Hitchin to Higgs and back

Fabian

1 Hitchins to Higgs

Let M be compact Riemann surface of genus g > 1 and group G = U(2). Let $V \to M$ be a unitary vector bundle of rank 2, that is, V has a Hermitian metric, and admits action by U(2). Let $\{U_{\alpha}\}$ be a trivialisation of V with transition functions $u_{\alpha\beta}: U_{\alpha\beta} \to U(2)$.

Suppose (A, φ) be the solution to the Hitchin equation ?? for $A \in \Omega^1(V)$. In local coordinates we can express the connection A as

$$\nabla_A s = ds + A_{\alpha} s \tag{1}$$

The transformation conditions dictate $A_j = u_{\alpha\beta}^{-1} A_{\alpha} u_{\alpha\beta} + u_{\alpha\beta}^{-1} du_{\alpha\beta}$. Over the cover then $F_A|_{U_{\alpha}} = dA_{\alpha} + 1/2[A_{\alpha}, A_{\alpha}] \Phi \in \Omega^0(M, \operatorname{End}_0 V)$.

Hitchin's equations are

$$F_A + [\Phi, \Phi^*] = 0 \tag{2}$$

$$d_A^{0,1}\Phi = 0 \tag{3}$$

Theorem 1.1. Let (A, Φ) be a solution to Hitchens equations. Let $L \subset V$ that is Φ invariant subbundle of rank 1. Then $\deg(L) \leq \frac{1}{2} \deg(\det(V))$

Idea of proof.

Let ω be a 2form such that $\int 1/2\pi\omega = 1$

 $s \in \Omega(M, L^* \otimes V) = \Omega^0(M, \operatorname{Hom}(L, V))$ Where s is holomorphic since L is holomorphic.

Construct a connection B on $L^* \otimes V$ such that $F(B)s = F(A)s - \deg(L) \le \omega + 1/2\deg(\det V) \le \omega - [\Phi, \Phi^*]s + \dots$ and $\langle F(B)s, s \rangle_{L^2} \ge 0$

If $\deg(L) > 1/2\deg(\det V)$ then $\int \langle F(B)s, s \rangle < 0$ so contradiction.

Lemma 1.2. $L \to M$ holomorphic line bundle. Then there exists connection ϑ on L such that $F(\vartheta) = \deg(L)\omega$

Proof. Let ϑ be a any connection on L. Then

$$\int_{M} \frac{1}{2\pi} F_{\vartheta} = \deg L = \int \frac{1}{2\pi} \deg L \cdot \omega \tag{4}$$

(Upto constant.) This implies $\left[\frac{1}{2\pi}F_{\vartheta}\right] = \left[\left(\deg L \cdot \omega\right)\right]$ Get a second connection $\vartheta' = \vartheta + \partial \rho$ for some $\rho \in C^{\infty}(M)$. Then $F(\vartheta') =$ $F(\vartheta) - \partial \bar{\partial} \rho$.

Then $F(\vartheta') = \deg L \cdot \omega$ if and only if $\partial \bar{\partial} = F(\vartheta) - \deg L \cdot \omega$.

The latter is precisely the $d\bar{d}$ lemma. And since we have a Kahler manifold we can solve for ρ .

We have exact sequence of groups

$$0 \to \mathrm{U}(1) \to U(2) \to \mathrm{SO}(3) \to -0 \tag{5}$$

SO(3) connection A induces \tilde{A} on V such that

$$F(\hat{A}) = F(A) + 1/2F(A_0)$$
id (6)

 $\deg \det V\omega$ connection on L Choose A_0 such that curvature is $F(A_0)=$

 $\langle d_B^{0,1}s,s\rangle$, The first term lies in $\Omega^{1,0}(L^*\otimes V)$ while the latter term lies in

$$d^{0,1} \left\langle d_B^{0,1} s, s \right\rangle = \left\langle d_B^{0,1} d_B^{0,1} s, s \right\rangle - \left\langle d_B^{0,1} s, d_B^{0,1} s \right\rangle \tag{7}$$

Have that $F(B)=d_B^2=d_B^{0,1}d_B^{1,0}-d_B^{1,0}d_B^{0,1}$ As s is holomorphic, ie $d_B^{0,1}s=0$

$$\int_{M} \langle F(B)s, s \rangle \ge 0 \tag{8}$$

Stable Higgs to Hitchin $\mathbf{2}$

Let \mathcal{A} be the space of all C^{∞} connections on stable Higgs bundle (V, Φ) . \mathcal{A} is an affine space that is modelled on $\Omega^1(\text{End}(V))$. Thus $T_A \mathcal{A} = \Omega^1(\text{End}(V))$. This has a natural symplectic structure

$$\omega(Y_1, Y_2)|_A := \int_M \text{Tr}(Y_1(A) \wedge Y_2(A))$$
 (9)

where Y_i vector fields on \mathcal{A} . Thus we have infinite dimensional symplectic manifold.

Recall that for symplectic manifold (X, ω) , we have associated G acting on X, where $L_x\omega = 0$. For $g \in \mathfrak{g}$ have the associated $z_g \in \Gamma(TX)$. $\omega(\cdot, z_g) = dH_g$ the action of the Hamiltonian if and only if there exists H_g for $\forall g \in \mathfrak{g}$

Define the moment

$$\mu: M \to \mathfrak{g}^* \tag{10}$$

with $\langle \mu(m), g \rangle = H_g(m)$.

Let \mathcal{G} be the group of gauge transformations. That is a collection of functions $g_{\alpha}: U_{\alpha} \to G$ defined on a trivialisations satisfying transformation rule $g_{\alpha} = u_{\alpha\beta}g_ju_{\beta\alpha}$. Such maps are called gauge transformations and are equivalently defined as sections $g \in \Gamma(\mathrm{Ad})$.

The general idea is that Hitchin's equations are the moment map on the space of connections $\mathcal{A} \times \Omega^{1,0}(\operatorname{ad} P \otimes \mathbb{C})$.

For a connection ∇ , the gauge transformation g induces the following transformation to ∇'

$$\nabla' = \nabla - (\nabla g)g^{-1} \tag{11}$$

Now see φ as an element of the Lie algebra of the Gauge group. $\varphi \in \text{Lie}(\mathcal{G}) = \Omega^0(M, \text{End}(V))$

For a connection A, have the associated vector field $z_{\varphi}(A) = \frac{d}{dt}|_{t=0}(\nabla_A - \nabla A(I+t\varphi)(I-t\varphi)) = -\nabla_A\varphi$

The associated hamiltonian to $z_{\varphi}(A)$ is $f_{\varphi}(A) = -\int_{M} \text{Tr}(F_{A} \wedge \varphi)$

We see this by considering $df_{\varphi}|_{A}(a) = -\frac{d}{dt}|_{t=0} \int_{M} \operatorname{Tr}(F_{A+ta} \wedge \varphi)$ where $a \in T_{A}\mathcal{A}$ that is $a \in \Omega^{1}(\operatorname{End}(V))$.

We can write $F_{A+a} = F_A + d_A a + \frac{1}{2}[a,a]$. Commuting the differentiation and integration, and seeing that $\frac{d}{dt}|_{t=0}F_{A+ta} = d_A a$ we recover $\omega(a,z_{\varphi}) = -\int_M \text{Tr}(d_A a \wedge \varphi)$ ie the Hamiltonian.

The moment map $\mu: \mathcal{A} \to \mathrm{Lie}^*(\mathcal{G})$

Note that since there exists a natural pairing between $\Omega^0(\operatorname{End}(V))$ and $\Omega^2(\operatorname{End}(V))$, so we can identify $\operatorname{Lie}^*(\mathcal{G}) = \Omega^2(\operatorname{End}(V))$

Now consider the action of U(n) on \mathbb{C}^n $\operatorname{End}(\mathbb{C}^n)$ has hermitian product. $h(A,B)=\operatorname{tr}(AB^*),\ U(n)$ acts on $\operatorname{End}(\mathbb{C}^n)$ by conjugation

$$\omega(A, B) = -\mathrm{IM}(\mathrm{tr}(AB^*))$$

$$\mu(A) = i/2[A, A^*]$$

$$\Omega^{1,0}(M,\operatorname{End}_0V)$$

$$\omega(\Phi,\Phi) = \dots$$

```
\mathcal{G} \text{ acts on } \Omega^{1,0}(M,\operatorname{End}_0(V)) \mu(\Phi) = [\Phi,\Phi^*] \mathcal{G} \text{ acts on } \mathcal{A} \times \Omega^{1,0}(M,\operatorname{End}_0V) \mu(A,\Phi) = F(A') + [\Phi,\Phi^*] = 0 To solve Hitchin equation find (A,\Phi) such that \mu(A,\Phi) = 0. Choose a Riemannain metric on M so that we can consider \|\mu\|^0 Then \|\mu\|_2^2 = \int_M \|F_A + [\Phi,\Phi^*]\|^2 [[THIS IS QUITE A NOTATION HEAVY PIECE. A LOT OF ATTENT-TION NEEDED ]]
```