CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

Announcements

Last lab will be this week

HW07 due Friday 12/08 Hashmaps & Sorting

HW08 due 12/14

Faculty Interview/Mock Lecture

• Friday 12/08 – 11-11am

Binary Search Tree

Location: TBD

Tea & Snacks

Outline

Double Hashing Review (Homework 07)

Balanced Binary Trees

AVL Trees

Splay Trees

Red-Black Trees

HW07

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7

HW07

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18

- N = 13
- h(k) = k%13
- d(k) = 7 k%7
- Insert 18

k	h(k)	d(k)	Prol	oes	
18	5	3	5		

- N = 13
- h(k) = k%13
- d(k) = 7 k%7
- Insert 18, 41

k	h(k)	d(k)	Prol	oes	
18	5	3	5		

- N = 13
- h(k) = k%13
- d(k) = 7 k%7
- Insert 18, 41

k	h(k)	d(k)	Prol	oes
18	5	3	5	
41	2	1	2	

- N = 13
- h(k) = k%13
- d(k) = 7 k%7
- Insert 18, 41, 22

k	h(k)	d(k)	Prol	oes
18	5	3	5	
41	2	1	2	

- N = 13
- h(k) = k%13
- d(k) = 7 k%7
- Insert 18, 41, 22

k	h(k)	d(k)	Prol	oes
18	5	3	5	
41	2	1	2	
22	9	6	9	

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44

k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22	9	6	9		

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44

k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22 44	9	6	9		
44	5	5	5	10	

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44, 59

k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22 44	9	6	9		
44	5	5	5	10	

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44, 59

k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22	9	6	9		
22 44 59	5	5	5	10	
59	7	4	7		

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44, 59, 32

k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22	9	6	9		
22 44 59	5	5	5	10	
59	7	4	7		

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44, 59, 32

k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22	9	6	9		
44 59	5	5	5	10	
59	7	4	7		
32	6	3	6		

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44, 59, 32, 31

k	h(k)	d(k)	Prol	oes
18	5	3	5	
41	2	1	2	
22	9	6	9	
44 59	5	5	5	10
59	7	4	7	
32	6	3	6	

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44, 59, 32, 31

k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22	9	6	9		
44	5	5	5	10	
59	7	4	7		
32	6	3	6		
31	5	4	5	9	0

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44, 59, 32, 31, 73

k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22	9	6	9		
44	5	5	5	10	
59	7	4	7		
32	6	3	6		
31	5	4	5	9	0

- Double hashing:
 - N = 13
 - h(k) = k%13
 - d(k) = 7 k%7
- Insert 18, 41, 22, 44, 59, 32, 31, 73

k	h(k) $d(k)$ Probes				
18	5	Ω	5		
41	2	1	2		
22	9	6	9		
44	5	5	5	10	
59	7	4	7		
41 22 44 59 32	6	3	6		
31 73	5	4	5	9	0
73	8	4	8		_

Outline

Double Hashing Review (Homework 07)

Balanced Binary Trees

AVL Trees

Splay Trees

Red-Black Trees

Binary Search Trees

Performance is directly affected by the height of tree

All operations are O(h)

- h = O(n) worst case
- h = O(logn) best case

Expected O(logn) if tree is balanced

Balanced Trees

 The difference between the height of the left and right subtree for any node is at most 1

Left subtree of a node is balanced

Right subtree of a node is balanced

Balanced Search Trees

A variety of algorithms that augments a standard BST with occasional operations to reshape and reduce height

Rotation:

- move a child to be above its parent and relink subtrees to maintain BST order
- *0*(1)

Tree Rotation

Rotation can be to the right or left

Rotate reduces/increases the depth of nodes in subtrees T_1 and T_3 by 1

Rotation maintains BST order

Rotate is O(1)

One or more rotations can be combined to provide broader rebalancing

Tri-node restructuring: a node x, its parent y and its grandparent z

Rotations

Right rotation:

- Root node's left child becomes the new root
- Root node becomes the left child's right child

Left rotation:

- Root node's right child becomes the new root
- Root node becomes the right child's left child

Rotation

Rotation

Double Rotation

Double Rotation

Double Rotation (around z)

Double Rotation (around z)

Double Rotation (around z)

Tree Rotations

```
rotateRight(r):
  if (r.left==null) return
 p = r.left
 r.left = p.right
 p.right = r
  // set parent
  if r.parent == null
    root = p
   p.parent = null
 else
    if(r.parent.left == r)
      r.parent.left=p
    else
      r.parent.right=p
```


Initial state Final state Root is the initial parent and Pivot is the child to take the root's place. Final state Initial state Root Pivot Root Pivot Left Rotation

Outline

Double Hashing Review (Homework 07)

Balanced Binary Trees

AVL Trees

Splay Trees

Red-Black Trees

AVL Tree

Height of a subtree is the number of edges on the longest path from subtree root to a leaf

Height-balance property

 For every internal node, the heights of the two children differ by at most 1

Any binary tree satisfying the height-balance property is an AVL tree

AVL Tree Example

leaves are sentinels and have height 0

AVL Tree Example

leaves are sentinels and have height 0

AVL height

The height of an AVL is O(logn)

n(h) denotes the number of minimum internal nodes for an AVL with height h

- n(1) = 1 and n(2) = 2
- n(h) = 1 + n(h-1) + n(h-2)
- $n(h) > 2 \cdot n(h-2) > 2^i \cdot n(h-2i)$
- $h 2i = 1 \implies i = \frac{h}{2} 1$
- $\log(n(h)) = \frac{h}{2} 1 \Longrightarrow h < 2\log(n(h)) + 1$

Insert 54

Insertion (54)

New node always has height 1
Parent may change height
All ancestors may become
unbalanced

Perform rotations for unbalanced ancestors

O(1) Rotation Restores Global Balance

After rebalance:

- x, y and z are balanced after
- root of subtree returns to height h+2, as before

Exercise

- Create an AVL tree by inserting the nodes in this order:
 - M, N, O, L, K, Q, P, H, I, A

- AVL balance marked on nodes
- balance(n) = height of right subtree height of left subtree
- AVL balance property: $|balance(n)| \le 1$

AVL Animation

Exercise

- Create an AVL tree by inserting the nodes in this order:
 - M, N, O, L, K, Q, P, H, I, A

- AVL balance marked on nodes
- balance(n) = height of right subtree height of left subtree
- AVL balance property: $|balance(n)| \le 1$

Rebalance: no null checks

```
rebalance(n):
 updateHeight(n) // update height from children
 lh = n.left.height rh = n.right.height
  if (lh > rh+1) // left subtree too tall
    llh = n.left.left.height lrh = n.left.right.height
    if (llh >= lrh)
      return rotateRight(n) //left-left
    else
      return rotateLeftRight(n) //left-right
 else if (rh > lh+1) // right subtree too tall
    // ... symmetric
 else return n // no rotation
```

Helpers

```
updateHeight(n):
rotateRight(r):
 p = r.left
                                 lh = n.left.height
  r.left = p.right
                                 rh = n.right.height
 p.right = r
                                 height = 1+max(lh, rh)
 updateHeight(r)
 updateHeight(p)
  // let caller set parent
  // return new subtree root
  return p
rotateLeftRight(r):
  r.left = rotateLeft(r.left)
  return rotateRight(r)
```

Insert with parent

```
insertRec(root, key):
  if root == null:
    return new Node (key)
  if root.key > key:
    root.left = insertRec(root.left, key)
    root.left.parent = root
 else
    root.right = insertRec(root.right, key)
    root.right.parent = root
  return root
```

Delete 32

Deletion

Deletion structurally removes a node with 0 or 1 child

- predecessor has 0 or 1 left child
- successor has 0 or 1 right child

Deletion may reduce the height of parent

Ancestors may become unbalanced Rotate to rebalance just like insertion

O(logn) Rotations

Unlike insertion where rotation of the nearest unbalanced ancestor restores the balance globally

On deletion, rotation of the nearest unbalanced ancestor only guarantees balance locally to the subtree

Worst-case requires O(logn) rotations up the tree to restore balance globally

Performance of AVLTreeMap

Method	Running Time
size, isEmpty	<i>O</i> (1)
get, put, remove	$O(\log n)$
firstEntry, lastEntry	$O(\log n)$
ceilingEntry, floorEntry, lowerEntry, higherEntry	$O(\log n)$
subMap	$O(s + \log n)$
entrySet, keySet, values	O(n)

Book's Implementation of AVL

- 17 classes!
- Interfaces
 - Entry
 - Position
 - Queue
 - Tree
 - BinaryTree
 - Map
 - SortedMap

Abstract classes:

- AbstractTree
- AbstractBinaryTree
- AbstractMap
- AbstractSortedMap

Concrete classes

- SinglyLinkedList
- LinkedQueue
- LinkedBinaryTree
- TreeMap
- AVLTreeMap

Outline

Double Hashing Review (Homework 07)

Balanced Binary Trees

AVL Trees

Splay Trees

Red-Black Trees

Splay Tree

- A binary search tree that doesn't enforce a $O(\log n)$ bound on the height
- Efficiency is achieved due to a move-to-root operation, called splaying
- Performed at the leaf reached during every insert, delete and search
- Causes the more frequently accessed elements to be near the top

Splaying

- Swapping a BST node x up depends on the relative position of x, its parent y and its grandparent z
- zig-zig (zag-zag):
 x and y are both right/left children
- zig-zag (zag-zig): one right one left

Splaying

• zig (zag): y has no parent

• Splaying will continue these rotations until x becomes root

Example

When/what to Splay

- On search for x: if x is found, splay x else splay x's parent
- On insert x: splay x after insertion

- On delete x: splay parent of removed node
 - x is removed
 - in-order successor/predecessor removed

Deletion

How to Splay node *x* is x a left-left zig-zig is x the grandchild? yes stop root? right-rotate about g, yes right-rotate about *p* no is x a right-right zig-zig grandchild? is x a child of no the root? left-rotate about *g*, yes left-rotate about *p* yes is x a right-left zig-zag grandchild? is x the left left-rotate about *p*, no yes child of the right-rotate about g root? is x a left-right zig-zag zig zig grandchild? yes right-rotate left-rotate about right-rotate about p,

the root

about the root

yes ecture 24 - Fall '23 - 12/04/23

left-rotate about *g*

Analysis of Splaying

- Splay trees do rotations after every operation (even search)
- Runtime of each search/insert/delete is proportional to the time for splaying
- Each zig-zig, zig-zag or zig is O(1)
- Splaying a node at height h is O(h)
- Worst case height of a splay tree is O(n)

Amortized Performance

- A splay tree performs well in amortization in a sequence of mixed searches, insertions and deletions
- Splay tree performs better for many sequences of non-random operations
- Amortized cost for any splay operation is O(logn)
- Must faster search than O(logn) on frequently requested items

Comparison of Maps

	Search	Insert	Delete	Notes
Hash Table	O(1) expected	O(1) expected	O(1) expected	 not ordered simple to implement
Skip List	O(logn) high prob.	O(logn) highprob.	O(logn) high prob.	randomized insertionsimple to implement
AVL	O(logn) worst-case	O(logn) worst-case	O(logn) worst-case	o complex to implement
Splay	O(logn) amortized	O(logn) amortized	O(logn) amortized	 complex to implement faster than O(logn) on favorites

AVL Rotations

- AVL insert O(logn)
 - Find the lowest out-of-balance ancestor also known as the critical node, rotate critical node to balance. Loop ends after single rotation
 - O(logn) search up the tree to find critical node + O(1) rotations
- AVL delete O(logn)
 - O(logn) rotations on delete

Outline

Double Hashing Review (Homework 07)

Balanced Binary Trees

AVL Trees

Splay Trees

Red-Black Trees

Red-Black Tree

- AVL has O(1) rotations on insert and O(logn) rotations on delete
- Splay has O(logn) rotations (amortized) on all operations
- Red-black tree
 - insert and delete: O(1) rotations + O(logn) recoloring up the tree
 - O(logn) search

- All null nodes are black
- Children of red nodes are black
- All null nodes have same black depth number of ancestors that are black
- Root is black (made black)

AVL versus RB

- AVL is a subset of RB
- AVL height is more rigidly balanced
- RB height property: longest path from the root to a leaf is no more than twice as long as shortest
- AVL is faster on searches
- RB is faster on deletion