گروه آموزشی : ریاضی	Ph	م و نام خانوادگی :
تاریخ : ۱۳۹۲/۱/۲۸	ورش دوشش شدی شاهرود	شماره دانشجویی :
وقت : ٧ دقيقه	دانشكده رياضي	نام مدرس :
((، ترم درس : ریاضی۱-فنی (۴ گروه هماهنگ	امتحان ميان
	نیمسال (او را دوم) ۱۳۹۲- ۱۳۹۱	3

توجه: مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید.

سوال ۱ – تمام مقادیر
$$z$$
 را بیابید بطوریکه : $z^{\dagger}=rac{1+i}{1-i}$: سوال $z^{\dagger}=1$

سوال ۲ – اگر
$$f\circ g$$
 بیابید. $g(x)=\begin{cases} -x & x<1 \ 1+x & x\geq 1 \end{cases}$ و $f(x)=\begin{cases} \sqrt{1-x} & x\leq \cdot \ x \leq 1 \end{cases}$ تامره $f(x)=\{x^{\prime} & x>\cdot \}$

$$l_{\gamma} = \lim_{x \to \gamma} \frac{\sqrt{x} - \sqrt[\gamma]{x}}{x - \gamma} \qquad l_{\gamma} = \lim_{x \to \infty} (\sqrt{x^{\gamma} + x - \gamma} - \sqrt{x^{\gamma} + \gamma})$$

سوال ۵ – نمودار تابع
$$y = \frac{1}{\sin 7x}$$
 را رسم کنید.

پاسخ سوالات امتحان میان ترم درس ریاضی۱-فنی (۴ گروه هماهنگ) نیمسال دوم ۹۲-۱۳۹۱

$$z^{*} = \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{7i}{7} = i = e^{\frac{\pi}{7}i}$$
: ببتدا عبارت را به ساده ترین صورت می نویسیم:

$$z_k=e^{(rac{\pi}{\sqrt{s}}+rac{k\pi}{\gamma})i}$$
 , $k=\cdot,1,7,7$: يک مقدار مناسب برای z است. تمام مقادیر z عبارتند از $z=e^{rac{\pi}{\gamma s}i}$

جواب سوال x < 1: اگر x < 1 آنگاه یا $x < 1 = -x \le 0$ که نتیجه می دهد x < 1 و یا x < 1 که نتیجه می دهد

$$g(x) = 1 + x > \cdot$$
 آنگاه $x \ge 1$ و اگر $x \ge 1$

$$f \circ g(x) = \begin{cases} x^{\mathsf{\tiny T}} & x < \mathsf{\tiny \star} \\ \sqrt{\mathsf{\tiny $\mathsf{\tiny I}$} + x} & \mathsf{\tiny \star} \leq x < \mathsf{\tiny $\mathsf{\tiny $\mathsf{\tiny I}$}$} \end{cases} \quad g(x) = \begin{cases} (-x)^{\mathsf{\tiny T}} & x < \mathsf{\tiny \star} \\ \sqrt{\mathsf{\tiny $\mathsf{\tiny $\mathsf{\tiny I}$}} - (-x)} & \mathsf{\tiny \star} \leq x < \mathsf{\tiny $\mathsf{\tiny $\mathsf{\tiny I}$}$} \end{cases}$$
بنابر این داریم : $(\mathsf{\tiny I} + x)^{\mathsf{\tiny T}} \quad \mathsf{\tiny $\mathsf{\tiny I}$} \leq x$

جواب سوال $x = t^s$ داريم : عنير متغير $x = t^s$ داريم :

$$l_{1} = \lim_{x \to 1} \frac{\sqrt{x} - \sqrt[\tau]{x}}{x - 1} = \lim_{t \to 1} \frac{t^{\tau} - t^{\tau}}{t^{\tau} - 1} = \lim_{t \to 1} \frac{t^{\tau}(t - 1)}{(t - 1)(t^{\circ} + t^{\tau} + t^{\tau} + t + 1)} = \lim_{t \to 1} \frac{t^{\tau}}{t^{\circ} + t^{\tau} + t^{\tau} + t^{\tau} + t + 1} = \frac{1}{2}$$

$$l_1 = \lim_{x \to 1} \frac{\sqrt{x} - \sqrt[r]{x}}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - \sqrt[r]{x}}{x - 1} \times \frac{\sqrt{x} + \sqrt[r]{x}}{\sqrt{x} + \sqrt[r]{x}} = \lim_{x \to 1} \frac{x - \sqrt[r]{x^{\mathsf{v}}}}{x - 1} \times \frac{1}{\sqrt{x} + \sqrt[r]{x}} \times \frac{x^{\mathsf{v}} + x^{\mathsf{v}}\sqrt{x^{\mathsf{v}}} + \sqrt[r]{x^{\mathsf{v}}}}{x^{\mathsf{v}} + x^{\mathsf{v}}\sqrt{x^{\mathsf{v}}} + x^{\mathsf{v}}\sqrt{x}}$$
 : دوش دوم :

$$= \lim_{x \to 1} \frac{x - \sqrt[r]{x^{\tau}}}{x - 1} \times \frac{1}{\sqrt{x} + \sqrt[r]{x}} \times \frac{x^{\tau} + x\sqrt[r]{x^{\tau}} + \sqrt[r]{x^{\tau}}}{x^{\tau} + x\sqrt[r]{x^{\tau}} + x\sqrt[r]{x}} = \lim_{x \to 1} \frac{x^{\tau} - x^{\tau}}{x - 1} \times \frac{1}{(\sqrt{x} + \sqrt[r]{x})(x^{\tau} + x\sqrt[r]{x^{\tau}} + x\sqrt[r]{x})}$$

$$=\frac{x^{\mathsf{Y}}}{(\sqrt{x}+\sqrt[r]{x})(x^{\mathsf{Y}}+x^{\mathsf{Y}}\sqrt{x^{\mathsf{Y}}}+x^{\mathsf{Y}}\sqrt{x})}=\frac{\mathsf{Y}}{\mathsf{Y}\times\mathsf{Y}}=\frac{\mathsf{Y}}{\mathsf{Y}}$$

$$l_{\gamma} = \lim_{x \to \infty} (\sqrt{x^{\gamma} + x - 1} - \sqrt{x^{\gamma} + r^{\alpha}}) = \lim_{x \to \infty} (\sqrt{x^{\gamma} + x - 1} - \sqrt{x^{\gamma} + r^{\alpha}}) \times \frac{\sqrt{x^{\gamma} + x - 1} + \sqrt{x^{\gamma} + r^{\alpha}}}{\sqrt{x^{\gamma} + x - 1} + \sqrt{x^{\gamma} + r^{\alpha}}}$$

$$= \lim_{x \to \infty} \frac{x - x}{\sqrt{x^{'} + x - 1} + \sqrt{x^{'} + x''}} = \lim_{x \to \infty} \frac{1 - (x/x)}{\sqrt{1 + (1/x) - (1/x^{'})} + \sqrt{1 + (x/x^{'})}} = \frac{1}{1 + 1} = \frac{1}{1 + 1}$$

جواب سوال $f'(\mathrm{TY}) = \frac{\mathrm{T}}{\mathrm{A}}(\mathrm{TY}) = \frac{\mathrm{T}}{\mathrm{A}}(\mathrm{TY}) = \frac{\mathrm{T}}{\mathrm{A}} = f'(\mathrm{TY}) = \frac{\mathrm{T}}{\mathrm{A}} = f'(\mathrm{TY}) = \frac{\mathrm{T}}{\mathrm{A}} = f'(\mathrm{TY}) = \frac{\mathrm{T}}{\mathrm{A}}$ اکنون می توانیم

$$f(\Upsilon\Upsilon) = f(\Upsilon\Upsilon + 1) \cong f(\Upsilon\Upsilon) + 1 \times f'(\Upsilon\Upsilon) = \Lambda + \frac{\Upsilon}{\Upsilon} = \Lambda/10$$
 : بنویسیم

جواب سوال $D_f = \mathbf{R} - \{\frac{k\pi}{7}: k \in \mathbf{Z}\}$ است. نمودار تابع $T = \pi$ و دامنه $y = \frac{1}{\sin 7}$ است. نمودار تابع

$$y' = \frac{-7\cos 7x}{\sin^7 7x}$$
, $y' = \cdot \rightarrow x = \pm \frac{\pi}{4}$, $y = \pm 1$

اكنون جدول تغييرات را رسم مي كنيم.

Ī		π	π		•		π		π	
	х	7	۴				۴		۲	
	<i>y</i> '		•				٠			
ſ	\overline{v}	$-\infty$ /	× -1	> −∞	∞	>	١	7	∞	

سيدرضا موسوي