### Forcasting

#### 2023-04-11

#### R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
#Load/install required package here
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
library(ggplot2)
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
    method
##
     as.zoo.data.frame zoo
library(Kendall)
library(tseries)
library(outliers)
library(tidyverse)
## -- Attaching core tidyverse packages ------ tidyverse 2.0.0 --
## v dplyr 1.1.0
                      v stringr 1.5.0
## v forcats 1.0.0
                      v tibble 3.2.1
           1.0.1
                      v tidyr
                               1.3.0
## v purrr
## v readr
            2.1.4
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(smooth)
## Loading required package: greybox
## Package "greybox", v1.0.7 loaded.
##
##
## Attaching package: 'greybox'
## The following object is masked from 'package:tidyr':
```

```
##
##
       spread
##
## The following object is masked from 'package:lubridate':
##
##
       hm
##
## This is package "smooth", v3.2.0
#New package for M9 to assist with tables
\#install.packages("kableExtra")
library(kableExtra)
## Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output
## %in%: 'length(x) = 2 > 1' in coercion to 'logical(1)'
##
## Attaching package: 'kableExtra'
##
## The following object is masked from 'package:dplyr':
##
##
       group_rows
```

#### **Including Plots**

You can also embed plots, for example:







```
# Model 1: Arithmetic mean
# The meanf() has no holdout option
MEAN_seas <- meanf(y = ts_biomass, h = 12)
checkresiduals(MEAN_seas)</pre>
```

#### Residuals from Mean



##

```
## Ljung-Box test
##
## data: Residuals from Mean
## Q* = 258.95, df = 23, p-value < 2.2e-16
##
## Model df: 1. Total lags used: 24
plot(MEAN_seas)</pre>
```

### **Forecasts from Mean**



# Model 2: Seasonal naive
SNAIVE\_seas <- snaive(ts\_biomass, h=12, holdout=FALSE)
checkresiduals(SNAIVE\_seas)</pre>

## Residuals from Seasonal naive method





```
##
## Ljung-Box test
##
## data: Residuals from Seasonal naive method
## Q* = 93.651, df = 24, p-value = 3.556e-10
##
## Model df: 0. Total lags used: 24
```

### Forecasts from Seasonal naive method



# Model 3: SARIMA

SARIMA\_autofit <- auto.arima(ts\_biomass)
checkresiduals(SARIMA\_autofit)</pre>

## Residuals from ARIMA(1,1,1)(0,0,1)[12]





##

```
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)(0,0,1)[12]
## Q* = 42.8, df = 21, p-value = 0.003333
##
## Model df: 3. Total lags used: 24
#Generating forecasts
#remember auto.arima does not call the forecast() internally so we need one more step
SARIMA_for <- forecast(SARIMA_autofit,h=12)
plot(SARIMA_for)</pre>
```

# Forecasts from ARIMA(1,1,1)(0,0,1)[12]



# Model 4: SS Exponential smoothing
SSES\_seas <- es(ts\_biomass,model="ZZZ",h=12,holdout=FALSE)
plot(SSES\_seas)</pre>

## **Actuals vs Fitted**



Fitted
Standardised Residuals vs Fitted



## |Residuals| vs Fitted



**QQ plot of Normal distribution** 



checkresiduals(SSES\_seas)

## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.



## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.







## Forecasts from Basic structural model



Table 1: Forecast Accuracy for Seasonal Data

|        | ME       | RMSE    | MAE     | MPE        | MAPE      |
|--------|----------|---------|---------|------------|-----------|
| MEAN   | 0.09077  | 1.91972 | 1.45817 | -2993.9993 | 3030.8195 |
| SNAIVE | -2.12360 | 4.54636 | 2.58677 | -122.4177  | 164.9659  |
| SARIMA | -0.75532 | 1.58841 | 1.35418 | -2867.0051 | 2879.9488 |
| SSES   | -2.55079 | 4.40694 | 2.64893 | -998.5011  | 1005.9502 |
| BSM    | -4.29032 | 4.61610 | 4.29032 | -8743.8441 | 8743.8441 |

```
#Model 1: Arithmetic mean
MEAN scores <- accuracy (MEAN seas$mean,last obs) #store the performance metrics
#Model 2: Seasonal naive
SNAIVE_scores <- accuracy(SNAIVE_seas$mean,last_obs)</pre>
# Model 3: SARIMA
SARIMA_scores <- accuracy(SARIMA_for$mean,last_obs)</pre>
# Model 4: SSES
SSES_scores <- accuracy(SSES_seas$forecast,last_obs)</pre>
# Model 5: BSM
SS_scores <- accuracy(SS_for$mean,last_obs)</pre>
#create data frame
seas_scores <- as.data.frame(rbind(MEAN_scores, SNAIVE_scores, SARIMA_scores, SSES_scores, SS_scores))</pre>
row.names(seas_scores) <- c("MEAN", "SNAIVE", "SARIMA", "SSES", "BSM")
#choose model with lowest RMSE
best_model_index <- which.min(seas_scores[,"RMSE"])</pre>
cat("The best model by RMSE is:", row.names(seas_scores[best_model_index,]))
## The best model by RMSE is: SARIMA
kbl(seas_scores,
      caption = "Forecast Accuracy for Seasonal Data",
      digits = array(5,ncol(seas_scores))) %>%
  kable_styling(full_width = FALSE, position = "center") %>%
  #highlight model with lowest RMSE
  kable_styling(latex_options="striped", stripe_index = which.min(seas_scores[,"RMSE"]))
autoplot(ts_biomass_data) +
  autolayer(MEAN_seas, PI=FALSE, series="Mean") +
  autolayer(SNAIVE_seas, PI=FALSE, series="Naïve") +
  autolayer(SARIMA_for,PI=FALSE, series="SARIMA") +
  autolayer(SSES_seas$forecast, series="SSES") +
  autolayer(SS_for,PI=FALSE,series="BSM") +
  xlab("Month") + ylab("Electricity Retail Price ($/kWh)") +
  guides(colour=guide_legend(title="Forecast"))
```



```
autoplot(ts_biomass_data) +

autolayer(SARIMA_for,PI=FALSE, series="SARIMA") +
    xlab("Month") + ylab("Total Biomass (g/m2)") +
    guides(colour=guide_legend(title="Forecast"))
```



#### # Forecast

SARIMA\_autofit\_new <- auto.arima(ts\_biomass\_data)</pre> checkresiduals(SARIMA\_autofit\_new)

## Residuals from ARIMA(0,1,2)(0,0,1)[12]





```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,2)(0,0,1)[12]
## Q* = 68.766, df = 21, p-value = 5.534e-07
##
## Model df: 3. Total lags used: 24
SARIMA_for_new <- forecast(SARIMA_autofit_new,h=12)
plot(SARIMA_for_new)</pre>
```

### Forecasts from ARIMA(0,1,2)(0,0,1)[12]



Use recent ten-year data to forcast

```
# Change the time span
# Transform to time series format

ts_biomass_data <- ts(
    biomass_data_frame[169:300,2],
    start=c(year(biomass_data_frame$Month[169]),month(biomass_data_frame$Month[169])),
    frequency=12)

ts_biomass <- ts(
    biomass_data_frame[169:288,2],
    start=c(year(biomass_data_frame$Month[169]),month(biomass_data_frame$Month[169])),
    frequency=12)

last_obs <- ts_biomass_data[121:132]
# Model 1: Arithmetic mean
# The meanf() has no holdout option
MEAN_seas <- meanf(y = ts_biomass, h = 12)
checkresiduals(MEAN_seas)</pre>
```

#### Residuals from Mean





```
##
## Ljung-Box test
##
## data: Residuals from Mean
## Q* = 73.247, df = 23, p-value = 3.795e-07
##
## Model df: 1. Total lags used: 24
```

plot(MEAN\_seas)

#### **Forecasts from Mean**



# Model 2: Seasonal naive
SNAIVE\_seas <- snaive(ts\_biomass, h=12, holdout=FALSE)
checkresiduals(SNAIVE\_seas)</pre>

#### Residuals from Seasonal naive method





##
## Ljung-Box test

```
##
## data: Residuals from Seasonal naive method
## Q* = 49.511, df = 24, p-value = 0.001633
##
## Model df: 0. Total lags used: 24
plot(SNAIVE_seas)
```

# Forecasts from Seasonal naive method



# Model 3: SARIMA

SARIMA\_autofit <- auto.arima(ts\_biomass)
checkresiduals(SARIMA\_autofit)</pre>





residuals

```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,0)(1,0,0)[12] with non-zero mean
## Q* = 14.711, df = 22, p-value = 0.8743
##
## Model df: 2. Total lags used: 24
```

Lag

## Forecasts from ARIMA(1,0,0)(1,0,0)[12] with non-zero mean



# Model 4: SS Exponential smoothing
SSES\_seas <- es(ts\_biomass,model="ZZZ",h=12,holdout=FALSE)
plot(SSES\_seas)</pre>

#### **Actuals vs Fitted**



## **Standardised Residuals vs Fitted**



# QQ plot of Normal distribution



checkresiduals(SSES\_seas)

## Warning in modeldf.default(object): Could not find appropriate degrees of ## freedom for this model.



## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.

checkresiduals(SS\_seas)



#Generating forecasts
# StructTS() does not call the forecast() internally so we need one more step
SS\_for <- forecast(SS\_seas,h=12)
plot(SS\_for)</pre>

## Forecasts from Basic structural model



Table 2: Forecast Accuracy for Seasonal Data

|        | ME       | RMSE    | MAE     | MPE        | MAPE      |
|--------|----------|---------|---------|------------|-----------|
| MEAN   | -0.28323 | 1.93838 | 1.58284 | -3817.5199 | 3846.3960 |
| SNAIVE | -2.12360 | 4.54636 | 2.58677 | -122.4177  | 164.9659  |
| SARIMA | -0.65751 | 1.55783 | 1.34461 | -2824.6163 | 2839.9915 |
| SSES   | -1.10662 | 2.85708 | 1.89745 | -919.7008  | 937.4871  |
| BSM    | -4.03626 | 4.34690 | 4.03626 | -9410.6202 | 9410.6202 |

```
#Model 1: Arithmetic mean
MEAN scores <- accuracy (MEAN seas$mean,last obs) #store the performance metrics
#Model 2: Seasonal naive
SNAIVE_scores <- accuracy(SNAIVE_seas$mean,last_obs)</pre>
# Model 3: SARIMA
SARIMA_scores <- accuracy(SARIMA_for$mean,last_obs)</pre>
# Model 4: SSES
SSES_scores <- accuracy(SSES_seas$forecast,last_obs)</pre>
# Model 5: BSM
SS_scores <- accuracy(SS_for$mean,last_obs)</pre>
#create data frame
seas_scores <- as.data.frame(rbind(MEAN_scores, SNAIVE_scores, SARIMA_scores, SSES_scores, SS_scores))</pre>
row.names(seas scores) <- c("MEAN", "SNAIVE", "SARIMA", "SSES", "BSM")
#choose model with lowest RMSE
best_model_index <- which.min(seas_scores[,"RMSE"])</pre>
cat("The best model by RMSE is:", row.names(seas_scores[best_model_index,]))
## The best model by RMSE is: SARIMA
kbl(seas_scores,
      caption = "Forecast Accuracy for Seasonal Data",
      digits = array(5,ncol(seas_scores))) %>%
  kable_styling(full_width = FALSE, position = "center") %>%
  #highlight model with lowest RMSE
  kable_styling(latex_options="striped", stripe_index = which.min(seas_scores[,"RMSE"]))
autoplot(ts_biomass_data) +
  autolayer(MEAN_seas, PI=FALSE, series="Mean") +
  autolayer(SNAIVE_seas, PI=FALSE, series="Naïve") +
  autolayer(SARIMA_for,PI=FALSE, series="SARIMA") +
  autolayer(SSES_seas$forecast, series="SSES") +
  autolayer(SS_for,PI=FALSE,series="BSM") +
  xlab("Month") + ylab("Electricity Retail Price ($/kWh)") +
  guides(colour=guide_legend(title="Forecast"))
```



```
autoplot(ts_biomass_data) +

autolayer(SARIMA_for,PI=FALSE, series="SARIMA") +
    xlab("Month") + ylab("Total Biomass (g/m2)") +
    guides(colour=guide_legend(title="Forecast"))
```



#### # Forecast

SARIMA\_autofit\_new <- auto.arima(ts\_biomass\_data)
checkresiduals(SARIMA\_autofit\_new)</pre>







```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,0)(1,0,0)[12] with non-zero mean
## Q* = 18.099, df = 22, p-value = 0.7001
##
## Model df: 2. Total lags used: 24
SARIMA for new (5 forecast (SARIMA putofit new b-12))
```

SARIMA\_for\_new <- forecast(SARIMA\_autofit\_new,h=12)
plot(SARIMA\_for\_new)</pre>

# Forecasts from ARIMA(1,0,0)(1,0,0)[12] with non-zero mean



Note that the  $\mbox{echo}$  = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.