Biologia Systemów, projekt 5

Trening modelu:

W okolicach 30 epoki accuracy walidacyjne zaczyna się wypłaszczać, podczas gdy treningowe nadal rośnie, a około 50 epoki obydwie krzywe się wypłaszczają, z dokładnością treningową w okolicach 99%, a walidacyjną bliżej 85%.

W przypadku straty treningowej vs walidacyjnej, odwrotnie podobna sytuacja następuje około 75 epoki, z czego strata walidacyjna utrzymuje się na znacznie wyższym poziomie i powoli rośnie. Wskazuje to na lekki overfitting. Poprawę tego stanu na pewno można uzyskać przez zmniejszenie liczby epok.

Metryki:

	precision	recall	f1-score
accuracy			0.85
macro avg	0.67	0.66	0.66
weighted avg	0.84	0.85	0.84

Dla weighted average (w przypadku, gdy brane pod uwagę jest niezbalansowanie etykiet) wszystkie metryki dla zbioru testowego stabilizują się w okolicach 0.84. Niższe wyniki dla macro average sugerują, że model gorzej sobie radzi z mniejszymi klasami. Zatem najpewniej największy problem modelu skupia się na misklasyfikacji mniej reprezentowanych klas.

Poprawa

Dla poprawy modelu możnaby zastosować L2-weight decay, które może zwiększać test accuracy kosztem training accuracy, lecz, jak widać z wykresów, dla treningowego accuracy blisko 99% nie powinno być to problemem. Zmniejszenie sieci neuronowej (np. przez zmniejszenie liczby neuronów w ukrytej warstwie) też może wspomóc mniejsze klasy.