Протокол обмена по СОМ-порту «Радиомодуль – Сигнализация».

Обмен данными производится по однопроводной линии.

Режим обмена: 8 бит, 1 старт бит, 1 стоп бит. Скорость обмена настраиваемая 1200-115200. По умолчанию 115200 для прошивки MEGA и 9600 для прошивки ASCAN.

Формат используемых для обмена сообщений соответствует «Формат передачи сообщений по RS интерфейсу.doc»

Обмен ведётся сообщениями текстового типа. Т.е. первый байт поля данных = 0x20.

Далее дано описание поля данных текстовых сообщений.

Для обмена используются следующие сообщения:

Установление соединения радиомодуля и сигнализации.

#F - Поиск устройств на шине (все устройства отвечают сообщением #I со

случайной задержкой)

#Iserial syst_type - Ответ на команду #F (Также посылается по старте ПО радиомодуля)

#iserial - Подтверждение получения сообщения #I

Посылка команды управления радиомодулем.

#Cserial=<comm> - Отправка команды <comm> (символ или строка)

#cserial: <comm> <res> - Ответ с результатом выполнения команды <comm>.

<u>Диагностика.</u>

***T** - используется для диагностирования.

Посылка данных от радиомодуля к сигнализации.

#**D**serial:data\$<rssi> - данные посылаемые от радиомодуля без запроса .

rssi - rssi принятый радиомодулем

#dserial :ack - подтверждения сигнализацией пакета с данными от радиомодуля

Запрос на добавление радиоустройства от радиомодуля.

#Aserial: <ser> <type> <num> \$<rssi> - посылается радиомодулем

#aserial:<ser> <ans> <arg1> (<arg2>,<arg3>,...) - подтверждение радиомодулю для добавления радиоустройства

ans = '0' - запрет регистрации,

'1' - разрешение регистрации,

'2' - перевод радиоустройства в тестовый режим. arg1 - длительность тестового режима в сек. (255 - макс.) arg2 - период радиообмена РУ в сек. (255 - макс.) arg1 = 0 - выключение тестового режима.

'3' – калибровка температуры.

'4' — регистрация радиоустройства как клиента группы по group_id. arg1 = строка из 8 байт (шестнадцатеричный вид), определяющая группу для прицепа.

'7' – перевод радиоустройства в режим загрузки ПО

Посылка и прием данных (bypass) радиоустройству в режиме загрузчика.

#Bserial:<lenRX><dataTX>

#bserial:<dataRX>

Где,

serial — серийный номер радиомодуля. Четырёх байтное положительное число (31 бит), представленное в текстовом десятичном виде.

syst_type — строка определяющая тип устройства и версию ПО.

type - тип устройства (брелок type=3,4) в десятичном виде.

сот – команда (строка).

data – данные от радиомодуля (строка).

num - порядковый номер радиоустройства в базе в десятичном виде.

ack – подтверждение данных от радиомодуля (строка).

ser – серийный номер радиоустройства в десятичном виде.

ans – статус радиоустройства принятый по радиоканалу.

lenRX - длина принимаемых данных от радиоустройства.

dataTX - данные на передачу к радиоустройству.

dataRX - данные, принятые из радиоустройства.

Алгоритм взаимодействия:

- 1. При включении питания мастер посылает запрос поиска устройств на шине #F, он это может так же делать в любое другое время (например, по команде пользователя).
- 2. Слэйвы отвечают мастеру сообщением #I со случайной временной задержкой (0...4 сек). (это действие слэйв выполняет так же при включении питания).
- 3. Слэйв ожидает подтверждения сообщения #I сообщением #i в течение 1 сек. Если подтверждение не получено за это время, то он переходит к пункту 2. Максимальное количество повторов сообщения #I равно 3.
- 4. Мастер может управлять слэйвами с помощью команды #С (с подтверждением)
- 5. Слэйв может отправлять данные мастеру без запроса используя команду #D (с подтверждением)
- 6. Ничего не мешает присутствию нескольких мастеров.

Поле comm: для #Cserial=<comm>

<comm> может иметь следующие значения:

G<arg1> <arg2> — системный статус (32 бита) и конфигурация(32 бита).

Биты системного статуса <arg1>:

бит 0 - двери (1-открыты 0-закрыты)

бит 1 - капот / багажник (1-открыты 0-закрыты)

бит 2 - капот (1-открыт 0-закрыт)

бит 3 - багажник (1-открыт 0-закрыт)

бит 8 - блокировка (1-включена 0-выключена)

бит 9 - охрана (1-включена 0-выключена)

Биты конфигурации <arg2>:

бит 0...3 - установка времени открытия замка капота в тиках по 200мс (5 по умолч.)

бит 4...7 - установка времени закрытия замка капота в тиках по 200мс (5 по умолч.)

бит 8...11 - установка времени открытия замка багажника в тиках по 200мс (5 по умолч.)

<res> - '0' команда выполнена, иначе - ошибка

T<arg1> <arg2> – тестовый режим. (arg1, arg2 и т.д. разделены пробелом)

arg1 = '1' -регистрация радиоустройства без запроса от сигнализации (arg2 = 1 - включить, arg2 = 0 - выключить);

arg1 = '2' - перевод радиоустройства в тестовый режим. <math>arg2 - длительность тестового режима в сек. (255 - макс.) arg2 = 0 - выключение тестового режима. arg3 - серийный номер радиоустройства, arg4 - период радиообмена РУ в сек. (255 - макс.).

arg1 = '3' — калибровка температуры радиоустройства, arg2 - серийный номер радиоустройства, arg3 - температура калибровки в десятых долях Кельвина.

arg1 = '4'; запись в PM group_id; arg2 = group_id;

arg1 = '5' - тест PM; arg2 = 1 - запрет автоповторов при отсутсвии ответа по K-Лайн, arg2 = 2 - печать всех запросов по радиоканалу

```
<res> – '0' команда выполнена. иначе – ошибка.
```

r<num> - считать запись радиоустройства из базы радиомодуля

<res> - <num> <Ser> <Type>

w <num> <Ser> <Type> – записать радиоустройство в базу радиомодуля

<res> - '0' команда выполнена, иначе - ошибка.

E<num> – очистить по номеру записи:

<num> = 0 - всю базу, иначе конкретную запись в базе <res> — '0' команда выполнена, иначе — ошибка.

e<ser> - очистить по серийному номеру:

<num> = 0 - всю базу, иначе по серийному номеру

<res> – '0' команда выполнена, иначе – ошибка (1-нет такого серийного номера, 2-удаление не получилось).

B<arg> - перевод радиоустройства в режим загрузчика

<arg> = '0' – выход из режима загрузчика;

<arg> = '1' – вход в режим загрузчика;

<res> – '0' команда выполнена, иначе – ошибка.

S – запрос списка радиоустройств, записанных в радиомодуле

<res> – количество записей в базе радиомодуля и размер базы. Затем последовательно список радиоустройств с ожиданием подтверждения по каждому устройству.

#C31611=S запрос

#с31611:S 1-28 ответ: число записей и максимально допустимое кол-во

#D31611:s7842 2 581\$2 ответ по каждой записи: (7842)серийный номер, (2)тип, (581)версия прошивки

2016.02.05, которая кодируется начиная с младших

5бит - число

4бита - месяц

5бит - год, начиная с 2015 (2015 = 0)

после \$ - порядковый номер записи.

Q – запрос списка радиоустройств со свободной регистрацией, и в данных момент записанных в радиомодуле

IW <group_id> – запись группы в радиомодуль, где

<group id> – 8 байт в шестнадцатеричном виде с пробелами или без них.

IR – чтение группы из радиомодуля.

<res> – group id (строка из 8 байт в шестнадцатеричном виде с пробелами или без них).

О – Посылка команды/статуса радиоустройству по инициативе сигнализации.

```
#C<serialM>:O<serD> < command/status>, где 
<serialM> - серийный номер радиомодуля, 
<serD> - серийный номер радиоустройства, 
< command/status> — список кодов команда/статус . Числа в десятичном виде, разделенные 
пробелом . Максимальное количество - 12
```

Ответ на команду:

 \mathbf{c} -serialM>:O-serD> reply - подтверждение посылки команды/статуса радиоустройству. reply = 0 - успешно,

- 1 канал передачи занят,
- 2 радиоустройство не существует в списке
- 3 ошибка формата

Поле data команды #Dserial:data

Может иметь следующие значения:

1. Принят сигнал от радиоустройства.

<type>R<ser_RD> <command/status>

<ser_RD> – серийный номер радиоустройства в десятичном виде,
<command/status> – список кодов команда/статус . Числа в десятичном виде, разделенные пробелом .
<type> - тип радиоустройства. При регистрации в группе, 7-й бит равен 1.

2. Посылка команды/статуса радиоустройству по его запросу.

<type>**U**<ser_RD> <command/status>

<ser_RD> — серийный номер радиоустройства в десятичном виде,
<command/status> — список кодов команда/статус . Числа в десятичном виде, разделенные пробелом .
<type> - тип радиоустройства. При регистрации в группе, 7-й бит равен 1.

3. Версия ПО радиоустройства.

V<ser_RD> <type> <RSSIm> <RSSId> <BatL> <SWtype> <SWversion>

<ser_RD> — серийный номер радиоустройства в десятичном виде,<type> - тип устройства (брелок type=10) в десятичном виде,

- <RSSIm> уровень сигнала радиомодуля в шестнадцатеричном виде,
- <RSSId> уровень сигнала радиоустройства в шестнадцатеричном виде,
- <BatS> уровень заряда батареи в виде статуса в шестнадцатеричном виде,
- <BatL> уровень заряда батареи в АЦП виде в шестнадцатеричном виде,
- <SWtype> тип ПО радиоустройства (1 слово),
- **<SWversion>** версия ПО радиоустройства (3 слова),

4. Посылка записи устройства из базы Радиомодуля.

S<ser_RD> <type> <vers> \$ <num>

- <ser_RD> серийный номер радиоустройства в десятичном виде,
- <type> тип устройства в десятичном виде,
- <num> -номер записи в базе радиомодуля.
- <vers> версия прошивки радиоустройства.

5. Принят сигнал от радиоустройства группы.

G<ser_RD> <command/status>

<ser_RD> – серийный номер радиоустройства в десятичном виде,

<command/status> - список кодов команда/статус . Числа в десятичном виде, разделенные пробелом .

Описание прикладного уровня.

Типы устройств (type):

- 2 брелок 3-х кнопочный
- 3 брелок 4-х кнопочный
- 4 радиореле блокировки
- 5 радиотермометр
- 6 радиодут
- 7 модуль капота (концевик, термометр, замок капота, сирена)
- 8 радиометка
- 10 радиодатчик протечки
- 11 радиодатчик движения
- 12 радиодатчик удара
- 13 радиотермометр из 3-х датчиков и концевого контакта
- 14 радиодатчик расхода электроэнергии
- 15 радиодатчик температуры внешний
- 16 радиодатчик расхода воды и газа
- 17 радиорозетка 220V
- 18 радиодатчик температуры и влажности
- 19 3-х канальный радиодатчик температуры (см. ком 0xD1, 209)

Формат сообщений прикладного уровня

Любое сообщение прикладного уровня начинается с кода команды (1 байт). После кода команды возможно наличие дополнительных данных (см. описание к каждой команде). В одном сообщении может содержаться одна или более команд, которые следуют друг за другом.

Команда	Описание	Управление с брелка
0x01	Постановка на охрану.	Кратковременное нажатие кнопки 1.
0x02	Снятие с охраны.	Кратковременное нажатие кнопки 2.
0x06	Функция пользователя 1.	Кратковременное нажатие кнопки 3.
0x09	Тихая постановка на охрану.	Долговременное нажатие кнопки 1.
0x0A	Тихое снятие с охраны.	Долговременное нажатие кнопки 2.
0x07	Функция пользователя 2.	Долговременное нажатие кнопки 3.
-	Запрос регистрации брелка.	Нажатие кнопок 1, 2 длительностью более 2 секунд.
0x0B	Функция пользователя 3.	Кратковременное нажатие кнопки 4 (китайский брелок).
0x0C	Функция пользователя 4.	Долговременное нажатие кнопки 4 (китайский брелок).
0x0D	Запрос состояния блокировки	-
0x0E	Включение блокировки двигателя для бензонасоса.	-
0x0F	Выключение блокировки двигателя для бензонасоса.	-
0x10	Отключение блокировки двигателя до связи с	Удерживая кнопку 1 нажать пять

	ЦБ	раз кнопку 2.
0x11	Разрешение запроса инициализации	Не реализовано
	блокировки двигателя.	Fr
0x12	Включение блокировки при старте (пассивный	-
	режим)	
0x13	Отключение блокировки при старте (активный	-
	режим) (выставляется по умолчанию)	
0x14	Запрос состояния замка капота.	-
0x15	Запрос текущей температуры для калибровки.	-
0x16	Перевод термодатчика в режим калибровки.	-
0x17	Включение блокировки двигателя для стартера.	-
0x18	Выключение блокировки двигателя для	-
	стартера.	
0x19	Запрет управления блокировкой.	-
0x1A	Разрешение управления блокировкой.	-
0x1B	Вода	CMD WATER
0x1C	Нет воды	CMD NO WATER
0x1E	Обрыв сенсора протечки	CMD_BREAK_WATER
0x22	34 считать калибровку с термодатчика	CMD CALIBR READ
0x23	35 записать калибровку в термодатчик	CMD_CALIBR_WRITE
0x24	36 Калибровка 1	CMD_CALIBR_1
0x25	37 Калибровка 2	CMD_CALIBR_2
0x7C	// Запрос версии ПО	CMD_GET_VERSION
0x7D	// Тест устройства	CMD_TEST
0x7E	Тест частоты кварцевого резонатора	-
0x7F	Команда перехода в загрузчик	_
0x80	состояние батареи	(0х80 - полностью разряжена)
0x8F	oversime oursepon	(0x8F - полностью зряжена)
0x90	охрана включена	(· · · · · · · · · · · · · · · · · · ·
0x91	охрана включена с нарушениями	
0x92	охрана отключена	
0x93	Команда принята.	ST COMM IS ACK
0x96	150 повторить команду через случайный	ST_COMM_REPEAT
	интервал	
0x97	151 калибровка закончена	ST_CALIBR_IS_ENDED
0x9A	154 Подтвержение метки	< ST_LABEL_PRESENT
Списо	ок 2-х байтных команд (команда и 1 байт данных)	$(0xA0 \dots 0xBF)$:
0xA0	160 следующий байт -> не спать в секундах	CMD_WAKEUP_1b
0xA1	161 следующий байт -> управление усилением	ST_MOTION_CTRL_1b
\ \tag{1}	датчика движения	
0xA3	163 следующий байт -> величина сигнала	ST_MOTION_1b
_	датчика движения (энергия за 1 сек.)	
0xA4	164 следующий байт -> конфигурация	CMD_CONFIG_1b
	устройства	
0xB0	уровень сигнала	RSSI_1B
0xB1	177 следующий байт -> признак RESET	ST_RESET_1b
0xB2	178 следующий байт -> задержка	ST_IMMO_DELAY_1b
	иммобилайзера в активном режиме (по 10 сек.)	
0xB3	температура в градусах Цельсия от -128 до +127 °C	TEMPER_1B
0xB4	Напряжение питания устройства = 1.25V * 3*	VDD_1B
	VDD_1B/128 (2.0 В батарея полностью	
	разряжена, 3.0 В – полностью заряжена.)	
0xB5	181 следующий байт -> номер канала	ST_CHANNEL_1b

0xB6	182 следующий байт -> состояние устройства	ST_STATE_1b
0xB8	184 следующий байт -> управление меткой	ST_LABEL_CTRL_1b
	Биты 20 - управление уровнем мощности	
	= 0 - тычёк -8 Дб	
	= 17 - управление уровнем мощности	
	Биты 53 - управление задержкой	
	= 0 - default.	
	= 1 - 1 сек.	
	= 2 - 2 сек.	
	= 3 - 5 сек.	
	= 4 - 10 сек.	
	= 5 - 20 сек.	
	= 6 - 30 сек.	
	= 7 - 60 сек.	
0xB9	185 следующий байт -> Состояние входов (8	ST_INPUT_1b
	бит)	
0xBA	186 следующий байт -> Относительная	ST_HUMIDITY_1b
	влажность в % от 0 до 100	
0xBC	188 Программный запрос на регистрацию,	CMD_REGISTATION_REQ_1b
	следующий байт -> счетчик команды (биты 1,0)	
0xBD	189 следующий байт -> RSSI от радиомодуля	ST_RSSI_RM_1b
0xBE	190 Зарезервировал Миша Иванов	ST_MIKLE_1b
0xBF	191 следующий байт -> тест устройства	ST_TEST_1b
C	писок 3-х байтных команд: (команда и 2 байта да	нных) (0xC0 0xCF):
0xC0	192. Температура в десятых долях градусах	TEMPER_2B
	Кельвина	_
0xC1	193. Значение ДУТа	DUT_2B
0xC2	194. В-константа	BETA_2B
0xC3	195. следующий 2 байта -> величина сигнала	ST_MOTION_2b
	датчика движения (амплитуда, длительность)	
0xC4	196. следующие 2 байта -> Температура	ST_CALIBR_2b
	калибровки in K on 0.1 degr	
0xC5	197. следующие 2 байта -> состояние нажатых	ST_KEYS_2b
	кнопок	
	1-й байт:	
	// 30 - счетчик кнопки1	
	// 4 - длинное нажатие кнопки1	
	// 64 - счетчик кнопки2	
	// 7 - длинное нажатие кнопки2	
	// 2-й байт:	
	// 30 - счетчик кнопки3	
	// 4 - длинное нажатие кнопки1	
	// 64 - счетчик кнопки4	
	// 7 - длинное нажатие кнопки4	
0xC6	198. следующие 2 байта -> задержка от	ST_PAST_TIME_2b
	реального времени в тиках по 1 минуте.	
0xC7	199 следующие 2 байта -> Весия ПО	ST_VERSION_2b
	// Биты 40 - день	
	// Биты 85 - месяц	
	// Биты 139 - год, начиная с 2015 до 2046	
	(2015 = 0)	
	// Биты 15,14 - доп. инф.	
0xCE	206. Зарезервировал Миша	ST_MIKLE_2b
0xCF	207. следующие 2 байта -> тест устройства	ST_TEST_2b
Спи		анных) (0xD0 0xDF):
-		/ \

0xD0	208. Исключающее ИЛИ серийного номера и	XORSERIAL_4B
	секретного кода для снятия блокировки (4	_
	байта)	
0xD1	209. следующие 4 байта -> температура от 3-х	ST_TEMPER_3S_4b
	датчиков от -49.9°C (код=1) до +99.9°C	
	(код=1499) с точностью 0.1°С. От 100°С	
	(код=1500) до 199 С (код=1599) с точностью 1 С	
	код=0 -> данные отсутствуют.	
	Данные упакованы в 3 позиции по основанию	
	1600. ST_TEMPER_3S_4b = Sensor3 * 2560000	
	+ Sensor2*1600 + Sensor1	
0xD2	210. следующие 4 байта ->управление выходом	CMD_OUTPUT_CTRL_4b
	1-й байт:	
	// Биты 40 - задержка включения в тиках	
	// Биты 75 - номер выхода	
	2,3-й байты:	
	// Биты 130 - длительность включения в тиках	
	// Биты 1514 - величина тика	
	// = 0 - 10 MC	
	// = 1 - 100 MC	
	// = 2 - 1 сек.	
	// = 3 - 1 мин.	
	4-й байт: (моргание)	
	// Биты 30 - длительность паузы в тиках	
	// Биты 74 - длительность включения в тиках	
	Для тика 10мс длительность включения =1	
	определяет что выход включается на	
	постоянно. Если длительность > 1 то	
	длит=(длительность включения -1) *10 мс.	
	Значение длительности включения =0	
0.50	обозначает выключение выхода.	CLAD CHOOLY DAMA
0xD3	211 следующие 4 байта -> Задержка в минутах	CMD_STORY_DATA_4b
	от реального времени (1,2 байт) и активность	
0. D.4	данных в минутах	CMD CALIDO DATA A
0xD4	212 следующие 4 байта -> Данные калибровки	CMD_CALIBR_DATA_4b
	термодатчика // 1,2-	
	й байты - коэффициент	
0.07	// 3,4-й байты - Betta	CMD OTHER EL VOIT 41
0xD5	213 следующие 4 байта -> Управлением	CMD_OUTPUT_FLASH_4b
	морганием выхода	
	1-й байт:	
	// Биты 40 - задержка включения в тиках	
	// Биты 75 - номер выхода	
	2-й байт:	
	// Биты 50 - количекство миганий // Биты 76 - величина тика	
	3-й байт: (моргание) // Биты 70 - длительность паузы мигания в	
	тиках	
	тиках // 4-й байт: (моргание)	
	// 4-и оаит. (моргание) // Биты 70 - длительность включения мигания	
	В ТИКАХ	
	Для тика 10мс длительность включения =1	
	определяет что выход включается на	
	постоянно. Если длительность > 1 то	
	длит=(длительность включения -1) *10 мс.	
	Anti (Antitolibrio in Divito Iotiliii I) IO Mo.	

	Значение длительности включения =0	
	обозначает выключение выхода.	
0xD6	214 следующие 4 байта -> Счетчик импульсов с	CMD_WATER_COUNTER_4b
	2-х датчиков расхода воды	
	// 1,2 -й байт данные с 1-го датчика	
	// 3,4 -й байт данные со 2-го датчика	
0xD7	215 следующие 4 байта -> температура от 2-х	ST_TEMPER_2S_4b
	внешних датчиков	
	// 1,2 -й байт данные с 1-го датчика	
	// 3,4 -й байт данные со 2-го датчика	
0xD8	216 следующие 4 байта -> данные с ДУТ485	ST_DUT485_4b
	(1,2 б - фильтрованные; 3,4 б - мгновенные)	
0xD9	217 следующие 4 байта -> конфигурация	CMD_CONFIG_4b
	радиоустройства	
0xDE	222 Зарезервировал Миша Иванов	ST_MIKLE_4b
0xDF	223 следующие 4 байта -> тест устройства	ST_TEST_4b

Пример обмена (приведено содержимое текстовых сообщений):

```
1)
#F
     #I4742:<1> Nov 27 2013 14:50:25
#i4742
2)
#A4742:2650 4 2
                           Запрос на добавление радиоустройства
     #a4742:2650 1
                           Подтверждение регистрации радиоустройства
или
     #a4742:2650 2
                           Запрос версии ПО у радиоустройства
#D4742:V2650 4 79 3E 8F 71 Immobilizer Nov 25 2013
     #d4742
#D4742:U4883 15
     #d4742
3)
#D19726:2R19722 2 180 101 179 26 142 176 69 0 19 15 70 $54:2 Посылка данных от радиоустройства
     #d19726
4)
#C4742=r2
      #c4742:r2 67305985 3
5)
#C4742=w2 67305985 3
     #c4742:w 0
6)
#C4742=T2
     #c4742:T 0
7)
#C19659=S
     #c19659:S 3-48
#D19659:s7842 2 581$2
#d19659
#D19659:s9523 5 369$3
#d19659
#D19659:s19330 2 581$4
#d19659
```

8)