[Solutions] Lecture 5: Pseudorandom Functions + PRG Exercises

fame:	_ Unity ID:
-------	-------------

Q4. Practice with PRF

Q4a

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ a secure PRF. Let $F': \{0,1\}^{2n} \times \{0,1\}^{2n} \to \{0,1\}^{2n}$ function defined as follows:

$$F'_{k}(x) = F_{k_1}(x_1)||F_{k_2}(x_2)|$$

is it secure? If yes, prove it by a reduction. If no, show a formal attack. (Assume we parse $k=k_1||k_2|$ and $x=x_1||x_2|$)

Q4b

Let $F': \{0,1\}^{2n} \times \{0,1\}^n \to \{0,1\}^n$ function defined as follows:

$$F_k'(x) = F_{k_1}(x_1) \oplus k_2$$

is it secure? If yes, prove it by a reduction. If no, show a formal attack.

Q5. Prove or disprove the security of a PRG.

Let $M: \{0,1\}^n \to \{0,1\}^{2n}$ and $G: \{0,1\}^n \to \{0,1\}^{2n}$ be two secure PRF. Let $Q: \{0,1\}^n \to \{0,1\}^{4n}$ be the following PRG.

$$Q(s) := M(s)||M(\bar{s})|$$

(where \bar{s} means we negated all the bits of s).

Prove or disprove that Q is a secure PRG.

Solution 4a: FORMAL ATTACK.

Algorithm A

- Prepare input
 - 1. $x^0 = x_0^1 || x_0^2 = 0^{2n}$.
 - 2. $x^1 = x_1^1 || x_1^2 = 0^n || 1^n$.

Note that $x_0^1=x_1^1=0^n$ and $x_1^2=0^n\neq 1^n=x_2^2$, and so $x^0\neq x^1$. (In this case, it is fine to either instantiate x^0 and x^1 as specific strings or be more generic and pick any strings where $x_0^1=x_1^1$ and $x_2^0\neq x_2^1$.)

- Query oracle \mathcal{O} with input x^0, x^1 .
- On receipt of $\mathcal{O}(x^0) = y^0$, parse as $y^0 = y_1^0 || y_2^0$.
- On receipt of $\mathcal{O}(x^1) = y^1$, parse as $y^0 = y_1^1 || y_2^1$.
- If $y_1^1 = y_1^0$ output 1. Else, 0.

Analysis of A's success

 $\overline{\mathbf{Case}\ \mathcal{O} = F'}.$

- 1. $\mathcal{O}(x^0) = y^0 = y_1^0 || y_2^0 = F'_{k_1}(0^n) || F'_{k_2}(0^n) ||$.
- 2. $\mathcal{O}(x^1) = y^1 = y_1^1 || y_2^1 = F'_{k_1}(0^n) || F'_{k_2}(1^n) ||$.
- 3. Then $y_1^1 = y_0^1$ with probability 1.
- 4. $A^{F(\cdot)}() = 1$ with probability 1.

Case $\mathcal{O} = TF$.

- 1. $\mathcal{O}(x^0) = y^0 = y_1^0 || y_2^0$. Note y_1^0 is a uniformly random bitstring of length n.
- 2. $\mathcal{O}(x^1) = y^1 = y_1^1 || y_2^1$. Note y_1^1 is a uniformly random bitstring of length n.
- 3. Then $y_1^1 = y_0^1$ with probability $\frac{1}{2^n}$.
- 4. $A^{TF(\cdot)}() = 1$ with probability $\frac{1}{2^n}$.

We see that

$$|Pr[A^{TF(\cdot)}()=1] - Pr[A^{F(\cdot)}()=1]| = |1 - \frac{1}{2^n}|$$

which is not negligible. Hence, F' is not a secure PRF.

Solution 4b: Security Proof by Reduction.

Theorem. If F is a secure PRF then F' is a secure PRF.

Proof. By contradiction. We will prove the following statement.

If F' is **not** a secure PRF then also F is not a secure PRF.

Step 1. Write formally what it means that F' is not a secure PRF? It means that there exist a PPT algorithm A' such that: A' can distinguish between F' and a truly random function TF with probability q(n), where q(n) is non-negligible.

Step 2. Reduction Write an algorithm A that uses A' to distinguish the output of \overline{F} . Algorithm A has access to an oracle \mathcal{O} and its goal is to distinguish if $\mathcal{O} = F$ or $\mathcal{O} = TF$ (where TF stands for truly random function). $A(1^n)$

- A gets access to \mathcal{O} where \mathcal{O} is either F or a truly random function TF.
- A picks $k_2 \leftarrow \{0,1\}^n$
- A activates A'.
 - 1. On each query x_i by A', forward to \mathcal{O} . Receive $\mathcal{O}(x_i) = y_i$.
 - 2. Calculate $y'_i = y_i \oplus k_2$. Forward y'_i to A'.
- Finally, when A' outputs b, output the same.

Step 3. Analysis of Success probability of the reduction A.

Case 1. $\mathcal{O} = F$

- 1. A gets $F_k(x_i)$ for each query x_i .
- 2. Then $y'_{i} = F_{2}(x_{i}) \oplus k_{2}$.

This looks exactly like the view A' would see with $\mathcal{O} = F'$. Case 2. $\mathcal{O} = TF$

- 1. $A \text{ gets } y_i \leftarrow \{0,1\}^n$.
- 2. Since k_2 is also uniform at random, $y'_i = y_i \oplus k_2$ is uniform at random.

Then this is the same view for A' seeing a truly random function.

We know by assumption that

$$|Pr[A^F(1^n) = 1] - Pr[A^{TF}(1^n) = 1] = q(n)$$

We conclude that A, outputting the same as A' distinguishes with probability q(n). However, by assumption, q(n) is non-negligible and A is an adversary for F, a PRF. This is a contradiction, so F' must be a secure PRF.

Question 4a: FORMAL ATTACK.

- 1. Construct a PRG M(s) (that uses a PRG G as building block) as follows: M(s)
 - Parse s as $s_1 \dots s_n$
 - If $s_1 = 0$, output G(s) otherwise output $G(\bar{s})$.

We note that M is a secure PRG, since G is a PRG.

2. Instantiate Q with PRG M. Recall that Q should work with any PRG. When instantiating Q with M we obtain the following behaviour:

$$\begin{split} Q(s) &= M(s)||M(\bar{s})\\ \text{If } s_1 &= 0, \text{ then } M(s)||M(\bar{s}) = G(s)||G(s) = G(s)||G(s)\\ \text{if } s_1 &= 1, \text{ then } M(s)||M(\bar{s}) = G(\bar{s})||G(\bar{s}) \end{split}$$

3. The last step is to show when Q is instantiated with M, the output of Q is easily distinguishable from a truly random string. There exists a PPT distinguisher D that works as follows:

Algorithm D(y)

- Parse $y = y_L || y_R$
- Decision: If $y_L = y_R$ then output 1, otherwise output 0.

Analysis of D's success

Case 1: y = Q(s).

if y is the output of Q, then Pr[D(y) = 1|y = Q(s)] = 1.

Case 2: $y \leftarrow \$ \{0, 1\}^{4n}$.

if y is the output of a truly uniform distribution, $Pr[D(y) = 1 | y \leftarrow s\{0,1\}^{2n}] = \frac{2^{2n}}{2^{4n}} = \frac{1}{2^{2n}}$

We see that:

$$|Pr[D(y) = 1|y = Q(s)] - Pr[D(y) = 1|y \leftarrow \$\{0,1\}^{2n}]| = |1 - \frac{1}{2^{2n}}|$$

which is not negligible. Hence, Q is not a secure PRG.

TEMPLATE: SECURITY PROOF BY REDUCTION.

Theorem. If F is a secure PRF then F' is a secure PRF.

Proof. By contradiction. We will prove the following statement.

If F' is **not** a secure PRF then also F is not a secure PRF.

<u>Step 1.</u> Write formally what it means that F' is not a secure PRF? It means that there exist a PPT algorithm A' such that:

Step 2. Reduction Write an algorithm A that uses A' to distinguish the output of F. Algorithm A has access to an oracle \mathcal{O} and its goal is to distinguish if $\mathcal{O} = F$ or $\mathcal{O} = TF$ (where TF stands for truly random function).

 \underline{A}

- ...
- ...
- Output

Step 3. Analysis of Success probability of the reduction A.

Case 1.
$$\mathcal{O} = F$$

Case 2.
$$\mathcal{O} = F$$

TEMPLATE FOR FORMAL ATTACK.

Algorithm A

- Prepare input ...
- \bullet Query oracle ${\cal O}$ with input . . .
- ...
- Output ...

 $\frac{\text{Analysis of } A\text{'s success}}{\mathbf{Case}\ \mathcal{O} = F.}$

Case $\mathcal{O} = TF$.

hence,