INFORMATIO	N AND NETWOD	W SECUDITY	
INFORMATION AND NETWORK SECURITY [As per Choice Based Credit System (CBCS) scheme]			
(Effective from the academic year 2017 - 2018)			
SEMESTER – VII			
Subject Code	17CS743	IA Marks	40
Number of Lecture Hours/Week	3	Exam Marks	60
Total Number of Lecture Hours	40	Exam Hours	03
CREDITS – 03			
			Teaching
			Hours
Introduction. How to Speak Crypto. Classic Crypto. Simple Substitution Cipher.			
Cryptanalysis of a Simple Substitution. Definition of Secure. Double			
Transposition Cipher. One-time Pad. Project VENONA. Codebook Cipher.			er.
Ciphers of the Election of 1876. Modern Crypto History. Taxonomy of			
Cryptography. Taxonomy of Cryptanalysis.			
Module – 2.			
What is a Hash Function? The Birthday Problem.Non-cryptographic Hashes.			8 Hours
Tiger Hash. HMAC. Uses of Hash Functions. Online Bids. Spam Reduction.			on.
Other Crypto-Related Topics. Secret Sharing. Key Escrow. Random Numbers.			
Texas Hold 'em Poker. Generating Random Bits. Information Hiding.			
Module – 3			
Random number generation Providing freshness Fundamentals of entity			
authentication Passwords Dynamic password schemes Zero-knowledge			lge
mechanisms Further reading Cryptographic Protocols Protocol basics From			om
objectives to a protocol Analysing a simple protocol Authentication and key			ey
establishment protocols			
Module – 4			
Key management fundamentals Key	lengths and lifetin	nes Key generation K	tey 8 Hours
establishment Key storage Key usage Governing key management Public-Key			ey
Management Certification of public keys The certificate lifecycle Public-key			ey
management models Alternative appr	oaches		
Module – 5			
Cryptographic Applications Cryptog	- 1 -	** * * * * * * * * * * * * * * * * * * *	
wireless local area networks Cryp			
Cryptography for secure payment			leo
broadcasting Cryptography for identit		hy for home users	
Course outcomes: The students should be able to:			
Analyze the Digitals security lapses			
Illustrate the need of key management			
Question paper pattern:			
The question paper will have ten questions.			

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Information Security: Principles and Practice, 2nd Edition by Mark Stamp Wiley

2. Everyday Cryptography: Fundamental Principles and Applications Keith M. Martin Oxford Scholarship Online: December 2013

Reference Books:

Applied Cryptography Protocols, Algorithms, and Source Code in C by Bruce Schneier