Обозначения

Обозначение	Интерпретация в теории вероятностей	Интерпретация в теории множеств
Ω	Пространство элементарных событий (множество возможных исходов случайного эксперимента)	Универсальное множество
$\omega \in \Omega$	Элементарное событие (исход вероятностного эксперимента)	Элемент множества Ω
$A \subseteq \Omega$	Случайное событие	Подмножество множества Ω

Обозначения

Обозначение	Интерпретация в теории вероятностей	Интерпретация в теории множеств
$A \cup B$	Событие, состоящее в том, что произошло по крайней мере одно из событий <i>A</i> или <i>B</i>	Объединение множеств <i>A</i> и <i>B</i>
$A \cap B$	Событие, состоящее в том, что произошли оба события <i>A</i> и <i>B</i>	Пересечение множеств <i>A</i> и <i>B</i>
$A \backslash B$	Событие, состоящее в том, что произошло <i>A</i> , но не произошло <i>B</i>	Разность множеств <i>А</i> и <i>В</i>

Обозначения

Обозначение	Интерпретация в теории вероятностей	Интерпретация в теории множеств
$\bar{A} = A^c = \Omega \backslash A$	Событие, состоящее в том, что не произошло событие <i>A</i>	Дополнение к множеству <i>А</i>
Ø	Невозможное событие	Пустое множество
$A \cap B = \emptyset$	События <i>А</i> и <i>В</i> несовместны, т.е. не могут произойти одновременно	Множества <i>А</i> и <i>В</i> не пересекаются

Дискретное вероятностное пространство

$$\Omega = \{\omega_1, \omega_2, \ldots\}$$

 \mathscr{F} — совокупность всех подмножеств Ω

(замкнута относительно: объединения \cup , пересечения \cap , дополнения - σ -*алгебра событий*)

$${f P}$$
 — вероятность $(p_i = p(\omega_i) \ge 0, \quad p_1 + p_2 + ... = 1)$

$$(\Omega, \mathcal{F}, P)$$

дискретное вероятностное пространство

σ-алгебра событий

Множество \mathscr{F} , элементами которого являются подмножества Ω называется σ -алгеброй событий, если

1.
$$\Omega \in \mathscr{F}$$

содержит достоверное событие

2. Если
$$A\in\mathscr{F}$$
, то $\overline{A}\in\mathscr{F}$

вместе с любым событием содержит противоположное=замкнута относительно дополнения

3. Если
$$A_1, A_2, ... \in \mathscr{F}$$
, то $A_1 \cup A_2 \cup ... \in \mathscr{F}$

замкнута относительно счётного объединения

Теорема сложения

для двух событий

$$P(A \cup B) = P(A) + P(B) - P(A \cap B),$$

если $A \cap B = \emptyset$, то $P(A \cup B) = P(A) + P(B)$

формула включения/исключения для k событий

$$P(A_{1} \cup A_{2} \cup ... \cup A_{k}) = P(A_{1}) + ... + P(A_{k}) -$$

$$-\sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < m} P(A_{i} \cap A_{j} \cap A_{m}) -$$

$$... + (-1)^{k-1} P(A_{1} \cap A_{2} \cap ... \cap A_{k})$$

Условная вероятность

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

Теорема умножения

для двух событий

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A), \quad ecnu \ P(A) > 0, \ P(B) > 0$$

для k событий

$$P(A_1 \cap A_2 \cap ... \cap A_k) = P(A_1)P(A_2 \mid A_1)...P(A_k \mid A_1 \cap A_2 \cap ... \cap A_{k-1}),$$

если $P(A_1 \cap A_2 \cap ... \cap A_k) > 0$

Независимость двух событий (попарная)

События *А* и *В* называются *независимыми*, если

$$P(A \cap B) = P(A)P(B)$$

Независимость в совокупности

События $A_1, A_2, ... A_k$ называются *независимыми в совокупности* если для любого $1 \le s \le k$ и любой последовательности индексов $i_1, ..., i_s$ имеет место равенство

$$P(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_s}) = P(A_{i_1})...P(A_{i_s})$$

Формула полной вероятности

Пусть дана полная группа несовместных событий $H_1, H_2, ...$

(m.e.
$$H_i \cap H_j = \emptyset$$
 npu $i \neq j$ u $H_1 \cup H_2 \cup ... = \Omega$)

Тогда вероятность любого события А может быть вычислена по формуле

$$P(A) = \sum_{i} P(A \mid H_i) P(H_i)$$

Формула Байеса

Пусть $H_1, H_2, ...$ полная группа несовместных событий

(m.e.
$$H_i \cap H_j = \emptyset$$
 npu $i \neq j$ u $H_1 \cup H_2 \cup ... = \Omega$)

Тогда для любого события A, такого что P(A) > 0, условная вероятность того, что имело место событие H_s , если в результате эксперимента наблюдалось событие A, может быть вычислена по формуле

$$P(H_{_S} | A) = rac{P(A | H_{_S})P(H_{_S})}{\sum_i P(A | H_i)P(H_i)}$$