Rule Fit Regressor

How it works:

- Combines rules extracted from decision trees with linear terms for regression.
- Extracts interpretable decision rules from tree-based models.
- Uses these rules alongside linear terms to make predictions.
- Provides interpretability by allowing individual rules to be understood and analyzed.
- Effective in handling both categorical and continuous features.
- Suitable for tasks requiring a mix of linear and non-linear relationships.
- The RMSE for Rule Fit Regressor in this case is 0.338.

Pros:

- Adds feature interactions to linear models
- Rule fit works for both classification and regression
- Interpretability

Cons:

- Increasing number of features harms interpretability
- Overlapping rules cause difficulties in interpretation

PetalLengthCm <= 4.55 and PetalLengthCm > 3.95 and Species > 1.5

FIGS Classifier

How it works:

- Constructs decision rules through a greedy, interpretable process.
- Builds decision trees incrementally to minimize classification error.
- Each tree split maximizes the classification performance on a subset of data.
- Generates highly interpretable models with decision rules that can be easily understood.
- Effective in cases where interpretability is as important as accuracy.
- Produces compact models that can be efficiently evaluated.
- The accuracy for FIGS Classifier in this case is 0.633.

Tree None

- **Root Node** (PetalWidthCm <= 0.8): The first decision asks whether the petal width is less than or equal to 0.8. This splits the data into two branches:
 - **Left Branch** (**True**): If PetalWidthCm <= 0.8, it leads to the left side, containing 40 samples from class
 - **Right Branch** (False): If PetalWidthCm > 0.8, it moves to the right, containing 41 samples that need further splitting.

• Left Subtree:

- At the next split, PetalWidthCm <= 1.65, the samples are further split. If true, 36 samples are classified as class 1. If false, no samples remain in that branch.
- Right Subtree:
 - For samples where PetalWidthCm > 0.8, the next condition is whether PetalWidthCm <= 4.75. This branch is further split by various petal and sepal length/width conditions, classifying the remaining samples into either class 1 or class 2 based on those criteria.
- **Leaf Nodes**: At the bottom of the tree, each leaf node provides the final classification

Tree GAM Classifier

How it works:

- A tree-based Generalized Additive Model (GAM) for classification tasks.
- Combines tree-based models with additive components for flexibility and interpretability.
- Models the relationship between input variables and the target as a sum of non-linear functions.
- Captures non-linear relationships without sacrificing interpretability.
- Effective for datasets with complex, non-linear interactions.
- Suitable for tasks that require balancing accuracy and model interpretability.
- The accuracy for Tree GAM Classifier in this case is 0.633.

Prediction Probability Distribution for Tree GAM Classifier:

- Probability Distribution Peaks at 0 and 1:
 - For Class 0 (blue bars), we see that most of the predicted probabilities are concentrated at 0 and 1. This suggests that the model is confident in its predictions, assigning high or low probabilities (close to 0 or 1) rather than probabilities in the middle.
 - The same applies to Class 1 (orange bars), where most predictions are concentrated at probability values close to 1 (for Class 1) or close to 0 (for Class 0).
- Lower Density at Intermediate Values: There are very few instances where the model assigns probabilities between 0.4 and 0.6.

Comparison

Aspect	RuleFit Regressor	FIGS Classifier	TreeGAM Classifier
Туре	Regression	Classification	Classification
Interpretability	High: Combines decision rules with linear terms	High: Builds interpretable decision trees through greedy process	High: Interpretable additive tree- based model
Core Algorithm	Rules extracted from decision trees and linear models	Greedy decision tree splitting	Generalized Additive Model (GAM) with tree-based components
Handles Non-linearity	Yes: Rules capture non-linear relationships	Yes: Trees naturally capture non- linear relationships	Yes: Additive components handle complex, non-linear patterns
Key Strengths	 Interpretable combination of rules and linear terms Can handle both categorical and continuous features 	Produces compact,interpretable decision treesEfficient and accurate	 Captures non-linear interactions Balances flexibility and interpretability
Weaknesses	 Limited to regression tasks Complexity increases with many rules 	- Might not capture highly complex relationships without deep trees	- May require careful tuning for very high-dimensional data
Best Use Cases	 Regression tasks where interpretability is critical 	- Classification tasks with a need for clear decision paths	- Classification with non-linear relationships between variables
Model Complexity	Moderate: Complexity grows with more decision rules	Low to Moderate: Generates compact decision trees	Moderate: Can handle non- linearities but remains interpretable