Les fonctions continues

M1 - Chapitre 2

I. Limites

Définitions				
$\lim_{x \to a} f(x) = l$		a - r < x < a + r	$ f(x) - l < \varepsilon$ $f(x) < \varepsilon$ $f(x) > \varepsilon$	$si l \in R$ $si l = -\infty$ $si l = +\infty$
$\lim_{x \to a^{-}} f(x) = l$	$\forall \ \varepsilon > 0, \exists \ r > 0 \mid \forall \ x \in I,$	a - r < x < a		
$\lim_{x \to a^+} f(x) = l$		a < x < a + r		
$\lim_{x \to -\infty} f(x) = l$	$\forall \ \varepsilon > 0, \exists \ A > 0 \mid \forall \ x \in I,$	A < x		
$\lim_{x \to +\infty} f(x) = l$		x < -A		

II. Continuité

$$f(x)$$
 continue en $a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

f(x) continue sur I si continue en tout point de I

III. Caractérisation séquentielle des limites

$$(x_n) \to a \Rightarrow f(x_n) \to f(a)$$

IV. Fonctions équivalentes

Définition	Propriété
$f \underset{a}{\sim} g \Leftrightarrow \lim_{x \to a} \frac{f}{g} = 1$	$f'(a) \neq 0 \Rightarrow \boxed{f(x) - f(a) \underset{a}{\sim} f'(a)(x - a)}$

Equivalents usuels $\ln(1+x) \underset{0}{\sim} x \qquad e^{x} - 1 \underset{0}{\sim} x \qquad 1 - \cos x \underset{0}{\sim} \frac{x^{2}}{2}$ $\sin x \underset{0}{\sim} x \qquad \tan x \underset{0}{\sim} x$

V. Limite d'une fonction monotone

f croissante sur]*a*; *b*[

- f majorée $\Rightarrow \lim_{x \to b} f(x) = l \in \mathbb{R}$
- f pas majorée $\Rightarrow \lim_{x \to b^-} f(x) = +\infty$

VI. Image d'un intervalle

- f continue sur $I \Rightarrow f(I)$ est un intervalle
- f continue sur $[a;b] \Rightarrow f([a;b]) = [m;M]$ $m = \min_{[a;b]} f(x)$ $M = \max_{[a;b]} f(x)$

VII. Théorème des valeurs intermédiaires

$$f$$
 continue sur $I = [a; b]$
 $f(a) < 0$ et $f(b) > 0 \Rightarrow \exists c \in I t.q. $f(c) = 0$$