PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11064820 A

(43) Date of publication of application: 05 . 03 . 99

(51) Int. CI

G02F 1/133 G02F 1/1333 G02F 1/1335 G09G 3/36

(21) Application number: 09223662

(22) Date of filing: 20 . 08 . 97

(71) Applicant:

NEC CORP

(72) Inventor:

MAKISHIMA HIDEO

(54) FLAT DISPLAY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To simplify a structure, to reduce a manufacturing cost of a device, to enhance availability of a light source and to reduce power consumption by sequentially displaying color image information on a liquid crystal display panel and switching a light emission color of a color backlight panel synchronized with its displayed picture.

SOLUTION: An electron source 4 is formed on a vacuum space side of a rear surface substrate 1 becoming a vacuum enclose of the backlight panel 3 consisting of a rear surface substrate 1 and a transparent front surface substrate 2, and phosphor pixels 5 of R, G, B are formed on the vacuum space side on the front surface substrate 2. Further, the liquid crystal panel 8 is constituted of a liquid crystal substrate 6 and a glass substrate 7. A liquid crystal pixel 9 is formed on the liquid crystal substrate 6. Polarizing panels 10, 11 that the polarization directions are shifted to each other by nearly 90° are arranged back and forth the liquid crystal display panel 8, and a light diffusion panel 12 is arranged between the polarizing panel 10 and the backlight panel 3. Then, plural color image information are displayed sequentially on the liquid crystal display panel 8, and the light emission color of the backlight panel 3 is switched.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-64820

(43)公開日 平成11年(1999)3月5日

(51) Int.Cl. ⁸		識別記号	FΙ					
G02F	1/133	5 3 5	G 0 2 F	1/133	5 3 5			
	1/1333			1/1333				
	1/1335	5 3 0		1/1335	530			
G 0 9 G	3/36		G 0 9 G	3/36				
			審査	東京 有	請求項の数 6	OL	(全 6 頁)	
(21)出廢番号	特	顧平9-223662	(71)出顧	(71)出顧人 000004237 日本電気株式会社				
(22)出顧日	平成9年(1997)8月20日		東京都港区芝五丁目7番1号					
			(72)発明和					
					港区芝五丁目7都	F1号	日本電気株	
			(2.4) (h.m.	式会社				
			(74)代理/	、 升理工	菅野 中			

(54) 【発明の名称】 平面表示装置

(57)【要約】

【課題】 カラーフィルターが不要で、構造が簡単で、 消費電力が小さく、分解能が高く、画面輝度の温度依存 性がない平面型表示装置を実現する。

【解決手段】 電界放射電子源を用いたカラーバックライトパネル3と、光拡散パネル12と、マトリクス構成のモノクロ液晶表示パネル8の積層構造で構成され、液晶表記パネル8には画面順次式にカラー3原色のモノクロ画像情報を表示し、これに同期して、カラーバックライトパネルの発光色を切り替えることによってカラー画像情報を表示する。

1 裏面基板 3パックライトパネル 5 蛍光体函素 7 ガラス基板 9 液晶函素 1 1 偏光パネル 2 前面基板 4 曜子源 6 液晶基板 8 液晶表示パネル 1 0 偏光パネル 1 2 光拡散パネル

10

20

30

【特許請求の範囲】

【請求項1】 モノクロ画面を表示する液晶表示パネル と、前記液晶表示パネルの前後に置かれた偏光方向が互 いに異なる2枚の偏光パネルと、発光色の異なる複数の 蛍光体を備えた透明基板と電界放射電子源を備えた裏面 基板とを真空外囲器としたカラーバックライトパネルと を有する平面表示装置において、

前記液晶表示パネルに画面順次式に複数のカラー画像情 報を表示し、前記液晶表示パネルの表示画面と同期して 前記カラーバックライトパネルの発光色を切り替えるも のであることを特徴とする平面表示装置。

【請求項2】 前記液晶表示パネルと前記カラーバック ライトパネルの間に、光拡散パネルを備えたものである ことを特徴とする請求項1に記載の平面表示装置。

【請求項3】 前記液晶表示パネルの画像情報切り替え 位置に対応した前記カラーバックライトパネル画面上の 位置で発光を切り替え、前記画像情報切り替え位置の前 後に発光しないガードバンドを設けたものであることを 特徴とする請求項1に記載の平面表示装置。

【請求項4】 前記液晶表示パネルと前記バックライト パネルの垂直駆動回路の一部を共通化したものであるこ とを特徴とする請求項1に記載の平面表示装置。

【請求項5】 前記液晶表示パネルの画面サイズよりも 前記カラーバックライトパネルの画素サイズを大きくし たものであることを特徴とする請求項1に記載の平面表 示装置。

前記カラーバックライトパネルの前記蛍 【請求項6】 光体と前記電子源を水平方向に長いストライプ状にし て、複数の発光色の異なる蛍光体を順次発光させるもの であることを特徴とする請求項1に記載の平面表示装 置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、平面表示装置、特 に、マトリクス型の液晶表示パネルと、電界放射電子源 を備えたカラーバックライトパネル等にて構成された平 面表示装置に関する。

[0002]

【従来の技術】カラーマトリクス型液晶表示装置は、カ ラー液晶パネルと、その背面に設置された冷陰極放電管 のバックライトとで構成され、携帯型のパーソナルコン ピュータを始めとして、多くの画像情報表示装置に使用 されている。このカラーマトリクス型液晶表示装置は、 CRT型の表示装置と比較して、体積、重量、消費電力 が少なく、今後さらに多くの用途に使用される可能性が 高い。

【0003】冷陰極放電管式のバックライトの代わり に、アレイ状の電界放射エミッタと蛍光パネルで構成し たバックライトが提案されている(A. I. Akinw ande et al., Thin-Film-Edg 50 分解された微細な光が常に放射されている。液晶表示パ

e Emitter Vacuum Microele ctonics Device for Lamp/B acklight Applications, IVM C' 95, pp. 418-422, 1995)

【0004】さらに、バックライトとして画素単位に3 原色の発光部を持つ電界放射パネルを使用し、カラーフ ィルターパネルを不要とした表示装置が提案されている (N. Kumar, Highly Efficien t Field Emission Backligh ts for Liquid Crystal Dis plays, IDW' 96, pp. 527-528, 1 996.)。

【0005】図4は、A. I. Akinwandeが開 示したバックライトの原理的な構成を示す。図4におい て、裏面基板101上に、電子源109として下側ゲー ト電極102、エミッタ104、上側ゲート電極103 の3種の金属層が積層され、各層は、絶縁層105で分 離・絶縁されている。裏面基板101上の電子源109 に対面する位置には、偏向器106が形成されている。 透明なガラス製の前面基板108には、一面に蛍光体層 107が形成されている。裏面基板101と前面基板1 08とは、真空外囲器を兼ね、両者に挾まれた空間は、 真空に保たれている。

【0006】薄膜のエミッタ104に対してゲート電極 102及び103に約100Vの電圧を印加すると、エ ミッタ103の先端から電界放射電子が放出され、負の 電圧が印加された偏向器106にて進行方向が曲げら れ、約20kVの高圧が印加された蛍光体層107を衝 撃し、蛍光体層107を発光させる。多数の電子源10 9と偏向器106とを裏面基板101上に形成し、平面 状の陰極を構成し、これから放出された電子を蛍光体層 107に照射すれば、平面状の光源とすることができ る。

【0007】図5は、N. Kumarが開示したカラー 液晶表示装置の構造を示す。図5において、裏面基板1 11と光を透過する前面基板112とにより、バックラ イトパネル113を構成する。裏面基板111上には、 電子源114が形成され、前面基板112には、蛍光体 画素115が形成されている。また液晶基板116とガ ラス基板117とにより液晶表示パネル118が構成さ れ、液晶基板116には、液晶画素119が形成されて いる。液晶表示パネル118の前後には、偏光方向が互 いに約90度ずれた偏光パネル120および偏光パネル 121が置かれている。

【0008】カラー画像を表示するには、蛍光体画素1 15を赤(R)、緑(G)、青(B)の三原色の微細な 画素に分解し、これにR、G、Bの液晶画素119を対 応させる。電子源114からは常に一定量の電子が放出 され、蛍光体画素115からは一定輝度のR、G、Bに

10

20

ネル118は、従来の液晶ディスプレイ装置と同じよう に構成され、同じように動作し、R、G、Bの光の透過 量を制御する。

【0009】図4および図5に示す表示装置のバックラ イトは、いずれも、従来のカラー液晶表示装置と比較し て、冷陰極放電管を使用しないことから、パネルの厚み を薄くすることができる。さらに、冷陰極放電管は、管 球の温度によって発光輝度が変化する欠点を持ってお り、環境温度や点灯直後から経時的に画面輝度が変化す るが、しかし、図4及び図5に示す表示装置は、上述し たような放電管を使用しないため、画面輝度が変化しな いという利点を持っている。

【0010】さらに、図5に示すN. Kumarの表示 装置では、カラーフィルターが不要になるため、構造が 簡単になり、装置の製造コストが削減でき、光源の利用 効率が髙く、かつ消費電力が小さいという利点がある。

[0011]

【発明が解決しようとする課題】ところで、図4に示す バックライト装置においては、発光効率が冷陰極放電管 とほぼ同じであり、冷陰極放電管を使用した従来のカラ 一液晶表示装置と同様にカラーフィルターが必要である ため、装置の消費電力は、従来のカラー液晶表示装置と ほぼ同程度になる。また、表示装置の構造も、従来のカ ラー液晶表示装置と大きな差はない。

【0012】また図5に示すカラー液晶表示装置におい ては、バックライトパネル113の画素と液晶表示パネ ル118の画素とが完全に位置合わせされていなくては ならず、部品および装置組立に高い精度が必要になる。 さらに、バックライトパネル113による発光が、ほか の対応しない隣接した画素に達すると、信号のクロスト ークや色純度の低下の問題が生じるため、蛍光体115 の発光が、前面基板112、偏光パネル120、液晶基 板116で拡散せずに所定の液晶画素119に伝わらな くてはならない。これを実現するには、微小レンズある いは光ファイバーなどによる光の集束が必要になる可能 性があり、光の利用効率の低下および装置の複雑化を引 き起こす虞れがある。

【0013】さらに、画素単位の欠陥発生を防止するた めには、液晶表示パネル118の液晶画素119及びバ ックライトパネル113の電子源114と蛍光体画素1 15の全てが画素の単位で完全な良品でなければならな い。このため、表示装置全体の高い歩留まりを実現する には、高い部品製造歩留まりが必要となる。

【0014】本発明の目的は、カラーフィルターが不要 で、構造が簡単であり、また消費電力が小さく、高い分 解能が得られ、画面輝度の温度依存性や点灯後の経時変 化がない平面型表示装置を提供することにある。

[0015]

【課題を解決するための手段】前記目的を達成するた め、本発明に係る平面型表示装置は、モノクロ画面を表 50

示する液晶表示パネルと、前記液晶表示パネルの前後に 置かれた偏光方向が互いに異なる2枚の偏光パネルと、 発光色の異なる複数の蛍光体を備えた透明基板と電界放 射電子源を備えた裏面基板とを真空外囲器としたカラー バックライトパネルとを有する平面表示装置において、 前記液晶表示パネルに画面順次式に複数のカラー画像情 報を表示し、前記液晶表示パネルの表示画面と同期して 前記カラーバックライトパネルの発光色を切り替えるも のである。

【0016】また前記液晶表示パネルと前記カラーバッ クライトパネルの間に、光拡散パネルを備えたものであ

【0017】また前記液晶表示パネルの画像情報切り替 え位置に対応した前記カラーバックライトパネル画面上 の位置で発光を切り替え、前記画像情報切り替え位置の 前後に発光しないガードバンドを設けたものである。

【0018】また前記液晶表示パネルと前記バックライ トパネルの垂直駆動回路の一部を共通化したものであ

【0019】また前記液晶表示パネルの画面サイズより も前記カラーバックライトパネルの画素サイズを大きく したものである。

【0020】また前記カラーバックライトパネルの前記 蛍光体と前記電子源を水平方向に長いストライプ状にし て、複数の発光色の異なる蛍光体を順次発光させるもの である。

【0021】本発明においては、電界放射電子源を用い たカラーバックライトパネルと、光拡散板と、マトリク ス構成のモノクロ液晶表示パネルの積層構造で構成し、 モノクロ液晶表示パネルには、画面順次式にR, G, B のカラー3原色信号に対応するモノクロ画像情報を表示 し、これに同期して、カラーバックライトパネルの発光 色を切り替えることによってカラー画像情報を表示す る。この結果、カラーフィルターが不要となるため、構 造が簡単で、高い組立精度が不要で、構成する部品に特 に高い歩留まりを必要とせず、低コストの平面表示装置 を実現することができる。また、光の利用効率が高いた め、消費電力が小さく、液晶表示パネル1画素でカラー 画像の1画素を表示でき、高い分解能が得られ、冷陰極 放電管を使用していないため、画面輝度の温度依存性が なく、比較的薄い平面型表示装置を実現することができ

[0022]

40

【発明の実施の形態】以下、本発明の実施の形態を図に より詳細に説明する。

【0023】(実施形態例1)図1は、本発明の実施形 態例1に係る表示装置を示す構造図、図2は、本発明の 実施形態1に係る表示装置の駆動回路と表示画面の一例 を示す図である。

【0024】図1において、裏面基板1と透明の前面基

10

40

板2とでバックライトパネル3を構成し、バックライト パネル3の真空外囲器となる裏面基板1の真空空間側に は、電子源4を形成し、前面基板2上の真空空間側に は、R、G、Bの蛍光体画素5を形成している。また液 晶基板6とガラス基板7とにより、液晶表示パネル8を 構成している。液晶基板6上には、液晶画素9を形成し ている。液晶表示パネル8の前後には、偏光方向が互い に約90度ずれた偏光パネル10、11を配置し、偏光 パネル10とバックライトパネル3との間には、光拡散 パネル12を配置している。

【0025】図2において、21はバックライトパネル 3のバックライト画面、22は液晶表示パネル8の液晶 画面である。入力画像情報信号は信号処理回路23に入 力し、液晶表示パネル8の水平信号ラインを駆動するフ レーム順次式の信号として出力し、この信号が水平駆動 回路24に入力し、液晶表示パネル8を駆動する。ま た、信号処理回路23では、入力画像情報信号を元にフ レーム順次式の垂直駆動信号を出力し、垂直駆動回路2 5を介して、バックライトパネル3および液晶表示パネ ル8の垂直信号線を駆動し、水平方向の列を順次オンに する。

【0026】液晶表示パネル8の液晶画面22は、Rか らGの画面を切り替えている状態を示しており、画面中 央部の画面切り替え位置26より上がR、下がGの画面 である。同様にバックライト画面21も液晶画面22と 同期して発光色が切り替えられる。すなわち、画面中央 部には、発光しない領域であるガードバンド27があ り、このガードバンド27よりも上がRで発光し、下が Gで発光している。ガードバンド27は、液晶画面22 の画面切り替え位置26の上下に複数の走査線に相当す る幅を持っている。このガードバンド27の幅は、液晶 画面22とバックライト画面21との機械的精度と、蛍 光体画素 5 から液晶画素までの光の拡散量を吸収するた めのものであって、画面の色純度の低下を防止する。さ らに、バックライトパネル3の画素を液晶表示パネル8 よりも荒く、すなわち大きくしたときのずれを吸収する 機能も兼ねている。

【0027】バックライトパネル3は、電界放射ディス プレイ (FED) (R. Meyer, Recent D evelopment on "Microtips" Display at LETI, IVMC'91 Technical Digest, pp. 6-9, 1 991)と同様の構造をしているが、個々の画素の輝度 を変調せず、R、G、Bごとに一定の輝度で発光する。 バックライトパネル3の電子源としては、図3に示すよ うな薄膜タイプの横型電界放射エミッタアレイでも良い し、公知のSpindtタイプ等の縦型電界放射エミッ タアレイ (C. A. Spindt, A Thin-Fi lm Field-EmissionCathode, Journal of Applied Physic 50

s, vol. 39, No. 7, pp. 3504-5, 1 968)でも良い。さらに、ダイヤモンド薄膜を用いた 電子源や、MIS(金属-絶縁体-半導体)、MIM (金属-絶縁体-金属) 電子源なども使用できる。

【0028】光拡散パネル12によってバックライトパ ネル3の画素サイズを液晶表示パネル8の画素サイズよ りも大きくすることができ、その結果、バックライトパ ネル3の構造を簡易化することが可能となる。さらに、 バックライトパネル3のわずかな欠陥や輝度不均一は、 光拡散パネル12で吸収されるため、バックライトパネ ル3に対する要求条件が緩和される。このため、光拡散 パネル12によって装置の製造コストを下げることが可 能になる。しかし、光拡散パネル12がなくとも、この 表示装置の基本動作を実現することができる。液晶表示 パネル8は、従来のモノクロ液晶表示パネルとほぼ同一 の構造である。

【0029】バックライトパネル3は、発光色が3原色 で切り替わる面光源として機能し、バックライトパネル 3と液晶表示パネル8の間には、光拡散パネル12が置 かれているため、蛍光体画素5と液晶画素9とは、一対 一で対応させる必要はなく、バックライトパネル3の密 度を液晶表示パネル8の密度よりも粗くして構造を簡単 にすることができる。しかし、その差が大きすぎると、 光拡散パネル12の拡散距離を大きくし、ガードバンド 27の幅を広くする必要が生じ、輝度の不均一性が生じ る恐れがある。これらを考慮すると、たとえば蛍光体画 素5の数が1に対して、液晶画素9の数は1.5から1 0、望ましくは3から5程度の比率で形成される。

【0030】なお、垂直駆動回路25は液晶表示パネル 8と電界放射電子源パネルと原理の異なったパネルとの 両方を駆動し、両者はスイッチング電圧ならびに水平走 査線数が異なるが、多くの部分で共通する回路構成とす ることができる。

【0031】 (実施形態2) 図3は、本発明の実施形態 2に係る表示装置のバックライトパネルを示す原理的構 造図である。図3において、バックライトパネル3の裏 面基板1上には、水平走査の方向が長手方向である電子 源4-R1、4-G1、4-B1、4-R2・・・が ストライプ状に形成され、バックライトパネル3の前面 基板2上には、同様に水平走査の方向が長手方向である 3 原色の蛍光体 5 - R 1 、5 - G 1 、5 - B 1 、5 - R 2・・・・がストライプ状に形成されている。ここで、 R1、G1、B1、R2・・・・は、それぞれ3原色の 赤、緑、青、赤の電子源あるいは蛍光体であることを示

【0032】ストライプ状の電子源4-R1、4-G 1、4-B1、4-R2・・・・上には、微細な電界放 射電子源が多数形成されており、垂直駆動回路25によ り選択された電子源4-R1、4-G1、4-B1、4 -R2・・・・からはストライプ状の電子ビームが放出

- 52

され、その電子ビームが加速されて、ストライプ状の蛍 光体画素 5 - R 1 、5 - G 1 、5 - B 1 、5 - R 2・・・・を衝撃する。ガードバンド 2 7 の前後で選択する 3 原色に相当する電子源を切り替えることによって、発光

【0033】この場合にも、ストライプの幅は、液晶表示パネル8の画素のサイズと同等か、あるいは大きくても良い。

【0034】3原色の蛍光体の発光効率並びに所要輝度に合わせて、微細な電子源構造の密度を変えることによって、ほぼ同じ電子源駆動電圧で各蛍光体に必要な電流が取り出せるようにすることができる。

[0035]

色の切り替えが行われる。

【発明の効果】以上説明したように本発明によれば、高価なカラーフィルターが不要であるため、構造が簡単で、かつ高い組立精度が不要であり、構成する部品に特に高い歩留まりを必要とせず、低コストの表面表示装置を実現することができる。

【0036】また、光の利用効率が高いため、消費電力が小さく、冷陰極放電管を使用していないため、画面輝 20 度の温度依存性がなく、比較的薄い平面型表示装置を実現することができる。

【0037】さらに、従来のカラー液晶表示装置では、カラー画像の1画素を表示するのに、液晶表示パネルではR、G、Bの3種の画素を必要とするのに対して、本発明では、液晶表示パネルの1画素でカラー画像の1画素を表示できるため、液晶表示パネルの密度が同じであるならば、従来のカラー液晶表示装置と比較して3倍の分解能を得ることができる。

【図面の簡単な説明】

【図1】本発明の実施形態1に係る表示装置を示す構造 図である。

【図2】本発明の実施形態1に係る表示装置の駆動回路*

* と表示画面との関係を示す図である。

【図3】本発明の実施形態2に係る表示装置のバックライトパネルを示す原理的構造図である。

【図4】 I VMC'95 Technical Digest, pp. 418-422, 1995. に開示された従来技術の電界放射平面ディスプレイ装置を示す構造図である

【図5】 I DW'96, pp. 527-528, 1996. に開示された従来技術の電界放射平面ディスプレイ装置を示す構造図である。

【符号の説明】

- 1 裏面基板
- 2 前面基板
- 3 バックライトパネル
- 4, 4-R1、4-G1、4-B1、4-R2···· 電子源
- 5, 5-R1、5-G1、5-B1、5-R2···· 蛍光体画素
- 6 液晶基板
- 20 7 ガラス基板
 - 8 液晶表示パネル
 - 9 液晶画素
 - 10 偏光パネル
 - 11 偏光パネル
 - 12 光拡散パネル
 - 21 バックライト画面
 - 22 液晶画面
 - 23 信号処理回路
 - 24 水平駆動回路
- 30 25 垂直駆動回路
 - 26 画面切り替え位置
 - 27 ガートバンド

【図2】

21パックライト画面 22波島画面 23信号処理回路 24水平駆動回路 25重直動動回路 26面面切り替え位置

【図3】

8

【図1】

【図4】

- 1 表面基板 3バックライトパネル 5 単光体函数 7ガラス基板 9液晶画案 1 1 偏光パネル
- 2 前面基板 4 电子源 6 波品基板
- 8波晶表示パネル 10偏光パネル 12光拡散パネル

【図5】

