DSP Practice Test #1.C

Nar	ne: Start Time:
Pr	oblem 1:
	he system with the input-output relation: $y[n] = T\{x[n]\} = x[n] \sum_{k=0}^{\infty} (\delta[n-k])$ rmine the following properties of the system
A)	The system is Linear/ Nonlinear / Not Enough Info
B)	The system is Causal / Noncausal / Not Enough Info
C)	The system is Time-variant / Time-Invariant / Not Enough Info
D)	The system is Stable / Unstable / Not Enough Info

Problem 2:

An LTI system has an impulse response defined by:

$$h[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] - 2\delta[n-4] - 2\delta[n-5].$$

Determine and sketch the output y[n] when the input is x[n] = u[n]

Problem 3:

Consider an LTI system defined by the difference equation

$$y[n] = -2x[n] + 4x[n-1] - 2x[n-2]$$

A) Determine the impulse response of this system, h[n]

B) Determine the frequency response of this system. Express your answer in the form $H\left(e^{j\omega}\right)=A\left(e^{j\omega}\right)e^{j\omega n_d}$,

where $A\left(e^{j\omega}\right)$ is a real function of ω , and n_d is the delay. Explicitly specify $A\left(e^{j\omega}\right)$ and the delay n_d of this system.

C) Suppose that the input to the system is $x[n] = 1 + e^{j0.5\pi n}, n \in \mathbb{Z}$.

Use the frequency response function to determine the corresponding output y[n]. Simplify your answer as much as possible.

Problem 4:

Consider a random signal x[n] = s[n] + e[n], where s[n] and e[n] are independent, zero-mean stationary random signals with autocorrelation functions $\phi_{ss}[m]$ and $\phi_{ee}[m]$, respectively.

A) Determine the mean of x[n], μ_x

B) Determine the autocorrelation function $\phi_{xx}[m]$, in terms of $\phi_{ss}[m]$ and $\phi_{ee}[m]$. Simplify your expression as much as possible.