Chapter 2 Hydrologic Processes

- @ Basin characteristics define system's response.
- For any section on a river, the area above that section which gives all its surface waters to this river passing through that section is called the basin (drainage basin, catchment, watershed)

http://www3.gov.ab.ca/env/water/GWSW/quantity/learn/What/HC_HydroCycle/HC_Images/HC3_basin.qif

Basin

- Basin is a transfer system which converts precipitation into streamflow.
- Engineering hydrology mainly deals with:
 - * Monthly and annual volumes of water available for storage and use
 - * Low flow rates which restrict in stream uses of water
 - * Floods
- Detailed analysis of flood hydrographs is usually required in
 - Flood forecasting
 - Flood damage mitigation (flood control)
 - * Design flows for hydraulic structures

Basin Characteristics ×

Geomorphologic Characteristics

- * Area
- * Shape
- * Slope

constant

Hydrologic Characteristics

- * Stream shape
- * Infiltration capacity
- Vegetal cover
- Soil physics

change with time (i.e. one storm to another, one season to the next)

Perimeter = Boundary = Basin Divide (Passes through highest points between adjacent basins)

Area, Perimeter and Shape of the Basin

- The line that separates adjacent basins, passing through the highest points between them and leaving all branches of different rivers at opposite sides, is called water divide or basin boundary.
- The area in this boundary is the drainage area or simply area of the basin.
- The length of the boundary is called the perimeter.
- Area & perimeter are measured on the topographic map as their horizontal projection values.

Area, Perimeter, and Shape of the Basin

Sohu Basin found from digital elevation model (DEM)

Area, Perimeter and Shape of the Basin

Situation in Turkey

Figure 4.1 Streamflow measuring regions in Turkey

Area, Perimeter, and Shape of the Basin

Different basin shapes from Turkey

Shape & Orientation

Response of the basin to ppt for circular and elongated basins

Early or late peak in hydrograph wrt the orientation of a pear-shaped basin

Gradient

- Area-elevation (hypsometric) curve
- Relief
 - Max. relief (diff. between highest and lowest points)
 - Max. basin relief (diff. between highest on the boundary and lowest points)
- Slope of the river bed is found from the longitudinal profile of the river.

Precipitation \rightarrow all forms of water coming from the atmosphere to the Earth

- @ Mean annual precipitation on Earth \rightarrow 800 mm.
- @ Mean annual precipitation in Turkey \rightarrow 643 mm.
 - * lowest in Himmetdede (Kayseri), 63.3 mm (1933)
 - highest in Rize, 4043.3 mm (1931)

PRECIPITATION → varies in area & in time

Figure 3.1 Distribution of seasonal rainfall in Turkey

Distribution of mean annual rainfall

MEASUREMENT OF PRECIPITATION

- TOTAL DEPTH WITHIN A CERTAIN PERIOD OF TIME
- ITS VARIATION IN THIS PERIOD WITH THE FOLLOWING TYPES OF MEASURING INSTRUMENTS:
- 1. NON-RECORDING RAIN GAGES
- 2. RECORDING RAIN GAGES

http://www.fotolibra.com/gallery/ 451724/homemade-rain-gauge/

Rainfall intensity can be calculated

http://wb8.itrademarket.com/pdimage/78/987978_raingaugehd2013-2013-d_m_uk.jpg

Weighing Gauges (recording rain gauge)

- Generally a daily chart is used for the diagrams
- For remote locations weekly charts can also be used (revolving drum completes one revolution in seven days)
- Weekly charts do not have the same detail as daily charts.

Figure 3.5a Recording rain gauge (Weighing type)

Hyetograph from a Recorded Diagram

Time	Σ Depth	Δt	$\Delta_{ extsf{d}}$	Intensity
(min)	(mm)	(min)	(mm)	(mm/hr)
to	do			
		$\Delta t_1 = t_1 - t_0$	$\Delta d_1 = d_1 - d_0$	$i_1 = (\Delta d_1/\Delta t_1)/60$
t ₁	d_1			
		$\Delta t_2 = t_2 - t_1$	$\Delta d_2 = d_2 - d_1$	$i_2 = (\Delta d_2 / \Delta t_2) / 60$
t ₂	d_2			
	•	•	·	•
·		•	•	•
t _{n-1}	d_{n-1}			
		$\Delta t_n = t_{n-1}$	$\Delta d_n = d_n - d_{n-1}$	$i_n = (\Delta d_n / \Delta t_n) / 60$

Network of Precipitation Stations

- Designing a network for precipitation stations in an area is a difficult task
 - AIM: spatial variation of precipitation in the area
 - DEPENDS ON: the purpose of data collection
 - DEPENDS ON: the available funds
- The average error \downarrow as the number of stations \uparrow

The effect of network density

AREAL MEAN PRECIPITATION

PPT GAUGES ----- POINT VALUES ------ AREAL VALUES

METHODS: ARITHMETIC MEAN, THIESSEN POLYGONS, ISOHYETAL MAP

- a) ARITHMETIC MEAN METHOD
 - * TAKE ONLY INSIDE STATIONS
 - GET SIMPLE AVERAGE

$$P_{ave} = \frac{\sum p_i}{n}$$

 p_i = rainfall observed at the *i*th station

n = number of stations inside the basin

ARITHMETIC MEAN METHOD

$$P_{ave} = \frac{P_B + P_F + P_G + P_I}{4}$$

ĸ.

AREAL MEAN PRECIPITATION

b) THIESSEN POLYGONS METHOD

- INCLUDE ADJACENT OUTSIDE STATIONS AS WELL
- CONNECT STATIONS BY STRAIGHT LINES TO MAKE EQUILATERAL TRIANGLES
- DRAW BISECTORS & OBTAIN POLYGONS
- GET WEIGHTED AVERAGE BY AREAS

$$P_{ave} = \frac{\sum p_i a_i}{\sum a_i}$$

 a_i = in-region portion of the area of the polygon surrounding this station

THIESSEN POLYGONS METHOD

Stations are joined to obtain triangles

Take all the stations

Bisectors are drawn to form polygons

$$P_{ave} = \frac{\sum p_i a_i}{\sum a_i}$$

THIESSEN POLYGONS METHOD

$$P_{ave} = \frac{\sum p_i a_i}{\sum a_i}$$

.

AREAL MEAN PRECIPITATION

c) ISOHYETAL MAP METHOD

- PLOT ISOHYETS (EQUAL PRECIPITATION LINES)
 (ASSUME LINEAR CHANGE BETWEEN STATIONS)
- DETERMINE MEAN PRECIPITATION BETWEEN ISOHYETS
- GET WEIGHTED MEAN

$$P_{ave} = \frac{\sum \overline{p}_i a_i}{\sum a_i}$$

 $\overline{p_i}$ = average precipitation between isohyets

 a_i = area between isohyets

ISOHYETAL MAP METHOD

All the stations are taken

Points having certain precip. values are determined (assuming linear change)

Change in areal mean precipitation with orientation of stations

The number & location of stations are very important!

Example 1-a: Calculate average precipitation using Arithmetic Mean Method based on the figure and table shown below

Example 1-b: Calculate average precipitation using Thiessen Polygons Method based on the figure and table shown below

	Area of Influence a _i (mm)	Measured Precipitation P _i (mm)
S1	30	30
S2	120	40
S3	110	30
S4	170	30
S5	165	20
S6	150	20
S7	-	15
S8	145	10

$$P_{ave} = \frac{\sum a_i P_i}{\sum a} = \frac{30x30 + 120x40 + 110x30 + 170x30 + 165x20 + 150x20 + 145x10}{30 + 120 + 110 + 170 + 165 + 150 + 145}$$

$$P_{ave} = 24.6 \ mm$$

Example 1-c: Calculate average precipitation using Isohyetal Map Method based

on the figure and table shown below * sq

Slice	P _i (mm)	A _i (km²)
>70	74	20
60-70	65	40
50-60	55	45
40-50	45	35
30-40	35	40
20-30	25	30
<20	17	15

$$P_{ave} = \frac{\sum \overline{P}_i a_i}{\sum a} = \frac{74x20 + 65x40 + 55x45 + 45x35 + 35x40 + 25x30 + 17x15}{20 + 40 + 45 + 35 + 40 + 30 + 15}$$

 $P_{ave} = 46.8 \ mm$

Intensity-Duration-Frequency Curves

- In general, the higher the intensity of the rainfall the shorter the duration of it will be.
- Intensity duration frequency (I-D-F) relationship is important for engineers in designing hydraulic structures.
- It is shown by a family of curves.
- Each curve is drawn for a certain frequency, and indicates the change of intensity wrt the time interval called the reference time interval, (duration of the storm).

Intensity - Duration - Frequency Curves

For the same frequency: as duration \uparrow intensity \downarrow

Statistical analysis of maximum storms (observed in the study area) are used to generate these curves!

Figure 3.24 Intensity-Duration-Frequency Curves for Ankara (on Semi-log scale)

These curves should be generated for every station.

Example from Turkey

 Table 3.3 Greatest Observed Point Rainfalls in Turkey*

Duration	Depth (mm)	Location	Date (year)
5 min.	27.4	M ardin	1982
10 min	36.7	M ardin	1982
15 min	45.6	Zonguldak	1955
30 min	71.6	Yalova	1977
1 hr	110.0	Rize	1957
2 hr	159.0	Rize	1957
3 hr	174.0	Rize	1957
4 hr	180.1	Zonguldak	1955
5 hr	181.6	Zonguldak	1955
6 hr	193.4	Zonguldak	1955
8 hr	283.5	Zonguldak	1955
12 hr	317.4	Zonguldak	1955
18 hr	413.1	Zonguldak	1955
24 hr	438.8	Zonguldak	1955

RATIONAL FORMULA [A<100 km²]

- Q A method to relate rainfall on a basin to the corresponding runoff.
- Extensively used in urban hydrology to estimate peak flow.
- Very important parameter for storm water system design.

$$Q_p \alpha A^n$$
 $n = power, A = area, Q_p = peak flow$
 $Q_p \alpha i.A$ $i = intensity (n=1)$
 $Q_p = C.i.A$ $C = runoff coefficient$

RATIONAL FORMULA

$$Q_p = \frac{CiA}{3.6}$$

$$Q_p = 0.278 \, CiA$$

$$Q_p$$
 = peak flow (m³/s)

C = runoff coefficient

= average rainfall intensity (mm/hr)

Rain continues at least for t_c hours

t_c = time of concentration

A = area (km²)

C is a function of surface characteristics If surface conditions change \rightarrow Divide into subareas

$$Q_p = 0.278 i \sum_{j=1}^{n} C_j A_j$$
 $A_j = \text{areas of subbasins}$ $C_j = \text{runoff coeff.s for subbasins}$ $C_j = \text{number of subbasins}$

$$A_i$$
 = areas of subbasins

$$\mathcal{C}_{\mathsf{j}}$$
 = runoff coeff.s for subbasins

= number of subbasins

2

Rational Formula

- @ Time of concentration, t_c : time necessary for raindrops falling at the farthest point of the basin to flow to the outlet point.
- @ Intensity of rainfall i, is assumed to be constant during concentration time t_c , and the peak flow Q_p , occurs after the period t_c .
- @ Runoff coefficient, C is the least precise variable.

Its use in the formula implies a fixed ratio of peak runoff rate to rainfall rate for the drainage basin, which in reality is not the case.

 $Q_{D} = 0.278CiA$

The effect of rainfall duration td

 Q_p = peak flow rate

t_d = duration of rainfall

t_c = time of concentration

Typical C coefficients for 5 to 10-yr frequency design

Description of area	Runoff coefficient	Description of area	Runoff coefficient	
Business	Cocincient	Streets	COCITICICIII	
Downtown areas	0.70 - 0.95	Asphalt	0.70 - 0.95	
Neighborhood areas	0.50 - 0.70	Concrete	0.80 - 0.95	
		Brick	0.70 - 0.85	
Residential		Drives and walks	0.75 - 0.85	
Single-family areas	0.30 - 0.50			
Multiunits, detached	0.40 - 0.60	Roofs	0.75 - 0.95	
Multiunits, attached	0.60 - 0.75			
Residential (suburban)	0.25 - 0.40	Lawns; soil:		
Apartment dwelling areas	0.50 - 0.70	Flat, 2%	0.05 - 0.10	
		Average, 2-7%	0.10 - 0.15	
Industrial		Steep, 7%	0.15 - 0.20	
Light areas	0.50 - 0.80			
Heavy areas	0.60 - 0.90	Lawns; Heavy soil:		
Railroad yard areas	0.20 - 0.40	Flat, 2%	0.13 - 0.17	
Parks and cemeteries	0.10 - 0.25	Average, 2-7%	0.18 - 0.22	
Playgrounds	0.20 - 0.35	Steep, 7%	0.25 - 0.35	
Unimproved areas	0.10 - 0.30			

1

RATIONAL FORMULA

STEPS IN COMPUTATION:

- 1. ESTIMATE t_c
- 2. ESTIMATE C
- 3. SELECT A RETURN PERIOD T_r AND DETERMINE I FROM I-D-F CURVES FOR THAT REGION
- 4. DETERMINE QD USING THE FORMULA

RATIONAL FORMULA

- Rational formula requires estimation of C and i
- @ C is the least precise variable & it depends on
 - Imperviousness
 - Slope
 - Vegetation
 - Ponding characteristics of the surface

Example 2

A parking lot has a size of 240 m by 500 m and a concentration time (t_c) of 20 minutes. Runoff coefficients for 30% and 70% of this area are C_1 =0.7 and C_2 =0.9 respectively. Rainfall intensities obtained from intensity-duration-frequency (I-D-F) curves of nearest precipitation station to this lot are tabulated below. Determine the 10-year peak discharge value at the outlet of this basin (lot) in m^3/s .

Intensities of Rainfall (mm/hr)

Return Period	riod (min)								
(year) 5 10 15	20	30	60	120					
2	60	46	36	28	24	13	7		
5	96	82	68	56	48	26	14		
10	119	106	90	77	65	34	18		
25	149	136	116	102	85	45	23		

Solution:

Rational formula: $Q_{peak} = C * i * A$

Conventional use of rational formula:

$$Q_{peak} = 0.278 C * i * A = \frac{C * i * A}{3.6}$$

where, C = runoff coefficient (dimensionless), i = intensity (mm/hr), A = area of the basin (km²)

$$C = C_1 * 0.3 + C_2 * 0.7 = 0.7 * 0.3 + 0.9 * 0.7 = 0.84$$

$$A = 240 * 500 = 120000 m^2 = 120000 / 10^6 = 0.12 km^2$$

Use of the I-D-F table: $t_c = 20 \text{ min}$, $T_r = 10 \text{ years}$, i = 77 mm/hr

$$Q_{peak} = 0.278 \, C * i * A$$

$$Q_{peak} = 0.278 * 0.84 * 77 * 0.12 = 2.16 \,\text{m}^3 / \text{s}$$

Further information for the design of the related culvert: use Manning equation

STREAMFLOW

- The most important element of hydrologic cycle
- Basin converts precipitation into streamflow
 - Basin = Drainage Basin = Catchment = Watershed = Subbasin
 - Area = Drainage Area
 - Perimeter = Boundary = Basin Divide

Streamflow

Most important element of hydrologic cycle for the hydrologist because streams are the best renewable sources of water for all kinds of demands.

Streamflow = f(meteorological factors, basin characteristics, human activities)

10

STREAMFLOW

- Streamflow measurements are made by three government organizations in Turkey,
 - State Water Works (DSI),
 - Electrical Power Resources Survey and Development Administration (EIEI),
 - * Former General Directorate of Rural Services (KHGM).
- The first two institutions measure the discharges in 26 regions, which cover the whole country.
- @ KHGM measures only small creeks (upstream branches)

Vegetal Cover

Influences rainfall - runoff process

- Interception
 Back to the atmosphere
- 2. Water Consumption

 Transpiration, reduction of moisture, infiltration 1es
- Mechanical Resistance
 Water will stay longer on land, infiltration \(\tag{es}\)
- 4. Plant Roots

Loosening of soil, increasing voids, emptying water in voids, infiltration \uparrow es

Infiltration vs Surface Runoff

Estimation of rates or volumes of flow is necessary

Measurement of stage:

Non-recording (Manual)

Recording

Gages

Stage is elevation above a zero datum (arbitrary)

Recording Gage

Ex: float-type water-stage recorder

Discharge Computation by Velocity Measurements

- Calibration is accomplished by relating
 - Field measurements of discharge

with

river stage values

$$Q = a \times v$$
 $Q = discharge$
 $Q = area$

v = velocity

Velocity measurement is necessary & it is done by current meter

$$v = a + bN$$

a, b =constants of the instrument = number of revolutions per second

STREAMFLOW - Discharge Computation

Velocity measurement made at a single point cannot be assumed to give the average velocity since the velocity varies drastically in a x-section.

approximately average velocity of the Cross-section

In practice stream is divided into a number of vertical sections (strips) > No section should have more than 10% of total flow!

water is shallow

$$v_{mean} = v_{0.6d} = \frac{v_{0.2d} + v_{0.8d}}{2}$$

Total discharge,
$$Q = \sum q_i = \sum (a_i \times v_i)$$

Obtaining Rating Curve

- Take different stages
- Determine discharge for each stage
- Plot them against each other

Example 3 (Discharge computation & Stage-Discharge relationship)

The data below were obtained from velocity measurements at a stream gaging station at Date 1 (where stage, s_1 , was 1.8 m). Compute the total discharge at the station.

Distance from the left bank	Total depth	Velocity (m/s)						
(m)	(m)	at 0.2*depth	at 0.8*depth	at 0.6*depth				
0.0	0		-	-				
0.5	0.4	_	-	0.72				
1.0	0.7	0.95	0.74	-				
1.5	1.2	1.28	1.14	1				
2.5	1.4	1.29	1.15	-				
3.0	0.8	1.04	0.88	1				
3.5	0.3	-	-	0.63				
4.0	0	-	-	-				

Solution:

Average velocity (m/s)	0.72	0.845	1.21	1.22	0.96	0.63
Slice area (m²)	0.20	0.35	0.90	1.05	0.40	0.15
Slice discharge (m³/s)	0.144	0.296	1.089 *	1.281 *	0.384 *	0.095

Total discharge = $3.289 \text{ m}^3/\text{s}$ obtained at Date 1 = Q_1

Check slice discharges based on the total discharge: q_3 , q_4 , q_5 < 0.10 * 3.289 m³/s

Thus, number of slices at this cross-section should be increased $(Q_1 \text{ will be computed once more}).$

Further information for obtaining stage-discharge relationship:

Go to the station at different time (at different water stages) and conduct similar works in order to be able to obtain stage discharge relationship of this station.

Interpretation of Streamflow Data

Discharge

 \rightarrow m³/s, lt/s

Volume

 $ightharpoonup 10^6 \,\mathrm{m}^3 \,\, (\,\, V = \int_{t_1}^{t_2} Q(t) dt \,)$

Yield (Productivity)

 \rightarrow m³/s/km², lt/s/km² (Q/A)

Depth

 \rightarrow mm, cm (V/A)

Water Year

→ Oct. 1 - Sep. 30

(not to divide the flood season)

STREAM GAGING STATIONS IN TURKEY

INFILTRATION

- © Entrance of water into the soil through pores and openings on the surface (up to a depth of 20-50 cm) → infiltration
- @ The vertical movement of water through the soil \rightarrow percolation
- Infiltration rate & total amount of infiltrated water is a function of basin & rainfall characteristics

soil type, moisture content, permeability, land cover, depth to gw, drainage conditions

intensity, total volume

- **Q** Infiltration Capacity \rightarrow Max. Rate at which water enters the soil (f_o)
- @ Infiltration capacity, fo changes with
 - Physical characteristics of soil
 - Initial moisture content of soil
 - * Slope of the ground surface
 - Depth of surface detention
 - Vegetal cover

@ Infiltration rate \downarrow es with time approaching a constant value, f_f as the soil profile becomes saturated.

@ Infiltration Rate (Horton's Method)

$$f = f_f + (f_o - f_t) \times e^{-k \times t}$$

f_o = initial infiltration rate (mm/hr)

 f_f = final infiltration rate (mm/hr)

k = constant (1/hr)

= f(soil type, vegetal cover)

t = time from beginning of the rain (hr)

Infiltration Index

- Although infiltration changes with time during a storm, it is accepted to be constant for hydrograph analysis problems. Because:
 - it is difficult to obtain actual infiltration for each storm,
 - * it is difficult to deal with varying infiltration rate.
- Infiltration idices are used to approximate average infiltration loss from rainfall.

 Φ - index \rightarrow indicates the average infiltration rate above which the depth (or volume) of rainfall is equal to depth (or volume) of surface runoff.

$$V_p = V_q \qquad (d_p = d_q)$$

$$V_p(d_p)$$
 = Volume (depth)
of effective
precipitation

$$V_q(d_q)$$
 = Volume (depth)
of surface
runoff

@ An example for the Φ -index:

 Φ -index is an over simplification of infiltration process, but especially for large basins it gives reasonable results for studies of storm runoff.

Example 4

Cumulative rainfall values of a storm which occurred on a basin and the resulting total hydrograph are given below. The area of the basin is 700 km². Determine,

i. Depth of surface runoff,

ii. Hyetograph of the storm,

iii.Ф-index,

iv. Duration of excess rainfall,

v. Total infiltrated water.

Time (hr)	0	2	4	6	8	10	12	14	16	18	20	22	24
Cumulative Depth (mm)	0	0	22	48	54	54							
Streamflow (m³/s)	28	28	80	200	440	640	530	335	220	175	122	60	28

Solution

(i)
$$d_{SR} = (\Sigma Q_{SR} dt) / A_{basin}$$

 $\Sigma Q_{SR} = (80-28) + (200-28) + (440-28) + (640-28) + ... = 2522 m3/s$

$$d_{SR} = (2522*2*3600) / (700*10^6) = 0.02594 m = 26 mm$$

Solution

(iii)
$$(11-\Phi)^2 + (13-\Phi)^2 = 26$$

 $\Phi = 5.5 \text{ mm/hr}$

- (iv) Duration of excess rainfall is 4 hours
- (v) Total infiltrated water = 5.5*4 + 3*2 = 28 mm