Bayesian methods of Machine learning

Assignment 3

1. (3 points) Consider a factorized variational distribution $q(\mathbf{Z})$ of the form

$$q(\mathbf{Z}) = \prod_{i=1}^{N} q_i(\mathbf{Z}_i).$$

By using the technique of Lagrange multipliers, verify that minimization of the Kullback-Leibler divergence $\mathrm{KL}(p|q)$ with respect to one of the factors $q_i(\mathbf{Z}_i)$, keeping all other factors fixed, leads to the solution

$$q_j^*(\mathbf{Z}_j) = \int p(\mathbf{Z}) \prod_{i/nej} d\mathbf{Z}_i = p(\mathbf{Z}_j).$$

2. (5 points) Consider a model in which the set of all hidden stochastic variables, denoted collectively by \mathbf{Z} , comprises some latent variables \mathbf{z} together with some model parameters $\boldsymbol{\theta}$. Suppose we use a variational distribution that factorizes between latent variables and parameters so that $q(\mathbf{z}, \boldsymbol{\theta}) = q_{\mathbf{z}}(\mathbf{z})q_{\boldsymbol{\theta}}(\boldsymbol{\theta})$, in which the distribution $q_{\boldsymbol{\theta}}(\boldsymbol{\theta})$ is approximated by a point estimate of the form $q_{\boldsymbol{\theta}}(\boldsymbol{\theta}) = \delta(\boldsymbol{\theta} - \boldsymbol{\theta}_0)$ where $\boldsymbol{\theta}_0$ is a vector of free parameters. Show that variational optimization of this factorized distribution is equivalent to an EM algorithm, in which the E step optimizes $q_{\mathbf{z}}(\mathbf{z})$, and the M step maximizes the expected complete-data log posterior distribution of $\boldsymbol{\theta}$ with respect to $\boldsymbol{\theta}_0$.