

planetmath.org

Math for the people, by the people.

algebraic extension

Canonical name AlgebraicExtension
Date of creation 2013-03-22 13:57:27
Last modified on 2013-03-22 13:57:27
Owner alozano (2414)
Last modified by alozano (2414)

Numerical id 7

Author alozano (2414) Entry type Definition Classification msc 12F05

Synonym algebraic field extension

Related topic Algebraic

Related topic FiniteExtension

 $Related\ topic \qquad A Finite Extension Of Fields Is An Algebraic Extension$

Related topic ProofOfTranscendentalRootTheorem

Related topic EquivalentConditionsForNormalityOfAFieldExtension

Defines examples of field extension
Defines transcendental extension

Definition 1. Let L/K be an extension of fields. L/K is said to be an algebraic extension of fields if every element of L is algebraic over K. If L/K is not algebraic then we say that it is a transcendental extension of fields.

Examples:

1. Let $L = \mathbb{Q}(\sqrt{2})$. The extension L/\mathbb{Q} is an algebraic extension. Indeed, any element $\alpha \in L$ is of the form

$$\alpha = q + t\sqrt{2} \in L$$

for some $q, t \in \mathbb{Q}$. Then $\alpha \in L$ is a root of

$$X^2 - 2qX + q^2 - 2t^2 = 0$$

- 2. The field extension \mathbb{R}/\mathbb{Q} is not an algebraic extension. For example, $\pi \in \mathbb{R}$ is a transcendental number over \mathbb{Q} (see pi). So \mathbb{R}/\mathbb{Q} is a transcendental extension of fields.
- 3. Let K be a field and denote by \overline{K} the algebraic closure of K. Then the extension \overline{K}/K is algebraic.
- 4. In general, a finite extension of fields is an algebraic extension. However, the converse is not true. The extension $\overline{\mathbb{Q}}/\mathbb{Q}$ is far from finite.
- 5. The extension $\mathbb{Q}(\pi)/\mathbb{Q}$ is transcendental because π is a transcendental number, i.e. π is not the root of any polynomial $p(x) \in \mathbb{Q}[x]$.