$X\colon$ v.a. $\mathbf{DISCRETA}$ de suporte S_X	X: v.a. CONTÍNUA
\bullet função de probabilidade: f_X tal que	\bullet função densidade: $f_{\scriptscriptstyle X}$ tal que
$\forall x \in \mathbb{R}, \ f_X(x) = P(X = x), \text{ tendo-se}$	$\forall x \in \mathbb{R}, \ f_X(x) \ge 0 \ \text{e} \int_{-\infty}^{+\infty} f_X(x) dx = 1$
$\sum_{x \in S_X} f_X(x) = \sum_{x \in S_X} P(X = x) = 1$ • função de distribuição: F_X tal que	
\bullet função de distribuição: $F_{\scriptscriptstyle X}$ tal que	\bullet função de distribuição: $F_{\scriptscriptstyle X}$ tal que
$\forall x \in \mathbb{R}, \ F_X(x) = P(X \le x) = \sum_{a \in]-\infty, x] \cap S_X} P(X = a)$	$\forall x \in {\rm I\!R}, \ F_{\scriptscriptstyle X}(x) = P(X \le x) = \int_{-\infty}^x f_{\scriptscriptstyle X}(t) dt$
F_X é uma função "em escada". Os seus pontos de descontinuidade coincidem com os elementos de S_X .	$F_{\scriptscriptstyle X}$ é uma função contínua em IR.
• esperança matemática, média ou valor médio	• esperança matemática, média ou valor médio
$E(X) = \sum_{x \in S_X} x P(X = x)$ (se existir)	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx \text{(se existir)}$
Se φ é uma função real de variável real tal que	Se φ é uma função real de variável real tal que
$\varphi(X)$ é uma v.a., então	$\varphi(X)$ é uma v.a., então
$E(\varphi(X)) = \sum_{x \in S_X} \varphi(x) P(X = x)$ (se existir)	$E(\varphi(X)) = \int_{-\infty}^{+\infty} \varphi(x) f_X(x) dx \text{(se existir)}$
Em particular, $E(X^2) = \sum_{x \in S_X} x^2 P(X = x)$ (se existir)	Em particular, $E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx$ (se existir)
	• variância: $V(X) = E[(X - E(X))^2] = E(X^2) - (E(X))^2$
• desvio padrão: $\sigma_X = \sqrt{V(X)}$	• desvio padrão: $\sigma_X = \sqrt{V(X)}$
• quantil de ordem $p, p \in]0,1[$, é todo o número real	• quantil de ordem $p, p \in]0,1[$, é todo o número real
q_p tal que	q_p tal que
$F_{\scriptscriptstyle X}(q_{\scriptscriptstyle p}^-) \leq p \;\; \mathrm{e} \;\; F_{\scriptscriptstyle X}(q_{\scriptscriptstyle p}) \geq p$	$F_X(q_p) = p$
Casos particulares:	Casos particulares:
• mediana (Md) : $F_X(Md^-) \le 0.5$ e $F_X(Md) \ge 0.5$	• mediana (Md) : $F_X(Md) = 0.5$
• 1º quartil (Q_1) : $F_X(Q_1^-) \le 0.25$ e $F_X(Q_1) \ge 0.25$	• 1º quartil (Q_1) : $F_X(Q_1) = 0.25$
• 2° quartil (Q_2) coincide com a mediana	• 2° quartil (Q_2) coincide com a mediana
• 3º quartil (Q_3) : $F_X(Q_3^-) \le 0.75$ e $F_X(Q_3) \ge 0.75$	• 3° quartil (Q_3) : $F_X(Q_3) = 0.75$
• percentis: obtêm-se com $p = 0.01, \dots, p = 0.99$	• percentis: obtêm-se com $p = 0.01, \ldots, p = 0.99$
Por exemplo, percentil 90 (P_{90}) :	Por exemplo, percentil 90 (P_{90}) :
$F_X(P_{90}^-) \le 0.9 \text{ e } F_X(P_{90}) \ge 0.9$	$F_X(P_{90}) = 0.9$