FML HW 2

Yucong Lei

Collaborated with Mengjian Hua(mh5113), Haiyang Wang(hw1927)

1 Problem A

1.1 A.1

Proof

$$\hat{\mathfrak{R}}_{S}(H) = \mathbb{E}_{\sigma}[\sup_{h \in H} \frac{1}{m} \sum_{1 \leq i \leq m} \sigma_{i} h(z_{i})]$$

$$\geq \mathbb{E}_{\sigma}[\frac{1}{m} \sum_{1 \leq i \leq m} \sigma_{i} h(z_{i})], \forall h \in H$$

$$= \frac{1}{m} \sum_{1 \leq i \leq m} \mathbb{E}_{\sigma}[\sigma_{i} h(z_{i})] = 0$$

Hence it is nonnegative.

1.2 A.2

Proof Let Φ_i denote a continuous function such that:

$$\Phi_i(x) = 0, x \in (-\infty, 1]$$

$$\Phi_i(x) = x - 1, x \in (1, \infty)$$

It is easy to see that Φ_i is 1-Lipschitz, since:

$$\begin{aligned} |\Phi_i(x) - \Phi_i(y)| &= 0, x, y \in (-\infty, 1] \\ |\Phi_i(x) - \Phi_i(y)| &= |x - y|, x, y \in (1, \infty) \\ |\Phi_i(x) - \Phi_i(y)| &= |x - 1| \le |x - 0| \le |x - y|, x \in (1, \infty), y \in (-\infty, 1] \end{aligned}$$

In addition, we note that Φ_i has the following properties:

$$\Phi_i(0) = 0$$

$$\Phi_i(2) = 1$$

$$\Phi_i(1) = 0$$

Thus, $\forall h_1, h_2$, two binary classifiers, with values taken from 0,1, we have:

$$\Phi_i(h_1(z) + h_2(z)) = h_1(z)h_i(z)$$

We can now apply Talagrand's contraction lemma:

$$\begin{split} \hat{\Re_S}(\Phi_i \circ (H_1 + H_2)) &\leq 1 * \hat{\Re_S}((H_1 + H_2)) \\ &\leq \hat{\Re_S}(H_1) + \hat{\Re_S}(H_2) \\ &\to \hat{\Re_S}(H) = \hat{\Re_S}(H_1 * H_2) = \hat{\Re_S}(\Phi_i \circ (H_1 + H_2)) \leq \hat{\Re_S}(H_1) + \hat{\Re_S}(H_2) \end{split}$$

2 Problem B

2.1 B.1

Consider the following neural network diagram (Figure 1). Each input data $\alpha_i \in \mathbb{R}^n$, where $1 \leq i \leq m$, we obtain a binary vector of dimension k in the intermediate layer of a given neural network, denoted as $\beta_i \in \{0,1\}^k, 1 \leq i \leq m$.

Figure 1:

Let us fix the input values, $\alpha_i \in \mathbb{R}^n$, where $1 \leq i \leq m$, and range all possible neural networks. Then the maximal distinct values are produced by ranging from different intermediate layer structures, that is, of which r binary values out of the k nodes are chosen as input value of the concept function, and ranging

from different choices of concept values. Hence the following inequality hold:

$$\begin{aligned} &|\{(h(\alpha_{1}),...,(h(\alpha_{m})),h\in H\}|\\ &\leq |\{(c\circ d(\beta_{1}),...,(c\circ d(\beta_{m})),c\in C,d\in \{A\in Mat(n,\mathbb{R});A_{i,j}=0,1;\sum_{j}A_{i_{p},j}=1,1\leq p\leq r\}\}|\\ &\leq \Pi_{C}(m)^{\binom{k}{r}}\\ &\rightarrow \Pi_{H}(m)\leq \Pi_{C}(m)^{\binom{k}{r}} \end{aligned}$$

2.2 B.2

Let $a = 2^l \ge {k \choose r} \ge 1$. By the corollary of Sauer's lemma in the textbook, we have:

$$\Pi_{H}(m) \leq \Pi_{C}(m)^{\binom{k}{r}}$$

$$\leq \left(\frac{em}{d}\right)^{da}$$

$$\leq \left(\frac{8m}{d}\right)^{da}$$

Let x = ad, $y = \frac{8}{d}$, and $m = 2xlog_2(xy) = 2adlog_2(8a)$. We have:

$$x * y > 4$$
$$m \ge 1$$
$$m \in \mathbb{Z}$$

Hence by the hint, we have: $m > xlog_2(ym)$.

$$\Pi_H(m) \le \left(\frac{8m}{d}\right)^{da}$$

$$\le 2^{ad*log_2\frac{8m}{d}}$$

$$< 2^m$$

Hence, $VCdim(H) < m = 2adlog_2(8a)$.

2.3 B.3

We first try to compute d in terms of k, r. Then we bound VCdim(H) by the inequality obtained in the last question. We will make use of the fact that the VC dimension of hyperplanes in \mathbb{R}^r is (r+1).

First we prove that the VC dimension of hyperplanes through the origin in \mathbb{R}^r is no less than r, by showing that there exists r samples, $\alpha_1, ..., \alpha_r \in \mathbb{R}^r$, such that:

$$|\{(c(\alpha_1),...,c(\alpha_r)),c\in C\}|=2^r$$

Figure 2:

Because the VC dimension of hyperplanes in \mathbb{R}^{r-1} is r, there exists r samples, $\beta_1, ..., \beta_r \in \mathbb{R}^{r-1}$, such that:

$$|\{(d(\beta_1),...,d(\beta_r)), d \in \{sgn(w * \beta + b), w \in \mathbb{R}^{r-1}, b \in \mathbb{R}\}\}| = 2^r$$

We map all β to $(\beta, 1) \in \mathbb{R}^r$, and note that this mapping is injective. Thus:

$$|\{(c(\beta_1, 1), ..., c(\beta_r, 1)), c \in \{sgn((w, b) * \alpha), w \in \mathbb{R}^{r-1}, b \in \mathbb{R}\}\}| = 2^r$$

We next prove that the VC dimension of hyperplanes through the origin in \mathbb{R}^r has to be less than (r+1), by showing that any set of r+1 points in \mathbb{R}^r can only be completely classified by planes including a plane that does not pass through the origin.

We prove by contradiction. Suppose there are such r+1 samples in \mathbb{R}^{r+1} , $\alpha_1, ..., \alpha_{r+1} \in \mathbb{R}^r$, completely classified by hyperplanes through the origin. Then, we pick such a hyperplane through the origin that makes the label of every sample be the same, that is, they all lie in one side of a hyperlane through the origin. Assume without loss of generality, that this hyperplane is $x_r = 0$, and each α_i 's r-coordinate is greater than 0.

We then note that no two sample points determine a line through the origin. To see why this is the case, we assume two samples are on a line passing through the origin that is:

$$(x_1,...,x_r) = a(y_1,...,y_r), \exists a \neq 1,0,x_r,y_r > 0.$$

Figure 3:

If there exists a hyperplane that separates them, that is:

$$\exists w \in \mathbb{R}^r, b \in \mathbb{R} :$$

$$w * x + b > 0$$

$$w * y + b < 0$$

$$\rightarrow \exists \lambda \in (0, 1)$$

$$w * (\lambda x + (1 - \lambda)y) + b = 0$$

$$\rightarrow b = -w * (\lambda x + (1 - \lambda)y)$$

$$= -w * \frac{(||\lambda x + (1 - \lambda)y||)x}{||x||} \neq 0$$

Hence we have proved that no two sample points in the r+1 sample can give a line which passes through the origin. What is significant about this can seen later on.

We define a mapping:

$$\phi: (x_1, ..., x_r), x_r > 0 \mapsto (\frac{x_1}{x_r}, ..., \frac{x_{r-1}}{x_r})$$
$$|\{(c(\alpha_1), ..., c(\alpha_{r+1})), c \in \{sgn(w * \alpha), w \in \mathbb{R}^r\}\}| = 2^{r+1}$$
$$\rightarrow |\{(d(\phi(\alpha_1)), ..., d(\phi(\alpha_{r+1}))), d \in \{sgn(w * (\phi(\alpha), 1)), w \in \mathbb{R}^r\}\}| = 2^{r+1}$$

That is, there are r+1 sample points in \mathbb{R}^{r-1} , i.e, $\phi(\alpha_1),...,\phi(\alpha_{r+1})$ such that they can be completely classified by hyperplanes in \mathbb{R}^{r-1} . Thus a contradiction to the fact that $VCdim(H^{r-1}) = r$. Hence we have proved that VCdim(C) = r.

$$VCdim(H) < m = 2adlog_2(8a)$$

 $< 2arlog_2(8a)$

- 3 Problem C
- 3.1 C.1
- 3.2 C.2,3
- 3.3 C.4

See abalone.data.processing.FML.HW2.ipynb

3.4 C.5

 $C^* = 512, d^* = 9$. See abalone.data.processing.FML.HW2.ipynb

3.5 C.6

3.5.1

Consider the following map:

$$\hat{x} = (y_1 K(x, x_1), y_2 K(x, x_2), ..., y_m K(x, x_m))$$

Which takes a sample $x \in \mathbb{R}^m$ to another point in the same Euclidean space. Then problem (1) can be rewritten as:

$$\begin{aligned} \min_{\alpha,b,\xi} \frac{1}{2} ||\alpha||_2^2 + C \sum_{1 \le i \le m} \xi_i \\ y_i(\alpha * \hat{x_i} + b) \ge 1 - \xi_i, 1 \le i \le m \\ \xi_i, \alpha_i \ge 0 \end{aligned}$$

That is, by thinking of \hat{x} as a result of transformation of the original sample point x under the kernel function, we reformulated the problem as the primal optimization problem of SVMs for the transformed vector \hat{x} .

3.5.2

No, the positive-definiteness is not necessary, since the target function is convex, and the domain defined by the constrains are a convex region, because the domain function is linear with respect to α, ξ, b , and hence convex. To see

this:

$$\begin{split} &\forall (\alpha,b,\xi), (\tilde{a},\tilde{b},\tilde{\xi}), \forall \lambda \in [0,1] \\ &y_i (\sum_{1 \leq j \leq m} \alpha_j y_j K(x_i,x_j) + b) + \xi_i - 1 \geq 0 \\ &y_i (\sum_{1 \leq j \leq m} \tilde{\alpha}_j y_j K(x_i,x_j) + \tilde{b}) + \tilde{\xi}_i - 1 \geq 0 \\ &\rightarrow y_i (\sum_{1 \leq j \leq m} (\lambda \alpha_j + (1-\lambda)\tilde{\alpha}_j) y_j K(x_i,x_j) + (\lambda b + (1-\lambda)\tilde{b})) + (\lambda \xi + (1-\lambda)\tilde{\xi}_i) - 1 \\ &= \lambda (y_i (\sum_{1 \leq j \leq m} \alpha_j y_j K(x_i,x_j) + b) + \xi_i - 1 \geq 0) + (1-\lambda) (y_i (\sum_{1 \leq j \leq m} \tilde{\alpha}_j y_j K(x_i,x_j) + \tilde{b}) + \tilde{\xi}_i - 1) \\ &> 0 \end{split}$$

Since the intersection of convex sets are convex, and that ξ_i , $\alpha_i \geq 0$ are convex, our domain of optimization problem is convex.

3.5.3

First construct the Lagrange multiplier function:

$$L = (\frac{1}{2}||\alpha||_2^2 + C\sum_{1 \le i \le m} \xi_i) - \sum_{1 \le i \le m} \lambda_i (y_i(\alpha * \hat{x_i} + b) - 1 + \xi_i) - \mu * \alpha - \sigma * \xi$$

$$\lambda_i, \mu_i, \sigma_i \ge 0, \forall i$$

Differentiating the function with respect to α, b, ξ , we get:

$$\nabla_{\alpha}L = \alpha - \sum_{1 \le i \le m} \lambda_{1i}\hat{x}_i - \mu = 0$$

$$\nabla_b L = -\sum_{1 \le i \le m} \lambda_i y_i = 0$$

$$\nabla_{\varepsilon_i} L = C - \lambda_i - \sigma_i = 0$$

which then gives the following:

$$\alpha = \sum_{1 \le i \le m} \lambda_{1i} \hat{x}_i + \mu$$

$$\sum_{1 \le i \le m} \lambda_i y_i = 0$$

$$C = \lambda_i + \sigma_i$$

Plug them back in the Lagrange function, we get:

$$\begin{split} L &= \frac{1}{2} || \sum_{1 \leq i \leq m} \lambda_{1i} \hat{x}_{i} + \mu || + C \sum_{1 \leq i \leq m} \xi_{i} \\ &- \sum_{1 \leq i \leq m} \lambda_{i} [y_{i} (\mu * \hat{x}_{i} + \sum_{1 \leq j \leq m} \lambda_{j} y_{j} \hat{x}_{j} * \hat{x}_{i} + b) - 1 + \xi_{i}] \\ &- (\mu * \mu + \mu * (\sum_{1 \leq j \leq m} \lambda_{j} y_{j} \hat{x}_{j})) - \sigma * \xi \\ &= (\frac{1}{2} (||\mu||^{2} + ||\sum_{1 \leq i \leq m} \lambda_{1i} \hat{x}_{i}||^{2}) + \sum_{1 \leq i \leq m} \lambda_{i} y_{i} (\mu * \hat{x}_{i})) \\ &+ C \sum_{1 \leq i \leq m} \xi_{i} - \sum_{1 \leq i \leq m} (\lambda_{i} + \sigma_{i}) \xi_{i} + \sum_{1 \leq i \leq m} \lambda_{i} \\ &- (2 \sum_{1 \leq i \leq m} \lambda_{i} y_{i} (\mu * \hat{x}_{i}) + \sum_{1 \leq i, j \leq m} \lambda_{i} \lambda_{j} y_{i} y_{j} (\hat{x}_{i} * \hat{x}_{j}) + ||\mu||^{2}) \\ &= -\frac{1}{2} ||\mu + \sum_{1 \leq i \leq m} \lambda_{i} y_{i} \hat{x}_{i}||^{2} + \sum_{1 \leq i \leq m} \lambda_{i} \end{split}$$

Hence the dual problem is:

$$max_{\mu,\lambda \in \mathbb{R}^m} - \frac{1}{2}||\mu + \sum_{1 \le i \le m} \lambda_i y_i \hat{x}_i||^2 + \sum_{1 \le i \le m} \lambda_i$$
$$\mu_i \ge 0, 0 \le \lambda_i \le C, \forall i, \sum_{1 \le j \le m} \lambda_j y_j = 0$$