A One-Way Quantum Computer

Yichao Yu

Ni Group

Feb. 15, 2021

- 1D Cluster state
 - ▶ Generation
 - Properties
- High dimensional cluster state
- Quantum circuit
- Gates and single qubit operations

$$H = \sum_{a,a' \in \Gamma} \frac{1 + \sigma_z^{(a)}}{2} \frac{1 - \sigma_z^{(a')}}{2}$$
$$\Gamma = \{(a,a') | a' = a + 1\}$$

$$\mathcal{S}=\mathrm{e}^{\mathrm{i}\pi H}$$

$$H = \sum_{a,a' \in \Gamma} \frac{1 + \sigma_z^{(a)}}{2} \frac{1 - \sigma_z^{(a')}}{2} \qquad H = \sum \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\Gamma = \{(a,a')|a' = a+1\}$$

$$\mathcal{S}=\mathrm{e}^{\mathrm{i}\pi H}$$

$$\mathcal{S}=igotimesegin{pmatrix}1&&&&\\&1&&\\&&-1&\\&&&1\end{pmatrix}$$

$$|\phi_N\rangle = \mathcal{S}\bigotimes_a |+\rangle_a = \frac{1}{2^{N/2}}\bigotimes_a \left(|0\rangle_a \sigma_z^{a+1} + |1\rangle_a\right)$$

$$\begin{split} |\phi_N\rangle &= \mathcal{S} \bigotimes_a |+\rangle_a = \frac{1}{2^{N/2}} \bigotimes_a \left(|0\rangle_a \sigma_z^{a+1} + |1\rangle_a\right) \\ |\phi_2\rangle &= \frac{1}{\sqrt{2}} (|0-\rangle + |1+\rangle) \end{split}$$

$$\begin{split} |\phi_N\rangle &= \mathcal{S} \bigotimes_a |+\rangle_a = \frac{1}{2^{N/2}} \bigotimes_a \left(|0\rangle_a \sigma_z^{a+1} + |1\rangle_a \right) \\ |\phi_2\rangle &= \frac{1}{\sqrt{2}} (|0-\rangle + |1+\rangle) \\ |\phi_3\rangle &= \frac{1}{\sqrt{2}} (|+0-\rangle - |-1+\rangle) \end{split}$$

$$\begin{split} |\phi_N\rangle &= \mathcal{S} \bigotimes_a |+\rangle_a = \frac{1}{2^{N/2}} \bigotimes_a \left(|0\rangle_a \sigma_z^{a+1} + |1\rangle_a\right) \\ |\phi_2\rangle &= \frac{1}{\sqrt{2}} (|0-\rangle + |1+\rangle) \\ |\phi_3\rangle &= \frac{1}{\sqrt{2}} (|+0-\rangle - |-1+\rangle) \\ |\phi_4\rangle &= \frac{1}{2} (|0-0-\rangle - |0+1+\rangle + |1+0-\rangle - |1-1+\rangle) \end{split}$$

$$\begin{split} |\phi_N\rangle &= \mathcal{S} \bigotimes_a |+\rangle_a = \frac{1}{2^{N/2}} \bigotimes_a \left(|0\rangle_a \sigma_z^{a+1} + |1\rangle_a\right) \\ |\phi_2\rangle &= \frac{1}{\sqrt{2}} (|0-\rangle + |1+\rangle) \\ |\phi_3\rangle &= \frac{1}{\sqrt{2}} (|+0-\rangle - |-1+\rangle) \\ |\phi_4\rangle &= \frac{1}{2} (|0-0-\rangle - |0+1+\rangle + |1+0-\rangle - |1-1+\rangle) \\ |\mathrm{GHZ}_N\rangle &= \frac{1}{\sqrt{2}} \left(\bigotimes_a |0\rangle_a + \bigotimes_a |1\rangle_a\right) \end{split}$$

Maximum connectedness
 Ability to create Bell state by local measurements.

Yes for both GHZ state and cluster state.

Persistency
 Minimum local measurements to destroy all entanglements.

Maximum connectedness
 Ability to create Bell state by local measurements.

 Yes for both GHZ state and cluster state.

Persistency
 Minimum local measurements to destroy all entanglements.

Maximum connectedness
 Ability to create Bell state by local measurements.

 Yes for both GHZ state and cluster state.

Persistency
 Minimum local measurements to destroy all entanglements.

Maximum connectedness
 Ability to create Bell state by local measurements.

 Yes for both GHZ state and cluster state.

Persistency
 Minimum local measurements to destroy all entanglements.

$$H = \sum_{a,a' \in \Gamma} \frac{1 + \sigma_z^{(a)}}{2} \frac{1 - \sigma_z^{(a')}}{2}$$
$$\Gamma = \{(a,a') | a' = a + \hat{e}_i\}$$

$$\begin{split} H &= \sum_{a,a' \in \Gamma} \frac{1 + \sigma_z^{(a)}}{2} \frac{1 - \sigma_z^{(a')}}{2} \\ [H, \sigma_z^{(a)}] &= 0, \ \ [\mathcal{S}, \sigma_z^{(a)}] = 0 \end{split}$$

$$H = \sum_{a,a' \in \Gamma} \frac{1 + \sigma_z^{(a)}}{2} \frac{1 - \sigma_z^{(a')}}{2}$$

$$a,a' \in \Gamma$$

$$[H,\sigma_z^{(a)}] = 0, \quad [\mathcal{S},\sigma_z^{(a)}] = 0$$

$$H = \sum_{a,a' \in \Gamma} \frac{1 + \sigma_z^{(a)}}{2} \frac{1 - \sigma_z^{(a')}}{2}$$

$$[H, \sigma_z^{(a)}] = 0, \ [S, \sigma_z^{(a)}] = 0$$

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

$$\bullet \ K_a |\phi_N\rangle = \pm |\phi_N\rangle$$

$$\bullet \ \{K_a,\sigma_z^{(a)}\}=0$$

$$\bullet \ [K_a,K_b]=0$$

$$\bullet \left[K_a, \sigma_z^{(b)} \right] \Big|_{a \neq b} = 0$$

- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

- $\bullet K_a |\phi_N\rangle = \pm |\phi_N\rangle$
- $\bullet \ \{K_a,\sigma_z^{(a)}\}=0$
- $\bullet \ [K_a,K_b]=0$
- $\bullet \left[K_a, \sigma_z^{(b)} \right] \Big|_{a \neq b} = 0$
- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

$$\bullet \ K_a |\phi_N\rangle = \pm |\phi_N\rangle$$

$$\bullet \ \{K_a,\sigma_z^{(a)}\}=0$$

$$\bullet [K_a, K_b] = 0$$

$$\bullet \left[K_a, \sigma_z^{(b)} \right] \Big|_{a \neq b} = 0$$

- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

- $\bullet \ K_a |\phi_N\rangle = \pm |\phi_N\rangle$
- $\bullet \ \{K_a,\sigma_z^{(a)}\}=0$
- $\bullet \ [K_a,K_b]=0$
- $\bullet \left. \left[K_a, \sigma_z^{(b)} \right] \right|_{a \neq b} = 0$
- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

- $\bullet K_a |\phi_N\rangle = \pm |\phi_N\rangle$
- $\bullet \ \{K_a,\sigma_z^{(a)}\}=0$
- $\bullet \ [K_a,K_b]=0$
- $\bullet \left. \left[K_a, \sigma_z^{(b)} \right] \right|_{a \neq b} = 0$
- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

- $K_a |\phi_N\rangle = \pm |\phi_N\rangle$
- $\bullet \ \{K_a,\sigma_z^{(a)}\}=0$
- $\bullet \ [K_a,K_b]=0$
- $\bullet \left[K_a, \sigma_z^{(b)} \right] \Big|_{a \neq b} = 0$
- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

- $\bullet K_a |\phi_N\rangle = \pm |\phi_N\rangle$
- $\bullet \ \{K_a,\sigma_z^{(a)}\}=0$
- $\bullet \ [K_a,K_b]=0$
- $\bullet \left. \left[K_a, \sigma_z^{(b)} \right] \right|_{a \neq b} = 0$
- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

- $\bullet \ K_a |\phi_N\rangle = \pm |\phi_N\rangle$
- $\bullet \ \{K_a,\sigma_z^{(a)}\}=0$
- $\bullet \ [K_a,K_b]=0$
- $\bullet \left[K_a, \sigma_z^{(b)} \right] \Big|_{a \neq b} = 0$
- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

- $\bullet K_a |\phi_N\rangle = \pm |\phi_N\rangle$
- $\bullet \ \{K_a,\sigma_z^{(a)}\}=0$
- $\bullet \ [K_a,K_b]=0$
- $\bullet \left. \left[K_a, \sigma_z^{(b)} \right] \right|_{a \neq b} = 0$
- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

$$K_a = \sigma_x^{(a)} \bigotimes_{a' \in \Gamma'} \sigma_z^{(a')}$$

$$\Gamma' = \{(a, a') | a' = a \pm \hat{e}_i\}$$

$$\bullet K_a |\phi_N\rangle = \pm |\phi_N\rangle$$

$$\bullet \ \{K_a,\sigma_z^{(a)}\}=0$$

$$\bullet \ [K_a,K_b]=0$$

$$\bullet \left. \left[K_a, \sigma_z^{(b)} \right] \right|_{a \neq b} = 0$$

- Independent
- Complete
- Equivalent definitions of cluster state
 - Apply full S and measure σ_z 's on removed sites
 - Apply partial S and apply σ_z 's on remaining sites
 - ightharpoonup Eigenstates of all K_a

Single qubit propagation: Measure σ_x

$$S(a|0\rangle_1 + b|1\rangle_1)|+\rangle_2 = |+\rangle_1(a|-\rangle_2 + b|+\rangle_2) + |-\rangle_1(a|-\rangle_2 - b|+\rangle_2)$$

Single qubit propagation: Measure σ_x

Single qubit propagation: Measure σ_x

Single qubit rotation: Measure $\sigma_x \cos \theta + \sigma_y \sin \theta$

CNOT

CNOT
$$S = \bigotimes \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & 1 \end{pmatrix}$$

CNOT
$$\mathcal{S} = \bigotimes \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & 1 \end{pmatrix}$$

Questions?