Probability and Statistics: MA6.101

Tutorial 7

Topics Covered: Moment Generating Functions and Stochastic Simulation

- Q1: Let X be an exponential random variable with parameter λ and let Y be a random variable with the Gamma distribution $Y \sim \text{Gamma}(k, \theta)$.
 - a) Show how to generate X using a uniform random variable U drawn from the interval [0,1].
 - b) Show how to generate Y using k uniform random variables drawn from [0,1].

Note: The Gamma distribution $Y \sim \text{Gamma}(k, \theta)$ can be expressed as the sum of k independent exponential random variables X_1, X_2, \ldots, X_k , where each $X_i \sim \text{Exp}\left(\frac{1}{\theta}\right)$. That is:

$$Y = \sum_{i=1}^{k} X_i$$

where X_i are independent and identically distributed.

- Q2: Prove that $x \sim f(x) = xe^{-x}$; $x \geq 0$ has a moment generating function of $\frac{1}{(1-t)^2}$. Hint: Use the change of variable technique to integrate with respect to w = x(1-t) instead of x.
- Q3: Use the rejection method to generate a random variable having the $Gamma(\frac{5}{2}, 1)$ density function.

Note: The pdf of $Gamma(k, \theta)$ is given by $f(x) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-x/\theta}$ and $\Gamma(\frac{5}{2}) = \frac{3}{4}\pi$. **Hint:** You need to figure out an appropriate distribution you can already sample from to use in the rejection method.

- Q4: What is the expected number of iterations to generate k random numbers from a distribution using the rejection method?
- Q5: (a) Let $M_X(s)$ be finite for $s \in [-c, c]$, where c > 0. Show that the MGF of Y = aX + b is given by

$$M_Y(s) = e^{sb} M_X(as)$$

and it is finite in $\left[-\frac{c}{|a|}, \frac{c}{|a|}\right]$.

(b) If $X_1, X_2, ..., X_n$ are n independent random variables with respective moment-generating functions $M_{X_i}(t) = \mathbb{E}[e^{tX_i}]$ for i = 1, 2, ..., n, then prove the moment-generating function of the linear combination: $Y = \sum_{i=1}^n a_i X_i$ is:

$$M_Y(t) = \prod_{i=1}^n M_{X_i}(a_i t)$$

Q6: Let $X \sim \text{Normal}(Y, 1)$ where $Y \sim \text{Exponential}(\lambda)$. Find the MGF of X.

1