Laboratorium 8, 9, 10

Bartosz Gałecki Michał Kwarciński Kacper Marchlewicz

Cel:

Celem laboratorium było zaprojektowanie oraz implementacja układu regulacji automatycznej dla stanowiska Tower Crane z wykorzystaniem systemu SCADA.

Etap 1:

Pracę rozpoczęliśmy od skonfigurowania modułów peryferyjnych (Ethernet, liczniki HIOEN). Następnie stworzyliśmy odpowiednie zmienne potrzebne do działania logiki obiektu.

	Label Name	Data Type	Class		Assign (Device/Label)	Initial Value	Constant	
1	BASE	Bit	VAR GLOBAL RETAIN	-	M1000	I III Valdo	Corintal	
2	IS_BASED_ANGLE	Bit	 VAR GLOBAL RETAIN		M1001			
3	IS BASED FORWARD	Bit	 VAR_GLOBAL_RETAIN	-	M1002			
4	IS_BASED_UP	Bit	 VAR_GLOBAL_RETAIN	-	M1003			
5	Center	Bit	 VAR_GLOBAL_RETAIN	-	M1004			
6	Center Angle	Bit	 VAR GLOBAL RETAIN	-	M1005			
7	Center_Foreward	Bit	 VAR_GLOBAL_RETAIN	-	M1006			
8	Center_up	Bit	 VAR_GLOBAL_RETAIN	-	M1007			
9	Center2	Bit	 VAR_GLOBAL_RETAIN	-	M1008			
10	DA	FLOAT [Single Precision]	 VAR_GLOBAL_RETAIN	-	D1000			
-11	DF	FLOAT [Single Precision]	 VAR_GLOBAL_RETAIN	-	D1002			
12	DU	FLOAT [Single Precision]	 VAR_GLOBAL_RETAIN		D1004			
13	PA	FLOAT [Single Precision]	 VAR_GLOBAL_RETAIN		D1006			
14	PF	FLOAT [Single Precision]	 VAR_GLOBAL_RETAIN		D1008			
15	PU	FLOAT [Single Precision]	 VAR_GLOBAL_RETAIN		D1010			
16	UpDown	Word [Unsigned]/Bit String [16-bit]	 VAR_GLOBAL_RETAIN		D1012			
17	RightLeft	Word [Unsigned]/Bit String [16-bit]	 VAR_GLOBAL_RETAIN		D1014			
18	ForBackward	Word [Unsigned]/Bit String [16-bit]	 VAR_GLOBAL_RETAIN		D1016			4
19	Automat	Bit	 VAR_GLOBAL_RETAIN		M1009			
20	Prawo	Bit	 VAR_GLOBAL_RETAIN		M1010			
21	Lewo	Bit	 VAR_GLOBAL_RETAIN		M1011			
22	Góra	Bit	 VAR_GLOBAL_RETAIN		M1012			
23	Dół	Bit	 VAR_GLOBAL_RETAIN		M1013			
24	Przód	Bit	 VAR_GLOBAL_RETAIN		M1014			
25	Tył	Bit	 VAR_GLOBAL_RETAIN		M1015			
26	STÓJ	Bit	 VAR_GLOBAL_RETAIN	_	M1016			
27				_				

Z powodzeniem zaimplementowaliśmy obsługę sterowań (PWN), skalowanie odczytów czujników, bazowanie oraz centrowanie dźwigu. Wprowadziliśmy zabezpieczenia zapewniające bezpieczną pracę obiektu w postaci obsługi krańcówek oraz szybkości poruszania się wysięgnika. Testowanie na żywo zakończyło się powodzeniem.

Etap 2:

Stworzyliśmy panele operatorskie do sterowania ręcznego. Daje on możliwość bazowania, centrowania, ręcznego sterowania wszystkimi pozycjami dźwigu oraz wyświetla ich procentowe położenie.

Wykonaliśmy też panel do sterowania poprzez zadaną wartość procentową, lecz logiki nie zdążyliśmy wykonać.

Ostatnim elementem naszej wizualizacji jest panel wykreślający wartości położenia chwytaka, wysięgnika oraz kąta dźwigu. Wykres jest punktowy, gdyż na naszym komputerze nie było możliwości stworzenia wykresu liniowego.

