

Trabalho 5 - Cinemática direta e inversa de UM MANIPULADOR FANUC

1 Identificação da cinemática direta e simulação

Considere o manipulador Fanuc ArcMate M6iB 6S (Fig. 1), disponível no Laboratório de Automação e Robótica.

0

Fig. 1. Manipulador Fanuc ArcMate M6iB 6S

T5-CINEMÁTICA DIRETA (ALGORITMO DE DENAVIT-HARTENBERG)

1-Identificação dos sistemas de referenciais em cada junta

2-Elaboração da tabela de Denavit-Hartenberg

$$\blacksquare \quad I_i = \overline{(zi_{-1} \cap x_i), Oi} \mid_{x_i}$$

$$\bullet \quad d_i = \overline{O_{i-1, (zi_{-1} \cap x_i)}} \mid_{z_{i-1}}$$

$$\bullet \quad \theta_i = \angle (x_{i-1}, x_i) \mid_{z_{i-1}}$$

$$\bullet \quad \alpha_i = \angle (z_{i-1}, z_i) |_{x_i}$$

Elo	θ	α	ι	d
1	θ ₁ +90°	90°	0	L_A
2	90°	90°	0	L _B
3	θ_2	180°	L _c	0
4	θ_3	90°	L _D	0
5	0	180°	0	LE
6	θ_{4}	90°	0	0
7	θ_{5}	-90°	0	0
8	θ_6	90°	0	-L _F

2 Identificação da cinemática inversa e simulação

a) Implementar a cinemática inversa do manipulador.

Nota: Implemente por fases: (i) considerar apenas as três primeiras juntas, a que corresponde a posição do punho (calcular θ_1 , θ_2 e θ_3); (ii) considerar as restantes juntas, a que corresponde a posição do end-effector (calcular θ_4 , θ_5 e θ_6).

0

- b) Ilustrar o funcionamento da cinemática inversa para os espaços cartesianos obtidos em 1c, 1d e 1e (inicial e final). O espaço das redundâncias admissíveis e inadmissíveis deve ser identificado. Deve ser permitido a especificação no código das opções de redundância desejadas (ombro/cotovelo/punho).
- c) Ilustrar o funcionamento da cinemática inversa simulando o manipulador numa operação de pick & place.

T5-Cinemática Inversa (Cálculo de θ_1 , θ_2 , e θ_3)

$${}^{1}T_{5} = T_{1}T_{2}T_{3}T_{4}T_{5} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & P_{wx} \\ r_{21} & r_{22} & r_{23} & P_{wy} \\ r_{31} & r_{32} & r_{33} & P_{wz} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Inputs:
$$(P_x \quad P_y \quad P_z \quad \varphi_x \quad \varphi_y \quad \varphi_z)$$
Outputs: $(\theta_1 \quad \theta_2 \quad \theta_3 \quad \theta_4 \quad \theta_5 \quad \theta_6)$

$$egin{array}{lll} {\sf X} & r_{11} = S_{2-3} C_1 & {\sf X} & r_{12} = -S_1 \ {\sf X} & r_{21} = S_{2-3} S_1 & {\sf X} & r_{22} = C_1 \ {\sf X} & r_{31} = C_{2-3} & {\sf X} & r_{32} = 0 \end{array}$$

$$x$$
 $r_{13} = -C_{2-3}C_1$
 x $r_{23} = -C_{2-3}S_1$
 x $r_{33} = S_{2-3}$

$$egin{aligned} \mathbf{X} & P_{wx} = C_1(L_B + L_C S_2 + L_E C_{2-3} + L_D S_{2-3} \ \mathbf{X} & P_{wy} = S_1(L_B + L_C S_2 + L_E C_{2-3} + L_D S_{2-3} \ \mathbf{X} & P_{wz} = L_C C_2 + L_D C_{2-3} - L_E S_{2-3} \end{aligned}$$

T5-CINEMÁTICA INVERSA (CÁLCULO DE θ_1 , θ_2 , e θ_3)

$${}^{1}T_{5} = T_{1}T_{2}T_{3}T_{4}T_{5} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & P_{wx} \\ r_{21} & r_{22} & r_{23} & P_{wy} \\ r_{31} & r_{32} & r_{33} & P_{wz} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\theta_1 = tan^{-1}(\frac{P_{wy}}{P_{wx}})$$

Cálculo de θ_1

T5-Cinemática Inversa (Cálculo de θ_1 , θ_2 , e θ_3)

$${}^{1}T_{5} = T_{1}T_{2}T_{3}T_{4}T_{5} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & P_{wx} \\ r_{21} & r_{22} & r_{23} & P_{wy} \\ r_{31} & r_{32} & r_{33} & P_{wz} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\pm \sqrt{P_{wx}^2 + P_{wy}^2} - L_B = L_C S_2 + L_E C_{2-3} + L_D S_{2-3}$$

$$(\pm \sqrt{P_{wx}^2 + P_{wy}^2} - L_B)^2 = (L_C S_2 + L_E C_{2-3} + L_D S_{2-3})^2 \qquad P_{wz}^2 = (L_C C_2 + L_D C_{2-3} - L_E S_{2-3})^2$$

Daqui obtém-se uma equação transcendental:

$$(\pm \sqrt{{P_{wx}}^2 + {P_{wy}}^2} - L_B)^2 + {P_{wz}}^2 = L_C^2 + L_D^2 + L_E^2 + 2L_C L_D C_3 + 2L_C L_E S_3$$

T5-Cinemática Inversa (Cálculo de θ_1 , θ_2 , e θ_3)

Cálculo de θ_3 (cont.)

Equação transcendental na forma polinomial:

$$\varepsilon_1 C_3 + \varepsilon_2 S_3 = \varepsilon_3$$

em que:

$$\varepsilon_1 = 2L_c L_D$$
;

$$\varepsilon_2 = 2L_c L_E$$
;

$$\varepsilon_3 = (\pm \sqrt{P_{wx}^2 + P_{wy}^2} - L_B)^2 + P_{wz}^2 - L_C^2 - L_D^2 - L_E^2;$$

Obtendo-se:

$$\theta_3 = 2tan^{-1} \frac{\varepsilon_2 \pm \sqrt{\varepsilon_1^2 + \varepsilon_2^2 - \varepsilon_3^2}}{\varepsilon_1 + \varepsilon_2}$$

T5-CINEMÁTICA INVERSA (CÁLCULO DE θ_1 , θ_2 , e θ_3)

$${}^{1}T_{5} = T_{1}T_{2}T_{3}T_{4}T_{5} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & P_{wx} \\ r_{21} & r_{22} & r_{23} & P_{wy} \\ r_{31} & r_{32} & r_{33} & P_{wz} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\pm \sqrt{P_{wx}^2 + P_{wy}^2} - L_B = L_C S_2 + L_E C_{2-3} + L_D S_{2-3}$$

Daqui vem que:

$$C_2 = \frac{\left(\pm \sqrt{P_{wx}^2 + P_{wy}^2} - L_B\right) - (L_C + L_D C_3 + L_E S_3) S_2}{L_E C_3 - L_D S_3}$$

$$P_{wz} = L_C C_2 + L_D C_{2-3} - L_E S_{2-3}$$
Daqui vem que:

$$S_2 = \frac{(L_C + L_D C_3 + L_E S_3)C_2 - P_{wz}}{L_E C_3 - L_D S_3}$$

Substituindo C_2 em S_2 e vice-versa:

$$C_{2} = \frac{\delta_{2} \left(\pm \sqrt{P_{wx}^{2} + P_{wy}^{2}} - L_{B} \right) + \delta_{1} P_{wz}}{\delta_{1}^{2} + \delta_{2}^{2}}$$

$$S_{2} = \frac{\delta_{1}\delta_{2}\left(\pm\sqrt{P_{wx}^{2} + P_{wy}^{2}} - L_{B}\right) - \delta_{2}^{2}P_{wz}}{\delta_{1}\delta_{2}^{2} + \delta_{2}^{3}}$$

em que:

$$\delta_1 = L_C + L_D C_3 + L_E S_3$$

$$\delta_2 = L_E C_3 - L_D S_3$$

Cálculo de θ_2 (cont.)

Tendo por fim:

$$\theta_2 = tan^{-1}(\frac{S_2}{C_3})$$

T5-CINEMÁTICA INVERSA (CÁLCULO DE θ_4 , θ_5 , e θ_6)

$${}^{6}T_{8} = T_{6}T_{7}T_{8} = \begin{pmatrix} n_{1} & s_{1} & a_{1} \\ n_{2} & s_{2} & a_{2} \\ n_{3} & s_{3} & a_{3} \end{pmatrix}$$

Inputs:
$$\begin{pmatrix} P_x & P_y & P_z & \varphi_x & \varphi_y & \varphi_z \end{pmatrix}$$

Outputs: $\begin{pmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{pmatrix}$

$$X n_1 = C_4 C_5 C_6 - S_4 S_6$$

$$X s_1 = C_6 S_4 + C_4 C_5 S_6$$

$$X a_1 = C_4 S_5$$

$$X n_2 = C_4 S_6 + C_5 C_6 S_4$$

$$X \quad s_2 = C_5 S_4 S_6 - C_4 C_6$$
 $X \quad a_2 = S_4 S_5$

$$X \quad a_2 = S_4 S_5$$

$$X n_3 = C_6 S_5$$

$$x s_3 = S_5 S_6$$

$$X a_3 = -C_5$$

T5-Cinemática Inversa (Cálculo de θ_4 , θ_5 , e θ_6)

Cálculo de θ_{5}

$$\frac{\pm \sqrt{a_1^2 + a_2^2}}{-a_3} = \tan(\theta_5) \Rightarrow \theta_5 = \tan^{-1}(\frac{\pm \sqrt{a_1^2 + a_2^2}}{-a_3})$$

Cálculo de θ₄

$$\frac{a_2}{a_1} = \tan(\theta_4) \Rightarrow \theta_4 = \tan^{-1}(\frac{a_2}{a_1})$$

Cálculo de θ_6

$$\frac{s_3 S_5}{n_3 S_5} = \tan(\theta_6) \Rightarrow \theta_6 = \tan^{-1}(\frac{s_3}{n_3})$$

Inputs: $\begin{pmatrix} P_x & P_y & P_z & \varphi_x & \varphi_y & \varphi_z \end{pmatrix}$ Outputs: $\begin{pmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{pmatrix}$

T5-CINEMÁTICA INVERSA (CÁLCULO DE θ_4 , θ_5 , e θ_6)

Os valores de n, s e a foram calculados com base na seguinte matriz

Inputs:
$$\begin{pmatrix} P_x & P_y & P_z & \varphi_x & \varphi_y & \varphi_z \end{pmatrix}$$

Outputs: $\begin{pmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{pmatrix}$

$${}^{6}T_{8} = ({}^{1}T_{5})^{-1} {}^{1}T_{8} = \begin{pmatrix} n_{1} & s_{1} & a_{1} & q_{1} \\ n_{2} & s_{2} & a_{2} & q_{2} \\ n_{3} & s_{3} & a_{3} & q_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Em que 1T_5 foi calculado recorrendo à cinemática direta, e 1T_8 foi calculada recorrendo á seguinte expressão:

$$^{1}T_{8} = trans(P_{x}, P_{y}, P_{z}) rot(z, \phi_{z}) rot(y, \phi_{y}) rot(x, \phi_{x})$$

T5-CINEMÁTICA INVERSA (CÁLCULO DE P_{wx} , P_{wy} , P_{wz})

$$P_w = P - L_F a$$

em que:

$$\mathbf{X} \quad a_x = C_{\Phi_x} C_{\Phi_z} S_{\Phi_y} + S_{\Phi_x} S_{\Phi_z}$$

$$\mathbf{X} \quad a_y = -C_{\Phi_z} S_{\Phi_x} + C_{\Phi_x} S_{\Phi_y} S_{\Phi_z}$$

$$\mathbf{X} \quad a_z = C_{\Phi_x} C_{\Phi_y}$$

Inputs: $(P_x \quad P_y \quad P_z \quad \varphi_x \quad \varphi_y \quad \varphi_z)$

T5-CINEMÁTICA INVERSA (REDUNDÂNCIAS)

Redundância θ_2	Redundância θ_3	Redundância θ_{5}	Solução
-1	-1	-1	Inadmissível (Solução Imaginária)
-1	-1	1	Inadmissível (Solução Imaginária)
-1	1	-1	Inadmissível (Solução Imaginária)
-1	1	1	Inadmissível (Solução Imaginária)
1	-1	-1	Admissível
1	-1	1	Admissível
1	1	-1	Inadmissível (Espaço Cartesiano diferente)
1	1	1	Inadmissível (Espaço Cartesiano diferente)