Propositions on Differential Geometry

IKHAN CHOI

Contents

1.	Smooth manifolds	1
2.	Tangent bundle	2
3.	Geodesics	2

1. Smooth manifolds

Proposition 1.1. Let $\gamma: I \to M$ be a curve with $\gamma(0) = p$. There is a chart (U, φ) of p such that $\varphi^{-1}|_{I} = \gamma$.

Proposition 1.2. Let M be a connected manifold. For distinct two points on M, there is a curve connecting them that is an embedding into M.

Proof. Let $\gamma: I \to M$ be a curve connecting the given two points, say p, q.

Step 1: Constructing a piecewise linear curve. For $t \in I$, take a convex chart U_t at $\gamma(t)$. Since I is compact, we can choose a finite $\{t_i\}_i$ such that $\bigcup_i \gamma^{-1}(U_{t_i}) = I$. This implies im $\gamma \subset \bigcup_i U_{t_i}$. Reorganize indices such that $\gamma(t_1) = p$, $\gamma(t_n) = q$, and $U_{t_i} \cap U_{t_{i+1}} \neq \emptyset$ for all $1 \leq i \leq n-1$. It is possible since the graph with $V = \{i\}_i$ and $E = \{(i,j) : U_{t_i} \cap U_{t_j} \neq \emptyset$ is connected. Choose $p_i \in U_{t_i} \cap U_{t_{i+1}}$ such that they are all dis for $1 \leq i \leq n-1$ and let $p_0 = p$, $p_n = q$.

How can we treat intersections?

Therefore, we get a piecewise linear curve which has no self intersection from p to q. Step 2: Smoothing the curve.

Proposition 1.3. Let M is an embedded manifold with boundary in N. Any kind of sections on M can be extended on N.

Proposition 1.4. Every ring homomorphism $C^{\infty}(M) \to \mathbb{R}$ is obtained by an evaluation at a point of M.

Proof. Suppose $\phi: C^{\infty}(M) \to \mathbb{R}$ is not an evaluation. Let h be a positive exhaustion function. Take a compact set $K:=h^{-1}([0,\phi(h)])$. For every $p\in K$, we can find $f_p\in C^{\infty}(M)$ such that $\phi(f_p)\neq f_p(p)$ by the assumption. Summing $(f_p-\phi(f_p))^2$ finitely on K and applying the extreme value theorem, we obtain a function $f\in C^{\infty}(M)$ such that $f\geq 0, f|_K>1$, and $\phi(f)=0$. Then, the function $h+\phi(h)f-\phi(h)$ is in kernel of ϕ although it is strictly positive and thereby a unit. It is a contradiction.

Last Update: April 30, 2019.

2. Tangent bundle

Proposition 2.1. The n-sphere S^n possesses a nonvanishing vector field iff n is odd.

3. Geodesics

Proposition 3.1. Let $p \in M$. The set of points that is geodesically connected to p is open.