004 – BERYLLIUM – BE

Fact File	
Chemical Element Name	Beryllium (prev. Glucine)
Chemical Symbol	Be (prev. G)
Appearance	White-grey metal
Standard Atomic Weight, A _r	9.012 1831 amu
Atomic/Proton Number, Z	4
Group	Group 2
Period	Period 2
Block	s-block
Electron Configuration/Ground Shells	[He] 2s ²
Electrons Per Shell	2, 2
Core Electrons	2
Valence Electrons	2
Phase/State of Matter at STP	Solid
Melting/Liquefaction Point	1560 K
Boiling Point	2743 K
Density at STP	1.85 g/L
Ionic Charge(s)	2+
Emission Spectrum	
Natural Occurrence	Primordial
Discovered By	Louis Nicolas Vauquelin, 1798
Named By	Friedrich Wöhler, 1828

Discovery

The mineral beryl ($Be_3Al_2Si_6O_{18}$) has been used since the Ptolemaic dynasty of Egypt and early analysis of beryls and emeralds ($Be_3Al_2(SiO_3)_6$) — noted to be similar by Pliny the Elder in his encyclopedia Natural History — by Martin Heinrich Klaproth, Torbern Olof Bergman, Franz Karl Achard, and Johann Jakob Bindheim always yielded similar elements, leading to the false conclusion that both substances are aluminium silicates. Mineralogist René Just Haüy discovered that both crystals are geometrically identical, and he asked chemist Louis-Nicolas Vauquelin for a chemical analysis.

In a 1798 paper read before the Institut de France, Vauquelin reported that he found a new "earth" (element) by dissolving aluminium hydroxide from emerald and beryl in an additional alkali. The editors of the journal *Annales de Chimie et de Physique* named the new earth "glucine" for the sweet taste of some of its compounds. However, Klaproth preferred the name "beryllina" because yttria (Y_2O_3) also formed sweet salts.

Name Origins

The name "beryllium" was first used by Friedrich Wöhler in 1828 and is derived from the name beryl, the mineral from which it was first isolated.

Isotopes

Lithium has three naturally occurring isotopes; ⁷Be (Trace) ⁹Be (100%) and ¹⁰Be (Trace). ⁵Be, ⁶Be, ⁸Be and ¹¹Be to ¹⁶Be (excluding ¹⁰Be) have also been synthesised in laboratory conditions. In addition, ⁹Be, ¹¹Be and ¹²Be can be excited (^{9m}Be: 14,390.3 keV, ¹¹Be: 21,158 keV, ¹²Be: 2251 keV).

Hazards	
GHS pictograms	GHS06, GHS08
GHS Signal word	Danger
GHS hazard statements	H301, H315, H317, H319, H330, H335, H350i, H372
GHS precautionary statements	P201, P260, P280, P284, P301, P304, P310, P330, P340
NFPA 704 (fire diamond)	4 3 3