Manual: PEPICOBayes

Contents

1	Introduction						
2	Abbreviations	2					
3	PEPICOBayes-Program3.1 Function definition3.2 Pseudocode of the algorithm3.3 Start value for π	5					
4	Results of example.m						
5	Troubleshooting 5.1 Reconstruction is not converged	9 9					

1 Introduction

PEPICOBayes is a program for reconstructing the probe spectrum from pump-probe and pump-only photoelectron-photoion coincidence (PEPICO) measurements applying Bayesian probability theory. The theory behind the program is described in Refs. [1, 2]. The PEPICOBayes program is written in C and executed in Matlab. We offer a simple example Matlab-file to demonstrate the usage of the PEPICOBayes program.

Ref. [2] extends the algorithm developed in Ref. [1] by including fluctuating laser intensities. We offer the input data for the mock data analysis and experimental data presented in Ref. [2] in the download folder. These data can be analysed using the PEPICOBayes program.

2 Abbreviations

The abbreviations in this manual are similar to the abbreviations used in reference [1].

Abbreviation	bbreviation Description		
	Symbol that refers to $j \in \{1, 2\}$		
$\mid j \mid$	$1 \cdots$ events due to pump-only laser pulse		
	$2\cdots$ events due to probe-only laser pulse		
	Symbol that refers to $\rho \in \{\alpha, \beta\}$		
ρ	$\alpha \cdots$ events in the pump-only experiment		
	$\beta \cdots$ events in the pump-probe experiment		
$n^{(ho)}$	measured count rates $n^{(\rho)} = \{n_{\mu\nu}^{(\rho)}\}$, dimension: $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$		
$q^{(j)}$	Monte Carlo time series of the spectrum $q^{(j)} = \{q_{\mu\nu}^{(j)}\},$		
$ q ^{q}$	dimension: $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu} \times N_{\text{sweep}}]$		
$N_{ m run}$	Number of Monte Carlo steps between Monte Carlo measurements		
$N_{ m sweep}$	Number of Monte Carlo measurements		
\mathcal{N}_{μ} $\mathcal{N}_{ u}$	Number of elements in dimension μ		
	Number of elements in dimension ν		
\mathcal{N}_p	Number of measurements		
N_{N_e,N_i}	Number of measurements where N_e electrons and N_i ions were		
N_e,N_i	detected.		
π	Time series of experimental parameters: $\pi = \{\underline{\lambda}_1, \underline{\lambda}_2, \sigma_1, \sigma_2, \xi_i, \xi_e\},\$		
Λ	dimension: $[6 \times N_{\text{sweep}}]$		
$\underline{\lambda}_j$	Mean number of events in channel j		
$egin{array}{c} \sigma_j \ \xi_i \end{array}$	Fluctuations of mean number of events in channel j		
ξ_i	Detection probability for ions		
ξ_e	Detection probability for electrons		

3 PEPICOBayes-Program

3.1 Function definition

The function returns four arguments and can be executed with six or eight arguments as input. Arguments seven and eight $(q_0^{(1)} \text{ and } q_0^{(2)})$ are start values for the spectra and optional. If no start spectra are passed the algorithm starts with flat spectra.

Input variables:

	Abbreviation	Variable name	Description	
1	$n^{(eta)}$	n_beta	measured pump-probe coincidence spectrum (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)	
2	$n^{(\alpha)}$	n_alpha	measured pump-only coincidence spectrum (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)	
3	$N_{ m run}$	Nrun	Number of Monte Carlo steps between measurements	
4	$N_{ m sweep}$	Nsweep	Number of Monte Carlo measurements	
5	parameter	parameter	$ \begin{array}{l} \text{Parameter vector:} \\ \text{parameter := } \{\underline{\lambda}_{1},\underline{\lambda}_{2},\sigma_{1},\sigma_{2},\xi_{i},\xi_{e},\\ \sigma_{q^{(1)}},\sigma_{q^{(2)}},\sigma_{\underline{\lambda}_{1}},\sigma_{\underline{\lambda}_{2}},\sigma_{\sigma_{1}},\sigma_{\sigma_{2}},\sigma_{\xi_{i}},\sigma_{\xi_{e}},\\ \mathcal{N}_{p}^{(\beta)},N_{00}^{(\beta)},N_{01}^{(\beta)},N_{02}^{(\beta)},N_{03}^{(\beta)},N_{10}^{(\beta)},N_{11}^{(\beta)},N_{12}^{(\beta)},N_{20}^{(\beta)},N_{21}^{(\beta)},N_{30}^{(\beta)},\\ \mathcal{N}_{p}^{(\alpha)},N_{00}^{(\alpha)},N_{01}^{(\alpha)},N_{02}^{(\alpha)},N_{03}^{(\alpha)},N_{11}^{(\alpha)},N_{11}^{(\alpha)},N_{12}^{(\alpha)},N_{20}^{(\alpha)},N_{21}^{(\alpha)},N_{30}^{(\alpha)}\} \end{array} $	
6	$q_0^{(1)}$		(optional) start values of $q^{(1)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)	
7	$q_0^{(2)}$		(optional) start values of $q^{(2)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu}]$)	

The size of a Monte Carlo step of variable $T \in \{q^{(1)}, q^{(2)}, \underline{\lambda}_1, \underline{\lambda}_2, \sigma_1, \sigma_2, \xi_i, \xi_e\}$ is Gaussian distributed with mean value zero and standard deviation σ_T . σ_T should be adjusted that $p_{\rm acc}$ is at the order of 50% in order to efficiently sample the probability distribution. Note that the standard deviation of for the step distribution for σ_j is $\min\{\sigma_{\sigma_j}, \sigma_j\}$. This is important if the fluctuations are very small and allows to visit phase space with a very small σ_j . For numerical stability the smallest value of σ_j is 10^{-8} .

Output variables:

	Abbreviation	Variable name	Description
1	$q^{(1)}$	q1_timeseries	Time series of $q^{(1)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu} \times N_{\text{sweep}}]$)
2	$q^{(2)}$	$q2_timeseries$	Time series of $q^{(2)}$ (dimension $[\mathcal{N}_{\mu} \times \mathcal{N}_{\nu} \times N_{\text{sweep}}]$)
3	π	Pi	Time series of π (dimension [6 x N_{sweep}])
4	$p_{ m acc}$	p_acc	Vector of acceptance rates with 6 entries: $p_{\rm acc}(1)$: Acceptance rate of $\underline{\lambda}_1$ $p_{\rm acc}(2)$: Acceptance rate of $\underline{\lambda}_2$ $p_{\rm acc}(3)$: Acceptance rate of σ_1 $p_{\rm acc}(4)$: Acceptance rate of σ_2 $p_{\rm acc}(5)$: Acceptance rate of ξ_i $p_{\rm acc}(6)$: Acceptance rate of ξ_e $p_{\rm acc}(7)$: Acceptance rate of $q^{(1)}$ $p_{\rm acc}(8)$: Acceptance rate of $q^{(2)}$

Note that the first entry in the time series is the start value of the corresponding variable.

3.2 Pseudocode of the algorithm

A Metropolis Hastings Monte Carlo algorithm is used to sample the probability distribution for $q^{(1)}$, $q^{(2)}$ and π .

```
 \begin{aligned} \textbf{PEPICOBayes} &(n^{(\beta)}, \, n^{(\alpha)}, \, N_{\text{run}}, \, N_{\text{sweep}}, \, \text{parameter}, \, q_0^{(1)}, \, q_0^{(2)} \,) \\ & \text{read all input variables} \\ & \textbf{for} \, \, k < N_{\text{sweep}} \\ & \textbf{for} \, \, i < N_{\text{run}} \\ & \text{suggest Monte Carlo step in} \, \underline{\lambda}_1, \, \underline{\lambda}_2, \, \sigma_1, \, \sigma_2, \, \xi_e, \, \xi_i, \, q^{(1)} \, \text{or} \, q^{(2)} \\ & \text{compute Monte Carlo step probability} \\ & \textbf{if} \, \, \text{update is accepted} \\ & \text{overwrite corresponding variable with the new value} \\ & \textbf{else} \\ & \text{do nothing} \\ & \textbf{end} \\ & \textbf{end} \\ & \text{copy} \, \underline{\lambda}_1, \, \underline{\lambda}_2, \, \sigma_1, \, \sigma_2, \, \xi_e, \, \xi_i, \, q^{(1)} \, \, \text{and} \, q^{(2)} \, \, \text{into output variables at Monte Carlo time} \, k \\ & \textbf{end} \\ & \textbf{end} \\ & \textbf{end} \end{aligned}
```

3.3 Start value for π

The start values of π can for example be approximated by the formula given by Stert et. al. [3]. In summary this means solving the following equation for λ

$$\frac{N_e N_i}{\lambda \mathcal{N}_p} \left(1 + \lambda \left(1 - \frac{N_e}{\lambda \mathcal{N}_p} \right) \left(1 - \frac{N_i}{\lambda \mathcal{N}_p} \right) \right) e^{-\lambda \left(1 - \left(1 - \frac{N_e}{\lambda \mathcal{N}_p} \right) \left(1 - \frac{N_i}{\lambda \mathcal{N}_p} \right) \right)} \approx N_{11} \tag{1}$$

and insert the resulting λ into

$$\xi_e \approx \frac{N_e}{\lambda \mathcal{N}_p} \tag{2}$$

$$\xi_i \approx \frac{N_i}{\lambda \mathcal{N}_p} \tag{3}$$

 N_{11} is the total number of measured coincidencies and N_e and N_i are the total number of detected electrons and ions, respectively.

4 Results of example.m

In the example two ion types $(\mathcal{N}_{\mu}=2)$ and seven different electron flight times $(\mathcal{N}_{\nu}=2)$ were detected.

The result of the converged Monte Carlo computation for the example data should look like figure 3. Converged time series are shown in figure 1 and 2 for demonstration purposes. Check for correlations by evaluating the autocorrelation function or with techniques like jackknife or binning.

Figure 1: Time series of $q^{(2)}$.

Figure 2: Time series of π . The real values are $\lambda_1 = 0.2$, $\lambda_2 = 0.6$, $\sigma_1 = 0$, $\sigma_2 = 0$, $\xi_i = 0.75$, $\xi_e = 0.75$. The algorithm can only evaluate that σ_j is very small but cant pin it down because in this regime it has no influence.

Figure 3: Reconstructed spectrum $q^{(2)}$.

5 Troubleshooting

5.1 Reconstruction is not converged

If the result is not converged the last entry of the time series of $q^{(1)}$, $q^{(2)}$ and π can be used as start parameter for a new computation. Extend the Monte Carlo chain until the desired results are converged.

5.2 C file in MATLAB

In the downloaded folder are pre-compiled c files (tested with Windows10 and Debian 9.6 - MATLAB version 2017b, 2018b). If the pre-compiled files dont work see https://de.mathworks.com/help/matlab/matlab_external/what-you-need-to-build-mex-files.html, follow the instructions and compile the c file on your computer.

References

- [1] M. Rumetshofer, P. Heim, B. Thaler, W. E. Ernst, M. Koch, and W. von der Linden. Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying bayesian probability theory. *Phys. Rev. A*, 97:062503, Jun 2018.
- [2] P. Heim, M. Rumetshofer, S. Ranftl, B. Thaler, W.E. Ernst, M. Koch, and W. von der Linden. Bayesian analysis of femtosecond pump-probe photoelectron-photoion coincidence spectra with fluctuating laser intensities. *Manuscript in preparation*.
- [3] V. Stert, W. Radloff, C.P. Schulz, and I.V. Hertel. Ultrafast photoelectron spectroscopy: Femtosecond pump-probe coincidence detection of ammonia cluster ions and electrons. *The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics*, 5(1):97–106, 1999.