TD2 BDR Définition de schémas Exo 1 - Université

ETUDIANT

Nom NumeroEtudiant Classe Dominante

COURS

NomCours	NumeroCours	HeuresCredit	Departement
----------	-------------	--------------	-------------

PREREQUIS

NumeroCours	NumeroPrerequis
-------------	-----------------

UV

IdUV	NumeroCours	Trimestre	Annee	Enseignant
------	-------------	-----------	-------	------------

NOTE

NumeroEtudiant	IdUV	Note

© Pearson Education France

Q0: Écrivez les requêtes suivantes en SQL

Q0-1: Extraire les cours dispensés par le professeur Crémant en 1998 et 1999, avec une sous- requête (sans jointure!)

Q0-2: Afficher le nom et la dominante de tous les étudiants qui ont obtenu un A à tous les cours.

Q0-3: Afficher le nom et la dominante de tous les étudiants qui ont n'ont obtenu de A à aucun cours.

Q1: Examinez la BDD dont le schéma est présenté à gauche.

Q1-1: Soulignez les clés primaires.

Q1-2: Quelles sont les contraintes d'<u>i</u>ntégrité référentielles qui devraient porter sur le schéma?

```
Q1-3: Complétez les instructions SQL pour
                                       Q2: Écrivez des instructions de modification
définir cette BDD: contraintes NOT NULL, clés INSERT INTO table_name [ AS alias ] [ ( column_name [, ...] ) ]
primaires, clés étrangères
                                       { DEFAULT VALUES | VALUES ( { expression | DEFAULT } [, ...]
CREATE TABLE ETUDIANT (
                                       ) [, ...] | query }
Nom VARCHAR(30) NOT NULL,
NumeroEtudiant INTEGER
Niveau INTEGER
                                       DELETE FROM [ONLY] table_name [*][AS] alias]
Dominante CHAR(4)
                                          [ USING using_list ]
                                          [ WHERE condition | WHERE CURRENT OF cursor_name ]
                                  );
CREATE TABLE COURS (
                                       UPDATE [ ONLY ] table_name [ * ] [ [ AS ] alias ]
NomCours VARCHAR(30)
                                          SET { column_name = { expression | DEFAULT } |
NumeroCours CHAR(8)
                                              (column_name [, ...]) = ({ expression | DEFAULT } [,
HeuresCredit INTEGER
                                       ...] ) |
Departement CHAR(4)
                                              ( column_name [, ...] ) = ( sub-SELECT )
                                             } [, ...]
                                          [ FROM from_list ]
                                   );
                                          [ WHERE condition | WHERE CURRENT OF cursor_name ]
CREATE TABLE NOTE (
NumeroEtudiant INTEGER
IdUV INTEGER
Note CHAR
                                       Q2-1:Insérer un nouvel étudiant, <'Jeannin', 25, 1, 'MATH'>.
                                    ); Q2-2: Insérer une ligne violant une contrainte de clé primaire
CREATE TABLE PREREQUIS (
                                       Q2-3:Insérer un nouveau cours, <'Ingénierie cognitive',
NumeroCours CHAR(8)
                                       'CS4390', 3, 'INFO'>.
NumeroPrerequis CHAR(8)
                                       Q2-4:Supprimer l'enregistrement de l'étudiant dont le nom est
                                       « Schmidt » et le numéro 17
                                       Q2-5: Insérer une ligne violant une contrainte de référentielle
                                    );
```

Suite de l'exo 1

Enregistrements présents dans la base de données

Q3: Vérification de la cohérence de la base

Pour chacune des question, écrivez des requêtes SQL pour détecter le(s) conflit(s) existant(s).

ETUDIANT	Nom	NumeroEtudiant	Niveau	Dominante
S	Schmidt	17	1	INFO
	Brun	8	2	INFO

Q3-1: Est-ce que la table Cours respecte les contraintes d'intégrités?

Q3-2: Est-ce que la table Notes respecte les contraintes d'intégrités?

Q3-3: Est-ce que la table Prerequis respecte les contraintes d'intégrités?

COURS	NomCours	NumeroCours	HeuresCredit	Departement
	Introduction à l'informatique	CS1310	4	INFO
	Structures de données	CS3320	4	INFO
	Mathématiques discrètes	CS1310	3	MATH
	Bases de données	CS3380	3	INFO

NumeroCours Trimestre IdUV Annee Enseignant MATH2410 4 85 98 Crémant CS1310 92 4 98 André CS3320 3 Queneau 102 99 112 MATH2410 3 99 Chenet CS1310 André 119 3 99 3 Segonzac 135 CS3380 99

Q4: Garder la cohérence de la base

Pour chacune des questions ci-dessous, écrivez les requêtes SQL nécessaires pour garder la cohérence de la base.

Q4-1: Remplacez l'identifiant de l'étudiant Schmidt avec la valeur "8". Est-ce possible? Quelle requête devons nous écrire pour nous assurer de la validité de cette opération?

Q4-2: Remplacez l'identifiant de l'étudiant Schmidt avec la valeur "9".

Q4-3: Le cours "Structures de données" ne sera plus enseigné l'année prochaine. Supprimez-le de la base.

NOTE	NumeroEtudiant	IdUV	Note
	17	112	В
	17	119	С
	8	85	А
	. 8	92	А
	71	102	В
	71	135	Α

UV

PREREQUIS

Numero Cours	Numero Prerequis
CSS3380	INFO3320
CSS3380	MATH2410
CSS3380	INFO1310

Exo 2 - Bibliothèque.

Q1: Examinez le schéma relationnel <u>BIBLIOTHEQUE</u>.

Q1-1: Comment assurer que la base reste cohérente après des insertions, modifications et suppressions?

Q1-2: Choisissez l'action appropriée (rejet, cascade, définir à null, définir à la valeur par défaut) pour chacune des contraintes d'intégrité référentielle, aussi bien dans le cas de la suppression d'un tuple référencé que dans celui de la mise à jour de la valeur d'un attribut d'une clé primaire dans un tuple référencé. Justifiez vos choix.

© Pearson Education France

Q2: Compétez les instructions LDD SQL (au verso) pour la déclaration du schéma relationnel de la base de données <u>BIBLIOTHEQUE</u> au dos de cette feuille.

Spécifiez les clés et les actions automatiques adéquates.

CREATE TABLE LIVRE (IdLivre CHAR(20) NOT NULL,
Titre VARCHAR(30) NOT NULL,
NomEditeur VARCHAR(20),
PRIMARY KEY (),
PRIMARY KEY (), FOREIGN KEY () REFERENCES EDITEUR () ON
);
CREATE TABLE AUTEURS_LIVRES (
IdLivre CHAR(20) NOT NULL,
NomAuteur VARCHAR(30) NOT NULL,
PRIMARY KEY (IdLivre, NomAuteur),
FOREIGN KEY () REFERENCES LIVRE ()
ON);
CDEATE TABLE EDITELID /
CREATE TABLE EDITEUR (
Nom VARCHAR(20) NOT NULL,
Adresse VARCHAR(40) NOT NULL,
Phone CHAR(12),
PRIMARY KEY ());
CREATE TABLE EXEMPLAIRES LIVRES (
IdLivre CHAR(20) NOT NULL,
IdSucc INTEGER NOT NULL,
Nb Exemplaires INTEGER NOT NULL,
PRIMARY KEY (,),
FOREIGN KEY () REFERENCES LIVRE ()
ON ,
FOREIGN KEY () REFERENCES ()
ON);