Brain Tumor Semantic Segmentation

Erik Mercado

How can a model help?

- Planning: Surgery, Treatment, and Monitoring
- Complex Structures
- Time Consuming
- **Expensive:** \$200 \$400 per hour

Dataset

- Dataset sourced from Kaggle
- Pixel Classes:
 - o 0: Non-Tumor, 1: Tumor
- 2,146 Images
 - Size: 640x640
 - 1,502 Training
 - o 429 Validation
 - 215 Test
- Preprocessing
 - Resize 320X320

U-Net

Upsampling Layer

→ Skip-Connection

Training Set-Up

• Batch Size: 32

• Optimizer: Adam (Ir: 0.001)

• Loss Function: Cross Entropy Loss

• **Early Stopping**: Patience: 7, Delta: 0.001

Eval Metric: Intersection over Union

Results

Train Loss: 0.00802 | Train IoU: 0.95407

Val Loss: 0.06470 | Val IoU: 0.81

Test Loss: 0.07201 | Test IoU: 0.80568

Visualization

Conclusion

Pros using model	Cons using model
Cheaper	Small sample size
Faster	Not 100% accurate

Hybrid approach: Model makes initial segmentation and a specialist adjusts the rest

Thank You