Department of Electrical Engineering

Faculty Member:	Dated:
Semester:	Section:
	Group No.:

EE-221: Digital Logic Design

Lab 08: Magnitude Comparator

		PLO4/CLO4	PLO4/CLO4	PLO5/CLO5	PLO8/CLO6	PLO9/CLO7	
Name	Reg. No	Viva / Lab Performance	Analysis of data in Lab Report	Modern Tool Usage	Ethics and Safety	Individual and Team Work	Total marks Obtained
		5 Marks	5 Marks	5 Marks	5 Marks	5 Marks	25 Marks
AILYA ZAINAB	523506						
IMAN NAEEM	525378						
LAIBA NASIR	510419						
LUQMAN SHEHZAD	507599						

Lab 8: Magnitude Comparator

This Lab Activity has been designed to familiarize students with design and working of combinational circuits using basic logic gates.

Objectives:

- ✓ Design and Implementation of 2-bit magnitude comparator using classical design method learned in the class.
- ✓ Design of a 4-bit magnitude comparator using a 4-bit adder IC and logic gates
- ✓ Verification of 4 bit comparator IC
- ✓ Dataflow modeling in Verilog HDL

Lab Instructions

- ✓ This lab activity comprises three parts, namely Pre-lab, Lab tasks, and Post-Lab Viva session.
- ✓ The lab report will be uploaded on LMS three days before scheduled lab date. The students will get hard copy of lab report, complete the Pre-lab task before coming to the lab and deposit it with teacher/lab engineer for necessary evaluation.
- ✓ The students will start lab task and demonstrate design steps separately for stepwise evaluation(course instructor/lab engineer will sign each step after ascertaining functional verification)
- ✓ Remember that a neat logic diagram with pins numbered coupled with nicely patched circuit will simplify trouble-shooting process.
- ✓ After the lab, students are expected to unwire the circuit and deposit back components before leaving.
- ✓ The students will complete lab task and submit complete report to Lab Engineer before leaving lab.
- ✓ There are related questions at the end of this activity. Give complete answers.

Pre-Lab Tasks (2)

1. What do you mean by a comparator circuit? Draw the truth table for a 1 bit magnitude comparator. The comparator has 2 inputs (A and B) and 3 outputs E, L and G for (A=B), (A<B) and (A>B) respectively. For example, one combination is filled in below example, for your guidance.

A digital comparator or magnitude comparator is a hardware electronic device that takes two numbers as input in binary form and determines whether one number is greater than, less than or equal to the other number.

Α	В	E (A=B)	G (A>B)	L (A <b)< th=""></b)<>	
0	0	1	0	0	
0	1	0	1	0	
1	0	0	0	1	
1	1	1	0	0	

2. Simplify the functions E, G and L and give their Logic diagrams.

Function	Expression				
Е	A'B' + AB				
L	A'B				
G	AB'				

3. Design a 2-bit magnitude comparator. The Block diagram is shown below.

a) List the truth table.

	Inp	outs		Outputs		
A1	A0	B1	ВО	L (A <b)< th=""><th>E (A=B)</th><th>G (A>B)</th></b)<>	E (A=B)	G (A>B)
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1

b) Find expressions for the functions E, G and L using k maps.

Simplified expressions:

Function	Expression	Simplified
Е	A1'A0'B1'B0' + A1'A0B1'B0 + A1A0B1B0 + A1A0'B1B0'	(A1⊙B1)(A0⊙B0)
L	A1'B1 + A0'B1B0 + A1'A0'B0	N/A
G	A1B1' + A0B1'B0' + A1A0B0'	N/A

Lab Tasks

1. Implement the 2-bit Comparator circuit you arrived in your Pre-lab Task in Proteus and hardware. (4)

Proteus:

Hardware:

2. Write Verilog code of 2 bit comparator using dataflow modeling. (2)


```
In #
                                                                                                 C:/Mo
    1 module comparator(e, g , 1, a1, a0, b1, b0);
           input al, a0, b1, b0;
          output e, g , 1;
          assign e = (a0 ^~ b0) & (al ^~ bl);
          assign g = (al & ~bl) | (a0 & ~bl & ~b0) | (al & a0 & ~b0);
          assign 1 = (~a1 & b1) | (~a0 & b1 & b0) | (~a1 & ~a0 & b0);
   10 endmodule
   11
   12 module testbench80;
   13
          reg Al, AO, Bl, BO;
   14
   15
          wire E. G. L:
   16
          comparator t1(E, G, L, A1, A0, B1, B0);
   17
   18
   19
         initial begin
             #100 A1 = 0; A0 = 0; B1 = 0; B0 = 0;
   20
               #100 A1 = 0; A0 = 0; B1 = 0; B0 = 1;
   21
              #100 A1 = 0; A0 = 0; B1 = 1; B0 = 0;
   22
              #100 A1 = 0; A0 = 0; B1 = 1; B0 = 1;
#100 A1 = 0; A0 = 1; B1 = 0; B0 = 0;
   23
   24
             #100 A1 = 0; A0 = 1; B1 = 0; B0 = 1;
#100 A1 = 0; A0 = 1; B1 = 1; B0 = 0;
   25
   26
             #100 A1 = 0; A0 = 1; B1 = 1; B0 = 0;
#100 A1 = 0; A0 = 1; B1 = 1; B0 = 1;
#100 A1 = 1; A0 = 0; B1 = 0; B0 = 0;
   27
   28
             #100 A1 = 1; A0 = 0; B1 = 0; B0 = 1;
#100 A1 = 1; A0 = 0; B1 = 1; B0 = 0;
   29
   30
             #100 A1 = 1; A0 = 0; B1 = 1; B0 = 1;
#100 A1 = 1; A0 = 1; B1 = 0; B0 = 0;
   31
   32
   33
              #100 A1 = 1; A0 = 1; B1 = 0; B0 = 1;
   34
               #100 A1 = 1; A0 = 1; B1 = 1; B0 = 0;
   35
               #100 A1 = 1; A0 = 1; B1 = 1; B0 = 1;
   38 endmodule
```

Wave form:

2.

3. Simulate the 4-bit magnitude comparator IC (7485) in Proteus. Give its function table, Pin Layout and show its Proteus. (2)

Proteus:

Pin layout:

Pin Layout of 7485

Function Table:

А3	A2	A 1	Α0	В3	В2	В1	во	E (A=B)	G (A>B)	L (A <b)< th=""></b)<>
0	0	0	0	0	0	0	0	1	0	0
0	0	0	1	0	0	1	1	0	1	0
0	0	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	1	0	0	1
0	1	0	0	0	1	0	0	1	0	0
0	1	0	1	0	0	1	1	0	0	1
0	1	1	0	0	1	0	1	0	0	1
0	1	1	1	1	0	0	1	0	1	0
1	0	0	0	1	0	0	0	1	0	0
1	0	0	1	0	1	1	1	0	0	1
1	0	1	0	1	0	1	1	0	1	0
1	0	1	1	1	0	1	0	0	0	1
1	1	0	0	1	1	0	0	1	0	0
1	1	0	1	1	1	1	0	0	1	0
1	1	1	0	1	1	1	1	0	1	0
1	1	1	1	1	1	1	1	1	0	0