

홍익대학교 기계시스템디자인공학과

연구실 책임자

◈ 인적 사항

◈ 수상 경력

성명	문희창	생년월일(성별)	1976. 7. 5 (남)
	기관명	홍익대학교	
	부서	기계시스템디자인공학과	
직위 부교수			
직장	주소	주소 (04066) 서울특별시 마포구 와우산로 94	
	휴대전화	010-6481-6771	
	E-mail	hcmoon@hongik.ac.kr	

◈ 학력 사항

연도	기관	전 공	학 위	지도교수
2003 ~ 2009	국민대학교 대학원	전자제어시스템	박사	김정하
2001 ~ 2003	국민대학교 대학원	전자제어시스템	석사	김정하
1995 ~ 2001	선문대학교	기계설계 / 제어계측	학사	정경민

최종학위논문명 : 무인자율주행차량을 위한 분산제어시스템 설계 및 자율주행 알고리즘개발

Design of Distributed Control System and Development of Autonomous Driving Algorithm

for Unmanned Ground Vehicle

◈ 경력 사항

연 도	기관	부서	직 위
2011 ~ 2021	(주)언맨드솔루션	기술연구소, 경영기획	CTO, CEO
2010 ~ 2011	Univ. of Florida	Mechanical and Aerospace Engineering	Researcher

연도	수상명	수상내용
2018	제 15 회 자동차의 날 , 자동차산업발전 유공자 표창	대통령표창
2017	대한민국 ICT 대상 지능정보부문 우수상	과학기술정보통신부 장관표창
2016	2016 대한민국 로봇대상 주관기관상	파이낸셜뉴스 주관기관상
2015	2015 산업융합유공자 표창장	산업통상자원부 장관상
2012	무인태양광 자동차경주대회 최우수상	지경부 장관상
2007 ~ 2008	현대기아미래기술공모전	대상, 동상
2006 ~ 2007	NI Application 공모전	금상, 우수상
2002	국민대학교 공로상	공로상
2001 ~ 2011	Nagoya University, Micro robot maze contest	다수 수상

연구 목표 및 방향

연구 방향

연구 시설 및 환경

외부 연구 시설

RMM Mobile LAB

RMM PAJU Factory

본교 연구 시설

제1강의동 201호

- Main Office
- S/W 개발

홍문관 RB204호

- Robot H/W 개발
- Robot S/W 개발

화성캠퍼스 연구 시설

RMM Prototyping LAB

RMM Hwasung LAB

문희창 공학박사

홍익대학교 기계시스템디자인공학과

자동차에서 모빌리티로의 변화

자동차를 이용한 다양한 서비스가 자동차의 전동화와 자율주행기술의 발전으로 다양한 서비스를 제공할 수 있는 모빌리티로 진화

^{*} Source : 조선일보 & Chosun.com, '마이카 시대'의 종말?, 이혜운 기자, 2016.04.09

자율주행 기술의 한계에 따른 산업별 극복 대안

완전 자율주행 기술은 자동차 산업과 로봇 산업에서 구현이 가능하고 서비스 기술과 접목하여 모빌리티 서비스로 진화 중

	상용화 단계	연구 및 실	증 단계
	제한된 조건 (주차장, 자동차 전용도로 등) 에서 자율주행	모든 상황 에서 자율주행	
	제한된 자동운전	완전 자율운전	
주행 책임	Hands Off Eyes Off	Hands Off Mind Off	Hands Off Driver Off
핸들조작, 가속, 감속	자동차	자동차	자동차
운전환경 모니터링	자동차	자동차	자동차
고장대응	운전자	いま れ	자동차
SAE Level	조건부 자 동운 전	자율 운전 (운전자탑승)	완전 자율운전 (운전자없음)
	3단계	4단계	5단계

5단계 완전 자율주행 기술의 한계

- 사고 시 책임 → 정부에서 무한책임을 지는 공공서비스에 적용
- 인공지능 기술의 신뢰 (윤리, 도덕) → 단순한 기능
- 보안 → 제한적인 사용

- 대중교통 분야로 발전
- 버스,택시,지하철등
- 일정 공간에서 활용
- 저속 운행

- 모빌리티로 발전
- 도로 이외의 영역에서 활용
- 배달, 경비, 방제, 청소 등 목적이 중요
- 다양한 크기의 모빌리티 플랫폼 필요

도시 유형별 최적화된 모빌리티 서비스의 변화 방향

도시의 유형과 인구밀도에 따라 교통수요가 다르기 때문에 도시 환경에 적합한 교통 서비스가 다를 수 있음

지방 지역 (rural area)

교외지역 (suburban area)

어반지역 (Urban area)

도심 (City Center)

[도시의 구성]

메가 시티

- 도시 구성 요소를 모두 갖고 있는 도시 예) 서울, 뉴욕, 파리 등
- 인구밀도가 높음
- 도시내 대중교통이 잘 발달되어 있음.
- 교외지역에서 도심으로 이동시 자가용의 역할이 큼
- 대중교통의 효율성을 높여줄 새로운 교통수단 필요
- 교통 수요가 출퇴근 시간을 중심으로 높음

중소형 도시

- 낮은 인구 밀도로 구성된 도시 예) 미국의 주요 도시, 지방소도시
- 대중교통보다 자가용에 대한 의존도가 높음
- 이동에 대한 수요가 무작위적으로 발생
- 산발적인 이동 수요를 해결하기 위해 로보택시가 효율적

도시 유형별 최적화된 모빌리티 서비스의 변화 방향

일반 차량의 도심 진입에 제약이 있을 경우 도시내 이동 수요는 모빌리티 허브 간 이동에 집중

독일 뮌헨 도시 내 모빌리티 수요 분석: 모빌리티 허브를 중심으로 이동이 발생

메가 시티 모빌리티 한계

- 도시와 연결된 지역으로 이동을 위한 모빌리티 서비스가 필요
- 도심 내 복잡한 교통 상황으로 새로운 교통 서비스 적용이 어려움
- 대중교통서비스 활성화와 효율성을 높일 수 있는 방법 필요

중소형 도시 모빌리티 한계

- 적은 이동 수요로 인하여 대중교통 발전이 어려움
- › 도심 대부분의 지역에서 교통 정체나 교통 흐름이 상대적으로 낮음
- 이동거리가 많기 때문에 자가용 이용률이 높음

도시의 유형과 상관 없이 모빌리티 허브를 두어 다양한 이동 서비스가 연결될 수 있도록 하여 다양한 이동 수요 해결

도시 환경에 적합한 자율주행 모빌리티 서비스를 위한 제안

대규모 모빌리티 서비스 실험을 위한 테스트 베드 도시 필요

현대자동차 그룹이 제시한 미래 스마트시티 조감도

자율주행 모빌리티 실험 도시 요건

- 중소형도시와 유사한 크기의 도시
- 대중교통 중심의 이동 서비스
- 일반 교통 유입의 차단
- 규제로부터 자유
- 모빌리티에 필요한 인프라 구축
- 도시의 확장이 가능해야 함.
- 지역 이동을 위한 교통 서비스와 지역 내 이동을 위한 서비스로 구분해서 개발 필요

스마트시티는 주거지역과 상업지역 분리가 아닌 '용도혼합'을 전제로 함

스마트 시티의 발전과 모빌리티 서비스

스마트 시티가 발전을 하면서 사람들의 이동거리가 줄고 있으며 다양한 서비스를 필요로 함

스마트 시티

초연결 지능화 인프라인 DNA(Data, Network, AI)를 통해 4차 산업혁명시대를 지배할 융합 신산업 발굴이 치열한 가운데 스마트시티가 대두

세계 스마트시티 관련 시장 규모 및 전망

스마트 시티의 문제점

- 이동거리 감소로 인한 차량 사용 빈도 및 시간이 감소 됨에 따라 단거리 이동 수단이 많이 필요함.
- 차량 이용에 제한적이기 때문에 배송 서비스 및 공공 서비스 제공에 문제가 있음.
- 3D 업종에 대한 기피로 관련 인력을 구하기가 어려움.
- 환경 오염 및 대기 오염관련 문제가 발생할 수 있는 내 연기관의 사용이 어려움.

스마트시티에서의 산업별 자율주행 모빌리티 서비스 구축의 예

UAM, 자율주행 모빌리티, 로보틱스가 공존하는 생태계 구축

자율주행 모빌리티 서비스 구현을 위한 핵심 요소기술

고객의 니즈를 충족 시키기 위한 통합적인 HW 및 SW 기술 필요

제어

차량 제어 시스템

- Steering Control System(MDPS, Custom)
- Acceleration Pedal Control System(Mechanical, Electronical)
- Shift Lever Control System(Mechanical)
- FPGA Based Embedded Controller
- DMI
- Shift Actuator
 Charging a transmission
- Accelerate Actuator
 Longitudinal acceleration
 control
- Steering Actuator
 Lateral control
- Brake Actuator
 Longitudinal
 deceleration control

판단

차량 통제 및 통합컨트롤 시스템

- Sensor and controller mount and cabling
- HMI Panel Design
- Monitoring LCD mount
- Vehicle Control Unit
- Path Planning and Following Algorithm
- · Waypoint based driving algorithm
- VCU (Low-Level Controller)
 Vehicle Control Unit
- High-Level Controller
 Integrated control

서비스

인지

장애물 감지 시스템 / 위치 검출 시스템

- SICK LMS511, LMS111, LD-MRS
- IBEO LUX, Velodyne
- GigE Camera
- Static and Dynamic Obstacle Detecting
- Novatel GPS system
- IMU, Compass, INS
- Lidar

Obstacle detection

- Radar
 Obstacle detection
- DGPS, GPS
 Localization
- Camera

Line detection Monitoring forward of vehicle

관제

자율주행 모빌리티의 HW특징 – PBP (Purpose Based Platform)

- MODULAR platform -

핵심 기술 : 차체 설계 및 제작 기술 + 구동 모터 및 인버터 + 감속기(변속기) + 배터리

Modular Chassis

Platform A

Platform B

Platform D

CABIN Solution

Security Robot

Delivery Robot

Self-driving Cargo Self-driving Shuttle

Inter-city BUS

Robot Tractor

- 수요기관
- 자율주행 PM : **지자체 및 개인**
- 배달로봇: 배달의 민족 등 배달업체
- 실내 물류 로봇 : 대한통운 등 물류센터
- 자율주행 택시 : 지자체 및 운수업체
- 자율주행 셔틀 : **지자체 및 운수업체**

- 자율주행 버스 : 지자체 및 운수업체
- 자율주행 트럭: 대한통은 등 물류업체

Self-driving Truck

- 자율주행 농기계 : 동양물산 등 농기계 업체
- 자율주행 건설기계 : 두산 등 건설업체

SaaM (Service As A Mobility)

MaaS, TaaS는 기존의 모빌리티에 서비스를 결합한 형태

SaaM 은 고객이 원하는 서비스를 만족시키기 위하여 새로운 모빌리티를 개발 필수

고객 및 수요자가 요구하는 서비스를 기반으로 **새로운 형태의 모빌리티를 대응 다품종 소량생산**으로, 각 서비스에 특화된 다양한 형태의 미래형 모빌리티

[스마트시티] [정유공장] [항만] [산업단지] [비포장도로]

Self-driving Cargo Self-driving Shuttle

Inter-city BUS

Self-driving Truck

Robot Tractor

Robot Sprayer

자율주행 모빌리티 서비스 대응을 위한 PBV플랫폼

Platform A 모델을 활용하여 'Delivery Robot' 개발

Platform B 모델을 활용하여 'Autonomous Cargo' 개발

Platform B 모델을 활용하여 'Autonomous Shuttle' 개발

자율주행 모빌리티 서비스 대응을 위한 다양한 플랫폼

농업용 제초로봇

농업용 방제로봇

실내 서빙 로봇

국방로봇 다목적 경비차량

