

1)2)

Ejercicio 1 (20 pts.) Sea D la región comprendida entre las funciones $g(x) = x^2 - 1$ y $h(x) = 1 - x^2$.

(a) Dibuje la región D y calcule su área.

Vernerali es altop comes

$$g(x) = h(x) = 7 x^2 - 1 = 1 - x^2 = 7 x^2 + x^2 = 1 + 1 = 7 2x^2 = 2$$

$$= 7 \quad X^2 = \frac{2}{2} \implies X^2 = 1 \quad \begin{cases} x \times 0 = 1 \\ 0 \times 1 = -1 \end{cases}$$

.. les funcioner se intersecen en x=1 y x=-1

Veamos and es mayor

Como sobemos que los funciones se intersecon en X=1 y X=-1, evolvenos los funciones en el gun unto erbitrerio entre -1 y 1 y vermos wel es meyor

 $y(0) = 0^2 - 1 = -1$

 $h(0) = 1 - 0^{2} = 1$

Alvora calculemos el area

Lono reserve f(x) = g(x) f

Revolumos la integral

$$\int_{-1}^{1} h(x) - S(x) dx = \int_{-1}^{1} (1 - x^{2}) - (x^{2} - 1) dx = \int_{-1}^{1} 1 - x^{2} - x^{2} + 1 dx =$$

$$= \int_{1}^{1} -2x^{2} + 2 dx = -2 \cdot \int_{-1}^{1} x^{2} + 2 \cdot \int_{-1}^{1} dx$$

$$= -2\left(\int_{-7}^{7} x^{2} - \int_{-7}^{7} dx\right) = -2\left(\frac{x^{3}}{3}\right)^{\frac{7}{7}} - x + \frac{1}{7}$$

$$= -2\left(\frac{1^{3}}{3} - \frac{(-1)^{3}}{3} - \left(1 - (-1)\right)\right) = -2\left(\frac{1+1}{3} - (2)\right)$$

$$=-2/2-2)=-2.2-6=-2.4=8$$

Conclusion

Como el resultado de la integral fue 8, podemos concluir que el arca entre h(x) y g(x)

es de 8/3 v²

3)2)									$\sum_{\infty}^{\infty} (-1)$	n			
(a	a) Encr	uentre el « erge.	conjunto	de todos	s los núme	eros reale	s t_0 para	los cuales	s la serie	$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$	$-e^{t_0n}$			
) di				
		it del			N+1 / ha	4)		2 (a a)						
د ۲	- lim n+«	On41	=	$N = \begin{pmatrix} -1 \\ \infty \end{pmatrix}$	n+1 eto(n)		lin t	7 ⁿ 2	7 7					
			•		n eto.n			eto.n						
					Zn	,		Zn						
			= 1	M to.	n to	2%	= e ^t	9						
			h-6	× Zz	r to	etom	Z							
Uean	ده ۲۵	مربا جر	ماجلا ر	er de	to r	L 1.								
P (L 1	- Pto	41	$\Rightarrow \rho^{t}$	to r		Meto) 4/1	(2)					
		$\Rightarrow t_o$. Ln(e) < l	n(2)	=> t	0.10	= ln(z	.)					
		=> to	6/10/	(2)										
		_/ 0												
	JUN:													
Por	- Crit	i del c	ocient	e ten	emos (que s	4 7 6	1 =7	le s	erie co	nverse	ebs.	y con	10
					1 00									
					erzo zb	roluten	nente	ly por	lo te	to con	vege nou	malme	rte)	
\forall	to E	(-00)	In (z											

3)6) (b) Represente la función $f(x) = \frac{1}{(x-5)^2}$ como una serie de potencias centrada en a=0 y halle su radio de convergencia.

briemos de la serie geometrica y transformemos la hasta llegar a f(x)

$$\sum_{n>0}^{\infty} x^{n} = 1 \implies \sum_{n>0/X}^{\infty} = 1 \implies \sum_{n>0/X}^{\infty} = \frac{1}{1-x}$$

$$\frac{1}{5} = \frac{1}{5} = \frac{$$

$$= \frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} = \frac{1}$$

$$= 7 \frac{7}{5} \cdot \sum_{n=0}^{\infty} n \cdot \left(\frac{x}{5}\right)^{n-1} = \frac{d}{dx} \left(x-5\right)^{7} \cdot \frac{d}{dx} x-5$$

$$= 7 - \frac{7}{5} \cdot \sum_{n=0}^{\infty} n \cdot (\frac{x}{5})^n = -(x-5)^2 \cdot \frac{7}{5}$$

$$= \frac{7}{5} \cdot \frac{7}{5} \cdot \frac{5}{5} \cdot \frac{$$

$$\frac{1}{(-5+x)^2} = \sum_{n=0}^{\infty} x^n \, 5^{-2-n} \, (1+n) \text{ for } |x| < 5$$

Hallemos el radio de convergencia

Vsemos vit. del coliente

$$L = \lim_{n \to \infty} \frac{\partial n_{+1}}{\partial n} = \lim_{n \to \infty} \frac{n_{+1}}{S} = \lim_{n \to \infty} \frac$$

$$= \lim_{M \to \infty} 1 + \lim_{M \to \infty} 1 + 0 = 1$$

..
$$como \ l = 1 \implies Q = \frac{1}{2} = \frac{7}{7} = 1$$

Conclusion

la representación de fox como serie de potencias es Enson. (X) > su radio de conversanció es a= 1

1)6) **Ejercicio 1** (20 pts.) Sea D la región comprendida entre las funciones $g(x) = x^2 - 1$ y (a) Dibuje la región D y calcule su área. (b) Calcule la siguiente integral doble $\int \int_{\mathbb{R}} x^2 y \, dx \, dy$. Como x e y amber esten entre 1 y 1, tenemos o riquiente $\iint_{D} x^{2}y \, dx \, dy = \int_{-7}^{7} \int_{-1}^{7} x^{2}y \, dx \, dy \qquad ducloro$ Revoluemes einterroliteredo $\int_{-1}^{1} \int_{-1}^{1} x^{2} y dx dy = \int_{-1}^{1} (y \cdot \int_{-1}^{1} x^{2} dx) dy = \int_{-1}^{1} (y \cdot \left(\frac{x^{3}}{3}\right)^{-1} dx) dy$ $= \int_{-7}^{7} \left(y \cdot \left(\frac{3}{3} - \frac{3}{3} \right) \right) dy = \int_{-7}^{7} \left(y \cdot \left(\frac{7}{3} + \frac{7}{3} \right) \right) dy$ $= \int_{-7}^{7} \frac{y \cdot z}{3} dy = \frac{z}{3} \cdot \int_{-7}^{7} y dy = \frac{z}{3} \cdot \left(\frac{y^{2}}{7}\right)^{7}$ $= \frac{2}{3} \cdot \left(\frac{1^2 - (-1)^2}{7} \right) = \frac{2}{3} \cdot \left(\frac{1}{7} - \frac{1}{7} \right) = \frac{2}{3} \cdot 0$ ± () LONG WYSTON JAZY dxdy = 0 - Dudoso

- (a) Sea S la superficie de nivel en \mathbb{R}^3 dada por la ecuación $x^2 2y^2 3z^2 + xyz = 4$ y sea $P_0 = (3, -2, -1)$. Obtener la ecuación normal del plano Π_0 tangente a S en P_0 .
- (b) Considere el plano Π_1 definido por la ecuación x+y+z=1. Calcule el ángulo α entre los planos Π_0 y Π_1 . (Basta con dejar expresada la fórmula)

Colulenos vector nornel del plano tenjente a 5

$$f_{\chi}(x, y, z) = zx - 2.0 - 3.0 + 1.y. z$$

$$\{y(x,y,z)=0.2.2.y-3.0+x.1.z$$

$$(y(x,y,z) = 0-2.0-3.2.2 + x.y.1$$

$$=-62+\times y$$

$$: \nabla f(x,y,z) = (2\times t yz, -4y + xz, -6z + xy)$$

Eudluemos funto en gradiente

$$\nabla f(3,-2,-1) = (2.3+2.-1,-4.2+3.-1,-6.-1+3.-2)$$

$$=(8,5,0)$$

Conclusion

Habrendo calculado al vertor normal del plano tangente a 5, tenemos que la ecuación

de plano to tangente à 5 en lo es la signiente:

$$TT_0 = \{ X \in \mathbb{R}^3 / (x - (3, -7, -1), \nabla f(3, -7, -1)) = 0 \}$$

$$= \left\{ X \in \mathbb{R}^{3} / \left(x - (3, -2, -1), (8, 5, 0) \right) = 0 \right\}$$

(q(Z)	
(b) Considere el plano Π_1 definido por la ecuación $x + y + z = 1$. Calcule el ár los planos Π_0 y Π_1 . (Basta con dejar expresada la fórmula)	ngulo α entre
Planteo	
lure colculor el ongo lo entre dos planos debemos obtener	e engulo entre our vectores
normales	
Obtergamos vector normal de II	
Como el plano îlir este definido wando una ecuación	() ~ () ~
los coefficientes de une ecuación certariona estar	
pleno, tenemos que el vector normal del pleno TI, e	5 N2= (1,11)
Colculerros enquio entre plano	
En base a lo visto en el inciso anterior, definamos el	Veltor normal al Dano II. como
$N_1 = \nabla f(3, 2, -1) = (8, 5, 0)$	
	ada yartana s
Usemos le formule peux obtener el coseno del engulo entre	e das vectores
$Cos(\alpha) = \langle N_1, N_2 \rangle = \langle (8, 5, 0), (7, 7, 1) \rangle $	$ (8,5,0) = \sqrt{8^2 + 5^2 + 0^2}$
$\frac{1}{\ V_1\ ^2 \cdot \ V_2\ } \qquad \ (\vartheta_i s_i o)\ \cdot \ (\gamma_i \gamma_i \gamma)\ $	= \(\int 64 \tau 25 \)
	_ \[\sqrt{89} \]
$= \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ (1,1,1) = \sqrt{1^2 + 1^2 + 1^2}$
J89 · J3 J 267	= \frac{1}{3}
	200
= 7 (os (x) = 13 =	
Conclusion	
En bore a la vivta enteriormente, tenemos que el a	Mulo entre los planos To y ITa
$erigodo arcos\left(\frac{13}{\sqrt{267}}\right)$	
V C67 J	

- (a) Determine en qué direcciones v y w hay que moverse, partiendo del punto p = (0, 1), para lograr la más alta tasa y la más baja tasa de crecimiento de f, respectivamente. Luego, calcule $D_v f(p)$ y $D_w f(p)$.
- (b) Sea $h(t) = f(2 + 3t^2u_1, 3 + tu_2)$, donde $u = (u_1, u_2)$ es un vector unitario. Use la regla de la cadena y encuentre la dirección u para la cual la derivada h'(0) es máxima.

Olanteo

Pere calcular la dirección de maximo crecimiento partiendo de un punto, barta con evaluar el gradiente de 6 función en dicho y dividir esto por la norma del gradiente en dicho punto para así obtener un vector unitario

Para calcular la dirección de mínimo crecimiento el procedimiento er ol mismo, volo que se pone el gradiente como negativo

Colvilemos el gradiente

$$\nabla f(x, y) = (2x - 2.1. y^{2}, 0 - 2. x. 2y)$$

$$= (2x - 2. y^{2}, 4. x. y)$$

Evaluemos gradionte

$$\nabla((0,1) = (2.0 - 2.1^2, 4.0.1) = (-2, 0)$$

Calculemor la norma del gradiente

$$||\nabla f(o, 7)|| = ||(-2, 0)|| = \int (-2)^2 + 0| = \int 4| = 2$$

Definamos vy W

$$V = \nabla f(0,1) = (-2,0) = (-1,0)$$
 $||\nabla f(0,1)||$

$$W = -\frac{\nabla f(0,1)}{||\nabla f(0,1)||} = -(-2,0) = -(-2,0) = (-1,0)$$

Calculemos la derivadas direccionales

$$D_{V}f(0,1) = \langle \nabla f(0,1), (1,0) \rangle = \langle (-2,0), (-1,0) \rangle = 2+0 = 2$$

$$D_{V}f(0,1) = \langle \nabla f(0,1), (-1,0) \rangle = \langle (-2,0), (-1,0) \rangle = -2+0 = 2$$

Planteo

Definamos V(t) = (2+3t201,3+t02)

La reste de le cadene quede escuibiose de la siquiente forma (Vf(J(t)), V'(t))

Calculemos el gradiente

 $\nabla f(x,y) = (2x - 2y^2, 0 - 2.x.2y) = (2x - 2y^2, -4xy)$

 $\nabla f(\nabla(t)) = (2.(2+3t^2U_1)-2.(3+tu_2)^2, -4.(2+3t^2U_1).(3+tu_2))$

Colculemos V'(t)

 $\nabla'(t) = ((2+3t^2v_1)', (3+tv_2)') = (3.2.t.v_1, 1.v_2)$ $= (6tv_1, v_2)$

lalculemos la der: vada

 $= \left\langle \left(2.(z+3.0.U_1) - 2.(3+0.U_2)^2, -4.(z+3.0.U_1).(3+0.U_2) \right), (6.0.U_1, U_2) \right\rangle$

$$=\langle (2.2 - 2.3^2, -4.2.3), (0, 0_2) \rangle$$

= ((4-18, -24), (0, 02)) = ((-14, -24), (0, 02))

= -14.0 + (-24.02) = -24.02

U romaluss

Como un no operece en h'(o), definemos un=o y procedomos a encontrar algun uz que

M2X; Mile & M1(0)

 $||(0, U_2)|| = 1 \Rightarrow \int_0^c + U_1^c = 1 \Rightarrow \int_0^c + U_2^c = 1 \Rightarrow \int_0^c$

por lo tento, tenemos Uz=1, lo cual tiene ventido, ya que el valor maximo que quede tomar una de las coordenadas de un vector unitario es 1

Conclution

La direction U par la cual h'(o) es maxima es U= (o,1)