is in $L^1(\mathbb{R})$, we can apply Lebesgue's theorem and pass to the limit under the integral sign. Thus $\lim_{n\to\infty}\int_{\mathbb{R}}\widehat{f}(x)g_n(x)e^{2i\pi tx}\,dx=\int_{\mathbb{R}}\widehat{f}(x)e^{2i\pi tx}\,dx=\overline{\mathcal{F}}\,\widehat{f}(t).$

Proof. For each n > 0, we introduce the function $g_n(x) = e^{-\frac{2\pi}{n}|x|}$, whose

 $\widehat{g}_n(\xi) = \frac{1}{\pi} \frac{n}{1 + n^2 \xi^2}.$

The functions g_n and \widehat{g}_n are in $L^1(\mathbb{R})$. We can apply formula (17.4) to the two functions f and $e^{2i\pi tx}g_n(x)$, which in view of Proposition 17.2.4(ii) is

 $\int_{\mathbb{R}} \widehat{f}(x)g_n(x)e^{2i\pi tx} dx = \int_{\mathbb{R}} f(u)\widehat{g}_n(u-t) du.$

For all $x \in \mathbb{R}$, $|\widehat{f}(x)g_n(x)e^{2i\pi tx}| \leq |\widehat{f}(x)|$, and $\lim_{n\to\infty} g_n(x) = 1$. Since \widehat{f}

(18.1)

Assume that f is continuous at t; we need to show that the integral on the right-hand side of (18.1) tends to f(t). Since $\widehat{g}_n \in L^1(\mathbb{R})$,

 $\int_{\mathbb{R}} \widehat{g}_n(\xi) \, d\xi = \lim_{a \to +\infty} \int_{-a}^{+a} \frac{1}{\pi} \, \frac{n}{1 + n^2 \xi^2} \, d\xi = 1.$

 $\int_{\mathbb{R}} f(u)\widehat{g}_n(u-t) du - f(t) = \int_{\mathbb{R}} (f(\xi+t) - f(t))\widehat{g}_n(\xi) d\xi.$

Thus we can write

Fourier transform is

Given
$$\varepsilon > 0$$
, there exists $\eta > 0$ such that $|y-t| \le \eta$ implies $|f(y)-f(t)| \le \varepsilon$. We decompose (18.2) as follows:

$$\int_{\mathbb{R}} (f(\xi+t) - f(t))\widehat{g}_n(\xi) d\xi = \int_{|\xi| \le \eta} (f(\xi+t) - f(t))\widehat{g}_n(\xi) d\xi + \int_{|\xi| > \eta} (f(\xi+t) - f(t))\widehat{g}_n(\xi) d\xi.$$

For all
$$n > 0$$
,

$$\int_{|\xi| \le \eta} |f(\xi + t) - f(t)| |\widehat{g}_n(\xi)| \, d\xi \le \varepsilon \int_{|\xi| \le \eta} |\widehat{g}_n(\xi)| \, d\xi \le \varepsilon.$$

The last step is to show that $\lim_{n\to\infty}\int_{|\xi|>\eta}(f(t+\xi)-f(t))\widehat{g}_n(\xi)\,d\xi=0$. For this we have

this we have
$$\left|f(t)\int_{|t|}\widehat{g}_n(\xi)\,d\xi\right|=|f(t)|\Big(1-\frac{2}{\pi}\arctan n\eta\Big),\tag{18.3}$$

and since \widehat{g}_n is even and decreasing on \mathbb{R}_+ ,

$$\left| \int_{|\xi| > n} f(t+\xi) \widehat{g}_n(\xi) \ d\xi \right| \le \widehat{g}_n(\eta) ||f||_1. \tag{18.4}$$

As n tends to $+\infty$, the right-hand sides of (18.3) and (8.4) tend to 0, and this proves the theorem.