(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 December 2001 (27,12,2001)

PCT

(10) International Publication Number WO 01/98499 A1

(51) International Patent Classification?: C12N 15/31, 15/63, G01N 33/68, C07K 14/31, A61K 39/085, C07K 16/12, C12N 5/12, A61K 39/40

of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN (GB).

- (21) International Application Number: PCT/GB01/02685
- (22) International Filing Date: 20 June 2001 (20.06.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0014907.0

20 June 2000 (20.06.2000) GE

- (71) Applicants (for all designated States except US): UNI-VERSITY OF SHEFFIELD [GB/GB]; Western Bank, Sheffield S10 2TN (GB). BIOSYNEXUS INC. [US/US]; Suite 100, 9610 Medical Centre Drive, Rockville, MD 20850 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): FOSTER, Simon [GB/GB]; Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN (GB). McDOWELL, Philip [GB/GB]; Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN (GB). BRUMMELL, Kirsty [GB/GB]; Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Courth Western Bank, Sheffield S10 2TN (GB). CLARKE, Simon [GB/GB]; Department

- (74) Agent: HARRISON GODDARD FOOTE; Tower House, Merrion Way, Leeds LS2 8PA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

/98499 A1

(54) Title: ANTIGENIC POLYPEPTIDES

Antigenic Polypeptides

The invention relates to a method for the identification of antigenic polypeptides expressed by pathogenic microbes; vaccines comprising said polypeptides; recombinant methods to manufacture said polypeptides; and therapeutic antibodies directed to said polypeptides.

5

10

15

Microbial organisms cause a number of fatal or debilitating diseases which affect many millions of people around the world. Currently methods to control microbial organisms include the use of antimicrobial agents (antibiotics) and disinfectants. These have proved to be problematic since exposure to these agents places a significant selection pressure resulting in the creation of resistant microbes which can avoid the effects of the antimicrobial agent(s). For example, recently it has been discovered that microbial organisms have become resistant to triclosan, an agent added to many disinfectants used in households and industrial environments.

An arguably greater problem is the evolution of antibiotic resistant strains of a number of significant pathogenic microbes.

For example, and not by way of limitation, it is estimated that there are up to 50 million people world-wide infected with drug resistant tuberculosis (TB) (Figures from the World Health Organisation, 1998). In the past the use of antibiotics to treat TB relied on the administration of single drugs (eg ethionamide) which promoted a relatively high frequency of resistance. For this reason, combinations of drugs are now used to treat tuberculosis. However the fatality rate in cases caused by strains that are resistant to at least one drug used to treat tuberculosis still approaches 50% even when treatment is given. *Mycobacterium tuberculosis*, the causative agent of TB, is a slow growing bacteria and takes a long time to kill. Therefore, for a drug combination to be effective a person with TB must take the drug combination daily for at least six months. Accordingly, patients frequently have to take two or more pills daily and this requires a regimented dosage over a relatively long period of

treatment. Many patients take the medications only intermittently and therefore do not finish the full course of therapy to completely eradicate the *M. tuberculosis* infection. Moreover, TB is strongly associated with HIV infection and therefore the establishment of TB is strongly correlated with immunosuppression.

5

15

20

25

30

Vaccination against TB has been available for many years. The bacillus calmette and guerin (BCG) vaccination has been widely used throughout the world for a long time because it is a safe and inexpensive means to vaccinate large numbers of people who potentially could contract TB. BCG is derived from live, attenuated strains of *Mycobacterium bovis*. However the impact of vaccination on the infectious forms of TB is minimal and BCG has therefore contributed little to the overall control of the disease.

A further example of a pathogenic organism which has developed resistance to antibiotics is *Staphylococcus aureus*. *S.aureus* is a bacterium whose normal habitat is the epithelial lining of the nose in about 20-40% of normal healthy people and is also commonly found on people's skin usually without causing harm. However, in certain circumstances, particularly when skin is damaged, this germ can cause infection. This is a particular problem in hospitals where patients may have surgical procedures and/or be taking immunosuppressive drugs. These patients are much more vulnerable to infection with *S.aureus* because of the treatment they have received. Resistant strains of *S.aureus* have arisen in recent years. Methicillin resistant strains are prevalent and many of these resistant strains are also resistant to several other antibiotics. Currently there is no effective vaccination procedure for *S. aureus*. In the US, *S.aureus* infections are the cause of 13% of the two million hospitalised infections each year. This represents 260,000 people with an infection of *S.aureus*, of which 60-80,000 die.

S. aureus is therefore a major human pathogen capable of causing a wide range of life threatening diseases including septicaemia, endocarditis, arthritis and toxic shock. This ability is determined by the versatility of the organism and its arsenal of

components involved in virulence. Pathogenicity is multifactorial and no one component has shown to be responsible for a particular infection, see Projan, S.J. & Novick, R.P. (1997) in The Staphylococci in Human Disease (Crossley, K.B. & Archer, G.L., eds.) pp.55-81.

5

10

At the onset of infection, and as it progresses, the needs and environment of the organism changes and this is mirrored by a corresponding alteration in the virulence determinants which *S. aureus* produces. At the beginning of infection it is important for the pathogen to adhere to host tissues and so a large repertoire of cell surface associated attachment proteins are made. These include collagen-, fibrinogen- and fibronectin-binding proteins. The pathogen also has the ability to evade host defences by the production of factors that reduce phagocytosis or interfere with the ability of the cells to be recognised by circulating antibodies.

Often a focus of infection develops as an abscess and the number of organisms increases. S. aureus has the ability to monitor its own cell density by the production of a quorum sensing peptide. Accumulation of the peptide, associated with physiological changes brought about by the beginning of starvation of the cells, elicits a switch in virulence determinant production from adhesins to components involved in invasion and tissue penetration. These include a wide range of hemolysins, proteases and other degradative enzymes.

During the process of any infection the virulence determinants made by *S. aureus* are produced in response to environmental and physiological stimuli. These stimuli will be dependent on the niche within the body and will change as the infection progresses. Little is known of the conditions *in vivo* and it is likely that some components are produced solely in this environment. These are therefore potential vaccine components, which could not be discovered by previous techniques.

30

One of the most important developments in recent medical history is the development of vaccines which provide prophylactic protection from a wide variety of pathogenic organisms. Many vaccines are produced by inactivated or attenuated pathogens which are injected into an individual. The immunised individual responds by producing both a humoral (antibody) and cellular (cytolytic T cells, CTL's) response. For example, hepatitis vaccines are made by heat inactivating the virus and treating it with a cross linking agent such as formaldehyde. An example of an attenuated pathogen useful as a vaccine is represented by polio vaccines which are produced by attenuating a live pathogen.

10

15

20

30

5

However the use of attenuated organisms in vaccines for certain diseases is problematic due to the lack of knowledge regarding the pathology of the condition and the nature of the attenuation. For certain viral agents this is a particular problem since viruses, in particular retroviruses, have an error prone replication cycle which results viable mutations in the genes which comprise the virus. This can result in alterations to antigenic determinants which have previously been used as vaccines. An alternative to the use of inactivated or attenuated pathogens is the identification of pathogen epitopes to which the immune system is particularly sensitive. In this regard many pathogenic toxins produced by pathogenic organisms during an infection are particularly useful in the development of vaccines which protect the individual from a particular pathogenic organism.

. . . .

The development of so-called subunit vaccines (vaccines in which the immunogen is a fragment or subunit of a protein or complex expressed by a particular pathogenic organism) has been the focus of considerable medical research. The need to identify 25 candidate molecules useful in the development of subunit vaccines is apparent not least because conventional chemotherapeutic approaches to the control of pathogenic organisms has more recently been stymied by the development of antibiotic resistance. A number of methods have been developed to identify potential antigenic polypeptides which can be used as a vaccine. One such method is disclosed herein.

It has been known for many years that tumour cells produce a number of tumour cell specific antigens, some of which are presented at the tumour cell surface. The immune system recognises these antigens as foreign thereby resulting in the production of antibodies to self antigens, so called autoantibodies or autologous antisera.

One such technique is <u>Serological</u> identification of antigens by <u>recombinant</u> <u>Expression</u> Cloning, abbreviated to SEREX.

10 Typically, the technique involves the extraction of RNA from tumour tissue followed by the selective enrichment of mRNA from the isolated total RNA. The mRNA is reverse transcribed into cDNA using viral reverse transcriptase. The cDNA thus synthesised is subcloned into an expression vector and transformed into an appropriate bacterial strain. The transformed bacteria are plated onto a suitable nutrient agar and under appropriate growth conditions the subcloned cDNA is expressed from the expression vector in the bacterial cell. The cells are lysed naturally by the use of phage based expression vectors, for example λ phage or phagemid based vectors, which through their lytic cycle cause cell lysis. The released polypeptides are transferred to a suitable membrane support (i.e. 20 nitrocellulose, nylon) and exposed to autologous antisera from the patient from which the tumour tissue was originally isolated. The immunoscreening methodology allows the identification of genes that are over expressed or inappropriately expressed in a selected tumour tissue from a patient.

We have exploited this techinque to identify antigenic polypeptides expressed by pathogenic organisms during an infection. Autologous antisera produced during the infection is used to screen an expression library created from genomic DNA to identify and clone antigens.

In its broadest aspect the invention relates to the identification of antigenic polypeptides expressed during an infection by a pathogenic microbe.

According to a first aspect of the invention there is provided a method to identify antigenic polypeptides comprising:

- (i) providing a nucleic acid library encoding genes or partial gene sequences of a pathogenic organism;
- 10 (ii) transforming/transfecting said library into a host cell;
 - (iii) providing conditions conducive to the expression of said transformed/transfected genes or partial gene sequences;
- 15 (iv) contacting the polypeptides expressed by the genes/partial gene sequences with autologous antisera derived from an animal infected with, or has been infected with, said pathogenic organism; and
- (v) purifying the nucleic acid encoding the polypeptide or partial polypeptide
 binding to said autologous antisera.

In a preferred method of the invention said library comprises genomic DNA of a pathogenic organism.

25 Ideally said pathogenic organism is bacterial.

30

More preferably still said bacterial organism is selected from the following:

Staphylococcus aureus; Staphylococcus epidermidis; Enterococcus faecalis;

Mycobacterium tuberculsis; Streptococcus group B; Streptococcus pneumoniae;

Helicobacter pylori; Neisseria gonorrhea; Streptococcus group A; Borrelia

burgdorferi; Coccidiodes immitis; Histoplasma sapsulatum; Neisseria meningitidis type B; Shigella flexneri; Escherichia coli; Haemophilus influenzae.

Preferably still said pathogenic organism is of the genus *Staphylococcus spp*. Ideally organism is *Staphylococcus aureus* or *Staphylococcus epidermidis*.

In a further preferred embodiment of the invention said nucleic acid library is a lambda library, ideally a lambda expression library.

- According to a second aspect of the invention there is provided a nucleic acid molecule comprising a DNA sequence selected from:
 - (i) the DNA sequence as represented in SEQ ID NO's 1-13;
- 15 (ii) DNA sequences which hybridise to the sequence presented in the SEQ ID No's 1-13 identified in (i) above which encode a polypeptide expressed by a pathogenic organism and
- (iii) DNA sequences which are degenerate as a result of the genetic code to the DNA sequences defined in (i) and (ii).

In a yet still further preferred embodiment of the invention said nucleic acid molecule is genomic DNA.

25

In a preferred embodiment of the invention there is provided an isolated nucleic acid molecule which anneals under stringent hybridisation conditions to the sequences presented in SEQ ID NO's 1-13.

30 Stringent hybridisation/washing conditions are well known in the art. For example, nucleic acid hybrids that are stable after washing in 0.1xSSC, 0.1% SDS at 60°C. It

is well known in the art that optimal hybridisation conditions can be calculated if the sequences of the nucleic acid is known. For example, hybridisation conditions can be determined by the GC content of the nucleic acid subject to hybridisation. Please see Sambrook *et al* (1989) Molecular Cloning; A Laboratory Approach. A common formula for calculating the stringency conditions required to achieve hybridisation between nucleic acid molecules of a specified homology is:

$$T_m = 81.5^0 \text{ C} + 16.6 \text{ Log [Na}^+] + 0.41[\% \text{ G} + \text{C}] - 0.63 (\% \text{formamide}).$$

5

15

30

According to a third aspect of the invention there is provided at least one polypeptide identified by the method according to the invention.

In a preferred embodiment of the invention, said polypeptide is associated with infective pathogenicity of an organism according to any previous aspect or embodiment of the invention.

More preferably still said polypeptide is at least one, or part of SEQ ID NO's: 14-19.

According to a fourth aspect of the invention there is provided a nucleic acid molecule characterised in that said nucleic acid molecule is part of a vector adapted to facilitate recombinant expression of the polypeptide encoded by said nucleic acid molecule.

In a preferred embodiment of the invention said vector is an expression vector adapted for prokaryotic gene expression. Alternatively said expression vector is adapted for eukaryotic gene expression.

Typically said adaptation includes, by example and not by way of limitation, the provision of transcription control sequences (promoter sequences) which mediate cell specific expression. These promoter sequences may be cell specific, inducible or constitutive.

Promoter is an art recognised term and, for the sake of clarity, includes the following features which are provided by example only, and not by way of limitation. Enhancer elements are *cis* acting nucleic acid sequences often found 5' to the transcription initiation site of a gene (enhancers can also be found 3' to a gene sequence or even located in intronic sequences and is therefore position independent). Enhancers function to increase the rate of transcription of the gene to which the enhancer is linked. Enhancer activity is responsive to *trans* acting transcription factors (polypeptides) which have been shown to bind specifically to enhancer elements. The binding/activity of transcription factors (please see Eukaryotic Transcription Factors, by David S Latchman, Academic Press Ltd, San Diego) is responsive to a number of environmental cues which include, by example and not by way of limitation, intermediary metabolites (eg glucose, lipids), environmental effectors (eg light, heat,).

- Promoter elements also include so called TATA box and RNA polymerase initiation selection (RIS) sequences which function to select a site of transcription initiation. These sequences also bind polypeptides which function, *inter alia*, to facilitate transcription initiation selection by RNA polymerase.
- 20 Adaptations also include the provision of selectable markers and autonomous replication sequences which both facilitate the maintenance of said vector in either the eukaryotic cell or prokaryotic host. Vectors which are maintained autonomously are referred to as episomal vectors.
- Adaptations which facilitate the expression of vector encoded genes include the provision of transcription termination/polyadenylation sequences. This also includes the provision of internal ribosome entry sites (IRES) which function to maximise expression of vector encoded genes arranged in bicistronic or multi-cistronic expression cassettes.

These adaptations are well known in the art. There is a significant amount of published literature with respect to expression vector construction and recombinant DNA techniques in general. Please see, Sambrook et al (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory, Cold Spring Harbour, NY and references therein; Marston, F (1987) DNA Cloning Techniques: A Practical Approach Vol III IRL Press, Oxford UK; DNA Cloning: F M Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, Inc.(1994).

- According to yet a further aspect of the invention there is provided a method for the production of the polypeptides according to any previous aspect or embodiment of the invention comprising:
- (i) providing a cell transformed/transfected with a vector according to the invention;
 - (ii) growing said cell in conditions conducive to the manufacture of said polypeptides; and
- 20 (iii) purifying said polypeptide from said cell, or its growth environment.

In a preferred method of the invention said vector encodes, and thus said recombinant polypeptide is provided with, a secretion signal to facilitate purification of said polypeptide.

25

According to a fifth aspect of the invention there is provided a cell or cell-line transformed or transfected with the vector according to the invention.

In a preferred embodiment of the invention said cell is a prokaryotic cell.

Alternatively said cell is a eukaryotic cell selected from: fungal, insect, amphibian; mammalian; plant.

According to a yet further aspect of the invention there is provided a vaccine comprising at least one polypeptide according to the invention.

5 Ideally said vaccine further comprises a carrier and/or adjuvant.

The terms adjuvant and carrier are construed in the following manner. Some polypeptide or peptide antigens contain B-cell epitopes but no T cell epitopes. Immune responses can be greatly enhanced by the inclusion of a T cell epitope in the polypeptide/peptide or by the conjugation of the polypeptide/peptide to an immunogenic carrier protein such as key hole limpet haemocyanin or tetanus toxoid which contain multiple T cell epitopes. The conjugate is taken up by antigen presenting cells, processed and presented by human leukocyte antigens (HLA's) class II molecules. This allows T cell help to be given by T cell's specific for carrier derived epitopes to the B cell which is specific for the original antigenic polypeptide/peptide. This can lead to increase in antibody production, secretion and isotype switching.

An adjuvant is a substance or procedure which augments specific immune responses to antigens by modulating the activity of immune cells. Examples of adjuvants include, by example only, agonsitic antibodies to co-stimulatory molecules, Freunds adjuvant, muramyl dipeptides, liposomes. An adjuvant is therefore an immunomodulator. A carrier is an immunogenic molecule which, when bound to a second molecule augments immune responses to the latter.

25

20

10

15

In yet a further aspect of the invention there is provided a method to immunise an animal against a pathogenic microbe comprising administering to said animal at least one polypeptide, or part thereof, according to the invention or the vaccine according to the invention.

30

In a preferred method of the invention said animal is human.

Preferably the vaccine, or antigenic polypeptide, can be delivered by direct injection either intravenously, intramuscularly, subcutaneously. Further still, the vaccine or antigenic polypeptide, may be taken orally.

Preferably the vaccine is against the bacterial species Staphylococcus aureus.

5 The vaccine may also be against the bacterial species Staphylococcus epidermidis.

It will also be apparent that vaccines or antigenic polypeptides are effective at preventing or alleviating conditions in animals other than humans, for example and not by way of limitation, family pets, livestock, horses.

According to a further aspect of the invention there is provided an antibody, or at least an effective binding part thereof, which binds at least one polypeptide according to the invention.

In a preferred embodiment of the invention said antibody is a polyclonal or monoclonal antibody wherein said antibody is specific to said polypeptide.

15

Alternatively, said antibody is a chimeric antibody produced by recombinant methods to contain the variable region of said antibody with an invariant or constant region of a human antibody.

In a further alternative embodiment of the invention, said antibody is humanised by recombinant methods to combine the complimentarity determining regions of said antibody with both the constant (C) regions and the framework regions from the variable (V) regions of a human antibody.

Preferably said antibody is provided with a marker including a conventional label or tag, for example a radioactive and/or fluorescent and/or epitope label or tag.

Preferably said humanised monoclonal antibody to said polypeptide is produced as a fusion polypeptide in an expression vector suitably adapted for transfection or transformation of prokaryotic or eukaryotic cells.

Antibodies, also known as immunoglobulins, are protein molecules which have specificity for foreign molecules (antigens). Immunoglobulins (Ig) are a class of structurally related proteins consisting of two pairs of polypeptide chains, one pair of light (L) (low molecular weight) chain (κ or λ), and one pair of heavy (H) chains (γ , α , μ , δ and ϵ), all four linked together by disulphide bonds. Both H and L chains have regions that contribute to the binding of antigen and that are highly variable from one Ig molecule to another. In addition, H and L chains contain regions that are non-variable or constant.

10

15

20

5

The L chains consist of two domains. The carboxy-terminal domain is essentially identical among L chains of a given type and is referred to as the "constant" (C) region. The amino terminal domain varies from L chain to L chain and contributes to the binding site of the antibody. Because of its variability, it is referred to as the "variable" (V) region.

The H chains of Ig molecules are of several classes, α , μ , σ , α , and γ (of which there are several sub-classes). An assembled Ig molecule consisting of one or more units of two identical H and L chains, derives its name from the H chain that it possesses. Thus, there are five Ig isotypes: IgA, IgM, IgD, IgE and IgG (with four sub-classes based on the differences in the H chains, i.e., IgG1, IgG2, IgG3 and IgG4). Further detail regarding antibody structure and their various functions can be found in, Using Antibodies: A laboratory manual, Cold Spring Harbour Laboratory Press.

25 Chimeric antibodies are recombinant antibodies in which all of the V-regions of a mouse or rat antibody are combined with human antibody C-regions. Humanised antibodies are recombinant hybrid antibodies which fuse the complimentarity determining regions from a rodent antibody V-region with the framework regions from the human antibody V-regions. The C-regions from the human antibody are also used. The complimentarity determining regions (CDRs) are the regions within the N-terminal domain of both the heavy and light chain of the antibody to where the

majority of the variation of the V-region is restricted. These regions form loops at the surface of the antibody molecule. These loops provide the binding surface between the antibody and antigen.

Antibodies from non-human animals provoke an immune response to the foreign antibody and its removal from the circulation. Both chimeric and humanised antibodies have reduced antigenicity when injected to a human subject because there is a reduced amount of rodent (i.e. foreign) antibody within the recombinant hybrid antibody, while the human antibody regions do not illicit an immune response. This results in a weaker immune response and a decrease in the clearance of the antibody. This is clearly desirable when using therapeutic antibodies in the treatment of human diseases. Humanised antibodies are designed to have less "foreign" antibody regions and are therefore thought to be less immunogenic than chimeric antibodies.

In another aspect of the invention there is provided a vector which is adapted for the expression of the humanised or chimeric antibodies according to the invention.

In a yet further aspect of the invention, there is provided a cell or cell line which has been transformed or transfected with the vector encoding the humanised or chimeric antibody according to the invention.

In a yet further aspect of the invention there is provided a method for the production of the humanised or chimeric antibody according to the invention comprising:

- (i) providing a cell transformed or transfected with a vector which comprises a nucleic acid molecule encoding the humanised or chimeric antibody according to the invention;
 - (ii) growing said cell in conditions conducive to the manufacture of said antibody; and
 - (iii) purifying said antibody from said cell, or its growth environment.

30

20

In a yet further aspect of the invention there is provided a hybridoma cell line which produces a monoclonal antibody as hereinbefore described.

In a further aspect of the invention there is provided a method of producing monoclonal antibodies according to the invention using hybridoma cell lines according to the invention.

In a further aspect of the invention there is provided a method for preparing a hybridoma cell-line producing monoclonal antibodies according to the invention comprising the steps of:

- i) immunising an immunocompetent mammal with an immunogen comprising at least one polypeptide having the amino acid sequence as represented in SEQ. ID No 14-19, or fragments thereof;
- ii) fusing lymphocytes of the immunised immunocompetent mammal with myeloma cells to form hybridoma cells;
- iii) screening monoclonal antibodies produced by the hybridoma cells of step (ii) for binding activity to the amino acid sequences of (i);
- iv) culturing the hybridoma cells to proliferate and/or to secrete said monoclonal antibody; and
- v) recovering the monoclonal antibody from the culture supernatant.

Preferably, the said immunocompetent mammal is a mouse. Alternatively, said immunocompetent mammal is a rat.

The production of monoclonal antibodies using hybridoma cells is well-known in the art. The methods used to produce monoclonal antibodies are disclosed by Kohler and Milstein in Nature 256, 495-497 (1975) and also by Donillard and Hoffman, "Basic Facts about Hybridomas" in Compendium of Immunology V.II ed. by Schwartz, 1981, which are incorporated by reference.

30

5

10

In a further aspect of the invention there is provided the use of the antibodies for manufacture of a medicament for the treatment of *Staphylococcus aureus*-associated septicaemia, food-poisoning or skin disorders.

In another aspect of the invention there is provided the use of the antibodies according to the invention for the manufacture of a medicament for the treatment of Staphylococcus epidermidis-associated septicaemia, peritonitis or endocarditis.

It will be apparent that the polypeptides identified by the method according to the invention will facilitate the production of therapeutic antibodies to a range of diseases resulting from pathogenic infection, for example, septicaemia; tuberculosis; bacteria-associated food poisoning; blood infections; peritonitis; endocarditis; sepsis; meningitis; pneumonia; stomach ulcers; gonorrhoea; strep throat; streptococcal-associated toxic shock; necrotizing fasciitis; impetigo; histoplasmosis; Lyme disease; gastro-enteritis; dysentery; shigellosis.

As has already been stated earlier, microbial organisms cause a wide variety of diseases. Listed below, and not by way of limitation, are a number of microorganisms and some of the diseases they cause.

Micro-organism	Disease(s) caused				
Staphylococcus aureus	Sepsis, food poisoning, septicaemia,				
Staphylococcus epidermidis	Peritonitis, septicaemia, endocarditis, other hospital-associated diseases				
Enterococcus faecalis	Endocarditis, cystitis, wound infections				
Mycobacterium tuberculosis	Tuberculosis				
Streptococcus group B	Sepsis, meningitis, pneumonia, bladde infections				
Streptococcus pneumoniae	Pneumonia, meningitis				
Helicobacter pylori Stomach ulcers					
Neisseria gonorrhoea	Gonorrhoea				
Streptococcus group A	Strep throat, necrotizing fasciitis, impetigo, Strep. Toxic shock syndrome				
Borrelia burgdoferi	Lyme disease				
Coccidiodes immitis	Pneumonia				

Histoplasma sapsulatum	Histoplasmosis, pneumonia
Neisseria meningitidis type B	Meningitis
Shigella flexneri	Gastro-enteritis, shigellosis, dysentry
Escherichia coli	Food-poisoning, gastro-enteritis
Haemophilus influenzae	Meningitis, pneumonia, arthritis, cellulitis

An embodiment of the invention will now be described by example only and with reference to the following materials, methods and SEQ ID NO's 1-19 and Table 1.

Materials and Methods

5

10

15

20

25

A λZAP Express library of genomic DNA of S. aureus 8325/4 was used. It contains fragments of 2-10kb from a partial Sau3A digest of total genomic DNA. This was cloned into the BamH1 site of the vector. The library contains >10x coverage of the The library was probed by plaque lift using an initial screen of approximately 20,000 plaque forming units on a 9cm diameter Petri dish. plating cells used, their treatment, the plating procedure and buffers were exactly as described in the manufacturers handbook (Stratagene). Plating cells, Escherichia coli XL1-Blue MRF', were infected with phage and plated in 3 ml top LB agar containing 10 mM MgSO₄ onto LB plates containing 10 mM MgSO₄. The plates were then incubated at 42°C for 4 hr. An 8.5cm diameter nitrocellulose filter disc (previously soaked in 10 mM IPTG and air-dried) was placed on each plate and its location marked. The plates were then incubated for a further 3.5 hr at 37°C. The filters were removed and washed in TBST buffer before blocking overnight at 4°C in TBST containing 6% w/v dried skimmed milk and 3% v/v pig serum (Sigma). The serum was used to block any Protein A clones on the filter. The filters are then treated with patient serum (1/5000 dilution) in blocking solution for 90 min at room temperature. Antisera have been obtained from patients convalescing from major S. aureus infections. The filters are then washed for 3x10 min in TBST. Secondary antibody used was goat anti-human whole IgG alkaline phosphatase linked (Sigma)

at 1/30,000 dilution in blocking solution at room temperature for 30 min. The filters were then washed as above and developed using a standard colorimetric procedure.

Cross-reactive plaques were located on the agar plates and cored into 0.2ml phage buffer with 0.02 ml chloroform. The titre of each core stock was determined and the phage plated at approximately 200 plaques per plate. A plaque lift and screen was performed as above to give single, pure cross-reactive clones.

The pure clones were then spotted (1µl) onto plates to give a confluent plaque of 0.5cm diameter. 30 individual clones can be spotted on each plate. A plaque lift is performed and the filter probed with an appropriate sera. In this way clones can be tested for their cross-reactivity with other patient sera, non-infected donor sera and anti-Protein A sera.

Individual clones were then excised to give a phagemid in *E. coli* XLOLR using the manufacturers protocol (Stratagene). A plasmid miniprep of each was carried out and the size of the genomic insert determined by restriction mapping. The identity of the cloned insert was determined by DNA sequencing using primers against vector sequence, which allows sequencing across the insert. By comparison of the derived sequence against the public domain databases the nature of the cloned gene(s) can be determined.

Hybridisation Solutions/Conditions

5

Typically, hybridisation conditions uses 4 - 6 x SSPE (20x SSPE contains 175.3g NaCl, 88.2g NaH₂PO₄ H₂O and 7.4g EDTA dissolved to 1 litre and the pH adjusted to 7.4); 5-10x Denhardts solution (50x Denhardts solution contains 5g Ficoll (type 400, Pharmacia), 5g polyvinylpyrrolidone abd 5g bovine serum albumen; 100μg-1.0mg/ml sonicated salmon/herring DNA; 0.1-1.0% sodium dodecyl sulphate;
optionally 40-60% deionised formamide. Hybridisation temperature will vary

depending on the GC content of the nucleic acid target sequence but will typically be between 42°-65° C.

5

PCT/GB01/02685 WO 01/98499

Staphylococcus aureus clones identified in human sera screen TABLE 1

Patient Sera	Clone	ne Encoded proteins	
	·		number
A	1	γ hemolysin B and C subunit	1
A	3	Atl	2
A	4	γ hemolysin B and C subunit	1
A	5	γ hemolysin B and C subunit	1
A	7	Novel putative protease (ORF1 novel antigen like)	7
A.	. 8	Novel nuclease (YisK)	5
A	9	Novel autolysin	6
A	10	γ hemolysin B and C subunit	1
A	11	Atl	2
A	14	γ hemolysin B and C subunit	1
A	15	γ hemolysin B and C subunit	1
A	. S1	Novel putative protease (ORF1 novel antigen like)	7
A	·S5	Novel surface protein	12
A	S17	γ hemolysin B and C subunit	1
A	S18	Novel putative protease (ORF1 novel antigen like)	7
A	S19	Novel autolysin	6
A	S20	Novel surface protein/toxin	13
A	S21	γ hemolysin B and C subunit	1
A	S25	γ hemolysin B and C subunit	1
A	S29	Fibrinogen binding protein)	3
A	S44	Novel surface protein	12
A	S45	Atl	2
A	S55	Atl	2
A	S64	Atl	2
A	S66	Atl	2
В	2	Novel exotoxin (exotoxin 2 like)	8
С	1	Coagulase	4
С	2	Coagulase	4
·C	3 ·	Coagulase	4
С	4	Coagulase	4
C C	5	Coagulase	4
C	6	Coagulase	4
C	7	Coagulase	4
C C C	8	Coagulase	4
	. 9	Coagulase	4
С	10	Coagulase	4

С	11	Coagulase	4
С	13	Coagulase	4
С	14	Coagulase	4
С	15	Coagulase	4
С	19	Coagulase	4
С	20	Coagulase	4
С	25	Coagulase	4
E	6	Novel surface proteins	9/10
E	7	Novel surface proteins	9/10
E	11	γ hemolysin B and C subunit	1
F	1	Novel exotoxin (exotoxin 2 like)	8
F	2	Novel exotoxin (exotoxin 2 like)	8
F	3	Novel exotoxin (exotoxin 2 like)	8
F	4	Novel exotoxin (exotoxin 2 like)	8
F	5	Novel hemolysin (YjfD)	11

CLAIMS

15

30

An isolated nucleic acid molecule comprising a DNA sequence selected from
 the group consisting of:

- (i) the DNA sequence as represented in SEQ ID NO's 1 13;
- DNA sequences which hybridise to the sequence presented in the SEQ

 ID No's 1-13 identified in (i) above and which encode a polypeptide expressed by a pathogenic organism; and
 - (iii) DNA sequences which are degenerate as a result of the genetic code to the DNA sequences defined in (i) and (ii).

2. An isolated nucleic acid molecule according to claim 1 which is genomic DNA.

- An isolated nucleic acid molecule according to claim 1 or 2 which anneals
 under stringent hybridisation conditions to the sequences presented in SEQ ID
 NO's 1-13.
 - 4. A vector comprising a nucleic acid molecule according to any of claims 1-3.
- A vector according to claim 4 wherein the vector is adapted for recombinant expression of the polypeptide encoded by the nucleic acid.
 - 6. A vector according to claim 4 or 5 wherein said vector is an expression vector adapted for prokaryotic gene expression.
 - 7. A vector according to claim 4 or 5 wherein said vector is an expression vector adapted for eukaryotic gene expression.

8. A vector according to any of claims 4 to 7 wherein the adaptation of the vector includes the provision of promoter sequences.

- 5 9. A vector according to claim 8 wherein the promoter sequences provide for cell specific, inducible or constitutive expression.
 - 10. A method to identify antigenic polypeptides comprising:
- 10 (i) providing a nucleic acid library encoding genes or partial gene sequences of a pathogenic organism;
 - (ii) transforming/transfecting said library into a host cell;
- (iii) contacting the polypeptides expressed by the genes/partial gene sequences with autologous antisera derived from an animal infected with, or has been infected with, said pathogenic organism; and
- (iv) purifying the nucleic acid encoding the polypeptide or partial polypeptide binding to said autologous antisera.
 - 11. A method according to claim 10 wherein said library comprises genomic DNA of a pathogenic organism.
- 25 12. A method according to claim 10 or claim 11 wherein said pathogenic organism is bacterial.
- 13. A method according to any of claims 10 to 12 wherein said bacterial organism is selected from the following: Staphylococcus aureus; Staphylococcus epidermidis; Enterococcus faecalis; Mycobacterium tuberculsis; Streptococcus group B; Streptococcus pneumoniae; Helicobacter pylori;

Neisseria gonorrhea; Streptococcus group A; Borrelia burgdorferi; Coccidiodes immitis; Histoplasma sapsulatum; Neisseria meningitidis type B; Shigella flexneri; Escherichia coli; Haemophilus influenzae

- 5 14. A method according to any of claim 13 wherein said pathogenic organism is Staphylococcus aureus.
 - 15. A method according to any of claim 13 wherein said pathogenic organism is Staphylococcus epidermidis.
- 16. A method according to any of claims 10 to 15 wherein said nucleic acid library is a lambda library.

10

- 17. A polypeptide identified by the method according to any of claims 10 to 16.
- 18. A polypeptide according to claim 17 which is selected from the group consisting of SEQ ID NO's: 14-19.
- 19. A method for the production of the polypeptides according to any of claims
 20 17 or 18 comprising:
 - (i) providing a cell transformed/transfected with a vector according to any of claims 4 to 9 and with cell culture conditions; and
 - (ii) purifying said polypeptide from said cell, or its growth environment.
- 25 20. A method according to claim 19 wherein said vector encodes, and thus said recombinant polypeptide is provided with, a secretion signal to facilitate purification of said polypeptide.
- 21. A cell transformed or transfected with the vector according to any of claims 4 to 9.

- 22. A cell according to claim 21 which is a prokaryotic cell.
- 23. A cell according to claim 21 which is a eukaryotic cell selected from the group consisting of: fungal cell, insect cell, amphibian cell; mammalian cell; plant cell.
- 24. A vaccine comprising at least one polypeptide according to claims 16 or 17.
- 25. A vaccine according to claim 24 which further comprises a carrier and/or adjuvant.
 - 26. A method to immunise an animal against a pathogenic microbe comprising administering to the animal at least one polypeptide, or part thereof, according to any previous claim or the vaccine of any previous claim.

15

- 27. A method according to claim 26 wherein the animal is human.
- A method according to claim 26 or 27 wherein the vaccine, or antigenic polypeptide, is delivered by direct injection either intravenously, intramuscularly or
 subcutaneously.
 - 29. A method according to claim 25 or 26 wherein the vaccine or antigenic polypeptide is taken orally.
 - 30. A method according to any of claims 26 to 29 wherein the vaccine is against the bacterial genus *Staphylococcus spp*.
- 25 31. A method according to claim 30 wherein the vaccine is against the bacterial species *Staphylococcus aureus*.
 - 32. A method according to claim 30 wherein the vaccine is against the bacterial species *Staphylococcus epidermidis*.

33. An antibody, or at least an effective part thereof, which binds at least with a selective part of the polypeptide according to claim 16 or 17.

34. An antibody according to claim 33 which is a monoclonal antibody.

5

- 35. An antibody according to claim 33 or 34 wherein said effective part comprises FAb fragments.
- 36. An antibody according to any of claims 33 to 35 which is a chimeric antibody.
 - 37. An antibody according to any of claims 33 to 35 which is a humanised antibody.
- 15 38. An antibody according to any of claims 33 to 37 wherein said antibody is provided with a marker, label or tag.
- An antibody according to claim 38 wherein said antibody is provided with a marker selected from a group consisting of: a radioactive label, a fluorescent label; an epitope tag.
 - 40. An antibody according to any of claims 34 to 39 which is produced as a fusion polypeptide.
- 25 41. A vector which is adapted for the expression of the antibodies according to any of claims 34-40.
 - 42. A cell which has been transformed or transfected with the vector according to claim 41.

43. A method for the production of the antibody according to any of claims 34 or 40 comprising:

- i) providing a cell transformed or transfected with the vector according to claim 41 and with cell culture conditions; and
- ii) purifying said antibody from said cell, or its growth environment.
- 44. A hybridoma cell line which produces an antibody according to claim 34.

5

15

20

- 45. Use of the antibodies according to any of claims 33 to 40 for the manufacture of a medicament for the treatment of *Staphylococcus aureus*-associated septicaemia, food-poisoning or skin disorders.
 - 46. Use of the antibodies according to any of claims 33 to 40 for the manufacture of a medicament for the treatment of *Staphylococcus epidermidis*-associated septicaemia, peritonitis or endocarditis
 - 47. A method for preparing a hybridoma cell-line producing monoclonal antibodies according to claim 34, comprising the steps of:
 - i) immunising an immunocompetent mammal with an immunogen comprising at least one polypeptide having the amino acid sequence as set forward in SEQ ID No: 14-19, or fragments thereof;
 - ii) fusing lymphocytes of the immunised immunocompetent mammal with myeloma cells to form hybridoma cells;
 - iii) screening monoclonal antibodies produced by the hybridoma cells of step (ii) for binding activity to the amino acid sequences of (i);
 - iv) culturing the hybridoma cells to proliferate and/or to secrete said monoclonal antibody; and
 - v) recovering the monoclonal antibody from the culture supernatant.
- 30 48. A method according to claim 47, wherein said immunocompetent mammal is a mouse

49. A method according to claim 47, wherein said immunocompetent mammal is a rat

5

SEQUENCE LISTING

<110> University of Sheffield 5 <120> Antigenic Peptides <130> toxin <140> 10 <141> <160> 32 <170> PatentIn Ver. 2.1 15 <210> 1 <211> 2260 <212> DNA <213> Staphylococcus aureus 20 <400>1gatcttaatg aaagagtgac tgatgcctta gcaattgcta gttgtatcaa tgcgcatccg 60 tatgtcaaag gagaactttg cgtgtccgat gacttaacgt atacgacagg ttattttgcc 25 gctgctaaaa ttggttacca tcgattattt gatattaaac cagttaatac qagatatgga 180 ggcagaataa tatttgtgga cgattgtatt gatttaaatc attacatatc atttttagaa agcacaccga agcaagttgt ttatgaaacg gtataggggt tttagtatga catcaaaaga 30 tattactcaa attagtgtca ttgctgcgat tttaaccatt ttggcagttt tgaaaatacc 360 gtccattata ccaggattag attttcaatt atctgcaccg gcagcattat tqatattaqc 420 35 tttctttgga attaaaaagt actttttagg tggattatta tctagcctat tattactagt atttggcgta tttaatccaa ttaatgtgat tatctctatt atatttagag ttatagctat tgcagttgtt tatttattga aaataaatgt actatcatta gttttagcaa gtgtattagg 40 cagtttggta tataggctac tattatctat tattttaaat ttacctgtgt gggtagtgtt gttaaacgcg attccaggcg taatattcac tttaattgta gctattcctt tatatctcac 720 45 attgagaaaa agaatggcag tattactaag ataataaatc aaaacacggt cgtcacaatt actgttggcg accgtgtttt actagctatt tattgttttc agtttctttt gtatctaaca 840 atttcacttt gtgattttcc caatcaattt catatgttga tttaaatgtt ctagttttaa 50 agtttttata atttqcqcct qcccagtaga agccattcca acgaatttqq tataaatcca 960 tttcacgttg ataagttact gtaattttag attttttagc gccatcttgt ctgtgtgata 55 gtacgcttaa aaattctgga ttgaagttac ttctagataa taatggcatt tqqtqttqcq ctatgaagtt ttggccagcg tatgcactgc tttgtctgcc agctaagaag agttcattac 1140 catatgttgg gtggaagcta tctcttccat aaggtcccca accattattc ataattttat 60 gtgcttcaac tccccagcca acatttttat aatttgtgtt gcgacttaat gttgttctgt 1260

```
aactttcttg tttataatta attgtttcag aaaaagctgt atttccatta agtccaccag
     1320
     ataaaccatt agagatacta atgtcaccac caaatgtata gcctaaagta ttttqaactt
     1380
 5
     gaaactcttc attttgattt tttggtgcat aatcaacgac gtttactgaa tcattagatt
     1440
     gtgagcttat agatacattg tatttagctc cccaatataa ttttgaaaag tcatagtcat
     1500
     taggattagg tttcacaaag cctgagttaa tattcccagt agctttaagt actaaagtat
10
     1560
     ctttatcata acttttatct ttgatgaaat taaatgttaa aatctgtgaa attttaaatt
     1620
     tatcagaatc tgctgtggct gttgttttgt ataaagtaac tttgtcatcg acttttttta
     1680
15
     cgctgactgg tgttatttta ccttcagcat tagcagtacc agaaagtaat aataatgcca
     tagatgtagc aacggatgat ttgactaatt tattcatttt catatcaatt ctgtcctttc
     1800
     accttgattt catgagtett ccaattgace tegtatttea cagtatagtt tetatttaca
20
     1860
     aatgcattat ggactctatg tccgtctaaa taactgttgc cataatgcgt tgatctttta
     1920
     atggcatgag tgacatccat gtttcttccg taagtaattt caaattcgct tgtatcgctt
25
     gaaccttttt catgagatac tgtggcgata aatgaagggt taaatccact ttgtacaaga
     2040
     ggtggtaact cactgtctgg aacgaaataa tctctaggat ctttactatg aggtttgtag
     2100
     cctacaaata aatcgctatc aaaggctgat ttttgacctg attcagtggc gaatgaattc
30
     2160
     getttgaege eccataaaae actitttgag tittgttgtt ctactteact tacataattt
     2220
     tgttgtgtat agctaatcga tttagaatag ttaaatgatc
     2260
35
     <210> 2
     <211> 2902
     <212> DNA
40
     <213> Staphylococcus aureus
     <400> 2
     gatogtataa togaaacago accaacggat tacttatott gggqtqtoqq tqcaqtoqqt 60
     aaccctagat tcatcaatgt tgaaatcgta cacacacacg actatgette atttgcacgt
45
     120
     tcaatqaata actatgctga ctatgcagct acacaattac aatattatgg tttaaaacca
     180
     qacagtqctg agtatqatgq aaatqqtaca gtatqqactc actacqctqt aaqtaaatat
     240
50
     ttaggtggta ctgaccatgc cgatccacat ggatatttaa gaagtcataa ttatagttat
     300
     gatcaattat atgacttaat taatgaaaaa tatttaataa aaatgggtaa agtggcgcca
     360
     tggggtacgc aatctacaac tacccctact acaccatcaa aaccaacaac accgtcgaaa
55
     ccatcaactg gtaaattaac agttgctgca aacaatggtg tcgcacaaat caaaccaaca
     aatagtggtt tatatactac tgtatacgac aaaactggta aagcaactaa tgaagttcaa
60
     aaaacatttg ctgtatctaa aacagctaca ttaggtaatc aaaaattcta tcttgttcaa
     gattacaatt ctggtaataa atttggttgg gttaaagaag gcgatgtggt ttacaacaca
     660
```

	gctaaatcac 720	ctgtaaatgt	aaatcaatca	tattcaatca	aacctggtac	gaaactttat
5	acagtacett 780	ggggtacatc	taaacaagtt	gctggtagtg	tgtctggctc	tggaaaccaa
	acatttaagg 840	cttcaaagca	acaacaaatt	gataaatcaa	tttatttata	tggctctgtg
	aatggtaaat 900	ctggttgggt	aagtaaagca	tatttagttg	atactgctaa	acctacgcct
10		ctaagccatc	aacacctaca	acaaataata	aattaacagt	ttcatcatta
10		ctcaaattaa	tgctaaaaac	aatggcttat	tcactacagt	ttatgacaaa
		caacgaaaga	agttcaaaaa	acatttgctg	taacaaaaga	agcaagttta
15	ggtggaaaca 1140	aattctactt	agttaaagat	tacaatagtc	caactttaat	tggttgggtt
		acgttattta	taacaatgca	aaatcacctg	taaatgtaat	gcaaacatat
20		caggcactaa	attatattca	gtaccttggg	gcacttataa	acaagaagct
	ggtgcagttt 1320	ctggtacagg	taaccaaact	tttaaagcga	ctaagcaaca	acaaattgat
		atttatttgg	aactgtaaat	ggtaaatctg	gttgggtaag	taaagcatat
25	ttagctgtac 1440	ctgctgcacc	taaaaaagca	gtagcacaac	caaaaacagc	tgtaaaagct
	tatactgtta 1500	ctaaaccaca	aacgactcaa	acagttagca	agattgctca	agttaaacca
30	aacaacactg 1560	gtattcgtgc	ttctgtttat	gaaaaaacag	cgaaaaacgg	tgcgaaatat
	gcagaccgta 1620	cgttctatgt	aacaaaagag	cgtgctcatg	gtaatgaaac	gtatgtatta
	ttaaacaata 1680	caagccataa	catcccatta	ggttggttca	atgtaaaaga	cttaaatgtt
35	caaaacttag 1740	gcaaagaagt	taaaacgact	caaaaatata	ctgttaataa	atcaaataac
	ggcttatcaa 1800	tggttccttg	gggtactaaa	aaccaagtca	ttttaacagg	caataacatt
40	gctcaaggta 1860	catttaatgc	aacgaaacaa	gtatctgtag	gcaaagatgt	ttatttatac
	ggtactatta 1920	ataaccgcac	tggttgggta	aatgcaaaag	atttaactgc	accaactgct
	gtgaaaccaa 1980	ctacatcagc	tgccaaagat	tataactaca	cttatgtaat	taaaaatggt
45	aatggttatt 2040	actatgtaac	accaaattct	gatacageta	aatactcatt	aaaagcattt
	aatgaacaac 2100	cattcgcagt	tgttaaagaa	caagtcatta	atggacaaac	ttggtactat
50	ggtaaattat 2160	ctaacggtaa	attagcatgg	attaaatcaa	ctgatttagc	taaagaatta
	attaagtata 2220	atcaaacagg	tatggcatta	aaccaagttg	ctcaaataca	agctggttta
	caatataaac 2280	cacaagtaca	acgtgtacca	ggtaagtgga	caggtgctaa	ctttaatgat
55 ·	gttaagcatg 2340	caatggatac	gaagcgttta	gctcaagatc	cagcattaaa	atatcaattc
	ttacgcttag 2400	accaaccaca	aaatatttct	attgataaaa	ttaatcaatt	cttaaaaggt
60	2460	tagaaaacca			-	
	aatgaagttt 2520	atcttatctc	acatgcccta	ttagaaacag	gtaacggtac	ttctcaatta

```
gcgaaaggtg cagatgtagt gaacaacaaa gttgtaacta actcaaacac gaaataccat
     2580
     aacqtatttg gtattgctgc atatgataac gatcctttac gtgaaggtat taaatatgct
     2640
 5
     aaacaaqctg gttgggacac agtatcaaaa gcaatcgttg gtggtgctaa attcatcggc
     aactcatatg taaaagctgg tcaaaataca ctttacaaaa tgagatggaa tcctgcacat
     2760
     ccaggaacac accaatatgc tacagatgta gattgggcta acatcaatgc taaaatcatc
10
     aaaggctact atgataaaat tggcgaagtc ggcaaatact tcgacatccc acaatataaa
     2880
     taagcaacat gaacatagga to
     2902
15
     <210> 3
     <211> 2792
     <212> DNA
20
     <213> Staphylococcus aureus
     <400> 3
     gatcaactta atataatgaa ttcggcaaca gaagagcatc atcataaaga ttatattaaa 60
     ctatataatt taggtggcgg tgctgctaaa aaaattgcaa tagaggtttt attggggaag
.25
     gataaagtca ttcagaaaaa atacgtgcat attttaccta gtaaagaagg gtacatgtta
     180
     ccaattaata aaaatgtgta cgaagaatta gaaagaacga ttgagaacaa tggtcatgaa
30
     gctgatttga atgtacgtat gacttattat cataatgtaa gtcgcaaaca acaggaagtt
     300
     atattaaaag gtcaaatcga ccgttttaat acttataata ataaagaaat ttatgatttg
     cagtttatct aaaaattgat ttaagagggt agttgtttat tgcgaaaaat atcattcaat
35
     420
     tttaatgaaa taatggcgtc attactataa aatattactt tatgttgtaa tgcatttttc
     tataagatag aactaaaagg aggggcaaag atgcaaatta gacaaataca tcaacatgac
40
     tttgctcaag tggaccagtt aattagaacg gcatttgaaa atagtgaaca tggttatggt
     aatgaatcag agctagtaga ccaaattcgt ctaagtgata cgtatgacaa taccttagaa
     660
     ttagtagctg ttcttcaaaa tgaagttgta gggcacggtt tactaagtga agtttatctt
45
     gataacgagg cacaacggga aattggatta gtgttagcac ctgtatctgt tgatattcat
     780
     catcaaaata aaggtattgg gaagcgattg attcaagcat tagaacgaga agcaatatta
50
     aaaggatata attttatcag tgtattagga tggccgacgt attatgccaa tctaggatat
     900
     caacgcgcaa gtatgtacga catttatcca ccatatgatg gtataccaga cgaagcgttt
     ttaattaaag aattaaaagt gaacagttta gcgggaaaaa caggtaccat aaattacaca
55
     1020
     tctgcttttg aaaaaatatg atttcaagct aggattacat taggtagagt tcatattaat
     1080
     aataaaaaat gtttqcaatc aaatcqtacg ttgtcgtttg taattcttaa aataqcaata
     1140
     aataaaatgt ttgttagtaa agtattattg tggataataa aatatcgata caaattaatt
60
     gctataatgc aattttagtg tataattcca ttaacagaga ttaaatatat ctttaaaggg
     1260
```

```
tatatagtta atataaaatg actttttaaa aagagggaat aaaatgaata tgaagaaaaa
     agaaaaacac gcaattcgga aaaaatcgat tggcgtggct tcagtgcttg taggtacgtt
     1380
 5
     aatcggtttt ggactactca gcagtaaaga agcagatgca agtgaaaata gtgttacgca
     1440
     atotgatago goaagtaaog aaagcaaaag taatgattoa agtagogtta gtgctgcaco
     1500
     taaaacagac gacacaaacg tgagtgatac taaaacatcg tcaaacacta ataatggcga
10
     aacgagtgtg gcgcaaaatc cagcacaaca ggaaacgaca caatcatcat caacaaatgc
     1620
     aactacggaa gaaacgccgg taactggtga agctactact acgacaacga atcaagctaa
     1680
15
     tacaccggca acaactcaat caagcaatac aaatgcggag gaattagtga atcaaacaag
     1740
     taatgaaacg acttetaatg atactaatac agtateatet gtaaatteac etcaaaatte
     1800
     tacaaatgcg gaaaatgttt caacaacgca agatacttca actgaagcaa caccttcaaa
20
     caatgaatca gctccacaga gtacagatgc aagtaataaa gatgtagtta atcaagcggt
     1920
     taatacaagt gcgcctagaa tgagagcatt tagtttagcg gcagtagctg cagatgcacc
25
     ggcagctggc acagatatta cgaatcagtt gacgaatgtg acagttggta ttgactctgg
     2040
     tacgactgtg tatccgcacc aagcaggtta tgtcaaactg aattatggtt tttcagtgcc
     taattetget gttaaaggtg acacatteaa aataactgta cetaaagaat taaacttaaa
30
     2160
     tggtgtaact tcaactgcta aagtgccacc aattatggct ggagatcaag tattggcaaa
     2220
     tggtgtaatc gatagtgatg gtaatgttat ttatacattt acagactatg taaatactaa
     2280
35
     agatgatgta aaagcaactt tgaccatgcc cgcttatatt gaccctgaaa atgttaaaaa
     gacaggtaat gtgacattgg ctactggcat aggtagtaca acagcaaaca aaacagtatt
     2400
     agtagattat gaaaaatatg gtaagtttta taacttatct attaaaggta caattgacca
40
     2460
     aatcgataaa acaaataata cgtatcgtca gacaatttat gtcaatccaa gtggagataa
     2520
     cgttattgcg ccggttttaa caggtaattt aaaaccaaat acggatagta atgcattaat
     2580
45
     agatcagcaa aatacaagta ttaaagtata taaagtagat aatgcagctg atttatctga
     aagttacttt gtgaatccag aaaactttga ggatgtcact aatagtgtga atattacatt
     2700
     cccaaatcca aatcaatata aagtagagtt taatacgcct gatgatcaaa ttacaacacc
50
     gtatatagta gttgttaatg gtcatattga tc
     2792
55
     <210> 4
     <211> 2478
     <212> DNA
     <213> Staphylococcus aureus
     gatcgaattg aacgaaqcat ttqcttctca aacgattqca tctattaaaq aaqtaqqtct 60
     agatatatca cqtacqaatq tqaatqqtqq cqctattqct ttaqqtcatc cattaqqtqc
     120
```

	tacaggcgca 180	atgttaaccg	cgcgtttact	taatgaaatg	ggtagacgtc	ccgatagccg
		gttacgatgt	gtattggtgt	cggcatgggt	gcagctgcta	tatttgaata
5		aatggttgat	tttggatgaa	gcggattcgt	tttgttattg	aatgaagtag
	gctgaagttg 360	aagccagttg	aagttgaagc	gggttgaagc	aatttcgttt	tattaatgaa
10	gctgtgtgaa 420	atatagtgat	tgaacaaaaa	agtggtttaa	tgggatggtg	gttatttccg
		taacatttac	acgtctaatt	ttaatcattg	ttttaaattt	tatgaatcga
	agccctttga 540	tttaataata	tttgctaatg	ctagtaactt	atctgattgt	tcatgtttaa
15		accactcaca	tcagtgtgtg	ttcgaactag	acttgtaagt	tccagttcgg
		taaagcaatt	attattgctg	tgattgtcgt	atatcactta	gatgtgcgtg
20		ataggttagt	aatatattag	gtcatgttat	gtttaagact	ataatgaata
		aaatatgctt	ccgattgttc	gatgctttaa	ttcagttaga	agcatcatag
		tactgttgta	aagatacgta	atgttttgta	ttgactgtat	gtctttggat
25	agagttacaa 900	acttattttg	ttactctagg	cccatatgtc	gcagtaccat	ctgcatgtgt
	tgttacattg 960	tatgcatttg	ttttacttgg	cttcttgtat	gtcgggcgag	ctccgtatga
30	cacttgaccg 1020	tttgcatgtg	ttgttacgtt	gtatgcattt	gttttgcttg	gcttgttttg
	tgttgggcga 1080	gcgccatatg	atacttggcc	gtttccatgt	gttgttacgt	tatatgcgtt
	tgttttgctt 1140	ggcttgtttt	gtgtcggacg	agctccgtat	gatacttggc	cgtttgcatg
35		ttgtatgcat	tcgtttcgct	tggcttcttg	tatgtcggac	gagctccgta
	tgatacttga 1260	ccatttgcat	gtgttgttac	gttatatgca	tttgtttctg	atggcttatt
40	gaatcttggt 1320	ctcgcttcat	atccaaatgt	tccatcgttg	tattcacgga	tacctgtacc
	agcatctcta 1380	tatttaacat	atttaggtgt	tttgttaaat	tgcggtctcg	gaccatattg
	agaagcttct 1440	gttgtttcag	ttgcttgagg	tttaacttca	atatcacttg	attctccttg
45	agtacctttt 1500	aacgttgatt	cagtaccttg	tggttttatt	tcaagtttag	atgagctacc
	ttcaagacct 1560	tctaaaatag	ggttcgttaa	cggtgggttt	gtataattat	tgcttaatga
50	tgggccgctt 1620	tgttccattg	ttagaaaatc	gggaccttga	acgatttcac	cttgtaccgt
	tttattttcc 1680	atcgttggat	attccggacc	ttttacaatt	tcacctgtaa	ttgtgccctg
	tggaatttta 1740	actaatggtt	gtgcaactgg	ttgtgttgtt	tcttcagctt	taccagccgt
55	agttttaacc 1800	tcttgttggt	tatcaacttt	aggtgcttga	ggttcttcaa	ctttcttctc
	ttcttttact 1860	actggcgatt	ttgtttcagt	ttctccgtat	tttttgacag	ttttctttt
60	ccaagaatca 1920	tetgettett	taactgcttt	tttcgtttct	tcaactaatt	tatcaaaatt
	aggtttatta 1980	tcactatttg	ttttatagtt	atgtgttgta	ggattatatt	tcgttataga

```
tttcggtcta ttttgtttag tttccataaa gaaatcatca ataattgaat ttaagtcatc
     2040
     aatcatttct tttttaatac gttcatttgt aattttatgt ggattgtctg tatctccaag
     2100
 5
     gattaagtcc agttttgctc gtaactcttt cgcgtgctcc ccataatcct tatcaccata
     2160
     atatgataca actaatgtat caatttcaga tacgagatcg tatacttcct tagttgcttt
     2220
     atcttcttct gctgcattaa aagttttcaa gtctgaattc ttatccttaa tatctttaac
10
     ttototgtga aaatoatoca gtgctctctt taatgcatcc tgtagttcat tgtattcttt
     2340
     catcgaaagt tcttctaaat tatatttatg aaaattagcc atttttaaat ctgtacgagg
     2400
15
     attttcttt ttataatttg cataccattg tttataatct tcatattgag atttctttct
    2460
     ctccaaaaga tattgatc
     2478
20
     <210> 5
     <211> 2070
     <212> DNA
     <213> Staphylococcus aureus
25
     tgacgctgct tttgtaaata catataattt ttccacttca tgatttaatt cgttcgcatg 60
     atctttgtaa tttctaccaa aagcaatcac attattcgga ggtgttactg gtggtaaaaa
    120
30
    ttcaatgtca ttaaatgaaa ttttatagtc ttcagctttg ccgctatctt ctgctgctac
     aactgcttta cgtacttgtt cttgaaaatc taaagtatga ttttgttgta aaccagctaa
     240
     caatgtttta ggatggaaat ctccttctgc aaagtcagca aatacttgtg ttaaatccca
35
     tacagcatet tegegtttta etttaaegee atatgaagtt ttgteattat aettgaatga
     360
     taagaatttc attcattctc aactcctcgt ctttatctta attcacatta taactttttt
40
     cgttatcaaa taacaaataa ataagtaaga caattttgaa aatgagttgt gttcattctg
     ctacaaggac tttgcactta atcgaaatta ttttttattc ttttgaaaat caaaatacta
     540
     tagttgcaat gtaccaaatt tgaagaagta taaataacct ttaacttctt tattaagaat
45
     600
     cgtttgaagc gtattttgat aatatttcat ctgtatctta tatttatttt ttaattgtqt
     accaatttct tcatctgtca tcccacggcg acgattaaat gcatcggttt tatagtctac
50
     aaaataatgc acaccatctt taacaaagat taagtcaatc ataccttgaa taattgagac
     gtcttcgtct ccttgtggca attggtcaac taatgcttgg ttaactacaa acggtaattc
     840
     acgataaact tgctctgctt cagcaataat cgaatataac tcactattga taaatgtcat
55
     tatttcatcc atacggatat ctttttcgc atctgcttcg ataatatgtt tatcgattaa
     960
     tocatogata tactgatgta actoaactto agatatgogt tottttttga atggtaaatg
60
     ttgcatcact gtatgcatta acgtaccaat ttcattcgct tttcgtttac cttgttcact
     1080
     tagaaattta ggtcgttcat acgttgaaaa accgatacga tattgcctta ctcqttcgta
     1140
```

acttqtqcca ctttcttctg tttcatattq tcttttcaat tcaqaaacag attqttttqa

```
1200
     gggcttttta gtatcattta catatggata tcgataatca agttggtgtt taatttgtgc
     1260
 5
     tttaacatct tcattaccat tttgcatagt ttctaattga ttaaccgaac gatattcatc
     1320
     attatctaaa atggtttctg tagacacatc ttcaaagtac acaattgaaa tatttacatt
     cggacgacta ctatcttcaa tttgtgctat atctttttca aattttaaat catctggaat
10
     1440
     tgacgcagat tgatgtttag ataaaatact ataaataaga tggaacggat ttggtgaagt
     1500
     taatcqttca ttgacagcaa tgtgctcacc agaaatagac aattgctcta gttctagtaa
     1560
15
     tgatttatca tttttcactc taccaattaa ataaagttgt tctttcgctc ttgttaatgc
     tacatagact aatcgcattt cttctgacac aagttctttt tcggcaacag ctctatatgc
     1680
     aaccgaagct aaagatggaa atgccatttc tttatccaca tcaaaataat ccattccgag
20
     1740
     accaaattgc tgatttaaaa taactggttg tttcaaatca cgtttattaa aatcttttga
     1800
     caatccagaa taaatgacaa atggaaactc tagaccttta ctactatgaa ttgtcatcat
25
     tctaacqaca ttatcqtttq gaccaactac attttcctca ccaaaatctt tqcctctttc
     1920
     aatcaattca tcgataaaac gaataaattg atataaacct ctaaaacttg aattctcaaa
     1980
     ctcgatagct ttattaaata aaccataaag atttgcacgt cgtccacgtc caccaataag
30
     2040
     tccactaaag tattgaataa cataatgatc
     2070
35
     <210> 6
     <211> 2394
     <212> DNA
     <213> Staphylococcus aureus
40
     <400> 6
     gatcagattt attagacagt attccagata tacccacacc aaagccagaa aagacgttaa 60
     cacttggtaa aggtaatgga ttgttaagtg gattattaaa tgctgatggt aatgtatctt
     120
     tgcctaaagc gggggaaacg ataaaagaac attggttgcc gatatctgta attgttggtg
45
     180
     caatgggtgt actaatgatt tggttatcac gacgcaataa gttgaaaaat aaagcataat
     240
     tatattgggg gaagagcatc tatatatttt tttaagtata taagacgtct tatttcccct
50
     taatttattg tgaagtatat gcaaaatgca atgaatagat tgtccatcat tttaacgtta
     taatgaattt aacgacttag aactacacaa gtaaaggaga atgaagatgt ctcgaaaaac
     420
     qqcqctatta qttttqqata tqcaaqaaqq tataqcqaqt aqtqtaccta qaataaaaaa
55
     480
     tattattaaa gcgaatcaga gagcaattga agcagcaaga caacatcgaa taccagtcat
     tttcatacgt ttagtgttag ataagcattt taatgatgtc tcctcgagta ataaagtgtt
     600
60
     ttcaacaatt aaagctcaag gatatgcgat tactgaagca gatgcatcta cacgaatact
     tgaaqattta gcaccactag aagatgagcc gattatttct aagcgacgct ttagcgcatt
     720
```

```
tacaggtagt tacttggaag tttatttacg tgcaaatgat attaatcatt tagtattaac
     gggtgtctct acaagtggag ctgtattgag cacggcatta gaaagtgtag ataaagacta
 5
     ttatattact gttttagaag atgctgttgg tgatagatca gatgataaac atgactttat
     tattgaacaa attttatcac gctcatgtga cattgaatcc gtagagtcat ggaaaagtag
     tttatagtta atataacgtc aattaaagct cggcagtaat gtttgagaat aagtacattt
10
     1020
     gctcatattt ataaaatgtg tgagatggca attgaaacgg atatgatgag gaacatttga
     1080
     acataaaata atatatttat ataaaacgac ccgaggcqtt cgaactgaat gcctcgggtt
     1140
     taattgaata agaaatcgga cttatgaaca gaaatatgtt taagtccgaa ctccttgttt
     atacttataa attttacggg tttaatataa tacttattta cctgtaatat atgataattc
     1260
     ttcaqcqqca qctqcqttqa tagttctatq aqaaatqata cctaatcctt taacattqqa
20
     1320
     ttctgaaata acgatagaac catcactgtt aactttttca acaaatgcta catgaccgta
     1380
     atgttgatct gcaccaaatt gtccagcctc aaatacaaca gcagcatgac gttttggtgt
     1440
25
     atgacttact tgataatcac ggtattgagc tcgattattc caattatgtg catcacctaa
     atcacctgag atagatgtac caaattgttt catacggtta tatacgtacc aagtacattg
     1560
     gccatgtgga tatggcatac tatcagatac ctcacggaaa ggtttgaatt catctgatga
30
     1620
     atcatcataa tccttgatag aacgttcata tttatctaaa tctggcatgc gttcatcgtc
     1680
     aaactgagtt aattgatagt gtttaataat actgtttaat ttcttagcat agtttggatc
35
     tgtagcatat gttttagata agtgtgatgt tgcatcttta taagaatcgg cttccgattt
     1800
     ccatgttggt ttataaattg ttcgattgcc atcaatacca tttttaataa ggtcagagta
     1860
     atcttttagt gattctttcg tgcttggata ttttcggaat ccagcattaa tactatacaa
40
     1920
     ttgattacca tcagcttcta atgtgttaaa aggaacagaa ttcccttcaa aagcaccttt
     gataccgaat aaattatggt ttggtgactt agctaaagca ctacgacctg agtcagattc
     2040
45
     taagattgct tgggcaatca tgacagacgc ataaatatcg ttatcttgac caatgcgatg
     2100
     tgcatcttta gcaattgatt tgacaaattg acgtgtatct tttgagtcaa caacgttaaa
     2160
     ttgtccgcta tcatcattgt tagatatact aggatctgtt tcgaataatg atgttgcacg
50
     tgtatccttt tgattaacat cgttattgaa tgattgagca ggtttagatt tatgtttcaa
     2280
     ttcatcttgt gttggtaact gtggattctt tgtattagat ttttcatttt tgtctttttt
55
     agattgagat gcataatctt tttgtgtttt ctttgcatct tcactgtatt gatc
     2394
     <210> 7
60
     <211> 2033
     <212> DNA
     <213> Staphylococcus aureus
```

	<400> 7						
	gatctggaac caggtatgga 120	aggtttcatt aattggtgca	gtcggtaaaa catattatag	atacaattgt cgcatcccaa	taccaacaag tggtgaatat	catgtcgttg (60
5		agttaaaaaa	attgtccgtt	attcaggtca	agaagatatt	gccattctac	
	atgtggaaga 240	taaagctgtt	catccaaaaa	acaggaattt	taaagattac	acaggcattt	
10		atcagaagct	aaagaaaatg	aacgcatttc	aattgttggc	tatccagaac	
	catatataaa 360	taaatttcaa	atgtatgagt	caacaggaaa	agtgctgtca	gttaaaggca	
		tactgatgct	ttcgtagaac	caggcaactc	aggttcagct	gtatttaaca	
15	gtaaatacga 480	agttgtaggt	gttcactttg	gtggaaacgg	ccctggaaat	aaaagtacaa	
		tgtttatttc	tctcctgaaa	ttaagaaatt	cattgcagat	aacacagata	
20	aataaatcct 600	tacatagata	aatgatttta	aaaattaaca	acaaactcaa	caattcaaat	
		attccattta	ttcgaaatga	ttaaaaaaaa	taaaacttca	aaaagctaac	
		tacaaatact	tagaggagca	gaaaaatgaa	taaaaatata	atcatcaaaa	
25		attgacgatt	ttaacatcaa	taactggtgt	cggcacaaca	atggttgaag	
		aacagccaaa	gccgaaaata	ctgttaaaca	aattacaaat	acaaatgttg	
30		tggtgttaca	tggatgggcg	ctggaacagg	atttġtagtt	ggaaatcata	
30		caataaacat	gttacctatc	acatgaaagt	cggtgatgaa	atcaaagcac	
		tttttataat	aacggtggtg	gactttataa	agttactaag	attgtagatt	
35		agaagatatt	gcggttgtac	aagttgaaga	aaaatcaaca	caaccaaaag	
		caaagatttc	actagtaaat	ttaatatagc	atcagaagct	aaagaaaatg	
40		agtcattggt	tatccaaatc	ctaatggaaa	taaactacaa	atgtatgaat	
	caactggtaa 1260	agtattatca	gtgaatggga	atatagtgtc	ttcggatgca	attattcagc	
		tggttcacct	atattaaata	gtaaacacga	agctattggt	gtaatctatg	
45		gccatcaggt	gaaagcacaa	gaggatttgc	tgtttatttc	tctcctgaaa	
		cattgcagat	aatttagata	aataattaaa	acttagacat	tcacccaatc	
50		atactataac	taacatttat	taatatatat	tgcattattt	aatatgcatc	
50		aacgattgat	tttcaccaac	tcaattgttg	attggtttta	tttatgtatg	
		tttttgacat	cattaagaat	ataaatgatt	ttgaaagcat	ttgaaagcta	
55		ataaaatttt	tcaataacaa	ttgcgccact	aaaactcaaa	atttccacca	
		aattatcaac	atcgcaacat	aaccaaatgt	tataataaat	ctattacaca	
60		ttacttatgc	aaaggcggag	gaatcacatg	tctattactg	aaaaacaacg	
		gctgaattac	ataaaaaatt	atggtcgatt	gcgaatgatt	taagagggaa	

```
catggatgcg agtgaattcc gtaattacat tttaggcttg attttctatc gcttcttatc
     tgaaaaagcc gaacaagaat atqcaqatqc cttgtcaqqt qaaqacatca cqtatcaaqa
     1980
 5
     agcatgggca gatgaagaat atcgtgaaga cttaaaagca gaattaattg atc
     <210> 8
10
     <211> 2794
     <212> DNA
     <213> Staphylococcus aureus
     <400> 8
15
     gatcaaacgt tgcttaactt ctttttaatg cttaaaaatt atttcaaagg cacatagaaa 60
     cgctatatta atctcatact cactcattat tttttgctta aattacttaa taatacttca
    120
     ataattgtta aaaggggttt aatgtgatta tottagaacg ccatctataa tgatgttgta
20
     tgattcaaat tacgtaaaaa gacaatcgaa tataatatag attggagcat acaattatga
     240
     aaatgagaac aattgctaaa accagtttag cactagggct tttaacaaca ggcgcaatta
     cagtaacgac gcaatcggtc aaagcagaaa aaatacaatc aactaaagtt gacaaagtac
25
     360
     caacgcttaa agcagagcga ttagcaatga taaacataac agcaggtgca aattcagcga
     caacacaagc agctaacaca agacaagaac gcacgcctaa actcgaaaaag qcaccaaata
     480
30
     ctaatqaqqa aaaaacctca qcttccaaaa taqaaaaaat atcacaacct aaacaaqaaq
     540
     agcagaaaac gcttaatata tcagcaacgc cagcgcctaa acaagaacaa tcacaaacga
     600
     caaccgaatc cacaacgccg aaaactaaag tgacaacacc tccatcaaca aacacgccac
35
     aaccaatgca atctactaaa tcagacacac cacaatctcc aaccataaaa caagcacaaa
     cagatatgac toctaaatat gaagatttaa gagogtatta tacaaaacog agttttgaat
40
     ttgaaaagca gtttggattt atgctcaaac catggacgac ggttaggttt atgaatgtta
     ttccaaatag gttcatctat aaaatagctt tagttggaaa agatgagaaa aaatataaag
     atggacctta cgataatatc gatgtattta tcgttttaga agacaataaa tatcaattga
45
     960
     aaaaatatto tgtoggtggo atcacgaaga ctaatagtaa aaaagttaat cacaaagtag
     1020
     aattaagcat tactaaaaaa gataatcaag gtatgatttc acgcgatgtt tcagaataca
     1080
50
     tgattactaa ggaagagatt tccttgaaag agcttgattt taaattgaga aaacaactta
     ttgaaaaaca taatctttac ggtaacatgg gttcaggaac aatcgttatt aaaatgaaaa
    1200
     acggtgggaa atatacgttt gaattacaca aaaaactgca agagcatcgt atggcagacg
55
     1260
     tcatagatgg cactaatatt gataacattg aagtgaatat aaaataatca tgacattctc
     1320
     taaatagaag ctgtcatcgg aaaaacaaga agttaagtga caacggttta catgttgctt
60
     agottotttt attatgogta atgatgtaaa aagacgaata ttoatttgtt tgtaaaagtg
     1440
     gcatttctat gtcttaaaag tgacgaaact tcaaatgtgc caagtgttga atcacatcaa
     1500
```

```
aatcattttt atttaacgaa cattatggat ttcttaattt acttaacgat gattcaaata
     1560
     tagttaaaca aggtttaatg tgaatggagc aatacgccat ctataataaa gctgtatgat
     1620
 5
     tcaatgaatg taatcgaaca aatctaataa ttacgaatgg agcatacaac tatgaaaata
     acaacgattg ctaaaacaag tttagcacta ggccttttaa caacaggtgt aatcacaacg
     1740
     acaacgcaag cagcaaacgc gacaacacta tcttccacta aagtggaagc accacaatca
10
     acaccgccct caactaaaat agaagcaccg caatcaaaac caaacgcgac aacaccgccc
     1860
     tcaactaaag tagaagcacc gcaacaaaca gcaaatgcga caacaccgcc ttcaactaaa
     1920
15
     gtgacaacac ctccatcaac aaacacgcca caaccaatgc aatctactaa atcagacaca
     1980
     ccacaatcgc caaccacaaa acaagtacca acagaaataa atcctaaatt taaagattta
     agagcgtatt atacgaaacc aagtttagaa tttaaaaatg agattggtat tattttaaaa
20
     2100
     aaatggacga caataagatt tatgaatgtt gtcccagatt atttcatata taaaattgct
     2160
     ttagttggta aagatgataa aaaatatggt gaaggagtac ataggaatgt cgatgtattt
     2220
25
     gtcgttttag aagaaaataa ttacaatctg gaaaaatatt ctgtcggtgg tatcacaaag
     agtaatagta aaaaagttga tcacaaagca ggagtaagaa ttactaagga agataataaa
     2340
     ggtacaatct ctcatgatgt ttcagaattc aagattacta aagaacagat ttccttgaaa
30
     2400.
     gaacttgatt ttaaattgag aaaacaactt attgaaaaaa ataatctgta cggtaacgtt
     2460
     ggttcaggta aaattgttat taaaatgaaa aacggtggaa agtacacgtt tgaattgcac
35
     aaaaaattac aagaaaatcg catggcagat gtcatagatg gcactaatat tgataacatt
     2580
     gaagtgaata taaaataatc atgacattct ctaaatagaa gctgtcatcg gaaaaacaag
     2640
     aagttaagtg acaacggcct acatgttgct tagcttcttt tgttatgttc gatgatttga
40
     2700
     gaacccgaat tttcgatggg tccaaatatg acgtggaaga gacctgaatt tatctgtaaa
     tccctatcta tcgggtgtga agcacaacgg gatc
     2794
45
     <210> 9
     <211> 505
     <212> DNA
50
     <213> Staphylococcus aureus
     <400> 9
     gatcatagcg caccaaactc tcgtccaatt gattttgaaa tgaaaaagaa agatggaact 60
     caacagtttt atcattatgc aagttctgtt aaacctgcta gagttatttt cactgattca
55
     aaaccagaaa ttgaattagg attacaatca ggtcaatttt ggagaaaatt tgaaqtttat
     180
     gaaggtgaca aaaagttgcc aattaaatta gtatcatacg atactgttaa agattatgct
     240
60
     tacatteget tetetgtate aaaeggaaca aaagetgtta aaattgttag tteaacacae
     ttcaataaca aagaagaaaa atacgattac acattaatgg aattcgcaca accaatttat
     360
```

```
aacagtgcag ataaattcaa aactgaagaa gattataaag ctgaaaaatt attagcgcca
     tataaaaaag cgaaaacact agaaagacaa gtttatgaat taaataaaat tcaagataaa
     480
 5
     cttcctgaaa aattaaaggc tgagt
     <210> 10
10
     <211> 673
     <212> DNA
     <213> Staphylococcus aureus
     <400> 10
15
     gatcaaacta aaacacaaac tgctcataca gttaaaacag cacaaactgc tcaagaacaa 60
     aataaagttc aaacacctgt taaagatgtt gcaacagcga aatctgaaag caacaatcaa
     120
     gctgtaagtg ataataaatc acaacaaact aacaaagtta caaaacataa cgaaacgcct
20
     aaacaagcat ctaaagctaa agaattacca aaaactggtt taacttcagt tgataacttt
     attagcacag ttgccttcgc aacacttgcc cttttaggtt cattatcttt attacttttc
     aaaagaaaag aatctaaata aatcatcqtc acactcataa cttaatatat tttttatttt
25
     aaattttatt taacctatgt catagatatt tcataatcta taacataggt tattttttt
     ataaaataac gttgcaatta actaacattt caatgtcaat acaagtaatc aattgataat
     480 °
30
     gattatcagt tgataatata caattaggag ttgtttctac aacatgaaca aacagcaaaa
     540
     agaatttaaa toattttatt caattagaaa gtoatcacta ggogtgoato tgtagoaatt
     600
     agtacacttt tattattaat gtcaaatggc gaagcacaag ccagcagctt gaagaaaaca
35
     660
     ggtggtccaa ttc
     673
40
     <210> 11
     <211> 2238
     <212> DNA
     <213> Staphylococcus aureus
45
     <400> 11
     gatcttcagc ttgatgtttt cgtttgatta aattggtaaa atagaaacgc aatccacaaa 60
     aatggcaagc actaaaataa tgtttggggg tgcttgtgct tttgtggatt gcggtcgatt
     120
     atttatattg catgatttga ttaatttgat tgattatatt ggacatgatg gtgttggcgg
50
     gatgcgttgt tgctagtcgc gggctttgtc cactccacat atgtattaac tctttqtcqc
     egatgtttgc tgeggetttt ettatgetac ttgttagetc attttgtatt ggataatetg
     300
55
     ggatatcgcc ttcgtattgg gacatttctt cgataaacct attgttgata ccgcgtgcaa
     360
     gctttccact aaacgctttt gtaatgactg tatctgtttc tttactattt ataattgcat
     420
     ctcgcagtag ttctgatgca ttactgtctt gtgatgttaa aaatgcggtg cccatttgta
60
     ccccttctgc acctaagaca atacttgcca aaactcctct accatccata attccaccag
     540
```

	cggcaatgac 600	cggaattgaa	acgacatcta	caatttgtgg	cactaaagat	attgttccaa
	ccataggtaa 660	ttgattttta	ggttttaaaa	atgaaccacg	atgtccacct	gcttcactac
5	cttgagcaac 720	gatagcatcc	atacccgctt	tttcattcgc	aatagcttca	tcaacacttg
	ttgctgtacc 780	tataagtttg	acattcgctg	ctttcaacct	gcttataatc	tgttcgcttg
10	gaattccaaa 840	agtaaaacaa	catacaggca	cttgcttttt	aattatcgta	tcaatatgac
	acttaaattg	ttgttcttcg	gtaatttta	caaccggctc	ttctaaatgt	aatgcgcgtc
	gataaggttt 960	taaccatgca	ttcatatttt	caatttgact	actggtatat	gattgttgac
15	ttggtacaaa 1020	gacatttacg	ccaaaagaat	ttgacgttaa	ttggcgtaca	taatctattt
	catcttccaa	ttgctgcgta	ttaaagtaac	ctgcgcctat	tgtgcctaac	ccaccactgt
20		tgcaactaat	ttcggtgtcg	tacttcctgc	catacctgct	tgtataattg
		acttaacatt	tgagtaagtc	gattcttatt	ccacatagct	gttcgctcct
	tatatagata 1260	cgttgcgatt	tttccgttgt	tgaaattgaa	tttgctgttg	agaaagtttt
25		ttttatccat	ctcatcttca	atttccatac	ctaataattc	ttcaattaag
	tcttcatgtg	acactatcgc	ttcagtacca	ccaaattcgt	ccaacacaat	tgctaaatgt
30		tagtcatctt	acgtaatacc	cattcagctt	tattgtgttc	attcacaaat
	aatggcttag 1500	ctgaatagtt	tgtaatttga	ttttctttt	tattactcca	agccaacaga
	tatttagaat 1560	gaaacacccc	aataatgtta	tcaatatctc	cctcgtacac	tggatatcta
35	gtgtatggct 1620	tattcataac	cgtttcataa	acttcttcgt	atgtcgcatt	tgaagcaaat
		taattctagg	tgttgtatct	acatctttta	cttttaaatt	ttcaaaatta
40	atgacacctt 1740	ccaacctact	cgtctcaatt	tcatttaaag	caccttcatg	tccagcaatt
	gctaacattg 1800	ttttaaattc	ttcttttgaa	aattgatgtt	cttgaggttg	gcccttagat
	aaacttcgat 1860	taatactgtc	cgtcaactta	tttaaaagta	atgtgatagg	acggaacaca
45	atgacacaaa 1920	tattaataat	tggatataca	agccttgtta	ttttatctgg	aaatgttgca
	gcgacagact 1980	tgggaatcac	ttcggagatc	aaaatgataa	caactgttaa	aacagctgat
50	gcaataccaa 2040	cgctaatccc	ccaacgtaaa	gccataattg	taacaagtgt	tggtaataaa
	atattcgcga 2100	cattattccc	aattagaatc	gttgtaataa	actcacttgg	tttttcaagt
	aactttacaa 2160	tgccttttgc	ttttttatca	cctttgtcag	cttcagtttt	aaattttgct
55	ttattggcag 2220	ccgttaatgc	cgtctcgctt	cctgaaaaga	aaaacgaaat	aaatatcaat
	ataattatgg 2238	caatgatc				
60						
	<210> 12 <211> 7975					
	<211> 7975 <212> DNA					

<213> Staphylococcus aureus

	<400> 12						
5	gatcaaacga gcaagagcaa 120	gtgcgaatga	aatcactagt	tttactgaaa aaaacagtta	gtaatgtcag	tagaagttat tcgtactgga	60
	aataatgcca 180	atgtcacagt	aactgttact	tatcaagatg	gaacaacatc	aacagtgact	
10	gtacctgtaa 240	agcatgtcat	tccagaaatc	gttgcacatt	cgcattacac	tgtacaaggc	
	caagacttcc 300	cagcaggtaa	tggttctagt	gcatcagatt	actttaagtt	atctaatggt	
	agtgacattg 360	cagatgcaac	tattacatgg	gtaagtggac	aagcgccaaa	taaagataat	
15	acacgtattg 420	gtgaagatat	aactgtaact	gcacatatct	taattgatgg	cgaaacaacg	
	ccgattacga 480	aaacagcaac	atataaagta	gtaagaactg	taccgaaaca	tgtctttgaa	
20	acagccagag 540	gtgttttata	cccaggtgtt	tcagatatgt	atgatgcgaa	acaatatgtt	
	aagccagtaa 600	ataattcttg	gtcgacaaat	gcgcaacata	tgaatttcca	atttgttgga	
	acatatggtc 660	ctaacaaaga	tgttgtaggc	atatctactc	gtcttattag	agtgacatat	
25	gataatagac 720	aaacagaaga	tttaactatt	ttatctaaag	ttaaacctga	cccacctaga	
	attgacgcaa 780	actctgtgac	atataaagca	ggtcttacaa	accaagaaat	taaagttaat	
30	aacgtattaa 840	ataactcgtc	agtaaaatta	tttaaagcag	ataatacacc	attaaatgtc	
	acaaatatta 900	ctcatggtag	cggttttagt	tcggttgtga	cagtaagtga	cgcgttacca	
	aatggcggaa 960	ttaaagcaaa	atcttcaatt	tcaatgaaca	atgtgacgta	tacgacgcaa	
35	gacgaacatg 1020	gtcaagttgt	tacagtaaca	agaaatgaat	ctgttgattc	aaatgacagt	
	gcaacagtaa 1080	cagtgacacc	acaattacaa	gcaactactg	aaggcgctgt	atttattaaa	
40	ggtggcgacg 1140	gttttgattt	cggacacgta	gaaagattta	ttcaaaaccc	gccacatggg	
	gcaacggttg 1200	catggcatga	tagtccagat	acatggaaga _.	atacagtcgg	taacactcat	
	aaaactgcgg 1260	ttgtaacatt	acctaatggt	caaggtacgc	gtaatgttga	agttccagtc	
45	aaagtttatc 1320	cagttgctaa	tgcaaaggcg	ccatcacgtg	atgtgaaagg	tcaaaatttg	
	actaatggaa 1380	cggatgcgat	gaactacatt	acatttgatc	caaatacaaa	cacaaatggt	
50	atcactgcag 1440	catgggcaaa	tagacaacaa	ccaaataacc	aacaagcagg	cgtgcaacat	
	ttaaatgtcg 1500	atgtcacata	tccaggtatt	tcagctgcta	aacgagttcc	tgttactgtt	
	aatgtatatc 1560	aatttgaatt	ccctcaaact	acttatacga	caacggttgg	aggcacttta	
55	gcaagtggta 1620	cgcaagcatc	aggatatgca	catatgcaaa	atgctactgg	tttaccaaca	
	gatggattta 1680	cgtataaatg	gaatcgtgat	actacaggta	caaatgacgc	aaactggtca '	
60	gctatgaata 1740	aaccgaatgt	ggctaaagtc	gttaacgcaa	aatatgacgt	catctataac	
		ttgcaacatc	tttaccagcg	aaatttgtag	taaaagatgt	gcaaccagcg	

	aaaccaactg 1860	tgactgaaac	agcggcagga	gcgattacaa	ttgcacctgg	agcaaaccaa
	acagtgaata 1920	cacatgccgg	taacgtaacg	acatacgctg	ataaattagt	tattaaacgt
5	aatggtaacg 1980	ttgtgacgac	atttacacgt	cgcaataata	cgagtccatg	ggtgaaagaa
	gcatctgcag 2040	caactgtagc	aggtattgct	ggaactaata	atggtattac	tgttgcagca
10	ggtactttca 2100	accctgctga	tacaattcaa	gttgttgcaa	cgcaaggaag	cggagagaca
	gtgagtgatg 2160	agcaacgtag	tgatgatttc	acagttgtcg	caccacaacc	gaaccaagcg
	actactaaga 2220	tttggcaaaa	tggtcatatt	gatatcacge	ctaataatcc	atcaggacat
15	ttaattaatc 2280	caactcaagc	aatggatatt	gcttacactg	aaaaagtggg	taatggtgca
		agacaattaa	tgttgttcgt	ggtcaaaata	atcaatggac	aattgcgaat
20	aagcctgact 2400	atgtaacgtt	agatgcacaa	actggtaaag	tgacgttcaa	tgccaatact
	ataaaaccaa 2460	attcatcaat	cacaattact	ccgaaagcag	gtacaggtca	ctcagtaagt
	agtaatccaa 2520	gtacattaac	tgcaccggca	gctcatactg	tcaacacaac	tgaaattgtg
25		gttcaaatgt	aacagcagct	gaaattaaca	atgcagttca	agttgctaat
		caacgattaa	aaatggcaca	gcaatgccta	ctaatttagc	tggtggtagc
30		ttcctgtgac	agtaacttac	aatgatggta	gtactgaaga	agtacaagag
		caaaagcgga	taaacgtgag	ttaatcacag	ctaaaaatca	tttagatgat
		ctgaaggtaa	aaagccaggt	acaattacgc	agtacaataa	tgcaatgcat
35		aacaaatcaa	tactgcgaaa	acagaagcac	aacaagtgat	taataatgag
	cgtgcaacac 2940	cacaacaagt	ttctgacgca	ctaactaaag	ttcgtgcagc	acaaactaag
40	attgatcaag 3000	ctaaagcatt	acttcaaaat	aaagaagata	atagccaatt	agtaacgtct
	aaaaataact 3060	tacaaagttc	tgtgaaccaa	gtaccatcaa	ctgctggtat	gacgcaacaa
	agtattgata 3120	actataatgc	gaagaagcgt	gaagcagaaa	ctgaaataac	tgcagctcaa
45	cgtgttattg 3180	acaatggcga	tgcaactgca	caacaaattt	cagatgaaaa	acatcgtgtc
		taacagcatt	aaaccaagcg	aaacatgatt	taactgcaga	tacacatgcc
50	ttagagcaag 3300	cagtgcaaca	attgaatcgc	acaggtacaa	cgactggtaa	gaagccggca
		cttacaataa	ttcgattcgt	gcacttcaaa	gtgacttaac	aagtgctaaa
		atgctattat	tcaaaagcca	ataagaacag	tacaagaagt	gcaatctgcg
55	ttaacaaatg 3480	taaatcgtgt	caatgagcga	ttaacgcaag	caattaatca	attagtacct
		atagtgcttt	aaaaactgct	aagacgaaac	ttgatgaaga	aatcaataaa
60		ctgatggtat	gacacaatca	tcaatccaag	catatgaaaa	tgctaaacgt
	+	cagaatcaac	aaatgcacaa	aatgttatta	acaatggtga	tgcgactgac

	caacaaattg 3720	ccgcagaaaa	aacaaaagta	gaagaaaaat	ataatagctt	aaaacaagca
	attgctggat 3780	taactccaga	cttggcacca	ttacaaactg	caaaaactca	gttgcaaaat
5	gatattgatc 3840	agccaacgag	tacgactggt	atgacaagcg	catctattgc	agcatttaat
	gaaaaacttt 3900	cagcagctag	aactaaaatt	caagaaattg	atcgtgtatt	agcctcacat
10	ccagatgttg 3960	cgacaatacg	tcaaaacgtg	acagcagcga	atgccgctaa	atcagcactt
	gatcaagcac 4020	gtaatggctt	aacagtcgat	aaagcgcctt	tagaaaatgc	gaaaaatcaa
	ctacaatata 4080	gtattgacac	gcaaacaagt	acaactggta	tgacacaaga	ctctataaat
15	gcatacaatg 4140	cgaagttaac	agctgcacgt	aataagattc	aacaaatcaa	tcaagtatta
	gcaggttcac 4200	cgactgtaga	acaaattaat	acaaatacgt	ctacagcaaa	tcaagctaaa
20	tctgatttag 4260	atcatgcacg	tcaagcttta	acaccagata	aagcgccgct	tcaaactgcg
	aaaacgcaat 4320	tagaacaaag	cattaatcaa	ccaacggata	caacaggtat	gacgaccgct
	tcgttaaatg 4380	cgtacaacca	aaaattacaa	gcagcgcgtc	aaaagttaac	tgaaattaat
25	caagtgttga 4440	atggcaaccc	aactgtccaa	aatatcaatg	ataaagtgac	agaggcaaac
	caagctaagg 4500	atcaattaaa	tacagcacgt	caaggtttaa	cattagatag	acagccagcg
30	4560			_	aacaaaataa	
	caaattaatg 4620	ctgctcaaaa	tcatgctgcg	cttgaaacaa	ttaagtctaa	cattacggct
	ttaaatactg 4680	cgatgacgaa	attaaaagac	agtgttgcgg	ataataatac	aattaaatca
35	gatcaaaatt 4740	acactgacgc	aacaccagct	aataaacaag	cgtatgataa	tgcagttaat
	gcggctaaag 4800	gtgtcattgg	agaaacgact	aatccaacga	tggatgttaa	cacagtgaac
40	caaaaagcag 4860	catctgttaa	atcgacgaaa	gatgctttag	atggtcaaca	aaacttacaa
	cgtgcgaaaa 4920	cagaagcaac	aaatgcgatt	acgcatgcaa	gtgatttaaa	ccaagcacaa
	aagaatgcat, 4980	taacacaaca	agtgaatagt	gcacaaaacg	tgcaagcagt	aaatgatatt
45	aaacaaacga 5040	ctcaaagctt	aaatactgct	atgacaggtt	taaaacgtgg	cgttgctaat
	cataaccaag 5100	tcgtacaaag	tgataattat	gtcaacgcag	atactaataa	gaaaaatgat
50	5160				gtaatgcaca	_
	ataacaccaa 5220	gtgatgttaa	caatgcttta	tcaaatgtca	caagtaaaga	acatgcattg
	aatggtgaag 5280	ctaagttaaa	tgctgcgaaa	caagaagcga	atactgcatt	aggtcattta
55	5340		_	_	aaattaatgg	
	5400				tgaatagtgc	
60	5460			•	cagaagatta	
	gatacagcta 5520	aacaaaatgc	atataacagt	gcagtttcaa	gtgccgaaac	aatcattaat

	caaacaacaa 5580	atccaacgat	gtctgttgat	gatgttaatc	gtgcaacttc	agctgttact
	tctaataaaa 5640	atgcattaaa	tggttatgaa	aaattagcac	aatctaaaac	agatgctgca
5	agagcaattg 5700	atgcattacc	acatttaaat	aatgcacaaa	aagcagatgt	taaatctaaa
	attaatgctg 5760	catcaaatat	tgctggcgta	aatactgtta	aacaacaagg	tacagattta
10		tgggtaactt	gcaaggtgca	atcaatgatg	aacaaacgac	gcttaatagt
		aagatgcgac	acctagtaag	aaaacagcat	acacaaatgc	ggtacaagct
		ttttaaataa	atcaaatggt	caaaataaaa	cgaaagatca	agttactgaa
15		aagtgaattc	tgctaaaaat	aacttagatg	gtacgcgttt	attagatcaa
	gcgaagcaaa 6060	cagcaaaaca	gcagttaaat	aatatgacgc	atttaacaac	tgcacaaaaa
20		caaaccaaat	taatagtggt	actactgtcg	ctggtgttca	aacggttcaa
	tcaaatgcca 6180	atacattaga	tcaagccatg	aatacgttaa	gacaaagtat	tgccaacaaa
		aagcaagtga	agattacgta	gatgctaata	atgataagca	aacagcatat
25	aacaacgcag 6300	tagctgctgc	tgaaacgatt	attaatgcta	atagtaatcc	agaaatgaat
	ccaagtacga 6360	ttacacaaaa	agcagagcaa	gtgaatagtt	ctaaaacggc	acttaacggt
30		tagctgctgc	aaaacaaaat	gcgaaaacgt	acttaaacac	attgacaagt
	attacagatg 6480	ctcaaaagaa	caatttgatt	agtcaaatta	ctagtgcgac	aagagtgagt
		ctgtaaaaca	aaatgcgcaa	catctagacc	aagctatggc	tagcttacag
35		acaacgaatc	tcaagtgaaa	tcatctgaga	aatatcgtga	tgctgataca
	aataaacaac 6660	aagagtatga	taatgctatt	actgcagcga	aagcgatttt	aaataaatcg
40		acactgcgca	aaatgcagtt	gaagcagcat	tacaacgtgt	taataatgcg
	aaagatgcat 6780	tgaatggtga	tgcaaaatta	attgcagctc	aaaacgcagc	gaaacaacat
	ttaggtactt	taacgcatat	cactacaget	caacgtaatg	atttaacaaa	tcaaatttca
45	caagctacaa 6900	acttagctgg	tgttgaatct	gttaaacaaa	atgcgaatag	tttagatggt
	gctatgggta 6960	acttacaaac	ggctatcaac	gataagtcag	gaacattagc	gagccaaaac
50	ttcttggatg 7020	ctgatgagca	aaaacgtaat	gcatacaatc	aagctgtatc	agcagccgaa
	accattttaa 7080	ataaacaaac	tggaccgaat	acagcgaaaa	cagcagtcga	acaagcactt
	aataatgtta 7140	ataatgcgaa	acatgcatta	aatggtacgc	aaaacttaaa	caatgcgaaa
55	caagcagcga 7200	ttacagcaat	caatggcgca	tctgatttaa	atcaaaaaca	aaaagatgca
		aagctaatgg	tgctcaacgc	gtatctaatg	cacaagatgt	acagcacaat
60		tgaacacggç	aatgggcaca	ttaaaacatg	ccatcgcaga	taagacgaat
	acgttagcaa 7380	gcagtaaata	tgttaatgcc	gatagcacta	aacaaaatgc	ttacacaact

```
aaagttacca atgctgaaca tattattagc ggtacgccaa cggttgttac gacaccttca
     7440
     gaagtaacag ctgcagctaa tcaagtaaac agcgcgaaac aagaattaaa tggtgacgaa
     7500
 5
     agattacgtg aagcaaaaca aaacgccaat actgctattg atgcattaac acaattaaat
     7560
     acacctcaaa aagctaaatt aaaagaacaa gtgggacaaq ccaatagatt agaaqacgta
     7620
     caaactgttc aaacaaatgg acaagcattg aacaatgcaa tgaaaggctt aagagatagt
10
     7680
     attgctaacg aaacaacagt caaaacaagt caaaactata cagacgcaag tccgaataac
     7740
     caatcaacat ataatagcgc tgtgtcaaat gcgaaaggta tcattaatca aactaacaat
15
     ccgactatgg atactagtgc gattacccaa gctacaacac aagtgaataa tgctaaaaaat
     7860
     ggtttaaacg gtgctgaaaa cttaagaaat gcacaaaaca ctgctaagca aaacttaaat
     7920
     acattatcac acttaacaaa taaccaaaaa tctgccatct catcacaaat tgatc
20
     7975
     <210> 13
     <211> 2001
25
     <212> DNA
     <213> Staphylococcus aureus
     <400> 13
     gatcatggca ttgtatttaa tgcaagtcta cctttgtaca aagatgccat ccatcaaaaa 60
30
     ggatcaatgc gcagtaatga caatggtgat gatatgagta tgatggtggg tacagtgctg
     120
     agtggctttg aatatcgagc gcaaaaagaa aagtatgata acttatataa attcttcaaa
     gaaaatgaaa agaaatatca atatacaggc tttacaaaag aggcaattaa caagacacaa
35
     240
     aatgtcggat ataaaaatga atatttttat attacatact cttctagaag tttaaaagaa
     300
     tatcgaaagt attatgaacc actgattcga aaaaatgata aagaatttaa agaaggaatg
40
     gaacgagcaa gaaaagaagt gaattacget gcaaatacag atgetgttge tacacttttt
     420
     tctactaaga aaaactttac taaagacaat acagtagatg atgtaatcga actaagtgat
     480
     aaattatata atttaaaaaa taaaccagat aaatctacaa tcacaataca aatagggaaa
45
     540
     cccactatta atactaagaa agccttttat gatgataatc gtccaataga atatggggtg
     cacagtaaag atgaataaaa ttaatgatag ggatttaaca gaattaagta qttactgggt
50
     ttatcaaaat attgatataa aaaaagaatt taaagttaat ggaaaaaggt ttaaacaagt
     agacagttat aatgatgata agaatagtaa tttgaatggt gctgctgata ttaaaatata
     tgagttatta gatgataaaa gtaaaccaac tggtcaacag acaataattt atcaaggaac
55
     840
     atctaatgag gcaattaatc caaataatcc attaaaatca tcggggtttg gagatgattg
     gctccaaaat gctaaattaa tgaataatga taatgaaagc acagattatt taaagcaaac
     960
60
     agatcaatta tcaaatcaat ataaaataaa gttagaagat gcagatagat tatcaaatag
     1020
     tgatttttta aaaaaatata gaatggaatc aagtaacttc aaaaacaaaa ccattgtggc
     1080
```

	ggat		ggt a	aatto	cggaa	ag go	cggt	gcago	gago	caaaa	tat	caaç	ggago	ga	aacat	ccgaa
	tgaa		gtt	gttgo	ctact	g a	ctcag	gcaat	: gat	tcct	tat	gct	gcttq	ggc	agaaa	tttgc
5		accad	ege t	tttga	ataat	a to	gatta	agttt	taa	atagt	acc	aacq	gatti	at '	taaca	tggtt
		gato	cca t	ttcat	caaa	ig at	tatgo	ccago	g aaa	acgo	gtt	aaca	attaa	atg :	atggt	gtgcc
10		gttag	gat a	acttt	aata	ng a	cagco	catgt	agg	gttat	aaa	agga	agtt	aa i	ataga	aaaga
••		cacat	ac q	gatad	ctgta	ac ca	actaa	atcaa	a aat	aaaq	gtcg	gtaa	aaga	ata	cagaa	attaa
		ggaa	aaa a	aaagt	aaaa	a a	gacta	attaa	a cat	aaca	itta	gata	atgga	atg (ggcga	attcc
15		aato	gtt 1	tggad	cagga	ag at	ttcga	attgo	acq	gttct	gga	agag	ggaad	tt ·	taatt	aaact
		ttag	gaa a	aatct	tgat	g c	gttga	agtaa	a act	gatt	act	ggt	gaaac	caa (gtggt	atgtt
20		agaat	gc (gtaat	cttt	t ta	aaat	gaaag	g ttt	taac	catc	tcag	gaaaa	atg :	aaäat	aaaaa
20		gcag	gat a	agaaa	agaaa	ıc a	attat	caga	aagg	gattt	aag	gata	agat	ta	actta	tttca
		agaaq	gaa a	atgga	aaaga	aa ci	tttaa	attag	g taa	aata	aaac	tcac	ettga	aag	aagtt	:gcaga
25		acaa	ata q	gaaag	gtatt	a gt	tgctg	gttaa	a aca	actta	atta	cct	gatti	tg (catto	gatgc
		aaac	gaa a	agaat	taat	g a	gttgt	tttaa	a agg	gtata	aaaa	tctt	ttat	ag	aaa¸aa	gtgta
30		agta	ata	gataa	atgaa	aa ti	tttag	gaaat	: ttt	caaa	aat	ataç	gatca	acg .	actto	agaga
50		gtat	ct o	gaaga	aaato	ga t										
	200.	• .														
35)> 14 L> 10														
	<212	2> PF	RT	yloc	occus	au	reus									
40)> 14			m)	- 23	m1			~ 1		_	 \		6 3	
	Asp 1	Gin	Thr	гÀг	Thr 5	GIn	Thr	Ата	HIS	Thr 10	vaı	ьуѕ	Thr	ATa	Gln 15	Thr
45	Ala	Gln	Glu	Gln 20	Asn	Lys	Val	Gln	Thr 25	Pro	Val	Lys	Asp	Val 30	Ala	Thr
	Ala	Lys	Ser 35	Glu	Ser	Asn	Asn	Gln 40	Ala	Val	Ser	Asp	Asn 45	Lys	Ser	Gln
50	Gln	Thr 50	Asn	Lys	Val	Thr	Lys 55	His	Asn	Glu	Thr	Pro 60	Lys	Gln	Ala	Ser
55	Lys 65	Ala	Lys	Glu	Leu	Pro 70	Lys	Thr	Gly	Leu	Thr 75	Ser	Val	Asp	Asn	Phe 80
<i>.</i>	Ile	Ser	Thr	Val	Ala 85	Phe	Ala	Thr	Leu	Ala 90	Leu	Leu	Gly	Ser	Leu 95	Ser
60	Leu	Leu	Leu	Phe 100	Lys	Arg	Lys	Glu	Ser 105	Lys						

<211> 960 <212> PRT <213> Staphylococcus aureus

Asp Arg Ile Ile Glu Thr Ala Pro Thr Asp Tyr Leu Ser Trp Gly Val Gly Ala Val Gly Asn Pro Arg Phe Ile Asn Val Glu Ile Val His Thr 10 His Asp Tyr Ala Ser Phe Ala Arg Ser Met Asn Asn Tyr Ala Asp Tyr 15 Ala Ala Thr Gln Leu Gln Tyr Tyr Gly Leu Lys Pro Asp Ser Ala Glu Tyr Asp Gly Asn Gly Thr Val Trp Thr His Tyr Ala Val Ser Lys Tyr 65 70 75 80 20 Leu Gly Gly Thr Asp His Ala Asp Pro His Gly Tyr Leu Arg Ser His Asn Tyr Ser Tyr Asp Gln Leu Tyr Asp Leu Ile Asn Glu Lys Tyr Leu 25 Ile Lys Met Gly Lys Val Ala Pro Trp Gly Thr Gln Ser Thr Thr 30 Pro Thr Thr Pro Ser Lys Pro Thr Thr Pro Ser Lys Pro Ser Thr Gly Lys Leu Thr Val Ala Ala Asn Asn Gly Val Ala Gln Ile Lys Pro Thr 150 35 Asn Ser Gly Leu Tyr Thr Thr Val Tyr Asp Lys Thr Gly Lys Ala Thr Asn Glu Val Gln Lys Thr Phe Ala Val Ser Lys Thr Ala Thr Leu Gly 40 Asn Gln Lys Phe Tyr Leu Val Gln Asp Tyr Asn Ser Gly Asn Lys Phe 45 Gly Trp Val Lys Glu Gly Asp Val Val Tyr Asn Thr Ala Lys Ser Pro Val Asn Val Asn Gln Ser Tyr Ser Ile Lys Pro Gly Thr Lys Leu Tyr 230 235 50 Thr Val Pro Trp Gly Thr Ser Lys Gln Val Ala Gly Ser Val Ser Gly Ser Gly Asn Gln Thr Phe Lys Ala Ser Lys Gln Gln Gln Ile Asp Lys 55 Ser Ile Tyr Leu Tyr Gly Ser Val Asn Gly Lys Ser Gly Trp Val Ser 280 60 Lys Ala Tyr Leu Val Asp Thr Ala Lys Pro Thr Pro Thr Pro Thr Pro Lys Pro Ser Thr Pro Thr Thr Asn Asn Lys Leu Thr Val Ser Ser Leu

	305					310					315					320
5	Asn	Gly	Val	Ala	Gln 325	Ile	Asn	Ala	Lys	Asn 330	Asn	Gly	Leu	Phe	Thr 335	Thr
J	Val	Tyr	Asp	Lys 340	Thr	Gly	Lys	Pro	Thr 345	Lys	Glu	Val	Gln	Lys 350	Thr	Phe
10	Ala	Val	Thr 355	Lys	Glu	Ala	Ser	Leu 360	Gly	Gly	Asn	Lys	Phe 365	Tyr	Leu	Val
	Lys	Asp 370	Tyr	Asn	Ser	Pro	Thr 375	Leu	Ile	Gly	Trp	Val 380	Lys	Gln	Gly	Asp
15	Val 385	Ile	Tyr	Asn	Asn	Ala 390		Ser	Pro	Val	Asn 395	Val	Met	Gln	Thr	Tyr 400
20	Thr	Val	Lys	Pro	Gly 405	Thr	Lys	Leu	Tyr	Ser 410	Val	Pro	Trp	Gly	Thr 415	Tyr
20	Lys	Gln	Glu	Ala 420	Gly	Ala	Val	Ser	Gly 425	Thr	Gly	Asn	Gln	Thr 430	Phe	Lys
25	Ala	Thr	Lys 435	Gln	Gln	Gln	Ile	Asp 440	Lys	Ser	Ile	Tyr	Leu 445	Phe	Gly	Thr
	Val	Asn 450	Gly	Lys	Ser	Gly	Trp 455	Val	Ser	Lys	Ala	Tyr 460	Leu	Ala	Val	Pro
30	Ala 465	Ala	Pro	Lys	Lys	Ala 470	Val	Ala	Gln	Pro	Lys 475	Thr	Ala	Val	Lys	Ala 480
35	Tyr	Thr	Val	Thr	Lys 485	Pro	Gln	Thr	Thr	Gln 490	Thr	Val	Ser	Lys	Ile 495	Ala
55	Gln	Val	Lys	Pro 500	Asn	Asn	Thr	Gly	Ile 505	Arg	Ala	Ser	Val	Tyr 510	Glu	Lys
40	Thr	Ala	Lys 515	Asn	Gly	Ala	Lys	Tyr 520	Ala	Asp	Arg	Thr	Phe 525	Tyr	Val	Thr
	Lys	Glu 530	Arg	Ala	His	Gly	Asn 535	Glu	Thr	Tyr	Val	Leu 540	Leu	Asn	Asn	Thr
45	Ser 545	His	Asn	Ile	Pro	Leu 550	Gly	Trp	Phe	Asn	Val 555	Lys	Asp	Leu	Asn	Val 560
50	Gln	Asn	Leu	Gly	Lys 565	Glu	Val	Lys	Thr	Thr 570	Gln	Lys	Tyr	Thr	Val 575	Asn
	Lys	Ser	Asn	Asn 580	Gly	Leu	Ser	Met	Val 585	Pro	Trp	Gly	Thr	Lys 590	Asn	Gln
55	Val	Ile	Leu 595	Thr	Gly	Asn	Asn	Ile 600	Ala	Gln	GЉУ	Thr	Phe 605	Asn	Ala	Thr
	Lys	Gln 610	Val	Ser	Val	Gly	Lys 615	Asp	Val	Tyr	Leu	Tyr 620	Gly	Thr	Ile	Asn
60	Asn 625	Arg	Thr	Gly	Trp	Val 630	Asn	Ala	Lys	Asp	Leu 635	Thr	Ala	Pro	Thr	Ala 640
	Val	Lvs	Pro	Thr	Thr	Ser	Ala	Ala	Lvs	Asp	Tvr	Asn	Tvr	Thr	Tvr	Val

					645					650					655	
5	Ile	Lys	Asn	Gly 660	Asn	Gly	Tyr	Tyr	Tyr 665	Val	Thr	Pro	Asn	Ser 670	Asp	Thr
,	Ala	Lys	Tyr 675	Ser	Leu	Lys	Ala	Phe 680	Asn	Glu	Gln	Pro	Phe 685	Ala	Val	Val
10	Lys	Glu 690	Gln	Val	Ile	Asn	Gly 695	Gln	Thr	Trp	Tyr	Tyr 700	Gly	Lys	Leu	Ser
	Asn 705	Gly	Lys	Leu	Ala	Trp 710	Ile	Lys	Ser	Thr	Asp 715	Leu	Ala	Lys	Glu	Leu 720
15	Ile	Lys	Tyr	Asn	Gln 725	Thr	Gly	Met	Ala	Leu 730	Asn	Gln	Val	Ala	Gln 735	Ile
20	Gln	Ala	Gly	Leu 740	Gln	Tyr	Lys	Pro	Gln 745	Val	Gln	Arg	Val	Pro 750	Gly	Lys
20	Trp	Thr	Gly 755	Ala	Asn	Phe	Asn	Asp 760	Val	Lys	His	Ala	Met 765	Asp	Thr	Lys
25		Leu 770	Ala	Gln	Asp	Pro	Ala 775	Leu	Lys	Tyr	Gln	Phe 780	Leu	Arg.	Leu	Asp
	Gln 785	Pro	Gln	Asn	Ile	Ser 790	Ile	Asp	Lys	Ile	Asn 795	Gln	Phe	Leu	Lys	Gly 800
30	Lys	Gly	Val	Leu	Glu 805	Asn	Gln	Gly	Ala	Ala 810	Phe	Asn	Lys	Ala	Ala 815	Gln
35	Met	Tyr	Gly	Ile 820	Asn	Glu	Val	Tyr	Leu 825	Ile	Ser	His	Ala	Leu 830	Leu	Glu
	Thr	Gly	Asn 835	Gly	Thr	Ser	Gln	Leu 840	Ala	Lys	Gly	Ala	Asp 845	Val	Val	Asn
40	Asn	Lys 850	Val	Val	Thr	Asn	Ser 855	Asn	Thr	Lys	Tyr	His 860	Asn	Val	Phe	Gly
	Ile 865	Ala	Ala	Tyr	Asp	Asn 870	Asp	Pro	Leu	Arg	Glu 875	Gly	Ile	Lys	Tyr	Ala 880
45	Lys	Gln	Ala	Gly	Trp 885	Asp	Thr	Val	Ser	Lys 890	Ala	Ile	Val	Gly	Gly 895	Ala
50	Lys	Phe	Ile	Gly 900	Asn	Ser	Tyr	Val	Lys 905	Ala	Gly	Gln	Asn	Thr 910	Leu	Tyr
50	Lys	Met	Arg 915	Trp	Asn	Pro	Ala	His 920	Pro	Gly	Thr	His	Gln 925	Tyr	Ala	Thr
55	Asp	Val 930	Asp	Trp	Ala	Asn	Ile 935	Asn	Ala	Lys	Ile	Ile 940	Lys	Gly	Tyr	Tyr
	Asp 945	Lys	Ile	Gly	Glu	Val 950	Gly	Lys	Tyr	Phe	Asp 955	Ile	Pro	Gln	Tyr	Lys 960
60							•									

5	<210> 16 <211> 386 <212> PRT <213> Staphylococcus aureus															
		0> 16 Gln		Ser	Glu 5	Asp	Ala	Lys	Lys	Thr 10	Gln	Lys	Asp	Tyr	Ala 15	Ser
10	Gln	Ser	Lys	Lys 20	Asp	Lys	Asn	Glu	Lys 25	Ser	Asn	Thr	Lys	Asn 30	Pro	Gln
15	Leu	Pro	Thr 35	Gln	Asp	Glu	Leu	Lys 40	His	Lys	Ser	Lys	Pro 45	Ala	Gln	Ser
	Phe	Asn 50	Asn	Asp	Val	Asn	Gln 55	Lys	Asp	Thr	Arg	Ala 60	Thr	Ser	Leu	Phe
20	Glu 65	Thr	Asp	Pro	Ser	Ile 70	Ser	Asn	Asn	Asp	Asp 75	Ser	Gly	Glņ	Phe	Asn 80
	Val	Val	Asp	Ser	Lys 85	Asp	Thr	Arg	Gln	Phe 90	Val	Lys	Ser	Ile	Ala 95	Lys
25	Asp	Ala	His	Arg 100	Ile	Gly	Gln	Asp	Asn 105	Asp	Ile	Tyr	Ala	Ser 110	Val	Met
30	Ile	Ala	Gln 115	Ala	Ile	Leu	Glu	Ser 120	Asp	Ser	Gly	Arg	Ser 125	Ala	Leu	Ala
	Lys	Ser 130	Pro	Asn	His	Asn	Leu 135	Phe	Gly	Ile	ŗys	Gly 140	Ala	Phe	Glu	Gly
35	Asn 145	Ser	Val	Pro	Phe	Asn 150	Thr	Leu	Glu	Ala	Asp 155	Gly	Asn	Gln	Leu	Tyr 160
	Ser	Ile	Asn	Ala	Gly 165	Phe	Arg	Lys	Tyr	Pro 170	Ser	Thr	Lys	Glu	Ser 175	Leu
40	Lys	Asp	Tyr	Ser 180	Asp	Leu	Ile	Lys	Asn 185	Gly	Ile	Asp	Gly	Asn 190	Arg	Thr
45	Ile	Tyr	Lys 195	Pro	Thr	Trp	Lys	Ser 200	Glu	Ala	Asp	Ser	Tyr 205	Lys	Asp	Ala
	Thr	Ser 210	His	Leu	Ser	Lys	Thr 215	Tyr	Ala	Thr	Asp	Pro 220	Asn	Tyr	Ala	Lys
50	Lys 225	Leu	Asn	Ser	Ile	Ile 230	Lys	His	Tyr	Gln	Leu 235	Thr	Gln	Phe	Asp	Asp 240
	Glu	Arg	Met	Pro	Asp 245	Leu	Asp	Lys	Tyr	Glu 250	Arg	Ser	Ile	Lys	Asp 255	Tyr
55	Asp	Asp	Ser	Ser 260	Asp	Glu	Phe	Lys	Pro 265	Phe	Arg	Glu	Val	Ser 270	Asp	Ser
60	Met	Pro	Tyr 275	Pro	His	Gly	Gln	Cys 280	Thr	Trp	Tyr	Val	Tyr 285	Asn	Arg	Met
	Lys	Gln 290	Phe	Gly	Thr	Ser	Ile 295	Ser	Gly	Asp	Leu	Gly 300	Asp	Ala	His	Asn

Trp Asn Asn Arg Ala Gln Tyr Arg Asp Tyr Gln Val Ser His Thr Pro Lys Arg His Ala Ala Val Val Phe Glu Ala Gly Gln Phe Gly Ala Asp 5 Gln His Tyr Gly His Val Ala Phe Val Glu Lys Val Asn Ser Asp Gly 345 10 Ser Ile Val Ile Ser Glu Ser Asn Val Lys Gly Leu Gly Ile Ile Ser His Arg Thr Ile Asn Ala Ala Ala Ala Glu Glu Leu Ser Tyr Ile Thr 15 Gly Lys 385 20 <210> 17 <211> 325 <212> PRT <213> Staphylococcus aureus 25 <400> 17 Met Lys Met Asn Lys Leu Val Lys Ser Ser Val Ala Thr Ser Met Ala Leu Leu Leu Ser Gly Thr Ala Asn Ala Glu Gly Lys Ile Thr Pro 30 Val Ser Val Lys Lys Val Asp Asp Lys Val Thr Leu Tyr Lys Thr Thr Ala Thr Ala Asp Ser Asp Lys Phe Lys Ile Ser Gln Ile Leu Thr Phe Asn Phe Ile Lys Asp Lys Ser Tyr Asp Lys Asp Thr Leu Val Leu Lys 65 70 75 40 Ala Thr Gly Asn Ile Asn Ser Gly Phe Val Lys Pro Asn Pro Asn Asp Tyr Asp Phe Ser Lys Leu Tyr Trp Gly Ala Lys Tyr Asn Val Ser Ile 45 Ser Ser Gln Ser Asn Asp Ser Val Asn Val Val Asp Tyr Ala Pro Lys 50 Asn Gln Asn Glu Glu Phe Gln Val Gln Asn Thr Leu Gly Tyr Thr Phe 135 Gly Gly Asp Ile Ser Ile Ser Asn Gly Leu Ser Gly Gly Leu Asn Gly 55 Asn Thr Ala Phe Ser Glu Thr Ile Asn Tyr Lys Gln Glu Ser Tyr Arg Thr Thr Leu Ser Arg Asn Thr Asn Tyr Lys Asn Val Gly Trp Gly Val 60 Glu Ala His Lys Ile Met Asn Asn Gly Trp Gly Pro Tyr Gly Arg Asp

	Ser	Phe 210	His	Pro	Thr	Tyr	Gly 215	Asn	Glu	Leu	Phe	Leu 220	Ala	Gly	Arg	Gln
5	Ser 225	Ser	Ala	Tyr	Ala	Gly 230	Gln	Asn	Phe	Ile	Ala 235	Gln	His	Gln	Met	Pro 240
10	Leu	Leu	Ser	Arg	Ser 245	Asn	Phe	Asn	Pro	Glu 250	Phe	Leu	Ser	Val	Leu 255	Ser
10	His	Arg	Gln	Asp 260	Gly	Ala	Lys	Lys	Ser 265	Lys	Ile	Thr	Val	Thr 270	Tyr	Gln
15	Arg	Glu	Met 275	Asp	Leu	Tyr	Gln	Ile 280	Arg	Trp	Asn	Gly	Phe 285	Tyr	Trp	Ala
	Gly	Ala 290	Asn	Tyr	Lys	Asn	Phe 295	Lys	Thr	Arg	Thr	Phe 300	Lys	Ser	Thr	Tyr
20	Glu 305	Ile	Asp	Trp	Glu	Asn 310	His	Lys	Val	Lys	Leu 315	Leu	Asp	Thr	Lys	Glu 320
25	Thr	Glu	Asn	Asn	Lys 325											
30	<211 <212)> 18 l> 19 l> PF B> St	57 RT	yloco	occus	s aus	ceus									
)> 18 Phe		Tyr	Ser 5	ГÀЗ	Ser	Ile	Ser	Tyr 10	Thr	Gln	Gln	Asn	Tyr 15	Val
3 <i>5</i>		Glu	Val	Glu 20		Gln	Asn	Ser	Lys 25		Val	Leu	Trp	Gly 30		Lys
40	Ala	Asn	Ser 35	Phe	Ala	Thr	Glu	Ser 40	Gly	Gln	Lys	Ser	Ala 45	Phe	Asp	Ser
	Asp	Leu 50	Phe	Val	Gly	Tyr	Lys 55	Pro	His	Ser	Lys	Asp 60	Pro	Arg	Asp	Tyr
45	Phe 65	Val	Pro	Asp	Ser	Glu 70	Leu	Pro	Pro	Leu	Val 75	Gln	Ser	Gly	Phe	Asn 80
50	Pro	Ser	Phe	Ile	Ala 85	Thr	Val	Ser	His	Glu 90	Lys	Gly	Ser	Ser	Asp 95	Thr
50	Ser	Glu	Phe	Glu 100	Ile	Thr	Tyr	Gly	Arg 105	Asn	Met	Asp	Val	Thr 110	His	Ala
55	Ile	Lys	Arg 115	Ser	Thr	His	Tyr	Gly 120	Asn	Ser	Tyr	Leu	Asp 125	Gly	His	Arg
	Val	His 130	Asn	Ala	Phe	Val	Asn 135	Arg	Asn	Tyr	Thr	Val 140	Lys	Tyr	Glu	Val
60	Asn 145	Trp	Lys	Thr	His	Glu 150	Ile	Lys	Val	Lys	Gly 155	Gln	Asn			

<210> 19 <211> 345 <212> PRT <213> Staphylococcus aureus 5 <400> 19 Ile Ile Ala Ile Ile Ile Leu Ile Phe Ile Ser Phe Phe Phe Ser Gly 10 Ser Glu Thr Ala Leu Thr Ala Ala Asn Lys Ala Lys Phe Lys Thr Glu Ala Asp Lys Gly Asp Lys Lys Ala Lys Gly Ile Val Lys Leu Leu Glu 15 Lys Pro Ser Glu Phe Ile Thr Thr Ile Leu Ile Gly Asn Asn Val Ala Asn Ile Leu Leu Pro Thr Leu Val Thr Ile Met Ala Leu Arg Trp Gly 20 Ile Ser Val Gly Ile Ala Ser Ala Val Leu Thr Val Val Ile Ile Leu 25 Ile Ser Glu Val Ile Pro Lys Ser Val Ala Ala Thr Phe Pro Asp Lys 105 Ile Thr Arg Leu Val Tyr Pro Ile Ile Asn Ile Cys Val Ile Val Phe 30 Arg Pro Ile Thr Leu Leu Leu Asn Lys Leu Thr Asp Ser Ile Asn Arg Ser Leu Ser Lys Gly Gln Pro Gln Glu His Gln Phe Ser Lys Glu Glu 35 155 150 Phe Lys Thr Met Leu Ala Ile Ala Gly His Glu Gly Ala Leu Asn Glu 40 Ile Glu Thr Ser Arg Leu Glu Gly Val Ile Asn Phe Glu Asn Leu Lys Val Lys Asp Val Asp Thr Thr Pro Arg Ile Asn Val Thr Ala Phe Ala 45 Ser Asn Ala Thr Tyr Glu Glu Val Tyr Glu Thr Val Met Asn Lys Pro Tyr Thr Arg Tyr Pro Val Tyr Glu Gly Asp Ile Asp Asn Ile Ile Gly 50 235 Val Phe His Ser Lys Tyr Leu Leu Ala Trp Ser Asn Lys Lys Glu Asn Gln Ile Thr Asn Tyr Ser Ala Lys Pro Leu Phe Val Asn Glu His Asn 55 Lys Ala Glu Trp Val Leu Arg Lys Met Thr Ile Ser Arg Lys His Leu 280 60 Ala Ile Val Leu Asp Glu Phe Gly Gly Thr Glu Ala Ile Val Ser His

Glu Asp Leu Ile Glu Glu Leu Leu Gly Met Glu Ile Glu Asp Glu Met Asp Lys Lys Glu Lys Glu Lys Leu Ser Gln Gln Gln Ile Gln Phe Gln 5 Gln Arg Lys Asn Arg Asn Val Ser Ile 340 10 <210> 20 <211> 133 <212> PRT <213> Staphylococcus aureus 15 <400> 20 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys 20 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Met Ser Asn Gly Glu Ala Gln Ala Ala Glu Glu Thr Gly Gly Thr 25 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser 30 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala 35 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys 105 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu 40 Leu Ile Arg Ser Asp 130 45 <210> 21 <211> 205 <212> PRT <213> Staphylococcus aureus 50 <400> 21 Asp His Gly Ile Val Phe Asn Ala Ser Leu Pro Leu Tyr Lys Asp Ala Ile His Gln Lys Gly Ser Met Arg Ser Asn Asp Asn Gly Asp Asp Met 55 Ser Met Met Val Gly Thr Val Leu Ser Gly Phe Glu Tyr Arg Ala Gln 60 Lys Glu Lys Tyr Asp Asn Leu Tyr Lys Phe Phe Lys Glu Asn Glu Lys Lys Tyr Gln Tyr Thr Gly Phe Thr Lys Glu Ala Ile Asn Lys Thr Gln

	65					70					75					80
5	Asn	Val	Gly	Tyr	Lys 85	Asn	Glu	Tyr	Phe	Tyr 90	Ile	Thr	Tyr	Ser	Ser 95	Arg
J	Ser	Leu	Lys	Glu 100	Tyr	Arg	Lys	Tyr	Tyr 105	Glu	Pro	Leu	Ile	Arg 110	Гуз	Asn
10	Asp	Lys	Glu 115	Phe	Lys	Glu	Gly	Met 120	Glu	Arg	Ala	Arg	Lys 125	Glu	Val	Asn
	Tyr	Ala 130	Ala	Asn	Thr	Asp	Ala 135	Val	Ala	Thr	Leu	Phe 140	Ser	Thr	ГÀЗ	Lys
15	Asn 145	Phe	Thr	Lys	Asp	Asn 150	Thr	Val	Asp	Asp	Val 155	Ile	Ġlu	Leu	Ser	Asp 160
20	Lys	Leu	Tyr	Asn	Leu 165	Lys	Asn	Lys	Pro	Asp 170	Lys	Ser	Thr	Ile	Thr 175	Ile
	Gln	Ile	Gly	Lys 180	Pro	Thr	Ile	Asn	Thr 185	Lys	Lys	Ala	Phe	Tyr 190	Asp	Asp
25	Asn	Arg	Pro 195	Ile	Glu	Tyr	Gly	Val 200	His	Ser	Lys	Asp	Glu 205			
30	<211 <212	0> 22 l> 52 2> PE 3> St	LO RT	· yloco	occus	s aus	ceus			٠						
35)> 22 His		Val	Ile 5	Gln	Tyr	Phe	Ser	Gly 10	Leu	Ile	Gly	Gly	Arg 15	Gly
	Arg	Arg	Ala	Asn 20	Leu	Tyr	Gly	Leu	Phe 25	Asn	Lys	Ala	Ile	Glu 30	Phe	Glu
40	Asn	Ser	Ser 35	Phe	Arg	Gly	Leu	Tyr 40	Gln	Phe	Ile	Arg	Phe 45	Ile	Asp	Glu
45	Leu	Ile 50	Glu	Arg	Gly	Lys	Asp 55	Phe	Gly	Glu	Glu	Asn 60	Val	Val	Gly	Pro
	Asn 65	Asp	Asn	Val	Val	Arg 70	Met	Met	Thr	Ile	His 75	Ser	Ser	Lys	Gly	Leu 80
50	Glu	Phe	Pro	Phe	Val 85	Ile	Tyr	Ser	Gly	Leu 90	Ser	Lys	Asp	Phe	Asn 95	Lys
	Arg	Asp	Leu	Lys 100	Gln	Pro	Val	Ile	Leu 105	Asn	Gln	Gln	Phe	Gly 110	Leu	Gly
55	Met	Asp	Tyr 115	Phe	Asp	Val	Asp	Lys 120	Glu	Met	Ala	Phe	Pro 125	Ser	Leu	Ala
50	Ser	Val 130	Ala	Tyr	Arg	Ala	Val 135	Ala	Glu	Lys	Glu	Leu 140	Val	Ser	Glu	Glu
- •	Met 145	Arg	Leu	Val	Tyr	Val 150	Ala	Leu	Thr	Arg	Ala 155	Lys	Glu	Gln	Leu	Tyr 160

	Leu	Ile	Gly	Arg	Val 165	Lys	Asn	Asp	Lys	Ser 170	Leu	Leu	Glu	Leu	Glu 175	Gln
5	Leu	Ser	Ile	Ser 180	Gly	Glu	His	Ile	Ala 185	Val	Asn	Glu	Arg	Leu 190	Thr	Ser
	Pro	Asn	Pro 195	Phe	His	Leu	Ile	Tyr 200	Ser	Ile	Leu	Ser	Lys 205	His	Gln	Ser
10	Ala	Ser 210	Ile	Pro	Asp	Asp	Leu 215	Lys	Phe	Glu	Lys	Asp 220	Ile	Ala	Gln	Ile
15	Glu 225	Asp	Ser	Ser	Arg	Pro 230	Asn	Val	Asn	Ile	Ser 235	Ile	Val	Tyr	Phe	Glu 240
13	Asp	Val	Ser	Thr	Glu 245	Thr	Ile	Leu	Asp	Asn 250	Asp	Glu	Tyr	Arg	Ser 255	Val
20	Asn	Gln	Leu	Glu 260	Thr	Met	Gln	Asn	Gly 265	Asn	Glu	Asp	Val	Lys 270	Ala	Gln
	Ile	Lys	His 275	Gln	Leu	Asp	Tyr	Arg 280	Tyr	Pro	Tyr	Val	Asn 285	Asp	Thr	Lys
25	Lys	Pro 290	Ser	Lys	Gln	Ser	Val 295	Ser	Glu	Leu	Lys	Arg 300	Gl'n	Tyr	Glu	Thr
30	Glu 305	Glu	Ser	Gly	Thr	Ser 310	Tyr	Glu	Arg	Val	Arg 315	Gln	Tyr	Arg	Ile	Gly 320
	Phe	Ser	Thr	Tyr	Glu 325	Arg	Pro	Lys	Phe	Leu 330	Ser	Glu	Gln	Gly	Lys 335	Arg
35	Lys	Ala	Asn	Glu 340	Ile	Gly	Thr	Leu	Met 345	His	Thr	Val	Met	Gln 350	His	Leu
	Pro	Phe	Lys 355	Lys	Glu	Arg	Ile	Ser 360	Glu	Val	Glu	Leu	His 365	Gln	Tyr	Ile
40	Asp	Gly 370	Leu	Ile	Asp	Lys	His 375	Ile	Ile	Glu	Ala	Asp 380	Ala	Lys	Lys	Asp
45	Ile 385	Arg	Met	Asp	Glu	Ile 390	Met	Thr	Phe	Ile	Asn 395	Ser	Glu	Leu	Tyr	Ser 400
	Ile	Ile	Ala	Glu	Ala 405	Glu	Gln	Val	Tyr	Arg 410	Glu	Leu	Pro	Phe	Val 415	Val
50	Asn	Gln	Ala	Leu 420	Val	Asp	Gln	Leu	Pro 425	Gln	Gly	Asp	Glu	Asp 430	Val	Ser
	Ile	Ile	Gln 435	Gly	Met	Ile	Asp	Leu 440	Ile	Phe	Val	Lys	Asp 445	Gly	Val	His
55	Tyr	Phe 450	Val	Asp	Tyr	Lys	Thr 455	Asp	Ala	Phe	Asn	Arg 460	Arg	Arg	Gly	Met
60	Thr 465	Asp	Glu	Glu	Ile	Gly 470	Thr	Gln	Leu	Lys	Asn 475	Lys	Tyr	Lys	Ile	Gln 480
-	Met	Lys	Tyr	Tyr	Gln 485	Asn	Thr	Leu	Gln	Thr 490	Ile	Leu	Asn	Lys	Glu 495	Val

Lys Gly Tyr Leu Tyr Phe Phe Lys Phe Gly Thr Leu Gln Leu 500 505 510

<210> 23 <211> 124 <212> PRT <213> Staphylococcus aureus <400> 23 Met Lys Phe Leu Ser Phe Lys Tyr Asn Asp Lys Thr Ser Tyr Gly Val Lys Val Lys Arg Glu Asp Ala Val Trp Asp Leu Thr Gln Val Phe Ala 15 Asp Phe Ala Glu Gly Asp Phe His Pro Lys Thr Leu Leu Ala Gly Leu 20 Gln Gln Asn His Thr Leu Asp Phe Gln Glu Gln Val Arg Lys Ala Val Val Ala Ala Glu Asp Ser Gly Lys Ala Glu Asp Tyr Lys Ile Ser Phe 25 Asn Asp Ile Glu Phe Leu Pro Pro Val Thr Pro Pro Asn Asn Val Ile Ala Phe Gly Arg Asn Tyr Lys Asp His Ala Asn Glu Leu Asn His Glu 30 Val Glu Lys Leu Tyr Val Phe Thr Lys Ala Ala Ser 35 <210> 24 <211> 180 <212> PRT <213> Staphylococcus aureus 40 Ser Gly Thr Gly Phe Ile Val Gly Lys Asn Thr Ile Val Thr Asn Lys 45 His Val Val Ala Gly Met Glu Ile Gly Ala His Ile Ile Ala His Pro Asn Gly Glu Tyr Asn Asn Gly Gly Phe Tyr Lys Val Lys Lys Ile Val 50 Arg Tyr Ser Gly Gln Glu Asp Ile Ala Ile Leu His Val Glu Asp Lys Ala Val His Pro Lys Asn Arg Asn Phe Lys Asp Tyr Thr Gly Ile Leu 55 Lys Ile Ala Ser Glu Ala Lys Glu Asn Glu Arg Ile Ser Ile Val Gly 60 Tyr Pro Glu Pro Tyr Ile Asn Lys Phe Gln Met Tyr Glu Ser Thr Gly Lys Val Leu Ser Val Lys Gly Asn Met Ile Ile Thr Asp Ala Phe Val

			115					120					125			
5	Glu	Pro 130	Gly	Asn	Ser	Gly	Ser 135	Ala	Val	Phe	Asn	Ser 140	Lys	Tyr	Glu	Val
,	Val 145	Gly	Val	His	Phe	Gly 150	Gly	Asn	Gly	Pro	Gly 155	Asn	Lys	Ser	Thr	Lys 160
10	Gly	Tyr	Gly	Val	Tyr 165	Phe	Ser	Pro	Glu	Ile 170	Lys	Lys	Phe	Ile	Ala 175	Asp
	Asn	Thr	Asp	Lys 180												
15 20	<211 <212	0> 25 l> 23 2> PF 3> St	39 RT	yloc	occus	s aui	eus -									
20)> 25 Asn		Asn	Ile 5	Ile	Ile	Lys	Ser	Ile 10	Ala	Ala	Leu	Thr	Ile 15	Leu
25	Thr	Ser	Ile	Thr 20	Gly	Val	Gly	Thr	Thr 25	Met	Val	Glu	Gly	Ile 30	Gln	Glr
30	Thr	Ala	Lys 35	Ala	Glu	Asn	Thr	Val 40	Lys	Gln	Ile	Thr	Asn 45	Thr	Asn	Val
	Ala	Pro 50	Tyr	Ser	Gly	Val	Thr 55	Trp	Met	Gly	Ala	Gly 60	Thr	Gly	Phe	Val
35	65			His		70				_	75			_		80
40	_		_	Asp	85		_			90		_			95	
40	_	-	_	Leu 100	-	-			105			_	-	110	-	-
45			115	Ala				120					125			_
		130		Phe			135					140				
50	Ala 145	Lys	Glu	Asn	Glu	Pro 150	Ile	Ser	Val	Ile	Gly 155	Tyr	Pro	Asn	Pro	Asr 160
	Gly	Asn	Lys	Leu	Gln 165	Met	Tyr	Glu	Ser	Thr 170	Gly	Lys	Val	Leu	Ser 175	Val
55	Asn	Gly	Asn	Ile 180	Val	Ser	Ser	Asp	Ala 185	Ile	Ile	Gln	Pro	Gly 190	Ser	Ser
60	Gly	Ser	Pro 195	Ile	Leu	Asn	Ser	Lys 200	His	Glu	Ala	Ile	Gly 205	Val	Ile	Туг
	Ala	Gly 210	Asn	Lys	Pro	Ser	Gly 215	Glu	Ser	Thr	Arg	Gly 220	Phe	Ala	Val	Туг

Phe Ser Pro Glu Ile Lys Lys Phe Ile Ala Asp Asn Leu Asp Lys 225 230 235

5 <210> 26 <211> 470 <212> PRT <213> Staphylococcus aureus 10 <400> 26 Met Gly Cys Thr Val Lys Met Asn Lys Ile Asn Asp Arg Asp Leu Thr Glu Leu Ser Ser Tyr Trp Val Tyr Gln Asn Ile Asp Ile Lys Lys Glu 15 Phe Lys Val Asn Gly Lys Arg Phe Lys Gln Val Asp Ser Tyr Asn Asp 20 Asp Lys Asn Ser Asn Leu Asn Gly Ala Ala Asp Ile Lys Ile Tyr Glu Leu Leu Asp Asp Lys Ser Lys Pro Thr Gly Gln Gln Thr Ile Ile Tyr 25 Gln Gly Thr Ser Asn Glu Ala Ile Asn Pro Asn Asn Pro Leu Lys Ser Ser Gly Phe Gly Asp Asp Trp Leu Gln Asn Ala Lys Leu Met Asn Asn 30 Asp Asn Glu Ser Thr Asp Tyr Leu Lys Gln Thr Asp Gln Leu Ser Asn 35 Gln Tyr Lys Ile Lys Leu Glu Asp Ala Asp Arg Leu Ser Asn Ser Asp Phe Leu Lys Lys Tyr Arg Met Glu Ser Ser Asn Phe Lys Asn Lys Thr 40 Ile Val Ala Asp Gly Gly Asn Ser Glu Gly Gly Ala Gly Ala Lys Tyr Gln Gly Ala Lys His Pro Asn Glu Lys Val Val Ala Thr Asp Ser Ala 45 Met Ile Pro Tyr Ala Ala Trp Gln Lys Phe Ala Arg Pro Arg Phe Asp 50 Asn Met Ile Ser Phe Asn Ser Thr Asn Asp Leu Leu Thr Trp Leu Gln Asp Pro Phe Ile Lys Asp Met Pro Gly Lys Arg Val Asn Ile Asn Asp 55 Gly Val Pro Arg Leu Asp Thr Leu Ile Asp Ser His Val Gly Tyr Lys 250 Arg Lys Leu Asn Arg Lys Asp Asn Thr Tyr Asp Thr Val Pro Leu Ile 60 265 Lys Ile Lys Ser Val Lys Asp Thr Glu Ile Lys Asn Gly Lys Lys Val 280

	Lys	Lys 290	Thr	Ile	Asn	Ile	Thr 295	Leu	Asp	Met	Asp	Gly 300	Arg	Ile	Pro	Ile
5	Asn 305	Val	Trp	Thr	Gly	Asp 310	Ser	Ile	Ala	Arg	Ser 315	Gly	Arg	Gly	Thr	Leu 320
10	Ile	Lys	Leu	Asn	Leu 325	Glu	Asn	Leu	Asp	Ala 330	Leu	Ser	Lys	Leu	Ile 335	Thr
10	Gly	Glu	Thr	Ser 340	Gly	Met	Leu	Ala	Glu 345	Cys	Val	Ile	Phe	Leu 350	Asn	Glu
15	Ser	Phe	Asn 355	Ile	Ser	Glu	Asn	Glu 360	Asn	Lys	Asn	Phe	Ala 365	Asp	Arg	Lys
	Lys	Gln 370	Leu	Ser	Glu	Gly	Phe 375	Lys	Asp	Lys	Ile	Asn 380	Leu	Phe	Gln	Leu
20	Glu 385	Glu	Met	Glu	Arg	Thr 390	Leu	Ile	Ser	Lys	Ile 395	Asn	Ser	Leu	Glu	Glu 400
25	Val	Ala	Asp	Glu	Thr 405	Ile	Glu	Ser	Ile	Ser 410	Ala	Val	Lys	His	Leu 415	Leu
2,7	Pro	Asp	Phe	Ala 420	Leu	Asp	Ala	Leu	Lys 425	Glu	Arg	Ile	Asn	Glu 430	Leu	Phe
30	Lys	Gly	Ile 435	Lys	Ser	Phe	Ile	Glu 440	Lys	Val	Tyr	Asp	Ser 445	Ile	Asp	Asn
	Glu	Ile 450	Leu	Glu	Ile	Phe	Lys 455	Asn	Ile	Asp	His	Asp 460	Phe	Arg	Asp	Gly
35	Val 465	Ser	Glu	Glu	Met	Met 470										
40	<213 <213	0> 27 L> 30 2> PE 3> St	06 RT	yloco	occus	s au	reus									
45)> 27 Lys		Lys	Asp 5	Gly	Thr	Gln	Gln	Phe 10	Tyr	His	Tyr	Ala	Ser 15	Ser
50	Val	Гуs	Pro	Ala 20	Arg	Val	Ile	Phe	Thr 25	Asp	Ser	Lys	Pro	Glu 30	Ile	Glu
50	Leu	Gly	Leu 35	Gln	Ser	Gly	Gln	Phe 40	Trp	Arg	Lys	Phe	Glu 45	Val	.Tyr	Glu
55	Gly	Asp 50	Lys	Lys	Leu	Pro	Ile 55	Lys	Leu	Val	Ser	Туг 60	Asp	Thr	Val	Lys
	Asp 65	Tyr	Ala	Tyr	Ile	Arg 70	Phe	Ser	Val	Ser	Asn 75	Gly	Thr	Lys	Ala	Val 80
60	Lys	Ile	Val	Ser	Ser 85	Thr	His	Phe	Asn	Asn 90	Lys	Glu	Glu	Lys	Tyr 95	Asp
	Tyr	Thr	Leu	Met	Glu	Phe	Ala	Gln	Pro	Ile	Tyr	Asn	Ser	Ala	Asp	Lys

105 110 Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr 120 5 Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu 10 Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr 15 Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln 185 Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met 20 Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp 25 230 Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys 30 Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly 35 Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala His Thr Asp 40 305 <210> 28 <211> 2659 45 <212> PRT <213> Staphylococcus aureus <400> 28 Asp Gln Thr Thr Ile Ile Asn Ser Leu Thr Phe Thr Glu Thr Val Pro 50 Asn Arg Ser Tyr Ala Arg Ala Ser Ala Asn Glu Ile Thr Ser Lys Thr Val Ser Asn Val Ser Arg Thr Gly Asn Asn Ala Asn Val Thr Val Thr 55 Val Thr Tyr Gln Asp Gly Thr Thr Ser Thr Val Thr Val Pro Val Lys 60 His Val Ile Pro Glu Ile Val Ala His Ser His Tyr Thr Val Gln Gly

	Gln	Asp	Phe	Pro	Ala 85	Gly	Asn	Gly	Ser	Ser 90	Ala	Ser	Asp	Tyr	Phe 95	Lys
5	Leu	Ser	Asn	Gly 100	Ser	Asp	Ile	Ala	Asp 105	Ala	Thr	Ile	Thr	Trp 110	Val	Ser
	Gly	Gln	Ala 115	Pro	Asn	Lys	Asp	Asn 120	Thr	Arg	Ile	Gly	Glu 125	Asp	Ile	Thr
10	Val	Thr 130	Ala	His	Ile	Leu	Ile 135	Asp	Gly	Glu	Thr	Thr 140	Pro	Ile	Thr	Lys
15	Thr 145	Ala	Thr	Tyr	Lys	Val 150	Val	Arg	Thr	Val	Pro 155	Гуз	His	Val	Phe	Glu 160
13	Thr	Ala	Arg	Gly	Val 165	Leu	Tyr	Pro	Gly	Val 170	Ser	Asp	Met	Tyr	Asp 175	Ala
20	Lys	Gln	Tyr	Val 180	Lys	Pro	Val	Asn	Asn 185	Ser	Trp	Ser	Thr	Asn 190	Ala	Gln
	His	Met	Asn 195	Phe	Gln	Phe	Val	Gly 200	Thr	Tyr	Gly	Pro	Asn 205	Lys	Asp	Val
25	Val	Gly 210	Ile	Ser	Thr	Arg	Leu 215	Ile	Arg	Val	Thr	Tyr 220	Asp	Asn	Arg	Gln
30	Thr 225	Glu	Asp	Leu	Thr	Ile 230	Leu	Ser	Lys	Val	Lys 235	Pro	Asp	Pro	Pro	Arg 240
	Ile	Asp	Ala	Asn	Ser 245	Val	Thr	Tyr	Lys	Ala 250	Gly	Leu	Thr	Asn	Gln 255	Glu
35	Ile	Lys	Val	Asn 260	Asn	Val	Leu	Asn	Asn 265	Ser	Ser	Val	Lys	Leu 270	Phe	Lys
	Ala	Asp	Asn 275	Thr	Pro	Leu	Asn	Val 280	Thr	Asn	Ile	Thr	His 285	Gly	Ser	Gly
40	Phe	Ser 290	Ser	Val	Val	Thr	Val 295	Ser	Asp	Ala	Leu	Pro 300	Asn	Gly	Gly	Ile
45	Lys 305	Ala	Lys	Ser	Ser	Ile 310	Ser	Met	Asn	Asn	Val 315	Thr	Tyr	Thr	Thr	Gln 320
	Asp	Glu	His	Gly	Gln 325	Val	Val	Thr	Val	Thr 330	Arg	Asn	Glu	Ser	Val 335	Asp
50	Ser	Asn	Asp	Ser 340	Ala	Thr	Val	Thr	Val 345	Thr	Pro	Gln	Leu	Gln 350	Ala	Thr
	Thr	Glu	Gly 355	Ala	Val	Phe	Ile	Lys 360	Gly	Gly	Asp	Gly	Phe 365	Asp	Phe	Gly
55	His	V al 370	Glu	Arg	Phe	Ile	Gln 375	Asn	Pro	Pro	His	Gly 380	Ala	Thr	Val	Ala
60	Trp 385	His	Asp	Ser	Pro	Asp 390	Thr	Trp	Lys	Asn	Thr 395	Val	Gly	Asn	Thr	His 400
- -	ГÀЗ	Thr	Ala	Val	Val 405	Thr	Leu	Pro	Asn	Gly 410	Gln	Gly	Thr	Arg	Asn 415	Val

	Glu	Val	Pro	Val 420	Lys	Val	Tyr	Pro	Val 425	Ala	Asn	Ala	Lys	Ala 430	Pro	Ser
5	Arg	Asp	Val 435	Lys	Gly	Gln	Asn	Leu 440	Thr	Asn	Gly	Thr	Asp 445	Ala	Met	Asn
	Tyr	Ile 450	Thr	Phe	Asp	Pro	Asn 455	Thr	Asn	Thr	Asn	Gly 460	Ile	Thr	Ala	Ala
10	Trp 465	Ala	Asn	Arg	Gln	Gln 470	Pro	Asn	Asn	Gln	Gln 475	Ala	Gly	Val	Gln	His 480
15	Leu	Asn	Val	Asp	Val 485	Thr	Tyr	Pro	Gly	Ile 490	Ser	Ala	Ala	Lys	Arg 495	Val
	Pro	Val	Thr	Val 500		Val	Tyr	Gln	Phe 505	Glu	Phe	Pro	Gln	Thr 510	Thr	Tyr
20	Thr	Thr	Thr 515	Val	Gly	Gly	Thr	Leu 520	Ala	Ser	Gly	Thr	Gln. 525	Ala	Ser	Gly
	Tyr	Ala 530	His	Met	Gln	Asn	Ala 535	Thr	Gly	Leu	Pro	Thr 540	Asp	Gly	Phe	Thr
25	Tyr 545	Lys	Trp	Asn	Arg	Asp 550	Thr	Thr	Gly	Thr	Asn 555	Asp	Ala	Asn	Trp	Ser 560
30	Ala	Met	Asn	Lys	Pro 565	Asn	Val	Ala	Lys	Val 570	Val	Asn	Ala	Lys	Tyr 575	Asp
	Val	Ile	Tyr	Asn 580	Gly	Hìs	Thr	Phe	Ala 585	Thr	Ser	Leu	Pro	Ala 590	Lys	Phe
35	Val	Val	Lys 595	Asp	Val	Gln	Pro	Ala 600	Lys	Pro	Thr	Val	Thr 605	Glu	Thr	Ala
	Ala	Gly 610	Ala	Ile	Thr	Ile	Ala 615	Pro	Gly	Ala	Asn	Gln 620	Thr	Val	Asn	Thr
40	His 625	Ala	Gly	Asn	Val	Thr 630	Thr	Tyr	Ala	Asp	Lys 635	Leu	Val	Ile	Lys	Arg 640
45	Asn	Gly	Asn	Val	Val 645	Thr	Thr	Phe	Thr	Arg 650	Arg	Asn	Asn	Thr	Ser 655	Pro
	Trp	Val	Lys	Glu 660	Ala	Ser	Ala	Ala	Thr 665	Val	Ala	Gly	Ile	Ala 670	Gly	Thr
50	Asn ·	Asn	Gly 675	Ile	Thr	Val	Ala	Ala 680	Gly	Thr	Phe	Asn	Pro 685	Ala	Asp	Thr
	Ile	Gln 690	Val	Val	Ala	Thr	Gln 695	Gly	Ser	Gly	Glu	Thr 700	Val	Ser	Asp	Glu
55	Gln 705	Arg	Ser	Asp	Asp	Phe 710	Thr	Val	Va1	Ala	Pro 715	Gln	Pro	Asn	Gln	Ala 720
60	Thr	Thr	Lys	Ile	Trp 725	Gln	Asn	Gly	His	Ile 730	Asp	Ile	Thr	Pro	Asn 735	Asn
	Pro	Ser	Gly	His 740	Leu	Ile	Asn	Pro	Thr 745	Gln	Ala	Met	Asp	Ile 750	Ala	Tyr

	Thr	Glu	Lys 755	Val	Gly	Asn	Gly	Ala 760	Glu	His	Ser	Lys	Thr 765	Ile	Asn	Val
5	Val	Arg 770	Gly	Gln	Asn	Asn	Gln 775	Trp	Thr	Ile	Ala	Asn 780	Lys	Pro	Asp	Tyr
	Val 785	Thr	Leu	Asp	Ala	Gln 790	Thr	Gly	Lys	Val	Thr 795	Phe	Asn	Ala	Asn	Thr 800
10	Ile	Lys	Pro	Asn	Ser 805	Ser	Ile	Thr	Ile	Thr 810	Pro	Lys	Ala	Gly	Thr 815	Gly
15	His	Ser	Val	Ser 820	Ser	Asn	Pro	Ser	Thr 825	Leu	Thr	Ala	Pro	Ala 830	Ala	His
13	Thr	Val	Asn 835	Thr	Thr	Glu	Ile	Val 840	Lys	Asp	Tyr	Gly	Ser 845	Asn	Val	Thr
20	Ala	Ala 850	Glu	Ile	Asn	Asn	Ala 855	Val	Gln	Val	Ala	Asn 860	Lys	Arg	Thr	Ala
	Thr 865	Ile	Lys	Asn	Gly	Thr 870	Ala	Met	Pro	Thr	Asn 875	Leu	Ala	Gly	Gly	Ser 880
25	Thr	Thr	Thr	Ile	Pro 885	Val	Thr	Val	Thr	Tyr 890	Asn	Asp	Gly	Ser	Thr 895	Glu
30	Glu	Val	Gln	Glu 900	Ser	Ile	Phe	Thr	Lys 905	Ala	Asp	Lys	Arg	Glu 910	Leu	Ile
	Thr	Ala	Lys 915	Asn	His	Leu	Asp	Asp 920	Pro	Val	Ser	Thr	Glu 925	Gly	ГÄг	Lys
35	Pro	Gly 930	Thr	Ile	Thr	Gln	Tyr 935	Asn	Asn	Ala	Met	His 940	Asn	Ala	Gln	Gln
	Gln 945	Ile	Asn	Thr	Ala	Lys 950	Thr	Glu	Ala	Gln	Gln 955	Val	Ile	Asn	Asn	Glu 960
40	Arg	Ala	Thr	Pro	Gln 965	Gln	Val	Ser	Asp	Ala 970	Leu	Thr	Lys	Val	Arg 975	Ala
45	Ala	Gln	Thr	Lys 980	Ile	Asp	Gln	Ala	Lys 985	Ala	Leu	Leu	Gln	Asn 990	Lys	Glu
	Asp	Asn	Ser 995	Gln	Leu	Val		Ser L000	Lys	Asn	Asn		Gln L005	Ser	Ser	Val
50		Gln L010	Val	Pro	Ser		Ala L015	Gly	Met	Thr		Gln 1020	Ser	Ile	Asp	Asn
	Tyr 1025	-	Ala	Lys		Arg 1030	Glu	Ala	Glu		Glu 1035	Ile	Thr	Ala		Gln LO40
55	Arg	Val	Ile	Asp	Asn 1045	Gly	Asp	Ala		Ala 1050	Gln	Gln	Ile		Asp 1055	Glu
60	Lys	His	_	Val 1060	Asp	Asn	Ala		Thr 1065	Ala	Leu	Asn		Ala 1070	Lys	His
	Asp		Thr	Ala	Asp	Thr		Ala 1080		Glu	Gln		Val 1085	Gln	Gln	Leu

		1090	Thr	стА			1095	GIĀ	гуз	гдз		Ala 1100	Ser	IIe	Thr	Ala
5	Tyr 1105		Asn	Ser		Arg 1110	Ala	Leu	Gln		Asp 1115	Leu	Thr	Ser		Lys 1120
	Asn	Ser	Ala	Asn	Ala 1125	Ile	Ile	Gln		Pro L130	Ile	Arg	Thr		Gln L135	Glu
10	Val	Gln	Ser	Ala 1140	Leu	Thr	Asn		Asn 1145	Arg	Val	Asn		Arg L150	Leu	Thr
15	Gln		Ile 1155	Asn	Gln	Leu		Pro L160	Leu	Ala	Asp		Ser L165	Ala	Leu	Lys
13		Ala 170	Lys	Thr	Lys		Asp 1175	Glu	Glu	Ile		Lys 1180	Ser	Val	Thr	Thr
20	Asp 1185		Met	Thr		Ser l190	Ser	Ile	Gln		Tyr L195	Glu	Asn	Ala	_	Arg 1200
	Ala	Gly	Gln		Glu L205	Ser	Thr	Asn		Gln 1210	Asn	Val	Ile		Asn L215	Gly
25	Asp	Ala	Thr	Asp 1220	Gln	Gln	Ile		Ala 225	Glu	Lys	Thr		Val 230	Glu	Glu
30 ·	Lys		Asn 1235	Ser	Leu	Lys		Ala 1240	Ile	Ala	Gly		Thr L245	Pro	Asp	Leu
		Pro 1250	Leu	Gln	Thr		Lys 1255	Thr	Gln	Leu		Asn L260	Asp	Ile	Asp	Gln
35	Pro 1265		Ser	Thr		Gly 1270	Met	Thr	Ser		Ser L275	Ile	Ala	Ala		Asn 1280
	Glu	Lys	Leu		Ala 1285	Ala	Arg	Thr		Ile 1290	Gln	Glu	Ile	-	Arg L295	Val
40	Leu	Ala	Ser 1	His 1300	Pro	Asp	Val		Thr 1305	Ile	Arg	Gln		Val 1310	Thr	Ala
45	Ala		Ala 1315	Ala	Lys	Ser		Leu 1320	Asp	Gln	Ala		Asn 1325	Gly	Leu	Thr
TJ		Asp .330	Lys	Ala	Pro		Glu 1335	Asn	Ala	Lys		Gln 1340	Leu	Gln	Tyr	Ser
50	Ile 1345		Thr	Gln		Ser L350	Thr	Thr	Gly		Thr L355	Gln	Asp	Ser		Asn 1360
	Ala	Tyr	Asn		Lys 1365	Leu	Thr	Ala		Arg 1370	Asn	Lys	Ile		Gln 1375	Ile
55	Asn	Gln	Val	Leu 1380	Ala	Gly	Ser		Thr 1385	Val	Glu	Gln		Asn 1390	Thr	Asn
6 0	Thr		Thr 1395	Ala	Asn	Gln		Lys L400	Ser	Asp	Leu		His L405	Ala	Arg	Gln
60		Leu .410	Thr	Pro	Asp		Ala 1415	Pro	Leu	Gln		Ala L420	Lys	Thr	Gln	Leu

	Glu Gl 1425	ln	Ser	Ile		Gln 1430	Pro	Thr	Asp		Thr 1435	Gly	Met	Thr		Ala 1440
5	Ser Le	eu .	Asn		Tyr .445	Asn	Gln	Lys		Gln L450	Ala	Ala	Arg		Lys l455	Leu
	Thr G	lu		Asn .460	Gln	Val	Leu		Gly 1465	Asn	Pro	Thr		Gln L470	Asn	Ile
10	Asn As		Lys 475	Val	Thr	Glu		Asn 480	Gln	Ala	Lys		Gln 1485	Leu	Asn	Thr
15	Ala Ar 149		Gln	Gly	Leu		Leu 1495	Asp	Arg	Gln		Ala 1500	Leu	Thr	Thr	Leu
13	His Gl 1505	ly i	Ala	Ser		Leu .510	Asn	Gln	Ala		Gln 515	Asn	Asn	Phe		Gln 1520
20	Gln Il	Le .	Asn		Ala .525	Gln	Asn	His		Ala 1530	Leu	Glu	Thr		Lys 1535	Ser
	Asn Il	le '		Ala 540	Leu	Asn	Thr		Met .545	Thr	Lys	Leu	-	Asp 1550	Ser	Val
25	Ala As		Asn 555	Asn	Thr	Ile		Ser .560	Asp	Gln	Asn	_	Thr 1565	Asp	Ala	Thr
30	Pro Al 157		Asn	Lys	Gln		Tyr .575	Asp	Asn	Ala		Asn 1580	Ala	Ala	Lys	Gly
	Val Il 1585	Le (Gly	Glu		Thr .590	Asn	Pro	Thr		Asp .595	Val	Asn	Thr		Asn 1600
35	Gln Ly	/s i	Ala		Ser 605	Val	Lys	Ser		Lys .610	Asp	Ala	Leu	_	Gly 1615	Gln
	Gln As	n I		Gln 620	Arg	Ala	Lys		Glu .625	Ala	Thr	Asn		Ile 630	Thr	His
40	Ala Se		Asp 635	Leu	Asn	Gln		Gln .640	Lys	Asn	Ala		Thr 1645	Gln	Gln	Val
45	Asn Se 165		Ala	Gln	Asn		Gln .655	Ala	Val	Asn		Ile 1660	Lys	Gln	Thr	Thr
	Gln Se 1665	er 1	Leu	Asn		Ala .670	Met	Thr	Gly		Lys .675	Arg	Gly	Val		Asn 1680
50	His As	n (Gln		Val .685	Gln	Ser	Asp	_	Tyr .690	Val	Asn	Ala	-	Thr 1695	Asn
	Lys Ly	s i		Asp 700	Tyr	Asn	Asn		Tyr .705	Asn	His	Ala		Asp 1710	Ile	Ile
55	Asn Gl		Asn 715	Ala	Gln	His		Val .720	Ile	Thr	Pro	_	Asp 1725	Val	Asn	Asn
60	Ala Le 173		Ser	Asn	Val		Ser .735	Lys	Glu	His		Leu 1740	Asn	Gly	Glu	Ala
- -	Lys Le 1745	eu Z	Asn	Ala		Lys .750	Gln	Glu	Ala		Thr .755	Ala	Leu	Gly		Leu 1760

	Asn	Asn	Leu	Asn	Asn 1765	Ala	Gln	Arg		Asn 1770	Leu	Gln	Ser		Ile 1775	Asn
5	Gly	Ala	His	Gln 1780	Ile	Asp	Ala		Asn 1785	Thr	Ile	Lys		Asn L790	Ala	Thr
	Asn	Leu	Asn 1795	Ser	Ala	Met		Asn 0081	Leu	Arg	Gln		Val 1805	Ala	Asp	Lys
10	Asp	Gln 1810	Val	Lys	Arg		Glu 1815	Asp	Tyr	Ala		Ala 1820	Asp	Thr	Ala	Lys
15	Gln 182		Ala	Tyr		Ser 1830	Ala	Val	Ser		Ala 1835	Glu	Thr	Ile		Asn 1840
13	Gln	Thr	Thr	Asn	Pro 1845	Thr	Met	Ser		Asp 1850	Asp	Val	Asn		Ala 1855	Thr
20	Ser	Ala		Thr 1860	Ser	Asn	Lys		Ala 1865	Leu	Asn	Gly		Glu 1870	Lys	Leu
	Ala		Ser 1875	Lys	Thr	Asp		Ala 1880	Arg	Ala	Ile		Ala 1885	Leu	Pro	His
25		Asn 1890	Asn	Ala	Gln		Ala 1895	Asp	Val	Lys		Lys 1900	Ile	Asn	Ala	Ala
30	Ser 190		Ile	Ala		Val 1910	Asn	Thr	Val		Gln 1915	Gln	Gly	Thr		Leu 1920
50	Asn	Thr	Ala	Met 1	Gly 1925	Asn	Leu	Gln		Ala 1930	Ile	Asn	Asp		Gln 1935	Thr
35	Thr	Leu		Ser 1940	Gln	Asn	Tyr		Asp 1945	Ala	Thr	Pro		Lys .950	Lys	Thr
	Ala		Thr 1955	Asn	Ala	Val		Ala .960	Ala	Lys	Asp		Leu .965	Asn	Lys	Ser
40	Asn :	Gly 1970	Gln	Asn	Lys		Lys 1975	Asp	Gln	Val		Glu 1980	Ala	Met	Asn	Gln
45	Val 1985	Asn 5	Ser	Ala		Asn 1990	Asn	Leu	Asp		Thr 1995	Arg	Leu	Leu		Gln 2000
.5	Ala	Lys	Gln	Thr 2	Ala 2005	Lys	Gln	Gln		Asn 2010	Asn	Met	Thr		Leu 2015	Thr
50	Thr	Ala		Lys 2020	Thr	Asn	Leu		Asn 2025	Gln	Ile	Asn		Gly 2030	Thr	Thr
	Val		Gly 2035	Val	Gln	Thr	Val 2	Gln 2040	Ser	Asn	Ala		Thr 2045	Leu	Asp	Gln
55		Met 2050	Asn	Thr	Leu		Gln 2055	Ser	Ile	Ala	_	Lys 2060	Asp	Ala	Thr	Lys
50	Ala 2065		Glu	Asp	Tyr 2	Val 2070	Asp	Ala	Asn		Asp 2075	Lys	Gln	Thr		Tyr 2080
JU	Asn	Asn	Ala	Val	Ala 2085	Ala	Ala	Glu		Ile 2090	Ile	Asn	Ala		Ser 2095	Asn

	Pro	Glu	Met	Asn 2100	Pro	Ser	Thr		Thr 2105	Gln	Lys	Ala		Gln 2110	Val	Asn
5	Ser	Ser	Lys 2115	Thr	Ala	Leu		Gly 2120	Asp	Glu	Asn		Ala 2125	Ala	Ala	Lys
	Gln 2	Asn 2130	Ala	Lys	Thr		Leu 2135	Asn	Thr	Leu		Ser 2140	Ile	Thr	Asp	Ala
10	Gln 2145		Asn	Asn		Ile 2150	Ser	Gln.	Ile		Ser 2155	Ala	Thr	Arg		Ser 2160
15	Gly	Val	Asp	Thr	Val 2165	Lys	Gln	Asn		Gln 2170	His	Leu	Asp		Ala 2175	Met
13	Ala	Ser		Gln 2180	Asn	Gly	Ile		Asn 2185	Glu	Ser	Gln		Lys 2190	Ser	Ser
20	Glü		Tyr 2195	Arg	Asp	Ala		Thr 2200	Asn	Lys	Gln		Glu 2205	Tyr	Asp	Asn
		Ile 2210	Thr	Ala	Ala		Ala 2215	Ile	Leu	Asn		Ser 2220	Thr	Gly	Pro	Asn
25	Thr 2225		Gln	Asn		Val 2230	Glu	Ala	Ala _.		Gln 2235	Arg	Val	Asn		Ala 2240
30	Lys	Asp	Ala	Leu 2	Asn 2245	Gly	Asp	Ala		Leu 2250	Ile	Ala	Ala		Asn 2255	Ala
	Ala	Lys		His 2260	Leu	Gly	Thr		Thr 2265	His	Ile	Thr		Ala 2270	Gln	Arg
35	Asn		Leu 2275	Thr	Asn	Gln		Ser 2280	Gln	Ala	Thr		Leu 2285	Ala	Gly	Val
		Ser 2290	Val	Lys	Gln		Ala 2295	Asn	Ser	Leu		Gly 2300	Ala	Met	Gly	Asn
40	Leu 2305	Gln	Thr	Ala		Asn 2310	Asp	Lys	Ser		Thr 2315	Leu	Ala	Ser		Asn 2320
45	Phe	Leu	Asp	Ala 2	Asp 2325	Glu	Gln	Lys		Asn 2330	Ala	Tyr	Asn		Ala 2335	Val
	Ser	Ala		Glu 2340	Thr	Ile	Leu		Lys 2345	Gln	Thr	Gly		Asn 2350	Thr	Ala
50	Lys		Ala 2355	Val	Glu	Gln		Leu 2360	Asn	Asn	Val		Asn 2365	Ala	Lys	His
		Leu 2370	Asn	Gly	Thr		Asn 2375	Leu	Asn	Asn		Lys 2380	Gln	Ala	Ala	Ile
55	Thr 2385		Ile	Asn		Ala 2390	Ser	Asp	Leu		Gln 2395	Lys	Gln	Lys		Ala 2400
60	Leu	Lys	Ala	Gln 2	Ala 2405	Asn	Gly	Ala		Arg 2410	Val	Ser	Asn		Gln 2415	Asp
-	Val	Gln		Asn 2420	Ala	Thr	Glu		Asn 2425	Thr	Ala	Met		Thr 2430	Leu	Lys

	His	Ala	Ile 2435	Ala	Asp	Lys	Thr	Asn 2440	Thr	Leu	Ala		Ser 2445	Lys	Tyr	Val
5	Asn	Ala 2450	Asp	Ser	Thr		Gln 2455	Asn	Ala	Tyr		Thr 2460	Lys	Val	Thr	Asn
	Ala 246	Glu 5	His	Ile		Ser 2470	Gly	Thr	Pro	Thr	Val 2475	Val	Thr	Thr		Ser 2480
10	Glu	Val	Thr		Ala 2485	Ala	Asn	Gln		Asn 2490	Ser	Ala	Lys		Glu 2495	Leu
	Asn	Gly	Asp	Glu 2500	Arg	Leu	Arg		Ala 2505	Lys	Gln	Asn		Asn 2510	Thr	Ala
15	Ile		Ala 2515	Leu	Thr	Gln		Asn 2520	Thr	Pro	Gln		Ala 2525	Lys	Leu	Lys
20		Gln 2530	Val	Gly	Gln		Asn 2535	Arg	Leu	Glu		Val 2540	Gln	Thr	Val	Gln
	Thr 254	Asn 5	Gly	Gln		Leu 2550	Asn	Asn	Ala		Lys 2555	Gly	Leu	Arg		Ser 2560
25	Ile	Ala	Ásn	Glu	Thr 2565	Thr	Val	Lys		Ser 2570	Gln	Asn	Tyr		Asp 2575	Ala
	Ser	Pro	Asn	Asn 2580	Gln	Ser	Thr		Asn 2585	Ser	Ala	Val		Asn 2590	Ala	Lys
30	Gly		Ile 2595	Asn	Gln	Thr		Asn 2600	Pro	Thr	Met	_	Thr 2605	Ser	Ala	Ile
35		Gln 2610	Ala	Thr	Thr		Val 2615	Asn	Asn	Ala		Asn 2620	Gly	Leu	Asn	Gly
	Ala 262	Glu 5	Asn	Leu		Asn 2630	Ala	Gln	Asn		Ala 2635	Lys	Gln	Asn		Asn 2640
40	Thr	Leu	Ser		Leu 2645	Thr	Asn	Asn	Gln	Lys 2650	Ser	Ala	Ile		Ser 2655	Gln
	Ile	Asp	Arg													
45												٠				
50	<212 <212	0> 29 1> 49 2> PI 3> St	96	yloco	occus	s au	ceus									
		0> 29														
55	Met 1	Asn	Met	Lys	Lys 5	Lys	Glu	Lys	His	Ala 10	Ile	Arg	Lys	Lys	Ser 15	Ile
	Gly	Val	Ala	Ser 20	Val	Leu	Val	Gly	Thr 25	Leu	Ile	Gly	Phe	Gly 30	Leu	Leu
60	Ser	Ser	Lys 35	Glu	Ala	Asp	Ala	Ser 40	Glu	Asn	Ser	Val	Thr 45	Gln	Ser	Asp
	Ser	Ala 50	Ser	Asn	Glu	Ser	Lys 55	Ser	Asn	Asp	Ser	Ser 60	Ser	Val	Ser	Ala

	Ala 65	Pro	Lys	Thr	Asp	Asp 70	Thr	Asn	Val	Ser	Asp 75	Thr	Lys	Thr	Ser	Ser 80
5	Asn	Thr	Asn	Asn	Gly 85	Glu	Thr	Ser	Val	Ala 90	Gln	Asn	Pro	Ala	Gln 95	Gln
10	Glu	Thr	Thr	Gln 100	Ser	Ser	Ser	Thr	Asn 105	Ala	Thr	Thr	Glu	Glu 110	Thr	Pro
10	Val	Thr	Gly 115	Glu	Ala	Thr	Thr	Thr 120	Thr	Thr	Asn	Gln	Ala 125	Asn	Thr	Pro
15	Ala	Thr 130	Thr	Gln	Ser	Ser	Asn 135	Thr	Asn	Ala	Glu	Glu 140	Leu	Val	Asn	Gln
	Thr 145	Ser	Asn	Glu	Thr	Thr 150	Phe	Asn	Asp	Thr	Asn 155	Thr	Val	Ser	Ser	Val 160
20	Asn	Ser	Pro	Gln	Asn 165	Ser	Thr	Asn	Ala	Glu 170	Asn	Val	Ser	Thr	Thr 175	Gln
25	Asp	Thr	Ser	Thr 180	Glu	Ala	Thr	Pro	Ser 185	Asn	Asn	Glu	Ser	Ala 190	Pro	Gln
	Ser	Thr	Asp 195	Ala	Ser	Asn	Lys	Asp 200	Val	Val	Asn	Gln	Ala 205	Val	Asn	Thr
30	Ser	Ala 210	Pro	Arg	Met	Arg	Ala 215	Phe	Ser	Leu	Ala	Ala 220	Val	Ala	Ala	Asp
	Ala 225	Pro	Ala	Ala	Gly	Thr 230	Asp	Ile	Thr	Asn	Gln 235	Leu	Thr	Asn	Уаl	Thr 240
35					245			Thr		250					255	
40	•			260				Ser	265					270	_	
			275					Pro 280					285		_	
45		290					295	Pro				300				
~ ^	305					310		Asp			315					320
50					325			Asp		330					335	
55	Ala	Tyr	Ile	Asp 340	Pro	Glu	Asn	Val	Lys 345	Lys	Thr	Gly	Asn	Val 350	Thr	Leu
	Ala	Thr	Gly 355	Ile	Gly	Ser	Thr	Thr 360	Ala	Asn	Lys	Thr	Val 365	Leu	Val	Asp
60		370					375	Tyr				380				
	Asp 385	Gln	Ile	Asp	Lys	Thr 390	Asn	Asn	Thr	Tyr	Arg 395	Gln	Thr	Ile	Tyr	Val 400

Asn Pro Ser Gly Asp Asn Val Ile Ala Pro Val Leu Thr Gly Asn Leu Lys Pro Asn Thr Asp Ser Asn Ala Leu Ile Asp Gln Gln Asn Thr Ser 425 Ile Lys Val Tyr Lys Val Asp Asn Ala Ala Asp Leu Ser Glu Ser Tyr 10 Phe Val Asn Pro Glu Asn Phe Glu Asp Val Thr Asn Ser Val Asn Ile Thr Phe Pro Asn Pro Asn Gln Tyr Lys Val Glu Phe Asn Thr Pro Asp 15 Asp Gln Ile Thr Thr Pro Tyr Ile Val Val Val Asn Gly His Ile Asp 20 <210> 30 25 <211> 541 <212> PRT <213> Staphylococcus aureus <400> 30 30 Asp Gln Tyr Leu Leu Glu Arg Lys Lys Ser Gln Tyr Glu Asp Tyr Lys Gln Trp Tyr Ala Asn Tyr Lys Lys Glu Asn Pro Arg Thr Asp Leu Lys 35 Met Ala Asn Phe His Lys Tyr Asn Leu Glu Glu Leu Ser Met Lys Glu Tyr Asn Glu Leu Gln Asp Ala Leu Lys Arg Ala Leu Asp Asp Phe His 40 Arg Glu Val Lys Asp Ile Lys Asp Lys Asn Ser Asp Leu Lys Thr Phe Asn Ala Ala Glu Glu Asp Lys Ala Thr Lys Glu Val Tyr Asp Leu Val Ser Glu Ile Asp Thr Leu Val Val Ser Tyr Tyr Gly Asp Lys Asp Tyr 105 50 Gly Glu His Ala Lys Glu Leu Arg Ala Lys Leu Asp Leu Ile Leu Gly Asp Thr Asp Asn Pro His Lys Ile Thr Asn Glu Arg Ile Lys Lys Glu 55 Met Ile Asp Asp Leu Asn Ser Ile Ile Asp Asp Phe Phe Met Glu Thr 60 Lys Gln Asn Arg Pro Lys Ser Ile Thr Lys Tyr Asn Pro Thr Thr His Asn Tyr Lys Thr Asn Ser Asp Asn Lys Pro Asn Phe Asp Lys Leu Val

185 190 180 Glu Glu Thr Lys Lys Ala Val Lys Glu Ala Asp Asp Ser Trp Lys Lys 5 Lys Thr Val Lys Lys Tyr Gly Glu Thr Glu Thr Lys Ser Pro Val Val Lys Glu Glu Lys Lys Val Glu Glu Pro Gln Ala Pro Lys Val Asp Asn 10 235 Gln Gln Glu Val Lys Thr Thr Ala Gly Lys Ala Glu Glu Thr Thr Gln Pro Val Ala Gln Pro Leu Val Lys Ile Pro Gln Gly Thr Ile Thr Gly Glu Ile Val Lys Gly Pro Glu Tyr Pro Thr Met Glu Asn Lys Thr Val 280 20 Gln Gly Glu Ile Val Gln Gly Pro Asp Phe Leu Thr Met Glu Gln Ser Gly Pro Ser Leu Ser Asn Asn Tyr Thr Asn Pro Pro Leu Thr Asn Pro 25 . 310 Ile Leu Glu Gly Leu Glu Gly Ser Ser Lys Leu Glu Ile Lys Pro 325 . 330 30 Gln Gly Thr Glu Ser Thr Leu Lys Gly Thr Gln Gly Glu Ser Ser Asp Ile Glu Val Lys Pro Gln Ala Thr Glu Thr Thr Glu Ala Ser Gln Tyr 360 35 Gly Pro Arg Pro Gln Phe Asn Lys Thr Pro Lys Tyr Val Lys Tyr Arg Asp Ala Gly Thr Gly Ile Arg Glu Tyr Asn Asp Gly Thr Phe Gly Tyr 40 390 Glu Ala Arg Pro Arg Phe Asn Lys Pro Ser Glu Thr Asn Ala Tyr Asn 45 Val Thr Thr His Ala Asn Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr 425 Tyr Lys Lys Pro Ser Glu Thr Asn Ala Tyr Asn Val Thr Thr His Ala 50 Asn Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr Gln Asn Lys Pro Ser 455 Lys Thr Asn Ala Tyr Asn Val Thr Thr His Gly Asn Gly Gln Val Ser 55 Tyr Gly Ala Arg Gln Ala Gln Asn Lys Pro Ser Lys Thr Asn Ala Tyr 60 Asn Val Thr Thr His Ala Asn Gly Gln Val Ser Tyr Gly Ala Arg Pro 505 Thr Tyr Lys Lys Pro Ser Lys Thr Asn Ala Tyr Asn Val Thr Thr His

515 520 525 Ala Asp Gly Thr Ala Thr Tyr Gly Pro Arg Val Thr Lys 535 5 <210> 31 <211> 356 <212> PRT <213> Staphylococcus aureus <400> 31 Met Lys Met Arg Thr Ile Ala Lys Thr Ser Leu Ala Leu Gly Leu Leu 15 Thr Thr Gly Ala Ile Thr Val Thr Thr Gln Ser Val Lys Ala Glu Lys Ile Gln Ser Thr Lys Val Asp Lys Val Pro Thr Leu Lys Ala Glu Arg 20 40 Leu Ala Met Ile Asn Ile Thr Ala Gly Ala Asn Ser Ala Thr Thr Gln 25 Ala Ala Asn Thr Arg Gln Glu Arg Thr Pro Lys Leu Glu Lys Ala Pro 65 70 75 80 Asn Thr Asn Glu Glu Lys Thr Ser Ala Ser Lys Ile Glu Lys Ile Ser 30 Gln Pro Lys Gln Glu Glu Gln Lys Thr Leu Asn Ile Ser Ala Thr Pro Ala Pro Lys Gln Glu Gln Ser Gln Thr Thr Thr Glu Ser Thr Thr Pro 35 120 Lys Thr Lys Val Thr Thr Pro Pro Ser Thr Asn Thr Pro Gln Pro Met Gln Ser Thr Lys Ser Asp Thr Pro Gln Ser Pro Thr Ile Lys Gln Ala 150 155 Gln Thr Asp Met Thr Pro Lys Tyr Glu Asp Leu Arg Ala Tyr Tyr Thr 45 Lys Pro Ser Phe Glu Phe Glu Lys Gln Phe Gly Phe Met Leu Lys Pro Trp Thr Thr Val Arg Phe Met Asn Val Ile Pro Asn Arg Phe Ile Tyr 50 Lys Ile Ala Leu Val Gly Lys Asp Glu Lys Lys Tyr Lys Asp Gly Pro 55 Tyr Asp Asn Ile Asp Val Phe Ile Val Leu Glu Asp Asn Lys Tyr Gln 235 Leu Lys Lys Tyr Ser Val Gly Gly Ile Thr Lys Thr Asn Ser Lys Lys 250 60 Val Asn His Lys Val Glu Leu Ser Ile Thr Lys Lys Asp Asn Gln Gly

Met Ile Ser Arg Asp Val Ser Glu Tyr Met Ile Thr Lys Glu Glu Ile 280 Ser Leu Lys Glu Leu Asp Phe Lys Leu Arg Lys Gln Leu Ile Glu Lys 5 His Asn Leu Tyr Gly Asn Met Gly Ser Gly Thr Ile Val Ile Lys Met 10 Lys Asn Gly Gly Lys Tyr Thr Phe Glu Leu His Lys Lys Leu Gln Glu His Arg Met Ala Asp Val Ile Asp Gly Thr Asn Ile Asp Asn Ile Glu 15 Val Asn Ile Lys 355 20 <210> 32 <211> 313 <212> PRT <213> Staphylococcus aureus 25 <400> 32 Met Glu His Thr Thr Met Lys Ile Thr Thr Ile Ala Lys Thr Ser Leu Ala Leu Gly Leu Leu Thr Thr Gly Val Ile Thr Thr Thr Gln Ala 30 Ala Asn Ala Thr Thr Leu Ser Ser Thr Lys Val Glu Ala Pro Gln Ser 35 Thr Pro Pro Ser Thr Lys Ile Glu Ala Pro Gln Ser Lys Pro Asn Ala Thr Thr Pro Pro Ser Thr Lys Val Glu Ala Pro Gln Gln Thr Ala Asn 40 Ala Thr Thr Pro Pro Ser Thr Lys Val Thr Thr Pro Pro Ser Thr Asn Thr Pro Gln Pro Met Gln Ser Thr Lys Ser Asp Thr Pro Gln Ser Pro 45 Thr Thr Lys Gln Val Pro Thr Glu Ile Asn Pro Lys Phe Lys Asp Leu 50 Arg Ala Tyr Tyr Thr Lys Pro Ser Leu Glu Phe Lys Asn Glu Ile Gly Ile Ile Leu Lys Lys Trp Thr Thr Ile Arg Phe Met Asn Val Val Pro 150 155 55 Asp Tyr Phe Ile Tyr Lys Ile Ala Leu Val Gly Lys Asp Asp Lys Lys Tyr Gly Glu Gly Val His Arg Asn Val Asp Val Phe Val Val Leu Glu 60 Glu Asn Asn Tyr Asn Leu Glu Lys Tyr Ser Val Gly Gly Ile Thr Lys

	Ser	Asn 210	Ser	Lys	Lys	Val	Asp 215	His	Lys	Ala	Gly	Val 220	Arg	Ile	Thr	Lys
5	Glu 225	Asp	Asn	Lys	Gly	Thr 230	Ile	Ser	His	Asp	Val 235	Ser	Glu	Phe	Lys	Ile 240
10	Thr	Lys	Glu	Gln	Ile 245	Ser	Leu	Lys	Glu	Leu 250	Asp	Phe	Lys	Leu	Arg 255	Lys
10	Gln	Leu	Ile	Glu 260	Lys	Asn	Asn	Leu	Tyr 265	Gly	Asn	Val	Gly	Ser 270	Gly	Lys
15	Ile		Ile 275	Lys	Met	Lys		Gly 280	Gly	Lys	Tyr	Thr	Phe 285	Glu	Leu	His
	Lys	Lys 290	Leu	Gln	Glu	Asn	Arg 295	Met	Ala	Asp	Val	Ile 300	Asp	Gly	Thr	Asn
20.	Ile 305	Asp	Asn	Ile	Glu	Val 310	Asn	Ile	Lys		•					
25																
30			٠.	•												
35																
40		٠														
45																
50																
30																
55																
60																

INTERNATIONAL SEARCH REPORT

International Application No PCT/GB 01/02685

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/31 C12N15/63 G01N33/68 C07K14/31 A61K39/085 C07K16/12 C12N5/12 A61K39/40 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N G01N C07K A61K IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, EMBL, WPI Data, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X "Gamma-Hemolysin ARIFUR RAHMAN ET AL.: 1-9. genes in the same family with LukF and 18-48 lukS genes in methicillin resistant Staphylococcus aureus" BIOSCIENCE BIOTECHNOLOGY BIOCHEMISTRY., vol. 57, no. 7, 1993, pages 1234-1236, XP002177747 TOKYO JP the whole document WO 99 50418 A (NEUTEC PHARMA PLC) 1-9, A 7 October 1999 (1999-10-07) 18-49 the whole document Further documents are listed in the continuation of box C. Х Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later than the priority date clalmed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18 September 2001 19, 11, 2001 Name and mailing address of the ISA 'Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. MONTERO LOPEZ B. Fax: (+31-70) 340-3016

International application No. PCT/GB 01/02685

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Although claims 26-32 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
з	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box il	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2.	. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з	As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this international Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Partially 1-9, 18-49
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: Partially 1-9, 18-49

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:1, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

2. Claims: Partially 1-9, 18-49

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:2, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

3. Claims: Partially 1-9, 19-46

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:3, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

4. Claims: Partially 1-9, 19-46

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:4, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

5. Claims: Partially 1-9, 19-46

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:5, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

6. Claims: Partially 1-9, 18-48

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:6, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

7. Claims: Partially 1-9, 19-46

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:7, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

8. Claims: Partially 1-9, 19-46

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:8, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

9. Claims: Partially 1-9, 19-46

Staphylococcus aureus antigen encoded by a DNA sequence of

SEQ ID NO:9, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

10. Claims: Partially 1-9, 18-48

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:10, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

11. Claims: Partially 1-9, 18-48

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:11, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

12. Claims: Partially 1-9, 19-46

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:12, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

13. Claims: Partially 1-9, 19-46

Staphylococcus aureus antigen encoded by a DNA sequence of SEQ ID NO:13, DNA sequence and variants thereof; vectors and host cells comprising the same and their use for the production of the polypeptide; vaccine comprising the

antigen and its use in immunisation; antibodies directed to the antigen and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament; use of the polypeptides for preparing a hybridoma cell-line.

14. Claims: 10-17, and partially 24-46

Method to identify antigenic polypeptides by transfecting a pathogenic organism gene library into a host cell and contacting the expressed polypeptides with autologous antisera from an animal infected with the pathogenic organism; polypeptides so obtained, vaccines comprising the antigenic polypeptides and use in immunisation; antibodies directed to the antigenic polypeptides and vectors and hybridoma cells for their production; use of the antibodies for the manufacture of a medicament.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/GB 01/02685

Patent document cited in search report		Publication date		Patent family member(s)	Publication date		
WO 9950418	Α .	07-10-1999	AU EP WO	3156699 A 1068328 A1 9950418 A1	18-10-1999 17-01-2001 07-10-1999		