ITCS 531: L1 homework solutions

Rob Egrot

Let ϕ and ψ be sentences. Show that

$$\phi \leftrightarrow \psi \models \exists (\phi \land \psi) \lor (\neg \phi \land \neg \psi)$$

► The truth tables are the same:

ϕ	ψ	$\phi \leftrightarrow \psi$	$(\phi \wedge \psi) \vee (\neg \phi \wedge \neg \psi)$
Τ	Т	T	Т
Т	F	F	F
F	Т	F	F
F	F	Т	Т

Prove that the set $\{\land, \neg\}$ is functionally complete.

- Must show that for every sentence ϕ there is a sentence ϕ' using only \wedge and \neg such that $\phi \models = |\phi'|$.
- ▶ Know that $\{\land, \lor, \neg, \leftrightarrow\}$ is functionally complete.
- Assume without loss of generality that ϕ only contains connectives from $\{\land,\lor,\neg,\leftrightarrow\}$.
- ▶ Induction on formula construction.
 - ▶ Base case $\phi = p$. Just set $\phi' = p$.
 - Inductive step: if $\phi = \psi_1 \vee \psi_2$ then define $\phi' = \neg(\neg \psi_1' \wedge \neg \psi_2')$.
 - Use truth tables to show $\phi \models = |\phi'|$.
 - If $\phi = \psi_1 \leftrightarrow \psi_2$, notice that $(\psi_1' \land \psi_2') \lor (\neg \psi_1' \land \neg \psi_2') \models \exists \psi_1 \leftrightarrow \psi_2$.
 - So, using the first case we can define $\phi' = \neg(\neg(\psi_1' \land \psi_2') \land \neg(\neg\psi_1' \land \neg\psi_2')).$
 - Finally, if $\phi = \neg \psi$ or $\phi = \psi_1 \wedge \psi_2$ just set $\phi' = \neg \psi'$ or $\phi' = \psi'_1 \wedge \psi'_2$.

Q3

Define a binary connective | using the following truth table.

ϕ	ψ	$\phi \psi$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

Prove that {|} is functionally complete.

- ▶ Show that if ϕ is a sentence involving only symbols from $\{\land, \neg\}$, there is a sentence ϕ' using only | such that $\phi \models = |\phi'$.
- ▶ Suppose $\phi = \neg \psi$. Observe that

$$\begin{array}{cccc}
\psi & \neg \psi & \psi | \psi \\
\hline
T & F & F \\
F & T & T
\end{array}$$

- ▶ So we can define $\phi' = \psi' | \psi'$.
- ▶ Suppose $\phi = \psi_1 \wedge \psi_2$. Observe that

ψ_1	ψ_2	$\psi_1 \wedge \psi_2$	$\psi_1 \psi_2$	$(\psi_1 \psi_2) (\psi_1 \psi_2)$
Т	Т	Т	F	Т
Т	F	F	Т	F
F	Т	F	T	F
F	F	F	Т	F

▶ So we can define $\phi' = (\psi'_1|\psi'_2)|(\psi'_1|\psi'_2)$.

Let p and q be basic propositions. How many possible distinct truth tables are there for formulas involving only the propositions p and q?

▶ There are 4 rows in each truth table for p and q.

р	q	ϕ
Т	Т	?
Τ	F	?
F	Т	?
F	F	?

- ▶ Here each ? can be true or false.
- ► This gives $2^4 = 16$ distinct possibilities.

Show that every sentence is equivalent to a sentence in DNF.

- Consider this example.
- Suppose ϕ contains only the proposition symbols p, q, r, and that its truth table is as follows:

- ► Then ϕ is obviously logically equivalent to $(p \land q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land \neg r).$
- This is a DNF sentence.
- ► This method obviously generalizes.
- ▶ If ϕ is a contradiction then ϕ is equivalent to e.g. $p \land \neg p$.