HWI-4:

2 Matching grophe to thin functions. Ez

3
$$y=2^n$$
; suffect over $y=4$
 $f(n)=-2+8$

Now reflect over n=2

- (4) 8^{6n-1} 7^{-6n} as $8^{f(n)}$ then f(n) = 6n-1 + 7-6n f(n) = n+6
- (344) as 3 then $f(u) = 8u^2$

6)
$$\frac{e^{2t}}{e^{2t}}$$
 as $e^{f(u)}$ then $f(u) = -3$

(7)
$$(0,10)$$
 & $(4,100)$
 $f(x) = lineal function$
 $m = \frac{\Delta y}{\Delta x} = \frac{100-10}{y-0} = \frac{90}{4}$
 $y = \frac{90}{y}$ who; $100 = 90$ + 100 =

(a)
$$f(u) = \text{exponential func}$$

$$f(u) = ab^{\alpha}$$

$$10 = ab^{\alpha} + 100 = ab^{\alpha}$$

$$f(u) = ab^{\alpha} + 100 = ab^{\alpha}$$

8 Al-1,=\frac{2}{3}\frac{4}{3}(1,76)\text{ points}

$$f(x) = ba^{n}$$

 $= \frac{2}{3} = ba^{2}; -6 = ba$
 $= \frac{2}{3} = \frac{b}{a}; -6 = ba$
 $-6 = (-\frac{3}{2}b)b: b = \pm 2$
 $a = -\frac{3}{2}(2) = \frac{1}{3}o43$
Poesible: $f(x) = a(-3)^{n}$ or $f(x) = -2(3)^{n}$

matches graph

- 9 given conditions then
 of the question: $f(x) = 1000(2)^{\frac{1}{5}} 2$
 - (1) eize after 15 hauss f(15)=1000(50)=8000
 - @ eize after 19 hanne 1000(2) = 13928.8
- (10) Griew: Points: (0,1000) f(w) = 1000 an+c
 - @ linear functionflun: \$(n)=90+1000 J exponential
 - (i, 0.09(1000))

 f(x)=1000(1.09)t)