编译原理

Compiler Construction Principles

朱 青

信息学院计算机系, 中国人民大学, zqruc2012@aliyun.com

第3,4章: 语法分析器

- # 上下文无关文法
- # 自顶向下分析法
- ₩ 自底向上分析法
- # 算符优先分析法
- # LR分析器
- 出 LR(0)分析表的构造
- # SLR分析表的构造
- ₩ 软件工具Yacc

第3,4章: 语法分析复习

语法分析的重要性:

语法分析方法:

- 1)自顶向下分析法.
- 2)自底向上分析法.

第3,4章:语法分析复习

语法分析总结与习题:

基本概念

- 1.上下文无关文法.
- 2.递归下降分析法.
- 3.LL(1),LR(0),SLR(1)概念
- 4.规范归约
- 5.算符优先文法
- 6.短语, 最左素短语
- 7.左递归
- 8.句柄,句型

- 9. 直接短语
- 10. 文法的二义性
- 11. 文法的分类(形式语言)
- 12. 自下而上分析
- 13. 自上而下分析

实验性题目:

- 1. 写递归下降分析程序.
- 2. 由算符优先表构造优先函数.

理论性题目:

- 1. 判断文法的二义性.
- 2. 改造二义性文法.
- 3. 消除左递归.
- 4. 提取公共左因子.
- 5. 递归下降分析程序.
- 6. LL(1)文法的判断.
- 7.算符优先分析法.
- 8.算符优先函数.
- 9.规范归约过程.

应用举例:

一.求文法所描述的语言.

例题: 已知文法 G1 (p36 6)

 $N \longrightarrow D | ND$

 $D \longrightarrow 0|1|2|3|4|5|6|7|8|9$

(1) G1的语言L(G1)是什么?

解: L(G1)={a|a为可带前导0的正整数}

或 L(G1)={a|a为数字串}

或L(G1)={(0|1|2|3|4|5|6|7|8|9)+}

二.已知文法,求句子的最左推导和最右推导

例如:P36 6(2).

文法G1 (2)给出句子568的最左推导和最右推导.

解:最右推导:

N=>ND=>NDD=>DDD=>50D=>56D=>568 最左推导:

N=>ND=>N8=>ND8=>N68=>D68=>568

三.证明文法是二义的.

例如: P36 9. 求证文法G是二义文法 S —→ iSeS|iS|i

证明:对句子iiiei,有两棵语法树(如下所示).

故文法G是二义文法

四.<u>已知文法,求某个句子的所有短语,直接短语</u>和句柄.**P85**概念

 $E \rightarrow T|E+T|E-T$

 $T \longrightarrow F|T*F|T/F$

F___ (E) | i

求证:E+T*F是它的句型,指出这个句型的 所有的短语,直接短语和句柄。

证明:因为 E=>E+T=>E+T*F

所以 E+T*F是它的句型.

因为 E^{*}=>E+T 且 T=>T*F

故T*F是指出这个句型相对于T的短语,而且是直接短语,也是句柄.

五.已知文法,求某个句子的语法树

和最右推导.

例如:已知文法

- (1) $S \longrightarrow real IDLIST$
- (2) IDLIST → IDLIST, ID
- (3) IDLIST → ID
- (4) ID a|b|c|d

此文法的句子 real,a,b,c 的语法树和最右推导.

解:由文法对句子 real,a,b,c 进行分析得到

的语法树为:

S=>real IDLIST

- => real IDLIST,ID
- => real IDLIST,c
- => real IDLIST,ID,c
- => real IDLIST,b,c
- => real ID,b,c
- =>real a,b,c

六.消除左递归

例如:对文法消除左递归:

 $S \longrightarrow Aa|a|b$ A $\longrightarrow Ac|c|Sd$

根据算法

- 1)非终结符安排为 S,A
- 2) S不存在左递归, 故i=1不做工作.
- 3)i=2时, 将S → Aa|a|b代入到A的 有关候选式后, 得到

A — Ac | c | Aad | ad | bd

再消除A-产生式中的直接左递归:

S → Aa|a|b

A→ cA'|adA'|bdA'

 $A' \rightarrow cA' |adA'| \epsilon$

练习:消除左递归.

S→ Aa C → Dd

 $A \longrightarrow Bb$ $C \longrightarrow \varepsilon$

 $B \longrightarrow Cc$ $D \longrightarrow Az$

七. 对下列文法,提取公共左因子.

PROGRAM→ begin DECLIST comma STATELIST end DECLIST → d semi DECLIST DECLIST → d STATELIST → s semi STATELIST STATELIST → s (这个语言的形式结构: begin d;d;...;s;s;...;s end). 解:答案(八.的例题)

八. <u>判断文法是否为LL(1)的.并造预测分析表</u>。

PROGRAM begin DECLIST comma STATELIST end DECLIST $\to dX$ $X \longrightarrow semi$ DECLIST $X \longrightarrow \varepsilon$ STATELIST $\to sY$ $Y \longrightarrow semi$ STATELIST $Y \longrightarrow \varepsilon$

解:这里我们只需找出X和Y的引导符号集:

X的第一个候选式的引导符号集为{semi}.

X的第二个候选式的引导符号集为{comma}.

Y的两个候选式的引导符号集分别为 {semi},{end}. 所以该文法是LL(1)的.

例如:(P81 2)对下面文法G

E
$$\longrightarrow$$
TE' E' \longrightarrow +E | ϵ
T \longrightarrow FT' T' \longrightarrow T | ϵ
F \longrightarrow PF' F' \longrightarrow *F' | ϵ
P \longrightarrow (E) | a | b | $^{\wedge}$

- (1) 计算每个非终结符的FIRST和FOLLOW.
- (2) 证明这个文法是LL(1)的.

证明: (1)

FIRST(E)=FIRST(T)=FIRST(F)
=FIRST(P)={ (,a,b,^}.
FIRST(E')={ +,
$$\epsilon$$
 }

FIRST(E)={
$$+$$
, ϵ }
FIRST(T')={ $(,a,b,^{,}\epsilon)$

$$FIRST(F')=\{ *, \epsilon \}$$

```
FOLLOW(E)=FOLLOW(E')={ ), # }
FOLLOW(T)=FOLLOW(T')={ +, ), # }
FOLLOW(F)=FOLLOW(F')=\{(,a,b,^{,+},),\#\}
FOLLOW(P) = \{ *, (, a, b, ^, +, ), \# \}
(2)
 SELECT(E'→+E)=FIRST(+E)={+}
SELECT(E'→ε)=FOLLOW(E')={#,)} 交为空
  \subseteq SELECT(T'\longrightarrowT)=FIRST(T)={(,a,b,^}
  └SELECT(T'→ε)=FOLLOW(T')={+,#,)}交为空
  SELECT(F'→*F')=FIRST(*F')={ *}
   SELECT(F'\rightarrow \epsilon)=FOLLOW(F')={(,a,b,^,+,#,)}
     交为空
此文法为LL(1)的.
```

(3) 构造预测分析表:参照 P76 表4.1

	+	*	()	а	b	٨	#
E			E->TE'		E->TE'	E->TE'	E->TE'	
E'	E' ->+E			Ε΄ ->ε				Ε΄ ->ε
Т			T->FT'		T->FT'	T->FT'	T->FT'	
T'	Τ΄ ->ε		T' ->T	Τ΄ ->ε	T' ->T	T' ->T	T' ->T	Τ΄ ->ε
F			F->PF'		F->PF'	F->PF'	F->PF'	
F′	F' ->ε	F' ->*F'	F' ->ε					
Р			P->(E)		P->a	P->b	P-> /\	

(4)构造递归下降分析程序,参照 P74 程序(同理写出其它)

```
PROCEDURE E;
BEGIN

IF symbol= ( OR symbol= a OR symbol= b OR symbol= ^ THEN
BEGIN

T;
E';
END;
ELSE error;
END;
```

```
PROCEDURE E';
BEGIN
IF symbol= + THEN
BEGIN ADVANCE;
E;
END;
END;
```

(4)构造递归下降分析程序,参照 P74 程序(同理写出其它)

九.<u>由算符优先表构造优先函数</u>.(P133 3).

文法G2: S — a | ^ | (T) T — T , S | S

求:(1)G2的FIRSTVT和LASTVT.

- (2)G2的优先函数关系.G6是一个算符优 先文法吗?
- (3)G2的优先函数.

```
解:(1) FIRSTVT(S) = { a, ^, ( }
FIRSTVT(T) = { , ,a, ^, ( }
LASTVT(S) = { a, ^, ) }
LASTVT(T) = { , ,a, ^, ) }
```

(2) G2的优先关系为:

	a	٨	(,
a				>	>
^				>	>
(<	<	<	=	<
)				>	>
,	<	<	<	>	>

G2是一个算符优先文法.由定义可得.

(3)G2的优先函数.由的优先表对应的方向 图如下所示:

优先函数f和g为:

	а	٨	()	j
f	4	4	2	4	4
g	5	5	5	2	3