Lucy Y. Pao Lecture 5 Page 1 ECEN 5458

Analyzing the Dynamic Response of Linear Constant Discrete-Time Systems

- Basic signals
 - Unit pulse
 - Unit step
 - Exponential
 - Sinusoid
- Correspondence of z-plane pole locations with s-plane pole locations
- Step response

Lucy Y. Pao Lecture 5 Page 2 ECEN 5458

Analyzing the Dynamic Response of Linear Constant Discrete-Time Systems

• Given a difference equation relating an input signal e_k and an output signal u_k , and given e_k , find u_k .

- We can solve for u_k by either
 - Solving difference equation directly
 - Going to z-domain and back:
 - Find H(z) (transfer function)
 - Compute E(z)
 - Compute U(z) = H(z) E(z)
 - Find inverse z-transform of U(z): u_{k}

Basic Signals

Unit Pulse

$$e_1(k) = \delta_k = \begin{bmatrix} 1, & k = 0 \\ 0, & k \neq 0 \end{bmatrix}$$

$$E_1(z) = \sum_{k=-\infty}^{\infty} \delta_k z^{-k} = z^0 = 1$$

- No finite poles or zeros
- Similar to continuous-time unit impulse function (whose Laplace transform is 1).
- One way to experimentally determine H(z) is to input δ_k into the system, then the Z-transform of the output is U(z) = H(z) E(z) = H(z).

Lecture 5

Page 4

Unit Step

$$e_{2}(k) = 1(k) = \begin{bmatrix} 1, & k \ge 0 \\ 0, & k < 0 \end{bmatrix}$$

$$E_{2}(z) = \sum_{k=-\infty}^{\infty} 1(k)z^{-k} = \sum_{k=0}^{\infty} z^{-k}$$

$$= \frac{1}{1 - z^{-1}}, \quad |z^{-1}| < 1$$

$$= \frac{z}{z - 1}, \quad |z| > 1$$

Zero: 0

Pole: 1

Exponential

$$e_3(k) = r^k \mathbf{1}(k) = \begin{bmatrix} r^k, & k \ge 0 \\ 0, & k < 0 \end{bmatrix}$$

$$E_3(z) = \frac{z}{z-r}, \quad |z| > |r|$$

Zero: 0

Pole: r

- |r| < 1 \Rightarrow stable, decaying signal, pole inside unit circle
- |r|=1 unit step, marginally stable, pole on unit circle
- |r| > 1 unstable signal, pole outside unit circle

Sinusoid

$$e_4(k) = r^k \cos(k\theta) 1(k), \quad r > 0, \quad \theta \text{ real}$$

$$E_4(z) = \sum_{k=0}^{\infty} r^k \cos(k\theta) z^{-k}$$

$$E_4(z) = \frac{1}{2} \begin{bmatrix} \frac{1}{2} & \frac{z}{z - re^{j\theta}} + \frac{z}{z - re^{-j\theta}} \end{bmatrix}$$

$$=\frac{1}{2}\frac{2\mathbf{z}^2-\mathbf{r}(\mathbf{e}^{-j\theta}+\mathbf{e}^{j\theta})\mathbf{z}}{\mathbf{z}^2-\mathbf{r}(\mathbf{e}^{j\theta}+\mathbf{e}^{-j\theta})\mathbf{z}+\mathbf{r}^2}$$

$$E_4(z) = \frac{z(z - r\cos\theta)}{z^2 - 2r(\cos\theta)z + r^2}, \quad |z| > r$$

$$E_4(z) = \frac{z(z - r\cos\theta)}{z^2 - 2r(\cos\theta)z + r^2}, \quad |z| > |r|$$

Zeros:

Poles:

- r < 1 \rightarrow decaying sinusoid, stable, poles inside unit circle
 - · The closer the poles are to the origin, the faster the decay.
- $r = 1 \Rightarrow$ constant amplitude sinusoid, marginally stable, poles on unit circle
- r > 1 \Rightarrow growing sinusoid, unstable, poles outside unit circle
- Note that the number of samples per period (or oscillation) is determined by θ .

$$e_4(k) = r^k \cos(k\theta) 1(k)$$

See Figure 4.24 of text (also last page of Lab 1 handout).

Lucy Y. Pao Lecture 5 Page 10 ECEN 5458

Correspondence of z-Plane Pole Locations with s-Plane Pole Locations

• Recall for 2nd-order Laplace transform:

- Stable if poles in LHP -
$$a \pm jb$$
 Re(s)
$$= - \xi \omega \pm j\omega \sqrt{1 - \xi^{2}}$$

Sampled signal:

$$Y(z) = \frac{z(z - r\cos\theta)}{z^2 - 2r\cos\theta z + r^2}$$

Poles:

In general, if a continuous signal y(t) has Laplace transform Y(s)with poles s_1, s_2, \ldots , then the sampled (discrete) signal y(kT) has z-transform Y(z) with poles z_1, z_2, \dots where $z_i = e^{s_i}$

$$\mathbf{z}_{\cdot} = \mathbf{e}^{s_{i}}$$

Lucy Y. Pao Lecture 5 Page 12 ECEN 5458

Example Correspondences

Stability boundary

 $z_1, z_2 = e^{-\zeta \omega T} e^{\pm j\omega \sqrt{1-\zeta^2}T}$

See Figure 4.24 of text.

 $s_1, s_2 = -\zeta\omega \pm j\omega\sqrt{1-\zeta^2}$

Constant b

Lucy Y. Pao Lecture 5 Page 15 ECEN 5458

Mapping from s-plane to z-plane is many-to-one:

Step Response

 What are step-response characteristics given the poles and zeros of the system?

• Consider
$$H(z) = \frac{(z - z_1)(z - z_2)}{(z - p_1)(z^2 - a_1z + a_2)}$$

First, let $z_1 = p_1$ so that the system is of 2nd order.

• Z-transform of unit pulse response is $Z^{-1}E_{\perp}(z)$.

$$H(z) = \frac{(z - z_2)}{(z^2 - a_1 z + a_2)}$$

Effect of zero location on step response

Major effect of zero z₂ is overshoot. See Figures 4.31 of text.

Lucy Y. Pao Lecture 5

$$H(z) = \frac{(z - z_1)(z - z_2)}{(z - p_1)(z^2 - a_1z + a_2)}$$

- Effect of 3rd pole p₁
- Let $z_1 = z_2 = -1$ (so zeros have little influence on step response)
- Main effect of p₁ is on rise time.
 See Figure 4.32 of text.

- In general, extra zeros and (stable) poles have small effect if on the negative real axis.
- As extra zeros approach +1, overshoot increases.
- As extra poles approach +1, rise time increases.