PHYS1500J Mid RC Part 1

Zhao Guojiao zgj_1.17@sjtu.edu.cn

Some Reminders

- About the exam: "As last year, the exam is closed book and there is a formula sheet attached to the paper — I said that in class. A dictionary is ok — we have it as a rule in the syllabus."
- About parametric form and implicit form: "Both are fine, unless the question asks for a specific form."
- About differential equations: "The equations we have come across so far are not really differential equations, just some simple integration after separation of variables. I believe we had something like that last year indeed."

Scientific Notation and Unit

Scientific Notation

$$A=a\cdot 10^k$$
 where $|a|\in [1,10)$

The Prefix of Units

Factor	Name	Symbol	Factor	Name	Symbol
10 ²⁴	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	С
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	micro	μ
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	Z
10 ¹	deka	da	10^{-24}	yocto	у

SI Base Units				
Mass	kilogram	kg		
Length	meter	m		
Time	second	S		
Amount of Substance	mole	mol		
Electric Current	ampere	\boldsymbol{A}		
Thermodynamic Temperature	kelvin	K		
Luminous Intensity	candela	cd		

Dimensional Analysis Method:

- 1. Write down the target parameters' units in SI form.
- 2. Write down the known parameters' units in SI form.
- 3. Assume the exponent of the parameters.
- 4. Solve the system of equations to make sure the exponent of the same SI unit is identical.

Significant Figures

How to Count Numbers of Significant Figures

- 1. Non-zero digits are always significant.
- 2. Any zeros between two significant digits are significant.
- 3. Trailing zeros after a decimal point are significant.
 - Example: 2.300 has 4 significant figures (2, 3, and two zeros).
- 4. Leading zeros before the first non-zero digit are not significant.
 - Example: 0.0025, has only 2 significant figures (2 and 5).
- 5. Trailing zeros in a whole number without a decimal point are generally not significant (unless otherwise indicated).
 - Example: 1500 has 2 significant figures (1 and 5); but if written as **1500.**, it has 4 significant figures.
- 6. When using scientific notation, all digits in the coefficient are significant.
 - Example: 4.00 × 10² has 3 significant figures.

More Examples

Example		
	Measured Data	Number of Significant Figures
	1098000	4
	0.001098	4
	$1.098 imes 10^6$	4
	1.09800×10^{6}	6
	100.	3

Vectors and Cartesian Coordinate System

Scalar

- time, mass, length, volume, density of matter, electric charge, potential energy, pressure, kinetic/potential energy...
- defined by a single number

Properties:		Tofal
-	+ or −	only compatible units allowed as arguments
	* or /	may involve quantities with different units
sin(), In	(), exp(),	only dimensionless arguments allowed

Vector

- velocity, force, linear momentum, angular velocity, angular momentum, electric/magnetic field, electric current density...
- defined by both a magnitude and a direction
- Properties:
 - 1. The dot product of two non-zero vectors is zero **iff** the vectors are perpendicular,

$$\overline{u}\circ \overline{w}=0\Leftrightarrow \overline{u}\perp \overline{w}$$

2. The cross product is anticommutative,

$$\overline{u} \times \overline{w} = \overline{w} \times \overline{u}$$

3. The cross product is a zero vector iff the two non-zero vectors are parallel (or antiparallel)

$$\overline{u}\times \overline{w}=0 \Leftrightarrow \overline{u} \parallel \overline{w}$$

$$\vec{A} \times (\vec{B} \times \vec{C}) \neq (\vec{A} \times \vec{B}) \times \vec{C}$$
Non-associative law of cross product:
$$\vec{A} \times (\vec{B} \times \vec{C}) \neq -(\vec{A} \times \vec{B}) \times \vec{C}$$

■ "Back-Cab" Rule: (1/b) (A, Z*)

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

Basic Operation in Cartesian

Basic Operation in Cartesian

Scalar Product

For
$$\overline{u}=(u_x,u_y,u_z)$$
 and $\overline{w}=(\underbrace{w_x},w_y,w_z)$, the dot product

$$\overline{u} \circ \overline{w} = u_x w_x \not \cap u_y w_y \not \cap u_z w_z$$

Vector Product

$$\overline{u} \times \overline{w} = (\underbrace{u_y w_z - u_z w_y}_{x}) \hat{n}_x + (\underbrace{u_z w_x - u_x w_z}_{x}) \hat{n}_y + (\underbrace{u_x w_y - u_y w_x}_{x}) \hat{n}_z \\
= \begin{vmatrix} \hat{n}_x & \hat{n}_y & \hat{n}_z \\ u_x & u_y & u_z \\ w_x & w_y & w_z \end{vmatrix}.$$

Differentiation

$$\frac{d\overline{u}}{dt} = \frac{d}{dt} (u_x(t)\hat{n}_x + u_y(t)\hat{n}_y + u_z(t)\hat{n}_z)$$

$$= (\dot{u}_x(t)\hat{n}_y + \dot{u}_y(t)\hat{n}_y + \dot{u}_z(t)\hat{n}_z)$$

Integration

$$\int_{t_0}^{t_1} \overline{u} dt = \left(\int_{t_0}^{t_1} u_x(t) dt \right) \hat{n}_x + \left(\int_{t_0}^{t_1} u_y(t) dt \right) \hat{n}_y + \left(\int_{t_0}^{t_1} u_z(t) dt \right) \underline{\hat{n}}_z$$