実験2日目

「逆透視変換」、「ポイントクラウド」、 inverse perspective mapping

point cloud

「計測の誤差」 measurement error

これらについて、What?/Why?/How?の あらゆる疑問を解消する文書(実験レポート)を期待しています.

3次元計測

- ✓ 3次元化する
- ✓ 長さや角を測る

前回「視差」を測る

画像とカメラの座標系

2台のカメラを 平行に設置した場合

視差 d と奥行き Z の関係

XとYも計算できる

3次元座標の計算手順

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。 $d = |u_R - u_L|$

$$d = |u_{\rm R} - u_{\rm L}|$$

手順3 深度(奥行き)に換算する。 $Z = \frac{f}{d}l$

$$Z = \frac{f}{d}l$$

$$X = \frac{u_{\rm L}}{f}Z$$
 , $Y = \frac{v_{\rm L}}{f}Z$

手順4 3次元座標を得る。
$$X = \frac{u_L}{f}Z$$
, $Y = \frac{v_L}{f}Z$ $(X,Y,Z) = \left(\frac{u_L}{d}l,\frac{u_R}{d}l,\frac{f}{d}l\right)$

RGB-Dカメラを使ってみよう

カラー画像(RGB)

深度画像(Depth)

深度から3次元座標を計算する

視差画像

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。 $d = |u_R - u_L|$

$$d = |u_{\rm R} - u_{\rm L}|$$

手順3 深度(奥行き)に換算する。 $Z = \frac{f}{d}l$

$$Z = \frac{f}{d}l$$

手順4 3次元座標を得る。
$$X = \frac{u_L}{f} Z$$
, $Y = \frac{v_L}{f} Z$

手順1~3の処理を経た 深度画像 $Z(u_{\rm L},v_{\rm L})$ を取得する.

点群(point cloud)

3次元座標をたくさん調べたら・・・!

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。 $d = |u_R - u_L|$

$$d = |u_{\rm R} - u_{\rm L}|$$

手順3 深度(奥行き)に換算する。 $Z = \frac{f}{d}l$

$$Z = \frac{f}{d}l$$

手順4 3次元座標を得る。 $X = \frac{u_L}{f} Z$, $Y = \frac{v_L}{f} Z$

$$\mathbf{X} = \frac{u_L}{f}\mathbf{Z}$$
 , $\mathbf{Y} = \frac{v_L}{f}\mathbf{Z}$

