

Aufgabennummer: B_129

Technologieeinsatz: möglich □ erforderlich ⊠

Zur Programmierung eines Weltraum-Computerspiels werden einige geometrische Überlegungen benötigt.

Die nachstehende Abbildung zeigt die Flugbahn s zweier Patrouillenschiffe S_1 und S_2 um eine Raumstation R. Die Flugbahn eines feindlichen Raumschiffs wird durch den Graphen der Funktion f beschrieben. (In der Abbildung sind die Nullstelle N_1 sowie die Extrempunkte E_1 und E_2 des Funktionsgraphen von f eingezeichnet.)

a) – Erklären Sie, warum die Flugbahn s kein Graph einer Funktion ist.

Die Funktion f ist eine Polynomfunktion vierten Grades mit $f(x) = ax^4 + bx^3 + cx^2 + dx + e$.

- Stellen Sie ein Gleichungssystem auf, mit dem die Koeffizienten dieser Funktion f ermittelt werden k\u00f6nnen.
- b) Für die Funktion f gilt:

$$f(x) = -\frac{3}{196}x^4 + \frac{9}{98}x^3 - \frac{3}{196}x^2 - \frac{18}{49}x + \frac{135}{49}$$

Während des Spielverlaufs schießt das feindliche Raumschiff am Wendepunkt der Funktion f in der Nähe von E_2 einen Laserstrahl tangential in Richtung S_2 .

- Ermitteln Sie die Funktionsgleichung der Tangente, die den Laserstrahl beschreibt.
- Überprüfen Sie rechnerisch, ob das Raumschiff $S_{\scriptscriptstyle 2}$ vom Laserstrahl getroffen wird.

- c) Zu einem bestimmten Zeitpunkt hat die Raumstation die Koordinaten R = (1,5|0) und das erste Patrouillenschiff die Koordinaten $S_1 = (0,5|y>0)$.
 - Erstellen Sie eine Formel zur Berechnung der fehlenden y-Koordinate des Patrouillenschiffs, wenn der Abstand vom Patrouillenschiff S_1 zur Raumstation R genau d Einheiten beträgt.

y = _____

- Ermitteln Sie den Winkel α , den die beiden Vektoren $\overrightarrow{RS_1} = \begin{pmatrix} -1 \\ -1,5 \end{pmatrix}$ und $\overrightarrow{RS_2} = \begin{pmatrix} -2,5 \\ 1 \end{pmatrix}$ einschließen.
- d) Im letzten Level dieses Spiels erscheint ein großes Raumschiff auf dem Bildschirm. Die Umrisse dieses Raumschiffs sind gegeben durch die Punkte A, B, C, D, E, F, G.

Das Raumschiff soll sich auf dem Bildschirm um 45° um den Punkt G gegen den Uhrzeigersinn drehen.

- Stellen Sie die Transformationsmatrix für diese Drehung auf.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Möglicher Lösungsweg

a) Bei der Flugbahn s handelt es sich um keinen Graphen einer Funktion, weil es x-Werte gibt, denen mehr als ein y-Wert zugeordnet wird.

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

$$f'(x) = 4ax^3 + 3bx^2 + 2cx + d$$

Nullstelle: $N_1 = (-3|0)$

Extrempunkte: $E_1 = (-1|3)$ $E_2 = (4|3)$

$$f(-3) = 0$$
: I: $81a - 27b + 9c - 3d + e = 0$

$$f(-1) = 3$$
: II: $a - b + c - d + e = 3$

$$f'(-1) = 0$$
: III: $-4a + 3b - 2c + d = 0$

$$f(4) = 3$$
: IV: $256a + 64b + 16c + 4d + e = 3$

$$f'(4) = 0$$
: V: 256a + 48b + 8c + d = 0

b) Berechnung des Wendepunktes:

$$f''(x) = -\frac{9}{49}x^2 + \frac{27}{49}x - \frac{3}{98}$$
$$-\frac{9}{49}x^2 + \frac{27}{49}x - \frac{3}{98} = 0$$
$$x_1 = 2,943... \approx 2,94$$

$$(x_2 = 0.056...)$$

$$f(2,943...) = 2,734...$$

$$W = (2,94 | 2,73)$$

Aufstellen der Funktionsgleichung der Tangente:

$$y = kx + d$$

$$k = f'(2,943...) = 0,36820..., d = y - kx = 1,65049...$$

$$y = 0.3682x + 1.6505$$

Einsetzen der Koordinaten von S_2 in die Tangentengleichung:

$$1 = 0.3682 \cdot (-1) + 1.6505$$

$$1 = 1,2822$$

Der Laserstrahl trifft nicht das Raumschiff S_2 .

c)
$$\overrightarrow{RS}_{1} = \begin{pmatrix} 0.5 \\ y \end{pmatrix} - \begin{pmatrix} 1.5 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ y \end{pmatrix}$$

 $(-1)^{2} + y^{2} = d^{2}$
 $y = \sqrt{d^{2} - 1}$
 $\cos(\alpha) = \frac{\begin{pmatrix} -1 \\ -1.5 \end{pmatrix} \cdot \begin{pmatrix} -2.5 \\ 1 \end{pmatrix}}{\sqrt{(-1)^{2} + (-1.5)^{2}} \cdot \sqrt{(-2.5)^{2} + 1^{2}}}$
 $\cos(\alpha) = \frac{1}{\sqrt{3.25} \cdot \sqrt{7.25}}$
 $\alpha \approx 78.11^{\circ}$

- d) 1. Schiebung von G in den Koordinatenursprung: $\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 - 2. Drehung um 45°: $\begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) & 0\\ \sin(45^\circ) & \cos(45^\circ) & 0\\ 0 & 0 & 1 \end{pmatrix}$
 - 3. Zurückschieben: $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Transformationsmatrix:
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) & 0 \\ \sin(45^\circ) & \cos(45^\circ) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$\begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) & 0,59\\ \sin(45^\circ) & \cos(45^\circ) & -\sqrt{2}\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0,59\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2}\\ 0 & 0 & 1 \end{pmatrix}$$

Klassifikation

□ Teil A 🗵 Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 3 Funktionale Zusammenhänge
- b) 4 Analysis
- c) 2 Algebra und Geometrie
- d) 2 Algebra und Geometrie

Nebeninhaltsdimension:

- a) 4 Analysis
- b) 3 Funktionale Zusammenhänge
- c) —
- d) —

Wesentlicher Bereich der Handlungsdimension:

- a) A Modellieren und Transferieren
- b) B Operieren und Technologieeinsatz
- c) A Modellieren und Transferieren
- d) A Modellieren und Transferieren

Nebenhandlungsdimension:

- a) D Argumentieren und Kommunizieren
- b) D Argumentieren und Kommunizieren
- c) B Operieren und Technologieeinsatz
- d) B Operieren und Technologieeinsatz

Schwierigkeitsgrad:

Punkteanzahl:

a)	mittel	a)	3
b)	mittel	b)	3
c)	leicht	C)	2
d)	mittel	d)	3

Thema: Informatik

Quellen: -