Midterm Solutions

Problem 1

a. i. (2 points)
Using Boltzmann's statistics

$$\rho \equiv \frac{P_0}{P_1} = \frac{e^{-\beta \epsilon_0}}{e^{-\beta \epsilon_1}} = e^{\hbar \omega / \tau_c}$$
$$\tau_c = \frac{\hbar \omega}{\ln{(\rho)}}$$

ii. (3 points)

$$F = -\tau \ln (Z)$$

Using the geometric series

$$Z = \sum_{n=0}^{\infty} e^{-\beta\hbar\omega} = \frac{1}{1 - e^{-\beta\hbar\omega}}$$

$$F = -\tau_c \ln \left(\frac{1}{1 - e^{-\beta \hbar \omega}} \right)$$
$$= -\frac{\hbar \omega}{\ln (\rho)} \ln \left(\frac{1}{1 - \rho^{-1}} \right)$$
$$= -\frac{\hbar \omega}{\ln (\rho)} \ln \left(\frac{\rho}{\rho - 1} \right)$$
$$= \hbar \omega \left(\frac{\ln (\rho - 1)}{\ln (\rho)} - 1 \right)$$

iii. (4 points)

$$\begin{split} \langle E \rangle &= -\frac{\partial}{\partial \beta} \ln{(Z)} \\ &= \frac{\partial}{\partial \beta} \ln{\left(1 - e^{-\beta \hbar \omega}\right)} \\ &= \frac{\hbar \omega e^{-\beta \hbar \omega}}{1 - e^{-\beta \hbar \omega}} \\ &= \frac{\hbar \omega \rho^{-1}}{1 - \rho^{-1}} \\ &= \frac{\hbar \omega}{\rho - 1} \end{split}$$

b. (5 points) First derive a general expression

$$F = E - \tau \sigma$$

$$\sigma = \frac{E - F}{\tau_c}$$

$$\sigma = \frac{\frac{\hbar\omega}{\rho - 1} - \hbar\omega \left(\frac{\ln(\rho - 1)}{\ln(\rho)} - 1\right)}{\frac{\hbar\omega}{\ln(\rho)}}$$

$$= \frac{\ln(\rho)}{\rho - 1} - (\ln(\rho - 1) - \ln(\rho))$$

$$= \frac{\rho}{\rho - 1} \ln(\rho) - \ln(\rho - 1)$$

$$= \frac{2}{2 - 1} \ln(2) - \ln(2 - 1)$$

$$= 2\ln(2) - \ln(1)$$

$$= \ln(4)$$

c. (6 points)

In order to compare informational content we compare entropies. In case i) we have 3 cantilever's from above

$$\sigma_i = 3\left(\frac{\rho}{\rho - 1}\ln\left(\rho\right) - \ln\left(\rho - 1\right)\right)$$

In case ii) there are 10 micro states.

$$n_1 + n_2 + n_3 = 3 + 0 + 0$$

= $(3 + 0 + 0) \times 3$ permutations
= $(2 + 1 + 0) \times 6$ permutations
= $(1 + 1 + 1) \times 6$ permutations

For a total of 10 microstates which gives an entropy of $\sigma = \ln(10)$. Which case has less entropy, and therefor more information is know about it, depends on temperature. If τ_c is high σ_i will be bigger than σ_{ii} . If we take $\rho = 2$ then $\sigma_i = 3 \ln(4) = \ln(64) > \ln(10) = \sigma_{ii}$. So more information is know about ii. This difference can be quntified by $\sigma_i - \sigma_{ii} = \ln(64) - \ln(10)$. If we want to measure this in bits we can write it as $\ln(6.4)/\ln(2)$.

Problem 2

a. i. (4 points) System A_e has higher energy per excited spin by a factor of μ_e/μ_p , but fewer excited spins by a factor of $\sim \exp(-2\mu_e/\mu_p)$, so the ratio of average energy per spin for the two systems scales like

$$\frac{\mu_e}{\mu_p}e^{-2\mu_e/\mu_p} \ll 1$$

i.e. system B_p has higher average energy per spin.

Although not required for full credit, it is easy to calculate the average energy per spin of each system exactly. The partition function for a single spin in system i is

$$Z_i = 1 + e^{-2\mu_i B/\tau}$$

and the average energy per spin is

$$E_i = -\frac{\partial}{\partial \beta} \ln Z_i = \frac{2\mu_i B e^{-2\mu_i B/\tau}}{1 + e^{-2\mu_i B/\tau}}.$$

Comparing the average energy per spin for the two systems, and setting $\tau = \mu_p B$, we have

$$\frac{E_e}{E_p} = \frac{2\mu_e B e^{-2\mu_e B/\mu_p B}}{2\mu_p B e^{-2\mu_p B/\mu_p B}} \cdot \frac{1 + e^{-2\mu_p B/\mu_p B}}{1 + e^{-2\mu_e B/\mu_p B}} = \frac{\mu_e}{\mu_p} e^{-2\mu_e/\mu_p + 2} \cdot \frac{1 + e^{-2}}{1 + e^{-2\mu_e/\mu_p}} \propto \frac{\mu_e}{\mu_p} e^{-2\mu_e/\mu_p}$$

which has the expected scaling.

- ii. (4 points) Each spin in system A_e has a probability of $\sim e^{-2\mu_e/\mu_p} = e^{-1324}$ of being in the excited state, but each spin in system B_p has a probability of $\sim e^{-2}$ of being in the excited state. Thus, the state of each spin in B_p is more uncertain, i.e. system B_p has higher entropy per spin.
- b. i. (5 points) In order to have average energy $\mu_p B = 1/2 \cdot 0 + 1/2 \cdot 2\mu_p B$, the spins in system B_p must be equally likely to be in the ground state or the excited state. Thus, the temperature of system B_p is infinite. Since $\mu_p B < \mu_e B$, the temperature of system A_e is finite. To maximize entropy, energy will flow from the hotter system to the colder system, i.e. from system B_p to system A_e .
 - ii. (4 points) The entropy of A_e increases because it absorbs energy from system B_p and because its temperature is positive, so $\frac{\Delta \sigma}{\Delta E} \cdot \Delta E = \Delta \sigma > 0$.
 - iii. (4 points) The entropy of B_p decreasese because it loses energy to system A_e and because its temperature is positive, so $\frac{\Delta\sigma}{\Delta E} \cdot \Delta E = \Delta\sigma < 0$
 - iv. (4 points) Our results are consistent with the second law of thermodynamics because the entropy of system A_e increases by more than the entropy of system B_p decreases when the two systems are brought into thermal contact. In other words, the total entropy of the combined system increases, as required by the second law.

Problem 3

a. (2 points)

$$C_V \equiv \left(\frac{\partial E}{\partial \tau}\right)_V = \left(\frac{\partial E}{\partial \sigma}\right)_V \left(\frac{\partial \sigma}{\partial \tau}\right)_V = \tau \left(\frac{\partial \sigma}{\partial \tau}\right)_V.$$

b. (3 points)

so

$$\begin{split} \frac{\partial}{\partial V} \frac{\partial}{\partial \tau} F(\tau, V) &= -\left(\frac{\partial \sigma}{\partial V}\right)_{\tau} = \frac{\partial}{\partial \tau} \frac{\partial}{\partial V} F(\tau, V) = -\left(\frac{\partial p}{\partial \tau}\right)_{V} \\ &\left(\frac{\partial \sigma}{\partial V}\right)_{\tau} = \left(\frac{\partial p}{\partial \tau}\right)_{V} \end{split}$$

i.e. A = p and $B = \tau$.

c. i. (3 points)

$$\left(\frac{\partial C_V}{\partial V}\right)_{\tau} = \frac{\partial}{\partial V} \tau \frac{\partial \sigma}{\partial \tau} = \tau \frac{\partial}{\partial V} \frac{\partial \sigma}{\partial \tau} = \tau \frac{\partial}{\partial \tau} \frac{\partial \sigma}{\partial V} = \tau \left(\frac{\partial^2 p}{\partial \tau^2}\right)_{V}$$

where we have used the result of part (a) in the first step and part (b) in the last step.

ii. (2 points)

$$\left(\frac{\partial^2 p}{\partial \tau^2}\right)_V = -\frac{3}{4} \frac{a}{V(V+b)} \tau^{-5/2}$$

so

$$\left(\frac{\partial C_V}{\partial V}\right)_{\tau} = -\frac{3}{4} \frac{a}{V(V+b)} \tau^{-3/2}.$$

Problem 4

a. (3 points)

The gas is dilute so we treat each species independently and as an ideal gas.

$$E_{\alpha} = \sum_{\alpha} \frac{3}{2} \tau N_{\alpha} = \frac{3}{2} \tau \sum_{\alpha} N_{\alpha}$$

b. i. (2 points) We want the rms momentum for species α . Because all particles are identical, we find p_{rms} of a single particle of α . Note that p_{rms} is an intensive quantity. For a single particle $E = p^2/2m$

$$p_{rms,\alpha} = \sqrt{\langle p_{\alpha}^2 \rangle}$$
$$= \sqrt{2m_{\alpha} \langle E \rangle}$$
$$= \sqrt{3m_{\alpha}\tau}$$

ii. (2 points) likewise for v. Note that v = p/m so

$$v_{rms} = \sqrt{\langle p_{\alpha}^2 / m_{\alpha}^2 \rangle}$$
$$= \sqrt{3\tau / m_{\alpha}}$$

c. (4 points)

RMS means root of the mean of the square. When combining many particles calculate the mean by summing the momentum/velocity and dividing by the total number

$$p_{rms} = \sqrt{\frac{\sum_{\alpha} \sum_{i=1}^{N_i} p_{\alpha,i}^2}{\sum_{\alpha} \sum_{i=1}^{N_i} 1}}$$

$$p_{rms} = \sqrt{\frac{\sum_{\alpha} N_{\alpha} p_{rms,\alpha}^2}{\sum_{\alpha} N_{\alpha}}}$$

$$p_{rms} = \sqrt{\frac{3\tau \sum_{\alpha} N_{\alpha} m_{\alpha}}{\sum_{\alpha} N_{\alpha}}}$$

likewise for momentum

$$v_{rms} = \sqrt{\frac{3\tau \sum_{\alpha} N_{\alpha}/m_{\alpha}}{\sum_{\alpha} N_{\alpha}}}$$

d. (4 points)

We have $N_1 = N_2 = N_{tot}/2$. For momentum only the heavy particles, m_2 will contribute

$$p_{rms} = \sqrt{\frac{3\tau \left(N_{tot}/2\right)m_2}{N_{tot}/2 + N_{tot}/2}}$$

$$p_{rms} = \sqrt{\frac{3\tau m_2}{2}}$$

likewise for velocity except only the light particles will matter

$$v_{rms} = \sqrt{\frac{3\tau}{2m_1}}$$

e. (7 points)

$$P \propto e^{-\beta E_{kenetic}}$$

5

$$P\left(v_{x}\right) = \frac{N_{Ar}}{N_{tot}} \frac{1}{\sqrt{2\pi m_{Ar}}} e^{-v_{x}^{2} m_{Ar}/2\tau} + \frac{N_{He}}{N_{tot}} \frac{1}{\sqrt{2\pi m_{Ar}}} e^{-v_{x}^{2} m_{He}/2\tau}$$

Here we sketch $N_{Ar} \approx N_{He}$.

f. i. (3 points)

The function in part e) non-Gaussian. By the central limit theorem the distribution of the mean will be Gaussian (with a much smaller width). So they are different.

ii. (+3 extra points)

The average velocity is

$$\bar{v}_x = \frac{\sum_{i=1}^{N_{\rm He}} v_x^2 + \sum_{i=1}^{N_{\rm Ar}} v_x^2}{N_{\rm He} + N_{\rm Ar}}$$

The variance of a single molecule is $\sigma_i^2 = \tau/m_i$ and the sum of variances is the variance of a sum

$$\left(\Delta ar{v}_x
ight)^2 = rac{1}{\left(N_{
m He} + N_{
m Ar}
ight)^2} \left(N_{
m He} \sigma_{
m He}^2 + N_{
m Ar} \sigma_{
m Ar}^2
ight)$$

$$\Delta \bar{v}_x = \sqrt{\frac{1}{\left(N_{\rm He} + N_{\rm Ar}\right)^2} \left(N_{\rm He} \frac{\tau}{m_{\rm He}} + N_{\rm Ar} \frac{\tau}{m_{\rm Ar}}\right)}$$

with $m_{\rm He} \ll m_{\rm Ar}$ we have

$$\Delta ar{v}_x pprox rac{\sqrt{N_{
m He} rac{ au}{m_{
m He}}}}{N_{
m He} + N_{
m Ar}}$$