# Shortest-Job-First (SJF) Primero el trabajo más corto

Adaptación (ver referencias)

# **Shortest-Job-First (SJF)**

- Se asocia a cada proceso la longitud de la siguiente ráfaga de CPU
  - En lugar de su longitud total como si sucede en FCFS
- Cuando la CPU está disponible, se le entrega al proceso con la ráfaga de CPU más corta
  - Situaciones de empate se resuelven mediante FCFS

| Procesos       | Tiempo siguiente ráfaga de<br>CPU |  |
|----------------|-----------------------------------|--|
| P <sub>1</sub> | 6 ms                              |  |
| $P_2$          | 8 ms                              |  |
| $P_3$          | 7 ms                              |  |
| P              | 3 ms                              |  |

Con FCFS promedio = 10.25 ms

Tiempo espera  $P_1 = 3$ Tiempo espera  $P_2 = 16$ Tiempo espera  $P_3 = 9$ Tiempo espera  $P_4 = 0$ 

Tiempo espera promedio = 7 ms



# **Shortest-Job-First (SJF)**

- En la práctica resulta difícil saber (a priori) las necesidades de ráfagas de CPU de un proceso.
- Se puede predecir la duración de la siguiente ráfaga de CPU asumiendo que son similares a las previas.
  - Se usa promedio exponencial para predecir la duración de la siguiente ráfaga de CPU de un proceso.
- Puede ser apropiativo y no apropiativo
  - Decisión tiene lugar cuando llega un nuevo proceso con una ráfaga de CPU más corta de lo que le queda al proceso que actualmente se está ejecutando.

| Procesos       | Tiempo siguiente<br>ráfaga de CPU | Tiempo de<br>Ilegada |
|----------------|-----------------------------------|----------------------|
| P <sub>1</sub> | 8 ms                              | 0                    |
| $P_{2}$        | 4 ms                              | 1                    |
| $P_3$          | 9 ms                              | 2                    |
| $P_{_{\!4}}$   | 5 ms                              | 3                    |

Tiempo espera  $P_1 = 10 - 1$ Tiempo espera  $P_2 = 1 - 1$ Tiempo espera  $P_3 = 17 - 2$ Tiempo espera  $P_4 = 5 - 3$  Ejecución no apropiativa promedio = 7.75 ms

Tiempo espera promedio = 6.5 ms

### SJF ejecución apropiativa



- t<sub>0</sub>: P<sub>1</sub> es el único proceso en cola, se ejecuta
- t<sub>1</sub>: Llega P<sub>2</sub> con menos tiempo de CPU
  - Sale P<sub>1</sub> y le quedan 7ms
  - Se ejecuta P<sub>2</sub>
- $t_2$ : Llega  $P_3$  pero requiere 9ms, espera
  - Se sigue ejecutando P<sub>2</sub>, sigue siendo el trabajo más corto
- t<sub>3</sub>: Llega P<sub>4</sub> pero requiere 5 ms, espera
  - P<sub>2</sub> está ejecutando y seguirá siendo el trabajo más corto
- t<sub>5</sub>: Termina P<sub>2</sub>, sale de CPU
  - Entra a ejecutar P<sub>4</sub>
  - Aún esperan P<sub>1</sub> con 7ms y P<sub>3</sub> con 9ms
- $t_{10}$ : Se ejecuta todo  $P_4$  y
  - Sale de CPU
  - Entra P<sub>1</sub>
- $t_{17}$ : Termina  $P_1$ 
  - Sale de CPU
  - Entra P<sub>3</sub> y se ejecuta
- $t_{26}$ : Termina  $P_3$

### SJF ejecución apropiativa

## Referencias

• Silberschatz, A., Baer Galvin, P., & Gagne, G. (2018). CPU Scheduling. In *Operating Systems Concepts* (10th ed., pp. 207–209). John Wiley & Sons, Inc.