1: Inverse method for Poissson Distribution (25%)

For discrete Poisson Distribution ($\lambda = 5$),

the p.m.f is $P(x|\lambda) = e^{-\lambda} \frac{\lambda^x}{x!}$ and the c.d.f is $F(x|\lambda) = \sum_{t \le x} e^{-\lambda} \frac{\lambda^t}{t!}$.

Algorithm: Inverse method for the Poisson Distribution:

To generate $X \sim F(x)$:

STEP 1: Generate $U \sim unif[0, 1]$;

STEP 2: Transform $X = F^{-}(U)$: if $F(x|\lambda) < U \le F(x+1|\lambda)$, let X = x+1.

Plot:

Histogram of x_vec

Figure 1: Histogram of 5000 samples

2: Accept-Reject method for truncated Gamma Distribution(25%)

(1)

(2)

3: Importance Sampling for Estimation (25%)

(1)

(2)

(3)