A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 3EA

2 Bookmarks

Show all steps: (

ON

Problem

REMARK ON NOTATION: In some of the problems which follow, we consider polynomials with coefficients in \mathbb{Z}_n for various n. To simplify notation, we denote the elements of \mathbb{Z}_n by 1, 2, ..., n-1 rather than the more correct $[1, 2, \ldots, n-1]$

Find the quotient and remainder when $x^3 + 2$ is divided by $2x^2 + 3x + 4$ in

 $\mathbb{Z}[x]$, in $\mathbb{Z}_3[x]$, and in $\mathbb{Z}_5[x]$.

We call b(x) a factor of a(x) if a(x) = b(x)q(x) for some q(x), that is, if the remainder when a(x) is divided by b(x) is equal to zero.

Step-by-step solution

Step 1 of 3

Consider the polynomial $p(x) = x^3 + 2$ and $q(x) = 2x^2 + 3x + 4$.

Objective of this question is to find quotient and remainder when $p(x) = x^3 + 2$ divided by $q(x) = 2x^2 + 3x + 4$ in $\mathbb{Z}[x]$, $\mathbb{Z}_5[x]$ and $\mathbb{Z}_5[x]$.

First consider the ring $\mathbb{Z}[x]$.

Given polynomials p(x) and q(x) are the elements of $\mathbb{Z}[x]$.

Now do long division.

$$2x^2 + 3x + 4 \overline{x^3 + 0x^2 + 0x + 2}$$

Since.

 $2k \neq 1 \forall k \in \mathbb{Z}$

$$p(x)$$
 is not divisible by $q(x)$.

Comment

Step 2 of 3

Consider the ring $\mathbb{Z}_3[x]$.

Change polynomials p(x) and q(x) as the element of $\mathbb{Z}_3[x]$.

$$p(x) = 1 \pmod{3} x^3 + 0 \pmod{3} x^2 + 0 \pmod{3} x + 2 \pmod{3}$$
$$= x^3 + 2$$
$$q(x) = 2 \pmod{3} x^2 + 3 \pmod{3} x + 4 \pmod{3}$$
$$= 2x^2 + 1$$

Now do long division. Here the operations multiplication and addition are multiplication modulo 3 and addition modulo 3.

$$2x$$

$$2x^{2} + 0x + 1 \overline{\smash{\big)}\ x^{3} + 0x^{2} + 0x + 2}$$

$$2x^{2} + 0x + 1 \overline{\smash{\big)}\ x^{3} + 0x^{2} + 2x}$$

$$-2x + 2$$

Then, quotient and remainder when $p(x) = x^3 + 2$ divided by $q(x) = 2x^2 + 3x + 4$ in $\mathbb{Z}_3[x]$ are 2x and -2x + 2 respectively.

Comment

Step 3 of 3

Consider the ring $\mathbb{Z}_5[x]$.

Change polynomials p(x) and q(x) as the element of $\mathbb{Z}_{5}[x]$.

$$p(x) = 1 \pmod{5} x^3 + 0 \pmod{5} x^2 + 0 \pmod{5} x + 2 \pmod{5}$$

$$= x^3 + 2$$

$$q(x) = 2 \pmod{5} x^2 + 3 \pmod{5} x + 4 \pmod{5}$$

$$= 2x^2 + 3x + 4$$

Now do long division. Here the operations multiplication and addition are multiplication modulo 5 and addition modulo 5.

$$3x-2$$

$$x^{3}+0x^{2}+0x+2$$

$$x^{3}+4x^{2}+2x$$

$$-4x^{2}-2x+2$$

$$-4x^{2}-x-3$$

$$-x+0$$

Then, quotient and remainder when p	$p(x) = x^3 + 2$ divided by $q(x) = 2x^2 + 3x + 4$ in $\mathbb{Z}_5[x]$
are $3x-2$ and $-x$ respectively.	
Comment	