Almost Classical Skew Bracoids

Isabel Martin-Lyons

with the supervision of Paul Truman

Keele University, UK

Groups, Rings and the Yang-Baxter equation 22nd of June 2023

The Objects at Play

Definition

A skew (left) brace is a triple (G,\star,\circ) , where (G,\star) and (G,\circ) are groups and for all $g,h,f\in G$

$$g \circ (h \star f) = (g \circ h) \star g^{-1} \star (g \circ f).$$

Definition

A skew (left) bracoid is a 5-tuple $(G, \circ, N, \star, \odot)$, where (G, \circ) and (N, \star) are groups and \odot is a transitive action of G on N for which

$$g \odot (\eta \star \mu) = (g \odot \eta) \star (g \odot e_N)^{-1} \star (g \odot \mu),$$

for all $g \in G$ and $\eta, \mu \in N$.

Housekeeping

- We will assume everything is finite.
- We will frequently write (G, N) for $(G, \circ, N, \star, \odot)$ (and then flagrantly use \star to mean the operation in N and \odot the action of G on N).

Essentially a skew brace

Example

Any skew brace (G, \star, \circ) can be thought of as a skew bracoid $(G, \circ, G, \star, \odot)$ where $g \odot h := g \circ h$.

Essentially a skew brace

Example

Any skew brace (G, \star, \circ) can be thought of as a skew bracoid $(G, \circ, G, \star, \odot)$ where $g \odot h := g \circ h$.

On the other hand, suppose we have a skew bracoid $(G, \circ, N, \star, \odot)$ with |G| = |N|. We then have a bijection $g \mapsto g \odot e_N$, which we can use to transfer the operation from one group onto the other, to produce a skew brace.

In this situation we will say (G, N) is essentially a skew brace.

Definition (Under construction)

Let (G, N) be a skew bracoid and $S = \operatorname{Stab}_G(e_N)$. We say (G, N) is almost classical if ...

Definition (Under construction)

Let (G, N) be a skew bracoid and $S = Stab_G(e_N)$. We say (G, N) is almost classical if ...

• Well, perhaps we don't have |G| = |N|, but there is some $H \le G$ which is regular on N. In which case, (H, N) is essentially a skew brace.

Definition (Under construction)

Let (G, N) be a skew bracoid and $S = Stab_G(e_N)$. We say (G, N) is almost classical if ...

- Well, perhaps we don't have |G| = |N|, but there is some $H \le G$ which is regular on N. In which case, (H, N) is essentially a skew brace.
- Then $H \cap S = \{e_N\}$, |G| = |H||S|, so H is a complement to S in G.

Definition (Under construction)

- Well, perhaps we don't have |G| = |N|, but there is some $H \le G$ which is regular on N. In which case, (H, N) is essentially a skew brace.
- Then $H \cap S = \{e_N\}$, |G| = |H||S|, so H is a complement to S in G.

Definition (Under construction)

- Well, perhaps we don't have |G| = |N|, but there is some $H \le G$ which is regular on N. In which case, (H, N) is essentially a skew brace.
- Then $H \cap S = \{e_N\}$, |G| = |H||S|, so H is a complement to S in G.

Definition (Under construction)

- Well, perhaps we don't have |G| = |N|, but there is some $H \le G$ which is regular on N. In which case, (H, N) is essentially a skew brace.
- Then $H \cap S = \{e_N\}$, |G| = |H||S|, so H is a complement to S in G.
- Now we have $G \cong H \rtimes S$.

Definition (Under construction)

- Well, perhaps we don't have |G| = |N|, but there is some $H \le G$ which is regular on N. In which case, (H, N) is essentially a skew brace.
- Then $H \cap S = \{e_N\}$, |G| = |H||S|, so H is a complement to S in G.
- Now we have $G \cong H \rtimes S$.

Definition (Under construction)

- Well, perhaps we don't have |G| = |N|, but there is some $H \le G$ which is regular on N. In which case, (H, N) is essentially a skew brace.
- Then $H \cap S = \{e_N\}$, |G| = |H||S|, so H is a complement to S in G.
- Now we have $G \cong H \rtimes S$.
- For all $h, h' \in H$ we have $(h \odot e_N) \star (h' \odot e_N) = hh' \odot e_N$ and $(h \odot e_N)^{-1} = h^{-1} \odot e_N$. This means $h \mapsto h \odot e_N$ is an isomorphism.

Definition

- Well, perhaps we don't have |G| = |N|, but there is some $H \le G$ which is regular on N. In which case, (H, N) is essentially a skew brace.
- Then $H \cap S = \{e_N\}$, |G| = |H||S|, so H is a complement to S in G.
- Now we have $G \cong H \rtimes S$.
- For all $h, h' \in H$ we have $(h \odot e_N) \star (h' \odot e_N) = hh' \odot e_N$ and $(h \odot e_N)^{-1} = h^{-1} \odot e_N$. This means $h \mapsto h \odot e_N$ is an isomorphism.

Remark

Remark

Let $(G, \circ, G, \star, \odot)$ be a skew brace thought of as a skew brace and $S = \operatorname{Stab}_G(e_N)$. We say (G, G) is almost classical if S has a normal complement H in G for which (H, G) is essentially a trivial skew brace.

Remark

Let $(G, \circ, G, \star, \odot)$ be a skew brace thought of as a skew brace and $S = \operatorname{Stab}_G(e_N) = \{e_G\}$. We say (G, G) is almost classical if $S = \{e_G\}$ has a normal complement H in G for which (H, G) is essentially a trivial skew brace.

Remark

Let $(G, \circ, G, \star, \odot)$ be a skew brace thought of as a skew brace and $S = \operatorname{Stab}_G(e_N) = \{e_G\}$. We say (G, G) is almost classical if $S = \{e_G\}$ has a normal complement H = G in G for which (H, G) is essentially a trivial skew brace.

Remark

Let $(G, \circ, G, \star, \odot)$ be a skew brace thought of as a skew brace and $S = \operatorname{Stab}_G(e_N) = \{e_G\}$. We say (G, G) is almost classical if $S = \{e_G\}$ has a normal complement H = G in G for which (H, G) = (G, G) is essentially a trivial skew brace.

Remark

Let $(G, \circ, G, \star, \odot)$ be a skew brace thought of as a skew brace and $S = \operatorname{Stab}_G(e_N) = \{e_G\}$. We say (G, G) is almost classical if $S = \{e_G\}$ has a normal complement H = G in G for which (H, G) = (G, G) is essentially a trivial skew brace.

The λ -functions

Let (G, N) be an almost classical skew bracoid with H such that $G \cong H \rtimes S$ and (H, N) is essentially a trivial skew brace.

Let $hx \in G$, with $h \in H$ and $x \in S$, and $n = h_n \odot e_N \in N$ then,

$$\lambda_{hx}(n) = (hx \odot e_N)^{-1} \star (hx \odot n)$$

$$= (h \odot e_N)^{-1} \star (hxh_n \odot e_N)$$

$$= (h^{-1} \odot e_N) \star (hxh_nx^{-1} \odot e_N)$$

$$= xh_nx^{-1} \odot e_N.$$

The λ -functions

Let (G, N) be an almost classical skew bracoid with H such that $G \cong H \rtimes S$ and (H, N) is essentially a trivial skew brace.

Let $hx \in G$, with $h \in H$ and $x \in S$, and $n = h_n \odot e_N \in N$ then,

$$\lambda_{hx}(n) = (hx \odot e_N)^{-1} \star (hx \odot n)$$

$$= (h \odot e_N)^{-1} \star (hxh_n \odot e_N)$$

$$= (h^{-1} \odot e_N) \star (hxh_nx^{-1} \odot e_N)$$

$$= xh_nx^{-1} \odot e_N.$$

So we conjugate by the S part and the H part acts trivially.

To the holomorph!

We have a correspondence between (equivalence classes of) skew bracoids (G, N) and transitive subgroups of $Hol(N) = N \rtimes Aut(N)$. We use the map $\Lambda: G \to Hol(N)$ given by $g \mapsto (g \odot e_N, \lambda_g)$ for the forward direction.

To the holomorph!

We have a correspondence between (equivalence classes of) skew bracoids (G, N) and transitive subgroups of $Hol(N) = N \rtimes Aut(N)$. We use the map $\Lambda: G \to Hol(N)$ given by $g \mapsto (g \odot e_N, \lambda_g)$ for the forward direction.

Example

Let (G, N) be an almost classical skew bracoid and H be a normal complement to $S = \operatorname{Stab}_G(e_N)$ in G with (H, N) essentially a trivial skew brace.

Then,

$$\Lambda(H) = \{ (h \odot e_N, \lambda_h) \mid h \in H \}$$
$$= \{ (h \odot e_N, id) \mid h \in H \}$$
$$= (N, id),$$

Example (continued)

Also,

$$\Lambda(S) = \{(x \odot e_N, \lambda_x) \mid x \in S\}$$
$$= \{(e_N, \lambda_x) \mid x \in S\}$$
$$= \Lambda(G) \cap (e_N, \operatorname{Aut}(N))$$

since any $g \mapsto (e_N, \lambda_g)$ must in particular have $g \odot e_N = e_N$.

So
$$\Lambda(G) = N \times \Lambda(S)$$
.

Example (continued)

Also,

$$\Lambda(S) = \{(x \odot e_N, \lambda_x) \mid x \in S\}$$
$$= \{(e_N, \lambda_x) \mid x \in S\}$$
$$= \Lambda(G) \cap (e_N, \operatorname{Aut}(N))$$

since any $g \mapsto (e_N, \lambda_g)$ must in particular have $g \odot e_N = e_N$.

So
$$\Lambda(G) = N \rtimes \Lambda(S)$$
.

Conversely, let $A \leq \operatorname{Aut}(N)$. Packaging up $N \rtimes A \subseteq \operatorname{Hol}(N)$ with N, we get an almost classical skew bracoid $(N \rtimes A, N)$.

Left Ideals

Proposition

If (G, N) is an almost classical skew bracoid and $S = \operatorname{Stab}_G(e_N)$, then $G' \odot e_N$ is a left ideal for all G' with $S \leq G' \leq G$.

Left Ideals

Proposition

If (G, N) is an almost classical skew bracoid and $S = \operatorname{Stab}_G(e_N)$, then $G' \odot e_N$ is a left ideal for all G' with $S \subseteq G' \subseteq G$.

Proof.

Let G' be a subgroup of G containing S. Since $S \subseteq G'$ if $hx \in G'$ then $h = hxx^{-1} \in G'$. Then for $hx \in G$ and $h'_1x'_1, h'_2x'_2 \in G'$

• $(h_1'x_1' \odot e_N)(h_2'x_2' \odot e_N) = (h_1' \odot e_N)(h_2' \odot e_N) = h_1'h_2' \odot e_N \in G' \odot e_N$. Hence $G' \odot e_N$ is a subgroup of N.

Left Ideals

Proposition

If (G, N) is an almost classical skew bracoid and $S = \operatorname{Stab}_G(e_N)$, then $G' \odot e_N$ is a left ideal for all G' with $S \subseteq G' \subseteq G$.

Proof.

Let G' be a subgroup of G containing S. Since $S \subseteq G'$ if $hx \in G'$ then $h = hxx^{-1} \in G'$. Then for $hx \in G$ and $h'_1x'_1, h'_2x'_2 \in G'$

- $(h_1'x_1'\odot e_N)(h_2'x_2'\odot e_N)=(h_1'\odot e_N)(h_2'\odot e_N)=h_1'h_2'\odot e_N\in G'\odot e_N.$ Hence $G'\odot e_N$ is a subgroup of N.
- $\lambda_{hx}(h'_1x'_1\odot e_N)=\lambda_{hx}(h'_1\odot e_N)=xh'_1x^{-1}\odot e_N\in G'\odot e_N.$ Hence $G'\odot e_N$ is closed under the λ -functions of G.

Let L/K be a separable extension of fields with Galois closure E, and write G = Gal(E/K) and S = Gal(E/L).

Let L/K be a separable extension of fields with Galois closure E, and write G = Gal(E/K) and S = Gal(E/L).

• Suppose (G, G/S) is almost classical skew bracoid thanks to H. We take $\mathcal{R}_{\star}(G/S) \subseteq \mathsf{Perm}(G/S)$

$$\mathcal{R}_{\star}(hS)[h'S] = h'S \star (hS)^{-1} = h'h^{-1}S.$$

Let L/K be a separable extension of fields with Galois closure E, and write G = Gal(E/K) and S = Gal(E/L).

• Suppose (G, G/S) is almost classical skew bracoid thanks to H. We take $\mathcal{R}_{\star}(G/S) \subseteq \mathsf{Perm}(G/S)$

$$\mathcal{R}_{\star}(hS)[h'S] = h'S \star (hS)^{-1} = h'h^{-1}S.$$

• We also have $\mathcal{L}(H) \subseteq \operatorname{\mathsf{Perm}}(G/S)$ given by

$$\mathcal{L}(h)[h'S] = hh'S.$$

Let L/K be a separable extension of fields with Galois closure E, and write G = Gal(E/K) and S = Gal(E/L).

• Suppose (G, G/S) is almost classical skew bracoid thanks to H. We take $\mathcal{R}_{\star}(G/S) \subseteq \mathsf{Perm}(G/S)$

$$\mathcal{R}_{\star}(hS)[h'S] = h'S \star (hS)^{-1} = h'h^{-1}S.$$

ullet We also have $\mathcal{L}(H)\subseteq \mathsf{Perm}(G/S)$ given by

$$\mathcal{L}(h)[h'S] = hh'S.$$

• $\mathcal{L}(H)^{opp} := \operatorname{Cent}_{\operatorname{Perm}(G/S)}(\mathcal{L}(H)).$

Let L/K be a separable extension of fields with Galois closure E, and write G = Gal(E/K) and S = Gal(E/L).

• Suppose (G, G/S) is almost classical skew bracoid thanks to H. We take $\mathcal{R}_{\star}(G/S) \subseteq \mathsf{Perm}(G/S)$

$$\mathcal{R}_{\star}(hS)[h'S] = h'S \star (hS)^{-1} = h'h^{-1}S.$$

ullet We also have $\mathcal{L}(H)\subseteq \mathsf{Perm}(G/S)$ given by

$$\mathcal{L}(h)[h'S] = hh'S.$$

• $\mathcal{L}(H)^{opp} := \mathsf{Cent}_{\mathsf{Perm}(G/S)}(\mathcal{L}(H)) = \mathcal{R}_{\star}(G/S).$

Let L/K be a separable extension of fields with Galois closure E, and write G = Gal(E/K) and S = Gal(E/L).

• Suppose (G, G/S) is almost classical skew bracoid thanks to H. We take $\mathcal{R}_{\star}(G/S) \subseteq \mathsf{Perm}(G/S)$

$$\mathcal{R}_{\star}(hS)[h'S] = h'S \star (hS)^{-1} = h'h^{-1}S.$$

ullet We also have $\mathcal{L}(H)\subseteq \mathsf{Perm}(G/S)$ given by

$$\mathcal{L}(h)[h'S] = hh'S.$$

• $\mathcal{L}(H)^{opp} := \mathsf{Cent}_{\mathsf{Perm}(G/S)}(\mathcal{L}(H)) = \mathcal{R}_{\star}(G/S).$

The Hopf-Galois structures corresponding to such $\mathcal{L}(H)^{opp}$ are precisely the almost classical HGS on L/K.

Thank you for your attention!