

Draft Genome Sequences of Biosafety Level 2 Opportunistic Pathogens Isolated from the Environmental Surfaces of the International Space Station

Aleksandra Checinska Sielaff,^a Nitin K. Singh,^a Jonathan E. Allen,^b James Thissen,^b Crystal Jaing,^b (b) Kasthuri Venkateswaran^a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA^a; Lawrence Livermore National Laboratory, Livermore, California, USA^b

The draft genome sequences of 20 biosafety level 2 (BSL-2) opportunistic pathogens isolated from the environmental surfaces of the International Space Station (ISS) were presented. These genomic sequences will help in understanding the influence of microgravity on the pathogenicity and virulence of these strains when compared with Earth strains.

Received 20 September 2016 Accepted 31 October 2016 Published 29 December 2016

Citation Checinska Sielaff A, Singh NK, Allen JE, Thissen J, Jaing C, Venkateswaran K. 2016. Draft genome sequences of biosafety level 2 opportunistic pathogens isolated from the environmental surfaces of the International Space Station. Genome Announc 4(6):e01263-16. doi:10.1128/genomeA.01263-16.

Copyright © 2016 Checinska Sielaff et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Kasthuri Venkateswaran, kivenkat@ipl.nasa.gov.

n an on-going Microbial Observatory experiment on the International Space Station (ISS), multiple biosafety level 2 (BSL-2) bacterial isolates were isolated, identified, and whole-genome sequences (WGS) were generated. The genomic data enables the determination of the microgravity influence on pathogenicity and virulence in these microorganisms by comparison to type strains of the corresponding species.

Acinetobacter pittii is a nonmotile coccobacilli isolated for

the first time from cerebrospinal fluid (1). Multiple strains of *A. pitti* were isolated from the cupola area. The IIF1SW-P1 was resistant to cefazolin, cefoxitin, oxacillin, penicillin, and rifampin.

Two multidrug-resistant *Enterobacter* sp. isolates were found in the waste and hygiene compartment (WHC) location. Species of *Enterobacter cloacae* complex (Ecc) are commonly found in the environment, but are of high clinical significance (2).

TABLE 1 Statistics summary for the 20 draft ISS BSL-2 bacterial genome sequences

			NI C) (1°	G+C	Error	C 1'
Strain	NCBI accession no.	Isolation location	No. of contigs	Genome size (bp)	N_{50} (bp)	Median coverage	content (%)	corrected reads	Coding sequences
					50 - 1				
A. pittii IIF1SW-P1	MIZX00000000	Port panel next to cupola	150	4,041,255	144,373	799	38.7	25,486,884	3,821
Enterobacter sp. IF2SW-B1	MJAA00000000	WHC ^a	437	5,097,299	306,837	686	55.2	24,992,043	4,671
Enterobacter sp. IF2SW-P2	MJAB00000000	WHC^a	230	4,974,814	298,912	850	55.8	30,618,796	4,629
P. conspicua IF5SW-P1	MIZY00000000	Node 1 overhead 4	280	5,126,609	216,776	797	55.6	34,104,170	4,852
S. aureus IF4SW-P1	MIZH00000000	Dining table	498	2,980,137	64,789	3,695	32.7	76,859,228	2,733
S. aureus IF6SW-P2	MIZI00000000	PMM port 1 ^b	204	2,836,553	355,893	2,578	32.8	51,467,673	2,657
S. aureus IF6SW-P2-RA	MIZK00000000	PMM port 1 ^b	228	2,845,178	295,897	2,740	32.8	55,167,977	2,659
S. aureus IF6SW-P3A	MIZJ00000000	PMM port 1 ^b	276	2,868,506	232,680	2,254	32.8	46,555,897	2,694
S. aureus IF6SW-P3A-RA	MIZL00000000	PMM port 1 ^b	257	2,861,821	264,865	2,733	32.8	47,711,605	2,690
S. aureus IF7SW-P3	MIZM00000000	Lab overhead 3	452	2,951,917	52,140	3,487	32.8	71,062,021	2,738
S. aureus IIF6SW-P2	MIZN00000000	PMM port 1 ^b	312	2,884,460	96,689	3,324	32.8	67,792,619	2,730
S. aureus IIF6SW-P2-RA	MIZR00000000	PMM port 1 ^b	192	2,835,299	325,968	2,021	32.8	42,250,883	2,655
S. aureus IIF6SW-P3	MIZO00000000	PMM port 1 ^b	194	2,837,901	467,825	2,638	32.8	54,334,144	2,657
S. aureus IIF6SW-P3-RA	MIZS00000000	PMM port 1 ^b	217	2,841,156	411,108	2,272	32.8	47,711,605	2,656
S. aureus IIF8SW-P1	MIZP00000000	Port crew quarters bump-out exterior aft wall	143	2,817,304	425,858	2,409	32.8	49,197,886	2,637
S. aureus IIF8SW-P1-RA	MIZT00000000	Port crew quarters bump-out exterior aft wall	201	2,848,005	526,364	1,834	32.7	39,316,061	2,653
S. aureus IIF8SW-P2	MIZQ00000000	Port crew quarters bump-out exterior aft wall	194	2,830,972	329,726	2,557	32.8	51,625,221	2,650
S. aureus IIF8SW-P2-RA	MIZU00000000	Port crew quarters bump-out exterior aft wall	141	2,822,756	526,364	2,014	32.8	42,704,251	2,642
S. haemolyticus IIF2SW-P5	MIZW00000000	WHC^a	567	2,680,722	48,308	2,945	33.1	56,836,461	2,518
S. hominis IIF4SC-B9	MIZV00000000	Dining table	508	2,420,684	79,555	3,738	31.5	61,283,456	2,301

^a WHC, waste and hygiene compartment.

^b PMM port 1, permanent multipurpose module.

Pantoea conspicua was originally isolated from human blood (3). This was the second most prevalent species, and was only found in one location during two different flight samplings. P. conspicua isolates were resistant to erythromycin, oxacillin, penicillin, and rifampin.

Staphylococcus isolates were the most prevalent from ISS surfaces. Staphylococcus aureus was the most abundant in all ISS locations. Although this species is a common human commensal (4), it causes various types of minor skin infections, bacteremia, or scalded skin syndrome, especially in immunocompromised individuals (5). In this study, some of the isolates were found to be resistant to erythromycin (IF4SW-P1, IF7SW-P3) and most of the isolates were resistant to penicillin. A few isolates acquired rifampin resistance during the study (RA isolates).

Staphylococcus haemolyticus and Staphylococcus hominis belong to coagulase-negative staphylococci (6, 7). S. hominis IIF4SC-B9 was resistant to penicillin and erythromycin, but S. haemolyticus IIF2SW-P5 was susceptible to these antibiotics. All three species are reported to be methicillin resistant by acquiring the staphylococcal cassette chromosome mec (SCCmec) (8), but the methicillin-resistant phenotype was not observed.

In this study, the draft genomes sequences of 20 strains from the ISS were obtained. WGS sequencing was performed on an Illumina NextSeq instrument with a paired-end module. The A5 assembly pipeline version 20150522 was used to generate draft assemblies applying the default parameter settings (9) and annotated with the help of the Rapid Annotations using Subsystems Technology (RAST) (10). Table 1 summarizes assembly statistics (number of contigs, total genome size, N_{50} size, median coverage, G+C percentage, error corrected reads used for assembly, and number of coding sequences). The raw reads were in the range of 24 to 82 Mbp per genome. The G+C content was in the range of 31.5 to 38.7% for *Staphylococcus* species and *A. pittii*; for other strains the G+C contents were 55.2 to 55.8%. The subsystem features created using RAST for all 20 strains are depicted in Table 1.

Accession number(s). The WGS data were deposited at DDBL/EMBL/GenBank under the accession no. listed in Table 1 and at the NASA GeneLab system (GLDS-67; https://genelab-data.ndc.nasa.gov/genelab/accession/GLDS-67/##). The version described in this paper is the first version. The strains were deposited in the USDA Agricultural Research Station (NRRL) and German culture collections.

ACKNOWLEDGMENTS

We thank the implementation team (lead by Fathi Karouia) of the Microbial Observatory (Microbial Tracking) project at NASA Ames Research Center.

Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the Lawrence Livermore National laboratory, under a contract with NASA.

FUNDING INFORMATION

This work, including the efforts of Aleksandra Checinska Sielaff, Nitin Kumar Singh, and Kasthuri Venkateswaran, was funded by National Aeronautics and Space Administration (NASA) (19-12829-26 and 19-12829-27). This work, including the efforts of Jonathan Allen, James B. Thissen, and Crystal Jaing, was funded by National Aeronautics and Space Administration (NASA) (NNX15AJ29G).

REFERENCES

- Nemec A, Krizova L, Maixnerova M, van der Reijden TJK, Deschaght P, Passet V, Vaneechoutte M, Brisse S, Dijkshoorn L. 2011. Genotypic and phenotypic characterization of the *Acinetobacter calcoaceticuse-Acinetobacter baumannii* complex with the proposal of *Acinetobacter pittii* sp. nov. (formerly *Acinetobacter* genomic species 3) and *Acinetobacter nosocomialis* sp. nov. (formerly *Acinetobacter* genomic species 13TU). Res Microbiol 162:393–404. http://dx.doi.org/10.1016/j.resmic.2011.02.006.
- 2. Mezzatesta ML, Gona F, Stefani S. 2012. *Enterobacter cloacae* complex: clinical impact and emerging antibiotic resistance. Future Microbiol 7:887–902. http://dx.doi.org/10.2217/fmb.12.61.
- 3. Brady CL, Cleenwerck I, Venter SN, Engelbeen K, De Vos P, Coutinho TA. 2010. Emended description of the genus *Pantoea*, description of four species from human clinical samples, *Pantoea septica* sp. nov., *Pantoea eucrina* sp. nov., *Pantoea brenneri* sp. nov. and *Pantoea conspicua* sp. nov., and transfer of *Pectobacterium cypripedii* (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as *Pantoea cypripedii* comb. nov. Int J Syst Evol Microbiol 60:2430–2440. http://dx.doi.org/10.1099/ijs.0.017301-0.
- Sakwinska O, Kuhn G, Balmelli C, Francioli P, Giddey M, Perreten V, Riesen A, Zysset F, Blanc DS, Moreillon P. 2009. Genetic diversity and ecological success of *Staphylococcus aureus* strains colonizing humans. Appl Environ Microbiol 75:175–183. http://dx.doi.org/10.1128/ AEM.01860-08.
- Archer GL. 1998. Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181. http://dx.doi.org/10.1086/520289.
- Mendoza-Olazarán S, Morfin-Otero R, Rodríguez-Noriega E, Llaca-Díaz J, Flores-Treviño S, González-González GM, Villarreal-Treviño L, Garza-González E. 2013. Microbiological and molecular characterization of *Staphylococcus hominis* isolates from blood. PLoS One 8:e61161. http:// dx.doi.org/10.1371/journal.pone.0061161.
- Barros EM, Ceotto H, Bastos MCF, dos Santos KRN, GiambiagideMarval M. 2012. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol 50: 166–168. http://dx.doi.org/10.1128/JCM.05563-11.
- 8. Katayama Y, Ito T, Hiramatsu K. 2000. A new class of genetic element, *Staphylococcus* cassette chromosome *mec*, encodes methicillin resistance in *Staphylococcus aureus*. Antimicrob Agents Chemother 44:1549–1555. http://dx.doi.org/10.1128/AAC.44.6.1549-1555.2000.
- Tritt A, Eisen JA, Facciotti MT, Darling AE. 2012. An integrated pipeline for *de novo* assembly of microbial genomes. PLoS One 7:e42304. http:// dx.doi.org/10.1371/journal.pone.0042304.
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.