## 3248. Snake in Matrix

Solved •

Easy 🔊 Topics 🕜 Hint

There is a snake in an  $[n \times n]$  matrix [grid] and can move in **four possible directions**. Each cell in the [grid] is identified by the position: [grid[i][j] = (i \* n) + j].

The snake starts at cell 0 and follows a sequence of commands.

You are given an integer in representing the size of the <code>grid</code> and an array of strings <code>commands</code> where each <code>command[i]</code> is either <code>"UP"</code>, <code>"RIGHT"</code>, <code>"DOWN"</code>, and <code>"LEFT"</code>. It's guaranteed that the snake will remain within the <code>grid</code> boundaries throughout its movement.

Return the position of the final cell where the snake ends up after executing commands.

## Example 1:

**Input:** n = 2, commands = ["RIGHT","DOWN"]

Output: 3

**Explanation:** 



## Example 2:

**Input:** n = 3, commands = ["DOWN","RIGHT","UP"]

Output: 1

**Explanation:** 

| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | 4 | 5 | 3 | 4 | 5 | 3 | 4 | 5 | 3 | 4 | 5 |
| 6 | 7 | 8 | 6 | 7 | 8 | 6 | 7 | 8 | 6 | 7 | 8 |

## **Constraints:**

- 2 <= n <= 10
- 1 <= commands.length <= 100
- commands consists only of "UP", "RIGHT", "DOWN", and "LEFT".
- The input is generated such the snake will not move outside of the boundaries.

Seen this question in a real interview before? 1/5

Yes No

Accepted 38.2K Submissions 47.1K Acceptance Rate 81.1%

| Topics         | ~ |
|----------------|---|
| Hint 1         | ~ |
| Discussion (6) | ~ |