Dr. A. Kaltenbach SoSe 2024

Aufgabe 1 (Vollständigkeit von $C^k(\overline{I};X)$)

Sei X ein Banachraum und $I \subseteq \mathbb{R}$ ein beschränktes Intervall.

Zeigen Sie, dass $(C^k(\overline{I};X), \|\cdot\|_{C^k(\overline{I};X)})$, wobei

$$\|\cdot\|_{C^k(\overline{I};X)} := \sum_{i=0}^k \left\| \frac{\mathrm{d}^i \cdot}{\mathrm{d}t^i} \right\|_{C^0_b(I;X)},$$

ein Banachraum ist.

Aufgabe 2
$$(C^0(\overline{I};X) = C_b^0(I;X) \& C_b^0(I;X) \subseteq \mathcal{L}^1(I;X))$$

Sei X ein Banachraum und $I \subseteq \mathbb{R}$ ein beschränktes Intervall.

Zeigen Sie, dass die folgenden Aussagen gelten:

- (i) $C^0(\overline{I};X) = C_b^0(I;X)$.
- (ii) $C_b^0(I;X) \hookrightarrow \mathcal{L}^1(I;X)$.

Aufgabe 3 ($L^{\infty}(0,1)$ ist nicht separabel)

Zeigen Sie, dass $L^{\infty}(0,1)$ nicht separabel ist.

Aufgabe 4 (Satz von Egoroff, vgl. Satz 1.42 aus der Vorlesung)

Sei X separabel und $u_n: I \to X$, $n \in \mathbb{N}$, sowie $u: I \to X$ schwach messbar, sodass

$$u_n(t) \to u(t)$$
 in X $(n \to \infty)$ für f.a. $t \in I$.

Zeigen Sie, ohne die Verwendung des Satzes von Pettis (vgl. Satz 1.31 der Vorlesung), dass

$$u_n \to u \quad (n \to \infty)$$
 fast gleichmäßig in I .

Tipp: Sie dürfen die Aussage von Schritt 1 im Beweis des Satzes von Pettis verwenden.

Aufgabe 5 (vgl. Satz 1.46 aus der Vorlesung)

Sei X separabel und $u_n: I \to X$, $n \in \mathbb{N}$, sowie $u: I \to X$ schwach messbar, sodass

$$u_n \to u \quad (n \to \infty)$$
 nach Maß in I .

Zeigen Sie, ohne die Verwendung des Satzes von Pettis (vgl. Satz 1.31 der Vorlesung), dass eine Teilfolge $(n_k)_{k\in\mathbb{N}}\subseteq\mathbb{N}$ existiert, sodass

$$u_{n_k} \to u \quad (k \to \infty)$$
 fast gleichmäßig in I .

Tipp: Sie dürfen die Aussage von Schritt 1 im Beweis des Satzes von Pettis verwenden.