Discontinuous Data-Oriented Parsing:

A mildly context-sensitive all-fragments grammar

Andreas van Cranenburgh, Remko Scha, Federico Sangati

University of Amsterdam Institute for Logic, Language and Computation

October 6, 2011

SPMRL 2011, Dublin

Overview

Example

Figure: A discontinuous tree from the Negra corpus. Translation: As for the insurance, one can save it.

Discontinuity

- Cross-serial dependencies
- Extraposition: topicalization, wh-extraction
- Word-order freedom: scrambling

German Negra & Tiger treebanks have discontinuous annotations.

About 30% of sentences contain discontinuity.

Context-Free grammar

CFG: rewrites strings

Productions as deduction schemata:

$$S(ab) \rightarrow NP(a) VP(b)$$

where ab is the concatenation of a and b

⇒ cubic time complexity of CKY:

$$\mathcal{O}(|w|^{3\cdot 1})$$

- where w is the input string,
- 3 is number of non-terminals in a production,
- 1 is number of arguments of each non-terminal

Linear Context-Free Rewriting Systems

LCFRS are a generalization of CFG:

 \Rightarrow rewrite tuples, trees or graphs!

LCFRS allow any number of arguments (fan-out):

$$S(abc) \rightarrow NP(b) VP(a,c)$$

where abc is the concatenation of a, b, and c

linear: each variable on the left occurs once on the right & vice versa

Linear Context-Free Rewriting Systems

A binarized LCFRS has complexity

$$\mathcal{O}(|w|^{3\varphi})$$

where φ is the maximum fan-out in a production of the grammar.

Both CFG & LCFRS ∈ LOGCFL

Rules can be read off from treebank, frequencies form MLE ⇒ PLCFRS

Treebank grammars

Treebank grammar

trees ⇒ productions (+frequencies)

- Why? Straightforward, efficient
- Why not? Arbitrary, coarse grained
 - ⇒ strong independence assumptions

Data-Oriented Parsing

Alternative: Data-Oriented Parsing trees ⇒ fragments (+frequencies)

A fragment is a connected subset of a tree in which each node either has all children in common with the original tree, or none (substitution site)

DOP fragments

$$P(f) = \frac{\text{count}(f)}{\sum_{f' \in F} \text{count}(f')} \text{ where } F = \{ f' \mid root(f') = root(f) \}$$

DOP derivation

$$P(t) = P(d_1) + \dots + P(d_n) = \sum_{i=1}^{n} \prod_{i=1}^{n} p(t_i)$$

 $d \in D(t) f \in d$

 $P(d) = P(f_1 \circ \cdots \circ f_n) = \prod p(f)$

DOP Reduction

- Treebank refinement: take non-terminal and split according to contexts
- In the limit: each non-terminal becomes a particular occurrence in a tree

Coarse-to-fine

k-best PLCFRS derivations help prune DOP derivations.

Binarization

- mark heads
- head-outward binarization
- ▶ no parent annotation: v = 1
- ▶ horizontal Markovization: $h \in \{1, 2, \infty\}$

Evaluation

NEGRA	words	F ₁	EX	COV.
DPSG Pla2004* PLCFRS KaMa2010 [†] Disco-dop V=1, h=1	≤ 15	73.16	39.0	96.04
	≤ 15	81.27	-	-
	≤ 15	84.56	54.68	99.90
PLCFRS KaMa2010 [†] PLCFRS v=1, h=2 Disco-dop v=1, h=2	≤ 25	73.25	-	99.45
	≤ 25	75.98	36.79	98.90
	≤ 25	78.81	39.60	98.90
PLCFRS Mai2010 [‡] PLCFRS $V=1$, $h=\infty$ Disco-dop $V=1$, $h=\infty$	≤ 30	71.52	-	97.00
	≤ 30	72.34	31.27	96.59
	≤ 30	73.98	34.96	96.59

Table: Discontinuous parsing on the Negra corpus. Function tags discarded; Gold POS tags given to parser.

All code available from:

http://github.com/andreasvc/disco-dop

*Plaehn (2004). †Kallmeyer & Maier (2010). ‡Maier (2010).

