

KI LATEX DOKUMENT

Materiały do przedmiotu "Rozwiązywanie zadań odwrotnych"

Metody ewolucyjne - zastosowanie metod ewolucyjnych do rozwiązania zadania odwrotnego

dr inż. Konrad M. Gruszka,*

Abstract. W tym dokumencie skupimy się na odtworzeniu warunków brzegowych z "empirycznego" rozkładu temperatury uzyskanego na drodze MRS w jednorodnym, jednowymiarowym i dwuwymiarowym materiale wykorzystując do tego celu algorytm genetyczny (AG). Końcowym efektem będzie skrypt w Python który realizuje postawione zadanie w najprostszy możliwy sposób.

1 Plan działania

- 1. Obliczamy docelowy rozkład temperatury metodą MRS, używając znanych, określonych na początku warunków brzegowych T_{left} =120 i T_{right} =80.
- 2. Tworzymy populację AG, gdzie każdy osobnik to potencjalna para warunków brzegowych $[T_{left}, T_{right}]$.
- 3. Ewolucja AG:
 - Funkcja przystosowania (fitness): Porównujemy temperatury uzyskane z AG z tymi z MRS (minimalizacja błędu).
 - Selekcja turniejowa: Wybieramy lepszych kandydatów.
 - Krzyżowanie i mutacja: Ewolucja w kierunku najlepszego rozwiązania.
- 4. Porównanie wyników:
 - Rysujemy docelowy i odtworzony rozkład temperatury.
 - Wypisujemy prawdziwe i oszacowane wartości T_{left} i T_{right} .
 - Obliczamy błąd bezwzględny.

2 Algorytm

1. Rozwiązanie problemu bezpośredniego – Metoda Różnic Skończonych (MRS) Najpierw potrzebujemy sposobu na wygenerowanie rozkładu temperatury w pręcie dla znanych warunków brzegowych. Użyjemy metody różnic skończonych (MRS) w stanie ustalonym. Użyj funkcji solve_temperature_homogeneous(T_left, T_right, N), która

^{*} Katedra Informatyki, Wydział Informatyki i Sztucznej Inteligencji (kgruszka@icis.pcz.pl)

Metody gradientowe w RZO

oblicza temperatury wzdłuż pręta, mając podane wartości T_{left} i T_{right} . Przyjmij, że materiał jest jednorodny, a wymiana ciepła odbywa się wzdłuż pręta zgodnie ze znanym równaniem Laplace'a:

$$T_i = \frac{T_{i-1} + T_{i+1}}{2}$$

Zastosujmy iteracyjną metodę aż do uzyskania stanu ustalonego (gdy wartości przestaną się zmieniać w istotny sposób).

- 2. Algorytm genetyczny do znalezienia warunków brzegowych: Teraz przechodzimy do części odwrotnej znalezienia T_{left} i T_{right} , które wygenerowały dany rozkład temperatury.
 - (a) **Chromosom:** Każdy osobnik w populacji to para liczb $[T_{left} i T_{right}]$. Populacja: Składa się z wielu takich par o losowych wartościach początkowych. **Zadanie:** zaimplementuj funkcję $initialize_population(pop_size)$, która zwróci tablicę losowych par $[T_{left} i T_{right}]$ w zadanym zakresie temperatur.
 - (b) Funkcja przystosowania (fitness):

 Każdy osobnik posiada własny zestaw warunków brzegowych. Aby ocenić jego jakość, symulujemy rozkład temperatury za pomocą MRS i porównujemy go z rozkładem docelowym. Fitness powinno być miarą błędu, np. sumą kwadratów różnic pomiedzy wartościami wezłów:

$$fitness = \sum (T_{pred} - T_{target})^2$$

Zadanie: Zaimplementuj funkcję *fitness(individual)*, która obliczy błąd między rozkładem temperatury z AG a rzeczywistym.

- (c) Selekcja turniejowa: Wybieramy dwa losowe osobniki z populacji. Osobnik z lepszą wartością fitness przechodzi do kolejnej generacji.
 Zadanie: Napisz funkcję tournament_selection(population), która tworzy nową populację wyselekcjonowanych osobników.
- (d) **Krzyżowanie jednopunktowe:** Wymieniamy jedną wartość między dwoma osobnikami. Wybieramy losowo, czy zamieniamy T_{left} , czy T_{right} . **Zadanie:** Zaimplementuj funkcję crossover(parent1, parent2), która tworzy dwójkę nowych osobników.
- (e) Mutacja: Losowa zmiana wartości T_{left} lub T_{right} z małą perturbacją.
 Ograniczamy wartości do sensownego zakresu.
 Zadanie: Zaimplementuj funkcję mutate(individual), która zmienia jedną z temperatur w losowy sposób.
- (f) Główna pętla algorytmu: Po zaimplementowaniu powyższych kroków, musisz:
 - Inicjalizować populację.
 - Iteracyjnie ewoluować populację przez określoną liczbę pokoleń:
 - Wybierać najlepsze osobniki (selekcja).
 - Tworzyć nowe osobniki (krzyżowanie).

Metody gradientowe w RZO

- Mutować nowe osobniki.
- Rejestrować najlepsze rozwiązanie w każdym pokoleniu.
- Na końcu wypisać wyniki i porównać z rzeczywistymi warunkami brzegowymi.
- (g) Analiza wyników: Porównanie rozkładów temperatury:
 - Narysuj rozkład prawdziwy (otrzymany z MRS).
 - Rozkład znaleziony przez AG.

Policz i wyświetl bezwzględne różnice między prawdziwymi a odtworzonymi wartościami.

3 Algorytm w 2D

Rozbudowa algorytmu pracującego w przestrzeni jednowymiarowej do przestrzeni dwuwymiarowej jest dość prosta. Zamiast par osobników [T_{left} i T_{right}] opisujących warunki brzegowe na dwóch końcach pręta 1D, wystarczy rozszerzyć pary na [T_{left} , T_{right} , T_{top} , T_{bottom}] i postępować wg poniższego planu:

- 1. Generowanie temperatury w siatce 2D (MRS)
 - Warunki brzegowe: $T_{top}, T_{bottom}, T_{left}, T_{right}$
 - Rozwiązywanie równania Laplace'a metodą różnic skończonych.
- 2. Implementacja algorytmu genetycznego
 - Osobnik: Zestaw $[T_{top}, T_{bottom}, T_{left}, T_{right}]$
 - Funkcja przystosowania: Różnica między siatką temperatur z AG a rzeczywistą.
 - Selekcja turniejowa.
 - Krzyżowanie i mutacja.
- 3. Porównanie wyników
 - Wizualizacja siatek temperatur.
 - Analiza błędu rekonstrukcji.

4 Podsumowanie

Aby zrozumieć działanie algorytmu genetycznego w kontekście rozkładu temperatury, należy zrozumieć, jak algorytm manipuluje populacją rozwiązań (temperatur) przez selekcję, krzyżowanie i mutację, aby znaleźć najlepszy możliwy rozkład temperatury, który minimalizuje różnicę między obliczonym i docelowym rozkładem temperatury. Parametry algorytmu, takie jak rozmiar populacji, liczba pokoleń, współczynniki krzyżowania i mutacji, mają kluczowy wpływ na efektywność tego procesu.