Part 1 Trigonometric Functions

TF1.tex

Exercise 1 For each function, give its period.

- (a) The period of $\sin(x)$ is 2π .
- (b) The period of $\cos(2x)$ is π .
- (c) The period of $tan(\pi x)$ is $\boxed{1}$.
- (d) The period of $3\sin(3x) + 3$ is $\boxed{\frac{2\pi}{3}}$
- (e) The period of $\cos\left(\frac{x}{2}\right) 7$ is 4π .

TF2.tex

Exercise 2 For each function, give its range. Remember to use oo or infty when necessary to input the infinity symbol ∞ .

- (a) The range of $7\sin(5x-3)$ is [-7], [7].
- (b) The range of $\tan\left(\frac{x}{4}\right)$ is $(-\infty)$, $[\infty)$.
- (c) The range of $2\cos(x-\pi)-2$ is [-4], 0
- (d) The range of $3\csc(x)$ is $(-\infty, -3] \cup [3, \infty]$.
- (e) The range of $2\sec(x) + 1$ is $(-\infty, -1] \cup [3, \infty)$.

TF6.tex

Exercise 3 For each function, give its amplitude.

- (a) The amplitude of $\pi \cos(2x)$ is $\boxed{\pi}$.
- (b) The amplitude of $\sin(5\pi x)$ is $\boxed{1}$.
- (c) The amplitude of $\frac{5}{2}\cos(x) 2\pi$ is $\boxed{\frac{5}{2}}$

(d) The amplitude of
$$\frac{\pi}{2}\cos(x-\pi) + \frac{\pi}{6}$$
 is $\left[\frac{\pi}{2}\right]$.

(e) The amplitude of $-7\sin(x-2)$ is $\boxed{7}$.

TF3.tex

Exercise 4 Select all the functions that are equal to the sine function $\sin(x)$. Remember that in order for two functions to be equal, they must have the same domain and range.

Select All Correct Answers:

- (a) $\cos(x)$
- (b) $\cos\left(x + \frac{\pi}{2}\right)$
- (c) $\cos\left(x \frac{\pi}{2}\right)$ \checkmark
- (d) $\sin(x+\pi)$
- (e) $\sin(x+4\pi)$ \checkmark
- (f) $\tan(x)\cos(x)$
- (g) $\cot(x)\sin(x)$
- (h) $-\sin(-x)$ \checkmark
- (i) $\sin(-x)$

TF4.tex

In this exercise, we will find the solutions to the trigonometric equation $\cos(3x) = \frac{1}{2}$ that lie in the interval $[0, 2\pi)$.

To start, make the substitution u=3x and find solutions to the equation $\cos(u)=\frac{1}{2}$ for u in the interval $[0,2\pi)$.

The solutions to $\cos(u) = \frac{1}{2}$ lying in the interval $[0, 2\pi)$ are $u = \frac{\pi}{3}$ and $u = \frac{5\pi}{3}$.

Exercise 5 The period of the cosine function is 2π , so all real solutions to $\cos(u) = \frac{1}{2}$ are of the form $u = \frac{\pi}{3} + \boxed{2\pi}k$ or $u = \frac{5\pi}{3} + \boxed{2\pi}k$ for some integer k.

Exercise 5.1 Undoing our substitution u=3x, we find that all real solutions to $\cos(3x)=\frac{1}{2}$ are of the form $x=\left[\frac{\pi}{9}\right]+\left[\frac{2\pi}{3}\right]k$ or $x=\left[\frac{5\pi}{9}\right]+\left[\frac{2\pi}{3}\right]k$ for some integer k.

Exercise 5.1.1 There are $\boxed{6}$ solutions to $\cos(3x) = \frac{1}{2}$ that lie in the interval $[0, 2\pi)$.

Exercise 5.1.1.1 The solutions to $\cos(3x) = \frac{1}{2}$ that lie in the interval $[0, 2\pi)$ are (in increasing order) $\left\lceil \frac{\pi}{9} \right\rceil$, $\left\lceil \frac{5\pi}{9} \right\rceil$, $\left\lceil \frac{7\pi}{9} \right\rceil$, $\left\lceil \frac{11\pi}{9} \right\rceil$, and $\left\lceil \frac{17\pi}{9} \right\rceil$.

TF7.tex

4

In this exercise, we will find the solutions to the trigonometric equation $\tan(2x - \pi) = 1$ that lie in the interval $[0, 2\pi)$.

To start, make the substitution $u = 2x - \pi$ and find solutions to the equation $\tan(u) = 1$ for u in the interval $[0, 2\pi)$.

The solutions to tan(u) = 1 lying in the interval $[0, 2\pi)$ are $u = \frac{\pi}{4}$ and $u = \frac{5\pi}{4}$.

Exercise 6 The period of the tangent function is π , so all real solutions to $\tan(u) = 1$ are of the form $u = \frac{\pi}{4} + \boxed{\pi} k$ for some integer k.

Exercise 6.1 Undoing our substitution $u = 2x - \pi$, we find that all real solutions to $\tan(2x - \pi) = 1$ are of the form $x = \begin{bmatrix} \frac{5\pi}{8} \\ \end{bmatrix} + \begin{bmatrix} \frac{\pi}{2} \\ \end{bmatrix} k$ for some integer k.

Exercise 6.1.1 There are $\boxed{4}$ solutions to $\tan(2x - \pi) = 1$ that lie in the interval $[0, 2\pi)$.

Exercise 6.1.1.1 The solutions to $\tan(2x - \pi) = 1$ that lie in the interval $[0, 2\pi)$ are (in increasing order) $\begin{bmatrix} \frac{\pi}{8} \end{bmatrix}$, $\begin{bmatrix} \frac{5\pi}{8} \end{bmatrix}$, $\begin{bmatrix} \frac{9\pi}{8} \end{bmatrix}$, and $\begin{bmatrix} \frac{13\pi}{8} \end{bmatrix}$.

TF5.tex

Exercise 7 In this exercise, we will find properties of the function h defined by $h(x) = \frac{1}{4}\cos(4x) - 3$.

(a) The domain of h is

Multiple Choice:

- (i) $(-\infty, 4) \cup (4, \infty)$.
- (ii) $\left[-\frac{13}{4}, -\frac{11}{4}\right]$.
- (iii) $(-\infty, \infty)$. \checkmark
- (iv) $\left(-\frac{13}{4}, -\frac{11}{4}\right)$.
- (v) $(-\infty, 4] \cup [4, \infty)$.
- (b) The range of h is

Multiple Choice:

- (i) $(-\infty, 4) \cup (4, \infty)$
- (ii) $\left[-\frac{13}{4}, -\frac{11}{4}\right] \checkmark$
- (iii) $(-\infty, \infty)$
- (iv) $\left(-\frac{13}{4}, -\frac{11}{4}\right)$
- (v) $(-\infty, 4] \cup [4, \infty)$
- (c) The period of h is $\left\lceil \frac{\pi}{2} \right\rceil$.
- (d) The function h is

Multiple Choice:

- (i) odd.
- (ii) even. ✓

- (iii) odd and even.
- (iv) neither odd nor even.
- (e) The amplitude of h is $\frac{1}{4}$

TF8.tex

For each equation below, determine how many solutions lie in the interval $[0, 2\pi)$ and list them in increasing order, if applicable.

Exercise 8 The equation $\csc(\pi x) = 0$ has $\boxed{0}$ solution(s) in the interval $[0, 2\pi)$.

Exercise 9 The equation $\sin(5x) = 0$ has $\boxed{10}$ solution(s) in the interval $[0, 2\pi)$.

Exercise 9.1 The solutions are $\boxed{0}$, $\boxed{\frac{\pi}{5}}$, $\boxed{\frac{2\pi}{5}}$, $\boxed{\frac{3\pi}{5}}$, $\boxed{\frac{4\pi}{5}}$, $\boxed{\pi}$, $\boxed{\frac{6\pi}{5}}$, $\boxed{\frac{7\pi}{5}}$

 $\left\lceil \frac{8\pi}{5} \right\rceil$, and $\left\lceil \frac{9\pi}{5} \right\rceil$.

Exercise 10 The equation $sec(3x) = \sqrt{2} has \boxed{6}$ solution(s) in the interval $[0, 2\pi)$.

Exercise 10.1 The solutions are $\left[\frac{\pi}{12}\right]$, $\left[\frac{7\pi}{12}\right]$, $\left[\frac{3\pi}{4}\right]$, $\left[\frac{5\pi}{4}\right]$, $\left[\frac{17\pi}{12}\right]$, and $\left[\frac{23\pi}{12}\right]$.

Exercise 11 The equation $\sin\left(\frac{x}{3}\right) = \frac{\sqrt{2}}{2}$ has $\boxed{1}$ solution(s) in the interval $[0, 2\pi)$.

Exercise 11.1 The solution is $\frac{3\pi}{4}$