Let $S \subset \mathbb{R}^N$ be any set. To prove that ∂S is closed, we need to prove it contains all of its cluster point.

Let x be a cluster point of ∂S , we need to prove $x \in \partial S$, that is x is boundary point of S.

Since x is a cluster point of $\partial S, \forall \epsilon > 0 : \exists y \in \partial S \cap B_{\epsilon}(x) \setminus \{x\} \neq \emptyset$.

Therefore, $\exists \delta > 0 : B_{\delta}(y) \subset B_{\epsilon}(x)$ and y is a boundary point of S, which means that $B_{\delta}(y) \cap S \neq \emptyset \wedge B_{\delta}(y) \cap S^{c} \neq \emptyset$ and hence $B_{\epsilon}(x) \cap S \neq \emptyset \wedge B_{\epsilon}(x) \cap S^{c} \neq \emptyset$.

Suppose $x \in \partial(S_1 \cup S_2 \cup \ldots \cup S_n) = \partial(\bigcup_{k=1}^n S_k)$, which means that $\forall \epsilon > 0$: $B_{\epsilon}(x) \cap (\bigcup_{k=1}^n S_k)^c \neq \varnothing \wedge B_{\epsilon}(x) \cap \bigcup_{k=1}^n S_k \neq \varnothing$. Let $y \in B_{\epsilon}(x) \cap \bigcup_{k=1}^n S_k \neq \varnothing$ then $y \in \bigcup_{k=1}^n S_k$ and hence $\exists j \in \{1, 2, \ldots, n\} : y \in S_j$. Therefore, $B_{\epsilon}(x) \cap S_j \neq \varnothing$. Let $z \in B_{\epsilon}(x) \cap (\bigcup_{k=1}^n S_k)^c$, then as $\forall i \in \{1, 2, \ldots, n\} : S_i \subset \bigcup_{k=1}^n S_k \implies (\bigcup_{k=1}^n S_k)^c \subset S_i^c, z \in S_i^c$. Therefore, $B_{\epsilon}(x) \cap S_j^c \neq \varnothing$, which proves that x is a boundary points of S_j and finally,

$$\partial(S_1 \cup S_2 \cup \ldots \cup S_n) \subset \partial S_1 \cup \partial S_2 \cup \ldots \cup \partial S_n$$

Equal does not necessarily hold because: consider [-1,0] and [0,1]

$$\partial([-1,0] \cup [-0,1]) = \partial[-1,1] = \{-1,1\}$$

and

$$\partial[-1,0] \cup \partial[0,1] = \{-1,0\} \cup \{1,0\} = \{-1,0,1\}$$

a.

Let $A = \{x \in \mathbb{R}^N : r \le ||x|| \le R\}$

For all $0 \le r \le R$: $B_R[0] \setminus B_r(0) = B_R[0] \cup B_r^c(0) = \{x \in \mathbb{R}^N : r \le ||x|| \le R\}$. Since $B_R[0]$ is closed and $B_r(0)$ is open hence $B_r^c(0)$ is closed, the union of the two sets are closed and hence A is closed. Since $x \in A \implies ||x|| \le R, \forall i \in \{1, 2, ..., N\} : x_i \le R$. A is bounded and therefore compact.

b.

Let $B = \{ x \in \mathbb{R}^N : r < ||x|| \le R \}$

Consider the point x = (r, 0, ..., 0) then x is a cluster point of B because:

$$\forall \epsilon > 0 : \{ y = (r', 0, \dots, 0) | r < r' < r + \epsilon \} \in B_{\epsilon}(x)$$

Hence, $\forall m : r < m < r + \epsilon : \exists y \in B_{\epsilon}(x) \land ||y|| = m$ and therefore $(B_{\epsilon}(x) \cap B) \setminus \{x\} \neq \emptyset$ Therefore, B is not closed and not compact.

c.

Closure of any set is closed.

 $0 < t \le 2022$ and $-1 \le \sin \frac{1}{t} \le 1$ Hence, for all boundary point $x = (x_1, x_2)$ of the set: $-1 < x_1 < 2023$ and $-2 < x_2 < 2$. Because else, $B_{1/2}(x) \cap \{(t, \sin \frac{1}{t}) : t \in (0, 2022]\} = \emptyset$ which means that x is not a boundary point. Therefore, the set is bounded and closed and hence compact.

d.

Let $D = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ We have

$$\forall \epsilon > 0 : \exists n \in \mathbb{N} : \frac{1}{n} < \epsilon \implies \frac{1}{n} \in B_{\epsilon}(0) \implies (B_{\epsilon}(0) \cap D) \setminus \{0\} \neq \emptyset$$

which means that 0 is a cluster point and therefore D is not closed and therefore not compact.

e.

If there exists a cluster point s not in E. Then

If s < 0 then let $s = -\epsilon$ where $\epsilon > 0$, then $\left(-\epsilon - \frac{\epsilon}{2}, -\epsilon + \frac{\epsilon}{2}\right) \cap E = \emptyset$ which is a contradiction.

If s > 1 then let $s = 1 + \epsilon$ where $\epsilon > 0$, then $\left(1 + \epsilon - \frac{\epsilon}{2}, 1 + \epsilon + \frac{\epsilon}{2}\right) \cap E = \emptyset$ which is a contradiction.

If
$$0 < s < 1$$
 then $\exists ! n \in \mathbb{N} : s \in \left(\frac{1}{n+1}, \frac{1}{n}\right)$, which $\left(\frac{1}{n+1}, \frac{1}{n}\right) \cap E = \emptyset$

Let
$$\epsilon = \min\left\{s - \frac{1}{n+1}, \frac{1-n}{s}\right\}$$
, then $(s - \epsilon, s + \epsilon) \cap \left\{\frac{1}{n+1}, \frac{1}{n}\right\} = \emptyset$ and $(s - \epsilon, s + \epsilon) \subset \left(\frac{1}{n+1}, \frac{1}{n}\right)$ which have no common elements with E and therefore E contains all its cluster point.

Therefore, E is closed. We have

$$\forall n \in \mathbb{N} : \frac{1}{n} \ge 0 \implies \forall e \in E : e \ge 0 > -1$$

Also,

$$\forall n \in \mathbb{N} : 1 \le n \implies 2 > 1 = \frac{1}{1} \ge \frac{1}{n} \implies \forall e \in E : e \le 2$$

Therefore E is bounded and compact.

a.

For an arbitary point $x=(x_1,x_2)\in U_1\times U_2$. Because $x_1\in U_1$, which is open, $\exists \epsilon_1>0: B_{\epsilon_1}(x_1)\subset U_1$. Similarly, $\exists \epsilon_2>0: B_{\epsilon_2}(x_2)\subset U_2$. Let $\epsilon=\min\{\epsilon_1,\epsilon_2\}$. Then

$$\forall y = (y_1, y_2) \in B_{\epsilon}(x) : |y_1 - x_1| < \epsilon \le \epsilon_1 \land |y_2 - x_2| < \epsilon \le \epsilon_2 \text{ else } ||x - y|| \ge \epsilon$$

Therefore $y_1 \in U_1 \land y_2 \in U_2$ and hence $B_{\epsilon}(x) \subset U_1 \times U_2$. Which means that $U_1 \times U_2$ is open.

b.

Since F_1 is closed, F_1^c is open and therefore $F_1^c \times \mathbb{R}^M$ is open. Similarly, $\mathbb{R}^N \times F_2^c$ is open and therefore because of

$$(F_1 \times F_2)^c = (F_1^c \times \mathbb{R}^M) \cup (\mathbb{R}^N \times F_2^c)$$

 $(F_1 \times F_2)^c$ is open and $F_1 \times F_2$ is closed.

c.

We know from part b that $K_1 \times K_2$ is also closed. And since K_1 and K_2 is bounded, $K_1 \times K_2$ is also bounded hence compact.

If K is compact and there is a family of closed set $\{F_i : i \in I\}$ in \mathbb{R}^N such that

$$K \cap \bigcap_{i \in I} F_i = \emptyset$$

then we have

$$K \cap \left(\bigcup_{i \in I} F_i^c\right)^c = \varnothing$$

$$\Longrightarrow K \cap \bigcup_{i \in I} F_i^c = K$$

$$\Longrightarrow K \subset \bigcup_{i \in I} F_i^c$$

K is compact, therefore $\exists i_1, i_2, \ldots, i_N : K \subset F_{i_1}^c \cup F_{i_2}^c \cup \ldots \cup F_{i_n}^c = F_{i_1} \cap F_{i_2} \cap \ldots \cap F_{i_n}$ which proves that K has the finite intersection property. If K has the finite intersection property, suppose that K is not closed, that is there is a cluster point $s \notin K$ then

$$\forall \epsilon > 0 : (B_{\epsilon}(s) \cap K) \setminus \{s\} \neq \emptyset$$

Therefore, create a family $\{B_{\frac{1}{n}}[s] | n \in \mathbb{N}\}$. If $K \cap \bigcap_{n \in \mathbb{N}} B_{\frac{1}{n}}[x] \neq \emptyset$, then there exists a point $y \in K \cap \bigcap_{n \in \mathbb{N}} B_{\frac{1}{n}}[x]$. Since $x \notin K, y \neq x$.

Moreover, we can find a $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < ||x - y||$ which means that $y \notin B_{\frac{1}{n_0}}[x]$ which contradicts with $K \cap \bigcap_{n \in \mathbb{N}} B_{\frac{1}{n}}[x] \neq \emptyset$ and hence

$$K \cap \bigcap_{n \in \mathbb{N}} B_{\frac{1}{n}}[x] = \emptyset \tag{1}$$

For all $i_1, i_2, \ldots, i_n \in \mathbb{N}$, let $j = \max\{i_1, i_2, \ldots, i_n\}$ then $j >= i_t \forall t \in \{1, 2, \ldots, n\}$ which means that $B_j[x] \subseteq B_{i_t}[x] \forall t \in \{1, 2, \ldots, n\}$ and hence $B_j[x] \cap B_{i_t}[x] = B_j[x] \forall t \in \{1, 2, \ldots, n\}$. Therefore,

$$K \cap B_{\frac{1}{i_1}}[x] \cap B_{\frac{1}{i_2}}[x] \cap \ldots \cap B_{\frac{1}{i_n}}[x] = K \cap B_{\frac{1}{j}}[x] \neq \emptyset$$
 (2)

(1) and (2) contradicts with the finite intersection property, and hence K is closed.

Let

$$X_{s_i}$$
 be any point $\begin{cases} \in I_i & \text{if } s_i = 1 \\ \in \{a_i, b_i\} & \text{if } s_i = 2 \end{cases}$

and $X_{s_1,s_2,\ldots,s_N} = X_{s_1} \times X_{s_2} \times \ldots \times X_{s_N}$. Now claim that

$$\partial I = X := \bigcup_{\exists i: s_i = 2} X_{s_1, s_2, \dots, s_n}$$

For every point $x \in X$, because $\exists i: s_i = 2$, suppose $x_i = b_i$ which means that $\forall \epsilon > 0: y = (x_1, x_2, \dots, x_i + \epsilon/2, \dots, x_n) \in B_{\epsilon}(x) \cap I^c$ and $z = (x_1, x_2, \dots, x_i - \epsilon/2, \dots, x_n) \in B_{\epsilon}(x) \cap I$. Similarly, if $x_i = a_i$ then $\forall \epsilon > 0: y = (x_1, x_2, \dots, x_i - \epsilon/2, \dots, x_n) \in B_{\epsilon}(x) \cap I^c$ and $z = (x_1, x_2, \dots, x_i + \epsilon/2, \dots, x_n) \in B_{\epsilon}(x) \cap I$.

Hence x is a boundary points.

For every point $t = (t_1, t_2, \dots, t_n) \notin X$. Suppose $t \in I$, then

$$\nexists i \in \{1, 2, \dots, N\} : t_i \in \{a_i, b_i\}$$

Let

$$\epsilon := \min(\{|t_1 - a_i| | i \in \{1, 2, \dots, N\}\}) \cup \{|t_1 - b_i| | i \in \{1, 2, \dots, N\}\})$$

Which means that $\epsilon > 0$ because $\forall i \in \{1, 2, ..., N\} : a_i - t_i \neq 0 \land b_i - t_i \neq 0$. If $t \in I$ then $B_{\epsilon}(t) \subset I$ as $\forall i \in \{1, 2, ..., N\} : t_i + \epsilon \leq b_i$ and $t_i - \epsilon \geq a_i$ and hence $B_{\epsilon}(t) \cap I^c = \emptyset$, which means t is not a boundary points. If $t \notin I$ then

$$\exists i \in \{1, 2, \dots, N\} : t_i \notin I_i$$

If $t_i > b_i$ then let

$$\epsilon := t_i - b_i$$

Then $\forall m = (m_1, m_2, \dots, m_N) \in B_{\epsilon}(t) : m_i > t_i - \epsilon = b_i$, which means that $m \notin I$ and therefore $B_{\epsilon}(t) \cap I = \emptyset$, which means t is not a boundary point. Similarly, if $t_i < a_i$ then let

$$\epsilon := a_i - t_i$$

Then $\forall m = (m_1, m_2, \dots, m_N) \in B_{\epsilon}(t) : m_i < t_i + \epsilon = a_i$, which means that $m \notin I$ and therefore $B_{\epsilon}(t) \cap I = \emptyset$, which means t is not a boundary point. In all cases $t \notin X$, t is not a boundary point.