MACHINE L E A R N I N G Ниатшин Булат

Data scientist, Рекламные технологии

Задача классификации. Логистическая регрессия, KNN

Осебе

- Рекламные технологии, Big Data
- Ранжирование и сегментация пользователей
- Разработка ML инфраструктуры

План занятия

- Обзор и постановка задачи классификации
- Линейный классификатор
- Логистическая регрессия, метод максимального правдоподия.
- KNN
- Семинар

Жизненный пример

MACHINE L E A R N I N G

Выходить ли мне сегодня из дома?

Вы свободны сейчас

Вы хотите есть

Вы хотите спать

Вы хотите тусить

Жизненный пример

MACHINE L E A R N I N G

Выходить ли мне сегодня из дома?

Вы хотите есть

Вы хотите спать

Вы хотите тусить

Сумма >= 1 - значит выходим :)

Банковский скоринг

Дать или не дать человеку кредит и на каком основании

ПОКАЗА- ТЕЛЬ	ДИАПАЗОН ЗНАЧЕНИЙ
Возраст заемщика	До 35 лет
	От 35 до 45 лет
	От 45 и старше
Образова- ние	Высшее
	Среднее специальное
	Среднее
Состоит ли в браке	Да
	Нет
Наличие кредита в прошлом	Да
	Нет
Стаж работы	До 1 года
	От 1 до 3 лет
	От 3 до 6 лет
	Свыше 6 лет
Наличие автомобиля	Да
	Нет

Банковский скоринг

Суммируем скоринг-балл, если значение выше порога, то выдаем кредит.

ПОКАЗА- ТЕЛЬ	ДИАПАЗОН ЗНАЧЕНИЙ	СКОРИНГ- БАЛЛ
Возраст заемщика	До 35 лет	7,60
	От 35 до 45 лет	29,68
	От 45 и старше	35,87
Образова- ние	Высшее	29,82
	Среднее специальное	20,85
	Среднее	22,71
Состоит ли в браке	Да	29,46
	Нет	9,38
Наличие кредита в прошлом	Да	40,55
	Нет	13,91
Стаж работы	До 1 года	15,00
	От 1 до 3 лет	18,14
	От 3 до 6 лет	19.85
	Свыше 6 лет	23,74
Наличие автом обиля	Да	51,69
	Нет	15,93

Почему так нельзя дальше

Подбор весов и порога

- Сложно делать вручную
- Требуется экспертиза в области
- Требуется проверка на данных (эксперт может ошибиться и что-то не учесть).

Выход

Автоматизируем подбор параметров. Будем использовать методы численной оптимизации для решения задачи.

Формальная постановка задачи

Рассмотрим случай бинарной классификации

Пусть
$$\mathbb{X} = \mathbb{R}^n$$
 - пространство объектов

$$\mathbb{Y} = \{+1, -1\}$$
 - множество допустимых ответов

$$X = \{(x_i, y_i)\}_{i=1}^l$$
- обучающая выборка

$$a(x)=sign(\langle \omega,x
angle)$$
 - линейный классификатор, полученный в результате

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i] = \frac{1}{\ell} \sum_{i=1}^{\ell} [sign(\langle w, x_i \rangle) \neq y_i] \to \min_{w}$$

MACHINE

Линейный классификатор

$$\alpha(x) = \begin{cases} 1, & \text{if } f(x) > 0 \\ -1, & \text{if } f(x) \le 0 \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

$$f(x) = w_0 + \langle w, x \rangle$$

$$f(x) = \langle w, x \rangle$$

Интерпретация: строим разделяющую плоскость

$$f(x) = \langle w, x \rangle = 0$$

Логистическая регрессия

- Частный случай линейного классификатора
- Умеет предсказывать вероятность принадлежности к позитивному классу
- Один из самых распространенных классических алгоритмов

Для чего нужна вероятность помимо метки класса?

- Частный случай линейного классификатора
- Умеет предсказывать вероятность принадлежности к позитивному классу
- Один из самых распространенных классических алгоритмов

Для чего нужна вероятность помимо метки класса? - Банковский скоринг, формирование новостной ленты и т.д.

Логистическая регрессия

Что мы умеем на данный момент:

- Строить линейный прогноз при помощи МНК: $y(x) = \omega^T x \in \mathbb{R}$ Что хотим получить:
- Преобразовать прогноз в вероятность, принимающее значение в интервале [0, 1]

Что мы умеем на данный момент:

- Строить линейный прогноз при помощи МНК: $y(x) = \omega^T x \in \mathbb{R}$ Что хотим получить:
- Преобразовать прогноз в вероятность, принимающее значение в интервале [0, 1]

Выход? Сигмоидная функция:

$$\sigma(z) = \frac{1}{1 + \exp^{-z}}$$

Вывод алгоритма

Вероятность происхождения события X - P(X)

Отношение вероятностей -
$$OR(X) = \frac{P(X)}{1 - P(X)}$$

Вычислим логарифм отношения вероятностей - $log(OR(X)) \in \mathbb{R}$

Шаг 1. Вычисляем
$$\omega_0 + \omega_1 x_1 + \omega_2 x_2 + \cdots + \omega_k x_k$$

Шаг 2. Вычисляем логарифм отношения вер-ей $log(OR) = \omega^T x$

Шаг 3. Вычисляем искомую вероятность:

$$p_{+} = \frac{OR_{+}}{1 + OR_{+}} = \frac{1}{1 + exp^{-\omega^{T}x}} = \sigma(\omega^{T}x)$$

MACHINE L E A R N I N G

Loss function

Для линейной регрессии:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Проблема - невыпуклая функция в случае сигмоиды

Loss function

Рассмотрим функцию следующего вида:

$$L(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)), & y = 1\\ -log(1 - h_{\theta}(x)), & y = 0 \end{cases}$$

Loss function

$$J(h_{\theta}(x), y) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} log h_{\theta}(x^{(i)}) + (1 - y^{(i)})(1 - log h_{\theta}(x^{(i)}))]$$

Регуляризация

$$J(X, y, \theta) = J(X, y) + \frac{1}{C}||\theta||^2$$

- С обратный коэффициент регуляризации (как в sklearn)
- Больше значение С больше "сложность модели"
- Малые значения С недообученность модели
- Гиперпараметр, который необходимо подбирать на кросс-валидации

kNN

k Nearest Neighbours (k Ближайших соседей):

- Один из самых популярных методов для задач классификации
- Используется также для регрессии
- Хорошо изученный подход, имеющий сильную теорию под собой

kNN

Имеется обучающая выборка: Х, у

Метрика схожести объектов: q

Алгоритм:

Пусть на входе объект test выборки. Для него:

- 1. Вычисляем расстояния до каждого объекта train
- 2. Выбираем k наиближайших
- 3. Тестовому объекту присваиваем метку класса, которая присутствует больше всех среди этих k объектов

MACHINE L E A R N I N G

Модификации:

- 1. Каждому объекту из k наиближайших присваиваем вес 1 / distance
- 2. Рассматриваем объекты только в пределах заданного радиуса R
- 3. Прореживание большой выборки (выбрасывание неинформативных объектов)
- 4. Большое количество различных вариантов реализаций approximate nearest neighbour (к примеру, библиотека annoy от Spotify)

MACHINE L E A R N I N G

Применение в реальных задачах:

- 1. Baseline для исследовательских задач
- 2. Рекомендательные системы поиск похожих товаров, людей и т.д.
- 3. Стекинг/Блендинг
- 4. Мета-признаки в Kaggle соревнованиях

Метрики качества классификации

- 1. Accuracy
- 2. Precision
- 3. Recall
- 4. ROC-AUC
- 5. F-score

Accuracy:

Подсчитываем долю правильно предсказанных объектов.

- 1. import numpy as np
- 2. target = np.array([1, 3, 2, 2, 3, 4, 1, 2])
- 3. pred = np.array([1, 3, 1, 2, 3, 2, 1, 2])
- 4. print(np.equal(target, pred).sum())
- 5. print(np.equal(target, pred).sum() / float(target.shape[0])

Результат:

6

0.75

Метрики качества классификации

Precision/Recall - бинарная классификация:

Метрики качества классификации

Precision/Recall - бинарная классификация:

	Предсказали True	Предсказали False
Ожидали True	True Positive (tp)	False Negative (fn)
Ожидали False	False Positive (fp)	True Negative (tn)

Полнота Recall = tp / (tp + fn) Какую часть объектов класса 1 мы нашли?

Точность Precision = tp / (tp + fp) Какая часть из найденных объектов класса 1

действительно ими является?

MACHINE

Метрики качества классификации

Precision/Recall:

- 1. target = np.array([0, 1, 1, 0, 1, 1])
- 2. pred = np.array([1, 1, 1, 1, 1, 1])
- 3. print(precision(target, pred))
- 4. print(recall(target, pred))

Результат:

Recall - 1 = 4 / (4 + 0) Какую часть из объектов класса 1 мы нашли?

Precision - $\frac{2}{3}$ = 4 / (4 + 2) Какая часть из найденных объектов класса 1 действительно 1?

Кросс-валидация

Процедура эмпирического оценивания обобщающей способности алгоритмов, обучаемых по прецендентам.

Фиксируется некоторое множество разбиений исходной выборки на две подвыборки:

- 1. Обучающую
- 2. Контрольную

Метрики качества классификации

Кросс-валидация

Спасибо за внимание!

Ниатшин Булат

+7 999 965-61-63 b.niatshin@corp.mail.ru

MACHINE WHITH HE STATE STA ************* L E A R N I G AUTHITITIES .