Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт

Высшая школа прикладной математики и физики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

по дисциплине «Интервальный анализ»

Выполнил студент

группы 5030102/90201

Воротников Андрей Алексеевич

Проверил

Доцент, к.ф.-м.н.

Баженов Александр Николаевич

Санкт-Петербург 2022

СОДЕРЖАНИЕ

Список иллюстраций		
1	Пос	становка задачи
2	Teo	рия
	2.1	Точечная оценка параметров регрессии
	2.2	Интервальная оценка параметров регрессии
	2.3	Информационное множество параметров
3	Pea	лизация
4	Рез	ультаты
	4.1	Графики
	4.2	Числовые значения
5	Обо	суждение
6	Ссь	ылка на репозиторий
	6.1	Код программы
C	Спис	сок иллюстраций
	1	График входных интервальных данных
	2	График входных интервальных данных, с радиусом равным $max(w_i)$ 4
	3	Информационное множество
	4	Допусковый коридор
	5	Предсказание значения при аргументе -10
	6	Предсказание значения при аргументе 101.5
	7	Предсказание значения при аргументе 1000

1. Постановка задачи

Дан набор интервальных данных. Считая что они задают линейно распределенную величину, требуется построить информационное множество параметров, корридор совместности и произвести "предсказание значений":

- 1. для значения между имеющимися данными (интерполяция).
- 2. для значений вне имеющихся данных (экстраполяция).

2. Теория

2.1. Точечная оценка параметров регрессии

Пусть x - номер измерения в выборке, а y - получившийся результат. Тогда мы можем представить линейную регрессию как

$$y = b_0 + b_1 * x$$

Для получения точечной оценки можно поставить задачу оптимизации

$$\begin{cases} \operatorname{mid}(\mathbf{y}_i) - w_i * rad(y_i) \leq X * \beta \leq mid(y_i) + w_i * rad(y_i) & i = 1, m \\ \sum_{i=1}^m w_i \to min \\ \mathbf{w}_i \geq 0 & i = 1, m \\ \mathbf{w}, \beta = ? \end{cases}$$

Здесь X — матрица $m \times 2$, в первом столбце которой элементы, равные 1, во втором — значения x_i . В качестве значений середины и радиуса возьмем $mid(y_i) = y_i$ и $rad(y_i) = 1$.

2.2. Интервальная оценка параметров регрессии

В ходе вычисления точечной оценки мы получили вектор w_i , котрые являются минимальными радиусами, необходимыми для того чтобы выборка была накрывающей. Для устранения избыточной информации, примем радиусы каждого измерения равными между собой и равными величине $\epsilon = max(w_i)$.

2.3. Информационное множество параметров

Построим визуальное представление информационного множества параметров b0 и b1. Для этого воспользуемся следующим алгоритмом:

Для индекса i от 0 до m:

Для индекса j от i+1 до m:

Шаг 1. По $(x_i, y_i \pm \epsilon)$ и $(x_j, y_j \pm \epsilon)$ построим 4 прямые.

Шаг 2. Для каждой прямой проверим, попадает ли она во все интервалы нашей выборки

Шаг 3. Если да - сохраняем параметры прямой как вершину нашего информационного множества.

3. Реализация

Лабораторная работа выполнена на языке программирования Python(3.7) с использованием следующих библиотек: Numpy, Scipy, Tabulate, Statsmodels, Matplotlib.

Отчет написан в онлайн редакторе LaTeX - Overleaf.

4. Результаты

4.1. Графики

Рис. 1. График входных интервальных данных

Рис. 2. График входных интервальных данных, с радиусом равным $max(w_i)$

Рис. 3. Информационное множество

Рис. 4. Допусковый коридор

Рис. 5. Предсказание значения при аргументе -10

Рис. 6. Предсказание значения при аргументе 101.5

Рис. 7. Предсказание значения при аргументе 1000

4.2. Числовые значения

Уравнение вершин информационного множества

$$y = -4.79053347 * 10^{-5}x + 3.84315808 * 10^{-2}$$

$$y = -5.24284612 * 10^{-5}x + 3.88977030 * 10^{-2}$$

$$y = -5.12293578 * 10^{-5}x + 3.86747826 * 10^{-2}$$

$$y = -5.16666667 * 10^{-5}x + 3.87552475 * 10^{-2}$$

Уравнение прямой задаваемой центром масс информационного множества

$$y = -5.0807455078667014 * 10^{-5}x + 0.038689828485382216$$

Предсказанные значения

$$y(-10) = [0.038910634146733666, 0.03942198765176471]$$

$$mid = 0.039166310899249185, rad = 0.00025567675251552194$$

$$y(101.5) = [0.033475002818348636, 0.033576214230588236]$$

$$mid = 0.03352560852446844, rad = 5.0605706119800226e - 05$$

$$y(1000) = [-0.013530758136470589, -0.009473753873366832]$$

$$mid = -0.01150225600491871, rad = 0.0020285021315518785$$

5. Обсуждение

- Из рисунка 4 (допускового коридора) можно заметить что в районе 90-ого испытания наблюдается излом.
- Из предсказанных значений можно заметить, что при экстаполяции погрешность гораздо больше чем при интерполяции.
- Из предсказанных значений можно заметить, что при экстаполяции погрешность увеличивается по мере удаления от имеющихся данных.

6. Ссылка на репозиторий

6.1. Код программы

Код программы на GitHub, URL: https://github.com/aVorotnikov/interval_analysis/tree/master/lab4.