Biology

Quest	tion 1 (52)	Exan use	
(a)	The diagram shows some of the structures in human skin. The skin has many functions. One of them is excretion. Skin excretes sweat. Name two substances excreted in sweat. Substance 1 Substance 2	(1)	(2)
(b)	Nerves carry electrical messages around our bodies. Nerves have motor functions and sensory functions. Explain the <i>underlined terms</i> . Motor function		
	Sensory function		
(c)	Different types of joints hold together the bones of our skeleton. Name the <i>type of joint</i> labelled in the diagram of the human skull. Name		
	How does this type of joint <i>differ</i> from other types of joints found in our bodies?		
	Difference		
(d)	The diagram is of the human eye. Name the <i>part</i> labelled A . Ciliary muscle		
	What <i>function</i> has the ciliary muscle?		
	Function		ĺ

(e)	The photograph is of James Dewey Watson who together with Francis Crick published the molecular structure of DNA in 1953. Where is DNA <i>located</i> in cells?	For Examiner use only (1) (2)
	Location	<u> </u>
	Name a second <i>substance</i> associated with DNA.	
	Second substance	
(f)	The diagram shows a pooter. It is used, when studying a habitat to collect small animals e.g. insects, for identification. Describe <i>how to use a pooter</i> .	
(g)	The photograph shows a stage in the industrial production of cheese. This is an example of the use of biotechnology in industry. Give two other <i>examples</i> of the use of biotechnology in industry or medicine. 1 2	
(h)	Name the principal food type (nutrient), which is present in all of the foods shown.	
	Name Butter Cheese Cooking oil	
	Describe a <i>test</i> to show the <i>presence of the food type</i> that you have named in food samples.	
	Test	_
		_

Question 2				(39)	For Examiner use only
	diagram shows a young seedling grown from a ninated seed.		Air)	(1) (2)
<i>(i)</i>	List three <i>conditions necessary</i> for seeds to germinate.	(9)	Soil		
	Condition 1	_		(
	Condition 2			\	
	Condition 3	_	V		
	Describe, using labelled diagrams in the box p to show that any two of the <i>conditions</i> that yo for seeds to germinate. The investigation mus	u have give	en are required	(12)	

(b)		e diagram shows the human digestive tem.	For Examine use only	
	<i>(i)</i>	Give a <i>digestive function</i> of organ A. (3) Function Small		
	(ii)	In the small intestine starch is broken down to maltose by amylase.		
		Identify the <i>enzyme</i> , and the <i>substrate</i> named in the reaction above. (6)		
		Enzyme		
		Substrate		
	(iii)	Give a <i>function</i> of the small intestine other than digestion. (3)		
		Function		
	(iv)	Describe a simple laboratory experiment to show the <i>release</i> of <i>chemical energy</i> from food as <i>heat</i> . (6)		

Quest	Question 3 (39)					
		imals and human activity all have important roles in conserving the living ent on the planet.	(1) (2)			
(a)	<i>(i)</i>	Complete the following <i>word equation</i> for aerobic respiration. (6)				
		Glucose (Food) +				
		Energy + + Water				
	(ii)	State how you would show the presence of one of the <i>products</i> of aerobic respiration by means of a <i>chemical test</i> . (9)				
(b)	in w pond and	dweed is a green plant that lives ater. In the presence of light dweed undergoes photosynthesis a gas is produced as one of the fucts. Name the <i>gas</i> produced. (3)				
	Nan	ne of gasWater				
	take	pondweed, and all green plants, in and use another gas, from their ronment during photosynthesis. (3)				
	Nan	ne of gas used				
	How	might the <i>rate of production</i> of bubbles, by the pondweed, be increased?				
	Hov	\mathbf{v} ?				

is cubeen	increase in carbon dioxide concentration in the Earth's atmosphere arrently causing concern. The <i>use of fossil fuels</i> and <i>deforestation</i> have a identified as major contributors to this increase in carbon dioxide centration. The graph shows a continual increase in the carbon dioxide centration for the last fifty years. The data was collected at a site in Europe.
	Atmospheric Carbon Dioxide
	Atmospheric Carbon Dioxide 370 gdd 370 360 350 350 approximately 370 gdd 370 g
<i>(i)</i>	Explain how <i>either</i> the use of fossil fuels <u>or</u> deforestation could have contributed to the increase in atmospheric carbon dioxide. (3) Explain
(ii)	Suggest one possible <i>effect</i> of continued increase in carbon dioxide concentration in the Earth's atmosphere. (3)
	Effect
is an	ugh there is an overall increase in carbon dioxide concentration there annual <i>rise and fall</i> in carbon dioxide concentration as shown in the box in diagram.
(iii)	Suggest one <i>reason</i> why the carbon dioxide concentration decreases between April and October each year. (3)
	Reason
(iv)	How could the reason that you have given in (<i>iii</i>) be used in a <i>practical</i> way to slow down and even reverse the overall increase in carbon dioxide levels in the atmosphere? (6)

For Examiner use only

(1) | (2)

How? _____

Chemistry

Quest	tion 4 (52)	For Examiner use only (1) (2)
(a)	The diagram represents a sodium atom. The circles are electron orbits and the 'Na' represents the nucleus. The atomic number of sodium is 11. Using dots or X s to represent electrons in the	
	orbits give the <i>electronic structure</i> of sodium.	
(b)	Name a <i>raw material</i> used to make plastics.	
	Raw material	
	Some plastics are <u>non-biodegradable</u> . Explain the underlined term.	
	Explain	
(c)	Name the <i>item</i> of laboratory equipment shown in the diagram and name a <i>second item</i> of laboratory equipment which enables more accurate measurements of volume to be made.	
	Item shown	
	Second item	
(<i>d</i>)	Give two properties of alkali metals.	
<i>(u)</i>		
	Property 1	
	Property 2	
(e)	The diagram shows a molecule of C ₆₀ . It has 60 carbon atoms <u>covalently bonded</u> together. This molecule is nick-named the 'Buckey Ball'. Explain the underlined term.	

The photographs are of four snowflakes.	
The photographs were taken by Wilson Bently (1865-1931). He photographed	
5000 snowflakes and never found two that	
were identical.	892 · 693
Snowflakes are crystals of water.	y x tox
Name a <i>substance</i> , other than water, that	with the second
forms crystals.	
Name	895
Give one <i>difference</i> between crystalline an	d non-crystalline solids.
Difference	
Give the <i>formula</i> of a common base.	
Formula	
1 01 11 11 11 11 11 11 11 11 11 11 11 11	
Alkalis are water-soluble bases. Name a su	bstance, which is <i>alkaline</i> .
Name	
	Ŋ
The apparatus shown in the diagram can	
The apparatus shown in the diagram can be used to separate mixtures.	
•	
Name <i>part</i> A .	
Part A	X
	Y
Which connection, X or Y , is attached to	
the cold tap?	
X or Y?	Part A
Flask A contains seawater. Name the	Flask B→

For Examiner use only

(1) (2)

 $(7 \times 6 + 1 \times 10)$

Name a *constituent* of seawater that does not move from flask **A** to flask **B**.

Liquid _____

Name _____

stion 5							$(39) \qquad \boxed{}$
Distinguish	between a c	concentra	<i>ted</i> and a	dilute so	olution?		(3)
ammonium of the salt the	estigated the chloride in this average.	water. Sh ssolve in	e determi 100 g of	ned the rwater at	naximun various t	n mass, in	grams,
Solubility	om this expe	29	37	46	55	66	77
(g / 100 g v Temperat	^	0	20	40	60	80	100
olubility g / 100 g water)							
				(0.57)			
Use the gra	ph to <i>estima</i>	te the sol	-	ature (°C) ammoni		ride at 70	°C. (3)
Solubility_							
	<i>lusion</i> about	the solub	oility of a	mmoniu	n chlorid	e can be	
analysis of	the graph?						(3)

		Fo Exam use o	iner
(b)	The photograph is of Maire Curie (1867-1934). She showed the existence of the element radium and she produced 0.1 g of the compound radium chloride in 1902 by processing tons of pitchblende ore obtained from mines in Bohemia.	(1)	(2)
	Explain the underlined terms. (12) Element		
	Compound		
(c)	Describe how to <i>investigate the pH</i> of everyday substances e.g. antacid (indigestion powder), lemon juice, oven cleaner, vinegar etc. (6)		
	Description		
	Name an everyday substance with a <i>pH of less than 7</i> . (3)		
	Name		

est	ion 6	(39)	Exam use o					
2)	The diagram shows an apparatus that can be used for the preparation and collection of carbon dioxide. Acid		(1)	(2)				
	Give the <i>formula</i> of a <i>suitable acid</i> . (3)	Marble						
	Formula	chips						
	Give the <i>chemical name</i> for marble. (3)	Š						
	Name	I						
	(Note If you used some substance other than marble to react with the acid to give carbon dioxide, then give the <i>chemical name</i> of that substance.)							
	What <i>physical property</i> of carbon dioxide allows the gas to be collected in the manner shown in the diagram? (3)							
	Physical property							
	If a strip of moist blue litmus paper and a strip of moist red litmus paper are put into a jar of carbon dioxide what <i>effect</i> , if any, does the gas have on them? (3)							
	Effect							
	Give <i>two uses</i> of carbon dioxide.	(6)						
	Use 1							
	Use 2							

			For Examiner use only
(b)	pour The	k A contains hard water. Some of this water was red into the tube containing an ion exchange resin. water that passed through the ion exchange resin collected in flask B .	(1) (2)
	<i>(i)</i>	Describe a <i>test</i> that you could perform on water samples from flask A and from flask B to compare their hardness? What result would you expect from this test? (12) Test	
		Result Flask B	
	(ii)	What <i>causes</i> hardness in water? (3) Cause	
(c)		er supplied to domestic consumers has undergone five or more different esses in a water treatment plant.	
	<i>(i)</i>	Name one of the <i>processes</i> carried out on water in a treatment plant. (3) Process	
	(ii)	Give a <i>reason</i> why the treatment that you have named is carried out. (3) Reason	

Physics

Question 7 (52)			Examiner use only	
(a)	The diagram shows a "ball and ring" apparatus. When the ball and ring are both cold the ball just passes through the ring. How would you use this apparatus to show (i) the <i>expansion</i> of a solid on heating (ii) the <i>contraction</i> of a solid on cooling?	8		(1) (2)
	(i)			
	(ii)			
(b)	Ice floats on water but ice sinks in ethanol (an ald Use this information to compare the <i>density</i> of <i>ic</i> (<i>i</i>) the <i>density</i> of <i>water</i> ; (<i>ii</i>) the <i>density</i> of <i>ethanol</i>	e with l.		
	(i)			
	(ii)			
(c)	Look carefully at the circuit diagram and then state <i>which bulb/s</i> , <i>if any</i> , <i>light</i> when the switch is closed. Give a <i>reason</i> for your answer. Which?		BO	
	Reason			
(<i>d</i>)	Give one <i>application</i> of the <i>magnetic effect</i> and <i>chemical effect</i> of electric current.	one application of the	e	
	Magnetic effect			
	Chemical effect			
				'

	Thunder and lightning occur during electric storms. Explain why we <i>see</i> the lightning <i>before</i> we <i>hear</i> the thunder.			
	Why?			
	Give one <i>advantage</i> and one <i>disadvantage</i> of using nuclear energy to generate electricity.			
	Advantage			
	Disadvantage			
)	What does the experiment shown in the diagram tell us about the <i>transfer of heat</i> energy in water? Steam Boiling water			
	What? Meta			
	If you wanted to warm all of the water why would the bottom of the test tube be the best place to heat with the Bunsen flame?			
	Why?			
	The diagram is an Atlantic weather chart. Use the chart to predict two weather conditions that you might expect for Ireland.			
	Condition 1			
	Condition 2			
	Explain why low atmospheric pressure			
	causes one of the weather conditions that you have given.			

Examiner use only

(1) | (2)

Question 8 (39)			For Examiner use only	
The diagram shows the outline of a bar magnet. Draw two <i>magnetic field lines</i> one on each side of the bar magnet.	(6)	(1)	(2)	
N S				
What are the <i>parts</i> labelled N and S in the diagram called? What?	(3)			
average stopping force of 8 kN (8000 N) and the car stopped having tra	avelled			
When work is done energy is converted from one form to another. Identify one <i>energy conversion</i> that occurred when the car braked.	(6)			
	The diagram shows the outline of a bar magnet. Draw two magnetic field lines one on each side of the bar magnet. N S What are the parts labelled N and S in the diagram called? What? The driver of a moving car applied the brakes. The brakes produced an average stopping force of 8 kN (8000 N) and the car stopped having trace 20 m after the brakes were applied. Calculate the work done in stopping the stopping force of 8 kN (8000 N) and the car stopped having trace 20 m after the brakes were applied. Calculate the work done in stopping the stopping force of 8 kN (8000 N) and the car stopped having trace 20 m after the brakes were applied. Calculate the work done in stopping the stopping force of 8 kN (8000 N) and the car stopped having trace 20 m after the brakes were applied. Calculate the work done in stopping the stopping force of 8 kN (8000 N) and the car stopped having trace 20 m after the brakes were applied. Calculate the work done in stopping the stopping force of 8 kN (8000 N) and the car stopped having trace 20 m after the brakes were applied. Calculate the work done in stopping the stopping trace 20 m after the brakes were applied. Calculate the work done in stopping the stopping trace 20 m after the brakes were applied.	The diagram shows the outline of a bar magnet. Draw two magnetic field lines one on each side of the bar magnet. (6) N S What are the parts labelled N and S in the diagram called? (3) What? The driver of a moving car applied the brakes. The brakes produced an average stopping force of 8 kN (8000 N) and the car stopped having travelled 20 m after the brakes were applied. Calculate the work done in stopping the car. (6)	The diagram shows the outline of a bar magnet. Draw two magnetic field lines one on each side of the bar magnet. (6) N S What are the parts labelled N and S in the diagram called? What? The driver of a moving car applied the brakes. The brakes produced an average stopping force of 8 kN (8000 N) and the car stopped having travelled 20 m after the brakes were applied. Calculate the work done in stopping the car. (6) When work is done energy is converted from one form to another.	

For Examiner use only

 $(1)_{1}(2)$

(6)

(c) Define moment of a force.

The diagram shows a metre stick suspended from its centre of gravity. A force of 3 N acts on the stick at the 90 cm mark and a force of **F** N acts on the stick at the 20 cm mark. The metre stick is balanced horizontally. Calculate *force F*. (6)

Give an *everyday example of an application of the lever*, using a labelled diagram, showing the *fulcrum* and at least *one force* acting on the lever.

Use the box provided for your labelled diagram. (6)

Quest	tion 9		For Examiner use only			
(a)	diag whice short	lass block like the one shown in the gram was used in an experiment in ch a narrow beam (ray) of light was ne through it. The light passed from o glass, on entry, and glass to air, on	(1) (2)			
	The path of this light ray is shown in the second diagram.					
		light ray from A bends both on ring and on leaving the glass ek. Light ray entering glass				
	(<i>i</i>)	What is this bending of light called? (3)				
		What? block	<u>c</u>			
	(ii)	Pick, from 'rays' P, Q, R or S the path taken by the light ray leaving the glass. (3)	$\overline{}_{\rm s}$			
		Ray	R			
		Give an <i>application</i> of this bending of light.	(3)			
		Application				
	(iv)	Name another way in which the direction of a light ray can be char	nged. (3)			
	Nan	ne				
(b)	diag	symbols for two electrical meters are given in the gram. The symbol $-$ is for a meter that measures ential difference, often called 'voltage'.	_			
	What <i>electrical quantity</i> can be measured using the meter with the symbol —? (3)					
	Wha	•				
	** 112	ati				

Meters — and — are used in the circuit shown. Examiner use only Enter 'A' into the appropriate circle $(1)_{\perp}(2)_{\perp}$ of one of the meter symbols in the circuit diagram so as to clearly identify its correct position. (3) A pupil used this circuit to get a set of readings from both meters for different values and then plotted this data in the graph shown. 4.0 (Volts) 3.0 2.0 0.2(Amperes)^{0.3} 0.1 0.4 Use this graph to *calculate the resistance* of resistor **R** shown in the diagram. Give the unit of resistance with your answer. Describe, using a labelled diagram in the box, an investigation you could carry out to show that *sound requires a medium* in which to travel.