

TEST REPORT

Report number : Z101C-15115 Issue date : December 9, 2015

The device, as described herewith, was tested pursuant to applicable test procedure and complies with the requirements of;

FCC Part15 Subpart C IC RSS-210

The test results are traceable to the international or national standards.

Applicant : HOKUBU Communication &

Industrial Co., Ltd.

Equipment under test (EUT) : TX Module

Model number : Model EP

FCC ID : 2AGF8-TXMEPA IC Certification Number : 20931-TXMEPA

Date of test : November 19-21, 25, 26, 2015

Test place : TÜV SÜD Zacta Ltd. Yonezawa Testing Center

4149-7 Hachimanpara 5-chome

Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

Test results : Complied

The results in this report are applicable only to the equipment tested.

This report shall not be re-produced except in full without the written approval of TÜV SÜD Zacta Ltd. This test report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Tested by

Taiki Watanabe

Authorized by

Eiji Akiba

Deputy General Manager of EMC Technical Department

Table of contents

	Page
1. Summary of Test	
1.1 Purpose of test	
1.2 Standards	
1.3 List of applied test to the EUT	
1.4 Modification to the EUT by laboratory	3
2. Equipment Under Test	4
2.1 General Description of equipment	4
2.2 EUT information	4
2.3 Variation of the family model(s)	5
2.4 Operating channels and frequencies	5
2.5 Operating mode	6
2.6 Operating flow	6
3. Configuration of equipment	7
3.1 Equipment(s) used	7
3.2 Cable(s) used	7
3.3 System configuration	7
4. Occupied Bandwidth	8
4.1 Measurement procedure	
4.2 Limit	8
4.3 Measurement result	8
4.4 Trace data	9
5. Spurious Emissions - Field Strength of Fundamental and Harmonics	11
5.1 Measurement procedure	
5.2 Calculation method	12
5.3 Limit	12
5.4 Test data	13
6. Restricted Band of Operation	17
6.1 Measurement procedure	
6.2 Limit	17
6.3 Measurement Result	18
6.4 Test data	18
7. AC Power Line Conducted Emissions	27
7 Measurement procedure	
7.2 Calculation method	
7.3 Limit	
7.4 Test data	
8. Antenna requirement	
9. Uncertainty of measurement	
10. Laboratory description	
Appendix A. Test equipment	
Appendix B. Dutv Cvcle	

1. Summary of Test

1.1 Purpose of test

It is the original test in order to verify conformance to FCC Part 15 Subpart C and IC RSS-210.

1.2 Standards

CFR47 FCC Part 15 Subpart C IC RSS-210

1.2.1 Test Methods

ANSI C63.10-2009

1.2.2 Deviation from standards

None

1.3 List of applied test to the EUT

Test items Section	Test items	Condition	Result
RSS-Gen 4.6.1	Occupied Bandwidth	Conducted	PASS
15.249(a), (b), (c), (d), (e) RSS-210 A2.9(a), (b)	Spurious Emissions (Field Strength of Fundamental and Harmonics)	Radiated	PASS
15.249(c), (d) RSS-210 A2.9(b)	Restricted Bands of Operation	Radiated	PASS
15.207	AC Power Line Conducted Emissions	Conducted	PASS

1.3.1 Test set up

Table-Top

1.4 Modification to the EUT by laboratory

None

2. Equipment Under Test

2.1 General Description of equipment

EUT is the TX Module.

2.2 EUT information

Applicant : HOKUBU Communication & Industrial Co., Ltd.

27-1, Fushi-o-gami, Fukushima-shi Fukushima 960-8154, Japan

Phone: +81-24-545-2237 Fax: +81-24-545-2491

Equipment under test : TX Module

Trade name : HOKUBU TSUSHIN

Model number : Model EP

Serial number : 1510041

EUT condition : Pre-Production

Power ratings : DC 3.0V

Size : $(W) 29.0 \times (D) 6.0 \times (H) 25.0 \text{ mm}$

Environment : Indoor and Outdoor use

Terminal limitation : -15°C to 65°C

RF Specification

Frequency range : 2402MHz-2478MHz

Number of RF : 77 Channels

Channels

Modulation method/

Data rate

: GFSK (1Mbps, 250kbps)

Channel separation : 1MHz

Output power : 107.6dBuV/m

Antenna type : Internal antenna

Antenna gain : 0dBi

2.3 Variation of the family model(s)

Not applicable

2.4 Operating channels and frequencies

Channel	Frequency [MHz]	Channel	Frequency [MHz]
2	2402	41	2441
3	2403	42	2442
4	2404	43	2443
5	2405	44	2444
6	2406	45	2445
7	2407	46	2446
8	2408	47	2447
9	2409	48	2448
10	2410	49	2449
11	2411	50	2450
12	2412	51	2451
13	2413	52	2452
14	2414	53	2453
15	2415	54	2454
16	2416	55	2455
17	2417	56	2456
18	2418	57	2457
19	2409	58	2458
20	2420	59	2459
21	2421	60	2460
22	2422	61	2461
23	2423	62	2462
24	2424	63	2463
25	2425	64	2464
26	2426	65	2465
27	2427	66	2466
28	2428	67	2467
29	2429	68	2468
30	2430	69	2469
31	2431	70	2470
32	2432	71	2471
33	2433	72	2472
34	2434	73	2473
35	2435	74	2474
36	2436	75	2475
37	2437	76	2476
38	2438	77	2477
39	2439	78	2478
40	2440		

2.5 Operating mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Tested Channel	Frequency [MHz]
Low	2402
Middle	2440
High	2478

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

Tested Channel	Modulation Type	Data Rate
Low, Middle, High	GFSK	1Mbps, 250kbps

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in X axis and the worst case recorded.

2.6 Operating flow

[Tx mode]

- i) Test program setup to the PARAS
- ii) Select a Test mode

Operating frequency: Channel Low: 2402MHz, Channel Middle: 2440MHz, Channel High: 2478MHz Data rate: EL-SPEED 1Mbps, EL-NORMAL 250kbps

iii) Start test mode

[Rx mode]

- i) Test program setup to the PARAS
- ii) Select a Test mode

Operating frequency: Channel Low: 2402MHz, Channel Middle: 2440MHz, Channel High: 2478MHz

iii) Start test mode

3. Configuration of equipment

3.1 Equipment(s) used

	No.	Equipment	Company	Model No.	Serial No.	FCC ID / DoC	Comment
	1	TX Module	HOKUBU	Model EP	1510041	2AGF8-TXMEPA	EUT
Γ	2	Stabilized DC power	KIKUSUI	PAB32-2	47306490	-	-

3.2 Cable(s) used

No.	Cable	Length[m]	Shield	Connector	Comment
а	DC cable	4.0	No	Plastic	-
b	AC power cord	2.0	No	Plastic	-

3.3 System configuration

#: Un-detachable cable

Note1: Numbers assigned to equipment or cables on this diagram correspond to the list in "3.1 Equipment(s) used" and "3.2 Cable(s) used".

4. Occupied Bandwidth

4.1 Measurement procedure [RSS-Gen 4.6.1]

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99% bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

The EUT was set to operate with following conditions.

- Channel Low: 2402MHz, Channel Middle: 2440MHz, Channel High: 2478MHz The test mode of EUT is as follows.
- Tx mode

- Test configuration

4.2 Limit

None

4.3 Measurement result

Date : November 25, 2015

Temperature : 23.4 [°C] Humidity : 45.3 [%]

Test place : Shielded room No.4 Taiki Watanabe

Channel	Fraguency [MHz]	Occupied band	width [MHz]	
Chaine	Frequency [MHz]	1Mbps 250kbps		
Low	2402	1.0626	0.7514	
Middle	2440	1.1831	0.9643	
High	2478	1.1357	0.936	

Test engineer

4.4 Trace data <1Mbps>

Channel Low

Channel Middle

Channel High

<250kbps>

Channel Low

Channel Middle

Channel High

5. Spurious Emissions - Field Strength of Fundamental and Harmonics -

5.1 Measurement procedure

[FCC 205/209/249(a), (b), (c), (d), (e), 15.35(b), IC RSS-210 A2.9(a), (b), RSS-Gen 4.9, 4.10]

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 9kHz to 25GHz

Test place : 3m Semi-anechoic chamber

EUT was placed on : FRP table / (W)2.0m × (D)1.0m × (H)0.8m

Antenna distance : 3m

Test receiver setting Below 1GHz

- Detector : Average (9kHz-90kHz, 110kHz-490kHz), Quasi-peak

- Bandwidth : 200Hz, 120kHz Spectrum analyzer setting Above 1GHz

- Peak : RBW=1MHz, VBW=3MHz, Span=0Hz, Sweep=auto

- Average : Peak reading + DCF

Average Measurement [DCF]

Data rate	Duty cycle (%)	T _{on} (ms)	100ms window	1/T _{on} (kHz)	Duty cycle factor 20log (Dc %) (dB)
1Mbps	3.4	0.340	10	2.941	-29.4 (-20)
250kbps	12.4	1.240	10	0.806	-18.1

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

The EUT was set to operate with following conditions.

- Channel Low: 2402MHz, Channel Middle: 2440MHz, Channel High: 2478MHz
- The test mode of EUT is as follows. Tx mode, Rx mode
- Test configuration

5.2 Calculation method

[9kHz to 150kHz]
Emission level = Reading + (Ant. factor + Cable system loss)
Margin = Limit – Emission level

[150kHz to 25GHz]
Emission level = Reading + (Ant. factor + Cable system loss – Amp. Gain)
Margin = Limit – Emission level

Example:

 $\label{eq:Limit} \begin{tabular}{ll} Limit & $0.4804.0 MHz : $74.0 dBuV/m (Peak Limit) \\ $\text{S.A Reading} = $39.9 dBuV & Cable system loss = $8.3 dB \\ $\text{Result} = $39.9 + 8.3 = $48.2 dBuV/m \\ \end{tabular}$

Margin = 74.0 - 48.2 = 25.8dB

5.3 Limit

Fundamental Frequency	Field strength of		Field st	Distance	
[MHz]	fundamental		harmonics		[m]
	[mV/m]	[dBuV/m]	[mV/m]	[dBuV/m]	
2400-2483.5	50	20logE [uV/m]	500	20logE [uV/m]	3

Frequency	Field s	trength	Distance
[MHz]	[uV/m]	[dBuV/m]	[m]
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30
1.705-30	30	29.5	30
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level [dBuV/m] = 20log Emission [uV/m]
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition modulation.

Test engineer

Test engineer

5.4 Test data

Date November 20, 2015

24.2 [°C] Temperature Humidity 29.9 [%]

Test place 3m Semi-anechoic chamber Taiki Watanabe

November 21, 2015 Date

Temperature 22.6 [°C]

32.6 [%] Humidity

Test place 3m Semi-anechoic chamber Taiki Watanabe

<1Mbps> **Channel Low**

Peak

(P)	Frequency [MHz]	Reading [dBµV/m]	c.f [dB(1/m)]	Duty cycle factor [dB(1/m)]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Н	2402	95.6	2.3	-	97.9	114.0	16.1
V	2402	99.3	2.3	=	101.6	114.0	12.4
Н	4804	52.8	8.3	-	61.1	74.0	12.9
V	4804	54.6	8.3	=	62.9	74.0	11.1
Н	7206	51.0	14.3	=	65.3	74.0	8.7
V	7206	51.4	14.3	-	65.7	74.0	8.3
Н	9608	47.6	19.7	II.	67.3	74.0	6.7
V	9608	47.4	19.7	-	67.1	74.0	6.9
V	12010	46.9	21.5	-	68.4	74.0	5.6

Average

, o. ag	•						
(P)	Frequency [MHz]	Reading [dBµV/m]	c.f [dB(1/m)]	Duty cycle factor [dB(1/m)]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Н	2402	95.6	2.3	-20.0	77.9	94.0	16.1
V	2402	99.3	2.3	-20.0	81.6	94.0	12.4
Н	4804	52.8	8.3	-20.0	41.1	54.0	12.9
V	4804	54.6	8.3	-20.0	42.9	54.0	11.1
Н	7206	51.0	14.3	-20.0	45.3	54.0	8.7
V	7206	51.4	14.3	-20.0	45.7	54.0	8.3
Н	9608	47.6	19.7	-20.0	47.3	54.0	6.7
V	9608	47.4	19.7	-20.0	47.1	54.0	6.9
V	12010	46.9	21.5	-20.0	48.4	54.0	5.6

Channel Middle

Peak

· oan							
(P)	Frequency [MHz]	Reading [dBµV/m]	c.f [dB(1/m)]	Duty cycle factor [dB(1/m)]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Н	2440	100.2	2.5	-	102.7	114.0	11.3
V	2440	101.9	2.5	-	104.4	114.0	9.6
Н	4880	55.8	8.7	-	64.5	74.0	9.5
V	4880	53.7	8.7	-	62.4	74.0	11.6
Н	7320	51.1	14.6	-	65.7	74.0	8.3
V	7320	54.3	14.6	-	68.9	74.0	5.1
Н	9760	48.0	19.8	-	67.8	74.0	6.2
V	9760	49.2	19.8	-	69.0	74.0	5.0
Н	12200	49.1	20.7	-	69.8	74.0	4.2
V	12200	49.9	20.7	-	70.6	74.0	3.4

Average

	Frequency	Reading	c.f	Duty cycle factor	Result	Limit	Margin
(P)	[MHz]	[dBµV/m]	[dB(1/m)]	[dB(1/m)]	[dBµV/m]	[dBµV/m]	[dB]
Н	2440	100.2	2.5	-20.0	82.7	94.0	11.3
V	2440	101.9	2.5	-20.0	84.4	94.0	9.6
Н	4880	55.8	8.7	-20.0	44.5	54.0	9.5
V	4880	53.7	8.7	-20.0	42.4	54.0	11.6
Н	7320	51.1	14.6	-20.0	45.7	54.0	8.3
V	7320	54.3	14.6	-20.0	48.9	54.0	5.1
Н	9760	48.0	19.8	-20.0	47.8	54.0	6.2
V	9760	49.2	19.8	-20.0	49.0	54.0	5.0
Н	12200	49.1	20.7	-20.0	49.8	54.0	4.2
V	12200	49.9	20.7	-20.0	50.6	54.0	3.4

Channel High

Peak

(D)	Frequency	Reading	c.f	Duty cycle factor	Result	Limit	Margin
(P)	[MHz]	[dBµV/m]	[dB(1/m)]	[dB(1/m)]	[dBµV/m]	[dBµV/m]	[dB]
Н	2478	103.0	2.6	-	105.6	114.0	8.4
V	2478	105.0	2.6	-	107.6	114.0	6.4
Н	4956	58.0	8.8	-	66.8	74.0	7.2
V	4956	52.8	8.8	-	61.6	74.0	12.4
Н	7434	51.5	15.0	-	66.5	74.0	7.5
V	7434	54.8	15.0	-	69.8	74.0	4.2
Н	9912	49.5	20.0	-	69.5	74.0	4.5
V	9912	51.0	20.0	-	71.0	74.0	3.0
Н	12390	48.3	19.8	-	68.1	74.0	5.9
V	12390	50.5	19.8	-	70.3	74.0	3.7

Average

Average	5						
(P)	Frequency [MHz]	Reading [dBµV/m]	c.f [dB(1/m)]	Duty cycle factor [dB(1/m)]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Н	2478	103.0	2.6	-20.0	85.6	94.0	8.4
V	2478	105.0	2.6	-20.0	87.6	94.0	6.4
Н	4956	58.0	8.8	-20.0	46.8	54.0	7.2
V	4956	52.8	8.8	-20.0	41.6	54.0	12.4
Н	7434	51.5	15.0	-20.0	46.5	54.0	7.5
V	7434	54.8	15.0	-20.0	49.8	54.0	4.2
Н	9912	49.5	20.0	-20.0	49.5	54.0	4.5
V	9912	51.0	20.0	-20.0	51.0	54.0	3.0
Н	12390	48.3	19.8	-20.0	48.1	54.0	5.9
V	12390	50.5	19.8	-20.0	50.3	54.0	3.7

Note:

- Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.
 No emission was detected in the receive mode.

Test engineer

Test engineer

Date : November 19, 2015

Temperature : 24.2 [°C]

Humidity : 29.9 [%]

Test place : 3m Semi-anechoic chamber Taiki Watanabe

Date : November 21, 2015

Temperature : 22.6 [°C]

Humidity : 32.6 [%]

Test place : 3m Semi-anechoic chamber Taiki Watanabe

<250kbps> Channel Low

Peak

(D)	Frequency	Reading	c.f	Duty cycle factor	Result	Limit	Margin
(P)	[MHz]	[dBµV/m]	[dB(1/m)]	[dB(1/m)]	[dBµV/m]	[dBµV/m]	[dB]
Н	2402	97.1	2.3	-	99.4	114.0	14.6
V	2402	98.8	2.3	=	101.1	114.0	12.9
Н	4804	52.3	8.3	-	60.6	74.0	13.4
V	4804	54.3	8.3	=	62.6	74.0	11.4
Н	7206	51.5	14.3	-	65.8	74.0	8.2
V	7206	52.0	14.3	-	66.3	74.0	7.7
Н	9608	47.4	19.7	1	67.1	74.0	6.9
V	9608	48.9	19.7	ī	68.6	74.0	5.4
Н	12010	46.6	21.5	-	68.1	74.0	5.9
V	12010	48.2	21.5	-	69.7	74.0	4.3

Average

(P)	Frequency [MHz]	Reading [dBµV/m]	c.f [dB(1/m)]	Duty cycle factor [dB(1/m)]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Н	2402	97.1	2.3	-18.1	81.3	94.0	12.7
V	2402	98.8	2.3	-18.1	83.0	94.0	11.0
Н	4804	52.3	8.3	-18.1	42.5	54.0	11.5
V	4804	54.3	8.3	-18.1	44.5	54.0	9.5
Н	7206	51.5	14.3	-18.1	47.7	54.0	6.3
V	7206	52.0	14.3	-18.1	48.2	54.0	5.8
Н	9608	47.4	19.7	-18.1	49.0	54.0	5.0
V	9608	48.9	19.7	-18.1	50.5	54.0	3.5
Н	12010	46.6	21.5	-18.1	50.0	54.0	4.0
V	12010	48.2	21.5	-18.1	51.6	54.0	2.4

Channel Middle

Peak

(P)	Frequency	Reading	c.f	Duty cycle factor	Result	Limit	Margin
()	[MHz]	[dBµV/m]	[dB(1/m)]	[dB(1/m)]	[dBµV/m]	[dBµV/m]	[dB]
Н	2440	99.7	2.5	-	102.2	114.0	11.8
V	2440	102.3	2.5	-	104.8	114.0	9.2
Н	4880	55.2	8.7	=	63.9	74.0	10.1
V	4880	52.7	8.7	-	61.4	74.0	12.6
Н	7320	50.2	14.6	-	64.8	74.0	9.2
V	7320	54.2	14.6	-	68.8	74.0	5.2
Н	9760	47.6	19.8	1	67.4	74.0	6.6
V	9760	49.8	19.8	ī	69.6	74.0	4.4
Н	12200	46.9	20.7	-	67.6	74.0	6.4
V	12200	49.6	20.7	-	70.3	74.0	3.7

Average

	_						
(P)	Frequency	Reading	c.f	Duty cycle factor	Result	Limit	Margin
(Г)	[MHz]	[dBµV/m]	[dB(1/m)]	[dB(1/m)]	[dBµV/m]	[dBµV/m]	[dB]
Н	2440	99.7	2.5	-18.1	84.1	94.0	9.9
V	2440	102.3	2.5	-18.1	86.7	94.0	7.3
Н	4880	55.2	8.7	-18.1	45.8	54.0	8.2
V	4880	52.7	8.7	-18.1	43.3	54.0	10.7
Н	7320	50.2	14.6	-18.1	46.7	54.0	7.3
V	7320	54.2	14.6	-18.1	50.7	54.0	3.3
Н	9760	47.6	19.8	-18.1	49.3	54.0	4.7
V	9760	49.8	19.8	-18.1	51.5	54.0	2.5
Н	12200	46.9	20.7	-18.1	49.5	54.0	4.5
V	12200	49.6	20.7	-18.1	52.2	54.0	1.8

Channel High

Peak

(P)	Frequency [MHz]	Reading [dBµV/m]	c.f [dB(1/m)]	Duty cycle factor [dB(1/m)]	Result [dBµV/m]	Limit [dBµV/m]	Margin
	[IVITIZ]	[αΒμν/ιιι]	[ub(1/111)]	[ub(1/111)]	[αΒμν/ιιι]	[αΒμν/ιιι]	[dB]
Н	2478	103.9	2.6	-	106.5	114.0	7.5
V	2478	104.8	2.6	-	107.4	114.0	6.6
Н	4956	56.1	8.8	-	64.9	74.0	9.1
V	4956	52.2	8.8	-	61.0	74.0	13.0
Н	7434	52.1	15.0	-	67.1	74.0	6.9
V	7434	55.3	15.0	-	70.3	74.0	3.7
Н	9912	49.5	20.0	-	69.5	74.0	4.5
V	9912	51.4	20.0	-	71.4	74.0	2.6
Н	12390	49.1	19.8	-	68.9	74.0	5.1
V	12390	50.4	19.8	-	70.2	74.0	3.8

Average

Average	5						
(P)	Frequency [MHz]	Reading [dBµV/m]	c.f [dB(1/m)]	Duty cycle factor [dB(1/m)]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Н	2478	103.9	2.6	-18.1	88.4	94.0	5.6
V	2478	104.8	2.6	-18.1	89.3	94.0	4.7
Н	4956	56.1	8.8	-18.1	46.8	54.0	7.2
V	4956	52.2	8.8	-18.1	42.9	54.0	11.1
Н	7434	52.1	15.0	-18.1	49.0	54.0	5.0
V	7434	55.3	15.0	-18.1	52.2	54.0	1.8
Н	9912	49.5	20.0	-18.1	51.4	54.0	2.6
V	9912	51.4	20.0	-18.1	53.3	54.0	0.7
Н	12390	49.1	19.8	-18.1	50.8	54.0	3.2
V	12390	50.4	19.8	-18.1	52.1	54.0	1.9

Note:

- Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.
 No emission was detected in the receive mode.

6. Restricted Band of Operation

6.1 Measurement procedure [FCC 15.205, 15.209, 15.249(c), (d), IC RSS-210 A2.9(b)]

Test was applied by following conditions.

Test method : ANSI C63.10

Test place : 3m Semi-anechoic chamber

EUT was placed on : FRP table / $(W)2.0m \times (D)1.0m \times (H)0.8m$

Antenna distance : 3m

Spectrum analyzer setting

- Peak
 - Delta
 - Average
 RBW=1MHz, VBW=3MHz, Span=10MHz, Sweep=auto
 - RBW=300kHz, VBW=300kHz, Span=40MHz, Sweep=auto
 - RBW=1MHz, VBW=1kHz/3kHz, Span=40MHz, Sweep=auto

Average Measurement Setting [VBW]

Data rate	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
1Mbps	3.4	0.340	5.100	2.941	3kHz
250kbps	12.4	1.240	4.920	0.806	1kHz

Radiated emission measurements are performed at 3m distance with the broadband antenna (Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission.

The EUT is Placed on a turntable, which is 0.8m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

The EUT was set to operate with following conditions.

- Channel Low: 2402MHz, Channel High: 2478MHz

The test mode of EUT is as follows.

- Tx mode
- Test configuration

6.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

6.3 Measurement Result

Channel	Frequency [MHz]	Results Chart	Result
Low	2402	See the Trace Data	Pass
High	2478	See the Trace Data	Pass

6.4 Test data

Date November 21, 2015

23.3 [°C] Temperature Humidity 20.3 [%]

Test engineer

Test place 3m Semi-anechoic chamber Taiki Watanabe

<1Mbps>

Peak

(P)	Frequency	Reading	c.f	Marker Delta	Result	Limit	Margin
(-)	[MHz]	[dBµV/m]	[dB(1/m)]	[dB]	[dBµV/m]	[dBµV/m]	[dB]
Н	2390.0	98.0	2.3	45.9	54.4	74.0	19.6
V	2390.0	99.4	2.3	46.5	55.2	74.0	18.8
Н	2483.5	104.4	2.6	38.8	68.2	74.0	5.8
V	2483.5	105.1	2.6	38.5	69.2	74.0	4.8

Average

(D)	Frequency	Reading	c.f	Result	Limit	Margin
(P)	[MHz]	[dBµV/m]	[dB(1/m)]	[dBµV/m]	[dBµV/m]	[dB]
Н	2390.0	41.6	2.3	43.9	54.0	10.1
V	2390.0	42.1	2.3	44.4	54.0	9.6
Н	2483.5	49.7	2.6	52.3	54.0	1.7
V	2483.5	50.3	2.6	52.9	54.0	1.1

<250kbps>

Peak

(D)	Frequency	Reading	c.f	Marker Delta	Result	Limit	Margin
(P)	[MHz]	[dBµV/m]	[dB(1/m)]	[dB]	[dBµV/m]	[dBµV/m]	[dB]
Н	2390.0	97.4	2.3	46.1	53.5	74.0	20.5
V	2390.0	98.7	2.3	45.6	55.4	74.0	18.6
Н	2483.5	104.3	2.6	38.8	68.1	74.0	5.9
V	2483.5	104.9	2.6	38.1	69.3	74.0	4.7

(P)	Frequency [MHz]	Reading [dBµV/m]	c.f [dB(1/m)]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Н	2390.0	38.1	2.3	40.4	54.0	13.6
V	2390.0	38.7	2.3	41.0	54.0	13.0
Н	2483.5	46.2	2.6	48.8	54.0	5.2
V	2483.5	46.1	2.6	48.7	54.0	5.3

<1Mbps> Channel Low Horizontal Peak

Maker Delta

Channel Low Vertical

Peak

Maker Delta

Channel High Horizontal Peak

Marker Delta

Channel High Vertical

Peak

Marker Delta

<250kbps> Channel Low Horizontal Peak

Maker Delta

Channel Low Vertical

Peak

Maker Delta

Channel High Horizontal Peak

Marker Delta

Channel High Vertical

Peak

Marker Delta

7. AC Power Line Conducted Emissions

7 Measurement procedure [FCC 15.207]

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 0.15MHz to 30MHz

Test place : 10m Semi-anechoic chamber

EUT was placed on : FRP table / (W)2.0m × (D)1.0m × (H)0.8m Vertical Metal Reference Plane : (W)2.0m × (H)2.0m 0.4m away from EUT

Test receiver setting

- Detector : Quasi-peak, Average

- Bandwidth : 9kHz

EUT and peripherals are connected to $50\Omega/50\mu H$ Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

7.2 Calculation method

Emission level = Reading + (LISN. factor + Cable system loss)
Margin = Limit – Emission level

7.3 Limit

Frequency	Limit				
[MHz]	QP [dBuV]	AV [dBuV]			
0.15-0.5	66-56*	56-46*			
0.5-5	56	46			
5-30	60	50			

^{*:} The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.4 Test data

***** CONDUCTED EMISSION at MAINS PORT *****

[3m Semi-anechoic chamber]

Final Result --- L1 Phase --Margin AV_ Reading Margin QP_ Reading Limit Limit No. Frequency c.f Result Result AV QP QP AV $[dB(\mu V)][dB(\mu V)]$ [MHz] [dB] $[dB(\mu V)] [dB(\mu V)] [dB(\mu V)] [dB(\mu V)]$ [dB] [dB] 1 0.17664.7 0.3 0.1 44.2 10.4 10.7 10.554.754.0--- L2 Phase -Margin QP Reading No. Frequency Reading c.f Result Result Limit Limit Margin QP AV QP AV QP AV AV $[dB(\mu V)][dB(\mu V)]$ $[dB(\mu V)]$ $[dB(\mu V)][dB(\mu V)][dB(\mu V)]$ [dB] [dB] [dB] [MHz] 1 0.175 0.4 0.1 10.6 11.0 10.7 64.7 53.7 44.0

Note: No emission were observed during Conducted testing.

8. Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

9. Uncertainty of measurement

Expanded uncertainties stated are calculated with a coverage Factor k=2.

Please note that these results are not taken into account when determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission at mains port	±3.0dB
Radiated emission (9kHz – 30MHz)	±4.4dB
Radiated emission (30MHz – 1000MHz)	±4.5dB
Radiated emission (1000MHz – 26GHz)	±3.9dB

10. Laboratory description

1. Location:

TÜV SÜD Zacta Ltd. Yonezawa Testing Center 4149-7 Hachimanpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

2. Facility filing information:

1) NVLAP accreditation: NVLAP Lab. code: 200306-0

2) VLAC accreditation: Lab. code: VLAC-013

Site name	Radiated emission	Conducted emission for mains port	Conducted emission for telecom port	Radiated emission (CMAD)	Expiry Date
3m Semi-anechoic chamber				-	
10m Semi-anechoic chamber No.1		VLAC-013		VLAC-013	Jul. 3, 2017
10m Semi-anechoic chamber No.2				VLAC-013	Jul. 3, 2017
Shielded room No.1	- VLAC-013			-	

3) FCC filing:

Site name	Registration Number	Expiry Date		
Site 3	91065	Oct. 1, 2017		
3m Semi-anechoic chamber				
10m Semi-anechoic chamber No.1	540072	Feb. 20, 2017		
10m Semi-anechoic chamber No.2	340072	Feb. 20, 2017		
Shielded room No.1				

4) Industry Canada Oats site filing:

Site name	Sites on file: Oats 3m/10m	Expiry Date
Site 3	4224A-3	
3m Semi-anechoic chamber	4224A-4	Dec. 3, 2017
10m Semi-anechoic chamber No.1	4224A-5	
10m Semi-anechoic chamber No.2	4224A-6	Jan. 15, 2017

5) VCCI site filing:

Site name	Radiated emission	Conducted emission for mains port	Conducted emission for telecom port	Expiry Date
Site 3	R-138	C-134	T-1222	Nov. 16, 2017
3m Semi-anechoic chamber				
10m Semi-anechoic chamber No.1		A-0166		I.J. 2 2017
10m Semi-anechoic chamber No.2				Jul. 3, 2017
Shielded room No.1	-	A-0)166	

6) TÜV SÜD PS authorization:

Authorized as an EMC test laboratory

7) TÜV Rheinland authorization:

Authorized as an EMC test laboratory

Appendix A. Test equipment

Antenna port conducted test

Equipment	Company	Model No.	Serial No.	Cal. due	Cal. date
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	Jun. 30, 2016	Jun. 11, 2015
Microwave cable	RS	YH_13S5	N/A (S403)	May 31, 2016	May 10, 2015
Attenuator	Weinschel	56-10	J4993	Nov. 30, 2015	Nov. 12, 2014

Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100764	Aug. 31, 2016	Aug. 21, 2015
Preamplifier	ANRITSU	MH648A	M96057	Jun. 30, 2016	Jun. 30, 2015
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	892246/010	Apr. 30, 2016	Apr. 2, 2015
Attenuator	TDC	TAT-43B-06	N/A (S209)	Apr. 30, 2016	Apr. 16, 2015
Biconical antenna	Schwarzbeck	VHA9103/BBA9106	2155	Jun. 30, 2016	Jun. 4, 2015
Log periodic antenna	Schwarzbeck	UHALP9108A	0560	Jun. 30, 2016	Jun. 4, 2015
Attenuator	TME	CFA-01NPJ-6	N/A (S275)	Jun. 30, 2016	Jun. 23, 2015
Attenuator	TME	CFA-01NPJ-3	N/A (S272)	Jun. 30, 2016	Jun. 23, 2015
Spectrum analyzer	Agilent Technologies	E4440A	US40420937	Jul. 31, 2016	Jul. 23, 2015
Preamplifier	Agilent Technologies	8449B	3008A1008	Dec. 31, 2015	Dec. 5, 2014
Double ridged guide antenna	EMCO	3115	5205	Feb. 29, 2016	Feb. 16, 2015
Attenuator	Agilent Technologies	8491B	MY39268633	Feb. 29, 2016	Feb. 1, 2015
Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170189	Jun. 30, 2016	Jun. 16, 2015
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	May 31, 2016	May 1, 2015
Notch filter	Micro-Tronics	BRM50702	045	Nov. 30, 2015	Nov. 12, 2014
Microwave cable	SUHNER	SUCOFLEX104/9m	346316/4	Oct. 31, 2016	Oct. 23, 2015
		SUCOFLEX104/1m	322084/4	Oct. 31, 2016	Oct. 23, 2015
		SUCOFLEX104/1.5m	317226/4	Oct. 31, 2016	Oct. 23, 2015
		SUCOFLEX104/7m	41625/6	Oct. 31, 2016	Oct. 23, 2015
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V5.3.61	N/A	N/A
3m Semi-anechoic chamber	TOKIN	N/A	N/A (9002-NSA)	Apr. 30, 2016	Apr. 27, 2015
3m Semi-anechoic chamber	TOKIN	N/A	N/A (9002-SVSWR)	Apr. 30, 2016	Apr. 27, 2015

Conducted emission at mains port

Conducted emission at mains port							
Equipment	Company	Model No.	Serial No.	Cal. due	Cal. date		
EMI Receiver	ROHDE&SCHWARZ	ESCI	100764	Aug. 31, 2016	Aug. 21, 2015		
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	Feb. 29, 2016	Feb. 5, 2015		
Line impedance stabilization network for EUT	Kyoritsu Electrical Works, Ltd.	KNW-407F	8-2003-1	Mar. 31, 2016	Mar. 5, 2015		
Coaxial cable	FUJIKURA	5D-2W/4m	N/A (S330)	Feb. 29, 2016	Feb. 5, 2015		
Coaxial cable	FUJIKURA	5D-2W/1m	N/A (S193)	Feb. 29, 2016	Feb. 5, 2015		
Coaxial cable	SUHNER	RG214/U/10m	N/A (S194)	Feb. 29, 2016	Feb. 5, 2015		
PC	DELL	DIMENSION	75465BX	N/A	N/A		

^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Appendix B. Duty Cycle

[Plot & Calculation] <1Mbps>

Duty Cycle Factor Calculation

RF duty cycle factor: Calculation according to RF burst Para 15.35 (c)

Pulse width is 0.340ms

There are 10 pulses in 100ms window

0.340ms x 10 = 3.4ms, It is 3.4ms in 100ms

Duty cycle: 3.4/100 = 0.034

Duty cycle factor: 20log (0.034) = -29.37dB

Maximum is used duty cycle according to Para 15.35 (b): 20dB

<250kbps>

Duty Cycle Factor Calculation

RF duty cycle factor: Calculation according to RF burst Para 15.35 (c)

Pulse width is 1.24ms

There are 10 pulses in 100ms window

0.340ms x 10 = 12.4ms, It is 12.4ms in 100ms

Duty cycle: 12.4/100 = 0.124

Duty cycle factor: 20log (0.124) = -18.1dB

Maximum is used duty cycle according to Para 15.35 (b): 20dB