Fórmulario de Teoría Electromagnética

Melendez Bustamante Luis Fernando Instituto Politécnico Nacional

I. CAMPOS ELÉCTRICOS ESTÁTICOS

Campos Eléctricos Estáticos Ley de Coulomb Constante de Coulomb Campo eléctrico (punto) Campo eléctrico (línea) Campo eléctrico (plano) Potencial eléctrico (general) Potencial eléctrico (punto) $\overline{W = q\Delta V}$ Trabajo eléctrico Energía potencial Capacitancia (general) Capacitancia (placas paralelas) Capacitancia (coaxial) $\overline{\ln(b/a)}$ Capacitancia (esférica) Densidad de energía eléctrica Dipolo eléctrico (campo) Fuerza de Lorentz (completa) Potencial dipolo eléctrico

TABLE I.1
FÓRMULAS DE CAMPOS ELÉCTRICOS ESTÁTICOS

II. LEYES DE GAUSS

Leyes de Gauss	
Diferencial (eléctrico)	$\nabla \cdot \vec{D} = \rho_v$
Integral (eléctrico)	$\oint \vec{D} \cdot d\vec{S}' = Q_{\rm enc}$
Diferencial (magnético)	$\nabla \cdot \vec{B} = 0$
Integral (magnético)	$\oint \vec{B} \cdot d\vec{S}' = 0$
Ley de Gauss (eléctrico)	$\oint ec{E} \cdot dec{S}' = rac{Q_{ m enc}}{\epsilon_0}$
Condición frontera (E)	$\epsilon_1 E_{1n} - \epsilon_2 E_{2n} = \rho_s$
Condición frontera (D)	$E_{1t} = E_{2t}$
Esfera (carga puntual)	$\vec{E} = \frac{q}{4\pi\epsilon_0 r^2} \hat{e}_r$
Cilindro (línea carga)	$ec{E} = rac{\lambda}{2\pi\epsilon_0 r} \hat{e}_r$
Potencial (esfera conductora)	$V = \frac{q}{4\pi\epsilon_0 r} \ (r \ge R)$
TABLE II.1	

FÓRMULAS DE LAS LEYES DE GAUSS

III. CAMPOS MAGNÉTICOS ESTÁTICOS

Campos Magnéticos Estáticos	
Ley Biot-Savart	$d\vec{H} = \frac{Id\vec{l'} \times \hat{e}_r}{4\pi r'^2}$
Campo magnético (alambre)	$\vec{H} = \frac{1}{\hat{e}_{\perp}}\hat{e}_{\perp}$
Fuerza magnética (alambre)	$\frac{2\pi r}{d\vec{F} = Id\vec{l'} \times \vec{B}}$
Ley de Ampère (integral)	$\oint \vec{H} \cdot d\vec{l'} = I_{ m enc}$
Ley de Ampère (diferencial)	$ abla imes ec{H} = ec{J}$
Condición frontera (B)	$B_{1n} = B_{2n}$
Condición frontera (H)	$\vec{H}_{1t} - \vec{H}_{2t} = \vec{K}$
Fuerza de Lorentz	$\vec{F} = q\vec{v} imes \vec{B}$
Campo magnético (solenoide)	$\vec{H} = \frac{NI}{l}\hat{e}_z$
Campo magnético (toroide)	$ec{H}=rac{NI}{2\pi r}\hat{e}_{\phi}$
Momento magnético (espira)	$ec{m}=Iec{A}$
Campo (espira circular)	$\vec{B} = \frac{\mu_0 I}{2R} \hat{e}_z$
Par dipolo magnético	$ec{ au} = ec{m} imes ec{B}$
Campo dipolo magnético	$\vec{B} = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \hat{e}_r + \sin\theta \hat{e}_\theta)$
TABLE III.1	

FÓRMULAS DE CAMPOS MAGNÉTICOS ESTÁTICOS

IV. Ondas Electromagnéticas - Parte 1

Ondas Electromagnéticas		
Velocidad propagación	$v = \frac{1}{\sqrt{\mu \epsilon}}$	
Impedancia intrínseca	$\eta = \sqrt{\frac{\mu}{\epsilon}}$	
Ecuación onda (eléctrico)	$\frac{\partial^2 \vec{E}}{\partial z^2} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$	
Relación E y H	$\vec{E} = \eta \vec{H} \times \hat{e}_k$	
Vector Poynting	$\vec{P} = \vec{E} \times \vec{H}$	
Longitud de onda	$\lambda = \frac{v}{f}$	

FÓRMULAS BÁSICAS DE ONDAS ELECTROMAGNÉTICAS

V. Ondas Electromagnéticas - Parte 2

Ondas Electromagnéticas Avanzadas	
Atenuación (conductores)	$\alpha = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \epsilon} \right)^2} - 1 \right)}$
Potencia promedio	$P_{ m avg} = rac{1}{2} { m Re}(ec{E} imes ec{H}^*)$
Constante propagación	$\gamma = \alpha + j\beta$
Constante de fase	$\beta = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \epsilon} \right)^2} + 1 \right)}$
Profundidad de penetración	$\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$
Índice de refracción	$n = \sqrt{\epsilon_r \mu_r}$
Reactancia inductiva	$X_L = \omega L$
Reactancia capacitiva	$X_C = \frac{1}{\omega C}$
TABLE V.1	

FÓRMULAS AVANZADAS DE ONDAS ELECTROMAGNÉTICAS

VI. LEYES DE MAXWELL

Leyes de Maxwell	
Ley de Gauss (eléctrico)	$ abla \cdot ec{D} = ho_v$
Ley de Gauss (magnético)	$\nabla \cdot \vec{B} = 0$
Ley de Faraday (diferencial)	$ abla imes ec{E} = -rac{\partial ec{B}}{\partial t}$
Ley de Ampère-Maxwell (dif.)	$ abla imes ec{H} = ec{J} + rac{\partial ec{D}}{\partial t}$
Ley de Faraday (integral)	$\oint \vec{E} \cdot d\vec{l}' = -\frac{d}{dt} \int \vec{B} \cdot d\vec{S}'$
Ley de Ampère-Maxwell (int.)	$\oint \vec{H} \cdot d\vec{l}' = I + \frac{d}{dt} \int \vec{D} \cdot d\vec{S}'$ $\nabla \times \vec{H} = \vec{J} + \sigma \vec{E}$
Ley de Ampère (conductores)	$ abla imes ec{H} = ec{J} + \sigma ec{E}$
TABLE VI.1	

FÓRMULAS DE LAS LEYES DE MAXWELL

VII. MAGNETOSTÁTICA Y TRANSFORMADORES

Magnetostática y Transformadores	
Reluctancia	$\Re = \frac{l}{\mu A}$
Flujo magnético	$\Phi = BA$
Densidad de flujo magnético	$B = \mu H$
Ley de Faraday (fem)	$\mathcal{E} = -\frac{d\Phi}{dt}$
Inductancia (solenoide)	$L = \frac{\mu N^2 A}{l}$
Inductancia mutua	$M = k\sqrt{L_1 L_2}$
Fuerza electromotriz inducida (general)	$\mathcal{E} = -N \frac{d\Phi}{dt}$
Relación de transformación	$\frac{V_2}{V_1} = \frac{N_2}{N_1}$
Fem inducida (transformador)	$V_2 = M \frac{dI_1}{dt}$
Energía almacenada (inductor)	$W_m = \frac{1}{2}LI^2$
Relación de corrientes (transformador)	$\frac{I_2}{I_1} = \frac{\overline{N_1}}{N_2}$
TABLE VII.1	

FÓRMULAS DE MAGNETOSTÁTICA Y TRANSFORMADORES

VIII. RELACIONES Y CONSTANTES

Relaciones y Constantes	
Permitividad del vacío	$\epsilon_0 = 8.854 \times 10^{-12} \text{F/m}$
Permeabilidad del vacío	$\mu_0 = 4\pi \times 10^{-7} \text{H/m}$
Velocidad de la luz	$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} \approx 3 \times 10^8 \text{m/s}$
Relación D y E	$ec{D} = \epsilon ec{E}$
Relación D, E y P	$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$
Vector de polarización	$ec{P} = \epsilon_0 \chi_e ec{E}$
Relación B y H	$ec{B} = \mu ec{H}$
Permitividad compleja	$\epsilon_c = \epsilon - j \frac{\sigma}{\omega}$
Impedancia del vacío	$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \approx 376.73\Omega$

RELACIONES Y CONSTANTES FUNDAMENTALES

- α Coeficiente de atenuación
- β Constante de fase
- γ Constante de propagación
- δ Profundidad de penetración
- ϵ Permitividad del medio
- ϵ_0 Permitividad del vacío
- ϵ_r Constante dieléctrica relativa
- χ_e Susceptibilidad eléctrica
- η Impedancia intrínseca
- F Fuerza eléctrica
- \vec{E} Campo eléctrico
- \vec{D} Desplazamiento eléctrico
- \vec{H} Campo magnético
- \vec{B} Densidad de flujo magnético
- I Corriente eléctrica
- \vec{J} Densidad de corriente
- k_e Constante de Coulomb
- λ Densidad de carga lineal
- L Inductancia
- M Inductancia mutua
- \vec{m} Momento magnético
- μ Permeabilidad del medio
- μ_0 Permeabilidad del vacío
- μ_r Permeabilidad relativa
- ν Frecuencia
- \vec{P} Vector de polarización
- Φ Flujo magnético
- ℜ Reluctancia
- ρ_v Densidad de carga volumétrica
- ρ_s Densidad de carga superficial
- \vec{K} Corriente superficial
- q Carga eléctrica
- r Distancia radial
- σ Conductividad eléctrica
- $\vec{\tau}$ Par (torque)
- v Velocidad de propagación
- V Potencial eléctrico
- \mathcal{E} Fuerza electromotriz
- ω Frecuencia angular
- X_L Reactancia inductiva
- X_C Reactancia capacitiva
 - A Área de sección transversal
- B_{max} Densidad de flujo máxima
 - f Frecuencia
 - k Coeficiente de acoplamiento
- k_e, k_h Constantes de pérdidas
 - l Longitud
 - N Número de espiras
 - p Momento dipolar eléctrico
 - P Potencia
 - t Espesor
 - Z Impedancia