FSE598 前沿计算技术

模块1 计算思维 单元1 计算机系统设计 第3讲 算术与逻辑单元

本讲座的英文版内容基于教材:

The English version of the lectures are partly based on the book: Patterson and Hennessy, Computer Organization and Design: The Hardware Software Interface

本讲提要

- 学习
- □二进制数运算与硬件设计
- □加減
- □其他指令
- □ ALU 设计
- □乘除法逻辑设计

二进制数和加法

□十进制转二进制

□二进制加法

 $19 \rightarrow 10011$

MIPS 算数逻辑单元(ALU)

□ 必须支持的指令集架构中的算数/逻辑运算

指令示例

add: 川 add \$10, \$11, \$12 # \$10 ← \$11 + \$12

sub: 减 sub \$10, \$11, \$12 # \$10 ← \$11 - \$12

mult: 乘 mult \$10, \$11, \$12 # \$10 ← \$11 * \$12

div: 除 div \$10, \$11, \$12 # \$10 ← \$11 / \$12

and, or, not, xor: 与、或、非、异或

beq: 相等时分支 beq \$14, \$15, L # if (\$14 == \$15) go to L

bne: 不相等时分支 bne \$14, \$15, L # if (\$14 != \$15) go to L

slt: 小于则置位 slt \$14, \$15, \$16 # \$14 = 1 if (\$15 < \$16) else \$14 = 0

包含三个运算的一位ALU

资料来源: Patterson 和 Hennessy,《计算机组成与设计:硬件/软件接口》(Computer Organization and Design: The Hardware Software Interface)

32位 ALU

最低 1位 ALU (bit 0)

CarryIn 进位输入 运算 Binvert a_0 → 结果 b_0 2 CarryOut 进位输出

最高 1位 ALU (bit 31)

(用于 slt 指令)

乘法

□ 二进制乘法只是一堆右移和加法

乘法器硬件(基本设计)

□从长乘法开始

乘法器硬件

优化的乘法器

□ 并行执行步骤: 加法/移动

带加法和右移的乘数器硬件

除法

- □ 检查 0 除数
- □ 长除法
 - 如果除数≤被除数位
 - 商数位1,减
 - 否则
 - 商数位0, 把下一个被除数位挪下来
- □ 恢复除法
 - 做减法,如果余数<0,则将除数加回
- □ 有符号除法
 - 使用绝对值除
 - 根据需要调整商和余数的符号

n 位运算数产生 n 位商和 n 位余数

优化的除法器

- □ 每个部分余数减法形成一个周期
- □ 看起来很像乘法器!
 - 相同的硬件可用于乘法和除法

左移和减除硬件

Emerging Computing Technologies