Lab Assignment – 4 Mumuksh Jain – 22110160 Nishant Kumar – 22110170

Code for Binary Multiplier:

```
`timescale 1ns / 1ps
module binary_multiplier(A,B,out);
parameter n=8;
parameter m=8;
input [n-1:0]A;
input [m-1:0]B;
reg [n+m-1:0]c;
output reg [n+m-1:0]out;
integer i;
integer j;
always @*
begin
  out=0;
  for(i=0;i< m;i=i+1)
  begin
     c=0;
     if(B[i]==1)
       begin
          for(j=0;j<n;j=j+1)
            c[i+j]=A[j];
       out=out+c;
       end
     else
       out=out;
  end
end
endmodule
```

When using FPGA, change the parameters to n=4, m=4

Code for Array Multiplier:

```
`timescale 1ns / 1ps
```

```
module fulladd(A,B,O,cout);
parameter n=8;
input [n-1:0]A,B;
output reg [n-1:0]O;
output reg cout;
reg [n:0]C;
integer k;
always @(*)
begin
C[0]=0;
for(k=0;k<n;k=k+1)
begin
O[k]=A[k]^B[k]^C[k];
C[k+1]=(A[k]\&B[k])|(A[k]\&C[k])|(B[k]\&C[k]);
end
cout=C[n];
end
endmodule
module shiftright(i,o,c);
parameter n=8;
input [n-1:0]i;
input c;
output reg [n-1:0]o;
integer k;
always@(*)
begin
for(k=0;k< n-1;k=k+1)
begin
o[k] \le i[k+1];
```

```
end
o[n-1]=c;
end
endmodule
module sm(a,c,l);
parameter n=8;
input [n-1:0]a;
input c;
output [n-1:0]I;
genvar i;
for(i=0;i< n;i=i+1)
begin:mult1
  and a1(I[i],a[i],c);
end
endmodule
module arraymulti(a,b,p);
parameter n=8;
input [n-1:0]a;
input [n-1:0]b;
output [2*n-1:0]p;
wire [n-1:0]m1,m2,m3,m4,m5,m6,m7,m8,m9;
wire [n-1:0]I1,I2,I3,I4,I5,I6,I7,I8;
wire [n-1:0]o1,o2,o3,o4,o5,o6,o7,o8;
wire c1,c2,c3,c4,c5,c6,c7,c8;
genvar k;
for(k=0;k< n;k=k+1)
begin
```

```
and a1(m1[k],0,0);
end
sm s1(a,b[0],l1);
fulladd t1(l1,m1,o1,c1);
assign p[0]=o1[0];
shiftright j1(o1,m2,c1);
sm s2(a,b[1],l2);
fulladd t2(l2,m2,o2,c2);
assign p[1]=o2[0];
shiftright j2(o2,m3,c2);
sm s3(a,b[2],l3);
fulladd t3(l3,m3,o3,c3);
assign p[2]=o3[0];
shiftright j3(o3,m4,c3);
sm s4(a,b[3],l4);
fulladd t4(I4,m4,o4,c4);
assign p[3]=o4[0];
shiftright j4(o4,m5,c4);
sm s5(a,b[4],l5);
fulladd t5(l5,m5,o5,c5);
assign p[4]=o5[0];
shiftright j5(o5,m6,c5);
sm s6(a,b[5],l6);
fulladd t6(l6,m6,o6,c6);
assign p[5]=06[0];
shiftright j6(o6,m7,c6);
sm s7(a,b[6],l7);
```

```
fulladd t7(I7,m7,o7,c7);
assign p[6]=o7[0];
shiftright j7(o7,m8,c7);
sm s8(a,b[7],l8);
fulladd t8(I8,m8,o8,c8);
assign p[7]=o8[0];
shiftright j8(o8,m9,c8);
genvar h;
for (h=0;h<n;h=h+1)
begin
assign p[n+h]=m9[h];
end
endmodule
```

Testbench:

Binary Multiplier:

```
'timescale 1ns / 1ps
module bin_mul_tb();
reg [8:0]A;
reg [8:0]B;
wire [15:0]out;
binary_multiplier uut(A,B,out);
initial
begin
A=8'b01010111;
B=8'b10101100;
#5;
A=8'b01110110;
```

B=8'b10110001;

```
#5;
A=8'b00001101;
B=8'b11001101;
#5;
A=8'b11111100;
B=8'b11110101;
#5;
$finish();
end
endmodule
Array Multiplier:
`timescale 1ns / 1ps
module arraymulti_tb();
reg [8-1:0]a;
reg [8-1:0]b;
wire [2*8-1:0]p;
integer i,j;
arraymulti uut(a,b,p);
initial
begin
for (i=0;i<256;i=i+1)
begin
for(j=0;j<256;j=j+1)
begin
a=i;
b=j;
#10;
end
end
$finish();
```

endmodule

Constraint File:

```
set_property IOSTANDARD LVCMOS33 [get_ports {A[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {A[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {A[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {A[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {B[3]}]
set property IOSTANDARD LVCMOS33 [get ports {B[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {B[1]}]
set property IOSTANDARD LVCMOS33 [get ports {B[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[0]}]
set property PACKAGE PIN R2 [get ports {A[3]}]
set property PACKAGE PIN T1 [get ports {A[2]}]
set_property PACKAGE_PIN U1 [get_ports {A[1]}]
set property PACKAGE PIN W2 [get ports {A[0]}]
set_property PACKAGE_PIN W17 [get_ports {B[3]}]
set property PACKAGE PIN W16 [get ports {B[2]}]
set_property PACKAGE_PIN V16 [get_ports {B[1]}]
set_property PACKAGE_PIN V17 [get_ports {B[0]}]
set_property PACKAGE_PIN L1 [get_ports {out[7]}]
set_property PACKAGE_PIN P1 [get_ports {out[6]}]
set_property PACKAGE_PIN N3 [get_ports {out[5]}]
set_property PACKAGE_PIN P3 [get_ports {out[4]}]
set property PACKAGE PIN U3 [get ports {out[3]}]
```

```
set_property PACKAGE_PIN W3 [get_ports {out[2]}]
set_property PACKAGE_PIN V3 [get_ports {out[1]}]
set_property PACKAGE_PIN V13 [get_ports {out[0]}]
```

```
set_property IOSTANDARD LVCMOS33 [get_ports {a[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {a[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {a[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {a[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {b[3]}]
set property IOSTANDARD LVCMOS33 [get_ports {b[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {b[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {b[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {p[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {p[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {p[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {p[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {p[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {p[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {p[1]}]
set property IOSTANDARD LVCMOS33 [get ports {p[0]}]
set_property PACKAGE_PIN R2 [get_ports {a[3]}]
set property PACKAGE PIN T1 [get ports {a[2]}]
set_property PACKAGE_PIN U1 [get_ports {a[1]}]
set_property PACKAGE_PIN W2 [get_ports {a[0]}]
set_property PACKAGE_PIN W17 [get_ports {b[3]}]
set_property PACKAGE_PIN W16 [get_ports {b[2]}]
set_property PACKAGE_PIN V16 [get_ports {b[1]}]
set_property PACKAGE_PIN V17 [get_ports {b[0]}]
set_property PACKAGE_PIN L1 [get_ports {p[7]}]
set_property PACKAGE_PIN P1 [get_ports {p[6]}]
set_property PACKAGE_PIN N3 [get_ports {p[5]}]
set_property PACKAGE_PIN P3 [get_ports {p[4]}]
set_property PACKAGE_PIN U3 [get_ports {p[3]}]
```

set_property PACKAGE_PIN W3 [get_ports {p[2]}]
set_property PACKAGE_PIN V3 [get_ports {p[1]}]
set_property PACKAGE_PIN V13 [get_ports {p[0]}]

Photos:

Simulation:

Name	Value	0.000 ns	5.000 ns	10.000 ns	15.000 ns
> ™ A[8:0]	252	87	118	13	252
> W B[8:0]	245	172	177	205	245
> o ut[15:0]	61740	14964	20886	2665	61740

	Value	1	1	1	144,400	.000 ns		1	1	144,450	.000 ns				144,500	.000 ns			1	144,550	.000 ns	444
a[7:0	179											56										
b[7:0	203	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	1
[15	36337	5656	5712	5768	5824	5880	5936	5992	6048	6104	6160	6216	6272	6328	6384	6440	6496	6552	6608	6664	6720	L
ı	179	1										56										
20	03	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	1
I																						
Ш																						

Name	Value	45,680.	000 ns	45,700.	000 ns	45,720.	000 ns	45,740.	000 ns	45,760.	000 ns	45,780.	000 ns	45,800.	000 ns	45,820.	000 ns	45,840.	000 ns	45,860.	000 ns	45,8
> W a[7:0	179											17										
> W b[7:0	203	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236
> ⊌ p[15		3672	3689	3706	3723	3740	3757	3774	3791	3808	3825	3842	3859	3876	3893	3910	3927	3944	3961	3978	3995	40
> W i[31:										J		17		J.								
> W j[31:	203	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236

Comparison between Array Multiplier and Binary Multiplier:

A. Schematic Array Multiplier

B. Schematic Binary Multiplier:

Binary Multiplier:

A binary multiplier is a straightforward and basic circuit that performs binary multiplication using the standard method taught in elementary school.

It involves multiplying each bit of one binary number by each bit of the other binary number and adding up the results.

Array Multiplier:

An array multiplier is a more sophisticated and efficient multiplication circuit.

It uses an array of AND gates to generate partial products and then adds these partial products together to get the final result.

The array structure allows for parallel processing of the multiplication, making it faster than a simple binary multiplier.

The size of the array is determined by the number of bits in the binary numbers being multiplied.

1		-+-	+			+		-+-		-+
Site T	уре	1	Used	F	ixed	Av	ailable	1	Util%	1
Slice LUTs		1	16		0	I	20800	l	0.08	I
LUT as Logi	С	Ī	16		0	Ĭ	20800	Ī	0.08	1
LUT as Memo	ry	I	0 [0	I	9600	Ĩ	0.00	Ĩ
Slice Registe	rs	Ī	0		0		41600	Ī	0.00	Ī
Register as	Flip Flop	ſ	0 [0	1	41600	1	0.00	1
Register as	Latch	1	0		0	1	41600	1	0.00	1
F7 Muxes		1	0		0	1	16300	1	0.00	1
F8 Muxes		1	0		0	I	8150	I	0.00	1
1	<u> </u>	-+-	+			+		-+-		-+
On-Chip	Power (W)	+]	Used	-+- 1	Avail	able	Utiliz	at:	ion (%)	-+
Slice Logic	0.076	+	22	-+- 			-#			-+
LUT as Logic	0.067	1	16	8 1	2	0800	1		0.08	1
CARRY4	0.009	1	2	1		8150	1		0.02	I
Others	0.000	1	2				1			1
Signals	0.203	I	26			<u> </u>	1		-	1
I/O	13.795	Ī	16	1		106	Ī		15.09	Î
Static Power	0.234	I		J]			I
Total	14.309	1		- 11			1			- 1

1	Site Type	+	Used	+	Fixed	+	 Available	+	Util%	+
+-		+		+		+		+		+
1	Slice LUTs	1	38	1	0	1	20800	fi	0.18	f
1	LUT as Logic	1	38	1	0	1	20800	1	0.18	1
1	LUT as Memory	1	0	1	0	1	9600	ľ	0.00	1
I	Slice Registers	1	0	1	0	1	41600	1	0.00	1
I	Register as Flip Flop	1	0	1	0	1	41600	Ĩ	0.00	Ī
Ì	Register as Latch	I	0	١	0	I	41600		0.00	
Ī	F7 Muxes	I	0	1	0	I	16300	L	0.00	L
1	F8 Muxes	1	0	1	0	1	8150	f	0.00	f
+-		-+		+		+		-+		-+

On-Chip	I	Power (W)	I	Used		Ī	Available	Utilization (%)
Slice Logic	1	0.297	1		 49	1		
LUT as Logic	1	0.297	1		38	I	20800	0.18
Others	1	0.000	1		1	1		
Signals	1	0.893	1	(60	Ī		
1/0	1	17.395	1	2	28	Ĩ	106	26.42
Static Power	I	0.428	I			Ī	j	
Total	1	19.013	1			I	j	
	ъ.					i.		