Entropy / Gini Gain

Tuesday, September 11, 2018 4:22

 $H(Y) = -\sum (p(yj) * log2(p(yj)))$

In words, select an attribute and for each value check target attribute value ... so p(yj) is the fraction of patterns at Node N are in category yj - one for true in target value and one one for false

From https://stackoverflow.com/questions/14363689/calculating-entropy-in-decision-tree-machine-learning

Gini is to minimize misclassification **Entropy** is for exploratory analysis

From https://datascience.stackexchange.com/questions/10228/gini-impurity-vs-entropy

Gini impurity and Information Gain Entropy are pretty much the same. And people do use the values interchangeably. Below are the formulae of both:

- 1. $Gini(E)=1-\sum cj=1p2jGini:Gini(E)=1-\sum j=1cpj2$
- 2. Entropy: $H(E) = -\sum_{cj=1}^{cj=1} p_j \log p_j$

From < https://datascience.stackexchange.com/questions/10228/gini-impurity-vs-entropy>

Tree models are suscpetible to overfit if the tree grows too long

Gini of a Node

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^2$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

 Gini of Split Node is computed as Weighted Avg Gini of each Node at Split Node level

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

n, = number of records at child i.

n = Total number of records in parent node

Gini Gain = Gini(t) – Gini(split)

Ciot, IO	Gender	Occupation	Age	Terpet
1.	M	Set	22	1
2	M	Sel	22:	0
	M	Self-Emp	23	1
4	M	Self-Emp	23	
5	M	Self-Emp	24	1
6	M	Self-Emp	24	0
7	*	Sel	- 25	1
8		Sel	25	
9		Sel	26	
10		Self-Free	24	- 6

Node	Gini Computation Formula	Gini Index	
Overall	= 1 - ((4/10)^2 + (6/10)^2)	0.48	
Gender = M	= 1 - ((3/6)^2 + (3/6)^2)	0.50	
Gender = F	= 1 - ((1/4)^2 + (3/4)^2)	0.375	
Gender	= (6/10) * 0.5 + (4/10) * 0.375	0.45	
Gini Gain	= Gini (Overall) - Gini (Gender)	0.03	

Gini index says, if we select two items from a population at random then they must be of same class and probability for this is 1 if population is pure. We can calculate Gini as following:

- Calculate Gini for sub-nodes, using formula sum of square of probability for success and failure (p^2+q^2).
- Calculate Gini for split using weighted Gini score of each node of that split

Entropy is the measure of impurity as given by (for binary class):

Entropy =
$$-p \log_2 p - q \log_2 q$$

Here p and q is probability of success and failure respectively in that node. Entropy is zero when a node is homogeneous. It is maximum when a both the classes are present in a node at 50%-50%. Lower entropy is desirable.