

**Advanced Molecular Detection Southeast Region Bioinformatics** 

### R ggplot2

### **Updates**

#### What's ahead?

#### **Update-**

NF Tower purchase is approved by FDOH

#### **Office Hour-**

- September 30 ggtree
- October 14 To be determined



# ggplot2 Overview



#### **Synopsis**

- An R package which allows the user to create graphs by mapping data variables
- Strictly follows The Grammar of Graphics
- Access to wide range of plots



**Overall Code:** ggplot(usedata, aes(x=numN, y=mean\_depth, color= percent\_ref\_genome\_cov)) + geom\_point(size=5)+ labs(title="Numbers of N and Mean Depth of Samples Relationship", x= "Number of N", y="Mean Depth", color="Percent reference genome Identity")+ theme\_classic()





3<sup>rd</sup> Variable or Color Scheming (Reference to the Legend)= aes(color=percent\_ref\_genome\_cov)

## Grammar of Graphics

**Overall Code:** ggplot(usedata, aes(x=numN, y=mean\_depth, color= percent\_ref\_genome\_cov)) + geom\_point(size=5)+ labs(title="Numbers of N and Mean Depth of Samples Relationship", x= "Number of N", y="Mean Depth", color="Percent reference genome Identity")+ theme\_classic()





## How Do We Begin?

#### Installation-

Option 1: Install.packages("ggplot2")

Or

Option 2: Install.packages("tidyverse")

**Load Package From Option 1 or 2-**

library("...")

Load and Modify (if needed) Dataset-

For example: usedata<-read\_csv("Tampa\_Dengue\_TL\_report.csv")

#### **Generate the Plot-**

**Overall Code:** ggplot(usedata, aes(x=numN, y=mean\_depth, color= percent\_ref\_genome\_cov)) + geom\_point(size=5)+ labs(title="Numbers of N and Mean Depth of Samples Relationship", x= "Number of N", y="Mean Depth", color="Percent reference genome Identity")+ theme\_classic()



### **Applications**

**Overall Code:** ggplot(usedata, aes(x=numN, y=mean\_depth, color= percent\_ref\_genome\_cov)) + geom\_point(size=5)+ labs(title="Numbers of N and Mean Depth of Samples Relationship", x= "Number of N", y="Mean Depth", color="Percent reference genome Identity")+ theme\_classic()

**Example 1:** ggplot(usedata, aes(x=numN, y=mean\_depth, size= percent\_ref\_genome\_cov)) + geom\_point(color="Red")+ labs(title="Numbers of N and Mean Depth of Samples Relationship", x= "Number of N", y="Mean Depth", size="Percent Reference Genome Identity") + theme\_classic()

**Example 2:** ggplot(usedata, aes(x=numN, y=mean\_depth, color=percent\_ref\_genome\_cov)) + geom\_point()+ geom\_smooth(method = "lm", se=FALSE, color="Orange")+ labs(title="Numbers of N and Mean Depth of Samples Relationship",x= "Number of N", y="Mean Depth") + scale\_color\_gradient(low="blue",high = "red")+ theme\_minimal()

**Example 3:** ggplot(usedata, aes(x=numN, y=mean\_depth)) + geom\_point()+ facet\_wrap(~percent\_ref\_genome\_cov)+ labs(title="Numbers of N and Mean Depth of Samples Relationship",x= "Number of N", y="Mean Depth") + theme\_minimal()

**Example 4:** ggplot(usedata, aes(x=numN, y=mean\_depth, color=percent\_ref\_genome\_cov)) + geom\_point(size=5)+ facet\_wrap(~percent\_ref\_genome\_cov) + labs(title="Numbers of N and Mean Depth of Samples Relationship",x= "Number of N", y="Mean Depth", color="Percent Reference Genome Identity")+ theme\_minimal()+ scale\_color\_gradient(low="blue",high = "red")



**Example 5:** ggplot(usedata, aes(x=numN, y=mean\_depth))+geom\_jitter(aes(color=percent\_ref\_genome\_cov, width=0.2,size=3))+ geom\_area(position = "stack",fill="black",size=1)+ scale\_color\_gradient(low="blue",high = "red")+theme\_minimal()

**Example 1:** ggplot(usedata, aes(x=numN, y=mean\_depth, size= percent\_ref\_genome\_cov)) + geom\_point(color="Red")+ labs(title="Numbers of N and Mean Depth of Samples Relationship", x= "Number of N", y="Mean Depth", size="Percent Reference Genome Identity") + theme\_classic()





**Example 2:** ggplot(usedata, aes(x=numN, y=mean\_depth, color=percent\_ref\_genome\_cov)) + geom\_point()+ geom\_smooth(method = "lm", se=FALSE, color="Orange")+ labs(title="Numbers of N and Mean Depth of Samples Relationship",x= "Number of N", y="Mean Depth") + scale\_color\_gradient(low="blue",high = "red")+ theme\_minimal()





**Example 3:** ggplot(usedata, aes(x=numN, y=mean\_depth)) + geom\_point()+ facet\_wrap(~percent\_ref\_genome\_cov)+ labs(title="Numbers of N and Mean Depth of Samples Relationship",x= "Number of N", y="Mean Depth") + theme\_minimal()





**Example 4:** ggplot(usedata, aes(x=numN, y=mean\_depth, color=percent\_ref\_genome\_cov)) + geom\_point(size=5)+ facet\_wrap(~percent\_ref\_genome\_cov) + labs(title="Numbers of N and Mean Depth of Samples Relationship",x= "Number of N", y="Mean Depth", color="Percent Reference Genome Identity")+ theme\_minimal()+ scale\_color\_gradient(low="blue",high = "red")





**Example 5:** ggplot(usedata, aes(x=numN, y=mean\_depth))+geom\_jitter(aes(color=percent\_ref\_genome\_cov, width=0.2,size=3))+ geom\_area(position = "stack",fill="black",size=1)+ scale\_color\_gradient(low="blue",high = "red")+theme\_minimal()





### Conclusion

- Able to understand the conceptional aspect of ggplot2 and the purpose of The Grammar of Graphics
- Brief overview on how to simply plot a graph on ggplot2
- Different applications uses from the modification of the original R code.





# Advanced Molecular Detection Southeast Region Bioinformatics

**Questions?** 

<u>bphl-sebioinformatics@flhealth.gov</u>

Molly Mitchell, PhD
Bioinformatics Supervisor
Molly.Mitchell@flhealth.gov

Nikhil Reddy, MS
Bioinformatician
Nikhil.Yengala@flhealth.gov

Sam Marcellus, MPH
Bioinformatician
Samantha.marcellus@flhealth.gov