ÁLGEBRA

Departamento de Matemáticas Grado en Ingeniería Informática

ESCUELA SUPERIOR DE INGENIERÍA CURSO 2015/2016

Boletín del Tema VI: DIAGONALIZACIÓN DE MATRICES

1. Calcula los autovalores y autovectores de las siguientes matrices

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- 2. Sea la matriz $A = \begin{pmatrix} 3 & 0 & a \\ 3 & -1 & b \\ -2 & 0 & c \end{pmatrix}$ de la que se sabe que el vector (2, 0, -1) es un autovector correspondiente al autovalor $\lambda = -1$. Calcula los restantes autovalores y autovectores.
- 3. Halla los autovalores de la matriz $A = \begin{pmatrix} a & 1 & p \\ b & 2 & q \\ c & -1 & r \end{pmatrix}$ sabiendo que admite como autovectores a (1,1,0), (-1,0,2) y (0,1,-1).
- 4. Sean las matrices

$$A = \begin{pmatrix} 5 & 6 & -3 \\ -1 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & -1 \end{pmatrix}.$$

Hallar, para cada una de ellas, una matriz $P \in \mathcal{M}_3$ tal que $P^{-1}AP$ y $P^{-1}BP$ sean matrices diagonales.

5. Sea las matrices

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & 4 & 0 \\ -2 & -2 & 0 \\ 4 & 8 & 2 \end{pmatrix}.$$

Determinar el polinomio característico y los autovalores para cada una de las matrices. Estudiar si son o no diagonalizables, y para las que lo sean, determinar la expresión diagonal D, y la correspondiente matriz de paso P, de manera que $P^{-1}AP = D$.

- 6. Sea la matriz $A = \begin{pmatrix} 0 & -1 & 0 \\ -a^2 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix}, a \in \mathbb{R}$. Se pide:
 - a) Hallar los autovalores de la matriz A.
 - b) Hallar los autovectores asociados a dichos autovalores.
 - c) Hallar el valor o valores de a para los cuales la matriz A es diagonalizable.

7. Sea la matriz
$$A = \begin{pmatrix} a & 0 & -1 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix}, a \in \mathbb{R}$$
. Se pide:

- a) Hallar el valor de a para que $\lambda = 3$ sea autovalor de A.
- b) Para a=2:
 - 1) Hallar los autovalores y autovectores asociados a A.
 - 2) Estudiar si A es diagonalizable o no y, en caso afirmativo, hallar una matriz diagonal semejante a A y la matriz P correspondiente.
- 8. Se considera la matriz $A = \begin{pmatrix} 1 & x & 2 \\ 1 & 0 & 3 \\ 0 & 0 & 6 \end{pmatrix}$. Se pide:
 - a) Calcular los autovalores de A.
 - b) Averiguar para qué valor o valores de x la matriz A tiene un autovalor de multiplicidad 2. Sustituir x por estos valores y estudiar si es A diagonalizable.
 - c) Estudiar para qué valores de x la matriz A tiene tres autovalores distintos.
- 9. Sea $B=(\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3,\mathbf{e}_4)$ una base del espacio vectorial real V. Sea f un endomorfismo de V del que se sabe:
 - a) El vector $(\mathbf{e}_1 + \mathbf{e}_2 \mathbf{e}_4)$ es un autovector asociado a $\lambda = 1$,
 - b) \mathbf{e}_2 es un vector propio asociado a $\lambda = 2$.

c)
$$f(\mathbf{e}_3 - \mathbf{e}_4) = (\mathbf{e}_2 + 2\mathbf{e}_3 - 2\mathbf{e}_4), \qquad f(a\mathbf{e}_2 - \mathbf{e}_3 + 2\mathbf{e}_4) = b\mathbf{e}_2$$

Discute según los valores reales de a y b los valores y vectores propios de f y estudia su posible diagonalización.

10. Sea la matriz
$$A=\left(\begin{array}{ccc} a & 3 & 1 \\ 0 & a-1 & 2 \\ 0 & 0 & -1 \end{array}\right), a\in\mathbb{R}.$$
 Se pide:

- a) Estudiar para qué valor o valores de a la matriz A es diagonalizable.
- b) Para a=2:
 - 1) Hallar los autovalores y autovectores asociados a la matriz A.
 - 2) Hallar una matriz cuadrada $P \in \mathcal{M}_3$ tal que $P^{-1}AP$ sea diagonal.

11. Dada la matriz
$$A = \begin{pmatrix} 1 & 0 & 1 \\ a & -2 & 2 \\ 3 & 0 & -1 \end{pmatrix}$$
, se pide:

- a) Calcula los valores de a para los que A es diagonalizable.
- b) Para dichos valores de a, calcula los autovalores y autovectores de A^{-1} .

- 12. Sea f un endomorfismo de \mathbb{R}^3 del que se sabe:
 - a) El núcleo de f está engendrado por los vectores (1,1,0) y (1,0,1)
 - f(0,2,1) = (3,-3,0)

Encuentra una base de \mathbb{R}^3 en la que la matriz fe f sea diagonal.

13. Siendo $\alpha \in R$, calcula los autovalores de la matriz

$$A = \begin{pmatrix} \alpha + 3 & \alpha & 0 & 0 \\ -\alpha & -\alpha + 3 & 0 & 0 \\ \alpha & \alpha - 1 & \alpha + 1 & \alpha - 1 \\ -\alpha & 1 - \alpha & 1 - \alpha & 3 - \alpha \end{pmatrix}$$

Calcula la dimensión de los subespacios propios, según el valor que tome α . Estudia si la matriz es diagonalizable para algún valor de α .

- 14. Los autovalores de una matriz simétrica A, de orden tres, son 1, -2 y 3 y los subespacios propios asociados son $V(1) = L\{(1, 1, -1)\}$, $V(-2) = L\{(0, 1, 1)\}$. Obtener una base para V(3) y averiguar cuál es la matriz A.
- 15. Sea $B = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$ una base del espacio vectorial R^4 y sea $B' = (\mathbf{v}_1, \mathbf{v}_2)$ una base del espacio vectorial R^2 . Sea $f \in \mathcal{L}(R^4, R^2)$ de la que se sabe:
 - $a) f(\mathbf{e}_1) = \mathbf{v}_1 + \mathbf{v}_2$
 - $b) f(\mathbf{e}_2 = \mathbf{v}_1 2\mathbf{v}_2)$
 - c) Las ecuaciones del núcleo de f son $\begin{cases} 3x_1 + 2x_2 + x_3 &= 0 \\ -2x_1 x_2 + x_4 &= 0 \end{cases}$

Sea
$$g \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^4)$$
 que en las bases dadas tiene por matriz
$$\begin{pmatrix} 0 & -1 \\ 4 & -4 \\ 0 & 0 \\ -1 & 1 \end{pmatrix}$$

Diagonaliza el endomorfismo $g \circ f \in End(\mathbb{R}^4)$ y encuentra una base formada por vectores propios.

- 16. Encontrar una matriz cuadrada de orden dos cuyos autovalores sean 1 y 2 tal que $V(1) = L\{(1,1)\}$ y $V(2) = L\{(1,0)\}$.
- 17. Determina α y β , sabiendo que la matriz

$$A = \begin{pmatrix} 1 & -3 & 1 & -4 \\ 0 & -1 & 0 & -3 \\ 1 & \alpha & 1 & \beta \\ 0 & 1 & 0 & 3 \end{pmatrix}$$

tiene dos autovalores dobles y es diagonalizable.

18. Dadas las matrices

$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

encuentra dos matrices ortogonales P y Q tales que $P^{-1}AP$ y $Q^{-1}BQ$ sean matrices diagonales.

- 19. Sea f un endomorfismo de \mathbb{R}^4 que verifica:
 - El vector (1, -1, 0, 0) es un autovector correspondiente al valor propio $\lambda = 2$.
 - El vector (1,1,0,0) es un vector propio correspondiente al autovalor $\lambda=-2$.

•
$$f(\mathbf{e}_3) = a\mathbf{e}_1 + 2\mathbf{e}_3$$
, $f(\mathbf{e}_4) = b\mathbf{e}_1 + c\mathbf{e}_2 + d\mathbf{e}_4$

siendo $B = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$ la base canónica de \mathbb{R}^4 .

Sea g otro endomorfismo de \mathbb{R}^4 que verifica:

$$g(\mathbf{e}_1) = \mathbf{e}_3, \quad g(\mathbf{e}_2) = \mathbf{e}_4$$

■ El núcleo de g tiene por ecuaciones implícitas respecto de B
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

Se cumple también que la aplicación compuesta $g \circ f$ tiene 2 autovalores dobles y es diagonalizable.

- a) Determina la matriz asociada a $g \circ f$ en la base B y encuentra una base de \mathbb{R}^4 respecto de la cual dicha matriz sea diagonal.
- 20. Sea f un endomorfismo de R^4 cuya matriz respecto a la base canónica es $A = \begin{pmatrix} 1 & \alpha & 0 & 0 \\ \alpha & 1 & \alpha & 0 \\ \alpha 1 & -\alpha & \alpha & 0 \\ 1 \alpha & \alpha & -\alpha & 0 \end{pmatrix}$
 - a) Estudia, según los valores de α , la posible diagonalización de f
 - b) Cuando f sea diagonalizable, encuentra una matriz P tal que $P^{-1}AP$ sea diagonal.