Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Case2: △=0

Example 2.

Example 3.

Case1: △>0 $v_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the v-intercepts of multiplicity 1.

Given a quadratic $n(v) = a v^2 + b v + c$ compute its discriminant \triangle :

$$v_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$$
 computes the v-intercepts of multiplicity 1.
 $n(0) = c$ computes the single n-intercept.

Example 1.

$$\triangle=529>0$$

$$v_{1,2}=\frac{7}{2},-8$$

$$n(0)=56 \quad n-intercept.$$

 $n(v) = -2v^2 - 9v + 56$ compute its discriminant \triangle :

 $v_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single v-intercept of multiplicity 2.

$n(v) = -3v^2 + 48v - 192$ compute its discriminant \triangle : $v_{1,2}=8,8$

 $n\left(v\right)=9\ v^{2}-180\ v+1000$ compute its discriminant \triangle : $\triangle = -3600 < 0$

n(0) = 1000 n-intercept.

3000 2000 n-intercept -10