Ammonia emissions

Zhenqi Luo 2021.3

progress

- 1. Difference of NH3 emissions——Adjusted vs GEOS-Chem
- 2. Regional details of NH3 emissions——fill the in adjusted by GEOS-Chem
 - Timeseries
 - Total

Regional NH3 emission

US SA EU CA IP EC

EU

2008

US SA EU CA IP EC

Analysis & Plan

- Divide the anthropogenic emissions
 - Livestock
 - fertilizer
- Check the data quality
 - Ratio of grid amount
 - IASI data

litreature

NO2 burden reductions over north equatorial

Africa

• Socioeconomic development and population growth in low and middle-income countries

• Increased environmental degradation—emissions

- NO2
 - Lifetime: < 1 day
 - total column densities and surface emissions are highly correlated
 - Toxic
 - premature mortality
 - asthma
 - Sources
 - fossil fuel combustion
 - anthropogenic alterations to soils
 - livestock management
- Africa
 - fossil fuel combustion (increase)
 - fire-prone savanna ecosystems—70% of the global (decline):
 - anthropogenic suppression

INCOME LEVELS LOW HIGH INCOME LEVELS INCOME LEVELS COMPOSITION SCALE AND **EFFECT TECHNIQUE** EFFECT INDUSTRIAL **ECONOMY ECONOMY ECONOMY** INCOME LEVELS

(Sarkodie et al., 2019)

(Krotkov et al., 2016)

NO2 burden reductions over north equatorial

Africa • Data

- - NO2: OMI
 - cloud cover < 30%
 - solar zenith angle < 80
 - terrain reflectivity < 0.3
 - free from error flags
 - include negative
 - CO: IASI (morning observation)
 - cloud cover < 10%
 - NH3: IASI (morning observation)
 - cloud cover < 25%
 - Burned area: MODIS
 - proportion: 1/3
 - Precipitation: TRMM
 - Emission:
 - biomass burning: GFED4s
 - Fossil fuel: CEDS

- Annual burned area and tropospheric NO2
 - mean: high level
 - trend: negative

NO2 burden reductions over north equatorial

Africa

- Annual burned area and tropospheric NO2
 - decline: Nov. to Feb. (biomass burning season)
 - close spatiotemporal correspondence
- GDP density increase:
 - fossil fuel emissions: increase (E. Hickmane et al., 2021)
 - biomass burning emissions: decrease
 - play a more important role——inverted N

North China

- the North China Plain
 - severe PM2.5 air pollution
 - emission control measures——fuel combustion
 - SO2
 - NOx (NO + NO2)
 - primary aerosols
- Secondary inorgan $2NH_3 + H_2SO_4 = =(NH_4)_2SO_4$ • $NH_3 + HNO_3 = =NH_4NO_3$
- Model simulations
 - base: the 2015 emission conditions
 - S1RN (N = 20/40/60/100): reduce NH3 emissions
 - S2RN (N = 20/40/60/100): reduce NOX by 8% and SO2 by 40%
 - S3RN (N = 20/40/60/100): further reduce NOX by 20%

(Liu et al., 2021)

(Liu et al., 2021)

North China

- The WRF-Chem model——WRF+Chemistry
 - mechanism: the gas-phase Carbon-Bond Mechanism Z
 - physical settings: Morrison double-moment microphysics scheme et al.
 - emissions:
 - anthropogenic: MEIC, agricultural NH3 from updated statistics for the year 2015
 - biogenic: Model of Emissions of Gases and Aerosols from Nature
 - biomass burning: Fire Inventory from the NCAR
- Meteorology:
 - 10 m wind direction
 - 10 m wind speed
 - 2 m air temperature
 - 2 m relative humidity
- Surface measurements
 - surface PM2.5
 - NH3 concentrations: Ammonia Monitoring Network in China
- Observed and simulated surface pollutant concentrations
 - PM2.5: in good agreement

175

150

125 100

75

50

(b) January PM, 5

(d) July PM_{2.5}

36

24

(a) January PM_{2 5} over North China

North China

- Observed and simulated surface pollutant concentrations
 - NH3 concentrations: biased high by 30%+
 - decrease/increase anthropogenic NH3 emissions by 20%
 - the effect of NH3 emission changes on surface concentrations: NHx = NH3 + NH4+
- Response of PM2.5 pollution to NH3 emission reductions
 - changes in surface PM2.5:
 - more distinct with stronger NH3 emission reductions
 - highly saturated in the southern Hebei province

(Liu et al., 2021)

North China

- Response of PM2.5 pollution to NH3 emission reductions
 - changes in surface PM2.5:
 - a power exponential function
- Effects of NOx and SO2 emission changes
 - the changes in BTH PWC
 - the changes in BTH β1 efficiency
 - high NH3 emission: decrease
 - Iow NH3 emission: increase

Questions?