Parameterized Quantum Query Algorithms for Graph Problems

Tatsuya Terao¹, Ryuhei Mori²

- 1. Kyoto University
- 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

Parameterized Quantum Query Algorithms for Graph Problems

vertex cover and matching

Tatsuya Terao¹, Ryuhei Mori²

- 1. Kyoto University
- 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

kernelization and augmenting paths

Parameterized Quantum Query Algorithms for Graph Problems

vertex cover and matching

Tatsuya Terao¹, Ryuhei Mori²

- 1. Kyoto University
- 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

Query Complexity

Given f as an oracle!

Query Complexity

ask f(i)Algorithm output f(i)property of f

Query Complexity = # of queries to oracle

Quantum Query Complexity

Quantum Algo

Quantum Oracle O_f

$$f: \{1, ..., N\} \to \{0, 1\}$$

 ${\mathfrak F}$ Query Complexity = # of ${\mathcal O}_f$

Quantum Query Complexity

Quantum Algo

Quantum Oracle \mathcal{O}_f

$$f: \{1, ..., N\} \to \{0, 1\}$$

 ${\mathbb P}$ Query Complexity = # of ${\mathcal O}_f$

```
Input: Oracle access to f: \{1, ..., N\} \rightarrow \{0, 1\}
Output: i \in \{1, ..., N\} s.t. f(i) = 1
```

```
Input: Oracle access to f: \{1, ..., N\} \rightarrow \{0, 1\}
```

Output : $i \in \{1, ..., N\}$ s.t. f(i) = 1

Classical

Quantum

 $\Theta(N)$ queries with error prob. at most 1/3

Input : Oracle access to $f: \{1, ..., N\} \rightarrow \{0, 1\}$

Output : $i \in \{1, ..., N\}$ s.t. f(i) = 1

Classical

 $\Theta(N)$ queries with error prob. at most 1/3

Quantum

 $O(\sqrt{N})$ queries with error prob. at most 1/3 [Grover '96]

Lower Bound: $\Omega(\sqrt{N})$ [Bennett-Bernstein-Brassard-Vazirani '97]

Input: Oracle access to $f: \{1, ..., N\} \rightarrow \{0, 1\}$

Output : $i \in \{1, ..., N\}$ s.t. f(i) = 1

Classical

 $\Theta(N)$ queries with error prob. at most 1/3

Quantum

Classical-Quantum Separation!

 $O(\sqrt{N})$ queries with error prob. at most 1/3 [Grover '96]

Limitation of Quantum Algo

Lower Bound: $\Omega(\sqrt{N})$ [Bennett-Bernstein-Brassard-Vazirani '97]

Quantum Query Complexity for Graph Problems

Adjacency Matrix Model

Quantum oracle access to E_M : $\{1, ..., n\} \times \{1, ..., n\} \rightarrow \{0, 1\}$

$$E_M(u,v)=1\Leftrightarrow (u,v)\in E(G)$$

Even through classical algorithms require $\Theta(n^2)$ queries, ...

- Connectivity : $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching : $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

- Connectivity: $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching : $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

Can we achieve $O(n^{2-\epsilon})$ for NP-hard problems such as Vertex Cover, Hamiltonian Path, and Clique?

- Connectivity: $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching : $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

Can we achieve $O(n^{2-\epsilon})$ for NP-hard problems such as Vertex Cover, Hamiltonian Path, and Clique?

Consider parameterized complexity!

- ullet Connectivity : $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching : $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

Can we achieve $O(n^{2-\epsilon})$ for NP-hard problems such as Vertex Cover, Hamiltonian Path, and Clique?

Consider parameterized complexity!

• k-clique : $\widetilde{O}(n^{2-2/k})$ [Magniez-Santha-Szegedy '05]

Input: an undirected graph G and an interger k

Find: a vertex cover $S \subseteq V$ of size at most k

every edge of G has at least one endpoint in S

Input: an undirected graph G and an interger k

Find: a vertex cover $S \subseteq V$ of size at most k

	unparameterized	parameterized
Classical time complexity	NP-hard	FPT
		$f(k) \cdot poly(n)$

Input: an undirected graph G and an interger k

Find: a vertex cover $S \subseteq V$ of size at most k

	unparameterized	parameterized
Classical time complexity	NP-hard	FPT
Quantum query complexity	$oldsymbol{O}(n^2)$ is only known	??

Input: an undirected graph G and an interger k

Find: a vertex cover $S \subseteq V$ of size at most k

	unparameterized	parameterized
Classical time complexity	NP-hard	FPT
Quantum query complexity	$oldsymbol{O}(n^2)$ is only known	??

FPT-like quantum query complexity, i.e., $O(f(k) \cdot n^{2-\epsilon})$

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

Thm.

Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

FPT-like complexity!

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

Thm.

Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

Lower Bound: $\Omega(\sqrt{kn})$ (when $k \leq (1 - \epsilon)n$)

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

<u>Thm.</u>

Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

Lower Bound : $\Omega(\sqrt{kn})$ (when $k \leq (1 - \epsilon)n$)

Significance

- UB $O(n^2)$, LB $\Omega(n^{3/2})$ [Zhang '04] were only known for minimum vertex cover
- Consider Parameterized ver.

<u>Technique</u>

Quantum Query Kernelization

Kernelization

kernel

Input: instance (G, k)

Output: another equivalent small instance (G', k'),

or conclude that (G, k) is a Yes-instance or a No-instance

- (G, k) is a Yes instance $\Leftrightarrow (G', k')$ is a Yes instance
- \bullet $E(G') \leq f(k)$
- $k' \leq g(k)$

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Rule 2. If G has a vertex v of degree at least k + 1, then

If v is not in a vertex cover, then it must contain all neighbors of v.

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Rule 2. If G has a vertex v of degree at least k+1, then $(G,k) \rightarrow (G-v,k-1)$

v must be in any vertex cover of size at most k.

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Rule 2. If G has a vertex v of degree at least k + 1, then $(G, k) \rightarrow (G - v, k - 1)$

v must be in any vertex cover of size at most k.

Fact: After Applying Rules 1 and 2, if $|E(G)| > k^2$, then (G, k) is a No instance

New Approach: Quantum Query Kernelization

Input: Oracle access to (G, k)

Output: another equivalent instance (G', k') as a bit string,

or conclude that (G, k) is a Yes-instance or a No-instance

• (G, k) is a Yes instance $\Leftrightarrow (G', k')$ is a Yes instance

New Approach: Quantum Query Kernelization

Input: Oracle access to (G, k)

Output: another equivalent instance (G', k') as a bit string, or conclude that (G, k) is a Yes-instance or a No-instance

• (G, k) is a Yes instance $\Leftrightarrow (G', k')$ is a Yes instance

After Applying quantum query kernelization, just apply classical algorithm for (G', k').

Step1 Find a maximal matching M

Step1 Find a maximal matching M if |M| > k: then No instance

Crucial Observation

independent set

 \square All edges touch an endpoint of an edge in M!

Step1 Find a maximal matching M if |M| > k: then No instance

Step2 Apply Rule 2 only for endpoints of edges in M

Rule 2. If G has a vertex v of degree at least k+1, then $(G,k) \rightarrow (G-v,k-1)$

Step1 Find a maximal matching M if |M| > k: then No instance

Step2 Apply Rule 2 only for endpoints of edges in M

Rule 2. If G has a vertex v of degree at least k+1, then $(G,k) \rightarrow (G-v,k-1)$

Lem: After Step1 and 2, $|E(G)| \le 2k^2$

a matching of size at least k+1Step1 Find or a maximal matching M of size at most k

using Grover's search

Lem: Step1 uses $O(\sqrt{kn})$ queries

a matching of size at least k+1

Find Step1

a maximal matching M of No instance

using Grover's search

Lem: Step1 uses $O(\sqrt{k}n)$ queries

a matching of size at least k+1 or

a maximal matching M of size at most k

using Grover's search

Find

Step1

Lem: Step1 uses $O(\sqrt{k}n)$ queries

a matching of size at least k+1

Step1 Find

or

a maximal matching M of size at most k

Step2 For each $v \in V(M)$:

all endpoints of edges in M

a matching of size at least k+1

Step1 Find

a maximal matching ${\it M}$ of size at most k

Step2 For each $v \in V(M)$: all endpoints of edges in M if (degree of v) > k: then remove v, $k \leftarrow k-1$ else: find all edges incident to v using Grover's search

a matching of size at least k+1

Step1 Find

or

a maximal matching ${\it M}$ of size at most ${\it k}$

Step2 For each $v \in V(M)$:

all endpoints of edges in Mif (degree of v) > k: then remove v, $k \leftarrow k - 1$ else: find all edges incident to v using Grover's search

a matching of size at least k+1

Step1 Find

or

a maximal matching M of size at most k

Step2 For each $v \in V(M)$:

if (degree of v) > k: then remove v, $k \leftarrow k-1$ else: find all edges incident to v using Grover's search

Obtain an equivalent instance as a bit string!

a matching of size at least k+1

Step1 Find

or

a maximal matching M of size at most k

Step2 For each $v \in V(M)$:

if (degree of v) > k: then remove v, $k \leftarrow k-1$ else: find all edges incident to v using Grover's search

Lem:

Step2 uses $O(k^{3/2}\sqrt{n})$ queries

```
a matching of size at least k+1 Step1 Find or O(\sqrt{k}n) queries a maximal matching M of size at most k using Grover's search
```

Step2 For each $v \in V(M)$:

if (degree of v) > k: then remove v, $k \leftarrow k-1$ else: find all edges incident to v using Grover's search

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{kn} + k^2)$

Lower Bound : $\Omega(\sqrt{kn})$

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{kn} + k^2)$

Lower Bound : $\Omega(\sqrt{kn})$

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{k}n + k^2)$

Lower Bound : $\Omega(\sqrt{k}n)$

Significance

- UB $O(n^{7/4})$ [Kimmel-Witter '21], LB $\Omega(n^{3/2})$ [Zhang '04] were only known for maximum matching
- Consider Parameterized ver.

<u>Technique</u>

- augmenting paths
- quantum query kernelization idea

Conclusion

 Optimal Parameterized Quantum Query Complexities for vertex cover and matching when the parameters are small.

Message

By making smart use of classical techniques such as kernelization, we can improve quantum query complexities!