Twitter User Gender Classification using SparkML

Project Report
By Venkatesh Jagannathan

Data Processing Steps

List of Data Issues found in raw data

- 1. New lines, Non Ascii characters in text data
- 2. Few malformed CSV lines
- 3. "Unknown" gender value
- 4. Gender judgement by reviewers with lower confidence
- 5. Text with multiple words, common stop words

How did you tackle the issues mentioned above?

- 1. Used <a href="https://example.com/option("mode", "DROPMALFORMED") while loading csv data to clear malformed and problematic records
- 2. Filtered records with predicted gender value & good confidence for better accuracy (~61% records net obtained)
- 3. **RegexTokenizer** to tokenize the words, **explode** inbuilt udf to split words into multiple rows and **StopWordsRemover** to remove common words

```
Dataset<Row> reduced = userKnowDf.select(
        col("_golden"),
        col("gender"),
        col("gender:confidence"),
        col("gender_gold"),
col("description"),
        col("sidebar_color"),//.cast("long"),
        col("link color"),//.cast("long"),
        col("text"),
        col("tweet_location"),
        col("user timezone")
        .filter("`gender:confidence` == 1") //filter low
        .filter("gender == 'male' or gender == 'female' or gender == 'brand'"); //eliminate
RegexTokenizer tokenizer = new RegexTokenizer()
  .setInputCol("text")
  .setOutputCol("words")
    .setPattern("\\W");
 StopWordsRemover remover = new StopWordsRemover()
           .setInputCol("words")
           .setOutputCol("filtered words");
```

Input Records

_unit_id _golder	n _unit_state	_trusted_jude _last_judgme gender	gender:confi) text
815719226 FALSE	finalized	3 10/26/15 23:2 male	1 Robbie E Responds To Critics After Win Against Eddie Edwards In The #WorldTitleSe
815719227 FALSE	finalized	3 10/26/15 23:3▶ male	1 ♦♦♦ It felt like they were my friends and I was living the story with them♦ https:
815719228 FALSE	finalized	3 10/26/15 23:3 male	0.6625 i absolutely adore when louis starts the songs it hits me hard but it feels good
815719229 FALSE	finalized	3 10/26/15 23:1 male	1 Hi @JordanSpieth - Looking at the url - do you use @IFTTT?! Don't typically see an
815719245 FALSE	finalized	3 10/26/15 22:1 unknown	0.3527

Output

+ _golden ge	ender ge	ender:confidence	gender_gold	sidebar_color	link_color	+ tweet	t_location	· · · · · · · · · · · · · · · · · · ·	user_timez	zone	word
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	robbie
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	e
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	responds
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	critics
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	win
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	eddie
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	edwards
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	worldtitleseries
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	https
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	co
FALSE	male	1	null	FFFFFF	08C2C2	main;	@Kan1shk3		Cher	nnai	nsybbmvjkz
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		felt
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		like
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		friends
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		living
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		story
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		https
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		co
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		arnge0yhno
FALSE	male	1	null	CØDEED	0084B4		null	Eastern	Time (US		retired
+	+	+				+	+				+

Model Building

List of Models used

- 1. Decision Tree Algorithm
 - I. Columns
 - a) Label
 - i. gender
 - b) Features
 - i. text
 - ii. sidebar color (4-5% improved accuracy)
 - iii. link color (4-5% improved accuracy)
 - II. HyperParameters
 - a) maxDepth 20 (Test Data Accuracy = 52%, Training Data Accuracy = 52%)
 - i. Increasing further to 25 caused model to *overfit* (test=53%,train=54%)
 - ii. Lowering to 15 caused to *underfit* (test=50%,train=50%)

```
DecisionTreeClassifier dt = new DecisionTreeClassifier().setLabelCol("label").setFeaturesCol("features").setSeed(0);
dt.setMaxDepth(20);
dt.setMinInfoGain(0.0);
dt.setMinInstancesPerNode(1);
dt.setCacheNodeIds(false);
dt.setMaxBins(3000);

DecisionTreeClassificationModel Model = dt.fit(trainingData);
System.out.println("Learned Decision tree" + Model.toDebugString());

Dataset<Row> rawPredictions = Model.transform(testData);
Dataset<Row> predictions = predConverter.transform(labelConverter.transform(rawPredictions));
predictions.select("predictionStr", "labelStr", "features").show(5);
//***Test data predictions***
Dataset<Row> trainRawPredictions = Model.transform(trainingData);
Dataset<Row> trainPredictions = predConverter.transform(labelConverter.transform(trainRawPredictions));
trainPredictions.select("predictionStr", "labelStr", "features").show(5);
```

2. Random Forest Algorithm

- Columns
 - a) Label
 - i. gender
 - b) Features
 - i. text
 - ii. sidebar color (4-5% improved accuracy)
 - iii. link color (4-5% improved accuracy)
- II. HyperParameters
 - a) maxDepth 25 (Accuracy = 55%) (Test Data Accuracy = 52%, Training Data Accuracy = 52%)
 - i. Increasing further to 30 caused no improvement (test=55%,train=55%)
 - ii. No overfitting observed in this model
 - iii. Lowering to 20 caused to *underfit* (test=54%,train=54%)
 - b) Increasing minInfoGain to 1.0, minInstancePerNode=5 and setCacheNodeIds=false reduced accuracy to 37%

```
//*******Random Forest*************//
RandomForestClassifier rf = new RandomForestClassifier();
rf.setLabelCol("label").setFeaturesCol("features").setSeed(0);
rf.setMaxDepth(25);
rf.setMinInfoGain(0.0);
rf.setMinInstancesPerNode(1);
rf.setCacheNodeIds(false);
rf.setMaxBins(3000);

RandomForestClassificationModel rfModel = rf.fit(trainingData);
System.out.println("Learned Random Forest Decision tree" + rfModel.toDebugString());
Dataset<Row> rfRawPredictions = rfModel.transform(testData);
Dataset<Row> rfPredictions = predConverter.transform(labelConverter.transform(rfRawPredictions));
rfPredictions.select("predictionStr", "labelStr", "features").show(5);

//***Test data predictions***//
Dataset<Row> rfTrainRawPredictions = rfModel.transform(trainingData);
Dataset<Row> rfTrainRawPredictions = predConverter.transform(labelConverter.transform(rfTrainRawPredictions));
rfTrainPredictions.select("predictionStr", "labelStr", "features").show(5);
```

Evaluation Metrics

Model	Evaluation	Scores	Confusion Matrix			
	Accuracy	Precision	Recall	F1		
Decision Tree	Male:0.41 Male:0.73 Male:0.53		Male:0.53	++ labelStr predictionStr count ++ male brand 1259		
	Weighted:0.57 Weighted:0.51 Weighted:0.51	male				
Random Forest	55%	Female:0.71 Male:0.43 Brand:0.69 Weighted:0.61	Female:0.49 Male:0.77 Brand:0.36 Weighted:0.55	Female:0.58 Male:0.55 Brand:0.47 Weighted:0.54	the strip rediction Stricount the strip rediction Strip re	

Model Fit

Model Max Depth		Test Data Accuracy %	Training Data Accuracy %	Fit	
Decision Tree 10		47	47	Under	
Decision Tree	15	50	50	Under	
Decision Tree	20	52	52	Right	
Decision Tree	25	53	54	Over	
Random Forest	10	49	49	Under	
Random Forest 15		52	52	Under	
Random Forest 20		54	54	Under	
Random Forest	25	55	55	Right	
Random Forest 30		55	55	No Change	

Inferences and suggestions

1. Results Comparision

Model	Pros	Cons
Decision Tree	Fast Execution	Low Accuracy Prone to overfitment
Random Tree	Better Accuracy Less prove to overfitment	Slower compared to Decision Tree

Random Forest and clearly better algorithm than decision tree in terms of its prediction accuracy & overfitting issue. MaxDepth – Increasing max depth improved accuracy until a point after which it lead to overfitting. Random forest was less affected by overfitment than decision tree. In given data, there was no further improvement due to other hyperparameters:

-

HyperParameter	Value	Algorithm	New Accuracy		
minInfoGain	0 to 1	Decision Tree	37% (Reduced)		
minInstancesPerNode	0 to 3	Decision Tree	52% (No change)		
minInfoGain	0 to 1	Random Forest	55% (No change)		
minInstancesPerNode	0 to 3	Random Forest	55% (No change)		

2. Improvisation techniques

- 1. Tuning more hyperparameters: -
 - 1. **MinInfoGain** Increasing this parameter can improve stopping criteria there by increasing speed of anlaysis
 - 2. **MinInstancesPerNode** By increasing minimum number of required split candidates in order to consider it for training, it can improve accuracy in case of deeper training algorithm like random forest
- 2. Trying other type of classification algorithms like Naive Bayes, Boosted Trees, Neural Networks etc.
- 3. Choice of preferred Algorithm

Random Forest is preffered choice of algorithm among the two due to better accuracy & better fitment with same training data.