Université Paris Est Créteil Val de Marne Licences d'Informatique 2013-2014

Corrigé Contrôle continu 2 : Mathématiques discrètes pour l'informatique (Sans documents. Les calculatrices sont autorisées.)

[3pts] Question 1 : Congruences

Résoudre le système de congruences suivant

$$(S_2) \begin{cases} x \equiv 5 \pmod{123} \\ x \equiv 5 \pmod{20} \end{cases}$$

Réponse. Dans ce cas il est évident que 5 est une solution particulière de (S_2) , on a

$$(S_2) \Longleftrightarrow PPCM(120,23)|(x-5).$$

Comme 123 et 20 sont premiers entre eux, $PPCM(120, 23) = 123 \times 20 = 2460$. (S_2) est équivalent à 2460|(x-5), alors les solutions de (S_2) sont x = 5 + 2460k, $k \in \mathbb{Z}$.

[7pts] Question 2: RSA

On considère le système cryptographique RSA avec la clé publique (n, e) = (77, 53).

- 1. Le couple (n, e) est-il une clé publique possible pour RSA? Justifiez.
- 2. Quelle est la clé secrète $(\varphi(n), d)$ qui permet de décoder les messages?
- 3. Quel est le cryptogramme du message M = 25?

Réponse.

1. (3 points) n=77 est le produit des deux nombres premiers distincts p=7 et q=11. L'indicatrice d'Euler $\varphi(n)$ est donnée par

$$\varphi(n) = (p-1)(q-1) = 6 * 10 = 60.$$

De plus, $\varphi(n)=60$ et e=53 sont premiers entre eux alors (n,e)=(77,53) est une clé publique possible pour RSA.

2. (2 points) En appliquant l'algorithme d'Euclide étendu pour le couple $(\varphi(n), e) = (60, 53)$, on obtient

$$60 \times (-15) + 53 \times (17) = 1.$$

Alors $53 \times (17) \equiv 1 \pmod{60}$. Donc, d = 17. La clé secrète est $(\varphi(n), d) = (60, 17)$.

3. (2 points) Le message chiffré C satisfait

$$C \equiv M^e \pmod{n} \equiv 25^{53} \pmod{77}$$
.

Méthode 1: En base binaire, $53 = 110101_2$.

- Bit $4: C = 25 \times 25[77] \equiv 9[77], C \equiv 9 \times 25 \pmod{77} \equiv 71 \pmod{77}$.
- Bit $3: C = 71 \times 71[77], C \equiv 36 \pmod{77}$.

- Bit
$$2: C = 36 \times 36[77] \equiv 64[77], C \equiv 64 \times 25 \pmod{77} \equiv 60 \pmod{77}$$
.

- Bit
$$1: C = 60 \times 60[77], C \equiv 58 \pmod{77}$$
.

- Bit
$$0: C = 58 \times 58[77] \equiv 53[77], C \equiv 53 \times 25 \pmod{77} \equiv 16 \pmod{77}$$
.

Donc, le message chifré C est 16.

Méthode 2 :

En base binaire, $53 = 2^5 + 2^4 + 2^2 + 1$.

Donc
$$25^{53} = 25^{2^5} \times 25^{2^4} \times 25^{2^2} \times 25$$
.

On a

$$-25 \equiv 25 \pmod{77}$$
.

$$-25^2 \equiv (25)^2 = 625 \equiv 9 \pmod{77}.$$

$$-25^{2^2} \equiv 9^2 = 81 \equiv 4 \pmod{77}.$$

$$-25^{2^3} \equiv (4)^2 = 16 \pmod{77}.$$

$$-25^{2^4} \equiv (16)^2 = 256 \equiv 25 \pmod{77}.$$

$$-25^{2^5} \equiv (25)^2 = 9 \pmod{77}.$$

Alors,

$$C \equiv 9 \times 25 \times 4 \times 25 \pmod{77}$$
$$= 22500 \equiv 16 \pmod{77}.$$

Donc, le message chifré C est 16.