Contributions aux communications multi-vues pour l'apprentissage collaboratif

Denis Maurel
10 Décembre 2018

Introduction

L'apprentissage machine (ou *Machine Learning* en anglais) est le domaine de recherche regroupant les algorithmes et les méthodes permettant **d'apprendre automatiquement** un résultat à partir d'un ensemble de données, aussi appelés **individus**. Les trois principaux sous-domaines du Machine Learning sont:

L'apprentissage machine (ou *Machine Learning* en anglais) est le domaine de recherche regroupant les algorithmes et les méthodes permettant **d'apprendre automatiquement** un résultat à partir d'un ensemble de données, aussi appelés **individus**. Les trois principaux sous-domaines du Machine Learning sont:

• La classification: apprentissage des correspondances entre une donnée et son label.

L'apprentissage machine (ou *Machine Learning* en anglais) est le domaine de recherche regroupant les algorithmes et les méthodes permettant **d'apprendre automatiquement** un résultat à partir d'un ensemble de données, aussi appelés **individus**. Les trois principaux sous-domaines du Machine Learning sont:

- La classification: apprentissage des correspondances entre une donnée et son label.
- Le clustering: détection de groupes d'individus similaires.

L'apprentissage machine (ou *Machine Learning* en anglais) est le domaine de recherche regroupant les algorithmes et les méthodes permettant **d'apprendre automatiquement** un résultat à partir d'un ensemble de données, aussi appelés **individus**. Les trois principaux sous-domaines du Machine Learning sont:

- La classification: apprentissage des correspondances entre une donnée et son label.
- Le clustering: détection de groupes d'individus similaires.
- L'apprentissage par renforcement: apprentissage d'un comportement permettant à un modèle de réagir à un environnement dynamique.

L'apprentissage machine (ou *Machine Learning* en anglais) est le domaine de recherche regroupant les algorithmes et les méthodes permettant **d'apprendre automatiquement** un résultat à partir d'un ensemble de données, aussi appelés **individus**. Les trois principaux sous-domaines du Machine Learning sont:

- La classification: apprentissage des correspondances entre une donnée et son label.
- Le clustering: détection de groupes d'individus similaires.
- L'apprentissage par renforcement: apprentissage d'un comportement permettant à un modèle de réagir à un environnement dynamique.

Clustering

 Tâche d'apprentissage non supervisée consistant à rassembler des groupes d'individus (a.k.a. clusters) de sorte à maximiser la similarité intra-groupe et à minimiser la similarité inter-groupes.

Clustering: similarité entre individus

- La notion de similarité est souvent confondue avec la notion de distance.
- La similarité doit être adaptée à la nature des données.

Euclidienne	$ a-b _2 = \sqrt{\sum_i (a_i - b_i)^2}$
Manhattan	$ a-b _1=\sum_i a_i-b_i $
Maximum	$ a-b _{\infty}=\max_{i} a_{i}-b_{i} $
Mahalanobis	$\sqrt{(a-b)^{\top}S^{-1}(a-b)}$
Hamming	$ extstyle Hamming(a,b) = \sum_i (1-\delta_{a_i,b_i})$

Table 1: Exemples de distances

Clustering: types de partitions

Après un clustering, on obtient une partition de l'espace ainsi que les appartenances des individus à chaque groupe de cette partition. Ces appartenances peuvent être dures, molles ou floues.

	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃		<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃		<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃
<i>x</i> ₁	1	0	0	<i>x</i> ₁	1	1	0	<i>x</i> ₁	0.9	0.1	0
<i>x</i> ₂	0	1	0	<i>x</i> ₂	0	1	1	<i>x</i> ₂	0	0.8	0.2
<i>X</i> 3	0	0	1	<i>X</i> 3	0	0	1	<i>X</i> 3	0	0.3	0.7
<i>x</i> ₄	0	0	1	<i>X</i> ₄	0	0	1	<i>X</i> ₄	0	0	1.0

(a) Clustering dur (b) Clustering mou (c) Clustering flou

Table 2: Les trois principaux types d'appartenances à des clusters

Clustering: différentes approches

On peut regrouper les algorithmes de clustering en sous-catégories suivant l'approche qu'ils utilisent:

- Méthodes hiérarchiques: création d'un arbre de correspondance entre les individus (Agglomerative method).
- Méthodes de quantification de vecteurs: définition d'individus prototypes pour synthétiser les individus en entrée (K-Means).
- Méthodes de densité: estimation des clusters suivant les zones les plus densément peuplées de l'espace d'entrée (DBSCAN).
- Méthodes stochastiques: création de modèles probabilistes définissant la probabilité d'appartenance d'un individu à un cluster donné (GMM).

Apparition d'un nouveau contexte: **un même ensemble d'individu** est décrit dans plusieurs base de données indépendantes appelées **vues**.

Problème: comment obtenir un clustering de cet ensemble d'individus ?

Deux approches:

Apparition d'un nouveau contexte: **un même ensemble d'individu** est décrit dans plusieurs base de données indépendantes appelées **vues**.

Problème: comment obtenir un clustering de cet ensemble d'individus ?

Deux approches:

 Coopérative: chaque vue effectue un clustering de ses données locales avant de transférer ses résultats à une entité tiers qui devra fusionner les résultats.

Apparition d'un nouveau contexte: **un même ensemble d'individu** est décrit dans plusieurs base de données indépendantes appelées **vues**.

Problème: comment obtenir un clustering de cet ensemble d'individus ?

Deux approches:

- Coopérative: chaque vue effectue un clustering de ses données locales avant de transférer ses résultats à une entité tiers qui devra fusionner les résultats.
- Collaborative: chaque vue effectue un premier clustering local, puis le modifie en fonction des résultats obtenus par les autres vues.

Apparition d'un nouveau contexte: **un même ensemble d'individu** est décrit dans plusieurs base de données indépendantes appelées **vues**.

Problème: comment obtenir un clustering de cet ensemble d'individus ?

Deux approches:

- Coopérative: chaque vue effectue un clustering de ses données locales avant de transférer ses résultats à une entité tiers qui devra fusionner les résultats.
- Collaborative: chaque vue effectue un premier clustering local, puis le modifie en fonction des résultats obtenus par les autres vues.

Exemple multi-vues

- Vue 1: Ensemble des achats récent d'un individus sur des sites d'e-commerce
- **Vue 2**: Salaire et régime alimentaire
- Vue 3: Contenu des derniers repas de chaque individu

Clustering collaboratif: définition

Le clustering collaboratif est un domaine récent désignant l'ensemble des méthodes permettant à plusieurs algorithmes de clustering opérant sur des sources de données différentes de collaborer pour améliorer localement leurs résultats.

- Les algorithmes utilisés peuvent être différents.
- Les vues doivent partager soit leurs descripteurs (clustering vertical), soit leurs individus (clustering horizontal) pour pouvoir être comparées.

Figure 1: Illustration du principe de clustering collaboratif horizontal

Clustering collaboratif: processus

Figure 2: Processus de clustering collaboratif

Clustering collaboratif: théorie

Définition d'un algorithme de clustering collaboratif:

- Qⁱ_{local} est généralement basé sur le critère de l'algorithme local à optimiser.
- Qⁱ_{collab} se base sur l'échange d'information entre vues, typiquement les appartenances des individus aux clusters respectifs de chaque vue.
- α_i et β_j^i sont définis à la main. L'approximation $\forall j, \beta_j^i = \alpha_i^2$ est parfois utilisée car donnant de bons résultats en pratique.

Contexte

Objectif du clustering collaboratif: définir un ensemble de clusters suivant la distribution des données fournies en entrée.

Problème: il arrive que cette distribution **évolue au cours du temps**

Exemple: évolution du régime alimentaire d'un individu ou de la répartition des salaires à l'échelle d'une population.

Utilisation du clustering **incrémental**: les clusters sont appris au cours du temps afin de **s'adapter** aux éventuels changements de distribution. On utilise les N_{batch} derniers individus comme

Définition d'une méthode de clustering incrémental:

Définition d'une méthode de clustering incrémental:

• Choix de la méthode de clustering

Définition d'une méthode de clustering incrémental:

- Choix de la méthode de clustering
- Adaptation de la méthode de clustering pour de l'apprentissage incrémental

Définition d'une méthode de clustering incrémental:

- Choix de la méthode de clustering
- Adaptation de la méthode de clustering pour de l'apprentissage incrémental
- Adaptation du clustering collaboratif au modèle de clustering obtenu

Choix de la méthode de clustering

Dans notre cas, utilisation des **cartes auto-adaptatrices de Kohonen** (ou Self-Organizing Maps (SOM) en anglais) comme méthode de clustering.

- 1ère contrainte: des individus correspondants doivent appartenir à des prototypes correspondants ou à leurs voisinnages proches.
- 2^{ème} contrainte: même topologie des cartes pour toutes les vues pour les rendre comparables.

Figure 3: Exemple de SOM

Cartes Auto-Adaptatrices (SOM)

- Méthode à base de **prototypes** (quantification de vecteurs)
- Permet la **visualisation** de données en hautes dimensions
- Notion de voisinage: utilisation d'une fonction de température.

$$\lambda(t) = \lambda_{min} \left(\frac{\lambda_{max}}{\lambda_{min}} \right)^{\frac{1}{t}} \qquad K_{i,j} = \exp\left(-\frac{d_1^2(i,j)}{\lambda(t)} \right)$$

$$K_{i,j} = \exp\left(-\frac{d_1^2(i,j)}{\lambda(t)}\right)$$

Température élevée

(b) Température faible

SOM: version incrémentale

Les SOM incrémentales ont déjà été étudiées, mais les solutions proposées se basent toutes sur **l'ajout de prototypes** (? et ?). → **Non applicable au clustering collaboratif** du fait de la seconde contrainte: la topologie doit rester la même pour toutes les cartes.

Limitation: fonction de température dépendante du **temps Solution**: rendre la fonction dépendante des **individus**

$$\lambda(t) = \lambda_{min} \left(\frac{\lambda_{max}}{\lambda_{min}} \right)^{\frac{1}{t}} \quad \rightarrow \quad \widetilde{\lambda}(B, W) = \frac{1}{N_{batch}} \sum_{i=1}^{N_{batch}} \|x_i - \chi(x_i)\|_2$$

SOM et clustering collaboratif

L'application des SOM au clustering collaboratif se fait en définissant les termes précemment définis:

$$Q_{local}^{m} = \alpha_{m} \sum_{i=1}^{N} \sum_{j=1}^{|W|} K_{j,\chi(x_{i})}^{m} \|x_{i}^{m} - \omega_{j}^{m}\|^{2}$$

$$Q_{collab}^{m} = \sum_{m'=1, m' \neq m}^{P} \beta_{m}^{m'} \sum_{i=1}^{N} \sum_{j=1}^{|\mathcal{W}|} (K_{j,\chi(x_{i})}^{m} - K_{j,\chi(x_{i})}^{m'})^{2} ||x_{i}^{m} - \omega_{j}^{m}||^{2}$$

- $W \rightarrow la$ carte de prototypes
- $\chi(x_i) \rightarrow \text{la}$ fonction retournant le prototype le plus proche de x_i .
- $x_i^k \rightarrow l'$ individu *i* dans la vue *m*
- $\omega_i^m \rightarrow$ le prototype j de la SOM de la vue m.

SOM incrémentale et clustering collaboratif

Adaptation de notre version de SOM incrémentale au clustering collaboratif:

$$\lambda
ightarrow \widetilde{\lambda}$$

$$K_{i,j}(\lambda)
ightarrow K_{i,j}(\widetilde{\lambda})
ightarrow \widetilde{K_{i,j}}$$

$$Q^m_{local}/Q^m_{collab}(K_{i,j})
ightarrow Q^m_{local}/Q^m_{collab}(\widetilde{K_{i,j}})
ightarrow \widetilde{Q}^m_{local}/\widetilde{Q}^m_{collab}$$

Le nouveau critère dépendant dépendant uniquement des N_b atch derniers individus apparus, il est possible d'effectuer un apprentissage collaboratif incrémental sur l'ensemble des vues.

Les règles de mise à jour sont obtenus par **descente de gradient** appliquée sur ce critère.

Expérimentations

- Analyse de l'impact du clustering collaboratif sur l'apprentissage incrémental.
- Application directe de la phase collaborative pour le clustering collaboratif pour pouvoir comparer les résultats aux version locales.
- Variation de la taille du batch pour étudier l'impact sur l'apprentissage.

Expérimentations

Test de notre méthode sur 4 jeux de données différents

- Spambase
- Waveform
- Wisconsin Breast Cancer Diagnosis (WDBC)
- Isolet

Pureté d'une SOM: pureté moyenne de ses prototypes. **Pureté d'un prototype**: classe majoritaire parmi les individus associés à ce prototype

Erreur moyenne de quantification: distance moyenne entre un prototype et les individus qui y sont associés.

$$qe = \frac{1}{N_{batch}} \sum_{i=1}^{N_{batch}} ||x_i - \omega_{\chi(x_i)}||^2$$

Expérimentations: résultats

Table 3: Erreur de quantification moyenne pour chaque base de donnée. Les nombres en gras sont les plus petits pour chaque ligne

	Vue	SOM Incrémentales	Clustering Collaboratif Incrémentale
	1	0.31	0.26
Spam Base	2	0.18	0.19
	3	0.18	0.16
Waveform	1	0.18	0.23
	2	0.17	0.19
	3	0.24	0.30
WDBC	1	0.19	0.19
	2	0.16	0.19
	3	0.20	0.16
Isolet	1	2.15	1.27
	2	2.84	1.38
	3	2.85	1.37

Expérimentations: résultats sur Isolet

Figure 5: Évolution des puretés pour Isolet. Les lignes rouges représentes les SOM incrémentales tandis que les lignes noires représentent les SOM incrémentales collaboratives. Chaque itération

Expérimentations: résultats

- Score en quantification à long termes comparables: le clustering collaboratif n'endommage pas les résultats locaux.
- Le clustering collaboratif permet de limiter l'impact du bruit dans les vues.
- Les SOM incrémentales collaboratives apprennent plus vite que les SOM incrémentales seules: meilleure exploitation de l'information via le partage.
- Les SOM collaboratives sont globalement plus instables que les SOM incrémentales.
- La stabilité de l'apprentissage augmente avec la taille du batch: plus d'informations à exploiter.

Optimisation de paramètres pour le

clustering collaboratif

Optimisation de paramètres pour le clustering collaboratif

Objectif: Apprendre automatiquement les α et les β en s'affranchissant de simplifications telles que $\beta=\alpha^2$.

Rappel du critère du clustering collaboratif:

$$Q^{i} = \alpha_{i} Q^{i}_{local}(V_{i}) + Q^{i}_{collab}(V_{i}, V_{j \neq i})$$

$$= \alpha_{i} Q^{i}_{local}(V_{i}) + \sum_{j \neq i} \beta^{i}_{j} C^{i}_{j}(V_{i}, V_{j})$$

Nous avons proposé une nouvelle méthode de pondération permettant d'apprendre automatiquement les poids fixant les importances relatives des différents scores.

•
$$\beta^* = \operatorname{argmin}_{\beta} \sum_{i \neq j} \beta_{i,j} C_{i,j}$$

- $\beta^* = \operatorname{argmin}_{\beta} \sum_{i \neq j} \beta_{i,j} C_{i,j}$
- $\forall j \quad \prod_{i \neq j}^{J} \beta_{i,j} = 1$

- $\beta^* = \operatorname{argmin}_{\beta} \sum_{i \neq j} \beta_{i,j} C_{i,j}$
- $\forall j \quad \prod_{i \neq j}^{J} \beta_{i,j} = 1$
- $\forall (i,j) \quad \beta_{i,j} > 0$

- $\beta^* = \operatorname{argmin}_{\beta} \sum_{i \neq j} \beta_{i,j} C_{i,j}$
- $\forall j \quad \prod_{i \neq j}^{J} \beta_{i,j} = 1$
- $\forall (i,j) \quad \beta_{i,j} > 0$
- Affranchissement des α : comme il s'agit de pondérations relatives, on peut fixer $\alpha=1$.

La définition des α et des β passe par la résolution d'un problème sous contrainte. Les contraintes sont les suivantes :

- $\beta^* = \operatorname{argmin}_{\beta} \sum_{i \neq j} \beta_{i,j} C_{i,j}$
- $\forall j \quad \prod_{i \neq j}^J \beta_{i,j} = 1$
- $\forall (i,j) \quad \beta_{i,j} > 0$
- Affranchissement des α : comme il s'agit de pondérations relatives, on peut fixer $\alpha=1$.

Objectif: mettre des poids plus élevés sur les meilleurs accords, tout en gardant une certaine partie des vues en désaccord pour faire évoluer l'information

Optimisation de paramètres: méthode de Karush-Kuhn-Tucker

Critère + contrainte d'égalité + contrainte d'inégalité \rightarrow méthode de Karush-Kuhn-Tucker (KKT)

$$L(\beta, \nu, \lambda) = \sum_{j=1}^{J} \sum_{i \neq j}^{J} (\beta_{i,j} C_{i,j} - \nu_j \ln \beta_{i,j} - \lambda_{i,j} \beta_{i,j}).$$
$$\frac{\partial L}{\partial \beta_{i,j}} = 0, \quad \frac{\partial L}{\partial \nu} = 0, \quad \frac{\partial L}{\partial \lambda} = 0$$

Optimisation de paramètres: résultats

Après résolution, on obtient:

$$\forall (i,j), \quad i \neq j \qquad \beta_{i,j} = \frac{(\prod_{k \neq j} C_{k,j})^{\frac{1}{j-1}}}{C_{i,j}}$$

L'importance d'une vue externe relativement à une vue locale est proportionnelle au rapport entre la moyenne géométrique de toutes les dissimilarités par rapport à la dissimilarité entre les deux vues .

Optimisation de paramètres: résultats

Après résolution, on obtient:

$$\forall (i,j), \quad i \neq j \qquad \beta_{i,j} = \frac{(\prod_{k \neq j} C_{k,j})^{\frac{1}{j-1}}}{C_{i,j}}$$

L'importance d'une vue externe relativement à une vue locale est proportionnelle au rapport entre la moyenne géométrique de toutes les dissimilarités par rapport à la dissimilarité entre les deux vues .

 \rightarrow plus 2 vues sont similaires, plus elles collaboreront.

Algorithm 1: Algorithme topologique de collaboration horizontale

Initialisation: Initialiser toutes les cartes de prototypes W aléatoirement.

Étape locale: Initialisation des cartes

forall Vue do

Minimiser la fonction objectif des cartes auto-adaptatrices standards.

end

Étape collaborative:

forall Vue do

Pour w fixé, mettre à jour β

$$\beta^* = \operatorname{argmin}_{\beta} Q(w, \alpha, \beta)$$

Pour β fixés, mettre à jour les prototypes de toutes les cartes:

$$w^* = \operatorname{argmin}_{w} Q(w, \alpha, \beta)$$

end

Expérimentations

Deux axes d'analyse:

- Analyse de l'évolution du critère collaboratif avec et sans apprentissage automatique des poids (critère: différence relative).
- Analyse des valeurs prises par les β en fin d'apprentissage. (critère: différences relatives entre les poids).

Expérimentations

Deux axes d'analyse:

- Analyse de l'évolution du critère collaboratif avec et sans apprentissage automatique des poids (critère: différence relative).
- Analyse des valeurs prises par les β en fin d'apprentissage. (critère: différences relatives entre les poids).

Ce que l'on s'attend à trouver:

- Une amélioration de la valeur du critère collaboratif grâce à notre méthode
- L'identification automatique des vues bruitées, menant à des valeurs de β proches de 0.

Expérimentations

Deux axes d'analyse:

- Analyse de l'évolution du critère collaboratif avec et sans apprentissage automatique des poids (critère: différence relative).
- Analyse des valeurs prises par les β en fin d'apprentissage. (critère: différences relatives entre les poids).

Ce que l'on s'attend à trouver:

- Une amélioration de la valeur du critère collaboratif grâce à notre méthode
- L'identification automatique des vues bruitées, menant à des valeurs de β proches de 0.

À noter: pour chaque base de données, une vue entièrement composée de bruit a été rajoutée pour tester le second point.

Expérimentations: évolution du critère

Figure 6: Différences relatives du critère collaboratif avec et sans optimisation des β tout au long du processus d'apprentissage.

- Amélioration du critère de manière significative dans la majorité des cas
- Tous les jeux de données ne sont pas traités de la même manière (dépend de la quantité d'informations à partager).

Expérimentations: identifications des vues bruitées

Figure 8: Cartes de chaleur des matrices de β pour chaque jeu de données. M(i,j) correspond à l'importance accordée à la Vue j par la Vue i.

Blanc = forte collaboration - noir = faible collaboration - diagonale représente $\beta=1.$

- Identification des vues bruitées.
- Apparition de méta-clusters (des clusters de clusters). Les

Optimisation des paramètres: résumé

- Proposition d'un système de pondération automatique des vues externes pour le clustering collaboratif.
- Amélioration de la valeur du critère collaboratif
- Identification des vues bruitées
- (BONUS) Apparition de méta-clusters de vues

Optimisation des paramètres: résumé

- Proposition d'un système de pondération automatique des vues externes pour le clustering collaboratif.
- Amélioration de la valeur du critère collaboratif
- Identification des vues bruitées
- (BONUS) Apparition de méta-clusters de vues

Est-il possible d'étendre l'idée de collaboration à d'autres problèmes que le clustering ?

Système de reconstruction

collaboratif

Comment définir le problème de reconstruction collaborative ?

- Application du paradigme collaboratif à un autre problème
- Le clustering collaboratif nécessite la description d'un même individu dans chacune des vues
- En pratique, les données souvent sont soit manquantes, soit incomplètes.

?			?		?					
		?			?		?		?	
	?	?	?	?		?				?
?					?			?	?	

La reconstruction collaborative devrait permettre d'obtenir une approximation d'un individu dans une vue connaissant l'information présente dans les autres vues.

- 1. Compresser et anonymiser les données
- Transférer de l'information d'une vue externe à une vue locale
- 3. **Combiner les informations** en provenance de différentes sources

- 1. Compresser et anonymiser les données
- Transférer de l'information d'une vue externe à une vue locale
- 3. **Combiner les informations** en provenance de différentes sources

Ce que nous proposons:

1. Des réseaux de neurones (autoencodeurs).

- 1. Compresser et anonymiser les données
- Transférer de l'information d'une vue externe à une vue locale
- 3. **Combiner les informations** en provenance de différentes sources

Ce que nous proposons:

- 1. Des réseaux de neurones (autoencodeurs).
- 2. D'autres réseaux de neurones (perceptrons multi-couches).

- 1. Compresser et anonymiser les données
- Transférer de l'information d'une vue externe à une vue locale
- 3. **Combiner les informations** en provenance de différentes sources

Ce que nous proposons:

- 1. Des réseaux de neurones (autoencodeurs).
- D'autres réseaux de neurones (perceptrons multi-couches).
- 3. Une nouvelle méthode de combinaison.

Réseaux de neurones: backpropagation

- Méthode utilisée pour mettre à jour des paramètres en utilisant la méthode de descente de gradient.
- L'erreur est propagée de la sortie vers
 l'entrée du réseau.

Réseaux de neurones: MLP et autoencodeurs

Perceptron multi-couches

- entrées et sorties différentes
- apprentissage supervisé

Autoencodeur

 entrées et sorties identiques item apprentissage non supervisé

Reconstruction collaborative: rappel

Rappel de la problèmatique

- Un individu décrit dans toutes les vues sauf une
- Utilisation des informations externes pour obtenir une approximation locale

Reconstruction collaborative: système

Figure 10: Architecture d'un système de reconstruction collaborative

Reconstruction collaborative: système

Autoencodeurs

- Un par vue: encoder chaque espace
- Rend difficile la reconstruction des données originales sans le décodeur

Perceptron multi-couches

- Décode les représentations externes
- Passe d'un espace codé à l'espace local

- Pour chaque individu et avec N vues, on peut avoir jusqu'à N-1 reconstructions différentes.
- Comment les combiner ?

- Pour chaque individu et avec N vues, on peut avoir jusqu'à
 N 1 reconstructions différentes.
- Comment les combiner ?
- Habituellement, combinaison pondérée des différentes reconstructions.
 - Un scalaire par vue
 - Différentes façons d'apprendre les poids

- Pour chaque individu et avec N vues, on peut avoir jusqu'à
 N 1 reconstructions différentes.
- Comment les combiner ?
- Habituellement, combinaison pondérée des différentes reconstructions.
 - Un scalaire par vue
 - Différentes façons d'apprendre les poids
- MAIS cela implique une hypothèse forte: chaque vue contient exactement la même information sur les individus → irréaliste.
- À la place d'un poids unique, nous utilisons un masque.

Figure 11: Pondération par masque (Masked Weighting Method en anglais).

- Chaque vue possède N-1 masques, un par vue externe, utilisés pour **pondérer chaque représentation externe**.
- Chaque masque est entraîné de manière itérative
- Avantage: les masques peuvent se concentrer sur les parties les mieux reconstruites par la vue externe.

Idée de base pour la mise à jour des poids

$$E_i = \frac{1}{|V_i|} \sum_{x_i \in V_i} ||x_i - \widetilde{x}_i||^2$$
 puis $\frac{\partial E_i}{\partial w_{i|j}^k} = 0$

- E_i = erreur de la i-ème vue
- $V_i = i$ -ème vue
- $x_i = \text{individu de } V_i$
- $w_{i|j}^k = k$ -ème coordonnée du masque attribué à la j-ème vue

Après calcul:

$$w_{i|j}^{k} = \frac{\sum_{x_{i} \in V_{i}} x_{i|j}^{k} (x_{i}^{k} - \sum_{j' \in [1..N] \setminus \{i,j\}} w_{i|j'}^{k} x_{i|j'}^{k})}{\sum_{x_{i} \in V_{i}} (x_{i|j}^{k})^{2}}$$

Après calcul:

$$w_{i|j}^{k} = \frac{\sum_{x_{i} \in V_{i}} x_{i|j}^{k} (x_{i}^{k} - \sum_{j' \in [1..N] \setminus \{i,j\}} w_{i|j'}^{k} x_{i|j'}^{k})}{\sum_{x_{i} \in V_{i}} (x_{i|j}^{k})^{2}}$$

- La mise à jour d'un poids dépend de tous les autres paramètres
 - → Définition d'une règle de mise à jour **itérative**.

Reconstruction collaborative: entraı̂nement

- Entraînementséquentiel
 - les autoencodeurs pour encoder les données
 - les perceptrons multi couches pour reconstruire les individus
 - les masques pour combiner les échantillons reconstruits
- Une vue n'a jamais accès aux données originales de deux vues différentes.
 - autoencodeurs: données originales locales
 - perceptrons: données externes encodées + données originales locales
 - masques: échantillons reconstruits + données originales locales

Reconstruction collaborative: entraînement

Figure 12: Apprentissage séquentiel des éléments du système

Reconstruction collaborative: expériences

- Wisconsin Diagnostic Breast Cancer (WDBC)
 - 569 individus
 - 32 descripteurs
- Multi-Features Digital Dataset (MFDD)
 - 2000 individus
 - 76 coefficients de Fourier
 - 216 correlations profile
 - 64 coefficients Karhunen-Love
 - 240 pixels moyennés en fenêtres de 2 × 3
 - 47 moments de Zernike
- Madelon
 - 4400 individus
 - 20 (utiles) 480 (bruits) variables

Reconstruction collaborative: critères

Distance quadratique moyenne

$$MSE(x, y) = \frac{1}{K} \sum_{i=1}^{K} (x_i - y_i)^2$$

Différence relative moyenne

$$MRD(X, Y) = \frac{1}{K} \sum_{i=1}^{K} \left| \frac{x_i - y_i}{y_i} \right|$$

Analyse visuelle d'images reconstruites (MFDD)

Reconstruction collaborative: résultats

Figure 13: Erreur par vue et par jeu de données

Reconstruction collaborative: images originales

Reconstruction collaborative: images reconstruites

Reconstruction collaborative: images améliorables

Reconstruction collaborative: un peu plus loin

- Les données sont reconstruites pour **ensuite** être utilisées
- Cas d'application: la classification (ici avec des Random Forests)
- Est-ce que les individus reconstruits sont utilisables pour dans des applications ultérieures ?
- Critère: différence en classification: différence entre le score utilisant les données originales et celui utilisant les données reconstruites.

Reconstruction collaborative: un peu plus loin

Figure 17: Différences en classification par vue et par jeu de données

- Résultats proches des résultats originaux
- Impact de notre méthode de pondération dépendant du jeu de données et limité.

Reconstruction collaborative: efficacité de la MWM

- Nouveau jeu de données artificiel: Cube
- 100 individus décrits par 3 descripteurs
- chaque vue est créée en supprimant une des dimensions
- Objectif: Tester la capacité de la méthode de pondération par masque à détecter quels descripteurs sont pertinents.

(a) Jeu de données Cube

(b) Projection

Reconstruction collaborative: efficacité de la MWM

- La méthode de pondération par masque améliore les résultats en reconstruction.
- La sélection des features reconstruits fonctionne t-elle en pratique ?

Figure 19: Combinaison de deux individus partiellement corrects

Reconstruction collaborative: efficacité de la MWM

	Moyenne	Écart type
Descripteur partagé	0.920	0.026
Descripteur non partagé	0.143	0.034

Table 4: Moyenne et écart-type des paramètres des masques en fonction du descripteur qu'elles pondèrent

- Les masques arrivent à cibler les descripteurs partagés tout en limitant l'utilisation des descripteurs non partagés.
- Le faible écart type indique une certaine stabilité de la méthode

Reconstruction collaborative: résumé

- Définition d'un nouveau cas d'application du paradigme collaboratif.
- Définition d'un système permettant de reconstruire de manière collaborative et basé sur des réseaux de neurones.
- Définition d'une méthode permettant de combiner efficacement un ensemble de reconstructions.

- Scores améliorables en reconstruction.
- Suffisamment d'information préservée pour permettre une classification.
- Adaptation des masques suivant la qualité des reconstructions.

Perspectives

Conclusion

Bibliographie