1)

	$I_{x} = I * G_{x}$										
i, j	0	1	2	3	4	5	6	7	8	9	
0	100	100	0	0	0	0	0	100	-100	-200	
1	210	250	-10	-50	0	0	0	400	-200	-600	
2	130	200	20	-100	-50	0	0	700	-100	-800	
3	40	60	60	-10	-100	-50	0	800	0	-800	
4	40	20	10	80	0	-100	-50	800	0	-800	
5	40	10	-40	40	100	0	-100	750	0	-800	
6	40	0	-40	0	50	100	-50	700	0	-800	
7	40	10	-30	0	0	50	0	740	-10	-800	
8	30	20	-10	0	0	0	0	580	-20	-600	
9	10	10	0	0	0	0	0	190	-10	200	

 $I_{y} = I * G_{y}$ 4 5 6 7 8 i, j 0 1 2 3 9 0 100 300 400 400 400 400 400 500 200 500 70 0 1 10 110 50 0 0 200 400 200 2 -90 -280 -340 -300 -350 -400 -400 -300 -100 0 0 100 3 -40 -80 10 50 0 0 0 0 4 0 0 -50 -100 0 100 50 0 0 0 5 0 -10 -20 -60 -100 0 100 50 0 0 6 0 0 0 0 -50 -100 -50 0 0 0 7 0 10 30 40 40 -10 -20 10 0 -60 0 -200 -200 8 -10 -20 -10 0 0 0 -400 9 -10 -30 -40 -40 -40 -40 -40 -230 -410 -200

		$ I = I_x + I_y $									
i, j	0	1	2	3	4	5	6	7	8	9	
0	200	400	400	400	400	400	400	600	600	400	
1	220	320	120	100	0	0	0	600	600	800	
2	220	480	360	400	400	400	400	100	200	800	
3	40	100	140	20	200	100	0	800	0	800	
4	40	20	60	180	0	200	100	800	0	800	
5	40	20	60	100	200	0	200	800	0	800	
6	40	0	40	0	100	200	100	700	0	800	
7	40	20	60	40	40	60	60	760	20	800	
8	40	40	20	0	0	0	0	780	420	800	
9	20	40	40	40	40	40	40	420	420	400	

	9	20 4	0 40	40	40	40	40	420	420 40	00			
	, –												
tan-1(300 / 100)													
	$\theta = \tan^{-1} \left(\frac{I_y}{I_x} \right)$												
I, j	0	1	2	3	4	5	6	7	8	9			
0	45	71.6	90	90	90	90	90	78.7	-78.7	-45			
1	2.7	15.6	-84.8	-45	0	0	0	26.6	-63.4	-18.4			
2	-34.7	-54.5	-86.6	71.6	81.9	-90	-90	-23.2	45	0			
3	0	-33.7	-53.1	-45	-45	-45	0	0	0	0			
4	0	0	-78.7	-51.3	0	-45	-45	0	0	0			
5	0	-45	26.6	-56.3	-45	0	-45	3.8	0	0			
6	0	0	0	0	-45	-45	45	0	0	0			
7	0	45	-45	90	90	-11.3	-90	-1.5	-45	0			
8	-18.4	-45	45	0	0	0	0	-19	87.1	18.4			
9	-45	-71.6	-90	-90	-90	-90	-90	-50.4	88.6	45			

2) By using two thresholding values T_1 and T_2 . Where T_1 is called a weak threshold, such that edges with edge intensity lower than T_1 will not be considered edges, and T_2 is called a strong threshold, such that edges with edge intensity greater than T_2 will be considered edges. Any values that lie between T_1 and T_2 are only considered edges if they are connected to strong edges.