Operator Algebra Seminar Note II

Ikhan Choi

October 18, 2023

Contents

1	October 18	2
	1.1 Semi-cyclic representations	 3
	1.2 σ -weak lower semi-continuity	 6
	1.3 Supremum of positive linear functionals	 8
2	November 10	9
3	December 20	10
4	January 17	11
5	February 9	12

Acknowledgement

This note has been written based on the first-year graduate seminar presented at the University of Tokyo in the 2023 Autumn semester. Each seminar was delivered for 105 minutes. I gratefully acknowledge advice of Prof. Yasuyuki Kawahigashi and support of my colleagues Futaba Sato, Yusuke Suzuki.

1 October 18

Definition 1.1 (Countably decomposable von Neumann algebras). Let M be a von Neumann algebra. A projection $p \in M$ is called *countably decomposable* if mutually orthogonal non-zero projections majorized by p are at most countable, and we say M is *countably decomposable* if the identity is.

Proposition 1.2. For a von Neumann algebra M, the followings are all equivalent.

- (a) *M* is countably decomposable.
- (b) *M* admits a faithful normal state.
- (c) M admits a faithful normal non-degenerate representation with a cyclic and separating vector.
- (d) The unit ball of M is metrizable in the six locally convex topology.

Proof. (a) \Leftrightarrow (b) Suppose M is countably decomposable. Let $\{\xi_i\} \subset H$ be a maximal family of unit vectors such that $\overline{M'\xi_i}$ are mutually orthogonal subspaces, taken by Zorn's lemma. If we let p_i be the projection on $\overline{M'\xi_i}$, then $p_izp_i=zp_i$ for $z\in M'$ implies $p_i\in M''=M$. By the assumption, the family $\{\xi_i\}$ is countable. Define a state ω of M such that

$$\omega(x) := \sum_{i=1}^{\infty} \omega_{2^{-i}\xi_i}(x), \quad x \in M.$$

It converges due to $\|\omega_{2^{-i}\xi_i}\| = 2^{-i+1}$. It is normal since the sequence $(2^{-i}\xi_i)$ belongs to $\ell(\mathbb{N}, H)$, and it is faithful because $\omega(x^*x) = 0$ implies $x\xi_i = 0$ for all i, which deduces that $x = \sum_i xp_i = 0$.

Conversely, if ω is a faithful normal state, then for a mutually orthogonal family of non-zero projections $\{p_i\} \subset M$, we have

$$\{p_i\} = \bigcup_{n=1}^{\infty} \{p_i : \varphi(p_i) > n^{-1}\}$$

the countable union of finite sets. Thus *M* is countable decomposable.

(b) \Leftrightarrow (c) Let ω be a faithful normal state of M. Consider any faithful normal nondegenerate representation in which ω is a vector state so that the corresponding vector is a separating vector. Examples include the GNS representation of ω , and the composition with the diagonal map $B(H) \to B(\ell^2(\mathbb{N}, H))$. Then, $\overline{M\Omega}$ admits a cyclic and separating vector Ω of M. The converse is immediate, i.e. the vector state ω_{Ω} is a faithful normal state of M.

(a) \Leftrightarrow (d) Suppose M is countably decomposable and take $\{\xi_i\}_{i=1}^{\infty}$ and $\{p_i\}_{i=1}^{\infty}$ as we did. Define

$$d(x,y) := \sum_{i=1}^{\infty} 2^{-i} \| (x-y)\xi_i \|.$$

Clearly it generates a topology coarser than strong topology. It is also finer because if a bounded net x_{α} in M converges to zero in the metric d so that $x\xi_{i} \to 0$ for all i, then $H = \bigoplus_{i} M'\xi_{i}$ implies that for every $\xi \in H$ and $\varepsilon > 0$ we have $\|\xi - \sum_{k=1}^{n} z_{k}\xi_{i_{k}}\| < \varepsilon$ for some $z_{k} \in M'$ so that

$$||x_{\alpha}\xi|| \leq ||x_{\alpha}(\xi - \sum_{k=1}^{n} z_{k}\xi_{i_{k}})|| + \sum_{k=1}^{n} ||x_{\alpha}z_{k}\xi_{i_{k}}|| < \varepsilon + \sum_{k=1}^{n} ||z_{k}|| ||x_{\alpha}\xi_{i_{k}}|| \to \varepsilon.$$

Since on the bounded part the strong and σ -strong topologies coincide, the two topologies on the unit ball are metrizable. We can do similar for the weak and strong* topologies.

Conversely, for a mutually orthogonal family of non-zero projections $\{p_i\}_{i\in I}\subset M$, since the net of finite partial sums $p_F:=\sum_{i\in F}p_i$ is an increasing net in the closed unit ball whose supremum is the identity of M, there is a convergent subsequence $p_{F_n}\uparrow 1$ by the metrizability, which implies $I=\bigcup_{n=1}^{\infty}F_n$, the countable union of finite sets.

1.1 Semi-cyclic representations

Definition 1.3 (Weights). Let M be a von Neumann algebra. A *weight* is a function $\varphi: M^+ \to [0, \infty]$ such that

$$\varphi(x+y) = \varphi(x) + \varphi(y), \qquad \varphi(\lambda x) = \lambda \varphi(x), \qquad x, y \in M^+, \ \lambda \in \mathbb{R}^{\geq 0},$$

where we use $0 \cdot \infty = 0$. A weight φ is said to be *normal* if

$$\varphi(\sup_{\alpha} x_{\alpha}) = \sup_{\alpha} \varphi(x_{\alpha})$$

for any bounded increasing net (x_{α}) in M^+ .

Definition 1.4. Let φ be a weight on a von Neumann algebra M. Define a left ideal of M

$$\mathfrak{n} := \{ x \in M : \varphi(x^*x) < \infty \},$$

and a hereditary *-subalgebra of M

$$\mathfrak{m} := \mathfrak{n}^* \mathfrak{n} = \{ \sum_{i=1}^n y_i^* x_i : (x_i), (y_i) \in \mathfrak{n}^n \}.$$

Lemma 1.5. If $x, y \in M$ satisfies $y^*y \le x^*x$, then there is a unique $s \in B(H)$ such that y = sx and s = sp, where p is the range projection of x, and $s \in M$.

Proof. Suppose $id_H \in M \subset B(H)$. The operator $s_0 : \overline{xH} \to \overline{yH} : x\xi \mapsto y\xi$ is well defined because

$$||y\xi||^2 = \langle y^*y\xi, \xi \rangle \le \langle x^*x\xi, \xi \rangle = ||x\xi||^2.$$

Let p be the range projection of x and let $s := s_0 p$. Then, $y\xi = sx\xi$ for all $\xi \in H$. If y = s'x and s' = s'p, then

$$x^*(s-s')^*(s-s')x = (y-y)^*(y-y) = 0$$

implies

$$0 = p(s-s')^*(s-s')p = (s-s')^*(s-s').$$

Therefore, s is unique in B(H). If $u \in M'$ is unitary, then usu^* satisfies the same property $y = usu^*x$ and $usu^* = usu^*p$, so us = su. Since the unitary span the whole C^* -algebra, we have $s \in M'' = M$. \square

Proposition 1.6. Let φ be a weight on a von Neumann algebra M.

- (a) Every element of \mathfrak{m}^+ can be written to be x^*x for some $x \in \mathfrak{n}$.
- (b) Every element of \mathfrak{m} can be written to be y^*x for some $x, y \in \mathfrak{n}$.

Proof. (a) Let $a := \sum_{i=1}^n y_i^* x_i \in \mathfrak{m}^+$ for some $x_i, y_i \in \mathfrak{n}$. The polarization writes

$$a = \frac{1}{4} \sum_{i=1}^{n} \sum_{k=0}^{3} i^{k} |x_{i} + i^{k} y_{i}|^{2}$$

and $a^* = a$ implies

$$a = \frac{1}{2} \sum_{i=1}^{n} (|x_i + y_i|^2 - |x_i - y_i|^2) \le \frac{1}{2} \sum_{i=1}^{n} |x_i + y_i|^2$$

implies

$$\varphi(a) \leq \frac{1}{2} \sum_{i=1}^{n} \varphi(|x_i + y_i|^2) < \infty.$$

Therefore, if $x := a^{\frac{1}{2}} \in \mathfrak{n}$, then $a = x^*x$.

(b) Let $a := \sum_{i=1}^{n} y_{i}^{*} x_{i} \in \mathfrak{m}$ for some $x_{i}, y_{i} \in \mathfrak{n}$. Let $x := (\sum_{i=1}^{n} x_{i}^{*} x_{i})^{\frac{1}{2}} \in \mathfrak{n}$. Since $x_{i}^{*} x_{i} \leq x^{2}$, we have $s_{i} \in M$ such that $x_{i} = s_{i} x$. If we let $y := \sum_{i=1}^{n} s_{i}^{*} y_{i} \in \mathfrak{n}$, then

$$a = \sum_{i=1}^{n} y_i^* x_i = \sum_{i=1}^{n} y_i^* s_i x = (\sum_{i=1}^{n} s_i^* y_i) x = y^* x.$$

Definition 1.7 (Semi-cyclic representations). Let φ be a weight on a von Neumann algebra. Let H be the Hilbert space defined by the separation and completion of a sesquilinear form

$$\mathfrak{n} \times \mathfrak{n} \to \mathbb{C} : (x, y) \mapsto \varphi(y^*x)$$

and let $\psi : \mathfrak{n} \to H$ be the canonical image map. The pair (π, ψ) is called the *semi-cyclic representation* associated to φ .

Proposition 1.8. Let φ be a weight on a von Neumann algebra and (π, ψ) be the associated semi-cyclic representation to φ . Consider a map

$$\Theta: \mathfrak{m} \times \pi(M)' \to \mathbb{C}: (y^*x, z) \mapsto \langle z\psi(x), \psi(y) \rangle$$

and define

$$\theta: \mathfrak{m} \to (\pi(M)')_*, \qquad \theta^*: \pi(M)' \to \mathfrak{m}^*$$

such that $\Theta(x,z) = \theta(x)(z) = \theta^*(z)(x)$ for $x \in \mathfrak{m}$ and $z \in \pi(M)'$.

- (a) Θ is a well-defined bilinear form.
- (b) θ^* is bijective onto the space of linear functionals on \mathfrak{m} whose absolute value is majorized by φ . (bounded Radon-Nikodym theorem)

Proof. (a) The linearity in the second argument is obvious. Fix $z \in \pi(M)'$. We first check the well-definedness on \mathfrak{m}^+ . Let $x^*x = y^*y \in \mathfrak{m}^+$ for $x, y \in \mathfrak{n}$. Then, there is $s \in M$ such that y = sx and s = sp, where p is the range projection of x, so

$$x^*(1-s^*s)x = x^*x - y^*y = 0$$

implies

$$0 = p(1 - s^*s)p = p - s^*s$$

and $x = px = s^*sx = s^*y$. The well-definedness follows from

$$\Theta(x^*x,z) = \langle z\psi(x), \psi(x) \rangle = \langle \pi(s)z\pi(s^*)\psi(y), \psi(y) \rangle = \langle z\psi(ss^*y), \psi(y) \rangle = \Theta(y^*y,z).$$

The homogeneity is clear, so now we prove the addivitiv. Let x^*x , $y^*y \in \mathfrak{m}^+$ for some $x, y \in \mathfrak{n}$. Let $a := (x^*x + y^*y)^{\frac{1}{2}}$ and take $s, t \in M$ such that x = sa, y = ta, s = sa, and t = ta, where p is the range projection of a. Then,

$$a(1-s^*s-t^*t)a = a^*a-x^*x-y^*y = 0$$

implies

$$p(1-s^*s-t^*t)p = p-s^*s-t^*t.$$

It follows that

$$\Theta(x^*x + y^*y, z) = \langle z\psi(a), \psi(a) \rangle = \langle z\pi(p)\psi(a), \psi(a) \rangle$$

$$= \langle z\pi(s^*s)\psi(a), \psi(a) \rangle + \langle z\pi(t^*t)\psi(a), \psi(a) \rangle$$

$$= \langle z\psi(x), \psi(x) \rangle + \langle z\psi(y), \psi(y) \rangle$$

$$= \Theta(x^*x, z) + \Theta(y^*y, z).$$

Now the $\Theta(\cdot, z)$ is linearly extendable to \mathfrak{m} .

(b) The linear map θ^* is injective since ψ has dense range. Take $z \in \pi(M)'$ and consider $\theta^*(z)$, which maps x^*x to $\langle z\psi(x), \psi(x) \rangle$ for $x \in \mathfrak{n}$. The image is majorized by φ as

$$|\langle z\psi(x), \psi(x)\rangle| \le ||z|| ||\psi(x)||^2 = ||z||\varphi(x^*x).$$

Conversely, let $l \in \mathfrak{m}^{\#}$ is a linear functional majorized by φ , i.e. there is a constant C > 0 such that

$$|l(x^*x)| \le C\varphi(x^*x), \qquad x \in \mathfrak{n}.$$

Define a sesquilinear form $\sigma : \mathfrak{n} \times \mathfrak{n} \to \mathbb{C}$ such that $\sigma(x,y) := l(y^*x)$. It is well-defined after separation of \mathfrak{n} and is bounded by the Cauhy-Schwartz inequality

$$|\sigma(x,y)|^2 = |l(y^*x)|^2 \le ||l(x^*x)|| ||l(y^*y)|| \le \varphi(x^*x)\varphi(y^*y) = ||\psi(x)||^2 ||\psi(y)||^2.$$

Therefore, σ defines a bounded linear operator $z \in \pi(M)'$ such that

$$\sigma(x, y) = \langle z\psi(x), \psi(y) \rangle$$
,

exactly meaning $\theta^*(z)(y^*x) = l(y^*x)$ for $x, y \in \mathfrak{n}$.

Note that we have a commutative diagram

$$\mathfrak{n} \stackrel{\psi}{\longrightarrow} H$$

$$\downarrow^{\omega}$$

$$B(H)_{*}$$

$$\downarrow^{\operatorname{res}}$$
 $\mathfrak{m}^{+} \stackrel{\theta}{\longrightarrow} (\pi(M)')_{*}.$

In particular, for $x \in \mathfrak{n}^+$ we have

$$\|\theta(x^2)\| = \|\omega_{\psi(x)}\| = \|\psi(x)\|^2 = \varphi(x^2).$$

Lemma 1.9. Let For $z \in \mathfrak{m}^{sa}$, we have

$$\inf\{\varphi(a): z \le a \in \mathfrak{m}^+\} \le \|\theta(z)\|.$$

In particular, for $x, y \in \mathfrak{n}^+$ and for any $\varepsilon > 0$ there is $a \in \mathfrak{m}^+$ such that $x^2 - y^2 \le a$ and

$$\varphi(a) \le \|\theta(x^2 - y^2)\| + \varepsilon = \|\omega_{\psi(x)} - \omega_{\psi(y)}\| + \varepsilon.$$

Proof. Denote by p(z) the left-hand side of the inequality. Then, we can check $p:\mathfrak{m}^{sa}\to\mathbb{R}_{\geq 0}$ is a semi-norm such that $p(z)=\varphi(z)$ for $z\geq 0$. (If we take $p(z):=\varphi(z^+)$, then it seems to be dangerous when checking the sublinearity. I could not find the counterexample.)

Fix any non-zero $z_0 \in \mathfrak{m}^{sa}$. By the Hahn-Banach extension, there is an algebraic real linear functional $l:\mathfrak{m}^{sa}\to\mathbb{R}$ such that

$$l(z_0) = p(z_0), \qquad |l(z)| \le p(z), \qquad z \in \mathfrak{m}^{sa}.$$

Extend linearly l to be $l: \mathfrak{m} \to \mathbb{C}$. Since $|l(z)| \le \varphi(z)$ for $z \in \mathfrak{m}^+$, the linear functional l is contained in the image of the closed unit ball under the injective map

$$\theta^*: \pi(M)' \to \mathfrak{m}^\#.$$

If we let $a \in (\pi(M)')_1$ be the corresponding operator such that $\theta^*(a) = l$, then we get

$$p(z_0) = l(z_0) = \theta^*(a)(z_0) = \theta(z_0)(a) \le ||\theta(z_0)||.$$

Since $z_0 \in \mathfrak{m}^{sa}$ is aribtrary, we are done.

1.2 σ -weak lower semi-continuity

Theorem 1.10. Let M be a countably decomposable von Neumann algebra. Then, normal weight on M is σ -weakly lower semi-continuous.

Proof. Let φ be a normal weight on M and let (π, ψ) be the associated semi-cyclic representation.

In the spirit of the Krein-Šmulian theorem, the σ -weak lower semi-continuity is equivalent to the σ -weak closedness of the intersection with the ball

$$\varphi^{-1}([0,1])_1 = \{ x \in M^+ : \varphi(x) \le 1, \ ||x|| \le 1 \}$$
$$= \{ x \in M^+ : ||\psi(x^{\frac{1}{2}})|| \le 1, \ ||x^{\frac{1}{2}}|| \le 1 \}.$$

Since that the σ -weak and σ -strong closedness of a convex set are equivalent and that the square root operation on M_1^+ is σ -strongly continuous, we are enough to show the set

$$(\varphi^{-1}([0,1])_1)^{\frac{1}{2}} = \{x \in M^+ : ||\psi(x)|| \le 1, ||x|| \le 1\}$$

is σ -weakly closed. This set, if we denote the graph of $\psi : \mathfrak{n} \to H$ by Γ_{ψ} , is the image of the positive part of the unit ball

$$(\Gamma_{\psi})_{1}^{+} = \{(x, \psi(x)) \in M^{+} \oplus_{\infty} H : ||\psi(x)|| \le 1, ||x|| \le 1\}$$

under the projection $M \oplus_{\infty} H \to M$. Observing $M \oplus_{\infty} H \cong (M_* \oplus_1 H)^*$, if we prove $(\Gamma_{\psi})_1^+$ is weakly* closed, then we are done by its compactness.

Consider a linear functional $l: M \oplus_{\infty} H \to \mathbb{C}$ that is continuous with respect to $(\sigma s, \|\cdot\|)$. If we define $l_1: M \to \mathbb{C}$ and $l_2: H \to \mathbb{C}$ such that $l_1(x):=l(x,0)$ and $l_2(\xi)=(0,\xi)$, then they satisfy $l(x,\xi)=l_1(x)+l_2(\xi)$, and are continuous in σ -strong and norm topologies, hence to σ -weak and weak topologies, respectively. Since a net (x_α,ξ_α) converges to (x,ξ) weakly* if and only if $x_\alpha \to x$ σ -weakly and $\xi_\alpha \to \xi$ weakly, l is weakly* continuous. Because $(\Gamma_\psi)_1^+$ is convex, we will now show that $(\Gamma_\psi)_1^+$ is closed in $(M,\sigma s)\times (H,\|\cdot\|)$.

Note that the unit ball M_1 is metrizable in σ -strong topology since M is countably decomposable. Suppose a sequence $x_n \in \mathfrak{n}_1^+$ satisfies $x_n \to x$ σ -strongly and $\psi(x_n) \to \xi$ in H. Then, it suffices to show the following two statements: $x \in \mathfrak{n}_1^+$ and $\psi(x) = \xi$. We first observe that since $\psi(x_n)$ is Cauchy, so is $\omega_{\psi(x_n)}$ in $(\pi(M)')_*$.

Consider for a while, a family of functions

$$f_a(t) := \frac{t}{1+at}, \quad t \in (-a^{-1}, \infty),$$

parametrized by a > 0. They have several properties. At first, they are operator monotone. Next, they are σ -strongly continuous on a closed subset of its domain due to the boundedness of f_a , as we can see in the proof of the Kaplansky density theorem. Finally, for each $x \in M_+$, the increasing limit $f_a(x) \uparrow x$ in norm as $a \to 0$ implies that $\sup_a f_a(x) = x$.

First we show $x \in \mathfrak{n}_1^+$. It is clear that $x \in M_1^+$, so it is enough to show $\varphi(x^2) < \infty$. By taking a subsequence, we may assume $\|\omega_{\psi(x_{n+1})} - \omega_{\psi(x_n)}\| < \frac{1}{2^n}$. In order to dominate x_n with an increasing sequence, find $a_n \in \mathfrak{m}^+$ such that

$$x_{n+1}^2 - x_n^2 \le a_n, \qquad \varphi(a_n) < \frac{1}{2^n},$$

using the previous lemma. Then, we can write

$$x_{n+1}^2 \le x_1^2 + \sum_{k=1}^n (x_{k+1}^2 - x_k^2) \le x_1 + \sum_{k=1}^n a_k.$$

Here the right-hand side is increasing but not a bounded sequence so we take f_a to get the σ -strong limit

$$f_a(x^2) \le \sup_n f_a(x_1^2 + \sum_{k=1}^n a_k).$$

Then, by the normality of φ , we have

$$\varphi(f_a(x^2)) \le \sup_n \varphi(f_a(x_1^2 + \sum_{k=1}^n a_k))$$

$$\le \sup_n \varphi(x_1^2 + \sum_{k=1}^n a_k)$$

$$= \varphi(x_1^2) + \sum_{k=1}^\infty \varphi(a_k)$$

$$< \varphi(x_1^2) + 1 < \infty$$

which implies by sending $a \to 0$ that $\varphi(x^2) < \infty$, whence $x \in \mathfrak{n}$. Next we show $\psi(x) = \xi$. If we prove $\varphi((x_n - x)^2) \to 0$, then

$$\|\xi - \psi(x)\| \le \|\xi - \psi(x_n)\| + \|\psi(x_n) - \psi(x)\| = \|\xi - \psi(x_n)\| + \varphi((x_n - x)^2)^{\frac{1}{2}} \to 0$$

deduces the desired result. By taking a subsequence, since $\psi(x_n - x)$ is Cauchy, we may assume

$$\|\omega_{\psi(x_n-x)}-\omega_{\psi(x_{n+1}-x)}\|<\frac{1}{2^n}.$$

Let $b_n \in \mathfrak{m}^+$ such that

$$(x_n - x)^2 - (x_{n+1} - x)^2 \le b_n, \qquad \varphi(b_n) < \frac{1}{2^n}$$

As we did previously, we have

$$f_a((x_n - x)^2) \le f_a((x_{m+1} - x)^2) + f_a(\sum_{k=n}^m b_k) \to \sup_m f_a(\sum_{k=n}^m b_k)$$

as $m \to \infty$ and

$$\varphi(f_a((x_n-x)^2)) \le \sup_m \varphi(f_a(\sum_{k=n}^m b_k)) \le \sup_m \varphi(\sum_{k=n}^m b_k) < \frac{1}{2^{n-1}}.$$

Therefore,

$$\varphi((x_n-x)^2) \le \frac{1}{2^{n-1}} \to 0.$$

Theorem 1.11. Let M be an arbitrary von Neumann algebra. Then, a normal weight on M is σ -weakly lower semi-continuous.

Proof. Let φ be a normal weight of M. Let Σ be the set of all countably decomposable projections of M and let $M_0 := \bigcup_{p \in \Sigma} pMp$. The equivalent condition for $x \in M$ to belong to M_0 is that the left and right support projections are countably decomposable. Since then the left support projection p and the right support projection are Murray-von Neumann equivalent so that there is a *-isomorphism between pMp and qMq, the countable decomposability is equivalent for p and q. It implies that M_0 is an algebraic ideal of M. Moreover, M_0 is σ -weakly sequentially closed in M since if a sequence $x_n \in M_0$ converges to $x \in M$ σ -weakly, then for $p_n \in \Sigma$ such that $x_n = p_n x_n p_n$, we have $p \in \Sigma$ with $p_n \leq p$ so that $x_n = p x_n p$ converges to x = p x p σ -weakly.

We claim that $\varphi^{-1}([0,1])_1$ is relatively σ -weakly closed in M_0 . Let $y \in \overline{\varphi^{-1}([0,1])_1}^{\sigma w} \cap M_0$ so that there is a net $y_\alpha \in \varphi^{-1}([0,1])_1$ converges σ -weakly to y, and there is $p \in \Sigma$ such that pyp = y. Since

$$py_{\alpha}p \in \varphi^{-1}([0,1])_1 \cap pMp$$

also converges σ -weakly to pyp = y and by the previous theorem $\varphi^{-1}([0,1]) \cap pMp$ is σ -weakly closed for each $p \in \Sigma$, we have $y \in \varphi^{-1}([0,1])$. The claim proved.

Suppose $x_{\alpha} \in \varphi^{-1}([0,1])_1$ converges to $x \in M_1^+$ σ -weakly. Let $\{p_i\}_{i \in I}$ be a maximal mutually orthogonal projections in Σ , and let $p_F := \sum_{i \in F} p_i$ for finite sets $F \subset I$ so that $\sup_F p_F = 1$. It clearly follows that

$$x_{\alpha}^{\frac{1}{2}}p_{F}x_{\alpha}^{\frac{1}{2}} \in \varphi^{-1}([0,1])_{1}.$$

Because M_0 is an ideal of M,

$$x^{\frac{1}{2}}p_Fx^{\frac{1}{2}} \in \overline{\varphi^{-1}([0,1])_1}^{\sigma w} \cap M_0.$$

By the above claim,

$$x^{\frac{1}{2}}p_Fx^{\frac{1}{2}} \in \varphi^{-1}([0,1])_1.$$

By the normality of φ , we finally obtain

$$x \in \varphi^{-1}([0,1])_1$$
.

Therefore, $\varphi^{-1}([0,1])_1$ is σ -weakly closed.

1.3 Supremum of positive linear functionals

2 November 10

3 December 20

4 January 17

5 February 9