

FCC SAR TEST REPORT

APPLICANT AOC

PRODUCT NAME **Tablet PC**

MODEL NAME A110, A110-E

TRADE NAME N/A

BRAND NAME AOC

FCC ID 2AEB5-A110

47 CFR 2.1093 STANDARD(S) IEEE 1528-2013

ISSUE DATE 2017-06-14

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

TEST REPORT DECLARATION	<u>5</u>
4 TECHNICAL INFORMATION	_
1.TECHNICAL INFORMATION	<u>······6</u>
1.1 IDENTIFICATION OF APPLICANT······	6
1.2 IDENTIFICATION OF MANUFACTURER	6
1.3 EQUIPMENT UNDER TEST (EUT)	6
1.3.1 PHOTOGRAPHS OF THE EUT	6
1.3.2 IDENTIFICATION OF ALL USED EUT·	7
1.4 APPLIED REFERENCE DOCUMENTS	7
1.5 DEVICE CATEGORY AND SAR LIMITS	7
2. SPECIFIC ABSORPTION RATE (SAR)	8
2.1 Introduction	8
2.2 SAR DEFINITION	8
3. SAR MEASUREMENT SETUP	<u>g</u>
3.1 THE MEASUREMENT SYSTEM······	g
3.2 PROBE	g
3.3 PROBE CALIBRATION PROCESS ·····	11
3.3.1 DOSIMETRIC ASSESSMENT PROCEDURE ·····	11
3.3.2 FREE SPACE ASSESSMENT PROCEDURE	11
3.3.3 TEMPERATURE ASSESSMENT PROCEDURE	11
3.4 PHANTOM	12
3.5 DEVICE HOLDER ·····	12
4. TISSUE SIMULATING LIQUIDS······	13
5. UNCERTAINTY ASSESSMENT ·····	······· 15
5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST	
5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK	16

6. SAR MEASUREMENT EVALUATION ····································
6.1 System Setup
6.2 VALIDATION RESULTS ····································
7. OPERATIONAL CONDITIONS DURING TEST ·······20
7.1 Body-worn Configurations ·······20
7.2 MEASUREMENT PROCEDURE ····································
7.3 DESCRIPTION OF INTERPOLATION/EXTRAPOLATION SCHEME ···········21
8. ANTENNA LOCATION AND TEST POSITION·······22
9. MEASUREMENT OF CONDUCTED OUTPUT POWER·······23
10. TEST RESULTS LIST26
11. REPEATED SAR MEASUREMENT ········29
12. MULTIPLE TRANSMITTERS EVALUATION ····································
13 ANNEX A PLOTS OF SAR TEST RESULTS ·······31
14 ANNEX B GENERAL INFORMATION·············31
15 ANNEX C SYSTEM CHECK DATA31
15 ANNEX D SETUP PHOTOS31
ANNEX A PLOTS OF SAR TEST RESULTS32
ANNEX B GENERAL INFORMATION ·············48
ANNEX C SYSTEM PERFORMANCE CHECK DATA······50
ANNEX D SETUP PHOTOS58

Change History		
Issue Date Reason for change		
1.0 2017-06-14 First edition		

TEST REPORT DECLARATION

Applicant	AOC			
Applicant Address	14F-5, No. 258, Liancheng Rd., Zhonghe Dist., New Taipei City, Taiwan			
Manufacturer	AOC			
Manufacturer Address	14F-5, No. 258, L City, Taiwan	14F-5, No. 258, Liancheng Rd., Zhonghe Dist., New Taipei City, Taiwan		
Product Name	Tablet PC			
Model Name	A110, A110-E			
Brand Name	AOC			
HW Version	EM-T8811A			
SW Version	A110-E			
Test Standards	47 CFR 2.1093; IEEE 1528-2013;			
Test Date	2017-06-12			
The Highest Reported 1g-SAR(W/kg)	Body	0.472W/kg	Limit(W/kg): 1.6W/kg	

Tested by	:	Peny Franci	
		Peng Fuwei (Test engineer)	

Approved by

Peng Huarui (Supervisor)

1.TECHNICAL INFORMATION

Note: the Following data is based on the information by the applicant.

1.1 Identification of Applicant

Company Name:	TCL Communication Ltd.	
Address:	15/F, TCL Tower, Gaoxin Nan Yi Road, Nanshan District, Shenzhen,	
	Guangdong, P.R.C	

1.2 Identification of Manufacturer

Company Name:	TCL Communication Ltd.	
Address:	15/F, TCL Tower, Gaoxin Nan Yi Road, Nanshan District, Shenzhen,	
	Guangdong, P.R.C	

1.3 Equipment Under Test (EUT)

Model Name:	A110, A110-E
Trade Name:	N/A
Brand Name:	AOC
Hardware Version:	EM-T8811A
Software Version:	A110-E
Tx Frequency Bands:	802.11 b/g/n: 2412-2462 MHz;
	802.1 a/ac/n: 5180-5825MHz
	Bluetooth; Bluetooth4.1; 2402-2480 MHz;
Uplink Modulations:	WIFI 802.11b: DSSS; WIFI 802.11g: OFDM;
	WIFI 802.11a/ac/n:OFDM;
	Bluetooth: GFSK/π/4-DQPSK/8-DPSK; Bluetooth4.1: GFSK
Antenna type:	Fixed Internal Antenna
Development Stage:	Identical prototype

1.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT

1.3.2 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the Following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	EM-T8811A	A110-E

1.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title	
		IEEE Recommended Practice for Determining the Peak	
1	IEEE 1528-2013	Spatial-Average Specific Absorption Rate (SAR) in the	
'	IEEE 1326-2013	Human Head from Wireless Communications Devices:	
		Measurement Techniques	
2	KDB 447498 D01v06	General RF Exposure Guidance	
3	KDB 616217 D04v01r02	SAR for laptop and Tablets	
4	KDB 248227 D01v02r02	SAR Measurement Guidance for IEEE 802.11 Transmitters	
5	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz	
6	KDB 865664 D02v01r02	SAR Reporting	

1.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

RFPORT No.: \$717050109S01

2. SPECIFIC ABSORPTION RATE (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{odv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

3. SAR MEASUREMENT SETUP

3.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB - Axial Isotropy: <0.25 dB - Spherical Isotropy: <0.25 dB
- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

= Skin depth

RFPORT No.: \$717050109S01

Keithley configuration:

Rate = Medium; Filter = ON; RDGS=10; FILTER TYPE = MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$
 (N=1,2,3)

Where DCP is the diode compression point in mV.

3.3 Probe Calibration Process

3.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

3.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

3.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)},$

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

C = heat capacity of tissue (brain or muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

$$SAR = \frac{\sigma |E|^2}{\rho}$$

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

3.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

4. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Frequency Band (MHz)	2450	5200-5800
Tissue Type	Body	Body
Ingredients (% by weight	ght)	
Deionised Water	73.20	78.60
Salt(NaCl)	0.10	0.00
Sugar	0.00	0.00
Tween 20	0.00	0.00
HEC	0.00	0.00
Bactericide	0.00	0.00
Triton X-100	0.00	10.70
DGBE	26.70	0.00
Diethylenglycol monohexylether	0.00	10.70
Measured dielectric pa	arameters	
Dielectric Constant	52.70	48.7
Conductivity (S/m)	1.95	5.53

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Tissue Simulating Liquid

Temperature: 22.0~23.8°C, humidity: 54~60%.								
Date	Freq.(MHz)	Liquid Parameters	Meas.	Target	Delta(%)	Limit±(%)		
2017/06/12 Body 2450	Relative Permittivity(cr):	52.48	52.70	-0.42	5			
	Body 2430	Conductivity(σ):	1.96	1.95	0.51	5		
0047/00/40 Dady 5000	Relative Permittivity(cr):	48.29	48.5	-0.43	5			
2017/06/12	Body 5200	Conductivity(σ):	5.74	5.77	-0.52	5		
2017/06/12	Pody F600	Relative Permittivity(cr):	48.29	48.5	-0.43	5		
2017/06/12	Body 5600	Conductivity(σ):	5.74	5.77	-0.52	5		
2017/06/12	Body 5800	Relative Permittivity(cr):	48.09	48.2	-0.23	5		
2017/06/12		Conductivity(σ):	5.93	6.00	-1.17	5		

5. UNCERTAINTY ASSESSMENT

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST

а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+- %)	Vi
Measurement System						•			
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	8
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.0	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	8
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	8
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	8
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1 5	8
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8 9	8
Test sample Related	1		1	ı	1	1	ı		
Test sample positioning	E.4.2.	0.03	N	1	1	1	0.03	0.0	N- 1
Device Holder Uncertainty	E.4.1.	5.00	N	1	1	1	5.00	5.0	N-

			1	ı	1		1		
	1							0	1
Output power Power drift -	6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	∞
SAR drift measurement								3	
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1		0.0	8
(Shape and thickness							0.03	3	
tolerances)								3	
Liquid conductivity -	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	8
deviation from target value								3	
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.1	М
measurement uncertainty								5	
Liquid permittivity -	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	8
deviation from target value								4	
Liquid permittivity -	E.3.3	10.0	N	1	0.6	0.49	6.00	4.9	М
measurement uncertainty		0						0	
Combined Standard			RSS				11.55	10.	
Uncertainty								67	
Expanded Uncertainty			K=2				23.11	21.	
(95% Confidence interval)								33	

5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

а	b	С	d	e=	f	g	h= c*f/e	i=	k
				f(d,k)			C i/e	c*g/ e	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
		(+-			(1g)	(10g)	(+-%)	Ui	
		%)	Dist.					(+-	
								%)	
Measurement System									
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	8
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	8
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.0	8

E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	8
E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	8
E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
							5	
E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
							3	
E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	∞
							9	
	•	•		•			1	•
8,E.4.	1.00	N	$\sqrt{3}$	1	1	0.58	0.5	8
2							8	
8,6.6.	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	∞
2							3	
meters					_	_		
E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	∞
							3	
E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
							3	
E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.2	М
							4	
E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	8
							4	
E.3.3	10.0	N	$\sqrt{3}$	0.6	0.49	3.46	2.8	М
	0						3	
		RSS				8.83	8.3	
							7	
		K=2				17.66	16.	
							73	
	E.2.8 E.6.1 E.6.2 E.6.3 E.5.2 8,E.4. 2 8,6.6. 2 meters E.3.1 E.3.2 E.3.2	E.2.8 2.0 E.6.1 3.0 E.6.2 2.0 E.6.3 0.05 E.5.2 5.0 8,E.4. 1.00 2 8,6.6. 4.04 2 meters E.3.1 0.05 E.3.2 4.57 E.3.3 5.00 E.3.2 3.69 E.3.3 10.0	E.2.8 2.0 R E.6.1 3.0 R E.6.2 2.0 R E.6.3 0.05 R E.5.2 5.0 R E.5.2 5.0 R E.3.1 0.05 R E.3.1 0.05 R E.3.2 4.57 R E.3.2 3.69 R E.3.3 10.0 N 0 RSS E.3.3 10.0 RSS R E.3.3 10.0 R R E.3.3 E.3.3 10.0 R R E.3.3 E.3.3 10.0 R R E.3.3 E.3.3	E.2.8 2.0 R $\sqrt{3}$ E.6.1 3.0 R $\sqrt{3}$ E.6.2 2.0 R $\sqrt{3}$ E.6.3 0.05 R $\sqrt{3}$ E.5.2 5.0 R $\sqrt{3}$ 8,E.4. 1.00 N $\sqrt{3}$ 8,6.6. 4.04 R $\sqrt{3}$ E.3.1 0.05 R $\sqrt{3}$ E.3.2 4.57 R $\sqrt{3}$ E.3.3 5.00 N $\sqrt{3}$ E.3.2 3.69 R $\sqrt{3}$ E.3.3 10.0 N $\sqrt{3}$ RSS N $\sqrt{3}$	E.2.8 2.0 R $\sqrt{3}$ 1 E.6.1 3.0 R $\sqrt{3}$ 1 E.6.2 2.0 R $\sqrt{3}$ 1 E.6.3 0.05 R $\sqrt{3}$ 1 E.5.2 5.0 R $\sqrt{3}$ 1 8,E.4. 1.00 N $\sqrt{3}$ 1 8,6.6. 4.04 R $\sqrt{3}$ 1 Immeters E.3.1 0.05 R $\sqrt{3}$ 1 E.3.2 4.57 R $\sqrt{3}$ 0.64 E.3.3 5.00 N $\sqrt{3}$ 0.6 E.3.3 10.0 N $\sqrt{3}$ 0.6 E.3.3 10.0 N $\sqrt{3}$ 0.6 RSS 0.6 0 0.6	E.2.8 2.0 R $\sqrt{3}$ 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 E.5.2 5.0 R $\sqrt{3}$ 1 1 8,E.4. 1.00 N $\sqrt{3}$ 1 1 8,6.6. 2 4.04 R $\sqrt{3}$ 1 1 1 0.05 R $\sqrt{3}$ 1 1 1 0.05 R $\sqrt{3}$ 0.64 0.43 1 0.05 R $\sqrt{3}$ 0.64 0.43 1 0.06 0.49 0.64 0.49 0.64 0.49 1 0.06 0.49 0.66 0.49 0.66 0.49 0.66 0.49 1 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06	E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.73 E.6.2 2.0 R $\sqrt{3}$ 1 1 1.15 E.6.3 0.05 R $\sqrt{3}$ 1 1 0.03 E.5.2 5.0 R $\sqrt{3}$ 1 1 2.89 8,E.4. 1.00 N $\sqrt{3}$ 1 1 0.58 2 8,6.6. 4.04 R $\sqrt{3}$ 1 1 2.33 Immeters E.3.1 0.05 R $\sqrt{3}$ 1 1 0.03 E.3.2 4.57 R $\sqrt{3}$ 0.64 0.43 1.69 E.3.3 5.00 N $\sqrt{3}$ 0.64 0.43 1.28 E.3.3 10.0 N $\sqrt{3}$ 0.6 0.49 1.28 E.3.3 10.0 N $\sqrt{3}$ 0.6 0.49 3.46 0 RSS 8.83	E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 1.1 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.73 1.7 E.6.2 2.0 R $\sqrt{3}$ 1 1 1.15 1.1 E.6.3 0.05 R $\sqrt{3}$ 1 1 0.03 0.0 3 E.5.2 5.0 R $\sqrt{3}$ 1 1 2.89 2.8 8,6.6. 4.04 R $\sqrt{3}$ 1 1 2.33 2.3 2 3 1 1 2.33 2.3 3 3 1 1 2.33 2.3 3 3 1 1 2.33 2.3 3 3 1 1 2.33 2.3 3 3 1 1 0.03 0.5 8.6.6. 4.04 R $\sqrt{3}$ 1 1 0.03 0.0 3 3 1 1 0.03 0.0 0.0 0.0 0.0 0

6. SAR MEASUREMENT EVALUATION

6.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to

6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

6.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	2450MHz(B)	5200MHz(B)	5600MHz(B)	5800MHz	
Target value	50.03 W/Kg	169.14 W/Kg	189.29 W/Kg	201.62 W/Kg	
1W (1g)	50.93 W/Kg	109.14 W/Ng	169.29 W/Ng	201.62 W/Ng	
Test value 1g					
(100 mW	5.039W/Kg	16.284 W/Kg	18.782 W/Kg	21.537 W/Kg	
input power)					
Normalized to 1W value(1g)	50.39 W/Kg	162.84 W/Kg	187.82 W/Kg	215.37 W/Kg	

Note: System checks the specific test data please see Annex C.

RFPORT No.: \$717050109S01

7. OPERATIONAL CONDITIONS DURING TEST

7.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Position

7.2 Measurement procedure

The Following steps are used for each test position

- 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.3 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

8. ANTENNA LOCATION AND TEST POSITION

For tablets with a display and overall diagonal dimension 45cm >20cm, the SAR procedure in KDB 447498 should be used. The tablet procedures required by KDB 447498 generally do not require separate hotspot mode testing.

According to KDB 447498 D01, the bottom face (back of the device) is required to be tested touching the flat phantom. Per KDB 447498, SAR testing applies for the tablet edges with antenna located within 5cm of each tablet edge closet to the user.

170mm Wi-Fi&BT Antenna 150mm Back side

Edge A

Edge C Diagonal Dimension: 320mm

Assessment		SAR Test Positon					
		Test distance: 0mm					
Antennas	Back	Front	Edge A	Edge B	Edge C	Edge D	
WLAN&BT	Yes	No	Yes	No	No	No	

9. MEASUREMENT OF CONDUCTED OUTPUT POWER

1. Wi-Fi Average output power

		Frequency	0	utput Power(dBi	m)
Band	Channel	(MHz)	802.11b	802.11g	802.11n20
		(2)	(DSSS)	(OFDM)	(OFDM)
	1	2412	16.34	11.79	11.89
Wi-Fi	6	2437	16.32	13.34	13.14
	11	2462	16.65	12.54	12.47

			Output
Band	Channel	Frequency	Power(dBm)
		(MHz)	802.11n40
			(OFDM)
	3	2422	9.69
Wi-Fi	6	2437	12.12
	9	2452	10.01

2. Wi-Fi 5GHz Average output power

Band	Channal	Frequency	Output Power(dBm)			
Danu	and Channel (MHz)	802.11a20	802.11n20			
	36	5180	9.30	9.47		
Wi-Fi	40	5200	9.25	9.10		
5.2GHz	44	5220	9.27	9.15		
	48	5240	8.77	8.72		

Band	Channel	Frequency (MHz)	Output Power(dBm) 802.11n40
Wi-Fi	38	5190	9.78
5.2GHz	46	5230	9.29

Band Chan	Channal	Frequency	Output Power(dBm)			
	Charmer	(MHz)	802.11a20	802.11n20		
\A/: - :	52	5260	8.71	8.45		
Wi-Fi 5.3GHz	56	5280	8.52	8.14		
	60	5300	8.20	7.82		
(UNII)	64	5320	7.73	7.90		

Band	Channel	Frequency (MHz)	Output Power(dBm) 802.11n40
5.3GHz	54	5270	8.78
(UNII)	62	5310	8.42

Dond	Channel	Frequency	Output Power(dBm)		
Band	Channel	(MHz)	802.11a20	802.11n20	
Wi-Fi	100	5500	9.79	9.7	
5.5GHz	120	5600	10.62	11.08	
(UNII)	140	5700	8.53	8.37	

Band	Channel	Frequency (MHz)	Output Power(dBm) 802.11n40
	102	5510	10.35
Wi-Fi	110	5550	10.55
5.5GHz	118	5590	10.76
(UNII)	126	5630	10.88
	134	5670	10.94

Dond	Channel Frequency		Output P	ower(dBm)
Band	Channel	(MHz)	802.11a20	802.11n20
	149	5745	7.51	7.71
Wi-Fi	153	5765	7.20	7.22
5.8GHz	157	5785	7.01	7.07
(UNII)	161	5805	6.88	6.75
	165	5825	6.67	6.94

Band	Channel	Frequency	Output Power(dBm)
		(MHz)	802.11n40
Wi-Fi	151	5755	8.07
5.8GHz (UNII)	159	5795	7.41

2. BT peak output power

Dond	Channel	Frequency	Output Power(dBm)		
Band	Charmer	(MHz)	GFSK	π/4-DQPSK	8-DPSK
	0	2402	4.58	3.88	3.93
BT	39	2441	5.15	4.56	4.61
	78	2480	5.04	4.53	4.53

Band	Channel	Frequency	Output Power(dBm)	
		(MHz)	GFSK	
	0	2402	-2.75	
BT4.1	19	2441	-1.88	
	39	2480	-1.73	

10. TEST RESULTS LIST

Summary of Measurement Results (WLAN 2.4GHz 802.11b Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.					
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
Body	Edge A	44	0.435	4.004	0.472
(0mm Separation)	Back upward	11	0.254	1.084	0.275

Summary of Measurement Results (WLAN 5.2&5.3GHz 802.11a Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.					
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
Body	Edge A	00	0.278	4.050	0.292
(0mm Separation)	Back upward	38	0.101	1.052	0.106

Summary of Measurement Results (WLAN 5.5GHz 802.11a Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.					
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
Body	Edge A	100	0.251	4.400	0.277
(0mm Separation)	Back upward	120	0.090	1.102	0.099

Summary of Measurement Results (WLAN 5.8GHz 802.11a Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.					
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg) , 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
Body	Edge A	454	0.114	4.404	0.126
(0mm Separation)	Back upward	151	0.065	1.104	0.072

Notes:

- Adjust SAR for OFDM is 0.435*13.34/16.65=0.349W/Kg<1.2, so SAR is not required for OFDM modes.
- 2. SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:
 - 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is \leq 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
 - 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 3. 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.
- 4. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 5. Justification for test configurations for WLAN per KDB Publication 248227 D01DR02-41929 for

2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.

6. Scaling Factor calculation

Band	Tune up power telerance(dPm)	SAR test channel	Scaling
Danu	Tune-up power tolerance(dBm)	Power (dBm)	Factor
Wi-Fi 2.4GHz	Max output power =16.5+-0.5	16.65	1.084
Wi-Fi 5.2GHz	Max output power =9.5+-0.5	9.78	1.052
Wi-Fi 5.5GHz	Max output power =11.0+-0.5	11.08	1.102
Wi-Fi 5.8GHz	Max output power =8.0+-0.5	8.07	1.104

11. REPEATED SAR MEASUREMENT

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

12. MULTIPLE TRANSMITTERS EVALUATION

Stand-alone SAR

Test distance: 5mm			
Band	Highest power(mW) per tune up	1-g SAR test threshold	Test required?
Wi-Fi(2.4G)	46.23	[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√f(GHz)] ≤ 3.0 for 1-g SAR	Yes
Wi-Fi(5.2G)	9.51		Yes
Wi-Fi(5.5G)	12.82		Yes
Wi-Fi(5.8G)	6.41		Yes
ВТ	3.27		No

The SAR test for BT is not required.

The SAR test for 802.11b(2.4GHz) is required, 802.11g/HT20 is not required, for the maximum average output power is less than 1/4 dB Higher than measured on the corresponding 802.11b channels. As per KDB 248227

The BT stand-alone SAR is not required, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

BT estimated Body SAR =0.135 W/Kg (1g)

(Max power=3.27 mW; min. test separation distance=5mm for Body; f=2.4GHz)

Simultaneous SAR

Simultaneous Transmission SAR evaluation is not required for BT and WiFi, because the software mechanism have been incorporated to guarantee that the WLAN and Bluetooth transmitters would not simultaneously operate.

13 ANNEX A PLOTS OF SAR TEST RESULTS

14 ANNEX B GENERAL INFORMATION

15 ANNEX C SYSTEM CHECK DATA

15 ANNEX D SETUP PHOTOS

ANNEX A PLOTS OF SAR TEST RESULTS

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 32 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 11)

Frequency (MHz)	2472.000000
Relative permittivity (real part)	52.480397
Conductivity (S/m)	1.958859
Power drift (%)	-1.240000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	4.96
Crest factor:	1:1

Maximum location: X=24.00, Y=-15.00 SAR Peak: 0.77 W/kg

SAR 10g (W/Kg)	0.214282
SAR 1g (W/Kg)	0.435070

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 32 seconds

A. Experimental conditions.

bermental conditions.	
Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 11)

Frequency (MHz)	2472.000000
Relative permittivity (real part)	39.225412
Conductivity (S/m)	1.810954
Power drift (%)	2.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	4.96
Crest factor:	1:1

Maximum location: X=-1.00, Y=-8.00 SAR Peak: 0.59 W/kg

SAR 10g (W/Kg)	0.149624
SAR 1g (W/Kg)	0.254412

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 32 seconds

A. Experimental conditions.

- Commentar Comments	
Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	Body
Band	802.11a
Channels	Low
Signal	OFDM

B. SAR Measurement Results

Low Band SAR (Channel 38)

Frequency (MHz)	5190.000000
Relative permittivity (real part)	48.294381
Conductivity (S/m)	5.743260
Power drift (%)	2.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	22.11
Crest factor:	1:1

Maximum location: X=9.00, Y=23.00 SAR Peak: 0.27 W/kg

SAR 10g (W/Kg)	0.166195
SAR 1g (W/Kg)	0.228247

MEASUREMENT 4

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 32 seconds

A. Experimental conditions.

t por minorita.	
Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	Body
Band	802.11a
Channels	Low
Signal	OFDM

B. SAR Measurement Results

Low Band SAR (Channel 38)

Frequency (MHz)	5190.000000
Relative permittivity (real part)	48.294381
Conductivity (S/m)	5.743260
Power drift (%)	2.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	22.11
Crest factor:	1:1

Maximum location: X=11.00, Y=35.00 SAR Peak: 0.30 W/kg

SAR 10g (W/Kg)	0.075644
SAR 1g (W/Kg)	0.107677

MEASUREMENT 5

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 32 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	Body
Band	802.11a
Channels	Middle
Signal	OFDM

B. SAR Measurement Results

Middle Band SAR (Channel 120)

Frequency (MHz)	5600.000000
Relative permittivity (real part)	48.294381
Conductivity (S/m)	5.7432600
Power drift (%)	1.280000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	23.69
Crest factor:	1:1

Maximum location: X=23.00, Y=-15.00 SAR Peak: 0.32 W/kg

SAR 10g (W/Kg)	0.133736
SAR 1g (W/Kg)	0.251335

MEASUREMENT 6

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 32 seconds

A. Experimental conditions.

tporimionia. Comanionion	
Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	Body
Band	802.11a
Channels	Middle
Signal	OFDM

B. SAR Measurement Results

Middle Band SAR (Channel 120)

Frequency (MHz)	5600.000000
Relative permittivity (real part)	48.294381
Conductivity (S/m)	5.743260
Power drift (%)	3.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	23.69
Crest factor:	1:1

Maximum location: X=5.00, Y=6.00 SAR Peak: 0.25 W/kg

SAR 10g (W/Kg)	0.051586
SAR 1g (W/Kg)	0.090283

MEASUREMENT 7

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 32 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	Body
Band	802.11a
Channels	Low
Signal	OFDM

B. SAR Measurement Results

Low Band SAR (Channel 151)

Frequency (MHz)	5755.000000
Relative permittivity (real part)	48.093428
Conductivity (S/m)	5.930716
Power drift (%)	2.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	23.02
Crest factor:	1:1

Maximum location: X=2.00, Y=-56.00 SAR Peak: 0.20 W/kg

SAR 10g (W/Kg)	0.063239
SAR 1g (W/Kg)	0.114407

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR	0.1512	0.1228	0.0579	0.0175	0.0126
(W/Kg)					
	0.15-				
	0.12				
	0.10 - 0.08 - 0.08 -	$\overline{}$			
	§ 0.08-	\square			
	왕 0.06-	+			
	0.04-	++			
	0.02-				
	0.00-			- - ,	
	0 2 4		14 16 18 20 22	2 24 26 28 30	
			Z (mm)		

MEASUREMENT 8

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 32 seconds

A. Experimental conditions.

Aportiniontal contantions.	
Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	Body
Band	802.11a
Channels	Low
Signal	OFDM

B. SAR Measurement Results

Low Band SAR (Channel 151)

Frequency (MHz)	5755.000000
Relative permittivity (real part)	48.093428
Conductivity (S/m)	5.930716
Power drift (%)	2.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	23.02
Crest factor:	1:1

Maximum location: X=19.00, Y=39.00 SAR Peak: 0.14 W/kg

SAR 10g (W/Kg)	0.043044
SAR 1g (W/Kg)	0.065149

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR	-0.0493	0.0553	0.0392	0.0045	0.0079
(W/Kg)					
	-0.02 - -0.04 - -0.05 -				
	Ó 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z (mm)				

ANNEX B GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

	<u> </u>
Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China
Responsible Test Lab Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Aglient (8960, SN:10752)	2017-5-24	1year
3	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2017-5-25	1year
4	Voltmeter	Keithley (2000, SN:1000572)	2016-7-8	1year
5	Signal Generator	Rohde&Schwarz (SMP_02)	2016-7-8	1year
6	Power Amplifier	PRANA (Ap32 SV125AZ)	2016-7-8	1year
7	Power Meter	Agilent (E4416A, SN:MY45102093)	2016-7-8	1year
8	Power Sensor	Agilent (N8482A, SN:MY41091706)	2016-7-8	1year
9	Directional coupler	Giga-tronics(SN:1829112)	2016-7-24	1year
10	Probe	Satimo (SN:SN 37/08 EP80)	2016-7-5	1year
11	Dielectric Probe Kit	Agilent (85033E)	2016-7-5	1year
12	Phantom	Satimo (SN:SN_36_08_SAM62)	N/A	N/A
13	Liquid	Satimo(Last Calibration: 2017-06-12)	N/A	N/A
14	Dipole 2450MHz	Satimo (SN 30/13 DIP2G450-263)	2016-7-5	1year
15	Waveguide 5-6GHz	Satimo (SN 41/12 WGA21)	2016-7-5	1year

ANNEX C SYSTEM PERFORMANCE CHECK DATA

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.480397
Conductivity (S/m)	1.958859
Power Drift (%)	0.630000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	1:1

Maximum location: X=7.00, Y=6.00

SAR 10g (W/Kg)	2.642158
SAR 1g (W/Kg)	5.039275

Z Axis Scan

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

perimental conditions.	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5200MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5200.000000
Relative permittivity (real part)	48.273014
Conductivity (S/m)	5.743260
Power Drift (%)	2.310000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	23.71
Crest factor:	1:1

Maximum location: X=1.00, Y=3.00

SAR 10g (W/Kg)	6.024355
SAR 1g (W/Kg)	16.284232

Z Axis Scan

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

permiental conditions.	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5600MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5600.000000
Relative permittivity (real part)	48.294381
Conductivity (S/m)	5.7432600
Power Drift (%)	1.080000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	26.30
Crest factor:	1:1

Maximum location: X=-1.00, Y=-5.00

SAR 10g (W/Kg)	6.406961
SAR 1g (W/Kg)	18.782406

Z Axis Scan

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2017.06.12

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5800MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5800.000000
Relative permittivity (real part)	48.093428
Conductivity (S/m)	5.930716
Power Drift (%)	1.260000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	26.47
Crest factor:	1:1

Maximum location: X=-6.00, Y=-1.00

SAR 10g (W/Kg)	6.782634
SAR 1g (W/Kg)	21.537290

Z Axis Scan

ANNEX D SETUP PHOTOS

1. Back upward Position

2. Edge A Position

3. Liquid Level Photo Body Liquid

Liquid depth :15.5cm

***** END OF REPORT *****