Graph Theory Reference

December 26, 2022

1 Introduction

 \mathbb{N} is the set of natural numbers. The set $\mathbb{Z}/n\mathbb{Z}$ of integers module N is denoted by \mathbb{Z}_n . For example, \mathbb{Z}_2 is $\{\bar{0},\bar{1}\}$. Base 2 logarithm is written as 'log'. The expressions x:=y and y=:x mean that x is being defined as y. A partition is a set $B=\{A_1,A_2,...,A_k\}$ such that all sets of B are disjoint with each other. $[A]^k$ is the set of subsets of size k in A.

2 Graphs

A graph is a pair G=(V,E) of sets such that $E\subset [V]^2$. Always assume $V\cap E=\emptyset$. The elements of V are vertices (or nodes, or points) of the graph G, while the elements of V are the edges (or lines) of graph G.

The graph on
$$V = \{v_1, \dots, v_6\}$$
 with edge set $E = \{\{v_1, v_4\}, \{v_1, v_3\}, \dots, \{v_4, v_6\}\}$

A graph with vertex set V is said to be a graph on V. The vertex of a graph G is referred to as V(G), its edge set as E(G). Sometimes, a graph might not be distinguished from its edge and vertex set. For example, a vertex $v \in G$ instead of $v \in V(G)$, and an edge $e \in G$ instead of $e \in E(G)$.

The number of vertices of a graph G is its order, written as |G| = |V(G)|; its number of edges is denoted by ||G|| = |E(G)|. According to the graph's order, they are finite, infinite, countable and so on.

The empty graph (\emptyset, \emptyset) is denoted simply as \emptyset . A graph with order 0 or 1 is called trivial. Trivial graphs are useful e.g. to start an induction; they are also silly counterexamples. The text generally disregards the trivial graphs.

A vertex v is incident with an edge e if $v \in e$; then e is an edge at v. An edge $\{x,y\}$ is usually written as xy or yx. If $x \in X$ and $y \in Y$, then xy is an X-Y edge. The set of all X-Y edges in a set E is denoted by E(X,Y); instead of E(x,Y) and E(X,y) we simply write E(x,Y) and E(X,y). The set of all edges in E at a vertex v is denoted by E(v).

Two vertices x, y of G are adjacent, or neighbors, if $x, y \in E(G)$. Two edges $e \neq f$ are adjacent if they have an end in common $(e \cap f \neq \emptyset)$. If all the vertices of G are pairwise adjacent, then G is complete. A complete graph on n vertices is a K^n ; a K^3 is called a triangle.

Pairwise non-adjacent vertices are independent. A set of vertices or edges is independent if no two elements of its elements are adjacent. Independent sets of vertices are called stable.

Let G = (V, E) and G' = (V', E') be two graphs.