ECON 710 QUARTER 1: PROBLEM SET 2

EMILY CASE

Exercise 1

Suppose (Y, X, Z)' is a vector of random variables such that

$$Y = \beta_0 + X\beta_1 + U, \qquad \mathbb{E}[U|Z] = 2$$

where $Cov(Z, X) \neq 0$ and $\mathbb{E}[Y^2 + X^2 + Z^2] < \infty$. Additionally, let $\{(Y_i, X_i, Z_i)'\}_{i=1}^n$ be a random sample from the model with $\widehat{Cov}(Z, X) \neq 0$.

$$\hat{\beta}_{1}^{IV} = \frac{\widehat{Cov}(Z, Y)}{\widehat{Cov}(Z, X)} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n})(Y_{i} - \bar{Y}_{n})}{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n})(X_{i} - \bar{X}_{n})}$$

$$\hat{\beta}_{0}^{IV} = \bar{Y} - \bar{X}\hat{\beta}_{1}^{IV}$$

(i) Does $\hat{\beta}_1^{IV} \to^p \beta_1$? Note that by LLN and CMT,

$$\widehat{Cov}(Z,Y) = \frac{1}{n} \sum_{i=1}^{n} (Z_i - \bar{Z}_n)(Y_i - \bar{Y}_n) \to^p \mathbb{E}[(Z_i - \bar{Z}_n)(Y_i - \bar{Y}_n) = Cov(Z,Y)]$$

and by similar logic $\widehat{Cov}(Z,X) \to^p Cov(Z,X)$. Then, by CMT,

$$\hat{\beta}_{1}^{IV} \to^{p} \frac{Cov(Z, Y)}{Cov(Z, X)}$$

$$= \frac{Cov(Z, \beta_{0} + X\beta_{1} + U)}{Cov(Z, X)}$$

$$= \frac{\beta_{1}Cov(Z, X) + Cov(Z, U)}{Cov(Z, X)}$$

$$= \beta_{1}$$

I worked on this Problem set with Sarah Bass, Michael Nattinger, Alex von Hafften, and Danny Edgel.

Since Cov(Z, U) = 0. ¹

(ii) Does $\hat{\beta}_0^{IV} \rightarrow^p \beta_0$?

$$\hat{\beta}_0^{IV} = \bar{Y} - \bar{X}\hat{\beta}_1^{IV}$$

$$\to^p \mathbb{E}[Y] - \mathbb{E}[X]\beta_1$$

$$= \mathbb{E}[\beta_0 + X\beta_1 + U] - \mathbb{E}[X]\beta_1$$

$$= \beta_0 + \mathbb{E}[U]$$

$$= \beta_0 + \mathbb{E}[\mathbb{E}[U|Z]] = \beta_0 + 2$$

$$\neq \beta_0$$

Exercise 2

Consider the simultaneous model

$$Y = \beta_0 + X\beta_1 + U,$$

$$\mathbb{E}[U|Z] = 0$$

$$X = \pi_0 + Z\pi_1 + V,$$

$$\mathbb{E}[V|Z] = 0$$

where $\mathbb{E}[Y^2 + X^2 + Z^2] < \infty$. Additionally, let $\{(Y_i, X_i, Z_i)'\}_{i=1}^n$ be a random sample from the model with $\frac{1}{n} \sum_{i=1}^n (Z_i - \bar{Z}_n)^2 > 0$.

- (i) Under what conditions (on β_0 , β_1 , π_0 , π_1) is Z a valid instrument for X? would like to go over
- (ii) Show that

$$Y = \gamma_0 + Z\gamma_1 + \epsilon, \qquad \qquad \mathbb{E}[\epsilon|Z] = 0$$

where γ_0 , γ_1 and ϵ are some functions of β_0 , β_1 , π_0 , π_1 , U, and V. In particular show that $\gamma_1 = \pi_1 \beta_1$.

$$Y = \beta_0 + (\pi_0 + Z\pi_1 + V)\beta_1 + U$$

= \beta_0 + \pi_0\beta_1 + Z\pi_1\beta_1 + V\beta_1 + U

Then $\gamma_0 = \beta_0 + \pi_0 \beta_1, \ \gamma_1 - \pi_1 \beta_1, \ \epsilon = V \beta_1 + U.$

$$\begin{split} Cov(Z,U) &= \mathbb{E}[(Z - \mathbb{E}[Z])(U - \mathbb{E}[U])] \\ &= \mathbb{E}[ZU] - \mathbb{E}[\mathbb{E}[Z]U] - \mathbb{E}[Z\mathbb{E}[U]] + \mathbb{E}[\mathbb{E}[Z]\mathbb{E}[U]] \\ &= \mathbb{E}[ZU] - \mathbb{E}[Z]\mathbb{E}[U] \\ &= \mathbb{E}[Z\mathbb{E}[U|Z]] - E[Z]\mathbb{E}[\mathbb{E}[U|Z]] \\ &= 2\mathbb{E}[Z] - 2E[Z] \end{split}$$

¹check this

- (iii) Let $\hat{\gamma}_1$ and $\hat{\pi}_1$ denote the OLS estimators of γ_1 and π_1 , respectively. The ratio $\hat{\gamma}_1/\hat{\pi}_1$ is called the "indirect least squares" estimator of β_1 . How does it compare to the IV estimator of β_1 that uses Z as an instrument for X?
- (iv) Show that $Y = \delta_0 + X\delta_1 + V\delta_2 + \xi$, $Cov(X, \xi) = Cov(V, \xi) = 0$ where $\delta_0, \delta_1, \delta_2$, and ξ are some functions of $\beta_0, \beta_1, Cov(U, V), Var(V), U, V$. In particular, show that $\delta_1 = \beta_1$.
- (v) Let $\hat{V}_i = X_i \hat{\pi}_0 Z_i \hat{\pi}_1$ where $\hat{\pi}_0$ is the OLS estimator of π_0 . Furthermore, let $\hat{\delta}_1$ be the OLS estimator from a regression of Y_i on $(1, X_i, \hat{V}_i)$; this estimator is called the "control variable" estimator. How does it compare to the IV estimator of β_1 that uses Z as an instrument for X?

Exercise 3

The paper "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size" by J. Angrist and W. Evans (AE98) considers labor supply responses to the number of children in the household. They consider models of the form

$$Y = \beta_0 + X_1 \beta_1 + X_2' \beta_2 + U$$

where Y is some measure of the parents' labor supply, X_1 is a binary variable indicating "more than 2 children in the household", and X_2 is a vector of (assumed) exogenous variables that control for race, age, and whether any of the children is a boy. For the next two questions we will focus on the case where Y is a binary variable indicating whether the mother worked during the year.

(i) Provide a causal interpretation of β_1 .

Holding demographic information constant, having more than 2 children in the household causes mother's to be β_1 more likely to work. **check**

(ii) Discuss why or why not you think that X_1 could be endogenous. If you think it is, discuss the direction of the (conditional) bias in OLS relative to the causal parameter.

Most families have a preconceived idea about how many children they would like to have, and different types of parents will want different amounts of children. In that sense, X_1 is endogenous. The exception to this is if the second child a family chooses to have turns out to actually be twins, which they had no choice in. They wanted 2 kids, and ended up with 3.

If X_1 is endogenous, the bias would likely be negative. If a mother wants 3 or more kids, she might really like children and want to be a stay at home mom, in which case she isn't concerned about her labor supply. in depth

enough? did i say the bias direction right?

(iii) Repeat the previous two questions when Y is a binary variable indicating whether the husband worked during the year.

Holding demographic information constant, having more than 2 children in the household causes fathers to be β_1 more likely to work. **check**

The argument for X_1 being endogenous still applies, since we only changed the definition of Y. Now, however, the bias might go the other direction. If a mother wants more children and we associate that with her being more likely to want to stay at home, then the father is more likely to work in order to take care of the family.

- (iv) Discuss why or why not you think that the binary variable Z_1 which indicates whether the two first children are of the same sex is a valid instrument for X_1 .
- (v) Estimate the reduced form regression of X_1 on Z_1 and X_2 , do the results suggest that Z_1 is relevant?
- (vi) (Attempt to) replicate the first three rows of Table 7 columns 1, 2, 5, 7, and 8 in AE98. Interpret the empirical results in relation to your discussion of the previous questions.