SEQUENCE LISTING

<110> NIKOLICH, MIKELJON HOOVER, DAVID

5 <120> IMMUNOGENIC COMPOSITIONS INCLUDING ROUGH PHENOTYPE BRUCELLA HOST STRAINS AND COMPLEMENTATION DNA FRAGMENTS

<130> ARMY 176

10 <140> NOT KNOWN

<141> 2003-12-11

<150> US 60/402,164

15 US 60/533,016

<151> 2002-12-12

2003-09-15

20 <160>2

<210> SEQ ID NO 1

<211> LENGTH: 2693

25 <212> TYPE: DNA

<213> ORGANISM: Brucella melitensis

<220> FEATURE:

<400> SEQUENCE: 1

	caccitatgt tigggacatt ttaattagga acgittatgc	40
	cttcggatgc cgtgggcgtg gcatccgcat gagggatggc	80
	tttgcgtttc tgcgctttga agatgttgaa attgggttag	120
5	ggccgcaata tggtggtgta agcctaccag catatgagtt	160
	tcgaaatttt gaggggttat ttcttcgccg caccgaagcc	200
	actggattgg atggatatac agaccttgga tacgtcccag	240
	atgctgaaca gcgggggttc atctttgcag acggagcagc	280
	cctccacatc aatagcctgt ttgcagataa taacaagggt	320
10	gatggcgtgt tttgccaaaa cgtccaatac gtagatggaa	360
	acgateteaa tteateeate gaeggeggaa etgggtteaa	400
	ttttatcaac gtagatcgca taaacatcaa tacgatccgc	440
	agtggtggcc gccggaatat ggcaccagga aatcttaaca	480
	ctgtttccca aggtatctct ttgaatgcaa attgtcagac	520
15	tgtaattata ggcaacgcag ttacccacaa ctggtgaagt	560
	caeggttttt atagecaage teaggacatt ttggttaatg	600
	gtctgatatc acgtgataat ggcggaaggg ggtacgttgc	640
	agagggttca gcagggtcat ctctcctaaa tggggccgtt	680
	ttcagagata atgtagcagg gaattatttt acaggaggga	720
20	caagegtaaa ccatetegeg aaetteeaae tteataaete	760
	tagcaccggg gggaaaactt ttgtggccaa tgtcaccaca	800
	aatgggtctg cataacggtc cttgccattt taactataaa	840
	tgagctattc ccgcgcatta agagtagaca cgggaaatca	880
	gtatggctcc gagacatatt acagttatcc taccagctaa	920
25	gtaccgaggc ggaagtcttc gagttacgaa gaatatcgtt	960
	cgaatgcttt tgaagggaag tcagaattat ggtgaacagt	1000
	gtcaagttag attggcagta cgtgccgata cctacgatat	1040

,	tggggaggag tttcgtgatc ttatcgataa tggtgtagag	1080
	gttcgggaaa tatcattcaa agaagttcct ccagaagatg	1120
	ttaacaatgc taactatttc caaggtagaa atatcgacct	1160
	acagtegaga acctattgge taatggagga tggecaaaac	1200
5	aactgtgccg atagtgacct ttggctagtt gtatcctact	1240
	ctgtagagta tcctattgcc ccgataaggc cgacactgat	1280
	attigccacc gatticattc aaaggtacgt acctgatatt	1320
	atttggccac cacggcccgg tgagggggat gctgaggctc	1360
	ttgcgttctt acgacaatca gacggcgtac tagctacaac	1400
10	accacacacg eggetggatg egattteata egetggetta	1440
	cctgcgtcca aagtttatct tgctccgatg gagtttgacc	1480
	cgacgttttt ggatcgttac cggtcagtgt ctaaggttaa	1520
	ggaaccctat ttcctttggc caaccaaccc aaatgctcac	1560
	aaaaaccatg caaaagcgtt tcaagcgcta gacctatatt	1600
15	acggcaaact aaagggtaag ataaagacaa agatagtcgg	1640
	tgtgagtagt gtgcggatgg acccatccca tcgatggcag	1680
	gccaagtacg aaaataaggc ttatgtgaaa tctgtacggg	1720
	aaattgttgc gggtctcgac aacctgaaaa gcaatgttga	1760
	gttcgctggt gaggttgcgg acaaggagta tgcggagctt	1800
20	cttgcttcag cttgtttcct ttggcatcca actttggcag	1840
	acaacggaac ttttgctgcg gtcgaagcgg catatatggg	1880
-	atgtccaacg ctttcaaacg actacccgca gatgcggtat	1920
	atttctaacc gtttcgaaat tcccatgcag tattttaacg	1960
	caaggtctgt gaaggaaatg gcatcagege ttaagcaaat	2000
25	ggaggagacg ccaatagatg taggtttatt gccaagtcga	2040
	gaaaccctat ctctgcattc gtgggaagct cacgcttccg	2080
	aatactggga tgtgatcgtg agggcagcgg catgaataag	2120

	ctcggcgtgt ttatcggcta taacccaggc caattagatc	2160
	catatcaggg tatttctcgc ttaattgcat tcgtgatcaa	2200
	gggggccttg aaccagggta gcggtgtaac aattgcttgc	2240
	cccggctggc taaaggacga tgtacgtgtt cttttggaag	2280
5	atgctgatat cccacttgaa gcggtcaaaa ttatcgcgac	2320
	gaatggtcag cctccattgg cttcgttatg gaagttgaga	2360
	gataagttcc gtaagagacg gacgagtaaa cgaaaacgtc	2400
	tctggctgga gcgctatggs aaaaatgttg caaattttgt	2440
	tgcagaatgg ctttctttgc gctcgtattg ggggattttt	2480
10	ttgggggctg ctgcaattgc tgtagtgact attctacttg	2520
	ccgtaccaat tgctatagcc ttcaccgctc ttatcggtct	2560
	tctatttgct cgtcggctta ttagacgtgt tatcaggtca	2600
	aagettggtt tgttttttca caaaaatgcc aatcaattca	2640
	acaaattaat gtcatctgat gaaaccatcg accggatgag	2680
15	ggaacgggaa ttc	2693

<210> SEQ ID NO 2

<211> LENGTH: 410

<212> TYPE: PRT

20 <213> ORGANISM: Brucella melitensis

<400> SEQUENCE: 2

Met Ala Pro Arg His Ile Thr Val Ile Leu

5

10

Pro Ala Lys Tyr Arg Gly Gly Ser Leu Arg

25 15 20

Val Thr Lys Asn Ile Val Arg Met Leu Leu

25 30

Lys Gly Ser Gln Asn Tyr Gly Glu Gln Cys Gln Val Arg Leu Ala Val Arg Ala Asp Thr 45. Tyr Asp Ile Gly Glu Glu Phe Arg Asp Leu Ile Asp Asn Gly Val Glu Val Arg Glu Ile Ser Phe Lys Glu Val Pro Pro Glu Asp Val Asn Asn Ala Asn Tyr Phe Gln Gly Arg Asn Ile Asp Leu Gln Ser Arg Thr Tyr Trp Leu Met Glu Asp Gly Gln Asn Asn Cys Ala Asp Ser Asp Leu Trp Leu Val Val Ser Tyr Ser Val Glu Tyr Pro Ile Ala Pro Ile Arg Pro Thr Leu Ile Phe Ala Thr Asp Phe Ile Gln Arg Tyr Val Pro Asp Ile Ile Trp Pro Pro Arg Pro Gly Glu Gly Asp Ala Glu Ala Leu

•	Ala Phe Leu Arg Gin Ser Asp Gly Val Leu		
	165	170	
	Ala Thr Thr Pro His Thr Arg Leu Asp Ala		
	175	180	
5	lle Ser Tyr Ala Gly Leu Pro Ala Ser Lys		
	185	190	
	Val Tyr Leu Ala Pro Met Glu Phe A	sp Pro	
	195	200	
	Thr Phe Leu Asp Arg Tyr Arg Ser V	'al Ser	
10	205	210	
	Lys Val Lys Glu Pro Tyr Phe Leu T	ıl Lys Glu Pro Tyr Phe Leu Trp Pro	
	215	220	
	Thr Asn Pro Asn Ala His Lys Asn H	Iis Ala	
	225	230	
15	Lys Ala Phe Gln Ala Leu Asp Leu 7	yr Tyr	
	235	240	
	Gly Lys Leu Lys Gly Lys Ile Lys Th	ır Lys	
	245	250	
	Ile Val Gly Val Ser Ser Val Arg Me	t Asp	
20	255	260	
	Pro Ser His Arg Trp Gln Ala Lys Ty	r Glu	
	265	270	
	Asn Lys Ala Tyr Val Lys Ser Val Ar	rg Glu	
	275	280	
25	Ile Val Ala Gly Leu Asp Asn Leu Ly	s Ser	
	285	290	
	Asn Val Glu Phe Ala Gly Glu Val A	la Asp	

295 300

Lys Glu Tyr Ala Glu Leu Leu Ala Ser Ala

305 310

Cys Phe Leu Trp His Pro Thr Leu Ala Asp

5 315 320

Asn Gly Thr Phe Ala Ala Val Glu Ala Ala

325 330

Tyr Met Gly Cys Pro Thr Leu Ser Asn Asp

335 340

10 Tyr Pro Gln Met Arg Tyr Ile Ser Asn Arg

345 350

Phe Glu Ile Pro Met Gln Tyr Phe Asn Ala

355 366

Arg Ser Val Lys Glu Met Ala Ser Ala Leu

15 365 370

Lys Gln Met Glu Glu Thr Pro Ile Asp Val

375 380

Gly Leu Leu Pro Ser Arg glu Thr Leu Ser

385 390

20 Leu His Ser Trp Glu Ala His Ala Ser Glu

395 400

Tyr Trp Asp Val Ile Val Arg Ala Ala Ala

405 410

25