

SISTEMAS DIGITALES

Tema 3- Álgebra de Conmutación

José Luis Ávila Jiménez

Objetivos.

- Indicar los postulados o axiomas del Álgebra de Boole.
- Definir el Álgebra de Conmutación e indicar sus teoremas.
- Definir el concepto de función lógica, mostrando sus distintas formas de representación.
- Mostrar las funciones lógicas de dos variables, indicando sus características básicas.
- Definir el concepto de puerta lógica e indicar las puertas lógicas de las funciones lógicas de dos variables.
- Demostrar la universalidad de las puertas NAND y NOR.
- Comprender los conceptos de Mínterm y Máxterm.
- Analizar el desarrollo de Shannon.
- Comprender las dos formas lógicas y abreviadas para expresar una función lógica: suma de mínterms y producto de máxterms.
- Mostrar los fundamentos en los que se basan los métodos de simplificación de funciones lógicas.
- Comprender la metodología de simplificación de funciones lógicas mediante los mapas de Karnaugh.
- Asimilar el concepto de función lógica incompletamente especificada y su forma de simplificación.

- 1. Álgebra de Boole. Postulados y teoremas.
- 2. Funciones de conmutación:
 - 3.2.1. Definición.
 - 3.2.2. Formas de representación: tabla de verdad, expresión lógica y diagrama lógico.
- 3. Funciones lógicas básicas: AND, OR, NOT, NAND, NOR, XOR Y XNOR.
 - 1. Introducción a las puertas lógicas básicas.
 - 2. Conjuntos funcionalmente completos. Suficiencia de las funciones NAND y NOR.
- 4. Formas canónicas: concepto de mínterm y máxterm.
- 3.5.— Desarrollo de Shannon: Primera y segunda forma.
- 3.6. Fundamentos de la simplificación de funciones. Adyacencias.
- 3.7.— Funciones incompletamente especificadas.
- 3.8. Método de simplificación de Karnaugh.

3.1. – Álgebra de Boole.

Un Álgebra es una estructura matemática que comprende un conjunto de elementos y un conjunto de operaciones u operadores, que actúan sobre dichos elementos.

Los postulados o axiomas determinan cómo se realizan dichas operaciones. Los postulados no se demuestran y permiten deducir los teoremas y propiedades de dicha estructura.

En 1854 George Boole presentó un tratamiento sistemático de la lógica binaria en su libro "Investigación sobre las Leyes del Pensamiento", que ahora se denomina **álgebra de Boole**.

En 1938, Claude E. **Shannon** aplicó este álgebra particular para demostrar que las propiedades de los circuitos de conmutación eléctricos se podían representar con un álgebra booleana bivaluada, que se llamó **álgebra de conmutación**.

3.1. – Álgebra de Boole.

Los postulados son la hipótesis de partida para deducir teoremas y propiedades de un álgebra. Para el caso concreto del álgebra de Boole, se pueden utilizar diferentes conjuntos de postulados; uno de los más utilizados es el propuesto por Edward Vermilye **Huntington** en 1904.

Se parte de la existencia de un conjunto de elementos, B, en el que se puede establecer una relación de equivalencia, =, para la que se cumple el **principio de sustitución**:

 \forall x, y \in B, si x es equivalente a y, (x = y), se puede sustituir x por y, y viceversa.

3.1. – Álgebra de Boole. Postulados de Huntington.

P1: Leyes de composición interna: Se definen dos leyes de composición interna: + (operador O, OR o suma) y · (operador Y, AND o producto), siendo B cerrado para ambas operaciones:

$$\forall x, y \in B$$
 a) $x + y \in B$
b) $x \cdot y \in B$

P2: Elementos neutros (o identidad): Existen elementos neutros para ambas operaciones, que son 0 para la suma, y 1 para el producto:

a)
$$\exists 0 \in B / \forall x \in B, x + 0 = 0 + x = x$$

b)
$$\exists 1 \in B / \forall x \in B, x \cdot 1 = 1 \cdot x = x$$

3.1. – Álgebra de Boole. Postulados de Huntington.

P3: Propiedad conmutativa: $\forall x, y \in B$ a) x + y = y + x

b)
$$x \cdot y = y \cdot x$$

P4: Propiedad distributiva: $\forall x, y, z \in B$ a) $x + (y \cdot z) = (x + y) \cdot (x + z)$

b)
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

P5: Elemento complementario o complemento: $\forall x \in B, \exists y \in B / x + y = 1$

b)
$$x \cdot y = 0$$

P6: Cardinalidad acotada: En el conjunto B existen al menos dos elementos diferentes.

$$\exists x, y \in B / x \neq y$$

3.1. – Álgebra de Boole.

Diferencias entre el Álgebra de Boole y el Álgebra definida en el campo de los números reales respecto a la suma y la resta:

- En un álgebra "corriente", la suma (+) no es distributiva respecto al producto (·).
- El álgebra booleana no tiene inverso respecto a las dos operaciones, por tanto no tiene operaciones de resta ni división.
- Existen complementos en el álgebra booleana, pero no en el álgebra corriente.
- El álgebra de Boole se aplica a un conjunto finito de elementos, mientras que el álgebra corriente se aplica a un conjunto infinito de números reales.
- En estos postulados de Huntington no se incluye la propiedad asociativa, ya que se puede demostrar a partir de los postulados (teorema).

3.1. – Álgebra de Conmutación.

Álgebra de Conmutación: El Álgebra de Conmutación es un Álgebra de Boole que emplea solamente dos elementos. $B = \{0,1\}$. Lo representamos por B_2 .

Este álgebra booleana bivaluada constituye la base de la lógica matemática, en la que los dos elementos son verdadero y falso, y del diseño lógico, en el que los elementos son 0 y 1.

Los elementos 0 y 1 de B_2 corresponden a los dos valores binarios usados en los sistemas digitales.

Principio de dualidad: Si en una igualdad se intercambian los operadores "+" y "·", y los elementos 0 y 1, se obtiene otra igualdad válida.

3.1.- Álgebra de Boole. Teoremas.

T1: Ley de unicidad del complemento:

Los elementos neutros para la suma (0) y para el producto (1) son únicos

T2: Ley de idempotencia:
$$\forall x \in B_2$$
, a) $x + x = x$ b) $x \cdot x = x$

T3: Elementos nulos:
$$\forall x \in B_2$$
, a) $x + 1 = 1$
b) $x \cdot 0 = 0$

T4: Teorema de absorción:
$$\forall x, y \in B_2$$
 a) $x + (x \cdot y) = x$ b) $x \cdot (x + y) = x$

3.1.- Álgebra de Boole. Teoremas.

T5: Teorema de involución: El complemento del complemento de cada elemento, es el propio elemento. $\forall x \in B_2$ $\overline{\overline{x}} = x$

T6: Propiedad asociativa de la suma y el producto: $\forall x,y,x\in B_2$ x+(y+z)=(x+y)+z $x\cdot (y\cdot z)=(x\cdot y)\cdot z$

T7: Leyes de De Morgan: En general estas leyes dicen lo siguiente:

- El complemento de la suma es igual al producto de complementos.
- El complemento del producto es igual a la suma de complementos.

Para dos variables

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

Para n variables

$$\overline{x+y+z\cdot\ldots}=\overline{x}\cdot\overline{y}\cdot\overline{z}+\ldots$$

$$\overline{x\cdot y\cdot z\cdot \ldots}=\overline{x}+\overline{y}+\overline{z}+\ldots$$

- 1. Álgebra de Boole. Postulados y teoremas.
- 2. Funciones de conmutación:
 - 3.2.1. Definición.
 - 3.2.2. Formas de representación: tabla de verdad, expresión lógica y diagrama lógico.
- 3. Funciones lógicas básicas: AND, OR, NOT, NAND, NOR, XOR Y XNOR.
 - 1. Introducción a las puertas lógicas básicas.
 - 2. Conjuntos funcionalmente completos. Suficiencia de las funciones NAND y NOR.
- 4.— Formas canónicas: concepto de mínterm y máxterm.
- 3.5.— Desarrollo de Shannon: Primera y segunda forma.
- 3.6. Fundamentos de la simplificación de funciones. Adyacencias.
- 3.7.— Funciones incompletamente especificadas.
- 3.8. Método de simplificación de Karnaugh.

3.2. – Funciones de conmutación: Definición.

Una función lógica f, que representaremos $f(x_1, x_2, ..., x_n)$, donde $x_1, x_2, ..., x_n$ son las variables de entrada y f la de salida, se define como toda función cuyos valores de entrada y salida solamente pueden ser los elementos del álgebra de conmutación, es decir 0 y 1, y están relacionados mediante los operadores del álgebra de conmutación $\{+, \bullet, \bar{\ }\}$.

Las variables de entrada y salida se denominan variables lógicas.

Las señales de entrada y salida de un sistema digital solamente pueden tomar los valores 0 y 1,

por lo que:

- Se podrán representar mediante variables lógicas.
- Las señales de salida se podrán expresar matemáticamente a partir de las de entrada mediante una función lógica.
- El álgebra de conmutación permitirá el análisis y diseño de los sistemas digitales.

- 3.1. Álgebra de Boole. Postulados y teoremas.
- 3.2. Funciones de conmutación:
 - 1. Definición.
 - 2. Formas de representación: expresión lógica, tabla de verdad y diagrama lógico.
- 3. Funciones lógicas básicas: AND, OR, NOT, NAND, NOR, XOR Y XNOR.
 - 1. Introducción a las puertas lógicas básicas.
 - 2. Conjuntos funcionalmente completos. Suficiencia de las funciones NAND y NOR.
- 4.— Formas canónicas: concepto de mínterm y máxterm.
- 3.5.— Desarrollo de Shannon: Primera y segunda forma.
- 3.6. Fundamentos de la simplificación de funciones. Adyacencias.
- 3.7.— Funciones incompletamente especificadas.
- 3.8. Método de simplificación de Karnaugh.

3.2.2. – Formas de representación: Expresión lógica.

Es una expresión algebraica que relaciona la variable lógica de salida con las de entrada mediante los operadores del Álgebra de Conmutación o Álgebra de Boole $\{+, \bullet, \bar{\ }\}$.

• Ejemplo:
$$Z_1 = \overline{x_1 \cdot x_2} + x_3$$
 $Z_2 = x_1 + (x_2 \overline{x_3})$

Es decir, una función de $\overline{\text{conmuta}}$ ción puede expresarse como una combinación lineal de las entradas o de sus complementos. $f = f(x_1, x_2,...,x_n)$.

3.2.2. – Formas de representación: Tabla de verdad.

Indica el valor de la función lógica para cada combinación de valores de sus variables de entrada.

Para **m** funciones de **n** variables, consta de un encabezamiento, **2**ⁿ filas y de **n+m** columnas.

Ejemplo:

x ₁	X ₂	z ₁	Z ₂	Z ₃
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	1	0	1

3.2.2. – Formas de representación: Diagrama lógico.

Implementación física de una función lógica mediante puertas lógicas.

Puerta lógica es un circuito digital que implementa un operador del álgebra de conmutación o una función lógica sencilla.

Se implementan mediante Circuitos Integrados Digitales.

Ejemplo:

- 3.1. Álgebra de Boole. Postulados y teoremas.
- 3.2. Funciones de conmutación:
 - 1. Definición.
 - 2. Formas de representación: tabla de verdad, expresión lógica y diagrama lógico.
- 3. Funciones lógicas básicas: AND, OR, NOT, NAND, NOR, XOR Y XNOR.
 - 1. Introducción a las puertas lógicas básicas.
 - 2. Conjuntos funcionalmente completos. Suficiencia de las funciones NAND y NOR.
- 4. Formas canónicas: concepto de mínterm y máxterm.
- 3.5. Desarrollo de Shannon: Primera y segunda forma.
- 3.6. Fundamentos de la simplificación de funciones. Adyacencias.
- 3.7.— Funciones incompletamente especificadas.
- 3.8. Método de simplificación de Karnaugh.

3.3. – Funciones lógicas básicas: Introducción.

Para implementar físicamente las funciones de conmutación se construye un circuito lógico en el que se usan las variables de la expresión como entrada al circuito lógico que contiene una o más puertas lógicas.

La colección de puertas lógicas que se usan para construir un circuito lógico se denomina biblioteca de puertas, y las puertas de biblioteca se denominan puertas normalizadas.

Una puerta lógica es un circuito digital que implementa un operador del álgebra de conmutación o una función lógica sencilla.

Generalmente, se seleccionan los ocho operadores siguientes:

- Las derivadas de los operadores del Álgebra de Conmutación:
 - Función lógica buffer.
 - Función lógica NOT.
 - Función lógica AND.
 - Función lógica OR.

- Las obtenidas por combinación de varios operadores del Álgebra de Conmutación:
 - Función lógica NAND.
 - Función lógica NOR.
 - Función lógica XOR.
 - Función lógica XNOR.

3.3. – Funciones lógicas básicas.

Nombre	Tabla de verdad	Expresión lógica	Símbolo lógico
Adaptador o transferencia (buffer)	x f=x 0 0 1 1	f = x	
NOT (Inversor)	$ \begin{array}{c c} x & f = \bar{x} \\ \hline 0 & 1 \\ 1 & 0 \end{array} $	f = ₹	
AND (producto)	x y f= x · y 0 0 0 0 1 0 1 0 0 1 1 1	$f = x \cdot y$	
OR (suma)	x y f=x+y 0 0 0 0 1 1 1 0 1 1 1 1	f = x + y	

3.3. – Funciones lógicas básicas.

Nombre	Tabla de verdad	Expresión lógica	Símbolo lógico
NAND	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f=x·y	
NOR	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f=x+y	
XOR (OR exclusiva)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f=x⊕y=x?·y+x·y?	
XNOR (equivalencia o comparación)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f=x\odot y=xy$ +xy	

- 3.1. Álgebra de Boole. Postulados y teoremas.
- 3.2. Funciones de conmutación:
 - Definición.
 - 2. Formas de representación: tabla de verdad, expresión lógica y diagrama lógico.
- 3. Funciones lógicas básicas: AND, OR, NOT, NAND, NOR, XOR Y XNOR.
 - 1. Introducción a las puertas lógicas básicas.
 - 2. Conjuntos funcionalmente completos. Suficiencia de las funciones NAND y NOR.
- 4. Formas canónicas: concepto de mínterm y máxterm.
- 3.5.— Desarrollo de Shannon: Primera y segunda forma.
- 3.6. Fundamentos de la simplificación de funciones. Adyacencias.
- 3.7. Funciones incompletamente especificadas.
- 3.8. Método de simplificación de Karnaugh.

3.3.2. Conjuntos funcionalmente completos.

Se dice que un conjunto de puertas lógicas es funcionalmente completo si en función de ellas se puede expresar cualquier función de conmutación.

Vamos a estudiar tres conjuntos funcionalmente completos: puertas NOT, AND y OR, puertas NAND y puertas NOR.

Las puertas básicas NOT, AND y OR constituyen un conjunto funcionalmente completo ya que coinciden con los operadores con que se expresa una función lógica mediante álgebra de Boole.

Vamos a demostrar que podemos construir NOT, AND y OR sólo con puertas NAND, y a continuación lo demostraremos con puertas NOR.

3.3.2. Universalidad de las puertas NAND.

NOT: Aplicando la ley de idempotencia del producto se obtiene que uniendo las dos entradas de una puerta NAND actúa como una puerta NOT.

AND: Aplicamos la entradas.

leyde involución

n

y necesitamos dos puertas NAND de dos

OR: Aplicamos la ley de involución y el teorema de De Morgan. Necesitamos tres puertas NAND de dos entradas

 $\overline{\Lambda \cdot \Lambda} = \overline{\Lambda}$

3.3.2. Universalidad de las puertas NOR.

NOT: Aplicando la ley de idempotencia del producto se obtiene que uniendo las dos entradas

de una puerta NOR actúa como una puerta NOT.

OR:. Aplicamos el teorema de involución y necesitamos dos puertas NOR de dos entradas.

<u>AND</u>: .Aplicamos la ley de involución y el teorema de De Morgan a uno de los complementos. Necesitamos tres puertas NOR de dos entradas.

A
$$A = \overline{A} + \overline{B} = \overline{A} + \overline$$