# Strategie e analisi dell'errore per problemi di ottimizzazione vincolati regolati da equazioni di evoluzione

Claudia Bonomi Edoardo Arbib

POLITECNICO DI MILANO

Progetto per il corso di Analisi Numerica per le Equazioni a Derivate Parziali II

## Contenuti

- Problema continuo
- 2 Problema discreto
  - Equazioni di stato e aggiunta
  - Discretizzazione variazionale
- Algoritmi risolutivi
- 4 Implementazione
- 6 Risultati
  - Test Case 01
  - Test Case 02
- 6 Conclusioni



# Setting

dominio 
$$\Omega \times I$$
,  $\Omega \subset \mathbb{R}^n$ ,  $I = (0, T)$ ,  $U_{ad} \subset U = L^2(I, \mathbb{R}^D)$ 

$$\min_{y \in Y, u \in U_{ad}} J(y, u) = \frac{1}{2} ||y - y_d||^2_{L^2(I, L^2(\Omega))} + \frac{\alpha}{2} ||u||^2_U$$
s.t. 
$$y = S(Bu, y_0)$$
(1)

Equazione di stato

Condizione di ottimalità

$$\begin{array}{ll} \partial_t \overline{y} - \triangle \overline{y} = f & \text{in I} \times \Omega \\ \overline{y} = 0 & \text{in I} \times \Omega \\ \overline{y}(0) = \kappa & \text{in } \Omega \end{array} \qquad \overline{u} = P_{U_{ad}} \left( -\frac{1}{\alpha} B' \overline{p} \right)$$

 $\overline{p}$  è la soluzione del problema aggiunto

$$-\partial_t \overline{p} - \triangle \overline{p} = \overline{y} - y_d \quad \text{in } I \times \Omega 
\overline{p} = 0 \qquad \qquad \text{in } I \times \partial \Omega 
\overline{p}(T) = 0 \qquad \text{su } \Omega$$
(2)

# Spazio e operatore di controllo

Spazio di controllo

$$U_{ad} = \{ u \in U | a_i \le u_i(t) \le b_i \forall i = 1 : d \}$$
(3)

con  $a_i, b_i \in \mathbb{R}$  t.c.  $a_i < b_i \ \forall i = 1 : d$ Operatore di controllo

$$B: U \to L^2(I, H^{-1}(\Omega)), \ u \mapsto \left(t \mapsto \sum_{i=1}^d u_i(t)g_i\right)$$
 (4)

con funzionali noti  $g_i \in H^{-1}(\Omega)$ 

# Discretizzazione temporale

Partizione di [0,T) in sottointervalli  $I_m = [t_{m-1},t_m)$ , dove  $0 = t_0 < t_1 < \cdots < t_M = T \longrightarrow \text{griglia primale}$ Seconda partizione di [0,T) in intervalli  $I_m^* = [t_{m-1}^*,t_m^*)$ , con  $0 = t_0^* < t_1^* < \cdots < t_M^* = T$  e  $t_m^* = \frac{t_{m-1} + t_m}{2}$  per  $m = 1,\ldots,M \longrightarrow \text{griglia duale}$ Ambientazione funzionale

$$P_{k} := \left\{ v \in C([0, T], H_{0}^{1}(\Omega)) \middle| v \middle|_{I_{m}} \in \mathcal{P}_{1}(I_{m}, H_{0}^{1}(\Omega)) \right\},$$

$$P_{k}^{*} := \left\{ v \in C([0, T], H_{0}^{1}(\Omega)) \middle| v \middle|_{I_{m}^{*}} \in \mathcal{P}_{1}(I_{m}^{*}, H_{0}^{1}(\Omega)) \right\},$$

$$Y_{k} := \left\{ v : [0, T] \to H_{0}^{1}(\Omega) \middle| v \middle|_{I_{m}} \in \mathcal{P}_{0}(I_{m}, H_{0}^{1}(\Omega)) \right\}.$$

# Operatori di interpolazione

$$\bullet \mathcal{P}_{Y_k}: L^2(I, H^1_0(\Omega)) \to Y_k$$

$$\mathcal{P}_{Y_k}v|_{I_m}:=rac{1}{k_m}\int_{t_{m-1}}^{t_m}vdt \ ext{for} \ m=1,\ldots,M, \ ext{e} \ \mathcal{P}_{Y_k}v(\mathcal{T}):=0$$

- $\exists \Pi_{Y_k}: C([0,T],\Pi_0(\Omega)) o T_k$   $\Pi_{Y_k}v|_{I_m}:=v(t_m^*) \quad \text{per } m=1,\ldots,M, \quad \Pi_{Y_k}v(T):=v(T)$

$$\pi_{P_k^* V | I_1^* \cup I_2^*} := v(t_1^*) + \frac{t - t_1^*}{t_2^* - t_1^*} (v(t_2^*) - v(t_1^*)),$$

$$\pi_{P_k^* V | I_m^*} := v(t_{m-1}^*) + \frac{t - t_{m-1}^*}{t_m^* - t_{m-1}^*} (v(t_m^*) - v(t_{m-1}^*)),$$

$$v(t_m^*) := v(t_m^*) + \frac{t - t_{m-1}^*}{t_m^* - t_{m-1}^*} (v(t_m^*) - v(t_m^*)),$$

# Operatori di interpolazione

$$\mathcal{P}_{Y_k}: L^2(I, H_0^1(\Omega)) \to Y_k$$

$$\mathcal{P}_{Y_k} v|_{I_m} := \frac{1}{k_m} \int_{t_{m-1}}^{t_m} v dt \text{ for } m = 1, \dots, M, \text{ e } \mathcal{P}_{Y_k} v(T) := 0$$

② 
$$\Pi_{Y_k}: C([0,T],H^1_0(\Omega)) \to Y_k$$
  
 $\Pi_{Y_k}v|_{I_m}:=v(t_m^*) \text{ per } m=1,\ldots,M, \quad \Pi_{Y_k}v(T):=v(T)$ 

$$\pi_{P_{k}^{*}} : C([0, T], H_{0}^{*}(\Omega)) \cup Y_{k} \to P_{k}^{*}$$

$$\pi_{P_{k}^{*}} v|_{I_{1}^{*} \cup I_{2}^{*}} := v(t_{1}^{*}) + \frac{t - t_{1}^{*}}{t_{2}^{*} - t_{1}^{*}} (v(t_{2}^{*}) - v(t_{1}^{*})),$$

$$\pi_{P_{k}^{*}} v|_{I_{m}^{*}} := v(t_{m-1}^{*}) + \frac{t - t_{m-1}^{*}}{t_{m}^{*} - t_{m-1}^{*}} (v(t_{m}^{*}) - v(t_{m-1}^{*})),$$

$$\pi_{P_{k}^{*}} v|_{I_{M}^{*} \cup I_{M+1}^{*}} := v(t_{M-1}^{*}) + \frac{t - t_{M-1}^{*}}{t_{M}^{*} - t_{M-1}^{*}} (v(t_{M}^{*}) - v(t_{M-1}^{*})),$$

## Operatori di interpolazione

$$\mathcal{P}_{Y_k}: L^2(I, H_0^1(\Omega)) \to Y_k$$

$$\mathcal{P}_{Y_k} v|_{I_m} := \frac{1}{k_m} \int_{t_{m-1}}^{t_m} v dt \text{ for } m = 1, \dots, M, \text{ e } \mathcal{P}_{Y_k} v(T) := 0$$

② 
$$\Pi_{Y_k} : C([0, T], H_0^1(\Omega)) \to Y_k$$
  
 $\Pi_{Y_k} v|_{I_m} := v(t_m^*) \text{ per } m = 1, \dots, M, \quad \Pi_{Y_k} v(T) := v(T)$ 

$$\pi_{P_{k}^{*}} : C([0, T], H_{0}^{1}(\Omega)) \cup Y_{k} \to P_{k}^{*}$$

$$\pi_{P_{k}^{*}} v|_{I_{1}^{*} \cup I_{2}^{*}} := v(t_{1}^{*}) + \frac{t - t_{1}^{*}}{t_{2}^{*} - t_{1}^{*}} (v(t_{2}^{*}) - v(t_{1}^{*})),$$

$$\pi_{P_{k}^{*}} v|_{I_{m}^{*}} := v(t_{m-1}^{*}) + \frac{t - t_{m-1}^{*}}{t_{m}^{*} - t_{m-1}^{*}} (v(t_{m}^{*}) - v(t_{m-1}^{*})),$$

$$\pi_{P_{k}^{*}} v|_{I_{M}^{*} \cup I_{M+1}^{*}} := v(t_{M-1}^{*}) + \frac{t - t_{M-1}^{*}}{t_{M}^{*} - t_{M-1}^{*}} (v(t_{M}^{*}) - v(t_{M-1}^{*})).$$

# Equazione di stato

Formulazione debole trovare  $y_k \in Y_k$  tale che

$$\int_{0}^{T} \langle \partial_{t} v(t), y(t) \rangle_{H^{-1}H_{0}^{1}} dt + \int_{0}^{T} a(y(t), v(t)) dt + (y(T), v(T))_{L^{2}} 
= \int_{0}^{T} \langle f(t), v_{k}(t) \rangle_{H^{-1}H_{0}^{1}} dt + (\kappa, v_{k}(0))_{L^{2}} \, \forall v_{k} \in P_{k}. \quad (5)$$

⇒ variante di CN con passo di Rannacher. Lo schema è consistente, stabile, convergente.

#### Analisi errore

 $y_k \in Y_k \Rightarrow$  ordine  $\mathcal{O}(k)$ , ma  $\pi_{P_k^*} y_k$  converge con ordine due

Lo studio dell'equazione aggiunta è analogo, solo con spazi di soluzione e test scambiati. Lo schema risultante è una variante di CN.

### Discretizzazione variazionale

Problema di controllo ottimo discretizzato

$$\min_{\substack{y_k \in Y_k, u \in U_{ad} \\ \text{s.t.}}} J(y_k, u) = \frac{1}{2} \|y_k - y_d\|_{L^2(I, L^2(\Omega))}^2 + \frac{\alpha}{2} \|u\|_U^2 \qquad (\mathbb{P}_k)$$

dove  $S_k$  è la discretizzazione di S tramite lo schema di PG.

#### Osservazioni

- Il metodo si basa sulla discretizzazione dei soli spazi di stato e aggiunto, utilizzando implicitamente le condizioni di ottimalità del primo ordine per la discretizzazione del controllo.
- 2 Il metodo permette di disaccoppiare l'approssimazione dell'active set dalla scelta della griglia temporale
- 3 Il metodo è ben posto e convergente con ordine 2 rispetto a

## Discretizzazione variazionale

Problema di controllo ottimo discretizzato

$$\min_{\substack{y_k \in Y_k, u \in U_{ad} \\ \text{s.t.}}} J(y_k, u) = \frac{1}{2} \|y_k - y_d\|_{L^2(I, L^2(\Omega))}^2 + \frac{\alpha}{2} \|u\|_U^2 \tag{$\mathbb{P}_k$}$$

dove  $S_k$  è la discretizzazione di S tramite lo schema di PG.

#### Osservazioni

- Il metodo si basa sulla discretizzazione dei soli spazi di stato e aggiunto, utilizzando implicitamente le condizioni di ottimalità del primo ordine per la discretizzazione del controllo.
- 2 Il metodo permette di disaccoppiare l'approssimazione dell'active set dalla scelta della griglia temporale
- 3 Il metodo è ben posto e convergente con ordine 2 rispetto a

## Discretizzazione variazionale

Problema di controllo ottimo discretizzato

$$\min_{\substack{y_k \in Y_k, u \in U_{ad} \\ \text{s.t.}}} J(y_k, u) = \frac{1}{2} \|y_k - y_d\|_{L^2(I, L^2(\Omega))}^2 + \frac{\alpha}{2} \|u\|_U^2 \qquad (\mathbb{P}_k)$$

dove  $S_k$  è la discretizzazione di S tramite lo schema di PG.

#### Osservazioni

- Il metodo si basa sulla discretizzazione dei soli spazi di stato e aggiunto, utilizzando implicitamente le condizioni di ottimalità del primo ordine per la discretizzazione del controllo.
- 2 Il metodo permette di disaccoppiare l'approssimazione dell'active set dalla scelta della griglia temporale
- **1** Il metodo è ben posto e convergente con ordine 2 rispetto al controllo *u*.

## Punto fisso

La CNES di ottimalità del problema discreto è sempre  $\bar{u}_k = P_{U_{ad}} \left( -\frac{1}{\alpha} B' \bar{p}_k \right)$ . Le iterazioni di punto fisso si applicano proprio a quest'equazione  $\Rightarrow$ 

#### Algoritmo

- Inizializzare  $u_h^0 \in U_{ad}$ , n := 0.
- 2 Ripetere fino a convergenza
  - calcolare  $Bu_h^n$ ,

  - $\bullet \text{ calcolare } u_h^{n+1} = P_{U_{ad}} \left( -\frac{1}{\alpha} B' p_h^n \right),$
  - **6** porre n=n+1.

Criterio di arresto:  $\|B'(p_h^{n+1}-p_h^n)\|_{L^{\infty}(\Omega\times I)}<\epsilon$ 

Non converge per  $\alpha$  piccoli



### Semi-Newton

Metodo di Newton con minimizzazione monodimensionale (Armijo) ⇒ formulazione del problema tramite Lagrangiana primale e duale

$$\phi(w) = -\inf_{u,y \in L^{2}(I,L^{2})} \left( \underbrace{\frac{1}{2} \|y - y_{d}\|^{2} + \frac{\alpha}{2} \|u\|^{2} + \chi_{U_{ad}}(u) - (w, y - S_{h}u)}_{\mathcal{L}(u,y,w)} \right)$$
(6)

che diventa quindi un caso di minimizzazione non vincolata  $\min_{w \in L^2(I, L^2(\Omega))} \phi(w)$ .

### Semi-Newton II

#### Lemma

La funzione  $\phi: L^2(I, L^2(\Omega)) \to \mathbb{R}$  è fortemente convessa e Frechet-differenziabile con gradiente lipschitziano

$$\nabla \phi(w) = y(w) - S_h u(w), \tag{7}$$

dove  $y_h(w) = w + y_d$  e  $u(w) = P_{U_{ad}}(-\frac{1}{\alpha}S_h^*w)$  sono gli unici punti di minimo della lagrangiana  $\mathcal{L}(u,y,w)$  per ogni  $w \in L^2(I,L^2(\Omega))$  data.

Ma allora calcolato l'Hessiano generalizzato di  $\phi$ , ogni iterazione di Newton risolve

$$\left(I + \frac{1}{\alpha} S_h \mathbb{1}_{S_h^* w} S_h^*\right) \delta w = -(w + y_d) + S_h P U_{ad} \left(-\frac{1}{\alpha} S_h^* w\right). \tag{8}$$

## Semi-Newton III

#### Algoritmo

- Inizializzare  $w^0 \in L^2(I, L^2(\Omega)), \beta \in (0, 1), k = 0$ ,
- 2 Ripetere fino a convergenza
  - Risolvere l'equazione (8) per  $\delta w^k$  tramite CG,

  - **9** Finché risulta vera la condizione  $\phi(w^k + \lambda \delta w^k) > \phi(w) + \frac{1}{3}\lambda(\nabla \phi(w^k), \delta w^k)_{L^2(I, L^2(\Omega))}$ , porre  $\lambda := \beta \lambda$ ,

  - **6** Porre k := k + 1.

criterio di arresto: $\|\nabla \phi(w^k)\| \le t_0$ 

L'algoritmo converge e il criterio di arresto è plausibile.



# Significato della simbologia

#### $\chi_{U_{ad}}$

Indica la funzione caratteristica dell'insieme  $U_{ad}$  nel senso dell'analisi convessa, ovvero

$$\chi_{U_{ad}} = \begin{cases} 0, & \text{su } U_{ad}, \\ \infty & \text{su } L^2(I, L^2(\Omega)) \setminus U_{ad}. \end{cases}$$
 (9)

## $\mathbb{1}_{p_h(v)}$

Introdotto l'*inactive set* della funzione  $p_h$  come l'insieme  $\mathcal{I}(p_h) = \left\{ \ \omega \in \Omega \times [0,T] \ \middle| \ \left( -\frac{1}{\alpha} p_h(v) \right) (\omega) \in (a(\omega),b(\omega)) \ \right\}$  e  $\mathbb{1}_{\mathcal{I}(p_h)}$  come la funzione indicatrice di tale insieme con  $\mathbb{1}_{p_h(v)}$  si denota l'endomorfismo auto-aggiunto in  $L^2(I,L^2(\Omega))$  dato dalla moltiplicazione puntuale con  $\mathbb{1}_{\mathcal{I}(p_h)}$ .

# **Implementazione**

Gli strumenti di sviluppo utilizzati sono Freefem++ e GitHub.

i parametri e le funzioni che definiscono/risolvono il problema di controllo, aggiunto e di stato sono contenuti in appositi script.

Lo script che permette l'esecuzione del programma è denominato main.edp

Per il calcolo di ogni norma e prodotto scalare il metodo numerico di integrazione in tempo utilizzato è il metodo di Cavalieri Simpson.



L'operazione di proiezione  $P_{U_{ab}}$  non garantisce che i nodi della griglia temporale utilizzata corrispondano a i punti di non derivabilità della funzione proiettata



## Implementazione: Schema Problema di Stato

Considerato la matrice di Stiffness ed il temine noto al passo k:

$$A(y_k, y_{test}) = \int_{\Omega} rac{y_k y_{test}}{\Delta t} d\Omega + \int_{\Omega} \gamma_1 \bigtriangledown y_k \bigtriangledown y_{test} d\Omega$$

$$b(y_{test}) = \int_{\Omega} \frac{y_{k-1}y_{test}}{\Delta t} d\Omega + \int_{\Omega} \gamma_2 \bigtriangledown y_{k-1} \bigtriangledown y_{test} d\Omega + \int_{\Omega} \gamma_3 (f_k + u_k) y_{test} d\Omega + \int_{\Omega} \gamma_4 (f_{k-1} + u_{k-1}) y_{test} d\Omega$$

| Schema | $\gamma_1$ | $\gamma_2$ | $\gamma_3$ | $\gamma_4$ |
|--------|------------|------------|------------|------------|
| El     | 0.5        | 0          | 0          | 0.5        |
| CN     | 0.5        | 0.5        | 0          | 1          |
| EA     | 0          | 0.5        | 0.5        | 0          |

# Implementazione: Forzante del Problema Aggiunto

Anche per il problema aggiunto è stato utilizzato un metodo di Crank-Nicolson con la matrice di Stiffness ed il termine noto al passo i:

$$A(p_i, p_{test}) = \int_{\Omega} \frac{p_i p_{test}}{\Delta t} d\Omega + \int_{\Omega} \frac{1}{2} \bigtriangledown p_i \bigtriangledown p_{test} d\Omega$$

$$egin{aligned} b(p_{test}) &= \int_{\Omega} rac{p_{i+1} p_{test}}{\Delta t} \, d\Omega - \int_{\Omega} rac{1}{2} igtriangledown p_{i+1} igtriangledown p_{test} \, d\Omega \ &+ \int_{\Omega} rac{1}{2} h_i p_{test} \, d\Omega + \int_{\Omega} rac{1}{2} h_{i+1} p_{test} \, d\Omega \end{aligned}$$

dove:

$$h_i = y_{ki} - y_d(t_i), \quad h_{i+1} = y_{ki} - y_d(t_{i+1})$$



## Implementazione Semi-Newton

Per risolvere l'equazione:

$$\left(I + \frac{1}{\alpha} S_h \mathbb{1}_{S_h^* w} S_h^*\right) \delta w = -(w + y_d) + S_h P U_{ad} \left(-\frac{1}{\alpha} S_h^* w\right).$$

è stato implementato il metodo del gradiente coniugato.

La funzione adjCG(real[int,int] &xx) implementa l'operatore  $S_h^*$ ;

# Funzioni per l'operatore di stato

Per la soluzione dell'operatore di stato son state implementate due diverse funzioni. stateCG(real[int] &xx) risolve l'operatore  $S_h$  applicato a  $P_{U_{ad}}(xx)$  con termine noto al passo k:

$$\begin{split} b(y_{test}) &= \int_{\Omega} \frac{y_k y_{test}}{\Delta t} \, d\Omega + \int_{\Omega} \gamma_2 \bigtriangledown y_{k-1} \bigtriangledown y_{test} \, d\Omega \\ &+ \int_{\Omega} \gamma_3 (f_k + P_{U_{ad}}(xx_k)) y_{test} \, d\Omega + \int_{\Omega} \gamma_4 (f_{k-1} + P_{U_{ad}}(xx_{k-1})) y_{test} \, d\Omega \end{split}$$

mat1(real[int] &xx, real[int] &ww) risolve l'operatore  $S_h \mathbb{1}_{S_h^* w}$  considerato con termine noto al passo k:

$$b(y_{test}) = \int_{\Omega} \frac{y_k y_{test}}{\Delta t} d\Omega + \int_{\Omega} \gamma_2 \bigtriangledown y_{k-1} \bigtriangledown y_{test} d\Omega + \int_{\Omega} \gamma_3 \chi_{U_{ad}} x_{x_k} y_{test} d\Omega + \int_{\Omega} \gamma_4 \chi_{U_{ad}} x_{k-1} y_{test} d\Omega$$

# Test Case 01 ed 02: dati del problema

Per entrambi i test case considera  $\Omega = (0,1)^2$ . Viene utilizzata una mesh spaziale uniforme con 22801 nodi.

Processo di raffinamento temporale al livello 1

$$Nk=(2^1+1)$$

| Parametro | TestCase01     | TestCase02     |
|-----------|----------------|----------------|
| I         | (0,0.1)        | (0,0.5)        |
| $U_{ad}$  | a=-25 ed b =-1 | a=0.2 ed b=0.4 |
| α         | $\pi^{-4}$     | 1              |

# Test Case 01 Punto fisso $\overline{u}$ e $u_k$



Test Case 01

### Test Case 01 Punto fisso

#### Tabella: Punto fisso per Test case 01: errori e EOC

| 1 | $\ \bar{u}-u_{kh}\ _{L^2(L^2)}$ | $\ \bar{y} - y_{kh}\ _{L^2(L^2)}$ | EOC <sub>u</sub> | $EOC_y$ |
|---|---------------------------------|-----------------------------------|------------------|---------|
| 1 | 0.31667                         | 0.981285                          | _                | _       |
| 2 | 0.0835064                       | 0.496296                          | 2.60937          | 1.33449 |
| 3 | 0.0209608                       | 0.248822                          | 2.35165          | 1.17464 |
| 4 | 0.00500916                      | 0.124494                          | 2.25065          | 1.08882 |
| 5 | 0.00109219                      | 0.0622586                         | 2.29624          | 1.04473 |
| 6 | 0.000497644                     | 0.0311327                         | 1.15957          | 1.02236 |

Test Case 01

### Test Case 01 Punto fisso

#### Tabella: Punto fisso per Test case 01: errori e EOC

| 1 | $\ \bar{y} - \pi_{P_k^*} y_{kh}\ _{L^2(L^2)}$ | $\ ar{p}-p_{kh}\ _{L^2(L^2)}$ | $EOC_{\pi y}$ | $EOC_p$ |
|---|-----------------------------------------------|-------------------------------|---------------|---------|
| 1 | 0.520894                                      | 0.00660747                    | _             | _       |
| 2 | 0.15134                                       | 0.00173155                    | 2.41965       | 2.6216  |
| 3 | 0.0393476                                     | 0.00043334                    | 2.29181       | 2.35673 |
| 4 | 0.00970087                                    | 0.000103613                   | 2.20164       | 2.24982 |
| 5 | 0.00221619                                    | 0.000022824                   | 2.2259        | 2.28078 |
| 6 | 0.000432024                                   | 0.000010724                   | 2.41203       | 1.11429 |

## Test Case 01 Semi-Newton



Test Case 01

### Test Case 01 Semi-Newton

Tabella: Newton per Test case 01: errori e EOC

| 1 | $\ \bar{u}-u_{kh}\ _{L^2(L^2)}$ | $\ \bar{y} - y_{kh}\ _{L^2(L^2)}$ | EOC <sub>u</sub> | $EOC_y$ |
|---|---------------------------------|-----------------------------------|------------------|---------|
| 1 | 0.316669                        | 0.981285                          | _                | _       |
| 2 | 0.0835064                       | 0.496296                          | 2.60937          | 1.33449 |
| 3 | 0.0209612                       | 0.248822                          | 2.35161          | 1.17464 |
| 4 | 0.00500971                      | 0.124494                          | 2.25051          | 1.08882 |
| 5 | 0.00109312                      | 0.0622586                         | 2.29512          | 1.04473 |
| 6 | 0.000497833                     | 0.0311327                         | 1.16028          | 1.02236 |

Test Case 01

### Test Case 01 Semi-Newton

Tabella: Newton per Test case 01: errori e EOC

| 1 | $\ \bar{y} - \pi_{P_k^*} y_{kh}\ _{L^2(L^2)}$ | $\ ar{p}-p_{kh}\ _{L^2(L^2)}$ | $EOC_{\pi y}$ | EOC <sub>p</sub> |
|---|-----------------------------------------------|-------------------------------|---------------|------------------|
| 1 | 0.520894                                      | 0.00660747                    | _             | _                |
| 2 | 0.15134                                       | 0.00173155                    | 2.41965       | 2.6216           |
| 3 | 0.0393476                                     | 0.00043334                    | 2.29181       | 2.35672          |
| 4 | 0.00970089                                    | 0.000103614                   | 2.20164       | 2.24981          |
| 5 | 0.00221621                                    | 0.0000228246                  | 2.22589       | 2.28078          |
| 6 | 0.000432023                                   | 0.0000107235                  | 2.41204       | 1.11436          |

# Test Case 02 Punto fisso $\overline{u}$ e $u_k$





Test Case 02

### Test Case 02 Punto fisso

Tabella: Punto fisso per Test case II: errori e EOC

| 1 | $\ \bar{u} - u_{kh}\ _{L^2(L^2)}$ | $\ \bar{y} - y_{kh}\ _{L^2(L^2)}$ | $EOC_u$ | $EOC_y$  |
|---|-----------------------------------|-----------------------------------|---------|----------|
| 1 | 0.11547                           | 0.577323                          | _       | _        |
| 2 | 0.049267                          | 0.463462                          | 1.66741 | 0.430045 |
| 3 | 0.0229418                         | 0.136413                          | 1.30029 | 2.08074  |
| 4 | 0.0036817                         | 0.0594452                         | 2.87676 | 1.30605  |
| 5 | 0.000908002                       | 0.0286805                         | 2.1105  | 1.09882  |
| 6 | 0.000229782                       | 0.0142118                         | 2.02708 | 1.0358   |
| 7 | 0.0000652737                      | 0.0070899                         | 1.83615 | 1.01455  |
| 8 | 0.0000267529                      | 0.003543                          | 1.29406 | 1.00643  |

Test Case 02

### Test Case 02 Punto fisso

Tabella: Punto fisso per Test case II: errori e EOC

| 1 | $\ ar{y} - \pi_{P_k^*} y_{kh}\ _{L^2(L^2)}$ | $\ ar{p} - p_{kh}\ _{L^2(L^2)}$ | $EOC_{\pi y}$ | $EOC_p$ |
|---|---------------------------------------------|---------------------------------|---------------|---------|
| 1 | 0.408219                                    | 0.57735                         | _             | _       |
| 2 | 0.428289                                    | 0.181146                        | 0.0939571     | 2.26916 |
| 3 | 0.108057                                    | 0.0846821                       | 2.34293       | 1.29366 |
| 4 | 0.0223162                                   | 0.0224906                       | 2.48014       | 2.08464 |
| 5 | 0.00443799                                  | 0.00571816                      | 2.43498       | 2.06462 |
| 6 | 0.000929298                                 | 0.00145281                      | 2.3065        | 2.02122 |
| 7 | 0.000203934                                 | 0.000385864                     | 2.21269       | 1.93423 |
| 8 | 0.0000465654                                | 0.000130114                     | 2.14277       | 1.57715 |
|   |                                             |                                 |               |         |

### Test Case 02 Semi-Newton





Test Case 02

### Test Case 02 Semi-Newton

Tabella: Newton per Test case II: errori e EOC

| 1 | $\ \bar{u} - u_{kh}\ _{L^2(L^2)}$ | $\ \bar{y} - y_{kh}\ _{L^2(L^2)}$ | $EOC_u$  | $EOC_y$  |
|---|-----------------------------------|-----------------------------------|----------|----------|
| 1 | 0.115495                          | 0.579976                          | _        | _        |
| 2 | 0.076157                          | 0.462076                          | 0.815213 | 0.444884 |
| 3 | 0.0127336                         | 0.136402                          | 3.04286  | 2.07579  |
| 4 | 0.00222359                        | 0.0594457                         | 2.74395  | 1.30591  |
| 5 | 0.000541362                       | 0.0286803                         | 2.12996  | 1.09884  |
| 6 | 0.000138463                       | 0.0142117                         | 2.01139  | 1.03579  |
| 7 | 0.0000349821                      | 0.0070899                         | 2.00717  | 1.01455  |
| 8 | 0.0000178053                      | 0.003543                          | 0.979797 | 1.00643  |

Test Case 02

### Test Case 02 Semi-Newton

Tabella: Newton per Test case II: errori e EOC

| 1 | $\ ar{y} - \pi_{P_k^*} y_{kh}\ _{L^2(L^2)}$ | $\ \bar{p} - p_{kh}\ _{L^2(L^2)}$ | $EOC_{\pi y}$ | $EOC_p$ |
|---|---------------------------------------------|-----------------------------------|---------------|---------|
| 1 | 0.410488                                    | 0.57748                           | _             | _       |
| 2 | 0.427682                                    | 0.181205                          | 0.080328      | 2.26897 |
| 3 | 0.108041                                    | 0.0846824                         | 2.34076       | 1.29421 |
| 4 | 0.0223131                                   | 0.0224907                         | 2.48014       | 2.08463 |
| 5 | 0.00443687                                  | 0.00571824                        | 2.43516       | 2.06461 |
| 6 | 0.0009289                                   | 0.00145285                        | 2.30675       | 2.02121 |
| 7 | 0.000203852                                 | 0.000385873                       | 2.21265       | 1.93423 |
| 8 | 0.0000465544                                | 0.000130118                       | 2.14254       | 1.57714 |
|   |                                             |                                   |               |         |

### Numero di iterazioni

| Algoritmo   | TestCase01 | TestCase02 |
|-------------|------------|------------|
| Punto Fisso | 5-6        | 2          |
| Semi Newton | 2          | 2-3        |

Criteri di tolleranza aggiuntivi per Semi-Newton utilizzati nel TestCase 02

$$\|\nabla\phi(w^k)\| - \|\nabla\phi(w^{k+1})\| > t_0 \quad \|\nabla\phi(w^k) - \nabla\phi(w^{k+1})\| > t_0$$
 dove t0 è una tolleranza fissata

Entrambi gli algoritmi implementati confermano i risultati teorici per l'ordine di convergenza dell'errore nei problemi di controllo ottimo parabolico se viene utilizzato uno schema di Petrov Galerkin. Per il primo test case, nel quale  $\alpha$  è minore, il metodo di Newton converge più velocemente che quello di punto fisso. Possibili lavori futuri:

- analisi analitica di semi-Newton nel caso per i problemi di controllo ottimo parabolici
- scrittura/lettura su/da file per le soluzioni dei problemi di stato ed aggiunto

Grazie Per L'Attenzione

#### **APPENDICE**

# Test Case 01 dati del problema

| funzione                  | TestCase01                                                                                             |
|---------------------------|--------------------------------------------------------------------------------------------------------|
| $g_1(x_1,x_2)$            | $sin(\pi x_1)sin(\pi x_2)$                                                                             |
| $g_0(t,x_1,x_2)$          | $-\pi^{2}w_{a}(t,x_{1},x_{2})-BP_{U_{ad}}\left(-\frac{1}{4\alpha}(e^{a\pi^{2}t}-e^{a\pi^{2}T})\right)$ |
| $w_a(t,x_1,x_2)$          | $e^{a\pi^2t}sin(\pi x_1)sin(\pi x_2),\;a\in\mathbb{R}$                                                 |
| $y_d(t,x_1,x_2)$          | $\frac{a^2-5}{2+a}\pi^2 w_a(t,x_1,x_2) + 2\pi^2 w_a(T,x_1,x_2)$                                        |
| $y_0(x_1,x_2)$            | $\frac{-1}{2+a}\pi^2 w_a(0,x_1,x_2)$                                                                   |
| $\overline{u}(t,x_1,x_2)$ | $P_{U_{ad}}\left(-rac{1}{4lpha}(\mathrm{e}^{a\pi^2t}-\mathrm{e}^{a\pi^2T} ight)$                      |
| $\overline{y}(t,x_1,x_2)$ | $\frac{-1}{2+a}\pi^2 w_a(0,x_1,x_2)$                                                                   |
| $\overline{p}(t,x_1,x_2)$ | $w_a(t, x_1, x_2) - w_a(T, x_1, x_2)$                                                                  |

# Test Case 02 dati del problema

| funzione                  | TestCase02                                                                                                                  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| $g_1(x_1, x_2)$           | $sin(\pi x_1)sin(\pi x_2)$                                                                                                  |
| $g_0(t,x_1,x_2)$          | $g_1(x_1,x_2)2\pi\left(-rac{a}{T}sin\left(rac{t}{T}2\pi a ight)+\pi cos\left(rac{t}{T}2\pi a ight)\right)-B\overline{u}$ |
| $w_a(t,x_1,x_2)$          | $cos\left(\frac{t}{7}2\pi a\right)\cdot g_1(t,x_1,x_2)$                                                                     |
| $y_d(t,x_1,x_2)$          | $g_1(\cos\left(rac{t}{T}2\pi a ight)(1-2\pi^2)+\ -rac{2\pi a}{T}\sin\left(rac{t}{T}2\pi a ight)+2\pi^2\cos(2\pi a))$     |
| $y_0(x_1,x_2)$            | $g_1(x_1,x_2)$                                                                                                              |
| $\overline{u}(t,x_1,x_2)$ | $P_{U_{ad}}\left(-rac{1}{4lpha}cos\left(rac{t}{T}2\pi a ight)+rac{1}{4lpha} ight)$                                       |
| $\overline{y}(t,x_1,x_2)$ | $\frac{-1}{2+a}\pi^2 w_a(0,x_1,x_2)$                                                                                        |
| $\overline{p}(t,x_1,x_2)$ | $w_a(t, x_1, x_2) - w_a(T, x_1, x_2)$                                                                                       |