線形作用素

竹田航太

2023年10月20日

目次

1	行列
1.1	対角化
1.2	自己共役
1.3	逆行列
	線形作用素
2.1	作用素
2.2	Baire のカテゴリー定理
2.3	コンパクト作用素 ほ
2.4	クラス
2.5	Covariance operator

概要

行列,線形作用素の基礎事項について,応用数学で必要な内容を中心にまとめる.

1 行列

1.1 対角化

Definition 1.1. $A \in M_n(\mathbb{C})$ に対して,

- A が正規 $(normal) \stackrel{def}{\Leftrightarrow} A^*A = AA^*$.
- A がユニタリ $(unitary) \stackrel{def}{\Leftrightarrow} A^*A = AA^* = I.$

Theorem 1.2. (対角化) $A \in M_n(\mathbb{C})$ に対して、ユニタリ対角化可能であることと正規行列であることは同値.

1.2 自己共役

Definition 1.3. 自己共役,正定値を定義する.

- $A \in M_n(\mathbb{C})$ が自己共役 $(self\text{-}adjoint)^{def} A^* = A$ 自己共役行列全体の集合を $M_n(\mathbb{C})_{sa}$ とかく.
- $A \in M_n(\mathbb{C})_{sa}$ が正定値 (positive-definite) $\stackrel{def}{\Leftrightarrow} x^*Ax > 0 \ (\forall x \neq 0 \in \mathbb{C}^n)$ 同様に全体の集合を $M_n(\mathbb{C})_+$ とかく.
- $A \in M_n(\mathbb{C})_{sa}$ が半正定値 (positive-definite) $\stackrel{def}{\Leftrightarrow} x^*Ax \geq 0 \ (\forall x \in \mathbb{C}^n)$ 同様に全体の集合を $M_n(\mathbb{C})_{+=}$ とかく.

(1) Aの固有値は全て実数

Theorem 1.5 (正定値行列の特徴づけ). $A \in M_n(\mathbb{C})_{sa}$ に対して以下は同値

- (1) $A \in M_n(\mathbb{C})_+$
- (2) A の固有値は正
- (3) 正の対角行列でユニタリ対角化できる
- (4) $\exists S \in M_n(\mathbb{C}), S$: 正則 s.t. $A = S^*S$

Theorem 1.6. $A \in M_n(\mathbb{C})_{sa}$ に対して以下は同値

- (1) $A \in M_n(\mathbb{C})_{+=}$
- (2) A の固有値は非負
- (3) 非負の対角行列でユニタリ対角化できる
- (4) $\exists S \in M_n(\mathbb{C}) \text{ s.t. } A = S^*S$

Theorem 1.7. $A \in M_n(\mathbb{C})_+$ の固有値は全て正であり det(A) > 0 が成り立つので、A は正則であり、 $A^{-1} \in M_n(\mathbb{C})_+$.

1.3 逆行列

Lemma 1.8. $P, I \in M_n(\mathbb{C})$ で I は単位行列. I + P: 可逆とする. このとき以下が成り立つ.

$$(I+P)^{-1} = I - (I+P)^{-1}P$$

Proof.

$$LHS = (I+P)^{-1}(I+P-P) = I - (I+P)^{-1}P = RHS$$

Lemma 1.9. $P \in M_{n \times m}(\mathbb{C}), Q \in M_{m \times n}(\mathbb{C}), I_n(I_m)$ をそれぞれ n(m) 次単位行列とする. $I_n + PQ, I_m + QP$: 可逆とする. このとき以下が成り立つ.

$$(I + PQ)^{-1}P = P(I + QP)^{-1}$$

Proof.

$$P + PQP = P(I + QP) = (I + PQ)P$$

より右の等式で左から $(I + PQ)^{-1}$, 右から $(I + QP)^{-1}$ をかけると従う.

Lemma 1.10. $P,Q \in M_n(\mathbb{C})$:可逆とする. このとき以下が成り立つ.

$$(PQ)^{-1} = Q^{-1}P^{-1}$$

Proof. I_n を n 次単位行列として $(PQ)Q^{-1}P^{-1} = I_n, \ Q^{-1}P^{-1}(PQ) = I_n$

Theorem 1.11. $A \in M_n(\mathbb{C}), B \in M_{n \times m}(\mathbb{C}), C \in M_{m \times n}(\mathbb{C}), D \in M_m(\mathbb{C})$ として、 $A, D, D + CA^{-1}B$: 可逆とする. このとき以下が成り立つ.

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

Proof.

$$\begin{split} (A+BD^{-1}C)^{-1} &= (A(I+A^{-1}BD^{-1}C))^{-1} \\ &\stackrel{1.10}{=} (I+A^{-1}BD^{-1}C)^{-1}A^{-1} \\ &\stackrel{1.8}{=} \{I-(I+A^{-1}BD^{-1}C)^{-1}A^{-1}BD^{-1}C\}A^{-1} \\ &= A^{-1} - (I+A^{-1}BD^{-1}C)^{-1}A^{-1}BD^{-1}CA^{-1} \\ &\stackrel{1.9}{=} A^{-1} - A^{-1}B(I+D^{-1}CA^{-1}B)^{-1}D^{-1}CA^{-1} \\ &\stackrel{1.10}{=} A^{-1} - A^{-1}B(D+CA^{-1}B)^{-1}CA^{-1} \end{split}$$

*等号の上の数字は Lemma の番号

Theorem 1.12. $P \in M_n(\mathbb{C})_+$ (正定値), $R \in M_m(\mathbb{C})_+$, $B \in M_{n \times m}(\mathbb{C})$ とする. このとき $(BPB^* + R)$ は 可逆で以下が成り立つ.

$$(P^{-1} + B^*R^{-1}B)^{-1}B^*R^{-1} = PB^*(BPB^* + R)^{-1}$$

Proof. Lemma を使う.

$$(P^{-1} + B^*R^{-1}B)^{-1}B^*R^{-1} \stackrel{1.10}{=} (I + PB^*R^{-1}B)^{-1}PB^*R^{-1}$$

$$\stackrel{1.9}{=} PB^*(I + R^{-1}BPB^*)^{-1}R^{-1}$$

$$\stackrel{1.10}{=} PB^*(BPB^* + R)^{-1}$$

*等号の上の数字は Lemma の番号

Example 1.1 (Kálmán filter). y: 観測データ,C: 対称正定値,R: 対称正定値,H 観測 operator とすると

$$(I + CH^*R^{-1}H)x^a = x^f + CH^*R^{-1}y \Leftrightarrow x^a = x^f + CH^*S^{-1}(y - Hx^f)$$

Proof. 左の式の両辺に左から $(I+CH^*R^{-1}H)^{-1}=(C^{-1}+H^*R^{-1}H)^{-1}C^{-1}$ をかける

$$x^{a} = (I + CH^{*}R^{-1}H)^{-1}x^{f} + (C^{-1} + H^{*}R^{-1}H)^{-1}C^{-1}CH^{*}R^{-1}y$$

$$\stackrel{1.11,1.12}{=} \{I - CH^{*}(R + H^{*}CH)^{-1}H\}x^{f} + CH^{*}(HCH^{*} + R)^{-1}y$$

$$= x^{f} + CH^{*}S^{-1}(y - Hx^{f})$$

2 線形作用素

2.1 作用素

Definition 2.1 (作用素). *Banach* 空間 X, Y に対して、線型写像 $T: X \to Y$ を作用素という.

Definition 2.2 (有界作用素). 作用素 $T: X \to Y$ が有界 $\stackrel{def}{\Leftrightarrow} TX_1 \subset Y$ が有界. ただし、 $X_1 = \{x \in X | ||x|| \le 1\}$ とした. さらに、有界作用素全体の集合を B(X,Y) とかく.

Theorem 2.3 (連続性と有界性). 作用素 $X \to Y$ について以下は同値.

- (1) T は連続.
- (2) T は $o \in X$ で連続.
- (3) T は有界.

有界とは限らない作用素で重要なものに閉作用素がある.

Definition 2.4 (閉作用素). Banach 空間 X,Y に対して、作用素 $T:D(T)\to Y$ を考える。ただし、T の定義域を D(T) とかいた。T のグラフを $\mathcal{G}_T=\{(x,Tx)\in X\times Y,x\in D(T)\}$ で定める。さらに、 $X\times Y$ の ノルムを

$$||(x,y)||_{X\times Y} = ||x||_X + ||y||_Y$$

で与え、このノルムに対して G_T が $X \times Y$ の閉部分空間であるとき、T を閉作用という.

2.2 Baire **のカテゴリー定理**

Baire のカテゴリー定理とそれか導かれる関数解析学の基本的な定理をまとめる.

Theorem 2.5 (Baire のカテゴリー定理). X は完備距離空間, $(F_n)_{n\in\mathbb{N}}\subset X$ は $\bigcup_{n=1}^{\infty}F_n=X$ を満たす閉集合の列とする. このとき, ある $n\in\mathbb{N}$ で F_n は内点を持つ.

Theorem 2.6 (逆写像定理). X, Y を Banach 空間, $T \in B(X, Y)$ が全単射とする. このとき, $T^{-1} \in B(Y, X)$, つまり有界.

Theorem 2.7 (開写像定理). X, Y を Banach 空間, $T \in B(X, Y)$ は全射とする. このとき, T は開写像. $(T^{-1}$ は連続)

Theorem 2.8 (閉グラフ定理). X,Y を Banach 空間, $T:X\to Y$ は閉作用素で D(T)=X であるとする. このとき, $T\in B(X,Y)$.

2.3 コンパクト作用素

Definition 2.9 (自己共役作用素). $A \in B(H)$ に対して,

A が自己共役作用素 $\stackrel{def}{\Leftrightarrow} \forall x,y \in H, \langle Ax,y \rangle = \langle x,Ay \rangle$

自己共役作用素全体の集合を $B_{sa}(H)$ とかく.

Definition 2.10 ((自己共役) 非負作用素). $A \in B_{sa}(H)$ に対して

$$A$$
 が非負作用素 $\stackrel{def}{\Leftrightarrow} \forall x \in H, \langle Ax, x \rangle \geq 0$ $\Leftrightarrow \exists T \in B(H) \ s.t. \ A = T^*T$ $\Leftrightarrow \sigma(A) \subset [0, \infty)$

 $A \in B_{sa}(H)$ が非負作用素であることを $A \ge 0$ と表す. T を A の平方根と呼び, $T = A^{1/2}$ とかく.

Definition 2.11 ((自己共役) 正作用素). $A \in B_{sa}(H)$ に対して

A が正作用素 (positive operator) $\stackrel{def}{\Leftrightarrow} \exists c > 0, \forall x \in H, \langle Ax, x \rangle \geq c ||x||^2$

 $A \in B_{sa}(H)$ が正作用素であることを A > 0 と表す. A が正作用素であれば非負作用素でもある.

無限次元においては,正作用素の定義は非負かつ非退化 (i.e., $\langle Ax,x\rangle=0\Leftrightarrow x=0$) と同値ではないので注意が必要.

Definition 2.12 (コンパクト作用素). $T \in B(H)$ がに対して TB(0,1) が全有界であるとき T はコンパクト作用素であるという. ただし, $B(0,1) \coloneqq \{x \in H; \|x\| \le 1\}$ は H の閉単位球.

Theorem 2.13 (コンパクト自己共役作用素のスペクトル分解). H: 可分 Hilbert 空間とする. $A \in B_{sa}(H) \cap K(H)$ とすると, $\sigma(A) \setminus \{0\} = \sigma_p(A) \setminus \{0\}$ である.さらに A の固有値の列 $(\lambda_n)_{n=1}^{\infty}$ と対応する固有ベクトルからなる H の正規直交基底 $(e_n)_{n=1}^{\infty}$ が存在して,

$$A = \sum_{n=1}^{\infty} \lambda_n e_n \otimes e_n^* = \sum_{n=1}^{\infty} \lambda_n P_n$$

が作用素ノルムでの収束の意味で成り立つ. ただし, $e_n \otimes e_n^* = P_n$ は $Ker(\lambda_n I - T)$ への射影.

2.4 クラス

Definition 2.14 (特異値). $A \in K(H)$ に対し、絶対値作用素 $|A| = (A*A)^{1/2}$ の固有値の列 $\{s_n(A)\}_{n=1}^N$ を特異値と呼ぶ.

Definition 2.15 (Schatten p class). $1 \le p < \infty$ に対して, Schatten p クラスを

$$C_p(H) := \{ A \in K(H); ||A||_{C_p} < \infty \}$$

で定める. ただし、 $||A||_{C_p} = (\sum_n s_n(A)^p)^{1/p}$ である. 特に $C_2(H)$ を Hilbert Schmidt クラス, $C_1(H)$ を トレースクラスという.

Definition 2.16 (トレース). $A \in B(H)_+$ に対してトレースを $Tr(A) := \sum_n \langle Ae_n, e_n \rangle \in [0, \infty]$ と定める. ただし, $(e_n)_{n \in \mathbb{N}}$ の CONS でありトレースはこの取り方によらず定まる.

Lemma 2.17 (トレースクラス). $A \in B(H)$ に対して $\|A\|_{C_1} = Tr(|A|)$ である. この値が有限のとき (つまり, A がトレースクラス作用素のとき), Tr(A) も有限.

Theorem 2.18 (Hilbert Schmidt class). $T \in B(H)$ に対して $Tr(T^*T) < \infty \Leftrightarrow T \in C_2(H)$ である. さらにこのとき $Tr(T^*T) = \|T\|_{HS}^2 = \|T\|_{C_2}^2$ が成り立つ. また $Tr(T^*T) = \sum_n \|T_n e_n\|^2 = \sum_{n,m} |\langle T_n e_n, e_m \rangle|^2$ などもわかる.

Theorem 2.19 (class の関係). $C_1(H) \subset C_2(H) \subset K(H) \subset B(H)$. $C_2(H)C_2(H) \subset C_1(H)$. $C_1(H)$ は B(H) のイデアル.

2.5 Covariance operator

H を可分 Hilbert 空間とする.

Definition 2.20 (Covariance). H-値確率変数 X について,Pettis 積分の意味で平均 $m=\mathbb{E}[X]\in H$ を定義する.さらに,Covariance 作用素 $C:H\to H$ を

$$C = \mathbb{E}[(X - m) \otimes (X - m)]$$

で定める.

Proposition 2.21. H-値確率変数 X の平均を $m \in H$ とする. X の Covariance 作用素 C は以下を満たす.

- (1) $C \in B_{sa}(H)$.
- (2) $C \ge 0$.
- (3) $dim(S) \ge 1$ で $(X-m) \perp S$ a.s. となる部分空間 $S \subset H$ が存在しなければ C は非退化.

Theorem 2.22 (Sazonov[1, 2]). μ を平均 0 の H 上の正規分布とする. このとき, C の covariance 作用素 C_{μ} は以下を満たす.

- (1) $C_{\mu} \in C_1(H)$
- (2) 2次モーメントは trace に一致する.

$$tr(C_{u}) = \mathbb{E}_{X \sim u}[\|X\|^{2}].$$

逆に、 $C \in B_{sa}(H) \cap C_1(H), C \ge 0$ に対して、 $C_{\mu} = C$ となる正規分布 μ が存在する.

Remark 2.23. H が無限次元とする. $C \in B_{sa}(H)$ について, C > 0 と $C \in C_1(H)$ は両立しない. このため, C > 0 を Covariance としてもつ正規分布は存在しない. 逆に正規分布の Covariance は可逆ではない.

参考文献

- [1] V. Sazonov. A remark on characteristic functionals. Theory of Probability & Its Applications, 3(2):188–192, 1958.
- [2] Timothy John Sullivan. Introduction to uncertainty quantification, volume 63. Springer, 2015.
- [3] 齋藤正彦. 線形代数学入門. 東京大学出版, 2011.
- [4] Ged Ridgway. Matrix inversion identities. http://www0.cs.ucl.ac.uk/staff/g.ridgway/mil/mil.pdf (2020/7/5).
- [5] 黒田成俊. 関数解析. 共立出版, 1980.