## Dossier de recherche Mise en perspective didactique

Pierre-Henry Suet

## Agrégation externe spéciale

Lundi, 2 juillet 2018



Introduction
Parcours universitaire et professionnel
Mes travaux de recherche
Rendre la science accessible
Vers un enseignement de la modélisation
Transposition didactique
Conclusion

- Introduction
- Parcours universitaire et professionnel
- Mes travaux de recherche
  - Protéine cherchant un site cible sur l'ADN
  - Comportement de recherche des animaux
- Rendre la science accessible
  - Mes travaux au Centre d'Analyse Stratégique
  - Mes activités d'enseignement
- 5 Vers un enseignement de la modélisation
- Transposition didactique
- Conclusion



#### Introduction

Parcours universitaire et professionnel Mes travaux de recherche Rendre la science accessible Vers un enseignement de la modélisation Transposition didactique Conclusion

- Introduction
- Parcours universitaire et professionnel
- Mes travaux de recherche
  - Protéine cherchant un site cible sur l'ADN
  - Comportement de recherche des animaux
- Rendre la science accessible
  - Mes travaux au Centre d'Analyse Stratégique
  - Mes activités d'enseignement
- Vers un enseignement de la modélisation
- Transposition didactique
- Conclusion



- Introduction
- Parcours universitaire et professionnel
- Mes travaux de recherche
  - Protéine cherchant un site cible sur l'ADN
  - Comportement de recherche des animaux
- Rendre la science accessible
  - Mes travaux au Centre d'Analyse Stratégique
  - Mes activités d'enseignement
- Vers un enseignement de la modélisation
- Transposition didactique
- Conclusion



Introduction
Parcours universitaire et professionnel
Mes travaux de recherche
Rendre la science accessible
Vers un enseignement de la modélisation
Transposition didactique
Conclusion

## Parcours universitaire et professionnel

- De 1999 à 2003 : Etudiant à l'Université Pierre et Marie Curie
- En 2004 : Master en modélisation dynamique et statistique de systèmes complexes
- De 2004 à 2007 : Doctorat au Laboratoire de Physique Théorique de la Matière Condensée
- De 2008 à 2011: Chargé de mission au Centre d'Analyse Stratégique (France Stratégie)
- En 2011 : Master Métier de l'Enseignement de l'Éducation et de la Formation
- De 2012 à aujourd'hui : Professeur certifié de sciences physiques

- Introduction
- Parcours universitaire et professionnel
- Mes travaux de recherche
  - Protéine cherchant un site cible sur l'ADN
  - Comportement de recherche des animaux
- Rendre la science accessible
  - Mes travaux au Centre d'Analyse Stratégique
  - Mes activités d'enseignement
- Vers un enseignement de la modélisation
- Transposition didactique
- Conclusion



Protéine cherchant un site cible sur l'ADN Comportement de recherche des animaux

#### Introduction

Combien de temps faut-il pour un chercheur qui se déplace de manière aléatoire pour trouver une cible ?



Protéine cherchant un site cible sur l'ADN Comportement de recherche des animaux

#### Exemples

- Echelle microscopique: protéine cherchant un site cible sur l'ADN
- Echelle macroscopique: animaux cherchant de la nourriture

Idée : Le temps de recherche est le facteur limitant qui doit être optimisé



## Quelle est la façon la plus rapide de trouver un objet caché au hasard ?

• recherche systématique

- recherche intermittente
  - = phases de recherche locales + des phases de déplacements rapides

#### Protéine cherchant un site cible sur l'ADN



ADN: plus de 10<sup>5</sup> paires de base

Site cible: quelques paires de base

⇒ Recherche difficile

Temps de réaction après diffusion 3D  $\sim \frac{1}{\textit{rayon de la cible}}$ 

Temps de réaction après diffusion 1D ~ (longueur de l'ADN)2

⇒ Modèle : intermittence 1D/3D



Protéine cherchant un site cible sur l'ADN Comportement de recherche des animaux

#### Diffusion 1D



 $< t > \sim \frac{L^2}{D}$  trop lent!



## Comment une protéine enzymatique trouve-t-elle son site cible sur l'ADN?

Temps 1D  $P_{1D} = exp^{-f_1t}$ 

$$< t_{1D} > = 1/f_1$$

$$< t_{1D} > = 1/t_1$$



Temps 3D

$$P_{3D} = exp^{-f_2t}$$
  
<  $t_{3D} >= 1/f_2$ 

Hypothèse: pas de corrélations dans les excursions 3D ⇒ position aléatoire après chaque excursion 3D

Temps de premier passage sur la cible? Stratégie optimale par rapport à  $f_1$ ?





< T > croît linéairement avec la longueur du brin d'ADN.

Conclusion

La stratégie optimale est vérifiée pour  $f_1 = f_2$ 

Protéine cherchant un site cible sur l'ADN Comportement de recherche des animaux

# Stratégie de recherche intermittente en écologie comportementale

#### Observations des animaux [Bell, O'Brien, Kramer]

- Des phases de déplacement alternent avec des phases de recherche
- Les durées de ces phases varient largement selon les espèces
- Il semble y avoir une corrélation entre ces durées

Peut-on justifier ces observations par un modèle cinétique ?



Protéine cherchant un site cible sur l'ADN Comportement de recherche des animaux

# Stratégie de recherche intermittente en écologie comportementale

#### Observations des animaux [Bell, O'Brien, Kramer]

- Des phases de déplacement alternent avec des phases de recherche
- Les durées de ces phases varient largement selon les espèces
- Il semble y avoir une corrélation entre ces durées

Peut-on justifier ces observations par un modèle cinétique ?



## Modèle à 2 états (modèle 1D)

[PRL, (2005)],[ J. Phys.: Cond. Matter, (2005)], [Physica A,(2005)]



- état 1: phase de recherche minutieuse
- état 2: phase de déplacement pur



## Modèle à 2 états (modèle 1D)

[PRL, (2005)],[ J. Phys.: Cond. Matter, (2005)], [Physica A,(2005)]



- état 1: phase de recherche minutieuse
- état 2: phase de déplacement pur



## Modèle à 2 états (modèle 1D)

[PRL, (2005)],[ J. Phys.: Cond. Matter, (2005)], [Physica A,(2005)]



- état 1: phase de recherche minutieuse
- état 2: phase de déplacement pur



#### Modélisation du chercheur

Phase 1 de durée T<sub>1</sub>: Déplacement <u>diffusif</u> :

$$\operatorname{Prob}(T_1 > t) = e^{-f_1 t}$$

• Phase 2 de durée T<sub>2</sub>: Déplacement balistique :

$$Prob(T_2 > t) = e^{-f_2 t}$$

#### Modélisation du chercheur

• Phase 1 de durée T<sub>1</sub>: Déplacement diffusif :

$$Prob(T_1 > t) = e^{-f_1 t}$$

• Phase 2 de durée T<sub>2</sub>: Déplacement balistique :

$$Prob(T_2 > t) = e^{-f_2 t}$$



#### Modélisation du chercheur

• Phase 1 de durée T<sub>1</sub>: Déplacement diffusif :

$$Prob(T_1 > t) = e^{-f_1 t}$$

• Phase 2 de durée T<sub>2</sub>: Déplacement balistique :

$$Prob(T_2 > t) = e^{-f_2 t}$$

#### Modélisation des cibles

- <u>Situation réelle:</u> cibles cachées en des sites inconnus, distribuées au hasard, avec une basse densité
- Modélisation: distribution régulière des cibles



## Efficacité du processus de recherche

Que vaut le temps de recherche < T > ?

$$\equiv \frac{1}{L}\int_0^L t(x,1)dx$$

< T >= Temps moyen de premier passage L = distance entre les cibles

 Quelle est la stratégie optimale de recherche par rapport aux fréquences f<sub>1</sub> et f<sub>2</sub> ?

⇒Méthodes: équation Fokker-Planck



## Mise en équations

En utilisant l'équation de Fokker-Planck, on obtient :

$$\begin{cases} D\frac{\partial^2 t(x,1)}{\partial x^2} + f_1[t(x,2) - t(x,1)] = -1\\ v\frac{\partial t(x,2)}{\partial x} + f_2[t(x,1) - t(x,2)] = -1 \end{cases}$$

Avec des conditions aux limites périodiques:

$$\begin{cases} t(0,1) = t(L,1) = 0 \\ t(0,2) = t(L,2) \end{cases}$$



## Temps de recherche

Pour 
$$L >> \frac{v}{f_2}, \sqrt{\frac{D}{f_1}}, \frac{f_2D}{\lambda_1 v}$$

$$< T >\simeq \frac{L}{2v} \left( \frac{1}{f_1 \tau} + \frac{1}{f_2 \tau} \right) \frac{\tau^2 f_2^2 + 2f_1 \tau}{\sqrt{\tau^2 f_2^2 + 4f_1 \tau}}$$
où  $\tau = \frac{D}{v^2}$ 

 $\Rightarrow$  < T > dépend linéairement de L !

## Optimisation du temps de recherche $< T > (f_1, f_2)$

- Pas de minimum global pour  $< T > (f_1, f_2)$
- mais f<sub>1</sub> est borné par f<sub>1max</sub> (l'analyse des informations reçues par les organes sensoriels requiert un minimum de temps)
- alors < T > est minimum quand

$$\begin{cases} f_1 = f_{1max} \\ f_2^5 + \frac{6}{\tau} f_1 f_2^3 - \frac{8}{\tau^2} f_1^3 = 0 \end{cases}$$



### Lois d'échelle

- Si  $f_{1max} << \frac{1}{\tau} \Rightarrow f_2 = (\frac{4}{3\tau})^{\frac{1}{3}} f_1^{\frac{\epsilon}{3}}$ Régime S: plus de temps à chercher qu'à se déplacer
- Si  $f_{1max} >> \frac{1}{\tau} \Rightarrow f_2 = (\frac{8}{\tau^2})^{\frac{1}{5}} f_1^{\frac{3}{5}}$ Régime M: plus de temps à se déplacer qu'à chercher
- au dépend a priori de la nature de l'animal



## Stratégie Optimale / Comparaison Expérimentale 1

Données expérimentales :  $f_1$  et  $f_2$  pour 18 espèces animales Histogramme de  $\tau$  obtenu pour  $f_2^5 + \frac{6}{\tau}f_1f_2^3 - \frac{8}{\tau^2}f_1^3 = 0$ 



## Stratégie Optimale / Comparaison Expérimentale 2



•  $f_2 \propto f_1^{\frac{3}{5}}$  animaux passant plus de temps à se déplacer qu'à chercher

•  $f_2 \propto f_1^{\frac{2}{3}}$  animaux passant plus de temps à chercher qu'à se déplacer

#### Conclusion

- Le temps moyen de premier passage < T > est un bon paramètre pour étudier les processus de recherche.
- L'intermittence est un processus très efficace pour optimiser la recherche
- Elle est observée à différentes échelles

## Perspectives

- Modèles très simples à développer dans le cas non markovien
- Examiner le cas d'une distribution aléatoire de cibles
- Etudier les interactions entre plusieurs chercheurs et différentes cibles au moins numériquement.
- De nombreuses applications : moteurs moléculaires, cinétique enzymatique, biologie comportementale, recherche opérationnelle



Mes travaux au Centre d'Analyse Stratégique Mes travaux au Centre d'Analyse Stratégique

- Introduction
- Parcours universitaire et professionnel
- Mes travaux de recherche
  - Protéine cherchant un site cible sur l'ADN
  - Comportement de recherche des animaux
- 4 Rendre la science accessible
  - Mes travaux au Centre d'Analyse Stratégique
  - Mes activités d'enseignement
- Vers un enseignement de la modélisation
- Transposition didactique
- Conclusion



## Mes travaux au Centre d'Analyse Stratégique

Organisme qui a pour mission de contribuer aux choix de politique publique, de réaliser un travail de prospective et d'aide à la décision.

- Evaluer les politiques publiques,
- Anticiper les évolutions de l'économie, de la technique, de l'environnement et de la société,
- Débattre, avec les partenaires sociaux, la société civile, les entreprises, les chercheurs, en France et à l'étranger,
- Proposer des orientations ou des réformes, en vue de préparer les politiques publiques de demain.



#### Mes travaux au Centre d'Analyse Stratégique Mes travaux au Centre d'Analyse Stratégique

## Mes travaux au Centre d'Analyse Stratégique

#### Sujets de mes travaux publiés:

- la biologie synthétique
- les interfaces cerveau-machine
- les microprocesseurs
- la révolution numérique
- les nouvelles mobilités
- et certains domaines actuels de recherche fondamentale en physique.



## Mes activités d'enseignement

- Toutes les classes de la 5eme à la Terminale S
- Atelier club sciences, journée portes ouvertes
- Expérimentation de la classe inversée en seconde
- Site internet : ph-suet.fr
- Mise en place d'une <u>chaîne YouTube</u> où les élèves mettent leurs propres expériences



### Analyse des visiteurs de mon site



#### Sommaire

- Introduction
- Parcours universitaire et professionnel
- Mes travaux de recherche
  - Protéine cherchant un site cible sur l'ADN
  - Comportement de recherche des animaux
- Rendre la science accessible
  - Mes travaux au Centre d'Analyse Stratégique
  - Mes activités d'enseignement
- 5 Vers un enseignement de la modélisation
- Transposition didactique
- Conclusion



# Qu'est-ce qu'un modèle ?

Un modèle n'est qu'une approximation de la réalité qui sert de simulation du monde réel en termes mathématiques. Il permet :

- de regrouper le plus de connaissances dont on dispose, à propos du système étudié, dans des équations qui sont définies de façon concises et précises
- de fournir un cadre formel unifié rendant compte des observations expérimentales et corroborant les conclusions tirées des expériences
- d'agir sur le système pour l'optimiser ou le contrôler au mieux



# Qu'est-ce qu'un modèle ?

- d'étudier des systèmes complexes où de nombreuses variables, régulations, et contre régulations, interviennent.
- de faire des simulations numériques sans avoir à faire des expériences qui pourraient se révéler longues et coûteuses
- de déterminer l'influence qualitative et quantitative de chaque paramètres
- de poser des questions inaccessibles par l'expérience
- de prédire de nouveaux résultats et de suggérer des expériences de validation
- d'identifier les liens avec des phénomènes similaires se produisant dans d'autres contextes.



### Sommaire

- Introduction
- Parcours universitaire et professionnel
- Mes travaux de recherche
  - Protéine cherchant un site cible sur l'ADN
  - Comportement de recherche des animaux
- Rendre la science accessible
  - Mes travaux au Centre d'Analyse Stratégique
  - Mes activités d'enseignement
- Vers un enseignement de la modélisation
- Transposition didactique
- Conclusion



## Transposition didactique

#### Passage du savoir savant au savoir enseigné

- Activités expérimentales variées : techniques, mesures, protocole
- Activités numériques : simulation, animation, calcul formel, représentation graphique
- La contextualisation des activités (vie quotidienne, métiers, industrie, recherche actuelle, histoire, films, jeux vidéos ...)
- Projets en petits groupes, ateliers scientifiques
- L'interdisciplinarité : thèmes de convergence
- Hors de l'école : films, expositions, musées, culture, livres
- Réinvestissement soutenu des connaissances acquises

## Programme python d'une marche aléatoire

```
1 #!/usr/bin/env python
                                                            # marche aléatoire
   # -*- coding=utf-8 -*-
                                                    25
                                                            for i in range(npas):
                                                                wx = 2. * random() - 1.
                                                    26
   """ marche aleatoire - 26.06.2018 """
                                                               wv = 2. * random() - 1.
                                                    28
                                                                x.append(x[i] + amplitude * wx)
   from random import random
                                                    29
                                                                v.append(v[i] + amplitude * wv)
                                                    30
                                                            # représentation avec matplotlib
                                                    31
   def marche aleatoire():
                                                            import matplotlib.pyplot as plt
       """ Marche aléatoire dans un plan 2D """
                                                    23
                                                    34
                                                           plt.plot(x, v, "r-", label="trajectoire")
       # nombres de pas
                                                           plt.plot(x[0], y[0], "go", label="debut")
                                                    35
       npas = 1000
                                                    36
                                                           plt.plot(x[-1], y[-1], "bo", label="fin")
       amplitude = .1
                                                            plt.title("Marche aleatoire dans un plan 2D"
                                                    37
                                                           plt.axes().set aspect("equal")
                                                    38
       # liste pour les coordonnées
                                                    30
                                                           plt.grid()
       x = list()
                                                    40
                                                            nlt.xlabel("x")
       v = list()
                                                    41
                                                           plt.ylabel("y")
                                                    42
                                                           plt.legend()
20
       # initialisation
                                                           plt.show()
       x.append(0.)
       v.append(0.)
                                                       if __name__ == "__main__":
                                                           marche_aleatoire()
```

# Programme python d'une marche aléatoire



### Sommaire

- Introduction
- Parcours universitaire et professionnel
- Mes travaux de recherche
  - Protéine cherchant un site cible sur l'ADN
  - Comportement de recherche des animaux
- Rendre la science accessible
  - Mes travaux au Centre d'Analyse Stratégique
  - Mes activités d'enseignement
- Vers un enseignement de la modélisation
- Transposition didactique
- Conclusion



#### **Publications**

- [1] Averaged residence times of stochastic motions in bounded domains O. Bénichou, M. Coppey, M. Moreau, P.H. Suet, and R. Voituriez., Europhysics Letters, **70**, 42, (2005).
- [2] Optimal search strategies for hidden targets O. Bénichou, M. Coppey, M. Moreau, P.H. Suet, and R. Voituriez., Physical Rewiew Letters, **94**, 198101, (2005).
- [3] A stochastic model for intermittent search strategies O. Bénichou, M. Coppey, M. Moreau, P.H. Suet, and R. Voituriez., Journal of Physics: Condensed Matter, 17, 4275 (2005).

#### **Publications**

- [5] Intermittent search process and teleportation O. Bénichou, M. Moreau, P.H. Suet, and R. Voituriez, The Journal of Chemical Physics, (2007).
- **[6]** Intermittent search process: Chance against Strategy M. Moreau, O. Bénichou, C.Loverdo, P.H. Suet, and R. Voituriez, , (2007).
- [7] Note de Veille 136/137 (juin 2009) Analyse : La biologie synthétique : de la bioingénierie à la bioéthique
- [8] Note de Veille 150 (septembre 2009) Analyse : Les interfaces cerveau-machine



#### **Publications**

- [9] Note de Veille 174 (mai 2010) Analyse : Les microprocesseurs : pour une stratégie industrielle européenne...
- [10] Note de Veille 188 (juillet 2010) Analyse : Les supercalculateurs, un impératif scientifique et industriel
- [11] Rapport : La société et l'économie à l'aune de la révolution numérique (juillet 2009), La Documentation française
- [12] Rapport : Les nouvelles mobilités. Adapter l'automobile aux modes de vie de demain (novembre 2010), La Documentation française

### Références

Viswanathan G.M., Buldyrev S.V., Havlin S., da Luz M.G.E., Raposo E.P., Stanley H.E., *Optimizing the success of random searches*, Nature, **401**, 911, (1999)

Berg O.G., Winter R.B., von Hippel P.H., Biochemistry **20**, 6929, (1981)

Blanco S., Fournier R., *An invariance property of diffusive random walks*, Europhys. Lett., **61**, 168, (2003)

Mazzolo A., *Properties of diffusive random walks in bounded domains*, Europhys. Lett., **68**, 350, (2004)

