Rapport d'analyse des données pour le projet SetO

Par: Audrey Guy

26 février 2025

Une des premières données qui a été examinée a été l'influence des paramètres météorologiques sur le son et la lumière capté à la station.

Pour ce faire, un algorithme de « random forest » a été utilisé. Il en résulte deux graphiques, soit l'influence des données météorologiques sur le bruit (Figure 1) et sur la lumière (Figure 2). Ce que l'on déduit de ces résultats est que la température est le facteur météorologique ayant le plus d'impact sur le bruit ambiant, tandis que la pression atmosphérique est celui ayant le plus d'impact sur la lumière. Le Tableau 1 présente les différents facteurs avec leur influence en pourcentage, il permet aussi de voir que le seul facteur qui ne semble pas avoir d'effet est la hauteur de précipitation, par contre, il est possible que les données affectées par ce facteur est été retiré à l'étape de triage, si, par exemple, une couche de neige sur les capteur entraîne une erreur de lecture, puisque cette donnée aura été retiré du fichier.

Tableau 1 - Répartition de l'influence des facteurs météorologiques

	Température	Pression	Humidité	Hauteur de	
		atmosphérique	relative	précipitation	
Bruit (Leq dBA)	39 %	33 %	24 %	4 %	
Lumière (lux)	31 %	40 %	27 %	2 %	

Figure 1 - Impact de la météo sur le bruit

Figure 2 - Impact de la météo sur la lumière

Ensuite, les corrélations entre les différents facteurs et les données ont été calculées. Afin de pouvoir bien comparer les différents paramètres, les corrélations ont été étudiés pour tous les jours à midi, et pour tous les jours par heure (Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11). Les données à midi permettent d'illustrer les corrélations, mais ne représentent pas l'ensemble des données. Ainsi, afin de juger de la corrélation existant entre les facteurs, on se fiera plutôt sur les corrélations moyennes, minima et maxima recensé dans le Tableau 2. De ce tableau, on retient que le bruit à tendance à augmenter lorsque la lumière augmente la semaine, mais pas la fin de semaine, ce qui fait sens avec l'activité humaine. Quant aux facteurs météorologiques, le bruit croit si la température croit et croit lorsque la pression décroit (corrélation négative). Selon les données, le bruit ne semble pas être corrélé avec l'humidité et la hauteur de précipitation. La lumière est légèrement corrélée à la température et légèrement corrélée négativement à l'humidité.

Le dernier questionnement concernait l'identification des heures de pointe sur l'autoroute à proximité du parc du Mont Bellevue. La Figure 12 illustre que le capteur de la station SIRÈNE détecte des maxima entre 6h00 et 9h00 et entre 15h00 et 18h00, et ce, à tous les jours de la semaine. Ainsi, on en déduit que le traffic adjacent au parc affecte le niveau de bruit minimalement jusqu'au point de prise des données.

Note de l'auteure : je m'excuse pour la taille des figures, qui sont illisibles, elles sont toutes disponibles sur le drive et le github du projet, et peuvent être reproduite en exécutant le code d'analyse des données fourni sur les mêmes plateforme.

Tableau 2 - Moyennes, minimum et maximum des corrélations pour la semaine

Données corrélées	Moyenne	Minimum	Maximum	
Druit Lumière	Semaine	0,2730	-0,0773	0,6069
Bruit, Lumière	Fin de semaine	0,0288	-0,4614	0,4033
Bruit, Température	Semaine	0,4693	0,2585	0,6611
Bruit, lemperature	Fin de semaine	0,3023	0,0752	0,5579
Bruit, Pression atmosphérique	Semaine	-0,1929	-0,3281	0,0190
Bruit, Fression atmospherique	Fin de semaine	-0,1608	-0,5050	0,1460
Bruit, Humidité relative	Semaine	-0,0920	-0,2568	0,0286
Bruit, Fluimuite retative	Fin de semaine	-0,0183	-0,4119	0,0627
Bruit, Hauteur de précipitation	Semaine	-0,0194	-0,2826	0,3321
Bruit, Hauteur de precipitation	Fin de semaine	0,0145	-0,4125	0,2954
Lumière, Température	Semaine	0,1960	-0,1427	0,4992
Luilliele, lellipelatule	Fin de semaine	0,1857	-0,2327	0,5018
Lumière, Pression atmosphérique	Semaine	0,0105	-0,4210	0,3944
Lumere, Fression aumospherique	Fin de semaine	-0,0368	-0,5705	0,4371
Lumière, Humidité relative	Semaine	-0,1268	-0,5050	0,2213
Lumere, mumunte retative	Fin de semaine	-0,0488	-0,5986	0,5095
Lumière, Hauteur de précipitation	Semaine	-0,0520	-0,3662	0,3914
Lumere, mauteur de precipitation	Fin de semaine	0,0411	-0,4216	0,3647

Figure 3 - Corrélations entre le bruit et la pression atmosphérique

Figure 4 - Corrélations entre le bruit et la température

Figure 5 - Corrélations entre la lumière et l'humidité relative

Figure 6 - Corrélations entre la lumière et la hauteur de précipitation

Figure 7 - Corrélations entre la lumière et la pression atmosphérique

Figure 8 - Corrélations entre la lumière et la température

Figure 9 - Corrélations entre le bruit et l'humidité relative

Figure 10 - Corrélations entre le bruit et la lumière

Figure 12 - Détection des heures de pointes