

EMCH361 Mechanical Engineering Lab I

Professor Yu

Lecture #10 Spring 2022

Recap

 Gage factor (GF) and base resistance (R)

$$\varepsilon = \frac{1}{GF} \frac{\Delta R}{R}$$

- Strain gauge installation
 - Bonding adhesive
- Strain measurement
 - Point measurement
 - Directional

A strain gauge with GF=2.0 is mounted on a steel bar (E = 200 x 10^6 kN/m²) the tensile force of 30 kN. Determine the resistance change (ΔR) of the strain gauge. The resistance of the Gauge was $120~\Omega$ in the absence of the load.

$$\sigma = \frac{F}{A} = \frac{30kN}{(0.03m \times 0.01m)} = 1 \times 10^5 kN/m^2$$

$$\varepsilon = \frac{\sigma}{E} = \frac{1 \times 10^5 kN/m^2}{200 \times 10^6 kN/m^2} = 5 \times 10^{-4}$$

$$\Delta R = GF \cdot \varepsilon \cdot R$$

A strain gauge with GF=2.0 is mounted on a steel bar (E = 200 x 10^6 kN/m²) the tensile force of 30 kN. Determine the resistance change of the strain gauge. The resistance of the Gauge was 120Ω in the absence of the load.

$$\sigma = \frac{F}{A} = \frac{30kN}{(0.03m \times 0.01m)} = 1 \times 10^5 \, kN / m^2$$

$$\varepsilon = \frac{\sigma}{E} = \frac{1 \times 10^5 \, kN \, / \, m^2}{200 \times 10^6 \, kN \, / \, m^2} = 5 \times 10^{-4}$$

From previous,

$$\Delta R = GF \cdot \varepsilon \cdot R$$

$$\Delta R = ?$$

A strain gauge with GF=2.0 is mounted on a steel bar (E = 200 x 10^6 kN/m²) the tensile force of 30 kN. Determine the resistance change of the strain gauge. The resistance of the Gauge was 120Ω in the absence of the load.

$$\sigma = \frac{F}{A} = \frac{30kN}{(0.03m \times 0.01m)} = 1 \times 10^5 \, kN / m^2$$

$$\varepsilon = \frac{\sigma}{E} = \frac{1 \times 10^5 \, kN / m^2}{200 \times 10^6 \, kN / m^2} = 5 \times 10^{-4}$$

From previous,

$$\Delta R = GF \cdot \varepsilon \cdot R$$

$$\Delta R = 2 \cdot 5 \times 10^{-4} \cdot 120\Omega = 0.12\Omega$$

Practical strain measurement

- Therefore, you have to accurately measure very small changes in resistance. Issue! ->
- In practice strain gage
 measurement configurations are
 based on the concept of a
 Wheatstone bridge, a classic
 circuit designed to measure very
 small resistive change using a
 network of four resistive arms, with
 very high accuracy and precision

Recall: voltage divider

(and Ohm's law: I = V/R)

Voltage drops:

$$V_1 = IR_1$$

$$V_2 = IR_2$$
 With
$$I = \frac{V_{in}}{R_1 + R_2}$$

Voltage across R₂ w.r.t. ground:

$$V_a = V_2 = V_{in} \frac{R_2}{R_1 + R_2} = V_{in} \frac{1}{\frac{R_1}{R_2} + 1}$$

Wheatstone bridge

a "differential resistance measurer"

Classic Wheatstone bridge configuration with one variable resistor (this is also called "quarter bridge")

- Four resistors, 3 are of fixed value(s) and 4th is variable known as the sensing element whose resistance changes due to stress, pressure, or temperature
- Externally supplied voltage V_{in}
- To be measured output voltage V_O

Wheatstone bridge

a "differential resistance measurer"

Classic Wheatstone bridge configuration with one variable resistor (this is also called "quarter bridge")

- Four resistors, 3 are of fixed value(s) and 4th is variable known as the sensing element whose resistance changes due to stress, pressure, or temperature
- Externally supplied voltage V_{in}
- To be measured output voltage V_O

The two dividers in Wheatstone bridge

$$V_{a} = V_{in} \frac{1}{\frac{R_{1}}{R_{2}} + 1}$$

$$V_{b} = V_{in} \frac{1}{\frac{R_{3}}{R_{4}} + 1}$$

Therefore,

$$V_{ab} = V_{in} \left(\frac{1}{\frac{R_1}{R_2} + 1} - \frac{1}{\frac{R_3}{R_4} + 1} \right) = V_{in} \left(\frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4} \right)$$

$$V_{in}$$
 V_{a}
 V_{a}
 V_{b}
 V_{b}
 V_{b}
 V_{a}
 V_{b}
 V_{c}
 $V_{$

$$V_O = V_{in} \left(\frac{R_2}{R_1 + R_2} - \frac{R_S}{R_3 + R_S} \right) = 0$$
 when Rs= 120 Ω
The bridge is balanced.

The bridge is balanced.

In applications, for example the strain gauge in Lab 5, the Rs=120 Ω is from the gauge's base resistance and the other resistors will be set at this value. Any change in dimension will cause nonzero voltage output

Example (cont'd)

Now we place the strain gauge in our earlier example here in the quarter bridge arm, as shown below. Assume R1 = R2 = R3 = R_S = R(=120 Ω). Calculate the change of output voltage when input voltage is 10.0 V.

Strain gauge measurement instrumentation

 We can see the output voltage from Wheatstone bridge is very small

- Electrical amplification is required to bring the signal to a level where it is useful for reading
- In addition, from power supply (Vin) to recording (Vo) should all be considered as a system (compatibility) to assure satisfactory performance and precision

"Strain gage box"

Lab 5: strain Measurement

Lab 3 contents

Cantilever beam

- 1. A load is applied near the free end by dead weight or displacement or what applicable in the lab
- 2. Resulted (bending) stress at the location of the strain gage is calculated as ____
- 3. While the strain at the location of the strain gage is measured as ____

What we do further?

Now: determine beam material's

Young's modulus

$$\sigma = E\varepsilon$$

What methods do we have?

Strain	Stress (MPa)
0	0
0.00049	100
0.0011	200
0.00155	300
0.0019	400
0.0024	500

Example

Least square curve fitting using Excel

- Linear least square method is the most common method of curve fitting
- The goal is trying to fit all the points with a linear line

$$y = ax + b$$

 and choose the line function parameters (a, b) so as to minimize the fitting error in terms of the difference between the data value y_i and the y-values (mathematically correlated results) on the fitted curve.

Minimize
$$S = \sum_{i=1}^{N} (y_i - y_{Ci})^2$$

 $= (y_1 - y_{C1})^2$
 $+ (y_2 - y_{C2})^2$
 $+ (y_3 - y_{C3})^2 + \dots$

The fitting method

$$S = \sum_{i=1}^{n} [y_i - (ax_i + b)]^2$$
The y value obtained using the assumed relation (x_i, y_i) your measurements

To minimize a function of multiple variables, we compute the partial derivatives w.r.t. each of the variables and set them equal to zero.

$$\frac{\partial S}{\partial a} = 0$$
, $\frac{\partial S}{\partial b} = 0$

The fitting method (cont'd)

Solved:

$$a = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{(\sum y_i)(\sum x_i^2) - (\sum x_i y_i)(\sum x_i)}{n \sum x_i^2 - (\sum x_i)^2}$$

How good is the fit?

- Visual examination of graph, or
- By "regression analysis" using a correlation coefficient, R:

$$\mathbf{R} = \left(1 - \frac{\sigma_{y,x}^2}{\sigma_y^2}\right)^{\frac{1}{2}}$$

$$\sigma_{y} = \left[\frac{\sum_{i=1}^{n} (y_{i} - y_{m})^{2}}{n-1}\right]^{1/2}$$

$$\sigma_{y,x} = \left[\frac{\sum_{i=1}^{n} (y_i - y_{ic})^2}{n-2}\right]^{1/2}$$

yi – actual data yic – calculated from the relation The coefficient R tells how the data set match with a straight line:

- 0<R<1 in general
- R =1, perfect fit, all variability in data fit into a straight line and hence fully explained by the model
- R = 0, the data are all over the place and hence there is no linear relation between the data
- Good fit: R as close to unity as possible 26

Linear curve fitting with Excel

EXCEL procedure

- Enter the data columns in Excel and choose "Scatter with Only Markers" plotting function in Charts from the toolbar
- The plot will show up. [Select the grid and legend and hit "Delete" key, respectively if they show up in the plot.]
- Click data point on chart to select them
- Right click the mouse and select "Add Trendline" from the popup menu
- In "Trendline Options", set "Trend/Regression Type" to be Linear and check Set Intercept and set the value to be 0. And make sure "Display Equation on Chart" is checked. All other use default settings
- Click Close and the linear regression line shows up

Note: contents in [] are optional for appearance only.

Method 2 for deriving E with the experimental data in lab 3

Alternatively, Young's modulus can be calculated directly from beam theory

Strain	Stress (MPa)	E (MPa)
0	0	
0.00049	100	204081.6327
0.0011	200	181818.1818
0.00155	300	193548.3871
0.0019	400	210526.3158
0.0024	500	208333.3333

- Find mean value, standard deviation
- Write E= ??? ± ???
 for a pre-assigned confidence level

Lab 3 report due time

 Because of Spring Break, lab 3 report is set to be due on 5 PM Wednesday, March 16.

END of Lecture #10