Mavros培训课 – Mavros源码

戚煜华

Tel: 18611457441

WeChat: qyp0210

目录

- 1—· Mavros简介
- 2 Mavros代码详解
- 3 ・ 自定义代码 入门操作
- 4 自定义代码 自主飞行
- 5 自定义代码 上层开发

Mavros简介

Mavros功能包

 顾名思义, mavros就是mavlink+ros。mavros 是PX4官方提供的一个运行于ros下收发mavlink 消息的工具, 利用mavros可以发送mavlink消 息给飞控(可以控制飞机), 并且可以从飞控中 接受数据(例如:飞控的位置速度IMU数据等 等)。

Mavros源代码安装及运行

详见: MAVROS功能包的源代码安装.pdf

谨记:

mavros包的编译命令是 catkin_build 而传统ros包的编译命令是catkin make 千万别打错!!!

Mavros Github主页:

https://github.com/mavlink/mavros

Mavros功能包结构

首先打开到src\mavros目录

- libmavconn
- mavros
- mavros extras
- mavros_msgs
- test_mavros

- · libmavconn: 通讯源文件(飞控板与mavros)
- · mavros: Mavros核心包 (核心源文件,例如读取IMU,发送控制指令)
- mavros extras: Mavros附加包 (补充源文件,例如发送mocap消息)
- mavros_msgs: Mavros自定义消息类型及服务类型 (查看对应消息类型的格式)

打开到src\mavros\mavros目录

- · include: 里面是各种头文件的源代码 []
- · launch: launch启动文件及各种配置文件
- · src: 核心源文件, 稍后具体介绍
- · CmakeList.txt: mavros包的配置文件,相关依赖项的添加及源代码编译都在这里声明 [稍后我所说的修改cmakelist就是修改的这个文件]

此处只介绍我们开发时会用到的一些源文件,底层的驱动文件及一些编译用的camkelist文件等不做详细介绍,感兴趣可以自学。

打开到src\mavros\mavros\src目录

- lib: 库文件(坐标转换等等) 不需要修改
- · mavros: 自带的一些python脚本,用不到
- · plugins:可以理解为是mavros包提供给我们的一些接口,如果需要用到某个plugin,建议可以看看plugin的源码,有的时候它默认的方向定义和一些细节可以自己修改一下,方便使用。有些plugin对于我们的任务是用不到的,可以将它添加到黑名单中禁用。
- · 一般可以在这个目录下新建一个cpp文件,开发新功能(需要修改对应的 cmakelist然后编译)

打开到src\mavros\mavros\launch目录

- · px4.launch: 我们会用到的启动文件 (修改: 端口号和波特率)
- px4_config.yaml: px4.launch 调用的配置文件 (plugin的参数配置,基本不需要修改,对应使用某个plugin时,可以自行查看一下这里默认的参数定义)
- px4_pluginlists.yaml: px4.launch 调用的配置文件 (plugin的 黑白名单, 默认启用全部plugin, 不想启用某个,可添加到黑名单 中去)

Mavros代码详解 – plugin介绍

Plugin的作用

- · 读取飞控发送过来的mavlink消息,解码,然后发布为话题,供我们订阅使用
- · 订阅我们发布的话题,封装成mavlink消息,编码,然后发送给飞控

飞控mavlink模块的作用

- · 读取机载电脑发送过来的mavlink消息,解码,然后发布为uorb消息,供飞控使用
- · 订阅飞控中其他模块发布的uorb消息,封装成mavlink消息,编码,然后发送给机载电脑

我们利用plugin发布的ros话题去编写代码,实现功能,然后发布控制相关的ros话题,plugin接收我们的话题,替我们发送给飞控。

Mavros代码详解 – plugin介绍

这里简单介绍每个plugin的用处,用处不大的不提及,重点的稍后详细看代码

- · actuator control: 舵机控制相关
- · altitude: 高度相关,用处不大
- · command:给飞控发送常规命令,例如解锁、起飞、降落、设置home点。
- · global_position: 接收飞控的global位置信息
- home_position: home点相关
- · imu:接收imu信息(原始数据,融合过的数据,磁力计等)
- · local_position: 接收飞控的local位置信息
- · manual_control: 接收飞控的遥控器信息
- · safety area: 地理围栏设置

3dr_radio.cpp
actuator_control.cpp
altitude.cpp
command.cpp
dummy.cpp
ftp.cpp
global_position.cpp
hil.cpp
home_position.cpp
imu.cpp
local_position.cpp
manual_control.cpp
param.cpp
rc_io.cpp
safety_area.cpp
setpoint_accel.cpp
setpoint_attitude.cpp
setpoint_position.cpp
setpoint_raw.cpp
setpoint_velocity.cpp
sys_status.cpp
sys_time.cpp
vfr_hud.cpp
waypoint.cpp

Mavros代码详解 – plugin介绍

这里简单介绍每个plugin的用处,用处不大的不提及,重点的稍后详细看代码

- · setpoint_position、setpoint_velocity、setpoint_accel、
 setpoint_attitude: 发送给飞控期望位置、速度、加速度、姿态 (这四个
 功能都可以用setpoint raw实现,所以有点鸡肋)
- setpoint_raw: 发送期望位置、速度、加速度、姿态角给飞控;接收飞控回 传的期望位置、速度、加速度、姿态角信息 [offboard模式]
- · sys status: 接收系统的状态,例如:连接状态、上/解锁、飞行模式等
- · sys_time: 飞控时间
- · waypoint: mission模式下的航点设置

3dr_radio.cpp			
actuator_control.cpp			
altitude.cpp			
command.cpp			
dummy.cpp			
ftp.cpp			
global_position.cpp			
hil.cpp			
home_position.cpp			
imu.cpp			
local_position.cpp			
manual_control.cpp			
param.cpp			
rc_io.cpp			
area.cpp			
setpoint_accel.cpp			
setpoint_attitude.cpp			
setpoint_position.cpp			
setpoint_raw.cpp			
setpoint_velocity.cpp			
sys_status.cpp			
sys_time.cpp			
vfr_hud.cpp			
waypoint.cpp			

Mavros代码详解 – 源码阅读

setpoint_raw.cpp

- setpoint_raw.cpp 源码阅读
- mavlink_receiver.cpp 源码阅读
- mavlink_message.cpp 源码阅读
- · px4位置控制源码
- MAVLINK消息格式 查询 网站: http://mavlink.org/messages/common
- · Ros消息格式查询 直接百度查询
- · uORB消息格式查询 打开至固件的/msg文件夹

这块主要是帮大家梳理消息流向,整体把握代码之间关系,可以在以后开发过程中慢慢熟练掌握

Mavros代码详解 – setpoint_raw.cpp

Topic	Mavlink	uORB
/mavros/setpoint_raw/local	/SET_POSITION_TARGET_LOCAL_NED (#84)	position_setpoint_triplet
/mavros/setpoint_raw/attitude	SET_ATTITUDE_TARGET (#82)	vehicle_attitude_setpoint
/mavros/setpoint_raw/target_loc al	POSITION_TARGET_LOCAL_NED (#85)	vehicle_local_position_setpo int
/mavros/setpoint_raw/target_att itude	ATTITUDE_TARGET (#83)	vehicle_attitude_setpoint

Mavros代码详解 – 坐标系修改

坐标系修改 ENU系 修改至 NED系

- imu.cpp
- local_position.cpp
- setpoint_raw.cpp

- 和我所提供的代码坐标系匹配
- · 方便调试 和 地面站匹配

自定义代码 - 入门操作

如何连接飞控和机载电脑?

- · ttl转usb模块(数传,安卓线)
- ・ 地面站参数修改: SYS COMPANION 修改为 Companion Link(921600,8N1)
- · 修改mavros包中px4.launch中的端口号和波特率:端口号查询得到,波特率为921600

自定义代码 - 入门操作

如何新建一个.cpp并编译?

- Mavros功能包内部,依赖mavros现有的功能,新建一个飞行任务或者一个功能模块
- 打开至/src/mavros/mavros/src,拷贝 mavros_example_1.cpp到此目录
- 打开至/src/mavros/mavros, 打开CMakeList.txt,
 声明一下mavros_example_1.cpp
- 编译
- · 详见:如何去新建一个自定义cpp.pdf

如何自定义一个消息类型并编译?

- · 现有的消息类型不符合使用需求,自定义一个消息类型
- 打开至/src/mavros_msgs/msg, 拷贝
 Command.msg到此目录
- 打开至/src/mavros_msgs, 打开CMakeList.txt, 声明一下Command.msg
- 编译
- · 详见:如何去新建一个自定义msg.pdf

至于其他的一些操作,新建launch文件,新建配置文件,新建服务等,学会复制粘贴,部分修改

自定义代码 - 入门操作

mavros example 1.cpp

- · 查询飞控状态 (上/解锁,模式)
- ・ 更改模式

mavros_example_2.cpp

- 上锁/解锁
- · 订阅飞控的IMU信息 (注意坐标系不同)
- 四元数转欧拉角

mavros example 3.cpp

- · 给飞控发送位置命令
- · 切换offboard模式
- · 读取飞控回传的位置设定值、姿态 设定值

给大家十分钟去尝试一下在mavros中新建这三个cpp文件并编译。

自定义代码-入门操作

type mask:

- · Bitmask to indicate which dimensions should be ignored by the vehicle (1代表忽略, 0代表不忽略; bit 10 特殊)
- Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit
 9: az, bit 10: is force setpoint, bit 11: yaw, bit 12: yaw rate
- 0000 0000 0000 代表都不忽略
- 100 111 111 000 代表除了 位置xyz和yaw之外都忽略

自定义代码-入门操作

自定义代码的几点说明:

- · 学会修改飞控中mavlink_main.cpp (修改 飞控发送给机载电脑的mavlink消息类型和频率)
- · 理解消息流向,知道自己每条指令是从哪个cpp到了哪个cpp
- · 出现问题时,按照消息流向逐步排查问题。(特别是给飞控发送指令,飞控没响应时)
- · 一定是先发送一串命令给飞控才能切offboard模式 (安全起见, 手动切换)

自定义代码 – 自主飞行

自主飞行 - mavros包修改

- 1. mavros_msg包中添加Command.msg自定义消息
- 2. Mavros包include中添加pid.h文件和param.h
- 3. Mavros包中添加param_pid文件
- 4. mavros包中添加position_control.cpp 文件、 move.cpp文件。
- 5. px4代码中,确认mavlink_main.cpp和地面站参数

position_control.cpp

- · 位置环串级PID控制
- · 提供与上层命令接口

move.cpp

• 位置控制测试代码

自定义代码 – 上层开发

视觉追踪降落 track_land.cpp

- · 机体系控制(一般图像提供的信息是基于机体系)
- · 位置 or 速度控制
- 死区设置

上层开发就是利用position_control.cpp提供的Command接口去做上层应用

自定义代码 – 上层开发

提问环节