

SUBJECT CODE BOOKLET CODE

2012 (II) PHYSICAL SCIENCES TEST BOOKLET

Time : 3:00 Hours

Maximum Marks: 200

INSTRUCTIONS

- 1. You have opted for English as medium of Question Paper. This Test Booklet contains seventy five (20 Part'A'+25 Part 'B' + 30 Part 'C') Multiple Choice Questions (MCQs). You are required to answer a maximum of 15, 20 and 20 questions from part 'A' 'B' and 'C' respectively. If more than required number of questions are answered, only first 15, 20 and 20 questions in Parts 'A' 'B' and 'C' respectively, will be taken up for evaluation.
- 2. Answer sheet has been provided separately. Before you start filling up your particulars, please ensure that the booklet contains requisite number of pages and that these are not torn or mutilated. If it is so, you may request the Invigilator to change the booklet. Likewise, check the answer sheet also. Sheets for rough work have been appended to the test booklet.
- 3. Write your Roll No., Name, Your address and Serial Number of this Test Booklet on the Answer sheet in the space provided on the side 1 of Answer sheet. Also put your signatures in the space identified.
- 4. You must darken the appropriate circles with a pencil related to Roll Number, Subject Code, Booklet Code and Centre Code on the OMR answer sheet. It is the sole responsibility of the candidate to meticulously follow the instructions given on the Answer Sheet, failing which, the computer shall not be able to decipher the correct details which may ultimately result in loss, including rejection of the OMR answer sheet.
- 5. Each question in Part 'A' carries 2 marks, Part 'B' 3.5 marks and Part 'C' 5 marks respectively. There will be negative marking @ 25% for each wrong answer.
- 6. Below each question in Part 'A', 'B' and 'C' four alternatives or responses are given. Only one of these alternatives is the "correct" option to the question. You have to find, for each question, the correct or the best answer.
- 7. Candidates found copying or resorting to any unfair means are liable to be disqualified from this and future examinations.
- 8. Candidate should not write anything anywhere except on answer sheet or sheets for rough work.
- 9. After the test is over, you MUST hand over the Test Booklet and the answer sheet (OMR) to the invigilator.
- 10. Use of calculator is not permitted.

Roll No	I have verified all the information filled
Name	in by the candidate.
	Signature of the Invigilator-

उपयोगी मूलभूत स्थिरांक

m	इलैक्ट्रान का द्रव्यमान	$9.11 \times 10^{-31} \text{Kg}$
h	प्लांट स्थिरांक	$6.63 \times 10^{-34} \mathrm{Jsec}$
e	इलैक्ट्रान का आवेग	$1.6 \times 10^{-19} \mathrm{C}$
k	बोल्टसमैन स्थिरांक	$1.38 \times 10^{-23} \text{ J/K}$
c	प्रकाश का वेग	$3.0 \times 10^8 \text{m/Sec}$
1 _e V	$1.6 \times 10^{-19} \mathrm{J}$	
amu	$1.67 \times 10^{-27} \mathrm{kg}$	
G	$6.67 \times 10^{-11} Nm^2 kg^{-2}$	
R_y	रिजबर्ग स्थिरांक	$1.097 \times 10^7 \text{m}^{-1}$
N _A	आवोगाद्रो संख्या	$6.023 \times 10^{23} \text{ mole}^{-1}$
٤	$8.854 \times 10^{-12} Fm^{-1}$	
μ_{σ}	$4\pi \times 10^{-7} \text{Hm}^{-1}$	
R	मोलर गैस स्थिरांक	$8.314\mathrm{JK^{-1}mole^{-1}}$
	USEFUL FUNDAMENTAL CONSTANTS	
m		9.11 × 10 ⁻³¹ Kg
m h	CONSTANTS	$9.11 \times 10^{-31} \text{ Kg}$ $6.63 \times 10^{-34} \text{ J sec}$
	CONSTANTS Mass of electron	
h	CONSTANTS Mass of electron Planck's constant	$6.63 \times 10^{-34} \text{ J sec}$
h e	CONSTANTS Mass of electron Planck's constant Charge of electron	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$
h e k	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$
h e k c	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$
h e k c	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light 1.6 × 10 ⁻¹⁹ J	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$
h e k c l _e V	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light $1.6 \times 10^{-19} \text{J}$ $1.67 \times 10^{-27} \text{kg}$	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$
h e k c l V atri:	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light $1.6 \times 10^{-19} \text{J}$ $1.67 \times 10^{-27} \text{kg}$ $6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$ $3.0 \times 10^{8} \text{ m/Sec}$
h e k c leV arri: G Ry	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light 1.6 × 10 ⁻¹⁹ J 1.67 × 10 ⁻²⁷ kg 6.67 × 10 ⁻¹¹ Nm ² kg ⁻² Rydberg constant	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$ $3.0 \times 10^8 \text{ m/Sec}$ $1.097 \times 10^7 \text{ m}^{-1}$
h e k c I _e V arr: G R _y N _A	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light 1.6 × 10 ⁻¹⁹ J 1.67 × 10 ⁻²⁷ kg 6.67 × 10 ⁻¹¹ Nm²kg⁻² Rydberg constant Avogadro number	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$ $3.0 \times 10^8 \text{ m/Sec}$ $1.097 \times 10^7 \text{ m}^{-1}$

समय

: 3:00 घंटे

विषय कोस

पुरितका कोह

5

पूर्णीक : 200 अंक

21 2 11

- 1. आपने हिन्दी को माध्यम चुना है । इस परीक्षा पुस्तिका में पचहत्तर (20 भाग 'A' में + 25 भाग 'B' + 30 भाग 'C' में) बहुल विकल्प प्रश्न (MCQ)दिए गए हैं । आपको भाग 'A' में से अधिकतम 15 और भाग 'B' में 20 तथा भाग 'C' में से 20 प्रश्नों के उत्तर देने हैं । यदि निर्धारित से अधिक प्रश्नों के उत्तर दिए गए तद केवल पहले भाग 'A' से 15, भाग 'B' से 20 तथा भाग 'C' से 20 उत्तरों की जांच की जाएगी ।
- 2. उत्तर पत्र अलग से दिया गया हैं । अपना रोल नम्बर और केन्द्र का नाम लिखने से पहले यह जांच लीजिए कि पुस्तिका में पृष्ट पूरे और सही हैं तथा कहीं से कटे-फटे नहीं हैं । यदि ऐसा है तो आप इन्विजीलेटर से पुस्तिका बदलने का निवेदन कर सकते हैं । इसी तरह से उत्तर पत्र को भी जांच लें। इस पुस्तिका में रफ काम करने के लिए अतिरिक्त पन्ने संलग्न हैं।
- 3. उत्तर पत्र के पृष्ठ 1 में दिए गए स्थान पर अपना रोल नम्बर, नाम, अपना पता तथा इस परीक्षा पुरितका का क्रमांक लिखिए । आपके हस्ताक्षर भी जरूरी हैं ।
- 4. आप अपनी ओ॰एम॰आर॰ उत्तर पुस्तिका में रोल नंबर, विषय कोड, पुस्तिका कोड और केन्द्र कोड से संबंधित समुचित वृत्तों को अवश्य काला कर दें । यह एक मात्र परीक्षार्थी की जिम्मेदारी है कि वह उत्तर पुस्तिका में दिए गए निर्देशों का पूरी सावधानी से पालन करें, ऐसा न करने पर कम्प्यूटर विवरणों को सही तरीके से अकूटित नहीं कर पाएगा, जिससे अंततः आपको हानि, जिससे आपकी उत्तर पुस्तिका की अस्वीकृति भी शामिल, हो सकती है ।
- 5. भाग 'A' में प्रत्येक प्रश्न के 2 अंक , भाग 'B' में प्रत्येक प्रश्न के 3.5 अंक तथा 'C' में प्रत्येक प्रश्न 5 अंक का है । प्रत्येक गलत उत्तर का ऋणात्मक मूल्यांक 25 % की दर से किया जाएगा ।
- 6. प्रत्येक प्रश्न के नीचे चार विकल्प दिए गए हैं । इनमें से केवल एक विकल्प ही "सही" अथवा "सर्वोत्तम हल" है । आपको प्रत्येक प्रश्न का सही अथवा सर्वोत्तम हल ढूँढनाहै ।
- 7. नकल करते हुए या अनुचित तरीकों का प्रयोग करते हुए पाए जाने वाले अभ्यर्थियों का इस और अन्य भावी परीक्षाओं के लिए अयोग्य ठहराया जा सकता है ।
- 8. अभ्यर्थी को उत्तर या रफ पन्नों के अतिरिक्त कहीं और कुछ भी नहीं लिखना चाहिए ।
- 9. परीक्षा समाप्त हो जाने पर परीक्षा पुस्तिका और उत्तर पत्र को इन्यिजीलेटर को अवश्य सौंप दीजिए ।
- 10. केलकूलेटर का उपयोग करने की अनुमित नहीं है ।
- 11. किसी प्रश्न में विसंगति के मामले में अंग्रेजी संस्करण प्रबल होगा ।

ोल नंब	· · · · · · · · · · · · · · · · · · ·	अभ्यर्थी द्वारा भरी गई जानकारी को मैं सत्यापित
गम		करता हूँ ।
11.7		इन्विजीलेटर के इस्ताक्षर

उपयोगी मूलभूत स्थिरांक

m	इलेक्ट्रान का द्रव्यमान	$9.11 \times 10^{-31} \mathrm{Kg}$
h	प्लांट स्थिरांक	$6.63 \times 10^{-34} \mathrm{Jsec}$
e	इलैक्ट्रान का आवेग	$1.6 \times 10^{-19} \mathrm{C}$
k	बोल्टसमैन स्थिरांक	$1.38 \times 10^{-23} \text{ J/K}$
c	प्रकाश का वेग	$3.0 \times 10^8 \text{m/Sec}$
ĮV	$1.6 \times 10^{-19} \mathrm{J}$	
amu	$1.67 \times 10^{-27} \mathrm{kg}$	
G	$6.67 \times 10^{-11} Nm^2 kg^{-2}$	
R_{y}	रिजबर्ग स्थिरांक	$1.097 \times 10^7 m^{-1}$
N _A	आवोगाद्रो संख्या	$6.023 \times 10^{23} mole^{-1}$
ε,	$8.854 \times 10^{-12} Fm^{-1}$	
μ_{o}	$4\pi\times10^{-7}Hm^{-1}$	
R	मोलर गैस स्थिरांक	8.314 J K ⁻¹ mole ⁻¹
	USEFUL FUNDAMENTAL	
	CONSTANTS	
m		9.11 × 10 ⁻³¹ Kg
m h	CONSTANTS	$9.11 \times 10^{-31} \text{ Kg}$ $6.63 \times 10^{-34} \text{ J sec}$
	CONSTANTS Mass of electron	· -
h	CONSTANTS Mass of electron Planck's constant	$6.63 \times 10^{-34} \text{ J sec}$
h e	CONSTANTS Mass of electron Planck's constant Charge of electron	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$
h e k	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$
h e k c	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$
h e k c l _e V	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light 1.6 × 10 ⁻¹⁹ J	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$
h e k c l v amu	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light $1.6 \times 10^{-19} \text{J}$ $1.67 \times 10^{-27} \text{kg}$	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$
h e k c t V amu G	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light $1.6 \times 10^{-19} \text{J}$ $1.67 \times 10^{-27} \text{kg}$ $6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$ $3.0 \times 10^8 \text{ m/Sec}$
h e k c l V amu G R y	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light $1.6 \times 10^{-19} \mathrm{J}$ $1.67 \times 10^{-27} \mathrm{kg}$ $6.67 \times 10^{-11} \mathrm{Nm^2 kg^{-2}}$ Rydberg constant	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$ $3.0 \times 10^8 \text{ m/Sec}$ $1.097 \times 10^7 \text{ m}^{-1}$
h e k c !V amu G R y N A	CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity of Light 1.6 × 10 ⁻¹⁹ J 1.67 × 10 ⁻²⁷ kg 6.67 × 10 ⁻¹¹ Nm ² kg ⁻² Rydberg constant Avogadro number	$6.63 \times 10^{-34} \text{ J sec}$ $1.6 \times 10^{-19} \text{ C}$ $1.38 \times 10^{-23} \text{ J/K}$ $3.0 \times 10^8 \text{ m/Sec}$ $1.097 \times 10^7 \text{ m}^{-1}$

LIST OF THE ATOMIC WEIGHTS OF THE ELEMENTS

Element	Symbol	Atomic Number	Atomic Weight	Element	Symbol	Atomic Number	Atomic Weight
Actinium	Ac	89	(227)	Mercury	Hg	80	200.59
Aluminium	ΑI	13	26.98	Molybdenum	Мо	42	95.94
Americium	Am	95	(243)	Neodymium	Nd	60	144.24
Antimony	Sb	51	121.75	Neon	Ne	10	20.183
Argon	Ar	18	39.948	Neptunium	Np	93	(237)
Arsenic	As	33	74.92	Nickel	Ni	28	58.71
Astatine	At	85	(210)	Niobium	Nb	41	92.91
Barium	Ba	56	137.34	Nitrogen	N	7	14.007
Berkelium	Bk	97	(249)	Nobelium	No .	102	(253)
Beryllium	Be	4	9.012	Osmium	Os	76	190.2
Bismuth	Bi	83	208.98	Oxygen	0	8	15.9994
Boron	В	5	10.81	Palladium	Pd	46	106.4
Bromine	Br	35	79.909	Phosphorus	P	15	30.974
Cadmium	Cd	48	112.40	Platinum	Pt	78	195.09
Calcium	Са	20	40.08	Plutonium	Pu	94	(242)
Californium	Cf	98	(251)	Polonium	Po	84	(210)
Carbon	С	6	12.011	Potassium	ĸ	19	39.102
Cerium	Сe	58	140.12	Praseodymium	Pr	59	140.91
Cesium	Сs	55	132.91	Promethium	Pm	61	
Chlorine	CI	17	35.453	Protactinium	Pa	91	(147)
Chromium	Cr	24	52.00	Radium	Ra	88	(231)
Cobalt	Co	27	58.93	Radon	Rn		(226)
Copper	Cu	29	63.54	Rhenium		86	(222)
Curium	Cm	96	(247)	Rhodium	Re	75 45	186.23
Dysprosium	Dy	66	162.50	Rubidium	Rh	45	102.91
Einsteinium	Es	99	(254)		Rb	37	85.47
Erbium	Er	68	167.26	Ruthenium	Ru	. 44	101.1
Europium	Eu	63	151.96	Samarium	Sm	62	150.35
Fermium	Fm	100	(253)	Scandium	Sc	21	44.96
Fluorine	F	9	19.00	Selenium	Se	34	78.96
Francium	Fr	87	(223)	Silicon	Si	14	28.09
Gadolinium	Gd	64	157.25	Silver	Ag	47	107.870
Gallium	Ga	31	69.72	Sodium	Na	11	22.9898
Germanium	Ge	32	72.59	Strontium	Sr	38	87.62
Gold	Au	79	196.97	Sulfur	S	16	32.064
Hafnium	Hf	72	178.49	Tantalum	Та	73	180.95
Helium	He	2	4.003	Technetium	Tc	43	(99)
Holmium	Но	67	164.93	Tellurium	Te	52	127.60
Hydrogen	Н	1	1.0080	Terbium	Tb	65	158.92
Indium	ln	49	114.82	Thallium	TI	81	204.37
lodine	1	53	126.90	Thorium	Th	90	232.04
lridium	lr.	77	192.2	Thulium	Tm	69	168.93
lron	Fe	26	55.85	Tin	Sn	50	118.69
Krypton	Kr	36	83.80	Titanium	Ti	22	47.90
Lanthanum	La	57	138.91	Tungsten	W	74	183.85
Lawrencium	Lr	103	(257)	Uranium	U	92	238.03
Lead	Pb	82	207.19	Vanadium	V	23	50,94
Lithium	Li	3	6.939	Xenon	Хe	54	131.30
Lutetium	Lu	71	174.97	Ytterbium	Yb	70	173.04
Magnesium	Mg	12	24.312	Yttrium	Υ	39	88.91
Manganese	Mn	25	54.94	Zinc	Zn	30	65.37
Mendelevium	Mid	101	(256)	Zirconium	Zr	40	91.22

Based on mass of C¹² at 12.000.... The ratio of these weights of those on the order chemical scale (in which oxygen of natural isotopic composition was assigned a mass of 16.0000...) is 1.000050. (Values in parentheses represent the most stable known isotopes.)

भाग /PART A

	WHITTIAL TO	
1.	2 मी. × 5 मी. × 3 मी. आमाप के एक ग्रैनाइट भ्रंशोत्थ को 2 मी. ×5 मी. आमाप के 5 से.मी. मोटे पट्ट काटा जाता है। इन पट्टों को 2 मी. चौड़ी पटरी पर रखा जाता है। इन पट्टों से पटरी की कितनी लग को ढ़का जा सकता है?	ों में म्बाई
	A granite block of $2 \text{ m} \times 5 \text{ m} \times 3 \text{ m}$ size is cut into 5 cm thick slabs of $2 \text{ m} \times 5 \text{ m}$ size. These slabs are laid over a 2 m wide pavement. What is the length of the pavement that can be covered with these slabs?	ize. ient
	(1) 100 机/m (2) 200 机/m (3) 300 机/m (4) 500 机/m	
2.	निम्न में से कौन-सा न्यूनतम हैं?	
	Which is the least among the following?	
	$0.33^{0.33}$, $0.44^{0.44}$, $\pi^{-1/\pi}$, $e^{-1/e}$	
	(1) $0.33^{0.33}$ (2) $0.44^{0.44}$ (3) $\pi^{-1/\pi}$ (4) $e^{-1/e}$	
3	इसे 'देखो और बताओं' क्रम की अगली संख्या क्या है?	
	What is the next number in this "see and tell" sequence?	
	1 11 21 1211 111221	
	(1) 312211 (2) 1112221 (3) 1112222 (4) 1112131	
4	भुजा a एक क्षेंतिज सममित षड्भुजाकार जमीन के केन्द्र में a लम्बाई का एम ऊर्घ्वाधर खम्भा खड़ा है। जमीन प एक शीर्ष तथा खम्भे की नोक के बीच कसकर बंधे हुये रस्से की लम्बाई होगी :	ार सि

A vertical pole of length a stands at the centre of a horizontal regular hexagonal ground of side a. A rope that is fixed taut in between a vertex on the ground and the tip of the pole has a length

$\sqrt{6a}$	a
۲) 70

5 12 मी. ऊंचे वृक्ष पर बैटा एक मोर वृक्ष की ऊंचाई के तिगुनी दूरी से उसी वृक्ष के नीचे स्थित अपने बिल की ओर जाते. हुये एक सर्प को देखता है। मोर उस सर्प की तरफ एक सीधी रेखा में उड़ता है तथ मोर व सर्प दोनों की गतियां समान हैं। वृक्ष के मूल से किस दूरी पर मोर सर्प को पकड़ेगा?

A peacock perched on the top of a 12 m high tree spots a snake moving towards its hole at the base of the tree from a distance equal to thrice the height of the tree. The peacock flies towards the snake in a straight line and they both move at the same speed. At what distance from the base of the tree will the peacock catch the snake?

- (1) 16 却/m
- (2) 18 和/m
- (3) 14 和/m
- (4) 12 和/m

6. एक राष्ट्र के नगर अंतर्राजीय सड़कों से जुड़े हैं। यदि कोई नगर विषम संख्या के अन्य नगरों से सीधे जुड़ा है है तो उसे विषम नगर माना जाता है। यदि कोई नगर सम संख्या के अन्य नगरों से सीधे जुड़ा है, तो उसे सम नगर माना जाता है। तो निम्न में से कौन—सा असंभव है?

The cities of a country are connected by intercity roads. If a city is directly connected to an odd number of other cities, it is called an odd city. If a city is directly connected to an even number of other cities, it is called an even city. Then which of the following is impossible?

- 1. विषम नगरों की संख्या सम है। / There are an even number of odd cities
- 2. विषम नगरों की संख्या विषम है। / There are an odd number of odd cities
- 3. सम नगरों की संख्या सम है। / There are an even number of even cities
- 4. सम नगरों की संख्या विषम है। / There are an odd number of even cities
- 7. चित्र में $\angle ABC = \pi/2$ तथा

$$AD = DE = EB$$

त्रिकोण ADC तथा त्रिकोण CDB के क्षेत्रफलों की अनुपात क्या है?

In the figure $\angle ABC = \pi/2$

$$AD = DE = EB$$

What is the ratio of the area of triangle ADC to that of triangle CDB?

- (1) 1:1
- (2) 1:2
- (3) 1:3
- (4) 1:4

8. एक आयातकार कागज ABCD इस तरह तहाया जाता है कि शीर्ष A शीर्ष C से इस प्रकार मिलता है कि एक रेखा PQ बन जाती है। यह मानते हुए कि AB=3 तथा BC=4, PQ को ढूढें। ध्यान दें कि AP=PC तथा AQ=QC

A rectangular sheet ABCD is folded in such a way that vertex A meets vertex C, thereby forming a line PQ. Assuming AB= 3 and BC=4, find PQ. Note that AP = PC and AQ = QC.

- (1) 13/4
- (2) 15/4
- (3) 17/4
- (4) 19/4

9. 1 मि.मी. व्यास का एक तार, जो एक बंध सपाटी कुंडली जिसके फेरों के बीच कोई दरार नहीं है, के आकार में एक मेज पर रखा गया है। कुंडली से छादित मेज का क्षेत्रफल 1 वर्ग मी. है। तो तार की लम्बाई है :

A string of diameter 1mm is kept on a table in the shape of a close flat spiral i.e. a spiral with no gap between the turns. The area of the table occupied by the spiral is 1 m^2 . Then the length of the string is

- (1) 10 却/m
- (2) $10^2 \, \text{Hz/m}$
- (3) $10^3 \, \frac{1}{7} \, m$
- (4) 10⁶ 机/m
- 10. एक राशि के 25% का 25% उसी राशि का x% है, जहां x है

25% of 25% of a quantity is x% of the quantity where x is

- (1) 6.25%
- (2) 12.5%
- (3) 25%
- (4) 50%
- 11. अनुक्रम $\{a_n\}$ में हर पद उसके सभी पूर्ववर्ती पदो के योगफल के समान है। यदि $a_0=3$, तो सीमान्त $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ है

In sequence $\{a_n\}$ every term is equal to the sum of all its previous terms.

If
$$a_0 = 3$$
, then $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ is

- (1) 3
- (2) 2
- (3) 1
- (4) e

निम्न चित्र में कोण ABC= π/2 / I, II,III क्रमशः कोण B, A तथा C के सम्मुख भुजाओं पर स्थित 12. अर्धवृत्तों के क्षेत्रफल हैं।

In the figure below, angle ABC = $\pi/2$. I, II, III are the areas of semicircles on the sides opposite angles B, A, and C, respectively. Which of the following is always true?

- (1) $II^2 + III^2 = I^2$
- (2) II + III = I
- (3) $II^2 + III^2 > I^2$ (4) II + III < I

एक 13 तिथि शुक्रवार तथा उसके तुरन्त बाद के दूसरे 13 तिथि शुक्रवार के बीच के दिनों की संख्या क्या है? 13. (मानें कि वर्ष एक अधिवर्ष हैं)

What is the minimum number of days between one Friday the 13th and the next Friday the 13th? (Assume that the year is a leap year).

- (1) 28
- (2) 56
- (3) 91
- (4) 84

माने कि व्यक्ति A एक वर्ग (निम्न चित्र को देखें) के उत्तर-पूर्व कोने में स्थित है। इस बिन्दु से वह विकर्ण 14. के साथ-साथ चलता है। विकर्ण के एक तिहाई भाग तक चलने के बाद अपनी बाई ओर चलता है। कुछ देर बाद वह रूकता है, 90^0 दक्षिणावर्त घूमने के बाद सीधे चलता है। कुछ मिनट बाद वह रूकता है, 180^0 वामावर्त घूमता है। अब उसका मृंह किस दिशा की तरफ है?

Suppose a person A is at the North-East corner of a square (see the figure below). From that point he moves along the diagonal and after covering 1/3rd portion of the diagonal, he goes to his left and after sometime he stops, rotates 90° clockwise and moves straight. After a few minutes he stops, rotates 180° anticlockwise. Towards which direction he is facing now?

- (1) उत्तर-पूर्व
- (2) उत्तर-पश्चिम
- (3) *afam-ya*
- (4) दक्षिण-पश्चिम

- (1) North-East
- (2) North-West
- (3) South-East
- (4) South-West
- 15. खीरे में 99% जल होता है। रमेश 100 कि.ग्रा. खीरे खरीदता है। 30 दिन रखने के बाद खीरे कुछ जल खोते हैं। अब उनमें 98% जल है। खीरों का कुल भार अब क्या है?

Cucumber contains 99% water. Ramesh buys 100 kg of cucumbers. After 30 days of storing, the cucumbers lose some water. They now contain 98% water. What is the total weight of cucumbers now?

- (1) 99 कि. ग्रा/kg
- (2) 50 कि. 如/kg
- (3) 75 कि. 如/kg
- (4) 2 कि. ग्रा./kg
- 16. एक संग्रहालय में कुछ पुराने सिक्के थे जिनमें उनके अपने—अपने वर्ष इस प्रकार अंकित थे :
 - (A) 1837 ईस्वी सन् (B) 1907 ईस्वी सन्
- (C) 1947 *ईस्वी सन्*
- (D) 200 ईसा पूर्व

नकली सिक्के / सिक्कों को पहचानें

In a museum there were old coins with their respective years engraved on them, as follows.

- (A) 1837 AD
- (B) 1907 AD
- (C) 1947 AD
- (D) 200 BC

Identify the fake coin(s)

- (1) *सिक्का* /coin A
- (2) *सिक्का* /coin D
- (3) सक्के A व B
- (4) *सिक्का* /coin C

/coins A and B

17. एक विद्यार्थी चार घोंघों के चलन का प्रेक्षण करता है तथा चित्र (A), (B), (C) तथा (D) में दर्शायेनुसार उनसे पारित दूरियों के आलेख बनाता है।

A student observes the movement of four snails and plots the graphs of distance moved as a function of time as given in figures (A), (B) (C) and (D).

निम्न में से कौन-सा सही नहीं है?

Which of the following is **not** correct?

- (1) आलेख (A)
- (2) आलेख (B)
- (3) आलेख(C)
- (4) आलेख(D)

- (1) Graph (A)
- (2) Graph (B)
- (3) Graph (C)
- (4) Graph (D)

18. लापता अक्षर को ढूंढें :

Find the missing letter:

Α	EGK	С
?		Р
U		R
Q		V
В	OJF	D

- (1) H
- (2) L
- (3) Z
- (4) Y
- 19. निम्न समीकरण पर विचारें : $x^2 + 4y^2 + 9z^2 = 14x + 28y + 42z + 147$ जहां x, y तथा z वास्तविक संख्या हैं। तो x + 2y + 3z का मान है

Consider the following equation

$$x^2 + 4y^2 + 9z^2 = 14x + 28y + 42z + 147$$

where x, y and z are real numbers. Then the value of x+2y+3z is

- (1) 7
- (2) 14
- (3) 21
- (4) अनन्य नहीं /not unique

20. निम्न मानचित्र एक अर्धवृत्त पथ पर बहती एक विसर्पी नदी को दर्शाता है। पथ में स्थित दो गांवों, A तथा B के बीच की दूरी पूर्व-पश्चिमी दिशा पर मानचित्र में 7 से.मी. है। A तथा B के बीच नदी की लम्बाई जमीन की कितनी हैं?

The map given below shows a meandering river following a semi-circular path, along which two villages are located at A and B. The distance between A and B along the east-west direction in the map is 7 cm. What is the length of the river between A and B in the ground?

- (1) 1.1 **क**. 柏/km
- (2) 3.5 **命**. 相./km
- (3) 5.5 **क**. मी./km
- (4) 11.0 命. 和/km

भाग / PART B

21. एक 2×2 आव्यूह A के अभिलक्षणिक मान $e^{i\pi/5}$ व $e^{i\pi/6}$ हैं। n का न्यूनतम मान, ताकि $A^n=1$ हो, होगा :

- 1. 20
- 2. 30
- 3. 60
- 4. 120

21. A 2×2 matrix A has eigenvalues $e^{i\pi/5}$ and $e^{i\pi/6}$. The smallest value of n such that $A^n = 1$ is

- 1. 20
- 2. 30
- 3. 60
- 4. 120

22. फलन f(x) का आलेख जो नीचे दर्शाया गया है, निम्न से श्रेष्ठतम वर्णित है :

1. बैसल फलन $J_{0}(x)$

2. *cos x*

3. $e^{-x}\cos x$

 $4. \quad \frac{1}{x}\cos x$

22. The graph of the function f(x) shown below is best described by

- 1. The Bessel function $J_{\scriptscriptstyle 0}(x)$
- 2. cos x

3. $e^{-x}\cos x$

 $4. \quad \frac{1}{x}\cos x$

23. पांच क्रिकेट मैचों की श्रेणी में, जब टॉस किया जाता है, एड कप्तान हमेशा 'हैंड' बोलता है। उसके टॉस 3 बार जीतने व 2 बार हारने की प्रायिकता होगी:

1. 1/8

2. 5/8

3. 3/16

4. 5/16

23. In a series of five Cricket matches, one of the captains calls "Heads" every time when the toss is taken. The probability that he will win 3 times and lose 2 times is

1. 1/8

2. 5/8

3. 3/16

4. 5/16

दीर्घवृत्तज $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ के सतह की एक बिन्दु $\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}\right)$ पर इकाई लंब सदिश है : 24.

1. $\frac{bc\hat{i} + ca\hat{j} + ab\hat{k}}{\sqrt{a^2 + b^2 + c^2}}$

2. $\frac{a\hat{i} + b\hat{j} + c\hat{k}}{\sqrt{a^2 + b^2 + c^2}}$

3. $\frac{b\hat{i} + c\hat{j} + a\hat{k}}{\sqrt{a^2 + b^2 + c^2}}$

4. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}}$

The unit normal vector at the point $\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}\right)$ on the surface of the ellipsoid 24.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, is

1. $\frac{bc\hat{i} + ca\hat{j} + ab\hat{k}}{\sqrt{a^2 + b^2 + c^2}}$

2. $\frac{a\hat{i} + b\hat{j} + c\hat{k}}{\sqrt{a^2 + b^2 + c^2}}$

3. $\frac{b\hat{i} + c\hat{j} + a\hat{k}}{\sqrt{a^2 + b^2 + c^2}}$

 $4. \quad \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{2}}$

उंचाई H, त्रिज्या R व घनत्व ho , का एक ठोस बेलन एक द्रव, की सतह पर तैरता जिसका घनत्व $ho_{_0}$ है। 25. जब एक अल्प अधोमुखी बल दिया जाता है, बेलन दोलायमान हो जाता है। दोलन की आवृत्ति होगी :

2. $\frac{\rho}{a}\sqrt{\frac{g}{H}}$ 3. $\sqrt{\frac{\rho g}{aH}}$

25. A solid cylinder of height H, radius R and density ρ , floats vertically on the surface of a liquid of density ho_0 . The cylinder will be set into oscillatory motion when a small instantaneous downward force is applied. The frequency of oscillation is

1.
$$\frac{\rho g}{\rho_0 H}$$

$$2. \quad \frac{\rho}{\rho_0} \sqrt{\frac{g}{H}}$$

3.
$$\sqrt{\frac{\rho g}{\rho_0 H}}$$

4.
$$\sqrt{\frac{\rho_0 g}{\rho H}}$$

26. जैसे चित्र में दर्शाया गया है, समान द्रव्यमान m के तीन कण, दो एकसमान द्रव्यमानहीन कमानियों द्वारा जुड़े हैं। कमानियों का दुर्नम्यता गुणांक k है।

यदि x_1,x_2 व x_3 कमशः द्रव्यमानों के अपनी साम्यावस्थाओं से क्षैतिज विस्थापन हैं, प्रणाली की स्थितिज उर्जा है :

1.
$$\frac{1}{2}k[x_1^2+x_2^2+x_3^2]$$

2.
$$\frac{1}{2}k[x_1^2+x_2^2+x_3^2-x_2(x_1+x_3)]$$

3.
$$\frac{1}{2}k[x_1^2 + 2x_2^2 + x_3^2 + 2x_2(x_1 + x_3)]$$

4.
$$\frac{1}{2}k[x_1^2+2x_2^2+x_3^2-2x_2(x_1+x_3)]$$

26. Three particles of equal mass m are connected by two identical massless springs of stiffness constant k as shown in the figure:

If X_1, X_2 and X_3 denote the horizontal displacements of the masses from their respective equilibrium positions, the potential energy of the system is

1.
$$\frac{1}{2}k[x_1^2 + x_2^2 + x_3^2]$$

2.
$$\frac{1}{2}k[x_1^2+x_2^2+x_3^2-x_2(x_1+x_3)]$$

3.
$$\frac{1}{2}k[x_1^2 + 2x_2^2 + x_3^2 + 2x_3(x_1 + x_3)]$$

4.
$$\frac{1}{2}k[x_1^2+2x_2^2+x_3^2-2x_2(x_1+x_3)]$$

27. यदि एक विराम–द्रव्यमान m के एक मुक्त कण की गति, संवेग की मात्रा व उर्जा कमश : $\mathbf{V},\ p$ व E हैं, तो

$$dE/dp = 3$$
 अचर

2.
$$p = mv$$

3.
$$v = \frac{cp}{\sqrt{p^2 + m^2c^2}}$$

$$4. \quad E = mc^2$$

27. Let V, p and E denote the speed, the magnitude of the momentum, and the energy of a free particle of rest mass m. Then

1.
$$\frac{dE}{dp}$$
 = constant

2. p = mv

3.
$$V = \frac{cp}{\sqrt{p^2 + m^2 c^2}}$$

4. $E = mc^2$

- एक युग्मतारा प्रणाली में द्रव्यमान m व 2m के दो तारे $S_{_1}$ व $S_{_2}$ आपस की दूरी r में स्थित हैं । व्यक्तिगत 28. रूप में $S_{_1}$ व $S_{_2}$ दोनों यदि संहति—केन्द्र की चारों ओर कमशः $\mathbf{v}_{_1}$ व $\mathbf{v}_{_2}$ गतियों के साथ वर्तुलाकार कक्षाओं में घूमते हैं, तो गतियों की अनुपात $\mathbf{v}_{_{1}}/\mathbf{v}_{_{2}}$ है :
 - 1. $\sqrt{2}$
- 2. 1
- 3. 1/2
- A binary star system consists of two stars S_1 and S_2 , with masses m and 2m respectively separated 28. by a distance r . If both S_1 and S_2 individually follow circular orbits around the centre of mass with instantaneous speeds $\,V_{_1}\,$ and $\,V_{_2}\,$ respectively, the speeds ratio $\,V_{_1}\,/\,V_{_2}\,$ is
 - 1. $\sqrt{2}$
- 2. 1
- 3. 1/2
- 4. 2
- निम्न चित्र में दर्शायानुसार त्रिज्या R के एक वृत्त की परिधि में तीन आवेश स्थित हैं। दो आवेश Q केन्द्र में 29. कोण 90° को अंतरित करते हैं। आवेश ${
 m q}$ दोनो आवेश Q से सममिततः स्थित है । यदि केन्द्र में विद्युत क्षेत्र शून्य है, तो Q की मात्रा क्या है?

- 1. $q/\sqrt{2}$
- 2. $\sqrt{2}q$
- 3. 2*q*

29. Three charges are located on the circumference of a circle of radius R as shown in the figure below. The two charges Q subtend an angle 90° at the centre of the circle. The charge q is symmetrically placed with respect to the charges Q. If the electric field at the centre of the circle is zero, what is the magnitude of Q?

- 1. $q/\sqrt{2}$
- 2. $\sqrt{2}q$
- 3. 2*q*
- 4. 4*q*
- 30. आंतरिक त्रिज्या a व बाह्य त्रिज्या b के एक आवेशित गोलीय कोश के बारे में विचारें। क्षेत्र a < r < b में आवेश का आयतन—घनत्व हैं $\rho(r) = \frac{k}{r^2} \; (k \; \text{अचर है}) \; | \;$ दूरी $r > a \;$ पर उत्पन्न विद्युत क्षेत्र की मात्रा है :
 - 1. $\frac{k(b-a)}{\varepsilon_0 r^2}$, सभी r>a के लिये
 - 2. $\frac{k(b-a)}{\varepsilon_0 r^2}$, a < r < b के लिये तथा $\frac{kb}{\varepsilon_0 r^2}$, r > b के लिये
 - 3. $\frac{k(r-a)}{\varepsilon_0 r^2}$, a < r < b के लिये तथा $\frac{k(b-a)}{\varepsilon_0 r^2}$, r > b के लिये
 - 4. $\frac{k(r-a)}{\varepsilon_{_0} \, a^2}$, a < r < b के लिये तथा $\frac{k(b-a)}{\varepsilon_{_0} \, a^2}$, r > b के लिये
- 30. Consider a hollow charged shell of inner radius a and outer radius b. The volume charge density is $\rho(r) = \frac{k}{r^2}$ (k is a constant) in the region a < r < b. The magnitude of the electric field produced at distance r > a is
 - 1. $\frac{k(b-a)}{\varepsilon_0 r^2}$ for all r > a
 - 2. $\frac{k(b-a)}{\varepsilon_0 r^2}$ for a < r < b and $\frac{kb}{\varepsilon_0 r^2}$ for r > b

3.
$$\frac{k(r-a)}{\varepsilon_0 r^2}$$
 for $a < r < b$ and $\frac{k(b-a)}{\varepsilon_0 r^2}$ for $r > b$

4.
$$\frac{k(r-a)}{\varepsilon_0 a^2}$$
 for $a < r < b$ and $\frac{k(b-a)}{\varepsilon_0 a^2}$ for $r > b$

- विद्युत क्षेत्र सिदश $\ddot{E_1}=\hat{i}~E_0\cos\omega t$ व $\ddot{E_2}=\hat{j}~E_0\cos(\omega t+\varphi)$, जहां φ कलांतर है, के दो 31. कलासंबद्घ विद्युतचुम्बकीय तरंगों के व्यतिकरण के बारे में विचारें। परिणामी तरंग की तीव्रता $rac{\mathcal{E}_0}{2}ig\langle E^2ig
 angle$ से दिया जाता है, जहां $\left\langle E^{2}\right
 angle$, E^{2} का कालिक—माध्य है। कुल तीव्रता होगी :
 - 1. 0

- 2. $\varepsilon_0 E_0^2$ 3. $\varepsilon_0 E_0^2 \sin^2 \varphi$ 4. $\varepsilon_0 E_0^2 \cos^2 \varphi$
- Consider the interference of two coherent electromagnetic waves whose electric field vectors 31. are given by $\vec{E}_1 = \hat{i} E_0 \cos \omega t$ and $\vec{E}_2 = \hat{j} E_0 \cos(\omega t + \varphi)$ where φ is the phase difference. The intensity of the resulting wave is given by $\frac{\mathcal{E}_0}{2}\langle E^2 \rangle$, where $\langle E^2 \rangle$ is the time average of E^2 . The total intensity is
 - 1. 0

- 2. $\varepsilon_0 E_0^2$ 3. $\varepsilon_0 E_0^2 \sin^2 \varphi$ 4. $\varepsilon_0 E_0^2 \cos^2 \varphi$
- चार आवेश (दो +q व दो -q) भुजा a के एक वर्ग के चारों शीर्षों पर रखे जाते हैं, जैसा दर्शाया गया है। 32.

बिन्दु P पर, जो केन्द्र से दूरी R पर है $(R \gg a)$, विभव इस अनुपात में होगा

- 1. 1/R
- 2. $1/R^2$ 3. $1/R^3$
- 4. $1/R^4$

Four charges (two +q and two -q) are kept fixed at the four vertices of a square of side a as 32. shown

At the point P which is at a distance R from the centre $(R \gg a)$, the potential is proportional to

- 1. 1/R
- 2. $1/R^2$
- 3. $1/R^3$
- xy -तल में स्थित एक भूयोजित अनन्त चालक परत के नीचे d दूरी पर द्रव्यमान m का एक आवेश q रखा 33. जाता है। वे के किस मान पर आवेश अचल रहेगा?
 - 1. $q/4\sqrt{mg\pi\varepsilon_0}$

- 2. $q/\sqrt{mg\pi\varepsilon_0}$
- 3. d का कोई सीमित मान नहीं है।
- 4. $\sqrt{mg\pi\varepsilon_0}/q$
- A point charge q of mass m is kept at a distance d below a grounded infinite conducting 33. sheet which lies in the xy-plane. For what value of d will the charge remains stationary?
 - 1. $q/4\sqrt{mg\pi\varepsilon_0}$

- 2. $q/\sqrt{mg\pi\varepsilon_0}$
- 3. There is no finite value of d
- 4. $\sqrt{mg\pi\varepsilon_0}/q$
- हाइड्रोजन परमाणु की एक स्थिति का तरंग-फलन 34.

$$\Psi = \psi_{200} + 2\psi_{211} + 3\psi_{210} + \sqrt{2} \psi_{21-1}$$

से दिया जाता है, जहां ψ , क्वाटंम अंक n,l व m (जो साधारण संकेतन में हैं) स्थिति वाले प्रसामान्यीकृत अभिलक्षणिक—फलन को निर्दिष्ट करता है। स्थिति Ψ में L_{z} का प्रत्याशा मान है :

- 1. $15\hbar/16$
- 2. $11\hbar/16$ 3. $3\hbar/8$
- 4. $\hbar/8$

The wave function of a state of the hydrogen atom is given by 34.

$$\Psi = \psi_{200} + 2\psi_{211} + 3\psi_{210} + \sqrt{2} \psi_{21-1}$$

where ψ_{nlm} is the normalized eigen function of the state with quantum numbers n,l and \emph{m} in the usual notation. The expectation value of L_z in the state Ψ is

- 1. $15\hbar/16$
- 2. $11\hbar/16$
- 3. $3\hbar/8$
- 4. $\hbar/8$
- विभव $V(x) = \frac{1}{2}m\omega^2x^2 ax$ में स्थित कण का उर्जा अभिलक्षणिक मान है : **3**5.

1.
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{a^2}{2m\omega^2}$$
 2.
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega + \frac{a^2}{2m\omega^2}$$

$$2. \quad E_n = \left(n + \frac{1}{2}\right)\hbar\omega + \frac{a^2}{2m\omega^2}$$

$$3. \quad E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{a^2}{m\omega^2}$$

4.
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$

The energy eigenvalues of a particle in the potential $V(x) = \frac{1}{2}m\omega^2x^2 - ax$ are

1.
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{a^2}{2m\omega^2}$$

$$2. \quad E_n = \left(n + \frac{1}{2}\right)\hbar\omega + \frac{a^2}{2m\omega^2}$$

3.
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{a^2}{m\omega^2}$$

4.
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$

यदि एक कण का प्रतिनिधित्व प्रसामान्यीकृत तरंग-फलन

$$\psi(x) = \begin{cases} \frac{\sqrt{15} \left(a^2 - x^2\right)}{4a^{5/2}} & \text{जब } -a < x < a \\ 0 & \text{अन्यथा} \end{cases}$$

से किया जाता है, तो उसके संवेग की अनिश्चितता Δp होगी :

- 1. $2\hbar/5a$
- $2. 5\hbar/2a$
- 3. $\sqrt{10} \, \hbar/a$
- 4. $\sqrt{5} \hbar / \sqrt{2} a$

If a particle is represented by the normalized wave function 36.

$$\psi(x) = \begin{cases} \frac{\sqrt{15} \left(a^2 - x^2\right)}{4a^{5/2}} & \text{for } -a < x < a \\ 0 & \text{otherwise} \end{cases}$$

the uncertainty Δp in its momentum is

1. $2\hbar/5a$

2. $5\hbar/2a$ 3. $\sqrt{10}\,\hbar/a$ 4. $\sqrt{5}\,\hbar/\sqrt{2}\,a$

विहित क्रमविनिमेय संबंधों के दिए जाने पर, $A=i\left(xp_{_{Y}}-yp_{_{x}}\right)$ व $B=\left(yp_{_{z}}+zp_{_{y}}\right)$ का क्रमविनिमेयक [A,B] है:

1. $\hbar(xp_x - p_x z)$

2. $-\hbar(xp_z-p_xz)$

3. $\hbar(xp_z+p_zz)$

4. $-\hbar(xp_1+p_2z)$

Given the usual canonical commutation relations, the commutator [A,B] of $A=i(xp_y-yp_x)$ 37. and $B = (yp_z + zp_y)$ is

1. $\hbar(xp_z-p_xz)$

 $2. -\hbar(xp_z - p_x z)$

3. $\hbar(xp_z+p_zz)$

4. $-\hbar(xp_z+p_xz)$

जहां E, N व V क्रमशः ऊर्जा, कणों की संख्या व आयतन हैं, एक प्रणाली का ऐन्ट्रॉपी S , अभिगम्य प्रावस्था 38. समाष्टि आयतन arGamma के साथ इस प्रकार संबंधित है : $S=k_{_B} {
m ln} \; arGamma \left(E,N,V
ight)$ । इससे यह निष्कर्ष निकाला जा सकता है कि Г

- 1. साम्यावस्था की ओर विकास पर अचर है।
- 2. साम्यावस्था की ओर विकास पर दोलन करता है।
- 3. साभ्यावस्था पर उच्चतम है।
- 4. साम्यावस्था पर न्युनतम है।

The entropy of a system, S , is related to the accessible phase space volume Γ by 38. $S = k_B \ln \Gamma (E, N, V)$ where E, N and V are the energy, number of particles and volume respectively. From this one can conclude that Γ

- 1. does not change during evolution to equilibrium
- 2. oscillates during evolution to equilibrium
- 3. is a maximum at equilibrium
- 4. is a minimum at equilibrium

- following statements about ΔW is correct?
 - 1. ΔW is a perfect differential if the process is isothermal
 - 2. ΔW is a perfect differential if the process is adiabatic
 - 3. ΔW is always a perfect differential
 - 4. ΔW cannot be a perfect differential
- तीन प्रचक्रण S_1 , S_2 व S_3 की एक प्रणाली, जहां हर एक +1 व -1 मूल्य ले सकता है, के बारे में विचारें। 40. प्रणाली की ऊर्जा $E=-J[S_1S_2+S_2S_3+S_3S_4]$ से दी जाती है, जहां J एक धनात्मक अचर है। न्युनतम उर्जा व संगत प्रचक्रण विन्यासों की संख्या क्रमशः होंगे :
 - 2. $-3J \neq 1$ 3. $-3J \neq 2$ 4. $-6J \neq 2$ 1. J 7 1
- Consider a system of three spins S_1 , S_2 and S_3 each of which can take values +1 and -1. The 40. energy of the system is given by $E = -J[S_1S_2 + S_2S_3 + S_3S_1]$, where J is a positive constant. The minimum energy and the corresponding number of spin configurations are, respectively,
 - 2. -3J and 1 3. -3J and 2 1. J and 1 4. -6J and 2.
- चौड़ाई L के एक-विमीय अनन्त वर्ग कूप विभव में रखे गए 6 अन्योन्यक्रियाहीन प्रचक्रण $-\frac{1}{2}$ व द्रव्यमान m के 41. इलेक्ट्रॉनों के समूह की न्यूनतम ऊर्जा होगी :
 - 1. $14\pi^2\hbar^2/mL^2$ 2. $91\pi^2\hbar^2/mL^2$ 4. $3\pi^2\hbar^2/mL^2$ 3. $7\pi^2\hbar^2/mL^2$
- The minimum energy of a collection of 6 non-interacting electrons of spin- $\frac{1}{2}$ and mass m 41. placed in a one dimensional infinite square well potential of width $\,L\,$ is
 - 1. $14\pi^2\hbar^2/mL^2$ 2. $91\pi^2\hbar^2/mL^2$ 3. $7\pi^2\hbar^2/mL^2$ 4. $3\pi^2\hbar^2/mL^2$

- 42. संगीत के एक सीधे प्रसारण के रेडियों—तरंग को, जिसकी आवृत्ति 7 मैगा हर्टज है, उच्चतम आवृत्ति 10 किलो हर्टज के संकेत वाले एक माइक्रोफोन निर्गत से आयाम मॉडुलित किया जाता है! मॉडुलित निर्गत का स्पैक्ट्रम निम्न आवृत्ति बैंड के बाहर श्रुन्य होगा
 - 1. 7.00 मैगाहर्टज से 7.01 मैगाहर्टज तक
- 2. 6.99 मैगाहर्टज से 7.01 मैगाहर्टज तक
- 3. 6.99 मैगाहर्टज से 7.00 मैगाहर्टज तक
- 4. 6.995 मैगाहर्टज से 7.005 मैगाहर्टज तक
- 42. A live music broadcast consists of a radio-wave of frequency 7 MHz, amplitude-modulated by a microphone output consisting of signals with a maximum frequency of 10 kHz. The spectrum of modulated output will be zero outside the frequency band
 - 1. 7.00 MHz to 7.01 MHz

2. 6.99 MHz to 7.01 MHz

3. 6.99 MHz to 7.00 MHz

- 4. 6.995 MHz to 7.005 MHz
- 43. चित्र में दर्शाये सक्रियात्मक प्रवर्धक परिपथ में V_i एक ज्यावक्रीय निवेश संकेत है जिसकी आवृत्ति 10 हैर्टज है aV_0 निर्गत संकेत है। लिब्ध व कलांतर के सन्निकटीकृत मान हैं

1. $5\sqrt{2} \ \vec{q} \ \pi/2$

2. $5\sqrt{2} \ \bar{q} - \pi/2$

3. 10 व श्रुन्य

- 4. $10 \, \bar{q} \, \pi$
- 43. In the op-amp circuit shown in the figure, V_i is a sinusoidal input signal of frequency 10 Hz and V_0 is the output signal.

The magnitude of the gain and the phase shift, respectively, close to the values

1. $5\sqrt{2}$ and $\pi/2$

2. $5\sqrt{2}$ and $-\pi/2$

3. 10 and zero

4. 10 and π

निम्न चित्र में दर्शाया तर्क परिपथ निम्न बूलीय व्यंजक को कार्यान्वित करता है : 44.

- 2. $y = \overline{A} \cdot \overline{B}$
- 3. $y = A \cdot B$
- $4. \quad y = A + B$

44. The logic circuit shown in the figure below

implements the Boolean expression

- 1. $y = \overline{A \cdot B}$
- 2. $y = \overline{A} \cdot \overline{B}$
- 3. $y = A \cdot B$
- 4. y = A + B
- परिपथ में दर्शाये डायोड D का i-v संबंध इस प्रकार सन्निकटीकृत है। 45.

$$i_D = \begin{cases} v_D^2 + 2v_D, & \text{for } v_D > 0\\ 0, & \text{for } v_D \le 0 \end{cases}$$

परिपथ में $oldsymbol{v}_{\scriptscriptstyle D}$ का मान है :

- 1. $(-1+\sqrt{11})$ V 2. 8 V
- 3. 5 V
- 4. 2 V

A diode D as shown in the circuit has an i-v relation that can be approximated by 45.

$$i_D = \begin{cases} v_D^2 + 2v_D, & \text{for } v_D > 0\\ 0, & \text{for } v_D \le 0 \end{cases}$$

The value of $\boldsymbol{v}_{\scriptscriptstyle D}$ in the circuit is

- 1. $(-1+\sqrt{11})$ V 2. 8 V
- 3. 5 V

भाग /PART C

जब x वास्तविक है, फलन $\ln(\cosh x)$ के, बिन्दु $x\!=\!0$ के आसपास का प्रसरण, निम्न पर्दों के साथ प्रारम्भ 46.

1.
$$-\frac{1}{2}x^2 + \frac{1}{12}x^4 + \cdots$$

2.
$$\frac{1}{2}x^2 - \frac{1}{12}x^4 + \cdots$$

3.
$$-\frac{1}{2}x^2 + \frac{1}{6}x^4 + \cdots$$

4.
$$\frac{1}{2}x^2 + \frac{1}{6}x^4 + \cdots$$

The Taylor expansion of the function $\ln(\cosh x)$, where x is real, about the point x=046. starts with the following terms:

1.
$$-\frac{1}{2}x^2 + \frac{1}{12}x^4 + \cdots$$

$$2. \ \frac{1}{2}x^2 - \frac{1}{12}x^4 + \cdots$$

3.
$$-\frac{1}{2}x^2 + \frac{1}{6}x^4 + \cdots$$

4.
$$\frac{1}{2}x^2 + \frac{1}{6}x^4 + \cdots$$

सारणिक $U=e^{i\varphi}$ के साथ $U^{\dagger}U=UU^{\dagger}=1$ का तुष्टि करता हुआ एक 2 imes 2 ऐकिक आव्यूह के दिए 47. जाने पर सारणिक V=1 के साध एक और ऐकिक आव्यूह $V\left(V^{\dagger}V=VV^{\dagger}=1\right)$ इस प्रकार निर्मित किया जा सकता है।

- 1. U को $e^{-i\varphi/2}$ से गुणा करके
- 2. U के किसी एक अवयव को $e^{-i \varphi}$ से गुणा करके
- 3. U के किसी एक पंक्ति या स्तंभ को $e^{-i\varphi/2}$ से गुणा करक
- 4. U को $e^{-i\varphi}$ से गुणा करके
- Given a 2×2 unitary matrix U satisfying U'U = UU' = 1 with det $U = e^{i\varphi}$, one can 47. construct a unitary matrix V ($V^{\dagger}V\!=\!VV^{\dagger}\!=\!1$) with det $V\!=\!1$ from it by
 - 1. multiplying U by $e^{-i\varphi/2}$
 - 2. multiplying any single element of U by $e^{-i\phi}$
 - 3. multiplying any row or column of U by $e^{-i \varphi/2}$
 - 4. multiplying U by $e^{-i\varphi}$
- जब C एक बन्ध परिरेखा, जो समीकरण $2|z|-5\!=\!0$ से परिभाषित हैं, व वामावर्त दिशा में चंक्रमित किया जाता 48. है, समाकल $\int \frac{z^3 dz}{z^2 - 5z + 6} \quad \text{का मूल्य है$
 - 1. $-16\pi i$
- 2. $16\pi i$
- 3. $8\pi i$
- $2\pi i$
- The value of the integral $\int \frac{z^3 dz}{z^2 5z + 6}$, where C is a closed contour defined by the 48. equation 2|z|-5=0, traversed in the anti-clockwise direction, is
 - 1. $-16\pi i$
- 2. $16\pi i$
- 3. $8\pi i$
- 4. $2\pi i$
- फलन f(x) अवकल समीकरण $\frac{d^2f}{dx^2} (3-2i)f = 0$ को अनुसरित करता है एवं प्रतिबंध f(0)=1व $f(x) \rightarrow 0$ जब $x \rightarrow \infty$ का तुष्टि करता है। $f(\pi)$ का मान है :
 - 1. $e^{2\pi}$
- 2. $e^{-2\pi}$
- 3. $-e^{-2\pi}$ 4. $-e^{2\pi i}$
- The function f(x) obeys the differential equation $\frac{d^2 f}{dx^2} (3-2i)f = 0$ and satisfies the 49. conditions f(0)=1 and $f(x) \rightarrow 0$ as $x \rightarrow \infty$. The value of $f(\pi)$ is
 - 1. $e^{2\pi}$
- 2. $e^{-2\pi}$
- $3 e^{-2\pi}$

50. सूर्य (द्रव्यमान M) के गुरूत्वाकर्षण क्षेत्र में द्रव्यमान m का एक ग्रह चलता है। कक्षा के अर्ध-दीर्घ व अर्ध-लघु अक्ष कमशः a व b हैं, तो ग्रह का कोणीय संवेग है :

1.
$$\sqrt{2GMm^2(a+b)}$$

2.
$$\sqrt{2GMm^2(a-b)}$$

3.
$$\sqrt{\frac{2GMm^2ab}{a-b}}$$

$$4. \quad \sqrt{\frac{2GMm^2ab}{a+b}}$$

50. A planet of mass m moves in the gravitational field of the Sun (mass M). If the semi-major and semi-minor axes of the orbit are a and b respectively, the angular momentum of the planet is:

1.
$$\sqrt{2GMm^2(a+b)}$$

2.
$$\sqrt{2GMm^2(a-b)}$$

3.
$$\sqrt{\frac{2GMm^2ab}{a-b}}$$

4.
$$\sqrt{\frac{2GMm^2ab}{a+b}}$$

51. लंबाई ℓ की द्रव्यमानहीन एक डोरी से जुड़ा द्रव्यमान m के साधारण लोलक की हैमिल्टनी $H = \frac{{p_o}^2}{2m\ell^2} + mg\ell (1-\cos\theta)$ से दी जाती हैं। यदि L लग्रांजी को निर्दिष्ट करता है, तो $\frac{dL}{dt}$ का मान है:

1.
$$-\frac{2g}{\ell}p_{\theta}\sin\theta$$

2.
$$-\frac{g}{\ell}p_{\theta}\sin 2\theta$$

3.
$$\frac{g}{\ell}p_{\theta}\cos\theta$$

4.
$$\ell p_{\theta}^{2} \cos \theta$$

The Hamiltonian of a simple pendulum consisting of a mass m attached to a massless string of length ℓ is $H = \frac{p_{\theta}^{-2}}{2m\ell^2} + mg\ell(1-\cos\theta)$. If L denotes the Lagrangian, the value of $\frac{dL}{dt}$ is:

1.
$$-\frac{2g}{\ell}p_{\theta}\sin\theta$$

2.
$$-\frac{g}{\ell}p_{\theta}\sin 2\theta$$

3.
$$\frac{g}{\ell}p_{\theta}\cos\theta$$

4.
$$\ell p_{\theta}^{2} \cos \theta$$

52. हैमिल्टन चलन समीकरणों का तुष्टि करते हुए एक कण के लिए निम्न कला—समाष्टि प्रक्षेप—पथ समूह में से कौन—सा संभव नहीं है?

52. Which of the following set of phase-space trajectories is <u>not</u> possible for a particle obeying Hamilton's equations of motion ?

ŕ

- xv -तल में पड़े एक द्रव्यमानहीन सख्त दण्ड से समान द्रव्यमान m के दो पिण्ड इस प्रकार जुड़े हैं कि दण्ड का 53. मध्यबिन्दु मुलबिन्दु में स्थित है। यदि यह प्रणाली z-अक्ष पर कोणीय आवृत्ति ω के साथ घूमती है तो उसका कोणीय संवेग है :
 - 1. $m\ell^2\omega/4$
- 2. $m\ell^2\omega/2$
- 3. $m\ell^2\omega$
- 4. $2m\ell^2\omega$
- Two bodies of equal mass m are connected by a massless rigid rod of length ℓ lying in the xy-53. plane with the centre of the rod at the origin. If this system is rotating about the z-axis with a frequency ω , its angular momentum is
 - 1. $m\ell^2\omega/4$
- 2. $m\ell^2\omega/2$ 3. $m\ell^2\omega$
- 4. $2m\ell^2\omega$
- एक अनंत परिनालिका जिसका सममिति अक्ष दिशा z में है एक स्थायी विद्युतप्रवाह I का वहन करता है। अक्ष से 54. R दूरी पर सदिश विभव \hat{A}

- अन्दर है एवं R की अनुपात में परिनालिका के बाहर बदलता है।
- 2. अन्दर R की अनुपात में बदलता है एवं परिनालिका के बाहर अचर है।
- $3. \ \ \, \frac{1}{R} \ \ \,$ की अनुपात में अन्दर एवं परिनालिका के बाहर R की अनुपात में बदलता है।
- 4. अन्दर R की अनुपात में एवं परिनालिका के बाहर $\frac{1}{R}$ की अनुपात में बदलता है।
- An infinite solenoid with its axis of symmetry along the z-direction carries a steady current I. 54.

The vector potential \vec{A} at a distance R from the axis

- 1. is constant inside and varies as R outside the solenoid
- 2. varies as R inside and is constant outside the solenoid
- 3. varies as $\frac{1}{R}$ inside and as R outside the solenoid
- 4. varies as R inside and as $\frac{1}{R}$ outside the solenoid
- 55. xy-तल में स्थित एक अनंत चालक परत के बारे में विचारें जिसका विद्युतप्रवाह घनत्व K t \hat{i} के अनुसार समय-निर्भर है, जहां K एक अचर है। $\left(x,y,z\right)$ पर सदिश विभव $\vec{A} = \frac{\mu_0 K}{4c} \left(ct-z\right)^2 \hat{i}$ से दिया जाता है। चुम्बकीय क्षेत्र \vec{B} है:

1.
$$\frac{\mu_{\scriptscriptstyle 0}Kt}{2}\hat{j}$$

$$2. -\frac{\mu_0 Kz}{2c} \hat{j}$$

$$3. -\frac{\mu_0 K}{2c} (ct - z)\hat{i}$$

$$4. \quad -\frac{\mu_0 K}{2c} (ct - z) \hat{j}$$

Consider an infinite conducting sheet in the xy-plane with a time dependent current density $Kt\hat{i}$, where K is a constant. The vector potential at (x,y,z) is given by

$$\dot{A} = \frac{\mu_0 K}{4c} (ct - z)^2 \hat{i}$$
. The magnetic field \vec{B} is

$$1. \quad \frac{\mu_0 Kt}{2} \, \hat{j}$$

$$2. -\frac{\mu_0 Kz}{2c} \hat{j}$$

3.
$$-\frac{\mu_0 K}{2c} (ct - z)\hat{i}$$

$$4. \quad -\frac{\mu_0 K}{2c} \left(ct - z\right) \hat{j}$$

56. जब एक आवेशित कण विद्युतचुम्बकीय विकिरण उत्सर्जित करता है, उत्सर्जक से दूरी r पर विद्युत क्षेत्र \vec{E} एवं ω ω ω ω सिदश $\dot{S}=\frac{1}{\mu_0} \dot{E} \times \dot{B}$ कमशः $\frac{1}{r^n}$ व $\frac{1}{r^n}$ के अनुसार बदलत हैं। n व m के लिए निम्न विकृत्यों \dot{P} से कौन—सा सही हैं?

1.
$$n=1 \ \forall \vec{a} \ m=1$$

2.
$$n=2 \ \forall \vec{a} \ m=2$$

3.
$$n=1 \ \text{vd} \ m=2$$

4.
$$n=2 \ \ \text{va} \ m=4$$

When a charged particle emits electromagnetic radiation, the electric field \vec{E} and the Poynting vector $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$ at a large distance r from the emitter vary as $\frac{1}{r^n}$ and $\frac{1}{r^m}$ respectively. Which of the following choices for n and m are correct?

1.
$$n=1$$
 and $m=1$

2.
$$n=2$$
 and $m=2$

3.
$$n=1$$
 and $m=2$

4.
$$n=2$$
 and $m=4$

57. विभव V(x) में स्थित एक कण की उर्जा आद्य व प्रथम उत्तेजित अवस्थाओं में कमशः -4 व-1 हैं (उन एकलों में जहां $\hbar=1$ है)। यदि संगत तरंग-फलनें $\psi_1(x)=\psi_0(x)\sinh x$ से संबंधित हैं, तो आद्य अवस्था का अभिलक्षणिक फलन है :

1.
$$\psi_0(x) = \sqrt{\operatorname{sech} x}$$

2.
$$\psi_0(x) = \operatorname{sech} x$$

3.
$$\psi_0(x) = \operatorname{sech}^2 x$$

4.
$$\psi_0(x) = \operatorname{sech}^3 x$$

57. The energies in the ground state and first excited state of a particle of mass $m = \frac{1}{2}$ in a potential V(x) are -4 and -1, respectively, (in units in which $\hbar = 1$). If the corresponding wavefunctions are related by $\psi_1(x) = \psi_0(x) \sinh x$, then the ground state eigenfunction is

1.
$$\psi_0(x) = \sqrt{\operatorname{sech} x}$$

$$2. \ \psi_{\scriptscriptstyle 0}(x) = \operatorname{sech} x$$

3.
$$\psi_0(x) = \operatorname{sech}^2 x$$

4.
$$\psi_0(x) = \operatorname{sech}^3 x$$

58. क्षोभ

$$H' = \begin{cases} b(a-x), & -a < x < a \\ 0, & \text{अन्यथा} \end{cases}$$

एक अनंत वर्ग कूप विभव V(x) में सीमित द्रव्यमान m के एक कण पर लागू होता है

$$V(x) = \begin{cases} 0, & -a < x < a \\ \infty, & \text{31-21211} \end{cases}$$

कण की आद्य अवस्था की उर्जा का एकघातज संशुद्धि है :

1.
$$\frac{ba}{2}$$

2.
$$\frac{ba}{\sqrt{2}}$$

58. The perturbation

$$H' = \begin{cases} b(a-x), & -a < x < a \\ 0, & \text{otherwise} \end{cases}$$

acts on a particle of mass *m* confined in an infinite square well potential

$$V(x) = \begin{cases} 0, & -a < x < a \\ \infty, & \text{otherwise.} \end{cases}$$

The first order correction to the ground-state energy of the particle is

- 1. $\frac{ba}{2}$
- $2. \quad \frac{ba}{\sqrt{2}}$
- 3. *2ba*
- 4. *ba*

59. मानें कि किसी एक-विमीय सरल आवर्ती दोलक के आद्य एवं प्रथम उत्तेजित अवस्थाओं से संगत प्रसामान्यीकृत अभिलक्षणिक अवस्थाओं को $|0\rangle$ व $|1\rangle$ से निर्दिष्ट किया जाता है। अवस्था $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ में अनिश्चितता Δx है:

1. $\Delta x = \sqrt{\hbar/2m\omega}$

2. $\Delta x = \sqrt{\hbar/m\omega}$

3. $\Delta x = \sqrt{2\hbar/m\omega}$

4. $\Delta x = \sqrt{\hbar/4m\omega}$

59. Let $|0\rangle$ and $|1\rangle$ denote the normalized eigenstates corresponding to the ground and the first excited states of a one-dimensional harmonic oscillator. The uncertainty Δx in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ is

- 1. $\Delta x = \sqrt{\hbar/2m\omega}$
- 2. $\Delta x = \sqrt{\hbar/m\omega}$

3. $\Delta x = \sqrt{2\hbar/m\omega}$

4. $\Delta x = \sqrt{\hbar/4m\omega}$

60. विचरणात्मक प्राचल नियम के द्वारा जब हैमिल्टनी

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} - \alpha \,\delta(x)$$

को निर्धारित करने के लिए अभिप्रायोगिक तरंग-फलन $\psi(x) = Ae^{-bx^2}$ का उपयोग किया जाता है, जहां b एक विचरणात्मक प्राचल है, हैमिल्टनी की आद्य अवस्था उर्जा क्या होगी?

$$[\vec{\pi} \vec{\phi} \vec{n} : \int_{-\infty}^{\infty} x^{2n} e^{-2bx^2} dx = (2b)^{-n-\frac{1}{2}} \Gamma\left(n + \frac{1}{2}\right).]$$

1.
$$-m\alpha^2/2h^2$$

$$2. -2m\alpha^2/\pi\hbar^2$$

1.
$$-m\alpha^2/2h^2$$
 2. $-2m\alpha^2/\pi\hbar^2$ 3. $-m\alpha^2/\pi\hbar^2$ 4. $m\alpha^2/\pi\hbar^2$

4.
$$m\alpha^2/\pi\hbar^2$$

What would be the ground state energy of the Programian 60.

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} - \alpha \,\delta(x)$$

if variational principle is used to estimate it with the trial wavefunction $\psi(x) = Ae^{-bx^2}$ with b as the variational parameter?

[Hint:
$$\int_{-\infty}^{\infty} x^{2n} e^{-2bx^2} dx = (2b)^{-n-\frac{1}{2}} \Gamma\left(n + \frac{1}{2}\right).$$
]

1.
$$-m\alpha^2/2\hbar^2$$

2.
$$-2m\alpha^2/\pi\hbar$$

1.
$$-m\alpha^2/2\hbar^2$$
 2. $-2m\alpha^2/\pi\hbar^2$ 3. $-m\alpha^2/\pi\hbar^2$ 4. $m\alpha^2/\pi\hbar^2$

4.
$$m\alpha^2/\pi\hbar^2$$

एक पदार्थ के सामान्य एवं अतिचालक अञ्चाओं का मुक्त-उर्जा अंतर $\Delta F = F_S - F_N = \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4$ से 61. दिया जाता है, जहां ψ एक घात प्राचल है, एवं α व β अचर हैं, ताकि सामान्यावस्था में $\alpha > 0$ व अतिचालक अवस्था में $\alpha < 0$ है, जबिक हमेशा $\beta > 0$ है। ΔF का न्यूनतम मान है :

1.
$$-\alpha^2/\beta$$

$$2. -\alpha^2/2\beta$$

3.
$$-3\alpha^2/2\mu$$

2.
$$-\alpha^2/2\beta$$
 3. $-3\alpha^2/2\beta$ 4. $-5\alpha^2/2\beta$

The free energy difference between the superconducting and the normal states of a material is 61. given by $\Delta F = F_S - F_N = \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4$, where ψ is an order parameter and α and β are constants such that $\alpha > 0$ in the normal and $\alpha < 0$ in the superconducting state, while $\beta > 0$ always. The minimum value of ΔF is

1.
$$-\alpha^2/\beta$$

$$2. -\alpha^2/2\beta$$

2.
$$-\alpha^2/2\beta$$
 3. $-3\alpha^2/2\beta$ 4. $-5\alpha^2/2\beta$

$$4. -5\alpha^2/2\beta$$

जैसे निम्न चित्र में दर्शाया गया है, एक दी हुई मात्रा में वायु अवस्था A से C तक उत्क्रमणीय प्रक्रिया द्वारा, दो 62. पथों से, सीघे A से C तक एवं A से B तथा B से C तक, ले जाया जाता है। A
ightarrow C में वायु से किया गया कार्य $100~\mathrm{J}$ है व अवशोषित ऊष्मा $150~\mathrm{J}$ है। $A \to B \to C$ प्रक्रिया में यदि वायु से किया गया कार्य $30~\mathrm{J}$ है, तो अवशोषित ऊष्मा है :

- 1. 20 J
- 2. 80 J
- 3. 220 J
- 4. 280 J
- A given quantity of gas is taken from the state $A \rightarrow C$ reversibly, by two paths, $A \rightarrow C$ 62. directly and $A \to \bar{B} \to C$ as shown in the figure below.

During the process $A \rightarrow C$ the work done by the gas is 100 J and the heat absorbed is 150 J. If during the process $A \to B \to C$ the work done by the gas is 30 J, the heat absorbed is

- 1. 20 J
- 2. 80 J
- 3. 220 J
- 4. 280 J
- N प्रचक्रण वाले एक-विमीय आइसिंग प्रतिमान के बारे में सोचें जब अति न्यून तापमानों में लगभग सभी प्रचक्रण 63. एक दूसरे से सामान्तर पंक्तिबद्ध हैं। कुछ प्रचक्रण-पलटन होंगे, हर एक की ऊर्जा हानि 2J होगी। $m{r}$ प्रचक्रण-पलटन की एक संस्थिति में, प्रणाली की ऊर्जा E=-NJ+2rJ है एवं संस्थितियों की संख्या $^{N}C_{r}$; r जो 0 से N तक बदलता है । संवितरण फलन है :

- 3. $\left(\sinh \frac{J}{k_B T}\right)^N$ 4. $\left(\cosh \frac{J}{k_B T}\right)^N$

Consider a one-dimensional Ising model with N spins, at very low temperatures when almost all 63. the spins are aligned parallel to each other. There will be a few spin flips with each flip costing an energy 2J. In a configuration with r spin flips, the energy of the system is E = -NJ + 2rJand the number of configuration is ${}^{N}C_{r}$; r varies from 0 to N. The partition function is

1.
$$\left(\frac{J}{k_B T}\right)^N$$
 2. $e^{-NJ/k_B T}$ 3. $\left(\sinh \frac{J}{k_B T}\right)^N$ 4. $\left(\cosh \frac{J}{k_B T}\right)^N$

हॉल परिणाम पर आधारित एक चुम्बकीय क्षेत्र संवेदक 1 µm मोटे एक Si फिल्म पर As के आरोपण से बनाया 64. जाता है। विनिर्देश के अनुसार चूम्बकीय क्षेत्र की सूग्राहिता $500~\mathrm{mV/Tesla}$ एवं उत्तेजना विद्युत प्रवाह $1\mathrm{mA}$ की आवश्यकता है। आरोपण मात्रा को इस प्रकार समंजित किया जाना चाहिए ताकि सक्रियण के उपरान्त माध्य संवाहक घनत्व है :

1.
$$1.25 \times 10^{26} \,\mathrm{m}^{-3}$$

2.
$$1.25 \times 10^{22} \,\mathrm{m}^{-3}$$

3.
$$4.1 \times 10^{21} \,\mathrm{m}^{-3}$$

4.
$$4.1 \times 10^{20} \,\mathrm{m}^{-3}$$

64. A magnetic field sensor based on the Hall effect is to be fabricated by implanting As into a Si film of thickness 1 µm. The specifications require a magnetic field sensitivity of 500 mV/Tesla at an excitation current of 1 mA. The implantation dose is to be adjusted such that the average carrier density, after activation, is

1.
$$1.25 \times 10^{26} \,\mathrm{m}^{-3}$$

2.
$$1.25 \times 10^{22} \,\mathrm{m}^{-3}$$

3.
$$4.1 \times 10^{21} \,\mathrm{m}^{-3}$$

4
$$4.1 \times 10^{20} \,\mathrm{m}^{-3}$$

बैंड-पारक एवं बैंड-निराकरण निस्यंदक, एक निःन पारक एवं एक उच्च-पारक निस्यंदकों को कमशः श्रेणी एवं 65. समान्तर में जोड़कर कार्यान्वित किए जा सकते हैं। यदि निम्न पारक एवं उच्च–पारक निस्यंदकों की अंतक आवृत्तियां कमशः $\omega_0^{ ext{LP}}$ व $\omega_0^{ ext{HP}}$ हैं, तो बैंड-पारक एवं बैंड-निराकरण निस्यंदकों को कार्यान्वित करने के लिए

ा.
$$\omega_0^{\mathrm{HP}} < \omega_0^{\mathrm{LP}}$$
 एवं $\omega_0^{\mathrm{HP}} < \omega_0^{\mathrm{LP}}$

$$2. \quad \omega_0^{\mathrm{HP}} < \omega_0^{\mathrm{LP}} \quad \nabla \vec{q} \quad \omega_0^{\mathrm{HP}} > \omega_0^{\mathrm{LP}}$$

3.
$$\omega_0^{\rm HP} > \omega_0^{\rm LP} \ \ \forall \vec{q} \ \ \omega_0^{\rm HP} < \omega_0^{\rm LP}$$
 4. $\omega_0^{\rm HP} > \omega_0^{\rm LP} \ \ \ \forall \vec{q} \ \ \omega_0^{\rm HP} > \omega_0^{\rm LP}$

4.
$$\omega_0^{\text{HP}} > \omega_0^{\text{LP}}$$
 एवं $\omega_0^{\text{HP}} > \omega_0^{\text{LF}}$

Band-pass and band-reject filters can be implemented by combining a low pass and a high pass 65. filter in series and in parallel, respectively. If the cut-off frequencies of the low pass and high pass filters are ω_0^{LP} and ω_0^{HP} , respectively, the condition required to implement the bandpass and band-reject filters are, respectively,

1.
$$\omega_0^{\rm HP} < \omega_0^{\rm LP}$$
 and $\omega_0^{\rm HP} < \omega_0^{\rm LP}$

2.
$$\omega_0^{\rm HP} < \omega_0^{\rm LP}$$
 and $\omega_0^{\rm HP} > \omega_0^{\rm LP}$

3.
$$\omega_0^{\rm HP} > \omega_0^{\rm LP}$$
 and $\omega_0^{\rm HP} < \omega_0^{\rm LP}$ 4. $\omega_0^{\rm HP} > \omega_0^{\rm LP}$ and $\omega_0^{\rm HP} > \omega_0^{\rm LP}$

4.
$$\omega_0^{\text{HP}} > \omega_0^{\text{LP}}$$
 and $\omega_0^{\text{HP}} > \omega_0^{\text{LI}}$

66. एक दिए हुए किरणित ऊर्जा मान में एक सौर्य-पट्टी की निर्गत विशिष्टताएं निम्न चित्र में दर्शायी गयी हैं। यदि सौर्य-सेल 5 Ω के उद्भार को चलाता है तो उद्भार से निकाली गई शक्ति है:

- 1. 97 W
- 2. 73 W
- 3. 50 W
- 4. 45 W

66. The output characteristics of a solar panel at a certain level of irradiance is shown in the figure below.

If the solar cell is to power a load of 5 Ω , the power drawn by the load is

- 1. 97 W
- 2. 73 W
- 3. 50 W
- 4. 45 W

67. आणविक नाइट्रोजन लेसर से संगत निम्न दर्शाए गए ऊर्जा स्तर आरेख पर विचारें।

यदि पंपन गति R, 10^{20} परमाणु cm⁻³ s⁻¹ है, एवं क्षयं पथ $au_{21} = 20$ ns व $au_1 = 1 \mu s$. के साथ दर्शाए गए हैं, तो स्तर 2 से 1 की कमशः साम्यावस्था आंबादियां होंगी :

- 1. 10^{14} cm^{-3} and $2 \times 10^{12} \text{ cm}^{-3}$
- 2. 2×10^{12} cm⁻³ and 10^{14} cm⁻³
- 3. $2\times10^{12}~\text{cm}^{-3}$ and $2\times10^6~\text{cm}^{-3}$
- 4. zero and 10^{20} cm⁻³

Consider the energy level diagram shown below, which corresponds to the molecular nitrogen 67.

If the pump rate R is 10^{20} atoms cm⁻³ s⁻¹ and the decay routes are as shown with $\tau_{21} = 20$ ns and $\tau_1 = 1 \mu s$, the equilibrium populations of states 2 and 1 are, respectively,

- 1. 10^{14} cm^{-3} and $2 \times 10^{12} \text{ cm}^{-3}$ 2. $2 \times 10^{12} \text{ cm}^{-3}$ and 10^{14} cm^{-3} 3. $2 \times 10^{12} \text{ cm}^{-3}$ and $2 \times 10^{6} \text{ cm}^{-3}$ 4. zero and 10^{20} cm^{-3}
- 3. 2×10^{12} cm⁻³ and 2×10^{6} cm⁻³

2P
ightarrow 1S संक्रमण करते हुए एक हाइड्रोजन परमाणु पर विचारें। स्वतः उत्सर्जन के लिए P स्तर की आयुकाल 68. 1.6 ns है व स्तरों के बीच का ऊर्जा अंतर 10.2 eV है। माध्यम के अपवर्तनांक no को 1 मानते हुए, उददीपित एवं स्वतः उत्सर्जनों के आइन्स्टैन गुणांकों की अनुपात $B_{21}(\omega)/A_{21}(\omega)$ इससे दिया जाता है :

- 1. $0.683 \times 10^{12} \text{ m}^3 \text{J}^{-1} \text{ s}^{-1}$
- 2. $0.146 \times 10^{-12} \text{ J s m}^{-3}$

3. $6.83 \times 10^{12} \text{ m}^3 \text{J}^{-1} \text{ s}^{-1}$

4. $1.463 \times 10^{-12} \text{ J s m}^{-3}$

Consider a hydrogen atom undergoing a $2P \rightarrow 1S$ transition. The lifetime t_{sp} of the 2P68. state for spontaneous emission is 1.6 ns and the energy difference between the levels is 10.2 eV. Assuming that the refractive index of the medium $n_0 = 1$, the ratio of Einstein coefficients for stimulated and spontaneous emission $B_{21}(\omega)/A_{21}(\omega)$ is given by

- 1. $0.683 \times 10^{12} \text{ m}^3 \text{J}^{-1} \text{ s}^{-1}$
- 2. $0.146 \times 10^{-12} \text{ J s m}^{-3}$

3. $6.83 \times 10^{12} \text{ m}^3 \text{J}^{-1} \text{ s}^{-1}$

4. $1.463 \times 10^{-12} \text{ J s m}^{-3}$

प्रतिवर्तताएं $R_{_1}=1$ एवं $R_{_2}=0.98$ के दो दर्पण वाले एक He-Ne लेसर गुहिका पर विचारें। दर्पण एक 69. दूसरे से d=20 सेमी. दूरी पर स्थित हैं एवं बीच के माध्यम का अपवर्तनांक $n_{_0}=1$ व अवशोषण गुणांक lpha=0 है। अवस्थाओं के बीच के अंतर δv एवं लेसर गुहिका की हर अवस्था की चौड़ाई $\Delta v_{_p}$ है :

- 1. $\delta v = 75 \text{ kHz}$, $\Delta v_p = 24 \text{ kHz}$ 2. $\delta v = 100 \text{ kHz}$, $\Delta v_p = 100 \text{ kHz}$
- 3. $\delta v = 750 \text{ MHz}$, $\Delta v_p = 2.4 \text{ MHz}$ 4. $\delta v = 2.4 \text{ MHz}$, $\Delta v_p = 750 \text{ MHz}$

Consider a He-Ne laser cavity consisting of two mirrors of reflectivities $R_1 = 1$ and 69. $R_{\scriptscriptstyle 2}=0.98$. The mirrors are separated by a distance $d=20\,$ cm and the medium in between has a refractive index $n_{\scriptscriptstyle 0}=1$ and absorption coefficient lpha=0 . The values of the separation between the modes $\delta \nu$ and the width $\Delta \nu_p$ of each mode of the laser cavity are :

1. $\delta v = 75 \text{ kHz}$, $\Delta v_p = 24 \text{ kHz}$ 2. $\delta v = 100 \text{ kHz}$, $\Delta v_p = 100 \text{ kHz}$ 3. $\delta v = 750 \text{ MHz}$, $\Delta v_p = 2.4 \text{ MHz}$ 4. $\delta v = 2.4 \text{ MHz}$, $\Delta v_p = 750 \text{ MHz}$

अन्योन्यक्रियाविहीन बोसॉन जब तक एक तीन–विमीय समदैशिक सरल आवर्ती विभव में फंस जाते हैं, तब 70. बोस-आइन्स्टाइन संघनन (BEC) घटता है। BEC के घटित होने हेत् रासायनिक विभव होना ही चाहिए :

1. $\hbar\omega/2$

 $2. \hbar \omega$

 $3 \frac{3\hbar\omega}{2}$

Non-interacting bosons undergo Bose-Einstein Condensation (BEC) when trapped in a three-70. dimensional isotropic simple harmonic potential. For BEC to occur, the chemical potential must be equal to

1. $\hbar\omega/2$

2. $\hbar\omega$

 $3. 3\hbar\omega/2$

पट्टित संरचना परिकलन में इलेक्ट्रोनों के लिए परिक्षेपण संबंध पाया जाता है कि 71.

$$\varepsilon_{k} = \beta \left(\cos k_{x} a + \cos k_{y} a + \cos k_{z} a\right)$$

जहां eta एक अचर है एवं a एक जालक अचर है। प्रथम ब्रिलुवां क्षेत्र की सीमा पर प्रभावी द्रव्यमान है:

1. $\frac{2\hbar^2}{5\beta a^2}$ 2. $\frac{4\hbar^2}{5\beta a^2}$ 3. $\frac{\hbar^2}{2\beta a^2}$ 4. $\frac{\hbar^2}{3\beta a^2}$

In a band structure calculation, the dispersion relation for electrons is found to be 71.

$$\varepsilon_{k} = \beta (\cos k_{x} a + \cos k_{y} a + \cos k_{z} a),$$

where β is a constant and α is the lattice constant. The effective mass at the boundary of the first Brillouin zone is

1. $\frac{2\hbar^2}{5\beta a^2}$ 2. $\frac{4\hbar^2}{5\beta a^2}$ 3. $\frac{\hbar^2}{2\beta a^2}$ 4. $\frac{\hbar^2}{3\beta a^2}$

फलक-केन्द्रित घन संरचना के एक एकसंयोजक धातु के मुक्त इलेक्ट्रोनों की फेर्मी गोले, जिसकी इकाई सेल का 72. आयतन a³ है, की त्रिज्या है :

1. $\left(\frac{12\pi^2}{a^3}\right)^{1/3}$ 2. $\left(\frac{3\pi^2}{a^3}\right)^{1/3}$ 3. $\left(\frac{\pi^2}{a^3}\right)^{1/3}$ 4. $\frac{1}{a}$

The radius of the Fermi sphere of free electrons in a monovalent metal with an fcc 72. structure, in which the volume of the unit cell is a^3 , is

1. $\left(\frac{12\pi^2}{a^3}\right)^{1/3}$ 2. $\left(\frac{3\pi^2}{a^3}\right)^{1/3}$ 3. $\left(\frac{\pi^2}{a^3}\right)^{1/3}$ 4. $\frac{1}{a}$

विराम—तंत्र में म्यूआन का द्रव्यमान $105~{
m MeV}\,/\,c^2$ एवं उसका माध्य आयुकाल $2.2~{
m \mu s}$ है। क्षय के पूर्व ऊर्जा

 $315~{
m MeV}\,/\,c^2$ वाली एक म्यूआन से पारित दूरी लगभग होगी :

73.

	1. 3×10^5 km	2. 2.2 cm	3.	6.6 µm	4.	1.98 km
73.	The muon has mass 1 distance traversed by a r					
	1. 3×10 ⁵ km	2. 2.2 cm	3.	6.6 µm	4.	1.98 km
74.	निम्न कणों पर विचारें : प्र आयुकाल के घटते क्रमांक !	ोटॉन p , न्यूट्रॉन n , निरा में व्यवस्थित किए जाते हैं तो			अनुन	नाद $\Delta^{^+}$ । जब ये अपने
	1. $\pi^{\scriptscriptstyle 0}$, n , p , $\Delta^{\scriptscriptstyle +}$		2.	p , n , $\Delta^{\scriptscriptstyle +}$, $\pi^{\scriptscriptstyle 0}$		
	3. p, n, π^0, Δ^+			Δ^+ , n , π^0 , p		
	r,,,=					
74.	Consider the following	particles: the proton	p , t	he neutron n , the	neut	ral pion $\pi^{\scriptscriptstyle 0}$ and the
	delta resonance Δ^+ . V as follows:	When ordered in terms of	of <u>de</u>	creasing lifetime, th	e co	orrect arrangement is
	1. π^0 , n , p , Δ^+		2.	p, n, Δ^+, π^0		
	3. p, n, π^0, Δ^+	•		Δ^+ , n , π^0 , p		
	<i>p</i> ,,,=			_ ,,.,,,,		
75.		को (उदाहरण $p_{\scriptscriptstyle 3/2}$ एवं p के बीच का ऊर्जा—अंतर है :		के बीच का एक-कर्ण	ोय व	कर्जा अंतर 3 MeV है।
•	17 MeV	2. 7 MeV	3.	5 MeV	4.	−5 MeV
75.	The single particle ener	rgy difference between	the p	p-orbitals (i.e., $p_{_{3/2}}$	and	$p_{1/2}$) of the nucleus
	$^{114}_{50}$ Sn is 3 MeV. The	energy difference between	een t	he states in its 1f or	oital	is
	17 MeV	2. 7 MeV	3.	5 MeV	4.	−5 MeV