Suavizamiento exponencial

Holt Winters

Introducción

El suavizamiento exponencial es uno de los muchos métodos o algoritmos que se pueden usar para pronosticar puntos de datos en una serie, siempre que la serie sea "estacional", es decir, repetitiva durante un cierto período.

Tipos de predicción

Suavizamiento exponencial sencillo

Fórmula:

$$\hat{y}_x = \alpha \cdot y_x + (1 - \alpha) \cdot \hat{y}_{x-1}$$

Implementación:

```
# given a series and alpha, return series of smoothed points

def exponential_smoothing(series, alpha):
    result = [series[0]] # first value is same as series
    for n in range(1, len(series)):
        result.append(alpha * series[n] + (1 - alpha) * result[n-1])
    return result

# >>> exponential_smoothing(series, 0.1)
# [3, 3.7, 4.53, 5.377, 6.0393, 6.43537, 6.991833]
# >>> exponential_smoothing(series, 0.9)
# [3, 9.3, 11.73, 12.8730000000000001, 12.0873, 10.20873, 11.820873]
```

Gráfica

Suavizamiento exponencial doble

```
\ell_x = \alpha y_x + (1 - \alpha)(\ell_{x-1} + b_{x-1}) level

b_x = \beta(\ell_x - \ell_{x-1}) + (1 - \beta)b_{x-1} trend

\hat{y}_{x+1} = \ell_x + b_x forecast
```

```
def double exponential smoothing(series, alpha, beta):
   result = [series[0]]
    for n in range(1, len(series)+1):
            level, trend = series[0], series[1] - series[0]
       if n >= len(series): # we are forecasting
         value = result[-1]
         value = series[n]
       last_level, level = level, alpha*value + (1-alpha)*(level+trend)
       trend = beta*(level-last level) + (1-beta)*trend
       result.append(level+trend)
```

Gráfica

Suavizamiento exponencial triple

$$\ell_x = \alpha(y_x - s_{x-L}) + (1 - \alpha)(\ell_{x-1} + b_{x-1})$$
 level

$$b_x = \beta(\ell_x - \ell_{x-1}) + (1 - \beta)b_{x-1}$$
 trend

$$s_x = \gamma(y_x - \ell_x) + (1 - \gamma)s_{x-L}$$
 seasonal

$$\hat{y}_{x+m} = \ell_x + mb_x + s_{x-L+1+(m-1)modL}$$
 forecast

Implementación

```
def triple_exponential_smoothing(series, slen, alpha, beta, gamma, n_preds):
   for i in range(len(series)+n_preds):
       if i == 0: # initial values
           smooth = series[0]
           result.append(series[0])
           result.append((smooth + m*trend) + seasonals[i%slen])
           last smooth, smooth = smooth, alpha*(val-seasonals[i%slen]) + (1-alpha)*(smoot
           seasonals[i%slen] = gamma*(val-smooth) + (1-gamma)*seasonals[i%slen]
           result.append(smooth+trend+seasonals[i%slen])
```