Dôkazy matematických viet

Priamy dôkaz

Dokazujeme vety tvaru A ⇒ B pomocou reťazca pravdivých implikácií.

Princíp: $A \Rightarrow A_1$, $A_1 \Rightarrow A_2$, $A_2 \Rightarrow A_3$, $A_n \Rightarrow B$

A je buď axiómy alebo už dokázaná veta

Napríklad:

Veta:

Súčet dvoch párnych prirodzených čísel je párne prirodzené číslo.

 $\forall x,y \in \mathbb{N}$: ak $x = 2n \land y = 2k \Rightarrow x+y = 2v$, $(n,k,v \in \mathbb{N})$.

Dôkaz:

 $x = 2n \land y = 2k \Rightarrow x+y = 2n+2k = 2(n+k) = 2v$ a keďže 2v je určite párne číslo, tak veta platí.

Alebo:

Veta:

 $\forall n \in \mathbb{N}: 2|n \Rightarrow 2|n^2 (2|n \text{ znamená, že číslo n je deliteľné číslom 2})$

Dôkaz:

 $2|n \Rightarrow \forall k \in \mathbb{N}: n = 2k \Rightarrow n^2 = (2k)^2 = 4k^2 \Rightarrow n^2 = 2 \cdot 2k^2 \Rightarrow 2|n^2|$

Nepriamy dôkaz

Namiesto implikácie $A \Rightarrow B$ dokazujeme obmenenú vetu $B' \Rightarrow A'$.

Napríklad:

Veta:

Ak x^2 je párne číslo, tak aj x je párne číslo.

 $\forall x \in \mathbb{N}: 2|x^2 \Rightarrow 2|x$

Dôkaz:

Dokážeme priamo obmenenú vetu: $\forall x \in \mathbb{N}$: 2 $x \Rightarrow 2$ x^2 . 2 $x \Rightarrow \forall k \in \mathbb{N}$:

 $x=2k+1 \Rightarrow x^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1=2m+1 \text{ (nepárne č.)} \Rightarrow 2$ $x^2=2k+1 \Rightarrow x^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1=2m+1 \text{ (nepárne č.)} \Rightarrow 2$

Dôkaz sporom

Princíp: najprv urobíme negáciu výroku A. Potom reťazcom implikácii $A \Rightarrow A_1$, $A_1 \Rightarrow A_2$, $A_2 \Rightarrow A_3$, $A_n \Rightarrow T$ dospejeme k tvrdeniu T, ktoré neplatí. Ak T neplatí, tak neplatí A', teda platí A.

Napríklad: Veta: V: $\forall n \in \mathbb{N}$: $3|n \Rightarrow 3|n^2$

Dôkaz:

V': $\forall n \in \mathbb{N}$: $3|n \wedge 3 \qquad n^2$

 $\forall n \in \mathbb{N}: 3 | n \Rightarrow \forall k \in \mathbb{N}: n = 3k \Rightarrow n^2 = 9k^2 \Rightarrow 3 | n^2 \text{ spor. } Z \text{ toho vyplýva, že negácia vety}$

neplatí, teda platí pôvodná veta.