A filter for syntactically comparable parallel sentences

Martin Kroon

23 October 2018

My project

automatic detection of syntactic differences between languages

Why?

- comparative syntax
 - finding a universal grammar that underlies all natural languages
- automation means:
 - more data
 - faster
 - unbiased

Micro or macro

- micro:
 - you need parallel data
 - you know where the differences in sytax occur
- macro:
 - unparallel data possible
 - ▶ then you won't know where the differences occur
 - only difference in characterizing patterns

Europarl corpus

- proceedings of EU parliament, translated in all languages
- parallel corpus with multiple languages
- ▶ about 2 million sentences per language
- quite noisy!

Filter

we need to clean up the data

- wrongly aligned sentences
- 'free' translations

Filter

4 filters

- baseline: Levenshtein distance on POS tags
- sentence-length ratio
- Levenshtein further explored
- graph-edit distance on dependency parses
- sentence vectors

Syntactic comparability

That is what will make us	Dan zijn wij sterk.			
strong.				
I hope that this report will	hoffe ich, dass dieser			
not be allowed to bite the	Bericht nicht deswegen zu Fall			
dust on account of this	gebricht wird			
This can double the available	Hierdoor kunnen de beschik-			
resources.	bare middelen worden ver-			
	dubbeld.			
The house was destroyed by	Jim tuhosi talon.			
Jim.				

Data

manually annotated 250 English-Dutch sentence pairs

- 105 comparable
- ▶ 145 not comparable

three annotators $\kappa = 0.70$

If:

- all content words in sentence A have an alignment with a word in sentence B and all content words in sentence B have an alignment with a word in sentence A, where punctuation is to be ignored
- if there is no paradigm shift, such as active to passive, idiomatic constructions in one language or a (pseudo-)cleft in one language, ignoring word order

Universal Dependencies

Dependency trees are a way of representing syntactic structure in a sentence, where child nodes 'depend' on their mothers.

Universal Dependencies is a programme that aims for cross-linguistically consistent tagging and annotation of dependency trees.

We tagged and parsed our data in UDPipe

Back to filters

baseline:

- Levenshtein distance on POS tags
- if edit distance higher than certain threshold, discard sentence pair
- thresholds determined with an ROC curve

First filter

sentence-length ratio

- relative sentence length
- ▶ if ratio too high or too low, discard sentence pair
- ▶ in terms of percentiles

First filter

sentence-length ratio, cont'd

- experimented with ignoring function words
- concern: coarse-grained

Second filter

Levenshtein further explored

- experimented with ignoring function words
- transpositions
- concern: sensitive to constituents transposing

Third filter

graph edit distance

- edit distance on dependency parses as graphs
 - networkx
 - node and edge identity in terms of POS and syntactic relation
 - ▶ insertion, deletion, substitution = 1
 - unordered graphs
- if edit distance higher than certain threshold, discard sentence pair

Third filter

GED cont'd

- experimented with including morphological information
- experimented with ignoring function words
- concern: very reliant on parse accuracy, requires existence of parser

Fourth filter

sentence vectors

- cosine similarity between sentence vectors
 - average of all word vectors
 - required translation matrix à la Mikolov 2013
- if cosine similarity below certain threshold, discard sentence pair
- trained vector spaces on Europarl with fastText
- experimented with ignoring function words
- experimented with weighting sentence vectors with tf-idf of word vectors

Results

	AUC	thresh.	prec.	rec.	F _{0.5}
Baseline	0.73	6	0.72	0.67	0.71
GED			0.73	0.65	0.71
Levenshtein	0.75	6	0.72	0.68	0.71
Sentence-length ratio	0.76	18.6%	0.71	0.70	0.70
Sentence vectors	0.59	0.793	0.58	0.57	0.58

ROC graph

Problems

- only English-Dutch
 - ▶ English-Danish
 - English-...
- small data set
 - probably going to expand it
 - manual POS tagging and parsing?
- maybe combining the filters, but have to look into that
- unsupervised filter training/setting of threshold???