

Hausaufgaben und Übungen zur Vorlesung

Analysis 2

Stefan Waldmann

Wintersemester 2023/2024

$Hausaufgabenblatt\ Nr.\ 9$ $_{\rm revision:\ (None)}$

Last changes by (None) on (None) Git revision of ana2-ws2324: (None) (None)

21. 12. 2023 (12 Punkte. Abzugeben am 10. 01. 2024)

Hausaufgabe 9-1: Kofinite Topologie

Sei M eine Menge mit $\#M = +\infty$. Eine Menge $A \subset M$ sei als offen definiert, falls $M = \emptyset$ oder $M \setminus A$ endlich ist. Zeigen Sie, dass dies tatsächlich eine Topologie definiert. Ist diese Topologie metrisierbar? (4 Punkte)

Hausaufgabe 9-2: Zusammenhang $\sin(\frac{1}{x})$

Zeigen Sie, dass

$$M = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right)^{\top} \middle| \ x \in (0, 1) \right\} \cup \{0\} \times [-1, 1]$$

zusammenhängend, aber nicht wegzusammenhängend in \mathbb{R}^2 ist.

(5 Punkte)

Hausaufgabe 9-3: Eistüte

Es seien $x_0, x_1 \in \mathbb{R}^n$ sowie r > 0. Wir betrachten die Menge $K := \{x_0\} \cup K_r(x_1)$ und die konvexe Hülle dieser Menge ist gegeben durch

$$\operatorname{conv} K := \{ tx_0 + (1-t)x | \ t \in [0,1], \ x \in K_r(x_1) \}.$$

Zeigen Sie, dass $\operatorname{conv} K$ kompakt ist.

Hinweis: Wählen Sie geschickt eine stetige Funktion auf einer kompakten Menge. (3 Punkte)

