$$\begin{vmatrix} a_{k+1,k+2}^{(k)} \end{vmatrix} \le |a_{k+1,k+2}| \quad (u_{k+1,k+2} = a_{k+1,k+2}^{(k)})$$

$$a_{k+1,k+2}^{(k)} = a_{k+1,k+2} \quad (u_{k+1,k+2} = a_{k+1,k+2}^{(k)})$$

Q(k)...n, 1...n = Qkm.n, 1...n, 进行消去 (可能支换名 k+1, k+2 行). 得:

$$U_{k+2,k+2} = Q_{k+2,k+2} - \beta Q_{k+1,k+2}^{(k)}$$
 , 其中 $|\beta| \le |\beta|$ $|\beta| \ge |\beta|$

D

IJ

20. At :
$$Abbil PA = (a_{ij})$$
. $PE = (e_{ij})$ $Abbil || E||_{\infty} = ||PE||_{\infty}$.

 $U_{ij} = fl(a_{ij} - \sum_{k=1}^{i-1} l_{ik} U_{kj})$
 $= a_{ij}(1+\delta_{i}) - \sum_{k=1}^{i-1} l_{ik} U_{kj}(1+\delta_{k})$.

 $Abbil = 1.01(1-k+1)U = 4.04U(1+\delta_{i})$.

 $Ai_{ij} = \frac{U_{ij}}{1+\delta_{i}} + \sum_{k=1}^{i-1} l_{ik} U_{kj} \frac{1+\delta_{k}}{1+\delta_{i}}$
 $Abbil = 1.01(1-k+1)U = 4.04U(1+\delta_{k})$
 $Abbil = 1.01(1-k+1)U = 1.01U$
 $Abbil = 1.01(1-k+1)U$
 $Abbi$

 $G_{1,i+3} = U_{1,i+3}$. $|U_{1,i+2}| \leq 2M$, $|U_{1,i+1}| \leq 4M$, $|U_{1i}| \leq 8M$. (If $M = \max_{i \geq 3} |a_{ij}|$) to $\|\widetilde{U}\|_{\infty} \leq 7\rho \|A\|_{\infty} \leq 56 \|A\|_{\infty}$.

> |E||_ = ||PE||_ € 32.68 U. 56 ||A||_ = 1830. 08 M.