逸出功的测量实验 实验报告

姓名: 王炜致 学号: 2022010542 实验日期: 2024.5.21 实验台号: 5

目录

1	实验目的	1
2	实验仪器	1
3	数据处理与分析	2
	3.1 实验电路图设计	2
	3.2 确定温度值	
	3.3 直线拟合法绘制 $lgI_e' - \sqrt{U_a}$ 曲线 $\dots\dots\dots\dots\dots\dots$	
	3.4 直线拟合法绘制 $lg(rac{I_e}{T^2})-rac{1}{T}$ 曲线 $\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots$	3
4	实验总结	4
5	原始数据记录	5

1 实验目的

- (1) 了解热电子发射的规律;
- (2) 掌握逸出功的测量方法;
- (3) 学习通过作图处理数据计算有关参数。

2 实验仪器

双路直流可调电源:右路 0-15V/0-0.75A/1A,设置为恒流输出用于灯丝加热电源 E_f ; 左路 0-160V/0-50mA,设置为恒压输出用于加速电场 E_a ;

指针式电流表 (A): 交直流两用,量程 1A,测量灯丝电流 I_f ;

数字电压表 (mV): 量程 200mV $4\frac{1}{2}$ 位读数;

实验板:安装有标准二极管,灯丝 ${
m KH}$ 两端已经并联由两个相同电阻 ${
m R}$ (千欧量级)串联而成的电阻,两个电阻的连接点用 ${
m C}$ 表示;

实验面包板及元件。

3 数据处理与分析 2

3 数据处理与分析

3.1 实验电路图设计与实验数据表格

采样电阻 (Ω)	$I_{f1}(A)/T(K)$	$U_a(V)/U'_e(mV)$	1	2	3	4	5	6	7
$R_e = 2.7k$	$I_{f1} = 0.500$	$U_a =$	36.08	49.00	64.02	80.98	100.03	121.04	144.09
$n_e = 2.7\kappa$	$T_1 = 1726$	$U'_e =$	4.18	4.27	4.37	4.47	4.56	4.67	4.77
$R_e = 2.7k$	$I_{f1} = 0.530$	$U_a =$	36.00	48.99	64.00	81.00	100.01	120.99	143.99
$n_e = 2.7\kappa$	$T_1 = 1778$	$U'_e =$	10.79	10.99	11.22	11.45	11.67	11.91	12.15
$R_e = 2.7k$	$I_{f1} = 0.560$	$U_a =$	36.00	49.03	64.02	80.99	99.97	121.03	144.00
$n_e = 2.1 \kappa$	$T_1 = 1828$	$U'_e =$	26.71	27.25	27.80	28.35	28.89	29.46	30.03
$R_e = 2.7k$	$I_{f1} = 0.590$	$U_a =$	36.00	49.03	64.00	81.00	99.91	121.00	143.99
$n_e = 2.1\kappa$	$T_1 = 1877$	$U'_e =$	57.20	58.27	59.37	60.48	61.53	62.73	63.92
D 9.71	$I_{f1} = 0.620$	$U_a =$	36.00	48.96	63.99	80.98	99.98	120.98	144.00
$R_e = 2.7k$	$T_1 = 1926$	$U'_e =$	126.45	128.90	131.31	133.73	136.09	138.63	141.11
$R_e = 270$	$I_{f1} = 0.650$	$U_a =$	36.04	48.99	64.01	81.02	100.06	121.00	143.97
$n_e \equiv 210$	$T_1 = 1975$	$U'_e =$	26.08	26.53	26.99	27.44	27.90	28.39	28.87

3.2 确定温度值

利用讲义表 1: 灯丝电流 I_f 与温度 T 的关系表得到 $I_f(A)$ 与温度 T(K) 的线性拟合

$$T = 1642.29I_f + 907.90$$

进而通过线性插值法得到对应的 T_1 (0.500A,0.650A 直接用表值)。

3.3 直线拟合法绘制 $lgI'_e - \sqrt{U_a}$ 曲线

理论分析给出 $(U_a$ 较大时) $lgI'_e - \sqrt{U_a}$ 的线性关系

$$lgI'_e = lgI_e + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 ln(\frac{r_2}{r_1})}} \sqrt{U_a}$$

3 数据处理与分析 3

式中 U_a 为阳极电压, r_1,r_2 分别为阴极和阳极的半径, I_e 为无外加电场时的发射电流, I_e' 为外加电场时的发射电流。直线截距即为 lgI_e 。利用欧姆定律简单变换

$$I_e' = \frac{U_e'}{R_e}$$

处理后进一步可绘制 $lgI'_e - \sqrt{U_a}$ 关系曲线:

其中 U_a 单位为 \mathbf{V} , I'_e 单位为 $\mathbf{m}\mathbf{A}$ 。 $R^2\approx 1$,说明有良好线性。由此得到系列 lgI_e 值,列表如下:

	$I_{f1}(A)$	0.500	0.530	0.560	0.590	0.620	0.650
	T(K)	1726	1778	1828	1877	1926	1975
ĺ	lgI_e	-2.8677	-2.4504	-2.0553	-1.7220	-1.3766	-1.0591

3.4 直线拟合法绘制 $lg(\frac{I_e}{T^2})-\frac{1}{T}$ 曲线

理论分析给出

$$lg\frac{I_e}{T^2} = lgAS - 5.039 \times 10^3 \frac{\phi}{T}$$

式中 I_e 为发射电流,单位为 A;T 为绝对温度,单位为 $K;\phi$ 为逸出电位,单位为 V;S 为阴极金属的有效发射面积,单位为 $cm^2;A=2(1-R_e)A_1$, R_e 为金属表面对电子的反射系数, A_1 为普适常数。

利用上述数据,绘制 $lg(\frac{I_e}{T^2}) - \frac{1}{T}$ 曲线:

4 实验总结 4

 $R^2\approx 1$,说明有良好线性。在数值上,斜率 $k=-23141=-5.039\times 10^3\phi$,则逸出电位

$$\phi = \frac{23141}{5.039 \times 10^3} \approx 4.59V$$

即实测逸出功为

$$W_m = 4.59eV$$

而逸出功公认值为

$$W_0 = 4.54eV$$

故相对误差

$$\eta = \frac{|W_0 - W_m|}{W_0} \times 100\% = \frac{0.05}{4.54} \times 100\% \approx 1.10\%$$

4 实验总结

通过本次实验,我了解了热电子发射的规律,掌握了逸出功的测量方法,巩固了通过作图处理数据计算有关参数的技能。 实验测得钨丝电子逸出功 $W_0=4.59eV$,较公认值偏大,相对误差为 $\eta=1.10\%$,误差来源包括但不限于:插值法得到的温度 T 与实际温度存在偏差;读数时样品加热不充分,电压尚未达到稳定值;电流表读数时有误差;电阻的实际阻值不精确等。

5 原始数据记录

2700-300 2024 春物理实验 B(2)课程资料 附录 实验测量数据记录参考表格 实验题目: 逸出功的测量 姓名: 上纬纹, 学号2020105年4 实验组号: 单二晚上, 实验台号: 5 , 实验日期2024,5.21 (1)灯丝电流 I_1 从 0.500A 开始,每改变 0.02~0.04A(最大电流不超过 0.700A)测定加速电压 U_a 和阳极 电流 $I_{e'}$ (采样电阻上的电压 $U_{e'}$) 的关系; (2)U。从 36V 开始逐步增加,最大不超过 150V。每个温度测 7 组数据,按照 U。从低到高的顺序测量。 (3)灯丝电流 1,对应的灯丝温度 T 由表 1 中相邻两组数据采用线性插值法计算得出。 采样电阻(Ω) $I_f(A)/T(K)$ $U_a(V)/U_e'(mV)$ 36.08 V 49.00 100.0} 121.04. 144.09 64.02 80.98 In= 0.500 H Ua= 36.08 $R_e =$ 4.56 4.77 4.27 4.37 120.99 143.99 36.00 48.99 64.00 81.00 In=0.530 100.01 10.99 11.22 11.45 11.67 $T_1 =$ $U_e'=$ 10.79 36.00 49.03 64.02 80.99 99.97 In= 0.760 $R_e =$ 27.25 27.80 28.35 28.89 29.46 30.03 $T_1 =$ $U_e =$ 26.71 36.00 69.03 64.00 81.00 99.91 $U_a=$ In= 0.590 $R_e =$ 80.48 61.53 59.37 63.99 80.98 99.98 122.98 144.00 In= 0.620 126.45 128.90 131.31 133.73 136.09 138.63 141.11 $T_1 =$ U'= 48.95 6401 81.02 100 06 121.00 143.97 In=0.650 27.44 27.90 28.39 28.87 与电源示数元头