- 1. 算法指的是 ()。
 - A 计算机程序 B 解决问题的计算方法
 - C 排序方法 D 解决问题的有限运算序列
- 2. 在数据的树形结构中,数据元素之间为()的关系。
- B 1:1
- C 1:n
 - D
- 3. 在一个长度为n 的线性表中,删除值为x 的元素时需要比较元素和移动元素的总次数为()。
 - A. (n+1)/2 B. n-1 C. n D. n+1

- 4. 在一个单链表中删除 p 所指向结点的后继结点时, 其算法的时间复杂度为(
 - A. O(1) B. O(n/2) C. O(n) D. $O(n^2)$
- 5. 下列程序段的时间复杂度为()。

x=n; //n>1

v=0;

while (x>=(y+1)*(y+1))

y=y+1;

- $A \cdot O(n)$
- B, $O(\sqrt{n})$ C, O(1) D, $O(n^2)$
- 6. 一棵非空二叉树的先序遍历序列和后序遍历序列正好相反,则该二叉树一定满足()。

 - A. 所有结点均无右孩子 B. 所有结点均无左孩子
 - C. 任意一棵二叉树
- D. 只有1个叶子结点
- 7. 有一个 100 阶的三对角矩阵 M, 其元素 $m_{i,j}(1<=i<=100, 1<=j<=100)$,按行优先存储方法存到从 0 下标 开始的一维数组 N 中,则元素 $m_{30,30}$ 在数组中的下标为 ()。
 - A. 89 B. 88 C. 87 D. 86
- 8.对于 KMP 算法,在模式匹配时指示主串匹配位置的指针()。
 - A. 不会变大 B. 不会变小 C. 无法判断 D. 都有可能
- 9.若长度为 n 的线性表采用顺序存储结构, 在其第 i 个位置插入一个新元素算法的时间复杂度为 ()。
 - $A \cdot O(\log_2 n)$
- B、O(1)

 $C \setminus O(n)$

- $D \setminus O(n^2)$
- 10. 在一个单链表中, 若要在 P 所指向的结点之后插入一个新结点, 则需要相继修改() 个指针域的值.
- B. 2
- C. 3
- D. 4
- 11.将下图所示的 s 所指结点加到 p 所指结点之后, 其语句应为 (
 - A, $s \rightarrow next = p+1; p \rightarrow next = s;$
 - B (*p).next=s;(*s).next=(*p).next;
 - C, s->next=p->next;p->next=s->next;
 - D, $s \rightarrow next = p \rightarrow next$; $p \rightarrow next = s$;

12.在双向链表存储结构中,删除 p 所指的结点时须修改指针 ()。

A, $p \rightarrow next \rightarrow prior = p \rightarrow prior; p \rightarrow prior \rightarrow next = p \rightarrow next;$

B, p—/next=p—/next-/next;p—/next—/prior=p;
C, p->prior->next=p;p->prior=p->prior->prior;
D, $p->prior=p->next->next:p->prior->prior;$
3.在双向循环链表中,在 P 指针所指的结点后插入 q 所指向的新结点,其修改指针的操作是 (
A. $p->next=q; q->prior=p; p->next->prior=q; q->next=q;$
B. p->next=q;p->next->prior=q;q->prior=p;q->next=p->next;
C, q->prior=p; $q->$ next=p->next;
p->next- $>$ prior=q;p- $>$ next=q;
D, $q - > next = p - > next; q - > prior = p; p - > next = q; p - > next = q;$
4.将两个各有 n 个元素的有序表归并成一个有序表,其最少的比较次数是()。
A_{s} n b.2n-1 c.2n d.n-1
5.在一个长度为 n 的顺序表中,在第 i 个元素($1 \le i \le n$)之前插入一个新元素时须向后移动(
个元素。
A, n-i $B, n-i+1$ $C, n-i-1$ D, i
6. 已知一棵完全二叉树的第6层有8个叶子结点,则该完全二叉树的结点个数最多是()。
A. 39 B.52 C. 111 D. 119
7. 广义表 L= ((a,b,c,d)) 的表头是 (), 表尾是 ()。
A. a B.() C. (a,b,c,d) D. (b,c,d)
8.若指定有 n 个元素的向量,则建立一个有序单向链表的时间复杂性的量级是()。
A, $O(1)$ B, $O(n)$ C, $O(n^2)$ D, $O(n\log_2 n)$
9. 广义表 L= ((a,b,c)) 的深度和长度分别为 ()。
A. 3 和 1 B.2 和 1 C. 3 和 2 D.1 和 1
20. 若字符串 S="software",则其子串的数目是()。
A. 8 B. 9 C. 36 D. 37
21. 串"ababaaababaa"的 next 数组为 ()。
A. 012345678999 B.012121111212 C.011234223456 D.0123012322345
22. 若用一个大小为 6 的数组来实现循环队列,且当 rear 和 front 的值分别为 0 和 3。当从队列中删除
个元素,再加入两个元素后,rear 和 front 的值分别是()。
A、1和5 B、2和4
C、4和2 D、5和1
23. 设栈的输入序列为 1、2、3、4,则()不可能是其出栈序列。
A, 1243 B, 2134 C, 1432 D, 4312 E, 3214
24. 设栈的输入序列是 $1 \times 2 \times \dots \times n$,若输出序列的第一个元素是 n ,则第 i 个输出元素是 $($)。
A、不确定 B、n-i+1 C、i D、n-i
25. 假定一个顺序循环队列的队首和队尾指针分别用 front 和 rear 表示,则判队空的条件是()。
A, front+1==rear B, front==rear+1
C, front==0 D, front==rear
96 假定一个顺序循环队列存储于数组 A[n]中,其队首和队尾指针分别用 front 和 rear 表示,则判除

满的条件是 ()。

	A	(rear-1)%n=	=front		B _v (rear+1)	%n==fr	ont				
		rear==(front-			·						
27.		栈的的输入序						列的是()。		
		23415									
28.茅		·栈的输入序列							`输出元素是	()。
,		i-j-1							1114 > ->4 \> -		
29.		. 链表表示的链	_		_						
		链头									
30.	若X	是二叉中序约		*有左孩子	· 的结点,且	X不为	₁根,则∑	《的前驱为	J()。		
		X的双亲									
		X的左子树口									
31.		列算法描述中									
		表达式求值									
		二叉树遍历			D、广度优		;				
32.柞		i入和删除操作			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•				
		栈顶			C、任意位置	置 :	D、指定	位置			
33.		个具有n个顶							〕入度之和为	()。
		s B ₂									
34.		用大小为N的				列的最	大长度为	1 ()。			
		N-2									
35.		以链表作为村									
	A	必须判别栈。	是否满		B、判别栈	元素的	类型				
		必须判别栈是									
36.	链栈-	与顺序栈相比	公有一个明显	的优点,	即 ()。						
	A	插入操作更	加方便		B、通常不	会出现	栈满的情	况			
		不会出现栈等									
37.	设有	两个串p和q	,求 q 在 p ^r	中首次出	现的位置的词	运算称作	F ().	,			
			B、求·								
38.	为解决	央计算机主机	与打印机之门	间速度不	匹配问题,追	通常设置	置一个打印	印数据缓冲	区,主机将	要输出	占的
	数据	依次写入该组	爰冲区,而扌	丁印机则	依次从该缓	冲区中!	取出数据	·。该缓冲	区的逻辑结	构应该	亥是
	()。									
	1	A. 栈	B. 队列	C. 1	对 D. 图						
39.	设栈	S 和队列 Q	的初始状态均	匀为空,是	元素 a,b,c	, d, e,	, f, g 依	次进入栈	S。若每个元	素出村	戋
	后立	即进入队列(Q,且7个元	素出队的]顺序是 b,d	l, c, f,	e, a, g	,则栈S的	内容量至少是	: ()。
		A. 1 I	3. 2 C.	3 D.	4						
40.	给知	定二叉树如下	图所示。设于	D 代表二	叉树的根,L	代表根	見结点的な	定子树,R	代表根结点的	内右子	树。
	若	遍历后的结点	点序列为3,	1, 7, 5,	6, 2, 4,	则其遍原	万方式是	(),			
		A. LRD H	B. DRL C	C. RLD	D. RDL						

	6 7
41.	判定一个有向图是否存在回路,除了可以利用拓扑排序的方法外,还可以利用()。
	A. 求关键路径的方法 B.求最短路径的 Dijkstra 方法
	C. 深度优先遍历算法 D. 广度优先遍历算法
42.	就排序算法所用的辅助空间而言,选择排序、快速排序、归并排序的关系是()。
	A、选择排序<快速排序<归并排序 B、选择排序<归并排序<快速排序
	C、选择排序>归并排序>快速排序 D、选择排序>快速排序>归并排序
43.	若数据元素序列 11, 12, 13, 7, 8, 9, 23, 4, 5 是采用下列排序方法之一得到的第二趟排序后的
	结果,则该排序算法只能是()。
	A. 起泡排序 B. 插入排序 C. 选择排序 D. 二路归并排序
44.	将森林转换为对应的二叉树,若在二叉树中,结点 u 是结点 v 的父结点的父结点,则在原来的森林

I. 父子关系 II. 兄弟关系 III. u 的父结点与 v 的父结点是兄弟关系

)。

- A. 只有I B. I和II C. I和III D. I、II和III
- 45. 循环队列的队满条件为 ()

中, u和v可能具有的关系是(

- A. (sq->rear+1) % mazsize ==(sq->front+1) % maxsize; B. (sq->.rear+1 % maxsize ==sq->front+1
- C. (sq->(rear+1) % maxsize ==sq->front
- D. sq->rear ==sq->front
- 46. 一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足()。
 - A、所有的结点均无左孩子 B、所有的结点均无右孩子
 - C、只有一个叶子结点
- D、是任意一棵二叉树
- 47. 一棵完全二叉树上有 1001 个结点, 其中叶子结点的个数是()。

- B、500 C、254 D、505 E、以上答案都不对
- 48. 对记录的关键字集合 key={50, 26, 38, 80, 70, 90, 8, 30, 40, 20}进行排序, 各趟排序结束时 的结果为:

50 26 38 80 70 90 8 30 40 20 50 8 30 40 20 90 26 38 80 70

26 8 30 40 20 80 50 38 90 70

20 26 30 38 8 40 50 70 80 90

其使用的排序方法是()。

- A、快速排序 B、基数排序
- C、希尔排序
- D、归并排序
- 49. 若需在 O(nlog2n)的时间内完成对数组的排序,且要求排序是稳定的,则可选择的排序方法是(
 - A、快速排序 B、堆排序
- C、归并排序 D、直接插入排序

	A. 257	B. 258	C. 384	D. 385				
51.	任何一棵二又	叉树的叶结点	点在前 (先)序、中序和	1后序遍历月	亨列中的相对	次序()。
A	、不发生变	化	B、发生	变化	C_{γ}	不能确定		
52.	设a、b为一	棵二叉树上	的两个结点	。在中序遍 <u>/</u>	历时, a 在	b 前面的条件	‡ 是()。	
A	、a在b的在	言方		B、a在	b 的左方			
C	、a是b的社	1先		D、a 是	b的子孙			
53.	设有 13 个值	,用它们组	成一棵哈尹	· 曼树,则该	哈夫曼树共	有()个	结点。	
		В		(,		
				前缀编码的是			_ ,	
				В		0. 001. 010). 1}	
	-		-	D	-		-	
	•			ー 后序序列为 B				
				C EAGC				
				「以得到该二」				
				C、后序			1.)1.510	
				ン、)	
37. 1							∕ ∘	
50 ti	, ,		, ,	C、O(,	` ´		
				含结点的个数 D. abd	以小小丁() o		
	A、2 ^h エムいたである。				- 1-11カ/フ 1.4	5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	AK 된 구 티	+H n∧ + = +3+ 44 =
59.		B 的 走	5.只分别到	达 网个叶丁结	i 点路位工II	7仪阻/5列,	肥馮丁四-	一棵哈夫曼树的是
	() ₀	7 04 10 5	, D	24 10 7 5	H 0.4 10	7		
				24, 10, 5系				
				D .24, 10, 5 ₹	日 24, 14,	6		
	采用散列表征			-latts t	H . No			
	A、插入	B、删除	C、快速			_		
		` `						的地址空间为 0.6,
F	月线性探测法	解决冲突,	依次将这组	且关键码插入	T中,得到	的散列表为	()。	
	A. 0	1	2	3	4	5	6	
	14	6	23	9	4 18	5 30	12	
	В.							
	0	1	2	3	4	5	6	_
	14	18	23	9	30	12	6	
	С.							
	0	1 12	9	3 23	30	5 18	6	٦
	14	12	ן פ	20	30	10	1 0	
	D. 0	1	2	3	4	5	6	
	6	23	30	14	18	12	9	

50.若一棵完全二叉树有 768 个结点,则该二叉树中叶子结点的个数为()。

62. 若用邻接矩阵存储有向图,矩阵中主对角线以下的元素均为零,则关于该图拓扑序列的结论是()。A. 存在,且唯一 B. 存在,且不唯一 C. 存在,可能不唯一 D. 无法确定是否存在 63. 若对下图所示的无向图进行遍历,则下列选项中,不是广度优先遍历序列的是()。
A. h,c,a,b,d,e,g,f B. e,a,f,g,b,h,c,d C. d,b,c,a,h,e,f,g D. a,b,c,d,h,e,f,g
 64. 对于有 n 个项点, e 条边且使用邻接表存储的有向图进行广度优先遍历, 其算法的时间复杂度为()。 A、O(n+e) B、O(n) C、O(e) D、O(n*e) 65. 一个 n 个项点的连通无向图, 其边的个数至少为 ()。
A_{s} n-1 B_{s} n C_{s} n+1 D_{s} nlog ₂ n
二、 1. 下面程序段的时间复杂度是。 x=0; for(i=1;i <n;i++) for(j="1;j<=n-i;j++)" td="" x++;<=""></n;i++)>
2.下面程序段的时间复杂度是。 int i,j,k; for(i=0;i <n;i++) c[i][j]="0;</td" for(j="0;j<=n;j++)" {=""></n;i++)>
3. 下面程序段的时间复杂度是。
i=n-1;
while((i>=0) && (A[i]!=k)) j;

return (i);

fact(n)

4.下面程序段的时间复杂度是____。

```
{ if(n<=1)
     return (1);
   else
     return (n*fact(n-1));
   }
5. 下面程序段的时间复杂度是____。
for(i=0;i< n;i++)
for(j=0;j< n;j++)
A[i][j]=0;
6. 下面程序段的时间复杂度是。
i=s=0;
while(s<n)
{ i++;
 s+=i;
7. 下面程序段的时间复杂度是。
s=0;
for(i=0;i< n;i++)
for(j=0;j< n;j++)
s+=B[i][j];
sum=s;
8. 下面程序段的时间复杂度是。
i=1;
while(i<=n)
i=i*3;
9.设语句 x++的时间是单位时间,则以下语句的时间复杂度为____。
for(i=1; i<=n; i++)
for(j=i; j<=n; j++)
x++;
10.下列程序段的时间复杂度为____。
       x=n; /*n>1*/
       while (x>=(y+1)*(y+1))
```

}

y=y+1;

三、

1. 设通信中出现 5 种字符分别是 A, B, C, D, E, 出现的概率分别为 0.2, 0.05, 0.4, 0.1, 0.25, 请为它们构造哈夫曼树,并对这些字符完成编码。

- 2. 已知一棵线索化的二叉排序树如图所示。
 - (1) 说明该树的线索化是基于何种遍历次序的;
 - (2) 在该树中插入元素值为53的结点并修改相应线索,画出修改之后的线索二叉排序树。

- 3. 已知线性表为顺序表存储,阅读以下代码,并回答问题:
 - (1) 设线性表 L= (21,-7,-8,19,0,-11,34,30,-10) 含有 9 个元素,写出执行算法 test1 后的 L 状态;
 - (2) 简述算法 test1 的功能;

```
void test1(sqlist *L)
{int i, j;
for(i=j=0; j<L->length; i++)
  if (L->data[i]>=0)
  {if (i!=j) L->data[j]=L->data[i]; j++
```

```
}
L->length=j;
}
```

4. 已知主串为"ccgcgccgcgcg",模式串为"cgcgcg"。下表为按照朴素的模式匹配算法进行的前两趟匹配。请继续完成剩下各趟匹配过程。并说明: (1) 匹配成功,共进行了几趟模式匹配? (2) 一趟匹配失败时 i, i 的值? (3) 匹配成功,算法的返回值?

	1	2	3	4	3	O	/	ð	9	10	11	12	13	14
	С	c	g	c	g	c	c	g	c	g	c	g	c	g
第1耥	С	g												
第2趟		c	g	c	g	c	g							

匹配失败时 i=2,j=2 匹配失败时 i=7,j=6

5. 有一个图的边集为 $\{(A,C),(A,E),(B,E),(C,D),(D,E)\}$,假如按字母正序采用邻接矩阵 存储,回答下列问题: $(7\ \beta)$ (1) 请画出该图; (2) 从项点 a 出发进行深度优先搜索遍历得到的项点 DFS 序列为? (3) 从顶点 a 出发进行广度优先搜索遍历得到的项点 BFS 序列为?

6. 设散列表为 HT[13], 散列函数为 H (key) = key %13。用闭散列法解决冲突, 对下列关 键码序列 12, 23, 45, 57, 20, 03, 78, 31, 15, 36 构造表。采用线性探查法寻找下 一个空位, 现已有前 4 个关键字构造的散列表如下所示。回答问题: (1)请将剩余 6 个关键字填入表中相应位置; (2)计算等概率下查找成功的平均查找长度是?

0	1	2	3	4	5	6	7	8	9	10	11	12
					57	45				23		12

7. 以下算法是关于二叉排序树的运算,试分析算法的功能。

```
int n=0;
typedef struct node
{ int key;
  struct node *lchild,*rchild;
}bitree;
void BST(bitree *t, int x)
{ if(t!=NULL)
  { n++;
    if(bt->key==x) return;
    else if (bt->key>x)
        BST(bt->lchild, x);
    else
        BST(bt->rchild, x);
}
```

8. 已知有向图的邻接表的类型定义如下: 要求编写求有向图 G 中第 i 个顶点 (顶点序号 $0\sim n-1$)的出度。函数定义为 int outdegree(ALGraph * g, int i)。

```
# define maxsize 100; //图的最大顶点数 typedef struct node { int adjvex; //邻接点域 struct node *next; }edgenode;//边表结点类型 typedef struct nodevex { char vextex;//顶点域 edgenode *link;//边表头指针 } vexnode;//顶点表结点类型 typedef struct nodegraph { vexnode ga[maxsize];//邻接表 int n, e;//图中当前的顶点数和边数 } ALGraph;//邻接表类型 int outdegree(ALGraph * g, int i) {
```

}

9. 已知一棵二叉树的前序遍历序列是 ABDGCEFH, 其中序遍历序列为 DGBAECHF。请画出相应的二 叉树,并求出对应此二叉树的后序遍历序列,此二叉树是完全二叉树吗? 完全二叉树有什么性质(特点)?

10、写出下面的树转化为二叉树后的前序、中序和后序遍历序列。

11. 假设以带头结点的单循环链表作为非递减有序线性表的存储结构。请设计一个时间复杂度为 0(n) 的

算法,删除表中所有数值相同的多余元素,并释放结点空间。

例如: (7, 10, 10, 21, 30, 42, 42, 42, 51, 70), 经算法操作后变为 (7, 10, 21, 30, 42, 51, 70)

```
链表的结点定义如下:
typedef struct node
{ datatype data;
    struct node *next;
}linklist;

void delete(linklist*head)
{
```

}

12. 借助栈(可直接调用栈的基本运算 InitStack(), Push(), Pop())来实现带有头结点的单链表的逆置算法。

```
单链表结点定义:
typedef struct node
{ datatype data;
    struct node *next;
}Linklist;

顺序栈定义:
# define maxsize 1024
typedef char datatype;
typedef struct stack
```

```
{ datatype data[maxsize];
  int Top;
}stack ;

void converse(linkList*head)
  {
```

13. 设线性表 $A=(a_1,a_2,...a_m)$, $B=(b_1,b_2,...b_n)$,试写一个按下列规则将线性表 A、B 合并成线性表 C 的算法,使得

线性表 A、B和C均以带头结点的单链表作为存储结构,且C表利用A表和B表中的结点空间构成,C表仅头结点可以另开辟空间。请将算法的4处补充完整。

typedef struct node { int data;//数据域 struct node *next;//指针域

}

}Linklist;

```
Linklist *merge(Linklist *A, Linklist *B)
//A、B分别指向A表、B表,返回C表指针
{ Linklist *q,*p;
Linklist *C=( Linklist *)malloc(sizeof(Linklist));
 C->next=NULL;
 q=C;
 while(A->next!=NULL&&B->next!=NULL)
  {p=A->next;}
   A->next=P->next;
   (2) _____
   p=B->next;
   B->next=P->next;
   (3) _____
   }
if (A->next!=NULL) q->next=A->next;_
if (B->next!=NULL) q->next=B->next;
return C;
}
```