Predictive Modeling in Higher Education

Haziel Garcia Sanchez

Vix Talbot

Intro to Statistical Learning

Data Description

The college data set:

- 18 variables
- 777 different universities and colleges in the US.
- Data were collected in 1995
- Predicting the number of applications received

Linear Regression Analysis

```
lm(formula = Apps ~ ., data = College)
Residuals:
             10 Median
   Min
                                   Max
-4908.8 -430.2 -29.5 322.3 7852.5
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -445.08413 408.32855 -1.090 0.276053
PrivateYes -494.14897 137.81191 -3.586 0.000358 ***
                         0.04074 38.924 < 2e-16 ***
              1.58581
Accept
Enroll
              -0.88069
                         0.18596 -4.736 2.60e-06 ***
             49.92628
                         5.57824
                                   8.950 < 2e-16 ***
Top10perc
             -14.23448
                         4.47914 -3.178 0.001543 **
Top25perc
F. Undergrad
              0.05739
                         0.03271
                                  1.754 0.079785 .
P. Underarad
              0.04445
                         0.03214
                                   1.383 0.167114
                         0.01906 -4.506 7.64e-06 ***
Outstate
              -0.08587
Room Roard
              0.15103
                         0.04829
                                   3.127 0.001832 **
              0.02090
                         0.23841
Books
                                   0.088 0.930175
Personal
              0.03110
                         0.06308
                                   0.493 0.622060
PhD
              -8.67850
                         4.63814
                                  -1.871 0.061714 .
             -3.33066
                         5.09494
                                  -0.654 0.513492
Terminal
                         13.00622
S.F.Ratio
              15.38961
                                   1.183 0.237081
              0.17867
                         4.10230
perc.alumni
                                   0.044 0.965273
              0.07790
Expend
                         0.01235
                                   6.308 4.79e-10 ***
Grad.Rate
              8.66763
                         2.94893
                                   2.939 0.003390 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Significant Predictors

- Accept
- Top 10%
- Private
- Enroll
- Top 25%
- F. Undergrad
- Outstate
- Room.Board
- PhD
- Expend
- Grad. Rate

Decision Tree

Partitioned Tree

8 Terminal Nodes:

```
R1 = \{yi \mid Accept(yi) < 955.5\}
R2=\{yi \mid Accept (yi) > 955.5 \text{ and Accept } \}
(yi) < 1845.5
R3 = \{yi \mid Accept (yi) > 1845.5 \text{ and Accept} \}
(yi) < 3683 and Top10 < 74.5}
R4=\{yi \mid Accept(yi) > 1845.5 \text{ and Accept} \}
(yi) < 3683 and Top10 > 74.5}
R5=\{yi \mid Accept(yi) > 3683 \text{ and Accept} \}
(yi) < 5922.5 and Top10 < 72.5}
R6=\{yi \mid Accept(yi) > 3683 \text{ and Accept} \}
(yi) < 5922.5 and Top10 > 72.5}
R7=\{yi \mid Accept(yi) > 5922.5 \text{ and Accept} \}
(yi) < 107525.5
R8=\{yi \mid Accept (yi) > 107525.5\}
```

Is pruning the decision tree helpful?

LOOCV (Leave-One-Out-Cross-Validation)

Cross Validation Curve for our decision tree

MSE: 2,277,347.9

RMSE: 1,509.09 college

applications

Bagged Model

Random Forest

Image Source: James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning with Applications in R (2nd ed.). Springer. Pg 339

$$B = 500$$

MSE = 1,039,048.14

RMSE = 1,019.34

college applications

$$B = 1000$$

MSE = 1,061,330.47

RMSE = 1,030.21

college applications

	var <chr></chr>	rel.inf <dbl></dbl>
Accept	Accept	74.920154805
Enroll	Enroll	7.892554785
F.Undergrad	F.Undergrad	7.652619921
Top10perc	Top10perc	3.174224259
Top25perc	Top25perc	2.479617338
Expend	Expend	1.304734574
Grad.Rate	Grad.Rate	0.931114986
Outstate	Outstate	0.758077700
Room.Board	Room.Board	0.605081796
PhD	PhD	0.274591851

Boosting

 Boosting is an ensemble learning technique that combines multiple weak learners to create a strong learner.

 In a boosting model is a slow learner

The final prediction is a weighted sum.

Final Method Comparison

Range of total applications received in original date set

Minimum: 81

Maximum: 48,094

Decision Tree RMSE: 1,509.09 College Apps

Bagged (500 trees) RMSE: 1,028.76 College Apps

Bagged (1000 trees) RMSE: 1,011.62 College Apps

Random Forest (500 trees RMSE: 1,019.34 College Apps

Random Forest (1000 trees) RMSE: 1,030.21 College Apps

Boosting RMSE: 933.43 College Apps

Linear Model RMSE: 979.09 College Apps

Summary

Our Best Model for this data: Boosting Model where B = 50

- MSE = 555615.65
- RMSE = 939.09 college applications

Key Insights:

- Decision Trees: Flexible resulting in higher variability
- Ensemble Methods: Generally outperform individual decision trees and linear models, as evidenced by lower MSE and error rates.
- Final Performance: Our data ended up having a fairly linear relationship.
- Comparative Performance: Boosting models show competitive performance.

Thank You Q&A