ALGEBRA QUALIFYING EXAM: FALL 2019.

Answer TWO questions from each section.

In the first two sections, you may use standard theorems without proof, but you must state them carefully.

1. GROUP THEORY

- G1: (a) Suppose that G is a group with exactly two subgroups. Prove that G is finite of prime order. (b) Is the converse of part (a) true? Give a reason.
- G2. Let p be a prime number and let $1 \le n < p^2$ be an integer. Show that every Sylow p-subgroup of the symmetric group S_n is abelian.

Hint: Explicitly construct one Sylow *p*-subgroup by considering a subgroup generated by disjoint *p*-cycles.

G3. Suppose that G is a finite group with exactly three conjugacy classes. Show that G is isomorphic to the symmetric group S_3 or the cyclic group $\mathbb{Z}/3\mathbb{Z}$.

Hint: If the three conjugacy classes have r, s, t elements, show that r+s+t=3 in the abelian case and is 6 in the nonabelian case.

2. RINGS AND FIELDS

RF1: An element a in a ring is called nilpotent if $a^k = 0$ for some positive integer k. Prove that the set N of nilpotent elements of a commutative ring R is an ideal of R and that R/N has no nilpotent elements.

RF2. Let
$$K = \mathbb{Q}(\alpha)$$
, where α satisfies

$$\alpha^2 = 5 + 2\sqrt{5}$$
.

Show that K/\mathbb{Q} is a Galois extension with Galois group $\mathbb{Z}/4\mathbb{Z}$.

Hint: Suppose that β satisfies $\beta^2 = 5 - 2\sqrt{5}$, consider $\alpha\beta$.

RF3. Let
$$p(x) = x^3 - x + 4$$
. Prove that:

- a) the Galois group of p(x) over \mathbb{F}_3 is isomorphic to $\mathbb{Z}/3\mathbb{Z}$.
- b) the Galois group of p(x) over \mathbb{Q} is isomorphic to S_3 .

3. LINEAR ALGEBRA

- LA1. Let V be a complex vector space. Let T be a linear map $T:V\to V$, such that the characteristic polynomial of T is $(x-1)^5$, and the minimal polynomial is $(x-1)^3$. Assume that the rank of T-I is 2, where I is the identity map. Determine the rational canonical form of T.
- LA2. Let V be the set of 2×2 real matrices, considered as a 4-dimensional real vector space. For a real number λ , define a symmetric bilinear form \langle , \rangle on V by

$$\langle A, B \rangle = \text{Tr}(AB) + \lambda \text{Tr}(AB^t).$$

Here Tr is the trace and B^t is the transpose of B. For which λ is this form positive definite?

LA3. Let V and W be finite dimensional complex vector spaces. Assume both V and W have dimension n. Let A and B be linear maps $V \to W$, with A an isomorphism. Show that A+tB is an isomorphism for all but at most n values of $t \in \mathbb{C}$.

1. GROUP THEORY

G1. (a) Suppose that G is a group with exactly two subgroups. Prove that G is finite of prime order.

Theorem (Cauchy's Theorem). If a prime p divides the order of a finite group G, then there exists an element $g \in G$ of order p.

Theorem (Lagrange's Theorem). If $H \leq G$ then $|G| = [G : H] \cdot |H|$. For finite groups, the order of a subgroup divides the order of the group.

Proof $0 \le G$ and $G \le G$ for any group G, so if G has exactly two subgroups then these are the only two.[†] For any $g \in G$ note that $0 < \langle g \rangle \le G$, so $\langle g \rangle = G$ and G is cyclic.

Now observe that G cannot be infinite. If it were, then G is an infinite cyclic group, and every such group is isomorphic to \mathbb{Z} . However $0 < 2\mathbb{Z} < Z$, while G cannot have a subgroup isomorphic to $2\mathbb{Z}$, since it has exactly two subgroups, 0 and G.

If G is finite then |G| is prime, since otherwise Cauchy's theorem provides an element $g \in G$ such that the order of g divides |G|, which means $0 < \langle g \rangle < G$, a contradiction.

(b) Is the converse of part (a) true? Give a reason.

Proof Yes, by Lagrange's theorem. If |G| = p prime, any subgroup either has order p or is trivial.

G2. Let p be a prime number and let $1 \le n < p^2$ be an integer. Show that every Sylow p-subgroup of the symmetric group S_n is abelian.

Definition. A Sylow p-subgroup is a subgroup whose order is the highest power of p which divides the order of the group.

Proof Note that $|S_n| = n!$ and since $n < p^2$, then p appears exactly once in the multiplicands of $n! = \prod_{i=1}^n (i)$. Also $p \nmid i$ for $1 \le i \le n$ unless i = p, so the highest power of p which divides n! is p. Thus any Sylow-p subgroup of S_n has order p. Any finite group of prime order is cyclic and thus abelian, so we're done.

 $^{^{\}dagger}I$ denote proper subgroups by < and subgroups by \le .