

NALAŽENJE HAMILTONOVOG PUTA U GRAFOVIMA U OBLIKU DVODIMENZIONALNE MREŽE I SLOVA L, C, F I E

student: Uroš Ševkušić mentor: dr Mirko Spasić

Matematički fakultet Univerziteta u Beogradu

Uvod

- ► Hamiltonov put u grafu je put koji počinje od nekog čvora s, obilazi sve čvorove tačno jednom, i završava se u čvoru t.
- ▶ Hamiltonov ciklus je Hamiltonov put takav da je s = t.
- Pešetka je graf kojem su čvorovi iz nekog konačnog skupa $V\subset\mathbb{Z}^2$, a grana između dva čvora postoji ako i samo ako je euklidsko rastojanje tih tačaka 1.
- Ispitivanje postoji li Hamiltonov put u rešetki je, u opštem slučaju, NP-kompletan problem. [Itai et al., 1982]

Uvod - cilj rada

- U nekim tipovima rešetki, postoje polinomijalni algoritmi za nalaženje Hamiltonovog puta.
- U ovom radu bavimo se algoritmima za konstruisanje Hamiltonovog puta i ciklusa na rešetkama u obliku:
 - 2D mreže (pravougaonika) iz rada [Dong Chen et al., 2002]
 - slova L, C, F i E iz rada. [Keshavarz-Kohjerdi and Bagheri, 2012]
- U radu [Dong Chen et al., 2002] prikazani su:
 - sekvencijalni algoritam složenosti O(|V|)
 - ightharpoonup paralelni algoritam bez međuprocesorke zavisnosti, složenosti O(1) pod uslovom da postoji na računaru |V| procesora.
- ▶ U radu [Keshavarz-Kohjerdi and Bagheri, 2012] prikazani su sekvencijalni algoritmi složenosti O(|V|).

Uvod - cilj rada

- ► Izloženi algoritmi nisu dovoljno precizno definisani i sadrže greške.
- Do sada nije poznata nijedna implementacija navedenih algoritama.
- Paralelni algoritmi za rešetke u obliku slova L, C, F i E nisu do sada definisani.
- Cilj ovog rada je da se:
 - otklone greške i nedostaci
 - dokaže ispravnost algoritama
 - implementiraju sekvencijalni i paralelni algoritmi
 - evaluira vreme izvršavanja algoritama.

Uvod - primene

▶ Rešavanje problema *All-To-All* na paralelnim računarima sa topologijom 2D i 3D torusa [Plateau and Trystam, 1992]

Slika 1: 2D torus (slika preuzeta od korisnika Hemis62 sa Wikimedia Commons, pod licencom CC BY-SA 4.0)

Uvod - primene

- Algoritmi se mogu koristiti kao osnova za konstrukciju Hamiltonovih puteva i ciklusa na drugim rešetkama.
- Algoritam za 2D mrežu se koristi pri definiciji algoritama za L, C, F i E.
- ▶ Algoritam za L se koristi u algoritmima za C i F.
- Algoritam za C se koristi u algoritmu za E.

Algoritmi - pregled

- Osnovna ideja je odrediti funkcije koje računaju sledbenike čvorova na Hamiltonovom putu od s do t tako da je složenost tih funkcija O(1).
- Često je potrebno primeniti izomorfnu transformaciju radi svođenja na jednostavniji slučaj:
 - refleksija po x-osi: $R_x(x, y, m, n) = (x, n-1-y)$
 - refleksija po y-osi: $R_y(x, y, m, n) = (m-1-x, y)$
 - refleksija po dijagonali: $R_{diag}(x, y) = (y, x)$.

Algoritmi - pregled

Slika 2: Primeri refleksija

2D mreža

Slika 3: 2D mreža/pravougaoni graf

- ▶ Hamiltonov ciklus postoji u R(m, n) akko je mn paran i m, n > 1
- ► Ciklus je orijentisan: *CCW*, *CW* ili je neorijentisan.

Slika 4: Orijentacija CCW (levo) i orijentacija CW (desno)

- Primenom refleksije R_x , R_y ili R_{diag} se menja orijentacija orijentisanog ciklusa.
- ▶ U literaturi nije bilo pojma orijentacije Hamiltonovog ciklusa, ali je on od velike važnosti zbog ostalih algoritama u radu.

- Postoje četiri *tipa* Hamiltonovog ciklusa: *M1*, *M2*, *M3*, *M4*.
- Desna ivica u orijentisanom ciklusu tipa M1 je "ravna".
- Leva ivica u orijentisanom ciklusu tipa M2 je "ravna".
- Donja ivica u orijentisanom ciklusu tipa M3 je "ravna".
- Gornja ivica u orijentisanom ciklusu tipa M4 je "ravna".
- Hamiltonov ciklus može istovremeno imati više tipova.

- Algoritam za Hamiltonov ciklus tipova M1 i M3 i orijentacije CCW ima naredne korake:
 - 1. Najpre se uključe čvorovi sa donje i sa desne ivice.
 - 2. Zatim se cik-cak putevima dolazi do čvora (0, n-1) ili (0, 1).
 - 3. Put se nastavlja pravolinijski od (0, n-1) ili (0, 1) do (0, 0).

Slika 5: Ciklusi dobijeni primenom algoritma

- ightharpoonup R(m,n) je paran ako je mn paran broj, a inače je R(m,n) neparan [Itai et al., 1982]
- ▶ Čvor v je bele boje ako je $v_x + v_y \equiv_2 0$, a inače je crne boje [Itai et al., 1982]
- ▶ Čvorovi s i t su kompatibilnih boja ako važi:
 - ightharpoonup s i t su bele boje i R(m, n) je neparan
 - ightharpoonup s i t su različitih boja i R(m,n) je paran. [Itai et al., 1982]

- Hamiltonov put između s i t postoji u R(m, n) ako i samo ako su s i t kompatibilnih boja i ne važi:
 - 1. R(m, n) je izomorfan sa R'(m', 1), $s'_x \neq 0$, m' 1 ili $t'_x \neq 0$, m' 1
 - 2. R(m,n) je izomorfan sa R'(m',2), $s'_x = t'_x$ i $0 < s'_x$, $t'_x < m-1$ 3. R(m,n) je izomorfan sa R'(m',3), m' je paran, s' je crna, t' je bela i
 - 3. R(m, n) je izomorfan sa R'(m', 3), m' je paran, s' je crna, t' je bela i važi:
 - 3.1 $s'_{x} < t'_{x}$, kada je $s'_{y} = 1$
 - 3.2 $s'_x < t'_x 1$, kada je $s'_y \neq 1$
 - ili je R(m, n) izomorfan sa R'(m', 3), m' je paran, s' je bela, t' je crna i važi:
 - 3.1 $t'_{x} < s'_{x}$, kada je $t'_{y} = 1$
 - 3.2 $t_x' < s_x' 1$, kada je $t_y' \neq 1$ [Itai et al., 1982]

Slika 6: Primer svakog od slučajeva u kojem Hamiltonov put od s do p ne postoji, redom: slučaj 1, slučaj 2, slučaj 3.1) i slučaj 3.2).

- ▶ Čvorovi s i t su antipodi ako je $min(s_x, t_x) \le 1$, $max(s_x, t_x) \ge m 2$, $min(s_y, t_y) \le 1$, $max(s_y, t_y) \ge n 2$. [Dong Chen et al., 2002]
- ▶ [Dong Chen et al., 2002] definišu raslojavanje pravougaonog grafa:

Slika 7: Raslojavanje: M_5 se nalazi u centru i u njemu su s i t antipodi. U ostalim M_i je moguće napraviti Hamiltonov ciklus.

Slika 8: Raslojavanje: M_5 se nalazi u centru i u njemu su s i t antipodi. U ostalim M_i je moguće napraviti Hamiltonov ciklus.

- Raslojavanje nije jedinstveno.
- Inicijalno se bira raslojavanje u kojem su svi m_i i n_i (za koje je to moguće) parni, za $1 \le i \le 4$.

- ► Algoritam za nalaženje Hamiltonovog puta:
 - 1. ako Hamiltonov put postoji u M₅:
 - 1.1 konstruiši Hamiltonov put u M₅
 - 1.2 konstruiši Hamiltonove cikluse u M_i , $1 \le i \le 4$
 - 1.3 spoji put sa ciklusima
 - 2. ako Hamiltonov put ne postoji u M₅:
 - 2.1 modifikuj podelu tako da su s i t u M_5'
 - 2.2 konstruiši Hamiltonov put u M_5'
 - 2.3 konstruiši Hamiltonove cikluse u M_i' , $1 \le i \le 4$
 - 2.4 spoji put sa ciklusima. [Dong Chen et al., 2002]

- Osim koraka povezivanja, svi koraci su urađeni, bez većih izmena, kao u [Dong Chen et al., 2002].
- Korak povezivanja Hamiltonovog puta sa Hamiltonovih ciklusima nije precizno definisan u literaturi.
- Pokazaćemo kako korak funkcioniše i dokazujemo ispravnost algoritma.
- Osnovna ideja je da se Hamiltonov put iz jednog pravougaonog grafa podeli na dva dela između kojih se umetne Hamiltonov ciklus iz drugog, tako da rezultat bude Hamiltonov put u uniji.

▶ Ako je $n_5 = 1$, refleksijama se povezivanje svodi na neki od slučajeva sa slike:

Slika 9: Primer svakog od slučaja povezivanja kada je $n_5 = 1$

- Ako je $n_5 > 1$, refleksijama svodimo algoritam na slučaj gde je M_1 neprazan i moguće je povezati Hamiltonov put u M_5 sa Hamiltonovim ciklusom u M_1 .
- Moguće je povezati Hamiltonov put u M_5 sa Hamiltonovim ciklusom M_1 akko ne važi $n_5 = 2$ i s_x , $t_x = 0$, $s \neq t$.

Slika 10: Nije moguće povezivanje puta u M_5 i ciklusa u M_1

- U tom slučaju, važi bar jedno od narednih tvrđenja na Hamiltonovom putu u M₅:
 - čvoru (0,0) je sledbenik (0,1)
 - \triangleright čvoru (0,1) je sledbenik (0,0)
 - ► čvoru (0, 1) je sledbenik (0, 2)
 - ► čvoru (0, 2) je sledbenik (0, 1).
- Prvi od čvorova kome je sledbenik ispod ili iznad njega se naziva čvor povezivanja.
- lz prethodnog je jasno da se taj čvor može naći u vremenu O(1).
- Algoritam za povezivanje Hamiltonovog puta M_5 sa Hamiltonovim ciklusom u M_1 :
 - 1. čvoru povezivanja se sledbenik preusmeri levo
 - 2. konstruiše se ciklus u M_1 tipa M_1 , sa orijentacijom CCW, ako je originalni sledbenik čvora povezivanja bio ispod njega, a inače sa orijentacijom CW
 - 3. Hamiltonov put u M_5 nastavlja od originalnog sledbenika čvora povezivanja do čvora t.

- ▶ Nakon spajanja sa *M*₁, potrebno je spojiti dobijeni put i sa ostalim Hamiltonovim ciklusima.
- Do na izomorfizam, postoji samo šest slučajeva koje treba obraditi:

Slika 11: Primeri svakog od slučaja povezivanja Hamiltonovog puta u M_5 sa Hamiltonovim ciklusima u M_i , 1 < i < 4

- ► Pokazujemo da Hamiltonov put konstruisan algoritmom iz ovog rada ima jednu lepu osobinu, koja će biti korisna za naredne algoritme.
- Sosim ako je n parno, m > 2 neparno, s = (0,0) i t = (0,1), važi bar jedno od narednih tvrđenja na Hamiltonovom putu u R(m,n), za n > 2:
 - ► čvoru (0,0) je sledbenik (0,1)
 - ▶ čvoru (0,1) je sledbenik (0,0)
 - čvoru (0,1) je sledbenik (0,2)
 - ▶ čvoru (0, 2) je sledbenik (0, 1)
- Algoritam je moguće modifikovati da važi tvrđenje i u tom spornom slučaju:

Slika 12: Rezultat algoritma pre modifikacije (levo) i posle modifikacije (desno)

Grafovi u obliku slova L, C, F i E - uvod

Hamiltonovi ciklusi na L, C, F i E

► Hamiltonov ciklus postoji akko je *mn* paran broj.

Slika 14: Hamiltonov ciklus u L(4,3)

Slično kao u L(m, n) se mogu konstruisati Hamiltonovi ciklusi u ostalim slovima.

Hamiltonovi putevi na L, C, F i E

- Algoritmi su opisani bez većih izmena, kao u radu [Keshavarz-Kohjerdi and Bagheri, 2012].
- ► Korak povezivanja je obrađen kao u pravougaonom grafu.
- Funkcije next za računanje sledbenika su implementirane na sličan način kao u pravougaonom grafu.

Implementacija

- Sekvencijalni i paralelni algoritmi implementirani su na programskom jeziku C++.
- Implementiran je i grafički interfejs, koji iscrtava Hamiltonove puteve i cikluse, u programskom jeziku *Python* i biblioteci *PyQt5*.

Slika 15: GUI za iscrtavanje Hamiltonovih puteva i ciklusa

Implementacija

- Paralelizacija je implementirana na sledeći način:
 - 1. indeksiranje čvorova svaki čvor dobija indeks, pri čemu se definiše funkcija indeksiranja i njoj inverzna funkcija, koje rade u vremenu O(1)
 - 2. paralelni algoritam:
 - 2.1 inicijalizuje se prazan niz čvorova X dužine |V|. Na kraju izvršavanja algoritma, X[i] će biti sledbenik čvora sa indeksom i na Hamiltonovom putu. X[t] = (-1, -1)
 - 2.2 ako imamo p procesora/niti, definišemo q i r < p tako da je |V| = pq + r. Prvih p-1 procesora/niti dobija po q indeksa, a poslednji dobija preostale
 - 2.3 svaki od procesora računa sledbenika za čvorove koje je dobio

- Mereno je vreme izvršavanja paralelnog algoritma sa 1, 2, 4 i 8 procesora/niti.
- Dimenzije pravougaonog grafa birane nasumično na intervalu [1000, 9999].
- ► Za slova: $m \in [334, 3334]$, $n \in [200, 1800]$.
- ▶ s i t birani nasumično tako da postoji Hamiltonov put/ciklus u grafu.

- Rezultat 1: postoji prava y = kx takva da nijedna tačka nije iznad nje, gde je x broj čvorova grafa, a y vreme izvršavanja sekvencijalnog algoritma u mikrosekundama.
- ightharpoonup Odavde zaključujemo da je vreme izvršavanja O(|V|).

tip grafa	problem	k
pravougaoni	ciklus	0.03
pravougaoni	put	0.41
L	ciklus	0.05
L	put	0.99
С	ciklus	0.06
С	put	3.04
F	ciklus	0.19
F	put	4.16
E	ciklus	0.12
Е	put	10.51

Tabela 1: Koeficijent k prave najgoreg slučaja za izvršavanje sekvencijalnog algoritma u zavisnosti od tipa grafa i problema

Slika 16: Zavisnost vremena izvršavanja sekvencijalnog algoritma za Hamiltonov put u odnosu na broj čvorova u pravougaonom grafu. Plava linija je prava najgoreg slučaja.

► Rezultat 2: prosečno ubrzanje ne zavisi od broja čvorova u grafu i rast prosečnog ubrzanja opada sa povećanjem broja procesora.

tip grafa	problem	2 procesora	4 procesora	8 procesora
pravougaoni	ciklus	1.94	3.49	5.54
pravougaoni	put	1.76	2.93	4.40
L	ciklus	1.55	2.58	4.21
L	put	1.65	2.73	4.26
С	ciklus	1.70	2.79	4.48
С	put	1.70	2.79	4.31
F	ciklus	1.78	2.94	4.54
F	put	1.75	2.83	4.41
Е	ciklus	1.77	2.91	4.50
Е	put	1.76	2.85	4.43

Tabela 2: Prosečna ubrzanja za svaki od grafova, problema i broja procesora

Slika 17: Zavisnost ubrzanja od broja čvorova u pravougaonom grafu tokom izvršavanja algoritma za traženje Hamiltonovog puta. Plave linije su dobijene linearnom regresijom.

Zaključak

- Nedostaci u postojećim algoritmima iz literature su otklonjeni.
- Definisani su paralelni algoritmi za konstrukciju Hamiltonovih puteva i ciklusa u slučaju grafova u obliku slova L, C, F i E.
- Pokazano je da funkcije next za traženje sledbenika rade u vremenu O(1).
- Evaluacijom izmereno prosečno ubrzanje za 2, 4 i 8 procesora.
- ▶ Evaluacijom potvrđena složenost O(|V|) kod sekvencijalnih algoritama.
- Moguće polje daljeg napretka: odrediti proceduru za spajanje koja će zahtevati manje od 2 poziva odgovarajuće next funkcije.

Hvala na pažnji!

Pitanja?

Literatura I

- [cyt,] https://cython.org/.
- [pyq,] https://pypi.org/project/pyqt5/.
- [Dong Chen et al., 2002] Dong Chen, S., Shen, H., and Topor, R. (2002).
 - An efficient algorithm for constructing hamiltonian paths in meshes. *Parallel Computing*, 28(9):1293–1305.
- [Itai et al., 1982] Itai, A., Papadimitrou, C. H., and Szwarcfiter, J. L. (1982).
 - Hamilton paths in grid graphs.
 - Society for Industrial and Applied Mathematics, 11.
- [Keshavarz-Kohjerdi and Bagheri, 2012] Keshavarz-Kohjerdi, F. and Bagheri, A. (2012).
 - Hamiltonian paths in some classes of grid graphs.
 - Hindawi Publishing Corporation, Journal of Applied Mathematics, 2012.

Literatura II

[Plateau and Trystam, 1992] Plateau, B. and Trystam, D. (1992). Optimal total exchange for a 3-D torus of processors. 42(2):95–102.

[Salman, 2005] Salman, A. N. M. (2005). Contributions to graph theory. Ph.D. thesis, University of Twente.