Tree of Nets

1 Modello NN1

Divido il dataset in S parti per poi usare S reti neurali (64 neuroni di input, 1 neurone di output).

Il modello utilizzato ha la seguente impostazione:

- learning rate = 0.03
- dimensione minibatch = 32
- nessuna regolarizzazione
- Funzione attivazione neurone di output = Leaky-ReLU ($\alpha = 0.05$)
- Ottimizzatore = Nesterov Momentum ($\mu = 0.9$)
- Inizializ. connessioni = normale * $\sqrt{\frac{2}{NeuroniInput(64)}}$
- Inizializ. bias = 0.001
- Criterio di stopping = non viene riscontrata una diminuzione dell'errore quadratico medio con patience=10, massimo 20000 epoche

2 Risultati

Modelli:

- NN1K = Addestramento con Keras: 64 neuroni input, 1 neurone output
- NN2K = Addestramento con Keras: 64 neuroni input, strato hidden da 256 neuroni, 1 neurone output
- NN3K = Addestramento con Keras: 64 neuroni input, 2 strati hidden da 256 neuroni, 1 neurone output

Tabelle:

- Split = numero di sottoreti utilizzate
- Errori max = errore di ogni sottorete
- $\bullet \ \epsilon =$ errore massimo del'albero di sottoreti (maxErroriMax)
- SpaceOVH = spazio in KB rispetto al dataset

 ${\rm NN1}$ file3

	1,1,1 1110 0		
Split	Errori max	ϵ	SpaceOVH
NN1K	-	9	8.93×10^{-2}
NN2K	=	4	1.29×10^{1}
NN3K	-	4	6.31×10^{1}
2	6, 7	7	9.92×10^{-2}
3	4, 7, 7	7	1.48×10^{-1}
4	4, 6, 8, 5	8	2.48×10^{-1}
5	3, 6, 3, 5, 6	6	2.48×10^{-1}
6	4, 4, 3, 4, 5, 4	5	2.98×10^{-1}
7	4, 4, 5, 3, 5, 6, 3	6	3.47×10^{-1}
8	3, 4, 6, 3, 2, 3, 3, 3	6	3.97×10^{-1}
16	3, 2, 2, 2, 2, 2, 2, 1, 2	6	7.93×10^{-1}

NN1 file 7

Split	Errori max	ϵ	SpaceOVH
NN1K	-	53	3.09×10^{-3}
NN2K	-	33	8.06×10^{-1}
NN3K	-	40	3.94
2	40, 23	40	6.2×10^{-3}
3	29, 36, 22	36	9.3×10^{-3}
4	23, 41, 31, 22	41	1.24×10^{-2}
5	22, 26, 21, 20, 21	26	1.55×10^{-2}
6	20, 29, 32, 16, 19, 17	32	1.86×10^{-2}
7	19, 21, 31, 16, 14, 23, 18	31	2.17×10^{-2}
8	18, 25, 30, 26, 16, 35, 22, 16	35	2.48×10^{-2}
16	16, 18, 8, 12, 9, 15, 21, 12, 12	21	4.96×10^{-2}

NN1 file 10

Split	Errori max	ϵ	SpaceOVH
NN1K	-	905	2.42×10^{-5}
NN2K	-	1031	6.29×10^{-3}
NN3K	-	1270	3.08×10^{-2}
2	653, 495	653	5×10^{-5}
3	546, 382, 407	546	7×10^{-5}
4	513, 531, 308, 435	531	1×10^{-4}
5	544, 242, 421, 293, 374	544	1.2×10^{-4}
6	597, 190, 260, 219, 453, 364	597	1.5×10^{-4}
7	540, 202, 226, 400, 216, 342, 378	540	1.7×10^{-4}
8	514, 257, 280, 249, 240, 259, 280, 355	514	1.9×10^{-4}
16	188, 295, 202, 284, 145, 215, 232, 211, 209	339	3.9×10^{-4}