Exercice 1. Une étude a été faite sur 320 familles de 5 enfants pour déterminer la répartition entre filles et garçons. Les résultats sont les suivants :

Ecrire le modèle statistique correspondant, en fonction des différentes hypothèses que l'on peut faire sur ces observations.

Exercice 2. On considère un échantillon de taille n de la loi de Poisson $\mathcal{P}(\lambda)$. Déterminer une statistique exhaustive de trois façons différentes.

Exercice 3. On considère un échantillon de taille n de la loi uniforme sur $[\theta, 2\theta]$, avec $\theta > 0$. Déterminer une statistique exhaustive et la statistique de maximum de vraisemblance.

Exercice 4. La RATP veut estimer la probabilité p qu'un passager ne valide pas son titre de transport sur le réseau du métro parisien aux heures de pointe de 7h30 à 9h30. Elle effectue pour cela une enquête dans n=40 stations-types, un jour de semaine moyen : des contrôleurs sont mis en place à 7h30 et comptent le nombre de passagers validant leur ticket jusqu'à l'arrivée du premier fraudeur, celui-ci étant inclus. Les résultats sont les suivants :

- 1. Donner le modèle statistique correspondant à ces observations.
- 2. Estimer p par la méthode du maximum de vraisemblance. Cet estimateur est-il sans biais ?
- 3. Déterminer une statistique exhaustive et complète.
- 4. Déterminer l'estimateur sans biais et de variance minimale de $\varphi_k(p) = p(1-p)^k$, pour $k \in \mathbb{N}$. En déduire l'estimateur sans biais et de variance minimale de p.

Exercice 1. On considère un modèle paramétrique continu $(\mathcal{X}, \mathcal{A}, \{P_{\theta}; \theta \in \Theta \subset \mathbb{R}^d\})$. On suppose que les hypothèses de régularité du chapitre 3 du cours sont vérifiées.

Montrer que le score est centré : $E[Z(\theta;X)] = 0$. Puis montrer que la matrice d'information de Fisher $\mathcal{I}(\theta)$ vérifie :

$$\forall (j,k) \in \{1,\ldots,d\}^2, \mathcal{I}_{jk}(\theta) = -E\left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \ln \mathcal{L}(\theta;X)\right]$$

Exercice 2. On considère le modèle d'échantillon de taille n de la loi normale $\mathcal{N}(m, \sigma^2)$, où σ^2 est supposée connue.

- 1. Calculer la quantité d'information de Fisher de ce modèle.
- 2. Vérifier de deux façons différentes que \bar{X}_n est un estimateur efficace de m.

Exercice 3. On considère le modèle d'échantillon de taille n de la loi normale $\mathcal{N}(m, \sigma^2)$.

- 1. Calculer le vecteur des scores et la matrice d'information de Fisher.
- 2. Donner des bornes inférieures pour les variances d'estimateurs sans biais de m et σ^2 .
- 3. Donner les lois asymptotiques des estimateurs de maximum de vraisemblance de m et σ^2 : \bar{X}_n et S_n^2 .
- 4. On suppose maintenant que $m \neq 0$ et on souhaite estimer le coefficient de variation σ/m .
 - a. Donner la loi asymptotique de l'estimateur de maximum de vraisemblance $S_n/\bar{X}_n.$
 - b. Donner un intervalle de confiance asymptotique de seuil α pour σ/m .

Exercice 4. On considère un échantillon X_1, \ldots, X_n de variables aléatoires indépendantes et de même loi normale $\mathcal{N}(m, \sigma^2)$, où σ^2 est connue. On souhaite tester H_0 : " $m = m_0$ " contre H_1 : " $m \neq m_0$ ".

1. Calculer la statistique du rapport des vraisemblances maximales :

$$v(x_1, \dots, x_n) = \frac{\mathcal{L}(m_0; x_1, \dots, x_n)}{\sup_{m \in \mathbb{R}} \mathcal{L}(m; x_1, \dots, x_n)}$$

- 2. Exprimer $-2 \ln v(X_1, \dots, X_n)$ en fonction de \bar{X}_n, m_0, σ^2 et n.
- 3. Construire le test du rapport des vraisemblances maximales. Montrer que, dans ce cas, ce test est exact.
- 4. Application. On dispose d'un échantillon de taille 20 d'une loi $\mathcal{N}(m,1)$. La moyenne empirique de cet échantillon vaut 0.25. Peut-on en conclure avec une confiance raisonnable que l'espérance de l'échantillon n'est pas nulle ?

Exercice 1. Soit (X_1, \ldots, X_n) un échantillon d'une loi continue et (R_1, \ldots, R_n) la statistique de rang associée.

- 1. Pour $i \in \{1, ..., n\}$, déterminer la loi de probabilité de R_i , son espérance et sa variance.
- 2. Pour $i \neq j$, calculer la covariance $Cov(R_i, R_j)$ et le coefficient de corrélation linéaire $\rho(R_i, R_j)$.

Exercice 2. Soient X_1 et X_2 deux variables aléatoires réelles indépendantes et de même loi, de fonction de répartition F. Déterminer la fonction de répartition du couple (X_1^*, X_2^*) .

Exercice 3. Soit (X_1, \ldots, X_n) un échantillon d'une loi continue. Pour i < j, déterminer la densité du couple (X_i^*, X_j^*) .

Exercice 4. Soient X_1, \ldots, X_n n variables aléatoires réelles indépendantes et de même loi continue de fonction de répartition F et de densité f. On suppose que cette loi est symétrique par rapport à un réel μ , c'est-à-dire que :

$$\forall x \in \mathbb{R}, F(\mu - x) = 1 - F(\mu + x)$$
 ou bien $\forall x \in \mathbb{R}, f(\mu - x) = f(\mu + x)$

- 1. Montrer que la médiane et l'espérance de cette loi sont toutes les deux égales à μ .
- 2. Montrer que la loi de probabilité de la médiane empirique X_n est symétrique par rapport à μ . Pour simplifier, on supposera que n est impair.
- 3. En déduire que la moyenne empirique \overline{X}_n et la médiane empirique \widetilde{X}_n sont des estimateurs sans biais de μ .
- 4. Proposer un critère pour déterminer lequel des deux estimateurs \overline{X}_n et \widetilde{X}_n est asymptotiquement le meilleur.
- 5. Déterminer lequel des deux estimateurs \overline{X}_n et \widetilde{X}_n est asymptotiquement le meilleur dans les deux cas suivants :

(a) loi normale
$$\mathcal{N}(\mu, \sigma^2)$$
: $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.

(b) loi double exponentielle
$$De(\mu, \sigma)$$
 : $f(x) = \frac{1}{2\sigma} e^{-\frac{|x - \mu|}{\sigma}}$.

Exercice 1. On considère la loi de Burr à deux paramètres c > 0 et k > 0 définie par sa fonction de répartition $F(x) = 1 - (1 + x^c)^{-k}$, $x \ge 0$.

- 1. Mettre F sous la forme $F(x)=1-x^{-1/\gamma}L(x)$ avec $\gamma>0$, où L est une fonction à variations lentes que l'on précisera. En déduire le domaine d'attraction de la loi de Burr.
- 2. On pose pour n > 0, $a_n = F^{-1}(1 1/n)$. Soit X_n^* le maximum d'un échantillon de taille n de loi de Burr. On note Ψ la limite de la fonction de répartition de X_n^*/a_n quand n tend vers l'infini. Calculer $\Psi(x)$ pour tout $x \in \mathbb{R}$.
- 3. Montrer que le théorème de Gnedenko est vérifié, c'est-à-dire qu'il existe $\alpha > 0$ et $\beta \in \mathbb{R}$ tels que $\Psi(x) = H_{\gamma}(\alpha x + \beta)$ pour tout $x \in \mathbb{R}$.

Exercice 2. Soit (X_1, \ldots, X_n) un échantillon d'une loi de probabilité admettant une densité f sur \mathbb{R} , que l'on suppose de classe C^{∞} . On se propose d'estimer f par la méthode du noyau :

$$\forall x \in \mathbb{R}, \ \hat{f}(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - X_i}{h_n}\right)$$

où $\{h_n\}_{n\geq 1}$ est une suite de réels positifs convergent vers 0 et K est la densité d'une loi de probabilité symétrique par rapport à l'origine et de variance μ_2 .

- 1. Calculer l'espérance et la variance de $\hat{f}(x)$ en fonction de K, h_n et f.
- 2. A l'aide d'un développement de Taylor de $f(x h_n u)$, montrer les équivalents suivants, quand n tend vers l'infini :

(a)
$$\left(E\left[\hat{f}(x)\right] - f(x) \right)^2 \sim \frac{h_n^4 \mu_2^2}{4} f''(x)^2$$

(b)
$$Var\left[\hat{f}(x)\right] \sim \frac{f(x)}{nh_n} \int_{-\infty}^{+\infty} K(u)^2 du$$

- 3. On admet qu'un équivalent de l'erreur quadratique moyenne intégrée s'obtient en intégrant la somme des deux équivalents ci-dessus. Déterminer le paramètre de lissage optimal $h_{n,opt}$.
- 4. Calculer des équivalents de l'erreur quadratique moyenne intégrée minimale, du biais et de la variance de l'estimateur optimal.
- 5. Montrer que l'efficacité d'un noyau K est mesurée par $\mu_2 \left[\int_{-\infty}^{+\infty} K(u)^2 du \right]^2$. En déduire un classement des performances des noyaux rectangulaire, triangulaire, gaussien et d'Epanechnikov.
- 6. Calculer $h_{n,opt}$ quand on suppose que le noyau est gaussien et que la densité à estimer est celle d'une loi normale centrée.