hw3

学号	姓名
20319045	刘冠麟

第一题

(1) 求文法G的增广文法G'

增广文法 G'是在原文法G的基础上新增一个起始符号S'并引入相应的产生式 所以增广文法为:

(2)

(3)

State	ACTION					GOTO			
	а	b	С	d	\$	Е	X	Υ	
0		s4	s3			1	2		
1					acc				
2				s6				5	
3		s4	s3				7		
4	r3	r3	r3	r3	r3				
5	r1	r1	r1	r1	r1				
6	r4	r4	r4	r4	r4				
7	s8								
8	r2	r2	r2	r2	r2				

(4)

在表中添加了一列以表述更清晰。

State Stack	Stack	Input	Action
0	\$	cbad\$	s3
0 3	\$c	bad\$	s4
0 3 4	\$cb	ad\$	r3
037	\$cX	ad\$	s8
0378	\$cXa	d\$	r2
0 2	\$X	d\$	s6
0 2 6	\$Xd	\$	r4
0 2 5	\$XY	\$	r1
0 1	\$E	\$	acc

第二题

(1)构建该文法 LR(1)解析的 DFA

G的拓展文法G'如下:

```
1 S' -> S
2 S -> E
3 E -> E + E
4 E -> -E
5 E -> id
```

带向前搜索符的项目规范族如下:

```
1 | I0 =
2 | S' -> .S, $
3 | S -> .E, $
4 | E -> .E+E, $/+
5 | E -> -E, $/+
6 | E -> id, $/+
```

由此构建出DFA:

(2)对每一个含有冲突的状态,列出状态的编号、引起冲突的输入符号、以及冲突的类型;

状态编号	输入符号	冲突类型
12	\$	移进-规约冲突
15	\$/+	移进-规约冲突
17	\$/+	移进-规约冲突

(3)画出句子 id + - id + id 的所有分析树,并判断文法 G 是否具有二义性;

句子在此文法下共有三种分析树,如下:

(4)

优先级:

- 负号在语法分析树中处于加号的下一层,所以其优先级比加号高。
- 加号的优先级低于负号。
- 优先级: > +

结合性:

- 加号是**左结合**的,表达式中从左到右进行计算。
- 负号是**右结合**的。

(5)

在I5的"移进-规约"冲突中:

```
1 | I5:

2 | E -> -E. , $/+

3 | E -> E.+E, $/+
```

由于负号的优先级比加号的高,所以应该优先选择规约。

第三题

(1)

G1的拓广文法G3及其编号如下:

```
1 G3:
2 (0)S' -> S
3 (1)S -> E+T
4 (2)E -> (E)
5 (3)E -> a
6 (4)T -> b
```

(2)

DFA如下:

(3)

LR(0)分析表如下:

State	ACTION						GОТО		
	а	b	()	+	\$	S	Е	Т
0	s4		s3				1	2	
1						acc			
2					s5				
3	s4		s3					6	
4	r3	r3	r3	r3	r3	r3			
5		s8							7
6				s9					
7	r1	r1	r1	r1	r1	r1			
8	r4	r4	r4	r4	r4	r4			
9	r2	r2	r2	r2	r2	r2			

(4)

分析栈变化及动作表如下:

Step#	Symbols Stack	States Stack	Input	Action
0	\$	0	(a)+b\$	s3
1	\$(0 3	a)+b\$	s4
2	\$ (a	0 3 4)+b\$	r3
3	\$(E	036)+b\$	s9
4	\$(E)	0369	+b\$	r2
5	\$E	0 2	+b\$	s5
6	\$E +	0 2 5	b\$	s8
7	\$E + b	0 2 5 8	\$	r4
8	\$E+T	0 2 5 7	\$	r1
9	\$S	0 1	\$	acc

存在冲突。因为该状态中既存在规约 T=>b 也存在移进(T=>b E),而LR(0)没有向前看的能力,所以当存在规约和移进在同一个状态中同时出现时在LR(0)分析过程中发生"移进-规约"冲突。

若使用SLR(1),则要看 FOLLOW(T) 是否与E推出的第一个终结符存在交集,对G2文法中T求FOLLOW集如下:

```
1 FOLLOW(S) = $
2 FOLLOW(T) = FOLLOW(S) = $
```

所以 FOLLOW(T) 只包含 {\$}。

该状态中存在移进 T->b.E, 而在此状态中

```
1 | E -> .(E)
2 | E -> .a
```

而 FOLLOW(T) 与 {(,a} 不存在交集,即通过SLR(1)判断出不存在"移入-规约"冲突。

所以可以通过SLR(1)可以解析该冲突。

(6)简述 LR(1)是如何进一步改进 SLR(1) 分析技术的,并基于 LR(1)有效项目构造 识别文法 G2 所有活前缀的 DFA 初始状态

SLR(1)是通过使用FOLLOW集来决定规约时机的,即对于文法

```
1 | X -> X.aY
2 | V -> X.
```

SLR(1)通过判断冲突的条件为:

- 两个产生式处于同一个状态中
- FOLLOW(V)与{a}存在交集

而FOLLOW集包含所有可能在特定非终结符之后出现的终结符。SLR(1)在某些情况下可能过于保守,因为FOLLOW集可能包含不相关的符号,从而导致"移进-规约"冲突。"规约-规约"冲突同理。

而LR(1)中每个项目不仅包含一个项集和点的位置,还包括一个特定的向前看符号。这使得LR(1)分析器能够更加精确地决定是否规约,因为它只在向前看符号匹配的情况下才进行规约。

同样的例子,LR(1)判断冲突的条件除了判断是否处于同一个状态以外,只需**判断两条产生式包括的向前看符号集是否存在交集**即可,而不是判断更加粗糙笼统的FOLLOW(V)。这使得LR(1)的状态划分更加细致,能够区分更多的解析场景,减少冲突。

LR(1)中G2的DFA的初始状态:

```
1 IO:

2 S -> .E+T, $

3 E -> .(E), +

4 E -> .a, +
```