

1.3 Gráficos 2D e 3D

Prof. Dr. Sidney Bruce Shiki

E-mail: bruce@ufscar.br

Prof. Dr. Vitor Ramos Franco

e-mail: vrfranco@ufscar.br

UFSCar – Universidade Federal de São Carlos

DEMec - Departamento de Engenharia Mecânica

Conteúdo

- Introdução
- Gráficos 2D
 - Gráficos x-y elementares
 - Comando "plot"
 - Gráficos x-y especializados
- Gráficos 3D
- Exercícios

Introdução

- Na maioria dos casos, é necessário construir uma figura para mostrar os resultados
 - A figura tem que ser apresentável!!!
- Aqui, o aluno aprenderá:
 - gerar diferentes formas de figuras/gráficos;
 - formatar a figura na linha de comandos,
 - <u>salvar</u> a figura para ser utilizada posteriormente.
- É importante lembrar que existem diversas maneiras de se formatar uma figura.

Introdução

Primeira coisa a se fazer: gerar a figura (área)

```
figure (1) o nº da figura vai se alterando
```

- Uma vez criada a figura, o comando de geração pode ser aplicado, podendo ser um gráfico 2D ou 3D.
- Para se gerar mais de uma "curva" na mesma figura, utiliza-se o comando

hold on

mantém a figura disponível para mais gerações

Introdução

 Algo bastante utilizado na apresentação de resultados é aproveitar a mesma figura para mostrar <u>sub-figuras</u> (internas)

figure 1

figure 1

figure 1

O comando para este fim é:

subplot (x, y, z) transforma a área da figura em uma matriz de posições de figuras

 $x = n^{o}$ de <u>linhas</u>; $y = n^{o}$ de <u>colunas</u>; z = posição da sub-figura

Exemplos de criação:

subplot(x, y, z)

```
subplot(2,2,1)
% gere a sub-figura aqui
subplot(2,2,2)
% gere a sub-figura aqui
subplot(2,2,3)
% gere a sub-figura aqui
subplot(2,2,3)
% gere a sub-figura aqui
```

Para <u>agrupar</u> sub-figuras:

subplot(2,2,[1 2])

subplot(2,2,[2 4])

figure 1

z=[1 2]
z=3 z=4

figure 1

Para salvar a figura, utiliza-se:

```
saveas(n°_da_figura,'nome_da_figura.jpg')
```

- Diferentes formatos de figuras podem ser gerados: tif, jpg, eps, pdf, png, etc.
- A qualidade da figura e tamanho do arquivo estão diretamente relacionados ao formato.
- Outro comando para salvar figura é:

```
print(...) =>Print figure or save to file
```


- Gráficos x-y elementares
 - Os mais utilizados são:

Descrição	Comando
Gráfico linear	plot(x,y)
Gráfico di-log (escalas x e y logaritmicas)	loglog(x,y)
Gráfico mono-log (escala x logaritmica)	semilogx(x,y)
Gráfico mono-log (escala y logaritmica)	semilogy(x,y)

- Foco no mais utilizado de todos: "plot"
- Exemplo de criação:

```
t = linspace(0,5,2^10);
y = sin(2*pi*2*t);
figure(1)
plot(t,y)
```

Alterações:

- Estilo de linha
- Anotações
- Dados do gráfico

Estilo de linha

O MATLAB permite escolher o tipo de linha, cor e símbolo utilizado na construção do gráfico

Exemplo de criação:

```
figure(2)
plot(t,y,'r.','linewidth',2,'markersize',20)
```

 Maiores informações sobre especificações de linha podem ser vistas digitando:

```
help LineSpec
```

- e clicando em:

```
reference page for LineSpec
```


Anotações

O MATLAB permite também criar várias anotações no gráfico, tais como: lables, legenda, título, texto, linhas, etc...

Exemplo de criação:

```
figure(3)
y2 = 0.5*sin(2*pi*2*t);
plot(t,y,'b','linewidth',2)
hold on
plot(t,y2,'r','linewidth',2)
title('Variação temporal das Resistências R_1 e
R_2')
xlabel('Tempo [s]')
ylabel('Resistência [\Omega]')
legend('R_1','R_2')
```


Texto também pode ser criado a fim de se anotar alguma informação adicional na figura

Exemplo de criação:

```
% comando text
% posiciona em (x,y
text(1,0.8,'anotação')
```

Além de texto, linhas (retas) podem ser criadas em casos em que se necessitam de referências, faixas de variação, etc.

Exemplo de criação:

```
% comando line
% liga os pontos (x1,y1) e (x2,y2)
% pontos nos vetores [x1 x2] e [y1 y2]
line([0 5],[0 0],'color',[0 1 0])% alteração (percentagem)
de cor no padrão RGB -em Red, Green e Blue
```


- Para melhorar a apresentação da figura, pode-se:
- Alterar a fonte, tamanho da fonte, colocar fonte em negrito, itálico, etc.
- Reposicionar a legenda (dentro ou fora) além de orientar a legenda (horizontal ou vertical);

```
title('Variação temporal das Resistências R_1 e
R_2','fontname','times','fontweight','bold', 'fontsize',14)
xlabel('Tempo [s]','fontname','times','fontweight','bold',
'fontsize',14)
ylabel('Resistência [\
Omega]','fontname','times','fontweight','bold',
'fontsize',14)
legend('R_1','R_2',
'location','northoutside','orientation','horizontal')
```


Dados do gráfico

- também podem ser alterados de maneira semelhante a label, title, legend;
- · são modificados usando o comando set(gca,...)

Exemplo de criação:

```
set(gca,'fontname','times','fontweight','bold',
'fontsize',14,'xgrid','on','ygrid','on')
xlim([0 3]) % limita somente a visualização
ylim([-1.5 1.5]) % limita somente a visualização
```

- OBS #1: o "label" (descrição das linhas) da legenda também se altera com esse comando;
- OBS #2: alterações também pode ser realizadas nos valores numéricos atribuídos aos eixos (exemplo usando "barras");
- · OBS #3: outra forma de colocar malha: grid on, grid minor

- Gráficos x-y especializados
 - Algumas outras maneiras gráficas de se mostrar resultados, dependendo do estudo a ser realizado.
 - Os mais utilizados são:

Descrição	Comando
Gráfico em coordenadas polares	polar(theta,r)
Gráfico de barras	bar(x,y)
Gráfico de sequência discreta	stem(x,y)
Gráfico degrau (escada)	stairs(x,y)
Histograma	hist(y,N)
Gráfico "pizza"	pie(x)
Gráfico de uma função	fplot(name,lin)
Gráfico de contorno (sombra)	contour(Z)

- Exemplos de criação de gráficos especializados
 - Gráfico polar:

```
theta=0:pi/8:6*pi;
r=1:length(theta);
figure(4)
polar(theta,r)
```


Gráfico de barras:

```
y=rand(2,3)*10;
figure (5)
subplot(2,2,1)
bar(y, 'group')
subplot(2,2,2)
bar(y, 'stack')
subplot(2,2,3)
barh(y, 'group')
% barra na horizontal
subplot(2,2,4)
bar(y, 1.5)
% largura da barra 1.5
```


Alterações nos valores numéricos atribuídos aos eixos

```
periodo = {'1 Semestre','2 Semestre'};
set(gca,'xticklabel',periodo)
```


Gráfico de sequência discreta:

```
x=0:pi/8:6*pi;
y=sin(x);
figure(6)
stem(x,y)
```


Gráfico de degrau (escada):

```
x=0:pi/8:6*pi;
y=sin(x);
figure(7)
stairs(x,y)
```


- Gráfico histograma:

```
x=-2.9:0.1:2.9;
y=randn(10000,1);
figure(8)
hist(y,x)
```


Gráfico de degrau (escada):

```
x = [1 2 3 4];
figure(9)
subplot(1,2,1)
pie(x)
subplot(1,2,2)
destaque = [0 1 0 0]; % destaca a fatia 2 de 10 (20%)
pie(x,destaque)
```


Gráfico de uma função:

```
figure(10)
fplot('tanh',[-2 2]) % tangente hiperbólica
```


Gráfico de contorno (sombra):

```
[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
figure(14)
contour(Z)
```


- Para gerar gráficos 3D, é necessário que os dados sejam agrupados de forma correta
 - Uma das formas é a matriz (2D ou 3D)
 - Algumas vezes, são necessários três vetores como entrada para o comando
 - A formatação das figuras são semelhantes ao utilizado em gráficos 2D

- Exemplos de criação de gráficos 3D
 - Plotando no espaço:

Gráfico de "barras" 3D

Exemplo de criação:

```
x = 1:5; y = 2*x; A = [x;y];
figure(12)
subplot(1,4,1)
bar3(x)
subplot(1,4,2)
bar3(y)
```

```
subplot(1,4,3)
bar3(A')
subplot(1,4,4)
bar3(A)
```


Gráfico tipo "Pizza" 3D

Exemplo de criação:

```
dados = [1 3 1.5 2.5 2]; % soma=10 (100%)
figure(13)
subplot(1,2,1)
pie3(dados);
subplot(1,2,2)
destaque = [0 1 0 0 0]; % destaca o 3 de 10 (30%)
pie3(dados,destaque);
```


Superfícies 3D

- Exemplos de criação:

```
[X,Y] = meshgrid(-3:.125:3);
                                   subplot(1,2,2)
Z = peaks(X, Y);
                                   meshc(X,Y,Z);
figure (14)
                                    % com contorno
subplot(1,2,1)
mesh(X,Y,Z);
                                 10
         2
```



```
[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
figure(15)
surf(X,Y,Z);
```

```
figure(16)
surf(X,Y,Z);
colormap(gray)
```



```
[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
figure(17)
waterfall(X,Y,Z);
```


Exercício:

Crie:

• Um vetor x de $-\pi$ até π com 700 elementos;

• Um vetor:
$$y = x \sin\left(\frac{0.872\pi \sin(x)}{x}\right)$$

• Outro vetor: $z = -|x|\cos\left(\frac{\pi\sin(x)}{x}\right)$

 Crie um gráfico tridimensional com linha vermelha e espessura 3 com os 3 vetores e coloquem alguma descrição nos eixos X, Y e Z com fonte de tamanho 16.

Exercício: vendas anuais de uma empresa

- Gere um vetor de números aleatórios contendo um elemento por mês do ano. O valor de cada um desses números corresponderá ao número de vendas multiplicados por 1000;
- Apresente as vendas mensais de três formas diferentes na mesma figura (forma de barras, pizza, destacando para este caso o mês em que se vendeu mais e a outra fica a seu critério;
- Formate a figura da maneira mais apresentável que puder;
- Salve a figura em dois formatos diferentes, sendo um deles de forma vetorizada (<u>.pdf</u>ou .eps) e compare as figuras resultantes (tamanho e visual).
- Não use recursos como if, for, while, etc.

Perguntas?

