RBE 595 — Reinforcement Learning Chapter #7 Assignment n-step Bootstrapping

Arjan Gupta

The first episode of an agent interacting with an environment under policy π is as follows:

Timestep	Reward	State	Action
0		X	U1
1	16	X	U2
2	12	X	U1
3	24	X	U1
4	16	${ m T}$	

Assume discount factor, $\gamma = 0.5$, step size $\alpha = 0.1$ and q_{π} is initially zero. What are the estimates of $q_{\pi}(X, U1)$ and $q_{\pi}(X, U2)$ using 2-step SARSA?

Answer

The estimates of $q_{\pi}(X,U1)$ and $q_{\pi}(X,U2)$ using 2-step SARSA are as follows:

Timestep 0

$$q_{\pi}(X, U1) = q_{\pi}(X, U1) + \alpha \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, A_{t+2}) - q_{\pi}(X, U1) \right]$$

$$= 0 + 0.1 \left[16 + 0.5 \cdot 12 + 0.5^2 \cdot 0 - 0 \right]$$

$$= 0 + 0.1 \left[16 + 6 - 0 \right]$$

$$= 0 + 0.1 \left[22 \right]$$

$$= 0 + 2.2$$

$$= 2.2$$

Timestep 1

$$q_{\pi}(X, U2) = q_{\pi}(X, U2) + \alpha \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, A_{t+2}) - q_{\pi}(X, U2) \right]$$

$$= 0 + 0.1 \left[12 + 0.5 \cdot 24 + 0.5^2 \cdot 0 - 0 \right]$$

$$= 0 + 0.1 \left[12 + 12 - 0 \right]$$

$$= 0 + 0.1 \left[24 \right]$$

$$= 0 + 2.4$$

$$= 2.4$$

Timestep 2

$$q_{\pi}(X, U1) = q_{\pi}(X, U1) + \alpha \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, A_{t+2}) - q_{\pi}(X, U1) \right]$$

$$= 2.2 + 0.1 \left[24 + 0.5 \cdot 16 + 0.5^2 \cdot 0 - 2.2 \right]$$

$$= 2.2 + 0.1 \left[24 + 8 - 2.2 \right]$$

$$= 2.2 + 0.1 \left[30.8 \right]$$

$$= 2.2 + 3.08$$

$$= 5.28$$

Therefore, the estimate of $q_{\pi}(X,U1)$ is 5.28 and the estimate of $q_{\pi}(X,U2)$ is 2.4.

What is the purpose of introducing Control Variates in per-decision importance sampling?

Answer

The purpose of introducing Control Variates in per-decision importance sampling is to reduce the variance of G. This is done by using a linear combination of the original estimate and a control variate term. The updated equation is shown below:

$$G_{t:h} = \rho_t(R_{t+1} + \gamma G_{t+1:h}) + (1 - \rho_t)V_{h-1}(S_t)$$

Where the second term is the control variate term.

In off-policy learning, what are the pros and cons of the Tree-Backup algorithm versus off-policy SARSA (comment on the complexity, exploration, variance, and bias, and others)?

Answer

The pros and cons of the Tree-Backup algorithm versus off-policy SARSA are as follows:

- Complexity: The complexity of the Tree-Backup algorithm is O(n), where n is the number of steps. The complexity of off-policy SARSA is O(1).
- Exploration: The Tree-Backup algorithm explores the environment by following the policy π and then following the behavior policy μ for the remaining steps. Off-policy SARSA explores the environment by following the behavior policy μ for all steps.
- Variance: The variance of the Tree-Backup algorithm is lower than that of off-policy SARSA. This is because the Tree-Backup algorithm uses a control variate term to reduce the variance of the estimate.
- Bias: The bias of the Tree-Backup algorithm is higher than that of off-policy SARSA. This is because the Tree-Backup algorithm uses a control variate term to reduce the variance of the estimate.
- Others: The Tree-Backup algorithm is an on-policy algorithm, while off-policy SARSA is an off-policy algorithm.

Assume that we have two states x and y with the current value of V(x) = 10, V(y) = 1. We run an episode of $\{x, 3, y, 0, y, 5, T\}$. What's the new estimate of V(x), V(y) using TD (assume step size $\alpha = 0.1$ and discount rate $\gamma = 0.9$).

Answer

The new estimate of V(x) is as follows:

$$V(x) = V(x) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(x)]$$

$$= 10 + 0.1 [3 + 0.9 \cdot 1 - 10]$$

$$= 10 + 0.1 [3.9 - 10]$$

$$= 10 + 0.1 [-6.1]$$

$$= 10 - 0.61$$

$$= 9.39$$

However, V(y) gets updated twice in this episode. The first update is as follows:

$$V(y) = V(y) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(y)]$$

$$= 1 + 0.1 [0 + 0.9 \cdot 1 - 1]$$

$$= 1 + 0.1 [0.9 - 1]$$

$$= 1 + 0.1 [-0.1]$$

$$= 1 - 0.01$$

$$= 0.99$$

The second update is as follows:

$$V(y) = V(y) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(y)]$$

$$= 0.99 + 0.1 [5 + 0.9 \cdot 0 - 0.99]$$

$$= 0.99 + 0.1 [5 - 0.99]$$

$$= 0.99 + 0.1 [4.01]$$

$$= 0.99 + 0.401$$

$$= 1.391$$

Therefore, the new estimate of V(x) is 9.39 and the new estimate of V(y) is 1.391.