课程《微机原理》笔记

NH5

更新于 2025.3.15

本课程基于 MCS51 芯片

1 微机概述

1.1 微处理器

计算机与微控制器在控制方面的差别 (简答题):

1.PC 机在数据处理方面的能力大大超过了微控制器,这是微控制器无法与 PC 机比拟的. 因此微控制器就不适合于离线应用场合: 控制 CAD、建模、仿真、辅助设计、大容量数值处理

2. 微控制器主要是针对以对象控制为主, 数值处理为辅的小型化、嵌入型控制系统中. 正因如此, 微控制器中的数据存储器 RAM 往往很小

1.2 冯·诺伊曼结构与哈佛结构

存储器结构一般有两种: 普林斯顿 (Princeton, 又称冯·诺伊曼结构) 结构和哈佛 (Harvard) 结构. 通用微型计算机一般采用普林斯顿 (Princeton) 结构, 将程序和数据合用一个存储器空间, 在使用时才分开; 单片机一般采用哈佛 (Harvard) 结构, 将程序和数据分别用不同的存储器存放, 各有自己的存储空间, 分别采用不同的寻址方式. 存放程序的存储器称为程序存储器, 存放数据的存储器称为数据存储器.

1 微机概述 2

图 1: 冯诺依曼结构

图 2: 哈佛结构

1.3 指令集

计算机可以根据指令集分为: 精简指令计算机 RISC(Reduced InstructionSet Computer) 和复杂指令计算机 CISC (Complex Instruction Set Computer). RISC 和 CISC 是目前设计制造微处理器的两种典型技术.

CISC 属于早期传统计算机结构的指令体系, 认为指令系统越丰富、越复杂, 功能越强大, 但统计结果表明: 使用的 80% 的指令, 只占指令系统的

20%,同时最频繁的指令是数据传输、算术运算等简单指令.(MCS-51 属于这一类)

RISC 结构优先选取使用频最高的简单指令, 避免复杂指令; 将指令长度固定, 指令格式和寻址方式种类减少; 以控制逻辑为主, 不用或少用微码控制等.

2 MCS51 内部结构

MCS51 由下列模块构成:

- 1. 中央处理单元 CPU(8 位): 计算 + 控制的核心单元
- 2. 程序存储器 ROM(= 硬盘): 用于永久性存储应用程序
- 3. 数据存储器 RAM(= 内存): 用于程序运行中存储工作变量和数据
- 4. 并行输入/输出 (I/O 口): 与外界的接口 (系统总线、扩展外存、外设接口)
 - 5. 串行输入/输出口 (UART)(二线): 与外界的串行通信
- 6. 定时/计数器: 它与 CPU 之间各自独立工作, 当它计数满时向 CPU 中断
 - 7. 时钟电路 (fosc): 分为内部振荡器、外接振荡电路
 - 8. 中断系统: 中断源、两级优先, 可编程进行控制
 - 9. 内部总线: 连接上述部件的通道

8051 微控制器功能模块与特点:

4 个 8 位 I/O 口:P0、P1、P2、P3, 具有第二功能

中断系统: 具有 5 个中断源,2 个中断优先权

定时器/计数器: 有 2 个 16 位的定时器/计数器, 具有 4 种工作方式 串行接口:1 个全双工的串行口, 用于微控制器与具有串行接口的外设 进行异步串行通信, 也可以扩展 I/O 接口

布尔处理器: 具有较强的位寻址、位处理能力

时钟电路: 产生微控制器工作所需要的时钟脉冲 (需要外接晶体振荡器 和微调电容)

指令系统: 有 5 大功能,111 条指令. 为复杂指令系统 (CISC)

2.1 CPU

CPU 内部结构如下图:

2.1.1 控制器

控制器由操作控制部件、时序发生器、指令寄存器 IR、指令译码器 ID、指令计数器 PC 等组成

控制器是 CPU 的大脑中枢, 是识别指令, 控制计算机各部分工作的部件, 包括控制取指令、译码和执行三个步骤的全部控制

指今计数器 PC:

它是 16 位的按机器周期自动增 1 计数器

总指向下一条指令所在首地址(当前 PC 值)

一切分支/跳转/调用/中断/复位等操作的本质就是: 改变 PC 值用户不可读写

PC 值的范围为 0000H→FFFFH, 即可寻址范围为 64K 存在 PC 值跳转, 会用到栈来存放 PC 值

2.1.2 运算器

运算器的任务是数据的处理和加工.由算术逻辑单元 ALU、累加器 Acc、暂存寄存器、程序状态寄存器 PSW、布尔处理器、BCD 码运算调整 电路等通过内部总线连接而成

ALU:

完成算术运算及与、或、非、异或等逻辑操作, 并通过对运算结果的判断, 影响程序状态寄存器 PSW 相关位的状态

位处理器 (布尔处理器):

能直接对位 (bit) 进行操作, 操作空间是位寻址空间. 位处理器中功能最强、使用最频繁的位是 C, 也称其为位累加器

暂存寄存器:

用于运算数据的暂时存放,该寄存器不能访问

累加器 ACC:

存放操作数与运算结果. 51 中基本上所有与计算有关的操作都要涉及 到 A(ACC)

以下是一个累加器的操作示例:

MOV A, 40H;把地址40H中的数字放入A中

ADD A, 41H;41H中的数字与A中数字相加,结果放入A

程序状态字:PSW 用于寄存程序运行的状态信息

PSW.7	PSW.6	PSW.5			y y y		PSW.0
CY	AC	F0	RS1	RS0	ov	F1	P

C(PSW.7): 进位或借位标志位. 执行算术运算和逻辑运算指令时, 用于记录最高位向前面的进位或借位. 8 位加法运算时, 若运算结果的最高位 D7 位有进位, 则 C 置 1, 否则 C 清 0. 8 位减法运算时, 若被减数比减数小, 不够减, 需借位, 则 C 置 1, 否则 C 清 0. 另外, 在 51 单片机中, 该位也可作位运算器, 完成各种位处理.

AC(PSW.6): 辅助进位或借位标志位. 用于记录在进行加法和减法运算时, 低 4 位向高 4 位是否有进位或借位. 当有进位或借位时,AC 置 1, 否则 AC 清 0

F0(PSW.5),F1(PSW.1): 可由用户定义的标志位

RS1、RSC	(PSW.4)	PSW.3):	寄存器组选择位,	用软件署 1	或清 ()
---------	---------	---------	----------	--------	-------

RS1	RS0	工作寄存器组
0	0	0组(00H-07H)
0	1	1组 (08H-0FH)
1	0	2组(10H-17H)
1	1	3组 (18H-1FH)

OV(PSW.2): 溢出标志位. 在加法或减法运算时, 如运算的结果超出 8位二进制数的范围, 则 OV 置 1, 标志溢出, 否则 OV 清 0.

P(PSW.0): 偶标志位. 用于记录指令执行后累加器 A 中 1 的个数的奇偶. 若累加器 A 中 1 的个数为奇数, 则 P 置 1; 若累加器 A 中 1 的个数为偶数, 则 P 清 0

2.1.3 存储器

MCS51 微控制器的存储器,ROM 和 RAM 是分开寻址的

目前增强型的 8051MCU, 集成了 16-64K 的内部 ROM, 所以已不需外部扩展

内部 RAM:

图 2.7 片内数据存储器的分配情况

对于 MCS51 而言, $80H \rightarrow FFH$ 是特殊功能寄存器区 (SFR) 工作寄存器区:

共 4 组 (0,1,2,3), 每组都有 8 个字节 (均叫做 R0,R1...R7), 通过前文提到的 RS0,RS1 选择某一组

位寻址区:

16 个字节, 每一位都有地址

2FH	7 F	7 E	7 D	7C	7B	7 A	79	78
	位地址							
28H	47	46	45	44	43	42	41	40
27H	3F	3E	3D	3C	3B	3A	39	38
26H	37	36	35	34	33	32	31	30
25H	2F	2E	2D	2C	2B	2A	29	28
24H	27	26	25	24	23	22	21	20
23H	1F	1E	1D	1C	1B	1A	19	18
22H	17	16	15	14	13	12	11	10
21H	0F	0E	0D	0C	0B	0A	09	08
20H	07	06	05	04	03	02	01	00

用户 RAM 区:

 $30H \rightarrow 7FH$ 是一般 RAM 区, 也称为用户 RAM 区, 共 80 字节. 常常 在此处开辟堆栈

堆栈:

有一个堆栈指针 SP 指向栈顶. 系统复位后 SP = 07H

SFR:

课本以及 PPT 中有一个超大的表格详细介绍 SFR 中各个字节的作用, 这里无法展示, 下面介绍部分功能

数据指针 DPTR:

DPTR 是供用户使用的 16bit 的寄存器, 可以按 16 位寄存器使用, 也可拆分使用. DPH (高 8 位)+DPL(低 8 位) 访问外部数据寄存器时做地址指针用

B 寄存器:B

用途: 用于乘除运算. 例如要实现 40H*41H:

MOV A,40H
MOV B,41H

MUL AB ;(低8位->A,高8位->B)

ROM:

8051 的内部 ROM 有 4k, 可以外扩 ROM, 外部 ROM 最大可以达到 64k

区分内外部 ROM 是通过 \bar{EA} 引脚区分: $\bar{EA}=1$ 为内部 ROM 通常用 DPTR 实现对片外数据存储器 64KB 空间的访问. 要访问哪个单元, 就把相应单元地址放 DPTR, 然后通过 DPTR 寄存器间接寻址进行访问

程序存储器有一些特别区域:

00H→02H	PC 指针复位处
03H→0AH	外部中断 0 中断地址区
0BH→12H	定时器/计数器 0 中断区
13H→1AH	外部中断 1 中断地址区
1BH→22H	定时器/计数器 1 中断区
23H→2AH	串行中断地址区

3 引脚

8051 共 40 个引脚: 电源接地 2 条 时钟电路 2 条 控制线 4 条 I/O 口 8 × 4 = 32 条

3.1 电源引脚

VCC(Pin40): 正电源引脚. 正电源接 $4.0 \rightarrow 5.0V$ 电压, 正常工作电压为 +5V

GND(Pin20): 接地引脚

3.2 时钟引脚

XTAL1(Pin19): 用作片内振荡电路的输入端

XTAL2(Pin18): 用作片内振荡电路的输出端或者外部时钟源的输入引 脚

振荡周期:Tc = 晶振频率 fosc(或外加频率) 的倒数

状态周期:Ts = 2 个振荡周期 (Tc)(很少用到此概念)

机器周期:Tm = 6 个状态周期 (Ts) = 12 个振荡周期 (Tc)

指令周期:Ti: 执行一条指令所需的机器周期 (Tm) 数

1 个机器周期 = 12 个振荡周期

1个指令周期 = 1、2、4个机器周期

3.3 控制引脚

3.3.1 复位引脚

RST 管脚上高电平持续时间大于 2 个机器周期, 使单片机进入某种确定的初始状态:

退出处于节电工作方式的停顿状态、退出一切程序进程、退出程序的 死循环, 从头开始;

PC 值归零 (0000H);

各个 SFR 被赋予初始值:

特殊功能寄存器	初始态	特殊功能寄存器	初始态
ACC	00H	В	00H
PSW	00H	SP	07H
DPH	00H	TH0	00H
DPL	00H	TL0	00H
IP	xxx000000B	TH1	00H
IE	0xx00000B	TL1	00H
TMOD	00H	TCON	00H
SCON	xxxxxxxB	SBUF	00H
P0-P3	11111111B	PCON	0xxxxxxB

堆栈指针 SP 要额外处理, 因为 07H 是工作寄存器区域

3.3.2 ALE/PROG

ALE/PROG 引脚 (Pin30) 具有两种功能, 可以作为地址锁存使能端 (Address LatchEnable) 和编程脉冲输入端

当作为地址锁存使能端时为 ALE. 当微控制器访问外部存储器时, 地址锁存允许信号输出端. 有效时输出一个高脉冲. ALE(地址锁存) 的负跳变将低 8 位地址打入锁存. 以实现 P0 口的 8 位数据线和低 8 位地址线的分时复用和隔离

当微控制器在非访问内部程序存储器时,ALE 引脚将有一个 1/6 振荡 频率的正脉冲信号输出,该信号可以用于外部计数或电路其他部分的时钟信号

3.3.3 PSEN

PSEN 引脚 (Pin29) 是微控制器访问外部程序存储器的读选通信号 (输出), 低电平有效

3.3.4 EA/VPP

EA/VPP 引脚 (Pin31) 具有两种功能, 访问内部或外部程序存储器选择信号和提供编程电压

EA: 控制访问内外部 ROM 前文已述, 这里不再赘述

VPP: 对于片内含有 EPROM 的机型, 在编程期间, 此引脚用作 21V 编程电源 V_{pp} 的输入端

3.4 Р0 П

P0 端口具有两个功能, 既可以用作双向数据总线口, 也可以分时复用输出低 8 位地址总线

P0 做 I/O 口时必须要接上拉电阻

P0 口做普通 IO 输入时, 先拉高再读

3.5 P1 口

P1 端口一般只用作通用 I/O 端口 内置了上拉电阻 输出时一切照常, 仅在作输入口用时要先对其写 1

3.6 Р2 П

P2 端口可以用作 8 位通用 I/O 端口, 或者在扩展外部存储器时用作高 8 位地址线

3.7 Р3 П

P3 端口可以用作通用 I/O 端口, 同时还具有特定的第二功能

P3 优先作为第二功能使用

P3 口作为第二功能使用时, 需要先向 P3 口写入 1

I/O 引脚	第二功能引脚名称	说明
P3.0	RXD	串行通信的数据接收端口
P3.1	TXD	串行通信的数据发送端口
P3.2	INT0	外部中断 0 的请求端口
P3.3	INT1	外部中断 1 的请求端口
P3.4	Т0	定时/计数器 0 的外部事件计数输入端
P3.5	T1	定时/计数器 1 的外部事件计数输入端
P3.6	RD	外部数据存储单元的写选通信号
P3.7	WR	外部数据存储单元的读选通信号

最小系统包括: 电源, 时钟电路, 复位电路, \bar{EA} 管脚设置: 有内部 rom, 则接高电平