STAT 3690 Lecture 29

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Apr 08, 2022

CCA (Con'd)

- Sample version
 - $-\begin{array}{c} (\mathbf{Y}_1, \mathbf{X}_1), \dots, (\mathbf{Y}_n, \mathbf{X}_n) \stackrel{\text{iid}}{\sim} (\mathbf{Y}, \mathbf{X}) \\ * \ \mathbf{Y}_i \ \text{and} \ \mathbf{X}_i \ \text{jointly sampled} \end{array}$
 - $-n \times p \text{ matrix } \mathbb{Y} = [\mathbf{Y}_1, \dots, \mathbf{Y}_n]^{\top} \text{ and } n \times q \text{ matrix } \mathbb{X} = [\mathbf{X}_1, \dots, \mathbf{X}_n]^{\top}$
 - Sample covariance matrices

 - * $\mathbf{S}_{\mathbf{Y}} = (n-1)^{-1} \sum_{i} (\mathbf{Y}_{i} \bar{\mathbf{Y}}) (\mathbf{Y}_{i} \bar{\mathbf{Y}})^{\top}$ * $\mathbf{S}_{\mathbf{X}} = (n-1)^{-1} \sum_{i} (\mathbf{X}_{i} \bar{\mathbf{X}}) (\mathbf{X}_{i} \bar{\mathbf{X}})^{\top}$ * $\mathbf{S}_{\mathbf{Y}\mathbf{X}} = \mathbf{S}_{\mathbf{X}\mathbf{Y}}^{\top} = (n-1)^{-1} \sum_{i} (\mathbf{Y}_{i} \bar{\mathbf{Y}}) (\mathbf{X}_{i} \bar{\mathbf{X}})^{\top}$
 - Vocabulary
 - * (The kth pair of) sample canonical directions: $(\hat{\boldsymbol{a}}_k \in \mathbb{R}^p, \hat{\boldsymbol{b}}_k \in \mathbb{R}^q)$
 - * (The kth pair of) sample canonical variates: $(\mathbb{Y}_C \hat{\boldsymbol{a}}_k, \mathbb{X}_C \hat{\boldsymbol{b}}_k)$
 - * (The kth) canonical correlation: $\hat{\rho}_k$
 - Goal: find $\hat{\boldsymbol{a}}_k$ and $\hat{\boldsymbol{b}}_k$, $k=1,\ldots,r\leq p$, to maximize

$$\hat{\rho}_k = \frac{\hat{\boldsymbol{a}}_k^\top \mathbf{S}_{\mathbf{Y}\mathbf{X}} \hat{\boldsymbol{b}}_k}{\sqrt{\hat{\boldsymbol{a}}_k^\top \mathbf{S}_{\mathbf{Y}} \hat{\boldsymbol{a}}_k} \sqrt{\hat{\boldsymbol{b}}_k^\top \mathbf{S}_{\mathbf{X}} \hat{\boldsymbol{b}}_k}}$$

subject to

- while the state of the state o

- * $\hat{\boldsymbol{b}}_{k}^{\dagger} \mathbf{S}_{\mathbf{X}\mathbf{Y}} \hat{\boldsymbol{a}}_{\ell} = 0, \ \ell = 1, \dots, k-1$ Solution: Let $\widehat{\mathbf{M}} = \mathbf{S}_{\mathbf{Y}}^{-1/2} \mathbf{S}_{\mathbf{Y}\mathbf{X}} \mathbf{S}_{\mathbf{X}}^{-1/2}$

 - * $\hat{\rho}_k = \sqrt{\hat{\lambda}_k}$ is the kth largest singular value of $\widehat{\mathbf{M}}$ · $\hat{\lambda}_k$: the kth largest eigenvalue of $\widehat{\mathbf{M}}\widehat{\mathbf{M}}^{\top}$ (or $\widehat{\mathbf{M}}^{\top}\widehat{\mathbf{M}}$)
 - $* \hat{\boldsymbol{a}}_k = \mathbf{S}_{\mathbf{Y}}^{-1/2} \hat{\boldsymbol{e}}_k$
 - \hat{e}_k : the left-singular vector corresponding to the kth largest singular value of $\widehat{\mathbf{M}}$, i.e., the eigenvector corresponding to the kth largest eigenvalue of $\widehat{\mathbf{M}}\widehat{\mathbf{M}}$
 - $* \hat{oldsymbol{b}}_k = \mathbf{S}_{\mathbf{X}}^{-1/2} \hat{oldsymbol{f}}_k$
 - \hat{f}_k : the right-singular vector corresponding to the kth largest singular value of $\widehat{\mathbf{M}}$, i.e., the eigenvector corresponding to the kth largest eigenvalue of $\widehat{\mathbf{M}}^{\top}\widehat{\mathbf{M}}$

- Example: olive oil data
 - 572 olive oils
 - 10 features
 - * region indicates the general region (in Italy) of origin.
 - * area details the area of Italy.
 - * Remaining variables are continuous valued and measure the percentage composition of 8 different fatty acids
 - Interested in the correlations between the region of origin and the fatty acid measurements
 - * $\mathbb{Y} \in \mathbb{R}^{572 \times 3}$ an indicator matrix, i.e., each row of Y indicates the region with a 1 and otherwise
 - * $\mathbb{X} \in \mathbb{R}^{572 \times 8}$ contains the 8 fatty acid measurements
- Proportion of explained correlation
 - Determining r, the number of pairs of canonical variates to retain
 - $-p \times r$ matrix $\operatorname{corr}(\mathbf{Y}, \mathbf{A}_r^{\top} \mathbf{Y})$ and $q \times r$ matrix $\operatorname{corr}(\mathbf{X}, \mathbf{B}_r^{\top} \mathbf{X})$
 - * The correlation matrix between \mathbf{Y} (or \mathbf{X}) and canonical variates
 - * $A_r = [a_1, ..., a_r]$ and $B_r = [a_1, ..., a_r]$
 - $\|\operatorname{corr}(\mathbf{Y}, \mathbf{A}_r^{\top} \mathbf{Y})\|_F^2/p \text{ and } \|\operatorname{corr}(\mathbf{X}, \mathbf{B}_r^{\top} \mathbf{X})\|_F^2/q$
 - * Proportion of explained correlation of Y (or X)
 - * $\|\cdot\|_F^2$: squared Frobenius norm, i.e., sum of squared entries
- Interpreting canonical variates
 - $-\operatorname{corr}(\mathbf{Y}, \mathbf{A}_r^{\top}\mathbf{Y})$

 - $-\operatorname{corr}(\mathbf{X}, \mathbf{B}_r^\top \mathbf{X}) \\ -\operatorname{corr}(\mathbf{Y}, \mathbf{B}_r^\top \mathbf{X}) \\ -\operatorname{corr}(\mathbf{X}, \mathbf{A}_r^\top \mathbf{Y})$

Testing the uncorrelatedness of canonical variates

- LRT for $H_0: \Sigma_{YX} = 0$ vs. $H_1:$ otherwise
 - LRT statistic $\lambda = \prod_{k=1}^{p} (1 \hat{\rho}_k^2)^{n/2}$

 - * $\hat{\rho}_k$: the kth sample canonical correlation * Under H_0 , $-2 \ln \lambda = -n \sum_{k=1}^p \ln(1 \hat{\rho}_k^2) \approx \chi^2(pq)$
- Sequential inference
 - Determining r, the number of pairs of canonical variates to retain
 - Note that $\Sigma_{\mathbf{YX}} = 0 \Leftrightarrow \rho_1 = \cdots = \rho_p = 0 \Leftrightarrow \rho_1 = 0$
 - * Since $\rho_1 \ge \cdots \ge \rho_p$
 - Consider a sequence of p pairs of hypotheses: $H_{0,k}: \rho_{k-1} > 0, \rho_k = 0$ vs. $H_{1,k}: \rho_k > 0$

 - * LRT statistic $\lambda_k = \prod_{\ell=k}^{p} (1 \hat{\rho}_{\ell}^2)^{n/2}$ · Under $H_{0,k}, -2 \ln \lambda_k = -n \sum_{\ell=k}^{p} \ln(1 \hat{\rho}_{\ell}^2) \approx \chi^2((p k + 1)(q k + 1))$
 - Stopping rules
 - * p_k : the p-value associated with the testing on $H_{0,k}$ vs. $H_{1,k}$
 - * $p_{(k)}$: the kth smallest value among $\{p_1, \ldots, p_p\}$
 - * Holm-Bonferroni procedure (Holm (1979), Scandinavian Journal of Statistics, 6, 65–70): if $p_{(k)} < \alpha/(p+1-k)$, reject $H_{0,(k)}$ and proceed to larger p-values; otherwise EXIT.
 - * B-H procedure (Benjamini & Hochberg (1995), Journal of the Royal Statistical Society, Series B., 57, 289–300):
 - 1. For a given level α , find $k^* = \max\{k \in \{1, \dots, p\} \mid p_{(k)} \leq k\alpha/p\}$
 - 2. Reject $H_{0,(k)}$ for $k = 1, ..., k^*$