Projektmunka III

Lövedék detektálás és elkerülés gépi látás segítségével Unity 3D-ben

Váraljai Gábor HJC885

Tartalom

Program működése	2
User interface	3
Fixed Bullet:	4
Random:	5
Learned bullets:	5
Program futtatása	5
Kamera nézetek váltása:	6
Belső nézetes kameranézet:	6
Lövedék szemszögéből készült kameranézet:	6
Több szemszögű kameranézet:	7
Program futása alatt történő folyamatok:	7
Mintavételezés	7
Képfeldolgozás	9
differenciakép készítése	9
kép szürkeárnyalatossá alakítása	9
Küszöbölés után fekete-fehérré alakítás	10
Gauss szűrés a kör detektáláshoz	10
Körök detektálása	11
Vektorok átadása a mozdulatkezelő rendszernek	11
legoptimálisabb mozdulatsor visszaadása, genetikus algoritmus segítségével	11
mozdulatsor végrehajtása	11
mozdulat elmentése	12
egy lövéshez tartozó adatok	12

Program működése

User interface

A fenti képen látható a szimuláció konfigurálásához, beállításához használható UI.

Bal oldalon található a Main scene, ahol a szimuláció történik, benne a 2 fő GameObject-tel, a Robot, és BulletShooter-rel.

A hierarchiából látható, hogy egy-egy GO (GameObject), tartalmazhat több objectet, jelen esetben a Robot Robot_Body-t, ami a "fizikai" megtestesülése a robotnak, és azon belül a RobotBrain-t, amely magát az üzleti logikát tartalmazza (Kép->vektor, vektor->mozdulat).

A Bulletshooter tartalmaz egy BulletGenerator objectet, ami segítségével lövedékeket tudunk generálni, és elindítani a robot felé.

A jobb oldalon található a bal oldalon korábban kijelölt GameObject Inspectora, ahol jelen esetben a generáláshoz szükséges paramétereket lehetséges beállítani.

Fontos kiemelni a "Shoot Typeenum" enumot, ahol az alábbi 3 funkciót lehetséges váltani.

Fixed Bullet:

A generáló mindig a "Fixedshootvector" paraméterként megadott vektorra állítja a lövedék pályáját, ezzel lehetővé téve egy-egy gyanús mozdulat megfigyelését, a bugok észrevételét.

Random:

A generáló véletlenszerű, de duplikációmentes irányvektort állít elő, ami a "wheretoshootenum" által megadott testrészre lő "Recoil" mértékű szórással.

Learned bullets:

A generáló a már megtanult lövések pályáját adja át a lövedéknek, ezzel segítve a demonstrációt, illetve bugok észrevételét.

Program futtatása

A program indításához középen felül a "Play" gombra kell kattintani, ami elindítja a szimulációt.

Kamera nézetek váltása:

A szimulációhoz több kameranézet is elkészült, az átláthatóság érdekében.

Jelenleg 3 kameranézet közül lehetséges választani.

Belső nézetes kameranézet:

Az első a fenti képen is látható Belső nézetes kameranézet, ahol a mintavételezés zajlik a RobotBrain képfeldolgozó algoritmusának bemeneteként.

Lövedék szemszögéből készült kameranézet:

Itt lassan ráközelítve a lövedék pályájára meg lehet figyelni annak szemszögéből az esetleges ütközéseket, elkerüléseket.

Több szemszögű kameranézet:

3 kamera együttes nézete (generáló, robot váll felőli, main kamera), ahol egyszerre meg lehet tekinteni több szögből a lövésre leadott mozdulatokat.

Program futása alatt történő folyamatok:

Mintavételezés

"RobotEyes" Robot belsőnézetes nézetéből képernyőrögzítéseket készít, melyeket átad a RobotBrain-nek.

Képfeldolgozás

differenciakép készítése

kép szürkeárnyalatossá alakítása

Küszöbölés után fekete-fehérré alakítás

Gauss szűrés a kör detektáláshoz

Körök detektálása

Vektorok átadása a mozdulatkezelő rendszernek.

FIRST: (980.5, 636.5, 0.0) ne.Debug:Log(Object) SECOND:(960.5, 590.5, 0.0) ne.Debug:Log(Object) Result (-20.0, -46.0, 0.0)

Mozdulatkezelő rendszer a kapott vektorról eldönti, hogy szerepelt-e már, ha igen végrehajtja a már megtanult mozdulatot, ha nem akkor elindítja a mozdulatkereső algoritmust a kapott vektor alapján.

legoptimálisabb mozdulatsor visszaadása, genetikus algoritmus segítségével. legoptimálisabb mozdulat tulajdonságai (fitness számítás szempontjai):

- a mozdulat során, egyik testrész sem ütközik, illetve tartalmazza egymást. (pl. fej nincs a testben)
- a mozdulat során a testrészek nem hagyjál el egy bizonyos környezetüket. (pl.: megszorítások, gerinc bevezetése)
- a mozdulat után nincs egyetlen veszélyeztetett testrész sem (lövedék nem talál el semmilyen testrészt)
- a mozdulat a lehető legkevesebb energiába kerül (lehetőleg kevés egész testes mozdulat, inkább egy-egy testrész mozgatása, és leginkább csak forgatás)

mozdulatsor végrehajtása

RobotBrain átadja a mozdulat elvégzéséhez szükséges vektorokat, melyeket a robot elvégez, ezzel a testrészei pozícióját módosítva.

mozdulat elmentése

egy lövéshez tartozó adatok

(5.8, 0.2, 0.0) (0.0, -11.0, 0.0) (0.017, 0.099, 0.022) (12.982, 2.930, -2.801) (-0.092, -0.022, -0.052) (-2.575, -6.523, -0.166) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000, 0.000, -0.273)

- 1. Lövedék azonosítása (1-2)
 - a. 1. vektor lövedék iránya
 - b. 2. vektor lövedék iránya képfeldolgozás által
- 2. Lövedék elkerüléséhez szükséges mozdulat (3-9)
 - a. 3.vektor fej mozgatása
 - b. 4.vektor fej forgatása
 - c. 5.vektor test mozgatása
 - d. 6.vektor test forgatása
 - e. 7.vektor láb mozgatása
 - f. 8.vektor láb forgatása
 - g. 9.vektor egész testes mozdulat