

Audit Report PoSciDonDAO Token

July 2024

Repository https://github.com/PoSciDonDAO/poscidondao_contracts

Commit f9ba3adfc787608f8394ce0de2311be1aed6bff4

Files tokens/SCI.sol

Audited by © cyberscope

Analysis

CriticalMediumMinor / InformativePass

Severity	Code	Description	Status
•	ST	Stops Transactions	Passed
•	OTUT	Transfers User's Tokens	Passed
•	ELFM	Exceeds Fees Limit	Passed
•	MT	Mints Tokens	Unresolved
•	ВТ	Burns Tokens	Passed
•	ВС	Blacklists Addresses	Passed

Diagnostics

CriticalMediumMinor / Informative

Severity	Code	Description	Status
•	IDI	Immutable Declaration Improvement	Unresolved
•	MEE	Missing Events Emission	Unresolved
•	L16	Validate Variable Setters	Unresolved
•	L19	Stable Compiler Version	Unresolved

Table of Contents

Analysis	1
Diagnostics	2
Table of Contents	3
Review	4
Audit Updates	4
Source Files	4
Findings Breakdown	6
MT - Mints Tokens	7
Description	7
Recommendation	7
IDI - Immutable Declaration Improvement	8
Description	8
Recommendation	8
MEE - Missing Events Emission	9
Description	9
Recommendation	9
L16 - Validate Variable Setters	10
Description	10
Recommendation	10
L19 - Stable Compiler Version	11
Description	11
Recommendation	11
Functions Analysis	12
Inheritance Graph	13
Flow Graph	14
Summary	15
Disclaimer	16
About Cyberscope	17

Review

Contract Name	Sci
Repository	https://github.com/PoSciDonDAO/poscidondao_contracts
Commit	f9ba3adfc787608f8394ce0de2311be1aed6bff4
Testing Deploy	https://testnet.bscscan.com/address/0xf593c83367b9edbf3bd1 91ccf0e9e2be650c4ea4
Symbol	SCI
Decimals	18

Audit Updates

Initial Audit	10 Jul 2024
---------------	-------------

Source Files

Filename	SHA256
contracts/SCI.sol	54e793c91b0ae5cc1eb22c0b0091904288 8e1d292a54e574c94164a2e191219b
contracts/ISci.sol	abad75be8e2bd2abc0361c4b36041c7cc3 cca40cca745a36f586e0e6d9b9ef1f
@openzeppelin/contracts/utils/Strings.sol	cb2df477077a5963ab50a52768cb74ec6f3 2177177a78611ddbbe2c07e2d36de
@openzeppelin/contracts/utils/Context.sol	b2cfee351bcafd0f8f27c72d76c054df9b57 1b62cfac4781ed12c86354e2a56c
@openzeppelin/contracts/utils/math/SignedMath.s ol	420a5a5d8d94611a04b39d6cf5f0249255 2ed4257ea82aba3c765b1ad52f77f6

@openzeppelin/contracts/utils/math/Math.sol	85a2caf3bd06579fb55236398c1321e15fd 524a8fe140dff748c0f73d7a52345
@openzeppelin/contracts/utils/introspection/IERC 165.sol	701e025d13ec6be09ae892eb029cd83b30 64325801d73654847a5fb11c58b1e5
@openzeppelin/contracts/utils/introspection/ERC1 65.sol	8806a632d7b656cadb8133ff8f2acae4405 b3a64d8709d93b0fa6a216a8a6154
@openzeppelin/contracts/token/ERC20/IERC20.sol	7ebde70853ccafcf1876900dad458f46eb9 444d591d39bfc58e952e2582f5587
@openzeppelin/contracts/token/ERC20/ERC20.sol	d20d52b4be98738b8aa52b5bb0f88943f6 2128969b33d654fbca731539a7fe0a
@openzeppelin/contracts/token/ERC20/extensions /IERC20Metadata.sol	af5c8a77965cc82c33b7ff844deb9826166 689e55dc037a7f2f790d057811990
@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol	0344809a1044e11ece2401b4f7288f414ea 41fa9d1dad24143c84b737c9fc02e
@openzeppelin/contracts/access/IAccessControl.s	d03c1257f2094da6c86efa7aa09c1c07ebd 33dd31046480c5097bc2542140e45
@openzeppelin/contracts/access/AccessControl.s ol	afd98330d27bddff0db7cb8fcf42bd4766d da5f60b40871a3bec6220f9c9edf7

Findings Breakdown

Severity	Unresolved	Acknowledged	Resolved	Other
Critical	0	0	0	0
Medium	0	0	0	0
Minor / Informative	5	0	0	0

MT - Mints Tokens

Criticality	Minor / Informative
Location	contracts/SCI.sol#L63
Status	Unresolved

Description

The <code>govOpsAddress</code> has the authority to mint tokens to the <code>treasuryWallet</code>, which is an address specified during contract deployment and cannot be changed afterwards. The <code>govOpsAddress</code> take advantage of it by calling the <code>mint</code> function. As a result, the contract tokens will be highly inflated.

```
function mint(uint256 amount) external onlyGovOps {
    _mint(treasuryWallet, amount);
}
```

Recommendation

The team should carefully manage the private keys of the owner's account and the treasury wallet. We strongly recommend a powerful security mechanism that will prevent a single user from accessing the contract admin functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

- Introduce a time-locker mechanism with a reasonable delay.
- Introduce a multi-signature wallet so that many addresses will confirm the action.
- Introduce a governance model where users will vote about the actions.

Permanent Solution:

• Renouncing the ownership, which will eliminate the threats but it is non-reversible.

IDI - Immutable Declaration Improvement

Criticality	Minor / Informative
Location	contracts/SCI.sol#L42
Status	Unresolved

Description

The contract declares state variables that their value is initialized once in the constructor and are not modified afterwards. The <u>immutable</u> is a special declaration for this kind of state variables that saves gas when it is defined.

treasuryWallet

Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain optimizations. This can reduce the amount of storage and computation required by the contract, and make it more gas-efficient.

MEE - Missing Events Emission

Criticality	Minor / Informative
Location	contracts/SCI.sol#L51
Status	Unresolved

Description

The contract performs actions and state mutations from external methods that do not result in the emission of events. Emitting events for significant actions is important as it allows external parties, such as wallets or dApps, to track and monitor the activity on the contract. Without these events, it may be difficult for external parties to accurately determine the current state of the contract.

```
function setGovOps(
    address newGovOpsAddress
) external onlyRole(DEFAULT_ADMIN_ROLE) {
    govOpsAddress = newGovOpsAddress;
}
```

Recommendation

It is recommended to include events in the code that are triggered each time a significant action is taking place within the contract. These events should include relevant details such as the user's address and the nature of the action taken. By doing so, the contract will be more transparent and easily auditable by external parties. It will also help prevent potential issues or disputes that may arise in the future.

L16 - Validate Variable Setters

Criticality	Minor / Informative
Location	contracts/SCI.sol#L42,54
Status	Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied input. These variables are missing of proper check for the case where a value is zero. This can lead to problems when the contract is executed, as certain actions may not be properly handled when the value is zero.

```
treasuryWallet = treasuryWallet_;
govOpsAddress = newGovOpsAddress;
```

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with zero value. This will ensure that the contract can handle all possible input values and avoid unexpected behavior or errors. Hence, it can help to prevent the contract from being exploited or operating unexpectedly.

L19 - Stable Compiler Version

Criticality	Minor / Informative
Location	contracts/SCI.sol#L2
Status	Unresolved

Description

The _______ symbol indicates that any version of Solidity that is compatible with the specified version (i.e., any version that is a higher minor or patch version) can be used to compile the contract. The version lock is a mechanism that allows the author to specify a minimum version of the Solidity compiler that must be used to compile the contract code. This is useful because it ensures that the contract will be compiled using a version of the compiler that is known to be compatible with the code.

```
pragma solidity ^0.8.19;
```

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked pragma version ensures that the contract will not be deployed with an unexpected version. An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler should be configured to the lowest version that provides all the required functionality for the codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support) environment.

Functions Analysis

Contract	Туре	Bases		
	Function Name	Visibility	Mutability	Modifiers
Sci	Implementation	ISci, ERC20Burna ble, AccessContr ol		
		Public	✓	ERC20
	setGovOps	External	✓	onlyRole
	mint	External	✓	onlyGovOps

Inheritance Graph

Flow Graph

Summary

PoSciDonDAO Token contract implements a token mechanism. This audit investigates security issues, business logic concerns and potential improvements. There are some functions that can be abused by the owner like mint tokens. if the contract owner abuses the mint functionality, then the contract will be highly inflated. A multi-wallet signing pattern will provide security against potential hacks. Temporarily locking the contract or renouncing ownership will eliminate all the contract threats.

Disclaimer

The information provided in this report does not constitute investment, financial or trading advice and you should not treat any of the document's content as such. This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may copies be delivered to any other person other than the Company without Cyberscope's prior written consent. This report is not nor should be considered an "endorsement" or "disapproval" of any particular project or team. This report is not nor should be regarded as an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Cyberscope to perform a security assessment. This document does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors' business, business model or legal compliance. This report should not be used in any way to make decisions around investment or involvement with any particular project. This report represents an extensive assessment process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk Cyberscope's position is that each company and individual are responsible for their own due diligence and continuous security Cyberscope's goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies and in no way claims any guarantee of security or functionality of the technology we agree to analyze. The assessment services provided by Cyberscope are subject to dependencies and are under continuing development. You agree that your access and/or use including but not limited to any services reports and materials will be at your sole risk on an as-is where-is and as-available basis Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could include false positives false negatives and other unpredictable results. The services may access and depend upon multiple layers of third parties.

About Cyberscope

Cyberscope is a blockchain cybersecurity company that was founded with the vision to make web3.0 a safer place for investors and developers. Since its launch, it has worked with thousands of projects and is estimated to have secured tens of millions of investors' funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io