hw1

October 8, 2022

[16]: import numpy as np

0.1 1. Matrix Multiplication

0.1.1 a)

In this matrix the rows represent each month (September, October, November, and December respectively) and the columns represent each category of spending (housing, food, recreation/transportation).

0.1.2 b)

$$\begin{bmatrix} 2500 & 350 & 200 \\ 2000 & 405 & 250 \\ 2000 & 325 & 400 \\ 2000 & 210 & 450 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} =$$

$$\begin{bmatrix} 2500*1 + 350*1 + 200*1 \\ 2000*1 + 405*1 + 250*1 \\ 2000*1 + 325*1 + 400*1 \\ 2000*1 + 210*1 + 450*1 \end{bmatrix} =$$

$$\begin{bmatrix} 3050 \\ 2655 \\ 2725 \\ 2660 \end{bmatrix}$$

So costs for September, October, November and December were 3050, 2655, 2725, and 2660 respectively.

0.1.3 c)

$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2500 & 350 & 200 \\ 2000 & 405 & 250 \\ 2000 & 325 & 400 \\ 2000 & 210 & 450 \end{bmatrix} =$$

$$\begin{bmatrix} 2500*1 & 350*1 & 200*1 \\ + & + & + \\ 2000*1 & 405*1 & 250*1 \\ + & + & + \\ 2000*1 & 325*1 & 400*1 \\ + & + & + \\ 2000*1 & 210*1 & 450*1 \end{bmatrix} =$$

[8500 1290 1300]

So costs for housing, food, and recreation/transportation are 8500, 1290, and 1300 respectively.

0.1.4 d)

$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2500 & 350 & 200 \\ 2000 & 405 & 250 \\ 2000 & 325 & 400 \\ 2000 & 210 & 450 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2500 * 1 + 350 * 1 + 200 * 1 \\ 2000 * 1 + 405 * 1 + 250 * 1 \\ 2000 * 1 + 325 * 1 + 400 * 1 \\ 2000 * 1 + 210 * 1 + 450 * 1 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3050 \\ 2655 \\ 2725 \\ 2660 \end{bmatrix} =$$

$$[3050*1+2655*1+2725*1+2660*1] = 11090$$

Total costs are 11090

0.1.5 e)

0.2 2.

0.2.1 a)

The vector (0, 0, 0, 1, 0) would get the fourth row:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 8 & 0 & 1 & 1 \\ 9 & 2 & 9 & 4 \\ 1 & 5 & 9 & 9 \\ 9 & 9 & 4 & 7 \\ 6 & 9 & 8 & 9 \end{bmatrix} =$$

$$\begin{bmatrix} 8*0 & 0*0 & 1*0 & 1*0 \\ + & + & + & + \\ 9*0 & 2*0 & 9*0 & 4*0 \\ + & + & + & + \\ 1*0 & 5*0 & 9*0 & 9*0 \\ + & + & + & + \\ 9*1 & 9*1 & 4*1 & 7*1 \\ + & + & + & + \\ 6*0 & 9*0 & 8*0 & 9*0 \end{bmatrix} =$$

 $[9 \ 9 \ 4 \ 7]$

0.2.2 b)

A vector of length 5 with all 0s except for its kth entry which should be a 1 instead

0.2.3 c)

A vector of length five with all 0s except for the scalar a in the kth row and the scalar b in the jth row

0.2.4 d)

The vector (0, 0, 1, 0) would get the third column

0.2.5 e)

A vector of length 4 with all 0s except for its kth entry which should be a 1 instead

0.2.6 f)

A vector of length four with all 0s except for the scalar a in the kth row and the scalar b in the jth row

0.2.7 (g)

```
[21]: # To get the fourth row np.array([0, 0, 0, 1, 0])@matrix2
```

```
[21]: array([9, 9, 4, 7])
```

```
[22]: # Get kth row
def get_kth_row(k, matrix):
    m,n = matrix.shape
    v = np.zeros(m)
    v[k - 1] = 1
    return v@matrix

# get the 3rd row
get_kth_row(3, matrix2)
```

```
[22]: array([1., 5., 9., 9.])
```

```
[23]: # Get kth row times a plus jth row times b
def row_combination(a,b,k,j,matrix):
    m,n = matrix.shape
    v = np.zeros(m)
```

```
v[k - 1] = a
          v[j - 1] = b
          return v@matrix
      # get 2 times first row plus 3 times second row
      row_combination(2,3,1,2, matrix2)
[23]: array([43., 6., 29., 14.])
[24]: # To get the fourth column
      matrix2@np.array([0,0,1,0])
[24]: array([1, 9, 9, 4, 8])
[25]: # Get kth column
      def get_kth_col(k, matrix):
          m,n = matrix.shape
          v = np.zeros(n)
          v[k - 1] = 1
          return matrix@v
      # get the 2nd column
      get_kth_col(2, matrix2)
[25]: array([0., 2., 5., 9., 9.])
[26]: # Get kth columna times a plus jth column times b
      def col_combination(a,b,k,j,matrix):
          m,n = matrix.shape
          v = np.zeros(n)
```

```
[26]: # Get kth columna times a plus jth column times b

def col_combination(a,b,k,j,matrix):
    m,n = matrix.shape
    v = np.zeros(n)
    v[k - 1] = a
    v[j - 1] = b
    return matrix@v

# get 5 times third col plus 2 times fourth col
col_combination(5,2,3,4, matrix2)
```

[26]: array([7., 53., 63., 34., 58.])

0.3 3.

The matrix is rank 1 because all the columns (and rows) are linear combinations of each other. If the columns are the vectors x_1, x_2, x_3 then $x_2 = 2x_1$ and $x_3 = 3x_1$

0.4 4.

The line would be where $w^Tx_0=0$ or in this case $w_1x_1+w_2x_2+w_3=0$ or $x_2-2=0$ which when put into slope intercept form gives us $x_2=-3/5x_1+2/5$. Everything above this

line would have a +1 label on or below it has a -1 label. For instance the point 1, 2 would give us an 11 which is above 0 and there for a +1 label.

```
[27]: import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')

x = np.linspace(-5, 5)

ax.plot((-3 * x + 2)/5, x, linestyle='-')
ax.plot(1, 2, marker="+", markersize=15)
```

[27]: [<matplotlib.lines.Line2D at 0x1150e5dc0>]

0.5 5.

0.5.1 a)

You'd want to have d + 1 coefficients (an extra one that would be a constant for z to the 0th power or in otherwords 1). So you would have w_j from j=0 to j=d and z to the dth power for each coefficient ie:

$$\begin{aligned} p(z) &= y \\ \sum_{j=0}^d w_j z^d &= y \end{aligned}$$

So if d=3:

$$w_0z^0+w_1z^1+w_2z^2+w_3z^3=y\\$$

0.5.2 b)

X should be a n by d+1 vector with each row being z_i to the power of 0...d then multipled by a vector of weights length d+1 producing a y vector of length n (one for z) so:

$$\begin{bmatrix} z_1^0 & z_1^1 & \dots & z_1^d \\ z_2^0 & z_2^1 & \dots & z_2^d \\ \dots & \dots & \dots & \dots \\ z_n^0 & z_n^1 & \dots & z_n^d \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_d \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \dots \\ y_n \end{bmatrix}$$

0.5.3 c)

```
[28]: n = 100
z = np.linspace(-1, 1, n)
d = 3
w = np.random.rand(d + 1)
X = np.zeros((n,d + 1))

for i in range(n):
    for j in range(d + 1):
        X[i, j] = z[i]**j

p = X@w

plt.plot(z, p, linewidth=2)
plt.xlabel('z')
plt.ylabel('y')
plt.title('polynomial with coefficients w = %s' %w)
plt.show()
```

polynomial with coefficients $w = [0.14762662 \ 0.00850644 \ 0.6460465 \ 0.73074432]$

[]: