

Generative Adversarial Networks

Presented by "GANerators" team

Marwa Nair, Anna Krysta, Caio Rocha

Data Science Lab

06/11/2024

01.

PROBLEM STATEMENT

Problem Statement

Goal:

Train a GAN on the MNIST dataset, with a fixed generator architecture, and implement techniques to improve the data generation.

Problems with Vanilla GANs:

- Mode Collapse: The generator produces a limited variety of samples, ignoring parts of the data distribution.
- Vanishing gradients: The discriminator becomes too strong, resulting in poor generator updates.
- Overfitting: The discriminator becomes too focused on the generator's distribution, and fails to generalize.

02.

TECHNIQUES AND PRELIMINARY RESULTS

Differential Privacy GAN (Alex B., Gautam K. & Guojun Z.; 2023)

- We clip the Discriminator gradients and add Gaussian noise
- Generator is unchanged
- We perform more Discriminator steps per Generator step to preserve balance between the Generator and Discriminator

Collaborative Sampling (CS)

- Given a fixed generator G and a fixed discriminator D.
- Refines the generated samples through gradient-based updates at the last layer of the generator.
- Shifts the generator distribution closer to the real data distribution. (Liu,

Collaborative Sampling (CS)

1. Iteratively refines the generated samples

$$x_l^{k+1} = x_l^k - \lambda \nabla_l \mathcal{L}_G(x_l^k),$$

$$x^{k+1} = G_L \circ G_{L-1} \circ \dots G_l(x_l^{k+1}),$$

2. Minimizes the loss of the generator

$$\mathcal{L}_G = -\mathbb{E}_{z \sim p_z}[\log D(G(z))]$$

3. Minimizes the loss of the disciminator

$$\mathcal{L}_D = -\mathbb{E}_{x \sim p_r}[\log D(x)] - \mathbb{E}_{x' \sim p_c}[1 - \log D(x')],$$

Collaborative Sampling (CS)

1. Iteratively refines the generated samples

Output of layer I
$$\longrightarrow$$
 $x_l^{k+1} = x_l^k - \lambda \nabla_l \mathcal{L}_G(x_l^k),$

Output of the last layer
$$\longrightarrow x^{k+1} = G_L \circ G_{L-1} \circ \ldots G_l(x_l^{k+1}),$$

2. Minimizes the loss of the generator

$$\mathcal{L}_G = -\mathbb{E}_{z \sim p_z}[\log D(G(z))]$$

3. Minimizes the loss of the disciminator

$$\mathcal{L}_D = -\mathbb{E}_{x \sim p_r}[\log D(x)] - \mathbb{E}_{x' \sim p_c}[1 - \log D(x')],$$

Collaborative Sampling (CS)

1. Iteratively refines the generated samples

$$x_l^{k+1} = x_l^k - \lambda \nabla_l \mathcal{L}_G(x_l^k),$$
$$x^{k+1} = G_L \circ G_{L-1} \circ \dots G_l(x_l^{k+1}),$$

2. Minimizes the loss of the generator

$$\mathcal{L}_G = -\mathbb{E}_{z \sim p_z}[\log D(G(z))]$$

Refined sample

3. Minimizes the loss of the disciminator

$$\mathcal{L}_D = -\mathbb{E}_{x \sim p_r}[\log D(x)] - \mathbb{E}_{x' \sim p_c}[1 - \log D(x')],$$

Results

Collaborative Sampling (CS)

	FID	Precision	Recall	
CS	26.82	0.53	0.23	

Project Name	Image 1	Image 2	Image 3	Image 4	Image 5	Image 6	Image 7	Image 8	Image 9
ganerators	9	9	3	3		3	3	3	9
3	1	8	7	В	9	3	9	5	7
3)	1	7		5	ố	3	9	7

During generation

Latent Space Interpolation (LSI)

Purpose

Improve GAN output quality by sampling interpolated points in latent space, creating smoother, more realistic transitions.

Intuition

Blending features in the latent space explores intermediate regions for greater image consistency. (Radford et al., 2015; Karras et al., 2019)

During generation

Latent Space Interpolation (LSI)

Pseudo-algorithm

for i in range(nb_images // interpolation_steps):

- ullet Sample two random latent vectors $\,z_1\,$ and $z_2\,$
- Linearly interpolate between them at different intervals defined by interpolation_steps:

$$z_{ ext{interp}} = (1-lpha) \cdot z_1 + lpha \cdot z_2 \quad ext{for} \ \ lpha \in ext{linspace}(0,1, ext{interpolation_steps})$$

ullet Feed each $z_{
m interp}$ into the generator to generate new images.

During generation

Latent Space Interpolation (LSI)

Results

	FID	Precision	Recall
VanillaGAN + LSI	21.81	0.57	0.16
CS + LSI	21.35	0.57	0.19

03.

COMPARISON OF RESULTS

Comparative Analysis

	FID	Precision	Recall
VanillaGAN	26.84	0.53	0.25
CS	26.82	0.53	0.23
VanillaGAN + LSI	21.81	0.57	0.16
CS + LSI	21.35	0.57	0.19

THANK YOU FOR YOUR ATTENTION

Any questions?

Collaborative sampling algorithms

Algorithm 1 Collaborative Sampling

```
1: Input: a frozen generator G, a frozen discriminator D,
    the layer index for sample refinement l, the maximum
    number of steps K, the stopping criterion \eta
2: Output: a synthetic sample x
 3: Randomly draw a latent code z
4: x^0 \leftarrow \text{ProposeSample}(G, z)
5: for k = 0, 1, \dots, K - 1 do
6: if D(x^k) < \eta then
7: g_l^k \leftarrow \text{GetGradient}(D, x_l^k),
     x_{l}^{k+1} \leftarrow \text{UpdateActivation}(g_{l}^{k}, x_{l}^{k}), \quad \text{(Eq. 3)}
      x^{k+1} \leftarrow \text{UpdateSample}(G, x_i^{k+1}), \quad \text{(Eq. 4)}
10:
       else
11:
          break
       end if
12:
13: end for
```

Collaborative sampling algorithms

Algorithm 2 Discriminator Shaping

- 1: **Input:** a frozen generator G, a pre-trained discriminator D, the batch size m
- 2: Output: a fine-tuned discriminator D
- 3: **for** number of D shaping iterations **do**
- 4: Draw m refined samples $\{x_c^{(1)}, \ldots, x_c^{(m)}\}$ from the collaborative data distribution $p_c(x)$ according to Algorithm 1
- 5: Draw m real samples $\{x_r^{(1)}, \dots, x_r^{(m)}\}$ from the real data distribution $p_r(x)$
- 6: Shape the discriminator by minimizing the objective function Eq. 6
- 7: end for

Differential privacy GAN

```
Algorithm 1 TrainDPGAN(D; \phi_0, \theta_0, 0ptD, 0ptG, n_D, T, B, C, \sigma, \delta)
```

```
1: Input: Labelled dataset D = \{(x_j, y_j)\}_{j=1}^n. Discriminator \mathcal{D} and generator \mathcal{G} initializations \phi_0 and \theta_0. Opti-
       mizers OptD, OptG. Hyperparameters: n_{\mathcal{D}} (\mathcal{D} steps per \mathcal{G} step), T (total number of \mathcal{D} steps), B (expected batch
       size), C (clipping norm), and \sigma (noise level). Privacy parameter \delta.
  2: q \leftarrow B/|D| and t, k \leftarrow 0
                                                                                                                         \triangleright Calculate sampling rate q, initialize counters.
  3: while t < T do
                                                                                                                                                             \triangleright Update \mathcal{D} with DPSGD.
                                                                                               \triangleright Sample a real batch S_t by including each (x, y) \in D w.p. q.
             S_t \sim \text{PoissonSample}(D, q)
            \tilde{S}_t \sim \mathcal{G}(\cdot; \theta_k)^B
                                                                                                                                                                  \triangleright Sample fake batch S_t.
            g_{\phi_t} \leftarrow \sum_{(x,y) \in S_t} \operatorname{clip} \left( \nabla_{\phi_t} \left( -\log(\mathcal{D}(x,y;\phi_t)) \right); C \right)
                     +\sum_{(\tilde{x},\tilde{y})\in\tilde{S}_t}^{(\tilde{x},\tilde{y})\in\tilde{S}_t}\operatorname{clip}\left(\nabla_{\phi_t}(-\log(1-\mathcal{D}(\tilde{x},\tilde{y};\phi_t)));C\right)
                                                                                                                                                        ▷ Clip per-example gradients.
            \widehat{g}_{\phi_t} \leftarrow \frac{1}{2B}(g_{\phi_t} + z_t), where z_t \sim \mathcal{N}(0, C^2 \sigma^2 I)
                                                                                                                                                                     ▶ Add Gaussian noise.
            \phi_{t+1} \leftarrow \mathtt{OptD}(\phi_t, \widehat{g}_{\theta_t})
            t \leftarrow t + 1
            if n_{\mathcal{D}} divides t then
                                                                                                                                             \triangleright Perform \mathcal{G} update every n_{\mathcal{D}} steps.
10:
                  \tilde{S}'_t \sim \mathcal{G}(\cdot; \theta_k)^B
11:
                  g_{\theta_k} \leftarrow \frac{1}{B} \sum_{(\tilde{x}, \tilde{y}) \in \tilde{S}'_t} \nabla_{\theta_k} (-\log(\mathcal{D}(\tilde{x}, \tilde{y}; \phi_t)))
                  \theta_{k+1} \leftarrow \mathtt{OptG}(\theta_k, g_{\theta_k})
13:
                  k \leftarrow k + 1
14:
             end if
15:
16: end while
17: \varepsilon \leftarrow \text{PrivacyAccountant}(T, \sigma, q, \delta)
                                                                                                                                                  ▷ Compute privacy budget spent.
18: Output: Final \mathcal{G} parameters \theta_k and (\varepsilon, \delta)-DP guarantee.
```