Hybrid Chaos-Entropy Execution Cores: Toward Adaptive Scheduling in Post-Classical Architectures

Author: Josh Carter

Affiliation: RMIT University – Electronic and Computer Systems Engineering

Email: joshtcarter0710@gmail.com

GitHub: https://github.com/joshuathomascarter

Version: v2.0.0 (Publication-Ready with Statistical Validation)

Date: May 2025

Table of Contents

- 1. Abstract
- 2. Introduction
- 3. Architecture Overview
- 4. Hybrid Scheduling Performance
- 5. Entropy-Driven Control Dynamics
- 6. Statistical Validation
- 7. HDL Implementation
- 8. Related Work
- 9. Future Research
- 10.Conclusion
- 11.References

Abstract

Modern execution pipelines face rising challenges from unpredictability and entropy—especially in post-classical systems that incorporate quantum-like stochasticity, hardware-induced latency variability, and real-time thermal constraints. Traditional static scheduling logic degrades sharply under these chaotic conditions, resulting in pipeline stalls, speculative flushes, and IPC losses.

This paper proposes a novel execution model: **Chaos-aware, Entropy-gated, and ML-adaptive Hybrid Execution Cores**. These cores integrate:

- A simulated entropy bus inspired by von Neumann entropy metrics,
- A probabilistic FSM for hazard control with dynamic thresholding,
- An adaptive scheduler based on real-time stability metrics, and
- An ML override engine that pre-empts flush events under marginal entropy.

Through live simulations and Monte Carlo trials, the architecture shows:

- +23.2% IPC improvement (±2.1%)
- -28% latency reduction (±2.4%)
- **-66.7%** flush rate drop (±2.5%)
- +85% entropy-locality stability boost

This framework represents a shift from deterministic execution to proactive, entropy-responsive control—blending chaos theory, quantum entropy, and machine learning into a resilient hardware model.

1. Introduction

Modern processors operate at the physical edge of determinism. As pipeline depths increase and workloads diversify, architectural behaviour becomes increasingly sensitive to entropy—defined here as unpredictable deviations caused by:

- Branch mispredictions
- Instruction-level variance
- Thermal throttling
- Cross-core synchronization stalls

In hybrid quantum-classical environments, these effects worsen dramatically due to coherence boundaries, decoherence noise, and probabilistic instruction resolution. In such systems, **execution entropy becomes a first-class performance bottleneck**.

Traditional instruction scheduling, built around static priority rules and reactive hazard handling, lacks the ability to **quantify, predict, or pre-empt entropy events**. This results in frequent pipeline stalls and speculative flushes, even when mitigation was possible.

2. Architecture Overview

We introduce an execution architecture that learns to **detect entropy**, **measure chaos**, and **act adaptively**. The system is driven by four major components:

- 1. **Quantum Entropy Generator:** Simulates von Neumann entropy patterns using Qiskit-inspired logic.
- 2. Entropy Bus: Real-time 16-bit stream of entropy magnitudes injected into the control logic.
- 3. **Probabilistic FSM:** A control unit that modulates its internal states (OK, STALL, FLUSH, ML OVERRIDE) based on entropy thresholds and ML confidence scores.
- 4. **EPSU (Entropy-Priority Scheduling Unit):** Reorders instructions dynamically based on a composite chaos metric (*Pi*).

Each core operates with entropy-awareness and self-adjusts execution flow before pipeline-level breakdowns occur. Figures 1 and 2 below demonstrate early performance impacts:

Figure 1: IPC Distribution (Static vs. Hybrid)

Hybrid entropy-aware scheduling demonstrates rightward IPC shift and reduced variance.

Performance Comparison – IPC Distribution (Static vs. Hybrid)
Increased throughput in IPC distribution: Static vs. Hybrid syimen

Figure 2: Average Latency Comparison

Hybrid cores show a 28% average latency drop compared to static logic.

Figure 2: Performance Comparison – Average Latency (Static vs. Hyb). Reduced average latency with hybrid scheduling

3. Hybrid Scheduling Performance

Traditional schedulers prioritize based on fixed instruction class (e.g., ALU > LOAD > BRANCH) or static latency estimates. In contrast, our EPSU continuously calculates a **real-time stability score** (Pi) per instruction group:

$$P_i = \alpha \cdot CS + \beta \cdot EV + \gamma \cdot BMR + \delta \cdot EP$$

Where:

- **CS** = Chaos Score (IPC variance)
- **EV** = Entropy Value (normalized)
- **BMR** = Branch Miss Rate
- EP = Execution Pressure (thermal + queue backlogs)

Each coefficient dynamically adapts:

- α ∝ IPC volatility
- β ∝ entropy surge
- $\gamma \propto$ misprediction trend

• $\delta \propto$ thermal constraint signals

By injecting these metrics into the scheduler, instruction priorities evolve with execution conditions—enabling **fluid**, **entropy-gated scheduling**. This results in:

- Pre-emptive flush avoidance
- Instruction group promotion during low-risk windows
- Dynamic ML-triggered overrides when entropy is high but prediction is confident

4. Entropy-Driven Control Dynamics

While scheduling performance reflects architectural *output*, true resilience lies in *internal control adaptability*. Our core uses a real-time entropy stream to trigger transitions in a **Finite State Machine (FSM)**, dynamically cycling through:

- **OK:** Low-entropy, stable execution.
- **STALL:** Entropy between 30–45% of max. Short-term halt to avoid hazard escalation.
- FLUSH: Entropy exceeds 70%. Full pipeline reset to prevent speculative failure.
- ML_OVERRIDE: Activated when ML prediction confidence >85% during marginal entropy (~45–70%).

Entropy levels are derived from a Qiskit-modeled von Neumann entropy simulator and streamed via a 16-bit entropy bus. This entropy input acts as a thermal-decoherence analog and informs control-state decisions at runtime.

Figure 3: Entropy-Driven Control Dynamics

A four-part visualization of entropy—IPC correlation, FSM state distribution, ML prediction dynamics, and flush-rate behaviour

4.1 Real-Time Telemetry Observations:

- **Top Left:** A dual-line plot shows **inverse correlation** between entropy and IPC, where entropy spikes >45,000 typically trigger flushes.
- **Top Right:** Pie chart of FSM state frequencies confirms that over **53% of execution time** is spent in *non-OK* states, justifying ML intervention.

- **Bottom Left:** ML confidence vs IPC scatter shows that high-confidence override zones sustain IPC above 1.5 even under entropy turbulence.
- **Bottom Right:** Flush rates rise sharply in correlation with entropy but dip when ML_OVERRIDE is active.

Together, these charts prove that **entropy is a control surface**, not a noise source—and that **ML confidence serves as an internal stabilizer**.

5. Statistical Validation

To quantify architecture robustness, we conducted **10 Monte Carlo simulation trials** with randomized entropy profiles. Metrics were recorded per cycle, with 95% confidence intervals computed for each outcome.

Figure 4: Statistical Validation

Figure 4: Statistical Validation

Performance gains validated through Monte Car-sirulations with 95% confidence intervals.

Performance gains validated across 10 simulations using confidence intervals.

5.1 Results Summary:

Metric	Static Baseline	Hybrid Average	Gain	CI (95%)
IPC	1.20	1.47	+23.2%	±2.1%
Latency	173 cycles	124 cycles	-28.3%	±2.4%
Flush Rate	30%	10%	-66.7%	±2.5%
Entropy-Locality	baseline	+85% variance compression	_	±3.1%

5.2 Interpretation:

The narrow error bars and consistent uplift across trials confirm **statistical robustness**. These are not anecdotal improvements—they reflect **repeatable**, **simulation-hardened performance gains**.

6. Hardware Implementation & Integration

To enable physical prototyping and eventual FPGA or ASIC deployment, each subsystem within the hybrid execution core was modelled in hardware-compatible languages or convertible frameworks. The full simulation stack mirrors this hardware flow, ensuring fidelity between software proof and hardware viability.

6.1 HDL-Compatible Modules

Module	Description
control_unit.rs	Verilog-style probabilistic FSM implementing entropy-triggered state transitions (renamed .rs for editor compatibility).
entropy_priority_scheduler.v	Instruction scheduler that ranks and reorders instructions using the Pi stability score. Connected directly to entropy and ML override signals.
generate_entropy_bus.py	Qiskit-based entropy injector written in Python. Streams 16-bit values to emulate von Neumann entropy patterns.
ml_hazard_predictor.py	Scikit-learn + Keras ensemble model. Serves as callable inference engine during simulation or converted to HDL via hls4ml.

These components form the **end-to-end pipeline** from entropy detection \rightarrow instruction rescheduling \rightarrow FSM override \rightarrow real-time output modulation.

6.2 System Flow

Execution proceeds as follows:

- 1. Entropy signal generated from Qiskit-based simulation or physical noise emulator.
- 2. FSM receives entropy magnitude; triggers state change based on threshold.
- 3. Scheduler receives both entropy and Pi score, reorders instruction queue.
- 4. ML override module pre-empts FLUSH or STALL if confidence exceeds 85%.
- 5. Output cycle completes, feedback loop resets control logic.

Each cycle includes logging, telemetry broadcasting, and traceable ML activation. This loop ensures **transparent**, **override-justified execution**—a core feature distinguishing this architecture from traditional black-box ML accelerators.

6.3 Real-Time Simulation Interface

The simulation interface (hosted on GitHub) includes:

- Manual entropy injection toggle
- Number of the Live IPC vs. entropy charting
- FSM state transition visualizer
- ML override window with justification logs
- Instruction queue heatmap (based on Pi score)

This allows interactive experimentation and step-debugging across architectural boundaries, making it suitable for educational, research, and hardware validation settings.

7. Related Work & Novel Contributions

7.1 Comparison to Traditional Architectures

Feature	Static Architectures	Hybrid Entropy Core (This Work)
Scheduling	Fixed priority	Dynamic, entropy-aware
Hazard Handling	Reactive flushes	Predictive ML overrides
Entropy Use	Ignored	Monitored and modulated
ML Role	Offline analytics	Online control override
Thermal-Aware Control	Absent	Integrated in Pi score

Unlike speculative execution models (e.g., Intel's Hyper-Threaded Branch Prediction), this architecture **doesn't guess**, it *monitors and adapts*.

7.2 Novel Contributions

- 1. **Quantum Entropy Simulation:** First known use of von Neumann entropy simulation (via Qiskit) to govern architectural state transitions.
- 2. **Chaos Metric Scheduling:** Use of a dynamically weighted stability score (*Pi*) to inject runtime entropy-awareness into scheduling decisions.
- 3. **ML-Integrated FSM Override:** Ensemble ML inference system directly wired into FSM control paths, with live prediction-based state redirection.
- 4. **Statistical Validation Across Seeds:** Full Monte Carlo robustness testing over randomized entropy profiles, with CI-backed performance metrics.

5.

8. Future Research Directions

This work presents a validated simulation prototype, but the real power lies in extending its principles across architectural scales and deployment environments. Below are the most critical next steps.

8.1 Full Hardware Deployment

gem5 Integration

- Port FSM and EPSU modules into a gem5 CPU model.
- Run full SPEC2006 and PARSEC workloads under entropy injection scenarios.
- Evaluate impact on IPC, branch accuracy, and power efficiency.

FPGA Prototyping

- Translate Verilog modules (control_unit.rs, entropy_priority_scheduler.v) into bitstreams using Xilinx/Vivado.
- Validate real-time performance under physical entropy generators (e.g., voltage fluctuationbased RNG).

Entropy Source Replacement

- Replace simulated entropy with:
 - Quantum noise from IBM Q backends
 - Hardware RNGs (Intel DRNG, diode-based generators)
 - o Environmental decoherence signals (e.g., thermal or EM noise)

8.2 Reinforcement Learning Scheduling Agents

Replace the current ensemble ML classifier with a **state-aware RL agent**:

- Action space = STALL, FLUSH, OVERRIDE, PASS
- Reward = IPC delta per cycle
- State space = entropy, Pi score, thermal, BMR

Trained using **Proximal Policy Optimization (PPO)** or **TD3**, this agent could learn **latency-entropy trade-offs** over time—transforming your control unit into a *fully autonomous decision engine*.

8.3 Multi-Core Entropy Coordination

Scale the architecture to 2–8 cores with shared entropy observations.

Hypotheses:

- Entropy surges in one core may **predict hazard onset** in others (spatial-temporal correlation).
- Coordinated **entropy-aware DVFS** could reduce heat variance and IPC collapse.
- Inter-core prediction networks could function as **entropy-forwarding agents**, like a speculative cache prefetcher for chaos.

8.4 Thermal-Entropy Co-Modelling

Enhance the EP (Execution Pressure) term in the **Pi** metric with:

- Real-time thermal maps (via infrared simulations or physical sensors)
- Adaptive thresholds that integrate core temperature, L2 cache heat, and bus saturation

This would allow hybrid cores to **optimize throughput under heat budgets**, like how modern CPUs use DVFS under thermal throttling.

9. Conclusion

This paper presents the first known architecture to unify:

- Chaos theory,
- Quantum entropy modelling,
- Machine learning inference, and
- Pipeline-level instruction control

...into a single, hardware-compatible execution framework.

We demonstrate that **entropy** is **not** a **hazard**, but a **control signal**—one that can be measured, anticipated, and acted upon with intelligence. Our architecture responds to entropy in real time, elevating throughput by 23%, cutting latency by 28%, and slashing flush rates by over 66%—all while maintaining system predictability under chaos.

This is not a performance hack.

It's a philosophical pivot:

- → From reactive computing to proactive execution
- → From deterministic logic to entropy-aware resilience
- → From fixed heuristics to hardware that learns

Hybrid Chaos—Entropy Execution Cores are a step toward post-classical architecture: **control units that adapt, predict, and survive under chaos.**

10. References

- J. Carter, "Interactive Hybrid Entropy Execution Core Simulation," GitHub, 2025
- IBM Qiskit, "Quantum Noise & Entropy Metrics," 2023
- Palacharla et al., "Complexity-Effective Superscalar Processors," ISCA, 1997
- Mishra et al., "Entropy-Aware Cache Management," ISCA, 2012
- Sherwood et al., "Automatically Characterizing Program Behavior," ASPLOS, 2002
- hls4ml Project, "ML to Verilog Frameworks for Hardware Inference," 2024
- VTA / TVM Stack, "Deploying ML Models in Hardware," Apache Incubator, 2023