Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

http://eisc.univalle.edu.co/~oscarbed/MD/

* Notación O

Donald Knuth

- Cuando estaba en 8° grado participó en un concurso que consistía en formas palabras con las letras de la expresión "Ziegler's giant Bar"
- Estudió Física, matemáticas y ciencias
- Escribió The Art of Computer Programming
- · Desarrolló Tex Documentos

(1938 -)

El análisis de crecimiento de funciones se basa en comparar

el comportamiento de dos o más funciones


```
en una matriz:

for (int i=0; i<10; i=i+1){
         for (int j=0; j<10; j=j+1){
           if (datos[i][j]==b){
             System.out.println("Encontrado");
             break;
```

_ / 1	2	3	1	S	16	7	8	9	(19)
-8	12	-9	65	34	56	-54	5 5	14	7
-9	34	90	56	87	94	31	45	88	99
43	98	34	65	54	65	52	54	76	55
14	13	31	46	15	9	41	-8	11	13
89	32	23	13	41	23	77	80	88	-9
19	56	34	23	25	55	99	14	11	56
14	34	56	43	-78	25	77	25	22	95
94	-6	94	14	80	-6	67	95	-8	-76
89	80	-34	76	89	-4	13	11	78	15
-56	-56	13	95	-87	77	99	87	77	-3

11									
7	12	-9	65	34	56	-54	55	14	-65
-34	34	90	56	87	94	31	45	88	99
43	98	34	65	54	65	52	54	76	55
14	13	31	46	15	9	41	-8	11	13
89	32	23	13	41	23	77	80	88	-9
19	56	34	23	25	55	99	14	11	56
14	34	56	43	-78	25	77	25	22	95
94	-6	94	14	80	-6	67	95	-8	-76
89	80	-34	76	89	-4	13	11	78	15
-56	-56	13	95	-87	77	99	87	77	-3

/										
	-8	12	-9	65	34	56	-54	55	14	-65
->	-35	34	90	56	87	94	31	45	88	99
	43	98	34	65	54	65	52	54	76	55
	14	13	31	46	15	9	41	-8	11	13
	89	32	23	13	41	23	77	80	88	-9
	19	56	34	23	25	55	99	14	11	56
\	14	34	56	43	-78	25	77	25	22	95
\ 1	94	-6	94	14	80	-6	67	95	-8	-76
	89	80	-34	76	89	-4	13	11	78	15
91	7	-56	13	95	-87	77	99	87	77	-3

-8	12	-9	65	34	56	-54	55	14	-65
-35	3/4	90	56	87	94	31	45	88	99
43	98	34	65	54	65	52	54	76	55
14	13	31	46	15	9	41	-8	11	13
89	32	23	13	41	23	77	80	88	-9
19	56	34	23	25	55	99	14	11	56
14	34	56	43	-78	25	77	25	22	95
94	-6	94	14	80	-6	67	95	-8	-76
89	80	-34	76	89	-4	13	11	78	15
32	-56	13	95	-87	77	99	87	77	

```
for (int i=0; i<10; i=i+1){
                                 1) Tamaño de 1a
 for (int j=0; j<10; j=j+1){
                                 matriz
                                 2) La posición
   if (datos[i][j]==b){
                                  que se encuentra
     System.out.println("Encontrado") júmero
     break;
        ¿De que depende el número de pasos
        que realiza el algoritmo?
                                       1000 h
            Mejor C985
                          Casò
                          2/0mm/c
```

En el peor caso, ¿cuántas comparaciones hará el programa para una matriz de tamaño nxn?

-3 -2 0 3 7 11 14 22 26 34

b - 7

-3 -2 0 3 7 11 14 22 2	34
------------------------	----

$$b = 34$$

-3 -2 0 3	7 11	14 22	26 34	,
-----------	------	-------	-------	---

```
Programa 1:
public void buscar(){
 for(int i=1; i<=n; i=i+1){
 if (datos[i]==b){
   System.out.println("Encontrado");
   break;
```

buscor =

Programa 1:

```
public void buscar(){
 for(int i=1; i<=n; i=i+1){
  if (datos[i]==b){
   System.out.println("Encontrado");
   break:
```

```
ontrado"): Deok (0.50 0)
```

En el peor caso, ¿cuántas comparaciones hará el programa para un arreglo de tamaño n?

Programa 2:

```
public void buscar(int i, int j){
 medio=(i+j)/2;
 if (a[medio]==b){
  System.out.println("Encontrado");
  break;
 if (a[medio]kb)
  buscar(medio, j);
                           NO TENGO QUE HACER TODAS
 if (a[medio]>b)
                           LAS COMPARACIONES CON EL
  buscar(i, medio);
                           ALGORITMO 2
```


Programa 2:

```
public void buscar(int i, int j){
 medio=(i+j)/2;
 if (a[medio]==b){
  System.out.println("Encontrado");
  break;
 if (a[medio]<b)
  buscar(medio,j);
 if (a[medio]>b)
  buscar(i, medio);
```


En el peor caso, ¿cuántas comparaciones hará el programa para un arreglo de tamaño n?

Complejidad computacional: Nümero pasos que requiere un algoritmo para solucionar un problema Complejidad espacial: Memoria requerida*

¿Cuándo se cruzan?

$$x^2=x$$

$$x=1$$

¿Para elegir un algoritmo? ¿Hacia donde me interesa mirar hacia los menores que l o los mayores que l?

Cantidad de pasos = COMPLEJIDAD COMPUTACIONAL Tabla de estudiantes Tabla de asignaturas Producto cartesiano ¡Que significa? CN F 1 20 + v Estudiante Asignaturas 1)JOIN Estudiante y Asignaturas >) Filtro -> Las materias que ha visto el estudiante 500 sin filtrar, 50 filtrando 5003

Analice el crecimiento de las siguientes funciones

¿Cuándo se cruzan?

¿Cuándo se cruzan?

¿Cuándo se cruzan?

¿Cuándo se cruzan?

Analice el crecimiento de las siguientes funciones

$$g(x)=x^2$$

$$g(x)=x^2$$
$$f(x)=x+2$$

¿Cuando f(x) es mejor que g(x)?

$$\times$$
 \geq 2

$$q(x)=x^2$$

$$g(x)=x^2$$
$$f(x)=x+2$$

$$g(x)=x^{2}$$

$$f(x)=2x+24$$

$$x^{2}=2x+24$$

$$x^{2}=2x+24$$

$$x^{2}=2x-24=0$$

$$x^{3}=2x+24$$

$$x^{4}=2x+24$$

$$x^{4}=2x+24$$

$$x^{4}=2x+24$$

$$x^{5}=2x-24=0$$

$$x^{5}=2x+24$$

$$x^{5}=2x-24=0$$

$$x^{5}=2x+24$$

$$x^{5}=2x-24=0$$

$$x^{5}=2x+24$$

$$x^{5}=2x+24$$

$$x^{5}=2x+24=0$$

$$x^{5}=$$

$$g(x)=x^2$$

$$g(x)=x^2$$

 $f(x)=2x+24$

Pensar en un problema sobre un arrreglo de tamaño n, cuya complejidad sea 1.

Tomar el valor de una posición cualquiera del arreglo toma tiempo l

Notación O

PEOR CASO, techo de 1º que espero del algoritmo.

Sean f y g dos funciones, se dice que f(x)=O(g(X)) si se cumple que

$$f(x) \leq g(x)$$

para x>k

Muestre que $7x^2=O(x^3)$

Muestre que $7x^2=O(x^3)$

 $7x^2 < x^3$, para x > 7

Muestre que $2x-1=O(x^2)$

$$2x-1 \leq \chi^2$$

$$\times^2$$
 -2× + 1 $\stackrel{\checkmark}{>}$ 0

$$X \ge 1$$

$$F(x) es O(96)) sii$$

$$X \ge K + (x) \le 9(x)$$

$$\frac{2 \pm \sqrt{4 - 4(4)} - 2 \pm \sqrt{0} - 2}{2(4)}$$

Muestre que
$$2x-1=O(x^2)$$

 $2x-1 < x^2$, para $x>1$

Muestre que $3x+10=O(x^2)$

Muestre que
$$3x+10=O(x^2)$$

 $3x+10 < x^2$, para $x>5$

Muestre el valor de k para el cual se cumple cada una de las siguientes relaciones:

•
$$6x+16=O(x^2)$$

$$•\sqrt{6x} = O(3x)$$

Aplicación

La notación O permite establecer una cota superior al tiempo dado por un algoritmo

Aplicación

La notación O permite establecer una cota superior al tiempo dado por un algoritmo

• Suponga que tiene dos algoritmos cuyos tiempos de ejecución están acotados de la siguiente forma:

$$-T_{1}(n) = O(n^{2})$$

$$-T_{2}(n) = O(\log n)$$
— Mojor trans

· ¿Cuál algoritmo escogería?

Aplicación

La notación O permite establecer una cota superior al tiempo dado por un algoritmo

- Suponga que tiene dos algoritmos cuyos tiempos de ejecución están acotados de la siguiente forma:
 - $T_1(n) = O(n^2)$
 - $T_2(n) = O(\log n)$
- · ¿Cuál algoritmo escogería? El algoritmo 2

Que g(x) es una COTA SUPERIOR (TECHO) de f(x)

$$f(x)$$
 es $O(g(x))$ Sii $f(x) \le c * g(x), x \ge k$

El c dele un valor que le convenga, y luego demuestre que existe un k que cumple la relación. Truco, deje la ecuación c*g(x)-f(x) >= 0

 $f(x) \ge c * h(x), x \ge k, c \ge 1$ (PISO) de f(x), que $f(x) \ge c * h(x), x \ge k, c \ge 1$ (PISO) de f(x), que

que h(x), $x \ge \pm k$

h(x) es COTA INFERIOR

Escoja un c cualquier(CONVENIENTE) y busca el valor de k que hace cumplir el teorema

MEJOR CASO

