

MGR. ONDREJ TOKARČÍK, MGR. JÁN ŠAŠAK, PhD., GeoKARTO 2022



# Úvod do problematiky

- Jedným z efektívnych nástrojov na tvorbu mitigačných opatrení v súvislosti s povodňami v urbanizovaných územiach je modelovanie.
- Hydrologický model nám umožňuje pochopenie rôznych hydrologických procesov a používa sa najmä na predpovedanie správania sa vody v krajine (Devia et al. 2015).
- Na výber správneho hydrologického modelu vplýva niekoľko faktorov:
- charakter problému, ktorý treba riešiť,
- 2) dostupná technika a softvérové vybavenie,
- 3) dostupnosť vstupných dát,
- dostupnosť dokumentácie a návodov,
- 5) skúsenosti používateľa s hydrologickým modelovaním (Haan et al. 1994). 🛚

#### Záujmové územie: okolie potoka Moškovec v Púchove



#### Záujmové územie: okolie potoka Moškovec v Púchove



#### **Modul R.SIM.WATER**

- SIMWE (Simlutated Water Erosion) je priestorový model obsahujúci dva komponenty: hydrologický, ktorý je v GRASS GIS-e implementovaný ako r.sim.water a erózny, implementovaný ako r.sim.sediment.
- Pre simuláciu povrchového tečenia vody je využiteľný hydrologický komponent modelu SIMWE s príkazom r.sim.water.
- Základnou metódou využitou v našom výskume je stochastická metóda Monte Carlo implementovaná v modeli SIMWE, ktorá rieši Saint Venantove rovnice použité v module r.sim.water.



### Vstupné dáta

- Od roku 2017 prebieha na Slovensku projekt leteckého laserového skenovania, ktorý zabezpečuje Úrad geodézie, kartografie a katastra SR (ÚGKK).
- Územie Slovenska je rozdelené na 42 lokalít a skenovanie prebieha postupne od západu smerom na východ.
- Požadovaná hustota mračna bodov je 5 bodov na m2, no dodávatelia dodávajú naskenované mračno bodov s omnoho väčšou hustotou, vďaka čomu je možné vytvoriť DMP s vysokým rozlíšením, aj 25 cm.

| Číslo<br>lokality | Názov<br>lokality | Výmera<br>(km²) | Obdobie skenovania OD-<br>DO                       | Výšková presnosť<br>bodov mračna v<br>ETRS89-TM34 [m] | Polohová presnosť<br>bodov mračna v ETRS89-<br>TM34 [m] | Priemerná hustota<br>bodov posledného<br>odrazu [b/m²] | Počet<br>klasifikačných<br>tried |
|-------------------|-------------------|-----------------|----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------|
| 13                | Partizánske       | 1207            | 13.11.2018 - 21.03.2019                            | 0,03                                                  | 0,12                                                    | 23                                                     | 10                               |
| 15                | Púchov            | 1259            | 26.04.2019 - 25.05.2019<br>14.11.2019 - 18.05.2020 | 0,05                                                  | 0,09                                                    | 48                                                     | 10                               |
| 35                | Košice            | 1578            | 10.04.2021 - 26.04.2021                            | 0,03                                                  | 0,09                                                    | 15                                                     | 2                                |

#### Vstupné dáta

- Spracovanie naskenovaného mračna bodov nám umožní vykonať simulácie povrchového tečenia vody pred a po vybudovaní protipovodňových opatrení, čo je prínosné pre zhodnotenie efektivity protipovodňových opatrení v tejto oblasti.
- Pre zber spomínaných lidarových dát sme použili pozemný laserový skener VZ-1000 od firmy Riegl a dáta boli následne spracované v softvéri RiSCAN PRO.
- Výsledným produktom zo spracovania lidarových dát je modifikovaný DMP, ktorý obsahuje protipovodňové hrádzky vybudované na potoku Moškovec.





Ukážka výsledku simulácie: A DMR (bez budov), B DMP (s budovami)



Využitie "preferential flow" pre implemetáciu mostov do simulácie





Výrez tieňovaného reliéfu v lokalite Púchov; A – pred vybudovaním hrádzok, – po vybudovaní hrádzok

#### Závery

- Dáta z projektu LLS, ktoré realizuje Úrad geodézie, kartografie a katastra majú dostatočnů
  presnosť a kvalitu na to, aby boli použité ako vstupné dáta pre simuláciu povrchového
  tečenia vody.
- Modul r.sim.water v softvéri GRASS GIS umožňuje implementáciu jednotlivých prvkov urbanizovaného územia (budovy, prekážky, mosty...) do modelu, vďaka čomu môžeme detailnejšie a presnejšie namodelovať reálny priebeh tečenia vody.
- Dosiahnuté parciálne výsledky z lokality Púchov potvrdzujú efektivitu simulovania povrchového tečenia vody pomocou modulu r.sim.water.
- Ďalšími krokmi v našom výskume bude modelovanie povrchového tečenia vody s implementáciou protipovodňových opatrení.

#### **ĎAKUJEM ZA POZORNOSŤ**