CONCLUDING REMARKS & PERSPECTIVES

BCI RESEARCH

BCI INEFFICIENCY CHALLENGE

Great potential

Poor usability

Problem: Current BCIs fail to detect the mental intentions in ~30% of users

BCI INEFFICIENCY CHALLENGE – STATE-OF-THE-ART

- Machine-centered approaches
 - Signal conditioning (Ang et al, 2012)
 - Classification algorithms (Lotte et al, 2018)
 - \Rightarrow Rely on EEG signals

- User-centered approaches
 - Search for neurophysiological patterns (Blankertz et al, 2010)
 - Human factors (Jeunet et al, 2015)
 - ⇒ Lack of reliable markers

- ⇒Neural mechanisms underlying BCI learning poorly understood
- ⇒Do not consider the interconnected nature of the brain functioning

BCI INEFFICIENCY CHALLENGE – NETWORK APPROACH

(Varela et al, 1999)

NETWORK METRICS FOR MENTAL STATES CHARACTERIZATION

NETWORK METRICS FOR MENTAL STATES CHARACTERIZATION

BRAIN CONNECTIVITY CHANGES IN MI-BCI

Amplitude synchronization

Phase synchronization

Motor imagery VS Resting state

FUSING INFORMATION TO IMPROVE THE CLASSIFICATION

FUSING INFORMATION TO IMPROVE THE CLASSIFICATION

9

HOW DO WE LEARN TO CONTROL A BCI?

REINFORCEMENT OF MOTOR-RELATED ACTIVITY

FUNCTIONAL DISCONNECTION OF ASSOCIATIVE AREAS

NODE STRENGTH PREDICTS BCI LEARNING RATE

Higher connectivity → higher *potential* to disconnect (learning)

MULTIPLEX CORENESS ASSOCIATED WITH BCI PERFORMANCE

STROKE – CORTICAL REORGANIZATION

Disability

Motor Imagery

STROKE – INTER-HEMISPHERIC CONNECTIVITY & EFFICIENCY

Affected

STROKE – SEARCH FOR ALTERNATIVE FEATURES

NEW PERSPECTIVES FOR OPTIMIZING BCIS

TAKE HOME MESSAGES

- BCI
 - Promising tool for clinical applications
 - Multidisciplinary domain
 - Growing interest in the last few years with the AI
- BCI learning & inter-subject variability
 - Improving the classifier / signal processing
 - Improving instructions
 - Finding (new) subject-related predictors
- Groups & events
 - International: BCI society, international society
 - <u>Cybathlons</u>: competitions to promote BCI and to test the finest algorithms with **end users!**
 - In France: <u>CORTICO</u>, French association to promote BCI

TO GO FURTHER...

- Python tools with many tutorials
 - Performing online experiments : OpenViBE, an Inria software
 - Open datasets to test algorithms & check their replicability: MOABB
 - M/EEG data analysis : MNE-Python
 - Classification tools : <u>Scikit-learn</u>
- Available demos (available soon)
 - Visualize E/MEG data
 - Data extraction (ERD/S)
 - Classification