ICLAB, Autumn 2023 (IEE 535224)

Chen-Yi Lee, cylee@nycu.edu.tw 2023/9/13, 13:20@ED415 Institute of Electronics, NYCU

TSMC Technology Roadmap (1/4)

- Paradigm Shift: from Intel to TSMC
- Who hits the 7nm Wall?

TSMC Technology Roadmap (2/4)

 Ax processors fabricated in tsmc for iPhones, Mac, Pads, ...

TSMC Technology Roadmap (3/4)

Top 10 customers in tsmc

研調:台積電第3季可望超車三星首登全球半導體龍頭

♀ 1 中央社

Over \$20B in 2022/Q3

2022年9月8日 週四 下午12:42

TSMC Technology Roadmap (4/4)

Silicon Wafer Cost

Course Outline

- Design Trend
- Lab Contents
- Lab Items
- Scoring Rules
- Other Issues

(source: MacRumors)

創新科技

顯示器採用全新工藝與科技,精準貼合機身弧度的設計,一直延伸至優雅圓潤的邊角。

Design Trend

2011~2015

Sensing

- + Green Computing
- + Multi-Core
- + Storage

(iSoC)

Transistor

Circuit

Chip Architecture

System and Application

~1985 Bottom-up

1986~2000

Top-down

(ASIC)

(IC)

2001~2010

2016->2020

SiVi

Meet-in-

IoT (Data)

the-middle

AI (Learning)

(SoC)

Smart Sensing + Low Power + Low Energy

- Data generation (IoT) and processing (AI or Learning)
- **Toward Si-Civilization**

Westmere: A Family of 32nm IA Processors (ISSCC'2010->2019)

- The 6-core design has 1.17B transistors including the 12MB shared L3 Cache
- supports new instructions for accelerating encryption/decryption algorithms,
- speeds up performance under virtualized environments, and contains a host of other targeted performance features.
- Al engines for data-driven applications

Westmere: A Family of 32nm IA Processors (ISSCC'2010)

Processor Name	Process Technology	Number of Cores	L3 Cache Size	Die Size	Transistor Count	Core Voltage Range	TDP Range
Nehalem - 4Core	45 nm	4	8 MB	262 mm2	731 Million	0.76V- 1.25V	60-130 Watts
Westmere - 6Core	32 nm	6	12 MB	240 mm2	1.17 Billion	0.72V- 1.20V	60-130 Watts
Westmere - 2Core	32 nm	2	4 MB	78 mm2	384 Million	0.72V- 1.20V	10-50 Watts

Figure 5.1.1: Westmere 6-Core Dual Socket Server and Westmere 2-Core Client Configurations.

Data Processor for AI-based Applications

AI Chip for training and inference (Tsai et.al.,

Image Recognition

Data Classification

Inference

Digit/Text Recognition

Data-Driven

Services

IEEE/JSSC, Oct. 2017).

Intelligent Processors for Bio (1/2)

 New Opportunities for Academic Research/Industrial Applications Toward Better Life

Intelligent Processor for BioMedical Applications (2/2)

ML-Assisted CSP (G3, Hsu et. al, IEEE/JSSC2014)

Lab-on-a-Chip (Li et.al., IEEE/TCAD, TBMCAS)

Deep Learning SoC's (AI)

- De-clouding: intelligence can be achieved in local devices, instead of cloud (data center)
 - See iLi technology.
- Various deep learning chips have been published in conferences/journals
- Performance depends on how many neurons and memory-bandwidth are allowed, especially dealing with real-time tests (inference).
- See iLi Wearable translator in Japan.

Lab Contents (Part-I)

- A Top-Down Design Flow
 - Design methodology
 - CAD tools
- Behavioral (Abstract) Level Design
 - System design
 - Architecture design
 - Logic design
- Front-end simulation and synthesis tools
 - Behavioral correctness in different levels
 - Performance indices
 - testability

Lab Contents (Cont'd)

- Physical Design
 - Floorplanning
 - Placement
 - Routing
- Back-end Simulation and Verification Tools
 - Back annotation
 - Timing closure
 - Manufacturability

– ...

Lectures on Design Issues

- Modern IC Design Flow
 - Learn the current design flow
 - Complete an IC project in reasonable time
- Low-Power Low-Voltage Design
 - Mainly driven by mobile devices due to limited battery life
 - Remain a critical design issue in complex IC's
- Power Integrity in System-Level Design
 - IC design should take package model into account
 - Ensure functional in working environment

Modern IC Design Flow

- Building blocks: IP-based/cell-based functional units, sensors, processors, storage units, I/O interfaces, ...
- Simulation: timing and power
- Verification: equivalence checking
- Testability: design for testing and manufacturing
- Exploit design tools efficiently and effectively

Low-Power Low-Voltage Design

- Mainly for mobile and sensing devices
- Exploit system behavior to reduce computational redundancy (i.e. switching activity)
- Explore architecture to reduce operational frequency and supply voltage
- Investigate circuit topology to save energy
- Innovate electron devices having better Ion/Ioff

Power Integrity in System-Level Design

- Voltage drop will affect timing and hence operational speed V(t) = I(t)*R + C*dv/dt*R + L*di/dt
- Package model should be included in design phase
- Decoupling circuits should be included to reduce dynamic voltage drop
- Apply a set of power pads to minimize transient currents through bonding wires

Scoring Rules and TA's

TA List:

Name	Email	Ext	Office
賴林鴻	hung880417.ee09@nycu.edu.tw	54238	ED430
彭賢齊	jhpeng2012.11@nycu.edu.tw	54238	EIC306
蔡睿煌	erictsai.10@nycu.edu.tw	54238	EIC213
張庭瑜	tim.jeffrey10.ee12@nycu.edu.tw	54238	ED430
翁沐昀	henryrabbit0.st11@nycu.edu.tw	54238	ED430
連紹華	eed0810766.eed08@nctu.edu.tw	54238	EIC213
莊彥騰	austin.311.111.ee11@nycu.edu.tw	54238	ED317A
李家毓	maggie8905121.ee11@nycu.edu.tw	54238	ED317A

Other Issues

- Lecture
 - In-Person at ED415 (On-line or Hybrid if needed)
- Circuit/Chip trend
 - Refer ISSCC and IEEE/JSSC
- EDA trend
 - Refer DAC/ICCAD and IEEE/TCAD
- Office Hours
 - Wed. 15:30~17:00 (ED538, via email booking)

Just a Reminder

哈佛圖書館的二十條訓言:

20 maxims at Harvard Library,

1.此刻打盹,你將做夢;而此刻學習,你將圓夢。

Fall asleep, you'll make a dream; study hard, the dream will be realized.

. . .