第12章 数据库安全性

课程知识结构

Chp.1 数据库系统概述

Databases Protection

- 数据库保护:排除和防止各种对数据库的干扰破坏 确保数据安全可靠,以及在数据库遭到破坏后尽 快地恢复
- 数据库保护通过四个方面来实现
 - 完整性控制技术
 - 可能会影响性能(如时村有考,但加密、吃 Enable constraints 命后可能元序)主要关注数据安全
 - 安全性控制技术
 - Authorization and authentication
 - 数据库的恢复技术
 - Deal with failure
 - 并发控制技术
 - Deal with data sharing

主要内容

- ■数据库安全性控制概述
- 自主存取控制
- 强制存取控制
- ■视图机制

■ 非法使用数据库的情况

- 用户编写一段合法的程序绕过DBMS及其授权机制,通过操作系统直接存取、修改或备份数据库中的数据;
- 直接或编写应用程序执行非授权操作;
- 通过多次合法查询从数据库中推导出一些保密数据

数据安全》数据库:一致性 (保密性:不能被他人知道) 完整性:数据不能被篡议 (区到于数据库的完整性)

- 例: [推理分析问题] 某数据库应用系统禁止查询单个人的工资,但允许查任意一组人的平均工资。用户甲想了解张三的工资,于是他:
 - 首先查询包括张三在内的一组人的平均工资
 - 然后查用自己替换张三后这组人的平均工资
 - 从而推导出张三的工资

统计数据库:仅提供记录的统计信息查询,例如 count/sum/average等,但不允许查询单独的记录。

- 例: [SQL注入问题] 如某系统需要你输入用户名称和口令,现在假设有一用户administrator,我们不知道他的口令,却想以他的身份登陆
- 正常情况下,我们在第一个文本框输入administrator, 第二个文本框输入1234之类的密码。程序中的查询语句可能是:
 - sql="SELECT * FROM user WHERE username = ' "
 & text1.value & " ' AND passwd= ' " & text2.value & " ' "
- 执行时候就是
 - SELECT * FROM user WHERE username='administrator' AND p asswd='1234' 一般 返回報空代表 登录 效功
- - o SELECT * FROM user WHERE username='adam' AND passwd='1234' OR '1'='1' ¬ N巨 众 i
 - 绕过了登录验证

■ 数据库系统中的安全模型

- ■数据库安全性控制的常用方法
 - 用户标识和鉴定
 - 密码存储
- 之并)· 存取控制 • 视图
 - 审计 类似石志, 监测用户的行为模式

二、存取控制

岁间 /

- 存取控制(Access Control)机制的功能
 - 授权(Authorization)
 - ◆对每个用户定义存取权限
 - 验证(Authentication)
 - ◆对于通过鉴定获得上机权的用户(即合法用户),系统根据他的存取权限定义对他的各种操作请求进行控制,确保他只执行合法操作
 - 授权和验证机制一起组成了DBMS的安全子系统

二、存取控制

- 常用存取控制方法
 - 自主存取控制 (Discretionary Access Control 常见, MYSQL, Oracle.
 - ,简称DAC)
 - ◆ C1级
 - ◆ 灵活
- 实际上是不安全的
 - 强制存取控制(Mandatory Access Control, 简称 MAC) 才質安全
 - ◆ **B1**级
 - ◈ 严格

1、数据安全的级别

1983年,美国颁布可信计算机系统安全评测 标准TCSEC(Trusted Computer System Evaluation Criteria), 把数据安全级别划分 为四类七级:

无保护级 ◈ D, 最低安全性;

ふ能的 ← 自主 ← C1, 主客体分离、身份鉴别、数据完整性、自主 たみ 保护级 ← 存取控制DAC

▶ B1,强制存取控制MAC——可信系统(安全系统)

保护级 **♦ B2**,良好的结构化设计、形式化安全模型;

B3,全面的访问控制、可信恢复;

验证保护级 ◆ A1,形式化认证。 >从理论上保证 (05)代码没有任何 经问题

"橘皮书"

1、数据安全的级别

■ 1999年我国颁布了信息安全评估级别,共分为五级与美国标准的对应关系如下:

● 第一级:用户自主保护级C1级

• 第二级:系统审计保护级C2级

• 第三级:安全标记保护级B1级

• 第四级:结构化保护级B2级

• 第五级:访问验证保护级B3级

2、自主存取控制(DAC)

- 同一用户对于不同的数据对象有不同的存取 权限
- ■不同的用户对同一对象也有不同的权限
- 用户还可将其拥有的存取权限自主地转授给 其他用户

坟 存在一个超级用户,拥有所有权限,刚给其他用户授权等

(1) 存取权限

- 存取权限由两个要素组成
 - 数据对象
 - 操作类型

(2) 关系数据库系统中的存取权限

	数据对象	操作类型
模 式	模 式	建立、修改、删除、检索
table	外模式	建立、修改、删除、检索
	内模式	建立、删除、检索
数据	表	查找、插入、修改、删除
	属性列	查找、插入、修改、删除

(2) 关系数据库系统中的存取权限

- SQL中的存取权限定义方法
 - GRANT/REVOKE 超权

 收回

能需要有GRANT|REVOKE的权限

(3) 授予权限

- 例子: 授予语句权限
 - 下面的示例给用户 Mary 和 John 授予多个语句 权限。
 - ◆ **GRANT** CREATE DATABASE, CREATE TABLE **TO** Mary, John
 - 授予全部语句权限给用户Rose
 - GRANT ALL to Rose

(3) 授予权限

- 例子: 授予对象权限
 - GRANT All ON authors TO userA
 GRANT INSERT, UPDATE, DELETE ON authors TO
 Mary, John, Tom

REVOKE - - -

FROM

(5) 自主存取控制小结

- 定义存取权限
 - 用户
- 检查存取权限
 - DBMS
- 授权粒度
 - 数据对象粒度:数据库、表、属性列、行
- 优点
 - 能够通过授权机制有效地控制其他用户对敏感数据的存取
- 缺点

授权时一般:最小特权原则

- 可能存在数据的"无意泄露":低级别用户访问到保密数据
 - ◆ 原因:这种机制仅仅通过对数据的存取权限来进行安全控制,而数据本身 并无安全性标记
- 解决:对系统控制下的所有主客体实施强制存取控制策略

(6) 自主存取控制不能防止木马

用户B通过Trojan Horse将Secure_File拷贝到Public_File中完成信息窃取

3、强制存取控制(MAC)

- ■每一个数据对象被标以一定的密级与数据科外级在一起
- 每一个用户也被授予某一个级别的<mark>许可</mark>
- 对于任意一个对象,只有具有合法许可的用 户才可以存取

(1) 主体和客体

- 在MAC中,DBMS所管理的全部实体被分为主体和 客体两大类
- 主体是系统中的活动实体
 - DBMS所管理的实际用户
 - 代表用户的各进程
- 客体是系统中的被动实体, 是受主体操纵的
 - 文件
 - 基本表
 - 索引
 - **.**

存取过程既是主体也是各体 的散播 被调用

(1) 敏感度标记

- 对于主体和客体,DBMS为它们每个实例(值)指派一个敏感度标记(Label)
 - 主体的敏感度标记称为存取级(Clearance Level)
 - 客体的敏感度标记称为密级(Classification Level)
- 敏感度标记分成若干级别
 - 例如: 绝密(Top Secret) / 机密(Secret) / 可信(Confidential) / 公开(Public)
- MAC机制就是通过对比主体的Label和客体的Label . 最终确定主体是否能够存取客体

MAC常被称为"标签安全"或"标记安全"

(2) 强制存取控制规则

- 当某一用户(或某一主体)以标记label登录系统时,系统要求他对任何客体的存取必须遵循下面两条规则: —— "下读上写" 路下读
 - (1) 仅当主体的存取级别大于或等于客体的密级时 , 该主体才能读取相应的客体;
 - (2) 仅当主体的存取级别等于(或小于)客体的密级时,该主体才能写相应的客体。

例如:市长(上级)可以查看各个厅局(下级)的文件,但各个厅局文件的修改必须由相应的厅局人员来完成

(3) 强制存取控制方法特点

- MAC是对数据本身进行密级标记
- 无论数据如何复制,标记与数据是不可分的整体
- 只有符合密级标记要求的用户才可以操纵数据
- 从而提供了更高级别的安全性

(4) MAC 可以防止木马攻击

(5) Trusted Oracle中的MAC

■ Trusted Oracle: Oracle 7的MAC版本 (1991)

MAC电纸为标签包全

Example	e of	a	table	in	DBMS	MAC	mode:
DOUI ADE	Т				EMDNO	CMAME	מחד י

ROWLABEL	EMPNO	ENAME	JOB	SAL	DEPTNO
UNCLASSIFIED	7369	SMITH	CLERK	800	20
SENSITIVE	7499	ALLEN	SALESMAN	1600	30
SENSITIVE	7521	WARD	SALESMAN	1250	30
TRULY_SENSITIVE	7566	JONES	MANAGER	2975	20
SENSITIVE	7654	MARTIN	SALESMAN	1250	30
TRULY_SENSITIVE	7698	BLAKE	MANAGER	2850	30
TRULY_SENSITIVE	7782	CLARK	MANAGER	2450	10
SENSITIVE	7788	SCOTT	ANALYST	88	20
TRULY_SENSITIVE: ALPHA	7839	KING	PRESIDENT	5000	10
SENSITIVE	7844	TURNER	SALESMAN	1500	30
UNCLASSIFIED	7876	ADAMS	CLERK	1100	20
UNCLASSIFIED	7900	JAMES	CLERK	950	30
SENSITIVE	7902	FORD	ANALYST	3000	20
UNCLASSIFIED	7934	MILLER	CLERK	1300	10

(6) 基于MAC的多级安全数据库

■ 允许不同密级的数据同时存在数据库中,不同存取级的用户 看到不同级别的数据 不同的到 属性 直有多个安全标记,

安全级别为S的用户 所看到的视图 \

安全级别为U的用户 所看到的视图

U: Unclassified

C: Confidential

S: Secret

TS: Top Secret

卫星	任务	目标	安全级别
探索者 U	科技探测 U	火山 U	U
旅行者 U	NULL U	NULL U	U

三、视图机制

- 视图机制把要保密的数据对无权存取这些数据的用户隐藏起来,
- 视图机制更主要的功能在于提供数据独立性 ,其安全保护功能不够精细,往往远不能达 到应用系统的要求
- 实际中,视图机制与授权机制配合使用:
 - 首先用视图机制屏蔽掉一部分保密数据(将网影谈问基核)
 - 视图上面再进一步定义存取权限 用户人能通过视图 沟向
 - 间接实现了用户自定义的安全控制

视图举例

- 例: 王平只能检索计算机系学生的信息
- 先建立计算机系学生的视图CS_Student

CREATE VIEW CS_Student

AS

SELECT

FROM Student

WHERE dept='CS';

视图举例

■ 在视图上进一步定义存取权限

GRANT SELECT

ON CS_Student

TO *王*平 ;

■同时禁止在基本表的直接存取权限

IREVOKE (实际中还有Peny等)

Oracle: VPD

Virtual Private DB

面拉VPD,展示给不同即不同的视图

本章小结

- 数据库安全性控制概述
- 自主存取控制方法 \ 检红模型
- 强制存取控制方法
- 视图机制

Advanced Topic 最多判断 6.17 复习课