CIV 313S 2022 Guided Design

Designers: Mahzabin Karim, 1006072250 Adneen Mir, 1005967535 Angela Abdullahi, 1006031642

By our signatures below this statement, we confirm that:

- 1. The work we performed in connection with the Guided Design was in full accordance with the University of Toronto's academic integrity policies as defined in the Code of Behaviour on Academic Matters.
- 2. The documents we are submitting (drawings and report), as well as the underlying design work and calculations, were produced by our group alone.

Signatures:

Mahzabin Karim, Adneen Mir, Angela Abdullahi

1.0 Introduction

The following report summarizes the demand and capacity checks that were carried out to design a pedestrian bridge. The drawings detailing the bridge can be found at the end of this report.

2.0 Design for Transverse Bending

The live and dead load factored moment diagram is shown in Figure 1. This diagram has the maximum factored moments from all load combinations, as well as the capacity of the reinforcement. 5-10M transverse bars were placed in each 1-meter span on the top and bottom of the deck slab to resist positive and negative transverse moment. The design includes 5 bars to ensure that minimum reinforcement requirements were met (Mcr).

Figure 1: Factored transverse bending demand and capacity (grey and yellow) in the deck slab.

2.1 Crack Control of Transverse Design

Transverse Negative Steel Design:

Calculations for Negative Moment (Flange):

$$d_c = MIN(50, clear \ cover \ to \ stirrup + stirrup \ size) + \frac{size \ of \ bars}{2}$$

$$d_c = MIN(50, 40 + 0) + \frac{10}{2} = 40 + 5$$

$$d_c = 45mm = a$$

To calculate A_o :

If $(stirrup \ size + clear \ cover \ to \ stirrup) > 50 \ then \ A_o = b * (2 * centroid) - ((stirrup \ size + clear \ cover \ to \ stirrup) - 50))$, or else $A_o = b * 2 * centroid$

$$stirrup \ size + clear \ cover \ to \ stirrup = 0 + 40 = 40 < 50$$

 $A_o = b * 2 * centroid = 1000 * 2 * 45 = 90000 \ mm^2$

$$A = \frac{A_o}{Number\ of\ bars} = \frac{90000}{5} = 18000\ mm^2$$

$$f_s = 240 MPa$$

$$z = f_s * (d_c * A)^{\frac{1}{3}}$$

$$z = 240 * (45 * 18000)^{\frac{1}{3}} = 22372.1 \frac{N}{mm}$$

$$z = 22372.1 \frac{N}{mm} < 25000$$
 so PASS CRACK CONTROL

The number of bars provided to resist negative moment is 5 - 10M bars in each 1000 mm span to pass crack control. Less than this would fail minimum reinforcement requirements.

<u>Transverse Positive Steel Design (symmetrical to negative):</u> Calculations for Flange:

$$d_c = MIN(50, 40 + 0) + \frac{10}{2} = 40 + 5$$
$$d_c = 45mm = a$$

$$A_0 = b * 2 * a = 1000 * 2 * 45 = 90000 mm^2$$

$$A = \frac{90000}{5} = 18000 \ mm^2$$

$$f_s = 240 MPa$$

$$z = 240 * (45 * 18000)^{\frac{1}{3}} = 22372.1 \frac{N}{mm}$$

$$z = 22372.1 \frac{N}{mm} < 25000$$
 so PASS CRACK CONTROL

The number of bars provided is 5 - 10M bars in each 1000 mm span to pass crack control. Less than this would fail minimum reinforcement requirements.

3.0 Demand for Longitudinal Bending

The live load envelope was obtained by applying three live load cases individually, one being load on the left span only, the second as load only on the right span and the third as load on both spans. The maximum positive and minimum negative values for eight, equally spaced intervals on each span were plotted, this became the live lead envelope.

Load combinations of 1.4D and 1.25D+1.5L, using the unfactored dead and live load envelope, were calculated and once again, the maximum positive and minimum negative values were taken. The 1.25D + 1.5L load case governed. This became the factored moment envelope. The unfactored dead, unfactored live envelope and factored envelope due to dead and live load can be seen in Figure 2, Figure 3 and Figure 4, respectively.

Figure 2: Unfactored dead load moment demand.

Figure 3: Unfactored live load moment envelope.

Figure 4: Factored moment envelope at ULS.

3.1 Crack Control for Longitudinal Steel in Girder

Longitudinal, negative moment resisting steel crack control can be seen in Figure 5, including the curtailed bar arrangement case. In both cases crack control is met. The z parameter is checked here.

Figure 5: Z parameter for crack control in flange.

Longitudinal, positive moment resisting steel crack control can be seen in Figure 6, including the curtailed bar arrangement. In both cases crack control is met. The z parameter is checked here.

Figure 6: Z parameter for crack control in webs.

4.0 Design for Shear Demand

The shear for each of the cases discussed in section 3.0 was plotted. The respective shear demand diagrams can be found in the figures below. This includes unfactored dead, unfactored live shear envelope and the factored dead and live shear envelope. The 1.25D + 1.5L case governed.

Figure 7: Unfactored shear demand due to dead load.

Figure 8: Unfactored shear demand live load envelope.

Figure 9: Factored shear demand envelope with capacities.

5.0 Elastic Girder Deflections due to Dead Load

Figure 10 shows the deflections in the spans due to dead load.

Figure 10: Elastic girder deflection due to dead load.

6.0 Interaction Diagram for Pier

Three points were plotted to get the interaction diagram as shown in Figure 11. This included the pure tension and pure compression limit states. A total of 10 points (combinations of factored M,N pairs) were then plotted. Each load case was tested at two points, the top and bottom of the pier. The results can be seen in Figure 11. All points remained within the interaction diagram.

Figure 11: Interaction diagram with factored demand at ULS.

7.0 Foundation Design

Figure 12: Truss model used for the design of the foundation.

The pure axial case governed, and the corresponding moment was set to 0 to be conservative. The cases tested were the pairs with maximum moment and its corresponding axial load, and the one with the maximum axial load with its corresponding moment set to 0. The truss model shown was used to design the longitudinal bars at the bottom of the footing.

8.0 Pier to Girder Connection Design

Figure 13: Truss model fused for the design of the pier to girder connection.

The change in moment is taken from the jump in moment from the unfactored dead load case. This truss model helped design bar group P1506 in the Pier Details (Drawing No. 4).

9.0 Peak Tensile Demand Graph at ULS with Curtailment

The tensile capacity and curtailing arrangement of the negative longitudinal bars in the flange are shown in Figure 14. 34-15M bars are to be used throughout the entire span with an additional 15 - 15M bars (total of 49) from 14 - 18 meters of the 35-meter girder.

The positive curtailment arrangement and tensile demand and capacity for each bar arrangement can be seen in Figure 15. A total of 10 - 25M bars (five in each web) span throughout the girder. An additional 4 bars (two in each web) are provided from 22 to 33 meters from left to right, where demand is the greatest.

Figure 14: Peak tensile demand at ULS in the top longitudinal reinforcement in the girder and capacity provided by curtailed reinforcement.

<u>Figure 15:</u> Peak tensile demand at ULS in the bottom longitudinal reinforcement in the girder and capacity provided by curtailed reinforcement.

10.0 Abutment Reactions

<u>Table 1:</u> Reactions at abutments for all factored and unfactored load cases.

Load / Load Case	Reaction Abutment 1 (kN)	Reaction Abutment 3 (kN)
Dead	225	292
LL1	122	-10
LL2	-20	143
LL3	102	132
EQ	-14.6	9.4
1.4D	315	409
1.0D + 1.0EQ	211	302
1.0D + 1.0EQ	302	211
(opposite direction)		
1.25D + 1.5LL1	464	350
1.25D + 1.5LL2	251	580
1.25D + 1.5LL3	434	563

11. Concrete and Reinforcement Tables

Steel volumes were obtained by taking the total mass from the schedules in drawing No.6 and dividing by the density. Mass in kg for steel can be found in Drawing No.6.

Table 2: Quantity of reinforcing steel in each section.

Section	Volume (m ³)
Girder	$6499 \text{ kg} / 7850 \text{ kg/m}^3 = 0.828$
Pier	0.0273
Footing	0.271
Total	1.13

Table 3: Quantity of concrete in each section.

Section	Volume (m ³)
Girder	60.1 - 0.828 = 59.3
Pier	20.3
Footing	6.73
Total	86.3

All reinforcement volumes were subtracted from concrete volumes. Prior to this the volumes for the concrete were found as follows:

Girder:

Area = 1.655 m^2

Length = 36.300 m (including extension beyond abutments)

Volume = 36.3*1.655 = 60.1 m³

Pier:

Volume = 2.50*1.00*7.4 + 2.5*1*0.95 = 20.9 m³ (accounts for monolithic connection from pier to girder)

Footing:

Volume = $3.5*2*1 = 7 \text{ m}^3$

- 2. Sections shown in the plan view are in Drawing R3.
- Adjacent longitudinal bars that are spliced will alternate arrangement to prevent lap splices from overlapping.
 Refer to drawing No.R6 for Footing Schedule.

Pedestrian Bridge GIRDER DETAILS April 18, 2022 Mahzabin Karim, Adneen Mir, Angela Abdullahi

U of T CIV 313S Reinforced Concrete 1

Dwg. No. R2

NOTES:

- List of views on this drawing are as follows:
 Section A-A includes the maximum number of bars in the flange.
 Section B-B includes the maximum number of bars in web.

- Section B-B includes the maximum number of bars in web.
 Section C-C demonstrates concrete dimensions.
 Detail of custom stirrup on ends of drip nose.
 Bar groups with "OR" are spliced and collectively span the entire girder (See Drawing No. R2)
 Quantity of each bar type is shown in Drawing No. R2 and all bars are equally spaced unless noted otherwise.
 Refer to Drawing No. R6 for Girder Reinforcement Schedule.
 Refer to Notes on General Arrangement Drawing for material strengths and concrete cover.

SECTION A-A 1:25

SECTION C-C 1:25

SECTION B-B 1:25

CUSTOM STIRRUP G1014 1 1:5

U of T CIV 313S Reinforced Concrete 1 Pedestrian Bridge GIRDER CROSS-SECTIONS April 18, 2022 Angela Abdullahi, Mahzabin Karim, Adneen Mir

Dwg. No. R3

HSS 89 x 6.4 € Post HSS 60 x 3.8, typ. PL 20 x 125 Expansion device, typ. 300 300 PL 15 x 125 x 240

DETAIL OF RAIL 1:10

DETAIL AT EDGE OF DECK SLAB 1:5

(Abutment 1 shown, Abutment 3 opposite hand)

ABUTMENT PLAN DETAIL 1:100 (Abutment 1 shown, Abutment 3 opposite hand)

NOTES:

- Additional details of the rail and abutments are shown in this drawing.
 The reinforcement schedules for the girder, pier and footing are provided in this drawing.

	GIRDER REINFORCING STEEL SCHEDULE												
MARK	SIZE	NO. OF BARS	TYPE	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)	G (mm)	LENGTH (mm)	UNIT MASS (kg/m)	MASS (kg)
G1501	15M	162	S4	140	1020	420	1020			140	2740	2.358	1047
G2502	25M	10									11311	3.925	444
G2503	25M	10									18000	3.925	706
G2504	25M	10									8371	3.925	329
G2505	25M	4									11000	3.925	173
G1006	10M	8									18000	0.785	113
G1007	10M	8									18000	0.785	113
G1008	10M	175									4420	0.785	607
G1509	15M	34									11151	1.570	595
G1510	15M	34									18000	1.570	961
G1511	15M	34									8211	1.570	438
G1512	15M	15									4000	1.570	94
G1013	10M	175									4420	0.785	607
G1014	10M	350		470	116	132	270				988	0.785	271
	•											TOTAL MASS (kg)	5620

					PIER RI	EINFOR	CING S	TEEL SC	CHEDUL	.E			
MARK	SIZE	NO. OF BARS	TYPE	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)	G (mm)	LENGTH (mm)	UNIT MASS (kg/m)	MASS (kg)
F1001	10M	14	17		640	1890	640				3170	0.785	35
F2502	25M	5	17		700	3410	700				4810	3.925	94
F1003	10M	4									3420	0.785	11
F1004	10M	2									3420	0.785	5
F1005	10M	6									1920	0.785	9
F1006	10M	4									1920	0.785	6
F1007	10M	5	17		700	3410	700				4810	0.785	19
F1008	10M	14	17		640	1890	640				3170	0.785	35
	•	•		•			•	•				TOTAL MASS (kg)	214

	FOOTING REINFORCING STEEL SCHEDULE												
MARK	SIZE	NO. OF BARS	TYPE	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)	G (mm)	LENGTH (mm)	UNIT MASS (kg/m)	MASS (kg)
P3001	30M	34		490	9000						9490	5.495	1773
P3002	30M	2									9000	5.495	99
P1003	10M	17	T1	100	920	2420	920	2420		100	6880	0.785	92
P1004	10M	136	Т9	100	900					100	1100	0.785	117
P1005	10M	17	Т9	100	2400					100	2600	0.785	35
P1506	15M	4			900	800					1700	1.570	11
	•											TOTAL MASS (kg)	2127

U of T CIV 313S Reinforced Concrete 1 Pedestrian Bridge SCHEDULE AND ADDITIONAL DETAILS April 18, 2022 Mahzabin Karim, Adneen Mir, Angela Abdullahi