Frailty Model for Parametric Analysis of Bivariate Right Censored Data with Competing Risks

Ankit Sinha , Supervisor : Dr.Sudipta Das

July 12, 2024

Introduction

Definition:

- Bivariate right censored data: This is basically a bivariate right censored data along with censoring indicators.
- Competing risks: Different potential events that prevent, or affect the occurrence of the primary event of interest.
- Objective: To analyze bivariate right censored data using shared frailty models.
- Key Concept: Frailty captures unobserved heterogeneity within a population.

Bivariate Failure Time Data with Competing Risks (1)

- Observed Data: (X_1, X_2, J_1, J_2)
 - X_1 and X_2 denote the two Censoring times.
 - $J_k = 0$ if observation is censored for k = 1, 2.
- Sub-distribution Function:

$$F_j^{(k)}(t_k;\theta) = P(T_k \le t_k, J_k = j;\theta) = \int_0^{t_k} f_j^{(k)}(u;\theta) du$$

• $f_j^{(k)}(u;\theta)$: sub-density function for the k-th individual.

Bivariate Failure Time Data with Competing Risks (2)

• Cumulative Distribution Function:

$$F^{(k)}(t_k;\theta) = P(T_k \le t_k;\theta) = \sum_{j=1}^{L_k} F_j^{(k)}(t_k;\theta)$$

Survival Function:

$$S^{(k)}(t_k;\theta) = P(T_k > t_k;\theta) = 1 - F^{(k)}(t_k;\theta)$$

Bivariate Failure Time Data with Competing Risks (3)

Joint Sub-distribution Function:

$$F_{j_1j_2}(t_1, t_2; \theta) = P(T_1 \le t_1, T_2 \le t_2, J_1 = j_1, J_2 = j_2; \theta)$$

Cause-specific Hazard Function:

$$\lambda_{j}^{(k)}(t_{k};\theta) = \lim_{h \to 0^{+}} \frac{P(t_{k} < T_{k} \leq t_{k} + h, J_{k} = j;\theta)}{h} = \frac{f_{j}^{(k)}(t_{k};\theta)}{S_{-j}^{(k)}(t_{k};\theta)}$$

Bivariate Failure Time Data with Competing Risks (4)

• Frailty Variables:

$$\epsilon^{(k)} = (\epsilon_1^{(k)}, \dots, \epsilon_{L_k}^{(k)})$$

- $-\theta = (\lambda, \phi)$
- Multiplicative Model for Hazard Function:

$$\lambda_j^{(k)}(t_k; \lambda \mid \epsilon^{(k)}) = \lambda_{0j}^{(k)}(t_k; \lambda)\epsilon^{(k)}$$

- $\lambda_{0j}^{(k)}(t_k;\lambda)$: cause-specific baseline hazard function.
- Cumulative Cause-specific Baseline Hazard Function:

$$H_{0j}^{(k)}(t_k;\lambda) = \int_0^{t_k} \lambda_{0j}^{(k)}(u;\lambda) du$$

Shared Gamma Frailty Model

- Frailty Variable: Assumes a Gamma distribution with parameters $\frac{1}{\alpha^2}$ and $\frac{1}{\alpha^2}$.
- Density Function:

$$g(\nu;\alpha) = \frac{1}{\Gamma\left(\frac{1}{\alpha^2}\right)\alpha^{\frac{2}{\alpha^2}}} \nu^{\frac{1}{\alpha^2}-1} e^{-\frac{\nu}{\alpha^2}},$$

where $\nu > 0$ and $\alpha > 0$

• **Applications:** E.g., modeling cancer occurrence times in a father and son due to shared genetic/environmental factors.

Maximum Likelihood Estimation (1)

- Observed Data: (X_1, X_2, J_1, J_2)
 - $J_k = 0$ indicates right-censoring for the k-th individual (k = 1, 2).
 - $x_1 > 0$ and $x_2 > 0$ are the observed times.
 - j_1 and j_2 are the causes of failure $(j_k = 0, 1, \dots, L_k)$.

Maximum Likelihood Estimation (2)

• Likelihood Contributions:

① Case 1: $j_1 = 1, ..., L_1$ and $j_2 = 1, ..., L_2$

$$L(x_1, x_2, j_1, j_2, \nu, \alpha) \propto f_{j_1 j_2}(x_1, x_2, \nu, \alpha)$$

2 Case 2: $j_1 = 0$ and $j_2 = 1, ..., L_2$

$$L(x_1, x_2, j_1, j_2, \nu, \alpha) \propto f_{j_2}^{(2)}(x_2, \nu, \alpha) - \int_0^{x_1} \sum_{j=1}^{L_1} f_{jj_2}(u_1, u_2, \nu, \alpha) du_1$$

Maximum Likelihood Estimation (3)

- Likelihood Contributions:
 - **①** Case 3: $j_1 = 1, ..., L_1$ and $j_2 = 0$

$$L(x_1, x_2, j_1, j_2, \nu, \alpha) \propto f_{j_1}^{(1)}(x_1, \nu, \alpha) - \int_0^{x_2} \sum_{j=1}^{L_2} f_{j_1 j}(u_1, u_2, \nu, \alpha) du_2$$

2 Case 4: $j_1 = 0$ and $j_2 = 0$

$$L(x_1, x_2, j_1, j_2, \nu, \alpha) \propto S(x_1, x_2, \nu, \alpha)$$

Simulation (1)

- **Objective:** Generate 100 samples of bivariate current status data.
- Weibull Baseline Hazard Function:

$$h(t) = \alpha_1 \beta_1 t^{\alpha_1 - 1} e^{-(\beta_1 t)^{\alpha_1}}$$

• Shape parameter: α_1

• Scale parameter: β_1^{-1}

Simulation (2)

• Algorithm Steps:

- **①** Generate a frailty variable ϵ from a Gamma distribution with parameter σ^{-2} .
- ② Generate two random variables T_1 and T_2 from Weibull distributions:

$$\mathcal{T}_1 \sim \mathsf{Weibull}\left(lpha_1, rac{1}{eta_1 \epsilon}
ight), \quad \mathcal{T}_2 \sim \mathsf{Weibull}\left(lpha_2, rac{1}{eta_2 \epsilon}
ight)$$

- α_1 and α_2 : shape parameters
- $\frac{1}{\beta_1 \epsilon}$ and $\frac{1}{\beta_2 \epsilon}$: scale parameters

Simulation (3)

- Algorithm Steps (continued):
 - **3** Generate two censoring times X_1 and X_2 from exponential distributions with parameter θ .
 - Determine censoring occurrence:

$$j_1 = egin{cases} 1, & ext{if } \mathcal{T}_1 \leq \mathcal{X}_1 \ 0, & ext{otherwise} \end{cases}$$
 $j_2 = egin{cases} 1, & ext{if } \mathcal{T}_2 \leq \mathcal{X}_2 \ 0, & ext{otherwise} \end{cases}$

Repeat the process until 100 samples are obtained.

Results

Simulation Parameters:

•
$$\alpha_1 = 0.45$$
, $\alpha_2 = 2.57$, $\beta_1 = \beta_2 = 5$, $\sigma = 0.5$

Parameter Estimates:

Parameter	Estimate	Error in Estimation (Absolute Value)
α_1	1.2658	0.8158
α_2	4.2358	1.6658
β_1	4.5256	0.4744
β_2	8.2145	3.2145
σ	0.145	0.355

Conclusion

• Key Findings:

- Shared frailty models effectively capture unobserved heterogeneity.
- The shared Gamma frailty model is robust for understanding dependencies in bivariate failure time data with competing risks.

• Future Research:

- Explore non-Gamma frailty distributions.
- Incorporate more complex dependency structures.

References

- L. Duchateau and P. Janssen. The Frailty Model. New York: Springer Verlag, 2008.
- Biswadeep Ghosh, Anup Dewanji, and Sudipta Das. Technical Report No. ASU/2024/01, Applied Statistics Unit, Indian Statistical Institute, Kolkata, 2024.
- A. Wienke. Frailty models in survival analysis. Chapman and Hall/CRC, 1st edition, 2010.

Questions & Answers

Thank you for your attention! Please feel free to ask any questions.