Primitivt Algebra Brevkursus

Malte Kildelund Rosenkilde 23/02/23

Disclaimer

Jeg kommer nok til at lave en masse fejl så tag ikke alt som værende helt korrekt. Så stil endeligt spørgsmål hvis der er noget der ser forkert ud eller ikke giver mening. Stave fejl er nok også noget der kommer til at være meget af. Alt jeg ved er fra bogen Abstract Algebra, 3rd Edition af David S. Dummit og Richard M. Foote så læs i den hvis der er brug for bedre kilder.

Grupper 21/2

Det helt basele i abstract algebra er grupper hvilket er en struktur der ses overalt i matematikken.

Teori

Definition 1. Lad G være en mængde, da er en function $*: G \times G \to G$ en binær operation.

Som notation skrives a * b istedet for *(a, b).

En binær operation * kaldes ascosiativ hvis $\forall a, b, c \in G : a * (b * c) = (a * b) * c$.

En binær operation * kaldes kommutativ hvis $\forall a, b \in G : a * b = b * a$.

Definition 2. En tupel (G,*) med en mængde G og en binær operation * kaldes en gruppe hvis:

- (1) * er ascosiativ.
- (2) Der eksistere et element $e \in G$ så $\forall a \in G : a * e = e * a = a$ kaldet det neutrale element.
- (3) For alle elementer $a \in G$ eksistere $a^{-1} \in G$ så $a * a^{-1} = a^{-1} * a = e$ kaldet det inverse element til a.

En gruppe kaldes abelsk hvis * er kommutativ.

Ofte kalder betegner man G for gruppen istedet for (G,*) og da er operationen implicit.

Som notation bruges der ofte \cdot som operation istedet for * og $a \cdot b$ bliver ofte skrevet ab istedet. Det neutrale element bliver så betegnet 1. Dog er det normalt at bruge + for opreationen i abelsek grupper og at bruge -a istedet for a^{-1} . Dog er - ikke en operation her men der skrives stadig a - b istedet for a + -b.

Sætninger

Sætning 1. Neutrale elementer er unikke. Altså givet en gruppe (G,*) og to elementer $e_1, e_2 \in G$ hvor $\forall a \in G : e_1 * a = a * e_1 = a$ og $e_2 * a = a * e_2 = a$ da er $e_1 = e_2$.

Proof.

$$e_1 = e_1 * e_2 = e_2$$

Vis selv

Sætning 2. Invers elementer er unikke. Altså givet en gruppe (G,*) og tre element $a, a_1^{-1}, a_2^{-1} \in G$ hvor $a*a_1^{-1} = a_1^{-1}*a = e$ og $a*a_2^{-1} = a_2^{-1}*a = e$ da er $a_1^{-1} = a_2^{-1}$.

Sætning 3. Givet en gruppe (G,*) og et element $a \in G$ da er $(a^{-1})^{-1} = a$.

Sætning 4. Givet en gruppe (G,*) og to elementer $a,b \in G$ da er $(a*b)^{-1} = b^{-1}*a^{-1}$.

Homomorphier 22/2

En vigtig del af abstract algebra er at se på relationer mellem forskellige strukture hvilket gøres ved hjælp af homomorphier og isomorphier.

Definitioner

Definition 3. Lad (G,*) og (G,\diamond) være to grupper og $\varphi:G\to H$ være en function. Da kaldes φ en gruppe homomorphi hvis

$$\forall a, b \in G : \varphi(a * b) = \varphi(a) \diamond \varphi(b)$$

En bijektiv homomorphi kaldes en isomorphi.

To grupper G og H kaldes isomorphe hvis der eksistere en isomorphi mellem dem. Dette skrives $G \cong H$.

En isomorphi $\varphi: G \to G$ mellem en gruppe G og den selv kaldes for en automorphi på G.

Definition 4. Lad G og H være to grupper med identiterter e_G og e_H og $\varphi: G \to H$ være en homomorphi. Da betegner kernen af φ mængde af elementer som bliver afbilledet til e_H .

$$\ker(\varphi) = \{ g \in G | \varphi(g) = e_H \}$$

Sætninger

Sætning 5. For to grupper (G, *) og (H, \diamond) med neutrale elementer e_G og e_H og en homomorphi $\varphi : G \to H$ da er $\varphi(e_1) = e_2$.

Proof.

$$\varphi(e_G) = \varphi(e_G) \diamond e_H = \varphi(e_G) \diamond \varphi(e_G) \diamond \varphi(e_G)^{-1} = \varphi(e_G * e_G) \diamond \varphi(e_G)^{-1} = \varphi(e_G) \diamond \varphi(e_G)^{-1} = e_H$$

Vis selv

Sætning 6. For to grupper G og H, en homomorphi $\varphi: G \to H$ og et element $a \in G$ da er $\varphi(a)^{-1} = \varphi(a^{-1})$.

Sætning 7. For to grupper G og H eksistere der altid en homomoprhi mellem dem.

At to grupper er isomorphe betyder at deres struktur er meget ens og isomorphier fungere næsten som en ekvilens relation hvilket ses i følgene opgave.

Sætning 8. Isomorphier opfylder kravende for en ekvivilens relation:

 \cong er refleksiv altså $G \cong G$ for alle grupper G.

 \cong er symmetrisk altså $G \cong H \Leftrightarrow H \cong G$ fo alle grupper G og H.

 \cong er transitiv altså $G \cong H \land H \cong K \Rightarrow G \cong K$ for alle grupper G, H og K.

Årsagen til at det ikke er en ekvivilens relations skyldes at mængde lærer ikke kan lide at konstruere en mængde af alle grupper og der dermed ikke er en mængde ekvivilens relationen kan være over.

Sætning 9 (*). Lad G og H være to grupper med identiterter e_G og e_H og $\varphi : G \to H$ være en homomorphi. Da er φ injektiv hvis og kun hvis $\ker(\varphi) = \{e_G\}$.

Denne sætninger ret relevant så jeg skriver beviset i næste opdatering, det er dog stadig en ret god øvelse at vise.

Undergrupper 23/2

Opsamling

Her er beviset for sætning 9.

Proof. Lad $a, b \in G$. Hvis $\ker(\varphi) = e_G$ da ses det at

$$\varphi(a) = \varphi(b) \Rightarrow \varphi(a * b^{-1}) = \varphi(a)\varphi(b)^{-1} = e_H \Rightarrow a * b^{-1} \in \ker(\varphi) \Rightarrow a * b^{-1} = e_G \Rightarrow a = b$$

Hvis φ ikke er injektiv eksistere $a, b \in G$ så $a \neq b$ og $\varphi(a) = \varphi(b)$. Der kan det som før konkluderes at $a*b^{-1} \in \ker(\varphi)$ men da $a \neq b$ er $a*b^{-1} \neq e_G$ og dermed er $\ker \varphi \neq e_G$.

Definitioner

Fra nu af vil noten skifte over til multiplikativ notation så operationer er underforstået i forhold til hvor de sker og der bliver brugt $a \cdot b$ eller bare ab.

Definition 5. Lad G være en gruppe og $H \neq \emptyset \subseteq G$ være en delmængde. Da er H en undergruppe af G noteret $H \leq G$ hvis

- (1) $x \in H \Rightarrow x^{-1} \in H$
- (2) $x, y \in H \Rightarrow xy \in H$

Notation 1. Lad G være en gruppe, $H \leq G$ og $g \in G$. Da er der følgende notation

 $gH = \{gh | \forall h \in H\}$ Kaldet en venstrsideklasse.

 $Hg = \{hg | \forall h \in H\}$ Kaldet en højresideklasse.

 $gHg^{-1} = \{ghg^{-1} | \forall h \in H\}$ Kaldet H konjugeret med g ligesom ghg^{-1} er h konjugeret med g.

Sætninger

Sætning 10. Lad G være en gruppe og $H \leq G$. For elementer $a, b \in G$ da er aH = bH eller $aH \cap bH = \emptyset$.

Proof. Antag at der eksister $c \in aH \cap bH$. Da ligger c både i aH og i bH så der må eksistere h_1, h_2 så $c = ah_1$ og $c = bh_2$. Da ses det at

$$ah_1 = bh_2 \Rightarrow a = bh_2h_1^{-1}$$

Lad nu d være et element i aH. Da ses det at

$$d = ah_3 = bh_2h_1^{-1}h_3$$

Men da h_1 , h_2 og h_3 ligger i H må $h_2h_1^{-1}h_3$ ligge i H da H er en undegruppe. Altså må d ligge i bH og dermed er $aH \subseteq bH$. Det ses symmetrisk at $bH \subseteq aH$ hvilket medføre aH = bH.

Vis selv

Sætning 11. Lad G og H være to grupper og $\varphi: G \to H$ være en homomorphi. Da er både $\ker(\varphi)$ og $\varphi(G)$ undergrupper af H.

(Note: $\varphi(G)$ er billedet af φ ofte skrevet $im(\varphi)$.)

Sætning 12. Lad G være en gruppe, $H \leq G$ og $a, b \in G$. Da er |aH| = |bH|. Hvilket er ekvivilent med at der eksistere en bijektion mellem |aH| og |bH|.

Sætning 13 (Lagrange \star). Lad G være en endelig gruppe og $H \leq G$. Da gælder det at

$$|H|$$
 $|G|$

Læses |H| deler |G|.

(Hint: Benyt sætning 11 og 10.)