CH 4 - Mathematical Induction

Luke Lu • 2025-09-29

Notations

$$\sum_{i=m}^n x_i = x_m + x_{m+1} + x_{m+2} + \ldots + x_{n-1} + x_n$$

$$\prod_{i=m}^{n} x_i = x_m \cdot x_{m+1} \cdot x_{m+2} \cdot \dots \cdot x_{n-1} \cdot x_n$$

Properties

Constant multiplication

$$\sum_{i=m}^{k} cx_i = c \cdot \sum_{i=m}^{k} x_i$$

Addition/Subtraction

$$\sum_{i=m}^k x_i \pm \sum_{i=m}^k y_i = \sum_{i=m}^k x_i \pm \sum_{i=m}^k y_i$$

Index Shift

$$\sum_{i=m}^k x_i = \sum_{m+n}^{k\pm n} x_{i\mp n}$$

Breaking Sum

$$\sum_{i=m}^k x_i = \sum_{i=m}^r x_i + \sum_{i=r+1}^k x_i$$

Recurrence Relation

A sequence of values by giving one or more initial terms, together with an equation expressing each subsequent term in terms of earlier ones. (i.e. $s_1=1, s_n=s_{n-1}+n$ is the same as $\sum_{i=1}^n i$)

Proof by Induction

An **axiom** of a mathematical system is a statement that is assumed to be true. No proof is given. From axioms we derive proposition and theorems.

Info - Axiom

Principle of Mathematical Induction

Let P(n) be an open sentence that dependes on $n \in \mathbb{N}$

If statements 1 and 2 are both true:

- 1. P(1)
- 2. $\forall k \in \mathbb{N}$, if P(k), then P(k+1)

Then statement 3 is true:

3. $\forall n \in \mathbb{N}, P(n)$

Examples

1. Let P(n) be the open sentence $\sum_{i=1}^n i(i+1) = \frac{1}{3}n(n+1)(n+2)$

Prove that P(n) is true $\forall n \in \mathbb{N}$

Proof

We will use the Principle of Mathematical Induction

Base case:

When n = 1

$$\sum_{i=1}^{n} i(i+1) = \sum_{i=1}^{1} i(i+1) = 1(2) = 2$$

$$\frac{1}{3}n(n+1)(n+2) = \frac{1}{3}(1)(2)(3) = 2$$

 $\therefore P(1)$ is true.

Induction:

Inductive hypothesis:

Let $k \in \mathbb{N}$.

Assume that P(k) is true.

Then we have $\sum_{i=1}^k i(i+1) = \frac{1}{3}k(k+1)(k+2)$ Now

$$\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)((k+1)+1) \quad \text{(by Breaking Sum Property)}$$

=
$$\frac{1}{3}(k)(k+1)(k+1+1) + (k+1)(k+2) = \frac{1}{3}(k+1)(k+1+1)(k+1+2)$$

By indution we have shown that $P(n)$ is true $\forall n \in \mathbb{N}$

2. Prove that $n! > 2^n$, \forall positive integers $n \geq 4$.

Proof

We will use the Principle of Mathematical Induction

We are trying to prove the open sentence $P(n): n! \geq 2^n$ is true $\forall n \in \mathbb{Z} \text{ s.t. } n \geq 4$

Base case:

When n=4

$$n! = 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

$$2^n = 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

We have that 24 > 16

 $\therefore P(4)$ is true.

Induction:

Inductive hypothesis:

Let $k \in \mathbb{N}$ and that k > 4 is true

Assume that P(k) is true

Then

$$(k+1)! = (k+1)k! > (k+1)2^k$$
 (By Inductive Hypothesis)
$$> (1+1)2^k = 2 \cdot 2^k = 2^{k+1}$$

Thus, by induction, we have shown that $n! \geq 2^n$ is true $\forall n \in \mathbb{Z} \text{ s.t. } n \geq 4$

3. Use induciton to prove that $6 \mid (2n^3 + 3n^2 + n) \forall n \in \mathbb{N}$

Quiz 4 Cutoff

Proof by Strong Induction

Info -

Principle of Strong Induction

Let P(n) be an open sentence that dependes on $n \in \mathbb{N}$

If statements 1 and 2 are both true:

- 1. P(1)
- 2. $\forall k \in \mathbb{N}$, if $P(1) \wedge P(2) \wedge ... \wedge P(k)$, then P(k+1)

Then statement 3 is true:

3. $\forall n \in \mathbb{N}, P(n)$

Example:

1. Consider the sequence defined recusively by

$$x_1=4, x_2=68$$
 and $x_m=2x_{m-1}+15x_{m-2} \forall m\geq 3$

Prove that
$$x_n = 2(-3)^n + 10(5)^{n-1} \forall n \in \mathbb{N}$$

Proof

We proceed by strong induction.

Base cases:

When
$$n = 1, x_1 = 4$$
 and $2(-3)^1 + 10(5)^1 = -6 + 10 = 4$

So the claim holds for n = 1

When
$$n = 2, x_1 = 68$$
 and $2(-3)^2 + 10(5)^2 = 18 + 50 = 68$

So the claim holds for n=2

Induction:

Assume the claim holds for n=1, n=2,...n=k for some $k \in \mathbb{N}$ with $k \geq 2$

Assume

$$\begin{split} x_k &= 2(-3)^k + 10(5)^{k-2} \\ x_{k-1} &= 2(-3)^{k-1} + 10(5)^{k-2} \\ x_{k-2} &= 2(-3)^{k-2} + 10(5)^{k-2} \end{split}$$

Then

$$\begin{split} x_{k+1} &= 2x_k + 15x_{k-1} \\ &= 2\big(2(-3)^{k-1} + 10(5)^{k-2}\big) + 15\big(2(-3)^{k-1} + 10(5)^{k-2}\big) \quad \text{(by I.H)} \\ &= 4(-3)^k + 20(5)^{k-1} + 5 \cdot 3 \cdot 2(-3)^{k-1} + 10 \cdot 5 \cdot 3 \cdot (5)^{k-2} \\ &= 4(-3)^k + 5 \cdot 4 \cdot 5^{k-1} - 5 \cdot 2(-3)^k + 2 \cdot 3 \cdot 5^k \\ &= (-3)^{k(4-10)} + 5^{k(4+6)} \\ &= 2(-3)^{k+1} + 105^k \end{split}$$

 $\because x_{k+1}=2(-3)^{k+1}+105^k$ so the claim holds for n=k+1 \because by strong induction the claim holds $\forall n\in\mathbb{N}$

2.