«Национальный исследовательский университет «Высшая школа экономики»» Лицей

Индивидуальная выпускная работа

ИТ-ПРОЕКТ: howtomine

https://github.com/dantoper556/howtomine

Выполнил: Козицкий Вячеслав Дмитриевич

11И4

1. Введение.

До начала работы над ИВР, особого опыта работы с Django я не имел, однако знал python на довольно неплохом уровне, из-за чего довольно быстро освоил фреймворк. С крипторынками и майнингом знаком давно, пару лет увлекался этим

2. Проблемное поле

Новичок в сфере майнинга легко может купить слишком дорогое или неприбыльное оборудование. Если же он уже подобрал оборудование, скорее всего он захочет узнать его доходность и энергопотребление. Хороших калькуляторов в сети довольно мало, а функции подбора конфигурации по бюджету вообще нигде нет. Также в настоящее время на многих монетах майнинг не выгоден, поэтому важно помочь будущему майнеру выбрать наиболее выгодную монету

3. Образ продукта

а. Калькулятор доходности конфигурации из видеокарт/асиков

Считает доходность конфигурации достаточно точно, это было проверено на реальных фермах, также считается прибыль для дуал-майнинга, таких калькуляторов очень мало в интернете, хотя дуал-майнинг зачастую выгоднее. Эта функция помогает человеку оценить прибыльность его оборудования, лучше подобрать монету для майнинга.

Подбор конфигурации видеокарт по бюджету пользователя

Реализация данного функционала собственно является решением для проблемы сложности выбора видеокарт для фермы.

с. Список всех видеокарт

Удобное отображение всех существующих видеокарт с лучшими ценами

4. Сделанный продукт

а. [Сценарий 1: Подбор оборудования]

Реализован. В процессе разработки совсем немного изменился. Подбирает видеокарты для фермы по следующим параметрам: бюджет, цена за киловатт*час, максимальное количество карт

b. [Сценарий 2: Расчет доходности фермы на видеокартах]

Реализован без изменений относительно изначального варианта. В рамках этого сценария я сделал ввод пользователем конфигурации, далее запускается сценарий 4

с. [Сценарий 3: Расчет доходности фермы из асиков]

Реализован без изменений относительно изначального варианта. В рамках этого сценария я сделал ввод пользователем конфигурации, далее запускается сценарий 4

d. [Сценарий 4: Расчет доходности]

Самый сложный сценарий по моему мнению. Полностью реализован для конфигураций из видеокарт, для ферм из асиков реализованы все пункты сценария кроме седьмого.

- е. [Сценарий 5: Показ майнинг-отелей] не будет реализован
- f. [Сценарий 6: Экспорт конфигурации в pdf]

В процессе разработки я решил, что удобнее для пользователя скачивать данные не в формате pdf, а в формате html. Реализованы все пункты сценария кроме пятого, также скачивание в pdf было заменено на скачивание в html

д. [Сценарий 7: Просмотр популярных магазинов с комплектующими]

Этот сценарий тоже изменился. В итоге реализован в виде списка всех видеокарт с возможностью сортировки и фильтрации по цене

5. Бэкэнд и БД

Бэкэнд полностью написан на python, в качестве базы данных используется встроенная в Django ORM система. Также для ускорения выдачи пользователю результатов на запросы, подразумевающие парсинг, используются Json файлы, в которых хранятся результаты последнего парсинга. Эти файлы обновляются только если последнее обновление было давно. Непосредственно в базе данных хранятся 4 модели: Видеокарта, Асик, Криптовалюта, Пара криптовалют (хранит в себе 2 объекта класса Криптовалюта).

6. Средства разработки

Весь бэкэнд написан на python. Фронтенд написан на html и шаблонов Django для html, стили написаны с помощью CSS с подключением bootstrap, есть скрипты на JavaScript для генерации форм. Код написан в VS Code с подключенным к нему GitHub.

7. Этапы работы над проектом

- а. Первоначальная заявка в дедлайн уложился, в процессе работы над проектом неоднократно менялась
- b. Пользовательские сценарии в дедлайн уложился, пользовательские сценарии изменились меньше, чем заявка

Далее идут этапы написания кода, по ним четких дедлайнов не было. В среднем, раз в месяц реализовывался 1 сценарий.

- с. Разработка форм. На этом этапе были сделаны динамические формы и их связь с бэкэндом
- d. Реализация калькулятора.
- е. Тестирование калькулятора. Прогноз калькулятора сравнивался с фактическими данными работающей майнинг фермы. Разница получилась довольно небольшая: примерно от 1% до 7% в зависимости от монеты и карты.
- f. Реализация расчетов для дуал-майнинга. Так как в сети подобных калькуляторов очень мало и формул подсчета найти не получилось, пришлось выводить их самостоятельно, основываясь на данных, собранных с работающих ферм
- g. Верстка таблиц с результатами
- h. Разработка алгоритма подбора конфигурации по бюджету. Для реализации был использован жадный алгоритм с перебором
- i. Добавление более простых сценариев. На этом этапе были сделаны сценарии с просмотром магазинов и скачиванием страницы в html
- j. Финальный этап. Исправление мелких багов. Создание адаптивного под разные размеры экрана дизайна. Написание отчета.

8. Рефлексия

Начну с рисков. На рынках криптовалют кризис еще с 2022 года, в начале работы над проектом я выделял это как возможную причину неактуальности проекта. Однако, в процессе работы над проектом я понял, что это обстоятельство делает проект наоборот актуальнее: сейчас рынок

понемногу отрастает, майнеры запускают оборудование, но не все монеты являются доходными. Поэтому калькулятор доходности сейчас просто необходим, если хочется получать деньги и не хочется искать монету перебором. Также я выделял как риск нехватку времени на изучение необходимых технологий, этого не случилось, времени на все хватило. Собственно, из технических скиллов за время работы над проектом я изучил Django, JavaScript, парсинг, использование JSON файлов. Отмечу, что делать бэкэнд приложения мне понравилось, скорее всего в будущем буду развиваться именно в этом направлении.

В ходе работы над проектом возникло не так много проблем. Одной из главных является очень малое количество информации по дуал-майнингу в интернете (общие статьи о том, что дуал-майнинг это круто, я за ценную информацию не считаю), формул для подсчета, например, самого важного параметра dual intensity нет. Пришлось проводить мини исследование на реальном оборудовании, чтобы получить хоть какие-то примерные закономерности.

Из возможных улучшений проекта – улучшение части, связанной с асиками. Сейчас для асиков не считается стоимость конфигурации и точка 0, соответсвенно пользователю придется считать это самому.

9. Заключение.

Разработка приложения в итоге прошла довольно гладко, все самое важное из того, что планировалось, я сделал.