

Sum dan Product

Pertemuan 7

Sub-CPMK

 Mahasiswa mampu menyusun Sum of Product dari suatu tabel kebenaran serta mampun menyusun tabel kebenaran dari suatu Sum of Product (C3, A3)

Materi

- Sum of Product
- Product of Sum
- Menyusun Sum of Product dari Tabel Kebenaran

1.

Sum of Product

Sum of Product (SOP)

 Sum of Product (SOP) adalah metode untuk mengekspresikan persamaan sebuah ekspresi logika sebagai penjumlahan produk, elemen-elemen hasil perkalian di jumlahkan dalam sebuah SOP

Contoh:

$$F = (A' \bullet B' \bullet C') + (A' \bullet B \bullet C') + (A' \bullet B \bullet C) + (A \bullet B \bullet C') + (A \bullet B \bullet C)$$

Rangkaian Logika dari SOP

- Salah satu keuntungan dari persamaan SOP adalah keseragaman input untuk tiap-tiap Product, dan setiap output product dioperasikan dengan dengan operator yang sama
- Rangkaian logika yang disusun berdasarkan SOP (Sum Of Product) dapat dilakukan dengan menyusun input dan setiap input dimasukkan ke dalam gerbang AND (product)
- Output dari masing-masing product dijadikan input ke gerbang terakhir berupa gerbang OR (Sum)
- Untuk setiap input jika terdapat nilai 0 dapat diberi gerbang NOTNIVERSITAS BUNDA MULIA

contoh

• Diketahui persamaan SOP:

Q=A'BC'+A'BC+AB'C'+ABC'

Q=A'BC'+A'BC+AB'C'+ABC'

2.

Product of Sum

Product of Sum (POS)

 Disain Product of Sums (POS) adalah metode untuk mengekspresikan persamaan sebuah ekspresi rangkaian logika sebagai produk dari penjumlahan. Elemen-elemen hasil penjumlahan di kalikan dalam sebuah POS.

Contoh:

$$F = (A+B+C) \bullet (A+B'+C) \bullet (A+B'+C') \bullet (A'+B'+C) \bullet (A'+B'+C')$$

Rangkaian Logika dari POS

- Sama seperti SOP, salah satu keuntungan dari persamaan POS adalah keseragaman input untuk tiap-tiap Sum, dan setiap output sum dioperasikan dengan dengan operator yang sama
- Rangkaian logika yang disusun berdasarkan POS (Product of Sum) dapat dilakukan dengan menyusun input dan setiap input dimasukkan ke dalam gerbang OR (sum).
- Output dari masing-masing sum dijadikan input ke gerbang terakhir berupa gerbang AND (product)
- Untuk setiap input jika terdapat nilai 0 dapat diberi gerbang NOTNIVERSITAS BUNDA MULIA

contoh

• Diketahui persamaan POS:

$$Q=(A'+B+C').(A'+B+C).(A+B'+C').(A+B+C')$$

(A'+B+C').(A'+B+C).(A+B'+C').(A+B+C')

A'+B+C'

(A'+B+C').(A'+B+C).(A+B+C').(A+C').(A+B+C').(A+B+C').(A+C').(A+B+C').(A+C').(A+C'

3.

Menyusun Sum of Product dari Tabel Kebenaran

- Pada setiap baris yang mempunyai hasil 1, AND kan setiap variabel, jika variabel bernilai 1, ditulis sesuai dengan variabelnya, jika bernilai 0 isi dengan komplemen variabel tersebut
- Semua AND pada tiap baris tersebut di OR kan.
- Persamaan yang dihasilkan masih rumit jika dibuat rangkaian logikanya, perlu disederhanakan

Contoh:

Α	В	С	F	
0	0	0	0	
0	0	1	1	A'B'C
0	1	0	0	
0	1	1	1	A'BC
1	0	0	1	AB'C'
1	0	1	1	AB'C
1	1	0	0	
1	1	1	0	

Sebagai contoh:

- Perhatikan data baris ke 2 yang berisi input 001, dimana input A bernilai 0 input B bernilai 0 dan input C bernilai 1 dan menghasilkan output 1
- Karena A = 0 maka pada persamaa dianggap sebagai NOT A ditulis sebagai A'
- Karena B = 0 maka pada persamaa dianggap sebagai NOT B ditulis sebagai B'
- Sedangkan C berilai 1 sehingga pada persamaan ditulis C (tanpa komplement)
- Untuk menghasilkan nilai 1 pada baris kedua, A harus bernilai 0, B harus bernilai 0 dan C harus bernilai 1, karena itu pada logika dioperasikan sebagai AND atau operasi Product

Menyusun persamaan dari Tabel kebenaran (lanjutan)

- Hal yang sama diperlakukanpada baris ke 4, 5 dan 6 yang menghasilkan output 1
- Baris ke empat memiliki input A=0, B=1 dan C=1 sehingga ditulis menjadi operasi product A'BC
- Baris ke lima memiliki input A=1, B=0 dan C=0 sehingga ditulis menjadi operasi product AB'C'
- Baris ke enam memiliki input A=1, B=0 dan C=1 sehingga ditulis menjadi operasi product AB'C

Menyusun persamaan dari Tabel kebenaran (lanjutan)

- Karena persamaan tersebut harus menghasilkan rangkaian yang dapat menghasilkan output 1 jika input A, B dan C secara berurutan adalah 001, 011, 100, dan 101 maka fung logika harus menghasilkan output 1 jika:
 - A=0, B=0 dan C=1
 - A=0, B=1 dan C=1
 - A=1, B=0 dan C=0
 - A=1, B=0 dan C=1
- Maka ke empat set input itu dapat di OR kan, sehingga jika salah satu saja dari set tersebut terpenuhi, maka Output dari fungsi adalah 1. inlah yang disebut sebagai SUM
- Karena masing-masing set input merupakan keharusan sesuai dengan set input yang menghasilkan output 1, sehingga setiap set input disebut sebagai product.
- Setiap product set input tersebut di sum, karena itu fungsi tersebut disebagai Sum of Product

Ringkasan

- Sum of Product (SOP) adalah metode untuk mengekspresikan persamaan sebuah ekspresi logika sebagai penjumlahan produk, elemen-elemen hasil perkalian di jumlahkan dalam sebuah SOP
- Disain Product of Sums (POS) adalah metode untuk mengekspresikan persamaan sebuah ekspresi rangkaian logika sebagai produk dari penjumlahan. Elemenelemen hasil penjumlahan di kalikan dalam sebuah POS.
- Menyusun Persamaan SOP dapat dilakukan dengan cara:
 - Pada setiap baris yang mempunyai hasil 1, AND kan setiap variabel, jika variabel bernilai
 1, ditulis sesuai dengan variabelnya, jika bernilai 0 isi dengan komplemen variabel
 tersebut
 - Semua AND pada tiap baris tersebut di OR kan.
 - Persamaan yang dihasilkan masih rumit jika dibuat rangkaian logikanya, perlu disederhanakan

Terimakasih

TUHAN Memberkati Anda

Teady Matius Surya Mulyana (tmulyana@bundamulia.ac.id)