Reconstruction of TLAPS proofs solved by SMT in Lambdapi

Alessio Coltellacci

Univ. Lorraine, CNRS, Inria, Loria

ICSPA

Outline

SMT translation at a glance

Formalisation overview (experimental notation)

Evaluation

Unresolved points

Future perspectives

TLA⁺ at a glance

- Specification language to design and verify reactive systems
- Systems are described as state machines

VARIABLE x CONSTANT N $ASSUME N \in Nat$

$$Init \stackrel{\triangle}{=} \quad \land \ x = 0$$

$$Next \triangleq \land x < N \land x' = x + 1$$

$$Spec \stackrel{\triangle}{=} Init \wedge \square[Next]_{\langle x \rangle}$$

TLAPS proof example

```
- - - - - - - - - - - - - - - MODULE Cantor1 - - - - - - - - - - - - - - -
THEOREM cantor ==
    \forall S:
         \forall f \in [S \to \text{SUBSET } S]:
              \exists A \in SUBSET S:
                    \forall x \in S:
                     f[x] # A
PROOF
<1>1 TAKE S
<1>2. TAKE f \in [S \to \text{SUBSET } S]
<1>3. DEFINE T == \{ z \in S : z \notin f[z] \}
<1>4. WITNESS T \in SUBSET S
<1>5. TAKE x \in S
<1>6. QED BY x \in T \lor x \notin T
```

Proposed solution

Simple example

```
(set-logic QF_UF)
(declare-sort U 0)
(declare-fun a () U)
(declare-fun b () U)
(declare-fun p (U) Bool)
(assert (p a))
(assert (= a b))
(assert (not (p b)))
(get-proof)
```

Its Alethe SMT proof

```
(assume a0 (p a))
(assume a1 (= a b))
(assume a2 (not (p b)))
(step t1 (cl (not (= (p a) (p b))) (not (p a)) (p b)) :rule equiv_pos2)
(step t2 (cl (= (p a) (p b))) :rule cong :premises (a1))
(step t3 (cl (p b)) :rule resolution :premises (t1 t2 a0))
(step t4 (cl) :rule resolution :premises (a2 t3))
```

Alethe format

Definition (Alethe step)

A proof in the Alethe language is an indexed list of step following the format:

$$j. \Delta \vdash \varphi (R; p_1 \dots p_n)[a_1, \dots, a_n]$$

With $i \in \mathbb{I}$ where \mathbb{I} is a countable infinite set of valid indices, a formula φ , a rule name \mathcal{R} from a set of possible rules, a possible empty sets $\{p_1 \dots p_n\} \subseteq \mathbb{I}$ of premises (previous steps), a possible empty list of arguments $[a_1 \dots a_n]$ where $a_i = (x_i, t_i)$ with x_i a variable and t_i a term, and a context Δ .

Overview of rules

1. Special rules

```
* \vdash \varphi (asssume)
* \vdash \varphi (hole; p_1 \dots p_n)[a_1 \dots a_n]
* \varphi_1 \dots \varphi_n, \psi \vdash \neg \varphi_1 \dots \neg \varphi_n \psi
                    (subproof; p_1 \dots p_n)
```

2. Resolution rules

- * th_resolution, resolution
- contraction, reordering

3. Introducing tautologies

- * $\vdash \neg (\neg \neg \varphi), \varphi \pmod{\neg not}$
- * $\vdash \neg(\varphi_1 \approx \varphi_2), \neg \varphi_1, \varphi_2$ (equiv_pos2)
 * $\vdash \neg(\varphi_1 \land \cdots \land \varphi_n), \varphi_k$ (and_pos)

4. Linear arithmetic

- lia_generic.la_generic
- $\vdash t_1 \le t_2 \lor t_2 \le t_1 \text{ (la_totality)}$

5. Quantifier handling

*
$$j. \Delta, x_i \mapsto y_i \vdash \varphi \approx \varphi'$$

 $i. \vdash \forall x_1 \dots x_n, \varphi \approx \forall y_1 \dots y_n, \varphi'$ (bind)
* forall-inst

6. Skolemization

- sko_ex
- sko_forall

7. Clausification rules

- distinct_elim

8. Simplification rules

- and_simplify
- bool_simplify
- eq_simplify
- sum_simplify

Alethe proof as derivation tree

$$t_{i} \frac{\vdots}{\Delta'' \vdash p_{1}} \frac{\vdots}{\text{Rule}(\dots)} \dots \frac{t_{k}}{\Delta' \vdash p_{n}} \frac{\vdots}{\text{Rule}(\dots)} \\ \Delta \cup \{p_{1} \dots p_{n}\} \vdash c_{1}, \dots, c_{n}$$
Rule $(a_{1} \dots a_{n})$

Loop back on the SMT proof example

```
(assume a0 (p a))
(assume a1 (= a b))
(assume a2 (not (p b)))
(step t1 (cl (not (= (p a) (p b))) (not (p a)) (p b)) :rule equiv_pos2)
(step t2 (cl (= (p a) (p b))) :rule cong :premises (a1))
(step t3 (cl (p b)) :rule resolution :premises (t1 t2 a0))
(step t4 (cl) :rule resolution :premises (a2 t3))
```

This proof can not be reconstructed directly due to coarse-grained steps e.g. pivots are not given for t3 and t4.

Carcara

- Carcara is an efficient and independent proof checker and elaborator for Alethe proofs.
- Carcara is written in Rust, a high performance language,
- implements elaboration procedures for a few important rules (ex: infering pivots),
- it remove implicit transformations (ex: reordering clause).

Elaborated proof with Carcara

Make pivot and resolution order explicit

Corresponding proof tree

$$\frac{a_0}{t_3} \frac{\Delta \vdash p(a)}{\Delta \vdash p(a)} = \frac{t_1}{t_3'} \frac{\Delta \vdash \neg (p(a) = p(b)), \neg p(a), p(b)}{\Delta \vdash \neg p(a), p(b)} \frac{\text{equiv.pos2}}{\text{Resolution}(a_0, t3')} = \frac{t_2}{\Delta \vdash p(a) = p(b)} \frac{\text{cong}(a_1)}{\text{Resolution}(t_1, t_2)} = \frac{a_2}{\Delta \vdash \neg p(b)} \frac{\Delta \vdash \neg p(b)}{\Delta \vdash \neg p(b)} \frac{\text{Resolution}(a_2, t_3)}{\Delta \vdash \neg p(b)}$$

Translate prelude

```
(declare-sort U 0)
(declare-fun a () U)
(declare-fun b () U)
(declare-fun p (U) Bool)
```

```
1 symbol U : TYPE;
2 rule U → τ ο;
3
4 symbol a : U;
5 symbol b : U;
6 symbol p : U → Prop;
```

Translate assert/assume

```
1 (assert (p a))
2 (assert (= a b))
3 (assert (not (p b)))
```

```
(assume a0 (p a))
(assume a1 (= a b))
(assume a2 (not (p b)))
```

```
constant symbol a0 : \dot{\pi} (p a \forall \Box);
constant symbol a1 :
\dot{\pi} (a \Longleftrightarrow b \forall \Box);
constant symbol a2 :
\dot{\pi} (¬ (p b) \forall \Box);
```

Translation of step t1 and t2

```
(step t1
(cl (not (= (p a) (p b)))
(not (p a))
(p b))
:rule equiv_pos2)
(step t2 (cl (= (p a) (p b)))
:rule cong :premises (a1))
...
```

```
opaque symbol pb :
   begin
   have t1: \dot{\pi} (
         \neg^c ((p a) \iff ^c (p b))

∀ (p a)

∀ (p b)

         ∨ □)
        apply equiv pos2;
10
   have t2: \dot{\pi} (
        pa \iff^{c} pb
12
         ∨ □)
13
14
        apply \vee_{i1}^{c};
15
         apply cong p a1;
16
17
   };
```

Translation of step t3

```
have t3 : \dot{\pi} ((p b) \vee \square) {
        have t1 t2 : \dot{\pi} (
              (\neg^c ((p a)))
4
              ♥ (p b) ♥ □)
6
              apply resolution t1 t2;
        };
        have t1_t2_a0 : \dot{\pi} ((p b) \lor \Box)
9
10
              apply resolution t1_t2 a0;
11
         };
12
        apply t1_t2_a0;
13
14
```

Translation of step t4

```
(step t4 (cl)
:rule resolution
:premises (a2 t3)
:args ((p b) false))
```

```
have t4 : \dot{\pi} \square \{
     have a2 t3 : \dot{\pi} \square {
          apply resolution a2 t3;
     apply a2 t3;
apply t4;
proofterm;
end;
```

Proof term obtained

Obtained with the Lambdapi tactic proofterm.

Supported rules overview

1. Special rules ✓

```
* \vdash \varphi asssume

* \vdash \varphi (hole; p_1 \dots p_n)[a_1 \dots a_n]

* \varphi_1 \dots \varphi_n, \psi i. \vdash \neg \varphi_1 \dots \neg \varphi_n \psi

(subproof; p_1 \dots p_n)
```

2. Resolution rules ✓

- * th_resolution, resolution
- contraction, reordering

3. Introducing tautologies ✓

- * $\vdash \neg(\neg\neg\varphi) \lor \varphi$ (not_not)
- * $\vdash \neg (\varphi_1 \approx \varphi_2) \lor \neg \varphi_1 \lor \varphi_2$ (equiv_pos2)
- * $\vdash \neg (\varphi_1 \land \cdots \land \varphi_n) \lor \varphi_k$ (and-pos)

4. Linear arithmetic ×

- * lia_generic,la_generic
- * $\vdash t_1 \leq t_2 \vee t_2 \leq t_1 \text{ (la-totality)}$

5. Quantifier handling (WIP)

```
* j.\Delta, x_i \mapsto y_i \vdash \varphi \approx \varphi'

i. \vdash \forall x_1 \dots x_n, \varphi \approx \forall y_1 \dots y_n, \varphi' (bind)

* forall_inst
```

6. Skolemization (WIP)

- * sko_ex
- * sko_forall

7. Clausification rules (WIP)

- " le
- * distinct_elim

8. Simplification rules ×

- and_simplify
- bool_simplify
- eq_simplify
- * sum_simplify

SMT translation at a glance

Formalisation overview (experimental notation)

Evaluation

Unresolved points

Future perspectives

Contexts in Alethe

Definition (Proof context)

We denote Δ_c as the Alethe proof context. It is use to reason about bound variable and store previous proved steps.

If
$$j. \quad x_1 \mapsto y_1, \dots, x_n \mapsto y_n \quad \vdash \varphi y_1 \dots y_n \quad (R, p_1 \dots p_n)[x_1, \dots, x_n]$$
 proved

Then
$$j(\Delta \vdash \varphi \ y_1 \dots y_n \ (R; \ p_1 \dots p_n)[\ x_1 \dots x_n]) \in \Delta$$
, and $x_1 \mapsto y_1, \dots, x_n \mapsto y_n \in \Delta$

Definition (Prelude context)

We denote Δ_{def} as the Alethe definition context part. In other words, it store user declare-sort and declare-fun.

Definition (Alethe context)

We set $\Delta = \Delta_c \cup \Delta_{def}$

Alethe encoding in Lambdapi

We denote Γ_A as the Lambdapi context with Alethe definitions.

Encoding of classical logic in Γ_{\perp}^{1}

- The set of terms Set: TYPE function symbol Set $\rightarrow \dots \rightarrow Set$,
- ▶ the set of propositions Prop : **TYPE** predicate symbol Set $\rightarrow \dots \rightarrow Prop$,
- ▶ and the classical connectives $\forall^c \mid \exists^c \mid \land^c \mid \neg^c \mid \lor^c \mid \Rightarrow^c \mid \iff ^c \mid \epsilon$.
- $\rightarrow \pi^c := \neg \neg p$ the definition of classical proofs of proposition p,
- \blacktriangleright the axioms of classical natural deduction system \mathcal{NK} and some lemmas.
- ▶ We have quantification on propositions/impredicativity (e.g. $\forall p, p \Rightarrow p$): symbol o : Set; rule τ o \hookrightarrow Prop;

¹Classical logic definitions is based on Lambdapi Stdlib.

Alethe encoding in Lambdapi

We encode Alethe rule \mathcal{R} as corresponding symbol R.

Clause

Alethe treats clause as Set causing a canonical representation issue. We define clause as list in a Church encoding style to solve it:

```
constant symbol Clause : TYPE;
   symbol □ : Clause; // Nil
   injective symbol \forall: Prop \rightarrow Clause \rightarrow Clause; // Cons x 1
   sequential symbol ++ : Clause → Clause → Clause;
   rule (\$x \lor \$1) ++ \$m \hookrightarrow \$x \lor (\$1 ++ \$m)
   with \square ++ \$m \hookrightarrow \$m:
8
   symbol Clause_ind: \Pi P: (Clause \rightarrow Prop), \Pi 1,
   \pi (P \square) \rightarrow (\Pi x: Prop, \Pi 1: Clause, \pi (P 1) \rightarrow
   \pi (P (x \forall 1))) \rightarrow \pi (P 1);
11
```

Clause concatenation has a unique canonical form

With clause as disjunction

$$((x_1 \lor x_2) \lor x_3) \lor (y_1 \lor y_2 \lor y_3) \leadsto (((x_1 \lor x_2) \lor x_3) \lor (y_1 \lor y_2 \lor y_3))$$

With clause with type Clause

$$((x_1 \vee x_2) \vee x_3 \vee \Box) \ ++ \ (y_1 \vee y_2 \vee y_3 \vee \Box) \rightsquigarrow x_1 \vee x_2 \vee x_3 \vee y_1 \vee y_2 \vee y_3 \vee \Box$$

Proof of clause

Proof of clause (cl. $\varphi_1, \ldots, \varphi_n$) with $(\mathcal{R}; p_1 \ldots p_n)[a_1 \ldots a_n]$ in a step such as

$$j. \Delta \vdash (cl \varphi_1, \ldots, \varphi_n) (R; p_1 \ldots p_n)[a_1, \ldots, a_n]$$

are encoded as proof:

```
injective symbol \dot{\pi} c: TYPE := \pi (\mathcal{E} c);

sequential symbol \mathcal{E}: Clause \rightarrow Prop;

rule \mathcal{E} (\$x \lor \$y) \leftrightarrow \$x \lor^c (\mathcal{E} \$y)

with \mathcal{E} \Box \hookrightarrow \bot;
```

Alethe rule encoding example

The rule *not_implies*1 in Alethe set of rules

```
i. \vdash \neg(\varphi_1 \rightarrow \varphi_2) (...)
j. \vdash \varphi_1 (not_implies1; i)
```

is translated into:

```
opaque symbol not_implies_1 [\varphi_1 \ \varphi_2] : \pi(\neg^c(\varphi_1 \Rightarrow^c \varphi_2)) \rightarrow \dot{\pi} \ (\varphi_1 \lor \Box) := begin
assume \varphi_1 \ \varphi_2 \ H;
apply \vee_{i1}^c;
apply \wedge_{e1}^c (imply_to_and H);
end;
```

Clause conversion lemma

Lemma (Equivalence between clause and disjunctions)

For any two Clause a b, we have the equivalence:

$$\llbracket a + +b \rrbracket \iff {}^{c} \llbracket a \rrbracket \lor {}^{c} \llbracket a \rrbracket$$

Clause resolution rule translation

Lemma (Resolution)

Given a b: Clause and a privot x: Prop, then a premise of $(x \lor a) \in \Gamma_A$ and a premise of $(\neg^c x \lor b) \in \Gamma_A$ implies a clause a + +b.

Lambdapi encoding:

```
opaque symbol resolution x a b : \dot{\pi} (x \vee a) \rightarrow \dot{\pi} (\neg^{c} x \vee b) \rightarrow \dot{\pi} (a + + b) :=
```

Translation functions

The embedding uses four functions:

- \triangleright \mathcal{F} which translates first order formulas to $\Gamma_{\mathcal{A}}$ -propositions,
- \triangleright S which translates SMTLib sort from theory to Γ_A -type,
- \triangleright \mathcal{T} which translates first order individual terms to $\Gamma_{\mathcal{A}}$ -terms,
- ▶ $C(\Gamma, c_1 ... c_n)$ which translates a non-empty set of commands $c_1 ... c_n$ to typing goals $\Gamma \vdash M : N$ and terms of type M : N.

Function \mathcal{F}

translates first order formulas to $\Gamma_{\mathcal{A}}$ -propositions

Definition (\mathcal{F})

The definition of $\mathcal{F}(f)$ is as follows.

- ▶ if $f = cl x_1 ... x_n$, then $\mathcal{F}_{\Delta}(cl x_1 ... x_n) = x_1 \vee \cdots \vee x_n \vee \Box$,
- ▶ if $f = a_1 \wedge \cdots \wedge a_n$, then $\mathcal{F}_{\Delta}(a_1 \wedge \cdots \wedge a_2) = a_1 \wedge^c \cdots \wedge^c a_2 \wedge^c \top$,
- ▶ if $f = a_1 \lor \cdots \lor a_n$, then $\mathcal{F}_{\Delta}(a_1 \lor \cdots \lor a_2) = a_1 \lor^c \cdots \lor^c a_2 \lor^c \bot$,
- ▶ if $f = a \approx b$ and $ab \in \mathbf{Bool}$, then $\mathcal{F}_{\Delta}(a \approx b) = a \iff {}^{c}b$,
- ▶ if $f = a \approx b$ and $a b \notin \textbf{Bool}$, then $\mathcal{F}_{\Delta}(a \approx b) = (a = b)$,
- ▶ otherwise we are in the case $\mathcal{F}_{\Delta}(f) = f$ with all connector changes for their Corresponding classical connector \star^c .

Why this \mathcal{F} definitions for conjunctions and disjunctions?

N-ary rules are proved by "reflexivity" proof. For example

i.
$$\Delta \vdash \neg(\varphi_1 \land \cdots \land \varphi_n), \varphi_k \quad (and_pos)$$
 with $1 \le k \le n$

where we have the reflexivity proof:

```
sequential symbol \operatorname{In}_{\Lambda}^{c}: \operatorname{Prop} \to \operatorname{Prop} \to \operatorname{\mathbb{B}};

rule \operatorname{In}_{\Lambda}^{c} $x ($h \Lambda^{c} $t1) \hookrightarrow (eq $x $h) Bool.or (\operatorname{In}_{\Lambda}^{c} $x $t1)

with \operatorname{In}_{\Lambda}^{c} $x \operatorname{T} \hookrightarrow \operatorname{false};

symbol and \operatorname{pos} [\varphi_{1} - \varphi_{n} \varphi_{k}]:

\pi ((\operatorname{In}_{\Lambda}^{c} \varphi_{k} \varphi_{1} - \varphi_{n}) = \operatorname{true}) \to \dot{\pi} (\neg^{c} \varphi_{1} - \varphi_{n} \vee \varphi_{k} \vee \square);
```

Function S(s)

translates SMTLib sort from theory to $\Gamma_{\mathcal{A}}\text{-type}$

The definition of S(s) is as follows.

- ▶ if s = Bool, then S(Bool) = Prop,
- ▶ if $s \neq \textbf{Bool}$, then $S(s) = \tau o$,
- if $s = f(a_1 ... a_n)$ and $codomain(f) = \mathbf{Bool}$, then $S(f(a_1 ... a_n)) = f : S(a_1) \to \cdots \to S(a_1) \to \mathbf{Prop}$,
- if $s = f(a_1 ... a_n)$ and $codomain(f) \neq \textbf{Bool}$, then $S(f(a_1 ... a_n)) = f : S(a_1) \rightarrow \cdots \rightarrow S(a_1) \rightarrow \textbf{Set}$,

Function $\mathcal{T}(t)$

Definition

The definition of $\mathcal{T}(t)$ is a direct shallow embedding of t in corresponding term t in Γ_A (variables, functions, constants).

Function $C(\Gamma, -)$

translates Alethe commands

Definition

The function $C(\Gamma, i. \Delta \vdash \varphi \quad (R; p_1 \dots p_n)[a_1 \dots a_n]) \to \Gamma'$ translates, in a given context Γ , a step i into a judgement (typing goal) $\Gamma \vdash i : \mathcal{F}(\varphi)$ with a term M along satisfying the goal. It returns a new context Γ' with $i \in \Gamma'$. The definition of C is defined recursively on R.

Notation

The notation $tac(A)[\Gamma \vdash \varphi]$ means applying the Lambdapi tactic tac (with argument A) to the judgement $\Gamma \vdash \varphi$ and making the judgements (subgoals) generated by the tactic be the premises of the rule.

Example 1: equiv_pos2 case

We translate a step *i* using the alethe rule *equiv_pos2*:

i.
$$\vdash \neg(\varphi_1 \approx \varphi_2), \neg \varphi_1, \varphi_2$$
 (equiv_pos2)

with given a context Γ as

$$\mathcal{C}(\Gamma, i. \vdash \neg(\varphi_1 \approx \varphi_2), \neg \varphi_1, \varphi_2 \ (equiv_pos2)) = apply(equiv_pos2)[\Gamma \vdash i : \mathcal{F}(\neg(\varphi_1 \approx \varphi_2), \neg \varphi_1, \varphi_2)]$$

Example 2: *cong* case

We translate a step k using the alethe rule cong

```
i. \quad \Delta \qquad \vdash t_1 \approx u_1
                                                                                                                (\dots)
 j. \quad \Delta \qquad \vdash t_n \approx u_n
                                                                                                                (\dots)
k. \quad \Delta \qquad \vdash f \ t_1 \dots t_n \approx f \ u_1 \dots u_n
                                                                                              (cong; p_1 \dots p_n)
as:
if codomain(f) \in Bool, then \mathcal{C}(\Gamma, i. \Delta \vdash f t_1 ... t_n \approx f u_1 ... u_n (cong; p_1 ... p_n))
 = cong2_f(f \ p_1 \dots cong2_f(f \ p_{n-1} \ p_n))[\Gamma \vdash k : \mathcal{F}(f \ t_1 \dots t_n \approx f \ u_1 u_n)]
otherwise f_{equal_n}(f p_1 \dots p_n)[\Gamma \vdash k : \mathcal{F}(f t_1 \dots t_n \approx f u_1 u_n)],
with C(\Gamma \setminus \{i\}, i. \Delta \vdash t_1 \approx u_1 (...)) \in \Gamma and
with C(\Gamma \setminus \{j\}, j, \Delta \vdash t_n \approx u_n (...)) \in \Gamma
```

Soundness argument

Theorem (soundness)

We define the soundness as for any: Alethe context Δ and a first order formula φ in a step $i. \Delta \vdash \varphi (\mathcal{R}; p_1 \ldots p_n)[a_1 \ldots a_n]$ proved by a rule \mathcal{R} , the translation $\mathcal{C}(\Gamma, i.\Delta \vdash_{FOL} \varphi(\mathcal{R}; p_1 \ldots p_n)[a_1 \ldots a_n])$ give a term $M: \mathcal{F}(\varphi)$ such that goal $\Gamma_{\mathcal{A}} \vdash i: \mathcal{F}(\varphi)$ is valide.

Proof.

(proof intuition) By induction on R.

SMT translation at a glance

Formalisation overview (experimental notation)

Evaluation

Unresolved points

Evaluation with a TLA+ example

Stephan Merz. TLA+ Case Study: A Resource Allocator.

- Use set theory only,
- no skolemization,
- 25 proofs obligations,
- ▶ size of the Alethe proofs varies between 4 and 288 steps.

Evaluation results

Proofs obligations

- ▶ 16 on the 25 proofs obligations passed,
- some proofs obligations do not passed due to rules not supported yet.

Bug founds

- 2 importants bugs in Carcara elaboration process found,
- ▶ 1 bug found in CVC5 related to and_not rule usage,
- and a related bug found in the new TLAPS SMT encoding.

SMT translation at a glance

Formalisation overview (experimental notation)

Evaluation

Unresolved points

Issues for reconstructing simplification rules

Transformation cases are implicit, and multiple transformations in a step could occur.

Example:

```
\begin{split} j. & \Delta & \vdash \varphi_1 \vee \dots \vee \varphi_n \quad \text{(or\_simplify)} \\ \blacktriangleright \bot \vee \dots \vee \bot \Rightarrow \bot \\ \blacktriangleright \varphi_1 \vee \dots \vee \varphi_n \Rightarrow \varphi_1 \vee \dots \vee \varphi_{n'} \text{where all } \bot \text{ literals removed} \\ \blacktriangleright \varphi_1 \vee \dots \vee \top \vee \dots \vee \varphi_n \Rightarrow \top \\ \blacktriangleright \dots \\ j. & \Delta & \vdash (\varphi_1 \approx \varphi_2) \approx \psi \quad \text{(equiv\_simplify)} \\ \blacktriangleright (\neg \varphi_1 \approx \neg \varphi_2) \Rightarrow \varphi_1 \approx \varphi_2 \\ \blacktriangleright (\varphi \approx \varphi) \Rightarrow \top \\ \blacktriangleright (\varphi \approx \bot) \Rightarrow \bot \end{split}
```

```
\begin{split} j. & \Delta & \vdash \varphi \approx \psi \quad \text{(bool\_simplify)} \\ \blacktriangleright \neg (\varphi_1 \to \neg \varphi_2) & \Rightarrow \varphi_1 \land \neg \varphi_2 \\ \blacktriangleright \varphi_1 \to (\varphi_2 \to \varphi_3) \Rightarrow (\varphi_1 \land \varphi_2) \to \varphi_3 \\ \blacktriangleright \neg (\varphi_1 \to \neg \varphi_2) \Rightarrow \varphi_1 \land \neg \varphi_2 \\ \blacktriangleright \dots \\ j. & \Delta & \vdash \varphi_1 \bowtie \varphi_n \approx \psi \quad \text{(comp\_simplify)} \\ \blacktriangleright t < t \Rightarrow \bot \\ \blacktriangleright t_1 < t_2 \Rightarrow \neg (t_2 \le t_1) \\ \blacktriangleright t_1 \le t_2 \Rightarrow t_2 \le t_1 \\ \blacktriangleright \dots \end{split}
```

Reconstruction of transformation rules with RARE

[RARE] Schurr, HJ., et.al. Reliable Reconstruction of Fine-grained Proofs in a Proof Assistant. CADE 2021. Springer, Cham.

Checking linear arithmetic steps

- ▶ The la_generic rule models linear arithmetic reasoning
- ► For example, consider this la_generic step:

```
(step t1
(cl (<= (- x) 1) (<= (+ (* 2 x) (* (- 3) y)) 2) (<= y (- 1)))
:rule la_generic :args (2 1 3))
```

► It introduces the following tautology:

$$(-x \le 1) \lor (2x - 3y \le 2) \lor (y \le -1)$$

Checking linear arithmetic steps

```
(step t1

(cl (<= (- x) 1) (<= (+ (* 2 x) (* (- 3) y)) 2) (<= y (- 1)))

:rule la_generic :args (2 1 3))
```

- ► Checking that this clause is true is equivalent to proving that its negation, the following three inequalites, are contradictory
- ➤ Since la_generic steps provide the needed coefficients as arguments, checking them is simple
- Computing $2 \cdot (a) + 1 \cdot (b) + 3 \cdot (c)$, we get 0 > 1, so the step must be true

Checking linear arithmetic steps

► The lia_generic rule is very similar to la_generic, but it does not provide the coefficients as arguments:

```
(step t1
  (cl (<= (- x) 1) (<= (+ (* 2 x) (* (- 3) y)) 2) (<= y (- 1)))
  :rule lia_generic)</pre>
```

- ▶ In this case, the checker would need to search for the coefficients, which is an NP-hard problem
- ▶ Instead, occurences of this rule are not checked, and are considered holes by Carcara

Proposal for reconstructing arithmetic steps

SMT translation at a glance

Formalisation overview (experimental notation)

Evaluation

Unresolved points

- Finish to validate *Allocator.tla*,
- add support for arithmetic steps,
- support for simplicifation steps,
- connect lambdapi TLA⁺ encoding (tla-lambdapi) with TLA⁺ SMT encoding,
- ▶ link Event-B encoding with tla-lambdapi (shared set theory library).