III Graph 1: Agent1(X) vs Random Players

What it shows: How well X agent beats random player

- 1. $\alpha = 0.01$: Smooth line at ~95% X almost always wins, very stable
 - Why: Learns very slowly → doesn't change good strategies → stays consistent
- 2. $\alpha = 0.1$: Mostly at ~95% with small wiggles X wins consistently
 - Why: Learns slowly \rightarrow keeps good moves \rightarrow minor updates don't break what works
- 3. $\alpha = 0.5$: Bumpy, drops to 60-80% X wins most times but sometimes struggles
 - Why: Learns faster → sometimes overwrites good strategies → performance drop
- 4. $\alpha = 0.99$: Very bumpy, big drops X wins but very inconsistent
 - Why: Learns too fast \rightarrow constantly changing strategy \rightarrow forgets what worked before

Meaning: Lower alpha = X beats random players more reliably

Graph 2: Agent2(O) vs Random Players

What it shows: How well O agent beats random players

- 1. $\alpha = 0.01$: Steady line at ~60% O wins about half the time, stable
 - a. Why: Slow learning keeps O consistent, but O naturally weaker (goes second)
- 2. $\alpha = 0.1$: Slowly improves $50\% \rightarrow 75\%$ O gets better over time
 - a. Why: Good learning pace → gradually finds better strategies → steady improvement
- 3. $\alpha = 0.5$: Wiggly around 60% O wins sometimes, inconsistent
 - a. Why: Medium learning speed \rightarrow sometimes finds good moves, sometimes loses them
- 4. $\alpha = 0.99$: Very bumpy 40-70% O performance all over the place
 - a. Why: Changes strategy too often \rightarrow can't stick to what works \rightarrow unstable results

III Graph 3: Agent1(X) vs Teachers

What it shows: How well X learns to beat smart teachers

- 1. $\alpha = 0.01$: Smooth climb 0% \rightarrow 75% X learns steadily, reaches 75% wins
 - a. Why: Slow, careful learning \rightarrow builds solid strategy against teachers \rightarrow no forgetting
- 2. $\alpha = 0.1$: Good climb to 75% then flat X learns well, stays at 75%
 - a. Why: Balanced learning \rightarrow finds good counterstrategies \rightarrow maintains performance
- 3. $\alpha = 0.5$: Quick rise to 70% then flat X learns fast but stops at 70%
 - a. Why: Fast learning → quickly finds some strategies but overwrites before perfecting
- 4. $\alpha = 0.99$: Bumpy rise then dip X learns fast but forgets, ends lower
 - a. Why: Too fast learning \rightarrow finds strategies quickly but immediately forgets them \rightarrow chaos

III Graph 4: Agent2(O) vs Teachers

What it shows: How well O learns to beat smart teachers

- 1. $\alpha = 0.01$: Flat line at ~10% O barely wins, but steady
 - a. Why: Even slow learning can't help much \rightarrow O's disadvantage too big \rightarrow at least stable
- 2. $\alpha = 0.1$: Flat line at ~8% O almost never wins
 - a. Why: Teachers too good + O goes second → very hard to find winning strategies
- 3. $\alpha = 0.5$: Flat line at ~5% O rarely wins
 - a. Why: Fast learning makes it worse \rightarrow keeps changing losing strategies \rightarrow no improvement
- 4. $\alpha = 0.99$: Flat line at ~5% O almost never wins
 - a. Why: Chaotic learning \rightarrow can't develop any consistent strategy \rightarrow stays bad

Meaning: O really struggles against smart teachers no matter what alpha

Learning Rate Effects

1. Lower α (0.01-0.1): Conservative Learning

- a. Stable updates: Small changes preserve good knowledge
- **b.** Consistent performance: Less volatility in win rates
- c. Better retention: Doesn't overwrite successful strategies

2. Higher α (0.5-0.99): Aggressive Learning

- a. Rapid adaptation: Quick learning but unstable
- **b.** Volatility: Overwrites previous knowledge too quickly
- c. Inconsistent: Performance swings wildly

Agent Asymmetry

1. Agent1 (X) Superior:

- a. First-move advantage: X plays first in Tic-Tac-Toe
- **b.** Strategic position: Easier to control center/corners
- c. Training benefit: Better learning from teacher interactions

2. Agent2 (O) Struggles:

- **a.** Reactive role: Always responding to X's moves
- **b.** Harder learning: Must counter optimal X play
- c. Teacher mismatch: May not learn effective counter strategies

X Agent (Trained to Play First)

What the graphs show:

- Red line (Role Trained): X playing normally (going first) does great!
- Green line (Role Switched): X trying to play second does okay but much worse

Main findings:

- All learning speeds work well X always wins about 95% of games when playing first
- But X is terrible at switching roles drops to only 55% wins when playing second
- Slower learning (α =0.01) = more steady, less jumpy lines
- Faster learning (α =0.99) = very jumpy, unstable performance

O Agent (Trained to Play Second)

What the graphs show:

- Blue line (Role Trained): O playing normally (going second) struggles more
- Green line (Role Switched): O trying to play first does better!

Main findings:

- Learning speed matters A LOT for O agent:
 - α =0.1 (medium speed): Best performance wins 73% of games
 - α =0.99 (very fast): Worst performance only wins 46% of games
- O improves when switching to go first gets easier games
- High learning speeds make O very unstable performance jumps around wildly

O's training created a well-rounded understanding of the game, and when combined with the natural first-player advantage, this knowledge becomes more effective than when constrained to the disadvantaged second position.