

WITH/SYNTHETIC DATA

SELF-DRIVING MODELS WITH SYNTHETIC DATA

SELF-DRIVING MODELS WITH SYNTHETIC DATA

Why struggle on Google Maps, if you can play videogames?

Giulio D'Erasmo Jacopo Nudo Andrea Potì Amedeo Ranaldi

DATASET

TRAINING

ANALISYS RESULT

FUTURE WORK

1 What we do

- Predict the steering angle of a self-driving car based on visual input from cameras only.
- We implement from scratch baseline and improvement models training with and without transfer learning the entire architectures.
- Trained on synthetic data: GTA V

1 In order to

This allows the car to navigate its environment and make decisions about how to move in order to avoid obstacles and reach its destination.

Motivation

Not so noble motivation. Aim to do a project about videogames and neural networks, also hot topic in INVIDIA challange and not so much explored.

DATASET

TRAINING

ANALISYS RESULT

FUTURF WORK

How we collect our data

Training data was collected by a bot driving in the GTA V videogame :

- Recording mode 30 fps
- Fixed speed of the car
- Wide variety of roads and different set of places and weather conditions.

DATASET

TRAINING

ANALISYS RESULT

FUTURE WORK

Data cleaning

- If the steering angle is not varing in the next 10 frames, the capture is paused
- Deleted first and last ~200 frames
- Balancing of the dataset randomly removing some frames where the steering angle is ≈ 0

Pre-processing

- Train/Test split 80/20
- Crop bottom part: luggage rack and radar map
- Downsampling from 480x800 to 240x400
- Data augmentation:
 - Random brightness change
 - Random horizontal and vertical flips
 - Random shift of the image
- Target steering angle normalized from [-40,40] in [0,1]

Final dataset size is ≈150.000

DATASET

TRAINING

ANALISYS RESULT

Models

- ➤ *Baseline*: CNN End-to-End model
- CNN + BN
- Inception Resnet v2 (backbone change)

02 Training details

- About 8 m/epoch
- ➤ GPU RTX2070 Super
- Batch creation with balance steering angles
- ➤ Variation loss → MSE/Weighted MSE

Evaluation metrics

$$MAE = \frac{1}{n} \sum |\mathbf{y_i} - \widehat{\mathbf{y}_i}|$$

$$RMSE = \sqrt{\frac{1}{n}} \sum (y_i - \hat{y}_i)^2$$

DATASET

TRAINING

ANALISYS RESULT

FUTURE WORK

Inception

DATASET

TRAINING

ANALISYS RESULT

FUTURF WORK

Some numbers:

Model	Test Loss	MAE	RMSE	Epochs	Running Time
CNN	0.0329	3.9200	0.0552	85	0.3 h/epc
CNN + BN	0.0162	2.5644	0.0471	125	0.3 h/epc
Inception Resnet V2	0.2929	20.8183	0.0189	8	1.5 h/epc

CNN + BN:

Prediction visualization

DATASET

TRAINING

ANALISYS RESULT

FUTURE WORK

Further next:

- > Add minimap as input
- > Try powerful backbone ViT

Grand Theft Auto 5 mini-map

Bibliography:

- > [1604.07316] End to End Learning for Self-Driving Cars (arxiv.org)
- > [1811.02759] Learning to Steer by Mimicking Features from Heterogeneous Auxiliary Networks (arxiv.org)

Thanks for your attention

and be safe while driving... for now!