Twisting cochains and twisted complexes

Simplicial methods in complex-analytic algebraic geometry

Tim Hosgood 24/07/19

Université d'Aix-Marseille

Plan

History

Twisting cochains (OTT)

Bicomplexes

Maurer-Cartan

Twisted complexes (BK)

Pretriangulated vs. triangulated

Generalisation of twisting cochains

Other fun things

History

First steps

- Edgar H Brown. "Twisted tensor products, I". In: Annals of Mathematics 69.1 (1959), pp. 223–246.
- John C Moore. "Differential homological algebra". In: Actes du Congres International des Mathématiciens 1 (1970), pp. 335–339.

Coherent sheaves

- Domingo Toledo and Yue Lin L Tong. "A parametrix for δ and Riemann-Roch in Čech theory". In: *Topology* 15.4 (1976), pp. 273–301.
- Domingo Toledo and Yue Lin L Tong. "Duality and Intersection Theory in Complex Manifolds. I". In: Mathematische Annalen 237 (1978), pp. 41–77.
- Nigel R O'Brian, Domingo Toledo, and Yue Lin L Tong. "The Trace Map and Characteristic Classes for Coherent Sheaves". In: American Journal of Mathematics 103.2 (1981), pp. 225–252.

Triangulation and stability

- A I Bondal and M M Kapranov. "Enhanced Triangulated Categories". In: *Math. USSR Sbornik* 70.1 (1991), pp. 1–15.
- Giovanni Faonte. Simplicial nerve of an A-infinity category. 2015. arXiv: 1312.2127 [math.AT].

Twisting cochains (OTT)

Nice spaces

Definition (Stein spaces)

A complex-analytic¹ manifold Y is said to be *Stein* if it is

- 1. holomorphically convex; and
- 2. holomorphically separable.

¹analytic = \mathcal{O}_Y is holomorphic functions, Y has the \mathbb{C}^n -induced topology; algebraic = \mathcal{O}_Y is algebraic functions, Y has the Zariski topology.

²Locally finite, Stein, and trivialising (for the bundles in question).

Nice spaces

Definition (Stein spaces)

A complex-analytic¹ manifold Y is said to be Stein if it is

- 1. holomorphically convex; and
- 2. holomorphically separable.

Motto

Stein things are nice.

¹analytic = \mathcal{O}_Y is holomorphic functions, Y has the \mathbb{C}^n -induced topology; algebraic = \mathcal{O}_Y is algebraic functions, Y has the Zariski topology.

²Locally finite, Stein, and trivialising (for the bundles in question).

Nice spaces

Definition (Stein spaces)

A complex-analytic¹ manifold Y is said to be Stein if it is

- 1. holomorphically convex; and
- 2. holomorphically separable.

Motto

Stein things are nice.

Throughout, X is a complex-analytic manifold with a nice² cover $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$.

¹analytic = \mathcal{O}_Y is holomorphic functions, Y has the \mathbb{C}^n -induced topology; algebraic = \mathcal{O}_Y is algebraic functions, Y has the Zariski topology.

²Locally finite, Stein, and trivialising (for the bundles in question).

Let $V = \{V_{\alpha}^{\bullet}\}$ be a collection of bounded-graded $\mathcal{O}_{U_{\alpha}}$ -modules:

$$V_{\alpha}^{\bullet} = \bigoplus_{q \in \mathbb{N}} V_{\alpha}^{q}$$
 such that V_{α}^{q} is zero for all but finitely many q .

Let $V = \{V_{\alpha}^{\bullet}\}$ be a collection of bounded-graded $\mathcal{O}_{U_{\alpha}}$ -modules:

$$V^ullet_lpha = igoplus_{q \in \mathbb{N}} V^q_lpha$$
 such that V^q_lpha is zero for all but finitely many q .

Think of a bounded chain complex of vector bundles, but without the information of a differential.

Let $V = \{V_{\alpha}^{\bullet}\}$ be a collection of bounded-graded $\mathcal{O}_{U_{\alpha}}$ -modules:

$$V^ullet_lpha = igoplus_{q \in \mathbb{N}} V^q_lpha$$
 such that V^q_lpha is zero for all but finitely many q .

Think of a bounded chain complex of vector bundles, but without the information of a differential.

Definition (Endomorphisms)

The collection of degree-q endomorphisms $\operatorname{End}^q(V)$ of V is, over each $U_{\alpha_0...\alpha_p}$, given by

$$\operatorname{End}^{q}(V)|U_{\alpha_{0}...\alpha_{p}} = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}(V_{\alpha_{p}}^{i}|U_{\alpha_{0}...\alpha_{p}}, V_{\alpha_{0}}^{i+q}|U_{\alpha_{0}...\alpha_{p}}).$$

Let $V = \{V_{\alpha}^{\bullet}\}$ be a collection of bounded-graded $\mathcal{O}_{U_{\alpha}}$ -modules:

$$V^ullet_lpha = igoplus_{q \in \mathbb{N}} V^q_lpha$$
 such that V^q_lpha is zero for all but finitely many q .

Think of a bounded chain complex of vector bundles, but without the information of a differential.

Definition (Endomorphisms)

The collection of degree-q endomorphisms $\operatorname{End}^q(V)$ of V is, over each $U_{\alpha_0...\alpha_p}$, given by

$$\operatorname{End}^{q}(V)|U_{\alpha_{0}...\alpha_{p}} = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}(V_{\alpha_{p}}^{i}|U_{\alpha_{0}...\alpha_{p}}, V_{\alpha_{0}}^{i+q}|U_{\alpha_{0}...\alpha_{p}}).$$

Warning

The maps are from the α_p part to the α_0 part.

The deleted Čech complex

Definition (Deleted Čech complex)

Define the chain complex $(\mathscr{C}^{\bullet}(\mathcal{U},\operatorname{End}^{\circ}(V)),\hat{\delta})$ by

$$\hat{\mathscr{C}}^p\big(\mathcal{U},\mathrm{End}^q(V)\big)=\bigoplus_{(\alpha_0,\ldots,\alpha_p)}\mathrm{End}^q(V)|U_{\alpha_0\ldots\alpha_p}$$

(where $\operatorname{End}^q(V)|U_{\alpha_0...\alpha_p}=0$ if $U_{\alpha_0...\alpha_p}=\varnothing$) with the **deleted** Čech differential

$$\hat{\delta} \colon \hat{\mathcal{C}}^p \big(\mathcal{U}, \operatorname{End}^q(V) \big) \to \hat{\mathcal{C}}^{p+1} \big(\mathcal{U}, \operatorname{End}^q(V) \big)$$
$$(\hat{\delta}c)_{\alpha_0 \dots \alpha_{p+1}} = \sum_{i=1}^p (-1)^i c_{\alpha_0 \dots \widehat{\alpha_i} \dots \alpha_{p+1}}.$$

Further structure

• If V has a differential then this gives us a bicomplex.

Further structure

- If V has a differential then this gives us a bicomplex.
- There is a natural multiplication structure given by composition:

$$(c^{p,q}\cdot \tilde{c}^{\tilde{p},\tilde{q}})_{\alpha_0...\alpha_{p+\tilde{p}}} = (-1)^{q\tilde{p}}c^{p,q}_{\alpha_0...\alpha_p} \tilde{c}^{\tilde{p},\tilde{q}}_{\alpha_p...\alpha_{p+\tilde{p}}}.$$

Further structure

- If V has a differential then this gives us a bicomplex.
- There is a natural multiplication structure given by composition:

$$(c^{p,q}\cdot \tilde{c}^{\tilde{p},\tilde{q}})_{\alpha_0...\alpha_{p+\tilde{p}}} = (-1)^{q\tilde{p}}c^{p,q}_{\alpha_0...\alpha_p}\tilde{c}^{\tilde{p},\tilde{q}}_{\alpha_p...\alpha_{p+\tilde{p}}}.$$

• We could define the same complex for an arbitrary bounded graded vector bundle, i.e. $\mathscr{C}^{\bullet}(\mathcal{U}, V^{\circ})$, but where the deleted Čech differential only omits the *first* index (but includes the (p+1)th).

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta} \in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta} \in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

These transition maps satisfy two conditions:

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta} \in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

These transition maps satisfy two conditions:

1. $g_{\alpha\beta}g_{\beta\gamma}=g_{\alpha\beta}$ (the cocycle condition); and

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta} \in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

These transition maps satisfy two conditions:

- 1. $g_{\alpha\beta}g_{\beta\gamma}=g_{\alpha\beta}$ (the cocycle condition); and
- 2. $g_{\alpha\alpha} = id$ (the *invertibility* condition).

A holomorphic vector bundle E on X is described exactly by its transition maps $g_{\alpha\beta} \in \mathrm{GL}(n,\mathbb{C})$, which describe the change in trivialisation from over U_{β} to over U_{α} .

These transition maps satisfy two conditions:

- 1. $g_{\alpha\beta}g_{\beta\gamma}=g_{\alpha\beta}$ (the cocycle condition); and
- 2. $g_{\alpha\alpha} = id$ (the *invertibility* condition).

Note that these are maps from $E|U_{\alpha_p}$ to $E|U_{\alpha_0}$ in the specific case where p=1.

Rewriting the cocycle condition

Thinking of $g_{\alpha\beta}$ as an element of $\hat{\mathscr{C}}^{1}(\mathcal{U}, E)$, we see that

$$(\hat{\delta}g)_{\alpha\beta\gamma} = -g_{\alpha\gamma}$$
$$(g \cdot g)_{\alpha\beta\gamma} = g_{\alpha\beta}g_{\beta\gamma}.$$

Rewriting the cocycle condition

Thinking of $g_{\alpha\beta}$ as an element of $\hat{\mathscr{C}}^{1}(\mathcal{U}, \mathcal{E})$, we see that

$$(\hat{\delta}g)_{\alpha\beta\gamma} = -g_{\alpha\gamma}$$
$$(g \cdot g)_{\alpha\beta\gamma} = g_{\alpha\beta}g_{\beta\gamma}.$$

This means that we can rewrite the cocycle condition as

$$\hat{\delta}g + g \cdot g = 0,$$

which looks like the Maurer-Cartan equation (an observation to which we will later return).

Twisting cochains

Definition (Twisting cochains)

A (holomorphic) twisting cochain over V is a formal sum

$$\mathbf{a} = \bigoplus_{k \in \mathbb{N}} \mathbf{a}^{k,1-k}$$

where $a^{k,1-k} \in \hat{\mathscr{C}}^k(\mathcal{U},\operatorname{End}^{1-k}(V))$ such that

- 1. $\hat{\delta}a + a \cdot a = 0$; and
- 2. $a_{\alpha\alpha}^{1,0} = id$.

Warning

The multiplication is **not** simply component-wise: it is given by taking all possible combinations, i.e.

$$(\mathbf{a} \cdot \mathbf{b})^{p,s} = \bigoplus_{\substack{q+q'=p\\t+t'=s}} \mathbf{a}^{q,t} \cdot \mathbf{b}^{q',t'}.$$

Warning

The multiplication is **not** simply component-wise: it is given by taking all possible combinations, i.e.

$$(\mathbf{a} \cdot \mathbf{b})^{p,s} = \bigoplus_{\substack{q+q'=p\\t+t'=s}} \mathbf{a}^{q,t} \cdot \mathbf{b}^{q',t'}.$$

• It might be the case that all but finitely many of the $a^{k,1-k}$ are zero, but **never** $a^{1,0}$, since it has to be the identity on $(\alpha\alpha)$.

Warning

The multiplication is **not** simply component-wise: it is given by taking all possible combinations, i.e.

$$(\mathbf{a} \cdot \mathbf{b})^{p,s} = \bigoplus_{\substack{q+q'=p\\t+t'=s}} \mathbf{a}^{q,t} \cdot \mathbf{b}^{q',t'}.$$

- It might be the case that all but finitely many of the $a^{k,1-k}$ are zero, but **never** $a^{1,0}$, since it has to be the identity on $(\alpha\alpha)$.
- If V has a differential then a is an element of total degree 1.

Warning

The multiplication is **not** simply component-wise: it is given by taking all possible combinations, i.e.

$$(\mathbf{a} \cdot \mathbf{b})^{p,s} = \bigoplus_{\substack{q+q'=p\\t+t'=s}} \mathbf{a}^{q,t} \cdot \mathbf{b}^{q',t'}.$$

- It might be the case that all but finitely many of the $a^{k,1-k}$ are zero, but **never** $a^{1,0}$, since it has to be the identity on $(\alpha\alpha)$.
- If V has a differential then ${\bf a}$ is an element of total degree 1.
- We haven't said when twisting cochains exist, but under pretty mild assumptions they always do (by an inductive construction).

13/14

Unpacking the definition

(
$$k=0$$
) $\rightsquigarrow a_{\alpha}^{0,1} \cdot a_{\alpha}^{0,1} = 0$, which tells us that $a_{\alpha}^{0,1}$ is a differential on V_{α}^{\bullet} .

Unpacking the definition

$$(k=0) \leadsto \mathbf{a}_{\alpha}^{0,1} \cdot \mathbf{a}_{\alpha}^{0,1} = 0$$
, which tells us that $\mathbf{a}_{\alpha}^{0,1}$ is a differential on V_{α}^{\bullet} .

(
$$k=1$$
) \rightarrow $a_{\alpha}^{0,1} \cdot a_{\alpha\beta}^{1,0} = a_{\alpha\beta}^{1,0} \cdot a_{\beta}^{0,1}$, which tells us that we have a chain map of chain complexes

$$\mathbf{a}_{\alpha\beta}^{1,0} \colon \left(V_{\beta}^{\bullet} | U_{\alpha\beta}, \mathbf{a}_{\beta}^{0,1} \right) \to \left(V_{\alpha}^{\bullet} | U_{\alpha\beta}, \mathbf{a}_{\alpha}^{0,1} \right)$$

Twisted complexes (BK)

Other fun things