Table 1. The ISC-units currently available in DaNCES (updated 15/05/2024)

Marina Papadopoulou 1,2 and Hanno Hildenbrandt 2

 $^{\rm 1}$ Swansea University, Swansea, UK $^{\rm 2}$ University of Groningen, Groningen, The Netherlands

Each internal state control (ISC) unit is stand-alone and could be combined with others to create states. ISC-units are called 'actions' in the software.

ISC-unit	Function
Agent - Movement	
wiggle	Turn by a random angle (noise).
$roost_attraction$	Turn towards a given global position on the plane, if outside of a given
	radius around it.
$altitude_attraction$	Pitch towards a given global altitude, if further than a given distance to
	it, according to a smootherstep function.
$level_attraction$	Pitch to return to level flight (upwards or downwards).
waypoint	Move towards a given global position.
$r_{-}turn$	Perform a turn of a given radius.
roosting	Turn towards a given global position (3D).
relative_roosting_transient	Move towards a global direction at a given angle relative to the flock's
	heading at the time of the state's entry.
relative_roosting_persistant	Move towards a global position at a given angle and distance relative to
	the flock's centroid at the time of the state's entry.
set	Re-assign the position, speed and heading of the agent.
$set_retreat$	Re-assign the position and speed of the agent at a given distance away from
	its current position.
hold	Circle around a given global position.
$hold_current$	Circle around its own position at the state's entry.
Agent - Social	
align_n	Align with a number of closest neighbors.
align_direction	Align with own past heading at the beginning of the state.
cohere_centroid	Turn towards the average position of a number of closest neighbors.
$cohere_centroid_distance$	Turn towards the average position of a number of closest neighbors depending on
	the agent's distance from it (the closer the average position the weaker
	the attraction, according to a smootherstep function).
$cohere_accel_n_front$	Accelerate, depending on the average distance to a number of closest neighbors
	within a frontal field of view (the further away, the higher the acceleration).
	Decelerate if no neighbors are within the field of view.
$avoid_n_position$	Turn away from the average position of a number of closest neighbors if it
	is within a radius of minimum separation.
$avoid_n_direction$	Turn parallel to the average heading of a number of closest neighbors
	if the future collision point with them is within a radius of minimum separation.
	Continued on next page

Table 1 – continued from previous page

ISC-unit	Function Table 1 Continued from previous page
avoid_pos_or_cohere_all	Avoid as in avoid_n_position if a neighbor is within the radius
avoid_dir_or_cohere_all	of minimum separation. If not, cohere as in <i>cohere_centroid</i> .
	Avoid as in avoid_n_direction if a neighbor is within the radius
	of minimum separation. If not, cohere as in $cohere_centroid$.
Prey - Escape	
avoid_p_direction	Turn left or right, away from the relative heading of a close-by predator,
•	if it is within a radius of minimum separation.
avoid_p_position	Turn left or right, away from the relative position of a close-by predator,
1 1	if it is within a radius of minimum separation.
move_away_from_predator	Turn away from the position of a close-by predator, if it is within
v I	a radius of minimum separation.
t_trn_pred	Complete a turn of a given radius within a given time window away
	from the nearest predator.
$random_t_turn_pred$	Turn with an angular velocity sampled from a gamma distribution,
	with direction away from the predator.
nondone t tunn menone and	Turn with an angular velocity sampled from a
random_t_turn_gamma_pred	uniform distribution, with direction away from the predator.
dive	Pitch downwards (dive) away from a close-by predator (3D).
-i	Perform a zig-zag turn (half to the left, half to the right)
zig_zag	for a given time window.
scatter	Turn away (perpendicular) from the position of the nearest predator,
	if it is within a radius of minimum separation (3D).
copy_escape	Copy the state of a close-by neighbor, if the state is copyable.
Predator - Hunt	
$select_flock$	Choose a group as a target. If more than one, choose the
	nearest, smallest, largest, or a random one.
position_to_attack	Position at a given distance and bearing angle
	in the horizontal and vertical plane from the target (3D).
shadowing	Follow the target group from a given
	bearing angle and distance, with a speed scaling from the target's speed.
chase_closest_prey	Move towards the closest prey (at every instance)
	with a speed scaling from the target's speed.
$lock_on_closest_prey$	Move towards a targeted prey (constant during the state)
	with a speed scaling from the target's speed.
avoid_closest_prey	Turn away from the position of the closest prey.

- Cite as:

Papadopoulou M., Hildenbrandt H., Hemelrijk C.K. (2024) DaNCES: a framework for datainspired agent based models of collective escape. Accepted.