

ms สร้าง Supervised vs. Unsupervised Learning (1)

- □ Supervised learning (classification)
 - Supervision: The training data such as observations or measurements are accompanied by labels indicating the classes which they belong to
 - □ New data is classified based on the models built from the training set

Supervised vs. Unsupervised Learning (2)

Unsupervised learning (clustering)

ring) ปล่สผู้สอน 🗝 มีสิจุดสมุน สายในกรเฮียน

The class labels of training data are unknown

Given a set of observations or measurements, establish the possible existence

of classes or clusters in the data

X Alle V Giele

Prediction Problems: Classification vs. Numeric Prediction

Classification

- นากผลท้านาบเป็นส่วเลา ละเรียกล่า Regretion
- Predict categorical class labels (discrete or nominal)
- Construct a model based on the training set and the class labels (the values in a classifying attribute) and use it in classifying new data
- Numeric prediction
- Model continuous-valued functions (i.e., predict unknown or missing values)
- Typical applications of classification
 - Credit/loan approval
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—Model Construction, Validation and **Testing**

- שו-מו לבל חת חברום כם בשו פל תוב בינ לחוות ושנו בים לכסי ל עוד בין של כסי **Model construction**
 - Each sample is assumed to belong to a predefined class (shown by the class label)
- The set of samples used for model construction is training set
- Model: Represented as decision trees, rules, mathematical formulas, or other forms
- เอาโกลา ปกัดเลง ในปาคออทาเดยตาของ เลาการให้เกออกเลืองล **Model Validation and Testing:**
 - Test: Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy: % of test set samples that are correctly classified by the model
 - Test set is independent of training set
- Validation: If the test set is used to select or refine models, it is called validation (or development) (test) set
- **Model Deployment:** If the accuracy is acceptable, use the model to classify new data

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

พลักพร คือ เลือก คำ เกมที่ แบ่ง ข้อมูลได้สั

Information Gain: An Attribute Selection Measure

- □ Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- \square Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,p}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

☐ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

☐ Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Example: Attribute Selection with Information Gain

- ☐ Class P: buys computer = "yes"
- ☐ Class N: buys computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.94$$

Z=30 °	= 2045	3140)	4		0	0			
		>40		3		2	0.97	1		
. 5	age	income	st	udent		credit_	rating	buys	comp	uter
	<=30	high		no	fa	ir		/	no	
19 -	<=30	high		no	ех	cellen	ıt		no '	
V 1	3140	high		no	fa	ir			yes	
	>40	medium		no	fa	ir			yes	
	>40	low		yes	fa	ir			yes	
	>40	low		VAS	ev	cellen	nt.		no	

$$Info_{age}(D) = \underbrace{\frac{5}{14}I(2,3)}_{14}\underbrace{\frac{4}{14}I(4,0)}_{31}$$

$$+\frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

Gain(income) = 0.029

Gain(student) = 0.151

 $Gain(credit\ rating) = 0.048$

Bayes' Theorem: Basics

Total probability Theorem:

H: X belongs to class C

Classification is to derive the maximum posteriori

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys computer = 'yes' C2:buys computer = 'no'

Data to be classified:

 $X = (age \le 30, Income = medium)$ Student = yes, Credit rating = Fair)

age	income	student	credit_rating	buys_computer	
<=30	high	no	fair	no	
<=30	high	no	excellent	no	
3140	high	no	fair	yes	
>40	medium	no	fair	yes	Training data
>40	low	yes	fair	yes	o rearring 9410
>40	low	yes	excellent	no	
3140	low	yes	excellent	yes	
<=30	medium	no	fair	no	
<=30	low	yes	fair	yes	
>40	medium	yes	fair	yes	
<=30	medium	yes	excellent	yes	
3140	medium	no	excellent	yes	
3140	high	yes	fair	yes	
>40	medium	no	excellent	no	/

$$\frac{P(H , \lambda | X,) = \delta}{P(H , \lambda | X,) = \delta}$$
= $b(X | H, \lambda) b(H, \lambda)$ training data

Naïve Bayes Classifier: An Example

 $P(C_i)$: P(buys computer = "yes") = 9/14 = 0.643 P(buys computer = "no") = 5/14 = 0.357

Compute P(X|C_i) for each class

P(age = "<=30" | buys computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys computer = "yes) = 6/9 = 0.667P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667 P(credit rating = "fair" | huve computer = "no") = 2/5 = 0.4

	r(cledit_lating = lan buys_computer = no) = 2/3 = 0.4
	X = (age <= 30, income = medium, student = yes, credit_rating = fair)
Ρ	$(X C_i)$: P(X buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

 $P(X|buys_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$ $P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$

P(X|buys computer = "no") * P(buys computer = "no") = 0.007

Therefore, X belongs to class ("buys_computer = yes")

$$\frac{3}{9} \times \frac{5}{9} \times \frac{9}{14} = 0.33$$

$$2 = age = 42, \text{ student = yes ?}$$

$$P(H_{N}^{(3)}|X) = 9$$

Model Evaluation and Selection

- Evaluation metrics
 - How can we measure accuracy?
 - Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy
- Holdout method
- Cross-validation
- Bootstrap
- · Comparing classifiers:
 - ROC Curves

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- Precision: Exactness: what % of tuples that the classifier labeled as positive are actually positive? $P = Precision = \frac{\vec{TP}}{\vec{TP} + \vec{FP}}$
- □ Recall: Completeness: what % of positive tuples did the classifier label as positive?

- □ Range: [0, 1]
- ☐ The "inverse" relationship between precision & recall
- □ F measure (or F-score): harmonic mean of precision and recall
- ☐ In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{D} + (1 - \alpha) \cdot \frac{1}{D}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 Assigning β times as much weight to recall as to precision)

□ F1-measure (balanced F-measure)

That is, when
$$\beta = 1$$
, $F_1 = \frac{2PR}{P+R}$

Classifier Evaluation Metrics: Confusion Matrix

□ Confusion Matrix: > ทำให้พราชว่า model Positives กกล่าใจว่า และ Model Negre ดูกลาใจร

Actual class Predicted class	C ₁	¬ C ₁	
C_{1}	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

- In a confusion matrix w. m classes, CM_{i,j} indicates # of tuples in class i that were labeled by the classifier as class j
 - ☐ May have extra rows/columns to provide totals

■ Example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬С	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

- □ Classifier accuracy, or recognition rate
 - Percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/All

□ Error rate: 1 – accuracy, or Error rate = (FP + FN)/AII

- Class imbalance problem
 - One class may be rare
 - □ E.g., fraud, or HIV-positive

· Positives Negatives

- Significant majority of the negative class and minority of the positive class
- Measures handle the class imbalance problem
- Sensitivity (recall): True positive recognition rate
 - Sensitivity = TP/P
- □ **Specificity**: True negative recognition rate
 - Specificity = TN/N