

(11)Publication number:

05-221352

(43) Date of publication of application: 31.08.1993

(51)Int.CI.

B62D 65/00 B60R 16/02 G11C 17/02

(21)Application number: 04-057359

(71)Applicant: SUZUKI MOTOR CORP

(22) Date of filing:

10.02.1992

(72)Inventor: FUKUMURA KOJI

(54) SYSTEM FOR DISCRIMINATING CAR TYPE INFORMATION

(57)Abstract:

PURPOSE: To provide information by reading an ID tag anywhere at necessary time by preventing the IC tag, serving as an information memory medium, from interfering with work of building a vehicle, and further discriminating car type information without a particular additional member or the like even after shipping the vehicle.

CONSTITUTION: An ID tag 10 serving as an information memory medium, in which car type information of specification model, standard, etc., is stored, is sealed in a car body part of fuel lid 11 or the like and used partly as this car body part, and at the time of vehicle production in a production line and after shipping a vehicle, by reading the car type information, stored in the ID tag 10, by a contactless read device comprising a microwave communication antenna 17, controller 16, etc., the car type information can be discriminated.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-221352

(43)公開日 平成5年(1993)8月31日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FI	技	術表示箇所
B 6 2 D	65/00	М	8211-3D			
B 6 0 R	16/02	В	2105-3D			
G11C	17/02					
			9191-5L	G 1 1 C 17/00	3 2 0 Z	
				حلب المحادث مبالب مبادع	-1	(A . O

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

(22)出願日

特願平4-57359

平成 4年(1992) 2月10日

v

(71)出願人 000002082

スズキ株式会社

静岡県浜松市高塚町300番地

(72)発明者 福村 幸治

静岡県浜松市高塚町300番地 スズキ株式

会社内

(74)代理人 弁理士 奥山 尚男 (外2名)

(54)【発明の名称】 車種情報の識別システム

(57)【要約】

【目的】 情報記憶媒体としての I D タグが車両の組立作業の邪魔になることがなく、しかも車両出荷後においても車種情報の識別を特別な付加部材等によることなく必要な時にどこででも読取って情報を得ることができるようにする。

【構成】 仕様、型式、規格等の車種情報を記憶する情報記憶媒体としてのIDタグ10をフューエルリッド11等の車体部品に封入してこの車体部品の一部とし、生産ラインにおける車両生産時、並びに、車両出荷後において、IDタグ10に記憶された車種情報をマイクロ波通信用アンテナ17及びコントローラ16等から成る非接触式読取装置にて読取ることにより、車種情報の識別を行ない得るようにする。

2

【特許請求の範囲】

【請求項1】 仕様、型式、規格等の車種情報を記憶する情報記憶媒体としてのIDタグを車体部品に封入してこの車体部品の一部とし、生産ラインにおける車両生産時、並びに、車両出荷後において、前記IDタグに記憶された車種情報を非接触式読取装置にて読取ることにより、前記車種情報の識別を行ない得るようにしたことを特徴とする車種情報の識別システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、自動車の車体等の仕様、型式、規格等の車種情報を識別するための識別システムに関するものである。

[0002]

【従来の技術】従来、自動車の生産ラインにおいては、 組立仕様指示データ等の車種情報はすべてホストコンピュータにて管理・運用していた。すなわち、従来では、 図4に示すように、組立仕様指示データはホストコンピュータ1内で予め流動順序にならべられ、車体2が生産ライン上を流動するのに応じて各データを各表示器3及 20 び自動組立装置4に順次送ることにより、所定の組立仕様に応じた組立を行なうようにしていた。

【0003】しかし、このような生産システムでは、ホストコンピュータ1内で車体の流動順序を決定した後に、何らかのトラブルにより実際の流動順序が変わってしまったり、或いは、流動順序を変更する必要が生じた場合等には、ホストコンピュータ1内のメモリに既に記憶されている組立仕様指示データを入れ換えるのは非常に困難なのが実状である。従って、この場合には、ホストコンピュータ1内に記憶されている流動順序と実際の流動順序との間にずれを生じ、組立作業に支障を生じることとなる。

【0004】そこで、このような問題の解決策として、 図5に示す如きDC(Data Carrierの略) システムが提案されている。このDCシステム(データ キャリアシステム) は、ID(Identificat ion Deviceの略) タグと称される小型の情報 記憶媒体に各種の組立仕様指示データ等の車種情報を書 込み、必要な情報を非接触式読取装置(アンテナコント ローラ)を使って読取ることにより、車体と情報の一元 40 化を図るようにしたシステムである。具体的には、無線 通信機能及び記憶機能を有する I Dタグ5を図6. 図7 又は図8に示すように車体2のハンガ6、台車コンベア 7又は車体2に取付け、車体2の送り始めの初期時点に おいてホストコンピュータ 1 により 1 Dタグ 5 への諸デ ータの書き込みを行ない、それ以後は I Dタグ5と自動 組立装置4又は表示器3とが互いに情報通信を行ない、 生産ラインの最終工程において出荷確認等の情報をID タグ5とホストコンピュータ1との間で交信するように したシステムである。すなわち、ホストコンピュータ1

は生産ラインの初期時点及び最終時点のみを制御し、中間時点では I Dタグ5と自動組立装置4等とのやりとりにて組付作業を行なうようにしたものである。

【0005】なお、前記IDタグ5は、専用ホルダ(図示せず)を介してハンガ6、台車コンベア7又は車体2に一体に取付けられ、生産終了後には取外して再使用されるようになっている。かくして、このIDタグ5は、生産ライン内で循環使用される設備の一部となっている。

10 [0006]

【発明が解決しようとする課題】しかしながら、上述の如き従来のDCシステムでは、次のような種々の問題点がある。

【0007】すなわち、IDタグ5は生産ライン内においてのみ使用するものであるため、車両の出荷時に車種情報(車両データ)はバーコートステッカ等の他の車両識別物に置き換えなければならず、装備品としてバーコードスッテカ等を必要とする上に、その貼付作業も付加的に行なう必要がある。

【0008】また、IDタグ5は、ハンガ6又は台車コンベア7等の搬送機器や車体2等に専用ホルダを介して一体に取付けられるため、専用ホルダ及びIDタグ5が突起物となり、組付作業や塗装作業の邪魔になるという不都合がある。さらに、専用ホルダへのIDタグ5の取付け及びこの専用ホルダの車体2等への取付け、並びに、これらの取外しのための作業工数が増えるばかりでなく、取外し後における塗装修正等も行われなければならず、錆保証の面からも不利となる。

【0009】また、生産車両の履歴を生産者が一定期間 保管しようとする場合には、その履歴を書類等にて別個 に保管する必要があり、その管理が煩雑である。

【0010】本発明の目的は、このような種々の問題点を解消し得る車種情報の識別システムを提供することにある。

[0011]

【課題を解決するための手段】上述の目的を達成するために、本発明では、仕様、型式、規格等の車種情報を記憶する情報記憶媒体としてのIDタグを車体部品に封入してこの車体部品の一部とし、生産ラインにおける車両生産時、並びに、車両出荷後において、前記IDタグに記憶された車種情報を非接触式読取装置にて読取ることにより、前記車種情報の識別を行ない得るようにしている。

[0012]

【作 用】I Dタグを車体部品に封入したことにより、I Dタグ取付用の専用ホルダを使用せずに済むと共に、I Dタグが突起物(生産作業の邪魔物)となることがなく、車両の生産ラインのみならず出荷後も読取装置さえあれば車種情報の読み取りを必要な時にどこでも行なうことが可能となる。また、I Dタグの封入により車体部

品の強度の増大が図られる。

[0013]

【実施例】以下、本発明の一実施例に付き図1~図3を 参照して説明する。

【0014】図1は、本発明に係る車種情報の識別シス テム(車両の生産ラインにおけるIDシステム)の構成 を示すものであり、このDCシステムに用いられるID タグ10は、図3に示す如く、車体部品の一つであるフ ューエルリッド! 1内に封入(内蔵)されている。従っ て、 I D タグ 1 0 はフューエルリッド 1 1 の一部となさ れている。このフューエルリッド11は、樹脂製一体成 形品から成るものであって、IDタグ10はフューエル リッド本体11aの内部に埋設されている。

【0015】本例で用いられるIDタグ10は、図2に 示すように、ステンレス製の基板12と、この基板12 上に溶接結合されたセラミック製のシェル13と、基板 12及びシェル13から成るパッケージ14内に収容さ れたタグ本体 15とで構成されている。上述のタグ本体 15の内部構造は、真空・気密構造であり冷却能率が高 く、そのタグ本体15内にはEEPROM(Elect 20 rical Erasable Programabl e Memoryの略で、電気的に消去可能で書込み可 能なROMの一種)等の電子回路が内蔵されている。な お、このEEPROMはバッテリレスタイプのマイクロ 波給電型のものである。このようなIDタグ10として は、例えば、AEC社のOSI(Object-Ide ntification-system) に使用される IDタグが挙げられる。

【0016】この種のIDタグ10は、耐熱性が高く小 型であるため、フューエルリッド11の樹脂成形時にお 30 ける高熱(例えば、250℃;5~10分)に対しても 充分に耐えることができ、しかも比較的小型のフューエ ルリッド本体11a内に完全に封入することが可能であ る。また、前記IDタグ10は、車体塗装工程での高温 (例えば、200℃;120分)にも充分に耐えること ができるものである。さらに、フューエルリッド11ひ いてはIDタグ10はフューエルタンクに装着されて金 属製の車体に取り囲まれることとなるが、EEPROM はバッテリレスタイプのマイクロ波給電型であるため、 周囲の金属部品から影響を受けにくく、従って非接触式 40 通信手段として好ましいものである。

【0017】かくして、フューエルリッド11内に封入 されたIDタグ10は、車両の生産ラインにおいて次の ように利用される。まず、初期段階において、前記ID タグ10のEEPROMに所定の車種情報のデータ(例 えば、組付仕様指示データ)が予め書込まれて記憶され る。そして、このIDタグ10を備えたフューエルリッ ド11が車体に取付けられて生産ライン上に乗せられ、 所定の通信エリアに入ると、図1に示す如く、コントロ ーラ16にて制御されるアンテナ(質問器) 17とID 50

タグ10との間でマイクロ波による交信が行われる。す なわち、生産ラインに沿って車体が移動されてIDタグ 10が通信エリアに入ると、アンテナ17から発信され ているマイクロ波からタグ本体 15内の電子回路の動作 に必要な電源への変換が開始され、アンテナ17とID タグ10との間でマイクロ波交信が行われる。

【0018】これに応じて、ホストコンピュータ1にて 制御シーケンサ18が作動し、このシーケンサ18から の制御信号に基づいて自動組立装置4が駆動されて所定 の車体部品の組付作業は行われる。

【0019】しかる後、IDタグ10が前記通信エリア から外れると、マイクロ波通信は遮断され、タグ本体1 5内の電子回路は無通電状態になる。なお、前記 E E P ROMは不揮発性メモリであるため、無通電状態になっ ても諸データは保持される。

【0020】次いで、車体とともにIDタグ10が生産 ラインに沿ってさらに移動されて次工程位置に達する と、当該位置に対応して配置されている別のアンテナ1 7の通信エリア内に入る。すると、再びマイクロ波交信 状態となり、タグ本体 I 5内の E E P R O Mへのデータ の書込み及び読取りがなされる。そして、読出されたデ ータ信号が所定の自動組立装置(或いは表示器)に入力 され、各工程において所定の車体組付作業が順次に行な われる。

【0021】このようにして各種の車体部品が順次組付 けられ、生産ラインから搬出される際には、ホストコン ピュータ1にてその旨が確認される。

【0022】また、生産ラインからの搬出後において も、IDタグ10は、フューエルリッド11内に封入さ れた状態のまま車両に一体に取付けられており、車両と 一緒に生産工場から出荷される。

【0023】上述の如きシステムによれば、IDタグ1

0をフューエルリッド11内に封入するようにしている ので、次のような利点がある。すなわち、 I Dタグ10 を車体部品の一種であるフューエルリッド11と一体に 取扱うことができるため、 I D タグ 1 0 の取付け作業を 別個に行なわずに済み、作業工数の削減を図ることが可 能となる。さらに、IDタグ10用の特別な取付け場所 も不要となり、塗装修正作業等を行なわずに済む。ま た、樹脂製のフューエルリッド11は強度不足が心配さ れるが、 I D タグ1 0 をフューエルリッド 1 1 の補強部 材(芯材)として利用することができるため、強度上の 問題をなくすことができる。しかも、耐熱型のIDタグ 11を封入した耐熱樹脂製のフューエルリッド11を生 産ラインの塗装工程において電着処理後の車体に取付け ることにより、塗装工程及び艤装組立工程を通して、フ ューエルリッド11自体を仕様指示手段として仕様でき

【0024】また、IDタグ10をフューエルリッド1 1内に封入したまま車両と一緒に出荷するようにしてい

6

るので、次のような利点がある。すなわち、IDタグI 0を車両と一緒に出荷することで、車両出荷後も車両情報用データパックとしてIDタグIOを利用することができる。また、一般的なIDタグの寿命は、破壊した場合以外は、内蔵バッテリの寿命又は内部データのクリア回数で決められるが、本例で用いられるIDタグIOは内蔵バッテリは無くしかもクリアされてない(読取るか、加えるだけ)ため、その寿命は車両の寿命よりも長い。従って、フューエルリッドIIを回収してIDタグ10を取出すことにより、リサイクル(再使用)が可能 10である。

【0025】以上、本発明の一実施例に付き述べたが、本発明は既述の実施例に限定されるものではなく、本発明の技術的思想に基いて各種の変形及び変更が可能である。例えば、既述の実施例では、IDタグ10をフューエルリッド11内に埋設することにより封入するようにしたが、これに限らず、フューエルリッド11の外面にIDタグ10を密着配置し、このIDタグ10を囲む別部材をフューエルリッド11に接着して分解不可能に固定することによりIDタグ10を封入するようにしてもよい。さらに、フューエルリッド11の形状は各種の形状のものであってもよい。また、IDタグ10を封入する部材としてはフューエルリッド11に限らず、他の車両部品に封入するようにしてもよい。

[0026]

【発明の効果】以上の如く、本発明は、車種情報を記憶するIDタグを車両部品に封入し、車両生産時、並びに、車両出荷後においてこの車種情報を読取ることにより車種情報の識別を行なうようにしたものであるから、車種情報が車両の一部となって車両と情報との実質的一元化が図れることとなり、車両出荷後においても別個のバーコードステッカ等の如き情報記憶媒体や別保管のデータ書類等を用いなくても必要な時にどのような場所でも車種情報の識別が可能となる。しかも、IDタグは組立作業の邪魔になることがなく、塗装作業にも何らの支障を生じることがなく、従って修正塗装等の付加的作業を要さずに済む。

【0027】また、バーコードステッカ等のように1回だけの使用ではなく、1Dタグの寿命がなくなるまでの長い期間に亘って何回でも回収して再使用をすることができる。さらに、車両部品の1Dタグを封入するのに応じて、当該車両部品の全体的強度が増大せしめられるため、特に当該車両部品が樹脂製部品(フューエルリッド等)である場合には強度不足を補うことができるという副次的な作用効果を得ることができる。

【0028】また、生産車両の履歴の管理を行なうため に別の書類にて保管しておく必要がなくなり、管理の煩 雑化を避けることができる。

【図面の簡単な説明】

【図1】本発明に係る車種情報の識別システムの構成を 示す構成図である。

【図2】 IDタグの斜視図である。

【図3】(a)はフューエルリッドの一部分を切欠いた 状態を示す斜視図、(b)はフューエルリッドの縦断面 図である。

【図4】従来における車種情報の識別システムを説明するための概念図である。

【図5】DCシステムを説明するための概念図である。

【図6】車体のハンガに I D タグが取付けられている状態を示す斜視図である。

【図7】台車コンベアに I Dタグが取付けられている状態を示す斜視図である。

【図8】車体にIDタグが取付けられている状態を示す 斜視図である。

【符号の説明】

- 1 ホストコンピュータ
- 2 車体
- 3 表示器
- 4 自動組立装置
- 10 IDタグ
- 11 フューエルリッド
- 16 コントローラ
- 17 アンテナ

【図2】

[図3]

【図1】

