AD/A-005 392

LOW SPEED WIND TUNNEL INVESTIGATION OF A .09 SCALE, NAVY MODEL T-2C SUBSONIC JET TRAINER AIRCRAFT, FROM -8 TO +83 DEGREES ANGLE-OF-ATTACK

A. J. Schuetz, et al

Naval Air Development Center

Prepared for:

Director of Navy Laboratories

31 December 1973

DISTRIBUTED BY:

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Department responsible for the report. For example: Report No. NADC-73015-40 indicates the fifteenth Center report for the year 1973, and prepared by the Crew Systems Department. The numerical codes are as follows:

CODE	OFFICE OR DEPARTMENT
00	Commander, Navill Air Development Center
01	Technical Director, Naval Air Development Center
02	Frogram and Fiscal Management Department
03	Anti-Submarine Warfare Program Office
04	Remote Sensors Program Office
05	Ship and Air Systems Integration Program Office
10	Naval Air Facility, Warminster
20	Aero Electronic Technology Department
30	Air Vehicle Technology Department
40	Crew Systems Department
50	Systems Analysis and Engineering Department
81	Administration and Technical Services Department
85	Computer Services Department

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

ACCESSION for	
NTIS	White Section
ODC	Butt Section
UNINGOUNCED	n
JUSTIFICATION	1117 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0
	/AVAILABILITY COOFS
	TAIL DIG OF GENTAL
A	

APPROVED BY:

P. D. STOGIS Commander, USN

Deputy Director, AVTD

DATE: 31 December 1973

ia

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1 REPORT NUMBER NADC-73259-30	2. GOVT ACCESSION NO.	ADA 005 342
4 TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
LOW SPEED WIND TUNNEL INVESTIGATI		FINAL REPORT
SCALE, NAVY MODEL T-2C SUBSONIC J AIRCRAFT, FROM -8 TO +83 DEGREES		6. PERFORMING ORG. REPORT NUMBER
AIRCRAFI, FROM =0 10 +05 DEGREES	ANGLE OF THE LACK	
A. J. Schuetz		B. CONTRACT OR GRANT NUMBER(#)
D. B. Bailey		•
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Air Vehicle Technology Department	(Code 30)	
Naval Air Development Center		IR TASK R000-01-01/tif-9-01
Warminster, Pa. 18974		12. REPORT DATE
Director of Naval Laboratories		31 December 1973
Department of the Navy		13. NUMBER OF PAGES
Washington, D. C. 20390		185
MONITORING AGENCY NAME & ADDRESS(II different	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFIC: TION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release, dist	ribution unlimit	od.
Approved for public release, disc	I I Duc I OH UHI I III I	.eu.
17. DISTRIBUTION STATEMENT (of the abetract entered in	in Block 20, if different from	m Report)
		DDC
18. SUPPLEMENTARY NOTES		nere en men
PRICES SUB	JECT TO CHANGE	FEB 24 1975
19. KEY WORDS (Continue on reverse side if necessary and	d identify by block number)	
Low Speed Wind Tunnel Testing		D
Aircraft High Angles-Of-Attack		
Stability and Control		
20. ABSTRACT (Continue on reverse elde il necessary and	Identify by block number)	
The aerodynamic stability and c		
model have been investigated in the		
The T-2C is a straight, fixed-wing the Columbus Division of Rockwell I		
angles-of-attack from -8 to 83 degr		
for various deflections of the aile		
	rons, rudder. an	nd elevator. The data are
judged to be sufficient in quality aerodynamic characteristics of the	and quantity to	fully define the static

DD 1 FORM 1473

NATIONAL TECHNICAL INFORMATION SERVICE
U 5 Department of Commerce
Springfield VA 22151

UNCIASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ACKNOWLEDGEMENTS

This wind tunnel test would not have been possible without the cooperation of several corporations and government agencies. The authors are indebted to NASA-Ames for the use of the 12-foot pressure wind tunnel, to McDonnell-Douglas the use of the use of their balances and stings, and to NASA-Langley for the use of the original T-2 model, subsequently modified substantially by Atkins and Merrill, Inc.

The authors wish to express their thanks to all the personnel of the various corporations and agencies who assisted in the performance of the test. The following individuals deserve particular thanks for their especially significant contributions: Mr. Daniel Petroff (technical monitor's representative, NASA-Ames), Mr. David Banducci (supervisory engineer, ARO, Inc.), Mr. Odell Sapp (project engineer, ARO, Inc.), Mr. Richard Walrose (associate project engineer, ARO, Inc.), Mr. Randy Nelson (equipment engineer, Naval Ship (modelmakers, Atkins and Merrill, Inc.), and Mr. William Bihrle (consultant, Bihrle Applied Research, Inc.).

SUMMARY

The objective of this investigation was the determination of the full-scale static aerodynamic stability and control characteristics of the T-2B/C aircraft. To accomplish this objective, tests were conducted in the NASA-Ames 12-foot pressure wind tunnel using a .09 scale T-2C model.

The T-2C is a straight, fixed wing Navy jet trainer aircraft manufactured by the Columbus Division of Rockwell International. A YT-2B, aerodynamically identical to the T-2C, is currently assigned to NAVAIRDEVCEN for research and development purposes. It has been gathering flight time history data for use in parameter identification technique development and for use as baseline data for a proposed variable-stability conversion. In order to use the flight data for either of these purposes, however, it is first necessary to have complete, accurate wind tunnel data.

A variety of wind tunnel operating conditions were evaluated in preliminary tests. The results of these tests indicated that the bulk of the data should be collected at a Mach number of 0.2 and a Reynolds number of b million per foot. The data span angles-of-attack from -8° to 83° and sideslip angles from -10° to +30°. Various deflections of ailerons, rudder, and elevator were investigated independently and in combination. Only full control deflections were used at angles-of-attack greater than 40°.

In general, the data presented in this report are judged to be sufficient to fulfill the objective of the investigation. Complete determination of static aerodynamic characteristics, however, is not sufficient for complete modeling or simulation of the aircraft, and it is recommended that every effort be made to obtain dynamic wind tunnel data in the near future.

TABLE OF CONTENTS

	age
Acknowledgements	1
Summary	2
List of Figures	4
List of Tables	9
Symbols, Abbreviations, and Definitions	9
Introduction	12
Background	2
Equipment Description	2
Test Outline and Procedures	4
Determination of Operating Conditions	
Results and Discussion	
Conclusions and Recommendations	
References	
Appendix A: Run Schedule	5
	-1
B.	- 1
ppendix C: Selected Excerpts From BAR Report	_ 1

LIST OF FIGURES

Pigure No.		Page
1	General Arrangement of .09 Scale T-2C Wind Tunnel Model	26
•	Wing Detail of .09 Scale T-2C Model	27
٦	Horizontal Tail Detail of .09 Scale T-2C Model	28
4	Vertical Tail Detail of .09 Scale T-2C Model	29
5	.09 Scale T-2C Model Installed in NASA-Ames 12-Foot Pressure Tunnel (Front View)	30
13	.09 Scale T-2C Model Installed in NASA-Ames 12-Foot Pressure Tunnel (Rear View)	31
7.	Wind Tunnel Sting Installation (Sting Configuration 001, Low Angle-Of-Attack Data Range)	32
8	Wind Tunnel Sting Installation (Sting Configuration 002, Intermediate Angle-Of-Attack Data Range)	33
¥	Wind Tunnel Sting Installation (Sting Configuration 003, High Angle-Of-Attack Data Range)	34
16	Coefficient of Lift Versus Reynolds Number for Various Angles-Of-Attack	35
11	Coefficient of Drag Versus Reynolds Number for Various Angles-Of-Attack	36
12	Coefficient of Pitching Moment Versus Reynolds Number for Various Angles-Of-Attack	37
17	Coefficient of Lift Versus Angle-Of-Attack for Mach Number Variation	38
14	Coefficient of Drag Versus Angle-Of-Attack for Mach Number Variation	39
15	Coefficient of Pitching Moment Versus Angle-Of-Attack for Mach Number Variation	40
16	Coefficient of Lift Versus Angle-Of-Attack (Grit On and Off)	41
17	Coefficient of Lift Versus Angle-Of-Attack (Grit On and Off, 9 = 30°)	42

VADC -73259-30

LIST OF FIGURES (CONT)

Figure No.		Page
18	Coefficient of Drag Versus Angle-Of-Attack (Grit On and Off, 8 = 0°)	43
19	Coefficient of Drag Versus Angle-Of-Attack (Grit On and Off, $\beta = 30^{\circ}$)	44
20	Coefficient of Lift Versus Angle-Of-Attack for Sideslip Variation	45
21	Coefficient of Normal Force Versus Angle-Of-Attack for Sideslip Variation	46
22	Coefficient of Drag Versus Angle-Of-Attack for Sideslip Variation	47
23	Coefficient of Axial Force Versus Angle-Of-Attack for Sideslip Variation	48
24	Coefficient of Lift Versus Coefficient of Drag for Full Range of Angle-Of-Attack	49
25	Coefficient of Lift Versus Coefficient of Drag for Low Angles-Of-Attack	50
26	Coefficient of Pitching Moment Versus Angle-Of-Attack for Sideslip Variation	51
27	Coefficient of Lift Versus Coefficient of Pitching Moment for Full Range of Angle-Of-Attack	52
28	Coefficient of Lift Versus Coefficient of Pitching Moment for Low Angles-Of-Attack	53
29	Lift Curve Slope, C_L , Versus Angle-Of-Sideslip, β	54
30	Pitching Moment Curve Slope, C _m , Versus Angle-Of-Sideslip, S	55
31	Coefficient of Sideforce Versus Angle-Of-Sideslip for Various Angles-Of-Attack and Two Elevator Deflections	56
32	Coefficient of Rolling Moment Versus Angle-Of-Sideslip for Various Angles-Of-Attack and Two Elevator Deflections (Body Axis System)	59
33	Coefficient of Rolling Moment Versus Angle-Of-Sideslip for Various Angles-Of-Attack at Two Flevator Deflections	
	(Stability Axis System)	61

LIST OF FIGURES (CONTI

Figure No.		Page
34	Coefficient of Yawing Moment Versus Angle-Of-Sideslip for Various Angles-Of-Attack and Two Elevator Deflections (Body Axis System)	64
35	Coefficient of Yawing Moment Versus Angle-Of-Sideslip for Various Angles-Of-Attack and Two Elevator Deflections (Stability Axis System)	67
36	Sideforce Damping Derivative Versus Angle-Of-Attack	70
37	Effective Dihedral Derivative Versus Angle-Oi-Attack	71
38	Static Directional Stability Derivative Ve sus Angle-Of-Attack	72
39	Coefficient of Pitching Moment Versus Elevator Deflection for Various Angles-Of-Attack	73
40	Elevator Effectiveness Versus Angle-Of-Attack	86
41	Change in Lift Coefficient Due to Full Negative Elevator Deflection Versus Angle-Oi-Attack	81
42	Change in Lift Coefficient Due to Full Positive Flevator Deflection Versus Angle-Of-Attack	82
43	Change in Pitching Moment Coefficient Due to Full Negative Elevator Deflection Versus Angle-Of-Artack for Various Rudder Deflections and Sideslip Angles	83
44	Change in Pitching Moment Coefficient Due to Full Positive Elevator Deflection Versus Angle-Of-Attack for Two Sideslip Angles	84
45	Rolling Moment Coefficient Versus Aileron Deflection for Various Angles-Of-Attack (At Three Sideslip Angles)	85
46	Aileron Effectiveness Versus Angle-Of-Atta k (For Two Sideslip Angles)	87
47	Change in Rolling Moment Coefficient Due to Full Positive Aileron Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	88
48	Change in Rolling Moment Coefficient Due to Full Negative Aileron Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	. 89
	DIGULAR MIRICO! A L A A A A A A A A A A A A A A A A A	UT

LIST OF FIGURES (CONT)

Figure No.		Page
49	Yawing Moment Coefficient Versus Aileron Deflection for Various Angles-Of-Attack (At Three Sideslip Angles) ,	90
50	Change in Yawing Moment Coefficient Due to Full Positive Aileron Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	93
51	Change in Yawing Moment Coefficient Due to Full Negative Aileron Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	94
52	Yawing Moment Coefficient Versus Rudder Deflection for Various Angles-Of-Attack (For Three Sideslip Angles)	95
53	Rudder Effectiveness Versus Angle-Of-Attack	97
54	Change in Yawing Moment Coefficient Due to Full Positive Rudder Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	98
55	Change in Yawing Moment Coefficient Due to Full Negative Rudder Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	99
56	Sideforce Coefficient Versus Rudder Deflection for Various Angles-Of-Attack (For Two Sideslip Angles)	100
57	Change in Sideforce Coefficient Due to Full Positive Rudder Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	104
58	Change in Sideforce Coefficient Due to Full Negative Rudder Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	105
	Rolling Moment Coefficient Versus Rudder Deflection for Various Angles-Of-Attack (For Three Sideslip Angles)	106
60	Change in Rolling Moment Coefficient Due to Full Positive Rudder Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	109
	Change in Rolling Moment Coefficient Due to Full Negative Rudder Deflection Versus Angle-Of-Attack (For Two Sideslip Angles)	110

LIST OF TABLES

Table No.														P.	age
I	Transition	Strips		•	٠							•			11

SYMBO	LS, ABBREVIATIONS, AND DEFINITIONS
b	wing span, feet
c	mean wing chord, feet
C_{A}	coefficient of axial force, axial force/qS
c_D	coefficient of drag, drag/qS
c_{L}	coefficient of lift, lift/qS
$c^{\Gamma^{\Delta}}$	change in lift coefficient with angle-of-attack (lift curve slope), $1/{\rm deg}$
$c_{\boldsymbol{\ell}}$	coefficient of rolling moment, rolling moment/qbs
CL _B	change in rolling moment coefficient with sideslip angle (effective dihedral derivative), 1/deg
$c_{\ell_{\delta_a}}$	change in rolling moment coefficient with deflection of aileron, 1/deg
C _m	coefficient of pitching moment, pitching moment/qSc
C _{mo}	change in pitching moment coefficient with angle-of-attack (static stability derivative), 1/deg
$c_{m_{\delta_{\mathbf{e}}}}$	change in pitching moment coefficient with deflection of elevator, 1/deg
c_{N}	coefficient of normal force, normal force/qS
C _n	coefficient of yawing moment, yawing moment/qSb
$c_{n_{\boldsymbol{\beta}}}$	change in yawing moment coefficient with sideslip angle (static directional stability derivative), 1/deg
$c_{n_{\delta_{\mathbf{r}}}}$	change in yawing moment coefficient with deflection of rudder, 1/deg
$\mathbf{c}_{\mathbf{Y}}$	coefficient of sideforce, sideforce/qS
$c_{Y\beta}$	change in sideforce coefficient with sideslip angle, 1/deg
М	mach number, velocity/speed of sound
P	dynamic pressure, pounds/square foot
Re	reynolds number, 1/foot or dimensionless
S	wing area, square feet

SYMBOLS, ABBREVIATIONS, AND DEFINITIONS (CONT)

GREEK SYMBOLS

α	angle-of-attack, relative to fuselage reference line, degrees
Q.	angle-of-sideslip, degrees (positive for airplane nose left relative to wind)
ΔC^{Γ}	change in coefficient of lift
ΔC_{ξ}	change in coefficient of rolling moment
ΔC_{m}	change in coefficient of pitching moment
ΔC _n	change in coefficient of yawing moment
$\Delta c_{Y}^{}$	change in coefficient of sideforce
² a	aileron deflection, degrees (positive for right aileron trailing edge down, with left aileron trailing edge up)
[€] e	elevator deflection, degrees (positive trailing edge down)
$\delta_{f r}$	rudder deflection, degrees (positive trailing edge left)
ABBREVIATI	ONS

A&M Atkins and Merrill, Inc., Ashland, Mass.

ARO Arnold Research Organization, Moffett Field, Ca.

BAR Bihrle Applied Research, Inc., Oyster Bay, N.Y.

B.L. Butt Line

C.G. Center of Gravity

FRP Fuselage Reference Plane

F.S. Fuselage Station, inches

MDC McDonnell Douglas Corp., St. Louis, Mo.

MAVAIRDEVCEN Naval Air Development Center, Warminster, Pa.

R.L. Reference Line

W.L. Water Line

SYMBOLS, ABBREVIATIONS, AND DEFINITIONS (CONT)

AXES SYSTEMS

- Body Axis System: Origin at Center of Gravity; X-axis parallel to fuselage reference line, located within the plane of symmetry, positive forward; Y-axis perpendicular to plane of symmetry, positive toward right wing; Z-axis perpendicular to both X-axis and Y-axis, positive downward.
- Stability Axis System: Same as Body System except that X-axis is aligned with tunnel axis, positive forward; so that Z-axis is perpendicular to tunnel axis, positive downward.
- Note: The Body Axis System is used for the majority of the presentations of lateral-directional data in this report. Some data are presented in both axes systems as a convenience to the user. The Stability Axis System (lift, drag) is emphasized for the longitudinal data, but Body system (normal force, axial force) presentations are included as a convenience.

INTRODUCTION

The objective of this investigation was the determination of the full-scale static aerodynamic characteristics of the T-2B/C aircraft. Specifically, the changes in all aerodynamic forces and moments, due to changes in angles of attack and sideslip and deflections of control surfaces, were to be determined. Thus the investigation was of the stability and control type, rather than performance or component design analysis. The results of these tests will serve as a data base for several Naval Air Development Center (NAVAIRDEVCEN) research programs.

BACKGROUND

Two research programs in progress at NAVAIRDEVCEN involve the operation of a Navy T-2B/C aircraft. One program is the development of a variable stability research vehicle based on the T-2 airframe; the other program includes the evaluation and development of several different methods for the identification of airframe stability and control parameters from flight test data. Neither research program can be properly executed without complete, accurate wind tunnel data for the basic T-2. The previously available wind tunnel data for the T-2 were entirely inadequate - they covered only the low angle-of-attack region and they actually applied only to the T-2A, whose aft lower fuselage is substantially different from the T-2B/C.

The parameter identification research program intends to eventually develop a high angle-of-attack parameter identification method. In pursuit of this goal, several identification methods will be used to analyze T-2B flight data from (1) unstalled flight, (2) flight in the vicinity of the stall, and (3) spinning flight. In order to reach valid conclusions concerning the effectiveness of these methods, it is necessary that the full-scale aerodynamic characteristics of the T-2B are known to a high order of accuracy over a range of angles-of-attack from the negative stall angle (about -10°) to the largest angle-of-attack encountered in spins (near 90°). Since the focal point of the parameter identification research is the departure condition, characteristics just above and below stall angle-of-attack, over a large sideslip range, are of special interest.

EQUIPMENT DESCRIPTION

MODEL

A .09 scale model of the Navy/Rockwell International T-2C was used for this investigation. The model had been constructed originally by Atkins and Merrill, Inc., of Ashland, Mass., for use by the NASA Langley Research Center, NAVAIRDEVCEN returned the model to A&M for major modifications in preparation for this test. The model was of all-aluminium construction, weighing approximately ninety pounds. The intent of the design and construction was to model, as closely as possible, the features of the YT-2B aircraft currently assigned to NAVAIRDEVCEN. This aircraft is identical to the production T-2B (for which geometric parameters are given in Appendix B), with the exception

that the YT-28 is equipped with a noseboom. A scaled noseboom was therefore added to the model. Since baseline fuselage drag was not regarded as an important factor in these tests, it was decided not to construct elaborate flow-through ducts simulating actual inlet flow. Instead the inlet contours were faired along the fuselage.

Figures 1 through 4 provide detailed information on the geometry of the model.

Available control surface deflections were as follows:

- (1) Elevator Deflection, h_e +15, +5, 0, -5, -10, -15, -25 degrees
- (2) Rudder Deflection, $\delta_{\mathbf{r}}$ 0, ±7, ±15, ±25 degrees
- (3) Aileron Deflection, k_a 0, ± 3 , ± 6 , ± 12 degrees (measured from an original uprigged trailing edge position of 3.0 degrees)

A leveling surface was located on the model for convenient zero reference of model pitch and roll. Photographs of the model installed in the tunnel are presented in figures 5 and 6.

STINGS AND SUPPORT SYSTEM

The basic support system used for this test in the NASA-Ames 12-foot pressure tunnel was the "Northrop High Angle" system. The cylindrical structural member extending upward from the tunnel floor is capable of independent movements of two modes such that changes in model pitch (angle-of-attack) and yaw (sideslip) may be accomplished by remote control. Unfortunately, the mechanism which creates this movement protrudes somewhat into the tunnel, causing some flow disturbance. This flow disturbance was analyzed in reference (a). To obtain the entire desired range of angle-of-attack, it was necessary to test in three support configurations, using a variety of stings and other support system hardware.

In sting configuration 001, the MDC F-4 straight sting (No. 32-031048) entered the model from the rear, as shown i figure 7. This configuration was used to gather data from -8 to +40 degrees angle-of-attack.

For angles-of-attack from 35 to 55 degrees, sting configuration 002 was used. In this configuration the lower support system was identical to 001, but the MDC F-4 bent sting (No. 32-013049) was interposed between the straight sting and the model. The bent sting entered the model from above, through the area which corresponds to the canopy of the aircraft, and was bent toward the rear, so that the balance was installed in the reverse of the usual orientation. The installation is shown in figure 8.

Sting configuration 003, for angles-of-attack from 62 to 83 degrees, differed from 002 only in the deletion of the "dog-leg" in the lower support system. This configuration is illustrated in figure 9.

Model pitch attitude (angle-of-attack) was directly determined by a "dangleometer" (a simple gravity device to measure angular position) mounted in the nose of the model. Model yaw attitude (sideslip), however, was calculated by applying sting deflection corrections to the setting of the support

BALANCE

A six component 2.0 inch diameter Task internal balance (MK XXIA) was used for force and moment measurements for test runs in sting configuration 001, but an electrical problem within the balance dictated the substitution of the identical MK XXIB balance for sting configurations 002 and 003. The internal balance fit, with a light press-fit, into the balance block, which was the keystone of the model structure. One end of the balance was firmly bolted to the sting, so that the balance-to-balance-block interface would bear all forces and moments transmitted from the model to the support system. To assure that no direct contact between the model and the support system took operator to any model-sting fouling. The balance was limited to a normal force of 7000 pounds, a sideforce of 3000 pounds, an axial force of 450 pounds, and a rolling moment of 5000 inch-pounds.

A pressure measurement was made in the model cavity between the dangleometer and the forward end of the balance. This measurement data was used for the calculation of correction factors for the balance and dangleometer readings.

TEST OUTLINE AND PROCEDURES

A matrix of model attitudes, control surface deflections, and tunnel operating conditions was formulated to meet the objective of the tests. In view of the importance of tunnel operational efficiency, this matrix was limitations, and preliminary results obtained during the test motivated some changes to the run schedule as the test progressed. The record of the test runs as actually done is given as Appendix A.

While angles-of-attack and sideslip were varied by remote control during a run, changes in control deflection and/or sting configuration required access to the test section, so that the tunnel air had to be returned to atmospheric pressure and zero velocity. Control surfaces were re-positioned by changing the brackets which held the control surface to the model. Following each such change, the tunnel air was pressurized and then brought up to speed by the fan drive system. Before each run took place, bolt holes and other surface irregularities in the model were carefully smoothed or filled with wax or

To compensate for model vibration, each data point was automatically taken three times, then the readings were averaged to results in a single data point.

All correction factors and axis system transformations were applied to the data by an ARO computer program.

DETERMINATION OF OPERATING CONDITIONS

To permit straightforward evaluation of the effects of changes in model attitude and control surface deflections, it was necessary that the bulk of the data be gathered with a constant set of tunnel operating conditions. Preliminary tests were done in the wind tunnel and evaluated to determine these conditions, rather than relying on a priori selection.

REYNOLDS NUMBER EFFECTS

The maximum Re (Reynolds number) available in the NASA-Ames 12-foot pressure tunnel (when operating at M = .2) was 6.0×10^6 /ft. This tunnel Re corresponds to a model Re of 4.0×10^6 , based on mean aerodynamic chord. Test runs were made at a range of tunnel Re from the 6.0×10^6 /ft maximum to 1.0×10^6 /ft. The latter is a common tunnel Re for tests in unpressurized tunnels. It was expected that a critical Re (above which Re effects would be insignificant) would exist within this range. See reference (b) for a complete explanation of this phenomenom.

Plots of C_L , C_D , and C_m as a function of Re for various angles-of-attack are given as figures 10, 11, and 12 respectively. It can be seen in figure 10 that C_L tends to increase with Re up to Re = 3 X $10^6/\mathrm{ft}$, and then level off. The exception is $\alpha=16^\circ$, at which C_L continues to increase with Re across the entire range. It would appear from figure 11 that C_D is essentially constant with respect to Re, except for a slight tendency to increase with Re at $\alpha=40^\circ$. As shown in figure 12, C_m tends to be constant with respect to Re for $\alpha=8$, 12° , and C_m becomes slightly more negative with increasing Re at $\alpha=0$, 16, 20, 40° . The slope of the C_m vs. Re relationship for $\alpha=16$, 20° is more shallow above Re = 3 X $10^6/\mathrm{ft}$ than below.

These results tend to indicate that although a critical Re seems to exist at approximately 3 X $10^6/\text{ft}$, some data in the post-stall region ($\alpha = 16$, 20°) continue to be a function of Re throughout the available range. The report of the BAR (Bihrle Applied Research) consultant supported these observations (see Appendix C). On the basis of these results, it was determined that the majority of the data would be generated at Re = 6 X $10^6/\text{ft}$.

MACH NUMBER EFFECTS

Operating at M = .4, the maximum available Re was 4 X 10^6 /ft. Thus the comparison of M = .4 operation to operation at M = .2 was conducted at Re = 4 X 10^6 /ft. The investigation was limited by structural problems with the model at the higher operating temperature and dynamic pressure associated with M = .4 operation.

Lift coefficient as a function of angle-of-attack is shown in figure 13 for both Mach numbers. The following differences may be observed: (1) the slope of the pre-stall C_{1} vs. α curve is slightly increased at M = .4,

(2) the maximum lift coefficient obtained at M = .4 is smaller, and occurs at a lower angle of attack, than the $C_{I_{\mbox{\scriptsize MAX}}}$ obtained for M = .2.

The curves for C_D vs. α for the two Mach numbers, given in figure 14, do not reveal any differences between the two test conditions. In figure 15, however, the plots of C_m vs. α show that pitching moment is slightly more negative for M = .4 between $\alpha = 14^\circ$ and $\alpha = 18^\circ$.

In view of the previously discussed need for operation at Re = 6 \times 106/ft, which is not possible at M = .4, and the hardware difficulties encountered in operation at M = .4, it was decided that data collection would proceed at M = .2. The limited data collected at M = .4 is expected to be quite useful in the process of estimating the full scale aircraft characteristics from the wind tunnel information.

GRIT (TRANSITION STRIP) EFFECTS

To assure that the flow over the wings and other components "trips" (becomes turbulent) at the appropriate point, it is common practice to utilize transition strips, which consist of carborundum grit glued to the surface of the model. A detailed discussion of the use of transition strips may be found in reference (b). The strip size, grit size, and strip locations for this test, as determined by BAR, are given in Table I.

Figures 16 and 17 show C_L vs. α for the model with and without grit, for sideslip angles of 0° and 30°, respectively. The only obserable difference between the "grit on" and "grit off" cases is a slightly decreased C_L for the "grit on" case at post-stall angles of attack at $\beta=0$ °. Corresponding curves for drag coefficient are given in figures 18 and 19. It would appear that the only effect of grit on drag is a slight increase in drag for the "grit on" case at angles-of-attack below stall.

The effects of the transition strips appear to be so minor that "grit on" and "grit off" data may be used interchangeably, and it was decided that grit would not be used for tests with sting configurations 002 and 003. The section of the BAR report dealing with repeatability in general and grit effects in particular is given in Appendix C.

RESULTS AND DISCUSSION

All of the data presented in this section were obtained at the M = .2, Re = 6×10^6 /ft tunnel condition, and represent the best available information. Although comments will be made on significant aspects of the graphical relationships and on the general validity of the data, no efforts will be made to explain (or speculate concerning) the various apparent irregularities

and inconsistencies which inevitably occur in data collected in large quantities. Some of the obvious trends in the T-2 aerodynamic characteristics will be discussed as the results are presented. However, no attempt will be made at interpretation of the data, since the interpretation process is a function of the application. Instead the data will be left in a general format suitable for a variety of applications. The most generally interesting and useful relationships within the data will be graphed in this report, but an inspection of the run schedule will reveal that many additional relationships could be extracted and plotted for specific applications.

BASIC AIRCRAFT, LONGITUDINAL CHARACTERISTICS

This section is devoted to the effects of changes in angles-of-attack and sideslip, with control surfaces fixed in the undeflected position, on the longitudinal aerodynamic characteristics.

Figure 20 shows one of the most basic and most important relationships: lift coefficient as a function of angle-of-attack for various sideslip angles. At zero sideslip, an abrupt stall can be seen at approximately 14° angle-of-attack. With increasing sideslip, the stall becomes much less abrupt, with reduced $C_{\rm IMAX}$ (occurring at a higher angle-of-attack), and has a substantially higher $C_{\rm L}$ in the immediate post-stall angle-of-attack (or α) region than for zero sideslip. In the pre-stall α region, the $C_{\rm L}$ vs. α relationship (lift curve slope) is quite linear, with decreasing slope as sideslip increases. A corresponding graph of $C_{\rm N}$ (normal force coefficient) as a function of angle-of-attack has been included (figure 21) for use in analyses for which body-oriented axes are more appropriate.

It can be seen from figure 22 that drag coefficient increases in an essentially linear fashion with increasing angle-of-attack in the post-stall region, with little variation due to changes in sideslip. The corresponding axial force graph, figure 23, deserves some comment because of its unusual appearance. Measurements of axial force are subject to considerable inaccuracy because the net axial force is the difference between a positive drag force (C_D cos α) and a negative lift force (C_L sin α). Since these forces are often nearly equal, the axial force is relatively small, and the axial force coefficient scale on figure 23 has been expanded considerably relative to the usual scale for drag (compare, for instance, to figure 22). A "drag polar" showing lift coefficient as a function of drag coefficient, for sideslip angles of 0° and 30°, is given in figure 24 for the full range of angle-of-attack investigated. This graph does not present new information, but is presented as a convenience to the user. The pre-stall region of the C_L vs. C_D relationship is enlarged in figure 25.

Pitching moment is shown as a function of angle-of-attack in figure 26. It can be seen that pitching moment generally tends to become more negative with increasing angle-of-attack, but some local slope reversals do occur. These regions of positive slope indicate static instabilities of the aircraft and are therefore quite significant. At zero sideslip, a positive slope

exists for angles of attack between 18° and 20°, and at sideslip angles of 20° or greater a positive slope may be seen between 25° and 35° angle-of-attack. The C_L vs. C_m relationship is shown in figure 27, and an expanded view of the pre-stall region is given in figure 28.

Several aerodynamic relationships are essentially linear for pre-stall angles-of-attack, and therefore lend themselves to the extraction of stability derivatives from the data. In figure 29 $C_{L_{\odot}}$ is shown as a function of sideslip angle, and a similar curve is given for $C_{m_{\odot}}$ in figure 30. In both cases, the function has a maximum magnitude at zero sideslip, and decreases quite significantly with increasing magnitude of sideslip angle.

Some aerodynamic characteristics of the T-2B for pre-stall angles-of-attack were estimated by the aircraft manufacturer in Appendix I of reference (c). The estimate of C_{L_Q} is .082/degree, which agrees exactly with the C_{L_Q} of figure 29, for the zero sideslip case. When corrected for center-of-gravity location, the estimate of C_{m_Q} is -.017/deg, which is quite close to the zero sideslip C_{m_Q} of -.018 given in figure 30.

Reference (d) contains previous estimates of T-2B drag characteristics. The estimate of $C_{\mathrm{D}_{\mathrm{O}}}$ is .023, while it may be concluded from figure 25 that $C_{\mathrm{D}_{\mathrm{O}}}$ for these tests was .014. In fact, a comparison of the reference (d) drag polar with the current test drag polar (both are shown in figure 25) clearly indicates a significantly smaller amount of drag on the model used in these tests, but the shapes of the drag polars are quite similar. As previously stated, these tests were oriented toward stability and control information, rather than performance information, so the shape of the drag polar is considerably more important that the offset relative to other estimates. The most probable cause of the drag polar offset is the smoothing of the fuselage in the area of the inlets on the current model.

BASIC AIRCRAFT, LATERAL-DIRECTIONAL CHARACTERISTICS

Sideforce coefficient is plotted as a function of sideslip angle for selected angles-of-attack in figure 31. For a symmetric model and symmetric wind tunnel flow-field, the sideforce coefficient whould clearly be zero at a sideslip angle of zero. For the 001 sting mount this condition does prevail, but such is not the case for the 002 and 003 sting mounts. A direct comparison may be made on the figure 31 graph for 40° angle-of-attack. This plot shows that the C_Y vs. 8 function is both translated and rotated (i.e., it has a steeper slope) when the 002 sting mount is substituted for the 001. It is possible that the sting, entering the model through the upper surface of the forward portion of the fuselage, disrupts the flow over the vertical tail, which may still create some sideforce at very high angles-of-attack. Somewhat more plausible is the hypothesis that the model was simply mounted out of alignment on the 002 sting, thus shifting the scale of sideslip angle which is measured at the base of the support system. This theory is supported by the

observation that the zero sideforce intercept (approximately -3° sideslip) is independent of angle-of-attack.

Sideforce data are shown for two elevator settings, since elevator position could conceivably change the air flow pattern over the vertical tail. It is apparent from figure 31, however, that sideforce characteristics are not dependent upon elevator position.

Rolling moment due to sideslip, known as dihedral effect, may be evaluated from figures 32 and 33. Figure 32 shows rolling moments measured in body axes, while figure 33 shows the same data after transformation to the stability axis system. The aircraft exhibits positive dihedral effect (i.e., the slope of C, vs. 8 is negative) throughout the angle-of-attack range, except that a slope reversal occurs for small sideslip angles at 15° o, which is the stall angleof-attack. In addition to the slope reversal, a non-zero rolling moment exists at zero sideslip for angles-of-attack from 15° to 30°, indicating that the air flow over the model is asymmetric in the post-stall situation. The lack of flow symmetry may result from subtle asymmetries in the model, or curvature of the basic flow in the tunnel, or asymmetric vortex conditions on the model. The slope of the C_1 vs. β curve (body axis) for small sideslip angles is shown as a function of angle-of-attack in figure 37. While some inconsistency exiets in the data with respect to the different sting mounts used, there is a definite trend of increasing dihedral effect with increasing angle-of-attack throughout the entire range of test conditions.

Yawing moment coefficient is plotted as a function of sideslip angle (for angles between -10° and $\pm 10^{\circ}$) for various angles-of-attack in figures 34 and 35 (body axis system and stability axis system, respectively). In the body axis system, the relationship between C_n and B is positive for pre-stall angles-of-attack and for α 's greater than 50°. For the remaining range of angle-of-attack, C_n is either constant or does not seem to vary in any consistent fashion with sideslip angle. The graphs for 30° and 40° angle-of-attack show little agreement between sting 00l data and sting 002 data. As in the case of rolling moment, some non-zero yawing moments were recorded at zero sideslip and post-stall angles-of-attack. Relatively large positive yawing moments were also found for zero sideslip at angles-of-attack of 62° and 72°.

In figure 38 the slope of the C vs. 8 relationship, for those cases possessing sufficiently linearity for the concept of "slope" to be applicable, is shown as a function of angle-of-attack. It would appear that the aircraft has a high degree of natural directional stability except for the angle-of-attack region between 15° and 40° , in which there is essentially no stability.

No consistent effect of elevator position is observable in the data for rolling, yawing, or sideforce effects.

ELEVATOR EFFECTNESS

For angles-of-attack below 40°, the ability of the elevator to create

pitching moments was thoroughly investigated. Figure 39 shows pitching moment coefficient as a function of elevator deflection for various angles-of-attack. For pre-stall (i.e., less than 15°) angles-of-attack, this functional relationship is quite linear for elevator deflections between +10° and -15°. Beyond +10° deflection the incremental effectiveness is reduced significantly, and deflections more negative than -15° are useless or worse. For angles-of-attack from 18° to 40°, elevator effectiveness is still roughly linear for small elevator deflections, but the magnitude of the effectiveness (i.e., the slope of the curve) is reduced to about half of its value for pre-stall angles-of-attack. The elevator effectiveness for small deflections is plotted in figure 40 as a function of angle-of-attack.

Referring again to figure 39, it is clear that increasing angle-of-attack tends to increase the incremental effectiveness of large negative deflections. At 40° angle-of-attack, for instance, the pitching moment coefficient change due to deflection of the elevator from 0° to -25° is nearly twice the change which is obtained by a deflection from 0° to -15° .

The change in lift coefficient due to full negative, and positive, elevator deflection is shown in figures 41 and 42, respectively, for the full range of angle of attack.

Figure 43 shows the change in pitching moment coefficient due to deflection of the elevator from 0° to -25°, for rudder deflections of 0° and +25° (full left rudder) and sideslips of 0° and 30°. Similar data for elevator deflection from 0° to -15° is given in figure 44, but no data are available for varying rudder deflection or for angles-of-attack beyond 55°. Several significant observations may be made about the data presented on these figures. Most important, under no circumstances does elevator effectiveness become zero. With increasing angle-of-attack, elevator effectiveness increases until stall, then decreases steadily beyond stall. In the 30° sideslip condition, elevator effectiveness for negative control deflection is a graiter than 20°. For positive deflections, however, the most significant effectiveness reduction due to sideslip occurs for angles-of-attack less than 10°. Sudder position seems to have no significant, consistent effect on elevator effectiveness.

AILERON EFFECTIVENESS

Rolling moment coefficient as a function of aileron deflection is shown in figure 45 for various angles-of-attack up to 40° , and sideslip angles of 0° , -10° , and 10° . Time did not permit the use of intermediate negative aileron deflections during the test period, so results are shown in figure 45 only for positive aileron deflections. For angles-of-attack below 14° , the relationship of C_{ℓ} vs. δ_{a} is relatively linear, with a negative slope, as would be expected. Beyond stall angle-of-attack, however, an unusual pattern develops. The curves for $+10^{\circ}$ and -10° sideslip angles remain well-behaved, being nearly linear but with slightly decreased slopes relative to pre-stall conditions. At zero sideslip a significant rolling moment exists at zero aileron deflection for several angles-of-attack. At 15° , 16° , 18° , and 20° angle-of-attack, the rolling moment coefficient for 3° aileron deflection is

excessively positive, yielding a C_{ℓ} vs. δ_{a} slope which is positive, indicating a control reversal. At 16° angle-of-attack, the zero offset is so large that a control reversal is indicated for the entire positive deflection range.

The slope of the C_ℓ vs. $^\kappa_a$ relationship $(C_{\ell}_{\delta_a})$, the aileron effectiveness derivative) is plotted as a function of angle-of-attack in figure 46. As mentioned above, the relationship is rather nonlinear for angles-of-attack from 14° to 20°, so that $C_{\ell}_{\delta_a}$ cannot be accurately measured in this region.

Dealing with aileron effectiveness over the entire angle-of-attack range, the change in rolling moment coefficient due to full aileron deflection is shown in figures 47 and 48 (for positive and negative deflections, respectively). A general trend exists for aileron effectiveness to decrease with angle-of-attack. The data for positive deflections shows control reversals at 16° and 30° angles-of-attack, a large discrepancy between sting 001 and 002 results for angles-of-attack between 30° and 40°, and a great deal of data scatter for angles-of-attack deyond 65°. The data for negative deflections are considerably more consistent, showing some irregularity for angles-of-attack from 15° to 30°, and, again, a great deal of scatter for angles-of-attack beyond 65°.

Considering the various irregularities present in the aileron effectiveness data, it is difficult to reach specific conculsions. In general, it would appear that the ailerons are effective control surfaces for the angle-of-attack range up to 65°, except that their behavior seems somewhat irregular and unpredictable for angles-of-attack from 16° to 20°.

Yawing moments due to aileron deflections are quite significant for some aircraft. Yawing moment coefficients for the T-2 as a function of positive aileron deflections, for various angles-of-attack and three sideslip angles, are given in figure 49. It is clear from these graphs that aileron deflections cause essentially no yawing moment except in the 15° to 20° angle-of-attack range. Within this narrow range, positive aileron deflections tend to cause positive yawing moments, and some data points indicate that the yawing moment coefficients due to full aileron deflection might be as large as the yawing moment coefficient due to a 10° sideslip.

The change in yawing moment coefficient due to full aileron deflection is shown in figures 50 and 51 (for positive and negative aileron deflections, respectively) as a function of angle-of-attack for two sideslip angles. Considerable scatter is evident in the data, and only very general observations can be made. Positive deflections cause positive yawing moments in most cases, and negative deflections cause negative moments. This relationship is known as "aileron adverse yaw". Angle-of-attack variation seems to have little effect on the magnitude of the yawing moment coefficients created by aileron deflections, and there also seems to be no consistent difference between the zero sideslip and 30° sideslip cases.

RUDDER EFFECTIVENESS

Yawing moment coefficient is shown in figure 52 as a function of positive rudder deflection. For angle-of-attack below 14°, and from 25° to 40°, the

functional relationship is very well behaved: the yawing moment is zero for zero sideslip and zero deflection, the curve has a negative slope, and the relationship is linear for the entire deflection range. For angles-of-attack between 14° and 25°, small zero deflection offsets do exist, and the data points exhibit some scatter. Only one data point (18° angle of attack, 7° rudder deflection) indicates a control reversal, but data scatter alone may account for the displacement of this data point. The slope of the C vs. $^{\rm A}_{\rm r}$ relationship (Cn $_{\rm A}_{\rm r}$, the rudder effectiveness derivative) is plotted in figure 53 with angle-of-attack as the independent variable. Rudder effectiveness is seen to be essentially invariant with angle-of-attack in the pre-stall region. The effectiveness is also nearly constant in the post-stall region, but at a value which corresponds to less than half the pre-stall effectiveness.

Data for yawing moment coefficient created by full rudder deflection are presented in figures 54 and 55 (for positive and negative deflections, respectively) as a function of angle-of-attack. These data appear to be rather clean (i.e., free from scatter and irregularities) except in the sting overlap region (35° to 40° angle-of-attack). With increasing angle-of-attack, the yawing moments are initially constant (for pre-stall angles-of-attack), then drop relatively rapidly to a lower level, and then slowly taper off to zero over the remainder of the angle-of-attack range (25° to 83°).

In the process of producing yawing moments, the rudder also produces sideforce which may have a significant effect on aircraft dynamics. Sideforce coefficient is shown in figure 56 as a function of rudder position, for various angles-of-attack (below 40°) and sideslip. For all the conditions shown in figure 56, sideforce increases in essentially a linear fashion with increasing positive rudder deflection. At several angles-of-attack, some sideforce was recorded for zero sideslip and zero rudder deflection, but no pattern is discernable and data scatter is the most plausible explanation.

The change in sideforce coefficient due to full rudder deflection as a function of angle-of-attack (for zero sideslip and 30° sideslip) is given in figures 57 and 58 (for positive and negative deflections respectively). The data trends are quite similar to those of the yawing moment data, and most of the same comments apply. Certainly the most curious feature of the data is the large magnitude, and sudden reversal in sign, of the sideforce due to negative rudder deflection for 30° sideslip at angles-of-attack near 40°. The number of data points involved in this phenomenom would seen to be large enough to rule out data scatter or other random measurement error as the cause of the unusual results.

Since the rudder is located above the roll axis of the T-2, rudder deflection also produces a rolling moment. This direct, static rolling moment must not be confused with the dynamic rolling moment due to dihedral effect following sideslip excursion due to rudder deflection. It is this dynamic rolling moment, rather than the static moment, which causes the rudder to be more effective roll control device than the ailerons at some flight conditions.

The coefficient of the static rolling moment is given in figure 59 as a function of rudder deflection for various angles-of-attack and sideslip angles

of 10°, 0°, and -10°. At pre-stall angles-of-attack, positive rudder deflections cause positive rolling moments in essentially a linear fashion. The effect, however, is quite small relative to the dihedral effect due to 10° sideslip. Near stall angle-of-attack, dihedral effect decreases considerably, but is still large compared to the rudder rolling effect. The roll due to rudder is difficult to evaluate near stall (angles-of-attack of 15° and 16°) for zero sideslip because the data are quite erratic, although the data for sideslip angles of 10° and -10° seem consistent. For post-stall angles-of-attack, there is essentially no change in rolling moment as a result of rudder deflection.

One of the more interesting aspects of the data shown in figure 59 is the frequent occurence of substantial zero offsets, i.e., non-zero rolling moment coefficients at zero rudder deflection and zero sideslip. The offsets range from zero to -.013. They are always negative, but seem to have no clear dependence on angle-of-attack. These rolling moment coefficients at zero deflection and zero sideslip are far too large to be attributed to random measurement error, and must result from asymmetric airflow.

The changes in rolling moment coefficient due to full rudder deflections are given in figures 60 and 61 (for positive and negative deflections, respectively). The data are quite scattered, and only general conclusions can be reached. Positive rudder deflections tend to cause positive rolling moments, and negative deflections tend to produce negative moments. Little variation with angle-of-attack is observable, and 30° sideslip angle data are noticeably different from zero sideslip data only for angles-of-attack above 50°.

STING INTERFERENCE EFFECTS

As explained earlier, it was necessary to use three different sting support configurations to span the entire angle-of-attack range from -8° to +83°. Stings 002 and 003 differed only with respect to the lower support. A change from 002 to 003 should only have a very minor effect on the aerodynamics of the model, since the model will be located in a different position in the tunnel, and the tunnel flow field is not perfectly uniform. A change from 001 to 002, however, could have large effects on the airflow over the model, since the point of entry of the sting into the model is substantially different.

An examination of the results reveals that large discontinuities did occasionally occur in the angle-of-attack range for which data was obtained with both stings 001 and 002. In figures 21 and 22, for instance, the value of C_L and C_D obtained from sting 001 data (in the 30° to 40° angle-of-attack range) are noticeably larger than the comparable values obtained from 002 data. In some cases, however, rapid changes in aerodynamics occurring at angle-of-attack between 30° and 40° are not due to sting interference effects. The change in lift coefficient due to full negative elevator deflection (figure 41), and the change in rolling moment coefficient due to full positive aileron deflection (figure 47) are examples of the latter situation, since sting 001 data points exist on both sides of the apparent discontinuities.

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 1. The data presented in this report are sufficient in quantity and quality to fully define the static aerodynamic characteristics of the T-2 aircraft in low speed flight for purposes of computer simulation or reference values for parameter identification from flight test data.
- 2. The lack of data for dynamic conditions and for power effects cause the results presented herein to be insufficient for complete simulation of the flight of a T-2 aircraft.
- 3. The T-2 exhibits a linear pre-stall lift curve, terminated by an abrupt stall at approximately 15° angle-of-attack.
- 4. For zero sideslip, static pitch instability is present only for angles-of-attack between 18° and 20°.
- 5. The T-2 exhibits positive dihedral effect throughout the angle-of-attack range, except that a slope reversal occurs for small sideslip angles at 15° angle of attack.
- 6. The T-2 aircraft seems to have a relatively high natural yaw stability for angles-of-attack below 15° or above 40°. At angles-of-attack between 15° and 40°, however, the yaw stability seems to be essentially zero.
- 7. Elevator effectiveness is essentially constant with increasing angles-of-attack until the stall angle (15°) is achieved. At stall, the effectiveness drops sharply to approximately half its pre-stall value. Effectiveness then decreases slowly with increasing angle-of-attack, but under no conditions is the effectiveness reduced to zero or reversed in sign.
- 8. For angles-of-attack below 14° or between 35° and 65° , aileron effectiveness is relatively high. At other angles-of-attack the effectiveness is difficult to assess accurately, but it is clear that the ailerons are less effective in the 14° to 35° angle-of-attack region than at other angles-of-attack.
- 9. In general, the T-2 ailerons exhibit adverse yaw, but the effect is small and difficult to measure accurately.
- 10. The yaw effectiveness of the rudder varies with respect to angle-of-attack in the same fashion as the elevator effectiveness variation. Beyond 70° angle-of-attack the effectiveness is essentially zero.
- 11. Positive rudder deflections tend to cause positive rolling moments and vice versa, but the effect is small and difficult to measure accurately.
- 12. All data taken in the 30° to 40° angle-of-attack range should be used with caution, since some discrepancies exist between data obtained with the 001 sting configuration and those obtained with the 002 configuration.

RECOMMENDATIONS

1. The utility of the data obtained in this investigation would be greatly enhanced if dynamic data, i.e., variation of aerodynamic forces and moments due to pitch, roll, and yaw rates, could be obtained with the same wind tunnel model. Therefore it is recommended that every effort be made to obtain dynamic data in the near future.

REFERENCES

- (a) Hauenstein, F. M., Influence of Northrop High Angle Support Fairing ("Bump") on Flow in the Ames 12-Foot Pressure Wind Tunnel Test Section, ARO, Inc., TM 37, 8 Feb 72
- (b) Pope, A., and Harper, J. J., Low Speed Wind Tunnel Testing, John Wiley & Sons, Inc., New York, 1966
- (c) Anon., Estimated Flying Qualities for T-2B Trainer Airplane, North American Aviation, Columbus Division, Report NA64H-845, 1 Dec 1964
- (d) Elliot, D. W., Substantiating Data Report Based on Flight Test Data for the T-2B Trainer Powered with Two J69-P-6 Engines, North American Aviation, Columbus Division, Report NA64H-536, 9 Jun 1964

FIGURE 1. GENERAL ARRANGEMENT OF .09 SCALE T-2C WIND TUNNEL MODEL

FIGURE 2. WING DETAIL OF .09 SCALE 5-20 MODEL.

FIGURE 3. HORIZONTAL TAIL DETAIL OF .09 SCALE T-2C MODEL

FIGURE 4. VERTICAL TAIL DETAIL OF .09 SCALE T-2C MODEL

TUNNEL INSTALLATION

LOW ANGLE OF ATTACK DATA RANGE

(-8° TO + 40°)

FIGURE 7. WING TUNNEL STING INSTALLATION (STING CONFIGURATION 001, LOW ANGLE-OF-ATTACK DATA RANGE)

深入200-73259-30

TUNNEL INSTALLATION

INTERMEDIATE ANGLE OF ATTACK DATA MANGE

(40° TO 55°)

FIGURE 8. WIND TUNNEL STING INSTALLATION (STING CONFIGURATION 002, INTERMEDIATE ANGLE-OF-ATTACK DATA RANGE)

MADC-73259-30

TUNNEL INSTALLATION

HIGH ANGLE OF ATTACK DATA RANGE

(°00° TO 89°)

FIGURE 9. WIND TUNNEL STING INSTALLATION (STING CONFIGURATION 003, HIGH ANGLE-OF-ATTACK DATA RANGE)

FIGURE 10. CORPETCIENT OF LIFT VERSUS REFNOLDS NUMBER FOR VARIOUS ANGLES-OF-ATTACK

FIGURE 11, COEFFICIENT OF DRAG VERSUS REYNOLDS NUMBER FOR VARIOUS ANGLES-OF-ATTACK

FIGURE 12. COEFFICIENT OF PITCHING MOMENT VERSUS REYNOLDS NUMBER FOR VARIOUS ANGLES-OF-ATTACK

FIGURE 13. COEFFICIENT OF LIFT VERSUS ANGLE-OF-ATTACK FOR MACH NUMBER VARIATION

FIGURE 14. COEFFICIENT OF DRAG VERSUS ANGLE-OF-ATTACK FOR MACH NUMBER VARIATION

FIGURE 15. COEFFICIENT OF PITCHING MOMENT VERSUS ANGLE-OF-ATTACK FOR MACH NUMBER VARIATION

FIGURE 16. COEFFICIENT OF LIFT VERSUS ANGLE-OF-ATTACK (GRIT ON AND OFF, 9 = 0°)

FIGURE 17. COEFFICIENT OF LIFT VERSUS ANGLE-OF-ATTACK (CRIT ON AND OFF)

FIGURE 18. COEFFICIENT OF DRAG VERSUS ANGLE-OF-ATTACK (GRIT ON AND OFF, 3 = 0°)

FIGURE 19. COEFFICIENT OF DRAG VERSUS ANGLE-OF-ATTACK (GRIT OF AND OFF, $9 = 30^{\circ}$)

COEFFICIENT OF NORMAL FORCE VERSUS ANGLE-OF-ATTACK FOR SIDESLIP VARIATION FIGURE 21.

COMPPICIENT OF LIFT VERSUS COMPPICIENT OF DRAG FOR FULL RANGE OF ANGLE-OF-ATTACK FIGURE 24.

FIGURE 25. COEFFICIENT OF LIFT VERSUS COEFFICIENT OF DRAG FOR LOW ANGLES-OF-ATTACK

Reproduced from best available copy.

PIGURE 28. COSPPICIENT OF LIFT VERSUS COEFFICIENT OF PITCHING MOMENT FOR LOW ANGLES-OF-ATTACK

FIGURE 29. LIFT CURVE SLOPE, C_{L_Q} , VERSUS ANGLE-OF-SIDESLIP, β

Figure 30. Pitching moment curve slope, c_{m} , versus angle-of-sideslip, §

FIGURE 31. CHEFFICIENT OF SIDE PORCE WREGUS ANGLE-OF-SIDESLIP FOR WARIFUS ANGLES-OF-ATTACK
AND TWO ELEVATOR DEFLECTIONS

FPRINE 31. COEFFICIENT OF SIDE PORCE VERSUS ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTACK (CORT). AND PAG ELEVATOR DEFLECTIONS

FIGURE 31. COEFFICIENT OF SIDEFORCE VERSUS ANGLE-(CONT) OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTACK AND TWO ELEVATOR DEFLECTIONS

CONFICIENT OF MOLLING MUMBERT VERSUS ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTACK AND INO BLEVATOR DEFLECTIONS (BODY AXIS SYSTEM) FIGURE 32.

COEFFICIENT OF ROLLING MOMENT VERSUS ANGLE-CF-SINESLIP FOR VARIOUS ANGLES-OF-ATTACE AND TWO KLEVATOR DETLECTIONS (BODY AXIS SYSTEM) FIGURE 32. (COST)

PIGURE 33. COEFFICIENT OF ROLLING MOMENT VERSUS
ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OFATTACK AT TWO ELEVATOR DEFLECTIONS
(STABILITY AXIS SYSTEM)

(CONT) COEFFICIENT OF ROLLING MOMENT VERSUS

ANGLE-OF-SIDESLIP FOR VARIOUS ANGLESOF-ATTACK AT TWO ELEVATOR DEFLECTIONS
(STABILITY AXIS SYSTEM)

FIGURE 33. COEFFICIENT OF ROLLING MOMENT VERSUS

(CONT)

ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OFATTACK AT TWO ELEVATOR DEFLECTIONS
(STABILITY AXIS SYSTEM)

COEFFICIENT OF VANING MOMENT VERSUS ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTINCK AND TWO ELECTRICAL (BODY AXIS SYSTEM) FIGURE 34.

COEFFICIENT OF YAWING MOMENT VERSUS ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTACK AND TWO ELEVATOR DEFLECTIONS (BODY AXIS SYSTEM) FIGURE 34. (CONT)

CORFFICIENT OF YAWING MOMENT VERSUS ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTACK AND TWO ELEVATOR SETTINGS (BODY AXIS SYSTEM) FIGURE 34. (CONT)

COEFFICIENT OF YAWING MOMENT VERSUS ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTACK AND TWO ELEVATOR DEFLECTIONS (STABILITY AXIS SYSTEM) PIGURE 35.

CORPTICIENT OF YAVING MOMENT VENEUS ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTACK AND TWO ELEVATOR DEFLECTIONS (STABILITY AXIS STRIBA)

Reproduced from best available copy

FIGURE 35. COEFFICIENT OF YAWING MOMENT VERSUS ANGLE-OF-SIDESLIP FOR VARIOUS ANGLES-OF-ATTACK AND TWO ELEVATOR (CONT) DEFLECTIONS (STABILITY AXIS SYSTEM)

-

PIGURI 36. SIDEFORCE DARPING DERIVATIVE VERSUS ANGLE-OF-ATTACK

FIGURE 39. COEFFICIENT OF PITCHING MOMENT VERSUS ELEVATOR DEFLECTION FOR VARIOUS ANCLES-OF-ATTACK (CONT)

75

PIGURE 39. COEFFICIENT OF PITCHING MOMENT VERSUS ELEVATOR DEFLECTION FOR VARIOU'S ANGLES-OF-ATTACK (CONT)

78

FIGURE 39. COEFFICIENT OF PITCHING MOMENT VERSUS ELEVATOR (CONT)

DEFLECTION FOR VARIOUS ANGLES-OF-ATTACK

FIGURE 40. ELEVATOR EFFECTIVENESS VERSUS ANGLE-OF-ATTACK

FIGURE 42. CHANGE IN LIFT COEFFICIENT DUE TO FULL POSITIVE ELEVATOR DEFIECTION VERSUS ANGLE-OF-ATTACK

CHANCE IN PITCHING MOMENT COEFFICIENT DUE TO FULL NEGATIVE ELEVATOR DEFLECTION VERSUS ANGLE-OF-ATTACK FOR VARIOUS RUDDER DEFLECTIONS AND SIDESLIP ANGLES FIGURE 43.

CHANGE IN PITCHING MOMENT COEFFICIENT DUE TO FULL POSITIVE ELEVATOR DEFLECTION VERSUS ANGLE-OF-ATTACK FOR TWO SIDESLIP ANGLES FIGURE 44.

ROLLING MOMENT CORFFICIENT VERSUS ATLERON DEFLECTION FOR VARIOUS ANGLES-OF-ATTACK (AT THREE SIDESLIP ANGLES) PICURE 45.

ROLLING MOMENT COEFFICIENT VERSUS AILERON DEFLECTION FOR VARIOUS ANGLES-OF-ATTACK (AT THREE SIDESLIP ANGLES) (CONT.) FIGURE 45.

FIGURE 46. AILERON EFFECTIVENESS VERSUS ANGLE-OF-ATTACK (FOR TWO SIDESLIP ANGLES)

FIGURE 47.. CHANGE L. FOLLING MOMENT CORFFICIENT DUE TO FULL POSITIVE AILERON DEPLECTION VEASUS ANGLE-OF-ATTACE (FOR TWO SIDESLIP ANGLES)

CHANGE IN ROLLING HOMENT CORPPOSENT DUE TO FULL RECATIVE ALLERON DEFLECTION VERSUS ANGLE-OF-ATHACK (FOR THO SIDESLIP ANGLES)

PIGURE 49. YAWING MOMENT CORPPICIENT VERSUS AILERON DEFLECTION FOR VARIOUS ANGLES-OF-ATTACK (AT THREE SIDESLIP ANGLES)

FIGURE 49. YAWING MOMENT COEFFICIENT VERSUS AILERON DEFLECTION (CONT) FOR VARIOUS ANGLES-OF-ATTACK (AT THREE SIDESLIP ANGLES)

YAWING MOMENT COEFFICIENT VERSUS AILERON DEPLECTION FOR VARIOUS ANGLES-OF-ATTACK (AT THREE SIDESLIP ANGLES) FIGURE 49. (CONT)

CHANGE IN YAVING MOMENT CORPFICIENT DUE TO FULL POSITIVE A (LERON DEFLECTION VERSUS ANGLE-OF-ATTACK (FOR TWO SIDESLIP ANGLES) FIGURE 50.

FIGURE 51. CHANGE IN VANING MOMENT CORFFICIENT DUE TO FULL NEGATIVE ALLERON DEFLECTION VERSUS ANGLE-OF-ATTACK (FOR TWO SIDESLIP ANGLES)

FIGURE 52. YAWING MOMENT COEFFICIENT VERSUS RUDDER DEFLECTION FOR VARIOUS ANGLES-OF-ATTACK (FOR THREE SIDESLIP ANGLES)

YAVING HOMENT CORFFICIENT VERSUS RUDDER DEFLECTION FOR VARIOUS ANGLES-OF-ATTACK (FOR THREE SIDESLIP ANGLES) FIGURE 52. (CONT.)

-1

M = .2 Re = 6 X 10⁶/ft BODY AXIS SYSTEM STING 001 9 = 0°

FIGURE 53. RUDDER EFFECTIVENESS VERSUS ANGLE-OF-ATTACK

CHANCE IN YAWING MOMENT COEFFICIENT DUE TO FULL POSITIVE RUDDER DEFLECTION VERSUS ANCIE-OF-ATBACK (FOR TWO SIDESLIP ANCIES) FIGURE 54.

FIGURE 56. SIDEFORCE COEFFICIENT VERSUS RUDDER DEFLECTION FOR VARIOUS ANGLES-OF-ATTACK (FOR TWO SIDESLIP ANGLES)

FIGURE 56. SIDEFORCE COEFFICIENT VERSUS RUDDER DEFLECTION FOR (CONT) VARIOUS ANGLES-OF-ATTACK (FOR TWO SIDESLIP ANGLES)

FIGURE 56. SIDEFORCE COEFFICIENT VERSUS RUDDER DEFLECTION FOR VARIOUS (CONT) ANGLES-OF-ATTACK (FOR TWO SIDESLIP ANGLES)

SIDEFORCE COEFFICIENT VERSUS RUDDER DEFLECTION FOR VARIOUS ANGLES OF AITACK (FOR TWO SIDESLIP ANGLES) FIGURE 56. (CONT)

: 1

HRE 58. CHAKER IN SIDERORCE COSPICIENT INE TO PULL NECATIVE RUDDER DEFLECTION VERSUS ANGLE-OF-ATTACK (FOR IND SIDESLIP ARGLES)

FIGURE 59. ROLLING MOMENT COEFFICIENT VERSUS RUDDER DEFLECTION FOR VARIOUS ANGLES-OF-ATTACK (FOR THREE SIDESLIP ANGLES)

FIGURE 59. ROLLING MOMENT COEFFICIENT VERSUS RUDDER DEFLECTION FOR (CORT) VARIOUS ANGLES-OF-ATTACK (FOR THREE SIDESLIP ANGLES)

FIGURE 59. ROLLING MOMENT CORFFICIENT VERSUS RUDDER DEFLECTION FOR (CONT) VARIOUS ANGLES-OF-ATTACK (FOR THREE SIDESLIP ANGLES)

1

PICTUS NO. LINNICE OF HOLLING HANDET CONFTICIONY TO TO IDLE POSITIVE RIGISM DEFLICTIVE VERSUS APPLICES.

8 61. CHANGE IN ROLLING MOMENT CORPPICION'S DOR TO PULL MECATIVE RUDDER DEFLECTION VERSUS ANCLE-OF-ATTACK (FOR TWO SIDESLIP ANCLES)

TABLE I
TRANSITION STRIPS1

Surfa ce	GRIT STRIP LOCATION
Wing	Spanwise along upper surface at 5% of local chord ²
Horizontal Stabilizer	Spanwise along upper surface at 5% of local chord ²
Vertical Stabilizer	Extending vertically along 5% local chord2
Dorsal Fin	Along 5% local chord ²
Nose	Ring 1.0 inch from tip of nose ²
Upper Fuselage	Longitudinal, just below and parallel to canopy rail beginning 5.4 inches aft of the nose and extending 10.5 inches
Lower Fuselage	Longitudinal, immediately above outer curvature of engine nacelles beginning 7.4 inches aft of the nose and extending 17.0 inches

^{1.08} inch wide bands of #90 carborundum grit

 $^{^{2}}$ streamwise distance to forward edge of transition strip

APPENDIX A RUN SCHEDULE

٥	
L	=
7	ζ
7	7
5	i
۲	į
Ü	Ì
	_
ć	٠
0	d

REMARKS	Date: 5-8-73		$\alpha(1)$: -8, -4,	0, 4, 8, 12, 14,	15, 16, 18, 20,	25, 30, 35, 40°		B(1): -10, 0, 2,	5, 10, 15, 20,	25, 30°							Water to the second sec			
GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TOR RUDDER ION POSITION DEG)(6r, DEG)	0	0	Û	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
ELEVATOR POSITION (Åe, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0
AILERON POSITION (⁵ a, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING CONFIG. NUMBER	H		-4	1	1	1	1		1	1	1		F	7	1	1	7		-	-4
BETA SCHKDULE (DEG)	0	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	0	8(1)	8(1)	8(1)	β(1)	β(1)	8(1)	0	8(1)	8(1)	8(1)	8(1)	B(1)
ALPHA SCHEDULE (DEG)	α(1)	0	8	12	16	20	07	ø(1)	0	80	12	16	20	40	α(1)	0	80	12	16	20
Re x 10 ⁶ (1/FT)	0.9	6.0	0.9	0.9	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	4.0	4.0	0.4	4.0	7.0
MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
R UPA RTJP IDE R	F-1	ca	m	7	\$	9			σ. 	i g Proni	ndin	12	13	17¢	۲. ال	3.6	7 7	87	19	30

Preceding page blank

ELEVATOR RUDDER POSITION POSITION GRIT REMARKS (^6, DEG)(^6r, DEG)	0 0 Yes	0 0 Yes	0 Yes	0 0 Yes	0 0 Yes	0 Yes	0 Ves	0 0 Yes	0 0 Yes	0 0 Yes										
AILERON ELEVA POSITION POSITION (5g., DEG) (6g.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
STING CONFIG. NUMBER	1	1	-	1	1	1	1	1	1	1	7	-	1	-	1	1	1	ri	1	
SCHEDULE (DEG)	8(1)	0	8(1)	8(1)	8(1)	8(1)	8(1)	ВСП	0	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	0	8(1)	8(1)	8(1)	
ALPHA SCHEDULE (DEC)	07	a(1)	0	8	12	16	20	04	ø(1)	0	80	12	16	20	07	a(1)	0	80	12	
R. X 10 ⁶ (1/FT)	4.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.0	
MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
RUM	21	22	23	24	25	26	27	28	29	30	31	32	33	¥	35	36	37	38	39	

	MAD.	C-7	7325	9-30)		
-			T		11	1	

	REMARKS		;	8(2): -10, -5,	-2, 0, 2, 5, 10,	15, 20, 25, 30°															
1 1 1 1 1 1 1 1 1	GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9 8	RUDDER POSITION (6r, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	ELEVATOR POSITION (Åe, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SCHEDULE	AILERON POSITION (5g, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X 0 X	STING CONFIG. MUMBER	1	-	1	1	1		-1	1	1	1	1	1	1	1	1	1	-	-4	1	-
	BETA SCHEDULE (DEG)	8(1)	B(1)	8(2)	8(2)	8(2)	8(2)	8(2)	β(2)	8(2)	8(2)	β(2)	β(2)	β(2)	8(2)	8(2)	β(2)	β(2)	β(2)	8(2)	B(2)
	ALPHA SCHEDULE (DEG)	20	03	8-	7-	0	4	æ	12	14	16	18	20	22	25	S	35	40	æ	4	0
	Re x 10 ⁶ (1/FT)	1.0	1.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
:	MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	7.0	0.4	0.4
	R UN NUMBE P	17	42	43	75	45	46	47	48	67	50	51	52	53	54	55	56	57	58	59	09

						N	ADC-	732	9-3	0	,				,					,
REMARKS																				
GRIT	Yes																			
RUDDER POSITION (År, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0
ELEVATOR POSITION (Å, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-25	-25	-25	-25
AILERON POSITION (8, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING CONFIG. WUMBER	-4	1	7	1	1	1	1	1	1	1	П	1	-		7	-	-	-	7	
BETA SCHEDULE (DEG)	8(2)	β(2)	8(2)	8(2)	β(2)	8(2)	8(2)	8(2)	8(2)	β(1)	β(1)	8(1)	8(1)	8(1)	β(1)	8(1)	β(1)	8(1)	8(1)	8(1)
ALPHA SCHEDULE (DEG)	4	80	12	14	15	16	18	20	25	0	∞	12	15	16	20	07	80	4	0	4
Re x 10 ⁶ (1/FT)	7.0	4.0	7.0	7.0	7.0	4.0	4.0	0,4	4.0	0.9	0.9	6.0	6.0	0.9	6.0	0.9	0.9	0.9	0.9	0.9
MACH	7.0	7.0	7.0	7.0	7.0	0.4	7.0	7.0	7.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0.2
RUN	61	62	63	79	65	99	67	89	69	70	7.1	72	73	74	75	76	77	78	62	

	NA	DC-	73	325	9-	٠30
--	----	-----	----	-----	----	-----

	REMARKS					e de la companya de l													1		
	GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Үев	Yes	Yes	Yes
	RUDDER POSITION (⁶ r, DEG)	0	0	0	0	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	ELEVATOR RUDI POSITION POSIT (%, DEG) (%,	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25	+15	+15	+15	+15	+15	+15	+15	+15	+15
SCHEDULE	AILERON POSITION (8, DEG)	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N 50 &	STING CONFIG. NUMBER	F	-	-	1	-	-	p=4	prel	1	П	-1	H	-1	1	Н	1		F4	1	H
	BETA SCHEDULE (DEG)	8(1)	8(1)	8(1)	8(1)	β(1)	β(1)	8(1)	8(1)	β(1)	8(1)	β(1)	0	β(1)	8(1)	β(1)	β(1)	β(1)	B(1)	β(1)	B(1)
	ALPHA SCHEDULE (DEG)	æ	12	14	15	16	18	20	25	30	35	0+7	α(1)	ω	7-	0	4	80	12	14	15
1	Re x 10 ⁶ (1/FT)	0.9	0.9	6.0	6.0	0.9	0.9	6.0	0.9	0*9	6.0	0°9	6.0	6.0	0.9	0.9	0.9	6.0	0.9	6.0	6.0
	MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
! 1_	RUN NUMBER	81	82	83	84	85	98	87	88	88	8	91	92	93	94	95	96	97	88	66	160

	7	77	.j	T	T		NA	DC-	73259	9-30	Т.	_i -		7	т-	-) ·	-1	r	r	7
REMARKS																			1	
GRIT	047	9	90.7	997	200	Veo	200	100	Yes	A STA	No.	New Year	Ves	Yes	Yes	Yes	Ves	Yes	Yes	
RUDDER POSITION (5r. DEG)	0					0	0		0	0	0	0	0	0	0	0	0	. 0	0	
ELEVATOR POSITION (Ae, DEG)	5	+15	+15	+13	+15	+15	+15	0	0	0	0	0	0	0	0	0	0	. 0	. 0	c
AILERON POSITION (6a, DEG)	0	0	0	0	0	0	0	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
STING CONFIG. MUNGER		1	1	1	-	-	п	1	1	1	rel	1	1	1	1	1	1	1		- н
SCHEDULE (DEG)	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	β(1)	8(1)	8(1)	В(Д)	8(1)	8(1)	β(1)	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	B(1)
SCHEDULE (DEG)	16	18	20	25	30	35	04	8-	7	0	4	8	12	14	15	16	18	20	25	30
R. X 10 ⁶ (1/FT)	0.9	0.9	0.9	0,9	0.9	0*9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	6.0	0.0	0.9
MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
RUM	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

ů.
Ξ
E
-
ů,
7
5
ø

		- 1	···· •	1		Ŋ	IADC.	-732	59-3	30	r		- T					··· •		e: .
REMARKS		74 17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4													A series and the parameters of a series of the parameters of the p	to speak to a series manner consensus to				
GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
RUDDER POSITION (⁶ r, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	-25	-25	-25
ELEVATOR RUD POSITION POSI (Åe, DEG)(År,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0
AILERON FOSITION (8, DEG)	-12	-12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	0	0	0
STING CONFIG. NIPBER	H	-	-	1	1	,	1	1	1	н	1	1	1		1	1	-	1	1	-
BETA SCHEDULE (DEG)	8(1)	(1)8	8(1)	8(1)	β(1)	β(1)	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	β(1)	8(1)	8(1)	6(1)	8(1)	9(1)	8(1)	8(1)
ALPHA SCHEDULE (DEG)	35	9	8-	4-	0	4	8	12	14	1.5	16	18	20	25	30	35	07	φ.	4	0
Re X 10 ⁶ (1/FT)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	6.0	0.9	0,6	0°9	0°9	6.0	0.9	0.9	0.9	0.9	0.9	0.9	9.0
MACH	0.2	0,2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0.2	0.2	0.2	0.3
RUN	123.	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	121	138	139	140

	Ţ	1		T	1	N	ADC -	732	9-3	0	T	T	T	T	7		T	Ţ	T	.
REMARKS																				
GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
RUDDER POSITION (5r, DEG)	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25	+25	+25	+25	+25	+25	+25	+25	+25
ELEVATOR POSITION (Åe, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AILERON POSITION (Ås, DEG)	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	٥	0	0	0	0	0
STING CONFIG. NUMBER	1		1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	н
BETA SCHEDULE (DEG)	8(1)	8(1)	B(1)	8(1)	B(I)	8(1)	8(1)	β(1)	β(1)	β(1)	8(1)	B(I)	8(1)	8(1)	β(1)	8(1)	B(1)	8(1)	β(1)	8(1)
ALPHA SCHEDULE (DEG)	4	80	12	14	15	16	18	20	25	30	35	07	82	4	0	4	80	12	14	1.5
Re x 10 ⁶ (1/FT)	0.9	0.9	0.9	0.9	0.9	0.9	0,9	0.9	6.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
MACH	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0.2	0.2	0.2	0.2
RUN	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160

	REMARKS		li i			:						:	: :		•	•					
	RER	, .										:		:	:						
	GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Z S S S S S S S S S S S S S S S S S S S	Yes	Yes	3.68	ار وي
	RUDDER POSTITON (^A r, DEG)	+25	+25	+25	+25	+25	+25	+25	0	0	0	0	0	0	0	0	0	0	0	0	υ
-	ELPVATOR RUDDER POSITION POSITION (%, DEG) (%, DEG	0	0	0	0	0	0	0	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	07.
	Alleron Position ([§] a, DEG)	0	0	0	0	0	Û	0	0	0	0	O	0	0	0	0	0	0	0	0	0
	STING CONFIG. BURBER	Ħ	-	1			1	7-4	1	1	r=		-4	1	-1		1			; ; ;	re-i
F	BRTA SCHEDULE (DRG)	8(1)	8(1)	8(1)	9(1)	β(1)	β(1)	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	β(1)	8(1)	B(1)	9(1)	6(1)	B(1)	8(1)	(T)a
•-	ALPHA SCHEDULE (DEG)	16	18	20	25	8	35	079	8,	400	0	4	80	12	14	15	16	87	20	25	8
	Ze x 100 (1/FT)	6.0	9°0	0.9	0,3	6.0	6.0	6.0	6.0	6.0	6,0	6,0	6.0	6.0	6.0	6.0	6.0	6.6	6,0	Q :	9-
	MACH	0,2	0.2	0.2	2	0.2	0.2	9.2	0.2	0.2	0,2	0.2	0,2	0,2	0,2	0.2	0.2	2.0	0,2	0.2	8
	RUN HERER	tent CO Took	4 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.63	40	185	1,66	503	168	\$ 9 mi	0/1		272	m:	2. 7 Est	57.5	T.	1.77	00	Ş.,	2

				- -		N	ADC	-732	59-3	10			- 					г-		,
REMARKS																				
GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
RUDDER POSITION (År, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELEVATOR POSITION (Åe, DEG)	-10	-10	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10	-15	-15	-15
AILERON POSITION (8, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING CONFIG.	гH	ret	1	1	,1	1	-4	r-4	1	H	1	н	1	1	-1		-	-1	1	g-d
BRTA SCHEDULE (DEG)	9(1)	8(1)	8(1)	β(1)	8(1)	8(1)	8(1)	8(1)	β(1)	8(1)	8(1)	8(1)	8(1)	(1)	β(1)	8(1)	β(1)	8(1)	β(1)	β(1)
ALPHA SCHEDULE (DEC)	35	40	8	7-	0	7	æ	12	14	15	16	18	20	25	30	35	40	80	7-	0
Re X 10 ⁶ (1/FT)	0.9	0.9	0.9	6.0	6.0	6.0	6.0	6.0	0°9	0.9	6.0	6.0	0.9	6.0	6.0	0.9	6.0	6.0	6.0	6.0
MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
RUM	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200

				1	= · !		~1	ATX:	-732	59-	30	f	2		.,	* >	, -	٧-	··· •	·	**
	REMARKS		:				The state of the s							the same to the sa		1. All 100 miles (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4				
	GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	RUDDER FOSITION (fr. DEG)	5	0	0	0	0	0	0	i)	0	0	01	0	0	0	0	0	0	0	0	С
	ELEVATOR POSITION (-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	.15	0	0	0	0	0	0	0	0
इट <i>स</i> ड्डम (प्र.इ.	AILERUN POSITION (5a, DEG)	0	၁	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0:	0	0	0
X7. 4	STENC CONFIG. NUMBER	p-4	~ ;		-	~	F-4	-4	-	-1	-	r=4		p=4	H	-4	;	ied:	-1:	-4	.
	DETA SCHED ULE (DEG)	8(1)	9(1)	B(1)	8(1)	B(1)	£(1)	9(1)	9(1)	β(1)	β(1)	9(1)	8(1)	12.5	17.5	β(1)	8(1)	8(1)	8(1)	8(1)	8(1)
	ALPHA BETA SCHEDULE (DEG) (DEG)	4	8	12	14	24	16	87	20	25	30	35	07	a(1)	a(1)	တ္	7-	0	4	14	1.5
-	Ra 4 10° (1/FT)	0,9	0.9	6.0	6.0	0.9	0.9	6.0	0.9	6.0	6,0	0.9	6.0	6.0	6,0	0.9	6.0	0.9	0-2	6.0	0.9
	MEBER	6.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0,2	0,2	7.0	0.2	0.2	0.2	0.2
	RUM	707	302	5.05 5.05	707	5 <u>0</u>	, <u>20</u> , 5	26.7	\$97 8	607	CT.	117	213	213	777	3.15	0.47	217	317	617	220

·						N	ADC-	732	59-3	0	<u> </u>	t	T	·· - , -				r-	_	,
REMARKS		de et per mare para manera dalegar de capitales e de																		I I
GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
RUDDER POSITION (6r, DEG)	0	0	0	0	0	0	0	0	0	0	0	၁	0	0	0	0	0	0	0	0
ELEVATOR POSITION (Ae, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AILERON POSITION (å, DEG)	0	0	0	0	0	+3	+3	+3	4	9	4	9	4	9	9	9	4	4 :	4	4
STING CONFIG. NUMBER	1	1	1	1	1	1	- 4	-1	Н	-	н	1	-	-4	-4	1	-	-	-1	-
BETA SCHEDULE (DEG)	8(1)	8(1)	8(1)	8(1)	8(1)	-10	0	10	8(1)	8(1)	β(1)	8(1)	β(1)	B(1)	8(1)	β(1)	β(1)	8(1)	8(1)	8(1)
ALPHA SCHEDULE (DEG)	16	18	25	30	35	$\alpha(1)$	$\alpha(1)$	a(1)	8	7	0	4	80	12	14	15	16	18	20	25
Re X 10 ⁶ (1/FT)	0.9	0.9	0.9	0.9	0.9	0.9	6.0	0.9	6.0	6.0	6.0	0.9	0.9	0.9	0.9	0.9	0.9	0°9	6.0	0.9
MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
RUN	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240

REMARKS			1	Ţ		1			323	9-30						· · · · · · · · · · · · · · · · · · ·		1		A second name makes
CRIT		rea	10 m	Yes	20 20 20	99 20	Tes	200	201	Ves	2000		Yes	Yes	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	Vac	1 000	Ves	ep.
RUDDER POSITION (fr. DEG)				1	- +			+1	+1	+1			+	+7	 - 		-		+	:
ELEVATOR RUDDER POSITION POSITION (A. DEG)(A. DEG		0	, c	0	0		0	0	0	0	0	0	0	0	0		. 0			
AILERON POSITION (Å, DEG)	φ	9	٩	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
STINC CONFIG. HUMBER	1	1	-	1	1	1	1	1	1	1	1	1	1	-	1	1		-	-	
BETA SCHEDULE (DEG)	β(1)	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	8(1)	B(1)	8(1)	8(1)	8(1)	8(1)	8(1)	(1)	8(1)	8(1)	8(1)	-
ALPHA SCHEDULE (DEC)	8	35	40	80	4	0	4	80	12	14	15	16	18	20	25	8	35	9	80	
Re X 10 ⁶ (1/FT)	0.9	6.0	0.9	6.0	0.9	6.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	
MACH	0,2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	•
RUN	241	242	243	244	245	246	247	248	546	250	251	252	253	254	255	256	257	258	259	

NA DC -	73	25	9-	30
---------	----	----	----	----

OULE
CHEDU
5
ρĭ

		,	- 1	ij	•	· ·•		NALIC	-732	259-	30		Ţ	13 - T		1	- 1	7	Ĺ.	* - * =	
deline a de management	REMARKS	:	:								:					1 1 1				The state of the s	
	GRIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
,	RUDDER POSITION (^f r, DEG)	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25	+25
	ELEVATOR POSITION (Åg, DEG)	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25	-75	-25	-25	-25	-25	-25	-25	-25	-25	-25
	AILERON POSITION (8m. DEG)	0	0	0	0	0	0	0	0	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12
1	STING CONFIG. MIMBER	r=4	H	1	1	-	1	1	-1	1				-4	-		1	-	_	1	- 4.
•	BETA SCHEDULE (DEG)	8(1)	β(1)	8(1)	8(1)	6(1)	8(1)	8(1)	8(1)	β(1)	8(1)	8(1)	β(1)	8(1)	8(1)	β(1)	8(1)	8(1)	β(1)	β(1)	β(1)
3	ALPHA SCHEDULE (DEG)	15	16	18	20	25	30	35	40	8	4-4	0	4	8	12	14	15	16	18	20	25
-	Re x 10 ⁶ (1/FT)	0.9	0.9	0.9	6.0	0,9	6.0	6.0	6.0	0.9	6.0	0.9	0.9	6.0	0.9	0.9	0.9	0.9	0.9	6.0	0.9
	MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	R UN NUMBER	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	25.9	300

		•	T	Ţ			. 1	IDC-		,		-	;		1.5	1,	ì	1			
	REMARKS					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				No Run No. 309							: : : : : : : : :	•			
	GRIT	Yes	Yes	Yes	No	No.	No	No	No		No	No	No	No	No	No	No.	No	S.	No	No
	TOR RUDDER TION POSITION DEG)(Ar, DEG)	+25	+25	+25	0	0	0	3	0	-	0;	0	0	0	0	0	0	0	0	0	C
•	ELEVATOR POSITION (Ae, DEG)	-25	-25	-25	0	0;	0	0	0		0	0	0	0	0	0	0	0	0	0	0
SCHEDULE	AILERON POSITION (5a, DEG)	+12	+12	+12	0	0	0	0	0		0	0	0	0	0	0	0:	0	0	0	0
RUN	STING CONFIG. NUMBER	7	-4	_	-4	#4	-	-	H		-1	-	-	1	-1	-4	-	-	1	pad	. 2
	BETA SCHEDULE (DEG)	8(1)	8(1)	8(1)	(1)8	8(1)	8(1)	β(1)	β(1)		8(1)	8(1)	B(1).	8(1)	8(1)	8(1)	.80)	8(1)	β(1)	8(1)	B(2)
	ALPHA BETA SCHEDULE SCHEDULE (DEG) (DEG)	%	35	70	8-	7	0	4	88		12	14	15	16	18	20	25	8	35	4.0	30
	R _a x 10 ⁶ (1/FT)	0.9	6.0	0.9	0.9	0.9	0.9	0.9	6.0		0.9	0.9	0•9	0.9	0.9	0.9	6.0	6.0	0.9	6.0	0.9
	MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	R UR NUMBER	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320

NA	DC	-7	32	5	9-	30

1	ı. " ₁	· · · · ·	,	1		Ť	Ņ	IA DC	-73 2	59 - 3			ļ	Ţ		Ţ	1	Ţ	T ,	1	
	REMARKS		,			1 1 1									:						
	GRIT	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No .	No
RUDDER	(6r, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+25	+25	+25	+25	+25
•	(Åe, DEG)	0	0	0	0	0	+15	+15	+15	+15	+15	-25	-25	-25	-25	-25	-25	-25	-25	-25	-25
AILERON	(Sa, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
BETA		8(2)	β(2)	β(2)	β(2)	8(2)	8(2)	8(2)	β(2)	8(2)	8(2)	8(2)	8(2)	8(2)	8(2)	8(2)	β(2)	8(2)	8(2)	8(2)	8(2)
ALPHA	+	35	40	45	50	55	35	40	45	50	55	35	07	45	50	55	35	40	45	50	55
901 *	(1/FT)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	6.0	0.9	0*9	0.9	0.9	0.9	0.9	0.9	0°9	0.9	0.9
ROVE A	~	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	NUMBER	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340

7
_
\Box
÷
S
S
3
O.

ા લગામ છે.										<u>.</u>		:	:	Į.						
			61	Ц		→	= :	•	- ,		:	-	† - + -	•	- :	÷	!		=	
GRIT	NO NO	No	No No	No	No	No	NO	No	No	No	No	No	NO	NO.	No	No.	No	ON.	No	No
RIDDER POSITION (^F r. DEG)	+25	+25	+25	+25	+25	0	0	0	9		0	0	0	0	0	+25	+25	+25	+25	+25
ELEVATOP POSITION (%, DEG)	-25	-25	-25	-25	-25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alleron Position (5a, DEG)	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	-12	-12	-12	-12	-12	0	0	0	0	0
STING CONFIG NUMBER	2	7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
RETA SCHRDULE (DEG)	ß(2)	8(2)	8(2)	٩(2)	8(2)	β(2)	β(2)	8(2)	8(2)	8(2)	8(2)	β(2)	β(2)	9(2)	B(2)	8(2)	(2) g	RCS		8(2)
ALPHA SCHEDULE (DEG)	35	07	45	50	55	35	07	45	50	55	35	707	45	50	55	35	07	45	50	55
Re x 10 ⁶ (1/FT)	0.59	0.9	0.9	0.9	6.0	0.9	0.9	0.9	6.0	0.9	0.9	9.0	0.9	6.0	9	0.9	0.9	0.9	6.0	0.9
PLACK NUMBER	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0.2	0.2	0.2	0.2	0,2	0.2	0.2	0.2
7 1.2 REGER	3.4	362	343	3/4	345	346	347	34,8	349	350	351	352	353	354	355	356	357	358	359	360

	REMARKS			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-												· · · · · · · · · · · · · · · · · · ·	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
	CRIT	No	No	No	No	No.	No	No												
	RUDDER POSITION (^A r, DEG)	-25	-25	-25	-25	-25	0	0	0	0	0	0	0	0	0	0	0	0	0	c
	ELEVATOR POSITION (Ae, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+15	+15	+1.5
SCHEDULE	AILERON POSITION (⁸ g, DEG)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	·
RUN	STING CONFIG. NUMBER	2	2	2	2	2	2	2	2	2	2	2	3	3	က	6	3	6	8	ď
	BETA SCHEDULE (DEG)	8(2)	8(2)	β(2)	β(2)	8(2)	β(2)	β(2)	8(2)	β(2)	8(2)	β(2)	β(2)	8(2)	β(2)	8(2)	8(2)	β(2)	3(2)	8(2)
į	ALPHA SCHEDULE (DEG)	35	40	45	50	55	30	35	40	45	50	55	62	67	72	77	83	62	- 67	22
!	Re x 10 ⁶ (1/FT)	0.9	0.9	6.0	6.0	0.9	0.9	6.0	0.9	0.9	6.0	0.9	0.9	0.9	6.0	0.9	0.9	0.9	0.9	Q
	MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	,
	R UN NUMBER	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	370

No

0

B(2)

380

NADC-7	3259~	30
--------	-------	----

	;	*	1	1	* •	;	8.1	!	!	1			1	•	٠	,	1	,	1	1	
	REMARKS				the same are a design control to												1				
13	GRIT	No	No	No	No	No	No	No	No	No	No.	N.	No	No	No	ON	No	No	o.	No	No
	RUDDER POSITION (Ar, DEG)	0	0	0	0	0	0	-25	-25	-25	-25	-25	0	0	0	0	0		0	0	O
	ELEVATOR RUD POSITION POSI (5e, DEG) (5r,	+15	-25	-25	-25	-25	-25	3	0	0	0	0	0	0	0	0	0	0	0	0	0
SCHEDULE	AILERON POSITION (8, DEG)	0	0	0	0	0	0	0	0	0	0	0	-12	-12	-12	-12	-12	+12	. +12	+12	+12
RUN	STING CONFIG, NUMBER	m	6	e.	m	m	8	3	8	3	3	6	en!	n	8	6	m	ю.	ю [.]	e	е
	BETA SCHEDULE (DEG)	8(2)	9(2)	8(2)	8(2)	8(2)	8(2)	8(2)	8(2)	8(2)	3(2)	3(2)	8(2)	8(2)	β(2)	9(2)	B(2)	9 (2)	8(2)	3(2)	9(2)
·	ALPA: SCHEDULE (DEC)	83	62	67	72	77	83	62	67	72	77	83	62	67	72	77	83	62	. 29	72	77
;	Re X 106 (1/FT)	0.9	0.9	0.9	0.9	0.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0*9	0.9	0.0
	MACH	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	RUN NUMBER	381	382	383	384	385	98€	387	388	389	390	391	392	393	394	335	396	397	398	399	4:00

83 B(2) 3 +12 0 No No 67 B(2) 3 0 0 +25 No 72 B(2) 3 0 0 +25 No 77 B(2) 3 0 0 +25 No 83 B(2) 3 0 0 +25 No 67 B(2) 3 0 0 +25 No 67 B(2) 3 0 -25 No No 67 B(2) 3 0 -25 +25 No 77 B(2) 3 0 -25 +25 No 83 B(2) 3 0 -25 +25 No 67 B(2) 3 +12 -25 +25 No 67 B(2) 3 +12 -25 +25 No 67 B(2) 3 +12 -25	83 B(2) 3 +12 0 0 No 57 B(2) 3 0 0 +25 No 72 B(2) 3 0 0 +25 No 73 B(2) 3 0 0 +25 No 74 B(2) 3 0 0 +25 No 75 B(2) 3 0 -25 +25 No 7 B(2) 3 0 -25 +25 No 8 B(2) 3 +12 -25 +25 No 9 B(2) 3 +12 -25 +25 No 9 B(2) 3 +12 -25 +
62 $\theta(2)$ 3 0 0 $+25$ 57 $\theta(2)$ 3 0 0 $+25$ 72 $\theta(2)$ 3 0 0 $+25$ 7 $\theta(2)$ 3 0 0 $+25$ 3 $\theta(2)$ 3 0 -25 $+25$ 4 $\theta(2)$ 3 0 -25 $+25$ N 5 $\theta(2)$ 3 0 -25 $+25$ N 6 $\theta(2)$ 3 0 -25 $+25$ N 7 $\theta(2)$ 3 0 -25 $+25$ N 8 $\theta(2)$ 3 0 -25 $+25$ N 8 $\theta(2)$ 3 $+12$ -25 $+25$ N 8 $\theta(2)$ 3 $+12$ -25 $+25$ N 8 $\theta(2)$ 3 $+12$ -25 $+25$ N <	62 B(2) 3 0 0 +25 57 B(2) 3 0 0 +25 72 B(2) 3 0 0 +25 7 B(2) 3 0 0 +25 7 B(2) 3 0 -25 +25 N 8 B(2) 3 +12 -25 +25 N 8 B(2) 3 +12 -25 +25 NG 8 B(2) 3 +12 -25 +25 NG 8 B(2) 3 +12 -25 +25 NG 8 B(2)
57 B(2) 3 0 0 +25 72 B(2) 3 0 0 +25 7 B(2) 3 0 0 +25 3 B(2) 3 0 -25 +25 4 B(2) 3 0 -25 +25 N 5 B(2) 3 0 -25 +25 N 6 B(2) 3 0 -25 +25 N 8 B(2) 3 0 -25 +25 N 8 B(2) 3 +12 -25 +25 N 8 B(2) <td>57 B(2) 3 0 0 +25 72 B(2) 3 0 0 +25 7 B(2) 3 0 0 +25 3 B(2) 3 0 0 +25 4 B(2) 3 0 -25 +25 N 5 B(2) 3 0 -25 +25 N 6 B(2) 3 0 -25 +25 N 8 B(2) 3 0 -25 +25 N 8 B(2) 3 0 -25 +25 N 8 B(2) 3 +12 -25 +25 N 8 B(2)</td>	57 B(2) 3 0 0 +25 72 B(2) 3 0 0 +25 7 B(2) 3 0 0 +25 3 B(2) 3 0 0 +25 4 B(2) 3 0 -25 +25 N 5 B(2) 3 0 -25 +25 N 6 B(2) 3 0 -25 +25 N 8 B(2) 3 0 -25 +25 N 8 B(2) 3 0 -25 +25 N 8 B(2) 3 +12 -25 +25 N 8 B(2)
72 θ(2) 3 0 0 +25 7 θ(2) 3 0 0 +25 3 8(2) 3 0 0 +25 2 8(2) 3 0 -25 +25 2 8(2) 3 0 -25 +25 2 8(2) 3 0 -25 +25 N 3 6(2) 3 +12 -25 +25 N 8(2)	72 8(2) 3 0 0 +25 7 8(2) 3 0 0 +25 3 8(2) 3 0 0 +25 2 8(2) 3 0 -25 +25 2 8(2) 3 0 -25 +25 3 8(2) 3 0 -25 +25 N 4 8(2) 3 0 -25 +25 N 8 3 0 -25 +25 N 8 3 112 -25 +25 N 8 3 +12 -25 +25 N 8 3 +
7 8(2) 3 0 0 +25 3 8(2) 3 0 0 +25 2 8(2) 3 0 -25 +25 7 8(2) 3 0 -25 +25 2 8(2) 3 0 -25 +25 3 0 -25 +25 N 8 3 0 -25 +25 N 8 3 0 -25 +25 N 8 8(2) 3 112 -25 +25 N 8 3 +12 -25 +25 N 8(2) 3 +12 -25<	7 B(2) 3 0 0 +25 3 B(2) 3 0 0 +25 2 B(2) 3 0 -25 +25 7 B(2) 3 0 -25 +25 8 B(2) 3 +12 -25 +25
3 B(2) 3 0 0 +25 2 B(2) 3 0 -25 +25 7 B(2) 3 0 -25 +25 2 B(2) 3 0 -25 +25 3 0 -25 +25 1 4(2) 3 0 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25	3 β(2) 3 0 0 +25 2 β(2) 3 0 -25 +25 2 β(2) 3 0 -25 +25 2 β(2) 3 0 -25 +25 3 0 -25 +25 1 8 3 0 -25 +25 1 8 3 0 -25 +25 1 8 3 +12 -25 +25 1 8 3 +12 -25 +25 N 8 3 +12 -25 +25 <t< td=""></t<>
2 B(2) 3 0 -25 +25 2 B(2) 3 0 -25 +25 2 B(2) 3 0 -25 +25 3 B(2) 3 0 -25 +25 4 B(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 N	2 8(2) 3 0 -25 +25 2 8(2) 3 0 -25 +25 2 8(2) 3 0 -25 +25 3 60 -25 +25 3 60 -25 +25 4 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 N
7 8(2) 3 0 -25 +25 2 8(2) 3 0 -25 +25 7 5(2) 3 0 -25 +25 8(2) 3 +12 -25 N	7 8(2) 3 0 -25 +25 2 8(2) 3 0 -25 +25 7 5(2) 3 0 -25 +25 8(2) 3 +12 -25 +25 8(3) 3 +12 -25 +25 8(4) 3 +12 -25 +25 8(5) 8(2) 8(2) 8
2 8(2) 3 0 -25 +25 3 6(2) 3 0 -25 +25 8(2) 3 +12 -25 +25	2 8(2) 3 0 -25 +25 3 6(2) 3 0 -25 +25 8(2) 3 +12 -25 N
β(2) 3 0 -25 +25 8(2) 3 0 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25	β(2) 3 0 -25 +25 8(2) 3 0 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25 8(2) 3 +12 -25 N
8 (2) 3 0 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25	8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25 8 (2) 3 +12 -25 +25
β(2) 3 +12 -25 +25	β(2) 3 +12 -25 +25
β(2) 3 +12 -25 +25	β(2) 3 +12 -25 +25
β(2) 3 +12 -25 +25 β(2) 3 +12 -25 +25 β(2) 3 +12 -25 +25	β(2) 3 +12 -25 +25 β(2) 3 +12 -25 +25 β(2) 3 +12 -25 +25
B(2) 3 +12 -25 +25 B(2) 3 +12 -25 +25	8(2) 3 +12 -25 +25 8(2) 3 +12 -25 +25
	8(2) 3 +12 -25 +25
	T

APPENDIX B
GEOMETRIC PARAMETERS OF FULL-SCALE T-2

APPENDIX B GEOMETRIC PARAMETERS OF FULL-SCALE T-2 (from reference (c))

WING		
$s_{\mathbf{W}}$	Total area (includes flap, aileron and 39.39 ft ² covered by fuselage)	254.86 ft ²
$^{A}_{W}$	Net surface area (wetted)	424.85 ft ²
b _W	Span (perpendicular to plane of symmetry) including tiptanks	38.13 ft
AR _W	Aspect Ratio	5.07
λ w	Taper Ratio	.496
r _w	Dihedral Angle	+3°
	Chord (in streamline direction)	
c _r	Root (Wing Sta. 0)	114.20 in
c	Tip Chord (Wing Sta. 214.242)	56.63 in
	(Equivalent)	
c _w	Mean aerodynamic chord	88.88 in
	(Wing Sta. 95.078)	
	Location of 25% MAC	F.S. 219.697
Λ _w .	Sweepback of 25% element	2°17'
i _w	Incidence angle	
	Root Chord	2°
	Tip Chord	-1°
	Airfoil Section (root and tip in streamline direction)	NA SA 64 ₁ A 212 2 = .8* (MOD)
	*NAA Modified	(flaps and ailerons rigged 3° up)
~	Rate of Taper	0.2671

Preceding page blank

FLAP (Data	for One)	
	Туре	Single Slotted
${\tt s_f}$	Area	22.78 ft ²
^b f	Span (perpendicular to plane of symmetry)	101.75 in
c _i	Inboard chord (Wing Sta. 27.09)	39.39 in
c _o	Outboard chord (Wing Sta. 127.54)	29.63 in
c _f /c _w	Ratio flap chord to wing chord (avg.)	.37
$b_f/b_w = \frac{1}{2}$	Ratio flap span to wing semi-span	.475
*f	Flap deflection, maximum (from uprigged position)	33°
	Flap in neutral position	3° Up
AILERON		
	Туре	Straight Sided
Sa	Area (aft of hinge line and including tab)	9.5 ft ²
b _a	Span (perpendicular to plane of symmetry)	79.57 in
c _i	Inboard chord (Wing Sta. 128.69)	20 in
c _o	Outboard chord (Wing Sta. 208.26)	14.66 in
c _a /c _w	Ratio sileron chord (aft H.L.) to wind chord	•25
$\frac{b_a/b_w}{2}$	Ratio aileron span to wind semi-span	.374
ða	Aileron deflection, maximum (from neutral position)	-12° Up, +13° Dn
	Aileron in neutral position	3° Up
	Aerodynamic Balance	Sealed paddle balance
s _b	Balance area forward of the H.L. (including 50% of fabric seal)	4.45 ft ²
c _b /c _a	Ratio balance chord to aileron chord	.42

AILERON - (Cont'd)

	Static balance	Weighted paddle balance
	Irreversible full power system	Hydraulic
AILERON TE	IIM TAB	
	Ground adjustable fixed tab on each aileron	
Sa	Area (each)	.07 ft ²
HORIZONTAL	TAIL*	
S _h	Total area (includes 3.07 ft ² covered by vertical tail and fairing)	72.29 ft ²
$^{S}_{\mathtt{net}}_{\mathtt{h}}$	Net area	69.22 ft ²
A _h	Net surface area (wetted)	146.38 ft ²
b _h	Span	17.91 ft
AR _h	Aspect Ratio	4.42
$^{\lambda}\mathbf{h}$	Taper Ratio	0.50
$\Gamma_{\mathbf{h}}$	Dihedral Angle	0°
$^{\Lambda}_{\mathbf{h}}$	Sweepback of 25% element	15°
	Chord (in streamline direction)	
c _r	Root (H.T. Sta. 0)	64.61 in
c _t	Equivalent tip chord	33.05 in
	(H.T. Sta. 106.488)	
c _h	Mean aerodynamic chord	50.447 in
	(H.T. Sta. 47.78)	
i _h	Incidence angle	0°
	Airfoil section (root and tip in streamline direction)	NASA 65A012

^{*}Percent lines base on horizontal prior to addition of trailing edge extension.

HORIZONI	AL TAIL - (Cont'd)	
1 _h	Tail length (.25 \overline{c}_w to .25 \overline{c}_h)	202.58 in
HORIZONT	AL STABILIZER	
Ss	Area stabilizer, total	42.5 ft ²
is	Stabilizer incidence angle	0°
ELEVATOR		
S _e	Total area (excluding balance area forward of the hinge line)	21.00 ft ²
^b e	Span (between equivalent chords) (one elevator only)	101.97 in
c i	Inboard chord (B.P. 3.906)	18.85 in
co	Outboard chord (B.P. 105.877)	10.52 in
c _e /c _h	Ratio elevator chord (aft H.L.) to horizontal tail chord	.310
b _e /b _h	Ratio elevator span to horizontal tail span	0.936
e e	Elevator deflection maximum	27° Up, 15° Dn
	Boost: Push force 2.95:1	Hydraulic
	Pull force 2.95:1 to 8 lbs	
	then 6.0:1	
	Static balance	Weighted Leading Edge
	Aerodynamic balance	Overhang
S _b	Balance area forward of hinge line	5.72 ft ²
c _b /c _e	Ratio balance chord to elevator chord	0.322
	Nose factor	0.60
	Point of tangency for nose factor is at elevator hinge line	

ELEVATOR 1	TRIM TAB	
s _t	Area (each)	2.36 ft ²
b _t	Span, Equivalent (B.P. 8.93 to 54.53)	46.10 in
ct	Chord, constant	6.5 in
b _t /b _e	Ratio tab span to elevator span	0.462 in
⁸ t	Tab deflection	L.H. 10° Up, 13° Dn R.H. 0° Up, 13° Dn
VERTICAL T	<u>rail</u>	
S _v	Total area (includes 4.38 ft ² blanketed by fuselage plus 2.14 ft ² blanketed by horizontal tail)	40.33 ft ²
$_{net_{\mathbf{v}}}^{S}$	Net area	33.86 ft ²
A	Net surface area (wetted)	79.18 ft ²
A _d	Net surface area of dorsal fin (wetted)	18.12 ft ²
b _v	Span, unblanketed	8.04 ft
AR _V	Aspect Ratio	1.80
$^{\lambda}\mathbf{v}$	Taper Ratio	.375
c _r	Chord (in streamline direction)	
	Root (W.P. + 33.000)	78.14 in
ct	Equivalent Tip Chord (W.P. + 129.41)	29.38 in
c _v	Mean aerodynamic chord (W.P. + 73.92)	58.47 in
^ v	Sweepback (25% chord)	30°
	Airfoil Section	NASA 63A012
1 _v	Tail length (.25 \overline{c}_w to .25 \overline{c}_v)	194.05 in
VERTICAL I	<u>FIN</u>	
s _f	Area (including 2.14 ft ² blanketed by horizontal tail and excluding dorsal fin)	29.87

VERTICAL FIN (Cont'd)

if	Angle with respect to airplane plane of symmetry	0°
RUDDER		
s _r	Total area	9.13 ft ²
	S _r Upper surface u	3.23 ft ²
	S Lower surface	5.90 ft ²
^b r	Span, equivalent	
	b Upper surface u	31.94 in
	b _r Lower surface	42.99
cru	Upper chord (W.P. 96.00)	12.59 in
°r ₁	Lower chord (W.P. + 9.91)	22.45 in
c _r /c _v	Ratio rudder chord (aft H.L.) to vertical tail chord	
	c _r /c _v Upper surface @ W.P. 96.00	.266
	c _r /c _v Lower surface	.250
۲	Rudder deflection, maximum	25° Rt., 25° Lt.
	Boost	None
	Aerodynamic balance	Overhang
s _b	Balance area forward of hinge line	2.41 ft ²
c _b /c _r	Ratio balance chord to rudder chord	
	c _b /c _r Upper surface @ W.P. 96.00	.234
	c _b /c _r Lower surface	.24
	Static balance	Weighted leading edge
	Nose factor	0.40
	Point of tangency for nose factor is at rudder hinge line	

JADC-/3259-30

RUDDER TRI	M TAB	2
s _t	Area	1.60 ft ²
b _t	Span, equivalent (W.P. 14.94 to W.P. 53.00)	38.06 in
c _t	Chord, constant	6.0 in
b _t /b _r	Ratio tab span to rudder span	.508
ξ r ⁸ t	Tab deflection, maximum	7° Rt., 7° Lt.
FUSELAGE		
1 _f	Length (actual)	34.58 ft
r _f	Maximum frontal area (basic fuselage)	15.75 ft ²
v _f	Maximum width (basic fuselage) F.S. 169	54 in
h _f	Maximm depth	
•	Basic fuselage over canopy (F.S. 169)	88.1 in
	Including ducts (F.S. 214)	73.9 in
A _f	Net surface area	221.11 ft ²
L/D	Fineness ratio (actual)	5.91
CANOPY		
1 _c	Length (actual)	19.75 ft
Fc	Maximum frontal area	3.70 ft ²
A _C	Net surface area	73.10 ft ²
L/D	Fineness ratio (actual)	8.8
NACELLE		
1 _n	Length (actual)	23.71 ft
r F	Maximum frontal area	10.50 ft ²
_	Net surface area	206.0 ft ²
An	Inlet area (includes gutters)	3.1 ft ²
L/D _n	Fineness ratio (actual)	5.025

SPEED BRAKE (Data for one side only)

	Туре	One Piece
	Location	Side of Aft Fuselage
	Number	Two
s _j	Area (Planform)	8.00 ft ²
F _j	Area (frontal)	4.24 ft ²
, j	Maximum deflection	32°
TIP TANK	(Data for one tank only)	
1 _{tt}	Overall length	142.75 in
dtt	Maximum diameter (Tank Sta. 61.875)	20.00 in
L/D	Fineness ratio	7.14
Ss _{tt}	Side area (projected)	14.1 ft ²
Sp _{tt}	Planform area (projected)	14.2 ft ²
	Volume	15.3 ft ³
A _{tt}	Total Surface Area	44.30 ft ²
A _{net} tt	Net Surface Area (wetted)	42.40 ft ²

SELECTED EXCERPTS FROM BAR REPORT

Wind Tunnel Tests of a 9 Percent Scale T-2C Model at the NASA Ames Research Center 12-Foot Pressure Tunnel, Final Data Acquisition Report

by William Bihrle, Jr.
Bihrle Applied Research, Inc.
Oyster Bay, N.Y. 11771

Dated 20 August 1973. Prepared under contract N62269-73-C-0687. Report number 73-20.

Reynolds Number Effect

Tables C-I, C-II, and C-III in this section present tabulated values of C_m , C_ℓ , and C_n , respectively for a range of angles of attack and sideslip angles as a function of Reynolds number.

It can be seen in Table C-I that no significant change in pitch is realized with varying Reynolds number at and below 12 degrees angle of attack. Above $\alpha=12$ degrees, the influence of Reynolds numbers can be detected. The magnitude of this Re effect is illustrated in Figures C-1, C-2, C-3, C-4, and C-5 at Re effect is magnified in these figures since the pitching moment coefficient is plotted to a .05/inch (normally plotted .10/inch) scale. In all instances it can be seen that the largest variation is obtained between the 1.0 and

The reason that Reynolds number plays a significant role only above 12 degrees angle of attack can be obtained from Figure C-6 which presents the lift coefficient as a function of angle of attack. This figure shows that:

- a. the lift curve is linear throughout the unstalled angle-of-attack region and is unaffected by Reynolds number above 1.0 X $10^6/{\rm ft}$.
- b. the angle of attack at which stall occurs and the magnitude of $C_{\rm LMAX}$ are directly related to the value of the Reynolds number. Consequently, number of 1.0 and 6.0 X $10^6/{\rm ft}$, respectively. The corresponding values for $C_{\rm LMAX}$ are 1.02 and 1.19.
- c. the greatest discrepancy from the Re = 6.0×10^6 /ft data occurs at Re = 1.0×10^6 /ft. The magnitude of this discrepancy is appreciably reduced for Re values of 3.0×10^6 /ft and above.

Preceding pagesblank

Obviously, the stall pattern of the wing associated with a given value of Reynolds numbers is responsible for the observed pitching moment variation with Reynolds numbers.

On Tables C-II and C-III boundaries have been drawn. The values below these boundaries deviate more than ± 5 percent (an arbritrary value) from the values obtained at Re = 6.0 X $10^6/{\rm ft}$. It can be seen that the roll and yaw characteristics fall within this tight band for all values of Reynolds number above 1.0 X $10^6/{\rm ft}$ below stall. However, for all intents and purposes, from stall to 40 degrees angle of attack the Re = 6.0 X $10^6/{\rm ft}$ data cannot be duplicated consistently within 5 percent for any Re value less than 6.0 X $10^6/{\rm ft}$. This tabulated data can also be examined for values of β = -10, 10° and β = 0, 20, 30° in Figures C-7 and C-8, respectively for roll and Figures C-9 and C-10, respectively for yaw. From these figures it can be seen that

- a. both roll and yaw are unaffected (although not within the 5% band) by Reynolds number at $\alpha = 40$ degrees within the $\beta = \pm 10$ range.
- b. Reynolds number has its largest influence on both roll and yaw between stall and 20 degrees angle of attack.
 - c. the left model wing panel stalls before the right panel.
- d. both roll and yaw are significantly affected by Reynolds number at $\alpha = 40$ degrees when $\beta = 30$ degrees.

From these initial tests, it was apparent that the full-scale aerodynamic characteristics could be realized with the 9 percent T-2C model for angles of attack below stall at a Reynolds number of 2.0 X $10^6/{\rm ft}$. However, the angle of attack at which stall occurs was dependent on the magnitude of the Reynolds number and all the aerodynamic characteristics were significantly influenced by the stall characteristics.

Based on these results, it was deemed necessary that all the T-2C control configurations be tested at a Reynolds number of 6.0 X $10^6/\mathrm{ft}$ since the complete angle of attack range (i.e., -8 to 40°) was to be run during a given test.

Effect of Transition Grit Pattern

Again, because the complete angle of attack range of -8 to 40 degrees was to be run during a given test, grit was applied both to the fuselage and airfoil sections in the manner previously described. The significance of having this grit pattern on the model was determined by testing the $\delta_e = \delta_r = \delta_a = 0^\circ$ configuration without grit at a Reynolds number of 6.0 X $10^6/\mathrm{ft}$.

From Figure C-11 it would appear that transition was set with the applied grit since $C_{\mathrm{D}_{\mathrm{O}}}$ is higher with the transition band. Since the model had no ducting, inlet spillage associated with a given mass flow, base drag, etc. were not simulated and the absolute values of drag measured during these tests are,

therefore, not significant. It can be seen in Figure C-6 that the lift versus angle of attack relationship was unaffected by grit. Since it was found (see previous section) that the wing stall pattern influenced the pitching, rolling, and yawing moment characteristics of the T-2C configuration, one would expect that the moments measured without grit would be the same as those obtained with the grit pattern.

Tables C-IV, C-V, and C-VI in this section present tabulated values of C_m , C_ℓ , and C_n , respectively for a range of angles of attack and sideslip angles as a function of grit being on or off the model.

This tabulated data can also be examined for sideslip values of -10, 0, 10, 20 and 30 degrees in Figures C-12 through C-15. The effect of grit on the yawing moment in Figures C-14 and C-13, respectively. An inspection of these tables or figures indicates the premise based on the lift characteristics to be correct. Except for a few isolated data points just above stall, the data obtained without the grit transition pattern duplicates the data obtained with grit throughout the angle-of-attack range. On this bases, the model tests with sting 002 and 003 were conducted with a clean model.

The significance of these results cannot be conclusively stated since a Reynolds number variation was not conducted with the clean model. (Although these tests had been scheduled they were deleted because of program slippages that resulted from model, instrumentation and tunnel problems.) One could conclude that these results indicate that supercritical flow conditions had been realized at or in the vicinity of a Reynolds number of 5.0 X 106/ft. On the other hand, the position could be taken that the grit pattern was not applied in an optimum fashion (whatever that might be) and that the Reynolds number variation obtained with the gritted model would have been duplicated with the clean model. If the later were the case, the full-scale stalled aerodynamic characteristics may not necessarily have been obtained. The inability to demonstrate conclusively that the full-scale stalled aerodynamic characteristics have been documented during a wind tunnel investigation is a problem which confronts all investigators. The T-2C configuration fortunately seems to be sensitive to Reynolds number in a very limited angle of attack range (i.e., between 14 and 20 degrees). Although the author is inclined to conclude that supercritical flow conditions were achieved during these tests, it is recommended that this opinion be further substantiated with a very short wind tunnel investigation. This recommendation is being made only in light of the needs of the parameter identification program.

Repeatability

Tables C-IV, C-V, and C-VI tabulate data that were obtained several times during the investigation for the basic (i.e., $\frac{\delta}{e} = \frac{\delta}{a} = \frac{\delta}{r} = 0^{\circ}$) gritted model at a Reynolds number of 6.0 X $10^6/\mathrm{ft}$. It can be seen that these data fall well within the accuracy commonly expected during a wind tunnel investigation. In fact, the comparison between data obtained with the gritted and clean model (see Figures C-12 through C-15) can also be used to illustrate this point.

Table C-I capulation of \mathcal{C}_n as a Function of α as $i\mathcal{B}$ for a sum of Reynolt, i.e., (principles).

	Q.	Re					ß				
-	.42	×10 6	-10	0	7.	.5	10	15	20	25	30
1	de,	(440)	(des)	(40)	(117)	(1/2)	(4.5)	(d.3)	(1.9)	(1/19)	(4.69)
	6	6.0	7.0581	-,0202	- 0229	0321	-0567	-0503	0682	-0650	0655
	j	50	0512	0118	0147	0216	7.0482	:6419	0610	-, 0570	0564-
		4.0	7.0473	-0082	0094	-,0187	0729	0357	-,0457	-,0491	0518
		30	-0480	7.0103	0129	02 37	.0457	-0405	0485	0528	0565
		20	-0412	- 6026	· 0051	0135	0359	7.0316	0357	-,0437	0465
	<u> </u>	10	0309	.0046	.0011	- 0002	0274	0152	0249	-0221	0331
	8	6.0	-11954	1534	1569	1657	-1937	-, 1535	-1555	1456	- 1157
		5.0	1850	1442	1480	1551	1849	1436	1449	-1364	105!
		40	- 18.51	1748	- 1482	1555	1819	, 394	/39/	1339	1005
		30	- 1922	1546	1568	- 1641	- 1889	-,1452	1453	1330	-11069
		2.0	1885	1491	1526	1592	- 1800	- 1348	/36/	1246	0787
	_ _	1.0	1795	-,1520	1496	-,1556	-,1786	1408	-,1350	-,1001	0951
	12	6.0	-, 2701	-, 2264	-, 2248	-,2407	2666	2656	-2168	235 3	
		5.0	-, 2627	72195	- 2212	-2312	-2576	-,2.67	2386	22 18	2071
İ		40	2560	2146	21 79	2291	2549	-2496	2317	-,2129	-1964
t		3.0	- 2601	-2189	~. 22 27	-2339	-2610	-2451	- 2346	2149	-,2013
1		2.0	-,2532	2/63	2202	2334		:2350	- 2254	- 2027	1917
	<u> </u>	1.0	2581	-2210	2261	- 2380	2371	2300	2055	1728	-,1553
	15	6.0	-, 35/9	32/8	-, 3194	34 /S	", 3515	-, 3245	-, 3048	2757	2913
1		5.0	- 3474		3098	-, 3274	1	-, 3/27	-, 3005	-,2795	2731
		40	73170		2144	3129	3/40	- 29 38	72832	-, 2655	- 2728
		30	T. 3321	- 2900	1900	-3002	3053	- 2872	2783		2655
		2.0	- 2927	2746	- 2735	-,2847	-,2974	- 28 19	2830	-, 2556	2592
	<u> </u>	1.0	2875	-, 25 74	- 2521	2578	-2713	. 2700	2560	-,2203	-,2164
	20	60	4249	7.3459	-, 3391	- 3505	-, 3634	-, 3752	-4040	3540	7. 35 74
		5.0	-,4114	3408	-, 3328		- 3493	7585			- 3457
		40	- 3682	- 3396		3463	-: 341/	3554		7.3441	34-66
		30	73538	- 3275		3369	,	1		-, 3442	3577
		20	3321	- 2157	% 97			36 69		- 3375	1
		1.0	73140	- 2721	- 28 1/	- 25 71	302c	:: 3361	-, 3446	2969	2901
	46	60	-5710	- 6651	-, 5967	-, 22.77	1	1		= 3937	7.3645
		50	-5563	- 2.8 -25,	5316	- 5676	- 5471	- 5265	-4575	4320	- 4000
,		46	- 5768	- >746	-57/3	7.5626	-5455	5%57	-4566	4450	-4218
1		30	- 5467	5752	-5715	1.5633	.5 344	- 5 322	7.4949	-45 38	-4525
		2.0	- 5342	5566	- 5524	.572	-5265	- 50 45	- 4747	- 4422	- 4428
	<u> </u>	1.0	5245	-, 5441	5346	5733	4144	4524	- 4267	3779	1 33 /
		33.1	157 5 1800	r							

Post Ista post

Table C-II Adolation of C_2 cas a Function of α and β for a search of Reynolds Pursure (deleted Redet).

$ \begin{array}{ c c c c c } \hline \alpha_{1} & R_{0} & R_$	0567 0558 0558 0554 0565 0487 80487 80487 80478 70505 0457
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0568 0567 0558 0558 0554 0565 0487 80487 80487 80487 80478 70505 20457
50	0567 0558 0558 0554 0565 0487 80487 80487 80478 70505 0457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0558 0558 0554 0565 0488 0487 80487 80487 80478 70505 20457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-,0558 -,0554 -,0565 -,0487 8 -,0487 8 -,0487 8 -,0478 7 -,0505 2 -,0457
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0554 0565 0489 80487 80487 80478 70505 20457
1.0	0565 0488 0487 80487 80487 80478 70505 20457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7.0488 7.0489 8 7.0487 8 7.0487 8 7.0478 1 7.0505 2 7.0457
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c489 80487 80487 80478 70505 20457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60487 60487 80478 70505 20457
3.0 $.0210$ 0020 0068 $-,0142$ 0250 0329 0412 0452 2.0 $.0205$ 0022 0068 0139 0244 0319 0397 0442 1.0 1.0207 0012 0061 0121 0219 0315 0388 0459 1.0 0.0207 0022 0072 0148 0251 0330 0397 0412 1.0	80487 80478 70505 20457
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30478 70505 20457
10 .0207 - 0012 - 0061 - 6121 - 0219 - 0315 - 0388 - 0459 12 6.0 .0207 - 0022 - 0072 - 0148 - 0251 - 0330 - 0347 - 0418 50 .0207 - 0022 - 0071 - 0144 - 0247 - 0331 - 0364 - 0418 4.0 .0206 - 0015 - 0065 - 0138 - 0244 - 0328 - 0366 - 042 3.0 .0192 - 0033 - 0050 - 0155 - 0254 - 0282 - 0375 - 042 2.0 .0194 - 0028 - 0075 - 0148 - 0153 - 0266 - 0367 - 0418 16 6.0 .0009 - 0271 .0035 - 0071 - 0146 - 0267 - 0385 - 0434 16 6.0 .0009 - 0271 .0071 .0008 - 0154 - 0327 - 0451 - 0486 5.0 .0215 - 0127 .0070 - 0018 - 0144 - 0369 - 0496 - 0566 4.0 .0170 .0079 .0024 .0060 - 0164 - 0361 - 0531 - 059	70505
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 0457
50 .0207 -0022 -0071 -0144 -0247 -0331 -0364 -0418 4.0 .0206 -0015 -0065 -0138 -0244 -0328 -0366 -042 3.0 .0192 -0033 -0050 -0155 -0254 -0282 -0366 -042 2.0 .0194 -0028 -0075 -0148 -0153 -0266 -0367 -0418 4.0 .0197 .0005 -0035 -0071 -0146 -0267 -0385 -0436 6.0 .0009 -0271 .0008 -0154 -0327 -0451 -0486 5.0 .0215 -0127 .0070 -0018 -0144 -0369 -0496 -0566 4.0 .0170 .0079 .0024 .0060 -0164 -0361 -0531 -059	i t
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4.0 .0206 -0015 -0065 -0138 -0244 -0328 -0366 -042 3.0 .0192 -0033 -0080 -0155 -0254 -0282 -0375042 2.0 .0194 -0028 -00750148 -0153026603670415 1.0 .0197 .000500350071 -01460267 -0385 -0434 1.6 6.0 .00090271 .0091 .00080154 -0327 -0451 -0451 5.0 .02150127 .007000180144036904960566 4.0 .0170 .0079 .0024 .0060016403610531059	-0458
2.0 .0194 -0028 -0075 -,0148 -0153 -,0266 -,0367 -,0415 1.0 .0197 .0005 -,0035 -,0071 -0146 -,0267 -0385 -0436 16 6.0 .0009 -,0271 .0091 .0008 -,0154 -,0327 -,0451 -,048 5.0 .0215 -,0127 .0070 -,0018 -,0144 -,0369 -,0496 -,0566 4.0 .0170 .0079 .0024 .0060 -,0164 -,0361 -,0531 -,059	20456
16 6.0 .00090271 .0091 .00080154036704510483 5.0 .02150127 .007000180144036904960566 4.0 .0170 .0079 .0024 .0060016403610531059	1 1
16 6.0 .00090271 .0091 .0008015403270451048 5.0 .02150127 .007000180144036904960566 4.0 .0170 .0079 .0024 .0060016403610531059	MUCHICLECCIAL
5.0 .02150127 .007000180144036904960566 4.0 .0170 .0079 .0024 .0060016403610531059	40487
4.0 .0170 .0079 .0024 .0060016403610531059	2 - 0495
1	
3,0 ,0260 ,0074 ,0022 -,0059 -,0214 -,0406 -,0539 7,057	80616
2,0 .0252 .00(1 .00200066 - 023303760469053	- 1 - 1
4 1.0 .0235 .0001 -0068 -0162 -02840406 -0488 -053	30636
20 6.0 .0134 - 0111 - 0146 -0191 -0291 -0448 -0607 -078	7 -0866
5.0 , 0144 - 0112 -, 0134 - 0188 - 0286 - 0407 - 0597 - 0797	26871
40 10044 -0123 -0044 -0194 -0373 -0556 -0672 -073	Cre co co co co
3.0 .0261 -0013 -0043 -0088 -0315 -0493 -0650 -071	30805
2.0 .0262 .0051 .00090047 -0298 -0466 - 0604 -068	96795
10 .62486617 .6021618603050466 -0597 -067	
76 6.0 ,0210002000830166027403860738051	133 23112 216
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5 6627
1 4.6 .0234 -0035 -6085 - 6164 -6315 -6418 -6495 -661	
30 .0658 -6034 -6094 -6191 -0316 -0430 -0537067	5-0747
4.0 ,0218 - 661 - 6103 - 6202 - 6310 -6-143-6545 - 667	1
4 10 1.6234 - 6055 - 6164 - 6183 - 6287 - 6318 - 6484 - 653	1

Finite C-III . Lightly, of \mathcal{C}_n as a Pointion of $\pmb{\alpha}$ and $\pmb{\beta}$ for a sum of a constant of the finite section of the finite section of

19

Œ	Re					/3				
1	110-6	-10	0	ċ.	5	10	15	20	25	30
(10)	1		(119)	(409)	(11-3)	(465)	(./05)	(deg)	(veg)	(184)
0	6.0	6145	.0002	.0031	.6653	.0147	:1155	.0299	,0377	.0441
	50	-, 1145	.0001	,0034	,0053	.0150	.0183	0300	.0375	.0443
	4.0	-,0146	-, 0003	,0031	.0080	.0145	.0180	,0244	.0374	.0431
	30	0147	-0003	,0032	.0081	.0145	.0182	0289	.0367	.0433
	20	-,0149	-,0008	.0030	,00.79	.0172	10185	.0283	. 0370	. 0434
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.0	-0151	0012	.0027	10079	.0150	,0201	.0349	.0425	,0474
8	6.0	-,0179	0 .	.0042	.0096	,0175	.0167	.0271	.0373	.0436
	5.0	-,0172	.0004	.0041	.0097	.0176	.0168	,0272	,037/	.0432
	4.0	0172	,0001	.0041	.6095	.0172	.0163	,0271	0365	.0428
	3.0	-,0168	.0001	,0042	,0096	,0168	.0161	.0270	.0366	.0429
	2.0	-0169	- 0005	.0040	0096	.0169	.0159	.0267	.0366	0435 vieweceeeee
¥	1.0	-,0159	-002.	.6031	,0101	,0172	.0182	·0288	0411	,0463
12	60	-,0176	0	.0046	.0108	.0196	,0250	.0271	.0386	.0438
	50	-,0172	.0003	.0047	.0108	.0192	.0245	.0289	.0388	c433
	40	C164	,0002	0045	,0107	.0184	. 0233	.0282	.0375	.0427
'	30	-, 0172	0006	.0039	. 6695	.0169	0/54	.0277	10376	. 0426
	20	-,0171	0003	10044	.0077	.0060	. 0154	.0275	0371	. 0432
<u> </u>	1.0	-, 0165	, 0008	0076	.00 %6	.0092	.0175	.0303	.0408	,0453
16	6.0	- Co to	.0017	0052	0043	0031	0648	,0221	.0282	0332
	5.0	0104	.0034	-,0057	0061	0008	.0061	.0189	,0260	.0291
	40	0028	,0061	.0048	0033	0003	.0088	.0188	,0242	.0293
	30	-1136	7.0058	0033	0016	70002	.0082	.0153	02/2	10335
	20	-0047	0061	-0041	0031	-0014	,0060	0129	.0264	.0397
<u>Y</u>	10	-, CO20	CO25	0002	.0011	.0003	.6050	,0140	10280	.0414
20	€.0	- 0002	,0048	,0064	Careero	,0097	10168	.0186 	.0262	0369
	5.C	- 0010	.0044	,0056	.0073	.0098	0165	1	.0262	.034€
	4.0	-,0027	.6610	.0007	0034	.0033	10035	.0164	.0253	.0405
	30	0057	0004	.0004	,0006	.0028	.0075	.0156	.0263	.0415
	20	- 0043	-,6053	0035	.0003	.0025	.0051	,0125	·c252	.0409
1	1.0	0264	Livis	0018	.0062	10094	.6072	.0140	.0270	.0428
40	60	- 6202	.0015	. 6065	.0127	,0219	.0345	C405	1C479	:0377
	5.6	-,6267	10615	.0079	10108	,0208	.0348	.6444	,0554	·C6.02
	4.0	70225	.6007	.1062	,0134	0230	. 0391	.0474	.0596	.0634
	30	6241	,0009	.0076	.0123	10238	.0463	.0489	5641	.0746
	2.0	0214	10030	,0095	-0140	0229	0371	.0475	.0597	4737
	1.0	0193	10025	.0078	-0137	.0243	0337	.0454	.0466	,0411
	* Boq	data pu	nΓ,							

. The contraction of the state of the contraction
	a_{i}	CRIT					13 (de	<i>y)</i>			
- 1			-10	i.		5	10	15	.'0	.: 5 1	je :
, L	1-8	OF1-	.0706	.1103	. 1033	.6476	.0674	,0501	.0354	c'/3	.6712
1	1	CN	16683	.1657	1050	.0780	.0712	.0557	.0423	.0+17	0199
	-27	CFF	- 0015	.0313	,0345	.0767	.0002	0102	70317	0315	-0107
	.}	CN	.0021	.0440	.0415	.0317	0062	.6005	0225	-,0258	-6345
	C	UFF	0731	0371	-0402	0450	-1694	- 650	0785	: 0755	:0716
		ON	0691	-0301	-0322	-0408	.0630	-0569	-0710	0671	-0682
			-,0619	-0242	.0255	- 6349	-0568	- 6258	- 4673	- C657	- 6607
	<u> </u>	Y	-,0581	-0202	-c229	-0321	-,0567	-0503	-0682	065C	- 0655
	4	OFF	-,1452	- 1069	- 1098	-1178	/ 356	1097	-1164	1091	- 0979
	<u> </u>	ON	-, / 3 9 9	-0980	-,1005	-,1102	-, 1287	1035	1107	-1038	-0938
	6	OFF	7.2728	-, 1724	7.1753	1836	- 2060	:1977	-1582	1479	1132
1	İ	ON	-2014	-1617	-1642	1720	-1461	1529	-1555	- 1423	1157
-	<u> </u>	1	1454	- 1534	- 1569	1657	- 1437	1535	7,1555	1456	1159
	12	UFF		72427	24+4	- 2520	- 2777	-,2791	- 25/5	2307	- 2177
	-	ON	2738	-2330	-,2369	- 2463	27/1	- 2684	2466	2272	2107
	¥	1	-,2704	2264	7. 2 298	2407	-, 2666	- 2656	: 2168	2353	2191
	14	UFF	-,3,77	-,2827	-,2850	-, 2951	-, 3273	-,2936	2802	-,2685	2733
	1	CN	-, 3085	2743	2743	-,2860	3194	28 48	-,2776	-2641	2707
	15	UFF	-,3385	3155		34/4	3425	-, 3118	-,2990	28%	2966
		CH	3297	- 2911	3170	- 3331	3401	-, 3034	2939	2840	2938
	¥	1	3323	2975	2917	3330	3393	- 30 31	- 2107	2840	2925
	16	OFF	-3632	3246	:3335	- 3560	: 3641	- 3335	- 3044	- 2925	- 3035
ı		CN	- 3 5 38	- 3191	7,3:04	-3475	3592	3240	4	- 2896	- 3067
			7.3583	-,3257	,	- 3494	1	1 .	- 3079	-,3006	3.88
	1	1	- 3514	3218			7,3515			2957	- 2913
	18	CFF	-,4042	1	- 3629	- 3688	3550	- 3563	3422	7.3/9/	7,3235
-	<u> </u>	CN	- 3761	- 34/8	- 3448	- 3540	- 3557	- 3707	34 3 3	-, 3/15	- 3201
	20	OFF	4266	-34/8	7.3383	- 3434	- 3622	1	7.3945	1	_
		CN	-4271	-3499	3466	- 3457	- 3556		-3751	3540	- 36.26
-	<u> </u>	1	-,4249	-,3 +89	- 3371	-,3505	36.34		-,7040	3590	3579
	25	UFF		-4436	1	- 4467			-, 4497		4453
		in	- 4553	 		- 4334	- 4 344		 	-4317	
	30	iFI-	- 4532	1 '	1	4744	1	4715	- 4220	:4697	-4637
-	1	UN	4748			- 4900	1	-		-4539	74556
ì	35	CFF	-,5237	-,5573	i	i .	1	-14939	1	- 4322	1
-	<u> </u>	CN	518i					- 4722	-,460		77453
	11 6	SFF	5627		6031	- 53.74	i	5397	-5087	-45/4	1
		UN.	1	- 5965	- 5938	1	-5580	1	-, 4959	435	- +0 Y.
1	¥	1 4	-,5710	6051	- 5767	1 . 2842	- SE01	- 5769	-, 5002	13937	1-3147

Table (Tabulation of C2 as a Function of α and β for a Gritted and Clean Model at a Reynolds Number of $6.0 \times 10^6/r_1$.

	\mathcal{I}_{μ}	CRIT					B (44)	5)			
	ideg)		-10	0	2	ゔ゙	10	15	20	25	30
(- 8	OFF	.0197	-0026	-0017	-0141	-0256	-,0352	70468	-0538	0622
	4	ON	.0194	0025	-0072	-0142	0251	7.0351	0471	0539	:0615
	-4	UFF	-5199	0025	-,20714	0143	70257	-0348	0452	-0521	-0597
ļ		CN	.0194	0026	0071	ci 39	0255	-,0341	0452	-0518	0588
	0	UF1=	.0200	0028	7.0071	-0147	-0258	:0345	- 0445	0516	-0572
		CN	.0201	0027	0077	0147	0258	0346	0448	0514	-0568
			.0208	- 0021	0065	-0136	0250	-0341	0439	0507	0568
	Y	<u> </u>	.021/	-00/9	0060	7.0129	0240	0329	0428	-0497	-0568
İ	4	UFF	.0197	-0027	-0078	-0152	0260	0345	0430	- 6491	- 0539
ł	4	ON	,0200	0028	-0078	-0151	- 0256	~.0342	0426	0487	0533
	ε	OFF	.0197	-0032	- 0085	0154	-0264	7.0349	0411	0465	- 0495
l		ON	.0206	70027	0073	0/48	0254	0333	-0408	0454	- 0487
	<u> </u>	+	.0209	70020	.0070	0144	7.0247	7033/	0401	0451	0488
	12	OFF		0029.	0085	0159	-0261	03-10		- 0424	0457
}		2∧′	.0206	0027	0074	0151	v 254	0332	0361	0410	0452
	-	¥	.0207	-,0022	7.0072	0148	-0251	0330	-0397	7.0412	7.0957
Į	14	UFF	.0031	-,0082	0128	0141	0090	0263	1	0424	-,0452
1		CN.	84.00.	- 0065	0122	-0187	0095	0261	- 0373	-,0423	04-46
	15	UFF	.0003	-,0225	0164	10024	0043	0266	0407	0452	0458
		ON	.0009	-0082	.0096	.0013	0122	0274	0389	0433	0465
	_	_ ¥	.0057	-0036	0064	,0043	-0103	0254	0380	0432	0453
	16	OFF	0011	.0139	8800.	, 6004	0149	-,0357	0454	0487	0477
		ON	.0081	.0136	.0044	.0019	0154	0329	0435	-0483	-0511
			.0102	.0248	10156	,0084	0107	-0298	- 0407	-0499	0496
	_\\	+	,0009	-, 02 77	.0077	.0008	- 0154	0327	-07.51	0482	-0495
	16	UFF	.0154	0167	0203	-0264	0303	0466	0612	0513	-,0600
		UN	.0215	-0031	0066	0159	0246	- 0416	- 06 19	7.0627	0131
	20	OFF	.0187	- 0081	- 0095	0167	0334		-0655	-0714	0869
		UN	.0100	c140	6138	0216	0354	-0520	0663	0741	085!
	Ÿ	<u> </u>	.0134	-0111	0146	-6191	0291	-0448	0609	0788	-0366
-	25	OFF	.6080	.0104	0116	-0159	0310	- 0414	0570	7.0708	7.08+7
		C.N'	,0099	-,0085	-0097	- 0160	- 0294	0383	-0538	-0701	US 31
	30	نىرىت ب	.0137	-0144	-0156	-0146	0328	-,0453	6598	0745	-,6847
1	1	ON	.0151	-0107	-0165	- 0220	0312	0446	0601	0715	- 0360
1	35	UFF	0257	- 6541	-0019	-,0186	- 0320	7.0471	0541	0670	- 2729
İ		ON	1C253	· CC20	- c 083	U164	-,0324	-,0464	-0528	CE 58	76727
	46	CFF	,02/3	- 6053	-0125	- 4799	-0316	-,0447	-, 0487	0569	:6574
		ċN'	.0261	0050	- 0120	0146	7.03:5	-, 0413	-0454	0555	- 6643
	,		.0210	7.0046	. 6083	-0166	-0279	10386	-0438	-0519	-0515

and ${f c-vi}$. The state of ${f a}$ and ${f B}$ are first and ${f B}$ are first and ${f c-vi}$. The state of ${f a}$ and ${f c}$ are state of ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ and ${f c}$ are state of ${f c}$ are sta

α_{μ}	GRIT					13 (do))			-
4:29)		-10	(.: 1	5	70	15	20	1,5	2.7
-8	OFF	6147	.00,2	.004x	/ 5' 1	.0113	.6:24	0324	.03041	, (, ;
1 7	ON	-,0151	.0016	. 6656	0107	.078	.02.16	.03281	1	
-4	CFF	-0150	.000)	6037	160711	. 6165	.0207	103/41	.0373	. 4
1	CN	. 0151	.0010	.015	.0077	0171	.0265	6317	. 63671	· · ·
0	OFF	70153	.0001	.00:2	.0084	.2152	.0190	.0303	0371	.6955
	ON	0151	.0007	, 2037	,0041	,0156	,0191	.0304	2322	.6+ st .
		-0153	-0003	6029	10052	. 0148	.0154	. 0276	,0375	13411
L	1	-0145	.0002	. 2637	.0033	-0177	.:185	.0249	.0317	c
4	OFF	-0173	- 0002	6634	.0037	0165	0185	.0293	.0396	161766
1	CN	0170	,0003	6034	.0 6 45	0166	.0156	,0293	.0392	. 1 4. 1
8	CFF	0183	0003	0040	.0101	.0189	.0226	,0279	,0342	16.51
	ON	-0132	- 0000	-0139	0099	.0178	,0172	.0274	.0382	, 64 35
	1	-0179	0000	.0042	0096	.0175	.0167	.0271	.037.3	.6434
12	UFF		- 0011	60176	-0111	.0207	0266	.0244	. 0403	· 1/ 1/2 2 6
	ON	-0184	-0001	.0045	10108	.0196	,0255	.0297	10397	,6745
	1	0176	0000	0046	10108	0196	,0250	.027/	.0386	-04. Se
14	OFF	7.0073	0022	.0030	0044	.0020	.0113	.0264	.0373	10450
	CN	0054	- 0011	.0026	10094	,0017	,0126	.0265	0313	0424
15	OFF	0071	-6007	10023	.0001	.0017	.0104	.0245	,0338	6410
	ON	0056	-0016	- 6028	-,0022	- 0004	,0093	.0252	.0377	1416
	1	-0050	-,0017	.6046	- 6.16	- 6009	.0102	.0252	.0353	.04/3
16	OFF	-0028	-,0057	- 60-16	- 6032	0021	.0012	.02/3	.0287	.0350
	ON	- 6004	-0070	2056	(050	0014	10075	0227	.030;	1. 31 5
		00,3	0027	1.00 19	" 68 17	1 - 0019	,0047	0:28	8150.	-0361
l i		-,00.10	00,7	market Jan	70043	- 00 3/	.0048	10221	10:82	2332
18	CFF	.0014	. 0005	43	. 0044	10076	.0125	.6196	.0295	6417
1	CN'	10072	- 2003	,0023	100 1 F 3	007	.ccy2	.0217	0272	. 5 4
10	CFF	00,0	.0054	003	6272	.0136	0113	0173	.0217	10.55
	ON	-,0001	.0000	.0067	, 6000	6113	.0165	6125	6285	0555
	1	- 0002	.00 48				0/63			0:05
25	CFF	-6041	.6026	126	1 6146	1.0136	10188	0271	1 0357	100
	CA	-,0075	t = 26	, 63 12/	186.72	1 136	0183	263	1 6:53	
13C	CFF	- (12)	12.12.1	0111	1	613.1	6255	.0303	: 370	
1, 1	JW	- 1124	- · · t		1	172	6247	10278	1 35	
735	CFF	- 6/82	V . 41			7	63.6			
1	1	-0175	1	i	1	1	1 03/2			
170		t					1,612	,		
		1	7.7	1	1	1	37.1		1	1
	,			· .						
age of James or				~~~~	a t militarium in					-

Dragoding page

C-23

Preceding page blank

Preceding page blank

Preceding page blank