GATE: IN - 24.2023

EE23BTECH11013 - Avyaaz*

Question: The number of zeroes of the polynomial $P(s) = s^3 + 2s^2 + 5s + 80$ in the right side of the plane? (GATE IN 2023) **Solution:**

The table below shows the Routh array of the n^{th} - order characteristic polynomial :

$$a_0 s^n + a_1 s^{n-1} \dots + a_{n-1} s^1 + a_n s^0$$
 (1)

s^n	a_0	a_2	a_4	
s^{n-1}	a_1	a_3	a_5	
s^{n-2}	$b_1 = \frac{a_1 a_2 - a_3 a_0}{a_1}$	$b_2 = \frac{a_1 a_4 - a_5 a_0}{a_1}$		
s^{n-3}	$c_1 = \frac{b_1 a_3 - b_2 a_1}{b_1}$	÷		
:	<u>:</u>	:		
s^1	i:	:		
s^0	a_n			

TABLE 1: Routh Array

Characteristic Equation:

$$s^3 + 2s^2 + 5s + 80 = 0 (2)$$

From Table 1:

Γ			
	s^3	1	5
	s^2	2	80
	s^1	$\frac{2\times5-80\times1}{2}=-35$	
	s^0	$\frac{-35 \times 80}{-35} = 80$	

TABLE 2

From Table 2:

Since there are 2 sign changes in the first column of the Routh tabulation. So, the number of zeros in the right half of the splane will be 2.

1

Fig. 1

From equation (2) and Appendix (??) - (??):

$$X(z) = \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^4} + \frac{2z^{-1} \left(z^{-1} + 1\right)}{\left(1 - z^{-1}\right)^3} + \frac{5z^{-1}}{\left(1 - z^{-1}\right)^2} + \frac{80}{1 - z^{-1}}; |z| > 1$$
(3)

Fig. 2