Medical inventory optimization Exploratory Data Analysis (SQL) by Pratiksha Saheb

Software: MySQL Workbench Business decisions based on the clean 'medicines_db' data

1. Calculating the first moment (measures of central tendency such as mean, median, mode) for the dataset.

Mean:

```
select
     round(avg(Quantity),2) as mean_Quantity,
     round(avg(ReturnQuantity),2) as mean_ReturnQuantity,
     round(avg(Final_cost),2) as mean_Final_cost,
     round(avg(Final_Sales),2) as mean_Final_Sales,
     round(avg(RtnMPR),2) as mean_RtnMPR
     from
     new_table;
Result Grid Filter Rows:
                                              Export: Wrap Cell Content: TA
   mean_Quantity mean_ReturnQuantity
                                      mean_Final_cost | mean_Final_Sales
                                                                      mean_RtnMPR
  1.78
                 0.19
                                      88.47
                                                     165.01
                                                                      13.85
```

Median:

```
with ranked as
```

```
select Final_cost,
Final_Sales,
Quantity,
ReturnQuantity,
RtnMPR,
row_number() over (order by Final_cost) as r,
count(*) over () as c
from new_table),
median as
select Final_cost,
Final_Sales,
Quantity,
ReturnQuantity,
RtnMPR
from ranked
where r in (floor((c+1)/2), ceiling((c+1)/2))
select round(avg(Final_cost), 2),
round(avg(Final_Sales),2),
round(avg(Quantity),2),
round(avg(ReturnQuantity),2),
round(avg(RtnMPR),2)
from median;
```



```
Mode:
select
mode_Quantity.mode_value as mode_Quantity,
mode_Quantity.mode_count as mode_Quantity_count,
mode_ReturnQuantity.mode_value as mode_ReturnQuantity,
mode_ReturnQuantity.mode_count as mode_ReturnQuantity_count,
mode_Final_Sales.mode_value as mode_Final_Sales,
mode_Final_Sales.mode_count as mode_Final_Sales_count,
mode_Final_cost.mode_value as mode_Final_cost,
mode_Final_cost.mode_count as mode_Final_cost_count,
mode_RtnMPR.mode_value as mode_RtnMPR,
mode_RtnMPR.mode_count as mode_RtnMPR_count
from(
SELECT Quantity AS mode_value, COUNT(*) AS mode_count
FROM new_table
GROUP BY Quantity
ORDER BY COUNT(*) DESC
LIMIT 1) as mode_Quantity,
( SELECT ReturnQuantity AS mode_value, COUNT(*) AS mode_count
FROM new table
GROUP BY Quantity
ORDER BY COUNT(*) DESC
LIMIT 1
) as mode_ReturnQuantity,
(SELECT final_cost AS mode_value, COUNT(*) AS mode_count
FROM new_table
GROUP BY Quantity
ORDER BY COUNT(*) DESC
LIMIT 1
```

```
) as mode_Final_cost,
```

(SELECT Final_Sales AS mode_value, COUNT(*) AS mode_count

FROM new_table

GROUP BY Quantity

ORDER BY COUNT(*) DESC

LIMIT 1

) as mode_Final_Sales,

(select RtnMPR AS mode_value, COUNT(*) AS mode_count

FROM new_table

GROUP BY Quantity

ORDER BY COUNT(*) DESC

LIMIT 1

) as mode_RtnMPR;

2. Calculating the second moment (measures of dispersion such as variance, standard deviation, range) for the dataset.

Variance:

SELECT

ROUND(VARIANCE(Quantity), 2) AS variance_quantity,

ROUND(VARIANCE(ReturnQuantity), 2) AS variance_return_quantity,

ROUND(VARIANCE(Final_Cost), 2) AS variance_final_cost,

ROUND(VARIANCE(Final_Sales), 2) AS variance_final_sales,

ROUND(VARIANCE(RtnMPR), 2) AS variance_rtnmrp

FROM new_table;

	variance_quantity	variance_return_quantity	variance_final_cost	variance_final_sales	variance_rtnmrp
•	3.32	0.41	17736.69	71134.19	2496.22
,	,				

SELECT

ROUND(STDDEV(Quantity), 2) AS stddev_quantity,

ROUND(STDDEV(ReturnQuantity), 2) AS stddev_return_quantity,

ROUND(STDDEV(Final_Cost), 2) AS stddev_final_cost,

ROUND(STDDEV(Final_Sales), 2) AS stddev_final_sales,

ROUND(STDDEV(RtnMPR), 2) AS stddev_rtnmrp

FROM new_table;

	. — -				
	stddev_quantity	stddev_return_quantity	stddev_final_cost	stddev_final_sales	stddev_rtnmrp
•	1.82	0.64	133.18	266.71	49.96

Range:

SELECT

MAX(Quantity) - MIN(Quantity) AS range_quantity,

MAX(ReturnQuantity) - MIN(ReturnQuantity) AS range_return_quantity,

MAX(Final_Cost) - MIN(Final_Cost) AS range_final_cost,

MAX(Final_Sales) - MIN(Final_Sales) AS range_final_sales,

MAX(RtnMPR) - MIN(RtnMPR) AS range_rtnmrp

FROM new_table;

	range_quantity	range_return_quantity	range_final_cost	range_final_sales	range_rtnmrp
•	17	5	1363.1099853515625	2143.639892578125	568.176025390625

3. Calculating the third moment (skewness) for the dataset.

Skewness:

select Quantity_skewness1.Quantity_skewness,

```
ReturnQuantity_skewness1.ReturnQuantity_skewness,
Final_cost_skewness1.Final_cost_skewness,
Final_Sales_skewness1.Final_Sales_skewness,
RtnMPR_skewness1.RtnMPR_skewness
from
(SELECT
ROUND((SUM(POW(Quantity - (SELECT AVG(Quantity) FROM new_table), 3)) / (COUNT(*) *
POW(STDDEV(Quantity), 3))), 2) AS Quantity_skewness
FROM new_table) Quantity_skewness1,
(select
round((sum(pow(ReturnQuantity - (select avg(ReturnQuantity) from new_table),3))/(count(*) *
pow(stddev(ReturnQuantity),3))),2) as ReturnQuantity_skewness from new_table)
ReturnQuantity_skewness1,
(select
round((sum(pow(Final cost - (select avg(Final cost) from new table),3))/(count(*) *
pow(stddev(Final cost),3))),2) as Final cost skewness from new table)
Final_cost_skewness1,
(
select
round((sum(pow(Final Sales - (select avg(Final Sales) from new table),3))/(count(*) *
pow(stddev(Final_Sales),3))),2) as Final_Sales_skewness from new_table)
Final_Sales_skewness1,
(select
round((sum(pow(RtnMPR - (select avg(RtnMPR) from new_table),3))/(count(*) *
pow(stddev(RtnMPR),3))),2) as RtnMPR_skewness from new_table)
RtnMPR_skewness1;
```

	Quantity_skewness	ReturnQuantity_skewness	Final_cost_skewness	Final_Sales_skewness	RtnMPR_skewness
•	2.91	4.23	5.86	4.3	5.11

4. Calculating the fourth moment (kurtosis) for the dataset.

```
Kurtosis:
select
kurtosis_quantity1.kurtosis_quantity,
kurtosis_Returnquantity1.kurtosis_Returnquantity,
kurtosis_Final_cost1.kurtosis_Final_cost,
kurtosis_Final_Sales1.kurtosis_Final_Sales,
kurtosis_RtnMPR1.kurtosis_RtnMPR
from
(SELECT
ROUND((SUM(POWER(Quantity - (SELECT AVG(Quantity) FROM new_table), 4)) / (COUNT(Quantity) *
POWER(STDDEV(Quantity),
4))), 2) AS kurtosis_quantity
from new_table) kurtosis_quantity1,
(SELECT
ROUND((SUM(POWER(ReturnQuantity - (SELECT AVG(ReturnQuantity) FROM new_table), 4)) /
(COUNT(ReturnQuantity) * POWER(STDDEV(ReturnQuantity),
4))), 2) AS kurtosis_Returnquantity
from new_table) kurtosis_Returnquantity1,
(SELECT
ROUND((SUM(POWER(Final_cost - (SELECT AVG(Final_cost) FROM new_table), 4)) / (COUNT(Final_cost)
* POWER(STDDEV(Final_cost),
4))), 2) AS kurtosis_Final_cost
from new_table) kurtosis_Final_cost1,
(SELECT
ROUND((SUM(POWER(Final_Sales - (SELECT AVG(Final_Sales) FROM new_table), 4)) /
(COUNT(Final Sales) * POWER(STDDEV(Final Sales),
4))), 2) AS kurtosis_Final_Sales
from new_table) kurtosis_Final_Sales1,
(SELECT
```

 $ROUND((SUM(POWER(RtnMPR - (SELECT\ AVG(RtnMPR)\ FROM\ new_table),\ 4))\ /\ (COUNT(RtnMPR)\ *POWER(STDDEV(RtnMPR),\ AVG(RtnMPR),\ AVG(RtnMPR)\ FROM\ new_table),\ 4))\ /\ (COUNT(RtnMPR)\ *POWER(STDDEV(RtnMPR),\ AVG(RtnMPR),\ AVG(RtnMPR)\ FROM\ new_table),\ 4))\ /\ (COUNT(RtnMPR)\ *POWER(STDDEV(RtnMPR),\ AVG(RtnMPR),\ AVG(R$

4))), 2) AS kurtosis_RtnMPR

from new_table) kurtosis_RtnMPR1;

	kurtosis_quantity	kurtosis_Returnquantity	kurtosis_Final_cost	kurtosis_Final_Sales	kurtosis_RtnMPR
•	14.7	23.43	41.6	24.76	35.42

Comparison table showing the business decisions results for the unclean and clean data:

Parameter	Uncleaned Data	Cleaned_Data
Mean	Quantity -2.25	Quantity-1.78
	ReturnQuantity -0.30	ReturnQuantity -0.19
	Final_cost-124.43	Final_cost-88.47
	Final_Sales-232.79	Final_Sales-165.01
	RtnMPR-29.95	RtnMPR-13.85
Median	Quantity-3.00	Quantity-1.00
	ReturnQuantity -0.00	ReturnQuantity -0.00
	Final_cost-141	Final_cost-52.99
	Final_Sales-53.57	Final_Sales-56.44
	RtnMPR-0-00	RtnMPR-0.00
Mode	Quantity-1	Quantity-1
	ReturnQuantity -0	ReturnQuantity -0
	Final_cost-49.352	Final_cost-49.352
	Final_Sales-60.8	Final_Sales-60.8
	RtnMPR-0	RtnMPR-0
Variance	Quantity-27.14	Quantity-3.32
	ReturnQuantity 2.17	ReturnQuantity -0.41
	Final_cost-221685.41	Final_cost-17736.69
	Final_Sales-458223.23	Final_Sales-71134.19
	RtnMPR-34178.39	RtnMPR-2596.22
StandardDeviation	Quantity-5.21	Quantity-1.82
	ReturnQuantity -1.67	ReturnQuantity -0.64
	Final_cost-470.83	Final_cost-133.18
	Final_Sales-676.93	Final_Sales-266.71
	RtnMPR-184.87	RtnMPR-49.96
Range	Quantity-150	Quantity-17
	ReturnQuantity -50	ReturnQuantity -5
	Final_cost-33138	Final_cost-1363.11
	Final_Sales-39490	Final_Sales-2143.64

	RtnMPR-8014	RtnMPR-568.18
Skewness	Quantity-11.27	Quantity-2.91
	ReturnQuantity -16.88	ReturnQuantity -4.23
	Final_cost-34.22	Final_cost-5.86
	Final_Sales-21.09	Final_Sales-4.3
	RtnMPR-15.58	RtnMPR5.11
Kurtosis	Quantity-180.5	Quantity-14.7
	Datum Quantity 208 02	Potumou outitu 22 42
	ReturnQuantity -398.03	ReturnQuantity -23.43
	Final_cost-1984.44	Final_cost-41.6
	Final Sales-947.71	Final Sales-24.76
	_ · · · · · · · · · · · · · · · · · · ·	l —

Observation: Overall, the results indicate that the unclean data exhibits higher mean, variance, standard deviation, range, skewness, and kurtosis values compared to the clean data. This suggests greater inconsistencies, variability, and potential outliers in the unclean data. Cleaning the data has resulted in more stable and normalized distributions with reduced variability and potential biases, making it more reliable for business decision-making.