2 3 3	3 56 1 1 1 1 20 236 0 1 178 0 0.8 2 0 2 1 4 57 0 0 0 120 354 0 1 163 1 0.6 2 0 2 1
Ri Di	class 'pandas.core.frame.DataFrame'> angeIndex: 303 entries, 0 to 302 ata columns (total 14 columns): ## Column Non-Null Count Dtype
d m	8 exang 303 non-null int64 9 oldpeak 303 non-null float64 10 slope 303 non-null int64 11 ca 303 non-null int64 12 thal 303 non-null int64 13 target 303 non-null int64 13 target 303 non-null int64 14 slope 303 non-null int64 15 target 303 non-null int64 16 slope 303 non-null int64 17 target 303 non-null int64 18 target 303 non-null int64 19 slope 303 non-null int64 10 slope 303 non-null int64
(; a s c t c c	std 9.08210 0.46011 1.032052 17.538149 51.830751 0.365189 0.25580 0.25580 0.265050 0.065050 0
ritle: o.s. c: titd	bs estecty 0 halach 0 kang 0 lopea 0 lope 0 lope 0 lope 0 lope 10 lope
	#mport seaborn as sns #get correlations of each features in dataset corrmat = df.corr() top_corr_features = corrmat.index plt.figure(figsize=(20,20)) #plot heat map g=sns.heatmap(df[top_corr_features].corr(), annot=True, cmap="RdYIGn") 1
on trestbos on sex	-0.8 -0.069 -0.049 1 0.048 -0.077 0.094 0.044 0.3 0.39 -0.15 0.12 -0.18 -0.16 0.43
resteca fibs	- 0.12 0.045 0.094 0.18 0.013 1 -0.084 -0.0086 0.026 0.0057 -0.06 0.14 -0.032 -0.028 -0.4 - 0.12 -0.058 0.044 -0.11 -0.15 -0.084 1 0.044 -0.071 -0.059 0.093 -0.072 -0.012 0.14 - 0.4 -0.044 0.3 -0.047 -0.0099 -0.0086 0.044 1 -0.38 -0.34 0.39 -0.21 -0.096 0.42
exan	- 0.097
target thal	
(<pre>df.hist() rray([[<axessubplot:title={'center':'age'}>,</axessubplot:title={'center':'age'}></pre>
10	Averssubplot:>]], dtype=object) Sex Testbps 40 30 40 50 50 7
20 15 10	25 20 300 400 500 0.0 0.2 0.4 0.6 0.8 10 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 80 100 120 140 160 180 200 call of the starget 150 0.0 0.2 0.4 0.6 0.8 10 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
7	TO FIND THE DATA SET IS BALANCED OR NOT # Here, 0 is False and 1 means True sns.set_style('whitegrid') sns.countplot(x='target', data=df, palette='RdBu_r') AxesSubplot:xlabel='target', ylabel='count'>
	160 140 120 100
unoo	80
Do	DATA PROCESSING me of the attributes in the DataSet are of categorical variable and convert them into dummy data and to do this get_dummies function is used dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']) sing StandardScaling as some of the variables have many variations and different units and this will help to scale down the values within the standard distribution from sklearn.preprocessing import StandardScaler
0 1 2 3	standardScaler = StandardScaler() columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] dataset.bead() age trestbps chol thalach oldpeak target sex_0 sex_1 cp_0 cp_1 slope_2 ca_0 ca_1 ca_2 ca_3 ca_4 thal_0 ca_1 ca_2 ca_3 ca_4 thal_0 ca_4 ca_2 ca_3 ca_4 thal_0 ca_4 c
cre	From sklearn.model_selection import train_test_split eating the dependent and independent features Y_train = dataset['target'] X_train = dataset.drop(['target'], axis = 1) # to apply cross validation
0 1 2 3	Trom skleari. model_selection import cross_val_score X_train. head() To setup 10 10 10 10 10 10 10 10 10 10 10 10 10
0 1 2 3 4 N	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	Support Vector Machine from sklearn.svm import SVC sv=SVC(kernel='linear') sv.fit(x_train, Y_train) VC(kernel='linear') pred = sv.predict(x_test) pred
1	rray([1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1	0 0.83 0.85 0.84 34 1 0.91 0.89 0.90 57 accuracy
	plt.tbar(kernels, svc_scores, color = colors) for i in range(len(kernels)): plt.text(i, svc_scores[i], svc_scores[i]) plt.xlabel('Kernels') plt.ylabel('Scores') plt.title('Support Vector Classifier scores for different kernels') ext(0.5, 1.0, 'Support Vector Classifier scores for different kernels') Support Vector Classifier scores for different kernels 0.945054945054945 0.9340659340659341 0.8241758241758241
Scores	
	102 Inear poly Kernels by Mary Mary Mary Mary Mary Mary Mary Mar
K	rray([1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
T d	1, 0, 0], dtype=int64) acc=accuracy_score(y_test,pred) print("Testing Accuracy of SVM model is :",acc) esting Accuracy of SVM model is : 0.824175824158241 from sklearn.metrics import confusion_matrix confusion_matrix(y_test,pred) rray([[28, 6], [10, 47]], dtype=int64) print(classification_report(y_test,pred)) precision recall f1-score support 0 0.74 0.82 0.78 34
1 1 1	1 0.89 0.82 0.85 57 accuracy macro avg 0.81 0.82 91 eighted avg 0.83 0.82 0.83 91 from sklearn.model_selection import cross_val_score knn_scores = [] for k in range(1,21): knn_classifier = KNeighborsClassifier(n_neighbors = k) score=cross_val_score(knn_classifier, X_train, Y_train, cv=10) knn_scores.append(score.mean()) plt.plot([k for k in range(1, 21)], knn_scores, color = 'red') for i in range(1,21):
1 1 1	plt.text(i, knn_scores[i-1], (i, knn_scores[i-1])) plt.xtlcks([i for i in range(1, 21)]) plt.xtlabel('Number of Neighbors (K)') plt.ylabel('Scores') plt.title('K Neighbors Classifier scores for different K values') plt.rcParams['figure.figsize'] = (25,10) K Neighbors Classifier scores for different K values (A Neighbors Classifier scores for different K values (B Neighbors Classifier scores for different K values (C Neighbors Classifier scores
Scores	0.82 0.82 0.83 0.8120430107926883) 0.80 0.78
Th	0.76 2.0.7591397849462365) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 The above plotting tells that for some particular value of k what is the accuracy
1 (((((((((((((((((((DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier dcc DecisionTreeClassifier() dcd.fit(x_train,y_train) ecisionTreeClassifier() pred=dc.predict(x_test) pred rray([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
T (1, 0, 0], dtype=int64) acc=accuracy_score(y_test,pred) print("Testing Accuracy of SVM model is :",acc) esting Accuracy of SVM model is : 0.7582417582417582 confusion_matrix(y_test,pred) rray([[26, 8],
a	1 0.84 0.75 0.80 57 accuracy 0.76 91 eighted avg 0.77 0.76 0.76 9.1 dc.feature_importances_ rray([0.15302667, 0.07150374, 0.06475051, 0.10087257, 0.12189157, 0.00333222, 0. , 0.06087073, 0. , 0.00943732, 0.02657263, 0.0125831, 0. , 0. , 0.01993191, 0. , 0. , 0.01993191, 0. , 0. , 0.01993191, 0. , 0. , 0.01993191, 0. , 0.0199
fi I R	from sklearn.ensemble import RandomForestClassifier rf= RandomForestClassifier(n_estimators=10 ,criterion='entropy',random_state=0) rf.fit(x_train,y_train) andomForestClassifier(criterion='entropy', n_estimators=10, random_state=0) pred=rf.predict(x_test) pred rray([1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
T (acc=accuracy_score(y_test,pred) print("Testing Accuracy of SVM model is :",acc) esting Accuracy of SVM model is : 0.7802197802197802 confusion_matrix(y_test,pred) rray([[30, 4],
1	1 0.91 0.72 0.80 57 accuracy 0.78 91 macro avg 0.78 0.80 0.78 91 eighted avg 0.81 0.78 0.78 91 rf_scores = [] estimators = [10, 100, 200, 500, 1000] for i in estimators: rf_classifier = RandomForestClassifier(n_estimators = i, random_state = 0) rf_classifier.fit(X_train, Y_train) rf_scores.append(rf_classifier.score(x_test, y_test)) colors = rainbow(np.linspace(0, 1, len(estimators))) plt.bar([i for i in range(len(estimators))], rf_scores, color = colors, width = 0.8) for i in range(len(estimators)):
ı	for i in range(len(estimators)): plt.text(i, rf_scores[i], rf_scores[i]) plt.xticks(ticks = [i for i in range(len(estimators))], labels = [str(estimator) for estimator in estimators]) plt.xlabel('Number of estimators') plt.ylabel('Scores') plt.ylabel('Scores') plt.rcParams['figure.figsize'] = (25,10) Random Forest Classifier scores for different number of estimators') Random Forest Classifier scores for different number of estimators 10 0980010980010989 10 10 10 10 10 10 10 10 10 1
	0.8
Soores	
Soores	FROM ANALYSING THE ABOVE TECHNIQUE, IT IS IDENTIFIED THAT THE SUPPORT VECTOR MACHINE WORKS MORE ACCURATELY WITH THE ABOVE DATASET