Gliding Mechanics

Sam Hocking

"This isn't flying. This is falling, with style"

- Buzz Lightyear

Intro and Terminology

- Wing and airfoil
 - Chord length: *c* distance from leading to trailing edge
 - Quarter chord: $c_{1/4}$ conventional point to compute L, D, M
 - Size: S area of the wing
 - Wingspan: *b* length from wingtip to wingtip
 - Aspect ratio: $AR = b^2/S$
- Atmosphere and flow
 - Freestream (flow) velocity: V_∞ [m/s]
 - Relative wind: direction of *V*_∞ (direction of vehicle travel)
 - Angle of attack (between chord line and relative wind): α
 - Density of air: ρ_{∞} [kg/m³]
 - Dynamic viscosity of air: μ_∞ [kg/(m⋅s)]
 - Dynamic pressure: $q_{\infty} = \frac{1}{2} \rho_{\infty} V_{\infty}^2 [kg/(m \cdot s^2)]$
 - Reynolds Number (x from leading edge): Re_x = (ρ_∞·V_∞·x)/μ_∞

- Aerodynamic force and moment
 - Coefficient of lift: c_i
 - Coefficient of drag: c_d
 - Coefficient of moment: c_m
- Lift: $L = q_{\infty} \cdot S \cdot cl$
- Drag: $D = q_{\infty} \cdot S \cdot cd$
- Moment: $M = q_{\infty} \cdot S \cdot c \cdot cm$

Aircraft Model

- Northrop YB-49 "flying wing"
- Experimental long-range bomber developed at end of WWII
- Conceptual predecessor of Northrop B-2 Spirit bomber
- Analytical advantages:
 - Easily represented by a single airfoil with no fuselage (no non-lifting surfaces)
 - Declassified airfoil profile (NACA 65₃-018)

Aircraft and airfoil diagrams

 Used Tracker to overlay planform and airfoil with calibrated grids to obtain measurements and coordinates

• Chord: 11.66m

• Wingspan: 52.43m (172ft)

Area: 378.47m² (4074ft)

Aspect ratio: 7.26

 Center of gravity: 9.36m from the nose (0.8c)

Mass: 60,500kg (40,000kg empty)

Cruising velocity: 587 km/h (163m/s)

Polars

- Computational fluid dynamics software (XFOIL in this case) can produce lift, drag, and moment coefficients for a given Re across a range of angles of attack (α)
- The coefficients are consistent for an airfoil of the same shape, regardless of the size (which is why scale wind-tunnel models work)

Stable (trimmed) glide with infinite wing

Assume:

- Only forces are gravity, lift, and drag on an infinite wing (no downwash/induced drag)
- Aircraft remains trimmed at a stable angle of attack (c_m =0 and total M_{cq} =0)
- At 9000m initial elevation and 160m/s initial velocity (Re=1.46e7) α=0.125 c/c_d≈1.60, at α=0.5 c/c_d≈11.68
 - α=0.125 is a fixed point for Re=1.5e4 but has c/c_d ≈-48.39 at initial conditions (Re=1.46e7) so would not perform well

Dynamic gliding

- In reality, the wing exerts a moment (torque) on the center of gravity, which tends to change the angle of attack through time
 - Longitudinal stability (resistance to pitching) is a function of the airfoil and aircraft properties
- An untrimmed aircraft without a stable fixed point (where c_m=0) at small α may lack longitudinal stability
- The center of gravity also experiences a moment from lift and drag, so a c_m fixed point may not be sufficient
 - M_{cg}=M_{c/4}+ I·L·cos(α) I·D·sin(α) where I = distance between the center of gravity and the quarter chord (approximation of the aerodynamic center) and the wing as mounted at zero inclination angle

Future work

- Interface directly with XFOIL for coefficient computation
- Incorporate finite wing dynamics (downwash and induced drag)
- Incorporate control surfaces
- Incorporate tail and fuselage mechanics
- Expand to 3D

Sources

- Introduction to Flight, John D. Anderson
- Summary of Airfoil Data Report No. 824, NACA
- XFOIL (https://web.mit.edu/drela/Public/web/xfoil/)
- Airfoil Tools (http://airfoiltools.com/)