COMP9418: Advanced Topics in Statistical Machine Learning

Markov Chains and Hidden Markov Models

Instructor: Gustavo Batista

University of New South Wales

Introduction

- This lecture discusses two classes of Graphical Models
 - Markov chains
 - Hidden Markov Models (HMM)
- Both models are instances of Dynamic Bayesian Networks (DBN)
 - They have a repeating structure that grows with time or space
 - Such structure is simple and uses the Markov property
- The Markov property states that future states are independent of past ones given the current state
 - In Markov chains, all states are observable
 - HMM extend the chains by allowing hidden states
- We will discuss specialised inference algorithms for both classes
 - Applications of these graphical models in domains such as robot localisation

Time and Space

- Several problems require reasoning about sequences
 - Such sequences may represent the problem dynamics in time or space
 - Examples of applications are speech recognition and robot localization
- Dynamic Bayesian Networks (DBN) allow to incorporate time or space in our models
 - The two simplest instances of DBNs are Markov chains and Hidden Markov models

Markov Chains

Markov chain is a state machine

- X is a discrete variable and each value is called a state
- Transitions between states are nondeterministic

Parameters

- Prior probabilities $P(X_1)$
- Transition probabilities or dynamics $P(X_t|X_{t-1})$

Stationary assumption

- lacktriangle Transition probabilities are the same for all values of t
- Also known as a time-homogeneous chain

Markov Chains: Weather

States

- \bullet $X = \{sun, rain\}$
- Initial distribution

$$X_1 = \begin{pmatrix} 1 & sun \\ 0 & rain \end{pmatrix}$$

Transition probabilities

X_{t-1}	X_t	$P(X_t X_{t-1})$
sun	sun	.9
sun	rain	.1
rain	sun	.3
rain	rain	.7

Matrix of transition probabilities

Transition or state diagram

Markov Chains: Independencies

- An relevant question is which independencies are implied in this chain
 - We can use d-separation to visually infer the independencies
 - This independence assumption is known as (first order) Markov property
- Independences are also apparent when we look at the chain rule
 - Chain rule if Bayesian networks for this example

$$P(X_1, X_2, X_3, X_4, X_5) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)P(X_5|X_4)$$

• Chain rule in general $P(X_1, X_2, X_3, X_4, X_5) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_3, X_2, X_1)P(X_5|X_4, X_3, X_2, X_1)$

$$X_3 \perp X_1 \mid X_2 \qquad X_4 \perp X_1, X_2 \mid X_3 \qquad X_5 \perp X_1, X_2, X_3 \mid X_4$$

$$X_1 \perp X_3 | X_2$$

$$X_2 \perp X_4 | X_3$$

More generally, $X_{t+1} \perp X_{t-1} | X_t$

Markov Chains: Independencies

In general

$$P(X_1, ..., X_n) = P(X_1) \prod_{i=2}^{n} P(X_t | X_{t-1})$$

$$|X|^n$$
 parameters

$$|X| + (n-1)|X|^2$$
 parameters \longrightarrow

We also assume that $P(X_t|X_{t-1})$ is the same for all t (stationarity)

Probability of a State Sequence

- The probability of a sequence is the product of the transition probabilities
 - This comes directly from the chain rule

$$P(X_1, X_2, X_3, X_4, X_5) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)P(X_5|X_4)$$

$$P(sum, rain, rain, sun, sun) = 1(.1)(.7)(.3)(.9) = .189$$

For example, what is the probability of the sequence: sun, rain, rain, sun, sun?

$$X_1 = \begin{pmatrix} 1 & sun \\ 0 & rain \end{pmatrix}$$

Probability of Staying in a Certain State

- The probability of staying in a certain state for d steps
 - It is the probability of a sequence in this state for d-1 steps then going to a different state

$$S_S^d = \{X_i = s : 1 \le i \le d\}$$

$$P(\mathbf{S}_s^d) = P(s|s)^{d-1}(1 - P(s|s))$$

$$P(S_{rain}^3) = P(rain|rain)^{3-1}(1 - P(rain|rain)) = (.7^2)(1 - .7) = .147$$

For example, what is the probability of three raining days?

$$X_1 = \begin{pmatrix} 1 & sun \\ 0 & rain \end{pmatrix}$$

Expected Time in a State

- The average duration of a sequence is a certain state
 - It is the expected number of time steps in that state

$$\mathbb{E}[S_s] = \sum_{i}^{\infty} P(S_s^i)i$$

$$= \sum_{i}^{\infty} i P(s|s)^{i-1} (1 - P(s|s))$$

$$= \frac{1}{1 - P(s|s)}$$

$$\mathbb{E}(S_{rain}) = \frac{1}{1 - .7} = 3.33$$

For example, what is the expected number of raining days?

$$X_1 = \begin{pmatrix} 1 & sun \\ 0 & rain \end{pmatrix}$$

Mini-Forward Algorithm

- What is P(X) on some day t?
 - We can obtain an answer by simulating the chain

$$P(x_1)$$
 is known

$$P(x_t) = \sum_{x_{t-1}} P(x_t, x_{t-1})$$

$$= \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1})$$

Mini-Forward Algorithm

```
Input: time n, transition probability P(X_t|X_{t-1}), prior probability of states P(X_1) Output: P(X_t) for each state x do p[x,1] \leftarrow P(X_1 = x) for t \leftarrow 2 to n do p[x_t,t] = 0 for each state x_t do p[x_t,t] \leftarrow p[x_t,t] + p[x_{t-1},t-1]P(x_t|x_{t-1}) return p[x,n]
```

$$O(n|X|^2)$$

Grasshopper Example

	- 2	-1	0	1	2
$P(X_1)$	0	0	1	0	0
$P(X_2)$	0	.25	.5	.25	0
$P(X_3)$	$.25^2 = .0625$	2(.5)(25) = .25	$.5^2 + 2(.25)^2 = .375$	2(.5)(25) = .25	$.25^2 = .0625$

$$P(X_t) = P(X_{t-1})T \qquad \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} .75 & .25 & & & \\ .25 & .5 & .25 & & \\ & .25 & .5 & .25 & \\ & .25 & .75 \end{bmatrix} = \begin{bmatrix} 0 & .25 & .5 & .25 & \\ .25 & .75 & .25 & \\ & .25 & .75 \end{bmatrix}$$

Stationary Distributions

Starting with a sunny day

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $\begin{pmatrix} .9 \\ .1 \end{pmatrix}$ $\begin{pmatrix} .84 \\ .16 \end{pmatrix}$ $\begin{pmatrix} .804 \\ .196 \end{pmatrix}$... $\begin{pmatrix} .75 \\ .25 \end{pmatrix}$

Starting with a rainy day

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 $\begin{pmatrix} .3 \\ .7 \end{pmatrix}$ $\begin{pmatrix} .48 \\ .52 \end{pmatrix}$ $\begin{pmatrix} .588 \\ .412 \end{pmatrix}$... $\begin{pmatrix} .75 \\ .25 \end{pmatrix}$

Starting with an unknown day

$$\binom{p}{1-p}$$
 ... $\binom{.75}{.25}$

Stationary Distributions

For most chains

- Influence of the initial distribution gets less and less over time
- The distribution we end up in is independent of the initial distribution

Stationary distribution

- The *stationary distribution* π of the chain is the distribution we obtain if the chain converges
- The stationary distribution satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$
$$\pi(X) = \sum_{x} P(X|x)\pi(x)$$

$$\pi(X) = \sum_{x} P(X|x)\pi(x)$$

$$\pi = \pi T$$

Stationary Distributions

• Question: What is $P(X_{\infty})$?

$$\pi(sun) = P(sun|sun)\pi(sun) + P(sun|rain)\pi(rain)$$

$$\pi(rain) = P(rain|sun)\pi(sun) + P(rain|rain)\pi(rain)$$

$$\pi(sun) = 0.9 \pi(sun) + 0.3 \pi(rain)$$

 $\pi(rain) = 0.1 \pi(sun) + 0.7 \pi(rain)$

$$\pi(sun) = 3\pi(rain)$$

 $\pi(rain) = 1/3\pi(sun)$

$$\pi(sun) + \pi(rain) = 1$$

$$\pi(sun) = 3/4$$

$$\pi(rain) = 1/4$$

Stationary Distributions: Grasshopper

What is the stationary distribution?

$$T = \begin{bmatrix} .75 & .25 \\ .25 & .5 & .25 \\ & .25 & .5 & .25 \\ & & .25 & .5 & .25 \\ & & .25 & .75 \end{bmatrix}$$

Irreducible Markov Chains

- A Markov chain is *irreducible* if every state x' is reachable from every other state x
 - That is, for every pair of states x and x', there is some time t such that the $P(X_t = x' | X_1 = x) > 0$
 - Also known as regular or ergodic chain
- In this case, the states of the Markov chain are said to be recurrent
 - Each state is guaranteed to be visited an infinite number of times when we simulate the chain

A reducible Markov chain

Stationary Distribution

- Every (finite state) Markov chain has at least one stationary distribution
 - Yet an irreducible Markov chain is guaranteed to have a unique stationary distribution

 To guarantee convergence, we need an additional property: Aperiodicity

Aperiodic Markov Chains

- A Markov chain is aperiodic if it is possible to return to any state at any time
 - There exists an t such that for all state x and all $t' \ge t$, $P(X_{t'} = x \mid X_1 = x) > 0$
- An irreducible and aperiodic Markov chain converges to a unique stationary distribution
 - Irreducible: we can go from any state to any state
 - Aperiodic: avoids chains that alternates forever between states without ever settling in a stationary distribution

An irreducible but periodic Markov chain

Markov chains Convergence

- Although an irreducible and aperiodic Markov chain converges to a single stationary distribution, the convergence can be slow
 - In this example, the stationary distribution is close to (0.5, 0.5)
 - For a small ϵ it will take a very long time to reach the stationary distribution
 - We stay in the same state with high probability and rarely transition to another state
 - The average of these states will converge to (0.5, 0.5), but the convergence will be very slow

Applications of Markov Chains

Markov chains have several well-know applications

- Markov chain Monte Carlo (MCMC) is a powerful approximate inference algorithm used in statistical software such as Stan
- MCs are part of the (LZMA) Lempel-Ziv-Markov compression algorithm used in 7zip
- PageRank algorithm used by Google 1.0 is a direct application of MCs

PageRank

- Model the web as a state graph: pages are states and hyperlinks are transitions
- Each transition from state i has a probability $\frac{\alpha}{k_i}$, where α is a constant parameter and k_i is the outgoing degree of node i
- Compute a stationary distribution. But it is not unique. Why?
- Augment the graph with phantom transitions of weight $\frac{1-\alpha}{N}$, where N is the number of nodes in the graph

Applications of Markov Chains

Markov chains have several well-know applications

- Markov chain Monte Carlo (MCMC) is a powerful approximate inference algorithm used in statistical software such as Stan
- MCs are part of the (LZMA) Lempel-Ziv-Markov compression algorithm used in 7zip
- PageRank algorithm used by Google 1.0 is a direct application of MCs

PageRank

- Model the web as a state graph: pages are states and hyperlinks are transitions
- Each transition from state i has a probability $\frac{\alpha}{k_i}$, where α is a constant parameter and k_i is the outgoing degree of node i
- Compute a stationary distribution. But it is not unique. Why?
- Augment the graph with phantom transitions of weight $\frac{1-\alpha}{N}$, where N is the number of nodes in the graph

Hidden Markov Models (HMM)

- Hidden Markov Models (HMM) are Markov chains where the states are not directly observable
 - In the weather example, the weather may not be directly observable
 - Instead, we use sensors, such as temperature, air pressure, humidity, wind speed, etc.

- HMM has two components
 - Underlying Markov chain over states X
 - Observable outputs (effects of the states) at each time step
 - These outputs are often called *emissions*

HMM Weather Example

HMM parameters

- Initial distribution $P(X_1)$
- Transition probabilities $P(X_t|X_{t-1})$
- Emission probabilities $P(E_t|X_t)$

X_1	$P(X_1)$	_	X_{t-1}	X_t	$P(X_t X_{t-1})$
sun	.5		sun	sun	.7
rain	.5		sun	rain	.3
			rain	sun	.3
			rain	rain	.7

X_t	E_{t}	$P(E_t X_t)$
sun	umb	.2
sun	\overline{umb}	.8
rain	umb	.9
rain	\overline{umb}	.1

HMM: Independencies

The chain rule of Bayesian networks for HMMs

$$P(X_1, E_1, \dots, X_n, E_n) = P(X_1)P(E_1|X_1) \prod_{t=1}^n P(X_t|X_{t-1})P(E_t|X_t)$$

- Independences are also apparent when we look at the chain rule
 - Chain rule for Bayesian networks for this example

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$$

Chain rule in general

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1, E_1)P(E_2|X_2, X_1, E_1)P(X_3|X_2, X_1, E_2, E_1)P(E_3|X_3, X_2, X_1, E_2, E_1)$$

$$X_2 \perp E_1 | X_1$$
 $X_3 \perp X_1, E_1, E_2 | X_2$ $E_2 \perp X_1, E_1 | X_2$ $E_3 \perp X_1, X_2, E_1, E_2 | X_3$

HMM: Independencies

- In general, HMM have the following independency assumptions
 - A state is independent of all past states and all past evidence given the previous state (Markov property)

$$X_t \perp X_1, \dots, X_{t-2}, E_1, \dots, E_{t-2} | X_{t-1} |$$

 Evidence is independent of all past evidence and all past states given the current state (independence of observations)

$$E_t \perp X_1, \dots, X_{t-1}, E_1, \dots, E_{t-1} | X_t$$

 Transition and emission probabilities are the same for all values of t (stationary process)

HMM: Inference

- We start with a first task of tracking the distribution $P(X_t)$ over time
 - This task is known as filtering or monitoring
 - We use $B(X_t) = P(X_t|e_1, ..., e_t)$ to denote the *belief of state*
 - We start with $B(X_1)$, usually using a uniform distribution
 - Update $B(X_t)$ as time passes and we get new observations
- The inference has two main steps
 - Passage of time
 - Observation

Passage of Time

• Suppose we know the current state of belief $B(X_t)$

$$B(X_t) = P(X_t|e_{1:t})$$

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) B(x_t)$$

Observation

- Given we updated the belief with passage of time
 - We know $P(X_{t+1}|e_{1:t})$ and we need to update it to $B(X_{t+1}) = P(X_{t+1}|e_{1:t+1})$

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{t+1}, e_{1:t})$$

$$= P(X_{t+1}, e_{t+1}|e_{1:t}) / P(e_{t+1}|e_{1:t})$$

$$\propto P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}, X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$$

$$B(X_{t+1}) \propto P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$$

We must renormalise the results by $\sum B(X_{t+1})$

HMM Weather Example

X_1	$P(X_1)$
sun	.5
rain	.5

X_{t-1}	X_t	$P(X_t X_{t-1})$
sun	sun	.7
sun	rain	.3
rain	sun	.3
rain	rain	.7

X_t	E_t	$P(E_t X_t)$
sun	umb	.2
sun	\overline{umb}	.8
rain	umb	.9
rain	\overline{umb}	.1

Forward Algorithm

 Suppose we have a sequence of evidence observations and we want to know the state belief at the end of the sequence

$$B(X_t) = P(X_t | e_{1:t})$$

$$\begin{split} P(X_{t}|e_{1:t}) &\propto P(X_{t},e_{1:t}) \\ &= \sum_{x_{t-1}} P(X_{t},x_{t-1},e_{1:t}) \\ &= \sum_{x_{t-1}} P(X_{t},x_{t-1},e_{t},e_{1:t-1}) \\ &= \sum_{x_{t-1}} P(x_{t-1}) P(X_{t}|x_{t-1}) P(e_{t}|x_{t-1},X_{t}) P(e_{1:t-1}|e_{t},x_{t-1},X_{t}) \\ &= \sum_{x_{t-1}} P(x_{t-1}) P(X_{t}|X_{t-1}) P(e_{t}|X_{t}) P(e_{1:t-1}|x_{t-1}) \\ &= \sum_{x_{t-1}} P(X_{t}|x_{t-1}) P(e_{t}|X_{t}) P(e_{1:t-1},x_{t-1}) \\ &= P(e_{t}|X_{t}) \sum_{x_{t-1}} P(X_{t}|x_{t-1}) P(x_{t-1},e_{1:t-1}) \end{split}$$

You can renormalise every step, but this algorithm often renormalised only the final one

Forward Algorithm

```
Input: time n, transition probability T, emission probability E, prior probability of
states P(X_1), sequence of observations \{e_2, \dots, e_t\}
Output: B(X_t)
for each state x do
    p[x,1] \leftarrow P(X_1 = x)
for t \leftarrow 2 to n do
     for each state x_t do
          p[x_t, t] = 0
           for each state x_{t-1} do
                 p[x_t, t] \leftarrow p[x_t, t] + p[x_{t-1}, t-1]T(x_t|x_{t-1})
           p[x_t, t] \leftarrow p[x_t, t] E(e_t | x_t)
return p[x, n] for all states x
                                     O(n|X|^2)
```

Example: Robot Localization

Example from Michael Pfeiffer

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

Slide from Berkeley Al course

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Example: Robot Localization

Prob 0 1

t=2

Slide from Berkeley Al course

Example: Robot Localization

Prob 0 1

t=3

Slide from Berkeley AI course

Example: Robot Localization

Slide from Berkeley Al course

Example: Robot Localization

Prob

t=5

Slide from Berkeley Al course

Most Probable Explanation (MPE)

- The forward algorithm tracks the probability of the states
 - These probabilities are updates with as time passes and we observe evidence
- A different task is to provide the most likely explanation
 - Considering all possible state combinations, which one has the highest probability considering the evidence
 - Therefore, we want to compute $argmax_{x_{1:t}}P(x_{1:t}|e_{1:t})$

State Trellis

- A state trellis is a graph that illustrates the state transition over time
 - Each arc represents a time passage/evidence observation with weight

$$P(x_t|x_{t-1})P(e_t|x_t)$$

- A path is a sequence of states
 - The product of weights on a path is the sequence probability according to the evidence
 - The forward algorithm computes sums of paths probabilities that end in a same state, such as $X_n = sun$
 - We will see now the Viterbi algorithm that computes the path with highest probability

Forward and Viterbi Algorithms

The forward algorithm computes the sum of the path probabilities that lead to the same final state

$$s[x_t] = P(x_t|e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})s[x_{t-1}]$$

 The Viterbi algorithm computes the maximum of the path probabilities that lead to the same final state

$$m[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t | e_{1:t})$$

$$= P(e_t | X_t) \max_{x_{t-1}} P(x_t | x_{t-1}) m[x_{t-1}]$$

• Consider we have two unfair coins, c_1 and c_2

- Someone flips the coins sequentially, but we do not know which one. We only observe the outcomes heads or tails
- But we know that c_1 has a higher probability of *heads* and c_2 of *tails*
- Also, the person has a preference to keep the same coin and he/she starts with a coin chosen randomly with equal probabilities

$P(X_t X_t)$	X_t	X_{t-1}	$P(X_1)$	X_1
.7	c_1		.5	c_1
.3	c_2	c_1	.5	c_2
.3	c_1	c_2		
_	_	_		

X_t	E_{t}	$P(E_t X_t)$
c_1	h	.8
c_1	t	.2
c_2	h	.2
c_2	t	.8

$$egin{array}{c|ccccc} X_1 & P(X_1) & X_t & E_t & P(E_t|X_t) \\ \hline c_1 & .5 & c_1 & h & .8 \\ c_2 & .5 & c_1 & t & .2 \\ & & c_2 & h & .2 \\ & & c_2 & t & .8 \\ \hline \end{array}$$

$$m[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t | e_{1:t})$$

$$= P(e_t | X_t) \max_{x_{t-1}} P(x_t | x_{t-1}) m[x_{t-1}]$$

```
Input: time n, transition probability T, emission probability E, prior probability of
states P(X_1), sequence of observations \{e_2, \dots, e_t\}
Output: max P(x_{1:t-1}, x_t | e_{2:t})
for each state x do
     m[x,1] \leftarrow P(X_1 = x)
for t \leftarrow 2 to n do
     for each state x_t do
           m[x_t, t] = 0
           for each state x_{t-1} do
                 if m[x_{t-1}, t-1]T(x_t|x_{t-1}) > m[x_t, t]
                       m[x_t, t] \leftarrow m[x_{t-1}, t-1]T(x_t|x_{t-1})
           m[x_t, t] \leftarrow m[x_t, t] E(e_t | x_t)
return p[x, n] for all states x
```

 $O(n|X|^2)$

- The Viterbi algorithm of the previous slide provides the probability of the most likely sequence
 - However, often we are more interested in the sequence instead of its probability
- There are to common solutions
 - Keep an additional structure pointing to the parent of each node
 - Backtrack the computation from the last node

X_1	$P(X_1)$	X_t	E_{t}	$P(E_t X_t)$
c_1	.5	c_1	h	.8
c_2	.5	c_1	t	.2
	-	c_2	h	.2
		C_2	t	.8

$$m[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t | e_{1:t})$$

$$= P(e_t | X_t) \max_{x_{t-1}} P(x_t | x_{t-1}) m[x_{t-1}]$$

Viterbi Algorithm: Backtracking Computation

Repeat

- 1. Divide by the probability of evidence
- 2. For each state x_{t-1} divide by $P(x_t|x_{t-1})$
- 3. See which value of x_{t-1} matches the result

X_1	$P(X_1)$	X_t	E_t	$P(E_t X_t)$
c_1	.5	c_1	h	.8
c_2	.5	c_1	t	.2
		c_2	h	.2
		c_2	t	.8

$$m[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t | e_{1:t})$$

$$= P(e_t | X_t) \max_{x_{t-1}} P(x_t | x_{t-1}) m[x_{t-1}]$$

Viterbi Algorithm: Backtracking Computation

Repeat

- 1. Divide by the probability of evidence
- 2. For each state x_{t-1} divide by $P(x_t|x_{t-1})$
- 3. See which value of x_{t-1} matches the result

$$\frac{.02107}{.8} = 0.0263375$$

$$x_4 = c_1 : \frac{0.0263375}{.3} \approx 0.08779$$

$$x_4 = c_2 : \frac{0.0263375}{7} \approx 0.03763$$

X_1	$P(X_1)$	X_t	E_{t}	$P(E_t X_t)$
c_1	. 5	c_1	h	.8
c_2	.5	c_1	t	.2
	•	c_2	h	.2
		c_2	t	.8

$$m[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t | e_{1:t})$$

$$= P(e_t | X_t) \max_{x_{t-1}} P(x_t | x_{t-1}) m[x_{t-1}]$$

$$x_4 = c_2$$
: 0.03763

Viterbi Algorithm: Backtracking Computation

Viterbi Algorithm: Vanishing Probabilities

- Notice the probabilities decrease as we observe more evidence
 - It is intuitive since the number of paths grows exponentially with the sequence size
 - In this example, the probabilities are around 10^{-4} with just 6 steps
 - Long sequences (such as 100 steps) will cause an underflow and the probabilities will become zero
 - We can fix that using log probabilities, similarly to the Naïve Bayes classifier
 - This approach also replaces multiplications by sums that are more efficiently handled by most computers

Viterbi Algorithm: Log Probabilities

```
Input: time n, transition probability T, emission probability E, prior
probability of states P(X_1), sequence of observations \{e_2, \dots, e_t\}
Output: max \log P(x_{1:t-1}, x_t | e_{1:t})
for each state x do
     m[x,1] \leftarrow \log P(X_1 = x)
for t \leftarrow 2 to n do
     for each state x_t do
           m[x_t, t] = -\infty
           for each state x_{t-1} do
                 if m[x_{t-1}, t-1] + \log T(x_t|x_{t-1}) > m[x_t, t]
                       m[x_t, t] \leftarrow m[x_{t-1}, t-1] + \log T(x_t | x_{t-1})
            m[x_t, t] \leftarrow m[x_t, t] + \log E(e_t|x_t)
return p[x, n] for all states x
```


$$m[x_t] = \log \max_{x_{1:t-1}} P(x_{1:t-1}, x_t | e_{1:t-1})$$

$$= \log P(e_t | X_t) + \max_{x_{t-1}} \log P(x_t | x_{t-1}) + m[x_{t-1}]$$

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. *X* is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

	•
• •	

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, $N \ll |X|$
 - Storing map from X to counts would defeat the point

- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles
(1,3)
(1,2)
(1,3)
(2,3)
(1,3)
(2,3)
(2,1)
(1,3)
(1,3)
(1,2)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:

(2,3) (1,1) (1,2)

(1,2)

(2,2)

Particle Filtering: Observe

- Slightly trickier:
 - Don't sample observation, fix it
 - Downweigh samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighed (in fact they now sum to (N times) an approximation of P(e))

Particles:	
(2,3)	
(1,2)	
(2,3)	
(3,3)	
(1,3)	
(2,3)	
(1,1)	
(1,2)	
(1,3)	
(2,2)	

Particles: (2,3) w=.9 (1,2) w=.2 (2,3) w=.9 (3,3) w=.4 (1,3) w=.4

- (2,3) w=.9 (1,1) w=.1
- (1,3) w=.4
- (1,2) w=.2 (2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles: (2,3) w=.9 (1,2) w=.2 (2,3) w=.9 (3,3) w=.4 (1,3) w=.4 (2,3) w=.9 (1,1) w=.1 (1,2) w=.2 (1,3) w=.4

(2,2) w=.4

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Conclusion

- Markov chains and Hidden Markov models are simple examples of Dynamic Bayesian networks
 - DBNs are networks that allow us to model changes in time or space
 - Changes in time are specified using transition probabilities
- Markov chains are sequence models
 - It tracks the probability distribution over a series of transitions
 - For many sequences, the probability distribution converges to a stationary distribution
 - The stationary distribution has several applications such as the MCMC algorithms used for approximate inference
- Hidden Markov models are Markov chains with hidden states
 - Those states are never directly observed, but we can make indirect inference through emissions
 - These models are used in several applications such as language and signal processing and robot localisation