1

Péndulo Simple - Análisis, simulación y construcción

Enrique Benavides Téllez, Isaac Ayala Lozano,
Sandy Natalie Campos Martínez, Luis Gerardo Almanza Granados
y Yair Casas Flores
Robótica y Manufactura Avanzada
CINVESTAV
Ramos Arizpe, México

Resumen

El sistema del péndulo simple es uno de los sistemas más estudiados en teoría de control. Su diseño y contrucción de baja dficultad hacen de este sistema uno de los más accesibles para modelar y contrastar con una implementación física. El documento presente muestra el estudio del sistema sin linearización. El estudio comprende la obtención de las ecuaciones de movimiento, la simulación del mismo en MATLAB y la comparación del modelo con un sistema físico.

I. Introducción

El péndulo simple (referido solamente como péndulo) es uno de los sistemas no lineares más estudiados por la comunidad científica y académica. La proliferación de su uso como sistema base para evaluar estrategias de control ha permitido desarrollar un conocimiento detallado del sistema.

El péndulo se compone de una mínima cantidad de elementos:

- Un punto de rotación
- \blacksquare Un objeto de masa m
- Un cuerpo rígido de longitud l y masa despreciable que conecta el punto de rotación con el objeto de interés La figura 1 exhibe los componentes antes mencionados.

Figura 1: Sistema de Péndulo simple.

Para describir el comportamiento del sistema es necesario desarrollar ecuaciones para detallar el movimiento y velocidad del cuerpo m. Este trabajo se limitará a determinar las ecuaciones para un péndulo cuyo movimiento está restringido a un plano sin la intervención de fuerzas externas.

II. MODELO MATEMÁTICO

El péndulo simple es un sistema el cual se basa en una particula de masa m sostenido de un punto fijo por medio de una barra o hilo de masa despreciable y sin extenderse mas de su distancia l. (Insertar figura del péndulo)

Para encontrar el movimiento de un péndulo se utilizaron los métodos de fuerza de Newton y el método de energías de Lagrange. Por medio del método de fuerzas de Newton, se desarrolla de la siguiente manera.

$$\sum F = ma = -F_{mg} - F_f$$

$$ml\ddot{\theta} = -mg\sin(\theta) - kl\dot{\theta}$$

$$\ddot{\theta} = -\frac{g}{l}\sin(\theta) - \frac{k}{m}\dot{\theta}$$

m = masa del péndulol = largo del péndulok = constante fricción

El modelo en base al método de Newton se basa en conocer las fuerzas actuando, las fuerzas principales que actúan sobre el péndulo es la fuerza ocasionada por el peso de la masa (F_{mg}) y la fuerza de al fricción que se opone al movimiento del péndulo (F_f) .

El segundo método utilizado para encontrar las ecuaciones de movimiento fue el de energías de Lagrange.

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = 0 \tag{1}$$

Por este método se necesitan desarrollar las ecuaciones de energía del péndulo. Y para desarrollar las ecuaciones de posición asignamos el marco de referencia del péndulo y se obtiene:

Energía Cinética

$$T = \frac{1}{2}mv^2 = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) \tag{3}$$

Derivando las ecuaciones de posición del péndulo obtenemos las ecuaciones de velocidad:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{bmatrix} l\dot{\theta}\cos(\theta) \\ l\dot{\theta}\sin(\theta) \end{bmatrix}$$
 (4)

Sustituyendo la ecuación 4 en 3 y desarrollando se obtiene:

$$T = \frac{1}{2}ml^2\dot{\theta}^2\tag{5}$$

Energía Potencial

La energía potencial se plantea multiplicando la posición en el *eje* y del péndulo por la masa y gravedad. Se plantea de la siguiente manera:

$$V = mql(1 - \cos\theta) \tag{6}$$

Con estas ecuaciones se puede definir el Lagrangiano el cual es el que va a ser diferenciado por medio de la ecuación 1. El Lagrangiano se define como:

$$L = T - V = \frac{1}{2}m(l\theta)^{2}$$
$$= \frac{1}{2}ml^{2}\dot{\theta}^{2} - mgl(1 - \cos\theta)$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} = \frac{d}{dt}ml^2\dot{\theta}$$

$$\frac{d}{dt}ml^2\dot{\theta} = ml^2\ddot{\theta}$$
(7)

$$\frac{\partial L}{\partial \theta} = -mgl\sin(\theta) \tag{8}$$

Al unir la ecuación 7 menos la ecuación 8, en base a la diferenciación del Lagrangiano (ecuación 1), se obtiene la ecuación de movimiento del sistema.

$$ml^2\ddot{\theta} + mgl\sin(\theta) = 0 \tag{9}$$

III. SIMULACIÓN

El modelo obtenido en

IV. MODELO FÍSICO

IV-A. Prueba de concepto

V. RESULTADOS

En la figura 2 se presenta el diagrama fase del sistema para posición y velocidad con respecto al eje x.

Figura 2: Diagrama de fase de x(t) y $\dot{x}(t)$.

Figura 3: Comportamiento de x(t) y $\dot{x}(t)$ en el tiempo.

VI. CONCLUSIONES

El mecanismo de péndulo simple es here [?].