Colecture 6)

How to know if the estimator is good or bad? If you got different estimators by different methods which one will you Prefer ?

In order to decide which point estimator of a particular Parameter is the best one to use we need to examine their statistical Properties and develope some Criteria for Comparing estimators (we don't know population parameter)

Criterias - Min Variance unbiased estimator MVUE Consistency

[] unbiased estimators if ô is an estimator of 6 6-0 = error diff between sample value of parameter We call bias $(\hat{\theta}) = E(\hat{\theta}) - \theta$ minutary results $\hat{\theta}$ is said to be unbiased when $E(\hat{\theta}) = \theta$ (if on the average it's value are equal to Θ) $\widehat{\theta}$ is Called Aymptotically unbiased when $\widehat{E}(\widehat{\theta}) \rightarrow \Theta$ In normal distr $\widehat{A} = \widehat{X}$ (by MME, by MLE) $E(\hat{A}) = E(\bar{X}) = M$ is unbiased estimator of M

of extractor

The mean squared error MSE of estimator $MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2$ $= E(\hat{\theta} - E(\hat{\theta}) + E(\hat{\theta}) - \theta)^{2}$ $= E((\hat{\theta} - E(\hat{\theta})) + (E(\hat{\theta}) - \theta))$ $= E((\hat{\theta} - E(\hat{\theta})^{2} + (E(\hat{\theta}) - \theta)^{2} + 2(\hat{\theta} - E(\hat{\theta}))(E(\hat{\theta}) - \theta))$ $=E(\hat{\theta}-E(\hat{\theta}))^{2}+(E(\hat{\theta})-\Theta)^{2}$ = $Var(\hat{\theta}) + (bias(\hat{\theta}))^2$ $MSE(\theta)$ E(6-E6)(E6-8) $= E(\hat{G} - G) \left(E(\hat{B}) / E(\hat{G}) \right)$ Gustant If \hat{g} is un biased bias \hat{g}) = 0 MSE (6) = Var(6) $Var(x) = E(x-\mu)$ $=E(x-E(x))^{2}$ $MSE(\theta) = E(\theta - E(\theta))^2$ $bias(\hat{\theta}) = E(\hat{\theta}) - \hat{\theta}$ and also $E(\hat{\theta}) = \theta$ EX(2.8) If X has binomial distr with Parameters $X \sim Bin(n, P)$. Show that $\hat{p} = \frac{X}{n}$ is unbiased estimator of p In Binomial distr E(x)=np, V(x)=np(1-p) $E(\hat{p}) = E(\hat{A}) = \hat{A}E(\hat{A}) = \hat{A}nP = P$ or p is unbiased estimator of P

Ex (2.9) Suppose that X is a r.v. with mean M. and variance or. let X1, X2 ... Xn be arandom Sample from X. Show that the Sample mean X and the sample variance s2 are unbiased estimators of M, or X= 1 5 X; Xi identically distr. $E(\bar{x}) = E(\bar{x}) = E(\bar{x}i)$ E(X) = In E(Xi) E(x) = 4 OM = M oz X is unbiased estimator for M Recall that $S = \frac{1}{h-1} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2$ if Un xi E(u) = y , V(u)=2y $E(S^2) = \sigma^2$ if U= (n-1)52 ~ X2n-1 .. S' is unbiased estimator E(u) = n-1 $E\left(\frac{(n-1)S^2}{\omega^2}\right) = n-1$ of or $\underbrace{(n-1)}_{n/2} E(s^2) = n-1$ To get V(s2) V(v) = 2(n-1) $|E(s^2) = o^2$ $V\left(\frac{(n-1)5^{c}}{2}\right) = 2(n-1)$ (easier proof than the one in the book) (n+1) $V(S^2) = 2(n-1)$ $V(s^2) = \frac{2019}{n-1}$ (will need it later)

2) Minimum Variance unbiased estimator
$MSE(\hat{\theta}) = Var(\hat{\theta}) + (bias(\hat{\theta}))$
If we have two estimators $\hat{\theta}_i$, $\hat{\theta}_z$ of Θ
$Var(\hat{\theta}_1) \leqslant Var(\hat{\theta}_2)$ $\hat{\theta}_1$ is better estimator than $\hat{\theta}_2$
6, 15 perier estimators of B
[3] Efficiency if $\hat{\theta}_1$, $\hat{\theta}_2$ are two estimators of $\hat{\theta}_1$ $= \hat{\theta}_1(\hat{\theta}_2 \hat{\theta}_1) = \frac{1}{MSE(\hat{\theta}_2)}$ MSE($\hat{\theta}_2$)
relative est.
- P I time of ()
ish to estimate the mean
MSE IM IE / WE F / I / I
of Dossible estimators for
we wish to compare your for the sample mean X and a single observation the sample mean X and a single observation
means that X E(x)=Mins make of Mill)
$E(X) = M$ both X , X_1 are unbiased estimators

Scanned with CamScanner

But

$$MSE(X) = Var(X) = \frac{\sigma^2}{n}$$
 less

 $MSE(X_1) = Var(X_1) = \sigma^2$
 $SINCE MSE(X_2) < MSE(X_3)$

Since $MSE(\bar{X}) < MSE(X_i)$ \bar{X} is more efficient estimator of M than X_i

Gonsistency

The estimator $\hat{\theta}$ is Called a Consistent estimator of the parameter θ iff $MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2 \rightarrow 0$ as $n \rightarrow \infty$

(that is $E(\hat{\theta}) \rightarrow \theta$ as $n \rightarrow \infty$) $MSE(\hat{\theta}) = V(\hat{\theta}) \rightarrow 0$ as $n \rightarrow \infty$

e.g. let $\hat{\mathcal{U}} = \overline{X}$ $E(\hat{\mathcal{U}}) = E(\overline{X}) = \mathcal{U}$ $\hat{\mathcal{U}}$ is unbiased

 $MSE(\hat{H}) = Var(\hat{X}) = var(\hat{X}) = \frac{\alpha^2}{n}$

as $n = MSE(\hat{\mu}) = 0$ as $n \to \infty$

: X is Consistent estimator

meons that X > M when n > 00 (without knowing value of M! 1)

e.g. let $\hat{\sigma}^2 = g^2 \frac{Show that sample variance}{is unbiased consistent estimator}$ $E(\hat{o}^2) = E(S^2) = -\infty^2$ S² is unbrased estimator of o^2 $Var(\hat{\omega}^2) = Var(\hat{s}^2) = \frac{20}{n-1} (page3)$

AS n-300 MSE (s2) -> 0 S' is Consistent estimator of oi as no so

ex on Bnomial distr.

$$\hat{p} = \frac{x}{n}$$

$$E(\hat{p}) = E(\frac{X}{n}) = \frac{np}{n} = p$$
 unbiased

$$Var(\hat{p}) = Var(\frac{X}{n}) = \frac{1}{n^2} Var(x)$$

$$Var(\hat{p}) = \frac{P(I-P)}{n}$$

as
$$n \to \infty$$
 $Var(\hat{p}) = MSE(\hat{p}) \to 0$

EXO Given three estimators $\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3$ for population parameter θ as shown in the Ligure which estimator will you choose ? why? $\hat{\theta}_{1},\hat{\theta}_{2}$ are unbiased , $\hat{\theta}_{3}$ is biased E(6) =0 E(62) =0 their distribution are Centered at 0 but & has Simaller Variance than & => 6, is more efficient (less MSE) -> Choose estimator 0,

EX2 Consider Bi, Be are two estimators for Population parameter & such that $E(\hat{\theta}_i) = \theta$, $var(\hat{\theta}_i) = \frac{\theta^2}{3}$ $E(\hat{\theta}_2) = \frac{9}{3}$, $Var(\hat{\theta}_2) = \frac{9^2}{9}$ Find I bias (O2) 3 efficiency (62/6,) which estimator is more efficient $E(\hat{\theta}_i) = \theta \Rightarrow \hat{\theta}_i$ is unbiased \Rightarrow bias $(\hat{\theta}_i) = 0$ bias $(\hat{\theta}_2) = E(\hat{\theta}_2) - \theta = \frac{6}{3} - 6 = -\frac{2\theta}{3}$.. $MSE(\hat{\theta}_i) = Var(\hat{\theta}_i) + (bias(\hat{\theta}_i))^T$ $MSE(\hat{\theta}_i) = \frac{\hat{\theta}^2}{3}$ $MSE(\hat{\theta}_2) = \frac{\theta^2}{9} + \left(\frac{-2\theta}{3}\right)^2 = \frac{5\theta^2}{9}$ efficiency $(\hat{\theta}_2/\hat{\theta}_1) = \frac{MSE(\hat{\theta}_1)}{MSE(\hat{\theta}_2)} = \frac{\hat{\theta}_2^2}{9^2} = \frac{3}{5} < 1$:- 8, is more efficient

EX(3) let us define
$$S^2 = \frac{1}{2} \frac{(X_1 - X_1)^2}{n}$$
 for σ^2

Show that $E(S^2) = \frac{1}{n-1} \sigma^3$

and hence S^2 is a biased estimator for or and Find bias(S^2), $MSE(S^2)$, $S^2 = \frac{1}{2} \frac{(X_1 - X_1)^2}{n-1}$
 $S^2 = \frac{1}{2} \frac{(X_1 - X_1)^2$

$$Var(\hat{S}^2) = \frac{2(n-1)}{n^2} \quad \text{or} \quad \text{of}$$

$$= \frac{2(n-1)}{n^2} \quad \text{of} \quad \text{of}$$

$$= \frac{2(n-1)}{n^2} \quad \text{of} \quad \text{of}$$

$$= \frac{2(n-1)}{n^2} \quad \text{of} \quad \text{of}$$

$$= \frac{2n-1}{n^2} \quad \text{of} \quad \text{of}$$

$$= \frac{2n-1}{n-1} \quad \text{of}$$

$$= \lim_{n\to\infty} \frac{2n-1}{n^2} \quad \text{of}$$

$$= \int_{-\infty}^{\infty} \frac{2n-1}{n^2} \quad \text{of}$$

Regards