CS 260: Assignment #3

Due on Tuesday, November 3, 2015 $Prof.\ Hardekopf$

Chad Spensky

Figure 1: Arithmetic Tables

1 Arithmetic Operators

In a separate PDF document generated from Latex, formalize the abstract arithmetic operators on the integer abstract domain (i.e., addition, subtraction, multiplication, and division) and prove that they are all monotone (hint: the easiest way to formalize operators on finite abstract domains is usually to give them as a table).

For a function to be monotone, we must show that the function $f: \mathbb{S} \to \mathbb{S}'$, the following holds $\forall x,y \in S: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$ We define our abstraction function as $\alpha^{\#}: \mathbb{Z} \to \mathbb{Z}^{\#} = \{\bot, \mathbb{Z} -, 0, \mathbb{Z} +, \top\}$ where $\top = \mathbb{Z}$. We define $(x,y) \sqsubseteq (x',y')$ for $x,y,x',y' \in \mathbb{Z}^{\#} \iff x \sqsubseteq y$ and $x' \sqsubseteq y'$. For the cases where $x = (\bot,*)$, the result \bot is trivially $\sqsubseteq y, \forall y \in \mathbb{Z}^{\#}$, and similarly with $x = (*,\top)$, which yields \top .

For convenience, the table for each operation can be found in Figure ??.

1.1 Addition

Thus, for $x, y \in \mathbb{Z}$ we can show a proof by cases. Since addition is commutative, without loss of generality, we denote $(x, y) \in (\mathbb{Z}^{\#}, \mathbb{Z}^{\#})$ where $x \sqsubseteq y$. Our addition function is $f^+: (\mathbb{Z}^{\#}, \mathbb{Z}^{\#}) \to \mathbb{Z}^{\#}$.

$$x = (\mathbb{Z}^-, \mathbb{Z}^-)$$

- $y = (\mathbb{Z} -, \mathbb{Z} -) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(y) \Rightarrow \mathbb{Z} \sqsubseteq \mathbb{Z} -$
- $y = (\mathbb{Z} -, \top) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(0) \Rightarrow \mathbb{Z} \sqsubseteq \top$
- $y = (\top, \top) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(y) \Rightarrow \mathbb{Z} \sqsubseteq \top$

x = (0, 0)

•
$$y = (0,0) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(0) \Rightarrow 0 \sqsubseteq 0$$

•
$$y = (0, \top) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(y) \Rightarrow 0 \sqsubseteq \top$$

•
$$y = (\top, \top) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(y) \Rightarrow 0 \sqsubseteq \top$$

 $x = (\mathbb{Z}+, \mathbb{Z}+)$

•
$$y = (\mathbb{Z} +, \mathbb{Z} +) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(0) \Rightarrow \mathbb{Z} + \sqsubseteq \mathbb{Z} +$$

•
$$y = (\mathbb{Z}+, \top) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(y) \Rightarrow \mathbb{Z}+ \sqsubseteq \top$$

•
$$y = (\top, \top) \Rightarrow \alpha^{\#}(x) \sqsubseteq \alpha^{\#}(y) \Rightarrow \mathbb{Z} + \sqsubseteq \top$$

1.2 Subtraction

For subtraction, commutativity does not hold, so we will outline the possible cases below. A similar logic holds for \top and \bot as it did it addition. However note that $\forall x = (*, \top), (\top, *)\alpha^{\#}(x) = \top$ and is thus trivially is will satisfy monotonicity for any $x' \sqsubseteq (*, \top)$ or $(\top, *)$. Thus, the only remaining comparisons are where (x, y) = (x', y'), which also trivially hold. A proof by cases as done in the addition would also be possible, but unnecessary. \square

1.3 Multiplication

A similar argument to our proof in subtraction and addition hold here, i.e., \bot will always satisfy our requirement, and given that multiplication is commutative, we again can assume $(x,y)\Rightarrow x\sqsubseteq y$. $(\mathbb{Z}-,\top),(\mathbb{Z}+,\top)$, and (\top,\top) will also hold under the same logic, however 0 is a special case here. However, the identity trivially holds, i.e., $x=(0,\top),y=(0,\top)\Rightarrow 0\sqsubseteq 0$ as does $x=(\top,\top),y=(\top,\top)\Rightarrow \top\sqsubseteq \top$. Thus satisfying the requirement to be monotone. \Box

1.4 Division

The same logic as before applies again to every case but $(\top, 0)$ and $(0, \top)$. However since the identity will trivially hold, and $\alpha^{\#}((\top, 0)) = \bot \sqsubseteq \alpha^{\#}((\top, \top)) = \top$ and $\alpha^{\#}((0, \top)) = 0 \sqsubseteq \alpha^{\#}((\top, \top)) = \top$, we again have shown that the function is monotone. \Box