Lectures 8-10

Linear algebra: Dot products and Projections

DSC 40A, Fall 2025

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Dot product: coordinate definition

• The **dot product** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is written as:

$$\vec{u}\cdot\vec{v}=\vec{u}^\intercal\vec{v}=\langle \vec{u},\vec{v} \rangle$$

• The computational definition of the dot product:

$$ec{u}\cdotec{v}=\sum_{i=1}^n u_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

• The result is a **scalar**, i.e. a single number.

$$\vec{u} \cdot \vec{v} = 5.2 + 3.4 = 10 + 12 = 22 \text{ ER}$$

$$\vec{v} = (5.3) \left(\frac{2}{4}\right) = \frac{10}{12} + 12 = 22 \text{ ER}$$

Dot product: geometric definition

• The computational definition of the dot product:

$$ec{u}\cdotec{v}=\sum_{i=1}^n u_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

• The geometric definition of the dot product:

$$ec{u} \cdot ec{v} = \|ec{u}\| \|ec{v}\| \cos heta$$

where θ is the angle between \vec{u} and \vec{v} .

• The two definitions are equivalent! This equivalence allows us to find the angle θ between two vectors.

Orthogonal vectors

• Recall: $\cos 90^{\circ} = 0$.

- Since $\vec{u}\cdot\vec{v}=\|\vec{u}\|\|\vec{v}\|\cos\theta$, if the angle between two vectors is $90^{\rm o}$, their dot product is $\|\vec{u}\|\|\vec{v}\|\cos90^{\rm o}=0$.
- If the angle between two vectors is 90° , we say they are perpendicular, or more generally, orthogonal.
- Key idea:

two vectors are **orthogonal** $\iff \vec{u} \cdot \vec{v} = 0$

Exercise

Find a non-zero vector in \mathbb{R}^3 orthogonal to:

$$\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix} \qquad \vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\vec{u} \cdot \vec{V} = 2u_1 + 5u_2 - 8u_3 = 0 \qquad \qquad \text{Infinite possibilities}.$$

$$\vec{V} = \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} \qquad \vec{V} \cdot \vec{W} = 2 \cdot 5 - 2 \cdot 5 = 0$$

$$\vec{Z} = \begin{bmatrix} 0 \\ 9 \\ 5 \end{bmatrix} \qquad \vec{Z} \cdot \vec{V} = 0 \cdot 2 + 7 \cdot 5 + 5 \cdot (8) = 0$$

Spans and projections

Adding and scaling vectors

• The sum of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is the element-wise sum of their components:

$$\vec{u}$$
 , Term \vec{u} \vec{u} + \vec{v} = $\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$ $\in \mathbb{R}^n$

• If *c* is a scalar, then:

$$c \in \mathbb{R}$$
 $c v_1 = egin{bmatrix} c v_1 \ c v_2 \ dots \ c v_n \end{bmatrix}$

Linear combinations

Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d all be vectors in \mathbb{R}^n .

A linear combination of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d is any vector of the form:

$$a_1\vec{v}_1+a_2\vec{v}_2+\dots+a_d\vec{v}_d \in \mathbb{R}^n$$
 where $a_1,a_2,...,a_d$ are all scalars.
$$=\sum_{i=1}^n \alpha_i \vec{v}_i$$

$$\alpha_i \in \mathbb{R} \quad \text{for all } i \in \mathbb{A}$$

$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{1}} = \frac{1$$

Span

$$Span \{V_1\} = CV_1$$

$$for any C \in \mathbb{R}$$

$$\begin{aligned}
\overline{V_2} &= -\overline{V_1} \\
span &\overline{V_1}, \overline{V_2} \end{aligned} = C\overline{V_1}$$

- Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d all be vectors in \mathbb{R}^n .
- The **span** of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d is the set of all vectors that can be created using linear combinations of those vectors.
- Formal definition:

$$\mathrm{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d) = \{a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_d\vec{v}_d : a_1, a_2, \dots, a_n \in \mathbb{R}\}$$

Exercise

Let
$$\vec{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 and let $\vec{v}_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$. Is $\vec{y} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$ in $\operatorname{span}(\vec{v_1}, \vec{v_2})$? If so, write \vec{y} as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

If so, write \vec{y} as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

$$\vec{V}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \qquad -2 \cdot \vec{V}_2 = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \qquad \vec{V}_1 + \vec{V}_2$$

span
$$\sqrt{1}$$
, $\sqrt{2}$) = \sqrt{R} any vector in \sqrt{R} can be written as \sqrt{n} , \sqrt{n}

$$V_1V_1 + V_2V_2 = \overline{y}$$

$$\begin{bmatrix} 2V_1 - V_2 = 9 \\ -3V_1 + 4V_2 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$$

$$-3V_1 + 4V_2 = 1$$

$$2W_{1} - W_{2} = 0$$
 = 50 | Ve for W_{1}, W_{2}
-3 $V_{1} + 4 W_{2} = 1$

Projecting onto a single vector

- Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^n .
- The span of \vec{x} is the set of all vectors of the form:

 $w\vec{x}$

where $w \in \mathbb{R}$ is a scalar.

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The vector in $\operatorname{span}(\vec{x})$ that is closest to \vec{y} is the **orthogon** projection of \vec{y} onto $\operatorname{span}(\vec{x})$.

Projection error

- Let $\vec{e} = \vec{y} w\vec{x}$ be the projection error: that is, the vector that connects \vec{y} to $\mathrm{span}(\vec{x})$.
- Goal: Find the w that makes \vec{e} as short as possible.
 - That is, minimize:

$$\|\vec{e}\|$$
 $\|\vec{e}\|$ $\|\vec{v} - \vec{w}\|$

• Idea: To make \vec{e} has short as possible, it should be orthogonal to $w\vec{x}$.

Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Now we know that to minimize $\|\vec{e}\|$, \vec{e} must be orthogonal to $w\vec{x}$.
- Given this fact, how can we solve for w?

Min ||
$$\vec{e}$$
 || \vec{f} | $\vec{$

Exercise

Let
$$ec{a} = egin{bmatrix} 5 \\ 2 \end{bmatrix}$$
 and $ec{b} = egin{bmatrix} -1 \\ 9 \end{bmatrix}$.

What is the orthogonal projection of \vec{a} onto $\mathrm{span}(\vec{b})$?

Your answer should be of the form $w^*\vec{b}$, where w^* is a scalar.

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question: What vector in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ Vectors in $\mathrm{span}(ec x^{(1)},ec x^{(2)})$ are of the form $w_1ec x^{(1)}+w_2ec x^{(2)}$, where w_1 , $w_2\in\mathbb{R}$ are scalars.
- Before trying to answer, let's watch ** this animation that Jack, one of our tutors,
 made.

