Esperienza di Laboratorio: SEM

Tommaso Raffaelli

2024 - 11 - 25

Contents

1	1 Introduzione		2							
2	Materiali e tecniche sperimentali									
3	B Dati ottenuti		2							
	3.1 Conposizione generale		2							
	3.2 Struttura delle fasi		3							
4	4 Conclusioni		3							

LIST OF FIGURES

1 Introduzione

Dato un campione di Acciaio DUPLEX l'obbiettivo è quello di usare il microscopio elettronico a scansione per individuare le due specie presenti

2 Materiali e tecniche sperimentali

3 Dati ottenuti

3.1 Conposizione generale

Per riuscire ad identificare la composizione generale del campione sono state fatte tre misure su aree diverse in modo che facendo la media delle misurazioni abbiamo una buona idea sulla composizione di tutto il campione.

Table	3.1.	Cam	pionamento	generale	١
IUDIC	J. 1.	Cuili	pionamento	Scholard	•

Element	Atomic_number	Netto	Mass	Mass_Norm	Atom	Campione
Carbon	6	1553	0,00	0	0	1
Aluminium	13	695	0,00	0	0	1
Silicon	14	3255	$0,\!46$	0,47	0,94	1
Chromium	24	136889	24,79	25,62	$27,\!41$	1
Iron	26	218015	59,71	61,46	61,46	1
Nikel	28	21269	8,20	8,47	8,03	1
Molybdenum	42	18145	3,62	3,74	2,17	1

All'interno della tabella possiamo trovare i dati ricavati in particolare ci concentriamo su le colonne: **Element**, **Mass_Norm** e **Campione**. Facendo un grafico a berre possiamo visualizzare come sono distribuite le quantità degli elementi all'interno delle tre aree

3.2 Struttura delle fasi

4 Conclusioni