

# CS60010: Deep Learning Spring 2023

Sudeshna Sarkar

**Module 1 Part B Linear Algebra** 

Sudeshna Sarkar 5 Jan 2023

#### Scalars



- A scalar is a single number
- Integers, real numbers, rational numbers, etc.

#### Vectors



A vector is a 1-D array of numbers:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Can be real, binary, integer, etc.
- Example notation for type and size:

$$\mathbb{R}^n$$

# Geometric interpretation of Vectors

- 1. a point in space
- 2. direction in space







# Dot Products and Angles



$$u^{T}v = \sum_{i} u_{i} \cdot v_{i}$$

$$u \cdot v = u^{T}v = v^{T}u$$

$$u \cdot v = ||u|| ||v|| \cos \theta$$

$$\theta = \cos^{-1} \left(\frac{u \cdot v}{||u|| ||v||}\right)$$



#### Cosine Similarity



$$\bullet \cos \theta = \frac{u \cdot v}{\|u\| \|v\|}$$

#### Hyperplanes

 In a d-dimensional vector space, a hyperplane has d−1 dimensions and divides the space into two half-spaces.

# Hyperplanes

- Consider the column vector  $w = [2, 1]^T$
- what are the points v with w·v=1?

• 
$$||v|| ||w|| \cos \theta = 1 \iff ||v|| \cos \theta = \frac{1}{||w||} = \frac{1}{\sqrt{5}}$$

- Geometric interpretation: the length of the projection of v onto the direction of w is exactly 1/||w||
- The set of all points where this is true is a line at right angles to the vector w.





# Hyperplanes



- Consider w=[1,2,3]T
- What are the points in three dimensions with w·v=1?
  - we obtain a plane at right angles to the given vector w
- Hyperplanes in any dimension separate the space into two halves.



#### Matrices



A matrix is a 2-D array of numbers:

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix}$$

Example notation for type and shape:

$$\mathbb{R}^{m \times n}$$



- Symmetric Matrix:  $AA = A^T$
- Orthogonal Matrix:  $AA^T = A^TA = I$  and  $A^{-1} = A^T$
- Diagonal Matrix: Non-zero entries only in the diagonals

#### Tensors



- A tensor is an array of numbers, that may have
  - zero dimensions, and be a scalar
  - one dimension, and be a vector
  - two dimensions, and be a matrix
  - or more dimensions.

### Matrix Transpose



**Transpose**: Transpose of a matrix is the mirror image of the matrix across the diagonal line, called the main diagonal of the matrix.

• The transpose of a matrix A is denoted as  $A^T$ ,

$$(\boldsymbol{A}^{\top})_{i,j} = A_{j,i}.$$

$$egin{aligned} egin{aligned} A_{1,1} & A_{1,2} \ A_{2,1} & A_{2,2} \ A_{3,1} & A_{3,2} \ \end{bmatrix} \Rightarrow m{A}^ op = \left[ egin{array}{ccc} A_{1,1} & A_{2,1} & A_{3,1} \ A_{1,2} & A_{2,2} & A_{3,2} \ \end{array} 
ight] \end{aligned}$$

$$(AB)^T = B^T A^T$$

#### Matrix Operations



- Addition: Matrices can be added as long as they have the same shape, by adding their corresponding elements.
  - C = A + B, where  $C_{i,j} = A_{i,j} + B_{i,j}$
- **Multiplication**: In order for the product of the two matrices  $\boldsymbol{A}$  and  $\boldsymbol{B}$  to be defined,  $\boldsymbol{A}$  must have the same number of columns as that of the rows of  $\boldsymbol{B}$ . If  $\boldsymbol{A}$  is of shape  $m \times n$  and  $\boldsymbol{B}$  is of shape  $n \times p$  then  $\boldsymbol{C}$  is of shape  $m \times p$ , the product operation  $\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B}$  is defined by

$$\boldsymbol{C}_{i,j} = \sum_{k} \boldsymbol{A}_{i,k} \boldsymbol{B}_{k,j}$$

# Matrix (Dot) Product



$$C = AB$$

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

$$m = m \qquad n = n$$

Matrix product is not commutative (AB = BA does not always hold).

# Matrix Operations



• Elementwise or Hadamard Product: It's a matrix containing the product of the individual elements. It is denoted as  $A \odot B$ 

# Geometry of Linear Transformations



Linear transformations represented by matrices. Consider matrix A and vector v.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \mathbf{v} = [x, y]^T$$

$$A\mathbf{v} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$= x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix}$$

$$= x \left\{ A \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} + y \left\{ A \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

Basis Vectors  $[1,0]^T$  and  $[0,1]^T$ 

Matrices are incapable of distorting some parts of space differently than others.

All they can do is take the original coordinates on our space and skew, rotate, and scale them.

# Identity Matrix



$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\forall x \in \mathbb{R}^n$$
,  $I_n x = x$ 

# Column space of A / All combinations of columns



$$Ax = \begin{bmatrix} 1 & 4 & 5 \\ 3 & 2 & 5 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} x_1 + \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} x_2 + \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix} x_3$$

= linear combination of columns of A

Column space of A = C(A)= all vectors Ax

= all linear combinations of the columns

What is the column space of this example?

# Basis for the column space / Basis for the row space



• Include column 
$$1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 in  $C$ . Include column  $2 = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$  in  $C$ 

• DO NOT INCLUDE COLUMN 
$$3 = \begin{bmatrix} 5 \\ 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$
 IT IS NOT INDEPENDENT

$$A = CR = \begin{bmatrix} 1 & 4 \\ 3 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 Row rank = Column rank = r = 2

The rows of R are a basis for the row space

#### A=CR



- 1. The r columns of C are independent (by their construction)
- 2. Every column of A is a combination of those r columns (because A=CR)
- 3. The r rows of R are independent (they contain the r by r matrix I)
- 4. Every row of A is a combination of those r rows (because A = CR) Key facts
- The r columns of C are a basis for the column space of A: dimension r The r rows of R are a basis for the row space of A: dimension r

# Basis for the column space / Basis for the row space



• Include column 
$$1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 in  $C$ . Include column  $2 = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$  in  $C$ 

• DO NOT INCLUDE COLUMN 
$$3 = \begin{bmatrix} 5 \\ 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$
 IT IS NOT INDEPENDENT

- A has rank r = 2 n r = 3 2 = 1Basis has 2 vectors
- Counting Theorem Ax = 0 has one solution x = (1, 1, -1)

There are n - r independent solutions to Ax = 0

#### Rank



- If we have a general  $n \times n$  matrix, it is reasonable to ask what dimension space the matrix maps into.
- The rank of a matrix A is the largest number of linearly independent columns amongst all subsets of columns.

# Matrix Representation of Linear Functions



A linear function (or map or transformation)

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

can be represented by a matrix A,  $A \in \mathbb{R}^{m \times n}$ , such that

$$f(x) = Ax = y, \quad \forall x \in \mathbb{R}^n, y \in \mathbb{R}^m$$

- span(A<sub>:.1</sub>,··· , A<sub>:.n</sub>) is called the column space of A
- rank(A)= dim(span(A<sub>:,1</sub>,..., A<sub>:,n</sub>))

# Systems of Equations



$$Ax = b$$

expands to

$$A_{1,:}x = b_1$$

$$\boldsymbol{A}_{2,:}\boldsymbol{x}=b_2$$

. . .

$$\boldsymbol{A}_{m,:}\boldsymbol{x}=b_m$$

# Null space of A



• If Ax = 0 then

$$\begin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

- Every x in the nullspace of A is orthogonal to the row space of A
- Every y in the nullspace of  $A^{T}$  is orthogonal to the column space of A

$$N(A) \perp C(A^T) \qquad N(A^T) \perp C(A)$$
 Dimensions 
$$n-r \qquad r \qquad m-r \qquad r$$

$$n-r$$
  $r$   $m-r$ 

# System of Linear Equations



$$A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,n}x_n = b_1$$
  

$$A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,n}x_n = b_2$$
  
...

$$A_{m,1}x_1 + A_{m,2}x_2 + \dots + A_{m,n}x_n = b_m$$

We can write these a

$$\begin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$Ax = b$$

# Solving Systems of Equations



$$Ax = b$$
  
 $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m$ 

- A linear system of equations can have
  - No solution m>n overdetermined problem (No. of equations > No. of variables).
  - Many solutions: m < n underdetermined problem (No. of equations < No. of variables). Infinitely many solutions.
  - Exactly one solution: this means multiplication by the matrix is an invertible function. m=n and  $\det(A) \neq 0$ , the solution is unique,  $x=A^{-1}b$ .

# System of Linear Equations



- Given A and b, solve x in Ax = b
- What kind of A that makes Ax = b always have a solution?
  - Since  $Ax = \sum_i x_i A_{:,i}$ , the column space of A must contain  $\mathbb{R}^m$ , that is,  $\mathbb{R}^m \subseteq span(A_{:,1}, ..., A_{:,n})$
  - Implies  $n \ge m$
- When does Ax = b always have exactly one solution?
  - A has at most m columns; otherwise there is more than one x parametrizing each b
  - Implies n = m and the columns of A are linear independent with each other
  - $A^{-1}$  exists at this time, and  $x = A^{-1}b$

#### Matrix Inversion



Matrix inverse:

$$A^{-1}A = I_n$$

Solving a system using an inverse:

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$I_{D}x = A^{-1}b$$

Numerically unstable, but useful for abstract analysis

# Invertibility



- Matrix can't be inverted if...
  - More rows than columns
  - More columns than rows
  - Redundant rows/columns ("linearly dependent", "low rank")

#### Norms



- Functions that measure how "large" a vector is
- Similar to a distance between zero and the point represented by the vector
  - $\bullet f(x) = 0 \Rightarrow x = 0$
  - $f(x + y) \le f(x) + f(y)$  the triangle inequality
  - $\forall \alpha \in \mathbb{R}, f(\alpha x) = |\alpha| f(x)$

#### Norms



•  $L^p$  norm

$$||x||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$

- Most popular norm:  $L^2$  norm
- $L^1$  norm  $||x||_1 = \sum_i |x_i|$
- Max norm, infinite p:

$$||x||_{\infty} = \max_{i} |x_{i}|$$



- $x^Ty = ||x|| ||y|| \cos \theta$ , where  $\theta$  is the angle between x and y.
- x and y are orthonormal iff
  - $x^Ty = 0$  (orthogonal) and
  - ||x|| = ||y|| = 1 (unit vectors)

#### Matrix Norms



Frobenius norm

$$||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2}$$

An orthogonal matrix is a square matrix whose column (resp. rows)
are mutually orthonormal, i.e.,

$$A^TA = AA^T = I$$
.

**Implies** 

$$A^{-1} = A^T$$

# Special Matrices and Vectors



• Unit vector:

$$||x||_2 = 1.$$

• Symmetric Matrix:

$$A = A^T$$

• Orthogonal matrix:

$$A^T A = A A^T = I.$$
$$A^{-1} = A^T$$

# Eigendecomposition



- Decomposition:
- Integers can be decomposed into prime factors
  - E.g.,  $12 = 2 \times 2 \times 3$
  - Helps identify useful properties, e.g., 12 is not divisible by 5
- Can we decompose matrices to identify information about their functional properties more easily?





- What happens when a matrix hits a vector?
  - The vector gets transformed into a new vector
  - The vector may also get scaled

## Eigenvectors



For a given square matrix A, there exist special vectors which refuse to stray from their path.



## Eigenvectors and Eigenvalues



• An eigenvector of a square matrix A is a non-zero vector v such that multiplication by A alters only the scale of v :

$$Av = \lambda v$$

- where  $\lambda \in \mathbb{R}$  is called the eigenvalue corresponding to this eigenvector
- If v is an eigenvector, so is any its scaling  $cv, c \in \mathbb{R}, c \neq 0$ 
  - cv has the same eigenvalue
  - Thus, we usually look for unit eigenvectors

## Eigenvalues and Eigenvectors example



• Example: Let

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

•  $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  is an eigenvector corresponding to the eigenvalue  $\lambda_1 = 2$  because

$$A\mathbf{x}_1 = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \lambda_1 \mathbf{x}_1$$

•  $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$  is also an eigenvector corresponding to the eigenvalue  $\lambda_2 = -1$  because

$$A\mathbf{x}_2 = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \lambda_2 \mathbf{x}_2$$

## Eigenvalues and Eigenvectors, cont'd

• Example: Let

$$A = \begin{bmatrix} 92 & -32 & -15 \\ -64 & 34 & 39 \\ 176 & -68 & -99 \end{bmatrix}$$

• Matrix A has several eigenvectors  $\mathbf{x}$  and corresponding eigenvalues  $\lambda$ :

| λ       | X                                                    | $A\mathbf{x}$                       | $\lambda \mathbf{x}$                   |
|---------|------------------------------------------------------|-------------------------------------|----------------------------------------|
| 88.519  | $\begin{bmatrix} 1 \\ -0.399 \\ 1.083 \end{bmatrix}$ | [ 88.519 ]<br>-35.319 ]<br>95.889 ] | [ 88.519 ]<br> -35.319  <br>  95.889 ] |
| -70.791 | 1                                                    | -70.791                             | -70.791                                |
|         | -16.639                                              | 1177.895                            | 1177.895                               |
|         | 46.349                                               | -3281.123                           | -3281.123                              |
| 9.272   | [ 1                                                  | [9.272]                             | [9.272]                                |
|         | 2.584                                                | 23.96                               | 23.96                                  |
|         | 0.003]                                               | 0.025]                              | 0.025]                                 |

## Uses of Eigenvalues and Eigenvectors



- Eigenvalues and eigenvectors are used to "decompose" a matrix into its constituent parts in order to simplify complex operations.
  - "eigendecomposition"
- A major example of its use is in performing principal component analysis (PCA).
  - We used PCA to reduce the four features of the Iris dataset down to two features so we could draw a 2-D graph that showed the clusters.

Let  $u_1, u_2, \ldots, u_n$  be the eigenvectors of a matrix A and let  $\lambda_1, \lambda_2, \ldots, \lambda_n$  be the corresponding eigenvalues.

Consider a matrix U whose columns are  $u_1, u_2, \ldots, u_n$ .

Now

$$AU = A \begin{bmatrix} \uparrow & \uparrow & \uparrow & \downarrow \\ u_1 & u_2 & \dots & u_n \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ Au_1 & Au_2 & \dots & Au_n \\ \downarrow & \downarrow & \downarrow \end{bmatrix}$$

$$= \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \vdots \\ \vdots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{bmatrix} = U\Lambda$$

where  $\Lambda$  is a diagonal matrix whose diagonal elements are the eigenvalues of A.





- $AU = U\Lambda$
- If  $U^{-1}$  exists, we can write

$$A = U\Lambda U^{-1}$$
 [eigenvalue decomposition]

$$U^{-1}AU = \Lambda$$
 [diagonalization of A]

## Eigendecomposition



$$Av = \lambda v$$

• Eigendecomposition of a diagonalizable matrix:

$$A = U \operatorname{diag}(\lambda) U^{-1}$$

• If a matrix **A** has *n* linearly independent eigenvectors  $\{\mathbf{u}^1, \dots, \mathbf{u}^n\}$  with corresponding eigenvalues  $\{\lambda_1, \dots, \lambda_n\}$ , the eigen decomposition of **A** is given by

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$$

- Columns of the matrix **U** are the eigenvectors, i.e.,  $\mathbf{U} = [\mathbf{u}^1, ..., \mathbf{u}^n]$
- $\Lambda$  is a diagonal matrix of the eigenvalues, i.e.,  $\Lambda = [\lambda_1, ..., \lambda_n]$

## Eigendecomposition



- If *A* is a real symmetric matrix
  - The eigenvectors are orthogonal
- ullet is guaranteed to have an eigen decomposition , where  ${f Q}$  is an orthogonal matrix

$$A = \mathbf{Q} \Lambda \mathbf{Q}^T$$

### Geometric interpretation of the eigenvalues and eigenvectors



they allow to stretch the space in specific directions

- Left figure: the two eigenvectors  $\mathbf{v}^1$  and  $\mathbf{v}^2$  are shown for a matrix, where the two vectors are unit vectors (i.e., they have a length of 1)
- Right figure: the vectors  $\mathbf{v}^1$  and  $\mathbf{v}^2$  are multiplied with the eigenvalues  $\lambda_1$  and  $\lambda_2$ 
  - We can see how the space is scaled in the direction of the larger eigenvalue  $\lambda_1$
- E.g., this is used for dimensionality reduction with PCA (principal component analysis) where the eigenvectors corresponding to the largest eigenvalues are used for extracting the most important data dimensions



Because Q = [v(1),  $\cdots$ , v(n)] is an orthogonal matrix, we can think of A as scaling space by  $\lambda_i$  in direction  $v^{(i)}$ 







• Let  $v_1, v_2, \dots, v_n$  be the eigen vectors of A and let  $\lambda_1, \lambda_2, \dots, \lambda_n$  be corresponding eigen values

$$Av_1 = \lambda_1 v_1, Av_2 = \lambda_2 v_2, \cdots, Av_n = \lambda_n v_n$$

• If a vector x in  $\mathbb{R}^n$  is represented using  $v_1, v_2, \cdots, v_n$  as basis then

$$x = \sum_{i=1}^{n} \alpha_i v_i$$

$$\text{Now, } Ax = \sum_{i=1}^{n} \alpha_i A v_i = \sum_{i=1}^{n} \alpha_i \lambda_i v_i$$

• The matrix multiplication reduces to a scalar multiplication if the eigen vectors of A are used as a basis.

## Singular Value Decomposition



- More general matrix need not be square.
- Every real matrix  $A \in \mathbb{R}^{m \times n}$  has a singular value decomposition:

$$A = UDV^T$$

where  $U \in \mathbb{R}^{m \times m}$ ,  $D \in \mathbb{R}^{m \times n}$  and  $V \in \mathbb{R}^{n \times n}$ 

- U and V are orthogonal matrices, and their columns are called the left and rightsingular vectors respectively
- Elements along the diagonal of D are called the singular values
- Left-singular vectors of A are eigenvectors of  $AA^T$
- Right-singular vectors of A are eigenvectors of  $A^TA$
- Non-zero singular values of A are square roots of eigenvalues of  $AA^T$  (or )

# $S = S^T$ Real Eigenvalues and Orthogonal Eigenvectors



 $S = S^T$  has orthogonal eigenvectors  $x^T y = 0$ 

• Proof:

$$Sx = \lambda x$$
  $Sy = \lambda y$   $\lambda \neq \alpha$   $S^T = S$ 

- 1. Transpose to  $x^T S^T = \lambda x^T$  and use  $S^T = S$   $x^T S y = \lambda x^T y$
- 2. Multiply  $Sy = \alpha y$  by  $x^T$   $x^T Sy = \alpha x^T y$
- 3. Now  $\alpha x^T y = \lambda x^T y$ . Since  $\lambda \neq \alpha$ ,  $x^T y$  must be 0.

## Eigenvectors of S go into Orthogonal Matrix Q



$$S[q_1 \dots q_n] = [\lambda_1 q_1 \dots \lambda_n q_n] = [q_1 \dots q_n] \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$

That says  $SQ = Q\Lambda$   $S = Q\Lambda Q^{-1} = Q\Lambda Q^{T}$ 

 $S = Q\Lambda Q^T$  is a sum of  $\lambda_1 q_1 q_1^T + \cdots + \lambda_r q_n q_n^T$  of rank one matrices

With  $S = A^T A$  this will lead to the singular values of A

 $A = U\Sigma V^T$  is a sum  $\sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T$  of rank one matrices

Singular values  $\sigma_1$  to  $\sigma_r$  in  $\Sigma$ . Singular vectors in U and V

# $A^{T}A$ is square, symmetric, nonnegative definite



- Square
- Symmetric :  $(A^TA)^T = ?$

### Moore-Penrose Pseudoinverse



$$x = A^+y$$

- If the equation has:
  - Exactly one solution: this is the same as the inverse.
  - No solution: this gives us the solution with the smallest error  $||\mathbf{A}\mathbf{x} \mathbf{y}||_2$ .
  - Many solutions: this gives us the solution with the smallest norm of x.

## Computing the Pseudoinverse



The SVD allows the computation of the pseudoinverse:

$$A^+ = VD^+U^T$$

Take reciprocal of non-zero entries

### Trace



$$Tr(A) = \sum_{i} A_{i,i}.$$
 
$$Tr(ABC) = Tr(CAB) = Tr(BCA)$$

### Manifolds



- Earlier we learned that hyperplanes generalize the concept of planes in high-dimensional spaces
  - Similarly, manifolds can be informally imagined as generalization of the concept of surfaces in high-dimensional spaces
- To begin with an intuitive explanation, the surface of the Earth is an example of a two-dimensional manifold embedded in a three-dimensional space
  - This is true because the Earth looks locally flat, so on a small scale it is like a 2-D plane
  - However, if we keep walking on the Earth in one direction, we will eventually end up back where we started
    - This means that Earth is not really flat, it only looks locally like a Euclidean plane, but at large scales it folds up on itself, and has a different global structure than a flat plane

### Manifolds



- An n-dimensional manifold is defined as a topological space with the property that each point has a neighborhood that is homeomorphic to the Euclidean space of dimension n
- This means that a manifold locally resembles Euclidean space near each point
- Informally, a Euclidean space is locally smooth, it does not have holes, edges, or other sudden changes, and it does not have intersecting neighborhoods
- Although the manifolds can have very complex structure on a large scale, resemblance of the Euclidean space on a small scale allows to apply standard math concepts

## Examples of 2-dimensional manifolds



- The surfaces in the figure have been conveniently cut up into little rectangles that were glued together
- Those small rectangles locally look like flat Euclidean planes



## Examples of one-dimensional manifolds



- :a circle is a I-D manifold embedded in 2-D, where each arc of the circle locally resembles a line segment
- Lower figures: other examples of 1-D manifolds
- Note that a number 8 figure is not a manifold because it has an intersecting point (it is not Euclidean locally)
- It is hypothesized that in the real-world, high-dimensional data (such as images) lie on low-dimensional manifolds embedded in the high-dimensional space
  - E.g., in ML, let's assume we have a training set of images with size  $224 \times 224 \times 3$  pixels
  - Learning an arbitrary function in such high-dimensional space would be intractable
  - Despite that, all images of the same class ("cats" for example) might lie on a low-dimensional manifold
  - This allows function learning and image classification





#### Manifolds



#### • Example:

- The data points have 3 dimensions (left figure), i.e., the input space of the data is 3-dimensional
- The data points lie on a 2-dimensional manifold, shown in the right figure
- Most ML algorithms extract lower-dimensional data features that enable to distinguish between various classes of high-dimensional input data
  - The low-dimensional representations of the input data are called embeddings

