Differential Geometry Midterm

Holly Mandel

November 8, 2016

- 1. $\mathbb{C}P^n$ is a smooth complex manifold. $\mathbb{C}P^n$ is defined as the quotient space $\mathbb{C}^{n+1}\setminus\{0\}/\sim$, where $x\sim\lambda x$ for all $\lambda\in\mathbb{C}^{\times}$. Let p be the projection map.
 - $\mathbb{C}P^n$ is Hausdorff. For the quotient X/\sim of a Hausdorff space X is Hausdorff exactly when the set $D=(x_1,x_2):x_1\sim x_2$ is a closed subset of $X\times X$. But $D=\{(z_0,...,z_n,\lambda z_0,...,\lambda z_n):(z_0,...,z_n)\in\mathbb{C}^{n+1},\lambda\in\mathbb{C}\}\subset\mathbb{C}^{2n+2}$ is the intersection of the zero loci of the functions $P_{ij}:\mathbb{C}^{2n+2}\to\mathbb{C}$:

$$P_{ij}(z_0, ..., z_n, w_0, ..., w_n) = z_i w_j - w_i z_j$$

for $0 \le i < j \le n$. Therefore, D is closed, so $\mathbb{C}P^n$ is Hausdorff.

• $\mathbb{C}P^n$ is second-countable. For if $f: X \to Y$ is an open surjection and X is second countable, Y is second countable. The quotient map p is surjective by definition. We claim that p is an open map. For if \mathcal{O} is an open set in \mathbb{C}^{n+1} , say $x \in p^{-1}(p(\mathcal{O}))$. Then there exists a nonzero λ such that $y = \lambda x \in \mathcal{O}$. By the openness of \mathcal{O} , there is some neighborhood $N_{\eta}(y) \subset \mathcal{O}$. But the function $x \mapsto \lambda \cdot x$ is a continuous function, so for sufficiently small ϵ , $\lambda \cdot N_{\epsilon}(x) \subset N_{\eta}(y) \subset \mathcal{O}$. Thus $p^{-1}(p(\mathcal{O}))$ is open, so by definition $p(\mathcal{O})$ is open. Therefore, p is an open map, and $\mathbb{C}P^n$ is second-countable.

An element of $\mathbb{C}P^n$ can be represented as $[(z_0, z_1, ..., z_n)]$, where $(z_0, ..., z_n) \in \mathbb{C}^{n+1}$ is a point on the line represented. To construct charts on $\mathbb{C}P^n$, Let $U_i = \{[(z_0, z_1, ..., z_n)] \in \mathbb{C}P^n : z_i \neq 0\}$ for i = 0, ..., n. Though an element of $\mathbb{C}P^n$ has many representatives, they will either all be zero in one coordinate or all not be zero in that coordinate, so this set is well-defined. Define the map $\phi_i : U_i \to \mathbb{C}^n$ as follows:

$$\phi_i([z_0,...,z_n]) = (\frac{z_0}{z_i},...,\frac{z_{i-1}}{z_i},\frac{z_i+1}{z_i},...,\frac{z_n}{z_i})$$

Then ϕ_i is well defined on U_i because z_i is nonzero for any representative of $[z_0, ..., z_n]$, and all representatives map to the same point in \mathbb{C}^n . Since every element of $\mathbb{C}P^n$ is represented by points with at least one nonzero coordinate, the U_i cover $\mathbb{C}P^n$. The U_i are open, because the preimage of U_i under the quotient map is the open set $\mathbb{C}^{n+1} \setminus \{z_i = 0\}$. Therefore, the collection $\{(U_i, \phi_i) : i = 0, ..., n\}$ give an atlas for $\mathbb{C}P^n$.

Finally, we verify that transition maps given by these charts are analytic. Take $(w_1, ..., w_n) \in \phi_i(U_i \cap U_j)$. Assume first that i > j. Then

$$\begin{split} \phi_{j} \circ \phi_{i}^{-1}(w_{1},...,w_{n}) &= \phi_{j}([w_{1},...,w_{i-1},1,w_{i+1},...,w_{n}]) \\ &= (\frac{w_{1}}{w_{j+1}},...,\frac{w_{j}}{w_{j+1}},\frac{w_{j+2}}{w_{j+1}},...,\frac{w_{i-1}}{w_{j+1}},\frac{1}{w_{j+1}},\frac{w_{i+1}}{w_{j+1}},...,\frac{w_{n}}{w_{j+1}}) \end{split}$$

In this case, w_{j+1} is nonzero because it occupies that j^{th} position of 0, 1, ..., n in \mathbb{C}^{n+1} , and $\phi^{-1}(w_1, ..., w_n) \in U_j$. On the other hand, if j > i, then

$$\begin{split} \phi_j \circ \phi_i^{-1}(w_1,...,w_n) &= \phi_j([w_1,...,w_{i-1},1,w_{i+1},...,w_n]) \\ &= (\frac{w_1}{w_j},...,\frac{w_{i-1}}{w_j},\frac{1}{w_j},\frac{w_i}{w_j},...,\frac{w_{j-1}}{w_j},\frac{w_{j+1}}{w_j},...,\frac{w_n}{w_j}) \end{split}$$

In this case, w_j is nonzero because it occupies the j^{th} position in \mathbb{C}^{n+1} . Therefore, in both cases the component functions of each of these maps are analytic in each variable, since they are quotients whose denominators do not vanish on the domain. This confirms that $\mathbb{C}P^n$ is a complex manifold.

2. Isometry between the plane and the punctured sphere.

(a.) By definition, the arc length of a curve $\gamma: I \to (M, g)$ is

$$L(\gamma) = \int_0^1 \sqrt{g_{\gamma(t)}(\gamma'(t), \gamma'(t))} dt$$

In our example (\mathbb{R}^n, \hat{g}) , we have $\gamma(t) = (t, 0, ..., 0)$ with velocity vector $\gamma'(t) = dx_1$. We compute

$$L(\gamma) = \int_0^1 \sqrt{\frac{4}{(1+t^2)^2}} dt$$
$$= \int_0^1 \frac{2}{1+t^2} dt$$
$$= 2 \cdot \int_{\arctan(0)}^{\arctan(1)} d\theta$$
$$= \pi/2$$

(b.) As discussed in class, the orthogonal group O(3) is a transitive group is isometries of $S^2 \subset \mathbb{R}^3$. Therefore if N = (0,0,1) is the north pole of the sphere, then there is $A \in O(3)$ such that Ap = N, and $A: S^2 \setminus \{p\} \to S^2 \setminus \{N\}$ is an isometry. Since isometry is a transitive relation, we therefore may assume that p = N.

We have the stereographic projection $\phi: S^2 \setminus \{N\} \to \mathbb{R}^2$:

$$\phi(x_1, x_2, x_3) = \frac{1}{1 - x_1}(x_2, x_3)$$

We can compute the inverse $\phi^{-1}(y_1, y_2)$. For since $|x|^2 = 1$, we have the relation $y_1^2 + y_2^2 = \frac{1+x_1}{1-x_1}$. This implies that $x_1 = \frac{\|y\|^2 - 1}{\|y\|^2 + 1}$. Then $x_i = \frac{2y_i}{\|y\|^2 + 1}$ for i = 2, 3. Therefore

$$\phi^{-1}(y_1, y_2) = \left(1 - \frac{2}{(y_1^2 + y_2^2) + 1}, \frac{2y_1}{(y_1^2 + y_2^2) + 1}, \frac{2y_2}{(y_1^2 + y_2^2) + 1}\right)$$

Now we compute the differential of $\phi^{-1}(y_1, y_2)$:

$$D(\phi^{-1})_{(y_1,y_2)} = \begin{pmatrix} \frac{4y_1}{((y_1^2 + y_2^2) + 1)^2} & \frac{4y_2}{((y_1^2 + y_2^2) + 1)^2} \\ \frac{2}{(y_1^2 + y_2^2) + 1} + \frac{-4y_1^2}{((y_1^2 + y_2^2) + 1)^2} & \frac{-4y_1y_2}{((y_1^2 + y_2^2) + 1)^2} \\ \frac{-4y_1y_2}{((y_1^2 + y_2^2) + 1)^2} & \frac{2}{(y_1^2 + y_2^2) + 1} + \frac{-4y_2^2}{((y_1^2 + y_2^2) + 1)^2} \end{pmatrix}$$

Let δ_1 and δ_2 be the partial differential operators on \mathbb{R}^2 than span $T_y\mathbb{R}^2$ for all $y \in \mathbb{R}^2$. Then $D(\phi^{-1})_y\delta_1$ and $D(\phi^{-1})_y\delta_2$ form a basis for $T_x\mathbb{S}^2$, where $x = \phi^{-1}(y)$. Let $\langle \cdot, \cdot \rangle_x$ be the induced metric from \mathbb{R}^3 on S^2 . Then

$$\langle D(\phi^{-1})_y \delta_1, D(\phi^{-1})_y \delta_2 \rangle_x = 0$$
$$\langle D(\phi^{-1})_y \delta_1, D(\phi^{-1})_y \delta_1 \rangle_x = \langle D(\phi^{-1})_y \delta_2, D(\phi^{-1})_y \delta_2 \rangle_x = \frac{4}{(1+||y||^2)^2}$$

(See calculations attached). Therefore the map $\phi^{-1}:(\mathbb{R}^2,\hat{g})\to (S^2,g_{S^n})$ is conformal. For given an arbitrary vector $v=v_1(\delta_1)_p+v_2(\delta_2)p$, on the one hand

$$\hat{g}_p(v,v) = v_1^2 \hat{g}_p((\delta_1)_p, (\delta_1)_p) + v_2^2 \hat{g}_p((\delta_2)_p, (\delta_2)_p) + 2v_1 v_2 \hat{g}_p((\delta_1)_p, (\delta_2)_p)$$

$$= \frac{4 \cdot (v_1^2 + v_2^2)}{1 + |p|^2}$$

and on the other hand

$$(g_{S^n})_{\phi^{-1}(p)}(D\phi_p^{-1}(v), D\phi_p^{-1}(v)) = v_1^2 \langle D(\phi^{-1})_p \delta_1, D(\phi^{-1})_p \delta_1 \rangle_p + v_1^2 \langle D(\phi^{-1})_p \delta_2, D(\phi^{-1})_p \delta_2 \rangle_p$$

$$+ 2v_1 v_2 \langle D(\phi^{-1})_p \delta_1, D(\phi^{-1})_p \delta_2 \rangle_p$$

$$= \frac{4 \cdot (v_1^2 + v_2^2)}{1 + |p|^2}$$

By the polarization identity, this proves that $\hat{g}_p(X_p, Y_p) = (g_{S^n})_p(D(\phi^{-1})_p X_p, D(\phi^{-1})_p Y_p)$ for all $p \in \mathbb{R}^2$ and all $X_p, Y_p \in T_p \mathbb{R}^2$. Therefore ϕ^{-1} gives a conformal map between these two Riemannian manifolds with conformal factor $1 = e^0$.

3. Normal bundle is a smooth vector bundle. The normal space to a submanifold M^m of a Riemannian manifold (N^h, h) at a point p is

$$N_p M = \{ v_p \in T_p M : h(v_p, w_p) = 0, \ \forall w_p \in T_p M \}$$

where T_pM is the image of the tangent space to M at p under the differential of the inclusion map. This differential is injective, since its coordinate representation with respect to a slice chart (Gundmundson Definition 2.8) is the upper $m \times m$ identity matrix. The normal bundle of M in N is defined as

$$NM = \{(p, v_p) : p \in M, v_p \in N_pM\}$$

Let $\pi: NM \to M$ be the projection map $(p, v_p) \mapsto p$. By the definition of NM, π is surjective. In addition, $\pi^{-1}(\{p\}) = \{(q, w) \in NM : \pi(q, w) = p\} = \{p\} \times N_p M$. But $N_p M \simeq \mathbb{R}^{n-m}$, since $T_p M$ has dimension m at every point, and the differential of the inclusion map is injective, so its orthogonal complement in $T_p N$ has dimension n-m. This confirms Criterion (i) in Gundmundsson Def. 4.1.

By Gundmundsson Definition 2.8, for any $p \in M \subset N$ there is a chart (U, x) for $U \subset N$ such that $x(U \cap M) = x(U) \cap (\mathbb{R}^m \times \{0\}^{n-m})$. Given such a chart, let $X_i = D(x^{-1})_{x(p)}(\delta_i)$ be the pushforward of the i^{th} partial differential operator on \mathbb{R}^n , giving a basis of T_pN .

We produce a set of pointwise-orthonormal vector fields $Y^1, ..., Y^m$ with the property that $\mathrm{Span}(Y_p^1, ..., Y_p^k) = \mathrm{Span}(X_p^1, ..., X_p^k)$ for every $p \in U$ and $k \leq m$. First, set

$$Y_p^1 = \frac{X_p^1}{\sqrt{h_p(X_p^1, X_p^1)}}$$

The denominator is nonvanishing because h_p is positive definite and Dx^{-1} is nonsingular on x(U). By the smoothness of h and X^1 , Y^1 is a smooth vector field. Clearly the span of X_p^1 is the span of Y_p^1 .

For the inductive step, say we are given $Y_1,...,Y_k$ as described. Define \hat{Y}^{k+1} inductively as

$$\hat{Y}_p^{k+1} = X_p^{k+1} - \sum_{i=1}^k h_p(X_p^{k+1}, Y_p^k) Y_p^k$$

Then \hat{Y}^{k+1} has nonzero magnitude everywhere, because for all $p, X_p^{k+1} \notin \operatorname{Span}(X_p^1, ..., X_p^k) = \operatorname{Span}(Y_p^1, ..., Y_p^k)$. Therefore define

$$Y_p^{k+1} = \frac{\hat{Y}_p^{k+1}}{\sqrt{h_p(\hat{Y}_p^{k+1}, \hat{Y}_p^{k+1})}}$$

It is clear that Y_p^{k+1} is orthogonal to Y_p^j for $j \leq k$. But all Y^j for $j \leq k+1$ are linear combinations of $X^1, ..., X^{k+1}$, so we must have that $\operatorname{Span}(Y_p^1, ..., Y_p^{k+1}) = \operatorname{Span}(X_p^1, ..., X_p^{k+1})$. This process stops when k = m, completing the proof.

By our original choice of x, we now have that $Y_p^{m+1}, ..., Y_p^n$ form a basis for N_pM . For $Y_p^1, ..., Y_p^m$ have the same span as $X_p^1, ..., X_p^m$ by construction, and the latter set is a basis for T_pM . The remaining $\{Y_p^j\}$ are orthogonal to these vectors, and therefore to T_pM , and span a space of dimension n-m, so they span N_pM .

We can use this result to define a system of bundle charts on NM. For since $\{Y_p^i\}$ form a basis of T_pN for every p, every point in $\pi^{-1}(U)$ can be written uniquely as $(p, \sum_{i=m+1}^{n+m} a_i Y_p^i)$. Therefore we can define $\psi: \pi^{-1}(U) \to U \times \mathbb{R}^{n-m}$ so that $(p, \sum_{i=m+1}^{n+m} a_i Y_p^i) \mapsto (p, (a_{m+1}, ..., a_{m+n}))$. Because we can choose such a (U, x) containing every point in M, the $\pi^{-1}(U)$ cover NM.

We show that transition maps in this atlas are smooth. Say that two charts $(\pi^{-1}(U_1), \psi_1)$ and $(\pi^{-1}(U_2), \psi_2)$ such that $U_1 \cap U_2 \neq \emptyset$. For any $p \in U_1 \cap U_2$, choose a chart (U, x) of N such that $p \in U$ and let $V = U_1 \cap U_2 \cap U$. (U, x) induces a canonical chart on TN. Let $\{Q^i\}$ be the orthonormal vectors corresponding to ψ_1 and $\{R^i\}$ be the orthonormal vectors corresponding to ψ_2 . The vector fields Q^i and R^i have a smooth coordinate representation with respect to (U, x):

$$Q^{i}(p) = \sum_{j=1}^{n} a_{ij}(p) \frac{d}{dx_{i}} \Big|_{p}$$

$$R^{i}(p) = \sum_{j=1}^{n} b_{ij}(p) \frac{d}{dx_{i}} \bigg|_{p}$$

where $\frac{d}{dx_i}|_p$ are the pushforwards of the differential operator on V with respect to x^{-1} and the a_{ij} and b_{ij} are smooth functions $N \to \mathbb{R}$. Let $A(p) = (a_{ij}(p))$ and let $B(p) = (b_{ij}(p))$. By the Gram-Schmidt construction both matrices are upper-triangular and invertible, so $C(p) = B(p)A(p)^{-1}$ is an upper-triangular matrix. We write $R_p^i = \sum_{j=1}^n c_{ij}Q_p^j$, and calculate:

$$\sum_{i=m+1}^{n} v_i(p) R^i(p) = \sum_{i=m+1}^{n} v_i(p) (\sum_{j=1}^{n} c_{ij} Q_p^j) = \sum_{i=m+1}^{n} \sum_{j=m+1}^{n} c_{ij} v_i(p) Q_p^j$$

where the last inequality follows because $c_{ij} = 0$ whenever j > i, and i is at least m + 1. Therefore $\psi_1 \circ \psi_2^{-1} : U_1 \cap U_2 \times \mathbb{R}^{n-m} \to \mathbb{R}^m \times \mathbb{R}^{n-m}$ is the map

$$(p, (v_{m+1}, ..., v_n)) \mapsto (p, (\sum_{j=m+1}^n c_{1j}(p)v_j, ..., \sum_{j=m+1}^n c_{nj}(p)v_j))$$

By the smoothness of the c_{ij} , this a smooth function.

Under these charts, NM has a unique topology generated by $\psi^{-1}(V)$ for some ψ corresponding to a chart $(\pi^{-1}(U), \psi)$ and $V \subset U \times \mathbb{R}^{m-n}$ with respect to which it is a differentiable manifold ("Smooth Manifold Chart Lemma" 1.35, Lee *Introduction to Smooth Manifolds*). Each ψ is bijective, and is clearly a homeomorphism with respect to this topology, since the open sets are exactly the preimages of open sets in $U \times \mathbb{R}^n$. In addition, we can now confirm that $\pi: NM \to N$ is differentiable, since its coordinate representation with respect to a chart $(\pi^{-1}(U), \psi)$ on NM and (U, x) on M is just $(x_1, ..., x_n, a_1, ..., a_{n-m}) \mapsto (x_1, ..., x_n)$. Restricting ψ to $\pi^{-1}(\{p\})$ gives the linear transformation $\sum_{i=m+1}^{n+m} a_i Y_p^i \mapsto (a_{m+1}, ..., a_{m+n})$, which is a vector space isomorphism. This confirms Criterion (ii) in Gundmundsson Def. 4.1. This completes the proof.

calculations_1.pdf

Extra 1: Calculations for Q.2