EXAMEN DE CÁLCULO

1º Farmacia y Biotecnología

Modelo A

18 de enero de 2021

Duración: 1 hora.

- $(3,5~\mathrm{pts.})$ 1. Un medicamento se administra por vía intravenosa a una velocidad de 15 mg/hora. Al mismo tiempo, el cuerpo metaboliza el medicamento a una velocidad del $80\,\%$ de la cantidad presente en el cuerpo por hora.
 - a) Si el medicamento se administra de forma indefinida y suponiendo que al principio no había nada de medicamento en el cuerpo, ¿cuál será la máxima cantidad de medicamento que habrá en el cuerpo?
 - b) Si el medicamento deja de administrarse después de haber administrado 150 mg, ¿cuánto tiempo tiene que pasar desde ese momento hasta que la cantidad de medicamento en el cuerpo sea 10 mg?

Solución

Sea x(t) la cantidad de medicamento en el cuerpo en el instante t.

- a) Ecuación diferencial: x' = 15 0.8x. Condición inicial x(0) = 0. Solución particular: $x(t) = 18.75 18.75e^{-0.8t}$ y la cantidad máxima de medicamento en el cuerpo será 18.75 mg.
- b) Ecuación diferencial: x' = -0.8x. Condición inicial x(0) = 18.74. Solución particular: $x(t) = 18.74e^{-0.8t}$ y el tiempo que tarda en haber una cantidad de 10 mg en el cuerpo es 0.7851 horas.
- (3,5 pts.) 2. La función $T(x,y) = \ln(3xy + 2x^2 y)$ da la temperatura de la superficie de una montaña en la latitud x y longitud y. Unos montañeros están perdidos en la posición (1,2) y corren el riesgo de morir congelados.
 - a) ¿En qué dirección deben moverse para evitar el riesgo de congelación lo más rápidamente posible?
 - b) Si se mueven en una dirección equivocada de manera que la longitud decrece la mitad de lo que aumenta la latitud, ¿aumentará o disminuirá el riesgo de hipotermia?
 - c) ¿En qué dirección deben moverse para que la temperatura permanezca constante?

Solución

- a) $\nabla T(1,2) = \frac{1}{3}(5,1)$.
- b) Sea **u** el vector (1,-1/2), entonces $T'_{\mathbf{u}}(1,2) = \frac{3}{\sqrt{5}}$ °C.
- c) Siguiendo la dirección del vector (1, -5).
- (3 pts.) 3. Una pelota de playa tiene un volumen de $50~\rm{dm^3}$ en el momento que empieza a introducirse aire a razón de $2~\rm{dm^3/min}$.
 - a) ¿A qué velocidad cambiará el radio?
 - b) ¿Aproximadamente cuándo la superficie de la pelota se habrá duplicado?

Nota: El volumen de una esfera es $V(r)=\frac{4}{3}\pi r^3$ y la superficie $S(r)=4\pi r^2.$

Solución

- $a) \ \frac{dr}{dt} = 0.0305 \ \mathrm{dm/min}.$
- b) Usando la aproximación lineal del diferencial $dt=S^{\prime}/dS=35{,}5013$ minutos aproximadamente.