Package 'scrattch.mapping'

March 14, 2023

```
Title Generalized mapping of annotations from shiny taxonomy to query data.
Version 0.1
Description ADD
License GPL-3
Depends feather,
      anndata,
      dplyr,
      dendextend,
      viridis,
      feather,
      tibble,
      Matrix,
      MatrixGenerics,
      foreach,
      pvclust,
      scrattch.io,
      scrattch.hicat,
      scrattch.bigcat,
      scrattch.vis,
      mfishtools,
      patchseqtools,
      patchSeqQC,
      Seurat,
      cowplot,
      umap,
      arrow
Suggests knitr,
      rmarkdown,
      testthat,
      future,
      parallel,
      doMC
Encoding UTF-8
LazyData true
VignetteBuilder knitr
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
```

R topics documented:

```
addDendrogramMarkers
8
13
Index
 19
```

addDendrogramMarkers Add marker genes to reference dendrogram for tree mapping

Description

Add marker genes to reference dendrogram for tree mapping

```
addDendrogramMarkers(
  dend,
  norm.data,
 metadata,
  celltypeColumn = "cluster_label",
  subsample = 100,
  num.markers = 20,
 de.param = scrattch.hicat::de_param(low.th = 1, padj.th = 0.01, lfc.th = 1, q1.th =
  0.3, q2.th = NULL, q.diff.th = 0.7, de.score.th = 100, min.cells = 2, min.genes = 5),
  calculate.de.genes = TRUE,
  save.shiny.output = TRUE,
 mc.cores = 1,
 bs.num = 100,
  p = 0.7
  low.th = 0.15,
  shinyFolder = paste0(getwd(), "/")
)
```

dend A dendrogram in R format to which marker genes will be added, or a character

string with a file location of "dend.RData"

norm.data A matrix of log normalized reference data, or character string with a file loca-

tion of "data_t.feather". If a count matrix is provided, the data data will be log normalized. This should be the data matrix used to generate the dendrogram.

metadata Data frame of metadata with rows corresponding to cells/nuclei, and either row

names or a column called "sample_id" corresponding to cell names. This matrix must include entries for all cells in norm.data. Could also be a file. Columns

can be numeric, categorical, or factors.

celltypeColumn Column name correspond to the cell type names in the dendrogram (default =

"cluster_label"). At least two cells per cell type in the dendrogram must be

included.

subsample The number of cells to retain per cluster (default = 100)

num.markers The maximum number of markers to calculate per pairwise differential calcula-

tion per direction (default = 20)

de.param Differential expression (DE) parameters for genes and clusters used to define

marker genes. By default the values are set to the 10x nuclei defaults from scrattch.hicat, except with min.cells=2 (see the function de_param in the scrattch.hicat

for more details).

calculate.de.genes

Default=TRUE. If set to false, the function will search for a file called "de.genes.rda" to load precalculated de genes.

save.shiny.output

Should standard output files be generated and saved to the directory (default=TRUE). These are not required for tree mapping, but are required for building a patch-seq shiny instance. This is only tested in a UNIX environment. See notes.

mc.cores

Number of cores to use for running this function to speed things up. Default = 1. Values>1 are only supported in an UNIX environment and require foreach and doParallel R libraries.

bs.num, p, low.th

Extra variables for the map_dend_membership function in scrattch.hicat. Defaults are set reasonably.

shinyFolder

The location to save shiny output, if desired

NOTES

If save.shiny.output=TRUE, the following files will be generated: reference.rda, which includes a variable reference as follows: reference\$cl.dat - These are the cluster means that are used for mapping comparisons reference\$dend - This is the dendrogram with marker genes attached membership_information_reference.rda, which includes two variables memb.ref - matrix indicating how much confusion there is the mapping between each cell all of the nodes in the tree (including all cell types) when comparing clustering and mapping results with various subsamplings of the data map.df.ref - Result of tree mapping for each cell in the reference against the clustering tree, including various statistics and marker gene evidence. This is the same output that comes from tree mapping.#

Value

An updated dendrogram variable that is the same as dend except with marker genes added to each node.

 ${\tt applyPatchseqQC}$

This function applies patchseqQC, given a taxonomy and query data

Description

This function applies patchseqQC, given a taxonomy and query data

Usage

```
applyPatchseqQC(AIT.anndata, query.data, query.metadata, verbose = FALSE)
```

Arguments

```
AIT. anndata A reference taxonomy object.

query.data A logCPM normalized matrix to be annotated.

query.metadata A data frame of metadata for the query data.

verbose Should status be printed to the screen?
```

Value

A new query.metadata file with appended QC columns

buildMappingDirectory Starting from an anndata object this function builds the minimum files required for patch-seq shiny

Description

Starting from an anndata object this function builds the minimum files required for patch-seq shiny

```
buildMappingDirectory(
  AIT.anndata,
  mappingFolder,
  query.data,
  query.metadata,
  query.mapping = NULL,
  doPatchseqQC = TRUE,
  metadata_names = NULL,
  mc.cores = 1,
  bs.num = 100,
  p = 0.7,
  low.th = 0.15,
  min.confidence = 0.5
)
```

buildTaxonomy 5

Arguments

AIT.anndata A reference taxonomy object.

mappingFolder The location to save output files for patch-seq (or other query data) results, e.g.

//allen/programs/celltypes/workgroups/rnaseqanalysis/shiny/star/human/human_patchseq_MTG_JA

query.data A logCPM normalized matrix to be annotated.

query.metadata A data frame of metadata for the query data.

query.mapping Mapping results from taxonomy_mapping() or other mapping functions (op-

tional). If provided row names must match column names in query.data.

doPatchseqQC Boolean indicating whether patch-seq QC metrics should be calculated (default)

or not.

metadata_names An optional named character vector where the vector NAMES correspond to

columns in the metadata matrix and the vector VALUES correspond to how these metadata should be displayed in Shiny. This is used for writing the desc.feather

file later.

mc.cores Number of cores to use for running this function to speed things up. Default =

1. Values>1 are only supported in an UNIX environment and require foreach

and doParallel R libraries.

bs.num, p, low.th

Extra variables for the map_dend_membership function in scrattch.hicat. De-

faults are set reasonably.

 $\min.$ confidence Probability below which a cell cannot be assigned to a cell type (default 0.7).

In other words, if no cell types have probabilties greater than resolution.index, then the assigned cluster will be an internal node of the dendrogram.

This function writes files to the mappingFolder directory for visualization with molgen-shiny tools — anno.feather - query metadata — data.feather - query data — dend.RData - dendrogram (copied from reference) — desc.feather - table indicating which anno columns to share — memb.feather - tree mapping of each query cell to each tree node (not just the best matching type like in treeMap) — tsne.feather - low dimensional coordinates for data — tsne_desc.feather - table

indicating which low-D representations to share

buildTaxonomy

This function builds the minimum files required for Shiny

Description

This function builds the minimum files required for Shiny

```
buildTaxonomy(
  counts,
  meta.data,
  feature.set,
  umap.coords,
  shinyFolder,
  cluster_colors = NULL,
  metadata_names = NULL,
```

6 build_dend

```
subsample = 2000,
reorder.dendrogram = FALSE
)
```

Arguments

counts A count matrix in sparse format: dgCMatrix.

meta.data Meta.data corresponding to count matrix. Rownames must be equal to colnames

of counts.

feature.set Set of feature used to calculate dendrogram. Typically highly variable and/or

marker genes.

umap.coords Dimensionality reduction coordiant data.frame with 2 columns. Rownames

must be equal to colnames of counts.

shinyFolder The location to save Shiny objects, e.g. "/allen/programs/celltypes/workgroups/rnaseqanalysis/shiny/

cluster_colors An optional named character vector where the values correspond to colors and

the names correspond to celltypes in celltypeColumn. If this vector is incom-

plete, a warning is thrown and it is ignored.

metadata_names An optional named character vector where the vector NAMES correspond to

columns in the metadata matrix and the vector VALUES correspond to how these metadata should be displayed in Shiny. This is used for writing the desc.feather

file later.

subsample The number of cells to retain per cluster

reorder.dendrogram

Should dendogram attempt to match a preset order? (Default = FALSE). If TRUE, the dendrogram attempts to match the celltype factor order as closely as possible (if celltype is a character vector rather than a factor, this will sort clusters alphabetically, which is not ideal)

clusters alphabetically, which is not ideal).

build_dend

Build dend (updated to specify dendextend version of "set")

Description

Build dend (updated to specify dendextend version of "set")

```
build_dend(
  cl.dat,
  cl.cor = NULL,
  l.rank = NULL,
  l.color = NULL,
  nboot = 100,
  ncores = 1
)
```

```
cl.dat
cl.cor
l.rank
l.color
nboot
ncores
```

Value

dendrogram and a couple of related things

Description

Starting point for optimized tree mapping

Usage

```
build_train_list_on_taxonomy(
  TaxFN = NA,
  Taxonomy,
  pre.train.list = NA,
  query.genes = NA,
  prefix = "",
  mapping.method = c("flat", "hierarchy"),
  prebuild = FALSE,
  newbuild = FALSE,
  mc.cores = 10,
  div_{thr} = 3,
  subsample_pct = 0.9,
  top.n.genes = 15,
  n.group.genes = 3000,
  rm.cl = c()
)
```

Arguments

rm.cl

Value

Mapping results

8 compare_heatmap

Description

This function calculates the compactness score, defined as the the average (Pearson) correlation-based distance between each cell and the assigned group centroid (median) using the variable genes. If a secondary group is provided (e.g., transgenic line, cortical layer, etc.), the function first sets gene expression values for each cell as expression values for the cluster median and then returns compactness per cell summarized by the secondary group.

Usage

```
compactness_distance(
  query.data,
  query.group,
  query.secondary = NULL,
  variable.features = rownames(query.data)
)
```

Arguments

query.data A logCPM normalized matrix of the data

query.group A group vector to calculate compactness distance over (e.g., cluster assignments)

query.secondary

An optional secondary group vector for comparison with the primary group vector (e.g., cortical layer or transgenic line)

variable.features

A precomputed set of variable features. If not provided, all genes are used.

Value

A vector of compactness scores for each cell

compare_heatmap

Compare and plot two sets of cluster assignments as a heatmap

Description

This is a wrapper for the function heatmap. 3 in scrattch.hicat

compare_plot 9

Usage

```
compare_heatmap(
  cl,
  ref.cl,
  threshold = 0.2,
  cexLab = NULL,
  Rowv = NA,
  Colv = NA,
  ylab = NULL,
  xlab = NULL,
  main = NULL,
  margins = c(6, 6),
  scale = "none",
  trace = "none",
  dendrogram = "none",
  ...
)
```

Arguments

cl	A cluster factor object to compare to a reference
ref.cl	A cluster factor object for the reference clusters
threshold	Maximum value to show in heatmap. Lower values will highlight off-target expression more.
cexLab	Size of the label names to display on the screen. The function will attempt to guess this if not inputted, adjustments may be needed if not all labels are shown.
	Other inputs to the function heatmap. 3

Value

a list with output from heatmap.3, after displaying the heatmap to the screen.

compare_plot	Compare and plot two sets of cluster assignments	
--------------	--	--

Description

This is the subset of the compare_annotate function that does the plotting. It is identical to the scrattch.hicat implementation, but a bit more flexible on input formats.

Usage

```
compare_plot(cl, ref.cl)
```

Arguments

```
cl A cluster factor object to compare to a reference ref.cl A cluster factor object for the reference clusters
```

10 get_cl_medians

Value

g A ggplot2 dot plot object for the comparison.

corrMap

Correlation based mapping

Description

Correlation based mapping

Usage

```
corrMap(AIT.anndata, query.data)
```

Arguments

AIT. anndata A reference taxonomy anndata object.

query.data A logCPM normalized matrix to be annotated.

Value

Correlation mapping results as a data.frame.

get_cl_medians

Compute cluster medians for each row in a matrix

Description

Compute cluster medians for each row in a matrix

Usage

```
get_cl_medians(mat, cl)
```

Arguments

mat A gene (rows) x samples (columns) sparse matrix

cl A cluster factor object

Value

a matrix of genes (rows) x clusters (columns) with medians for each cluster

loadTaxonomy 11

loadTaxonomy

Read in a reference data set in Allen taxonomy format

Description

Read in a reference data set in Allen taxonomy format

Usage

```
loadTaxonomy(
  refFolder,
  sample_id = "sample_id",
  hGenes = NULL,
  sub.sample = 1000,
  gene_id = "gene"
)
```

Arguments

refFolder Directory containing the Shiny taxonomy.

sample_id Field in reference taxonomy that defines the sample_id.

hGenes User supplied variable gene vector. If not provided, then all genes are used.

sub.sample Number of cells to keep per cluster.

gene_id Field in counts.feather that defines the gene_id.

Value

Organized reference object ready for mapping against.

Title

map_dend

Description

Title

```
map_dend(
  dend,
  cl.dat,
  map.dat,
  select.cells = colnames(map.dat),
  p = 0.8,
  low.th = 0.2,
  default.markers = NULL,
  seed = 42
)
```

```
dend
cl.dat
map.dat
select.cells
p
low.th
default.markers

seed = random seed
cl
dat
```

Value

tree mapping to the dendrogram table (cells x nodes with values as probabilities)

```
map_dend_membership Title
```

Description

Title

Usage

```
map_dend_membership(
  dend,
  cl.dat,
  map.dat,
  map.cells,
  mc.cores = 10,
  bs.num = 100,
  seed = 42,
  ...
)
```

Arguments

```
dend
cl.dat
map.dat
map.cells
mc.cores
bs.num
seed = random seed
...
cl
dat
```

prepareTaxonomy 13

Value

membership table

prepareTaxonomy

Prepare taxonomy for optimized tree mapping

Description

This function write ...

Usage

```
prepareTaxonomy(
  count,
  cl,
  cl.df,
  AIT.str,
  lognormal = NULL,

  taxonomy.dir = "/allen/programs/celltypes/workgroups/rnaseqanalysis/shiny/Taxonomies/")
```

Arguments

```
cl assigned cluster
cl.df cluster anno with hierarchy: cluster(cl)/subclass_label/neighborhood/root
AIT.str taxonomy id
taxonomy.dir
counts countgene x cell
```

resolve_cl

Title

Description

Title

```
resolve_cl(
    cl.g,
    cl.dat,
    markers,
    map.dat,
    select.cells,
    p = 0.7,
    low.th = 0.2,
    seed = 42
)
```

Value

mapped.cl output

```
{\it run\_mapping\_on\_taxonomy} \\ {\it INFO-PLEASE\,ADD-} \\
```

Description

```
INFO - PLEASE ADD -
```

Usage

```
run_mapping_on_taxonomy(
 query.dat,
 Taxonomy = "AIT12.0_mouse",
 prefix = "",
 TaxFN = NA,
 prebuild = FALSE,
 newbuild = FALSE,
 mapping.method = c("flat", "hierarchy"),
 iter = 100,
 mc.cores = 7,
 blocksize = 50000,
 dist.method = "cor",
 topk = 1,
 subsample_pct = 0.9,
 top.n.genes = 15,
 rm.clusters = NA,
 flag.serial = TRUE,
 flag.parallel.tmp = FALSE,
 flag.fuzzy = FALSE
)
```

Arguments

cl.df

seuratMap 15

Value

???

seuratMap

Seurat based mapping

Description

Seurat based mapping

Usage

```
seuratMap(AIT.anndata, query.data, dims = 30, k.weight = 5)
```

Arguments

AIT. anndata A reference taxonomy anndata object.

query.data A logCPM normalized matrix to be annotated.

Value

Seurat mapping results as a data.frame.

taxonomy_mapping

Cell type annotation and initial QC

Description

Perform initial mapping using three methods: Correlation-based, tree-based, and Seurat based, and will calculate some QC metrics.

```
taxonomy_mapping(
  AIT.anndata,
  query.data,
  corr.map = TRUE,
  tree.map = TRUE,
  seurat.map = TRUE,
  label.cols = c("cluster_label", "subclass_label", "class_label")
)
```

16 top_binary_genes

Arguments

AIT. anndata A reference taxonomy object.

query.data A logCPM normalized matrix to be annotated.

corr.map Should correlation mapping be performed?

tree.map Should tree mapping be performed?

seurat.map Should seurat mapping be performed?

label.cols Column names of annotations to map against. Note that this only works for

metadata that represent clusters or groups of clusters (e.g., subclass, supertype,

neighborhood, class)

Value

Mapping results from all methods.

top_binary_genes

Get top genes by beta (binary) score

Description

Get top genes by beta (binary) score

Usage

```
top_binary_genes(data, cluster.names, gene.count = 2000)
```

Arguments

data A count (or CPM or logCPM) matrix

cluster.names A vector of cluster names in the reference taxonomy. gene.count The number of top genes to return (Default=2000)

Value

Boolean vector of cells to keep (TRUE) and cells to remove (FALSE)

treeMap 17

treeMap

Tree based mapping

Description

Tree based mapping

Usage

```
treeMap(AIT.anndata, query.data)
```

Arguments

```
AIT. anndata A reference taxonomy anndata object.

query.data A logCPM normalized matrix to be annotated.
```

Value

Tree mapping results as a data.frame.

writePatchseqQCmarkers

Save marker genes for patchSeqQC

Description

This function write a file called QC_markers.RData that contains all the variables required for applying the patchseq QC algorithm pathseqtools (which is an more flexible version of the patchSeqQC algorithm). This is only used for patch-seq analysis.

```
writePatchseqQCmarkers(
  counts,
  metadata,
  subsample = 100,
  subclass.column = "subclass_label",
  class.column = "class_label",
  off.target.types = c("Glia", "glia", "non-neuronal", "Non-neuronal"),
  num.markers = 50,
  shinyFolder = paste0(getwd(), "/")
)
```

counts A matrix of counts for the reference data, or character string with a file location

of "counts.feather". If it appears cpm or logCPM matrix is provided, an warning

will be thrown.

metadata Data frame of metadata with rows corresponding to cells/nuclei, and either row

names or a column called "sample_id" corresponding to cell names. This matrix must include entries for all cells in norm.data. Could also be a file. Columns can be numeric, categorical, or factors and must include "subclass.column" and

"class.column"

subsample The number of cells to retain per cluster (default = 100).

subclass.column

Column name corresponding to the moderate-resolution cell types used for the

cell types of interest (default = "subclass_label").

class.column Column name corresponding to the low-resolution cell types used for the off-

target cell types (default = "class_label").

off.target.types

A character vector of off-target (also known as 'contamination') cell types. This must include at least one of the cell types found in "class.column" and/or "sub-

class.column" (both columns are checked)

num.markers The maximum number of markers to calculate per node per direction (default =

50)

shinyFolder = The location to save shiny output (default = current working directory).

Nothing is returned; however an R data object called "QC_markers.RData" is returned with the following variables markers, countsQC, cpmQC, classBr, sub-

classF, allMarkers,

Index

```
* external
    top_binary_genes, 16
addDendrogramMarkers, 2
applyPatchseqQC, 4
build_dend, 6
build_train_list_on_taxonomy, 7
\verb|buildMappingDirectory|, 4|
buildTaxonomy, 5
compactness_distance, 8
compare_heatmap, 8
compare\_plot, 9
corrMap, 10
gene x cell, 13
{\tt get\_cl\_medians}, \\ 10
loadTaxonomy, 11
map_dend, 11
{\tt map\_dend\_membership},\, 12
{\tt prepareTaxonomy}, {\tt 13}
resolve_cl, 13
run_mapping_on_taxonomy, 14
seuratMap, 15
{\tt taxonomy\_mapping}, {\tt 15}
top\_binary\_genes, \\ 16
treeMap, 17
writePatchseqQCmarkers, 17
```