METASTATIC CANCER & EQUITYIN HEALTHCARE

By. Ajibola-Elias Maryam

CONTENTS

O1 Data
Introduction

O2 Data
Understanding

O3 Data
Preprocessing

04 Model Building

05
Model Evaluation

- Metastatic TNBC is considered the most aggressive TNBC & requires most urgent and timely treatment. Unnecessary delays in diagnosis & subsequent treatment can have devastating effects in these difficult cancers
- The primary goal is to detect relationships between demographics of the patients and the likelihood of getting timely treatment
- The secondary goal is to see if environmental hazard impact proper diagnosis and treatment.
 - However the goal of our model is to just predict whether the patients received metastatic cancer diagnosis with 90 days or not.

- patient_id-unique identification number of patient
- patient_race-Asian, African, American, Hispanic/Latino, White, Other Race
- payer_type-payer type at Medicaid, Commercial, Medicare on the metastatic date
- patient_state- Patient State (e.g. AL, AK, AZ, AR, CA, CO etc...) on the metastatic date
- patient_zip3 Patient Zip3 (e.g. 190) on the metastatic date
- patient_age Derived from Patient Year of Birth (index year minus year of birth)
- patient_gender F, M on the metastatic date
- bmi If Available, will show available BMI information (Earliest BMI recording post metastatic date)
- breast_cancer_diagnosis_code
 ICD10 or ICD9 diagnoses code
- breast_cancer_diagnosis_desc
 ICD10 or ICD9 code description. This column is raw text and may require NLP/ processing and cleaning
 - metastatic_cancer_diagnosis_code ICD10 diagnoses code
 - metastatic_first_novel_treatment Generic drug name of the first novel treatment (e.g. "Cisplatin") after metastatic diagnosis

- metastatic_first_novel_treatment_type Description of Treatment (e.g. Antineoplastic) of first novel treatment after metastatic diagnosis
- region Region of patient location
- division Division of patient location
- population An estimate of the zip code's population.
- density The estimated population per square kilometer.
- age_median The median age of residents in the zip code.
- male The percentage of residents who report being male (e.g. 55.1).
- female The percentage of residents who report being female (e.g. 44.9).
- married The percentage of residents who report being married (e.g. 44.9).
- family_size The average size of resident families (e.g. 3.22).
 - income_household_median Median household income in USD.
 - income_household_six_figure Percentage of households that earn at least \$100,000 (e.g. 25.3)
 - home_ownership Percentage of households that own (rather than rent) their residence.

- housing_units The number of housing units (or households) in the zip code.
- home_value The median value of homes that are owned by residents.
- rent_median The median rent paid by renters.
- education_college_or_above The percentage of residents with at least a 4-year degree.
- labor_force_participation The percentage of residents 16 and older in the labor force.
- unemployment_rate The percentage of residents unemployed.
- race_white The percentage of residents who report their race White.
- race_black The percentage of residents who report their race as Black or African American.
- race_asian The percentage of residents who report their race as Asian.
- race_native The percentage of residents who report their race as American Indian and Alaska Native.
 - race_pacific The percentage of residents who report their race as Native Hawaiian and Other Pacific Islander.
 - race_other The percentage of residents who report their race as Some other race.
 - race_multiple The percentage of residents who report their race as Two or more races.

- hispanic The percentage of residents who report being Hispanic. Note: Hispanic is considered to be an ethnicity and not a race.
- age_under_10 The percentage of residents aged 0-9.
- age_10_to_19 The percentage of residents aged 10-19.
- age_20s The percentage of residents aged 20-29.
- age_30s The percentage of residents aged 30-39.
- age_40s The percentage of residents aged 40-49.
- age_50s The percentage of residents aged 50-59.
- age_60s The percentage of residents aged 60-69.
- age_70s The percentage of residents aged 70-79.
- age_over_80 The percentage of residents aged over 80.
- divorced The percentage of residents divorced.
- never_married The percentage of residents never married.
 - widowed The percentage of residents never widowed.
 - family_dual_income The percentage of families with dual income earners.

- income_household_under_5 The percentage of households with income under \$5,000.
- income_household_5_to_10 The percentage of households with income from \$5,000-\$10,000.
- income_household_10_to_15 The percentage of households with income from \$10,000-\$15,000.
- income_household_15_to_20 The percentage of households with income from \$15,000-\$20,000.
- income_household_20_to_25 The percentage of households with income from \$20,000-\$25,000.
- income_household_25_to_35 The percentage of households with income from \$25,000-\$35,000.
- income_household_35_to_50 The percentage of households with income from \$35,000-\$50,000.
- income_household_50_to_75 The percentage of households with income from \$50,000-\$75,000.
- income_household_75_to_100 The percentage of households with income from \$75,000-\$100,000.
- income_household_100_to_150 The percentage of households with income from \$100,000-\$150,000.
 - income_household_150_over The percentage of households with income over \$150,000.
 - income_individual_median The median income of individuals in the zip code.

- poverty The median value of owner occupied homes.
- •• rent_burden The median rent as a percentage of the median renter's household income.
- education_less_highschool The percentage of residents with less than a high school education.
- education_highschool The percentage of residents with a high school diploma but no more.
- education_some_college The percentage of residents with some college but no more.
- education_bachelors The percentage of residents with a bachelor's degree (or equivalent) but no more.
- education_graduate The percentage of residents with a graduate degree.
- education_stem_degree The percentage of college graduates with a Bachelor's degree or higher in a Science and Engineering (or related) field.
- self_employed The percentage of households reporting self-employment income on their 2016 IRS tax return.
 - farmer The percentage of households reporting farm income on their 2016 IRS tax return.
 - disabled The percentage of residents who report a disability.
 - limited_english The percentage of residents who only speak limited English.
 - commute_time The median commute time of resident workers in minutes.

Columns

- •• health_uninsured The percentage of residents who report not having health insurance.
- veteran The percentage of residents who are veterans.
- ozone Annual Ozone (O3) concentration data at Zip3 level. This data shows how air quality data may impact health.
- PM25 Annual Fine Particulate Matter (PM2.5) concentration data at Zip3 level. This data shows how air quality data may impact health.
- NO2 Annual Nitrogen Dioxide (NO2) concentration data at Zip3 level. This data shows how air quality data may impact health.

Target

DiagPeriodL90D - Diagnosis Period Less Than 90 Days. This is an indication of whether the cancer was diagnosed within 90 Days.

Understanding the data

- Target: 1 diagnosed within 90 day;
 O-didn't get diagnosed within 90 days
- Binary classification
- Three csv files: Train, Test, and sample_submission
- Size: 16.36MB
- 83 columns, 12906 rows
- 8327 missing values
- No duplicates
- Numerical & categorical values
- No Invalid Entries

Understanding the data

Outliers Detected

- The mean being bigger than the max values, suggested that that we might have outliers in the dataset
- Will be handles with log transformation...

df.describe()						
	patient_id	patient_zip3	patient_age	bmi	population	density
count	12906.000000	12906.000000	12906.000000	3941.000000	12905.000000	12905.000000
mean	547381.196033	573.754300	59.183326	28.984539	20744.441237	1581.950419
std	260404.959974	275.447534	13.335216	5.696906	13886.903756	2966.305306
min	100063.000000	101.000000	18.000000	14.000000	635.545455	0.916667
25%	321517.000000	331.000000	50.000000	24.660000	9463.896552	171.857143
50%	543522.000000	554.000000	59.000000	28.190000	19154.190480	700.337500
75%	772671.750000	846.000000	67.000 <mark>00</mark> 0	32.920000	30021.278690	1666.515385
max	999896.000000	999.000000	91.000000	85.000000	71374.131580	21172.000000

Understanding the data

Imbalanced data

- Not Diagnosed within 90 days[0]: 4846
- Diagnosed within 90 day[1]: 8060
 - Will be handled by resampling

```
target_column_name = 'DiagPeriodL90D'
target_variable = df_encoded[target_column_name]

# Addingthe target variable to the selected_df
selected_df[target_column_name] = target_variable
```

```
### Checking and plotting for the class in the target variable
(unique, counts) = np.unique(selected_df['DiagPeriodL90D'], return_counts=True)
print(unique, counts)
sns.barplot(x=unique, y=counts, hue=unique, palette='dark', legend=True)
plt.xlabel("Class")
plt.ylabel("No of samples")
plt.ylabel("No of samples")
plt.xticks()
plt.title("Target variable counts in datasets")
plt.show()
plt.close()
```


1.4

1.2

Histogram of patient_zip3 (log scale)

Category 0

Category 1

Histogram of patient_age (log scale)

12 - Category 0

Category 1

DATA PREPROCESSING

Missing Data Handled

Outliers handled with log transformation

One hot encoded the categorical variables

Dropped unnecessary columns like "ID"

+ DATA PREPROCESSING

Using variance
Thresholding for feature selections

Repeated the same steps for the testing data

Logistics Regression Model

- Works well with both numerical and categorical data.
- Can handle large dataset with low computational cost
- Less susceptible to overfitting
- Provides easily interpretable results.

Weaknesses

- May not capture complex relationship within the data.
- Sensitive to multicollinearity
- Assumes a linear relationship

Confusion Matrix & ROC Curve for Logistic Regression

Gradient Boosting Model

- Achieve high accuracy
- Handles complex relationships
- Helps Identify feature that contribute the most to the model's predictions
- Robust to Outliers

Weaknesses

- Computationally expensive.
- Prone to overfitting
- Requires careful overfitting of Hyperparameters

Confusion Matrix & ROC Curve for XGBoost

FNN Model

Strengths

- Can deal with non-linearity in a dataset
- Can handle numerical and categorical dataset
- Can handle large datasets

- Computationally expensive.
- Prone to overfitting

ROC Curve of the FNN model

- FNN Model
- 10 Epochs

MODEL EVALUATION

Logistics Regression

Accuracy: 0.7581227436823105 Precision: 0.680334092634776 Recall: 0.9491525423728814 F1-score: 0.7925696594427245

XGBoost

Accuracy: 0.7266632284682826 Classification Report: precision recall f1-score 0.80 0.62 9.79 0.84 9.75 0.68

FNN Model

Accuracy: 0.7407140135765076 Precision: 0.7372381687164307 Recall: 0.7480396032333374

Kaggle Score of Each Model on the Test data

submission_lr.csv

0.718 Complete (after deadline) · 14...

submission_xgb1.csv Complete (after deadline) · 15...

0.733

submission_fnn.csv

Complete (after deadline) - 14...

0.787

MODEL EVALUATION

All of my model performed well, all their accuracy ranging in 70-80%, though the best model out of all of them was my deep learning model with a score of 0.74 on the training data & 0.78 on the test data.

Though my model performed well, It definitely can be improved. I might be able to achieve that by scaling my datasets, and selecting more features for my models.

