Data Science Theory and Practices

Foundations on Principal Component Analysis

Joseph Chuang-Chieh Lin Dept. CSIE, Tamkang University

19th April, 2021

Outline

- Matrices & Overview
- Projection
- Singular Vectors
- Singular Value Decomposition (SVD)
- Best Rank-k Approximation
- Principal Component Analysis (PCA)

Refer to https://tinyurl.com/3rnuvb7e

Inner Products and Projection

$$||\mathbf{u}|| = \langle \mathbf{u}, \mathbf{u}
angle^{rac{1}{2}}$$

Low of Cosines:

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

And,

$$\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2\langle \mathbf{u}, \mathbf{v} \rangle.$$

Inner Products and Projection

$$||\mathbf{u}|| = \langle \mathbf{u}, \mathbf{u}
angle^{rac{1}{2}}$$

Low of Cosines:

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

And,

$$\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2\langle \mathbf{u}, \mathbf{v} \rangle.$$

$$\therefore \langle \mathbf{u}, \mathbf{v} \rangle = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \theta$$

Inner Products and Projection

$$||\mathbf{u}|| = \langle \mathbf{u}, \mathbf{u}
angle^{rac{1}{2}}$$

Low of Cosines:

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

And,

$$\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2\langle \mathbf{u}, \mathbf{v} \rangle.$$

$$\therefore \langle \mathbf{u}, \mathbf{v} \rangle = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \theta$$

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}|| \ ||\mathbf{v}||}, \ \ ||\mathbf{u}|| \cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{v}||} = \frac{\mathbf{u}^{\top} \mathbf{v}}{||\mathbf{v}||}.$$

Matrices

Eigenvalues and eigenvectors.

$$A\mathbf{v} = \lambda \mathbf{v}$$

Matrices

• Eigenvalues and eigenvectors.

Data: *d*-dimensional *n* points

	feature 1	feature 2		feature <i>d</i> -1	feature d
record 1	<i>a</i> _{1,1}	<i>a</i> _{1,2}		<i>a</i> _{1,d-1}	$a_{1,d-1}$
record 2	$a_{_{2,1}}$	a _{2,2}	•••••	<i>a</i> _{2,<i>d</i>-1}	<i>a</i> _{2,d-1}
i	I	1	•••••	1	l
record <i>n</i> -1	<i>a</i> _{n-1, 1}	$a_{n-1,2}$	•••••	$a_{n-1,d-1}$	$a_{n-1,d-1}$
record n	<i>a</i> _{n, 1}	$a_{n,2}$	•••••	$a_{n,d-1}$	$a_{n,d-1}$

Eigenvalue Decomposition (Overview)

- *A*: square matrix
- If *A* is symmetric,

$$A = VDV^{\top}$$

D: diagonal

$$\begin{bmatrix} A \\ n \times n \end{bmatrix} = \begin{bmatrix} V \\ n \times n \end{bmatrix} \begin{bmatrix} D \\ n \times n \end{bmatrix} \begin{bmatrix} V^{\mathsf{T}} \\ n \times n \end{bmatrix}$$

Singular Value Decomposition (Overview)

Singular Value Decomposition (Overview)

$$A \\ n \times d \\ = \begin{bmatrix} U \\ n \times r \end{bmatrix} \quad \mathbf{v}^{\mathsf{T}} \\ r \times d \\ \mathbf{u}_i : \quad n \times 1 \text{ matrix} \\ \mathbf{v}_i : \quad d \times 1 \text{ matrix} \\ D : \text{diagonal matrix}, d_{ii} > 0 \\ \text{columns of } U \text{ and } V : \text{orthonomal} \\ A = UDV^{\mathsf{T}} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}. \quad A^{\mathsf{T}} \mathbf{u}_i = d_{ii} \mathbf{v}_i. \quad A^{\mathsf{T}} \mathbf{u}_i = d_{ii} \mathbf{v}_i.$$

Project a point (vector)

$$\mathbf{a_i} = (a_{i_1}, a_{i_2}, \dots, a_{i_d})$$

onto a line (vector) v.

Pythagorean Theorem:

$$a_{i_1}^2 + a_{i_2}^2 + \dots + a_{i_d}^2 = (\text{length of projection})^2 + (\text{distance of point to line})^2.$$

Project a point (vector)

$$\mathbf{a_i} = (a_{i_1}, a_{i_2}, \dots, a_{i_d})$$

onto a line (vector) v.

Pythagorean Theorem:

Project a point (vector)

$$\mathbf{a_i} = (a_{i_1}, a_{i_2}, \dots, a_{i_d})$$

onto a line (vector) v.

Pythagorean Theorem:

Project a point (vector)

$$\mathbf{a_i} = (a_{i_1}, a_{i_2}, \dots, a_{i_d})$$

onto a line (vector) v.

Pythagorean Theorem:

$$a_{i_1}^2 + a_{i_2}^2 + \dots + a_{i_d}^2 = (\text{length of projection})^2 + (\text{distance of point to line})^2.$$

Maximize this!

Find a **v** such that the sum of the projection lengths is maximum!

Project a point (vector)

$$\mathbf{a_i} = (a_{i_1}, a_{i_2}, \dots, a_{i_d})$$

onto a line (vector) v.

Pythagorean Theorem:

$$a_{i_1}^2 + a_{i_2}^2 + \dots + a_{i_d}^2 = (\text{length of projection})^2 + (\text{distance of point to line})^2.$$

Maximize this!

Find a **v** such that the sum of the projection lengths is maximum!

• The first singular vector \mathbf{v}_1 of A:

$$\mathbf{v}_1 = \arg\max_{|\mathbf{v}|=1} |A\mathbf{v}|^2$$

 $\sigma_1 = |A\mathbf{v}|$: first singular value of A.

• The first singular vector \mathbf{v}_1 of A:

$$\mathbf{v}_1 = \arg\max_{|\mathbf{v}|=1} |A\mathbf{v}|^2$$

 $\sigma_1 = |A\mathbf{v}|$: first singular value of A.

$$\sigma_1^2 = |A\mathbf{v}|^2 = \sum_{i=1}^n (\mathbf{a}_i \cdot \mathbf{v}_i)^2$$

• The first singular vector \mathbf{v}_1 of A:

$$\mathbf{v}_1 = \arg\max_{|\mathbf{v}|=1} |A\mathbf{v}|^2$$

 $\sigma_1 = |A\mathbf{v}|$: first singular value of A.

$$\sigma_1^2 = |A\mathbf{v}|^2 = \sum_{i=1}^n (\mathbf{a}_i \cdot \mathbf{v}_i)^2$$

• Sometimes we are not lucky enough so that data points are not close to "one line", but close to a *k*-dimension space.

• The first singular vector \mathbf{v}_1 of A:

$$\mathbf{v}_1 = \arg\max_{|\mathbf{v}|=1} |A\mathbf{v}|^2$$

 $\sigma_1 = |A\mathbf{v}|$: first singular value of A.

$$\sigma_1^2 = |A\mathbf{v}|^2 = \sum_{i=1}^n (\mathbf{a}_i \cdot \mathbf{v}_i)^2$$

How about the second, the third, ..., the kth singular vectors?

• The second singular vector: the best-fit line perpendicular to \mathbf{v}_1 .

$$\mathbf{v}_2 = \arg\max_{\substack{\mathbf{v} \perp \mathbf{v}_1 \\ |\mathbf{v}| = 1}} |A\mathbf{v}|^2.$$
 $\sigma_2(A) = |A\mathbf{v}_2| : \text{second singular value of } A$

• The second singular vector: the best-fit line perpendicular to \mathbf{v}_1 .

$$\mathbf{v}_2 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1 \\ |\mathbf{v}| = 1}} |A\mathbf{v}|^2.$$
 $\sigma_2(A) = |A\mathbf{v}_2| : \text{second singular value of } A$

• The third singular vector: the best-fit line perpendicular to \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{v}_3 = \arg \max_{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \atop |\mathbf{v}| = 1} |A\mathbf{v}|^2.$$
 $\sigma_3(A) = |A\mathbf{v}_3| : \text{third singular value of } A$

• The second singular vector: the best-fit line perpendicular to \mathbf{v}_1 .

$$\mathbf{v}_2 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1 \\ |\mathbf{v}| = 1}} |A\mathbf{v}|^2.$$
 $\sigma_2(A) = |A\mathbf{v}_2| : \text{second singular value of } A$

• The third singular vector: the best-fit line perpendicular to \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{v}_3 = \arg\max_{\substack{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \\ |\mathbf{v}| = 1}} |A\mathbf{v}|^2.$$
 $\sigma_3(A) = |A\mathbf{v}_3|$: third singular value of A

• Find singular vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ and singular values $\sigma_1, \sigma_2, \dots, \sigma_r$

$$\max_{\substack{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r \\ |\mathbf{v}| = 1}} |A\mathbf{v}|^2 = 0.$$

The Greedy Algorithm Find the Best-Fit Subspace!

• Theorem. Let A be an $n \times d$ matrix with singular vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$. For each k, V_k is the best-fit k-dimensional subspace for A.

$$\sum_{j=1}^{n} |\mathbf{a}_j|^2 = \sum_{j=1}^{n} \sum_{i=1}^{r} (\mathbf{a}_j \cdot \mathbf{v}_i)^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{n} (\mathbf{a}_j \cdot \mathbf{v}_i)^2$$

$$= \sum_{i=1}^{r} |A\mathbf{v}_i|^2$$

$$= \sum_{i=1}^{r} \sigma_i^2(A).$$

$$\sum_{j=1}^{n} |\mathbf{a}_{j}|^{2} = \sum_{j=1}^{n} \sum_{i=1}^{r} (\mathbf{a}_{j} \cdot \mathbf{v}_{i})^{2}$$
 linear combination of \mathbf{a}_{j} w.r.t. \mathbf{v}_{i} 's
$$= \sum_{i=1}^{r} \sum_{j=1}^{n} (\mathbf{a}_{j} \cdot \mathbf{v}_{i})^{2}$$

$$= \sum_{i=1}^{r} |A\mathbf{v}_{i}|^{2}$$

$$= \sum_{i=1}^{r} \sigma_{i}^{2}(A).$$

$$\sum_{j=1}^{n} |\mathbf{a}_j|^2 = \sum_{j=1}^{n} \sum_{i=1}^{r} (\mathbf{a}_j \cdot \mathbf{v}_i)^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{n} (\mathbf{a}_j \cdot \mathbf{v}_i)^2$$

$$= \sum_{i=1}^{r} |A\mathbf{v}_i|^2$$

$$= \sum_{i=1}^{r} \sigma_i^2(A).$$

$$\sum_{j=1}^{n} |\mathbf{a}_j|^2 = \sum_{j=1}^{n} \sum_{i=1}^{r} (\mathbf{a}_j \cdot \mathbf{v}_i)^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{n} (\mathbf{a}_j \cdot \mathbf{v}_i)^2$$

$$= \sum_{i=1}^{r} |A\mathbf{v}_i|^2$$

$$= \sum_{i=1}^{r} \sigma_i^2(A).$$

The sum of squares of all the entries of *A*.

The sum of squares of singular values of *A*.

$$\sum_{j=1}^{n} |\mathbf{a}_j|^2 = \sum_{j=1}^{n} \sum_{i=1}^{r} (\mathbf{a}_j \cdot \mathbf{v}_i)^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{n} (\mathbf{a}_j \cdot \mathbf{v}_i)^2$$

$$= \sum_{i=1}^{r} |A\mathbf{v}_i|^2$$

$$= \sum_{i=1}^{r} \sigma_i^2(A).$$

The sum of squares of all the entries of *A*.

The sum of squares of singular values of *A*.

The singular values summarizes the whole matrix in some sense.

Left and Right-Singular Vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$: **right**-singular vectors.
- To find the left-singular vectors:

Left and Right-Singular Vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$: **right**-singular vectors.
- To find the left-singular vectors:

$$\mathbf{u}_i = \frac{1}{\sigma_i(A)} A \mathbf{v}_i.$$

Left and Right-Singular Vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$: **right**-singular vectors.
- To find the left-singular vectors:

$$\mathbf{u}_i = \frac{1}{\overline{\sigma_i(A)}} A \mathbf{v}_i.$$

Concept of normalization

Singular Value Decomposition

• Theorem. Let A be an $n \times d$ matrix with right-singular vectors \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_r , left-singular vectors \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_r and corresponding singular values σ_1 , σ_2 , ..., σ_r . Then

$$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}.$$

Singular Value Decomposition

• Theorem. Let A be an $n \times d$ matrix with right-singular vectors \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_r , left-singular vectors \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_r and corresponding singular values σ_1 , σ_2 , ..., σ_r . Then

$$A = \sum_{i=1}^{\prime} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}.$$

• Proof:

$$\sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top} \mathbf{v}_j = \sigma_j \mathbf{u}_j = A \mathbf{v}_j \quad \text{for each } j$$

Singular Value Decomposition

• Theorem. Let *A* be an *n* \times *d* matrix with right-singular vectors \mathbf{v}_1 , $\mathbf{v}_2, \dots, \mathbf{v}_r$, left-singular vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ and corresponding singular values $\sigma_1, \sigma_2, \dots, \sigma_r$. Then

$$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}.$$

Proof:

$$\sum_{i=1}^{\prime} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top} \mathbf{v}_j = \sigma_j \mathbf{u}_j = A \mathbf{v}_j \quad \text{for each } j$$

Any vector **v** can be expressed as a linear combination of

 \mathbf{v}_i 's plus a vector perpendicular to the \mathbf{v}_i 's. $A = B \Leftrightarrow Av = Bv$ for each v

$$A = B \Leftrightarrow Av = Bv \text{ for each } v$$

Best Rank-*k* Approximations

• The sum truncated after *k* terms.

$$A_{\mathbf{k}} = \sum_{i=1}^{\mathbf{k}} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}.$$

• The rows of A_k are the projections of the rows of A onto the subspace V_k spanned by the first k singular vectors of A.

Best Rank-*k* Approximations

• The sum truncated after *k* terms.

$$A_{\mathbf{k}} = \sum_{i=1}^{\mathbf{k}} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}.$$

• The rows of A_k are the projections of the rows of A onto the subspace V_k spanned by the first k singular vectors of A.

projection of vector
$$\mathbf{a}$$
 onto V_k :
$$\sum_{i=1}^k (\mathbf{a} \cdot \mathbf{v}_i) \mathbf{v}_i^{\top}.$$

$$\therefore \sum_{i=1}^k A \mathbf{v}_i \mathbf{v}_i^{\top} = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top} = A_k.$$

• The left singular vectors are pairwise **orthogonal**.

• The left singular vectors are pairwise **orthogonal**.

i: the smallest integer such that \mathbf{u}_i is not orthogonal to some other \mathbf{u}_i .

Assume that $\mathbf{u}_i^{\top} \mathbf{u}_j = \delta > 0$.

For
$$\epsilon > 0$$
, let $\mathbf{v}'_i = \frac{\mathbf{v}_i + \epsilon \mathbf{v}_j}{|\mathbf{v}_i + \epsilon \mathbf{v}_j|}$. $A\mathbf{v}'_i = \frac{\sigma_i \mathbf{u}_i + \epsilon \sigma_j \mathbf{u}_j}{\sqrt{1 + \epsilon^2}}$.

• The left singular vectors are pairwise **orthogonal**.

i: the smallest integer such that \mathbf{u}_i is not orthogonal to some other \mathbf{u}_i .

Assume that $\mathbf{u}_i^{\top} \mathbf{u}_j = \delta > 0$.

For
$$\epsilon > 0$$
, let $\mathbf{v}'_i = \frac{\mathbf{v}_i + \epsilon \mathbf{v}_j}{|\mathbf{v}_i + \epsilon \mathbf{v}_j|}$. $A\mathbf{v}'_i = \frac{\sigma_i \mathbf{u}_i + \epsilon \sigma_j \mathbf{u}_j}{\sqrt{1 + \epsilon^2}}$.

Note that
$$\mathbf{v}_i + \epsilon \mathbf{v}_j \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{i-1}$$
. $(j > i)$

• The left singular vectors are pairwise **orthogonal**.

i: the smallest integer such that \mathbf{u}_i is not orthogonal to some other \mathbf{u}_j .

Assume that
$$\mathbf{u}_i^{\top} \mathbf{u}_j = \delta > 0$$
.

For
$$\epsilon > 0$$
, let $\mathbf{v}'_i = \frac{\mathbf{v}_i + \epsilon \mathbf{v}_j}{|\mathbf{v}_i + \epsilon \mathbf{v}_j|}$. $A\mathbf{v}'_i = \frac{\sigma_i \mathbf{u}_i + \epsilon \sigma_j \mathbf{u}_j}{\sqrt{1 + \epsilon^2}}$.

Note that $\mathbf{v}_i + \epsilon \mathbf{v}_i \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{i-1}$.

Clearly,
$$|A\mathbf{v}_i'| \ge \mathbf{u}_i^{\top} \cdot (A\mathbf{v}_i')$$
.

• The left singular vectors are pairwise **orthogonal**.

i: the smallest integer such that \mathbf{u}_i is not orthogonal to some other \mathbf{u}_i .

Assume that $\mathbf{u}_i^{\top} \mathbf{u}_j = \delta > 0$.

For
$$\epsilon > 0$$
, let $\mathbf{v}'_i = \frac{\mathbf{v}_i + \epsilon \mathbf{v}_j}{|\mathbf{v}_i + \epsilon \mathbf{v}_j|}$. $A\mathbf{v}'_i = \frac{\sigma_i \mathbf{u}_i + \epsilon \sigma_j \mathbf{u}_j}{\sqrt{1 + \epsilon^2}}$.

Note that $\mathbf{v}_i + \epsilon \mathbf{v}_i \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{i-1}$.

Clearly,
$$|A\mathbf{v}_i'| \ge \mathbf{u}_i^{\top} \cdot (A\mathbf{v}_i')$$
.

$$|A\mathbf{v}_i'| > |A\mathbf{v}_i| \ (\Rightarrow \Leftarrow)$$

$$\mathbf{u}_{i}^{\top} \left(\frac{\sigma_{i} \mathbf{u}_{i} + \epsilon \sigma_{j} \mathbf{u}_{j}}{\sqrt{1 + \epsilon^{2}}} \right) > (\sigma_{i} + \epsilon \sigma_{j} \delta) \left(1 - \epsilon^{2} / 2 \right) > \sigma_{i}.$$

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i \text{ and } A^{\mathsf{T}} \mathbf{u}_i = \sigma_i \mathbf{v}_i.$$

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i \text{ and } A^{\mathsf{T}} \mathbf{u}_i = \sigma_i \mathbf{v}_i.$$

Proof for the second:

From the SVD, we have

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i \text{ and } A^{\top} \mathbf{u}_i = \sigma_i \mathbf{v}_i.$$

Proof for the second:

From the SVD, we have

$$A^{\top}\mathbf{u}_{i} = \sum_{j} (\sigma_{j}\mathbf{u}_{j}\mathbf{v}_{j}^{\top})^{\top}\mathbf{u}_{i}$$

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i \text{ and } A^{\mathsf{T}} \mathbf{u}_i = \sigma_i \mathbf{v}_i.$$

Proof for the second:

From the SVD, we have

$$A^{\top} \mathbf{u}_{i} = \sum_{j} (\sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\top})^{\top} \mathbf{u}_{i}$$
$$= \sum_{j} \sigma_{j} \mathbf{v}_{j} \mathbf{u}_{j}^{\top} \mathbf{u}_{i}$$
$$= \sigma_{i} \mathbf{v}_{i} \mathbf{u}_{i}^{\top} \mathbf{u}_{i} = \sigma_{i} \mathbf{v}_{i}.$$

Big Data Analytic Techniques, CSIE, TKU, Taiwan

•
$$||A - A_k||_2^2 = \sigma_{k+1}^2$$
.

Note:
$$||A||_2 = \max_{|\mathbf{x}|=1} |A\mathbf{x}|$$
.

•
$$||A - A_k||_2^2 = \sigma_{k+1}^2$$
.
Let $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. Then $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. $A - A_k = \sum_{i=k+1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$.

•
$$||A - A_k||_2^2 = \sigma_{k+1}^2$$
.
Let $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. Then $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. $A - A_k = \sum_{i=k+1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$.

 \mathbf{v} : top singular vector of $A - A_k$.

Express
$$\mathbf{v}: \quad \mathbf{v} = \sum_{j=1}^{r} c_j \mathbf{v}_j$$
.

• $||A - A_k||_2^2 = \sigma_{k+1}^2$.

Let $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. Then $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. $A - A_k = \sum_{i=k+1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. \mathbf{v} : top singular vector of $A - A_k$.

Express
$$\mathbf{v}$$
: $\mathbf{v} = \sum_{j=1}^{r} c_j \mathbf{v}_j$. $|(A - A_k)\mathbf{v}| = \left| \sum_{i=k+1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T \sum_{j=1}^{r} c_j \mathbf{v}_j \right|$

$$= \left| \sum_{i=k+1}^{r} c_i \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{v}_i \right|$$

$$= \left| \sum_{i=k+1}^{r} c_i \sigma_i \mathbf{u}_i \right| = \sqrt{\sum_{i=k+1}^{r} c_i^2 \sigma_i^2}.$$

•
$$||A - A_k||_2^2 = \sigma_{k+1}^2$$
.

Note:
$$||A||_2 = \max_{|\mathbf{x}|=1} |A\mathbf{x}|$$
.

Let
$$A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$$
. Then $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. $A - A_k = \sum_{i=k+1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$.

 \mathbf{v} : top singular vector of $A - A_k$.

Express
$$\mathbf{v}: \quad \mathbf{v} = \sum_{j=1}^{r} c_j \mathbf{v}_j. \quad |(A - A_k)\mathbf{v}| = \left| \sum_{i=k+1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T \sum_{j=1}^{r} c_j \mathbf{v}_j \right|$$

$$= \left| \sum_{i=k+1}^{r} c_i \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{v}_i \right|$$
Try to maximize it!
$$\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_r^2.$$

$$\sigma_1^2 \ge \sigma_2^2 \ge \dots \ge \sigma_r^2$$
.

$$|\mathbf{v}|^2 = \sum_{i=1}^n c_i^2 = 1.$$

Set $c_{k+1} = 1$ and the rest to be zero.

$$= \left| \sum_{i=k+1}^{r} c_i \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{v}_i \right|$$
 Try to m
$$= \left| \sum_{i=k+1}^{r} c_i \sigma_i \mathbf{u}_i \right| = \sqrt{\sum_{i=k+1}^{r} c_i^2 \sigma_i^2}.$$

• Theorem. Let *A* be an $n \times d$ matrix. For any matrix *B* of rank $\leq k$,

$$||A - A_k||_2 \le ||A - B||_2.$$

• Theorem. Let *A* be an $n \times d$ matrix. For any matrix *B* of rank $\leq k$,

$$||A - A_k||_2 \le ||A - B||_2.$$

• Assume *A* is of rank > k.

We have shown: $||A - A_k||_2^2 = \sigma_{k+1}^2$.

• Theorem. Let *A* be an $n \times d$ matrix. For any matrix *B* of rank $\leq k$,

$$||A - A_k||_2 \le ||A - B||_2.$$

• Assume *A* is of rank > k.

We have shown: $||A - A_k||_2^2 = \sigma_{k+1}^2$.

 $\dim(\text{Null}(B)) \ge d - k.$

 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k+1}$: first k+1 singular vectors of A.

• Theorem. Let *A* be an $n \times d$ matrix. For any matrix *B* of rank $\leq k$,

$$||A - A_k||_2 \le ||A - B||_2.$$

• Assume A is of rank > k.

We have shown: $||A - A_k||_2^2 = \sigma_{k+1}^2$.

 $\dim(\text{Null}(B)) \ge d - k$.

 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k+1}$: first k+1 singular vectors of A.

 $\exists \mathbf{z} \neq \mathbf{0}, \ |\mathbf{z}| = 1, \ \mathbf{z} \in \text{Null}(B) \cap \text{span}(\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}).$

• Theorem. Let *A* be an $n \times d$ matrix. For any matrix *B* of rank $\leq k$,

$$||A - A_k||_2 \le ||A - B||_2.$$

• Assume *A* is of rank > k.

We have shown:
$$||A - A_k||_2^2 = \sigma_{k+1}^2$$
.

$$\dim(\text{Null}(B)) \ge d - k.$$

$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k+1}$$
: first $k+1$ singular vectors of A .

$$\exists \mathbf{z} \neq \mathbf{0}, \ |\mathbf{z}| = 1, \ \mathbf{z} \in \text{Null}(B) \cap \text{span}(\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}).$$

$$||A - B||_2^2 \ge |(A - B)\mathbf{z}|^2 \ge |A\mathbf{z}|^2 \quad (:B\mathbf{z} = 0)$$

• Theorem. Let A be an $n \times d$ matrix. For any matrix B of rank $\leq k$,

$$||A - A_k||_2 \le ||A - B||_2.$$

• Assume *A* is of rank > k.

We have shown:
$$||A - A_k||_2^2 = \sigma_{k+1}^2$$
.

 $\dim(\operatorname{Null}(B)) \ge d - k.$

$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k+1}$$
: first $k+1$ singular vectors of A .

$$\exists \mathbf{z} \neq \mathbf{0}, \ |\mathbf{z}| = 1, \ \mathbf{z} \in \text{Null}(B) \cap \text{span}(\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}).$$

$$||A - B||_2^2 \ge |(A - B)\mathbf{z}|^2 \ge |A\mathbf{z}|^2 \quad (:B\mathbf{z} = 0)$$

$$|A\mathbf{z}|^{2} = \left| \sum_{i=1}^{n} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \mathbf{z} \right|^{2}$$

$$= \sum_{i=1}^{n} \sigma_{i}^{2} (\mathbf{v}^{T} \mathbf{z})^{2}$$

$$= \sum_{i=1}^{k+1} \sigma_{i}^{2} (\mathbf{v}_{i}^{T} \mathbf{z})^{2}$$

$$\geq \sigma_{k+1}^{2} \sum_{i=1}^{k+1} (\mathbf{v}_{i}^{T} \mathbf{z})^{2}$$

$$\geq \sigma_{k+1}^{2}.$$

Remark

- Singular Value Decomposition (SVD) is used as core routine in the **Principal Component Analysis (PCA)**.
 - Unsupervised learning paradigm.
 - A dimensionality reduction algorithm.

- Movie recommendation:
 - n customers and d movies.
 - $a_{i,j}$: the amount how customer i likes movie j.

- Movie recommendation:
 - *n* customers and *d* movies.
 - $a_{i,j}$: the amount how customer i likes movie j.
- Hypothesis:
 - Only *k* underlying factors that determine a customer likes a movie.
 - $k \ll n, d.$

- Movie recommendation:
 - *n* customers and *d* movies.
 - $a_{i,j}$: the amount how customer i likes movie j.
- Hypothesis:
 - Only *k* underlying factors that determine a customer likes a movie.
 - $k \ll n, d.$
- *U*: *n* x *k* describing the customers.
- V^T : $d \times k$ matrix, describing the movies.

- Movie recommendation:
 - *n* customers and *d* movies.
 - a_{ij} : the amount how customer i likes movie j.
- Hypothesis:
 - Only *k* underlying factors that determine a customer likes a movie.
 - $k \ll n, d.$
- *U*: *n* x *k* describing the customers.
- V^T : $d \times k$ matrix, describing the movies.
- Goal: Find the best rank-k approximation A_k .

Suppose we have a dataset X of two-dimension.

- Suppose we have a dataset X of two-dimension.
- Import PCA as below:

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)
```

n_component=2
$$\iff$$
 $k = 2$

generated 2-D points

- Suppose we have a dataset X of two-dimension.
- Import PCA as below:

```
from sklearn.decomposition import PCA pca = PCA(n_components=2) pca.fit(X)
```

n component=2 \iff k = 2

print(pca.components)

 print(pca.explained_variance_)

[0.75871884 0.01838551]

A set of 200 randomly generated 2-D points + components as axis

Dimension reduction:

```
pca = PCA(n_components=1)
pca.fit(X)
X_pca = pca.transform(X)
```

```
X_new = pca.inverse_transform(X_pca)
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)
plt.scatter(X_new[:, 0], X_new[:, 1], alpha=0.8)
```


Refer to the webpage for more detail.