Covariate adjustment in multi-armed, possibly factorial experiments

Peng Ding

UC Berkeley, Statistics

November 3, 2022

Joint work with Anqi Zhao from the National University of Singapore
ArXiv version: https://arxiv.org/abs/2112.10557

Journal of the Royal Statistical Society, Series B

Randomized experiment

- ▶ Simple starting point with a binary treatment Z_i ∈ $\{1,0\}$
- Outcomes for unit i
 - two potential outcomes $Y_i(1)$ and $Y_i(0)$: all fixed
 - one observed outcome $Y_i = Z_i Y_i(1) + (1 Z_i) Y_i(0)$
- \triangleright Complete randomization: Z_i 's are random permutations
- ▶ OLS $Y_i \sim 1 + Z_i$ (Neyman 1923)
 - \triangleright coefficient of Z_i : difference in means of outcomes
 - unbiased for average treatment effect $\tau = N^{-1} \sum_{i=1}^{N} \{Y_i(1) Y_i(0)\}$
 - ► EHW/sandwich standard error is conservative for true standard error

Randomized experiment with covariates

- Additional pretreatment covariate vector x_i for unit i
- ► Center $\bar{x} = N^{-1} \sum_{i=1}^{N} x_i = 0$ to simplify the presentation
- ▶ Fisher's ANCOVA $Y_i \sim 1 + Z_i + x_i$
 - textbook recommendation
 - coefficient of Z_i is not unbiased for τ , but consistent
 - expected to improve efficiency, but may harm efficiency
 - efficiency gain if "slope of $Y_i(1) \sim 1 + x_i$ " = "slope of $Y_i(0) \sim 1 + x_i$ "
 - EHW standard error is conservative for true standard error
- Criticized by David A. Freedman (2008)
- ► Fisher's ANCOVA is not ideal

Lin (2013)'s fully interacted regression

- ▶ Lin's ANCOVA $Y_i \sim 1 + Z_i + x_i + Z_i x_i$
 - ightharpoonup coefficient of Z_i is not unbiased for τ , but consistent
 - no harm to efficiency, asymptotically
 - superior to $Y_i \sim 1 + Z_i$ and $Y_i \sim 1 + Z_i + x_i$, asymptotically
 - ▶ EHW standard error is conservative for true standard error
- Theory for ANCOVA's does not assume correct linear model
 - so we can even run OLS for binary outcomes
- ▶ Design-based theory: random permutation of Z_i 's drives inference
 - ▶ e.g. permutational central limit theorem (Li and Ding 2017 for review)

Extension to treatment with multiple levels

- ▶ Lin's theory shows the importance of the interaction term $Z_i x_i$
 - especially for heterogeneous slopes $Y_i(z) \sim 1 + x_i$ for z = 0, 1
- ▶ What if Z_i has multiple levels?
 - ▶ treatment $Z_i \in \{1, ..., Q\}$
 - indicators $t_i = (1(Z_i = 1), ..., 1(Z_i = Q))^T$
 - ▶ potential outcomes: $(Y_i(1), ..., Y_i(Q))$
 - mean vector $\bar{Y} = (\bar{Y}(1), \dots, \bar{Y}(Q))$
- Seems immediate to extend Neyman, Fisher and Lin

$$\hat{Y}_{N}$$
: $Y_{i} \sim t_{i}$

$$\hat{\mathbf{Y}}_{\mathrm{F}}$$
: $Y_i \sim t_i + x_i$

$$\hat{\mathbf{Y}}_{\mathbf{L}} : \mathbf{Y}_i \sim t_i + t_i \otimes x_i$$

The story seems complete

$$\hat{Y}_{N}$$
: $Y_{i} \sim t_{i}$

$$\hat{\mathbf{Y}}_{\mathrm{F}}$$
: $Y_i \sim t_i + x_i$

$$\hat{\mathbf{Y}}_{\mathbf{L}}$$
: $\mathbf{Y}_{i} \sim t_{i} + t_{i} \otimes x_{i}$

- lacktriangle Coefficient of t_i estimates $ar{Y} = (ar{Y}(1), \dots, ar{Y}(Q))$ consistently
- ▶ EHW standard error is conservative for true standard error
- Asymptotic efficiency theory favors \hat{Y}_{L}

Heuristics based on the derived linear model

- Design-based theory does not assume the linear model is correct
- ▶ Then why does OLS work?
- Derived linear model (termed by Oscar Kempthorne)
 - ▶ OLS decomposition: $Y_i(q) = \bar{Y}(q) + x_i^{\mathsf{T}} \gamma_q + \varepsilon_{\mathrm{L},i}(q)$
 - observed outcome $Y_i = \sum_{q=1}^{Q} 1(Z_i = q) Y_i(q)$ decomposes into

$$Y_i = t_i^\mathsf{T} \bar{Y} + (t_i \otimes x_i)^\mathsf{T} \gamma + \varepsilon_{\mathrm{L},i}$$
 where

$$t_i = egin{pmatrix} 1(Z_i = 1) \ dots \ 1(Z_i = Q) \end{pmatrix}, \quad arepsilon_{ ext{ iny L},i} = \sum_{q=1}^Q \mathbb{1}(Z_i = q) arepsilon_{ ext{ iny L},i}(q), \quad \gamma = egin{pmatrix} \gamma_1 \ dots \ \gamma_Q \end{pmatrix}$$

residuals have complex mean and covariance

With moderate sample size, asymptotics can be misleading

- ▶ Consider an example with N = 1000, Q = 16 and J = dim(x) = 9
 - \hat{Y}_{N} requires estimating Q = 16 coefficients
 - \hat{Y}_{F} requires estimating Q + J = 25 coefficients
 - \hat{Y}_L requires estimating Q(J+1) = 160 coefficients
- ▶ A leading motivating example: factorial experiment
 - with K binary factors, $Q = 2^K$
 - e.g., if K = 10 then $Q = 2^{10} > 1000$
- Lessons learned
 - ightharpoonup asymptotics for $\hat{Y}_{\scriptscriptstyle L}$ can be misleading in finite samples
 - going back to \hat{Y}_F may not be a bad idea
 - even \hat{Y}_{N} and \hat{Y}_{F} can be demanding for sample size with large K

OLS is too demanding for data, so we use RLS

- RLS for restricted least squares
 - ▶ RLS = OLS under restrictions on the coefficients
 - classic in statistics (Rao 1973) and econometrics (Theil 1971)
- ▶ $Y_i \sim t_i + t_i \otimes x_i$ under linear restriction

$$R\theta = r$$

- user-specified R and r for coefficient θ
- Restriction reflects our belief on the data-generating process
 - \triangleright coefficient of t_i corresponds to the mean of the potential outcomes
 - ▶ coefficient of $t_i \otimes x_i$ corresponds to coefficient of x_i in $Y_i(q) \sim 1 + x_i$

Examples of RLS

- RLS is a theoretical device
 - \hat{Y}_{L} is unrestricted
 - \blacktriangleright $\hat{Y}_{\rm N}$ and $\hat{Y}_{\rm F}$ are RLS: some coefficients are simply 0 or equal
- ▶ Another illustrating example from 2² factorial experiment
 - assume prior belief of no interaction (may be wrong)

$$Y_i(++) - Y_i(+-) - Y_i(-+) + Y_i(--) = 0$$

- restricts means of the potential outcomes and coefficients of x_i
- ▶ RLS is more relevant for 2^K factorial experiment with K > 2
 - often plausible to assume no higher order interactions
 - discuss later

Type I of RLS: correlation-only restriction

- ▶ No restriction on coefficient of *t_i*
- ▶ Only restricts coefficient of $t_i \otimes x_i$: correlation between $Y_i(q)$ and x_i
- ▶ Fisher's ANCOVA as special case: coef of $1(Z_i = q)x_i$'s are the same
- ▶ Can be more general: some combination of coefficients are zero
- Design-based theory of RLS under correlation-only restriction?

Design-based theory for correlation-only RLS

- \hat{Y}_r = coefficient of t_i
- \hat{Y}_r versus \hat{Y}_L : Fisher's versus Lin's ANCOVA with binary Z
- \hat{Y}_r is consistent for potential outcome means $(\bar{Y}(1), \dots, \bar{Y}(Q))$
- ► Loses asymptotic efficiency when restriction is wrong
- $ightharpoonup \hat{Y}_{
 m r}$ achieves the same efficiency as $\hat{Y}_{
 m L}$ when restriction is correct
- $ightharpoonup \hat{Y}_{r}$ can be better than \hat{Y}_{L} when restriction is slightly wrong (finite N)
- ► Fisher's ANCOVA is not too bad: Schochet (2008) gave examples

Type II of RLS: separable restriction

R is diagonal:

$$R = \begin{pmatrix} \rho_Y & 0 \\ 0 & \rho_Y \end{pmatrix}$$

- lacktriangle Separable restrictions on $ar{Y}$ and γ
 - $ightharpoonup ar{Y}$: means of potential outcomes, or coef of t_i
 - ▶ γ : coef of x_i in $Y_i(q) \sim 1 + x_i$, or coef of $t_i \otimes x_i$
 - assume ρ_Y is not empty but ρ_γ can be empty
- ightharpoonup Example: 2^K factorial experiment without higher order interactions
- Design-based theory of RLS under separable restriction?

Design-based theory for separable RLS

- \hat{Y}_r = coefficient of t_i
- $ightharpoonup \hat{Y}_r$ can be inconsistent if restriction on \bar{Y} is wrong
- $ightharpoonup \hat{Y}_r$ is consistent if restriction on \bar{Y} is correct
- $ightharpoonup \hat{Y}_r$ is as efficient as \hat{Y}_L if both restrictions are correct
- Best linear consistent estimator if both restrictions are correct and treatment effects are constant across units
 - $ightharpoonup \hat{Y}_{r}$ can outperform \hat{Y}_{L} in efficiency
 - extension of the classic Gauss–Markov theorem for RLS

A brief summary: roles of different restrictions

- Restriction on \overline{Y} : trade-off between asymptotic bias and variance
- ightharpoonup Restriction on γ : trade-off between finite-sample performance and asymptotic efficiency

Inference with RLS

- lacktriangle Consistency (with proper restriction) and asymptotic normality \hat{Y}_{r}
- Robust covariance estimation
 - we were unware of the discussion even in the classic literature
 - motivated by the algebraic fact:

$$\hat{\theta}_{\rm r} = (I - M_{\rm r}R)\hat{\theta}_{\rm L} + M_{\rm r}r$$

where $M_r = (\chi_{\rm L}^{\sf T} \chi_{\rm L})^{-1} R^{\sf T} \{ R(\chi_{\rm L}^{\sf T} \chi_{\rm L})^{-1} R^{\sf T} \}^{-1}$ with design matrix $\chi_{\rm L}$

ullet $\hat{\Psi}_{r}=$ upper $extit{Q} imes extit{Q}$ submatrix of double-decker-taco (DDT) covariance:

$$(I - \mathit{M}_{r}R)(\chi_{\scriptscriptstyle L}^{\mathsf{T}}\chi_{\scriptscriptstyle L})^{-1}\chi_{\scriptscriptstyle L}^{\mathsf{T}}\mathsf{diag}(\hat{\varepsilon}_{r,i}^{2})\chi_{\scriptscriptstyle L}(\chi_{\scriptscriptstyle L}^{\mathsf{T}}\chi_{\scriptscriptstyle L})^{-1}(I - \mathit{M}_{r}R)^{\mathsf{T}}$$

where $\hat{\varepsilon}_{r,i}$'s are residuals from RLS

Practical implications of RLS

- ► RLS = OLS with transformed regressors
 - some coefficients are 0
 - some coefficients are equal: collapse regressors
 - ▶ some linear combination of coefficients are 0: re-parametrization
- ▶ DDT from RLS = EHW from the corresponding OLS (a useful algebraic fact)
- ► Example: Fisher's ANCOVA + EHW standard error directly
- ▶ Theoretically: RLS is a tool to unify the results
- ▶ Practically: enough to use "OLS + EHW" with proper specification

Back to the leading motivation: 2^K factorial experiments

- K binary factors $z_1, \ldots, z_K \in \{-1, +1\}$
- ► Main effect of factor k:

$$au_{\{k\}} = rac{1}{2^{K-1}} \sum_{q: z_k = +1} \bar{Y}(q) - rac{1}{2^{K-1}} \sum_{q: z_k = -1} \bar{Y}(q)$$

▶ Interaction between factors k and k':

$$\tau_{\{k,k'\}} = \frac{1}{2^{K-1}} \sum_{q: z_k z_{k'} = +1} \bar{Y}(q) - \frac{1}{2^{K-1}} \sum_{q: z_k z_{k'} = -1} \bar{Y}(q)$$

- Can define higher order interactions similarly
- ▶ A subset of $\{1, ..., K\}$ indicates a factorial effect: $\tau_{\mathcal{K}}$

Factor-saturated regression for 2^K factorial experiments

- Can simply run treatment-based regression
 - ▶ OLS $Y_i \sim t_i$; linear transformation of coefficient
- ► Factor-based regression is more straightforward and popular

$$Y_i \sim 1 + \sum_{k=1}^K Z_{ik} + \sum_{k
eq k'} Z_{ik} Z_{ik'} + \dots + \prod_{k=1}^K Z_{ik}$$
 or $Y_i \sim 1 + \sum_{\mathcal{K} \in \mathcal{P}_K} Z_{i,\mathcal{K}}$

- regressor $Z_{i,\mathcal{K}} = \prod_{k \in \mathcal{K}} Z_{ik}$
- $ightharpoonup \mathcal{P}_K$ is the set containing all non-empty subsets of $\{1,\ldots,K\}$

Factor-based regression has many advantages

- ▶ Coefficient of $Z_{i,K}$ as estimates of factorial effects
- Obtain EHW standard errors directly
- Can incorporate covariates

$$\begin{split} & \widetilde{\tau}_{\mathrm{N}} & : \quad Y_{i} \sim 1 + \sum_{\mathcal{K} \in \mathcal{P}_{K}} Z_{i,\mathcal{K}} \\ & \widetilde{\tau}_{\mathrm{F}} & : \quad Y_{i} \sim 1 + \sum_{\mathcal{K} \in \mathcal{P}_{K}} Z_{i,\mathcal{K}} + x_{i} \\ & \widetilde{\tau}_{\mathrm{L}} & : \quad Y_{i} \sim 1 + \sum_{\mathcal{K} \in \mathcal{P}_{K}} Z_{i,\mathcal{K}} + x_{i} + \sum_{\mathcal{K} \in \mathcal{P}_{K}} Z_{i,\mathcal{K}} \cdot x_{i} \end{split}$$

- $m{ ilde{ au}}_{ ext{N}}$ and $ilde{ au}_{ ext{F}}$: RLS with correlation only restriction
- $m{ ilde{ au}}_{ ext{L}}$ is asymptotically the most efficient, but demanding for sample size

Factor-unsaturated regression for 2^K factorial experiments

- Higher order interactions are small or unimportant
- ► Simpler regression specifications (RLS with separable restriction)

$$\begin{split} & \tilde{\tau}_{\mathrm{N,r}} & : \quad Y_i \sim 1 + \sum_{\mathcal{K} \in \mathcal{F}_+} Z_{i,\mathcal{K}} \\ & \tilde{\tau}_{\mathrm{F,r}} & : \quad Y_i \sim 1 + \sum_{\mathcal{K} \in \mathcal{F}_+} Z_{i,\mathcal{K}} + x_i \\ & \tilde{\tau}_{\mathrm{L,r}} & : \quad Y_i \sim 1 + \sum_{\mathcal{K} \in \mathcal{F}_+} Z_{i,\mathcal{K}} + x_i + \sum_{\mathcal{K} \in \mathcal{F}_+} Z_{i,\mathcal{K}} \cdot x_i \end{split}$$

- recall $Z_{i,\mathcal{K}} = \prod_{k \in \mathcal{K}} Z_{ik}$
- \mathcal{F}_+ is a subset of \mathcal{P}_K
- \triangleright examples of \mathcal{F}_+ : all main effects; or up to second order interactions

Factor-unsaturated regression for 2^K factorial experiments

- Consistent if nuisance interactions are 0
- ► Consistent if treatment groups have equal sizes
- ► Can be inconsistent if nuisance interactions are not 0 and treatment groups have varying sizes
- Asymptotically normal and EHW standard error is conservative
- More efficient than estimates from factor-saturated regression if nuisance interactions are 0 and treatment effects are constant

Numeric examples: 2^2 factorial experiment with J=20

- $N = 100 \text{ with } (N_{--}, N_{-+}, N_{+-}, N_{++}) = (22, 23, 24, 31)$
- $ightharpoonup Y_i(q)$ normal linear models, without individual interactions
- Many possible regressions:

	regression equation	
N	$Y_i \sim 1 + A_i + B_i + A_i B_i$	
F	$Y_i \sim 1 + A_i + B_i + A_i B_i + x_i$	
L	$Y_i \sim 1 + A_i + B_i + A_i B_i + x_i + A_i x_i + B_i x_i + A_i B_i x_i$	
N₋us	$Y_i \sim 1 + A_i + B_i$	
F_us	$Y_i \sim 1 + A_i + B_i + x_i$	
L_us	$Y_i \sim 1 + A_i + B_i + x_i + A_i x_i + B_i x_i$	

Example 1: no interaction, heterogeneous correlations

Example 2: no interaction, homogeneous correlations

Discussion I: data-dependent restrictions

- ► Assumed data-independent restriction on coefficients $R\theta = r$
- ▶ Important next steps: data-dependent restrictions $\hat{R}\theta = \hat{r}$
 - model selection and post-selection inference
 - principles for factorial effects: sparsity, hierarchy, heredity
 (Wu and Hamada 2009)
- Theory for design-based model selection and inference is quite sparse (Bloniarz et al 2016)
- Ongoing research

Discussion II: rerandomization in design

Section S5

- ▶ Regression adjustment and rerandomization are duals
- Rerandomization enforces covariate balance in the design stage
 - ightharpoonup accept treatment allocations with small variability of $\hat{x}(q)$'s across q
 - ▶ many choices of contrasts with $Q \ge 2$
- ▶ Theoretical guarantees of rerandomization
 - $ightharpoonup \hat{Y}_{\rm L}$: no additional asymptotic efficiency gain
 - \hat{Y}_r : no additional asymptotic efficiency gain if restriction on γ is correct; additional asymptotic efficiency gain otherwise

Discussion III: fractional factorial experiment

- If we believe no higher order interactions
 - option 1: full factorial experiment + unsaturated regression
 - ▶ option 2: fractional factorial experiment + unsaturated regression
- e.g. factors A, B and C, assuming no interactions

Α	В	C=AB
_	_	+
_	+	_
+	_	_
+	+	+

- ▶ The choice is an estimation-exploration trade-off
 - fractional factorial experiments improves estimation efficiency
 - full factorial experiments allows for exploring interactions

Related papers

- Zhao, A. and Ding, P. (2022+). Regression-based causal inference with factorial experiments: estimands, model specifications, and design-based properties. *Biometrika*
- Zhao, A. and Ding, P. (2022+). Covariate adjustment in multi-armed, possibly factorial experiments. *Journal of the Royal* Statistical Society, Series B