TreesSpecial Binary Trees

Dr. Nguyen Hua Phung

HCMC University of Technology, Viet Nam

01, 2020

Outline

Basic Tree Concepts

Binary Trees

Special Binary Trees

Binary Search Trees Heap and Priority Queues

Binary Search Trees (BST)

- For a node whose value is K,
 - all nodes in its left subtree have key values < K, and
 - all nodes in its right subtree have key values $\geq K$
- LNR Traversal => ascending order
- RNL Traversal => descending order
- Search a value along the path of the tree

Binary Search Trees (BST)

- For a node whose value is K,
 - all nodes in its left subtree have key values < K, and
 - all nodes in its right subtree have key values ≥ K
- LNR Traversal => ascending order
- RNL Traversal => descending order
- Search a value along the path of the tree

Types of BST

- Degenerate: only one child
- Balanced: mostly two children

Degenerate BST Searching: O(n)

Balanced BST Searching: O(log n)

BST Insertion

Algorithm 1: Insert Node whose value is K into BST

```
Input: New node whose value is K
   Output: a BST with new node inserted
   N \leftarrow root
   while true do
        if N's value < K then
 3
             if N's right child is NULL then
 4
                  N's right child ← New node
 5
                  Break
 6
             else
 7
                  N \leftarrow N's right child
 8
             end
 9
        else
10
             if N's left child is NULL then
11
                  N's left child ← New node
12
                  Break
13
             else
14
                  N ← N's left child
15
             end
16
        end
17
   end
   return
```

BST Insertion Example

• Insert(20)

- 12 < 20, right
- 30 > 20, left
- 15 < 20, right

BST Node Deletion

Algorithm 2: Delete Node whose value K in BST

```
Input: Value K
```

Output: a BST node whose value is K is removed

1 Find a node whose value is K

```
2 if found then
```

```
N ← found nodeif N is leaf then
```

delete node N

6 else

5

8

9

L ← leftmost of N's right subtree

N's value \leftarrow L's value

replace L with its right child and delete node L

10 end

11 return

Deleted Node is a leaf

Delete(20)

- 12 < 20, right
- 30 > 20, left
- 20 = 20, delete

Deleted node is an internal

Delete(12)

- find node whose value is 12 => internal
- · find leftmost of its right subtree
- replace value
- delete node/replace with right child of leftmost node

Heaps and Priority Queues

- Normal queues: FIFO
- Priority queues: Highest priority removed first
 - Most critical patient is treated first
 - Highest priority task is executed first
- Heaps are used to implement priority queues

Heaps

- Complete binary tree
- Partially order
 - Max-heap: parent's value >= its children's value
 - Min-heap: parent's value <= its children's value

Heap Insertion

• Insert(1)

Heap Insertion

Algorithm 3: Heap Insertion

Input: New value V

Output: New element of V is inserted into heap

- 1 Increase heap size by 1 to have room for new value;
- 2 Assign V to new element;
- $\mathbf{3} \ \mathbf{i} \leftarrow \mathbf{index} \ \mathbf{of} \ \mathbf{new} \ \mathbf{element} \ ;$
- 4 while i is not index of root and V < value at parent of i do
- swap V and value at parent of i;
- $i \leftarrow i$ index of parent of i;
- 7 end

