OSNOVE NUKLEARNE FIZIKE – MEĐUISPIT 03.05.2019.

IME I PREZIME:	
	JMBAG:

1. Zaokružite je li tvrdnja TOČNA ili NETOČNA. (14 bodova) (Nema negativnih bodova.)

1.1	formiranja.	TOČN	O N	ETOČ	NO	
1.2	Snop fotona ne gubi energiju dok prolazi kroz materiju, samo gubi na intenzitetu.				TOČNO	
1.3.	Sve jezgre jednog radioaktivnog niza nastaju raspadima koji počinju od jezgre najdužeg vremena poluraspada u nizu.	TOČ	OČNO NET		ETOČNO	
1.4.	Gotovo sva energija nabijenih čestica gubi se kroz kulonsku interakciju s elektronima u atomu.	TOČNO 1		NETOČNO		
1.5,	Gama-raspad predstavlja elektromagnetsko zračenje kod kojeg se ne mijenja redni broj i atomska masa jezgre.	ТО	TOČNO N		NETOČNO	
1.6.	Teške nabijene čestice pri prolasku kroz materiju gube energiju vršeći ionizaciju.	ТО	TOČNO N		NETOČNO	
1.7.	Pod dosegom prodiranja teške nabijene čestice kroz materiju podrazumijevamo put koji ona prevali u materiji do zaustavljanja.	TO	TOČNO N		NETOČNO	
.8.	Kod prodiranja elektromagnetskog zračenja kroz materiju energija se ne gubi postepeno i zato elektromagnetsko zračenje nema određenog dosega.	T	TOČNO		NETOČNO	
.9.	Tvorba parova je proces u kojem foton iščezava, a njegova se energija troši na stvaranje para elektron - pozitron.	TOČNO		10 1	NETOČNO	
10.	Fotoelektrični efekt je moguć samo na slobodnim elektronima u atomu.		TOČNO		NETOČNO	
11.	Model kapljice je model atomske jezgre koji analogno površinskoj apetosti klasičnoga fluida atomsku jezgru teškoga elementa amišlja kao kap tekućine promjenljiva oblika.		TOČNO		NETOČNO	
12.	Comptonovo raspršenje gama-zraka je raspršenje na vezanim elektronima u atomu.		TOČNO		NETOČNO	
3.	Beta-raspad jezgre ${}_Z^{AM}$ možemo pisati kao: ${}_Z^{AM} \rightarrow {}_{Z-2}^{A-4}M + {}_Z^4He$.		TOČNO		NETOČNO	
4.	Vrijeme poluraspada je vrijeme za koje se raspadne 0,693 od početnog broja jezgara.			OČN() NETOČN	

$$V(r) = -\int_{\infty}^{r} \vec{\xi}'(r) d\vec{r} = -\int_{\infty}^{r} \vec{\xi} dr (g) - gV(r) = -\int_{\infty}^{r} F dr$$

$$V(r) = -\int_{\infty}^{r} \vec{\xi}'(r) d\vec{r} = -\int_{\infty}^{r} \frac{\vec{\xi}}{g} dr \left(g \rightarrow gV(r) \right) = -\int_{\infty}^{r} F_{ol}(r) d\vec{r}$$

Klasičan račun za Rutherfordovo raspršenje daje izraz:

 $\overline{d\Omega} = \left(\overline{4\pi \varepsilon_0 M_0 V^2} \right) \overline{16 \sin^4 \theta / 2}$ $2Zze^2$

Što predstavljaju fizikalne veličine u izrazu? COSPIS Wanys

_(1 bod) -) wallof alfa

cestive

ccshice

Mo

Ze

Odredite energiju mirovanja (u MeV), ukupnu energiju (u MeV), brzinu i količinu gibanja el

kinetičke energije $E_{kin} = 6,55 \cdot 10^{-13}$ J.(4 boda)

2. U području između 12 MeV i 15 MeV ovisnost između dometa i energije alfa čestice (2H

približno je dana relacijom

$$R = 1.8E - 6.8$$

tena u zraku ako mu je energij

$$\begin{split} E &= E_{pm} + E_{r} = rE_{r} = rmc^{2} \\ r &= \frac{3}{\sqrt{1 - p^{2}}} \\ \beta &= \pi/c \\ p &= rms \end{split}$$

$$E_{\gamma} = W_1 + E_{kin}$$

$$E_{\gamma} = hv = h\frac{c}{1}$$

$$R=R_0A^{1/2}$$

Konstante:

 $c = 3 \cdot 10^8 \text{ m/s}$ $c = 1.6 \cdot 10^{-18} \text{ C}$ $m_{\phi} = 9.11 \cdot 10^{-2} \text{ kg}$ $m_{\phi} = 1.67 \cdot 10^{-27} \text{ kg}$

$$\frac{d\sigma}{d\Omega} = \left(\frac{2Zzv^2}{4\pi\varepsilon_0 M_0 V^2}\right)^2 \frac{1}{16\sin^4\theta/Z}$$

Što predstavljaju fizikalne veličine u izrazu:

(1.9md) (13-0) (I bed) V

- 1. Odredite energija mirovanja (o MeV), ukupna energija (u MeV), brzimi i koližimi gilmija sleknikitetičke energije $E_{kin}=6.55\cdot 10^{-15}$ J (4 boda)
- U području između 12 MeV i 15 MeV ovisnost između dometa i energije alfa čestice (†He) u insku, približno je dana relacijom

$$R = 1.8E - 6.8$$

gdje je R dan u cm. a E u MeV. Koliki će biti domet protona u zraku ako mu je evergija 3.5 MeV? (2 boda)

- "Crvena granica" fotociektričnog efekta za kalij javlja se kod valne duljime od 0.577 jan. Odredite minimalnu energiju kvanta svjetlosti potrebnu za oslobađanje fotociektrona iz danog metala. Energiju izraziti u eV. (2 boda)
- Mjerenjem je utvrđeno da je polumjer jezgre germanija (Ge) dvostruko veći od polumjera jezgre berilija [Be. Koliko nukleona je sadržano u Ge? (1 hod)
- Koliki je efektivni broj protona koji sudjeluju pri formiranju kvadrupolnog mon lutecija ¹/₂ⁿLu kojoj je kvadrupolni moment 700 fm²? R₀ = 1,07 fm. (3 boda)
- 6. Eksperimentalni podaci dobiveni mjerenjem raspršenja nabijemb čenica na jezgri omogaćnje određivanje dva nuklearna parametra: polumjer R i povrtimsku debljimu jezgre i definirama koo inserval polumjera na kome gustoća nuklearne materije padne s 90% na 10% sredilnje vrijednosti polumjera polumjera postoje jezgre dobro se opisuje funkcijom.

$$\rho(r) = \frac{\rho_0}{1 + e^{(r-k)/\alpha}}$$

Ako je parametar $\alpha=0.55$ fm za sve jezgre s A>16, odredite površinsku debljimi jezgre t a fm. (4 boda)