Final Assessment Test (FAT) May 2017 Discrete Mathematics and Graph Harry 21) MAT1014 Class NBR(s):4419 / 4422 / 5327

Time: Three Hours

Sign: PROTESTIFFE

1895

1746

(10)

(16)

(5)

554

Answer any FIVE Questions (5 X 20 = 100 Marks)

- Obtain the pdnf and pcnf of the following formula and hence conclude whether it is a tautology $(P \to (Q \land R)) \land (\neg P \to (\neg Q \land \neg R))$
- Test the consistency of the following Statements.
 - If Jack studies well he will pass in exams.
 - ii. If Jack studies well he will get a job.
 - iii. Succeeding in exam and getting a job simultaneously are not possible for him
 - iv. Jack either enjoys or studies well.
 - v. Finally, Jack enjoys. 1101 Show that the conclusion $(x)(F(x) \rightarrow \neg S(x))$ follows from a)
 - (i) $(x)(F(x) \land S(x)) \rightarrow (y)(M(y) \rightarrow W(y))$ and
 - (ii) $(\exists y)(M(y) \land \neg W(y))$ (10)
 - Show that b)
 - (i) $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q)) \Leftrightarrow (\neg P \lor Q)$
- (ii) $(P \vee Q) \wedge (\neg P \wedge (\neg P \wedge Q)) \Leftrightarrow (\neg P \wedge Q)$ (i) Prove that for any monoid $\langle M, *
 angle$, no two rows or columns of the composition table are identical 141
- (ii) Establish the isomorphism between the following two algebraic systems: 161
 - $\langle F, \circ \rangle$ where $F = \{f^0, f^1, f^2, f^3\}$ with $f = f^1 = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, A_1, \langle 4, 1 \rangle\}$ and the composite functions are formed from the equation $f^* = f^{*+} \circ f$, $k \ge 2$. Further, $f^* = f^*$
 - $\langle Z_4, +_4
 angle$, the algebraic system of equivalence classes generated by congruence modulo II. 4 under addition modulo 4.
 - What is the condition for a code to correct 'k' or fewer errors. Generate a single error correcting code b)
- (10) a) (5)
 - Obtain the Hasse diagrams of the lattices $\langle S_n, D \rangle$ when $n=30,\,45$. Which of these are complemented? Are these lattices distributive? Explain.
 - (ii) Obtain the simplified Boolean expression which is equivalent to the expression $m_1+m_1+m_2+m_3$ (i) State and prove the isotonicity property of a lattice (L, \leq) . 5.

 - Obtain the Karnaugh map for the Boolean function $f = x_1 \circ [x_2 + (x_1 \circ x_4)]$.
 - (i) Prove that any simple graph with n vertices has at most $\frac{n(n-1)}{2}$ edges.

(ii) Prove that the graph K_3 is nonplanar.