$$|f_{i}(t,x) - f_{i}(t,y)| = |\int_{0}^{1} \frac{dt}{dt} f_{i}(t, \tau x + (1-t)y) dt|$$

$$\leq \int_{0}^{1} |(x-y)^{\top} \nabla_{x} f_{i}(t, \tau x + (1-\tau)y)| dy$$

 $\forall (t,x), (t,y) \in K$. Mit der Couchy-Schwarz Ungleichung (siehr Anolysis 2, Sotz 1.16) folgt

$$|f_i(x,y) - f_i(t,y)| \leq |x-y| \int_0^1 |\nabla_x f_i(t, \tau x + (N-\tau)y)| d\tau$$

$$\leq |x-y| \max_{(t,x) \in K} |\nabla_x f_i(t,x)| = L_i |x-y|$$

I

mit Li = mox | $\nabla_x f_i(t,x)$ | < ∞ , und disso Maximum existical, nour Voraus deung

$$|f(t,x)-f(t,y)| \leq |L|x-y|$$
 mit $L:=\left(\sum_{i=1}^{d}L_{i}^{2}\right)^{1/2}$

Alternativ konn man ouch den Schrönkensotz our Anolysis 2 Sotz 3.39 und Bemirkung 3.40 heranziehen

Im Folgenden können wir einen der Zentrolen Sötze in der Theorie gewöhnlicher Differentiolgleichungen beweisen.

Sotz 1.8 (SATZ VON PICARD LINDELOF)

See $U \subset \mathbb{R} \times \mathbb{R}^d$ offen, $U \neq \emptyset$, $f \colon U \Rightarrow \mathbb{R}^d$ stetig und lokel dipschitz-stetig in \times . Seien $(t_0, U_0) \in U$. Donn existient ein T > 0 und eine Funktion $u \in C^1(J_T, \mathbb{R}^d)$

 $J_{T} := [t_{o}-T, t_{o}+T]$, so olan $(t, u|t) \in U$ für alle $t \in J_{T}$ gilt und u olan Anfongsweitproblem (L.1) löst.

```
<u>Bewas:</u>
```

Seven $\overline{J_0} > 0$ und $\delta > \overline{0}$ so fixiért, dons $\forall i = \overline{J_{T_0}} \times \overline{B_g(u_0)} \subset U$ gilt., wo big $\overline{B_g(u_0)} = \{u \in \mathbb{R}^d : |u - u_0| \leq \delta\}$.

Für $0 < T < T_0$ sei $X_T = C(J_T, \mathbb{R}^d)$, $J_T = [t_0 - T, t_0 + T]$ Donn 1st $(X_T, \|\cdot\|_{\infty})$ ein Bonochroum, wober für $u \in X_T$ $\|u\|_{\infty} = \sup_{t \in J_T} |u(t)| gill.$

Sei $M_T := \{ u \in X_T : \|u - u_o\|_{\infty} \le d \}$. Donn ist $M_T \subset X_T$ objectlossen \overline{T} in $U \in M_T$ girt $(t, u(t)) \in V_o \ \forall t \in J_T$ Sei $K(u)(t) := u_o + \int_{t}^{t} f(s, u(s)) ds$.

Wir Reigen: K: M_T > M_T ist eine Kontroktion, fells T hinreichend klein gewählt wird. Aus der Abgeschlossenheit von M_T folgli dann aus dem Banach schen Fixpunielsetz die Existenz einen eindeutigin Fixpunkts von K im M_T Schrift 1: K: M_T > M_T.

Die Stetigkeit von u und f ouig V_0 implieriert $K(u) \in X_T$. Außerdem gilt mit

 $m := \max_{\{t_1 \times \} \in V_0} |f(t_1 \times)|$

für $u \in M_T$ und alle $t \in J_T = [t_0 - T, t_0 + T],$

 $|K(u)(t)-u_0| \leq |\int_{t_0}^t f(s,u(s)) ds| \leq \int_{T} |f(s,u(s))| ds \leq 2Tm$

l'st m = 0, so sei T,=To. Andernfells setze Ti = min { To, im }. Für T < Ti folgt donn sup |K(u)(b)-vo| = 11 K(u)-voll ≤ o ⇒ K(u) € MT FE JL Schrift 2: Kist eine Kontroktion auf MT Aus den Voraumetaung en an f folgt: 3 L>0 $|f(t,x)-f(t,y)| \leq L|x-y|$ $\forall (t,x), (t,y) \in J_{T_o} \times B_{\delta}(v_o)$. Fur 0 < T = To und uiv = My gilt ult), v(t) ∈ Br(vo) Y t ∈ Jr und doher $|K(u)(t) - K(v)(t)| \leq \int |f(s, u(s)) - f(s, v(s))| ds$ < 2LT sup lu(s) - v(s)l = 2LT 11 u- VII x Ist T & 1/L, so erholten wir insbesondere $\| K(u) - K(v) \|_{\infty} \leq \frac{1}{2} \| u - v \|_{\infty}$ d.h. für 0<T € min {To, 2m, 4L } für m>0 (bzw. D<T < min [To, 1/4] fur m=0) ist K: Mr > Mr eine Kontroktion. Doncr gibt es ein emoleutique u E MT, so don gilt u = K(u), also gilt $u(t) = K(u)(t) = v_0 + \int_{t}^{t} f(s, u(s)) ds$

für elle t E [t. - T, t. + T].

Benerkung 2.9 Der Beweis des Fixpunktsotzes von Benoch liefert auch eine Iterationsvorschrift: Fur uo(E):= vo und nEN sei

 $u_{n+1}(t) := u_0 + \int_{t_0}^{t} f(s, u_n(s)) ds$. $t \in [t_0 - T, t_0 + T]$

Donn konrespiert (un)nexi gigen eine Losung des Anfongswertproblem.

Die Kombruktion der Lösung über eine derert definierte Folge nennt mon PICARD-ITERATION.

Bemerkung 2.10 Im Busiers von Sotz 2.8 höngt T explicate von der Lipschitz-Konntonte Lob ($T = \frac{q}{2L}$ für ein $q \in (0,1)$)

Dies lößt sich durch Abwondlung des Beweises tatsöchlich Vermeiden, siehe Proseminor.

weiters konn mon den Deweis auch nur "noch rechts"

("vorwörts") für to € t bzw. "nah links" ("rūckwörts")

für t € to führen und erhell mitunter ein größeres

Existenzintervall in nur eine Richtung.

Korollar 2.11 Sèr f wir in Sotz 2.8 unol ser (to, vo) ∈ U. Ser (tj, uj) j∈H eine Folge in U mit

(t_J, u_J) ⇒ (t_o, v_o) fūr J → ∞ und t_J ∈ t_o ∀ J∈N.

Denn existiert ein J_o ∈ N und ein T > 0, soden fūr Jedes
J>J_o des Unfangs wert problem

$$n(f^2) = n^2$$

eine Lösung aug dem Intervall [tj,tj+T] besitzt, wober
Tunoshængig von 7 ist.

Buscus: Fur (to, 40) ∈ U sa Vo = [to-To, to+To] × Bo(40) ⊂ U SeiO<T < min { To, 4L, 4m} mit Lund m wie im vorigen Beweig Sei Jo ∈ H so don fur j ≥ Jo gilt: to-T < tj ≤ to und UJ E Boy (Uo). Sei MT < XT wie im vorigen Beweis definiert Dann ist Kj: MT = MT. $K_{\overline{d}}(u)(t) := U_{\overline{d}} + \int_{t_{\overline{d}}} f(s, u(s)) ds$ eine Kontroktion, denn on gilt $|K_{J}(u)(t)-v_{0}| \leq |U_{J}-v_{0}| + 2Tm \leq d$ für $u \in M_{T}$ $\Rightarrow \|K_{J}(u)-v_{0}\|_{\infty} \leq d \Rightarrow K_{J}(u) \in \Pi_{T}$ and $|K_{J}(u)(t) - K_{J}(v)(t)| \in 2TL \sup_{t \in J_{T}} |u(t) - v(t)| \leq \frac{1}{2}||u-v||_{\infty}$ > Für jeden j = jo besitzt die jeweilige Abbildung Ko ewy Mr einen Fixpunkt, d.h. es gibt ein wj E MT $\omega_{\bar{i}}(t) = u_{\bar{j}} + \int_{0}^{t} f(s_{i} \omega_{\bar{i}}(s)) ds \quad \forall t \in [t_{0}-T, t_{0}+T]$ Einschränkung der Rösung auf [t], t, +T] für zudes 7 > 70 liefert die Behauptung

Der Sotz von Picord-Lindelöff liefert neben der Existenz die Einductigkeit der Lösung in MT ("bedingte Eindeutigkeit)

Die dipschitz-Stetigkeit der rechten Seite allein liefert

Jedoch schon eine viel sterker Eindeutigkeits aussage, die wir im Folgenden seingen. Grundlage dagür ist des fagunde wichtige Lemme.

Lemme 2.12 (LEMMA VON GRONWALL)

Seien $o_1b \in \mathbb{R}$, o_2b und $\alpha_1\beta_1 : [a_1b] \rightarrow \mathbb{R}$ stetige Funktionen. Sei weiters $\beta_1(t) \geq 0$ $\forall t \in [a_1b]$. Angenommer $\phi_1 : [a_1b] \rightarrow \mathbb{R}$ ist stetig und erfullt $\phi_2(t) \leq \phi_1(t) \leq \phi_2(t) + \int_{a}^{b} \beta_1(s) \phi_2(s) ds$ $\forall t \in [a_1b]$.

Dann gilt

(2.4)
$$\psi(t) \leq \alpha(t) + \int_{\alpha}^{t} (\alpha(s)\beta(s)) e^{\int_{s}^{t} \beta(t) dt} ds$$
 $\forall t \in [a,b].$

Gilt darüber hinous &(s) = x(t) für s = t, so folgt.

(2.5)
$$\varphi(t) \leq \alpha(t) e^{\int_{a}^{t} \beta(s) ds}$$

Bewers:

Wir setzen $\Psi(t) := \int \beta(s) \, \varphi(s) ds$ für $t \in [a_1b]$ Donn ist Ψ sketig differen eierbar auf $[a_1b]$ mit $\Psi'(t) = \beta(t) \, \varphi(t)$ Aus $\psi(t) \leq \alpha(t) + \Psi(t)$ erhalten wir wegen $\beta(t) \geq 0$ die Differentialungleichung

$$\Psi'(E) \leq B(E)(\alpha(E) + \Psi(E))$$
 $E \in E_{0}[6].$

Multipliketion mit e-Sabisids light

$$\frac{d}{dt}\left(e^{-\int_{a}^{t} \beta(s)ds} \psi(t)\right) = e^{-\int_{a}^{t} \beta(s)ds} \psi'(t) - \beta(t)e^{-\int_{a}^{t} \beta(s)ds} \psi(t)$$

$$= e^{-\int_{a}^{t} \beta(s)ds} \left(\underbrace{\Psi^{\dagger}(t) - \beta(t)\Psi(t)}_{\leq \delta(t) \ll (t)} \leq \alpha(t)\beta(t) e^{-\int_{a}^{t} \beta(s)ds}_{\leq \delta(t) \ll (t)} \right)$$

Integration von a bis t ergibt (mit Y(a) = 0)

$$\psi(t) \in \int_{0}^{\infty} \varphi(s) ds = \int_{0}^{\infty} \varphi(s) ds = \int_{0}^{\infty} \varphi(s) ds ds$$

$$\Rightarrow \qquad \psi(t) \leqslant \int \chi(s) \, \beta(s) \, e^{-\int_{0}^{s} \beta(t) dt} + \int_{0}^{t} \beta(t) ds$$

$$= \int_{0}^{t} \alpha(s) \beta(s) e^{\int_{s}^{t} \beta(\tau) d\tau} ds$$

und aus $\varphi(t) < \alpha(t) + \Psi(t)$ folgt die Behauptung. Ist

$$\alpha(s) \leq \alpha(t)$$
, donn ist $\frac{-\alpha t}{\alpha s} (e^{-\frac{1}{2}\alpha(t)})$

$$\int_{0}^{t} x(s) \beta(s) e^{\int_{0}^{t} \beta(t) d\tau} \ll \chi(t) \int_{0}^{t} \beta(s) e^{\int_{0}^{t} \beta(t) d\tau} ds$$

$$= \chi(t) \cdot \left(-1 + e^{\int_{0}^{t} \beta(t) d\tau}\right)$$

und es foigt ours (2.4)

$$y(t) \leq x(t) - x(t) + x(t) e^{\int_a^t \beta(t)dt}$$
 und somit (2.5)