2. Linear Algebra 1. Injective iff f(x1) = f(x2)implies that x1 = x2. Also, $\dim(\text{NULL}(A)) = 0$ 2. Surjective iff for all $u \in Y$ there exists $x \in X$ such that y = f(x). dim(RANGE(A)) = n. 3. Bijective iff it is both injective and surjective, i.e. for all $y \in Y$ there exists a unique $x \in X$ such that y =

1. f has a left inverse iff it is injective.

2. f has a right inverse iff it is surjective.

3. f is invertible iff it is bijective.

4. If f is invertible then any two inverses (left-, right- or both) coincide.

Group (G, *):

1. Associative $\forall a, b, c \in G, a * (b * c) = (a * b) * c$.

2. $Identity: \exists e \in G, \forall a \in G, a * e = e * a = a.$

3. Inverse: $\forall a \in G, \exists a^{-1} \in G, a * a^{-1} = a^{-1} * a = e$. (G, *) is commutative (or Abelian) iff in addition to 1-3: 4. Commutative: $\forall a, b \in G, a * b = b * a$.

Ring $(R, +, \cdot)$:

+: associative, identity, inverse, communitative \cdot : associative, identity

 $distributive: a \cdot (b+c) = a \cdot b + a \cdot cand(b+c) \cdot a = b \cdot a + c \cdot a$ **Field** is a *communitative Ring* that in addition satisfies Multiplication inverse.

Linear Space (V, F, \oplus, \odot) :

 \oplus : associative, identity, inverse, communitative(V!!) \odot : associative $\forall a, b \in F, x \in V, a \odot (b \odot x) = (a \cdot b) \odot x$ $inverse \forall x \in V, 1 \odot x = x$

Distributive: $\forall a, b \in F, \forall x, y \in V, (a + b) \odot x =$ $(a \odot x) \oplus (b \odot x)$ and $(a \odot (x \oplus y) = (a \odot x) \oplus (a \odot y)$

Product Space $If(V, F, \oplus V, \odot V) and(W, F, \oplus W, \odot W)$ are linear spaces over the same field, the product space $(V \times W, F, \oplus, \odot)$ is the linear space comprising all pairs $(v, w) \in V \times W$ with \oplus defined by $(v1, w1) \oplus (v2, w2) =$ $(v1 \oplus v2, w1 \oplus w2), and \odot defined by a \odot (v, w) =$ $(a \odot Vv, a \odot Ww).$

Subspace Let (V, F) be a linear space and $W \subseteq V$. (W, F) is a linear subspace of V iff it's a L.S. i.e. $\forall w_1, w_2 \in W, a_1, a_2 \in F$, we have $a_1w_1 + a_2w_2 \in W$. *In \mathbb{R}^3 , all subspaces are \mathbb{R}^3 , 2D planes through the origin, 1D lines through the origin, {0}.

*Any finite-dimensional subspace W of a linear space $(V, F, \|\cdot\|)$ is a closed subset of V.

 $\mathbf{SPAN(S)} = \{\sum_{i=1}^n a_i v_i | a_i \in F, v_i \in S, i=1...n\}$ Let (V,F) a L.S.. A set of vectors $S \subseteq V$ is a **basis** of (V, F) iff linearly independent and Span(S) = V. If a basis of (V, F) with a finite number of elements exists, the number of elements of this basis is dimension of (V, F) and (V, F) is finite dimensional. Otherwise, infinite dimensional.

Linear Map: Given (U, F) and (V, F), the function $A: U \to V$ is a linear map iff $\forall u_1, u_2 \in U, a_1, a_2 \in F$, we have $A(a_1u_1 + a_2u_2) = a_1A(u_1) + a_2A(u_2)$. Let $\mathcal{A}: U \to V$ linear.

 $\mathbf{NULL}(\mathcal{A}) = \{ u \in U | \mathcal{A}(u) = \theta_V \} \subset U \text{ (Nullity)}$ **RANGE**(\mathcal{A}) = { $v \in V | \exists u \in U : v = \mathcal{A}(u)$ } $\subset V$ (rank) *1. A vector $u \in U$ s.t. $\mathcal{A}(u) = b$ exists iff $b \in RANGE(A)$. A is surjective iff RANGE(A) = V.

*2. If $b \in RANGE(A)$ and for some $u_0 \in U$ we have that $\mathcal{A}(u_0) = b$ then for all $u \in U : \mathcal{A}(u) = b \Leftrightarrow$ $u = u_0 + z$ with $z \in NULL(A)$

*3. \mathcal{A} is injective iff $NULL(\mathcal{A}) = \{\theta_U\}$

Rank and **Nullity**: Let $A \in F^{n \times m}$ and $B \in F^{m \times p}$. 1. RANK(A) + NULLITY(A) = m.

2. $0 \leq RANK(A) \leq min\{m, n\}$.

3. RANK(A) + RANK(B) - m < RANK(AB) < $min\{RANK(A), RANK(B)\}.$

4. If $P \in F^{m \times m, Q \in F^{n \times n}}$ are invertible, $RANK(A) = RANK(AP) = \overline{RANK(QA)} =$ RANK(QAP) (also Nullity)

5. If $\mathcal{A}(x) = Ax$, $A \in F^{n \times n}$, we have \mathcal{A} invertible \Leftrightarrow $bijective \Leftrightarrow injective \Leftrightarrow surjective \Leftrightarrow RANK(A) = n.$ **Eigenvector:** 1. There exists $v \in \mathbb{C}^n$ s.t. $v \neq 0$ and $Av = \lambda v$. v is called **right eigenvector**. 2. There exists $\eta \in \mathbb{C}^n$ s.t. $\eta \neq 0$ and $\eta^T A = \lambda \eta^T$. η is

 $SPEC[A] = \{\lambda_1,, \lambda_n\}$

called left eigenvector.

$$\begin{array}{ccccc} (U,F) & \xrightarrow{1_U} & (U,F) & \xrightarrow{A} & (V,F) & \xrightarrow{1_V} & (V,F) \\ \{\tilde{u}_j\}_{j=1}^n & \xrightarrow{Q \in F^{n \times n}} & \{u_j\}_{j=1}^n & \xrightarrow{A \in F^{m \times n}} & \{v_i\}_{i=1}^m & \xrightarrow{P \in F^{m \times m}} & \{\tilde{v}_i\}_{i=1}^m \end{array}$$

Change of basis: $A* = P \cdot A \cdot Q$

3. Analysis

Norm:1. $\forall v_1, v_2 \in V, ||v_1 + v_2|| \le ||v_1|| + ||v_2||$ $2. \forall v \in V, \forall a \in F, ||av|| = |a| \cdot ||v||$

 $3. \parallel v \parallel = 0 \Leftrightarrow v = 0$

Normed Linear Space: $(V, F, \|\cdot\|)$

 $||x||_1 = \sum_{i=1}^n |x_i|,$ $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2},$

 $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},$ $||x||_{\infty} = \max|x_i|.$

Ball: Given $(V, F, \|\cdot\|)$, the **ball** of radius $r \in \mathbb{R}_+$ centered at $v \in V$ is $B(v, r) = \{v' \in V \mid ||v - v'|| \le r\}$. B(0,1)is unit ball.

Bound: $S \subseteq V$ is **bounded** if $S \subseteq B(0, r)$ for some r. **Convergence**: Let $(V, F, \|\cdot\|)$ be a normed space. A function $v: N \to V$ is called a sequence in V. The sequence converges to a point $\overline{v} \in V$ iff

 $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m > N, ||v(m) - \overline{v}|| < \epsilon$ In this case, \overline{v} is the **limit** of the sequence.

Close: iff all a set contains all its limit points.

Open: iff V K is closed.

Compact: Closed + Bounded. **Continuous**: f is continuous at $u \in U$ iff

 $\forall \epsilon > 0 \; \exists \delta > 0 \, s.t. \; \| \; u - u' \; \|_{U} < \delta \rightarrow \| \; f(u) - f(u') \; \|_{U} < \epsilon.$ f is continuous on U iff it's continuous everywhere. *All linear functions between finite dimensional spaces are always continuous.

Equivalence: Consider a L.S. (V, F) with two norms. $\|\cdot\|_a$ and $\|\cdot\|_b$.. Th two norms are equivalent iff $\exists m_u \geq m_l \geq 0, \forall v \in V \ m_l \parallel v \parallel_a \leq \parallel v \parallel_b \leq m_u \parallel v \parallel_a.$ Weierstrass Theorem: If $f: S \to \mathbb{R}$ is continuous and set S is compact, then f attains a minimum on S. Cauchy Inequality:

equivalent.

Infinite-dimensional normed space:

 $|| f(t) ||_1 = \int_{t_0}^{t_1} || f(t) ||_2 dt,$ $|| f(t) ||_2 = \sqrt{\int_{t_0}^{t_1} || f(t) ||_2^2 dt},$

 $|| f(t) ||_p = (\int_{t_0}^{t_1} || f(t) ||_2^p dt)^{\frac{1}{p}},$ $|| f(t) ||_{\infty} = max || f(t) ||_{2}$.

*Replacing $|| f(t) ||_2$ by another norm on \mathbb{R}^n in the $\int_{t_0}^{t_1} dt$ and the max are equivalent to the ones above.

Cauchy Sequence: $\{v_i\}_{i=0}^{\infty}$ is a C.S. iff $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m \geq N, ||v_m - n_N|| < \epsilon.$

*Every convergent Sequence is Cauchy. But Cauchy Sequence may not converge to a point!

Complete: The normed space $(V, F, \|\cdot\|)$ is complete (or Banach) iff every Cauchy sequence converges. *Let $F = \mathbb{R}$ or $F = \mathbb{C}$ and if (V, F) is finite-dimensional. Then $(V, F, \|\cdot\|)$ is a Banach Space for any norm $\|\cdot\|$. *Many function spaces might not be Banach, but

 $(C([t_0,t_1],\mathbb{R}^n),\mathbb{R},\|\cdot\|_{\infty})$ is a Banach space. Induced Norm: $||f|| = \sup_{u \neq 0} \frac{||f(u)||_V}{||u||_{II}}$

* $\parallel \mathcal{A} \parallel = \sup_{\parallel u \parallel_{II} = 1} \parallel \mathcal{A}(u) \parallel_{V}$

```
||A||_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}| \text{ (max column sum)}
```

 $||A||_2 = max_{\lambda \in SPEC[A^TA]} \sqrt{\lambda}$ (max singular value)

 $||A||_{\infty} = \max_{i=1,...,m} \sum_{j=1}^{n} |a_{ij}| \text{ (max row sum)}$

* \mathcal{A} is continuous $\Leftrightarrow \mathcal{A}$ is continuous at $0 \Leftrightarrow \sup_{\|u\|_{U}=1}$ $\|A(u)\|_{V} < \infty$, the induced norm $\|A\|$ is well defined. Consider continuous linear functions $\mathcal{A}, \tilde{\mathcal{A}}: (V, F, \|\cdot\|_{V})$ $(W, F, \|\cdot\|_W), \mathcal{B}: (U, F, \|\cdot\|_U) \to (V, F, \|\cdot\|_V)$ 1. $\forall v \in V, || (A)(v) ||_{W} \leq || A || \cdot || v ||_{V}$.

2. $\forall a \in F, ||a(A)|| = |a| \cdot ||A||$.

3. $\|A + \tilde{A}\| < \|A\| + \|\tilde{A}\|$.

4. $\|A\| = 0 \Leftrightarrow A(v) = 0$ for all $v \in V$.

5. $\parallel \mathcal{A} \circ \mathcal{B} < \parallel \mathcal{A} \parallel \cdot \parallel \mathcal{B} \parallel$.

A function is **piecewise continuous** iff it's continuous at all $t \in \mathbb{R}$ except those in a set of discontinuity points $D \subseteq \mathbb{R}$ that satisfiv:

1. $\forall \tau \in D$ left and right limits of u exist, i.e.

 $\lim_{t\to \tau^+} u(t)$ and $\lim_{t\to \tau^-} u(t)$ exist and are finite. Moreover, $u(\tau) = \lim_{t \to \tau^+} u(t)$.

2. $\forall t_0, t_1 \in \mathbb{R}$ with $t_0 < t_1, D \cap [t_0, t_1]$ contains a finite number of points.

The function $p: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is globally Lipschitz in x iff there exists a piecewise continuous function $k : \mathbb{R} \to \mathbb{R}_{\perp} \text{ s.t.}$

 $\forall x, x' \in \mathbb{R}^n, \forall t \in \mathbb{R} \parallel p(x, t) - p(x', t) \parallel \leq k(t) \parallel x - x' \parallel$ **Existence and uniqueness** Assume $p: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is piecewise continuous w.r.t. its second argument (with discontinuity set $D \subseteq \mathbb{R}$) and globally Lipschitz w.r.t. its first argument. Then for all $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$ there exists a unique continuous function $\phi : \mathbb{R} \times \mathbb{R}^n$ s.t.: 1. $\phi(t_0) = x_0$.

2. $\forall t \in \mathbb{R} \setminus D, \frac{d}{dt} \phi(t) = p(\phi(t), t).$

*Let $\|\cdot\|$ be any norm on \mathbb{R}^n . Then for all $t_0, t_1 \in \mathbb{R}$,

 $\| \int_{t_0}^{t_1} f(t)dt \| \le \| \int_{t_0}^{t_1} \| f(t) \| dt \|$ *1. $\forall m, k \in \mathbb{N}, (m+k)! \ge m!k!.$

*2. $\forall c \in \mathbb{R}, \lim_{m \to \infty} \frac{c^m}{m!} = 0.$

Gronwall: Consider $u(.), k(.) : \mathbb{R} \to \mathbb{R}_+$ piecewice continuous, $c_1 \geq 0$, and $t_0 \in \mathbb{R}$. If for all $t \in \mathbb{R}$, we have $u(t) \leq c_1 + |in \overline{t}_{t_0}^{\overline{t}} k(\tau) u(\tau) d\tau|$. Then for all $t \in \mathbb{R}$, $u(t) \le c_1 exp|int_{t_0}^{\dot{t}} k(\tau)d\tau|.$

Autonomous Systems: does not depends explicitly on time, $\dot{x}(t) = p(x(t))$.

 $*s(t, t_0, x_0) = s(t - t_0, 0, x_0)$

4. Time varying linear systems

$$\dot{x}(t) = f(x(t), u(t)) = A(t)x(t) + B(t)u(t)$$
 (1)

$$y(t) = h(x(t), u(t)) = C(t)x(t) + D(t)u(t)$$
where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $x(t) \in \mathbb{R}^p$, (2)

 $A(\cdot): \mathcal{R} \to \mathcal{R}^{n \times n}, B(\cdot): \mathcal{R} \to \mathcal{R}^{n \times m},$ $C(\cdot): \mathcal{R} \to \mathcal{R}^{p \times n}, \ D(\cdot): \mathcal{R} \to \mathcal{R}^{p \times m}$

Linearization perturbation

 $x(t) = x^*(t) + e_x(t), y(t) = x^*(t) + e_y(t)$

Taylor extension of LVT

$$\dot{x}(t) = f(x^*(t) + e_x(t), u^*(t) + e_u(t)) = f(x^*(t), u^*(t)) + \frac{\partial f}{\partial x}(x^*(t), u^*(t))e_x(t) + \frac{\partial f}{\partial u}(x^*(t), u^*(t))e_u(t) + \text{higher order terms}$$

where
$$\frac{\partial f}{\partial x}(x^*(t), u^*(t)) =$$

where
$$\frac{\partial f_1}{\partial x_1}(x^*(t), u^*(t)) =$$

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_1}{\partial x_n}(x^*(t), u^*(t)) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_n}{\partial x_n}(x^*(t), u^*(t)) \end{bmatrix} =$$

$$\frac{\partial f_1}{\partial u}(x^*(t), u^*(t)) =$$

$$\begin{bmatrix} \frac{\partial f_1}{\partial u_1}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_1}{\partial u_m}(x^*(t), u^*(t)) \end{bmatrix}$$

$$\begin{vmatrix} \frac{\partial f_n}{\partial u_1}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_n}{\partial u_n}(x^*(t), u^*(t)) \\ \frac{\partial f_n}{\partial u_n}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_n}{\partial u_n}(x^*(t), u^*(t)) \end{vmatrix}$$

$$\frac{d}{dt}(e_x(t)) = A(t)e_x(t) + B(t)e_u(t)$$

Existence and structure of solutions

Г		(X,\mathbb{R})	(U, \mathbb{R})	(Y,\mathbb{R})
Г	base	$\{e_i\}_{i=1}^n$	$\{f_i\}_{i=1}^m$	$\{g_i\}_{i=1}^p$
Е	dim.	n	m	p

Assump 4.1: $A(\cdot)$, $B(\cdot)$, $C(\cdot)$, $D(\cdot)$ are piecewise continuous. Fact 4.1: For all $u(\cdot): \mathbb{R} \to \mathbb{R}^m$ piecewise continuous and all $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}_n$ there exists UNIQUE solution $x(\cdot) : \to \mathbb{R}^n$ and $y(\cdot) : \to \mathbb{R}^p$ for the system (1) and (2).

The unique solution of (1) and (2)

State transition matrix: $x(t) = s(t, t_0, x_0, u)$, Output response map: $y(t) = \rho(t, t_0, x_0, u)$

Theorem 4.1

Theorem 4.1 Assume that $u(\cdot)$ is piecewise continuous. Under Assumption 4.1, let D_x denote the union of the discontinuity sets of $A(\cdot)$, $B(\cdot)$ and $u(\cdot)$ and D_y the union of the discontinuity sets of

- 1. For all $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$, $u(\cdot) \in PC(\mathbb{R}, \mathbb{R}^m)$
 - $x(\cdot) = s(\cdot, t_0, x_0, u) : \mathbb{R} \to \mathbb{R}^n$ is continuous and differentiable for all $t \in \mathbb{R} \setminus D_x$.
 - y(·) = ρ(·, t₀, x₀, u) : ℝ → ℝ^p is piecewise continuous with discontinuity set D_u.
- 2. For all $t, t_0 \in \mathbb{R}$, $u(\cdot) \in PC(\mathbb{R}, \mathbb{R}^m)$, $x(\cdot) = s(t, t_0, \cdot, u) : \mathbb{R}^n \to \mathbb{R}^n$ and $\rho(t, t_0, \cdot, u) : \mathbb{R}^n \to \mathbb{R}^p$
- 3. For all $t, t_0 \in \mathbb{R}, x_{01}, x_{02} \in \mathbb{R}^n, u_1(\cdot), u_2(\cdot) \in PC(\mathbb{R}, \mathbb{R}^m), a_1, a_2 \in \mathbb{R}$

 $s(t, t_0, a_1x_{01} + a_2x_{02}, a_1u_1 + a_2u_2) = a_1s(t, t_0, x_{01}, u_1) + a_2s(t, t_0, x_{02}, u_2)$ $\rho(t, t_0, a_1x_{01} + a_2x_{02}, a_1u_1 + a_2u_2) = a_1\rho(t, t_0, x_{01}, u_1) + a_2\rho(t, t_0, x_{02}, u_2)$

 $\rho(t, t_0, x_0, u) = \rho(t, t_0, x_0, 0) + \rho(t, t_0, 0, u)$

4. For all $t, t_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^n$, $u \in PC(\mathbb{R}, \mathbb{R}^m)$,

 $s(t, t_0, x_0, u) = s(t, t_0, x_0, 0) + s(t, t_0, 0, u)$

State transition matrix $\phi(t, t_0)$

 $s(t, t_0, x_0, 0) = \phi(t, t_0)x_0$

Theorem 4.2 $\phi(t, t_0)$ has the following properties: 1. $\phi(\cdot, t_0): \mathbb{R} \to \mathbb{R}^{n \times n}$ is the UNIQUE solution of the linear matrix ODE:

 $\frac{\partial}{\partial t}\phi(t,t_0)=A(t)\phi(t,t_0)$ with $\phi(t_0,t_0)=I$ Hence it is continuous for all $t\in\mathbb{R}$ and differentiable

everywhere except at the discontinuity points of A(t)

- 2. $\phi(t,t_0) = \phi(t,t_1)\phi(t_1,t_0)$ for all t, t_0, t_1
- 3. $[\phi(t_1,t_0)]^{-1} = \phi(t_0,t_1)$. $\phi(t_1,t_0)$ is invertible for all t, t_0, t_1

Fact: If A(t) and its integral commute, then

 $\phi(t, t_0) = \exp^{\int_{t_0}^t A(\tau)d\tau}$

Following matrices commute with integral:

 $1.A(t) = w(t) * \bar{A}.w : \mathbb{R} \to \mathbb{R}$ and \bar{A} constant matrix $2.A(t) \in \mathbb{R}$ scalar 3.A(t) diagonal matrix $4.A(t) = \bar{A}$ constant matrix

Theorem 4.3 for all $t, t_0 \in \mathbb{R}, u(\cdot) \in PC(\mathbb{R}, \mathbb{R}^m)$

$$\begin{array}{lclcl} s(t,t_0,x_0,u) & = & \Phi(t,t_0)x_0 & + & \int_{t_0}^{t} \Phi(t,\tau)B(\tau)u(\tau)d\tau \\ state \ transition & = \ zero \ input \ transition & + & zero \ state \ transition \\ \\ \rho(t,t_0,x_0,u) & = & C(t)\Phi(t,t_0)x_0 & + & C(t)\int_{t_0}^{t} \Phi(t,\tau)B(\tau)u(\tau)d\tau + D(t)u(t) \\ \end{array}$$

The rule of Leibniz
$$\frac{d}{dt}[\int_{a(t)}^{b(t)}f(t,\tau)d\tau]=\int_{a(t)}^{b(t)}\frac{\partial}{\partial t}f(t,\tau)d\tau+f(t,b(t))\frac{d}{dt}b(t)-f(t,a(t))\frac{d}{dt}a(t)$$

5. Time invariant linear systems

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$u(t) = Cx(t) + Du(t)$$

$$y(t) = Rx(t) + Bu(t)$$
 (3)

$$y(t) = Cx(t) + Du(t)$$
 (4)

$$e^{At} = I + At + \frac{A^2t^2}{2!} + \dots + \frac{A^kt^k}{k!} \in \mathbb{R}^{n \times n}$$

Theorem 5.1 $\phi(t,t_0) = e^{A(t-t_0)}$ for all $t,t_0 \in \mathbb{R}_+$ Corollary 5.1 The state transition matrix, solution, impulse transition, and impulse response of a time invariant linear system satisfying the following properties:

- 1. For all $t, t_1, t_0 \in \mathbb{R}$, $e^{At_1}e^{At_2} = e^{A(t_1+t_2)}$ and $[e^{At}]^{-1} = e^{-At_1}e^{At_2}$
- 2. For all $t, t_0 \in \mathbb{R}$, $\Phi(t, t_0) = \Phi(t t_0, 0)$.

3. For all $t, t_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^n$, $u(\cdot) \in PC(\mathbb{R}, \mathbb{R}^m)$,

$$\begin{split} s(t,t_0,x_0,u) &= e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau \\ \rho(t,t_0,x_0,u) &= Ce^{A(t-t_0)}x_0 + C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t). \end{split}$$

4. For all $t, \sigma \in \mathbb{R}$ the

$$\begin{split} K(t,\sigma) &= K(t-\sigma,0) = \left\{ \begin{array}{ll} e^{A(t-\sigma)}B & \text{if } t \geq \sigma \\ 0 & \text{if } t < \sigma. \end{array} \right. \\ H(t,\sigma) &= H(t-\sigma,0) = \left\{ \begin{array}{ll} Ce^{A(t-\sigma)}B + D\delta_0(t-\sigma) & \text{if } t \geq \sigma \\ 0 & \text{if } t < \sigma. \end{array} \right. \end{split}$$

$$x(t) = e^{At}x_0 + (K * u)(t), \ y(t) = Ce^{At}x_0 + (H * u)(t)$$

Semi-simple A matrix $A \in \mathbb{R}^{n \times n}$ is semi-simple if and only if there exists right eigenvectors $\{v_i\}_{i=1}^n \in \mathbb{C}^n$ that are linearly independent in the linear space $(\mathbb{C}^n, \mathbb{C})$

Theorem 5.2 Matrix $A \in \mathbb{R}^{n \times n}$ is semi-simple if and only if there exists a nonsingular matrix $T \in \mathbb{C}^{n \times n}$ and a diagonal matrix $\Lambda \in \mathbb{C}^{n \times n}$ such that $A = T^{-1}\Lambda T$ with $T = [v_1 v_2 \cdots v_n]^{-1}$

Fact 5.1 If A is semi-simple

$$e^{At} = T^{-1}e^{\Lambda t}T = T^{-1} \begin{bmatrix} e^{\lambda_1 t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda_n t} \end{bmatrix} T$$

Simple A matrix $A \in \mathbb{R}^{n \times n}$ is simple if and only if its eigenvalues are distinct, i.e. $\lambda_i \neq \lambda_j$ for all $i \neq j$ **Theorem 5.3** All simple matrices are semi-simple Jordan form The algebraic multiplicity of an eigenvalue $\lambda \in \mathbb{C}$ of a matrix $A \in \mathbb{R}^{n \times n}$ is the number of times λ appears in the spectrum SPEC[A]. The geometric multiplicity of λ is the dimension of $NULL[A - \lambda I]$

Fact 5.2 $NULL[(A - \lambda I)^j] \subseteq NULL[(A - \lambda I)^(j + 1)]$ for any $j = 1, 2, \cdots$ and there exists j < n such that $NULL[(A - \lambda I)^j] = NULL[(A - \lambda I)^(j + 1)]$

Jordan Chain

Definition 5.4 A Jordan chain of length $\mu \in \mathbb{N}$ at eigenvalue $\lambda \in \mathbb{C}$ is a family of vectors $\{v^j\}_{i=1}^{\mu} \subseteq$

- 1. $\{v^j\}_{i=1}^{\mu}$ are linearly independent, and
- 2. $[A \lambda I]v^1 = 0$ and $[A \lambda I]v^j = v^{j-1}$ for $j = 2, ..., \mu$.

A Jordan chain $\{v^i\}_{j=0}^n$ is called maximal if it cannot be extended, i.e. there does not exist $v \in \mathbb{C}^n$ linearly independent from $\{v^i\}_{j=1}^n$ such that $[\lambda - \lambda I] = v^n$. The elements of all the maximal Jordan chains at λ are the generalized eigenvectors of x.

Fact 5.3 Let $\{v^j\}_{i=1}^{\mu} \subseteq \mathbb{C}^n$ be a Jordan chain of length μ at eigenvalue $\lambda \in \mathbb{C}$ of the matrix

- v¹ is an eigenvector of A with eigenvalue λ.
- 2. $v^j \in \text{Null}[(A \lambda I)^j]$ for $j = 1, ..., \mu$.

Lemma 5.1 Assume that the matrix $A \in \mathbb{R}^{n \times n}$ has k linearly independent eigenvectors $v_1, \ldots, v_k \in \mathbb{C}^n$ with corresponding maximal Jordan chains $\{v_i^j\}_{j=1}^{\mu_i} \subseteq \mathbb{C}^n$, $i = 1, \ldots, k$. Then the collection of vectors $\{v_1^1, \dots, v_1^{\mu_1}, \dots, v_k^1, \dots, v_k^{\mu_k}\}$ is linearly independent in $(\mathbb{C}^n, \mathbb{C})$ and $\sum_{i=1}^k \mu_i = n$.

The proof of this fact is rather tedious and will be omitted, see [21]. Consider now a change of basis

$$T = [v_1^1 \dots v_1^{\mu_1} \dots v_k^1 \dots v_k^{\mu_k}]^{-1} \in \mathbb{C}^{n \times n}$$
 (5.5)

comprising the generalised eigenvectors as the columns of the matrix T^{-1}

Theorem 5.4 (Jordan canonical form) With the definition of T in equation (5.5), the matrix

$$J = \begin{bmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_k \end{bmatrix} \in \mathbb{C}^{n \times n}, \quad J_i = \begin{bmatrix} \lambda_i & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_i & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_i & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda_i \end{bmatrix} \in \mathbb{C}^{n \times \mu_i}, \quad i = 1, \dots, k$$

and $\lambda_i \in \mathbb{C}$ is the eigenvalue corresponding to the Jordan chain $\{v_i^j\}_{i=1}^{\mu_i}$

Jordan canonical form and Jordan blocks The block diagonal matrix J in Theorem 5.4 is the Jordan canonical form of the matrix A and the matrices J_i are the Jordan blocks of the matrix A.

Theorem 5.5 $e^{At} = T^{-1}e^{Jt}T$, where

$$e^{Jt} = \begin{bmatrix} e^{J_1t} & 0 & \dots & 0 \\ 0 & e^{J_2t} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{J_1t} \end{bmatrix} \text{ and } e^{J_1t} = \begin{bmatrix} e^{\lambda_1t} & te^{\lambda_1t} & \frac{t^2e^{\lambda_1t}}{2t} & \dots & \frac{te^{i_1-1}e^{\lambda_1t}}{(t_1-1)!} \\ 0 & e^{\lambda_1t} & te^{\lambda_1t} & \dots & \frac{te^{i_1-2}e^{\lambda_1t}}{(t_1-2)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & e^{\lambda_1t} \end{bmatrix}, \ i = 1, \dots, k.$$

Laplace Transformation $f(\cdot): \mathbb{R}_+ \to \mathbb{R}^{n \times m}$ mapping the non-negative real numbers to the linear space of n × m real matrices:

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt \in \mathbb{C}^{n \times m}$$

Fact 5.4 The Laplace transform (assuming that it is defined for all functions concerned) has the following properties

It is linear, i.e. for all A₁, A₂ ∈ ℝ^{p×n} and all f₁(·) : ℝ₊ → ℝ^{n×m}, f₂(·) : ℝ₊ → ℝ^{n×m}

$$\mathcal{L}\{A_1f_1(t) + A_2f_2(t)\} = A_1\mathcal{L}\{f_1(t)\} + A_2\mathcal{L}\{f_2(t)\} = A_1F_1(s) + A_2F_2(s)$$

- 2. $\mathcal{L}\left\{\frac{d}{dt}f(t)\right\} = sF(s) f(0)$.
- 3. $\mathcal{L}\{(f*g)(t)\} = F(s)G(s)$ where $(f*g)(\cdot) : \mathbb{R}_+ \to \mathbb{R}^{p \times m}$ denotes the convolution of $f(\cdot)$ $\mathbb{R}_+ \to \mathbb{R}^{p \times m}$ and $g(\cdot) : \mathbb{R}_+ \to \mathbb{R}^{n \times m}$ defined by

$$(f * g)(t) = \int_{0}^{t} f(t - \tau)g(\tau)d\tau$$

Proof: Exercise, just use the definition and elementary calculus

Fact 5.5 For all $A \in \mathbb{R}^{n \times n}$ and $t \in \mathbb{R}_+$, $\mathcal{L}\left\{e^{At}\right\} = (sI - A)^{-1}$.

Lemma 5.2 The matrices M: satisfy

$$M_0 = I$$

 $M_i = M_{i-1}A + \chi_i I$ for $i = 1, ..., n-1$
 $M_{n-1}A + \chi_n I = 0$.

Theorem 5.6 (Cayley-Hamilton) Every square matrix $A \in \mathbb{R}^{n \times n}$ satisfies its characteristic poly-

$$\chi_A(A) = A^n + \chi_1 A^{n-1} + ... + \chi_n I = 0 \in \mathbb{R}^{n \times n}$$
.

Corollary 5.2 Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. For any $k \in \mathbb{N}$, A^k can be written as a linear

Definition 5.6 A matrix $A \in \mathbb{R}^{n \times n}$ is nilpotent if and only if $A^N = 0$ for some $N \in \mathbb{N}$.

Theorem 5.7 The following statements are equivalent

- 1. $A \in \mathbb{R}^{n \times n}$ is nilpotent.
- 2. $A^n = 0$.
- 3. $Spec[A] = \{0, ..., 0\}$

Definition 5.7 The function $G(\cdot): \mathbb{C} \to \mathbb{C}^{p \times m}$ defined by

$$G(s) = C(sI - A)^{-1}B + D$$

is called the transfer function of the system.

Definition 5.8 The poles of the system are the values of $s \in \mathbb{C}$ are the roots of the denominator