Week 11: Wednesday, Oct 31

Rayleigh quotients revisited

Recall the Rayleigh quotient iteration:

$$\lambda_k = \rho_A(v_k) = \frac{v_k^* A v_k}{v_k^* v_k}$$
$$v_{k+1} r_{k+1} = (A - \lambda_k)^{-1} v_k.$$

We claimed before that as v_k becomes an increasingly good eigenvector estimate, λ_k becomes an increasingly good eigenvalue estimate (under some assumptions), and the combination of the two effects gives us a locally quadratically convergent algorithm.

A good way to understand Rayleigh quotient iteration is as a sort of Newton iteration for the eigenvalue equations. Write

$$F(v,\lambda) = Av - v\lambda,$$

and differentiate to find

$$\delta F = (A - \lambda)\delta v - (\delta \lambda)v$$

Newton iteration gives

$$0 = F(v_k, \lambda_k) + \delta F(v_k, \lambda_k)$$

= $(A - \lambda_k)(v_k + \delta v_k) - (\delta \lambda_k)v_k$
= $(A - \lambda_k)v_{k+1} - (\delta \lambda_k)v_k$,

which means that $v_{k+1} = (\delta \lambda_k)(A - \lambda_k)^{-1}v_k$, where $\delta \lambda_k$ is some normalizing factor. This gives a nice iteration for the *vector*; what about for the value?

As we introduced it, the Rayleigh quotient might look arbitrary. Here's a way to see how naturally it occurs. Note that if (v, λ) is an eigenpair, then

$$||Av - v\lambda||_2^2 = 0.$$

Now, suppose \hat{v} is an approximate eigenvector, and I want to find the corresponding best approximate eigenvalue $\hat{\lambda}$, in the sense that

$$\hat{\lambda} = \operatorname{argmin}_{\mu} \|A\hat{v} - \hat{v}\mu\|_{2}^{2}.$$

This is now a *linear* least squares problem in the variable μ , and the normal equations give us

 $\hat{\lambda} = \frac{\hat{v}^* A \hat{v}}{\hat{v}^* \hat{v}};$

that is, the Rayleigh quotient is the choice of $\hat{\lambda}$ that minimizes the residual norm for the eigenvalue problem.

In the same way, we can derive the block Rayleigh quotient associated with a matrix \hat{V} such that $\hat{V}^*\hat{V}=I$ to be the corresponding \hat{L} that minimizes $\|\hat{A}\hat{V}-\hat{V}\hat{L}\|_F^2$. The corresponding minimizer is $\hat{L}=\hat{V}^*\hat{A}\hat{V}$. Just as the Rayleigh quotient provides an approximate eigenvalue, the block Rayleigh quotient provides an approximate "block" eigenvalue; and if the residual is small, eigenvalues of \hat{L} are eigenvalues are close to eigenvalues of A corresponding to the invariant subspace that \hat{V} approximates.

Note that we can also define block Rayleigh-quotient iteration:

$$p_k(z) = \det(V_k^* A V_k - zI)$$
$$V_{k+1} R_{k+1} = p_k(A)^{-1} V_k.$$

Rayleigh quotients, minimax, etc

Suppose v is a unit-length eigenvector of A with corresponding eigenvector λ (i.e. $Av = v\lambda$). The corresponding Rayleigh quotient is the eigenvalue. What if we consider \hat{v} very close to A? Let us suppose that v has unit length, and differentiate $\rho_A(v) = (v^*Av)/(v^*v)$ in a direction δv . Using the quotient rule, we have

$$\delta\rho_A(v) = \frac{(\delta v^* A v + v^* \delta A v)(v^* v) - (v^* A v)(\delta v^* v + v^* \delta v)}{(v^* v)^2}$$
$$= (\delta v^* A v + v^* \delta A v) - \lambda(\delta v^* v + v^* \delta v)$$
$$= \delta v^* (A - \lambda I) v + v^* (A - \lambda I) \delta v.$$

Now, note that

$$\delta \rho_A(v) = \delta v^* (A - \lambda I) v + v^* (A - \lambda I) \delta v = v^* (A - \lambda I) \delta v.$$

If v^* is a row eigenvector of A corresponding to λ , then v is a stationary point of ρ_A . The vector v^* is a row eigenvector whenever the matrix A is normal:

that is, whenever $AV = V\Lambda$ for some unitary matrix V. Such stationarity implies that

$$\rho_A(v + \delta v) = \lambda + O(\|\delta v\|^2).$$

This is a strong statement; it implies that when we have a *first*-order accurate estimate of an eigenvector, we have a *second*-order accurate estimate of the corresponding eigenvalue.

Any real symmetric (or complex Hermitian) matrices is normal; and for a real symmetric matrix, we have that all the eigenvalues are real, and that they are *critical* points for ρ_A . This variational characterization of the eigenvalues of A means, in particular, that $\lambda_{\max} = \max_{v \neq 0} \rho_A(v)$ and $\lambda_{\min} = \min_{v \neq 0} \rho_A(V)$. We can go one step further with the Courant-Fischer minimax theorem:

Theorem 1. If $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, then we can characterize the eigenvalues via optimizations over subspaces \mathcal{V} :

$$\lambda_k = \max_{\dim \mathcal{V} = k} \left(\min_{0 \neq v \in \mathcal{V}} \rho_A(v) \right) = \min_{\dim \mathcal{V} = n - k + 1} \left(\max_{0 \neq v \in \mathcal{V}} \rho_A(v) \right).$$

Proof. Write $A = U\Lambda U^*$ where U is a unitary matrix of eigenvectors. If v is a unit vector, so is $x = U^*v$, and we have

$$\rho_A(v) = x^* \Lambda x = \sum_{j=1}^n \lambda_j |x_j|^2,$$

i.e. $\rho_A(v)$ is a weighted average of the eigenvalues of A. If \mathcal{V} is a k-dimensional subspace, then we can find a unit vector $v \in \mathcal{V}$ that satisfies the k-1 constraints $(U^*v)_j = 0$ for j = 1 through k-1 (i.e. v is orthogonal to the invariant subspace associated with the first k-1 eigenvectors). For this v, $\rho_A(v)$ is a weighted average of $\lambda_k, \lambda_{k+1}, \ldots, \lambda_n$, so $\rho_A(v) \leq \lambda_k$. Therefore,

$$\max_{\dim \mathcal{V}=k} \left(\min_{0 \neq v \in \mathcal{V}} \rho_A(v) \right) \le \lambda_k.$$

Now, if \mathcal{V} is the range space of the first k columns of U, then for any $v \in \mathcal{V}$ we have that $\rho_A(v)$ is a weighted average of the first k eigenvalues, which attains the minimal value λ_k when we choose $v = u_k$.

One piece of the minimax theorem is that given any k-dimensional subspace \mathcal{V} , the smallest value of the Rayleigh quotient over that subspace is a lower bound on λ_k and an upper bound on λ_{n-k+1} . Taking this one step further, we have the Cauchy interlace theorem, which relates the eigenvalues of a block Rayleigh quotient to the eigenvalues of the corresponding matrix.

Theorem 2. Suppose A is real symmetric (or Hermitian), and let V be a matrix with m orthonormal columns. Then the eigenvalues of V^*AV interlace the eigenvalues of A; that is, if A has eigenvalues $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n$ and V^*AV has eigenvalues β_j , then

$$\beta_j \in [\alpha_{n-m+j}, \alpha_j].$$