

Analysis I -Für Mathematiker

1. Allgemeine Formeln/Ungleichungen

1.1. Abschätzungen

• Bernoulli-Ungleichung: $(1+a)^n > 1+na$

· Bernoulli für e $x \in \mathbb{R}$: $e^x > 1 + x$

• Nützliche Ungleichung: $\frac{x+y}{2} \geq \sqrt{xy}$ mit gleicheit für x=y

• Für x > y und $n > 2:0 < \sqrt[n]{x} - \sqrt[n]{y} < \sqrt[n]{x-y}$

1.2. Allgemeine Formeln

Sei $f: X \to Y$ eine Abbildung

· Injektivität: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

• Surjektivität: $\forall y \in Y \exists x \in X : f(x) = y$

• Betrag von $z \in \mathbb{C}$: $|z| = \sqrt{z\overline{z}} = \sqrt{Re(z)^2 + Im(z)^2}$

Binomialkoeffizient: $\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!}$ $\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ k!(n-k)! \end{pmatrix}$

• Binomialsatz: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

• Mitternachtsformel: $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

2. Zahlenfolgen

2.1. Konvergenz

Eine Folge (a_n) konvergiert gegen den Grenzwert a

 $\forall \mathcal{E} > 0 \,\exists N \in \mathbb{R} \,\, \forall n \in \mathbb{N} : \, n > N \Rightarrow |a_n - a| < \mathcal{E}$

2.2. Monotoniesatz

Jede beschränkte und monotone Folge ist konvergent

2.3. Einschließungskriterium

Seien $(a_n),(b_n)$ reelle Folgen mit $a=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$, und eine dritte reelle Folge (c_n) erfülle $(a_n)\le (c_n)\le (b_n)$ für fast alle n. Dann konvergiert auch c_n gegen a.

2.4. Bestimmte Divergenz

 a_n ist bestimmt divergent gegen $+\infty$ falls gilt:

 $\forall M > 0 \,\exists N \in \mathbb{R} \,\, \forall n \in \mathbb{N} : n > N \Rightarrow a_n > M$ Für $a_n \in \mathbb{C}$ muss $|a_n| \to +\infty$ gelten

2.5. Cauchy-Folge

Jede konvergente Folge ist eine Cauchy-Folge

 $\forall \mathcal{E} > 0 \ \exists N \in \mathbb{R} \ \forall m, n \in \mathbb{N} : m, n > N \Rightarrow |a_m - a_n| < \mathcal{E}$

2.6. Bekannte Grenzwerte

Für jedes $\beta > 0$ gilt:

$$\lim_{x\to\infty}(x^\beta e^{-x})=0, \lim_{x\to\infty}\frac{ln(x)}{x^\beta}=0, \lim_{x\to0+}(x^\beta ln(x))=0$$

3. Reihen

3.1. Geometrische Reihe

Die Reihe $\sum_{k=0}^{\infty} q^k$ konvergiert für |q| < 1 und divergiert andernfalls. Es gilt: $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$

3.2. Quotientenkriterium

Sei $\sum\limits_{k=0}^{\infty} a_k$ und existiere $q:=\lim_{k\to\infty}|\frac{a_{k+1}}{a_k}|$ dann gilt: - für q<1 ist die Reihe absolut konvergent

- für a > 1 ist die Reihe divergent

3.3. Wurzelkriterium

Sei $\sum\limits_{k=0}^{\infty}a_k$ und existiere $q:=\limsup\limits_{k\to\infty}\sqrt[k]{|a_k|}$ dann gilt: - für q<1 ist die Reihe absolut konvergent

- für q>1 ist die Reihe divergent

3.4. Leibnizkriterium

Sei (a_n) eine monoton fallende Nullfolge.

Die Reihe $s=\sum\limits_{k=1}^{\infty}{(-1)^{k-1}a_k}$ konvergiert.

Es gilt: $|s-\sum\limits_{n=0}^{\infty}(-1)^{k-1}a_k|\leq a_{n+1}$

3.5. Majoranten/Minorantenkriterium

Sei $\sum a_k$ und $\sum b_k$ zwei Reihen.

1. Gilt $0 \le |a_k| \le b_k$ für fast alle k, und ist die Majorante $\sum b_k$ konvergent, so konvergiert $\sum a_k$ absolut.

2. Gilt $0 \leq a_k \leq b_k$ für fast alle k, und ist die Minorante $\sum a_k$ divergent, so divergiert $\sum b_{i}$

3.6. Integralvergleichskriterium

Sei $f:[1,\infty) o [0,\infty)$ monoton fallend, dann konvergiert die Reihe $\sum\limits_{k=1}^\infty f(k)$ genau dann, wenn das uneigentliche Integral $\int_1^\infty f(x)dx$ konvergiert.

4. Potenzreihen

Sei $(a_k)_{k\in\mathbb{N}},z\in\mathbb{C},
ho\in\mathbb{R}\cup\{\infty\}$ der Konvergenzradius und z_0 ein Entwick-

Die Potenzreihe $P(z) = \sum\limits_{k=0}^{\infty} a_k (z-z_0)^k$ konvergiert absolut für $|z| \leq \rho$.

4.2. Konvergenradius

Man betrachte die Koeffizienten Folge (a_k)

$$\begin{split} & \cdot \; \rho := \frac{1}{\limsup\limits_{k \to \infty} \sqrt[k]{|a_k|}} \; \text{mit} \; , \frac{1}{0} = +\infty " \, \text{und} \; , \frac{1}{\infty} = 0" \\ & \cdot \; \rho := \frac{1}{\lim\limits_{k \to \infty} \left| \frac{a_k + 1}{a_k} \right|} \; \text{mit} \; , \frac{1}{0} = \infty " \end{split}$$

4.3. Cauchy-Produkt

Seien $(a_k),(b_l)$ Folgen, das Cauchy-Produkt c=a*b ist die neue Folge $c_m = \sum_{k=0}^{m} a_k b_{m-k}$

Konvergieren die Reihen von α, β absolut, konvergiert auch $\sum_{m=0}^{\infty} (\alpha * \beta)$ ab-

$$\sum_{m=0}^{\infty} (\alpha * \beta)_m = (\sum_{k=0}^{\infty} \alpha_k)(\sum_{l=0}^{\infty} \beta_l)$$

4.4. Exponentialfunktion

 $exp(z) = e^z = \sum\limits_{k=0}^{\infty} rac{z^k}{k!}$ für alle $z \in \mathbb{C}$

Umkehrfunktion: ln(xy) = ln(x) + ln(y)

4.5. Sinus und Cosinus

 $\cdot \sin(z) := \frac{e^{iz} - e^{-iz}}{2i} = \sum_{i=1}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$

• $cos(z) := \frac{e^{iz} + e^{-iz}}{2} = \sum_{i=0}^{\infty} (-1)^{k} \frac{z^{2k}}{(2k)!}$

• Eulersche Formel: $e^{iz} = cos(z) + i sin(z)$

• trigonometrischer Pythagoras: $sin^2(z) + cos^2(z) = 1$

• Paritäten: sin(-z) = -sin(z) und cos(-z) = cos(z)

$$sin(z + w) = sin(z)cos(w) + cos(z)sin(w)$$
$$cos(z + w) = cos(z)cos(w) - sin(z)sin(w)$$

• Ableitungen: sin'(x) = cos(x), cos'(x) = -sin(x)

4.6. Sinus und Cosinus Hyperbolicus

 $\cdot sinh(z) := -i sin(iz) = \frac{e^z - e^{-z}}{2}$

 $\cdot cosh(z) := cos(iz) = \frac{e^z + e^{-z}}{2}$

• hyperbolischer Pythagoras: $cosh^2(z) - sinh^2(z) = 1$

• Paritäten: sinh(-z) = -sinh(z) und cosh(-z) = cosh(z)

sinh(z + w) = sinh(z)cosh(w) + cosh(z)sinh(w)cosh(z+w) = cosh(z)cosh(w) + sinh(z)sinh(w)

• Ableitungen: sinh'(x) = cosh(x), cosh'(x) = sinh(x)

5. Stetigkeit

 $f: X \to Y$ heißt stetig am Punkt $a \in X$ und stetig wenn $f \forall a \in X$ stetig ist.

 $\forall \mathcal{E} > 0 \ \exists \delta > 0 \ \forall x \in \mathcal{X} : |x - a| < \delta \Rightarrow |f(x) - f(a)| < \mathcal{E}$

5.2. Folgenstetigkeit

Sei (x_n) eine gegen x konvergente Folge. f ist genau dann stetig, wenn

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x)$$

5.3. Lipschitz-Stetigkeit

 $f: X \to Y$ ist Lipschitz-stetig wenn ein $L \in \mathbb{R}_{>0}$ existiert sodass $\forall x_1, x_2 \in X$ $|f(x_1) - f(x_2)| \le L|x_1 - x_2|$

und heißt lokal Lipschitz-stetig, wenn es zu jeder kompakten Menge $K\subset X$ eine lokale Lipschitz-Konstante L gibt, die obiges erfüllt.

5.4. Grenzwert von Funktionen

Für $f: \mathsf{X} \setminus \{a\} \to \mathsf{Y}$, ist $y \in \mathsf{Y}$ der Grenzwert falls für alle Folgen (x_n) die gegen a konvergieren gilt $\lim_{x \to a} f(x) = y$

5.5. Satz vom Minimum und Maximum

Seien $f:X\to\mathbb{R}$ eine stetige reelle Funktion und $A\subset X$ kompakt. Dann existie- $\operatorname{ren} x_{min}, x_{max} \in A \operatorname{mit} f(x_{max}) = \operatorname{max}(f(A)) \operatorname{und} f(x_{min}) =$

5.6. Zwischenwertsatz

Es sei $f: [\alpha, \beta] \to \mathbb{R}$ eine stetige Funktion mit $f(\alpha) < f(\beta)$. Weiter sei $y \in [f(\alpha), f(\beta)]$. Dann existiert ein $x_y \in [\alpha, \beta]$ mit $f(x_y) = y$.

5.7. Punktweise Konvergenz von Funktionenfolgen

Die Funktionenfolge $f_n:X\to Y$ heißt punktweise konvergent gegen eine Funktion f: X o Y wenn für alle $x \in X$ gilt: $\lim_{n \to \infty} f_n(x) = f(x)$

5.8. Gleichmäßige Konvergenz von Funktionenfolgen

Eine Folge (f_n) von Funktionen $f_n:X\to Y$ konvergiert gleichmäßig gegen eine Funktion $f: X \to Y$, falls $\forall \mathcal{E} > 0 \,\exists N \in \mathbb{R} \,\, \forall n > N \,\, \forall x \in \mathcal{X} : |f_n(x) - f(x)| < \mathcal{E}$

 $\Leftrightarrow \lim_{n \to \infty} ||f_n - f||_{\infty} = 0$

5.9. Stetigkeit von Grenzwertfunktionen

Konvergiert die Folge (f_n) stetiger Funktionen $f_n: \mathsf{X} \to \mathsf{Y}$ gleichmäßig gegen $f: X \to Y$, so ist f stetig.

6. Differenzierbarkeit

6.1. Differentialquotient

 $f:I
ightarrow\mathbb{C}$ ist differenzierbar bei $x_*\in I$ wenn der Grenzwert existiert $f'(x*) = \lim_{x \to x} \frac{f(x) - f(x*)}{x - x*}$

6.2. Differenzierbar impliziert Stetig

Ist $f:I\to\mathbb{C}$ differenzierbar bei $x_*\in I$ dann ist f auch stetig bei x_* (¬ Stetig ⇒ ¬ Differenzierbar)

6.3. Ableitungsregeln

• Linearität: $(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x)$

• Produktregel: (fq)'(x) = f'(x)q(x) + f(x)q'(x)

• Quotientenregel: $(\frac{f}{g})'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$

• Kettenregel: $(f \circ g)'(x) = f'(g(x))g'(x)$

6.4. Ableitung der Umkehrfunktion

Sei g eine stetige, streng monotone Funktion und f die Umkehrfunktion. Wenn g an der Stelle $y_*:=f(x_*)$ differenzierbar ist mit $g(y_*)\neq 0$, dann ist f bei x_* differenzierbar mit $f'(x_*)=\frac{1}{g'(y_*)}=\frac{1}{g'(f(x_*))}$

6.5. Mittelwertsatz der Differentialrechnung

Ist $f:[a,b] o \mathbb{R}$ eine stetige, auf (a,b) differenzierbare Funktion. Dann existiert $f'(\xi) = \frac{f(b) - f(a)}{1}$

6.6. Monotonie von Funktionen

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar. $\forall x\in(a,b)$ gilt:

• f ist monoton steigend genau dann, wenn $f'(x) \ge 0$ (für streng >)

• f ist monoton fallend genau dann, wenn $f'(x) \leq 0$ (für streng <)

• f ist konstant genau dann, wenn f'(x) = 0

6.7. Regel von l'Hôpital

Seien $a,b\in\mathbb{R}\cup\{-\infty,\infty\}$. Und $f,g:(a,b)\to\mathbb{R}$ zwei differenzierbare Funktionen. Sei $g(x) \neq 0$ für alle $x \in [a, b]$, und es existiere der Limes:

$$\lim_{x \to a} \frac{f'(x)}{a'(x)} =: c \in \mathbb{R}$$

1. Falls $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$ gilt: $\lim_{x \to 0} \frac{f(x)}{g(x)} = c$

2. Falls $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm \infty$ gilt: $\lim_{x \to a} \frac{f(x)}{g(x)} = c$

6.8. Satz 8.28

Es sei $(f_n)_{n\in\mathbb{N}}$ eine Folge differenzierbarer Funktionen $f_n:[a,b]\to\mathbb{C}$. Wir nehmen an dass

- die Funktionenfolge $(f'_n)_{n\in\mathbb{N}}$ der Ableitungen $f'_n:[a,b] o\mathbb{C}$ gleichmäßig gegen ein $g:[a,b] o\mathbb{C}$ konvergiert
- · die Zahlenfolge $(f_n(\overline{x}))_{n\in\mathbb{N}}$ für mindestens ein $\overline{x}\in[a,b]$ konvergiert

Dann konvergiert die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen eine differenzierbare Funktion $f:[a,b]\to\mathbb{C}$, und es gilt f'=g. Ist zusätzlich jede Funktion f_n stetig differenzierbar, so ist auch f stetig differenzierbar.

6.9. Taylor-Polynom

Taylor-Polynom für $f \in C^n(I)$, Grad $m \in \mathbb{N}$ und $m \leq n$, an der Entwicklungs-

$$T_m^f(y;x) = \sum_{k=0}^m \frac{f^{(k)}(y)}{k!} (x-y)^k$$

6.10. Restgliedformel nach Lagrange

Es seien $f \in C^{m+1}([a,b];\mathbb{R})$ und $x \in [a,b]$ gegeben. Dann existiert zu je $dem \ x \in [a,b] \ \text{mit} \ x \neq y \ \text{ein} \ \xi \in (a,b) \ \text{"echt zwischen"} \ y \ \text{und} \ x \ \text{so dass}$ $f(x) = T_m^f(y;x) + \frac{f^{(m+1)}(\xi)}{(m+1)!} (x-y)^{(m+1)}$

7. Integralrechnung

7.1. Jede stetige Funktion ist eine Regelfunktion

Eine Folge von Treppenfunktionen $(\phi_n)_{n\in\mathbb{N}}$, die gleichmäßig gegen f konvergiert, ist gegeben durch $\phi_n(x) = f(x_k^{(n)})$ für alle $x \in (x_{k-1}^{(n)}, x_k^{(n)}]$, sowie $\phi_n(a)=f(a)$, wobei $(x_k^{(n)})_{k=0}^n$ mit $x_k^{(n)}=a+(b-a)\frac{k}{n}$ eine Zerle gung von [a, b] ist.

7.2. Rechenregel für Integrale

Es seien $f,g:[a,b]\to\mathbb{C}$ Regelfunktionen und $\lambda,\mu\in\mathbb{C}$. Dann gilt: 1. Auch $\lambda f + \mu g: [a,b] o \mathbb{C}$ ist eine Regelfunktion, und das Integral ist linear:

. Auch
$$\lambda f + \mu g: [a,b] \to \mathbb{C}$$
 ist eine Regenunknon, und das into $\int\limits_{a}^{b} (\lambda f + \mu g)(x) dx = \lambda \int\limits_{a}^{b} f(x) dx + \mu \int\limits_{a}^{b} g(x) dx$

2. Auch $|f|:[a,b]
ightarrow \mathbb{R}$ ist eine Regelfunktion:

$$\left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)|dx \le \sup_{a \le x \le b} |f(x)|$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

7.3. Hauptsatz der Differential und Integralrechnung

Es sei $f:[a,b]\to\mathbb{C}$ eine stetige Funktion. Zu gegebenem $a\in[\alpha,\beta]$ definieren wir die Funktion $F:[a,b]\to\mathbb{C}$ durch:

•
$$F(x) = \int_{a}^{x} f(t)dt$$

$$\cdot \int_{a}^{b} f(t)dt = F(b) - F(a)$$

Es gilt F'(x) = f(x)

7.4. Partielle Integration

Es seien $f,g:[a,b] \to \mathbb{C}$ zwei stetig differenzierbare Funktionen. Dann gilt: $\int_{a}^{b} f'(x)g(x)dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$

7.5. Substitutionsregel

Weiter set $g:[a,b] \to \mathbb{C}$ eine stetige Funktion mit Stammfunktion $F:[a,b] \to \mathbb{C}$. Weiter set $g:[\alpha,\beta] \to [a,b]$ eine stetig differenzierbare Funktion. $\int\limits_{\alpha}^{\beta} f(g(t))g'(t)dt = \int\limits_{g(\alpha)}^{g(\beta)} f(x)dx = F(x)|\frac{g(\beta)}{g(\alpha)}$

$$\int_{\alpha}^{\beta} f(g(t))g'(t)dt = \int_{g(\alpha)}^{g(\beta)} f(x)dx = F(x)|_{g(\alpha)}^{g(\beta)}$$

7.6. Uneigentliches Integral

Ist $f:[a,b)\to\mathbb{C}$ mit $b\in\mathbb{R}\cup\{+\infty\}$ (für $-\infty$ analog) eine uneigentliche Regelfunktion, dann ist folgender Limes das uneigentliche Integral wenn er existiert $\int_{0}^{\infty} f(x)dx := \lim_{c \to b} \int_{0}^{\infty} f(x)dx$

7.7. Satz 9.34

Es seien $f:[a,b) \to \mathbb{C}$ und $g:[a,b) \to \mathbb{R}$ uneigentliche Regelfunktionen. Gilt |f| < q, und ist q uneigentlich integrierbar, so ist auch f uneigentlich integrierbar. Insbesondere ist jede absolut integrierbare Funktion $f:[a,b) o \mathbb{C}$ auch uneigentlich

7.8. Restgliedformel für Integrale

Es seien $f \in C^{m+1}([a,b];\mathbb{R})$ und $y \in [a,b]$ gegeben. Wir definieren das Taylorpolynom $T_m^f(y;x):[a,b] o \mathbb{R}$ wie in Definition 8.33. Dann gilt für jedes

$$f(x) = T_m^f(y; x) + \int_y^x \frac{(x-t)^m}{(m)!} f^{(m+1)}(t) dt$$

8. Konvexe Funktionen

8.1. Definition durch Stützebenen/Tangenten

Sei $f: I \to \mathbb{R} \in C^1$ eine konvexe Funktion, $a \in I$ und $x \neq a$ dann gilt: f(x) > f(a) + f'(a)(x - a) [Für strikt konvex gilt <]

8.2. Definition durch Sekanten

Sei $f:I
ightarrow \mathbb{R}$ eine konvexe Funktion, für $(a < b) \in I$ und $\lambda \in [0,1]$ gilt: $f(\lambda b + (1 - \lambda)a) < \lambda f(b) + (1 - \lambda)f(a)$

8.3. Konvexität und Ableitung

Sei $f \in C^2(I)$. f ist (strikt) konvex: $\Rightarrow f'$ ist (streng) monoton steigend $\Leftrightarrow f'' > 0$ Für strikt konvex folgt nicht >

8.4. Jensensche Ungleichung

Ist $f:I\to\mathbb{R}$ eine konvexe Funktion, Argumente $x_1,\ldots,x_n\in I$ und Koeffizienten $\lambda_1,...,\lambda_n\in\mathbb{R}_{>0}$ gegeben, mit der Eigenschaft $\sum\limits_{i=1}^{n}\lambda_k=1$ gilt: $f(\sum_{k=1}^{n} \lambda_k x_k) \le \sum_{k=1}^{n} \lambda_k f(x_k)$

8.5. Vergleich von arithmetischem und geometrischem Mittel

Seien $A_1,A_2,...,A_n\in R_{\geq 0}$ dann gilt: $\sqrt[n]{\prod\limits_{k=1}^{n}A_k}\leq \frac{1}{n}\sum\limits_{k=1}^{n}A_k$ Gleicheit nur für $A_1=A_2=\ldots=A_n$

8.6. Jensensche Integral Ungleichung

Es seien $f:[a,b] \to I, \Lambda:[a,b] \to R_{>0}$ stetige Funktionen mit $\int \Lambda(x) dx = 1$, und $g: I o \mathbb{R}$ sei konvex $g(\int_{0}^{b} f(x)\Lambda(x)dx) \le \int_{0}^{b} g(f(x))\Lambda(x)dx$

Ist g strikt konvex, so gilt Gleichheit genau dann, wenn f eine konstante Funktion ist.

8.7. Youngsche Ungleichung

Seien $A,B\geq 0$ und p,q>1 mit $\frac{1}{p}+\frac{1}{q}=1$ Dann gilt:

8.8. Höldersche Ungleichung

Es seien p,q>1 gegeben mit $\frac{1}{2}+\frac{1}{2}=1$. Für beliebige stetige Funktionen $|\int_{a}^{b} f(x)g(x)dx| \le (\int_{a}^{b} |f(x)|^{p} dx)^{\frac{1}{p}} (\int_{a}^{b} |g(x)|^{q} dx)^{\frac{1}{q}}$

9. Bekannte Ableitungen/Stammfunktionen

 $\cdot \sin'(x) = \cos(x), \arcsin'(x) = \frac{1}{\sqrt{1-y^2}}$ $\cdot \cos'(x) = -\sin(x), \arccos'(x) = -\frac{1}{\sqrt{1-v^2}}$ $tan(x) := \frac{\sin(x)}{\cos(x)}, tan'(x) = 1 + (tan(x))^2 = \frac{1}{(\cos(x))^2}$ • $arctan'(x) = \frac{1}{1+u^2}$

9.2. Stammfunktionen

 $\cdot \int tan(x)dx = -ln(|cos(x)|)$ • $\int ln(x)dx = ln(x)x - x$

10. Eigene Notizen: