

Chapter 11: Graph Algorithms Part 1

Dr. Sirasit Lochanachit

Graphs

Definition, elements and types

Graph Algorithms

- Traversal
- Minimum Spanning Tree (next week)
- Shortest Path

Graphs

- A **graph** is a set of objects, called vertices or **nodes**, where the actual data is stored and a collection of connections between them, called **edges** or arcs.
- A graph can be used to represent relationships between pairs of objects.
- Applications that require efficient processing between networks such as mapping, transportation and computer networks (Internet).

The Basic Elements of Graph

The Basic Elements of Graph

• Formally, a graph G is a set V of vertices and a collection E of pairs of vertices, called edges.

 $V = \{A, B, D, E, F, I\}$

Formally, a graph G is a set V of vertices and a collection E of pairs of vertices, called edges.

The Basic Elements of Graph

- V = {A, B, D, E, F, I}
- E = {(A, F), (A, D), (B, A), (D, I), (I, B), (B, E)}

Graphs

Ref: https://miro.medium.com/max/700/1*2jL0bKbT8ttskAlEVDv1yg.jpeg

Graph Types

- An edge (u, v) is directed from u to v if the pair (u, v) is ordered.
- An edge (u, v) is undirected if the pair (u, v) is not ordered.

Graph Representation

- V = {A, B, C, D, E, F}
- E = {(A, C), (A, D), (A, B), (D, F), (B, E), (B, F)}

	A	В	С	D	E	F
Α	0	1	1	1	0	0
В	1	0	0	0	1	1
C	1	0	0	0	0	0
D	1	0	0	0	0	1
Ε	0	1	0	0	0	0
F	0	1	0	1	0	0

Adjacency Matrix

Faculty of Information Technology King Mangker's Institute of Fechnology Ladindorry

Graph Representation

B E

- V = {A, B, C, D, E, F}
- E = {(C, A), (A, D), (B, A), (D, F), (F, D), (E, B), (F, B), (E, E)}

Adjacency Matrix

Faculty of Information Technology King Mengkar's Institute of Festivology Ladindorns

Graph Representation

- V = {A, B, C, D, E, F}
- E = {(C, A), (A, D), (B, A), (D, F), (F, D), (E, B), (F, B), (E, E)}

Adjacency List

Graph Representation

Graph Notations

14

Node Representation

Node	Name	Phone
Α	Able	
В	Baker	
С	Charlie	
D	Denver	
E	Ethan	
F	Fred	

Edge Representation

		Α	В	C	D	Ε	F
	Α	0	0	0	1	0	0
	В	1	0	0	0	0	0
	С	1	0	0	0	0	0
	D	0	0	0	0	0	1
١	Ε	0	1	0	0	1	0
)	F	0	1	0	1	0	0

Adjacency Matrix

$$V = \{D, I\}$$

$$E = \{(D, I)\}$$

- **Endpoints**: Two nodes (*u*, *v*) that are joined by an edge.
 - These two nodes are **adjacent**.
- **Origin**: First endpoint (*u*) on a directed edge.
- **Destination**: Second endpoint (v) on a directed edge.

Graph Notations

Graph Notations

- A path is a sequence of nodes and edges that starts at a node and ends at a node such that each node is adjacent to the next one.
- Formally, a path is a sequence of nodes V_1 , V_2 , V_3 , ..., V_n where (V_1, V_2) , (V_2, V_3) , ..., $(V_{n-1}, V_n) \in E$.

A **loop** is a special case of path where two endpoints are the same.

An edge that starts and ends with the same node.

- A cycle is a path that starts and ends at the same node, having at least one edge.
- A **simple path** is when each node in the path is distinct.
- A simple cycle is when each node in the cycle is distinct, except for the first and last one.

Graph Properties

Faculty of Information Technology King Margian Listable of Technology

Graph Properties

A, D, I

Simple Path

Acyclic (No Cycle)

A, B, A

Non Simple Path

Acyclic (No Cycle)

A, D, A

Non Simple Path

Acyclic (No Cycle)

Faculty of Information Technology King Manglet's testable of Schoology Ledenburg

Graph Properties

A, B, A

Non Simple Path

Acyclic (No Cycle)

Non Simple Path

A, D, A

Acyclic (No Cycle)

A, D, A

Non Simple Path

Directed cycle

Graph Properties

A, B, C, D, E, D, B, A

Non Simple Path

Cycle

A, B, I, D, B, A

Non Simple Path

Undirected Cycle

Graph Notations

Graph Algorithms

 A graph is connected if, for any two nodes, there is a path between them.

 The in-degree of a node v is the number of the incoming edges of v.

 The out-degree of a node v is the number of the outgoing edges of v.

 For instance, node D has in-degree = 2, out-degree = 2.

- Traversals
- Minimum Spanning Tree
- Shortest Path

Graph Traversals

- Graph traversal algorithms are key to answering many fundamental
 questions about graphs involving the notion of **reachability**, that is, in
 determining how to travel from one node to another while following
 paths of a graph.
- Two efficient graph traversal algorithms: depth-first search and breadth-first search.

Depth-First Search (DFS)

- Imagine wandering in a labyrinth/maze with a string and a can of paint.
- Starts at node s in graph G, fix one end of the string to s and paint s as "visited".
 - \circ The node s is now a "current" node, which is a current node u.
 - o Painting is analogous to putting a visited node in a stack.
- Then, traverse G by considering an edge (u, v) that is connected to u.
 - \circ If the edge (u, v) leads to a node v that is already existed/painted, ignore.
 - Otherwise, if (u, v) leads to an unvisited node v, then unroll the string and go to v. Then painted v as "visited" and make it the current node u.
- Repeat the step above until reaching a "dead end", that is, a current node v such that all the edges connected to v lead to nodes already visited.

Depth-First Search (DFS)

Depth-First Search (DFS)

To get out of the "dead end", roll the string back up, backtracking along the edge to a previously visited node u.

- Then make *u* the current node and repeat the traversal step for any edges connected to u that have not yet considered.
- The traversal is continued until the process terminates when the backtracking leads back to the start node s, and there are no more unexplored edges connected to s.
- DFS can have many solutions, however, for consistency, when there are multiple edges available, the node with fewer values should be selected first.

"Parent

Children

Grandchild"

Output:?

Stack

Depth-First Search (DFS)

Depth-First Search (DFS)

0 Stack

0 Stack

Output: 0 Output: 0

Output: 0 1 2 4 3 5 6 8 10 7 9 Output: 0 1 2 4 3 5 6 8 10 7 9

Depth-First Search (DFS) Exercise

Breadth-First Search (BFS)

- DFS is similar to sending a single person to navigate the graph.
- BFS is more akin to sending out many people in all directions to traverse a graph in coordinated fashion.
- A BFS proceeds in rounds and subdivides the nodes into levels.
- Starts at node s, which is level 0.
 - o 1st Round: paint all nodes adjacent to node s as "visited" and placed into level 1.
 - o 2nd Round: All nodes adjacent to level 1's nodes are placed into level 2 and marked as "visited".
 - This process continues until no new nodes are found in a level.

Breadth-First Search (BFS)

Output:?

Breadth-First Search (BFS)

- First, starts with the initial node anywhere on the graph, which is the starting point.
 - o Usually starts with a node with lowest value.
- From there, add (engueue) every node that is directly connected to the current node into a queue.
- Then dequeue the current node and check the next node in queue.

"Parent

Children

Grandchild"

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Queue

Output: 0 1 5 2 3 6 4 8 10 7 9

Breadth-First Search (BFS) Exercise

Graph Traversals

- On undirected and directed graph with n nodes and m edges.
 - o A DFS traversal can be performed in O(n + m) time.
 - A BFS traversal can be conducted in O(n + m) time

Output:?

Directed Acyclic Graphs (DAG)

Faculty of Information Technology Story Wary Lard Ladde of Section logic Laddesians

Topological Ordering

- Directed graph without directed cycles is a directed acyclic graph (DAG).
- Applications of such graphs, for instance, are:
 - o Prerequisites between courses of a degree program.
 - o Scheduling constraints between the tasks of a project.
 - Task a must be completed before task b is started.

- A topological ordering of graph G is an ordering of the nodes $(v_1, ..., v_n)$ such that for every edge (v_i, v_j) of G, the condition i < j must be preserved.
- In other words, if there is a part from v_i to $v_{j'}$, v_j must be behind v_i in the ordering.

Topological Ordering

Shortest Paths

- The BFS strategy can be used to find a shortest path from some starting node to every other node in a connected graph.
- This approach is suitable in cases where each edge is equal to others.
- However, for other situations, this approach is not efficient.
- For example, a graph representing the road network between cities, and we would like to find the fastest way to travel from A to B.
- It is natural, therefore, to consider graphs whose edges are <u>not</u> weighted equally.

Weighted Graphs

Defining Shortest Paths in a Weighted Graph

- A weight graph is a graph that has a numeric label w(e) associated with each edge e, called the weight of edge e.
- For e = (u, v), w(u, v) = w(e).
- Such weights might represent:
 - Costs
 - Lengths
 - Capacities
 - etc.

- Let G be a weight graph.
- The **length** (or **weight**) of a **path** is the sum of the weights of the edges of P.
 - \circ P = $((v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k))$
 - Length of P, denoted w(P) is defined as $w(P) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$.
- The distance from a node u to a node v in G, denoted d(u, v) is the length of a minimum-length path (also called **shortest path**) from *u* to *v*.

Shortest Paths Algorithms

- Shortest path with all equal weights (=1) can be solved with BFS traversal algorithm.
- Distances cannot be arbitrarily low negative numbers.
 - For instance, the weight of edges represent the cost to travel between cities. If someone pay you to go between the cities, the cost would be negative.
 - Edge weights in G should be nonnegative (that is, w(e) >= 0) for each edge.

- Apply **greedy method** to solve the problem by repeatedly selecting the best choice from among those available in each iteration.
 - Useful for optimising cost function over a collection of objects.
- "Weight" breadth-first search starting at the source node s.
- D[v] keeps the length of the best path so far from the source node s to each node v in the graph.
 - Initially, D[s] = 0 and D[v] = Inf for each <math>v = s
- Q is a set of all the unvisited nodes, called the unvisited set.
- Array prev is used to keep track of the shortest path.

Dijkstra's Algorithm

Foculty of Information Technology Xing Merghar's teathate of Sechnology Ledvolung

1. Set the source node as current node.

- 2. For the current node, consider all of its unvisited neighbors and calculate their distances through the current node.
- 3. Compare the distances and select the unvisited neighbor node (v) with the smallest distance through the current node.
- 4. Mark the current node as visited and remove it from the unvisited set Q.
 - a. A visited node will never be checked again.
- 5. If the destination node has been marked visited, then stop.
- 6. If the smallest distance among the nodes in the unvisited set is infinity, then stop.
 - a. Occurs when there is no connection between the source node and remaining unvisited nodes
- 7. Otherwise, set the unvisited node with the smallest distance as the new "current node" and repeat step 3.

Dijkstra's Algorithm

1	function Dijkstra(Graph, source):	
2		
3	create vertex set Q	
4		
5	for each vertex v in Graph:	
6	dist[v] ← INFINITY	
7	prev[v] ← UNDEFINED	
8	add v to Q	
10	dist[source] + 0	
11		
12	while Q is not empty:	
13	u ← vertex in Q with min dist[u]	
14		
15	remove u from Q	
16		
17	for each neighbor v of u :	// only w
tha	are still in Q	
18	$alt \leftarrow dist[u] + length(u, v)$	
19	<pre>if alt < dist[v]:</pre>	
20	dist[v] ← alt	
21	prev[v] ← u	
22		
23	return dist[], prev[]	

Faculty of Information Technology Xing Marghar's Institute of Sectioology Ladinoburg

Dijkstra's Algorithm

Dijkstra's Algorithm

Node	Cumulative weight
Α	-
В	-
С	-
D	-
Е	-

Round #0

$$Q = \{'A', 'B', 'C', 'D', 'E'\}$$

 $D['A'] = 0, D['B'] = D['C'] = D['D'] = D['E'] = Inf$
 $Prev['A'] = Prev['B'] = Prev['C'] = Prev['D'] = Prev['E'] = None$

Q = {"B', 'C', 'D', 'E'}
D['C'] = 2
prev['C'] = 'A'

Round #1

Node	Cumulative weight
А	-
В	4
С	2
D	-
Е	-

Q = { 'B', 'D', 'E'} D['C'] = 2 D['B'] = 3 prev['C'] = 'A' prev['B'] = 'C'

Round #2

Node	Cumulative weight	
Α	-	
В	4 or 2 + 1 = 3	
С	2	
D	2 + 4 = 6	
Е	2 + 5 = 7	

Round #3

Node	Cumulative weight
А	-
В	3
С	2
D	(ACBD) 3 + 2 = 5 or (ACD) 2 + 4 = 6
Е	(ACE) 7 or (ACBE) $3 + 3 = 6$

$$D['B'] = 3$$

$$D['D'] = 5$$

Faculty of Information Technology King Mangker's treature of Technology Ledinoburg

Dijkstra's Algorithm

Round #4

Node	Cumulative weight
А	-
В	3
С	2
D	5
Е	(ACE) 7 or (ACBE) $3 + 3 = 6$

$$Q = \{ 'E' \}$$

 $D['C'] = 2$ $D['B'] = 3$ $D['D'] = 5$ $D['E'] = 6$
 $prev['C'] = 'A'$ $prev['B'] = 'C'$ $prev['D'] = 'B'$ $prev['E'] = 'B'$

Faculty of Information Technology King Marght's Indibade of Sethology Ladindung

Dijkstra's Algorithm

Round #4

Node	Cumulative weight
А	-
В	3
С	2
D	5
Е	6

 $\mathsf{Q} = \{\}$

D['C'] = 2

Dijkstra's Algorithm

Dijkstra's Algorithm Exercise

Round #4

D['B'] = 3

D['D'] = 5

prev['C'] = 'A' prev['B'] = 'C' prev['D'] = 'B' prev['E'] = 'B'

Node	Cumulative weight
Α	-
В	3
С	2
D	5
Е	6

D['E'] = 6

Shortest Path

Route	Cumulative weight
Α	0
A > C > B	3
A > C	2
A > C > B > D	5
A > C > B > E	6

Find the shortest path for each node from node A
Find the distance from A to F