情报、信息与共享

Intelligence, Information & Sharing

基于期望确认模型的视频网站用户持续使用的实证分析

Empirical Analysis on Video Websites Users' Continuance Usage based on Expectation Confirmation Model

刘 虹 裴 雷 孙建军

(1. 江苏建筑职业技术学院图书馆,徐州,221116; 2. 南京大学信息管理学院,南京,210093)

[摘要] 在前文构建的视频网站用户持续使用模型的基础上,采用结构方程模型分析法对其进行实证分析。结果表明,期望确认模型可以有效解释视频网站持续使用,感知娱乐对视频网站持续使用意向有显著影响。同时,习惯对持续使用意向和持续使用行为之间的关系存在调节作用,但感知成本对视频用户持续使用意向的影响没有得到证实。最后总结了研究成果和进一步的研究方向。

[关键词] 期望确认模型 视频网站 持续使用 感知成本 感知娱乐 用户习惯 信息行为

[中图分类号] G203 [文献标识码] A [文章编号] 1003-2797(2014)03-0094-10 DOI: 10.13366/j.dik.2014.03.094

[Abstract] Based on video website continuance usage model constructed in the previous paper, this paper makes an empirical analysis on the theoretical model using structure equation model method. The conclusion indicates that expectation confirmation model can effectively explain users' continuance usage of video websites. Meanwhile, habit has an moderating effect on the relationship between continuance intention and continuance behavior. However, the impact of perceived cost on video websites users' continuance intention is not confirmed. In the end, the paper summarizes the research results and puts forward the further research directions.

[Key words] Expectation confirmation model Video website Continuance usage Perceived cost Perceived entertainment User habit Information behaviour

经历诞生、爆发、低迷及上市热潮几个阶段后,中国视频网站的发展开始逐步走向升级调整期。视频网站的规模越来越大,但由于网站的视频内容资源与服务模式缺乏特色,使得视频网站在投入了大量的资本之后仍然很难形成差异化的竞争优势。视频网站的点击量很大一部分来自于用户对搜索引擎检索结果的偶然点击,用户视频网站的用户忠诚度严重不足。本文在前文(见参考文献 1)构建的视频网站持续使用模型和设计的测量量表的基础上展开实证研究,以验证模型中的各变量对视频网站持续使用意向和使用行为的

影响,探讨视频网站用户持续使用的影响因素。

视频网站持续使用模型包括持续使用意向和持续使用行为两个子模型^[1](如图 1 所示)。本文对两个子模型分别展开实证分析。

1 持续使用意向模型的实证分析

1.1 数据来源

问卷调查法是收集数据的重要方法。为保证数据科学、有效,本文在设计测量问项时参考了前人研究量表,并对18名研究生展开预调查。根据预调查

[基金项目] 本文系教育部人文社科项目"基于 ISC 理论的信息用户行为评测与服务改进研究"(12YJA870017)的成果之一。 [作者简介] 刘虹,硕士,助理馆员,研究方向:网络信息资源管理、网络信息计量,Email:liuh.1990@163.com; 裴雷,博士,副教授,研究方向:信息经济学、信息资源规划;孙建军,教授,博士生导师,研究方向:网络信息资源管理、网络信息计量。

图 1 视频网站的持续使用模型

的结果对测量问项进行增删并修改了部分测量问项 的提问方式,最终得到本次问卷调查的正式问卷。

模型的测量问项全部采用李克特 5 度量表,1~5 分别表示回答者的态度由非常不同意逐步转变为非常同意。问卷在问卷星上发布,随后通过 QQ、微博、Email 等途径邀请用户填写。本阶段共回收问卷 462 份,其中有效问卷 428 份,有效回收率为 92.64%。

1.2 数据的信度分析

信度分为内在信度和外在信度。内在信度可以 衡量同一构面的各个测量问项是否表达同一个涵义, 而外在信度则是对同一问卷、同一样本群体实施多次 调查,以确定调查结果的稳健性。由于本文的问卷设 计参考了前人研究,稳健性良好,而且在不同时间对 同一研究对象进行重复测量的操作成本较高,因此本 文只对问卷进行内在信度分析。

本文采用克朗巴哈系数(Cronbach's α)法进行内在信度分析。Nunnally^[2]认为 α 系数取值要大于 0.7,当 α 系数值小于 0.6 时,必须要重新设计问卷。此外,内部一致性还可以通过计算量表每个分项目与总量表之间的关联度来进行测量,即每个分项目对总项的相关系数要大于 0.4,若小于 0.3 则表示问卷的信度偏低。本文以 0.7 作为 α 系数的阈值,以 0.4 作为分项对总项的相关系数的阈值。

本文采用 SPSS 18.0 进行信度分析,分析内容包括持续使用意向问卷的整体信度和各变量的信度两个部分。问卷的α系数值为0.858(表1),远大于阈值

0.7,稳定性和可靠性程度较高。在表 2 中,各变量的 α 系数值都在 0.7 以上,每个测量问项都可有效表达 其潜变量的涵义。对于分项对总项的相关系数,PU1 对感知有用性的相关系数为 0.253,小于阈值 0.4;同时,在删除 PU1 后,问卷整体的 α 系数值由 0.858 降低到 0.870,但感知有用性的 α 系数值反而由 0.807上升到 0.888,综合考虑后笔者决定删除 PU1。综上,模型最终保留 21 个测量问项。

表 1 持续使用意向问卷的克朗巴哈 α 系数

克朗巴哈 α 系数	项数
0.858	22

1.3 数据的效度分析

效度包括内容效度、结构效度和校标效度,其中 内容效度和校标效度规定了调查问卷测量问项的设 计必须具备理论逻辑。由于调查问卷中测量问项的 设计全部参考了前人研究成果,具备良好的理论继承 性和延展性,因此,本文只对结构效度展开分析。

1.3.1 模型拟合度分析

在对模型进行效度分析前,首先鉴定模型的拟合程度。目前学界在进行模型拟合度分析时基本采用多元准则,即"多数指标符合标准"^[3]。在分析模型拟合度时综合采取绝对拟合指标、增值拟合指标和简约拟合指标三个类型的 5 项拟合指标,其取值都达到建议值要求,模型拟合度较为理想(表 3)。

Empirical Analysis on Video Websites Users' Continuance Usage based on Expectation Confirmation Model

可 好 要 雷 孙建军

表 2 研究变量的克朗巴哈α系数

研究变量	分项对总项的 相关系数	删除该题后的 克朗巴哈 α 系数	克朗巴哈 α系数
感知有用性			0.807
PU1	0.253	0.888	
PU2	0.801	0.709	
PU3	0.753	0.734	
PU4	0.684	0.739	
PU5	0.640	0.756	
感知娱乐		Victoria de la companya della companya de la companya de la companya della compan	0.810
PE1	0.622	0.779	
PE2	0.631	0.760	
PE3	0.657	0.748	
PE4	0.631	0.760	
感知成本		01 (2.18.47)	0.722
PC1	0.619	0.630	
PC2	0.718	0.633	
PC3	0.637	0.638	
PC4	0.649	0.619	
期望确认度			0.847
CON1	0.625	0.828	
CON2	0.650	0.728	
CON3	0.892	0.665	
满意度	ETENTE DE	THE REAL PROPERTY OF	0.793
SAT1	0.638	0.715	Maria de la companya della companya
SAT2	0.661	0.693	
SAT3	0.608	0.747	
持续使用意向			0.812
CII	0.693	0.693	
CI2	0.736	0.736	
CI3	0.658	0.578	

表 3 持续使用意向模型的拟合指标分析

拟合指标	建议值	数值	拟合情况
卡方 λ ²	-	655.226	1000
自由度 df		174	-
卡方自由度比 λ²/df	$2 < \lambda^2 / df < 5$	3.766	理想
渐进均方根误差 RMSEA	<0.08	0.074	理想
调整后良适性适配指标 AGFI	>0.8	0.828	理想
比较适配指标 CFI	>0.9	0.923	理想
简约适配度指标 PGFI	>0.5	0.656	理想

1.3.2 收敛效度分析

结构效度又分为收敛效度和区别效度。其中,收敛效度用以检测同一构面内不同问项间的关联性。 Fornell^[4]认为衡量收敛效度的指标包括标准化因子载荷、组合信度以及平均方差抽取量。一般认为,标准 化因子载荷的取值大于 0.5^[5]、组合信度以及平均方差抽取量的取值分别大于 0.6 和 0.5^[4]时,模型的内在质量较高,收敛效度达到要求。

表 4 是模型的收敛效度分析结果: ①因子载荷值 取值都远大于建议值 0.5,21 个测量问项对 6 个潜变

量的解释力很强;②6个潜变量的组合信度值都大于建议值 0.6,问卷中各潜变量的测量问项的内在一致性较高;③6个潜变量的平均方差抽取量都大于建议

值 0.5,问卷的测量问项能有效反映潜变量的特质。综上,持续使用意向模型具有良好的收敛效度。

潜变量	测量问项	标准化 因子载荷	信度系数	测量误差	组合信度	平均方差 抽取量
	PC1	0.678	0.460	0.540		
et m ct +	PC2	0.732	0.536	0.464	0.810	0.516
感知成本	PC3	0.750	0.563	0.438	0.810	0.516
	PC4	0.712	0.507	0.493]	
	PU2	0.923	0.852	0.148		
感知有用性	PU3	0.778	0.605	0.395	0.894	0.679
您和有用压	PU4	0.782	0.612	0.388	0.054	0.679
	PU5	0.804	0.646	0.354		
	PE1	0.662	0.438	0.562		0.518
感知娱乐	PE2	0.738	0.545	0.455	0.811	
恐知妖术	PE3	0.729	0.531	0.469		
	PE4	0.747	0.558	0.442		
	CON1	0.714	0.510	0.490		
期望确认度	CON2	0.687	0.472	0.528	0.752	0.503
	CON3	0.725	0.526	0.474		
	SAT1	0.767	0.588	0.412		
满意度	SAT2	0.800	0.640	0.360	0.793	0.563
	SAT3	0.678	0.460	0.540		
	CI1	0.825	0.681	0.319		
持续使用意向	CI2	0.873	0.762	0.238	0.829	0.621
	CI3	0.648	0.420	0.580		

表 4 持续使用意向模型的收敛效度分析

1.3.3 区别效度分析

区别效度用以检测潜变量之间的差异程度,本文 采用平均方差抽取量法对模型的区别效度进行检验。

当每个潜变量的平均方差抽取量的取值都大于其与其 他所有变量的相关系数值的平方时则表示模型区别效 度高。由此可以看出,模型的区别效度很高(表 5)。

	感知成本	感知有用性	感知娱乐	期望确认度	满意度	持续使用意向
感知成本	0.516					
感知有用性	0.021	0.679				
感知娱乐	0.017	0.389	0.518			
期望确认度	0.088	0.261	0.354	0.503		
满意度	0.056	0.327	0.406	0.391	0.563	
持续使用意向	0.097	0.320	0.383	0.343	0.430	0.621

表 5 持续使用意向模型的区别效度分析

1.3.4 结构方程模型分析

结构方程模型(Structural Equation Modeling, SEM)是社会学、心理学和经济学等众多学科常用的统计研究方法,它通过检测理论模型和实际数据的拟合程度来验证理论假设。

(1)全模型的结构方程检验。本文利用 AMOS18.0对全模型进行结构方程模型检验,视频网 站持续使用意向全模型如图2所示,各条路径和变量 因子载荷的参数估计值如表6所示。

Empirical Analysis on Video Websites Users' Continuance Usage based on Expectation Confirmation Model

刘 虹 裴 雷 孙建军

图 2 视频网站持续使用意向全模型

表 6 持续使用意向全模型路径的参数估计值

持续使用意向模型的路径	非标准化 参数值	标准误差	T 值 (参考值>1.96)	P值	标准化参数值 (路径系数)
感知有用性←期望确认度	0.699	0.074	9.442	***	0.645
满意度←感知有用性	-0.024	0.08	-0.298	0.766	-0.023
满意度←期望确认度	1.023	0.193	6.433	***	0.897
满意度←感知娱乐	0.659	0.102	7.482	***	0.632
持续使用意向←满意度	0.466	0.076	6. 155	***	0.454
持续使用意向←感知成本	-0.036	0.05	-0.494	0.622	-0.025
持续使用意向←感知娱乐	0.32	0.069	4.661	***	0.332
持续使用意向←感知有用性	0.821	0.051	16.002	***	0.628
PU5←感知有用性	1				0.792
PU4←感知有用性	1.204	0.067	17.863	***	0.795
PU3←感知有用性	0.874	0.049	17.787	***	0.793
PU2←感知有用性	1.15	0.055	20.931	***	0.914
PE4- 感知娱乐	1				0.75
PE3←感知娱乐	0.912	0.066	13.826	***	0.729
PE2←感知娱乐	0.947	0.068	13.872	***	0.732
PE1←感知娱乐	0.909	0.072	12.654	***	0.664
PC1←感知成本	1				0.585
PC2←感知成本	0.958	0.115	8.347	***	0.626
PC3←感知成本	0.687	0.082	8.412	***	0.638
PC4←感知成本	0.922	0.112	8.205	***	0.602
CON3←期望确认度	1				0.678
CON2←期望确认度	0.846	0.095	8.898	***	0.518
CON1←期望确认度	0.915	0.089	10.267	***	0.553
SAT1←满意度	1				0.765
SAT2←满意度	0.959	0.06	15.947	***	0.797
SAT3←满意度	0.861	0.064	13.55	***	0.679
CI1←持续使用意向	1				0.818
CI2←持续使用意向	1.252	0.069	18.234	***	0.88
CI3←持续使用意向	0.967	0.071	13.618	***	0.646

注: *** 表示在 0.001 的水平下显著。

全模型检验的结果表明:①21个测量问项和3个内因潜变量的信度系数都大于建议值0.2,大部分信度系数的取值都在0.4以上,模型的内在质量检验良好;②29条路径系数中有27条路径的T值大于1.96,在0.001的水平上显著。

(2)研究模型假设检验结果。在对模型进行结构方程全模型检验后,得到8条研究假设的验证结果(表7)。H1、H3-H7在0.001的水平下达到显著,接受原假设;而H2和H8在0.001水平上不显著,要拒绝原假设。

衣 / 持续使用点	以内关至的权及型	紅門ル	
研究假设	路径系数	P值	结论
假设 H1:持续使用意向←感知有用性	0.628	***	成立
假设 H2:满意度←感知有用性	-0.023	0.766	不成立
假设 H3:感知有用性←期望确认度	0.645	***	成立
假设 H4:满意度←期望确认度	0.897	***	成立
假设 H5:持续使用意向←满意度	0.454	***	成立
假设 H6:满意度←感知娱乐	0.632	***	成立
假设 H7:持续使用意向←感知娱乐	0.332	***	成立
假设 H8:持续使用意向←感知成本	-0.025	0.622	不成立

表 7 持续使用意向模型的假设验证情况

综上,视频网站用户持续使用意向模型的假设大部分都得到证实,感知有用性、期望确认度、满意度和感知娱乐对持续使用意向的影响被验证十分显著,对持续使用意向的方差的解释率达到 51%。同时,感知有用性和感知娱乐对持续使用意向的影响较其他变量更为显著,表明视频网站是典型的享受型信息系统,同时用户对视频网站提供的服务亦十分看重。尽管感知成本对持续使用的影响没有得到证实,但这也为后续对视频网站的研究提供了线索和启示。另外,国内信息系统用户行为的研究中较少涉及持续使用行为的影响因素(之前的研究大多只集中于持续使用意向),在下文,笔者将对视频网站用户的习惯、持续使用意向和持续使用行为三要素之间的关系进行探讨。

2 持续使用行为模型的实证分析

2.1 数据来源

在第一阶段问卷调查结束一个月之后,展开第二阶段持续使用行为模型的问卷调查。调查对象为第一阶段给出了有效回复的被调查者,由于两个阶段的问卷中都收集了调查对象的手机尾号后四位,因此笔者可将两阶段的数据有效对应起来。本阶段将问卷发放给第一阶段中提交了有效问卷的 428 名调查对象,共回收有效问卷 217 份,有效回收率为 50.70%。

2.2 数据的信度分析

持续使用行为问卷的 α 系数值为 0.824 (表 8),远大于阈值 0.7,稳定性和可靠性程度较高。在表 9 中,习惯和持续使用意向的 α 系数值大于 0.7,测量问项可有效的表达潜变量的特质。持续使用行为的 α 系数值为 0.683,小于 0.7,但是考虑到问卷中持续使用行为的测量问项只有两个,所以一定程度上信度分析的结果是可以接受的。综合来看,持续使用行为问卷中每个研究变量的测量问项具有很好的稳定性和一致性,问卷信度较高。

表 8 持续使用行为问卷的克朗巴哈 α 系数

克朗巴哈 α 系数	项数
0.824	8

2.3 数据的效度分析

2.3.1 模型拟合度分析

在分析持续使用行为模型的拟合度时,共采用 4 项拟合度指标,其取值都达到建议值要求,模型的拟合度较为理想(表 10)。

2.3.2 收敛效度分析

表 11 是模型的收敛效度分析结果:①因子载荷值取值都远大于建议值 0.5,8 个测量问项对 3 个潜变量的解释力很强:② 3 个潜变量的组合信度值都大

注: *** 表示在 0.001 的水平下显著。

Empirical Analysis on Video Websites Users' Continuance Usage based on Expectation Confirmation Model

刘 虹 裴 雷 孙建军

表 9 研究变量的克朗巴哈 α 系数

研究变量	分项对总项的 相关系数	删除该题后的 克朗巴哈α系数	克朗巴哈 α系数
习惯			0.932
HAB1	0.887	0.898	
HAB2	0.888	0.897	
HAB3	0.853	0.907	
持续使用意向			0.812
CII	0.693	0.693	
CI2	0.736	0.736	
CI3	0.658	0.578	
持续使用行为			0.683
CU1	0.618	-	
CU2	0.618	-	

表 10 持续使用行为模型的拟合指标分析

拟合指标	建议值	数值	拟合情况
卡方 λ ²	-	76.231	
自由度 df	_	17	_
卡方自由度比 λ²/df	$2 < \lambda^2 / df < 5$	4.484	理想
适配度指标 GFI	>0.9	0.938	理想
调整后良适性适配指标 AGFI	>0.8	0.868	理想
比较适配指标 CFI	>0.9	0.949	理想

于建议值 0.6,问卷中各潜变量的测量问项的内在一致性较高; 33 个潜变量的平均方差抽取都大于建议值 0.5,问卷的测量问项能有效反映变量的特质。综上,持续使用行为模型具有良好的收敛效度。

表 11 持续使用行为模型的收敛效度分析

潜变量	测量问项	标准化 因子载荷	信度系数	测量误差	组合信度	平均方差 抽取量
	HAB1	0.932	0.869	0.068		
习惯	HAB2	0.924	0.854	0.076	0.941	0.841
	HAB3	0.895	0.802	0.105		
	CII	0.803	0.645	0.197		
持续使用意向	CI2	0.899	0.808	0.101	0.828	0.620
VEV I-1	CI3	0.639	0.409	0.361		
持续使用 CU1	CU1	0.756	0.572	0.244	0 695	0 501
行为	CU2	0.686	0.47	0.314	0.685	0.521

2.3.3 区别效度分析

在表 12 中,对角线上的平均方差抽取量大于对应的行和列的各潜变量相关系数值的平方,持续使用行为模型的区别效度很高。

表 12 持续使用行为模型的区别效度

	习惯	持续使用意向	持续使用行为
习惯	0.841		
持续使用意向	0.305	0.620	
持续使用行为	0.150	0.260	0.521

2.3.4 结构方程模型分析

(1)模型的调节效应分析。本文采用加入乘积项的结构方程分析法对持续使用行为模型中习惯的调节效应进行分析。根据效度分析中自变量 CI(持续使用意向)的三个观察指标 CI1、CI2、CI3 和调节变量 HAB(习惯)的三个观察指标 HAB1、HAB2、HAB3 的因子载荷的大小,按照"大值配大值、小值配小值"的原

则、采用配对相乘指标方法计算出 CI 和 HAB 的交互 项 HC 的乘积指标,分别记为 hc1、hc2 和 hc3。

为评估习惯变量的调节效应的大小,分别对两个模型进行结构方程全模型分析:一个模型只验证持续使用意向的直接作用而不包括交互项 HC,模型记为M21;另一个模型不仅分析持续使用意向对持续使用行为的直接影响同时考虑习惯变量的调节作用(即HC的交互效应),模型记为M22。模型M21和模型M22的全模型分别如图 3 和图 4 所示。

随后对两个模型进行比较分析(表 13),两个模型的 $\Delta R^2 = 0.06$, f' = 0.088, 习惯对持续使用意向和持续使用行为两者关系的调节作用被认定为小到中之间(其中, $f' = \Delta R^2/(1-R_{M22}^2)$, 当 f' = 0.02 时,调节效应较小; 当 f' = 0.15 时,调节效应中等; 当 f' = 0.35 时,调节效应较大[6])。

结合图 3、图 4 的结构方程全模型和表 13 的模型

图 3 M21 的结构方程全模型

图 4 M22 的结构方程全模型

表 13 模型 M21 和 M22 的比较

模型	CI	НС	R ²	ΔR ²	f ²
M21(无调节效应模型)	0.53***	112	0.26	0.06	0.088
M22(有调节效应模型)	0.47 ***	-0.13***	0.32		

注: *** 表示在 0.001 的水平下显著。

评估结果,得出以下结论:①在加入调节效应前,持续使用意向与持续使用行为间的路径系数为 0.53,且在 0.001 的概率水平下达到显著;加入调节效应后,持续使用意向与持续使用行为两个变量间的路径系数有所减小,为 0.47,且仍在在 0.001 的概率水平下达到显著,说明持续使用意向对于视频网站用户的持续使用行为存在重要影响;②习惯和持续使用意向的交互项 HC 对视频网站的持续使用行为存在负向影响,路

径系数为 - 0.13,且在 0.001 的概率水平下达到显著,说明习惯对持续使用意向和持续使用行为之间的关系存在调节作用,且作用效果是负向的。

(2)研究模型假设检验结果。对持续使用行为模型进行结构方程全模型检验后,得到了2条研究假设的验证结果(表14)。H9和H10在0.001的水平下达到显著,持续使用意向对持续使用行为的影响和习惯对两者关系的调节作用都得到了证实。

表 14 持续使用行为模型的假设验证情况

研究假设	路径系数	P值	结论
假设 H9:持续使用意向、持续使用行为←习惯	-0.132	***	成立
假设 H10:持续使用行为◆持续使用意向	0.471	***	成立

注: *** 表示在 0.001 的水平下显著。

Empirical Analysis on Video Websites Users' Continuance Usage based on Expectation Confirmation Model

刘 虹 裴 雷 孙建军

3 研究结果与讨论

验证后的视频网站用户持续使用模型如图 5 所示。 除感知有用性对满意度的影响未得到证实之外, 期望确认模型的其他 4 条假设都被证实。同时,感知 娱乐对视频网站用户满意度和持续使用意向的影响显著。另外,感知成本对用户持续使用意向的影响未得到证实。

下文对未证实的研究假设进行具体分析。

注: ** 表示在 0.01 的水平下显著; *** 表示在 0.001 的水平下显著。

图 5 验证后的视频网站用户持续使用模型

3.1 感知有用性与满意度之间的关系

对于感知有用性和满意度之间的关系,尽管之前很多学者都在实证中证实了感知有用性会正向影响用户的满意度^[7-9],但是也有不少学者提出异议。Hayashi^[10]在研究电子系统的用户持续使用时指出,社会存在对感知有用性和满意度之间的关系存在影响,社会存在水平处于中下水平时期望确认模型的所有假设都能成立,但是当社会存在水平较高时,满意度无法解释用户的持续使用意向。Sabrina^[11]在研究基于信息技术的知识分享行为时也发现感知有用性对满意度的影响并不显著。本文同样没有证实感知有用性对满意度的影响并不显著。本文同样没有证实感知有用性对满意度的影响并不显著。本文同样没有证实感知有用性对满意度的显著影响,原因可能是因为满意度是出发的,因此二种愉快、满足、高兴的用户体验,而感知有用性是从视频网站给用户带来的益处这一角度出发的,因此二者之间的关系没有达到显著。

3.2 感知成本与持续使用意向之间的关系

对于感知成本和用户持续使用意向之间的关系, Luarn 和 Lin^[12]对手机银行持续使用的研究、Kuo 和 Yen^[13]对 3G 服务持续使用影响因素的研究、Kleijnen^[14]对无线金融服务用户持续使用行为的研究都 证实了感知成本对用户的使用意向有显著负向影响。但是朱诩菲[15] 对移动商务持续使用行为影响因素的研究、杨永清[16] 对移动支付持续使用行为的研究则表明感知成本对用户的持续使用没有显著影响。本文的研究同样没有证实感知成本对持续使用意向的显著影响,原因可能是因为尽管用户认为视频网站的插播广告的时间过长、直播点播的费用较高,但是随着用户检索能力的提高以及互联网的普及加上视频网站的有用性、便利性,用户还是会选择再次使用视频网站。

4 结论

本文基于期望确认模型视角对视频网站用户的持续使用展开实证研究,主要成果可概括为以下两点。

(1)在探讨视频网站用户持续使用意向的影响因素时,在期望确认模型的基础上新增了感知娱乐和感知成本两个变量。期望确认模型对外部因素上讨论较少,而近年来的研究已经多次证明,外部因素对用户满意度和持续使用意向具有显著影响。对于视频网站的持续使用而言,视频网站的功能主要体现在休

闲娱乐上;而随着视频网站竞争的加剧,视频广告时间的延长和点播付费方式的发展,使用网络视频资源的成本也成为了用户持续使用的一个考虑因素。因此,把感知成本和感知娱乐两个变量加入期望确认模型将使模型在预测和解释力度上更为完整和准确。

(2)考虑了持续使用意向与实际持续使用行为的不同。很多学者在研究用户持续使用时仅仅考虑到了持续使用意向的影响因素,而没有考虑到习惯对行为意愿和实际行为之间的关系起到调节作用。

进一步的研究方向:

- (1)引入其他外部变量。在现有模型的基础上探讨其他因素对视频网站使用行为的影响,如自我效能、社会影响等。
- (2)增加控制变量。在模型构建阶段考虑年龄、 教育背景、互联网使用经验、收入视频、性别等变量对 用户持续使用意向和行为的调节作用,可以更好、更 全面的为视频网站的发展提供参考。

参考文献

- 1 孙建军,裴雷,刘虹.基于期望确认模型的视频网站持续使用模型构建[J].图书情报知识,2013(5):82-88
- 2 Nunnally J.C. Psychometire theory [M]. New York: McGraw Hill, 1978
- 3 Hair JF, Anderson RE, Tatham RL, et al. Multivariate data analysis[M].NY: Prentice Hall International, 1998
- 4 Fornell C, Larcker D F. Structural equation models with unobservable variables and measurement errors[J]. Journal of Marketing Research, 1981, 18(1): 39-50
- 5 Bagozzi R P, Yi Y. On the evaluation of structural equation models[J]. Academic of Marketing Science, 1988, 16(1):76-94
- 6 Cohen J. Statistical Power Analysis for the Behavioral Sciences[M]. Hillsdale, NJ: Lawrence Erlbaum, 1988
- 7 Lin C S, Wu S, Tsai R J. Integrating perceived playfulness into expectation-confirmation model for web portal context[J]. Information & Management, 2005, 42(5):683-693
- 8 毕新华,齐晓云,段伟花.基于 ECM 模型的 IT 持续使用整合分析[J].图书情报工作,2011(6):40-44
- 9 刘鲁川,孙凯.基于扩展 ECM-ISC 的移动搜索用户持续使用理论模型[J]. 图书情报工作,2011(20):134-137
- 10 Hayashi A, Chen C, Ryan T, et al. The Role of social presence and moderating role of computer self efficacy in predicting the continuance usage of e-learning systems[J]. Journal of Information Systems, 2004, 15(2):139-154
- 11 Sabrina SS F, Matthew K O L. Explaining IT-based knowledge sharing behavior with IS continuance model and social factors[C]. Kuala Lumpur: PACIS 2006 Proceedings, 2006:255-270
- 12 Luarn P, Lin H H. Toward an understanding of the behavior intention to use mobile banking [J]. Computers in Human Behavior, 2005, 21 (6) . 873-891
- 13 Kuo Y F, Yen S N. Towards an understanding of the behavioral intention to use 3G mobile value-added services [J]. Computers in Human Behavior, 2009, 25(1):103-110
- 14 Kleijnen M H P, Wetzels M, Ruyter K D. Consumer acceptance of wireless finance[J]. Journal of Finance Services Marketing, 2004, 8(3): 206-217
- 15 朱翊菲·情景感知服务的用户接受模型及实证研究[D].北京:北京邮电大学,2012
- 16 杨永清,张金隆,李楠,等. 近距离移动支付用户接受行为研究:基于消费者视角[J]. 图书情报工作,2012,56(2):142-148

(收稿日期:2013-12-26)