Vibhav Gaur

(310)-463-5612, <u>vibhavgaur@utexas.edu</u> Website: <u>vibhavgaur.github.io</u>

Master's in mechanical engineering with a specialization in Dynamic Systems and Controls with a strong interest in autonomous vehicles and robotics. Looking for full-time positions in related fields.

Education			
Year	Degree	Institution	Performance
May 2020	M.S. Mechanical Engineering	The University of Texas at Austin	GPA: 3.8/4.0
	(Dynamic Systems & Controls)		
2017	B.S. Mechanical Engineering	University of California, Los Angeles	GPA: 3.35 / 4.0
Work Experience			

THE MATHWORKS, Application Support Engineer (EDG) (July 2020 – Present)

- Monte Carlo Localization, Visual Odometry with a differential drive robot model in a simulated ROS environment (Gazebo)
- Wrote MATLAB & C++ code for image filtering algorithms with a focus on optimization and parallel computation
- Nonlinear System Identification using Deep Learning networks and autoencoders
- Provided robust and detailed solutions for customer issues with MathWorks products like MATLAB and Simulink

CUMMINS, Controls Test Engineering Internship (June 2019 – August 2019)

- Created a C++ library of methods for the handling of J1939 messages on the CAN bus for the ECM Fault Reduction project
- Automated test procedures for the ECM using NI TestStand
- Conducted several test procedures on the Engine Control Module (ECM) using Cummins Calterm
- Performed low-level analysis of CAN bus messages using CANalyzer, PCANview, and oscilloscopes

Relevant Coursework

Estimation &	Advanced	Optimal	Digital	Stochastic	Time	Introduction to
Control of	Estimation	Control	Control of	Estimation &	Series	Computer Science
Ground Vehicle	Theory		Discrete	Control	Analysis	I & II
Systems			Systems			

<u>Optimal Control for Spacecraft Orbit raising maneuver</u> (Spring 2019) – Compared the system performance of a 4th order spacecraft model during an orbit raising maneuver for a Linear Quadratic Regulator (LQR), Linear Quadratic Tracker (LQT), and a Luenberger Observer optimizing for a minimum time performance index.

Research Experience

MOBILITY SYSTEMS LABORATORY, UT Austin - Prof. Junmin Wang (August 2019 - Present)

Master's Thesis: Cruden® 6-DOF Motion Base Driving Simulator

- Automatic optimal steering: developing control strategy and algorithm that inverts vehicle dynamics to generate the steering input required to track a given trajectory
- Developed a model-free controller for the system which applied Algebraic Derivative Estimation
 of the states for real-time performance
- Hardware-in-the-loop (HiL) simulation using dSPACE SCALEXIO platform

MECHATRONICS & CONTROLS LAB, UCLA - Prof. Tsu-Chin Tsao (July 2017 - June 2018)

- Collected vibration data and designed a passive damper to reduce pump vibrations onboard
- Quadcopter Drill Project
- Designed quick-release mechanism for the tool carriage on the quadcopter
- Conducted experiments to determine the deflection of quadcopter in various load cases
- Reverse-engineered the signal schematics for AC Induction motor in a motion stage
- Motor Control Project
- Developing control strategy for velocity control

Extracurricular Activities

FORMULA SAE April 2014 - December 2016 (UCLA), September 2018 - January 2019 (UT, Austin)

Traction control system (UT Austin)

• Launch Control, reduction of wheel-spin

Drivetrain Subsystem (UCLA)

- Maintaining optimal slip ratio
- Drivetrain Subsystem Lead
- Designed and Optimized the differential mounts using SolidWorks FEA simulation

Skills and Abilities

Computer program/skills	Selected projects			
MATLAB and Simulink	Automotive Simulation Models (ASM by dSPACE)			
WHATEAD and Simulia	Automatic steering control			
ROS, OpenCV, Python	Self-taught, Visual Odometry			
KOS, Openev, 1 ython	Visual Simultaneous Localization & Mapping (V-SLAM)			
dSPACE ModelDesk, ControlDesk, Automotive	HiL Simulation of vehicle dynamics			
Simulation Models (ASM)	Automatic steering control algorithm development			
CANalyzer, PCAN-View, J1939 Protocol	Low-level analysis of CAN messages			
CANalyzer, FCAIN-View, J1939 F10t0col	C++ library for processing message data on Cummins ECMs			
C++, Arduino	Cummins ECM Fault Reduction Project			
C++, Aiduilo	Mechanical Engineering Senior Design – Controls			