# Mathematics based graph neural network for drug design

# Duc Nguyen Department of Mathematics University of Kentucky

The Fourth TSIMF Conference on Computational and Mathematical Bioinformatics and Biophysics

December 12-15, 2021









1-2 years 1-2 years 3-7 years 1-2 years 1 year 1-2 years FDA Hit Pre-clinical Clinical Lead Target selection Review & development Optimization Generation trails Approval

1-2 years 1-2 years 1-2 years 3-7 years 1 year 1-2 years **FDA** Pre-clinical Hit Clinical Lead Target selection **Review &** development Generation Optimization trails **Approval** 



- COVID-19 (SARS-CoV-2)
- First reported on Dec 30, 2019
- Global health emergency by WHO on 01-29-20
- As of 12-14-21: 5.31M dead cases, > 271M infected cases



- Improve potency
- reduced off-target activities
- Reasonable physiochemical/metabolic properties in vivo pharmacokinetics

1-2 years 1-2 years 1-2 years 3-7 years 1 year 1-2 years **FDA** Pre-clinical Hit Lead Clinical Target selection Review & development Generation Optimization trails **Approval** Important properties: binding affinity (IC50), toxicity, solubility, ...





- Lengthy process ( > 10 years)
- Expensive ( > \$2.6 billion)
- High failure rate



- Lengthy process ( > 10 years)
- Expensive ( > \$2.6 billion)
- High failure rate



Great opportunities for Math and Al

#### Protein Data Bank, as of 2021: 174,994 structures



230 million compounds

Number of released structures per year

1.9 million compounds



#### **SMILES String**

CC(F)(F)[C@H]1OC(N)=
N[C@](C)(c2cc(NC(=O)c
3cnc(OCF)cn3)ccc2F)[C
@H]1F



#### 2D Diagram











## Mathematical Graphs for Molecules

Uracil

Oxygen Carbon Nitrogen Hydrogen



Subgraphs:  $\mathcal{G}_{O,C}$ ,  $\mathcal{G}_{O,N}$ ,  $\mathcal{G}_{O,H}$ ,  $\mathcal{G}_{C,N}$ ,  $\mathcal{G}_{C,H}$ 

$$A = \begin{bmatrix} 0 & w_{12} & 0 & w_{14} \\ w_{21} & 0 & w_{23} & 0 \\ 0 & w_{32} & 0 & w_{34} \\ w_{41} & 0 & w_{42} & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

**Adjacency Matrix** 

Weighted Adjacency Matrix

 $L = D - A = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & 1 & 0 \end{bmatrix}$ 

• 
$$w_{ij}(d) = e^{-\left(\frac{d}{\eta}\right)^k}$$
  
•  $w_{ij}(d) = \frac{1}{1 + \left(\frac{d}{\eta}\right)^v}$ 

(Nguyen, Wei, JCIM 2019)

 $\mathcal{G}_{\mathsf{O},N}$ 

## Persistent Spectral Graph: Graph + Topology

Simplexes:







*0*-simplex *1*-simplex *2*-simplex

$$\sigma_{a}$$

• q-chain:  $\sum w_j \sigma_q^j$ ,  $w_j \in \mathbb{Z}_2$ ,  $\sigma_q^j \in K$ 

Wang, Nguyen, Wei (IJNMBE, 2020)

- q-chain Group:  $C_q(K) = \left( \left\{ \sum_i w_j \sigma_q^j \right\}, + \right)$  Meng and Xia, (Sci. Adv. 2021)
- Boundary operator:

Adjoint boundary operator:

- q-combinatorial Laplacian operator:  $\Delta_q = \partial_{q+1} \partial_{q+1}^* + \partial_q^* \partial_q$
- q-combinatorial Laplacian matrix:  $\mathcal{L}_q = \mathcal{B}_{q+1}\mathcal{B}_{q+1}^T + \mathcal{B}_q^T\mathcal{B}_q$
- Betti numbers:  $\beta_q$  =# of zeros eigenvalues of  $\mathcal{L}_a(K)$

#### Filtration on fullerene $C_{20}$

(Nguyen, Xia, Wei,

JCP 2016)



#### Accumulated combinatorial Laplacian matrix for $C_{20}$



#### Barcodes of protein-ligand



(Rana, Nguyen, 2021)

## (Nguyen, Wei, IJNMBE 2018) Differential Geometry

- Element interactive density:  $\rho_{kk'}(\mathbf{r}, \eta_{kk'}) = \sum_j w_j \Phi(\|\mathbf{r} \mathbf{r}_j\|; \eta_{kk'})$ , with  $\|\mathbf{r} \mathbf{r}_j\| > r_i + r_j + \sigma$
- Element interactive manifolds (EIMs):  $\rho_{kk'}(r, \eta_{kk'}) = c\rho_{\max}, 0 \le c \le 1$
- Element interactive curvatures, element interactive areas, ...

#### **Element Interactive Manifolds**



## Mathematics based Deep Learning Models (MathDL)



#### Performance of MathDL in Virtual Screening, Docking, Affinity Ranking



#### Performance of MathDL in Virtual Screening, Docking, Affinity Ranking



#### (Nguyen, Wei, JCIM 2019)



#### Collaboration work with Pfizer

#### Binding affinity ranking of 362 compounds (fully blind)



## Drug Design Data Resource (D3R) Grand Challenges<sup>21</sup>

- Funded in part by National Institute of General Medical Sciences
- Hosted at the University of California, San Diego
- Annually since 2015







## D3R Grand Challenge 2 (2016-2017)





Pose Predictions (partials)
Scoring (partials)

Free Energy Set 1 (partials)

Free Energy Set 2 (partials)

#### Stage 2

Scoring (partials)

Free Energy Set 1 (partials)

Free Energy Set 2 (partials)









(Nguyen et. al., JCAMD 2018)

## D3R Grand Challenge 3 (2017-2018)

#### **Pose Prediction**

**Cathepsin Stage 1A Cathepsin Stage 1B** 

**Pose Prediction** <u>Pose Predictions</u> (partials)

Affinity Rankings excluding Kds > 10 μM

**Cathepsin Stage 1 Cathepsin Stage 2** 

**Scoring (partials)** Scoring (partials)

Free Energy Set Free Energy Set

**VEGFR2** JAK2 SC2

Scoring (partials) Scoring (partials)

JAK2 SC3

Scoring

Free Energy Set









JAK2 SC2

TIE2

TIE2



Scoring (partials)













**p38-α** 

Scoring

ABL1

**p38-α** 



Scoring (partials)







**Active / Inactive Classification** 

VEGFR2

Scoring (partials)

JAK2 SC3

**Scoring** 

Free Energy Set



Scoring (partials) Free Energy Set 1

**Affinity Rankings for Cocrystalized Ligands** 

**Cathepsin Stage 1** 

Scoring (partials) Free Energy Set

**Cathepsin Stage 2** 

Scoring (partials) Free Energy Set





















(Nguyen et. al., JCAMD 2018)

## D3R Grand Challenge 4 (2018-2019)

#### **Pose Predictions**

**BACE Stage 1A** 

<u>Pose Predictions</u> (<u>Partials</u>)



#### **BACE Stage 1B**

Pose Prediction (Partials)





#### **Affinity Predictions**

Cathepsin Stage 1

Combined Ligand and Structure Based Scoring

<u>Ligand Based Scoring</u> (No participation)

Structure Based Scoring

Free Energy Set

**BACE Stage 1** 

participation)

participation)



Combined Ligand and Structure (No

<u>Ligand Based Scoring (Partials)</u> (No











#### **BACE Stage 2**

Combined Ligand and Structure

**Ligand Based Scoring (No** 

participation)

**Structure Based Scoring (Partials)** 

Free Energy Set





Structure Based Scoring (Partials)(No participation)

Free Energy Set (No participation)

(Nguyen et. al., JCAMD 2019)

## Moving Beyond MathDL





## Graph Neural Network (GNN)

Convolutional Layer

**Graph Convolutional Layer** 



#### Deep Neural Network



#### Standard Architecture of GNN



Input

Graph Convolutional
Network

Output Graph Graph Representation

Fully Connected and Output

#### Standard Architecture of GNN

#### Aggregation:

$$a_u^{(k)} = \text{AGGREGATE}^{(k)} \left( \left\{ h_v^{(k-1)}, v \in \mathcal{N}(u) \right\} \right)$$
 Example 
$$a_u^{(k)} = \frac{1}{|\mathcal{N}(u)|} \sum_{v \in \mathcal{N}(u)} h_v^{(k-1)}$$
 Node State Neighbor of node  $u$ 

#### Combination/Updating:

$$h_u^{(k)} = \text{COMBINE}^{(k)} \left( h_u^{(k-1)}, a_u^{(k)} \right)$$
 Example 
$$h_u^{(k)} = W_0^{(k)} h_u^{(k-1)} + W_1^{(k)} a_u^{(k)}$$

#### Read-out (Graph Invariant):

Example 
$$h_G = \text{READOUT}\left(\left\{h_u^{(K)}, u \in G\right\}\right)$$
$$h_G = \text{MEAN}\left(\left\{h_u^{(K)}, u \in G\right\}\right)$$

## Math-Based Deep Graph (MathDL<sub>GNN</sub>)



## Math-Based Deep Graph (MathDL<sub>GNN</sub>)

(Nguyen et. al., 2021)

Attention mechanism with another Math Features



other physical interactions ...)

#### **AweGNN**

(Szocinski, Nguyen, Wei, CBM, 2021)



## Math-Based Deep Graph (MathDL<sub>GNN</sub>)

(Nguyen et. al., 2021)



## Math-Based Deep Graph (MathDL<sub>GNN</sub>)



$$z = \sigma(\widetilde{W}_1 F_1 + \widetilde{W}_2 F_2 + b)$$

$$F_{\text{combined}} = z \odot W_1 F_1 + (1 - z) \odot W_2 F_2$$

#### Performance of MathDL in Scoring Power

(Nguyen et. al., 2021)



## Thank you!