Alex Valentino Homework 3
477

2.2 A fair coin is flipped three times. What is the probability that the second flip is tails, given that there is at most one tails among the three flips? Let $A := \{$ the second flip is tails $\}$ and $B := \{$ there is at most one tails among the three flips $\}$. We want to compute $\mathbb{P}(A|B)$. Therefore by the multiplication rule $\mathbb{P}(A|B) = \frac{\mathbb{P}(A|B)}{\mathbb{P}(B)}$. Note that $\mathbb{P}(B) = \frac{1}{2}$, as there are four three digit binary sequences with at max a single 1. For $\mathbb{P}(A|B)$, the probability would be $\frac{1}{8}$ as $A \subset B$, and $\mathbb{P}(A) = \frac{1}{8}$. Therefore $\mathbb{P}(A|B) = \frac{1}{4}$.

2.8 We shuffle a deck of cards and deal three cards (without replacement). Find the probability that the first card is a queen, the second is a king and the third is an ace. Let the events described above be given by $A = \{$ first card is a queen $\}, B = \{$ second card is a king $\}, C = \{$ third card is an ace $\}$. We want to compute $\mathbb{P}(ABC)$. Therefore we must apply the multiplication rule a few times:

$$\mathbb{P}(ABC) = \mathbb{P}(AB)\mathbb{P}(C \mid AB) = \mathbb{P}(A)\mathbb{P}(B \mid A)\mathbb{P}(C \mid AB)$$

Note that $\mathbb{P}(A) = \frac{4}{52}$, $\mathbb{P}(B \mid A) = \frac{4}{51}$, $\mathbb{P}(C \mid AB) = \frac{4}{50}$. Therefore $\mathbb{P}(ABC) = \frac{4^3}{50*51*52} \approx 0.05\%$

- 2.10 I have a bag with 3 fair dice. One is 4-sided, one is 6-sided, and one is 12-sided. I reach into the bag, pick one die at random and roll it. The outcome of the roll is 4. What is the probability that I pulled out the 6-sided die?

 Let D_n where $n \in \{4, 6, 12\}$ denote the probability that a given die is drawn. The problem is asking to compute $\mathbb{P}(D_6 \mid 4)$. We don't have any easy way to compute this quantity, however if we apply Bayes' rule then we get $\mathbb{P}(D_6 \mid 4) = \frac{\mathbb{P}(4|D_6)\mathbb{P}(D_6)}{\mathbb{P}(4)}$. Note that $\mathbb{P}(D_6) = \frac{1}{3}$ since there are 3 dice, $\mathbb{P}(4 \mid D_6) = \frac{1}{6}$ since there is an equal chance for a 4 to be rolled among the 6 faces, and $\mathbb{P}(4)$ can be computed using the decomposition rule as $\mathbb{P}(4) = \sum_{n \in \{4,6,12\}} \mathbb{P}(D_n)\mathbb{P}(4 \mid D_n) = \frac{1}{4\cdot 3} + \frac{1}{6\cdot 3} + \frac{1}{12\cdot 3} = \frac{1}{6}$. Therefore $\mathbb{P}(D_6 \mid 4) = \frac{\frac{1}{6}\frac{1}{3}}{\frac{1}{6}} = \frac{1}{3}$, which makes sense since every die can roll a four.
- 2.12 We choose a number from the set $\{1, 2, 3, \dots, 100\}$ uniformly at random and denote this number by X. For each of the following choices decide whether the two events in question are independent or not.
 - (a) $A = \{X \text{ is even}\}, B = \{X \text{ is divisible by 5}\}$ $\mathbb{P}(A) = \frac{50}{100} = \frac{1}{2}, \mathbb{P}(B) = \frac{20}{100} = \frac{1}{5}. \text{ Note that } AB \text{ is the set of all numbers divisible}$ by both 2 and 5, which would be 10. Therefore $Pro(AB) = \frac{10}{100} = \frac{1}{10}.$ Since $\frac{1}{2}\frac{1}{5} = \frac{1}{10}$, then the probability of the sets of independent.
 - (b) $C = \{X \text{ has two digits}\}$, $D = \{X \text{ is divisible by 3}\}$. Note that aside from the first 9 numbers and 100, every other element in the set has two digits. Therefore $\mathbb{P}(C) = \frac{90}{100} = \frac{9}{10}$. For $\mathbb{P}(D)$, there are 33 numbers under 100, thus $\mathbb{P}(D) = \frac{33}{100}$. Note that for $\mathbb{P}(CD)$ one has to take away three numbers, $\{3,6,9\}$, from D. Therefore $\mathbb{P}(CD) = \frac{3}{10}$. Note that this is not the same as $\frac{9}{10} \frac{33}{100}$. Therefore C,D do not have independent probabilities.

- (c) $E = \{X \text{ is a prime}\}, F = \{X \text{ has a digit 5}\}.. \mathbb{P}(E) = \frac{25}{100} = \frac{1}{4}, \mathbb{P}(F) = \frac{19}{100}.$ Note that the prime numbers under 100 w/ a 5 are $\{5, 53, 59\}$. Therefore $\mathbb{P}(EF) = \frac{3}{100}$. Clearly these sets are not independent since $\mathbb{P}(E)\mathbb{P}(F) = \frac{19}{400}$
- 2.30 Assume that $\frac{1}{3}$ of all twins are identical twins. You learn that Miranda is expecting twins, but you have no other information.
 - (a) Find the probability that Miranda will have two girls.

Let GG denote the event that miranda has two girls, let F be the event that Miranda has fraternal twins, and let I be the event that Miranda has identical twins.

Since F and I partition the sample space, we can compute $\mathbb{P}(GG)$ via the decomposition rule as follows:

$$\mathbb{P}(GG) = \mathbb{P}(F)\mathbb{P}(GG \mid F) + \mathbb{P}(T)\mathbb{P}(GG \mid T) = \frac{2}{3}\frac{1}{4} + \frac{1}{3}\frac{1}{2} = \frac{1}{3}$$

(b) You learn that Miranda gave birth to two girls. What is the probability that the girls are identical twins?

We can compute this quantity in the following way:

$$\mathbb{P}(I \mid GG) = \frac{\mathbb{P}(GGI)}{\mathbb{P}(GG)} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{2}$$

2.38 We choose one of the words in the following sentence uniformly at random and then choose one of the letters of that word, again uniformly at random:

SOME DOGS ARE BROWN

- (a) Find the probability that the chosen letter is R $\mathbb{P}(R) = \mathbb{P}(SOME)\mathbb{P}(R \mid SOME) + \mathbb{P}(DOGS)\mathbb{P}(R \mid DOGS) + \mathbb{P}(ARE)\mathbb{P}(R \mid DOGS)$ ARE) + $\mathbb{P}(BROWN)\mathbb{P}(R \mid BROWN) = \frac{1}{4}(0 + 0 + \frac{1}{3} + \frac{1}{5}) = \frac{2}{15}$
- (b) Let X denote the length of the chosen word. Determine the probability mass function of X.

$$p_X(L) = \begin{cases} L = 3 & \frac{1}{4} \\ L = 4 & \frac{1}{2} \\ L = 5 & \frac{1}{4} \\ 0 & \text{otherwise} \end{cases}$$

- (c) For each possible value k of X determine the conditional probability $\mathbb{P}(X = k|X)$ 3).
 - $\mathbb{P}(X=3|X>3) = \frac{\mathbb{P}((X=3)(X>3))}{\mathbb{P}(X>3)} = \frac{4*0}{3} = 0$ $\mathbb{P}(X=4|X>3) = \frac{\mathbb{P}((X=4)(X>3))}{\mathbb{P}(X>3)} = \frac{4\frac{1}{4}}{3} = \frac{1}{3}$ $\mathbb{P}(X=5|X>3) = \frac{\mathbb{P}((X=5)(X>3))}{\mathbb{P}(X>3)} = \frac{4\frac{1}{2}}{3} = \frac{2}{3}$

(d) Determine the conditional probability $\mathbb{P}(R \mid X > 3)$.

$$\begin{split} Pro(R \mid X > 3) &= \sum_{i} \mathbb{P}(RWORDS(i) \mid X > 3) \\ &= \sum_{i} \frac{\mathbb{P}(WORDS(i)(X > 3))\mathbb{P}(R \mid WORDS(i)(X > 3))}{\mathbb{P}(X > 3)} \\ &= \sum_{i} \frac{\mathbb{P}(WORDS(i)|(X > 3))\mathbb{P}(X > 3)\mathbb{P}(R \mid WORDS(i)(X > 3))}{\mathbb{P}(X > 3)} \\ &= \sum_{i} \mathbb{P}(WORDS(i)|X > 3)\mathbb{P}(R \mid WORDS(i)X > 3) \\ &= \sum_{i} \mathbb{P}(WORDS(i)|X > 3)\mathbb{P}(R \mid WORDS(i)X > 3) \\ &= \frac{1}{3}0 + \frac{1}{3}*0 + 0*0 + \frac{1}{3}\frac{1}{5} \end{split}$$

(e) Given that the chosen letter is R, what is the probability that the chosen word was BROWN?

$$\mathbb{P}(BROWN|R) = \frac{\mathbb{P}(RBROWN)}{\mathbb{P}(BROWN)} = \frac{\mathbb{P}(R|BROWN)\mathbb{P}(BROWN)}{\mathbb{P}(R)} = \frac{\frac{1}{4}\frac{1}{5}}{\frac{2}{15}} = \frac{3}{8}$$

2.58 Suppose that a person's birthday is a uniformly random choice from the 365 days of a year (leap years are ignored), and one person's birthday is independent of the birthdays of other people. Alex, Betty and Conlin are comparing birthdays. Define these three events:

$$A = \{\text{Alex and Betty have the same birthday}\}\$$

 $B = \{\text{Betty and Conlin have the same birthday}\}\$
 $C = \{\text{Conlin and Alex have the same birthday}\}\$.

(a) Are events A, B and C pairwise independent? Yes, observe that

$$\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = \frac{1}{365}$$

Since once one birthday is fixed the chance that the day is the same is $\frac{1}{365}$. Additionally,

$$\mathbb{P}(ABC) = \mathbb{P}(AB) = \mathbb{P}(BC) = \mathbb{P}(AC) = \frac{1}{365^2}$$

are all equivalent, and are the successive probabilities once one pair is fixed, you choose again. Therefore

$$\mathbb{P}(AB) = \frac{1}{365^2} = \mathbb{P}(A)\mathbb{P}(B)$$

$$\mathbb{P}(BC) = \frac{1}{365^2} = \mathbb{P}(B)\mathbb{P}(C)$$

$$\mathbb{P}(AC) = \frac{1}{365^2} = \mathbb{P}(A)\mathbb{P}(C)$$

thus the probabilities are pairwise independent.

(b) Are events A, B and C independent? They are not independent, as

$$\frac{1}{365^3} = \mathbb{P}(ABC) \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) = \frac{1}{365^2}$$

- 2.60 Assume that A, B and C are mutually independent events according to Definition 2.22. Verify the identities below, using the definition of independence, set operations and rules of probability
 - (a) $\mathbb{P}(AB^c) = \mathbb{P}(A)\mathbb{P}(B^c)$

$$\mathbb{P}(AB^c) = \mathbb{P}(A) - \mathbb{P}(AB)$$

$$= \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$$

$$= \mathbb{P}(A)(1 - \mathbb{P}(B))$$

$$= \mathbb{P}(A)\mathbb{P}(B^c)$$

(b) $\mathbb{P}(A^cC^c) = \mathbb{P}(A^c)\mathbb{P}(C^c)$

$$\mathbb{P}(A^{c}C^{c}) = \mathbb{P}(C^{c}) - \mathbb{P}(AC^{c})$$
$$= \mathbb{P}(C^{c})(1 - \mathbb{P}(A))$$
$$= \mathbb{P}(C^{c})\mathbb{P}(A^{c})$$

(c) $\mathbb{P}(AB^cC) = \mathbb{P}(A)\mathbb{P}(B^c)\mathbb{P}(C)$

$$\mathbb{P}(AB^{c}C) = \mathbb{P}(AC) - \mathbb{P}(ABC)$$

$$= \mathbb{P}(A)\mathbb{P}(C) - \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$$

$$= \mathbb{P}(A)\mathbb{P}(C)(1 - \mathbb{P}(B))$$

$$= \mathbb{P}(A)(1 - \mathbb{P}(B))\mathbb{P}(C)$$

$$= \mathbb{P}(A)\mathbb{P}(B^{c})\mathbb{P}(C)$$

(d) $\mathbb{P}(A^c B^c C^c) = \mathbb{P}(A^c) \mathbb{P}(B^c) \mathbb{P}(C^c)$

$$\begin{split} \mathbb{P}(A^c B^c C^c) &= \mathbb{P}(B^c) - \mathbb{P}(AB^c C) \\ &= \mathbb{P}(B^c) - \mathbb{P}(A)\mathbb{P}(B^c)\mathbb{P}(C) \\ &= \mathbb{P}(B^c)(1 - \mathbb{P}(A)\mathbb{P}(C)) \\ &= \mathbb{P}(B^c)\mathbb{P}(A^c C^c) \\ &= \mathbb{P}(B^c)\mathbb{P}(A^c)\mathbb{P}(C^c) \\ &= \mathbb{P}(A^c)\mathbb{P}(B^c)\mathbb{P}(C^c) \end{split}$$