FOCT 23335-78*

Группа Э00

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАШИНЫ ВЫЧИСЛИТЕЛЬНЫЕ АНАЛОГОВЫЕ И АНАЛОГО-ЦИФРОВЫЕ

Обозначения условные графические элементов и устройств в схемах моделирования

Analog and analog-digital computers.

Graphical symbols in simulation circuits

Дата введения 1980-01-01

Постановлением Государственного комитета СССР по стандартам от 30 октября 1978 г. N 2818 срок введения установлен с 01.01.80

* ПЕРЕИЗДАНИЕ (сентябрь 1985 г.) с Изменением N 1, утвержденным в ноябре 1985 г. (ИУС 2-85)

Настоящий стандарт распространяется на условные графические обозначения элементов описания математического процесса для изображения его на схемах моделирования по ГОСТ 23336-78, применяемые как непосредственно в вычислительной технике, так и в других областях техники.

Стандарт устанавливает общие принципы построения условных графических обозначений, наиболее распространенных в аналоговой и аналого-цифровой вычислительной технике.

(Измененная редакция, Изм. N 1).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. В качестве основы для построения условных графических обозначений аналоговой и аналого-цифровой вычислительной техники должны применяться:

треугольник - для операционного усилителя и линейных блоков (интегрирующий, дифференцирующий, суммирующий и другие решающие усилители);

прямоугольник - для нелинейных блоков (блок нелинейной функции, блок перемножения и др.);

окружность - для пассивных блоков и элементов (блок постоянного коэффициента, элемент перемножения следящей системы и др.);

другие фигуры, более сложные - для обозначений в аналого-цифровой технике.

Если требуется уточнить содержание условного графического обозначения, должна использоваться комбинация вышеперечисленных геометрических фигур.

1.2. Для размещения линий входов и выходов относительно условного графического обозначения следует соблюдать следующие основные положения:

линии входов примыкают к левой части поля условного графического обозначения;

линии выходов изображают с правой части поля условного графического обозначения;

линии входов управляющего воздействия примыкают к полю условного графического обозначения снизу;

линии задания начальных значений переменных для интегрирующего усилителя и цепи схемы ограничения усилителей (дополнительная цепь обратной связи) примыкают к полю условного графического обозначения сверху.

1.3. Надписи внутри условных графических обозначений выполняют основным шрифтом по ГОСТ 2.304-81.

При выполнении схем автоматическим способом применяют шрифты, имеющиеся в выходных устройствах ЭВМ.

2. ЛИНЕЙНЫЕ БЛОКИ

2.1. Условные графические обозначения линейных блоков должны соответствовать приведенным ниже.

Усилитель операционный

Усилитель суммирующий

Примечание. Число входов определяется внешней схемой.

Усилитель интегрирующий

р- числовое значение начальной величины переменной (в вольтах).

При раздельном управлении усилителями:

- ⊘1- сигнал управления входным ключом;
- ⊘2 сигнал управления ключом обратной связи.

Усилитель дифференцирующий

Усилитель масштабный

Примечание. K - коэффициент передачи.

Усилитель операционный с дифференциальным входом

Входная часть усилителя разделяется на две зоны: отрицательную (-) и положительную (+), соответствующие каналам, изменяющим и не изменяющим знак входного напряжения.

3. НЕЛИНЕЙНЫЕ БЛОКИ

3.1. Условные графические обозначения нелинейных блоков должны соответствовать приведенным ниже.

Нелинейный блок

Примечания:

- 1. L идентификатор операции
- 2. Число входов определяется схемой блока.

Блок при необходимости указания наличия собственного выходного усилителя

Блок без собственного выходного усилителя

Блок с дифференциальным выходом

Блок переменного запаздывания

Примечания:

1. $_{\it X},~q$ - входные переменные ($_{\it Q}$ - управляющая переменная);

2. $_{\it T}$ - идентификатор запаздывания.

Схема ограничения

Примечания:

1. $_{e1}$, $_{e2}$ - величины напряжения уставки схемы ограничения (в вольтах с соответствующими знаками).

2. Пунктирные линии используются для обозначения примера подключения схемы.

4. БЛОКИ ПОСТОЯННЫХ И ПЕРЕМЕННЫХ КОЭФФИЦИЕНТОВ

4.1. Условные графические обозначения блоков постоянных и переменных коэффициентов должны соответствовать приведенным ниже.

Блок постоянного коэффициента:

Примечание.

к - коэффициент передачи

Блок переменного коэффициента

Примечание.

L - идентификатор функции времени (например, $d\left(t\right)$)

Элемент перемножения следящей системы:

с одним входом

с двумя входами

Примечания:

- 1. L идентификатор функции;
- 2. Пунктирной линией обозначена механическая связь.

5. ПРЕОБРАЗОВАТЕЛИ ПЕРЕМЕННЫХ

5.1. Условные графические обозначения преобразователей должны соответствовать приведенным ниже.

Преобразователь

Общее обозначение

Примечания:

- 1. $_{\it L}$ идентификатор операции (например, ЦАП для цифро-аналогового преобразователя, АЦП для аналого-цифрового преобразователя).
 - 2. Для аналого-цифрового преобразователя используется только общее обозначение.

Цифро-аналоговый преобразователь при необходимости указания наличия собственного выходного усилителя

Цифро-аналоговый преобразователь без собственного усилителя

Цифро-аналоговый преобразователь, выполняющий операцию умножения входной величины на цифровой код

Примечание. $_{\it X}$, $_{\it q}$ - входные переменные ($_{\it X}$ - аналоговая, $_{\it q}$ - цифровая управляющая переменные).

Преобразователь следящей системы

Примечание. Пунктирной линией обозначена механическая связь.

Ключ

Примечание. ϱ - управляющая величина.

Компаратор:

с одним выходом

с двумя выходами

Примечание. Число входов определяется либо внешней схемой, либо схемой блока.

6. РАЗМЕРЫ УСЛОВНЫХ ГРАФИЧЕСКИХ ОБОЗНАЧЕНИЙ

6.1. Соотношения размеров условных обозначений в зависимости от постоянной величины ν должны

соответствовать приведенным ниже.

Величина ν должна выбираться из ряда значений, кратных 5 мм, и быть постоянной для данной схемы.

Усилитель операционный

Усилитель суммирующий

Усилитель интегрирующий

Усилитель дифференцирующий

Усилитель операционный с дифференциальным входом

Ключ

Нелинейный блок

Нелинейный блок без собственного выходного усилителя

Схема ограничения

Блок постоянного коэффициента

Блок переменного коэффициента

Элемент перемножения следящей системы

Компаратор

Электронный текст документа подготовлен ЗАО "Кодекс" и сверен по: официальное издание Машины вычислительные аналоговые и аналого-цифровые. ГОСТ 23335-78, ГОСТ 23336-78: Сб. ГОСТов. -

М.: Издательство стандартов, 1985