Learning CRFs with Hierarchical Features: An Application to Go

Scott Sanner – University of Toronto
Thore Graepel
Ralf Herbrich
Tom Minka

(with thanks to David Stern and Mykel Kochenderfer)

The Game of Go

- Started about 4000 years ago in ancient China
- About 60 million players worldwide
- 2 Players: Black and White
- Board: 19×19 grid
- Rules:
 - Turn: One stone placed on vertex.
 - Capture.
- Aim: Gather territory by surrounding it

Territory Prediction

Goal: predict territory distribution given board...

- How to predict territory?
 - Could use search:
 - Full α-β impractical (avg. 180 moves/turn, >100 moves/game)
 - Monte Carlo averaging a reasonable estimator, but costly
 - We learn to directly predict territory:
 - Learn $P(\vec{s} | \vec{c})$ from expert data

Talk Outline

- Hierarchical pattern features
- Independent classifiers
 - What is best way to combine features?

- CRF models
 - Coupling factor model (w/ patterns)
 - Exact inference intractable
 - What is best training / inference method to circumvent intractability?
- Evaluation and Conclusions

Hierarchical Patterns

- Centered on a single position
- Exact config. of stones
- Fixed match region (template)
- 8 nested templates
- 3.8 million patterns mined

Models

(a) Independent patternbased classifiers

(c) Pattern CRF

Vertex Variables: s_i, c_i

Unary patternbased factors:
$$\psi_i(s_i=+1,\vec{c})=\exp\left(\sum_{\tilde{\pi}\in\tilde{\Pi}}\lambda_{\tilde{\pi}}\cdot\mathbb{I}_{\tilde{\pi}}(\vec{c},i)\right)$$

Coupling factors:
$$\psi_{(i,j)}(s_i,s_j,c_i,c_j) = \exp\left(\sum_{k=1}^{36} \lambda_k \cdot \mathbb{I}_k(s_i,s_j,c_i,c_j,k)\right)$$

Independent Pattern-based Classifiers

Inference and Training

 Up to 8 patterns may match at any vertex

- Which pattern to use?
 - Smallest pattern
 - Largest pattern

$$\psi_i(s_i = +1, \vec{c}) = P(s_i | \tilde{\pi}_{min}(\vec{c}, i))$$

 $\psi_i(s_i = +1, \vec{c}) = P(s_i | \tilde{\pi}_{max}(\vec{c}, i))$

- Or, combine all patterns:
 - Logistic regression
 - Bayesian model averaging...

$$\psi_i(s_i = +1, \vec{c})$$

$$= \exp\left(\sum_{\tilde{\pi} \in \tilde{\Pi}} \lambda_{\tilde{\pi}} \cdot \mathbb{I}_{\tilde{\pi}}(\vec{c}, i)\right)$$

Bayesian Model Averaging

Bayesian approach to combining models:

$$P(s_j|\vec{c},D) = \sum_{\tau \in \Upsilon} P(s_j|\tau,\vec{c},D) P(\tau|\vec{c},D)$$

Now examine the model "weight":

$$P(\tau|\vec{c}, D) = \frac{P(D|\tau, \vec{c})P(\tau|\vec{c})}{\sum_{\tau \in \Upsilon} P(D|\tau, \vec{c})P(\tau|\vec{c})}$$

Model τ must apply to all data!

Hierarchical Tree Models

Arrange patterns into decision trees τ:

Model τ provides predictions on all data

Coupling CRF

& Pattern CRF

Inference and Training

Inference

- Intractable for 19x19 grids
- Loopy BP is biased
 - but an option
- Sampling is unbiased
 - but much slower

Training

Max likelihood requires inference!

$$\frac{\partial l}{\partial \lambda_j} = \sum_{d \in D} \left(\mathbb{I}_j(\vec{s}^{(d)}, \vec{c}^{(d)}) - \sum_{\vec{s}} \mathbb{I}_j(\vec{s}, \vec{c}^{(d)}) P(\vec{s} | \vec{c}^{(d)}) \right)$$

Other approximate methods...

Pseudolikelihood

Standard log likelihood:

$$l(\vec{\lambda}) = \sum_{d \in D} \log P(\vec{s}^{(d)} | \vec{c}^{(d)})$$

Pseudo log-likelihood (clamp Markov blanket):

$$pl(\vec{\lambda}) = \sum_{d \in D} \sum_{f \in \mathcal{F}} \log P(\vec{s}_f^{(d)} | \vec{c}_f^{(d)}, MB_{\mathcal{F}}(f)^{(d)})$$

- Then inference during training is purely local
- Long range effects captured in data
- Note: only valid for training
 - in presence of fully labeled data

Local Training

• Break CRF into max likelihood trained pieces...

• Shared Unary Piecewise:

Evaluation

Models & Algorithms

- Model & algorithm specification:
 - Model / Training (/ Inference, if not obvious)
- Models & algorithms evaluated:
 - Indep / {Smallest, Largest} Pattern
 - Indep / BMA-Tree {Uniform, Exp}
 - Indep / Log Regr
 - CRF / ML Loopy BP (/ Swendsen-Wang)
 - Pattern CRF / Pseudolikelihood (Edge)
 - Pattern CRF / (S. U.) Piecewise
 - Monte Carlo

Training Time

 Approximate time for various models and algorithms to reach convergence:

Algorithm	Training Time
Indep / Largest Pattern	< 45 min
Indep / BMA-Tree	< 45 min
Pattern CRF / Piecewise	~ 2 hrs
Indep / Log Regr	~ 5 hrs
Pattern CRF / Pseudolikelihood	~ 12 hrs
CRF / ML Loopy BP	> 2 days

Inference Time

• Average time to evaluate $P(\vec{s}|\vec{c})$ for various models and algorithms on a 19x19 board:

Algorithm	Inference Time
Indep / Sm. & Largest Pattern	1.7 ms
Indep / BMA-Tree & Log Regr	6.0 ms
CRF / Loopy BP	101.0 ms
Pattern CRF / Loopy BP	214.6 ms
Monte Carlo	2,967.5 ms
CRF / SwendWang Sampling	10,568.7 ms

Performance Metrics

Vertex Error: (classification error)

$$\frac{1}{|\mathcal{G}|} \sum_{i=1}^{|\mathcal{G}|} \mathbb{I}(\operatorname{sgn}(\mathcal{E}_{P(\vec{s}|\vec{c}^{(d)})}[s_i]) \neq \operatorname{sgn}(s_i^{(d)}))$$

Net Error: (score error)

$$\frac{1}{2|\mathcal{G}|} |\sum_{i=1}^{|\mathcal{G}|} E_{P(\vec{s}|\vec{c}^{(d)})}[s_i] - \sum_{i=1}^{|\mathcal{G}|} s_i^{(d)}|$$

Log Likelihood: (model fit)

$$\log P(\vec{s}^{(d)}|\vec{c}^{(d)})$$

Performance Tradeoffs I

Why is Vertex Error better for CRFs?

- Coupling factors help realize stable configurations
- Compare previous unary-only independent model to unary and coupling model:
 - Independent models make inconsistent predictions
 - Loopy BP smoothes these predictions (but too much?)

BMA-Tree Model

Coupling Model with Loopy BP

Why is Net Error worse for CRFs?

- Use sampling to examine bias of Loopy BP
 - Unbiased inference in limit
 - Can run over all test data but still too costly for training
- Smoothing gets rid of local inconsistencies
- But errors reinforce each other!

Loopy Belief Propagation

Swendsen-Wang Sampling

Bias of Local Training

- Problems with Piecewise training:
 - Very biased when used in conjunction with Loopy BP

- Predictions still good, just saturated
- Accounts for poor Log Likelihood & Net Error...

Performance Tradeoffs II

Conclusions

Two general messages:

- (1) CRFs vs. Independent Models:
 - CRFs should theoretically be better
 - However, time cost is high
 - Can save time with approximate training / inference
 - But then CRFs may perform worse than independent classifiers – depends on metric
- (2) For Independent Models:
 - Problem of choosing appropriate neighborhood can be finessed by Bayesian model averaging