Topología II

Segundo parcial 2020

Ejercicio 1. Sea X un espacio topológico conexo y localmente arcoconexo y supongamos que (\tilde{X}, π) es un recubridor universal de X. Sean $x \in X$ un punto y $\alpha \in \Omega_x(X)$ un lazo de X basado en el punto x y supongamos que α no es homotópico al lazo constante ε_x .

Decidir razonadamente si la siguiente afirmación es cierta o falsa: Si $\tilde{\alpha}$ es un levantamiento de α a (X,π) , entonces $\tilde{\alpha}(0) \neq \tilde{\alpha}(1)$; es decir, $\tilde{\alpha}$ no es un lazo.

Ejercicio 2. Sea X un subespacio topológico de \mathbb{R}^2 dado por $X = \mathbb{S}^1 \cup L_1 \cup L_2$, donde $\mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ es la circunferencia unidad, $L_1 = \{(x,0) \in \mathbb{R}^2 : x \in [-2,0]\}$ es el segmento cerrado de extremos (-2,0) y (0,0) y $L_2 = \{(x,0) \in \mathbb{R}^2 : x \in [1,2]\}$ es el segmento cerrado de extremos (1,0) y (2,0).

- 1. ¿Admite X un recubridor de 31 hojas?
- 2. Determinar explicitamente un espacio recubridor de X.
- 3. Decidir razonadamente si la siguiente afirmación es cierta o falsa: Si (\tilde{X}, π) es un espacio recubridor de X y no es finito, entonces es recubridor universal.