Problem Set 7

D. Zack Garza

October 26, 2019

Contents

1	Reg	ular Pro	blems																			1
	1.1	Proble	m 1																			1
		1.1.1	Case 1:	p = q																		2
		1.1.2	Case 2:	p > q																		2
		1.1.3	Case 3:	q > p																		2
	1.2	Proble	m 2																			2
_	_																					_
2 Qual Problems													3									

1 Regular Problems

1.1 Problem 1

Note that if either p=1 or q=1, G is a p-group, which is a nontrivial center that is always normal. So assume $p \neq 1$ and $q \neq 1$.

We want to show that G has a non-trivial normal subgroup. Noting that $\#G = p^2q$, we will proceed by showing that either n_p or n_q must be 1.

We immediately note that

$$n_p \equiv 1 \mod p$$

$$n_q \equiv 1 \mod q$$

$$n_p \mid q \qquad \qquad n_q \mid p^2,$$

which forces

$$n_p \in \{1, q\}, \quad n_1 \in \{1, p, p^2\}.$$

If either $n_p = 1$ or $n_q = 1$, we are done, so suppose $n_p \neq 1$ and $n_1 \neq 1$. This forces $n_p = q$, and we proceed by cases:

1.1.1 Case 1: p = q.

Then $\#G = p^3$ and G is a p-group. But every p-group has a non-trivial center $Z(G) \leq G$, and the center is always a normal subgroup.

1.1.2 Case 2: p > q.

Here, since $n_p \mid q$, we must have $n_p < q$. But if $n_p < q < p$ and $n_p = 1 \mod p$, then $n_p = 1$.

1.1.3 Case 3: q > p.

Since $n_p \neq 1$ by assumption, we must have $n_p = q$. Now consider sub-cases for n_q :

- $n_q = p$: If $n_q = p = 1 \mod q$ and p < q, this forces p = 1.
- $n_q = p^2$: We will reach a contradiction by showing that this forces

$$\left| P \coloneqq \bigcup_{S_p \in \operatorname{Syl}(p,G)} S_p \setminus \{e\} \right| + \left| Q \coloneqq \bigcup_{S_q \in \operatorname{Syl}(q,G)} S_q \setminus \{e\} \right| + |\{e\}| > |G|.$$

We have

$$\begin{split} |P| + |Q| + |\{e\}| &= n_p(q-1) + n_q(p^2 - 1) + 1 \\ &= p^2(q-1) + q(p^2 - 1) + 1 \\ &= p^2(q-1) + 1(p^2 - 1) + (q-1)(p^2 - 1) + 1 \\ &= (p^2q - p^2) + (p^2 - 1) + (q-1)(p^2 - 1) + 1 \\ &= p^2q + (q-1)(p^2 - 1) \\ &\geq p^2q + (2-1)(2^2 - 1) \qquad \text{(since } p, q \geq 2) \\ &= p^2q + 3 \\ &> p^2q = |G|, \end{split}$$

which is a contradiction. \Box

1.2 Problem 2

We'll use the fact that $H \leq N(H)$ for any subgroup H (following directly from the closure axioms for a subgroup), and thus

$$P \leq N(P)$$
 and $N(P) \leq N^2(P)$.

Since it is then clear that $N(P) \subseteq N^2(P)$, it remains to show that $N^2(P) \subseteq N(P)$.

So if we let $x \in N^2(P)$, so x normalizes N(P), we need to show that x normalizes P as well, i.e. $xPx^{-1} = P$.

However, supposing that $|G| = p^k m$ where (p, m) = 1, since $P \leq N(P) \leq G$, we must have

$$p^k \mid |N(P)| \mid p^k m.$$

So in fact $P \in \text{Syl}(p, N(P))$.

Then $P' := xPx^{-1} \in \text{Syl}(p, N(P))$ as well, since all conjugates of Sylow p-subgroups are also Sylow p-subgroups.

But since $P \subseteq N(P)$, there is only one Sylow p- subgroup of N(P), namely P. This forces P = P', i.e. $P = xPx^{-1}$, which says that $x \in N(P)$ as desired. \square

2 Qual Problems