MAIN FORECASTING

```
In [4]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from statsmodels.tsa.statespace.sarimax import SARIMAX
         from statsmodels.tsa.stattools import adfuller
 In [7]: # Load the dataset and strip column names of extra spaces
         data = pd.read_excel(r"C:\Users\KARTHIKEYA\Desktop\Mini Project\Datasets\
         data.columns = data.columns.str.strip() # Remove leading/trailing spaces
         # Display the first few rows and check column names
         print("Columns in dataset:", data.columns)
         print(data.head())
         # Ensure 'Year' is in datetime format and set as index
         if 'Year' in data.columns:
             data['Year'] = pd.to_datetime(data['Year'], format='%Y', errors='coer
             data.set_index('Year', inplace=True)
         else:
             print("Error: 'Year' column not found!")
         # Identify correct column name for coal consumption
         coal_col = None
         for col in data.columns:
             if "coal consumption" in col.lower(): # Case-insensitive match
                 coal_col = col
                 break
         if coal_col:
             time series = data[coal col]
             print("Coal Consumption Data Extracted Successfully")
         else:
             print("Error: Coal Consumption column not found! Available columns:",
        Columns in dataset: Index(['Entity', 'Year', 'Coal consumption - TWh'], dt
        ype='object')
           Entity Year Coal consumption - TWh
        0 Africa 1965
                                      323.49615
        1 Africa 1966
                                      323.12220
        2 Africa 1967
                                      330.29156
        3 Africa 1968
                                      343.51290
        4 Africa 1969
                                      346.64288
        Coal Consumption Data Extracted Successfully
In [49]: #SCATTER PLOT SHOWING CONSUMPTION OF COAL FROM 1965 - 2023
         plt.figure(figsize=(12, 7))
         plt.scatter(time_series.index, time_series, color='steelblue', alpha=0.7)
         plt.title("Coal Consumption Over Time (Scatter Plot)")
         plt.xlabel("Year")
         plt.vlabel("Coal Consumption")
         plt.grid(True, linestyle="--", alpha=0.5)
         plt.show()
```


In [54]: #TIME SERIES PLOT(LINE GRAPH) SHOWING CONSUMPTION OF COAL FROM 1965 - 202
Visualize the data
plt.figure(figsize=(12, 7))
plt.plot(time_series, label="Coal Consumption")
plt.title("Coal Consumption Over Time")
plt.xlabel("Year")
plt.ylabel("Coal Consumption")
plt.legend()
plt.show()


```
import matplotlib.pyplot as plt

# Filter for years 2015-2023
start_year, end_year = 2015, 2023
```

```
filtered_data = data[(data["Year"] >= start_year) & (data["Year"] <= end_</pre>
# Get unique countries
countries = filtered_data["Entity"].unique()
# Plot multiple countries with different colors
plt.figure(figsize=(12, 10))
for country in countries:
    country_data = filtered_data[filtered_data["Entity"] == country]
    plt.plot(country_data["Year"], country_data["Coal consumption - TWh"]
# Scatter plot with country labels
for _, row in filtered_data.iterrows():
    plt.text(row["Year"], row["Coal consumption - TWh"], row["Entity"], f
# Improve visualization
plt.title("Coal Consumption Over Time (2015-2023)")
plt.xlabel("Year")
plt.ylabel("Coal Consumption (TWh)")
plt.legend(loc="upper left", bbox_to_anchor=(1, 1))
plt.grid(True, linestyle="--", alpha=0.5)
# Show plot
plt.show()
```



```
In [118... # Check for stationarity using ADF (Augumented Dickey-Fuller) test
         adf_test = adfuller(time_series)
         print("ADF Test Results:")
         print(f"p-value: {adf_test[1]}")
         if adfuller(time_series)[1] <= 0.05:</pre>
             print("\033[1mTHE DATA IS STATIONARY.\033[0m")
         else:
             print("\033[1mTHE DATA IS NOT STATIONARY, APPLYING DIFFERENCING...\03
         # Apply differencing if necessary
         time_series_diff = time_series.diff().dropna()
         # Plot differenced data
         plt.figure(figsize=(13, 7))
         plt.plot(time_series_diff, label="Differenced Coal Consumption")
         plt.title("Differenced Coal Consumption")
         plt.xlabel("Year")
         plt.ylabel("Differenced Consumption")
         plt.legend()
         plt.show()
```

ADF Test Results: p-value: 0.0

THE DATA IS STATIONARY.


```
In [67]: import pandas as pd

# Load the dataset
df = pd.read_excel(r"C:\Users\KARTHIKEYA\Desktop\Mini Project\Datasets\CO
# Print the first few rows to check column names
print(df.head())

# Ensure the column names match your dataset
df.rename(columns=lambda x: x.strip(), inplace=True) # Strip any extra s

# Assign time series data
india_data = df # Assigning to a variable for consistency
time_series = india_data["Coal consumption - TWh"]
```

```
Entity Year Coal consumption - TWh

0 Africa 1965 323.49615

1 Africa 1966 323.12220

2 Africa 1967 330.29156

3 Africa 1968 343.51290

4 Africa 1969 346.64288
```

```
# import pandas as pd
        # # Load the dataset
        # file path = r"C:\Users\KARTHIKEYA\Desktop\Mini Project\Datasets\COAL Co
        # df = pd.read excel(file path)
        # # Clean column names (strip spaces)
        # df.columns = df.columns.str.strip()
        # # Ensure the correct column name is used
        # column_name = "Coal consumption - TWh" # Adjust if needed
        # if column name not in df.columns:
             print(f"Column '{column_name}' not found. Available columns: {df.co
        #
             exit()
        # # Assign time series data
        # time series = df[column name].dropna()
In [80]:
       # Fit ARIMA model
        p, d, q = 1, 2, 1 # Example parameters (can be tuned)
        arima_model = SARIMAX(time_series, order=(p, d, q), seasonal_order=(0, 0,
        arima_results = arima_model.fit()
```

```
In [80]: # Fit ARIMA model
p, d, q = 1, 2, 1 # Example parameters (can be tuned)
arima_model = SARIMAX(time_series, order=(p, d, q), seasonal_order=(0, 0, arima_results = arima_model.fit()

# Summary of ARIMA model
print(arima_results.summary())

# Forecast next 5 years using ARIMA
forecast_arima = arima_results.get_forecast(steps=5)
forecast_values_arima = forecast_arima.predicted_mean
confidence_intervals_arima = forecast_arima.conf_int()
```

=======	=======	======	====	======	====		=======		======
====== Dep. Vari	able:	Coal cor	sump	tion – T	Wh	No.	Observat:	ions:	
5521 Model:		SA	RIMA	X(1, 2,	1)	Log	Likeliho	od	-4
6480.771 Date:		Fr	i, 1	4 Feb 20	25	AIC			9
2967.543 Time:			·	23:44:		BIC			9
2987.390				23:44:	00	DIC			9
Sample: 2974.464					0	HQI			9
				- 55	21				
Covarianc	e Type: =======			0 	pg ====				
====									
975]	C0	ef st	d er	r 			P> z	[0.025	0.
 ar.L1	-0.00	76	0.03	5 –0	.220		0.826	-0.076	
0.060									
ma.L1 0.991	-0.99	99	0.00	5 –213	.604		0.000	-1.009	_
sigma2 e+06	1.209e+				. 467		0.000	1.2e+06	
=======	======= (L1) (Q):	======	====		 .00		rque-Bera		149
065679.55 Prob(Q): 0.00				1	.00	Pro	ob(JB):		
Heteroske	dasticity	(H):		0	.37	Ske	ew:		
-24.47 Prob(H) (806.64	two-sided)	:		0	.00	Kuı	rtosis:		

=======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (com plex-step).

```
In [87]: # Fit SARIMA model
P, D, Q, s = 1, 1, 1, 2 # Example seasonal parameters (can be tuned)
sarima_model = SARIMAX(time_series, order=(p, d, q), seasonal_order=(P, D)
sarima_results = sarima_model.fit()

# Summary of SARIMA model
print(sarima_results.summary())

# Forecast next 5 years using SARIMA
forecast_sarima = sarima_results.get_forecast(steps=5)
forecast_values_sarima = forecast_sarima.predicted_mean
confidence_intervals_sarima = forecast_sarima.conf_int()
```

=======		=======	=======	=======	=======	======
======= Dep. Vari 5521		Coal co	nsumption -	TWh No.	Observations	:
Model:		IMAX(1, 2,	1)×(1, 1, 1	, 2) Log	Likelihood	
-46488.94 Date:	2	F	ri, 14 Feb	2025 AIC		
92987.885 Time:			23:4	6:25 BIC		
93020.963 Sample:				0 HQI	r	
92999.421					C	
Covarianc				5521 opg		
=====	=========	=======	=======	=======	========	======
975]	coef		Z		[0.025	0.
ar.L1 0.057	-0.0074	0.033	-0.223	0.824	-0.072	
ma.L1	-1.0000	0.833	-1.201	0.230	-2.632	
0.632 ar.S.L2	0.0118	0.028	0.420	0.675	-0.043	
0.067 ma.S.L2	-1.0000	0.833	-1.201	0.230	-2.632	
0.632 sigma2 e+06	1.104e+06	2.53e-08	4.36e+13	0.000	1.1e+06	1.1
	========		=======	=======	=======	======
	(L1) (Q):		0.00	Jarque-Be	ra (JB):	151
179498.25 Prob(Q):			0.98	Prob(JB):		
<pre>0.00 Heteroskedasticity (H):</pre>		0.37	Skew:			
-24.62 Prob(H) (two-sided): 812.47			0.00	Kurtosis:		

=======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (com plex-step).

[2] Covariance matrix is singular or near-singular, with condition number 4.68e+29. Standard errors may be unstable.

```
In [128... # Print forecasts (ALL COUNTRIES)
         print("\nARIMA Forecast for Next 5 Years:")
         print(forecast_values_arima)
         print("\nSARIMA Forecast for Next 5 Years:")
         print(forecast_values_sarima)
```

```
ARIMA Forecast for Next 5 Years:
       5521
              45569.594535
        5522
              45579,532620
       5523 45589.430468
       5524 45599.328623
              45609.226775
       5525
       Name: predicted_mean, dtype: float64
        SARIMA Forecast for Next 5 Years:
        2024-01-01 45947.859348
       2025-01-01
                     46691.167951
       2026-01-01 47111.347328
       2027-01-01 47886.204829
                  48319.895327
        2028-01-01
        Freq: YS-JAN, Name: predicted_mean, dtype: float64
# import matplotlib.pyplot as plt
         # # Generate future years for plotting
         # future_years = pd.date_range(start=time_series.index[-1] + pd.DateOffse
         # plt.figure(figsize=(10, 6))
         # plt.plot(time series, label="Historical Data")
         # plt.plot(future years, forecast values arima, label="ARIMA Forecast", l
         # plt.plot(future_years, forecast_values_sarima, label="SARIMA Forecast",
         # plt.fill between(future years, confidence intervals arima.iloc[:, 0], c
         # plt.fill_between(future_years, confidence_intervals_sarima.iloc[:, 0],
         # plt.title(f"{entity} Coal Consumption Forecast")
         # plt.xlabel("Year")
         # plt.ylabel("Coal Consumption (TWh)")
         # plt.legend()
         # plt.show()
In [134... | # Assuming you have loaded your data and filtered for a SPECIFIC COUNTRY
         entity = "Algeria"
         # Your existing code for loading, preprocessing, and fitting models...
         # Forecast next 5 years using ARIMA
         forecast_arima = arima_results.get_forecast(steps=5)
         forecast_values_arima = forecast_arima.predicted_mean
         confidence_intervals_arima = forecast_arima.conf_int()
         # Forecast next 5 years using SARIMA
         forecast_sarima = sarima_results.get_forecast(steps=5)
         forecast_values_sarima = forecast_sarima.predicted_mean
         confidence_intervals_sarima = forecast_sarima.conf_int()
         # Generate future years for plotting
         future_years = pd.date_range(
             start=time_series.index[-1] + pd.offsets.YearBegin(),
            periods=5,
             freg='YS'
         # Plot forecasts
         plt.figure(figsize=(13, 7))
         plt.plot(time_series, label="Historical Data")
         plt.plot(future_years, forecast_values_arima, label="ARIMA Forecast", lin
```

```
plt.plot(future_years, forecast_values_sarima, label="SARIMA Forecast", l
plt.fill_between(future_years, confidence_intervals_arima.iloc[:, 0], con
plt.fill_between(future_years, confidence_intervals_sarima.iloc[:, 0], co
plt.title(f"{entity} Coal Consumption Forecast")
plt.xlabel("Year")
plt.ylabel("Coal Consumption (TWh)")
plt.legend()
plt.show()
```


WHOLE CODE FOR ANY RANDOM COUNTRY REPORT GENERATION

```
In [139...
         import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          from statsmodels.tsa.statespace.sarimax import SARIMAX
         from statsmodels.tsa.stattools import adfuller
          # Load the dataset
          # file_path = "3c681988-d6d8-4378-ba4c-2486974e9c91_COAL                     Consumption.xlsx
          # sheet_name = "coal-consumption-by-country-ter"
          # data = pd.read_excel(file_path, sheet_name=sheet_name)
         data = pd.read_excel(r"C:\Users\KARTHIKEYA\Desktop\Mini Project\Datasets\
          # Display the first few rows of the dataset
         print(data head())
          # Function to preprocess and analyze data for a given entity
         def analyze_entity(entity):
              # Filter data for the specific entity
              entity_data = data[data['Entity'] == entity].copy()
              # Ensure 'Year' is datetime and set as index
              entity_data['Year'] = pd.to_datetime(entity_data['Year'], format='%Y'
              entity_data.set_index('Year', inplace=True)
              # Extract the coal consumption column
              time_series = entity_data['Coal consumption - TWh']
```

```
# Check if there is enough data to proceed
if len(time_series) < 20:</pre>
    print(f"Not enough data for {entity}. Please select another count
# Visualize the data
plt.figure(figsize=(10, 6))
plt.plot(time series, label=f"{entity} Coal Consumption")
plt.title(f"{entity} Coal Consumption Over Time")
plt.xlabel("Year")
plt.ylabel("Coal Consumption (TWh)")
plt.legend()
plt.show()
# Check for stationarity using ADF test
adf_test = adfuller(time_series)
print("ADF Test Results:")
print(f"p-value: {adf_test[1]}")
if adf test[1] <= 0.05:
    print("The data is stationary.")
else:
    print("The data is non-stationary. Applying differencing...")
# Apply differencing if necessary
time_series_diff = time_series.diff().dropna()
# Plot differenced data
plt.figure(figsize=(10, 6))
plt.plot(time_series_diff, label="Differenced Coal Consumption")
plt_title(f"Differenced {entity} Coal Consumption")
plt.xlabel("Year")
plt_ylabel("Differenced Consumption")
plt.legend()
plt.show()
# Fit ARIMA model
p, d, q = 1, 1, 1 # Example parameters (can be tuned)
arima_model = SARIMAX(time_series, order=(p, d, q), seasonal_order=(0)
arima_results = arima_model.fit()
# Summary of ARIMA model
print(arima_results.summary())
# Forecast next 5 years using ARIMA
forecast_arima = arima_results.get_forecast(steps=5)
forecast_values_arima = forecast_arima.predicted_mean
confidence_intervals_arima = forecast_arima.conf_int()
# Fit SARIMA model
P, D, Q, s = 1, 1, 1, 2 # Example seasonal parameters (can be tuned)
sarima_model = SARIMAX(time_series, order=(p, d, q), seasonal_order=(
sarima_results = sarima_model.fit()
# Summary of SARIMA model
print(sarima_results.summary())
# Forecast next 5 years using SARIMA
forecast_sarima = sarima_results.get_forecast(steps=5)
forecast_values_sarima = forecast_sarima.predicted_mean
confidence_intervals_sarima = forecast_sarima.conf_int()
```

```
# Generate future years for plotting
    future_years = pd.date_range(
        start=time_series.index[-1] + pd.offsets.YearBegin(),
        periods=5,
        freq='YS'
    )
    # Plot forecasts
    plt.figure(figsize=(13, 7))
    plt.plot(time_series, label="Historical Data")
    plt.plot(future years, forecast values arima, label="ARIMA Forecast",
    plt.plot(future_years, forecast_values_sarima, label="SARIMA Forecast")
    plt.fill_between(future_years, confidence_intervals_arima.iloc[:, 0],
    plt.fill_between(future_years, confidence_intervals_sarima.iloc[:, 0]
    plt.title(f"{entity} Coal Consumption Forecast")
    plt.xlabel("Year")
    plt.ylabel("Coal Consumption (TWh)")
    plt.legend()
    plt.show()
# Example usage: Analyze data for India
entity = "India"
analyze_entity(entity)
```

```
Entity Year Coal consumption - TWh

0 Africa 1965 323.49615

1 Africa 1966 323.12220

2 Africa 1967 330.29156

3 Africa 1968 343.51290

4 Africa 1969 346.64288
```


ADF Test Results: p-value: 1.0 The data is non-stationary. Applying differencing...

Differenced India Coal Consumption

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency info rmation was provided, so inferred frequency YS-JAN will be used.

self._init_dates(dates, freq)

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency info rmation was provided, so inferred frequency YS-JAN will be used.

self._init_dates(dates, freq)

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\statespace\sarimax.py:966: UserWarning: Non-stationary starting autoregressive parameters found. Using zeros as starting parameters

warn('Non-stationary starting autoregressive parameters'

========	========		=======			=====
====== Dep. Varia 59	able: Coa	l consumptio	n – TWh	No. Observat	ions:	
Model:		SARIMAX(1	, 1, 1)	Log Likeliho	ood	
-362.543 Date:		Sat, 15 F	eb 2025	AIC		
731.087 Time:		0	0:37:01	BIC		
737.268 Sample:		01-	01–1965	HQIC		
733.495		- 01-	01-2023			
Covariance	e Type:	V -	opg			
=====	=========	========	=======	========	:========	=====
975]	coef	std err	Z	P> z	[0.025	0.
ar.L1	0.9927	0.017	60.113	0.000	0.960	
1.025 ma.L1	-0.8489	0.068	-12.493	0.000	-0.982	_
0.716 sigma2 e+04	1.527e+04	1603.095	9.523	0.000	1.21e+04	1.84
	=========	========	=======	-=======	:=======	======
	(L1) (Q):		1.46	Jarque-Bera	(JB):	
171.07 Prob(Q):			0.23	Prob(JB):		
<pre>0.00 Heteroskedasticity (H):</pre>		:	59.17	Skew:		
11.21	two-sided):			Kurtosis:		

=======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency YS-JAN will be used.

self._init_dates(dates, freq)

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency info rmation was provided, so inferred frequency YS-JAN will be used.

self._init_dates(dates, freq)

=======	=====							
Dep. Vari 59	able:	Coal consumption - TWh No. Observations:						
Model:	SAR	MAX(1, 1, 1)×(1, 1, 1	, 2) Log	Likelihood			
-349.252		Co	2025 ATC					
Date: 708.505		Sat, 15 Feb 2025 AIC						
Time:			7:02 BIC	С				
718.631			01 01	1005 11070				
Sample: 712.431			01-01-	1965 HQIC				
7121131			- 01-01-	2023				
Covarianc	e Type:			opg 				
====								
975]	coef	std err	Z	P> z	[0.025	0.		
ar.L1	-0.9907	12.344	-0.080	0.936	-25.185	2		
3.204 ma.L1	0.9977	25.259	0.039	0.968	-48.510	5		
0.505								
ar.S.L2 0.460	-0.8222	0.185	-4 . 443	0.000	-1.185	_		
ma.S.L2	0.3034	0.289	1.051	0.293	-0.262			
0.869 sigma2 e+05	1.493e+04		0.077		-3.67e+05	3.97		
	:			========		======		
Ljung-Box (L1) (Q):			0.07	Jarque-Ber	a (JB):			
121.41 Prob(Q):			0.80	Prob(JB):				
0.00 Heteroskedasticity (H):			33.48	Skew:				
0.72 Prob(H) (two-sided): 10.07			0.00	Kurtosis:				

=======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (com plex-step).

India Coal Consumption Forecast

WHOLE CODE FOR ANY RANDOM COUNTRY REPORT GENERATION WITH EVALUATION METRICS (MAE, RMSE, MAPE)

```
In [144... import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from statsmodels.tsa.statespace.sarimax import SARIMAX
         from statsmodels.tsa.stattools import adfuller
         # Load the dataset
         data = pd.read_excel(r"C:\Users\KARTHIKEYA\Desktop\Mini Project\Datasets\
         # Display the first few rows of the dataset
         print(data head())
         # Function to preprocess and analyze data for a given entity
         def analyze_entity(entity):
             # Filter data for the specific entity
             entity_data = data[data['Entity'] == entity].copy()
             # Ensure 'Year' is datetime and set as index
             entity_data['Year'] = pd.to_datetime(entity_data['Year'], format='%Y'
             entity_data.set_index('Year', inplace=True)
             # Extract the coal consumption column
             time_series = entity_data['Coal consumption - TWh']
             # Check if there is enough data to proceed
             if len(time_series) < 20:</pre>
                 print(f"Not enough data for {entity}. Please select another count
                 return
             # Visualize the data
             plt.figure(figsize=(10, 6))
             plt.plot(time_series, label=f"{entity} Coal Consumption")
             plt.title(f"{entity} Coal Consumption Over Time")
             plt.xlabel("Year")
```

```
plt.ylabel("Coal Consumption (TWh)")
plt.legend()
plt.show()
# Check for stationarity using ADF test
adf test = adfuller(time series)
print("ADF Test Results:")
print(f"p-value: {adf test[1]}")
if adf_test[1] <= 0.05:</pre>
    print("The data is stationary.")
else:
    print("The data is non-stationary. Applying differencing...")
# Apply differencing if necessary
time_series_diff = time_series.diff().dropna()
# Fit ARIMA model
p, d, q = 1, 1, 1 # Example parameters (can be tuned)
arima_model = SARIMAX(time_series, order=(p, d, q), seasonal_order=(0
arima_results = arima_model.fit()
# Summary of ARIMA model
print(arima_results.summary())
# Forecast next 5 years using ARIMA
forecast_arima = arima_results.get_forecast(steps=5)
forecast_values_arima = forecast_arima.predicted_mean
confidence_intervals_arima = forecast_arima.conf_int()
# Fit SARIMA model
P, D, Q, s = 1, 1, 1, 2 # Example seasonal parameters (can be tuned)
sarima_model = SARIMAX(time_series, order=(p, d, q), seasonal_order=(
sarima_results = sarima_model.fit()
# Summary of SARIMA model
print(sarima_results.summary())
# Forecast next 5 years using SARIMA
forecast_sarima = sarima_results.get_forecast(steps=5)
forecast_values_sarima = forecast_sarima.predicted_mean
confidence_intervals_sarima = forecast_sarima.conf_int()
# Calculate performance metrics
actual_values = time_series.values
forecast_values_arima = forecast_values_arima.values
forecast_values_sarima = forecast_values_sarima.values
# Mean Absolute Error (MAE) for ARIMA and SARIMA
mae_arima = np.mean(np.abs(actual_values[-len(forecast_values_arima):
mae_sarima = np.mean(np.abs(actual_values[-len(forecast_values_sarima
# Root Mean Squared Error (RMSE) for ARIMA and SARIMA
rmse_arima = np.sqrt(np.mean((actual_values[-len(forecast_values_arim
rmse_sarima = np.sqrt(np.mean((actual_values[-len(forecast_values_sar)
# Mean Absolute Percentage Error (MAPE) for ARIMA and SARIMA
mape_arima = np.mean(np.abs((actual_values[-len(forecast_values_arima
mape_sarima = np.mean(np.abs((actual_values[-len(forecast_values_sari
# Calculate performance metrics as percentages
```

```
total actual sum = np.sum(actual values)
     mae_arima_percentage = (mae_arima / total_actual_sum) * 100
     rmse_arima_percentage = (rmse_arima / total_actual_sum) * 100
     mape_arima_percentage = mape_arima / 100
     mae sarima percentage = (mae sarima / total actual sum) * 100
     rmse_sarima_percentage = (rmse_sarima / total_actual_sum) * 100
     mape sarima percentage = mape sarima / 100
     # Print performance metrics
     print("\nPerformance Metrics for ARIMA:")
     print(f"MAE (Percentage): {mae arima percentage:.2f}%")
     print(f"RMSE (Percentage): {rmse_arima_percentage:.2f}%")
     print(f"MAPE (Percentage): {mape_arima_percentage:.2f}%")
     print("\nPerformance Metrics for SARIMA:")
     print(f"MAE (Percentage): {mae_sarima_percentage:.2f}%")
     print(f"RMSE (Percentage): {rmse_sarima_percentage:.2f}%")
     print(f"MAPE (Percentage): {mape sarima percentage:.2f}%")
     # Generate future years for plotting
     future_years = pd.date_range(
         start=time_series.index[-1] + pd.offsets.YearBegin(),
         periods=5,
         freq='YS'
     )
     # Plot forecasts
     plt.figure(figsize=(13, 7))
     plt.plot(time series, label="Historical Data")
     plt.plot(future_years, forecast_values_arima, label="ARIMA Forecast",
     plt.plot(future_years, forecast_values_sarima, label="SARIMA Forecast")
     plt.fill_between(future_years, confidence_intervals_arima.iloc[:, 0],
     plt.fill_between(future_years, confidence_intervals_sarima.iloc[:, 0]
     plt.title(f"{entity} Coal Consumption Forecast")
     plt.xlabel("Year")
     plt.ylabel("Coal Consumption (TWh)")
     plt.legend()
     plt.show()
 # Example usage: Analyze data for India
 entity = "India"
 analyze_entity(entity)
  Entity Year Coal consumption - TWh
0 Africa 1965
                              323.49615
```

```
0 Africa 1965 323.49615
1 Africa 1966 323.12220
2 Africa 1967 330.29156
3 Africa 1968 343.51290
4 Africa 1969 346.64288
```

India Coal Consumption Over Time

ADF Test Results:

p-value: 1.0

The data is non-stationary. Applying differencing...

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency info rmation was provided, so inferred frequency YS-JAN will be used.

self._init_dates(dates, freq)

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency info rmation was provided, so inferred frequency YS-JAN will be used.

self._init_dates(dates, freq)

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa
ges\statsmodels\tsa\statespace\sarimax.py:966: UserWarning: Non-stationary
starting autoregressive parameters found. Using zeros as starting paramete
rs

warn('Non-stationary starting autoregressive parameters'

======	:=====================================							
Dep. Va 59	riable:	Coal	consumpt	ion – TWh	No.	0bservat	ions:	
Model:	_		SARIMAX	(1, 1, 1)	Log	Likeliho	od	
-362.54 Date:	.3		Sat, 15	Feb 2025	AIC			
731.087 Time:	,			00:42:43	RTC			
737.268	}							
Sample: 733.495	ı		01	1–01–1965	HQI	С		
	_		- 0	1-01-2023				
	nce Type:			opg ======		=======	========	======
====						5		
975]	C	оет	std err		Z	P> z	[0.025	0.
ar.L1 1.025	0.99	927	0.017	60.11	3	0.000	0.960	
ma.L1 0.716	-0.8	489	0.068	-12.49	3	0.000	-0.982	_
0.710 sigma2 e+04	1.527e	+04	1603.095	9.52	3	0.000	1.21e+04	1.84
======	:======: :==	=====	=======	=======	====	======	=======	======
Ljung-B 171.07	ox (L1) (Q)	:		1.46	Ja	rque-Bera	(JB):	
Prob(Q)	:			0.23	Pr	ob(JB):		
	kedasticity	(H):		59.17	Sk	ew:		
11.21	(two-sided			0.00		rtosis:		

=======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency YS-JAN will be used.

self._init_dates(dates, freq)

C:\Users\KARTHIKEYA\AppData\Local\Programs\Python\Python312\Lib\site-packa ges\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency info rmation was provided, so inferred frequency YS-JAN will be used.

self._init_dates(dates, freq)

========	======================================	========		=======	========	======			
Dep. Varia		Coal consumption - TWh No. Observations:							
Model: -349.252	SAR	IMAX(1, 1, 1	1)×(1, 1, 1	, 2) Log	Likelihood				
Date:		Sat, 15 Feb 2025 AIC							
708.505 Time:		00:42:43 BIC							
718.631 Sample:		01-01-1965 HQIC							
712.431				·					
Covariance	e Type:		- 01-01-	2023 opg					
=======================================	=========	========	========	========	========	======			
975]	coef	std err	Z 	P> z	[0 . 025	0.			
	0.0007	12 244	0 000	0.036	25 105	2			
ar.L1 3.204	-0.9907	12.344	-0.080	0.930	-25.185	2			
ma.L1 0.505	0.9977	25.259	0.039	0.968	-48.510	5			
	-0.8222	0.185	-4.443	0.000	-1.185	_			
ma.S.L2 0.869	0.3034	0.289	1.051	0.293	-0.262				
	1.493e+04	1.95e+05	0.077	0.939	-3.67e+05	3.97			
========	=========			========	========	=====			
Ljung-Box 121.41	Ljung-Box (L1) (Q):			Jarque-Ber	a (JB):				
Prob(Q): 0.00			0.80	Prob(JB):					
Heteroske	dasticity (H)	:	33.48	Skew:					
<pre>0.72 Prob(H) (two-sided): 10.07</pre>			0.00	Kurtosis:					
========	=========			=======	========	=====			

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (com plex-step).

Performance Metrics for ARIMA:

MAE (Percentage): 1.18% RMSE (Percentage): 1.19% MAPE (Percentage): 0.27%

Performance Metrics for SARIMA:

MAE (Percentage): 1.23% RMSE (Percentage): 1.27% MAPE (Percentage): 0.28%

India Coal Consumption Forecast

