

ESCUELA SUPERIOR DE COMERCIO MANUEL BELGRANO NIVEL PREGRADO

ANALISTA UNIVERSITARIO DE SISTEMAS INFORMÁTICOS

APLICACIONES CUÁNTICAS PARA LA GESTIÓN DE LAS ORGANIZACIONES II

RESOLUCIÓN de EJERCICIOS PRÁCTICOS UNIDAD III:

PROCESO de DECISIÓN y APOYO CUANTITATIVO

2021 - Cra. Carola Garbino

PRÁCTICOS 7 Y 8

- 7) Un supermercado pide semanalmente yogures fortificados de cierta marca. El responsable de compras ha observado que las posibles demandas son 100, 200 o 300 unidades. El producto cuesta \$ 8,00 por unidad y se vende a \$ 12,50 cada uno. Los que sobran al final de la semana se pueden devolver, obteniéndose un reintegro de \$ 6,00 por unidad. Si durante la semana le faltan productos, puede solicitarlos al proveedor en carácter de pedido urgente con un recargo del 10%.
 - a) ¿Cuál será la decisión óptima según el criterio de Hurwicz? Considere un coeficiente de optimismo de 0,70.
 - b) ¿Cuál será la decisión óptima según el criterio de Wald?
 - c) ¿Cuál será la decisión óptima según el criterio de Laplace?
 - d) ¿Cuál será la decisión óptima según el criterio de Savage?

a)

y_j	100	200	300	Hurwicz (α = 0,70)
100	450	820	1.190	$0.70 \times 1.190 + (1 - 0.70) \times 450 = 968$
200	250	900	1.270	$0.70 \times 1.270 + (1 - 0.70) \times 250 = 964$
300	50	700	1.350	$0.70 \times 1.350 + (1 - 0.70) \times 50 = 960$

La decisión óptima según el criterio de Hurwicz es x₁, es decir, pedir 100 yogures por semana

b)

y_j	100	200	300	Wald
100	450	820	1.190	<mark>450</mark>
200	250	900	1.270	250
300	50	700	1.350	50

La decisión óptima según el criterio de Wald es x1, es decir, pedir 100 yogures por semana

c)

y _i	100	200	300	Laplace (p=1/3)
100	450	820	1.190	450 x 1/3 + 820 x 1/3 + 1.190 x 1/3 = 820 0 (450 + 820 + 1.190) x 1/3 = 820
200	250	900	1.270	(250 + 900 + 1.270) x 1/3 = 806.67
300	50	700	1.350	(50 + 700 + 1.350) x 1/3 = 700
p _j	1/3	1/3	1/3	

La decisión óptima según el criterio de Laplace es x₁, es decir, pedir 100 yogures por semana

d)

y _j	100	200	300
100	450	820	1.190
200	250	900	1.270
300	50	700	1.350

Matriz R

y_j	100	200	300	Máx r(x _i ,y _j)
100	0	80	160	<mark>160</mark>
200	200	0	80	200
300	400	200	0	400

La decisión óptima según el criterio de Savage es x1, es decir, pedir 100 yogures por semana

8) Un inversionista que posee un capital que asciende a \$400.000 tiene tres alternativas de inversión: A, B y C. La alternativa "A" implica invertir el 100% del capital y otorga un Aplicaciones Cuánticas para la Gestión de las Organizaciones | Cra. Carola Garbino | 3° año AUSI 2021 | Página Nº 3

rendimiento del 10%, la alternativa "B" significa invertir el 40% del capital y asegura un rendimiento del 11%, la alternativa "C" conlleva invertir el 30% del capital para recibir un 17% de rendimiento.

En caso que exista un saldo del capital sin invertir el dinero se mantiene en el banco, el que proporciona un interés que se fija al finalizar el período de inmovilización según la situación económica que se presente: hiperinflación, recesión o prosperidad económica. Las tasas a abonar en cada caso serán 10%, 7% y 5% respectivamente.

¿Qué alternativa deberá elegir el inversionista? Considere que utiliza:

- a) El criterio de Wald
- b) El criterio de Laplace
- c) El criterio de optimismo relativo, fijando un coeficiente de optimismo de 0,65
- d) El criterio de mínimo arrepentimiento
- e) Una probabilidad del 20% de que haya hiperinflación y del 50% de que haya prosperidad económica.

y _i	hiperinflación (i = 0,10)	recesión (i = 0,07)	prosperidad económica (i = 0,05)
A (i = 0,10)	40.000	40.000	40.000
B (i = 0,11)	41.600	34.400	29.600
C (i = 0,17)	48.400	40.000	34.400

Rendimientos

```
c_{11} = 400.000 \times 0,10 = 40.000
```

$$c_{12} = 400.000 \times 0.10 = 40.000$$

$$c_{13} = 400.000 \times 0.10 = 40.000$$

$$c_{21} = (400.000 \times 0.40) \times 0.11 + (400.000 \times 0.60) \times 0.10 = 41.600$$

$$c_{22} = (400.000 \times 0,40) \times 0,11 + (400.000 \times 0,60) \times 0,07 = 34.400$$

$$c_{23} = (400.000 \times 0,40) \times 0,11 + (400.000 \times 0,60) \times 0,05 = 29.600$$

$$c_{31} = (400.000 \times 0.30) \times 0.17 + (400.000 \times 0.70) \times 0.10 = 48.400$$

$$c_{32} = (400.000 \times 0.30) \times 0.17 + (400.000 \times 0.70) \times 0.07 = 40.000$$

$$c_{33} = (400.000 \times 0.30) \times 0.17 + (400.000 \times 0.70) \times 0.05 = 34.400$$

a)

1	y _j	hiperinflación (i = 0,10)	recesión (i = 0,07)	prosperidad económica (i = 0,05)	Wald	
	$A_{i} \frac{A_{i}}{(i = 0, 10)}$	Cuánticas para la Gesti 40.000	ón de las Organiza 40.000	aciones I Cra. Carola 40.000	a Garbino L3° año . <mark>40.000</mark>	AUSI 2021 Página № 4
	B (i = 0,11)	41.600	34.400	29.600	29.600	
	C (i = 0.17)	48.400	40.000	34.400	34.400	

Si el inversionista se basa en el criterio de Wald, elegirá la opción x₁, es decir, la inversión A.

b)

X_i Y_j	hiperinflación (i = 0,10)	recesión (i = 0,07)	prosperidad económica (i = 0,05)	Laplace (p = 1/3)
A (i = 0,10)	40.000	40.000	40.000	(40.000 + 40.000 + 40.000) 1/3 = 40.000
B (i = 0,11)	41.600	34.400	29.600	(41.600 + 34.400 + 29.600) 1/3 = 35.200
$\frac{C}{(i = 0,17)}$	48.400	40.000	34.400	(48.400 + 40.000 + 34.400) 1/3 = <mark>40.933,33</mark>
p_{j}	1/3	1/3	1/3	

Si el inversionista se basa en el criterio de Laplace, elegirá la opción x₃, es decir, la inversión C.

c)

y _i	hiperinflación (i = 0,10)	recesión (i = 0,07)	prosperidad económica (i = 0,05)	Hurwicz (α = 0,65)
A (i = 0,10)	40.000	40.000	40.000	$0.65 \times 40.000 + (1 - 0.65) \times 40.000 = 40.000$
B (i = 0,11)	41.600	34.400	29.600	$0.65 \times 41.600 + (1 - 0.65) \times 29.600 = 37.400$
$\frac{C}{(i = 0,17)}$	48.400	40.000	34.400	$0.65 \times 48.400 + (1 - 0.65) \times 34.400 = 43.500$

Si el inversionista se basa en el criterio de Hurwicz, <mark>elegirá la opción x₃, es decir, la inversión C.</mark>

d)

,	y _j	hiperinflación	recesión	prosperidad	
	Xi	(i = 0,10)	(i = 0.07)	económica	
				(i = 0.05)	
	A = 0.10	40.000	40.000	40.000	
	Applicaciones ($i = 0.11$)	cuánticas para la Gesti 41.600	ón de las Organiza 34.400	aciones Cra. Carol 29.600	a Garbino 3° año AUSI 2021 Página Nº 5
	C (i = 0,17)	48.400	40.000	34.400	

Matriz R

X _i y _j	hiperinflación (i = 0,10)	recesión (i = 0,07)	prosperidad económica (i = 0,05)	Máx r(x _i ,y _j)
A (i = 0,10)	8.400	0	0	8.400
B (i = 0,11)	6.800	5.600	10.400	10.400
$\frac{C}{(i = 0,17)}$	0	0	5.600	<mark>5.600</mark>

Si el inversionista se basa en el criterio del mínimo arrepentimiento, elegirá la opción x_3 , es decir, la inversión C.

e)

y _j	hiperinflación (i = 0,10)	recesión (i = 0,07)	prosperidad económica (i = 0,05)	∑ c (x _i , y _j) P _j
$\frac{A}{(i = 0,10)}$	40.000	40.000	40.000	40.000 x 0,20 + 40.000 x 0,30 + 40.000 x 0,50 = 40.000
B (i = 0,11)	41.600	34.400	29.600	41.600 x 0,20 + 34.400 x 0,30 + 29.600 x 0,50 = 33.440
C (i = 0,17)	48.400	40.000	34.400	48.400 x 0,20 + 40.000 x 0,30 + 34.400 x 0,50 = 38.880
p_{j}	0,20	0,30	0,50	

Si el inversionista puede asociar la probabilidad de presentación indicada a los estados de la naturaleza (universo aleatorio), elegirá la opción x_1 , es decir, la inversión A.