国家精品课程, 国家精品资源共享课

信号与系统

Signals and Systems

西安电子科技大学 Xidian University, Xi'an China

4. 1信号分解为正交函数	Z4.1矢量的正交分解
	Z4.2信号的正交分解
	Z4.3帕斯瓦尔定理
4. 2周期信号的傅里叶级数	Z4.4周期信号三角形式的傅里叶级数
	Z4.5周期信号波形的对称性和谐波特性
	Z4.6周期信号指数形式的傅里叶级数
	Z4.7两种傅里叶级数展开形式的关系
4. 3周期信号的频谱及特点	Z4.8周期信号的频谱
	Z4.9单边谱和双边谱的关系
	Z4.10周期矩形脉冲信号的频谱和特点
	Z4.11周期信号的平均功率——帕斯瓦尔恒等式
	Z4.12*应用案例: DC-to-AC转换器
4. 4非周期信号的频谱——傅里叶变换	Z4.13频谱密度函数
	Z4.14傅里叶正反变换的定义
	Z4.15常用信号的傅里叶变换

4. 5傅里叶变换的性质	Z4.16线性
	Z4.17奇偶性
	Z4.18对称性
	Z4.19尺度变换特性
	Z4.20时移特性
	Z4.21频移特性
	Z4.22 卷积定理
	Z4.23时域微积分特性
	Z4.24频域微积分特性
	Z4.25 相关定理
4. 6能量谱和功率谱	Z4.26能量谱
	Z4.27 功率谱
	Z4.28 *应用案例: 白噪声功率谱密度的估计
4. 7周期信号的傅里叶变换	Z4.29周期信号的傅里叶变换
	Z4.30周期信号傅里叶级数与傅里叶变换的关系

4. 8LTI系统的频域分析	Z4.31基本信号ei at作用于LTI系统的响应
	Z4.32一般信号f(t)作用于LTI系统的响应
	Z4.33傅里叶变换分析法
	Z4.34傅里叶级数分析法
	Z4.35频率响应函数
	Z4.36Matlab求解系统响应
	Z4.37 无失真传输
	Z4.38理想低通滤波器
	Z4.39物理可实现系统的条件
	Z4.40*应用案例:二次抑制载波振幅调制接收系统
4. 9取样定理	Z4.41信号的取样
	Z4.42时域取样定理
	Z4.43频域取样定理
	Z4.44应用案例:Matlab实现Sa信号的采样和恢复
	Z4.45*应用案例: CD数字录音系统

4. 10模拟滤波器	Z4.46模拟滤波器
	Z4.47巴特沃斯低通滤波器
	Z4.48应用案例: Matlab设计巴特沃斯低通滤波器
	Z4.49*切比雪夫滤波器
	Z4.50*椭圆滤波器
4. 11傅里叶变换在通信系统中的应用	Z4.51载波抑制双边带调制
	Z4.52幅度调制
	Z4.53*单边带调制
	Z4.54频分多路复用
	Z4.55*脉冲幅值调制
	Z4.56*时分多路复用
	Z4.57*通信中的多址技术

知识点Z4.41

信号的取样

主要内容:

- 1.信号取样的概念
- 2.矩形脉冲取样
- 3.冲激取样

基本要求:

- 1.掌握信号取样的基本概念
- 2.掌握矩形脉冲取样和冲激取样的原理

思考问题:

- *模拟信号经过采样发生什么变化?
- *信号频谱的变化?
- *信号内容的变化?
- *信号恢复的条件?

Z4.41信号的取样

1. 定义:

取样是利用取样脉冲序列s(t) 从连续信号f(t)中"抽取" 一系列离散样本值的过程;得到的离散信号称为取 样信号。

取样过程可看成由原信号f(t)和取 样信号s(t)的乘积来描述。

於由原信号
$$f(t)$$
和取 $f(t)$ 来描述。
$$f_s(t) = f(t)s(t)$$

取样间隔 T_S , 取样频率 $f_S = 1/T_S$ 。

取样信号频谱
$$F_s(j\omega) = \frac{1}{2\pi}F(j\omega)*S(j\omega)$$

•设f(t)是带限信号,即f(t)的频谱只在区间($-\omega_m$, ω_m) 为有限值,其余区间为0。

$$f(t) \longleftrightarrow F(j\omega)$$

- •矩形脉冲取样: s(t)是周期为 T_s 的矩形脉冲信号 (或称为开关函数)。
- 冲激取样: s(t)是周期为 T_s 的冲激函数序列 $\delta_{Ts}(t)$ 。

自然取样(矩形取样) 取样 { 理想取样(冲激取样)

2. 矩形脉冲取样

3. 冲激取样

矩形脉冲取样

冲激取样

说明:画取样信号 $f_S(t)$ 的频谱时,设定 $\omega_S \ge 2\omega_m$,此时其频谱不发生混叠,因此利用低通滤波器从 $F_S(j\omega)$ 中提取出 $F(j\omega)$,即从 $f_S(t)$ 中恢复原信号f(t)。否则将发生频谱混叠,而无法恢复原信号。