

1. 代数式 01:14

1) 整式 01:23

- 整式的分类 01:47
 - o 单项式 01:57
 - **定义**:由数字与字母的乘积构成的代数式,又称为一项。
 - **构成特点**:以乘号为连接符号,无论包含多少个字母相乘都视为一个整体。
 - 示例:
 - $4 \times x \stackrel{1}{=} \frac{1}{4}x$
 - $4xy^2$ (数字4与字母x、 y^2 的乘积)
 - 特殊形式:单独的数字(如4)或字母(如x)也属于单项式。
 - o 多项式 03:01

- **定义**:由多个单项式通过加减法连接构成的代数式。
- **构成特点**:加减号作为分隔符,每个单项式称为一项。
- 示例:
 - 二项式: 4*xy*² 6*y*
 - 三项式: *a*² + 2*ab* + *b*²
- **注意事项**:多项式中的单项式可以包含负系数(如 6y)。
- 整式的四则运算 04:04
 - o 加减运算 05:42
 - 核心方法: 合并同类项(字母部分完全相同的项)。
 - 运算规则:
 - 加法: $f(x) + g(x) = 2x^2 2x + 2$
 - 减法: $f(x) g(x) = 2x^2 4x + 8$
 - 技巧: 竖式对齐同类项, 系数相加减, 字母部分保持不变。
 - o 乘法运算 07:15

- **展开方法**:分配律逐项相乘。
- 关键规律:
 - 最高次项=各多项式最高次项相乘(如 $2x^2 \times x = 2x^3$)
 - 常数项=各常数项相乘(如5×(-3)=-15)
- 示例: $(2x^2 3x + 5)(x 3) = 2x^3 9x^2 + 14x 15$
- o 除法运算 10:11

- 竖式除法步骤:
 - 用被除式最高次项除以除式最高次项得商的首项
 - 用商乘整个除式,与被除式相减
 - 重复直到余式次数低于除式
- 短除法适用条件:
 - 除式为一次式
 - 字母系数为1 (如x-3适用, 2x-3不适用)
- **示例**: $(2x^2 3x + 5) \div (x 3)$ 商2x + 3余14
- 平方公式 15:54
 - 完全平方公式
 - 展开式:
 - $(a+b)^2 = a^2 + 2ab + b^2$
 - $(a-b)^2 = a^2 2ab + b^2$
 - 记忆口诀: 首平方, 尾平方, 二倍乘积在中央。
 - **逆用技巧**: 识别三项式是否可配方 $(dx^2 + 10x + 25 = (x + 5)^2)$
 - 平方差公式 17:17 0

- 公式形式: $a^2 b^2 = (a + b)(a b)$
- 证明过程: $(a+b)(a-b) = a^2 ab + ab b^2 = a^2 b^2$
- 应用示例: $(13x + 5)(13x 5) = 169x^2 25$
- 应用案例 18:44 0
 - 例题:求b值

- 解题方法一 (待定系数法)
 - 设 $x^2 3x + b + 2 = (x + a)^2$

- o 展开得 $x^2 + 2ax + a^2$
- o 对比系数得2a = -3, $b + 2 = a^2$
- 解得 $a = -\frac{3}{2}$, $b = \frac{1}{4}$
- 解题方法二(配方法):
 - 完全平方式常数项=一次项系数一半的平方
 - $0 \quad b+2=(\frac{-3}{2})^2=\frac{9}{4}$
 - $\circ \quad \text{ \mathbb{R}} = \frac{1}{4}$
- <u>1</u> ▶ 答案: A选项(<u>4</u>)
- 整式的除法 22:38

- 基本表达式: f(x) = g(x)q(x) + r(x), 类比数的除法a = bq + r
- 对应关系:
 - 被除式 $f(x) \leftrightarrow$ 被除数a
 - 除式*g(x)* ↔ 除数*b*
 - 商式q(x)↔ 商q
 - 余式r(x) ↔ 余数r
- 限定条件:
 - 余式次数必须小于除式次数
 - 余数范围: 0≤r
 b
- 整除概念:
 - 当r(x) = 0时,f(x)能被g(x)整除,记为 $g(x) \mid f(x)$
 - 数的整除同理,如6|18
- o 例题: 求余式 26:16

- 示例分析:
 - 以 $(2x^2 3x + 5) \div (x 3)$ 为例
 - 余式为常数14,满足次数低于除式(一次式)
 - 验证: $2x^2 3x + 5 = (x 3)(2x + 3) + 14$

全新新安

例、x+1除f(x)=2x²-x+3,所得的余式是

后续更新请关注公众号[无机研] 一手更新QQ群:836488920

■ 题目解析:

- $\bar{x} f(x) = 2x^2 x + 3$ k
- 解法1 (完整除法):
 - o 商式: 2x-3
 - o 余式: 6
 - 验证: $2x^2 x + 3 = (x + 1)(2x 3) + 6$
- 解法2 (短除法):
 - o 系数排列: 2-13
 - o 运算步骤:
 - 首项2直接落下
 - 1×2=2, -1-2=-3
 - 1×(-3)=-3, 3-(-3)=6
 - o 余式即为最后结果6
- 解法3(余式定理):
 - 令除式x + 1 = 0得x = -1
 - 计算f(-1)=2(-1)²-(-1)+3=6
- 关键点:
 - o 三种方法结果一致验证正确性
 - o 当仅需求余式时,余式定理最高效
 - o 短除法要求除式首项系数为1

。 ■ **运算要点**:

● 缺项处理:必须用0补齐缺失项系数

● 结果验证:可通过乘法展开验证等式成立

● 特殊情况: 余式为0时即为整除情况

■ 注意事项:

- 余式次数必须严格小于除式次数
- 短除法仅适用于除式为一次且首项系数为1的情况
- 完整除法是通用方法,但计算量较大
- 实际解题应根据题目要求选择合适方法
- 整式的恒等 32:02

- o **核心定理**: 两多项式相等当且仅当对应项的系数相等("门当户对"原则)
- o **应用场景**: 常用于求未知参数值,需将多项式展开为标准形式后对比系数
- o 例题: 求ab值 32:30

0

- 题目解析
 - **展开步骤**: 将g(x) = (x a)(bx 3)展开为 $bx^2 (3 + ab)x + 3a$ 的标准形式
 - 系数对比:
 - o 二次项: b = 2
 - 一次项: 3+ab=5→代入b=2得a=1
 - o 常数项: 3a = 3→ 验证a = 1的正确性
 - 答案: a = 1, b = 2
 - ▶ 技巧:展开后按x的降幂排列,确保系数对应关系清晰
- 因式分解 35:08

0

- o **本质**:将多项式分解为多个因式相乘的形式
- o **重要性**:解方程、不等式、化简的基础工具
- o 提公因式法 36:07
 - 操作要点:
 - 寻找各项的最大公因式 (系数取最大公约数,字母取最低次幂)
 - 示例: ab + bc = b(a + c)中提取公共因子b
 - **注意事项**:需检查分解后括号内是否还能继续分解
- o 公式法 36:35

■ 常用公式:

• 平方差公式: $a^2 - b^2 = (a - b)(a + b)$

完全平方公式: $a^2 \pm 2ab + b^2 = (a \pm b)^2$

■ **识别特征**:多项式项数、次数与公式结构匹配

o 十字相乘法 37:22

■ **适用范围**: 二次三项式 $ax^2 + bx + c$ 的分解

■ 操作步骤:

◆ 分解二次项系数: a = a₁ × a₂

● 分解常数项: $c = c_1 \times c_2$

验证交叉积和: a₁c₂ + a₂c₁ = b

● 横向组合结果: $(a_1x + c_1)(a_2x + c_2)$

■ 典型示例:

• $x^2 - 3x - 4 \rightarrow (x+1)(x-4)$

4x² + 2x - 6→ 两种分解方式:

○ (x-1)(4x+6) 可提取公因数简化为2(2x+3)(x-1)

o (2x+3)(2x-2)→可提取公因数简化为2(2x+3)(x-1)

• $x^2 + 2xy - 15y^2 \rightarrow (x - 3y)(x + 5y)$ (含双变量处理)

■ 技巧:

- 当a≠1时需尝试不同拆分组合
- 含双变量时将y视为常数处理
- 最终需验证分解结果的乘积是否等于原式

二、知识小结

知识点	核心内容	考试重点/易 混淆点	难度系数
代数概念	用符号代替数字的运 算,涉及 xyz/ABC/mnk等变量 符号	符号抽象性 导致粗心错 误	***
整式与分式	整式(单项式/多项 式)与分式的区分标 准	分式判定关 键:分母含 未知量	***
多项式运算	四则运算规则(加减乘除),重点掌握 竖 式除法 和 短除法	短除法适用 条件:除式 为一次且x系 数=1	****
乘法公式	完全平方公式: (a±b) ²=a²±2ab+b²; 平方差	公式逆用技 巧(如169x²-	***

	公式: a²-b²=(a+b)(a-	25→(13x)²-	
	b)	5 ²)	
因式分解	三大方法: 1. 提公因	十字相乘验	★★★★☆
	式法; 2. 公式法(平方	证标准: 交	
	差/完全平方);3.十	叉积和=中间	
	字相乘法 (重点)	项系数	
整式恒等	多项式相等的充要条	含参多项式	***
	件:对应项系数相等	展开后的系	
	(门当户对原则)	数对比	
余式定理	f(x)÷(x-a)的余式=f(a)	与数的除法	****
		类比: 余式	
		次数 < 除式	
		次数	