Demand Driven Deployment Capabilities in Cyclus

TwoFCS Workshop 2019

Gwendolyn Chee, Kathryn D. Huff

University of Illinois at Urbana-Champaign

June 26, 2019

Outline

- 1) Background
- 2) Motivation
- 3) D3ploy
- 4) Demonstrations
- 5) Conclusions

Background

CYCLUS

- Agent-based framework [1]
- Compatible with plug-in libraries
- Gives users ability to customize agents
- ❖ Agent types: facilities, institutions and regions
- Discrete time steps

Figure 1: Cyclus has a modular architecture [1]

Current fuel cycle simulators

Gap in capability: User must define when facilities are deployed

Figure 2: User defined Deployment Scheme

Bridging the gap: Developed demand-driven deployment capability in Cyclus, d3ploy.

Figure 3: Demand Driven Deployment Scheme

D3ploy -- Input Options

	Input Parameter
	Demand driving commodity
Required Inputs	Demand equation
	Facilities it controls
	Capacities of the facilities
	Prediction method
	Deployment driven
	by installed capacity
	Buffer type
Optional Inputs	Buffer size
	Facility preferences
	Facility constraint

Table 1: D3ploy Input Parameters

D3ploy – Logic Flow

Figure 3: D3ploy logic flow

Fig. 1: D3ploy logic flow at each time step in CYCLUS.

Prediction Methods

- Non-Optimizing Methods
 - Demand Response
 - Moving Average
 - Autoregressive Moving Average
 - Autoregressive Heteroskedasticity
- Deterministic Methods
 - Fast Fourier Transform
 - Polynomial Fit
 - Exponential Smoothing and Holt-Winters
- Matrix Solution
 - Uses supply and demand to create a system of equations in matrix form.
 - Solving the matrix returns the number of facilities required at a given time-step.

D3ploy -- Input Options

	Input Parameter	Example	
	Demand driving commodity	Power	
	Demand equation	10000 MW	
Required Inputs	Facilities it controls	Source, reactor, sink	
	Capacities of the facilities	3000 kg, 1000 MW, 50000 kg	
		Power: fast fourier transform	
	Prediction method	Fuel: moving average	
		Spent fuel: moving average	
	Deployment driven	True	
	by installed capacity	True	
	Buffer type	Absolute	
Optional Inputs		Power: 3000 MW	
	Buffer size	Fuel: 0 kg	
		Spent fuel: 0 kg	
	Facility preferences	-	
	Facility constraint	-	

Table 2: D3ploy Input Parameters with example

Constant Power Demand

Figure 4: Power commodity supply and demand for transition scenario of constant 10000MW power demand

Constant Power Demand

Figure 5: Fuel commodity supply and demand for transition scenario of constant 10000MW power demand

Figure 6: Fuel commodity supply and demand for transition scenario of constant 10000MW power demand

Linear Power Demand

Supply, Demand and Facilities for Growing Transition, Commodity: Power reactor1 Facilities 20 reactor2 10 reactor3 reactor4 Time (month time step) reactor5 reactor6 reactor7 25000 reactor8 reactor9 20000 Power (MW) reactor10 newreactor 15000 10000 Demand Supply 5000 0 20 40 60 80 100

Figure 7: Power commodity supply and demand for transition scenario of linearly increasing power demand

Sinusoidal Power Demand

Supply, Demand and Facilities for Sinusoidal Transition, Commodity: Power

Figure 8: Power commodity supply and demand for transition scenario of sinusoidal power demand

Conclusions

Conclusions

- ❖ Demand driven deployment capabilities in Cyclus are important to automate setting up of transition scenarios.
- ❖ Future Work: Similar power demand transition scenarios extended to include more nuclear fuel cycle facilities such as reprocessing facilities etc.

References

[1]: K. D. HUFF, M. J. GIDDEN, R. W. CARLSEN, R. R. FLANAGAN, M. B. MCGARRY, A. C. OPOTOWSKY, E. A. SCHNEIDER, A. M. SCOPATZ, and P. P. H. WILSON, "Fundamental concepts in the Cyclus nuclear fuel cycle simulation framework," Advances in Engineering Software, 94, 46–59 (Apr. 2016).

Acknowledgements

This work is supported by U.S. Department of Energy, Nuclear Energy University Program, under contract # NEUP- FY16-10512.

Thank You

Any Questions?

