An isomorphism of a group with itself is an automorphism of the group. Find the number of automorphisms of the given group. The automorphism of a group is determined by the image of one of its generators. Moreover, the image of a generator is also a generator. There are 4 generators of Ro, namely 1,3,5, and 7— the integers in By that are relatively prime to 8. Therefore, there are 4 automorphisms A Zz, namely the automorphisms that map (+), 1+3, 1+5, and 1+7. We need only count the number of integers in that are relatively Prime to 12 (See above). This can be found by Y(12) = Y(22.3) = Y(22) Y(3) = 2'(2-1)·(3-1) = 4. Thus, there are 4 automorphisms of Kir, namely the automorphisms that map 141, 1175, 117, and 1411. 20. Find the number of elements in the indicated cyclic group. The cyclic subgroup of the group (* generated by (Hi)/Jz

We have that H/Jz = e^{iky}, an eighth root of 1. Therefore,

((Hi)/z) = Us and | (CHi)/z > 1 = 8. Atternatively,

((Mi)/z) = \(\xi(m)/z \), i, (-1+i)/z, -1, (1-i)/z, -i, (1-i)/z, 13, 50 1<(mi/5)1=8 34 Give an example of a group with the property described, or explain why no example exists. An infinite group that is not exclic $\langle Q, + \rangle$, $\langle R, + \rangle$, $\langle C, + \rangle$, $\langle M_n(R), + \rangle$

(C*, ·), (GL(2,10), ·) are all infinite, non-cyclic groups, just

to name a few

44. Let 6 be a cyclic group with generator a, and let 6 be a group isomorphic to 6. If $\rho: G \to G$ is an isomorphism, show that, for every x & b, \$(x) is completely determined by the value \$(a). That is, if \$:6 ->6' and 4:6 ->6' are two isomorphisms such that Q(a) = Ha), then Q(x) = Y(x) for all x & G. Past: Let XEG. Jince 6 is cyclic with generator a x=a" for some nEZ. If n=0, then x=e and p(x)= Y(x) = e. If n >0, then \$(x) = \$(a) = \$(a) \(\text{(a)} \cdot \cdot \text{(a)} \cdot \cdot \text{(a)} = \(\text{(ba)} \)^n = \(\text{(4a)} \). Similarly, if n<0, then ((x) = \phi(a") = \phi(6-1)^{(n)} = \phi(a-1) \phi(a-1) \cdots \phi(a-1) - \phi(a-1)^n = \phi(a)^{-1} \big|^{h_1} = [7(a)-1]h1 = 7(a-1)h1 = 7(6-1)h1) = 7(an) = 7(x) In all cases, we have that \$(x) = Y(x) for all x & G. Thus, D(X) is completely determined by the value P(0). 50. Let 6 be a group and suppose at 6 generates a cyclic subgroup of order 2 and is the unique such element. Show that ax = xa for all XE6. Proof: let xEG. We have that $(xax^{-1})^2 = (xax^{-1})(xax^{-1}) = xa^2x^{-1} = xx^{-1} = e$ since $a^2 = e$. Therefore, either xax has order for 2; that is, xax = e, or since a is the unique elevent of 6 of order 2, xax =a. We will show that the first case cannot be true, suppose that xax = e. Then xa = (xax)x = ex = xe. From the left convellation law, we have that a=e. However, a + e since a has order Z (and e has order 1) Thus, xax te and hence, xax =a. Multiplying on the right by x gives we then that xa = ax. §7#7 List the elements of the subgroup generated by the given subset The subset {4,6} of Riz

(4,6) = {0,2,4,6,8,103