Introduccion a la Forensia

Seguridad Ofensiva

Concepto: Forensic Computing

Es el proceso de identificar, preservar, analizar y presentar evidencia digital de manera tal que sea legalmente aceptable.

Rodney McKemmish, 1999

Principio de intercambio de Locard

"siempre que dos objetos entran en contacto transfieren parte del material que incorporan al otro objeto"

Rodney McKemmish, 1999

Proceso: Investigacion Forense

se encarga de aplicar cualesquiera de las técnicas propias de la Criminalística en el estudio de la escena de un delito, ejecutando cuantas observaciones, comprobaciones y operaciones técnico criminológicas se pueden realizar

Proceso de investigación forense

- Identificación de la evidencia (verificación)
- Obtención de la evidencia
- Análisis y evaluación de evidencias
- Presentación y almacenamiento de evidencias

IDENTIFICAR, PRESERVAR, ANALIZAR y PRESENTAR

Debe realizarse siguiendo los estándares apropiados, especialmente si los resultados tienen que poder admitirse en un juicio.

- Identificación de la evidencia (verificación)
- Obtención de la evidencia
- Análisis y evaluación de evidencias
- Presentación y almacenamiento de evidencias

IDENTIFICAR, PRESERVAR, ANALIZAR y PRESENTAR

Debe realizarse siguiendo los estándares apropiados, especialmente si los resultados tienen que poder admitirse en un juicio.

- Inicio / Detección de un incidente
- Verificación del incidente
- Obtención de la evidencia
- Análisis de la evidencia
- Almacenamiento de informes y evidencias

- Usuarios o personal de IT informan de un posible incidente
- Alerta generada por los sistemas de gestión de la seguridad
- Por aviso de terceros

Es importante evaluar cuánta información es posible de recolectar.

Hay diferentes niveles (Aplicación, SO, Servidor, Infraestructura, LAN/DMZ, Entorno Externo, dispositivos relevantes)

Los fraudes internos pueden implicar diferentes elementos de un sistema:

- Múltiples aplicaciones
- Sistemas relacionados
- Múltiples hosts

Posibilidades:

1. Sistema muerto:

Sin corriente, sistema apagado, dispositivos off.

2. Sistema vivo:

Con corriente, procesos en ejecución, accesos a disco, dispositivos removibles en continuo cambio.

Obtencion de la evidencia: Primer acción

- Apagar el sistema a analizar puede destruir evidencia crítica (en Unix es posible recuperar información del espacio swap).
- Los atacantes pueden aprovechar las ventajas de la volatilidad de la memoria (hay malware que solo se ejecuta en memoria).
- El nivel de ocultación de datos dependerá del nivel de acceso conseguido y de la pericia del atacante.

- + volátil
 - 1. Recabar conexiones de red y desconectar de la red
 - 2. Adquirir procesos en ejecución y memoria del Sistema
 - 3. Adquirir imágenes de discos
 - 4. Fotografías de hw y lugares
 - 5. Continuar verificación del incidente:

Logs, IDS, entrevistas, logs de SO, aplicaciones, correlación,

etc...

- volátil

Información importante:

- Hora y fecha del sistema
- Procesos en ejecución
- Conexiones de red
- Puertos abiertos y aplicaciones asociadas
- Usuarios logueados en el sistema
- Contenidos de la memoria y ficheros swap o pagefile

TIP (obvio) del día:

"Nunca confiar en el sistema que está siendo analizado"

Las herramientas a usar deben "estar limpias" (CD?), usar el mínimo de recursos, alterar lo mínimo

Obtención de un sistema "vivo":

- Uso de "dd" y "netcat" para transmitir una copia bit a bit a un sistema remoto.
- En windows puede ser más cómodo usar distribuciones especiales como HELIX, que además permite dumpear la memoria física. (www.e-fense.com/helix)
- Una vez que se realizaron las imágenes: Hashear todo!

Obtención de un sistema "muerto":

- Extraer disco
- Si el disco tiene jumper para RO, usarlo. Sino habría que usar un "write blocker" por hw
- Conectar el disco a la "Workstation de análisis forense"
- Copiar con dd y guardar la imágen en unidades externas
- Una vez que se realizaron las imágenes: Hashear todo!

WRITE BLOCKER

Ejemplo: Caso de ataque interno o espionaje

- Periodo de verificación previo, sin alertar al sospechoso.
- Información sobre conexiones se obtiene de firewalls, IDS, sniffers, etc
- Confiscación de hardware
- Obtención de imágenes de discos

Ejemplo: Caso de ataque externo

- Desconectar la red
- Obtener toda la información volátil
- Verificar (logs, IDs, firewall, etc)
- Obtener imágenes de los discos

Obtención de la evidencia: Costos

- Se puede siempre desconectar la red?
- Se puede siempre apagar?
- Reinstalacion, puesta en marcha, revalidación, recertificación
- Almacenamiento!

- El procedimiento de análisis dependerá del caso y tipo del incidente
- En gral siempre que se puede, se trabaja con la imágenes obtenidas de los sistemas
 - 1. Análisis de secuencia temporal (Timeline)
 - 2. Búsqueda de contenido
 - 3. Recuperación de binarios y documentos(borrados y/o corruptos)
 - 4. Análisis de binarios(virus, troyanos, rootkits)

Objetivo:

Llegar al Qué, cuándo, cómo, quién, por qué ...

Una investigación tendría que intentar responder "alguna" pregunta y buscar evidencia de todas las explicaciones(razonables).

Explicación razonable: Un virus (ataque) lo hizo.

Cómo empiezo el análisis?

- 1. Buscar archivos, archivos ocultos, no usuales (slack space)
- 2. Buscar procesos no usuales o sockets abiertos
- 3. Buscar cuentas de usuario extrañas
- 4. Determinar el nivel de seguridad del sistema, posibles agujeros, etc.

Aca nos puede ayudar SleuthKit + Autopsy.

Análisis de la evidencia: Tools


```
:\>"E:\volatility 2.4.win.standalone\volatility-2.4.standalone.exe" --profile=Win7SP0x86 cmdscan -f memdump3.raw
 olatility Foundation Volatility Framework 2.4
 ********************************
 ommandProcess: conhost.exe Pid: 3612
CommandHistory: 0x2b4410 Application: cmd.exe Flags: Allocated. Reset
ommandCount: 12 LastAdded: 11 LastDisplayed: 11
FirstCommand: 0 CommandCountMax: 50
rocessHandle: 0x5c
md #0 @ 0x2ae770: tasklist
Cmd #1 @ 0x2b87a8: cd C:\Users\Alina\AppData\Local\Temp
md #2 @ 0x2af160: dir
 md #3 @ 0x2a81c0: more lt112.spn
 md #4 @ 0x2ae7b0: iexplorer
 md #5 @ 0x2a8238: iexplorer.exe
md #6 @ 0x2a8260: iexplore.exe
md #7 @ 0x2b4568: cd "c:\Program Files\Internet Explorer"
Cmd #8 @ 0x2af190: dir
 md #9 @ 0x2a8288: iexplore.exe
Cmd #10 @ 0x2ae7d0: tasklist
Cmd #11 @ 0x2a7430: regedit
 *****************
CommandProcess: conhost.exe Pid: 3472
CommandHistory: 0x144a68 Application: cmd.exe Flags: Allocated, Reset
ommandCount: 2 LastAdded: 1 LastDisplayed: 1
FirstCommand: 0 CommandCountMax: 50
 rocessHandle: 0x5c
Cmd #0 @ 0x13e9d0: cd c:\lab
md #1 @ 0x13e9f0: DumpIt.exe
 ****************
 ommandProcess: conhost.exe Pid: 3472
 ommandHistory: 0x149540 Application: DumpIt.exe Flags: Allocated
 ommandCount: 0 LastAdded: -1 LastDisplayed: -1
 irstCommand: 0 CommandCountMax: 50
 rocessHandle: 0x54
```


Importante:

Elaboración del informe

- Detallar TODO (antecedentes, procedimientos, evidencias, hashes)
- Usar formatos prediseñados para no olvidar nada. (Checklists)
- Ser imparcial y objetivos (ojo a las suposiciones sin pruebas)
- Es probablemente la parte más importante (junto con la defensa) en un juicio

Almacenamiento de informes y evidencias

- Hashear todo(tan pronto como se pueda)
- Apuntar toda la información del hw analizado (fabricante, modelo, s/n, inventario, configuración de jumpers, etc)
- Fotos (y si es necesario grabar)
- Si la causa lo amerita, que un notario o abogado presencie el proceso.

Almacenamiento de informes y evidencias

CADENA DE CUSTODIA:

- Concepto jurídico sobre la manipulación de una evidencia y su integridad
- Documento en papel que registra la adquisición, custodia, control, transferencia, análisis y destrucción de la evidencia.
- Las evidencias deben manipularse de forma escrupulosa para evitar cualquier acusación de negligencia
- Debe detallar dónde se encontraba la evidencia y quién tuvo acceso a ella desde el momento en que se recogió hasta el momento en el que se presenta a juicio

Almacenamiento de informes y evidencias

REGISTRO DE CADENA DE CUSTODIA Versión 2 - Resolución F. G.N.

400	0237					
Nur	nero:					
		1		1		

CADENA DE CUSTODIA:

CODIGO UNICO DE CASO

1	1	0	0	1	6	0	0	0	0	1	9	2	0	0	6	8	0	0	4	3
0	FT0		UNCE	10	817	DAD		u	MDN	D			M	io		9	XXX	ECU	πvo	

3. DOCUMENTACION DEL ELEMENTO MATERIA DE PRUEBA O EVIDENCIA FISICA

н	R	E	NOMBRES Y APELLIDOS	CEDULA DE CIUDADANIA	ENTIDAD	CARGO	FIRMA
X			JAMES BOND CUETO	8.666.628	D.A.S.	Detective	
	x	х	JUAN LUIS GUERRA	79.450.230	D.A.S.	Criminalístico	

2. HISTORIA CLINICA (")

Núm	erc)							
1	ı	I	1	1	1	1	1	П	1

4 TIPO DE EMBALAJE

Cantidad	Cantidad	Otro Cantidad
Plástica 🖫 📥	Frasco 🗆 🔔	Cual ?
De papel	Caja 🗆 🕳	

5. DESCRIPCION DEL ELEMENTO MATERIA DE PRUEBA O EVIDENCIA FISICA

Bolsa plástica color negro	
Conteniendo sustancia sólida	
granulada de color beige,	
olor caracteristico	

Convenciones:

- (*) aus ser d'Agenciade exclusivamente part a Bodega General de Exidencias de la Risculla Gieneral de la Vación, no rito pesición que le marespondido la evidencia al intenter de la Bodega.
- (**) Para ser d'Agenciado por la Smidad Prestadora de Salud que recolecte el Benenio Naterial Probabato e Bude nela Física.
- H = Maraus con una X si come exonde a cuam HALLÓ el Elemente Meteria de Prueba o Evidencia Finica.
- R = Marque con una X si contrigion de a quien RECOLECTÓ el Elemento Motente de Frueba o Exidencia Fisina.
- E = Marque cor una X si corresponde aquientEMELO el Elemento Materia de Prueba o Dixidondo Fisica.
 Se quedio marcar una exercisa apriorme para un mismo nembro, secciones el care.

Obtención de evidencia (ej: Windows)

Obtencion: Requisitos

Se requiere crear un "kit de adquisición de datos", un CD-ROM / PEN-RO con herramientas de "confianza" que debería incluir:

- CMD.exe / Powershell (correspondiente al SO)
- netcat o cryptcat
- Herramientas del sistema (ipconfig, netstat, date, time, net, arp,...) de las diferentes versiones de lindows (y service packs)
- pstools, listdlls, filemon*, regmon*, autoruns...
- hfind, fport, ntlast, ...
- Un buen sniffer
- Windows resource kit tools
- md5sum, sha256sum, etc...

Obtención: Datos volátiles

- 1. Conectar la estación forense a la red del equipo a analizar
- 2. Configurar cryptcat en la estación forense para que escuche en un puerto local y vuelque en un fichero la evidencia recibida.
- 3. Montar el "Kit de adquisición de datos" en el sistema a analizar.
- 4. Abrir una consola confiable y comenzar a obtener los datos enviandolos a la estación forense.

Obtención: Datos volátiles

En la estación forense:

cryptcat -l -p 6543 -k key >> evidence-file.txt

En el sistema a analizar:

<command> | cryptcat <IP foresnic station> 6543 -k key

Recordar: Siempre correr los comandos desde una unidad confiable.

Obtención: Datos volátiles

En la estación forense:

cryptcat -l -p 6543 -k key >> evidence-file.txt

En el sistema a analizar:

<command> | cryptcat <IP foresnic station> 6543 -k key

Comandos para obtener: Fecha y hora del sistema, procesos, conexiones de red, puertos abiertos(y aplicaciones que estén escuchando), usuarios logueados, más info almacenada en memoria.

Obtención: Comandos 1/5

date /t & time /t : fecha y hora

ipconfig /all: info tcp/ip

netstat -aon: conexiones abiertas, puertos en espera y PID asociado

psinfo -shd: info del sistema (hw, sw, hotfixes, version, etc)

pslist -t : procesos

at , schtasks: tareas programadas (tambien revisar en %windir% tasks folder)

sysinternals: varias tools más...

Obtención: Comandos 2/5

psloggedon: usuarios logados y hora de logon

psloglist: volcado de log de eventos

psservice: información de servicios de sistema

net use, net accounts, net session, net share, net user:

conexiones netbios/smb

listdlls: lista de DLLs cargadas en sistema

sigcheck -u -e c:\windows: lista de ficheros (.exe, .dll) no firmados

Obtención: Comandos 3/5

arp -a: muestra tabla de caché ARP

ntlast: muestra eventos de logon correctos y fallidos

route print: muestra tabla de ruteo IP

hfind c: ficheros ocultos

promiscdetect: detecta interfaces de red en modo "PROMISCUO"

Obtención: Comandos 4/5

volume_dump: muestra información sobre volumenes, mount points filesystem, etc.

pwdump2: muestra hashes (nthash/lmhash) de cuentas locales

Isadump2: muestra LSA secrets (necesita SeDebugPrivilege)

strings: busca cadenas ASCII/Unicode en ficheros

rootkit revealer: detecta rootkits (usermode o kernelmode)

Obtención: Comandos 5/5

process explorer (procexp y procmon): información útil sobre procesos, librerías que usan, recursos accedidos, conexiones de red, etc.

tcpview: muestra conexiones de red y aplicaciones asociadas

etc, etc, etc.

Obtención: Dispositivos

• \\. Local machine

• \\.\C: C: volume

\\.\D:
 D: volume

\\.\PhysicalDrive0 First physical disk

\\.\PhysicalDrive1 Second physical disk

\\.\CdRom0 First CD-Rom

\\.\Floppy0
 First floppy disk

\\.\PhysicalMemory Physical memory

Obtención: Datos de memoria

Tipo de información almacenada en la memoria:

- Password en la cache
- Malware residente en memoria (Slammer)
- Fragmentos de ficheros y procesos abiertos
- Datos no cifrados (en claro)

Realizar imagen completa de la memoria (de un sistema 'vivo')

dd if=\\.\PhysicalMemory | cryptcat 10.0.0.1 9000

Obtener los procesos en memoria (de un sistema 'vivo'):

Utilizar 'pmdump' para volcar a un fichero el espacio dememoria de un proceso.

Obtención: Pagefile

No se puede copiar 'pagefile.sys' en un sistema en marcha:

 Si se apaga el sistema, se modifica el fichero de paginación (o opcionalmente se borra)

 Si es necesario este fichero, quitar cable de alimentación y obtener imágenes del disco

Obtención: Datos de la Red

Algunos fuentes importantes de información:

- Logs de IDS/IPS
- Logs de Firewall
- Logs de VPN / Radius
- Logs del servidor DHCP
- Logs de otras aplicaciones que puedan estar relacionadas (ftp, www, base de datos, etc...)

Obtención: Datos de la Red

- En algunos casos es necesario recoger durante unos días la actividad de la red "sospechosa" para detectar posible actividad ilícita (malware o "atacante en la escena del crimen")
- Para registrar el tráfico desde/hacia el sistema analizado:
 - 1. Utiliza un sniffer, por ahi con un TAP
 - 2. Si esto no es posible, utiliza haz un "mirror" del puerto del switch
- 3. Si no utiliza un hub o usa arp-spoofing para redirigir el tráfico hacia el sniffer (ethereal) **** OPCION MENOS RECOMENDADA ***

Fin

Practico en construcción!

