Sprawozdanie

1. Omówienie wykorzystanych algorytmów i struktur danych

• Algorytm Kruskala

Na początku sortuje wszystkie krawędzie po wagach w kolejności niemalejącej, następnie wybieram krawędź o najmniejszej wadzę, jeżeli krawędź należy do dwóch różnych wierzchołków i przynajmniej jeden jeszcze nie jest na naszym drzewie rozpinającym to go dodaję, czynność powtarzam, aż do momentu, kiedy wszystkie wierzchołki znajdą się na drzewie.

Algorytm Prima

Na początku wybieram jeden wierzchołek, dodaje go do drzewa, następnie wszystkie krawędzie, które wychodzą z tego drzewa umieszczam na kolejce priorytetowej, uporządkowanej w kolejności rosnącej (krawędź o najmniejszej wadzę na początku). Następnie wybieram pierwszą krawędź z kolejki i sprawdzam, czy wierzchołki, które łączy znajdują się na drzewie, jeżeli jeden wierzchołek jeszcze nie jest na drzewie to go dodaję. Następnie wszystkie krawędzie z tego wierzchołka dodaje do kolejki. Czynność powtarzam, aż do momentu, kiedy wszystkie wierzchołki znajdą się na drzewie.

Macierz sąsiedztwa

Budujemy tablice o rozmiarach V na V, gdzie V – liczba wierzchołków, następnie wypełniamy je zerami, jeśli dwa wierzchołki są połączone to umieszczamy jedynkę (w moich algorytmach umieszczam wagę krawędzi łączącej dane wierzchołki)

Lista sąsiadów

Dla każdego wierzchołka trzeba utworzyć listę wierzchołków, które są połączone krawędzią z danym wierzchołkiem

2. Wykresy

• Algorytm Prima

Złożoność obliczeniowa: $O(n^{1,7})$

Złożoność obliczeniowa: $O(n^{0,6})$

Złożoność obliczeniowa: $O(n^{2.07})$

Złożoność obliczeniowa $O(n^{1,3})$

Algorytm Kruskala

Złożoność obliczeniowa: $O(n^{1,5})$

Złożoność obliczeniowa: $O(n^{0,5})$

Złożoność obliczeniowa: $O(n^{1,7})$

Złożoność obliczeniowa: $O(n^{0,5})$

3. Wnioski

- Algorytm Kruskala szybciej radzi sobie na listach sąsiadów,
- Algorytm Prima dużo lepiej radzi sobie na macierzach sąsiedztwa.
- Algorytm Prima jest szybszy od algorytmu Kruskala
- Lista sąsiadów lepiej radzi sobie z rzadszymi grafami.
- Dla gęstych grafów nie ma dużej różnicy efektywności między macierzami sąsiedztwa a listą sąsiadów

4. Parametry komputera

Procesor: Intel Core i5-2430M

Pamięć ram: 4 GB

Karta graficzna: AMD Radeon HD 6470M 1GB