Particle spectrograph

Wave operator and propagator

Quadratic (free) action $S == \iiint_{\alpha} (3t_1 \ \omega^{\alpha}_{\alpha} \ \omega^{\beta}_{\beta} + 3 \ f^{\alpha\beta} \ t_{\alpha\beta} + 3 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 6t_1 \ \omega^{\beta}_{\alpha} \ \partial_{\beta} f^{\alpha\prime} + 6t_1 \ \omega^{\beta}_{\alpha} \ \partial_{\beta} f^{\alpha\prime} + 6t_1 \ \omega^{\beta}_{\beta} \ \partial_{\beta} f^{\alpha\prime} + 6t_1 \ \partial_{\beta} f^{\alpha\prime}_{\beta} + 6t_1 \partial_{\beta} f^{\alpha\prime}_{\alpha} + 6t_$	$2r_1\partial_ heta\omega_{lphaetaeta}\partial^ heta\omega^{lphaeta\prime}))[t,lpha,eta,z]d\!\!/zd\!\!/yd\!\!/xd\!\!/t$
---	---

	Source con	SO(3) irreps	$\sigma_{0}^{\#1} == 0$	$\tau_0^{\#2} == 0$	$\tau_0^{\#1} - 2ik\sigma_0^{\#1}$	$\tau_1^{\#2}{}^\alpha + 2ik$	$\tau_1^{\#1\alpha} == 0$	$\tau_1^{\#1}\alpha\beta$ - 2 i k	
Ma	ass	sive	e aı	nd I	mas	ssle	ess :	spec	t

Unitarity conditions

Multiplicit $\frac{\partial_{\alpha}\partial^{\alpha}\partial_{\beta}\sigma^{\alpha\beta}}{\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^$		$\sigma_{lphaeta\chi}$ -6 $t_1~\omega_{lpha~ heta}^{~ heta}$	$-6r_{1}\partial_{\beta}($ $-6r_{1}\partial_{\beta}($ $\alpha + 6t$ $\alpha \partial_{\theta}\omega_{\beta},$ $\alpha \partial_{\theta}\omega_{\beta},$ $\alpha \partial_{\theta}\omega_{\beta},$ $-2t_{1}\partial_{\alpha}f$	$+t_1 \partial_{\theta} T_{I\alpha} \partial_{\sigma} T$ $\partial_{\alpha\theta_I} (\omega^{\alpha l \theta} + 4 \partial_{\sigma} T_{I\alpha} \partial_{\theta} T_{I\alpha} \partial_{\sigma} T_{I\alpha} \partial_{$	$\sigma_{1}^{\#2}$	0 0		t ₁) ²	$\frac{r_1+t_1}{t_1)^2}$	$t_{0}^{\#1}$	$\frac{2k^2}{1+2k^2}$	0 τ [#] 1	$\frac{2i\sqrt{2}}{(1+2k^2)^2}$ $\frac{4k^2}{(1+2k^2)^2}$		$\frac{1}{2}a\beta \chi$	+ \frac{t_1}{2}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\alpha_{\beta \lambda}$	· · · · · · · · · · · · · · · · · · ·	ω_{α}^{α}			0	$\frac{t_1 + 2k^2 t_1}{2k^2 r_1 + t_1}$ $\frac{(t_1 + 2k^2 t_1)^2}{(t_1 + 2k^2 t_1)^2}$	$0 \\ -\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	t.1 + 1 2)2,7	$\frac{7}{2}k$	$\sigma_{2}^{\#1}$	$\frac{2}{+2k^2)^2 t_1} - \frac{2}{1 + 2k^2)^2 t_1} - \frac{2i \sqrt{2} k}{1 + 2k^2)^2 t_1} = 0$		$f_2^{\#1} = \omega_2^{\#1}$ $\frac{ikt_1}{\sqrt{2}} \qquad 0$	$\begin{array}{c c} k^2 t_1 & 0 \\ 0 & k^2 r_1 \end{array}$
$\begin{array}{c c} & & & & \\ & &$		3 ω ^{αβχ} ο	$\frac{1}{3} \partial_{i} f^{\theta}$ $\frac{3}{4} f^{1} \partial_{i} f^{0}$ $\frac{1}{4} f^{2} f^{1} f^{2}$ $\frac{1}{4} f^{2} f^{2} f^{0} f^{0}$	$\partial_{\theta}\Gamma_{\alpha l}\partial_{f}$ $^{\theta}f^{lpha l})+t_{1}c$ $^{-}2r_{1}\partial_{eta}\omega_{lpha f}$ $^{3 heta}\partial^{ heta}\omega^{lpha eta l}+$ $^{2}[t,x,y,z]$	ρ	0 0	0 0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0 $\frac{2ik}{t_1+2k^2t_1}$	$\sigma_{0+}^{#1} + \left[-\frac{1}{(1+2)^2} \right]$	-1 (1-1)	$\sigma_{0}^{*1} + \sigma_{0}^{*2}$	$ \frac{\sigma_{2}^{\#1} + \alpha\beta}{(z_{2}^{\#1} + \alpha\beta)} \frac{\alpha}{(z_{1}^{\#1} + \alpha\beta)} $ $ \frac{\sigma_{2}^{\#1} + \alpha\beta\chi}{(z_{2}^{\#1} + \alpha\beta\chi)} $		$\omega_{2}^{\#1}\alpha\beta$	$\alpha\beta$ $\frac{ikt_1}{\sqrt{2}}$ $\alpha\beta$ 0
ntal field has been displayed by the second state of the second s	nerators:	$3 f^{\alpha\beta} \tau_{\alpha\beta} +$	$\int_{\theta} \partial' f^{\alpha} - 3$ $\int_{\theta} \partial' \psi^{\alpha} \beta$ $\int_{\alpha} \beta \partial' \psi^{\beta}$ $\int_{\alpha} \beta \partial' \phi^{\beta}$	$\omega^{\alpha\prime\theta} + \omega^{\alpha\prime\theta} + \omega^{\alpha$		(3+(3+(3+(3+(3+(3+(3+(3+(3+(3+(3+(3+(3+($\frac{12k^2}{(3+2k^2)^2t_1}$	0	0 0	$\omega_{1^+}^{\sharp 1}\dagger^{lphaeta}$		$\omega_{1+\alpha\beta}^{\#2} f_{1+\alpha\beta}^{\#1}$ $-\frac{t_1}{3\sqrt{2}} - \frac{ikt_1}{3\sqrt{2}}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\omega_{0}^{\#1}$ $\omega_{0}^{\#1} + \alpha \beta$	$\begin{array}{c c} 0 & f_{2}^{\#1} + \\ 0 & \omega_{2}^{\#1} + \\ \end{array}$
	/gauge ger	action $\alpha' \alpha' \alpha' \beta' + \alpha' \beta' \beta' + \alpha' \beta' \beta'$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$t_1 \omega_{if} \alpha_{\theta} \sigma_f$ $t_1 \omega_{\alpha i \theta} (\omega$ $4 r_1 \partial_{\beta} \omega_{\alpha i \theta}$ $\partial^{\theta} \omega^{\alpha \beta i} - 2$ $2 r_1 \partial_{\theta} \omega_{\alpha i \beta}$		$\frac{\frac{12}{(3+2k^2)^2t_1}}{\frac{12}{(3+2k^2)^2t_1}}$	$\frac{12ik}{(3+2k^2)^2t_1}$	0	0 0	$\omega_{1+}^{#2} \dagger^{\alpha \beta}$ $f_{1+}^{#1} \dagger^{\alpha \beta}$,	$\frac{t_1}{3} \frac{ikt_1}{3}$ $\frac{1}{3}ikt_1 \frac{k^2t_1}{3}$	0 0	0 0	$f_{0+}^{#2}$	$k^{2}t_{1}$ 0 0 0 0 0 0
Constrair eps $ \frac{\partial_{0}^{\#1}}{\partial_{0}^{\#2}} = 0 $ $ \frac{\partial_{0}^{\#1}}{\partial_{0}^{\#1}} = 0 $ $\frac{\partial_{0}^{\#1}}{\partial_{0}^{\#1}} = 0 $ $\frac{\partial_{0}^{\#1}}{\partial_{0}^{\#1}} = 0 $ $\frac{\partial_{0}^{\#1}}{\partial_{0}^{\#1}} = 0 $ $\frac{\partial_{0}^{\#1}}{\partial_{0}^{\#1}} =$	constraints/g	Quadratic (free) $S == \iiint \left(\frac{1}{3} (3t_1 \omega)\right)$	n		$\sigma_{1}^{\#1}$	$\frac{(3+2k^2)^2 t_1}{6\sqrt{2}}$ $\frac{6\sqrt{2}}{(3+2k^2)^2 t_1}$	$\begin{cases} 6i\sqrt{2k} \\ (3+2k^2)^2 t_1 \end{cases}$		0 0	$\omega_{1}^{#1} + c$ $\omega_{1}^{#2} + c$	0 0	0 0	$-k^2 r_1 - \frac{t_1}{2} \qquad \frac{t_1}{\sqrt{2}}$ $\frac{t_1}{\sqrt{2}} \qquad 0$	0 0		$\sqrt{2kt_1-2}$
Source of SO(3) irr $ \frac{0_0^{\#1}}{0_0^{\#1}} = 0 $ $ \frac{1_1^{\#2}}{1_1^{\#1}} = 0 $ $ \frac{1_1^{\#1}}{1_1^{\#1}} = 0 $	Total	Quad			<i>γ</i> ο. ι#	$ \begin{array}{ccc} Q_{1+}^{*1} + \alpha_{2}^{*1} \\ Q_{1+}^{*2} + \alpha_{2}^{*2} \end{array} $	$t_1^{\#1} + {}^{\alpha\beta}$ $\sigma_1^{\#1} + {}^{o}$	$\sigma_{1}^{\#2} + \alpha$	$t_1^{#1} + ^{\alpha}$ $t_1^{#2} + ^{\alpha}$	$f_{1}^{#1} \dagger^{c}$ $f_{1}^{#2} \dagger^{c}$	0 0	0 0	$\begin{array}{c c} 0 & 0 \\ -i k t_1 & 0 \end{array}$	0 0	$\omega_{0}^{#1} + \omega_{0}^{#1}$	$f_{0}^{\#7} + \frac{1}{6}$ $f_{0}^{\#2} + \frac{1}{6}$ $\omega_{0}^{\#1} + \frac{1}{6}$