MATH 3B

Discussion Worksheet - Thursday, May 24

Approximation of Integrals:

• Midpoint Rule:

• Trapezoidal Rule:

• Simpson's Rule:

• We say an integral converges if $\int_a^b f(x) dx =$

• We say an integral diverges otherwise.

• Type I Improper Integrals: Integrals on intervals of the form $(-\infty, b]$ or $[a, \infty)$

Examples:

 $\bullet \int_1^\infty \frac{1}{x} \, dx =$

 $\bullet \int_{-\infty} \frac{1}{\sqrt{3-x}} \, dx =$

 $\bullet \int_{-\infty}^{\infty} x e^{-x^2} \, dx =$

Type II Improper Integrals: Integrals of functions f(x) on the interval [a,b] where f(x) is discontinuous or diverges at some $c \in [a,b]$ Examples:

 $\bullet \int_0^3 \frac{1}{\sqrt{3-x}} \, dx =$

 $\bullet \int_{-2}^{3} \frac{1}{x^3} dx =$

 $\bullet \int_{-2}^{2} \frac{x}{\sqrt{4-x^2}} \, dx =$

Arc Length: If f' is continuous on [a, b], then the length of the curve

$$y = f(x), a \le x \le b$$
 is given by $L =$

• Strategies:

Practice Problems:

Problem 1:

(HW 7) Compute the improper integrals below and write "D" if the integral diverges:

- (a) $\int_0^1 \frac{1}{x^2} dx$
- (b) $\int_0^1 \frac{1}{x} \, dx$
- (c) $\int_0^1 \frac{1}{\sqrt{x}} \, dx$
- (d) $\int_0^1 \ln(x) \, dx$
- (e) $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$

Problem 2:

 $(HW\ 8)$ For each of the improper integrals below, if the comparison test applies, write "converges" or "diverges" followed by the best function to use for comparison.

(a)
$$\int_{1}^{\infty} \frac{9 + \sin(x)}{\sqrt{x - 0.8}} dx$$

(b)
$$\int_{1}^{\infty} \frac{\cos^{2}(x)}{x^{2}+4} dx$$

(c)
$$\int_{1}^{\infty} \frac{x^2}{\sqrt{x^8 + 4}} \, dx$$

(d)
$$\int_{1}^{\infty} \frac{e^{-x}}{x^2} dx$$