7.1 Eigenvalues and Eigenvectors

Notation:
$$\lambda = \text{lambda}$$

Definition: Let A be an $n \times n$ matrix

If $\ni \lambda \in \mathbb{R}$ and $v \in \mathbb{R}^n$, $v \neq \vec{\delta}$
 λ may be $\vec{0}$

Satisfying $Av = \lambda v$, then we say

 λ is an eigenvalue of A and v is an eigenvalue of A corresponding to λ

P 356 # 4

 $A = \begin{bmatrix} -2 & 2 & 3 \\ 2 & 1 & -6 \end{bmatrix}$

Verify $\lambda = 5$ is an eigenvalue of A and $v = (1,2,-1)$

Is a corresponding eigenvector

Need to verify

 $Av = \begin{bmatrix} 3 & 1 & 2 & 1 & 2 & 1 \\ -1 & -2 & 0 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 & 1 & 1 \\ -1 & -1 & 1 & 0 & 1 & 1 \\ -1 & -1 & 1 & 0 & 1 & 1 \\ -1 & -1 & 1 & 0 & 1 & 1 \\ -1 & -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 & 1 \\$

In picture

$$Av = \lambda v$$

In CS: condition number

To find 2 and v

AV = AV

 $\lambda v - Av = \vec{D}$

 $\lambda In y - Ay = \vec{0}$

This is a homogeneous system of linear equations

V 75 nonzero solution

Homogeneous: nontrivial solutions exist iff 7/In-A is

 $i \cdot \det(\lambda I_n - A) = 0$

det (> In - A) is a polynomial of degree n This polynomial is called the characteristic polynomial of A

Thus to find eigenvalues and their eigenvectors

- 1) Solve det (2In-A) = 0 to find eigenvalues
- © For each λ , find (LI) nontrivial solution to $(\lambda \ln A) v = \vec{0}$

Definition: Let A be an n x n matrix

If λ is an eigenvalue to A:

- The algebraic multiplicity of λ is the exponent of λ in det (λ in - λ)
- The geometric multiplicity of λ is the number of LI eigenvectors corresponding to λ

	2 we say A is nondefective
Ruiz	if algebraic multiplicity = geometric multiplicity
wed	
7.1/7.2	l e de la companya d
	Theorem: Let A be an n x n matrix
	A is nondefective iff A has n LI eigenvectors
	eg. Let A = [7-86]
	eg. Let $A = \begin{bmatrix} 7 - 8 & 6 \\ 8 - 9 & 6 \\ 0 & 0 - 1 \end{bmatrix}$
	L D O -1 -1
	Find eigenvalues of A and wresponding eigenvectors.
	Determine if A is defective or nondefective
	7In - A
	$= \begin{pmatrix} \lambda & 0 & 0 & - & \langle \lambda & 3 & b & \rangle \\ 0 & \lambda & 0 & & \langle \lambda & 3 & b & \rangle \\ \end{pmatrix}$
	$= \gamma \lambda - 7 3 - 6 \gamma$
	-3 x + 9 -6
	0 0 2 1
	$\det(\lambda I_{1} - A) = (\lambda + 1)((\lambda - 7)(\lambda + 9) - (-8)(8))$
	$= (\lambda + 1)(\lambda^{2} + 2\lambda - 63 + 64)$
	$= (\lambda + 1) (\lambda^2 + 2\lambda + 1)$
	$= (\lambda + 1)(\lambda + 1)(\lambda + 1)$
	$= (7+1)^3$
	$(7+3)^3 = 0$
	7 = -1 algebraic multiplicity = 3

corresponding to $\lambda = -1$ \Rightarrow geometric multiplicity of λ is λ

```
algebraic geometric
                                   => A is defective
 \gamma = -1
                            2
 det ( ) In-A)
= det ( ) 0 0 ) - ( 1 - 1 2 )
= \det \left( \begin{array}{c} \lambda - 1 & 1 & -2 \end{array} \right)
= (\lambda - 1) ((\lambda + 1)(\lambda - 2) - (1)(-2)) \rightarrow (\lambda + 1)((\lambda^2 - \lambda - 2) + 2)
+1\left(-1\left(\lambda-2\right)-\left(-1\right)\left(-2\right)\right) \rightarrow \left(-\lambda+2-2\right)=-\lambda
 -2(-1(1)-(-1)(2+1)) \rightarrow -2(-1+2+1)=-22
= (\gamma - 1)(\gamma^2 - \gamma) - \gamma
= (\lambda - 1) \lambda (\lambda - 1) - \lambda
= \lambda ((\lambda-1)(\lambda-1)-1)
= \lambda \left( \lambda^2 - 2\lambda + |-1 \right)
= \lambda(\lambda^2 - z\lambda)
= \lambda^{2} (\lambda - 2)
\gamma^z = 0 \gamma - 2 = 0
algebraic algebraic
multiplicity multiplicity
   = 2 = \
```

$$0 \lambda = 0$$

$$(\lambda J_n - A) = (-1 | -2)$$
Let $\lambda = 0$
 $-1 | -2$
 $-1 | -2$

$$(\gamma In - A)v = \overrightarrow{D}$$

$$\begin{bmatrix} -1 & 1 & -2 & -1 & 1 & -2 & -2 & 1$$

SKIP some steps

$$\begin{bmatrix}
-1 & 1 & -2 & 0 & 0 & 0 & RREF & 1 & -1 & 2 & 0 & 0 \\
-1 & 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$V_1 = t - 2S$$

$$V_2 = t$$

$$V_3 = S$$

$$V_3 = S$$

$$\Rightarrow \begin{cases} 1 & 3 = 1 \\ 0 & 3 = 1 \\ 0 & 3 = 1 \end{cases}$$

corresponding to
$$x = 0$$

Theorem ? Let A be an n x n matrix If λ is an eigenvalue of A, called the eigenspace of a Proof : HW S = ____ D D E S v close under t 3 dose under.

```
Possible Final Question
 Let T: V>W be a LT
 Then T is 1-1 iff kerT = \{53\}
 piff q : If p then q
     and If q then p
1) Prove that if T is 1-1 then KerT = {33
 Recall: f: A \rightarrow 15 15 1-1 if: if f(x_1) = f(x_2) then x_1 = x_2
 Suppose T(v) = \ddot{0}
 need to show v = \vec{0}
 we know T(B) = B
 (T(V) = T(\vec{p})
Since T is |-| , v = \overrightarrow{0}
 \therefore \text{ KerT} = \{\vec{B}\}
@ Prove that if kerT = { 3 } then T is 1-1
  Suppose T(v_1) = T(v_2)
  need to show V_1 = V_2
   But T(V_1) = T(V_2)
  ff T(v_1) - T(v_2) = \vec{0}
 \overrightarrow{I} + T(V_1 - V_2) = \overrightarrow{O}
  then V_1 - V_2 + \ker T
 since KerT = \{\vec{y}, \vec{y}\} by assumption,
  V1 - V2 = 0
       i, V_1 = V_2
```