LECTURE 20 THE CENTRAL LIMIT THEOREM

• Readings: Section 5.4

• X_1, \ldots, X_n i.i.d., finite variance σ^2

• "Standardized" $S_n = X_1 + \cdots + X_n$:

$$Z_n = \frac{S_n - \mathbf{E}[S_n]}{\sigma_{S_n}} = \frac{S_n - n\mathbf{E}[X]}{\sqrt{n}\sigma}$$

-
$$E[Z_n] = 0$$
, $var(Z_n) = 1$

 Let Z be a standard normal r.v. (zero mean, unit variance)

• **Theorem:** For every c:

$$P(Z_n \le c) \to P(Z \le c)$$

• $P(Z \le c)$ is the standard normal CDF, $\Phi(c)$, available from the normal tables

Usefulness

- universal; only means, variances matter
- accurate computational shortcut
- justification of normal models

What exactly does it say?

- ullet CDF of Z_n converges to normal CDF
- not a statement about convergence of PDFs or PMFs

Normal approximation

- ullet Treat Z_n as if normal
- also treat S_n as if normal

Can we use it when n is "moderate"?

- Yes, but no nice theorems to this effect
- Symmetry helps a lot

The pollster's problem using the CLT

- f: fraction of population that "..."
- *i*th (randomly selected) person polled:

$$X_i = \begin{cases} 1, & \text{if yes,} \\ 0, & \text{if no.} \end{cases}$$

- $M_n = (X_1 + \cdots + X_n)/n$
- Suppose we want:

$$\mathbf{P}(|\mathit{M}_n - \mathit{f}| \geq .01) \leq .05$$

• Event of interest: $|M_n - f| \ge .01$

$$\left| \frac{X_1 + \dots + X_n - nf}{n} \right| \ge .01$$

$$\left| \frac{X_1 + \dots + X_n - nf}{\sqrt{n}\sigma} \right| \geq \frac{.01\sqrt{n}}{\sigma}$$

$$P(|M_n - f| \ge .01) \approx P(|Z| \ge .01\sqrt{n}/\sigma)$$

 $\le P(|Z| \ge .02\sqrt{n})$

Apply to binomial

- Fix p, where 0
- X_i : Bernoulli(p)
- $S_n = X_1 + \cdots + X_n$: Binomial(n, p)
- mean np, variance np(1-p)
- CDF of $\frac{S_n np}{\sqrt{np(1-p)}}$ \longrightarrow standard normal

Example

- n = 36, p = 0.5; find $P(S_n \le 21)$
- Exact answer:

$$\sum_{k=0}^{21} {36 \choose k} \left(\frac{1}{2}\right)^{36} = 0.8785$$

The 1/2 correction for binomial approximation

- $P(S_n \le 21) = P(S_n < 22)$, because S_n is integer
- Compromise: consider $P(S_n < 21.5)$

De Moivre-Laplace CLT (for binomial)

 When the 1/2 correction is used, CLT can also approximate the binomial p.m.f. (not just the binomial CDF)

$$P(S_n = 19) = P(18.5 \le S_n \le 19.5)$$

$$18.5 \le S_n \le 19.5 \iff \frac{18.5 - 18}{3} \le \frac{S_n - 18}{3} \le \frac{19.5 - 18}{3} \iff \frac{19.5 - 18}{3}$$

$$0.17 \leq \mathit{Z}_{\mathit{n}} \leq 0.5$$

$$P(S_n = 19) \approx P(0.17 \le Z \le 0.5)$$

= $P(Z \le 0.5) - P(Z \le 0.17)$
= $0.6915 - 0.5675$

= 0.124

• Exact answer:

$$\binom{36}{19} \left(\frac{1}{2}\right)^{36} = 0.1251$$

Poisson vs. normal approximations of the binomial

- Poisson arrivals during unit interval equals: sum of n (independent) Poisson arrivals during n intervals of length 1/n
- Let $n \to \infty$, apply CLT (??)
- Poisson=normal (????)
- Binomial(n, p)
- p fixed, $n \to \infty$: normal
- np fixed, $n \to \infty$, $p \to 0$: Poisson
- p = 1/100, n = 100: Poisson
- p = 1/10, n = 500: normal