DS-GA 3001.001 Special Topics in Data Science: Probabilistic Time Series Analysis Homework 3

Due date: Oct 25, by 6pm

YG390

Problem 1. (15p)

Consider the HMM with K=3 latent states and discrete observations $\{1, 2, 3\}$, with parameters specified by:

initial distribution
$$\pi = [1, 0, 0]$$
, transition matrix $\mathbf{A} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, where $A_{ij} = P(z_{t+1} = j | z_t = i)$ and

likelihood $P(x_t|z_t)$ described by matrix entries B_{xz} : $\mathbf{B} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix}$

Write down all possible state sequences consistent with observations a) 1, 2, 3 and b) 1, 3, 1.

Let the three latent states be $\{S_1, S_2, S_3\}$. Given the HMM with parameters $\{A, B, \pi\}$, the model can be described as:

When observing the observations 1,2, and 3 with initial distribution π which implies we start in state S_1 then observing 2 means we have 0.5 probability of being in state S_1 or S_3 . However staying in state S_1 is not possible so the only state after seeing the sequence 1,2 is state S_3 . Then the last observation 3 means we are in state S_2 or S_3 . but from state S_3 , the only existing transition is from S_3 to S_2 . So the sequence of observations 1,2,3 corresponds to the state sequence $\{S_1, S_3, S_2\}$.

When observing 1,2,1 with initial distribution π , seeing 2 after 1 implies we can be in state S_2 50% of the time or S_3 the rest of the time. The last observation 1 implies that the latent space is either S_1 or S_2 . Based on the transition matrix A then the only possible state sequences for the sequence of observations $\{1,2,1\}$ are $\{S_1,S_2,S_1\}$ or $\{S_1,S_3,S_2\}$.

Problem 2. (15p)

Construct an HMM that generates the observation sequence $A^{k_1}C^{k_2}A^{k_3}C^{k_4}$ where A^{k_1} denotes k_1 repeats of symbol A and the number of repeats k_i are drawn from the set $\{1, 2, 3\}$ with equal probability.

The HMM model is defined by three class of parameters $\{A, B, \pi\}$. If we call $\{S_1, S_2\}$ the latent states. For a observation sequence $A^{k_1}C^{k_2}A^{k_3}C^{k_4}$ the transition matrix A is computed so that

$$a_{ij} = \frac{num \ state \ transitions \ from \ i \ to \ j}{num \ state \ transitions \ from \ i}$$

$$A_{11} = \frac{k_1 - 1 + k_3 - 1}{k_1 - 1 + k_3 - 1 + 2} = \frac{k_1 + k_3 - 2}{k_1 + k_3}$$

$$A_{12} = \frac{2}{k_1 + k_3}$$

$$A_{21} = \frac{1}{k_2 - 1 + 1 + k_4 - 1} = \frac{1}{k_2 + k_4 - 1}$$

$$A_{22} = \frac{k_2 - 1 + k_4 - 1}{k_2 + k_4 - 1} = \frac{k_2 + k_4 - 2}{k_2 + k_4 - 1}$$

$$B_{ih} = \frac{num \ of \ times \ state \ i \ emits \ h}{num \ state \ i}$$

Since the number of repeats are drawn with equal probabilities, the emission probabilities B, is the identity matrix since there are as many observations repeated for A, then the number of state S_1 , and the same for C and S_2 .

$$\pi_i = \frac{num \ of \ chains \ start \ with \ i}{total \ num \ of \ chains}$$

We have only one chain starting with a sequence of A, which implies that we start in S_1 and the initial distribution is $\pi = [1, 0]$.

Problem 3. (20p)

Implement EM for an HMM model with K states and gaussian observations (full derivations in handout). Use this code to fit the weekly S&P 500 returns data (data/sp500w.csv) for K = 2 vs. K = 3 and compare the two results.

Hint: Use Example 6.17 from tsa4 textbook as guideline for plots and interpretation.