Polynomials

Edward Jex

April 16, 2020

The order / degree of a polynomial is the highest power of the variable it contains. For example, a polynomial is order 3.

Division

Long division is the best method when it is not known if there is a remainder or not. Otherwise it can be done by inspection.

Example 1

Divide
$$2x^3 - 3x^2 + x - 6$$
 by $x - 2$

$$\begin{array}{r}
2x^2 + x + 3 \\
x - 2)2x^3 - 3x^2 + x - 6 \\
-(2x^3 - 4x^2) \\
x^2 \\
-(x^2 - 2x) \\
3x - 6 \\
-(3x - 6) \\
0
\end{array}$$

$$\Rightarrow 2x^3 - 3x^2 + x - 6 = (2x^2 + x + 3)(x - 2)$$

The Factor Theorem

We can use the factor theorem to help us to solve algebraic equations of order greater than 2.

The factor theorem is as follows:

If $(x - \alpha)$ is a factor of f(x) then $f(\alpha) = 0$ and α is the root of the equation of f(x) = 0.

Example 2

Show that (x-1) is a linear factor of $2x^3 - 5x^2 - 6x + 9$

$$f(1) = 0 \Rightarrow (x - 1) \text{is a factor by the factor theorum}$$

$$2x^3 - 5x^2 - 6x + 9 = (x - 1)(2x^2 - 3x - 9)$$

$$= (x - 1)(2x + 3)(x - 3)$$

$$\Rightarrow x = 1, -\frac{3}{2}, 3$$

Sketching Polynomials

To sketch polynomials, we must find where it crosses the x-axis and y-axis. We also need to know what order the polynomial is so that we know the general shape.

Turning Points

A point where the gradient is 0. If a polynomial is of order n, it can at most n-1 turning points.

Roots of Polynomials

We denote the root of polynomials using Greek letters starting from α .

Notation

We write:

$$\sum \alpha = \alpha + \beta + \gamma$$

$$\sum \alpha \beta = \alpha \beta + \beta \gamma + \gamma \alpha$$

$$\sum \alpha^2 \beta = \alpha^2 \beta + \beta^2 \alpha + \alpha^2 \gamma + \gamma^2 \alpha + \gamma^2 \beta + \beta^2 \gamma$$

Cubics

The general equation of a cubic can be written $ax^3 + bx^2 + cx + d = 0 \Rightarrow x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$, $a \neq 0$. If we know the roots α , β , γ it can also be written $(x - \alpha)(x - \beta)(x - \gamma) = 0$. If this is expanded we get $x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$. Therefore:

$$\sum \alpha = \frac{-b}{a}$$
$$\sum \alpha \beta = \frac{c}{a}$$
$$\alpha \beta \gamma = \frac{-d}{a}$$

From this we can find the coefficients given information about the roots.

Quartics

The general equation of a quartic can be written $x^4 + \frac{b}{a}x^3 + \frac{c}{a}x^2 + \frac{d}{a}x + \frac{3}{a} = 0$ with roots α , β , γ , δ . As before, it can also be expressed in the form

 $(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)=0$. Therefore, we get that:

$$\sum \alpha = \frac{-b}{a}$$
$$\sum \alpha \beta = \frac{c}{a}$$
$$\sum \alpha \beta \gamma = \frac{-d}{a}$$
$$\alpha \beta \gamma \delta = \frac{c}{a}$$

Related Roots

If you are given equations for the roots in terms of the roots of a different polynomial you can substitute them in to find the new polynomial.

Example 1

 $5x^3 - x^2 + 4x + 1 = 0$ has roots α , β , γ . Find a cubic with the roots $2\alpha + 3$, $2\beta + 3$, $2\gamma + 3$.

$$y = 2x + 3$$
$$\Rightarrow x = \frac{y - 3}{2}$$

$$5(\frac{y-3}{2})^3 - (\frac{y-3}{2})^2 + 4(\frac{y-3}{2}) + 1 = 0$$
$$5(y-3)^3 - 2(y-3)^2 + 16(y-3) + 1 = 0$$
$$5(y^3 - 9y^2 + 27y - 27) - 2(y^2 - 6y + 9) + 16(y-3) + 1 = 0$$
$$5y^3 - 47y^2 + 163y - 193 = 0$$