Data Exploration

The dataset contains 13 variables related to housing, transportation, the environment, education, and crime. For this data exploration, and the data has a target variable with a 1 representing an above average crime rate and a 0 representing below average crime rate and The target has an approximate mean of 0.5 and standard deviation of 0.5. In addition, there is no missing data point in this data set. Further more, from the box plot some variable like rad and tax has large affect to crime rate where higher value tend to lead a crime rate above median while variable like rm tend to have less effect to the target because the distribution are similar between group of high crime rate and low crime rate. It also Indicates that these variable may has less predict power. On the other hand the correlation plot. Shows that there are correlations between variables and rad and tax has highest correlation which is 0.91

	vars	n	mean	sd	median	trimmed	mad	min	max
zn	1	466	11.5772532	23.3646511	0.00000	5.3542781	0.0000000	0.0000	100.0000
indus	2	466	11.1050215	6.8458549	9.69000	10.9082353	9.3403800	0.4600	27.7400
chas	3	466	0.0708155	0.2567920	0.00000	0.0000000	0.0000000	0.0000	1.0000
nox	4	466	0.5543105	0.1166667	0.53800	0.5442684	0.1334340	0.3890	0.871
rm	5	466	6.2906738	0.7048513	6.21000	6.2570615	0.5166861	3.8630	8.780
age	6	466	68.3675966	28,3213784	77.15000	70.9553476	30.0226500	2.9000	100.000
dis	7	466	3.7956929	2.1069496	3.19095	3.5443647	1.9144814	1.1296	12.126
rad	8	466	9.5300429	8.6859272	5.00000	8.6978610	1.4826000	1.0000	24.000
tax	9	466	409.5021459	167.9000887	334.50000	401.5080214	104.5233000	187.0000	711.000
100 - 75 - 50 - 25 -	zn		20 -	0.8 0.7 0.6 0.5	1 1	9 7 8 7 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
75 - 50 - 25 - 0 - 100 - 75 - 50 - 25 -	zn		20 - 10 - in	0.8 0.7 0.6 0.5 0.4 dis 25 20 15 10	nox	700 - 600 - 500 - 400 - 300 -	rm tax	target	
75 - 50 - 25 - 0 - 100 - 75 - 50 -	zn		20 - 10 - in 12.5 - 10.0 - 7.5 - 5.0 - 2.5 - 1	0.8 0.7 0.6 0.5 0.4 dus dis 25 20 15	nox	700 - 600 - 500 - 400 -	m	₱ 0	
75 - 50 - 25 - 0 - 100 - 75 - 50 - 25 -	zn	io	20 - 10 - in 12.5 - 10.0 - 7.5 - 5.0 - 2.5 - 100 - 10	0.8 0.7 0.6 0.5 0.4 dus dis 25 20 15	nox rad rad Istat	700 - 600 - 500 - 400 - 300 -	rm tax	₱ 0	

Crime

Data Preparation

We applied some transformations to the data. First of all, for variable with a skewed distribution like age we applied log transformation to the variable and. In addition, for variable with high variance like quadratic transformation

Build Models

First we build a model use all variables using original data set and from the result, we see only nine variables are statistically significant AIC for the model is 214.15. Then we build a model with all variables from original data set and transformed variables. The second model has a AIC equal to 213.33 and residual deviance equal to 177.33. Because the model applies transformation which reduced the variance, the residual deviance is smaller than before.

Then we build the third model using Backwards selection against all variables including transformed variables to find the best model and there are ten variables in this model finally. The model's AIC is 261.91 which is higher than previous two models but residual deviance is higher. *Finally we use* glmulti package to build another model against all variables including transformed variables. The model has seven variables and including two transformed variables. The model has a AIC equal to 230 but much lower residual deviance which is only 43

Model Selection

All models have similar AIC but the third model has a much lower residual deviance. So I think it should be more useful despite the fact the the AIC of this model is the highest among all models. Thus I decide to choose the last model.

Evaluating the model

We split the training data set in 20/80 and run the model against two data set. The result confusion matrices and accuracy are showing below. The model return a high 80% accuracy for both data set which is good.

```
PredictedValue
##
## ActualValue FALSE TRUE
          0 138 37
##
        1 12 176
##
## [1] 0.873
         PredictedValue
##
## ActualValue FALSE TRUE
##
        0 48 14
        1 1 40
##
## [1] 0.894
```

Finally we run the model on the given evaluation dataset and the model predicts that there are 12 observations below the median crime rate, and about 28 above the median crime rate.

```
## predict12
## O 1
## 12 28
```

Appendix

```
library(psych) library(readr) library(kableExtra) library(ggiraph) library(cowplot) library(reshape2)
library(corrgram) library(gridExtra) library(usdm) library(mice) library(pROC) library(reshape2) library(caTools)
library(caret) library(ROCR)
crime train<-read csv("crime-training-data.csv")</pre>
crime eval<-read csv("crime-evaluation-data.csv")</pre>
train <- describe(crime_train)</pre>
train$na count <- sapply(crime train, function(y)
sum(length(which(is.na(y)))))
kable(train, "html", escape = F) %>%
kable_styling("striped", full_width = T) %>%
column spec(1, bold = T) %>%
scroll box(width = "100%", height = "700px")
long <- melt(crime train, id.vars= "target")%>%
filter(variable != "chas") %>%
mutate(target = as.factor(target))
ggplot(data = long, aes(x = variable, y = value)) + geom boxplot(aes(fill = target)) + facet wrap(\sim variable,
scales = "free")
crime hist <- crime train
crime hist %>% keep(is.numeric) %>%
gather() %>%
ggplot(aes(value)) + facet wrap(~ key, scales = "free") + geom histogram(bins = 35)
ggplot(crime_train, aes(crime_train$medv,target)) + geom_point() + geom_smooth(method = "glm",
method.args = list(family = "binomial"), se = FALSE)
kable(cor(drop_na(crime_train))[,14], "html", escape = F) %>% kable_styling("striped", full_width = F) %>%
column spec(1, bold = T) %>% scroll box(height = "500px")
corrgram(drop na(crime train), order=TRUE, upper.panel=panel.cor, main="Moneyball")
```

```
library(Amelia)
missmap(crime eval, main = "Missing values vs observed")
transform crime <- crime train
transform crime$logage<-log(transformcrime$age)
transform crime$logIstat<-log(transformcrime$lstat)
 transform crime$quadzn<-transformcrime$zn^2
transform crime$quadrad<-transformcrime$rad^2
crime eval1 <- crime eval
crime eval1$logage<-log(crime val$age)
crime eval1loglstat<-log(crime val$lstat)</pre>
crime eval1$quadzn<-crime val$zn^2
crime eval1$quadrad<-crimeeval$rad^2
model1 <- glm(target ~., family = "binomial", data=crime train) summary(model1)
Model2 <- glm(target ~., family = "binomial", data=transform crime) summary(model3)
Model3 <- glm(target ~ indus + nox + rm + age + dis + tax + ptratio + black +medv + logage, family = "binomial",
data=transform crime) summary(model5)
library(rJava)
library(glmulti)
glmulti.lm.out <- glmulti(crime train$target ~., data = crime train, level = 1, # No interaction considered
method = "h", # Exhaustive approach crit = "aic", # AIC as criteria confsetsize = 5, # Keep 5 best models plotty
= F, report = F, # No plot or interim reports fitfunction = "Im") # Im function
modelglmulti <- glm(transform crime$target ~ nox + age + rad + ptratio + medv + logage + quadrad, data =
transform crime)
summary(modelglmulti)
splitdata <- transform crime
split <- sample.split(splitdata, SplitRatio = 0.8) split training <- subset(splitdata, split == "TRUE") testing <-
subset(splitdata, split == "FALSE")
```

modelglmulti3 <- glm(training\$target ~ 1 + nox + age + rad + ptratio + medv, family="binomial", data = training) res <- predict(modelglmulti3, newdata=training, type="response")

ROCRPred = prediction(res, training\$target)

ROCRPref <- performance(ROCRPred, "tpr", "fpr")</pre>

plot(ROCRPref, colorize=TRUE, print.cutoffs.at=seq(0.1,by=0.1))

(table(ActualValue=training\$target, PredictedValue=res>0.3)) round((149+167)/(149+167+9+37),3)

res <- predict(modelglmulti3, newdata=testing, type="response") (table(ActualValue=testing\$target, PredictedValue=res>0.3)) round((42+51)/(42+51+9+2),3)

predict1 <- predict(modelglmulti, newdata=crime_eval1, type="response") predict12 <- ifelse(predict1 > 0.3, 1,
0) table(predict12) summary(predict1)

predict2 <- predict(model1, newdata=crime_eval1, type="response") summary(predict2) predict11 <- ifelse(predict2 > 0.5, 1, 0) table(predict11)