Guía de Exploración 12

Objetivos de la Guía

- · Aprender sobre los recorridos de grafos
- · Aprender sobre Búsqueda en Profundidad
- Aprender sobre Búsqueda en Anchura
- Conocer sobre las componentes conexas

> A - La información es lo más importante

Pepito, el tutor que no existe, quiere poder analizar los grafos a través de sus conocimientos aprendidos en OCILabs. Así que te pide una seguidilla de tareas.

* Parte 1: Que ciudades hacen parte de la misma componente conexa

La primera parte consiste en leer un grafo no dirigido, en el cual preguntan: ¿Que otras ciudades hacen parte de la misma componente conexa que x?

* Input:

La primera línea contiene dos enteros n y m, dónde n corresponde a la cantidad de ciudades y m corresponde a la cantidad de conexiones entre ciudades.

Luego le siguen m líneas, cada línea contiene dos enteros a y b indicando que existe una conexión entre a y b. Las ciudades están enumeradas entre 1 y n.

Finalmente, la última línea contiene un entero x, que es la ciudad a consultar.

6 4			
6 4 3 2 5 4 6 5 1 2			
5 4			
6 5			
1 2			
1			

* Output:

Muestre por pantalla las ciudades que hacen parte de la misma conexa que la ciudad x.

2 3

Tip L

Puede utilizar el código de DFS visto en la cápsula.

Tip 2

Recuerde que el vector de visitados indica si es que los nodos visitados usando DFS o no

* Parte 2: Distancias

Ahora, Pepito quiere saber la distancia más corta de ir desde la ciudad x hasta las otras ciudades del país.

* Input:

La primera línea contiene dos enteros n y m, dónde n corresponde a la cantidad de ciudades y m corresponde a la cantidad de conexiones entre ciudades.

Luego le siguen m líneas, cada línea contiene dos enteros a y b indicando que existe una conexión entre a y b. Las ciudades están enumeradas entre 1 y n.

Finalmente, la última línea contiene un entero x, que es la ciudad a consultar.

Guía de Exploración 12

6 4		
6 4 3 2 5 4 6 5 1 2		
5 4		
6 5		
1 2		
1		

* Output:

Muestre por pantalla n números, dónde el número en la posición i corresponde a la distancia más corta de llegar desde x hasta esa ciudad.

Si la ciudad x no puede alcanzar la ciudad i, debe mostrar por pantalla "INF".

0 1 2 INF INF INF

Tip L

Aplique BFS para poder obtener la distancia más corta

Tip ≥

Recuerde que BFS tiene un vector de distancias :)