Elektrodinamika 1

Elektromos áram, elektromos ellenállás, Joule-hő

Elektromos áram

- ➤ Töltésmegmaradás
- ➤ Energiamegmaradás

Elektromos vezető: szabad töltéshordozókkal rendelkező anyag (pl. fémek, elektrolit ...):

Fém vezető elektromos térbe helyezve (t = 0s): Kis, Δt idő után statikus állapot:

Hogy lehet $V(A) = V(B) \rightarrow U = 0$ állapotot fenntartani?

Feszültégforrás

(feszültség = potenciál különbség)

Áramirány = A + töltések relatív mozgásának iránya

$$I = \frac{\Delta Q}{\Delta t}$$

$$\left\lceil \frac{C}{s} \right\rceil = [A]$$

Elektromos áram

Feszültségforrás + zárt vezető hurok

 a) A feszültségforrást tartalmazó zárt vezető hurok sematikus áramköri rajza

b) A V potenciál (a függőleges tengelyen) a távolság függvényében (azaz a hurok mentén). A feszültségforrás negatív kapcsán belépő pozitív töltések potenciálja a telepen való áthaladás során ε-val megnő.

Az elektromos vezetés klasszikus modellje

A fémekben a szabad elektronok olyan bolyongó mozgást végeznek, mint a gázok molekulái. Amikor a fémben elektromos erőtér alakul ki, akkor az elektronok az E térerősség irányával ellentétes irányban, v, átlagos sebességgel vándorolnak. A (negatív töltésű) elektronok v, átlagos sebességű vándorlása hozza létre az I áramot (a másik irányban).

Az elektron folyamatosan "ütközik" az atomrács atomjaival, eközben átlagos, v_D driftsebességgel halad

v_D driftsebesség

28-4 ábra

Az árnyékolással jelzett térrész elektronjai $\Delta t = \Delta \ell / v_d$ idő alatt a P sík túloldalára vándorolnak.

Feladat: Mekkora az elektronok sebessége telefon töltés közben?

- A töltőkábel 2 mm átmérőjű és réz anyagú
- A töltőfej 2 A áramot tud adni

A réz atomsúlya: $M=63,54\frac{g}{m \acute{o}l}$ Sűrűsége: $8,92\frac{g}{cm^3}$

Az elemi töltés: $1,602 \cdot 10^{-19} C$

Állandó A keresztmetszetű, L hosszúságú vezető, melynek végei között V potenciálkülönbséget tartunk fent. A potenciálkülönbség hatására a vezetőben E térerősség alakul ki, aminek következtében a vezetőben I áram folyik.

$$R=
horac{l}{A}$$
 (+ a hőmérséklettől is függ!)

ho: fajlagos ellenállás Mértékegység: Ω m

 σ : fajlagos vezetőképesség

$$\sigma = \frac{1}{\rho}$$

28-1 TÁBLÁZAT Fajlagos ellenállások és hőmérsékleti együtthatóik

ozoneja majá obaladi onciálkálono gaynA		ρ fajlagos ellenállás 20° C -on (Ωm)		hőmérs	α fajlagos ellenállás hőmérsékleti együttha- tója (1/°C)	
Szigetelők	somezs nem	TOT DECO	THE SEES OVER THE	giepo de a	e arányos, Mej	
Csillám	liggiagi, gay	2	$\times 10^{15}$	-50	$\times 10^{-3}$	
Kén		ahonnail	$\times 10^{15}$	Kepletbo	ALL I EL TURBURES	
Üveglemez		, Al = 2	×10 ¹¹	-70	×10-3 /HO X	
Félvezetők	etlen az anya	ely függe	zett állándó, am	lásnak neve	nol Raz ellenál	
Szilícium od 3 Hűszás I		anyagból	640	list q ve75	× 10 ⁻³	
Germánium		t a (28-	0,46	Simelszetű	gyenletes kere	
Germánium Szén (grafit)		1,4	× 10 ⁻⁵	-0,5	× 10 × 10-3	
Vezetők			$R = \frac{PE}{PE}$			
Alumínium		2,8	× 10 ⁻⁸	3.9	$\times 10^{-3}$	
Bronz		18	× 10 × 10-8	0,5	$\times 10^{-3}$	
Réz		1,7	× 10 ⁻⁸	6,8		
Arany		2,4		3,4		
Vas	y egy mini	10	$\times 10^{-8}$		$\times 10^{-3}$	
	[84% Cu	at külön	bogg anyagoli ka	everákéb 1	készítik úgy, 🗎	
Manganin	12% Mn	44	$\times 10^{-8}$	<0,000	5×10^{-3}	
emer-dióda	4% Ni		gútdióda. c) /	nslA (d	on the allen-	
Higany			× 10 ⁻⁸	0,8	*	
Nichrome*			$\times 10^{-8}$	0,4	$\times 10^{-3}$	
Platina		10	$\times 10^{-8}$	3,92	$\times 10^{-3}$	
Ezüst le silabli za daz		1,6	L.V. kar o'coricz	3,92 4,1	matalala wendelal	
Volfrám		5,7	× 10-8	isviol mass	V 10-3 1999 B	
Cink	avidranic) z	5,9	×10 ⁻⁸	4.2	× 10 ⁻³	

Joule-hő

dQ töltésen végzett munka:

$$dW = U \cdot dQ$$

$$P = \frac{dW}{dt} = U \cdot \frac{dQ}{dt} = U \cdot I$$

$$P = U \cdot I$$

Ohm-törvény \rightarrow $P=R\cdot I^2$

$$P = \frac{U}{R^2}$$

