3000			616	500	30	-
Pri	nt	ed	D5	ge	в	L

Subject	Code.	ACSE0306/AMICSE0306/A	CSEH0300
DUDICEL	Coue.	AL SENZIMA MILES EUSOONIE	CHANGOO

	STEAL	- State	ALC: N	COURT	-	200	and the	_	1	-	
Roll No:											

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech(CSE/IT/ CS/AI/AIML/DS/IOT/ M.TECH.(INT)/CS(R))

(SEM: III, SESSIONAL EXAMINATION -I)(2022-2023)

Subject Name: Discrete Structure

Time: 1.15Hours

Max. Marks:30

General Instructions:

- > All questions are compulsory. Answers should be brief and to the point.
- > This Question paper consists of pages & ...5...... questions.
- > It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- > Section A Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- > Section B Question No-3 is Short answer type questions carrying 5 marks each. You need to attempt any two out of three questions given.
- > Section C Question No. 4 & 5 are Long answer type (within unit choice) questions carrying 6 marks each. You need to attempt any one part <u>a or b.</u>
- > Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

		SECTION - A	[8]	
1.	Atto	mpt all parts	(4×1=4)	CO1
1.		Represent the set {1,3,5,7,9} in Set Builder Form.	(1)	001
	a. b.	Define: (i) Singleton set (ii) Void Set	(1)	
	C.	Give an example of difference on Multiset.	(1)	
	d.	Given the Set $A = \{1,2,3,4,5\}$ with Relation $R=\{(1,2),(3,4),(2,2)\}$ and $S=\{(4,2),(2,5),(3,1),(1,3)\}$. Find the Composition $R \in S$.	(1)	
2.	Att	empt all parts	(2×2=4)	со
	a.	If A= {-3,0,1,2,4}, B= {1,2,3,4} calculate symmetric difference of A,B.	(2)	
	b.	Let f: R ->R be such that $f(x) = x^2$. Is f invertible?	(2)	
		SECTION - B		
3.	An	swer any two of the following-	[2×5=10]	CO
	a.	Prove: (i) A \(\Omega\) B = B \(\Omega\), (ii) A \(\Omega\) B = B \(\Omega\), (ii)	(5)	
	b.	The number of 2 letter words which can be formed by using the letters in a word 'GREAT' are?	(5)	
	c.	Find the generating function of numeric function (2,3,5,9,17,33)	(5)	

_	(6)	2k+1)c	uk	424
+	SECTION-C	41)-1) 2k+1)C		dik2
A	nswer any one of the following-(Any one can be applicative if applicable) Ouestion- Solve the Recurrence Relation $a_{r-7}a_{r-1} + 10a_{r-2}=0$. Given that $a_0=0$,	[2×6=12] (6)	CO	168
b.	By using mathematical induction prove that the given equation is true for all positive integers.	(6)		
	$1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + (2n - 1) \times 2n = [n(n+1)(4n-1)/3]$			
An a.	swer any one of the following- Let $f:R \to R$ be defined by $f(x) = x^3 - 4$, $g(x) = \frac{1}{(1+x^2)}$, $h(x) = x^4$ then find the following composition function (fogoh)(x) (gog)(x) (goh)(x)	(6)		

Subject Code: ACSE0306/AMICSE0306/ACSEH0306 Printed page: 2 Roll No: 0 2 2 1 D T 7 1 8 0 NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute) Affiliated to Dr. A.P. J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow Course: B.Tech Branch: CSE/IT/CS/AI/AIML/DS/IOT/M.TECH (INT)/CS(R) Sessional Examination: Second Semester: III Subject Name: Discrete Structure Year- (2022- 2023) Time: 1.15 Hours Max. Marks: 30 **General Instructions:** > This Question paper consists of 2 pages & 5 questions. It comprises three Sections A, B, &C. You are expected to answer them as directed. > Section A -Q.No- 1 is of one 1 mark each & Q. No- 2 carries 2 mark each. Section B.Q. No- 3 carries 5 marks each. > Section C-Q.No-4 & 5 carries 6 marks each. Attempt any one part a or b SECTION - A [08Marks] 1. All questions are compulsory- $(4 \times 1 = 4)$ a. A Poset in which every pair of elements has both a least (1) CO3 upper bound and a greatest lower bound is termed as a) sublattice b) lattice c) trail d) walk CO₂ b. Define algebraic structure (1) c. Condition for monoid is ____ (1) CO₂ a) (a+e)=ab) (a*e)=(a+e)c) a = (a * (a + e)a)d) (a*e)=(e*a)=a d. Find out the identity element In the group $G = \{2, 4, 6, 8\}$ (1) CO2 under multiplication modulo 10? A. 5 B. 9 2.6 D.12 $(2 \times 2 = 4)$ 2. Attempt all parts

a. Define Poset?	(2)	CO3	
b. Define Group and write its properties.	(2)	CO2	
SECTION - B 3. Answer any two of the following- a. Let set A={1,2,3,12,24,36,} consider the partial order of divisibility on A. Draw the corresponding Hasse Diagram. Find out the following into the Hasse diagram:- (i) Maximum (ii) Minimum (iii) Maximal (iv) minimal	(2×5	[arks] 5=10) CO3	
b. Explain homomorphism and isomorphism with example	(5)	CO2	
c. Define rings and write its properties.	(5)	CO2	
SECTION - C 4 Answer any one of the following- a. The set G = {0,1,2,3,4,5,6,7,8} is a abelian group with respect to addition modulo 9.	(1: (6)	Marks] ×6=6) CO2	
 b. (i) Define cosets. (ii) Find all the cosets of H = {0,4} in the group G = (Z₈,+₈) 	. (6)	CO3	
 5. Answer any one of the following- a. (i) Define fields. (ii) Show that the set 'N' is a monoid with respect to addition. (iii) Draw the Hasse diagram for (D₆₀, /). 		×6=6) CO2	
 b. (i) Define the following:- (a) Monoid (b) Sub group (c) Integral domain (ii) Show that G = {1, w, w²} is an abelian group under multiplication. Where 1, w, w² are cube roots of unity. 	(6)	CO3	CO2
are cube tools			

Page 2 of 2