

第二章 认识数据

主讲人: 丁兆云

01

数据类型

 $\begin{bmatrix} 02 \end{bmatrix}$

数据统计汇总

03

数据相似性和 相异性度量

1数据类型

- 记录数据
 - 关系记录
 - 数据矩阵
 - 文档数据
 - 交易数据
- 图形和网络
 - 万维网
 - 社会或信息网络
 - 分子结构
 - 有序
 - 时间数据: 时间序列
 - 顺序数据: 交易序列
 - 基因序列数据
- 视频数据的图像序列
 - 空间, 图像和多媒体
 - 空间数据: 地图

	Document 1	Document 2	Document 3
Team	3	0	0
Coach	0	7	1
Play	5	0	0
Ball	0	2	0
Score	2	1	1
Game	6	0	2
Win	0	0	2
Lost	2	3	0
Timeout	0	0	3
Season	2	0	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

1.1 数据对象

- 数据集由数据对象组成
- 一个数据对象代表一个实体
- 例子
 - 销售数据库: 客户, 商店物品, 销售额
 - 医疗数据库: 患者, 治疗信息
 - 大学数据库: 学生, 教授, 课程信息
- 称为样品,示例,实例,数据点, 对象,元组(tuple)
- 数据对象所描述的属性
 - 数据库中的行 >数据对象
 - 列 > "属性"

Objects

Attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

1.2 属性

属性(变量、特性、字段、特征或维):一个数据字段,代表一个数据对象的特征或功能。

例如 · 乘客 ID · 是否存活 · 客舱等级

- 类型:
 - 标称 二进制 序数 区间标度 比率标度

	Α	В	С	D	E	F	G	H		J	K	L
1	Passenge	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	0	3	Braund, M	male	22	1	0	A/5 21172	7.25		S
3	2	1	1	Cumings,	female	38	1	0	PC 17599	71.2833	C85	С
4	3	1	3	Heikkinen	female	26	0	0	STON/O2	7.925		S
5	4	1	1	Futrelle, N	female	35	1	0	113803	53.1	C123	S
6	5	0	3	Allen, Mr.	male	35	0	0	373450	8.05		S
7	6	0	3	Moran, M	male		0	0	330877	8.4583		Q
8	7	0	1	McCarthy	male	54	0	0	17463	51.8625	E46	S
9	8	0	3	Palsson, N	male	2	3	1	349909	21.075		S
10	9	1	3	Johnson,	female	27	0	2	347742	11.1333		S
11	10	1	2	Nasser, M	female	14	1	0	237736	30.0708		С
12	11	1	3	Sandstror	female	4	1	1	PP 9549	16.7	G6	S
13	12	1	1	Bonnell, N	female	58	0	0	113783	26.55	C103	S

数据对象的别名

- A 样品
- B 实例
- c 维度
- □ 元组
- E 对象

属性的别名

- A 元组
- B 维度
- c 特征
- 字段
- E 数据点

所谓高维数据,指的是

- 数据对象很多
- **数据属性很多**

所谓特征选择,是指

- 从数据中,选择有代表性的属性
- B 从数据中,选择有代表性的数据对象

- An attribute (属性) is a property or characteristic of an object
 - Example: 人的身高, 体重, 眼睛的颜色等
- Attribute values (属性值: 定义属性的特定的特征或参数) are numbers or symbols assigned to an attribute
 - Example: 175cm, 70kg, 黑色

Unit: cm

CHINA

AVERAGE HEIGHT OF 17-YEAR-OLDS

171.4 170.7 173.6 160.9 170.cm

JAPAN

SOUTH KOREA

创建时间=1月2日

- △ 创建时间表示属性,1月2日表示属性
- B 创建时间表示属性值,1月2日表示属性值
- ② 创建时间表示属性,1月2日表示属性值
- 创建时间表示属性值,1月2日表示属性

QuestionPro

INTERVAL SCALE

1.4 属性的类型

• 常见的四类属性:

- 标称 (Nominal)
 - Examples: ID numbers, zip codes

• 序数 (Ordinal)

RATIO SCALE

• 区间 (Interval)

• Examples: calendar dates, temperatures in Celsius or Fahrenheit.

• 比率 (Ratio)

• Examples: temperature in Kelvin, length, time, counts

1.4 属性的类型

- 标称:类别,状态
 - Hair_color={黑色,棕色,金色,红色,红褐色,灰色,白色}
 - 婚姻状况,职业,身份证号码,邮政编码
- 二进制
 - 只有2个状态(0和1)的属性
 - 对称二进制两种结果重要
 - 例如,性别
 - 不对称的二进制结果同样重要。
 - 例如,医疗测试(正面与负面)
- 序数
 - 价值观有一个有意义的顺序(排名),但不知道连续值之间的大小。
 - 大小={小,中,大},等级,军队排名

1.4 属性的类型

- 标称: 类别, 状态
 - Hair_color={黑色, 棕色, 金色, 红色, 红褐色, 灰色, 白色}
 - 婚姻状况, 职业, 身份证号码, 邮政编码

	А	В	С	D	Е	F	G	Н	I	J	K	L
1	Passenge	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	0	3	Braund, N	male	22	1	0	A/5 21171	7.25		S
3	2	1	1	Cumings,	female	38	1	0	PC 17599	71.2833	C85	С
4	3	1	3	Heikkiner	female	26	0	0	STON/O2	7.925		S
5	4	1	1	Futrelle, N	female	35	1	0	113803	53.1	C123	S
6	5	0	3	Allen, Mr.	male	35	0	0	373450	8.05		S
7	6	0	3	Moran, M	lmale		0	0	330877	8.4583		Q
8	7	0	1	McCarthy	male	54	0	0	17463	51.8625	E46	S
9	8	0	3	Palsson, N	male	2	3	1	349909	21.075		S
10	9	1	3	Johnson,	female	27	0	2	347742	11.1333		S
11	10	1	2	Nasser, M	female	14	1	0	237736	30.0708		С
12	11	1	3	Sandstror	female	4	1	1	PP 9549	16.7	G6	S
13	12	1	1	Bonnell, N	female	58	0	0	113783	26.55	C103	S

下列是标称类型的属性是

- A Survived: 0表示遇难, 1表示幸存
- B Pclass: 1代表Upper, 2代表Middle, 3代表Lower
- Sex: 标识乘客性别
- D SibSp: 兄弟姐妹及配偶的个数
- Embarked: 乘客登船口岸, 可列举

1.4 属性的类型

- 二进制
 - 只有2个状态(0和1)的属性
 - 对称二进制两种结果重要
 - 例如,性别
 - 不对称的二进制结果同样重要。
 - 例如,新型冠状病毒肺炎测试(阳性与阴性)

	А	В	С	D	E	F	G	Н	I	J	K	L
1	Passenge	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	0		3 Braund. N	male	22	1	0	A/5 21171	7.25		S
3	2	1		1 Cumings,	female	38	1	0	PC 17599	71.2833	C85	С
4	3	1		3 Heikkiner	female	26	0	0	STON/O2	7.925		S
5	4	1		1 Futrelle, N	female	35	1	0	113803	53.1	C123	S
6	5	0		3 Allen, Mr.	male	35	0	0	373450	8.05		S
7	6	0		3 Moran, M	lmale		0	0	330877	8.4583		Q
8	7	0		1 McCarthy	male	54	0	0	17463	51.8625	E46	S
9	8	0		3 Palsson, N	male	2	3	1	349909	21.075		S
10	9	1		3 Johnson,	female	27	0	2	347742	11.1333		S
11	10	1		2 Nasser, M	female	14	1	0	237736	30.0708		С
12	11	1		3 Sandstror	female	4	1	1	PP 9549	16.7	G6	S
13	12	1		1 Bonnell, N	female	58	0	0	113783	26.55	C103	S

下列是对称二进制类型的属性是

- A Survived: 0表示遇难, 1表示幸存
- B Pclass: 1代表Upper, 2代表Middle, 3代表Lower
- Sex: 标识乘客性别
- D SibSp: 兄弟姐妹及配偶的个数
- E Embarked: 乘客登船口岸, 可列举

下列是非对称二进制类型的属性是

- Manager Survived: 0表示遇难,1表示幸存
- B Pclass: 1代表Upper, 2代表Middle, 3代表Lower
- Sex: 标识乘客性别
- D SibSp: 兄弟姐妹及配偶的个数
- E Embarked: 乘客登船口岸, 可列举

1.4 属性的类型

• 序数

- 价值观有一个有意义的顺序(排名),但不知道连续值之间的大小。
- 大小={小,中,大},等级,军队排名

	А	В	С	D	Е	F	G	Н		J	K	L
1	Passenge	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	0	3	Braund, N	male	22	1	0	A/5 21171	7.25		S
3	2	1		l Cumings,	female	38	1	0	PC 17599	71.2833	C85	С
4	3	1	3	Heikkiner	female	26	0	0	STON/O2	7.925		S
5	4	1		L Futrelle, N	female	35	1	0	113803	53.1	C123	S
6	5	0	3	Allen, Mr.	male	35	0	0	373450	8.05		S
7	6	0	3	Moran, M	lmale		0	0	330877	8.4583		Q
8	7	0		l McCarthy	male	54	0	0	17463	51.8625	E46	S
9	8	0	3	Palsson, N	male	2	3	1	349909	21.075		S
10	9	1	3	3 Johnson,	female	27	0	2	347742	11.1333		S
11	10	1		Nasser, M	female	14	1	0	237736	30.0708		С
12	11	1	3	3 Sandstror	female	4	1	1	PP 9549	16.7	G6	S
13	12	1	Í	l Bonnell, N	female	58	0	0	113783	26.55	C103	S

下列是序数类型的属性是

- A Survived: 0表示遇难, 1表示幸存
- B Pclass: 1代表Upper, 2代表Middle, 3代表Lower
- Sex: 标识乘客性别
- D SibSp: 兄弟姐妹及配偶的个数
- E Embarked: 乘客登船口岸, 可列举

1.4 属性的类型

- 区间标度属性
 - 以单位长度顺序性度量
 - 值有序, 比如温度、日历等
 - 不存在0点, 倍数没有意义, 比如我们平常通常不说2000年是1000年的2倍
- 比率标度属性
 - 具有固定零点的数值属性,有序且可以计算倍数
 - 长度、重量等

下列是比例标度类型的属性是

- A Survived: 0表示遇难, 1表示幸存
- B Pclass: 1代表Upper, 2代表Middle, 3代表Lower
- C Sex: 标识乘客性别
- D SibSp: 兄弟姐妹及配偶的个数
- E Embarked: 乘客登船口岸, 可列举

属性类	堂	描述	例子	操作
分类的	标称	标称属性的值仅仅只是不同的 名字,即标称值只提供足够的 信息以区分对象 (=, ≠)	邮政编码、雇员ID号、 眼球颜色、性别	
(VEITHA)	序数	序数属性的值提供足够的信息 确定对象的序 (<, >)	矿石硬度、{好,较好,最好}、成绩、 好,最好}、成绩、 街道号码	中值、百分位、秩相 关、游程检验、符号 检验
数值的	区间	对于区间属性,值之间的差是 有意义的,即存在测量单位 (+, -)	日历日期、摄氏或华氏温度	均值、标准差、皮尔 逊相关、t和F检验
(定量 的)	比率	对于比率变量,差和比率都是 有意义的 (+, -, *, /)	绝对温度、货币量、 计数、年龄、质量、 长度、电流	几何平均、调和平均、 百分比变差

属性类	學	描述	例 子	操作		
分类的	标称	标称属性的值仅仅只是不同的 名字,即标称值只提供足够的 信息以区分对象 (=, ≠)	邮政编码、雇员ID号、 眼球颜色、性别	众数、熵、列联相关、 χ^2 检验		
(定性的)	序数	序数属性的值提供足够的信息 确定对象的序 (<, >)	矿石硬度、{好,较好,最好}、成绩、 好,最好}、成绩、 街道号码	中值、百分位、秩相 关、游程检验、符号 检验		
数值的	区间	对于区间属性,值之间的差是 有意义的,即存在测量单位 (+, -)	日历日期、摄氏或华 氏温度	均值、标准差、皮尔 逊相关、 <i>t</i> 和F检验		
(定量的)	比率	对于比率变量,差和比率都是 有意义的 (+, -, *, /)	绝对温度、货币量、 计数、年龄、质量、 长度、电流	几何平均、调和平均、 百分比变差		

属性类	型	描述	例子	操作
分类的	标称	标称属性的值仅仅只是不同的 名字,即标称值只提供足够的 信息以区分对象 (=, ≠)	邮政编码、雇员ID号、 眼球颜色、性别	众数、熵、列联相关、 χ²检验
(定性的) 序数	序数	序数属性的值提供足够的信息 确定对象的序 (<, >)	矿石硬度、{好,较好,最好}、最好}、成绩、 街道号码	中值、百分位、秩相 关、游程检验、符号 检验
数值的	区间	对于区间属性,值之间的差是 有意义的,即存在测量单位 (+, -)	日历日期、摄氏或华 氏温度	均值、标准差、皮尔 逊相关、t和F检验
(ル里印)	比率	对于比率变量,差和比率都是 有意义的 (+, -, *, /)	绝对温度、货币量、 计数、年龄、质量、 长度、电流	几何平均、调和平均、 百分比变差

属性类	美型	描述	例 子	操作		
分类的	标称	标称属性的值仅仅只是不同的 名字,即标称值只提供足够的 信息以区分对象 (=, ≠)	邮政编码、雇员ID号、 眼球颜色、性别	众数、熵、列联相关、 χ^2 检验		
序数		序数属性的值提供足够的信息 确定对象的序 (<, >)	矿石硬度、{好,较好,最好}、成绩、 好,最好}、成绩、 街道号码	中值、百分位、秩相 关、游程检验、符号 检验		
数值的	区间	对于区间属性,值之间的差是 有意义的,即存在测量单位 (+, -)	日历日期、摄氏或华 氏温度	均值、标准差、皮尔 逊相关、 <i>t</i> 和F检验		
(定量的)	比率	对于比率变量,差和比率都是 有意义的 (+, -, *, /)	绝对温度、货币量、 计数、年龄、质量、 长度、电流	几何平均、调和平均、 百分比变差		

标称类型数据的可以实现数学计算

- A
- 众数
- В
- 中位数
- C
- 均值
- D
- 方差
- Е
- 相等=
- F
- 加法+
- G
- 除法/

序数类型数据的可以实现数学计算

A

众数

В

中位数

C

均值

D

方差

Е

相等=

F

加法+

G

除法

区间标度类型数据的可以实现数学计算

- A
- 众数
- В
- 中位数
- C
- 均值
- D
- 方差
- Е
- 相等=
- F
- 加法+
- G
- 除法/

比例标度类型数据的可以实现数学计算

- A
- 众数
- В
- 中位数
- C
- 均值
- D
- 方差
- Е
- 相等=
- F
- 加法+
- G
- 除法/

1.6 离散vs.连续属性

- 离散属性(Discrete Attribute)
 - 有限或无限可数 (countable infinite)个值
 - 例: 邮政编码, 计数, 文档集的词
 - 常表示为整数变量.
 - 注意: 二元属性(binary attributes)是离散属性的特例
- 连续属性(Continuous Attribute)
 - 属性值为实数
 - 例: 温度, 高度, 重量.
 - 实践中, 实数只能用有限位数字的数度量和表示.
 - 连续属性一般用浮点变量表示.

身高和体重分别是什么类型

- A 身高离散、体重离散
- **B** 身高连续、体重连续
- ◎ 身高连续、体重离散
- 身高离散、体重连续

身高	体重
167	56.7
178	97.5
159	43.8
•••••	•••••

01

数据类型

 $\begin{bmatrix} 02 \end{bmatrix}$

数据统计汇总

03

数据相似性和 相异性度量

2 数据统计汇总

- 动机
 - 为了更好地理解数据:集中趋势,分布
- 数据的统计特性
 - 最大值, 最小值, 中位数, 位数, 离群值, 方差等。

性別	精资分组	均值	1/1	极小值	极大值	合计 N 的 %
女	低收人	17850.00	32	15750	19950	6.8%
	中收入	26046.07	173	20100	38850	36.5%
	高收入	49611.36	11	40800	58125	2.3%
	总计	26031.92	216	15750	58125	45.6%
男	低收入	19650.00	1	19650	19650	.2%
	中收入	29719.94	164	21300	39900	34.6%
	高收入	62346.88	93	40050	135000	19.6%
	总计	41441.78	258	19650	135000	54.4%
总计	低收入	17904.55	33	15750	19950	7.0%
	中收入	27833.95	337	20100	39900	71.1%
	高收入	60999.86	104	40050	135000	21.9%
	总计	34419.57	474	15750	135000	100.0%

2.1 中性化趋势度量:均值、中位数和众数

- 平均值一组数据的均衡点。
- 但是,均值对离群值很敏感。
- 因此,中位数和截断均值也 很常用。
- 众数指一组数据中出现次数 最多的数据值。

$$mean(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$median(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r + 1 \\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$$

经验公式 $mean-mode=3\times(mean-median)$

2.1 中性化趋势度量:均值、中位数和众数

• 中位数,均值和对称模式,正面和负面的偏斜数据

中位数、平均数、众数三者的关系

- 中位数=平均数=众数
- B 中位数>平均数>众数
- 平均数>中位数>众数
- 中位数<平均数<众数

2.2 离散度度量

- 四分位数
 - 四分位数: Q1 (第25百分位),Q3 (第75百分位)
 - 四分位数极差: IQR= Q3 Q1
- 五点概况:
 - min, Q1, median, Q3, max
- 盒状图 (boxplot): min, Q1, median, Q3, max; 单独添加胡须表示离群点
- 离群点:通常情况下,一个值 高于/低于1.5×IQR

$$IQR = Q3-Q1$$

$$max = Q3+1.5*IQR$$

$$min = Q1-1.5*IQR$$

2.2 离散度度量

- 方差和标准差
- 分位数
 - 分位数: Q1 (第25百分位),Q3 (第75百分位)
 - 分位数极差: IQR= Q3 Q1
- 五点概况:
 - min, Q1, median, Q3, max
- 盒状图 (boxplot): min, Q1, median, Q3, max; 单独添加胡须表示离群点
- 离群点:通常情况下,一个值 高于/低于1.5×IQR

$$IQR = Q3-Q1$$
 $max = Q3+1.5*IQR$
 $min = Q1-1.5*IQR$

- 现在一家电商公司要卖两个同类型的商品,它们的一周销量 (单位:个)如下:
 - 商品A: 10, 10, 10, 11, 12, 12, 12
 - 商品B: 3, 5, 6, 11, 16, 17, 19
- 它们的平均数一样,中位数也一样,可它们的真实情况呢?

$$s^{2} = \frac{(x_{1} - \overline{X})^{2} + (x_{2} - \overline{X})^{2} + (x_{3} - \overline{X})^{2} + \dots + (x_{n} - \overline{X})^{2}}{n}$$

上述公式是总体数据集的方差计算,当数据集为部分抽样样本时,n应该改为n-1。数据集足够大时,两者的误差也可以忽略不计。

2.2 离散度度量

- 方差和标准差
- 分位数
 - 分位数: Q1 (第25百分位),Q3 (第75百分位)
 - 分位数极差: IQR= Q3 Q1
- 五点概况:
 - min, Q1, median, Q3, max
- 盒状图 (boxplot): min, Q1, median, Q3, max; 单独添加胡 须表示离群点
- 离群点:通常情况下,一个值 高于/低于1.5×IQR

$$IQR = Q3-Q1$$
 $max = Q3+1.5*IQR$
 $min = Q1-1.5*IQR$

2.3 数据可视化 —— 盒状图分析

盒状图能够分析多个属性数据的离散度差异性

2.3 数据可视化 —— 盒状图分析案例

- IRIS (sepal:萼片,petal:花瓣)
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - class:
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica


```
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-versicolor
6.4,3.2,4.7,1.4,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
```

2.3 数据可视化 —— 盒状图分析案例

参考: https://blog.csdn.net/H_lukong/article/details/90139700

参考: https://www.cnblogs.com/star-zhao/p/9847082.html

2.3 数据可视化 —— 盒状图分析

盒状图能够分析多个属性数据的离散度差异性

如果希望分析单个属性在各个区间的变化分布怎么办?

例如:如果希望分析语文成绩在每个分数段的变化分布

- 直方图
 - 用来分析单个属性在各个区间变化分布

- IRIS (sepal:萼片,petal:花瓣)
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - class:
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica


```
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-versicolor
6.4,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
```


参考: https://blog.csdn.net/H_lukong/article/details/90139700

参考: https://www.cnblogs.com/star-zhao/p/9847082.html

题目:分别在一个图中用3种颜色表示单个属性数据(每个属性画一个图,4个直方图)在不同类别下的直方图分布(用python实现画图)

题目:分别在一个图中用3种颜色表示单个属性数据(每个属性画一个图,4个直方图)在不同类别下的直方图分布(用python实现画图)

这种直方图有什么 用呢?

题目:分别在一个图中用3种颜色表示单个属性数据(每个属性画一个图,4个直方图)在不同类别下的直方图分布(用python实现画图)

这种直方图有什么 用呢?

分类算法特征分析:

我们可以看到花瓣 长度在3个类别下 的分布具有差异

- 直方图
 - 用来分析单个属性在各个区间变化分布

如果希望分析2个属性数据的关联关系,怎么办?

例如: 如果希望分析花瓣长度和花萼长度的关联关系

2.3 数据可视化 —— 散点图分析

- 散点图
 - 用来显示两组数据的相关性分布

2.3 数据可视化 —— 散点图分析

- 散点图
 - 用来显示两组数据的相关性分布

2.3 数据可视化 —— 散点图分析案例

- IRIS (sepal:萼片,petal:花瓣)
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - class:
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica


```
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
```


参考: https://blog.csdn.net/H_lukong/article/details/90139700

参考: https://www.cnblogs.com/star-zhao/p/9847082.html

散点图分析在数值预测中的应用

房价预测

房屋销售价格以及房屋的基本信息建立模型,来预测在此期间其他房屋的销售价格。

销售 日期	销售 价格	卧室数	浴室数	房屋 面积	停车 面积	楼层数	房屋 评分	建筑 面积	地下室 面积	建筑 年份	修复 年份	纬度	经度
20150302	545000	3	2.25	1670	6240	1	8	1240	430	1974	0	47.6413	-122.113
20150211	785000	4	2.5	3300	10514	2	10	3300	0	1984	0	47.6323	-122.036
20150107	765000	3	3.25	3190	5283	2	9	3190	0	2007	0	47.5534	-122.002
20141103	720000	5	2.5	2900	9525	2	9	2900	0	1989	0	47.5442	-122.138
20140603	449500	5	2.75	2040	7488	1	7	1200	840	1969	0	47.7289	-122.172
20150506	248500	2	1	780	10064	1	7	780	0	1958	0	47.4913	-122.318
20150305	675000	4	2.5	1770	9858	1	8	1770	0	1971	0	47.7382	-122.287
20140701	730000	2	2.25	2130	4920	1.5	7	1530	600	1941	0	47.573	-122.409
20140807	311000	2	1	860	3300	1	6	860	0	1903	0	47.5496	-122.279
20141204	660000	2	1	960	6263	1	6	960	0	1942	0	47.6646	-122.202
20150227	435000	2	1	990	5643	1	7	870	120	1947	0	47.6802	-122.298
20140904	350000	3	1	1240	10800	1	7	1240	0	1959	0	47.5233	-122.185
20140902	385000	3	2.25	1630	1598	3	8	1630	0	2008	0	47.6904	-122.347
20150413	235000	2	1	930	10505	1	6	930	0	1930	0	47.4337	-122.329
20140930	350000	3	1	1300	10236	1	6	1300	0	1971	0	47.5028	-121.77
20150507	1350000	4	1.75	2000	3728	1.5	9	1820	180	1926	0	47.643	-122.299
20140530	459900	3	1.75	2580	11000	1	7	1290	1290	1951	0	47.5646	-122.181
20140723	430000	6	3	2630	8800	1	7	1610	1020	1959	0	47.7166	-122.293
20141003	718000	5	2.75	2930	7663	2	9	2930	0	2013	0	47.5308	-122.184

基本idea:哪些属性跟房价相关

2.3 数据可视化 —— 散点图分析

散点图分析在数值预测中的应用

房价预测

房屋销售价格以及房屋的基本信息建立模型,来预测在此期间其他房屋的销售价格。

- 房屋面积
- 停车面积
- 建筑面积
- 地下室面积

越是强相关,说明该属性 对预测房价更有作用

2.3 数据可视化 —— 散点图分析

- 散点图
 - 用来显示两组数据的相关性分布

关于盒状图、直方图、散点图,下面说法正确的 是:

- 盒状图能够分析多个属性数据的离散度差异性
- 直方图用来分析单个属性在各个区间变化分布
- 散点图用来显示两组数据的相关性分布
- 直方图用于展示不同类别的数据分布

01

数据类型

 $\begin{bmatrix} 02 \end{bmatrix}$

数据统计汇总

03

数据相似性和 相异性度量

3.1 度量数据的相似性和相异性

- 相似度Similarity
 - 度量两个数据对象有多相似
 - 值越大就表示数据对象越相似
 - 通常取值范围为 [0,1]
- 相异度Dissimilarity (e.g., distance)
 - 度量两个数据对象的差别程度
 - 值越小就表示数据越相似
 - 最小相异度通常为0
- 邻近性Proximity
 - 指相似度或者相异度

3.1 度量数据的相似性和相异性

• 数据矩阵

• N个数据, p个维度

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

• 相异矩阵

- N个数据点, 记录两点之间的距离
- 三角矩阵

```
\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}
```


3.2 标称属性的邻近性度量

- 标称属性可以取两个或多个状态
- 方法: 简单匹配
 - m: 匹配次数, p: 属性总数

$$d(i,j) = \frac{p-m}{p}$$

id	属性1	属性2	属性3	属性4
1	弹琴	跳高	唱歌	背诗
2	弹琴	跳远	跳舞	读书

$$d(1,2) = \frac{4-1}{4}$$

• 二值属性的邻近性度量例子

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender 是对称属性,其余都是非对称属性,假设只计算非对称属性
- Y和P的值为1,N的值为0

6	6)
U	\mathbf{O}_{j}

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

● 一个邻接表 _		Obje	$\operatorname{ect} j$	
		1	0	sum
01:	1	q	r	q+r
Object i	0	s	t	s+t
	sum	q + s	r+t	p

• 距离度量对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

● 一个邻接表 _		Obj	$\operatorname{ect} j$	
		1	0	sum
01 1	1	q	r	q+r
Object i	0	s	t	s+t
	sum	q + s	r+t	p

• 距离度量对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

• 距离度量非对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s}$$

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

● 一个邻接表 _		Obj		
		1	0	sum
01 1	1	q	r	q+r
Object i	0	s	t	s+t
	sum	q + s	r+t	p

• 距离度量对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

• 距离度量非对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s}$$

通常正常用户占大多数,因此t远大于q,使得t作为分母,将导致值非常小,而失去比较意义

′ _		
6	a	
U	J	
	_	/

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

● 一个邻接表 _	Object j					
		1	0	sum		
01 1	1	q	r	q+r		
Object i	0	s	t	s+t		
	sum	q + s	r+t	p		

• 距离度量对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- 距离度量非对称的二值变量
 - Jaccard 系数 (杰卡德系数)

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

• 二值属性的邻近性度量例子

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender 是对称属性,其余都是非对称属性,假设只计算非对称属性
- Y和P的值为1,N的值为0

$$d(jack, mary) = [填空1]$$

 $d(jack, jim) = [填空2]$
 $d(jim, mary) = [填空3]$

• 二值属性的邻近性度量例子

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender 是对称属性,其余都是非对称属性,假设只计算非对称属性
- Y和P的值为1,N的值为0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

point	attribute 1	attribute 2
x1	1	2
x 2	3	5
x3	2	0
x4	4	5

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

• 闵可夫斯基距离

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

- 性质
 - d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (正定性)
 - d(i, j) = d(j, i) (对称性)
 - $d(i, j) \le d(i, k) + d(k, j)$ (三角不等性)

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

● h = 1: 曼哈顿距离

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

● h = 2: 欧氏距离

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

h →∞. "上确界距离".

$$d(i, j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

• h = 1: 曼哈顿距离, 求x1和x2之间的曼哈顿距离: [填空1]

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h=2: 欧氏距离, 求x1和x2之间的欧式距离: [填空2]

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

h→∞. "上确界距离"., 求x1和x2之间的上确界距离: [填空3]

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

作答

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

曼哈顿距离 (L₁)

\mathbf{L}	x1	x2	x 3	x4
x1	0			
x2	5	0		
x 3	3	6	0	
x4	6	1	7	0

欧氏距离 (L_2)

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

上确界距离

L_{∞}	p1	p2	р3	p4
p 1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

3.5 余弦相似性

• 余弦相似性

• 一个文档可以用词频向量来表示(注意:词的对齐)

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Baseball wins a score in the season (0,0,1,1,0,1,1,0,1)

In the season, soccer loss a score (0,0,0,0,1,0,1,0,1,1)

• 余弦度量

• $\cos(d1, d2) = (d1 \bullet d2) / ||d1|| ||d2||,$

- 余弦相似性
 - 一个文档可以用词频向量来表示(注意:词的对齐)

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Baseball wins a score in the season (0,0,1,1,0,1,1,0,1)

In the season, soccer loss a score (0,0,0,0,1,0,1,0,1,1)

- 余弦度量
 - cos(d1, d2) = (d1 d2) / ||d1|| ||d2||, $d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$ $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$
 - 求这两篇文档的余弦相似性: [填空1]

3.5 余弦相似性

$$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

• 例如:

$$d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
$$d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d1 \bullet d2 = 5*3 + 0*0 + 3*2 + 0*0 + 2*1 + 0*1 + 0*1 + 2*1 + 0*0 + 0*1 = 25$$

$$||d1|| = (5*5 + 0*0 + 3*3 + 0*0 + 2*2 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)0.5 = (42)0.5 = 6.481$$

$$||d2|| = (3*3 + 0*0 + 2*2 + 0*0 + 1*1 + 1*1 + 0*0 + 1*1 + 0*0 + 1*1)0.5 = (17)0.5 = 4.12$$

$$\cos(d1, d2) = 0.94$$

案例1

广州白云机场流量预测

• 竞赛题目

- 机场拥有巨大的旅客吞吐量,与巨大的人员流动相对应的则是巨大的服务压力。安防、安检、突发事件应急、值机、行李追踪等机场服务都希望能够预测未来的旅客吞吐量,并据此提前调配人力物力,更好的为旅客服务。
- 本次大赛以广州白云机场真实的客流数据为基础,每天数万离港旅客在机场留下百万级的数据记录。希望参赛队伍通过数据算法来构建客流量预测模型。
- 选手需要预测未来三小时(9月25日15:00:00到18:00)的时间窗口里, 机场内每个WIFI AP点每10分钟内的平均设备连接数量。

案例1

广州白云机场流量预测

• 竞赛数据

三个字段分别为:wifi_ap_tag ,字符串,描述WIFI接入的AP点;passenger_count, 整数,描述在某一时刻接入该WIFI AP的设备数量;time_stamp,字符串,描述该时刻(精确到秒)。下面的例子是这张表的实际数据:

wifi_ap_tag	passenger_count	time_stamp	
E1-1A-1 <e1-1-01></e1-1-01>	15	2016-09-10-18-55-04	
E1-1A-2 <e1-1-02></e1-1-02>	15	2016-09-10-18-55-04	
E1-1A-3 <e1-1-03></e1-1-03>	38	2016-09-10-18-55-04	
E1-1A-4 <e1-1-04></e1-1-04>	19	2016-09-10-18-55-04	

我们关注的机场区域,是E1,E2,E3,EC,T1,W1,W2,W3,WC。E和W分别代表机场的东侧和西侧登机区,各有三个小区;EC和WC是指连接安检区和登机区的走廊。分布见下图:WiFi_ap_tag的前四位字符,代表了该WIFI AP所在区域和楼层,例如名称的前四位"T1-1"意味着在T1航站楼的1楼。

案例2

新浪微博转发量预测

竞赛题目

对于一条原创博文而言,转发、评论、赞等互动行为能够体现出用户对于博文内容的兴趣程度,也是对博文进行分发控制的重要参考指标。本届赛题的任务就是根据抽样用户的原创博文在发表一天后的转发、评论、赞总数,建立博文的互动模型,并预测用户后续博文在发表一天后的互动情况。

Any Questions?

谢 谢!