Overfitting and Model Tuning

Overfitting and Model Tuning

author: Son Nguyen

Reading Materials

► Max Kuhn. Chapter 4.

Prediction Problem

Given data of $X = [X_1, X_2, ..., X_d]$ and Y. Find the relation between X and Y.

► One Input Variable *X*

continuous

	V	
X	Υ	
13	4.0	
6	3.5	
14	3	
10	3.9	
7	2.7	
12	3.8	
1	1.5	

How are X and Y related?

eak9^{crieal}

Multiple Input Variables

X_1	X_2	 X ₃₅	Y
1	-1	 2	Tree
2.1	0	 6	Not a Tree
3	0	 8	Tree

How are X and Y related?

Prediction Problem

- ► If Y is continous, we have a regression problem.
- ▶ If Y is categorical, we have a classification problem.
- ▶ If Y is binary, we have a binary classification problem.

► This is a regression problem since *Y* is continuous.

Χ	Υ
13	4.0
6	3.5
14	3
10	3.9
7	2.7
12	3.8
1	1.5

► This is a binary classification Problem since *Y* is binary.

$\overline{X_1}$	<i>X</i> ₂	 X ₃₅	Y
1	-1	 2	Tree
2.1	0	 6	Not a Tree
3	0	 8	Tree

Overfitting

Consider the data:

Χ	Υ
13	4.0
6	3.5
14	3
10	3.9
7	2.7
12	3.8
1	1.5

- ▶ We will fit these data by polynomial model.
- ightharpoonup In polynomial model, Y is a polynomial function of X.

Overfitting

- ▶ We will fit these data by **polynomial model**.
- \triangleright In polynomial model, Y is a polynomial function of X.

- ▶ In polynomial model, we need to specify the degree of the polynomial, *n*. Let try a few.
- ▶ If n = 1, we have a familiar **linear model**.
- Question: Does increasing n resuls in a better model?

ightharpoonup n = 1. (linear sodel)

ightharpoonup n=2.

ightharpoonup n = 3.

ightharpoonup n = 4.

ightharpoonup n=5.

Question: What are the errors when n > 6?