- 1) Recall that we discussed integrals where the codomain is $[0, \infty)$, but now we will discuss them in full generality where the codomain is \mathbb{R} . Given a function $f : \mathbb{R} \to \mathbb{R}$, we have a positive/negative parts $f_+, f_- : \mathbb{R} \to [0, \infty)$, so we formulate measurability and integrability in terms of these parts.
 - We say that f is measurable is f_+, f_- are measurable.
 - We say that f is integrable if f is measurable while $\int f_+, f_-$ are integrable, and define

$$\int f := \int f_+ - \int f_-$$

Which is finite because $\int f_+, \int f_-$ are finite by integrability.

We will quickly prove the linear of integrals in the general case.

Proposition 0.1. If $f, g : \mathbb{R} \to \mathbb{R}$ are integrable, then f + g is integrable with $\int f + g = \int f + \int g$.

Proof. By assumption f_+, g_+, f_-, g_- are integrable, thus $(f+g)_+ \le f_+ + g_+$ is integrable, and the same applyies for $(f+g)_-$. Now

$$(f_{+} - f_{-}) + (g_{+} - g_{-}) = (f + g)_{+} - (f + g)_{-}$$

Therefore

$$(f+g)_{+} + f_{-} + g_{-} = (f+g)_{-} + f_{+} + g_{+}$$

And then we can integrate both sides (Both sides are functions to $[0, \infty)$), use additivity in the special case, then rearrange (every term involved is finite).

Proposition 0.2. If $f: \mathbb{R} \to \mathbb{R}$ is integrable, then cf is integrable with $\int cf = c \int f$.

The above shows that the set of integrable functions $\mathbb{R} \to \mathbb{R}$ can be given a linear structure. In particular the space of functions of f where |f| is integrable is a linear space, which we denote as the L^1 space. The integral operator is a linear map $L^1 \to \mathbb{R}$.

2) We introduce the Fourier transform. Given $f \in L^1(\mathbb{R}^d, \mathbb{C})$, we define the Fourier Transform $\hat{f} : \mathbb{R}^d \to \mathbb{C}$ with

$$\hat{f}(\zeta) = \int f(x)e^{-2\pi ix}dx$$

First, we need to verify that \hat{f} is well defined.

Proposition 0.3. If f is in L^1 then $x \mapsto f(x)e^{-2\pi ix}$ is integrable.

Proof. The product of measurable functions is measurable. Now $|f(x)e^{-2\pi ix}| = |f(x)|$, where $\int |f| < \infty$ by assumption.

In the above proposition, we have shown that $|\hat{f}| \leq \int |f| < \infty$. We immediately see that the Fourier transform operation is linear in L^1 , and we will now show that \hat{f} is continuous.

Proposition 0.4. Given $f \in L^1$, \hat{f} is continuous.

Proof. Suppose we have a sequence $\zeta_n \to \zeta$. We have a sequence of measurable functions $f_n(x) = f(x)e^{-2\pi i\zeta_n x}$, which is integrable due to domination from |f|, while

$$\hat{f}(\zeta_n) = \int f_n.$$

Now note that $f_n(x)$ converges everywhere to $f(x)e^{-2\pi i}\zeta x$ (exponential is continuous), who is also dominated by |f|. Therefore we apply the DCT to get

$$\hat{f}(\zeta_n) = \int f_n \to \int f(x)e^{-2\pi i \zeta x} dx = \hat{f}(\zeta)$$

As required.

Since \hat{f} is continuous, it is naturally measurable. But is it also in L^1 (from which we would have a Fourier inverse transform $f(x) = \int \hat{f}(\zeta)e^{2\pi i\zeta}d\zeta$)? Unfortunately the answer is no, unless we consider a smaller space of L^1 , the Schwarz space.

3) A very dumbed down explanation of a Schwarz space is the space of functions that are very flat and decrease very quickly. A more formal way of saying this is that f is C^{∞} while

$$\sup_{\mathbb{R}^d} \left| x^{\beta} D^{\alpha} f \right| < \infty$$

For every $\alpha, \beta \in \mathbb{Z}_{\geq 0}$, where D^{α} encompasses all α -th partial derivatives of f. We let \mathcal{S} denote the set of all such functions $\mathbb{R}_d \to \mathbb{C}$, and call it the Schwarz space. We immediately have the following:

Proposition 0.5. The following hold:

- 1) S is a complex linear space.
- 2) $S \subset L^1$, so S is a complex linear subspace of L^1 .
- 3) S is closed to multiplication.
- 4) $x^{\beta}f, D^{\alpha}f \in \mathcal{S} \text{ for } f \in \mathcal{S}.$

Proof. We have

- 1) Clear from the triangle inequality (Note that $0 \in \mathcal{S}$).
- 2) Considering $\beta = 69$ and $\alpha = 0$, we have $|f| < \frac{A}{x^{69}}$ for |x| > 1, while $\int_{|x|>1} \frac{1}{x^{69}} < \infty$, and clearly |f| is bounded on |x| < 1, by considering $\beta = 0$ and $\alpha = 0$.
- 3) Note that all derivatives of $f, g \in \mathcal{S}$ must be bounded (by considering $\alpha = 0$), and that differentiation obeys the product rule. Then use induction.
- 4) Straightforward.

Done.

To make the discussion more concrete, here are some examples of functions in \mathcal{S} .

Example 0.6. The space of compactly supported smooth functions, C_c^{∞} , is contained in S.

Proof. A continuous function on a compact set admits a maximum and minimum.

Example 0.7. $e^{-x^2} \in \mathcal{S}$

Proof. Too lazy to type it out.

Since S is contained in L^1 , it then makes sense to consider the Fourier transform operator on S. The punchline will be that this is a complex linear isomorphism $S \to S$. We first list some basic properties regarding Fourier transform on S:

Proposition 0.8. The following hold:

1)
$$\widehat{f(\cdot+h)}(\zeta) = e^{2\pi i h \zeta} \widehat{f}(\zeta)$$

2)
$$\hat{f}(\zeta + h) = \widehat{(e^{-2\pi i h x} f)}(\zeta)$$

3) For
$$\delta > 0$$
, $\widehat{f(\delta \cdot)}(\zeta) = \frac{1}{\delta} \widehat{f}(\frac{1}{\delta}\zeta)$

Proof. We calculate

1) Letting g(x+h) = f(x), we have

$$\hat{g}(\zeta) = \int g(x)e^{-2\pi ix\zeta} = e^{2\pi ih\zeta} \int g(x)e^{-2\pi i(x+h)\zeta} = e^{2\pi ih\zeta}\hat{f}(\zeta)$$

2) Letting $g(x) = e^{-2\pi i h x} f(x)$, we have

$$\hat{g}(\zeta) = \int g(x)e^{-2\pi ix\zeta} = \int f(x)e^{-2\pi ix(\zeta+h)} = \hat{f}(\zeta+h)$$

3) Letting $g(x) = f(\delta x)$, we have

$$\hat{g}(\zeta) = \int g(x)e^{-2\pi ix\zeta}$$

$$= \frac{1}{\delta} \int f(y)e^{-2\pi i\frac{y}{\delta}\zeta}$$

$$= \frac{1}{\delta}\hat{f}(\frac{1}{\delta}\zeta)$$
(COV, $y = \delta x$)

As required.

We will then list more involved properties, regarding differentiation.

Proposition 0.9. The following hold:

1)
$$\widehat{(f')}(\zeta) = 2\pi i \zeta \widehat{f}(\zeta)$$

2)
$$(\hat{f})'(\zeta) = (-2\pi i x f)(\zeta)$$

Proof. We calculate

1)
$$\widehat{(f')}(\zeta) = \int f'(x)e^{-2\pi i\zeta x} = 0 - \int [f(x)\frac{d}{dx}e^{-2\pi i\zeta x}] = 2\pi i\zeta \widehat{f}(\zeta)$$

3

2) Let $g(x) = -2\pi i x f(x)$. We have

$$(\hat{f})'(\zeta) = \lim_{\delta \to 0} \frac{\hat{f}(\zeta + \delta) - \hat{f}(\zeta)}{\delta}$$

Where

$$\frac{\hat{f}(\zeta+\delta) - \hat{f}(\zeta)}{\delta} = \int f(x) \frac{e^{-2\pi i x(\zeta+\delta)} - e^{-2\pi i x \zeta}}{\delta} = \int f(x) e^{-2\pi i x \zeta} (\frac{e^{-2\pi i x \delta} - 1}{\delta})$$

Here we can apply the DCT, because for sufficiently

TBD

These two properties clearly imply that the Fourier transform maps $\mathcal{S} \to \mathcal{S}$.

Corollary 0.9.1. The fourier transform operator is a linear map $S \to S$.