Iniciación práctica al análisis de datos OMOP

Recap último día

Anna Palomar

apalomar@idiapjgol.org

Marzo 2025

- ¿Qué son los datos del mundo real?
- ¿Qué ventajas y limitaciones tiene el uso de este tipo de datos?
- ¿Qué ventajas tiene el uso de un modelo común de datos como OMOP?
- Proceso de mapeo a OMOP y control de calidad
- En las prácticas....

1. **Definir cohortes** en base a la prescripción de **fármacos**, el diagnóstico de **condiciones** o la presencia de determinadas **medidas o pruebas*** utilizando vocabularios estándar en la <u>plataforma interactiva</u> **ATLAS** o de <u>forma más sistemática</u> con **CodeListGenerator**

	La contraction de la			!
	measurement_concept_id value_as_number	value_as_concept_id	concept_name	concept_name_value
	<int> <db1></db1></int>	<int></int>		<chr></chr>
1	37 <u>310</u> 257 NA		Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	
2	37 <u>310</u> 257 NA		Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	
3	37 <u>310</u> 257 NA		Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	
4	37 <u>310</u> 257 NA		Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	
5	37 <u>310</u> 257 NA	45 <u>878</u> 583	Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	Negative
6	37 <u>310</u> 257 NA		Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	
7	37 <u>310</u> 257 NA		Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	
8	37 <u>310</u> 257 NA	45 <u>878</u> 583	Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	Negative
9	37 <u>310</u> 257 NA		Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	
10	37 <u>310</u> 257 NA	45 <u>878</u> 583	Measurement of Severe acute respiratory syndrome coronavirus 2 antigen	Negative
# i	i more rows			
# i	i Use `print(n =)` to see more rows			
		1		

2. Evaluar la calidad de estas definiciones contra una base de datos en el CDM (CDMConnector) con CohortDiagnostics o DrugExposureDiagnostics

4. Caracterizar nuestra población de estudio **a nivel individual** (PatientProfiles), a **nivel poblacional** (CohortCharacteristics) y en una **cohorte de fármacos** (DrugUtilisation)

5. Calcular incidencia y prevalencia

6. Análisis de supervivencia (o time-to-event) en una cohorte

Flujo de trabajo

¿Qué veremos hoy?

- 9:15 a 10:15 Otras herramientas OMOP y diseños de estudios con RWD
- 10:15 a 10:45 Por dónde empezar a trabajar con datos OMOP
- **10:45 a 11:15** Desayuno
- 11:15 a 12:00 Rol de IA en estudios con RWD
- 12:00 a 12:30 Importancia de RWD en el ámbito regulador: DARWIN-EU®
- 12:30 a 13:30 Cierre y feedback