Funkcionalna analiza - 2. domača naloga

Benjamin Benčina, 27192018

12. junij 2020

<u>Nal. 1:</u> Naj bo $T: X \to Y$ izometrični izomorfizem normiranih prostorov.

- (a) Dokažimo, da T preslika ekstremne točke zaprte enotske krogle \mathbb{B}_X prostora X v ekstremne točke zaprte enotske krogle \mathbb{B}_Y prostora Y. Za dokaz s protislovjem vzemimo ekstremno točko $a \in \operatorname{Ext} \mathbb{B}_X$ in predpostavimo, da $Ta \notin \operatorname{Ext} \mathbb{B}_Y$ (seveda $Ta \in \mathbb{B}_Y$, saj je T izometrični izomorfozem). Potem obstajata točki $y, z \in \mathbb{B}_y$ in $\lambda \in (0,1)$, da je $Ta = \lambda y + (1-\lambda)z$ in $Ta \neq y, z$. Vendar pa je T kot izomorfizem obrnljiva linearna preslikava, zato enačbo komponiramo s T^{-1} in dobimo $a = \lambda T^{-1}y + (1-\lambda)T^{-1}z$. Ker pa je a ekstremna točka, mora veljati $a = T^{-1}y = T^{-1}z$, kar je v protislovju z bijektivnostjo preslikave T.
- (b) Dokažimo, da je preslikava $T\colon c\to c_0$, definirana s predpisom

$$T: (x_1, x_2, \dots) \mapsto (\lim_{n \to \infty} x_n, \lim_{n \to \infty} x_n - x_1, \lim_{n \to \infty} x_n - x_2, \dots),$$

dobro definirani topološki izomorfizem Banachovih prostorov.

- Vemo že, da sta c in c_0 Banachova prostora glede na maksimum normo (c je zaprt v l^{∞} in c_0 je zaprt v c).
- Linearnost je očitna, saj je limitni operator linearen, preslikava pa je definirana po komponentah.
- ullet Bijektivnost je prav tako očitna, saj vidimo, da slika elementa z operatorjem T nosi vse informacije o elementu. Konkretno imamo inverz

$$(a, a_1, a_2, \dots) \mapsto (a - a_1, a - a_2, \dots).$$

• Operator T je dobro definiran, saj

$$\lim\{x, x - x_1, x - x_2, \dots\} = \lim\{x - x_1, x - x_2, \dots\} = x - x = 0,$$

kjer je $x = \lim_{n \to \infty} x_n$.

• Oglejmo si zveznost preslikave T. Zopet označimo $x = \lim_{n \to \infty} x_n$ in računajmo

$$||T(x_n)_n||_{\infty} = ||(x, x - x_1, x - x_2 \dots)||_{\infty} = \max\{|x|, |x - x_1|, |x - x_2|, \dots\}$$

$$\leq \max\{|x|, |x| + |x_1|, |x| + |x_2|, \dots\} = \max\{|x| + |x_n|; n \in \mathbb{N}\}$$

$$= |x| + ||(x_n)_n||_{\infty} \leq 2||(x_n)_n||_{\infty}$$

Tukaj lahko T podobno kot v prejšnji domači nalogi razumemo kot neke vrste identifikacijo. Po posledici izreka o odprti preslikavi je T topološki izomorfizem.

(c) Ali sta Banachova prostora c in c_0 izometrično izomorfna? Odgovor je ne, dokazali bomo s pomočjo točke (a). Zaporedje $x=(1,1,\cdots)$ je jasno ekstremna točka \mathbb{B}_c , vendar pa je $Tx=(1,0,0,\cdots)$. Zlahka najdemo zapis

$$(1,0,0,\cdots) = \frac{1}{2}(1,\frac{1}{2},\cdots,\frac{1}{2^n},\cdots) + \frac{1}{2}(1,-\frac{1}{2},\cdots,-\frac{1}{2^n},\cdots),$$

torej $(1,0,0,\cdots)$ ni ekstremna točka operatorja T. Po točki (a) operator T ne more biti izometrija.

- <u>Nal. 2:</u> Naj bo K kompaktna podmnožica normiranega prostora X in naj bo $(f_n)_n$ omejeno zaporedje omejenih funkcionalov na X.
 - (a) Dokažimo, da obstaja tako podzaporedje $(f_{n_k})_k$, ki konvergira enakomerno na K. Ker je X normiran prostor, je Hausdorffov, zato je Hausdorffov tudi podprostor K. Seveda je \mathbb{F} metričen prostor, zato so izpolnjeni predpogoji za izrek Arzelà-Ascoli (A-A). Označimo $\mathcal{F} = \{f_n|_K; n \in \mathbb{N}\}$.
 - Ker je \mathcal{F} družina zveznih omejenih funkcij (na kompaktni množici), je \mathcal{F} enakoomejena natanko tedaj, ko je omejena.
 - Preverjamo, da za vsak $x \in K$ in $\epsilon > 0$ obstaja okolica $U_x \subset K$ elementa x, da za vsak $f \in \mathcal{F}$ in $x' \in U_x$ velja $|f(x) f(x')| < \epsilon$. Fiksirajmo $\epsilon > 0$. Upoštevamo linearnost in omejenost funkcionalov

$$|f(x) - f(x')| = |f(x - x')| \le ||f|| \cdot |x - x'| < \epsilon$$

Ker je \mathcal{F} omejena družina (naj bo omejena z M), je za U_x dovolj vzeti odprte krogle polmera manj kot $\frac{\epsilon}{M}$.

Sedaj lahko uporabimo A-A in dobimo podzaporedje $\{f_{n_k}|_K\}_k$, ki konvergira enakomerno na K. Iskano podzaporedje je torej $\{f_{n_k}\}_k$.

- (b) Naj bo K kompaktna podmnožica v Banachovem prostoru $(C^1[0,1], ||.||_1)$. Dokažimo, da za vsako zaporedje $(x_n)_n$ v [0,1] obstaja tako podzaporedje $(x_{n_k})_k$, da za vsak $\epsilon > 0$ obstaja tak $k_0 \in \mathbb{N}$, da za vse indekse $k, l > k_0$ velja $|f'(x_{n_k}) f'(x_{n_l})| < \epsilon$ za vse $f \in K$.
 - Najprej si oglejmo nekaj dejstev, ki sledijo iz navodil. Ker so vse funkcije, ki jih obravnavamo, definirane na kompaktnem intervalu [0,1], je vsaka posebej omejena. Prostor $C^1[0,1]$ je poln (Banachov) in metričen, torej povsem omejen (totally bounded). Kompaktna družina funkcij $\mathcal{F} = \{f \in C^1[0,1]; f \in K\}$ je torej omejena (naj bo omejena s konstanto M). Spomnimo se, da je operator odvoda prav tako omejen (naj bo omejen s konstanto N). Družina $\mathcal{F}' = \{f'; f \in \mathcal{F}\}$ je zato omejena (s konstanto NM). Vzemimo sedaj poljubno zaporedje $(x_n)_n \subset [0,1]$ in fiksirajmo $\epsilon > 0$. Ker je [0,1] kompaktna množica (in poln prostor glede na običajno normo), obstaja tako podzaporedje $(x_{n_k})_k$ in indeks k_0 , da je $|x_{n_k} x_{n_l}| < \epsilon$ za vse $k, l > k_0$. Potem pa po zveznosti funkcij f' in omejenosti družine \mathcal{F}' sledi $|f'(x_{n_k}) f'(x_{n_l})| < 2NM\epsilon$ za vsaka $k, l > k_0$ in $f' \in \mathcal{F}'$. Na koncu le prilagodimo začetni ϵ , da se znebimo konstante.
- <u>Nal. 3:</u> Naj bo T tak omejen operator na kompleksnem Banachovem prostoru X, da je $\sigma(T) = E \cup F$ za neki neprazni disjunktni zaprti podmnožici spektra $\sigma(T)$. Z drugimi besedami, spekter operatorja T sestavljata dve komponenti za povezanost.
 - (a) Najprej utemeljimo, da je funkcija $f = \chi_E \in \text{Hol}(T)$. To je jasno, saj je f konstantna funkcija, definirana na dveh disjunktnih zaprtih podmnožicah kompleksne ravnine (na komponentah ima lahko različne vrednosti), in je kot taka holomorfna.
 - (b) Dokažimo, da je f(T) idempotenten operator, ki komutira z operatorjem T. Naj bo K kompakt, ki vsebuje $E \cup F$. Brez škode za splošnost lahko privzamemo, da je K sestavljen iz dveh disjunktnih kompaktov K_1 in K_2 , vsak pa zaporedoma vsebuje eno od množic E in F. Računamo

$$\chi_E(T) = \frac{1}{2\pi i} \int_{\partial K} (zI - T)^{-1} \chi_E(z) dz = \frac{1}{2\pi i} \left(\int_{\partial K_1} (zI - T)^{-1} \chi_E(z) dz + \int_{\partial K_2} (zI - T)^{-1} \chi_E(z) dz \right)$$

$$= 1_E(T) + 0 = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$$

kjer upoštevamo, da v primeru konstantne funkcije 1 dobimo enotski operator, v primeru ničelne funkcije dobimo ničelni operator (oboje izrek s predavanj) in da je rezultat neodvisen od izbire množice K. Obe željeni lastnosti sledita iz oblike operatorja.

- (c) Dokažimo še, da obstajata taka zaprta podprostora Y in Z prostora X, da je $X = Y \oplus Z$, ki sta invariantna za operator T. Spomnimo se vaj in vzemimo $Y = \ker f(T)$ ter $Z = \operatorname{im} f(T)$. Preverimo invariantnost:
 - Naj bo $u \in \ker f(T)$. Potem je

$$f(T)(Tu) = T(f(T)u) = T(0) = 0,$$

torej je $Tu \in \ker f(T)$.

• Naj bo $u \in \text{im } f(T)$. Potem obstaja $v \in X$, da je f(T)v = u. Upoštevamo idempotentnost in dobimo

$$f(T)v = f(T)(f(T)v) = f(T)u.$$

Računamo

$$Tu = T(f(T)v)) = T(f(T)u) = f(T)(Tu),$$

torej je $Tu \in \text{im } f(T)$.

<u>Nal. 4:</u> Prostor *n*-krat zvezno odvedljivih funkcij $C^n[a,b]$ opremimo z normo $||f|| = \sum_{k=0}^n \frac{1}{k!} ||f^{(k)}||_{\infty}$, da postane komutativna Banachova algebra z enoto.

(a) Najprej pokažimo, da je zgornja norma res submultiplikativna. Računamo

$$||fg|| = \sum_{k=0}^{n} \frac{1}{k!} ||(fg)^{(k)}||_{\infty} = \sum_{k=0}^{n} \frac{1}{k!} ||\sum_{i=0}^{k} {k \choose i} f^{(k-i)} g^{(i)}||_{\infty}$$

$$\leq \sum_{k=0}^{n} \frac{1}{k!} \sum_{i=0}^{k} {k \choose i} ||f^{(k-i)}||_{\infty} ||g^{(i)}||_{\infty} = \sum_{k=0}^{n} \sum_{i=0}^{k} \frac{1}{(k-i)!} ||f^{(k-i)}||_{\infty} \frac{1}{i!} ||g^{(i)}||_{\infty}$$

$$\leq \sum_{k=0}^{n} \sum_{l=0}^{n} \frac{1}{(k)!} ||f^{(k)}||_{\infty} \frac{1}{l!} ||g^{(l)}||_{\infty} = ||f|| \cdot ||g||,$$

kjer je zadnja neenakost upravičena s tem, da na levi strani manjkajo členi produkta vsot.

(b) Dokažimo, da je za vsak $x \in [a,b]$ množica $J_x = f \in C^n[a,b]$; f(x) = 0 maksimalni ideal v $C^n[a,b]$. Jasno je, da je ideal, saj sta produkt in vsota funkcij definirana po točkah. Za dokaz maksimalnosti s protislovjem privzemimo, da obstaja ideal $M \triangleleft C^n[a,b]$, da je $J_x \subset M$. Potem obstaja funkcija $g \in M$, da $g(x) \neq 0$, saj bi sicer bila že v J_x . Zato lahko definiramo funkciji $h(y) = \frac{g(y)}{g(x)} \in M$ in $(1 - h(y)) \in J_x$, saj je 1 - h(x) = 1 - 1 = 0. Vendar pa sedaj velja

$$1 = h(y) + (1 - h(y)) \in M \implies M = C^{n}[a, b].$$

Po definiciji je J_x maksimalni ideal.

(c) Dokažimo še obratno, da so vsi maksimalni ideali v $C^n[a,b]$ oblike J_x za nek $x \in [a,b]$. Za dokaz s protislovjem privzemimo, da je $M \in \text{mSpec } C^n[a,b]$, ki ni oblike J_x za nek $x \in [a,b]$. Potem za vsak $x \in [a,b]$ obstaja funkcija $f_x \in M$, da $f_x(x) \neq 0$. Ker je f_x zvezna (celo n-krat zvezno odvedljiva), obstaja odprta okolica U_x točke x, da $f_x(t) \neq 0$ za vse $t \in U_x$. Dobili smo odprto pokritje $\{U_x; x \in [a,b]\}$ za kompaktno množico [a,b], zato ostajajo x_1, \ldots, x_n , da $U_i = U_{x_i}$, kjer $i = 1, \ldots, n$ pokrijejo [a,b]. S f_i za $i = 1, \ldots, n$ označimo pripadajoče funkcije iz zgornjega nabora, torej $f_i(t) \neq 0$ za vsak $t \in U_i$. Končno definiramo

$$g = f_1^2 + \dots + f_n^2 \in M$$

Seveda velja g(t) > 0 za vsak $t \in [a, b]$, zato je g obrnljiva funkcija v kolobarju $C^n[a, b]$. Sledi, da je $M = C^n[a, b]$.

(d) Za konec dokažimo še, da je $\mathcal{A} = (C^n[a, b], ||.||)$ polenostavna Banachova algebra, njena Gelfandova reprezentacija pa ni ne izometrična ne surjektivna.

- Iz (c) sledi, da so v \mathcal{A} vsi maksimalni ideali oblike J_x , njihovi pripadajoči karakterji pa so $\varphi_x(f) = f(x)$. Res, $J_x = \ker \varphi_x$. Sledi, da je za vsak $x \in [a, b]$ preslikava φ_x karakter na \mathcal{A} . Po definiciji je potem $\sigma(f) = \{\varphi_x(f); \varphi_x \text{ karakter}\} = \{f(x); x \in [a, b]\} = \operatorname{im} f$. Preverimo injektivnost reprezentacije. Če je $\varphi_x(f) = 0$ za vse $x \in [a, b]$, potem je f(x) = 0 za vse $x \in [a, b]$, torej $f \equiv 0$. Sledi, da je \mathcal{A} polenostavna.
- Iz primera s predavanj¹ sledi, da je $\mathcal{A} \approx [a, b]$. Računamo

$$\gamma(f)(\varphi_x) = \hat{f}(\varphi_x) = \varphi_x(f) = f(x),$$

kjer je x povsod isti element. Glede na identifikacijo $\varphi_x \longleftrightarrow x$ je preslikava γ torej identična. Če zaporedoma identificiramo domeno in kodomeno, dobimo

$$\gamma \colon \mathcal{A} \to \stackrel{\wedge}{\mathcal{A}} \longleftrightarrow \gamma \colon C^n[a,b] \to C[a,b]$$

Ker je $C^n[a,b] \subset C[a,b]$ strogo, γ ne more biti surjektivna.

• Velja $||\gamma(f)||_{\infty} = ||f|| \iff ||f||_{\infty} = ||f||$ za vsak $f \in \mathcal{A}$. Desna stran seveda ni resnična, saj je funkcija f(x) = x protiprimer. Res,

$$||f||_{\infty} = b$$

 $||f|| = 1 \cdot b + 1 \cdot 1 + 0 + \dots + 0 = b + 1$

¹Predavanja 24. maja, primer 1.