Cuarta Parte: Clase 3 – *Lookaheads*

Optimización Dinámica - ICS

Mathias Klapp

¿Qué hemos visto?

Introducción a ADP

Enfoque Miope (decisión reactiva)

Still,... mere reactions are not suitable. (Powell et al. 2000).

Recordemos

En cada etapa t y estado s_t buscamos una decisión tal que:

$$d_t(s_t) \in \underset{x \in \mathbb{X}_t(s_t)}{\operatorname{argmax}} \{r_t(s_t, x) + Q(y_t(s_t, x))\}$$

El enfoque miope (o reactivo) asume $Q_t(y_t) = 0$.

¿Cómo diseñar una política proactiva?

- Políticas de lookahead directo
- Políticas de roll-out
- Políticas de horizonte rodante
- Gestión dinámica de recursos móviles

Lookahead

- Lookahead = vistazo (aproximado) del futuro.
- Familia de enfoques *online* que intentan estimar la función Q mediante una **simulación online** del MDP desde el estado s_t y la etapa t en adelante durante p etapas.

Lookahead directo de una etapa (p = 1)

En etapa t y estado s_t se toma decisión x estimando a Q mediante el costo inmediato de la decisión en la etapa posterior. Es decir:

$$d_t^{1L}(s_t) \in \underset{x \in \mathbb{X}_t(s_t)}{\operatorname{argmax}} \{ r_t(s_t, x) + \overline{Q}_t(y_t(s_t, x)) \}$$

, donde:

$$\bar{Q}_t(y_t) = \mathbb{E}_{s_{t+1}} \left(\max_{x' \in \mathbb{X}_{t+1}(s_{t+1})} r_t(s_{t+1}, x') \middle| y_t \right)$$

• Para evitar maldición de dimensionalidad, simula en línea una muestra $\omega \in \Omega'(y_t)$ de estados $s_{t+1}(\omega')$ para cada estado posible de post-decisión y_t :

$$\overline{Q}_t(y_t) \approx \frac{1}{|\Omega'(y_t)|} \sum_{\omega' \in \Omega'(y_t)} \left(\max_{x' \in \mathbb{X}_{t+1}(s_{t+1}(\omega'))} r_t(s_{t+1}(\omega'), x') \right)$$

• En palabras simples, estima el value-to-go descartando ganancias posteriores a etapa t+1.

Política de *lookahead* directo versus miope

Miope:

One-step direct lookahead:

simulación online para cada y_t potencial a visitar en s_t

• x' no es implementada directamente, sólo se computa para estimar Q. Podría incluso ser una solución infactible o relajada.

Simulación online v/s de ejecución

Simulación de ejecución: Simular ejecución del MDP aplicando una determinada política π para estimar su valor futuro esperado $V^{\pi}(s_1)$ mediante $\frac{\sum_{\omega} V_{\omega}^{\pi}(s_1)}{m}$.

No es necesaria al ejecutar en la realidad. Solo para estimar costo.

Simulación online: Simular potenciales escenarios futuros en una ejecución particular del MDP desde una etapa t y estado s_t para estimar el value-to-go $\mathbb{E}_{s+1}(V_{t+1}(s_{t+1})|y_t)$ y evaluar una decisión-.

- Es una simulación ``dentro´´ de la ejecución.
- Necesaria para ejecutar en la realidad (desde ella se diseá la política).

2-step direct lookahead (p = 2)

p-step direct lookahead

- Simula $p \ge 1$ pasos hacia el futuro.
 - Cada paso implica aumento explosivo del requerimiento de simulación que depende de cardinalidad de estados de post-decisión:
 - 1 paso: $|\Omega| |Y_t|$ simulaciones *online*
 - 2 pasos: $|\Omega|^2 |Y_t| |Y_{t+1}|$ simulaciones online
- Adaptive *multi-step direct lookahead:* Tamaño de muestra variable por estapa y estado.
- Multistage scenario trees (SDDP)
- En esencia, es fuerza bruta truncada.
 - Optimiza ``aproximadamente'' el árbol del MDP simulado con p pasos de profundidad desde etapa t a la etapa t+p.
 - El MDP a optimalidad es un T-step direct lookahead sin simulación.

Direct Lookahead

Ventajas:

- Proactivo a corto plazo: Contabiliza impacto en futuro cercano p etapas.
- Permite paralelización computacional.
- No requiere mayor calibración. Salvo p y el tamaño de muestra.
- Toma decisiones óptimas en un MDP simulado y truncado.

Desventajas:

- Trunca el futuro.
- 100% on-line, todo su cómputo es hecho en tiempo de ejecución.
- N'umero de simulaciones crece exponencialmente con el número de pasos.

Recomendación del Chef:

- Funciona cuando impacto a futuro se diluye en pocas etapas y cuando el número de estados de post-decisión es manejable.
- También funciona bien como heurística de DPs determinísticos

Ejemplo: Dos vecinos más cercanos para el TSP

$$d^{2NN}(i,S) \leftarrow \begin{cases} argmin\{c_{ij} + \min_{k \in S \setminus \{1,j\}} \{c_{jk}\}\} \\ c_{i1} & si S = \{1\} \end{cases}$$

Equivale a:

$$d^{2NN}(i,S) \in \{j: (j,k) \in \underset{j,k \in S \setminus \{1\}}{\operatorname{argmin}} \{c_{ij} + c_{jk}\}\}$$

Ejecutable en $\mathcal{O}(n^3)$ operaciones, requiere hacer $\mathcal{O}(n^2)$ en cada decisión.

Ejemplos de *lookaheads* en MDPs

- Sistema de inventario infinito que planifica simulando online el costo mínimo esperado de los próximos p periodos de demanda a futuro.
- Sistema de generación Hidroeléctrica que considera p días de pronósticos futuros del tiempo para estimar acciones sobre represa.
- Decisiones de compra y venta de acciones con simulación futura de p etapas de escenarios futuros.

Roll-out (Lookahead indirecto)

- roll-out: desenvolver
- Es desenvolver una política fija a futuro desde una etapa en adelante como proxy al value-to-go.

Roll-out

• En etapa t y estado s_t ejecuta decisión:

$$d_t^{Roll}(s_t) \in \operatorname*{argmax}\{r_t(s_t,x) + \bar{Q}_t(y_t(s_t,x))\}$$
 , donde $\bar{Q}_t(y_t) = \mathbb{E}_{s_{t+1}}\big(V^{\pi'}(s_{t+1})\big|y_t\big)$

• Es decir, aproxima el value-to-go $V(s_{t+1})$ con el valor $V^{\pi'}(s_{t+1})$ de una política base π' ejecutada desde la etapa t+1.

• Para evitar maldición de diemensionalidad, simula una muestra online $\Omega'(y_t)$ de múltiples corridas desde t+1 hasta T utilizando π' :

$$\bar{Q}_t(y_t) \approx \frac{1}{|\Omega'(y_t)|} \sum_{\omega' \in \Omega'(y_t)} V_{t+1}^{\pi'}(\omega')$$

Roll-out

Fig. 6.1 Post-decision rollout algorithm

Fuente: Ulmer (2016)

En esta figura el estado de post-decisión $y_t(s_t, x_t)$ se denota como $s_t^{x_t}$

Roll-out versus lookahead directo

roll-out: One-step direct lookahead: π' y_t χ Simulación online

- Política π' no es implementada, sólo se computa para estimar Q.
- Roll-out sería óptimo si π' fuese óptima y cálculo de esperanzas fuese exacto.

Roll-out

Ventaja:

- No trunca el futuro. Estima Q hasta la etapa terminal.
- Permite paralelización.

Desventaja:

- Requiere una buena política base π' como input (cercana a óptima).
- Depende de exigencias de cómputo de la política base π' .
- 100% on-line, todo su cómputo es hecho en tiempo de ejecución.

Recomendación del Chef:

- Cuando el impacto no se diluye rápidamente en el futuro
- Funciona bien si existe una regla simple que aproxima razonablemente el value-to-go.

Resultado teórico del roll-out (Bertsekas)

Sea π^{Roll} la política resultante de un roll-out sobre la política base π' .

Un *roll-out* nunca es peor que su política base $oldsymbol{\pi}'$

Para todo
$$t \in \{1, ..., T\}$$
 y $s_t \in \mathbb{S}_t$: $V_t^{\pi^{Roll}}(s_t) \ge V_t^{\pi'}(s_t)$

Nota: Resultado assume estimación exacta del value-to-go de su política base

Demostración por inducción:

TERMINAL:
$$V_T^{\pi^{Roll}}(s_T) = V_T^{\pi'}(s_T) = r_T(s_T)$$

HI:
$$V_{t+1}^{\pi^{Roll}}(s_{t+1}) \ge V_{t+1}^{\pi'}(s_{t+1})$$

PRUEBA:

$$\begin{split} V_{t}^{\pi^{Roll}}(s_{t}) &= r_{t}\left(s_{t}, x_{t}^{\pi^{Roll}}\right) + \mathbb{E}_{s_{t+1}}\left[V_{t+1}^{\pi^{Roll}}(s_{t+1})\middle|y_{t}\left(s_{t}, x_{t}^{Roll}\right)\right] \\ &\geq r_{t}\left(s_{t}, x_{t}^{\pi^{Roll}}\right) + \mathbb{E}_{s_{t+1}}\left[V_{t+1}^{\pi'}(s_{t+1})\middle|y_{t}\left(s_{t}, x_{t}^{Roll}\right)\right] \\ &= \max_{x \in \mathbb{X}_{t}(s_{t})}\left\{r_{t}(s_{t}, x) + \mathbb{E}_{s_{t+1}}\left[V_{t+1}^{\pi'}(s_{t+1})\middle|y_{t}(s_{t}, x)\right]\right\} \\ &\geq r_{t}\left(s_{t}, x_{t}^{\pi'}\right) + \mathbb{E}_{s_{t+1}}\left[V_{t+1}^{\pi'}(s_{t+1})\middle|y_{t}(s_{t}, x_{t}^{\prime})\right] \\ &= V_{t}^{\pi'}(s_{t}) \end{split}$$

Simulación computacional puede distorsionar esta propiedad.

Lookahead híbrido: lookahead directo + roll-out terminal

Aplicación de MCTS a Go

https://deepmind.com/research/alphago/

ALPHAGO: programa equipado con MCTS que juega *Go*.

- En 2015 fue el primer computador en ganarle 5-0 a un jugador profesional (campeón Europeo).
- Actualmente, AlphaGo ha derrotado varias veces al campeón mundial y es considerado el mejor jugador de Go de todos los tiempos.
- Combina estas heurísticas y una gran capacidad de computo.
- Computo masivo: 1920 CPUs y 280 GPUs, \$3000USD de cuenta eléctrica por juego.

Monte Carlo tree search (MCTS)

En escencia, es un *lookahead* híbrido adaptativo. Funciona bien para problema de muchas etapas y decisiones discretas, e.g. juegos de mesa.

Explicado de forma simple evalúa así una estado en alguna parte del árbol simulado de *lookahead*:

- Si estado no se ha visitado antes en la historia se el asigna el valor de un rollout (aleatorio o por defecto).
- Si estado se ha visitado antes se simula expansión.
- Al cerrar el árbol se evalúa el valor la acción inicial (<u>Backpropagation</u>)

Ver https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-08234-9 12-1

Monte Carlo tree search (MCTS)

Recomiendo este video si quiere aprender:

https://www.youtube.com/watch?v=UXW2yZndI7U

https://www.youtube.com/watch?v=Fbs4InGLS8M

Cuarta Parte: Clase 3 – *Lookaheads*

Optimización Dinámica - ICS

Mathias Klapp