CS 2305: Discrete Mathematics for Computing I

Lecture 01

- KP Bhat

What is Discrete Mathematics?

A fairly broad branch of mathematics

Mathematics

Continuous

- Focus on processes/phenomena that change in a continuous fashion
- Infinite in scope: one entity/state blends smoothly into the next
- No "holes" between successive values
 - Example: real numbers

- Focus on processes/phenomena that consist of a sequence of individual steps
- Finite in scope: abrupt changes in values
- "Holes" between successive values
 - Example: integers

Why Study Discrete Mathematics?

- Provides the mathematical background needed for more advanced courses in computer science
 - Concepts, terminologies, methods etc.
- Concepts learned here will be useful in many other disciplines like advanced mathematics, philosophy, economics, linguistics etc.

Kinds of Problems Solved Using Discrete Mathematics 1

- How many ways can a password be chosen following specific rules?
- How many valid Internet addresses are there?
- What is the probability of winning a particular lottery?
- Is there a link between two computers in a network?
- How can I identify spam email messages?
- How can I encrypt a message so that no unintended recipient can read it?
- How can we build a circuit that adds two integers?

Kinds of Problems Solved Using Discrete Mathematics²

- What is the shortest path between two cities using a transportation system?
- Find the shortest tour that visits each of a group of cities only once and then ends in the starting city.
- How can we represent English sentences so that a computer can reason with them?
- How can we prove that there are infinitely many prime numbers?
- How can a list of integers be sorted so that the integers are in increasing order?
- How many steps are required to do such a sorting?
- How can it be proved that a sorting algorithm always correctly sorts a list?

What You Will Learn from this Course

- Basic concepts of mathematical logic
- Different formal proof strategies
- Introduction to various discrete structures which are used to represent discrete mathematical objects and study their behavior
 - sets, functions, relations, graphs, trees etc.
- Introduction to number theory, with focus on concepts with important computer science applications
- Introduction to algorithms and computational complexity of algorithms

Text Sections Expected to be Covered

- Chapter 1
- Chapter 2 (Sec 2.1 2.3)
- Chapter 3 (Sec 3.1 3.2)
- Chapter 4 (Sec 4.1. 4.2)
- Chapter 5 (Sec 5.1 5.2, 5.4.1)
- Chapter 6 (Sec 6.1 6.3)
- Chapter 9 (Sec 9.1)
- Chapter 10 (Sec 10.1 10.5) (as much as time permits)
- Chapter 11 (Sec 11.1) [time permitting]

What is Logic?

- Logic is the study of formal reasoning
 - Major focus is on determining what may be correctly inferred from a given collection of facts
- Statements in a spoken languages are often ambiguous in their meaning but statements in logic have a well defined meaning
- Logic is useful in any field in which it is important to analyze precise statements

Main Branches of Logic

Source: https://www.philosophybasics.com/branch_logic.html

Propositional Logic (Propositional Calculus)

Propositions

- A proposition is a <u>declarative</u> sentence that is either true or false, but not both
 - The truth or falsity of a proposition is called its <u>truth value</u>
- Examples of propositions:
 - a) The Moon is made of green cheese.
 - b) Trenton is the capital of New Jersey.
 - c) Toronto is the capital of Canada.
 - d) 1 + 0 = 1
 - e) 0+0=2
- Examples that are not propositions.
 - a) Shut the door.
 - Imperative (command)
 - b) What time is it?
 - Interrogative (question)
 - c) What a funny story he told us!
 - Exclamative
 - d) x + 1 = 2
 - May be true or false, depending upon the value of x

Classroom Exercise

- Which of these sentences are propositions?
 What are the truth values of those that are propositions?
 - Boston is the capital of Massachusetts.
 - -5 + 7 = 10.
 - -x + 2 = 11.
 - Is it raining outside?
 - Wood floats on water.
 - Bill Gates is very generous.

Formal Representation of Propositions

- In mathematical logic propositions are represented as propositional variables (or sentential variables) and denoted by letters p, q, r, s, ...
- Each propositional variable has a truth value of true (denoted as <u>T</u>) or false (denoted as <u>F</u>)

The area of logic that deals with propositions is called propositional calculus or propositional logic.

Types of Propositions

Logical Operators

- Negation ¬
- Conjunction ∧
- Disjunction V
- XOR ⊕
- Implication →
- Biconditional ↔

Connectives

Truth Table

 A table that lists the output truth value of a compound proposition for each combination of the truth values of its constituent propositions

р	q	r	Output
F	F	F	Т
F	F	Т	F
F	Т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	T
Т	Т	F	T
Т	Т	Т	F

Logical Operator: Negation

The *negation* of a proposition p is denoted by $\neg p$ (and sometimes as \bar{p} or $^{\sim}p$ or p' or p' and has this truth table:

p	$\neg p$
Т	F
F	Т

- The truth value of the negation of p $(\neg p)$ is the opposite
- of the truth value of p
- **Example**: If p denotes "The earth is round.", then $\neg p$ denotes "It is not the case that the earth is round," or more simply "The earth is not round."

Classroom Exercise

- Find the negation of these propositions
 - Michael's PC runs Linux
 - It is not the case that Michael's PC runs Linux
 - Michael's PC does not run Linux.
 - Iron floats in water
 - It is not the case that iron floats in water
 - Iron does not float in water
 - Iron sinks in water
 - 100 is an even number
 - It is not the case that 100 is an even number
 - 100 is not an even number
 - 100 is an odd number

Logical Operator: Conjunction

• The *conjunction* of propositions p and q is denoted by $p \wedge q$ and has this truth table:

p	q	p \ q
Т	T	T
T	F	F
F	T	F
F	F	F

- The conjunction p ∧ q is true when both p and q are true and is false otherwise.
- **Example**: If p denotes "I am at home." and q denotes "It is raining." then $p \land q$ denotes "I am at home and it is raining."

Classroom Exercise

Create a conjunction from the following simple propositions:

- The sun is shining
- It is raining
 - The sun is shining <u>and</u> it is raining
 - The sun is shining <u>but</u> it is raining

Create a conjunction from the following simple propositions:

- Rebecca's PC has more than 16
 GB free hard disk space
- The processor in Rebecca's PC runs faster than 1 GHz
 - Rebecca's PC has more than 16
 GB free hard disk space, <u>and</u>
 the processor in Rebecca's PC
 runs faster than 1 GHz
 - Rebecca's PC has more than 16
 GB free hard disk space, and its processor runs faster than 1
 GHz