

系统化产品设计与开发

第六讲 产品规格

成 晔 清华大学工业工程系

闪电(Specialized)自行车零件公司 (1/2)

- 面向山地自行车市场, 开发新型避震前叉
 - 新款设计为休闲骑行者 提供更高价值

闪电(Specialized)自行车零件公司 (1/2)

- 开发团队已完成顾客 需求识别
 - 数小时的骑行体验
 - 访谈多位职业与休闲 骑行者
 - 与专卖店人员交流

■面临的挑战

- 如何将相对主观的顾客需求,转化为后 续开发的精准目标?
- 如何让开发团队和高管达成共识,是哪些因素将导致产品设计的成败?
- 团队成员如何建立信心,产品能有足够 大的市场?
- 产品的多种特性之间,不可避免地需要 做出权衡,团队如何解决?

避震前叉的顾客需求,及其相对重要度

序 号		需求	重要 度
1	避震前叉	减轻传递到骑行者手部的震动	3
2	避震前叉	使骑手能轻松通过艰难地形	2
3	避震前叉	使骑手能在山坡崎岖小路上, 高速冲下	5
4	避震前叉	灵敏度可调	3
5	避震前叉	保持自行车的良好转向特性	4
6	避震前叉	急转弯时, 保持刚性	4
7	避震前叉	重量轻	4
8	避震前叉	车闸安装点坚实牢靠	2
9	避震前叉	与多种车体、车轮、轮胎配合	5
10	避震前叉	易于安装	1

序号		需求	重要度
11	避震前叉	能与挡泥板配合使用	1
12	避震前叉	能激发自豪感	5
13	避震前叉	业余爱好者也买得起	5
14	避震前叉	不易沾水	5
15	避震前叉	不易沾泥污	5
16	避震前叉	易于维修	3
17	避震前叉	易于更换损坏部件	1
18	避震前叉	用常用工具就能维修	3
19	避震前叉	寿命持久	5
20	避震前叉	在撞车时安全	5

产品规格的含义 (1/2)

- 顾客需求是用"顾客语言" 形式表达
 - 主观性表述
 - 对产品设计的指导不够具体
- 开发团队通常须建立一套 "规格"
 - 对于产品必须"做什么",用 精准、可测度的方式表达

示例

- 避震前叉易于安装
- 使骑手能在山坡崎岖小路上, 高速冲下

■ 将避震前叉安装到车架上的平 均时间,少于75 秒

产品规格的含义 (2/2)

- 产品规格的定义
 - 产品必须"做什么"的精准描述

- 规格的构成
 - 度量指标,及其数值

- 规格数值的形式
 - 具体数值,一定范围,或不等式
 - 配套的计量单位

别称

● "产品需求"或"工程特性

● "规格"或"技术规格"

示例

● 指标: 平均安装时间

● 数值: 少于75秒

示例

● 时间: 秒

● 质量: 千克

● 能量: 焦耳

何时确定产品规格?

■ 目标规格

开发团队的希望与 抱负

- 选择产品概念后,须修正完善,设定最终规格
 - 考虑实际的技术约束,和期望的产品成本
 - 在各种期盼的产品特性之间,不断进行艰难权衡

目标规格

■目标规格: 开发团队 的追求目标

> 团队相信,这样规格 的产品,将来在市场 上必定成功

■ 随意地设置规格, 在技术上不可行

确立目标规格的步骤

• 准备度量指标清单

• 收集竞争性标杆信息

• 设定指标理想值与可接受边界值

• 反思结果与过程

第一步:准备度量指标清单

■ 最有用的度量指标,反映顾客 需求满足的程度

- ■基本假设
 - ●顾客需求可以转换为一系列 精确的可度量指标
 - 符合规格 = 满足需求

- 创建度量指标清单的 正确方式
 - 依次考察每一种需求
 - 考虑用产品的哪一种 精确可度量特性,反 映需求满足程度
 - ▶理想情况下,指标 与需求一一对应

测度指标示例

需求

■避震前叉"易于 安装" ■ 前叉减弱用户手 部的震动

- 难以转换为单一 指标
 - 不同震动类型, 传递条件各异
 - > 平整路面小坑洼
 - ▶崎岖山路大起伏

- 将前叉安装到车架上 所需时间 ???
 - 可以很快,但动作 难度大,易导致工 伤,让零售商畏惧
- 10赫兹振动,从轴座 到车把衰减率
- "魔鬼试验"极大值

■ 《山地车》杂志 的避震测试

避震前叉测度指标清单 (1/2)

指标序号	需求序号	度量指标	重要度	单位
1	1, 3	10赫兹振动从轴座到车把衰减率	3	分贝
2	2, 6	弹簧预紧力	3	牛
3	1, 3	"魔鬼试验"极大值	5	重力加速度g
4	1, 3	测试赛道速降时间极小值	5	秒
5	4	阻尼系数调整范围	3	牛-秒/米
6	5	最大行程(26英寸车轮)	3	毫米
7	5	前轴偏置量	3	毫米
8	6	端部横向刚度	3	千牛/米
9	7	总质量	4	千克
10	8	车闸安装处横向刚度	2	千牛/米
11	9	头部尺寸	5	英寸
12	9	转向管长度	5	毫米
13	9	车轮尺寸	5	列表

避震前叉测度指标清单 (2/2)

指标序号	需求序号	度量指标	重要度	单位
14	9	最大轮胎宽度	5	英寸
15	10	安装到车架上所需时间	1	秒
16	11	挡泥板兼容性	1	列表
17	12	激发自豪感	5	主观
18	13	单件制造成本	5	美元
19	14	淋雨试验无进水时间	5	秒
20	15	泥浴试验无玷污次数	5	千次
21	16,17	维修时的拆卸和安装时间	3	秒
22	17,18	维修所需特殊工具	3	列表
23	19	橡胶零件紫外照射老化试验的耐久时间	5	小时
24	19	导致失效的"魔鬼试验"次数	5	次数
25	20	日本工业标准(JIS)测试	5	是/否
26	20	弯曲强度(前方加载)	5	千牛

需求——度量指标矩阵

		_	2	က	4	5	9	7	8	6	7	7	- 57	53	7	43	4	1	7	57	7	7	22	8	77	25	7
	量 指 需求 标	10赫茲衰減率	弹簧预紧力	"魔鬼"极大值	速降时间极小值	阻尼系数范围	最大行程	前轴偏置量	端部横向刚度	总质量	车闸处横向刚度	头部尺寸	转向管长度	年轮尺寸	最大轮胎宽度	安装所需时间	挡泥板兼容性	激发自豪感	单件制造成本	淋雨无进水时间	泥浴无玷污次数	维修拆装时间	维修需特殊工具	紫外老化时间	"魔鬼"次数	沿溪沿	弯曲强度
1	减轻传递到骑行者手部的震动																										
2	使骑手能轻松通过艰难地形																										
3	使骑手能在山坡崎岖小路上,高速冲下																										
4	灵敏度可调																										
5	保持自行车的良好转向特性																										
6	急转弯时,保持刚性																										
7	重量轻																										
8	车闸安装点坚实牢靠																										
9	与多种车体、车轮、轮胎配合																										
10	易于安装																										
11	能与挡泥板配合使用																										
12	能激发自豪感																										
13	业余爱好者也买得起																										
14	不易沾水																										
15	不易沾泥污																										
16	易于维修																										
17	易于更换损坏部件																										
18	用常用工具就能维修																										
19	寿命持久																										
20	在撞车时安全																										

构建度量指标清单的指南 (1/2)

■ 指标应完整

- 理想情况下,每项需求对应于一个度量指标
 - > 度量指标的数值与满意度相对应
- 在实际中,可能数个指标才能完整反映一项需求

■ 指标是因变量,而非自变量

- 》例: 避震前叉的总质量,是其材料密度与尺寸 的函数
- 指标描述产品的综合性能
 - > 给设计者留下了选取最佳实现方式的自由度

■ 指标应实际可行

- 指标是产品的某种性能,可通过 直接观测或计算得到
 - > 便于开发团队进行评价

■ 有些需求无法转化为量化指标

- 例:避震前叉激发用户自豪感
 - 》是一种主观性指标,可由顾客 评价

构建度量指标清单的指南 (2/2)

- 为了与市场上同类产品 进行比较,指标应包含 公认的标准
- 多数顾客购买产品,基 于公共评测数据
 - 科普文章、消费者报告、网站
 - 《骑行》、《山地车》等 杂志

- 《山地车》杂志的"魔鬼试验机"
 - 装有避震前叉的山地车,以固定行驶速度,碾过地面上50毫米高的障碍物,测量车把上的垂直加速度数值 (重力加速度g的倍数)
- 开发团队以"魔鬼试验"最大值为指标

测量单位与重要性评级

测量单位

- 大多使用常见工程单位
 - 千克, 秒, ...
- 有些指标不是量化数值
 - 例: 避震前叉与挡泥板相配
 - > 可兼容的挡泥板型号列表
- 安全标准测试指标
 - 通过/不通过(是/否)

重要度评级

- 指标重要度,源于需求重要度
 - 一指标对应一需求
 - ▶重要度相等
 - 一指标对应多需求
 - > 各需求重要度
 - ▶指标与需求间内在关系
- 团队讨论决定,好于仅靠计算
- 规格较少时,可用关联分析

收集竞争性标杆信息

- ■新产品要想在商业上取得成功, 它与竞争产品的关系至关重要
 - 对新产品和现有产品进行定位
 - ▶包括自己公司的和竞争对手的产品

- ■收集这些数据非常耗时耗力
 - 须收集绝大多数重要竞争性产品
 - > 采购、测试、拆卸、估算生产成本

- 确实有必要
 - 如果没有这些信息,产品 开发团队不可能成功

- ■产品目录与文献中的某些 数据可能不正确
 - 关键指标需确认、核实
 - > 独立测试和观察

与竞争产 品 指标比对

指标	需求				1	2	3	4	5	6
序号	序号	度量指标	重要度	单位	ST	Maniray	Rox Tahx	Rox Tahx	Tonka	Gunhill
., ,	., ,				Tritrack	2	Quadra	Ti 21	Pro	Head Shox
1	1, 3	10赫兹衰减率	3	分贝	8	15	10	15	9	13
2	2, 6	弹簧预紧力	3	牛	550	760	500	710	480	680
3	1, 3	"魔鬼"极大值	5	g	3.6	3.2	3.7	3.3	3.7	3.4
4	1, 3	速降时间极小值	5	秒	13	11.3	12.6	11.2	13.2	11
5	4	阻尼系数范围	3	牛-秒/米	0	0	0	200	0	0
6	5	最大行程	3	毫米	28	48	43	46	33	38
7	5	前轴偏置量	3	毫米	41.5	39	38	38	43.2	39
8	6	端部横向刚度	3	千牛/米	59	110	85	85	65	130
9	7	总质量	4	千克	1.409	1.385	1.409	1.364	1.222	1.100
10	8	车闸处横向刚度	2	千牛/米	295	550	524	425	325	650
11	9	头部尺寸	5	英寸	1.000 1.125	1.000 1.125 1.250	1.000 1.125	1.000 1.125 1.250	1.000 1.125	缺
12	9	转向管长度	5	毫米	150 180 210 230 255	140 165 190 215	150 170 190 210	150 170 190 210 230	150 190 210 220	
13	9	车轮尺寸	5	列表	26英寸	26英寸	26英寸	26英寸 700C	26英寸	26英寸

与竞争产 品 指标比对

指标	需求				1	2	3	4	5	6
序号	序号	度量指标	重要度	单位	ST Tritrack	Maniray 2	Rox Tahx Quadra	Rox Tahx Ti 21	Tonka Pro	Gunhill Head Shox
14	9	最大轮胎宽度	5	英寸	1.5	1.75	1.5	1.75	1.5	1.5
15	10	安装所需时间	1	秒	35	35	45	45	35	85
16	11	挡泥板兼容性	1	列表	Zefal	无	无	无	无	无
17	12	激发自豪感	5	主观	1	4	3	5	3	5
18	13	单件制造成本	5	美元	65	105	85	115	80	100
19	14	淋雨时间	5	秒	1300	2900	>3600	>3600	2300	>3600
20	15	泥浴次数	5	千次	15	19	15	25	18	35
21	16,17	拆装时间	3	秒	160	245	215	245	200	425
22	17,18	特殊工具	3	列表	六角扳手	六角扳手	六角扳手	六角扳手	长六角扳 手	六角扳手 销扳手
23	19	紫外老化时间	5	小时	400+	250	400+	400+	400+	250
24	19	"魔鬼"次数	5	次数	500k+	500k+	500k+	480k	500k+	330k
25	20	JIS测试	5	是/否	通过	通过	通过	通过	通过	通过
26	20	弯曲强度	5	千牛	5.5	8.9	7.5	7.5	6.2	10.2

与竞争产品需求满足程度比对

			1	2	3	4	5	6
序号	需求	重要度	01	Maniray	Rox Tahx	Rox Tahx	Tonka	Gunhill
			Tritrack	2	Quadra	Ti 21	Pro	Head Shox
1	减轻传递到骑行者手部的震动	3	•	••••	••	••••	••	•••
2	使骑手能轻松通过艰难地形	2	••	••••	•••	••••	•••	••••
3	使骑手能在山坡崎岖小路上, 高速冲下	5	•	••••	••	••••	••	•••
4	灵敏度可调	3	•	••••	••	••••	••	•••
5	保持自行车的良好转向特性	4	••••	••	•	••	••••	••••
6	急转弯时,保持刚性	4	•	•••	•	••••	•	••••
7	重量轻	4	••••	••••	••••	••••	•••••	••••
8	车闸安装点坚实牢靠	2	•	••••	•••	•••	••••	••
9	与多种车体、车轮、轮胎配合	5	••••	•••••	•••	••••	•••	•
10	易于安装	1	••••	••••	••••	••••	••••	•
11	能与挡泥板配合使用	1	•••	•	•	•	•	••••
12	能激发自豪感	5	•	••••	•••	••••	•••	••••
13	业余爱好者也买得起	5	••••	•	••	•	•••	••
14	不易沾水	5	•	••	••••	••••	••	••••
15	不易沾泥污	5	•	•••	•	••••	••	••••
16	易于维修	3	••••	••••	••••	••••	••••	•
17	易于更换损坏部件	1	••••	••••	••••	••••	••••	•
18	用常用工具就能维修	3	••••	••••	••••	••••	••	•
19	寿命持久	5	••••	••••	••••	•••	•••••	•
20	在撞车时安全	5	••••	••••	•••••	••••	•••••	•••••

设定指标理想值与可接受边界值

■ 两类目标值

- 理想值: 开发团队期望的最佳结果
- 可接受边界值:产品勉强达到商业可行

■ 表达度量指标值的5种方式

- 不小于X: 指明下限, 越高越好
- 不大于X: 指明上限, 越低越好
- 介于X和Y之间:设定上下限范围
- 准确值X: 特定精确值
- 一系列离散值

示例

- 车闸安装处刚度 > 325千牛/米
- 避震前叉总质量 < 1.4千克
- 480牛 < 弹簧预紧力 < 800牛
- 前轴偏置量 = 38毫米
- 头部尺寸: 1, 1%, 1% (英寸)

目标规格(1

指标序号	需求序号	度量指标	重要度	单位	边界值	理想值
1	1, 3	10赫兹振动从轴座到车把衰减率	3	分贝	>10	>15
2	2, 6	弹簧预紧力	3	牛	480-800	650-700
3	1, 3	"魔鬼试验"极大值	5	g	<3.5	<3.2
4	1, 3	测试赛道速降时间极小值	5	秒	<13.0	<11.0
5	4	阻尼系数调整范围	3	牛-秒/米	0	>200
6	5	最大行程(26英寸车轮)	3	毫米	33-50	45
7	5	前轴偏置量	3	毫米	37-45	38
8	6	端部横向刚度	3	千牛/米	>65	>130
9	7	总质量	4	千克	<1.4	<1.1
10	8	车闸安装处横向刚度	2	千牛/米	>325	>650
11	9	头部尺寸	5	英寸	1.000 1.125	1.000 1.125 1.250
12	9	转向管长度	5	毫米	150 170 190 210	150 170 190 210 230

目标规格(2/2)

指标序号	需求序号	度量指标	重要度	单位	边界值	理想值
13	9	车轮尺寸	5	列表	26英寸	26英寸, 700C
14	9	最大轮胎宽度	5	英寸	>1.5	>1.75
15	10	安装到车架上所需时间	1	秒	<60	<35
16	11	挡泥板兼容性	1	列表	无	全部
17	12	激发自豪感	5	主观	>3	>5
18	13	单件制造成本	5	美元	<85	<65
19	14	淋雨试验无进水时间	5	秒	>2300	>3600
20	15	泥浴试验无玷污次数	5	千次	>15	>35
21	16, 17	维修时的拆卸和安装时间	3	秒	<300	<160
22	17, 18	维修所需特殊工具	3	列表	六角扳手	六角扳手
23	19	橡胶零件紫外照射老化试验的耐久 时间	5	小时	>250	>450
24	19	导致失效的"魔鬼试验"次数	5	次数	>300k	>500k
25	20	日本工业标准(JIS)测试	5	是/否	通过	通过
26	20	弯曲强度(前方加载)	5	千牛	>7.0	>10.0

第四步: 反思结果与过程

- - 每一轮之后,都需要进行反思,以确保与项目的目标一致

■ 开发团队成员之间是否存在"博弈"?

● 例:营销人员坚持过高指标,团队协商的结果,超出他的原期望值

- 是否应提供多种产品,至少是多种选项?
 - 最佳匹配各个细分市场的特定需求
 - 还是提供一种"平均"产品就足够了?
- 规格是否有缺失?
 - 规格反映了那些决定产品商业成功的特征吗?

考

最终规格

- 规格应得到修正、完善
 - > 产品概念选择之后
 - > 准备后续设计开发工作之前
 - 度量指标数值,从范围较宽,到细化、精化
- 确定最终产品规格有难度
 - 在不同技术性能指标之间, 须不断权衡
 - 技术性能指标与成本之间, 总是需要权衡

示例

- 车闸安装处刚度 vs. 避震前叉总质量
- 制造成本 vs. 前叉总质量
 - 为轻量化,使用钛合金
 - ▶增加产品的生产成本

如何解决这些权衡问题?

设定最终规格五步法

1

• 开发产品的技术模型

ž

• 开发产品的成本模型

3

• 完善产品规格,必要时进行权衡

Ž

• 产品规格分解至合适程度

5

• 反思结果与过程

第一步: 开发产品的技术模型

- ■技术模型
 - 一种预测工具
 - >一组设计决策,会导致 度量指标数值怎样变化
 - 是对产品的计算或物理 模拟
- 多个独立小模型 vs.
 - 一个集成化大模型

- ■计算模型
 - 计算机仿真或计算
 - > 易于实现, 快速预测, 成本低

- ■物理模型
 - 实物模型, 原型样机, 试验装置
 - > 有助于理解产品的内在复杂机理
 - >耗时长,成本高

技术模型示例

材料特性

管体形状

安装点位置

→ 侧向刚度

静态模型

(计算模型)

设计变量 (模型输入)

度量指标数值

(模型输出)

第二步: 开发产品的成本模型

- 目的:确保产品能以设定的目标成本 生产出来
 - 价格有竞争力,并依然能盈利

- 估计每种零部件的最高和最低 可能价格
 - 不确定性的范围

■ 初步估算制造成本

- 初步列出零部件清单
- 估计每种零部件购买价格,或自制成本
 - ▶ 由采购专业人员和生产工程师支持
- 粗估产品组装成本和管理费

■ 对于复杂产品

- 列出其主要部件和子系统
- 估计它们的成本上下限
 - > 基于以往经验
 - > 供应商协助判断

零部件清单及成本估计

零件	最高 单价 (美元)	最低 单价 (美元)	件数	合计 最高 (美元)	合计 最低 (美元)
转向管	2.50	2.00	1	2.50	2.00
叉冠	4.00	3.00	1	4.00	3.00
靴部	1.00	0.75	2	2.00	1.50
外管	3.00	2.00	2	6.00	4.00
外管顶盖	2.00	1.50	2	4.00	3.00
唇形密封圈	1.50	1.40	2	3.00	2.80
滑套	0.20	0.18	4	0.80	0.72
滑套垫片	0.50	0.40	2	1.00	0.80
外管塞	0.50	0.35	2	1.00	0.70
内管	5.50	4.00	2	11.00	8.00
内管顶盖	3.00	2.50	2	6.00	5.00
内管调节旋钮	2.00	1.75	2	4.00	3.50
调整轴	4.00	3.00	2	8.00	6.00
弹簧	3.00	2.50	2	6.00	5.00
内管开口罩	3.00	2.25	1	3.00	2.25

零件	最高单 价 (美元)	最低 单价 (美元)	件 数	合计 最高 (美元)	合计 最低 (美元)				
孔口弹簧	0.50	0.40	4	2.00	1.60				
车闸螺柱	0.40	0.35	2	0.80	0.70				
车闸立柱螺栓	0.25	0.20	2	0.50	0.40				
车闸立柱	5.00	3.50	1	5.00	3.50				
机油(升)	2.50	2.00	0.1	0.25	0.20				
各种卡环、O型圈	0.15	0.10	10	1.50	1.00				
贴标	0.25	0.15	4	1.00	0.60				
组装成本: 20美元/工时	30 分钟	20 分钟		10.00	6.67				
管理费	管理费:直接成本的25%								
	104.19	78.68							

第三步:完善产品规格,必要时进行权衡

- 确定最终规格
 - 使用技术性能模型, 和成本模型
 - 小组讨论方式
 - 确定可行的指标数 值组合
 - 探索对成本的影响

- 以迭代方式,收敛 至一组规格,使得:
 - 产品定位最有利于竞争
 - 最大程度满足顾客需求
 - 确保适度的利润

- 竞争分析图,一种决策 工具
 - 在两个选定的指标维度 上,将竞争产品标记为 散点图
 - 根据竞争态势,确定新 产品定位
 - 做出权衡
 - ▶ 相对于竞争产品,展现出 性能优势

避震前叉竞争分析图

避震前 叉最终规格

-								
	指标 序号	需求 序号	度量指标	重要度	单位	边界值	理想值	最终值
	1	1, 3	10赫兹振动从轴座到车把衰减率	3	分贝	>10	>15	12
	2	2, 6	弹簧预紧力	3	牛	480-800	650-700	600-650
-	3	1, 3	"魔鬼试验"极大值	5	g	<3.5	<3.2	<3.4
	4	1, 3	测试赛道速降时间极小值	5	秒	<13.0	<11.0	<11.5
	5	4	阻尼系数调整范围	3	牛-秒/米	0	>200	>100
	6	5	最大行程(26英寸车轮)	3	毫米	33-50	45	43
	7	5	前轴偏置量	3	毫米	37-45	38	38
	8	6	端部横向刚度	3	千牛/米	>65	>130	>75
	9	7	总质量	4	千克	<1.4	<1.1	<1.4
	10	8	车闸安装处横向刚度	2	千牛/米	>325	>650	>425
	11	9	头部尺寸	5	英寸	1.000	1.000	1.000
						1.125	1.125	1.125
							1.250	
	12	9	转向管长度	5	毫米	150	150	150
						170	170	170
						190	190	190
						210	210	210
							230	230
- 1				The second secon				, I

震前 叉最终规格

指标 序号	需求 序号	度量指标	重要度	単位	边界值	理想值	最终值
13	9	车轮尺寸	5	列表	26英寸	26英寸, 700C	26英寸
14	9	最大轮胎宽度	5	英寸	>1.5	>1.75	>1.75
15	10	安装到车架上所需时间	1	秒	<60	<35	<45
16	11	挡泥板兼容性	1	列表	无	全部	Zefal
17	12	激发自豪感	5	主观	>3	>5	>4
18	13	单件制造成本	5	美元	<85	<65	<80
19	14	淋雨试验无进水时间	5	秒	>2300	>3600	>3600
20	15	泥浴试验无玷污次数	5	千次	>15	>35	>25
21	16, 17	维修时的拆卸和安装时间	3	秒	<300	<160	<200
22	17, 18	维修所需特殊工具	3	列表	六角扳手	六角扳手	六角扳手
23	19	橡胶零件紫外照射老化试验的 耐久时间	5	小时	>250	>450	>450
24	19	导致失效的"魔鬼试验"次数	5	次数	>300k	>500k	>500k
25	20	日本工业标准(JIS)测试	5	是否	通过	通过	通过
26	20	弯曲强度(前方加载)	5	千牛	>7.0	>10.0	>10.0

第四步:产品规格分解至合适程度

- ■对于高度复杂的产品
 - 多个子系统,由不同的 团队分别开发
 - ▶子系统开发目标 vs. 产品开发总体目标
 - ▶面临挑战:将总体性 规格,分解至子系统

示例

- 汽车总体性规格
 - 燃油经济性
 - 时速百公里加速时间
 - 转弯半径,
- 发动机的规格
 - 最大功率
 - 最大扭距
 - 最大功率下耗油量

.

难点

- 确保子系统的规格, 能够切实反映产品 总体性规格
- 确保不同子系统的 特定规格的实现难 度相当
 - 例:发动机轻量化 vs.车身轻量化

预算分配

亦例

汽 车

- 成本、整车总重、 能耗等,可分解 至子系统
 - 总体性指标,是各分系统相应指标之和

■ 车内空间亦可用 类似方式分配 ■ 子系统指标如何与总体指标相关联?

燃油效率 = f(整车总重,轮胎滚动阻力, 风阻系数,正面面积, 发动机效率)

- 确定车体、轮胎、发动机的规格时,需建立 模型
 - 描述子系统规格参数与整车燃油效率的关系

第五步: 反思结果与过程

- 产品能否成功?
 - 选定的产品概念,其规格应具竞争力
 - 否则,返回概念创成与选择阶段

- 所选概念是否适应目标市场?
 - 也能很好适应其他细分市场吗?
 - 如果概念出奇的好,也许可用于 需求更旺、利润更高的细分市场

- 技术模型和成本模型,有多大的 不确定性?
 - 如果不确定性太大,则应完善模型, 提升置信度
- 企业是否有必要开发更好的技术 模型?
 - 有时团队对技术缺乏真正理解
 - 深入理解技术,搭建完善模型,有利于未来的开发项目

本讲小结

■ 至少两次确定产品规格

- 识别顾客需求之后 → 目标规格
- 概念选择与测试之后 → 最终规格

■ 方法与工具

- 度量指标清单,需求—度量指标矩阵
- 竞争标杆比对表,竞争分析图

■ 知识与团队

- 市场知识,顾客知识,核心产品技术, 方案成本核算
- 人员:营销,设计,制造

■ 目标规格

- ▶ 开发团队的希望 与抱负
- 准备度量指标清单
- 收集竞争性标杆信息
- 设定指标理想值与 可接受边界值
- 反思结果与过程

■ 最终规格

- 利用计算与物理模型, 评估技术约束与期望 成本,进行权衡
- 开发产品的技术模型
- 开发产品的成本模型
- 完善产品规格,必要时 进行权衡
- 产品规格分解至合适程度
- 反思结果与过程