Pr. Z. FAIZ

Série 3:

Exercice 1:

Soient $\Re(O, x, y, z)$ un référentiel absolu supposé galiléen muni de la base orthonormée directe $(\vec{l}, \vec{j}, \vec{k})$, et $\Re(O, x)$, $\Re(O, x)$, un référentiel relatif muni de la base orthonormée directe $(\vec{e_\rho}, \vec{e_\phi}, \vec{t})$. Au cours du temps, les axes (Ox) et (Ox1) restent colinéaires. Dans le plan vertical (yOz), une tige circulaire de centre C et de rayon C0 est maintenue fixe. Un anneau C1 de masse C2 maintenue fixe sans frottement sur la tige circulaire. Il est repéré par $\overrightarrow{OM} = 2asin\varphi \ \overrightarrow{e_\rho}$ où $\varphi = (\overrightarrow{J}, \overrightarrow{OM})$. On désigne par $(\overrightarrow{\tau}, \overrightarrow{n}, \overrightarrow{\iota})$ la base de Frénet comme l'indique la figure (\overrightarrow{n}) est le vecteur dirigé vers le centre de cercle).

N.B: Toutes les expressions vectorielles doivent être exprimées dans la base $(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{l})$.

- 1) Vérifier que la vitesse de rotation de $\Re 1$ par rapport à \Re est donnée par $\vec{\Omega}$ ($\Re 1/\Re$) = $\dot{\varphi}\vec{\iota}$
- 2) a) Calculer $\overrightarrow{Vr}(M)$ et $\overrightarrow{Va}(M)$ respectivement les vitesses relative et absolue de M.
- b) En déduire $\vec{\tau}$ le vecteur tangent à la trajectoire.
- c) Déterminer \vec{n} le vecteur normal à la trajectoire.
- 3) Déterminer \overrightarrow{vr} (M) l'accélération relative de M.
- 4) Déterminer \overrightarrow{ye} (M) l'accélération d'entrainement de M.
- 5) Déterminer γc (M) l'accélération de Coriolis de M.
- 6) En déduire $\gamma \alpha$ (M) l'accélération absolue de M.

Exercice 2:

Soit $R_0(O, \vec{l}, \vec{j}, \vec{k})$ le repère absolu, supposé galiléen défini à partir du système d'axe (O, x, y, z). une barre OB tourne dans le plan (O, x, y) autour de l'axe oz avec une vitesse angulaire constante $\dot{\phi} = \omega$. Soit un point A, en mouvement sur cette barre tel que $\overrightarrow{OA} = \rho \overrightarrow{e_\rho}$. ρ est une fonction du

temps et $\overrightarrow{e_{\rho}}$ un vecteur unitaire de \overrightarrow{OA} . On lui associe le repère relatif R_1 $(A, \overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{k})$. $\overrightarrow{e_{\phi}}$ est un vecteur unitaire perpendiculaire à $\overrightarrow{e_{\rho}}$.

On considère un point matériel M qui décrit un cercle C de centre A, de rayon a et de diamètre la barre OB. Le point M est repéré par l'angle $\theta = (\overrightarrow{e_{\rho}}, \overrightarrow{e_{r}})$ avec $\overrightarrow{e_{r}}$ le vecteur unitaire de \overrightarrow{AM} . On associe au cercle C le repère direct R_2 $(A, \overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{k})$. On suppose que :

- $-\theta = \varphi = \omega t$
- $\|\overrightarrow{AM}\| = a$ rayon du cercle $\rho = a(2 + \sin\theta)$

Tous les résultats doivent être exprimés dans la base du repère relatif R_1 $(A, \overrightarrow{e_{\varphi}}, \overrightarrow{e_{\varphi}}, \overrightarrow{k})$.

- 1) Donner les expressions relativement du vecteur rotation instantanée $\overrightarrow{\Omega}(R_2/R_1)$ et du vecteur rotation instantanée $\overrightarrow{\Omega}(R_1/R_0)$. En déduire le du vecteur rotation instantanée $\overrightarrow{\Omega}(R_2/R_0)$.
- 2) Déterminer les vecteurs vitesses relatives $\overrightarrow{V_r}(M)$, d'entrainement $\overrightarrow{V_e}(M)$. En déduire la vitesse absolue $\overrightarrow{V_a}(M)$.
- 3) Déterminer les vecteurs accélérations relatives $\overrightarrow{\gamma_r}(M)$, d'entrainement $\overrightarrow{\gamma_e}(M)$ et de Coriolis $\overrightarrow{\gamma_c}(M)$. En déduire l'accélérations absolue $\overrightarrow{\gamma_a}(M)$.