Parsing Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Overview of the NLP Lectures

- Introduction to natural language processing (NLP).
- Regular expressions, sentence splitting, tokenization, part-of-speech tagging.

Assignment Project Exam Help

- Language mod https://eduassistpro.github.io/
- Vector semantics Add WeChat edu_assist_pro
- Parsing.
 - Dependency parsing.
- Semantics.

Relation Extraction

Find worksFor(entity a, entity b) relation from text.

Use Shortest Paths between Entity Mentions

Dependency Grammar

 Syntactic structure consists of lexical items, linked by binary asymmetric relations called dependencies.

Assignment Project Exam Help

https://eduassistpro.github.io/

- head → dep
 - head (governor) dg War Ghatt edu_assistorant.
 - dependent (modifier): modifier, object, or complement.

Dependency Trees

Without labels.

Assignment Project Exam Help

With labels.

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Dependency Parsing

Formal definition for unlabeled dependency trees:

Dependency graph D = (V, E) where

- V is the set Assignment deproje to the set Assignment deproject deproje
- ullet E is the set of arcs indintegrated https://eduassistpro.github.io/
- $v_i \rightarrow v_j$ or $(v_i, v_j) \in E$ denotes an ar v_i to dependent v_j .

 Add WeChat edu_assist_pro

 Dependency parsing: task of mapping an input string to a dependency graph satisfying certain conditions.

Projective Dependency Tree

Non-Projective Dependency Tree

Crossing lines!

English has very few non-projective cases.

Well-Formedness

- A dependency graph is well-formed iff
 - Single head: Each word has only one head.
 - Acyclic: The graph should be acyclic.

https://eduassistpro.github.io/

- Connected: There is a path pairs of nodes.
 Add WeChat edu_assist_pro
- Projective: iif an edge from word A to word B implies that there exists a directed path in the graph from A to every word between A and B in the sentences.

Parsing Algorithms

- Graph-based parsing
 - CYK, Eisner, McDonald

Assignment Project Exam Help

https://eduassistpro.github.io/

- Transition-based parsing Wednat edu_assist_pro
 - Covington, Yamada and Mat re etc.

Nivre's Algorithm (Arc-eager) [3]

- Transition-based.
- Parser configuration $\langle S, I, A \rangle$:
 - S is the stakes ignine he depoject new Help
 - *I* is the list of remaini https://eduassistpro.github.io/
 - ullet A is the set of current dependencies (arcs) f y graph. Add WeChat edu_assist_pro
- INPUT: a word sequence $\mathbf{v} = v_1 | ... | v_n$, a set of rules R.

Parser Transitions

Shift (S)
$$\langle S, v_j | I, A \rangle \Rightarrow \langle v_j | S, I, A \rangle$$

Parsing Details

- Slight modifications:
 - Each dependency graph has an artificial root in order to form a tree.
 - Parsing starts with an initial configuration $<[ROOT], \mathbf{n}, \emptyset>$ and terminate which the project \mathbf{proj} and \mathbf{proj} through a sequence of tr

https://eduassistpro.github.io/

- Nondeterministic transitions? edu_assist_pro
 - Priority ordering of transition

```
\mathbf{LA} > \mathbf{RA} > if S[0] can be a transitive head of I[0], then Shift, otherwise Reduce.
```

Guided parsing.

Grammatical Rules for the Example

$$Noun \rightarrow Adj$$

$$ROOT \rightarrow Verb$$

Assignmento Project Exam Help

https://eduassistpro.github.io/

Add We'Chat edu_assist_pro

$$figure \rightarrow on$$

$$on \rightarrow screen$$

ROOT

Assignment Project Exam Help

ROOT Red

figure https://eduassistpro.githubling/ stocks)

Add WeChat edu_assist_pro

red

Assignment Project Exam Help

ROOT Red

[figure https://eduassistpro.githubling/ stocks]

Add WeChat edu_assist_pro

Shift

```
Assignment Project Exam Help
             (figure https://eduassistpro.githubling/ stocks )
ROOT
                   Add WeChat edu_assist_pro
    Left-arc
```

```
figures
ROOT
              Assignment Project Exam Help
                  https://eduassistpro.githubling/stocks )
       Red
ROOT
                   Add WeChat edu_assist_pro
    Shift
```

```
on
figures
ROOT
               Assignment Project Exam Help
             figures https://eduassistpro.githubling/ stocks )
       Red
ROOT
                   Add WeChat edu_assist_pro
    Right-arc
```

```
the
  on
figures
ROOT
               Assignment Project Exam Help
             figures https://eduassistpro.githubling/ stocks )
        Red
ROOT
                   Add WeChat edu_assist_pro
     Shift
```

```
on
figures
ROOT
               Assignment Project Exam Help
                   https://eduassistpro.githubling/ stocks ]
       Red
ROOT
                   Add WeChat edu_assist_pro
    Left-arc
```


Configurations of the Example

```
<ROOT, Red figures on the screen indicated falling stocks, <a>(h)></a>
            <Red ROOT, figures on the screen indicated falling stocks,∅ >
S
            <ROOT, figures on the screen indicated falling stocks, {(figures, Red)}>
LA
S
            <figures ROOT, on the screen indicated falling stocks, {(figures, Red)}>
RA
            <on figures ROOT, the screen indicated falling stocks, {(figures, Red), (figures, on)}>
            <the on figures ROOT, screen indicated falling stocks, {(figures, Red), (figures, on)}>
S
            <on figures ROOT, screen indicated falling stocks, {(figures, Red), (figures, on), (screen the)}>
LA
            <screen on figures ROOT indicated falling stocks ((figures, Red)) (figures, on), (screen, the), (on,</p>
RA
screen)}>
            <on figures ROOT, indic
                                                                                  es, on), (screen, the), (on, screen)})
R
            <figures ROOT, indicate
https://eduassistpro.giren, the), (on, screen)}>
<ROOT, indicated falling</pre>
https://eduassistpro.giren, the), (on, screen), (indicated,
R
LA
figures)}>
            <indicated ROOT, falling stocks {\text{figure}, Red)t (edu_assist, the); \( \text{on, screen} \), (indicated, \)</pre>
RA
figures), (ROOT, indicated)}>
            <falling indicated ROOT, stocks, {(figures, Red), (figures, on), (screen, the), (on, screen), (indicated,
figures), (ROOT, indicated)}>
LA
            <indicated ROOT, stocks, {(figures, Red), (figures, on), (screen, the), (on, screen), (indicated,
figures), (ROOT, indicated), (stocks, falling)}>
RA
            <stocks indicated ROOT, nil, {(figures, Red), (figures, on), (screen, the), (on, screen), (indicated,
figures), (ROOT, indicated), (stocks, falling), (indicated, stocks)}>
            <indicated ROOT, nil, {(figures, Red), (figures, on), (screen, the), (on, screen), (indicated, figures),
(ROOT, indicated), (stocks, falling), (indicated, stocks)}>
            < ROOT, nil, {(figures, Red), (figures, on), (screen, the), (on, screen), (indicated, figures), (ROOT,
indicated), (stocks, falling), (indicated, stocks)}>
```

Properties of Nivre's Algorithm

O(n): Linear time complexity.

Assignment Project Exam Help

https://eduassistpro.github.io/

• Full dependency graphs at edu_assist_pro

Dependency Corpora

- IJ NNS IN DT NNS VBD VBG NNS

 Red figures on the screens indicated falling stocks

 nmod

 nmod

 nmod

 varg
- CoNLL dependencies.
 - http://www.aclweb.org/anthology/D07-1096

- Stanford typed dependencies.
 - http://nlp.stanfo/Acds/acts/appropenter Project to Exam Help
- Universal dep
 - http://universaldepende https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Guided Parsing [6]

- Train a classifier to predict parse transitions!

 - A is a set of typed dependencies (arcs).

Assignment Project Exam Help
 Feature spac

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Arc Standard

Three parse actions.

$$\begin{array}{ll} \textbf{Left-Arc (LA)} & < v_i | v_j | S, I, A > \Rightarrow < v_i | S, I, A \cup \{(v_i, v_j)\} \\ \textbf{Right-Arc (RA)} & < v_i | v_j | S, I, A > \Rightarrow < v_j | S, I, A \cup \{(v_j, v_i)\} \\ \textbf{Shift (S)} & \textbf{https://eduassistpro.github.io} & > \Rightarrow < v_j | S, I, A > \Rightarrow < v_j$$

• Neural networks for action edu_assist_pro

Off-the-Shelf Dependency Parsers

- MaltParser (http://www.maltparser.org/)
- SyntaxNet (https://github.com/tensorflow/models/tree/master/research/syntaxnet)

Assignment Project Exam Help

- TurboParser (http://www.hatredu_assist_pro

Overview of the NLP Lectures

- Introduction to natural language processing (NLP).
- Regular expressions, sentence splitting, tokenization, part-of-speech tagging.

Assignment Project Exam Help

- Language mod https://eduassistpro.github.io/
- Vector semantics Add WeChat edu_assist_pro
- Parsing.
 - Dependency parsing.
 - Constituency parsing.
- Compositional semantics and NLP applications.

Constituency Parsing

Deeper understanding of word groups and their grammatical relationships.

Constituency

- Constituent: a word or a group of words that behaves as a single unit.
- Why do these words group together?
 Assignment Project Exam Help
 – Appear in si
 ts.

```
three parties from https://eduassistpro.github.io/...

Drunk driver fled ...

Add Weethat edu_assist_proit ...

the fled ...

Add Weethat edu_assist_proit ...
```

Preposed or postposed construction.

On August 30th, I'd like to fly from Canberra to Sydney. I'd like to fly on August 30th from Canberra to Sydney. I'd like to fly from Canberra to Sydney on August 30th.

Context-Free Grammars (CFGs)

- A context free grammar consists of
 - a set of context-free rules, each of which expresses the ways that symbols of the language can be grouped and ordered together.

```
Assignment Project Exam Help
Nomina 
Nomina https://eduassistpro.github.io/
```

a lexicon of wards awasist_pro

bus stop the . a

Derivations

- The sequence of rule expansions is called a derivation of the string of words.
 - parse tree.
 - bracketed notation.
 Assignment Project Exam Help


```
Noun → bus
Noun → stop
Det → the | a | an

Nominal → Noun

Assignment Project Exam Help
Nominal → Noun | Nominal Noun

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
```

the bus stop

```
Noun → bus
Noun → stop
Det → the | a | an

Nominal → Noun

Assignment Project Exam Help
Nominal → Noun | Nominal Noun

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
```



```
Noun \longrightarrow
                bus
  Noun \longrightarrow stop
   Det
         \rightarrow the | a | an
Nominal → Noun
Assignment Project Exam Help
Nominal — Noun | Nominal Noun
       https://eduassistpro.github.io/
       Add WeChat edu_assist_pro
                Nominal
             Nominal
             Noun
                       Noun
       Det
      the
              bus
                       stop
```


Formal Definition of CFG

- A context-free grammar $G = (N, \Sigma, R, S)$.
 - N is a set of non-terminals.
 - Σ is a set of terminal symbols, $N \cap \Sigma = \emptyset$. - Assignment Project Exam Help - R is a set of rules (productions), each of the form $A \to B$,
 - R is a set of rules (productions), each of the form $A \to B$ where A is a https://eduassistpro.gthub.io/
 - S is a designated blade by the control of the control

```
Noun \longrightarrow
               bus
  Noun → stop
  Det
        \rightarrow the | a | an
              NP
Nominal →
               Noun
Assignment Project Exam Help
Nominal — Noun | Nominal Noun
       https://eduassistpro.github.io/
       Add WeChat edu_assist_pro
               Nominal
            Nominal
             Noun
       Det
                      Noun
      the
              bus
                     stop
```

Ambiguity of Parsing

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Probabilistic context-free grammar (PCFG)

A parameter to each grammar rule [3].

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$p_G(t) = \prod_{i=1}^n q(\alpha \to \beta)$$
 rule parameter

 $\arg\max_{t\in T_G} p_G(t)$

find the most likely parse tree. *T* is set of all possible trees.

Learning PCFG from Treebanks

Penn treebank and English Web treebank.

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Maximum-Likelihood
$$q^*(\alpha \to \beta) = \frac{\mathrm{Count}(\alpha \to \beta)}{\mathrm{Count}(\alpha)}$$
 estimation:

Top Down Parsing

 $\arg\max_{t\in T_G} p_G(t)$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

book that flight

Bottom Up Parsing

 $\arg\max_{t\in T_G}p_G(t)$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Grammar Equivalence

- Two grammars are equivalent if they generate the same language (set of strings).
- Chomsky Normal Form (CNF).
 - Allow only two types of rules. The right-hand side of each rule either has two non-terminals or one terminal,

except $S \rightarrow \varepsilon$ https://eduassistpro.github.io/

$$\overrightarrow{A} \overrightarrow{dd} \overset{B}{\varepsilon} \overset{a}{\text{WeChat edu_assist_pro}}$$

unit production

$$E \to A$$

where $A, B, C, D, E \in N$ and $a \in \Sigma$

Grammar Equivalence

- Two grammars are equivalent if they generate the same language (set of strings).
- Chomsky Normal Form (CNF).
 - Allow only two types of rules. The right-hand side of each rule either has two non-terminals or one terminal,

except $S \rightarrow \varepsilon$ https://eduassistpro.github.io/

Every context-free grammar can be transformed into an equivalent one in CNF.

Dependency Structures vs. Phrase Structures

- Dependency structures explicitly represent
 - Head-dependent relations (directed arcs).
 - Functional categories (arc labels).
 - predicate-argument structure.
 Assignment Project Exam Help
- Dependency of word order.
 - Suitable for f https://eduassistpro.githuth.ics/Indian languages.

Add WeChat edu_assist_pro

- Phrase structures explicitly represent
 - Phrases (non-terminal nodes).
 - Structural categories (non-terminal labels).
 - Fragments are directly interpretable.

Available Constituency Parsers

- Stanford parser.
 - http://nlp.stanford.edu/software/srparser.shtml
- Charniak-Johnson parser.

 Assignment Project Exam Help

 http://web.science.mq.edu.au/~mjohnson/Software.htm

https://eduassistpro.github.io/

- Charniak par
 - ftp://ftp.cs.browd.edWeChat_edu_assist_pro

References

- [1] Speech and Language Processing (Chapter 12 & 13)
- [2] Lectures Notes on CFGs and CKY Parsing.
 - http://web.mit.edu/6.863/www/fall2012/lectures/lecture7-notes.pdf
- [3] http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/pcfgs.pdf
- [4] Richard Socher, Christopher D. Manning, Andrew Y. Ng. Learning Continuous Phase Representations and Syntactic Passing with Recursive Neural Networks.
- [5] An Efficient Algohttps://eduassistpro.githautinigo//We modify it to allow an artificial
- [6] Joakim Nivre, Johand dal West edu_assist eptendency Parsing.
- [7] Exploiting Background Knowledge for Relation Extraction.
 - http://www.aclweb.org/anthology/C10-1018
- [8] https://web.stanford.edu/~jurafsky/slp3/14.pdf
- [9] https://cs.stanford.edu/~danqi/papers/emnlp2014.pdf