Mixed models introduction

O Rodriguez de Rivera Ortega, PhD SE@K (Statistical Ecology @ Kent), University of Kent

10/11/2020

Example dataset: trees

- Data on 1000 trees from 10 sites.
- Trees per site: 4 392.

```
trees <- read.csv("~/Google Drive/Course/data/trees.csv")</pre>
head(trees)
##
     site
            dbh height
                           sex dead
## 1
        4 29.68
                   36.1
                          male
## 2
        5 33.29
                   42.3
                          male
                                   0
        2 28.03
                   41.9 female
                                   0
        5 39.86
## 4
                   46.5 female
                                   0
## 5
        1 47.94
                   43.9 female
                                   0
        1 10.82
                   26.2
                          male
trees$site <- as.factor(trees$site)</pre>
```

Q: What's the relationship between tree diameter and height?

A simple linear model

```
lm.simple <- lm(height ~ dbh, data = trees)</pre>
summary(lm.simple)
##
## Call:
## lm(formula = height ~ dbh, data = trees)
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
## -13.3270 -2.8978
                       0.1057
                                2.7924 12.9511
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           0.31064 62.26
## (Intercept) 19.33920
                                             <2e-16 ***
## dbh
               0.61570
                           0.01013
                                     60.79
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.093 on 998 degrees of freedom
## Multiple R-squared: 0.7874, Adjusted R-squared: 0.7871
```

```
## F-statistic: 3695 on 1 and 998 DF, p-value: < 2.2e-16
```

Remember our model structure

$$y_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \alpha + \beta x_i$

In this case:

$$Height_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \alpha + \beta DBH_i$

 α : expected height when DBH = 0

 β : how much height increases with every unit increase of DBH

There is only one intercept

```
library(ggplot2)
ggplot(trees) +
  aes(dbh, height) +
  geom_point() +
  geom_smooth(method = "lm", size = 3) +
  labs(x = "DBH (cm)", y = "Height (m)", title = "Single intercept") +
  theme_minimal(base_size = 16)
```

`geom_smooth()` using formula 'y ~ x'

Single intercept

What if allometry varies among sites?

`geom_smooth()` using formula 'y ~ x'

Different intercept for each site

Fitting a varying intercepts model with 1m

```
lm.interc <- lm(height ~ factor(site) + dbh, data = trees)</pre>
summary(lm.interc)
##
## lm(formula = height ~ factor(site) + dbh, data = trees)
## Residuals:
##
       Min
                1Q
                    Median
                                ЗQ
                                        Max
## -10.1130 -1.9885
                    0.0582
                             2.0314 11.3320
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                ## factor(site)2 6.504303
                          0.256730 25.335 < 2e-16 ***
                4.357457 0.354181 12.303 < 2e-16 ***
## factor(site)3
```

```
1.934650 0.356102 5.433 6.98e-08 *** 3.637432 0.339688 10.708 < 2e-16 ***
## factor(site)4
## factor(site)5
## factor(site)6 4.204511 0.421906 9.966 < 2e-16 ***
## factor(site)7 -0.176193 0.666772 -0.264
                                               0.7916
## factor(site)8 -5.312648
                            0.893603 -5.945 3.82e-09 ***
## factor(site)9
                  5.437049
                             1.087766
                                       4.998 6.84e-07 ***
## factor(site)10 2.263338
                             1.369986 1.652 0.0988.
## dbh
                  0.617075
                            0.007574 81.473 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.043 on 989 degrees of freedom
## Multiple R-squared: 0.8835, Adjusted R-squared: 0.8823
## F-statistic: 750 on 10 and 989 DF, p-value: < 2.2e-16
```

Single vs varying intercept

```
ggplot(trees) +
  aes(dbh, height) +
  geom_point() +
  geom_smooth(method = "lm", size = 3) +
  labs(x = "DBH (cm)", y = "Height (m)", title = "Single intercept") +
  theme_minimal(base_size = 16)
```

`geom_smooth()` using formula 'y ~ x'

Single intercept

`geom_smooth()` using formula 'y ~ x'

Different intercept for each si

Mixed models enable us to account for variability

- Varying intercepts
- Varying slopes

Mixed model with varying intercepts

$$y_i = a + \alpha_j + b \cdot x_i + \varepsilon_i$$
$$\alpha_j \sim N(0, \tau^2)$$
$$\varepsilon_i \sim N(0, \sigma^2)$$

En nuestro ejemplo:

$$Height_{i} = a + site_{j} + b \cdot DBH_{i} + \varepsilon_{i}$$
$$site_{j} \sim N(0, \tau^{2})$$
$$\varepsilon_{i} \sim N(0, \sigma^{2})$$

Mixed models estimate varying parameters (intercepts and/or slopes) with pooling among levels (rather than considering them fully independent)

Hence there's gradient between

```
• complete pooling: Single overall intercept.
```

```
- lm (height ~ dbh)
```

• no pooling: One *independent* intercept for each site.

```
- lm (height ~ dbh + site)
```

• partial pooling: Inter-related intercepts.

```
- lmer(height ~ dbh + (1 | site))
```

Random vs Fixed effects?

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- 4. Random effect if it's assumed to be a realized value of random variable.
- 5. Fixed effects estimated using least squares or maximum likelihood; random effects estimated with shrinkage.

What is a random effect, really?

- Varies by group
- Variation estimated with probability model

Random effects are estimated with partial pooling, while fixed effects are not (infinite variance).

Shrinkage improves parameter estimation

Especially for groups with low sample size

No pooling

Multilevel model

From Gelman & Hill p. 253

Fitting mixed/multilevel models

```
library(lme4)
## Loading required package: Matrix
mixed <- lmer(height ~ dbh + (1|site), data = trees)</pre>
summary(mixed)
## Linear mixed model fit by REML ['lmerMod']
## Formula: height ~ dbh + (1 | site)
##
     Data: trees
##
## REML criterion at convergence: 5108.3
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3199 -0.6607 0.0227 0.6716 3.7328
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 11.195 3.346
## Residual 9.261 3.043
## Number of obs: 1000, groups: site, 10
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 19.011468 1.100444 17.28
          0.616927 0.007572 81.47
## dbh
##
## Correlation of Fixed Effects:
##
     (Intr)
## dbh -0.197
```

Retrieve model coefficients

```
coef(mixed)
```

```
## $site
## (Intercept) dbh
## 1 16.70800 0.6169271
## 2 23.19162 0.6169271
## 3 21.04229 0.6169271
```

```
## 4
         18.64086 0.6169271
## 5
         20.32995 0.6169271
         20.88200 0.6169271
## 6
## 7
         16.61686 0.6169271
         11.88302 0.6169271
## 8
## 9
         21.84779 0.6169271
         18.97228 0.6169271
## 10
## attr(,"class")
## [1] "coef.mer"
```

Visualising model: allEffects

```
library(effects)
## Loading required package: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
allEffects(mixed)
   model: height ~ dbh
##
   dbh effect
##
## dbh
                  20
##
                           30
                                    40
                                             50
## 22.09610 31.35001 37.51928 43.68855 49.85782
plot(allEffects(mixed))
```

dbh effect plot

Visualising model: visreg

```
library(visreg)
visreg(mixed, xvar = "dbh", by = "site", re.form = NULL)
```


Visualising model

```
visreg(mixed, xvar = "dbh", by = "site", re.form = NULL, overlay = TRUE)
```


Visualising model: sjPlot

```
library(ggplot2)
library(sjPlot)

## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
theme_set(theme_minimal(base_size = 16))
#sjp.lmer(mixed, type = "ri.slope")
#plot_model(mixed, type = "eff")

sjPlot::plot_model(mixed, type = "re")
```

Random effects

Checking residuals

Checking residuals

ggResidpanel::resid_panel(mixed)

Checking residuals (DHARMa)

DHARMa::simulateResiduals(mixed, plot = TRUE, use.u = TRUE)

DHARMa residual diagnostics

Object of Class DHARMa with simulated residuals based on 250 simulations with refit = FALSE . See ?DHARMa::simulateResiduals

^{## ##} Scaled residual values: 0.444 0.68 0.724 0.712 0.216 0.824 0.488 0.508 0.616 0.736 0.704 0.992 0.672 0.708 0.624 0.784 0.98 (