

Agenda

What's going on here?

Finding those who need help...

Data Exploration

What have we found out?

What's still to come?

The Team

Former Veterinarian -

Swear an oath to save lives.

Former Business Manager -

Found out about the economical potential of the drug business.

The goal

1. Introduction

Data & background

Demographics

Psychometrics

Drugs

1885

Age

Big5 Scores

Last Usage for 19 different drugs

Gender

Impulsiveness Score

Education Level

Sensation Seeking Score

Ethnicity

Country

anonymous online survey

observations

published

2011

Big5 Personality Traits

Curios Helpful **Anxious** Organized Outgoing High Independent Trusting Unhappy Hardworking Adventurous Conscienti Agreeable **Extro Neuroticism Openness** version ness ousness **Practical** Critical Calm **Impulsive** Quiet Low Conventional Suspicious Careless Even-tempered Reserved

Defining Drug Categories

Based on:

- Ratio effective dose / lethal dose
- Potential of dependency

The interactive part

Oh no!

I mixed up all the soft and hard drugs...:-((

Drug Classification

Soft drugs

- Amyl
- Ecstasy
- Legalh
- LSD
- VSA
- Cannabis
- Shrooms

Not recognized:

Nicotine

Hard drugs

- Amphet
- Benzos
- Coke
- Crack
- Heroin
- Meth
- Ketamin

Not recognized:

Alcohol

What have we found out?

2. Data Exploration

Drug Usage by Gender

Drugs and their usage

Hard Drug Usage by Country

Drug Usage and Frequency

3. Prediction

How is in danger of getting addicted?

Personality traits

Personality traits

Prediction Approaches

300 individuals, selected by:

- Neuroticism above mean
- o Openness above mean
- Impulsiveness above mean
- Sensation Seeking above mean.
- Conscientiousness <u>below</u>
 mean

Predict Hard Drug Usage (all individuals)

Basic Predictions

Optimized Prediction

Random Forest | XGBoost | DecisionTree |
AdaBoost | kNN | Logistic Reg | SVM

Random Forest | XGBoost | SVM
** Gridsearch for Parameters **

Best Pos. Recall: 86 %

Best Pos. Recall: 89 %

Best Accuracy: 75 %

Best Accuracy: 77 %

Predict Hard Drug Usage (High Scorers)

Basic Predictions

Optimized Prediction

Random Forest | XGBoost | DecisionTree |
AdaBoost | kNN | Logistic Reg | SVM

Random Forest | XGBoost | SVM
** Gridsearch for Parameters **

Best Pos. Recall: 96 %

Best Pos. Recall: 97 %

Best Accuracy: 73 %

Best Accuracy: 77 %

Learnings and next steps

4. Conclusion

Main results

- ① Openness ① Impulsiveness ① SS increase risk for drug usage
- It is indeed possible to predict hard drug usage for "high scorers"
- Don't trust all data you receive (Semeron...)
- Be extremely careful when dealing with features like ethnicity, country of origin, gender etc.
- Do not underestimate the health risks of alcohol.

Next steps

- Collect samples that allow the usage of the country feature and that represent the overall population of the countries
- Get time-related data to find out more about the relationship between drug usage and time-related factors
- Gather information about the effect of preventive actions regarding hard drug usage
- Use unsupervised learning algorithm to create clusters of different drugs and personality types

https://github.com/dave-py https://github.com/stervet

Sources

See next slide

Sources

- Slide 7:
 - The visualization is based on the ideas of SimplyPsychology.Org Big5-Ocean
- Slide 8:
 Chocolate Clipart
- Slide 19:
 <u>MacBook Clipart</u>, <u>SciKit Learn Logo</u>
- Furthermore we took several cliparts from the Google Slide "Drug Breakthrough Theme": <u>Slide Theme Drugs</u>

