О ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ МЕТОДОВ МОНТЕ-КАРЛО В АНАЛИЗЕ НЕЛИНЕЙНЫХ РЕГРЕССИОННЫХ МОДЕЛЕЙ

Г.И. Рудой

Введение

Символьная регрессия часто используется для построения экспертно интерпретируемых моделей [1–5]. В приложении к естественнонаучным экспериментам речь идет о восстановлении функциональной зависимости между измеряемыми и задаваемыми с некоторой точностью параметрами, как то: зависимость термоэмиссионного тока электронной лампы от температуры катода $I_k(T)$ при неизменных геометрии системы и разности потенциалов, зависимость мощности излучения непрерывного лазера от коэффициента отражения выходного зеркала $W_l(R)$ при постоянных модовой структуре излучения и мощности возбуждения активной среды, зависимость показателя преломления материала от длины волны $n(\lambda)$ при постоянной температуре и т. п., далее мы более подробно рассмотрим именно последний случай.

При регрессионном анализе такого рода экспериментов необходимо учитывать следующие обстоятельства:

- 1. Все измеряемые (и контролируемые) параметры в каждой экспериментальной точке определяются с некоторой (обычно известной) точностью, причем абсолютная погрешность σ_i соответствующего параметра может существенно изменяться в исследуемом диапазоне. Например, если в качестве спектрального прибора, выделяющего конкретную длину волны λ_i при измерении $n_i(\lambda_i)$, используется дифракционная решетка, то $\frac{\sigma_i}{\lambda_i} \approx \text{const}$, и считать погрешность определения длины волны постоянной некорректно для измерений в достаточно широком спектральном дипазоне.
- 2. Как правило, эксперимент ставится так, что измеряется функциональная зависимость от одной переменной, то есть, строится зависимость вида $y(x, \omega)$, где ω набор параметров, которые поддерживаются неизменными. Как отмечалось выше, параметры поддерживаются постоянными с конечной точностью и в ряде случаев при построении модели это обстоятельство необходимо учитывать. Однако обычно эксперт заранее может оценить влияние вариаций условий эксперимента и обеспечить необходимую стабильность проведения измерений. В противном случае необходимо прямо учитывать зависимость измеряемой характеристики от нескольких переменных, что для целей настоящей работы непринципиально.
- 3. В большинстве случаев эксперт заранее знает вид искомой функциональной зависимости, или же требуется провести выбор между несколькими возможными вариантами, что упрощает задачу регрессии. В то же время для эксперта важнейшее значение имеет не только определение оптимальных численных коэффициентов регрессионной формулы путем минимизации некоторого функционала, но и дисперсия указанных коэффициентов и, что предпочтительнее, связь дисперсии регрессионных коэффициентов с точностью определения измеряемых (контролируемых) в

эксперименте величин. Это особенно существенно в тех случаях, когда коэффициенты регрессионной модели прямо связаны с фундаментальными характеристиками исследуемого процесса и по ним рассчитывается, например эффективная масса электронов в полупроводнике, температура Дебая, резонансная частота и затухание оптического перехода и т. д. — соответственно, точность измерения соответствующих материальных констант определяется точностью вычисления коэффициентов регрессионной модели.

В такой постановке, когда требуется определить не только оптимальные коэффициенты регрессионной модели, но и их погрешность, насколько нам известно, задача нелинейной регрессии не рассматривалась. Известны теоретические результаты для случая линейной регрессии:

$$y = ax + b$$
,

в случае, когда дисперсия всех экспериментально измеренных значений y_i зависимой переменной y одна и та же $D(y_i) = \sigma^2$, а значения независимой переменной x_i известны точно: D(x) = 0. Тогда при переходе к представлению

$$y_i = a(x_i - \overline{x}) + b + \xi_i \mid i \in \{1, \dots, n\},\$$

где $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$, согласно [6], случайные величины a и b независимы и нормально распределены, и, кроме того, их дисперсии выражаются известными соотношениями:

$$D(a) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}.$$
 (1)

$$D(b) = \frac{\sigma^2}{n}. (2)$$

В настоящей работе предложен общий метод определения погрешности коэффициентов нелинейной регрессии, и на примере зависимости $n(\lambda)$ для прозрачного полимера определена зависимость погрешности параметров регрессии от точности определения длины волны и показателя преломления прозрачного полимера. Здесь мы ограничиваемся одной независимой переменной λ . Обобщение предлагаемого метода на случай нескольких переменных проводится очевидным образом.

1 Основная гипотеза

Пусть имеется обучающая выборка $(x_i,y_i) \mid i=\{1,\ldots,n\}$, причем для каждого значения x_i,y_i известно распределение вероятности отклонения независимой и зависимой переменных от их среднего значения $P_i^x(x-x_i)$ и $P_i^y(y-y_i)$ соответственно, которые обычно принимаются гауссовыми и для которых считаются известными значения дисперсий σ_i^x , σ_i^y .

Пусть далее с помощью некоторого алгоритма регрессии строится зависимость $y(x, \omega)$, минимизирующая некоторый функционал S, например среднеквадратичное отклонение:

$$S = \sum_{i=1}^{n} (y(x_i, \boldsymbol{\omega}) - y_i)^2 \xrightarrow{\boldsymbol{\omega}} \min.$$

Для таким образом определенного функционала, а также для его модификаций, учитывающих сложность регрессионной модели [5], процедура минимизации эффективно проводится спомощью алгоритма Левенберга-Марквардта (АЛМ) [7,8].

Далее фиксируем структурный вид полученной зависимости $y(x, \omega)$ и многократно повторяем следующую вычислительную процедуру:

- 1. На k-м шаге генерируется случайная выборка (x_i^k,y_i^k) , при этом вероятность появления в выборке значения x_i^k пропорциональна $P_i^x(x_i^k-x_i)$, а вероятность появления y_i^k аналогично пропорциональна $P_i^y(y_i^k-y_i)$.
- 2. Для таким образом построенной реализации набора экспериментальных данных (x_i^k, y_i^k) (далее реализация), используя один и тот же алгоритм оптимизации, находим оптимальный (минимизирующий выбранный функционал) набор ω_k коэффициентов регрессии $y(x, \omega)$ для k-й реализации.
 - Таким образом, для каждого конкретного коэффициента регрессии ω_p получаем совокупность его значений в сгенерированных реализациях $\{\omega_p^k\}$.
- 3. Для достаточно большого числа реализаций M стандартно определим среднее значение и стандартное отклонение соответствующего коэффициента регрессии ω_p :

$$\overline{\boldsymbol{\omega}_p} = \sum_{i=1}^M \boldsymbol{\omega}_p^k,\tag{3}$$

$$D(\omega_p) = \sqrt{\frac{1}{M-1} \sum_{i=1}^{M} (\omega_p^k - \overline{\omega_p})}.$$
 (4)

Наша гипотеза состоит в том, что полученные согласно (3) и (4) значения соответствуют реальности. Предлагаемый подход к определению погрешности регрессионных коэффициентов, очевидно, представляет собой фактически применение метода типа Монте-Карло к задаче регрессии.

Из предложенной интерпретации также следует очевидный критерий останова вычислительной процедуры, когда с ростом числа реализаций вариация значений $\overline{\omega_p}$ и $D(\omega_p)$ становится меньше экспертно выбранного значения.

Необходимо заметить, что в общем случае пределы выражений типа (3) и (4) при $M \to \infty$ могут и не существовать, что делает предложенную вычислительную схему некорректной. Однако для достаточно гладких функций, которые собственно и представляют практический интерес, корректность предложенной процедуры можно строго доказать, что, однако, выходит за рамки данной работы.

2 Модельный случай

Определим предложенным в предыдущей части методом дисперсию коэффициентов линейной регрессии $y=kx+b\mid k=3, b=10$, независимая переменная x определена точно, а погрешность зависимой переменной y постоянна и имеет гауссово распределение. Независимая переменная определена в $10~(30,\,50)$ точках отрезка [0,10], количество реализаций составляло 10~ миллионов, оптимизация регрессии проводилось с помощью AJM.

Рис. 1: График зависимости δ от числа итераций (от 0 до 10^7 итераций).

На рис. 1-3 по оси абсцисс указано количество реализаций M, а по оси ординат для каждого из коэффициентов k, b отношение $\frac{\sigma_{c.e.} - \sigma_t}{\sigma_t}$, где $\sigma_{c.e.}$ — значение дисперсии, полученное в вычислительном эксперименте, а σ_t — точное теоретическое значение дисперсии согласно (1) (2).

Как видно, для $M\approx 107$ относительное различие $\frac{\sigma_{c.e.}-\sigma_t}{\sigma_t}$ не превышает 0.05%, что,на наш взгляд, является хорошим результатом и свидетельствует в пользу корректности обсуждаемого подхода и основной гипотезы.

Рис. 2: График зависимости δ от числа итераций (от 0 до $5 \cdot 10^5$ итераций).

Рис. 3: График зависимости δ от числа итераций (от 10^6 до 10^7 итераций).

Список литературы

- [1] Davidson, J. W., Savic, D. A., and Walters, G. A.: Symbolic and numerical regression: experiments and applications. In John, Robert and Birkenhead, Ralph (editors): Developments in Soft Computing, pages 175–182, De Montfort University, Leicester, UK, 29-30 6 2000. 2001. Physica Verlag, ISBN 3-7908-1361-3.
- [2] Sammut, C. and Webb, G. I.: Symbolic regression. In Sammut, Claude and Webb, Geoffrey I. (editors): Encyclopedia of Machine Learning, page 954. Springer, 2010, ISBN 978-0-387-30768-8. http://dx.doi.org/10.1007/978-0-387-30164-8.
- [3] Strijov, V. and Weber, G. W.: Nonlinear regression model generation using hyperparameter optimization. Computers & Mathematics with Applications, 60(4):981–988, 2010. http://dx.doi.org/10.1016/j.camwa.2010.03.021.
- [4] Стрижов, В. В.: Методы индуктивного порождения регрессионных моделей. Препринт ВЦ РАН им. А. А. Дородницына. М., 2008.
- [5] Рудой, Г. И. и Стрижов, В. В.: Алгоритмы индуктивного порождения суперпозиций для аппроксимации измеряемых данных. Информатика и ее применения, 7(1):44–53, 2013.
- [6] Ватутин, В. А., Ивченко, Г. И., Медведев, Ю. И., и Чистяков, В. П.: *Теория вероят*ностей и математическая статистика в задачах. Дрофа, 3 редакция, 2005.
- [7] Marquardt, D. W.: An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.
- [8] More, J. J.: The Levenberg-Marquardt algorithm: Implementation and theory. In G.A. Watson, Lecture Notes in Mathematics 630, pages 105–116. Springer-Verlag, Berlin, 1978. Cited in Åke Björck's bibliography on least squares, which is available by anonymous ftp from math.liu.se in pub/references.