A COMPILATION OF REDSHIFTS AND VELOCITY DISPERSIONS FOR ACO CLUSTERS

MITCHELL F. STRUBLE¹ AND HERBERT J. ROOD² Received 1999 March 1; accepted 1999 May 13

ABSTRACT

We present a compilation of redshifts for 1572 Abell, Corwin, & Olowin (ACO) clusters, referenced to both the heliocentric and cosmic background radiation reference frames, and 395 velocity dispersions corrected to the reference frame of the cluster, available from the literature as of 1998 December. We present an additional list of 81 ACO clusters with published redshifts which are probably those of galaxies or groups superimposed on, or near, the ACO cluster position.

Subject headings: galaxies: clusters: general — galaxies: distances and redshifts

1. INTRODUCTION

Published compilations of redshifts of clusters of galaxies were initiated by Noonan (1973), who listed both Abell (1958) clusters and clusters from other catalogs, and Corwin (1974), who listed only Abell clusters. Subsequent compilations continued this trend of exclusively listing Abell clusters (see Sarazin, Rood, & Struble 1982, hereafter SRS; Struble & Rood 1987, hereafter SR1; Struble & Rood 1991a, hereafter SR2), or both types [see Noonan 1981; Fetisova 1982, hereafter Fet) Schmidt 1986]. Unpublished compilations of either type are also available (see Andernach 1989; Peacock & West 1992; Lebedev & Lebedeva 1992).

2. THE LISTING

The current compilation is intended to include redshift data up to the end of 1998, updating our previous list (SR2) to include southern rich clusters in Table 3 of Abell, Corwin, & Olowin (1989, hereafter ACO). Redshifts of several southern clusters were identified by one of the authors (M. F. S.) by comparing ACO positions and distance classes with those in the APM Cluster Catalog (Dalton et al. 1997), and from galaxies in the redshift survey of Vettolani et al. (1998).

The observed helicentric redshift (fractional displacement of spectral lines) \bar{z}_h defines the average radial velocity V_h of N_z cluster members in units of the vacuum speed of light c with respect to the centroid of the solar system, and \bar{z}_C is the redshift corrected to the velocity centroid of the 3° cosmic background radiation, V_C , the currently preferred reference frame for extragalactic studies (de Vaucouleurs et al. 1991, hereafter RC3):

$$V_C = V_h - 351 \cos \alpha \cos \delta + 70 \sin \alpha \cos \delta - 35 \sin \delta$$
,

where right ascension and declination, α and δ , respectively, are referenced to epoch 1950.0 and taken from ACO. Below we will use \overline{z} to indicate \overline{z}_h and \overline{z}_C collectively. For the small number of references that do not state the reference frame of their published galaxy velocities or of cluster redshifts, we assume velocity data are heliocentric. For cluster redshifts published only with respect to the Local Group (see de Vaucouleurs, & Corwin 1976), we obtain \overline{z}_h using ACO's α and δ . Note also that published redshifts with three or fewer significant figures are all quoted as \overline{z}_h , but that values of \overline{z}_C derived therefrom are given to four figures.

The cluster's velocity dispersion in the frame of the observer, $\sigma_{\rm obs}$, is the rms radial velocity V_C of the cluster members relative to the average, \overline{V}_C . The corrected velocity dispersion (i.e. in the frame of the cluster) $\sigma_{\rm corr}$ is related to $\sigma_{\rm obs}$ to first order in c (Harrison 1974; Gross 1977; Faber & Dressler 1977) by

$$\sigma_{\rm corr} = \frac{\sigma_{\rm obs}}{1 + \overline{z}_C} \,.$$

Table 1 presents the listing; the columns contain the following data:

Column (1).—ACO number; asterisks denote membership in Abell's (1958) nonstatistical sample. Note that ACO does not designate a statistical sample for A2713–A4076.

Column (2).—Adopted heliocentric redshift, \overline{z}_h .

Column (3).—Flag indicating the accuracy a of \overline{z}_h in the original references; 2 or 3 indicates a redshift given to two or three decimal places, respectively; a blank indicates four decimal places.

Column (4).—Redshift with respect to the cosmic background radiation, \bar{z}_C , derived from \bar{z}_h and given to four significant figures.

Column (5).—Number of cluster members with published redshift, N_z , used to determine the cluster's \overline{z}_h and $\sigma_{\rm corr}$. The notation >0, >1, etc., reflects the ambiguity in the number of velocities used to determine redshifts in the original references. See § 3 for further discussion. Note that some references (see Refs. 21, 221, and 225) do not list N_z .

Column (6).—Adopted velocity dispersion, σ_{corr} , in the rest frame of the cluster, in units of km s⁻¹.

Column (7).—Code for the reference sources for \overline{z} and σ_{corr} ; these numerical codes are listed at the end of Table 2. Note that only new references are included in this paper; refer to SR1 and SR2 for reference code numbers below 118.

Column (8).—Designation indicating either a new comment in Table 2 (N) (i.e., not given in SR2, or revisions to comments in SR2), or a comment in SR2 which is not repeated herein (n).

In contrast to our previous compilations, we do *not* list data for subclusters or superposed clusters in Table 1. This auxiliary information is now included in Table 2.

Table 1 can be accessed from the Internet³.

3. ADDITIONAL COMMENTS

It is usually, but not always, true that the \overline{z} derived from a given N_z is for that number of separate galaxies. The

¹ Lockheed Martin, Philadelphia, PA

² P.O. Box 1330, Princeton, NJ

³ ftp://ftp.sns.ias.edu/pub/rood/aco.z99

 $\begin{tabular}{ll} TABLE & 1 \\ REDSHIFTS & AND & VELOCITY & DISPERSIONS & FOR & ACO & CLUSTERS \\ \end{tabular}$

-	KEDSHII	13 AND	VELOCITI	DISPERSI	ONS FOR ACC	CLUSTERS	
					$\sigma_{ m corr}$		
ACO	\overline{Z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	0.1249		0.1237	1		Fet	0
2	0.1227		0.1215	1		144	0
3	0.1017		0.1005	1		144	0
7	0.1062		0.1050	2		91	0
10	0.1858		0.1846	2		142	0
12	0.1255		0.1243	1		142	0
13	0.0943		0.0931	37	886	149, 180	N
14*	0.0655		0.0643	9	677	224	N
15	0.1241		0.1229	3		186	N
16	0.0843		0.0831	>0		35	0
17	0.0888		0.0876	1		144	0
19	0.1876		0.1864	1		142	0
21*	0.0946		0.0934	11	621	117	n
22	0.1410		0.1398	3	021	91	0
23*	0.1052		0.1040	>0		35	0
24	0.1338		0.1326	1		24	0
26*	0.1461		0.1449	2		125	0
27*	0.0542		0.0530	2		146	0
28	0.1850		0.1838	2		142	0
31	0.1596		0.1584	2		24	0
34	0.1316		0.1304	>0		133, 144	0
37	0.1510		0.1659	1		144	0
38	0.1414		0.1402	1		144	0
41	0.2770	3	0.2758	1		24, 21	0
42	0.1129	,	0.1117	4		186	Ň
43*	0.1114		0.1102	1		26	0
44	0.1400		0.1388	1		144	0
46	0.1500	3	0.1488	2		24	0
47	0.1382		0.1370	1		144	0
49	0.1574		0.1562	1		144	0
50	0.2050	3	0.2038	1		221	N
55*	0.1339	_	0.1327	1		146	0
63*	0.1082		0.1070	2		121	0
64	0.1496		0.1484	1		125	0
65	0.1218		0.1206	1		125	0
66*	0.1369		0.1357	2		125	0
67	0.1370		0.1358	1		144	0
68	0.2550	3	0.2538	>0		203	0
69	0.1454		0.1442	1		146	0
71*	0.0724		0.0712	2		10	0
72*	0.0886		0.0874	2		121	0
74*	0.0651		0.0639	6	700	96, 145	0
75*	0.0626		0.0614	4		10, 40	0
76*	0.0405		0.0393	9	492	224	N
77	0.0708		0.0696	3		208	0
79	0.0927		0.0915	1		26	0
80	0.1118		0.1106	4		186	N
84	0.1030		0.1018	>1		34, 35	0
85	0.0555		0.0543	308	969	131, 193, 209	N
86*	0.0634		0.0622	7	617	96, 126	0
87	0.0550		0.0538	27	859	149, 180	N
88	0.1125		0.1113	8	354	186	N
89*	0.1371		0.1359	2		125, 210	N
90	0.1423		0.1411	1		142	N
91	0.1278		0.1266	1		144	0
95	0.1119		0.1107	>0		35	0
96*	0.1344		0.1332	1		24	0
98	0.1042		0.1030	24	883	48	0
101	0.1169		0.1157	3		142, 144	0
102*	0.0653		0.0641	6	628	224	0

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	а	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
103	0.1934		0.1922	2		142	0
104	0.0821		0.0809	14	732	200	0
108	0.1019		0.1007	2	132	142	0
111	0.1613		0.1601	2		142	0
113	0.1923		0.1911	1		142	0
114*	0.0587		0.0575	14	517	102	0
115	0.1971		0.1959	8	1167	25	Ň
116*	0.0665		0.0653	>3	1107	10, 35	0
117*	0.0535		0.0523	3		10, 33	0
118	0.0333		0.0323	30	649	180	N
110	0.1140		0.1150	50	042	100	11
119	0.0442		0.0430	125	740	180	N
121	0.0550		0.0538	2	740	200	0
122	0.1128		0.1116	>0		125, 144	0
123	0.0959		0.0947	2		144	0
125	0.1880	3	0.1868	1		50	0
126	0.0546	3	0.0534	8	465	200	0
129	0.1507		0.1495	2	403	142, 144	0
133*	0.0566		0.0554	7	623	117, 47	N
134*	0.0699		0.0687	>2	023	10, 35	0
136	0.0099		0.1557	1		26	0
130	0.1309		0.1337	1		20	U
140	0.1607		0.1595	8	902	186	N
141	0.2300	3	0.1333	0	702	143	0
144	0.2047	3	0.2035	1		144	0
145	0.1912		0.1900	>0		142, 144	0
146	0.1312		0.1866	1		144	0
147*	0.1373		0.1300	11	387	119, 224	N
150	0.0588		0.0433	5	626	200	0
151	0.0533		0.0570	63	669	180	N
152*	0.0533		0.0521	3	009	125	0
153	0.0381		0.0369	>1		142, 144	0
133	0.1279		0.1207	>1		142, 144	U
154	0.0636		0.0624	41	868	105, 117, 120	0
157	0.1034		0.1022	>1	000	125	Õ
158*	0.0645		0.0633	7	307	77	Ň
160*	0.0447		0.0435	10	572	9, 65	0
161*	0.0758		0.0746	3	0,2	121	Õ
162	0.1273		0.1261	4	924	200	0
166	0.1156		0.1144	1		0	0
168	0.0450		0.0438	76	517	180	N
171*	0.0706		0.0694	>4	560	9, 35	n
172	0.1251		0.1239	1		144	0
174*	0.0758		0.0746	2		121	0
175	0.1292		0.1280	>0		35	0
178	0.1935		0.1923	1		144	0
179*	0.0547		0.0535	3		Fet	0
180*	0.1350	3	0.1338	1		Fet	0
183*	0.1116		0.1104	1		121	0
186	0.1029		0.1017	2		31	n
188	0.1230		0.1218	2		31	0
189	0.0328		0.0316	10	259	102	n
190*	0.1015		0.1003	3		31	0
192	0.1219		0.1207	>0		125, 144	0
193	0.0488		0.0476	56	715	139	n
194*	0.0180		0.0168	146	398	202	0
195*	0.0430		0.0418	12	507	224	0
201*	0.1105		0.1093	1		125	0
202	0.1500		0.1488	2		142	0
204	0.1557		0.1545	1		31	n
208*	0.0798		0.0786	>0		133	0
209	0.2060	3	0.2048	2		Fet	0
211	0.1368		0.1356	3		142, 144	0

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		- ' '			. ,		
214	0.1597		0.1585	1		144	0
216	0.1158		0.1146	1		31	0
217	0.1126		0.1114	2		31	0
222	0.2130	3	0.2118	6	570	85	0
223	0.2070	3	0.2058	4		66	0
224	0.1617		0.1605	2		31	0
225	0.0687		0.0675	5	608	200	0
226	0.1283		0.1271	2	000	31	0
227	0.1768		0.1756	1		144	0
228*	0.1289		0.1777	3		31	0
220	0.1209		0.1277	3		31	U
220	0.1120		0.1127	22	956	100	NT
229	0.1139		0.1127	32	856	180	N
232	0.1875		0.1863	2		31	0
234	0.1731		0.1719	1		24	0
236	0.1874		0.1862	2		31	0
240*	0.0612		0.0600	4		Fet, 146	0
242	0.2496		0.2484	1		144	0
243*	0.1117		0.1105	4		31	0
245*	0.0790		0.0778	2		Fet	0
246	0.0700		0.0688	2		Fet	0
254	0.1578		0.1566	1		142	0
20	0.127.0		0.1200	•		- · · -	Ü
256	0.0885		0.0873	11	545	140, 193	0
257	0.0703		0.0691	>1	343	35, 146	0
259*				3		31	0
	0.1273		0.1261				
260*	0.0363		0.0351	18		119	N
261	0.0469		0.0457	>3	= 00	148, 144	0
262*	0.0163		0.0151	151	588	224	N
264	0.1440	3	0.1428	1		221	N
265	0.1299		0.1287	2		142	0
266*	0.0951		0.0939	2		79	0
267*	0.2300	3	0.2288	1		141	0
272*	0.0877		0.0865	14	691	24	0
274	0.1282		0.1270	5	935	200	0
276*	0.0818		0.0806	2		121	0
277	0.0949		0.0937	5	740	200	0
278*	0.0891		0.0879	1	7 10	24	ő
279	0.0797		0.0785	1		26	ő
281*	0.0880	3	0.0763	>0		35	0
		3		>0			
286	0.1603		0.1591			142	0
289	0.2048		0.2036	2		144	0
290*	0.1507		0.1495	1		121	0
2014	0.40=0	_	0.40.50			4.44	
291*	0.1970	3	0.1958	1		141	0
292*	0.0664		0.0652	3		121	0
293	0.1631		0.1619	1		42	0
294	0.0783		0.0771	1		144	N
295	0.0427		0.0415	47	359	140, 193	0
303	0.0621		0.0609	>4	1493	149, 200	N
306	0.2165		0.2153	1		144	0
311*	0.0661		0.0649	1		121	0
315	0.1754		0.1742	1		142	0
319	0.1446		0.1434	1		144	Ň
017	0.1 170		0.1 IJT	1			11
326*	0.0559		0.0547	>1		26, 91, 128, 144	0
347*	0.0333		0.0172	75	777	224	0
348		3			///	24	0
	0.2740	3	0.2728	1			
353	0.1636		0.1624	1		144	0
356	0.1960		0.1948	2		142	0
358*	0.0576		0.0564	2		10	0
359	0.2448		0.2436	2		142	0
360	0.2205		0.2193	1		144	0
364	0.1800		0.1788	1		220	N
367	0.0907		0.0895	27	963	149, 180	0

TABLE 1—Continued

ACO (1)	\overline{z}_h (2)	<i>a</i> (3)	\overline{z}_C (4)	N _z (5)	$ \frac{\sigma_{corr}}{(km s^{-1})} $ (6)	References (7)	Notes (8)
370*	0.3750	3	0.3738	40	1364	74, 85	0
371	0.0961	,	0.0949	2	1501	144	0
372*	0.1073		0.1061	1		75	0
376*	0.0484		0.0472	14	519	224	0
380	0.1337		0.1325	25	703	149, 180	0
381	0.1794		0.1782	2		142	0
383	0.1871		0.1859	1		142	0
388	0.1342		0.1330	1		142	0
389	0.1133		0.1121	8	765	144, 186	N
394	0.2061		0.2049	1		144	0
395	0.1478		0.1466	2		144	0
396*	0.0928		0.0916	1		125	0
397*	0.0327		0.0315	46	566	224	N
399	0.0724		0.0712	115	1186	172, 139	0
400	0.0244		0.0232	115	663	224	N
401	0.0737		0.0725	123	1130	139	0
403 404*	0.1033		0.1021	>1		24, 35	0
407*	0.0622		0.0610	1 34	769	75 224	0
409	0.0462 0.1530	3	0.0450 0.1518	1	709	141	0
410	0.0897		0.0885	1		26	0
411	0.1567		0.1555	1		144	0
415	0.1307		0.1333	5	525	200	0
416	0.1060	3	0.1048	3	323	145	ő
419*	0.0662	-	0.0650	2		121	Ň
420	0.0858		0.0846	19	514	149, 180	N
423	0.0791		0.0779	7		200	N
426*	0.0179		0.0167	192	1324	224	0
428*	0.0666		0.0654	3		121	0
432	0.2026		0.2014	2		144	0
437*	0.0847		0.0835	3		121	0
438	0.1761		0.1749	1		144	N
439*	0.1068		0.1056	>1		24, 34	n
447	0.1123		0.1111	1		144	0
449*	0.0803		0.0791	4		42	0
450*	0.0607		0.0595	1	50 (42	0
458	0.1057	•	0.1045	30	736	102, 193	0
462	0.1490	3	0.1478	2		145	0
464	0.1462	2	0.1450	>0		144	0
465	0.1300	3	0.1288	>0		215	0
468*	0.1325		0.1313	1		24	0
478*	0.0881	•	0.0869	13	904	102	0
483	0.2800	2	0.2788	>0		107	0
484 493*	0.0386		0.0374	4		12	0
	0.1152		0.1140	1 20	714	75 121	0 N
496	0.0329	2	0.0317	138	714	131 195	N
500 501*	0.0670 0.1516	3	0.0658 0.1504	<4 1		193 146	0 0
505*	0.1510		0.1504	4	286	224	0
506	0.1561		0.1549	3	200	31	0
507	0.2810	3	0.2798	1		125	0
508	0.1479	,	0.1467	3		60	0
509	0.0836		0.0824	1		38	0
510	0.1813		0.1801	2		144	Ň
511*	0.1150	3	0.1138	2		145	0
513*	0.1491		0.1479	1		31	N
514	0.0713		0.0701	82	874	149, 180	0
516	0.1407		0.1395	2		31	0
517	0.2244		0.2232	1		31	0
518	0.1804		0.1792	4		31, 60	0

TABLE 1—Continued

ACO	=		=	N/	$\sigma_{\rm corr} \ ({\rm km~s^{-1}})$	Dafaranaaa	Notes
(1)	\overline{z}_h (2)	<i>a</i> (3)	\overline{z}_C (4)	N_z (5)	(km s ⁻)	References (7)	Notes (8)
		(5)		(3)	(0)		(0)
520*	0.1990	3	0.1978	>3		75, 201	0
523*	0.1000		0.0988	>0		226	0
524	0.0779		0.0767	26	822	149, 180	N
526*	0.0835		0.0823	7	336	200	N
527* 528*	0.0794		0.0782	2 1		42 31	N 0
531	0.2896 0.0940	3	0.2884 0.0928	1		141	0
533*	0.0467	3	0.0455	>3		148	N
536	0.0398		0.0433	1		91	N
539*	0.0284		0.0272	160	629	89, 193	N
						,	
543	0.0850		0.0838	10	413	149, 180	0
545*	0.1540	3	0.1528	2		26	0
548*	0.0416		0.0404	323	842	180	N
553*	0.0664		0.0652	5	556	224	0
559*	0.0757		0.0745	5		42	0
562	0.1100	3	0.1088	1	110	34	0
564*	0.0778		0.0766	4	113	200	0
565	0.1053		0.1041	9	513	200	0
566* 568*	0.0973 0.0761		0.0961 0.0749	9 5	682 787	200, 20 224	0 0
300	0.0701		0.0749	3	767	224	U
569*	0.0201		0.0189	39	327	123, 193	N
576*	0.0389		0.0377	248	1135	224	N
578*	0.0866		0.0854	2		146	N
582*	0.0582		0.0570	3		121	0
586*	0.1710	3	0.1698	1		Fet	0
587*	0.1680	3	0.1668	3		124	0
588	0.1600	3	0.1588	0		21	0
591	0.1178		0.1166	6	578	200	0
592*	0.0628	_	0.0616	3		224	0
593	0.2260	3	0.2248	1		24	0
595*	0.0666		0.0654	3		10	N
600*	0.0775		0.0054	3		121	0
602*	0.0619		0.0607	3		121	0
604*	0.1190	3	0.1178	5		215	0
607*	0.0690		0.0678	>0		133	0
608	0.1236		0.1224	>0		125	0
610*	0.0954		0.0942	2		121	0
611*	0.2880	3	0.2868	1		141	0
612*	0.0773		0.0761	1		121	0
614*	0.1432		0.1420	1		146	0
619	0.1100	2	0.1170	> 0		215	0
618 621	0.1190 0.2230	3	0.1178 0.2218	>0 1		215 141	0 0
623*	0.2230	3	0.2218	3		75	0
628*	0.0902		0.0822	3		77, 146	0
629	0.1460	3	0.1448	7		215	Ň
634*	0.0265	-	0.0253	56	391	224	0
636*	0.0874		0.0862	>0		125	0
639	0.2910	3	0.2898	1		Fet	0
643*	0.1890		0.1878	1		75	0
644*	0.0704		0.0692	5		47	n
C16*	0.1202		0.1300	2		0.146	0
646* 652*	0.1292		0.1280	2		0, 146	0
655	0.1935		0.1923	2		18 24	0
658*	0.1265 0.0917		0.1253 0.0905	2 2		24 144	0 0
663*	0.0917	3	0.0903	1		125	0
665	0.1700	5	0.1807	33	1201	115	0
667*	0.1450	3	0.1438	1	1201	141	0
668	0.1588	-	0.1576	1		125	0
671*	0.0502		0.0490	41	1043	224	Ö
680	0.0790	3	0.0778	1		0	0

TABLE 1—Continued

ACO (1)	\overline{z}_h (2)	<i>a</i> (3)	\overline{z}_C (4)	N _z (5)	$ \frac{\sigma_{corr}}{(km s^{-1})} $ (6)	References (7)	Notes (8)
689*	0.2793	3	0.2781	>0		226	0
690	0.0788	-	0.0776	1		10	0
692*	0.0894		0.0882	3		121	0
695	0.0687		0.0675	2		24, 46	0
697	0.2820	3	0.2808	1		141	0
699	0.0851	5	0.0839	9	407	200	Ň
714	0.1396		0.1384	6	336	200	0
719	0.1350		0.1364	1	330	125	0
720	0.1329		0.1317	1		144	N
720	0.0894		0.0882	3		125	0
724	0.0933		0.0921	9	287	200	0
725*	0.0904		0.0892	1		146	0
727	0.0951		0.0939	10	494	200	0
731*	0.1725		0.1713	>0		133	0
732	0.2030		0.2018	3		24	0
733	0.1159		0.1147	1		26	0
734	0.0719		0.0707	2		144	0
738	0.2143		0.2131	1		31	Ň
739	0.1722		0.1710	1		146	0
744*	0.0729		0.0717	20	812	41	0
750	0.1800	3	0.1788	>0		206	N
754*	0.0542	•	0.0530	92	931	224	0
756	0.1176		0.1164	1	731	146	ő
757*	0.0517		0.0505	>3		10, 77, 146	ő
761*	0.0916		0.0904	2		141, 146	0
762*	0.1332		0.1320	2		Fet	0
763	0.1332		0.1320	5		121	0
765	0.0347		0.0833	1		125	0
769	0.1327		0.1313	6	1123	200	0
773	0.2170	3	0.2158	2	1123	141	0
775	0.1334		0.1322	1		144	0
777	0.2210	3	0.2198	3		26, 85	0
779*	0.0229		0.0217	54	339	217	Ň
780*	0.0539		0.0527	4	337	0, 77, 146	N
781	0.2980	3	0.2968	>0		203	0
784	0.1236	3	0.1224	1		Fet	0
786*	0.1230		0.1229	3		Fet	0
787	0.1241		0.1229	3		Fet	0
788				2		125	0
	0.1349		0.1337				
795	0.1359		0.1347	2		24, 21	0
797	0.1165		0.1153	5	824	200	0
801	0.1918		0.1906	1		24	0
809*	0.1252		0.1240	1		125	0
814	0.1503		0.1491	1		125	0
818*	0.1213		0.1201	3		121	0
819*	0.0759		0.0747	1		26	0
830	0.2154		0.2142	1		144	0
834*	0.0709		0.0697	5		121	0
838*	0.0502		0.0490	4		0, 77, 144	0
841*	0.0696		0.0684	2		121	0
848*	0.1215		0.1203	1		125	0
849*	0.2256		0.2244	1	06.	146	0
851*	0.4069		0.4057	31	864	190	N
854	0.2072		0.2060	1		24, Fet	0
	0.0863		0.0851	2		26, 146	0
858*		3	0.1838	>0		21	0
864	0.1850						
864 868*	0.1850 0.1530	3	0.1518	1		24	0
864						24 146	0 0
864 868*	0.1530		0.1518	1			

TABLE 1—Continued

					σ.		
ACO	\overline{Z}_h	а	\overline{z}_C	N_z	$\sigma_{\rm corr}$ (km s ⁻¹)	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
882*	0.1407		0.1395	2		144	0
883	0.0729		0.0717	14	700	144, 200	0
895	0.3600	3	0.3588	0		21	0
899	0.2000	2	0.1988	>0		212	0
908*	0.3660	3	0.3648	>0		21	0
909	0.2953		0.2941	2		110	0
910	0.2055		0.2043	2		26	0
912*	0.0446		0.0434	>3		148, 121	N
913	0.1675		0.1663	1		19	N
914	0.1946		0.1934	3		110	0
915	0.1484		0.1472	2		125	0
917	0.1324		0.1472	3		110	0
918	0.1324		0.1512	1		110	0
919	0.1000		0.1034	2		144	N
922	0.0934		0.0942	3		110	0
923	0.1162		0.1383	1		24	0
924	0.1102		0.1130	1		0	0
927			0.0977	3		125	0
930*	0.2183		0.2171	3		123	
933*	0.0549			4			0
933	0.0956		0.0944	4		77, 146	0
941	0.1044		0.1032	1		144	0
945*	0.1982		0.1970	1		110	0
947	0.1770		0.1758	2		110	0
948*	0.1212		0.1200	2		110	0
950	0.1333		0.1321	1		125	0
951	0.1428		0.1416	1		18	0
954*	0.0932		0.0920	3		119	0
956	0.1703		0.1691	1		125	0
957	0.0436		0.0424	44	659	189, 193	N
959	0.3533		0.3521	2		110	0
960	0.1294		0.1282	1		110	0
961	0.1241		0.1229	2		125	0
962*	0.1696		0.1684	2		110	0
963	0.2060	3	0.2048	36	1350	213	Ň
965	0.1568	5	0.1556	2	1330	125	0
968	0.1954		0.1942	1		110	0
970*	0.0587		0.0575	4		121	0
971	0.0929		0.0917	17	859	200	0
975	0.0125		0.0317	2	037	110	0
978	0.0544		0.0532	56	498	180	0
979*	0.0535		0.0523	18	424	224	N
980	0.1582		0.1570	1		125	0
981	0.2018		0.2006	1		110	0
982	0.1473		0.1461	1		125	0
983	0.2058		0.2046	2		110	0
985	0.1347		0.1335	1		125	0
990	0.1440	3	0.1428	1		125	0
991	0.0884		0.0872	2		18	0
992	0.2470	3	0.2458	>0		203	0
993*	0.0488		0.0476	6		224	N
994	0.1227		0.1215	1		144	N
998	0.2031		0.2019	5	1499	110	0
999*	0.0323		0.0311	43	261	76	Ň
1000	0.0323		0.1534	1	201	125	0
1000	0.1344		0.1334	1		125	0
1002	0.1544	3	0.1552	1		19	0
1004	0.0320	3	0.0308	1		125	0
1004				2		110	0
1005	0.2003 0.2043		0.1991 0.2031	3			0
1006				2		110 125	0
100/	0.2151		0.2139	2		125	U

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1014	0.1165		0.1153	1		110	0
1016*	0.0322		0.0310	38	251	76	N
1017*	0.2034		0.2022	1		110	0
1018	0.2970	3	0.2958	1		26	0
1020	0.0649		0.0637	3		128	0
1021	0.1113		0.1101	12	2387	200	0
1023*	0.1169		0.1157	6		183	0
1024	0.0734		0.0722	3		144, 146	0
1025	0.1512		0.1500	2		110	0
1029	0.1264		0.1252	2		110	0
1030*	0.1780		0.1768	1		146	0
1032*	0.0794		0.0782	>0		119	0
1033	0.1259		0.1247	1		135	0
1035	0.0684		0.0672	17	737	224	Ň
1037*	0.3080		0.3068	3	131	110	0
1038	0.1241			1		144	0
			0.1229				
1045	0.1407		0.1395	2		125	0
1046	0.1900		0.1888	2		110	0
1047	0.1518		0.1506	1		144	N
1049	0.2580		0.2568	2		110	0
1050	0.1200		0.1106			105	0
1050	0.1208		0.1196	1		125	0
1053	0.0980		0.0968	2		125	0
1054	0.2103		0.2091	1		125	0
1060*	0.0126		0.0114	157	647	224	N
1061	0.1891		0.1879	5	1561	110	0
1064	0.1302		0.1290	1		146	0
1066	0.0699		0.0687	3		75	0
1067	0.0845		0.0833	5	1367	200	0
1068	0.1375		0.1363	2		125	0
1069*	0.0650		0.0638	35	1120	180	0
1073	0.1390		0.1378	3		39	0
1074	0.1761		0.1749	2		125	0
1076	0.1167		0.1155	2		110	0
1077	0.2386		0.2374	1		125	0
1079*	0.1320	3	0.1308	>0		215	0
1081	0.1585		0.1573	2		72	0
1083*	0.2243		0.2231	2		110	0
1084	0.1335		0.1323	6		183	0
1093	0.2260	3	0.2248	1		24	0
1094	0.2004	5	0.1992	1		39	ő
1074	0.2004		0.1772	•		37	O
1095	0.2108		0.2096	1		125	0
1097*	0.1175		0.1163	1		121	N
1100*	0.0463		0.0451	>3		148	0
1101	0.2322		0.2310	2		87	Õ
1105	0.0897		0.0885	6	1020	200	0
1110	0.1940	3	0.1928	1	1020	125	0
1110	0.1940	5	0.1928	9	1168	183	0
1111	0.1643		0.1033	1	1100	144	0
1119	0.0874			2			0
1123			0.1215	2		110	0
1124	0.2236		0.2224	2		110	U
1126	0.0846		0.0834	3		144, 47	n
1132	0.1363		0.1351	2		24	0
1134	0.1770	3	0.1758	2		215	0
1134		3		1			0
1130	0.2091		0.2079		251	125	
1139*	0.0398		0.0386	27	351	224	0 N
	0.0349		0.0337	44	889	224	N
1143	0.1243		0.1231	1		125	0
1144*	0.1510		0.1498	1		110	0
1145*	0.0677		0.0665	4	0.10	77, 146	0
1146*	0.1416		0.1404	58	949	172, 93	0

TABLE 1—Continued

	_		_		$\sigma_{\rm corr}$		
ACO	\overline{z}_h	a	\overline{z}_{c}	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1149*	0.0710		0.0698	1		26	0
1150*	0.1208		0.1196	2		110	0
1153	0.1330	3	0.1318	4		215	0
1156	0.2091		0.2079	1		125	0
1166	0.1644		0.1632	1		110	0
1168	0.0906		0.0894	14	976	200	0
1169	0.0586		0.0574	16	737	200	0
1170	0.1620		0.1608	1		26	0
1171*	0.0746		0.0734	3		77	0
1173	0.0759		0.0747	15	629	200	0
1175	0.2407		0.2475	1		105	0
1175	0.2487		0.2475	1		125	0
1177* 1178	0.0316 0.2596		0.0304 0.2584	4 1		125 39	0
11/8	0.2390		0.2384	2		110	0
1185	0.0304		0.0892	102	753	224	0
1187	0.0323		0.0313	162	976	200	0
1190	0.0749		0.0737	20	1257	200	0
1190	0.0731		0.0739	1	1237	110	0
1201	0.1983		0.1971	1		39	0
1201	0.1088		0.1676	15	296	200	0
1203	0.0731		0.0739	13	290	200	U
1204	0.1706		0.1694	1		135	0
1205	0.0754		0.0742	3		144	0
1206	0.1440		0.1428	1		144	0
1207	0.1351		0.1339	1		110	0
1208	0.2293		0.2281	1		125	0
1213	0.0469		0.0457	60	523	224	0
1215	0.0494		0.0482	3	020	200	0
1216	0.0524		0.0512	1		0	0
1218*	0.0779		0.0767	2		90	n
1219	0.1736		0.1724	1		125	0
1221	0.2124		0.2112	1		110	0
1222	0.1125		0.1113	9	543	200	N
1224	0.2897		0.2885	1		26	0
1225*	0.1038		0.1026	2		90	n
1227	0.1120		0.1108	2		26, 39	0
1228	0.0352		0.0340	40	1040	224	N
1229	0.2266		0.2254	1		125	0
1232	0.1676		0.1664	1		18	N
1234	0.1663		0.1651	2		39	0
1235	0.1042		0.1030	4		26, 39	0
1238	0.0722		0.0721	11	570	200	0
1238	0.0733		0.0721	11	572	200	0
1239*	0.1674		0.1662	2 1		110 135	0
1246	0.1902 0.1563		0.1890 0.1551	1		135 110	0
1254	0.1505		0.1531	1		110	0
1255				2			0
1257*	0.1656 0.0344		0.1644 0.0332	13	502	110 224	0
1264	0.0344		0.0332	13	302	26	0
1267*	0.1207		0.1233	14	190	224	
1268	0.0329		0.0317	2	190	125	n 0
1200	0.1377		0.1303	2		123	U
1270*	0.0692		0.0680	4		90	n
1271	0.1704		0.1692	2		144	0
1272	0.1371		0.1359	2		125	0
1275*	0.0603		0.0591	2		10	Ö
1277	0.2431		0.2419	2		144	Ö
1278	0.1290	3	0.1278	1		24	0
1279*	0.0553		0.0541	2		110	0
1283	0.1408		0.1396	3		110	0
1285	0.1061		0.1049	8	1096	183	0
1287*	0.1437		0.1425	2	-	110	0

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1289*	0.1118		0.1106	3		110	0
1290	0.2212		0.2200	1		125	0
1291	0.0527		0.0515	10	948	224	n
1292	0.2319		0.2307	1		39	0
1297*	0.1254		0.1242	2		110	0
1299	0.2247		0.2235	1		39	0
1300*	0.3072		0.3060	52	1210	197	0
1301*	0.1224		0.1212	2		110	0
1302	0.1165		0.1153	3		110	0
1304	0.2131		0.2119	2		39	0
1307	0.0832		0.0820	4		144, 146	0
1308*	0.0511		0.0499	>3		148, 24, 146	0
1310	0.2619		0.2607	1		125	0
1314*	0.0335		0.0323	18	683	224	0
1315*	0.1414		0.1402	2		110	0
1317	0.0705		0.0693	>3		121, 144	0
1318	0.0578		0.0566	19	583	224	Ň
1319	0.2880		0.2868	2	303	72	0
1322*	0.2330		0.2303	4		110	0
						125	0
1324	0.0520		0.0508	>0		123	U
1326	0.2989		0.2977	1		87	0
1329	0.1458		0.1446	1	4440	110	0
1331	0.2097		0.2085	7	1148	110	0
1332*	0.1000		0.0988	1		121	0
1334*	0.0550		0.0538	3		121	0
1335	0.1505		0.1493	1		110	0
1336*	0.1318		0.1306	2		121	0
1337	0.0826		0.0814	2		30	n
1339*	0.1562		0.1550	1		110	0
1341	0.1049		0.1037	1		125	0
1342	0.1061		0.1049	1		30	n
1343*	0.1318		0.1306	2		31	0
1344	0.0764		0.0752	2		84	0
1345	0.1095		0.1083	3		30	n
1346	0.0975		0.0963	13	600	200, 26	0
1348	0.1188		0.1176	6		183	0
1349	0.1359		0.1347	>0		90	n
1351	0.3224		0.3212	3		110	0
1354	0.1178		0.1166	2		30	n
1356	0.0698		0.0686	2		30	n
1330	0.0076		0.0000	2		30	11
1357*	0.1711		0.1699	3		110	0
1358	0.0809		0.1099	2		144	0
1359*	0.0809		0.0797	2		110	0
1360			0.1778	3		30	
1361	0.1535 0.1171		0.1323	>1		133, 135	n 0
1362*	0.0961		0.0949	3		77	0
1364	0.1058		0.1046	2	201	119	0 N
1365	0.0753		0.0741	10	301	200	N
1366	0.1170		0.1158	10	778	200	0
1367	0.0220		0.0208	121	879	216	N
1260	0.1201		0.1070	4		105	^
1368	0.1291		0.1279	1		125	0
1371	0.0687		0.0675	3		125	0
1372	0.1126		0.1114	3		30	n
1373	0.1314		0.1302	2		26	0
1376	0.1176		0.1164	10	408	200	N
1377	0.0514		0.0502	13	488	29	n
1380	0.1063		0.1051	11	929	200	0
1381	0.1171		0.1159	1		110	0
1382	0.1053		0.1041	2		0	0
1383	0.0597		0.0585	5	395	29	0

TABLE 1—Continued

=							
					$\sigma_{ m corr}$		
ACO	\overline{z}_h	а	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1385	0.0831		0.0819	2		30	n
1386	0.1018		0.1006	1		144	0
1387	0.1320	3	0.1308	2		125	ő
1390*	0.0826	5	0.0814	4		125	ő
1391	0.1527		0.1515	3		183	0
1392*	0.1387		0.1375	2		18	0
1394	0.2323		0.2311	1		125	0
1396*	0.1441		0.1429	1		Fet	0
1399	0.0913		0.0901	1		0	0
1400*	0.0778		0.0766	2		Fet	0
1401	0.1648		0.1636	5		26, 39	0
1402*	0.1062		0.1050	2		110	0
1406	0.1178		0.1166	1		110	0
1407	0.1358		0.1346	1		144	0
1408	0.1102		0.1090	2		84	0
1412	0.0839		0.0827	1		0	0
1413	0.1427		0.1415	2		24	0
1415	0.1591		0.1579	3		110	0
1420	0.1378		0.1366	1		125	0
1421	0.1187		0.1175	2		110	0
4.400	0.0564		0.0540	•		404	
1423	0.0761		0.0749	3		121	N
1424	0.0768		0.0756	2		84	0
1425	0.1395		0.1383	1		125	0
1430	0.2105		0.2093	2		39	0
1432*	0.1135		0.1123	1		110	0
1433	0.0851		0.0839	1		125	0
1436	0.0658		0.0646	4		90	n
1437	0.1339		0.1327	2		39	0
1445	0.1694		0.1682	2		72	0
1446	0.1035		0.1023	2		110	0
1448	0.1243		0.1231	3		125	0
1449	0.1569		0.1251	>0		125	N
1452*	0.0631		0.0619	15	514	24	N
1455	0.1650	3	0.1638	>0	311	125	0
1459	0.0839	5	0.0827	1		146	ő
1462	0.1440		0.1428	1		146	0
1467*	0.1040		0.1028	2		110	0
1468	0.0844		0.0832	2		Fet	0
1469	0.1303		0.1291	1		125	ő
1470	0.1918		0.1906	3		110	Ö
1473	0.2260	3	0.2248	1		125	0
1474	0.0801		0.0789	8	760	200	0
1477	0.1109		0.1097	1		110	0
1480	0.0734		0.0722	1		125	0
1484	0.1226		0.1214	3		110	0
1487	0.2111		0.2099	1		72	0
1495	0.1429		0.1417	2		39	0
1496	0.0941		0.0929	2		Fet	0
1497	0.1669		0.1657	3		39	0
1499	0.1569		0.1557	2		84	n
1.500*	0.0530		0.0500	_		110	
1500*	0.0720		0.0708	2		110	n
1501	0.1310		0.1298	2		110	0
1504	0.1836		0.1824	2		39	N
1505	0.1796		0.1784	1	222	144	0
1507*	0.0604		0.0592	6	233	9, 110	0
1508	0.0966		0.0954	1		144	0
1513*	0.1530		0.1518	1		110	0
1514	0.1995		0.1983	1	1057	26	0
1516	0.0769		0.0757	13	1057	200	0
1518*	0.1085		0.1073	1		110	0

TABLE 1—Continued

ACO (1)	\overline{z}_h (2)	<i>a</i> (3)	\overline{z}_C (4)	N _z (5)	$ \frac{\sigma_{corr}}{(\text{km s}^{-1})} $ (6)	References (7)	Notes (8)
1521	0.0937	(5)	0.0925	2	(0)	84	0
1524			0.0323	2		39	0
1525	0.1369	2					
	0.2590	3	0.2578	1		6	N
1526	0.0799		0.0787	4		77, 84	0
1528	0.1544		0.1532	2		110	0
1529*	0.2311		0.2299	2		110, 146	0
1530	0.2281		0.2269	1		72	0
1533	0.2341		0.2329	2		72	0
1534*	0.0702		0.0690	3		110	0
1536	0.1244		0.1232	2		110	0
1539	0.1712		0.1700	1		110	0
1541	0.0893		0.0881	15	628	119, 200	N
1544	0.1459		0.1447	1		110	n
1546	0.2335		0.2323	1		110	0
1548	0.1611		0.1599	2		26, 39	0
1550	0.2540	3	0.2528	1		4	0
1552	0.0858	3	0.0846	16	765	200	0
1553			0.1640	2	703	24	0
1556*	0.1652		0.1640	1		24 125	0
	0.1697						
1557	0.2105		0.2093	2		110	0
1559	0.1071		0.1059	2		110	0
1561*	0.1110		0.1098	2		110	0
1562	0.1110		0.1908	1		146	0
1564*			0.1908	2		106	0
	0.0792						
1566	0.1005		0.0993	2		110	0
1569*	0.0735	_	0.0723	2		146	0
1571	0.2090	3	0.2078	1		24	0
1576	0.2790	3	0.2778	>1		203	0
1577	0.1409		0.1397	1		125	N
1579*	0.2005		0.1993	1		110	0
1583	0.1383		0.1371	1		144	0
1584	0.1193		0.1181	2		144	0
1589*	0.0725		0.0713	3		24, 149	0
1590	0.2255		0.2243	1		110	0
1595	0.1382		0.1370	1		144	0
1597	0.1102		0.1090	1		110	0
1601	0.1635		0.1623	>0		125, 144	Ň
1607	0.1355		0.1023	1		110	0
			0.1343	1			0
1608*	0.1319					146	
1609	0.0891		0.0879	1		0	0
1613	0.1608		0.1596	2		125	0
1614	0.2326		0.2314	1		110	0
1616*	0.0833		0.0821	1		42	0
1617	0.1502		0.1490	2		125	0
1620*	0.0821		0.0809	1		146	0
1621	0.1034		0.1022	4		110	0
1622	0.2855		0.2843	2		39	0
1630	0.0648		0.0636	15	437	200	0
1631*	0.0462		0.0450	71	702	78, 193	ő
1632	0.1962		0.1950	1	702	19	0
1636	0.2355		0.2343	2		110	0
1638*	0.0620		0.0608	3		77	0
1640	0.1255		0.1243	1		110	0
1643	0.1981		0.1969	1	0.45	24	0 N
1644	0.0473		0.0461	92	945	78	N
1646*	0.1068		0.1056	1		110	0
	0.0760		0.0748	2		183	0
1648*							
1650	0.0845		0.0833	2		39	0
	0.0845 0.0844		0.0833 0.0832	2 30	1006	39 102, 193	0 N

TABLE 1—Continued

ACO	_		=	NT.	$\sigma_{\rm corr}$	D -f	Madaa
ACO	\overline{Z}_h	<i>a</i> (2)	\overline{z}_C	N_z	(km s^{-1})	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1656	0.0231		0.0219	499	1008	224	0
1661	0.1690		0.1678	4		87	0
1662	0.0924		0.0912	1		144	0
1663	0.0843		0.0831	1		144	0
1664*	0.1276		0.1264	1	4040	135	0
1666	0.0567		0.0555	4	1040	200	N
1667	0.1648		0.1636	2	(51	0	0
1668 1672	0.0634 0.1882		0.0622 0.1870	15 1	654	144, 200 135	0
1674	0.1066		0.1054	2		110	0
10/4	0.1000		0.1054	2		110	U
1675	0.1840	3	0.1828	1		24	0
1677	0.1832		0.1820	1		24	0
1678	0.1700		0.1688	2		110	0
1679	0.1699		0.1687	2		39	0
1681	0.0912		0.0900	2		110	0
1682	0.2339		0.2327	2		125	0
1683	0.1341		0.1329	1		110	0
1684	0.0862	_	0.0850	2		146	0
1685*	0.1970	3	0.1958	1		24	0
1687*	0.1955		0.1943	2		110	0
1689	0.1832		0.1820	66	1989	93	0
1691	0.0722		0.0710	71	810	217, 200	0
1695	0.1975		0.1963	1	010	110	ő
1697	0.1829		0.1817	2		39	0
1700	0.1340	3	0.1328	>0		151	0
1701*	0.1239		0.1227	1		110	0
1703	0.2580	3	0.2568	>1		135, 203	0
1704	0.2205		0.2193	1		110	0
1705	0.2966		0.2954	1		110	0
1707	0.1965		0.1953	1		110	0
1708	0.2364		0.2252	1		125	0
1709*	0.2304		0.2352 0.0509	2		125 121	0
1713	0.0321		0.1399	1		110	0
1718	0.3340		0.3328	1		110	0
1722	0.3275		0.3263	2		110	0
1729	0.1144		0.1132	1		125	0
1731	0.1932		0.1920	3		75, 110	0
1732	0.1921		0.1909	10	1333	183	0
1736*	0.0458		0.0446	109	918	224	N
1738	0.1154		0.1142	9	417	200	0
17/11	0.0745		0.0722	2		110	0
1741 1744	0.0745 0.1520		0.0733 0.1508	2 1		110 110	0
1749	0.1320		0.1508	52	1050	217	0
1750*	0.0852		0.0337	46	778	102	N
1756*	0.2415		0.2403	1		110	0
1757*	0.1259		0.1247	4		183	0
1758	0.2790	3	0.2778	3		85	0
1759	0.1680	3	0.1668	1		24	0
1760	0.1711		0.1699	3		24, 39	0
1761	0.2277		0.2265	1		146	0
1763	0.2294		0 2272	2		30 75	0
1763	0.2284 0.1172		0.2272 0.1160	2 2		39, 75 110	0
1767	0.1172		0.1100	58	849	217	0
1771*	0.1069		0.1057	2	042	84	0
1773	0.0765		0.0753	14	849	200	0
1774	0.1691		0.1679	2		39	0
1775	0.0717		0.0705	28	1594	102, 154	N
1776*	0.1335		0.1323	1		110	0
1777	0.2156		0.2144	2		110	0
1780	0.0786		0.0774	2		84	0

TABLE 1—Continued

	_		_		$\sigma_{ m corr}$		
ACO	\overline{z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1781*	0.0618		0.0606	25	674	224	0
1783*	0.0690		0.0678	3	074	121	0
1785	0.0036		0.2124	2		39	0
1790	0.1215		0.1203	1		146	0
1791*	0.1213	3	0.1203	1		221	N
1793	0.1230	3	0.1238	9	473	200	0
1795				-	920	139	
	0.0631		0.0619	100			0
1800*	0.0755		0.0743	14	748	108	n
1803	0.1997		0.1985	1	7.65	110	0
1809	0.0789		0.0777	59	765	180, 193	0
1011	0.1160		0.1156	4		110	0
1811	0.1168	2	0.1156	4		110	0
1812*	0.0630	3	0.0618	>0		125	0
1813*	0.0947		0.0935	2		121	0
1814	0.1251		0.1239	1		125	0
1825*	0.0595		0.0583	2		128	N
1827	0.0654		0.0642	8	268	200	0
1828	0.0623		0.0611	5	281	84, 146, 200	0
1831	0.0615		0.0603	17	801	224	N
1833	0.1569		0.1557	1		125	0
1835*	0.2532		0.2520	1		135	0
1836*	0.0363		0.0351	>3		148, 10, 146	0
1837	0.0698		0.0686	38	624	217	N
1838	0.2479		0.2467	1		87	0
1840*	0.1104		0.1092	1		0	0
1842	0.1847		0.1835	1		125	0
1848	0.2001		0.1989	1		110	0
1849*	0.0963		0.0951	1		125	0
1851	0.2149		0.2137	3		110	0
1852	0.1805		0.1793	2		84	N
1853*	0.1374		0.1362	1		144	N
1856	0.1854		0.1842	1		125	N
1859*	0.2359		0.2347	5	637	110	0
1864	0.0870		0.0858	2		144	0
1865*	0.2178		0.2166	3		110	0
1872*	0.1437		0.1425	3		110	0
1873*	0.0776		0.0764	1		10	n
1877	0.2499		0.2487	2		110	0
1878	0.2540	3	0.2528	1		24	0
1879	0.2061	3	0.2049	2		110	0
1880	0.1413		0.1401	2		26	0
1000	0.1713		0.1401	2		20	U
1882	0.1367		0.1355	2		125	0
1884*	0.1307		0.1333	3		110	0
1885	0.1223		0.1211	>0		125	0
1889	0.0890		0.0878	>0 3		39	0
1890*	0.1860		0.1646	4	311	224	0
1890					311		
	0.0904		0.0892	2		125	0
1893	0.2072		0.2060	2		110	0
1895	0.2257		0.2245	1		110	0
1898	0.0774		0.0762	3		125	0
1899*	0.0536		0.0524	2		10	0
1000	0.1710		0.1707	4		125	^
1900	0.1718		0.1706	1		125	0
1901*	0.0850	_	0.0838	>0		133	0
1902	0.1600	3	0.1588	1		141	0
1904	0.0708		0.0696	24	803	57	0
1905	0.3392		0.3380	1		125	N
1909	0.1456		0.1444	2		84	0
1911	0.1913		0.1901	1		39	0
1913	0.0528		0.0516	16	656	71	0
1914	0.1712		0.1700	2		39	0
1918	0.1400		0.1388	>2		110	0

TABLE 1—Continued

4.00	_		_	3.7	$\sigma_{\rm corr}$	D - C	NT. 4.
ACO	\overline{Z}_h	<i>a</i> (2)	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1920	0.1310		0.1298	1		31	0
1921	0.1352		0.1340	2		26	0
1924*	0.1114		0.1102	2		144	0
1925	0.1051		0.1039	1		125	0
1926	0.1338		0.1326	11	621	200	N
1927	0.0947		0.0935	68	583	217, 200	N
1929	0.2191		0.2179	1		39	0
1930	0.1313		0.1301	2		24	0
1933 1934	0.2125 0.2194		0.2113 0.2182	3 4		110 91	0 0
1934	0.2194		0.2162	4		91	U
1936	0.1386		0.1374	1		31	0
1937	0.1385		0.1373	2		110	0
1939	0.0881		0.0869	5	508	18	0
1940	0.1396		0.1384	12	785	24	0
1941	0.0880		0.0868	2		146	0
1942	0.2240	3	0.2228	2		Fet	0
1944	0.1623		0.1611	1		125	0
1950	0.1956		0.1944	1		144	N
1952	0.2480	3	0.2468	2		24	0
1954	0.1810	3	0.1798	0		21	0
1957	0.2410	3	0.2398	1		24	0
1958	0.2270	3	0.2258	2		87	0
1960	0.1891		0.1879	2		1, 146	Ň
1961	0.2320	3	0.2308	2		24	0
1962*	0.1060		0.1048	1		31	0
1963	0.2210		0.2198	2		72	0
1964*	0.0710		0.0698	2		144	0
1966	0.1506		0.1494	2		110	0
1969	0.2987		0.2975	1		110	0
1970	0.1924		0.1912	1		125	0
1971*	0.2086		0.2074	1		146	0
1972*	0.1192		0.1180	1		1	0
1974	0.1776		0.1764	5	999	110	Ő
1975	0.2235		0.2223	1		110	N
1976	0.1171		0.1159	3		1	0
1978	0.1455		0.1443	2		200	0
1979	0.1687		0.1675	2		39	0
1980	0.1154		0.1142	3		1	0
1983	0.0436		0.0424	101	909	224	N
1984	0.1244		0.1232	2		91	0
1986	0.1185		0.1173	3		1	0
1988*	0.1163		0.1173	3		1	0
1990	0.1162		0.1150	2		Fet	0
1991	0.0587		0.0575	42	721	123.78	Ň
1995*	0.3186		0.3174	2		110	0
1997*	0.2501		0.2489	2		1	0
1999	0.0993		0.0981	14	567	200	N
2000	0.1012		0.1000	1		31	0
2001	0.1749		0.1737	3		95	0
2002	0.2117		0.2105	1		110	0
2003	0.2174		0.2162	1		1	0
2003	0.2174		0.2162	1		95	0
2005	0.1303		0.1333	2		200	n
2006	0.1166		0.0762	2		1	0
2008	0.1809		0.1797	2		1	Õ
2009	0.1532		0.1520	5	804	1	0
2011	0.1697		0.1685	1		31	0
2012	0.1512		0.1500	3		1	0
2013	0.2401		0.2389	2		110	0
2017	0.1187		0.1175	>0		133	0

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	а	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1)	(2)	(3)	(4)	(3)	(0)	(1)	(0)
2018	0.0878		0.0866	2		84	0
2019*	0.0807		0.0795	4		119, 125	0
2020*	0.0578		0.0566	1		10, 123	0
2021	0.0993		0.0981	1		95	0
2022	0.0578		0.0566	8		121	0
2023	0.0547		0.0535	2		144	0
2026	0.0876		0.0864	4		144	0
2028	0.0777		0.0765	20	434	102	0
2029	0.0773		0.0761	85	1436	154, 103, 104	0
2030	0.0919		0.0907	1		144	0
2033*	0.0818		0.0806	6		125	0
2034	0.1130	3	0.1118	2		141	0
		3					
2036*	0.1163	_	0.1151	1		26	0
2040	0.0460	3	0.0448	37	673	149, 180	N
2042	0.2353		0.2341	1		125	0
2048	0.0972		0.0960	25	668	149, 180	N
2049*	0.1170		0.1158	1		95	0
2050	0.1183		0.1171	1		60	0
2052*	0.0350		0.0338	69	751	224	ő
					731	60	0
2053	0.1127		0.1115	1		00	U
2055*	0.0530		0.0510			0	3.7
2055*	0.0530		0.0518	1		0	N
2056	0.0846		0.0834	1		95	0
2059	0.1305		0.1293	1		95	N
2061	0.0784		0.0772	105	1020	199	N
2062	0.1122		0.1110	3		95	0
2063	0.0353		0.0341	94	659	172, 139	Ň
2064*	0.1076		0.1064		037	34	0
				2	1202		
2065	0.0726		0.0714	31	1203	199	N
2067	0.0748		0.0736	55	953	199	N
2069	0.1160	3	0.1148	9	831	99	0
2072*	0.1270		0.1258	>0		226	0
2073	0.1717		0.1705	1		95	0
2079	0.0661		0.0649	62	680	217	N
2083	0.1142		0.1130	1		95	0
2084	0.3420	3	0.3408	1		24	0
2089		3		30	E 1 E	199	N
	0.0732		0.0720		545		
2091	0.1335		0.1323	1		146	0
2092	0.0669		0.0657	44	581	199	N
2093	0.1524		0.1512	1		125	0
2094	0.1444		0.1432	9	461	200	0
2096	0.1533		0.1521	1		125	0
2100	0.1533		0.1521	3		24	0
2104*	0.1554		0.1542	1		135	0
2107	0.0411		0.0399	68	672	132	0
2107	0.0411		0.0399	2	072	0	0
2110	0.0980	•	0.0968	3		95	0
2111	0.2290	3	0.2278	14	_	66	0
2122	0.0661		0.0649	7	614	84, 200	0
2124	0.0661		0.0649	63	847	139	0
2125	0.2465		0.2453	1		26	0
2126*	0.1650		0.1638	1		125	0
2128*	0.1010		0.0998	>1		121, 144	N
2141	0.1584		0.1572	1		146	0
					1200		
2142	0.0909		0.0897	103	1280	154	n
2145*	0.0880		0.0868	1		125	0
2146	0.2343		0.2331	1		135	0
2147	0.0350		0.0338	93	821	201	N
2148*	0.0430		0.0418	9	1521	224	N
2149*	0.0679		0.0667	3		77, 146	N
2151	0.0366		0.0354	179	691	224	0
						- -	Ŭ

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2152	0.0410		0.0200	(2	1220	224	NI
2155	0.0410 0.2465		0.0398	62	1338	224	N
	0.2463		0.2453	1 3		125	0
2158* 2159*			0.1337	1		1 121	0
2162*	0.0983		0.0971		265	224	0 N
2163*	0.0322	2	0.0310	35	365	129	
2165*	0.2030	3	0.2018	>0			0
2168	0.1286		0.1274	3		24	0
	0.0626		0.0614	1		121	0
2169*	0.0586		0.0574	6		121	0
2170*	0.1030		0.1018	3		121	0
2172	0.1393		0.1381	3		1	0
2175	0.0951		0.0939	22	1078	200	Ň
2176	0.1304		0.1292	>0	1070	125	0
2177*	0.1610	3	0.1598	>0		206	Ň
2178	0.1010	3	0.1336	2		60	0
2179	0.0320		0.0310	3		1	0
2183	0.1365		0.1353	3		1	0
2184*	0.1563		0.0550	2		119	0
2187*	0.0302		0.0330	3		1	0
2192	0.1875		0.1863	3		1	0
21)2	0.1073		0.1003	3		1	U
2196*	0.1339		0.1327	3		1	0
2197	0.0308		0.0296	46	593	67	N
2198	0.0798		0.0786	2		1	0
2199	0.0299		0.0287	92	733	217	n
2201	0.1300	3	0.1288	1		141	0
2204*	0.1523		0.1511	2		Fet	0
2205*	0.0876		0.0864	3		121	0
2208	0.1337		0.1325	1		135	0
2210*	0.1465		0.1453	3		60	0
2211	0.1362		0.1350	3		1	0
2212	0.1891		0.1879	1		84	0
2213	0.1604		0.1592	1		1	0
2214*	0.1616		0.1604	1		146	0
2218	0.1756		0.1744	50	1370	138	0
2219	0.2256		0.2244	2		135	0
2220*	0.1106		0.1094	1		24	0
2223*	0.1033		0.1021	1		121	0
2224*	0.1504		0.1492	1		24	0
2225	0.2436		0.2424	1		146	0
2228	0.1019		0.1007	1		135	0
2220	0.1254		0.1242	2		0.4	0
2230	0.1354		0.1342	2		84	0
2235	0.1511	2	0.1499	3		60	0
2240	0.1380	3	0.1368	1		24	0
2241*	0.0635		0.0623	2	1240	24	0
2244 2245	0.0968		0.0956	27	1240	94	0
2245	0.0850	2	0.0838	4		84	0
	0.2250	3	0.2238	1	204	26 224	0
2247* 2248*	0.0385		0.0373	16 12	304 486	224	0
2248*	0.0646		0.0634	12	486 548	224	0
22 49*	0.0816		0.0804	3	548	224	0
2250	0.0654		0.0642	18	693	61	0
2252	0.1147		0.1135	1		60	0
2253*	0.0891		0.0879	1		121	0
2254*	0.1780	3	0.1768	1		141	0
2255	0.0806	-	0.0794	42	1266	224	0
2256	0.0581		0.0569	116	1376	224	Ň
2257*	0.1054		0.1042	1		60	0
2259*	0.1640	3	0.1628	1		141	0
2261*	0.2240	3	0.2228	1		141	0
2263*	0.1051	-	0.1039	1		26	Õ

TABLE 1—Continued

					σ		
ACO	\overline{Z}_h	а	\overline{z}_C	N_z	$\sigma_{\rm corr} \ ({\rm km~s^{-1}})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		- (/					
2266*	0.1671		0.1659	1		24	0
2270* 2271*	0.2377		0.2365	1	460	60	0
2272*	0.0576		0.0564	10 2	460	111 84	n 0
2275*	0.1329 0.1029		0.1317 0.1017	2		121	0
2280	0.1029	3	0.1017	7	948	153	0
2283	0.1830	3	0.1818	1	740	26	0
2289*	0.2276		0.2264	1		146	ő
2292*	0.1190	3	0.1178	1		141	Õ
2293*	0.0689		0.0677	1		121, 125, 149	0
2294	0.1780	3	0.1768	1		141	0
2295*	0.0823	5	0.0811	3		125	ő
2296*	0.0611		0.0599	>0		119, 125	0
2301*	0.0874		0.0862	3		0	0
2304*	0.0890		0.0878	2		75, 149	0
2306*	0.1276		0.1264	>0		133, 149	0
2308*	0.0824		0.0812	3		125	0
2309*	0.0525		0.0513	3		121	0
2311*	0.0890		0.0878	6	773	200	0
2312*	0.0937		0.0925	2		121	0
2315*	0.0894		0.0882	10	907	200	0
2316	0.2147		0.2135	1	, , ,	146	0
2317*	0.2110	3	0.2098	1		24	Õ
2318	0.1405		0.1393	1		135	0
2319*	0.0557		0.0545	130	1770	154	N
2320*	0.1710	3	0.1698	1		24	0
2328*	0.1470		0.1458	1		0	n
2330	0.1138		0.1126	1		60	0
2331*	0.0793		0.0781	16	876	200	0
2333	0.1123		0.1111	1		144	0
2334	0.1855		0.1843	1		144	0
2339	0.1128		0.1116	2		60	0
2344	0.1447		0.1435	2		60	0
2345	0.1765		0.1753	1		146	0
2346*	0.0914		0.0902	2		121	0
2347	0.1196		0.1184	1		0, Fet	0
2353	0.1210		0.1198	24	599	149, 180	0
2354	0.0880	3	0.0868	5		149	N
2355	0.1244		0.1232	2		38	0
2356	0.1161		0.1149	3		60	0
2357	0.1235		0.1223	1		144	0
2361	0.0608		0.0596	17	329	149, 180	N
2362	0.0608		0.0596	24	340	149, 180	N
2364	0.1473		0.1461	1		144	0
2365	0.1873		0.1861	1	400	146	0
2366*	0.0529		0.0517	11	490	200	0
2372*	0.0583		0.0571	> 2		121, 184	0
2376 2377	0.0896 0.0808		0.0884 0.0796	1 1		144 26	0
2378*	0.0829		0.0790	2		121, 125	0
						,	
2381	0.0726		0.0714	1		144	0
2382	0.0618		0.0606	3		146	0
2383	0.0578		0.0566	5		149	0
2384	0.0943		0.0931	1		0, Fet	0
2388* 2390*	0.0615 0.2280		0.0603	1 225	1686	26 170 118	0 N
2394	0.2280		0.2268 0.0803	223 1	1000	179, 118 144	0
2395*	0.0813		0.0803	1		146	0
2396*	0.1946		0.1430	>0		133, 146	0
2397	0.2240	3	0.2228	1		24	0
		-		-			

TABLE 1—Continued

	_		_		$\sigma_{ m corr}$		
ACO	\overline{z}_h	а	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2399	0.0579		0.0567	8	530	128, 200	0
2400	0.0882		0.0870	16	654	200, 26	0
2401	0.0571		0.0579	23	472	149, 180	0
2402*	0.0809		0.0797	1	2	121, 125	0
2403*	0.1070	3	0.1058	<4		195	Ň
2409*	0.1479		0.1467	1		135	0
2410	0.0809		0.0797	10	598	200	0
2412*	0.0781		0.0769	5		106, 146	N
2415*	0.0581		0.0569	> 2		35, 42, 146	0
2416	0.2133		0.2121	1		144	0
2420	0.0846		0.0834	9	717	200, 26	0
2424*	0.1510	3	0.1498	2		215	0
2426	0.0978		0.0966	15	846	149, 180	N
2428	0.0851		0.0839	>0		135, 144	N
2433*	0.0880		0.0868	>0	520	109, 133	0
2436	0.0914		0.0902	14	530	149, 180	0
2440*	0.0906	2	0.0894	48	957	188	N
2443* 2444	0.1080	3	0.1068 0.3228	1		24 21	0
2444	0.3240 0.0823	3	0.3228	0 >2		42, 149	0
2440	0.0823		0.0611	>2		42, 149	U
2452	0.1342		0.1330	1		144	0
2454	0.1590	3	0.1578	>0		215	0
2456	0.0766	3	0.0754	1		144	0
2457	0.0594		0.0582	18	316	200	ő
2459*	0.0736		0.0724	1		26	N
2462*	0.0733		0.0721	10	548	149, 180	N
2465	0.2450	3	0.2438	>0		2	0
2468	0.1421		0.1409	1		144	0
2469	0.0800		0.0788	13	592	200	0
2471	0.1078		0.1066	>0		35	0
2479*	0.0842		0.0830	2		121	0
2480	0.0719		0.0707	11	862	149, 180	0
2482	0.1816		0.1804	2		142	0
2490 2492*	0.0702		0.0690	2 2		144	0
2495*	0.0711 0.0775		0.0699 0.0763	2		149 121	0
2496	0.0773		0.0703	1		26	0
2500	0.1233		0.1221	13	477	149, 180	N
2503*	0.0839		0.0883	5	4//	121	0
2507	0.1960	3	0.1948	1		152	0
2007	0.1700		0.17 10	-		102	Ü
2509	0.2306		0.2294	1		31	0
2511*	0.0780		0.0768	2		121	0
2512	0.1603		0.1591	1		144	N
2516	0.0793		0.0781	1		144	0
2518	0.1351		0.1339	1		31	0
2521	0.1340		0.1328	2		91	0
2522	0.1562		0.1550	1		144	0
2524	0.0805		0.0793	6		121	0
2525*	0.0788		0.0776	2		121	0
2528*	0.0955		0.0943	1		31	0
2520	0.1105		0.1002	1		144	0
2529	0.1105		0.1093	1		144 31	0
2531	0.1741		0.1729	1		31	0
2533 2534	0.1114		0.1102	1		144	0 N
2534	0.1976		0.1964			12, 31 31	N 0
2538	0.1971 0.0831		0.1959 0.0819	1 42	805	102	N N
2539	0.0831		0.0819	1	803	31	0
2540	0.1733		0.1723	1		31	0
2541	0.1100		0.1283	2		186	N
2542	0.1603		0.1591	1		31	0
				-			v

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	а	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	(-)	(-)	(-)		(*)	(.)	(*)
2543	0.1067		0.1055	2		144	0
2546	0.1119		0.1107	1		31	0
2547	0.1501		0.1489	2		31, 221	0
2548	0.1101		0.1089	1		31	0
2550	0.1543		0.1531	1		60	0
2552	0.1330	3	0.1318	2		141	0
2553	0.1496	5	0.1484	2		144	0
2554	0.1111		0.1099	28	827	102	0
2555					027		
	0.1385		0.1373	1		31	0
2556	0.0865		0.0853	2		31, 60	0
25504	0.0040		0.000			105	
2558*	0.0849		0.0837	1		125	0
2559	0.0796		0.0784	1		26	0
2565*	0.1271		0.1259	1		31	0
2566	0.0821		0.0809	1		31	0
2568*	0.1398		0.1386	1		31	0
2569	0.0809		0.0797	36	481	149, 180	N
2571	0.1084		0.1072	>0		35, 144	0
2572*	0.0403		0.0391	24	676	224	N
2577	0.1251		0.1239	1		144	0
2579	0.1117		0.1105	1		144	0
2317	0.1117		0.1103	1		177	U
2583	0.1160	3	0.1148	<4		195	N
2584*	0.1200	3	0.1188	2	040	147	0
2589*	0.0414		0.0402	47	819	71, 122, 123	N
2590	0.0790		0.0778	1		144	0
2593*	0.0413		0.0401	50	763	224	N
2597*	0.0852		0.0840	3		60	0
2599	0.0889		0.0877	4		145, 186	N
2606	0.2800	2	0.2788	1		221	N
2607*	0.1201		0.1189	1		146	0
2613	0.1170		0.1158	1		144	0
2616	0.1832		0.1820	1		Fet	0
2617	0.1630		0.1618	1		146	0
2618*	0.0705		0.0693	2		Fet	0
2619*	0.0703		0.0055	2		121	0
2620			0.0988	3			0
2622*	0.0990				0.42	125, 142	
	0.0620		0.0608	40	942	191	0
2623	0.1784		0.1772	1		Fet	0
2625*	0.0609		0.0597	3		Fet	0
2626*	0.0553		0.0541	70	696	224	N
2627	0.1255		0.1243	3		41, 146	0
2630*	0.0667		0.0655	3	410	224	0
2631	0.2730	3	0.2718	>1		127, 141, 142	0
2632	0.1860	3	0.1848	2		Fet	0
2634*	0.0310		0.0298	241	1119	224	N
2636	0.1637		0.1625	1		142	0
2637	0.0702		0.0690	15	713	224	N
2638	0.0825		0.0813	2		Fet	0
2640	0.1023		0.1011	6	371	200	0
2644	0.0693		0.0681	12	179	149, 180, 193	N
2645	0.2510	2	0.2498	5			
40 1 J	0.2310	3	0.2470	3	1230	85	0
2646	0.1020	3	0.1019	1		Fat	Λ
	0.1930	3	0.1918	1		Fet	0
2652	0.1922		0.1910	2		142	0
2654	0.1256		0.1244	2		142	0
2656*	0.0773		0.0761	2	0.55	121	0
2657	0.0402	_	0.0390	31	829	224	N
2658	0.1850	3	0.1838	1		Fet	0
2660*	0.0525		0.0513	3		121	0
2661	0.1911		0.1899	2		142	0
2664	0.1471		0.1459	2		142	0
2665*	0.0556		0.0544	>3		10, 35, 40	0

TABLE 1—Continued

4.00	_		_	3.7	$\sigma_{\rm corr}$	D - C	Maria
ACO	\overline{Z}_h	<i>a</i> (2)	\overline{z}_{c}	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2666*	0.0272		0.0260	43	518	224	N
2667	0.2300		0.2288	>0		225	0
2670	0.0765		0.0753	219	908	172, 82	N
2671	0.1799		0.1787	5	691	200	0
2672	0.2412		0.2400	1		146	0
2674	0.2030		0.2018	2		142	0
2675	0.0713		0.0701	6	374	200	0
2678*	0.0726	2	0.0714	4		125	0
2681 2683*	0.1580	3	0.1568	<4		195	N
2083**	0.0731		0.0719	1		218	N
2684	0.1672		0.1660	2		142	0
2686	0.1124		0.1112	1		26	0
2694	0.0958		0.0946	1		26	0
2696*	0.0844		0.0832	>0		133	0
2698	0.0979		0.0967	3		142	ő
2700	0.0924		0.0912	9	1483	200	0
2703*	0.1144		0.1132	2		18	N
2705	0.1147		0.1135	1		125	0
2708	0.1469		0.1457	1		144	0
2710	0.1004		0.0992	2		144	0
2715	0.1139		0.1127	14	556	180	N
2716	0.0681		0.0669	3		133	0
2717	0.0490		0.0478	56	512	149, 180	N
2721	0.1147		0.1135	75	803	172, 130, 125, 93	N
2730	0.1195		0.1183	13	871	186	N
2731	0.0312		0.0300	>3	471	148, 224	N
2734	0.0625		0.0613	80	628	149, 180, 193	0
2736	0.0851		0.0839	>3		133, 157	0
2744	0.3080		0.3068	>3		133, 158	0
2749	0.1460		0.1448	5		186	N
2751	0.1070	3	0.1058	<4		194	N
2753	0.1070	3	0.1058	<4		195	N
2755	0.0949	5	0.0937	22	789	149, 180	N
2758	0.0934		0.0922	>3		133, 157	0
2762	0.1121		0.1109	>0		133	0
2764	0.0711		0.0699	19	788	149, 180	0
2765	0.0801		0.0789	16	905	149, 180	0
2767	0.1192		0.1180	4		186	N
2769	0.1416		0.1404	3		207	N
2771	0.0696		0.0684	7	349	207	N
						400	= .
2778	0.1018		0.1006	17	947	180	N
2780	0.0988		0.0976	4		198	N
2782	0.0879	2	0.0867	3		184	0
2784	0.0980	3	0.0968	2		145	0
2789	0.0951		0.0939	2	700	144	0 N
2790	0.1117 0.0620	3	0.1105 0.0608	21 3	700	186 145	N 0
2798	0.1050	3	0.1038	20	711	159, 193	N
2799	0.1030		0.1038	36	424	149, 180	0
2800	0.0636		0.0624	34	430	149, 180	0
2000	0.0030		0.0027	54	750	117, 100	J
2801	0.1080		0.1068	25		159	0
2802	0.1250		0.1238	18		159	Ö
2804	0.1080	3	0.1068	<4		195	N
2806	0.0277		0.0265	20	577	224	0
2811	0.1086		0.1074	13	695	186	N
2814	0.1082		0.1070	2		184	0
2819	0.0747		0.0735	50	406	149, 180	N
2824	0.0582		0.0570	7	913	125, 224	N
2829	0.1000		0.0988	11		159	N
2836	0.0300	3	0.0288	>0		160	0

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2840	0.1067		0.1055	7	244	207	N
2841	0.0646		0.0634	>0		133, 157	0
2844	0.1130		0.1118	3		186	N
2846	0.0772		0.0760	1		218	N
2847	0.1040		0.1028	1		184	0
2850	0.1003:		0.0991	>0		160	0
2852	0.2021		0.2009	5	379	207	N
2853	0.1338		0.1326	1		207	N
2854	0.0613		0.0601	22	369	149, 180	0
2857	0.2120		0.2108	4	207	207	Ň
2037	0.2120		0.2100	-		207	11
2859	0.0653		0.0641	>0		133, 160	0
2860	0.1058		0.1046	12	371	184, 186	N
					3/1		
2864	0.0700		0.0688	2	0.40	184	0
2870	0.0237		0.0225	15	948	224	N
2871	0.1219		0.1207	18	930	180	N
2874	0.1428		0.1416	20	937	186, 207	N
2877	0.0247		0.0235	97	898	224	0
2881	0.0421		0.0409	5	1426	224	0
2882	0.0436		0.0424	3		148	0
2889	0.0666		0.0654	>0		149, 143	0
						,	
2891	0.0773		0.0761	3		145	0
2896	0.0318		0.0306	>3		148	0
2911	0.0808		0.0796	31	576	149, 180	N
2912	0.2380	3	0.2368	<4	370	195	N
2915	0.0864	3	0.0852	4		149	0
2919	0.0914		0.0902	1	220	218	N
2923	0.0715		0.0703	16	339	149, 180	N
2924	0.0830		0.0818	2		184	0
2926	0.1253		0.1241	5		186	N
2933	0.0925		0.0913	9		149	0
2934	0.2111		0.2099	>0		133, 160	0
2938	0.2780	3	0.2768	>0		206	N
2952	0.1228		0.1216	1		184	0
2954	0.0566		0.0554	6		149	0
2961	0.1246		0.1234	1		218	N
2962	0.1006		0.0994	11	1152	186	N
2969	0.1236		0.1224	7	865	186	N
2983	0.1240	3	0.1228	<4		195	N
2984	0.1008	J	0.0996	6	872	186	N
2988	0.1150	3	0.1138	>0	0, 2	113	0
2700	0.1130	5	0.1150	7 0		113	Ů
2992	0.0582		0.0570	2		164	0
2995	0.0372:		0.0370	>1		143, 148	0
2998	0.0372.	3	0.1618	<4		195	N
3004	0.1636	5	0.0619	>0		133, 125	0
3004	0.0031		0.0019			133, 123	0
				>0	E1 4		
3009	0.0653		0.0641	12	514	149, 180	0
3021	0.0949		0.0937	2		184	0
3023	0.2092		0.2080	>0	0	133, 221	N
3027	0.0760		0.0748	22	977	186	N
3038	0.1352		0.1340	1		165	N
20.40	0.0000		0.0000	_		465	_
3040	0.0932	_	0.0920	5		165	0
3047	0.0950	3	0.0938	<4		195	N
3062	0.1160		0.1148	2		145	0
3069	0.1245		0.1233	4		186	N
3070	0.1106		0.1094	13	519	186	N
3074	0.0730	3	0.0718	<4		195	N
3077	0.1150	3	0.1138	<4		195	N
3078	0.0648	-	0.0636	>0		133	0
3084	0.0977		0.0965	1		218	Ň
3089	0.0667		0.0655	8	323	186	N
2007	3.0007		0.0033	O	343	100	14

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1)	(2)	(5)	(4)	(3)	(0)	(1)	(0)
3093	0.0830		0.0818	22	435	149, 180	0
3094	0.0677		0.0665	67	653	149, 180, 193	Ň
					033	, ,	
3095	0.0646		0.0634	>0	=00	133, 125, 184	0
3098	0.0833		0.0821	6	709	186	N
3100	0.0629		0.0617	>0		133, 160	0
3104	0.0730	3	0.0718	<4		195	N
3106	0.0639		0.0627	>0		133	0
3107	0.0875		0.0863	>0		149	0
3108	0.0625		0.0613	7		149	N
3109	0.0920	3	0.0908	1		145	N
3110	0.0749		0.0737	>0		133	0
3111	0.0775		0.0763	35	770	149, 180	0
3112	0.0750		0.0738	67	950	149, 180	0
		•			750		
3116	0.0830	3	0.0818	<4		195	N
3120	0.0690		0.0678	>0		133	0
3122	0.0643		0.0631	87	755	149, 180	N
3123	0.0644		0.0632	>0		133	0
3125	0.0589		0.0577	19	273	194	Ň
3126	0.0856		0.0844	38	1041	73, 180	0
3128	0.0599		0.0587	180	802	149, 180	N
3129	0.1260	3	0.1248	<4		195	N
		3					
3133	0.0534		0.0522	>0	4400	133	0
3135	0.0642		0.0630	82	1100	224	N
3136	0.1196		0.1184	>0		133	0
3140	0.0620	3	0.0608	1		145	0
3141	0.1058		0.1046	15	646	180	0
3142	0.1030			21	814	180	Ň
			0.1018		814		
3144	0.0443		0.0431	16		184	0
3145	0.0604		0.0592	1		218	N
3146	0.1102		0.1090	2		184	0
3150	0.1100	3	0.1088	2		145	0
		3			7.47		
3151	0.0676		0.0664	38	747	149, 180	0
3157	0.2109		0.2097	> 2		133, 144, 113	0
3158	0.0597		0.0585	123	976	149, 180, 193	0
3164	0.0570		0.0558	3	991	224	0
3165	0.1365		0.1353	>3		133, 144, 221	N
3166	0.1125		0.1113	>0		133, 111, 221	0
3186	0.1273		0.1261	2		144	0
3193	0.0357		0.0345	36	872	224	0
3194	0.0974		0.0962	32	790	149, 180	0
3195	0.0750	3	0.0738	<4		195	N
3202	0.0693		0.0681	27	433	149, 180	N
3207	0.2120	3	0.2108	>0		133	0
3212	0.1630	3	0.1618	<4		195	N
3215	0.1640	3	0.1628	<4		195	N
3219	0.1480	3	0.1468	2	_	166	N
3223	0.0601		0.0589	68	636	149, 180	0
3225	0.0549		0.0537	40	1072	73	0
3231	0.1550		0.1538	1		165	0
3234	0.1230	3	0.1228	<4		195	N
2250	0.1540	2	0.1530	. ^		212	0
3259	0.1540	3	0.1528	>0		212	0
3260	0.0640	3	0.0628	2		145	0
3264	0.0978		0.0966	5		149	0
3266	0.0589		0.0577	317	1085	181	0
3269	0.1165		0.1153	2		184	0
		2					
3279	0.1510	3	0.1498	<4		195	N
3295	0.1074		0.1062	2		162	0
3301	0.0536		0.0524	5		149	0
3312	0.0538		0.0526	1		165	0
3321	0.1172		0.1160	2		184	0
	V.11/2		0.1100	2			J

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	а	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
					,		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2222	0.2000	2	0.1000	- 1		105	Λ
3322	0.2000	2	0.1988	1		125	0
3323	0.0633		0.0621	2		144	0
3330	0.0921		0.0909	2		184	0
3331	0.1030	3	0.1018	<4		194	N
3332	0.0792		0.0780	1		184	0
					(71		
3334	0.0965		0.0953	32	671	149, 180	0
3336	0.0786		0.0774	2		145, 162	0
3338	0.0446:		0.0434	>0		143	0
3341	0.0379		0.0367	64	585	149, 180, 193	N
3342	0.1987		0.1975	1	303	144	0
3342	0.1967		0.1973	1		144	U
				_			
3351	0.0819		0.0807	>0		149	N
3354	0.0584		0.0572	57	383	180	0
3356	0.0761		0.0749	>0		133	0
3360	0.0848		0.0836	36	801	149, 180	0
					801	,	
3362	0.0951		0.0939	>0		133	0
3365	0.0926		0.0914	32	1153	180	0
3367	0.1016		0.1004	40	602	214	0
3368	0.0978		0.0966	3		125	0
	0.0472		0.0460	7		125	0
3374							
3376	0.0456		0.0444	77	641	78, 149	0
3380	0.0558		0.0546	>0		133	0
3381	0.0359		0.0347	52	1083	224	N
3389	0.0267		0.0255	42	785	224	N
3390	0.0333		0.0321	15	590	224	0
3391	0.0514		0.0502	85	1157	93	0
3392	0.0554		0.0542	9	517	224	0
3395	0.0506		0.0494	159	1090	93	N
3407			0.0416	6	605	224	0
	0.0428				003		
3408	0.0420		0.0408	1		178	N
3420	0.0599		0.0587	>3		133, 125	0
3429	0.0472		0.0460	>0		133	0
3444	0.2533		0.2521	7		183	0
3490	0.0688		0.0676	7		183	0
3497	0.0677		0.0665	>0		133	0
3526	0.0114		0.0102	287	863	202	N
3528	0.0528		0.0516	39	740	176	N
3530	0.0537		0.0525	5	, .0	174	0
					7.10		
3532	0.0554		0.0542	44	742	173	0
3535	0.0652		0.0640	4		174	0
3537	0.0320		0.0308	15	641	224	N
3541	0.1288		0.1276	8	1390	183	0
					1370		
3542	0.0525		0.0513	>2		133, 125	0
3545	0.0943		0.0931	>0		133	0
3553	0.0487		0.0475	>4		133, 174	0
3554	0.0470		0.0458	>3		148, 174	0
3555	0.0488		0.0476	>4		133, 174	0
					612	,	
3556	0.0479		0.0467	79	643	205	N
3557	0.0764		0.0752	>0		133	0
3558	0.0480		0.0468	341	977	180, 193	N
3559	0.0461		0.0449	39	443	180	N
							- •
3560	0.0489		0.0477	1.4	1123	224	0
				14			
3562	0.0490		0.0478	114	1048	180	0
3564	0.0505		0.0493	4	464	224	0
3565	0.0123		0.0111	45	842	224	0
3566	0.0510		0.0498	25	1204	224	0
3570				6	603	224	0
	0.0366		0.0354				
3571	0.0391		0.0379	84	988	224	0
3572	0.0517		0.0505	6	1216	224	N
3574	0.0160		0.0148	55	793	224	N
3575	0.0377		0.0365	10	476	224	0
3313	0.0311		0.0303	10	770	<i>22</i> 7	U

TABLE 1—Continued

					$\sigma_{ m corr}$		
ACO	\overline{z}_h	a	\overline{z}_C	N_z	$(km s^{-1})$	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
3577	0.0494		0.0482	18	487	224	0
3578	0.0393		0.0381	25	1262	224	0
3581	0.0230		0.0218	24	577	224	0
3593	0.1196		0.1184	1		125	0
3596	0.0878		0.0866	1		157	0
3603	0.0601		0.0589	>2		133, 157	0
3618	0.1222		0.1210	>0		133	0
3627	0.0157		0.0145	112	897	168	0
3629					091		0
	0.0847		0.0835	>0		133	
3632	0.0412		0.0400	>0		160	0
2620	0.0006		0.0704			122	
3638	0.0806		0.0794	>0		133	0
3639	0.1496		0.1484	10		170	0
3651	0.0599		0.0587	78	661	149, 180	0
3653	0.1089		0.1077	1		148	0
3656	0.0190		0.0178	17	371	224	0
3659	0.0907		0.0895	>2		133, 164	0
3663	0.2401		0.2389	5	1593	208	0
3664	0.0369		0.0357	>0		143	0
3665	0.2370	3	0.2358	5		158	0
3667	0.0556	3	0.0544	162	1059	149, 180	0
3007	0.0550		0.0344	102	1039	149, 100	U
3676	0.0404		0.0392	~ 2		140 142	0
				>3		148, 143	
3677	0.0912		0.0900	8	0.4	149	0
3682	0.0921		0.0909	10	863	149, 180	0
3685	0.0620		0.0608	1		Fet	0
3686	0.0878		0.0866	1		133, 164	0
3687	0.0759		0.0747	>1		133, 125	0
3691	0.0873		0.0861	33	792	149, 180	0
3692	0.0804		0.0792	1		157	0
3693	0.0910		0.0898	16	585	149, 180	0
3694	0.0936		0.0924	2	505	157	0
3074	0.0750		0.0724	2		137	O
3695	0.0894		0.0882	81	845	149, 180	0
3696	0.0882		0.0870	12	428	149, 180	0
3698							
	0.0200		0.0188	7	230	224	0
3703	0.0735		0.0723	18	455	149, 180	N
3705	0.0906		0.0894	40	877	73, 193	N
3706	0.1018		0.1006	>0		133, 148	0
3716	0.0462		0.0450	111	733	149	0
3727	0.1190	3	0.1178	<4		195	N
3733	0.0382		0.0370	91	760	224	N
3735	0.2211:		0.2199	>0		160	0
3736	0.0487		0.0475	>3		148	0
3739	0.0820	3	0.0808	16		145	Ň
3740	0.1521	-	0.1509	2		184	0
3742	0.1321		0.1309	19	267	224	0
3744	0.0104			66			0
			0.0369		559 201	149, 180	
3747	0.0310		0.0298	10	391	224	0
3756	0.0769	_	0.0757	1		157	0
3757	0.0970	3	0.0958	<4		195	N
3758	0.1030	3	0.1018	0		221	N
3764	0.0757		0.0745	38	671	149, 180	0
3771	0.0796		0.0784	>1		133, 125	0
3775	0.1048		0.1036	3		184	0
3778	0.1115		0.1103	3		186	N
3781	0.0571		0.0559	4		180	N
3782	0.0554		0.0542	>0		133, 125	0
3783				>0		133, 123	0
	0.1955		0.1943				
3785	0.0773	_	0.0761	>0		133, 125	0
3793	0.1150	3	0.1138	<4		195	N
3795	0.0890		0.0878	13	336	149, 180	0
3796	0.0755		0.0743	>1		133, 125	N

TABLE 1—Continued

ACO	\overline{z}_h	а	\overline{z}_C	N_z	$\sigma_{\rm corr}$ (km s ⁻¹)	References	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
3799	0.0453		0.0441	10	428	149, 180	0
3800	0.0990	3	0.0978	<4		195	N
3802	0.1630	3	0.1618	<4		195	N
3806	0.0765		0.0753	84	813	149, 180	0
3809	0.0620		0.0608	77	499	149, 180	0
3812	0.1067		0.1055	1		184	N
3813	0.0936		0.0924	> 2		133, 164	0
3814	0.1179		0.1167	4		186	N
3816	0.0385		0.0373	31	452	225	0
3822	0.0759		0.0747	84	969	149, 180	0
3825	0.0760		0.0748	59	698	149, 180, 193	0
3826	0.0754		0.0742	1	1111	149	0
3827	0.0984	2	0.0972	20	1114	149, 180	0
3831 3836	0.0650	3	0.0638	>0		125 195	0 N
3837	0.1100 0.0896	3	0.1088 0.0884	<4 2		186	N
3844	0.0330		0.0334	3		186	N
3847	0.1530	3	0.0713	1		219	N
3849	0.1530	3	0.0666	>1		133, 125	0
3851	0.0530		0.0518	>1		133, 125	ő
3854	0.1492		0.1480	30	1180	73	N
3856	0.1379		0.1367	4	1100	186	N
3858	0.1564		0.1552	4		186	N
3864	0.1033		0.1021	32	940	180	0
3869	0.0398		0.0386	>3	237	148, 133, 125, 224	N
3875	0.1300	3	0.1288	<4		195	N
3876	0.1130	3	0.1118	<4		195	N
3877	0.0990	3	0.0978	3		145	0
3879	0.0669		0.0657	46	516	149, 180	0
3880	0.0584		0.0572	22	855	192	N
3883	0.1025		0.1013	3		184	0
3886	0.0748		0.0736	>0		133	0
3888	0.1510		0.1498	70	1831	93	0
3889	0.2511		0.2499	24	1119	208	0
3895	0.0590	2	0.0578	5	388	224	N
3907	0.0980	3	0.0968	<4		195 195	N N
3910	0.0900 0.0900	3	0.0888 0.0888	<4 3		184	0
3911	0.0965		0.0953	>1		148, 149	0
3912	0.0663		0.0651	>3		133, 164	0
				, ,			
3916	0.1260	3	0.1248	<4		195	N
3920	0.1260		0.1248	3	505	186	N
3921	0.0936		0.0924	32	585	149, 180	0
3922	0.0970	2	0.0958	2		184	0 N
3925	0.0830	3	0.0818	<4		195	N
3934 3939	0.2241 0.1494		0.2229 0.1482	>0 10	311	133 170	0
3944	0.1732		0.1482	2	311	207	N
3959	0.1732		0.1720	>0		133	0
3963	0.0889		0.0877	>0		133	0
3968	0.1671		0.1659	3		186	N
3969	0.0699		0.0687	1		180	0
3971	0.1470	3	0.1458	<4		195	Ň
3972	0.0890	3	0.0878	<4		195	N
3984	0.1805		0.1793	3		186	N
3992	0.0902		0.0890	>0		133, 157	0
3998	0.0883		0.0871	2		186	N
4003	0.0866		0.0854	1		218	N
4008	0.0549		0.0537	27	424	149, 180	0
4010	0.0957		0.0945	30	615	149, 180	N

TABLE 1—Continued

ACO (1)	\overline{z}_h (2)	<i>a</i> (3)	\overline{z}_C (4)	N _z (5)	$ \frac{\sigma_{\text{corr}}}{(\text{km s}^{-1})} $ (6)	References (7)	Notes (8)
4012	0.0510	3	0.0498	2		145	0
4013	0.0500	3	0.0488	17		145	N
4018	0.1110	3	0.1098	<4		195	N
4021	0.1086		0.1074	3		186	N
4038	0.0300		0.0288	157	882	224	N
4043	0.2100	2	0.2088	>0		212	0
4049	0.0648		0.0636	4	1579	224	N
4053	0.0720		0.0708	17	731	149, 180	N
4058	0.0638:		0.0626	>0		160	0
4059	0.0475		0.0463	45	628	224	0
4067	0.0989		0.0977	30	719	93, 180	0
4068	0.1015		0.1003	>0		133, 152	0

 $\begin{array}{c} \text{TABLE 2} \\ \text{New and Revised Notes to Table 1} \end{array}$

Cluster	Note
A13	Ref. 193 partitions the velocities into two subgroups: $N_z = 21$, $z = 0.0972$, $\sigma = 515$ km s ⁻¹ , and $N_z = 29$, $z = 0.0919$, $\sigma = 361$ km s ⁻¹ .
A14	EDCC 418 of Ref. 186.
A15	EDCC 419 of Ref. 186. Additional superpositions: $z = 0.0865$ and 0.1450.
A42	EDCC 447 of Ref. 186.
A50	Object MRC B0028 – 223 of Ref. 221.
A76	Hickson Compact Group 5 is a subcluster (Rood & Struble 1994).
A 80	EDCC 471 of Ref. 186.
A85	\bar{z}_h is from Ref. 209; σ_{corr} was provided by F. Durret, (1999, private communication), who notes that it is comprised of several components and may not be meaningful.
A 87	Ref. 200 gives $N_z = 12$, $z = 0.0543$, $\sigma = 927$ km s ⁻¹ , as well as individual velocities, but references in Table 1 do not, so they cannot be combined with those in Ref. 200. Ref. 210 notes several subclusters but lists no data.
A88	EDCC 474 of Ref. 186. Additional superpositions: $N_z = 3$, $z = 0.1137$; $N_z = 1$, $z = 0.1224$; and $N_z = 3$, $z = 0.0543$.
A89	Ref. 125 gives Fet as the origin of z, but this cluster is not listed in Fet, so its origin is not known; σ is from Ref. 210, but N_z is not given. Ref. 210 also gives the foreground group's $\sigma = 733$ km s ⁻¹ , but neither \overline{z} nor N_z is given.
A90	Ref. 144 lists a foreground galaxy at $z = 0.0584$.
A115	If all $N_z = 24$ in Ref. 102 are used, $z = 0.1924$ and $\sigma_{corr} = 1610$ km s ⁻¹ .
A118	Ref. 193 also partitions the velocities into two subgroups: $N_z = 13$, $z = 0.1137$, $\sigma = 187$ km s ⁻¹ , and $N_z = 13$, $z = 0.1127$, $\sigma = 385$ km s ⁻¹ .
A119	Ref. 149 lists $z=0.0442$ for $N_z=125$, but no σ . Ref. 189, using data in Ref. 180, partitions the velocities into three subclusters: $N_z=53$, $z=0.0438$, $\sigma=212$ km s ⁻¹ ; $N_z=18$, $z=0.0457$, $\sigma=100$ km s ⁻¹ ; and $N_z=13$, $z=0.0416$, $\sigma=80$ km s ⁻¹ .
A133	\overline{z}_h and σ_{corr} are determined from galaxies within 0.5 Mpc of the brightest cluster galaxy in the core.
A140	EDCC 520 of Ref. 186.
A147	\overline{z}_h from Ref. 119, σ from Ref. 224, $N_z = 8$.
A151	$\sigma_{\rm corr} = 471 \ {\rm km \ s^{-1}} \ {\rm using} \ N_z = 12 \ {\rm of \ Ref.} \ 86. \ {\rm Ref.} \ 180 \ {\rm lists} \ {\rm data} \ {\rm for \ superposed} \ {\rm groups:} \ N_z = 40, \ z = 0.0997, \ \sigma = 857 \ {\rm km \ s^{-1}}, \ {\rm and} \ N_z = 29, \ z = 0.0410, \ \sigma = 395 \ {\rm km \ s^{-1}}.$
A158	$\sigma_{\rm corr}$ for $N_z = 5$ is from Ref. 9; Ref. 77 does not give one.
A168	Ref. 119 gives $N_z = 23$ and cites Ref. 102 as origin, which gives only $N_z = 13$, and $\sigma_{\rm corr}$ is determined from the latter. Ref. 149 gives $z = 0.0541$ for $N_z = 76$, but gives no σ .
	Ref. 193 partitions the velocities into three subgroups: $N_z = 25$, $\overline{z} = 0.0469$, $\sigma = 118$ km s ⁻¹ ; $N_z = 29$, $\overline{z} = 0.0436$, $\sigma = 160$ km s ⁻¹ ; and $N_z = 21$, $\overline{z} = 0.0454$, $\sigma = 88$ km s ⁻¹ .
A229	Ref. 200 gives $N_z = 11$, $\overline{z} = 0.1143$, $\sigma = 1320$ km s ⁻¹ , as well as individual velocities but Ref. 180 does not, so they cannot be combined with those in Ref. 200.
A260	Ref. 119 cites Ref. 102 as the source of z , but this reference does not list the cluster. Individual velocities are not listed, so σ cannot be computed.
A262	Ref. 204 gives z and σ as a function of distance from cluster center ($N_z = 82$).
A264	Object MRC B0149 – 260 of Ref. 221.
A286	Ref. 142 also lists $z = 0.0791$.
A294	Ref. 144 suspects z is that of a foreground galaxy.
A303	Ref. 200 lists a background group: $N_z = 3$, $z = 0.1653$.

```
Cluster
                                                                                         Note
A319
             Ref. 144 lists a foreground galaxy at z = 0.076. Ref. 193 partitions the velocities into foreground/background superpositions:
                N_z = 13, z = 0.0882, \sigma = 394 km s<sup>-1</sup>, and N_z = 13, z = 0.0936, \sigma = 479 km s<sup>-1</sup>.
             Couch et al. (1994) list N_z = 47, but state that "the S/N of these spectra is often poor"; z = 0.374 and \sigma = 1584 km s<sup>-1</sup>, but
A370
                individual redshifts are given to between 2 and 4 decimal places.
A384
             IRAS object 02459 - 0234 of Ref. 220.
A389
             EDCC 699 of Ref. 186, which also lists a foreground galaxy, z = 0.0344.
A400
             Ref. 134 also partitions the velocities into two subgroups: N_z = 63, z = 0.0233, \sigma = 486 km s<sup>-1</sup> and N_z = 17, z = 0.0274, \sigma = 245 km s<sup>-1</sup>.
A419
             Ref. 148 lists a foreground group: N_z > 3, z = 0.0408.
             Ref. 200 gives N_z = 6, z = 0.0846, \sigma = 1322 km s<sup>-1</sup>, as well as individual velocities, but references in Table 1 do not, so they cannot
A420
                be combined with those in Ref. 200.
A423
             Ref. 200 lists a foreground group: N_z = 7, z = 0.0486, \sigma = 875 \text{ km s}^{-1}.
A438
             Ref. 144 lists a foreground galaxy at z = 0.031.
A496
             Ref. 92 does not list individual velocities, so they cannot be combined with those in Ref. 117. Ref. 180 lists N_z = 134, z = 0.0328,
               \sigma = 682 \text{ km s}^{-1}.
A510
             Ref. 144 lists z = 0.199 of a background galaxy.
A513
             Ref. 31 also lists N_z = 1, z = 0.1105.
A524
             Ref. 180 lists a foreground group: N_z = 10, z = 0.0561, \sigma = 211 km s<sup>-1</sup>.
             Ref. 34 lists N_z > 0, z = 0.0541 as given in SR1 and SR2. Ref. 200 lists a background group: N_z = 4, z = 0.1070, \sigma = 738 km s<sup>-1</sup>.
A526
A527
             Ref. 121 also lists N_z = 1, z = 0.0841.
A533
             Ref. 121 also lists N_z = 3, z = 0.0453.
             The value of z is low for this D = 5 cluster, so object (a binary galaxy) may be foreground.
A536
             Two velocities given in Ref. 17 are probably foreground (M. Kowalski, 1990, private communication), so z_{\rm adt} is z_{\rm SRS} and z_{\rm Fet}.
A539
             Ref. 149 gives \sigma = 592 \text{ km s}^{-1} but not N_z. Hickson Compact Group 34 is a subcluster (Rood & Struble 1994).
A548
             Ref. 149 partitions the velocities into two subgroups: W: z = 0.0402, \sigma = 656 km s<sup>-1</sup> and E: z = 0.0424, \sigma = 902 km s<sup>-1</sup>, but N_z
               is listed for neither.
             Ref. 180 lists superpositions: N_z=21, z=0.1009, \sigma=406 km s ^{-1}, and N_z=15, z=0.0868, \sigma=1060 km s ^{-1}.
             Ref. 214 gives velocities for N_z = 64, z = 0.0429, \sigma = 869 km s<sup>-1</sup> which overlap A3367, and were mistaken as members of this
               more distant cluster in Ref. 125.
             Ref. 123 partitions the velocities into two subgroups: N_z = 12, z = 0.0199, \sigma = 501 km s<sup>-1</sup>, and N_z = 18, z = 0.0197, \sigma = 324 km s<sup>-1</sup>.
A569
             Ref. 187 lists for non-emission galaxies N_z = 111, z = 0.0387, \sigma = 977 km s<sup>-1</sup>, and for emission galaxies N_z = 58, z = 0.0389, \sigma = 1297 km s<sup>-1</sup>; it also lists for the core (r < 0.132 Mpc, H_0 = 100 km s<sup>-1</sup> Mpc<sup>-1</sup>) N_z = 10, \sigma = 387 km s<sup>-1</sup>.
A576
             Ref. 75 lists redshifts for two galaxies with coordinates in this cluster, but gives the cluster as A571; this typo or misidentification is
A578
                corrected in Owen & White 1991.
A595
             Ref. 119 lists N_z = 3, z = 0.0691.
             SRS, SR1, and SR2 give z = 0.138.
A629
A699
             Ref. 200 lists a background group: N_z = 4, z = 0.1053, \sigma = 238 km s<sup>-1</sup>.
             Ref. 144 lists a foreground group: N_z = 3, z = 0.0743.
A720
             Ref. 31 also lists N_z = 1, z = 0.2599.
A738
A750
             Cluster MS 0906.5 + 1100 of Ref. 206. Ref. 226 gives z = 0.1630.
A779
             Ref. 217 lists two background clusters: z = 0.0483 and z = 0.0596.
A780
             Ref. 125 cites Fet and SRS as origin, but they both list z = 0.0799.
A851
             Identified as cluster 0939 + 4713 in Ref. 190.
             z_{\text{Fet}} is probably wrong; SR catalog notes "looks closer than D = 5 cluster."
A912
A913
             Ref. 21 gives z = 0.366.
A919
             Ref. 144 lists a foreground galaxy at z = 0.085.
A957
             Ref. 123 lists a foreground group: N_z = 32, z = 0.0439, \sigma = 1009 km s<sup>-1</sup>. Ref. 193 partitions the velocities into foreground/background
                superpositions: N_z = 21, z = 0.0416, \sigma = 254 km s<sup>-1</sup>, and N_z = 23, z = 0.0457, \sigma = 481 km s<sup>-1</sup>.
             Ref. 223 partitions N_z = 32 velocities by morphological type.
A963
             The value of \bar{z} is from Ref. 16. Ref. 213 states that N_z = 56 are cluster members but uses only N_z = 36 red members to compute \sigma_{corr}.
             Ref. 223 partitions N_z = 15 velocities into morphological type, and lists a foreground group: N_z = 5, z = 0.0359.
A979
A993
             Ref. 224 notes that the cluster has a large spread in velocities between 9000 and 18,000 km s<sup>-1</sup>.
A994
             Ref. 144 (Table 3) gives z determined from spectra obtained during very bad seeing.
A999
             Hickson Compact Group 47 is a subcluster (Rood & Struble 1994).
A1016
             Ref. 224 lists a background group: N_z = 6, z = 0.0476, \sigma = 747 km s<sup>-1</sup>.
             Note that \sigma_{\rm corr} of Ref. 224 is 54% smaller than that of Ref. 200 (1365 km s<sup>-1</sup>, N_z=11). Ref. 224 lists a background group:
A1035
                N_z = 8, z = 0.0789, \sigma = 567 km s<sup>-1</sup>.
A1047
             Ref. 144 lists a foreground galaxy at z = 0.0961.
A1060
             Hickson Compact Group 48 is a subcluster (Rood & Struble 1994).
A1097
             Ref. 125 also lists N_z = 1, z = 0.0793.
A1142
             Note that \sigma_{corr} of Ref. 224 is over twice as large as that of Ref. 119 (417 km s<sup>-1</sup>, N_z = 41).
A1222
             Ref. 200 lists a foreground group: N_z = 4, z = 0.0532, \sigma = 703 km s<sup>-1</sup>.
             Note that \sigma_{\rm corr} of Ref. 224 is five times larger than that of Ref. 150 (196 km s<sup>-1</sup>, N_z = 20).
A1228
A1232
             Ref. 18 also lists z = 0.1997.
A1318
             Note that \sigma_{\rm corr} of Ref. 224 is about twice as large as that of Ref. 121 (284 km s<sup>-1</sup>, N_z = 9).
             Ref. 200 lists a foreground group: N_z = 11, z = 0.0590, \sigma = 428 km s<sup>-1</sup>.
A1365
             From velocities between 4000 and 9000 km s<sup>-1</sup>.
A1367
```

```
Cluster
                                                                                       Note
A1376
             Ref. 200 lists a background group: N_z = 4, z = 0.0797, \sigma = 93 km s<sup>-1</sup>.
A1423
             Ref. 141 lists a galaxy at z = 0.213.
A1449
             Ref. 215 gives z = 0.135.
A1452
             Hickson Compact Group 60 is the central subcluster (Rood & Struble 1994).
A1505
             Ref. 144 lists a foreground group: z = 0.112, but N_z is not given.
A1525
             Ref. 21 gives z = 0.325.
A1541
             \sigma is from Ref. 200 (N_z = 12, z = 0.0888); Ref. 119 does not list individual velocities, so more accurate \sigma cannot be computed.
A1577
             Ref. 125 questions the z they cite.
A1601
             Ref. 125 questions the accuracy of the z they cite.
A1644
             Ref. 193 lists N_z = 84, z = 0.0464, but smaller \sigma = 759 km s<sup>-1</sup>.
A1651
             Ref. 193 partitions the velocities into two subgroups: N_z = 20, z = 0.0893, \sigma = 685 km s<sup>-1</sup>, and N_z = 10, z = 0.0805, \sigma = 363 km s<sup>-1</sup>.
A1736
             Ref. 193 partitions the velocities into foreground/background superpositions: N_z = 34, z = 0.0347, \sigma = 415 km s<sup>-1</sup>; N_z = 37,
               z = 0.0439, \sigma = 569 km s<sup>-1</sup>, and N_z = 26, z = 0.0493, \sigma = 456 km s<sup>-1</sup>.
             Ref. 224 lists N_z = 55, z = 0.0347, \sigma = 386 km s<sup>-1</sup> as the Abell cluster, which is probably a foreground group.
A1750
             Ref. 123 partitions the velocities into three subclusters: N: N_z = 18, z = 0.0829, \sigma = 606 km s<sup>-1</sup>, S: N_z = 9, z = 0.0865,
               \sigma=287~{\rm km~s^{-1}}, and C (central): N_z=20,\,z=0.0868,\,\sigma=705~{\rm km~s^{-1}}.
             Ref. 167 partitions the velocities into two subclusters: N_z = 24, z = 0.0795, \sigma = 731 km s<sup>-1</sup>, and N_z = 27, z = 0.0838, \sigma = 609 km s<sup>-1</sup>.
             Hintzen 1979 originally suggested A1775 was comprised of two superimposed clusters, and Ref. 102 agrees: A1775A: N z = 12, z = 0.0662,
A1775
               \sigma = 896 \text{ km s}^{-1}, and A1775B: N_z = 16, z = 0.0760, \sigma = 378 \text{ km s}^{-1}.
             A photometric study by Hayes & Bhattacharya (1989) of the most luminous galaxy, a supergiant binary, suggests that the object is
                two galaxies in collision within a single cluster.
             Ref. 154 partitions velocities into two subclusters: A: N_z = 21, z = 0.0650, \sigma = 518 km s<sup>-1</sup>, and B: N_z = 29, z = 0.0780,
               \sigma = 394 \text{ km s}^{-1}.
             Ref. 193 also partitions velocities into two subclusters: N_z = 25, z = 0.0650, \sigma = 478 km s<sup>-1</sup>, and N_z = 10, z = 0.0759, \sigma = 293 km s<sup>-1</sup>.
A1791
             Object MRC B1346 - 252 of Ref. 221.
A1825
             Ref. 119 lists N_z = 2, z = 0.0633, but their citation (No. 26 in SR1) lists N_z = 1.
A1831
             Ref. 224 lists a background group with N_z = 10, z = 0.0763, \sigma = 753 km s<sup>-</sup>
A1837
             Ref. 217 lists a foreground group at z = 0.0368.
A1852
             Ref. 200 finds no obvious clustering of redshifts, and so claims the cluster is nonexistent.
A1856
             Ref. 125 questions the accuracy of the z they cite.
A1905
             Ref. 125 questions the accuracy of the z they cite.
A1926
             Ref. 200 lists a foreground group: N_z = 4, z = 0.0798, \sigma = 162 \text{ km s}^{-1}.
A1927
             Ref. 217 notes that AWM 3 with z = 0.0047 is foreground.
A1950
             Ref. 144 lists a foreground galaxy at z = 0.064.
A1960
             Ref. 200 finds no obvious clustering of redshifts, and so claims the cluster is nonexistent.
A1975
             Ref. 31 lists N_z = 1, z = 0.0911.
             Note that \sigma_{\rm corr} of Ref. 224 is 83% larger than those of Refs. 78 and 123 combined (498 km s<sup>-1</sup>, N_s = 77).
A1983
A1991
             The values of z and \sigma_{corr} are derived from samples A and B (with suspected foreground members of A1983 removed) of Ref. 123.
               Two velocities with values less than 21,000 km s<sup>-1</sup> are not used.
A1999
             Ref. 119 lists N_z = 1, z = 0.1018, but their citation gives the value adopted in SR1 and SR2.
             Ref. 193 lists N_z = 28, z = 0.0454, but a smaller \sigma = 458 km s<sup>-1</sup>. Ref. 200 gives N_z = 19, z = 0.0547, \sigma = 693 km s<sup>-1</sup>, as well as
A2040
               individual velocities, but references in Table 1 do not, so they cannot be combined with those in Ref. 200.
             Ref. 223 partitions N_z = 25 velocities by morphological type.
             Ref. 200 gives N_z = 10, z = 0.0942, \sigma = 749 km s<sup>-1</sup>, as well as individual velocities, but references in Table 1 do not, so they
A2048
               cannot be combined with those in Ref. 200.
             Ref. 125 lists N_z = 1, z = 0.1085. Ref. 226 gives z = 0.1021.
A2055
A2059
             Ref. 125 lists N_z = 2, z = 0.1272.
A2061
             Values of z and \sigma_{corr} are from galaxies \leq 1.5h^{-1} Mpc.
             Ref. 223 partitions N_z = 34 velocities by morphological type.
A2063
             Values of z and \sigma_{corr} from galaxies \leq 1.5h^{-1} Mpc.
A2065
             Values of z and \sigma_{corr} from galaxies \leq 1.5h^{-1} Mpc. Ref. 217 lists background cluster: N_z = 22, z = 0.1133, \sigma = 716 km s<sup>-1</sup>.
A2067
A2079
             Value of \sigma_{\rm corr} is computed only for N_z = 29 in Ref. 102, since Ref. 95 does not list individual velocities.
             Ref. 199 gives z=0.0655 and \sigma_{\rm corr}=652~{\rm km~s^{-1}} for N_z=26 galaxies \leq 1.5h^{-1} Mpc.
A2089
             Values of z and \sigma_{corr} from galaxies \leq 1.5h^{-1} Mpc.
             Values of z and \sigma_{corr} from galaxies \leq 1.5h^{-1} Mpc.
A2092
A2128
             Ref. 144 lists a foreground galaxy at z = 0.0574.
A2147
             Ref. 125 mistakenly lists N_z = 121 when the reference they cite notes that this is the total for the Hercules supercluster containing
               A2147, A2151, and A2152.
             Ref. 224 notes that the cluster has a large spread in velocities, but no identifiable cluster is evident in the velocity histogram.
A2148
A2149
             Ref. 77 lists a background group with N_z = 1, z = 0.1064.
             Note that \sigma_{corr} of Ref. 224 is 87% larger than that of Ref. 201 (715 km s<sup>-1</sup>, N_z = 56). Membership in this cluster is problematic
A2152
               because of overlaps with A2151 within the Hercules supercluster.
A2162
             Ref. 224 lists a background group with N_z = 39, z = 0.0511, \sigma = 677 km s<sup>-1</sup>.
```

Ref. 119 does not list individual velocities, so σ cannot be computed.

A2175

```
Cluster
                                                                                   Note
A2177
             Cluster MS 1618.9 + 2552 of Ref. 206.
A2197
             Value of \sigma_{corr} is based on the largest sample of Table 2 in Ref. 67, since the others given are statistically indistinguishable.
             Ref. 125 lists N_z = 60, but their citations do not contain this many individual velocities.
A2256
            Hickson Compact Group 84 is a subcluster (Rood & Struble 1994).
A2319
            Ref. 154 also partitions the velocities into two subgroups: N_z = 100, z = 0.0534, \sigma = 1324 km s<sup>-1</sup>, and N_z = 28, z = 0.0631,
A2354
             Ref. 149 does not give \sigma, but gives a foreground group: N_z = 4, z = 0.038.
A2361
            Ref. 180 gives N_z = 24, but Ref. 149 gives N_z = 17 (possible confusion with data for A2362?).
A2362
             Ref. 180 gives N_z = 17, but Ref. 149 gives N_z = 24 (possible confusion with data for A2361?).
A2390
             We compute z and \sigma_{corr} from data in Ref. 118; note that they give \sigma = 2112 km s<sup>-1</sup> for N_z = 43 from galaxy spectra with "good"
               signal to noise.
A2403
             APM 735 of Ref. 195.
            Ref. 119 lists N_z = 1, z = 0.0736. We do not include this in the new average.
A2412
A2426
            Ref. 200 gives N_z = 6, z = 0.0987, \sigma = 674 km s<sup>-1</sup>, as well as individual velocities, but references in Table 1 do not, so they cannot
               be combined with those in Ref. 200.
             Ref. 180 lists a foreground group: N_z = 11, z = 0.0879, \sigma = 313 km s<sup>-1</sup>.
A2428
            Ref. 144 lists a foreground group: N_z = 2, z = 0.0385.
            Ref. 188 partitions the velocities into three possible subclusters: G1: N_z = 18, z = 0.0906, \sigma = 876 km s<sup>-1</sup>, G2: N_z = 15, z = 0.0899,
A2440
               \sigma = 1083 \text{ km s}^{-1}, and G3: N_z = 14, z = 0.0916, \sigma = 728 \text{ km s}^{-1}.
A2443
             Ref. 122 gives N_z = 1, z = 0.0892.
A2459
            Ref. 119 cites SR1 as the origin of the z, but it does not appear there; the z listed in SR1 is for A2462.
A2462
            Same cluster identified as A3897 by ACO.
A2500
            Ref. 180 lists foreground group: N_z = 12, z = 0.0783, \sigma = 283 km s<sup>-1</sup>.
A2512
             Ref. 144 lists foreground galaxy at z = 0.1001.
A2534
            Ref. 149 lists \sigma = 682 \text{ km s}^{-1} \text{ but no } N_z.
A2538
            Ref. 180 gives \sigma = 861 km s<sup>-1</sup> for same N_z. Ref. 193 partitions the velocities into foreground/background superpositions: N_z = 23,
               z = 0.0858, \sigma = 326 km s<sup>-1</sup>, and N_z = 18, z = 0.0808, \sigma = 410 km s<sup>-1</sup>.
A2541
            EDCC 256 of Ref. 186, which also gives N_z = 2, z = 0.0908.
            Ref. 200 gives N_z = 13, z = 0.0800, \sigma = 592 km s<sup>-1</sup>, as well as individual velocities, but references in Table 1 do not, so they cannot
A2569
               be combined with those in Ref. 200.
A2572
            Ref. 185 suggests the cluster is a projection of foreground (z = 0.04) and background (z = 0.15) groups; \sigma is from Ref. 163,
               which does not give the value of N<sub>z</sub> on which it is based. Hickson Compact Group 94 is a subcluster (Rood & Struble 1994).
               See Ebeling, Mendes de Olivera, & White 1995 for discussion.
A2583
             APM 890 of Ref. 195.
            Ref. 111 gives \sigma = 811 km s<sup>-1</sup> for N_z = 25 galaxies within a projected separation of 300h^{-1} kpc of the central galaxy. The z and
A2589
               \sigma_{\rm corr} given include sample A of Ref. 123.
             Values of z and \sigma_{corr} are for sample A of Ref. 123.
A2593
A2599
             EDCC 297 of Ref. 186, which also lists N_z = 2, z = 0.1137.
            Object MRC B2327 - 215 of Ref. 221.
A2606
A2620
            Ref. 142 also lists z = 0.1911.
            Ref. 188 also lists subgroup B: N_z = 30, z = 0.0647, \sigma = 415 km s<sup>-1</sup>, and a background group C: N_z = 11, z = 0.0713,
A2626
             Ref. 224 lists a background group: N_z = 14, z = 0.0646, \sigma = 761 km s<sup>-1</sup>.
            Note that \sigma_{\text{corr}} of Ref. 224 is 56% larger than that of Ref. 191 (716 km s<sup>-1</sup>, N_z = 200, and refer to values within 2°). Ref. 191
A2634
               also gives values within 0°.5: N_z = 99, z = 0.0313, \sigma = 800 km s<sup>-1</sup>.
             Ref. 224 notes that this is probably the same as their cluster A2626C.
A2637
A2644
            Ref. 200 gives N_z = 3, and z = 0.0702, as well as individual velocities, but references in Table 1 do not, so they cannot be
               combined with those in Ref. 200. Ref. 149 does not give \sigma, and also lists superimposed groups: N_z = 4, z = 0.060,
               and N_z = 7, z = 0.133.
             Values of z and \sigma_{corr} are for samples A and B of Ref. 123, excluding two velocities less than 9000 km s<sup>-1</sup>.
A2657
A2666
            The z and \sigma given refer to values within 1R_A; Ref. 191 also gives values within 0.5 R_A: N_z = 26, z = 0.0279, \sigma = 380 km s<sup>-1</sup>.
            Ref. 196 partitions a subset of the cluster velocities of Ref. 82 into four subclusters: A: N_z = 76, z = 0.0774, \sigma = 271 km s<sup>-1</sup>,
A2670
               B: N_z = 40, z = 0.0809, \sigma = 347 km s<sup>-1</sup>, C: N_z = 106, z = 0.0737, \sigma = 544 km s<sup>-1</sup>, and D: N_z = 7, z = 0.0655, \sigma = 210 km s<sup>-1</sup>.
A2681
            APM 941 of Ref. 195.
A2683
            Galaxy 058 of UKST field 537 of Ref. 218.
A2703
            The z_{SR1} and z_{SR1} values given are heliocentric values (typos).
A2715
            EDCC 392 of Ref. 186. Ref. 149 lists a foreground group: N_z = 7, z = 0.0976.
A2717
            EDCC 394 of Ref. 186.
A2721
            EDCC 400 of Ref. 186.
A2730
            EDCC 408 of Ref. 186.
             Value of \sigma(N_z = 3) is from Ref. 224.
A2731
A2749
            EDCC 421 of Ref. 186.
A2751
            APM 35 of Ref. 195. Ref. 184 lists foreground groups: N_z = 1, z = 0.0805, and N_z = 1, z = 0.0719.
A2753
            APM 34 of Ref. 195.
A2755
            EDCC 429 of Ref. 186.
            EDCC 438 of Ref. 186.
```

A2767

```
Cluster
                                                                            Note
A2769
            From galaxies 31614, 31641, and 34431 of Ref. 207.
A2771
            From galaxies 31715, 31720, 31748, 34444, 34445, 34463, and 35107 of Ref. 207.
A2778
            EDCC 448 of Ref. 186, which also gives N_z = 3, z = 0.1281 and N_z = 3, z = 0.1198.
              Ref. 180 lists a background group: N_z = 10, z = 0.1182, \sigma = 557 km s<sup>-1</sup>.
A2780
            EDCC 450 of Ref. 186.
A2790
            EDCC 460 of Ref. 186.
A2798
            Ref. 184 lists N_z = 21, z = 0.1130; \sigma in Ref. 193 is for N_z = 18.
A2804
            APM 99 of Ref. 195.
A2811
            EDCC 473 of Ref. 186.
A2819
            Ref. 180 lists a background group: N_z = 44, z = 0.0867, \sigma = 359 km s<sup>-1</sup>.
A2824
            Value of \sigma_{corr}(N_z = 6) is from Ref. 224.
A2829
            EDCC 485 of Ref. 186, which gives N_z = 6, z = 0.1124, \sigma = 443 km s<sup>-1</sup>.
A2840
            From galaxies 37428, 37436, 39910, 39915, 39917, 39919, and 40484 of Ref. 207.
A2844
            EDCC 500 of Ref. 186.
A2846
            Galaxy 029 of UKST field 411 of Ref. 218.
A2852
            Galaxies 38467, 38470, 38473, 38520, and 40136 of Ref. 207.
            Galaxy 40149 of Ref. 207.
A2853
            Galaxies 38749, 38783, 38814, and 40217 of Ref. 207.
A2857
A2860
            EDCC 519 of Ref. 186.
A2870
            Note that \sigma_{corr} of Ref. 224 is 2.5 times larger than that of Ref. 194 (372 km s<sup>-1</sup>, N_z = 7).
A2871
            EDCC 524 of Ref. 186. Ref. 180 lists a foreground group: N_z = 14, z = 0.1132, \sigma = 319 km s<sup>-1</sup>.
A2874
            From galaxies 22508, 22532, 22546, 22554, 22559, 22594, 22596, 22631, 22702, 26044, 26045, 26054, 26056, 26057, 26058, 26059,
              and 26070 of Ref. 207, and EDCC 526 of Ref. 186.
A2911
            EDCC 557 of Ref. 186. Ref. 148's z is for a foreground group: N_z = 3, z = 0.0201.
A2912
            APM 176 of Ref. 195.
            Galaxy 052 of UKST field 476 of Ref. 218.
A 2919
A2923
            EDCC 571 of Ref. 186.
A2926
            EDCC 575 of Ref. 186.
A2938
            Cluster R84155 of Ref. 206.
            Galaxy 027 of UKST field 414 of Ref. 218.
A2961
A 2962
            EDCC 606 of Ref. 186.
A2969
            EDCC 618 of Ref. 186.
A2983
            APM 245 of Ref. 195.
A2984
            EDCC 632 of Ref. 186.
A2998
            APM 252 of Ref. 195.
A3023
            Object MRC B0226 - 284 of Ref. 221.
A3027
            EDCC 658 of Ref. 186. ID in Ref. 184.
A3038
            Ref. 212 gives z = 0.16.
A3047
            APM 290 of Ref. 195.
A3069
            EDCC 710 of Ref. 186.
            EDCC 712 of Ref. 186.
A3070
A3074
            APM 323 of Ref. 195.
A3077
            APM 328 of Ref. 195.
A3084
            Galaxy 051 of UKST field 357 of Ref. 218.
A3089
            EDCC 728 of Ref. 186.
A3094
            EDCC 735 of Ref. 186.
A3098
            EDCC 742 of Ref. 186.
A3104
            APM 357 of Ref. 195.
A3108
            Ref. 180 lists a background group: N_z = 5, z = 0.0819.
A3109
            Ref. 162 lists z = 0.0621.
A3116
            APM 377 of Ref. 195.
            EDCC 758 of Ref. 186.
A3122
            Includes only galaxies with \delta < 54^{\circ} and velocities within 17,000–18,500 km s<sup>-1</sup> of Ref. 194.
A3125
A3128
            Ref. 180 lists foreground groups: N_z = 12, z = 0.0395, \sigma = 386 km s<sup>-1</sup>, and N_z = 12, z = 0.0771, \sigma = 103 km s<sup>-1</sup>.
A3129
            APM 405 of Ref. 195.
            EDCC 762 of Ref. 186.
A3135
A3142
            EDCC 765 of Ref. 186. Ref. 180 lists a foreground group: N_z = 12, z = 0.0648, \sigma = 785 km s<sup>-1</sup>.
A3145
            Galaxy 059 of UKST field 301 of Ref. 218.
            Object MRC B0344 - 291 of Ref. 221.
A3165
A3195
            APM 468 of Ref. 195.
            Ref. 193 partitions the velocities into foreground/background superpositions: N_z = 16, z = 0.0708, \sigma = 250 km s<sup>-1</sup>, and N_z = 10,
A3202
              z = 0.0683, \sigma = 179 km s<sup>-1</sup>.
A3212
            APM 476 of Ref. 195.
A3215
            APM 480 of Ref. 195.
A3219
            Cluster F1557.11BR of Ref. 166.
```

```
Cluster
                                                                                Note
A3234
             APM 489 of Ref. 195.
A3279
             APM 517 of Ref. 195.
A3331
             APM 590 of Ref. 195.
             Ref. 180 lists a foreground group: N_z = 15, z = 0.0776, \sigma = 751 km s<sup>-1</sup>. Ref. 193 partitions the velocities into foreground/
A3341
               background superpositions: N_z = 43, z = 0.0390, \sigma = 351 km s<sup>-1</sup>, and N_z = 21, z = 0.0356, \sigma = 209 km s<sup>-1</sup>.
             Cluster DC 0608 - 33 of Ref. 78. Note that \sigma_{\rm corr} of Ref. 224 is 3.8 times larger than that of Ref. 78 (282 km s ^{-1}, N_z=31).
A3381
A3389
             Ref. 224 notes that the velocity histogram has a long upper tail, which was truncated at 12,000 km s<sup>-1</sup> to compute \bar{z} and \sigma_{corr}.
A3395
             The listed data are for cluster 0627 - 54S of Ref. 93, which also lists another subcluster 0627 - 54N with N_z = 52, z = 0.0545,
               \sigma_{\rm corr} = 1152 \text{ km s}^{-1}.
A3408
             Ref. 178 lists galaxy 3 in A3407, but it is within the boundary of A3408.
A3526
             Centaurus cluster. Ref. 193 partitions the velocities into two subclusters: N_z = 121, z = 0.0108, \sigma = 447 km s<sup>-1</sup>, and N_z = 41,
               z = 0.0157, \sigma = 289 \text{ km s}^{-1}.
             Ref. 222 partitions the velocities into two subclusters: N_z = 99, z = 0.0113, \sigma = 933 km s<sup>-1</sup> (the "actual" cluster), and N_z = 21,
               z = 0.0158, \sigma = 131 km s<sup>-1</sup> (a "loosely bound group" near it).
             Ref. 180 lists a foreground group: N_z = 28, z = 0.0526, \sigma = 969 km s<sup>-1</sup>.
A3528
A3537
             Ref. 224 lists a foreground galaxy: N_z = 1, z = 0.0548.
A3556
             Ref. 205 also partitions the velocities into two subclusters: N_z = 56, z = 0.0471, \sigma = 411 km s<sup>-1</sup>, and N_z = 23, z = 0.0502,
               \sigma = 222 \text{ km s}^{-1}.
             Bardelli et al. (1998a) partition the velocities into two different subclusters: N_z = 14, z = 0.0479, \sigma = 520 km s<sup>-1</sup>, and N_z = 23,
               z = 0.0483, \sigma = 575 km s<sup>-1</sup>
A3558
             Ref. 205 gives N_z = 307, z = 0.0480, \sigma = 996 km s<sup>-1</sup> (r < 1R_A), and also divides velocities by magnitude and by subcluster.
               Bardelli et al. (1998a) partition the velocities into seven subclusters.
A3562
             Bardelli et al. (1998a) partition the velocities into three subclusters: N_z = 35, z = 0.0482, \sigma = 1113 km s<sup>-1</sup>, N_z = 8, z = 0.0492,
               \sigma = 880 \text{ km s}^{-1}, and N_z = 18, z = 0.0478, \sigma = 1462 \text{ km s}^{-1}.
A3559
             Ref. 180 lists a foreground group: N_z = 11, z = 0.1119, \sigma = 539 km s<sup>-1</sup>.
             Ref. 174 gives N_z = 6, z = 0.0405.
A3572
             Note that \sigma_{\rm corr} of Ref. 224 is 74% larger than that of Ref. 152 (456 km s<sup>-1</sup>, N_z = 41).
A3574
A3703
             Ref. 180 lists a background group: N_z = 13, z = 0.0914, \sigma = 697 km s<sup>-1</sup>.
A3705
             Ref. 180 gives N_z = 29, z = 0.0898, \sigma = 1057 km s<sup>-1</sup>.
A3727
             APM 618 of Ref. 195.
A3733
             Ref. 211 gives N_z = 82, z = 0.0385, \sigma = 754 km s<sup>-1</sup> for all galaxies within r_A = 0^\circ 812, as well as separate kinematic values for
               emission-line and non-emission-line galaxies.
A3739
             Ref. 145 lists neither \sigma nor data to compute it.
A3757
             APM 653 of Ref. 195.
             Object MRC B2117 - 269 of Ref. 221.
A3758
             EDCC 5 of Ref. 186.
A3778
A3781
             Ref. 180 lists a background group: N_z = 4, z = 0.0729.
A3793
             APM 689 of Ref. 195.
             Ref. 184 lists N_z = 1, z = 0.0934, and N_z = 1, z = 0.0586.
A3796
             APM 696 of Ref. 195. z seems too small for D = 6 cluster, so it may be a foreground group.
A3800
A3802
             APM 707 of Ref. 195.
A3812
             Ref. 184 lists N_z = 1, z = 0.0852.
A3814
            EDCC 42 of Ref. 186.
A3836
            APM 754 of Ref. 195.
A3837
             EDCC 99 of Ref. 186, which also gives a foreground group: N_z = 2, z = 0.0673.
A3844
             EDCC 115 of Ref. 186.
A3847
             3C444 of Ref. 219.
             EDCC 124 of Ref. 186.
A3854
             EDCC 127 of Ref. 186, which also lists several foreground galaxies. Ref. 184 lists N_z = 2, z = 0.1260.
A3856
A3858
             EDCC 131 of Ref. 186.
A3869
            \sigma(N_z = 3) is from Ref. 224; Ref. 185 lists z = 0.0777 but not N_z.
            APM 775 of Ref. 195.
A3875
A3876
            APM 778 of Ref. 195.
A3880
             EDCC 145 of Ref. 186.
             EDCC 172 of Ref. 186.
A3895
A3907
             APM 813 of Ref. 195.
A3908
             APM 814 of Ref. 195.
A3916
             APM 820 of Ref. 195.
A3920
             EDCC 198 of Ref. 186, which also lists background galaxies.
A3925
             APM 830 of Ref. 195.
            From galaxies 8096 and 8097 of Ref. 207.
A3944
             EDCC 247 of Ref. 186.
A3968
A3971
            APM 856 of Ref. 195.
A3972
             APM 854 of Ref. 195.
             EDCC 269 of Ref. 186, which also gives N_z = 5, z = 0.0935, and N_z = 4, z = 0.0645.
A3984
```

EDCC 285 of Ref. 186, which also gives $N_z = 2$, z = 0.0561.

A3998

TABLE 2-Continued

Cluster	Note
A4003	Galaxy 051 of UKST field 536 of Ref. 218.
A4010	EDCC 311 of Ref. 186.
A4013	Ref. 145 lists neither σ nor data to compute it.
A4018	APM 909 of Ref. 195.
A4021	EDCC 326 of Ref. 186.
A4038	Klemola 44 cluster (Ref. 192). Ref. 193 partitions the velocities into foreground/background superpositions: $N_z = 40$, $z = 0.0285$, $\sigma = 413$ km s ⁻¹ , and $N_z = 20$, $z = 0.0339$, $\sigma = 337$ km s ⁻¹ .
A4053	EDCC 366 of Ref. 186. Ref. 180 lists a foreground group: $N_z = 9$, $z = 0.0501$.

NOTE—EDCC = Edinburgh-Durham (Southern) Cluster Catalog ID (Ref. 186); APM = Automatic Plate Measuring Machine (Southern) Cluster ID (Ref. 195).

REFERENCES—These references correspond to the codes in Tables 1–3. Refs. 1–117 may be found in previous papers (see text). (118) Le Borgne et al. 1991. (119) Postman, Huchra, & Geller 1991. (120) Hoffman, & Williams 1991. (121) Huchra et al. 1991. Postman et al. 1991. (122) Capelato et al. 1991. (123) Beers et al. 1991. (124) Thompson et al. 1992. (125) Lebedev & Lebedeva 1992. (126) Kirshner, Oemler, & Schechter 1978. (127) W. Couch 1992, private communication via S. Bludman. (128) Blakeslee & Tonry 1992. (129) Arnoud et al. 1992. (130) Proust et al. 1992. (131) Malamuth et al. 1992. (132) Ogerle & Hill 1992. (133) Peacock, & West 1992. (134) Beers et al. 1992. (135) Allen et al. 1993. (136) Bird, Dickey, & Salpeter 1993. (137) Fabricant et al. 1993. (138) LeBorgne, Pello, & Sanahuja 1992. (139) Hill & Ogerle 1993. (140) Zabludoff et al. 1993. (141) Crawford et al. 1993. (142) Fetisova et al. 1993. (143) Abell, Corwin, & Olowin 1989. (144) Quintana & Ramirez 1994. (145) Dalton et al. 1994 and erratum. (146) Owen, Ledlow, & Keel 1995. (147) Stickel & Kuhr 1992. (148) Lauer & Postman 1994; Postman & Lauer 1994. (149) den Hartog 1995. (150) Ramella et al. 1995a, 1995b. (151) Gregory & Burns 1982. (152) Willmer et al. 1991. (153) Gioia et al. 1995. (154) Ogerle, Hill, & Fitchett 1995. (155) Mahdavi et al. 1996. (156) Colless & Dunn 1996. (157) Muriel, Nicotra, & Lambas 1991. (158) Couch & Newell 1984. (159) Schuecker 1988. (160) Andernach 1989. (161) Dressler 1980. (162) Vettolani et al. 1989. (163) Andernach & Tago 1998; cited in O'Dea, Payne, & Kocevski 1998. (164) Muriel, Nicotra, & Lambas 1990. (165) Nesci & Altamore 1990. (166) Couch et al. 1991. (167) Ramirez & Quintana 1990. (168) Kraan-Korteweg et al. 1996. (169) Raychaudhury 1989. (170) Garilli, Maccagni, & Vettolani 1991. (171) Green, Godwin, & Peach 1988. (172) den Hartog & Katgert 1996. (173) Christiani et al. 1987. (174) Vettolani et al. 1990. (175) Lucey, Currie, & Dickens 1986. (176) Melnick & Moles 1987. (177) Raychaudhury et al. 1991. (178) Galli et al. 1993. (179) Yee et al. 1996. (180) Mazure et al. 1996. (181) Quintana, Ramirez, & Way 1996. (182) Stein 1993. (183) Pierre et al. 1994. (184) Ebeling & Maddox 1995. (185) Ebeling et al. 1996 and erratum. (186) Lumsden et al. 1992 (ACO IDs); Collins et al. 1995 (redshifts). (187) Mohr et al. 1996.(188) Mohr, Geller, & Wegner 1996. (189) Gurzadyan & Mazure 1996. (190) Dressler & Gunn 1992; Dressler, Oemler, Butcher, & Gunn 1994. (191) Scodeggio et al. 1995. (192) Stein 1997. (193) Fadda et al. 1996. (194) Caldwell & Rose 1997. (195) Dalton et al. 1997. (196) Bird 1994. (197) Pierre et al. 1997. (198) Lumsden et al. 1997. (199) Small et al. 1998. (200) Slinglend et al. 1998. (201) Barmby & Huchra 1998. (202) Ramirez & de Souza 1998. (203) Cooray et al. 1998. (204) Sakai, Giovanelli, & Wegner 1994. (205) Bardelli et al. 1998b. (206) Collins & Mann 1998. (207) Vettolani et al. 1998; data are located at http://cdsweb.u-strasbg.fr/Abstract.html. (208) Cappi, Held, & Marano 1998. (209) Durret et al. 1998a. (210) Durret et al. 1998b. (211) Solanes & Stein 1998. (212) Vikhlinin et al. 1998. (213) Lavery & Henry 1998. (214) Andreuzzi et al. 1998. (215) Appenzeller et al. 1998. (216) Moss, Whittle, & Pesce 1998. (217) Hill & Ogerle 1998. (218) Ratcliffe et al. 1998. (219) Tadhunter et al. 1993. (220) Clemens et al. 1996. (221) Kapahi et al. 1998. (222) Stein, Jerjen, & Federspiel 1997. (223) Proust et al. 1995. (224) Chen et al. 1998; data are located at http://cfa-www.harvard.edu/~huchra/clusters. (225) Rizza et al. 1998. (226) Ebeling et al. 1998.

ambiguity arises when N_z is not given in the reference cited, or the position of each galaxy is not given in all the multiple references listed in column (7), so we are unable to check for overlaps. However, even for the small number of cases discussed in the notes, we attempted to list as N_z the number of individual z-values of separate galaxies used to determine \overline{z} and $\sigma_{\rm corr}$; the notes also give details for the small number of clusters where \overline{z} and $\sigma_{\rm corr}$ are determined from different numbers of galaxies because of these ambiguities. Note that there are many cases where we can give only a lower limit for N_z based on information provided in the original references. Galaxy positions in the references are typically given in epoch 1950.0, but note that Slinglend et al. (1998) list them in equinox (and equator) 2000, although this is not stated in the reference.

Note that $\sigma_{\rm corr}$ of several clusters in Chen et al.'s (1998) sample differ by at least 50% from the values given in other references (A1035 is smaller; A1142, A1228, A1318, A1983, A2152, A2634, A2870, A3381, and A3574 are all larger). In several cases this is related to N_z increasing by a factor of order 2, but in others N_z is increased by only a small factor. See the notes for details.

Table 3 contains data for 81 ACO clusters with published \bar{z} that are very probably redshifts of foreground or background groups or galaxies superposed on the ACO cluster. This assessment is either contained in the reference listed or determined from our inspection of the redshifts in two or more references (often simply a case where one reference bases \bar{z} on one to three redshifts while another reference

bases their \bar{z} on more), the rough magnitudes (if available) of the galaxies with measured z, their proximity to the location of the cluster center, and the distance class (ACO) of the cluster. The column headings of Table 3 are self-explanatory; the final column contains details justifying our assessment for including a cluster's published \bar{z} in the table. The ratio of the number of suspected incorrect redshifts to the number of probable true redshifts seems to have leveled off to about 5% of the total number of ACO cluster redshifts: 2.8% in SR1, 4.4% in SR2, and 5.1% herein.

Some ACO clusters are asserted to be nonexistent, such as two (A1852 and A1960) in Slinglend et al.'s (1998) sample of 95 Abell richness class $R \ge 1$, distance class $D \le 4$ clusters, and perhaps one (A2148) in Chen et al.'s (1998) similar sample of 107 clusters with sufficient N_z ($N_z \ge 10$) to resolve superpositions. These appear to be comprised of groups of galaxies randomly distributed along the line of sight, none of whose individual richnesses are sufficiently high to be included as a bona fide ACO cluster. This is consistent with Struble & Rood's (1991) estimate that 5% of Abell's $R \ge 1$, $D \le 4$ clusters are affected by superpositions, based on a sample of 43 with sufficient redshift data ($N_z \ge 30$).

We remark that caution is advised, as usual, when using this compilation for statistical purposes. Beware that \bar{z} determined with $N_z=1-3$ may be suspect; the listed \bar{z} may be that of superposed galaxies despite efforts to prune them from the listing. Postman, Huchra, & Geller (1986) recommend that only clusters with $N_z \geq 5$ are trustworthy

 $\label{table 3} \textbf{Redshifts Previously Assigned Incorrectly to ACO Clusters}$

ACO	z	N_z	References	Notes
22	0.0633	5	186	z superseded by Table 1 ref.
34	0.0140	1	26	z too small for $D = 6$
40	0.0999	4	125	z superseded by Table 1 ref.
71	0.0121	1	77	z superseded by Table 1 ref.
80	0.0646	3	96 E-4	z superseded by Table 1 ref.
121	0.1048 0.058		Fet 221	z superseded by Table 1 ref. z superseded by Table 1 ref.
157	0.0518	1	109	z superseded by Table 1 ref.
256	0.0425	>0	35	z superseded by Table 1 ref.
286	0.0791	1	109	z superseded by Table 1 ref.
295	0.0428	>0	35	z superseded by Table 1 ref.
309	0.1565	1	SR87	z uncertain
419	0.0406	1	77	z superseded by Table 1 ref.
465	0.0855	1	24, SR91	z superseded by Table 1 ref.
480	0.0473	1	SRS, 60	z too small for $D = 6$
571	0.0863	2	75	See notes to Table 2 for A578.
688	0.0421	>0	ACO	z too small for $D = 6$
689	0.086	1	141	z superseded by Table 1 ref.
762	0.0445	1	42	z superseded by Table 1 ref.
769	0.1194	1	121	z superseded by Table 1 ref.
913B	0.0470	1	21	z superseded by Table 1 ref.
915 945	0.0917 0.0917	1 1	109 SR1	z superseded by Table 1 ref. z superseded by Table 1 ref.
943	0.0317	1	14	z superseded by Table 1 ref.
1067	0.1065	2	125	z superseded by Table 1 ref.
1155	0.0738	1	26	z seems low for $D = 5$
1186	0.0791	1	SRS, SR1, 109, 110	See SR2 text
1254	0.0628	1	SRS, Fet, SR1	z superseded by Table 1 ref.
1461	0.0538	1	26	z seems low for $D = 5$
1489	0.028	>0	215	z too small for $D = 6$
1500	0.1059	1	75, 109	See notes to Table 1 of SR2
1539	0.0586	1	109	z superseded by Table 1 ref.
1544	0.0586	1	SRS, Fet, SR1	z superseded by Table 1 ref.
1576	0.3025	>0	110	z superseded by Table 1 ref.
1596	0.302	>0	ACO	z superseded by Table 1 ref.
1666 1703	0.1098 0.2859		84 125	z superseded by Table 1 ref. z superseded by Table 1 ref.
1785	0.2839	1	26	z superseded by Table 1 ref.
1859	0.0989	1	SR1	z superseded by Table 1 ref.
1861	0.079	1	SR1	z is of foreground galaxy
1877	0.1241	1	31, SR1	z superseded by Table 1 ref.
2001	0.1122	2	SR2	z superseded by Table 1 ref.
2004	0.0643	1	SR2	z superseded by Table 1 ref.
2005	0.1257	1	SR1	z superseded by Table 1 ref.
2163	0.1698	1	60	z superseded by Table 1 ref.
2241	0.1013	>0	226	z superseded by Table 1 ref.
2328	0.2027	1	91	z superseded by Table 1 ref.
2360	0.0683	1	42	z too small for $D = 6$
2469	0.0656 0.0331	1 1	26 Fet	z superseded by Table 1 ref. z too small for $D = 5$
2645 A	0.0331	1	109	z too small for $D = 3$ z superseded by Table 1 ref.
2661	0.160	>0	ACO, 79	z too small for $D = 6$
2798	0.113	≤3	195 (APM92)	z superseded by Table 1 ref.
2801	0.062	<u>≤</u> 3	195 (APM96)	z superseded by Table 1 ref.
2814	0.045	>0	160	z superseded by Table 1 ref.
2819	0.087	≤3	195 (APM107)	z superseded by Table 1 ref.
2829	0.112	≤3	195 (APM112)	z superseded by Table 1 ref.
2860	0.0268	>0	143	z superseded by Table 1 ref.
2871	0.116	≤ 3	195 (APM144)	z superseded by Table 1 ref.
2911	0.0201	>3	148	z superseded by Table 1 ref.
3009	0.075	≤3 <2	195 (APM261)	z superseded by Table 1 ref.
3095	0.107	≤3 <3	195 (APM349)	z superseded by Table 1 ref.
3107 3109	0.064 0.0627	≤3 1	195 (APM360) 96	z superseded by Table 1 ref. z superseded by Table 1 ref.
3107	0.0027	1	70	2 superseded by Table 1 lel.

TABLE 3—Continued

ACO	Z	N_z	References	Notes
3142	0.0689	2	184	z superseded by Table 1 ref.
3330	0.186	>0	221	z superseded by Table 1 ref.
3354	0.0444	1	178	z superseded by Table 1 ref.
3367	0.0419	6	125	z superseded by Table 1 ref.
3392	0.0206	3	178	z superseded by Table 1 ref.
3537	0.0161	6	174	z superseded by Table 1 ref.
3542	0.0339	>3	148	z superseded by Table 1 ref.
3560	0.0117	>3	148	z superseded by Table 1 ref.
3563	0.0475	1	163	z superseded by Table 1 ref.
3653	0.0475	>0	ACO	z superseded by Table 1 ref.
3677	0.0461	>3	148	z superseded by Table 1 ref.
3816	0.200	≤3	195 (APM716)	z superseded by Table 1 ref.
3837	0.0656	>3	133	z superseded by Table 1 ref.
3864	0.079	≤3	195 (APM766)	z superseded by Table 1 ref.
4037	0.0292	32	186	z too small for $D = 6$; confused with A4038
4049	0.0286	>3	133, 148	z superseded by Table 1 ref.
4059	0.053	≤3	195 (APM938)	z superseded by Table 1 ref.

enough for statistical studies, but note, remarkably, that Table 3 lists A3367, with $N_z = 6$, which are members of an overlapping foreground cluster, A548 (Andreuzzi et al. 1998), and A3537, also with $N_z = 6$ (Vettolani et al. 1990), which is apparently a foreground group superimposed on the ACO cluster. One should therefore be cautious of clusters with $\sigma_{\rm corr}$ computed from small N_z ($N_z \le 5$). Note also that Table 2 lists A4037 ($N_z = 32$) which was likely confused with A4038 by Lumsden et al. (1992). Finally, we reiterate Abell's (1958) warning regarding the use of clusters in his nonstatistical sample: they were included in his

catalog merely to enhance its value as a finding list, and thus are incomplete in an unknown way.

We thank Harold Corwin and Mike Kowalski for suggestions and helpful comments. We also thank Hans Andernach, Mike West, and J. A. Peacock, and V. S. Lebedev and I. A. Lebedeva for their unpublished redshift compilations, Roland den Hartog for a copy of his dissertation, and Florence Durret for the velocity dispersion of A85. Some computations were performed with the computer facilities at the Institute for Advanced Study.

REFERENCES

Abell, G. O. 1958, ApJS, 3, 211

Abell, G. O., Corwin, H. C., & Olowin, R. 1989, ApJS, 70, 1 (ACO)

Allen, S. W., et al. 1993, MNRAS, 259, 67 Andernach, H. 1989, A Compilation of Measured Redshifts of Abell Clusters, unpublished

Andernach, H., & Tago, E. 1998, unpublished (STScI preprint 1250)
Andreuzzi, G., Bardelli, S., Scaramella, R., & Zucca, E. 1998, A&A, 337, 17
Appenzeller, I., et al. 1998, ApJS, 117, 319
Arnoud, M., Hughes, J. P., Forman, W., Jones, C., Lachièze-Rey, M.,
Yamashita, K., & Hatsukade, I. 1992, ApJ, 390, 345
Bardelli, S. Pisani, A. Ramella, M. Zucca, E. & Zamarani, C. 1908a

Bardelli, S., Pisani, A., Ramella, M., Zucca, E., & Zamorani, G. 1998a, MNRAS, 300, 589

Bardelli, S., Zucca, E., Zamorani, G., Vettolani, G., & Scaramella, R. 1998b, MNRAS, 296, 599
Barmby, P., & Huchra, J. C. 1998, AJ, 115, 6
Beers, T. C., Forman, W., Huchra, J. P., Jones, C., & Gebhardt, K. 1991,

AJ, 102, 1581

Beers, T. C., Gebhardt, K., Huchra, J. P., Forman, C., & Bothun, G. D. 1992, ApJ, 400, 410
Bird, C. 1994, ApJ, 422, 480
Bird, C. M., Dickey, J. M., & Salpeter, E. C. 1993, ApJ, 404, 81

Blakeslee, J. P., & Tonry, J. 1992, AJ, 103, 1457

Caldwell, N., & Rose, J. A. 1997, AJ, 113, 492
Capelato, H. V., Mazure, A., Proust, D., Vanderriest, C., Lemonnier, J. P., & Sodre, L. 1991, A&AS, 90, 35
Cappi, A., Held, E. V., & Marano, B. 1998, A&AS, 129, 31
Chen, J., Huchra, J. P., McNamara, B., & Mader, J. 1998, BAAS, 30, 1307
Christian S. d. S. P., P. Colorina S. Lind, C. Christian S. L. 1087

Christiani, S., de Souza, R., D'Odorico, S., Lund, G., & Quintana, H. 1987, A&A, 179, 108

Clemens, D. L., Sutherland, W. J., Saunders, W., Efstathiou, G. P., McMahon, R. G., Maddox, S., Lawrence, A., & Rowan-Robinson, M. 1996, MNŔAS, 279, 459

Colless, M., & Dunn, A. 1996, ApJ, 458, 435

Collins, C. A., Guzzo, L., Nichol, R. C., & Lumsden, L. 1995, MNRAS, 274,

Collins, C. A., & Mann, R. G. 1998, MNRAS, 297, 128

Cooray, A. R., Grego, L., Holzapfel, U. L., Joy, M., & Carlstrom, J. E. 1998, AJ, 115, 1388

Corwin, H. J. 1974, AJ, 79, 1356

Couch, W. J., Ellis, R. S., Malin, D. F., & McLaren, I. 1991, MNRAS, 249,

606
Couch, W. J., Ellis, R. S., Sharpless, R. M., & Smail, I. 1994, ApJ, 430, 121
Couch, W. J., & Newell, E. B. 1984, ApJS, 56, 143
Crawford, C. S., Edge, A. C., Fabian, A. C., Allen, S. W., Böhringer, H., Ebeling, H., McMahon, R. G., & Voges, W. 1993, MNRAS, 274, 75
Dalton, G. B., Efstathiou, G., Maddox, S. J., & Sutherland, W. 1994, MNRAS, 269, 151 (erratum 273, 528 [1995])
Dalton, G. B., Maddox, S. J., Sutherland, W., & Efstathiou, G. 1997, MNRAS, 289, 263
den Hartog, R. 1995, Ph. D. thesis, Univ. Leiden.

den Hartog, R. 1995, Ph.D. thesis, Univ. Leiden den Hartog, R., & Katgert, P. 1996, MNRAS, 279, 349 de Vaucouleurs, G., de Vaucouleurs, A., & Corwin, H. G. 1976, Second Reference Catalog of Bright Galaxies (Austin: Univ. Texas Press) (RC2)

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Buta, R. J., Paturel, G., & Fouqué, P. 1991, Third Reference Catalog of Bright Galaxies (New York: Springer) (RC3) Dressler, A. 1980, ApJS, 42, 565

Dressler, A., & Gunn, J. E. 1992, ApJS, 78, 1 Dressler, A., Oemler, A., Butcher, H. J., & Gunn, J. E. 1994, ApJ, 430, 107 Durret, F., Felenbork, P., Lobo, C., & Slezak, E. 1998a, A&AS, 129, 281 Durret, F., Forman, W., Gerbal, D., Jones, C., & Vikhlinin, A. 1998b, A&A,

Ebeling, H., Böhringer, H., Allen, S. W., Crawford, C. S., Fabian, A. C., Edge, A. C., Voges, W., & Huchra, J. P. 1998, MNRAS, 301, 881

Ebeling, H., & Maddox, S. J. 1995, MNRAS, 275, 1155

Ebeling, H., Mendes de Olivera, F., & White, R. A. 1995, MNRAS, 277,

Ebeling, H., Voges, W., Böhringer, H., Edge, A. C., Huchra, J. P., & Briel, U. G. 1996a, MNRAS, 281, 799

1996b, MNRAS, 283, 1103

Faber, S., & Dressler, A. 1977, AJ, 82, 187

Fabricant, D., Kurz, M., Geller, M., Zabludoff, A., Mack, P., & Wegner, G. 1993, AJ, 105, 797

Fadda, D., Girardi, M., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1996, ApJ, 473, 670

Fetisova, T. S. 1982, Soviet Astron., 25, 647 (Fet)

Fetisova, T. S., Kuznetsov, D. Yu., Lipovetskii, V. A., Starobinsky, A. A., & Olowin, R. P. 1993, Astron. Lett., 19, 198

Galli, M., Cappi, A., Focardi, P., Gregorini, L., & Vettolani, G. 1993, A&AS, 101, 259
Garilli, B., Maccagni, D., & Vettolani, G. 1991, AJ, 101, 795
Gioia, I. M., et al. 1995, A&A, 297, L75
Green, M. R., Godwin, J. G., & Peach, J. V. 1988, MNRAS, 234, 1051
Gregory, S., & Burns, J. O. 1982, ApJ, 225, 373
Gross, P. G. 1977, ApJ, 215, 417 (erratum 222, 403)
Gurzadyan, V. G., & Mazure, A. 1996, Observatory, 116, 391
Harrison, E. R., 1974, ApJ, 191, L51
Hayes, J. J. E., & Bhattacharva, R. 1900, in IALL College, 124, Pairs A&AS, 101, 259 Hayes, J. J. E., & Bhattacharya, B. 1990, in IAU Colloq. 124, Paired and Interacting Galaxies, ed. J. Sulentic, W. Keel, & C. Telesco (Washington, DC: NASĂ), 195 Kapahi, V. K., Athreya, R. M., van Breugel, W., McCarthy, P. J., & Subrahmanya, C. R. 1998, ApJS, 118, 275 Kirshner, R., Oemler, A., & Schechter, P. 1978, AJ, 83, 1549
Kraan-Korteweg, R. C., Woudt, P. A., Cayette, V., Farirall, A. P., Balkowski, C., & Henning, P. A. 1996, Nature, 379, 519
Lauer, T. R., & Postman, M. 1994, ApJ, 425, 418 Lavery, R. J., & Henry, J. P. 1998, BAAS, 30, 864 Lebedev, V. S., & Lebedeva, I. A. 1992, A Compilation of Redshifts of Clusters of Galaxies, (Special Astrophys. Obs., unpublished) Le Borgne, J.-F., Mathez, G., Mellier, Y., Pello, R., Sanahuja, B., & Soucail, G. 1991, A&AS, 88, 133 Le Borgne, S. A., Pello, R., & Sanahuja, B. 1992, A&AS, 95, 87 Lucey, J. R., Currie, M. J., & Dickens, R. J. 1986, MNRAS, 221, 453 Lumsden, L., Nichol, R. C., Collins, C. A., & Guzzo, L. 1992, MNRAS, 258, Lumsden, S. L., Collins, C. A., Nichol, R. C., Eke, V. R., & Guzzo, L. 1997, MNRAS, 290, 119 Mahdavi, A., Geller, M., Fabricant, D., Kurtz, M., Postman, M., & McLean, B. 1996, AJ, 111, 64 Malamuth, E. M., Kriss, G. A., Dixon, V. D., Ferguson, H. C., & Ritchie, C. 1992, AJ, 104, 495 Mazuré, A., et al. 1996, A&A, 310, 31 Melnick, J., & Moles, M. 1987, Rev. Mexicana Astron. Astrofis., 14, 72 Mohr, J. J., Geller, M. J., Fabricant, D. G., Wegner, G., Thorstensen, J., & Richstone, D. O. 1996a, ApJ, 470, 724 Mohr, J. J., Geller, M. J., & Wegner, G. 1996b, AJ, 112, 1816 Moss, C., Whittle, M., & Pesce, J. E. 1998, MNRAS, 300, 205 Muriel, H., Nicotra, M., & Lambas, D. G. 1990, AJ, 100, 339 . 1991, AJ, 101, 1997 Ogerle, W. R., Hill, J. M., & Fitchett, M. J. 1995, AJ, 110, 32 Owen, F. N., Ledlow, M. J., & Keel, W. C. 1995, AJ, 109, 14 Owen, G. N., & White, R. A. 1991, MNRAS, 249, 164 Peacock, J. A., & West, M. J. 1992, unpublished Pierre, M., Böhringer, H., Ebeling, H., Voges, W., Schuecker, P., Cruddace, R., & MacGillivray, H. 1994, A&A, 290, 725 Pierre, M., Oukbir, J., Dubreuil, D., Soucail, G., Sauvageot, J.-L., & Mellier, Y. 1999, A&AS, 124, 283

Postman, M., Huchra, J. P., & Geller, M. J. 1986, AJ, 96, 1238 ———. 1991, ApJ, 384, 404 Postman, M., & Lauer, T. R. 1994, ApJ, 440, 28 Proust, D., Mazure, A., Vanderriest, C., Sodre, L., & Capelato, H. 1995, A&ÁS, 114, 565 Proust, D., Quintana, H., Mazure, A., de Souza, R., Escalera, E., Sodre, L., & Capelato, H. 1992, A&A, 258, 243
Quintana, H., & Ramirez, A. 1994, ApJS, 96, 343 Quintana, H., Ramirez, A., & Way, M. J. 1996, AJ, 112, 36 Ramella, M., Geller, M., Huchra, J. P., & Thorstensen, J. R. 1995a, AJ, 109, 1458 . 1995b, AJ, 109, 1469 Ramirez, A., & Quintana, H. 1990, Rev. Mexicana Astron. Astrofis., 21, Ramirez, R. C., & de Souza, R. E. 1998, ApJ, 496, 693 Ratcliffe, A., Shanks, T., Parker, Q. A., Broadbent, A., Watson, F. G., Oates, H., Collins, C. A., & Fong, R. 1998, MNRAS, 300, 417 Raychaudhury, S. 1989, Nature, 342, 251 Raychaudhury, S., Fabian, A. C., Edge, A. C., Jones, C., & Forman, W. 1991, MNRAS, 248, 101 Rizza, E., Burns, J. O., Ledlow, M. J., Owen, F. N., Voges, W., & Bliton, M. 1998, MNRAS, 301, 328 Rood, H. J., & Struble, M. F. 1994, PASP, 106, 413 Sakai, S., Giovanelli, R., & Wegner, G. 1994, AJ, 108, 33 Sarazin, C., Rood, H. J., & Struble, M. F. 1982, A&A, 108, L7 (SRS) Schmidt, K.-H. 1986, Astron. Nachr., 307, 69 Schuecker, P. 1988, in Large-Scale Structures in the Universe, ed. W. C. Seitter, H. W. Duerbeck, & M. Tacke (Berlin: Springer), 160 Scodeggio, M., Solanes, J. M., Giovanelli, R., & Haynes, M. P. 1995, ApJ, Slinglend, K., Batuski, D., Miller, C., Haase, S., Michaud, K., & Hill, J. M. 1998, ApJS, 115, 1 Small, T., Ma, C.-P., Sargent, W. L. W., & Hamilton, D. 1998, ApJ, 492, 45 Solanes, J. M., & Stein, P. 1998, A&AS, 131, 221 Stein, P. 1993, in Observational Cosmology, ed. G. Chincarini, A. Iovino, T. Maccacaro, & D. Maccagini (San Francisco: ASP), 272 . 1997, A&A, 317, 670 Stein, P., Jerjen, H., & Federspiel, M. 1997, A&A, 327, 952 Stickel, M., & Kuhr, H. 1992, A&A, 264, 68 Struble, M. F., & Rood, H. J. 1987, ApJS, 63, 543 (SR1) 1991a, ApJS, 77, 363 (SR2) . 1991b,́ ApJ, 374,́ 395 Tadhunter, C. N., Morganti, R., de Serego Alighieri, S., Fosbury, R. A. E., & Danziger, I. J. 1993, MNRAS, 263, 999
Thompson, D. J., Djorgovski, S., Vigotti, M., & Grueff, G. 1992, ApJS, 81, Vettolani, G., Cappi, A., Chincarini, G., Focardi, P., Garilli, W., Gregorini, L., & Maccagni, D. 1989, A&AS, 79, 147 Vettolani, G., Chincarini, G., Scaramella, R., & Zamorani, G. 1990, AJ, 99, Vettolani, G., et al. 1998, A&AS, 130, 328 Vikhlinin, A., McNamara, B. R., Forman, W., Jones, C., Quintana, H., & Hornstrup, A. 1998, ApJ, 502, 558 Willmer, G., Focardi, P., Chan, R., Pellegrini, P., & da Costa, N. 1991, AJ, 101, 57 Yee, H., Ellingson, E., Abraham, R., Gravel, P., Carlberg, R., Smecker-Hayne, T., Schade, D., & Rigler, M. 1996, ApJS, 102, 289
Zabludoff, A., Geller, M., Huchra, J. P., & Vogeley, M. S. 1993, AJ, 106,