Numere complexe - Formule

$$z = a + bi = (a, b)$$

Conjugatul: $\bar{z} = a - bi$

•
$$i^2 = -i$$
 $\overline{z} = z => z \in \mathbb{R}$
 $z = 0 => a = 0, b = 0$ $\overline{z} = -z => z \in i\mathbb{R}$
 $z_1 = z_2 => a_1 = a, b_1 = b_2$ $\overline{\bar{z}} = z$

•
$$|z| = \sqrt{a^2 + b^2}$$
 $|z| = 1 = \overline{z} = \frac{1}{z}$ $|z|^2 = z * \overline{z}$

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}
\overline{z_1 + z_2} = \overline{z_1} - \overline{z_2}
\overline{(\frac{z_1}{z_2})} = \frac{\overline{z_1}}{\overline{z_2}}$$

•
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

 $|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1} + \overline{z_2})$

• Ecuația:
$$i + i^2 + i^3 + i^4 + i^5 + \dots + i^{100} = \mathbf{0}$$

$$= \mathbf{0}$$

$$i * i^2 * i^3 * i^4 * i^5 * \dots * i^{100} = -\mathbf{1}$$

• Ecuația de gradul doi:

$$Dacă \Delta < 0 => x_{1,2} = \frac{-b \pm i\sqrt{-\Delta}}{2a}$$

Ecuația de gradul doi cu coeficienți complexși

$$\Delta = u^2 \qquad x_{1,2} = \frac{-b \pm u}{2a}$$

Adunare: (a, b) + (c, d) = (a + c, b + d)

- > comutativa
- asociativa
- \triangleright el neutru (0,0)
- \triangleright opus (a,b) + (-a,-b) = (0,0)

Inmultire: (a,b)*(c,d) = (ac - bd, ad + bc)

- > comutativa
- > asociativa
- ➤ el neutru (1,0)
- \triangleright opus (a,b)*(a',b')=(1,0)

Radaciniile de ordinal *n* ale unui numar complex:

$$z^{n} = a = r(\cos t + i \sin t)$$

$$z_{k} = \sqrt[n]{r} \left(\cos \frac{t + 2k\pi}{n} + i \sin \frac{t + 2k\pi}{n} \right) \quad ; \quad k = \overline{0, n - 1}$$

$$EX: \sqrt[3]{8} = 2$$