이분법

5xe^x = 1의 근사해를 이분법을 이용해 구해보자 (a : 0 b : 5)

- × 51 = 0.1689159734991085848321291 × 52 = 0.1689159734991096950551537 × 53 = 0.1689159734991091399436414 × 54 = 0.1689159734991094174993975 × 55 = 0.1689159734991095562772756

- \times 56 = 0.1689159734991094730105488 \times 57 = 0.1689159734991095285217000 \times 58 = 0.1689159734991095285217000

57번의 연산결과 근사해는 0.168916 입니다

[초기 값 설정]

a : 0

b:5

c : (a+b)/2

[종료조건]

컴퓨터의 연산결과가 이전 연산과 같을 시

[결과]

연산 결과 : 0.168916

실제 값: 0.16892

연산 차수 : 57 회

오차조정법

5xe^x = 1의 근사해를 오차조정법을 이용해 구해보자 (a : 0 b : 5)

- \times 6 = 0.0079447158815002649062675 \times 7 = 0.0092363056553645545010411 \times 8 = 0.0105187266339028841211078 \times 9 = 0.0117920258993577369704964 \times 10 = 0.0130562505571852408015054
- × 3566 = 0.1689159734991078631871630 × 3567 = 0.1689159734991078909427387 × 3568 = 0.1689159734991079186983143 × 3569 = 0.1689159734991079464538899 × 3570 = 0.1689159734991079742094655

- × 3571 = 0.1689159734991080019650411 × 3572 = 0.1689159734991080297206167 × 3573 = 0.1689159734991080574761924 × 3574 = 0.1689159734991080574761924

3573번의 연산결과 근사해는 0.168916 입니다.

[초기 값 설정]

a : 0

b:5

[종료조건]

컴퓨터의 연산결과가 이전 연산과 같을 시

[결과]

연산 결과: 0.168916

실제 값: 0.16892

연산 차수 : 3573 회

뉴턴방법

5xe^x = 1의 근사해를 뉴턴방식을 이용해 구해보자. (초기값 : 5)

- \times 1 = 4.1668912648999691938911383 \times 2 = 3.3610312270053643857181669 \times 3 = 2.5919261321504394324222176 \times 4 = 1.8744974041608823966953423 \times 5 = 1.2330597082579861645257324

- × 6 = 0.7069744535645606786644635 × 7 = 0.3505850162005577641544107 × 8 = 0.1952968837112999678229386 × 9 = 0.1695469612366402312186864 × 10 = 0.1689163426719920424456944
- \times 11 = 0.1689159734992359829242048 \times 12 = 0.1689159734991095562772756 \times 13 = 0.1689159734991095562772756

12번의 연산결과 근사해는 0.168916 입니다.

[초기 값 설정]

x : 5

[종료조건]

컴퓨터의 연산결과가 이전 연산과 같을 시

[결과]

연산 결과: 0.168916 실제 값: 0.16892

연산 차수 : 12 회

할선법

5xe^x = 1의 근사해를 할선법을 이용해 구해보자 (x1 : 4 x0 : 5)

- × 1 = 3.58334204985588478110 × 2 = 2.98326257586328269511 × 3 = 2.48020242768761045582 × 4 = 1.97508846219539901945 × 5 = 1.51438130419775607294

- × 6 = 1.09531993554505424626 × 7 = 0.73835841341307228980 × 8 = 0.46085695378406899003 × 9 = 0.28002913460550860059 × 10 = 0.19440548746762131849

- × 11 = 0.17139292023208857474 × 12 = 0.16897383231083928923 × 13 = 0.16891610630902942347 × 14 = 0.16891597350623838159 × 15 = 0.16891597349910952852

- \times 16 = 0.16891597349910958403 \times 17 = 0.16891597349910955628 \times 18 = 0.16891597349910955628

17번의 연산결과 근사해는 0.168916 입니다.

[초기 값 설정]

x0:5

x1:4

[종료조건]

컴퓨터의 연산결과가 이전 연산과 같을 시

[결과]

연산 결과 : 0.168916

실제 값: 0.16892

연산 차수 : 17 회

분석

연산 결과를 도식화 하여 나타내었다.

사용 기법	초기 값	오차	연산횟수
이분법	a:0,b:5	0	57
오차조정법	a:0,b:5	0	3573
뉴턴 방법	x : 5	0	12
할선법	x0 : 5, x1 : 4	0	17

초기 값: 각 연산의 식에 따라 달라질 수밖에 없었고, 특성에 맞추어 비슷한 값으로 설정을 하였다.

연산의 종료 시점: '컴퓨터가 이전연산과 같은 값을 도출하였을 때'로 설정하였다.

연산횟수에 따른 분석

연산횟수가 연산식의 효율성을 좌우한다는 가정 하에 성능 순으로 나열한다면, 뉴턴방법 > 할선법 > 이분법 > 오차조정법 으로 표현할 수 있다.

결과의 오류 발생점

- 1) c언어의 double은 16자리까지 정확한 값을 도출해내기 때문에, 만약 연산결과가 정확히 되었을 경우 더 빨리 연산이 끝날 수 있었지만 정확하지 않은 값으로 인해 더 많은 연산을 하였을 수 있다.
- 2) 초기값 설정 시 임의로 넣은 값이 특정식에는 유리한 결과를 도출해냈을 수 있다. 만약 이분법의 경우, 첫 구간의 a,b 값이 바로 c를 도출해낸 경우 가장 빠른 방법으로 도출 될 수 있다.

오차조정법의 높은 연산횟수

오차조정법의 경우 다른 연산에 비해 월등히 많은 연산수를 보인다. 이것은 위의 1)의 경우에 해당한다고 생각 할 수도 있지만, 여러 번 같은 연산을 해 본 결과 모두 같은 횟수를 도출해냈다.

이에 입력 범위를 달리 하여 연산을 해 본 결과,

0.0~0.5(3573번) / 0.0~0.4(1355번) / 0.0~0.3(509번) / 0.0~0.2(186번) / 0.0~0.1(60번) 으로 오차조정법 자체가 높은 연산결과를 도출해낸다는 것을 알 수 있었다.

이의 원인으로는 값의 전개 속도를 들 수 있다.

위는 이분법과 오차조정법의 전개를 그림으로 표현한 것이다.

이분법은 현재 거리를 기준으로 절반을 이동하는 것이 보장되어있다. 따라서 초기 a,b 의 x좌표의 거리가 10이라고 하면 절반인 5의 범위를 줄이는 것이 확정적이다.

하지만 오차조정법의 경우에는 줄어드는 범위가 모호하다. 위의 그림에서 다양한 곡률에 따른 전개를 비교해 보면 값의 줄이는 범위가 확연히 다름이 느껴진다.

뉴턴방법과 할선법

뉴턴방법과 할선법의 차이는 기준점을 놓을 때 '그래프'를 보는가와 '기존의 데이터'를 보는가이다. 사람을 판단할 때조차 그 사람 자체를 내가 보는 것과 그 사람의 주변 평판을 보는 것의 차이는 존재한다.

뉴턴 방법은 그래프를 기준으로 본다. 그래프가 현재 주어진 기준점의 접점의 기울기가 낮을수록 기준점이 많이 이동하고 높을수록 적게 이동한다.

할선법은 기준점이 x축에 맞닿는 점이 그래프를 타고 올라간다. 이 방식은 기울기의 크기를 기존보다 크게 표현한다. 기울기가 낮을수록 기준점의 이동이 빠르게 되어 값을 도출해낼 수 있는데 이런 이점이 줄어드는 것이다.

이런 이유로 뉴턴 방법이 할선법보다 조금 더 빠르게 결과를 도출했다고 생각한다.