

Computer Vision

Color image processing

27 August 2008

Copyright © 2001 – 2008 by

Noordelijke Hogeschool Leeuwarden and Van de Loosdrecht Machine Vision

All rights reserved

j.van.de.loosdrecht@tech.nhl.nl, jaap@vdlmv.nl

Color image processing

Overview:

- Introduction
- · Color spaces
- · Extract and merge channels
- Image enhancement
- Segmentation
- · False color images
- Exercise

28-aug-08

Color image processing

2

Introduction

- · Electromagnetic spectrum
- Human vision
- · Color systems
- Sensing illuminated objects

28-aug-08

Color image processing

3

Electromagnetic spectrum Radio waves X-rays Visible light Ultraviolet Blue Infrared Green Red 400 500 600 700 800 Wavelength (nanometers) 28-aug-08 Color image processing 4

Human vision

Human eye:

- · Bars for gray values
- · Cones for color, one type for each primary color
 - Rlue
 - · Green (most sensitive)
 - Red

28-aug-08

Color image processing

5

Color systems

· Additive:

the primary colors of light are individual red, green and blue light sources that are projected onto a common region of space to reproduce a colored light.

Example: RGB monitor.

Subtractive:

the primary pigments are magenta, cyan and yellow. A primary pigment subtracts or absorbs a primary color of light and reflects or transmits the other two primaries of light.

Example: white light on yellow object: blue is absorbed <subtractive>, red and green (= yellow) are reflected <additive>.

28-aug-08

Color image processing

6

Sensing illuminated objects

The sensation, or perception, of an object's color depends upon three factors:

- The spectrum of energy in the various wavelengths illuminating the object surface
- The spectral reflectance of the object surface, which determines how the surface changes the received spectrum into the radiated spectrum
- The spectral sensitivity of the sensor irradiated by the light from the object's surface

Sensing illuminated objects White light contains all colors in equal energy Domino stones illuminated by equal amounts of red, green and blue Note: both domino stones and light source do not have pure colors 28-aug-08 Color image processing

RGB space

RGB

- · Is used for displaying in CRT and LCD screens
- Non-intuitively, "where is yellow in the cube?"
- Non-uniform, "which 3D shape should threshold values have?"

VisionLab implementation RGB888Image and RGB1616I6Image:

- · 8 or 16 bits for each color
- Result of 8 bit operations are clipped

HSV space

HSV:

- · Hue: dominant color
- Saturation: relative purity (or the amount of white light mixed with the hue)
- · Value: the amount of light (maximum of red, green and blue)

Note:

- · Saturation is not defined when intensity = 0
- · Hue is not defined when saturation = 0

Other related spaces:

· HSI and HSL

28-aug-08 Color image processing

HSV space

HSV versus RGB

- · More intuitively
- · More uniform
- . Extra conversions

VisionLab implementation HSV888Image and HSV161616Image:

- · 8 or 16 bits for each component
- Hue: 0°.. 359° is mapped on 0 .. 255 for 8 bits and mapped to 0 .. 31416 for 16 bits
- Operations on Saturation and Value are clipped for 8 bits
- Operations on Hue are modulo 256 for 8 bits and modulo 31416 for 16 bits

YUV space

YUV:

- Y: 0.30 * red + 0.59 * green + 0.11 * blue
- U: 0.493 * (blue Y)
- V: 0.877 * (red Y)

Used as basis for PAL TV signals and in JPEG and MPEG compression

VisionLab implementation YUV888Image and YUV161616Image

28-aug-08

Color image processing

21

Example split RGB channels

- Open image dark_flower.jl
- Split in red, green and blue channel, useExtractRGBChannels from Color menu
- Merge the three channels using 3^{rd} and 2^{nd} select with MergeRGBChannels

28-aug-08 Color image processing

Example split RGB channels Vision ab V3.28 7-9-2002 (c) Van de Loosdrecht Machine Vision www.vdmv.nl Ele Operator Camera Server Options Window User Help Gray (NGB888Innays) Figure (Initial Innays) Figure (Initial Inn

Example contrast enhancement HSV

- · Use script contrast_hsv.jls
 - Open image dark_flower.jl
 - Convert from RGB to HSV
 - Split in hue, saturation and value channel, use ExtractHSVchannels from Color menu
 - Histogram Equalize and Contrast Stretch value channel
 - · Merge the three channels

Exercise enhancement

Shoot color images or use image dark_flower.jl and experiment with :

- · Gray scale (contrast enhancement)
- · Modify color by changing hue and/or saturation

28-aug-08 Color image processing

Segmentation

Segmentation on three channels Most intuitively using HSV space

Tools in VisionLab

- · ThresholdHSVChannels
- · ThresholdRGBChannels
- ThresholdTool

Note for HSV thresholding:

- Saturation is not defined when intensity = 0
- Hue is not defined when saturation = 0

Example ThresholdHSVChannels Open image domino.jl Convert to HSV888Image ThresholdHSVChannels 140 210 70 255 70 255

False color image

ConvertToFalseColor (srcImage, LUTImage, destImage

This operator converts an OrdImage to an image with false colors. For this conversion an image is used as a LookUpTable. First the OrdImage in ContrastStreched and then the LUT is applied. The first pixel in de LUTImage has index 0.

Usage:

- for displaying images with more contrast then possible with grayscale values
- · for displaying measurement of temperatures

28-aug-08 Color image processing 37

Example using ConvertToFalseColor

(from Color menu)

- · Open image hand.jl (infra red image)
- Open script gen_lut_rgb.jls
- Execute script to generate LUT
- ConvertToFalseColor hand lut
- · Open script gen_lut_hsv.jls
- Execute script to generate LUT
- ConvertToFalseColor hand lut
- Open script gen_lut_hsv2.jls
- · Execute script to generate LUT
- · ConvertToFalseColor hand lut

Exercise find balls • Use image robot_balls.jl · Try to find the balls in: Grayscale • RGB

28-aug-08 Color image processing 43

Find balls in grayscale

- Open robot_balls.jl
- Convert to Int16Image

 YUV HSV

- Use ThresholdTool, select bottom of black ball, set low to 0 and increment high to 140
- Conclusion:
 - · Finding yellow and green ball is difficult

Color image processing 28-aug-08 44

Find balls in RGB color space

- · Open robot_balls.jl
- · Select yellow ball with ThresholdTool
- · Select red ball with ThresholdTool
- Select bottom of black ball, still problem with reflection
- · Select green ball,

if top part with wire is selected, the black ball is selected

- · Conclusion:
 - · better then grayscale
 - · very sensitive for lighting variations and shadows
 - · change in light condition is change in R G and B
 - · lows and highs for selection are very critical

28-aug-08 Color image processing 4

Find balls in HSV color space

- Open robot_balls.jl
- · Convert to HSV888Image
- · Select yellow ball
- H: 40-50, S: 150-255, V:80-255 (even 0-255 works, just thicker
- Select red ball, (no wrap around red needed!)
 - H:235-255, S:10-255, V:30-255
- Select black ball, start at bottom side, (still problem with refection)
 H:0-255, S:0-255, V:0-52
- Select green ball, start at bottom H:80-100, S:140-255, V:0-255
- · (Filter on Formfactor en Eccentrity using LabelBlobs and BlobAnalyse)
- · Conclusion:
 - · much more robust then RGB