Zelftesten les 2

Dit zijn de zelftesten die je moet maken ter voorbereiding van de tweede les van Toegepaste Mechanica, deel 1.

Question 1 Een blok van 10 kg hangt in het aan een (massaloze) koord aan een haak A. Hoe groot is de spankracht in het touw (in N)?

Hint: Maak een vrijlichaamsdiagramma

 ${\bf Hint:}$ In ${\bf stap~1}$ stellen we een vrijlichaamsdiagram op in drie opeenvolgende stappen:

- (a) bepaling van het lichaam dat vrijgemaakt wordt: We maken het blok b en de kabel k vrij:
- (b) aanduiding van de niet-contactkrachten op het lichaam: In dit geval is er enkel het gewicht van het lichaam: \vec{G}_b :
- (c) aanduiding van alle contactkrachten op het lichaam:

In dit geval is het koord weggelaten. Het weggelaten koord oefent een opwaartse kracht \vec{S}_{bk} uit op het vrijgemaakte blok:

In dit geval is het blok en de haak weggelaten. Het weggelaten blok oefent een neerwaartse kracht \vec{S}_{kb} uit op de vrijgemaakt kabel. De weggelaten haak oefent een opwaartse kracht \vec{S}_{k0} uit op de vrijgemaakte kabel.

- het blok heeft een gewicht $\vec{G}_b = \left\{ egin{array}{c} 0 \\ 0 \\ -100N \end{array}
 ight\}$
- de wet van actie en reactie zegt dat: $\vec{F}_{kb} = -\vec{F}_{kb}$ met \vec{F}_{kb} is onbekend.
- de kracht van de haak op de kabel \vec{F}_{k0} is nog onbekend.

Hint: Stel het krachtenevenwicht op van het blok en de kabel.

Hint: In stap 2 stellen we het krachtenevenwicht op van het blok en de kabel:

Learning outcomes:

blok:

$$\vec{F}_{\text{resulterend}} = \vec{G}_b + \vec{F}_{bk} = \vec{0}$$

Hieruit halen we de kabelkracht:

$$\vec{F}_{bk} = -\vec{G}_b = \left\{ \begin{array}{c} 0 \\ 0 \\ 100N \end{array} \right\}$$

kabel:

$$\vec{F}_{\text{resulterend}} = \vec{F}_{kb} + \vec{F}_{k0} = \vec{0}$$

Hieruit halen we de kracht van de haak op de kabel:

$$ec{F}_{k0} = -ec{F}_{kb} = ec{F}_{bk} = \left\{ egin{array}{c} 0 \\ 0 \\ 100N \end{array}
ight\}$$

De kabel ondervindt dus een trekkracht van \dots

100 N