Masarykova univerzita Fakulta informatiky

Usage of evolvable circuit for statistical testing of randomness

BACHELOR THESIS

Martin Ukrop

Declaration

Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source.

Martin Ukrop

Advisor: RNDr. Petr Švenda, Ph.D.

Acknowledgement

Thanks will be here.

Abstract

Abstract will be here.

Keywords

Keywords will be here.

Contents

1	Intr	oduction	2
2	Stat	tistical randomness testing	3
	2.1	Statistical Test Suite by NIST	3
	2.2	Diehard battery of tests	4
	2.3	Dieharder: A Random Number Test Suite	4
	2.4	Drawbacks of human-designed statistical tests	5
3	\mathbf{Evo}	lution-based randomness testing	6
	3.1	Basic principles of genetic programming	6
	3.2	Using software-emulated circuits	7
	3.3	EACirc: framework for automatic problem solving	8
	3.4	Current capabilities of EACirc	9
4	\mathbf{Exp}	periment settings and output data	11
	4.1	EACirc settings	11
	4.2	EACirc output data	11
	4.3	Random data sources	11
	4.4	Settings and output data for statistical test batteries	12
5	Con	trol distinguishers	13
	5.1	Looking for non-randomness in quantum random data	13
	5.2	Distinguishing quantum random data from different sources	13
	5.3	Uncompressed audio streams	14
6	Dist	tinguishing cipher outputs from random stream	17
	6.1	Stream ciphers used	17
	6.2	Generating binary stream from stream ciphers	17
	6.3	Results interpretation	17
7		alysis of Salsa20 output stream	21
8	Dist	tinguishing hash outputs from random stream	22
	8.1	Hash functions used	22
	8.2	Generating binary stream from hash functions	22
	8.3	Determining optimal set change frequency	22
	8.4	Results interpretation	22
9		aclusions and future work	25
	9.1	Conclusions based on experimental data	25
	9.2	Proposed future work	25

1 Introduction

- problem description
- \bullet motivation -> EACirc
- summary of experiments to follow
- \bullet we = team of EACirc
- work and research done by me, if not stated otherwise (but consulted within the team!)
- licence of EACirc, licence of thesis text
- fithesis2 used

2 Statistical randomness testing

The goal of randomness testing is to determine, whether the data provided is *random*. The problem comes with the definition of randomness, since in truly random data, each fixed subsequence (e. g. sequence of a hundred zeroes) has the same probability of appearing. Thus, statistical metrics have been developed to asses the matter of randomness.

All the statistical randomness tests are based on mathematical properties that hold for *most* of the random sequences with a sufficient length. A simple example of such property states that in each binary sequence, the number of ones and zeroes should be approximately the same. It is crucial to be aware, that this will not hold for *all* sequences (see the example above), but the probability of randomly generating such sequence sharply decreases when increasing the length of the assessed data.

Randomness testing based on statistical properties of data has its drawbacks and benefits, main of which are discussed below.

• Speed

Once the tests are implemented, they do not require excessive amount of time to perform – the data is usually processed once in a linear fashion.

• Universality

Statistical tests can by applied to any binary data regardless of its origin – they perform equally well. This can be viewed both as an advantage and disadvantage, since tests cannot be effortlessly adapted to specific situations.

• One-way design

The creation of new test must be preceded by the idea and analysis of some useful statistical property. This part can be highly non-trivial and usually requires a team of skilled mathematicians.

• Results interpretation

The ever-present ambiguity in statistical measurements sometimes makes the results interpretation a highly non-trivial task. It is crucial to understand what do the results indicate and what they do not. The above-mentioned finite sequence of binary zeroes fails most of the statistical randomness tests, but its generation is just as probable as any other fixed binary sequence of the same length. Put in another words, even the true random generator may produce non-random looking sequences once in a while.

In practise, statistical randomness testing is being widely used in fields where the quality of random data is crucial, such as cryptography. To ease the assessment process, several statistical randomness testing suites have been developed, some of which are discussed below.

2.1 Statistical Test Suite by NIST

Perhaps the most widely used battery of statistical tests is the Statistical Testing Suite by National Institute of Standards and Technology (STS NIST). The primary motivations for

developing this test suite was the need of standardised tests for detecting non-randomness in binary (pseudo)random sequences utilized in cryptographic applications. As well as designing the tests, NIST provides their reference implementation and guidance in their use and application. [?]

The battery consists of 15 different tests, some of which can be run with several parameters. For detailed description of the tests, see the original documentation [?]. The implementation provided by NIST supports variable input data length and arbitrary number of independent data streams. The testing results provide the cumulative p-value of all data streams and the number of passed runs for each test according to the set significance level. Detailed setting used for the purposes of this thesis can be found in section 4.4.

2.2 Diehard battery of tests

The second, informal, standard of statistical randomness testing is the Diehard Battery of Tests of Randomness, developed by George Marsaglia over several years at Florida State University. [?] Although now becoming slightly outdated, they were one of the first and most-well known in the pioneering years of statistical testing of randomness. For long, the Diehard Battery of Tests was considered a golden standard along with STS NIST.

The battery consist of 12 different tests. The original implementation, documentation and tests description are still available, but since the code has not been revised from its creation in 1995, we chose not to use Marsaglia's original implementation.

2.3 Dieharder: A Random Number Test Suite

Dieharder, as its predecessors, aims to ease the testing of (pseudo)random generators and data for a variety purposes in research and cryptography. Developed by Robert G. Brown at the Duke University, it is designed to be as extensible as possible, allowing easy implementation of new tests and generators for testing. Most of the tests used allow for modifying the default parameters, enabling advanced users to fine-tune the testing process. According to its creators, it is intended to be the "Swiss army knife of random number test suite", or if you prefer, "the last suite you'll ever ware" for testing random numbers. [?]

After designing the testing framework, the development team gradually reimplemented and improved the original tests from the Diehard Battery of Tests of Randomness (see section 2.2), the tests from STS NIST (see section 2.1) and began to prepare and implement their own new tests. The suite now contains 31 different tests from various sources. Tests can be run selectively. The testing results provide the cumulative p-value for each test and a verdict of PASS, WEAK or FAIL according to the set significance level. Detailed setting used for the purposes of this thesis can be found in section 4.4.

2.4 Drawbacks of human-designed statistical tests

Although convenient in some ways, statistical randomness testing based on human-designed tests has several important drawbacks. As mentioned above, the test creation must be preceded by an idea of mathematical property and its thorough analysis, which can be extremely time- and people-consuming. Further on, the tests are limited to one particular property and adapting them to specific situation requires beginning the process of test creation all over again.

Both of the above-mentioned problems would be resolved if tests of comparable quality could be generated automatically, without the help of human specialists. Such concept and its comparison with human-generated tests is presented in the following chapters.

3 Evolution-based randomness testing

In this chapter we try to describe a method of automatically generating statistical randomness tests. Compared to the standard way of their creation, our approach would have a couple of advantages:

- no prior knowledge of statistical properties of random data is needed;
- test creation does not require excessive human analytical labour;
- tests adapted for specific situations can be easily developed;
- atypical and/or yet unknown data properties may be used.

The main idea is to use supervised learning techniques based on evolutionary algorithms to design and further optimize a successful *distinguisher* – the test determining whether its input comes from a truly random source or not. The distinguisher will be represented as a hardware-like circuit consisting of a number of interconnected simple functions. The evolution will be applied with the use of genetic programming techniques.

3.1 Basic principles of genetic programming

Genetic programming is a biologically inspired supervised learning technique. It tries to converge to optimal solution by making subtle changes to previous partial solutions, assessing their impact and propagating the perspective changes until reaching the desired success rate. The existence of partial problem solutions is therefore crucial. The main flow of evolution implemented by genetic programming is as follows:

- 1. Firstly, a random set of partial solutions is generated. The solutions may be highly unsuccessful, but some will nonetheless be better than other. This set of solutions is called a *population*.
- 2. Secondly, the success of all individual solutions from the population is evaluated. The assessment is done using the so called *fitness function*. The quality of this function is crucial to the whole algorithm, as it distinguishes the better and more successful partial solutions from the worse ones.
- 3. A new population of solutions is created by making a *sexual crossover* from the best solutions of the previous generation. Informally put, solutions are subject to the survival of the fittest.
- 4. A small random change may be applied to some individuals in the new population. This *mutation* prevents the population from getting stuck in the local optimum and increases the chances of reaching a global optimum.
- 5. Steps 2-4 are iterated over and over, until the desired success rate of the population is achieved or the required number of generations have evolved.

The principles of evolutionary algorithms induce a couple of design limitations and disadvantages. The most important ones include:

- Only problems with a sufficient space of partial solutions are applicable, since the individuals must be assessed to determine the fittest.
- A small change in the solution should induce only a small change in the individual's fitness. If the changes were too rapid, the evolution wouldn't be able to stabilize on the better and more successful solutions.
- The evolution phase can be computationally very expensive, since making small changes to the individuals requires higher number of generations evolved.
- It may be quite difficult to fine-tune the parameters (such as population size, mutation and crossover probabilities) to achieve the best results.

To counterweight the drawbacks, it must be noted, that evolutionary algorithms allow us to create solution not just for particular instance of the problem, but to the whole set of similar problems – we may be trying to evolve a universal solver, rather than for the solution itself. This improves the computation complexity, because after an expensive learning phase, the evolved solver may be used repeatedly on multiple instances of the problem. However, the evolution of the general solver can be trickier than it seems, since over-learning (i. e. finding the solution just to the particular instance of the problem) has to be avoided.

3.2 Using software-emulated circuits

Our goal is to create a simple circuit performing the desired task – distinguishing the random and non-random data streams. Thus, let's consider solutions in the form of a hardware-like circuit with function nodes ("gates") and a set node connectors ("wires"). Each node is responsible for computation of a simple function on its inputs (e.g. binary AND operation). Circuit nodes are positioned into layers, where outputs from one layer are connected to inputs of the next. Input of the whole circuit is used as an input for the first layer and output of the last layer is considered the output of the entire circuit. Connectors may only connect adjacent layers, but may cross each other (contrary to real single-layer hardware circuits).

In the current problem solution design, we consider only simple functions operating on bytes. The supported functions are:

- simple bit-manipulating functions (OR, AND, XOR, NOR, NAND, ROTL, ROTR, BITSELECTOR),
- simple arithmetical functions (SUM, SUBS, ADD, MULT, DIV),
- identity function (NOP) and
- function reading specific input byte (READX).

Although it would be sufficient to restrict ourselves to a smaller set of functions (e.g. NAND only), we chose to support a wider variety of functions as an human understandability trade-off. More complex and sophisticated functions enable us to limit the circuit to significantly smaller number of layers and nodes, while retaining a comparable expressive power.

To some extent, the structure of a software circuit resembles artificial neural networks (deep belief belief neural networks in particular). Notable differences are in the learning mechanism and circuit dimensions (neural networks usually use very small number of layers). The function of individual nodes is different as well, since all nodes node in artificial neural networks use weighed sum.

3.3 EACirc: framework for automatic problem solving

Combining the principles of genetic programming and software circuits, we developed EACirc, the framework for automatic problem solving. The initial version of EACirc was created by (titul?) Petr Švenda at the Laboratory of Security and Applied Cryptography, Masaryk University [?] based on SensorSim [?] application. This initial version provided the main shared functionality: evolutionary capabilities, software circuit emulation and basic fitness evaluation. Later on, the application was improved by Matej Pristak and Ondrej Dubovec (as their master and bachelor theses, respectively).

Afterwards, the object model of the entire project was redesigned and a handful of new features was added by myself. Most of the code that was taken over was revised and refactored as necessary to ease the understanding of its function and to standardise naming and programming principles used throughout the project. Currently, the framework consist of the following main parts:

• Evolutionary core

The core evolutionary features are provided by GAlib, a C++ Library of Genetic Algorithm Components developed at MIT [?]. The library, when parametrized by function callbacks (e.g. function for mutation, sexual crossover, fitness function, ...), handles the main evolutionary actions.

• Circuit emulator

The emulator simulates the behaviour of the circuit loaded from numerical representation. It a crucial role in fitness assessment of the population.

• Project modules

These modules are responsible for generating the data used in circuit fitness assessment. Each module (project) corresponds to one experiment (e.g. eStream candidate ciphers testing, SHA-3 candidate functions testing, ...). The module's main responsibility is to prepare the required number of (problem, solution) pairs in the form of circuit input stream (problem) and optimal circuit output (solution). These pair are called a set of test vectors.

• Evaluator modules

Evaluator is a function responsible for yielding a numerical value of fitness, when provided with the pairs of actual and expected circuit outputs. There are multiple approaches to evaluators – the equality of expected and actual output can be based on Hamming weight, numerical value, ...

• Random generators

Since evolutionary algorithms are highly randomized, a source of randomness is needed. To ensure the computation determinism (all experiments need to be exactly reproducible), a hierarchy of random generators was developed. To satisfy the varying needs, several generator types are implemented: true quantum random generator (based on pre-generated data), configurable biased generator and low-entropy MD5-based generator.

• Self-tests

For the ease of development, EACirc provides a handful of self-tests. Running these tests ensures the consistency of seeding and data manipulation. Tests are implemented using CATCH, a C++ Automated Test Cases in Headers [?].

• XML manipulating library

Most of the files produced and processed by the framework are XML-structured files. All these files are handles via TinyXML, a simple, small, minimal, C++ XML parser [?].

• Static checker

Although the static checker shares some code with the main framework, it is built as an independent application. It is designed to verify obtained results (evolved circuits) by circumventing both the genetic manipulations and circuit emulator.

• Miscellaneous utilities

EACirc framework comes with an assortment of scripts, used mainly for downloading, checking and processing the results.

3.4 Current capabilities of EACirc

- old core, basic capabilities of EA provided by GAlib and software emulation taken from work by Matej Pristak, originally from SensorSim
- main object model has been revised to uitlize the principle of modules, thus enabling integration of multiple projects and evaluators according to actual needs.
- guaranteed bit-reproducibility now use of random generators revised, hierarchical system of generators created, any run can be reproduced by providing original input files and one central seed => crucial to experiment verification
- bit-reproducibility enabled us to implement computation recommending EACirc can save and load its complete internal state => useful for computation-expensive experiments (when the machine is rebooted, we can continue from last saved state instead of starting allover again)
- evolved circuits are exported to 4 different formats (from SensorSim or original work on EACirc?), binary (can be reloaded into EACirc if needed), text and graphical (using Graphviz) (used to ease humal analysis of evolved results) and C source code implementing the circuit (useful for independent verification of circuit work)
- new static checker created, circumvents most of the EACirc framework (especially circuit emulator), used for static checking on pre-generated test vectors
- project for distinguishing between eStream cipher output and random stream of data, taken from work by Matej Pristak and slightly revised to operate withing the new object model and allow more detailed configuration
- project for distinguishing between SHA-3 function output and random stream of data, ideas and hash functions implementations taken from Ondrej Dubovec, gest vector

geenration reimplemented from scratch

• small project for distinguishing among external binary files

Note, that EACirc is a project beyond the scope of this thesis. Some parts were added and/or redesigned in pre process, so different experiments may have incompatible configuration files and may have produced incomparable results. For further details, user and development documentation, see EACirc wiki at GitHub [?].

4 Experiment settings and output data

- introduction this chapter will describe the settings used in the experiments...
- our reasons for using these settings
- description of output files
- interpretation of result numbers

4.1 EACirc settings

- most of the settings taken from Matej Pristak's thesis (with no optimality verification)
- GA settings (population size 20, prob mutation 0.05, prob crosover 0.20)
- 30000 generation with test vector sets changed every 100th generation (thus, 300 unique test sets altogether)
- circuit 5 layers, 8 functions in layer, input 16 bytes, output 2 bytes, maximum of 4 connectors (?), all functions allowed except for READX
- distinguisher correct output for stream 1 id 0x00, correct for stream 2 is 0xff
- evaluator "agent based", each byte is separate output, less or more than 128
- fitness function = #(correctly predicted vectors in set)/#(all vectors in set)
- 1000 test vectors in each test set
- only distiguisher experiments, always used 500:500 (according to Matej Pristak, imballance causes test vectors to only guess what type is more frequent in current run)
- experiment-specific settings described in appropriate section with results

4.2 EACirc output data

- main goal: finding strong distinguisher (over 99% for 50 consecutive generations)
- displayed average stable generation across 30 independent runs (stable = fitness over 99% for at least next 50 test sets)
- if none stable generation was found, average average maximum fitness after test vector change is displayed in parentheses.

4.3 Random data sources

- EACirc is randomized algorithm -> need good random data source
- in most experiments a distinguisher from random data stream is being evolved => crucial to have extremely realiable random data source
- using quantum random data, generated by measuring quantum effects
- 2 different sources, HU Berlin, institute in Croatia
- these 2 sources thoroughly compared, see section 5.2

4.4 Settings and output data for statistical test batteries

- to compare our results with existing statistical batteries, statistical randomness of all generated streams was checked using STS NIST and Dieharder
- 250 MB of data generated for statistical testing, same streams used for both STS NIST and Dieharder
- STS NIST
 - 100 runs, 100000 bits per run (=> 11.92 MB used for testing)
 - all tests were run, significance level of ???
 - some runs had problems with tests RandomExcursions and RandomExcursionsVariant, to ensure statistical accuracy of results, these test are ommitted in results
 - for each test, following stats are computed:
 - * p-value for each run if this p-value is out of bounds of the interval determined by the significance level, the run is considered failed
 - * the number of passed runs is infered
 - * the cumullative p-value of all 100 runs
 - * if either the cumulative p-value or the number of passed runs for this particular test is out bounds of the interval determined by the significance level, this test is considered as failed
 - results expressed as cumulative score for the entire stream, 0 for each failed test, 1 for each passed test. expressed as part of total 162

Dieharder

- test corresponding to original Diehard (except for Diehard sums test, due to probable error in test implementation)
- 1 run of each test, stream length determined by the test itself (comes from design of Dieharder, we want to prevent from revinding the file)
- total data used for testing: ??? MB (smallest test: ??, biggest test: ??)
- each test interpreted as PASSED, WEAK or FAILED (significance levels of ???)
- results for stream again in the form of cumullative score (0 for failed, 0.5 for weak, 1 for passed), out of total 20

5 Control distinguishers

- introduction the need of reference numbers before analysis
- we need to define what does it mean "indistinguishable" in our setting
- we use quantum random data from Humboldt Universitat and Quantum random bit generator service as a standard for randomness

5.1 Looking for non-randomness in quantum random data

- trying to distinguish quantum random data from quantum random data => we presume to fail
- using random data from Quantum random bit generator service
- statistical batteries: data are random (Dieharder: 20/20, STS NIST: 188/188)
- evolution: no stable distinguisher found, AAM of 0.52 (differences in various runs in 3rd or 4th decimal place)
- presumption: dependence on test set size and population size
- presumption confirmed (Table 5.1), AAM decreases with smaller population and bigger test set size

			nu	mber of test	vector in a s	set	
		200	500	1000	2000	5000	10 000
n	5	_	_	(0.509)	-	-	-
lividuals population	10	_	_	(0.514)	-	-	-
viduals opulati	20	(0.544)	(0.527)	(0.520)	(0.514)	(0.509)	(0.506)
	50	-	-	(0.526)	-	-	-
li. İİ.	100	-	-	(0.530)	-	=	-

Table 5.1: Dependence of AAM on population size and test vector set size.

5.2 Distinguishing quantum random data from different sources

- distinguishing streams of quantum random data from Humboldt University and streams of quantum random data from Ruđer Bošković Institute
 - Quantum Random Bit Generator Service, Centre for Informatics and Computing, Ruder Bošković Institute, Zagreb, Croatia
 - Quantum Random Number Generator Service, Department of Physics, Humboldt University, Berlin, Germany
- 6 files of 5 MB from each source
- fixed initial reading offsets as (0,0)
 - => same data from given file in each run

- looking for distinguisher for each pair
- interpretation of results (Table 5.2):
 - data from both sources are equally random for our purposes
 - there is no single statistically different stream in these
 - =>they can be used interchangeably

		QRBG service (Ruđer Bošković Institute, Croatia)								
		stream 1	stream 2	stream 3	stream 4	stream 5	stream 6			
	stream 1	(0.521)	(0.520)	(0.520)	(0.519)	(0.519)	(0.519)			
Germany)	stream 2	(0.518)	(0.519)	(0.520)	(0.520)	(0.520)	(0.519)			
service ermany	stream 3	(0.519)	(0.522)	(0.519)	(0.520)	(0.519)	(0.519)			
	stream 4	(0.520)	(0.520)	(0.519)	(0.518)	(0.519)	(0.519)			
QRN (HU,	stream 5	(0.519)	(0.520)	(0.519)	(0.518)	(0.520)	(0.520)			
	stream 6	(0.520)	(0.519)	(0.520)	(0.520)	(0.519)	(0.519)			

Table 5.2: Distinguishing binary quantum random streams from independent sources.

5.3 Uncompressed audio streams

- 12 files
 - 3 quantum random files
 - 3 noise files (white, pink, Brown), generated by SoX
 - 3 noise files via intermediate mp3 compression (2 channels, 16bits, 44.1 kHz => bitrate of 128kbps)
 - -noise after 128kbs mp3 compression had $\,$ 480 kB $\,$
 - 3 samples of transcendental khaoblack metal music
- each file is 30sec of uncompressed WAV audio (5.3MB) (including quantum random files, wav header generated by SoX)
- evolving distinguisher for each pair
- interpretation of results (Table 5.3):
 - quantum random stream are undistinguishable (we already know)
 - generated white noise is true (undistinguishable from random)
 - pink and Brown noise are different, distinguishable (good result, since pink and Brown noise are generated by filtering white noise and are biased towards lower frequencies)
 - different types of noise can be quite successfully distinguished from one another (generally over 75%)
 - mp3 compression has small, but detectable effect on the sound (nearly undetectable by unskilled human ear, but successfully shifts the distinguisher success to cca 0.58)
 - comparing noise and mp3 compressed and decompressed noise of the same kind is difficult

- used metal samples are nearly indistinguishable from each other on the binary level (although the differences are easily detectable by human ear)
- used metal samples can be reliably distinguished from white noise (which is, in fact only a stream of random data) general success over 80%. Less so from pink and Brown noise general success around 65%.
- most of the runs have slow rising tendency in fitness
 - => if more generations, the average maximum value might be slightly higher

		rand	dom stre	ams	ne	oise (tru	e)	nois	se (via m	1p3)	metal music		
		random stream 1	random stream 2	random stream 3	white noise	pink noise	Brown noise	white noise (via mp3)	pink noise (via mp3)	brown noise (via mp3)	metal music (sample 1)	metal music (sample 2)	metal music (sample 3)
	random stream 1	n/a	(0.52)	(0.52)	(0.52)	(0.80)	(0.84)	(0.59)	(0.93)	(0.89)	(0.84)	(0.87)	(0.83)
random	random stream 2	(0.52)	n/a	(0.52)	(0.52)	(0.83)	(0.83)	(0.57)	(0.82)	(0.84)	(0.90)	(0.85)	(0.82)
Î	random stream 3	(0.52)	(0.52)	n/a	(0.52)	(0.94)	(0.91)	(0.58)	(0.83)	(0.83)	(0.89)	(0.83)	(0.85)
1e)	white noise (true)	(0.52)	(0.52)	(0.52)	n/a	(0.83)	(0.81)	(0.59)	(0.87)	(0.89)	(0.86)	(0.93)	(0.81)
noise (true)	pink noise (true)	(0.80)	(0.83)	(0.94)	(0.83)	n/a	(0.76)	(0.86)	(0.52)	(0.76)	(0.65)	(0.65)	(0.66)
noi	Brown noise (true)	(0.84)	(0.83)	(0.91)	(0.81)	(0.76)	n/a	(0.86)	(0.76)	(0.56)	(0.71)	(0.69)	(0.68)
03)	white noise (via mp3)	(0.59)	(0.57)	(0.58)	(0.59)	(0.86)	(0.86)	n/a	(0.91)	(0.83)	(0.84)	(0.80)	(0.78)
se (mp3)	pink noise (via mp3)	(0.93)	(0.82)	(0.83)	(0.87)	(0.52)	(0.76)	(0.91)	n/a	(0.78)	(0.63)	(0.68)	(0.70)
noise	Brown noise (via mp3)	(0.89)	(0.84)	(0.83)	(0.89)	(0.76)	(0.56)	(0.83)	(0.78)	n/a	(0.71)	(0.69)	(0.67)
music	metal music (sample 1)	(0.84)	(0.90)	(0.89)	(0.86)	(0.65)	(0.71)	(0.84)	(0.63)	(0.71)	n/a	(0.54)	(0.56)
metal m	metal music (sample 2)	(0.87)	(0.85)	(0.83)	(0.93)	(0.65)	(0.69)	(0.80)	(0.68)	(0.69)	(0.54)	n/a	(0.53)
me	metal music (sample 3)	(0.83)	(0.82)	(0.85)	(0.81)	(0.66)	(0.68)	(0.78)	(0.70)	(0.67)	(0.56)	(0.53)	n/a

Table 5.3: Distinguishing random streams and uncompressed audio (noise, compressed noise, metal music).

6 Distinguishing cipher outputs from random stream

- introduction, idea, running EACirc along with statistical batteries
- stream ciphers from eStream competition

6.1 Stream ciphers used

- ciphers except for ?? (why??)
- from last phase
- those that could be limited in rounds are tested in weaker variant as well
- differences from Metej Pristak thesis

6.2 Generating binary stream from stream ciphers

- cipher modes (iv+key initialization frequency)
- case of LEX (not weakening the cipher, only making shorter output)
- case of TSC (producing binary stream of 0 for 1-8 rounds) => problems in 3 Dieharder tests

6.3 Results interpretation

- ???
- more or less as statistical batteries
- dieharder better in some case than STS-NIST (is newer and some tests are redesigned)
- statistical tests has much more input data compared to EACirc
- using evolved distinguisher is quick

				IV and	key rein	itialization			
q		once for	run	fo	r each te	est set	for each test vector		
# of rounds	Dieharder (x/20)	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)	Dieharder $(x/20)$	$\frac{\text{STS NIST}}{(\text{x}/162)}$	EACirc (AAM)	Dieharder (x/20)	STS NIST (x/162)	EACirc (AAM)
1	0.0	0	n = 2681	0.0	0	(0.85)	0.0	5	n = 1431
2	0.5	0	(0.54)	1.0	0	(0.54)	15.5	146	(0.52)
3	1.0	0	(0.53)	1.0	0	(0.53)	15.0	160	(0.52)
4	3.5	79	(0.52)	3.0	78	(0.52)	20.0	160	(0.52)
5	4.5	79	(0.52)	3.5	91	(0.52)	17.5	161	(0.52)
6	19.0	158	(0.52)	19.0	159	(0.52)	18.0	162	(0.52)
7	18.5	162	(0.52)	19.0	161	(0.52)	20.0	161	(0.52)
8	20.0	162	(0.52)	20.0	159	(0.52)	19.0	161	(0.52)

Table 6.1: Random distinguishers for Decim ciphertext.

				IV and	key rein	itialization			
q	once for run			fo	r each te	est set	for each test vector		
# of rounds	Dieharder (x/20)	Dieharder (x/20) STS NIST (x/162) EACirc (AAM)		Dieharder (x/20)	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)	Dieharder (x/20)	STS NIST (x/162)	EACirc (AAM)
1	20.0	162	(0.52)	20.0	161	(0.52)	18.0	162	(0.52)
4	20.0	162	(0.52)	20.0	162	(0.52)	20.0	162	(0.52)

Table 6.2: Random distinguishers for FUBUKI ciphertext.

				IV and key reinitialization					
ds	once for run			fo	r each te	est set	for each test vector		
# of rounds	Dieharder (x/20)	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)	Dieharder (x/20)	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)	Dieharder (x/20)	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)
1	0.0	0	n = 221	0.0	0	(0.67)	18.5	162	(0.52)
2	0.0	0	n = 471	0.5	0	(0.66)	20.0	162	(0.52)
3	19.5	160	(0.52)	20.0	162	(0.52)	20.0	162	(0.52)
13	20.0	162	(0.52)	20.0	161	(0.52)	19.5	162	(0.52)

Table 6.3: Random distinguishers for Grain ciphertext.

				itialization					
ds	once for run			for each test set			for each test vector		
# of rounds	$\begin{array}{c c} & \text{el al} \\ & \text{ehal} \\ & /20 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $			Dieharder (x/20)	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)	Dieharder (x/20)	STS NIST (x/162)	EACirc (AAM)
1	20.0	162	(0.52)	20.0	162	(0.52)	20.0	162	(0.52)
10	20.0	160	(0.52)	20.0	162	(0.52)	20.0	162	(0.52)

Table 6.4: Random distinguishers for Hermes ciphertext.

				IV and key reinitialization						
ds		once for	run	for	r each te	est set	for each test vector			
# of rounds	Dieharder $(x/20)$	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)	Dieharder (x/20)	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)	Dieharder $(x/20)$	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	$\mathrm{EACirc} \ \mathrm{(AAM)}$	
1	0.0	0	n = 148	0.0	0	n = 7274	3.0	1	n = 154	
2	4.0	1	n = 221	4.0	1	n = 304	3.5	1	n = 254	
3	0.5	1	n = 378	3.5	1	n = 491	4.0	1	n = 361	
4	20.0	162	(0.52)	19.5	162	(0.52)	20.0	161	(0.52)	
10	19.5	162	(0.52)	19.5	160	(0.52)	20.0	160	(0.52)	

Table 6.5: Random distinguishers for LEX ciphertext.

				IV and key reinitialization						
$\frac{1}{2}$		once for run			r each te	est set	for each test vector			
# of rounds	Dieharder (x/20)	STS NIST (x/162)	EACirc (AAM)	Dieharder (x/20)	STS NIST (x/162)	EACirc (AAM)	Dieharder (x/20)	STS NIST (x/162)	EACirc (AAM)	
1	5.5	1	(0.87)	8.5	1	(0.67)	17.5	161	(0.52)	
2	5.5	1	(0.87)	7.0	1	(0.67)	19.5	162	(0.52)	
3	20.0	162	(0.52)	20.0	162	(0.52)	19.5	161	(0.52)	
12	20.0	162	(0.52)	19.5	161	(0.52)	19.0	161	(0.52)	

Table 6.6: Random distinguishers for Salsa20 ciphertext.

				IV and	key rein	itialization			
	(once for	run	for	r each te	est set	for each test vector		
# of rounds	Dieharder (x/20)	STS NIST (x/162)	EACirc (AAM)	Dieharder $(x/20)$	STS NIST (x/162)	EACirc (AAM)	Dieharder $(x/20)$	$\begin{array}{c} \text{STS NIST} \\ \text{(x/162)} \end{array}$	EACirc (AAM)
1-8	0.0*	0	n = 104	0.0*	0	n = 101	0.0*	0	n = 104
9	1.0	1	n = 234	1.5	1	n = 491	2.0	1	n = 121
10	2.0	13	n = 188	3.0	13	n = 218	3.0	12	n = 158
11	10.0	157	(0.52)	11.5	157	(0.52)	14.0	159	(0.52)
12	16.0	162	(0.52)	17.0	161	(0.52)	17.5	162	(0.52)
13	20.0	162	(0.52)	20.0	162	(0.52)	19.0	162	(0.52)
32	20.0	161	(0.52)	20.0	162	(0.52)	20.0	161	(0.52)

Table 6.7: Random distinguishers for TSC-4 ciphertext.

7 Analysis of Salsa20 output stream

- learns current vectors quicker than other ciphers
- \bullet the case of six

8 Distinguishing hash outputs from random stream

- introduction, idea
- hash function candidates from SHA-3

8.1 Hash functions used

- except for 2 (?? source code size, compilation)
- from last phase
- those that could be limited in rounds are tested in weaker variant as well
- differences from Ondrej Dubovec Bc thesis

8.2 Generating binary stream from hash functions

- length set to 256b
- hashing 4 byte counters starting from random value (in fact, cutting each hash in half)

8.3 Determining optimal set change frequency

- previously, we used change every 100 generations
- 100 was taken from Matej Pristak's thesis
- Ondrej proposes 10 as best, however, data is not provided
- interpretation of results (Table 8.1):

- ???

		change frequency for test vector set										
	5	5 10 20 50 100 200 500 1000										
30 000 g.	(0.614)	(0.614)	(0.607)	(0.602)	(0.599)	(0.598)	(0.591)	(0.582)				
run-time	70 m.	52 m.	42 m.	37 m.	32 m.	28 m.	23 m.	20 m.				
300 sets	(0.567)	(0.583)	(0.585)	(0.589)	(0.599)	(0.608)	(0.617)	(0.618)				
run-time	4 m. 6 m. 9 m. 19 m. 32 m. 57 m. 115 m. 220 m.											

Table 8.1: Determining optimal change frequency for test vector set.

8.4 Results interpretation

• ???

	number of rounds								
	0	1	2	3	4	5	full		
ARIRANG	n = 694	n = 707	n = 467	n =	(full)	_	(0.52)		
				1071					
Aurora	n =	(0.75)	(0.78)	(0.52)	_	_	(0.52)		
	5614		!!!						
Blake	n = 474	(0.52)	_	_	_	_	(0.52)		
Blue	(0.52)	_	_	-	_	-	(0.52)		
Midnight									
Wish									
Cheetah	n = 181	n = 574	n = 708	(0.90)	(0.86)!!!	(0.52)	(0.52)		
				!!!					
CHI	(0.52)	_	_	_	_	_	(0.52)		
CRUNCH	n = 104	n = 534	n = 954	10-n =	17-	34-	(0.52)		
				1327	n = 774	(0.52)			
CubeHash	n = 104	(0.52)	_	_		-	(0.52)		
DCH	n = 104	(0.73)	(0.52)	_	_	_	(0.52)		
		!!!							
Dynamic	n = 484	n =	n =	(0.95)	(0.74)	(0.61)	(0.52)		
SHA		2337	1773 !!!	!!!					
Dynamic	from 6	(0.59)							
SHA	->								
Dynamic	_	(0.94)	(0.74)	(0.75)	(0.57)	(0.60)	(0.52)		
SHA2		!!!							
Dynamic	from 6								
SHA2	->								

Table 8.2: Random distinguishers for SHA-3 candidate functions.

	number of rounds								
	0	1	2	3	4	5	full		
ECHO	_	(0.73)					(0.52)		
		`!!! ´							
ESSENCE	8-(0.52)						(0.52)		
Fugue	(0.52)						(0.52)		
Grøstl	n =						(0.52)		
	8651 !!!								
Hamsi	n =						(0.52)		
	12408 !!!								
JH	n = 581						(0.52)		
Lesamnta	n = 791						(0.52)		
Luffa	n = 604						(0.52)		
MD6	n = 101						(0.52)		
Sarmal	(0.52)						(0.52)		
SHAvite-3	(0.52)						(0.52)		
SIMD	n =						(0.52)		
	5428								
Tangle	n = 714						(0.52)		
Twister	n = 474						(0.52)		
Vortex	n = 104						n =		
							1257		
WaMM	n =						(0.52)		
	1171								
Waterfall	(0.52)						(0.52)		

Table 8.3: Random distinguishers for SHA-3 candidate functions.

9 Conclusions and future work

9.1 Conclusions based on experimental data

- summary of what we did
- control distinguishers (random-random, hr-de, audio)
- estream (round limited ciphers)
- analysis of Salsa20
- sha3 (round limited hash functions)
- different approach than statistical batteries -> possibly new things
- dynamically adapting distinguisher both advantage and disadvantage
- comparable to statistical tests, however smaller inputs
- speed: slow learning (more computational power needed), fast distinguishing
- problem with interpreting results

9.2 Proposed future work

- deep analyses instead of wide
- possibilities of longer input
 - READX
 - memory circuit
- tools for interpreting results
 - histogram of outputs in nodes
- fixing functions in layers