

Structured Output Learning with A Random Sample of Spanning Trees

Hongyu Su

Helsinki Institute for Information Technilogy HIIT Department of Information and Computer Science Aalto University

November 19, 2014

Multilabel Classification

- Multilabel classification is an important research field in machine learning.
 - ► For example, a document can be classified as "science", "genomics", and "drug discovery".
 - ▶ Each input variable $\mathbf{x} \in \mathcal{X}$ is simultaneously associated with multiple output variables $\mathbf{y} \in \mathcal{Y}, \mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_k$.
 - ▶ The goal is to find a mapping function that predicts the best values of an output given an input $f \in \mathcal{H} : \mathcal{X} \to \mathcal{Y}$.
- ▶ The central problems of multilabel classification:
 - The size of the output space y is exponential in the number of microlabels.
 - The dependency of microlabels needs to be exploited to improve the prediction performance.

Flat Multilabel Classification

- Multiple output variables are treated as a "flat" vector.
- It is difficult to take into consideration the correlation of labels.
- ► For example, ML-KNN, ADABOOST.MH, MTL, ...

Structured Output Learning

- ► There is an *output graph* connecting multiple labels.
 - A set of nodes corresponds to the multiple labels.
 - ▶ A set of edges represents the correlation between labels.
- Hierarchical classification:
 - ► The output graph is a rooted tree or a directed graph defining the different levels of granularities.
 - ► For example, SSVM, ...
- Graph labeling:
 - ► The output graph often takes a general form (e.g., a tree, a chain).
 - ► For example, M³N, CRF, MMCRF, ...
- The output graph is assumed to be known apriori.

The Research Question

- The output graph is hidden in many applications.
 - ► For example, a surveillance photo can be tagged with "building", "road", "pedestrian", and "vehicle".
- ▶ We focus on the problem in structured output learning when the output graph is not observed.
- Our approach:
 - Assume the dependency can be modeled by a complete set of pairwise correlations.
 - Build a structured output learning model with a complete graph as the output graph.
 - Solve the optimization problem.

Contributions

- A structured output learning model which performs max-margin learning on a random sample of spanning tree.
- ► The model is not constrained to the availability of the output graph.
- ► The NP-hard inference problem can be solved by a polynomial time algorithm with a condition guaranteeing the exact solution.
- ► The theoretical analysis and the empirical results verify the performance of the proposed model.

Model

- ▶ The training examples are given in pair $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$.
- ▶ A complete graph G = (E, V) is used as the output graph.
- $ightharpoonup \Gamma_G(\mathbf{y}_i)$ is the output feature map on a complete graph G.
- ► Each example is mapped to a joint feature space by a joint feature map

$$\phi_G(\mathbf{x}_i,\mathbf{y}_i)=\varphi(\mathbf{x}_i)\otimes\Gamma_G(\mathbf{y}_i).$$

A compatibility score is defined as

$$F(\mathbf{x}, \mathbf{y}; \mathbf{w}) = \langle \mathbf{w}, \phi_G(\mathbf{x}, \mathbf{y}) \rangle = \sum_{e \in E} \langle \mathbf{w}_e, \phi_G(\mathbf{x}, \mathbf{y}_e) \rangle$$

▶ **w** ensures an input \mathbf{x}_i with a correct multilabel \mathbf{y}_i achieves a higher score than with any incorrect multilabel $\mathbf{y} \in \mathcal{Y}$.

Model (cont.)

▶ The predicted output y(x) for a given input x is computed by

$$y(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} F(x, y; w),$$

which is called *inference problem*.

► The inference problem is \mathcal{NP} -hard for most joint feature maps on the complete graph.

Learning with A Complete Graph

▶ The *margin* of an example \mathbf{x}_i is

$$\gamma_{\mathcal{G}}(\mathbf{x}_i; \mathbf{w}) = \min_{\mathbf{y} \in \mathcal{Y}} [F(\mathbf{x}_i, \mathbf{y}_i; \mathbf{w}) - F(\mathbf{x}_i, \mathbf{y}; \mathbf{w})].$$

- w is solved by maximum-margin principle which aims to maximize $\gamma(\mathbf{x}_i; \mathbf{w})$ over all training example.
- The problems:
 - \triangleright \mathcal{NP} -hardnessof the inference problem on a complete graph.
 - A large parameter space: $\Theta(k^2)$
- We aim to use a joint feature map that allows the inference problem be solved in polynomial time.

Random Spanning Tree Approximation

- ▶ We proved if a large margin structured output predictor exists, then combining a small sample of random trees will, with a high probability, generate a predictor with good generalization.
- ▶ $T = \{T_1, \dots, T_n\}$ is a set of spanning trees randomly sampled from the complete graph G.
- lacktriangle The compatibility score can be re-defined based on ${\mathcal T}$ as

$$F(\mathbf{x}_i, \mathbf{y}_i; \mathbf{w}) = \sum_{t=1}^{n} \langle \mathbf{w}_{T_t}, \phi_{T_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle$$

▶ The inference problem of predicting the output $\mathbf{y}_{\mathcal{T}}(\mathbf{x})$ for a given input is

$$\mathbf{y}_{\mathcal{T}}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{t=1}^{n} \langle \mathbf{w}_{T_t}, \phi_{T_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle,$$

Optimization Problem

▶ The margin of an example \mathbf{x}_i achieved by \mathcal{T} is

$$\gamma_{\mathcal{T}}(\mathbf{x}_i; \mathbf{w}) = \min_{\mathbf{y} \in \mathcal{Y}} [\sum_{t=1}^{n} \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle - \sum_{t=1}^{n} \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}) \rangle].$$

▶ To learn $\mathbf{w}_{\mathcal{T}_t}, \forall \mathcal{T}_t \in \mathcal{T}$ we solve the optimization problem

$$\begin{aligned} & \min_{\mathbf{w}_{\mathcal{T}_t}, \xi_i} & & \frac{1}{2} \sum_{t=1}^n ||\mathbf{w}_{\mathcal{T}_t}||^2 + C \sum_{i=1}^m \xi_i \\ & \text{s.t.} & & \sum_{t=1}^n \langle \mathbf{w}_{\mathcal{T}_t}, \boldsymbol{\phi}_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle - \max_{\mathbf{y} \neq \mathbf{y}_i} \sum_{t=1}^n \langle \mathbf{w}_{\mathcal{T}_t}, \boldsymbol{\phi}_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}) \rangle \geq 1 - \xi_i, \\ & & \xi_i > 0 , \forall \ i \in \{1, \dots, m\}, \end{aligned}$$

Inference Problem

The inference problem is

$$\mathbf{y}_{\mathcal{T}}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{t=1}^{n} \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle,$$

► The inference problem on an individual spanning tree can be solve efficiently by *dynamic programming*

$$\mathbf{y}_{T_t}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \mathbf{w}_{T_t}, \phi_{T_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle.$$

▶ There is no guarantee $\mathbf{y}_{\mathcal{T}} = \mathbf{y}_{\mathcal{T}_t}, \forall \mathcal{T}_t \in \mathcal{T}$

K-Best Inference Algorithm

▶ Instead of compute the best multilabel $\mathbf{y}_{\mathcal{T}_t}$ from each individual spanning tree $\mathcal{T}_t \in \mathcal{T}$, we consider the K-best multilabel

$$\mathcal{Y}_{T_t,K} = \{\mathbf{y}_{T_t,1},\cdots,\mathbf{y}_{T_t,K}\}.$$

- ▶ This gives a candidate list $\mathcal{Y}_{\mathcal{T},K} = \mathcal{Y}_{\mathcal{T}_1,K} \cup \cdots \mathcal{Y}_{\mathcal{T}_n,K}$ of $n \times K$ multilabels.
- lackbox We proved that with a high probability $oldsymbol{y}_{\mathcal{T}}$ will appear in $\mathcal{Y}_{\mathcal{T},\mathcal{K}}$.

Performance of the Inference Algorithm

Figure: Percentage of examples with provably optimal \mathbf{y} being in the K-best lists plotted as a function of K, scaled with respect to the number of microlabels in the dataset.

Prediction Performance

DATASET	MICROLABEL LOSS (%)					0/1 Loss (%)				
	SVM	MTL	MMCRF	MAM	RTA	SVM	MTL	MMCRF	MAM	RTA
EMOTIONS	22.4	20.2	20.1	19.5	18.8	77.8	74.5	71.3	69.6	66.3
YEAST	20.0	20.7	21.7	20.1	19.8	85.9	88.7	93.0	86.0	77.7
SCENE	9.8	11.6	18.4	17.0	8.8	47.2	55.2	72.2	94.6	30.2
ENRON	6.4	6.5	6.2	5.0	5.3	99.6	99.6	92.7	87.9	87.7
CAL500	13.7	13.8	13.7	13.7	13.8	100.0	100.0	100.0	100.0	100.0
FINGERPRINT	10.3	17.3	10.5	10.5	10.7	99.0	100.0	99.6	99.6	96.7
NCI60	15.3	16.0	14.6	14.3	14.9	56.9	53.0	63.1	60.0	52.9
MEDICAL	2.6	2.6	2.1	2.1	2.1	91.8	91.8	63.8	63.1	58.8
CIRCLE10	4.7	6.3	2.6	2.5	0.6	28.9	33.2	20.3	17.7	4.0
CIRCLE50	5.7	6.2	1.5	2.1	3.8	69.8	72.3	38.8	46.2	52.8

Figure : Prediction performance of each algorithm in terms of microlabel loss and 0/1 loss. The best performing algorithm is highlighted with boldface, the second best is in italic

