目录

第1章	测地线和距离	1
1.1	曲线族	1
1.2	极小曲线是测地线	3
1.3	测地线的局部极小性	5

第1章 测地线和距离

定义 1.1 (极小曲线)

令 (M,g) 是 Riemann 流形,称一个 M 上的容许曲线 γ 是极小的,若 $L_g(\gamma) \leq L_g(\tilde{\gamma})$ 对于所有有着相同端点的容许曲线 $\tilde{\gamma}$ 成立。

Remark

1. 当 M 连通时, γ 极小当且仅当 $L_q(\gamma)$ 等于两端点的距离。

1.1 曲线族

定义 1.2 (单参数曲线族)

设 (M,g) 是 Riemann 流形。

给定区间 $I,J\subseteq\mathbb{R}$,称一个连续映射 $\Gamma:J\times I\to M$ 为一个单参数曲线族。这样一个曲线 族给出 M 上的两类曲线:

- 1. 对于固定的 s, 定义在 $t \in I$ 上的主曲线: $\Gamma_s(t) = \Gamma(s,t)$;
- 2. 对于固定的 t, 定义在 $s \in J$ 上的横截曲线: $\Gamma^{(t)}(s) = \Gamma(s,t)$;

定义 1.3 (沿曲线族的向量场)

对于单参数曲线族 $\Gamma: J \times I \to M$,定义沿 Γ 的向量场为一个连续映射 $V: J \times I \to TM$,使得 $V(s,t) \in T_{\Gamma(s,t)}M$, $\forall (s,t)$ 。

定义 1.4 (速度向量)

若单参数曲线族 $\Gamma: J \times I \to M$ 是光滑的 (或至少是连续可微的), 我们记主曲线和横街曲线的速度向量分别为

$$\partial_t \Gamma(s,t) = (\Gamma_s)'(t) \in T_{\Gamma(s,t)}M; \quad \partial_s \Gamma(s,t) = \Gamma^{(t)'}(s) \in T_{\Gamma(s,t)}M$$

定义 1.5 (容许曲线族)

称单参数曲线族 Γ 为一个容许曲线族, 若

- 1. Γ 的定义域形如 $J \times [a,b]$, 其中 J 是开集;
- 2. 存在 [a,b] 的分划 (a_0,\cdots,a_k) , 使得 Γ 在每个 $J \times [a_{i-1},a_i]$ 上光滑;
- 3. 对于每个 $s \in J$, $\Gamma_s(t) = \Gamma(s,t)$ 是一个容许曲线。

此时称这样的一个分划为曲线族的容许分划。

Remark $\partial_s \Gamma$ 和 $\partial_t \Gamma$ 在每个 $J \times [a_{i-1}, a_i]$ 上是光滑的,但是在一般来说在整个定义域上不是。

定义 1.6 (变分)

给定容许曲线 $\gamma:[a,b]\to M$,

- 1. γ 的一个变分是指一个容许曲线族 $\Gamma: J \times [a,b] \to M$,使得 J 是包含了 0 的一个开区间,且 $\Gamma_0 = \gamma$;
- 2. 若在此之上, $\Gamma_s(a) = \gamma(a)$ 和 $\Gamma_s(b) = \gamma(b)$ 对于所有的 $s \in J$ 成立^a,则称 Γ 为 γ 的一个真变分。

"即有相同的起点和终点

定义 1.7 (沿曲线族的分段光滑向量场)

设 Γ 是容许曲线族, 沿 γ 的一个分段光滑向量场, 是指一个 (连续的) 沿 Γ 的向量场, 使得对于某个 Γ 的容许分划 (a_0, \dots, a_k) , 有向量场在每个矩形 $J \times [a_{i-1}, a_i]$ 上的限制是光滑的。

Remark 若 V 是沿 Γ 的一个分段光滑的向量场,我们可以分别计算 V 沿主曲线和耿介曲线的协变导数;得到的沿 Γ 的向量场分别记作 D_tV 和 D_sV 。

命题 1.1

设 Γ 是一个容许曲线族,它可以定义出 $\partial_s\Gamma$ 是沿 Γ 分段光滑的向量场。

Proof 由 Γ 的光滑性,在每一个矩形上都可以分别定义光滑的 $\partial_s\Gamma$, $\partial_s\Gamma$ 沿集合 $J \times \{a_i\}$ 的取值仅依赖于 Γ 在 $J \times \{a_i\}$ 上的取值,故分别定义在在 $J \times [a_{i-1},a_i]$ 和 $J \times [a_i,a_{i+1}]$ 的 $\partial_s\Gamma$ 在交集上一致。最后由粘合引理可知 $\partial_s\Gamma$ 在 $J \times [a,b]$ 是连续的。

定义 1.8 (变分场)

设 Γ 是 γ 的变分, Γ 的变分场是指沿 γ 分段光滑的向量场 $V(t) = \partial_s \Gamma(0,t)$ "。

"在 γ 的变换行为 Γ 下, γ 在开始时的变化趋势。

定义 1.9

称沿 γ 的向量场V为一个真向量场,若V(a)=0且V(b)=0。

引理 1.1

 \dot{a} \dot{a} \dot{b} \dot{b}

Proof 设 γ 和 V 满足条件,对于使得 $\exp_{\gamma(t)}(sV(t))$ 有定义的 s,t,我们令 $\Gamma(s,t) = \exp_{\gamma(t)}(sV(t))$ 。由 [a,b] 的紧性,存在 $\varepsilon > 0$,使得 Γ 在 $(-\varepsilon,\varepsilon) \times [a,b]$ 上有定义。通过复合映射,在每个使得 V

光滑的 $[a_{i-1}, a_i]$ 上, Γ 在 $(-\varepsilon, \varepsilon) \times [a_{i-1}, a_i]$ 上光滑。由指数映射的性质,

$$\Gamma_s(0,t) = \partial_s \left(\exp_{\gamma(t)} (sV(t)) \right) = \partial_s \left(\sigma_{V(t)}(s) \right) = \sigma'_{V(t)}(0) = V(t)$$

其中 $\sigma_{V(t)}$ 表示以 V(t) 为初速度的测地线。故 Γ 的变分场是 V。此外,若 V(a) = 0 且 V(b) = 0,则上述定义给出 $\Gamma(s,a) \equiv \gamma(a)$, $\Gamma(s,b) \equiv \gamma(b)$,故 Γ 是真变分。

引理 1.2 (对称引理)

设 $\Gamma: J \times [a,b] \to M$ 是一个容许曲线族。在使得 Γ 光滑的矩形 $J \times [a_{i-1},a_i]$ 上,有

$$D_s \partial_t \Gamma = D_t \partial_s \Gamma$$

Proof 命题是局部的, 我们在 $\Gamma(s_0,t_0)$ 周围的一个局部坐标 (x^i) 上考虑。设 Γ 在其上写作 $\Gamma(s,t) = (x^1(s,t), \cdots, x^n(s,t))$, 则

$$\partial_t \Gamma = \frac{\partial x^k}{\partial t} \partial_k; \quad \partial_s \Gamma = \frac{\partial x^k}{\partial s} \partial_k$$

由测地线的坐标公式

$$D_s \partial_t \Gamma = \left(\frac{\partial^2 x^k}{\partial s \partial t} + \frac{\partial x^i}{\partial s} \frac{\partial x^j}{\partial t} \Gamma_{ij}^k \right) \partial_k$$
$$D_t \partial_s \Gamma = \left(\frac{\partial^2 x^k}{\partial t \partial s} + \frac{\partial x^i}{\partial t} \frac{\partial x^j}{\partial s} \Gamma_{ij}^k \right) \partial_k$$

交换第二行 i,j 的次序,并由联络的对称性 $\Gamma_{ij}^k = \Gamma_{ii}^k$ 可得二者相等。

1.2 极小曲线是测地线

定理 1.1 (第一变分公式)

设 (M,g) 是 Riemann 流形,设 $\gamma:[a,b]\to M$ 是单位速度容许曲线, $\Gamma:J\times[a,b]\to M$ 是 γ 的一个变分,V 是它的变分场,则 $L_a(\Gamma_s)$ 是 s 的一个光滑函数,并且

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} L_g\left(\Gamma_s\right) = -\int_a^b \left\langle V, D_t \gamma' \right\rangle \, \mathrm{d}t^1 - \sum_{i=1}^{k-1} \left\langle V\left(a_i\right), \Delta_i \gamma' \right\rangle_2 + \left\langle V\left(b\right), \gamma'\left(b\right) \right\rangle - \left\langle V\left(a\right), \gamma'\left(a\right) \right\rangle \tag{1.1}$$

其中 (a_0, \dots, a_k) 是 V 的一个容许分划,对于每个 $i=1,\dots,k-1$, $\Delta_i \gamma':=\gamma'\left(a_i^+\right)-\gamma'\left(a_i^-\right)$ 是速度向量场 γ' 在 a_i 处的跳跃。特别地,若 Γ 是真变分,则

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} L_g\left(\Gamma_s\right) = -\int_a^b \left\langle V, D_t \gamma' \right\rangle \,\mathrm{d}t - \sum_{i=1}^{k-1} \left\langle V\left(a_i\right), \Delta_i \gamma' \right\rangle \tag{1.2}$$

内部弯曲成本: 平均速度变化的横向弯曲趋势的总和

 \odot

Proof 在每个使得 Γ 光滑的矩形 $J \times [a_{i-1}, a_i]$ 上,由于 $L_g(\Gamma_s)$ 的被积函数是定义在紧集上的光滑函数,故可以做任意次积分下求导,由于 $L_g(\Gamma_s)$ 是这些积分的总和,故它是 s 的光滑函数。方便起见,引入记号

$$T(s,t) = \partial_t \Gamma(s,t), \quad S(s,t) = \partial_s \Gamma(s,t)$$

在区间 $[a_{i-1}, a_i]$ 上积分,得到

$$\frac{\mathrm{d}}{\mathrm{d}s} L_g \left(\Gamma_s |_{[a_{i-1}, a_i]} \right) = \int_{a_{i-1}}^{a_i} \frac{\partial}{\partial s} \langle T, T \rangle^{\frac{1}{2}} \, \mathrm{d}t$$

$$= \int_{a_{i-1}}^{a_i} \frac{1}{2} \langle T, T \rangle^{-\frac{1}{2}} \, 2 \, \langle D_s T, T \rangle \, \mathrm{d}t^3$$

$$= \int_{a_{i-1}}^{a_i} \frac{1}{|T|} \, \langle D_t S, T \rangle \, \mathrm{d}t^4$$

在 s = 0 处取值,由于 S(0,t) = V(t), $T(0,t) = \gamma'(t)$ (长度为 1)。我们有 $\frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} L_g\left(\Gamma_s|_{[a_{i-1},a_i]}\right) = \int_{a_{i-1}}^{a_i} \left\langle D_t V, \gamma'(t) \right\rangle \, \mathrm{d}t$ $= \int_{a_{i-1}}^{a_i} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle V, \gamma'(t) \right\rangle - \left\langle V, D_t \gamma'(t) \right\rangle \, \mathrm{d}t$ $= -\int_{a_{i-1}}^{a_i} \left\langle V, D_t \gamma'(t) \right\rangle \, \mathrm{d}t + \left\langle V, \gamma'(a_i^-) \right\rangle - \left\langle V, \gamma'(a_{i-1}^+) \right\rangle$

对i求和即得所需公式。

定理 1.2 (弧长参数化极小曲线的测地性)

Riemann 流形上的极小曲线若有单位速度参数化,则为一个测地线。

 \Diamond

Idea 根据变分公式,在弯折不存在的情况下,因为没有改变长度的趋势,故无非产生依赖于速度变化的真弯曲,而速度变化在通过 bump 函数削弱端点影响后本身给出一种真弯曲,故速度变化无法产生。此时进一步地,无法产生依赖于弯折的真弯曲,而定点的弯折也可以被逐段光滑的真弯曲实现,故弯折也是无法产生的。

Proof 设 $\gamma:[a,b]\to M$ 是单位速度的极小曲线, (a_0,\cdots,a_k) 是 γ 的一个容许分划。任取 γ 的真变分 Γ ,则 $L_g(\Gamma_s)$ 是关于 s 的光滑函数,使得它在 s=0 处达到极小值,故 $\mathrm{d}(L_g(\Gamma_s))/\mathrm{d}s$ 在 s=0 处成立。由于每个沿 γ 的真向量场都是某个真变分的变分场,故方程1.2 的右侧对于任意这样的 V 退化。

首先说明 $D_t \gamma' = 0$ 在每个区间 $[a_{i-1}, a_i]$ 上成立。对于给定的这样的区间,令 $\varphi \in C^{\infty}(M)$ 是在 (a_{i-1}, a_i) 上大于零,其他点等于零的 bump 函数。将真向量场 $V = \varphi D_t \gamma'$ 带入1.2右侧,得

³Levi-Civita 联络的度量性

⁴1.2

到

$$0 = -\int_{a_{i-1}}^{a_i} \varphi \left| D_t \gamma' \right|^2 \, \mathrm{d}t$$

故 $D_t \gamma' = 0$ 在每个子区间上成立。

接下来说明 $\Delta_i \gamma' = 0$ 对于每个 0 和 k 之间的 i 成立。对于每个这样的 i,通过坐标卡上的光滑 bump 函数,构造一个沿 γ 的逐段光滑的向量场 V,使得 $V(a_i) = \Delta_i \gamma'$,对于 $j \neq i$, $V(a_i) = 0^5$ 。则 1.2化为 $-|\Delta_i \gamma'|^2 = 0$,故 $\Delta_i \gamma' = 0$ 对于每个 i 成立。

最后,每个单侧速度向量在 a_i 处相接, a_i 处以 $\gamma'\left(a_i^+\right) = \gamma'\left(a_i^-\right)$ 为初速度的局部测地线的存在唯一性给出 $\gamma|_{[a_i,a_{i+1}]}$ 和 $\gamma|_{[a_{i-1},a_i]}$ 落在同一个极大测地线上,因此 γ 是光滑的。

推论 1.1

单位速度容许曲线 γ 是 L_a 的一个临界点,当且仅当它是一个测地线。

♥ \\

Proof 若 γ 是一个临界点,则上面定理的证明可以不加修饰地用来说明 γ 是一个测地线。反之,若 γ 是一个测地线,则方程 1.2右侧的第一项由测地线方程可知是退化的,第二项由 γ' 无间断可知是退化的。

1.3 测地线的局部极小性

定义 1.10 (局部极小)

令 (M,g) 是 Riemann 流形,称一个正则(或分段正则)曲线 $\gamma:I\to M$ 是局部极小的,若每个 $t_0\in I$ 都有邻域 $I_0\subseteq I$,使得任取 $a,b\in I_0$ 满足 a< b,都有 γ 在 [a,b] 上的限制是极小的。

Remark每个极小的容许曲线段都是局部极小的。

定义 1.11 (开测地球)

 $\ddot{\epsilon} > 0$ 使得 \exp_p 是球 $B_{\varepsilon}(0) \subseteq T_pM$ (在 g_p 定义的范数下)到像集的微分同胚,则像 集 $\exp_p(B_{\varepsilon}(0))$ 是 p 的一个法邻域,称为是 M 上的一个(开)测地球 。

定义 1.12 (闭测地球)

若闭球 $\overline{B}_{\varepsilon}(0)$ 含于一个开集 $V \subseteq T_pM$,使得 $\exp_p \in V$ 到其像集的微分同胚,则称 $\exp_p(\overline{B}_{\varepsilon}(0))$ 为一个闭测地球,并称 $\exp_p(\partial B_{\varepsilon}(0))$ 为一个测地球面。

Remark

⁵利用 bump 函数提取一些点

- 1. 在 T_pM 上,紧集 $\overline{B}_{\varepsilon}$ (0) 和闭集 V^c 之间有正的距离,故存在 $\varepsilon' > \varepsilon$,使得 $B_{\varepsilon'}$ (0) $\subseteq V$,故 每个闭测地球都含于一个更大的开测地球。
- 2. 在以 p 为中心的 Riemann 法坐标下,以 p 为中心的开闭测地球和测地球面,无非就是以 p 为中心的坐标球和坐标球面。

定义 1.13

设 $U \neq p \in M$ 的一个法邻域。给定 $U \perp y$ 为中心的法坐标 (x^i) ,定义径向距离函数 $r: U \to \mathbb{R}$,

$$r(x) = \sqrt{(x^1)^2 + \dots + (x^n)^2}$$

并定义 $U \setminus \{p\}$ 上的径向向量场 ∂_r

$$\partial_r = \frac{x^i}{r(x)} \frac{\partial}{\partial x^i}$$

引理 1.3

在每个 $p \in M$ 的法邻域 U 上,径向距离函数和径向向量场是良定义的,无关于法坐标的选取。 r, ∂_r 均在 $U \setminus \{p\}$ 上光滑, r^2 在 U 上光滑。

Proof 由**??**,没两个法坐标之间相差一个正交矩阵 $\left(A_{j}^{i}\right)$,设两个法坐标的径向距离函数分别是 r,\tilde{r} ,径向向量场分别是 $\partial_{r},\tilde{\partial}_{r}$,则

$$\tilde{r}(x) = \sqrt{(\tilde{x}^1)^2 + \dots + (\tilde{x}^n)^2}$$

$$= \sqrt{(A_i^1 x^i)^2 + \dots + (A_i^n x^i)^2}$$

$$= \sqrt{\sum_i \sum_{k=1}^n (A_i^k)^2 (x^i)^2}$$

$$= \sqrt{\sum_i (x^i)^2} = r(x)$$

以及

$$\begin{split} \partial_{\tilde{r}} &= \frac{\tilde{x}^{i}}{\tilde{r}\left(x\right)} \frac{\partial}{\partial \tilde{x}^{i}} \\ &= \frac{\tilde{x}^{i}}{r\left(x\right)} \frac{\partial x^{j}}{\partial \tilde{x}^{i}} \frac{\partial}{\partial x^{j}} \\ &= \frac{A_{j}^{i} x^{j}}{r\left(x\right)} \frac{\partial \left(A_{j}^{k}\left(x^{k}\right)\right)}{\partial \tilde{x}^{i}} \frac{\partial}{\partial x^{j}} \\ &= \frac{A_{j}^{i} x^{j}}{r\left(x\right)} A_{j}^{i} \frac{\partial}{\partial x^{j}} \\ &= \frac{x^{j}}{r\left(x\right)} \frac{\partial}{\partial x^{j}} = \partial_{r} \end{split}$$

光滑性由分量表示可以见得。

定理 1.3 (Gauss 引理)

设 (M,g) 是 Riemann 流形,U 是以 $p \in M$ 中心的测地球, ∂_r 表示 $U \setminus \{p\}$ 上的径向向量场。则 ∂_r 是 $U \setminus \{p\}$ 上的正交于测地球面^a的单位向量场。

"即与交点处的切空间正交

Idea ∂_r 由法坐标给出,利用法坐标的性质计算模长。过程中利用到以下重要事实:

- 1. 径向向量场形式上于点坐标整体相差一个 r(x), 速度与点从形式上整体相差一个倍数的曲线是坐标直线, 法坐标上的坐标直线就是测地线。
- 2. 测地线是速度不变的。
- 3. 法坐标下的度量分量与欧式度量相同。
- 4. 法坐标下的曲线速度就是对各分量求导6

于是我们将一点 q 处的径向向量场 $\partial_r|_q$ 刻画为单位速度测地线在某点处的速度,给出 ∂_r 的模长。

Idea 将切向量用曲线 σ表示,考虑将 σ 沿径向单位速度地变换到原点得到一个曲线族。证明中会看到,由于径向变换是沿测地线的变换,且变换是均匀的,并且横向曲线在球面上,与原点距离恒等,故 S,T 的正交性不随时间变化。这样原点的正交性就可以给出所需点的正交性。

Proof 设 (x^i) 是 U 上以 p 为中心的法坐标。任取 $q \in U \setminus \{p\}$,设 q 的坐标表示为 $q = (q^1, \dots, q^n)$,并记 $b := r(q) = \sqrt{(q^1)^2 + \dots + (q^n)^2}$, 我们有 $\partial_r|_q = \frac{q^i}{b} \frac{\partial}{\partial x^i}|_q$ 。

令 $v = v^i \frac{\partial}{\partial x^i}|_p \in T_pM$ 是 p 处的一个切向量,分量 $v^i = \frac{q^i}{b}$,考虑以 p 为起点,v 为初速度的测地线⁷,在它在法坐标下的坐标表示为

$$\gamma_v(t) = (tv^1, \cdots, tv^n)$$

我们有

$$\left|\gamma_{v}'\left(0\right)\right|_{g} = \left|v\right|_{g} = \sqrt{\left(v^{1}\right)^{2} + \dots + \left(v^{n}\right)^{2}} = \frac{1}{b}\sqrt{\left(q^{1}\right)^{2} + \dots + \left(q^{n}\right)^{2}} = 1$$

故 γ_v 是单位速度测地线,又 $\gamma_v(b) = (q^1, \cdots, q^n) = q$, $\gamma_v'(b) = v^i \frac{\partial}{\partial x^i}|_q = \partial_r|_q$, 这表明 $\partial_r|_q$ 是单位向量。

接下来说明正交性, 取 q,b,v 如上, 令 $\Sigma_b = \exp_p(\partial B_b(0))$ 是包含了 q 的测地球面。令 $w \in T_q M$ 在 q 点处与 Σ_n 相切,希望证明 $\left\langle w, \partial_r |_q \right\rangle_s = 0$ 。

选取 Σ_b 上的光滑曲线 $\sigma: (-\varepsilon, \varepsilon) \to \Sigma_b$, 使得 $\sigma(0) = q, \sigma'(0) = w$ 。设 σ 在 (x^i) 下的坐标

⁶因为 Christoffel 符号退化

⁷径向测地线

表示为 $\sigma(s) = (\sigma^1(s), \dots, \sigma^n(s))$ 。定义曲线族 $\Gamma: (-\varepsilon, \varepsilon) \times [0, b] \to U$

$$\Gamma(s,t) := \left(\frac{t}{b}\sigma^{1}(s), \cdots, \frac{t}{b}\sigma^{n}(s)\right)$$

同样的记 $S = \Gamma_s, T = \Gamma_t$,则

$$S(0,0) = \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \Gamma_s(0) = 0$$

$$T(0,0) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \Gamma_t(0) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \gamma_v(t) = v$$

$$S(0,b) = \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \sigma(s) = w$$

$$T(0,b) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=b} \gamma_v(t) = \gamma_v'(b) = \partial_r|_q$$

因此当 (s,t)=(0,0) 时, $\langle S,T\rangle=\langle 0,v\rangle=0$,此外当 (s,t)=(0,b) 时, $\langle S,T\rangle=\left\langle w,\partial_r|_q\right\rangle$ 。接下来只需要说明 $\langle S,T\rangle$ 与 t 无关,计算

这就证明了定理。

推论 1.2

令 U 是以 $p\in M$ 为中心的测地球, r,∂_r 分别是径向距离和径向向量场。则 grad $r=\partial_r$ 在 $U\setminus\{p\}$ 上成立。

Remark 有事实:设 $f \in C^{\infty}(M)$, $X \in \mathfrak{X}(M)$ 无处退化。则 X = grad, 当且仅当 $Xf \equiv |X|_g sr$, 且 X = f 在所有正则点处的水平集正交。

Proof 只需证明 ∂_r 与 r 的水平集正交,且 $\partial_r(r) \equiv |\partial_r|_g^2$ 。由于 r 的水平集就是测地球面,故第一个断言由 Gauss 引理直接得到。对于第二个断言,可以直接计算得到 $\partial_r(r) = 1$,并由 Gauss 引理知 $|\partial_r|_q \equiv 1$ 得到命题。

命题 1.2

设 (M,g) 是 Riemann 流形。令 $p \in M$,q 是含于某个以 p 为中心的测地球。则从 p 到 q 的 径向测地线是唯一的(不计重参数化)的从 p 到 q 的 M 上的极小曲线

Proof 取 $\varepsilon > 0$, 使得 $\exp_p(B_{\varepsilon}(0))$ 是包含了 q 的一个测地球。令 $\gamma : [0,c] \to M$ 是 p 到 q 的弧长参数化的径向测地线。则 $\gamma(t) = \exp_p(tv)$ 对某个单位向量 $v \in T_pM$ 成立。此时 $L_g(\gamma) = c$ 。为了说明 γ 极小,任取 p 到 q 的容许曲线 $\sigma : [0,b] \to M$,不妨设它也是弧长参数化的。设

 $a_0 \in [0,b]$ 是最后一次使得 $\sigma(t) = p$ 的点⁸, $b_0 \in [0,b]$ 是 a_0 之后第一次使得 $\sigma(t)$ 到达 p 为中心 c 为半径的测地球 Σ_c 的点 ⁹。则 $r \circ \sigma$ 在 $[a_0,b_0]$ 上连续, (a_0,b_0) 上分段光滑,由微积分基本定理

$$r(\sigma(b_0)) - r(\sigma(a_0)) = \int_{a_0}^{b_0} \frac{\mathrm{d}}{\mathrm{d}t} r(\sigma(t)) \, \mathrm{d}t$$

$$= \int_{a_0}^{b_0} \mathrm{d}r \left(\sigma'(t)\right) \, \mathrm{d}t$$

$$= \int_{a_0}^{b_0} \left\langle \operatorname{grad} r, \sigma'(t) \right\rangle_g \, \mathrm{d}t$$

$$\leq \int_{a_0}^{b_0} \left| \operatorname{grad} r \right| \left| \sigma'(t) \right| \, \mathrm{d}t$$

$$= \int_{a_0}^{b_0} \left| \sigma'(t) \right| \, \mathrm{d}t$$

$$= L_g\left(\sigma|_{[a_0,b_0]}\right) \leq L_g\left(\sigma\right)$$
(1.3)

因此 $L_q(\sigma) \ge r(\sigma(b_0)) - r(\sigma(a_0)) = c$, 故 γ 是极小的。

现在设 $L_g(\sigma) = c$, 则方程 1.3中的不等号都化为等号。不妨设 σ 是单位速度曲线,则第二个不等号给出 $a_0 = 0, b_0 = b = c$ 。第一个不等号给出非负项 $|\operatorname{grad} r_{\sigma(t)}| |\sigma'(t)| - \langle \operatorname{grad} r, \sigma'(t) \rangle_g$ 恒 为零。这当且仅当 $\sigma'(t)$ 与 $\operatorname{grad} r$ 相差一个正的系数,又 σ 是单位速度的, $\sigma'(t) = \operatorname{grad} r|_{\sigma(t)} = \partial_r|_{\sigma(t)}$ 。因此 σ 和 γ 都是 ∂_r 在 t = c 时过 q 的积分曲线故 $\sigma = \gamma$ 。

推论 1.3

设 (M,g) 是连通的 Riemann 流形, $p\in M$ 。在每个以 p 为中心的开或闭的测地球上,径 向距离函数 r(x) 与 M 中 p 到 x 的 Riemann 距离相等。

Proof 闭的径向测地球含于更大的开的测地球,我们只证明开的情况即可。设 x 在开测地球 $\exp_p(B_c(0))$ 上,则又上面的命题,p 到 x 的径向测地线 γ 是极小的。它的速度向量等于 ∂_r ,同时是 g— 范数下的单位向量和法坐标的欧式范数 10 下的单位向量,给出 γ 的 g-长度等于欧式长度,后者又等于 r(x)。

推论 1.4

在连通的 Riemann 流形上,每个开或闭的测地球也是有着相同半径的开或闭的度量球,每个测地球面也是有着相同半径的度量球面。

Proof 设 (M,g) 是 Riemann 流形,任取 $p \in M$,令 $V = \exp_p(\bar{B}_c(0)) \subseteq M$ 是半径为 c > 0 的

⁸为了让曲线在区间内不经过原点(奇点

⁹为了让它不跑出测地球径向距离函数的定义域

 $^{^{10}}$ 在坐标空间 \mathbb{R}^n 上看

绕 p 的闭测地球。任取 M 上一点 q,若 $q \in V$,则上面的推论给出 q 在以 p 为中心,c 为半径的度量球中。反之,若 $q \not\in V$,则考虑从 p 到 q 的容许曲线 γ 。设 S 是以 p 为中心,c 为半径的测地球面。则 $S^c = \exp_p(B_c(0)) \cup (M \setminus \exp_p(B_c(0)))$ 是不连通的。故存在 $t_0 \in (a,b)$,使得 $\gamma(t_0) \in S$ 。由于 $q \not\in V$,q 和 $\gamma(t_0)$ 之间存在正的距离,故 $L_g(\gamma) > L_g(\gamma|_{[a,t_0]}) \geq c$,这表明 $d_q(p,q) > c$,q 不在绕 p 的半径为 c 的闭度量球中。

现在设 $W = \exp_p(B_c(0))$ 是以c为半径的开的测地球,则W可以写成一些闭测地球的并,这些闭测地球也同时是一些闭的度量球,这些闭的度量球并成绕p的半径为c的度量球。故开的测地球也是相同半径的度量球。

最后关于球面的结论可通过闭球划去开球得到。

定义 1.14

对于度量球、球面的记号 $B_c(p)$, $\bar{B}_c(p)$, $S_c(p)$, 也可以用来表示测地球。

1