实验:OSPF

HCIP 分解实验 - OSPF

臧家林制作

OSPF 实验 1: OSPF 基本配置

OSPF 实验 2: OSPF 开销值、优先级

OSPF 实验 3:OSPF 邻居邻接关系

OSPF 实验 4:OSPF 虚链路

OSPF 实验 5: Forwarding address

OSPF 实验 6:OSPF Stub 区域

OSPF 实验 7: OSPF NSSA 区域

OSPF 实验 8:OSPF 路由聚合

OSPF 实验 9: OSPF 链路状态数据库

OSPF 实验 10: OSPF 缺省路由 OSPF 实验 11: OSPF 网络类型

=======

OSPF 实验 1: OSPF 基本配置

OSPF 基本配置,DR/BDR 选举过程,接口开销,被动接口, 认证

1.基本 IP 地址和 OSPF 配置

R1: undo terminal monitor sys sysname R1 int loop 0 ip add 1.1.1.1 24 int g0/0/1 ip add 192.168.12.1 24 int g0/0/2 ip add 192.168.13.1 24 quit R2: undo terminal monitor sys sysname R2 int loop 0 ip add 2.2.2.2 24 int g0/0/0 ip add 192.168.12.2 24 int s0/0/2 ip add 192.168.23.2 24 int e0/0/1 ip add 192.168.24.2 24 quit

R3: undo terminal monitor sys sysname R3 int loop 0 ip add 3.3.3.3 24 int g0/0/0 ip add 192.168.13.3 24 int s0/0/2 ip add 192.168.23.3 24 int e0/0/1 ip add 192.168.35.3 24 quit

R4: undo terminal monitor sys sysname R4 int loop 0 ip add 4.4.4.4 24 int e0/0/1 ip add 192.168.24.4 24 quit

R5: undo terminal monitor sys sysname R5 int loop 0 ip add 5.5.5.5 24 int e0/0/1 ip add 192.168.35.5 24 quit

[R1]display router id 查看全局 router-id

[R1]display router id RouterID:1.1.1.1

配置 OSPF

接口配置顺序会影响 router-id 的选举,如果先配置物理接口,再配置环回口,显示的就是物理接口。

第一次配置的接口,就会触发 router-id 的选举

ospf router-id 1.1.1.1 来配置 OSPF 协议下的私有 router-id,如果不配置,则默认使用全局下的 router-id。

私有 router-id 和全局 router-id 可以不一致。

一般建议采用环回接口地址做为路由协议的 router-id,因为环回接口是逻辑接口,比物理接口更加稳定。在对网络操作时,网络管理员有可能误操作导致物理接口删除,或都改动,而环回接口则一般不会去改动。

使用 ospf 创建并运行 OSPF 协议,如果没有写进程号,则默

认是 1.

接着使用 area 命令创建区域并进入 OSPF 区域视图,输入要创建的区域 ID。

使用 network 来指定运行 OSPF 协议的接口和接口所在的区域。配置中需要注意,尽量精确匹配。

R1:

ospf router-id 1.1.1.1 area 0 network 192.168.12.1 0.0.0.0 network 192.168.13.1 0.0.0.0 network 1.1.1.1 0.0.0.0

R2:

ospf router-id 2.2.2.2 area 0 network 2.2.2.2 0.0.0.0 network 192.168.12.2 0.0.0.0 network 192.168.23.2 0.0.0.0 area 1 network 192.168.24.2 0.0.0.0

R3:

ospf router-id 3.3.3.3 area 0 network 3.3.3.3 0.0.0.0 network 192.168.13.3 0.0.0.0 network 192.168.23.3 0.0.0.0 area 2 network 192.168.35.3 0.0.0.0

R4:

ospf router-id 4.4.4.4 area 1 network 4.4.4.4 0.0.0.0 network 192.168.24.4 0.0.0.0

R5: ospf router-id 5.5.5.5 area 2 network 5.5.5.5 0.0.0.0 network 192.168.35.5 0.0.0.0

配置完成后,查看 OSPF 接口是否正确

<R1>display ospf interface

```
<R1>display ospf int
         OSPF Process 1 with Router ID 1.1.1.1
                 Interfaces
 Area: 0.0.0.0
                         (MPLS TE not enabled)
 IP Address
                 Type
                               State
                                        Cost
                                                Pri
                                                       DR
                                                                       BDR
 1.1.1.1
                 P2P
                               P-2-P
                                        0
                                                       0.0.0.0
                                                                       0.0.0.0
 192.168.12.1
                                                       192.168.12.2
                                                                       192.168.12.1
                 Broadcast
                               BDR
 192.168.13.1
                                                       192.168.13.3
                 Broadcast
                                                                       192.168.13.1
                               BDR
```

配置完成后,查看 OSPF 邻居的建立情况

[R1]display ospf peer brief

```
[R1]display ospf peer brief

OSPF Process 1 with Router ID 1.1.1.1

Peer Statistic Information

Area Id Interface Neighbor id State
0.0.0.0 GigabitEthernet0/0/1 2.2.2.2 Full
0.0.0.0 GigabitEthernet0/0/2 3.3.3.3 Full
```

<R1>display ip routing-table protocol ospf

```
<R1>display ip routing-table protocol ospf
Route Flags: R - relay, D - download to fib
Public routing table : OSPF
         Destinations: 7
                                  Routes: 8
OSPF routing table status : <Active>
         Destinations: 7
                                  Routes: 8
Destination/Mask Proto Pre Cost Flags NextHop
        2.2.2.2/32 OSPF
                             10
                                                   192.168.12.2
                                               D
        3.3.3.3/32
                                  1
                                                   192.168.13.3
                    OSPF
                             10
                                               D
                                  2
        4.4.4.4/32
                    OSPF
                             10
                                               D
                                                    192.168.12.2
        5.5.5.5/32
                                  2
                    OSPF
                             10
                                               D
  192.168.23.0/24
                    OSPF
                             10
                                  1563
                                               D
                                                    192.168.13.3
                             10
                                  1563
                                                    192.168.12.2
                                               D
                     OSPF
  192.168.24.0/24 OSPF
                                                    192.168.12.
```

= = = =

2.查看 DR/BDR 选举情况

较在 OSPF 的广播类型网络和 NBMA 类型网络中,如果网络中的路由器很多,则需要建立很多的邻接关系,两两之间需要发送的报文也很多,这会造成很多内容重复的报文在网络中传递,浪费了设备的带宽资源。因此在广播类型网络和 NBMA 类型网络中,OSPF 协议定义了指定路由 DR(Designated Router),即所有其他路由器都只将各有自的链路状态信息发送给 DR,再由 DR 以组播方式发送至所有路由器,大大减少了OSPF 数据包的发送。

但是如果 DR 由于某种故障而失效,此时网络中必须重新选举 DR,并同步链路状态信息,这需要较长的时间。为了能够缩 短这个过程,OSPF 协议又定义了 BDR(Backup Designate d Router)概念,作为 DR 路由器的备份,当 DR 路由器失效时,BDR 成为 DR,并再选择新的 BDR 路由器。其他非 DR/BDR 路由器都称为 DR other 路由器。

DR 选举规则

首先比较 DR 优先级,高者为 DR,次高的成为 BDR,如果相等,则 router-id 数值高的成为 DR 如果一台路由器的 DR 优先级为 0.则不参与 DR 选举。

<R1>display ospf interface

R2 因为 Router-ID 较大而当选为 DR, R1 为 BDR, 如果选举的不是这样,是因为配置的先后顺序问题,正常都是先配置R1,再配置 R2 R3, 3 台路由清一下 OSPF 进程即可, 先清 R3

<R1>reset ospf process

```
<R1>reset ospf process
Warning: The OSPF process will be reset. Continue? [Y/N]:y
<R1>
```

```
<R1>display ospf int
        OSPF Process 1 with Router ID 1.1.1.1
                Interfaces
Area: 0.0.0.0
                       (MPLS TE not enabled)
IP Address
                Type
                             State
                                      Cost
                                             Pri
                                                   DR
                                                                   BDR
1.1.1.1
                P2P
                             P-2-P
                                                   0.0.0.0
                                                                   0.0.0.0
                                      0
192,168,12,1
                                                   192.168.12.2
                Broadcast
                                                                   192.168.12.1
                             BDR
192.168.13.1
                                                   192.168.13.3
                Broadcast
                             BDR
                                                                   192.168.13.1
```

修改 R1 的 DR 优先级为 2, 让 R1 成为 DR

R1:

int g0/0/1

ospf dr-priority 2

DR 不抢占,需要将接口开关一下,或重启 OSPF 进程

<R1>reset ospf 1 process

R1 R2 都重启 OSPF 进程

```
<R1>reset ospf process
warning: The OSPF process will be reset. Continue? [Y/N]:y
<R1>
<R1>display ospf interface
       OSPF Process 1 with Router ID 1.1.1.1
               Interfaces
Area: 0.0.0.0
                     (MPLS TE not enabled)
IP Address
               Type
                           State
                                   Cost
                                           Pri
                                                DR
                                                               BDR
                           P-2-P
                                                0.0.0.0
                                                               0.0.0.0
1.1.1.1
               P2P
                                   0
                                          1
192.168.12.1
                                                192.168.12.1
                                                               192.168.12.2
                                   1
               Broadcast
                                          2
                          DR
192.168.13.1
               Broadcast
                                                192.168.13.3
                                                               192.168.13.1
                           BDR
```

DR/BDR 在广播网络中选举,如果改成网络类型为点到多点,刚不会选举

R1:

int g0/0/1

ospf network-type p2mp

R2:

int g0/0/0

ospf network-type p2mp

```
<R1>display ospf interface
        OSPF Process 1 with Router ID 1.1.1.1
                Interfaces
Area: 0.0.0.0
                        (MPLS TE not enabled)
IP Address
                 Type
                              State
                                       Cost
                                               Pri
                                                                     BDR
                                                     DR
                                                                     0.0.0.0
1.1.1.1
                P2P
                              P-2-P
                                                     0.0.0.0
                                       0
192.168.12.1
                P2MP
                             P-2-P
                                       1
                                                     0.0.0.0
                                                                     0.0.0.0
                Broadcast
                                                     192.168.13.3
192.168.13.1
                                                                     192.168.13.1
                              BDR
```

网络类型还原为默认的广播网络类型

R1:

int g0/0/1

ospf network-type broad

R2: int g0/0/0 ospf network-type broad

= = = =

3.OSPF被动接口

OSPF 被动接口也称抑制接口,成为被动接口后,将不会接收和发送 OSPF 报文。如果要使 OSPF 路由信息不被某一网络中的路由器获得,且使本地路由器不接收网络中其它路由器发布的路由更新信息,即已运行在 OSPF 协议进程中的接口不与本链路上其余路由器建立邻居关系时,可通过配置被动接口来禁止此接口接收和发送 OSPF 报文。

路由器运行了 OSPF 协议的接口都会发 hello 包尝试认识新邻居,如果下面挂的 pc 就没有必要接受 hello 包了,silent-interf ace 以后该接口就不会发送 hello 包,可以减轻链路负担。在 R5 上添加一台 PC 相连,使用 192.168.5.0 网段

R5: int e0/0/0 ip add 192.168.5.5 24 ospf area 2 net 192.168.5.5 0.0.0.0

配置完成后,在PC的e0/0/1接口抓包

发现在该 PC 连接的 R5 在不停地向这条线路发出 OSPF 的 hello 报文尝试发现邻居,而对于 PC 而言,该报文是毫无用处的,同是也是不安全的。在 OSPF 的 hello 报文中含有很多 OSPF 网络的重要信息,如果被恶意截取,容易出现安全隐患。

T	Time	Source	Destination	Protocol	Into	. –
1 (0.000000	192.168.5.5	224.0.0.5	05PF	Hello	Packet
2 1	10.641000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
3 2	21.281000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
4 3	31.922000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
5 4	42.562000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
6 5	53.203000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
7 6	63.859000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
8 7	74.516000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
9.8	85.156000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
10 9	95.812000	192.168.5.5	224.0.0.5	OSPF	Hello	Packet
11 1	106.453000	192.168.5.5	224.0.0.5	OSPF	неllо	Packet

配置 R5 的 e0/0/0 为被动接口

R5 :

ospf

silent-interface e0/0/0

发现 OSPF 报文不再周期性发送。

No.	Time	Source	Destination	Protocol Info

如果有多个接口需要配置为被动接口,只有 e0/0/0 接口保持活动状态,可以简化配置。

ospf silent-interface all undo silent-interface e0/0/0

配置被动接口,该接口会禁止接受和发送 OSPF 报文,如果两台路由间的链路做为被动接口,会导致 OSPF 邻居的无法建立。

在 R5 与 R3 之间的链路做为被动接口。

<R5>display ospf peer brief 没有做之前,是有邻居关系的

R5: ospf silent-interface e0/0/1

做完被动接口后,就没有与R3的邻居关系

被动接口特性为只是不再收发任何 OSPF 报文,但是被动接口所在网段的直连路由,如果已经在 OSPF 中通告,那么也会被其它 OSPF 邻居路由接收到。

<R1>display ip routing-table protocol ospf

```
<R1>display ip routing-table protocol ospf
Route Flags: R - relay, D - download to fib
Public routing table : OSPF
        Destinations: 6
                               Routes: 7
OSPF routing table status : <Active>
        Destinations: 6
                               Routes: 7
Destination/Mask
                          Pre Cost Flags NextHop
                   Proto
       2.2.2.2/32 OSPF
                           10
                                               192.168.12.2
                                           D
       3.3.3.3/32
                               1
                                               192.168.13.3
                   OSPF
                           10
                                           D
       4.4.4.4/32
                                               192.168.12.2
                   OSPF
                           10
                                           D
                               1563
   192.168.23.0/24
                  OSPF
                          10
                                               192.168.13.3
                                           D
                           10
                              1563
                                               192.168.12.2
                   OSPF
                                           D
  192.168.24.0/24 OSPF
                                               192.168.12.2
                           10
                                           D
  192.168.35.0/24 OSPF
                          10
                                               192.168.13.3
```

= = = =

4.OSPF 的认证

OSPF 支持报文验证功能,只有通过验证的报文才能接收,否

则将不能正常建立邻居关系。

OSPF协议支持两种认证方式--区域认证和链路认证。

使用区域认证时,一个区域中所有的路由器在该区域下的认证模式和口令必须一致,OSPF链路认证相比区域认证更加灵活,可专门针对某个邻居设置单独的认证模式和密码。如果同时配置了接口认证和区域认证时,优先使用接口认证建立 OSPF邻居。

每种认证方式又分简单验证模式、MD5 验证模式和 key chain 验证模式。

简单验证模式在数据传递过程中,认证密钥和密钥 ID 都是明文传输,很容易被截获。MD5 验证模式下的密钥是经过 MD5 加密传输,相比简单验证模式更为安全。 key chain 验证模式可以同时配置多个密钥,不同密钥可单独设置生效周期等。

R2 R4 在区域 1 ,配置区域简单验证

```
[R2-ospf-1-area-0.0.0.1] authentication-mode ?
hmac-md5 Use HMAC-MD5 algorithm
keychain Keychain authentication mode
md5 Use MD5 algorithm
simple Simple authentication mode
```

两边都要做,只做一边,邻居是建立不了的

```
[R4]ospf
Dec 4 2015 12:10:44-08:00 R4 %%010SPF/3/NBR_CHG_DOWN(1)[0]:Neighbor even (ProcessId=1, NeighborAddress=2.2.2.2, NeighborEvent=InactivityTimer, Note of the ProcessId=1, NeighborAddress=2.2.2.2, NeighborEvent=InactivityTimer, Note of the ProcessId=1, NeighborRouterId=2.2.2.2, NeighborAreaId=1, NeighborImmediate reason=Neighbor Down Due to Inactivity, NeighborDownPrimeReason
```

R2:
ospf
area 1
authentication-mode simple plain huawei

R4:
ospf
area 1
authentication-mode simple plain huawei

区域使用的配置为 simple 简单验证模式,密码为 huawei, 配置 plain 参数。

plain 在查看配置时,以明文方式显示密码

```
[R2-ospf-1-area-0.0.0.1]display this

#
area 0.0.0.1
authentication-mode simple plain huawei
network 192.168.24.2 0.0.0.0
```

cipher 在查看配置时,以密文方式显示密码

```
[R2-ospf-1-area-0.0.0.1]authentication-mode simple cipher huawei
[R2-ospf-1-area-0.0.0.1]dis
[R2-ospf-1-area-0.0.0.1]display this
#
   area 0.0.0.1
   authentication-mode simple cipher )hK8=aW6h':z9:%F`[a=JSY# network 192.168.24.2 0.0.0.0
```

authentication-mode simple huawei 明文 密文不指定时,默认为密文显示密码

配置 R1 R2 的链路认证

R1:

int g0/0/1

ospf authentication-mode md5 1 huawei

R2:

int g0/0/0

ospf authentication-mode md5 1 huawei

MD5 验证模式,验证字标识符为 1,密码为 huawei

<R2>display current-configuration | include authen

<R2>display current-configuration | include authen
 authentication-scheme default
 ospf authentication-mode md5 1 cipher |yqR=H"hRKajUn1vMEIB3X7#
 authentication-mode simple cipher)hK8=aW6h':z9:%F`[a=JSY#
<R2>

配置 R1 R3 的 key chain 认证, 在链路上调用。

R1:

keychain key mode periodic daily

key-id 1

algorithm md5

key-string huawei

send-time daily 08:00 to 18:00

receive-time daily 08:00 to 18:00

int g0/0/2

ospf authentication-mode keychain key

R3:

keychain key mode periodic daily key-id 1 algorithm md5 key-string huawei send-time daily 08:00 to 18:00 receive-time daily 08:00 to 18:00 int g0/0/0 ospf authentication-mode keychain key

=======

OSPF 实验 2: OSPF 开销值、优先级

由于路由器上可能同时运行多种动态路由协议,就存在各个路由协议之间路由信息共享和选择的问题。系统为每一种路由协议设置了不同的默认优先级,当不同协议中发现同一条路由时,协议优先级高的将被优选。

如果没有直接配置 OSPF 接口的开销值, OSPF 会根据该接口的带宽自动计算其开销值。计算公式为:接口开销=带宽参考值/接口带宽,取计算结果的整数部分作为接口开销值(当结果小于1时取1)。通过改变带宽参考值可以间接改变接口的开销值。

OSPF 基于接口带宽计算开销,计算公式为:接口开销=带宽参考值÷带宽。带宽参考值可配置,缺省为 100Mbit/s。以此,一个 64kbit/s 串口的开销为 1562,一个 E1 接口(2.048 Mbit/s)的开销为 48。

命令 bandwidth-reference 可以用来调整带宽参考值,从而可以改变接口开销,带宽参考值越大,开销越准确。在支持 10 Gbit/s 速率的情况下,推荐将带宽参考值提高到 10000Mbit/s 来分别为 10 Gbit/s、1 Gbit/s 和 100Mbit/s 的链路提供 1、10 和 100 的开销。注意,配置带宽参考值时,需要在整个 OSPF 网络中统一进行调整。

另外,还可以通过 ospf cost 命令来手动为一个接口调整开销, 开销值范围是 1~65535,缺省值为 1。

OSPF 常见的计时器包括 Hello timer 和 Dead timer,分别决定了 OSPF 发送 Hello 报文的间隔和保持邻居关系的计时器。

P2P、Broadcast 类型接口发送 Hello 报文的时间间隔为 10 s. 邻居失效时间为 40s。

P2MP、NBMA 类型接口发送 Hello 报文的时间间隔为 30s, 邻居失效时间为 120s

1.基本配置

R1: un term mo sy sys R1 int g0/0/0 ip add 192.168.1.254 24 int g0/0/1 ip add 192.168.13.1 24 int s0/0/0 ip add 192.168.12.1 24 q

R2: un term mo sy sys R2 int s0/0/1 ip add 192.168.24.2 24 int s0/0/0 ip add 192.168.12.2 24 q

R3: un term mo sy sys R3 int g0/0/1 ip add 192.168.13.3 24 int g0/0/0 ip add 192.168.34.3 24 q

R4: un term mo sy sys R4 int g0/0/0 ip add 192.168.34.4 24 int g0/0/1 ip add 192.168.45.4 24 int s0/0/1 ip add 192.168.24.4 24 q

R5: un term mo sy sys R5 int g0/0/1 ip add 192.168.45.5 24 int g0/0/0 ip add 192.168.2.254 24 q

2.配置 OSPF 协议

R1 R2 R4 R5 运行 OSPF 协议

R1: ospf area 0 network 192.168.1.254 0.0.0.0 network 192.168.12.1 0.0.0.0

R2: ospf area 0 network 192.168.24.2 0.0.0.0 network 192.168.12.2 0.0.0.0

R4: ospf area 0 network 192.168.24.4 0.0.0.0 network 192.168.45.4 0.0.0.0

R5: ospf area 0 network 192.168.2.254 0.0.0.0 network 192.168.45.5 0.0.0.0

配置完成后,两台 PC 应该可以 ping 通

```
PC>ping 192.168.2.1: 32 data bytes, Press Ctrl_C to break Request timeout!
From 192.168.2.1: bytes=32 seq=2 ttl=124 time=31 ms
From 192.168.2.1: bytes=32 seq=3 ttl=124 time=16 ms
From 192.168.2.1: bytes=32 seq=4 ttl=124 time=31 ms
From 192.168.2.1: bytes=32 seq=4 ttl=124 time=31 ms
From 192.168.2.1: bytes=32 seq=5 ttl=124 time=32 ms
```

现在网络管理员实施网络升级

R1 R3 R4 R5 运行 RIP 协议

R1:

rip

version 2

net 192.168.1.0

network 192.168.13.0

R3:

rip

version 2

network 192.168.13.0

network 192.168.34.0

R4:

rip

version 2 network 192.168.45.0 network 192.168.34.0

R5: rip version 2 network 192.168.45.0 network 192.168.2.0

配置完成后在 R1 上查看, 192.168.2.0 路由还是通过 OSPF 协议获得。上面的为串口,下面为以太网口。通过 R3 带宽更大,但现在升级没有成功。原因是这个路由条目可以同时从 OSPF 和 RIP 获得,当同一路由条目可以通过不同的路由协议获得时,首先比较两个协议的优先级,选择优先级低的

OSPF 优先级为 10 RIP 优先级为 100

<R1>display ip routing-table 192.168.2.0

<R1>display ip routing-table 192.168.2.0
Route Flags: R - relay, D - download to fib

Routing Table : Public

Summary Count : 1

Destination/Mask Proto Pre Cost Flags NextHop

192.168.2.0/24 OSPF 10 3126 D 192.168.12.2

修改 OSPF 协议 优先级

R1 R2 R4 R5 优先级改为 120, R2 的优先级也可以不改 R1:

ospf

preference 120

R2: ospf preference 120

R4: ospf preference 120

R5: ospf preference 120

修改好之后,再次查看,现在是通过 RIP 协议学习到的,是通过 R3 到达的 <R1>display ip routing-table 192.168.2.0

[R1]dis ip routing-table 192.168.2.0 Route Flags: R - relay, D - download to fib

Routing Table : Public

Summary Count : 1

Destination/Mask Proto Pre Cost Flags NextHop

192.168.2.0/24 RIP 100 3 D 192.168.13.3

PC1 路由跟踪

PC>tracert 192.168.2.1

```
PC>tracert 192.168.2.1
traceroute to 192.168.2.1, 8 hops max
(ICMP), press Ctrl+C to stop
                  16 ms 15 ms
1 192.168.1.254
                                32 ms
                  62 ms
   192.168.13.3
                        47 ms
                               47 ms
3 192.168.34.4
                 94 ms
                        62 ms
                               63 ms
4 192.168.45.5 109 ms 94 ms 125 ms
5 192.168.2.1
                94 ms
                       93 ms 110 ms
```

3.修改 OSPF 开销值 cost

为了做 OSPF 开销值的实验,现将 RIP 协议删除,且 R3 运行 OSPF 协议,R1 R4 的接口运行 OSPF

R1:

undo rip 1

R3:

undo rip 1

R4:

undo rip 1

R5:

undo rip 1

R1: ospf area 0 network 192.168.13.1 0.0.0.0

R3: ospf area 0 network 192.168.13.3 0.0.0.0 network 192.168.34.3 0.0.0.0

R4:

ospf area 0 network 192.168.34.4 0.0.0.0

配置完成后,在 R1 查看 192.168.2.0 路由条目,还是通过 R 3 走的

[R1]dis ip routing-table 192.168.2.0

Route Flags: R - relay, D - download to fib

Routing Table : Public

Summary Count : 1

Destination/Mask Proto Pre Cost Flags NextHop

192.168.2.0/24 OSPF 120 4 D 192.168.13.3

现在要求通过 R2 走,可以通过手动修改 cost 值的方法来实验路径选择。

OSPF 链路开销值是基于接口修改的,一定要在路由更新的入接口修改才生效。

R1:

int g0/0/1 ospf cost 5000

现在是通过 R2 走的,经过 R2 的开销为 3126,远小于经过 R3 的 cost 值

[R1]dis ip routing-table 192.168.2.0

Route Flags: R - relay, D - download to fib

.....

Routing Table : Public

Summary Count : 1

Destination/Mask Proto Pre Cost Flags NextHop

192.168.2.0/24 OSPF 120 3126 D 192.168.12.2

========

配置 OSPF 计时器

在 OSPF 协议中的网络类型为广播网络类型,即 Hello 报文的时间间隔为 10s, 邻居失效时间为 40s。可以修改为其它的数值。

R1:

int g0/0/1 ospf timer hello 20 ospf timer dead 80

等一会之后,R1 R3 的邻居中断,要求两个计时器一致才能建立邻居

[R1]

Apr 10 2019 19:26:11-08:00 R1 %%010SPF/3/NBR_CHG_DOWN(1)[0]:Neighbor event:neigh bor state changed to Down. (ProcessId=1, NeighborAddress=3.3.3.3, NeighborEvent= InactivityTimer, NeighborPreviousState=Full, NeighborCurrentState=Down)

Apr 10 2019 19:26:11-08:00 R1 %%010SPF/3/NBR_DOWN_REASON(1)[1]:Neighbor state le aves full or changed to Down. (ProcessId=1, NeighborRouterId=3.3.3.3, NeighborAr eaId=0, NeighborInterface=GigabitEthernet0/0/1,NeighborDownImmediate reason=Neighbor Down Due to Inactivity, NeighborDownPrimeReason=Interface Parameter Mismatch, NeighborChangeTime=2019-04-10 19:26:11-08:00)

R3: int g0/0/0 ospf timer hello 20 ospf timer dead 80

配置完成后,查看一下 <R1>display ospf interface g0/0/1

[R1]dis ospf int g0/0/1

OSPF Process 1 with Router ID 192.168.1.254
Interfaces

Interface: 192.168.13.1 (GigabitEthernet0/0/1)

Cost: 5000 State: DR Type: Broadcast MTU: 1500

Priority: 1

Designated Router: 192.168.13.1

Backup Designated Router: 192.168.13.3

Timers: Hello 20, Dead 80, Poll 120, Retransmit 5, Transmit Delay 1

=======

OSPF 实验 3: OSPF 邻居邻接关系

OSPF 网络中,路由器在发送任何链路状态信息之前,必须建立起正确的 OSPF 邻居邻接关系。

基本配置

R1: un ter mo sys sysname R1 int loop 0 ip add 1.1.1.1 24 int s0/0/1 ip add 192.168.14.1 24 int s0/0/0 ip add 192.168.15.1 24 int g0/0/0 ip add 192.168.123.1 24 q

R2: un ter mo sys sysname R2 int loop 0 ip add 2.2.2.2 24 int g0/0/0 ip add 192.168.123.2 24 q

R3: un ter mo sys sysname R3 int loop 0 ip add 3.3.3.3 24 int g0/0/0 ip add 192.168.123.3 24 q

R4: un ter mo sys sysname R4 int loop 0 ip add 4.4.4.4 24 int s0/0/1 ip add 192.168.14.4 24 q

R5: un ter mo sys sysname R5 int loop 0 ip add 5.5.5.5 24 int s0/0/0 ip add 192.168.15.5 24 q

配置 OSPF

R1:

ospf router-id 1.1.1.1 area 0 network 1.1.1.1 0.0.0.0 network 192.168.123.1 0.0.0.0 area 1 network 192.168.14.1 0.0.0.0 area 2 network 192.168.15.1 0.0.0.0

R2: ospf router-id 2.2.2.2 area 0 network 2.2.2.2 0.0.0.0 network 192.168.123.2 0.0.0.0

R3: ospf router-id 3.3.3.3 area 0

network 3.3.3.3 0.0.0.0 network 192.168.123.3 0.0.0.0

R4: ospf router-id 4.4.4.4 area 1 network 4.4.4.4 0.0.0.0 network 192.168.14.4 0.0.0.0

R5: ospf router-id 5.5.5.5 area 2 network 5.5.5.5 0.0.0.0 network 192.168.15.5 0.0.0.0

配置完成后,来查看一下, R3 为 DR <R1>display ospf peer brief

Router ID: 3.3.3.3 Address: 192.168.123.3

State: Full Mode:Nbr is Master Priority: 1

DR: 192.168.123.3 BDR: 192.168.123.2 MTU: 0

Dead timer due in 16 sec

Retrans timer interval: 0

Neighbor is up for 00:00:53

Authentication Sequence: [0]

修改接口优先级,R1R2都设为0R1: int g0/0/0 ospf dr-priority 0 R2: int g0/0/0 ospf dr-priority 0

查看 R1 的 OSPF 邻居 R1 与 R2 状态是 2-way, R1 与 R3 状态是 FULL

Area Id	Interface	<u>Neighbor id</u>	State
0.0.0.0	GigabitEthernet0/0/0	2.2.2.2	2-Way
0.0.0.0	GigabitEthernet0/0/0	3.3.3.3	Full
0.0.0.1	Serial0/0/1	4.4.4.4	Full
0.0.0.2	Serial0/0/0	5.5.5.5	Full

R1 与 DR 路由器 R3 建立了邻接关系,与 DRother 路由器 R2 只建立了邻居关系,状态为 2-way R1 R4 之间进行抓包,查看报文

	the second of
ICMP	1024 Echo (ping) reply
OSPF	72 Hello Packet
OSPF	56 DB Description
OSPF	56 DB Description
OSPF	216 DB Description
OSPF	144 LS Request
OSPF	76 DB Description
OSPF	316 LS Update
OSPF	56 DB Description
OSPF	100 LS Update
OSPF	112 LS Update
OSPF	68 LS Acknowledge
OSPF	188 LS Acknowledge
	OSPF OSPF OSPF OSPF OSPF OSPF OSPF OSPF

抓包之后,来查看相互发送的 hello 报文

```
7 34 20.436000 192.168.14.1 224.0.0.5 OSPF 72 Hello Packet
m Frame 34: 72 bytes on wire (576 bits), 72 bytes captured (576 bits)

    □ Point-to-Point Protocol

Internet Protocol Version 4, Src: 192.168.14.1 (192.168.14.1), Dst: 224.0.0.5
Open Shortest Path First

⊕ OSPF Header

  ■ OSPF Hello Packet
      Network Mask: 255.255.255.0
      Hello Interval: 10 seconds

⊕ Options: 0x02 (E)

      Router Priority: 1
      Router Dead Interval: 40 seconds
      Designated Router: 0.0.0.0
      Backup Designated Router: 0.0.0.0
      Active Neighbor: 4.4.4.4
DD 报文
7 35 20.451000 192.168.14.4 224.0.0.5 OSPF 56 DB Description
# Frame 35: 56 bytes on wire (448 bits), 56 bytes captured (448 bits)
Point-to-Point Protocol
Internet Protocol Version 4, Src: 192.168.14.4 (192.168.14.4), Dst: 224.0.0.5
Open Shortest Path First

    ⊕ OSPF Header

  ■ OSPF DB Description
      Interface MTU: 0

  □ Options: 0x02 (E)

        0... = DN: DN-bit is NOT set
        .0.. .... = 0: 0-bit is NOT set
        ..... = DC: Demand Circuits are NOT supported
         ...0 .... = L: The packet does NOT contain LLS data block
         .... 0... = NP: NSSA is NOT supported
        .... .O.. = MC: NOT Multicast Capable
        .... ..1. = E: External Routing Capability
         .... 0 = MT: NO Multi-Topology Routing

□ DB Description: 0x07 (I, M, MS)

        .... 0... = R: OOBResync bit is NOT set
         .... .1.. = I: Init bit is SET
        .... ..1. = M: More bit is SET
         .... 1 = MS: Master/Slave bit is SET
      DD Sequence: 1482
```

= = = = = = =

OSPF 实验 4: OSPF 虚链路

OSPF 网络的每个非骨干区域都必须与骨干区域通过 ABR 路由器直接连接,但在现实中,可能会因各种条件限制,导致非骨干区域与骨干区域无法直接连接,这时可以使用 OSPF 虚

链路来实现非骨干区域在与骨干区域在逻辑上直接相连。

基本配置 R1: undo term mo

sys sysname R1 int loop 0 ip add 1.1.1.1 24 int g0/0/1 ip add 192.168.13.1 24 int g0/0/0 ip add 192.168.12.1 24 q

ospf router-id 1.1.1.1 area 0 network 1.1.1.1 0.0.0.0 network 192.168.12.1 0.0.0.0 area 1 network 192.168.13.1 0.0.0.0

R2: undo term mo sys sysname R2 int loop 0 ip add 2.2.2.2 24 int g0/0/0 ip add 192.168.12.2 24 int g0/0/2 ip add 192.168.23.2 24 q

ospf router-id 2.2.2.2 area 0 network 2.2.2.2 0.0.0.0 network 192.168.12.2 0.0.0.0 area 1

network 192.168.23.2 0.0.0.0

R3: undo term mo sys sysname R3 int loop 0 ip add 3.3.3.3 24 int g0/0/1 ip add 192.168.13.3 24 int g0/0/2 ip add 192.168.23.3 24 int g0/0/0 ip add 192.168.34.3 24 q

ospf router-id 3.3.3.3 area 1 network 3.3.3.3 0.0.0.0 network 192.168.13.3 0.0.0.0 network 192.168.23.3 0.0.0.0 area 2 network 192.168.34.3 0.0.0.0

R4: undo term mo sys sysname R4 int loop 0 ip add 4.4.4.4 24 int g0/0/0 ip add 192.168.34.4 24 q ospf router-id 4.4.4.4 area 2 network 4.4.4.4 0.0.0.0 network 192.168.34.4 0.0.0.0

配置完成后,查看 R3 的邻居关系 <R3>display ospf peer brie f

[R3]dis ospf peer bri

OSPF Process 1 with Router ID 3.3.3.3

Peer Statistic Information

Area Id	Interface	Neighbor id	State
0.0.0.1	GigabitEthernet0/0/1	1.1.1.1	Full
0.0.0.1	GigabitEthernet0/0/2	2.2.2.2	Full
0.0.0.2	GigabitEthernet0/0/0	4.4.4.4	Full

<R4>display ip routing-table R4 没有学习到区域 0 中的路由,只有直连路由

Destination/Mask	Proto	Pre	Cost	Flags	NextHop
4.4.4.0/24			0	D	4.4.4.4
4.4.4.4/32	Direct	0	0	D	127.0.0.1
127.0.0.0/8	Direct	0	0	D	127.0.0.1
127.0.0.1/32	Direct	0	0	D	127.0.0.1
192.168.34.0/24	Direct	0	0	D	192.168.34.4
0/0/0					
192.168.34.4/32	Direct	0	0	D	127.0.0.1

========

配置虚链路

使用虚链路使用区域 2 与区域 0 逻辑相连,区域 1 做为传输区域,先做 R1 R3 之间的虚链路,vlink-peer 后面跟的是邻居的 router id

```
[R1-ospf-1-area-0.0.0.1]vlink-peer ?
  X.X.X.X Neighbor router ID
```

R1: ospf area 1 vlink-peer 3.3.3.3

R3: ospf area 1 vlink-peer 1.1.1.1

查看虚链路 <R1>display ospf vlink

[R1]dis ospf vlink

OSPF Process 1 with Router ID 1.1.1.1
Virtual Links

Virtual-link Neighbor-id -> 3.3.3.3, Neighbor-State: Full

Interface: 192.168.13.1 (GigabitEthernet0/0/1)

Cost: 1 State: P-2-P Type: Virtual

Transit Area: 0.0.0.1

Timers: Hello 10 , Dead 40 , Retransmit 5 , Transmit Delay 1

R4 的路由学习到更多 <R4>display ip routing-table

接着做 R2 R3 之间的虚链路

R2:

ospf

area 1

vlink-peer 3.3.3.3

R3:

ospf

area 1

vlink-peer 2.2.2.2

现在 R3 去往区域 0 是负载匀衡的情形

192.168.12.0/24 OSPF 10 2 D 192.168.23.2 GigabitEthernet 0/2 OSPF 10 2 D 192.168.13.1 GigabitEthernet

========

修改 OSPF 开销,让路由从上面的 R1 到达区域 0,可以把下面 R2 的开销改大一些

R2: int g0/0/0 ospf cost 10 或者

R3: int g0/0/2 ospf cost 10

[R3]display ospf vlink

Virtual-link Neighbor-id -> 2.2.2.2, Neighbor-State: Full

Interface: 192.168.23.3 (GigabitEthernet0/0/2)

Cost: 10 State: P-2-P Type: Virtual

Transit Area: 0.0.0.1

Timers: Hello 10 , Dead 40 , Retransmit 5 , Transmit Delay 1

[R3]

dis ip routing-table 可以看到 R3 从 R1 到达 192.168.12.0 网段

127.0.0.0/8	Direct	0	0	D	127.0.0.1
127.0.0.1/32	Direct	0	0	D	127.0.0.1
192.168.12.0/24	OSPF	10	2	D	192.168.13.1
/1					
192.168.13.0/24	Direct	0	0	D	192.168.13.3

========

使用虚链路做为区域 0 链路的冗余备份

R1 R2 之间只有单条链路连接,如果出现链路故障,就会导致区域 0 被分割的问题。区域 1 为传输区域

R1: ospf area 1

vlink-peer 2.2.2.2

R2:

```
area 1
vlink-peer 1.1.1.1
虚链路的认证,配置认证功能来增强安全性。
R1:
ospf
area 1
vlink-peer 2.2.2.2 hmac-md5 1 plain huawei
hmac-md5 认证加密方式,1 为 key ID, plain huawei 表
示以明文方式显示口令,口令为 huawei
<R1>dis ospf vlink
   OSPF Process 1 with Router ID 1.1.1.1
      Virtual Links
Virtual-link Neighbor-id -> 2.2.2.2, Neighbor-State: Down
Interface: 192.168.13.1 (GigabitEthernet0/0/1)
一端认证别一端没有,等待 40s 后虚链路是 down
R2:
ospf
area 1
vlink-peer 1.1.1. hmac-md5 1 plain huawei
[R1]display ospf vlink 现在恢复正常
```

=======

OSPF 实验 5: Forwarding address

FA 是 Forwarding Address 的简写。FA 是 ASBR 通告的 Type 5 LSA 中的字段,它的作用是告诉 OSPF 域内的路由器 如何能够更快捷地到达 LSA 5 所通告路由的下一跳地址,以免 OSPF 内部路由器在广播网络上以 ASBR 为下一跳,再由 ASBR 自己转发到正确的下一跳,而产生额外的路由。就 5 类 LSA 而言,FA 有 0 或非 0 两种情况

基本配置

R1:
undo term mo
sys
sysname R1
user-interface console 0
idle-timeout 0 0
int loop 0

```
ip add 1.1.1.1 24
int g0/0/0
ip add 192.168.123.1 24
q
ospf router-id 1.1.1.1
area 0
net 1.1.1.1 0.0.0.0
net 192.168.123.1 0.0.0.0
q
R2:
undo term mo
SYS
sysname R2
user-interface console 0
idle-timeout 0 0
int loop 0
ip add 2.2.2.2 24
int g0/0/0
ip add 192.168.123.2 24
q
ospf router-id 2.2.2.2
area 0
net 2.2.2.2 0.0.0.0
net 192.168.123.2 0.0.0.0
q
rip
version 2
net 192.168.123.0
q
R3:
```

```
undo term mo
SVS
sysname R3
user-interface console 0
idle-timeout 0 0
int loop 0
ip add 3.3.3.3 24
int g0/0/0
ip add 192.168.123.3 24
q
rip
version 2
net 3.0.0.0
net 192.168.123.0
q
在 R2 上做 RIP 与 OSPF 协议的双向引入
R2:
ospf
import-route rip
rip
import-route ospf
在 R1 上查看数据库,<R1>display ospf Isdb ase
3.3.3.0, Forwarding Address 为非 0, R1 一跳即可到
达 3.3.3.0 网段
 1.1.1.0/24 Direct 0
                                     1.1.1.1
                       0
 1.1.1.1/32 Direct 0
                       0
                                     127.0.0.1
                                  D
 2.2.2.2/32 OSPF 10
                       1
                                     192.168.123.2
                                  D
 3.3.3.0/24 O_ASE
                  150 1
                                     192.168.123.3
                                  D
127.0.0.0/8
            Direct
                       0
                                     127.0.0.1
                   0
```

<R1>display ospf lsdb ase 3.3.3.0

<R1>display ospf lsdb ase 3.3.3.0

OSPF Process 1 with Router ID 1.1.1.1
Link State Database

Type : External Ls id : 3.3.3.0 Adv rtr : 2.2.2.2

Ls age : 34 Len : 36 Options : E

seq# : 80000001 chksum : 0xf5e1

Net mask : 255.255.255.0

TOS 0 Metric: 1

E type : 2

Forwarding Address: 192.168.123.3

Tag : 1 Priority : Low

将 R1 和 R2 的 OSPF 网络类型由 broadcast 改为 P2P,再看 R1 的数据库,FA 变为了 0。

R1:

int g0/0/0 ospf network-type p2p

R2:

int g0/0/0

ospf network-type p2p

在R1上查看 <R1>display ospf lsdb ase 3.3.3.0 , Forwarding Address 为全 0

<R1>display ospf lsdb ase 3.3.3.0

OSPF Process 1 with Router ID 1.1.1.1 Link State Database

Type : External Ls id : 3.3.3.0 Adv rtr : 2.2.2.2

Ls age : 10 Len : 36 Options : E

seq# : 80000002 chksum : 0x546a

Net mask : 255.255.255.0

TOS 0 Metric: 1 E type : 2

Forwarding Address : 0.0.0.0

Tag : 1 Priority : Low

查看 R1 的路由表

<R1>dis ip routing-table

Route Flags: R - relay, D - download to fib

.....

Routing Tables: Public

Destinations : 8 Routes : 8

Destina	ation/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
	1.1.1.0/24	Direct	0	0	D	1.1.1.1	LoopBack0
	1.1.1.1/32	Direct	0	0	D	127.0.0.1	LoopBack0
	2.2.2.2/32	OSPF	10	1	D	192.168.123.2	GigabitEthe
0/0/0							_
	3.3.3.0/24	O_ASE	150	1	D	192.168.123.2	GigabitEthe
0/0/0		_					-
			_	_	_		

可以看到 R1 去往 3.3.3.0 ,下一跳为 R2 (ASBR)

结论

- 1)在OSPF引入外部路由时,若产生的Type 5 LSA的FA地址为0.0.0.0,则其他路由器在计算到达该外部网络时,将考虑如何到达ASBR(即产生该Type 5 LSA的路由器)来计算出外部路由的下一跳地址。
- 2)在OSPF引入外部路由时,若产生的Type 5 LSA的FA地址不为0,则其他路由器在计算到达该外部网络时,将考虑如何到达该FA地址来计算出外部路由的下一跳地址。

=======

那么 Type 5 的 FA 何时为 0,何时为非 0 呢?看下面的实验

Forwarding Address --臧冢林

基本配置

R4:
undo term mo
sys
sysname R4
user-interface console 0
idle-timeout 0 0
int loop 0
ip add 4.4.4.4 24
int g0/0/0
ip add 192.168.45.4 24
q

ospf router-id 4.4.4.4 area 0 net 4.4.4.4 0.0.0.0 net 192.168.45.4 0.0.0.0 q

R5: undo term mo sys sysname R5
user-interface console 0
idle-timeout 0 0
int loop 0
ip add 5.5.5.5 24
int g0/0/0
ip add 192.168.45.5 24
int g0/0/1
ip add 192.168.56.5 24
q

ospf router-id 5.5.5.5 area 0 net 5.5.5.5 0.0.0.0 net 192.168.45.5 0.0.0.0 q

rip version 2 net 192.168.56.0 q

R6: undo term mo sys sysname R6 user-interface console 0 idle-timeout 0 0 int loop 0 ip add 6.6.6.6 24 int g0/0/1 ip add 192.168.56.6 24 q

```
rip
version 2
net 6.0.0.0
net 192.168.56.0
q
```

========

在 R5 上将 RIP 进行引入到 OSPF 协议中,单向引入

R5 : ospf import-route rip

在 R4 上查看 dis ospf lsdb ase 6.6.6.0, FA 为 全 0

[R4]dis ospf lsdb ase 6.6.6.0

OSPF Process 1 with Router ID 4.4.4.4 Link State Database

Type : External Ls id : 6.6.6.0 Adv rtr : 5.5.5.5

Ls age : 26 Len : 36 Options : E

seq# : 80000001 chksum : 0x8f1b

Net mask : 255.255.255.0

TOS 0 Metric: 1 E type : 2

Forwarding Address : 0.0.0.0

Tag : 1 Priority : Low

在 R5 上将连接 R6 的接口,宣告进 OSPF 协议

R5: ospf area 0 net 192.168.56.5 0.0.0.0

在 R4 上再次查看, dis ospf lsdb ase 6.6.6.0, FA 为非 0

[R4]dis ospf lsdb ase 6.6.6.0

OSPF Process 1 with Router ID 4.4.4.4 Link State Database

Type : External Ls id : 6.6.6.0 Adv rtr : 5.5.5.5

Ls age : 20 Len : 36 Options : E

seq# : 80000002 chksum : 0xec15

Net mask : 255.255.255.0

TOS 0 Metric: 1 E type : 2

Forwarding Address : 192.168.56.6

Tag : 1 Priority : Low

R5:连接 R6 的接口设置为抑制接口

ospf

silent-interface g0/0/1

在 R4 上再次查看, dis ospf lsdb ase 6.6.6.0, FA 为 0

========

结论:

若同时满足以下 3 个 条件:

- 1)引入的这条外部路由,其对应的出接口启用了 OSPF
- 2)引入的这条外部路由,其对应的出接口未设置为 silent-int erface

3)引入的这条外部路由,其对应的出接口的 OSPF 网络类型为 broadcast

则产生的 Type 5 LSA,其 FA 地址非 0,等于该引入的外部路由的下一条地址

注:如果 FA 非 0,那么优选到 FA 地址 metric 最短的路径,而且到 FA 的路由必须是 OSPF 域内或域间

=======

OSPF 实验 6: OSPF Stub 区域

Stub 区域 和完全 Stub 区域的功能就是减少该区域中 LSA 的数量,从而缩小 LSA 的规模,进而减少路由表中路由条目的数量,实现降低设备负担,增强网络稳定性,优化网络性能的目的。

Stub 区域不允许 4 类和 5 类 LSA

基本配置

R1:
undo ter mo
sys
sysname R1
int loop 0
ip add 1.1.1.1 24
int e0/0/1
ip add 192.168.14.1 24
int e0/0/0
ip add 192.168.15.1 24
int g0/0/1
ip add 192.168.12.1 24
int g0/0/0
ip add 192.168.13.1 24
q

ospf router-id 1.1.1.1 area 0 network 1.1.1.1 0.0.0.0 network 192.168.12.1 0.0.0.0 network 192.168.13.1 0.0.0.0 area 1 network 192.168.14.1 0.0.0.0 area 2 network 192.168.15.1 0.0.0.0

R2: undo ter mo sys sysname R2 int loop 0 ip add 2.2.2.2 24 int e0/0/1 ip add 192.168.25.2 24 int e0/0/0 ip add 192.168.24.2 24 int g0/0/1 ip add 192.168.12.2 24 int g0/0/0 ip add 192.168.23.2 24 q

ospf router-id 2.2.2.2 area 0 network 2.2.2.2 0.0.0.0 network 192.168.12.2 0.0.0.0 network 192.168.23.2 0.0.0.0 area 1 network 192.168.24.2 0.0.0.0 area 2

network 192.168.25.2 0.0.0.0

R3: undo ter mo sys sysname R3 int loop 0 ip add 3.3.3.3 24 int loop 1 ip add 30.0.0.1 24 int g0/0/0 ip add 192.168.13.3 24 int g0/0/1 ip add 192.168.23.3 24 q

ospf router-id 3.3.3.3 area 0 network 3.3.3.3 0.0.0.0 network 192.168.13.3 0.0.0.0 network 192.168.23.3 0.0.0.0

R4: undo ter mo sys sysname R4 int loop 0 ip add 4.4.4.4 24 int e0/0/1 ip add 192.168.14.4 24 int e0/0/0 ip add 192.168.24.4 24 q ospf router-id 4.4.4.4 area 1 network 4.4.4.4 0.0.0.0 network 192.168.14.4 0.0.0.0 network 192.168.24.4 0.0.0.0

R5: undo ter mo sys sysname R5 int loop 0 ip add 5.5.5.5 24 int e0/0/1 ip add 192.168.25.5 24 int e0/0/0 ip add 192.168.15.5 24 q

ospf router-id 5.5.5.5 area 2 network 5.5.5.5 0.0.0.0 network 192.168.25.5 0.0.0.0 network 192.168.15.5 0.0.0.0

配置完成后,查看邻居建立情况

[R1]dis ospf peer bri

OSPF Process 1 with Router ID 1.1.1.1 Peer Statistic Information

Area Id	Interface	Neighbor id	State
0.0.0.0	GigabitEthernet0/0/1	2.2.2.2	Full
0.0.0.0	GigabitEthernet0/0/0	3.3.3.3	Full
0.0.0.1	Ethernet0/0/1	4.4.4.4	Full
0.0.0.2	Ethernet0/0/0	5.5.5.5	Full

路由表学习也正常

=======

在R3上将环回口1引入到OSPF

R3: ospf import-route direct

在 R4 上查看效果 <R4>display ip routing-table

5.5.5.5/32	OSPF	10	2	D	192.168.14.1	Ethernet0/0/1
	OSPF	10	2	D	192.168.24.2	Ethernet0/0/0
30.0.0.0/24	0_ASE	150	1	D	192.168.24.2	Ethernet0/0/0
	O ASE	150	1	D	192.168.14.1	Ethernet0/0/1

<R4>display ospf 1 routing <R4>display ospf Isdb

OSPF 内部路由优先级为 10,外部路由优先级为 150,值越大,优先级越低

OSPF 共有两类外部路由:

第一类外部路由的 AS 外部开销被认为和 AS 内部开销值是同一数量级的,因此第一类外部路由的开销值为 AS 内部开销值 (路由器到 ASBR 的开销)与 AS 外部开销值之和;

第二类外部路由的 AS 外部开销值被认为远大于 AS 内部开销值,因此第二类外部路由的开销值只是 AS 外部开销值,忽略 AS 内部开销值。

第一类外部路由永远比第二类外部路由优先,VRP中引入的外部路由类型缺省为第二类。

缺省情况下,引入外部路由时的 cost 为 1,tag 为 1,type 为 2。

R3:

ospf

import-route direct type 1 cost 9

配置 stub 区域

area 1 area 2 配置为 stub 区域.该区域的路由器不会接收区域外部的路由,且 ABR 会在该区域中通告一条缺省路由,以供 其访问区域外部网络

R1:

ospf

area 1

stub

area 2

stub

R2: ospf area 1 stub area 2 stub

R4: ospf area 1 stub

R5: ospf area 2 stub

<R4>display ip routing-table

stination/Mask	Proto	Pre	Cost	Flags	NextHop
0.0.0.0/0	OSPF	10	2	D	192.168.14.1
	OSPF	10	2	D	192.168.24.2
1.1.1.1/32	OSPF	10	1	D	192.168.14.1
2.2.2.2/32	OSPF	10	1	D	192.168.24.2
3.3.3.3/32	OSPF	10	2	D	192.168.14.1

<R4>display ospf lsdb

R4 路由表中的外部路由条目已经消失,取而代之的是一条缺省路由

=======

主备链路

R4 R1 之间为主用链路, R4 R2 之间为备用链路 R5 R2 之间为主用链路, R5 R1 之间为备用链路

R1: ospf area 2 default-cost 10

R2: ospf area 1 default-cost 10

<R4>display ip routing-table

ination/Mask	Proto	Pre	Cost	Flags	NextHop
0.0.0.0/0	OSPF	10	2	D	192.168.14.1
1.1.1.1/3	2 OSPF	10	1	D	192.168.14.1
2.2.2.2/3	2 OSPF	10	1	D	192.168.24.2

dis ospf lsdb 可以看到 R4 上面有大量的 3 类 LSA

Sum-Net	0.0.0.0	2.2.2.2	107	28	80000002	9
Sum-Net	0.0.0.0	1.1.1.1	270	28	80000001	1
Sum-Net	192.168.23.0	2.2.2.2	262	28	80000001	1
Sum-Net	192.168.23.0	1.1.1.1	270	28	80000001	2
Sum-Net	192.168.15.0	2.2.2.2	259	28	80000002	2
Sum-Net	192.168.15.0	1.1.1.1	268	28	80000003	1
Sum-Net	5.5.5.5	2.2.2.2	205	28	80000001	1
Sum-Net	5.5.5.5	1.1.1.1	204	28	80000002	1
Sum-Net	3.3.3.3	2.2.2.2	262	28	80000001	1
Sum-Net	3.3.3.3	1.1.1.1	270	28	80000001	1
Sum-Net	192.168.25.0	2.2.2.2	259	28	80000002	1
Sum-Net	192.168.25.0	1.1.1.1	258	28	80000001	2
Sum-Net	192.168.13.0	2.2.2.2	262	28	80000001	2
Sum-Net	192.168.13.0	1.1.1.1	270	28	80000001	1
Sum-Net	192.168.12.0	2.2.2.2	262	28	80000001	1
Sum-Net	192.168.12.0	1.1.1.1	270	28	80000001	1
Sum-Net	2.2.2.2	2.2.2.2	262	28	80000001	0
Sum-Net	2.2.2.2	1.1.1.1	270	28	80000001	1
Sum-Net	1.1.1.1	2.2.2.2	262	28	80000001	1
Sum-Net	1.1.1.1	1.1.1.1	270	28	80000001	0

[R4]

=======

配置 Totally Stub 区域

在 Stub 区域中有 3 类的 LSA,Totally Stub 区域禁止 3 类 LS A

只需要在 ABR 上做

R1:
ospf
area 1
stub no-summary
area 2
stub no-summary

R2: ospf area 1 stub no-summary area 2 stub no-summary

<R4>display ospf lsdb

Router	4.4.4.4	4.4.4.4	4	60	8000000E	0
Router	2.2.2.2	2.2.2.2	3	36	80000007	1
Router	1.1.1.1	1.1.1.1	17	36	80000007	1
Network	192.168.14.4	4.4.4.4	10	32	80000002	0
Network	192.168.24.4	4.4.4.4	4	32	80000001	0
Sum-Net	0.0.0.0	2.2.2.2	4	28	80000003	9
Sum-Net	0.0.0.0	1.1.1.1	377	28	80000001	1

[R4]

<R4>ping 1.1.1.1 也是可以通的 R4 的 LSDB 中只有两条表示缺省的 3 类 LSA,没有明细

= = = = = = =

OSPF 实验 7: OSPF NSSA 区域

stub 区域不能存在外部路由,stub 区域引入的路由也不能发布出去

nssa 区域是在 stub 区域上改造的折中方案,最大的区别就是存在 asbr,能将 nssa 中引入的路由发布到别的区域

基本配置

R1: undo ter mo sys sysname R1 int loop 0 ip add 1.1.1.1 24 int loop 1 ip add 11.11.11.11 24 int g0/0/0 ip add 192.168.12.1 24 int g0/0/1 ip add 192.168.13.1 24 q ospf router-id 1.1.1.1 area 0 network 192.168.12.1 0.0.0.0 network 192.168.13.1 0.0.0.0

R2: undo ter mo sys sysname R2 int loop 0 ip add 2.2.2.2 24 int g0/0/0 ip add 192.168.12.2 24 int g0/0/1 ip add 192.168.24.2 24 q

ospf router-id 2.2.2.2 area 0 network 2.2.2.2 0.0.0.0 network 192.168.12.2 0.0.0.0 area 1 network 192.168.24.2 0.0.0.0 q

R3: undo ter mo sys sysname R3 int loop 0 ip add 3.3.3.3 24 int g0/0/1 ip add 192.168.13.3 24 int g0/0/0

ip add 192.168.34.3 24 q ospf router-id 3.3.3.3 area 0 network 3.3.3.3 0.0.0.0 network 192.168.13.3 0.0.0.0 area 1 network 192.168.34.3 0.0.0.0 q R4: undo ter mo SYS sysname R4 int loop 0 ip add 4.4.4.4 24 int loop 1 ip add 44.44.44.44 24 int g0/0/1ip add 192.168.24.4 24 int g0/0/0 ip add 192.168.34.4 24 q ospf router-id 4.4.4.4 area 1 network 192.168.24.4 0.0.0.0 network 192.168.34.4 0.0.0.0 q

引入外部路由

=======

R1 R4 利用 Route-Policy 将 loopback 0 和 loopback 1 引入到 OSPF 网络中

R1: acl 2000 rule permit source 1.1.1.0 0.0.0.255 rule permit source 11.11.11.0 0.0.0.255

quit [.]

route-policy 10 permit node 1 if-match acl 2000 ospf import-route direct route-policy 10

R4: acl 2000 rule permit source 4.4.4.0 0.0.0.255 rule permit source 44.44.44.0 0.0.0.255 quit

route-policy 10 permit node 1 if-match acl 2000 ospf import-route direct route-policy 10

配置完成后,查看 R1 的 LSDB [R1]display ospf lsdb <R1>display ip routing-table

配置 NSSA 区域,R2 R3 R4 R2: ospf area 1 nssa

R3: ospf area 1 nssa

R4: ospf area 1 nssa

配置完成后,查看 R4 的 LSDB [R4]display ospf lsdb

NSSA	44.44.44.0	4.4.4.4	169	36	80000001	1
NSSA	4.4.4.0	4.4.4.4	169	36	80000001	1
NSSA	0.0.0.0	2.2.2.2	181	36	80000001	1
NSSA	0.0.0.0	3.3.3.3	177	36	80000001	1

<R4>display ip routing-table

R2 R3 进行 7 转 5 的操作

NSSA	0.0.0.0	2.2.2.2	148	36	80000001
NSSA	0.0.0.0	3.3.3.3	146	36	80000001
NSSA	44.44.44.0	4.4.4.4	138	36	80000001
NSSA	4.4.4.0	4.4.4.4	140	36	80000001

AS External Database

Туре	LinkState ID	AdvRouter	Age	Len	Sequence
External	11.11.11.0	1.1.1.1	356	36	80000001
External	44.44.44.0	3.3.3.3	101	36	80000001
External	4.4.4.0	3.3.3.3	101	36	80000001
External	1.1.1.0	1.1.1.1	356	36	80000001

<R4>display ospf abr-asbr

[R4]dis ospf abr-asbr

OSPF Process 1 with Router ID 4.4.4.4
Routing Table to ABR and ASBR

RtType	Destination	Area	Cost	Nexthop	Туре
Intra-area	2.2.2.2	0.0.0.1	1	192.168.24.2	ABR/ASBR
Intra-area	3.3.3.3	0.0.0.1	1	192.168.34.3	ABR/ASBR ABR/ASBR

配置 Totally NSSA 区域阻止 3 类的 LSA

只需要在 R2 R3 上去做,是 ABR/ASBR

R2: ospf area 1

nssa no-summary

R3:
ospf
area 1
nssa no-summary

<R4>display ospf Isdb

Network	192.168.24.4	4.4.4.4	8	32	80000002
Network	192.168.34.4	4.4.4.4	7	32	80000001
Sum-Net	0.0.0.0	2.2.2.2	19	28	80000001
Sum-Net	0.0.0.0	3.3.3.3	11	28	80000001
NSSA	44.44.44.0	4.4.4.4	421	36	80000001
NSSA	4.4.4.0	4.4.4.4	421	36	80000001
NSSA	0.0.0.0	2.2.2.2	433	36	80000001
NSSA	0.0.0.0	3.3.3.3	429	36	80000001

========

OSPF 实验 8: OSPF 路由聚合

OSPF 不支持自动路由聚合,仅支持手动路由聚合。两种机制: 区域间路由聚合和外部路由聚合。

area 2 为 NSSA 区域,R4 与 R5 之间不运行 OSPF ,采用静态路由相连

基本配置

R1:
un ter mon
sys
sysname R1
int loop 0
ip add 1.1.1.1 24
int g0/0/0
ip add 192.168.16.1 24
int g0/0/1
ip add 192.168.12.1 24
int g0/0/2
ip add 192.168.13.1 24
q

ospf router-id 1.1.1.1 area 0 network 1.1.1.1 0.0.0.0 network 192.168.12.1 0.0.0.0 network 192.168.13.1 0.0.0.0 area 1

network 192.168.16.1 0.0.0.0

R2: un ter mon Sys sysname R2 int loop 0 ip add 2.2.2.2 24 int g0/0/1ip add 192.168.12.2 24 int q0/0/2ip add 192.168.24.2 24 q ospf router-id 2.2.2.2 area 0 network 2.2.2.2 0.0.0.0 network 192.168.12.2 0.0.0.0 area 2 nssa network 192.168.24.2 0.0.0.0 q R3: un ter mon Sys sysname R3 int loop 0 ip add 3.3.3.3 24 int g0/0/2ip add 192.168.13.3 24 int g0/0/1ip add 192.168.34.3 24 q

ospf router-id 3.3.3.3 area 0 network 3.3.3.3 0.0.0.0 network 192.168.13.3 0.0.0.0 area 2 nssa network 192.168.34.3 0.0.0.0

R4: un ter mon sys sysname R4 int loop 0 ip add 4.4.4.4 24 int g0/0/2 ip add 192.168.24.4 24 int g0/0/1 ip add 192.168.34.4 24 int s0/0/1 ip add 192.168.45.4 24 q

ospf router-id 4.4.4.4 area 2 nssa network 4.4.4.4 0.0.0.0 network 192.168.24.4 0.0.0.0 network 192.168.34.4 0.0.0.0

R5: un ter mon sys sysname R5 int loop 1 ip add 5.5.5.1 32 int loop 2 ip add 5.5.5.2 32 int loop 3 ip add 5.5.5.3 32 int s0/0/1 ip add 192.168.45.5 24 q

SW1: un ter mon Sys sysname SW1 vlan batch 2 3 4 5 int vlanif 2 ip add 20.0.1.100 24 int vlanif 3 ip add 20.0.2.100 24 int vlanif 4 ip add 20.0.3.100 24 int vlanif 5 ip add 192.168.16.6 24 int loop 0 ip add 6.6.6.6 24 q int e0/0/1port link-type access port default vlan 2 int e0/0/2 port link-type access port default vlan 3 int e0/0/3 port link-type access

port default vlan 4 int e0/0/4 port link-type access port default vlan 5 q

ospf router-id 6.6.6.6 area 1 network 6.6.6.6 0.0.0.0 network 20.0.1.100 0.0.0.0 network 20.0.2.100 0.0.0.0 network 20.0.3.100 0.0.0.0 q

R4 配置去往外部网络的静态路由,并进行引入 R4:

ip route-static 5.5.5.1 32 192.168.45.5 ip route-static 5.5.5.2 32 192.168.45.5 ip route-static 5.5.5.3 32 192.168.45.5 ospf import-route static

[R1]display ospf peer brief R1与R2R3SW1的邻居关系都是FULL

[R1]dis ospf peer brief

OSPF Process 1 with Router ID 1.1.1.1 Peer Statistic Information

Area Id	Interface	Neighbor id	State
0.0.0.0	GigabitEthernet0/0/1	2.2.2.2	Full
0.0.0.0	GigabitEthernet0/0/2	3.3.3.3	Full
0.0.0.1	GigabitEthernet0/0/0	6.6.6.6	Full

R1 学习的路由表也是正常的,已经接收到所有的非直连路由 <R2>display ospf lsdb R2 R4 有明细的路由 20.0.1.0 2.0 3.0

20.0.1.0/24	OSPF	10	3	D	192.168.12.1
20.0.2.0/24	OSPF	10	3	D	192.168.12.1
20.0.3.0/24	OSPF	10	3	D	192.168.12.1

区域间的路由聚合

在 ABR R1 上进行区域间的路由聚合 R1: ospf area 1 abr-summary 20.0.0.0 255.255.252.0

<R2>display ip routing-table 可以看到明细路由被聚合后的路由取代了

5.5.5.3/32	O NSSA	150	1	D	192.168.24.4
6.6.6.6/32	OSPF	10	2	D	192.168.12.1
20.0.0.0/22				D	192.168.12.1
127.0.0.0/8				D	127.0.0.1

=======

配置外部路由聚合

在 R4 上使用命令 asbr-summary 配置外部路由聚合

在没有聚合外部路由之前,在 R2 上看到的是明细路由

3.3.3.3/32	OSPF	10	2	D	192.168.12.1
4.4.4.4/32	OSPF	10	1	D	192.168.24.4
5.5.5.1/32	O_NSSA	150	1	D	192.168.24.4
5.5.5.2/32	O_NSSA	150	1	D	192.168.24.4
5.5.5.3/32	O_NSSA	150	1	D	192.168.24.4
6.6.6.6/32				D	192.168.12.1

R4:

ospf

asbr-summary 5.5.5.0 255.255.255.252

<R2>display ospf Isdb 可以看到明细路由被聚合后的路由取代了

3.3.3.3/32	OSPF	10	2	D	192.168.12.1
4.4.4.4/32				_	192.168.24.4
5.5.5.0/30				_	192.168.24.4
6.6.6.6/32				D	192.168.12.1

也可以删掉 R4 的聚合,分别 在 R3 上做,达到一样的效果 R4:

ospf

undo asbr-summary 5.5.5.0 255.255.255.252

R3:

ospf asbr-summary 5.5.5.0 255.255.255.252

在 R2 上做是不起作用的,需要在 router-id 大的 ABR 做,才起作用 在 SW1 上查看效果

[SW1]dis ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations : 21 Routes : 21

Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
1.1.1.1/32	OSPF	10	1	D	192.168.16.1	Vlanif5
2.2.2.2/32	OSPF	10	2	D	192.168.16.1	Vlanif5
3.3.3.3/32	OSPF	10	2	D	192.168.16.1	Vlanif5
4.4.4.4/32	OSPF	10	3	D	192.168.16.1	Vlanif5
5.5.5.0/30	O ASE	150	2	D	192.168.16.1	Vlanif5

========

OSPF 实验 9: OSPF 链路状态数据库

OSPF 是一种基于链路状态的动态路由协议,每台 OSPF 路由器都会成生相关的 LSA,并将这些 LSA 通告出去。路由器收到 LSA 后,会将它们存放在链路状态数据库 LSDB 中。

Router-LSA (Type1)	每个路由器都会产生,描述了路由器的链路状态和开销,在发布路由器所属的区域内传播。
Network-LSA (Type2)	由DR (Designated Router) 产生,描述本网段的链路状态,在DR所属的区域内传播。
Network-summary- LSA (Type3)	由ABR产生,描述区域内某个网段的路由,并通告给发布或接收此LSA的非Totally Stub或NSSA区域。
ASBR-summary-LSA (Type4)	由ABR产生,描述到ASBR的路由,通告给除ASBR所在区域的其他区域。
AS-external-LSA (Type5)	由ASBR产生,描述到AS外部的路由,通告到所有的区域(除了Stub区域和NSSA区域)。
NSSA LSA (Type7)	由ASBR产生,描述到AS外部的路由,仅在NSSA区域内传播。

LSA 有多种不同为类型,不同类型的 LSA 的功能和作用是不同。

理解 OSPF 中不同类型的 LSA 的作用,LSA 的泛洪范围,LS A 中重要字段的含义

基本 IP 地址的 配置

R1: un ter mo sys sysname R1 int loop 0 ip add 81.1.1.1 32 int loop 1 ip add 1.1.1.1 24 int g0/0/0 ip add 192.168.12.1 24 q R2: undo term mo sys sysname R2 int loop 0 ip add 82.2.2.2 32 int g0/0/1 ip add 192.168.12.2 24 int g0/0/0 ip add 192.168.235.2 24 q

R3: undo term mo sys sysname R3 int loop 0 ip add 83.3.3.3 32 int s0/0/0 ip add 192.168.34.3 24 int g0/0/0 ip add 192.168.235.3 24 q

R4: undo term mo sys sysname R4 int loop 0 ip add 84.4.4.4 32 int loop 1 ip add 4.4.4.4 24 int s0/0/0 ip add 192.168.34.4 24

R5: undo term mo sys sysname R5 int loop 0 ip add 85.5.5.5 32 int g0/0/0 ip add 192.168.235.5 24 q

========

查看7类的LSA

Router-LSA (Type1)

R3 R4 在 area 2 运行 OSPF 协议 2 类 LSA 只在 R1 R2 之间有, R3 R4 之间没有 DR BDR ,所以没有 2 类 LSA

R3: ospf router-id 3.3.3.3 area 2 network 83.3.3.3 0.0.0.0 network 192.168.34.3 0.0.0.0

R4: ospf router-id 4.4.4.4 area 2 network 84.4.4.4 0.0.0.0 network 192.168.34.4 0.0.0.0 q

========

Router-LSA (Type1)

- 1、域内路由,仅在本区域传递,不会穿越 ABR。
- 2、每台路由器都会产生。
- 3、包含本路由器的直连的邻居,以及直连网络的信息

<R4>display ospf lsdb router 3.3.3.3 (1类LSA)

这些最基本的 LSA 通告列出了路由器所有的链路和接口,并指明了它们的状态和沿每条链路方向出去的 cost 值

LinkState ID: router ID AdvRouter: router ID

link type:

StubNet link 描述网段信息

P-2-P link 描述链路是 P to P

Transnet link 描述 DR.BDR

在 R4 上查看 display ospf Isdb router 3.3.3.3

```
: Router
 Type
           : 3.3.3.3
 Ls id
 Adv rtr
           : 3.3.3.3
           : 73
 Ls age
           : 60
 Len
 Options
             Ε
           : 80000003
 seq#
 chksum
           : 0x252f
 Link count: 3
  * Link ID: 83.3.3.3
    Data : 255.255.255.255
    Link Type: StubNet
    Metric: 0
    Priority : Medium
  * Link ID: 4.4.4.4
    Data : 192.168.34.3
    Link Type: P-2-P
    Metric: 1562
  * Link ID: 192.168.34.0
    Data : 255.255.255.0
    Link Type: StubNet
    Metric: 1562
    Priority : Low
========
Network-LSA (Type2)
R1 R2 在 area 1 运行 OSPF 协议
R1:
ospf router-id 1.1.1.1
area 1
network 81.1.1.1 0.0.0.0
network 192.168.12.1 0.0.0.0
R2:
ospf router-id 2.2.2.2
area 1
```

network 82.2.2.2 0.0.0.0 network 192.168.12.2 0.0.0.0 q

Network-LSA (Type2)

- 1、仅在本区域传递
- 2、只有 MA 网络才会产生 LSA2,由 DR 发出。
- 3、标识出本 MA 网中有哪些路由器以及本网的掩码信息。

<R1>display ospf Isdb network 192.12.2 (2类LSA)

LinkState ID: DR 的接口 IP

AdvRouter: DR的 router ID

在 R1 R2 之间, R2 是 DR

[R1]dis ospf int

OSPF Process 1 with Router ID 1.1.1.1 Interfaces

Area: 0.0.0.1	(MPLS	S TE not	enabled)			
IP Address	Type	State	Cost	Pri	DR	BDR
81.1.1.1	PŹP	P-2-P	0	1	0.0.0.0	0.0.0.0
192.168.12.1	Broadcast	BDR	1	1	192.168.12.2	192.168.12.1

Type : Network

Ls id : 192.168.12.2

Adv rtr : 2.2.2.2

Ls age : 448 Len : 32 Options : E

seq# : 80000002 chksum : 0x6f5e

Net mask : 255.255.255.0

Priority : Low

Attached Router 2.2.2.2 Attached Router 1.1.1.1

查看 R4 中没有 2 类 LSA

[R4]dis ospf lsdb

OSPF Process 1 with Router ID 4.4.4.4
Link State Database

Area: 0.0.0.2

Туре	LinkState ID	AdvRouter	Age	Len	Sequence
Router	4.4.4.4	4.4.4.4	292	60	80000003
Router	3.3.3.3	3.3.3.3	293	60	80000003

========

Network-summary-LSA (Type3)

在 area 0 中配置 R2 R3 R5 的 OSPF 协议, R2 R5 修改接口优先级, 使 R5 成为 DR,R2 成为 BDR

R2: ospf

area 0 network 192.168.235.2 0.0.0.0

int g0/0/0 ospf dr-priority 50

R3: ospf area 0 network 192.168.235.3 0.0.0.0

R5: ospf router-id 5.5.5.5 area 0 network 85.5.5.5 0.0.0.0 network 192.168.235.5 0.0.0.0

int g0/0/0 ospf dr-priority 100

Network-summary-LSA (Type3)

- 1、域间路由,能泛洪到整个AS。
- 2、由 ABR 发出,穿越一个 ABR,其 ADV Router 就会变成此 ABR 的 Router-id.
- 3、包含本区域中的所有路由信息,包括网络号和掩码。

<R1>display ospf lsdb summary 84.4.4.4 (3 类 LSA)

LinkState ID: 路由 route (网络号)

AdvRouter: ABR的routerID(经过一个ABR,就会

改为这个 ABR 的 router ID)

经过 R3 R2 会改变

在 R1 上看到的 AdvRouter: 为 2.2.2.2 ,在 R5 上看到的为 3.3.3.3

R1 查看 display ospf Isdb summary 84.4.4.4

Type : Sum-Net Ls id : 84.4.4.4 Adv rtr : 2.2.2.2

Ls age : 23 Len : 28 Options : E

seq# : 80000001 chksum : 0xa72c

Net mask : 255.255.255.255

Tos 0 metric: 1563 Priority : Medium

========

AS-external-LSA (Type5)

R1 将环回口引入到 OSPF 进程,这样才会有外部路由,做一个 route-policy 精确匹配环回口如果不做精确引入,既有 1.1.1.1 也会有 81.1.1.1

R1:

acl 2000 rule permit source 1.1.1.0 0.0.0.255 route-policy 10 permit node 10 if-match acl 2000

ospf import-route direct route-policy 10

AS-external-LSA (Type5)

- 1、域外路由,不属于某个区域,OSPF 域内传播(除特殊区域)
- 2、ASBR产生,泛洪到整个AS,不会改变ADV Router。
- 3、包含域外的路由,描述到 AS 外部的路由

<R5>display ospf lsdb ase 1.1.1.0(5 类 LSA)

LinkState ID: 路由(网络号)

AdvRouter: ASBR的 router ID (unchange)

在 R5 上查看 dis ospf Isdb ase 1.1.1.0

Type : External

Ls id : 1.1.1.0

Adv rtr : 1.1.1.1

Ls age : 29

Len : 36

Options : E

seq# : 8000001

chksum : 0xbc0d

Net mask : 255.255.255.0

TOS 0 Metric: 1

E type : 2

Forwarding Address: 0.0.0.0

Tag : 1

Priority : Low

========

ASBR-summary-LSA (Type4)

- 1、ABR 产生,描述到 ASBR 的路由,OSPF 域内传播(除特殊区域)
- 2、把 ASBR 的 Router-id 传播到其他区域,让其他区域的路由器得知 ASBR 的位置。
- 3、穿越一个 ABR,其 ADV Router 就会变成此 ABR 的 Route r-id.

在 ASBR 直连的区域内,不会产生 4 类的 LSA,因为 ASBR 会发出一类的 LSA,其中会指明自己是 ASBR

<R5>display ospf lsdb asbr 1.1.1.1(4 类 LSA)

LinkState ID: ASBR 的 RID

AdvRouter: ABR的 router ID(经过一个ABR,就会

改为这个 ABR 的 router ID)

[R5]display ospf lsdb asbr 1.1.1.1

Type : Sum-Asbr Ls id : 1.1.1.1 Adv rtr : 2.2.2.2

Ls age : 110 Len : 28 Options : E

seq# : 80000001 chksum : 0xfc52

Tos 0 metric: 1

========

6 类的 LSA 为 组播 LSA

========

NSSA LSA (Type 7)

R3 R4 所在的 area 2 配置为 特殊的 NSSA 区域

R3:

ospf

area 2

nssa

R4:

ospf

area 2

nssa

外部路由引入

acl 2000
rule permit source 4.4.4.0 0.0.0.255
route-policy 10 permit node 10
if-match acl 2000
ospf
import-route direct route-policy 10

1.由 ASBR 产生,描述到 AS 外部的路由,仅在 NSSA 区域内 传播。

<R4>display ospf lsdb nssa 4.4.4.0(7 类 LSA)

查看 7 类 LSA,只会出现在 area 2 的 NSSA 区域,不会 泛洪到其他区域

External LSA 4 类 和 5 类 不允许进入 NSSA 区域,R4 上没有 1.1.1.0

LinkState ID: 路由(网络号)

AdvRouter: ASBR 的 router ID (unchange)

[R4]dis ospf lsdb nssa 4.4.4.0

Type : NSSA

Ls id : 4.4.4.0

Adv rtr : 4.4.4.4

Ls age : 21 Len : 36

Options : NP

seq# : 8000001

chksum : 0xbb90

Net mask : 255.255.255.0

TOS 0 Metric: 1

E type : 2

Forwarding Address: 84.4.4.4

Tag : 1

Priority : Low

========

Link type 的说明

Link type 又分为 4 类:

P-2-P link 描述链路是 P to P

StubNet link 描述网段信息 Transnet link 描述 DR.BDR

Virtual-link link 描述虚链接

LINK 包括:

- 1.Link-ID
- 2.Link-type
- 3.Link-data

第一类 LINK Point to Point link

1.Link -id Router-id

2.Link-type Point to Point

本路由器在本链路的接口IP 3.Link-data

第二类 LINK Stub network link

网络地址 1.Link-id

2.Link-type Stub network

3.Link-data 子网掩码

第三类 LINK Transmit network link

1.Link-id DR 在本网段接口 IP 2.Link-type Transmit network

3.Link-data 本链路的接口 IP

第四类 LINK Virtual-link link

1.Link-id 邻居 Router-id

2.Link-type Virtual-link

3.Link-data 虚链路所使用的物理口的接口 IP

=======

LSA 中各字段的描述

<R1>dis ospf lsdb

OSPF Process 1 with Router ID 1.1.1.1 Link State Database

		Area: 0.0.0.1				
Type	LinkState ID	AdvRouter	Age	Len	Sequence	Metric
Router	2.2.2.2	2.2.2.2	531	48	80000006	0
Router	1.1.1.1	1.1.1.1	343	48	80000006	0
Network	192.168.12.2	2.2.2.2	1097	32	80000002	0
Sum-Net	85.5.5.5	2.2.2.2	355	28	80000001	1
Sum-Net	83.3.3.3	2.2.2.2	109	28	80000004	1
Sum-Net	192.168.34.0	2.2.2.2	109	28	80000004	1563
Sum-Net	84.4.4.4	2.2.2.2	98	28	80000001	1563
Sum-Net	192.168.235.0	2.2.2.2	530	28	80000001	1
Sum-Asbr	3.3.3.3	2.2.2.2	109	28	80000001	1
	AS Exter	nal Database				
Туре	LinkState ID	AdvRouter	Age	Len	Sequence	Metric
External	1.1.1.0	1.1.1.1	343	36	80000001	1
External	4.4.4.0	3.3.3.3	88	36	80000001	$\bar{1}$

Type:

显示信息中,Type 表示了 LSA 的类型,这里表示的是 Route r LSA.不同类型的 LSA 的作用和泛洪范围是不相同的。Route r LSA 描述了路由器的直连链路或接口,泛洪范围为所在区域的内部,以使本区域的其他路由器了解其直连链路或接口的状态信息。

Ls id:

对于 Router LSA,Ls id 就是产生该 Router LSA 的路由器的 Router-ID。

Adv rtr:

Adv rtr 描述了 LSA 是由哪台路由产生的。对于 Router LSA

来讲,Adv rtr 就是产生该 Router LSA 的路由器的 Router-ID。

Ls age:

Ls age 是指 LSA 的老化时间,用来表示 LSA 已经存活了多长时间,最大值为 3600s。当一台路由器产生一条 LSA 的时候,路由器会将 LSA 的老化时间设置为 0.LSA 在产生之后,无论是停留在路由器的 LSDB 内,还是在传递过程之中,老化时间都会不断增加。为了防止因 LSA 的过期而造成路由回馈,路由器会每隔 30min 泛洪自己产生的 LSA。若序列号与校验和的比较都不能确定出最新的 LSA 时,则会比较老化时间。在 LSDB 中,如果老化时间相差在大于 15min 以上,则 Ls a ge 的值越小,说明 LSA 越新;如果相差在 15min 内,则认为两条 LSA 是一样的。

Seq#:

每一条 LSA 都会维护一个 Seq#(序列号),产生这条 LSA 的路由器都默认会以 30s 的周期泛洪这条 LSA,每次泛洪时,序列号就加 1.LSA 的序列号越大,表明这条 LSA 越新。

Chksum:

Chksum(检验和)用来检验 LSA 的完整性。所有的 LSA 都保存在路由器的 LSDB 中,每 5min 会计算一次。如果路由器收到了同一条 LSA,且序列号相同,则会比较它们的检验和,校验和越大就被认为相应的 LSA 越新。

=======

OSPF 实验 10: OSPF 缺省路由

缺省路由是指目的地址和掩码都是0的路由。当设备无精确匹

配的路由时,就可以通过缺省路由进行报文转发。

R4 R5 之间不运行 OSPF 协议

基本配置

R1:
undo term mo
sys
sysname R1
int loop 0
ip add 1.1.1.1 24
int loop 1
ip add 172.16.1.1 24
int g0/0/0
ip add 192.168.13.1 24
q

ospf router-id 1.1.1.1 area 2 network 1.1.1.1 0.0.0.0 network 172.16.1.1 0.0.0.0 network 192.168.13.1 0.0.0.0 q

R2: undo term mo sys sysname R2 int loop 0 ip add 2.2.2.2 24 int loop 1 ip add 172.16.2.1 24 int g0/0/0 ip add 192.168.23.2 24 q

ospf router-id 2.2.2.2 area 1 network 2.2.2.2 0.0.0.0 network 172.16.2.1 0.0.0.0 network 192.168.23.2 0.0.0.0 q

R3: undo term mo sys sysname R3 int loop 0 ip add 3.3.3.3 24 int g0/0/0 ip add 192.168.13.3 24 int g0/0/1 ip add 192.168.23.3 24 int g0/0/2 ip add 192.168.34.3 24 ospf router-id 3.3.3.3 area 0 network 3.3.3.3 0.0.0.0 network 192.168.34.3 0.0.0.0 area 1 network 192.168.23.3 0.0.0.0 area 2 network 192.168.13.3 0.0.0.0

R4: undo term mo sys sysname R4 int loop 0 ip add 4.4.4.4 24 int g0/0/0 ip add 192.168.34.4 24 int g0/0/1 ip add 202.103.68.4 24 q

ospf router-id 4.4.4.4 area 0 network 4.4.4.4 0.0.0.0 network 192.168.34.4 0.0.0.0 q

R5: undo term mo sys sysname R5

int loop 0 ip add 202.68.1.1 24 int loop 1 ip add 202.68.2.1 24 int loop 2 ip add 202.68.3.1 24 int loop 3 ip add 202.68.4.1 24 int loop 4 ip add 202.68.5.1 24 $int \, g0/0/0$ ip add 202.103.68.5 24 q

配置完成后,在R3 上查看 OSPF 邻居建立成功

Area Id	Interface	Neighbor id	State
0.0.0.0	GigabitEthernet0/0/2	4.4.4.4	Full
0.0.0.1	GigabitEthernet0/0/1	2.2.2.2	Full
0.0.0.2	GigabitEthernet0/0/0	1.1.1.1	Full
[R3]			

[K3]

R5 配置一条静态缺省路由指向 R4

R5:

ip route-static 0.0.0.0 0.0.0.0 202.103.68.4

现在企业内部已经互通了,但无法访问外部网络,需要注入缺 省路由

R4: 写一条缺省路由 ip route-static 0.0.0.0 0.0.0.0 202.103.68.5 ospf default-route-advertise

R4 R5 如果互写默认路由,容易产生环回报文 R5 tracert 一个不存在的地址 R5: tracert 9.9.9.9

[R5]tracert 9.9.9.9

traceroute to 9.9.9.9(9.9.9.9), max hops: 30 ,packet o break

1 202.103.68.4 80 ms 60 ms 50 ms

2 202.103.68.5 60 ms 60 ms 60 ms

3 202.103.68.4 100 ms 80 ms 90 ms

4 202.103.68.5 90 ms 100 ms 90 ms

5 202.103.68.4 110 ms 130 ms 120 ms

R4 最好是写静态路由,而不是默认路由

[R1]display ospf lsdb 有一条缺省的 5 类 LSA 现在可以与外网连通

AS External Database

Туре	LinkState ID	AdvRouter	Age	Len	Sequence	Metric
External	0.0.0.0	4.4.4.4	85	36	80000001	1

[R1]

<R1>ping 202.68.5.1

R5 的接口关闭之后,R1 上就没有默认路由了R5: int g0/0/0 shutdown

R1: dis ip routing 没有默认路由

======

可以加上关键词 always, R5 接口开关,不影响其他路由的默 认路由

R4:

ospf

default-route-advertise always

也可以是 R4 不做默认路由,做静态路由,再加上 always

R4:

undo ip route-static 0.0.0.0 0 202.103.68.5

ip route-static 202.68.1.0 24 202.103.68.5

ip route-static 202.68.2.0 24 202.103.68.5

ip route-static 202.68.3.0 24 202.103.68.5

ip route-static 202.68.4.0 24 202.103.68.5 ip route-static 202.68.5.0 24 202.103.68.5

ospf default-route-advertise always

=======

OSPF 实验 11: OSPF 网络类型

NBMA 选 DR/BDR . 手工指邻居

30s

broadcast 选 DR/BDR , 不需要手工指邻居 10s P2MP 不选 DR/BDR ,不需要手工指邻居 30s P2P 不选 DR/BDR ,不需要手工指邻居 10s

配置帧中继交换机

映射表

Src: Interface	Src: DLCI	Dst: Interface	Dst: DLCI
Serial 0/0/0	103	Serial 0/0/2	301
Serial 0/0/0	102	Serial 0/0/1	201

基本配置

R1:
undo term mo
sys
sysname R1
int loop 0
ip add 1.1.1.1 24
int s0/0/1
ip add 192.168.123.1 24
q

R2: undo term mo sys sysname R2 int loop 0 ip add 2.2.2.2 24 int s0/0/1 ip add 192.168.123.2 24 q

R3: undo term mo sys sysname R3 int loop 0 ip add 3.3.3.3 24 int s0/0/1 ip add 192.168.123.3 24 q

为了在帧中继网络中支持组播及广播报文, 必须在配置帧中继映射时添加关键字 broadcast

R1:

int s0/0/1 link-protocol fr und fr inarp fr map ip 192.168.123.2 102 broadcast fr map ip 192.168.123.3 103 broadcast

R2:

int s0/0/1 link-protocol fr und fr inarp fr map ip 192.168.123.1 201 broadcast

R3:

int s0/0/1 und fr inarp fr map ip 192.168.123.1 301 broadcast

配置完成后, R1 ping R2 R3 测试连通性 [R1]ping 192.168.123.3 正确配置后,是可以通的

配置 OSPF 协议

R1:

ospf router-id 1.1.1.1 area 0

network 1.1.1.1 0.0.0.0 network 192.168.123.1 0.0.0.0

R2:

ospf router-id 2.2.2.2 area 0 network 2.2.2.2 0.0.0.0 network 192.168.123.2 0.0.0.0

R3:

ospf router-id 3.3.3.3 area 0 network 3.3.3.3 0.0.0.0 network 192.168.123.3 0.0.0.0

NBMA 模式

帧中继接口在 OSPF 协议中的默认网络类型为 NBMA,需要选择 DR/BDR

[R1]display ospf interface s0/0/1

[R1-ospf-1]dis ospf int s0/0/1 OSPF Process 1 with Router ID 1.1.1.1 Interfaces Interface: 192.168.123.1 (Serial0/0/1) Cost: 1562 State: Waiting Type: NBMA MTU: 1500 Priority: 1 Designated Router: 0.0.0.0 Backup Designated Router: 0.0.0.0 Timers: Hello 30 , Dead 120 , Poll 120 , Retransmit 5 , Transmit Delay 1 现在 OSPF 邻居是建立不起来的,配置 OSPF 的 NBMA 模式, 需要手工指邻居 R1: ospf peer 192.168.123.2 peer 192.168.123.3 R2: ospf peer 192.168.123.1 R3:

配置完成后,需要等一下,间隔时间较长 [R1]display ospf pee brief

ospf

peer 192.168.123.1

[R1]dis ospf peer bri

OSPF Process 1 with Router ID 1.1.1.1

Peer Statistic Information

Area Id	Interface	Neighbor id	State			
0.0.0.0	Serial0/0/1	2.2.2.2	Full			
0.0.0.0	Serial0/0/1	3.3.3.3	Full			

查看路由表

Destination/Mask	Proto	Pre	Cost	Flags	NextHop
1.1.1.0/24	Direct	0	0	D	1.1.1.1
1.1.1.1/32	Direct	0	0	D	127.0.0.1
3.3.3.3/32	OSPF	10	1562	D	192.168.123.3
127.0.0.0/8	Direct	0	0	D	127.0.0.1
127.0.0.1/32	Direct	0	0	D	127.0.0.1
192.168.123.0/24	Direct	0	0	D	192.168.123.1
192.168.123.1/32	Direct	0	0	D	127.0.0.1
192.168.123.2/32	Direct	0	0	D	192.168.123.2
192.168.123.3/32	Direct	0	0	D	192.168.123.3

[R1]

现在的路由表,学习不全,学习不到 R2 的环回口,R1 认为 R3 是 DR,所以只与 R3 传路由,R1 R2 之间出现了问题,要解决这个问题,就必须确保 DR 有且只有一个,R1 为总部设为 DR ,R2 R3 为分部设为 DRother

R1: int s0/0/1

ospf dr-priority 10 R2: int s0/0/1 ospf dr-priority 0 R3: int s0/0/1 ospf dr-priority 0 这样配置好之后,路由学习正常

1.1.1.0/24	Direct	0	0	D	1.1.1.1
1.1.1.1/32	Direct	0	0	D	127.0.0.1
2.2.2.2/32	OSPF	10	1562	D	192.168.123.2
3.3.3.3/32	OSPF	10	1562	D	192.168.123.3
127.0.0.0/8	Direct	0	0	D	127.0.0.1
127.0.0.1/32	Direct	0	0	D	127.0.0.1
192.168.123.0/24	Direct	0	0	D	192.168.123.1
192.168.123.1/32	Direct	0	0	D	127.0.0.1
192.168.123.2/32	Direct	0	0	D	192.168.123.2
192.168.123.3/32	Direct	0	0	D	192.168.123.3

<R1>

========

P2P 模式

在 P2P 模式, R1 只能与一个邻居建立关系

R1: int s0/0/1 ospf network-type p2p R2: int s0/0/1

ospf network-type p2p

[R1]dis ospf int s0/0/1

OSPF Process 1 with Router ID 1.1.1.1
Interfaces

Interface: 192.168.123.1 (Serial0/0/1) --> 192.168.123.2 Cost: 1562 State: P-2-P Type: P2P MTU: 1500

Timers: Hello 10, Dead 40, Poll 120, Retransmit 5, Transmit Delay 1

NBMA 模式: Hello 30s Dead 120s P2P 模式: Hello 10s Dead 40s

======= broadcast 模式

配置 OSPF 的广播模式 Broadcast 广播模式不需要指邻居,需要选 DR/BDR R1:

ospf

undo peer 192.168.123.2

undo peer 192.168.123.3

int s0/0/1

ospf network-type broadcast

R2:

ospf

undo peer 192.168.123.1

int s0/0/1

ospf network-type broadcast

R3:

ospf undo peer 192.168.123.1 int s0/0/1 ospf network-type broadcast

[R1]display ospf peer brief 配置完成后,邻居建立起来

[R1]dis ospf peer bri

OSPF Process 1 with Router ID 1.1.1.1

Peer Statistic Information

Area Id	Interface	Neighbor id	State
0.0.0.0	Serial0/0/1	2.2.2.2	Full
0.0.0.0	Serial0/0/1	3.3.3.3	Full

[R1]display ospf interface s0/0/1

[R1]dis ospf int s0/0/1

OSPF Process 1 with Router ID 1.1.1.1
Interfaces

Interface: 192.168.123.1 (Serial0/0/1)

Cost: 1562 State: DR Type: Broadcast MTU: 1500

Priority: 1

Designated Router: 192.168.123.1
Backup Designated Router: 0.0.0.0

Timers: Hello 10 , Dead 40 , Poll 120 , Retransmit 5 , Transmit Delay 1

========

P2MP 模式

配置 OSPF 的点到多点网络类型 P2MP 不需要指邻居,不需要 DR/BDR R1: int s0/0/1 ospf network-type p2mp

R2: int s0/0/1 ospf network-type p2mp undo ospf dr-priority undo fr map ip 192.168.123.3 201

R3: int s0/0/1 ospf network-type p2mp undo ospf dr-priority undo fr map ip 192.168.123.2 301 <R1>display ospf peer brief 邻居建立正常,也可以相互ping 通,点到多点的配置最为简便

[R1]dis ospf peer bri

OSPF Process 1 with Router ID 1.1.1.1 Peer Statistic Information

Area Id	Interface	Neighbor id	State
0.0.0.0	Serial0/0/1	2.2.2.2	Full
0.0.0.0	Serial0/0/1	3.3.3.3	Full