Отчет о выполнении лабораторной работы 2.2.1 Исследование взаимной диффузии газов

Шубин Владислав, Байбулатов Амир 14 мая 2024 г.

1 Аннотация

В работе исследуется явление взаимной диффузии газов, путём регистрации зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов. Также определяется коэффициент диффузии по результатам измерений.

2 Теоретические сведения

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии.

Диффузия в системе, состоящей из двух компонентов a и b (бинарная смесь), подчиняется закону Фика: плотности потока компонентов $j_{a,b}$ (количество частиц, пересекающих единичную площадку в единицу времени) пропорциональны градиентам их концентраций $\nabla n_{a,b}$, что в одномерном случае можно записать как

$$j_a = -D\frac{\partial n_a}{\partial x}, \quad j_b = -D\frac{\partial n_b}{\partial x},$$

где D – коэффициент взаимной диффузии компонентов. Знак «минус» отражает тот факт, что диффузия идёт в направлении выравнивания концентраций. Равновесие достигается при равномерном распределении вещества по объёму сосуда ($\partial n/\partial x = 0$).

В случае работы с данной установкой можно считать, что диффузионный поток одинаков в любом сечении трубки, соединяющей сосуды V_1 и V_2 . Следовательно:

$$J = -DS \frac{n_1 - n_2}{l} \qquad DS \frac{n_1 - n_2}{l} = -V_1 \frac{dn_1}{dt} = V_2 \frac{dn_2}{dt}$$
 (1)

$$\frac{dn_1 - dn_2}{dt} = -\frac{n_1 - n_2}{l} DS \left(\frac{1}{V_1} + \frac{1}{V_2} \right) \quad \Rightarrow \quad n_1 - n_2 = (n_1 - n_2)_0 e^{-\frac{t}{\tau}}$$
 (2)

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление Р и температура Т в условиях опыта предполагаются неизменными: $p=(n_{He}+n_{\rm B})kT$, где n_{He} и $n_{\rm B}$ – концентрации (объёмные плотности) диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta n_{He}=-\Delta n_{\rm B}$. Следовательно, достаточно ограничиться описанием диффузии одного из компонентов, например гелия n_{He} :

$$j_{He} = -D \frac{\partial n_{He}}{\partial x}. (3)$$

Приведём теоретическую оценку для коэффициента диффузии. В работе концентрация гелия, как правило, мала ($n_{He} \ll n_{\rm B}$). Кроме того, атомы гелия существенно легче молекул, составляющих воздух ($\mu_{He} \ll \mu_{O_2}, \mu_{N_2}$), значит и их средняя тепловая скорость велика по сравнению с остальными частицами. Поэтому перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц He на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен

$$D = \frac{1}{3}\lambda \overline{v},\tag{4}$$

где $\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$ – средняя тепловая скорость частиц примеси, $\lambda = \frac{1}{n_0\sigma}$ – их длина свободного пробега, n_0 – концентрация рассеивающих центров (фона), σ – сечение столкновения частиц примеси с частицами фона.

Таким образом, теория предсказывает, что коэффициент диффузии бинарной смеси обратно пропорционален давлению в системе $D \propto 1/P$, и не зависит от пропорций компонентов, что и предлагается проверить в работе экспериментально.

3 Оборудование и инструментальные погрешности

Оборудование: манометр, вольтметр, форвакуумный насос, 2 сосуда.

4 Результаты измерений и обработка данных

4.1 Экспериментальная установка

Для исследования взаимной диффузии используется следующая установка:

Рис. 1: Схема установки

Здесь V_1 , V_2 – два сосуда с примерно равным объемом, в которые мы будем загонять воздух и гелий.

Данная конструкция позволяет провести диффузию, которая возможна только при равенстве давлений.

Основное оборудование, с помощью которого мы будем снимать измерения – датчики теплопроводности, через которые пропускают ток. Они подключены к мосту, который позволяет нам устанавливать начальное равновесное состояние.

При изменении концентрации в колбах вольтметр покажет нам разность напряжений на датчиках, что, из-за их конструкции, означает разность концентраций.

С помощью изменения напряжения мы и будем изучать процесс диффузии, т.к. во время ее протекания концентрации газов начинают устанавливаться, что заметно на графике разницы напряжений от времени.

Особенности установки

Кран К4 обладает повышенной вакуумплотностью и используется для изолирования измерительной части установки от возможных протечек гелия и воздуха. Двухходовой кран К5 служит для подключения форвакуумного насоса к установке, подачи воздуха в установку и соединения форвакуумного насоса с атмосферой. Устройство и назначение кранов К6 и К7 подачи гелия соответствуют основному описанию.

4.2 Характеристики системы

$$V = 800 \pm 5 \text{ cm}^3$$

 $\frac{L}{S} = 15, 0 \pm 0, 1 \text{ cm}^{-1}.$

4.3 Измерения:

4.3.1 Коэффицент взаимной диффузии

Для смеси гелий-воздух исследуем зависимость коэффициента взаимной диффузии о начального давления в системе. Для этого будем фиксировать с помощью компьютера в лаборатории зависимость показаний вольтметра от времени, прошедшего с начала эксперимента. Проверим то, что процесс диффузии подчиняется закону:

$$U = (U)_0 e^{-\frac{t}{\tau}}.$$

Для этого построим графики зависимости в виде:

$$\ln(U) = \ln(U_0) + (-\tau^{-1})t \Rightarrow \ln\left(\frac{U_0}{U}\right) = \frac{t}{\tau}$$
(5)

Рис. 2: Зависимость $\ln \frac{U_0}{U}$ от t

График 2 линеен, следовательно у нас происходит действительно диффузия. Далее мы можем найти τ как коэффицент наклона. Находить будем по МНК. В нашем случае $\ln \frac{U_0}{U} = kt$, и $k = \frac{1}{\tau}$.

$$k = \frac{\langle t \cdot \ln \frac{U_0}{U} \rangle - \langle t \rangle \langle \ln \frac{U_0}{U} \rangle}{\langle t^2 \rangle - \langle t \rangle^2}$$
 (6)

$$\sigma_k^{\text{случ}} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle \left(\ln \frac{U_0}{U}\right)^2 \rangle - \langle \ln \frac{U_0}{U} \rangle^2}{\langle t^2 \rangle - \langle t \rangle^2} - k^2}$$
 (7)

$$\sigma_k^{\text{cmct}} = k\varepsilon_k = k \cdot \sqrt{\varepsilon_{U_0}^2 + \varepsilon_U^2 + \varepsilon_t^2} = k \cdot \sqrt{\left(\frac{\sigma_{U_0}}{U_0}\right)^2 + \left(\frac{\sigma_U}{U}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2}$$
(8)

$$\sigma_k = \sqrt{\left(\sigma_k^{\text{случ}}\right)^2 + \left(\sigma_k^{\text{сист}}\right)^2} \tag{9}$$

,

Проведем рассчеты для каждого значения давления, получим таблицу:

Р, торр	$k \cdot 10^{-3}, c^{-1}$	$\sigma_k \cdot 10^{-3}, \mathrm{c}^{-1}$	τ, c	σ_{τ} , c
38	2,22	0,09	449,1	3,1
70	1,27	0,08	786,5	6,1
150	0,59	0,03	1682,9	7,2
200	0,48	0,01	2073,0	11,0

Таблица 1: Аппроксимация зависимостей

Далее посчитаем коэффициенты взаимной диффузии для различных давлений по формуле:

$$D = \frac{1}{\tau} \frac{VL}{2S} \qquad \qquad \sigma_D = D \sqrt{\varepsilon_\tau^2 + \varepsilon_V^2 + \varepsilon_{\frac{L}{S}}^2} \tag{10}$$

Посчитаем D и σ_D :

<i>P</i> , торр	38	70	150	200
$D, \frac{\mathrm{cm}^2}{\mathrm{c}}$	4,57	2,61	1,22	0,99
$\sigma_D, \frac{\mathrm{cm}^2}{\mathrm{c}}$	0,13	0,08	0,07	0,06

Таблица 2: Значения коэффициента диффузии при различных давлениях

4.4 График зависимости $D(\frac{1}{p})$

Рис. 3: Зависимость D от $\frac{1}{D}$

Построен по МНК, коэффицент наклона $k = (410, 2 \pm 19, 1) \frac{\text{см}^2}{\text{с-торр}}$. Значит, коэффициент диффузии при атмосферном давлении можно найти таким образом:

$$D_{\text{atm}} = k \frac{1}{P_{\text{atm}}} = (0, 545 \pm 0, 03) \frac{\text{cm}^2}{\text{c}}$$

4.4.1 Длина свободного пробега

По полученным данным оценим длину свободного пробега атомов гелия в воздухе:

$$D = \frac{1}{3}\lambda\langle v \rangle$$
, где $\langle v \rangle = \sqrt{\frac{8RT}{\pi\mu}} \Rightarrow \lambda = 3D\sqrt{\frac{\pi\mu}{8RT}} \approx 140,3 \text{ нм}$ (11)

5 Заключение

В ходе работы:

- Была зарегистрирована зависимость концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при различных начальных давлениях смеси газов.
- По результатам измерений был определен коэффицент взаимной диффузии для смеси гелий-воздух: $D_{\rm arm}=(0,545\pm0,03)\,\frac{\rm cm^2}{\rm c}$, что совпадает по порядку величины с табличными данными: $D_{\rm табл}=0,62\,\frac{\rm cm^2}{\rm c}$.
- Была оценена длина свободного пробега гелия в воздухе: $\lambda = (140, 3 \pm 7, 5)$ нм, что опятьтаки сходится с табличными данными по порядку величины: $\lambda_{\rm табл} = 175$ нм.

Основная доля ошибок приходится на барометр, и тот факт, что мы не можем полностью точно сбалансировать мост (он очень легко расстраивается).