高等数学(一)模拟试卷

一、填空题(3×8=24分)

1. 当
$$a =$$
______时, $f(x) = \begin{cases} e^x, & x < 0 \\ a + x, & x \ge 0 \end{cases}$ 在 $x = 0$ 处连续.

2.
$$f'(0) = 3$$
, $\coprod f(0) = 2$, $\coprod \lim_{x \to 0} \frac{f(x) - 2}{x} = \underline{\hspace{1cm}}$

3.
$$\lim_{x \to 0} \frac{\int_{0}^{x} (e^{t^{2}} - 1) dt}{4x^{3}} = \underline{\qquad}.$$

4. 曲线
$$y = x^2$$
 与 $y = 3x$ 所围图形的面积为 ______.

7. 设
$$f(x)$$
 的一个原函数为 $\frac{\cos x}{x}$,则 $\int f(x)dx =$ ______

8. 曲线
$$y = f(x)$$
 (其中 $f'(x)$ 为连续函数) 在区间 [a, b] 的长度为______

1.
$$x \to 0$$
时, $\sqrt{1+x} - \sqrt{1-x}$ 是关于 x^2 的().

2. 设
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 则 $f(x)$ 在 $x = 0$ 处().

3. 当
$$x < x_0$$
时, $f'(x) > 0$; 当 $x > x_0$ 时, $f'(x) < 0$,则 x_0 必定为函数 $f(x)$ 的().

).

4.
$$F(x)$$
 是 $f(x)$ 的一个原函数, C 为任意常数,则 $f(x)$ 的不定积分可表示为(

(A)
$$F(x) + \cos C$$

(B)
$$F(x) + \ln C$$
 (C > 0)

(C)
$$F(x) + e^{C}$$

(D)
$$F(x) + \sqrt{C^2 + 2}$$

5. 在
$$f(x)$$
 连续的条件下,下列各式中正确的是().

(A)
$$\frac{d}{dx} \int_a^b f(x) dx = f(x)$$

(B)
$$\frac{d}{dx} \int_{b}^{a} f(x) dx = f(x)$$

(C)
$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$
 (D) $\frac{d}{dx} \int_{x}^{a} f(t)dx = f(x)$

(D)
$$\frac{d}{dx} \int_{x}^{a} f(t) dx = f(x)$$

$$(A) \ \frac{1}{2\cos^2 x}$$

(B)
$$\frac{1}{2}x^2$$

(A)
$$\frac{1}{2\cos^2 x}$$
 (B) $\frac{1}{2}x^2$ (C) $-\frac{1}{2}\cos^4 x$ (D) $-\frac{1}{2}x^2$

(D)
$$-\frac{1}{2}x^2$$

7. 设 $F(x) = \frac{1}{x-a} \int_{a}^{x} f(t)dt$, 其中 f(x) 为连续函数, 则 $\lim_{x \to a} F(x) = ($

- (A) f(a)
- (B) 1
- (C) 0
- (D) 不存在

8. 用极坐标计算曲线 $\rho = 2\sin\theta$ 所围图形面积时,积分区间是(

(A)
$$\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$$
 (B) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (C) $\left[0, \pi\right]$ (D) $\left[0, 2\pi\right]$

(B)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(C)
$$[0,\pi]$$

三、综合题

1.
$$\lim_{x \to \infty} \left(1 - \frac{1}{3x} \right)^{2x}$$
. (6%)

2.
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{\sin x}{x^3} \right)$$
. (6 \(\frac{1}{2}\))

3. 求由 $xy = e^{x+y}$ 所确定函数 y = f(x) 的微分 dy. (6分)

$$4 \int \frac{\sin 2x}{3+\sin^2 x} dx \cdot (5 \, \%)$$

5.
$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$
. (5 $\%$)

6.
$$\int_{0}^{3} x |x-1| dx$$
. (6 %)

7.
$$\int_0^{+\infty} \frac{dx}{x^2 + 4x + 5}$$
. (6 $\%$)

8、(6分) 求曲线 $y = x^2$ 与 $x = y^2$ 所围成图形绕 x 轴旋转一周所形成 旋转体的体积. (6分)

9. (6 分)若函数 f(x) 在 (a,b) 内具有二阶导数,且 $f(x_1) = f(x_2) = f(x_3)$,其中 $a < x_1 < x_2 < x_3 < b$,证明: 在 (x_1, x_3) 内至少有一点 ξ ,使得 $f''(\xi) = 0$