Node position in IMDb actors collaboration network

You are given **IMDb actors collaboration network** in Pajek format (<u>imdb.net</u>). Your task is to find the **most important actors** according to different measures of node centrality. You can either use the methods provided by your library or implement the algorithms yourself.

I. Degree centrality and clustering coefficients

1. *(starter)* Find the **most important actors according to degree centrality** $d_i = \frac{k_i}{n-1}$, where n is the number of nodes and k_i is the degree of node i. Which actors have the highest d (e.g. Hollywood, international, unknown)?

Computational complexity is linear $\mathcal{O}(n)$ and applicable to any network that fits in your memory.

2. Find the **most important actors according to clustering coefficient** $C_i = \frac{2t_i}{k_i(k_i-1)}$, where k_i is the degree of node i and t_i is the number of triangles including node i. Which actors have the highest C (e.g. Hollywood, international, unknown)?

Computational complexity is superlinear $\mathcal{O}(m\langle k \rangle)$ and applicable to all but the largest networks.

3. Find the most important actors according to μ -corrected clustering coefficient $C_i^{\mu}=\frac{2t_i}{k_i\mu}$, where

 k_i is the degree of node i, t_i is the number of triangles including node i and μ is an appropriate constant (i.e. maximum number of triangles over a single link). Which actors have the highest C^{μ} (e.g. Hollywood, international, unknown)?

II. Eigenvector centrality and PageRank algorithm

- 1. *(tentative)* Find the **most important actors according to eigenvector centrality** $e_i = \lambda_1^{-1} \sum_j A_{ij} e_j$, where A is the adjacency matrix and λ_1 is a normalizing constant. Which actors have the highest e (e.g. Hollywood, international, unknown)?
- 2. Find the **most important actors according to PageRank score** $p_i = \alpha \sum_j A_{ij} \frac{p_j}{k_j} + \frac{1-\alpha}{n}$, where A is the adjacency matrix, n is the number of nodes, k_i is the degree of node i and α is the damping factor set to 0.85. Which actors have the highest p (e.g. Hollywood, international, unknown)?

Computational complexity is pprox linear $\mathcal{O}(m)$ and applicable to any network that fits in your memory.

```
input graph G, damping \alpha, precision \epsilon
input graph G, precision \epsilon
                                                                   output PageRank ranks P
output eigenvector centrality E
                                                                       1: P \leftarrow \text{array of } n^{-1}\text{-s}
    1: E \leftarrow \text{array of ones}
    2: do
                                                                       3:
                                                                                 U \leftarrow \text{array of zeros}
    3:
             U \leftarrow \text{array of zeros}
                                                                                 for nodes i \in N do
                                                                       4:
   4:
             for nodes i \in N do
                                                                                      for predecessors j \in \Gamma_i^{in} do
                                                                       5:
   5:
                  for neighbors j \in \Gamma_i do
                                                                                          U[i] \leftarrow U[i] + P[j] \cdot \alpha / k_i^{out}
                       U[i] \leftarrow U[i] + E[j]
                                                                       6:
   7:
          u \leftarrow \|U\|
                                                                                 u \leftarrow ||U||
                                                                       7:
            for nodes i \in N do
   8:
                                                                                 for nodes i \in N do
                                                                       8:
                  U[i] \leftarrow U[i] \cdot n/u
   9:
                                                                                      U[i] \leftarrow U[i] + (1-u)/n
                                                                       9:
  10:
             \Delta \leftarrow ||E - U||
                                                                                 \Delta \leftarrow ||P - U||
                                                                      10:
             E \leftarrow U
  11:
                                                                                 P \leftarrow U
                                                                      11:
  12: while \Delta > \epsilon
                                                                      12: while \Delta > \epsilon
  13: return E
                                                                      13: return P
```

III. Closeness and betweenness centrality

- 1. *(tentative)* Find the **most important actors according to closeness centrality** $\mathscr{C}_i^{-1} = \frac{1}{n-1} \sum_{j \neq i} \frac{1}{d_{ij}}$, where n is the number of nodes and d_{ij} is the distance between nodes i and j. Which actors have the highest \mathscr{C}^{-1} (e.g. Hollywood, international, unknown)?
- 2. Find the **most important actors according to betweenness centrality** $\sigma_i = \frac{1}{n^2} \sum_{st} \frac{g_{st}^i}{g_{st}}$, where n is the number of network nodes, g_{st} is the number of shortest paths between nodes s and t, and g_{st}^i is the number of such paths through node i. Which actors have the highest σ (e.g. Hollywood, international, unknown)?

Computational complexity is quadratic $\mathcal{O}(nm)$ and applicable only to medium sized networks.