STATISTIQUES À DEUX VARIABLES E03

EXERCICE N°1

Depuis 2012, une étude a établi que le montant moyen des achats en ligne en France y (en euros) suivant l'année x est donné par la relation y=-4,3x+8740. Si ce modèle d'ajustement reste fiable encore quelques années :

- 1) Estimer le montant moyen des achats en ligne en 2021.
- 2) Estimer en quelle année le montant moyen des achats en ligne deviendra inférieur à 45 €.

EXERCICE N°2

On a relevé, de l'année 2010 à l'année 2019, le nombre licences sportives N délivrées dans une ville suivant l'année x. On estime que la droite d'équation N=1 12x-216540 fait un bon ajustement affine de la situation. Si ce modèle d'ajustement reste fiable encore quelques années:

- 1) Estimer le nombre de licences sportives délivrée cette ville en 2025.
- 2) Estimer en quelle année le nombre de licences sportives délivrées dans cette ville dépassera 10000.

EXERCICE N°3

Une population de bactéries placées dans un liquide se multiplie. On a étudié pendant 6 heures l'évolution du nombre N de bactéries, en millions, en fonction du temps t, en heures.

On estime que la droite d'équation N=9,26t+1,5 fait un bon ajustement affine de la situation.

Si ce modèle d'ajustement reste fiable encore quelques heures :

- 1) Estimer le nombre de bactéries au bout d'un jour.
- 2) Estimer au bout de combien d'heures le nombre de bactéries dépassera 100 000 000.

EXERCICE Nº4

Afin d'orienter ses investissements, une petite chaîne d'hôtels réalise des analyses sur le taux d'occupation des chambres. Elle établit un lien entre le taux d'occupation, exprimé en %, et le montant des frais de publicité :

On donne ci-contre le nuage de points obtenu pour cette étude ainsi qu'une droite Δ fournissant un bon ajustement affine de ce nuage.

- 1) Estimer graphiquement le taux d'occupation espéré pour un budget publicitaire de 48 000€.
- 2) Estimer graphiquement le montant des frais de publicité laissant espérer un taux d'occupation de 80 %.
- 3) On admet que Δ a pour coefficient directeur 1,03 et passe par le point A(10;11,73). Déterminer l'équation réduite de la droite Δ puis retrouver les résultats obtenus aux questions 1) et 2) par le calcul.

EXERCICE N°5

Un hypermarché propose à ses clients six modèles d'ordinateurs portables. Il réalise une étude sur le volume des ventes suivant le prix de vente de ce produit. Voici les résultats :

Prix de l'ordinateur x_i (en \in)	300	350	400	450	500	600
Nombre d'unités vendues y_i	210	190	160	152	124	102

- 1) Représenter le nuage de points dans un repère orthogonal (unités graphiques: 1 cm pour 50€ sur l'axe des abscisses et 1 cm pour 10 unités sur l'axe des ordonnées en prenant pour origine le point de coordonnées (250; 100)).
- 2) Calculer les coordonnées du point moyen G du nuage.
- 3) Déterminer la droite d'ajustement par la méthode des moindres carrées (Calculatrice!).
- 4) La direction souhaite proposer un nouveau modèle à la vente, au prix de 430 €. Déterminer graphiquement une estimation du nombre de ventes de ce nouveau modèle.

STATISTIQUES À DEUX VARIABLES E03

EXERCICE N°1

Depuis 2012, une étude a établi que le montant moyen des achats en ligne en France y (en euros) suivant l'année x est donné par la relation y=-4,3x+8740. Si ce modèle d'ajustement reste fiable encore quelques années :

- 1) Estimer le montant moyen des achats en ligne en 2021.
- 2) Estimer en quelle année le montant moyen des achats en ligne deviendra inférieur à 45 €.

EXERCICE N°2

On a relevé, de l'année 2010 à l'année 2019, le nombre licences sportives N délivrées dans une ville suivant l'année x. On estime que la droite d'équation N=1 12x-216540 fait un bon ajustement affine de la situation. Si ce modèle d'ajustement reste fiable encore quelques années:

- 1) Estimer le nombre de licences sportives délivrée cette ville en 2025.
- 2) Estimer en quelle année le nombre de licences sportives délivrées dans cette ville dépassera 10000.

EXERCICE N°3

Une population de bactéries placées dans un liquide se multiplie. On a étudié pendant 6 heures l'évolution du nombre N de bactéries, en millions, en fonction du temps t, en heures.

On estime que la droite d'équation N=9,26t+1,5 fait un bon ajustement affine de la situation.

Si ce modèle d'ajustement reste fiable encore quelques heures :

- 1) Estimer le nombre de bactéries au bout d'un jour.
- 2) Estimer au bout de combien d'heures le nombre de bactéries dépassera 100 000 000.

EXERCICE Nº4

Afin d'orienter ses investissements, une petite chaîne d'hôtels réalise des analyses sur le taux d'occupation des chambres. Elle établit un lien entre le taux d'occupation, exprimé en %, et le montant des frais de publicité :

On donne ci-contre le nuage de points obtenu pour cette étude ainsi qu'une droite Δ fournissant un bon ajustement affine de ce nuage.

- 1) Estimer graphiquement le taux d'occupation espéré pour un budget publicitaire de 48 000€.
- 2) Estimer graphiquement le montant des frais de publicité laissant espérer un taux d'occupation de 80 %.
- 3) On admet que Δ a pour coefficient directeur 1,03 et passe par le point A(10;11,73). Déterminer l'équation réduite de la droite Δ puis retrouver les résultats obtenus aux questions 1) et 2) par le calcul.

EXERCICE N°5

Un hypermarché propose à ses clients six modèles d'ordinateurs portables. Il réalise une étude sur le volume des ventes suivant le prix de vente de ce produit. Voici les résultats :

Prix de l'ordinateur x_i (en \in)	300	350	400	450	500	600
Nombre d'unités vendues y_i	210	190	160	152	124	102

- 1) Représenter le nuage de points dans un repère orthogonal (unités graphiques: 1 cm pour 50€ sur l'axe des abscisses et 1 cm pour 10 unités sur l'axe des ordonnées en prenant pour origine le point de coordonnées (250; 100)).
- 2) Calculer les coordonnées du point moyen G du nuage.
- 3) Déterminer la droite d'ajustement par la méthode des moindres carrées (Calculatrice!).
- 4) La direction souhaite proposer un nouveau modèle à la vente, au prix de 430 €. Déterminer graphiquement une estimation du nombre de ventes de ce nouveau modèle.