THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY

Tutorial #6: Designing a Common-Collector Amplifier

BACKGROUND

In the previous lab, you designed a common-emitter (CE) amplifier. Voltage gain (A_V) is easy to achieve with this type of amplifier. As you discovered, the input impedance (R_{in}) of the CE amplifier is moderate-to-high (on the order of a few $k\Omega$). The output impedance (R_{out}) is high (roughly the value of R_C). This makes the common-emitter amplifier a poor choice for "driving" small loads.

A common-collector (CC) amplifier typically has a **high input impedance** (typically in the hundred $k\Omega$ range) and a very **low output impedance** (on the order of 1Ω or 10Ω). This makes the common-collector amplifier excellent for "driving" small loads. As you discovered in Lab 6, the common-collector amplifier has a voltage gain of about 1, or **unity gain**. The common-collector amplifier is considered a **voltage-buffer** since the voltage gain is unity. The voltage signal applied at the input will be duplicated at the output; for this reason, the common-collector amplifier is typically called an **emitter-follow amplifier**. The common-collector amplifier can be thought of as a **current amplifier**.

When the common-emitter amplifier is cascaded to a common-collector amplifier, the CC amplifier can be thought of as an "**impedance transformer**." It can take the high output impedance of the CE amplifier and "transform" it to a low output impedance capable of driving small loads.

Figure 1 shows a typical configuration for a common-collector amplifier. The input voltage is applied to the base while the output voltage is measured at the emitter.

Figure 1 - Common-Collector Amplifier

Figure 2 – Small Signal (AC) Equivalent (Neglecting R_{sig})

From the AC equivalent of the common-collector amplifier in **Figure 2**, we can derive expressions for the **input impedance**, **output impedance**, and **voltage gain**:

$$R_{in} = R_{B1} ||R_{B2}|| [\beta r_e + (\beta + 1)R_E]$$
 (no load) (Remember: $r_e = V_T / I_E$, where $V_T = 26 \text{mV}$)

$$R_{out} = R_E || r_e \text{ but } r_e \ll R_E \rightarrow Zo \approx re \text{ (notice this is VERY small)}$$

$$A_V=rac{V_{out}}{V_{in}}=rac{(eta+1)i_bR_E}{eta i_br_e+(eta+1)i_bR_E}\congrac{eta i_bR_E}{eta i_b(r_e+R_E)}=rac{R_E}{r_e+R_E}$$
, but since ${
m r_e}<<{
m R_E}$, then $A_Vpprox 1$

INSTRUCTIONS

Designing a Common-Collector Amplifier

Problem: Design a common-collector amplifier using the 2N3904 transistor that meets the following specs:

- I_C = 1mA
- V_{CC} = 20V
- $R_{in} = 70k\Omega$
- $R_1 = 510\Omega$
- V_{in} = 10mV @ 10kHz
- 1. **Determine** the value of R_E .
 - a. We typically make $V_E = \frac{1}{2} V_{CC}$ to ensure the largest possible symmetric output voltage swing around V_E .
 - b. It is safe to assume that $I_E \approx I_C$.
 - c. Calculate the value of R_F.
- 2. **Determine** the "Q" point of the transistor.
 - a. Because you now know V_{CE} and I_C, you can use the same procedure from the "Designing a Common-Emitter Amplifier" tutorial to create an IV-curve for the transistor and determine the Q-point of the transistor. This will help you determine the necessary "base current" needed to achieve the specified I_C.
 - b. **Use** the Q-point data to find DC values for: I_B , V_B , I_E , and β .
- 3. Use V_{CC} , V_B , I_B , I_E , and R_{in} to find R_{B1} and R_{B2} .
 - a. **Follow** the procedure from the previous tutorial to generate the same **three** equations for V_{BB} (**Equation 1**), R_B (**Equation 2**), and I_B (**Equation 3**).
 - b. Use the equation derived in the first part of *this* tutorial for R_{in} as Equation 4.
 - c. Calculate R_{B1} and R_{B2} using the four equations.
- 4. Check your calculations.
 - a. Use the R_{in} equation to calculate R_{in} . Is it $70k\Omega$?
 - b. Use the Rout equation to calculate Rout. Is it very small?
- 5. **Set** values for C_{C1} and C_{C2} .
 - a. The impedance of a capacitor is $Z_C = \frac{1}{j2\pi fC}$. We can use this knowing that we want $\mathbf{C_{C1}}$ and $\mathbf{C_{C2}}$ to all look like "shorts" at 10kHz (the input frequency), and select a value that we have in the ECE 2115 kit.
- 6. **Determine** the **current gain** (A_i) of the amplifier.
 - a. Current gain is defined as $A_i = I_{out} / I_{in}$.
 - b. **Use** the equations for **A**_V, **R**_{in}, and **R**_{out}, Ohm's law, and a little algebra to determine the equation for **A**_i.
 - c. Calculate A_i for your amplifier. Verify current gain using a Multisim transient simulation.
- 7. **Verify** your calculations using Multisim.
 - a. **Simulate** your amplifier. **Check** the bias-point (DC) analysis to determine if your transistor is at the Q-point you desire.
 - b. **Perform** a transient simulation to verify the **voltage gain**, **current gain**, R_{in}, and R_{out}.