1 – Cours Sciences Physiques MP*

Évolution monobare d'un processus chimique

L'objectif est d'étudier l'évolution de la température au cours du temps d'un système siège d'une transformation chimique monobare et adiabatique. Une fois les aspects thermodynamique et cinétique mis en place, la résolution sera effectuée de manière numérique grâce à un programme *Python*.

1 Conditions de la réaction de décomposition du pentoxyde d'azote

On s'intéresse à la décomposition du pentoxyde de diazote dans l'air. Les oxydes d'azote sont des polluants qu'il faut suivre avec attention pour la mesure de la qualité de l'air. On étudiera la décomposition dans un excès d'air.

Le système étudié est intégralement à l'état gaz. On considérera que la pression extérieure maintenue constante est la pression standard $P^{\circ} = 1$ bar. On considère le système constitué par le réactif et les produits parfaitement calorifugé d'où le caractère adiabatique de la transformation. Le processus chimique est :

$$2 \, \mathsf{N_2} \mathsf{O}_{\mathsf{5}gaz} \
ightleftharpoons \ 4 \, \mathsf{NO}_{\mathsf{2}gaz} \ + \, \mathsf{O}_{\mathsf{2}gaz}$$

Comme on peut le constater sur le bilan réactionnel, la quantité de matière va évoluer au cours du processus puisque $\Delta_r n_{gaz} = 3$. Le nombre de moles de gaz va augmenter. Comme la pression est fixée alors le volume V du système va lui aussi augmenter. On considérera que le modèle des gaz parfaits s'applique pour le mélange de gaz.

La cinétique de la réaction est d'ordre 1, on peut écrire :

$$v = -\frac{1}{2V} \frac{\mathrm{d}n_{\mathsf{N}_2\mathsf{O}_5}}{\mathrm{d}t} = k \; [\mathsf{N}_2\mathsf{O}_5]$$

On possède les informations suivantes pour l'aspect cinétique :

$$k = k_0 \exp\left[-\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

où l'énergie d'activation est $E_a = 103, 1 \, \text{kJ} \cdot \text{mol}^{-1}$ supposée indépendante de la température, $k_0 = 2, 92 \times 10^{-2} \, \text{min}^{-1}$ est la constante de vitesse à $T_0 = 433 \, \text{K}$ (160 °C). R est la constante des gaz parfait $R = 8,314 \, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

Sur le plan thermodynamique, on possède les données suivantes à 298 K :

	N_2O_{5gaz}	NO_{2gaz}	O_{2gaz}	N_{2gaz}
$\Delta_f H^{\circ} \text{ en kJ} \cdot \text{mol}^{-1}$	11, 3	33, 8	0	
S° en $J \cdot K^{-1} \cdot \text{mol}^{-1}$	356	240	205	
$c_p^{\circ} \text{ en } \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$	96, 5	37, 0	29, 4	29, 1

On se place dans le cadre de l'approximation d'ELLINGHAM, ces grandeurs sont donc supposées indépendantes de la température. On peut calculer l'enthalpie standard de réaction :

$$\Delta_r H^{\circ} = 4\Delta_f H^{\circ}_{\mathsf{NO}_2} + \Delta_f H^{\circ}_{\mathsf{O}_2} - 2\Delta_f H^{\circ}_{\mathsf{N}_2\mathsf{O}_5} = 112,6\,\mathrm{kJ\cdot mol^{-1}}$$

La réaction est endothermique, on peut prévoir qu'au cours de l'avancement du processus la température va diminuer et donc la cinétique ralentir.

Sciences Physiques MP* Cours – 2

2 Lois thermodynamiques et cinétiques

2.1 Tableau d'avancement

On construit un tableau d'avancement en considérant une situation où N_2O_5 est présent au départ à raison de n_0 moles. On utilisera le taux d'avancement α tel que $\alpha = 2\xi/n_0$ où ξ est l'avancement en moles traditionnel. On a donc :

$$2 \, \mathsf{N}_2 \mathsf{O}_{5gaz} \ \
ightharpoonup \ \ 4 \, \, \mathsf{N} \mathsf{O}_{2gaz} \ \ + \ \ \mathsf{O}_{2gaz} \ \ \ (\mathsf{N}_{2gaz}) \ \ \ \mathrm{Total \ gaz}$$
 $t = 0 \quad n_0 \quad 0 \quad 20n_0 \quad 80n_0 \quad 101n_0$ $t \quad n_0 - 2\xi \quad 4\xi \quad 20n_0 + \xi \quad 80n_0 \quad 101n_0 + 3\xi$ $t \quad n_0(1-\alpha) \quad n_02\alpha \quad n_0(20 + \frac{\alpha}{2}) \quad 80n_0 \quad n_0\left(101 + \frac{3\alpha}{2}\right)$

À une date t quelconque, le volume du système réactionnel s'exprime selon :

$$V = \frac{n_0 RT}{P^{\circ}} \left(101 + \frac{3\alpha}{2} \right)$$

Comme le taux d'avancement α et la température T dépendent du temps, le volume en dépend. Toutefois, comme $\alpha_{max}=1$, on considérera pour la suite que la quantité de matière totale est constante et donc que le volume est constant. La concentration de pentoxyde de diazote est :

$$[\mathsf{N}_2\mathsf{O}_5] = \frac{n_0(1-\alpha)}{V}$$

2.2 Expression de la vitesse de réaction

La loi cinétique d'ordre 1 est $v=-\frac{1}{2V}\frac{\mathrm{d}n_{\mathsf{N_2O_5}}}{\mathrm{d}t}=k\,\frac{n_{\mathsf{N_2O_5}}}{V}$. Cela revient à écrire une loi de vitesse sur la quantité de matière en pentoxyde de diazote : $-\frac{\mathrm{d}n_{\mathsf{N_2O_5}}}{\mathrm{d}t}=2k\,n_{\mathsf{N_2O_5}}$. On privilégie le taux d'avancement α pour obtenir l'équation différentielle donnant son évolution :

$$\frac{d\alpha}{dt} = 2k(T)(1-\alpha)$$
 avec $k(T) = k_0 \exp\left[-\frac{E_a}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$

Il faudra programmer l'équation suivante en définissant un pas de temps dt petit devant le temps caractéristique de la réaction que l'on peut situer autour de $\frac{1}{k_0} \simeq 30\,\mathrm{min}$. Comme la température va baisser, la cinétique sera plus lente et le pas de temps sera encore plus petit en comparaison du départ. On écrira donc :

$$d\alpha = 2k_0 \exp\left[-\frac{E_a}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right] (1 - \alpha) dt$$

2.3 Lois thermodynamiques

Nous allons effectuer un bilan énergétique en situation adiabatique et monobare entre la date t et la date t+dt. Pendant cette durée, l'avancement molaire réalisé est $d\xi=n_0d\alpha/2$. La consommation d'énergie par le processus réactionnel va entraı̂ner une baisse de la température quantifiée par dT pour l'ensemble des entités présentes à la date t. À cette date, il y a $n_0(1-\alpha)$ moles de N_2O_{5gaz} , $n_02\alpha$ moles de NO_{2gaz} , $20n_0+n_0\alpha/2$ moles de O_{2gaz} et surtout $80n_0$ moles de N_{2gaz} . En conservant la même logique d'approximation d'une quantité de matière fixée, la capacité thermique du milieu sera considérée comme constante et déterminée par $101n_0$ moles d'air. Pour la capacité thermique molaire de l'air, on effectuera une moyenne à 80% et 20% des capacités thermiques molaires du diazote et du dioxygène. On considère donc que $\Gamma_{tot}=n_0\Gamma=101n_0c_{p,air}^\circ$. On a donc $\Gamma=2\,945\,\mathrm{J\cdot K^{-1}\cdot mol^{-1}}$. Après simplification de l'équation par n_0 , le bilan énergétique en condition monobare et adiabatique nous amène à écrire que :

$$\Delta_r H^{\circ} \frac{\mathrm{d}\alpha}{2} + \Gamma \mathrm{d}T = 0$$

Cette équation sera écrite dans le programme sous la forme :

$$dT = -\frac{\Delta_r H^{\circ}}{2\Gamma} d\alpha$$

3 – Cours Sciences Physiques MP*

3 Résolution numérique

La résolution numérique est réalisée dans le programme *Evolution_Processus_N2O5*. On calcule, à chaque pas de temps, l'évolution de l'avancement ainsi que l'évolution de la température. On représente les deux graphiques à la figure 1.

FIGURE 1 – Évolution de l'avancement et de la température dans un processus adiabatique monobare

4 Compléments

On calcule l'entropie standard de réaction :

$$\Delta_r S^{\circ} = 4S^{\circ}_{NO_2} + S^{\circ}_{O_2} - 2S^{\circ}_{N_2O_5} = 453 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$$

L'entropie standard est positive, cela est cohérent avec le fait que le nombre de moles de gaz augmente au cours du processus et que le désordre va croître.

On peut calculer l'enthalpie libre standard de la réaction :

$$\Delta_r G^{\circ} = \Delta_r H^{\circ} - T \Delta_r S^{\circ} = 112, 6 - 0, 453T$$
 en kJ·mol⁻¹

La loi de Guldberg et Waage est $\Delta_r G^{\circ} = -RT \ln K^{\circ}$ avec pour constante d'équilibre :

$$K^{\circ}(T) = \frac{P_{\text{NO}_2}^4 P_{\text{O}_2}}{P_{\text{N}_2\text{O}_5}^2 P^{\circ 3}} \bigg|_{ea}$$

Sur le plan du principe, on comprend que le taux d'avancement α va être dépendant de la température. Il est limité par sa valeur à l'équilibre α_{eq} . Nous avons fait l'hypothèse d'une réaction totale se déroulant, par le fait, uniquement dans le sens direct. Nous allons discuter de cette hypothèse.

Le taux d'avancement à l'équilibre α_{eq} dépend de la température, il mesure la valeur limite de α . Au cours du processus, la température va baisser, la cinétique va ralentir mais, surtout, l'avancement à l'équilibre va diminuer puisque si T diminue alors $\Delta_r G^{\circ}(T)$ augmente, la constante d'équilibre va diminuer. Par exemple, à $T_0 = 433 \,\mathrm{K}$ (160 °C), on a $K_{433 \,\mathrm{K}}^{\circ} = 1,2 \times 10^{10}$ alors qu'à 298 K, on a $K_{298 \,\mathrm{K}}^{\circ} = 8,4 \times 10^3$. Au départ, la réaction peut être considérée comme totale mais au fur et à mesure de l'avancement du processus, c'est de moins en moins le cas.

L'évolution se termine lorsque l'avancement atteint la valeur à l'équilibre α_{eq} qui est défini par l'expression de la constante d'équilibre, on note T_{eq} la température finale. On a :

$$K^{\circ}(T) = \frac{P_{\text{NO}_2}^4 P_{\text{O}_2}}{P_{\text{N}_2\text{O}_5}^2 P^{\circ 3}} \bigg|_{eq} = \frac{n_{\text{NO}_2}^4 n_{\text{O}_2}}{n_{\text{N}_2\text{O}_5}^2 n_{tot,gaz}^3} \bigg|_{eq}$$

puisque chaque pression partielle peut s'exprimer selon $P_i = \frac{n_i}{n_{tot,gaz}} P^{\circ}$. En utilisant les quantités de matière, définies grâce au tableau d'avancement, on obtient la relation :

Sciences Physiques MP* Cours – 4

$$\frac{(2\alpha_{eq})^4 \frac{40 + \alpha_{eq}}{2}}{(1 - \alpha_{eq})^2 (101)^3} = \exp\left[\frac{\Delta_r S^{\circ}}{R} - \frac{\Delta_r H^{\circ}}{R T_{eq}}\right]$$

On se place à une température de $140\,^{\circ}$ C qui est voisine de celle obtenue par la simulation. En négligeant α devant 40, on peut obtenir une équation numérique plus simple pour la détermination de l'avancement à l'équilibre :

$$\frac{\alpha_{eq}^2}{(1 - \alpha_{eq})} = 2,9 \times 10^6$$

La résolution de cette équation montre que $\alpha_{eq} = 1 - \varepsilon$ avec $\varepsilon = 3, 5 \times 10^{-7}$. Nous avions raison de considérer que la réaction était totale à 140 °C. Le caractère total de la réaction est assuré dans le cadre de l'étude proposée du début à la fin du processus même si la température évolue de 160 °C à environ 140 °C.

Dans l'hypothèse où le caractère total de la réaction ne serait plus valable, il faut considérer la réaction en sens indirect. Il faudrait mettre une condition d'arrêt sur le calcul de α à α_{eq} qui dépend de la température et donc de la valeur de α réalisée. La programmation est plus difficile. De plus, il ne faut pas oublier alors que la cinétique doit prendre en compte le sens indirect. Il est indispensable de posséder des connaissances sur la cinétique de la réaction sans oublier qu'à l'équilibre - lorsque la constante d'équilibre est vérifiée - la vitesse du sens indirect doit être égale à la vitesse du sens indirect. La constante d'équilibre est liée aux constantes de vitesse.

5 Hydrolyse de l'anhydride acétique

5.1 Le processus

L'anhydride acétique possède la formule semi-développée suivante :

Il possède une masse molaire $M=102\,\mathrm{g\cdot mol}^{-1}$, sa solubilité dans l'eau est de $120\,\mathrm{g\cdot mol}^{-1}$ à $25\,^{\circ}\mathrm{C}$. Dans l'eau, il s'hydrolyse selon une réaction d'ordre 1 pour former deux molécules d'acide éthanoïque $\mathsf{CH_3COOH}$ selon la réaction :

$$CH_3COOCOCH_3 + H_2O \rightleftharpoons 2CH_3COOH$$

La réaction peut être considérée comme totale dans les conditions de son déroulement. Elle est exothermique puisque $\Delta_r H^\circ = -56,0\,\mathrm{kJ\cdot mol^{-1}}$. Sa constante de vitesse est $k = A\,\mathrm{exp} - \frac{E_a}{RT}$ avec $A = k_0\,\mathrm{exp}\,\frac{E_a}{RT_0}$ avec $T_0 = 293\,\mathrm{K},\, A = 1,7\times10^7\,\mathrm{min^{-1}}$ et $E_a = 50,5\,\mathrm{kJ\cdot mol^{-1}}$.

La réaction se déroulera en ajoutant l'anhydride acétique à un litre d'eau liquide à partir de la température $T_0=293\,\mathrm{K}$ avec une quantité initiale n_0 de moles d'anhydride acétique. On supposera qu'avec les quantités de matière en jeu dans la réaction, on pourra considérer que la capacité thermique du système réactionnel Γ_{tot} est constante. On prendra $\Gamma_{tot}=\Gamma_{eau}(1+\frac{n_0}{10})$ avec $\Gamma_{eau}=4,2\,\mathrm{kJ}\cdot\mathrm{K}^{-1}$. Cette expression de la capacité thermique peut être débattue. Ici, elle correspond au fait que lorsque l'on met $n_0=1\,\mathrm{mol}$ d'anhydride acétique dans l'eau, cela revient à ajouter environ $100\,\mathrm{g}$ au litre d'eau de masse $1\,\mathrm{kg}$. L'étude s'effectue en situation monobare de pression extérieure $P=P^\circ$ et concerne un liquide considéré comme incompressible de volume V fixé.

5 – Cours Sciences Physiques MP*

5.2 Loi cinétique

La réaction se déroule dans un volume constant que nous notons V en vertu de ce que nous avons dit avant. Le tableau d'avancement est :

AnhyAc
$$+$$
 H_2O \rightleftarrows 2 CH_3COOH $t=0$ n_0 excès 0 t $n_0-\xi$ excès 2ξ t $n_0(1-lpha)$ excès $2n_0lpha$

La loi cinétique est :

$$v = -\frac{\mathrm{d}\left[\mathsf{AnhyAc}\right]}{\mathrm{d}t} = k\left[\mathsf{AnhyAc}\right]$$

En simplifiant par le volume V et la quantité de matière initiale n_0 , on arrive à l'équation cinétique portant sur le taux d'avancement suivante :

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = k\left(1 - \alpha\right)$$

5.3 Loi thermodynamique

Nous allons effectuer un bilan énergétique en situation adiabatique et monobare entre la date t et la date t+dt. Pendant cette durée, l'avancement molaire réalisé est $n_0 d\alpha$. L'énergie dégagée par la réaction est donnée par $n_0 d\alpha \Delta_r H^{\circ}$. La capacité du système réactionnel est Γ_{tot} constante. L'élévation de température sera $\Gamma_{tot} dT$. Le bilan énergétique est donc :

$$n_0 \, \mathrm{d}\alpha \, \Delta_r H^\circ + \Gamma_{tot} \, \mathrm{d}T = 0$$

5.4 Aspect numérique

En programmant les deux lois cinétique et thermodynamique :

$$d\alpha = k(1 - \alpha)dt$$
 et $dT = -\frac{n_0 \Delta_r H^{\circ}}{\Gamma_{tot}} d\alpha$

on peut apprécier l'évolution de la température et de l'avancement sur les graphiques qui suivent. Ils se différencient par la quantité de matière initiale n_0 . On voit que plus n_0 est élevé, plus le temps de réaction est cours et plus bien sûr la température est élevée. Mais cela n'est pas une surprise!

Un exemple proposé ci-dessous comporte un nombre de moles d'anhydride acétique $(n_0 = 10 \text{ mol})$ qui n'est plus faible devant le nombre de moles d'eau et qui pose quelques problèmes de solubilité que nous oublierons... Dans le programme informatique, la capacité thermique du système est ajustée par rapport au nombre de moles initial n_0 .

Sciences Physiques MP* Cours – 6

FIGURE 2 – Évolution de l'avancement et de la température lors de l'hydrolyse de l'anhydride acétique pour $n_0=1\,\mathrm{mol}$ dans $V=1\,\mathrm{L}$ d'eau

FIGURE 3 – Évolution de l'avancement et de la température lors de l'hydrolyse de l'anhydride acétique pour $n_0=0,1\,\mathrm{mol}$ dans $V=1\,\mathrm{L}$ d'eau

FIGURE 4 – Évolution de l'avancement et de la température lors de l'hydrolyse de l'anhydride acétique pour $n_0=10\,\mathrm{mol}$ dans $V=1\,\mathrm{L}$ d'eau