Clase 11

La sesión anterior definimos el supremo de un conjunto no vacío A: Un número $\alpha \in \mathbb{R}$ es llamado **el supremo de** A si α es cota superior de A y si M es otra cota superior de A, entonces $\alpha \leq M$.

Enunciamos el axioma del supremo:

(A13) Sea $A \subseteq \mathbb{R}$. Si A es no vacío y acotado superiormente, entonces existe el supremo de A, es decir, existe $\alpha \in \mathbb{R}$ tal que

$$\alpha = \sup A$$
.

Y, entre otros ejemplos, vimos que, si $a \ge 0$, el conjunto $A = \{x \in \mathbb{R} \mid x^2 \le a\}$ es no vacío $\left(\frac{a}{1+a} \in A\right)$ y acotado superiormente (1+a) es cota superior de A).

Consecuencias del Axioma del Supremo

Comenzamos esta sesión con la siguiente definición.

Definición 1 Sea $a \ge 0$. Un número real x es llamado raíz cuadrada de a si

$$x^2 = a$$
.

Observación 2 Note que:

(1) Si a < 0, entonces no tiene raíces cuadradas, pues para cualquier $x \in \mathbb{R}$ se tiene que

$$a < 0 < x^2$$
.

- (2) Si a=0, entonces 0 es la única raíz cuadrada de a, pues sabemos que si $x^2=0$, entonces x=0.
- (3) Si a > 0 y x es una raíz cuadrada de a, entonces -x también lo es, pues

$$(-x)^2 = x^2 = a.$$

Teorema 3 Cada número real no negativo a tiene una raíz cuadrada no negativa.

Demostración. Si a=0, entonces 0 es la única raíz cuadrada de a. Supongamos entonces que a>0 y consideremos el conjunto

$$A = \{ x \in \mathbb{R} \mid x^2 \le a \}.$$

Como A es un conjunto no vacío y acotado superiormente, por el axioma del supremo, existe $\alpha = \sup A$. Ahora, dado que α es el supremo de A, entonces es cota superior de A, en particular

$$\alpha \ge \frac{a}{1+a}.$$

Pero $\frac{a}{1+a} > 0$, por lo que $\alpha > 0$. Ahora, por la ley de tricotomía, sabemos que $\alpha^2 > a$, $\alpha^2 < a$ o $\alpha^2 = a$.

Si $\alpha^2 > a$, consideremos el número

$$b = \alpha - \frac{\alpha^2 - a}{2\alpha} = \frac{1}{2} \left(\alpha + \frac{a}{\alpha} \right).$$

Note que $0 < b < \alpha$ y que

$$b^{2} = \left(\alpha - \frac{\alpha^{2} - a}{2\alpha}\right)^{2} = a + \frac{(\alpha^{2} - a)^{2}}{4\alpha^{2}} > a.$$

Por lo tanto, $b^2 > x^2$ para cada $x \in A$, es decir, b es cota superior de A, lo que es una contradicción pues $b < \alpha$. Así, no puede suceder que $\alpha^2 > a$.

Veamos ahora que no puede ocurrir que $\alpha^2 < a$. En tal caso, como $\alpha > 0$, se puede elegir un número positivo b tal que $b < \alpha$ y $b < \frac{a - \alpha^2}{3\alpha}$ Así,

$$(\alpha + b)^2 = \alpha^2 + b(2\alpha + b) < \alpha^2 + 3b\alpha < \alpha^2 + (a - \alpha^2) = a.$$

De donde $\alpha + b \in A$, lo que contradice el hecho de que α sea cota superior. Entonces tampoco puede suceder que $\alpha^2 < a$. Concluimos que $\alpha^2 = a$.

Observación 4 Sea a > 0. Por el teorema anterior a tiene una raíz cuadrada no negativa, digamos x. Luego por el inciso (3) de la Observación 2, -x es otra raíz cuadrada de a. Finalmente, si y es otra raíz cuadrada de a, entonces $x^2 = a = y^2$, de donde y = x o y = -x. Es decir, a tiene exactamente dos raíces cuadradas.

Ahora sí, sin ningún sentimiento de deuda, podemos introducir la siguiente notación.

Sea a > 0. Denotaremos por \sqrt{a} , o $a^{\frac{1}{2}}$, a la raíz cuadrada positiva de a y por lo tanto $-\sqrt{a}$, o $-a^{\frac{1}{2}}$, denota a la raíz cuadrada negativa de a.

Enseguida usamos el axioma del supremo para mostrar un hecho que puede parecer muy claro, pero que requiere de una demostración.

Proposición 5 El conjunto \mathbb{N} no es acotado superiormente.

Demostración. Supongamos que \mathbb{N} es acotado superiormente. Como además \mathbb{N} es un conjunto no vacío, por el axioma del supremo, existe $\alpha = \sup \mathbb{N}$. Luego,

$$n \leq \alpha$$
,

para todo $n \in \mathbb{N}$. De aquí que

$$n+1 \leq \alpha$$
,

para todo $n \in \mathbb{N}$. Pero lo anterior implica que

$$n \leq \alpha - 1$$
,

para cada $n \in \mathbb{N}$, lo que es una contradición al hecho de que α es la mínima cota superior. Así, \mathbb{N} es un conjunto no acotado superiormente.

Corolario 6 (Propiedad Arquimediana) Para cualesquiera $y \in \mathbb{R}$ $y \mid x > 0$ existe $n \in \mathbb{N}$ tal que

$$nx > y$$
.

Demostración. Supongamos que no ocurre, es decir, que existe $y \in \mathbb{R}$ y x > 0 de tal manera que

$$nx \leq y$$
,

para todo $n \in \mathbb{N}$. Se sigue que

$$n \le \frac{y}{x}$$
,

para todo $n \in \mathbb{N}$. Lo que contradice el hecho de que \mathbb{N} no es un conjunto acotado superiormente. Por lo tanto, para cualquier $y \in \mathbb{R}$ y x > 0 existe $n \in \mathbb{N}$ tal que nx > y.

Corolario 7 Sea $\varepsilon > 0$. Existe $n \in \mathbb{N}$ tal que

$$\frac{1}{n} < \varepsilon$$
.

Demostración. Sea $\varepsilon > 0$. Consideremos los números $y = \frac{1}{\varepsilon}$ y x = 1. Por el corolario anterior, existe $n \in \mathbb{N}$ tal que

$$n \cdot 1 = nx > y = \frac{1}{\varepsilon},$$

de donde

$$\frac{1}{n} < \varepsilon$$
.