Scilab Textbook Companion for Engineering Physics by D. K. Bhattacharya¹

Created by
Nandan Hegde
B.E.(EXTC)
Others
Mumbai University
College Teacher
Mrugendra Vasmatkar
Cross-Checked by
Chaitanya

May 27, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: D. K. Bhattacharya

Publisher: Oxford University, New Delhi

Edition: 2

Year: 2013

ISBN: 9780198065425

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	ultrasonics	6
2	Lasers	13
3	Fibre optics and its applications	15
4	Quantum physics	18
5	Crystal physics	23
6	Conducting materials	27
7	Semiconducting materials	35
8	Magnetic materials	49
9	Superconducting materials	52
10	Dielectric materials	54
12	Additional solved examples	56
13	Additional solved short answers	74

List of Scilab Codes

Exa 1.1	To find depth of submerged submarine	6
Exa 1.2	To calculate the natural frequency	6
Exa 1.3	To calculate the natural frequency	7
Exa 1.4	compute the velocity of waves	7
Exa 1.5	To calculate the natural frequency	8
Exa 1.6	To calculate the natural frequency	8
Exa 1.7	To calculate the natural frequency	8
Exa 1.8	To calculate the frequency	9
Exa 1.9	To find depth of sea	9
Exa 1.10	To find depth of sea	9
Exa 1.11	To calculate reverberation time	0
Exa 1.12	To find area of interior surface	0
Exa 1.13	To find reverberation time	0
Exa 1.14	To find depth of submarine	1
Exa 1.15	To find frequency of waves	1
Exa 1.16	To evaluate natural frequency	1
Exa 2.1	To calculate relative population	3
Exa 2.2	To calculate ratio of stimulated emission to spontaneous	
	emission	3
Exa 2.3	calculate number of photons emitted per minute 1	4
Exa 3.1	To find NA and phi m and critical angle	5
Exa 3.2	calculate pulse broadening per unit length 1	6
Exa 3.3	To calculate minimum and maximum number of total	
	internal reflections per metre	6
Exa 4.1	calculate energy and momentum of photon 1	8
Exa 4.2	calculate number of photons emitted per second 1	8
Exa 4.3	determine number of photons emitted per second 1	9
Exa 4.4	find the wavelength	9

Exa 4.5	calculate de Broglie wavelength
Exa 4.6	find energy of particle
Exa 4.7	calculate minimum energy
Exa 4.8	calculate energy required to excite electron from ground
	state to 6th excited state
Exa 4.9	find change in wavelength
Exa 5.1	determine miller indices
Exa 5.2	calculate density of Si
Exa 5.3	calculate surface density of atoms
Exa 5.4	calculate spacing of planes
Exa 5.5	determine size of unit cell
Exa 5.6	determine spacing between planes
Exa 5.7	find volume of unit cell
Exa 6.1	calculate Fermi energy
Exa 6.2	calculate Fermi energy
Exa 6.3	calculate conductivity and relaxation time
Exa 6.4	calculate Lorentz number
Exa 6.5	calculate electrical conductivity
Exa 6.6	calculate relaxation time and mobility and average drift
	velocity and mean free path
Exa 6.7	calculate thermal conductivity
Exa 6.8	calculate Lorentz number
Exa 6.9	find F E
Exa 6.10	calculate electrical conductivity
Exa 6.11	calculate electrical and thermal conductivities 3
Exa 6.12	find relaxation time
Exa 6.13	calculate drift velocity and mobility and relaxation time 3
Exa 6.14	calculate drift velocity
Exa 6.15	calculate Fermi energy and Fermi temperature 3
Exa 6.16	calculate Fermi velocity
Exa 7.1	Evaluate approximate donor binding energy 3
Exa 7.2	calculate equilibrium hole concentration and how is Ef
	located relative to Ei
Exa 7.3	calculate resistivity of sample
Exa 7.4	calculate resistivity and Hall coefficient and Hall voltage 3
Exa 7.5	calculate intrinsic carrier concentration and intrinsic con-
	ductivity and relativity
Exa 7.6	calculate Fermi energy with respect to Fermi energy

Exa 7.7	find resistance of pure and doped Si crystal 40
Exa 7.8	compute forbidden energy gap
Exa 7.9	calculate conductivity of sample
Exa 7.10	find the new position of Fermi level
Exa 7.11	calculate concentration in conduction band 43
Exa 7.12	calculate drift mobility of electron
Exa 7.13	calculate concentration of conduction electrons in Cu. 43
Exa 7.14	calculate charge carrier density and electron mobility . 44
Exa 7.15	calculate magnitude of Hall voltage 45
Exa 7.16	find resistance of intrinsic Ge 45
Exa 7.17	determine the position of Fermi level 46
Exa 7.18	calculate electrical conductivity
Exa 7.19	find intrinsic resistivity
Exa 7.20	find electrical conductivity before and after addition of
	B atoms
Exa 7.21	find Hall coefficient and electron mobility 47
Exa 7.22	find Hall potential difference
Exa 8.1	Determine magnitude and direction of magnetic moment 49
Exa 8.2	Determine magnetic moment
Exa 8.3	calculate magnetic susceptibility 50
Exa 8.4	calculate permeability
Exa 8.5	calculate magnetic moment
Exa 9.1	calculate critical magnetic field intensity
Exa 9.2	calculate isotopic mass
Exa 10.1	calculate electronic polarizability
Exa 10.2	calculate electronic polarizability
Exa 12.1	calculate relative population
Exa 12.2	determine relative population
Exa 12.3	calculate ratio of stimulated emission to spontaneous
	emission
Exa 12.4	calculate number of photons emitted per minute 58
Exa 12.5	calculate number of photons emitted per minute 58
Exa 12.6	find NA and critical angle and alpha m 58
Exa 12.7	find NA and critical angle and alpha m 59
Exa 12.8	calculate pulse broadening per unit length 59
Exa 12.9	calculate pulse broadening per unit length 60
Exa 12.10	calculate minimum and maximum number of total in-
	ternal reflections per metre 60

Exa 12.11	calculate energy and momentum of photon	61
Exa 12.12	calculate number of photons emitted per second	62
Exa 12.13	calculate de Broglie wavelength	62
Exa 12.14	find change in wavelength	62
Exa 12.15	find miller indices	63
Exa 12.16	find miller indices	64
Exa 12.17	find size of unit cell	64
Exa 12.18	find volume of unit cell	65
Exa 12.19	calculate Fermi energy	65
Exa 12.20	calculate relaxation time and average drift velocity and	
	velocity of electron and mean free path	66
Exa 12.21	evaluate value of F E	66
Exa 12.22	calculate how is Ef located relative to Ei	67
Exa 12.23	find magnitude of Hall voltage	68
Exa 12.24	calculate Hall voltage and Hall coefficient	69
Exa 12.25	determine magnitude and direction of magnetic moment	69
Exa 12.26	determine magnitude and direction of magnetic moment	70
Exa 12.27	determine magnetic moment	70
Exa 12.28	calculate permeability	71
Exa 12.29	calculate susceptibility	71
Exa 12.30	determine critical current	71
Exa 12.31	calculate critical current	72
Exa 12.32	calculate isotopic mass	72
Exa 12.33	calculate isotopic mass	73
Exa 13.1.2	find fundamental frequency	74
Exa $13.1.6$	calculate critical angle	74
	Ocalculate interplanar spacing	75
Exa 13.1.12	2find the wavelength	75
Exa 13.1.14	4calculate energy of scattered photon	75
Exa 13.1.13	5calculate number of unit cells	76
Exa 13.2.1	calculate the frequency	77
	calculate wavelength of scattered radiation	77
Exa 13.2.13	3calculate Na and acceptance angle	78
Exa 13.3.1	1 calculate mean free time	78
Exa 13.3.15	2calculate the resistivity	78
Exa 13.3.13	3calculate energy loss per hour and intensity of magneti-	
	zation and flux density	79
Exa 13.3.14	4find capacitance and electric flux density	80

List of Figures

7.1	calculate equilibrium hole concentration and how is Ef located	
	relative to Ei	36
12.1	calculate how is Ef located relative to Ei	67

Chapter 1

ultrasonics

Scilab code Exa 1.1 To find depth of submerged submarine

Scilab code Exa 1.2 To calculate the natural frequency

7 printf("yes, the rod can be used for producing
 ultrasonic waves because its frequency lies in
 the ultrasonic range")

Scilab code Exa 1.3 To calculate the natural frequency

```
1 // chapter 1 , Example1 3 , pg 21
2 l=10^-3//length(in m)
3 E=7.9*10^10//youngs modulus(in N/m^2)
4 d=2650//density(in kg/m^3)
5 p=1//fundamental mode
6 n= p*sqrt(E/d)/(2*1) //natural frequency
7 printf("Fundamental frequency of quartz crystal\n")
8 printf("n=%.2 f Hz",n)
```

Scilab code Exa 1.4 compute the velocity of waves

Scilab code Exa 1.5 To calculate the natural frequency

```
1 // chapter 1 , Example1 5 , pg 22
2 l=50*10^-3//length of rod(in m)
3 d=7250//density(in kg/m^3)
4 E=11.5*10^10//youngs modulus(in N/m^2)
5 n=sqrt(E/d)/(2*1)//natural frequency
6 printf("Natural frequency of rod\n")
7 printf("n=%.2 f KHz",n*10^-3)
```

Scilab code Exa 1.6 To calculate the natural frequency

```
1 // chapter 1 , Example1 6 , pg 23
2 l=2*10^-3//length(in m)
3 d=2650//density(in kg/m^3)
4 E=7.9*10^10//youngs modulus(in N/m^2)
5 p=1
6 n=(p*sqrt(E/d))/(2*1)//natural frequency
7 printf("frequency of crystal\n")
8 printf("n=%.3 f MHz",n*10^-6)
```

Scilab code Exa 1.7 To calculate the natural frequency

```
1 // chapter 1 , Example1 7 , pg 23
2 l=3*10^-3//length(in m)
3 d=2500//density(in kg/m^3)
4 E=8*10^10//youngs modulus(in N/m^2)
5 p=1
6 n=(p*sqrt(E/d))/(2*1)//natural frequency
7 printf("frequency of ultrasound\n")
8 printf("n=%.3 f KHz",n*10^-3)
```

Scilab code Exa 1.8 To calculate the frequency

```
1 // chapter 1 , Example1 8 , pg 23
2 l=1.5*10^-3//length(in m)
3 d=2650//density(in kg/m^3)
4 E=7.9*10^10//youngs modulus(in N/m^2)
5 p=1
6 n=(p*sqrt(E/d))/(2*1)//natural frequency
7 printf("frequency of crystal\n")
8 printf("n=%.3 f MHz",n*10^-6)
```

Scilab code Exa 1.9 To find depth of sea

Scilab code Exa 1.10 To find depth of sea

Scilab code Exa 1.11 To calculate reverberation time

```
1 // chapter 1 , Example1 11 , pg 24
2 aS=1050//total absorption inside hall(in Sabine)
3 //a=average absorption coefficient , S=area of interior surface
4 V=9000//volume of hall(in m^3)
5 T=(0.165*V)/aS//reverberation time
6 printf("Reverberation time of hall\n")
7 printf("T=%.4f sec",T)
```

Scilab code Exa 1.12 To find area of interior surface

```
1 // chapter 1 , Example1 12 , pg 25
2 V=13500//volume(in m^3)
3 T=1.2//reverberation time(in sec)
4 a=0.65//average absorption coefficient(in Sabine/m^2)
5 S=(0.165*V)/(a*T)//area of interior surface
6 printf("Area of interior surface\n")
7 printf("S=%.1f m^2",S)
```

Scilab code Exa 1.13 To find reverberation time

```
1 // chapter 1 , Example1 13 , pg 25
2 V=15000//volume(in m^3)
3 T1=1.3//initial reverberation time(in sec)
4 aS=(0.165*V)/T1 //total absorption of hall (in Sabine)
```

```
5 T2=(0.165*V)/(aS+300)//revrberation time of hall
    after adding 300 chairs each having absorption of
    1 Sabine
6 printf("Reverberation time of hall after adding 300
    chairs\n")
7 printf("T2=%.3f sec",T2)
```

Scilab code Exa 1.14 To find depth of submarine

Scilab code Exa 1.15 To find frequency of waves

Scilab code Exa 1.16 To evaluate natural frequency

```
// chapter 1 , Example1 16 , pg 26
1=40*10^-3//length(in m)
E=11.5*10^10//youngs modulus(in N/m^2)
d=7250//density(in kg/m^3)
p=1//fundamental mode
n= p*sqrt(E/d)/(2*1) //natural frequency
printf("Fundamental frequency of quartz crystal\n")
printf("n=%.2 f KHz",n*10^-3)
```

Chapter 2

Lasers

Scilab code Exa 2.1 To calculate relative population

```
1 // chapter 2 , Example2 1 , pg 52
2 lam=590*10^-9/wavelength (in m)
3 T=250+273 //temperature(in kelvin) (converting
     celsius into kelvin)
4 k=1.38*10^{-23}/boltzman constant (in (m^2*Kg)/(s^2*k)
5 h=6.625*10^-34//plancks constant(in Js)
6 c=3*10^8/speed of light
7 N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative
     population of atoms in the 1st excited state
                                                    and
      in ground state
8 //n1=number of atoms in ground state
9 //n2=number of atoms in excited state
10 printf ("Relative population of Na atoms in the 1st
     excited state and in ground state\n")
11 disp(N)
```

Scilab code Exa 2.2 To calculate ratio of stimulated emission to spontaneous emission

```
1 // chapter 2 , Example 2 2 , pg 53
2 T=250+273 //temperature(in kelvin) (converting
      celsius into kelvin)
3 h=6.625*10^-34//plancks constant (in Js)
4 c=3*10^8/speed of light (in m/s)
5 \quad lam = 590 * 10^{-9} / wavelength (in m)
6 k=1.38*10^--23/boltzman constant (in (m^2*Kg)/(s^2*k))
      ))
7 N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21))
      ratio of stimulated emission to spontaneous
      emission
8 printf ("Ratio of stimulated emission to spontaneous
        emission is")
9 \text{ disp}(N)
10
11
12 //answer given is wrong
```

Scilab code Exa 2.3 calculate number of photons emitted per minute

```
1 // chapter 2 , Example2 3 , pg 53
2 lam=632.8*10^-9//wavelength(in m)
3 Em=3.147*10^-3*60//energy emitted per minute(in J/min)
4 c=3*10^8//speed of light(in m/s)
5 h=6.625*10^-34//plancks constant(in Js)
6 n=c/lam //frequency of emitted photons(in Hz)
7 E=h*n //energy of each photon(in J)
8 N=Em/E //number of photons emitted per minute
9 printf("Number of photons emitted per minute")
10 disp(N)
```

Chapter 3

Fibre optics and its applications

Scilab code Exa 3.1 To find NA and phi m and critical angle

```
1 // chapter 3 , Example 3.1 , pg 84
2 n1=1.5//core refractive index
3 n2=1.47//cladding refractive index
4 n0=1//refractive index of air
5 NA=sqrt(n1^2-n2^2)//numerical aperture
6 alpha_m = asin(NA/n0)//angle of acceptance
                                                (in
     radian)
7 phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)
     =n1*sin(phi_m) (in radian)
8 phi_c=asin(n2/n1) //critical angle (in radian)
9 printf ("NA=\%.1 \text{ f } \text{ n}", NA)
10 printf("alpha_m=\%.2 f degree\n",(alpha_m*180)/%pi)
11 printf("phi_m=\%.2f degree\n",(phi_m*180)/\%pi)
12 printf("phi_c=\%.2 f degree",(phi_c*180)/%pi)
13
14
15 //data given is n2=1.97 which is not possible since
       refractive index of cladding should always be
      less than refractive index of core
16 //in calculation n2=1.47
```

Scilab code Exa 3.2 calculate pulse broadening per unit length

Scilab code Exa 3.3 To calculate minimum and maximum number of total internal reflections per metre

```
1 // chapter 3 , Example 3.3 , pg 85
2 n1=1.5//core refractive index
3 n2=1.47//cladding refractive index
4 n0=1//refractive index of air
5 a=100*10^--6/2 //radius of core
6 NA=sqrt(n1^2-n2^2)//numerical aperture
  alpha_m = asin(NA/n0)//angle of acceptance
                                             (in
     radian)
  phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)
     =n1*sin(phi_m) (in radian)
                 //(in m)
9 L=a/tan(phi_m)
10 printf("Minimum number of reflections per metre=zero
     \n") //since rays travelling with alpha=0
     suffer no internal reflection
```

```
// for rays travelling with alpha=alpha_m ,1 internal
    reflection takes place for a transversed
    distance of 2*L

N=1/(2*L) //Maximum number of reflections per metre
disp("Maximum number of reflections per metre(in m ^-1)=")
printf("N=%.0f",N)

// Answer varies as L is restricted to 2.45*10^-4 (m)
instead of 2.462*10^-4 (m)
```

Chapter 4

Quantum physics

Scilab code Exa 4.1 calculate energy and momentum of photon

```
1 // chapter 4 , Example4 1 , pg 117
2 c=3*10^8 //speed of light(in m/sec)
3 h=6.625*10^-34//planck's constant(in J s)
4 lam=1.2*10^-10//wavelength(in m)
5 E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)
6 p=h/lam //momentum of photon
7 printf("Energy of photo\n")
8 printf("E=%.1 f eV\n",E)
9 printf("momentum of photon(in Kg m/sec)\n")
10 disp(p)
```

Scilab code Exa 4.2 calculate number of photons emitted per second

```
1 // chapter 4 , Example 4.2 , pg 117
2 E1=10^4 //energy emitted per second(in J)
3 n=900*10^3 //frequency(in Hz)
4 h=6.625*10^-34 //plancks constant(in J s)
5 E=h*n//energy carried by 1 photon(in J)
```

```
6 N=E1/E//number of photons emitted per second
7 printf("number of photons emitted per second\n")
8 disp(N)
```

Scilab code Exa 4.3 determine number of photons emitted per second

```
1 // chapter 4 , Example 4.3 , pg 118
2 c=3*10^8//speed of light(in m/sec)
3 h=6.625*10^-34//plancks constant(in J s)
4 E1=100//energy emitted per second(in J)
5 lam=5893*10^-10//wavelength(in m)
6 E=(h*c)/lam //energy carried by 1 photon
7 N=E1/E//number of photons emitted per second
8 printf("number of photons emitted per second\n")
9 disp(N)
10
11
12 //answer mentioned is wrong
```

Scilab code Exa 4.4 find the wavelength

Scilab code Exa 4.5 calculate de Broglie wavelength

```
// chapter 4 , Example 4.5 , pg 119
m=0.04//mass(in Kg)
v=1000//speed(in m/sec)
h=6.625*10^-34//plancks constant(in J s)
p=m*v//momentum(in kg m/sec)
lam=h/p //wavelength
printf("de Broglie wavelength(in m)\n")
disp(lam)
printf("de Broglie wavelength(in A)\n")
disp(lam*10^10)
// calculation is done assuming h=6.6*10^-34 Js
```

Scilab code Exa 4.6 find energy of particle

```
1 // chapter 4 , Example 4.6 , pg 119
2 a=0.1 *10^-9 //width (in m)
3 n=1// lowest energy state of particle is obtained at n=1
4 h=6.625*10^-34 //plancks constant(in Js)
5 m=9.11*10^-31//mass of electron (in Kg)
```

```
6 E=(h^2)/(8*m*a^2)//energy of an electron
7 printf("Energy of electron in ground state(in J)\n")
8 disp(E)
9 printf("E=\%.3 f eV",E/(1.6025*10^-19))
```

Scilab code Exa 4.7 calculate minimum energy

```
// chapter 4 , Example 4.7 , pg 120
a=4*10^-9 //width (in m)
n=1// lowest energy state of particle is obtained
    at n=1
h=6.625*10^-34 //plancks constant(in Js)
m=9.11*10^-31//mass of electron (in Kg)
E=(h^2)/(8*m*a^2)//energy of an electron
printf("Energy of electron in ground state(in J)\n")
disp(E)
printf("E=%.5f eV",E/(1.6025*10^-19))
```

Scilab code Exa 4.8 calculate energy required to excite electron from ground state to 6th excited state

```
// chapter 4 , Example 4.8 , pg 120
a=0.1 *10^-9 //width (in m)
n1=1// lowest energy state of particle is obtained
at n=1

n=6 //6th excited state hance n=6
h=6.625*10^-34 //plancks constant(in Js)
m=9.11*10^-31//mass of electron (in Kg)
//E=(n^2*h^2)/(8*m*a^2) n=excited state of electron
E1=(n1^2*h^2)/(8*m*a^2)//energy of an electron in ground state (in J)
```

```
9 E6=(n^2*h^2)/(8*m*a^2)//energy at 6th excuted state(
    in J)
10 E=E6-E1//energy required to excite the electron from
    ground state to the 6th excited state
11 printf("energy required to excite the electron from
    ground state to the 6th excited state(in J)\n")
12 disp(E)
13 printf("E=%.2f eV",(E/(1.6025*10^-19)))
```

Scilab code Exa 4.9 find change in wavelength

Chapter 5

Crystal physics

Scilab code Exa 5.1 determine miller indices

```
1 // chapter 5 , Example 5 1 , pg 149
2 //plane has intercepts a,2b,3c along the 3 crystal
       axes
3 //lattice points in 3-d lattice are given by r=p*a+q
4 //as p,q,r are the basic vectors the proportion of
      intercepts 1:2:3
5 p=1
6 q = 2
7 s = 3
8 //therefore reciprocal
9 r1=1/1
10 r2=1/2
11 r3 = 1/3
12 //taking LCM
13 v=int32([1,2,3])
14 l = double(lcm(v))
15 \text{ m1} = (1 * r1)
16 \text{ m2} = (1 * r2)
17 m3 = (1*r3)
18 printf("miler indices=")
```

Scilab code Exa 5.2 calculate density of Si

```
1 // chapter 5 , Example5 2 , pg 150
2 a=5.43*10^-8//lattice constant(in cm)
3 M=28.1 //atomic weight (in g)
4 n=8// number of atoms/cell (for Si)
5 N=6.02*10^23 //Avogadro number
6 C=n/a^3 //atomic concentration =(number of atoms/cell)/cell volume (in atoms/cm^3)
7 D=(C*M)/N //Density
8 printf("D=%.2f g/cm^3",D)
```

Scilab code Exa 5.3 calculate surface density of atoms

Scilab code Exa 5.4 calculate spacing of planes

```
1 // chapter 5 , Example5 2 , pg 150
2 a=4.049 //lattice constant(in Angstrom)
3 h=2
4 k=2
5 l=0 //since (h k l)=(2 2 0) miller indices
6 d=a/sqrt(h^2+k^2+l^2) //spacing
7 printf("spacing of (2 2 0) planes=")
8 printf("d=%.3 f Angstrom",d)
```

Scilab code Exa 5.5 determine size of unit cell

```
1 // chapter 5 , Example5 5 , pg 152
2 d110=2.03//spacing of(1 1 0) planes (in Angstrom)
3 h=1
4 k=1
5 l=0 //(h k l)=(1 1 0)
6 a=d110*sqrt(h^2+k^2+l^2)//size of unit cell
7 printf("size of unit cell=")
8 printf("a=%.2f angstrom",a)
```

Scilab code Exa 5.6 determine spacing between planes

```
1 // chapter 5 , Example5 6 , pg 152
2 a=5.64//lattice constant (in Angstrom)
3 h1=1
4 k1=0
5 l1=0 //(h1 k1 l1)=(1 0 0)
6 h2=1
7 k2=1
8 l2=0 //(h2 k2 l2)=(1 1 0)
9 h3=1
```

```
10 k3=1
11 13=1//(h3 k3 l3)=(1 1 l)
12 d100=a/sqrt(h1^2+k1^2+11^2) //spacing of (1 0 0)
      planes
13 d110=a/sqrt(h2^2+k2^2+12^2)
                                 //spacing of (1 \ 1 \ 0)
      planes
                                //spacing of (1 \ 1 \ 1)
14 d111=a/sqrt(h3^2+k3^2+13^2)
      planes
15 printf ("spacing of (1 0 0) planes=")
16 printf ("d100=\%.2 f Angstrom\n", d100)
17 printf("spacing of (1 1 0) planes=")
18 printf ("d110=\%.2 f Angstrom\n", d110)
19 printf ("spacing of (1 1 1) planes=")
20 printf("d111=%.2f Angstrom",d111)
```

Scilab code Exa 5.7 find volume of unit cell

```
1 // chapter 5 , Example5 7 , pg 153
2 r=1.605 *10^-10 //radius of atom (in m)
3 a=2*r//lattice constant (for HCP structure) (in m)
4 c=a*sqrt(8/3) //(in m)
5 V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell
6 printf("volume of unit cell(in m^3)\n")
7 disp(V)
```

Chapter 6

Conducting materials

Scilab code Exa 6.1 calculate Fermi energy

Scilab code Exa 6.2 calculate Fermi energy

```
6 printf("Fermi energy at 300 K =")
7 printf("Ef=%.4 f eV",(Ef/(1.6*10^-19))) //
converting J into eV
```

Scilab code Exa 6.3 calculate conductivity and relaxation time

```
1 // chapter 6 , Example6.3 , pg 171
2 d=2.7*10^3
                 // density (in Kg/m<sup>3</sup>)
3 \text{ Ma} = 27
        //atomic weight
4 Me=9.11*10^-31 //mass of electron (in Kg)
5 e=1.6*10^-19
                   //charge in electron (in C)
6 T=10^-14 // relaxation time (in s)
7 Na=6.022*10^23 //Avogadro constant
8 N=3*10^3 //number of free electrons per atom
                   //(in /m<sup>3</sup>)
9 \quad n = (d*Na*N)/Ma
10 sigma=(n*e^2*T)/Me //conductivity
11 printf("Conductivity of Al (in /(ohm*m))")
12 disp(sigma)
```

Scilab code Exa 6.4 calculate Lorentz number

Scilab code Exa 6.5 calculate electrical conductivity

```
1 // chapter 6 , Example 5 , pg 172
2 d=8900 //density (in Kg/m<sup>3</sup>)
3 M = 63.5
             //atomic weight
4 T=10^-14
             //relaxation time(in s)
5 N=6.022*10^23 //Avogadros constant
                  //number of free electrons per atom
6 N1 = 10^3
7 e=1.6*10^-19 //electronic charge
                                          (in C)
8 \text{ me} = 9.11 * 10^{-31}
                   //mass of electron
                                          (in Kg)
9
10 n = (N*d*N1)/M
11 sigma = (n*e^2*T)/me // electrical conductivity
12 printf("Electrical conductivity(in ohm m)=")
13 disp(sigma)
```

Scilab code Exa 6.6 calculate relaxation time and mobility and average drift velocity and mean free path

```
1 // chapter 6 , Example 6 6 , pg 172
2 \text{ rho} = 1.54 * 10^- 8
                     //resistivity (in ohm*m)
3 \text{ Ef} = 5.5
               //Fermi energy (in eV)
4 E=100 //electric field intensity (in V/m)
5 n=5.8*10^28
                    //concentration of electrons
                                                         (in
      atoms/m<sup>3</sup>)
6 \text{ e=1.6*10^--19}
                     //charge in electron
                                                (in C)
7 \text{ Me} = 9.11 * 10^{-31}
                    //mass of electron
                                              (in Kg)
                          //relaxation time
8 \text{ T=Me/(rho*n*e^2)}
9 Un = (e *T)/Me
                    //mobility of electron
                        //drift velocity
10 Vd = (e*T*E)/Me
11 Vf=sqrt((2*Ef*e)/Me) //Fermi velocity
12 lam_m=Vf*T //mean free path
13
14 printf ("Relaxation time of electron (in s)")
15 \text{ disp}(T)
```

```
16 printf("Mobility of electron (in m<sup>2</sup>/(V*s))")
17 disp(Un)
18 printf("Drift velocity of electron (in m/s)")
19 disp(Vd)
20 printf("Fermi velocity of electrons (in m/s)")
21 disp(Vf)
22 printf("Mean free path(in m)")
23 disp(lam_m)
```

Scilab code Exa 6.7 calculate thermal conductivity

Scilab code Exa 6.8 calculate Lorentz number

```
7 disp(L)
```

Scilab code Exa 6.9 find F E

Scilab code Exa 6.10 calculate electrical conductivity

```
1 // chapter 6 , Example6.10 , pg 175
2 \ lam = 4 * 10^- - 8
               //maen free path of electrons
                                               (in m
3 n=8.4*10^28 //electron density (in m^-3)
4 Vth=1.6*10^6
                //average thermal velocity of
    electrons
                (in m/s)
                //charge of electron (in C)
5 e=1.6*10^-19
6 Me=9.11*10^--31 //mass of electron
                                     (in Kg)
7 sigma=(n*e^2*lam)/(Vth*Me) //conductivity
8 printf("Electrical conductivity (in /(ohm*m))")
9 disp(sigma)
```

Scilab code Exa 6.11 calculate electrical and thermal conductivities

```
1 // chapter 6 , Example6.11 , pg 176
```

```
2 Tr=10^-14 //relaxation time (in s)
3 T=300 //temperature (in K)
4 n=6*10^28 //electron concentration (in /m<sup>3</sup>)
5 Me=9.11*10^-31 //mass of electron (in Kg)
6 e=1.6*10^-19 //charge of electron
                                    (in C)
7 k=1.38*10^--23 //Boltzmann constant (in J/K)
8 sigma=(n*e^2*Tr)/(Me) // Electrical conductivity
9 K=(3*n*k^2*Tr*T)/(2*Me) //Thermal conductivity
10 L=K/(sigma*T) //Lorentz number
11 printf("Electrical conductivity (in /(ohm*m))")
12 disp(sigma)
13 printf("Thermal conductivity (in W/(m*K))")
14 disp(K)
15 printf("Lorentz number (in(W*ohm)/K^2)")
16 disp(L)
```

Scilab code Exa 6.12 find relaxation time

Scilab code Exa 6.13 calculate drift velocity and mobility and relaxation time

```
1 // chapter 6 , Example6.13 , pg 177
2 rho=1.54*10^-8 //resistivity (in ohm*m)
```

```
3 E=100  // electric field intensity (in V/m)
4 n=5.8*10^28  // electron concentration (in /m ^3)
5 e=1.6*10^-19  // charge of electron (in C)
6 Me=9.11*10^-31  // mass of electron (in Kg)
7 T=Me/(rho*n*e^2)  // relaxation time
8 Vd=(e*E*T)/Me  // drift velocity
9 U=Vd/E  // mobility
10 printf("Relaxation time (in s)")
11 disp(T)
12 printf("Drift veloity (in m/s)")
13 disp(Vd)
14 printf("Mobility(in m^2/(V*s))")
15 disp(U)
```

Scilab code Exa 6.14 calculate drift velocity

```
// chapter 6 , Example6 14 , pg 178
T=300  //temperature  (in K)
l=2  //length  (in m)

R=0.02  //Resistance  (in ohm)

u=4.3*10^-3  // (in m^2/(V*s))
I=15  //current  (in A)
V=I*R  //voltage drop across wire  (in V )
E=V/l  //electric field across wire  (in V/m)
Vd=u*E  //drift velocity  (in m/s)
printf("Drift velocity (in m/s)")
disp(Vd)
```

Scilab code Exa 6.15 calculate Fermi energy and Fermi temperature

```
1 // chapter 6 , Example  15 , pg 179
2 m=9.11*10^-31 //mass of electron (in Kg)
```

Scilab code Exa 6.16 calculate Fermi velocity

Semiconducting materials

Scilab code Exa 7.1 Evaluate approximate donor binding energy

Figure 7.1: calculate equilibrium hole concentration and how is Ef located relative to Ei

Scilab code Exa 7.2 calculate equilibrium hole concentration and how is Ef located relative to Ei

```
1 // chapter 7 , Example 7.2 , pg 208
2 \text{ ni}=1.5*10^10
                     //intrinsic concentration (in cm
      ^{^{\circ}}-3)
            //donor concentration (in atoms/cm<sup>3</sup>)
3 \text{ Nd} = 10^16
4 T=300
             //temperature
                               (in K)
5 e=1.6*10^-19 //charge of electron
                                             (in C)
6 k=1.38*10^-23 //Boltzmann constant
                                              (in J/K)
          //Assuming n0=Nd ( since Nd >> ni
7 \quad n0 = Nd
8 p0=ni^2/n0 //hole concentration
9 E=k*T*log(n0/ni)
                      // E=(Ef-Ei)
                                        location of Ef
      relative to Ei
10 printf ("Hole concentration (in cm^-3)")
11 disp(p0)
12 printf("Location of Ef relative to Ei (in eV)")
13 \text{ disp}(E/e)
14 x = linspace(-5.5, 5.5, 51);
15 \ y = 1 \ ;
16
17 scf(2);
18 clf(2);
19 plot(x,y+0.1);
20
21 plot(x,y,'ro-');
22 plot(x,y-0.347, '---');
23 plot(x,y*0, 'bs:');
24 xlabel(["x axis";"(independent variable)"]);
25 ylabel ("Energy level (eV)");
26 title ("Band diagram");
27 legend(["Ec"; "Ef"; "Ei"; "Ev"]);
28 set(gca(), "data_bounds", matrix([-6,6,-0.1,1.1],2,-1)
     );
```

Scilab code Exa 7.3 calculate resistivity of sample

Scilab code Exa 7.4 calculate resistivity and Hall coefficient and Hall voltage

```
1 // chapter 7 , Example 7 4 , pg 209
2 e=1.6*10^-19
                 //charge in electron (in C)
3 Ix = 2 * 10^{-3}
                //current (in A)
                //thickness (in cm)
4 d=200*10^-4
5 Bz=5*10^-5 //magnetic induction (in Wb/cm<sup>2</sup>)
6 Un=800 //electron mobility (in cm^2/(V*s))
               //doping concentration (in atoms/cm
7 n=5*10^16
     ^3)
9 sigma=n*e*(Un)
                  // electrical conductivity
                 //resistivity
10 rho=1/sigma
                //Hall coefficient
11 Rh = -1/(e*n)
12 Vh = -(Ix*Bz)/(d*e*n)
                      //Hall voltage
13 printf("Resistivity(in ohm*cm)")
14 disp(rho)
15 printf ("Hall coefficient (in cm^3/C)")
```

```
16 disp(Rh)
17 printf("Hall voltage (in V)")
18 disp(Vh)
```

Scilab code Exa 7.5 calculate intrinsic carrier concentration and intrinsic conductivity and relativity

```
1 // chapter 7 , Example 7.5 , pg 210
2 T=300 //temperature (in K)
3 Un=0.4 // electron mobility (in m^2/(V*s))
4 Up=0.2 //hole mobility (in m^2/(V*s))
5 e=1.6*10^-19 //charge of electron (in C)
6 h=6.625*10^{-34}
                   //plancks constant (in m^2*Kg*S
     ^{\hat{}}-1)
7 \text{ Eg} = 0.7
          //bandgap
                         (in eV)
8 k=1.38*10^-23 //Boltzmann constant (in J/K)
9 Me=9.11*10^-31 //mass of electron
                                       (in Kg)
                 //electron effective mass
10 \, \text{Mn} = 0.55 * \text{Me}
11 Mp = 0.37 * Me
                //hole effective mass
12 ni=2*((2*\%pi*k*T)/h^2)^(3/2)*(Mn*Mp)^(3/4)*exp(-(Eg*
     e)/(2*k*T)) //intrinsic concentration
13 sigma=ni*e*(Un+Up)
                        //intrinsic conductivity
14 rho=1/sigma //intrinsic resistivity
15 printf ("Intrinsic concentration (in m^-3)")
16 disp(ni)
17 printf("Intrinsic conductivity (in /(ohm*m)")
18 disp(sigma)
19 printf("Intrinsic resistivity (in ohm*m)")
20 disp(rho)
21
22
23 //answer given is wrong
```

Scilab code Exa 7.6 calculate Fermi energy with respect to Fermi energy

Scilab code Exa 7.7 find resistance of pure and doped Si crystal

```
1 // chapter 7 , Example 7.7 , pg 211
2 rho=2300
            //resistivity (in ohm*m) for Si
                 (value given in book is wrong)
3 ni=1.6*10<sup>16</sup>
                   //intrinsic concentration (in m
     ^{\hat{}}-3)
4 Ue=0.15 //electron mobility (in m^2/(V*s))
5 e=1.6*10^-19 //charge of electron (in C)
6 // assuming 1*1*1 (in cm) dimension of Si
      crystal
7 l=10^-2 //length (in m)
8 b=10^-2 //breadth (in m)
9 w=10^-2 //width (in m)
               //width (in m)
10 Nsi=5*10^28 // (in atoms/m^3)
11 x=1/10^9 //doping concentration
12 A=1*b //area (in m^2)
13 R1=(rho*1)/A //resistance of pure Si crystal
      (in ohm)
14 \text{ Nd=Nsi}*x
             //donor concentration (in m<sup>-3</sup>)
```

Scilab code Exa 7.8 compute forbidden energy gap

```
1 // chapter 7 , Example 7.8 , pg 212
2 rho = 2.12 // resistivity (in ohm*m)
3 T=300 //temperature (in K)
4 Un=0.36 //electron mobility (in m<sup>2</sup>/(V*s))
5 Up=0.17 //hole mobility (in m^2/(V*s))
6 h=6.625*10^-34 //plancks constant (in m^2*Kg*S)
     ^{\hat{}}-1)
7 k=1.38*10^-23 //Boltzmann constant (in J/K) 8 e=1.6*10^-19 //charge in electron (in C)
9 Me=9.11*10^-31
                   //mass of electron
                                           (in Kg)
10 Mn=0.5*Me //electron effective mass
11 Mp=0.37*Me //hole effective mass
                            //intrinsic concentration
12 ni=1/(rho*e*(Un+Up))
       (in m^-3)
13 Nc=2*((2*\%pi*k*T)/h^2)^(3/2)*(Mn)^(3/2)
      effective density of states in conduction band (
     in m^-3
14 Nv = 2*((2*\%pi*k*T)/h^2)^(3/2)*(Mp)^(3/2)
      effective density of states in valence band (in m
      ^{-3}
```

Scilab code Exa 7.9 calculate conductivity of sample

Scilab code Exa 7.10 find the new position of Fermi level

Scilab code Exa 7.11 calculate concentration in conduction band

Scilab code Exa 7.12 calculate drift mobility of electron

Scilab code Exa 7.13 calculate concentration of conduction electrons in Cu

```
1 // chapter 7 , Example 7.13 , pg 215
```

```
//electron drift mobility (in m<sup>2</sup>/(
2 \text{ Ud} = 3.2 * 10^{-3}
      V*s)
3 sigma=5.9*10^7 //conductivity (in /(ohm*m))
                     //charge of electron (in C)
4 \text{ e=1.6*10}^-19
5 Na=6.022*10^23 //Avogadro constant (in mol^-1)
6 ni=sigma/(Ud*e) //intrinsic concentration (
6 ni=sigma/(Ud*e)
                          //intrinsic concentration (in
      m^{-3}
                //atomic weight
7 \text{ Aw} = 63.5
8 d=8960 //density (in Kg/m<sup>3</sup>)
9 n=10<sup>3</sup> //number of free electrons per atom
10 N = (Na*d*n)/Aw
                    //concentration of free electrons
      in pure Cu
11 Avg_N=ni/N
                    //Average number of electrons
      contributed per Cu atom
12 printf ("concentration of free electrons in pure Cu
        (in m^{-3})")
13 disp(N)
14 printf ("Average number of electrons contributed per
      Cu atom\n")
15 printf ("Avg_N=%.2 f ", Avg_N)
```

Scilab code Exa 7.14 calculate charge carrier density and electron mobility

Scilab code Exa 7.15 calculate magnitude of Hall voltage

```
1 // chapter 7 , Example 7.15 , pg 216
2 I=50 //current (in A)
3 B=1.5 //magnetic field
                           (in T)
4 d=0.2*10^-2 //width of slab (in m)
5 n=8.4*10^28 //concentration of electrons (in m
     ^{^{-}} -3)
6 e=1.6*10^-19 // charge (in C)
7 VH=(B*I)/(n*e*d) //Hall voltage
8 printf("Hall voltage(in V)=")
9 disp(VH)
10
11
12
13
14 // Answer given is wrong
```

Scilab code Exa 7.16 find resistance of intrinsic Ge

```
10 printf("Resistance of intrinsic Ge rod\n")
11 printf("R=%.0 f ohm",R)
```

Scilab code Exa 7.17 determine the position of Fermi level

Scilab code Exa 7.18 calculate electrical conductivity

Scilab code Exa 7.19 find intrinsic resistivity

```
1 // chapter 7 , Example 7.19 , pg 217
2 ni=2.15*10^13 //intrinsic carrier density(in
     \operatorname{cm}^{-3}
              // electron mobility (in cm<sup>2</sup>/(V*s))
3 Un=3900
4 up=1900 //hole mobility (in cm^2/(V*s))
5 e=1.6*10^-19 //charge in electron (in C)
6 sigma_I=ni*e*(Un+up) // electrical conductivity
       (in (ohm*cm)^--1)
7 rho_I=1/sigma_I
                   //intrinsic resistivity
8 printf("Intrinsic resistivity\n")
9 printf("rho_I=\%.0f ohm*cm",rho_I)
10
11
12
13
14 //Intrisic carrier density is given as 2.15*10^-13
     instead of 2.15*10^13
```

Scilab code Exa 7.20 find electrical conductivity before and after addition of B atoms

Scilab code Exa 7.21 find Hall coefficient and electron mobility

```
1 // chapter 7 , Example 7.21 , pg 218
2 e=1.6*10^-19 // charge of electron (in C)
3 I=5*10^-3 // current (in mA)
4 V=1.35 // voltage (in V)
5 Vh=20*10^-3 // Hall voltage (in V)
6 B=0.45 //magnetic induction (in T)
             //length (in m)
7 1=10^-2
8 b=5*10^-3 //breadth (in m)
9 d=10^-3 //thickness (in n
               // thickness (in m)
             //resistance (in ohm)
10 R=V/I
11 A=b*d //area (in m^2)
12 rho= (R*A)/1 //resistivity (in ohm*m)
13 E=Vh/d // Hall electric field (in V/m)
14 J=I/A //current density (in A/m<sup>2</sup>)
15 Rh=E/(B*J) // Hall coefficient
16 Un=Rh/rho // electron mobility
                                       (in m^2/(V*S))
17 printf("Hall coefficient =")
18 printf ("Rh=\%.3 \, f \, m^3/C \, n", Rh)
19 printf ("Electron mobility=")
20 printf ("Un=\%.2 \, \text{f m}^2/(\text{V*S})", Un)
```

Scilab code Exa 7.22 find Hall potential difference

Magnetic materials

Scilab code Exa 8.1 Determine magnitude and direction of magnetic moment

```
1 // chapter 8 , Example 8.1 , pg 238
2 I=12 // current(in A)
3 A=7.5*10^-4 //area(in m^2)
4 M=I*A //magnetic moment associated with the loop
5 printf("Magnetic moment associated with the loop(in A m^2)=")
6 disp(M)
7 printf("M is directed away from the observer and is perpendicular to the plane of the loop")
```

Scilab code Exa 8.2 Determine magnetic moment

```
1 // chapter 8 , Example 8.2 , pg 238
2 r=0.5*10^-10 //radius of orbit (in m)
3 e= 1.6*10^-19 //charge on electron (in C)
4 n=10^16 //frequency of revolution of electron (in rps)
```

```
5 I=e*n    //current (in A)
6 A=%pi *r^2    //area (in m^2)
7 M=I*A    //magnetic moment associated with motion of electron
8 printf("Magnetic moment associated with motion of electron (in A m^2)")
9 disp(M)
```

Scilab code Exa 8.3 calculate magnetic susceptibility

```
1 // chapter 8 , Example 8.3 , pg 239
2 ur=5000 //relative permeability
3 xm=ur-1 //magnetic susceptibility
4 printf("Magnetic susceptibility=")
5 disp(xm)
```

Scilab code Exa 8.4 calculate permeability

```
1 // chapter 8 , Example 8.4 , pg 239
2 H=1800 //magnetizing field (in A/m)
3 phi=3*10^-5 //magnetic flux (in Wb)
4 A=0.2 *10^-4 //area (in m^2)
5 B=phi/A //magnetic flux density (in Wb/m^2)
6 u=B/H //permeability (in H/m)
7 printf("permeability (in H/m)=")
8 disp(u)
```

Scilab code Exa 8.5 calculate magnetic moment

```
1 // chapter 8 , Example 8.5 , pg 239
```

```
2 B=0.65 //magnetic induction (in T)
             //density (in Kg/m<sup>3</sup>)
3 d=8906
         //atomic weight
4 M = 58.7
                 //charge of electron (in C)
5 e=1.6*10^-19
6 h=6.625*10^-34 //plancks constant
                                         (in m^2*Kg*S)
     ^{\hat{}}-1)
                    //mass of electron (in Kg)
7 m=9.11*10^-31
                   //vacuum permeability
8 Uo=4*\%pi*10^-7
                     //Avogadro constant
9 \text{ Na=}6.023*10^26
                       //Bhor magneton (in A*m^2)
10 Ub=(e*h)/(4*\%pi*m)
                 //number of atoms per unit volume
11 N=(d*Na)/M
                  //relative permeability
12 Ur=B/(N*Uo)
                                           (in A/m
     ^2)
13 M=Ur/(Ub)
                  //magnetic moment
14 printf("Magnetic moment")
15 printf ("M=%.2 f
                    A*m^2", M)
```

Superconducting materials

Scilab code Exa 9.1 calculate critical magnetic field intensity

Scilab code Exa 9.2 calculate isotopic mass

```
7 //M^alpha * Tc=constant
8 M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)
9 printf("Isotopic mass at critical temperature 4.133K \n")
10 printf("M2=%.3f",M2)
```

Dielectric materials

Scilab code Exa 10.1 calculate electronic polarizability

Scilab code Exa 10.2 calculate electronic polarizability

Additional solved examples

Scilab code Exa 12.1 calculate relative population

```
1 // Additional solved examples, Example 1, pg 330
2 \quad lam = 590*10^{-9} / wavelength (in m)
3 T=270+273 //temperature(in kelvin) (converting
      celsius into kelvin)
4 k=1.38*10^-23/boltzman constant (in (m^2*Kg)/(s^2*k))
5 h=6.625*10^-34//plancks constant(in Js)
6 c=3*10^8/speed of light
7 N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative
     population of atoms in the 1st excited state
                                                     and
      in ground state
8 //n1=number of atoms in ground state
9 //n2=number of atoms in excited state
10 printf ("Relative population of Na atoms in the 1st
     excited state and in ground state\n")
11 disp(N)
```

Scilab code Exa 12.2 determine relative population

```
1 // Additional solved examples , Example 2 , pg 330
2 \quad lam = 500 * 10^{-9} / wavelength (in m)
3 T=250+273 //temperature(in kelvin)
                                         (converting
      celsius into kelvin)
4 k=1.38*10^{-23}/boltzman constant (in (m^2*Kg)/(s^2*k)
5 h=6.625*10^-34//plancks constant(in Js)
6 c=3*10^8/speed of light
7 N = \exp(-(h*c)/(lam*k*T)) //N = (n2/n1) = relative
      population of atoms in the 1st excited state
      in ground state
8 //n1=number of atoms in ground state
9 //n2=number of atoms in excited state
10 printf ("Relative population of Na atoms in the 1st
     excited state and in ground state\n")
11 disp(N)
```

Scilab code Exa 12.3 calculate ratio of stimulated emission to spontaneous emission

Scilab code Exa 12.4 calculate number of photons emitted per minute

```
// Additional solved examples , Example 4 , pg 331
lam=632.8*10^-9//wavelength(in m)
Em=3.16*10^-3*60//energy emitted per minute(in J/min)

c=3*10^8//speed of light(in m/s)
h=6.625*10^-34//plancks constant(in Js)
n=c/lam //frequency of emitted photons(in Hz)
E=h*n //energy of each photon(in J)
N=Em/E //number of photons emitted per minute
printf("Number of photons emitted per minute")
disp(N)
```

Scilab code Exa 12.5 calculate number of photons emitted per minute

```
// Additional solved examples , Example 5 , pg 332
lam=540*10^-9//wavelength(in m)
Em=5*10^-3*60//energy emitted per minute(in J/min)
c=3*10^8//speed of light(in m/s)
h=6.625*10^-34//plancks constant(in Js)
n=c/lam //frequency of emitted photons(in Hz)
E=h*n //energy of each photon(in J)
N=Em/E //number of photons emitted per minute
printf("Number of photons emitted per minute")
disp(N)
```

Scilab code Exa 12.6 find NA and critical angle and alpha m

```
1 // Additional solved examples, Example 6, pg 332
2 n1=1.5//core refractive index
3 n2=1.45//cladding refractive index
4 n0=1//refractive index of air
5 NA=sqrt(n1^2-n2^2)//numerical aperture
6 alpha_m = asin(NA/n0)//angle of acceptance
                                                  (in
      radian)
7 phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)
     =n1*sin(phi_m) (in radian)
                      //critical angle (in radian)
8 \text{ phi_c=} \frac{\text{asin}}{\text{n2/n1}}
9 printf("NA=\%.2 f \ n", NA)
10 printf("alpha_m=\%.2 f degree\n",(alpha_m*180)/%pi)
11 printf("phi_m=\%.2f degree n", (phi_m*180)/%pi)
12 printf("phi_c=\%.2f degree",(phi_c*180)/\%pi)
```

Scilab code Exa 12.7 find NA and critical angle and alpha m

Scilab code Exa 12.8 calculate pulse broadening per unit length

Scilab code Exa 12.9 calculate pulse broadening per unit length

```
1 // Additional solved examples , Example 9 , pg 334
2 n1=1.55//core refractive index
3 n2=1.48//cladding refractive index
4 c=3*10^8//speed of light(in m/s)
5 P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion
6 //P=(del_t/L) where del_t=time interval , L= distance transversed by ray inside core
7 printf("pulse broadening per unit length due to multiple dispersion(in s/m)")
8 disp(P)
```

Scilab code Exa 12.10 calculate minimum and maximum number of total internal reflections per metre

```
1 // Additional solved examples , Example 10 , pg 335
2 n1=1.5//core refractive index
3 n2=1.45//cladding refractive index
4 n0=1//refractive index of air
```

```
5 NA=sqrt(n1^2-n2^2)//numerical aperture
6 alpha_m = asin(NA/n0)//angle of acceptance
                                              (in
     radian)
7 \ a=100*10^-6/2 \ // radius of core
8 phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)
     =n1*sin(phi_m) (in radian)
9 L=a/tan(phi_m) //(in m)
10 printf ("Minimum number of reflections per metre=zero
     \n")
          //since rays travelling with alpha=0
     suffer no internal reflection
11 //for rays travelling with alpha=alpha_m ,1 internal
      reflection takes place for a transversed
     distance of 2*L
12 N=1/(2*L) //Maximum number of reflections per metre
13 disp("Maximum number of reflections per metre(in m
     ^{\hat{}}-1)="
14 printf ("N=\%.0 f", N)
15
16 //Answer varies as L is restricted to 1.86*10^-4 (m)
       instead of 1.888*10^{-4} (m)
```

Scilab code Exa 12.11 calculate energy and momentum of photon

```
1 // Additional solved examples , Example 11 , pg 335
2 c=3*10^8 //speed of light(in m/sec)
3 h=6.625*10^-34//planck's constant(in J s)
4 lam=1.4*10^-10//wavelength(in m)
5 E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)
6 p=h/lam //momentum of photon
7 printf("Energy of photo\n")
8 printf("E=%.1f eV\n",E)
9 printf("momentum of photon(in Kg m/sec)\n")
10 disp(p)
```

Scilab code Exa 12.12 calculate number of photons emitted per second

```
// Additional solved examples , Example 12 , pg 336
E1=2*10^4 //energy emitted per second(in J)
n=1000*10^3 //frequency(in Hz)
h=6.625*10^-34 //plancks constant(in J s)
E=h*n//energy carried by 1 photon(in J)
N=E1/E//number of photons emitted per second
printf("number of photons emitted per second\n")
disp(N)
```

Scilab code Exa 12.13 calculate de Broglie wavelength

```
// Additional solved examples , Example 13 , pg 336
m=0.05//mass(in Kg)
v=2000//speed(in m/sec)
h=6.625*10^-34//plancks constant(in J s)
p=m*v//momentum(in kg m/sec)
lam=h/p //wavelength
printf("de Broglie wavelength(in m)\n")
disp(lam)
printf("de Broglie wavelength(in A)\n")
disp(lam*10^10)
```

Scilab code Exa 12.14 find change in wavelength

```
1 // Additional solved examples , Example 14 , pg 336  
2 h=6.625*10^-34//plancksconstant(in J s)  
3 c=3*10^8//velocity of x-ray photon(in m/sec)
```

```
4 m0=9.11*10^-31//rest mass of electron(in Kg)
5 phi=(85*%pi)/180//angle of scattering (in radian)
        (converting degree into radian)
6 delta_H=(h*(1-cos(phi)))/(m0*c)//change in
        wavelength due to compton scattering
7 printf("change in wavelength of x-ray photon(in m)\n
        ")
8 disp(delta_H)
```

Scilab code Exa 12.15 find miller indices

```
1 // Additional solved examples, Example 15, pg 337
2 //plane has intercepts 2a,2b,3c along the 3
      crystal axes
3 //lattice points in 3-d lattice are given by r=p*a+q
      *b+s*c
4 //as p,q,r are the basic vectors the proportion of
      intercepts
                    2:2:3
5 p = 2
6 q = 2
7 s = 3
8 //therefore reciprocal
9 r1=1/2
10 \text{ r}2=1/2
11 r3 = 1/3
12 //taking LCM
13 \text{ v=} int32([2,2,3])
14 l = double(lcm(v))
15 \text{ m1} = (1 * r1)
16 \text{ m2} = (1 * r2)
17 m3 = (1*r3)
18 printf("miler indices=")
19 disp(m3,m2,m1)
```

Scilab code Exa 12.16 find miller indices

```
1 // Additional solved examples, Example 16, pg 337
2 //plane has intercepts 4a,2b,4c along the 3
      crystal axes
3 //lattice points in 3-d lattice are given by r=p*a+q
4 //as p,q,r are the basic vectors the proportion of
      intercepts
                   2:2:3
5 p = 4
6 q = 2
7 s=4
8 //therefore reciprocal
9 r1 = 1/4
10 r2=1/2
11 r3 = 1/4
12 //taking LCM
13 v = int32([4,2,4])
14 l = double(lcm(v))
15 \text{ m1} = (1 * r1)
16 m2 = (1*r2)
17 m3 = (1*r3)
18 printf("miler indices=")
19 disp(m3,m2,m1)
```

Scilab code Exa 12.17 find size of unit cell

```
1 // Additional solved examples , Example 17 , pg 338  
2 d110=1.96//spacing of (1 1 0) planes (in Angstrom)  
3 h=1  
4 k=1  
5 l=0 //(h k l)=(1 1 0)
```

```
6 a=d110*sqrt(h^2+k^2+l^2)//size of unit cell
7 printf("size of unit cell=")
8 printf("a=%.2f angstrom",a)
```

Scilab code Exa 12.18 find volume of unit cell

```
// Additional solved examples , Example 18 , pg 339
r=1.575 *10^-10 //radius of atom (in m)
a=2*r//lattice constant (for HCP structure) (in m)
c=a*sqrt(8/3) //(in m)
V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell
printf("volume of unit cell(in m^3)\n")
disp(V)
```

Scilab code Exa 12.19 calculate Fermi energy

Scilab code Exa 12.20 calculate relaxation time and average drift velocity and velocity of electron and mean free path

```
1 // Additional solved examples, Example 20, pg 339
2 rho=1.8*10^-8
                    //resistivity (in ohm*m)
3 \text{ Ef} = 4.8
               //Fermi energy
                                  (in eV)
4 E=100 //electric field intensity (in V/m)
                    //concentration of electrons
5 n=6.2*10^28
                                                       (in
      atoms/m<sup>3</sup>)
6 e=1.6*10^-19
                 //charge in electron
                                              (in C)
7 Me=9.11*10^-31 //mass of electron
                                            (in Kg)
8 \text{ T=Me/(rho*n*e^2)}
                         //relaxation time
9 Un = (e * T) / Me
                    //mobility of electron
10 Vd = (e*T*E)/Me
                       //drift velocity
11 Vf=sqrt((2*Ef*e)/Me) //Fermi velocity
                 //mean free path
12 \quad lam_m = Vf *T
13
14 printf("Relaxation time of electron (in s)")
15 \text{ disp}(T)
16 printf ("Mobility of electron (in m^2/(V*s))")
17 disp(Un)
18 printf("Drift velocity of electron (in m/s)")
19 disp(Vd)
20 printf("Fermi velocity of electrons (in m/s)")
21 disp(Vf)
22 printf("Mean free path(in m)")
23 \quad disp(lam_m)
```

Scilab code Exa 12.21 evaluate value of F E

Figure 12.1: calculate how is Ef located relative to Ei

```
5 F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function
6 printf("F_E=%.3f",F_E)
```

Scilab code Exa 12.22 calculate how is Ef located relative to Ei

```
3 Nd=5*10^15 //donor concentration (in atoms/cm
     ^3)
            //temperature (in K)
4 T=300
5 e=1.6*10^-19 //charge of electron
                                          (in C)
6 k=1.38*10^--23 //Boltzmann constant (in J/K)
7 \quad n0 = Nd
          //Assuming n0=Nd
                               ( since  Nd >> ni
     )
              //hole concentration
8 p0=ni^2/n0
9 E=k*T*log(n0/ni)
                     // E=(Ef-Ei) location of Ef
     relative to Ei
10 printf("Hole concentration (in cm^-3)")
11 disp(p0)
12 printf("Location of Ef relative to Ei (in eV)")
13 \text{ disp}(E/e)
14 x = linspace(-5.5, 5.5, 51);
15 y = 1 ;
16
17 scf(2);
18 clf(2);
19 plot(x,y+0.1);
20
21 plot(x,y,'ro-');
22 plot(x,y-0.329,'---');
23 plot(x,y*0,'bs:');
24 xlabel(["x axis";"(independent variable)"]);
25 ylabel("Energy level (eV)");
26 title("Band diagram");
27 legend(["Ec"; "Ef"; "Ei"; "Ev"]);
28 set(gca(), "data_bounds", matrix([-6,6,-0.1,1.1],2,-1)
     );
```

Scilab code Exa 12.23 find magnitude of Hall voltage

Scilab code Exa 12.24 calculate Hall voltage and Hall coefficient

```
1 // Additional solved examples , Example 24 , pg 342
2 e=1.6*10^-19 //charge in electron (in C)
3 \text{ Ix=}2*10^{-3} //\text{current} (in A)
4 d=220*10^-4 //thickness (in cm)
5 Bz=5*10^-5 //magnetic induction (in Wb/cm^2)
6 Un=800 //electron mobility (in cm^2/(V*s))
7 n=9*10^16
              //doping concentration (in atoms/cm
     ^3)
8
9 sigma=n*e*(Un) // electrical conductivity
               // resistivity
10 rho=1/sigma
11 Rh = -1/(e*n) // Hall coefficient
12 Vh = -(Ix*Bz)/(d*e*n) // Hall voltage
13 printf("Resistivity(in ohm*cm)")
14 disp(rho)
15 printf("Hall coefficient(in cm^3/C)")
16 disp(Rh)
17 printf("Hall voltage (in V)")
18 disp(Vh)
```

Scilab code Exa 12.25 determine magnitude and direction of magnetic moment

```
1 // Additional solved examples , Example 25 , pg 343
2 I=10 // current(in A)
3 A=8*10^-4 //area(in m^2)
4 M=I*A //magnetic moment associated with the loop
5 printf("Magnetic moment associated with the loop(in A m^2)=")
6 disp(M)
7 printf("M is directed away from the observer and is perpendicular to the plane of the loop")
```

Scilab code Exa 12.26 determine magnitude and direction of magnetic moment

```
// Additional solved examples , Example 26 , pg 343
I=22 // current(in A)
A=9*10^-3 //area(in m^2)
M=I*A //magnetic moment associated with the loop
printf("Magnetic moment associated with the loop(in A m^2)=")
disp(M)
printf("M is directed towards the observer and is perpendicular to the plane of the loop")
```

Scilab code Exa 12.27 determine magnetic moment

```
1 // Additional solved examples , Example 27 , pg 344
2 r=0.62*10^-10 //radius of orbit (in m)
3 e= 1.6*10^-19 //charge on electron (in C)
4 n=10^15 //frequency of revolution of electron (in rps)
5 I=e*n //current (in A)
```

```
6 A=%pi *r^2 //area (in m^2)
7 M=I*A //magnetic moment associated with motion of
    electron
8 printf("Magnetic moment associated with motion of
    electron (in A m^2)")
9 disp(M)
```

Scilab code Exa 12.28 calculate permeability

```
// Additional solved examples , Example 28 , pg 344
H=2000 //magnetizing field (in A/m)
phi=5*10^-5 //magnetic flux (in Wb)
A=0.2 *10^-4 //area (in m^2)
B=phi/A //magnetic flux density (in Wb/m^2)
u=B/H //permeability (in H/m)
printf("permeability (in H/m) =")
disp(u)
```

Scilab code Exa 12.29 calculate susceptibility

```
1 // Additional solved examples , Example 29 , pg 345
2 ur=4000 //relative permeability
3 xm=ur-1 //magnetic susceptibility
4 printf("Magnetic susceptibility=")
5 disp(xm)
```

Scilab code Exa 12.30 determine critical current

```
1 // Additional solved examples , Example 30 , pg 345
```

Scilab code Exa 12.31 calculate critical current

Scilab code Exa 12.32 calculate isotopic mass

```
1 // Additional solved examples , Example 32 , pg 346
2 M1=198.5 //isotopic mass
3 Tc1=4.175 //critical temperature for M1 (in K)
4 Tc2=4.213 //critical temperature for M2 (in K)
5 alpha=0.5
6
7 //M^alpha * Tc=constant
8 M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)
9 printf("Isotopic mass at critical temperature 4.133K \n")
```

```
10 printf("M2=\%.3f",M2)
```

Scilab code Exa 12.33 calculate isotopic mass

```
1 // Additional solved examples, Example 33, pg 346
             //isotopic mass
2 M1=199
            //critical temperature for M1
                                                (in K)
3 \text{ Tc1} = 4.18
               //critical temperature for M2
                                                (in K)
4 \text{ Tc} 2 = 4.14
5 \text{ alpha=0.5}
6
7 //Malpha * Tc=constant
8 M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)
9 printf("Isotopic mass at critical temperature 4.133K
     \n")
10 printf("M2=%.4 f ",M2)
```

Chapter 13

Additional solved short answers

Scilab code Exa 13.1.2 find fundamental frequency

```
// Additional solved numerical questions , Example(
    set 1) 2 , pg 348

1=0.7*10^-3//length(in m)

E=8.8*10^10//youngs modulus(in N/m^2)

d=2800//density(in kg/m^3)

p=1//fundamental mode
n= p*sqrt(E/d)/(2*1) //natural frequency
printf("Fundamental frequency of quartz crystal)\n"
)

printf("n=%.2f Hz",n)
```

Scilab code Exa 13.1.6 calculate critical angle

```
1 // Additional solved numerical questions , Example(
    set 1) 6 , pg 348
2 n1=1.5 //refractive index of core
3 n2= 1.47 // cladding refractive index
4 theta_c=asin(n2/n1) //critical angle (in radian)
```

```
5 printf("critical angle=\n")
6 printf("theta_c=\%.2 f degree",(theta_c*180)/%pi)
```

Scilab code Exa 13.1.10 calculate interplanar spacing

```
// Additional solved numerical questions , Example(
    set 1) 10 , pg 349
a=4.938 //lattice constant(in Angstrom)
h=2
k=2
l=0 //since (h k 1)=(2 2 0) miller indices
d=a/sqrt(h^2+k^2+l^2) //spacing
printf("spacing of (2 2 0) planes=")
printf("d=%.3f Angstrom",d)
```

Scilab code Exa 13.1.12 find the wavelength

Scilab code Exa 13.1.14 calculate energy of scattered photon

```
1 // Additional solved numerical questions , Example(
     set 1) 14_{-}a_{-}3 , pg 350
2 lam=1.24*10^-13 //wavelength (in m)
3 h=6.625*10^-34//plancksconstant(in J s)
4 c=3*10^8/velocity of x-ray photon(in m/sec)
5 \text{ m0=9.11*10}^{-31}/\text{rest mass of electron (in Kg)}
6 phi=(90*%pi)/180//angle of scattering (in radian)
     (converting degree into radian)
7 delta_H=(h*(1-\cos(phi)))/(m0*c)//change in
     wavelength due to compton scattering
                                                (in m)
8 LAM=lam+delta_H //wavelength (in m)
                     //energy of scattered photon (
9 E = (h*c)/LAM
     in J)
10 printf("Energy of scattered photon (in J)=")
11 disp(E)
```

Scilab code Exa 13.1.15 calculate number of unit cells

```
1 // Additional solved numerical questions , Example(
      set 1) 15_b_3, pg 352
2 a=2.88*10^-8 //lattice constant
                                           (in cm)
3 d=7200 // density (in Kg/m<sup>3</sup>)
4 C=8/a<sup>3</sup> // atomic concentration
5 n=8 //number of atoms/cell
6 n1=C/n //unit cell concentration
8 //since density = 7200 \text{ Kg/m}^3
9 / 7200 \text{ Kg} = 10^6 \text{ cc}
10 / \text{hence } 1 \text{Kg} = (10^6) / 7200 \text{ cc}
11 N=(n1*10^6)/7200 //number of unit cells
      present in 1 Kg of metal
12 printf ("Number of unit cells present in 1 Kg of
      metal=")
13 disp(N)
14 printf("unit cells")
```

Scilab code Exa 13.2.1 calculate the frequency

Scilab code Exa 13.2.7 calculate wavelength of scattered radiation

```
1 // Additional solved numerical questions , Example(
     set 2) 7 , pg 353
2 \quad lam = 0.5 * 10^{-9}
                  //wavelength (in m)
3 h=6.625*10^{-34}//plancksconstant (in J s)
4 c=3*10^8//velocity of x-ray photon(in m/sec)
5 \text{ m0=9.11*10}^{-31}/\text{rest mass of electron (in Kg)}
6 phi=(45*%pi)/180//angle of scattering (in radian)
     (converting degree into radian)
  delta_H = (h*(1-cos(phi)))/(m0*c)//change in
      wavelength due to compton scattering
                                                  (in m)
8 LAM=lam+delta_H //wavelength
                                    (in m)
9 printf("wavelength of scattered radiation (im m)=")
10 disp(LAM)
```

Scilab code Exa 13.2.13 calculate Na and acceptance angle

```
1 // Additional solved numerical questions , Example(
          set 2) 13_b , pg 354
2 n1=1.5//core refractive index
3 n2=1.447//cladding refractive index
4 n0=1//refractive index of air
5 NA=sqrt(n1^2-n2^2)//numerical aperture
6 alpha_m =asin(NA/n0)//angle of acceptance (in
          radian)
7 printf("NA=%.1f \n",NA)
8 printf("alpha_m=%.2f degree\n",(alpha_m*180)/%pi)
```

Scilab code Exa 13.3.11 calculate mean free time

```
// Additional solved numerical questions , Example(
    set 3) 11_a , pg 355

Un=3*10^-3    //electron mobility (in m^2/(V*s))

e=1.6*10^-19    //charge in electron (in C)

Me=9.11*10^-31    //mass of electron (in Kg)

T=(Me*Un)/e    //mean free time
printf("Mean free time(in S)")
disp(T)
```

Scilab code Exa 13.3.12 calculate the resistivity

```
6
7 Ix=10^-3 //current (in A)
8 d=100*10^-6 // thickness
                                 (in m)
9 Bz=0.1 //magnetic induction (in T)
10 Un1=0.07 //electron mobility (in m^2/(V*s))
11 n=10^23 //doping concentration
               //doping concentration 	 (in atoms/m^3)
12
                       // electrical conductivity
13 sigma=ni*e*(Un+up)
14 rho=1/sigma
               //resistivity
15 Vh=-(Ix*Bz)/(d*e*n) // Hall voltage
16 printf("Resistivity(in ohm*m)")
17 disp(rho)
18 printf("Hall voltage (in V)")
19 disp(Vh)
```

Scilab code Exa 13.3.13 calculate energy loss per hour and intensity of magnetization and flux density

```
1 // Additional solved numerical questions , Example(
      set 3) 13<sub>-</sub>b , pg 357
2 A=250 //area of B-H loop
3 f=50 //frequency (in Hz)
4 d=7.5*10^3 // density (in Kg/m<sup>3</sup>)
        //mass of core (in Kg)
5 M = 10
6
7 H = 2000
              //magnetic field intensity (in A/m)
             //susceptibility
8 \text{ Xm} = 1000
9 \quad U0=4*\%pi*10^-7
                   // relative permeability
10
             //volume of sample (in m<sup>3</sup>)
11 V=M/d
12 N=60*60*f //number of cycles per hour
                //energy loss per hour
13 EL=A*V*N
               //intensity of magnetization
14 \quad I = H * Xm
15 \, \text{Ur} = 1 + \text{Xm}
16 \quad B=Ur*U0*H
                   //magnetic flux density
```

```
17 printf("Energy loss per hour (in J)")
18 disp(EL)
19 printf("Intensity of magnetization (in Wb/m^3)")
20 disp(I)
21 printf("Magnetic flux density(in T)")
22 disp(B)
```

Scilab code Exa 13.3.14 find capacitance and electric flux density

```
1 // Additional solved numerical questions , Example(
     set 3) 14 , pg 358
2 Er1=1.0000684
                 // Dielectric constant
                                           (for sum
     14 a_2
3 N=2.7*10^25
                 //(in atoms/m^3)
4 E0=8.85*10^-12
                 //permittivity of free space
                                                   (in
     F/m
5 Er2=6
              //dielectric constant (for sum 14_a_3)
            //electric field intensity (in V/m)
6 E = 100
     for sum 14_a_3)
               //area
                         (in m^2)
7 \quad A = 200 * 10^{-4}
  Er3=3.7 // dielectric constant
                                    (for sum 14 \_b\_2
     )
9 d=10^-3 //thickness
                           (in m)
10 V=300
         //electric potential (in V)
11 Alpha_e=(E0*(Er1-1))/N //electronic polarization
12 R=(Alpha_e/(4*\%pi*E0))^(1/3) //radius of atom
13 P=E0*(Er2-1)*E // polarization
                   //capacitance
14 C = (E0 * Er3 * A) / d
15 E1=V/d //electric flux density
16 printf("Electronic polarization (in F*m^2)")
17 disp(Alpha_e)
18 printf("Radius of He atom(in m)")
19 disp(R)
20 printf("polarization(in C/m<sup>2</sup>)")
21 disp(P)
```

```
22 printf("capacitance(in F)")
23 disp(C)
24 printf("Electric flux density (in V/m)")
25 disp(E1)
```