• KINEMATICS:

- \circ a(t) = a
 - a = constant acceleration
 - a(t) = acceleration at time "t"
- \circ v(t) = v(0) + at
 - v(t) = velocity at time "t"
 - v(0) = velocity at time "0"
- $x(t) = x(0) + v(0)t + \frac{1}{2}at^2$
 - x(t) = position at time "t"
 - x(0) = position at time "0"
- \circ $v_f = v_i + a\Delta t$
 - $v_f = final velocity$
 - $v_i = initial \ velocity$
 - $\Delta t = \text{change in time}$
- $o v_f^2 = v_i^2 + 2a\Delta x$
 - $\Delta x = \text{change in position}$

• FRICTION:

- \circ F = ma
 - m = mass
- \circ $f_s = \mu_s F_N$
 - $f_s = static friction$
 - μ_s = coefficient of static friction
- \circ $f_k = \mu_k F_N$
 - $f_k = kinetic friction$
 - μ_k = coefficient of kinetic friction
- \circ $F_g = mg$
 - g = acceleration due to gravity
- $\circ \quad \Sigma F_x$
- Net force equation for the "x" direction
- \circ ΣF_y
 - Net force equation for the "y" direction

• **CIRCULAR MOTION:**

- \circ $\alpha(t) = \alpha$
 - α = constant angular acceleration
 - $\alpha(t)$ = angular acceleration at time "t"
- $\circ \quad \omega(t) = \omega(0) + \alpha(t)$
 - $\omega(t)$ = angular velocity at time "t"
 - $\omega(0)$ = angular velocity at time "0"
- $\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$
 - $\theta(t)$ = angular position at time "t"
 - $\theta(0)$ = angular position at time "0"
- \circ $\omega = \frac{2\pi}{L}$
 - T = time period
- $\circ f = \frac{1}{T}$
 - f = frequency
- \circ $v = \omega R$
 - \blacksquare R = radius
- \circ $s = R\theta$
 - s = arc length
- \circ $\vec{a} = \omega v(-\hat{r})$
 - \vec{a} = centripetal acceleration
 - $-\hat{\mathbf{r}} = \text{radial direction}$
- $F_c = \frac{mv^2}{r}$
 - F_c = centripetal force
- \circ $\vec{a} = \omega^2 R$
- \circ $\vec{r}(t) = (R, \theta(t))$
 - \blacksquare R = radial position
 - $\theta(t) = \text{angular position}$

• PROJECTILE MOTION:

- $0 t^* = \frac{v_0}{g} \sin(\theta)$
 - $t^* = time when projectile reaches max \Delta y$
- $0 \quad x^* = \frac{{v_0}^2}{2g} \sin(2\theta)$
 - $x^* = x$ displacement at time "t*"
- $y^* = \frac{{v_0}^2}{2g} \sin(\theta)^2$
 - $y^* = y$ displacement at time "t*"
- $\circ v_{x}(t) = v_{0} \cos(\theta)$
 - $v_x(t)$ = horizontal velocity at time "t"
- $v_{y}(t) = v_{0} \sin(\theta) gt$
 - $v_v(t)$ = vertical velocity at time "t"

• **CONNECTED OBJECTS:**

- Draw Net Force Equations
 - Apply formulas as necessary
 - Everything here is case-by-case

• DRAG:

- $\overline{c} F_{drag} = c_1 R v + c_2 R^2 v^2$
 - F_{drag} = Force of drag
 - c_1 = strong function of temperature
 - c_2 = strong function of density
 - \blacksquare R = radius of object
- $\circ \quad v_c = \frac{c_1}{c_2 R}$
 - v_c = regime crossover velocity
- $v_T = c_1 R v_T + c_2 R^2 v_T^2 = \text{mg}$
 - v_T = Terminal velocity
- $\circ \quad \text{Regime 1: } \frac{mg}{c_1 R} \propto R^2$
- $\circ \quad \text{Regime 2: } \sqrt{\frac{mg}{c_2 R^2}} \propto \sqrt{R}$
- $\circ F_D^{Viscous} = 6\pi\eta Rv$
 - $\eta = Dynamic Viscosity$
- $\circ F_D^{Pressure} = \frac{\pi}{2} c \varrho R^2 v^2$
 - $\varrho = \text{fluid density}$
 - c = drag coefficient
- $\circ R_e = \frac{\varrho R v}{n}$
 - R_e = Reynold's number
- $\circ F_D = \frac{1}{2} c \varrho A v^2$
 - A =Cross sectional area