Table 1. Chemical Compositions of Alloys

								П	П	\neg							T		T				T		
Zr	%	1	1	i	1	1	1	0.01	-	1		0.01						<u> </u>		,					
Be	%	0.0003	0.0004	0.0003	1	1	0.0004		ı		1	t	0.0003	t	1	60000		0.0008		0.0009		0.0007		0.0004	
n	%	0.0005	0.0014	0.0012	0.0011	0.0011	0.0008	0.0011	0.0016	0.0014	0.0017	0.0012	0.0000	0.0011	0.0021	0.0009		0.0008		0.0011		0.0012		0.0015	
ïZ	%	0.0007	0.0006	0.0002	0.0005	0.0008	0.0007	0.0009	0.0008	0.0009	0.0008	0.0009	0.0010	0.0008	0.0008	0.0007	,	0.0008		9000.0		0.0008		0.0009	
Fe	%	0.003	0.003	0.003	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.007	0.001	0.001	0.003		0.003		0.003		0.002		0.003	
Si	%	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.01		0.01		0.01		0.01	
RE	%	80.0	0.10	0.20	0.49	0.15	0.18	0.12	0.16	0.03	0.08	0.24	0.75	0.05	90.0	•		2.4		0.25		0.05		0.12	
Sr	%	1.35	0.80	06.0	1.18	0.46	0.48	0.52	0.55	0.51	0.25	0.15	0.05	0.28	0.55	1		ı		0.1		0.45		0.85	
Ca	%	0.25	0.20	0.20	0.22	0.53	0.52	99.0	89.0	0.85	0.95	0.85	9.02	1.05	08.0	1		1		1.4		1.3		8.0	
Zn	%	0.15	0.10	0.40	0.35	0.14	0.62	0.12	0.64	0.11	0.72	0.15	0.48	0.05	09.0	0.74		0.01		0.05		0.54		0.15	
Mn	%	0.26	0.30	0.25	0.30	0.32	0.28	0.12	0.31	0.24	0.28	0.07	0.18	0.22	0.22	0.23		0.29		0.31		0.19		0.24	
AI	%	4.8	5.3	6.1	5.3	7.0	6.9	7.9	7.9	8.8	8.5	8.7	8.9	8.4	9.1	8.9		4.3		4.4		9.4		8.1	
Allov		Example1	Example 2	Example3	Example4	Example 5	Example6	Example7	Example8	Example9	Example 10	Example11	Example 12	Example 13	Example 14	Comparative	Example	Comparative	Example2	Comparative	Example3	Comparative	Example4	Comparative Evample 5	Lyambica

Fig. 1

offe fill from the state of the

Table 2. Intermetallic Phases in New Alloys

Alloy	Phase Composition
Example 1	Mg-Alss, Al ₂ (Sr, Ca) ₁ , Al _x (Mn, RE) _y
Example 2	Mg-Alss, Al ₂ (Sr,Ca) ₁ , Al _x (Mn,RE) _y
Example 3	Mg-Alss, Al ₂ (Sr,Ca), Al _y (Mn,RE) _y
Example 4	Mg-Alss, Al ₂ (Sr,Ca), Al ₂ (Sr,Ca,RE ₁), Al ₂ (Mn,RE),
Example 5	Mg-Alss, Mg17 (Al,Ca,Sr)12, Al ₂ Ca _{0.5} Sr _{0.5} , Al ₈ (Mn,RE) ₅
Example 6	Mg-Alss, Mg17 (Al,Ca,Sr,Zn)12, Al8 (Mn,RE)s, (Al, Zn)2 Ca0.5 Sr0.5
Example 7	Mg-Alss, Mg17 Al9 Ca9 Sr, Al2 Ca0.5 Sr0.5, Al8 (Mn, RE)5
Example 8	Mg-Alss, Mg17 (Al, Ca, Sr, Zn)12, Al8 (Mn, RE)s, (Al, Zn)2 Ca _{0.5} Sr _{0.5}
Example 9	Mg-Alss, Mg17 Al9 Ca2 Sr, Al2 Ca0.5 Sr0.5, Al8 (Mn, RE)5
Example 10	Mg-Alss, Mg17 (Al, Ca, Sr, Zn)12, Alg (Mn, RE)5, (Al, Zn)2 Ca0.8 Sr0.2
Example 11	Mg-Alss, Mg17 (Al, Ca, Sr)12, Al ₂ Ca _{0.8} Sr _{0.2} , Al ₈ (Mn, RE) ₅
Example 12	Mg-Alss, Mg17 (Al,Ca,Sr,Zn)12, Al2 (Ca,RE)2, Al8 (Mn,RE)5
Example 13	Mg-Alss, Mg17 (Al, Ca, Sr, Zn)12, Al8 (Mn, RE)5, (Al, Zn)2 (Ca, Sr)1
Example 14	Mg-Alss, Mg17 (Al,Ca,Sr,Zn)12, Al8 (Mn,RE)5, (Al, Zn)2 Ca0.5 Sr0.5
Comparative example 1	Comparative example 1 Mg-Alss, Mg17 (Al, Zn)12, Als Mn5
Comparative example 2	Comparative example 2 Mg-Als, Al1 RE3, Al10 RE2 Mn7
Comparative example 3 Mg-Alss, Al2 (Ca,Sr),	Mg-Alss, Al ₂ (Ca,Sr) ₁ , Al _y (Mn,RE) _y
Comparative example 4	Comparative example 4 Mg-Alss, Mg17 (Al, Ca, Sr, Zn)12, Als (Mn, RE)5, (Al, Zn)2 (Ca, Sr)1
Comparative example 5	Comparative example 5 Mg-Alss, Mg17 (Al,Ca,Sr)12, Al2 (Ca,Sr)1, Al8 (Mn,RE)5

Fig. 2

Table 3. <u>Die Castability Properties</u>

Alloy	Casting temperature	Oxidation Resistance	Fluidity	Die Sticking	Rank
Example 1	690	9.5	9	8.5	88
Example 2	690	9.5	9	9	91
Example 3	680	10	10	9.5	96
Example 4	690	9.5	9	9	92
Example 5	680	10	10	10	100
Example 6	660	10	8.5	9	91
Example 7	670	10	10	10	100
Example 8	660	10	9	9.5	95
Example 9	670	10	10	10	100
Example 10	680	10	10	9	93
Example 11	670	10	10	9.5	97
Example 12	670	10	10	9	93
Example 13	670	10	10	9	90
Example 14	660	10	9	9	92
Comparative Example 1	670	9.5	10	10	99
Comparative Example 2	690	8	. 8	9	80
Comparative Example 3	700	8	8	6	67
Comparative Example 4	670	10	10	7	80
Comparative Example 5	660	10	10	7	80

Fig. 3

Table 4. Mechanical Properties and Creep Behavior

							11-51 PAT CONT	11-51 6V	2
	TVS [MPa]	MPal	UTS	E%	CYS	CYS [MPa]	MCK	1 2 0	maglom ² /dox
Alloy	1011	[: 1]	[MPa]						mg/cm /uay
	Jour	150°C	20°C	20°C	20°C	150°C	135°C	150°C	
	2 27						85 MPa	SU MIFA	1.40
	7.4	110	250	10	144	112	1.8		1.48
Example 1	145	711	244	2	147	105	1.9	1.2	1.45
Fyamule 2	145	108	++7	2 0	150	118	13.6	3.2	1.40
Evample 3	153	116	249	6	761	132	1.4	1.1	98.0
Evenule 4	153	130	253	χ .	CCI	130	4.8	1	1.24
Domnle 5	166	135	275	10	10/	150	5.0	18	1.27
Example 3	164	125	272	8	165	C71	2.7	1 5	1.01
Example 0	177	140	275	∞	171	158	1:1	5.5	1.12
Example 7	771	130	27.2	9	174	130	8.6	7.7	1.12
Example 8	C/I	130	250	v	178	140	6.9	1.8	0.93
Example 9	178	147	707	, v	174	122	11.8	2.7	1.21
Example 10	175	120	007		177	122	9 4	2.5	86.0
Dysmula 11	174	121	259	^	1/4	122	12.1	9.0	1.08
Example 11	164	115	252	9	166	711	1771	10	0.95
Example 12	178	135	260	4	177	122	7.7	1.7	1 03
Example 13	163	123	996	4	181	138	11.5	C.7	1.03
Example 14	107	777	090	۷	160	105	305	61	1.31
Comparative Example 1	160	COI	7007	2	135	100	12.4	2.2	1.62
Comparative Example 2	135	100	740	2 6	55.	801	7.8	2.2	1.56
Companies Evenule 3	143	108	235	∞	147	100	0.01	2.0	141
Comparative Example 3	182	138	238	-	181	137	12.7	2.7	1 43
Comparative Example 4	180	141	232	_	179	142	8.3	1.7	1:43
Comparative Example 5	100								

Fig. 4

Fig. 5A

Fig. 5B

Fig. 6A

Fig. 6B