

Capítulo 10: DHCP

Conceitos Essenciais de Roteamento e Switching

Cisco Networking Academy® Mind Wide Open™

- 10.0 Introdução
- 10.1 Dynamic Host Configuration Protocol v4
- 10.2 Dynamic Host Configuration Protocol v6
- 10.3 Resumo

Capítulo 10: Objetivos

- Descrever a operação de DHCPv4 em uma rede de negócios de pequeno a médio porte.
- Configurar um roteador como servidor DHCPv4.
- Configurar um roteador como cliente DHCPv4.
- Identificar e Solucionar Problemas de Configuração de DHCP para IPv4 em uma Rede Comutada.
- Explicar a operação do DHCPv6;
- Configurar um DHCPv6 stateless para uma empresa de pequeno a médio porte.
- Configurar um DHCPv6 stateful para uma empresa de pequeno a médio porte.
- Identificar e Solucionar Problemas de uma Configuração DHCP para IPv6 em uma Rede Comutada.

Introdução Introdução

 O Dynamic Host Configuration Protocol (DHCP) é um protocolo de rede que fornece endereçamento IP automático e outras informações aos clientes: endereço IP

Máscara de Sub-rede (IPv4) ou tamanho do prefixo (IPv6)

Endereço de gateway padrão

Endereço do servidor DNS

- Disponível para IPv4 e IPv6
- Este capítulo explora a funcionalidade, a configuração e a solução de problemas de DHCPv4 e DHCPv6

Operação de DHCPv4 Introdução ao DHCPv4

 O DHCPv4 usa três métodos diferentes de alocação de endereço

Alocação manual - O administrador atribui um endereço IPv4 préalocado ao cliente e o DHCPv4 comunica somente o endereço IPv4 para o dispositivo.

Alocação automática - O DHCPv4 atribui automaticamente um endereço IPv4 estático permanentemente a um dispositivo, selecionando o de um pool de endereços disponíveis. Sem arrendamento.

Alocação dinâmica - O DHCPv4 atribui dinamicamente ou arrenda um endereço IPv4 de um pool de endereços por um período limitado escolhido pelo servidor ou até o cliente não precisar mais do endereço. Mais comumente usado.

Operação de DHCPv4 Introdução ao DHCPv4

Operação DHCPv4

Formato de mensagem do DHCPv4

Formato de mensagens DHCPv4

8	16	24	32	
Código OP (1)	Tipo de hardware (1)	Comprimento do endereço de hardware (1)	Saltos (1)	
Identificador de transação				
Segundos - 2 bytes		Flags - 2 bytes		
Endereço IP do cliente (CIADDR) - 4 bytes				
Seu endereço IP (YIADDR) - 4 bytes				
Endereço IP do servidor (SIADDR) - 4 bytes				
Endereço IP do gateway (GIADDR) - 4 bytes				
Endereço de hardware do cliente (CHADDR) - 16 bytes				
Nome do servidor (SNAME) - 64 bytes				
Nome do arquivo de inicialização - 128 bytes				
Opções de DHCP - variável				

Operação do DHCPv4

Mensagens de descoberta e oferta do DHCPv4

DST MAC: FF:FF:FF:FF:FF SRC MAC: MAC A IP SRC: 0.0.0.0 IP DST: 255.255.255.255	UDP 67	CIADDR: 0.0.0.0 GIADDR: 0.0.0.0 Mask: 0.0.0.0 CHADDR: MAC A
---	--------	--

MAC: Endereço de Media Access Control

CIADDR: Endereço IP do cliente GIADDR: Endereço IP do gateway

Quadro Ethernet

CHADDR: Endereço de hardware do cliente

O cliente DHCP envia um broadcast de IP direcionado com um pacote DHCPDISCOVER. Neste exemplo, o servidor DHCP está no mesmo segmento e recolherá essa solicitação. O servidor nota que o campo GIADDR está em branco e, portanto, o cliente está no mesmo segmento. O servidor nota também o endereço de

UDP

DHCPDISCOVER

Operação do DHCPv4

Configurando um servidor DHCPv4

- É possível configurar um roteador da Cisco executando o software IOS Cisco como um servidor DHCPv4. Para configurar o DHCP
 - 1. Exclua os endereços do pool.
 - 2. Configurar o nome do pool DHCP
 - 3. Configurando tarefas específicas defina o intervalo de endereços e a máscara de sub-rede. Use o comando default-router para obter o gateway padrão. Itens opcionais que podem ser incluídos no pool dns server, domain-name

```
R1(config) # ip dhcp excluded-address 192.168.10.1 192.168.10.9
R1(config) # ip dhcp excluded-address 192.168.10.254
R1(config) # ip dhcp pool LAN-POOL-1
R1(dhcp-config) # network 192.168.10.0 255.255.255.0
R1(dhcp-config) # default-router 192.168.10.1
R1(dhcp-config) # dns-server 192.168.11.5
R1(dhcp-config) # domain-name example.com
R1(dhcp-config) # end
R1#
```

Para desativar o DHCP - no service dhcp

Verificando um servidor DHCPv4

- Comandos para verificar o DHCP show running-config | section dhcp show ip dhcp binding show ip dhcp server statistics
- No PC emita o comando ipconfig /all

```
C:\WINDOWS\system32\cmd.exe
  WINS Proxy Enabled ..... No
Ethernet Adapter Local Area Connection
  Connection-specific DNS Suffix.: example.com
  Description .....: SiS 900 PCI Fast Ethernet
                             Adapter
  Physical Address..... 00-E0-18-5B-DD-35
  Dhcp Enabled ..... Yes
  Autoconfiguration Enabled.....: Yes
  IP Address ..... 192.168.10.10
  Subnet Mask..... 255.255.255.0
  Default Gateway..... 192.168.10.1
  DHCP Server ..... 192.168.10.1
  Lease Obtained...... Monday, May 27, 2013 1:06:22PM
  Lease Expires ...... Tuesday, May 28,2013 1:06:22PM
               . . . . . . . .: 192.168.11.5
C:\Documents and settings\SpanPC>
```


Retransmissão DHCPv4

 O uso de um endereço IP auxiliar permite que um roteador encaminhe as transmissões DHCPv4 ao servidor DHCPv4. Atuando como um retransmissor.

```
R1(config) # interface g0/0
R1(config-if) # ip helper-address 192.168.11.6
R1(config-if) # end
R1# show ip interface g0/0
GigabitEthernet0/0 is up, line protocol is up
Internet address is 192.168.10.1/24
Broadcast address is 255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is 192.168.11.6
<Output omitted>
```

Configurando um cliente DHCPv4

Configurando um roteador como cliente DHCPv4

G0/1

SOHO

<Output omitted>

```
SOHO(config)# interface g0/1
SOHO(config-if)# ip address dhcp
SOHO(config-if)# no shutdown
SOHO(config-if)#
*Jan 31 17:31:11.507: %DHCP-6-ADDRESS_ASSIGN: Interface
GigabitEthernet0/1 assigned DHCP address 209.165.201.12, mask
255.255.255.224, hostname SOHO
SOHO(config-if)# end
SOHO# show ip interface g0/1
GigabitEthernet0/1 is up, line protocol is up
Internet address is 209.165.201.12/27
Broadcast address is 255.255.255
Address determined by DHCP
```

ISP

Identificar e Solucionar Problemas de DHCPv4 Identificar e Solucionar Problemas de Tarefas

Tarefa 1 de solução de problemas:	Resolver conflitos de endereço.
Tarefa 2 de solução de problemas:	Verificar a conectividade física.
Tarefa 3 de solução de problemas:	Teste com um endereço IPv4 estático.
Tarefa 4 de solução de problemas:	Verifique a configuração da porta do switch.
Tarefa 5 de solução de problemas:	Teste na mesma sub-rede ou VLAN.

Identificar e Solucionar Problemas de DHCPv4 Verificar a Configuração de DHCPv4 do Roteador

Verificação de retransmissão de DHCPv4 e serviços de DHCPv4

```
R1# show running-config | section interface GigabitEthernet0/0
interface GigabitEthernet0/0
ip address 192.168.10.1 255.255.255.0
ip helper-address 192.168.11.6
duplex auto
speed auto
R1#
R1# show running-config | include no service dhcp
R1#
```

Identificar e Solucionar Problemas de DHCPv4 **Depurando DHCPv4**

Verificação de DHCPv4 usando os comandos debug do roteador

```
R1(config)# access-list 100 permit udp any any eq 67
R1(config)# access-list 100 permit udp any any eq 68
R1(config)# end
R1# debug ip packet 100
IP packet debugging is on for access list 100
*IP: s=0.0.0.0 (GigabitEthernet0/1), d=255.255.255.255, len 333,
rcvd 2
*IP: s=0.0.0.0 (GigabitEthernet0/1), d=255.255.255.255, len 333,
stop process pak for forus packet
*IP: s=192.168.11.1 (local), d=255.255.255.255
(GigabitEthernet0/1), len 328, sending broad/multicast
<saída omitida>
R1# debug ip dhcp server events
DHCPD: returned 192.168.10.11 to address pool LAN-POOL-1
DHCPD: assigned IP address 192.168.10.12 to client
0100.0103.85e9.87.
DHCPD: checking for expired leases.
DHCPD: the lease for address 192.168.10.10 has expired.
DHCPD: returned 192.168.10.10 to address pool LAN-POOL-1
```

SLAAC e DHCPv6

Configuração automática do endereço de vida curta (SLAAC)

SLAAC é um método pelo qual um dispositivo pode obter um endereço global unicast IPv6 sem os serviços de um servidor DHCPv6.

Configuração automática do endereço stateless de ICMPv6

Anúncio do roteador (RA)

"Estes são o prefixo, o comprimento do prefixo e outras informações".

Multicast de todos os nós IPv6

SLAAC e DHCPv6 Operação de SLAAC

O cliente realiza a detecção de endereço duplicado

SLAAC e DHCPv6 SLAAC e DHCPv6

SLAAC e DHCPv6

SLAAC e DHCPv6 Opção de SLAAC

SLAAC e DHCPv6 Opção DHCP Stateless

SLAAC e DHCPv6 Opção DHCP Stateful

SLAAC e DHCPv6 Operações de DHCPv6

DHCPv6 Stateless Configurando um roteador como um servidor DHCPv6 Stateless


```
R1(config)# ipv6 unicast-routing
R1(config)# ipv6 dhcp pool IPV6-STATELESS
R1(config-dhcpv6)# dns-server 2001:db8:cafe:aaaa::5
R1(config-dhcpv6)# domain-name example.com
R1(config-dhcpv6)# exit
R1(config)# interface g0/1
R1(config-if)# ipv6 address 2001:db8:cafe:1::1/64
R1(config-if)# ipv6 dhcp server IPV6-STATELESS
R1(config-if)# ipv6 nd other-config-flag
```


Configurando um roteador como um cliente DHCPv6 Stateless


```
R3(config)# interface g0/1
R3(config-if)# ipv6 enable
R3(config-if)# ipv6 address autoconfig
R3(config-if)#
```

Verifique o cliente DHCP Stateless usando:

show IPv6 interface

debug ipv6 dhcp detail

Configurando um roteador como um servidor DHCPv6 Stateful

Configurando um roteador como um cliente DHCPv6 Stateful


```
R3(config)# interface g0/1
R3(config-if)# ipv6 enable
R3(config-if)# ipv6 address dhcp
R3(config-if)#
```

Verifique o servidor DHCPv6 Stateful usando:

show ipv6 dhcp pool show ipv6 dhcp binding

Verifique o cliente DHCPv6 Stateful usando:

show ipv6 interface

DHCOv6 Stateful

Configurar um roteador como um agente de retransmissão DHCPv6 Stateful


```
R1(config) # interface g0/0
R1(config-if) # ipv6 dhcp relay destination 2001:db8:cafe:1::6
R1(config-if) # end
R1# show ipv6 dhcp interface g0/0
GigabitEthernet0/0 is in relay mode
Relay destinations:
2001:DB8:CAFE:1::6
R1#
```


Tarefa 1 de solução de problemas:	Resolver conflitos de endereço.	
Tarefa 2 de solução de problemas:	Verificar o método de alocação.	
Tarefa 3 de solução de problemas:	Teste com um endereço estático IPv6.	
Tarefa 4 de solução de problemas:	Verifique a configuração da porta do switch.	
Tarefa 5 de solução de problemas:	Teste na mesma sub-rede ou VLAN.	

Identificando e solucionando problemas de DHCPv6 Verificar a configuração de DHCPv6 do roteador

Serviços de DHCPv6 Stateful

```
R1(config)# ipv6 unicast-routing
R1(config)# ipv6 dhcp pool IPV6-STATEFUL
R1(config-dhcpv6)# address prefix 2001:DB8:CAFE:1::/64 lifetime infinite
R1(config-dhcpv6)# dns-server 2001:db8:cafe:aaaa::5
R1(config-dhcpv6)# domain-name example.com
R1(config-dhcpv6)# exit
R1(config-dhcpv6)# exit
R1(config)# interface g0/1
R1(config-if)# ipv6 address 2001:db8:cafe:1::1/64
R1(config-if)# ipv6 dhcp server IPV6-STATEFUL
R1(config-if)# ipv6 nd managed-config-flag
```

Serviços de DHCPv6 stateless

```
R1(config) # ipv6 unicast-routing
R1(config) # ipv6 dhcp pool IPV6-STATELESS
R1(config-dhcpv6) # dns-server 2001:db8:cafe:aaaa::5
R1(config-dhcpv6) # domain-name example.com
R1(config-dhcpv6) # exit
R1(config) # interface g0/1
R1(config-if) # ipv6 address 2001:db8:cafe:1::1/64
R1(config-if) # ipv6 dhcp server IPV6-STATELESS
R1(config-if) # ipv6 nd other-config-flag
```

Identificando e solucionando problemas de DHCPv6

Depurando o DHCPv6

```
R1# debug ipv6 dhcp detail
   IPv6 DHCP debugging is on (detailed)
R1#
*Feb 3 21:27:41.123: IPv6 DHCP: Received SOLICIT from
FE80::32F7:DFF:FE25:2DE1 on GigabitEthernet0/1
*Feb 3 21:27:41.123: IPv6 DHCP: detailed packet contents
*Feb 3 21:27:41.123: src FE80::32F7:DFF:FE25:2DE1
(GigabitEthernet0/1)
*Feb 3 21:27:41.127: dst FF02::1:2
*Feb 3 21:27:41.127: type SOLICIT(1), xid 13190645
*Feb 3 21:27:41.127: option ELAPSED-TIME(8), len 2
*Feb 3 21:27:41.127:
                         elapsed-time 0
*Feb 3 21:27:41.127:
                       option CLIENTID(1), len 10
*Feb 3 21:27:41.127:
                         0.00
*Feb 3 21:27:41.127: IPv6 DHCP: Using interface pool IPv6-
STATEFILL
*Feb 3 21:27:41.127: IPv6 DHCP: Creating binding for
FE80::32F7:DFF:FE25:2DE1 in pool IPV6-STATEFUL
<Output omitted>
```

Capítulo 10: Resumo

- Todos os nós em uma rede requerem um endereço IP exclusivo para se comunicar com outros dispositivos.
- O DHCPv4 inclui três métodos diferentes de alocação de endereço:

Alocação manual

Alocação automática

Alocação dinâmica

 Existem dois métodos disponíveis para a configuração dinâmica de endereços globais unicast IPv6.

Configuração automática do endereço de vida curta (SLAAC)

Dynamic Host Configuration Protocol para IPv6 (DHCPv6 Stateful)

Capítulo 10: Resumo (continuação)

- As mesmas tarefas estão envolvidas durante a solução de problemas de DHCPv4 e DHCPv6:
 - Resolver conflitos de endereço
 - Verificar a conectividade física
 - Testar a conectividade usando um endereço IP estático
 - Verifique a configuração da porta do switch
 - Testar a operação na mesma sub-rede ou na VLAN

Cisco | Networking Academy® | Mind Wide Open™