Approximately Unitarily Equivalent Morphisms and Inductive Limit C^* -Algebras*

MARIUS DADARLAT

Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.

(Received: May 1994)

Abstract. It is shown that two unital *-homomorphisms from a commutative C^* -algebra C(X) to a unital C^* -algebra B are stably approximately unitarily equivalent if and only if they have the same class in the quotient of the Kasparov group KK(C(X),B) by the closure of zero. A suitable generalization of this result is used to prove a classification result for certain inductive limit C^* -algebras.

Key words: *-homomorphisms, unitary equivalence, Kasparov groups, C^* -algebras, real rank zero.

0. Introduction

Let X be a compact metrizable space and let B be a unital C^* -algebra. We prove that the *-homomorphisms from C(X) to B are classified up to stable approximate unitary equivalence by K-theory invariants. This result is used to obtain a classification theorem for certain real rank zero inductive limits of homogeneous C^* -algebras. The classification of various classes of C^* -algebras of real rank zero in terms of invariants based on K-theory presupposes a passage from algebraic objects to geometric objects (see [Ell], [Li1], [EGLP1], [EG], [BrD], [G], [Rø], [LiPh]). An underlying idea of this paper is that this passage can be done by using approximate morphisms. K-theory becomes a source of approximate morphisms thanks to the realization of K-theory in terms of asymptotic morphisms, due to A. Connes and N. Higson [CH]. The main results of the paper are Theorems A and B, below.

By the universal coefficient theorem for the Kasparov KK-groups [RS], $\operatorname{Ext}(K_*(C(X)),K_{*-1}(B))$ is a subgroup of KK(C(X),B). Following [Rø], we let KL(C(X),B) denote the quotient of KK(C(X),B) by the subgroup of pure extensions in $\operatorname{Ext}(K_*(C(X)),K_{*-1}(B))$. If $K_*(C(X))$ is isomorphic to a direct sum of cyclic groups, then KL(C(X),B) coincides with KK(C(X),B).

THEOREM A. Let X be a compact metrizable space. Let B be a unital C^* -algebra and let $\varphi, \psi \colon C(X) \to B$ be two unital *-homomorphisms. The following assertions are equivalent.

^{*} This research was partially supported by NSF grant DMS-9303361.

- (a) $[\varphi] = [\psi]$ in KL(C(X), B).
- (b) For any finite subset $F \subset C(X)$ and any $\varepsilon > 0$ there exist $k \in \mathbb{N}$, a unitary $u \in U_{k+1}(B)$ and points x_1, \ldots, x_k in X such that

$$\|u\operatorname{diag}(\varphi(a),a(x_1),\ldots,a(x_k))u^*-\operatorname{diag}(\psi(a),a(x_1),\ldots,a(x_k))\| for all $a\in F$.$$

Two *-homomorphisms satisfying the condition (b) of Theorem A are said to be stably unitarily equivalent. If condition (b) is satisfied without the *-homomorphism $\eta(a)=\operatorname{diag}(a(x_1),\ldots,a(x_k))$, then we say that φ and ψ are approximately unitarily equivalent. Theorem A generalizes certain results in [Li1-3] and [EGLP]. If φ and ψ are *-monomorphisms and B is a purely infinite, simple C^* -algebra, then one can drop the *-homomorphism η from condition (b), see Theorem 1.7. The apparition of pure extensions in this context is related to the phenomenon of quasidiagonality, see [Br], [Sa], [BrD]. The author believes that future generalizations of Theorem A should be based on Voiculescu's noncommutative Weyl-Von Neumann Theorem [V].

We use a suitable version of Theorem A for asymptotic morphisms to prove the following theorem.

THEOREM B. Let A, B be two simple C^* -algebras of real rank zero. Suppose that A and B are inductive limits

$$A = \underset{\longrightarrow}{\lim} A_n \text{ and } B = \underset{\longrightarrow}{\lim} B_n, A_n = \underset{i=1}{\overset{k_n}{\bigoplus}} M_{[n,i]}(C(X_{n,i})),$$

$$B_n = \bigoplus_{i=1}^{l_n} M_{\{n,i\}}(C(Y_{n,i})).$$

Suppose that $X_{n,i}, Y_{n,i}$ are finite CW complexes, $K^0(X_{n,i})$ and $K^0(Y_{n,i})$ are torsion free and $\sup_{n,i} \{\dim(X_{n,i}), \dim(Y_{n,i})\} < \infty$. Then A is isomorphic to B if and only if

$$(K_*(A), K_*(A)_+, \Sigma_*(A)) \cong (K_*(B), K_*(B)_+, \Sigma_*(B)).$$

Theorem B is proved by showing that the C^* -algebras A and B are isomorphic to certain inductive limits of subhomogeneous C^* -algebras with one-dimensional spectrum that are known to be classified by ordered K-theory [Ell]. In the process we use the semiprojectivity of the dimension-drop C^* -algebras proved by T. Loring [Lo-1]. In a remarkable recent paper [EG], Elliott and Gong classify the simple C^* -algebras of real rank zero that are inductive limits of homogeneous C^* -algebras with spectrum 3-dimensional finite CW complexes. Roughly speaking, this classification result is achieved in two stages. The first stage corresponds to

passing from K-theory to homotopy and uses the connective KK-theory introduced by A. Nemethi and the author [DN]. The second stage corresponds to showing that homotopic *-homomorphisms are stably approximately unitarily equivalent. A similar approach is taken in [G]. In this paper, we show that these techniques can be combined with techniques of approximate morphisms to produce classification results for inductive limits of homogeneous C^* -algebras with higher dimensional spectra. A key tool of our approach is a suspension theorem in E-theory due to T. Loring and the author [DL], (see also [D2]). The idea of using homotopies of asymptotic morphisms in the study of approximate unitary equivalence of *-homomorphisms appears also in [LiPh]. The study of inductive limits of matrix algebras of continuous functions was proposed by E. G. Effros [Eff].

1. Approximately Unitarily Equivalent Morphisms and K-Theory

In this section we prove Theorem A and give an application for *-monomorphisms from C(X) to purely infinite, simple C^* -algebras.

We need the following result from [EGLP].

THEOREM 1.1. [EGLP] Let X be the cone over a compact metrizable space and let B be a unital C^* -algebra. For any finite subset $G \subset C(X)$, any $\varepsilon > 0$ and any unital *-homomorphism $\rho: C(X) \to B$, there are two unital *-homomorphisms with finite-dimensional image, $\eta: C(X) \to M_{s-1}(B)$ and $\xi: C(X) \to M_s(B)$, such that

$$\|\operatorname{diag}(\rho(a),\eta(a))-\xi(a)\|<\varepsilon$$

for all $a \in G$.

The following result is implicitly contained in [EG].

THEOREM 1.2. Let X be a finite, connected CW complex. For any finite subset $F \subset C(X)$ and any $\varepsilon > 0$, there exist $r \in \mathbb{N}$, a unital *-homomorphism $\tau \colon C(X) \to M_{\tau-1}(C(X))$ and a unital *-homomorphism $\mu \colon C(X) \to M_{\tau}(C(X))$ with finite dimensional image, such that

$$\|\mathrm{diag}(a,\tau(a)) - \mu(a)\| < \varepsilon$$

for all $a \in F$.

Proof. By [DN] there exist $R \in \mathbb{N}$ and a unital *-homomorphism $\sigma \colon C(X) \to M_{R-1}(C(X))$ such that $\psi \colon C(X) \to M_R(C(X))$, defined by $\psi(a) = \operatorname{diag}(a, \sigma(a))$ is homotopic to an evaluation map $a \mapsto a(x_0)1_R$. Let $\Psi \colon C(X) \to M_R(C(X \times [0,1]))$ be a *-homomorphism implementing a homotopy from ψ to the evaluation map $a \mapsto a(x_0)1_R$. Since $\Psi(a)(x,1) = a(x_0)1_R$ for all $a \in C(X)$, one can identify Ψ with a *-homomorphism $\Psi \colon C(X) \to M_R(C(\hat{X}))$ where $\hat{X} = X \times [0,1]/X \times \{1\}$ is the cone over X. Moreover, the natural inclusion

 $X\cong X\times\{0\}\hookrightarrow \hat{X}$ induces a restriction *-homomorphism $\rho\colon M_R(C(\hat{X}))\to M_R(C(X))$ and ψ factors as $\psi=\rho\Psi$. Set $G=\Psi(F)$. Since \hat{X} is contractible we can use Theorem 1.1 to produce unital *-homomorphisms

$$\eta: M_R(C(\hat{X})) \to M_{(s-1)R}(C(X)), \qquad \xi: M_R(C(\hat{X})) \to M_{sR}(C(X))$$

with finite-dimensional image such that

$$\|\operatorname{diag}(\rho(d), \eta(d)) - \xi(d)\| < \varepsilon$$

for all $d \in G$. Hence

$$\|\operatorname{diag}(\rho\Psi(a),\eta\Psi(a))-\xi\Psi(a)\|<\varepsilon$$

for all $a \in F$. Set r = sR, $\tau(a) = \operatorname{diag}(\sigma(a), \eta \Psi(a))$ and $\mu(a) = \xi \Psi(a)$. Then

$$\|\operatorname{diag}(a,\tau(a))-\mu(a)\|<\varepsilon$$

for all
$$a \in F$$
.

DEFINITION 1.3. A C^* -algebra A is said to have property (H), if for any finite subset $F \subset A$ and any $\varepsilon > 0$, there exist $r \in \mathbb{N}$, a *-homomorphism $\tau \colon A \to M_{r-1}(A)$ and a *-homomorphism $\mu \colon A \to M_r(A)$ with finite-dimensional image such that

$$\|\operatorname{diag}(\tau(a),a) - \mu(a)\| < \varepsilon$$

for all $a \in F$.

It is clear that any finite dimensional C^* -algebra has property (H). Theorem 1.2 shows that if X is a finite CW complex, then C(X) has property (H). It is not hard to see that the class of C^* -algebras with property (H) is closed under direct sums and tensor products.

For C^* -algebras C,D let $\operatorname{Map}(C,D)$ denote the set of all linear, contractive, completely positive maps from C to D. If G is a finite subset of C and $\delta>0$ we say that $\varphi\in\operatorname{Map}(C,D)$ is δ -multiplicative on G if $\|\varphi(ab)-\varphi(a)\varphi(b)\|<\delta$ for all $a,b\in G$.

LEMMA 1.4. Let A be a C^* -algebra with property (H). Let $\varepsilon > 0$ and let $F \subset A$ be a finite set. There are $\hat{\delta} > 0$ and a finite subset $\hat{F} \subset A$ such that if B is any unital C^* -algebra and $\varphi_0, \varphi_1, \ldots, \varphi_n$ is a sequence of maps in $\operatorname{Map}(A, B)$ such that φ_j is $\hat{\delta}$ -multiplicative on \hat{F} for $j = 0, \ldots, n$, then there exist $k \in \mathbb{N}$, a *-homomorphism $\eta: A \to M_k(B)$ with finite dimensional image and a unitary $u \in U_{k+1}(B)$ such that

$$\|u\operatorname{diag}(\varphi_0(a), \eta(a))u^* - \operatorname{diag}(\varphi_n(a), \eta(a))\|$$

$$< \varepsilon + \max_{a \in F} \max_{0 \le j \le n-1} \|\varphi_{j+1}(a) - \varphi_j(a)\|$$

for all $a \in F$.

Proof. For given $F \subset A$ and $\varepsilon > 0$, let $r \in \mathbb{N}$, τ and μ be as in Definition 1.3. Then $D = \mu(A)$ is a finite dimensional C^* -subalgebra of $M_r(A)$. By elementary perturbation theory (see [Bra]), there is a finite subset G of D containing $\mu(F)$ and there is $\delta > 0$ such that whenever E is a C^* -algebra and $\Psi \in \operatorname{Map}(D, E)$ is δ -multiplicative on G, there exists a *-homomorphism Ψ' : $D \to E$ satisfying $\|\Psi'(d) - \Psi(d)\| < \varepsilon$ for all $d \in G$.

For $s \in \mathbb{N}$ set $\varphi_{s,j} = \varphi_j \otimes \operatorname{id}_s \colon M_s(A) \to M_s(B)$. It is easily seen that one can find $\hat{\delta} > 0$ and $\hat{F} \subset A$ finite such that if $\varphi_j \in \operatorname{Map}(A,B)$ is $\hat{\delta}$ -multiplicative on \hat{F} then $\varphi_{r,j}$ is δ -multiplicative on G. Since $\varphi_{r,j}$ is δ -multiplicative on G, there is a *-homomorphism $\psi_j \colon D \to M_r(B)$ such that $\|\varphi_{r,j}(d) - \psi_j(d)\| < \varepsilon$ for all $d \in G$ and $j = 0, \dots, n$.

Define $L, L': A \to M_{nr}(B)$ by

$$L = \operatorname{diag}(\varphi_{r-1,0}\tau, \varphi_0, \varphi_{r-1,1}\tau, \varphi_1, \dots, \varphi_{r-1,n-1}\tau, \varphi_{n-1}),$$

$$L' = \operatorname{diag}(\varphi_0, \varphi_{r-1,0}\tau, \varphi_1, \varphi_{r-1,1}\tau, \dots, \varphi_{n-1}, \varphi_{r-1,n-1}\tau).$$

Note that L is unitarily equivalent to L'. Thus, there is a permutation unitary $u \in U_{nr+1}(B)$ such that

$$u\operatorname{diag}(L',\varphi_n)u^*=\operatorname{diag}(\varphi_n,L). \tag{1}$$

Let

$$\lambda = \max_{a \in F} \max_{0 \leqslant j \leqslant n-1} \|\varphi_{j+1}(a) - \varphi_j(a)\|$$

Since $\|\varphi_{j+1}(a) - \varphi_j(a)\| \le \lambda$ for all $a \in F$

$$\|\operatorname{diag}(\varphi_0(a), L(a)) - \operatorname{diag}(L'(a), \varphi_n(a))\|$$

$$\leq \max_{j} \|\varphi_{j+1}(a) - \varphi_j(a)\| = \lambda. \tag{2}$$

Using (1) and (2), we obtain

$$||u\operatorname{diag}(\varphi_0(a), L(a))u^* - \operatorname{diag}(\varphi_n(a), L(a))|| \leq \lambda$$
(3)

for all $a \in F$.

On the other hand,

$$||L(a) - \operatorname{diag}(\varphi_{r,0}\mu(a), \dots, \varphi_{r,n-1}\mu(a))||$$

$$= ||\operatorname{diag}(\varphi_{r,0}(\tau(a) \oplus a - \mu(a)), \dots, \varphi_{r,n-1}(\tau(a) \oplus a - \mu(a)))||$$

$$\leq ||\tau(a) \oplus a - \mu(a)|| < \varepsilon$$
(4)

for all $a \in F$, since $\varphi_{r,j}$ are norm decreasing. Note that $\|\varphi_{r,j}\mu(a) - \psi_j\mu(a)\| < \varepsilon$ for all $a \in F$ since $\mu(F) \subset G$ and $\|\varphi_{r,j}(d) - \psi_j(d)\| < \varepsilon$ for all $d \in G$. This implies

$$\|\operatorname{diag}(\varphi_{r,0}\mu(a),\ldots,\varphi_{r,n-1}\mu(a)) - \operatorname{diag}(\psi_0\mu(a),\ldots,\psi_{n-1}\mu(a))\| < \varepsilon$$
 (5)

for all $a \in F$. The *-homomorphism defined by $\eta = \operatorname{diag}(\psi_0 \mu, \dots, \psi_{n-1} \mu)$ has finite-dimensional image. Using (4) and (5) we obtain

$$||L(a) - \eta(a)|| < 2\varepsilon \tag{6}$$

for all $a \in F$. Combining (3) and (6), we find

$$\|u\operatorname{diag}(\varphi_0(a),\eta(a))u^*-\operatorname{diag}(\varphi_n(a),\eta(a))\|<4\varepsilon+\lambda$$

for all
$$a \in F$$
.

Suppose that the C^* -algebra A is unital. Suppose that the *-homomorphism μ from Definition 1.3 and the maps φ_j are unital. Then it easily seen that one can arrange for the *-homomorphism η to be unital.

The notion of asymptotic morphism due to Connes and Higson led to a geometric realization of E-theory [CH]. Let A, B be separable C^* -algebras. Roughly speaking, an asymptotic morphism from A to B is a continuous family of maps $\varphi_t: A \to B, t \in T = [1, \infty)$, which satisfies asymptotically the axioms for *homomorphisms. A homotopy of asymptotic morphisms $\varphi_t, \psi_t: A \to B$ is given by an asymptotic morphism $\Phi_t: A \to B[0,1]$ such that $\Phi_t^{(0)} = \varphi_t$ and $\Phi_t^{(1)} = \psi_t$. Here B[0,1] denotes the C^* -algebra of continuous functions from the unit interval to B. The homotopy classes of asymptotic morphisms from A to B are denoted by [[A, B]] and the class of φ_t by [[φ_t]]. Two asymptotic morphisms φ_t, ψ_t are said equivalent if $\varphi_t(a) - \psi_t(a) \to 0$, as $t \to \infty$ for all $a \in A$. Equivalent asymptotic morphisms are homotopic. In this paper we deal exclusively with asymptotic morphisms from nuclear C^* -algebras. It was observed in [D] that if A is nuclear then any asymptotic morphism from A to B is equivalent to a completely positive linear asymptotic morphism. This is a consequence of the Choi-Effros theorem [CE], and it applies for homotopies of asymptotic morphisms as well. Henceforth, throughout the paper, by an asymptotic morphism we will mean a contractive completely positive linear asymptotic morphism unless stated otherwise. Let M_{∞} denote the dense *-subalgebra of the compact operators \mathcal{K} obtained as the union of the C^* -algebras M_n . Using approximate units it is not hard to see that any asymptotic morphism from A to $B \otimes \mathcal{K}$ is equivalent to an asymptotic morphism $\varphi_t \colon A \to B \otimes M_\infty$ for which there is a function $\alpha \colon T \to \mathbb{N}$ such that $\varphi_t(A) \subset B \otimes M_{\alpha(t)}$. The map α is called a dominating function for φ_t . This applies also to homotopies and yields a bijection

$$[[A, B \otimes M_{\infty}]] \rightarrow [[A, B \otimes \mathcal{K}]].$$

We consider here only asymptotic morphisms that are dominated by functions α as above. Recall that if A is nuclear, then the Kasparov group KK(A, B) is isomorphic to $[[SA, SB \otimes K]]$ (see [CH]).

Let X be a finite connected CW complex with base point x_0 and let B be a unital C^* -algebra. Then by the suspension theorem of [DL], $[[C_0(X \setminus x_0), B \otimes M_\infty]] \cong KK(C_0(X \setminus x_0), B)$. Let $\varphi_t : C_0(X \setminus x_0) \to B \otimes M_\infty$ be an asymptotic morphism and let α be a dominating function for φ_t . For each $t \in T$ we let $\varphi_t^\alpha : C(X) \to B \otimes M_{\alpha(t)}$ denote the unital extension of $\varphi_t : C_0(X \setminus x_0) \to B \otimes M_{\alpha(t)}$ with $\varphi_t^\alpha(1) = 1_B \otimes 1_{\alpha(t)}$. Note that if $\alpha(t) \leq \beta(t)$ then $\varphi_t^\alpha = 1_B \otimes 1_{\alpha(t)} \varphi_t^\beta 1_B \otimes 1_{\alpha(t)}$.

THEOREM 1.5. Let X be a finite connected CW complex with base point x_0 and let B be a unital C^* -algebra. Let $\varphi_t, \psi_t \colon C_0(X \setminus x_0) \to B \otimes M_\infty$ be two asymptotic morphisms. Suppose that $[[\varphi_t]] = [[\psi_t]]$ in $KK(C_0(X \setminus x_0), B)$. Then for any finite set $F \subset C(X)$ and any $\varepsilon > 0$ there are $t_0 \ge 1$ and maps $\alpha, \beta \colon [1, \infty) \to \mathbb{N}$ with α dominating both φ_t and ψ_t such that for any $t \ge t_0$ there exist a unitary $u \in U(B \otimes M_{\alpha(t)} \otimes M_{\beta(t)+1})$ and a unital *-homomorphism $\eta \colon C(X) \to B \otimes M_{\alpha(t)} \otimes M_{\beta(t)}$ with finite dimensional image such that

$$\|u\operatorname{diag}(\varphi^\alpha_t(a),\eta(a))u^*-\operatorname{diag}(\psi^\alpha_t(a),\eta(a))\|<\varepsilon$$

for all $a \in F$.

Proof. Using the suspension theorem in E-theory of [DL], we find an asymptotic morphism $\Phi_t\colon C_0(X\backslash x_0)\to B[0,1]\otimes M_\infty$ such that $\Phi_t^{(0)}=\varphi_t$ and $\Phi_t^{(1)}=\psi_t$. Let $\alpha\colon [1,\infty)\to\mathbb{N}$ be a function dominating φ_t,ψ_t , and Φ_t . We are going to use Lemma 1.4 and the notation from there. We find t_0 such that if $\tilde{\Phi}_t\colon C(X)\to (B[0,1]\otimes M_\infty)^{\sim}$ is the unital extension of Φ_t , then $\tilde{\Phi}_t$ is $\hat{\delta}$ -multiplicative on \hat{F} for all $t\geqslant t_0$. Since the image of $\tilde{\Phi}_t$ commutes with $1_B\otimes 1_{\alpha(t)}$, it follows that $\Phi_t^\alpha\colon C(X)\to B[0,1]\otimes M_{\alpha(t)}$ is $\hat{\delta}$ -multiplicative on \hat{F} for all $t\geqslant t_0$. Let $t\geqslant t_0$ be fixed. By uniform continuity we can find a sequence of points $s_0=0,\ldots,s_n=1$ in the unit interval such that

$$\max_{a \in F} \max_{0 \leqslant j \leqslant n-1} \|\Phi_t^{(s_j),\alpha}(a) - \Phi_t^{(s_{j+1}),\alpha}(a)\| < \varepsilon.$$

By applying Lemma 1.4 for the sequence of unital maps $\Phi_t^{(s_j),\alpha}$ we find a unital *-homomorphism η with finite dimensional image and a unitary u such that

$$\|u\operatorname{diag}(\varphi_t^\alpha(a),\eta(a))u^*-\operatorname{diag}(\psi_t^\alpha(a),\eta(a))\|<2\varepsilon$$

for all $a \in F$.

In the proof of Theorem A we are going to apply Theorem 1.5 for *-homomorphisms. Note that if $\varphi: C(X) \to B$ is a *-homomorphism, whose restriction to $C_0(X \setminus x_0)$ is denoted by φ too, then $\varphi^{\alpha}(a) = \varphi(a) + a(x_0)(1_{\alpha(t)} - \varphi(1))$.

1.6. THE PROOF OF THEOREM A

Recall from [F] that an extension of Abelian groups

$$0 \to K \to G \xrightarrow{\pi} H \to 0$$

is called pure if its restriction to any finitely generated subgroup of H is trivial. The isomorphism classes of pure extensions form a subgroup of $\operatorname{Ext}(H,K)$. The universal coefficient theorem of [RS] gives an exact sequence

$$0 \to \operatorname{Ext}(K_*(A), K(B)_{*-1}) \to KK(A, B) \to \operatorname{Hom}(K_*(A), K_*(B)) \to 0$$

for A in a large class of separable nuclear C^* -algebras and any C^* -algebra B that has a countable approximate unit. The quotient of KK(A,B) by the subgroup of pure extensions in $\operatorname{Ext}(K_*(A),K_{*-1}(B))$ is denoted by KL(A,B) [Rø]. The subgroup of pure extensions was studied and characterized in the setting of [BDF] in [KS].

(a) \Rightarrow (b) Suppose first that X is a finite CW complex. Since $K_*(C(X))$ is finitely generated any pure extension of $K_*(C(X))$ is trivial, hence KL(C(X), B) = KK(C(X), B). Let X_1, \ldots, X_m be the connected components of X. Let e_i be the unit of $C(X_i)$. Using the definition of the K_0 group we find $R \in \mathbb{N}$, a *homomorphism $\xi \colon C(X) \to M_R(\mathbb{C}1_B)$ and a unitary $v \in U_{R+1}(B)$ such that $v \operatorname{diag}(\varphi(e_i), \xi(e_i))v^* = \operatorname{diag}(\psi(e_i), \xi(e_i))$ for $i = 1, \ldots, m$. Note that since φ and ψ are unital, ξ can be chosen to be unital. After replacing φ , ψ by $v \operatorname{diag}(\varphi, \xi)v^*$ and $\operatorname{diag}(\psi, \xi)$, we may assume that $\varphi(e_i) = \psi(e_i)$, $i = 1, \ldots, m$. Let φ_i , ψ_i denote the restrictions of φ and ψ to $C(X_i)$. Then $[\varphi_i] = [\psi_i] \in KK(C(X_i), B)$. Let $\delta > 0$ and let $F_i = F \cap C(X_i)$. Using Theorem 1.5 for each i we find $k(i) \in \mathbb{N}$, a *-homomorphism $\eta_i \colon C(X_i) \to M_{k(i)}(B)$ with finite dimensional image and a unitary $u_i \in U_{k(i)+1}(B)$ such that

$$||u_i \operatorname{diag}(\varphi_i(a), \eta_i(a))u_i^* - \operatorname{diag}(\psi_i(a), \eta_i(a))|| < \delta$$

for all $a \in F_i$. Let $k = k(1) + \cdots + k(m)$ and define $\eta' : C(X) = \bigoplus_i C(X_i) \to M_k(B)$ by $\eta'(a_1, \ldots, a_m) = \operatorname{diag}(\eta_1(a_1), \ldots, \eta_m(a_m))$. By conjugating $(u_i, 1, \ldots, 1)$ by suitable permutation unitaries we find unitaries $v_i \in U_{k+1}(B)$ such that

$$||v_i \operatorname{diag}(\varphi_i(a), \eta'(a))v_i^* - \operatorname{diag}(\psi_i(a), \eta'(a))|| < \delta$$

for all $a \in F_i$. Let $p_i = \operatorname{diag}(\varphi_i(e_i), \eta'(e_i)) = \operatorname{diag}(\psi_i(e_i), \eta'(e_i))$. By choosing δ small enough we can perturb v_i to unitaries $w_i \in U_{k+1}(B)$ such that $w_i p_i w_i^* = p_i$ and

$$||w_i \operatorname{diag}(\varphi_i(a), \eta'(a))w_i^* - \operatorname{diag}(\psi_i(a), \eta'(a))|| < \varepsilon$$

for all $a \in F_i$, $i=1,\ldots,m$. Let $p=1_k-\eta'(1)$. Let $u \in U_{k+1}(B)$ be the unitary $w_1p_1+\cdots+w_mp_m+\mathrm{diag}(0,p)$. Fix $x_0 \in X$ and define $\eta\colon C(X)\to M_k(B)$ by $\eta(a)=\eta'(a)+a(x_0)p$. Then η is a unital *-homomorphism with finite-dimensional image and

$$||u\operatorname{diag}(\varphi(a),\eta(a))u^* - \operatorname{diag}(\psi(a),\eta(a))|| < \varepsilon$$

for all $a \in F$.

In the general case, we embed X into the Hilbert cube I^{ω} and write $X=\cap X_n, X_n=P_n\times I^{\omega_n}$ where P_n are finite CW complexes with $P_{n+1}\subset P_n\times I$ and $\omega_n=\{n+1,n+2,\ldots\}$. Let $g_i\colon I^{\omega}\to I$ be the ith-coordinate map. By abuse of notation we let g_i also denote the restrictions of g_i to X and P_n . Without loss of generality we may assume that the set F in the statement of the Theorem is equal to $\{g_1,g_2,\ldots,g_n\}$ for some n. Let now n be fixed and choose $m\geqslant n$ such that for any $y\in P_m$ there is $x\in X$ such that $|g_i(x)-g_i(y)|<\varepsilon$ for $i=1,\ldots,n$. Let $\rho_m\colon C(P_m)\to C(X)$ be induced by the $X\hookrightarrow P_m\times I^{\omega_m}\to P_m$ with the second arrow standing for the canonical projection. Consider the *homomorphisms $\varphi\rho_m,\psi\rho_m\colon C(P_m)\to B$, the finite set $\{g_1,\ldots,g_n\}\subset C(P_m)$ and $\varepsilon>0$. Since the Kasparov product induces a product at the level of the KL-groups $[R\emptyset]$ and $KL(C(P_m),B)=KK(C(P_m),B)$, it follows that the *homomorphisms $\varphi\rho_m,\psi\rho_m$ give rise to the same KK-element. By the first part of the proof we find a unital *-homomorphism $\eta_0\colon C(P_m)\to M_k(B)$ with finite-dimensional image and a unitary $u\in U_{k+1}(B)$ such that

$$||u\operatorname{diag}(\varphi\rho_m(g_i),\eta_0(g_i))u^* - \operatorname{diag}(\psi\rho_m(g_i),\eta_0(g_i))|| < \varepsilon$$

for $i=1,\ldots,n$. The map η_0 can be expressed as $\eta_0(a)=\sum_{j=1}^\ell a(y_j)q_j$ with $y_j\in P_m$ and mutually orthogonal projections q_j . The integer m was chosen so that we can find points $x_j\in X$ with $|g_i(y_j)-g_i(x_j)|<\varepsilon$ for $i=1,\ldots,n$. Define $\eta\colon C(X)\to M_k(B)$ by $\eta(a)=\sum_{j=1}^\ell a(x_j)q_j$. Then

$$\|u\operatorname{diag}(\varphi(g_i),\eta(g_i))u^* - \operatorname{diag}(\psi(g_i),\eta(g_i))\| < 2\varepsilon$$

for $i = 1, \ldots, n$.

So far we have proven that if $[\varphi] = [\psi] \in KL(C(X), B)$, then for any $\varepsilon > 0$ and $F \subset C(X)$ finite, there exist $k \in \mathbb{N}$, a unital *-homomorphism $\eta: C(X) \to M_k(B)$ with finite dimensional image and a unitary $u \in U_{k+1}(B)$ such that

$$||u\operatorname{diag}(\varphi(a),\eta(a))u^*-\operatorname{diag}(\psi(a),\eta(a))||<\varepsilon$$

for all $a \in F$. Next we show that η can be chosen of the form $\eta(a) = \text{diag}(a(x_1), \ldots, a(x_k))$ with $x_1, \ldots, x_k \in X$. This is done in two steps.

First we note that if $w \in U_{k+r}(B)$, $\xi: C(X) \to M_r(B)$ is a *-homomorphism with finite-dimensional image, $\hat{\eta} = w \operatorname{diag}(\eta, \xi) w^*$, and $\hat{u} = 1 \oplus w (u \oplus 1_r) 1 \oplus w^*$, then

$$\|\hat{u}\operatorname{diag}(\varphi(a),\hat{\eta}(a))\hat{u}^* - \operatorname{diag}(\psi(a),\hat{\eta}(a))\| < \varepsilon$$

for all $a \in F$. This remark shows that we have the freedom to change η by taking direct sums and conjugating by unitaries. The proof of (a) \Rightarrow (b) is completed by using the following elementary Lemma:

LEMMA. Let $\eta\colon C(X)\to M_k(B)$ be a unital *-homomorphism with finite dimensional image. Then there are a unital *-homomorphism with finite-dimensional image $\xi\colon C(X)\to M_r(B)$ and a unitary $w\in U_{k+r}(B)$ such that $w\operatorname{diag}(\eta,\xi)w^*$ is equal to a *-homomorphism of the form $\hat{\eta}(a)=\operatorname{diag}(a(x_1),\ldots,a(x_{k+r}))$.

Proof. There are distinct points x_1,\ldots,x_n in X and a partition of 1_k into mutually orthogonal projections p_1,\ldots,p_n such that $\eta(a)=\sum_{i=1}^n a(x_i)p_i$ for all $a\in C(X)$. The proof is done by induction after n. Define $\xi(a)=a(x_1)p_2+a(x_2)p_1+\sum_{i=3}^n a(x_i)p_i, \eta'(a)=a(x_1)(p_1+p_2)+\sum_{i=3}^n a(x_i)p_i, \xi'(a)=a(x_2)(p_1+p_2)+\sum_{i=3}^n a(x_i)p_i$. Then it is easily seen that $\mathrm{diag}(\eta,\xi)$ is unitarily equivalent to $\mathrm{diag}(\eta',\xi')$. The formulae for η' and ξ' involves n-1 distinct points each.

(b) \Rightarrow (a) This is a generalization of Proposition 5.4 in [Rø]. The proof is based on an adaptation of the argument given in [Rø] and it remains valid if we replace C(X) by any C^* -algebra in the class $\mathcal N$ of [RS]. To save notation set A=C(X). The first step is to show that $K_*(\varphi)=K_*(\psi)$. This is standard and follows easily from (b) by using functional calculus and the definition of K-theory. Therefore by the universal coefficient theorem of [RS] the difference element $z=[\varphi]-[\psi]$ lies in the image of $\operatorname{Ext}(K_*(A),K_{*-1}(B))$ in KK(A,B). It is shown in [Rø] that the element z is given by

$$0 \to K_*(SB) \to K_*(E) \xrightarrow{\pi_*} K_*(A) \to 0 \tag{7}$$

where E is the C^* -algebra of all pairs (f,a), where $a \in A, f \in B[0,1], f(0) = \varphi(a), f(1) = \psi(a)$. The map $\pi: E \to A$ is given by $\pi(f,a) = a$. Our aim is to show that z corresponds to a pure extension. By assumption there exist a sequence of *-homomorphisms $\eta_i: C(X) \to M_{n(i)}$ with finite dimensional image and a sequence of unitaries $u_i \in U_{m(i)}(B)$ where $m(i) = 1 + n(1) + \cdots + n(i)$, such that if

$$\varphi_i = \operatorname{diag}(\varphi, \eta_1, \dots, \eta_i), \quad \psi_i = \operatorname{diag}(\psi, \eta_1, \dots, \eta_i)$$

then

$$\lim_{i \to \infty} \|u_i \varphi_i(a) u_i^* - \psi_i(a)\| = 0 \tag{8}$$

for all $a \in C(X)$. Note that $K_*(\varphi_i) = K_*(\psi_i)$. As above we have a 'difference' extension

$$0 \to M_{m(i)}(SB) \to E_i \xrightarrow{\pi(i)} A \to 0$$

corresponding to the pair φ_i, ψ_i . There is a natural embedding $\gamma_i: E_i \to E_{i+1}$, $\gamma_i(f, a) = (f \oplus \eta_{i+1}(a), a)$. This yields a commutative diagram

$$0 \longrightarrow M_{m(i)}(SB) \longrightarrow E_{i} \xrightarrow{\pi(i)} A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow id_{A}$$

$$0 \longrightarrow M_{m(i+1)}(SB) \longrightarrow E_{i+1} \xrightarrow{\pi(i+1)} A \longrightarrow 0$$

Taking the inductive limit of these extensions we obtain an extension

$$0 \to \mathcal{K} \otimes SB \to E_{\infty} \xrightarrow{\pi_{\infty}} A \to 0$$

whose KK-theory class is equal to z (by the continuity of K-theory and the five lemma). With this construction in hands, by using (8) and reasoning as in the proof of Proposition 5.4 in $[R\emptyset]$ one shows that if $g \in K_*(A)$ and ng = 0 for some n then there is $i \geqslant 1$ and $h \in K_*(E_i)$ with nh = 0 and $\pi(i)_*(h) = g$. This shows that the group extension

$$0 \to K_*(B) \to K_*(E_\infty) \to K_*(A) \to 0$$

is pure. We conclude that the extension (7) is pure.

Another proof of (b) \Rightarrow (a) can be obtained by constructing a sequence $\chi_i \in \operatorname{Map}(A, E_\infty)$ such that $\pi_\infty \chi_i = \operatorname{id}_A$ and $\|\chi_i(ab) - \chi_i(a)\chi_i(b)\| \to 0$, as $i \to \infty$, for all $a, b \in A$. This goes as follows. We may assume that there is a path of unitaries $u_i(s), s \in [0, 1]$, in $U_{m(i)}(B)$ with $u_i(0) = 1$ and $u_i(1) = u_i$. Let $\sigma_i \in \operatorname{Map}(A, E_i)$ be defined by

$$\sigma_i(a)(s) = \begin{cases} (u_i(2s)\varphi_i(a)u_i(2s)^*, a) & \text{for } 0 \le s \le 1/2\\ ((2-2s)u_i\varphi_i(a)u_i^* + (2s-1)\psi_i(a), a) & \text{for } 1/2 \le s \le 1 \end{cases}$$

Let θ_i denote the embedding of E_i into E_{∞} . It is not hard to see that the sequence of maps $\chi_i = \theta_i \sigma_i$ has the desired properties. The sequence χ_i gives an approximate splitting of the extension E_{∞} . Then one shows as in [BrD] that the corresponding extension in K-theory is pure.

Suppose that the C^* -algebra B is purely infinite and simple. Then Theorem A can be modified as follows.

THEOREM 1.7. Let X be a compact metrizable space. Let B be a purely infinite, simple, unital C^* -algebra and let $\varphi, \psi: C(X) \to B$ be two unital *-monomorphisms. Then $[[\varphi]] = [[\psi]]$ in KL(C(X), B) if and only if φ is approximately unitarily equivalent to ψ . That is, if and only if there is a sequence of unitaries $u_n \in U(B)$ such that $||u_n\varphi(a)u_n^* - \psi(a)|| \to 0$ for all $a \in C(X)$.

Proof. Fix $\varepsilon > 0$ and $F \subset C(X)$ finite. Using Theorem A all we have to do is to find a unitary $w_0 \in U(B)$ such that $\|w_0 \varphi(a) w_0^* - \psi(a)\| < 5\varepsilon$ for all $a \in F$. Let $k \in \mathbb{N}, \eta : C(X) \to M_k(B)$ and $u \in U_{k+1}(B)$ be provided by Theorem A. Since η is unital and has finite dimensional image there exist $L \in \mathbb{N}$, distinct points x_1, \ldots, x_L in X and a partition of 1_k into mutually orthogonal nonzero projections $p_1, \ldots, p_L \in M_k(B)$ such that

$$\eta(a) = \sum_{i=1}^L a(x_i) p_i$$

for all $a \in C(X)$. Define $\gamma: C(X) \to M_{k+1}(B)$ by $\gamma = u\varphi u^*$. Set $q = \gamma(1)$ and $q_i = up_iu^*$. Then

$$u\eta(a)u^* = \sum_{i=1}^{L} a(x_i)q_i$$
 and $q + \sum_{i=1}^{L} q_i = 1_{k+1}$. (9)

We are going to use repeatedly a result of Zhang [Zh1] asserting that a simple, purely infinite C^* -algebra has real rank zero. Since γ is a monomorphism and B has real rank zero we can apply Lemma 4.1 in [EGLP] to get nonzero, mutually orthogonal projections d, d_1, \ldots, d_L in $qM_{k+1}(B)q$ such that $d+d_1+\cdots+d_L=q$ and

$$\left\|\gamma(a) - d\gamma(a)d - \sum_{i=1}^{L} a(x_i)d_i\right\| < \varepsilon \tag{10}$$

for all $a \in F$. Similarly, there are nonzero, mutually orthogonal projections c, c_1, \ldots, c_L in B such that $c + c_1 + \cdots + c_L = 1$ and

$$\left\| \psi(a) - c\psi(a)c - \sum_{i=1}^{L} a(x_i)c_i \right\| < \varepsilon \tag{10'}$$

for all $a \in F$. Since B is simple and purely infinite, d_i is equivalent to a subprojection e_i of c_i . Recall that two projections e and f in a C^* -algebra A are called equivalent if there is a partial isometry $v \in A$ such that $v^*v = e$ and $vv^* = f$. The proof of Lemma 4.1 in [EGLP] shows that (10') remains true if we replace c_i by nonzero subprojections $e_i \leqslant c_i$ and c by $e = 1 - e_1 - \cdots - e_L$. Therefore we may assume that d_i is equivalent to c_i in $M_{k+1}(B)$. Since $M_{k+1}(B)$ is simple and purely infinite, $d_i + q_i$ is equivalent to a subprojection of d_i . Similarly $c_i \oplus p_i$ is equivalent

to a subprojection of c_i . Actually, we can find partial isometries $v, w \in M_{k+1}(B)$ such that $v(d_i + q_i)v^* + d_i' = d_i$ and $w(c_i \oplus p_i)w^* + c_i' = c_i$ for some nonzero projections $d_i', c_i', i = 1, \ldots, L$. Define $T_{\gamma}: C(X) \to M_{2k+2}(B)$ by

$$T_{\gamma}(a) = \operatorname{diag}\left(d\gamma(a)d^* + \sum_{i=1}^{L} a(x_i)d_i + \sum_{i=1}^{L} a(x_i)q_i, \sum_{i=1}^{L} a(x_i)d_i'\right).$$

Using v one obtains a partial isometry $V \in M_{2k+2}(B)$ with $V^*V = 1_{k+1} + \sum_{i=1}^{L} d'_i, VV^* = q$ and such that

$$VT_{\gamma}(a)V^* = d\gamma(a)d + \sum_{i=1}^{L} a(x_i)d_i. \tag{11}$$

Similarly, if $T_{\psi}: C(X) \to M_{2k+2}(B)$ is defined by

$$T_{\psi}(a) = \mathrm{diag}\bigg(c\psi(a)c^* + \sum_{i=1}^L a(x_i)c_i \oplus \sum_{i=1}^L a(x_i)p_i, \sum_{i=1}^L a(x_i)c_i'\bigg)\,,$$

then there is a partial isometry $W \in M_{2k+2}(B), W^*W = 1_{k+1} + \sum_{i=1}^{L} c_i', WW^* = 1_B$ such that

$$WT_{\psi}(a)W^* = c\psi(a)c + \sum_{i=1}^{L} a(x_i)c_i.$$
 (11')

Fix $a \in A$. From (10), (11) and (10'), (11') we obtain

$$||V^*\gamma(a)V - T_\gamma(a)|| < \varepsilon, \tag{12}$$

$$||W^*\psi(a)W - T_{\psi}(a)|| < \varepsilon. \tag{12'}$$

On the other hand, using (10) and (10') we obtain

$$\left\| T_{\gamma}(a) - \operatorname{diag}\left(u(\varphi(a) \oplus \eta(a)) u^*, \sum_{i=1}^{L} a(x_i) d_i' \right) \right\| < \varepsilon, \tag{13}$$

$$\left\| T_{\psi}(a) - \operatorname{diag}\left(\psi(a) \oplus \eta(a), \sum_{i=1}^{L} a(x_i)c_i'\right) \right\| < \varepsilon. \tag{13'}$$

By construction $[d_i] = [c_i]$ and $[q_i] = [p_i]$ in $K_0(B)$. This implies $[d'_i] = [c'_i]$ in $K_0(B)$. Since these are proper projections in $M_{k+1}(B)$ we can find a unitary

 $u_0 \in U_{k+1}(B)$ such that $u_0 d_i' u_0^* = c_i'$ for i = 1, ..., L (see [Cu], [Zh2]). Let $U = 1_{k+1} \oplus u_0 \in U_{2k+2}(B)$. Then

$$\left\| U \operatorname{diag}\left(u(\varphi(a) \oplus \eta(a))u^*, \sum_{i=1}^{L} a(x_i)d_i'\right) U^* - \operatorname{diag}\left(\psi(a) \oplus \eta(a), \sum_{i=1}^{L} a(x_i)c_i'\right) \right\| < \varepsilon, \tag{14}$$

since $||u(\varphi(a)\oplus \eta(a))u^*-\psi(a)\oplus \eta(a)||<\varepsilon$. Using (13), (13') and (14) we obtain

$$||UT_{\gamma}(a)U^* - T_{\psi}(a)|| < 3\varepsilon. \tag{15}$$

Then from (12), (12') and (15)

$$||UV^*u\varphi(a)u^*VU^* - W^*\psi(a)W|| < 5\varepsilon.$$

Finally if we set $w_0 = WUV^*u$, then

$$||w_0\varphi(a)w_0^* - \psi(a)|| < 5\varepsilon$$

for all
$$a \in F$$
.

Certain special cases of Theorem 1.7 have been previously proven in [Li1-3] and [EGLP] and the above proof uses ideas from those papers. For other applications of the asymptotic morphisms in the study of *-homomorphisms we refer the reader to [DL], [D1] and [LiPh].

- *Remarks.* 1.8. (a) By a result of T. Loring [Lo2], if X is a finite connected CW complex with base point x_0 and \mathcal{O}_n is a Cuntz algebra with $n \geqslant 4$ even, then all the elements of $KK(C_0(X \setminus x_0), \mathcal{O}_n)$ are induced by *-homomorphisms $C_0(X \setminus x_0) \to \mathcal{O}_n$. By combining this result with Theorem 1.7 we obtain a bijection between $KK(C_0(X \setminus x_0), \mathcal{O}_n)$ and the set of all approximate unitary equivalence classes of unital *-monomorphisms from C(X) to \mathcal{O}_n .
- (b) Let Y be the dyadic solenoid and let X be the one point compactification of $(Y \setminus y_0) \times \mathbb{R}$. Let Q(H) be the Calkin algebra. There are infinitely many unitary equivalence classes of unital *-monomorphisms from C(X) to Q(H). These classes are parametrized by the Brown-Douglass-Fillmore group $\operatorname{Ext}(C(X)) \cong KK(C_0(X \setminus x_0), Q(H)) \cong \operatorname{Ext}_{\mathbb{Z}}^1(\mathbb{Z}[1/2], \mathbb{Z})$. However, since all the extensions in $\operatorname{Ext}_{\mathbb{Z}}^1(\mathbb{Z}[1/2], \mathbb{Z})$ are pure, it follows that $KL(C_0(X \setminus x_0), Q(H)) = 0$ and any two unital *-monomorphisms from C(X) to the Calkin algebra are approximately unitarily equivalent (see [Br]).

2. Inductive Limit C^* -Algebras

Consider the following list of C^* -algebras: the scalars, \mathbb{C} ; the circle algebra, $C(\mathbb{T})$; the unital dimension-drop interval, defined below; and all C^* -algebras arising from these by forming matrix algebras and taking finite direct sums. The collection of all these C^* -algebras will be denoted \mathcal{D} . The collection of all quotients of C^* -algebras in \mathcal{D} will be denoted $\hat{\mathcal{D}}$. A C^* -algebra will be called an A \mathcal{D} -algebra if it is isomorphic to an inductive limit of C^* -algebras in \mathcal{D} .

By the nonunital dimension-drop interval we mean

$$\mathbb{I}_m = \{ f \in C([0,1], M_m) \mid f(0) = 0, f(1) \text{ is scalar} \}.$$

The unital dimension-drop interval $\tilde{\mathbb{I}}_m$ is the unitization of \mathbb{I}_m . The K-theory of \mathbb{I}_m is easily computed, $K_0(\mathbb{I}_m) = 0$, $K_1(\mathbb{I}_m) \cong \mathbb{Z}/m$.

LEMMA 2.1. Let X,Y be finite, connected CW complexes and let $k,m,r\in\mathbb{N}$. Let $\gamma\colon M_k(C(X))\to PM_m(C(Y))P$ be a unital *-homomorphism where P is a projection in $M_m(C(Y))$. Let $\nu\colon M_k(C(X))\to M_{kr}(C(X))$ be a unital *-homomorphism of the form $\nu(a)=\operatorname{diag}(a,a(x_1),\ldots,a(x_{r-1})),x_i\in X$. Suppose that $\operatorname{rank}(P)>10kr\operatorname{dim}(Y)$. Then there are *-homomorphisms γ_0 , $\gamma_1\colon M_k(C(X))\to PM_m(C(Y))P$ with orthogonal images such that γ_0 has finite dimensional image, γ_1 factors through ν and γ is homotopic to $\gamma_0+\gamma_1$.

Proof. The result is a consequence of Theorems 4.2.8 and 4.2.11 in [DN].

LEMMA 2.2. Let H be a finite subset of $C(S^2)$, let $\varepsilon > 0$ and let X be a finite, connected CW complex. There is m_0 such that if $m \ge m_0$, then for any unital *-homomorphism $\sigma' \colon C(S^2) \to M_m(C(X))$ there exist a unital *-homomorphism $\sigma \colon C(S^2) \to M_m(C(X))$ and a C^* -subalgebra D of $M_m(C(X))$ isomorphic to a quotient of a direct sum of matrix algebras over $C(S^1)$, such that σ' is homotopic to σ and $\operatorname{dist}(\sigma(a), D) < \varepsilon$ for all $a \in H$.

Proof. If X is a product of spheres, the result appears in [EGLP1]. In particular for $X=S^2$ we find n and such that the unital *-homomorphism $\nu'\colon C(S^2)\to M_n(C(S^2)), \nu'(a)=(a,a(x_0),\ldots,a(x_0))$ is homotopic to a *-homomorphism ν with $\nu(H)$ approximately contained to within ε in a circle algebra. The more general situation we consider here is reduced to the case $X=S^2$ by using Lemma 2.1. Indeed, by Lemma 2.1 there is m_0 such that any unital *-homomorphism $\sigma'\colon C(S^2)\to M_m(C(X)), m\geqslant m_0$, is homotopic to a direct sum between a *-homomorphism with finite-dimensional image and a *-homomorphism that factors through ν .

PROPOSITION 2.3. Let X be a finite, connected CW complex. Let F be a finite subset of C(X) and let $\varepsilon > 0$. Suppose that the K-theory group $K_0(C(X))$ is torsion free. Then there exist $r \in \mathbb{N}$, a *-homomorphism $\eta: C(X) \to M_{r-1}(C(X))$ with finite dimensional image and a C^* -subalgebra $D \subset M_r(C(X))$ with $D \in \hat{\mathcal{D}}$ such that

$$\operatorname{dist}(a \oplus \eta(a), D) < \varepsilon$$

for all $a \in F$. The *-homomorphism η can be chosen of the form

$$\eta(a) = \operatorname{diag}(a(x_1), \ldots, a(x_{r-1}).$$

Proof. There are $c, d \ge 0, m(i) \ge 2$ with $K_0(C(X)) \cong \mathbb{Z}^{c+1}, K_1(C(X)) \cong \mathbb{Z}^d \oplus \mathbb{Z}/m(1) \oplus \cdots \oplus \mathbb{Z}/m(k)$. Let N = c + d + k and set

$$B_j = C_0(S^2 \setminus pt)$$
 if $1 \le j \le c$,
 $B_j = C_0(S^1 \setminus pt)$ if $c < j \le c + d$,
 $B_j = \mathbb{I}_{m(j-c-d)}$ if $c + d < j \le N$,
 $B = B_1 \oplus \cdots \oplus B_N$.

If $K_1(C(X))$ is torsion free, then we consider only B_j for $1 \leqslant j \leqslant c+d$. By construction, $K_*(C_0(X \backslash x_0))$ is isomorphic to $K_*(B)$. The universal coefficient theorem of [RS] shows that $C_0(X \backslash x_0)$ is KK-equivalent to B. Using the E-theory description of KK-theory of [CH] and the suspension theorem of [DL], we find an asymptotic morphism $\varphi_t \colon C_0(X \backslash x_0) \to B \otimes M_\infty$ yielding a KK-equivalence. Let $\chi \in KK(B, C_0(X \backslash x_0))$ be such that $\chi[[\varphi_t]] = [[\mathrm{id}_{C_0(X \backslash x_0)}]]$. The element χ can be written as $\chi = \chi_1 + \cdots \chi_N$ with $\chi_j \in KK(B_j, C_0(X \backslash x_0))$. It is known that every element in $KK(B_j, C_0(X \backslash x_0))$ can be realized as a *-homomorphism $B_j \to C_0(X \backslash x_0) \otimes M_L$ for a suitable integer L.

$$\begin{split} &[C_0(S^1\backslash pt),C_0(X\backslash x_0)\otimes M_\infty]\cong KK(C_0(S^1\backslash pt),C_0(X\backslash x_0))\text{ [Ros],}\\ &[C_0(S^2\backslash pt),C_0(X\backslash x_0)\otimes M_\infty]\cong KK(C_0(S^2\backslash pt),C_0(X\backslash x_0))\text{ [Se], [DN],}\\ &[\mathbb{I}_m,C_0(X\backslash x_0)\otimes M_\infty]\cong KK(\mathbb{I}_m,C_0(X\backslash x_0))\text{ [DL].} \end{split}$$

It follows that there are *-homomorphisms $\psi_j^0\colon B_j\to C_0(X\backslash x_0)\otimes M_L$ with $[\psi_j^0]=\chi_j$. Let $\tilde\psi_j\colon \tilde B_j\to C(X)\otimes M_L$ be the unital extension of ψ_j^0 and let ψ_j denote the *-homomorphism $\psi_j=\tilde\psi_j\otimes \operatorname{id}_\infty: \tilde B_j\otimes M_\infty\to C(X)\otimes M_L\otimes M_\infty.$ Define

$$\psi \colon \bigoplus_{j=1}^N (\tilde{B}_j \otimes M_{\infty}) \to C(X) \otimes M_L \otimes M_N \otimes M_{\infty}$$

$$\psi(b_1,\ldots,b_N)=\operatorname{diag}(\psi_1(b_1),\ldots,\psi_N(b_N)).$$

Form the diagram

$$C_0(X \backslash x_0) \xrightarrow{\gamma} C(X) \otimes M_L \otimes M_N \otimes M_\infty$$

$$\downarrow^{\varphi_t} \qquad \qquad \downarrow^{\varphi_t}$$

$$\oplus_j(\tilde{B}_j \otimes M_\infty)$$

where $\gamma(a)=a\otimes e$ for a fixed one-dimensional projection e. By construction, the above diagram commutes at the level of KK-theory. Therefore there is a homotopy of asymptotic morphisms $\Phi_t\colon C_0(X\backslash x_0)\to C(X)\otimes M_L[0,1]\otimes M_N\otimes M_\infty$ with $\Phi_t^{(0)}=\gamma$ and $\Psi_t^{(1)}=\psi\varphi_t$.

Let $F\subset C(X)$ and ε be as in the statement of Proposition 2.3. Let \hat{F} and $\hat{\delta}$ be given by Lemma 1.4. As in the proof of Theorem 1.5, let α be a dominating function for Φ_t and find t_0 such that Φ_t^{α} is $\hat{\delta}$ -multiplicative on \hat{F} for all $t\geqslant t_0$. Now let $t\geqslant t_0$ be fixed. By increasing $\alpha(t)$, we may assume that the image of φ_t is contained in $\bigoplus_{j=1}^N \tilde{B}_j\otimes M_{\alpha(t)}$. Moreover we may assume that φ_t^{α} is $\hat{\delta}$ -multiplicative on \hat{F} . We obtain the following diagram

where the superscript α indicates that the corresponding maps have been unitalized as described before Theorem 1.5. The restriction of ψ to $\oplus_i (\tilde{B}_i \otimes M_{\alpha(t)})$ is denoted by ψ too. Note that $\Phi_t^{(0),\alpha} = \gamma^{\alpha}$ and $\Phi_t^{(1),\alpha} = \psi \varphi_t^{\alpha}$. The next step is to modify the above diagram so that ψ will become homotopic to a *homomorphism which factors approximately through an algebra in $\hat{\mathcal{D}}$. Set C = $\bigoplus_{i=1}^N (\tilde{B}_i \otimes M_{\alpha(t)}), E = C(X) \otimes M_L \otimes M_N \otimes M_{\alpha(t)}$ and $H = \varphi_t^{\alpha}(F)$ (recall that t is fixed). By using Lemma 2.2 we find m, such that if γ_0 : $E \to M_m(E)$ is defined by $\gamma_0(c) = \operatorname{diag}(c, c(x_0), \dots, c(x_0))$, with $x_0 \in X$, then the *-homomorphism $\gamma_0 \psi$ is homotopic to a *-homomorphism $\sigma: C \to M_m(E)$ such that $\sigma(H)$ is approximately contained, to within ε , in a subalgebra D of $M_m(E)$ with $D \in \hat{\mathcal{D}}$. Actually, one applies Lemma 2.2 for the partial *-homomorphism $\gamma_0 \psi_j$, $1 \leqslant j \leqslant c$. Let $\Psi: C \to M_m(E)[0,1]$ be a homotopy of *-homomorphisms with $\Psi^{(0)} = \gamma_0 \psi$ and $\Psi^{(1)} = \sigma$. Next we consider the path of maps $\Gamma^{(s)}$ in Map $(C(X), M_m(E))$ obtained by the juxtaposition of $\gamma_0 \Phi_t^{(s),\alpha}$ with $\Psi^{(s)} \varphi_t^{\alpha}$. It is clear that $\gamma_0 \gamma^{\alpha}$ is the initial point of $\Gamma^{(s)}$ and $\sigma\varphi_t^{\alpha}$ is the terminal point. Since Φ_t^{α} and φ_t^{α} are $\hat{\delta}$ -multiplicative on \hat{F} , it follows that $\Gamma^{(s)}$ is $\hat{\delta}$ -multiplicative on \hat{F} for each s. This enables us to use Lemma 1.4 to show that $\gamma_0 \gamma^{\alpha}$ is stably approximately unitarily equivalent to $\sigma \varphi_t^{\alpha}$. Namely, there exist $S \in \mathbb{N}$, a *-homomorphism $\eta_0: C(X) \to M_{S-1}(M_m(E))$ with finite-dimensional image and a unitary $u \in U_S(M_m(E))$ such that

$$\|u\operatorname{diag}(\sigma\varphi_t^\alpha(a),\eta_0(a))u^*-\operatorname{diag}(\gamma_0\gamma^\alpha(a),\eta_0(a))\|<2\varepsilon$$

for all $a \in F$. Note that $\gamma_0 \gamma^{\alpha}$ is a unital *-homomorphism of the form

$$a \mapsto \operatorname{diag}(a, a(x_0), \dots, a(x_0)) = \operatorname{diag}(a, \eta_1(a)).$$

Since $\varphi_t^{\alpha}(F) \subset H$ and $\sigma(H)$ is approximately contained to within ε in D, it follows that, for all $a \in F$, $\operatorname{diag}(a, \eta_1(a), \eta_0(a))$ is approximately contained to within 3ε in $u(D \oplus \operatorname{image}(\eta_0))u^* \in \hat{\mathcal{D}}$. By using the Lemma that appears in the proof of Theorem A, we see that η_0 can be taken of the form $\eta_0(a) = \operatorname{diag}(a(x_1), \ldots, a(x_{r-1}))$.

THEOREM 2.4. Let A be a C^* -algebra of real rank zero. Suppose that A is an inductive limit

$$A = \lim_{\longrightarrow} (A_n, \gamma_{m,n}), A_n = \bigoplus_{i=1}^{k_n} M_{[n,i]}(C(X_{n,i})).$$

Suppose that each $X_{n,i}$ is a finite connected CW complex, $K_0(C(X_{n,i}))$ is torsion free and $d = \sup_{n,i} \{\dim(X_{n,i})\} < \infty$. Then A is isomorphic to an $A\mathcal{D}$ algebra.

Proof. Let $e_{n,i}$ denote the unit of $A_{n,i}=M_{[n,i]}(C(X_{n,i}))$ and let $\gamma_{m,n}^{j,i}\colon A_{n,i}\to A_{m,j}$ be the partial *-homomorphisms of $\gamma_{m,n}$. The C^* -algebras in $\mathcal D$ are semiprojective [Lo]. By Proposition 1.2 in [DL1], (see also Theorem 3.8 in [Lo]) it suffices to show that for any finite subset $F\subset A_{n,i}$ and $\varepsilon>0$, there is $m\geqslant n$, such that for any $1\leqslant j\leqslant k_m$ there exist a C^* -algebra $D\in \mathcal D$, and a *-homomorphism $\sigma\colon D\to f_jA_{m,j}f_j, f_j=\gamma_{m,n}^{j,i}(e_{n,i}),$ such that $\mathrm{dist}(\gamma_{m,n}^{j,i}(a),\sigma(D))<\varepsilon$ for all $a\in F$. By Theorem 1.4.14 in [EG] we can assume that F is weakly approximately constant to within ε . To simplify notation say $A_{n,i}=M_k(C(X))$. By Proposition 2.3 there exist $r\in \mathbb N$ and a unital *-homomorphism $\nu\colon M_k(C(X))\to M_{kr}(C(X))$ of the form $\nu(a)=\mathrm{diag}(a,a(x_1),\ldots a(x_{r-1})),$ and there is a unital *-homomorphism $\xi\colon D\to M_{kr}(C(X))$ with $D\in \mathcal D$ such that $\mathrm{dist}(\nu(a),\xi(D))<\varepsilon$ for all $a\in F$. By Theorem 2.5 in [Su] and Lemma 2.3 in [EG] there is $m\geqslant n$ so that for each $j,1\leqslant j\leqslant k_m$, one of the following conditions are satisfied.

- (i) There is a *-homomorphism $\mu: A_{n,i} \to f_j A_{m,j} f_j$ with finite dimensional image such that $\|\gamma_{m,n}^{j,i}(a) \mu(a)\| < \varepsilon$ for all $a \in F$.
- (ii) $\operatorname{rank}(\gamma_{m,n}^{j,i}(e_{n,i})) = \operatorname{rank}(f_j) = kq \text{ where } q > 10rd.$

If we are in the first case, then we are done. Thus we may assume that (ii) holds. Define $\nu_j\colon M_k(C(X))\to M_{kr}(C(X))\oplus M_k, \nu_j(a)=\nu(a)\oplus a(x_0).$ We apply Lemma 2.1 for $\gamma_{m,n}^{j,i}$ and ν_j . Hence we find a *-homomorphism $\psi_j\colon M_{kr}(C(X))\oplus M_k\to f_jA_{m,j}f_j$ such that $\psi_j\nu_j$ is homotopic to $\gamma_{m,n}^{j,i}$ as *-homomorphisms from $M_k(C(X))$ to $f_jA_{m,j}f_j$. Since F is approximately weakly constant to within ε and A has real rank zero, by Theorem 2.29 in [EG], there exist $s\geqslant m$ and a unitary $u\in\gamma_{sm}(f_j)A_s\gamma_{s,m}(f_j)$ such that

$$||u\gamma_{s,m}\psi_j\nu_j(a)u^* - \gamma_{s,m}\gamma_{m,n}^{j,i}(a)|| < 70\varepsilon$$

for all $a \in F$. Define $\xi_j: D \oplus M_k \to M_{kr}(C(X)) \oplus M_k, \xi_j(d, \lambda) = \xi(d) \oplus \lambda$. The various maps that are involved here can be visualized on the diagram

Since dist $(\nu_j(a), \xi_j(D \oplus M_k)) < \varepsilon$ for all $a \in F$, if we set $\sigma = u(\gamma_{s,m}\psi_j\xi_j)u^*$, then

$$\operatorname{dist}(\gamma_{s,m}\gamma_{m,n}^{j,i}(a),\sigma(D)) < 100\varepsilon.$$

This concludes the proof.

In Theorem 2.4 one can allow $d = \infty$ under the additional assumption that A has slow dimension growth. A similar remark applies to Theorem B.

2.5 THE PROOF OF THEOREM B

Let A and B be as in the statement of Theorem B. Theorem 2.4 shows that A and B are $A\mathcal{D}$ algebras. By Theorem 7.1 in [EII], ordered, scaled K-theory is a complete invariant for the simple $A\mathcal{D}$ algebras of real rank zero.

References

- [B1] Blackadar, B.: K-theory for Operator Algebras, MSRI Monographs No. 5, Springer-Verlag, Berlin and New York, 1986.
- [BDR] Blackadar, B., Dadarlat, M. and Rørdam, M.: The real rank of inductive limit C^* -algebras, *Math. Scand.* 69 (1991), 211–216.
- [Bra] Bratteli, O.: Inductive limits of finite-dimensional C^* -algebras, *Trans. Amer. Math. Soc.* 171 (1972), 195–234.
- [Br] Brown, L. G.: The universal coefficient theorem for Ext and quasidiagonality, in Operator Algebras and Group Representations, Pitman Press, Boston, London, Melbourne, 1983, pp. 60-64.
- [BDF] Brown, L., Douglas, R. and Fillmore, P.: Extensions of C^* -algebras K-homology, Ann. of Math. 105 (1977), 265–324.
- [BP] Brown, L. G. and Pedersen, G. K.: C^* -algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.
- [BrD] Brown, L. G. and Dadarlat, M.: Extensions of C^* -algebras and quasidiagonality, to appear in J. London Math. Soc.
- [CE] Choi, M.-D. and Effros, E. G.: The completely positive lifting problem for C*-algebras, Ann. of Math. 104 (1976), 585-609.
- [CH] Connes, A. and Higson, N.: Deformations, morphismes asymptotiques et *K*-théorie bivariante, *C. R. Acad. Sci. Paris* **313** (1990), 101–106.

[Cu] Cuntz, J.: K-theory for certain C^* -algebras, Ann. of Math. 113, (1981), 181–197.

- [D] Dadarlat, M.: C^* -algebras and applications, in Contemporary Mathematics, vol. 145, *Amer. Math. Soc.*, Providence RI, 1993, pp. 393–421.
- [D1] Dadarlat, M.: Shape theory and asymptotic morphisms for C^* -algebras, *Duke Math. J.* 73 (1994), 687–711.
- [D2] Dadarlat, M.: On the asymptotic homotopy type of inductive limit C^* -algebras, Math. Ann. 297 (1993), 671–676.
- [DN] Dadarlat, M. and Nemethi, A.: Shape theory and connective *K*-theory, *J. Operator Theory* **23** (1990), 207–291.
- [DL] Dadarlat, M. and Loring, T. A.: K-homology, asymptotic representations and unsuspended E-theory, J. Funct. Anal. 126(2) (1994), 367–383.
- [DL1] Dadarlat, M. and Loring, T. A.: Extensions of certain real rank zero C^* -algebras, Ann. Inst. Fourier 44(3) (1994), 907–925.
- [Eff] Effros, E. G.: Dimensions and C*-algebras, CBMS Regional Conf. Series in Math. vol. 46, Amer. Math. Soc., Providence, R.I., 1981.
- [Ell] Elliott, G. A.: On the classification of C^* -algebras of real rank zero I, J. Reine Angew. Math. 443 (1993), 179–219.
- [EG] Elliott, G. A. and Gong, G.: On the classification of C^* -algebras of real rank zero II, Preprint 1994.
- [EG1] Elliott, G. A. and Gong, G.: On inductive limits of matrix algebras over the two-torus, to appear in *Amer. J. Math.*
- [EGLP] Elliott, G. A., Gong, G., Lin, H. and Pasnicu, C.: Abelian C^* -subalgebras of C^* -algebras of real rank zero and inductive limit C^* -algebras, Preprint 1993.
- [EGLP1] Elliott, G. A., Gong, G., Lin, H. and Pasnicu, C.: Homomorphisms, homotopy and approximations by circle algebras, C.R. Math. Rep. Acad. Sci. Canada 16 (1994), 45–50.
- [G] Gong, G.: On inductive limits of matrix algebras over higher dimensional spaces, I, Preprint 1994.
- [KS] Kaminker, J. and Schochet, C.: K-theory and Steenrod homology: applications to the Brown-Douglas-Fillmore theory of operator algebras, *Trans. Amer. Math. Soc.* 227 (1977), 63–107.
- [Li1] Lin, H.: Approximation by normal elements with finite spectrum in C^* -algebras of real rank zero, Preprint, 1992.
- [Li2] Lin, H.: Embedding $C(S^1 \times S^1)$ into purely infinite simple C^* -algebras and almost commuting normal elements, Preprint 1993.
- [Li3] Lin, H.: Homomorphisms from C(X) into C^* -algebras, Preprint 1993.
- [LiPh] Lin, H. and Phillips, N. C.: Classification of directs limits of even Cuntz-circle algebras, Preprint 1994.
- [Lo] Loring, T. A.: C^* -algebras generated by stable relations, *J. Funct. Anal.* **112** (1993), 159–201.
- [Lo1] Loring, T. A.: Stable relations II: corona semiprojectivity and dimension-drop C^* -algebras, Preprint, 1993.
- [Lo2] Loring, T. A.: Normal elements of C^* -algebras of real rank zero without finite spectrum approximants, Preprint.
- [Rø] Rørdam, M.: Classification of certain infinite simple C^* -algebras, Preprint, 1993.
- [Pa] Pasnicu, C.: Homomorphisms compatible with covering maps of the two-torus, C. R. Math. Rep. Sci. Canada 14 (1992), 143–147.
- [Ros] Rosenberg, J.: *The Role of K-theory in Non-Commutative Algebraic Topology*, Contemp. Math., vol. 10, Amer. Math. Soc., Provident, R.I., 1983, pp. 155–182.
- [RS] Rosenberg, J. and Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov's generalized functor, *Duke Math. J.* 55 (1987), 431–474.
- [Se] Segal, G.: K-homology and algebraic K-theory, Lecture Notes in Math 575, Springer-Verlag, New York, 1977, pp. 113–127.
- [Sa] Salinas, N.: Relative quasidiagonality and KK-theory, Houston J. Math. 18 (1992), 97– 116.

- [Su] Su, H.: On the classification of real rank zero C^* -algebras: inductive limits of matrix algebras over non-Hausdorff graphs, Thesis, University of Toronto.
- [V] Voiculescu, D.: A non-commutative Weyl-Von Neumann theorem, *Rev. Roumaine Math. Pures Appl.* 21 (1976), 97–113.
- [Zh1] Zhang, S.: Certain C^* -algebras with reak rank zero and their corona and multiplier algebras, Part I, *Pacific J. Math.* 155 (1992), 169–197.
- [Zh2] Zhang, S.: Certain C^* -algebras with real rank zero and their corona and multiplier algebras, Part II, K-Theory 6 (1992), 1–27.