CameraML

Inpainting and Outpainting with Diffusion Models

Xitong Zhang (CMSE, Michigan State University)

Mentors: Shusil Dangi, Sandesh Ghimire

Manager: Ravi Dayana

Outline

- Motivation
- Diffusion Models for unconditional image generation
- Unsupervised Inpainting and Outpainting:
 - Denoising Diffusion Probabilistic Models (DDPM) with optional constraints
 - Diffusion GAN and Wavelet Diffusion Models
- Supervised Inpainting and Outpainting
- Free-Size Inpainting and Outpainting
 - Denoising Diffusion Null-Space Models (DDNM) with Mask-Shift Restoration and Hierarchical Restoration
 - Future work: Diffusion models + GAN

Motivation

- Inpainting and Outpainting are essential to computational photography.
- The goal is to fill the unknown target region of an image.

Diffusion Models

[2006.11239] Denoising Diffusion Probabilistic Models (arxiv.org)

By learning the reverse process of degrading clean image, diffusion models can generate high-quality and diverse images from random noise.

Denoising Diffusion Probabilistic Model (DDPM)

Denoising Diffusion Implicit Models (DDIM)

2010.02502.pdf (arxiv.org)

- A well-trained DDPM with T steps can generalize to sampling with τ steps (a subsequence of T steps), since we only consider the mapping from x_T to x_0 .
- Thus, we can skip-sampling by rescaling the denoising strength.
- It also provides a deterministic sampling approach.

Evaluation Metrics for Unconditional Generation

- LPIPS: a learned distance metric based on the deep feature space.
- FID/sFID/KID: 2-Wasserstein distance.
- Precision and Recall: Classification results of K-NN.
- Inception score: Inception-V3 classification statistics.
- CA: classification accuracy of a pretrained model.
- VOTES: human

Unsupervised Inpainting and Outpainting

Repainting

[2201.09865] RePaint: Inpainting using Denoising Diffusion Probabilistic Models (arxiv.org)

- Training a diffusion model could takes weeks and require multiple powerful GPUs, e.g., A100.
- By modifying the inference process, we can utilize a pretrained unconditional image generation model (e.g., DDPM) for inpainting and outpainting without further training.

Repainting

[2201.09865] RePaint: Inpainting using Denoising Diffusion Probabilistic Models (arxiv.org)

- The generated results will be correct considering the texture but wrong considering the content with single reverse pass.
- By travel back to the previous time step n times during sampling, the content will be also correct.

Repainting

[2201.09865] RePaint: Inpainting using Denoising Diffusion Probabilistic Models (arxiv.org)

- Resampling (traveling forward and backward) is time consuming.
- It takes over 4000 steps for one 256*256 image.

Repainting Results

Original/Input

Output

Classifier Guidance sampling

2105.05233.pdf (arxiv.org)

- Perturb the output towards including more information of the target class.
- p_{ϕ} is trained on the same noising distribution as the corresponding diffusion model.
- The classifier guidance can also be replaced by the gradient of other functions, e.g., total variation (TV).

```
Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (\mu_{\theta}(x_t), \Sigma_{\theta}(x_t)), classifier p_{\phi}(y|x_t), and gradient scale s.

Input: class label y, gradient scale s x_T \leftarrow sample from \mathcal{N}(0,\mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow sample from \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma) end for return x_0 Guidance strength Classifier guidance
```

Variants of Repaint

Improving Diffusion Models for Inverse Problems

[2206.00941] Improving Diffusion Models for Inverse Problems using Manifold Constraints (arxiv.org)

- We can avoid the resampling process by the gradient guidance of MCG.
- However, computing the gradient is expensive and time consuming.

Figure 1: Visual schematic of the MCG correction step. (a) ① Unconditional reverse diffusion generates x_i ; ② Q_i maps the noisy x_i to generate \hat{x}_0 ; ③ Manifold Constrained Gradient (MCG) $\frac{\partial}{\partial x_i} \| \mathbf{W}(\mathbf{y} - \mathbf{H}\hat{x}_0) \|_2^2$ is applied to fix the iteration on manifold; ④ Takes the orthogonal complement; ⑤ Samples from $p(y_i|y)$, then combines Ax'_{i-1} and y_i . (b) Representative results of inpainting, compared with score-SDE [41]. Reconstructions with score-SDE produce incoherent results, while our method produces high fidelity solutions.

Pseudoinverse-Guided Diffusion

pdf (openreview.net)

The problem-specific score can be decomposed via Bayes' rule:

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|\mathbf{y}) = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log p_t(\mathbf{y}|\mathbf{x}_t),$$

where the first term can be approximated with the score network $S_{\theta}(\mathbf{x}_t; \sigma_t)$ (Vincent, 2011), and the second term is a *guidance* term which is the score of $p_t(\mathbf{y}|\mathbf{x}_t)$.

$$y = Hx_0 + n, n \sim N(0, \sigma_y)$$

 $p_t(\mathbf{x}_0|\mathbf{x}_t) \approx \mathcal{N}(\hat{\mathbf{x}}_t, r_t^2 \mathbf{I})$ \hat{x}_t the estimated x_0 (DDIM) r_t depends on σ_t

Pseudoinverse-Guided Diffusion

pdf (openreview.net)

Our next step is to approximate the score of $p_t(\mathbf{y}|\mathbf{x}_t)$. Since the measurement model obtains \mathbf{y} by performing a linear transform on \mathbf{x}_0 and adding independent Gaussian noise (Eq. 2), and $p_t(\mathbf{x}_0|\mathbf{x}_t)$ is Gaussian under our approximation (Eq. 4), the distribution of \mathbf{y} conditioned on \mathbf{x}_t is also Gaussian under our approximation, as follows:

$$p_t(\mathbf{y}|\mathbf{x}_t) \approx \mathcal{N}(\mathbf{H}\hat{\mathbf{x}}_t, r_t^2 \mathbf{H} \mathbf{H}^\top + \sigma_{\mathbf{y}}^2 \mathbf{I}).$$
 (6)

Thus, we have the following approximation to the score²:

$$\nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{y}|\mathbf{x}_{t}) \approx \left(\underbrace{(\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_{t})^{\top} \left(r_{t}^{2} \mathbf{H} \mathbf{H}^{\top} + \sigma_{\mathbf{y}}^{2} \mathbf{I}\right)^{-1} \mathbf{H}}_{\text{vector}} \underbrace{\frac{\partial \hat{\mathbf{x}}_{t}}{\partial \mathbf{x}_{t}}}_{\text{Jacobian}}\right)^{\top}.$$
 (7)

This is a vector-Jacobian product and can be computed with backpropagation.

Pseudoinverse-Guided Diffusion

pdf (openreview.net)

In many cases, we have that $\sigma_y = 0$, and thus, Eq. 7 can be simplified to:

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{y}|\mathbf{x}_t) \approx r_t^{-2} \left((\mathbf{H}^{\dagger} \mathbf{y} - \mathbf{H}^{\dagger} \mathbf{H} \hat{\mathbf{x}}_t)^{\top} \frac{\partial \hat{\mathbf{x}}_t}{\partial \mathbf{x}_t} \right)^{\top}; \tag{8}$$

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{y}|\mathbf{x}_t) \approx r_t^{-2} \left((h^{\dagger}(\mathbf{y}) - h^{\dagger}(h(\hat{\mathbf{x}}_t)))^{\top} \frac{\partial \hat{\mathbf{x}}_t}{\partial \mathbf{x}_t} \right)^{\top}, \tag{9}$$

which generalizes the linear case (Eq. 8) when $h(\mathbf{x}) = \mathbf{H}\mathbf{x}$ and $h^{\dagger}(\mathbf{x}) = \mathbf{H}^{\dagger}\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

Table 1: Comparison of different guidance methods.

Guidance	Expression	$\mathbf{x}_t o \mathbf{y}$ differentiable	Train on $(\mathbf{x}_t, \mathbf{y})$	Noisy y
Classifier	$\nabla_{\mathbf{x}_t} \log q(\mathbf{y} \mathbf{x}_t)$	Required	Yes	-
Reconstruction	$\left\ \left\ abla_{\mathbf{x}_t} \left\ \mathbf{y} - oldsymbol{H} \hat{\mathbf{x}}_t ight\ _2^2 ight.$	Required	No	No
Pseudoinverse	Eqs. 7 to 9	Not required	No	Yes

Diffusion Null-space Model

Unlimited-Size Diffusion Restoration (thecvf.com)

- Assuming y = Ax + n, n = 0 or $n \sim N(0, \sigma_y)$, A is a known transformation and y is the observation, then the reverse process solves an inversion task.
- DDNM = Repaint + correction

Figure 2: Illustration of (a) DDNM and (b) the time-travel trick.

Diffusion Null-space Model

Unlimited-Size Diffusion Restoration (thecvf.com)

The pseudo-inverse should satisfy $AA^{\dagger} = I$, it could be solved by SVD, or

- Inpainting: AAA = A, so A can be the mask.
- Colorization: $A = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right], A^{\dagger} = [1, 1, 1]^{T}$
- Super resolution: $A = \begin{bmatrix} \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \end{bmatrix}, A^{\dagger} = [1, 1, 1, 1]^{T}$

Plug-and-Play Image Restoration

Denoising Diffusion Models for Plug-and-Play Image Restoration (thecvf.com)

We want to solve this optimization problem:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \frac{1}{2\sigma_n^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{x}) \qquad \mathbf{y} = \mathcal{H}(\mathbf{x}_0) + \mathbf{n}$$

x appears both terms, unstable during optimization

$$\begin{cases} \mathbf{z}_{k} = \arg\min_{\mathbf{z}} \frac{1}{2(\sqrt{\lambda/\mu})^{2}} \|\mathbf{z} - \mathbf{x}_{k}\|^{2} + \mathcal{P}(\mathbf{z}) & \text{(10a)} \\ \mathbf{x}_{k-1} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^{2} + \mu \sigma_{n}^{2} \|\mathbf{x} - \mathbf{z}_{k}\|^{2}, \text{(10b)} \end{cases}$$

$$\mathbf{z}_{k} = \mathbf{x}_{k} + n, n \sim N(0, \frac{\lambda}{\mu})$$

$$\mathbf{z}_{k} \text{ is a denoised version of } \mathbf{x}_{k}$$

$$\mathbf{x}_{k} \text{ is a noised version of } \mathbf{x}_{0}$$

$$z_k = x_k + n, n \sim N(0, \frac{\lambda}{\mu})$$

 z_k is a denoised version of x

 x_k is a noised version of x_0 Let z_k be $\widehat{x_0}$

Plug-and-Play Image Restoration

Denoising Diffusion Models for Plug-and-Play Image Restoration (thecvf.com)

Algorithm 1 DiffPIR

Require: $\mathbf{s}_{\theta}, T, \mathbf{y}, \sigma_{n}, \{\bar{\sigma}_{t}\}_{t=1}^{T}, \zeta, \lambda$

1: Initialize $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, pre-calculate $\rho_t \triangleq \lambda \sigma_n^2 / \bar{\sigma}_t^2$.

2: **for** t = T **to** 1 **do**

 $\mathbf{x}_0^{(t)} = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t + (1 - \bar{\alpha}_t) \mathbf{s}_{\theta}(\mathbf{x}_t, t))$ // Predict $\hat{\mathbf{z}}_0$ with

Solve optimization at t \ \ \ score model as denoisor

4: $\hat{\mathbf{x}}_0^{(t)} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \rho_t \|\mathbf{x} - \mathbf{x}_0^{(t)}\|^2 // Solving$ data proximal subproblem

8: end for

9: return x_0

 x_t depends on both ϵ and x_0 , ϵ should be updated when $\widehat{x_0}$ changes

Diffusion-GAN and Wavelet Diffusion

Diffusion GAN

2112.07804.pdf (arxiv.org)

Advantages:

- Consistent with DDPM
- Using a single network to predict x_{t-1} directly at different t may be difficult.

Wavelet Diffusion Model

Wavelet Diffusion Models Are Fast and Scalable Image Generators (thecvf.com)

The wavelet diffusion model is faster and smaller than the Diffusion GAN.

Adversarial objective Following [49], we optimize the generator and the discriminator through the adversarial loss:

$$\mathcal{L}_{adv}^{D} = -\log(D(y_{t-1}, y_t, t)) + \log(D(y'_{t-1}, y_t, t)),$$

$$\mathcal{L}_{adv}^{G} = -\log(D(y'_{t-1}, y_t, t)).$$
(4)

Reconstruction term In addition to the adversarial objective in Eq. (4), we add a reconstruction term to not only impede the loss of frequency information but also preserve the consistency of wavelet subbands. It is formulated as an L1 loss between a generated image and its ground-truth:

$$\mathcal{L}_{rec} = \|y_0' - y_0\|. \tag{5}$$

The overall objective of the generator is a linear combination of adversarial loss and reconstruction loss:

$$\mathcal{L}^G = \mathcal{L}_{adv}^G + \lambda \mathcal{L}_{rec},\tag{6}$$

Wavelet Diffusion Model

Wavelet Diffusion Models Are Fast and Scalable Image Generators (thecvf.com)

Blending

Gradient Domain Fusion Using Poisson Blending (brown.edu)

- Applying repainting on the wavelet diffusion model will generate results with the distribution shift.
- The Poisson Blending algorithm is introduced as a postprocessing step to solve the issue.

Repaint

Poisson blend

Outpainting the right half of the face.

Supervised Inpainting and Outpainting

Supervised Inpainting and Outpainting

Results

Takeaways

- The mask should be given to both discriminator and the generator.
- The inference results depend more on the design of the discriminators.
- Without the Haar wavelet transformation, the model fails to generate high frequency details.
- If the input of the discriminator is the Haar wavelet features, the results include more high-frequency details, but also include checker-box artifacts.
- The wavelet generator architecture does not provide high-frequency details if the input of the discriminator is the image but not the Haar wavelet feature.
- The results include high frequency details w/o the artifacts if using two discriminators, one works in the image domain and the other works in the wavelet domain.
- Reconstruction loss is important to make the training faster and stable.
- More discriminators could be incorporated, e.g., the patch-wised discriminator.
- More reconstruction loss could be considered, e.g., perceptual loss.

Free-Size Inpainting and Outpainting

Free-Size Inpainting and Outpainting

Unlimited-Size Diffusion Restoration (thecvf.com)

To reuse a low resolution inpainting/outpainting model, we can first inpaint the low-resolution image patch by patch and then inpaint the high-resolution image condition on the low-resolution results.

(b) Phase 2 of HiR

Future work: Diffusion + GAN

- Using diffusion models for patch-wised inpainting/outpainting is time-consuming.
- The other option is first using the diffusion model to inpaint the low-resolution image and then upscaling the image using a GAN to the target resolution.

Data Sources

- Places 365 MIT Places Database for Scene Recognition
- CelebA HQ CelebA-HQ resized (256x256) | Kaggle

Conclusion

- The diffusion model is a proven to generating realistic results for inpainting and outpainting.
- The results of unsupervised methods are realistic, but they are time consuming and are biased to the pretrained dataset.
- The supervised method is 1000 times faster than the unsupervised methods, but it requires a large dataset and is time consuming during training.
- The supervised method is potential to be applied on mobile devices.