

Building Blocks of Quantum Computing

Dr. Naresh Raghava

BITS

QUBITS

The state of qubit is a unit vector in two-dimensional complex vector space. (generally called Hilbert space)

Linear Algebra

1かころ100+310 = ~ (e'01 10) + ~ (e'02 11) $= \sum_{i=1}^{N} \frac{1}{2^{N-1}} \left(\cos(\theta|z) \log + \sin(\theta|z) e^{-|z|} \right)$ Global Trac (0)(0|2)(0) + S:n(0|2)c'(1)anilitudes 1m = cos(0|2) 10) + e'd sin(0|2) 11)

Can be retrigiented on a Block 5There

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\alpha, \beta \in \mathbb{C}$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

$$0 \le \theta \le \pi$$
 and $0 \le \phi < 2\pi$

BLOCH SPHERE

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\alpha = \cos\left(\frac{\theta}{2}\right), \quad \beta = e^{i\phi}\sin\left(\frac{\theta}{2}\right)$$

 $0 \le \theta \le \pi$ and $0 \le \phi < 2\pi$

 $\vec{r} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

Boler

145-1619 + 13/1) |0> $|\psi\rangle$ $|0\rangle + i|1\rangle$ $\sqrt{2}$ $\frac{|\mathbf{0}\rangle + |\mathbf{1}\rangle^{X}}{\sqrt{2}}$ $0 - \frac{1}{2}$ -Z | |1)

VECTORS

Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory- Asher Peres

QUANTUM STEPS

TIME EVOLUTION

The state $|\psi_1\rangle$ of a closed quantum system at time t_1 is related to its state $|\psi_2\rangle$ at a later time t_2 by a unitary operator U, which depends only on t_1 and t_2 :

$$|\psi_2\rangle = U|\psi_1\rangle$$
 $|\psi_1\rangle \qquad \qquad U^{\dagger}U = UU^{\dagger} = I$
 $U = UU^{\dagger} = I$
 $U = UU^{\dagger} = I$

QUANTUM GATES

$$I|0\rangle = |0\rangle,$$

$$I|1\rangle = |1\rangle.$$

$$X|0\rangle = |1\rangle,$$

$$Z|0\rangle = |0\rangle,$$

$$X|1\rangle = |0\rangle.$$

$$Z|1\rangle = -|1\rangle.$$

$$Y|0\rangle = i|1\rangle,$$

 $Y|1\rangle = -i|0\rangle$

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |+\rangle,$$

$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = |-\rangle$$

$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = |-\rangle.$$

$$+ \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = |-\rangle.$$

GATE	CIRCUIT REPRESENTATION	MATRIX REPRESENTATION	TRUTH TABLE	BLOCH SPHERE	
I Identity-gate: no rotation is performed.	<u> </u>	$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{array}{c c} \underline{\text{Input}} & \underline{\text{Output}} \\ 0\rangle & 0\rangle \\ 1\rangle & 1\rangle \end{array}$	z x	14
X gate: rotates the qubit state by π radians (180°) about the x-axis.	X	$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{array}{c c} \underline{\text{Input}} & \underline{\text{Output}} \\ 0\rangle & 1\rangle \\ 1\rangle & 0\rangle \end{array}$	z 180° y	
Z gate: rotates the qubit state by π radians (180°) about the z-axis.	Z	$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$ \frac{\text{Input}}{ 0\rangle} \frac{\text{Output}}{ 0\rangle} \\ 1\rangle - 1\rangle $	180° Z x	

+310) イルカンニ イル) イルクニ イル)

- A quantum circuit contains logic gates connected by straight lines, which indicates the direction of logic flow with time, earlier time being to the left.
- Inputs to the circuit are qubits, as are the outputs.

QUANTUM MEASUREMENT

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

 $|\alpha|^2 + |\beta|^2 = 1$

QUANTUM GATES

$$I|0\rangle = |0\rangle, \qquad X|0\rangle = |1\rangle, I|1\rangle = |1\rangle. \qquad X|1\rangle = |0\rangle.$$

$$Y|0\rangle = i|1\rangle, \qquad Z|0\rangle = |0\rangle,$$

$$Y|1\rangle = -i|0\rangle.$$
 $Z|1\rangle = -|1\rangle.$

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |+\rangle,$$

$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = |-\rangle.$$

Operator	Gate(s)	Matrix
Pauli-X (X)	$-\mathbf{x}$	 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$- \boxed{\mathbf{Y}} -$	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{z}-$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H} -$	$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	-s	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$-\!$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)	<u> </u>	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

$$CNOT|00\rangle = |00\rangle$$
, in standard beging $CNOT|01\rangle = |01\rangle$, $CNOT|10\rangle = |11\rangle$, $CNOT|10\rangle = |11\rangle$, $CNOT|11\rangle = |10\rangle$.

BELL STATES (EPR)

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$
 $CNOT|00\rangle = |00\rangle,$ $CNOT|01\rangle = |01\rangle,$ $CNOT|10\rangle = |11\rangle,$ $CNOT|11\rangle = |10\rangle.$

$$\begin{array}{c}
\left|\Phi^{+}\right\rangle = \frac{1}{\sqrt{2}} \underbrace{(\left|00\right\rangle + \left|11\right\rangle)}, \\
\left|\Phi^{-}\right\rangle = \frac{1}{\sqrt{2}} \underbrace{(\left|00\right\rangle - \left|11\right\rangle)}, \\
\left|\Psi^{+}\right\rangle = \frac{1}{\sqrt{2}} \underbrace{(\left|01\right\rangle + \left|10\right\rangle)}, \\
\left|\Psi^{-}\right\rangle = \frac{1}{\sqrt{2}} \underbrace{(\left|01\right\rangle - \left|10\right\rangle)}.
\end{array}$$