Table 1: This is the title of Table 1

1x1&4	1x2	1x3	1x4
2x1	2x2	2x3	2x4
3x1	3x2	3x3	3x4
$4x1: \int x^2 dx$			

Part 1

Section 1

Subsection 1

Paragraph 1 Standard

$$\int_{-\infty}^{\infty} x^2 dx = \infty$$

$$\begin{bmatrix} \frac{f(x,t)}{x} & \frac{f(x,t)}{x+\Delta x} \\ \frac{f(x,t)}{t} & \frac{f(x,t)}{t+\Delta t} \end{bmatrix} = \frac{\delta f(x,t)}{\delta x}, \frac{\delta f(x,t)}{\delta t}$$

This is bold. This is emphasis.

- Bullet 1
- \bullet Bullet 2

$$\begin{pmatrix} 3 & 4 & 5 \\ 6 & 7 & 8 \\ 9 & 10 & 11 \end{pmatrix} \rightarrow \begin{cases} \text{Inline Math} \\ \text{Cases} \end{cases}$$

Inline case number 2: $\int_{-\gamma}^{\rho} dx = 24x^2$

for shits and giggles, a box!

$$x^2 = 3 - x$$

tabular table?	
	T
1 0 # \$ 0% ^ & * 1	