v pandas.plotting subpackage

Name: Jann Moises Nyll B. De los Reyes

Section: CPE22S3

Submitted to: Engr. Roman Richard

Date: March 28, 2024

Pandas provides some extra plotting functions for a few select plot types.

About the Data

In this notebook, we will be working with Facebook's stock price throughout 2018.

∨ Setup

Scatter matrix

```
1 from pandas.plotting import scatter_matrix
2 scatter_matrix(fb, figsize=(10,10))
```

```
200
e 180
160
   140
  220
   200
high
180
   160
   140
   200
  180
<u>8</u> 160
   140
   200
90 180
160
   140
   1.5
nolume 1.0
   0.5
                                                                                  volume
                                                                                0.5
                                                                                          ր
1e8
          150
                   200
                                             150
                                                               150
                                                                        200
```

close

Changing the diagonal from histograms to KDE

open

```
1 scatter_matrix(fb, figsize = (10,10), diagonal = 'kde')
```

high

```
<Axes: xlabel='high', ylabel='close'>,
    200
 e 180
160
  140
  220
  200
hgih
180
  160
  140
  200
  180
 <u>8</u> 160
  140
  200
 90 180
160
  140
 1.0
```

Double-click (or enter) to edit

Lag plot

 $Lag\ plots\ let\ us\ see\ how\ the\ variable\ correlations\ with\ past\ observations\ of\ itself.\ Random\ data\ has\ no\ pattern$

```
1 from pandas.plotting import lag_plot
```

² np.random.seed(0) #make this repeatable

³ lag_plot(pd.Series(np.random.random(size=200)))

<Axes: xlabel='y(t)', ylabel='y(t + 1)'> 1.0 0.8

Data with some level of correlation to itself (autocorrelation) may have patterns. Stock prices are highly auto-correlated:

1 lag_plot(fb.close)

The default lag is 1, but we can alter this with the lag parameter. Let's look at a 5 day lag (a week of trading activity):

1 lag_plot(fb.close, lag = 5)

Autocorrelation plots

We can use the autocorrelation plot to see if this relationship may be meaningful or just noise. Random data will not have any significant autocorrelation (it stays within the bounds below)

- 1 from pandas.plotting import autocorrelation_plot 2 np.random.seed(0) #make this repeatable
- 3 autocorrelation_plot(pd.Series(np.random.random(size = 200)))

Stock data, on the other hand, does have significant autocorrelation:

1 autocorrelation_plot(fb.close)

∨ Bootstrap plot

This plot helps us understand the uncertainty in our summary statistics:

- 1 from pandas.plotting import bootstrap_plot
 2 fig = bootstrap_plot(fb.volume,fig = plt.figure(figsize=(10,6)))

