement Rep., range of A is : -2^{n-1} to $(2^{n-1}-1)$.

Add additional bit positions to the left and fill in with value of the sign bit. Let $A=1\ 0\ 1\ 0$ is a 4-bit binary number, Representation of A using 8-bits (i.e. B): $1\ 1\ 1\ 1\ 0\ 1\ 0$. is $A=B\ ?$

- ► In 2's Complement Rep.: Yes.
- ► In 1's Complement Rep.: Yes.
- In Signed Magnitude Rep.: No.

Add additional bit positions to the left and fill in with value of the sign bit. Let $A=1\ 0\ 1\ 0$ is a 4-bit binary number, Representation of A using 8-bits (i.e. B): $1\ 1\ 1\ 1\ 0\ 1\ 0$. is $A=B\ ?$

- ► In 2's Complement Rep.: Yes.
- In 1's Complement Rep.: Yes.
- In Signed Magnitude Rep.: No.

Add additional bit positions to the left and fill in with value of the sign bit. Let $A=1\ 0\ 1\ 0$ is a 4-bit binary number, Representation of A using 8-bits (i.e. B): $1\ 1\ 1\ 1\ 0\ 1\ 0$. is $A=B\ ?$

- ► In 2's Complement Rep.: Yes.
- In 1's Complement Rep.: Yes.
- In Signed Magnitude Rep.: No.

Add additional bit positions to the left and fill in with value of the sign bit. Let $A = 1 \ 0 \ 1 \ 0$ is a 4-bit binary number, Representation of A using 8-bits (i.e. B): $1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0$. is $A = B \ ?$

- ► In 2's Complement Rep.: Yes.
- ► In 1's Complement Rep.: Yes.
- In Signed Magnitude Rep.: No.

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

Representations 5 to 8 are called Normalized Representations.

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

Representations 5 to 8 are called Normalized Representations.

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxx' is a **Fraction/Mantissa**.

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

- $(4.5)_{10} = (100.1)_2$
- $(8.25)_{10} = (1000.01)_2$
- $(16.125)_{10} = (10000.001)_2$
- $(0.875)_{10} = (0.111)_2$
- $(4.5)_{10} = (1.001)_2 \times 2^2$
- $(8.25)_{10} = (1.00001)_2 \times 2^3$
- $(16.125)_{10} = (1.0000001)_2 \times 2^4$
- $(0.875)_{10} = (1.11)_2 \times 2^{-1}$

Representations 5 to 8 are called Normalized Representations.

Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.

Fixed Point (FP) Representation

Find the decimal equivalent of the following binary numbers. Assume that the binary numbers are represented using FP representation (6,2), i.e., 6 bits for integer part and 2 bits for fractional part.

- $(00101011)_2 = ?$
- $(11111011)_2 = ?$

Smallest +ve number that can be represented using FP (6,2) rep.: **?** Biggest +ve number that can be represented using FP (6,2) rep.: **?**

Fixed Point Arithmetic

Consider a 16-bit binary representation, in which least significant 8 bits are used for precision then give the range of values that can be represented using the 16-bit representation.

- +ve Values: 2^{-8} to $2^7 2^{-8}$
- -ve Values: -2^7 to -2^{-8}
- Zero
- ► Resolution is ?

Advantages of FP Arithmetic:

- Easy to implement and occupies less space.
- If performance is important than precision.
- Once can choose a trade off between range and precision.

Fixed Point Arithmetic

Consider a 16-bit binary representation, in which least significant 8 bits are used for precision then give the range of values that can be represented using the 16-bit representation.

- \rightarrow +ve Values: 2^{-8} to $2^{7} 2^{-8}$
- -ve Values: -2^7 to -2^{-8}
- Zero
- ► Resolution is ?

Advantages of FP Arithmetic:

- Easy to implement and occupies less space.
- ▶ If performance is important than precision.
- Once can choose a trade off between range and precision.

IEEE 754 format for Real Numbers.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits E	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits Bi	as Value :+1023

Biased Exponent=True Exponent + Bias Value

- Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- ightharpoonup Sign= + ve = 0

IEEE 754 format for Real Numbers.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits E	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits Bi	as Value :+1023

Biased Exponent=True Exponent + Bias Value

▶ Rep. of $(4.5)_{10}$ using Single Precision

$$(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$$

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.

- ▶ Biased Exponent = 2 + 127 = 129 = 10000001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- ightharpoonup Sign= + ve = 0

IEEE 754 format for Real Numbers.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits E	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits Bi	as Value :+1023

Biased Exponent=True Exponent + Bias Value

Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxx' is a **Fraction/Mantissa**.

- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- ightharpoonup Sign= + ve = 0

IEEE 754 format for Real Numbers.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits E	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits Bid	as Value :+1023

Biased Exponent=True Exponent + Bias Value

- Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a**True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- ightharpoonup Sign= + ve = 0

IEEE 754 format for Real Numbers.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits	Bias Value :+1023

Biased Exponent=True Exponent + Bias Value

- Rep. of (4.5)₁₀ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a Fraction/Mantissa.
- Biased Exponent = $2 + 127 = 129 = 1000 \ 0001$

IEEE 754 format for Real Numbers.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits B	ias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits Bia	as Value :+1023

Biased Exponent=True Exponent + Bias Value

- Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a**True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- lacksquare Biased Exponent $= 2 + 127 = 129 = 1000 \ 0001$
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- ightharpoonup Sign= + ve = 0

IEEE 754 format for Real Numbers.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits B	ias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits Bia	as Value :+1023

Biased Exponent=True Exponent + Bias Value

- PRep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- ightharpoonup Sign= + ve = 0

IEEE 754 format for Real Numbers.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits B	ias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits Bia	as Value :+1023

Biased Exponent=True Exponent + Bias Value

- Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ightharpoonup Mantissa = $001 = 0010000 \ 0000 \ 0000 \ 0000 \ 0000$
- ightharpoonup Sign= + ve = 0

IEEE 754

- ▶ Biased Exponent=True Exponent + Bias Value, where $1 \le$ Biased Exponent $\le (2^{Length \ of \ Biased \ Exponent} 2)$.
- ▶ Single Precision (N=32), $1 \le$ Biased Exponent \le 254.
- ▶ Biased Exponent = 0,
 - Mantissa = ± 0 , then Value is ± 0 .
 - Mantissa $\neq 0$, then Value is **not a normalized number**.
- Biased Exponent = 255,
 - Mantissa = ± 0 . then Value is $\pm \infty$.
 - Mantissa $\neq 0$, then Value is **NAN**.
- ▶ Range of positive values: $[1.0 \times 2^{-126}, (2-2^{-23}) \times 2^{127}]$
- ► Range of negative values: $[-(2-2^{-23}) \times 2^{127}, -1.0 \times 2^{-126}]$
- ► Single Precision Number Resolution: 2⁻²³ × 2^{TrueExponent}

BCD Representation

BCD: Binary Coded Decimal

It uses a 4-bit binary number to represent each decimal digit.

Decimal Number	BCD Rep.
0	0000
1	0001
2	0010
3	0011
9	1001
10	0001 0000
25	0010 0101
99	1001 1001

Table 3: BCD equivalent of a decimal number.