esri 0 解决方案 关于 支持与服务 故事 **ArcGIS Pro** 概览 特色▼ 资源 免费试用 Extensions 入门 帮助 工具参考 Python SDK 主页 Q 搜索 ArcGIS Pro 帮助 工具参考 / 地理处理工具 / Spatial Analyst 工具箱 / 插值工具集 ArcGIS Pro 2.8 | 其他版本 ~ | 帮助归档 使用情况 分析环境和 Spatial Analyst 参数 ዶ 需要 Spatial Analyst 许可。 具有 Spatial Analyst 的 GPU 处 环境 ♪ 需要 3D Analyst 许可。 理 许可信息 与 Spatial Analyst 并行处理 摘要 空间分析工具箱许可 使用克里金法将点插值成栅格表面。 Spatial Analyst 工具箱历史 经验贝叶斯克里金法工具提供了增强的功能或性能。 >条件分析工具集 了解有关克里金法工作原理的详细信息 > 密度分析工具集 > 距离工具集 使用情况 > 提取分析工具集 • 克里金法是一个占用大量处理器资源的过程。 执行速度取决于输入数据集中点的数量 > 栅格综合工具集 和搜索窗口的大小。 > 地下水分析工具集 • 预测栅格可选输出方差中的低值指示预测值的高置信度。 高值可能表示需要更多数据 点。 > 水文分析工具集 ~ 插值工具集 • 泛克里金法类型假定存在结构成分,并且局部趋势在不同的位置有所不同。 插值工具集概述 • 半变异函数属性可控制克里金法所使用的半变异函数。 步长大小的默认值初始设置为 默认输出像元大小。对于主要范围、偏基台和块金来说,如果未进行任何设置,将会 反距离权重法 内部计算默认值。 克里金法 • 预测栅格的可选输出方差在每个输出栅格像元中都含有克里金方差。 假设克里金误差 自然邻域法 是正态分布的,则像元中实际 z 值等于预测栅格值加上或减去方差栅格中值的平方根 2 倍的可能性为 95.5%。 样条函数法 • 输出像元大小可以通过数值进行定义,也可以从现有栅格数据集获取。如果没有将像 含障碍的样条函数 元大小明确指定为参数值,则将从像元大小环境获取相应值(前提是已指定环境)。 地形转栅格 如果未指定参数像元大小和环境像元大小,但已设置**捕捉栅格**环境,则将使用捕捉栅 格的像元大小。如果未指定任何内容,则像元大小会通过使用范围的宽度或高度中的 依据文件实现地形转栅格 较小值除以 250 来计算, 其中范围位于在环境中指定的输出坐标系内。 趋势面法 • 如果使用数值指定像元大小,则工具会直接将其用于输出栅格。 > 插值工具集概念 如果使用栅格数据集指定像元大小,则该参数将显示栅格数据集的路径而不是像元大 > 局部分析工具集 小的值。如果数据集的空间参考与输出空间参考相同,则栅格数据集的像元大小将直 接用于分析。如果数据集的空间参考与输出空间参考不同,则将基于所选的像元大小 > 地图代数工具集 投影方法进行投影。 > 数学分析工具集 • 某些输入数据集可能包含多个具有相同 x,y 坐标的点。如果共有位置处的点的值相同, > 多维分析工具集 则将其视为重复项,但并不影响输出。如果值不同,则将这些点视为重合点。 > 多元分析工具集 各种插值工具可在不同条件下以不同方式处理此数据。例如,在某些情况下,使用遇 到的第一个重合点进行计算;而在其他情况下,则使用遇到的最后一个点进行计算。 > 邻域分析工具集 这可能导致输出栅格中某些位置的值与预期值不同。解决办法就是在准备数据时移除 > 叠加分析工具集 这些重合点。"空间统计"工具箱中的收集事件工具用于识别数据中所有的重合点。 > 栅格创建工具集 • 对于支持 Null 值的数据格式,例如文件地理数据库要素类,在将 Null 值用作输入时, 该值将被忽略。 > 重分类工具集 > 影像分割和分类工具集 • 有关适用于此工具的地理处理环境的详细信息,请参阅分析环境和 Spatial Analyst。 >太阳辐射工具集 参数 > 表面分析工具集 对话框 Python > 区域分析工具集 标注 说明 数据类型

输入

定价

包含要插值到表面栅格中的z值的输入点要素。 点要 Feature Layer 素 存放每个点的高度值或量级值的字段。 Z值字 Field 段 如果输入点要素包含 z 值,则该字段可以是数值型字段或者 Shape 字段。 要使用的半变异函数模型。有两种克里金法: 普通克里金法和泛 克里金法。 普通克里金法可使用下列半变异函数模型: • Spherical-球面半变异函数模型。这是默认设置。 • Circular-圆半变异函数模型。 • Exponential-指数半变异函数模型。 • Gaussian-高斯 (或正态分布) 半变异函数模型。 • Linear-采用基台的线性半变异函数模型。 泛克里金法可使用下列半变异函数模型: 半变 异函 KrigingModel • Linear with Linear drift—采用一次漂移函数的泛克里金 数属 法。 性 • Linear with Quadratic drift—采用二次漂移函数的泛克 里金法。 **高级参数**对话框中有一些选项可供使用。这些参数是: • Lag size-默认值为输出栅格的像元大小。 • Major range-表示距离,超出此距离即认定为不相 关。 • Partial sill-块金和基台之间的差值。 • Nugget-表示在因过小而无法检测到的空间尺度下的 误差和变差。块金效应被视为在原点处的不连续。 将创建的输出栅格的像元大小。 输出 此参数可以通过数值进行定义,也可以从现有栅格数据集获取。 Analysis Cell 像元 大小 如果未将像元大小明确指定为参数值,则将使用环境像元大小值 Size (如果已指定); 否则,将使用其他规则通过其他输出计算像元 (可选) 大小。有关详细信息,请参阅用法部分。 定义要用来对输出栅格中各像元值进行插值的输入点。 有两个选项: 可变和固定。"可变"是默认设置。 可变 使用可变搜索半径来查找用于插值的指定数量的输入 采样点。 。 点数 - 指定要用于执行插值的最邻近输入采样点 数量的整数值。默认值为 12 个点。 。 **最大距离** - 使用地图单位指定距离,以此限制对 最邻近输入采样点的搜索。默认值是范围的对角 线长度。 固定 搜索 使用指定的固定距离,将利用此距离范围内的所有输 半径 Radius 入点进行插值。 (可选) • 距离 - 指定用作半径的距离,在该半径范围内的 输入采样点将用于执行插值。 半径值使用地图单位来表示。默认半径是输出栅 格像元大小的五倍。 。 **最小点数** - 定义用于插值的最小点数的整数。默 认值为0。 如果在指定距离内没有找到所需点数,则将增加 搜索距离,直至找到指定的最小点数。 搜索半径需要增加时就会增加,直到**最小点数**在 该半径范围内,或者半径的范围越过输出栅格的 下部(南)和/或上部(北)范围为止。NoData 会分配给不满足以上条件的所有位置。 栅格 的输 可选的输出栅格,其中每个像元都包含该位置的预测方差值。 Raster Dataset 出方 差 (可选) 返回值 标注 说明 数据类型 输出插值后的表面栅格。 输出表面栅格 Raster 其总为浮点栅格。 环境 自动提交, 像元大小, 像元大小投影方法, 当前工作空间, 范围, 地理变换, 掩膜, 输出配置

• Basic: 需要 Spatial Analyst 或 3D Analyst • Standard: 需要 Spatial Analyst 或 3D Analyst

许可信息

特殊情况

- 相关主题 • 插值工具集概述 • 查找地理处理工具
- 了解插值分析 • 插值方法对比

• Advanced: 需要 Spatial Analyst 或 3D Analyst

关键字,输出坐标系,临时工作空间,捕捉栅格,切片大小

OF	IEN	
f	y	in
0	D	

OF WHERE			
f	y	in	
0			

ARCGIS
关于 ArcGIS
制图
ArcGIS Pro
ArcGIS Enterprise
ArcGIS Online
应用程序
ArcGIS Developer
ArcGIS Platform
Esri 商店

S
erprise
line
veloper
tform

社区	
Esri i	注区
ArcG	IS 博客
行业	博客
整体流	则试计划
Early	Adopter 社区
活动	事件

了解 GIS
什么是 GIS?
位置智能
培训
Maps We Lo
Esri 博客
WhereNext
Magazine

特殊计划 ArcGIS for Personal Use ArcGIS for Student Use 保护 灾难响应 教育 非营利机构

信任中心

隐私策略

无障碍性 法律声明

网站地图

Esri Press

Learn ArcGIS