GGGCTTCGGCGCCAGCGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGTATG AGCAGGTCTGAAGACTAACATTTTGTGAAGTTGTAAAACAGAAAACCTGTTAGAA**ATG**TGGTGGT TTCAGCAAGGCCTCAGTTTCCTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCTTTCATATTT TCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATATCAGTGACACTGG TACAGTAGCTCCAGAAAAATGCTTATTTGGGGCAATGCTAAATATTGCGGCAGTTTTATGCATTG CTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAAGAGAACGTTATCATCAAA TTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGGACTTTCTATTGTGGCAAACTT CCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTGTGCTTACCTTTGGTATGGGCTCAT TATATATGTTTGTTCAGACCATCCTTTCCTACCAAATGCAGCCCAAAATCCATGGCAAACAAGTC TTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGGAGTAAGTGCACTTAGCATGCTGACTTGCTC ATCAGTTTTGCACAGTGGCAATTTTGGGACTGATTTAGAACAGAAACTCCATTGGAACCCCGAGG A CAAAGGTTATGTGCTTCACATGATCACTACTGCAGCAGAATGGTCTATGTCATTTTCCTTCTTTGGTTTTTCCTGACTTACATTCGTGATTTTCAGAAAATTTCTTTACGGGTGGAAGCCAATTTACA GAGATATT**TGA**TGAAAGGATAAAATATTTCTGTAATGATTATGATTCTCAGGGATTGGGGAAAGG TTCACAGAAGTTGCTTATTCTTCTGTAAATTTTCAACCACTTAATCAAGGCTGACAGTAACACT GATGAATGCTGATAATCAGGAAACATGAAAGAAGCCATTTGATAGATTATTCTAAAGGATATCAT CAAGAAGACTATTAAAAACACCTATGCCTATACTTTTTTATCTCAGAAAATAAAGTCAAAAGACT ATG

<subunit 1 of 1, 266 aa, 1 stop
<MW: 29766, pI: 8.39, NX(S/T): 0</pre>

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNIAAV LCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSGAVLTFG MGSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLEQKLHW NPEDKGYVLHMITTAAEWSMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYDTAPCPINNERTR LLSRDI

#### Important features:

Type II transmembrane domain:

amino acids 13-33

#### Other Transmembrane domains:

amino acids 54-73, 94-113, 160-180, 122-141

#### N-myristoylation sites.

amino acids 57-63, 95-101, 99-105, 124-130, 183-189

CGGACGCGTGGCCGACGCGTGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGGCAGACC GTGTGAGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAGGCAGGAGCCTTC  $\verb|CTTACACTTCGCC| \textbf{ATG} \\ \textbf{AGTTTCCTCATCGACTCCAGCATCATGATTACCTCCCAGATACTATTTTTTG| \\ \textbf{CTTACACTTCGCCAGATACTATTTTTTG| } \\ \textbf{CTTACACTTCGCCAGATACTATTTTTTG| } \\ \textbf{CTTACACTTCGCCAGATACTATTTTTTTG| } \\ \textbf{CTTACACTTCGCCAGATACTATTTTTTTG| } \\ \textbf{CTTACACTTCGCCAGATACTATTTTTTTG| } \\ \textbf{CTTACACTTCGCCAGATACTATTTTTTTG| } \\ \textbf{CTTACACTTCGCCAGGATACTATTTTTTTG| } \\ \textbf{CTTACACTTCGCCAGGATACTATGTG| } \\ \textbf{CTTACACTTCGCCAGGATAC$ GATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAG GTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTAGG AGTATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGG TTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGA CTGCTTTTTCCTGTCTCTTATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCC CATTCTCAGCCCAAAACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGATTGGAG TGACTCTCATGGCTCTTCTTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTC CTCAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATATGAT CATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAAGTGCATAACA AACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGGAAGTGAAAATCTTACT ATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTTCAAGGGGAAATATTTTAATTTTCTTGGTT ACTTTTCTCTATTTACTGTGTTTGGAAAATTTTCATGGCTACCATCAATATTGTTTTTGATCGAGTT GGGAAAACGGATCCTGTCACAAGAGGCATTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGT TGCTGATCACTCTTACCAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTG CTATTAGCACAGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGCCTTT AGAATACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTTTG ATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAACAGGCACCA GAGAAGCAAATGGCACCT**TGA**ACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTTCAAAATTTA ATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATACTATGACCATGAGTAGCATCAGCCAG AACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCCGTGTGGATATGAGGCTGG TGTAGAGGCGGAGAGCCAAGAAACTAAAGGTGAAAAATACACTGGAACTCTGGGGCAAGACATGT CTATGGTAGCTGAGCCAAACACGTAGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTG ACTCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFFWKLGDP
FPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDILALERRLLQ
TMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQQEVDALEELSRQ
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGKTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLLAQIMGMY
FVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

### Important features:

#### Signal peptide:

amino acids 1-23

#### Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

#### N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

### Eukaryotic cobalamin-binding proteins

amino acids 151-160

AGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATCTGAGGT GTTTCCCTGGCTCTGAAGGGGTAGGCACG<u>A**TG**</u>GCCAGGTGCTTCAGCCTGGTGTTGCTTCTCACT GTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGCAGCTGAATTTCACAG AAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGTTTGGCCGGCAAGGACCAAGTTGAAACAGCC TTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGATGGATTCGTGGTCATCTCTAG GCCGACAGTTTGCAGCCTATTGTTACAACTCATCTGATACTTGGACTAACTCGTGCATTCCAGAA CAGTGACAGTACCTACTCGGTGGCATCCCCTTACTCTACAATACCTGCCCCTACTACTACTCCTC CTGCTCCAGCTTCCACTTCTATTCCACGGAGAAAAAAATTGATTTGTGTCACAGAAGTTTTTATG GAAACTAGCACCATGTCTACAGAAACTGAACCATTTGTTGAAAATAAAGCAGCATTCAAGAATGA CAGCAGAAGGAAATGATCGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCTAA TGAGGAATCAAAGAAAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGC GATGCCTGGAAGCTGAAGTT<u>TAG</u>ATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTTCTTT CATGCTCCTTACCCTGCCCCAGCTGGGGAAATCAAAAGGGCCCAAAGAACCAAAGAAGAAGTCCA CCCTTGGTTCCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAAT TTCTAGCCTGGCTATGTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAAGGAC CTAAAACATCTCATCAGTATCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGGTGGGTTG AAAGCCAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGACCCTTTCTTCA GCTCTGAAAGAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTAAGAGCAAAAGAAT GGCAGAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAGACCTAATCTCTGTAAA GCTAAAATAAAGAAATAGAACAAGGCTGAGGATACGACAGTACACTGTCAGCAGGGACTGTAAAC CTTACTTTTCTGGTCTCTACCACTGCTGATATTTTCTCTAGGAAATATACTTTTACAAGTAACA AAAATAAAAACTCTTATAAATTTCTATTTTTATCTGAGTTACAGAAATGATTACTAAGGAAGATT AAGTGCTGTGCAAGGTATTACACTCTGTAATTGAATATTATTCCTCAAAAAATTGCACATAGTAG  ${\tt AACGCTATCTGGGAAGCTATTTTTTTCAGTTTTGATATTTCTAGCTTATCTACTTCCAAACTAAT}$ TTTTATTTTTGCTGAGACTAATCTTATTCATTTTCTCTAATATGGCAACCATTATAACCTTAATT TATTATTAACATACCTAAGAAGTACATTGTTACCTCTATATACCAAAGCACATTTTAAAAGTGCC ATTAACAAATGTATCACTAGCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATT TGTGACAAAAATTAAAGCATTTAGAAAACTT

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACRLLG LSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQFAAYCYN SSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPPAPASTSIPR RKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFFGAAAGLGFCYVK RYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSPSKTTVRCLEAEV

#### Signal sequence:

amino acids 1-16

#### Transmembrane domain:

amino acids 235-254

#### N-glycosylation site.

amino acids 53-57, 130-134, 289-293

#### Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

### Tyrosine kinase phosphorylation site.

amino acids 79-88

### N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

CGCCGCGCTCCCGCACCCGCGGCCCCCCCCCCCCCCCCATCTGCACCCGCAGCCCGGC GGCCTCCCGGCGGGAGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCGGGGCGG CGGCTGCGGGCGCAGAGCGGAG<u>ATG</u>CAGCGGCTTGGGGCCACCCTGCTGCCTGCTGCTGCCGG CGGCGGTCCCCACGGCCCCCGCCCCGCTCCGACGGCGACCTCGGCTCCAGTCAAGCCCGGCCCG GCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGAGGTTGAGGAACTGAT GGAGGACACGCAGCAAATTGCGCAGCGCGGTGGAAGAGTGGAGGCAGAAGAAGCTGCTGCTA AAGCATCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTATCACAATGAGACCAACACAGAC ACGAAGGTTGGAAATAATACCATCCATGTGCACCGAGAAATTCACAAGATAACCAACAACCAGAC TGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTGTGGGAGACGAAGAAGGCAGAAGGAGCC ACGAGTGCATCATCGACGAGGACTGTGGGCCCAGCATGTACTGCCAGTTTGCCAGCTTCCAGTAC GCTGTGTGTCTGGGGTCACTGCACCAAAATGGCCACCAGGGGCAGCAATGGGACCATCTGTGACA ACCAGAGGGACTGCCAGCCGGGGCTGTGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTGTGTGC ACACCCCTGCCGTGGAGGGCGAGCTTTGCCATGACCCCGCCAGCCGGCTTCTGGACCTCATCAC CTGGGAGCTAGAGCCTGATGGAGCCTTGGACCGATGCCCTTGTGCCAGTGGCCTCCTCTGCCAGC CCCACAGCCACAGCCTGGTGTATGTGTGCAAGCCGACCTTCGTGGGGAGCCGTGACCAAGATGGG GAGATCCTGCTGCCCAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCG CCAGGAGCTGGAGGACCTGGAGAGCCTGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTG  $\tt CCGCCGCTGCACTGCTGGGAGGGGAAGAGATT{\color{red}{TAG}} ATCTGGACCAGGCTGTGGGTAGATGTGCAA$ TAGAAATAGCTAATTTATTTCCCCAGGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTA CATCTTCTCCCAGTAAGTTTCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGCT GGAGCAGTTTGCCACCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAGACAGCCG TTTGTTCTACATGGCTTTGATAATTGTTTGAGGGGAGAGAAGGAAACAATGTGGAGTCTCCCTC TGATTGGTTTTGGGGAAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAACCTGGCAAAAATG CAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTGTGCCTTCAGCTGTTGC AGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCCAGCAGTGTTGCTCAGCTCC TACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTCCCTCTCTCAGCACAGCCTGGGG AGGGGGTCATTGTTCTCCTCGTCCATCAGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTTGCC CAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTCATCTGGTTGTGACTCTAAGCTCAGTGCTCT TTTTCTTGAGGCATGCACATCTGGAATTAAGGTCAAACTAATTCTCACATCCCTCTAAAAGTAAA CTACTGTTAGGAACAGCAGTGTTCTCACAGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGAT ATTGACACTGTCCCTCTTTGGCAGTTGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCA TACAGGTTAACCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGC AAAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGC TGTGTGAAACATGGTTGTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATG TTTTCAGGTGTCATGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAAGTTTAAAGTTGCA CATGATTGTATAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACATAAGTTGCATTTAGAA 

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQHKL RSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTGQMVFSE TVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCGDQLCVWGHC TKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRLLDLITWELEPDG ALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEVGSFMEEVRQELEDLE RSLTEEMALGEPAAAAAALLGGEEI

#### Signal sequence:

amino acids 1-19

### N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

### Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

### N-myristoylation site.

amino acids 202-208, 217-223

### Amidation site.

amino acids 140-144

GGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCATCCAAAG GCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGCTCTTCTGGACCCTT AACTGGGTACTGGCCCTGGGCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTTCTACTGGGCCTT CCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCCGCACACTCCGTTACC ACACTGGGTCATTGGCATTTGGAGCCCTCATCCTGACCCTTGTGCAGATAGCCCGGGTCATCTTG GAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGCCCGCTGCATCATGTGCTGTTT CAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCCTAAACCGCAATGCATACATCATGA TCGCCATCTACGGGAAGATTTCTGTGTCTCAGCCAAAAATGCGTTCATGCTACTCATGCGAAAC ATTGTCAGGGTGGTCGTCCTGGACAAAGTCACAGACCTGCTGCTGTTCTTTGGGAAGCTGCTGGT GGTCGGAGGCGTGGGGGTCCTGTCCTTCTTTTTTCTCCGGTCGCATCCCGGGGCTGGGTAAAG ACTTTAAGAGCCCCCACCTCAACTATTACTGGCTGCCCATCATGACCTCCATCCTGGGGGCCTAT GGAAGACCTGGAGCGGAACAACGGCTCCCTGGACCGGCCCTACTACATGTCCAAGAGCCTTCTAA CCCTGATCCAGGACTGCACCCCACCCCCACCGTCCAGCCATCCAACCTCACTTCGCCTTACAGGT CTCCATTTTGTGGTAAAAAAAAGGTTTTAGGCCAGGCGCGTGGCTCACGCCTGTAATCCAACACT TTGAGAGGCTGAGGCGGATCACCTGAGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTG AAACCTCCGTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCA GCTACTCGGGAGGCTGAGCCAGGAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGA AAGATTTTATTAAAGATATTTTGTTAACTC

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLFWTL
NWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQIARVIL
EYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAKNAFMLLMRN
IVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYYWLPIMTSILGAY
VIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKNEAPPDNKKRKK

#### Important features:

#### Transmembrane domains:

amino acids 57-80 (type II), 110-126, 215-231, 254-274

#### N-glycosylation sites.

amino acids 16-20, 27-31, 289-293

#### Hypothetical YBR002c family proteins.

amino acids 276-288

#### Ammonium transporters proteins.

amino acids 204-231

### N-myristoylation sites.

amino acids 60-66, 78-84

### Amidation site.

amino acids 306-310

 ${\tt TCCCTGCTCAGCTGCGCTCTGCCGCTCTGCCCCCTGCATCCTGTGCAGCTGCTGCCCCGC}$ CAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCCTGGGGGTGCTGGTGTCCA TCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTGCCCTGGGTGTGTGAGGAGGGGGCC GGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGGCTCCCTGCTTGGCTACCGCGCTGTCTACCG CATGTGCTTCGCCACGGCGGCCTTCTTCTTCTTCTTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCA GCCGGGACCCCCGGCTGCCATCCAGAATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTC ACCGTGGGTGCCTTCTACATCCCTGACGGCTCCTTCACCAACATCTGGTTCTACTTCGGCGTCGTGGG CTCCTTCCTCTCATCCTCATCCAGCTGGTGCTGCTCATCGACTTTGCGCACTCCTGGAACCAGCGGT GGCTGGGCAAGGCCGAGGAGTGCGATTCCCGTGCCTGGTACGCAGGCCTCTTCTTCTTCACTCTCCTC TTCTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCTGCCA CGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCTGTCCATCGCTGCTGTCCTGC CCAAGGTCCAGGACGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCATCACCCTCTACACCATG  $\verb|TTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCAACCCCCATTTGCCAACCCAGCT|$ GGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAGACCCAGTGGTGGGGATGCCCCGAGCATTG TGGGCCTCATCATCTTCCTCCTGTGCACCCTCTTCATCAGTCTGCGCTCCTCAGACCACCGGCAGGTG AACAGCCTGATGCAGACCGAGGAGTGCCCACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGGT GGCAGCCTGTGAGGGCCGGCCTTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTCC ACTTCTGCCTGGTGCTGGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAG ACCCGGAAGATGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCT CCTCTACCTGTGGACCCTGGTAGCCCCACTCCTCCTGCGCAACCGCGACTTCAGCTGAGGCAGCCTCA  ${\tt CAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTCGGCTGACAGCCAACCTGCCCCCTC}$ ACCCACACGGTGGAGCTGCCTCTTCCTTCCCTCCTGTTGCCCATACTCAGCATCTCGGATGAA AGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGGCTGCTGGAGAGAGCGGGGAACTCCCACCACA TGGGGCATCCGGCACTGAAGCCCTGGTGTTCCTGGTCACGTCCCCCAGGGGACCCTGCCCCCTTCCTG 

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVESQL
YKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFTTLLMLCVSSSRDPRAAIQ
NGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSWNQRWLGKAE
ECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFCVCVSIAAVLPKV
QDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVAGPEGYETQWWDAPSI
VGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVAACEGRAFDNEQDGVTYSY
SFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICASWAGLLLYLWTLVAPLLLRNRD
FS

#### Signal sequence:

amino acids 1-20

#### Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

CGGGCCAGCCTGGGGCGGCCAGGAACCACCCGTTAAGGTGTCTTCTCTTTAGGGATGGTGA GGTTGGAAAAAGACTCCTGTAACCCTCCTCCAGGATGAACCACCTGCCAGAAGACATGGAGAACG CTCTCACCGGGAGCCAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCCATCAACCCCACACAA TTTCTGTTTGTCACCTTTGACCTCTTATTCGTAACATTACTGTGGATAATAGAGTTAAATG TGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTACTATTCTTCATAT TTTGATATTTCTTCTGGCAGTTTTTCGATTTAAAGTGTTAATACTTGCATATGCTGTGTGCAG ACTGCGCCATTGGTGGGCAATAGCGTTGACAACGGCAGTGACCAGTGCCTTTTTACTAGCAAAAG CTTGCCTGGATTGAGACGTGGTTCCTGGATTTCAAAGTGTTACCTCAAGAAGCAGAAGAAGAAAAA CAGACTCCTGATAGTTCAGGATGCTTCAGAGAGGGCAGCACTTATACCTGGTGGTCTTTCTGATG GTCAGTTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGT GAGAAACCACTTTTAGAACTA**TGA**GTACTACTTTTGTTAAATGTGAAAAACCCTCACAGAAAGTC ATCGAGGCAAAAAGAGGCAGGCAGTGGAGTCTCCCTGTCGACAGTAAAGTTGAAATGGTGACGTC CATATCCATGCACATTTAGTTGCCTGCCTGTGGCTGGTAAGGTAATGTCATGATTCATCCTCTCT TCAGTGAGACTGAGCCTGATGTGTTAACAAATAGGTGAAGAAAGTCTTGTGCTGTATTCCTAATC AAAAGACTTAATATATTGAAGTAACACTTTTTTAGTAAGCAAGATACCTTTTTATTTCAATTCAC AGAATGGAATTTTTTTTTTCATGTCTCAGATTTATTTTGTATTTCTTTTTTAACACTCTACATT TCCCTTGTTTTTTAACTCATGCACATGTGCTCTTTGTACAGTTTTAAAAAGTGTAATAAAATCTG ACATGTCAATGTGGCTAGTTTTATTTTTCTTGTTTTTGCATTATGTGTATGGCCTGAAGTGTTGGA CTTGCAAAAGGGAAGAAAGGAATTGCGAATACATGTAAAATGTCACCAGACATTTGTATTATTT TTATCATGAAATCATGTTTTTCTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTTTGAATGC ACAAAATGACTTAAACCATTCATATCATGTTTCCTTTGCGTTCAGCCAATTTCAATTAAAATGAA CTAAATTAAAAA

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDLLF VTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWWAIALTT AVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPQEAEEENRLLIVQDASER AALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites.

amino acids 14-20, 78-84, 79-85, 202-208, 217-223

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCCTCGGGCCCGACCCGCCAGGAAAGACTGAGG CCGCGGCCTGCCCGCCCGCTCCCTGCGCCGCCGCCTCCCGGGACAGATGTGCTCCAG GGTCCCTCTGCTGCCGCTGCTCCTGCTACTGGCCCTGGGGCCTGGGGTGCAGGGCTGCCCAT  $\tt CCGGCTGCCAGTGCAGCCAGGCCACAGACAGTCTTCTGCACTGCCCGCCAGGGGACCACGGTGCCC$ CGAGACGTGCCACCCGACACGTGGGGCTGTACGTCTTTGAGAACGGCATCACCATGCTCGACGC AGGCAGCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCACAGAACCAGATCGCCAGCC TGCCCAGCGGGTCTTCCAGCCACTCGCCAACCTCAGCAACCTGGACCTGACGGCCAACAGGCTG CATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCGCCTCGAGCGCCTCTACCTGGGCAAGAA CCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGCTCGACCGCCTCCTGGAGCTCAAGCTGC AGGACAACGAGCTGCGGGCACTGCCCCGCTGCGCCCGCCTGCTGCTGCTGCTGGACCTCAGC CACAACAGCCTCCTGGCCCTGGAGCCCGGCATCCTGGACACTGCCAACGTGGAGGCGCTGCGGCT GGCTGGTCTGGGGCTGCAGCAGCTGGACGAGGGGCTCTTCAGCCGCTTGCGCAACCTCCACGACC TGGATGTGTCCGACAACCAGCTGGAGCGAGTGCCACCTGTGATCCGAGGCCTCCGGGGCCTGACG TCTTCCCCGCCTGCGGCTGCTGGCAGCTGCCCGCAACCCCTTCAACTGCGTGTGCCCCCTGAGC TGGTTTGGCCCCTGGGTGCGCGAGAGCCACGTCACACTGGCCAGCCCTGAGGAGACGCGCTGCCA CTTCCCGCCCAAGAACGCTGGCCGGCTGCTCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAG CCACCACCACAGCCACAGTGCCCACCAGGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCT CACTGCCCCACCGACTGTAGGGCCTGTCCCCCAGCCCCAGGACTGCCCACCGTCCACCTGCCTCA ATGGGGGCACATGCCACCTGGGGACACGGCACCACCTGGCGTGCTTGTGCCCCGAAGGCTTCACG GGCCTGTACTGTGAGAGCCAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCACGCCGAG GCCACCACGGTCCCTGACCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGCGTGGGGCTGC GCGAGGAGGCCTGCGGGGAGGCCCATACACCCCCAGCCGTCCACTCCAACCACGCCCCAGTCACC CAGGCCCGCGAGGGCAACCTGCCGCTCCTCATTGCGCCGCCCTGGCCGCGGTGCTCCTGGCCGC ACAAAGGGCAGGTGGGCCCAGGGGCCCCTGGAACTGGAGGAGTGAAGGTCCCCTTGGAG CCAGGCCCGAAGGCAACAGAGGCCGTGGAGAGGCCCTGCCCAGCGGTCTGAGTGTGAGGTGCC ACTCATGGGCTTCCCAGGGCCTGGCCTCCAGTCACCCCTCCACGCAAAGCCCTACATCTAAGCCA GAGAGAGACAGGCCAGCTGGGGCCGGGCTCTCAGCCAGTGAGATGGCCAGCCCCCTCCTGCTGCC ACACCACGTAAGTTCTCAGTCCCAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGACCACAGCT GGGCCCTGTTCCCTCTGGACCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGCTGACGAGCC CTAACGTCCCCAGAACCGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGCAACGTGCAGTC CCTGGGCACGGCGGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGCGGCTCTCCCAC TCCAGGCGGACCCTGGGGGCCAGTGAAGGAAGCTCCCGGAAAGAGCAGAGGGGAGAGCGGGTAGGC GGCTGTGTGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGC GGGAAGATGTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATGAA GGCCTTTTGTAAGAAAAAATAAAAGATGAAGTGTGAAA

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFENGIT
MLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLRRLERLY
LGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEPGILDTANVE
ALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDL
AGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRESHVTLASPEE
TRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALSSSLAPTWLSPTAPATEAP
SPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPEGFTGLYCESQMGQGTRPSPTP
VTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRLTYRNLSGPDKRLVTLRLPASLAEY
TVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPAVHSNHAPVTQAREGNLPLLIAPALAAV
LLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAGPLELEGVKVPLEPGPKATEGGGEALPSGSE
CEVPLMGFPGPGLQSPLHAKPYI

#### Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 579-599

EGF-like domain cysteine pattern signature.

amino acids 430-442

Leucine zipper pattern.

amino acids 197-219, 269-291

N-glycosylation sites.

amino acids 101-105, 117-121, 273-277, 500-504, 528-532

Tyrosine kinase phosphorylation sites.

amino acids 124-131, 337-345

N-myristoylation sites.

amino acids 23-29, 27-33, 70-76, 142-148, 187-193, 348-354, 594-600, 640-646

GCAGCGGCGAGGCGGCGGTGGTGGCTGAGTCCGTGGTGGCAGAGGCGAAGGCGACAGCTCATGCG GGTCCGGATAGGGCTGACGCTGCTGCTGTGTGCGGTGCTGCTGAGCTTGGCCTCGGCGTCCTCGG ATGAAGAAGCCAGCCAGGATGAATCCTTAGATTCCAAGACTACTTTGACATCAGATGAGTCAGTA AAGGACCATACTACTGCAGGCAGAGTAGTTGCTGGTCAAATATTTCTTGATTCAGAAGAATCTGA ATTAGAATCCTCTATTCAAGAAGAGGAAGACAGCCTCAAGAGCCCAAGAGGGGGAAAGTGTCACAG  $\mathsf{CGGAAACCAGCTTTGACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTTTCT$ TTTCCTAGATAAGGAGTATGATGAATGTACATCAGATGGGAAGATGGCAGACTGTGGTGTG CTACAACCTATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAAACTGAAGAAGAGGCTGCT AAGAGACGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGAATGAAAATCCTTAATGGAAG CCAAAGCCCTGGAGAGAGTGTCATATGCTCTTTTATTTGGTGATTACTTGCCACAGAATATCCAG GCAGCGAGAGAGTTTTGAGAAGCTGACTGAGGAAGGCTCTCCCAAGGGACAGACTGCTCTTGG CTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGTCAGGCAAAGGCTCTTGTATATTATACAT  $\tt TTGGAGCTCTTGGGGGCAATCTAATAGCCCACATGGTTTTGGTAAGTAGACTT \\ \underline{\tt TAG} \tt TGGAAGGCT$ AATAATATTAACATCAGAAGAATTTGTGGTTTATAGCGGCCACAACTTTTTCAGCTTTCATGATC AACACATGGAATCTACATGTAAATGAAAGTTGGTGGAGTCCACAATTTTTCTTTAAAATGATTAG TTTGGCTGATTGCCCCTAAAAAGAGAGATCTGATAAATGGCTCTTTTTAAATTTTCTCTGAGTTG GAATTGTCAGAATCATTTTTTACATTAGATTATCATAATTTTTAAAAAATTTTTCTTTAGTTTTTCA AAATTTTGTAAATGGTGGCTATAGAAAAACAACATGAAATATTATACAATATTTTGCAACAATGC CCTAAGAATTGTTAAAATTCATGGAGTTATTTGTGCAGAATGACTCCAGAGAGCTCTACTTTCTG TTTTTTACTTTCATGATTGGCTGTCTTCCCATTTATTCTGGTCATTTATTGCTAGTGACACTGT GCCTGCTTCCAGTAGTCTCATTTTCCCTATTTTGCTAATTTGTTACTTTTCTTTGCTAATTTGG 

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLDSEESEL ESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHGEPCHFPFLFLDK EYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRRQMQEAEMMYQTGMKILNGSNKKSQKR EAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEKLTEEGSPKGQTALGFLYASGLGVN SSQAKALVYYTFGALGGNLIAHMVLVSRL

### Important features:

#### Signal peptide:

amino acids 1-21

#### N-glycosylation sites.

amino acids 195-199, 217-221, 272-276

### Tyrosine kinase phosphorylation site.

amino acids 220-228

#### N-myristoylation sites.

amino acids 120-126, 253-259, 268-274, 270-274, 285-291, 289-295

#### Glycosaminoglycan attachment site.

amino acids 267-271

#### Microbodies C-terminal targeting signal.

amino acids 299-303

#### Type II fibronectin collagen-binding domain protein.

amino acids 127-169

### Fructose-bisphosphate aldolase class-II protein.

amino acids 101-119

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTTCTT GTATTATACAAGAAAGGAGTGTACCTATCACACACAGGGGGAAAA**ATG**CTCTTTTGGGTGCTAGG CCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAGACATCACTG ATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCCAGAACTTTTGAT AAAAAGGGATTTCATGTAATCGCTGCCTGTCTGACTGAATCAGGATCAACAGCTTTAAAGGCAGA  $\tt CCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGGTGTT$ CCCGGCGTGCTGGCTCCCACTGACTGGCTGACACTAGAGGACTACAGAGAACCTATTGAAGTGAA CCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTCCTTTGGTCAAGAAAGCTCAAGGGAGAG TATGCAGTGGAAGGTTTCAATGACAGCTTAAGACGGGACATGAAAGCTTTTGGTGTGCACGTCTC TCGCCATTTGGGAGCAGCTGTCTCCAGACATCAAACAACAATATGGAGAAGGTTACATTGAAAAA AGTCTAGACAAACTGAAAGGCAATAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTG CATGGACCACGCTCTAACAAGTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAA TTTTCTGGATACCTCTGTCTCACATGCCAGCAGCTTTTGCAAGACTTTTTATTGTTGAAACAGAAA GCAGAGCTGGCTAATCCCAAGGCAGTGTGACTCAGCTAACCACAAATGTCTCCTCCAGGCTATGA AATTGGCCGATTCAAGAACACATCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACT CATTTAGATCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGT  ${\tt CCCTGCTCAAGTTTTCTTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCT}$ GTATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATGA TCTTTACCGTGGCCTGCCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTTAAGT AAAAAAAAAAA

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLTESG STALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDWLTLEDY REPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGFNDSLRRDMK AFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLDKLKGNKSYVNMD LSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQKAELANPKAV

### Important features of the protein:

#### Signal peptide:

amino acids 1-17

#### Transmembrane domain:

amino acids 136-152

#### N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

### Glycosaminoglycan attachment site.

amino acids 39-42

#### N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

CACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAAGTAAAA GGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGATGTTGAAGTTGTTTATACAATTGA CATTCAGAAATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAGGCGAAGTAAATG AGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGTTGGTACAAATTCCGT CGTCATTCAGATCAGATCATGACGTTTAGAGAGAGGCTGCTTCACAAAAACTTGCAGGAGCATTT TTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAATAACAGAAAGCTGCTCTACTC ATCGACTGGAACATTCCTTATATAAACCTCAAAAAGGACTTTTTCACAGGGTACCTTTAGTGGTT GCCAATCTGGGCATGTCTGAACAACTGGGTTATAAAACTGTATCAGGTTCCTGTATGTCCACTGG TTTTAGCCGAGCAGTACAAACACACAGCTCTAAATTTTTTGAAGAAGATGGATCCTTAAAGGAGG TACATAAGATAAATGAAATGTATGCTTCATTACAAGAGGAATTAAAGAGTATATGCAAAAAAGTG GAAGACAGTGAACAAGCAGTAGATAAACTAGTAAAGGATGTAAACAGATTAAAACGAGAAATTGA GAAAAGGAGAGGACACAGATTCAGGCAGCAAGAGAGAACATCCAAAAAGACCCTCAGGAGA ATGTCTTTAAAAAATAGACATGTTTCTAAAAGTAGCTGTAACTACAACCACCATCTCGATGTAGT AGACAATCTGACCTTAATGGTAGAACACACTGACATTCCTGAAGCTAGTCCAGCTAGTACACCAC AAATCATTAAGCATAAAGCCTTAGACTTAGATGACAGATGGCAATTCAAGAGATCTCGGTTGTTA GATACACAAGACAAACGATCTAAAGCAAATACTGGTAGTAACCAAGATAAAGCATCCAAAAT GAGCAGCCCAGAAACAGATGAAGAAATTGAAAAGATGAAGGGTTTTGGTGAATATTCACGGTCTC ATTTCTATTGTTTTACTATGTTGAGCTACTTGCAGTAAGTTCATTTGTTTTTACTATGTTCACC TGTTTGCAGTAATACACAGATAACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAACATCA GATGCTTTTATTTCCAAACCTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCTTACACAG ACACATTCTTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAATCCCAGCACT TAGGGAAGACAAGTCAGGAGGATTGATTGAAGCTAGGAGTTAGAGACCAGCCTGGGCAACGTATT GAGACCATGTCTATTAAAAAATAAAATGGAAAAGCAAGAATAGCCTTATTTTCAAAATATGGAAA GAAATTTATATGAAAATTTATCTGAGTCATTAAAATTCTCCTTAAGTGATACTTTTTTAGAAGTA CATTATGGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCAATAAATTTGCAAAACATCATCT 

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQKYI
PCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEHFSNQDL
VFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSCMSTGFSRAV
QTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVNRLKREIEKRRGA
QIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSSCNYNHHLDVVDNLTL
MVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKANTGSSNQDKASKMSSPET
DEEIEKMKGFGEYSRSPTF

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation sites.

amino acids 75-79, 322-326

N-myristoylation site.

amino acids 184-154

Growth factor and cytokines receptors family.

amino acids 134-150

GCAGCGCGCAGCGAACGCCCGCCGCCGCCCCACACCCTTGCGGTCCCCGCGGCGCCTGCCACCCTTCCCTTCCCT GCTTCCCTGGGCCGCGCCGCCTCCACGCCCTCCTTCTCCCCTGGCCCGGCGCCCTGGCACCGGGGACCGTTGCCTGA CGCGAGGCCCAGCTCTACTTTTCGCCCCGCGTCTCCTCCGCCTGCTCGCCTCTTCCACCAACTCCAACTCCTTCTCCC TCCAGCTCCACTCGCTAGTCCCCGACTCCGCCAGCCCTCGGCCGCTGCCGTAGCGCCGCTTCCCGTCCGGTCCCAAA GGTGGGAACGCGTCCGCCCCGGCCCCCACC<u>ATG</u>GCACGGTTCGGCTTGCCCGCGCTTCTCTGCACCCTGGCAGTGCTC AGCGCCGCGCTGCTGGCTGCCGAGCTCAAGTCGAAAAGTTGCTCGGAAGTGCGACGTCTTTACGTGTCCAAAGGCTTCAACAAGAACGATGCCCCCCTCCACGAGATCAACGGTGATCATTTGAAGATCTGTCCCCAGGGTTCTACCTGCTGCTCT CAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGATGATTTCAAAAGTGTGGTCAGCGAACAGTGCAATCATTTG CAAGCTGTCTTTGCTTCACGTTACAAGAAGTTTGATGAATTCTTCAAAGAACTACTTGAAAAATGCAGAGAAATCCCTG AATGATATGTTTGTGAAGACATATGGCCATTTATACATGCAAAATTCTGAGCTATTTAAAGATCTCTTCGTAGAGTTG AAACGTTACTACGTGGTGGGAAATGTGAACCTGGAAGAATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATG TTCCGCCTGGTGAACTCCCAGTACCACTTTACAGATGAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAG CCCTTCGGAGATGTCCCTCGCAAATTGAAGCTCCAGGTTACTCGTGCTTTTGTAGCAGCCCGTACTTTCGCTCAAGGC TTAGCGGTTGCGGGAGATGTCGTGAGCAAGGTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAG ATGATCTACTGCTCCCACTGCCGGGGTCTCGTGACTGTGAAGCCATGTTACAACTACTGCTCAAACATCATGAGAGGC TGTTTGGCCAACCAAGGGGATCTCGATTTTGAATGGAACAATTTCATAGATGCTATGCTGATGGTGGCAGAGAGGCTA GAGGGTCCTTTCAACATTGAATCGGTCATGGATCCCATCGATGTGAAGATTTCTGATGCTATTATGAACATGCAGGAT AATAGTGTTCAAGTGTCTCAGAAGGTTTTCCAGGGATGTGGACCCCCCAAGCCCCTCCCAGCTGGACGAATTTCTCGT TCCATCTCTGAAAGTGCCTTCAGTGCTCGCTTCAGACCACATCACCCCGAGGAACGCCCAACCACAGCAGCTGGCACT AGTTTGGACCGACTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCTTCCCGAGCAAC GTTTGCAACGATGAGAGGATGGCTGCAGGAAACGGCAATGAGGATGACTGTTGGAATGGGAAAGGCAAAAGCAGGTAC CTGTTTGCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACAACCCAGAGGTCCAGGTTGACACCAGCAAACCAGAC ATACTGATCCTTCGTCAAATCATGGCTCTTCGAGTGATGACCAGCAAGATGAAGAATGCATACAATGGGAACGACGTG TTTGACTACAATGCCACTGACCATGCTGGGAAGAGTGCCAATGAGAAAGCCGACAGTGCTGGTGCTCCTGGGGCA AAAAAGTGTTCATCAAAAAGTTAAAAGGCACCAGTTATCACTTTTCTACCATCCTAGTGACTTTTGCTTTTTAAATGAA TGGACAACAATGTACAGTTTTTACTATGTGGCCACTGGTTTAAGAAGTGCTGACTTTGTTTTCTCATTCAGTTTTGGG AGGAAAAGGGACTGTGCATTGAGTTGGTTCCTGCTCCCCAAACCATGTTAAACGTGGCTAACAGTGTAGGTACAGAA TTTTTTTCCAACTGTGATCTCGCCTTGTTTCTTACAAGCAAACCAGGGTCCCTTCTTGGCACGTAACATGTACGTATT TCTGAAATATTAAATAGCTGTACAGAAGCAGGTTTTATTATCATGTTATCTTATTAAAAGAAAAAGCCCAAAAAGC

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQGST
CCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMFVKTYGH
LYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEYLECVSKYTE
QLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHALLKMIYCSHCRGL
VTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIESVMDPIDVKISDAIMN
MQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEERPTTAAGTSLDRLVTDVK
EKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLFAVTGNGLANQGNNPEVQVDTS
KPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGEGSGGCEYQQCPSEFDYNATDHAG
KSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

#### Important features:

#### Signal peptide:

amino acids 1-22

#### ATP/GTP-binding site motif A (P-loop).

amino acids 515-524

### N-glycosylation site.

amino acids 514-518

#### Glycosaminoglycan attachment sites.

amino acids 494-498, 498-502

#### N-myristoylation sites.

amino acids 63-69, 224-230, 276-282, 438-444, 497-503, 531-537

#### Glypicans proteins.

amino acids 54-75, 105-157, 238-280, 309-346, 423-460, 468-506

 ${\tt MKVLISSLLLLLPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRRKFM} \\ {\tt TVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL} \\$ 

Important features:

Signal peptide:

amino acids 1-22

N-myristoylation sites.

amino acids 27-33, 46-52

GGACGCCAGCGCCTGCAGAGCCTGAGCAGGGAAAAAGCCAGTGCCCCAGCGGAAGCACAGCTCAG  ${\tt AGCTGGTCTGCCATGGACATCCTGGTCCCACTCCTGCAGCTGCTGCTGCTTCTTACCCTGCC}$ CCTGCACCTCATGGCTCTGCTGGGCTGCTGGCAGCCCCTGTGCAAAAGCTACTTCCCCTACCTGA TGGCCGTGCTGACTCCCAAGAGCAACCGCAAGATGGAGAGCAAGAAACGGGAGCTCTTCAGCCAG ATAAAGGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGGCTGCGGAACCGGAGC CAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACCCAAATCCCCACTTTGAGA AGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATATGAGCGGTTTGTGGTGGCTCCT GGAGAGGACATGAGACAGCTGGCTGATGGCTCCATGGATGTGGTGGTCTGCACTCTGGTGCTGTG CTCTGTGCAGAGCCCAAGGAAGGTCCTGCAGGAGGTCCGGAGAGTACTGAGACCGGGAGGTGTGC TCTTTTTCTGGGAGCATGTGGCAGAACCATATGGAAGCTGGGCCTTCATGTGGCAGCAAGTTTTC GAGCCCACCTGGAAACACATTGGGGATGGCTGCCTCACCAGAGAGACCTGGAAGGATCTTGA GGCCCCACATCATGGGAAAGGCTGTCAAACAATCTTTCCCAAGCTCCAAGGCACTCATTTGCTCC GCAGAATGAGAGAGACATTCATGTACCACCTACTAGTCCCTCTCTCCCCAACCTCTGCCAGGGC AATCTCTAACTTCAATCCCGCCTTCGACAGTGAAAAAGCTCTACTTCTACGCTGACCCAGGGAGG AAACACTAGGACCCTGTTGTATCCTCAACTGCAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTC CCAATGTTGTCCCTTCGTTCCCATGGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACAC CCATGCGTCTCTAGGAACTGGTCACAAAAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCCTGAC CCTCTCCCCACTACCACCTTCTTCCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGG ACCACG

$$\label{topliquiv} \begin{align} $\operatorname{MDILVPLLQLLVLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIKGL $$\operatorname{TGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDM $$\operatorname{RQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFMWQQVFEPTW $$\operatorname{KHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFPSSKALICSFPSL $$\operatorname{QLEQATHQPIYLPLRGT}$$$$

Important features:

Signal peptide:

amino acids 1-23

Leucine zipper pattern.

amino acids 10-32

N-myristoylation sites.

amino acids 64-70, 78-84, 80-86, 91-97, 201-207

 $\verb|MLILILLLLLLKGSCLEWGLVGAQKVSSATDAP| IRDWAFFPPSFLCLLPHRPAMTCSQAQPRG| \\ EGEKVGDG$ 

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCAGTT CCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTACTCCCT ATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAATCATGTCGG GAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCCATGATGTTTACC TTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTCATTTGGTTATTTTGGGATTGTTGTT TGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACCTCAGCATAGAATTGGACA CAGAAAGGGAAAATATGAAGTGCGTGCTGGGGTTTGCTATCGTATCCACAGGCATCACGGCAGTG CTGCTCGTCTTGATTTTTGTTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTTTCCAAATCAC AAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCCAGCCACTGTGGACATTTGCCATCCTCA TTTTCTTCTGGGTCCTCTGGGTGGCTGTGCTGAGCCTGGGAACTGCAGGAGCTGCCCAGGTT ATGGAAGGCGCCAAGTGGAATATAAGCCCCTTTCGGGCATTCGGTACATGTGGTCGTACCATTT AATTGGCCTCATCTGGACTAGTGAATTCATCCTTGCGTGCCAGCAAATGACTATAGCTGGGGCAG TGGTTACTTGTTATTTCAACAGAAGTAAAAATGATCCTCCTGATCATCCCATCCTTTCGTCTCTC TCCATTCTTCTTCTACCATCAAGGAACCGTTGTGAAAGGGTCATTTTTAATCTCTGTGGTGAG GATTCCGAGAATCATTGTCATGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGT CCAGGTACCTGTTCCGATGCTGCTACTGCTGTTTCTGGTGTCTTGACAAATACCTGCTCCATCTC AACCAGAATGCATATACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGC ATTCAAAATCTTGTCCAAGAACTCAAGTCACTTTACATCTATTAACTGCTTTGGAGACTTCATAA TTTTTCTAGGAAAGGTGTTAGTGGTGTTTTCACTGTTTTTTGGAGGACTCATGGCTTTTAACTAC TGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTTCGTA AAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGA  ${\tt GGGAACAGAACTCCAGGCCATTGTGAGA} {\color{red}{\bf TAG}} {\color{blue}{\bf ATACCCATTTAGGTATCTGTACCTGGAAAACATT}$ TCCTTCTAAGAGCCATTTACAGAATAGAAGATGAGACCACTAGAGAAAAGTTAGTGAATTTTTTT TTAAAAGACCTAATAAACCCTATTCTTCCTCAAAA

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDLSIE
LDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQPLWTFA
ILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILACQQMTIA
GAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVMYMQNALKEQQHG
ALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKILSKNSSHFTSINCFGD
FIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAHSFLSVFETVLDALFLCFA
VDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRNEEGTELQAIVR

#### Important features:

#### Signal peptide:

amino acids 1-20

#### Putative transmembrane domains:

amino acids 35-54, 75-97, 126-146, 185-204, 333-350, 352-371

### N-glycosylation sites.

amino acids 204-208, 295-299, 313-317

### N-myristoylation sites.

amino acids 147-153, 178-184, 196-202, 296-275, 342-348

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTTGGACCTCTCCCTGTTTCTTCCTTAGA GAAAATTTTTTGAAAAAAAATTGCCTTCTTCAAACAAGGGTGTCATTCTGATATTT**ATG**AGGAC TGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTTCCTTGTTTTTGCTGGTGACTGGAGTAC ATTCAAACAAAGAAACGGCAAAGAAGATTAAAAGGCCCAAGTTCACTGTGCCTCAGATCAACTGC GATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATGTCCAGCAGGATGCCAAGA TACACAGTGGTGTGCTTGATAATTCAGGAGGGAAAATACTTGTTCGGAAGGTTGCTGGACAGTCT GGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTTATCCCTACCACGATGGAGAGAATCCTT TATCGTCTTAGAAAGTAAACCCAAAAAGGGTGTAACCTACCCATCAGCTCTTACATACTCATCAT CGAAAAGTCCAGCTGCCCAAGCAGGTGAGACCACAAAAGCCTATCAGAGGCCACCTATTCCAGGG ACAACTGCACAGCCGGTCACTCTGATGCAGCTTCTGGCTGTCACTGTAGCTGTGGCCACCCCAC CACCTTGCCAAGGCCATCCCCTTCTGCTGCTTCTACCACCAGCATCCCCAGACCACAATCAGTGG GCCACAGGAGCCAGGAGATGGATCTCTGGTCCACTGCCACCTACACAAGCAGCCAAAACAGGCCC AGAGCTGATCCAGGTATCCAAAGGCAAGATCCTTCAGGAGCTGCCTTCCAGAAACCTGTTGGAGC GGATGTCAGCCTGGGACTTGTTCCAAAAGAAGAATTGAGCACACAGTCTTTGGAGCCAGTATCCC TGGGAGATCCAAACTGCAAAATTGACTTGTCGTTTTTAATTGATGGGAGCACCAGCATTGGCAAA CGGCGATTCCGAATCCAGAAGCAGCTCCTGGCTGATGTTGCCCAAGCTCTTGACATTGGCCCTGC CGGTCCACTGATGGGTGTTGTCCAGTATGGAGACACCCTGCTACTCACTTTAACCTCAAGACAC ACACGAATTCTCGAGATCTGAAGACAGCCATAGAGAAAATTACTCAGAGAGGAGGACTTTCTAAT GTAGGTCGGGCCATCTCCTTTGTGACCAAGAACTTCTTTTCCAAAGCCAATGGAAACAGAAGCGG GGCTCCCAATGTGGTGGTGGTGGTGGTGGATGGCTGGCCCACGGACAAAGTGGAGGAGGCTTCAA GACTTGCGAGAGAGTCAGGAATCAACATTTTCTTCATCACCATTGAAGGTGCTGCTGAAAATGAG AAGCAGTATGTGGTGGAGCCCAACTTTGCAAACAAGGCCGTGTGCAGAACAAACGGCTTCTACTC GCTCCACGTGCAGAGCTGGTTTGGCCTCCACAAGACCCTGCAGCCTCTGGTGAAGCGGGTCTGCG ACACTGACCGCCTGGCCTGCAGCAAGACCTGCTTGAACTCGGCTGACATTGGCTTCGTCATCGAC GGCTCCAGCAGTGTGGGGACGGGCAACTTCCGCACCGTCCTCCAGTTTGTGACCAACCTCACCAA AGAGTTTGAGATTTCCGACACGGACACGCGCATCGGGGCCGTGCAGTACACCTACGAACAGCGGC TGGAGTTTGGGTTCGACAAGTACAGCAGCAAGCCTGACATCCTCAACGCCATCAAGAGGGTGGGC TACTGGAGTGGTGGCACCAGCACGGGGGCTGCCATCAACTTCGCCCTGGAGCAGCTCTTCAAGAA GTCCAAGCCCAACAAGAGGAAGTTAATGATCCTCATCACCGACGGGAGGTCCTACGACGACGTCC GGATCCCAGCCATGGCCGCCATCTGAAGGGAGTGATCACCTATGCGATAGGCGTTGCCTGGGCT GCCCAAGAGGGGCTAGAAGTCATTGCCACTCACCCCGCCAGAGACCACTCCTTCTTTGTGGACGA GTTTGACAACCTCCATCAGTATGTCCCCAGGATCATCCAGAACATTTGTACAGAGTTCAACTCAC AGCCTCGGAAC**TGA**ATTCAGAGCAGGCAGAGCACCAGCAAGTGCTGCTTTACTAACTGACGTGTT GGACCACCCCACCGCTTAATGGGGCACGCACGGTGCATCAAGTCTTGGGCAGGGCATGGAGAAAC AAATGTCTTGTTATTATTCTTTGCCATCATGCTTTTTCATATTCCAAAACTTGGAGTTACAAAGA TGATCACAAACGTATAGAATGAGCCAAAAGGCTACATCATGTTGAGGGTGCTGGAGATTTTACAT TTTGACAATTGTTTTCAAAATAAATGTTCGGAATACAGTGCAGCCCTTACGACAGGCTTACGTAG AGCTTTTGTGAGATTTTTAAGTTGTTATTTCTGATTTGAACTCTGTAACCCTCAGCAAGTTTCAT 

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAG
CQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSLPRWR
ESFIVLESKPKKGVTYPSALTYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLAVTVAVA
TPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQRQDPSGAAFQKP
VGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRRFRIQKQLLADVAQALDI
GPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNVGRAISFVTKNFFSKANGN
RSGAPNVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAVCRTNG
FYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADIGFVIDGSSSVGTGNFRTVLQFVTN
LTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGYWSGGTSTGAAINFALEQL
FKKSKPNKRKLMILITDGRSYDDVRIPAMAAHLKGVITYAIGVAWAAQEELEVIATHPARDHSFF
VDEFDNLHQYVPRIIQNICTEFNSQPRN

#### Important features:

Signal peptide:

amino acids 1-26

#### Transmembrane domain:

amino acids 181-200

### N-glycosylation sites.

amino acids 390-394, 520-524

### N-myristoylation sites.

amino acids 23-29, 93-99, 115-121, 262-268, 367-373, 389-395, 431-437, 466-472, 509-515, 570-576, 571-577, 575-581, 627-633

#### Amidation site.

amino acids 304-308

CCGAGCACAGGAGATTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGAAGAATTGC ACAGAAAACAACAAAAACTTAAGCTTTAATTTCATCTGGAATTCCACAGTTTTCTTAGCTCCCTGGACCC GGTTGACCTGTTGGCTCTTCCCGCTGGCTGCTCTATCACGTGGTGCTCTCCGACTACTCACCCGAGTGTA AAGAACCTTCGGCTCGCGTGCTTCTGAGCTGCTGTGG<u>ATG</u>GCCTCGGCTCTCTGGACTGTCCTTCCGAGTA GGATGTCACTGAGATCCCTCAAATGGAGCCTCCTGCTGCTGTCACTCCTGAGTTTCTTTTGTGATGTGGTAC CTCAGCCTTCCCCACTACAATGTGATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTTA CAGACAAGACTTTCACTTCACACTTCGAGAGCATTCAAACTGCTCTCATCAAAATCCATTTCTGGTCATTC TGGTGACCTCCCACCCTTCAGATGTGAAAGCCAGGCAGCCATTAGAGTTACTTGGGGTGAAAAAAAGTCT TGGTGGGGATATGAGGTTCTTACATTTTCTTATTAGGCCAAGAGGCTGAAAAGGAAGACAAAATGTTGGC ATTGTCCTTAGAGGATGAACACCTTCTTTATGGTGACATAATCCGACAAGATTTTTTAGACACATATAATA ACCTGACCTTGAAAACCATTATGGCATTCAGGTGGGTAACTGAGTTTTGCCCCAATGCCAAGTACGTAATG AAGACAGACACTGATGTTTTCATCAATACTGGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGA GAAGTTTTTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTTTACCAAAAAACCCATATTT CTTACCAGGAGTATCCTTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTATATAATGTCCAGAGAT TTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTTGAAGATGTTTATGTCGGGAT TGGCAGGTCATGCTAAGGAACACCACATGCCATTATTAACTTCACATTCTACAAAAAGCCTAGAAGGACAG GATACCTTGTGGAAAGTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTT ACACTGAACTGAAACTCATGAAAAACCCAGACTGGAGGACTGGAGGGTTACACTTGTGATTTATTAGTCAGG CCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAAGAAATTAATAGG ACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGGTGTTACTGAGTTATAAGCTCA CTAGGCTGTAAAAACAAACAATGTAGAGTTTTATTTATTGAACAATGTAGTCACTTGAAGGTTTTGTGTA TATCTTATGTGGATTACCAATTTAAAAATATATGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATA CTGAACAAAATTTTACCTGTTTTTGGTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATT ATTATTTAAAATTACTTCAACTTTGTGTTTTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAG TGAATCATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATTGATACATCACTCCA TTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAATATTTTACTGTGGT AATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHF
TLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKEDKMLA
LSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFINTGNLVKYLL
NLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRDLVPRIYEMMGHV
KPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHGFSSKEIITFWQVMLR
NTTCHY

#### Important features:

Type II transmembrane domain:

amino acids 20-39

N-glycosylation sites.

amino acids 72-76, 154-158, 198-202, 212-216, 326-330

Glycosaminoglycan attachment site.

amino acids 239-243

Ly-6 / u-PAR domain proteins.

amino acids 23-37

N-myristoylation site.

amino acids 271-277

CGCTCGGGCACCAGCCGCGGCAAGG<u>ATG</u>GAGCTGGGTTGCTGGACGCAGTTGGGGCTCACTTTTCTTCAGCTCCTTCTCATC TCGTCCTTGCCAAGAGAGTACACAGTCATTAATGAAGCCTGCCCTGGAGCAGAGTGGAATATCATGTGTCGGGAGTGCTGTG AATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGGAAGTCGTGGGTTATACCATCCCTTGCTGCAGGAATGAGGAGAA TGAGTGTGACTCCTGCCTGATCCACCCAGGTTGTACCATCTTTGAAAACTGCAAGAGCTGCCGAAATGGCTCATGGGGGGGT ACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAGTGCCGAGCAGGCTGGTACGGAGGAGACTGCATGCGATGTG GCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTTGTTGGAAAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGC TAAACCTGGGTTTGTCATCCAACTAAGATTTGTCATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAG GTTCGTGATGGAGACAACCGCGATGGCCAGATCATCAAGCGTGTCTGTGGCAACGAGCGGCCAGCTCCTATCCAGAGCATAG GATCCTCACTCCACGTCCTCTCCACTCCGATGCCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGC TCTTAGTGGCAATGAGAAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGGAAACAGCCCATCTGCATAAAAGCCTGCCGA GAACCAAAGATTTCAGACCTGGTGAGAAGGAGAGTTCTTCCGATGCAGGTTCAGTCAAGGGAGACACCATTACACCAGCTAT ATACCAACATCTGCATACCCAGCTCCAGTATGAGTGCATCTCACCCTTCTACCGCCGCCTGGGCAGCAGCAGGAGGACATGT CTGAGGACTGGGAAGTGGAGTGGGCGGCACCATCCTGCATCCCTATCTGCGGGAAAATTGAGAACATCACTGCTCCAAAGA CCCAAGGGTTGCGCTGGCCGTGGCAGGCAGCCATCTACAGGAGGACCAGCGGGGTGCATGACGGCAGCCTACACAAGGGAGC GTGGTTCCTAGTCTGCAGCGGTGCCCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGGGAAG GTCACCATGATCAAGACAGCAGACCTGAAAGTTGTTTTGGGGAAATTCTACCGGGATGATGACCGGGATGAGAAGACCATCC AGAGCCTACAGATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCTGACATCGCCATCCTGAAGCT TCCCACATCACTGTGGCTGGCTGGAATGTCCTGGCAGACGTGAGGAGCCCTGGCTTCAAGAACGACACACTGCGCTCTGGG CTGTGCCAGCTGGGAACCCACTGCCCCTTCTGATATCTGCACTGCAGAGACAGGAGGCATCGCGGCTGTGTCCTTCCCGGGA CGAGCATCTCCTGAGCCACGCTGGCATCTGATGGGACTGGTCAGCTGGAGCTATGATAAAACATGCAGCCACAGGCTCTCCA TGTTTCTGTATATCCGTCTGTACGTGTGTCATTGCGTGAAGCAGTGTGGGCCTGAAGTGTGATTTGGCCTGTGAACTTGGCT gtgccagggcttctgacttcagggacaaaactcagtgaagggtgagtagacctccattgctggtaggctgateccgcetcca  $\verb|ctccactgacctggtgtcttccccaactttcagttatacgaatgccatcagcttgaccagggaagatctgggcttcatgaggaatgctgaccagggaagatctgggcttcatgaggaatgccatcagcttgaccagggaagatctgggcttcatgaggaatgccatcagcttgaccagggaagatctgggcttcatgaggaatgccatcagcttgaccagggaagatctgggcttcatgaggaatgccatcagcttgaccagggaagatctgggcttcatgaggaatgccatcagcttgaccagggaagatctgggcttcatgaggaatgccatcagcttgaccagggaagatctgggcttcatgaggaatgccatcagcttgaccaggaagatctgggcttcatcaggaatgccatcagcttgaccaggaagatctgggcttcatgaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgcatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgccatcaggaatgcatcaggaatgccatcaggaatgccatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaatgcatcaggaa$ GCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCCCAGGGCAGCAGAGCTGGGATGTGGTGCATGCCTT 

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVVGYT
IPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGDCMRCGQ
VLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDNRDGQII
KRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKC
ACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTVVSFFCNNSYVLSGNE
KRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLHQLYSAAFSKQKLQSAPTK
KPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGKWSGRAPSCIPICGKIENITAP
KTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNERTVVVAAHCVTDLGKVTMIKTADL
KVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLDADIAILKLLDKARISTRVQPICLAASR
DLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSGVVSVVDSLLCEEQHEDHGIPVSVTDNMFCA
SWEPTAPSDICTAETGGIAAVSFPGRASPEPRWHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWI
ERNMK

Important features of the protein:

Signal peptide:

amino acids 1-23

EGF-like domain cysteine pattern signature.

amino acids 260-272

N-glycosylation sites.

amino acids 96-100, 279-283, 316-320, 451-455, 614-618

N-myristoylation sites.

amino acids 35-41, 97-103, 256-262, 284-290, 298-304, 308-314, 474-480, 491-497, 638-644, 666-672

Amidation site.

amino acids 56-60

Serine proteases, trypsin family.

amino acids 489-506

CUB domain proteins profile.

amino acids 150-167

GGTTCCTACATCCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTTAATC TGAAGGTTCTCAGTCAAATTCTTTGTGATCTACTGATTGTGGGGGCATGGCAAGGTTTGCTTAAAGGAGCTTGGCTGG TGGTCTTGCCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTGTATTCAGAACTCTGTA AAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGCGCTCACAAGATGGCTGTCCAGACGGCTGTGCGAGCC ACCCTGCCTACGTGTCCTCGGCAGAGGACGGCCAGCCAGTCAGCCCAGTGGACTCTGGCCGGAGCAACCGAACTA GGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGGGCAGGAAAATTCTGAAAACACCACTGCCCCTGAAG TCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAAATTACCAGCATCAAGATCAATCGAGTAGATCCCAGTGAAA TGATCGCCAGAGACGGCCGGCTACTGCCAGGAGACATCATTCTAAAGGTCAACGGGATGGACATCAGCAATGTCCCTC ACAACTACGCTGTGCGTCTCCTGCGGCAGCCCTGCCAGGTGCTGTGACTGTGATGCGTGAACAGAAGTTCCGCA GCAGGAACAATGGACAGGCCCCGGATGCCTACAGACCCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCC GTGTGGCATATCGACATGGTCAGCTTGAGGAGAATGACCGTGTGTTAGCCATCAATGGACATGATCTTCGATATGGCA GCCCAGAAAGTGCGGCTCATCTGATTCAGGCCAGTGAAAGACGTGTTCACCTCGTCGTGTCCCGCCAGGTTCGGCAGC GGAGCCCTGACATCTTTCAGGAAGCCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGGAGAGGAGCAACA CTCCCAAGCCCCTCCATCCTACAATTACTTGTCATGAGAAGGTGGTAAATATCCAAAAAGACCCCGGTGAATCTCTCG TCATAAGCAGAGATGGAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACAGAGGTCAGCC GGAGTGAGGCAGTGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGTCAAAGAGTATGAGC  $\tt CCCAGGAAGACTGCAGCAGCCCAGCAGCCCTGGACTCCAACCACCACCACCACCAGCTGACTGGTCCCCATCCT$ GGGTCATGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTACGAAGAAACACAGCTGGAAGTC CACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTGCTGTCAATGGTAGAAGTACATCAGGAATGA TTGTCAGTTTTTATATTAAAGAAAGAATACATTGTAAAAATGTCAGGAAAAGTATGATCATCTAATGAAAGCCAGTT 

MKALLLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTATAPS
PEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRSFKKINR
ALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDPSESLSIRLV
GGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVM
REQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGVFIFNVLDGGVAYRHG
QLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRSPDIFQEAGWNSNGSWSPG
PGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHREWDLPIYVISVEPGGVISRDGR
IKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEVKEYEPQEDCSSPAALDSNHNMAPP
SDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIVGGYEEYNGNKPFFIKSIVEGTPAYNDG
RIRCGDILLAVNGRSTSGMIHACLARLLKELKGRITLTIVSWPGTFL

### Important features:

### Signal peptide:

amino acids 1-15

### N-glycosylation sites.

amino acids 108-112, 157-161, 289-293, 384-388

### Tyrosine kinase phosphorylation sites.

amino acids 433-441, 492-500

### N-myristoylation sites.

amino acids 51-57, 141-147, 233-239, 344-350, 423-429, 447-453, 467-473, 603-609

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGAAGCTTT CACCAGTAACTACTTCGTGGGTGCCATTCAAGAGATTCCTAAAGCAAAGGAGTTCATGGCTAATTTCC ATAAGACCCTCATTTTGGGGAAGGGAAAAACTCTGACTAATGAAGCATCCACGAAGAAGGTAGAACTT GACAACTGTCCTTCTGTGTCTCCTTACCTCAGAGGCCAGAGCTCATTTTCAAACCAGATCTCAC TTTGGAAGAGGTACAGGCAGAAAATCCCAAAGTGTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAG CTTTACAGAGGGTCGCCATCCTCGTTCCCCACCGGAACAGAGAAACACCTGATGTACCTGCTGGAA CATCTGCATCCCTTCCTGCAGAGGCAGCTGGATTATGGCATCTACGTCATCCACCAGGCTGAAGG TAAAAAGTTTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAAATTGGG ACTGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGAGGAG  ${\tt CATCCCAAGCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTGGATATTTTGG}$ GGGTGTTACTGCCCTAAGCAGAGAGCAGTTTTTCAAGGTGAATGGATTCTCTAACAACTACTGGGGAT GGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAGAATGAAAATTTCCCGGCCCCTG CCTGAAGTGGGTAAATATACAATGGTCTTCCACACTAGAGACAAAGGCAATGAGGTGAACGCAGAACG GATGAAGCTCTTACACCAAGTGTCACGAGTCTGGAGAACAGATGGGTTGAGTAGTTGTTCTTATAAAT  ${\tt TAGTATCTGTGGAACACAATCCTTTATATATCAACATCACAGTGGATTTCTGGTTTGGTGCA{\tt TGACCC}}$ ATAGTAGCACACATTAAGAACCTGTTACAGCTCATTGTTGAGCTGAATTTTTCCTTTTTTGTATTTTCT TAGCAGAGCTCCTGGTGATGTAGAGTATAAAACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGAT CATGAGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGATAA AAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCTCGTCCAAGGTAGAA AGGTACGAAGATACAGTTATTCATTTATCCTGTACAATCATCTGTGAAGTGGTGGTGTCAGGT GAGAAGGCGTCCACAAAAGAGGGGAGAAAAGGCGACGAATCAGGACACAGTGAACTTGGGAATGAAGA GGTAGCAGGAGGGTGGAGTGTCGGCTGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGTGCTGATAGC CTTCAGGGGAGGACCTGCCCAGGTATGCCTTCCAGTGATGCCCACCAGAGAATACATTCTCTATTAGT TTTTAAAGAGTTTTTGTAAAATGATTTTGTACAAGTAGGATATGAATTAGCAGTTTACAAGTTTACAT ATTAACTAATAATAATATGTCTATCAAATACCTCTGTAGTAAAATGTGAAAAAGCAAAA

MGFNLTFHLSYKFRLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKTLTN
EASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAILVPH
RNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEENWDCFIFHDV
DLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNGFSNNYWGWGGED
DDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSRVWRTDGLSSCSYKLV
SVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.

amino acids 191-202

MALSSQIWAACLLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRDTHFPICIFCCGCCHRSKCGMCCKT

Important features:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 58-59

N-myristoylation site.

amino acids 44-50

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 1-12

 $\tt GTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAT \textbf{ATG}GCTGGTTCCCCAACATGCCTCACCC$ TCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGT  ${\tt TCCGTTGGTGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTCTATTGTCTG}$ GACCTTCAACACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAA ATCGTAATAGGGAGAGATAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAG AAGAATGACTCAGGGATCTACTATGTGGGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCA GGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCA ATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATT TATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTC CTGGAGATGGGGAAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACT TCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATG AAACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACAATCCCTCACACTAAT AGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGAT GGAAAATCCCCACTCACTGCTCACGATGCCAGACACCAAGGCTATTTGCCTATGAGAATGTTA  ${\tt TC}{\tt TAG}{\tt ACAGCAGTGCACTCCCCTAAGTCTCTGCTCA}$ 

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTIQP
EGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSK
PKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFIC
VARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLWFLKRERQEEYIE
EKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMENPHSLLTMPDT
PRLFAYENVI

### Important features:

Signal peptide:

amino acids 1-22

### Transmembrane domain:

amino acids 224-250

### Leucine zipper pattern.

amino acids 229-251

### N-glycosylation sites.

amino acids 98-102, 142-146, 148-152, 172-176, 176-180, 204-208, 291-295

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPA TTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSL KNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGL LLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

### Important features:

### Transmembrane domains:

amino acids 10-31 (type II), 50-72, 87-110, 191-213

### N-glycosylation sites.

amino acids 80-84, 132-136, 148-152, 163-167

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 223-227

### N-myristoylation sites.

amino acids 22-28, 54-60, 83-89, 97-103, 216-222

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 207-218

TNFR/NGFR family cysteine-rich region protein.

amino acids 4-12

ATCCGTTCTCTGCGCTGCCAGCTCAGGTGAGCCCTCGCCAAGGTGACCTCGCAGGACACTGGTGA
AGGAGCAGTGAGGAACCTGCAGAGTCACACAGTTGCTGACCAATTGAGCTGTGAGCCTGGAGCAG
ATCCGTGGGCTGCAGACCCCCGCCCCAGTGCCTCTCCCCCTGCAGCCCTGCCCCTCGAACTGTGA
CATGGAGAGAGTGACCCTGGCCCTTCTCTACTGGCAGGCCTGACTGCCTTGGAAGCCAATGACC
CATTTGCCAATAAAGACGATCCCTTCTACTATGACTGGAAAAACCTGCAGCTGAGCGGACTGATC
TGCGGAGGGCTCCTGGCCATTGCTGGGATCGCGGCAGTTCTGAGTGGCAAATGCAAATACAAGAG
CAGCCAGAAGCACACAGTCCTGTACCTGAGAAGGCCATCCCACTCATCACTCCAGGCTCTGCCA
CTACTTGCTGAGCACAGGACTGGCCTCCAGGGATGGCCTAACACTGGCCCCCAGCACC
TCCTCCCCTGGGAGGCCTTATCCTCAAGGAAGGACTTCTCTCCAAGGGCAGGCTGTTAGGCCCCT
TTCTGATCAGGAGGCCTTCTTTATGAATTAAACTCGCCCCCACCCCCCTCA

 ${\tt MERVTLALLLLAGLTALEANDPFANKDDPFYYDWKNLQLSGLICGGLLa1AG1AAVLSGKCKYKS} \\ {\tt SQKQHSPVPEKA1PLITPGSATTC}$ 

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 36-59

N-myristoylation sites.

amino acids 41-47, 45-51, 84-90

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7.

amino acids 54-67

AGGACAGGGAGTCGGAAGGAGGAGGACAGAGGGCACAGAGAGCCAGAGCGAAGGGCAGAGG AGGAGACCCTGGTGGGAGAGACACTCTGGAGAGAGGGGGGCTGGGCAGAG**ATG**AAGTTCCAG GGGCCCCTGGCCTGCTGCTGGCCCTCTGCCTGGGCAGTGGGGAGGCTGGCCCCCTGCAGAG CGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCCTGGGAGACGCCCTGA GCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGGCAGCTGGCTCTAAAGTCAGTGAG AGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATGCTCTGGGAAACACTGGGCACGAGA TTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCAGATGCTGTCCGCGGCTCCTGGCAGGGG GTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGGAGGCCATGGCATCTTTGGCTCTCAAGGTGG CCTTGGAGGCCAGGGCCAGTCCTGGAGGTCTGGGGACTCCGTGGGTCCACGGATACCCCG GAAACTCAGCAGGCAGCTTTGGAATGAATCCTCAGGGAGCTCCCTGGGGTCAAGGAGGCAATGGA GGGCCACCAAACTTTGGGACCAACACTCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAG AGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCA ACTCTGGGGGAGCAGCGGCTCACAGTCGGCAGCAGTGGCAGCAATGGTGACAACAAC TGGCGGCAGCAGTGGCAGCAGTGGCAACAGTGGCAGCAGAGGTGACAGCGGCAGTGAGT CCTCCTGGGGATCCAGCACCGGCTCCTCCTCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGA CTTCAGAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTG GAGGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGTT GGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCTGGAA GAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGAAGCTCTC GCATCCCGTGACCTCCAGACAAGGAGCCCACCAGATTGGATGGGAGCCCCCACACTCCCTCTTAA AACACCACCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTAGCTGCCCCACAAA 

MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGAAGSKVS
EALGQGTREAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHGADAVRGSWQGVP
GHSGAWETSGGHGIFGSQGGLGGQGQGGPPGGLGTPWVHGYPGNSAGSFGMNPQGAPWGQGGNGGPPNF
GTNTQGAVAQPGYGSVRASNQNEGCTNPPPSGSGGGSSNSGGGSGSGSGSGSGSGSNGDNNNGSSSGGS
SSGSSSGSSGGSSGGSSGGSSGNSGGSRGDSGSESSWGSSTGSSSGNHGGSGGGNGHKPGCEKPGNE
ARGSGESGIQGFRGQGVSSNMREISKEGNRLLGGSGDNYRGQGSSWGSGGGDAVGGVNTVNSETSPGM
FNFDTFWKNFKSKLGFINWDAINKDQRSSRIP

### Signal peptide:

amino acids 1-21

#### N-glycosylation site.

amino acids 265-269

### Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

#### Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

### N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401
```

### Cell attachment sequence.

amino acids 301-304

 $\tt GGAGAAGAGGTTGTTGTGGGACAAGCTGCTCCCGACAGAAGG{\color{red} \textbf{A}\textbf{T}\textbf{G}} TCGCTGCTGAGCCTGCCCTGG$  $\tt CTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGGTTGTGGGCTCCTGGCT$ ACTCGCCCGCATCCTGGCCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCCAGTGTTTCC CACAGCCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCTACAGAGGAGGGC  $\tt TTGAAGGACTCGACCCAGATGTCGGCCACCTATTCCCAGGGCTTTACGGTATGGCTGGGTCCCAT$ CATCCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCACCAATGCCTCAGCTGCCA GAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACATCATGCTTGACAAGTGGCAGCACCTGG CCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAGCACATCAGCCTCATGACCTTGGACAGTCTA CAGAAATGCATCTTCAGCTTTGACAGCCATTGTCAGGAGAGGCCCAGTGAATATATTGCCACCAT CTTGGAGCTCAGTGCCCTTGTAGAGAAAAGAAGCCAGCATATCCTCCAGCACATGGACTTTCTGT ATTACCTCTCCCATGACGGCGCGCTTCCACAGGGCCTGCCGCCTGGTGCATGACTTCACAGAC GCTGTCATCCGGGAGCGGCGTCGCACCCTCCCCACTCAGGGTATTGATGATTTTTTCAAAGACAA AGCCAAGTCCAAGACTTTGGATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGG CATTGTCAGATGAGGATATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACG GCCAGTGGCCTCTCCTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCG ACAGGAGGTGCAAGAGCTTCTGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCC AGCTGCCCTTCCTGACCATGTGCGTGAAGGAGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATC TCCCGATGCTGCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTG CCTCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGGTCTACGACC  $\tt CCTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTATTCCTTTCTCCGCA$ GGGCCCAGGAACTGCATCGGCCAGGCGTTCGCCATGGCGAGATGAAAGTGGTCCTGGCGTTGAT GCTGCTGCACTTCCGGTTCCTGCCAGACCACACTGAGCCCCGCAGGAAGCTGGAATTGATCATGC GCGCCGAGGGCGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCAG**TGA**CTTTCTGAC CCAPCCACCTGTTTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWGHLG
LITPTEEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLFIRFLKP
WLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGSSRLDMFEHI
SLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYYLSHDGRRFHRAC
RLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDGKALSDEDIRAEADTF
MFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEWDDLAQLPFLTMCVKESLR
LHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVWPDPEVYDPFRFDPENSKGRSP
LAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLN
VGLQ

### Important features:

Transmembrane domains:

amino acids 13-32 (type II), 77-102

Cytochrome P450 cysteine heme-iron ligand signature.

amino acids 461-471

N-glycosylation sites.

amino acids 112-116, 168-172

 ${\tt MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIPFAR} \\ {\tt DAVKKCFAVCLA}$ 

Important features:

Signal peptide:

amino acids 1-33

Type II fibronectin collagen-binding domain protein.

amino acids 30-72

TACGTGCCGGTCATCGGGGAAGCCCAGACCGAGTTCCAGTACTTTGAGTCGAAGGGGCTCCCTGCCGAGCTGAAGTCC ATTTTCAAGCTCAGTGTCTTCATCCCCTCCCAGGAATTCTCCACCTACCGCCAGTGGAAGCAGAAAATTGTACAAGCT GGAGATAAGGACCTTGATGGGCAGCTAGACTTTGAAGAATTTGTCCATTATCTCCAAGATCATGAGAAGAAGCTGAGG GGAGTCAAGATATCTGAACAGCAGGCAGAAAAAATTCTCAAGAGCATGGATAAAAACGGCACGATGACCATCGACTGG AACGAGTGGAGAGACTACCACCTCCTCCACCCGTGGAAAACATCCCCGAGATCATCCTCTACTGGAAGCATTCCACG ATCTTTGATGTGGGTGAGAATCTAACGGTCCCGGATGAGTTCACAGTGGAGGAGAGGCAGACGGGGATGTGGTGGAGA TCACTCTGGCGGGGCAATGGCATCAACGTCCTCAAAATTGCCCCCGAATCAGCCATCAAATTCATGGCCTATGAGCAG ATCGCCCAGAGCAGCATCTACCCAATGGAGGTCCTGAAGACCCGGATGGCGCTGCGGAAGACAGGCCAGTACTCAGGA ATGCTGGACTGCGCCAGGAGGATCCTGGCCAGAGAGGGGGTGGCCGCCTTCTACAAAGGCTATGTCCCCAACATGCTG GGCATCATCCCCTATGCCGGCATCGACCTTGCAGTCTACGAGACGCTCAAGAATGCCTGGCTGCAGCACTATGCAGTG AACAGCGCGGACCCCGGCGTGTTTGTGCTCCTGGCCTGTGGCACCATGTCCAGTACCTGTGGCCAGCTGGCCAGCTAC  $\verb|ccctggccctagtcaggacccggatgcaggcgcaagcctctattgaggggcgctccggaggtgaccatgagcagcctc|\\$ TTCAAACATATCCTGCGGACCGAGGGGGCCTTCGGGCTGTACAGGGGGGCTGGCCCCCAACTTCATGAAGGTCATCCCA CGCCCGGCAGTGGACTCGCTGATCCTGGGCCGCAGCCTGGGGTGTGCAGCCATCTCATTCTGTGAATGTGCCAACACT TAGTTCTTCCATTTCACCCTTGCAGCCAGCTGTTGGCCACGGCCCCTGCCCTTGGTCTGCCGTGCATCTCCCTGTGC ATAATCCATGATGAAAGGTGAGGTCACGTGGCCTCCCAGGCCTGACTTCCCAACCTACAGCATTGACGCCAACTTGGC TGTGAAGGAAGAGGAAGGATCTGGCCTTGTGGTCACTGGCATCTGAGCCCTGCTGATGGCTGGGGCTCTCGGGCATG CCATGTTTGAGGGCGAAGGGCAGAGCGTTTGTGTGTTCTGGGGGAGGAAAAGGTGTTGGAGGCCTTAATTATGG ACTGTTGGGAAAAGGGTTTTGTCCAGAAGGACAAGCCGGACAAATGAGCGACTTCTGTGCTTCCAGAGGAAGACGAGG GAGCAGGAGCTTGGCTGACTGCTCAGAGTCTGTTCTGACGCCCTGGGGGTTCCTGTCCAACCCCAGCAGGGGCGCAGC GATTGTACCTTCCCAAGCCCGCCCAGTGGGATGGGAGGAGGAGGAGGAGGGGGCCTTGGGCCGCTGCAGTCACATCT GTCCAGAGAAATTCCTTTTGGGACTGGAGGCAGAAAAGCGGCCAGAAGGCAGCCCTGGCTCCTTTCCTTTGGCAG CTTCTGCTGCCCTTGCTTAACAATGCCGGCCAACTGGCGACCTCACGGTTGCACTTCCATTCCACCAGAATGACCTGA TGAGGAAATCTTCAATAGGATGCAAAGATCAATGCAAAAATTGTTATATATGAACATATAACTGGAGTCGTCAAAAAG 

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKDLDG
QLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILKSMDKNG
TMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMWWRHLVAGGG
AGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGINVLKIAPESAIK
FMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMALRKTGQYSGMLDCARR
ILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNSADPGVFVLLACGTMSSTC
GQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFGLYRGLAPNFMKVIPAVSISYV
VYENLKITLGVQSR

### Important features:

Signal peptide:

amino acids 1-16

### Putative transmembrane domains:

amino acids 284-304, 339-360, 376-394

### Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

### N-glycosylation sites.

amino acids 129-133, 169-173

### Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

GGAAGGCAGCGCAGCTCCACTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCC**ATG**GC CACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTACTGTCGCCTCAGCT GGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAAACTTTCTGATAT CGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCAAAGAAGGCAAAGATG AGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTTGCTGATCAAGTGATAGTT GGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGTTATAT CATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATAAAACTGGAGCCTTCAGCATGCCGG AAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTGCGGTGTGAGGCTCCCCGATGGTTCCCC CAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCAGGGAGCCAACTTCTCGGAAGTCTCCAATAC CAGCTTTGAGCTGAACTCTGAGAATGTGACCATGAAGGTTGTGTCTGTGCTCTACAATGTTACGA TCAACAACACATACTCCTGTATGATTGAAAATGACATTGCCAAAGCAACAGGGGATATCAAAGTG ACAGAATCGGAGATCAAAAGGCGGAGTCACCTACAGCTGCTAAACTCAAAGGCTTCTCTGTGTGT  $\tt CTCTTCTTTCTTTGCCATCAGCTGGGCACTTCTGCCTCTCAGCCCTTACCTGATGCTAAAA\underline{TAA}T$ GTGCCTTGGCCACAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCAC CACCAGATATGACCTAGTTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTG AGCAAACAAGAGCAAGAAACAAAAAGAAGCCAAAAGCAGAAGGCTCCAATATGAACAAGATAAAT CTATCTTCAAAGACATATTAGAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGA CACCTGGGGAGTGAGAGGACAGGATAGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATATGTGC TGTAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCAC AAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGGGGCG GCTGCATTTTAGTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCTTGGCTTC TCTTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAAACAGAGCAGT 

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLS DIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAGTYKC YIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVDQGANFSEVS NTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRRSHLQLLNSKASL CVSSFFAISWALLPLSPYLMLK

### Important features:

Signal peptide:

amino acids 1-28

### Transmembrane domain:

amino acids 258-281

### N-glycosylation sites.

amino acids 112-116, 160-164, 190-194, 196-200, 205-209, 216-220, 220-224

### N-myristoylation sites.

amino acids 52-58, 126-132, 188-194

 ${\tt TGACGTCAGAATCACC} {\tt ATG} {\tt GCCAGCTATCCTTACCGGCAGGGCTGCCCAGGAGCTGCAGGACAAG}$ CACCAGGAGCCCCTCCGGGTAGCTACTACCCTGGACCCCCAATAGTGGAGGGCAGTATGGTAGT GGGCTACCCCTGGTGGTGGTTATGGGGGTCCTGCCCCTGGAGGGCCTTATGGACCACCAGCTGG TGGAGGGCCCTATGGACACCCCAATCCTGGGATGTTCCCCTCTGGAACTCCAGGAGGACCATATG GCGGTGCAGCTCCCGGGGGCCCCTATGGTCAGCCACCTCCAAGTTCCTACGGTGCCCAGCAGCCT GGGCTTTATGGACAGGGTGGCGCCCCTCCCAATGTGGATCCTGAGGCCTACTCCTGGTTCCAGTC GGTGGACTCAGATCACAGTGGCTATATCTCCATGAAGGAGCTAAAGCAGGCCCTGGTCAACTGCA ATTGGTCTTCATTCAATGATGAGACCTGCCTCATGATGATAAACATGTTTGACAAGACCAAGTCA GGCCGCATCGATGTCTACGGCTTCTCAGCCCTGTGGAAATTCATCCAGCAGTGGAAGAACCTCTT CCAGCAGTATGACCGGGACCGCTCGGGCTCCATTAGCTACACAGAGCTGCAGCAAGCTCTGTCCC AAATGGGCTACAACCTGAGCCCCAGTTCACCCAGCTTCTGGTCTCCCGCTACTGCCCACGCTCT GCCAATCCTGCCATGCAGCTTGACCGCTTCATCCAGGTGTGCACCCAGCTGCAGGTGCTGACAGA GGCCTTCCGGGAGAAGGACACAGCTGTACAAGGCAACATCCGGCTCAGCTTCGAGGACTTCGTCA  ${\tt CCATGACAGCTTCTCGGATGCTA}{\tt TGACCCAACCATCTGTGGAGAGTGGAGTGCACCAGGGACCTT}$ TCCTGGCTTCTTAGAGTGAGAAGTATGTGGACATCTCTTTTTCCTGTCCCTCTAGAAGAAC ATTCTCCCTTGCTTGATGCAACACTGTTCCAAAAGAGGGTGGAGAGTCCTGCATCATAGCCACCA AATAGTGAGGACCGGGGCTGAGGCCACACAGATAGGGGCCTGATGGAGGAGAGGATAGAAGTTGA ATGTCCTGATGGCCATGAGCAGTTGAGTGGCACAGCCTGGCACCAGGAGCAGGTCCTTGTAATGG AGTTAGTGTCCAGTCAGCTGAGCTCCACCTGATGCCAGTGGTGAGTGTTCATCGGCCTGTTACC GTTAGTACCTGTGTTCCCTCACCAGGCCATCCTGTCAAACGAGCCCATTTTCTCCAAAGTGGAAT CTGACCAAGCATGAGAGATCTGTCTATGGGACCAGTGGCTTGGATTCTGCCACACCCATAAAT CCTTGTGTGTTAACTTCTAGCTGCCTGGGGCTGGCCCTGCTCAGACAAATCTGCTCCCTGGGCAT ATTTGGGGCCAAAAGTCCAGTGAAATTGTAAGCTTCAATAAAAGGATGAAACTCTGA

MASYPYRQGCPGAAGQAPGAPPGSYYPGPPNSGGQYGSGLPPGGGYGGPAPGGPYGPPAGGGPYG HPNPGMFPSGTPGGPYGGAAPGGPYGQPPPSSYGAQQPGLYGQGGAPPNVDPEAYSWFQSVDSDH SGYISMKELKQALVNCNWSSFNDETCLMMINMFDKTKSGRIDVYGFSALWKFIQQWKNLFQQYDR DRSGSISYTELQQALSQMGYNLSPQFTQLLVSRYCPRSANPAMQLDRFIQVCTQLQVLTEAFREK DTAVQGNIRLSFEDFVTMTASRML

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-83, 83-88, 87-92, 110-115

 $\texttt{CAGG} \underline{\textbf{ATG}} \texttt{CAGGGGCCGCGTGGCAGGGAGCTGCGCTCCTTGGGCCTGCTCTGGTCTTCATC}$ TCCCAGGCCTCTTTGCCCGGAGCATCGGTGTTGTGGAGGAGAAAGTTTCCCAAAACTTCGGGACC AACTTGCCTCAGCTCGGACAACCTTCCTCCACTGGCCCCTCTAACTCTGAACATCCGCAGCCCGC TCTGGACCCTAGGTCTAATGACTTGGCAAGGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATG GATTCCTGGCCCCTGAGGATCCTTGGCAGATGATGCTGCTGCGGCTGAGGACCGCCTGGGGGGA AGCGCTGCCTGAAGAACTCTCTTACCTCTCCAGTGCTGCGGCCCTCGGCTCCGGGCAGTGGCCCTT TGCCTGGGGAGTCTTCTCCCGATGCCACAGGCCTCTCACCTGAGGCTTCACTCCTCCACCAGGAC TCGGAGTCCAGACGACTGCCCCGTTCTAATTCACTGGGAGCCGGGGGAAAAATCCTTTCCCAACG CCCTCCTGGTCTCTCATCCACAGGGTTCTGCCTGATCACCCCTGGGGTACCCTGAATCCCAGTG TGTCCTGGGGAGGTGGAGGCCCTGGGACTGGTTGGGGAACGAGGCCCATGCCACACCCTGAGGGA ATCTGGGGTATCAATAATCAACCCCCAGGTACCAGCTGGGGAAATATTAATCGGTATCCAGGAGG CAGCTGGGGAAATATTAATCGGTATCCAGGAGGCAGCTGGGGGAATATTAATCGGTATCCAGGAG GCAGCTGGGGGAATATTCATCTATACCCAGGTATCAATAACCCATTTCCTCCTGGAGTTCTCCGC CCTCCTGGCTCTTCTTGGAACATCCCAGCTGGCTTCCCTAATCCTCCAAGCCCTAGGTTGCAGTG GGGC TAGAGCACGATAGAGGGAAACCCAACATTGGGAGTTAGAGTCCTGCTCCCGCCCCTTGCTG TGTGGGCTCAATCCAGGCCCTGTTAACATGTTTCCAGCACTATCCCCACTTTTCAGTGCCTCCC 

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPAL
DPRSNDLARVPLKLSVPPSDGFPPAGGSAVQRWPPSWGLPAMDSWPPEDPWQMMAAAAEDRLGEA
LPEELSYLSSAAALAPGSGPLPGESSPDATGLSPEASLLHQDSESRRLPRSNSLGAGGKILSQRP
PWSLIHRVLPDHPWGTLNPSVSWGGGGPGTGWGTRPMPHPEGIWGINNQPPGTSWGNINRYPGGS
WGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPPGVLRPPGSSWNIPAGFPNPPSPRLQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263, 259-264, 269-274, 270-275, 280-285, 281-286, 305-310

AAGGAGAGGCCACCGGGACTTCAGTGTCTCCTCCATCCCAGGAGCGCAGTGGCCACTATGGGGTC
TGGGCTGCCCCTTGTCCTCCTCTTGACCCTCCTTGGCAGCTCACATGGAACAGGGCCGGGTATGA
CTTTGCAACTGAAGCTGAAGGAGTCTTTTCTGACAAATTCCTCCTATGAGTCCAGCTTCCTGGAA
TTGCTTGAAAAGCTCTGCCTCCTCCTCCATCTCCCTTCAGGGACCAGCGTCACCCTCCACCATGC
AAGATCTCAACACCATGTTGTCTGCAACACATGACAGCCATTGAAGCCTGTGTCCTTCTTGGCCC
GGGCTTTTGGGCCGGGGATGCAGGAGGCAGGCCCCGACCCTGTCTTTCAGCAGGCCCCCACCCTC
CTGAGTGGCAATAAATAAAATTCGGTATGCTG

 ${\tt MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTL}\\ {\tt HHARSQHHVVCNT}$ 

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 37-41

N-myristoylation sites.

amino acids 15-21, 19-25, 60-66

 ${\tt MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIVVFS} \\ {\tt LLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI}$ 

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 56-80

N-glycosylation site.

amino acids 36-40

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 86-90

Tyrosine kinase phosphorylation site.

amino acids 86-94

N-myristoylation sites.

amino acids 7-13, 26-32

GCCAGGAATAACTAGAGAGAACA<u>ATG</u>GGGTTATTCAGAGGTTTTTTTTCCTCTTAGTTCTTGTGCCTGCACCAG TCAAATACTTCCTTCATTAAGCTGAATAATAATGGCTTTGAAGATATTGTCATTGTTATAGATCCTAGTGTGCCAGAA GATGAAAAAATTGAACAAATAGAGGATATGGTGACTACAGCTTCTACGTACCTGTTTGAAGCCACAGAAAAAAAGA AACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCATACACCAAGCAGTTCACA CCAGGCAAACTGTTTGTCCATGAGTGGGCTCACCTCCGGTGGGGGAGTGTTTGATGAGTACAATGAAGATCAGCCTTTC TACCGTGCTAAGTCAAAAAAATCGAAGCAACAAGGTGTTCCGCAGGTATCTCTGGTAGAAATAGAGTTTATAAGTGT CAAGGAGGCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAACTGTATGGAAAAGATTGTCAATTCTTT  $\verb|cctgataaagtacaaacagaaaaagcatccataatgtttatgcaaagtattgattctgttgttgaatttgtaacgaa|\\$ AAAACCCATAATCAAGAAGCTCCAAGCCTACAAAACATAAAGTGCAATTTTAGAAGTACATGGGAGGTGATTAGCAAT TCTGAGGATTTTAAAAACACCATACCCATGGTGACACCACCTCCTCCACCTGTCTTCTCATTGCTGAAGATCAGTCAA AATAAGCTAATCCAAATAAAAAGCAGTGATGAAAGAAACACCTCATGGCAGGATTACCTACATATCCTCTGGGAGGA ACTTCCATCTGCTCTGGAATTAAATATGCATTTCAGGTGATTGGAGAGCTACATTCCCAACTCGATGGATCCGAAGTA CTGCTGCTGACTGATGGGGAGGATAACACTGCAAGTTCTTGTATTGATGAAGTGAAACAAAGTGGGGCCATTGTTCAT  ${\tt TTTATTGCTTTGGGAAGAGCTGCTGATGAAGCAGTAATAGAGATGAGCAAGATAACAGGAGGAAGTCATTTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGTTATGT$ TCAGATGAAGCTCAGAACAATGGCCTCATTGATGCTTTTTGGGGCTCTTACATCAGGAAATACTGATCTCTCCCAGAAG TCCCTTCAGCTCGAAAGTAAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAATTGATAGTACA GTGGGAAAGGACACGTTCTTTCTCACATGGAACAGTCTGCCTCCCAGTATTTCTCTCTGGGATCCCAGTGGAACA  ${\tt ATAATGGAAAATTTCACAGTGGATGCAACTTCCAAAATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACTTCAAAATTGCAAAATTTCAAGGAACTGCAAAAGGTGGGCACTTCAAAATTGCAAAATTTCAAGGAACTGCAAAAGGTGGGCACTTCAAAATTGCAAAATTGCAAAATTTCAAGGAACTGCAAAAGGTGGGCACTTCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAAATTGCAAAATTGCAAAATTGCAAAAATTGCAAAATTGCAAAATTGCAAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAAATTGCAAATTGCAAATTGCAAATTGCAAAATTGCAAAATTGCAAATTTCAAAATTTAAAATTGCAAATTGCAAATTGCAAATTGCAAATTGCAA$ TGGGCATACAATCTTCAAGCCAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCT GTGCCTCCAATCACAGTGAATGCTAAAATGAATAAGGACGTAAACAGTTTCCCCAGCCCAATGATTGTTTACGCAGAA ATTCTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCATTGAATCACAGAATGGACATACAGAAGTT TTGGAACTTTTGGATAATGGTGCAGGCGCTGATTCTTTCAAGAATGATGGAGTCTACTCCAGGTATTTTACAGCATAT ACAGAAAATGGCAGATATAGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGGCCTCCA CTGAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGGAAATTGAAGCAAACCCGCCAAGACCTGAAATTGAT GAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGAGGTGCATTTGTGGTATCACAAGTCCCAAGC CTTCCCTTGCCTGACCAATACCCACCAAGTCAAATCACAGACCTTGATGCCACAGTTCATGAGGATAAGATTATTCTT ACATGGACAGCACCAGGAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGAATAAGTGCAAGTATTCTT GATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCAAAGGAGGCCAACTCCAAGGAA AGCAATTTGACATCAAAAGTATCCAACATTGCACAAGTAACTTTGTTTATCCCTCAAGCAAATCCTGATGACATTGAT CCTACACCTACTCCTACTCCTACTCCTGATAAAAGTCATAATTCTGGAGTTAATATTTCTACGCTGGTATTG  ${\tt TCTGTGATTGGGTCTGTTGTAATTGTTAACTTTATTTTAAGTACCACCATT{\tt {\tt TGA}}{\tt ACCTTAACGAAGAAAAAATCTTC}$ ATCCTTTTTCATACTGATACCTGGTTGTATATTATTTGATGCAACAGTTTTCTGAAATGATATTTCAAATTGCATCAA 

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTYLFE
ATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKGEY
IHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATRCSAGISGRN
RVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVEFCNEKTHNQEAP
SLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLLKISQRIVCLVLDKSGSMGGKDRLNR
MNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLMAGLPTYPLGGTSICSGIK
YAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVHFIALGRAADEAVIEMSKITGG
SHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLTLNSNAWMNDTVIIDSTVGKDTFFL
ITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSR
AANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQGYVPVLGANVTAFIESQNGHTEVLELLDNGA
GADSFKNDGVYSRYFTAYTENGRYSLKVRAHGGANTARLKLRPPLNRAAYIPGWVVNGEIEANPP
RPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLPDQYPPSQITDLDATVHEDKIILTWTAPGDN
FDVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAI
KSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPDKSHNSGVNISTLVLSVIGSVVI
VNFILSTTI

### Signal peptide:

amino acids 1-21

#### Putative transmembrane domains:

amino acids 284-300, 617-633

### Leucine zipper pattern.

amino acids 469-491, 476-498

### N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGGAAAGACCATACGTCCCCGGGCAGGGGTGA CAACAGGTGTCATCTTTTTGATCTCGTGTGTGGCTGCCTTCCTATTTCAAGGAAAGACGCCAAGGTAATTTTGACCCA GAGGAGCAATGATGTAGCCACCTCCTAACCTTCCCTTCTTGAACCCCCAGTTATGCCAGGATTTACTAGAGAGTGTCA  $\verb|ACTCAACCAGCAAGCGGCTCCTTCGGCTTAACTTGTGGTTGGAGGAGAACCTTTGTGGGGCTGCGTTCTCTTAGCA| |$ GTGCTCAGAAGTGACTTGCCTGAGGGTGGACCAGAAGAAAGGAAAGGTCCCCTCTTGCTGTTGGCTGCACATCAGGAA AGTAGAGAAGCTGCTCTGTGTGGTGGTTAACTCCAAGAGGCAGAACTCGTTCTAGAAGGAAATGGATGCAAGCAGCTC CGGGGGCCCCAAACGCATGCTTCCTGTGGTCTAGCCCAGGGAAGCCCTTCCGTGGGGGCCCCGGCTTTGAGGGATGCC ACCGGTTCTGGACGCATGGCTGATTCCTGA<u>ATG</u>ATGATGGTTCGCCGGGGGCTGCTTGCGTGGATTTCCCGGGTGGTG GTTTTGCTGGTGCTCCTCTGCTGTACCTCTGTCCTGTACATGTTGGCCTGCACCCCAAAAGGTGACGAGGAGCAG  $\tt CGCAACTACGTGAGCCTGAAGCGGCAGATCGCACAGCTCAAGGAGGAGGTGAGGAGGAGGAGGAGGAGCTCAGG$ AATGGGCAGTACCAAGCCAGCGATGCTGGCCTGGGTCTGGACAGGAGCCCCCCAGAGAAAACCCAGGCCGACCTC CTGGCCTTCCTGCACTCGCAGGTGGACAAGGCAGAGGTGAATGCTGGCGTCAAGCTGGCCACAGAGTATGCAGCAGTG CCTTTCGATAGCTTTACTCTACAGAAGGTGTACCAGCTGGAGACTGGCCTTACCCGCCACCCCGAGGAGAAGCCTGTG AGGAAGGACAAGCGGGATGAGTTGGTGGAAGCCATTGAATCAGCCTTGGAGACCCTGAACAATCCTGCAGAGAACAGC CCCAATCACCGTCCTTACACGGCCTCTGATTTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACATTGTAT GAGCTCACCTTCAAAGGGGACCACAAACACGAATTCAAACGGCTCATCTTATTTCGACCATTCAGCCCCATCATGAAA GTGAAAAATGAAAAGCTCAACATGGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAGGGTGGACAAGTTC AAAGAAGAAATAAATGAAGTCAAAGGAATACTTGAAAACACTTCCAAAGCTGCCAACTTCAGGAACTTTACCTTCATC CAGCTGAATGGAGAATTTTCTCGGGGAAAGGGACTTGATGTTGGAGCCCGCTTCTGGAAGGGAAGCAACGTCCTTCTC TTTTTCTGTGATGTGGACATCTACTTCACATCTGAATTCCTCAATACGTGTAGGCTGAATACACAGCCAGGGAAGAAG CAGCAGCTGGTCATAAAGAAGGAAACTGGATTTTGGAGAGACTTTGGATTTTGGGATGACGTGTCAGTATCGGTCAGAC TTCATCAATATAGGTGGGTTTGATCTGGACATCAAAGGCTGGGGCGGAGGATGTGCACCTTTATCGCAAGTATCTC CACAGCAACCTCATAGTGGTACGGACGCCTGTGCGAGGACTCTTCCACCTCTGGCATGAGAAGCGCTGCATGGACGAG CTGACCCCGAGCAGTACAAGATGTGCATGCAGTCCAAGGCCATGAACGAGGCATCCCACGGCCAGCTGGGCATGCTG GAAGGATTGTGGGAGACACTTTTTCTTTCCTTTTGCAATTACTGAAAGTGGCTGCAACAGAGAAAAGACTTCCATAAA GGACGACAAAAGAATTGGACTGATGGGTCAGAGATGAGAAAGCCTCCGATTTCTCTCTGTTGGGCTTTTTACAACAGA AATCAAAATCTCCGCTTTGCCTGCAAAAGTAACCCAGTTGCACCCTGTGAAGTGTCTGACAAAGGCAGAATGCTTGTG AGATTATAAGCCTAATGGTGTGGAGGTTTTGATGGTGTTTTACAATACACTGAGACCTGTTGTTTTTGTGTGCTCATTGA TTTTTTCCCTTGTGAGTTATAGTCTGCTTATTTAATTACCACTTTGCAAGCCTTACAAGAGAGACACAAGTTGGCCTAC ATTTTTATATTTTTAAGAAGATACTTTGAGATGCATTATGAGAACTTTCAGTTCAAAGCATCAAATTGATGCCATAT AATACAGACGTACAGATACTTTCTCTGAAGAGTATTTTCGAAGAGGAGCAACTGAACACTGGAGGAAAAGAAAATGAC ACTTTCTGCTTTACAGAAAAGGAAACTCATTCAGACTGGTGATATCGTGATGTACCTAAAAGTCAGAAACCACATTTT GAAAGATCAATCCATCTGCCAGAATCTAGTGGGATGGAAGTTTTTGCTACATGTTATCCACCCCAGGCCAGGTGGAAG TAACTGAATTATTTTTTAAATTAAGCAGTTCTACTCAATCACCAAGATGCTTCTGAAAATTGCATTTTATTACCATTT ATGCATGAGCTAATTATCTCTTTGAGTCCTTGCTTCTGTTTGCTCACAGTAAACTCATTGTTTAAAAGCTTCAAGAAC CCATGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWE EQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHSQVDK AEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALETLNNPA ENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPIMKVKNEKLNMAN TLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVKGILENTSKAANFRNF TFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNTQPGKKVFYPVLFSQY NPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFINIGGFDLDIKGWGGEDVHLYR KYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQSKAMNEASHGQLGMLVFRHEIEAHL RKQKQKTSSKKT

### Important features:

Signal peptide:

amino acids 1-27

### N-glycosylation sites.

amino acids 315-319, 324-328

### N-myristoylation sites.

amino acids 96-102, 136-142, 212-218, 311-317, 339-345, 393-399

#### Amidation site.

amino acids 377-381

GAGACTGCAGAGGGAGATAAAGAGAGGGGCAAAGAGGCAGCAAGAGATTTGTCCTGGGGATCCA GAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACAGCAAGA CCTCCCTCTCTCTCTGCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCCCTGCACCCCTTC  $\tt CTGGGACACT{\bf ATG} TTGTTCTCCGCCCTCCTGCTGGAGGTGATTTGGATCCTGGCTGCAGATGGGG$ GTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCAGCCTCTTACCCTGAGTGT TGCTCTGCAGCCCACGGATATGACCAGCCTGGCACCGAGCCTTTGGACCTGCACAACAATGGCC ACACAGTGCAACTCTCTCTCCCCTCTACCCTGTATCTGGGTGGACTTCCCCGAAAATATGTAGCT GCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATCCCCAGGGGGGGTCAGAACACCAGATCAACAG TGAAGCCACATTTGCAGAGCTCCACATTGTACATTATGACTCTGATTCCTATGACAGCTTGAGTG AATATAGCTTATGAACACATTCTGAGTCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTC AGTGCCTCCCTTCAACCTAAGAGAGCTGCTCCCCAAACAGCTGGGGCAGTACTTCCGCTACAATG GCTCGCTCACAACTCCCCCTTGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAG ATTTCAATGGAACAGCTGGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAA GCTTCTGGTACAGAACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCA TGTCTCTGCCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAA  $\tt CCGAAAGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCA{\color{red}{TAA}} ATTCCTTCTCAGATAC$ CATGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTGG CCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAGGAAT GGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTAGGAGGAA ATGAGGAAATCGCTGTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGGGAAGTTTGGG ATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCTTTCCCTAGATATACTGCGGGATCT CTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATATATTTGGAAATTAAAG TTTCTGACTTT

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLPALQ
PHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQINSEAT
FAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQKTSVPP
FNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTLFSTEEEPSKLLV
QNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYFIARKIRKKRLENRKS
VVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

TGCCGCTGCCGCTGCTGTTGCTCCTGGCGGCGCCCTTGGGGACGGCAGTTCCCTGTGTC TCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGAATGTCCTACA ATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGTCCTGACAGCTCC AGAGAAGTGGAAGAGAATCCAGAAGACCTTCCTGTTTCCATGCAACAAATATACTCCAATCTGA ACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGTACACGTGGAGTCCTTCGTCCC CAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTGCCCCATATCTATTACCGTGTTTCTTTT TCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGGCAAAGAGAAAACACCCAGCAAATTT GATTTTGATTTATGGAAATGAATTTGACAAAAGATTCTTTGTGCCTGCTGAAAAAATCGTGATTA ACTTTATCACCCTCAATATCTCGGATGATTCTAAAATTTCTCATCAGGATATGAGTTTACTGGGA AAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGA GGAAGAGGGGTGAAACATTTAGGGTATGCTTCGCATTTGATGGAAATTTTTTTGTGACTCTGAAG AAAACACGGAAGGTACTTCTCTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAA ACAGTCATTGAATATGAATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGA TCTTGGGCCCGCAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCG CAGGAGCACACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACGACCCTGGTCGACTGGGA TCCCCAAACTGGCAGGCTGTGTATTCCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCG CCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGTTATA TGTGCAGATGGAAAACTGATGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAACAAGTGAG TCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGTTTGTCAGTGT GGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGTTGTTCTATGCAGAGAA 

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIY
SNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCARTLK
DQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRFFVPAEK
IVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHLGYASHLMEIFC
DSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVSTQGTLLESQA
ALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWDPQTGRLCIPSLSSFDQDS
EGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMEN

#### Important features:

Signal peptide:

amino acids 1-28

#### Transmembrane domain:

amino acids 140-163

#### N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCCCTCTGACAC  $\tt CTGGGAAGATGGCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACCTTGATC$ CAAGCCACCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGAC ACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGCCATGC GGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACCGTCCTGAAGCACATC ATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAAGCCCTCGGCCAATGACCA GGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCCCCTGGTCAAGACCA  ${\tt TCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATCCGCATGGACACCAGTGCAAGTGGC}$ CCCACCGCCTGGTCCTCAGTGACTGTGCCACCAGCCATGGGAGCCTGCGCATCCAACTGCTGTA TAAGCTCTCCTGGTGAACGCCTTAGCTAAGCAGGTCATGAACCTCCTAGTGCCATCCCTGC CTCCTGCAGCTGGTGAAGGTGCCCATTTCCCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTA TCCTGCCATCAAGGGTGACACCATTCAGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAA AGGTGACCAAGTGGTTCAATAACTCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCG TTCAGCCTCATCGTGAGTCAGGACGTGGTGAAAGCTGCAGTGGCTGCTGTGCTCTCCCAGAAGA ATTCATGGTCCTGTTGGACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGC TGATCAATGAAAAGGCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGAC ACTCCCGAGTTTTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTT TCCCTCCAGTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGT TTTACACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTG ATGAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCCA CTCCATCCTGCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTGAAGG CCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCCAGCCTCC  $\tt TTGTGGAAACCCAGCTCTCCTGTCTCCCAG\underline{TGA} \tt AGACTTGGATGGCAGCCATCAGGGAAGGCTGG$ CCTGTGAAAAA

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREK
PAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVE
FHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLVPSLPNL
VKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVT
KWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGLIN
EKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEASSEAQFYT
KGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVSLVKALG
FEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAGAGC  $\verb|TTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCC| \\ \textbf{ATC} \\ \texttt{GCCTCT}$ CTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGGCACACTGGTTGCCAT GCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAGCAGTTGGCTTCT CCAAGGGCCTCTGGATGGAATGTGCCACACACACAGGCATCACCCAGTGTGACATCTATAGC ACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGATGGTGACATCCAGTGCAAT CTCCTCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCACAGTCTTCTGCCAGGAATCCC GAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTCATCCTTGGAGGCCTCCTGGGATTC ATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGACTTCTACTCACCACTGGTGCCTGACAG CATGAAATTTGAGATTGGAGAGGCTCTTTACTTGGGCATTATTTCTTCCCTGTTCTCCCTGATAG CTGGAATCATCCTCTGCTTTTCCTGCTCATCCCAGAGAAATCGCTCCAACTACTACGATGCCTAC CAAGCCCAACCTCTTGCCACAAGGAGCTCTCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGA GTTCAATTCCTACAGCCTGACAGGGTATGTGTGAAGAACCAGGGGCCAGAGCTGGGGGGTGGCTG GGTCTGTGAAAAACAGTGGACAGCACCCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGT GTCAGAAGGTGCTGCTGAGGATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGG GCTAGTGTAACAGCATGCAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCC TCACCTTGCTGCTCCCTGCCCTAAGTCCCCAACCCTCAACTTGAAACCCCATTCCCTTAAGCCA GGACTCAGAGGATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACA GCTGGGGATGGGAAGGAGAAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTC CCTCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCCA GACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATG CAGGATGGGAGGACAGGCAGCCTGGGACATTTAAAAAAATA

MASLGLQLVGYILGLLGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQCD
IYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVFFILGGL
LGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCSSQRNRSNYY
DAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

CCCGCGTTCTCTTCCACCTTTCTCTTCTCCACCTTAGACCTCCCTTCCTGCCCTCCTTTCCT GCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGGGGTCTGTGG CCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACTTGGAGCCACAAGGCCTGATGT ACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCT GTCCACTGCCCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAACCTCACAC TCCCTCTGGACTCCGGGCCCCACCAAGTCCTGCCAGCACACGGGACCATGTACCAACACGGAG AGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGC ACAGAGGCCAGATCTACTGCGGCCTCACAACCTGCCCCGAACCAGGCTGCCCAGCACCCCTCCC ACTGCCAGACTCCTGCCAAGCCTGCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACA GTGTGCAGTCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAAG AGAGGCCCGGGCACCCCACCGCCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTT CAGACCCAAGGGAGCAGCACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCT GTGTGCATGGCGGAAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGC CCCTTGCCCTGCATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCC CACCGAGTACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGG ACAAAGCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTC CTCGTCCACACGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGGC CTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAGAGAG GTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGAAAGTCAG GAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCACGAAGGTCACT GGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAG ACATAACAAAGACC**TAA**CAGTTGCAGATATGAGCTGTATAATTGTTGTTATTATATAATAAA 

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSE
GAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELF
PSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVR
HPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKHKKACVHGGKTYS
HGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKCCKICPEDKADPGHSE
ISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDEETEAQRGEVPGPRPH
SQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPGAEGHGQSRQSDQDITKT

#### Signal peptide:

amino acids 1-25

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAGAGCCTCTCC TCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCCATGCTCATGCTCAGTTTGGTTCTGAGTC TCCTCAAGCTGGGATCAGGCCAGTGGCAGGTGTTTGGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAG GACGCAGCATTCTCCTGTTTCCTGTCTCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGG CCAGTTCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATC AAGGCAGGACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCTGGAAAACATTACT GTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCATCTGGGAGCT ACAGGTGTCAGCACTGGGCTCAGTTCCTCATTTCCATCACGGGATATGTTGATAGAGACATCCAGCTAC TCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTGGAAAGGTCCACAAGGACAGGATTTGTCC ACAGACTCCAGGACAAACAGAGACATGCATGGCCTGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAA CGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAG GAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTA TTTTTTGGCATTGTTGGACTGAAGATTTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGACTG GAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAG AGACGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTG CCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCTTCTCAGAGTTTCCAAGCAGGGAAACATTA CTGGGAGGTGGACGGGGACACÀATAAAAGGTGGCGCGTGGGAGTGTGCCGGGATGATGTGGACAGGAGGA AGGAGTACGTGACTTTGTCTCCCGATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTC ACATTAAATCCCCGTTTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTA AAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCTGC CCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAGAGACAAGCAACAG TGAGTCCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGGGTGAAATGTAGGATGAATCACATCCCACAT TCTTCTTTAGGGATATTAAGGTCTCTCCCAGATCCAAAGTCCCGCAGCAGCCGCCAAGGTGGCTTCCA CTGACATTACATTTAGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAG AACCGTCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGCTTAG ATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTAAAAAAA

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSSVVH
LYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAIWELQ
VSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISL
TVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIVGLKIFFSK
FQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGYWVLRLNGEHLYFT
LNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFEGLLRPYIEYPSYNEQNGT
PIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPRGEM

#### Signal peptide:

amino acids 1-17

#### Transmembrane domain:

amino acids 239-255

AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGACATGCTGCTGCTGCTGCCCCT GCTCTGGGGGAGGGAGGGCGGAAGGACAGCAAGTAAACTGCTGACGATGCAGAGTTCCGTGA CGGTGCAGGAAGGCCTGTGTGCCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCATGGCTGGATT TACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGACCAGGATGCTCC AGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACCGATTCCACCTCCTTG GGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGAAGAAGTGATGCGGGGAGA TACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAAACATCACCGGCTCTCTGTGAA TGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAGGCACCCTGGAGTCCGGCTGCCCC AGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAGGGGACACCCCCTATGATCTCCTGGATA GGGACCTCCGTGTCCCCCTGGACCCCTCCACCCCCGCTCCTCGGTGCTCACCCTCATCCCACA GCCCCAGGACCATGGCACCAGCCTCACCTGTCAGGTGACCTTCCCTGGGGCCAGCGTGACCACGA ACAAGACCGTCCATCTCAACGTGTCCTACCCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGA GACGGCACAGTATCCACAGTCTTGGGAAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCT GCGCCTGGTCTGTGCAGTTGATGCAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGA GAGGCCTGACCCTGTGCCCCTCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCAC CTGAGGGATGCAGCTGAATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCT GAACGTCTCCCTGCAGAGCAAAGCCACATCAGGAGTGACTCAGGGGGGTGGTCGGGGGAGCTGGAG CCACAGCCCTGGTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAA TCGGCAAGGCCAGCGGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTC AGCCTCTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCCAG CTTCTGCCCGCTCCTCAGTGGGGGAAGGAGAGCTCCAGTATGCATCCCTCAGCTTCCAGATGGTG AAGCCTTGGGACTCGCGGGGACAGGACGCCACTGACACCGAGTACTCGGAGATCAAGATCCACAG ATGAGAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGAAAGTCA GAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACTATGAATTATG TGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAATCCACACTGTGCCC TCCCTTTTATTTTTTAACTAAAAGACAGACAAATTCCTA

MLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWFREG
ANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKGSIKWNY
KHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVSPLDPSTTRS
SVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDGTVSTVLGNGSSL
SLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWVHLRDAAEFTCRAQNP
LGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRKKSARPAAGVGDTGIE
DANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYASLSFQMVKPWDSRGQEATDTE
YSEIKIHR

#### Signal peptide:

amino acids 1-15

#### Transmembrane domain:

amino acids 351-370

CCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACAATGAACCAACTCAGCTTCCTGCTGTTTC TCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCCTAGTGCATTTGA TGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCTGTGACATGACCTCTG GGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATGCGTGGGAAGTGCACGGTG GGCGATCGCTGGTCCAGTCAGCAGGGCAGCAAAGCAGACTACCCAGAGGGGGACGGCAACTGGGC CAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGCGATGACTACAAGAACCCTGGCTACT ACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTGCCCAATAAGTCCCCCATGCAGCACTGG AGAAACAGCTCCCTGCTGAGGTACCGCACGGACACTGGCTTCCTCCAGACACTGGGACATAATCT GTTTGGCATCTACCAGAAATATCCAGTGAAATATGGAGAAGGAAAGTGTTGGACTGACAACGGCC CGGTGATCCCTGTGGTCTATGATTTTGGCGACGCCCAGAAAACAGCATCTTATTACTCACCCTAT GGCCAGCGGAATTCACTGCGGGATTTGTTCAGTTCAGGGTATTTAATAACGAGAGAGCAGCCAA CGCCTTGTGTGCTGGAATGAGGGTCACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAG GATACTTTCCAGAGGCCAGTCCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATAT GGAACTCATGTTGGTTACAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCG  $\mathtt{T}_{ extbf{CA}}$ GAGTTTTGTGGGAGGGAACCCAGACCTCTCCCCAACCATGAGATCCCAAGGATGGAGAA CAACTTACCCAGTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGA AAAAAA

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENGVI
YQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFGSAEAAT
SDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGIYQKYPVKYG
EGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAANALCAGMRVTGCN
TEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLLFYR

#### Important features:

Signal peptide:

amino acids 1-16

N-glycosylation site.

amino acids 163-167

Glycosaminoglycan attachment sites.

amino acids 74-78, 289-293

N-myristoylation sites.

amino acids 76-82, 115-121, 124-130, 253-259, 292-298

 $\label{thm:convergence} MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGLFA\\ VELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVTEMALFV\\ TVFGLKKKPF$ 

#### Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

TCGCTGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGGATGATG GTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCCCGGGTGCCT CGGAAGCGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCTCCTAGGGCTGCT GGCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCAACCGCCCGAACCACACCCCC CACCCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGCGACTTCTACTCCAACATCAAGACGGTG GCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAATGGGACCTTCAGCGTCCACTT CCAACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTGCCCCCAGTAAAGCTGTAG AGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAGGCCTCCAAAATCTTCAACTGCCGGATG GAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTCGCTTTGCACCCACGACCCAGCCAAGATCTG CTCCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTG TCTACATCGCCTTCTACAGCACGGACTATCGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTAC CATAGTGATACCCCTACTACCCATCTGGGTGACCCGGGGCAGGCCACAGAGGCCAGGCCAGGGC TGGAAGGACAGGCCTGCCCATGCAGGAGACCATCTGGACACCGGGCAGGGAAGGGGTTGGGCCTC AGGCAGGGGGGGGGGGGAGACGAGAGATGCCAAGTGGGGCCAGGGCCAAGTCTCAAGTGGCAG AGAAAGGGTCCCAAGTGCTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGG AGGAGGAGTGGCTCTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGG TCCCCGAGGCCTGTGGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGC GCCTGTCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGG GCCAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCGCCCTTGAGCCCCTTGTCGTGTGCTGAGCATGG CATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTCCAGC CAGGCCACCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATTGCTGATG GCACACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCCACAGCCCATC CGCGTGCTGTGTCCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAGCATCCATGTCCCG GAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCCCGGATCTGGATGGCGC CGCCCTCTCAGCAGCGGGCACGGGTGGGGCGGGGCCGGGCCGCAGAGCATGTGCTGGATCTGTTC TGTGTGTCTGTCGGGTGGGGGGGGGGGGGGAGTCTTGTGAAACCGCTGATTGCTGACTTT TGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTTGCCCCGGGGCA

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

**2-oxo** acid dehydrogenases acyltransferase amino acids 61-71

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDG PTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGV FSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKWGILLIVLLT HLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKNFLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTCGTG GACCCAAAGGTAGCAATCTGAAAC**ATG**AGGAGTACGATTCTACTGTTTTGTCTTCTAGGATCAAC GAACACTACCAAACCACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTGATACCATTAACA CAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGGAATGACACCTGGTAC CCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAACTGCACCCACATGTGTTAC CAATTTTTGTCACACAACTTGGAGCCCAGGGCACTATCCTAAGCTCAGAGGAATTGCCACAAATC TAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAGGAGCAGGTGTAAATCCTGCCACCCAGG GAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGCACAGATGACGACTTTGCAGTGACCACCCT GCAGGCATCCAAAGGAGCACACATGCCATCGAGGAAGCCACCACAGAATCAGCAAATGGAATTCA GTAAGCTGTTTCAAATTTTTTCAACTAAGCTGCCTCGAATTTGGTGATACATGTGAATCTTTATC TACCTGAAAATATTCTTGAAATTTCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAA CAATAATTCAATGGATAAATCTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATAT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

 $\label{thm:mastillfcllgstrslpqlkpalglpptklapdqgtlpnqqqsnqvfpslslipltqm $$ LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE $$ LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSGTDDDFAVTTPAGIQRSTHAIEEATTESANGIQ$ 

#### Signal peptide:

amino acids 1-16

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGCTCT CTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGGGCCTGTCCTGACC**ATG** GTCCCTGCCTGGCTGTGCTTTTGTGTCTCCGTCCCCAGGCTCTCCCCAAGGCCCAGCCTGC AGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACCTGACCAAGTTGC CGCTGCCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCAGGCAAGGCAACTGAG GGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAGGGCCCTGGACCGAGAGGA GCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATGGACATGTCTTGTGGGGTCCAC AGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTGCCCCATTTCTCTCAAGCCATCTAC GGATGAGCCAGGCACACTCGGATCTTCGATTCCACATCCTGAGCCAGGCTCCAGCCCAGC CTTCCCCAGACATGTTCCAGCTGGAGCCTCGGCTGGGGGCTCTGGCCCTCAGCCCCAAGGGGAGC ACCAGCCTTGACCACGCCCTGGAGAGGACCTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGA CCAGGCCTCAGGCCACCAGGCCACTGCCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGT CCCTAGAGCCTATCCACCTGGCAGAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTA CACTGGAGTGGGGGTGATGTGCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAA TGCAGAGGGAAACCTCTACGTGACCAGAGAGCTGGACAGAGAAGCCCAGGCTGAGTACCTGCTCC AGGTGCGGGCTCAGAATTCCCATGGCGAGGACTATGCGGCCCCTCTGGAGCTGCACGTGCTGGTG ATGGATGAGAATGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCT CAGTCCACCAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCAGATGCCCCCGGCTCCCCCA ATTCCCACGTTGTGTATCAGCTCCTGAGCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTC CAGGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACAT CCTGCTTCTGGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGTGAAG TCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGATTGGGCCT ATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCATTGATGCTGA CCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACAGAAGGGACTTTTG GCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAAGAACCTCAGTTATGAG GCAGCTCCAAGTCATGAGGTGGTGGTGGTGCAGAGTGTGGCGAAGCTGGTGGGGCCAGGCCC AGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGAGTGATGCCACCCCCAAGTTGG ACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCCAGCCGGCTCTTTCCTGCTGACCATC CTGCATTGAGAAATTCTCCGGGGAGGTGCACACCGCCCAGTCCCTGCAGGGCGCCCAGCCTGGGG ACACCTACACGGTGCTTGTGGAGGCCCAGGATACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAA TACCTCTGCACACCCCGCCAAGACCATGGCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCT GGCCAGTGGGCACGGTCCCTACAGCTTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGC GCCTCCAGACTCTCAATGGTTCCCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGAGCCACGT GAACACATAATCCCCGTGGTGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGAT CGTGTGTCGCTGCAACGTGGAGGGCCAGTGCATGCCCA CGAAGCTGTCGGCAGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTC ATTTTCACCCACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGCAGCGTGCCCCT GAAGGCGACTGTC<u>TGA</u>ATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAG TCTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAACTT TATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCAGAGAA 

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSGKAT
EGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVPHFSQAI
YRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRLGALALSPKG
STSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAENLKVLYPHHMAQ
VHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQNSHGEDYAAPLELHVL
VMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSHVVYQLLSPEPEDGVEGRA
FQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCEVEVAVTDINDHAPEFITSQIG
PISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTEGTFGLDWEPDSGHVRLRLCKNLSY
EAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERVMPPPKLDQESYEASVPISAPAGSFLLT
IQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTAQSLQGAQPGDTYTVLVEAQDTALTLAPVPS
QYLCTPRQDHGLIVSGPSKDPDLASGHGPYSFTLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEP
REHIIPVVVSHNAQMWQLLVRVIVCRCNVEGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLI
LIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGCCTG AGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAGCCTTTA TCTCTTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAGTCTTGGTAC  ${\tt ATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAG} \underline{{\tt ATG}} {\tt AAGATGCAGAAAGGAAATG}$ TTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCCAATGAGACTAGCACC TCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACCCAACTCTGGGTCCAG TGTGACCTCCAGTGGGGTCAGCACAGCCACCATCTCAGGGTCCAGCGTGACCTCCAATGGGGTCA GCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGGATCAGCACAGCCCAACTCTGAG TTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGG GGCCAGCACCACCCAACTCTGAGTCCAGCACCCCTCCAGTGGGGCCAGCACAGTCACCAACT CTGGGTCCAGTGTGACCTCCAGTGGAGCCAGCACTGCCACCAACTCTGAGTCCAGCACAGTGTCC AGTAGGGCCAGCACCGACCCTGAGTCTAGCACACTCTCCAGTGGGGCCAGCACACCAC CAACTCTGACTCCAGCACCACCTCCAGTGGGGCTAGCACAGCCCAACTCTGAGTCCAGCACAA CCTCCAGTGGGGCCAGCACCCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACT GCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCAGCAACCCCAACTCTGAGTCCAG AACGACCTCCAATGGGGCTGGCACAGCCACCAACTCTGAGTCCAGCACCTCCAGTGGGGCCA GCACAGCCACCAACTCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAG TCCAGCACGACCTCCAGTGGGCCAGCACGCCCACCACTCTGAGTCCAGCACCACCTCCAGTGG GGCTAGCACCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCACCAACT CTGAGTCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCC AGTGGGGCCAACACACCCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCAACACACCAC CAACTCTGAGTCCAGCACTGTCCAGTGGGGCCCAGCACTGCCAACTCTGAGTCCAGCACAA CCTCCAGTGGGGTCAGCACCACCCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCTAGCACA GCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACAGCCCAACTCTGAGTCTAG CACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACCTCCAGTGGGGCCA ACACAGCCACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAACAGCAGCTCTGACTGGA GCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCGGCCGTGGGGCTCTTTGCTGGGC TCTTCTTCTGTGTGAGAAACAGCCTGTCCCTGAGAAACACCTTTAACACAGCTGTCTACCACCCT CATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAGGGAATCATGGAGCCCCCCACAGGCCCAG GTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTATCATCGATAGCCATGGAGATGAGCGGGAGGA AATCTTGAAGAAGGTATTCCTCACCTTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATAT CCCCGGGGTGGGTATCTAGCTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTC ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATISGS
SVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSESSTPSS
GASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSSTTSSGASTA
TNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTTSNGAGTATNSES
STTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTATNSDSSTTSS
GAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNSESSTVSSGASTA
TNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEASTATNSESSTVSSGISTVTNSES
STTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGSLVPWEIFLITLVSVVA
AVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGPGPGGNHGAPHRPRWSPNWFWRRPVSSI
AMEMSGRNSGP

#### Signal peptide:

amino acids 1-20

#### Transmembrane domain:

amino acids 510-532

GGCCGGACGCCTCCGCGTTACGGGATGAATTAACGGCGGGGTTCCGCACGGAGGTTGTGACCCCTA CGGAGCCCAGCTTGCCCACGCACCCCACTCGGCGTCGCGCGTGCCCTGCTTGTCACAGGTG GGAGGCTGGAACTATCAGGCTGAAAAACAGAGTGGGTACTCTCTTCTGGGAAGCTGGCAACAAAT GGATGATGTGATATATCCATTCCAGGGGAAGGGAAATTGTGGTGCTTCTGAACCCATGGTCAATT AACGAGGCAGTTTCTAGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAAGCTTTGGAATCAT GGTGTCATGGAAAGGGATTTACTTTATACTGACTCTGTTTTGGGGAAGCTTTTTTGGAAGCATTT TCATGCTGAGTCCCTTTTTACCTTTGATGTTTGTAAACCCATCTTGGTATCGCTGGATCAACAAC CGCCTTGTGGCAACATGGCTCACCCTACCTGTGGCATTATTGGAGACCATGTTTGGTGTAAAAGT GATTATAACTGGGGATGCATTTGTTCCTGGAGAAAGAAGTGTCATTATCATGAACCATCGGACAA GAATGGACTGGATGTTCCTGTGGAATTGCCTGATGCGATATAGCTACCTCAGATTGGAGAAAATT ATATTCACGAACCACTTCAACTCCTCATATTCCCAGAAGGGACTGATCTCACAGAAAACAGCAAG TCTCGAAGTAATGCATTTGCTGAAAAAAATGGACTTCAGAAATATGAATATGTTTTACATCCAAG AACTACAGGCTTTACTTTTGTGGTAGACCGTCTAAGAGAAGGTAAGAACCTTGATGCTGTCCATG ATATCACTGTGGCGTATCCTCACAACATTCCTCAATCAGAGAAGCACCTCCTCCAAGGAGACTTT CCCAGGGAAATCCACTTTCACGTCCACCGGTATCCAATAGACACCCTCCCCACATCCAAGGAGGA CCTTCAACTCTGGTGCCACAAACGGTGGGAAGAGAAGAAGAGAGGCTGCGTTCCTTCTATCAAG GGGAGAAGAATTTTTATTTTACCGGACAGAGTGTCATTCCACCTTGCAAGTCTGAACTCAGGGTC CTTGTGGTCAAATTGCTCTCTATACTGTATTGGACCCTGTTCAGCCCTGCAATGTGCCTACTCAT ATATTTGTACAGTCTTGTTAAGTGGTATTTTATAATCACCATTGTAATCTTTGTGCTGCAAGAGA GAATATTTGGTGGACTGGAGATCATAGAACTTGCATGTTACCGACTTTTACACAAACAGCCACAT TTAAATTCAAAGAAAAATGAGTAAGATTATAAGGTTTGCCATGTGAAAACCTAGAGCATATTTTG GAAATGTTCTAAACCTTTCTAAGCTCAGATGCATTTTTTGCATGACTATGTCGAATATTTCTTACT GCCATCATTATTTGTTAAAGATATTTTGCACTTAATTTTGTGGGAAAAATATTGCTACAATTTTT TTTAATCTCTGAATGTAATTTCGATACTGTGTACATAGCAGGGAGTGATCGGGGTGAAATAACTT GGGCCAGAATATTATTAAACAATCATCAGGCTTTTAAA

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSIFMLSP
FLPLMFVNPSWYRWINNRLVATWLTLPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTRMDWM
FLWNCLMRYSYLRLEKICLKASLKGVPGFGWAMQAAAYIFIHRKWKDDKSHFEDMIDYFCDIHEP
LQLLIFPEGTDLTENSKSRSNAFAEKNGLQKYEYVLHPRTTGFTFVVDRLREGKNLDAVHDITVA
YPHNIPQSEKHLLQGDFPREIHFHVHRYPIDTLPTSKEDLQLWCHKRWEEKEERLRSFYQGEKNF
YFTGQSVIPPCKSELRVLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITIVIFVLQERIFGG
LEIIELACYRLLHKQPHLNSKKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTGACC TCCAAATCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACAGGAATA  ${\tt TCC} {\tt ATG} {\tt GCTTTTGTGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACAGTGGCAAGT$ CACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGAGGACGCCGTGTTCTCCTGCTCCTCT TTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAGTTCCATGCTGTGGTC CACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACAGTATCGAGGGAGAACTGA GTTTGTGAAGGACTCCATTGCAGGGGGGGCGTGTCTCTCTAAGGCTAAAAAAACATCACTCCCTCGG ACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTACGATGAGGAGGCCACCTGGGAGCTG CGGGTGGCAGCACTGGGCTCACTTCCTCTCATTTCCATCGTGGGATATGTTGACGGAGGTATCCA GTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGCCCACAGCCAAGTGGAAAGGTCCACAAGGAC AGGATTTGTCTTCAGACTCCAGAGCAAATGCAGATGGGTACAGCCTGTATGATGTGGAGATCTCC GGTGGAATCCAAGGTATTGATAGGAGAGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTA TTTTACTCGGGTTACTCTGTGGTGCCCTGTGTGGTGTTGTCATGGGGATGATAATTGTTTCTTC AAATCCAAAGGGAAAATCCAGGCGGAACTGGACTGGAGAAGAAAGCACGGACAGGCAGAATTGAG AGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCG TTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGA TTTACAAGGAAGAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGAGACATTACTGGGAGGTGGA CGTGGGACAAAATGTAGGGTGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGAAGAACA ATGTGACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTC ACATTCAATCCCCATTTTATCAGCCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCCT TGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGAGGAAAAG GGGACTCCCATATTCATATGTCCAGTGTCCTGGGGA**TGA**GACAGAGAAGACCCTGCTTAAAGGGC CCCACACCACAGACCCAGACACAGCCAAGGGAGAGTGCTCCCGACAGGTGGCCCCAGCTTCCTCT CCGGAGCCTGCGCACAGAGAGTCACGCCCCCCCCTCTCTTTAGGGAGCTGAGGTTCTTCTGCCC TGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGGATTGGCCTGACCCTGTGGGAG TCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCACATTAGGTTTAGTTTTGTGAAAA CTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCCCAGGCTCCTCATTTGCTAGTCACGG ACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGACAACGAATGTGAATCATGCTTGCAGGTT TGAGGGCACAGTGTTTGCTAATGATGTGTTTTTATATTATACATTTTCCCACCATAAACTCTGTT TGCTTATTCCACATTAATTTACTTTTCTCTATACCAAATCACCCATGGAATAGTTATTGAACACC TGCTTTGTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCAT CTCATTAACACAGACACAAAATTCTAAATAAAATTTTAACAAATTAAACTAAACAATATTTTA A A GATGATATA A A CTACTCAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAAT

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAVVH
LYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEATWELR
VAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGYSLYDVEISI
IVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALCGVVMGMIIVFFK
SKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLSPNNGYWVLRLTTEHLYFT
FNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLLRPYIQHAMYDEEKG
TPIFICPVSWG

#### Signal peptide:

amino acids 1-17

#### Transmembrane domains:

amino acids 131-150, 235-259

CCTTCACAGGACTCTTCATTGCTGGTTGGCA<u>ATG</u>ATGTATCGGCCAGATGTGGTGAGGGCTAGGAAAAGAG TTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTCCTGGCAGTGTGCATTGGA CTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAATTACTATAGCACATTGTCATTTACAAC TGACAAACTATATGCTGAGTTTGGCAGAGAGGCTTCTAACAATTTTACAGAAATGAGCCAGAGACTTGAAT CAATGGTGAAAAATGCATTTTATAAATCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTC AGTCAACAGAAGCATGGAGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGA AACTGTAGATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTAG ATCCTCACTCAGTTAAAATTAAAAAATCAACAAGACAGAAACAGCTATCTAAACCATTGCTGCGGA ACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAGAAGTAGAAGAGGGTGAATG TTGTGAGTGCTCACTGTTTTACAACATATAAGAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACA ATAAAACCTTCGAAAATGAAACGGGGTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACA TGACTATGATATTTCTCTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTC TCCCTGATGCATCCTATGAGTTTCAACCAGGTGATGTTTTGTGACAGGATTTGGAGCACTGAAAAAT GATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACTTGCAATGAACC TCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTTAGAAGGAAAAACAGATGCAT GCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTAGAGATATCTGGTACCTTGCTGGAATAGTG AGCTGGGGAGATGAATGTGCGAAACCCAACAAGCCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTG GGTGTGGAGGCCATTTTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCA ATAAACTGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTGCCA GATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATAATACAATATTAC ATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTGTCAGAATTTTGACTTGTTGACATAAATTTGTAAT GCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTCAGCTCCTCTCATTTCAGCAAATATCCATTT TCAAGGTGCAGAACAAGGAGTGAAAGAAAATATAAGAAGAAAAAATCCCCTACATTTTATTGGCACAGAA AAGTATTAGGTGTTTTTCTTAGTGGAATATTAGAAATGATCATTATTCATTATGAAAGGTCAAGCAAAGACA TTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTDKLY
AEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICRFHSTED
PETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQSLRIVGG
TEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIKPSKMKRGL
RRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDVMFVTGFGALKNDGYS
QNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGDSGGPLVSSDARDIWYLAG
IVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

#### Transmembrane domain:

amino acids 21-40 (type II)

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCCCTG GCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGCTTCTCCCTT ACGGGGCTCACA<u>ATG</u>GCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCCTGCTCTACGCCCTCAA TCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGATGAGGGACTACCTAA GTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCATTGTGGGGATGTTAGGATATTG TGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACTTTGGAAGTTTGCTTGTCATTTTCT GTGTAGAACTGGCTTGTGGCGTTTGGACATATGAACAGGAACTTATGGTTCCAGTACAATGGTCA GATATGGTCACTTTGAAAGCCAGGATGACAAATTATGGATTACCTAGATATCGGTGGCTTACTCA AAATGACAGAGTGGACTGGCCCCCAGATTCCTGCTGTTTAGAGAATTCCCAGGATGTTCCAAA CAGGCCCACCAGGAAGATCTCAGTGACCTTTATCAAGAGGGTTGTGGGAAGAAAATGTATTCCTT TTTGAGAGGAACCAACACTGCAGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAA TCCTGGCCATGATTCTCACCATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGG ACAGACCAAATGATGTCCTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACT GTTGAAACCAAGCCTGTCAAGAATCTTTGAACACACTCCATGGCAAACAGCTTTAATACACACT TTGAGATGGAGGAGTTATAAAAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACT TGTGAATTTTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAA TAACACCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTC ACCACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGCC TGTGTATGACTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTCCGCA TCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTTCTACCAA CTAGTATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATAACTTTTATTA CTCAGCGATCTATTCTTCTGATGCTAAATAAATTATATATCAGAAAACTTTCAATATTGGTGACT ACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAAGAGCAAGCTAACACAT TGTCTTAAGCTGATCAGGGATTTTTTGTATATAAGTCTGTGTTAAATCTGTATAATTCAGTCGAT TTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAAATTTGTCCTGTATAGCATCATT ATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGTCCTGGGCTTATATTACACATATAAC TGTTATTTAAATACTTAACCACTAATTTTGAAAATTACCAGTGTGATACATAGGAATCATTATTC AGAATGTAGTCTGGTCTTTAGGAAGTATTAATAAGAAAATTTGCACATAACTTAGTTGATTCAGA AAGGACTTGTATGCTGTTTTTCTCCCAAATGAAGACTCTTTTTGACACTAAACACTTTTTAAAAA GCTTATCTTTGCCTTCTCCAAACAAGAAGCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAA TAGTGTTCTTTTCTCCAGAAAAATGCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATT CTTTGTTTTATTTCACTGATTAATATACTGTGGCAAATTACACAGATTATTAAATTTTTTTACAA GAGTATAGTATATTTGAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTAT 

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPVVHP
VMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWSDMVT
LKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREFPGCSKQAHQ
EDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWALYYDRREPGTDQM
MSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

#### Signal peptide:

amino acids 1-33

#### Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

 ${\tt CCAGTATTAAGAGGATTTTCCAGTGTTTCTGGCAGTTGGTCCAGAAGG{\tt ATG}{\tt CCTCCATTCCTGCTTCTCACCTG}}$ CCTGGAGGAACACTGACCACCAGTTGGATGAGTCTCAAGGTCCTCTCTATGTGACAACCATGTGAATGGGGAG TGGTACCACTTCACGGGCATGGCGGGAGATGCCATGCCTACCTTCTGCATACCAGAAAACCACTGTGGAACCCA  $\tt CGCACCTGTCTGGCTCAATGGCAGCCACCCCCTAGAAGGCGACGGCATTGTGCAACGCCAGGCTTGTGCCAGCT$ TCAATGGGAACTGCTGTCTCTGGAACACCACGGTGGAAGTCAAGGCTTGCCCTGGAGGCTACTATGTGTATCGT CTGACCAAGCCCAGCGTCTGCTTCCACGTCTACTGTGGTCATTTTTATGACATCTGCGACGAGGACTGCCATGG CAGCTGCTCAGATACCAGCGAGTGCACATGCGCTCCAGGAACTGTGCTAGGCCCTGACAGGCAGACATGCTTTG ATGAAAATGAATGTGAGCAAAACAACGGTGGCTGCAGTGAGATCTGTGTGAACCTCAAAAACTCCTACCGCTGT GAGTGTGGGGTTTGGCCGTGTGCTAAGAAGTGATGGCAAGACTTGTGAAGACGTTGAAGGATGCCACAATAACAA TGGTGGCTGCAGCCACTCTTGCCTTGGATCTGAGAAAGGCTACCAGTGTGAATGTCCCCGGGGCCTGGTGCTGT CTGGTTGGTGGCCTGGAGCTCTTCCTGACCAACACTCCTGCCGAGGAGTGTCCAACGGCACCCATGTCAACAT CCTCTTCTCTCAAGACATGTGGTACAGTGGTCGATGTGGTGAATGACAAGATTGTGGCCAGCAACCTCGTGA CAGGTCTACCCAAGCAGACCCCGGGGAGCAGCGGGGACTTCATCATCCGAACCAGCAAGCTGATCCCGGTG ACCTGCGAGTTTCCACGCCTGTACACCATTTCTGAAGGATACGTTCCCAACCTTCGAAACTCCCCACTGGAAAT GGGAAGCTCTGCCCACCCTCAAGCTTCGTGACTCCCTCTACTTTGGCATTGAGCCCGTGGTGCACGTGAGCGGC TTGGAAAGCTTGGTGGAGAGCTGCTTTGCCACCCCCACCTCCAAGATCGACGAGGTCCTGAAATACTACCTCAT CCGGGATGGCTGTGTTTCAGATGACTCGGTAAAGCAGTACACATCCCGGGATCACCTAGCAAAGCACTTCCAGG TCCCTGTCTCAAGTTTGTGGGCAAAGACCACAAGGAAGTGTTTCTGCACTGCCGGGTTCTTGTCTGTGGAGTG TTGGACGAGCGTTCCCGCTGTGCCCAGGGTTGCCACCGGCGAATGCGTCGTGGGGCAGGAGGAGGAGGACTCAGC CGGTCTACAGGGCCAGACGCTAACAGGCGGCCCGATCCGCATCGACTGGGAGGAC<u>TAG</u>TTCGTAGCCATACCTC GAGTCCCTGCATTGGACGGCTCTGCTCTTTGGAGCTTCTCCCCCCACCGCCCTCTAAGAACATCTGCCAACAGC CAGGTCACAGCACTGCTGAACAATGTGGCCTGGGTGGGGTTTCATCTTTCTAGGGTTGAAAACTAAACTGTCCA CCCAGAAAGACACTCACCCCATTTCCTTCTTTCCTACACTTAAATACCTCGTGTATGGTGCAATCAGAC CACAAAATCAGAAGCTGGGTATAATATTTCAAGTTACAAACCCTAGAAAAATTAAACAGTTACTGAAATTATGA CTTAAATACCCAATGACTCCTTAAATATGTAAATTATAGTTATACCTTGAAATTCAATTCAAATGCAGACTAA TTATAGGGAATTTGGAAGTGTATCAATAAAACAGTATATAATTTT

MPPFLLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFTGMAGDAMP
TFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCCLWNTTVEVKACPGGYYVYRLTKPSVCFHV
YCGHFYDICDEDCHGSCSDTSECTCAPGTVLGPDRQTCFDENECEQNNGGCSEICVNLKNSYRCECGVGRV
LRSDGKTCEDVEGCHNNNGGCSHSCLGSEKGYQCECPRGLVLSEDNHTCQVPVLCKSNAIEVNIPRELVGG
LELFLTNTSCRGVSNGTHVNILFSLKTCGTVVDVVNDKIVASNLVTGLPKQTPGSSGDFIIRTSKLLIPVT
CEFPRLYTISEGYVPNLRNSPLEIMSRNHGIFPFTLEIFKDNEFEEPYREALPTLKLRDSLYFGIEPVVHV
SGLESLVESCFATPTSKIDEVLKYYLIRDGCVSDDSVKQYTSRDHLAKHFQVPVFKFVGKDHKEVFLHCRV
LVCGVLDERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

#### Important features of the protein:

#### Signal peptide:

amino acids 1-16

#### N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

#### Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

### N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306, 522-528, 531-537

### Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

### ZP domain proteins.

amino acids 431-457

### Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

GAGAGAGCAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCCTGCACTCGG  $\tt CCTGCTGCGTTGACAATCTCAGCTCCAGGCTACAGGGAGACCGGGAGGATCACAGAGCCAGCATGT$ TACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCC ATGGAGACCTTCAGAAAGGTGGGGATCCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGT GGTTGTCCTCATCAAGGTGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGA GGAAGCAGCTGTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTC CCCGAAGGGCCTGCAGTCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCAC AGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTAGGCAGATGG GCTACAGCAGAGCTGTGGAGATTTGGCCCAGACCAGGATCTTGGATGTTGTTGAAATCACAGAAAACAGCCAG GAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTCTCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTG TGGGAAGAGCCTGAAGACCCCCGTGTGGTGGGTGGGGAGGAGGGCCTCTGTGGATTCTTGGCCTTGGCAGG GCCCACTGCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGCAG CTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAAAGACAATGACA GATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGATGGGGCTTTACGAAGCAGAATGGAGGGAA GATGTCTGACATACTGCTGCAGGCGTCAGTCCAGGTCATTGACAGCACACGGTGCAATGCAGACGATGCGT ACCAGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGT GACAGTGGTGGGCCCCTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGG CTGCGGGGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCT GGAAGGCTGAGCTG<u>TAA</u>TGCTGCCCCTTTGCAGTGCTGGGAGCCGCTTCCTTCCTGCCCTGCCCACCT GGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCAT TTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCGCCCAGAGGAAGTCA GCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACAGCCCACTGAACAAGGTCT  ${\tt CAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTGCTGAATGGAAGCAGGCTGTCTTGTAAAAGCC}$ CAGATCACTGTGGGCTGGAGAGGAGAAGGAAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAA GCCTACTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCT AAAA

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYFLCG
QPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWFSACFDN
FTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSLHCLACGKSL
KTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDVFNWKVRAGSDKL
GSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWG
FTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDTCQGDSGGPLMYQS
DQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

#### Transmembrane domain:

amino acids 32-53 (typeII)

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGATTA TAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCACAGGAGT TGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGTCACTGTGGCTCT GGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCACACCGTCCCCTCGAAG  $\tt CCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTCACCAACTGTCTCACGTCT$ GGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTAGCTGCGGCTTTCAAGGTGGGC  $\tt CTTGCCCTGGCCGTAGAAGGGGAT{GA}CAAGCCCGAAGATTTCATAGGCGATGGCTCCCACTGCCC$ AGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGGCCAGGACGGCCGTGGACACCTGCTCA GAAGCAGTGGGTGAGACATCACGCTGCCCGCCCATCTAACCTTTTCATGTCCTGCACATCACCTG CAGAAGGGGTCTGCTTAGACCACCTGGTTTATGTGACAGGACTTGCATTCTCCTGGAACATGAGG GAACGCCGGAGGAAAGCAAAGTGGCAGGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATG GAGGTGTTGGGTTATCACAAGGCATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGAAGGGCTG CCGATGGCGCATGACACCTCGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGAT CCACGTACCAGCTGCTGAAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAA CTCCTTCCCTCTGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGG GGCTAATGGCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCT GTGCGAACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGG CTCAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGTT CAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAATCCA AACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATGCCAACAT TTTGGGAGGCCGAGGCGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGG TGAAACCCCTGTCTCTACTAAAAATACAAAAAAACTAGCCAGGCATGGTGGTGTGTGCCTGTATC CCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGTGAAGGAGGCTGAGACA TGGTTATTTGTAA

 ${\tt MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTASPC} \\ {\tt WPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRRD}$ 

Signal peptide:

amino acids 1-15

AGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCCAAGAAA ATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATCCTGGCCCTAACTCTAATTGTCCT GTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACATGGAGCACACTT TCTACAGCAATGGAGAGAAGAAGATTTACATGGAAATTGATCCTGTGACCAGAACTGAAATA TTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTTTAAAAACGGATACACTGG CATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGATTAAAGTGATTCCTGAATTTT ATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGATTTTCTTAAAAATTCCAAAATTCTGGA GATTTGTGATAACGTGACCATGTATTGGATCAATCCCACTCTAATATCAGTTTCTGAGTTACAAG AGAACTTCCAATAAATGACTATACTGAAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAG GTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTA GGCTACTACCCATATCCATACTGCTACCAAGGAGGACGAGTCATCTGTCGTGTCATCATGCCTTG TAACTGGTGGGTGGCCCGCATGCTGGGGGGGGTCTAATAGGAGGTTTGAGCTCAAATGCTTAAAC TGCTGGCAACATATAATAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCT GGTAGCCAGCTCTCCAGAATTACTTGTAGGTAATTCCTCTTCATGTTCTAATAAACTTCTACA ТТАТСАССААААААААААААААААА

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAYDME HTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQIKVIP EFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPTLISVSE LQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDYTENGIEFDPMLD ERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWVARMLGRV

#### Important features of the protein:

### Signal peptide:

amino acids 1-40

#### Transmembrane domain:

amino acids 25-47 (type II)

### N-glycosylation sites.

amino acids 94-97, 180-183

### Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

#### N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

### Microbodies C-terminal targeting signal.

amino acids 315-317

### Cytochrome c family heme-binding site signature.

amino acids 9-14

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCGCAGGCGGCA  ${\tt GGGCGGCCAGGATC} {\tt ATG} {\tt TCCACCACCACATGCCAAGTGGTGGCGTTCCTCTGTCCATCCTGGGGCT$  ${\tt GGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCCAGGACCTGTACGACAACCCCGTCACCT}$ CCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGCGTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCC GGGTGCCATTGGCCTCCTGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTG CCAAAGCCAACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGTG TCTGTGTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCGGCATGGGTGG GATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTGGGCTGGGTCGCTGGAGGCC TCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGGCCTGCCACAGAAGAAACCAACTACAAA GCCGTTTCTTATCATGCCTCAGGCCACAGTGTTGCCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTT TGGGTCCAACACCAAAAACAAGAAGATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATC CTTCCAAGCACGACTATGTGTAATGCTCTAAGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTCA CCCAAAAACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGCCT CGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCCACCATAAAACA GCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTATTTCTTTTTTAAATATAACT TTCCTCCTAGTCAATAAACCCATTGATGATCTATTTCCCAGCTTATCCCCAAGAAAACTTTTGAAAGGAAA GAGTAGACCCAAAGATGTTATTTTCTGCTGTTTTGAATTTTTGTCTCCCCACCCCCAACTTGGCTAGTAATAA ACACTTACTGAAGAAGAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTT ACACTGTGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTGCTG TTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAGTCCTCTTTCTGT AATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAGAAG GAAATGAAAAATAATTGCTTTGACATTGTCTATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCC TCGAGACTAGCCTGGGCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCA TGGTGGCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGGAGGT AATAAAAATAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAAACTAATTCTTTAA

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTECRP
YFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIMFIVSGL
CAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGGVMMCIA
CRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTEDEVQSYPSKHDY
V

### Signal peptide:

amino acids 1-23

### Transmembrane domains:

amino acids 81-100, 121-141, 173-194

GGAAAAACTGTTCTCTTCTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCGGAGTCC  ${\tt AGCTGGCTAAAACTCATCCCAGAGGATA} {\tt ATG} {\tt CAACCCATGCCTTAGAAATCGCTGGGCTGTTTCTTG}$ GTGGTGTTGGAATGGTGGCCACAGTGGCTGTCACTGTCATGCCTCAGTGGAGAGTGTCGGCCTTCATT CATCAGGATGCAGATGCAAAATCTATGATTCCCTGCTGGCTCTTTCTCCGGACCTACAGGCAGCCAGAG GACTGATGTGTGCTGCTTCCGTGATGTCCTTCTTGGCTTTCATGATGGCCATCCTTGGCATGAAATGC ACCAGGTGCACGGGGGACAATGAGAAGGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCAT CATCACGGGCATGGTGGTCCTCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATA ACTCAATAGTGAATGTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCA CTGGTGCTGATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTGTTGCAACGAAAAGAGCAGTAGCTA CAGATACTCGATACCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCGAGCG TCTACTCCAGAAGTCAGTATGTGTAGTTGTGTATGTTTTTTTAACTTTACTATAAAGCCATGCAAATG ACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTACTGTTCTTAACTGCCT AATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAAGCTATTTCAGCAGAATGAGATA TTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAATTTGTTTTCTAAGGTGGTTCAAGCATCTA CTCTTTTTATCATTTACTTCAAAATGACATTGCTAAAGACTGCATTATTTTACTACTGTAATTTCTCC ACGACATAGCATTATGTACATAGATGAGTGTAACATTTATATCTCACATAGAGACATGCTTATATGGT ATCATGGATAGGGTTGAAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCA TTTATAATGAAGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATAT CTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCAAACTGCTT TTCCAGGGCTATACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAAGTGATGGTTTTAGGAAAGTG TGTCTTGGTTTCATTTGCTTACCAAAAAAACAACAACAAAAAAAGTTGTCCTTTGAGAACTTCACCT CCATTTCTGTTTAGTTTACTAAAATCTGTAAATACTGTATTTTTCTGTTTATTCCAAATTTGATGAA TATACATTTATATTAATAAATTGTACATTTTTCTAATT

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRMQCK IYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGIIFIITG MVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCNEKSSSY RYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

### Signal peptide:

amino acids 1-17

### Transmembrane domains:

amino acids 82-101, 118-145, 164-188

GGAGAGAGGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGGCGGAG CCAGACGCTGACCACGTTCCTCCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCGGCAGCC TGCTGCTGCAGCTGCCCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAGCAAAAGGCGCAG CTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGGGCCAGCAGGAGTGCC TGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTGGGATCCCAGGTCGGGATG GATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAGGAGTCCTGGACACCCAACTAC AAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCTTGGGAAAATTGCGGAGTGTACATT TACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGTTCAGTGGCTCACTTCGGCTAAAATGCA GAAATGCATGCTGTCAGCGTTGGTATTTCACATTCAATGGAGCTGAATGTTCAGGACCTCTTCCC ATTGAAGCTATAATTTATTTGGACCAAGGAAGCCCTGAAATGAATTCAACAATTAATATTCATCG CACTTCTTCTGTGGAAGGACTTTGTGAAGGAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGG ATTATTGAAGAACTACCAAAATAATGCTTTAATTTTCATTTGCTACCTCTTTTTTTATTATGCC CTAAATATGTTTACAGACCAAAGTGTGATTTCACACTGTTTTTAAATCTAGCATTATTCATTTTG CTTCAATCAAAAGTGGTTTCAATATTTTTTTTTTTTGTTGGTTAGAATACTTTCTTCATAGTCACATT TAAATAAAAATTATTTCCAACA

MRPQGPAASPQRLRGLLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVPGR DGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTK MRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMNSTINIHRTS SVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

### Signal peptide:

amino acids 1-30

### Transmembrane domain:

amino acids 195-217

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCTGAA CTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCCCCAA ACCGCCCCTCCCCACCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATATCCATGAAGATCC TGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCTCCCAAGGGGTCCAATTTT TCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTGACAGGGGCTGTCATGCAACTG GCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAACAATACAAAGGATGGGTTTCAATG TAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTTATAGCCCCCCACTGTCTTACTGACAATG CTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTGTAGGTGTGAAGGCAAAATGGTATATTGTGA ATCTCAGAAATTACAGGAGATACCCTCAAGTATATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCT ATAACAGCCTTCAAAAACTTAAGTATAATCAATTTAAAGGGCTCAACCAGCTCACCTGGCTATAC CTTGACCATAACCATATCAGCAATATTGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGA GCTGATTCTTAGTTCCAATAGAATCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATT TACGGAACTTGGATCTGTCCTATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGCTTG CGGAAGCTGCTGAGTTTACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCA AGACTGCCGCAACCTGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATG CTGGCCCTTTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGT CATAGGACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGA TCGAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGAT TCCAACAAGCTCACATTTATTGGTCAAGAGATTTTTGGATTCTTGGATATCCCTCAATGACATCAG TCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTGAAAAGTT TTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGGAGTAAATGTG ATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGTTTGATCTGGCCAG GGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCATGAGAGCAAACCCCCTT TGCCCCCGACGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGCTGACGCCGAGCACATCTCT TTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCGTGCTCGTCATCCTGCTGGTTAT CTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAGCTGCAGCAGCGCTCCCTCATGCGAA GGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAATGACTCCCAGCACCCAGGAATTTTATGTA GATTATAAACCCACCAACACGGAGACCAGCGAGATGCTGCTGAATGGGACGGGACCCTGCACCTA TAACAAATCGGGCTCCAGGGAGTGTGAGGTA**TGA**ACCATTGTGATAAAAAGAGCTCTTAAAAGCT TTCCCTCTCCCTCTCACTTTGGTGGCAAGATCCTTCCTTGTCCGTTTTAGTGCATTCATAATACT GAACTCCGGTTTAATATATACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTT 

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAGCLG
LSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYFLNNTFR
PVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELLDLGYNRIRS
LARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTMSWTWSSLQRLDL
SGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLAGNIWECSRNICSLVN
WLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLARALPKPTFKPKLPRPKHE
SKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVSWKRYPASMKQLQQR
SLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLNGTGPCTYNKSGSRECEV

## Important features of the protein:

Signal peptide:

amino acids 1-33

#### Transmembrane domain:

amino acids 420-442

### N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

## cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

### Tyrosine kinase phosphorylation site.

amino acids 136-142

### N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

 $\texttt{CCGTTATCGTCTTGCGCTACTGCTGA} \underline{\textbf{ATC}} \\ \texttt{TCCGTCCCGGAGGAGGAGGAGGCTTTTGCCGCTG} \\$ ACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGCCGAGCT AGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAGCTCTTGCTC GGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACAGCCCTAGGGATC ATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCATTTACAGACACGTAGT GTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTGTGTTTGGCAAAAGTGAAG ATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATGGCTGGTGTTATTGGCCAGTTT AAAACCATTGCGATTTCGTGGTGTACATCATGCATTTGCAAAAATCTTAGCTGAAGGAGGAATAC GAGGGCTTTGGGCAGGCTGGGTACCCAATATACAAAGAGCAGCACTGGTGAATATGGGAGATTTA ACCACTTATGATACAGTGAAACACTACTTGGTATTGAATACACCACTTGAGGACAATATCATGAC TCACGGTTTATCAAGTTTATGTTCTGGACTGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCA ACTGACTGCTTGATTCAGGCTGTTCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTACC TGAGTGGAGTCAGTCCATTT<u>TAA</u>

MSVPEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGARES APYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEHYPLWKS VIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGIRGLWAGWVP NIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTPADVIKSRIMNQP RDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLTYEKIREMSGVSPF

### Transmembrane domains:

amino acids 25-38, 130-147, 233-248

 $\tt CGCGGATCGGACCCAAGCAGGTCGGCGGCGGCGGCAGGAGAGCGGCCGGGCGTCAGCTCCTCGAC$  $\verb|CCCCGTGTCGGGCTAGTCCAGCGAGGCGGACGGGCGGGGCGTGGGCCC| \textbf{ATC} GCCAGGCCCGGCATGG$ AGCGGTGGCGCGACCGGCTGGCGCTGGTGACGGGGGCCTCGGGGGGGCATCGGCGGGCCGTGGCC CGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGGCTGCGCCCGCACTGTGGGCAACATCGAGGA GCTGCTGCTGAATGTAAGAGTGCAGGCTACCCCGGGACTTTGATCCCCTACAGATGTGACCTAT CAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGCGGTGTAGACATC TGCATCAACAATGCTGGCTTGGCCCGGCCTGACACCCTGCTCTCAGGCAGCACCAGTGGTTGGAA GGACATGTTCAATGTGAACGTGCTGGCCCTCAGCATCTGCACACGGGAAGCCTACCAGTCCATGA AGGAGCGGAATGTGGACGATGGCCACATCATTAACATCAATAGCATGTCTGGCCACCGAGTGTTA CCCCTGTCTGTGACCCACTTCTATAGTGCCACCAAGTATGCCGTCACTGCGCTGACAGAGGGACT GAGGCAAGAGCTTCGGGAGGCCCAGACCCACATCCGAGCCACGTGCATCTCTCCAGGTGTGGTGG AGACACAATTCGCCTTCAAACTCCACGACAAGGACCCTGAGAAGGCAGCTGCCACCTATGAGCAA ATGAAGTGTCTCAAACCCGAGGATGTGGCCGAGGCTGTTATCTACGTCCTCAGCACCCCCGCACA CATCCAGATTGGAGACATCCAGATGAGGCCCACGGAGCAGGTGACCTAGTGACTGTGGGAGCTCC TCCTTCCCTCCCCACCCTTCATGGCTTGCCTCCTGCCTCTGGATTTTAGGTGTTGATTTCTGGAT TCATCTTGTCAAATTGCTTCAGTTGTAAATGTGAAAAATGGGCTGGGGAAAGGAGGTGGTGTCCC TAATTGTTTTACTTGTTAACTTGTTCTTGTGCCCCTGGGCACTTGGCCTTTGTCTGCTCTCAGTG TCTTCCCTTTGACATGGGAAAGGAGTTGTGGCCAAAATCCCCATCTTCTTGCACCTCAACGTCTG TGGCTCAGGGCTGGCGGGGGGGGGCCTTCACCTTATATCTGTGTTGTTATCCAGGGCTCC AGCCCAGTCTTGGCTTCTTGTCCCCTCCTGGGGTCATCCCTCCACTCTGACTCTGACTATGGCAG CAGAACACCAGGGCCTGGCCCAGTGGATTTCATGGTGATCATTAAAAAAGAAAAATCGCAACCAA AAAAAAAAA

MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGTLI
PYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNVLALSICTR
EAYQSMKERNVDDGHIININSMSGHRVLPLSVTHFYSATKYAVTALTEGLRQELREAQTHIRATC
ISPGVVETQFAFKLHDKDPEKAAATYEQMKCLKPEDVAEAVIYVLSTPAHIQIGDIQMRPTEQVT

### Important features of the protein:

Signal peptide:

amino acids 1-17

### N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115, 199-205

### Short-chain alcohol dehyrogenase.

amino acids 30-42, 104-114

AACTTCTACATG GGCCTCCTGCTGCTGCTGCTGCTGCTGCCGGTGGCCTACACCATCATGTCCCTCCCACCCTCTTTGACTGCGGGCCGTTCAGGTGCAGAGTCTCAGTTGCCCGGGAGC ACCTCCCTCCCGAGGCAGTCTGCTCAGAGGGCCTCGGCCCAGAATTCCAGTTCTGGTTTCATGC CAGCCTGTAAAAGGCCATGGAACTTTGGGTGAATCACCGATGCCATTTAAGAGGGTTTTCTGCCA GGATGGAAATGTTAGGTCGTTCTGTGTCTGCGCTGTTCATTTCAGTAGCCACCAGCCACCTGTGG TTAATTTTTAACTGATAGTTGTACATATTTGGGGGTACATGTGATATTTGGATACATGTATACAA TTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGCCATCTCAGCTTACTGCAAC CTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCCACCTCCCAAGTAGCTGGGACTACAGGCAT GCACCACATGCCCAACTATTTTTGTATTTTTAGTAGAGACGGGGTTTTGCCATGTTGCCCAGG CTGGCCTTGAACTCCTGGCCTCAAACAATCCACTTGCCTCGGCCTCCCAAAGTGTTATGATTACA GGCGTGAGCCACCGTGCCTGGCCTAAACATTTATCTTTTCTTTGTGTTGGGAACTTTGAAATTAT ACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTGCTATGGAACACTGGGACTTCTTCCCTCT ATCTAACTGTATATTTGTACCAGTTAACCAACCGTACTTCATCCCCACTCCTCTCTATCCTTCCC AACCTCTGATCACCTCATTCTACTCTCACCTCCATGAGATCCACTTTTTTAGCTCCCACATGTG AGTAAGAAAATGCAATATTTGTCTTTCTGTGCCTGGCTTATTTCACTTAACATAATGACTTCCTG TTCCATCCATGTTGCTGCAAATGACAGGATTTCGTTCTTAATTTCAATTAAAATAACCACACATG **GCAAAAA** 

 $\label{thm:main} \mbox{MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSLLRGPRPRIPVLVSCQPV} \\ \mbox{KGHGTLGESPMPFKRVFCQDGNVRSFCVCAVHFSSHQPPVAVECLK}$ 

Important features of the protein:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

 $\tt TTCTGAAGTAACGGAAGCTACCTTGTATAAAGACCTCAACACTGCTGACCATGATCAGCGCAGCCTGGAGC$ ATCTTCCTCATCGGGACTAAAATTGGGCTGTTCCTTCAAGTAGCACCTCTATCAGTTATGGCTAAATCCTG TCCATCTGTGTGTCGCTGCGATGCGGGTTTCATTTACTGTAATGATCGCTTTCTGACATCCATTCCAACAG TTGAAAAACTTGCTGAAAGTAGAAAGAATATACCTATACCACAACAGTTTAGATGAATTTCCTACCAACCT CCCAAAGTATGTAAAAGAGTTACATTTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTTCAA AAATTCCCTATCTGGAAGAATTACATTTAGATGACAACTCTGTCTCTGCAGTTAGCATAGAAGAGGGAGCA TTCCGAGACAGCAACTATCTCCGACTGCTTTTCCTGTCCCGTAATCACCTTAGCACAATTCCCTGGGGTTT GCCCAGGACTATAGAAGAACTACGCTTGGATGATAATCGCATATCCACTATTTCATCACCATCTCTTCAAG GTCTCACTAGTCTAAAACGCCTGGTTCTAGATGGAAACCTGTTGAACAATCATGGTTTAGGTGACAAAGTT TTCTTCAACCTAGTTAATTTGACAGAGCTGTCCCTGGTGCGGAATTCCCTGACTGCTGCACCAGTAAACCT TCCAGGCACAAACCTGAGGAAGCTTTATCTTCAAGATAACCACATCAATCGGGTGCCCCCAAATGCTTTTT CTTATCTAAGGCAGCTCTATCGACTGGATATGTCCAATAATAACCTAAGTAATTTACCTCAGGGTATCTTT GATGATTTGGACAATATAACACAACTGATTCTTCGCAACAATCCCTGGTATTGCGGGTGCAAGATGAAATG AGGTTCGTGGGATGGCTATTAAGGATCTCAATGCAGACTGTTTGATTGTAAGGACAGTGCGATTGTAAGC ACCATTCAGATAACCACTGCAATACCCAACACTGTATCCTGCCCAAGGACAGTGGCCAGCTCCAGTGAC CAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAGGGAGTCCCTCAAGAAAAA CAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCATATCTCTTGGAAACTTGCTCTACCTATG ACTGCTTTGAGACTCAGCTGGCTTAAACTGGGCCATAGCCCGGCATTTGGATCTATAACAGAAACAATTGT AACAGGGGAACGCAGTGAGTACTTGGTCACAGCCCTGGAGCCTGATTCACCCTATAAAGTATGCATGGTTC CCATGGAAACCAGCAACCTCTACCTATTTGATGAAACTCCTGTTTGTATTGAGACTGAAACTGCACCCCTT TTTGGCTGCCATCATTGGTGGGGCTGTGGCCCTGGTTACCATTGCCCTTCTTGCTTTAGTGTGTTGGTATG GCAGAAGCTGGCACTAAGAAGGACAACTCTATCCTGGAAATCAGGGAAACTTCTTTTCAGATGTTACCAAT ACAAAAACAATCACAGTGAAAGCAGTAGTAACCGAAGCTACAGAGACAGTGGTATTCCAGACTCAGATCAC  $\texttt{TCACACTCA} \underline{\texttt{TGA}} \\ \texttt{TGCTGAAGGACTCACAGCAGACTTGTGTTTTTGGGTTTTTAAACCTAAGGGAGGTGATG} \\$ GT

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDATTLYL QNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTITYDSLSKIPYL EELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEELRLDDNRISTISSPSL QGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAAPVNLPGTNLRKLYLQDNHIN RVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQLILRNNPWYCGCKMKWVRDWLQSLPV KVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQGQWPAPVTKQPD IKNPKLTKDQQTTGSPSRKTITITVKSVTSDTIHISWKLALPMTALRLSWLKLGHSPAFGSITET IVTGERSEYLVTALEPDSPYKVCMVPMETSNLYLFDETPVCIETETAPLRMYNPTTTLNREQEKE PYKNPNLPLAAIIGGAVALVTIALLALVCWYVHRNGSLFSRNCAYSKGRRRKDDYAEAGTKKDNS ILEIRETSFQMLPISNEPISKEEFVIHTIFPPNGMNLYKNNHSESSSNRSYRDSGIPDSDHSHS

#### Important features of the protein:

### Signal peptide:

amino acids 1-28

### Transmembrane domain:

amino acids 531-552

### N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636 Tyrosine kinase phosphorylation site.

amino acids 515-522

### N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561, 640-645

#### Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

CCGTCATCCCCTGCAGCCACCCTTCCCAGAGTCCTTTGCCCAGGCCACCCCAGGCTTCTTGGCA TGCAGAGGCAGTCTGGGCTTGGCCAGAGCTCAGGGTGCTGAGCGTGTGACCAGCAGTGAGCAGAG GCCGGCCATGGCCAGCCTGGGGCTGCTGCTCCTGCTCTTACTGACAGCACTGCCACCGCTGTGGT CCTCCTCACTGCCTGGGCTGGACACTGCTGAAAGTAAAGCCACCATTGCAGACCTGATCCTGTCT GCGCTGGAGAGGCCACCGTCTTCCTAGAACAGAGGCTGCCTGAAATCAACCTGGATGGCATGGT GGGGGTCCGAGTGCTGGAAGAGCAGCTAAAAAGTGTCCGGGAGAAGTGGGCCCAGGAGCCCCTGC TGCAGCCGCTGAGCCTGCGCGTGGGGATGCTGGGGGAGAAGCTGGAGGCTGCCATCCAGAGATCC CTCCACTACCTCAAGCTGAGTGATCCCAAGTACCTAAGAGAGTTCCAGCTGACCCTCCAGCCCGG GTTTTGGAAGCTCCCACATGCCTGGATCCACACTGATGCCTCCTTGGTGTACCCCACGTTCGGGC CCCAGGACTCATTCTCAGAGGAGAGAGTGACGTGTGCCTGGTGCAGCTGCTGGGAACCGGGACG GACAGCAGCGAGCCTGCGGCCTCTCAGACCTCTGCAGGAGCCTCATGACCAAGCCCGGCTGCTC AGGCTACTGCCTGTCCCACCAACTGCTCTTCTTCCTCTGGGCCAGAATGAGGGGATGCACACAGG GACCACTCCAACAGAGCCAGGACTATATCAACCTCTTCTGCGCCAACATGATGGACTTGAACCGC AGAGCTGAGGCCATCGGATACGCCTACCCGGGACATCTTCATGGAAAACATCATGTTCTG TGGAATGGGCGGCTTCTCCGACTTCTACAAGCTCCGGTGGCTGGAGGCCATTCTCAGCTGGCAGA AACAGCAGGAAGGATGCTTCGGGGAGCCTGATGCTGAAGATGAAGAATTATCTAAAGCTATTCAA TATCAGCAGCATTTTTCGAGGAGAGTGAAGAGGCGAGAAAAACAATTTCCAGATTCTCGCTCTGT TGCTCAGGCTGGAGTACAGTGGCGCAATCTCGGCTCACTGCAACCTTTGCCTCCTGGGTTCAAGC AATTCTCTTGCCTCATCCTCCCGAGTAGCTGGGACTACAGGAGCGTGCCACCATACCTGGCTAAT TTTTATATTTTTTAGTAGAGACAGGGTTTCATCATGTTGCTCATGCTGGTCTCGAACTCCTGAT CTCAAGAGATCCGCCCACCTCAGGCTCCCAAAGTGTGGGATTATAGGTGTGAGCCACCGTGTCTG GCTGAAAAGCACTTTCAAAGAGACTGTGTTGAATAAAGGGCCAAGGTTCTTGCCACCCAGCACTC ATGGGGGCTCTCTCCCCTAGATGGCTGCTCCTCCCACAACACAGCCACAGCAGTGGCAGCCCTGG GTGGCTTCCTATACATCCTGGCAGAATACCCCCCAGCAAACAGAGAGCCACCCATCCACACCG CCACCACGAGCAGCCGCTGAGACGGACGGTTCCATGCCAGCTGCCTGGAGGAGGAGCACACCCC TTTAGTCCTCATCCCTTAGATCCTGGAGGGCACGGATCACATCCTGGGAAGAAGGCATCTGGAGG ATAAGCAAAGCCACCCCGACACCCAATCTTGGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGG 

MSARGRWEGGGRRACRGSLGLARAQGAERVTSSEQRPAMASLGLLLLLLLTALPPLWSSSLPGLD
TAESKATIADLILSALERATVFLEQRLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPLSLRV
GMLGEKLEAAIQRSLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQDSFSEE
RSDVCLVQLLGTGTDSSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQGPLQQSQD
YINLFCANMMDLNRRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILSWQKQQEGCFG
EPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNLGSLQPLPPGFKQFSCLILP
SSWDYRSVPPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

MAAALWGFFPVLLLLLLSGDVQSSEVPGAAAEGSGGSGVGIGDRFKIEGRAVVPGVKPQDWISAA RVLVDGEEHVGFLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYIKTSE VVRLPYPLQMKSSGPPSYFIKRESWGWTDFLMNPMVMMMVLPLLIFVLLPKVVNTSDPDMRREME QSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSSGSSKTGKSGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGGGA CCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTATATGCGTCAATTCCCCAAAACAA GTTTTGACATTTCCCCTGAAATGTCATTCTCTATCTATTCACTGCAAGTGCCTGCTGTTCCAGGC CTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACGACCTGTGC CACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCACGGGAGGCTTGGCAGT TTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCCTCTAGTCTTGCCTTCAGC CTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAGACACTCAATTTGGG AAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCTGAGATACGGGGCAGTG TGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACTGAGTCTTTGCAAGACACA AAGCCTGCGAATCGATGCTCCTCCTGCGCCATTTGCTAAGACTCTATCTGGACAGGGTATTTAA AAACTACCAGACCCCTGACCATTATACTCTCCGGAAGATCAGCAGCCTCGCCAATTCCTTTCTTA CCATCAGAAGGACCTCCGGCTCTCTCATGCCCACATGACATGCCATTGTGGGGAGGAAGCAATG AAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGC TTTGGGGGAACTAGACATTCTTCTGCAATGGATGGAGGAGACAGAATAGGAGGAAAGTGATGCTG CTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGCATGACCCCAA CTTCCTTGCATGATTGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTT ATGTATTTATTTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTG CTAGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGAT ATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCAC ATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTATCTTCCAG AAAAAAAAA

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPEIF SSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNG FSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHYTLRKIS SLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQWMEET E

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

CCTGGAGCCGGAAGCGCGGCTGCAGCAGGGCGAGGCTCCAGGTGGGGTCGGTTCCGCATCCAGCC TAGCGTGTCCACG<u>ATG</u>CGGCTGGGCTCCGGGACTTTCGCTACCTGTTGCGTAGCGATCGAGGTGC CACGGAGCGGAGCCCCAGCGCCCGAACCCTCGGCTGGAGCCAGTTCTAACTGGACCACGCTGCC ACCACCTCTCTCAGTAAAGTTGTTATTGTTCTGATAGATGCCTTGAGAGATGATTTTGTGTTTG GGTCAAAGGGTGTGAAATTTATGCCCTACACAACTTACCTTGTGGAAAAAGGAGCATCTCACAGT TTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCTCGAATCAAGGCATTGATGACGGGGAG CCTTCCTGGCTTTGTCGACGTCATCAGGAACCTCAATTCTCCTGCACTGCTGGAAGACAGTGTGA TAAGACAAGCAAAAGCAGCTGGAAAAAGAATAGTCTTTTATGGAGATGAAACCTGGGTTAAATTA TTCCCAAAGCATTTTGTGGAATATGATGGAACAACCTCATTTTTCGTGTCAGATTACACAGAGGT GGATAATAATGTCACGAGGCATTTGGATAAAGTATTAAAAAGGGGGGGATTTGGGACATATTAATCC TCCACTACCTGGGGCTGGACCACATTGGCCACATTTCAGGGCCCAACAGCCCCCTGATTGGGCAG GACGCCTTTACCCAATTTGCTGGTTCTTTGTGGTGACCATGCCATGTCTGAAACAGGAAGTCACG GGGCCTCCTCCACCGAGGAGGTGAATACACCTCTGATTTTAATCAGTTCTGCGTTTGAAAGGAAA CCCGGTGATATCCGACATCCAAAGCACGTCCAA**TAG**ACGGATGTGGCTGCGACACTGGCGATAGC CAATGAGAGAGCAGTTGAGATTTTTACATTTGAATACAGTGCAGCTTAGTAAACTGTTGCAAGAG AATGTGCCGTCATATGAAAAAGATCCTGGGTTTGAGCAGTTTAAAATGTCAGAAAGATTGCATGG GAACTGGATCAGACTGTACTTGGAGGAAAAGCATTCAGAAGTCCTATTCAACCTGGGCTCCAAGG TTCTCAGGCAGTACCTGGATGCTCTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCCAG TTCTCACCCTGCTCCTGCTCAGCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCCA CTGTCATCTCCTGGGTTTTCTCTGCTCTTTTATTTGGTGATCCTGGTTCTTTCGGCCGTTCACGT GCCTTTCGTTTACCAGACTCTGGTTGAACACCTGGTGTGTGCCAAGTGCTGGCAGTGCCCTGGAC AGGGGGCCTCAGGGAAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGGTGTCCCGACACAGGTG TTCACATCTGTGCTGTCAGGTCAGATGCCTCAGTTCTTGGAAAGCTAGGTTCCTGCGACTGTTAC TCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCAGCTGAGGGAAAGAGAGACAATCGGCCTGGA CACTCAGGAGGGTCAAAAGGAGACTTGGTCGCACCACTCATCCTGCCACCCCCAGAATGCATCCT GCCTCATCAGGTCCAGATTTCTTTCCAAGGCGGACGTTTTCTGTTGGAATTCTTAGTCCTTGGCC TCGGACACCTTCATTCGTTAGCTGGGGAGTGGTGGTGAGGCGGTGAAGAAGAGGCGGATGGTCAC ACTCAGATCCACAGAGCCCAGGATCAAGGGACCCACTGCAGTGGCAGCAGGACTGTTGGGCCCCC ACCCCAACCCTGCACAGCCCTCATCCCCTCTTGGCTTGAGCCGTCAGAGGCCCTGTGCTGAGTGT CTGACCGAGACACTCACAGCTTTGTCATCAGGGCACAGGCTTCCTCGGAGCCAGGATGATCTGTG CCACGCTTGCACCTCGGGCCCATCTGGGCTCATGCTCTCTCCTGCTATTGAATTAGTACCTAG CTGCACACAGTATGTAGTTACCAAAAGAATAAACGGCAATAATTGAGAAAAAAA

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPPPLF SKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGF VDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVSDYTEVDNNV TRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLP NLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQ

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 58-76

N-glycosylation sites.

amino acids 56-60, 194-198

N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276, 275-281, 278-284

Amidation site.

amino acids 154-158

Cell attachment sequence.

amino acids 205-208

GGCACGAGGCAAGCCTTCCAGGTTATCGTGACGCACCTTGAAAGTCTGAGAGCTACTGCCCTACA
GAAAGTTACTAGTGCCCTAAAGCTGGCGCTGGCACTGATGTTACTGCTGTTTGGAGTACACT
TCCCTATAGAAAACAACTGCCAGCACCTTAAGACCACCTCACACCTTCAGAGTGAAGAACTTAAAC
CCGAAGAAATTCAGCATTCATGACCAGGATCACAAAGTACTGGTCCTGGACTCTGGGAATCTCAT
AGCAGTTCCAGATAAAAACTACATACGCCCAGAGATCTTCTTTGCATTAGCCTCATCCTTGAGCT
CAGCCTCTGCGGAGAAAGGAAGTCCGATTCTCCTTGGGGTCTCTAAAGGGGAGATCTCTAC
TGTGACAAGGATAAAAGGACAAAGTCATCCATCCCTTCAGCTGAAGAAGGAGAAACTGATGAAGCT
GGCTGCCCAAAAGGAATCAGCACGCCGGCCCTTCATCTTTTATAGGGCTCAGGTGGGCTCCTGGA
ACATGCTGGAGTCGGCGGCTCACCCCGGATGGTTCATCTTTTATAGGGCTCAGCTGAATTGTAATGAGCCT
GTTGGGGTGACAGATAAATTTGAGAACAGGAAACACATTGAATTTTCATCTCACCAGTTTGCAA
AGCTGAAATGAGCCCCCAGTGAGGTCAGCGATTAGGAACTGCCCCATTGAACGCCTTCCTCGCTA
ATTTGAACTAATTGTATAAAAACACCCAAACCTGCTCACT

 $\label{thm:lileynfp} $$ MLLLLLEYNFPIENNCQHLKTTHTFRVKNLNPKKFSIHDQDHKVLVLDSGNLIAVPDKNYIRPEI$$ FFALASSLSSASAEKGSPILLGVSKGEFCLYCDKDKGQSHPSLQLKKEKLMKLAAQKESARRPFI$$ FYRAQVGSWNMLESAAHPGWFICTSCNCNEPVGVTDKFENRKHIEFSFQPVCKAEMSPSEVSD$$$ 

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 33-36

N-myristoylation site. amino acids 50-55, 87-92

Interleukin-1
amino acids 37-182

 $\label{thm:marylpatvefavhtfnqqskdy} $$ MLGLPWKGGLSWALLLLLLGSQILLIYAWHFHEQRDCDEHNVMARYLPATVEFAVHTFNQQSKDY $$ YAYRLGHILNSWKEQVESKTVFSMELLLGRTRCGKFEDDIDNCHFQESTELNNTFTCFFTISTRP $$ WMTQFSLLNKTCLEGFH $$$ 

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 117-121, 139-143

N-myristoylation site.

amino acids 9-15

 ${\tt CACCTGAGCTGGTGGTGGCCACTGTCTGCATGCTGCTCTTCAGCCACCTCTCTGCGGTCCA}$ GACGAGGGCATCAAGCACAGAATCAAGTGGAACCGGAAGGCCCTGCCCAGCACTGCCCAGATCA GACTTCGGAGCCGAGGGCAACAGGTACTACGAGGCCAACTACTGGCAGTTCCCCGATGGCATCCA CTACAACGGCTGCTCTGAGGCTAATGTGACCAAGGAGGCATTTGTCACCGGCTGCATCAATGCCA CCCAGGCGGCGAACCAGGGGGAGTTCCAGAAGCCAGACAACAAGCTCCACCAGCAGGTGCTCTGG  ${\tt TCGGGTCACCATGCACCAGCCAGTGCTCCTCTGCCTTCTGGCTTTGATCTGGCTCATGGTGAAAT$ AAGCTTGCCAGGAGGCTGGCAGTACAGAGCGCAGCGAGCAAATCCTGGCAAGTGACCCAGCT CTTCTCCCCCAAACCCACGCGTGTTCTGAAGGTGCCCAGGAGCGGCGATGCACTCGCACTGCAAA TGCCGCTCCCACGTATGCGCCCTGGTATGTGCCTGCGTTCTGATAGATGGGGGACTGTGGCTTCT CCGTCACTCCATTCTCAGCCCCTAGCAGAGCGTCTGGCACACTAGATTAGTAGTAAATGCTTGAT GAGAAGAACACATCAGGCACTGCGCCACCTGCTTCACAGTACTTCCCAACAACTCTTAGAGGTAG GTGTATTCCCGTTTTACAGATAAGGAAACTGAGGCCCAGAGAGCTGAAGTACTGCACCCAGCATC ACCAGCTAGAAAGTGGCAGAGCCAGGATTCAACCCTGGCTTGTCTAACCCCAGGTTTTCTGCTCT GTCCAATTCCAGAGCTGTCTGGTGATCACTTTATGTCTCACAGGGACCCACATCCAAACATGTAT 

 $\label{thm:mrkalpstaqiteaqvaenrpgafikqgrk} $$ MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRK $$ LDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNKLHQQ $$ VLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLMVK $$ $$ MRKHLSWWWLATVCMLCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLMVK $$ $$ MRKHLSWWWLATVCMLFSHLSAVQTRGIKHQDFVLLCLLALIWLMVK $$ MRKHLSWWLATVCMLFSHLSAVQTRGIKHQDFVLLCLLALIWLMVK $$ MRKHLSWWLATVCMLFSHLSAVQTRGIKTMT $$ MRKHLSWWLATVCMLFSHLSAVQTRGIKTMT $$ MRKHLSWWLATVCMLFSHLSAVQTRGIKTMT $$ MRKHLSWWLATVCMLFSHLSAVQTRGIKTMT $$ MRKHLSWWLATVCMLFSHLSAVQTRGIKTMT $$ MRKHLSWWLATVCMLT $$ MRKHLSWWLATVCMLT $$ MRKHLSWWLATVCMT $$ MRKHLSWWLATVCMLT $$$ 

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

MFRSSLLFWPPLCLLSLFLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGTCE GLFYEYIA

Important features of the protein:
Signal peptide:

amino acids 1-25

N-myristoylation site.

amino acids 62-68

GTCTCCGCGTCACAGGAACTTCAGCACCCACAGGGCGGACAGCGCTCCCCTCTACCTGGAGACTTGAC TCCCGCGCGCCCCAACCCTGCTTATCCCTTGACCGTCGAGTGTCAGAGATCCTGCAGCCGCCCAGTCC ACAAAAGCTACAGCTCCAGGAGCCCAGCGCCGGGCTGTGACCCAAGCCGAGCGTGGAAGAATGGGGTT CCTCGGGACCGGCACTTGGATTCTGGTGTTAGTGCTCCCGATTCAAGCTTTCCCCAAACCTGGAGGAA GCAGAAGAAGACAAGATTAAAAAAACATATCCTCCAGAAAACAAGCCAGGTCAGAGCAACTATTCTTT TAAGAAGCTCCCCACTTGATAATAAGTTGAATGTGGAAGATGTTGATTCAACCAAGAATCGAAAACTG ATCGATGATTATGACTCTACTAAGAGTGGATTGGATCATAAATTTCAAGATGATCCAGATGGTCTTCA TCAACTAGACGGGACTCCTTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTTATGAAG AAAATGACAGAGCCGTGTTTGACAAGATTGTTTCTAAACTACTTAATCTCGGCCTTATCACAGAAAGC  ${\tt CAAGCACATACACTGGAAGATGAAGTAGCAGAGGTTTTACAAAAATTAATCTCAAAGGAAGCCAACAA}$ TTATGAGGAGGATCCCAATAAGCCCACAAGCTGGACTGAGAATCAGGCTGGAAAAATACCAGAGAAAG TGACTCCAATGGCAGCAATTCAAGATGGTCTTGCTAAGGGAGAAAACGATGAAACAGTATCTAACACA  $\verb|TTAACCTTGACAAATGGCTTGGAAAGGAGAACTAAAACCTACAGTGAAGACAACTTTGAGGAACTCCA|$ CACTGATTACTATCATGAAAACACTGATTGACTTTGTGAAGATGATGGTGAAATATGGAACAATATCT CCAGAAGAAGGTGTTTCCTACCTTGAAAACTTGGATGAAATGATTGCTCTTCAGACCAAAAACAAGCT AGAAAAAATGCTACTGACAATATAAGCAAGCTTTTCCCAGCACCATCAGAGAAGAGTCATGAAGAAA CAGACAGTACCAAGGAAGAAGCAGCTAAGATGGAAAAGGAATATGGAAGCTTGAAGGATTCCACAAAA GATGATAACTCCAACCCAGGAGGAAAGACAGATGAACCCAAAGGAAAAACAGAAGCCTATTTGGAAGC CATCAGAAAAATATTGAATGGTTGAAGAAACATGACAAAAAGGGGAAATAAAGAAGATTATGACCTTT CAAAGATGAGACTTCATCAATAAACAAGCTGATGCTTATGTGGAGAAAGGCATCCTTGACAAGGAA GAAGCCGAGGCCATCAAGCGCATTTATAGCAGCCTG**TAA**AAATGGCAAAAGATCCAGGAGTCTTTCAA  $\tt CTGTTTCAGAAAACATAATATAGCTTAAAACACTTCTAATTCTGTGATTAAAATTTTTTGACCCAAGG$ GTTATTAGAAAGTGCTGAATTTACAGTAGTTAACCTTTTACAAGTGGTTAAAACATAGCTTTCTTCCC 

MGFLGTGTWILVLVLPIQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENKPG
QSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHK
FQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTLEDEVAE
VLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGENDETVSNTLTLTNGLE
RRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVKYGTISPEEGV
SYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEEAAKMEKEYGSLKDSTKDD
NSNPGGKTDEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLSKMRDFINKQADAYVEKGILDK
EEAEAIKRIYSSL

#### N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

#### Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-341, 369-372, 382-385, 386-389, 387-390

#### N-myristoylation sites:

amino acids 143-148, 239-244

CGGCTCGAGGCTCCCGCCAGGAGAAAGGAACATTCTGAGGGGGAGTCTACACCCTGTGGAGCTCAA GATGGTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGCTTTATCTGC ATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAGGTGAAGAGATCAGC GTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCCTGGGTGTCCAGGGTGGAAG CCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAACACTAGAGCCAGTGAACATCATGG AGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCACCTTCTACCGGCGGGACATGGGGCTCACC TCCAGCTTCGAGTCGCCTGCCTACCCGGGCTGGTTCCTGTGCACGGTGCCTGAAGCCGATCAGCC TGTCAGACTCACCCAGCTTCCCGAGAATGGTGGCTGGAATGCCCCCATCACAGACTTCTACTTCC AGCAGTGTGAC<u>TAG</u>GGCAACGTGCCCCCAGAACTCCCTGGGCAGAGCCAGCTCGGGTGAGGGGT GAGTGGAGGACCCATGGCGGACAATCACTCTCTCTGCTCTCAGGACCCCCACGTCTGACTTAG  $\tt TGGGCACCTGACCACTTTGTCTTCTGGTTCCCAGTTTGGATAAATTCTGAGATTTGGAGCTCAGT$ CCACGGTCCTCCCCCACTGGATGGTGCTACTGCTGTGGAACCTTGTAAAAACCATGTGGGGTAAA TAATGGTAACTGACAAGTGTTACCCTGAGCCCGCAGGCCAACCCATCCCCAGTTGAGCCTTATA GGGTCAGTAGCTCTCCACATGAAGTCCTGTCACTCACCACTGTGCAGGAGGGGAGGTGGTCATA GAGTCAGGGATCTATGGCCCTTGGCCCAGCCCCACCCCCTTCCCTTAATCCTGCCACTGTCATA TGCTACCTTTCCTATCTCTCCCTCATCATCTTGTTGTGGGCATGAGGAGGTGGTGATGTCAGAA GAAATGGCTCGAGCTCAGAAGATAAAAGATAAGTAGGGTATGCTGATCCTCTTTTAAAAACCCAA GATACAATCAAAATCCCAGATGCTGGTCTCTATTCCCATGAAAAAGTGCTCATGACATATTGAGA TCTTTATAGAAAAAGTCTGGAAGAGTTTACTTCAATTGTAGCAATGTCAGGGTGGTGGCAGTAT AGGTGATTTTTCTTTTAATTCTGTTAATTTATCTGTATTTCCTAATTTTTCTACAATGAAGATGA ATTCCTTGTATAAAAATAAGAAAAGAAATTAATCTTGAGGTAAGCAGAGCAGACATCATCTCTGA TTGTCCTCAGCCTCCACTTCCCCAGAGTAAATTCAAATTGAATCGAGCTCTGCTGCTCTGGTTGG TTGTAGTAGTGATCAGGAAACAGATCTCAGCAAAGCCACTGAGGAGGAGGCTGTGCTGAGTTTGT GATCACAGCCCCTGGGATTCCAAGGCATTGGATCCAGTCTCTAAGAAGGCTGCTGTACTGGTTGA ATTGTGTCCCCCTCAAATTCACATCCTTCTTGGAATCTCAGTCTGTGAGTTTATTTGGAGATAAG GTCTCTGCAGATGTAGTTAAGACAAGGTCATGCTGGATGAAGGTAGACCTAAATTCAATAT GACTGGTTTCCTTGTATGAAAAGGAGAGACACAGAGACAGAGAGACGCGGGGAAGACTATGTA AAGATGAAGGCAGAGATCGGAGTTTTGCAGCCACAAGCTAAGAAACACCAAGGATTGTGGCAACC ATCAGAAGCTTGGAAGAGGCAAAGAAGAATTCTTCCCTAGAGGCTTTAGAGGGATAACGGCTCTG GCCACCAAGGATAATTGGTTACAGCAGCTCTAGGAAACTAATACAGCTGCTAAAATGATCCCTGT CTCCTCGTGTTTACATTCTGTGTGTGTCCCCTCCCACAATGTACCAAAGTTGTCTTTGTGACCAA TAGAATATGGCAGAAGTGATGGCATGCCACTTCCAAGATTAGGTTATAAAAGACACTGCAGCTTC AAGCTAGCTGCCATGCTATGAGCAGGCCTATAAAGAGACTTACGTGGTAAAAAATGAAGTCTCCT 

 $\begin{tabular}{l} MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILGVQGGS \\ QCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVPEADQP \\ VRLTQLPENGGWNAPITDFYFQQCD \\ \end{tabular}$ 

#### N-myristoylation sites.

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

#### Interleukin-1 signature.

amino acids 111-131

#### Interleukin-1 proteins.

amino acids 8-29, 83-120, 95-134, 64-103

 $\tt CTTCAGAACAGGTTCTCCTTCCCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA\underline{\textbf{ATG}}\texttt{GCCGC}$  $\verb|CCTGCAGAAATCTGTGAGCTCTTTCCTTATGGGGACCCTGGCCACCAGCTGCCTCCTTCTCTTGG| \\$ CCCTCTTGGTACAGGGAGGAGCAGCTGCGCCCATCAGCTCCCACTGCAGGCTTGACAAGTCCAAC TTCCAGCAGCCCTATATCACCAACCGCACCTTCATGCTGGCTAAGGAGGCTAGCTTGGCTGATAA ATCTGATGAAGCAGGTGCTGAACTTCACCCTTGAAGAAGTGCTGTTCCCTCAATCTGATAGGTTC CAGCCTTATATGCAGGAGGTGGTGCCCTTCCTGGCCAGGCTCAGCAACAGGCTAAGCACATGTCA TATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAAAGCTGAAGGACACAGTGAAAAAGC TTGGAGAGAGTGGAGAGATCAAAGCAATTGGAGAACTGGATTTGCTGTTTATGTCTCTGAGAAAT  $\verb|GCCTGCATT| \underline{\textbf{TGA}} \verb|CCAGAGCAAAGCTGAAAAATGAATAACTAACCCCCTTTCCCTGCTAGAAATAA|$ CAATTAGATGCCCCAAAGCGATTTTTTTTAACCAAAAGGAAGATGGGAAGCCAAACTCCATCATG ATGGGTGGATTCCAAATGAACCCCTGCGTTAGTTACAAAGGAAACCAATGCCACTTTTGTTTATA AGACCAGAAGGTAGACTTTCTAAGCATAGATATTTATTGATAACATTTCATTGTAACTGGTGTTC TATACACAGAAAACAATTTATTTTTTAAATAATTGTCTTTTTCCATAAAAAAGATTACTTTCCAT TCCTTTAGGGGAAAAACCCCTAAATAGCTTCATGTTTCCATAATCAGTACTTTATATTTATAAA AGAAACATCATTCGATATTGCTACTTGAGTGTAAGGCTAATATTGATATTTATGACAATAATTAT AGAGCTATAACATGTTTATTTGACCTCAATAAACACTTGGATATCCC

 $\label{thm:colliar} $$ $$ MAALQKSVSSFLMGTLATSCLLLLALLVQGGAAAPISSHCRLDKSNFQQPYITNRTFMLAKEASL$$ $$ ADNNTDVRLIGEKLFHGVSMSERCYLMKQVLNFTLEEVLFPQSDRFQPYMQEVVPFLARLSNRLS$$ $$ TCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI$$$ 

Important features of the protein:

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCTGT CAGTCAGTGCCCGACTTGTGACTGAGTGTGCAGTGCCCAGCATGTACCAGGTCAGTGCAGAGGGC CAGGGAGCGACCCAGATTAGGTGAGGACAGTTCTCTCATTAGCCTTTTCCTACAGGTGGTTGCAT GCCCAACCGCCACCCAGAGTCCTGTAGGGCCAGTGAAGATGGACCCCTCAACAGCAGGGCCATCT CCCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCCAGGACCTGTACCACGCCCGT TGCCTGTGCCCGCACTGCGTCAGCCTACAGACAGGCTCCCACATGGACCCCCGGGGCCAACTCGGA GCTGCTCTACCACACCAGACTGTCTTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACCCACA GTGATGGGCTAGCCGGACCTGCTGGAGGCTGGTCCCTTTTTGGGAAACCTGGAGCCAGGTGTACA ACCACTTGCCATGAAGGGCCAGGATGCCCAGATGCTTGGCCCCTGTGAAGTGCTGTCTGGAGCAG CAGGATCCCGGGACAGGATGGGGGGCTTTGGGGAAAACCTGCACTTCTGCACATTTTGAAAAGAG CAGCTGCTGCTTAGGGCCGCCGGAAGCTGGTGTCCTGTCATTTTCTCTCAGGAAAGGTTTTCAAA GTTCTGCCCATTCTGGAGGCCACCACTCCTGTCTCTCTTTTCCCATCCCCTGCTACCCTG GCCCAGCACAGGCACTTTCTAGATATTTCCCCCTTGCTGGAGAAGAAGAGCCCCTGGTTTTATT TGTTTGTTTACTCATCACTCAGTGAGCATCTACTTTGGGTGCATTCTAGTGTAGTTACTAGTCTT CTTTATTTAAAAATGAAAAA

MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSKGQDTSEELLRWSTVPVPPLEPA RPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNS ELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Important features of the protein:

Signal peptide:

amino acids 1-32

N-glycosylation site.

amino acids 136-140

Tyrosine kinase phosphorylation site.

amino acids 127-135

N-myristoylation sites.

amino acids 44-50, 150-156

CCGGCGATGTCGCTCGTGCTAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCCGAGAGCC GACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCC CCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGGACTATTCA ATTTTGATGAATGTAAGCTGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTTGAAGGCCACCAA GATTTGTGTGACGGGCAAAAGCAACTTCCAGTCCTACAGCTGTGTGAGGTGCAATTACACAGAGG CCTTCCAGACTCAGACCCTCTGGTGGTAAATGGACATTTTCCTACATCGGCTTCCCTGTA CCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCACATAATGAAATATAAAAAAA AGTGTGTCAAGGCCGGAAGCCTGTGGGATCCGAACATCACTGCTTGTAAGAAGAATGAGGAGACA GTAGAAGTGAACTTCACAACCACTCCCCTGGGAAACAGATACATGGCTCTTATCCAACACAGCAC TATCATCGGGTTTTCTCAGGTGTTTGAGCCACCAGAAGAACAAACGCGAGCTTCAGTGGTGA TTCCAGTGACTGGGGATAGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTTCCTACTTGTGGC AGCGACTGCATCCGACATAAAGGAACAGTTGTGCTCTGCCCACAAACAGGCGTCCCTTTCCCTCT GGATAACAACAAAAGCAAGCCGGGAGGCTGGCTGCCTCTCCTCCTGCTGTCTCTGCTGGTGGCCA CATGGGTGCTGGTGGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCCTTT TCTACCACCACACTACTGCCCCCCATTAAGGTTCTTGTGGTTTACCCATCTGAAATATGTTTCCA TCACACAATTTGTTACTTCACTGAATTTCTTCAAAACCATTGCAGAAGTGAGGTCATCCTTGAAA AGTGGCAGAAAAGAAATAGCAGAGATGGGTCCAGTGCAGTGCCTTGCCACTCAAAAGAAGGCA GCAGACAAAGTCGTCTTCCTTTTCCAATGACGTCAACAGTGTGTGCGATGGTACCTGTGGCAA GAGCGAGGCCAGTCCCAGTGAGAACTCTCAAGACCTCTTCCCCCTTGCCTTTAACCTTTTCTGCA GTGATCTAAGAAGCCAGATTCATCTGCACAAATACGTGGTGGTCTACTTTAGAGAGATTGATACA AAAGACGATTACAATGCTCTCAGTGTCTGCCCCAAGTACCACCTCATGAAGGATGCCACTGCTTT CTGTGCAGAACTTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGCCACG ATGGCTGCTGCTCCTTGTAG

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRVEPVTTSVATGDYSILMNVSWV LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP NANMNEDGPSMSVNFTSPGCLDHIMKYKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMALIQH STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFL QNHCRSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHD GCCSL

#### Important features of the protein:

#### Signal peptide:

amino acids 1-14

#### Transmembrane domain:

amino acids 290-309

#### N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283 - 287

#### cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 228 - 232 and 319 - 323

#### Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

#### N-myristoylation site.

amino acids 116-122

#### Amidation site.

amino acids 488-452

 ${\tt MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKVGHTFFQKPESCPPVPGGSMKLDIGIINEN QRVSMSRNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRNLGCINAQGKEDISMNSVPIQQETLVVRKHQGCSVSFQLEKVLVTVGCTCVTPVIHHVQ$ 

Signal sequence:

amino acids 1-30

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 106-111, 136-141

ACACTGGCCAAACAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGAGTCAGGACTCCCAGG ACAGAGAGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCTCTGGAGGGCTGAAGAGGGATTC AGGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAGATGCCTGTGCCCTGGTTCTTGCTGTCCT TGGCACTGGGCCGAAGCCCAGTGGTCCTTTCTCTGGAGAGGCTTGTGGGGCCTCAGGACGCTACC AGAAGGAGACCGACTGTGACCTCTGTCTGCGTGTGGCTGTCCACTTGGCCGTGCATGGGCACTGG GAAGAGCCTGAAGATGAGGAAAAGTTTGGAGGAGCAGCTGACTCAGGGGTGGAGGAGCCTAGGAA TGCCTCTCCAGGCCCAAGTCGTGCTCTCCTTCCAGGCCTACCCTACTGCCCGCTGCGTCCTGC TGGAGGTGCAAGTGCCTGCCCTTGTGCAGTTTGGTCAGTCTGTGGGCTCTGTGGTATATGAC TGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCCTATACTCAGCCCAGGTACGAGAA GGAACTCAACCACACAGCAGCTGCCTGCCCTGGCTCAACGTGTCAGCAGATGGTGACA ACGTGCATCTGGTTCTGAATGTCTCTGAGGAGCAGCACTTCGGCCTCTCCCTGTACTGGAATCAG GTCCAGGGCCCCCAAAACCCCGGTGGCACAAAAACCTGACTGGACCGCAGATCATTACCTTGAA CCACACAGACCTGGTTCCCTGCCTCTGTATTCAGGTGTGGCCTCTGGAACCTGACTCCGTTAGGA CGAACATCTGCCCCTTCAGGGAGGACCCCCGCGCACACCAGAACCTCTGGCAAGCCGCCCGACTG CGACTGCTGACCCTGCAGAGCTGCTGCTGGACGCACCGTGCTCGCTGCCCGCAGAAGCGGCACT GTGCTGGCGGGCTCCGGGTGGGGACCCCTGCCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACG TCACTGTGGACAAGGTTCTCGAGTTCCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTG AACAGCTCGGAGAAGCTGCAGCTGCAGGAGTGCTTGTGGGCTGACTCCCTGGGGCCTCTCAAAGA CGATGTGCTACTGTTGGAGACACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCA CAAGACCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTG CTGCGCTTTCCCTCATCCTCTCAAAAAGGATCACGCGAAAGGGTGGCTGAGGCTCTTGAAA CAGGACGTCCGCTCGGGGGCCGCCAGGGGCCGCGCGCTCTGCTCCTCTACTCAGCCGATGA CTCGGGTTTCGAGCGCCTGGTGGGCGCCCTGGCGCCCTGTGCCAGCTGCCGCTGCGCGTGG CCGTAGACCTGTGGAGCCGTCGTGAACTGAGCGCGCAGGGGCCCGTGGCTTGGTTTCACGCGCAG CGGCGCCAGACCCTGCAGGAGGGCGGCGTGGTGGTCTTGCTCTTCTCTCCCGGTGCGGTGGCGCT GTGCAGCGAGTGGCTACAGGATGGGGTGTCCGGGCCCGGGGCGCACGCCCGCACGACGCCTTCC GCCTGCTTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTTTCCGCACCGTGCCCGTCTT CACACTGCCCTCCCAACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCGTTCCG CATCCCCGGGGACTCCCGCGCGGGACGCGGGGTGGGACCAGGGGCGGGACCTGGGGCGGGGA CGGGACT<u>TAA</u>ATAAAGGCAGACGCTGTTTTTCTAAAAAAA

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPVLAPTHLQTELV LRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLSFQAYPTARCVLLEV QVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVS EEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQN LWQAARLRLLTLQSWLLDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQ VNSSEKLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYLLQDLQS GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKGWLRLLKQDVRSGAAARG RAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFSP GAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFT LPSQLPDFLGALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGPGAGDGT

#### Signal sequence:

amino acids 1-20

#### Transmembrane domain.

amino acids 453-475

#### N-glycosylation sites.

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

#### Glycosaminoglycan attachment site.

amino acids 583-586

#### cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 552-555

#### N-myristoylation sites.

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

 $\tt GGGAGGGCTCTGTGCCAGCCCCG{\underline{\bf ATG}} AGGACGCTGCTGACCATCTTGACTGTGGGATCCCTGGCT$ GCTCACGCCCTGAGGACCCCTCGGATCTGCTCCAGCACGTGAAATTCCAGTCCAGCAACTTTGA AAACATCCTGACGTGGGACAGCGGGCCAGAGGGCACCCCAGACACGGTCTACAGCATCGAGTATA AGACGTACGGAGAGGGACTGGGTGGCAAAGAAGGGCTGTCAGCGGATCACCCGGAAGTCCTGC AACCTGACGGTGGAGACGGCCAACCTCACGGAGCTCTACTATGCCAGGGTCACCGCT GTCAGTGCGGGAGGCCGGTCAGCCACCAAGATGACTGACAGGTTCAGCTCTCTGCAGCACACTAC CCTCAAGCCACCTGATGTGACCTGTATCTCCAAAGTGAGATCGATTCAGATGATTGTTCATCCTA CCCCCACGCCAATCCGTGCAGGCGATGGCCACCGGCTAACCCTGGAAGACATCTTCCATGACCTG TTCTACCACTTAGAGCTCCAGGTCAACCGCACCTACCAAATGCACCTTGGAGGGAAGCAGAGAGA ATATGAGTTCTTCGGCCTGACCCCTGACACAGAGTTCCTTGGCACCATCATGATTTGCGTTCCCA CCTGGGCCAAGGAGAGTGCCCCCTACATGTGCCGAGTGAAGACACTGCCAGACCGGACATGGACC TACTCCTTCTCCGGAGCCTTCCTGTTCTCCATGGGCTTCCTCGTCGCAGTACTCTGCTACCTGAG CTACAGATATGTCACCAAGCCGCCTGCACCTCCCAACTCCCTGAACGTCCAGCGAGTCCTGACTT TCCAGCCGCTGCGCTTCATCCAGGAGCACGTCCTGATCCCTGTCTTTGACCTCAGCGGCCCCAGC AGTCTGGCCCAGCCTGTCCAGTACTCCCAGATCAGGGTGTCTGGACCCAGGGAGCCCGCAGGAGC TCCACAGCGGCATAGCCTGTCCGAGATCACCTACTTAGGGCAGCCAGACATCTCCATCCTCCAGC CCTCCAACGTGCCACCTCCCCAGATCCTCTCCCCACTGTCCTATGCCCCAAACGCTGCCCCTGAG GTCGGGCCCCATCCTATGCACCTCAGGTGACCCCCGAAGCTCAATTCCCATTCTACGCCCCACA GGCCATCTCTAAGGTCCAGCCTTCCTCCTATGCCCCTCAAGCCACTCCGGACAGCTGGCCTCCCT CCTATGGGGTATGCATGGAAGGTTCTGGCAAAGACTCCCCCACTGGGACACTTTCTAGTCCTAAA CACCTTAGGCCTAAAGGTCAGCTTCAGAAAGAGCCACCAGCTGGAAGCTGCATGTTAGGTGGCCT TTCTCTGCAGGAGGTGACCTCCTTGGCTATGGAGGAATCCCAAGAAGCAAAATCATTGCACCAGC CCCTGGGGATTTGCACAGACAGACATCTGACCCAAATGTGCTACACAGTGGGGAGGAAGGGACA CCACAGTACCTAAAGGGCCAGCTCCCCTCCTCTCCTCAGTCCAGATCGAGGGCCACCCCATGTC CCTCCCTTTGCAACCTCCTTCCGGTCCATGTTCCCCCTCGGACCAAGGTCCAAGTCCCTGGGGCC TGCTGGAGTCCCTTGTGTGTCCCAAGGATGAAGCCAAGAGCCCAGCCCCTGAGACCTCAGACCTG AGGGGAATGGGAAAGGCTTGGTGCTTCCTCCCTGTCCCTACCCAGTGTCACATCCTTGGCTGTCA ATCCCATGCCTGCCCATGCCACACACTCTGCGATCTGGCCTCAGACGGGTGCCCTTGAGAGAAGC AGAGGGAGTGGCATGCACGGCCCTGCCATGGGTGCGCTCCTCACCGGAACAAAGCAGCATGATA AGGACTGCAGCGGGGAGCTCTGGGGAGCAGCTTGTGTAGACAAGCGCGTGCTCGCTGAGCCCTG CAAGGCAGAAATGACAGTGCAAGGAGGAAATGCAGGGAAACTCCCGAGGTCCAGAGCCCCACCTC CTAACACCATGGATTCAAAGTGCTCAGGGAATTTGCCTCTCTTGCCCCATTCCTGGCCAGTTTC ACAATCTAGCTCGACAGAGCATGAGGCCCCTGCCTCTTCTGTCATTGTTCAAAGGTGGGAAGAGA GCCTGGAAAAGAACCAGGCCTGGAAAAGAACCAGAAGGAGGCTGGGCAGAACCAGAACAACCTGC TTCCCAGCCAGGGCAACTGCCTGACGTTGCACGATTTCAGCTTCATTCCTCTGATAGAACAAAGC ATCCTGAGAATGGGGTTTGAAAGGAAGGTGAGGGCTGTGGCCCCTGGACGGGTACAATAACACAC TGTACTGATGTCACAACTTTGCAAGCTCTGCCTTGGGTTCAGCCCATCTGGGCTCAAATTCCAGC  $\tt CTCACCACTCACAAGCTGTGTGACTTCAAACAAATGAAATCAGTGCCCAGAACCTCGGTTTCCTC$ ATCTGTAATGTGGGGATCATAACACCTACCTCATGGAGTTGTGGTGAAGATGAAATGAAGTCATG TCTTTAAAGTGCTTAATAGTGCCTGGTACATGGGCAGTGCCCAATAAACGGTAGCTATTTAAAAA AAAAAAA

MRTLLTILTVGSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTYGERDW
VAKKGCQRITRKSCNLTVETGNLTELYYARVTAVSAGGRSATKMTDRFSSLQHTTLKPPDVTCIS
KVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLGGKQREYEFFGLTPDT
EFLGTIMICVPTWAKESAPYMCRVKTLPDRTWTYSFSGAFLFSMGFLVAVLCYLSYRYVTKPPAP
PNSLNVQRVLTFQPLRFIQEHVLIPVFDLSGPSSLAQPVQYSQIRVSGPREPAGAPQRHSLSEIT
YLGQPDISILQPSNVPPPQILSPLSYAPNAAPEVGPPSYAPQVTPEAQFPFYAPQAISKVQPSSY
APQATPDSWPPSYGVCMEGSGKDSPTGTLSSPKHLRPKGQLQKEPPAGSCMLGGLSLQEVTSLAM
EESQEAKSLHQPLGICTDRTSDPNVLHSGEEGTPQYLKGQLPLLSSVQIEGHPMSLPLQPPSGPC
SPSDQGPSPWGLLESLVCPKDEAKSPAPETSDLEQPTELDSLFRGLALTVQWES

#### Signal sequence.

amino acids 1-17

#### Transmembrane domain.

amino acids 233-250

#### N-glycosylation sites.

amino acids 80-83, 87-90, 172-175

#### N-myristoylation sites.

amino acids 11-16, 47-52, 102-107, 531-536, 565-570

TCGGATCTCAGCCACGGACGCGTTTCTCGGACCTCAAAGTGTGCGGGGGACGAAGAGTGCAGCAT GTTAATGTACCGTGGGAAAGCTCTTGAAGACTTCACGGGCCCTGATTGTCGTTTTTGTGAATTTTA AAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGGATCCCTTGAACTTTGGGCTGGA AGTGTTGAACACAGTTTTGGATATTTTCCAAAAGATTTGATCAAGGTACTTCATAAATACACGGA AGAAGAGCTACATATTCCAGCAGATGAGACAGACTTTGTCTGCTTTGAAGGAGGAGGAGATGATT TTAATAGTTATAATGTAGAAGAGCTTTTAGGATCTTTGGAACTGGAGGACTCTGTACCTGAAGAG TCGAAGAAGCTGAAGAAGTTTCTCAGCACAGAGAGAAATCTCCTGAGGAGTCTCGGGGGCGTGA ACTTGACCCTGTGCCTGAGCCCGAGGCATTCAGAGCTGATTCAGAGGATGGAGAAGGTGCTTTCT CAGAGAGCACCGAGGGGCTGCAGGGACAGCCCTCAGCTCAGGAGAGCCACCCTCACACCAGCGGT  ${\tt CCTGCGGCTAACGCTCAGGGAGTGCAGTCTTCGTTGGACACTTTTGAAGAAATTCTGCACGATAA}$ ATTGAAAGTGCCGGGAAGCGAAAGCAGAACTGGCAATAGTTCTCCTGCCTCGGTGGAGCGGGAGA AGACAGATGCTTACAAAGTCCTGAAAACAGAAATGAGTCAGAGAGGGAAGTGGACAGTGCGTTATT AAAAAAAAAAAAAAAA

MAAAPGLLFWLFVLGALWWVPGQSDLSHGRRFSDLKVCGDEECSMLMYRGKALEDFTGPDCRFVN FKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADETDFVCFEGGRD DFNSYNVEELLGSLELEDSVPEESKKAEEVSQHREKSPEESRGRELDPVPEPEAFRADSEDGEGA FSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDKLKVPGSESRTGNSSPASVER EKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYKDCF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30~34

Tyrosine kinase phosphorylation site.

amino acids 67-76

N-myristoylation sites.

amino acids 205-211, 225-231, 277-283

Amidation site.

amino acids 28-32

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAGAGGCCGGGGAAGAAGCAAAGCGC AACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCTAACTTC AGTCCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCGCGCACAGG CGCGGCAGGCGGCAGGTCCCGGCCGAAGGCGATGCGCGCAGGGGGTCGGGCAGCTGGGCTCGGGC GGCGGGAGTAGGGCCCGGCAGGGAGGCAGGGAGGCTGCATATTCAGAGTCGCGGGCTGCGCCCTG GGCAGAGGCCGCCCTCGCTCCACGCAACACCTGCTGCTGCCACCGCGCCGCGATGAGCCGCGTGG TCTCGCTGCTGCTGGGCGCCGCTGCTCTGCGGCCACGGAGCCTTCTGCCGCCGCGTGGTCAGC GGCCAAAAGGTGTTTTGCTGACTTCAAGCATCCCTGCTACAAAATGGCCTACTTCCATGAACT GTCCAGCCGAGTGAGCTTTCAGGAGGCACGCCTGGCTTGTGAGAGTGAGGAGGAGTCCTCCTCA GCCTTGAGAATGAAGCAGAACAGAAGTTAATAGAGAGCATGTTGCAAAACCTGACAAAACCCGGG ACAGGGATTTCTGATGGTGATTTCTGGATAGGGCTTTGGAGGAATGGAGATGGGCAAACATCTGG TGCCTGCCCAGATCTCTACCAGTGGTCTGATGGAAGCAATTCCCAGTACCGAAACTGGTACACAG  $\verb|CTTGGGGGTCCCTACCTTTACCAGTGGAATGATGACAGGTGTAACATGAAGCACAATTATATTTG|$ CAAGTATGAACCAGAGATTAATCCAACAGCCCCTGTAGAAAAGCCTTATCTTACAAATCAACCAG GAGACACCCATCAGAATGTGGTTGTTACTGAAGCAGGTATAATTCCCAATCTAATTTATGTTGTT ATACCAACAATACCCCTGCTCTTACTGATACTGGTTGCTTTTTGGAACCTGTTGTTTCCAGATGCT GCATAAAAGTAAAGGAAGAACAAAAACTAGTCCAAACCAGTCTACACTGTGGATTTCAAAGAGTA CCAGAAAAGAAAGTGGCATGGAAGTA**TAA**TAACTCATTGACTTGGTTCCAGAATTTTGTAATTCT GGATCTGTATAAGGAATGGCATCAGAACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGC AAGATGAACTGTAAGCTCCCCCTTGAGGCAAATATTAAAGTAATTTTTATATGTCTATTATTTCA TTTAAAGAATATGCTGTGCTAATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCACCCAA ACTTCAAACTTCAAGCAAATGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTCGGGAGTA TGTGTGTTAGAAGCAATTCCTTTTATTTCTTTCACCTTTCATAAGTTGTTATCTAGTCAATGTAA TGTATATTGTATTGAAATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAAGTGTTTGATAAAA ATGAACTGTTCTAATATTTTTTTTTTTTTGGCATCTCATTTTTCAATACATGCTCTTTTGATTAAAG AAACTTATTACTGTTGTCAACTGAATTCACACACACACAAATATAGTACCATAGAAAAAGTTTGT TTTCTCGAAATAATTCATCTTTCAGCTTCTCTGCTTTTGGTCAATGTCTAGGAAATCTCTTCAGA AATAAGAAGCTATTTCATTAAGTGTGATATAAACCTCCTCAAACATTTTACTTAGAGGCAAGGAT TGTCTAATTTCAATTGTGCAAGACATGTGCCTTATAATTATTTTTTAGCTTAAAATTAAACAGATT  $\tt TTGTAATGTAACTTTGTTAATAGGTGCATAAACACTAATGCAGTCAATTTGAACAAAAGAAG$ TGACATACACAATATAAATCATATGTCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTCTGA GGGTTCTGAAATCAATGTGGTCCCTCTCTTGCCCACTAAACAAAGATGGTTGTTCGGGGTTTTGGG ATTGACACTGGAGGCAGATAGTTGCAAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGCCTCTG ACTATATTAGTATACAAAGAGGTCATGTGGTTGAGACCAGGTGAATAGTCACTATCAGTGTGGAG ACAAGCACAGCACAGACATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAAATGGGTTGG AACCCATCAGTGATCGCATATTCATTGATGAGGGTTTGCTTGAGATAGAAAATGGTGGCTCCTTT CTGTCTTATCTCCTAGTTTCTTCAATGCTTACGCCTTGTTCTTCTCAAGAGAAAGTTGTAACTCT CTGGTCTTCATATGTCCCTGTGCTCCTTTTAACCAAATAAAGAGTTCTTGTTTCTGGGGGAAAAA 

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLACESE GGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQWSDGSNSQ YRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAPVEK PYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCFQMLHKSKGRTKTSPNQ STLWISKSTRKESGMEV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 214-235

N-glycosylation sites.

amino acids 86-89, 255-258

 $\mathtt{cAMP-}$  and  $\mathtt{cGMP-} dependent$  protein kinase phosphorylation site.

amino acids 266-269

N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145, 212-217