Енергия на еластична вълна. Интензитет на вълна. Диференциално вълново уравнение

Енергия на еластична вълна. Интензитет на вълна

Източникът на трептения в една хомогенна еластична среда притежава определена енергия. В процеса на разпространение на вълната тази енергия се пренася от една частица в пространството до друга. При плоските еластичните вълни (тези, които се разпространяват в еластична среда) тя може да се определи просто. Ако в разглежданата среда няма загуба на енергия, амплитудите на трептящите частици са еднакви. Извършвайки хармонично трептене около равновесното си положение, всяка частица от средата притежава пълна механична енергия:

$$E_i = \frac{1}{2} m_i \omega^2 A^2$$

където m_i е масата на частицата, ω – кръговата ѝ честота, а A – амплитудата на трептенето ѝ. Ако в обем V от средата броят на трептящите частици е N, енергията на единица обем (плътността на енергията на вълната) ще бъде:

(1)
$$w = \frac{E}{V} = \frac{NE_i}{V} = \frac{1}{2} \frac{Nm_i}{V} \omega^2 A^2 = \frac{1}{2} \rho \omega^2 A^2$$

където р е плътността на средата.

Интензитетът на вълната е величина, която определя средната енергия, пренасяна от вълната за единица време през единица площ, разположена перпендикулярно на посоката ѝ на разпространение:

$$(2) I = \frac{E}{St}.$$

Мерната единица за интензитет на вълна е ват на квадратен метър [W/m²]. Можем да изразим интензитета на дадена вълна и чрез амплитудата ѝ, като използваме получената зависимост на енергията в единица обем w от амплитудата A на вълната (1). Ако вълната се разпространява със скорост v в цилиндричен слой от средата със сечение S, за време t ще се разпространи на разстояние h=vt. Енергията, която се пренася през площта S за това време, ще бъде енергията на вълната в обема V на цилиндъра с основа S и височина h:

$$E = wV = wSh = \frac{1}{2}\rho\omega^2 A^2 Svt,$$

а интензитетът на вълната в този обем от средата съгласно (2) ще бъде:

$$I = \frac{1}{2} \frac{\rho v \omega^2 A^2 St}{St} = \frac{1}{2} \rho v \omega^2 A^2.$$

Виждаме, че интензитетът на еластичната вълна е пропорционален на квадрата на амплитудата на вълната. Такава зависимост е валидна за всички вълни (вкл. и за светлинните).

Диференциално вълново уравнение

Когато разглеждахме трептенията видяхме, че уравнението на трептенето е решение на някакво обикновено диференциално уравнение от втори ред за x(t). Тук също можем да получим диференциално уравнение от втори ред за y(x,t), чието решение е $y(x,t) = A\sin(\omega t - kx + \varphi)$, но тъй като имаме функция на две променливи x и t, то ще бъде частно диференциално уравнение. Нека да намерим вторите производни на $y(x,t) = A\sin(\omega t - kx + \varphi)$ по променливите x и t:

$$\frac{\partial y}{\partial t} = \omega A \cos(\omega t - kx + \varphi) \quad \frac{\partial^2 y}{\partial t^2} = -\omega^2 A \sin(\omega t - kx + \varphi)$$

$$(3) \quad \frac{\partial^2 y}{\partial t^2} = -\omega^2 y$$

$$\frac{\partial y}{\partial x} = -kA \cos(\omega t - kx + \varphi) \quad \frac{\partial^2 y}{\partial x^2} = -k^2 A \sin(\omega t - kx + \varphi)$$

$$(4) \quad \frac{\partial^2 y}{\partial x^2} = -k^2 y.$$

От (3) и (4) следва:

$$-\frac{1}{k^2}\frac{\partial^2 y}{\partial x^2} = -\frac{1}{\omega^2}\frac{\partial^2 y}{\partial t^2}; \quad \frac{\partial^2 y}{\partial x^2} = \frac{k^2}{\omega^2}\frac{\partial^2 y}{\partial t^2}$$

$$(5) \quad \frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2}\frac{\partial^2 y}{\partial t^2},$$

където сме заместили $\mathbf{\omega}/\mathbf{k}$ с фазовата скорост \mathbf{v} . Уравнение (5) е частно диференциално уравнение от втори ред и се нарича диференциално вълново уравнение на плоска вълна, която се разпространява по оста \mathbf{X} . Решенията на (5) са функции от вида $y(x,t) = A\sin(\omega t - kx + \varphi)$, т.е. уравнения на плоска хармонична вълна. Възможно е обаче да се направи и обратното заключение: ако една величина y(x,t) зависи от времето и координатите така, че нейните частни производни удовлетворяват уравнение (5), тази величина съответства на разпространяваща се плоска хармонична вълна по оста \mathbf{X} (такава вълна се нарича още бягаща вълна).

В общия случай, когато една плоска хармонична вълна $\xi(x,y,z,t)$ се разпространява в произволна посока в тримерното пространство, уравнение (5) се записва най-често по следния начин:

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = \Delta \xi = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2},$$

където ξ е отклонението от равновесното положение, а

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

се нарича оператор на Лаплас.