METHOD FOR APPLICATION OF MULTILAYER WEAR-RESISTANT COATING TO ARTICLES FROM IRON AND TITANIUM ALLOYS

Patent Number: RU2106429 Publication date: 1998-03-10

Inventor(s): BODROV ALEKSANDR ANA

BODROV ALEKSANDR ANATOL EVICH; MIRONOV KONSTANTIN NIKOLAEVICH;

NESTEROV SERGEJ BORISOVICH; RYZHENKOV VJACHESLAV ALEKSEEVI

Applicant(s):: BODROV ALEKSANDR ANATOL EVICH; MIRONOV KONSTANTIN NIKOLAEVICH; NESTEROV SERGEJ BORISOVICH; RYZHENKOV VJACHESLAV ALEKSEEVI

Requested

Patent: RU2106429

Application

Number: RU19970104472 19970328

Priority Number

(s): RU19970104472 19970328

IPC

Classification: C23C30/00; C23C14/06

EC

Classification:

Equivalents:

Abstract

FIELD: power and transport engineering for increasing the wear-resistance of turbine and pump blades, engine components and other equipment whose process of operation is characterized by concurrent effect of various types of wear. SUBSTANCE: method includes polishing of the surface to be coated to cleanness of 0.08 with subsequent cleaning with octadecylamine. Then a layer of transition metal of groups IV-VI of the Mendeleev Periodic Table is applied to the surface and a layer of oxide of the same metal and a layer of nitride or carbide of transition metal of groups IV-VI of the Mendeleev Periodic Table are applied. EFFECT: higher efficiency. 3 cl, 1 dwgg

Data supplied from the esp@cenet database - I2

BEST AVAILABLE COPY

(19) RU (11) 2106429 (13) C1

(51) 6 C 23 C 30/00, 14/06

Комитет Российской Федерации по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Росгийской Федерации

(21) 97104472/02

(22) 28.03.97

(46) 10.03.98 Бюл. № 7

(76) Рыженков Вячеслав Алексеевич, Нестеров Сергей Борисович, Бодров Александо Анатольевич, Мироноч Константин Никола-

1. JP, N 63-253357, 1987, C 23 C (56)14/06. 2. EP, N 0522873, 1993, C 23 C 30/00. (54) СПОСОБ НАНЕСЕНИЯ износостоикого по-СЛОЯНОГО крытия на изделия из железных и титановых сплавов

(57) Изобретение может быть использовано в энергстическом и транспортном машиностроении для повышения износостойкости

двигателей и другого оборудования, процесс эксплуатации которого характеризуется одновременным воздействием различных видов износа. Поверхность изделия, на которое наносится многослойное износостойкое покрытие, полируется до чистоты R_a≤ 0.08 с последующей очисткой октадециламином. Затем на нее наносится слой переходного металла IV - VI групп периодической системы Менделсева, слой из оксида этого же металла и слой нитрида или карбида VI rpynn переходного металла IV -

лопастей турбин и насосов, периодической системы Менделеева. 2 з.п.

International Patent Document Delivery, Translation and Alerting Specialists Telephone (44) 020 7412 7927/7981 Fax (44) 020 7412 7930

REMOVABLE LABEL

PATENT EXPRESS WISHES TO APOLOGISE FOR THE POOR COPY. THIS WAS CAUSED BY THE QUALITY OF THE ORIGINAL DOCUMENT.

THE BRITISH LIBRARY

BEST AVAILABLE COPY

4

Наобретение относится к энергетическому и транспотному машиностроению и может быть использовано для полышения износолопастей турбин стоикости Ρ. RACOCOB. элементов двигателей и другого оборудования, процесс эксплуатации которых характеризуется одновременным воздействием различных видов износа (каплеударная и абразивная эрозия, различные виды коррозии, эрозия-коррозия, кавитация, повышенповышенное RAH агрессивность среды, трение).

Известно техническое решение [1], заключающееся в нанесении покрытия из титанового сплава, осаждении плении, состоящей из одного или нескольких элементов, ногной бомбардировки с получением твердой пленки с образованием твердого композиционного слоя, бомбардировки пленки нонами азота, кислорода или углерода.

Недостатками этого технического решения является неспособность обеспечения эффективной защиты металла лепаток от коррозионного и действующих одновременно коррозионного и эрозионного износов, что зачастую имеет место при эксплуатации оборудования.

Наиболее близким техническим решением (прототиком) к предлагаемому способу является способ нанесения износостойкого покрытия из нестехиометрического нитрила титана [2], включающий полготовку изделия, нанесение слоя титана и слоя нитрида титана при температуре 420-530°C.

Недостатком этого технического решения является нанесение двухслойного покрытия, т.е. отсутствие промежуточного слоя, что позволяет получить более эффективную защиту от различных видов коррозии. Кроме того, отсутствие единого замкнутого щикла с объемным нагревом уменьшает коррознонную и эрозионную стойкость покрытия изделия.

Техническим результатом предлагаемого технического решения является повышение износостойкости изделий из железных и титановых сплавов за счет существ иного снижения каплеударной и абразивной эрозии, кавитации, эрозии-коррозии, различных видов коррозии (атмосферная, химическая коррозия, коррозионное растрескивание под напряжением, фретинг-коррозия) в процессе эксплуатации изделий.

Технический результат достигается предварительной подготовкой поверхности защищаемого изделия и последующим нанесением многослойного покрытия при различной толшине его составляющих в едином замкнутом цикле при объемном нагреве изделия.

Формирование многослойного покрытия в едином замкнутом цикле обеспечивает подачу кислорода в необходимом количестве, требуемом для формирования оксида металла первого слоя определенной толщины.

Причем предварительная подготовка поверхности защищаемых изделий включает в с. бя ее полировку до значения R_a ≤ 0,08 мкм (Ra - параметр птероховатоств, характеризующий среднее анифметическое отклонение профиля) и очистку с использованием поверхностно-активных веществ, преимущественно октадециламича для удаления загрязнений с поверхности, в том числе и коррозионно-активных примесей (хлорилы, сульфаты и др.), расположенных, как правило, на дне поверхностных трещив и кавери, что существенно повышает адгезию первого слоя покрытия. Это мероприятие в значительной степени определяет коррознонную стейкость многослойного покрытия.

Наносимый в качестве первого слоя покрытия металл обладает высокой коррозионной и химической стойкостью, второй слой, представляющий собой оксил металла первого слоя, еще в большей степени повышает коррозионную в химическую стойкость и предотвращает доступ кислорода, углекислоты к защищаемому металлу. Третий слой, в качестве которого наносят нитрил или карбид одного из переходных металлов IV - VI групп периодической системы Менделеева, существенно повышает эрозионную, в том числе и кавитационную стойкость защищаемого изделия.

На чертеже изображена принципиальная схема устройства, где 1 - защищаемое изделие, 2 - держатель, 3 - рабочая камера. 4 - катод - 5 анод, 6 - источник питания. 7 - электрическая дуга, 8 - источник питания для высокоскоростной бомбардировки поверхности изделия нонами аргона, 9 - дозируустройство, 10 устройство предварительной очистки поверхности защищаемого изделия с использованием поверхностно-активного вещества (эмульсия октадециламина), il - ультразвуковая уста-

Предлагаемый способ включает в себя грубую очистку поверхности защищаемого изделия от загрязнений, полировку защищаемой поверхности до значения R_a ≤ 0,08 мкм, тонкую очистку поверхности защищаемого изделия с использованием поверхностно-активного вещества (октадециламина) и ультразвуковой установки, сушку поверхнсти изделия после очистки, помещение изделия в вакуумную камеру устройства,

6

создание рабочего вакуума в камере, объемный нагрев защитного изделия, дополнительную очистку и активизацию поверхности изделия за счет се бомбардировки ионами аргона, формирование многослойного покрытия.

Процесс нанесения многослойного покрытия на изделие осуществляется в следующей последовательности.

После предварительной полировки до частогы R_a ≤ 0,08 мкм и очистки эмульсией октадециламина 10 и ультразвуковой установкой (11) изделие 1 закрепляется пержателе 2, который в зависимости от формы и массы изделия обеспечивает его движение в различных плоскостях. В рабочей камере 3 создается вакуум 10-3 Па. Затем в камеру через полый катод 4 подается газ - аргон. После достижения рабочего давления 10-211а созлается напряжение между католом и анодом 5 посредством источника питания 6 и образуется электрическая дуга 7. На изделие подается напряжение от собственного источника питания 8 для высокоскоростной бомбардировки поверхности изделия ионами аргона.

После этого осуществляется объемный нагрев. Температура изделия поддерживается на уровне, не превышающем значение в диапазоне 400-500°С. Нижнее значение температуры обеспечивает повышение адтезии покрытий на защищаемых поверхностях крупногабаритных изделий. Верхнее значение температуры обусловлено отсутствием структурных изменений в механических свойств металла изделий. Диапазон температуры определяется материалом, используемым для изготовления турбинных лопаток (углеродистые и хромистые стали).

Подачей напряжения устанавливается необходимый электрический ток между акодом и катодом, обеспечивающий испарение и ионизацию металла, используемого для формирования первого слоя покрытия. В результате последующего его осаждения образуется первый защитный слой, толщина которого определяется степенью агрессивности эксплуатационной среды взделей.

Затем в рабочую камеру через дозирующее устройство 9 подается кислород с объемным расходом, необходимым для формирования второго слоя необходимой толшины за счет формирования в результате

химической реакции оксила металла, наносимого в качестве первого слоя.

После образования второго слоя перед подачей азота или углерода через дозирующее устройство 9 подлется кислород с объемным расходом, необходимым для формирования третьего слоя необходимой толцины, обеспечиваются условия образования нитрида или карбида металла, наносимого в качестве первого слоя. Таким образом, нанесение всех слоев происходит в едином замкнутом цикле.

Соотношение толщин наносимых слоев определяется условием повышения эффективности износостойкости изделий при одновременном воздействии, в первую очередь, коррозии, абразивной, кавитационной и каплеударной эрозии без изменения структуры, свойств и установленных характеристик металла защищаемого изделия.

С учетом вышензложенного, а также в зависимости от свойств применяемого для формирования первого слоя металла и используемых технологических газов определяются толщины слоев, находящихся в следующих диапазонах:

 $B_1 = 1-5 \text{ MKM},$

 $B_2 = 0.0.-0.1$ MKM,

 $B_3 = 5-15 \text{ MKM},$

где

В1 - толщина первого слоя,

В2 - толщина второго слоя,

Вз - толщина третьего слоя.

Многослойное покрытие, нанесенное на защищаемое изделие из углеводородной стали в нонно-вакуумной установке в едином заикнутом цикле и состоящее из трех слоев, в котором в качестве первого слоя используется титан толициной 2 мкм, в качестве второго - карбид титана толициной 0,05 мкм, качестве третьего - нитрид титана толщиной 8 мкм при предварительной полировке поверхности до значения Ra = 0,08 и ее очистке с помощью октадециламина, позволяет, как показали результаты испытаний, повысить коррозионную стойкость в 12 раз, эрозионную стойкость при абразивном воздействии - в 7 раз, эрозионную стойкость при каплеударном воздействии - в 5 раз и кавитационную стойкость в 6 раз. Это в совокупности приводит к увеличению срока службы изделий, в частности, лопаток паровых турбин в 2-3 раза.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ нанесения многослойного износостойкого покрытия на изделия из железных и титановых сплавов, включающий подготовку поверхности изделия, нанесение на нее слоя металла и слоя химического соединения металла, *отличающийся* тем, что подготов-

ку поверхности изделия осуществляют полировкой до чистоты $R_0 \le 0.08$ с последующей очисткой октадециламином, в качестве слоя металла износят переходный металл IV-VI групп Периодической системы Менделеева, в качестве химического соединения - нитрид или карбид переходного металла IV-VI групп Периодической системы Менделеева, а между слоями металла и химического соединения наносят дополнительный слой из эксида металла, нанесенного в качестве первого слоя.

- 2. Способ по п.т., отличающийся тем, что нанесение слоев осуществляют ионно-вакуумным напылением в едином замкнутом цикле с объемным нагревом изделия до температуры 400-500°С.
- 3. Способ по пп.1 и 2, отличающийся тем, что на подготовленную поверхность изделия последовательно наносят слой титана, промежуточный слой оксида титана и слой нитрида титана.

Заказ //2 Подписное ВНИИПИ, Рег. ЛР № 040720 113834, ГСП, Москва, Раушская наб.,4/5

121873, Москва, Бережковская наб., 24 стр. 2. Производственное предприятие «Патент»