A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

Amir Beck and Marc Teboulle

Presented by Itamar Salazar

$\mathbf{A}\mathbf{x} = \mathbf{b} + \mathbf{w}$

(LS):
$$\hat{\mathbf{x}}_{LS} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$
.

(T):
$$\hat{\mathbf{x}}_{\text{TIK}} = \underset{\mathbf{x}}{\operatorname{argmin}} \{ \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{L}\mathbf{x}\|^2 \}.$$

ISTA

$$\min_{\mathbf{x}} \{ F(\mathbf{x}) \equiv \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1 \},$$

$$\mathbf{x}_{k+1} = \mathcal{T}_{\lambda t} \left(\mathbf{x}_k - 2t \mathbf{A}^T (\mathbf{A} \mathbf{x}_k - \mathbf{b}) \right),$$

$$\mathcal{T}_{\alpha}(\mathbf{x})_i = (|x_i| - \alpha)_+ \operatorname{sgn}(x_i).$$

CONTRIBUTION

$$\min_{\mathbf{x}} \{ F(\mathbf{x}) \equiv f(\mathbf{x}) + g(\mathbf{x}) \},$$

$$\mathbf{x}_{k+1} = \mathcal{T}_{\lambda t}(G(\mathbf{x}_k)),$$

$$\mathbf{x}_{k+1} = \mathcal{T}_{\lambda t}(G(\mathbf{y}_k)),$$

ISTA ALGORITHM

ISTA with constant stepsize

Input: L := L(f) - A Lipschitz constant of ∇f .

Step 0. Take $\mathbf{x}_0 \in \mathbb{R}^n$.

Step k. $(k \ge 1)$ Compute

$$\mathbf{x}_k = p_L(\mathbf{x}_{k-1}).$$

ISTA ALGORITHM

ISTA with backtracking

Step 0. Take $L_0 > 0$, some $\eta > 1$, and $\mathbf{x}_0 \in \mathbb{R}^n$.

Step k. $(k \ge 1)$ Find the smallest nonnegative integers i_k such that with $\bar{L} = \eta^{i_k} L_{k-1}$

(3.2)
$$F(p_{\bar{L}}(\mathbf{x}_{k-1})) \leq Q_{\bar{L}}(p_{\bar{L}}(\mathbf{x}_{k-1}), \mathbf{x}_{k-1}).$$

Set $L_k = \eta^{i_k} L_{k-1}$ and compute

$$\mathbf{x}_k = p_{L_k}(\mathbf{x}_{k-1}).$$

FISTA ALGORITHM

FISTA with constant stepsize

Input: L = L(f) - A Lipschitz constant of ∇f .

Step 0. Take
$$y_1 = x_0 \in \mathbb{R}^n$$
, $t_1 = 1$.

Step k. $(k \ge 1)$ Compute

$$\mathbf{x}_k = p_L(\mathbf{y}_k),$$

$$(4.2) t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

(4.1)
$$x_k - p_L(y_k),$$

$$(4.2) \qquad t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2},$$

$$(4.3) \qquad \mathbf{y}_{k+1} = \mathbf{x}_k + \left(\frac{t_k - 1}{t_{k+1}}\right) (\mathbf{x}_k - \mathbf{x}_{k-1}).$$

NUMERICAL EXAMPLES

original

ISTA: $F_{100} = 5.44e-1$

MTWIST: $F_{100} = 3.09e-1$

ISTA: $F_{200} = 3.60e-1$

MTWIST: $F_{200} = 2.61e-1$

PLES

FISTA: $F_{100} = 2.40e-1$

FISTA: $F_{200} = 2.28e-1$

NUMERICAL EXAMPLES

original blurred and noisy

ISTA: $F_{100} = 5.67e-1$

MTWIST: $F_{100} = 3.83e-1$

ISTA: $F_{200} = 4.27e-1$

MTWIST: $F_{200} = 3.41e-1$

PLES

FISTA: $F_{200} = 3.09e-1$

