Analysis of Algorithms

Analysis of Algorithms: Issues

- Correctness
- Running time ("time complexity")
- Memory requirements ("space complexity")
- Power
- I/O utilization
- Ease of implementation
- •

Correctness

An algorithm is correct if, for every input size,

it halts

with the correct output.

Analysis of Algorithms

- <u>Primitive Operations</u>: Low-level computations independent from the programming language can be identified in pseudo-code
- Examples:
 - calling a method and returning from a method
 - arithmetic operations (e.g. addition)
 - comparing two numbers, etc.
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

Input size and basic operation examples

Problem	Input size measure	Basic operation	
Searching for key in a list of <i>n</i> items	Number of items in the list, i.e., <i>n</i>	Key comparison	
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers	
Checking primality of a given integer <i>n</i>	size of $n =$ number of digits (in binary representation)	Division	
Typical graph problem	#vertices and/or #edges	Visiting a vertex or traversing an edge	

Why Running Time?

Definition of the Fibonacci function

$$F(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F(n-1) + F(n-2) & n > 1 \end{cases}$$

Recursive implementation

```
function fib1(n)
if n = 0: return 0
if n = 1: return 1
return fib1(n-1) + fib1(n-2)
```

Time complexity?

$$T(n) = \begin{cases} n \le \\ n > \end{cases}$$

The proliferation of recursive calls in fib1

$\underline{\text{function fib1}}(n)$

if n = 0: return 0

if n=1: return 1

return fib1(n-1) + fib1(n-2)

$$T(n) = \begin{cases} 2 & \text{for } n \le 1 \\ T(n-1) + T(n-2) + O(1) & \text{for } n > 1 \end{cases}$$

$$T(n) \ge \mathsf{F}_{\mathsf{n}} \approx 2^{0.694n}$$

```
\frac{\text{function fib2}(n)}{\text{if } n = 0 \text{ return } 0}
\text{create an array f}[0...n]
\text{f}[0] = 0, \text{ f}[1] = 1
\text{for } i = 2...n:
\text{f}[i] = \text{f}[i-1] + \text{f}[i-2]
\text{return f}[n]
```

T(n) is linear in n!!!

Average Case vs. Worst Case

 An algorithm may run faster on certain data sets than on others (e.g., for the sorting problem, the input is partially sorted)

• Finding the average case can be very difficult, so typically algorithms are measured by the worst case time complexity

Average Case vs. Worst Case

• In time-critical application domains (e.g., air traffic control, surgery, IP lookup, ...) knowing the worst case time complexity is crucial

Worst Case Time-Complexity

- <u>Definition</u>: The worst case time-complexity of an algorithm *A* is the *asymptotic* running time of *A* as a *function of the size of the input,* when the input is the one that makes the algorithm *slower* in the limit
- How do we measure the running time of an algorithm?

Example

```
def iMax(A):
    currentMax = A[0]
    for i in range(len(A)):
        if currentMax < A[i]:
            currentMax = A[i]
    return currentMax</pre>
```

Max iterative

Max recursive

```
def rMax(A, n):
    if n == 1:
        return A[0]
    return max(rMax(A(1:n-1),A[n])
```

Time-complexity is O(n)

Asymptotic notation

Section 0.3 of the textbook

The "Big-Oh" Notation

• Definition: Given functions f(n) and g(n), we say that f(n) is O(g(n))

if and only if

there are positive constants c and n_0 such that $f(n) \le c g(n)$ for $n \ge n_0$

The "Big-Oh" Notation

Figure 1.3: Illustrating the "big-Oh" notation. The function f(n) is O(g(n)), for $f(n) \le c \cdot g(n)$ when $n \ge n_0$.

Asymptotic Notation Big - O

Theorem

Suppose that
$$f_1(x) = O(g_1(x))$$
 and $f_2(x) = O(g_2(x))$. Then

(a)
$$f_1(x) + f_2(x) = O(g_1(x) + g_2(x))$$

= $O(\max(g_1(x), g_2(x)))$

(b)
$$f_1(x)f_2(x) = O(g_1(x)g_2(x))$$

Example

$$f(n) = 2n+6$$
$$g(n) = n$$

For functions f(n) and g(n) (to the right) there are positive constants c and n_0 such that: $f(n) \le c g(n) \text{ for } n \ge n_0$

Proof

- f(n)=2n+6
- g(n)=n
- $2n+6 \le 4n$???
- $2n+6 \le 4n$ when $n \ge 3$
- So, if we choose c=4, then $n_0=3$ satisfies $f(n) \le c g(n)$ for $n \ge n_0$
- Conclusion: 2n+6 is O(n)

Asymptotic Notation Big - O

Theorem

Let
$$f(x) = \sum_{i=0}^{k} a_i x^i$$
. Then $f(x) = O(x^k)$.

Proof: Let $A = \max |a_i|$, be the maximum absolute value of the coefficient in f(x). We can estimate f(x) as follows. For $x \ge 1$ we have

$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$$

$$\leq A(x^k + x^{k-1} + \dots + x + 1)$$

$$\leq A(k+1) x^k.$$

Thus $f(x) \leq cx^k$ for c = A(k+1) and $x \geq 1$. The theorem follows. \square

Asymptotic Notation

- Note: Even though it is correct to say "7n 3 is $O(n^3)$ ", a more precise statement is "7n 3 is O(n)", that is, one should make the approximation as tight as possible
- Simple Rule: Drop lower order terms and constant factors

```
7n-3 is O(n)
8n^2log n + 5n^2 + n is O(n^2log n)
```

Asymptotic Notation Big - O

Theorem

Let a > 0, b > 0, c > 1. Then

(a)
$$1 = O(\log^a n)$$
. (b) $\log^a n = O(n^b)$. (c) $n^b = O(c^n)$.

Proof: (c) Let $d = c^{1/b}$, then d > 1, and

$$n \leq 1 + d + d^2 + \dots + d^{n-1}$$
,
= $\frac{d^n - 1}{d - 1}$
 $\leq Ad^n$,

since d > 1
summation of the geom. sequences
where A = 1 / (d - 1)

$$= Ac^{(1/b)n}$$

$$n^b \le Bc^n$$

, where
$$B = A^b$$

$$n^b = O(c^n)$$

Asymptotic Notation

Special classes of algorithms

```
- constant: O(1)
```

- logarithmic: O(log n)

- linear: O(n)

- quadratic: $O(n^2)$

- cubic: $O(n^3)$

– polynomial: $O(n^k)$, $k \ge 1$

- exponential: $O(a^n)$, n > 1

Asymptotic Notation

- "Relatives" of the Big-Oh
 - $-\Omega(f(n))$: Big Omega
 - asymptotic *lower* bound
 - $-\Theta(f(n))$: Big Theta
 - asymptotic *tight* bound

Big Omega

• <u>Definition</u>: Given two functions f(n) and g(n), we say that f(n) is $\Omega(g(n))$ if and only if there are positive constants c and n_0 such that $f(n) \ge c g(n)$ for $n \ge n_0$

• Property: f(n) is $\Omega(g(n))$ iff g(n) is O(f(n))

Big Theta

- <u>Definition</u>: Given two functions f(n) and g(n), we say that f(n) is $\Theta(g(n))$ if and only if there are positive constants c_1 , c_2 and n_0 such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for $n \ge n_0$
- Property: f(n) is $\Theta(g(n))$ if and only if "f(n) is O(g(n)) AND f(n) is $\Omega(g(n))$ "

Summary

- $A \in O(f(n))$ means "the algorithm A won't take longer than f(n), give or take a constant multiplier and lower order terms" (upper bound)
- $A \in \Theta(f(n))$ means "the algorithm A will take as long as f(n), give or take a constant multiplier and lower order terms" (tight bound)
- $A \in \Omega(f(n))$ means "the algorithm A will take longer than f(n), give or take a constant multiplier and lower order terms" (lower bound)

Establishing order of growth using limits

$$\lim_{n\to\infty} f(n)/g(n) = \begin{cases} 0 & \text{order of growth of } f(n) < \text{order of growth of } g(n) \\ c > 0 & \text{order of growth of } f(n) = \text{order of growth of } g(n) \\ \infty & \text{order of growth of } f(n) > \text{order of growth of } g(n) \end{cases}$$

Examples:

- 10n vs. n^2
- n(n+1)/2 vs. n^2

Orders of growth: some important functions

- All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base a > 1 is
- All polynomials of the same degree k belong to the same class: $a_k n^k + a_{k-1} n^{k-1} + ... + a_0$ in $\Theta(n^k)$
- Exponential functions a^n have different orders of growth for different a's
- order $\log n$ < order n < order $n \log n$ < order n^k ($k \ge 2$ constant) < order a^n < order n! < order n^n
- Caution: Be aware of very large constant factors

Suppose each operation takes 1 nanoseconds (10-9 seconds)

n	lg n	n	n lg n	n^2	2 ⁿ	n!
10	0.003 <i>µ</i> s	0.01 <i>µ</i> s	0.033 <i>µ</i> s	0.1 <i>µ</i> s	1 <i>µ</i> s	3.63ms
20	0.004 <i>µ</i> s	0.02 <i>µ</i> s	0.086 <i>µ</i> s	0.4 <i>µ</i> s	1ms	77.1years
30	0.005 <i>µ</i> s	0.02 <i>µ</i> s	0.147 <i>µ</i> s	0.9 <i>µ</i> s	1sec	>10 ¹⁵ years
100	0.007 <i>µ</i> s	0.1 <i>µ</i> s	0.644 <i>µ</i> s	10 <i>µ</i> s	>1013years	
10,000	0.013 <i>µ</i> s	10 <i>µ</i> s	130 <i>µ</i> s	100ms		
1,000,000	0.020 <i>µ</i> s	1ms	19.92 <i>µ</i> s	16.7min		

- For n < 10, the difference is insignificant.
- Θ (n!) algorithms are useless well before n = 20.
- Θ (2ⁿ) algorithms are practical for n < 40.
- Θ (n²) and Θ (n lg n) are both useful, but Θ (n lg n) is significantly faster.

Time analysis for iterative algorithms

Steps

- Decide on parameter *n* indicating *input size*
- Identify algorithm's <u>basic operation</u>
- Determine *worst* case(s) for input of size *n*
- Set up a sum for the number of times the basic operation is executed
- Simplify the sum using standard formulas and rules

Example

Give the number f(n) of letters "Z" printed by Algorithm PrintZs below: (first using a summation notation, and then - a closed-form formula for f(n)) Analyze the worst-case time complexity of the following algorithm, and give a tight bound using the big-theta notation

Algorithm PRINTZs
$$(n : integer)$$

for $i \leftarrow 1$ to $3n + 1$ do
for $j \leftarrow 1$ to $i^2 + 2$ do print("Z")

Example

Give the number f(n) of letters "Z" printed by Algorithm PrintZs below:

(first using a summation notation, and then - a closed-form formula for f(n))

Analyze the worst-case time complexity of the following algorithm, and give a tight bound using the big-theta notation

Algorithm PRINTZS
$$(n : integer)$$

for $i \leftarrow 1$ to $3n + 1$ do
for $j \leftarrow 1$ to $i^2 + 2$ do print("Z")

$$\sum_{i=1}^{3n+1} (i^2 + 2) = 9n^3 + \frac{27}{2}n^2 + \frac{25}{2}n + 3.$$

These slides were shared with me by Dr. Stefano Lonardi and modified with his permission.