

(19) 日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2000-48617

(P2000-48617A)

(43) 公開日 平成12年2月18日 (2000.2.18)

(51) Int.Cl.⁷

F 21 V 8/00

識別記号

6 0 1

F I

F 21 V 8/00

テマコード(参考)

6 0 1 A

審査請求 未請求 請求項の数12 FD (全 11 頁)

(21) 出願番号 特願平10-228705

(22) 出願日 平成10年7月28日 (1998.7.28)

(71) 出願人 000003964

日東电工株式会社

大阪府茨木市下穂積1丁目1番2号

(72) 発明者 梅本 清司

大阪府茨木市下穂積1丁目1番2号 日東
电工株式会社内

(72) 発明者 矢野 周治

大阪府茨木市下穂積1丁目1番2号 日東
电工株式会社内

(74) 代理人 100088007

弁理士 藤本 勉

(54) 【発明の名称】 導光板、面光源装置及び反射型液晶表示装置

(57) 【要約】

【課題】 非点灯時及び点灯時の視認におけるコントラストに優れ、表示の明るさにも優れると共に、導光板を介した表示像が乱れにくく明瞭性に優れ、モアレ現象による表示像の視認低下も生じにくい反射型液晶表示装置、並びにそれを形成しうる導光板や面光源装置の開発。

【解決手段】 入射側面(13)からの入射光を上面(11)に形成した光出射手段を介して下面(12)より出射し、その下面からの入射光が上面より透過すると共に、前記上面に反射防止層(2a)を有する導光板、及びその導光板の入射側面に光源を有する面光源装置、並びにその面光源装置における下面側に反射層を具備する液晶セルを有する反射型液晶表示装置。

【効果】 反射防止層が表示像と重複して白抜けやコントラスト低下の原因となり、ゴーストの原因となる表面反射光を抑制し、点灯時及び非点灯時のいずれの場合にも良好な視認性が達成される。

【特許請求の範囲】

【請求項1】 入射側面からの入射光を上面に形成した光出射手段を介して下面より出射し、その下面からの入射光が上面より透過すると共に、前記上面に反射防止層を有することを特徴とする導光板。

【請求項2】 請求項1において、反射防止層が導光板の上面より低屈折率の誘電体膜、フッ素含有ポリマー又は誘電体多層膜からなる導光板。

【請求項3】 請求項1又は2において、反射防止層が導光板上面を密着被覆する真空蒸着膜又はスパッタリング方式の形成膜からなる導光板。 10

【請求項4】 請求項1～3において、導光板の下面にも反射防止層を有する導光板。

【請求項5】 請求項4において、導光板の下面に設けた反射防止層が反射防止シートからなる導光板。

【請求項6】 請求項1～5において、反射防止層が表面保護層を兼ねるものである導光板。

【請求項7】 請求項1～6において、導光板の上面又は下面に設けた反射防止層の波長550nmの垂直入射光に対する反射率が2%以下である導光板。 20

【請求項8】 請求項1～7において、入射側面と下面の両基準平面に対する垂直面内において、下面からの出射光の最大強度の方向が下面の基準平面に対する法線に対して30度以内にある導光板。

【請求項9】 請求項1～8において、光出射手段が短辺面と長辺面からなる連続又は不連続のプリズム状凸凹の50μm～1.5mmピッチの繰返し構造によりなり、前記短辺面が下面の基準平面に対し傾斜角30～45度、投影幅40μm以下で入射側面側よりその対向端側に下り傾斜する斜面からなると共に、前記の長辺面が当該基準平面に対し0超～10度の傾斜角範囲にあってその全体の角度差が5度以内であり、最寄り長辺面間の傾斜角差が1度以内で、当該基準平面に対する投影面積が短辺面のそれの5倍以上である斜面からなる導光板。 30

【請求項10】 請求項9において、プリズム状凹凸の稜線方向が入射側面の基準平面に対し±35度以内にある導光板。

【請求項11】 請求項1～10に記載の導光板の入射側面に光源を有することを特徴とする面光源装置。

【請求項12】 請求項11に記載の面光源装置の下面側に、反射層を具備する液晶セルを有することを特徴とする反射型液晶表示装置。 40

【発明の詳細な説明】

【0001】

【発明の技術分野】 本発明は、明るくて見易い反射型液晶表示装置を形成しうる導光板、及びそれを用いた光の有効利用効率に優れる面光源装置に関する。

【0002】

【発明の背景】 反射型液晶表示装置の暗部等での視認を可能とする照明装置が求められている中、本発明者らは 50

透過型液晶表示装置で使用的バックライトを液晶セルの視認側に配置するフロントライトシステムの適用を試みた。かかるバックライトは、側面からの入射光を光出射手段を介し上下面の一方より出射する導光板を使用したものであり、フロントライトシステムではその導光板を介して表示内容を視認することとなる。

【0003】 しかしながら、従来の導光板を用いたバックライトでは、点灯時におけるコントラスト不足や非点灯時における明るさ不足、表示の乱れなどを生じて実用の困難なことが判明した。ちなみに拡散ドットや微細凹凸を光出射手段とする導光板使用のものでは、ドット等による透過光の乱反射や外光の表面での乱反射などにより点灯時の視認でコントラストに乏しく、また室内照明等の外光による非点灯時の視認にてもコントラストに乏しくて表示の明るさにも乏しいと共に、導光板を介した表示像が著しく乱れて明瞭さに乏しい問題を発生する。

【0004】 一方、傾斜角が45度の斜面と0度のフラット面からなる階段状のプリズム構造を光出射手段とする導光板（特開昭62-73206号公報）を使用したものでも、点灯時の視認でコントラストに乏しく、表示の明るさにも乏しい問題を発生する。また上面から視認した場合に、導光板の下面にて液晶セル等に入射することなく反射した光が上面からの漏れ光となり、その漏れ光や導光板上面での反射光が点灯時及び非点灯時のいずれの場合にも表示像と重複して白呆けの発生やコントラスト低下の原因となり、視認性を低下させる問題点もあった。

【0005】 さらに表面での反射は、鏡効果を生じて外光の映り込みによるゴースト現象を生じ、表示像の視認を阻害する原因ともなる。加えてプリズム構造、特にその頂点近傍が損傷しやすく、その損傷部が散乱点等の輝点や暗点となって視認されやすく、表示像の視認を阻害する問題を生じる。

【0006】

【発明の技術的課題】 従って本発明は、非点灯時及び点灯時の視認におけるコントラストに優れ、表示の明るさにも優れると共に、導光板を介した表示像が乱れにくくて明瞭性に優れ、モアレ現象による表示像の視認低下も生じにくい反射型液晶表示装置、並びにそれを形成しうる導光板や面光源装置の開発を課題とする。

【0007】

【課題の解決手段】 本発明は、入射側面からの入射光を上面に形成した光出射手段を介して下面より出射し、その下面からの入射光が上面より透過すると共に、前記上面に反射防止層を有することを特徴とする導光板、及びその導光板の入射側面に光源を有することを特徴とする面光源装置、並びにその面光源装置における下面側に反射層を具備する液晶セルを有することを特徴とする反射型液晶表示装置を提供するものである。

【0008】

【発明の効果】本発明によれば、上面に設けた反射防止層が導光板表面での反射を抑制し、液晶セルによる表示像の白呆けやコントラストの低下を抑制でき、また鏡効果によるゴースト現象も抑制して、点灯時及び非点灯時のいずれの場合にも良好な視認性を達成することができる。さらに導光板の下面にも反射防止層を設けた場合には導光板下面で反射して上面からの漏れ光となる光も抑制でき、液晶セル表示像との重複を抑制してより白呆けやコントラストの低下のない良好な視認性を達成することができる。ちなみに図8に仮想線にて例示した如く、導光板1の上下面による各面での反射率は、外部入射光 ϵ 及び導光板出射光 δ のいずれの場合にもアクリル系樹脂では約4%が予測され、白呆けやコントラストに与える影響が大きい。加えて反射防止層に表面保護機能をもたせることも容易で、そのときには上面の光出射手段の損傷を防止でき、表示特性の長期持続性に優れるものとすことができ、頂部等が損傷しやすいプリズム状の光出射手段等の場合に特に有利に適用することができる。

【0009】また本発明によれば、下面出射光が垂直方向への指向性に優れ、かつ上面よりの漏れ光が表示像と重複しにくい導光板を得ることができ、それを用いて光の有効利用効率に優れる面光源装置を得ることができて、非点灯時及び点灯時の視認におけるコントラストに優れ、表示の明るさにも優れると共に、導光板を介した表示像が乱れにくくて明瞭性に優れ、光出射手段によるモアレ現象も生じにくくて表示品位に優れる反射型液晶表示装置を得ることができる。

【0010】前記の作用効果は、導光板に特殊な特性を付与することに基づく。すなわち本発明者らは、上記の課題を克服するために銳意研究を重ねる中で、上記した従来の拡散ドットや微細凹凸を光出射手段とする導光板では、図9、図10に示した如く、導光板18の光出射手段による散乱で側面より入射した伝送光はほぼ全方位に発散し、その散乱特性により下面よりの出射光 α_1 も上面からの漏れ光 β_1 も下面に対する法線(正面方向)Hに対し約60度の方向 θ_1 に最大強度B₁を示し、その強度もほぼ同じであるため、視認に有効な方向、特に前記法線を基準に縦方向の上方約15度～下方約30度及び横方向の左右約30度の視角範囲における光量が少なくて表示の明るさに乏しくなり、また表示像を形成する下面よりの出射光 α_2 が上面からの漏れ光 β_2 と重複してコントラストに乏しくなると共に、非点灯時では前記の散乱光 γ_2 による表示像の白呆けでコントラストに乏しくなり、導光板による散乱で表示光 γ_1 、 γ_2 が混交して表示像を著しく乱すことを発明した。

【0011】また特開昭62-73206号公報によるプリズム式光出射手段を有する導光板にても、前記と同様に上面からの漏れ光が多くてそれが表示像を形成する下面からの出射光と重複してコントラストを低下させ、また出射角度の大きい出射光が多くて視認に有効な方向

の光量が少なく、表示の明るさを低下させて表示品位の低下問題を発生させることを発明した。

【0012】従って明るくて明瞭な表示像の形成には、側面からの入射光が下面より指向性よく、就中、図4に例示の如く下面に対する法線Hの方向に可及的に近い角度 θ_1 で、特に前記の視角範囲において集光性よく出射Aする導光板であることが求められる。反射型液晶表示装置では通例、平均拡散角度が5～15度程度の粗面系反射層を介して表示の均一化と明確化を図っており、反射層に大きい角度で入射する光が多いと(図9：B、図10： α_1)、視認に有効な方向の光量が減少して明るい表示が困難となり、また大きい角度の視認には表示の反転が生じ易く、電界復屈折型の表示では色変化が大きくなるなどの問題も発生しやすくなる。

【0013】またコントラストの向上には、図4に例示の如く上面からの漏れ光 a が表示像を形成する下面からの出射光Aと可及的に重複しないこと、特に前記の視角範囲での重複が可及的に少ないことが求められる。反射型液晶表示装置では、通例1：5～1：20のコントラスト比であるから、漏れ光と表示像の重複がコントラスト比に与える影響は上記した表面反射と同様に大きい。

【0014】さらに表示像を乱すことの防止には、上面から下面及び下面から上面に透過する光が可及的に散乱されないことが求められる。反射型液晶表示装置に設けるフロントライトは、暗所での視認を可能とする補助光源であり、本来は消費電力の低減を目的とした室内光や自然光等の外光の利用による視認であるから、その本来の非点灯状態で導光板により外光の入射が阻害されると表示が暗くなるし、導光板で散乱を生じると表面白化によるコントラストの低下や、表示像の混交等による乱れが生じることとなる。

【0015】加えて表示品位をより向上させる点よりは、モアレを生じない明瞭な表示の達成が望まれ、液晶表示装置の画素ピッチは、100～300μmが一般的であるから、導光板の透過光に対する影響を可及的に抑制して、ピッチが100μm程度の情報を明瞭に視認できて、画素との干渉によるモアレを抑制した良好な表示品位が望まれる。

【0016】

【発明の実施形態】本発明による導光板は、入射側面からの入射光を上面に形成した光出射手段を介して下面より出射し、その下面からの入射光が上面より透過すると共に、前記上面に反射防止層を有し、必要に応じ前記下面にも反射防止層を有するものである。その例を図1、図2(a)～(c)に示した。1が導光板で、11、16、17が光出射手段を形成した上面、12が光出射側となる下面、13が入射側面であり、14は横側面、15は入射側面に対する対向端である。また2aが上面11、16、17に、2bが下面12に設けた反射防止層である。

【0017】本発明による導光板は、前記の如く入射側面からの入射光を上面に形成した光出射手段を介して下面より出射するものであり、一般に上面、それに対向する下面、及び上下面間の側面からなる入射側面を有する板状物となる。板状物は、同厚板等でもよいが、好ましくは図例の如く、入射側面13に対向する対向端15の厚さが入射側面のそれよりも薄いもの、就中50%以下の厚さとしたものである。

【0018】前記対向端の薄厚化により、図3、図4に示した太矢印の如く、入射側面より入射した光が対向端に至るまで、上面に形成した光出射手段に効率よく入射し、反射等を介し下面より出射して入射光を目的面に効率よく供給でき、また導光板を軽量化することができる利点などがある。ちなみに、上面が図2aの如き直線面の場合、均一厚の導光板の約75%の重量とすることができる。

【0019】導光板は、上記の出射特性を示すものであればよい。従って前記した板状物の上面に設ける光出射手段は、かかる特性を示す適宜なものにて形成しうるが、垂直方向への指向性に優れる下面からの出射光を得る点などよりはプリズム状凸凹からなる光出射手段が好ましい。

【0020】前記のプリズム状凸凹は、等辺面からなる凸部又は凹部にても形成しうるが、光の利用効率などの点よりは短辺面と長辺面からなる凸部又は凹部にて形成することが好ましい。そのプリズム状凸凹の例を図3(a), (b)に示した。20aが凸部、20bが凹部であり、21, 23が短辺面、22, 24が長辺面である。なお凸部又は凹部は、短辺面及び長辺面等とその形成面との交点を結ぶ直線に基づき、短辺面及び長辺面等の交点(頂点)が当該直線よりも突出しているか(凸)、窪んでいるか(凹)による。

【0021】すなわち図3に例示のものに基づく場合、凸部20a又は凹部20bを形成する短辺面と長辺面(21と22又は23と24)の形成面との交点を結ぶ仮想線で示した直線20に基づき、短辺面と長辺面の交点(頂点)が当該直線20よりも突出しているか(凸)、窪んでいるか(凹)による。

【0022】導光板の上面からの漏れ光と下面からの出射光による表示像との重複によるコントラストの低下を防止する点などより好ましい導光板は、図4に例示した如く入射側面13よりの入射光(太矢印)の下面12よりの出射光における最大強度Aの方向θ₃が、下面の基準平面に対する法線Hに対して30度以内にあり、かつ前記30度以内の方向における上面からの漏れ光の最大強度が下面における前記最大強度Aの1/5以下のものである。前記方向の上面からの漏れ光は、反射層を介した最大強度Aを示す下面からの光の反射光と重複しやすく、前記の上面漏れ光/下面出射光の最大強度比が大きいと表示像の強さを相対的に減殺しやすく、コントラ

トを低下させやすい。

【0023】反射型液晶表示装置とした場合の明るさやコントラスト等の表示品位の向上などの点よりさらに好ましい導光板は、図4の如く入射側面13と下面12の両基準平面に対する垂直面内(図上の断面)において前記θ₃が30度以内、就中25度以内、特に20度以内にあるものである。

【0024】また、前記の法線Hを基準に入射側面13の側を負方向としたとき、最大強度Aの方向と同じ角度θ₃の上面11からの漏れ光aの強度が当該最大強度Aの1/10以下、就中1/15以下、特に1/20以下であるものである。当該漏れ光aは、最大強度Aを示す光の正反射方向と重複するため、前記a/Aの値が大きいと表示像の強さを相対的に減殺し、コントラストを低下させる。

【0025】前記a/Aの低下の点などよりは、前記の最大強度A方向の輝度に対して下面出射光の法線H方向の輝度が60%以下であり、法線Hを基準とした立体角30度以内における前記上面からの漏れ光の量が下面からの光量の1/8以下、就中1/10以下、特に1/20以下の特性を示す導光板であることが好ましい。

【0026】上記した最大強度方向や最大強度/漏れ光強度比等の特性を達成する点などより好ましい光出射手段は、図3に例示した如く下面12の基準平面に対する傾斜角が30~45度の短辺面(θ₁)と0超~10度の長辺面(θ₂)からなるプリズム状凸凹(20a又は20b)の繰返し構造よりなるものである。

【0027】前記において、入射側面(13)の側より対向端(15)の側に下り傾斜する斜面として形成した短辺面21, 23は、側面よりの入射光の内、その面に入射する光を反射して下面(光出射面)に供給する役割をする。その場合、短辺面の傾斜角θ₁を30~45度とすることにより図3に折線矢印で例示した如く、伝送光を下面に対し垂直性よく反射して図4の如く下面の法線Hに対し30度以内に最大強度Aの方向θ₃を示す下面出射光が効率よく得られる。当該傾斜角θ₁が30度未満では最大強度Aの方向θ₃が法線Hに対して大きくなり、また導光板内部での伝送角が大きくなつて導光板より出射できない光が増大しやすく、45度を超えると上面よりの漏れ光が増大しやすくて、表示品位を低下させやすい。

【0028】漏れ光の抑制やそれによる視認妨害の抑制等の前記性能などの点より短辺面の好ましい傾斜角θ₁は、導光板内部を伝送される光のスネルの法則による屈折に基づく全反射条件が一般に±41.8度であることなどを考慮して32~43度、就中35~42度である。

【0029】一方、長辺面は、それに入射する伝送光を反射して短辺面に供給すると共に、反射型液晶表示装置とした場合に液晶セルからの表示像を透過させることを

目的とする。かかる点より、下面の基準平面(12)に対する長辺面の傾斜角 θ_2 は、0超~10度であることが好ましい。

【0030】前記により、図3に折線矢印で例示した如く、当該傾斜角 θ_2 より大きい角度の伝送光が長辺面22、24に入射して反射され、その場合に当該長辺面の傾斜角に基づいて下面12により平行な角度で反射されて短辺面21、23に入射し、反射されて下面12より前記平行化により良好に集束されて出射する。

【0031】前記の結果、短辺面に直接入射する伝送光に加えて、長辺面に入射してその反射を介し短辺面に入射する伝送光もその短辺面を介した反射にて下面に供給することができ、その分の光利用効率の向上をはかりうると共に、長辺面で反射されて短辺面に入射する光の入射角を一定化でき、反射角のバラツキを抑制できて出射光の平行集光化をはかることができる。従って、上記した短辺面と長辺面の当該傾斜角を調節することにより、出射光に指向性をもたせることができ、それにより下面に対して垂直方向ないしそれに近い角度で光を出射させることができる。

【0032】長辺面の当該傾斜角 θ_2 が0度では伝送光を平行化する効果に乏しくなり、10度を超えると長辺面への入射率が低下して対向端側への光供給が不足し発光が不均一化しやすくなる。また、導光板の断面形状においても対向端側の薄型化が困難となり、プリズム状凹凸への入射光量も減少して発光効率も低下しやすくなる。ちなみに当該傾斜角 θ_2 が0度では薄型化に伴ってプリズム状凹凸のピッチを大きくする必要があり、短辺面を介した輝線状出射光の間隔が広くなりすぎて不自然な照明となりやすい。伝送光の平行光化による出射光の集光化や漏れ光の抑制等の前記性能などの点より長辺面の好ましい傾斜角 θ_2 は、8度以下、就中5度以下である。

【0033】上記した導光板の長辺面を介した表示像の視認性などの点より好ましい長辺面は、その傾斜角 θ_2 の角度差を導光板の全体で5度以内、就中4度以内、特に3度以内としたものであり、最寄りの長辺面間における傾斜角 θ_2 の差を1度以内、就中0.3度以内、特に0.1度以内としたものである。

【0034】前記により、透過する長辺面の傾斜角 θ_2 の相違等により表示像が受ける影響を抑制することができる。長辺面による透過角度の偏向が場所によって大きく相違すると不自然な表示像となり、特に近接画素の近傍における透過像の偏向差が大きいと著しく不自然な表示像となりやすい。

【0035】前記した傾斜角 θ_2 の角度差は、長辺面の傾斜角 θ_2 が上記した0超~10度の範囲にあることを前提とする。すなわち、かかる小さい傾斜角 θ_2 として長辺面透過時の屈折による表示像の偏向を抑制して許容値内とすることを前提とするものであり、これは観察点

を垂直方向近傍に設定して最適化した液晶表示装置の最適視認方向を変化させないことを目的とする。

【0036】表示像が偏向されると最適視認方向が垂直方向近傍からズレると共に、表示像の偏向が大きいと導光板上面からの漏れ光の出射方向に近付いてコントラストの低下などその影響を受けやすくなる場合もある。なお長辺面の傾斜角 θ_2 を0超~10度とする条件には、透過光の分散等の影響も無視できる程度のものとすることなども含まれている。

10 【0037】また明るい表示像を得る点よりは、外光の入射効率に優れ、液晶セルによる表示像の透過光率ないし出射効率に優れるものが好ましい。かかる点より、下面の基準平面に対する長辺面の投影面積が短辺面のそれの5倍以上、就中10倍以上、特に15倍以上のプリズム状凹凸とすることが好ましい。これにより、液晶セルによる表示像の大部分を長辺面を介して透過させることができる。

20 【0038】なお液晶セルによる表示像の透過に際して、短辺面に入射した表示像は入射側面側に反射されて上面より出射しないか、下面に対する法線を基準に長辺面透過の表示像とは反端側の大きく異なる方向に偏向されて出射し、長辺面を介した表示像に殆ど影響を及ぼさない。従ってかかる点より短辺面は、液晶セルの画素に対して極在しないことが好ましい。ちなみに極論的にいえば、画素の全面に対して短辺面がオーバーラップすると長辺面を介した垂直方向近傍での表示像の視認が殆どできなくなる。

30 【0039】よって表示光の透過不足で不自然な表示となることを防止する点などより、画素と短辺面がオーバーラップする面積を小さくして長辺面を介した充分な光透過率を確保することが好ましい。液晶セルの画素ピッチは100~300μmが一般的であり、前記の点やプリズム状凹凸の形成性なども鑑みた場合、短辺面は、下面の基準平面に対する投影幅に基づいて40μm以下、就中1~20μm、特に3~15μmとなるように形成されていることが好ましい。ちなみに当該投影幅が小さくなるほど短辺面の形成に高度な技術が必要となり、プリズム状凹凸の頂部が一定以上の曲率半径からなる丸みをもつこととなると散乱効果が現れて表示像の乱れなどの原因となる場合がある。

40 また一般に蛍光管のコヒーレント長が20μm程度とされている点などよりも、短辺面の投影幅が小さくなると回折等を生じ易くなり表示品位の低下原因となりやすい。

【0040】また前記の点より短辺面の間隔は大きいことが好ましいが、一方で短辺面は上記したように側面入射光の実質的な出射機能部分であるから、その間隔が広すぎると点灯時の照明が疎となってやはり不自然な表示となる場合があり、それらを鑑みた場合、図3に例示した如くプリズム状凹凸20a, 20bの繰返しピッチPは、50μm~1.5mmとすることが好ましい。なおピ

ピッチは、一定であってもよいし、例えばランダムピッチや所定数のピッチ単位をランダム又は規則的に組合せたものなどの如く不規則であってもよい。

【0041】さらにプリズム状凸凹の頂点の丸み等による散乱性の抑制による表示像の乱れ防止などの点より、上記の短辺面とそれに隣接する両長辺面がなす2つの頂点の丸みの曲率半径の和が、その頂点間の距離、すなわち短辺面の長さの1/2以下、就中1/2.5以下、特に1/3以下であることが好ましく、また下面から上面への光線透過率が90%以上で、ヘイズが15%以下であることが好ましい。

【0042】プリズム状凹凸からなる光出射手段の場合、液晶セルの画素と干渉してモアレを生じる場合がある。モアレの防止は、プリズム状凹凸のピッチ調節で行なうが、上記したようにプリズム状凹凸のピッチには好ましい範囲がある。従ってそのピッチ範囲でモアレが生じる場合の解決策が問題となる。

【0043】本発明においては、画素に対してプリズム状凹凸を交差状態で配列しうるよう、プリズム状凹凸を入射側面の基準平面に対し傾斜状態に形成してモアレを防止する方式が好ましい。その場合、傾斜角が大きすぎると短辺面を介した反射に偏向を生じて出射光の方向に大きな偏りが発生し、導光板の光伝送方向における発光強度の異方性が大きくなつて光利用効率も低下し、表示品位の低下原因となりやすい。

【0044】前記の点より、入射側面の基準平面に対するプリズム状凹凸の配列方向、すなわちプリズム状凹凸の稜線方向の傾斜角は、±35度以内、就中±30度以内、特に±25度以内とすることが好ましい。なお、±の符号は入射側面を基準とした傾斜の方向を意味する。モアレを無視しうる場合、プリズム状凹凸の配列方向は入射側面に平行なほど好ましい。

【0045】導光板は、上記したように適宜な形態とすることができる。楔形等とする場合にもその形状は適宜に決定でき、図2(a)に例示の如き直線面11や、図2(b), (c)に例示の如き曲面16, 17などのように適宜な面形状とすることができます。

【0046】また光出射手段を形成するプリズム状凹凸も、図3に例示の直線面21, 22, 23, 24で形成されている必要はなく、屈折面や湾曲面等を含む適宜な面形態に形成されていてもよい。またプリズム状凹凸は、ピッチに加えて形状等も異なる凹凸の組合せからなつてもよい。さらにプリズム状凹凸は、稜線が連続した一連の凸部又は凹部として形成されていてもよいし、所定の間隔を有して稜線方向に不連続に配列した断続的な凸部又は凹部として形成されていてもよい。

【0047】図例の如く導光板1の上面11, 16, 17には、反射防止層2aが設けられる。上面の反射防止層2aは、外光の表面反射や下面から上面への透過光等の反射の抑制による表示像のコントラスト低下やゴース

10

20

30

40

40

50

トの防止などを目的とする。また図2aに例示の如く導光板1の下面12にも必要に応じて反射防止層2bを設けることができる。下面の反射防止層2bは、導光板下面での反射を抑制し上面から漏れ光として出射することを抑制して表示像との重複によるコントラストの低下やゴーストの防止、表示像の透過率の向上等を目的とする。ちなみに上記したようにアクリル系樹脂やポリカーボネートによる1.49～1.6の屈折率範囲では、空気との界面での反射率は約3.9～5.3%に達する。この値は、偏光板やカラーフィルター等を介して光利用効率が50%以下となりやすい液晶表示装置において表示像のコントラスト等に与える影響が大きい。

【0048】反射防止層は、例えば導光板の上面や下面の付設層より低屈折率の材料からなる光学膜や低屈折率層などの如く従来に準じた反射防止層として形成することができる。従って反射防止層を形成する材料については特に限定はないが、一般には透明な誘電体やフッ素含有ポリマー等の低屈折率材料などが好ましく用いられる。また反射防止層は、膜厚制御により干渉効果を高めた誘電体多層膜等の多層膜などとして形成されていてもよくその場合、干渉効果の中心波長は、視感度や膜特性などの点より450～600nm、就中500～570nmであることが好ましい。

【0049】好ましい反射防止層は、全可視光域で反射防止特性を示すものであり、殊に可視光域の中間であり、視覚特性も高い波長550nmの光に基づいてその垂直入射光に対する反射率が2%以下、就中1.5%以下、特に1.3%以下のものである。なお反射防止層、特に上面におけるそれは、外力による光出射手段の損傷防止などの点より誘電体等の硬質な材料にて表面保護層を兼ねるものとして形成されていることが好ましい。ちなみにアクリル樹脂の表面硬度は鉛筆硬度にてH～2H程度であるが、ケイ素酸化物の如き酸化物誘電体などの硬質材料にて反射防止層を形成することで3H～4Hに高めることができる。また多層膜からなる反射防止層の場合には、厚さ効果なども加わって耐擦傷性をより高めることができる。

【0050】反射防止層は、適宜な方式で形成したものであつてよいが、上面におけるそれは光出射手段の形状を可及的に変化させないものであることが好ましい。特に光出射手段がプリズム状凹凸からなる場合、その形状変化は短辺面の反射特性を変化させやすいため好ましくない。上面における好ましい反射防止層は、真空蒸着方式やスパッタリング方式等の蒸着方式により上面を密着被覆するように形成したものである。

【0051】前記の方式によれば、塗工方式等による場合の如くプリズム状凹凸の凹部で厚さが増すことによるプリズム状凹凸の変形を防止して厚さの均一性に優れる反射防止層を形成することができる。また、短辺面における外光の反射には有利で、導光板内部の伝送光の反射

には不利となる厚さに制御することも容易に行うことができる。さらに蒸着源の配置制御で長辺面には外光反射に必要な厚さの反射防止層を形成しつつ、短辺面には反射防止層の形成を抑制して導光板上面の本来の反射機能を可及的に維持するものとすることもできる。

【0052】導光板の下面における反射防止層は、蒸着方式や塗工方式等により直接付設されていてもよいし、図2aに例示した如くフィルム等からなる透明基材25の片面に反射防止層26を付設した反射防止シートなどによる反射防止層2bとして、その反射防止層26が外側となるように設けられていてもよい。反射防止シート等として反射防止層を設ける場合、それは反射防止等の点より導光板の下面に空気層が混入しないように密着処理されていることが好ましい。その密着処理には、粘着層やその他の接着層等の適宜な接着手段を探ることができる。

【0053】ちなみに導光板、接着層及び透明基材を屈折率が可及的に同じとなるように、就中1.4~1.65、特に1.49~1.60の屈折率の範囲となるよう組合せることにより各界面での反射を抑制して、反射防止効果の向上を図ることができる。具体的には例えばポリメチルメタクリレートからなる導光板、アクリル系粘着層からなる接着層、及びトリアセチルセルロースからなる透明基材の組合せとすることにより屈折率を1.49~1.5の範囲とすることでき、各界面での反射を殆ど防止することができる。

【0054】導光板における下面や入射側面の形状については、特に限定はなく、適宜に決定してよい。一般には、フラットな下面及びその下面に対して垂直な入射側面とされる。入射側面については、例えば湾曲凹形などの光源の外周等に応じた形状として、入射光率の向上をはることもできる。さらに光源との間に介在する導入部を有する入射側面構造などとすることもできる。その導入部は、光源などに応じて適宜な形状とすることができます。

【0055】導光板は、光源の波長域に応じそれに透明性を示す適宜な材料にて形成しうる。ちなみに可視光域では、例えばアクリル系樹脂やポリカーボネート系樹脂、エポキシ系樹脂等で代表される透明樹脂やガラスなどがあげられる。複屈折を示さないか、複屈折の小さい材料で形成した導光板が好ましく用いられる。

【0056】導光板は、切削法にても形成でき、適宜な方法で形成することができる。量産性等の点より好ましい製造方法としては、熱可塑性樹脂を所定の形状を形成しうる金型に加熱下に押付て形状を転写する方法、加熱溶融させた熱可塑性樹脂あるいは熱や溶媒を介して流動化させた樹脂を所定の形状に成形しうる金型に充填する方法、熱や紫外線ないし放射線等で重合処理しうる液状樹脂を所定の形状を形成しうる型に充填ないし流延して重合処理する方法などがあげられる。なお導光板は、例

えば光の伝送を担う導光部にプリズム状凹凸等の光出射手段（上面）を形成したシートを接着したもの如く、同種又は異種の材料からなる部品の積層体などとして形成されていてもよく、1種の材料による一体的単層物として形成されている必要はない。

【0057】導光板の厚さは、使用目的による導光板のサイズや光源の大きさなどにより適宜に決定することができる。反射型液晶表示装置等の形成に用いる場合的一般的な厚さは、その入射側面に基づき20mm以下、就中0.1~10mm、特に0.5~8mmである。散乱による表示像の乱れで視認特性が低下することを防止し、明瞭な表示像を達成する点などより好ましい反射防止層付設の導光板は、上下面方向の入射光、特に下面から上面への垂直入射光の光線透過率が90%以上、就中92%以上、特に95%以上で、ヘイズが30%以下、就中15%以下、特に10%以下のものである。

【0058】本発明による導光板によれば、上面及び下面からの入射光が下面又は上面より良好に透過し、それを用いて精度よく平行化された光を視認に有利な垂直性に優れる方向に出射し、光源からの光を効率よく利用して明るさに優れる面光源装置、さらには明るくて見やすく低消費電力性に優れる反射型液晶表示装置などの種々の装置を形成することができる。

【0059】図5に本発明による導光板1を有する面光源装置3を例示した。面光源装置は、例えば図例の如く導光板1の入射側面に光源31を配置することにより形成でき、サイドライト型のフロントライト等として好ましく用いられる。

【0060】導光板の入射側面に配置する光源としては、適宜なものを用いよう。一般には例えば（冷、熱）陰極管等の線状光源、発光ダイオード等の点光源やそれを線状や面状等に配列したアレイ体、あるいは点光源を一定又は不定間隔の線状発光状態に変換する装置を用いた光源などが好ましく用いよう。低消費電力性や耐久性等の点よりは、冷陰極管が特に好ましい。

【0061】面光源装置の形成に際しては、必要に応じて図5の如く光源31からの発散光を導光板1の入射側面に導くために光源を包囲する光源ホルダ32や、図6等の如く均等な面発光を得るために導光板の下面に配置した拡散層4などの適宜な補助手段を配置した組合せ体とすることもできる。

【0062】光源ホルダとしては、高反射率金属薄膜を付設した樹脂シートや金属箔などが一般に用いられる。光源ホルダを導光板の端部に接着剤等を介して接着する場合には、その接着部分については光出射手段の形成を省略することもできる。

【0063】拡散層は、明暗ムラの防止による明るさの均等化や隣接光線の混交によるモアレの低減などを目的に、必要に応じて予め面光源装置の光出射面、従って導光板1の下面12に配置するものである。本発明におい

ては、導光板出射光の指向性の維持や光の有効利用効率などの点より、拡散範囲の狭い拡散層が好ましく用いる。

【0064】拡散層は、例えば低屈折率の透明樹脂中に高屈折率の透明粒子を分散させて塗布硬化させる方法や気泡を分散させた透明樹脂を塗布硬化させる方法、基材表面を溶媒を介し膨潤させてクレイズを発生させる方法や不規則な凹凸面を有する透明樹脂層を形成する方法、あるいは前記に準じて形成した拡散シートを用いる方法などの適宜な方式で形成でき、その形成方式について特に限定はない。前記の不規則な凹凸面は、基材やその上に設けた透明樹脂の塗布層の表面に粗面化処理したロールや金型等の粗面形状を転写する機械的方式又は／及び化学的処理方式などの適宜な方式で形成してよい。

【0065】なお前記の透明粒子には、例えば平均粒径が0.5～100μmのシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等の導電性のこともある無機系粒子や、架橋又は未架橋ポリマー等の有機系粒子などの適宜なものを用いる。

【0066】上記のように本発明による面光源装置は、光の利用効率に優れて明るくて垂直性に優れる光を提供し、大面積化等も容易であることより反射型液晶表示装置等におけるフロントライトシステムなどとして種々の装置に好ましく適用でき、明るくて見やすく低消費電力の反射型液晶表示装置等を得ることができる。

【0067】図6、図7に本発明による面光源装置3をフロントライトシステムに用いた反射型液晶表示装置を例示した。5、51は偏光板、6は液晶セルで、61、63はセル基板、62は液晶層であり、7、64は反射層である。反射型液晶表示装置は、図例の如く面光源装置の光出射側、すなわち面光源装置における導光板1の下面側に、反射層7、64を具備する液晶セル6を配置することにより形成することができる。

【0068】反射型液晶表示装置は一般に、液晶シャッタとして機能する透明電極具備の液晶セルとそれに付随の駆動装置、偏光板、フロントライト、反射層及び必要に応じての補償用位相差板等の構成部品を適宜に組立てることなどにより形成される。本発明においては、上記した面光源装置を用いる点を除いて特に限定はなく、図例の如く従来に準じて形成することができる。なお図6の例では、透明電極の記入を省略している。

【0069】従って用いる液晶セルについては特に限定はなく、例えば液晶の配向形態に基づく場合、TN液晶セルやSTN液晶セル、垂直配向セルやHANセル、OCBセルの如きツイスト系や非ツイスト系、ゲストホスト系や強誘電性液晶系の液晶セルなどの適宜なものを用いる。また液晶の駆動方式についても特に限定はなく、例えばアクティブマトリクス方式やパッシブマトリクス方式などの適宜な駆動方式であつてよい。

【0070】反射型液晶表示装置では、反射層7、64の配置が必須であるが、その配置位置については図6に例示の如く液晶セル6の外側に設けることもできるし、図7に例示の如く液晶セル6の内側に設けることもできる。その反射層については、例えばアルミニウムや銀、金や銅やクロム等の高反射率金属の粉末をバインダ樹脂中に含有する塗工層や蒸着方式等による金属薄膜の付設層、その塗工層や付設層を基材で支持した反射シート、金属箔などの従来に準じた適宜な反射層として形成することができる。

【0071】なお図7の如く液晶セル6の内部に反射層64を設ける場合、その反射層としては、前記の高反射率金属等の高導電性材料にて電極パターンを形成する方式や、透明電極パターン上に例えばその透明電極形成材による透明導電膜を形成する方式などによる反射層が好ましい。

【0072】また偏光板としては、適宜なものを用いるが、高度な直線偏光の入射による良好なコントラスト比の表示を得る点などよりは、例えばヨウ素系や染料系の吸収型直線偏光子などの如く偏光度の高いものが好ましく用いる。

【0073】なお反射型液晶表示装置の形成に際しては、例えば視認側の偏光板の上に設ける拡散板やアンチグレア層や保護層、あるいは液晶セルと偏光板の間に設ける補償用の位相差板などの適宜な光学素子を適宜に配置することができる。

【0074】前記の補償用位相差板は、複屈折の波長依存性などを補償して視認性の向上等をはかる目的とするものである。本発明においては、視認側又は／及び背面側の偏光板と液晶セルの間等に必要に応じて配置される。補償用の位相差板としては、波長域などに応じて適宜なものを用いることができ、1層又は2層以上の位相差層の重疊層として形成されていてもよい。

【0075】本発明による反射型液晶表示装置の視認は、面光源装置、特にその導光板の長辺面の透過光を介して行われる。図8に反射層64を液晶セル内に設けたものの場合における視認状態を例示した。これによれば面光源装置の点灯時、導光板1の下面より出射した光 α が偏光板5と液晶層62等を経由して反射層64を介し反射され、液晶層と偏光板等を逆經由して導光板1に至り、長辺面22を介し反射防止層2aを透過した表示像(α)が視認される。

【0076】前記の場合、本発明においては、強い漏れ光 β は液晶セルに対して垂直な正面方向とは角度が大きくなれた方向に出射し、正面方向に出射する漏れ光 β は弱く、それに反射防止層による寄与もあって長辺面を介して正面方向の近傍で表示品位に優れる表示像を視認することができる。

【0077】一方、面光源装置が非点灯の外光を利用した場合においても、導光板1の上面の長辺面22より入

射した光 γ が偏光板や液晶層や反射層等を前記に準じ透過・逆経由して導光板1に至り、長辺面を介し反射防止層を透過した表示像(γ)が正面方向の近傍で導光板による乱れ等が少ない表示品位に優れる状態で視認することができる。

【0078】本発明において、上記した面光源装置や液晶表示装置を形成する導光板や拡散層、液晶セルや偏光板等の光学素子ないし部品は、全体的又は部分的に積層一体化されて固着されていてもよいし、分離容易な状態に配置されていてもよい。界面反射の抑制によるコントラストの低下防止などの点よりは、固着状態にあることが好ましく、少なくとも面光源装置における導光板の下面側と液晶セルの上面が固着密着状態にあることが好ましい。

【0079】前記の固着密着処理には、粘着剤等の適宜な透明接着剤を用いることができ、その透明接着層に上記した透明粒子等を含有させて拡散機能を示す接着層などとすることもできる。

【0080】

【実施例】実施例1

予め所定形状に加工した真鍮の表面をダイヤモンドバイトで切削して上面形成用の中子を作製し、それを金型中に設置して射出成形方式により導光板用のポリメチルメタクリレート板状物を形成した。その板状物は、幅60mm、奥行42mm、入射側面の厚さ1.2mm、対向端の厚さ0.8mmであり、上下面是平坦(図2a)で、上面に入射側面に平行なプリズム状凹凸を390μmのピッチで有し、短辺面の傾斜角が36.5~39度の範囲で、長辺面の傾斜角が1.1~1.5度の範囲で変化し、最寄り長辺面の傾斜角変化が0.1度以内にあり、短辺面の下面に対する投影幅が10~21μm、長辺面/短辺面の下面に対する投影面積比が17/1以上のものであった。次に、前記の上面にスパッタリング方式にてケイ素酸化物からなる反射防止層を密着付設して導光板を得た。なお前記の反射防止層は、波長550nmの垂直入射光に対する反射率が約1.4%のものである。

【0081】前記導光板の入射側面に直径1.8mmの冷陰極管(ハリソン電気社製)を配置して銀蒸着を施したポリエチルフィルムからなる光源ホルダにてその縁を導光板の上下端面に密着させて包囲し、冷陰極管にインバータと直流電源を接続して面光源装置を得、その光出射側(導光板下面)に背面に前記の光源ホルダに準じた反射シートを有する白黒反射型のTN液晶セルを配置して反射型液晶表示装置を得た。なお前記の面光源装置は、直流電源のオン/オフで点灯状態/非点灯状態の切り替えを行うことができ、液晶表示装置は全画面をオン/オフさせる駆動式のものである。

【0082】実施例2

反射防止層を酸化チタン層とケイ素酸化物層を交互配置した多層膜として形成したほかは、実施例1に準じて導

光板、面光源装置及び反射型液晶表示装置を得た。なお前記の反射防止シートは、波長550nmの垂直入射光に対する反射率が約0.2%のものである。

【0083】実施例3

酸化チタン層とケイ素酸化物層を交互配置した多層膜からなる反射防止層を導光板の下面にも形成したほかは、実施例2に準じて導光板、面光源装置及び反射型液晶表示装置を得た。

【0084】比較例

反射防止層を設けない板状物を導光板として用いたほかは実施例1に準じて面光源装置及び反射型液晶表示装置を得た。

【0085】評価試験

実施例、比較例で得た面光源装置及び反射型液晶表示装置について下記の特性を調べた。

【0086】表示品位

反射型液晶表示装置にライン状のパターンを表示させ、面光源装置の点灯又は非点灯状態における表示を観察して前記パターンの明瞭さを無作為選択の10人により相対評価した。その結果、点灯及び非点灯状態のいずれの状態においても、総ての観察者が良好な方から実施例3、実施例2、実施例1、比較例の順位付けをした。また非点灯状態での観察では、総ての観察者が表面反射光の映り込みが少なくて比較例よりも実施例の方が見やすいと評価した。

【0087】以上より、導光板上面での反射防止により白呆け等の防止で表示の明瞭性が向上して見易い反射型液晶表示装置が実現されていることがわかる。なお導光板上面の鉛筆硬度は、実施例2、3で4H、実施例1で3H、比較例でHであり、実施例では反射防止層が表面保護層を兼ねていることがわかった。

【図面の簡単な説明】

【図1】導光板の斜視説明図

【図2】他の導光板の側面説明図

【図3】プリズム状凹凸の側面説明図

【図4】実施例による出射特性の説明図

【図5】面光源装置の側面断面図

【図6】反射型液晶表示装置の側面断面図

【図7】他の反射型液晶表示装置の側面断面図

【図8】実施例による表示像の説明図

【図9】従来例による出射特性の説明図

【図10】従来例による表示像の説明図

【符号の説明】

1：導光板

11、16、17：上面

20a：凸部

20b：凹部

21、23：短辺面

22、24：長辺面

12：下面

1 3 : 入射側面
2 a, 2 b : 反射防止層
3 : 面光源装置
3 1 : 光源

* 4 : 拡散層
5, 5 1 : 偏光板
6 : 液晶セル
* 7, 6 4 : 反射層

【図1】

【図5】

【図2】

【図3】

【図4】

【図6】

【図7】

【図8】

【図9】

【図10】

