

Mecânica dos Fluidos II

Licenciatura em Engenharia Mecânica

2023/2024

Guia do Ensaio Laboratorial de camada limite turbulenta bi-dimensional sobre placa plana com gradiente de pressão

Este documento foi escrito pelos Professores João Carlos Henriques e Carlos Bettencourt da Silva tendo como base um guia escrito pelo Professor Vasco de Brederode para o ensaio experimental do escoamento de uma camada limite turbulenta desenvolvendo-se numa placa plana com gradiente de pressão imposto.

${\bf \acute{I}ndice}$

T	Obj	etivos		Z
	1.1	Comp	onente experimental	2
2	Des	crição	da instalação experimental	3
3	Pro	cedim	entos para o ensaio	6
	3.1	Recon	nendações gerais	6
		3.1.1	Arranque da instalação	6
		3.1.2	Ajustamento do ângulo de ataque da placa	6
		3.1.3	Escolha do ângulo de inclinação do multi-manómetro	7
		3.1.4	Ajustamento da sonda e respetivo mecanismo de deslocamento	7
	3.2	Mediç	ão dos perfis de pressão total	7
		3.2.1	Medição dos deslocamentos verticais	7
		3.2.2	Escolha dos pontos a medir ao longo do perfil	8
		3.2.3	Medição da temperatura do escoamento	8
4	Aná	álise do	os resultados	8
	4.1	Tratai	mento das leituras do tubo de pressão total	8
		4.1.1	Conversão dos dados manométricos em velocidades	8
		4.1.2	Correção das leituras dos deslocamentos verticais	8
		4.1.3	Cálculo da pressão dinâmica local	9
	4.2	Perfis	de velocidade nas coordenadas de Clauser	9
	4.3	Cálcul	lo dos parâmetros integrais da camada limite	9
	4.4	Deter	minação de C_{f} por balanço da equação integral de von Kármán	9
		4.4.1	C_{f} obtido da equação de von Kármán	9
		4.4.2	Compare no mesmo gráfico as variações longitudinais de C_{f} obtidas	
			anteriormente	10
A	Arr	anque	da instalação	11
В	Not	as sob	re medições manométricas	11
	B.1	Escoll	na do ângulo de inclinação do multimanómetro	11
	B.2	Tratai	mento de dados manométricos	11
\mathbf{C}	Cor	reção	das leituras de um tubo de pressão total	12

\mathbf{D}	Determinação dos parâmetros integrais	12
	D.1 Espessura de deslocamento	13
	D.2 Espessura de défice de quantidade de movimento	14
\mathbf{E}	Propriedades do ar seco a 1 atm	15
\mathbf{F}	Ábaco de Clauser	15
\mathbf{G}	Geometria do túnel de vento	18

Lista de Figuras

1	Representação esquemática do túnel de vento usado nos ensaios de camada	
	limite	4
2	Instalação experimental de ensaio de camada limite turbulenta	5
3	Propriedades do ar em função da temperatura	15
4	Estrutura da camada limite turbulenta	16
5	Ábaco de Clauser	17
6	Dimensões básicas do túnel de vento usado nos ensaios de camada limite:	
	$L_1=1{,}700\mathrm{m},\ L_2=0{,}155\mathrm{m}$ e $L_3=0{,}015\mathrm{m}.$ O túnel tem um largura de	
	0.235 m	18

Lista de Tabelas

1	Distância x ao arame de transição das tomadas de pressão estática (12)	
	colocadas ao longo do chão da secção de trabalho (2)	6
2	Variações de $\rho(T)$, $\mu(T)$ e $\nu(T)$ entre $10-37^{\circ}\mathrm{C}$ para ar seco a 1 atm	15

Instruções para submissão do relatório

- A data limite para a submissão do relatório está publicada na secção de Anúncios da página web da disciplina.
- Só serão aceites relatórios em formato PDF. O ficheiro deve chamar-se $Grupo_XX.pdf$, onde XX é o n^Q do grupo.
- O relatório tem um máximo de 20 páginas onde se inclui: i) capa, ii) índice, iii) corpo do relatório, iv) referências e, v) anexos. O formato a utilizar no relatório (Latente Marco) está disponibilizado na secção Laboratório/Projecto computacional da página web da disciplina.
- O relatório do trabalho tem de ser submetido na área de projetos do Fénix. Não serão aceites submissões por email.

1 Objetivos

1.1 Componente experimental

Pretende-se estudar o desenvolvimento de uma camada limite turbulenta bidimensional sobre placa plana para um dado gradiente longitudinal de pressão estática.

O trabalho envolve:

- a) A medição de perfis transversais de velocidade média com um tubo de pressão total para várias estações ao longo da placa.
- b) Elaboração de um relatório do qual deve constar:
 - i) A apresentação dos resultados sob forma gráfica
 - ii) Uma análise crítica dos resultados experimentais incluindo a discussão da compatibilidade dos diferentes resultados e interpretação das evoluções obtidas.
 - iii) Comparação do andamento das variáveis definidoras do escoamento com resultados teóricos e/ou semi-empíricos.
 - iv) A análise de erros experimentais é valorizada mas não é obrigatória.

A fim de se conseguir uma definição conveniente das variações longitudinais dos parâmetros globais do escoamento, devem ser medidos cerca de 5 perfis de velocidade ao longo da placa.

Um dos perfis deve ser completamente analisado à mão e os resultados comparados com os obtidos numericamente. Por uma questão de precisão, sugere-se que o perfil analisado à mão seja um dos de maior espessura, ou seja, um dos mais afastados do bordo de ataque da placa.

Os gráficos pretendidos são:

I. Variação longitudinal do coeficiente de pressão estática

$$\left\{ \frac{p_{\rm s} - p_{\rm s,ref}}{q_{\rm ref}} \text{ vs. } \frac{x}{L} \right\},\,$$

onde q_{ref} é a pressão dinâmica de referência (definida na Secção 2).

II. Variação longitudinal da velocidade exterior

$$\left\{ U_{\rm e} \text{ vs. } \frac{x}{L} \right\}.$$

III. Região da camada da parede de um dos perfis de velocidade nas coordenadas de Clauser

$$\left\{ \frac{u}{U_{\rm e}} \text{ vs. } \ln \frac{U_{\rm e} y}{\nu} \right\}.$$

IV. Os perfis de velocidade em escalas lineares

$$\left\{ \frac{u}{U_e} \text{ vs. } \frac{y}{\delta} \right\}.$$

- V. Variação longitudinal da espessura da camada limite $\{\delta \text{ vs. } x/L\}$, da espessura de deslocamento $\{\delta^* \text{ vs. } x/L\}$, e da espessura de défice de quantidade de movimento $\{\theta \text{ vs. } x/L\}$.
- VI. Variação longitudinal do fator de forma da camada limite $\{H \text{ vs. } x/L\}$.
- VII. Variação longitudinal dos valores do coeficiente de tensão de corte superficial

$$\left\{ C_{\rm f} \text{ vs. } \frac{x}{L} \right\}$$

obtidos dos seguintes métodos:

- (i) através do ábaco de Clauser (ver anexo F),
- (ii) por balanço dos diversos termos que figuram na equação integral de von Kármán.

VIII. Perfis semi-logarítmicos

$$\left\{ \frac{u}{u_{\tau}} \text{ vs. } \ln \frac{u_{\tau}y}{\nu} \right\}$$

e comparação com a lei da parede.

2 Descrição da instalação experimental

A secção de trabalho do túnel de camada limite está representada esquematicamente na figura 1. A instalação é composta pelos seguintes componentes:

- (1) Contração do túnel.
- (2) Chão da secção de trabalho (placa plana).
- (3) Teto basculante para variar o gradiente de pressão longitudinal.
- (4) Paredes laterais.
- (5) Obturador para produção de uma perda de carga concentrada à saída.
- (6) Tubo de pressão total de referência $(p_{T,ref})$.
- (7) Tomada de pressão estática de referência $(p_{s,ref})$.
- (8) Canal para sucção da camada limite à entrada da secção de trabalho (não utilizado).
- (9) Obturador para controle do caudal aspirado.
- (10) Bordo de ataque da placa.
- (11) Arame de transição.
- (12) Tomadas de pressão estática.
- (13) Sonda (tubo de pitot).

Figura 1: Representação esquemática do túnel de vento usado nos ensaios de camada limite.

- (14) Mecanismo de suporte e posicionamento horizontal da sonda.
- (15) Graminho para posicionamento vertical da sonda.

A contração do túnel (1) está provida, à entrada, de um tubo de pressão total de referência (6) e à saída de duas tomadas de estática de referência (7) ligadas em paralelo. O tubo (pitot) de pressão total (6) está ligado à entrada 1 do multimanómetro de álcool. As tomadas de pressão estática estão ligadas à entrada 2 do multimanómetro. A diferença entre estas duas pressões é utilizada para monitorizar a velocidade do túnel. A pressão dinâmica de referência é dada por

$$q_{\rm ref} = p_{\rm T,ref} - p_{\rm s,ref}. \tag{1}$$

As tomadas estáticas de referência e o tubo de pressão total de referência estão ligadas aos tubos 5 e 6, respetivamente, de um multimanómetro de tubos inclinados. O caudal pode ser controlado pela válvula de admissão do ventilador.

A camada limite no chão da secção de trabalho é removida logo à entrada através do canal (8) e uma nova camada limite é formada a partir do bordo de ataque (10) da placa plana (2). Este dispositivo destina-se a eliminar quaisquer irregularidades remanescentes na camada limite à saída da contração ou provocadas por imperfeições na união da secção de trabalho com a contração. O caudal de sucção através de (8) deve ser regulado por meio do obturador (9) até que o ângulo de ataque da placa seja nulo.

Para evitar a utilização de uma bomba de sucção interessa que a pressão estática perto do bordo de ataque da placa plana não seja muito inferior à pressão atmosférica. Esta condição verifica-se naturalmente para gradientes favoráveis e nulo de pressão estática ao longo da placa e pode ser conseguida, no caso de fortes gradientes de pressão adversos, introduzindo uma perda de carga localizada a saída por intermédio do obturador (5).

A fim de otimizar a uniformidade transversal da camada limite turbulenta, a transição é forçada por um arame (11) de 0,75 mm localizado 50 mm a jusante do bordo de ataque da placa. O diâmetro do arame foi escolhido segundo o critério de Gibbings.

Figura 2: Instalação experimental de ensaio de camada limite turbulenta. a) Vista geral. b) Tunel de camada limite e multimanómetro. c) Contração após a câmara de pleno. d) Ventilador e válvula de admissão. e) Multimanómetro de álcool para a medição das pressões. f) Graminho usado para posicionamento da sonda. g) Sonda (tubo de pitot). h) Escala do graminho.

Tabela 1: Distância x ao arame de transição das tomadas de pressão estática (12) colocadas ao longo do chão da secção de trabalho (2).

	Tubo	1	2	3	4	5	6
ĺ	x [m]	0,225	0,475	0,725	0,975	$p_{\mathrm{T,ref}}$	$p_{ m s,ref}$

A placa plana está dotada de 7 tomadas de pressão estática (12) no plano central ligadas ao multimanómetro. Na Tab. 1 apresentam-se as localizações das diversas tomadas de pressão medidas em relação ao bordo de ataque da placa e indicam-se os números de referência dos tubos do manómetro a que estão ligadas.

O teto da secção de trabalho (3) é basculante, de modo a permitir variar o gradiente da pressão. Deve ser mantido fixo durante o ensaio.

A estrutura (14) para suporte do mecanismo de deslocamento vertical da sonda (13) encaixa nas paredes laterais (4) da secção de trabalho e pode ser fixa em qualquer posição ao longo do eixo longitudinal. A distância da sonda à superfície da placa plana é medida na escala do graminho (15) acoplado ao mecanismo de atravessamento. O tubo de pressão total, com um diâmetro exterior de 1,00 mm, está ligado ao tubo manométrico 11.

3 Procedimentos para o ensaio

3.1 Recomendações gerais

3.1.1 Arranque da instalação

Vide Apêndice A.

3.1.2 Ajustamento do ângulo de ataque da placa

O ajustamento do ângulo de ataque da placa é feito do seguinte modo:

- (i) Abra completamente a válvula de admissão do ventilador.
- (ii) Verifique, pelo andamento da distribuição de pressão estática ao longo da placa, se o valor da pressão estática na zona do bordo de ataque é da ordem de grandeza da pressão atmosférica. Em caso negativo obstrua parcialmente a saída da secção de trabalho.
- (iii) A direção da corrente incidindo na placa pode ser verificada, embora grosseiramente, com um fio flexível de lã colocado na extremidade de uma vareta fina e imerso no seio do escoamento imediatamente a montante do bordo de ataque da placa. Ajuste

a posição do obturador à saída do canal de sucção até que o fio de lã esteja paralelo a superfície da placa plana.

3.1.3 Escolha do ângulo de inclinação do multi-manómetro

Vide Apêndice B.

Sugere-se uma inclinação da ordem dos $12-15^{\circ}$ em relação à horizontal.

3.1.4 Ajustamento da sonda e respetivo mecanismo de deslocamento

Pretendem-se medir cerca de 5 perfis de camada limite preferencialmente nas tomadas de pressão estática correspondentes aos tubos 3,4,5,6 e 8, ver Tab. 1.

Dado que pequenos erros de medição resultantes de um não muito correto posicionamento da sonda são tanto menos significativos quanto maior a espessura da camada limite, sugere-se começar o ensaio a partir do perfil mais afastado do bordo de ataque.

Para cada estação:

- (i) Coloque a estrutura com o sistema de deslocamento da sonda de modo a que o nariz do tubo de pressão total fique na posição desejada, - que pode fazer verificando o alinhamento da extremidade anterior do tubo com os traços pretendidos das duas escalas marcadas nas paredes laterais da secção de trabalho. Verifique também o alinhamento longitudinal.
- (ii) Ajuste a inclinação da haste do tubo até esta ficar perpendicular à placa plana.
- (iii) Garanta que o contacto do tubo com a placa se verifica no nariz da sonda e não na parte posterior ficando o nariz afastado da superfície. Se isto acontecer introduz um ligeiro erro constante nas medições de y que é um erro tanto mais grave quanto maiores forem os valores de $\partial u/\partial y$ para y's pequenos.
- (iv) Repita (i).

3.2 Medição dos perfis de pressão total

3.2.1 Medição dos deslocamentos verticais

- (i) Escolha para referência dos deslocamentos verticais (y = 0) o valor indicado na escala do graminho quando o tubo deixar a superfície. Faça várias tentativas.
- (ii) Aproxime todos os pontos onde vai efetuar medições por valores inferiores de y, i.e., deslocando a sonda de baixo para cima, de modo a minimizar erros devidos a folgas no mecanismo.

3.2.2 Escolha dos pontos a medir ao longo do perfil

Obtenha uma média de 30 pontos por perfil mais próximos junto à superfície, digamos 15 pontos até $y \simeq 0.15\delta$ (na região de validade da lei da parede) e outros 15 para o restante da camada limite.

Para seguirmos este critério teremos de fazer uma primeira estimativa de δ :

- (i) Coloque a sonda bem fora da camada limite e registe o valor da pressão total exterior $\Delta p_{\rm e}$.
- (ii) Aproxime-a rapidamente da superfície até Δp começar a diminuir.
- (iii) Afaste-a de novo, mas agora lentamente, até atingir $\Delta p = 99\% \Delta p_{\rm e}$, valor correspondente ao ponto $y \approx \delta$.

Nota:

- (i) Idealmente, as variações Δy devem seguir uma evolução logarítmica na zona da lei da parede.
- (ii) Meça pelo menos 5 pontos entre $u/U_{\rm e}=0.98$ e 1,00 a fim de poder determinar δ com precisão.

3.2.3 Medição da temperatura do escoamento

A fim de obter a massa específica $\rho = \rho(T)$ e a viscosidade cinemática $\nu = \nu(T)$ do ar determine a temperatura média do escoamento para cada estação como a média das temperaturas no início e fim das medições relativas a essa estação.

Vide Apêndice E

4 Análise dos resultados

4.1 Tratamento das leituras do tubo de pressão total

4.1.1 Conversão dos dados manométricos em velocidades

Vide Apêndice B.

A massa volúmica do fluido manométrico utilizado é $\rho_{\rm fm}=825\,{\rm kg/m^3}$ (álcool desnaturado).

4.1.2 Correção das leituras dos deslocamentos verticais

De acordo com as indicações sugeridas no Apêndice C os valores de y obtidos no §3.2.1 (i) devem ser acrescidos de uma quantidade $\Delta y = (0.5 + 0.15) \times (\text{diam. sonda}) = 0.65 \times 1.00 \,\text{mm} = 0.65 \,\text{mm}$.

4.1.3 Cálculo da pressão dinâmica local

Se as tomadas de pressão estática na placa não estiverem localizadas nos pontos onde se pretendem medir os perfis de velocidade da camada limite, estime a pressão estática local interpolando os dados de $\{p_s \text{ vs. } x\}$.

Sabendo a pressão estática local, a pressão dinâmica obtidos com a diferença

$$q_{\text{local}} = p_{\text{T,local}} - p_{\text{s,local}}.$$
 (2)

A velocidade u_{local} correspondente virá, por definição de $q = \frac{1}{2}\rho u^2$,

$$u_{\text{local}} = \sqrt{\frac{2 \, q_{\text{local}}}{\rho}}.\tag{3}$$

4.2 Perfis de velocidade nas coordenadas de Clauser

Trace em escala semi-logarítmica os primeiros 20% do perfil de velocidades que for analisar à mão nas coordenadas

$$\left\{ \frac{u}{U_{\rm e}} \text{ vs. } \ln \frac{U_{\rm e} y}{\nu} \right\}. \tag{4}$$

Utilize as mesmas escalas do ábaco de Clauser em anexo (Apêndice F). Para determinar $C_{\rm f}$ sobreponha o ábaco e o perfil experimental; tente obter, por interpolação, $C_{\rm f}$ com 3 algarismos significativos. Nesta determinação despreze os pontos experimentais mais próximos da superfície - ver Apêndice C - e os pontos para os quais $y > 15\%\delta$. Utilize o valor de $C_{\rm f}$ assim obtido em todos os cálculos subsequentes.

4.3 Cálculo dos parâmetros integrais da camada limite

Vide Apêndice D.

As variações longitudinais de δ , δ^* e θ podem ser apresentadas num mesmo gráfico. Se o fizer, escolha para δ^* e θ uma escala 10 vezes superior à utilizada para δ .

4.4 Determinação de $C_{\rm f}$ por balanço da equação integral de von Kármán

4.4.1 $C_{\rm f}$ obtido da equação de von Kármán

A equação integral da quantidade de movimento de von Kármán pode escrever-se

$$C_{\rm f} = 2\left(\frac{\mathrm{d}\theta}{\mathrm{d}x} + \theta \frac{H + 2}{U_{\rm e}} \frac{\mathrm{d}U_{\rm e}}{\mathrm{d}x}\right) \tag{5}$$

Nesta fase da análise de resultados os termos do segundo membro são já todos conhecidos. Obtenha $\mathrm{d}\theta/\mathrm{d}x$ e $\mathrm{d}U_\mathrm{e}/\mathrm{d}x$ por diferenciação gráfica das distribuições θ vs x e U_e vs x.

4.4.2 Compare no mesmo gráfico as variações longitudinais de $C_{\rm f}$ obtidas anteriormente

Utilize símbolos diferentes para cada uma das curvas.

Apêndices

A Arranque da instalação

Importante: Antes de arrancar coloque o multimanómetro perto da vertical e ajuste a posição do depósito até o líquido subir a aproximadamente meia altura nos tubos manométricos.

Para ligar:

- (i) Rode a alavanca de comando da válvula de borboleta na câmara de pleno para a esquerda/direita, de modo a deflectir o escoamento à saída do ventilador para o túnel aerodinâmico/tubo circular.
- (ii) Ligue o interruptor geral na parede junto à primeira janela do lado esquerdo (manípulo para cima)
- (iii) Carregue no botão preto (M) do disjuntor fixado na coluna ao lado do interruptor.

Para desligar:

- (i) Carregue no botão encarnado (A) do disjuntor.
- (ii) Desligue o interruptor geral.

B Notas sobre medições manométricas

B.1 Escolha do ângulo de inclinação do multimanómetro

Jogue com a inclinação do multimanómetro e com a altura do depósito de líquido manométrico até obter diferenças apreciáveis de comprimento molhado nos diferentes tubos na região central do manómetro, de modo a reduzir o erro relativo na leitura para um mesmo erro absoluto e a minimizar erros resultantes de empeno ou de fixação defeituosa dos tubos de vidro nas extremidades, respetivamente.

B.2 Tratamento de dados manométricos

A pressão relativa à atmosfera Δp correspondente ao comprimentos molhado ℓ obtido num manómetro com uma inclinação β , em relação à horizontal, com um fluido manométrico de massa volúmica $\rho_{\rm fm}$, será

$$\Delta p = \rho_{\rm fm} g h, \tag{6}$$

onde

$$h = \ell \sin \beta. \tag{7}$$

O valor de ρ deve ser obtido da Tab. 2 de propriedades do ar seco para a temperatura a que a medição é efetuada, temperatura esta que, em geral, não se manterá constante ao longo de todo o ensaio.

C Correção das leituras de um tubo de pressão total

A pressão registada por um tubo de pressão total imerso numa camada limite turbulenta é afetada por três espécies de erros, devidos:

- i) ao efeito do gradiente de velocidade na direção normal à parede, $\partial u/\partial y$;
- ii) à proximidade da parede;
- iii) ao efeito do campo de turbulência.

Ignore as duas últimas causas de erro atendendo a que não existem ainda correções conclusivas por estas causas, embora seja geralmente aceite que os efeitos (ii) e (iii) atuam em sentido contrário, sendo portanto o erro global inferior a qualquer dos erros parcelares. Para camadas limites turbulentas longe da separação o efeito do campo de turbulência só é significativo muito próximo da parede, zona onde é parcialmente compensado pela distorção imposta pela presença da parede nas linhas de corrente em torno da sonda, e o erro global pode ser completamente ignorado desprezando pontos do perfil para $u_{\tau}y/\nu < 100$, digamos.

O efeito de $\partial u/\partial y \neq 0$ pode ser expresso como um deslocamento $\bar{\delta}$ do centro efetivo do tubo de total no sentido das velocidades crescentes. $\bar{\delta}$ é muito aproximadamente proporcional ao diâmetro exterior do tubo $d_{\rm ext}$, e independente tanto da razão de diâmetros $d_{\rm ext}/d_{\rm int}$ como do gradiente norma1 de velocidades se este for pequeno de modo que $\bar{\delta}/d_{\rm ext} \simeq {\rm const.}$ (= 0,15 segundo McMillan).

Assim a correção a introduzir nas leituras do tubo de pressão total reduz-se a incrementar as ordenadas dos pontos do perfil de uma quantidade constante e igual a $0.15d_{\text{ext}} \frac{\partial u/\partial y}{|\partial u/\partial y|}$.

D Determinação dos parâmetros integrais

As espessuras de deslocamento δ^* e de quantidade de movimento θ são definidas, respetivamente, por:

$$\delta^* = \int_0^h \left(1 - \frac{u}{U_e} \right) \mathrm{d}y,\tag{8}$$

е

$$\theta = \int_0^h \left(\frac{u}{U_e} - \left(\frac{u}{U_e} \right)^2 \right) dy, \tag{9}$$

 $com h \ge \delta$

A fim de calcular δ^* e θ comece por determinar graficamente, com base nos pontos exteriores do perfil, o valor da espessura da camada limite δ .

Considere a camada limite dividida em duas zonas: a camada interior, de y=0 a $y=0.15\delta$, e a camada exterior para $y>0.15\delta$. Calcule separadamente a contribuição de cada uma destas zonas para δ^* e θ .

D.1 Espessura de deslocamento

Seja δ_1^* a contribuição da camada interior para δ^* ,

$$\delta_1^* = \int_0^{0,15\delta} \left(1 - \frac{u}{U_e} \right) dy = 0,15\delta - \int_0^{0,15\delta} \frac{u}{U_e} dy.$$
 (10)

0 ultimo integral pode escrever-se:

$$\int_0^{0,15\delta} \frac{u}{U_e} dy = \frac{\nu}{U_e} \int_0^{0,15\delta^+} u^+ dy^+, \tag{11}$$

onde

$$u^+ = u/u_\tau, \tag{12}$$

$$y^{+} = u_{\tau} y / \nu, \tag{13}$$

$$\delta^{+} = u_{\tau}\delta/\nu,\tag{14}$$

sendo u_{τ} a velocidade de fricção definida por

$$u_{\tau} = \sqrt{\frac{\tau_{\rm w}}{\rho}} = U_{\rm e} \sqrt{\frac{C_{\rm f}}{2}}.\tag{15}$$

0 valor do integral entre 0 e $\delta^+=50$, determinado por Coles para uma sub-camada "standard", é:

$$\int_0^{50} u^+ \mathrm{d}y^+ = 540.6. \tag{16}$$

O valor entre $y^+=50$ e $y^+=0,15\delta^+$ pode ser obtido por integração analítica da lei da parede

$$\int_{50}^{0.15\delta^{+}} u^{+} dy^{+} = \int_{50}^{0.15\delta^{+}} \left(\frac{1}{\kappa} \ln y^{+} + C \right) dy^{+} = \left(\frac{1}{\kappa} \left(\ln y^{+} - 1 \right) y^{+} + C y^{+} \right) \Big|_{50}^{0.15\delta^{+}}$$
(17)

Tome para as constantes empíricas na lei da parede os valores $\kappa = 0.41$ e C = 5.2.

A contribuição da camada exterior

$$\delta_2^* = \int_{0.15\delta}^h \left(1 - \frac{u}{U_e} \right) dy = \delta \int_{0.15\delta}^h \left(1 - \frac{u}{U_e} \right) d\left(\frac{y}{\delta} \right), \tag{18}$$

pode ser obtida por integração usando a regra dos trapézios.

D.2 Espessura de défice de quantidade de movimento

Seguindo um método idêntico ao utilizado para calcular δ^* virá

$$\theta_1 = \int_0^{0,15\delta} \frac{u}{U_e} dy - \int_0^{0,15\delta} \left(\frac{u}{U_e}\right)^2 dy.$$
 (19)

0 primeiro integral foi já calculado. Quanto ao segundo:

$$\int_0^{0,15\delta} \left(\frac{u}{U_e}\right)^2 dy = \frac{\nu}{U_e} \sqrt{\frac{C_f}{2}} \int_0^{0,15\delta^+} u^{+2} dy^+.$$
 (20)

No intervalo $y^+ = 0$ a 50 Coles propõe

$$\int_0^{50} u^{+2} \mathrm{d}y^+ = 6546. \tag{21}$$

Para o restante da camada interior

$$\int_{50}^{0,15\delta^{+}} u^{+2} dy^{+} = \int_{50}^{0,15\delta^{+}} \left(\frac{1}{\kappa} \ln y^{+} + C \right)^{2} dy^{+}$$

$$= \left(\frac{1}{\kappa^{2}} \left(2 + C\kappa \left(C\kappa - 2 \right) + \ln y^{+} \left(\ln y^{+} + 2C\kappa - 2 \right) \right) y^{+} \right) \Big|_{50}^{0,15\delta^{+}}$$
(22)

A determinação do défice de quantidade de movimento na camada exterior

$$\theta_2 = \delta \int_{0,15\delta}^h \left(\frac{u}{U_e} - \left(\frac{u}{U_e} \right)^2 \right) d\left(\frac{y}{\delta} \right), \tag{23}$$

é efetuada usando a regra dos trapézios.

E Propriedades do ar seco a 1 atm

Tabela 2: Variações de $\rho(T)$, $\mu(T)$ e $\nu(T)$ entre $10-37^{\circ}\mathrm{C}$ para ar seco a 1 atm.

T	ρ	$\mu \times 10^5$	$\nu \times 10^5$
[°C]	$[\mathrm{kg/m^3}]$	[Pas]	$[{\rm m}^2{\rm s}^{-1}]$
10	1,247	1,765	1,415
11	1,243	1,770	1,424
12	1,238	1,775	1,433
13	1,234	1,780	1,442
14	1,230	1,785	1,451
15	1,226	1,790	1,460
16	1,221	1,795	1,469
17	1,217	1,799	1,478
18	1,213	1,804	1,488
19	1,209	1,809	1,497
20	1,205	1,814	1,506
21	1,201	1,819	1,515
22	1,197	1,824	1,524
23	1,192	1,828	1,533

T	ρ	$\mu \times 10^5$	$\nu \times 10^5$
$[^{\circ}C]$	$[\mathrm{kg/m^3}]$	[Pas]	$[{\rm m}^2{\rm s}^{-1}]$
24	1,188	1,833	1,542
25	1,184	1,838	$1,\!552$
26	1,181	1,843	1,561
27	1,177	1,847	1,570
28	1,173	1,852	1,580
29	1,169	1,857	1,589
30	1,165	1,862	1,598
31	1,161	1,866	1,608
32	1,157	1,871	1,617
33	1,154	1,876	1,626
34	1,150	1,881	1,636
35	1,146	1,885	1,645
36	1,142	1,890	1,655
37	1,139	1,895	1,664

Figura 3: Propriedades do ar em função da temperatura.

F Ábaco de Clauser

Na camada de parede, o perfil de velocidades é descrito pela lei logarítmica

$$\frac{u(y)}{u_{\tau}} = \frac{1}{\kappa} \ln \left(\frac{u_{\tau} y}{\nu} \right) + A,\tag{24}$$

Figura 4: Estrutura da camada limite turbulenta.

onde $\kappa = 0.41$ é assumida como uma constante e é tomado igual a A = 5.2 para superfícies hidrodinamicamente lisas, ver Fig. 4. Multiplicando (24) por $u_{\tau}/U_{\rm e}$ obtemos

$$\frac{u(y)}{U_{\rm e}} = \left(\frac{1}{\kappa} \frac{u_{\tau}}{U_{\rm e}}\right) \ln\left(\frac{U_{\rm e}y}{\nu}\right) + \left(\frac{1}{\kappa} \frac{u_{\tau}}{U_{\rm e}} \ln\left(\frac{u_{\tau}}{U_{\rm e}}\right) + A \frac{u_{\tau}}{U_{\rm e}}\right). \tag{25}$$

O coeficiente de atrito pode ser escrito em função de u_{τ}

$$C_{\rm f} = 2\left(\frac{u_{\tau}}{U_{\rm e}}\right)^2,\tag{26}$$

resultando

$$\frac{u(y)}{U_{\rm e}} = \left(\frac{1}{\kappa} \sqrt{\frac{C_{\rm f}}{2}}\right) \ln\left(\text{Re}_y\right) + B,\tag{27}$$

onde

$$Re_y = \frac{U_e y}{v}, \tag{28}$$

e

$$B = \left(\frac{1}{\kappa}\sqrt{\frac{C_{\rm f}}{2}}\ln\left(\sqrt{\frac{C_{\rm f}}{2}}\right) + A\sqrt{\frac{C_{\rm f}}{2}}\right). \tag{29}$$

Na figura 5 está representada em escala semi-logarítmica a função (27) para diversos valores de $C_{\rm f}$. O $C_{\rm f}$ para um dados perfil de velocidades pode ser interpolado representando na figura 5 $u(y)/U_{\rm e}$ em função de Re $_y$ ou usando a o programa em Python disponível em https://github.com/joaochenriques/FluidMechanics2/tree/main/Laboratory. Esta folha de cálculo pode ser executada nos servidores do Google usando o link disponibilizado.

Figura 5: Ábaco de Clauser.

G Geometria do túnel de vento

Figura 6: Dimensões básicas do túnel de vento usado nos ensaios de camada limite: $L_1=1,700\,\mathrm{m},\,L_2=0,155\,\mathrm{m}$ e $L_3=0,015\,\mathrm{m}$. O túnel tem um largura de 0,235 m.