On the Job Search

This is a variation on the https://github.com/jlperla/ECON407_2018/blob/master/notebooks/mccall model.ipynb.

A consumer solves an almost identical problem to that in https://lectures.quantecon.org/jl/mccall_model.html#stochastic-offers

- While unemployed, she gets c unemployment benefits and has a probability γ of getting a new wage offer for next period. As in the previous model, she has the option to accept the offer or to remain unemployed (i.e. choose $\max\{U, V(w')\}$ where w' is the wage offer).
- While employed at wage w, she has a probability α of losing her job
- The new addition: while employed, she has a probability δ of getting a new job offer from the same distribution as that of the unemployed consumers. She has the option of accepting the new offer or keeping her old job (i.e. choose $\max\{V(w), V(w')\}$) where w' is the new draw.
- Otherwise, everything about the setup is the same as the original, including the wage offer distribution, parameter values, etc.
- 1. What is the new Bellman Equation?
- 2. Implement the Bellman equation in the code
- 3. Let $\delta = 0$, and draw a graph of V(w) and U in the same graph (as in the sample code).²
- 4. Start at a small delta (e.g. $\delta = 0.01$) and then increase δ until it is visibly difference between the δ and the $\delta = 0$ cases
- 5. Do the same plots as https://github.com/jlperla/ECON407_2018/blob/master/notebooks/mccall_model.ipynb including a graph of the reservation wage.
- 6. Do an additional plot of the reservation wage as a function of δ

¹Note that the probability to keep a job with wage w without any arrivals of new draws or separations is is now $1 - \alpha - \delta$.

²A good check on your implementation is that this is identical to the previous graph