STAT 30900: MATHEMATICAL COMPUTATIONS I

Fall 2019

Homework 0

Solutions by

JINHONG DU

12243476

This homework mostly serves as a linear algebra refresher. We will recall some definitions. The null space or kernel of a matrix $A \in \mathbb{R}^{m \times n}$ is the set

$$\ker(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}$$

while the range space or image is the set

$$im(A) = \{ y \in \mathbb{R}^m : y = Ax \text{ for some } x \in \mathbb{R}^n \}.$$

The rank and nullity of A are defined as the dimensions of these spaces, rank(A) = dim im(A) and nullity(A) = dim ker(A). By convention we write all vectors in \mathbb{R}^n as column vectors.

1

(a) For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, show that

$$\operatorname{im}(AB) \subseteq \operatorname{im}(A)$$
 and $\ker(AB) \supseteq \ker(B)$.

When does equality occur in each of these inclusions?

Proof. (1) Since $\forall y \in \text{im}(AB)$, $\exists x \in \mathbb{R}^p$, s.t. y = ABx = A(Bx), and $Bx \in \mathbb{R}^n$, we have $y \in \text{im}(A)$. Therefore, $\text{im}(AB) \subseteq \text{im}(A)$.

Let $A = \begin{bmatrix} \alpha_1 & \cdots & \alpha_n \end{bmatrix}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$. Then the equality occurs when span $\{\sum_{i=1}^n b_{ij}\alpha_i, j=1,\ldots,p\} = \text{span}\{\alpha_j, j=1,\ldots,n\}$. Furthermore, a sufficient condition can be $\text{im}(B) \supseteq \text{ker}(A)^{\perp}$, e.g., rank(B) = n with $n \ge p$.

(2) Since $\forall x \in \ker(B)$, Bx = 0, we have (AB)x = A(Bx) = 0, i.e. $x \in \ker(AB)$. Therefore, $\ker(AB) \supseteq \ker(B)$.

The equality occurs when $im(B) \cap ker(A) = \{0\}$. To see this,

$$\operatorname{im}(B) \cap \ker(A) = \{0\}$$
 \iff $AB\mathbf{x} = 0 \text{ iff } B\mathbf{x} = 0, \ \forall \ \mathbf{x} \in \mathbb{R}^p$
 \iff $\ker(AB) = \ker(B).$

(b) For $A, B \in \mathbb{R}^{n \times n}$, show that

$$\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\},$$

 $\operatorname{nullity}(AB) \leq \operatorname{nullity}(A) + \operatorname{nullity}(B),$
 $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B).$

Proof. For $A, B \in \mathbb{R}^{n \times n}$, in (a), we have show that $\operatorname{im}(AB) \subseteq \operatorname{im}(A)$, so $\operatorname{rank}(AB) \le \operatorname{rank}(A)$. Analogously, $\operatorname{im}(B^{\top}A^{\top}) \subseteq \operatorname{im}(B^{\top})$, so $\operatorname{rank}(B^{\top}A^{\top}) \le \operatorname{rank}(B^{\top})$. Notice that $\operatorname{rank}(AB) = \operatorname{rank}(B^{\top}A^{\top})$ and $\operatorname{rank}(B) = \operatorname{rank}(B^{\top})$, we have

$$rank(AB) \le min\{rank(A), rank(B)\}.$$

By rank-nullity theorem,

$$rank(A) + nullity(A) = n,$$

 $rank(B) + nullity(B) = n,$
 $rank(AB) + nullity(AB) = n,$

then

$$\operatorname{nullity}(AB) = n - \operatorname{rank}(AB)$$

$$\leq \max\{n - \operatorname{rank}(A), n - \operatorname{rank}(B)\}$$

$$= \max\{\operatorname{nullity}(A), \operatorname{nullity}(B)\}$$

$$\leq \operatorname{nullity}(A) + \operatorname{nullity}(B).$$

Let $\{x_1,\ldots,x_k\}$ and y_1,\ldots,y_l be the basis of $\operatorname{im}(A)$ and $\operatorname{im}(B)$, respectively, where $k=\operatorname{rank}(A)$, $l=\operatorname{rank}(B)$. Since $\forall\ z\in\operatorname{im}(A+B),\ \exists\ \alpha_1,\ldots,\alpha_k,\beta_1,\ldots,\beta_l,\ \text{s.t.}\ z=\sum_{i=1}^k\alpha_ix_i+\sum_{j=1}^l\beta_jy_j,\ \text{we have }\operatorname{im}(A+B)=\operatorname{span}\{x_1,\ldots,x_k,y_1,\ldots,y_l\}$. Then $\operatorname{rank}(A+B)\leq k+l=\operatorname{rank}(A)+\operatorname{rank}(B)$.

(c) For $A, B \in \mathbb{R}^{n \times n}$, show that if AB = 0, then $\operatorname{rank}(A) + \operatorname{rank}(B) \leq n$.

Proof. Since
$$\forall x \in \mathbb{R}$$
, $ABx = 0$, we have $\operatorname{im}(B) \subseteq \ker(A)$. So $\operatorname{rank}(B) \leq \operatorname{nullity}(A)$ and $\operatorname{rank}(A) + \operatorname{rank}(B) \leq \operatorname{rank}(A) + \operatorname{nullity}(A) = n$.

2

(a) Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$. Show that

$$\operatorname{rank}\left(\begin{bmatrix} A & 0\\ 0 & B \end{bmatrix}\right) = \operatorname{rank}(A) + \operatorname{rank}(B).$$

We have used the block matrix notation here. For example if $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \in \mathbb{R}^{2\times 3}$ and $B \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{R}^{2\times 1}$, then

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = \begin{bmatrix} a & b & c & 0 \\ d & e & f & 0 \\ 0 & 0 & 0 & \alpha \\ 0 & 0 & 0 & \beta \end{bmatrix} \in \mathbb{R}^{4 \times 4}.$$

This is sometimes also denoted as $A \oplus B$. It is a direct sum of operators induced by a direct sum of vector spaces.

Proof. Let $\{a_1,\ldots,a_k\}$ and $\{b_1,\ldots,b_l\}$ be the basis of $\operatorname{im}(A)$ and $\operatorname{im}(B)$, respectively, where $k=\operatorname{rank}(A),\ l=\operatorname{rank}(B),$ and let $C=\begin{bmatrix}A&0\\0&B\end{bmatrix}$. $\forall\ x\in\operatorname{im}(C),\ x$ can be written as a linear combination of columns of C. Consider $x_{1:m}$, the first m rows of x, it can be written as a linear combination of columns of A, i.e., $\exists\ \alpha_1,\ldots,\alpha_k,$ s.t. $x_{1:m}=\sum_{i=1}^k\alpha_ix_i.$ Similarly, $x_{(m+1):(m+p)}=\sum_{j=1}^l\beta_jy_j.$ Let

$$z_{i} = \begin{cases} \begin{bmatrix} \alpha_{i} \\ 0_{p} \end{bmatrix} &, i = 1, \dots, k \\ \\ \begin{bmatrix} 0_{m} \\ \beta_{i} \end{bmatrix} &, i = k+1, \dots, k+l \end{cases}$$

where 0_j is the zero vector with length j. Then $x = \sum_{i=1}^k \alpha_i z_i + \sum_{j=1}^l \beta_j z_{j+k}$ and $\{z_i, i = 1, \dots, k+l\}$ are linearly independent, i.e., it is a basis of im(C). Therefore,

$$rank(C) = k + l = rank(A) + rank(B).$$

(b) For $\mathbf{x} = \begin{bmatrix} x_1, & \dots & x_n \end{bmatrix}^{\top} \in \mathbb{R}^m$ and $\mathbf{y} = \begin{bmatrix} y_1, & \dots & y_n \end{bmatrix}^{\top} \in \mathbb{R}^n$, observe that $\mathbf{x}\mathbf{y}^{\top} \in \mathbb{R}^{m \times n}$. Let $A \in \mathbb{R}^{m \times n}$. Show that rank(A) = 1 iff $A = \mathbf{x}\mathbf{y}^{\top}$ for some nonzero $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$.

Proof.

$$\operatorname{rank}(A) = 1 \iff \operatorname{im}(A) = \operatorname{span}\{\mathbf{x}\} \text{ for some nonzero } x \in \mathbb{R}^m$$

$$\iff \operatorname{each column of } A \neq 0 \text{ can be expressed as a linear combination of } \{\mathbf{x}\},$$

$$\operatorname{i.e.}, \exists \ \mathbf{y} = \begin{bmatrix} y_1, \dots, y_n \end{bmatrix} \in \mathbb{R}^n, \ \mathbf{y} \neq \mathbf{0} \text{ s.t.} A = \begin{bmatrix} y_1 \mathbf{x} & \dots & y_n \mathbf{x} \end{bmatrix} = \mathbf{x} \mathbf{y}^\top$$

$$\operatorname{for some nonzero } \mathbf{x} \in \mathbb{R}^m \text{ and } \mathbf{y} \in \mathbb{R}^n$$

3

Let $A \in \mathbb{R}^{m \times n}$,

(a) Show that

$$\ker(A^{\top}A) = \ker(A)$$
 and $\operatorname{im}(A^{\top}A) = \operatorname{im}(A^{\top}).$

Give an example to show this is not true over a finite field (e.g. a field of two elements $\mathbb{F}_2 = \{0, 1\}$ with binary arithmetic).

Since $\forall x \in \ker(A^{\top}A)$, $A^{\top}Ax = 0$, so $x^{\top}A^{\top}Ax = ||Ax||_2^2 = 0$, which implies Ax = 0. Therefore, $\ker(A^{\top}A) \subseteq \ker(A)$. From problem 1 (a) we also have $\ker(A^{\top}A) \supseteq \ker(A)$. Therefore, $\ker(A^{\top}A) = \ker(A)$ and $\operatorname{nullity}(A^{\top}A) = \operatorname{nullity}(A)$

Since

$$\operatorname{rank}(\boldsymbol{A}^{\top}\boldsymbol{A}) = n - \operatorname{nullity}(\boldsymbol{A}^{\top}\boldsymbol{A}) = n - \operatorname{nullity}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}^{\top})$$

and $\operatorname{im}(A^{\top}A) \subseteq \operatorname{im}(A^{\top})$ from problem 1 (a), we have $\operatorname{im}(A^{\top}A) = \operatorname{im}(A^{\top})$.

Let
$$A \in \mathbb{F}_2^{2 \times 2}$$
 and $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, then $A^{\top} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $A^{\top}A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. So

$$\ker(A^{\top}A) = \mathbb{F}_2^2 \neq \ker(A) = \left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$$

$$\operatorname{im}(A^{\top}A) = \{\mathbf{0}_2\} \neq \operatorname{im}(A^{\top}) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$

(b) Show that

$$A^{\top}Ax = A^{\top}b$$

always has a solution (even if Ax = b has no solution). Give an example to show that this is not true over a finite field.

Proof. Since $\operatorname{im}(A^{\top}A) = \operatorname{im}(A^{\top})$, for $A^{\top}b \in \operatorname{im}(A^{\top}b) = \operatorname{im}(A^{\top}A)$, $\exists \ x \in \mathbb{R}^n$, s.t. $A^{\top}Ax = A^{\top}b$, i.e., $A^{\top}Ax = A^{\top}b$ always has a solution.

Let
$$A \in \mathbb{F}_2^{2 \times 2}$$
, $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, and $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, then $A^{\top} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $A^{\top}A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Since $\operatorname{im}(A^{\top}A) = \{\mathbf{0}_2\}$

and
$$A^{\top}b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, there is no solution for $A^{\top}Ax = A^{\top}b$ in field \mathbb{F}_2 .

4

Let $\mathbf{v}_1, \dots, \mathbf{v}_r \in \mathbb{R}^n$. Let $G_r = [g_{ij}] \in \mathbb{R}^{r \times r}$ be the matrix with

$$g_{ij} = \mathbf{v}_i^\top \mathbf{v}_j$$

for i, j = 1, ..., r. This is called a *Gram matrix*.

(a) Show that $\mathbf{v}_1, \dots, \mathbf{v}_r$ are linearly independent iff $\operatorname{nullity}(G_r) = 0$.

Proof. Let
$$V = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_r \end{bmatrix}$$
, then

$$G_r = \begin{bmatrix} \mathbf{v}_1^{ op} \\ \vdots \\ \mathbf{v}_r^{ op} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_r \end{bmatrix} = V^{ op} V.$$

4

From problem 3 (a), we have $\ker(G_r) = \ker(V^\top V) = \ker(V)$ and $\operatorname{nullity}(G_r) = \operatorname{nullity}(V)$. So

 $\mathbf{v}_1, \dots, \mathbf{v}_r$ are linearly independent

$$\iff \operatorname{rank}(V) = r$$

$$\iff$$
 nullity $(V) = 0$

$$\iff$$
 nullity $(G_r) = 0$

(b) Show that $G_r = I_r$ iff $\mathbf{v}_1, \dots, \mathbf{v}_r$ are pairwise orthogonal unit vectors, i.e., $\|\mathbf{v}_i\|_2 = 1$ for all $i = 1, \dots, r$, and $\mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = 0$ for all $i \neq j$. If this holds, show that

$$\sum_{i=1}^{r} (\mathbf{v}^{\top} \mathbf{v}_i)^2 \le \|\mathbf{v}\|_2^2 \tag{4.1}$$

for all $\mathbf{v} \in \mathbb{R}^n$. What can you say about $\mathbf{v}_1, \dots, \mathbf{v}_r$ if equality always holds in (4.1) for all $\mathbf{v} \in \mathbb{R}^n$?

Proof.

$$G_r = I_r$$
 $\iff g_{ii} = 1, \ \forall \ i = 1, \dots, r \text{ and } g_{ij} = 0, \text{ for all } i \neq j$
 $\iff \mathbf{v}_i^{\top} \mathbf{v}_i = \|\mathbf{v}_i\|_2 = 1 \text{ for all } i = 1, \dots, r, \text{ and } \mathbf{v}_i^{\top} \mathbf{v}_j = 0 \text{ for all } i \neq j$
 $\iff \mathbf{v}_1, \dots, \mathbf{v}_r \text{ are pairwise orthogonal unit vectors}$

Since $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are pairwise orthogonal unit vectors, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is a basis of $\operatorname{im}(V)$ with $\operatorname{rank}(V) = r$ where V is defined in (a). Since $\mathbb{R}^n = \operatorname{im}(V) \oplus \operatorname{im}(V)^{\perp}$, suppose $\{\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n\}$ are the basis of $\operatorname{im}(V)^{\perp}$, then $\mathbf{v}_i(i=1,\ldots,r)$ and $\mathbf{v}_j(j=r+1,\ldots,n)$ are orthogonal, and $\forall \mathbf{v} \in \mathbb{R}^n$, $\exists a_1,\ldots,a_n \in \mathbb{R}$, s.t. $\mathbf{v} = \sum_{i=1}^n a_i \mathbf{v}_i$.

$$\sum_{i=1}^{r} (\mathbf{v}^{\top} \mathbf{v}_i)^2 = \sum_{i=1}^{r} \left(\sum_{j=1}^{n} a_j \mathbf{v}_j^{\top} \mathbf{v}_i \right)^2$$
$$= \sum_{i=1}^{r} (a_i \mathbf{v}_i^{\top} \mathbf{v}_i)^2$$
$$= \sum_{i=1}^{r} a_i^2 ||\mathbf{v}_i||_2^2$$
$$\leq \sum_{i=1}^{n} a_i^2 ||\mathbf{v}_i||_2^2$$
$$= ||\mathbf{v}||_2^2$$

If equality always holds in (4.1) for all $\mathbf{v} \in \mathbb{R}^n$, then $a_{r+1} = \cdots = a_n = 0$ for all $\mathbf{v} \in \mathbb{R}^n$, which means that $\operatorname{im}(V)^{\perp} = \{0\}$, i.e., $V = \mathbb{R}^n$, i.e. r = n.

Let $A \in \mathbb{C}^{n \times n}$. Recall that A is diagonalizable iff there exists an invertible $X \in \mathbb{C}^{n \times n}$ such that $X^{-1}AX = \Lambda$, a diagonal matrix.

(a) Show that A is diagonalizable if and only if its minimal polynomial is of the form

$$m_A(x) = (x - \lambda_1) \cdots (x - \lambda_d)$$

where $\lambda_1, \ldots, \lambda_d \in \mathbb{C}$ are all distinct. Hence deduce for a diagonalizable matrix, the degree of its minimal polynomial equals the number of distinct eigenvalues.

Proof. In \mathbb{C} , every polynomial of degree d have d roots. So it will have a form as m_A .

 \Longrightarrow

Let $f_A \triangleq (A - \lambda_1 I) \cdots (A - \lambda_d I)$. Since A is diagonalizable, there exists $X \in \mathbb{C}^{n \times n}$ such that $X^{-1}AX = \Lambda$ is a diagonal matrix with eigenvalues lying on diagonal. Suppose the distinct eigenvalues are $\lambda_1, \ldots, \lambda_d$. Since X is invertible, its columns $\mathbf{x}_1, \ldots, \mathbf{x}_n$ form a basis of \mathbb{C}^n . Then $\forall \mathbf{v} \in \mathbb{C}^n$, $\exists a_1, \ldots, a_n$, s.t. $\mathbf{v} = \sum_{i=1}^n a_i \mathbf{x}_i$.

Notice that for eigenvector \mathbf{x}_i and corresponding eigenvalue λ_j , $A\mathbf{x}_i = \lambda_j \mathbf{x}_i$, so $(A - \lambda_j I)\mathbf{x}_i = \mathbf{0}$. Therefore, $f_A v = \mathbf{0}$, $\forall \mathbf{v} \in \mathbb{C}^n$, i.e., $m_A(A) = 0_{n \times n}$.

Consider a monomial, if $(A - \mu I)\mathbf{v} = 0$ for some $\mu \in \mathbb{C}$ and $\mathbf{v} \in \mathbb{C}^n$, then μ and \mathbf{v} must be an eigenvalue and an eigenvector of A. So $m_A(x)$ is the minimal polynomial.

 \Leftarrow

Since $m_A(x)$ is the minimal polynomial, A has distinct eigenvalues $\lambda_1, \ldots, \lambda_d$ (each of them may have multiplicity larger than 1).

From the kernel decomposition theorem,

$$\mathbb{C}^{n} = \ker(0_{n \times n})$$

$$= \ker(m_{A}(A))$$

$$= \ker(A - \lambda_{1}I) \oplus \ker(A - \lambda_{2}I) \oplus \cdots \oplus \ker(A - \lambda_{d}I).$$

 $\forall i \in \{1, \dots, d\}$, let $n_i \triangleq \text{nullity}(A - \lambda_i I)$, then $\exists \{\mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,n_i}\}$ the basis of $\ker(A - \lambda_i I)$, such that $\sum_{i=1}^d n_i = n$ and full rank matrix $X = \begin{bmatrix} \mathbf{x}_{1,1}, \dots, \mathbf{x}_{1,n_i}, \dots, \mathbf{x}_{d,n_d} \end{bmatrix} \in \mathbb{C}^{n \times n}$ satisfies $XAX^{-1} = \Lambda$ where Λ is a diagonal matrix with each diagonal element being the eigenvalue λ_i corresponding to \mathbf{x}_{i,n_j} , i.e., A is diagonalizable.

(b) Let A be diagonalizable. Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{C}^n$ be n linearly independent right eigenvectors, i.e., $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$; and $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{C}^n$ be n linearly independent left eigenvectors, i.e., $\mathbf{y}_i^{\top} A = \lambda_i \mathbf{y}_i^{\top}$. Show that there is a choice of left and right eigenvectors of A such that any vector $\mathbf{v} \in \mathbb{C}^n$ can be expressed as

$$\mathbf{v} = \sum_{i=1}^{n} (\mathbf{y}_i^{\top} \mathbf{v}) \mathbf{x}_i.$$

If we write $X = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{C}^{n \times n}$ and $Y = [\mathbf{y}_1, \dots, \mathbf{y}_n] \in \mathbb{C}^{n \times n}$. What is the relation between X and Y?

Let

$$X = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \qquad Y = \begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_n \end{bmatrix}$$

 $\quad \text{then} \quad$

$$A = X\Lambda X^{-1}$$
$$= (Y^{\top})^{-1}\Lambda Y^{\top}$$

If we choose $Y^{\top}=X^{-1},$ i.e. $XY^{\top}=I,$ then $\sum_{i=1}^n \mathbf{x}_i \mathbf{y}^{\top}=I$ and

$$egin{aligned} &\sum_{i=1}^n (\mathbf{y}_i^{ op} \mathbf{v}) \mathbf{x}_i \ &= \sum_{i=1}^n \mathbf{x}_i \mathbf{y}_i^{ op} \mathbf{v} \ &= \left(\sum_{i=1}^n \mathbf{x}_i \mathbf{y}_i^{ op}
ight) \mathbf{v} \end{aligned}$$