Marketing Target of Bank Portugal

Our Data Team

Hans Halwi

Dzakiyyah Hanifatulqolbi

Nina Tantyabudi

Yoga Arif Prasetyo

Introduction

Deposito merupakan salah satu sumber dana untuk modal penyaluran kredit di Bank Portugal

Jumlah customer Bank Portugal terbilang banyak sehingga telemarketing membutuhkan cost yang besar

Problem Statement

Problem

- Terjadinya penurunan budget untuk campaign telemarketing sebesar 20% dengan ekspektasi conversion rate tidak kurang dari campaign sebelumnya.
- 2. Tim marketing belum memiliki profil nasabah yang potensial untuk campaign deposito

Goals

- Mempertahankan conversion rate sebesar 12% dengan budget yang tersedia.
- Merekomendasikan profil nasabah yang potensial

Objective

Membuat model machine learning untuk mendapatkan profil customer potensial campaign deposito.

Business Metric

Jumlah customer yang membuka tabungan deposito selama campaign (conversion rate)

Cost yang dikeluarkan untuk menarik customer (cost of acquisition) berdasarkan durasi

Methods

- •Gather requirement
- •Gather data

Business Understanding

Data Understanding

•Explore and slice data in different ways

- •Data Cleansing
- •Feature Extraction
- Label Encoding
- •One Hot Encoding
- •Balancing Data

Data Preparation

Modeling & Evaluation

- •Split Train & Test menggunakan rasio 70:30
- •Train and Test model

EDA & Insight

Nasabah yang membuka rekening deposito terbanyak terdapat pada kelompok umur **34 - 49** dengan total 2.122 nasabah, dengan tingkat konversi sebesar **10%**.

Nasabah pada job group **Employee** merupakan kelompok nasabah terbanyak yang membuka rekening deposito dengan 3.175 nasabah, dengan tingkat konversi sebesar **12%.**

Nasabah dengan tingkat pendidikan **tertiary/sarjana** lebih memungkinkan untuk membuka rekening deposito, dengan tingkat konversi sebesar **15**%.

Nasabah yang berstatus **Single** lebih berpotensi membuka rekening deposito, dengan tingkat konversi sebesar 15%.

Nasabah yang:

- 1. Tidak memiliki histori gagal bayar (default)
- 2. Tidak memiliki kredit pinjaman
- 3. Tidak memiliki KPR

cenderung lebih berpotensi untuk membuka rekening deposito.

Rata-rata durasi telepon nasabah yang membuka rekening deposito adalah selama >4-8 menit, dengan tingkat konversi sebesar 3.6%.

Why Need Machine Learning?

Mengetahui seberapa pengaruh masing-masing fitur calon nasabah terhadap keputusan dalam membuka rekening deposito

Memprediksi profil nasabah yang berpotensi untuk membuka rekening deposito

Modeling & Evaluation

Model Evaluation

Metrics yang digunakan F1

Cocok untuk data yang imbalance signifikan

Model	Accuration	Precision	Recall	F1	AUC
Logistic Regression	0.92	0.93	0.81	0.87	0.89
KNN	0.82	0.70	0.80	0.74	0.81
Decision Tree	0.89	0.83	0.84	0.83	0.88
Random Forest	0.92	0.90	0.85	0.87	0.90

Logistic Regression : Lebih mudah di interpretasi dengan hasil evaluasi yang sudah cukup baik

Logistic Regression - Coefficient Significance

Fitur yang signifikan:

- 1. Housing
- 2. Loan
- 3. Campaign
- 4. Duration

Logistic Regression - Coefficient Significance

Business Recommendation

Berdasarkan Hasil Modeling Logistic Regression

Fitur yang signifikan:

- 1. Housing
- 2. Loan
- 3. Campaign
- 4. Duration

Potential Customer Features

Profil Customer Potensial:

- . Tidak memiliki KPR (Housing)
- Bukan termasuk nasabah yang memiliki kredit pinjaman (Loan)
- Frekuensimenghubungi nasabahpada campaign saat ini(Campaign)

Potential Business Impact

Hasil Dari
Machine Learning

Potential customer sebanyak 13.258 nasabah dari populasi nasabah 45.211 Conversion

2.733 dari 13.258 nasabah

Conversion Rate

20,61%

Customer Interaction Recommendation

- 1. Maksimal menghubungi customer sebanyak **3 kali** selama masa campaign
- 2. Lakukan follow up secara berkala ke customer **minimal 1 kali setiap 6 bulan**.

(maks. **200 hari** setelah kontak terakhir)

Customer Interaction Recommendation

3. Membuat script pitch ke customer dengan rentang durasi **maksimum 2 menit**, untuk filtering awal apakah nasabah berminat dengan produk yang ditawarkan atau tidak

Potential Business Impact

	Customer Count	Duration (in seconds)	Total Duration (in seconds)
Accept	2.733	480	1.311.840
Decline	10.525 120 1.263.0		1.263.000
Total	13.258 2.574.840		2.574.840
Average	194,2 seconds		

Alokasi detik ditentukan berdasarkan:

- Accept: Conversion rate tertinggi pada range durasi 4-8 menit
- Decline: Rules dari rekomendasi pitch 2 menit

Potential Business Impact

	Before	After	
Duration (in seconds)	267	194,2	
Cost (per seconds)	€0,01	€0,01	
Cost (per customer)	€2,67	€1,94	
Cost saving per customer	€0,73		
Cost saving (in %)	27,3%		

Lampiran

→ Memiliki 17 kolom, 45211 baris

Data	columns (t	otal 17 columns)	:
#	Column	Non-Null Count	Dtype
242			
0	age	45211 non-null	int64
1	job	45211 non-null	object
2	marital	45211 non-null	object
3	education	45211 non-null	object
4	default	45211 non-null	object
5	balance	45211 non-null	int64
6	housing	45211 non-null	object
7	loan	45211 non-null	object
8	contact	45211 non-null	object
9	day	45211 non-null	int64
10	month	45211 non-null	object
11	duration	45211 non-null	int64
12	campaign	45211 non-null	int64
13	pdays	45211 non-null	int64
14	previous	45211 non-null	int64
15	poutcome	45211 non-null	object
16	у	45211 non-null	object

Dilakukan Label Encoding pada feature yang memiliki 2 label bertipe yes/no.

```
df_model['default'].replace('no', 0, inplace = True)
df_model['default'].replace('yes', 1, inplace = True)
df_model['housing'].replace('no', 0, inplace = True)
df_model['housing'].replace('yes', 1, inplace = True)
df_model['loan'].replace('no', 0, inplace = True)
df_model['loan'].replace('yes', 1, inplace = True)
df_model['y'].replace('yes', 1, inplace = True)
df_model['y'].replace('yes', 1, inplace = True)
```

```
list jobgroup = []
for i, x in df.iterrows():
   if x['job'] == 'management':
        jobgroup = 'employee'
   elif x['job'] == 'technician':
        jobgroup = 'employee'
   elif x['job'] == 'admin.':
        jobgroup = 'employee'
   elif x['job'] == 'services':
        jobgroup = 'employee'
   elif x['job'] == 'blue-collar':
        jobgroup = 'manual labor'
   elif x['job'] == 'housemaid':
        jobgroup = 'manual labor'
   elif x['job'] == 'self-employed':
        jobgroup = 'self-employed'
   elif x['job'] == 'entrepreneur':
        jobgroup = 'self-employed'
   elif x['job'] == 'retired':
        jobgroup = 'retired'
   elif x['job'] == 'student':
        jobgroup = 'student'
   elif x['job'] == 'unemployed':
        jobgroup = 'unemployed'
        jobgroup = 'unknown'
   list jobgroup.append(jobgroup)
df['job_group'] = list_jobgroup
```

→ Melakukan feature extraction dengan mengelompokkan feature job yang memiliki 12 label menjadi 7 kelompok/label

```
list balgroup = []
for i, x in df.iterrows():
    if x['balance'] <= 0 :</pre>
        balgroup = '<= 0'
    elif x['balance'] >=1 and x['balance'] <= 286 :</pre>
        balgroup = '1 - 286'
    elif x['balance'] >=287 and x['balance'] <= 572 :</pre>
        balgroup = '287 - 572'
    elif x['balance'] >=573 and x['balance'] <= 857 :</pre>
        balgroup = '573 - 857'
    elif x['balance'] >=858 and x['balance'] <= 1142 :
        balgroup = '858 - 1142'
    elif x['balance'] >=1143 and x['balance'] <= 1427 :
        balgroup = '1143 - 1427'
    elif x['balance'] >= 1428 :
        balgroup = '>= 1428'
        balgroup = 'unknown'
    list balgroup.append(balgroup)
df['balgroup'] = list balgroup
```

→ Melakukan feature extraction dengan mengelompokkan balance menjadi range tertentu

→ Handling nilai 'unknown' pada feature job dan education dengan nilai modus.

O Balance Campaign

Campaign khusus untuk nasabah bersaldo rata 0 dengan rule berikut :

- Saldo rata tahunan = 0
- 2. Range umur 34 49
- 3. Job = Employee
- 4. Marital status = Married
- 5. Education = Secondary
- 6. Bukan termasuk nasabah gagal bayar
- 7. Tidak memiliki KPR
- 8. Bukan termasuk nasabah Pembiayaan

Jika diterapkan pada data set train, campaign khusus untuk nasabah bersaldo rata 0 dengan rule di atas terjadi konversi sebesar 6.67 %

→ One Hot Encoding pada feature categorical dengan jumlah label lebih dari 2.

```
Cats_oh = ['job_group','marital','education','contact','poutcome']
for cat in cats_oh:
    onehots = pd.get_dummies(df_model[cat], prefix=cat)
    df_model = df_model.join(onehots)

df_model.sample(5,random_state=42)
```

→ Handling imbalance data menggunakan SMOTE dengan ratio 0.5.

Logistic Regression - Coefficient Significance

Logit Regression Results						
Dep. Variable:			servations:		41918	
Model:	Logi	t Df Res	iduals:		41891	
Method:	ML	E Df Mod	el:		26	
Date: Fr	i, 17 Dec 202	1 Pseudo	R-squ.:		0.6899	
Time:	23:13:4	0 Log-Li	kelihood:		-8284.1	
converged:	Tru	e LL-Nul	1:		-26714.	
Covariance Type:	nonrobus				0.000	
	coef	std err	z	P> z	[0.025	0.975]
const	197.6403	nan	nan	nan	nan	nan
age	-0.0003	0.002	-0.133	0.895	-0.005	0.005
default	-0.1791	0.182	-0.985	0.324	-0.536	0.177
balance	1.137e-05	5.96e-06	1.908	0.056	-3.11e-07	2.3e-05
housing	-0.8688	0.046	-19.071	0.000	-0.958	-0.780
loan	-0.7025	0.070	-10.047	0.000	-0.840	-0.565
duration	0.0042	7.52e-05	56.455	0.000	0.004	0.004
campaign	-0.1254	0.012	-10.696	0.000	-0.148	-0.102
job_group_employee	-33.6427	4.06e+05	-8.28e-05	1.000	-7.96e+05	7.96e+05
job_group_manual labor	-33.9044	3.82e+05	-8.87e-05	1.000	-7.49e+05	7.49e+05
job_group_retired	-33.0847	4.07e+05	-8.14e-05	1.000	-7.97e+05	7.97e+05
job_group_self-employed	-33.9318	4.59e+05	-7.4e-05	1.000	-8.99e+05	8.99e+05
job_group_student	-33.0450	4.4e+05	-7.52e-05	1.000	-8.62e+05	8.61e+05
job_group_unemployed	-33.8103	4.06e+05	-8.33e-05	1.000	-7.96e+05	7.96e+05
marital_divorced	-49.5156	7.5e+05	-6.6e-05	1.000	-1.47e+06	1.47e+06
marital_married	-49.6236	4.8e+05	-0.000	1.000	-9.41e+05	9.41e+05
marital_single	-49.3354	7.38e+05	-6.68e-05	1.000	-1.45e+06	1.45e+06
education_primary	-54.0459	2.82e+06	-1.91e-05	1.000	-5.53e+06	5.53e+06
education_secondary	-53.8335	2.3e+06	-2.34e-05	1.000	-4.51e+06	4.51e+06
education_tertiary	-53.6042	2.46e+06	-2.18e-05	1.000	-4.81e+06	4.81e+06
contact_cellular	-17.7265	446.199	-0.040	0.968	-892.260	856.807
contact_telephone	-17.7344	446.199	-0.040	0.968	-892.268	856.799
contact_unknown	-18.9744	446.199	-0.043	0.966	-893.508	855.559
poutcome_failure	-45.2649	2.18e+06	-2.07e-05	1.000	-4.28e+06	4.28e+06
poutcome_other	-45.0585	2.18e+06	-2.06e-05	1.000	-4.28e+06	4.28e+06
poutcome_success	-42.9208	2.18e+06	-1.97e-05	1.000	-4.28e+06	4.28e+06
poutcome_unknown	-45.5580	2.18e+06	-2.09e-05	1.000	-4.28e+06	4.28e+06

Top 3 Category per Features

Age

- 30 40 Tahun
- 40 50 Tahun
- 50 60 Tahun

Job Group

- Employee
- Manual Labor
- Self Employed

Marital Status

- Married
- Single
- Divorced

Education

- Secondary (Menengah)
- Tertiary (Sarjana)
- Primary (Dasar)

EDA Balance 0

Potential Customer Features

Filter Ordering by Importance:

- 1. Saldo rata tahunan > 0
- 2. Umur >= 30 tahun
- 3. Job = Employee
- 4. Poutcome: melakukan konversi di Campaign sebelumnya
- 5. Marital status = Single
- 6. Education = Tertiary & Secondary

Additional Filter:

- Bukan termasuk nasabah gagal bayar
- Tidak memiliki KPR
- Bukan termasuk nasabah Pembiayaan

Potential Business Impact

	Customer Count	Duration (in seconds)	Total Duration (in seconds)
Accept	5.289	480	2.538.720
Decline	39.922	120	4.790.640
Total	45.211 7.329.360		7.329.360
Average	162,1 seconds		

Potential Business Impact

	Before	After	
Duration (in seconds)	258,16	162,1	
Cost (per seconds)	€0.01 €0.01		
Cost (per customer)	€2,58	€1,62	
Cost saving per customer	€0,96		
Cost saving (in %)	37,2%		

Dapat merancang campaign yang ditujukan khusus untuk nasabah pada kelompok **Retired** dan kelompok **Student**, karena tingkat konversi yang cukup tinggi pada 2 kelompok nasabah tersebut.

Nasabah yang berstatus **Single** lebih berpotensi membuka rekening deposito.

Nasabah dengan tingkat pendidikan **Tertiary** lebih berpotensi membuka rekening deposito.

