

Recap

- Lab 2 Forward Kinematics [wheel velocities \rightarrow robot x, y, θ]
- Lab 3 Inverse Kinematics + Feedback Control
- Lab 4 Mapping
- Lab 5 [today March 28] -- Put it all together

Today: Odometry, Mapping and Inverse Kinematics

How can I put it all together?

Lab Setup

TIAGo

240° range

First 83 + last 83 rays thrown away due to hardware design

What problems did you run into when using the laser sensor map?

Noise. Obstacles everywhere!

- Sources: reflections, artifacts from robot braking, etc.
- Turn measurements (true/false)
 into a probability
- Grid map stores the probability of a cell being an obstacle or not
- Every positive measurement increases the probability
- Use a *threshold* to decide

What problems did you run into when programming a path-following system?

Control issues

- Find the right trade-offs in your gains
- Minimize settling time
- Minimize tracking error
- Learn to live with your
 controller not being perfect and
 stay away from obstacles

What parameter do you think will affect planning time the most?

C-SPACE

scipy.signal.convolve2d

scipy.signal.convolve2d(in1, in2, mode='full', boundary='fill',
fillvalue=θ)

[source]

Convolve two 2-dimensional arrays.

Path Planning

Dijkstra's A*

Relaxed Inverse Kinematics

- Relaxed IK mode
 - Use various helper function to perform a pick and place operation at given points in the environment

4 modes in provided code skeleton

- Manual mode for mapping
 - Use keyboard control to drive around
 - Save generated map to map.npy
- Planner mode for path generation
 - Implement + test planning algorithm on toy map (to parallelize teamwork)
 - Create configuration space. Visualize.
 - Plan path (using A*[highly recommended] or Dijkstra's) in config space. Save planned path to .npy file.
- Autonomous mode for path following
 - Load path from .npy file. Visualize.
 - Execute using feedback control
- Pick and Place mode for moving objects around

This lab is worth 150 points!

FAQs:

- What's due at the end of today?
 - Nothing, this is a 2.5-week lab. Due Friday 04/07 at 11:59pm.
- What do I turn in?
 - ONE person needs to turn in the lab report and code per group.
- We're done! Can we leave?
 - Yep. Lab is meant to provide an interactive problem-solving time. If you complete the work early, you
 are free to go!

