

ONDOKUZ MAYIS ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ

TANIMA (RECOGNITION)

Hazırlayan: İLKE TUNALI

İÇERİK

- GİRİŞ
- Nesne Bulma
- Yüz Bulma
- Yüz Tanıma
- Nesne Tanıma
- Obje Tanıma
- Tanıma Veri Setleri

GIRIŞ

TANIMA NE DEMEKTIR?

→ Daha önce bilinen bir şeyi, bir kimseyi anımsama (TDK)

Bilgisayarla yapılan görsel bütün işlemlerden en zorlu olanıdır.

GIRIŞ

TANIMA BİLGİSAYARLAR İÇİN NEDEN ZOR?

Gerçek dünya bir çok karışık, birbiri içine geçmiş ve değişik şekillerde duran nesnelerden oluşmaktadır.

NESNE BULMA

Aşağıdaki resimden alt pencerelere bakarak arama yaparsak:

- 1) Çok yavaş
- 2) Hata olasılığı yüksek

YÜZ Bulma Nedir?

Verilen bir resimde insan yüzü olup olmadığını algılayıp, varsa yerini göstermektir.

Hangi Alanlarda Kullanılır?

Erişim Kontrolü

Hangi Alanlarda Kullanılır?

Kimlik Kontrolü ve Video Gözetimi

Karşılaşılan Zorluklar Neler?

> Farklı açılardan alınan çekimler.

Bıyık, sakal gözlük varlığı.

El, saç veya objeyle yüzün kapanması

Boyut, ışık ve gürültüden kaynaklanan sorunlar.

Nasil?

Yüz tanıma algoritmaları 3 farklı yol izlemektedir:

- 1) Özellik Tabanlı (Feature-based)
- 2) Şablon Tabanlı (Template-based)
- 3) Görünüş Tabalı (Appearance-based)

Özellik Tabanlı Yüz Tanıma:

Bu teknikte yüzdeki farklı özelliklerin yerlerini tespit edildikten sonra, bu konumların genel insan anatomisine uygun olup olmadığına bakılır.

Özellik Tabanlı Yüz Tanıma:

Artıları:

✓ Özellikler poz ve yönelimden bağımsızdır ve değişmezler

Eksileri

- Yüzdeki özellikleri almakta karşılaşılan zorluklar (gürültü, ışık, kapatmalar).
- Kompleks arka planların olduğu durumlardan özellikleri çıkartmanın zorlukları.

Şablon Eşleme ile Bulma:

- Şablon Eşleme Nedir?
 - Şablon Eşleme, görüntü içerisinde belirli işaretleri ayırmak için kullanılan bir tekniktir.
 - Şablon Eşleme Yöntemi, görüntü içerisinde aranacak olan işaretin/işaretlerin şablon görüntülerini kullanarak karşılaştırma esasına dayanır.
 - Şablon ve Resmin arasındaki korolasyona bakılır.

Şablon Eşleme ile Bulma:

```
273988999347777
169777226863788
                           5866533257677
884344924776533
                           7646343663764
595654879169484
                           6463665725833
947178683495148
                   357
251725634726494
                  595
836369422783746
                   753
                           6677104776356
                   Hedef
                           7642366563354
533566267995831
                           4557436765473
596523999583624
                           7675167666540
884745817766595
                           7455751576536
454864279724597
                           4475613854567
737488293735571
                                 Sonuç
     Resim
```

Şablon Eşleme ile Bulma:

BURUN BULMA

GÖZ BULMA

Şablon Eşleme ile Bulma:

Ortalaması Alınmış Resimler

KARŞILAŞTIRILIR

Görünüş Tabanlı Yüz Tanıma:

Bu yöntemde resimde küçük kutulardan oluşan parçalara bakılarak aday yüzler bulunur. Daha sonra bulunan bu adaylar bir seçme algoritmasından geçirtilerek yüz tanıma gerçekleşir.

SINIFLANDIRMA

YAPAY SİNİR AĞLARIYLA

Viola ve Jones Yöntemi:

Bilinen en etkili yöntem.

YÖNTEM AŞAMALARI:

1) Resmi, integral resmine çevirmek.

Viola ve Jones Yöntemi:

Dikdörtgenin alan integrali

$$D - (B+C) + A$$

SONUÇ?

Artık Resimdeki herhangi bir dikdörtgenin alan integralini çok kısa bir sürede hesaplayabiliriz.

Viola ve Jones Yöntemi:

2) Dikdörtgen Filtreler

Değer =

∑ (Beyaz Alandaki Pikseller) – ∑ (Siyah Alandaki Pikseller)

Viola ve Jones Yöntemi:

24 x 24 'lük bir alt pencerede ~160.000 tane farklı boyda ve konumda dikdörtgen bulabiliriz.

Bu kadar özellikle bir sınıflandırma imkansızdır.

Özellikleri azaltmak mümkün mü?

Boosting Algoritması

BOOSTİNG(HIZLANDIRMA) ALGORİTMASI

BOOSTING(HIZLANDIRMA) ALGORITMASI

Boosting algoritması sonunda çıkartılan dikdörtgenler.

Bu dikdörtgenler ayırt edicilik sağlamaktadır.

Hala istenilen sonuç alınamaz ise Kaskat Sınıflandırıcı kullanılır

- 3) Kaskat Sınıflandırı:
- Adaylar, yüz olmayanların çoğunu eleyen basit sınıflandırıcıya verilir.
- ✓ Daha kompleks olan ikinci sınıflandırıcıya çok daha az veri gelir. Bu sayede daha hızlı işlem yapar.
- Tüm diğer sınıflandırıcılar için bu işlemler devam eder.

- Sayısız tanıma işlemleri arasında bilgisayarların ulaştığı en başarılı alandır.
- Önden çekilmiş resimlerde en yüksek başarı sağlanmaktadır.
- İlk çalışmalar göz, ağız, burun gibi özellikleri bulup bunların geometrik yapılarına bakmaktaydı.
- Özyüzler kullanılarak pozdan bağımsız olarak tanıma yapmak mümkün oldu.

Öz vektör ve öz değer kavramı:

A matrisinin öz vektörü, *x* olsun.

$$Ax = \lambda x$$
 λ Öz değerdir

A matrisinin öz değerlerini bulmak için aşağıdaki denklemin kökleri bulunur:

$$det(A-\lambda I) = 0$$

Daha sonra her öz değer için aşağıdaki denklem çözülür:

$$(A-\lambda I)x=0$$

Basit Örnek:

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 7 \end{bmatrix}$$

Öz Değerler

$$\lambda_1 = 7$$
, $\lambda_2 = 3$, $\lambda_3 = -1$

$$\mathbf{x_1} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}, \ \mathbf{x_2} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \ \mathbf{x_3} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Öz vektörler

Öz yüzler kullanarak yüz tanıma:

1) Tüm parlaklık değerlerini tek vektörde toplarız:

$$u = (I(1,1),...,I(1,N),I(2,1),...,I(2,N),...,I(M,1),...,I(M,N))^{T}$$

2) Her kişinin (p) farklı pozlardan n adet resmine bakarız:

$$A = \left[u_1^1, \dots, u_n^1, u_1^2, \dots, u_n^2, \dots, u_1^p, \dots, u_n^p\right]$$

3) C korelasyon matrisi oluşturulur:

$$C = A^T A$$

4) C'nin öz vektörleri bulunur.

Öz yüzler kullanarak yüz tanıma:

Eğitim Resimleri

 $\mathbf{x}_1, \dots, \mathbf{x}_N$

Öz yüzler kullanarak yüz tanıma:

Seçilen Özvektörler: u₁,...u_k

Ortalama: µ

Öz yüzler kullanarak yüz tanıma:

Bütün eğitim resimleri alt uzaya gömülür

$$\mathbf{x}
ightarrow [\mathbf{u}_1^{\mathrm{\scriptscriptstyle T}}(\mathbf{x}-\mu),\ldots,\mathbf{u}_k^{\mathrm{\scriptscriptstyle T}}(\mathbf{x}-\mu)] \ w_1,\ldots,w_k$$

Geri resme dönmek istersek:

$$\dot{x} = \mu + w_1 u_1 + w_2 u_2 + w_3 u_3 + w_4 u_4 + \dots$$

Öz yüzler kullanarak yüz tanıma:

Test aşaması:

Gelen yüz alt uzaya gömülür:

$$(w_1,...,w_k) = (u_1^T(x-\mu), ..., u_k^T(x-\mu))$$

En yakın olduğu eğitim resmi olarak sınıflandır.

NESNE TANIMA

2 alt kategoriye ayrılır:

Örnek Tanıma

Sınıf Tanıma

NESNE TANIMA

Örnek Tanıma:

Genelde farklı bir açıdan çekilmiş, dağınık bir arkaplan varlığında ve bir kısmı kapanmış olan objeleri bulma problemini içerir.

NESNE TANIMA

Örnek Tanıma:

Geometrik Eşleştirme:

NESNE TANIMA

Örnek Tanıma:

Geometrik Eşleştirme:

NESNE TANIMA

Uygulama Alanı:

Flickr.com

Sınıf Tanıma:

Bütün problemler arasında en zor olanıdır.

Torba Dolusu Kelime Yöntemi:

En basit yöntemlerden birisidir.

Torba Dolusu Kelime Yöntemi:

Özellik Çıkarımı:

1) Standart Parmaklıklı

2) Önemli nokta çıkarımı

Anahtar kelimeler:

Torba Dolusu Kelime Yöntemi:

Zayıf Yanları:

- Geometrik bilgi içerememesi
- Gelişi güzel seçimlerin olabilmesi
- Ölçek ve farklı poz yönlerine duyarlılığı kapsamlı olarak test edilmemiş.

Parça tabanlı yaklaşım:

Bir nesnenin önemli parçalarını bulup bunların geometrik ilişkilerinden nesnenin tanınması en eski yaklaşımlardan birtanesidir.

Parça tabanlı yaklaşım:

Ayrık Parçalarla Temsil:

- İşlemsel açıdan kolaylık (10⁵ piksel → 10¹ -- 10² parça)
- Özel nesneleri tanımada başarılı
- Nesnelerin genelleştirilmiş temsili

Ancak;

Resimdeki bilgilerin çoğu atılmaktadır.

Seçilen parçaların ayırt edici olması gerekmektedir.

Segmentasyon ile tanıma:

Nesne tanımanın en zor yanı doğru bir segmentasyon ile beraber tanımadır.

Segmentasyon ile tanıma:

Segmentasyon aşağıdaki gibi olmalıdır.

- Nesnenin şeklinde olmalı ör: inek
- Kullanıcı desteksiz çıkartılabilmeli

TANIMA VERISETLERI

- İnternette arattığımızda birçok tanıma işleminde kullanılabilecek veri seti bulunmaktadır.
- Bunlardan en popüler olanı PASCAL veri setidir.
 - Bu set her yıl değişmektedir.
 - Biliminsanları bu veri setini kullanarak birbirleri arasında kıyaslama imkanı bulmaktadır.

TEŞEKKÜRLER...

SORULARINIZ?

