Package 'CCA'

February 19, 2015

Type Package

Encoding latin1
Title Canonical correlation analysis
Version 1.2
Date 2009-03-11
Author Ignacio González, Sébastien Déjean
Maintainer Sébastien Déjean < sebastien.dejean@math.univ-toulouse.fr>
Description The package provide a set of functions that extend the cancor function with new numerical and graphical outputs. It also include a regularized extension of the cannonical correlation analysis to deal with datasets with more variables than observations.
Depends fda, fields
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-10-29 13:13:37
NeedsCompilation no
R topics documented:
CCA-package
cc
comput
img.estim.regul
img.matcor
loo

 nutrimouse
 9

 plt.cc
 10

 plt.indiv
 11

 plt.var
 12

 rcc
 12

2 cc

Index 14

CCA-package Canonical correlation analysis

Description

The package provides a set of functions that extend the cancor() function with new numerical and graphical outputs. It includes a regularized extension of the canonical correlation analysis to deal with datasets with more variables than observations and enables to handle with missing values.

Details

Package: CCA
Type: Package
Version: 1.0

Date: 2007-02-02 License: None

Author(s)

Ignacio González, Sébastien Déjean

Maintainer: Sébastien Déjean <sebastien.dejean@math.ups-tlse.fr>

References

www.lsp.ups-tlse.fr/CCA

СС

Canonical Correlation Analysis

Description

The function performs Canonical Correlation Analysis to highlight correlations between two data matrices. It complete the cancor() function with supplemental numerical and graphical outputs and can handle missing values.

Usage

cc(X, Y)

cc 3

Arguments

Χ	numeric matrix $(n * p)$, containing the X coordinates.
Υ	numeric matrix (n * q), containing the Y coordinates.

Details

The canonical correlation analysis seeks linear combinations of the 'X' variables which are the most correlated with linear combinations of the 'Y' variables.

Let PX and PY be the projector onto the respective column-space of X and Y. The eigenanalysis of PXPY provide the canonical correlations (square roots of the eigenvalues) and the coefficients of linear combinations that define the canonical variates (eigen vectors).

Value

A list containing the following components:

cor	canonical correlations
names	a list containing the names to be used for individuals and variables for graphical outputs
xcoef	estimated coefficients for the 'X' variables as returned by cancor()
ycoef	estimated coefficients for the 'Y' variables as returned by cancor()
scores	a list returned by the internal function comput() containing individuals and variables coordinates on the canonical variates basis.

Author(s)

Sébastien Déjean, Ignacio González

References

```
www.lsp.ups-tlse.fr/CCA
```

See Also

```
rcc, plt.cc
```

```
data(nutrimouse)
X=as.matrix(nutrimouse$gene[,1:10])
Y=as.matrix(nutrimouse$lipid)
res.cc=cc(X,Y)
plot(res.cc$cor,type="b")
plt.cc(res.cc)
```

4 comput

com	~ · ·	+

Additional computations for CCA

Description

The comput() function can be viewed as an internal function. It is called by cc() and rcc to perform additional computations. The user does not have to call it by himself.

Usage

```
comput(X, Y, res)
```

Arguments

X	numeric matrix (n * p), containing the X coordinates.
Υ	numeric matrix (n \ast q), containing the Y coordinates.
res	results provided by the cc() and rcc() functions.

Value

A list containing the following components:

```
xscores X canonical variates
yscores Y canonical variates
corr.X.xscores Correlation bewteen X and X canonical variates
corr.Y.xscores Correlation bewteen Y and X canonical variates
corr.X.yscores Correlation bewteen X and Y canonical variates
corr.Y.yscores Correlation bewteen Y and Y canonical variates
```

Author(s)

Sébastien Déjean, Ignacio González

```
cc, rcc
```

estim.regul 5

estim.regul	Estimate the parameters of regularization
-------------	---

Description

Calulate the leave-one-out criterion on a 2D-grid to determine optimal values for the parameters of regularization.

Usage

```
estim.regul(X, Y, grid1 = NULL, grid2 = NULL, plt = TRUE)
```

Arguments

X	numeric matrix (n * p), containing the X coordinates.
Υ	numeric matrix (n * p), containing the X coordinates.
grid1	vector defining the values of lambda1 to be tested. If NULL, the vector is defined as $seq(0.001, 1, length = 5)$
grid2	vector defining the values of lambda2 to be tested. If NULL, the vector is defined as $seq(0.001, 1, length = 5)$
plt	logical argument indicating whether an image should be plotted by calling the img.estim.regul() function.

Value

A 3-vector containing the 2 values of the parameters of regularization on which the leave-one-out criterion reached its maximum; and the maximal value reached on the grid.

Author(s)

Sébastien Déjean, Ignacio González

See Also

100

```
#data(nutrimouse)
#X=as.matrix(nutrimouse$gene)
#Y=as.matrix(nutrimouse$lipid)
#res.regul = estim.regul(X,Y,c(0.01,0.5),c(0.1,0.2,0.3))
```

6 img.matcor

img.estim.regul

Plot the cross-validation criterion

Description

This function provide a visualization of the values of the cross-validation criterion obtained on a grid defined in the function estim.regul().

Usage

```
img.estim.regul(estim)
```

Arguments

estim

Object returned by estim.regul().

Author(s)

Sébastien Déjean, Ignacio González

See Also

```
estim.regul
```

img.matcor

Image of correlation matrices

Description

Display images of the correlation matrices within and between two data matrices.

Usage

```
img.matcor(correl, type = 1)
```

Arguments

correl

Correlation matrices as returned by the matcor() function

type

character determining the kind of plots to be produced: either one ((p+q) *

(p+q)) matrix or three matrices (p * p), (q * q) and (p * q)

Details

Matrices are pre-processed before calling the image() function in order to get, as in the numerical representation, the diagonal from upper-left corner to bottom-right one.

100

Author(s)

Sébastien Déjean, Ignacio González

See Also

matcor

Examples

```
data(nutrimouse)
X=as.matrix(nutrimouse$gene)
Y=as.matrix(nutrimouse$lipid)
correl=matcor(X,Y)
img.matcor(correl)
img.matcor(correl,type=2)
```

100

Leave-one-out criterion

Description

The loo() function can be viewed as an internal function. It is called by estim.regul() to obtain optimal values for the two parameters of regularization.

Usage

```
loo(X, Y, lambda1, lambda2)
```

Arguments

X numeric matrix (n * p), containing the X coordinates.
Y numeric matrix (n * q), containing the Y coordinates.
lambda1 parameter of regularization for X variables
lambda2 parameter of regularization for Y variables

Author(s)

Sébastien Déjean, Ignacio González

```
estim.regul
```

8 matcor

matcor

Correlations matrices

Description

The function computes the correlation matrices within and between two datasets.

Usage

```
matcor(X, Y)
```

Arguments

X numeric matrix (n * p), containing the X coordinates.
Y numeric matrix (n * q), containing the Y coordinates.

Value

A list containing the following components:

Xcor Correlation matrix (p * p) for the X variables Ycor Correlation matrix (q * q) for the Y variables

XYcor Correlation matrix ((p+q) * (p+q)) between X and Y variables

Author(s)

Sébastien Déjean, Ignacio González

See Also

```
img.matcor
```

```
data(nutrimouse)
X=as.matrix(nutrimouse$gene)
Y=as.matrix(nutrimouse$lipid)
correl=matcor(X,Y)
img.matcor(correl)
img.matcor(correl,type=2)
```

nutrimouse 9

nutrimouse

Nutrimouse dataset

Description

The nutrimouse dataset comes from a nutrition study in the mouse. It was provided by Pascal Martin from the Toxicology and Pharmacology Laboratory (French National Institute for Agronomic Research).

Usage

data(nutrimouse)

Format

A list containing the following components:

- gene: data frame (40 * 120) with numerical variables
- lipid: data frame (40 * 21) with numerical variables
- diet: factor vector (40)
- genotype: factor vector (40)

Details

Two sets of variables were measured on 40 mice:

- expressions of 120 genes potentially involved in nutritional problems.
- concentrations of 21 hepatic fatty acids.

The 40 mice were distributed in a 2-factors experimental design (4 replicates):

- Genotype (2-levels factor): wild-type and PPARalpha -/-
- Diet (5-levels factor): Oils used for experimental diets preparation were corn and colza oils (50/50) for a reference diet (REF), hydrogenated coconut oil for a saturated fatty acid diet (COC), sunflower oil for an Omega6 fatty acid-rich diet (SUN), linseed oil for an Omega3-rich diet (LIN) and corn/colza/enriched fish oils for the FISH diet (43/43/14).

Source

P. Martin, H. Guillou, F. Lasserre, S. Déjean, A. Lan, J-M. Pascussi, M. San Cristobal, P. Legrand, P. Besse, T. Pineau - Novel aspects of PPARalpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology, in press, 2007.

References

www.inra.fr/internet/Centres/toulouse/pharmacologie/pharmaco-moleculaire/acceuil.html

plt.cc

Examples

```
data(nutrimouse)
boxplot(nutrimouse$lipid)
```

plt.cc

Graphical outputs for canonical correlation analysis

Description

This function calls either plt.var() or plt.indiv() or both functions to provide individual and/or variable representation on the canonical variates.

Usage

```
plt.cc(res, d1 = 1, d2 = 2, int = 0.5, type = "b", ind.names = NULL,
var.label = FALSE, Xnames = NULL, Ynames = NULL)
```

Arguments

res	Object returned by cc() or rcc()
d1	The dimension that will be represented on the horizontal axis
d2	The dimension that will be represented on the vertical axis
int	The radius of the inner circle
type	Character "v" (variables), "i" (individuals) or "b" (both) to specifying the plot to be done.
ind.names	vector containing the names of the individuals
var.label	logical indicating whether label should be plotted on the variables representation
Xnames	vector giving the names of X variables
Ynames	vector giving the names of Y variables

Author(s)

Sébastien Déjean, Ignacio González

References

www.lsp.ups-tlse.fr/Biopuces/CCA

```
plt.indiv,plt.var
```

plt.indiv 11

Examples

```
data(nutrimouse)
X=as.matrix(nutrimouse$gene[,1:10])
Y=as.matrix(nutrimouse$lipid)
res.cc=cc(X,Y)
plt.cc(res.cc)
plt.cc(res.cc,d1=1,d2=3,type="v",var.label=TRUE)
```

plt.indiv

Individuals representation for CCA

Description

This function provides individuals representation on the canonical variates.

Usage

```
plt.indiv(res, d1, d2, ind.names = NULL)
```

Arguments

res	Object returned by cc() or rcc()
d1	The dimension that will be represented on the horizontal axis
d2	The dimension that will be represented on the vertical axis
ind.names	vector containing the names of the individuals

Author(s)

Sébastien Déjean, Ignacio González

References

www.lsp.ups-tlse.fr/Biopuces/CCA

```
plt.var, plt.cc
```

12 rcc

p]	1+	,	va	r
N.	Lι	• '	٧a	•

Variables representation for CCA

Description

This function provides variables representation on the canonical variates.

Usage

```
plt.var(res, d1, d2, int = 0.5, var.label = FALSE, Xnames = NULL, Ynames = NULL)
```

Arguments

Author(s)

Sébastien Déjean, Ignacio González

References

www.lsp.ups-tlse.fr/Biopuces/CCA

See Also

```
plt.indiv, plt.cc
```

rcc

Regularized Canonical Correlation Analysis

Description

The function performs the Regularized extension of the Canonical Correlation Analysis to seek correlations between two data matrices when the number of columns (variables) exceeds the number of rows (observations)

Usage

```
rcc(X, Y, lambda1, lambda2)
```

rcc 13

Arguments

X numeric matrix (n * p), containing the X coordinates.
Y numeric matrix (n * q), containing the Y coordinates.

lambda1 Regularization parameter for Xlambda2 Regularization parameter for Y

Details

When the number of columns is greater than the number of rows, the matrice X'X (and/or Y'Y) may be ill-conditioned. The regularization allows the inversion by adding a term on the diagonal.

Value

A list containing the following components:

corr canonical correlations

names a list containing the names to be used for individuals and variables for graphical

outputs

xcoef estimated coefficients for the 'X' variables as returned by cancor()
ycoef estimated coefficients for the 'Y' variables as returned by cancor()

scores a list returned by the internal function comput() containing individuals and vari-

ables coordinates on the canonical variates basis.

Author(s)

Sébastien Déjean, Ignacio González

References

Leurgans, Moyeed and Silverman, (1993). Canonical correlation analysis when the data are curves. J. Roy. Statist. Soc. Ser. B. 55, 725-740.

Vinod (1976). Canonical ridge and econometrics of joint production. J. Econometr. 6, 129-137.

See Also

```
cc, estim.regul, plt.cc
```

```
data(nutrimouse)
X=as.matrix(nutrimouse$gene)
Y=as.matrix(nutrimouse$lipid)
res.cc=rcc(X,Y,0.1,0.2)
plt.cc(res.cc)
```

Index

```
*Topic datasets
    nutrimouse, 9
*Topic dplot
    \verb"img.estim.regul", 6
     img.matcor, 6
    plt.cc, 10
    plt.indiv, 11
    \mathsf{plt.var}, \textcolor{red}{12}
*Topic multivariate
    cc, 2
    CCA-package, 2
    comput, 4
    estim.regul, 5
    100, 7
    matcor, 8
    rcc, 12
cc, 2, 4, 13
CCA (CCA-package), 2
CCA-package, 2
comput, 4
estim.regul, 5, 6, 7, 13
img.estim.regul, 6
img.matcor, 6, 8
loo, 5, 7
matcor, 7, 8
nutrimouse, 9
plt.cc, 3, 10, 11–13
plt.indiv, 10, 11, 12
plt.var, 10, 11, 12
rcc, 3, 4, 12
```