Master Maths en Action

Méthodes de Monte-Carlo – TD n°3

Simulation de variables aléatoires

Exercice 1 (Loi exponentielle)

Soit X une variable aléatoire réelle suivant une loi exponentielle de paramètre $\lambda > 0$.

- 1. Rappeler la fonction de répartition de X, qu'on notera F. Sur quel ensembles est-elle bijective?
- 2. Déterminer son application réciproque F^{-1} .
- 3. À partir de ce résultat programmer une fonction function [X] = LoiExpo(lambda) simulant une variable aléatoire de loi exponentielle de paramètre λ .

Utiliser le script TestExpo.m fourni avec le sujet pour vérifier votre fonction : il estime l'espérance et la variance, on doit trouver des valeurs proches des valeurs théoriques.

Exercice 2 (Loi de Poisson)

1. Montrer le résultat théorique suivant.

Théorème 4.3 : Soit $E_1, \ldots, \mathbb{E}_k, \ldots$ une suite de variables de loi exponentielle de paramètre 1. On note $S_n = E_1 + \cdots + E_n$, pour $n \in \mathbb{N}^*$. Soit alors la variable aléatoire

$$N = \min \{ n \in N^* ; S_n > = \lambda \} - 1,$$

avec $\lambda > 0$. Alors $N \hookrightarrow \mathcal{P}(\lambda)$.

2. A partir de ce résultat, déterminer un algorithme pour simuler la Loi de Poisson de paramètre λ pour obtenir une fonction [N] = LoiPoisson(lambda). Vous utiliserez le script TestPoisson.m pour vérifier votre générateur.

Exercice 3 (Loi discrète quelconque)

Soit n valeurs réelles $x_1 < x_2 < \cdots < x_n$ deux à deux distinctes et p_i , $i = 1 \dots n$ telles que

$$\sum_{i=1}^{n} p_i = 1.$$

On considère la variable aléatoire discrète X à valeurs dans $\{x_1,\ldots,x_n\}$ de loi

$$\mathbb{P}(X=x_i)=p_i, i=1\dots n.$$

- 1. Déterminer la fonction de répartition F de X.
- 2. Calculer sa pseudo-inverse F^{-1} .
- 3. En déduire un algorithme pour programmer une variable aléatoire suivant cette loi et la programmer.