Database

By
Jitendra Singh Tomar || Jeetu

Topics to discuss

- 1. Understanding Databases
- 2. Overview of Relational Databases
- 3. Getting Started with SQL
- 4. Types of databases & their usage
- 5. Database Design and Modeling
- 6. Normalization
- 7. Practical Database Design
- 8. Advanced SQL and Database Administration Basics
- 9. Database Administration Basics
- 10. Data Integrity and Transactions

What is DATA?

- Data is raw fact or figures or entity.
- When activities in the organization takes place, the effect of these activities need to

be recorded which is known as Data.

What is INFORMATION?

Processed data is called information.

The purpose of data processing is
to generate the information
required for carrying out the
business activities.

Introduction to Databases

- A database is a structured collection of data that is organized and stored in a way that allows for efficient retrieval, management, and update of information.
- Databases are fundamental to modern computing and play a crucial role in storing and managing vast amounts of data for various applications and industries.

Database

- Database may be defined in simple terms as a collection of data
- A database is a collection of related data.
- The database can be of any size and of varying complexity.
- A database may be generated and maintained manually or it may be computerized.

Database Management System

- Database Management Systems (DBMS) are software systems used to store, retrieve, and run queries on data.
- A DBMS serves as an interface between an end-user and a database, allowing users to create, read, update, and delete data in the database.
- A DBMS is a collection of program that enables user to create and maintain a database.

Characteristics of DBMS

- Data Definition and Schema
 Management
- Data Manipulation
- Transaction Management
- Query Optimization
- Security and Access Control

- Security and Access Control
- Data Recovery and Backup
- Scalability
- Data Independence
- Query Language Support
- Backup and Recovery

DBMS Utilities

- A data loading utility:
 - Which allows easy loading of data from the external format without writing programs.
- A backup utility:
 - Which allows to make copies of the database periodically to help in cases of crashes and disasters.
- Recovery utility:
 - Which allows to reconstruct the correct state of database from the backup and history of transactions.

DBMS Utilities

- Monitoring tools:
 - Which monitors the performance so that internal schema can be changed and database access can be optimized.
- File organization:
 - Which allows restructuring the data from one type to another?

File system VS Database

File System	DBMS
File system is a collection of data. Any management with the	DBMS is a collection of data and user is not required to write
file system, user has to write the procedures.	the procedures for managing the database.
File system gives the details of the data representation and	DBMS provides an abstract view of data that hides the
Storage of data.	details.
In File system storing and retrieving of data cannot be done	DBMS is efficient to use since there are wide varieties of
efficiently.	sophisticated techniques to store and retrieve the data.
Concurrent access to the data in the file system has many	DBMS takes care of Concurrent access using some form of
problems.	locking.
File system doesn't provide crash recovery mechanism.	DBMS has crash recovery mechanism, DBMS protects user
	from the effects of system failures.
Protecting a file under file system is very difficult.	DBMS has a good protection mechanism.

Advantages of DBMS

- Data independency
- Efficient data access
- Data integrity and security
- Data Administration
- Concurrent access and Crash recovery
- Reduced application development time

Relational database Types of DBMS Object Network oriented database database Hierarchical database

Relation Database

- It is based on SQL.
- A relational database management system.
- This is one of the most popular data models which is used in industries.
- Every table in a database has a key field which uniquely identifies each record.
- RDBMS is a system where data is organized in two-dimensional tables using rows and columns.

Object Oriented Database

- It is a combination of relational database concepts and object-oriented principles.
- OOPs principles are data encapsulation, inheritance, and polymorphism.
- It requires less code and is easy to maintain.
- For example Object DB software.

Object-Oriented Programming

Polymorphism

Inheritance

Encapsulation

Hierarchical Database

- It is used in industry on mainframe platforms.
- The hierarchy starts from the root node, connecting all the child nodes to the parent

node.

- For example
 - IMS (IBM)
 - Windows registry (Microsoft).

Network database

A Network database management system.

• This maintain one to one relationship (1: 1) or many to many relationship (N: N).

• It is based on a network data model, which allows each record to be related to

multiple primary records and multiple secondary records.

DBMS Language

Data Definition Language (DDL)

- It is used to define database structure or pattern.
- It is used to create schema, tables, indexes, constraints, etc. in the database.
- Using the DDL statements, you can create the skeleton of the database.

Data Definition Language (DDL)

- Create: It is used to create objects in the database.
- Alter: It is used to alter the structure of the database.
- Drop: It is used to delete objects from the database.
- Truncate: It is used to remove all records from a table.
- Rename: It is used to rename an object.
- Comment: It is used to comment on the data dictionary.

DDL

CREATE

ALTER

DROP

TRUNCATE

COMMENT

RENAME

Data Manipulation Language (DML)

- It is used for accessing and manipulating data in a database.
- Here are some tasks that come under DML:
 - Select: It is used to retrieve data from a database.
 - Insert: It is used to insert data into a table.
 - Update: It is used to update existing data within a table.
 - Delete: It is used to delete all records from a table.
 - Merge: It performs UPSERT operation, i.e., insert or update operations.

Data Control Language (DCL)

- DCL stands for Data Control Language.
- It is used to retrieve the stored or saved data.
- The DCL execution is transactional.
- It also has rollback parameters.
- Here are some tasks that come under DCL:
 - Grant: It is used to give user access privileges to a database.
 - Revoke: It is used to take back permissions from the user.

- GRANT
- REVOKE

Transaction Control Language (TCL)

- TCL is used to run the changes made by the DML statement.
- TCL can be grouped into a logical transaction.
- Here are some tasks that come under TCL:
 - Commit: It is used to save the transaction on the database.
 - Rollback: It is used to restore the database to original since the last Commit.

- COMMIT
- ROLLBACK
- SAVEPOINT