Se desea maximizar el caudal de calor intercambiado del siguiente sistema, para lo cual se dispone de dos variables de decisión (T2C y T2H)

En este caso, resolveremos el ejemplo utilizando el "Transhipment model", en el cual se plantean los balances alrededor de cada intervalo de temperaturas

Recordad que las temperaturas están desplazadas E.g. En el caso de T1H=150, al ser una temperatura de corriente caliente disminuye en una cantidad $\Delta T_m/2$. Para el caso de T3C=200 pasa a ser 205 C al ser una corriente fría.

```
from pyomo.environ import *
model = ConcreteModel()
```

```
In [ ]:
        Qhot = model.Qhot = Var(within = NonNegativeReals)
        Qcold = model.Qcold = Var(within = NonNegativeReals)
        R1 = model.R1 = Var(within = NonNegativeReals)
        R2 = model.R2 = Var(within = NonNegativeReals)
       Objective function
In [ ]:
        model.util = Objective(expr = Qhot + Qcold)
       Constraints
In [ ]:
        model.int1 = Constraint(expr = Qhot - 60 - R1 == 0)
        model.int2 = Constraint(expr = 180 + R1 - R2 - 100 == 0)
        model.int3 = Constraint(expr = R2 - 20 - Qcold == 0)
       Solution
In [ ]:
        results = SolverFactory('glpk').solve(model)
        model.pprint()
        results.write()
       4 Var Declarations
           Qcold : Size=1, Index=None
              Key : Lower : Value : Upper : Fixed : Stale : Domain
              None: 0: 60.0: None: False: False: NonNegativeReals
           Qhot : Size=1, Index=None
              Key : Lower : Value : Upper : Fixed : Stale : Domain
              None:
                        0 : 60.0 : None : False : False : NonNegativeReals
           R1 : Size=1, Index=None
              Key : Lower : Value : Upper : Fixed : Stale : Domain
                      0: 0.0: None: False: False: NonNegativeReals
           R2 : Size=1, Index=None
              Key : Lower : Value : Upper : Fixed : Stale : Domain
              None: 0: 80.0: None: False: False: NonNegativeReals
       1 Objective Declarations
           util: Size=1, Index=None, Active=True
              Key : Active : Sense : Expression
              None : True : minimize : Qhot + Qcold
       3 Constraint Declarations
           int1 : Size=1, Index=None, Active=True
              Key : Lower : Body : Upper : Active
              None: 0.0: Qhot - 60 - R1: 0.0: True
           int2 : Size=1, Index=None, Active=True
              Key : Lower : Body
                                             : Upper : Active
              None: 0.0:180 + R1 - R2 - 100: 0.0: True
           int3 : Size=1, Index=None, Active=True
              Key : Lower : Body
                                    : Upper : Active
              None: 0.0: R2 - 20 - Qcold: 0.0:
       8 Declarations: Qhot Qcold R1 R2 util int1 int2 int3
       # = Solver Results
       Problem Information
```

```
Problem:
      - Name: unknown
        Lower bound: 120.0
        Upper bound: 120.0
        Number of objectives: 1
        Number of constraints: 4
        Number of variables: 5
        Number of nonzeros: 7
        Sense: minimize
      # -----
        Solver Information
      # -----
      Solver:
      - Status: ok
        Termination condition: optimal
        Statistics:
         Branch and bound:
           Number of bounded subproblems: 0
           Number of created subproblems: 0
        Error rc: 0
        Time: 0.057425498962402344
      # -----
        Solution Information
      # -----
      Solution:
      - number of solutions: 0
        number of solutions displayed: 0
In [ ]:
       Qc = value(model.Qcold)
       Qh = value(model.Qhot)
       print('Cold utility = {0:2.2f}, Hot utility = {1:2.2f}'.format(Qc, Qh))
      Cold utility = 60.00, Hot utility = 60.00
```