Knowledge and Reasoning

- Knowledge representation
- Wumpus world example
- Logic in general: models and entailment
- Propositional (Boolean) logic
- Normal forms
- Equivalence, validity, satisfiability
- Inference in propositional logic
 - Forward and Backward Chaining
 - Resolution

Knowledge-Based Agent

Domain independent algorithms

Domain specific content

- Agent that uses **prior** or **acquired** knowledge to achieve its goals
 - Can make more efficient decisions
 - Can make informed decisions
- Knowledge Base (KB): contains a set of <u>representations</u> of facts about the Agent's environment
- Each representation is called a **sentence**
- Use some **knowledge representation language**, to TELL it what to know e.g., (temperature 72F)
- ASK agent to query what to do
- Agent can use inference to deduce new facts from TELLed facts

Knowledge bases

- DECLARATIVE approach to building an agent (or other system):
 - Tell it what it needs to know
 - Not PROCEDURAL which is the alternative approach
- Then it can Ask itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level
 i.e., what they know, regardless of how implemented
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

Generic knowledge-based agent

```
function KB-AGENT( percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time  \begin{aligned} &\text{Tell}(KB, \text{Make-Percept-Sentence}(percept, t)) \\ &action \leftarrow \text{Ask}(KB, \text{Make-Action-Query}(t)) \\ &\text{Tell}(KB, \text{Make-Action-Sentence}(action, t)) \\ &t \leftarrow t + 1 \\ &\text{return } action \end{aligned}
```

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Wumpus World PEAS description

Performance measure

- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

- Deterministic?
- Accessible?
- Static?
- Discrete?
- Episodic?

Wumpus world characterization

Deterministic?
 Yes – outcome exactly specified.

Accessible?
 No – not fully observable, only local perception.

Static? Yes – Wumpus and pits do not move.

• Discrete? Yes

• Episodic? (Yes) – because static.

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

Other tight spots

Breeze in (1,2) and (2,1) \Rightarrow no safe actions

Assuming pits uniformly distributed, (2,2) is most likely to have a pit

Smell in (1,1)

⇒ cannot move

Can use a strategy of coercion:

shoot straight ahead

wumpus was there ⇒ dead ⇒ safe

wumpus wasn't there ⇒ safe

Another example solution

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

A	= Agent
B	= Breeze
G	= Glitter, Gold
Ol	K = Safe square

P	= Pit
\mathbf{S}	= Stench
\mathbf{V}	= Visited
\mathbf{W}	= Wumpus

			38
1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P ?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

No perception \rightarrow 1,2 and 2,1 OK

Move to 2,1

B in 2,1
$$\rightarrow$$
 2,2 or 3,1 P?

Move to 1,2 (only option)

Example solution

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2 A S OK	2,2	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

Α	= Agent
B	= Breeze
\mathbf{G}	= Glitter, Gold
OK	= Safe square
P	= Pit
\mathbf{S}	= Stench
\mathbf{V}	= Visited
\mathbf{W}	= Wumpus

1,4	2,4 P ?	3,4	4,4
1,3 _{W!}	2,3 A S G B	3,3 P ?	4,3
1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

S in $1,2 \rightarrow 1,3$ or 2,2 has W

No S in 2,1 \rightarrow 1,3 W

B in 2,1 and No B in 1,2 \rightarrow 3,1 P

Translating Facts into Propositional Sentences

- Propositional calculus has ONLY symbols in the language
- Each symbol has 2 values → true and false
- This severely limits what you can model
- Often clumsy to model big knowledge bases (KB) because you need to specify a very large number of facts
- Remember that EVERY FACT has to be explicitly modeled
- For example:
 - Wumpus is in location $2,1 \rightarrow W2,1 = true$
 - But, you may also have to generate W1,1 = false, W1,3 = false, etc. to cover all the locations where there is no wumpus.
 - There is a smell in locations 1,2; 2,1; 3,2; and 2,3
 S1,2 = true; S2,1 = true; S3,2 = true; and S2,3 = true; all other locations have no smell, so they must be modeled explicitly as well: e.g., S1,3 = false
 - Note that all the above are just symbols if you have 100 pieces of data, your KB will have 100 variables

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

<u>Semantics</u> define the "meaning" of sentences; i.e., define <u>truth</u> of a sentence in a world

E.g., the language of arithmetic

 $x+2 \geq y$ is a sentence; x2+y > is not a sentence

 $x+2 \geq y$ is true iff the number x+2 is no less than the number y

 $x+2 \ge y$ is true in a world where $x=7,\ y=1$

 $x+2 \geq y$ is false in a world where $x=0,\ y=6$

Types of logic

Logics are characterized by what they commit to as "primitives"

Ontological commitment: what exists—facts? objects? time? beliefs?

Epistemological commitment: what states of knowledge?

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief 01
Fuzzy logic	degree of truth	degree of belief 01

The Semantic Wall

Physical Symbol System

+BLOCKA+

+BLOCKB+

+BLOCKC+

P₁:(IS_ON +BLOCKA+ +BLOCKB+) P₂:((IS_RED +BLOCKA+)

Truth depends on Interpretation

Entailment

 Entailment means that truth of one sentence follows from the truth of other sentences:

- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
 - E.g., x+y = 4 entails 4 = x+y
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Entailment is different from inference

Logic as a representation of the World

Models

Logicians typically think in terms of <u>models</u>, which are formally structured worlds with respect to which truth can be evaluated

We say m is a $\underline{\mathsf{model}}$ of a sentence α if α is true in m

 $M(\alpha)$ is the set of all models of α

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

E.g. KB = Giants won and Reds won $\alpha = \text{Giants won}$

Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for *KB* assuming only pits

3 Boolean choices ⇒ 8 possible models

• *KB* = wumpus-world rules + observations

- *KB* = wumpus-world rules + observations
- $a_1 = "[1,2]$ is safe", $KB \models a_1$, proved by model checking
- Model Checking works only with FINITE worlds

• *KB* = wumpus-world rules + observations

- *KB* = wumpus-world rules + observations
- $a_2 = "[2,2]$ is safe", KB does not entail a_2
- $KB \not\models a_2$

Inference

 $KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$

Soundness: i is sound if whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness: i is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the KB.

Basic Symbols

Expressions only evaluate to either "true" or "false."

•	Р	"P is true"	
•	¬P	"P is false"	negation
•	PVQ	"either P is true or Q is true or both"	disjunction
•	P ^ Q	"both P and Q are true"	conjunction
•	$P\toQ$	"if P is true, then Q is true"	implication
•	$P \Leftrightarrow Q$	"P and Q are either both true or both false'	' equivalence

Propositional logic: syntax

Propositional logic is the simplest logic

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence

If S_1 and S_2 is a sentence, $S_1 \wedge S_2$ is a sentence

If S_1 and S_2 is a sentence, $S_1 \vee S_2$ is a sentence

If S_1 and S_2 is a sentence, $S_1 \Rightarrow S_2$ is a sentence

If S_1 and S_2 is a sentence, $S_1 \Leftrightarrow S_2$ is a sentence

Propositional logic: semantics

Each model specifies true/false for each proposition symbol

E.g.
$$A$$
 B C $True$ $True$ $False$

Rules for evaluating truth with respect to a model m:

$$\neg S$$
 is true iff S is false $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true i.e., is false iff S_1 is true and S_2 is false $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$$

Truth tables

- Truth value: whether a statement is true or false.
- Truth table: complete list of truth values for a statement given all possible values of the individual atomic expressions.

Example:

<u>P</u>	Q	ΡVQ
T	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Truth tables for basic connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- $P \rightarrow Q$ is the same as (not P) or Q
- P \leftrightarrow Q is the same as (P \rightarrow Q) and (Q \rightarrow P)

((not P) or Q) and ((not Q) or P)

Propositional logic: Logical Equivalence/Manipulation

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

Propositional inference: Enumeration / Model Checking Method

Let
$$\alpha = A \vee B$$
 and $KB = (A \vee C) \wedge (B \vee \neg C)$

Is it the case that $KB \models \alpha$? Check all possible models— α must be true wherever KB is to

A	B	C	$A \lor C$	$B \vee \neg C$	KB	α	
False	False	False	False	True	False	False	
False	False	True	True	False	False	False	
False	True	False	False	True	False	True	
False	True	True	True	True	True	True	
True	False	False	True	True	True	True	
True	False	True	True	False	False	True	
True	True	False	True	True	True	True	
True	True	True	True	True	True	True	

Conclusion: KB $\mid= \alpha$

Enumeration: Solution

A	B	C	$A \lor C$	$B \vee \neg C$	KB	α	
False	False	False	False	True	False	False	
False	False	True	True	False	False	False	
False	True	False	False	True	False	True	
False	True	True	True	True	True	True	
True	False	False	True	True	True	True	
True	False	$\mid True \mid$	True	False	False	True	
True	True	False	True	True	True	True	
True	True	True	True	True	True	True	

Conclusion: KB $\models \alpha$

Wumpus world sentences

```
Let P_{i,j} be true if there is a pit in [i, j].

Let B_{i,j} be true if there is a breeze in [i, j].

\neg P_{1,1}

\neg B_{1,1}

B_{2,1}
```

"Pits cause breezes in adjacent squares"

$$\begin{array}{ll} \mathsf{B}_{1,1} \Leftrightarrow & (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1}) \\ \mathsf{B}_{2,1} \Leftrightarrow & (\mathsf{P}_{1,1} \vee \mathsf{P}_{2,2} \vee \mathsf{P}_{3,1}) \end{array}$$

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	\underline{true}	\underline{true}
false	true	false	false	false	true	false	\underline{true}	\underline{true}
false	true	false	false	false	true	true	\underline{true}	\underline{true}
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	false	false						

Inference by enumeration

Depth-first enumeration of all models is sound and complete

```
function TT-Entails?(KB, \alpha) returns true or false
symbols \leftarrow \text{a list of the proposition symbols in } KB \text{ and } \alpha
\text{return TT-Check-All}(KB, \alpha, symbols, [])
function TT-Check-All}(KB, \alpha, symbols, model) \text{ returns } true \text{ or } false
\text{if Empty?}(symbols) \text{ then}
\text{if PL-True?}(KB, model) \text{ then return PL-True?}(\alpha, model)
\text{else return } true
\text{else do}
P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
\text{return TT-Check-All}(KB, \alpha, rest, \text{Extend}(P, true, model) \text{ and}
\text{TT-Check-All}(KB, \alpha, rest, \text{Extend}(P, false, model)
```

• For *n* symbols, time complexity is $O(2^n)$, space complexity is O(n)

Propositional inference: normal forms

Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms

E.g., $(A \vee \neg B) \wedge (B \vee \neg C \vee \neg D)$

"product of sums of simple variables or negated simple variables"

"sum of products of simple variables or negated simple variables"

E.g.,
$$(A \land B) \lor (A \land \neg C) \lor (A \land \neg D) \lor (\neg B \land \neg C) \lor (\neg B \land \neg D)$$

Horn Form (restricted)

conjunction of $Horn\ clauses$ (clauses with ≤ 1 positive literal)

E.g.,
$$(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$$

Often written as set of implications:

$$B \Rightarrow A \text{ and } (C \land D) \Rightarrow B$$

Deriving expressions from functions

- Given a boolean function in truth table form, find a propositional logic expression for it that uses only V, ^ and ¬.
- Idea: We can easily do it by disjoining the "T" rows of the truth table.

Example: XOR function

RESULT =
$$(P \land (\neg Q)) \lor ((\neg P) \land Q)$$

A more formal approach

- To construct a logical expression in disjunctive normal form from a truth table:
- Build a "minterm" for each row of the table, where:
 - For each variable whose value is T in that row, include the variable in the minterm
 - For each variable whose value is F in that row, include the negation of the variable in the minterm
 - Link variables in minterm by conjunctions

The expression consists of the disjunction of all minterms.

Example: adder with carry

Takes 3 variables in: x, y and ci (carry-in); yields 2 results: sum (s) and carry-out (co). To get you used to other notations, here we assume T = 1, F = 0, V = OR, $^ = AND$, $^ = NOT$.

х	У	ci	co	8	
0		0	0	0	
0	0	1	0	1	s : NOT x AND NOT y AND ci
0	1	0	0	1	s : NOT x AND y AND NOT ci
0	1	1	1	0	co: NOT x AND y AND ci
1	0	0	0	1	s : x AND NOT y AND NOT ci
1	0	1	1	0	co: x AND NOT y AND ci
1	1	0	1	0	co: x AND y AND NOT ci
1	1	1	1	1	co,s: x ANĎ y AND ci

The logical expression for co is:

```
(NOT x AND y AND ci) OR (x AND NOT y AND ci) OR (x AND y AND NOT ci) OR (x AND y AND ci)
```

The logical expression for s is:

```
(NOT \times AND NOT y AND ci) OR (NOT \times AND y AND NOT ci) OR (\times AND NOT y AND NOT ci) OR (\times AND y AND ci)
```

Validity and satisfiability

A sentence is valid if it is true in all models

e.g.,
$$A \vee \neg A$$
, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the <u>Deduction Theorem</u> $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is <u>satisfiable</u> if it is true in <u>some</u> model e.g., $A \lor B$, C

A sentence is <u>unsatisfiable</u> if it is true in <u>no</u> models e.g., $A \land \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable i.e., prove α by reductio ad absurdum

Tautologies / Valid Expressions – true in all models

Logical expressions that are always true. Can be simplified out.

Examples:

```
T
T V A
A V (\negA)
\neg(A ^ (\negA))
A \Leftrightarrow A
((P V Q) \Leftrightarrow P) V (\negP ^ Q)
(P \Leftrightarrow Q) => (P => Q)
```

Proof methods

Proof methods divide into (roughly) two kinds:

Model checking

truth table enumeration (sound and complete for propositional) heuristic search in model space (sound but incomplete) e.g., the GSAT algorithm (Ex. 6.15)

Application of inference rules

Legitimate (sound) generation of new sentences from old <u>Proof</u> = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

Inference Rules - Part I

Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

♦ And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$$

♦ And-Introduction: (From a list of sentences, you can infer their conjunction.)

$$\frac{\alpha_1, \alpha_2, \ldots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}$$

Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

Inference Rules - Part II

Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you
 can infer the other one is true.)

$$\frac{\alpha \vee \beta, \quad \neg \beta}{\alpha}$$

 \Diamond **Resolution**: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{\alpha \vee \beta, \quad \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$