$BPL \subseteq L-AC^1$

Kuan Cheng (Peking University)

Yichuan Wang (Tsinghua University)

2024-07-23

$BPL \subset L-AC^1$

Definition (BPL, bounded-error probabilistic logspace)

M runs in space $O(\log |x|)$:

$$x \text{ (input)} \mapsto \begin{cases} \text{Yes} & \text{if } \Pr_r[M(x,r)=1] \ge 2/3 \\ \text{No} & \text{if } \Pr_r[M(x,r)=1] \le 1/3 \\ \bot & \text{otherwise} \end{cases}$$
 (r: random bits)

(Important) M only has read-once access to random tape r; Halt on any random tape $\implies |r| \leq \text{poly}(|x|)$.

$BPL \subset L-AC^1$

Definition (BPL, bounded-error p M runs in space $O(\log |x|)$; Big Open Problem: $L \stackrel{?}{=} BPL$

$$x \text{ (input)} \mapsto \begin{cases} \text{Yes} & \text{if } \Pr_r[M(x,r)=1] \geq 2/3 \\ \text{No} & \text{if } \Pr_r[M(x,r)=1] \leq 1/3 \\ \bot & \text{otherwise} \end{cases}$$
 (r: random bits)

(Important) M only has read-once access to random tape r; Halt on any random tape $\implies |r| \leq \text{poly}(|x|)$.

$BPL \subseteq L-AC^1$

Definition (BPL, bounded-error pM runs in space $O(\log |x|)$; Big Open Problem: $L \stackrel{?}{=} BPL$

$$x \text{ (input)} \mapsto \begin{cases} \text{Yes} & \text{if } \Pr_r[M(x,r)=1] \geq 2/3 \\ \text{No} & \text{if } \Pr_r[M(x,r)=1] \leq 1/3 \\ \bot & \text{otherwise} \end{cases}$$
 (r: random bits)

(Important) M only has read-once access to random tape r; Halt on any random tape $\implies |r| \leq \text{poly}(|x|)$.

Definition $(L-AC^1)$

- Unbounded fan-in AND/OR gates and free NOT gates.
- \triangleright poly(n)-size, $O(\log n)$ -depth.
- Logspace uniform.

- ightharpoonup Wish to prove: L = BPL.
- ▶ Don't even know: does L = NL imply L = BPL?

▶ Progress towards L = BPL:

```
[Sav70] [BCP83] [Nis92] [Nis94]
[INW94] [NZ96] [SZ99] [KvM02]
[CH20] [Hoz21] [Pyn23]
```

. . .

Black-box PRG Richardson Iteration

. . .

▶ Hierachy of shallow circuit classes:
 L-NC¹: logspace uniform NC¹;
 L-AC¹: logspace uniform AC¹;
 L-TC¹: logspace uniform TC¹.

- ▶ Hierachy of shallow circuit classes:
 L-NC¹: logspace uniform NC¹;
 L-AC¹: logspace uniform AC¹;
 L-TC¹: logspace uniform TC¹.
- NL ⊆ L-AC¹, BPL ⊆ L-TC¹.
 We will see why.

Preliminaries: Matrix Norm

Definition (L_1 -norm)

- ► For vector, $\|(x_1, x_2, \dots, x_n)^\top\| := |x_1| + |x_2| + \dots + |x_n|$.
- For matrix, $\|\mathbf{A}\| := \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{i} \left\| (i\text{-th column of } \mathbf{A}) \right\|.$

Proposition

- $\| \mathbf{A} + \mathbf{B} \| \le \| \mathbf{A} \| + \| \mathbf{B} \|$
- $||AB|| < ||A|| \cdot ||B||$

Definition (Stochastic vector/matrix)

A vector/matrix **A** is stochastic if:

- 1. all entries of **A** are nonnegative; and
- 2. sum of entries in each column is = 1.

Preliminaries: Matrix Norm

Definition (L_1 -norm)

- ► For vector, $\|(x_1, x_2, \dots, x_n)^\top\| := |x_1| + |x_2| + \dots + |x_n|$.
- For matrix, $\|\mathbf{A}\| := \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{i} \left\| (i\text{-th column of } \mathbf{A}) \right\|.$

Proposition

- $\| \mathbf{A} + \mathbf{B} \| \le \| \mathbf{A} \| + \| \mathbf{B} \|$
- $||\mathbf{A}\mathbf{B}|| \le ||\mathbf{A}|| \cdot ||\mathbf{B}||$

Definition (Stochastic vector/matrix)

A vector/matrix **A** is stochastic if:

- 1. all entries of **A** are nonnegative; and
- **2.** sum of entries in each column is = 1.

Stochastic Vector: represents a probability distribution.

Stochastic Matrix: maps stochastic vectors to stochastic vectors.

Preliminaries: Matrix Norm

Definition $(L_1$ -norm)

- ► For vector, $\|(x_1, x_2, \dots, x_n)^\top\| := |x_1| + |x_2| + \dots + |x_n|$.
- For matrix, $\|\mathbf{A}\| := \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{i} \left\| (i\text{-th column of } \mathbf{A}) \right\|.$

Proposition

- $\| \mathbf{A} + \mathbf{B} \| \le \| \mathbf{A} \| + \| \mathbf{B} \|$
- $||\mathbf{A}\mathbf{B}|| \le ||\mathbf{A}|| \cdot ||\mathbf{B}||$

Definition (Substochastic vector/matrix)

A vector/matrix **A** is substochastic if:

- 1. all entries of **A** are nonnegative; and
- 2. sum of entries in each column is ≤ 1 . (i.e., $\|\mathbf{A}\| \leq 1$)

Stochastic Vector: represents a probability distribution.

Stochastic Matrix: maps stochastic vectors to stochastic vectors.

• w: number of internal states of the logspace TM (with a fixed input). $w \leq \text{poly}(n)$

- w: number of internal states of the logspace TM (with a fixed input). w < poly(n)
- ▶ Define transition matrix $\mathbf{A} \in \mathbb{R}^{w \times w}$: for $i, j \in [w]$,

 $\mathbf{A}_{i,j} := \text{At state } i, \text{ after one step, the probability to reach } j.$

- w: number of internal states of the logspace TM (with a fixed input). $w \leq \text{poly}(n)$
- ▶ Define transition matrix $\mathbf{A} \in \mathbb{R}^{w \times w}$: for $i, j \in [w]$,

 $\mathbf{A}_{i,j} := \text{At state } i, \text{ after one step, the probability to reach } j.$

ightharpoonup For any t,

 $(\mathbf{A}^t)_{i,j} = \text{At state } i, \text{ after } t \text{ steps, the probability to reach } j.$

- w: number of internal states of the logspace TM (with a fixed input). $w \leq \text{poly}(n)$
- ▶ Define transition matrix $\mathbf{A} \in \mathbb{R}^{w \times w}$: for $i, j \in [w]$,

 $\mathbf{A}_{i,j} := \text{At state } i, \text{ after one step, the probability to reach } j.$

ightharpoonup For any t,

 $(\mathbf{A}^t)_{i,j} = \text{At state } i, \text{ after } t \text{ steps, the probability to reach } j.$

► Estimating powers of **A** is BPL-complete!

BPL-complete problem:

Given substochastic $\mathbf{A} \in \mathbb{R}^{n \times n}$, estimate \mathbf{A}^n with error $\leq 1/n$.

BPL-complete problem:

Given substochastic $\mathbf{A} \in \mathbb{R}^{n \times n}$, estimate \mathbf{A}^n with error $\leq 1/n$.

NL-complete problem:

Given $\mathbf{A} \in \{0, 1\}^{n \times n}$, compute \mathbf{A}^n under (AND, OR)-matrix multiplication.

BPL-complete problem:

Given substochastic $\mathbf{A} \in \mathbb{R}^{n \times n}$, estimate \mathbf{A}^n with error $\leq 1/n$.

$$\mathbf{C}_{i,j} = \sum_{k \in [n]} (\mathbf{A}_{i,k} \cdot \mathbf{B}_{k,j})$$

NL-complete problem:

Given $\mathbf{A} \in \{0,1\}^{n \times n}$, compute \mathbf{A}^n under (AND, OR)-matrix multiplication.

$$\mathbf{C}_{i,j} = \bigvee_{k \in [n]} (\mathbf{A}_{i,k} \wedge \mathbf{B}_{k,j})$$

BPL-complete problem:

Given substochastic $\mathbf{A} \in \mathbb{R}^{n \times n}$, estimate \mathbf{A}^n with error $\leq 1/n$.

$$\mathbf{C}_{i,j} = \sum_{k \in [n]} (\mathbf{A}_{i,k} \cdot \mathbf{B}_{k,j})$$

 $1/\operatorname{poly}(n)$ -error standard MM can be computed in L-TC⁰ \Longrightarrow BPL \subset L-TC¹

NL-complete problem:

Given $\mathbf{A} \in \{0,1\}^{n \times n}$, compute \mathbf{A}^n under (AND, OR)-matrix multiplication.

$$\mathbf{C}_{i,j} = \bigvee_{k \in [n]} (\mathbf{A}_{i,k} \wedge \mathbf{B}_{k,j})$$

(AND, OR)-MM can be computed in L-AC⁰ \implies NL \subseteq L-AC¹

$$\mathsf{L}\text{-NC}^1\subseteq \mathsf{L}\subseteq \mathsf{NL}\subseteq \mathsf{L}\text{-AC}^1\subseteq \mathsf{L}\text{-TC}^1$$

$$\mathsf{L}\subseteq \mathsf{BPL}\subseteq \mathsf{L}\text{-TC}^1$$

► Known Relations:

$$L-NC^1 \subseteq L \subseteq NL \subseteq L-AC^1 \subseteq L-TC^1$$

$$\mathsf{L}\subseteq\mathsf{BPL}\subseteq\mathsf{L\text{-}TC}^1$$

▶ Our result: $BPL \subseteq L-AC^1$.

$$\mathsf{L}\text{-NC}^1\subseteq \mathsf{L}\subseteq \mathsf{NL}\subseteq \mathsf{L}\text{-AC}^1\subseteq \mathsf{L}\text{-TC}^1$$

$$\mathsf{L}\subseteq \mathsf{BPL}\subseteq \mathsf{L}\text{-TC}^1$$

- ▶ Our result: BPL \subseteq L-AC¹.
- ightharpoonup Partial progress towards BPL \subseteq NL.

$$\mathsf{L}\text{-NC}^1\subseteq \mathsf{L}\subseteq \mathsf{NL}\subseteq \mathsf{L}\text{-AC}^1\subseteq \mathsf{L}\text{-TC}^1$$

$$\mathsf{L}\subseteq \mathsf{BPL}\subseteq \mathsf{L}\text{-TC}^1$$

- ▶ Our result: BPL \subseteq L-AC¹.
- ▶ Partial progress towards $BPL \subseteq NL$.
- ▶ Remark: $BPL \subseteq AC^1$ (non-uniform AC^1) is trivial.

$$\mathsf{L}\text{-NC}^1\subseteq \mathsf{L}\subseteq \mathsf{NL}\subseteq \mathsf{L}\text{-AC}^1\subseteq \mathsf{L}\text{-TC}^1$$

$$\mathsf{L}\subseteq \mathsf{BPL}\subseteq \mathsf{L}\text{-TC}^1$$

- ▶ Our result: BPL \subseteq L-AC¹.
- ightharpoonup Partial progress towards $BPL \subseteq NL$.
- ▶ Remark: $BPL \subseteq AC^1$ (non-uniform AC^1) is trivial.

Overview of our Algorithm $BPL \subseteq L-AC^1$

- ▶ Part1. Non-trivial L-AC algorithms
 - ► Approximate counting in L-AC.
 - Low-precision matrix operations in L-AC. (e.g. Multiply $n \times n$ matrices with 1/3 error in L-AC⁰)
- ▶ Part2. Use low-precision operations to compute matrix powering
 - ▶ Recall: estimate $\mathbf{A} \mapsto \mathbf{A}^n$ with 1/n-error is BPL-complete.
 - ▶ Numerical analysis techniques! (Popular in recent years)

Overview of our Algorithm $BPL \subseteq L-AC^1$

- ▶ Part1. Non-trivial L-AC algorithms
 - ► Approximate counting in L-AC.
 - Low-precision matrix operations in L-AC. (e.g. Multiply $n \times n$ matrices with 1/3 error in L-AC⁰)
- ▶ Part2. Use low-precision operations to compute matrix powering
 - ▶ Recall: estimate $\mathbf{A} \mapsto \mathbf{A}^n$ with 1/n-error is BPL-complete.
 - ▶ Numerical analysis techniques! (Popular in recent years)

▶ A non-trivial algorithm: **Approximate counting in L-AC**⁰. [Ajtai'90] (Reminder: exact majority cannot be computed in AC^0 .)

$$(x_1, x_2, \dots, x_n) \mapsto \begin{cases} \text{YES} & \text{if input contains } \geq \frac{2n}{3} \text{ 1's} \\ \text{NO} & \text{if input contains } \leq \frac{n}{3} \text{ 1's} \\ \bot & \text{otherwise} \end{cases}$$

▶ A non-trivial algorithm: **Approximate counting in L-AC**⁰. [Ajtai'90] (Reminder: exact majority cannot be computed in AC^0 .)

$$(x_1, x_2, \cdots, x_n) \mapsto \begin{cases} \text{YES} & \text{if input contains } \geq \frac{2n}{3} \text{ 1's} \\ \text{NO} & \text{if input contains } \leq \frac{n}{3} \text{ 1's} \\ \bot & \text{otherwise} \end{cases}$$

Later generalized in [Viola'07] [Viola'11] [Cook'20] etc. for different purposes.

▶ A non-trivial algorithm: **Approximate counting in L-AC**⁰. [Ajtai'90] (Reminder: exact majority cannot be computed in AC^0 .)

$$(x_1, x_2, \dots, x_n) \mapsto \begin{cases} \text{YES} & \text{if input contains } \geq \frac{2n}{3} \text{ 1's} \\ \text{NO} & \text{if input contains } \leq \frac{n}{3} \text{ 1's} \\ \bot & \text{otherwise} \end{cases}$$

Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
arepsilon	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $[(1-\varepsilon)S, (1+\varepsilon)S]$.)

► A non-trivial algorithm: **Approximate counting in L-AC**⁰. [Ajtai'90] (Reminder: exact majority cannot be computed in AC⁰.)

$$(x_1, x_2, \cdots, x_n) \mapsto \begin{cases} \text{YES} & \text{if input contains } \geq \frac{2n}{3} \text{ 1's} \\ \text{NO} & \text{if input contains } \leq \frac{n}{3} \text{ 1's} \\ \bot & \text{otherwise} \end{cases}$$

▶ Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
arepsilon	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $[(1-\varepsilon)S, (1+\varepsilon)S]$.)

Proof Sketch: Use $Samplers/Universal\ Hash\ Functions$ to reduce to the standard approximate counting.

▶ A non-trivial algorithm: **Approximate counting in L-AC**⁰. [Ajtai'90] (Reminder: exact majority cannot be computed in AC⁰.)

$$(x_1, x_2, \cdots, x_n) \mapsto \begin{cases} \text{YES} & \text{if input contains } \geq \frac{2n}{3} \text{ 1's} \\ \text{NO} & \text{if input contains } \leq \frac{n}{3} \text{ 1's} \\ \bot & \text{otherwise} \end{cases}$$

Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
arepsilon	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $[(1-\varepsilon)S, (1+\varepsilon)S]$.)

- A containing a localithmy Assumption in LAC⁰ [Attail)00

 (I Example:
- Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
ε	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $[(1-\varepsilon)S, (1+\varepsilon)S]$.)

Our Generalization: estimate the number of I's with small multiplicative error

error	depth	size
ε	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $[(1-\varepsilon)S, (1+\varepsilon)S]$.)

▶ Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
ε	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $[(1-\varepsilon)S, (1+\varepsilon)S]$.)

Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
ε	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $[(1-\varepsilon)S, (1+\varepsilon)S]$.)

▶ A non-trivial algorithm: **Approximate counting in L-AC**⁰. [Ajtai'90] (Reminder: exact majority cannot be computed in AC⁰.)

$$(x_1, x_2, \dots, x_n) \mapsto \begin{cases} \text{YES} & \text{if input contains } \geq \frac{2n}{3} \text{ 1's} \\ \text{NO} & \text{if input contains } \leq \frac{n}{3} \text{ 1's} \\ \bot & \text{otherwise} \end{cases}$$

▶ Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
ε	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $\lceil (1-\varepsilon)S, (1+\varepsilon)S \rceil$.)

- ▶ **Application:** (add poly(n) | multiply two) positive real numbers with small multiplicative error. (ε -error in $O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$ -depth)
- Further Application: Matrix operations with ε -error in $O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$ -depth!

A Nontrivial L-AC Algorithm

▶ A non-trivial algorithm: **Approximate counting in L-AC**⁰. [Ajtai'90] (Reminder: exact majority cannot be computed in AC⁰.)

$$\begin{cases} \text{YES} & \text{if input contains} \geq \frac{2n}{3} \text{ 1's} \\ \text{NO} & \text{if input contains} \leq \frac{n}{3} \text{ 1's} \end{cases}$$
Just compute each entry respectively.

▶ Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
ε	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $\lceil (1-\varepsilon)S, (1+\varepsilon)S \rceil$.)

- ▶ **Application:** (add poly(n) | multiply two) positive real numbers with small multiplicative error. (ε -error in $O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$ -depth)
- Further Application: Matrix operations with ε -error in $O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$ -depth!

A Nontrivial L-AC Algorithm

▶ A non-trivial algorithm: **Approximate counting in L-AC**⁰. [Ajtai'90] (Reminder: exact majority cannot be computed in AC^0 .)

$$(x_1, x_2, \dots, x_n) \mapsto \begin{cases} \text{YES} & \text{if input contains } \geq \frac{2n}{3} \text{ 1's} \\ \text{NO} & \text{if input contains } \leq \frac{n}{3} \text{ 1's} \\ \perp & \text{otherwise} \end{cases}$$

Our Generalization: estimate the number of 1's with small multiplicative error

error	depth	size
ε	$O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$	poly(n)

(If there are S 1's, we need to output an estimate in $\lceil (1-\varepsilon)S, (1+\varepsilon)S \rceil$.)

- **Application:** (add poly(n) | multiply two) positive real numbers with small multiplicative error. $(\varepsilon$ -error in $O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$ -depth)
- Further Application: Matrix operations with ε -error in $O\left(\frac{\log(1/\varepsilon)}{\log\log n} + 1\right)$ -depth!

Overview of our Algorithm $\mathsf{BPL} \subseteq \mathsf{L}\text{-}\mathsf{AC}^1$

- ▶ Part1. Non-trivial L-AC algorithms
 - ► Approximate counting in L-AC.
 - Low-precision matrix operations in L-AC. (e.g. Multiply $n \times n$ matrices with 1/3 error in L-AC⁰)
- ▶ Part2. Use low-precision operations to compute matrix powering
 - ▶ Recall: estimate $A \mapsto A^n$ with 1/n-error is BPL-complete.
 - ▶ Numerical analysis techniques! (Popular in recent years)

Overview of our Algorithm $BPL \subseteq L-AC^1$

- ▶ Part1. Non-trivial L-AC algorithms
 - ► Approximate counting in L-AC.
 - Low-precision matrix operations in L-AC. (e.g. Multiply $n \times n$ matrices with 1/3 err

A General Framework:

- 1. Compute some weak approximations.
- 2. "Boost" to high precision.

Example: Richardson Iteration [AKM+20] [CDRST21] [PV21] [CDST22] [PP22] [CHLTW23] \cdots

- ▶ Part2. Use low-precision operations to compute matrix powering
 - ▶ Recall: estimate $A \mapsto A^n$ with 1/n-error is BPL-complete.
 - ▶ Numerical analysis techniques! (Popular in recent years)

Framework

▶ Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t \leq O(\log n)$) (Goal: given **A**, compute a valid $\mathbf{A}(\log n, \log n)$)

Framework

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t \leq O(\log n)$) (Goal: given **A**, compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

Framework

▶ Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

- ► Proof Sketch of Lemma
- ▶ Lemma \Longrightarrow BPL \subseteq L-AC¹

- **Example:** (For simplicity, assume matrix multiplication commutes)
- ► Weak Approximations:

$$\left\|\widetilde{\mathbf{A}^{16}} - \mathbf{A}^{16}\right\| \le \varepsilon_4, \left\|\widetilde{\mathbf{A}^{8}} - \mathbf{A}^{8}\right\| \le \varepsilon_3, \left\|\widetilde{\mathbf{A}^{4}} - \mathbf{A}^{4}\right\| \le \varepsilon_2, \left\|\widetilde{\mathbf{A}^{2}} - \mathbf{A}^{2}\right\| \le \varepsilon_1$$

ightharpoonup Approximate A^{32} :

- **Example:** (For simplicity, assume matrix multiplication commutes)
- **▶** Weak Approximations:

$$\|\widetilde{\mathbf{A}^{16}} - \mathbf{A}^{16}\| \le \varepsilon_4, \|\widetilde{\mathbf{A}^{8}} - \mathbf{A}^{8}\| \le \varepsilon_3, \|\widetilde{\mathbf{A}^{4}} - \mathbf{A}^{4}\| \le \varepsilon_2, \|\widetilde{\mathbf{A}^{2}} - \mathbf{A}^{2}\| \le \varepsilon_1$$

$$\left\|\widetilde{\mathbf{M}} - \mathbf{M}\right\| \le \varepsilon \implies \left\|\left(\widetilde{\mathbf{M}} - \mathbf{M}\right)^2\right\| \le \varepsilon^2$$

$$\implies \mathbf{M}^2 \stackrel{\varepsilon^2}{\approx} 2\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2$$

- **Example:** (For simplicity, assume matrix multiplication commutes)
- ► Weak Approximations:

$$\left\|\widetilde{\mathbf{A}^{16}} - \mathbf{A}^{16}\right\| \le \varepsilon_4, \left\|\widetilde{\mathbf{A}^{8}} - \mathbf{A}^{8}\right\| \le \varepsilon_3, \left\|\widetilde{\mathbf{A}^{4}} - \mathbf{A}^{4}\right\| \le \varepsilon_2, \left\|\widetilde{\mathbf{A}^{2}} - \mathbf{A}^{2}\right\| \le \varepsilon_1$$

▶ Approximate A^{32} :

 \mathbf{A}^{32}

$$\left\|\widetilde{\mathbf{M}} - \mathbf{M}\right\| \le \varepsilon \implies \left\|\left(\widetilde{\mathbf{M}} - \mathbf{M}\right)^2\right\| \le \varepsilon^2$$

$$\implies \mathbf{M}^2 \stackrel{\varepsilon^2}{\approx} 2\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2$$

- **Example:** (For simplicity, assume matrix multiplication commutes)
- ► Weak Approximations:

$$\left\|\widetilde{\mathbf{A}^{16}} - \mathbf{A}^{16}\right\| \le \varepsilon_4, \left\|\widetilde{\mathbf{A}^8} - \mathbf{A}^8\right\| \le \varepsilon_3, \left\|\widetilde{\mathbf{A}^4} - \mathbf{A}^4\right\| \le \varepsilon_2, \left\|\widetilde{\mathbf{A}^2} - \mathbf{A}^2\right\| \le \varepsilon_1$$

$$\mathbf{A}^{32} \overset{\varepsilon_4^2}{\approx} 2\mathbf{A}^{16} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^2$$

$$\left\|\widetilde{\mathbf{M}} - \mathbf{M}\right\| \le \varepsilon \implies \left\|\left(\widetilde{\mathbf{M}} - \mathbf{M}\right)^2\right\| \le \varepsilon^2$$

$$\implies \mathbf{M}^2 \stackrel{\varepsilon^2}{\approx} 2\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2$$

- **Example:** (For simplicity, assume matrix multiplication commutes)
- ► Weak Approximations:

$$\left\|\widetilde{\mathbf{A}^{16}} - \mathbf{A}^{16}\right\| \le \varepsilon_4, \left\|\widetilde{\mathbf{A}^{8}} - \mathbf{A}^{8}\right\| \le \varepsilon_3, \left\|\widetilde{\mathbf{A}^{4}} - \mathbf{A}^{4}\right\| \le \varepsilon_2, \left\|\widetilde{\mathbf{A}^{2}} - \mathbf{A}^{2}\right\| \le \varepsilon_1$$

$$\mathbf{A}^{32} \overset{\varepsilon_{4}^{2}}{\approx} 2\mathbf{A}^{16} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$
$$\overset{2\varepsilon_{3}^{2}}{\approx} 4\mathbf{A}^{8} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\begin{split} \left\| \widetilde{\mathbf{M}} - \mathbf{M} \right\| &\leq \varepsilon \implies \left\| \left(\widetilde{\mathbf{M}} - \mathbf{M} \right)^2 \right\| \leq \varepsilon^2 \\ &\implies \mathbf{M}^2 \stackrel{\varepsilon^2}{\approx} 2\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2 \end{split}$$

- **Example:** (For simplicity, assume matrix multiplication commutes)
- ► Weak Approximations:

$$\left\|\widetilde{\mathbf{A}^{16}} - \mathbf{A}^{16}\right\| \le \varepsilon_4, \, \left\|\widetilde{\mathbf{A}^{8}} - \mathbf{A}^{8}\right\| \le \varepsilon_3, \, \left\|\widetilde{\mathbf{A}^{4}} - \mathbf{A}^{4}\right\| \le \varepsilon_2, \, \left\|\widetilde{\mathbf{A}^{2}} - \mathbf{A}^{2}\right\| \le \varepsilon_1$$

$$\mathbf{A}^{32} \overset{\varepsilon_{4}^{2}}{\approx} 2\mathbf{A}^{16} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\overset{2\varepsilon_{3}^{2}}{\approx} 4\mathbf{A}^{8} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\overset{4\varepsilon_{2}^{2}}{\approx} 8\mathbf{A}^{4} \left(\widetilde{\mathbf{A}^{4}}\right) \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 4\left(\widetilde{\mathbf{A}^{4}}\right)^{2} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\begin{split} \left\| \widetilde{\mathbf{M}} - \mathbf{M} \right\| &\leq \varepsilon \implies \left\| \left(\widetilde{\mathbf{M}} - \mathbf{M} \right)^2 \right\| \leq \varepsilon^2 \\ \implies \mathbf{M}^2 &\stackrel{\varepsilon^2}{\iff} 2\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2 \end{split}$$

- **Example:** (For simplicity, assume matrix multiplication commutes)
- ► Weak Approximations:

$$\left\|\widetilde{\mathbf{A}^{16}} - \mathbf{A}^{16}\right\| \le \varepsilon_4, \, \left\|\widetilde{\mathbf{A}^{8}} - \mathbf{A}^{8}\right\| \le \varepsilon_3, \, \left\|\widetilde{\mathbf{A}^{4}} - \mathbf{A}^{4}\right\| \le \varepsilon_2, \, \left\|\widetilde{\mathbf{A}^{2}} - \mathbf{A}^{2}\right\| \le \varepsilon_1$$

$$\left\|\widetilde{\mathbf{M}} - \mathbf{M}\right\| \le \varepsilon \implies \left\|\left(\widetilde{\mathbf{M}} - \mathbf{M}\right)^{2}\right\| \le \varepsilon^{2}$$

$$\implies \mathbf{M}^{2} \stackrel{\varepsilon^{2}}{\approx} 2\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^{2}$$

$$\mathbf{A}^{32} \overset{\varepsilon_{4}^{2}}{\approx} 2\mathbf{A}^{16} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\overset{2\varepsilon_{3}^{2}}{\approx} 4\mathbf{A}^{8} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\overset{4\varepsilon_{2}^{2}}{\approx} 8\mathbf{A}^{4} \left(\widetilde{\mathbf{A}^{4}}\right) \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 4\left(\widetilde{\mathbf{A}^{4}}\right)^{2} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\overset{16\varepsilon_{1}}{\approx} 8\left(\widetilde{\mathbf{A}^{2}}\right)^{2} \left(\widetilde{\mathbf{A}^{4}}\right) \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 4\left(\widetilde{\mathbf{A}^{4}}\right)^{2} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

- **Example:** (For simplicity, assume matrix multiplication commutes)
- ► Weak Approximations:

$$\left\|\widetilde{\mathbf{A}^{16}} - \mathbf{A}^{16}\right\| \leq \varepsilon_4, \, \left\|\widetilde{\mathbf{A}^{8}} - \mathbf{A}^{8}\right\| \leq \varepsilon_3, \, \left\|\widetilde{\mathbf{A}^{4}} - \mathbf{A}^{4}\right\| \leq \varepsilon_2, \, \left\|\widetilde{\mathbf{A}^{2}} - \mathbf{A}^{2}\right\| \leq \varepsilon_1$$

▶ Approximate A³²: (error: $\varepsilon_4^2 + 2\varepsilon_3^2 + 4\varepsilon_2^2 + 16\varepsilon_1$)

$$\mathbf{A}^{32} \overset{\varepsilon_{4}^{2}}{\approx} 2\mathbf{A}^{16} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\overset{2\varepsilon_{3}^{2}}{\approx} 4\mathbf{A}^{8} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\overset{4\varepsilon_{2}^{2}}{\approx} 8\mathbf{A}^{4} \left(\widetilde{\mathbf{A}^{4}}\right) \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 4\left(\widetilde{\mathbf{A}^{4}}\right)^{2} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

$$\overset{16\varepsilon_{1}}{\approx} 8\left(\widetilde{\mathbf{A}^{2}}\right)^{2} \left(\widetilde{\mathbf{A}^{4}}\right) \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 4\left(\widetilde{\mathbf{A}^{4}}\right)^{2} \left(\widetilde{\mathbf{A}^{8}}\right) \left(\widetilde{\mathbf{A}^{16}}\right) - 2\left(\widetilde{\mathbf{A}^{8}}\right)^{2} \left(\widetilde{\mathbf{A}^{16}}\right) - \left(\widetilde{\mathbf{A}^{16}}\right)^{2}$$

11/16

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t \leq O(\log n)$) (Goal: given **A**, compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t < O(\log n)$) (Goal: given **A**, compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

For any k,t, given all $\mathbf{A}(k-i, \lfloor t/2 \rfloor + 2i)$'s $(1 \le i \le \min\{k, O(t)\})$, we can compute a valid $\mathbf{A}(k,t)$ in O(t)-depth.

Lemma (Iteration Formula)

For any positive integers $k \geq t$, suppose \mathbf{B}_i is an approximation of \mathbf{A}^{2^i} such that

$$\left\| \mathbf{B}_i - \mathbf{A}^{2^i} \right\| \le \varepsilon_i \quad (for \ i = 1, 2, \cdots, k-1). \ Define$$

$$\mathbf{C} := -\sum_{i=1}^{t-1} \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-i+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-i}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'} + \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-t+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-t}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'}.$$

Then
$$\left\| \mathbf{C} - \mathbf{A}^{2^k} \right\| \le \varepsilon_{k-1}^2 + 2\varepsilon_{k-2}^2 + 4\varepsilon_{k-3}^2 + \dots + 2^{t-2}\varepsilon_{k-t+1}^2 + 2^t \varepsilon_{k-t}.$$

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t < O(\log n)$) (Goal: given **A**, compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

Lemma (Iteration Formula)
For any positive integers
$$k \ge t$$
, suppose
$$\varepsilon_{k-i} \le 1/2^{\lfloor t/2 \rfloor + 2i} \implies \left\| \mathbf{C} - \mathbf{A}^{2^k} \right\| \le 0.99/2^t$$

$$\left\|\mathbf{B}_{i}-\mathbf{A}^{2^{i}}\right\|\leq \varepsilon_{i}$$
 (for $i=1,2,\cdots,k-1$). Define

$$\mathbf{C} := -\sum_{i=1}^{t-1} \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-i+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-i}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'} + \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-t+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-t}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'}.$$

Then
$$\left\| \mathbf{C} - \mathbf{A}^{2^k} \right\| \le \varepsilon_{k-1}^2 + 2\varepsilon_{k-2}^2 + 4\varepsilon_{k-3}^2 + \dots + 2^{t-2}\varepsilon_{k-t+1}^2 + 2^t\varepsilon_{k-t}.$$

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t < O(\log n)$) (Goal: given **A**, compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

For any k, t, given all $\mathbf{A}(k-i, |t/2|+2i)$'s $(1 \le i \le \min\{k, O(t)\})$, we can compute a valid $\mathbf{A}(k,t)$ in O(t)-depth.

Lemma (Iteration Formula)

For any positive integers $k \geq t$, suppose \mathbf{B}_i is an approximation of \mathbf{A}^{2^i} such that

$$\left\| \mathbf{B}_i - \mathbf{A}^{2^i} \right\| \le \varepsilon_i \quad (for \ i = 1, 2, \cdots, k-1). \ Define$$

$$\mathbf{C} := -\sum_{i=1}^{t-1} \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-i+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-i}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'} + \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-t+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-t}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'}.$$

Then
$$\left\| \mathbf{C} - \mathbf{A}^{2^k} \right\| \le \varepsilon_{k-1}^2 + 2\varepsilon_{k-2}^2 + 4\varepsilon_{k-3}^2 + \dots + 2^{t-2}\varepsilon_{k-t+1}^2 + 2^t\varepsilon_{k-t}.$$

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t < O(\log n)$) (Goal: given **A**, compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

For any k,t, given all $\mathbf{A}(k-i, \lfloor t/2 \rfloor + 2i)$'s $(1 \le i \le \min\{k, O(t)\})$, we can compute a valid $\mathbf{A}(k,t)$ in O(t)-depth.

Lemma (Iteration For

For any positive integers
$$k \ge \left\| \mathbf{B}_i - \mathbf{A}^{2^i} \right\| \le \varepsilon_i \quad (for \ i = 1)$$

1. Compute all matrix operations with error $1/2^{O(t)}$.

Depth:
$$O\left(\frac{t}{\log\log n} + 1\right) \le O\left(\frac{t}{\log t}\right)$$
.

2. Multiplication of O(t) matrices in each term.

$$\mathbf{C} := -\sum_{i=1}^{t-1} \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-i+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-i}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'} + \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-t+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-t}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'}.$$

Then
$$\left\| \mathbf{C} - \mathbf{A}^{2^k} \right\| \le \varepsilon_{k-1}^2 + 2\varepsilon_{k-2}^2 + 4\varepsilon_{k-3}^2 + \dots + 2^{t-2}\varepsilon_{k-t+1}^2 + 2^t\varepsilon_{k-t}.$$

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t < O(\log n)$) (Goal: given **A**, compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

For any k,t, given all $\mathbf{A}(k-i, \lfloor t/2 \rfloor + 2i)$'s $(1 \le i \le \min\{k, O(t)\})$, we can compute a valid $\mathbf{A}(k,t)$ in O(t)-depth.

Lemma (Iteration Formula)

For any positive integers $k \geq t$, suppose \mathbf{B}_i is an approximation of \mathbf{A}^{2^i} such that

$$\left\| \mathbf{B}_i - \mathbf{A}^{2^i} \right\| \le \varepsilon_i \quad (for \ i = 1, 2, \cdots, k-1). \ Define$$

$$\mathbf{C} := -\sum_{i=1}^{t-1} \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-i+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-i}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'} + \sum_{\substack{\{j_1 < \dots < j_p\} \uplus \{j_1' < \dots < j_q'\} \\ = \{k-1, k-2, \dots, k-t+1\}}} \mathbf{B}_{j_p} \cdots \mathbf{B}_{j_1} \mathbf{B}_{k-t}^2 \mathbf{B}_{j_1'} \cdots \mathbf{B}_{j_q'}.$$

Then
$$\left\| \mathbf{C} - \mathbf{A}^{2^k} \right\| \le \varepsilon_{k-1}^2 + 2\varepsilon_{k-2}^2 + 4\varepsilon_{k-3}^2 + \dots + 2^{t-2}\varepsilon_{k-t+1}^2 + 2^t \varepsilon_{k-t}.$$

 \triangleright Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k, t < O(\log n)$ (Goal: given A, compute a valid $\mathbf{A}(\log n, \log n)$

Lemma (Subroutine)

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k, t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

 \mathbf{A}

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

$\mathbf{Subroutine} \to \mathbf{Complete} \ \mathbf{Algorithm}$

► Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k, t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

$\mathbf{Subroutine} \to \mathbf{Complete} \ \mathbf{Algorithm}$

► Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

► Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k, t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

Depth

 \triangleright Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k, t < O(\log n)$ (Goal: given A, compute a valid $\mathbf{A}(\log n, \log n)$

Lemma (Subroutine)

For any k, t, given all $\mathbf{A}(k-i, |t/2|+2i)$'s $(1 \le i \le \min\{k, O(t)\})$, we can compute a valid $\mathbf{A}(k,t)$ in O(t)-depth.

Potential function $\phi(k,t) := 2k + t$

$\mathbf{Subroutine} \to \mathbf{Complete} \ \mathbf{Algorithm}$

Depth

0

A

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k, t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

For any k, t, given all $\mathbf{A}(k-i, \lfloor t/2 \rfloor + 2i)$'s $(1 \le i \le \min\{k, O(t)\})$, we can compute a valid $\mathbf{A}(k,t)$ in O(t)-depth.

▶ Potential function $\phi(k,t) := 2k + t$

$\mathbf{Subroutine} \to \mathbf{Complete} \ \mathbf{Algorithm}$

Depth

0

A

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k, t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

For any k, t, given all $\mathbf{A}(k-i, \lfloor t/2 \rfloor + 2i)$'s $(1 \le i \le \min\{k, O(t)\})$, we can compute a valid $\mathbf{A}(k,t)$ in O(t)-depth.

▶ Potential function $\phi(k,t) := 2k + t$

Summary

- ▶ Part1. Non-trivial L-AC algorithms
 - ► Approximate counting in L-AC.
 - Low-precision matrix operations in L-AC. (e.g. Multiply $n \times n$ matrices with 1/3 error in L-AC⁰)
- ▶ Part2. Use low-precision operations to compute matrix powering
 - ▶ Recall: estimate $\mathbf{A} \mapsto \mathbf{A}^n$ with 1/n-error is BPL-complete.
 - ▶ Numerical analysis techniques! (Popular in recent years)

$\mathbf{Subroutine} \to \mathbf{Complete} \ \mathbf{Algorithm}$

Depth

0

 $3C \cdot \log n$

 $C \cdot (2k + \lfloor t/2 \rfloor)$ $| \mathbf{A}(k-i, |t/2| + 2i) \cdots |$ $C \cdot (2k+t)$ $\mathbf{A}(k,t)$

 $\mathbf{A}(\log n, \log n)$

A

Intermediate matrices $\mathbf{A}(k,t)$: a $1/2^t$ -approximation of \mathbf{A}^{2^k} (for $k,t \leq O(\log n)$) (Goal: given \mathbf{A} , compute a valid $\mathbf{A}(\log n, \log n)$)

Lemma (Subroutine)

For any k, t, given all $\mathbf{A}(k-i, \lfloor t/2 \rfloor + 2i)$'s $(1 \le i \le \min\{k, O(t)\})$, we can compute a valid $\mathbf{A}(k,t)$ in O(t)-depth.

▶ Potential function $\phi(k,t) := 2k + t$

$\mathbf{Subroutine} \to \mathbf{Complete} \ \mathbf{Algorithm}$

Depth

A

 $3C \cdot \log n$

Our Iteration Formula v.s. Richardson

- Richardson
 - ► Saks-Zhou argument:

$$\mathbf{A} \mapsto \mathbf{A}^{2^{\sqrt{\log n}}}$$
 for $\sqrt{\log n}$ rounds.

- ▶ Weaker result: $BPL \subset L-AC^{1.5}$.
- Each round depends on the previous round, not efficiently parallized!
- Our Iteration Formula
 - ► More efficiently parallized!

Thank you!

► Q&A

Thank you!

- ► Q&A
- ► Thank you for listening!