# BT 623 Research Methodology

## Probability Distribution



#### Prof. Utpal Bora

Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Kamrup, Assam-781039, India Email: <a href="mailto:ubora@iitg.ac.in">ubora@iitg.ac.in</a>

# Probability distributions

 We use probability distributions because they work –they fit lots of data in real world





Ht (cm) 1996

Height (cm) of *Hypericum cumulicola* at Archbold Biological Station

#### Bernoulli Random Variables

- Imagine a simple trial with only two possible outcomes
  - Success (S)
  - Failure (*F*)

- Examples
  - Toss of a coin (heads or tails)
  - Sex of a newborn (male or female)

    Jacob Bernoulli (1654-1705)

 $\frac{1}{n}(x_1+...+x_n) \longrightarrow E(X)$ 

Survival of an organism in a region (live or die)

- Suppose that the probability of success is p
- What is the probability of failure?
  - q = 1 p
- Examples
  - Toss of a coin (S = head):  $p = 0.5 \Rightarrow q = 0.5$
  - Roll of a die (S = 1):  $p = 0.1667 \Rightarrow q = 0.8333$
  - Fertility of a chicken egg (S = fertile):  $p = 0.8 \Rightarrow q = 0.2$

- Imagine that a trial is repeated *n* times
- Examples
  - A coin is tossed 5 times
  - A die is rolled 25 times
  - 50 chicken eggs are examined
- Assume p remains constant from trial to trial and that the trials are statistically independent of each other

#### Overview

Formula for Binomial Distribution

$$P(x) = {}^{n}C_{x} \cdot p^{x} \cdot q^{n-x}$$

$$= \frac{n!}{x!(n-x)!} p^{x} \cdot q^{n-x}$$

where  ${}^{n}C_{x}$  is the number of ways to obtain x successes

Question 1: Find the binomial distribution of getting a six in three tosses of an unbiased dice.

#### Question 1: Find the binomial distribution of getting a six in three tosses of an unbiased dice.

Let X be the random variable of getting six. Then X can be 0, 1, 2, 3.

Here, 
$$n = 3$$

p = Probability of getting a six in a toss =  $\frac{1}{6}$ 

q = Probability of not getting a six in a toss =  $1 - \frac{1}{6} = \frac{5}{6}$ 

$$P(X = 0) = {}^{n}C_{r} p^{r} q^{(n-r)} = {}^{3}C_{0} (\%)^{0} (\%)^{3-0} = 1 \times 1 \times 125/216 = 125/216$$

$$P(X = 1) = {}^{n}C_{r} p^{r} q^{(n-r)} = {}^{3}C_{1} (\%)^{1} (\%)^{3-1} = 3 \times \% \times 25/36 = 25/72$$

$$P(X = 2) = {}^{n}C_{r} p^{r} q^{(n-r)} = {}^{3}C_{2} (\%)^{2} (\%)^{3-2} = 3 \times 1/36 \times \% = 5/72$$

$$P(X = 3) = {}^{n}C_{r} p^{r} q^{(n-r)} = {}^{3}C_{3} (\%)^{3} (\%)^{3-3} = 1 \times 1/216 \times 1 = 1/216$$

Question 2: When an unbiased coin is tossed eight times, what is the probability of obtaining:

(a) Less than 4 heads

(b) more than 5 heads

#### Overview



Bin(0.5, 5)

2

3

4

0.4 0.3 0.2 0.1 0

0









- When there is a large number of trials, but a small probability of success, binomial calculation becomes impractical
  - Example: Number of deaths from horse kicks in the Army in different years
- The mean number of successes from n trials is  $\mu = np$ 
  - Example: 64 deaths in 20 years from thousands of soldiers



Simeon D. Poisson (1781-1840)

#### Overview

• If we substitute  $\mu/n$  for p, and let n tend to infinity, the binomial distribution becomes the Poisson distribution:

$$P(x) = \frac{e^{-\mu}\mu^x}{x!}$$

- Poisson distribution is applied where random events in space or time are expected to occur
- Deviation from Poisson distribution may indicate some degree of non-randomness in the events under study
- Investigation of cause may be of interest

Question 3: In the manufacture of glassware, bubbles can occur in the glass which reduces the status of the glassware to that of a 'second'. If, on average, one in every 1000 items produced has a bubble, calculate the probability that exactly six items in a batch of three thousand are seconds.

#### Suppose that:

X = number of items with bubbles, then X (3000, 0.001)

Since n = 3000 and p = 0.001, we can use the Poisson distribution with

$$\mu = np = 3000 \times 0.001 = 3$$

The calculation is:

$$P(X = 6) = \frac{e^{-3}3^{6}}{6!}$$

$$\approx 0.0498 \times 1.0125$$

$$\approx 0.05$$

The result means that we have about a 5% chance of finding exactly six seconds in a batch of three thousand items of glassware.

**Question 4:** A manufacturer produces light-bulbs that are packed into boxes of 100. If quality control studies indicate that 0.5% of the light-bulbs produced are defective, what percentage of the boxes will contain:

(a) no defective (b) less than 3 are defective

### Emission of $\alpha$ -particles

- Rutherford, Geiger, and Bateman (1910) counted the number of  $\alpha$ -particles emitted by a film of polonium in 2608 successive intervals of one-eighth of a minute
  - What is *n*?
  - What is *p*?
- Do their data follow a Poisson distribution?

## Emission of $\alpha$ -particles

• Calculation of  $\mu$ :

$$\mu$$
 = No. of particles per interval  
= 10097/2608  
= 3.87

• Expected values:

$$2680 \times P(x) = 2608 \times \frac{e^{-3.87} (3.87)^{x}}{x!}$$

| No. α-particles | Observed |  |
|-----------------|----------|--|
| 0               | 57       |  |
| 1               | 203      |  |
| 2               | 383      |  |
| 3               | 525      |  |
| 4               | 532      |  |
| 5               | 408      |  |
| 6               | 273      |  |
| 7               | 139      |  |
| 8               | 45       |  |
| 9               | 27       |  |
| 10              | 10       |  |
| 11              | 4        |  |
| 12              | 0        |  |
| 13              | 1        |  |
| 14              | 1        |  |
| Over 14         | 0        |  |
| Total           | 2608     |  |
|                 |          |  |

Emission of  $\alpha$ -particles

| No. α-particles | Observed | Expected |
|-----------------|----------|----------|
| 0               | 57       | 54       |
| 1               | 203      | 210      |
| 2               | 383      | 407      |
| 3               | 525      | 525      |
| 4               | 532      | 508      |
| 5               | 408      | 394      |
| 6               | 273      | 254      |
| 7               | 139      | 140      |
| 8               | 45       | 68       |
| 9               | 27       | 29       |
| 10              | 10       | 11       |
| 11              | 4        | 4        |
| 12              | 0        | 1        |
| 13              | 1        | 1        |
| 14              | 1        | 1        |
| Over 14         | 0        | 0        |
| Total           | 2608     | 2680     |

|||

Emission of  $\alpha$ -particles



Clumped events

Ш



- Discovered in 1733 by de Moivre as an approximation to the binomial distribution when the number of trails is large
- Derived in 1809 by Gauss
- Importance lies in the Central Limit Theorem, which states that the sum of a large number of independent random variables (binomial, Poisson, etc.) will approximate a normal distribution
  - Example: Human height is determined by a large number of factors, both genetic and environmental, which are additive in their effects. Thus, it follows a normal distribution.



Abraham de Moivre (1667-1754)

#### Overview

• A <u>continuous</u> random variable is said to be normally distributed with mean  $\mu$  and variance  $\sigma^2$  if its probability <u>density</u> function is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

- f(x) is not the same as P(x)
  - P(x) would be 0 for every x because the normal distribution is continuous

• However, 
$$P(x_1 < X \le x_2) = \int_{x_2}^{x_2} f(x) dx$$





# The Normal Distribution Overview



Mean changes

0.05 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.04 0.04 0.05 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

Variance changes

## Length of Fish

- A sample of rock cod in Monterey Bay suggests that the mean length of these fish is  $\mu = 30$  in. and  $\sigma^2 = 4$  in.
- Assume that the length of rock cod is a normal random variable

- If we catch one of these fish in Monterey Bay,
  - What is the probability that it will be at least 31 in. long?
  - That it will be no more than 32 in. long?
  - That its length will be between 26 and 29 inches?

# Length of Fish

• What is the probability that it will be at least 31 in. long?



# The Normal Distribution Length of Fish

• That it will be no more than 32 in. long?



# Length of Fish

• That its length will be between 26 and 29 inches?



# Standard Normal Distribution

•  $\mu$ =0 and  $\sigma^2$ =1



Thank you