Modèles de mélange de densités

Introduction

Véronique Tremblay

Synonymes

- Mélange de densités
- Model-based Clustering
- Mixture Modeling / modèles de mélange
- Gaussian mixture
- Latent Class Analysis (LCA) pour des variables nominales ou ordinales
- Latent Profile Analysis (LPA) pour des variables continues

Avantages de cette approche

- Plusieurs types de variables
- Pas besoin de standardiser, ni de choisir une mesure de distance
- Elle se base sur la vraisemblance
- Permet d'obtenir une probabilité d'appartenance à un groupe

Le concept

Exemple classique

Exemple classique

Posons Y, un jeu de données de n observations et P variables.

$$f(Y, \theta) = \sum_{i=1}^{K} \pi_i f_i(Y, \theta_i)$$

Y: Les données

 f_i : la loi du groupe i

 π_i : le poids du groupe i $(\sum^K \pi_i = 1)$

 θ_i : les paramètres de la loi du groupe i

f(x) dépend du type de variable

Type d'attribut	Densité (paramètre-s)
Binaire	Binomiale $(\theta = p)$
Nominale + ordinale	$ \ Multinominale(\theta = p_1,, p_{k-1}) $
Dénombrement	$Poisson(\theta = \mu)$
Continue	$Normale(\theta=\mu,\sigma^2)$
Continue positive	$Gamma(\theta=\alpha,\beta)$

La vraisemblance aura la forme suivante:

$$\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{Y}) = \prod_{j=1}^n \sum_{i=1}^K \pi_i f(Y_j, \boldsymbol{\theta}_i)$$

La log-vraisemblance sera :

$$\ell\ell(\theta|Y) = \sum_{j=1}^{n} \log \left[\sum_{i=1}^{K} \pi_i f(Y_j, \theta_i) \right]$$

Résumé

- Mélange de densités
- Basé sur le maximum de vraisemblance