Appendix: Proofs of Propositions and Lemmas

Appendix A. Proof of Lemma 1

Proof:

Before the shift, the profit of the generator j is $\hat{W}_{s-j} = \int_{\hat{s}_j^{-1}(0)}^{\hat{s}_j^{-1}(s_j(p^*))} \hat{s}_j(p) dp + \left(p^* - \hat{s}_j^{-1}\left(s_j(p^*)\right)\right) s_j(p^*)$. After the shift, its profit $\hat{W}_{s-j}^{'} = \int_{\hat{s}_j^{-1}(0)}^{\hat{s}_j^{-1}\left(s_j^{'}(p^*+\Delta p)\right)} \hat{s}_j(p) dp + \left(\left(p^* + \Delta p\right) - \hat{s}_j^{-1}\left(s_j^{'}(p^*+\Delta p)\right)\right) s_j^{'}(p^*+\Delta p)$. Therefore, the change in its profits is

$$\hat{W}'_{s-j} - \hat{W}_{s-j} = \Delta p s'_{j}(p^{*} + \Delta p) - \left[\left(p^{*} - \hat{s}_{j}^{-1} \left(s_{j}(p^{*}) \right) \right) \left(s_{j}(p^{*}) - s'_{j}(p^{*} + \Delta p) \right) + \int_{\hat{s}_{j}^{-1}(s'_{j}(p^{*} + \Delta p))}^{\hat{s}_{j}^{-1}(s_{j}(p^{*} + \Delta p))} \left(\hat{s}_{j}(p) - s'_{j}(p^{*} + \Delta p) \right) dp \right]
= \Delta W_{1} - \Delta W_{2}$$
(A.1)

where ΔW_1 and ΔW_2 are the increased and decreased profits after the shift of $s_j(p)$, respectively. From the meaning of "offset", when $\Delta p \to 0$, there is $s_j'(p^* + \Delta p) \to s_j(p^*)$, $\hat{s}_j^{-1}(s_j'(p^* + \Delta p)) \to \hat{s}_j^{-1}(s_j(p^*))$, and $s_j(p^*) = \hat{s}_j(\hat{s}_j^{-1}(s_j(p^*)))$. Therefore,

$$\hat{W}_{s-j}^{'} - \hat{W}_{s-j} = \Delta p s_{j}^{'} (p^{*} + \Delta p) - (p^{*} - \hat{p}_{j}^{*}) \left(s_{j} (p^{*}) - s_{j}^{'} (p^{*} + \Delta p) \right) + o(\Delta p)$$

$$= \Delta p \left(d_{0} - s_{-j} (p^{*} + \Delta p) \right) - \left(p^{*} - \hat{p}_{j}^{*} \right) \left(s_{-j} (p^{*} + \Delta p) - s_{-j} (p^{*}) \right) + o(\Delta p)$$
(A.2)

where $\hat{p}_{j}^{*} = \hat{s}_{j}^{-1}\left(s_{j}(p^{*})\right)$, $o\left(\Delta p\right)$ represents second or higher order infinitesimal of Δp . Clearly, when $\hat{W}_{s-j}^{'} - \hat{W}_{s-j} > 0$, a rightward or downward shift of $s_{j}\left(p\right)$ for generator j would be advantageous, implying the possibility of exercising market power. Here, $\Delta p\left(d_{0}-s_{-j}\left(p^{*}+\Delta p\right)\right)>\left(p^{*}-\hat{p}_{j}^{*}\right)\left(s_{-j}\left(p^{*}+\Delta p\right)-s_{-j}\left(p^{*}\right)\right)+o\left(\Delta p\right)$. So, let $\Delta p\to 0$, we can get $\frac{s_{j}\left(p^{*}\right)}{p^{*}-\hat{p}_{j}^{*}}>\frac{ds_{-j}\left(p\right)}{dp}\Big|_{p=p^{*}}$. Also, when $\hat{W}_{s-j}^{'}-\hat{W}_{s-j}<0$, i.e., $\frac{s_{j}\left(p^{*}\right)}{p^{*}-\hat{p}_{j}^{*}}<\frac{ds_{-j}\left(p\right)}{dp}\Big|_{p=p^{*}}$, a leftward or upward shift of $s_{j}\left(p\right)$ for generator j would be advantageous, implying the possibility of mitigating market power. And while $\hat{W}_{s-j}^{'}-\hat{W}_{s-j}=0$, i.e., $\frac{s_{j}\left(p^{*}\right)}{p^{*}-\hat{p}_{j}^{*}}=\frac{ds_{-j}\left(p\right)}{dp}\Big|_{p=p^{*}}$, not shifting $s_{j}\left(p\right)$ is advantageous for generator j. In summary, the market will reach an equilibrium when $\forall j\in\mathbf{N}$, $\hat{W}_{s-j}^{'}-\hat{W}_{s-j}=0$ holds.

Appendix B. Proof of Lemma 2

Proof: From Lemma 1, when the bidding of SEM reaches an equilibrium, $\forall j \in \mathbf{N}, s_j (p^*) = \left(p^* - \hat{p}_j^*\right) \times \frac{ds_{-j}(p)}{dp}\Big|_{p=p^*}$. Write it to a matrix form as $\mathbf{S}(p^*) = \mathbf{P}(p^*) \, \mathbf{R} \tilde{\mathbf{S}}(p^*)$, where p^* is the ECP, the vector $\mathbf{S}(p^*) = \left[s_1(p^*), s_2(p^*), \cdots, s_n(p^*)\right]^{\mathrm{T}}, \tilde{\mathbf{S}}(p^*) = \frac{d\mathbf{S}(p)}{dp}\Big|_{p=p^*} = \left[\frac{ds_1(p)}{dp}, \frac{ds_2(p)}{dp}, \cdots, \frac{ds_n(p)}{dp}\right]^{\mathrm{T}}\Big|_{p=p^*}$, the diagonal matrix $\mathbf{P}(p^*) = diag[p^* - \hat{p}_j^*]_{n \times n}$, and the constant matrix $\mathbf{R} = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{bmatrix}_{n \times n}$. Clearly, given $p^* \in (p^0, p^{\max}], \mathbf{P}(p^*) \, \mathbf{R}$ is an $n \times n$ matrix with rank n. Then,

$$\tilde{S}(p^*) = R^{-1}P^{-1}(p^*)S(p^*)$$
 (B.1)

From Eq. (B.1), $\tilde{\mathbf{S}}(p^*)$ and $\mathbf{S}(p^*)$ can be mutually determined, that is, given $\tilde{\mathbf{S}}(p^*)$, $\mathbf{S}(p^*)$ can be uniquely determined based on Eq. (B.1). Next, we need to design $\tilde{\mathbf{S}}(p^*)$ and $\mathbf{S}(p^*)$ that satisfy $\tilde{\mathbf{S}}(p^*) > [0,0,\cdots,0]^T$

and $S(p^*) = [\hat{s}_1(\hat{p}_1^*), \hat{s}_2(\hat{p}_2^*), \cdots, \hat{s}_n(\hat{p}_n^*)]^T > [0, 0, \cdots, 0]^T$ with given $\hat{s}_i(p)$ $(p \in [0, \hat{p}_i], i \in \mathbb{N})$ and d_0 . To do so, write Eq. (B.1) in a component form as below:

$$\frac{ds_{j}(p)}{dp}\Big|_{p=p^{*}} = \frac{1}{n-1} \sum_{i \in \mathbf{N}, i \neq j} \frac{s_{i}(p^{*})}{p^{*} - \hat{p}_{i}^{*}} - \frac{n-2}{n-1} \frac{s_{j}(p^{*})}{p^{*} - \hat{p}_{j}^{*}} \tag{B.2}$$

When market competition reaches an equilibrium, there is $s(p^*) = \sum_{i \in \mathbb{N}} s_i(p^*) = d_0$ from Lemma 1. $S(p^*)$ is designed under different scenarios as follows.

- (1) When there are only two generators (named generator 1 and 2) in **N**, we can always find $\hat{p}_1^* \in [0, \hat{p}_1]$ and $\hat{p}_2^* \in [0, \hat{p}_2]$ satisfying \hat{s}_1 (\hat{p}_1^*) > 0, \hat{s}_2 (\hat{p}_2^*) > 0 and \hat{s}_1 (\hat{p}_1^*) $+ \hat{s}_2$ (\hat{p}_2^*) $= d_0$. Then, let s_1 (p^*) $= \hat{s}_1$ (\hat{p}_1^*) and s_2 (p^*) $= \hat{s}_2$ (\hat{p}_2^*), there is $\frac{ds_1(p)}{dp}\Big|_{p=p^*} = \frac{s_2(p^*)}{p^*-\hat{p}_2^*} > 0$ and $\frac{ds_2(p)}{dp}\Big|_{p=p^*} = \frac{s_1(p^*)}{p^*-\hat{p}_1^*} > 0$ based on Eq. (B.1). Clearly, both s_1 (p^*) and s_2 (p^*) satisfy the design requirements above. Therefore, p^* is an ECP from Lemma 1.
- (2) When there are three and more generators in \mathbf{N} , the design method in (1) can barely guarantee $\tilde{\mathbf{S}}(p^*) > [0,0,\cdots,0]^{\mathrm{T}}$. Here, consider a special design of weighted average distribution for $s(p^*) = d_0$, i.e., $\forall j \in \mathbf{N}$, let $\frac{s_j(p^*)}{p^* \hat{p}_j^*} = \mu$. Thereupon, solving the n+1 equations $\frac{s_j(p^*)}{p^* \hat{p}_j^*} = \mu$ and $\sum_{i \in \mathbf{N}} s_i(p^*) = d_0$ consisting of

n+1 variables yields $s_j\left(p^*\right) = \frac{\left(p^* - \hat{p}_j^*\right)d_0}{np^* - \sum\limits_{i \in \mathbf{N}} \hat{p}_i^*} > 0$, and there is $\frac{ds_j(p)}{dp}\Big|_{p=p^*} = \frac{\mu}{n-1} > 0$ according to Eq. (B.2).

Clearly, $S(p^*) > [0, 0, \dots, 0]^T$ and $\tilde{S}(p^*) > [0, 0, \dots, 0]^T$. Next, it needs to prove that the designed $s_j(p^*)$ can satisfy $s_j(p^*) = \hat{s}_j(\hat{p}_j^*)$, that is, $\hat{s}_j(\hat{p}_j^*) = \frac{(p^* - \hat{p}_j^*)d_0}{np^* - \sum_{i \in \mathcal{N}} \hat{p}_i^*}$ has a solution about \hat{p}_j^* .

Denoting $f_j(x) = \frac{(p^* - x)d_0}{np^* - x - \sum\limits_{i \in \mathbb{N}, i \neq j} \hat{p}_i^*}$, there is $\frac{df_j(x)}{dx} < 0$ and $f_j(0) > 0$. From the assumptions of this

paper, we have $\frac{\hat{s}_{j}(x)}{dx} \geq 0$ and $\hat{s}_{j}(0) \leq 0$, then $f_{j}(0) > \hat{s}_{j}(0)$. Next, discuss the solution of the equation $\hat{s}_{j}(x) = f_{j}(x)$.

- (2.1) If $\forall j \in \mathbf{N}$, the equation $\hat{s}_{j}(x) = f_{j}(x)$ has solutions, then p^{*} is an ECP.
- (2.2) If $\forall j \in \mathbf{N}$, the equation $\hat{s}_j(x) = f_j(x)$ has no solutions, which implies that the curves $\hat{s}_j(x)$ and $f_j(x)$ do not intersect in the interval $[0, \hat{p}_i]$, and there is $\hat{s}_i(\hat{p}_i) < f_i(\hat{p}_i)$ due to $f_i(0) > \hat{s}_i(0)$. Then, there is $\sum_{i \in \mathbf{N}} \hat{s}_i(\hat{p}_i) < \sum_{i \in \mathbf{N}} f_i(\hat{p}_i) = d_0$, which contradicts the assumption that "supply exceeds demand" of this paper. Therefore, there is some $i \in \mathbf{N}$ such that $\hat{s}_i(x) = f_i(x)$ has a solution.

Here, no solution to the equation $\hat{s}_i(x) = f_i(x)$ implies that $\hat{s}_i(\hat{p}_i) < s_i(p^*) < f_i(\hat{p}_i)$ reflecting the actual clearing supply for generator i at a given p^* should be $\hat{s}_i(\hat{p}_i)$ rather than $\hat{s}_i(\hat{p}_i^*) (= s_i(p^*))$, i.e., insufficient supply. Then, $\frac{\hat{s}_i(\hat{p}_i)}{p^* - \hat{p}_i^*} < \frac{s_i(p^*)}{p^* - \hat{p}_i^*} = \frac{ds_{-i}(p)}{dp}\Big|_{p=p^*}$, indicating that the supply function $s_i(p)$ will shift left (up) (as in Fig.2). However, since generator i has already reached the maximum supply $\hat{s}_i(\hat{p}_i)$, this deviation has no benefit. In other words, the rationally submitted supply function of generator i has no effect on the formation of the market equilibrium or the uniform clearing price p^* . Therefore, the above analysis can remove i from

of the market equilibrium or the uniform clearing price p^* . Therefore, the above analysis can remove i from \mathbf{N} , and p^* is only related to the generator set $\hat{\mathbf{N}} = \mathbf{N}/\{i\}$ and the demand $d_0 - \hat{s}_i(\hat{p}_i) > 0$. Then, we can consider each equation until all similar generators are eliminated.

In particular, if there is only the unique generator k among the final $\hat{\mathbf{N}}$ obtained, then k has the full power

to decide the uniform clearing price p^* . At this point, $p^* = p^{\max}$ is the most favorable for all generators, so the equilibrium clearing price is p^{\max} . Alternatively, choose any one of the removed generators to join $\hat{\mathbf{N}}$ to make $\hat{\mathbf{N}}$ have two elements. Then, we may follow the method in (1) to design $S(p^*)$ such that p^* is an ECP. In conclusion, Lemma 2 holds.

Appendix C. Proof of Proposition 1

Proof: Given the market demand d_0 , the supply function $s_i(p)$ for each generator $i \in \mathbf{N}$, and the ECP p^* such that $s(p^*) = \sum_{i \in \mathbf{N}} s_i(p^*) = d_0$. If generator $j \in \mathbf{N}$ does not exercise its market power, then $p^* = \hat{p}_j^* = \hat{s}_j^{-1}(s_j(p^*))$ from Definition 1.

If generator j shifts $s_{j}\left(p\right)$ to the right or down by a small offset $\Delta p>0$, then $\hat{W}_{s-j}^{'}-\hat{W}_{s-j}=\Delta p\left(d_{0}-s_{-j}\left(p^{*}+\Delta p\right)\right)+o\left(\Delta p\right)>0$ from Eq. (A.2), indicating that $\exists s_{j}^{'}\left(p\right)< s_{j}\left(p\right)$ may increase the profit of generator j. And the clearing price $p^{*'}>p^{*}$, the clearing supply $s_{j}\left(p^{*'}\right)< s_{j}\left(p^{*}\right)$ decided by $\left(s_{j}^{'}\left(p\right),s_{-j}\left(p\right)\right)$, but the welfare $\hat{W}_{s-j}^{'}>\hat{W}_{s-j}$. Thus, p^{*} is not the clearing price, and Proposition 1 holds.

Appendix D. Proof of Proposition 2

Proof: At the bidding equilibrium, $s\left(p^{*}\right)=d_{0}$ from Lemma 3. And Lemma 1 shows that $\forall j\in\mathbf{N}, \frac{s_{j}\left(p^{*}\right)}{p^{*}-\hat{p}_{j}^{*}}=\frac{ds_{-j}\left(p\right)}{dp}\Big|_{p=p^{*}}$. Accordingly, $\frac{ds_{-j}\left(p\right)}{dp}\Big|_{p=p^{*}}=\sum_{i\in\mathbf{N},i\neq j}\frac{ds_{i}\left(p\right)}{dp}\Big|_{p=p^{*}}\geq\left(n-1\right)\delta\left(p^{*}\right)$ and $\frac{s_{j}\left(p^{*}\right)}{p^{*}-\max_{i\in\mathbf{N}}\hat{p}_{i}^{*}}\leq\frac{d_{0}}{p^{*}-\max_{i\in\mathbf{N}}\hat{p}_{i}^{*}}$. Therefore, $\frac{d_{0}}{p^{*}-\max_{i\in\mathbf{N}}\hat{p}_{i}^{*}}\geq\left(n-1\right)\delta\left(p^{*}\right)\geq\left(n-1\right)\frac{d_{0}}{p^{\max_{i\in\mathbf{N}}}-\max_{i\in\mathbf{N}}\hat{p}_{i}^{*}}$. Namely,

$$p^* \le \frac{1}{n-1} \left(p^{\max} + (n-2) \max_{i \in \mathbf{N}} \hat{p}_i^* \right)$$
 (D.1)

Appendix E. Proof of Lemma 4

Proof: Suppose the total ECS $s\left(p^*\right) < d_0$ when the market competition reaches an equilibrium and the ECP $p^* < p^{\max}$. Consider generator $j \in \mathbf{N}$ making the deviation $s_j^{'}$ as follows.

$$s'_{j}(p^{*}) = s_{j}(p^{*})$$
 and $s'_{j}(p^{*} + \varepsilon) = s_{j}(p^{*}) + \zeta$ (E.1)

where $\varepsilon > 0$ and $\zeta > \frac{\varepsilon s(p^*)}{p^{\max} - (p^* + \varepsilon)} > 0$. Except for generator j, the supply functions submitted by the remaining n-1 generators keep unchanged. Here, ε is an infinitesimal. So, the total clearing supply $s'(p^{*'})$ can be approximated as $s(p^*) + \zeta$, and the clearing price $p^{*'} = p^* + \varepsilon$. Therefore, the objective value of model C3 after deviation is

$$s'\left(p^{*'}\right)\left(p^{\max} - p^{*'}\right) = (s\left(p^{*}\right) + \zeta)\left(p^{\max} - (p^{*} + \varepsilon)\right) > s\left(p^{*}\right)\left(p^{\max} - p^{*}\right)$$
(E.2)

Besides, the profit of generator j after deviation is

$$\hat{W}'_{s-j} = \int_{\hat{s}_{j}^{-1}(0)}^{\hat{s}_{j}^{-1}\left(s'_{j}(p^{*'})\right)} \hat{s}_{j}(p)dp + \left(p^{*'} - \hat{s}_{j}^{-1}\left(s'_{j}(p^{*'})\right)\right)s'_{j}(p^{*'})$$

$$\geq \int_{\hat{s}_{j}^{-1}(0)}^{\hat{s}_{j}^{-1}(s_{j}(p^{*}))} \hat{s}_{j}(p)dp + \left(p^{*'} - \hat{s}_{j}^{-1}\left(s'_{j}(p^{*'})\right)\right)s_{j}(p^{*'})$$

$$+ \left(\hat{s}_{j}^{-1}\left(s'_{j}(p^{*'})\right) - \hat{s}_{j}^{-1}\left(s_{j}(p^{*})\right)\right)s_{j}(p^{*})$$

$$= \int_{\hat{s}_{j}^{-1}(0)}^{\hat{s}_{j}^{-1}(s_{j}(p^{*}))} \hat{s}_{j}(p)dp - \hat{s}_{j}^{-1}\left(s_{j}(p^{*})\right)s_{j}(p^{*}) + p^{*'}s_{j}\left(p^{*'}\right)$$

$$\geq \int_{\hat{s}_{j}^{-1}(0)}^{\hat{s}_{j}^{-1}(s_{j}(p^{*}))} \hat{s}_{j}(p)dp + \left(p^{*} - \hat{s}_{j}^{-1}\left(s_{j}(p^{*})\right)\right)s_{j}(p^{*})$$
(E.3)

In conclusion, combining Eq. (E.2) and Eq. (E.3), the above deviation is compatible with the interests of all sides, so that the total clearing supply will definitely increase, until $s(p^*) = d_0$.

Appendix F. Proof of Proposition 3

Proof: The optimality condition of the objective W' in model C3 yields $\frac{ds(p)}{dp}(p^{\max}-p)-s(p)=0$. So, at the ECP p^* ,

$$\left. \frac{ds\left(p \right)}{dp} \right|_{p=p^*} = \frac{s\left(p^* \right)}{p^{\max} - p^*} \tag{F.1}$$

From Lemma 1, when the market is at an equilibrium, $\forall j \in \mathbf{N}$,

$$s_{j}(p^{*}) = \left(p^{*} - \hat{p}_{j}^{*}\right) \left. \frac{ds_{-j}(p)}{dp} \right|_{p=p^{*}} \ge \left(p^{*} - \max_{i \in \mathbf{N}} \hat{p}_{i}^{*}\right) \left. \frac{ds_{-j}(p)}{dp} \right|_{p=p^{*}}$$
(F.2)

Summing the two sides of Eq. (F.2) with respect to j,

$$s(p^*) \ge \left(p^* - \max_{i \in \mathbf{N}} \hat{p}_i^*\right) \sum_{j \in \mathbf{N}} \frac{ds_{-j}(p)}{dp} \bigg|_{p=p^*} = (n-1) \left(p^* - \max_{i \in \mathbf{N}} \hat{p}_i^*\right) \frac{ds(p)}{dp} \bigg|_{p=p^*}$$
(F.3)

Therefore, substituting Eq. (F.1) into Eq. (F.3),

$$s(p^*) \ge (n-1) \left(p^* - \max_{i \in \mathbf{N}} \hat{p}_i^* \right) \frac{s(p^*)}{p^{\max} - p^*}$$
(F.4)

i.e.,
$$p^* \le \frac{1}{n} \left(p^{\max} + (n-1) \max_{i \in \mathbf{N}} \hat{p}_i^* \right)$$
.

Appendix G. Proof of Proposition 4

 $\begin{aligned} & \textbf{Proof: 1) For the MCP-C2 mechanism, Proposition 2 indicates that } p^* \leq \frac{1}{n-1} \left(p^{\max} + (n-2) \max_{i \in \mathbf{N}} \hat{p}_i^* \right) \text{ holds} \\ & \text{when } \delta\left(p\right) \geq \frac{d_0}{p^{\max} - \max_{i \in \mathbf{N}} \hat{p}_i^*}. \end{aligned} \end{aligned}$ Hence, $p^* < p^{\max}$. Meanwhile, we have $\lim_{n \to \infty} p^* \leq \lim_{n \to \infty} \frac{1}{n-1} \left(p^{\max} + (n-2) \max_{i \in \mathbf{N}} \hat{p}_i^* \right) = \max_{i \in \mathbf{N}} \hat{p}_i^*, \text{ and } p^* > p^0 = \max_{i \in \mathbf{N}} \hat{p}_i^* \text{ from Lemma 2. Hence, } \lim_{n \to \infty} p^* = \max_{i \in \mathbf{N}} \hat{p}_i^*. \text{ So, if } \hat{p}_j^* = \max_{i \in \mathbf{N}} \hat{p}_i^*, \text{ then } \lim_{n \to \infty} \sigma_j = 0. \end{aligned}$ If $\hat{p}_j^* < \max_{i \in \mathbf{N}} \hat{p}_i^*, \text{ then } p_j < p^* \text{ implies } \sigma_j = 0 \text{ from Definition 2.}$

The analysis for the MCP-C3 mechanism is similar.