TOSHIBA TA31149FNG

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA31149FNG

4-LEVEL FSK IF DETECTOR IC FOR PAGER

TA31149FN is a 4-level frequency-shift keying (FSK) compatible IF detector IC for pagers. The IC contains a 4-level FSK comparator and a bit rate filter switch. The device, which operates at low voltage, incorporates a battery alarm and RF regulator, reducing the number of external components.

FEATURES

Mixer operating frequency range: 10~50MHz

Operating voltage range : 1.1~3.5V

Current dissipation : 1.5mA (Typ.) Current dissipation at BS : $0\mu A$ (Typ.)

: SSOP 24PIN (0.65mm pitch) Small package

Weight: 0.14g (Typ.)

PINS

PIN2						
PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT (RESISTANCES AND (CAPACITANCES ARE TYP.) VALUES.			
1	OSC IN	Local oscillator input terminal. In case of oscillating by X'tal, connect to this terminal.	Vcc T Vcc Vcc			
2	OSC OUT	Local oscillator output terminal. In case of input external source, input to this terminal.	(2) MIX			
3	MIX OUT	Mixer output terminal. Output impedance is $2k\Omega$ (Typ.).	3 T VCC VCC VCC VCC			
4	V _{CC}	Power supply terminal.	_			
5	IF IN	amp input terminal (pin 5) and bias ecoupling terminal (pin 6).	V _{CC}			
6	DEC	Input impedance is $2k\Omega$ (Typ.).	6 1 1 kΩ			
7	FSK REF1	Threshold input terminal for 2-Level. Connect a capacitor externally. Built-in a charge / discharge circuit with push-pull output.	VCC VCC VCC			
8	QUAD	Phase-shift input terminal for the FM demodulator. Connect to the discriminator.	ν _{CC}			

PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT (RESISTANCES AND (CAPACITANCES ARE TYP.) VALUES.				
9	C1		_ + vcc				
10	C2	Capacitor connecting terminals for the bit rate filter.	9 10 11 11 11 150kΩ 50kΩ 11 11 11 11 11 11 11 11 11 11 11 11 11				
11	С3		# ¥ *				
12	FIL SEL	Data input terminal to control the bit rate filter.	12 300kΩ \\ \(\text{300kΩ} \)				
13	RSSI	RSSI output terminal.	13 VCC VCC				
14	FSK REF2	Threshold input terminal for 4-Level. Connect a capacitor externally. Built-in a charge / discharge circuit with push-pull output.	14 VCC VCC VCC VCC VCC VCC VCC				
15	CHARGE2	Control terminal for charge/discharge circuit of FSK REF2 (pin 14). "H" Charge/discharge ON "L" Charge/discharge OFF	15 300kΩ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
16	CHARGE1	Control terminal for charge/discharge circuit of FSK REF1 (pin 7). "H" Charge/discharge ON "L" Charge/discharge OFF	16 300kΩ F				
17	BS	Battery saving control terminal. "H" Battery saving OFF "L" Battery saving ON	17 23kΩ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT (RESISTANCES AND (CAPACITANCES ARE TYP.) VALUES.
18	FSK OUT2	Output terminal for 4-Level waveform shaping. Outputs a wave-shaped FSK signal from the demodulator as an inverted signal with respect to the IF signal. Connect a pull-up resistor, because it is an open-collector output.	18 ***
19	FSK OUT1	Output terminal for 2-Level waveform shaping. Outputs a wave-shaped FSK signal from the demodulator as an inverted signal with respect to the IF signal. Connect a pull-up resistor, because it is an open-collector output.	(19) ************************************
20	ALM	Output terminal for ALARM. At $V_{CC} \approx 1.1V$, this terminal output becomes "H" ($\approx V_{CC}$) and can indicate deterioration of battery. Connect a pull-up resister, bacause it is an open-collector output.	© ************************************
21	REG CONT	External transistor control terminal for regulator of external power supply. Connect the PNP transistor externally.	Vcc
22	REG OUT	Output voltage monitoring terminal for regulator of external power supply.	22 × CCC
23	GND	GND terminal.	-
24	MIX IN	Input terminal for the MIX section. The input impedance is ${\rm 5k}\Omega$ (Typ.).	VCC TO

FUNCTIONS

1. Local oscillation circuit

Local oscillation circuit is Colpitts type oscillator composed by internal emitter follower circuit and external X'tal. Connect as shown in the figure below.

Connect a base bias resister between pin1 and V_{CC} or REG OUT terminal (pin22).

In case of need to increase the current of local oscillation circuit in order to compose the overtone oscillation and improve the stability of oscillation, connect a resistor between pin2 and GND. In such a case we recommend connecting a base bias resister between pin1 and pin22, or the external regulator (is under the control of the battery-saving). (If a base bias resister is connected between pin1 and V_{CC}, the current flows across a resistor connected between pin2 and GND during battery saving.)

2. Waveform shaping circuit

The FM detected signal is converted into 2-bit digital signal by the waveform shaping circuit (configured with comparator). Thus, accurate signal digitization can be achieved when this IC is in a weak electric field or there is noise in the FSK signal. Therefore reading errors of the microprocessor are reduced.

When 4-level FSK: Handled as 2-bit output

3. Charge / discharge circuit

While the Charge-discharge circuit is ON, charges/discharges the capacitors connected to the FSK REF terminals (pin7 and pin14). Also threshold-voltage for waveform shaping is determined. Threshold-voltage is automatically adjusted with FM detection waveform. Turn on the charge/discharge circuit only when the FM detection waveform is at full swing (2-level: consecutive signal of 1·0; 4-level: consecutive signal of 10·00). Threshold-voltage may fluctuate depending on the circuit leakage. Thus, in order to refresh with turn on the charge-discharge circuit.

Charge-discharge circuit is active mode only when the CHARGE terminals (pin15 and pin16) is high.

4. Cut-off frequency switching of bit rate (low pass) filter

Cut-off frequency of low pass filter can be selected 2 kinds of frequency by controlling the FIL SEL terminal (pin12).

When using the above circuit as a three-stage Bessel filter, select the desired cut-off frequency, f_C (Hz). Where, $C_2 = C_3 \times f_1 = 1.325 f_C \times f_2 = 1.450 f_C$,

$$C_1 = \frac{1}{2\pi R \cdot f_1}$$
 $C_2 = \frac{1}{\sqrt{2}\pi R \cdot f_2}$

Note that : R = 100 (k Ω) when FIL SEL = H R = 50 (k Ω) when FIL SEL = L

Setting $C_2 \neq C_3$ can increase the range in which f_C can be set.

5. Battery-saving function

This IC incorporates a battery-saving function. Using this function reduces current consumption and helps preserve battery life. As the BS terminal (pin17) is base input of the NPN transistor, its input impedance is high and it can be driven with low power. Therefore, this function can be directly driven by CMOS output of microcontroller.

BS TERMINAL (PIN 17) STATE	BATTERY-SAVING FUNCTION	OTHER IC INTERNAL CIRCUIT OPERATION STATES	QUIESCENT CURRENT CONSUMPTION OF IC
L	Battery-saving ON	Operation stop	0μ Α (Typ.)
Н	Battery-saving OFF	Normal operation	1.5mA (Typ.)

6. Battery alarm function

When the V_{CC} terminal (pin 4) is 1.1V (Typ.), the output of the ALM terminal (pin 20) rises to around the V_{CC} voltage to show that the battery charge is low. The output is open corrector type.

7. 1V constant supply voltage

As shown in the following diagram, connecting the PNP transistor to the REG CONT terminal (pin 21) allows the REG OUT terminal (pin 22) to be used for high-output constant voltage : $V_{REG} = 1.0V$ (Typ.). During battery-saving, the constant voltage output is OFF.

When connecting an external resistor "R" to the REG OUT terminal (pin 22) to raise the output voltage, oscillation may occur in the regulator output. To avoid this, connect a capacitor as shown in the following diagram.

8. RSSI function

The RSSI terminal (pin13) outputs a DC potential corresponding to the IF IN terminal (pin5) input level. As the RSSI output is converted into voltage by an internal resistance ($82k\Omega$), its characteristics can be changed as shown in the following diagram. In this case, note that owing to displacement of temperature coefficient between external resistance and internal resistance, the temperature characteristics of the RSSI output may change. Because of the internal circuit structure, do not connect the RSSI terminal (pin13) directly to GND.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	Vcc	4	V
Power Dissipation	PD	760	mW
Operating Temperature	T _{opr}	- 30∼85	°C
Storage Temperature	V _{stg}	- 55∼150	°C

ELECTRICAL CHARACTERISTICS $f_m = 800 \, \text{Hz}$ (sine wave), Dev = $\pm 4.8 \, \text{kHz}$, FIL SEL = "L"

		TEST					
CHARACTERISTIC	SYMBOL	CIR- CUIT	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage Range	Vcc		_	1.1	1.4	3.5	V
Quiescent Current Consumption	Iccq	2	_	_	1.5	1.9	mA
Current Consumption at BS	lcco	3	_	_	0	5	μ A
Mixer Conversion Gain	GMv	1 (1)	After ceramic filter	7.5	11	14	dB
Mixer Intercept Point	lp	_	_	_	96	—	$dB\muV$
Mixer Input Resistance	R (MIX) IN	_	_	_	5	_	kΩ
Mixer Output Resistance	R (MIX) OUT	_	_	_	2	_	kΩ
IF Amp Input Resistance	R (IF) IN	_	_	_	2	_	kΩ
Signal to Noise Ratio 1	S/N1	1 (3)	V _{IN} (MIX) = 60dBμVEMF	_	60	_	dB
Signal to Noise Ratio 2	S / N2	1 (2)	V_{IN} (IF) = $60dB\mu VEMF$	45	60		dB
Signal to Noise Ratio 3	S / N3	1 (2)	V_{IN} (IF) = 25dB μ VEMF	22	28	_	dB
Limitting Sensitivity	Vi (LIM)	1 (2)	IF input	_	24	27	dBμ VEMF
Demodulated Output Level	V _{OD}	1 (2)	V_{IN} (IF) = $60dB\mu VEMF$	_	50	_	mV_{rms}
AM Rejection Ratio	AMR	1 (2)	V_{IN} (IF) = $60dB\mu VEMF$, AM = 30%	_	45	_	dB
FSK Output Duty Ratio	D _R	1 (4)	V_{IN} (IF) = 60dB μ VEMF	40	50	60	%
Alarm Detection Voltage	V _{ALM}	1 (5)	_	1.05	1.1	1.15	V
"L" Level Output Voltage (ALM)	V _{ALM} L	1 (6)	I _L = 100μΑ	_	_	0.4	V
"H" Level Leak Current (ALM)	I _{ALM} H	1 (7)	_	_	_	2	μ A
"L" Level Output Voltage	Vecic	1 (8)	I _I = 100μΑ			0.4	V
(FSK OUT)	V _{FSK} L	(0)	- 100μΑ			0.4	, v
"H" Level Leak Current	I _{FSK} H	1 (9)				2	μΑ
(FSK OUT)	'FSK ''	1 (3)					μ

CHARACTERISTIC	SYMBOL	TEST CIRC- UIT		MIN.	TYP.	MAX.	UNIT
Regulator Output Voltage	V _{REG}	1 (10)	$R_L = 430\Omega$	0.95	1	1.05	V
RSSI Output Voltage	VRSSI	1 (12)	V _{IN} (IF) = 65dBμVEMF	0.45	0.6	0.8	V
RSSI Output Resistance	R _{RSSI}	_	_	_	82	_	kΩ
Charge / discharge Current1 (FSK REF1, FSK REF2)	lCH1	4	FSK REF = GND FIL SEL = "H"	85	150	230	μΑ
Charge / discharge Current2 (FSK REF1, FSK REF2)	l _{CH2}	_	FSK REF = GND FIL SEL = "L"	45	80	120	μΑ
"H" Level Input Voltage (BS, CHARGE, FIL SEL)	_	_	_	1.1	1.4	_	V
"L" Level Input Voltage (BS, CHARGE, FIL SEL)			_	0	_	0.2	V
"L" Level Output Voltage (REG CONT)	REG L	1 (11)	I _L = 100μΑ	_	_	0.6	V

TEST CIRCUIT 1

(1) GMv

(2) S/N2, S/N3, $V_{i \text{ (LIM)}}$, V_{OD} , AMR

(3) S/N1

(4) D_R

(5) V_{ALM}

(6) V_{ALM} L

(7) I_{ALM}

(8) V_{FSK} L

(9) I_{FSK}

(10) V_{REG}

(11) REG L

(12) V_{RSSI}

TEST CIRCUIT 2

lccq

TEST CIRCUIT 3

ICCo

TEST CIRCUIT 4

I_{CH1} (FSK REF1)

PACKAGE DIMENSIONS SSOP24-P-300-0.65A Unit : mm 24 13 13 0.325TYP 0.325TYP 8.3MAX 7.8±0.2 7.8±0.2 0.45±0.2

Weight: 0.14g (Typ.)

TOSHIBA TA31149FNG

Notice for Pb free product About solderability, following conditions were confirmed Solderability

- (1) Use of Śn-36Pb solder bathsolder bath temperature = 230
- dipping time = 5seconds
- the number of times = once
- use of R-type flux
- (2) Use of Sn-3.0Ag-0.5Cu solder bath
 - solder bath temperature = 245
 - dipping time = 5seconds
 - the number of times = once
 - use of R-type flux

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.