Statistique Bayésienne

October 25, 2016

Contents

0	Intr	roduction	2
	Infe	erence Bayésienne	2
	1.1	Inference statistique et théorie de la décision	2
	1.2	Methode de construction $(?)$	3
		1.2.1 (?) d'une regle optimal dans une sous-classe	3
		1.2.2 Optimisation d'un critere	3

0 Introduction

1 Inference Bayésienne

1.1 Inference statistique et théorie de la décision

def: Modele statistique

$$u = (Y, F, P) \tag{1}$$

Si P est (?) de loi a (?), les (?)

 P_{θ} pt de depend de l'inference statistique: ou cherche a "(?)" la valeur d'une (?)

g(theta) in Z est (?) le concept d'(?)

On veut construire delta de sorte que ayant observe "Y=y", $\delta(y)$ sait une "(?)" approximative de $g(\theta)$

def: On appelle fonction de perte, une fonction

$$L: P \times - > \mathbb{R}_+ \tag{2}$$

ou

$$L: \Theta \times Z - > \mathbb{R}_+ \tag{3}$$

dans le cas d'une famille paramtrique.

et telle que

i) $\forall \theta \in \Theta \ L(\theta, g(\theta)) = 0$

ii) si l'absence Y=y et que l'on (?) le regle de decision δ , alors la quantite $L(\theta,\delta(y))$ represente le coeur associe a la decision S(y) pour la loi $P_{\theta}\in\mathscr{P}$ Archetype de fonction de perte: perte quadratique

$$L(\theta, \delta(y)) = (g(\theta) - s(y))^2 \tag{4}$$

- autre fonctions de pertes:

value absolue C^1 , pertes 0-1 (tests d'hypothese)

- (?) pertes joules ou l'entropie
- (?) en euros

def: la performance de la regle de decision δ est quanti-free a (?), definie comme la perte moyenne

$$R(\theta, S) = E_{y \in \mathscr{P}_{\theta}} \{ L(\theta, \delta(y)) \} = \int_{Y} L(\theta, \delta(y)) dP_{\theta}(y) = \int_{y} L(\theta, \delta(y)) P_{\theta}(y) dy$$
(5)

1.2 Methode de construction (?)

1.2.1 (?) d'une regle optimal dans une sous-classe

objectif: construire un δ^* dans une classe de regles de decision τ telle que $\forall \delta \in \tau$

$$R(\theta, \delta^*) <= R(\theta, \delta) \tag{6}$$

pour tout $\theta \in \Theta$

Cas particulier important

- -¿ recherche d'estimateurs sans biais de variance minimale
- -¿ de tels elements optimale (?), dans le cadre des (?) (voir cours 1A)

1.2.2 Optimisation d'un critere

-¿ recherche une estimateur avec minimiseur ou maximiseur d'un critere