Math. - CC 4 - Correction

EXERCICE I

On considère les ensembles suivants :

$$E = \{(x, y, z) \in \mathbb{R}^3, x + y - 2z = 0\}$$

$$F = \{(x, y, z) \in \mathbb{R}^3, x - 6y = 0\}$$

$$G = \{(x, y, z) \in \mathbb{R}^3, 2x + y - 3z = 0\}$$

1. Montrer que E, F et G sont des sous-espaces vectoriels de \mathbb{R}^3 et en déterminer des bases.

 $E = \text{Vect}\{(-1, 1, 0), (2, 0, 1)\}\$

 $F = \text{Vect} \{(0, 0, 1), (6, 1, 0)\}$

 $G = \text{Vect}\{(1, -2, 0), (0, 3, 1)\}\$

2. a. Sans calculer $E \cap F$, justifier que $\dim(E \cap F) \geq 1$.

La formule de Grassman donne : $\dim(E \cap F) = \dim(E) + \dim(F) - \dim(E + F)$.

Comme $E + F \subset \mathbb{R}^3$, on a donc $\dim(E + F) \leq 3$ et par suite : $\dim(E \cap F) \geq 2 + 2 - 3 \geq 1$.

b. Montrer que $(E \cap F) \oplus G = \mathbb{R}^3$

Montrer que
$$(E \cap F) \oplus G = \mathbb{R}$$

 $(x, y, z) \in E \cap F \cap G \Leftrightarrow \begin{cases} x + y - 2z = 0 \\ x - 6y = 0 \\ 2x + y - 3z = 0 \end{cases}$; $\begin{pmatrix} 1 & 1 & -2 \\ 1 & -6 & 0 \\ 2 & 1 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 \\ 0 & -7 & 2 \\ 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & -5 \end{pmatrix}$. On en déduit que $(x, y, z) \in E \cap F \cap G \Leftrightarrow x = y = z = 0$.

On en déduit que $(x, y, z) \in E \cap F \cap G \Leftrightarrow x = y = 0$

Ainsi $(E \cap F) + G = (E \cap F) \oplus G$.

De plus, $\dim(G) = 2$ et $\dim(E \cap F) \ge 1$ on a donc

 $\dim\left((E\cap F)+G\right)=\dim\left((E\cap F)\oplus G\right)=\dim(E\cap F)+\dim(G)\geq 3 \text{ et finalement, } (E\cap F)\oplus G=\mathbb{R}^3.$

Justifier que l'on peut trouver une base de $E \cap F$ à l'aide d'un produit vectoriel, puis la déterminer.

D'un point de vue géométrique, E et F sont des plans vectoriels dont des vecteurs normaux sont respecti-

vement $\overrightarrow{n_1}\begin{pmatrix}1\\1\\-2\end{pmatrix}$ et $\overrightarrow{n_2}\begin{pmatrix}1\\-6\\0\end{pmatrix}$. Ces vecteurs n'étant clairement pas colinéaires, l'intersection de ces plans

vectoriels est la droite vectorielle dirigée par $\overrightarrow{n_1} \wedge \overrightarrow{n_2} \begin{pmatrix} -12 \\ -2 \\ 7 \end{pmatrix}$

b. Retrouver le résultat $(E \cap F) \oplus G = \mathbb{R}^3$.

 $(12,2,7) \notin G$ car les coordonnées ne vérifient pas 2x+y-3z=0, donc $(E\cap F)+G=(E\cap F)\oplus G$ et les dimensions donnent le résultat.

EXERCICE II

Soit E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Le but de l'exercice est de montrer que deux sousespaces vectoriels de E de même dimension admettent un supplémentaire commun.

Soient E_1 et E_2 deux sous-espaces vectoriels de E de dimension $r \in [0, n]$.

1. On suppose dans cette question que r = n.

Montrer que E_1 est E_2 ont un supplémentaire commun, c'est-à-dire qu'il existe un sous-espace vectoriel F de $E \text{ tel que } E_1 \oplus F = E_2 \oplus F = E$

Comme $r = \dim(E)$, on a $E_1 = E_2 = E$ qui admettent comme supplémentaire commun $\{0_E\}$.

- 2. On suppose que r < n et que si F_1 et F_2 sont des sous-espaces vectoriels de E de dimension r+1 alors ils admettent un supplémentaire commun dans E.
 - Montrer que $E_1 \cup E_2 \neq E$.

On suppose que $E_1 \cup E_2 = E$.

- \leadsto Si $E_1 \subset E_2$, alors $E_1 \cup E_2 = E_2$ donc $E_2 = E$ ce qui contredit l'hypothèse r < n. Donc $E_1 \nsubseteq E_2$. Ainsi, $\exists x \in E_1 \text{ tel que } x \notin E_2.$
- \rightarrow De même $E_2 \nsubseteq E_1$ donc $\exists y \in E_2$ tel que $y \notin E_1$.

 $x + y \in E \text{ donc } x + y \in E_1 \cup E_2.$

- \rightarrow Si $x + y \in E_1$ alors, comme E_1 est un sous-espace vectoriel de E et que $x \in E_1$ on a $(x + y) x \in E_1$ c'est-à-dire $y \in E_1$ ce qui est exclu.
- \rightarrow Si $x + y \in E_2$ alors, comme E_2 est un sous-espace vectoriel de E et que $y \in E_2$ on a $(x + y) y \in E_2$ c'est-à-dire $x \in E_2$ ce qui est exclu.

On a ainsi montré par l'absurde que $E_1 \cup E_2 \neq E$.

Ainsi, il existe $x \in E$ tel que $x \notin E_1$ et $x \notin E_2$.

- **b.** On note $F_1 = E_1 + \text{Vect}\{x\}$ et $F_2 = E_2 + \text{Vect}\{x\}$. Déterminer $\dim(F_1)$ et $\dim(F_2)$. La formule de Grassman donne : $\dim(F_1) = \dim(E_1) + \dim(\operatorname{Vect}\{x\}) - \dim(E_1 \cap \operatorname{Vect}\{x\}).$ $x \neq 0_E \text{ car } 0_E \in E_1 \cup E_2 \text{ donc } \dim (\text{Vect}\{x\}) = 1.$ $x \notin E_1$ donc $E_1 \cap \text{Vect}\{x\} = \{0_E\}$ donc finalement $\dim(F_1) = \dim(E_1) + 1 - 0 = r + 1$; de même $\dim(F_2) = r + 1$.
- **c.** Montrer que E_1 et E_2 ont un supplémentaire commun. Comme $\dim(F_1) = \dim(F_2) = r + 1$, par hypothèse, F_1 et F_2 admettent un supplémentaire commun F; on a : $F_1 \oplus F = F_2 \oplus F = E$ donc $E_1 \oplus \operatorname{Vect}\{x\} \oplus F = E_2 \oplus \operatorname{Vect}\{x\} \oplus F = E$. On note $S = F \oplus \operatorname{Vect}\{x\}$. Alors $E_1 \oplus S = E_2 \oplus S = E$, donc E_1 et E_2 ont un supplémentaire commun.
- 3. Conclure.

On a montré par récurrence descendante finie que deux sous-espaces vectoriels de E de même dimension admettent un supplémentaire commun.

EXERCICE III

On considère la matrice
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
.
On note $E = \{ M \in \mathcal{M}_3(\mathbb{R}), MA = AM = M \}$

- **1. a.** Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ pour les lois usuelles.
 - On a clairement $0_3 \in E$
 - Soit $(\lambda, M, N) \in \mathbb{R} \times E^2$, alors $(\lambda M + N)A = \lambda MA + NA = \lambda AM + AN = A(\lambda M + N)$ On a également $(\lambda M + N)A = \lambda MA + NA = \lambda M + N$ donc $(\lambda M + N) \in E$ E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
 - **b.** Montrer qu'aucune matrice de E n'est inversible. Si $M \in E \cap GL_3(\mathbb{R})$ alors $MA = M \Rightarrow M^{-1}MA = M^{-1}M = I_3$ donc $A = I_3$ ce qui est faux. Ainsi, aucune matrice de E n'est inversible.
- **2.** Soit $M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix} \in E$

On en déduit que $E = \text{Vect}\{M_1, M_2, M_3, M_4\}$. De plus, $\forall (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{R}^4$,

on a donc déterminé une famille libre et génératrice de
$$E$$
, donc une base.
$$\lambda_1 M_1 + \lambda_2 M_2 + \lambda_3 M_3 + \lambda_4 M_4 = 0_3 \Leftrightarrow \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_1 \\ \lambda_3 & \lambda_4 & \lambda_3 \\ \lambda_1 & \lambda_2 & \lambda_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$$

b. On considère le sous-ensemble F de E tel que $F = \left\{ \begin{pmatrix} a & b & a \\ b & c & b \\ a & b & a \end{pmatrix}, (a,b,c) \in \mathbb{R}^3 \right\}$. Montrer que F est un sous-espace vectorial le F.

Montrer que F est un sous-espace vectoriel de E et en donner une base.

On a clairement, $M \in F \Leftrightarrow \exists (a, b, c) \in \mathbb{R}^3, M = aM_1 + b(M_2 + M_3) + cM_4$.

On en déduit que $F = \text{Vect}\{M_1, M_2 + M_3, M_4\}$, donc que c'est un sous-espace vectoriel de E de base $(M_1, M_2 + M_3, M_4)$, puisque $\{M_1, M_2, M_3, M_4\}$ est libre.

- 3. On note φ l'application de F dans $\mathbb R$ qui à toute matrice $M=(a_{i,j})_{1\leq i,j\leq 3}$ de F associe le nombre $\sum \sum a_{i,j}$.
 - a. Montrer que φ est une application linéaire de F dans \mathbb{R} . Soient $(a_{i,j})_{1 \leq i,j \leq 3}$ et $(b_{i,j})_{1 \leq i,j \leq 3}$ des matrices de F et $\lambda \in \mathbb{R}$. On a :

$$\varphi\left(\lambda(a_{i,j}) + (b_{i,j})\right) = \varphi\left((\lambda a_{i,j} + b_{i,j})\right) = \sum_{i=1}^{3} \sum_{j=1}^{3} (\lambda a_{i,j} + b_{i,j}) = \lambda \sum_{i=1}^{3} \sum_{j=1}^{3} a_{i,j} + \sum_{i=1}^{3} \sum_{j=1}^{3} b_{i,j}$$

$$= \lambda \varphi\left((a_{i,j})\right) + \varphi\left((b_{i,j})\right).$$
On a donc $\varphi \in \mathcal{L}(F, \mathbb{R}).$

b. Déterminer $\operatorname{Im}(\varphi)$. En déduire la dimension de $\operatorname{Ker}(\varphi)$.

 $\operatorname{Im}(\varphi) \subset \mathbb{R}$ et en prenant par exemple $M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ on a $\varphi(M) = 1 \neq 0$ donc $\varphi \neq 0$. On en déduit que

 $\operatorname{Im}(\varphi) = \mathbb{R}$, puis par le théorème du rang que $\operatorname{dim}\left(\operatorname{Ker}(\varphi)\right) = \operatorname{dim}(F) - \operatorname{rg}(\varphi) = 2$.

c. Déterminer une base de $Ker(\varphi)$.

$$M = \begin{pmatrix} a & b & a \\ b & c & b \\ a & b & a \end{pmatrix} \in \operatorname{Ker}(\varphi) \Leftrightarrow 4a + 4b + c = 0 \Leftrightarrow M = a \begin{pmatrix} 1 & 0 & 1 \\ 0 & -4 & 0 \\ 1 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$
 On en déduit que $\operatorname{Ker}(\varphi) = \operatorname{Vect} \left\{ \begin{pmatrix} 1 & 0 & 1 \\ 0 & -4 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} \right\}.$

PROBLEME

L'objectif de ce problème est de montrer par l'absurde que le nombre π est irrationnel (**Théorème de Lambert**, **1761**). On suppose donc qu'il existe deux entiers naturels non nuls p et q tels que $\pi = \frac{p}{q}$.

1. On définit, pour $n \in \mathbb{N}^*$, le polynôme

$$P_n = \frac{1}{n!} X^n (p - qX)^n$$

a. Déterminer les racines de P_n et leurs multiplicités respectives. Le polynôme est donné sous forme factorisée. Ses racines sont 0 et $\frac{p}{q}$, toutes deux de multiplicité n.

b. Déterminer explicitement les coefficients a_k de P_n .

$$\begin{cases} a_k = 0 & \text{pour } k \in \llbracket 0, n-1 \rrbracket \\ a_{n+k} = \frac{1}{n!} \binom{n}{k} p^{n-k} (-q)^k & \text{pour } k \in \llbracket 0, n \rrbracket \end{cases}$$

c. En déduire, à l'aide de la formule de Taylor pour les polynômes, que pour tous les entiers $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$,

$$P_n^{(k)}(0) \in \mathbb{Z}$$

La formule de Taylor pour les polynômes donne : $P_n = \sum_{k=0}^{2n} \frac{P_n^{(k)}(0)}{k!} X^k$ on a donc : $\forall n \in \mathbb{N}^*$:

 \leadsto pour $k \in [\![0,n-1]\!]$ et pour $k \geq 2n+1$: $P_n^{(k)}(0) = 0 \in \mathbb{Z}$

$$\Rightarrow \text{ pour } k \in [0, n]: P_n^{(n+k)}(0) = \frac{(n+k)!}{k!(n-k)!} p^{n-k}(-q)^k \in \mathbb{Z}, \text{ car } \frac{n!}{k!(n-k)!} = \binom{n}{k} \in \mathbb{N}$$

d. Montrer que

$$P_n\left(\frac{p}{q} - X\right) = P_n(X)$$

$$P_n\left(\frac{p}{q}-X\right) = \frac{1}{n!}\left(\frac{p}{q}-X\right)^n\left(p-q\left(\frac{p}{q}-X\right)\right)^n = \frac{1}{n!}\frac{1}{q^n}(p-qX)^nq^nX^n = P_n(X)$$

$$\forall n \in \mathbb{N}^*, \quad \forall k \in \mathbb{N}, \quad (-1)^k P_n^{(k)} \left(\frac{p}{q} - X\right) = P_n^{(k)}(X)$$

Soit
$$n \in \mathbb{N}^*$$
. Pour $k \in \mathbb{N}$, on pose $H_k : (-1)^k P_n^{(k)} \left(\frac{p}{q} - X\right) = P_n^{(k)}(X)$.

Le résultat précédent donne H_0 vérifiée.

Si, pour $k \in \mathbb{N}, H_k$ est vérifiée, alors en dérivant les deux membres de l'égalité on vérifie H_{k+1} . Ainsi, par principe de récurrence, la propriété H_k est vraie pour tout $k \in \mathbb{N}$.

e. En déduire que pour tous les entiers $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$,

$$P_n^{(k)}\left(\frac{p}{q}\right) \in \mathbb{Z}$$

En évaluant le résultat précédent en 0 et à l'aide de la question c, on obtient pour $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$: $P_n^{(k)}\left(\frac{p}{q}\right) = (-1)^k P_n^{(k)}(0) \in \mathbb{Z}$.

2. On définit pour $n \in \mathbb{N}^*$, l'intégrale

$$I_n = \int_0^{\frac{p}{q}} P_n(t) \sin(t) dt$$

a. Montrer que

$$\forall n \in \mathbb{N}^*, \quad |I_n| \le \frac{p^{2n+1}}{n!}$$

Soit $n \in \mathbb{N}^*$; pour $t \in \left[0, \frac{p}{q}\right], |P_n(t)\sin(t)| \le \frac{p^n}{n!}t^n$ donc on a: $|I_n| \le \int_0^{\frac{p}{q}} |P_n(t)\sin(t)| dt \le \frac{p^n}{n!} \int_0^{\frac{p}{q}} t^n dt = \frac{p^{2n+1}}{q^n(n+1)!} \le \frac{p^{2n+1}}{n!}$

b. En déduire que (I_n) converge vers 0.

On sait que $\lim_{n\to +\infty} \frac{(p^2)^n}{n!} = 0$ donc par le théorème d'encadrement, $\lim_{n\to +\infty} I_n = 0$.

c. Démontrer que

$$\forall n \in \mathbb{N}^*, \quad I_n > 0$$

On a $\forall t \in \left[0, \frac{p}{q}\right]$, $\sin(t) \geq 0$ et $t^n(p-qt)^n \geq 0$, leur produit n'étant pas toujours nul sur l'intervalle. Par positivité de l'intégrale, $I_n > 0$.

3. a. Démontrer que

$$I_n = P_n\left(\frac{p}{q}\right) + P_n(0) + \int_0^{\frac{p}{q}} P'_n(t)\cos(t)dt$$

 $t\mapsto P_n(t)$ et $t\mapsto -\cos(t)$ sont de classe C^1 sur $\left[0,\frac{p}{q}\right]$, donc le théorème d'intégration par parties donne :

$$I_n = \left[-P_n(t)\cos(t) \right]_0^{\frac{p}{q}} + \int_0^{\frac{p}{q}} P'_n(t)\cos(t)dt = P_n\left(\frac{p}{q}\right) + P_n(0) + \int_0^{\frac{p}{q}} P'_n(t)\cos(t)dt$$

On admet que l'on obtient, par intégrations par parties successives :

$$\forall n \in \mathbb{N}^*, \quad I_n = \sum_{k=0}^n (-1)^k \left(P_n^{(2k)} \left(\frac{p}{q} \right) + P_n^{(2k)}(0) \right) + (-1)^n \int_0^{\frac{p}{q}} P_n^{(2n+1)}(t) \cos(t) dt$$

b. En déduire que $I_n \in \mathbb{N}^*$.

$$\deg(P) = 2n \text{ donc } P_n^{(2n+1)} = 0$$
; le résultat précédent donne donc : $I_n = \sum_{k=0}^n (-1)^k \left(P_n^{(2k)} \left(\frac{p}{q} \right) + P_n^{(2k)}(0) \right)$.

D'après les questions 1.c) et 1.e) on a $I_n \in \mathbb{Z}$ puis, d'après la question 2.c), on a $I_n \in \mathbb{N}^*$.

c. Conclure.

On a montré que $\lim_{n\to+\infty}I_n=0$ et que pour tout $n\in\mathbb{N}^*,I_n\in\mathbb{N}^*$ donc $I_n\geq 1$ ce qui est contradictoire. On en déduit que l'hypothèse formulée initialement est fausse, c'est-à-dire que π n'est pas un rationnel.

4. Question facultative : démontrer ce qui est admis en 3.a).

Soit
$$n \in \mathbb{N}^*$$
. Pour $j \in \mathbb{N}$, on note $H_j : I_n = \sum_{k=0}^j (-1)^k \left(P_n^{(2k)} \left(\frac{p}{q} \right) + P_n^{(2k)}(0) \right) + (-1)^j \int_0^{\frac{p}{q}} P_n^{(2j+1)}(t) \cos(t) dt$. H_0 a été démontrée à la question 3.a).

Soit
$$j \in \mathbb{N}$$
; on suppose H_j vérifiée. On a donc $I_n = \sum_{k=0}^j (-1)^k \left(P_n^{(2k)}\left(\frac{p}{q}\right) + P_n^{(2k)}(0)\right) + (-1)^j \int_0^{\frac{p}{q}} P_n^{(2j+1)}(t) \cos(t) dt$.

 $t\mapsto P_n^{(2j+1)}(t) \text{ et } t\mapsto \sin(t) \text{ sont de classe } C^1 \text{ sur } \left[0,\frac{p}{q}\right] \text{ donc le théorème d'intégration par parties donne}:$

$$\begin{split} & \int_{0}^{\frac{p}{q}} P_{n}^{(2j+1)}(t) \cos(t) \mathrm{d}t = \left[P_{n}^{(2j+1)}(t) \sin(t) \right]_{0}^{\frac{p}{q}} - \int_{0}^{\frac{p}{q}} P_{n}^{(2j+2)}(t) \sin(t) \mathrm{d}t = - \int_{0}^{\frac{p}{q}} P_{n}^{(2j+2)}(t) \sin(t) \mathrm{d}t \\ t \mapsto P_{n}^{(2j+2)}(t) \text{ et } t \mapsto -\cos(t) \text{ sont de classe } C^{1} \text{ sur } \left[0, \frac{p}{q} \right] \text{ donc le théorème d'intégration par parties donne :} \\ & \int_{0}^{\frac{p}{q}} P_{n}^{(2j+2)}(t) \sin(t) \mathrm{d}t = \left[-P_{n}^{(2j+2)}(t) \cos(t) \right]_{0}^{\frac{p}{q}} + \int_{0}^{\frac{p}{q}} P_{n}^{(2j+3)}(t) \cos(t) \mathrm{d}t \\ & = P_{n}^{(2j+2)} \left(\frac{p}{q} \right) + P_{n}^{(2j+2)}(0) + \int_{0}^{\frac{p}{q}} P_{n}^{(2j+3)}(t) \cos(t) \mathrm{d}t \\ & \text{et donc : } I_{n} = \sum_{k=0}^{j} (-1)^{k} \left(P_{n}^{(2k)} \left(\frac{p}{q} \right) + P_{n}^{(2k)}(0) \right) + (-1)^{j+1} \left(P_{n}^{(2j+2)} \left(\frac{p}{q} \right) + P_{n}^{(2j+2)}(0) + \int_{0}^{\frac{p}{q}} P_{n}^{(2j+3)}(t) \cos(t) \mathrm{d}t \right) \\ & = \sum_{k=0}^{j+1} (-1)^{k} \left(P_{n}^{(2k)} \left(\frac{p}{q} \right) + P_{n}^{(2k)}(0) \right) + (-1)^{j+1} \int_{0}^{\frac{p}{q}} P_{n}^{(2(j+1)+1)}(t) \cos(t) \mathrm{d}t \end{split}$$

Par principe de récurrence, on a donc démontré la propriété H_j pour tout $j \in \mathbb{N}$ et en particulier pour j = n on obtient le résultat attendu.