Дистилляция знаний в глубоких сетях с применением методов выравнивания структур моделей

Выпускная квалификационная работа бакалавра

Михаил Сергеевич Олейник Научный руководитель: к.ф.-м.н. О. Ю. Бахтеев

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 01.03.02 Прикладная математика и информатика

Актуальность исследования

Проблема: если модели ученика и учителя имеют сильно отличающиеся архитектуры, то сложно провести дистилляцию знаний. Есть методы, с помощью которых это возможно сделать, но они дают малый прирост качества.

Цель: предложить метод дистилляции, который будет работать для разных архитектур, с разным количеством слоёв, и показывать лучшее качество.

Идея метода

Слои объединяются не попарно, а каждый с каждым.

¹Sungsoo Ahn et al. "Variational information distillation for knowledge transfer"

Постановка задачи классификации

Дана выборка для задачи классификации на K классов:

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m, \ \mathbf{x}_i \in \mathbb{R}^n, \ y_i \in \mathbb{Y} = \{1, \dots, K\},\$$

где \mathbf{x}_i — данные, описывающие объект, взятые из распределения $p(\mathbf{x})$.

Обозначим:

- ▶ Т количество слоев в модели учителе,
- ▶ S количество слоев в модели ученике,
- ▶ \mathbf{t}_{i} активации в i-м слое учителя,
- s_i активации в i-м слое ученика.

Функция потерь ученика с дистилляцией

Функцию потерь ученика представим как:

$$\mathcal{L} = \beta \mathcal{L}_{CE} - (1 - \beta) \sum_{i=1}^{T} \sum_{j=1}^{S} \lambda_{i,j} I(\mathbf{t}_i, \mathbf{s}_j),$$

где:

- $ightharpoonup \mathcal{L}_{\sf CE}$ функция потерь для решения задачи классификации (кросс-энтропия),
- $ightharpoonup I(\mathbf{t}_i, \mathbf{s}_i)$ взаимная информация,
- $eta \in (0;1)$ и $\lambda_{i,j} \in [0;1]$ необучаемые параметры (гиперпараметры).

Максимизация взаимной информации

Метод вариации нижней границы:

$$\begin{split} I(\mathbf{t};\mathbf{s}) &= H(\mathbf{t}) - H(\mathbf{t}|\mathbf{s}) = H(\mathbf{t}) + \mathbb{E}_{\mathbf{t},\mathbf{s}}[\log p(\mathbf{t}|\mathbf{s})] \\ &= H(\mathbf{t}) + \mathbb{E}_{\mathbf{t},\mathbf{s}}[\log q(\mathbf{t}|\mathbf{s})] + \mathbb{E}_{\mathbf{s}}[D_{\mathsf{KL}}(p(\mathbf{t}|\mathbf{s})||q(\mathbf{t}|\mathbf{s}))] \\ &\geq H(\mathbf{t}) + \mathbb{E}_{\mathbf{t},\mathbf{s}}[\log q(\mathbf{t}|\mathbf{s})]. \end{split} \tag{1}$$

Вид вариационного распределения, если слой t — свёрточный:

$$-\log q(t|s) = -\sum_{c=1}^{C} \sum_{h=1}^{H} \sum_{w=1}^{W} \log q(t_{c,h,w}|s) =$$

$$= \sum_{c=1}^{C} \sum_{h=1}^{H} \sum_{w=1}^{W} \log \sigma_{c} + \frac{(t_{c,h,w} - \mu_{c,h,w}(s))^{2}}{2\sigma_{c}^{2}} + constant. \quad (2)$$

Постановка двухуровневой оптимизации

$$\mathfrak{D} = \mathfrak{D}_{\mathsf{train}} \bigsqcup \mathfrak{D}_{\mathsf{val}}.$$

Определим вектор λ из всех гиперпараметров задачи:

$$\lambda = [\lambda_{0,0}, \ldots, \lambda_{i,j}, \ldots, \beta].$$

Все обучаемые параметры — \mathbf{w} .

И это определяет задачу двухуровневой оптимизации:

$$\begin{aligned} & & \underset{\lambda}{\text{min}} & & \mathcal{L}_{\text{val}}(\hat{\mathbf{w}}(\lambda), \lambda), \\ \text{s.t.} & & \hat{\mathbf{w}}(\lambda) = \mathop{\arg\min}_{\mathbf{w}} \mathcal{L}_{\text{train}}(\mathbf{w}, \lambda). \end{aligned}$$

Данные вычислительного эксперимента

Tiny	VeryTiny	
Свёрточный 2D слой (3×3 , 4 фильтра)	Свёрточный 2D слой (3×3 , 8 фильтров)	
Свёрточный 2D слой (3×3 , 8 фильтров)	Свёрточный 2D слой (3×3 , 16 фильтров)	
Свёрточный 2D слой (3×3 , 16 фильтров)	Свёрточный 2D слой (3×3 , 32 фильтра)	
Полносвязный слой (64 нейрона)	Полносвязный слой (64 нейрона)	
Полносвязный слой (10 нейронов)	Полносвязный слой (10 нейронов)	

Архитектура моделей Tiny и VeryTiny, слои заданы поочередно, сверху вниз

Датасеты:

► CIFAR10

► FashionMNIST

Модели:

▶ Учитель: Tiny

▶ Ученик: VeryTiny

Результаты эксперимента

Метрика качества: точность.

Метод	CIFAR-10	Fashion-MNIST
Без дистилляции	0.541	0.839
Дистилляция Хинтона	0.563	0.849
Дистилляцией Sungsoo Ahn	0.591	0.852
Наш метод, все связи	0.590	0.853
Наш метод, случайные гиперпараметры	0.595	0.859
Наш метод, вероятностная оптимизация	0.608	0.857

Значение качества экспериментов на датасетах CIFAR-10 и Fashion-MNIST

Дальнейшие исследования

Рис.: Иллюстрация коэффициентов у четырех лучших моделей по качеству. Зелёные точки — слои ученика, красные — слои учителя. Чем толще линия, тем больше коэффициент у соответствующей связи.

Выносится на защиту

- Предложен метод дистилляции, максимизирующий взаимную информацию между всеми слоями ученика и учителя.
- Продемонстрировано, что предложенный метод достигает лучшего качества, чем базовые методы дистилляции знаний.
- Были проведены эксперименты, показавшие эффективность предложенного метода.