

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задача 9_1_2 »

С тудент группы	ИКБО-13-21	Черномуров С.А.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
Постановка задачи
Метод решения
Описание алгоритма
Блок-схема алгоритма
Код программы
Тестирование
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

введение

Постановка задачи

Перегрузка побитовых логических операции

Задан элемент, состоящий из ячейки памяти данных объемом один байт и шаблона активных битов (размер также равен 1 байту). Между данными из ячеек памяти двух элементов можно выполнить побитовые логические операции умножения и сложения. От каждого элемента в операциях участвуют только те биты данных, которые соответствуют шаблону активных битов элемента.

Работа с элементами выполняется следующим образом. Первоначально создаём элементы, определяем для них содержимое ячейки памяти и значение шаблона в шестнадцатеричной системе счисления. Далее описываем логические выражения, включающие эти элементы.

Написать программу, которая моделирует работу с элементами.

- В основной программе реализовать алгоритм:
- 1. Ввод количества элементов n.
- 2. В цикле для каждого элемента вводится исходное значение ячейки памяти и значение шаблона активных битов. Далее создается объект, в конструктор которого передаются значения памяти и шаблона. Каждому объекту присваивается свой номер от 1 до п.
- 3. В цикле, последовательно и построчно, вводится «номер первого объекта» «символ логической операции & или |» «номер второго объекта»
- 4. После каждого нового ввода логического выражения выполняется логическая операция, результат записывается в ячейку памяти первого элемента (объекта).
- 5. Цикл завершается в тот момент, когда на ввод больше нет данных.
- 6. Выводится результат последней операции в шестнадцатеричном формате.

Количество элементов больше или равно 2. Использовать перегрузку логических побитовых операций, реализовав в составе описания класса.

Пояснения.

Значения в пояснении заданы в шестнадцатеричной системе счисления. Значение логической единицы (1) в шаблоне задаёт активный бит значения из ячейки памяти. Если значение шаблона равно 15, то активными будут 2-й биты 4-й, И 0-й значения ИЗ ячейки считаться памяти. В логической операции между двумя элементами участвуют только те активные биты ячеек памяти, позиции которых совпадают у обоих элементов (находятся на пересечении). Например, если значение шаблона одного элемента равно 0F, а другого 0C, то в логической операции участвуют только 3-й и 2-й биты обоих значений. Соответственно, при записи результата в первый элемент изменениям подвергаются только те биты, которые участвовали В операции.

шаблона 0F. Первый e1: 8F. элемент значение памяти значение e2: 02, шаблона 01. элемент значение памяти значение Операция **e**1 & e2. Значение первого равно 8E, элемента

шаблона 0F. Первый элемент e1: значение памяти 8F, значение 02, шаблона F0. Второй элемент e2: значение памяти значение Операция e1 & e2. Значение первого элемента равно 8F,

Описание входных данных

Первая строка содержит значение количества элементов n: «Натуральное значение»

Далее n строк содержат

«Шестнадцатеричное значение» «Шестнадцатеричное

значение»

Начиная с n + 2 строки:

«Натуральное значение» «Знак операции» «Натуральное

значение»

Описание выходных данных

«Шестнадцатеричное значение»

Метод решения

Для решения задачи используются:

- Оператор цикла со счетчиком for. Используется для циклического создания объектов.
- Оператор цикла с предусловием while. Используется для выполнения операций.
- Объекты стандартных потоков ввода и вывода cin и cout соответственно. Используются для ввода с клавиатуры и вывода на экран.
- Условный оператор if .. else. Используется для выбора операции.
- Функции-операторы "&" и "|". Используются для объектов класса Class.
- Класс Class:
 - Свойства/поля:
 - Свойство:
 - Наименование _byte;
 - Тип беззнаковый символьный;
 - Модификатор доступа открытый.
 - Свойство:
 - Наименование Template;
 - Тип беззнаковый символьный;
 - Модификатор доступа открытый.
 - Методы:
 - Метод Class:
 - Функционал параметризированный конструктор.

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Конструктор класса: Class

Модификатор доступа: public

Функционал: Параметризированный конструктор

Параметры: Символьные беззнаковые параметры _byte, Template

Алгоритм конструктора представлен в таблице 1.

Таблица 1. Алгоритм конструктора класса Class

N₂	Предикат	Действия	№ перехода	Комментарий
1		Присвоение свойству _byte текущего объекта значения _byte	2	
2		Присвоение свойству Template текущего объекта значения Template	Ø	

Функция: operator&

Функционал: Побитовое "И" значений памяти бита с учетом шаблонов активных битов

Параметры: Ссылка на объект класса Class - e1, ссылка на константный объект класса Class - e2

Возвращаемое значение: Объект класса Class - e1

Алгоритм функции представлен в таблице 2.

Таблица 2. Алгоритм функции operator&

No	Предикат	Действия	№ перехода	Комментарий
1		Объявление символьных беззнаковых переменных byte1,byte2	2	
2		Объявление символьных беззнаковых переменных Template1,Template2	3	
3		Присвоение byte1 значения свойства _byte объекта e1	4	
4		Присвоение byte2 значения свойства _byte объекта e2	5	
5		Присвоение Template1 значения свойства Template объекта e1	6	
6		Присвоение Template2 значения свойства Template объекта e2	7	
7		Объявление с инициализацией символьной беззнаковой переменной temp=Template1&Template2	8	
8		Присвоение свойству _byte объекта e1 значения (temp & (byte1 & byte2)) + ((~(temp)) & byte1)	9	
9		Возврат функцией е1	Ø	

Функция: operator

Функционал: Побитовое "ИЛИ" значений памяти бита с учетом шаблонов активных битов

Параметры: Ссылка на объект класса Class - e1, ссылка на константный объект класса Class - e2

Возвращаемое значение: Объект класса Class - e1

Алгоритм функции представлен в таблице 3.

Таблица 3. Алгоритм функции operator

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление символьных беззнаковых переменных byte1,byte2	2	
2		Объявление символьных беззнаковых переменных Template1,Template2	3	
3		Присвоение byte1 значения свойства _byte объекта e1	4	
4		Присвоение byte2 значения свойства _byte объекта e2	5	
5		Присвоение Template1 значения свойства Template объекта e1	6	
6		Присвоение Template2 значения свойства Template объекта e2	7	
7		Объявление с инициализацией символьной беззнаковой переменной temp=Template1&Template2	8	
8		Присвоение свойству _byte объекта е1 значения (((temp & byte1) (temp & byte2)) & temp) + ((~(temp)) & byte1)	9	
9		Возврат функцией е1	Ø	

Функция: main

Функционал: Основной алгоритм программы

Параметры: Отсутствуют

Возвращаемое значение: Целочисленный тип данных - код возврата

Алгоритм функции представлен в таблице 4.

Таблица 4. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленной переменной п	2	
2		Считывание с клавиатуры значения переменной п	3	
3		Создание контейнера класса vector с типом данных Class - vec	4	
4		Объявление целочисленной переменной с инициализацией i=0	5	Использование і в качестве счетчика
5	Значение і меньше значения п	Объявление целочисленных переменных a,b	6	
			11	Выход из цикла
6		Считывание с клавиатуры значений переменных а,b в шестнадцатеричном виде	7	
7		Объявление символьных беззнаковых переменных с инициализацией byte=a, temp=b	8	
8		Создание объекта obj класса Class с параметрами byte,temp	9	
9		Вызов метода push_back объекта vec c параметром obj	10	
10		Инкрементирование і	5	
11		Объявление целочисленных	12	

		переменных num1,num2		
12		Объявление символьной беззнаковой переменной oper	13	
13	Значения num1,oper,num2 считаны с клавиатуры		14	
			15	Выход из цикла
14	Значение oper равно '&'	Присвоение vec[num1-1] значения vec[num1-1]&vec[num2-1]	13	
14		Присвоение vec[num1-1] значения vec[num1-1] vec[num2-1]	13	
15	Значение vec[num1-1], приведенного к типу int меньше 16	Вывод на экран "0"	16	
			16	
16		Вывод на экран значения свойства _byte объекта vec[num1-1], приведенного к типу int, в шестнадцатеричном формате в верхнем регистре	Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Рис. 3. Блок-схема алгоритма.

Рис. 4. Блок-схема алгоритма.

Рис. 5. Блок-схема алгоритма.

Рис. б. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл Class.cpp

```
#include "Class.h"
#include <iostream>
using namespace std;
Class::Class(byte _byte, byte Template){
        this->_byte = _byte;
        this->Template = Template;
}
Class operator& (Class &e1, const Class &e2){
        byte byte1, byte2;
        byte Template1, Template2;
        byte1 = e1._byte;
        byte2 = e2._byte;
        Template1 = e1.Template;
        Template2 = e2.Template;
        byte temp = Template1 & Template2;
        e1._byte=(temp & (byte1 & byte2)) + ((~(temp)) & byte1);
        return e1;
}
Class operator | (Class &e1, const Class &e2){
        byte byte1, byte2;
        byte Template1, Template2;
        byte1 = e1._byte;
        byte2 = e2._byte;
        Template1 = e1.Template;
        Template2 = e2.Template;
        byte temp = Template1 & Template2;
        e1._byte=(((temp & byte1) | (temp & byte2)) & temp) + ((\sim(temp)) &
byte1);
        return e1;
}
```

Файл Class.h

```
#ifndef CL_H
#define CL_H
typedef unsigned char byte;
#include <string>

class Class{
    public:
        byte _byte;
        byte Template;
        Class (unsigned char byte, unsigned char Template);
};

Class operator& (Class &e1, const Class &e2);
Class operator| (Class &e1, const Class &e2);
#endif
```

Файл main.cpp

```
#include "Class.h"
#include <iostream>
#include <vector>
typedef unsigned char byte;
using namespace std;
int main()
{
        int n;
        cin>>n;
        vector <Class> vec;
        for (int i=0;i< n;i++){
                 int a,b;
                 cin>>hex>>a>>b;
                byte byte=a, temp=b;
                 Class obj(byte,temp);
                vec.push_back(obj);
        int num1, num2;
        byte oper;
        while (cin>>num1>>oper>>num2){
                 if (oper=='&') vec[num1-1]=vec[num1-1]&vec[num2-1];
                 else vec[num1-1]=vec[num1-1]|vec[num2-1];
        if ((int)vec[num1-1]._byte<16) cout<<"0";
        cout<<hex<<upre>cout<frue>cout<frue</pre>[num1-1]._byte;
        return 0;
}
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
3 8F 0F 66 77 35 4A 1 3 2 3 3 & 2	35	35
2 8F 0F 02 01 1 & 2	8E	8E
2 8F 0F 02 F0 1 & 2	8F	8F
3 8F 0F 66 77 00 00 1 3 2 3 3 & 2	00	00

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).