\mathbf{A}	Model Summary
Populations	29: EP, X_FEF, LIP_EP, LIP_CD, Xh, Input, V1, V4L4, V4L23, AuxV4L4, AuxV4L23, FEFv, FEFvm, FEFm, PFC, AuxA, AuxE, FEFfix, HD, BVC, PR, oPR, PW, H, TR, IP, oPW, OVC, oTR
Connectivity	Sparse connectivity matrix, User-defined, Convolution, Pooling, One-to-One, Connectivity matrix, All-to-All
Neuron models	V1_Neuron, EP_Neuron, OVC_Neuron, H_Neuron, Xh_Neuron, LIPCD_Neuron, FEFv_Neuron, XFEF_Neuron, FEFvm_Neuron, AuxV4L23_Neuron, IP_Neuron, oTR_Neuron, TR_Neuron, FEFm_Neuron, PR_Neuron, V4L23_Neuron, HD_Neuron, oPR_Neuron, oPW_Neuron, PW_Neuron, Input_Neuron, LIPEP_Neuron, Aux_Neuron, AuxV4L4_Neuron, BVC_Neuron, V4L4_Neuron
Plasticity	Convolution operation, Pooling operation

В		Populations
Name	Elements	Size
EP	EP_Neuron	$N_{\rm EP} = 336 \ (21*16)$
X_FEF	XFEF_Neuron	$N_{\text{X.FEF}} = 112896 \ (21*16*21*16)$
LIP_EP	LIPEP_Neuron	$N_{\text{LIP_EP}} = 112896 \ (21*16*21*16)$
LIP_CD	LIPCD_Neuron	$N_{\text{LIP-CD}} = 112896 \ (21*16*21*16)$
Xh	Xh_Neuron	$N_{\rm Xh} = 336 \ (21*16)$
Input	Input_Neuron	$N_{\text{Input}} = 158400 \ (66*50*3*16)$
V1	V1_Neuron	$N_{\rm V1} = 158400 \ (66*50*3*16)$
V4L4	V4L4_Neuron	$N_{\rm V4L4} = 99000 \ (66*50*30)$
V4L23	V4L23_Neuron	$N_{\text{V4L23}} = 24750 \ (33*25*30)$
AuxV4L4	AuxV4L4_Neuron	$N_{\rm AuxV4L4} = 3300 \ (66*50)$
AuxV4L23	AuxV4L23_Neuron	$N_{\rm AuxV4L23} = 825 \ (33*25)$
FEFv	FEFv_Neuron	$N_{\text{FEFv}} = 3300 \ (66*50)$
FEFvm	FEFvm_Neuron	$N_{\text{FEFvm}} = 19800 \ (66*50*6)$
FEFm	FEFm_Neuron	$N_{\rm FEFm} = 3300 \ (66*50)$
PFC	Input_Neuron	$N_{\rm PFC} = 30$
AuxA	Aux_Neuron	$N_{\rm AuxA} = 3300 \ (66*50)$
AuxE	Aux_Neuron	$N_{\rm AuxE} = 825 \ (33*25)$
FEFfix	Input_Neuron	$N_{ m FEFfix} = 1$
HD	HD_Neuron	$N_{ m HD} = 100$
BVC	BVC_Neuron	$N_{ m BVC} = 816$
PR	PR_Neuron	$N_{\mathrm{PR}} = 4$
oPR	oPR_Neuron	$N_{ m oPR} = 9$
PW	PW_Neuron	$N_{\mathrm{PW}} = 816$
Н	H_Neuron	$N_{ m H}=1936$
TR	TR_Neuron	$N_{\rm TR} = 16320 \ (816*20)$
IP	IP_Neuron	$N_{ m IP}=1$
oPW	oPW_Neuron	$N_{ m oPW} = 816$
OVC	OVC_Neuron	$N_{ m OVC} = 816$
oTR	oTR_Neuron	$N_{\text{oTR}} = 16320 \ (816*20)$

\mathbf{C}			Connectivity	
Source	Destination	Target	Synapse	Pattern
EP	X_FEF	EP	-	Created by the method gaussian2dTo4d_v
EP	LIP_EP	EP	-	Created by the method gaussian2dTo4d_v
Xh	LIP_EP	FB	-	Created by the method gaussian2dTo4d_diag
LIP_EP	LIP_EP	exc	-	Created by the method all2all_exp4d
X_FEF	LIP_CD	CD	-	Created by the method gaussian4d_diagTo4d_v
Xh	LIP_CD	FB	-	Created by the method gaussian2dTo4d_diag
LIP_EP	Xh	EP	-	Created by the method gaussian4dTo2d_diag
LIP_EP	Xh	EP_neglect	-	Created by the method gaussian4dTo2d_diag
LIP_CD	Xh	CD	-	Created by the method gaussian4dTo2d_diag
LIP_CD	Xh	CD_neglect	-	Created by the method gaussian4dTo2d_diag
Xh	Xh	exc	-	Created by the method all2all_exp2d
Xh	Xh	inh	-	Created by the method all2all_exp2d
Xh	LIP_EP	SSP	-	Created by the method sur2dTo4d_diag
Xh	LIP_CD	SSP	-	Created by the method sur2dTo4d_diag
Input	V1	exc	-	One-to-One, weights 1.0, de- lays 5.0
V1	V4L4	exc	Convolution operation	Convolution
V4L4	V4L23	exc	Convolution operation	Convolution
V4L23	V4L4	A_FEAT	Convolution operation	Convolution
V4L23	V4L4	S_FEAT	Convolution operation	Convolution
V4L23	V4L4	S_SUR	Convolution operation	Convolution
V4L23	AuxE	exc	Pooling operation	Pooling
AuxE	FEFv	exc	-	Created by the method con_scale
FEFv	FEFvm	E_v	Convolution operation	Convolution
FEFv	FEFvm	S_v	Convolution operation	Convolution
FEFvm	AuxA	exc	Pooling operation	Pooling
AuxA	V4L4	A_SP	Convolution operation	Convolution
AuxA	V4L4	S_SP	Convolution operation	Convolution
		.33 -	opolosion	Continued on next page

continued from previous page

\mathbf{C}			Connectivity	
Source	Destination	Target	Synapse	Pattern
FEFvm	FEFm	vm	Pooling operation	Pooling
FEFm	FEFvm	E'm	Convolution operation	Convolution
PFC	V4L23	A_PFC	-	Created by the method
				one_to_dim
FEFfix	FEFm	fix	-	All-to-All, weights 1.0, delays 0.0
AuxV4L23	V4L23	SSP	-	One-to-One, weights 1.0, de- lays 0.0
AuxV4L4	V4L4	LIP	-	One-to-One, weights 1.0, de- lays 0.0
HD	HD	HD2HD	-	Connectivity matrix
HD	HD	HDRotCCW	-	Connectivity matrix
HD	HD	HDRotCW	-	Connectivity matrix
HD	IP	HD2IP	-	All-to-All, weights 1.0, delays 0.025
IP	TR	IP2TR	-	All-to-All, weights 1.0, de- lays 0.025
IP	oTR	IP2oTR	-	All-to-All, weights 1.0, de- lays 0.025
Н	BVC	H2BVC	-	Connectivity matrix
BVC	Н	BVC2H	-	Connectivity matrix
Н	PR	H2PR	-	Connectivity matrix
Н	oPR	H2oPR	-	Connectivity matrix
oPR	Н	oPR2H	-	Connectivity matrix
oPR	PW	oPR2PW	-	Connectivity matrix
oPR	HD	oPR2HD	-	Connectivity matrix
BVC	oPR	BVC2oPR	-	Connectivity matrix
oPR	BVC	oPR2BVC	-	Connectivity matrix
oPR	oPR	oPR2oPR	-	Connectivity matrix
PR	Н	PR2H	-	Connectivity matrix
PR	PR	PR2PR	-	Connectivity matrix
PR	BVC	PR2BVC	-	Connectivity matrix
BVC	PR	BVC2PR	-	Connectivity matrix
BVC	BVC	BVC2BVC	-	Connectivity matrix
Н	OVC	H2OVC	-	Connectivity matrix
OVC	Н	OVC2H	-	Connectivity matrix
OVC	BVC	OVC2BVC	-	Connectivity matrix
BVC	OVC	BVC2OVC	-	Connectivity matrix
OVC	OVC	OVC2OVC	-	Connectivity matrix
OVC	oPR	OVC2oPR	-	Connectivity matrix
oPR	OVC	oPR2OVC	-	Connectivity matrix
	•	•		Continued on next page

continued from previous page

C Connectivity				
Source	Destination	Target	Synapse	Pattern
BVC	TR	BVC2TR	-	Sparse connectivity matrix
TR	BVC	TR2BVC	-	Sparse connectivity matrix
OVC	oTR	OVC2oTR	-	Sparse connectivity matrix
oTR	OVC	oTR2OVC	-	Sparse connectivity matrix
TR	PW	TR2PW	-	Sparse connectivity matrix
PW	TR	PW2TR	-	Sparse connectivity matrix
oTR	oPW	oTR2oPW	-	Sparse connectivity matrix
oPW	oTR	oPW2oTR	-	Sparse connectivity matrix
HD	TR	HD2TR	-	Connectivity matrix
HD	oTR	HD2oTR	-	Connectivity matrix
Н	Н	Н2Н	-	Connectivity matrix
PW	PW	PW2PW	-	All-to-All, weights 1, delays 0.05
oTR	oTR	oTR2oTR	-	Created by the method layerwise_inhibition
FEFm	X_FEF	CD	-	Created by the method gaussian2dTo4d_h
FEFm	LIP_EP	FEF	-	Created by the method gaussian2dTo4d_h
FEFm	LIP_CD	FEF	-	Created by the method gaussian2dTo4d_h
LIP_EP	FEFv	LIP1	-	Created by the method gaussian4dTo2d_h
LIP_CD	FEFv	LIP2	-	Created by the method gaussian4dTo2d_h
AuxE	LIP_EP	V4	-	Created by the method gaussian2dTo4d_h
AuxE	LIP_CD	V4	-	Created by the method gaussian2dTo4d_h

D	Neuron Models
Name	EP_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$\frac{dr_{\text{change}}(t)}{dt} \cdot \tau + r(t) = (\text{baseline})^{+}$
	$r(t) = \begin{cases} 0 & \text{if } r_{\text{change}}(t) < 1.0 \cdot 10^{-5} \\ r_{\text{change}}(t) & \text{otherwise.} \end{cases}$

Name	XFEF_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$\operatorname{num}_{\text{neurons}}(t) = \operatorname{num-neurons-h}^2 \cdot \operatorname{num-neurons-w}^2$
	$\frac{dr_{\text{change}}(t)}{dt} \cdot \tau + r(t) = X_{\text{FEFsc}} \cdot \sum_{\text{CD}} w \cdot r^{\text{pre}}(t - d) \cdot \sum_{\text{EP}} w \cdot r^{\text{pre}}(t - d) - w_{\text{inh}} \cdot r(t) \cdot \text{num}_{\text{neurons}}(t) \cdot \text{mean}(r(t))$
	$r(t) = \begin{cases} 0 & \text{if } r_{\text{change}}(t) < 1.0 \cdot 10^{-5} \\ r_{\text{change}}(t) & \text{otherwise.} \end{cases}$

Name	LIPEP_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$\operatorname{num}_{\text{neurons}}(t) = \operatorname{num-neurons-h}^2 \cdot \operatorname{num-neurons-w}^2$
	$\frac{dr_{\text{change}}(t)}{dt} \cdot \tau + r(t) = \sum_{\text{FB}} w \cdot r^{\text{pre}}(t-d) \cdot \sum_{\text{EP}} w \cdot r^{\text{pre}}(t-d) - \sum_{\text{SSP}} w \cdot r^{\text{pre}}(t-d)$ $\cdot \text{vSSP} + \sum_{\text{exc}} w \cdot r^{\text{pre}}(t-d) + \sum_{\text{EP}} w \cdot r^{\text{pre}}(t-d)$
	$\cdot \left(\sum_{V4} w \cdot r^{\text{pre}}(t-d) \cdot \text{FFsc} + \sum_{\text{FEF}} w \cdot r^{\text{pre}}(t-d) \cdot \text{FEFsc} \right)$
	$\cdot \left(A - \max\left(r(t)\right)\right)^{+} - w_{\text{inh}} \cdot \text{num}_{\text{neurons}}(t) \cdot \left(D + r(t)\right) \cdot \text{mean}\left(r(t)\right)$
	$r(t) = \begin{cases} 0 & \text{if } r_{\text{change}}(t) < 1.0 \cdot 10^{-5} \\ r_{\text{change}}(t) & \text{otherwise.} \end{cases}$

Name	LIPCD_Neuron
Type	User-defined model of a rate-coded neuron.
Type Equations	$\begin{aligned} \text{num}_{\text{neurons}}(t) &= \text{num-neurons-h}^2 \cdot \text{num-neurons-w}^2 \\ \frac{dr_{\text{change}}(t)}{dt} \cdot \tau + r(t) &= \sum_{\text{FB}} w \cdot r^{\text{pre}}(t-d) \cdot \sum_{\text{CD}} w \cdot r^{\text{pre}}(t-d) \cdot \text{FBsc} - \sum_{\text{SSP}} w \cdot r^{\text{pre}}(t-d) \\ &\cdot \text{vSSP} - w_{\text{inh}} \cdot \text{num}_{\text{neurons}}(t) \cdot (D+r(t)) \cdot \text{mean} \left(r(t)\right) \\ &+ \left(\sum_{\text{V4}} w \cdot r^{\text{pre}}(t-d) + \sum_{\text{FEF}} w \cdot r^{\text{pre}}(t-d) \cdot \text{FEFsc}\right) \\ &\cdot \left(\sum_{\text{CD}} w \cdot r^{\text{pre}}(t-d) \cdot (A-r(t))^+ + 1\right) \end{aligned}$
	$r(t) = \begin{cases} 0 & \text{if } r_{\text{change}}(t) < 1.0 \cdot 10^{-5} \\ r_{\text{change}}(t) & \text{otherwise.} \end{cases}$

Name	Xh_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$\mathrm{LIP}_{\mathrm{input}}(t)$
	$= \begin{cases} \text{NEsc} \cdot \left(\sum_{\text{EP-neglect}} w \cdot r^{\text{pre}}(t-d) + \sum_{\text{CD-neglect}} w \cdot r^{\text{pre}}(t-d) \right) & \text{if neglect} \\ \text{FFsc} \cdot \left(\sum_{\text{CD}} w \cdot r^{\text{pre}}(t-d) + \sum_{\text{EP}} w \cdot r^{\text{pre}}(t-d) \right) & \text{otherwise.} \end{cases}$
	$(\text{FFsc} \cdot (\sum_{\text{CD}} w \cdot r^{\text{pre}}(t-d) + \sum_{\text{EP}} w \cdot r^{\text{pre}}(t-d))$ otherwise.
	$input(t) = baseline + LIP_{input}(t)$
	$s(t) = s(t) + \frac{dt_{dep} \cdot (-s(t) + input(t))}{\tau_{dep}}$ $S2(t) = -d_{dep} \cdot s(t) + 1$
	$S2(t) = -d_{\text{dep}} \cdot s(t) + 1$
	$\operatorname{num}_{\operatorname{neurons}}(t) = \operatorname{num-neurons-h} \cdot \operatorname{num-neurons-w}$
	$inh(t) = \sum_{inh} w \cdot r^{pre}(t - d) \cdot INHsc \cdot (D + r(t))$
	$\frac{dr_{\text{change}}(t)}{dt} \cdot \tau + r(t) = \sum_{\text{exc}} w \cdot r^{\text{pre}}(t - d) + \text{S2}(t) \cdot \text{input}(t) - \text{inh}(t)$
	$r(t) = \begin{cases} 0 & \text{if } r_{\text{change}}(t) < 1.0 \cdot 10^{-5} \\ r_{\text{change}}(t) & \text{otherwise.} \end{cases}$

Name	Input_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	

Name	Aux_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$r(t) = \sum_{\text{exc}} w \cdot r^{\text{pre}}(t - d)$

Name	V1_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$r(t) = \text{pow}\left(\sum_{\text{exc}} w \cdot r^{\text{pre}}(t-d), \text{pV1C}\right)$

Name	V4L4_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	$E(t) = \text{pow}\left(\text{vV1} \cdot \text{clip}\left(\sum_{\text{exc}} w \cdot r^{\text{pre}}(t-d), 0, 1\right), \text{pE}\right)$
	$ASP(t) = \sum_{A.SP} w \cdot r^{pre}(t - d) \cdot vFEFvm$
	AFEAT $(t) = \text{vV24} \cdot \text{pow} \left(\sum_{\text{A_FEAT}} w \cdot r^{\text{pre}}(t-d), \text{pV24} \right)$
	$ALIP(t) = \sum_{LIP} w \cdot r^{pre}(t - d) \cdot vLIP$
	A(t) = AFEAT(t) + ALIP(t) + ASP(t) + 1
	SFEAT $(t) = \text{pow}\left(\text{vF1} \cdot \text{clip}\left(\sum_{\text{S_FEAT}} w \cdot r^{\text{pre}}(t-d), 0, 1\right), \text{pF1}\right)$
	$SSP(t) = \sum_{S \subseteq SP} w \cdot r^{pre}(t - d) \cdot vSP1$
	$SSUR(t) = \sum_{S.SUR} w \cdot r^{pre}(t - d) \cdot vSUR1$
	$S(t) = E(t) \cdot (A(t) + SFEAT(t) + SSP(t) + SSUR(t))$
	$EA(t) = A(t) \cdot E(t)$
	$A_S(t) = \frac{A(t)}{S(t) + \text{sigmaL4}}$
	$EA_S(t) = \frac{A(t) \cdot E(t)}{S(t) + sigmaL4}$
	$\frac{\tau \cdot dr}{\Delta t} = \frac{A(t) \cdot E(t) \cdot \text{gHVA4}}{S(t) + \text{sigmaL4}} - r(t)$

Name	V4L23_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	$ALIP(t) = \sum_{LIP1} w \cdot r^{pre}(t - d) \cdot vLIP1 + \sum_{LIP2} w \cdot r^{pre}(t - d) \cdot vLIP2$
	$A(t) = \left(\sum_{\text{A.PFC}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vPFC} + \text{vLIP} \cdot \text{ALIP}(t) + 1\right)$ $\cdot \text{pow}\left(\sum_{\text{exc}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vV42}, \text{pV42}\right)$
	$S(t) = \left(\sum_{\text{A_PFC}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vPFC} + \sum_{\text{SSP}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vSSP} + \text{vLIP} \cdot \text{ALIP}(t) + 1\right)$ $\cdot \text{pow}\left(\sum_{\text{exc}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vV42}, \text{pV42}\right)$
	$\frac{\tau \cdot dr}{\Delta t} = \frac{A(t) \cdot \text{gHVA2}}{S(t) + \text{sigmaL23}} - r(t)$

Name	AuxV4L4_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$vLIP(t) = \sum_{LIP1} w \cdot r^{pre}(t - d) \cdot vLIP1 + \sum_{LIP2} w \cdot r^{pre}(t - d) \cdot vLIP2$
	r(t) = vLIP(t)

Name	AuxV4L23_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$S_{\text{SP}}(t) = \sum_{\text{SSP1}} w \cdot r^{\text{pre}}(t-d) \cdot \text{vSSP1} + \sum_{\text{SSP2}} w \cdot r^{\text{pre}}(t-d) \cdot \text{vSSP2}$
	$r(t) = S_{\rm SP}(t)$

Name	FEFv_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$ALIP(t) = \sum_{LIP1} w \cdot r^{pre}(t - d) \cdot vLIP1 + \sum_{LIP2} w \cdot r^{pre}(t - d) \cdot vLIP2$
	$E(t) = \sum_{\text{exc}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vExc} + \text{ALIP}(t)$
	$q(t) = \frac{E(t) \cdot (\text{sigmaFEF} + 1)}{E(t) + \text{sigmaFEF}}$
	$\frac{\tau \cdot dr}{\Delta t} = -r(t) + (-c + q(t) \cdot (c+1))^{+}$

Name	FEFvm_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$ES(t) = \operatorname{clip}\left(\sum_{E_{-v}} w \cdot r^{\operatorname{pre}}(t-d) \cdot vEv - \sum_{S_{-v}} w \cdot r^{\operatorname{pre}}(t-d) \cdot vSv1, 0, 1\right)$
	$E(t) = \text{vlow} \cdot \left(\sum_{\text{E.v}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vEv}\right)^{+} + \text{ES}(t) \cdot (1 - \text{vlow})$
	$\frac{\tau \cdot dr}{\Delta t} = \sum_{\text{E.m}} w \cdot r^{\text{pre}}(t - d) \cdot (1 - \text{vFEFv}) + E(t) \cdot \text{vFEFv} - r(t)$

Name	FEFm_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$svm(t) = \sum_{vm} w \cdot r^{pre}(t - d)$
	$\frac{\tau \cdot dr}{\Delta t} = \sum_{\text{vm}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vFEFvm} - \sum_{\text{fix}} w \cdot r^{\text{pre}}(t - d) \cdot \text{vSFix} - \text{vSvm} \cdot \text{max} \left(\text{svm}(t) \right) - r(t)$

Name	HD_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$k(t) = \text{CCWturn} \cdot \text{Rotphi} \cdot \text{sum} (HDRotCCW) + \text{CWturn} \cdot \text{Rotphi}$
	$\cdot \operatorname{sum}(HDRotCW) + \operatorname{HD2HDphi} \cdot \operatorname{sum}(HD2HD) + \operatorname{cue} \cdot \operatorname{percep}_{\operatorname{flag}}$
	$+ \operatorname{cue_{init}} + \operatorname{imag_{flag}} \cdot \operatorname{oPR2HDphi} \cdot \operatorname{sum} (oPR2HD) - \operatorname{act}(t)$
	$\frac{d\mathrm{act}(t)}{dt} \cdot \tau = k(t)$
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$

Name	IP_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot \left(-\alpha + \sum_{\text{HD2IP}} w \cdot r^{\text{pre}}(t-d) \cdot \text{HD2IPphi}\right)}}$

Name	H_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$k(t) = \text{use}_{\text{syninput}} \cdot (I_{\text{comp}}(t) + \text{BVC2Hphi} \cdot \text{Pmod} \cdot \text{sum} (BVC2H) + \text{Hphi} \cdot \text{sum} (H2H) $ $+ \text{Imod} \cdot \text{oPR2Hphi} \cdot \text{sum} (oPR2H) + \text{OVC2Hphi} \cdot \text{sum} (OVC2H) + \text{PR2Hphi} $ $\cdot \text{sum} (PR2H)) - \text{act}(t)$
	$\frac{d\mathrm{act}(t)}{dt} \cdot \tau = k(t)$
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$
	$\frac{dI_{\text{comp}}(t)}{dt} \cdot \text{ICtau} = -\text{nb-neurons-H} \cdot \text{mean} (r(t)) + 15$

Name	BVC_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$k(t) = \text{use}_{\text{syninput}} \cdot (\text{H2BVCphi} \cdot \text{Imod} \cdot \text{sum} (H2BVC) + \text{OVC2BVCphi}$ $\cdot \text{sum} (OVC2BVC) + \text{PR2BVCphi} \cdot \text{sum} (PR2BVC) + \text{Pmod} \cdot \text{TR2BVCphi}$ $\cdot \text{sum} (TR2BVC) + \text{sum} (BVC2BVC)) - \text{act}(t)$
	$\frac{d\mathrm{act}(t)}{dt} \cdot \tau = k(t)$
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$

Name	PR_Neuron	
Type	User-defined model of a rate-coded neuron.	
Equations	$k(t) = \text{cue}_{\text{percep}} + \text{use}_{\text{syninput}} \cdot (\text{BVC2PRphi} \cdot \text{sum} (BVC2PR) + \text{H2PRphi} \cdot \text{Imod}$	
	$\cdot \operatorname{sum}(H2PR) + \operatorname{sum}(PR2PR)) - \operatorname{act}(t)$	
	$\frac{d\operatorname{act}(t)}{dt} \cdot \tau = k(t)$	
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$	

Name	oPR_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$k(t) = \text{use}_{\text{syninput}} \cdot \left(\sum_{\text{oPR2oPR}} w \cdot r^{\text{pre}}(t-d) \cdot \text{oPR2oPRphi} + \text{Cue} \cdot \text{recallobj} + \text{H2oPRphi} \right)$
	$\cdot \operatorname{sum}\left(H2oPR\right) + \operatorname{OVC2oPRphi} \cdot \operatorname{sum}\left(OVC2oPR\right) + 200 \cdot \operatorname{oPR}_{\operatorname{drive}} \cdot \operatorname{percep}_{\operatorname{flag}}\right)$
	$-\operatorname{act}(t)$
	$\frac{d\mathrm{act}(t)}{dt} \cdot \tau = k(t)$
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$

Name	PW_Neuron	
Type	User-defined model of a rate-coded neuron.	
Equations		
	$k(t) = \text{use}_{\text{syninput}} \cdot \left(\sum_{\text{TR2PW}} w \cdot r^{\text{pre}}(t-d) \cdot \text{Imod} \cdot \text{TR2PWphi} + \text{BcueScale} \right)$	
	\cdot ego-cue-percep \cdot use-ego-cue-percep $-$ 100 \cdot bath $\bigg) -$ act (t)	
	$\frac{d\operatorname{act}(t)}{dt} \cdot \tau = k(t)$	
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$	

Name	oPW_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$k(t) = \text{ObjCue}_{\text{percep}} \cdot \text{OcueScale} + \text{use}_{\text{syninput}}$
	· (Imod · TR2oPWphi · sum (oTR2oPW) — bath · nb-neurons-oPW · mean ($r(t)$)) — act(t)
	$\frac{d\mathrm{act}(t)}{dt} \cdot \tau = k(t)$
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$

Name	TR_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$k(t) = \text{use}_{\text{syninput}} \\ \cdot (\text{BVC2TRphi} \cdot \text{Imod} \cdot \text{sum} (BVC2TR) + \text{HD2TRphi} \cdot \text{sum} (HD2TR) - \text{IP2TRphi} \\ \cdot \text{sum} (IP2TR) + \text{PW2TRphi} \cdot \text{Pmod} \cdot \text{sum} (PW2TR) - \text{bath} \cdot \text{sum} (TR2TR)) \\ - \text{act}(t)$
	$\frac{d\mathrm{act}(t)}{dt} \cdot \tau = k(t)$
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$

Name	OVC_Neuron	
Type	User-defined model of a rate-coded neuron.	
Equations		
	$k(t) = \text{use}_{\text{syninput}} \cdot (\text{BVC2OVCphi} \cdot \text{sum} (BVC2OVC) + \text{H2OVCphi} \cdot \text{Imod}$ $\cdot \text{sum} (H2OVC) + \text{Imod} \cdot \text{oPR2OVCphi} \cdot \text{sum} (oPR2OVC) + \text{OVC2OVCphi}$ $\cdot \text{sum} (OVC2OVC) + \text{Pmod} \cdot \text{TR2OVCphi} \cdot \text{sum} (oTR2OVC)) - \text{act}(t)$	
	$\frac{d\operatorname{act}(t)}{dt} \cdot \tau = k(t)$	
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \arctan(t))}}$	

Name	oTR_Neuron
Type	User-defined model of a rate-coded neuron.
Equations	
	$k(t) = \text{use}_{\text{syninput}} \cdot (\text{HD2oTRphi} \cdot \text{sum} (HD2oTR) - \text{IP2oTRphi} \cdot \text{sum} (IP2oTR) \\ + \text{Imod} \cdot \text{OVC2oTRphi} \cdot \text{sum} (OVC2oTR) + \text{Pmod} \cdot \text{oPW2oTRphi} \\ \cdot \text{sum} (oPW2oTR) - \text{bath} \cdot \text{sum} (oTR2oTR)) - \text{act}(t)$
	$\frac{d\operatorname{act}(t)}{dt} \cdot \tau = k(t)$
	$r(t) = \frac{1}{1 + e^{-2 \cdot \beta \cdot (-\alpha + \operatorname{act}(t))}}$

Name	Convolution operation
Type	Convoluted kernel over the pre-synaptic population.
PSP	
	$w(t) \cdot r^{ ext{pre}}(t-d)$

\mathbf{F}	Parameters

Population	Parameter	Value
EP	au	10.0
	baseline	0.0

Population	Parameter	Value	
X_FEF	A	1.0	
	au	10.0	
	$w_{ m inh}$	0.2	
	$X_{ m FEFsc}$	0.2	
	num-neurons-w	21	
	num-neurons-h	16	

Population	Parameter	Value
LIP_EP	A	1.0
	D	0.1
	au	10.0
	$w_{ m inh}$	0.06
	FFsc	0.35
	FEFsc	0.3
	vSSP	0.01
	num-neurons-w	21
	num-neurons-h	16

Population	Parameter	Value
LIP_CD	A	0.5
	D	0.1
	au	10.0
	$w_{ m inh}$	0.03
	FBsc	0.75
	FEFsc	0.15
	vSSP	0.4
	num-neurons-w	21
	num-neurons-h	16

Population	Parameter	Value	
Xh	D	0.6	
	au	10.0	
	$ m dt_{dep}$	1.0	
	$ au_{ m dep}$	10000.0	
	$d_{ m dep}$	2.2	
	$w_{ m inh}$	0.1	
	neglect	False	
	FFsc	1.2	
	NEsc	0.7	
	INHsc	1.2	
	num-neurons-w	21	
	num-neurons-h	16	
	baseline	0.0	

Population	Parameter	Value
Input	r	0.0

Population	Parameter	Value
V1	pV1C	2.5

Population	Parameter	Value
V4L4	sigmaL4	0.4
	gHVA4	1.066
	au	10
	vV1	1.0
	vFEFvm	4.0
	vV24	1.0
	pV24	1
	vLIP	1.0
	vF1	3.0
	pF1	3
	pE	1
	vSP1	0.85
	vSUR1	0

Population	Parameter	Value
V4L23	sigmaL23	1.0
	gHVA2	1.55
	au	10
	pV42	0.25
	vV42	1.0
	vPFC	1.75
	vLIP	1.0
	vLIP1	1.0
	vLIP2	0.1
	vSSP	1.5

Population	Parameter	Value
AuxV4L4	vLIP1	1.0
	vLIP2	0.1

Population	Parameter	Value
AuxV4L23	vSSP1	1.0
	vSSP2	0.1

Population	Parameter	Value	
FEFv	au	10	
	sigmaFEF	0.1	
	c	6	
	vExc	0.55	
	vLIP1	0.75	
	vLIP2	0.1	
Population	Parameter	Value	
FEFvm	au	10	

Population	Parameter	Value
FEFvm	au	10
	vlow	0.2
	vEv	0.6
	vSv1	0.6
	vFEFv	1.0

Population	Parameter	Value
FEFm	au	65
	vFEFvm	1.0
	vSvm	0.3
	vSFix	3

Population	Parameter	Value
PFC	r	0.0

Population Pa	arameter	Value
---------------	----------	-------

Population Parameter	Value
----------------------	-------

Population	Parameter	Value
FEFfix	r	0.0

Population	Parameter	Value	
HD	au	20.0	
	β	0.1	
	α	5.0	
	HD2HDphi	15.0	
	oPR2HDphi	60.0	
	cue	0.0	
	$\mathrm{cue_{init}}$	0.0	
	$percep_{flag}$	1.0	
	$\mathrm{imag}_{\mathrm{flag}}$	0.0	
	Rotphi	4.0	
	CWturn	0.0	
	CCWturn	0.0	

Population	Parameter	Value	
BVC	au	20.0	
	β	0.1	
	α	5.0	
	Pmod	0.05	
	Imod	0.05	
	H2BVCphi	2860.0	
	OVC2BVCphi	0.0	
	TR2BVCphi	30.0	
	PR2BVCphi	3.0	
	use_{syninput}	0.0	

Population	Parameter	Value
PR	τ	20.0
	β	1.0
	α	5.0
	Pmod	0.05
	Imod	0.05
	H2PRphi	6000.0
	BVC2PRphi	75.0
	use _{syninput}	0.0
	cue _{percep}	0.0

Population	Parameter	Value
oPR	τ	20.0
	β	0.1
	α	5.0
	Pmod	0.05
	Imod	0.05
	oPR2oPRphi	115.0
	H2oPRphi	1.0
	OVC2oPRphi	5.0
	use _{syninput}	0.0
	$\mathrm{percep}_{\mathrm{flag}}$	1.0
	recallobj	0.0
	oPR_{drive}	0.0
	Cue	0.0

Population	Parameter	Value
PW	τ	20.0
	β	0.1
	α	5.0
	BcueScale	1.6
	Pmod	0.05
	Imod	0.05
	TR2PWphi	35.0
	bath	0.165
	use-ego-cue-percep	0.0
	ego-cue-percep	0.0
	$use_{syninput}$	0.0

Population	Parameter	Value
Н	τ	20.0
	β	0.1
	α	5.0
	ICtau	20.0
	nb-neurons-H	1936.0
	Pmod	0.05
	Imod	0.05
	Hphi	25.0
	BVC2Hphi	437.0
	PR2Hphi	25.0
	OVC2Hphi	5.0
	oPR2Hphi	100.0
	use _{syninput}	0.0

Population	Parameter	Value
TR	τ	20.0
	β	0.1
	α	5.0
	Pmod	0.05
	Imod	0.05
	bath	0.075
	HD2TRphi	15.0
	IP2TRphi	90.0
	PW2TRphi	50.0
	BVC2TRphi	45.0
	$use_{syninput}$	0.0

Population	Parameter	Value	
IP	α	50.0	
	β	0.1	
	au	20.0	
	HD2IPphi	10.0	

Population	Parameter	Value
oPW	au	20.0
	β	0.1
	α	5.0
	OcueScale	0.3
	nb-neurons-oPW	816.0
	Pmod	0.05
	Imod	0.05
	TR2oPWphi	30.0
	bath	0.2
	use_{syninput}	0.0
	$ObjCue_{percep}$	0.0

Population	Parameter	Value
OVC	τ	20.0
	β	0.1
	α	5.0
	Pmod	0.05
	Imod	0.05
	H2OVCphi	2.1
	TR2OVCphi	60.0
	OVC2OVCphi	1.0
	BVC2OVCphi	0.0
	oPR2OVCphi	7.2
	$use_{syninput}$	0.0

Population	Parameter	Value	
oTR	au	20.0	
	β	0.1	
	α	5.0	
	Pmod	0.05	
	Imod	0.05	
	bath	0.1	
	HD2oTRphi	15.0	
	IP2oTRphi	90.0	
	oPW2oTRphi	60.0	
	OVC2oTRphi	110.0	
	$use_{syninput}$	0.0	