Andreas Henrici

MANIT1 IT18ta_ZH

19.11.2018

Überblick

- Grundlagen
 - Steigung und Differenzenquotient
 - Ableitung und Ableitungsfunktion
- Ableitungsregeln
 - Konstante Funktion
 - Potenzfunktion
- 3 Höhere Ableitungen

Worum geht es in der Differentialrechnung?

- Geometrisch: *Steigung* einer Funktionskurve y = f(x) an einer beliebigen Stelle
- Analytisch: Änderungstendenz der Funktion
- Physikalisch: Geschwindigkeit und Beschleunigung berechnen, wenn die Ortskurve gegeben ist
- Ökonomisch: Wachtumsraten etc.
- ...

Notwendige Hilfsmittel:

- Umgang mit unendlich kleinen Grössen
- Übergang zum Grenzwert
- Untersuchung von Termen der Form ⁰/₀

Beispiel zur Einführung

Beispiel

Lineare Funktion f(x) = mx + b: Die Steigung hat überall den Wert m.

Beobachtung: Die Steigung m ist gleich dem Verhältnis der Änderung Δf der Funktionswerte $f(x_0)$ und $f(x_0 + h)$ für beliebige $x_0 \in \mathbb{R}$ und $\Delta > 0$ zur Änderung Δx der x-Werte x_0 und $x_0 + h$ ist, und zwar an jeder Stelle x₀:

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + h) - f(x_0)}{(x_0 + h) - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}$$
$$= \frac{m(x_0 + h) + b - (mx_0 + b)}{h} = \frac{mh}{h} = m.$$

Beispiel

Beispiel

Gegeben ist die Funktion

$$f(x) = \frac{1}{10}x^2 + \frac{1}{2}.$$

Bestimmen Sie das Verhältnis

$$\frac{f(x_0+h)-f(x_0)}{h}$$

- **a)** für $x_0 = 1$ und h = 2,
- **b)** für beliebige $x_0 \in \mathbb{R}$ und h > 0.

Definition

Sei f eine Funktion und $[x_0, x_0 + h]$ ein Intervall, das im Definitionsbereich von f liegt. Der Quotient

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + h) - f(x_0)}{h}$$

heisst Differenzenquotient von f.

Der Differenzenquotient von f entspricht also der Steigung einer *Sekanten* des Graphen der Funktion f.

Beispiel

Beispiel

Gegeben ist die Funktion

$$f(x) = \frac{1}{10}x^2 + \frac{1}{2}.$$

Bestimmen Sie den Differenzenguotienten

$$\frac{f(x_0+h)-f(x_0)}{h}$$

- **a)** für $x_0 = 1$ und h = 2,
- **b)** für beliebige $x_0 \in \mathbb{R}$ und h > 0.
- c) für $x_0 = 1$ und $h \rightarrow 0$
- **d)** für beliebige $x_0 \in \mathbb{R}$ und $h \to 0$.

Ableitung von f(x) an der Stelle x_0 : Definition

Definition

Wenn für eine Funktion f an der Stelle x_0 der Grenzwert

$$\lim_{h\to 0}\frac{\Delta f}{\Delta x}=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

existiert, so heisst f an der Stelle x_0 differenzierbar. Den Grenzwert selbst bezeichnet man als Ableitung (oder Differentialguotient) von f an der Stelle x_0 :

$$f'(x_0) = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}.$$

Der Differentialquotient bzw. die Ableitung bezeichnet geometrisch also die *Tangentensteigung* an die Funktionskurve an der Stelle x_0 .

Ableitungsfunktion von f(x): Definition

Durch Bilden der Ableitung f'(x) für jedes $x \in D$ entsteht eine neue Funktion, die Ableitungsfunktion:

Definition

Sei y = f(x) eine Funktion mit Definitionsbereich D, die an jeder Stelle des Definitionsbereichs differenzierbar ist. Die Ableitungsfunktion bzw. Ableitung

$$y' = f'(x)$$

von f ist die Funktion, die jedem $x \in D$ die Ableitung $f'(x) = \lim_{h \to 0} \frac{\Delta f}{\Delta x}$ zuordnet.

Beispiel (Fortsetzung)

Gegeben ist die Funktion $f(x) = \frac{1}{10}x^2 + \frac{1}{2}$.

- a) Bestimmen Sie die Ableitung $f'(x_0)$ an einer beliebigen Stelle x_0 .
- **b)** Bestimmen Sie die Ableitungsfunktion y' = f'(x).

Differenzierbare Funktionen: Anschauliche Vorstellungen

Betrachung der Funktionskurve y = f(x):

- a) Die Funktion ist stetig, falls die Kurve keine Sprünge macht.
- b) Die Funktion ist differenzierbar, falls die Kurve keine Knicke macht.

Beispiel

Untersuchen Sie das Verhalten der Funktion

$$f(x) = |x|$$

an der Stelle $x_0 = 0$.

Beispiel

Ableitungspuzzle!

Ableitung einer konstanten Funktion

- Konstante Funktion: Der Graph ist eine horizontale Gerade
- Steigung?
- Ableitung?

Satz

Die konstante Funktion f(x) = c ist für jedes $c \in \mathbb{R}$ differenzierbar, und es gilt

$$f'(x)=0.$$

Beweis.

Wir setzen f(x) = c in die Definition der Ableitung ein und erhalten

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0$$

Ableitung einer Potenzfunktion

Beispiel (Fortsetzung)

Die Ableitung der Funktion

$$y=\frac{1}{10}x^2+\frac{1}{2}$$

ist

$$y'=\frac{1}{5}\cdot x.$$

Beispiel

Bestimmen Sie die Ableitung der Funktion $y = x^8$.

Satz

Die Potenzfunktion $f(x) = x^n$ ist für jedes $n \in \mathbb{N}$ differenzierbar, und es gilt

$$f'(x) = n \cdot x^{n-1}$$
.

Ableitung einer Potenzfunktion: Beweis

Beweis.

Wir setzen $f(x) = x^n$ in die Definition der Ableitung ein und erhalten

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}.$$

Unter Benützung der binomischen Formel

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k = a^n + na^{n-1} b + \dots$$

erhalten wir

$$f'(x) = \lim_{h \to 0} \frac{x^n + nx^{n-1}h + h^2 \cdot (\dots) - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + h^2 \cdot (\dots)}{h}$$

$$= \lim_{h \to 0} (nx^{n-1} + h \cdot (\dots)) = nx^{n-1}.$$

Höhere Ableitungen

Definition

- Eine Funktion f(x) mit Definitionsbereich D heisst n-mal differenzierbar an der Stelle x_0 , wenn alle Ableitungen $f'(x_0)$, $f''(x_0), \ldots, f^{(n)}(x_0)$ existieren.
- Eine Funktion f(x) n-mal differenzierbar, wenn sie an jeder Stelle des Definitionsbereichs n-mal differenzierbar ist.
- Die n-te Ableitung f⁽ⁿ⁾(x) ist dann die Funktion, die jedem x₀ ∈ D die n-te Ableitung an der Stelle x₀ zuordnet.

Physikalische Bedeutung: Der 2. Ableitung y'' = f''(x) ist die *Beschleunigung* der Bewegung y = f(x).

Bemerkung

Keine neuen Ableitungsregeln: Für die Bestimmung höherer Ableitungen braucht man die gleichen Regeln wie zur Bestimmung der 1. Ableitung.