Parallel Detection of Movement Patterns in Large Spatio-temporal Datasets

February 1, 2019

Trajectory datasets

- Sensors, sensors everywhere!!!
- Anything that could move, will be tracked...
- Some applications:
 - Social behavior
 - Ecology (birds, sharks, ...)
 - Climate change (icebergs, cyclones, ...)
 - Software...

Complex movement patterns

Previous works focus on traditional queries:

Range, Nearest Neighbors, Similarity, ...

Recent works look for the aggregate behavior:

Moving clusters, Convoys,Flocks, Swarms, Gatherings, ...

(b) Flock, convoy and swarm

What is a flock???

Definition $((\mu, \varepsilon, \delta) - flock)$

Sets of at least μ objects moving close enough (ε) for at least δ time intervals (Benkert et al, 2008).

- ▶ Vieira et al. (2009) proposed BFE algorithm (first polinomial solution).
- Drawbacks:
 - 1. Find disks is costly. They can be at any place.
 - 2. Huge amount of duplicate and redundant disks.
 - 3. Join between time intervals was a Cartesian product.

Contributions

- Boost the detection of disks through a parallel approach (spatial partitioning + expansions).
- 2. Apply a frequent pattern mining approach to improve disk filtering (local + merge approach).
- Use parallel distance joins to improve combination between consecutive time intervals (a Distance parameter).

Preliminar results

- Implementation using GeoSpark. Synthetic datasets using SUMO (Simulation of Urban Mobility).
- ▶ Berlin network (OSM). $\approx 20 K$ points per timestamp, 10 timestamps. Varying ε ($\mu = 3$ and $\delta = 3$).

