Aprendizado de Máquina para Diagnóstico de Câncer de Mama

Marcos Paulo Diniz Universidade de Brasília Departamento de Ciência da Computação Brasília, Brasil marcosdiniz@aluno.unb.br

Resumo—O trabalho busca mensurar a capacidade de diagnóstico do câncer de mama por meio de aprendizagem de máquina. Para isso, foi implementado o algoritmo do SVM usando diferentes kernels em busca de um resuldado melhor, além de, também, usar valores de C e qamma diferentes.

Index Terms—Câncer, diagnóstico, aprendizagem de máquina, algoritmo, SVM.

I. Introdução

Esse trabalho tem como objetivo usar o aprendizado de máquina supervisionado, por meio do algoritmo *Support Vector Machine* (SVM), para diagnosticar a presença ou não do câncer da mama. No *dataset* utilizado haviam 569 dados de diagnósticos da doença, entre diagnósticos malignos e benignos.

Para a implementção do algoritmo foi-se usado a linguagem de programaçãao Python (versão 3.6.3), com auxílio das bibliotecas *Sklearn*, *Matplotlib*, *Pandas e Numpy*.

Por se tratar de um algoritmo de aprendizado de maquina supervisionado, será preciso separar a base em duas partes, sendo uma para treinamento e a outra para testes, essa separação será de 70% e 30%, respectivamente.

Para o bom compreendimento do trabalho realizado, é preciso, primeiramente, entender como o SVM funciona. O algoritmo do SVM mapeia os dados para um espaço dimensional variavel a fim de categorizar os dados, sendo a disposição destes linear ou nao. O algoritmo cria um separador entre as categorias e, depois, transforma os dados de modo a permitir o separador ser desenhado como um hiperplano. Com isso, novos dados podem ser inseridos para serem classificados.

Figura 1. SVM para diferentes kernels

Para separar os dados do conjunto o SVM precisa traçar uma linha para dividir o conjunto, no nosso caso, precisa dividir os dignóstivos malignos e benignos. A forma desse segmento de reta dependerá de qual kernel está sendo utilizado, nesse trabalho usaremos os seguintes kernels: linear, gaussiano e RBF. Na imagem acima pode ser notado o comportamento desse segmento para diferentes *kernels*.

Como pode ser observado na imagem, podemos ter um kernel bem simples como uma reta, como o observado em (a) da figura anterior, mas podemos chegar à um kernel mais próximo do ideal, como observado em (c), que por sua vez separa os dados de uma forma mais precisa.

II. ANALISE DO EXPERIMENTO

Para a realização do experimento a primeira etapa foi carregar o dataset e entender como os dados estavam distribuidos nele. Após isso, separamos os conjuntos de trainamento e teste, conforme explicado anteriormente.

Após entender os dados disponíveis no dataset, começamos a aplicação do kernel linear. Nesse primeiro momento, aplicamos o kernel linar padrão, isto é, sem nenhuma modificação dos parâmetros da função, e obtivemos a matriz de confusão abaixo.

Tabela I Matriz de Confusão para o Kernel Linear

	Maligno	Benigno
Maligno	63	0
Benigno	58	50

E, com isso, foi obtido uma acurácia de 66%, mas como pode ser observado na tabela acima, o modelo acertou todos os diagnósticos quando o câncer é maligno, porém quando o dignóstico era benigno a taxa de acerto foi de pouco mais de 45%, ficando bem abaixo do esperado.

Para melhorar o algoritmo em busca de um resultado melhor, aplicamos o GridSearchCV combinando diferentes valores de C, em busca de uma melhora na texa de acerto do algoritmo. Na tabela abaixo estão os valores qua foram usados para o parâmetro C.

Tabela II VALORES DE C

C: 0.01 0.1 1 10 100 1000 10000 100000

Após aplicar a técnica apresentada acima, o algoritmo retornou que o valor ideal para o parametro seria usar C=1000. Com isso, alteramos o valor padrão de C, usando o indicado anteriormente. Após a execução com o novo parâmetro, obtivemos a matriz de confusão abaixo.

 $\label{eq:Tabela III} \text{Matriz de Confusão para o Kernel Linear com } C = 1000$

	Maligno	Benigno
Maligno	58	5
Benigno	8	100

Como pode ser observado na tabela acima, a taxa de acerto melhorou significantemente, após se alterar o valor de C, alcançando uma taxa de 93% de acerto, ainda que tenha uma pequena queda no dignóstico do câncer benigno, que antes não houve nenhuma classificação incorreta.

A melhora condicionada ao valor de C se deve a infuência desse parametro sobre a linha que dividirá o hiperplano do SVM. Para valores de C muito grandes, a otimização escolherá um hiperplano de margem menor se esse hiperplano fizer um trabalho melhor ao classificar todos os pontos de treinamento corretamente. Por outro lado, um valor muito pequeno de C fará com que o otimizador procure por um hiperplano de margem de separação maior, mesmo que esse hiperplano atribua erros a mais pontos.

Sabendo disso, ao analisar as Tabelas I e II em conjunto, percebemos claramente a infuência do valor C grande, que possibilitou a crescente no acerto do dignóstico benigno e, como consequência desse aumento, houve erro de 5 dignósticos do câncer maligno, que não foi observado quando usamos o valor de C padrão.

A seguir, temos um gráfico que relaciona todos as taxas de acerto obtidas com os diferentes valores de ${\cal C}$.

Figura 2. Taxa de acerto de teste x C

Após obter o resultado acima com o kernel linear, passamos a aplicar o kernel Gaussiano. Aplicando o kernel gaussiano sem nenhuma modificação de seus aprametros, obtivemos a matriz de confusão abaixo.

Tabela IV Matriz de Confusão para o Kernel Gaussiano

	Maligno	Benigno
Maligno	0	63
Benigno	0	108

Novamente o resultado não foi muito satisfatório, alcançando apenas 63% de acerto, considerando que ele acertou todos os dignósticos malignos, mas em contra partida, errou todos os benignos.

Como o resultado foi abaixo do esperado, mnovamente aplicaremos o GridSearchCV, porém, dessa vez, iremos testar vários valores de C em conjunto com vários valores de σ . Vale ressaltar que $gamma=1/\sigma$, sabendo disso, vamos alterar o parâmetro gamma, que por conseguência estaremos alterando o valor de σ .

Na tabela abaixo estão os valores de C e gamma que utilizamos.

C:	0.01	0.1	1	10	100	1000	10000	100000
gamma:	1000	100	10	1	0.1	0.01	0.001	0.0001

Após aplicar o *GridSearchCV*, foi nos retornado que os melhores valores de *C* e *gamma* seriam de 1000 e 0.0001, respectivamente. Sabendo disso, refizemos o treinamento alterando os valores desses parâmetros e obtivemos a matriz de confusão abaixo.

Tabela VI $\label{eq:matrix} \mbox{Matriz de Confusão para o Kernel Gaussiano com } C = 1000 \ \mbox{e} \\ gamma = 0.0001$

	Maligno	Benigno
Maligno	57	6
Benigno	6	102

Após a alteração dos parâmetros, foi notával o aumento da taxa de acerto. Isso se deve a influência dos parametros sobre a função, a influência do parametro C, já vimos anteriormente, nesse momento iremos entender a influência do gamma sobre o SVM.

O gamma controla os picos da nossa função gaussiana. Um gamma pequeno nos dá picos mais marcados, sendo esses mais altos e mais pontiagudos, enquanto isso um gama muito grande, conseguimos picos mais amplos (ou seja, sem um pico alto, sim largo e bem mais suave. Ainda outra caracterísca do gamma pequeno é uma alta variância, enquanto um maior é marcado pela baixa variância.

Com isso, ao observar o gamma ideal retornado conforme esperado foi um valor pequeno, em vista da ampla variância dos dados no dataset. E ao analisar os resultados retornados, percebemos que para um mesmo valor de gamma e com o valor de C variando, não havia mudanças na taxa de acerto.

Logo, se conclui que para um valor fixo de C, o valor de gamma não influência na taxa de acerto. A seguir temos um gráfico que mostra a relação da taxa de acerto com o valor de C. Ao lado, podemos ver a tebela completa com as Taxas de Acertos, valores de C e valores de gamma.

Figura 3. Taxa de acerto de teste x C

Por fim, será treinado o SVM aplicando o kernel RBF, dessa vez, o kernel será aplicado sem nenhuma modificação e faremos, em seguida, a análise dos resultados obtidos. Na tabela abaixo temos a matriz de confusão obtida com a execução.

Tabela VII Matriz de Confusão para o Kernel RBF

	Maligno	Benigno
Maligno	47	16
Renigno	0	108

Com o kernel RBF conseguimos uma taxa de acerto por volta dos 90%, valendo ressaltar que o algoritmo teve êxito acima do esperado nos diagnósticos benignos, enquanto no caso dos malignos texe uma taxa de acerto de 75%.

III. CONCLUSÕES

Após a análise de todos os resultados obtidos, é notável que para se conseguir uma boa taxa de acerto com o algoritmo do SVM, não basta apenas aplicá-lo do modo normal dele, isto é, sem alterar seus parâmetros.

Primeiramente, é interessante executar o SVM da sua forma padrão, para em seguida comparar com o SVM aperfeiçoado com mudancas nos valores de seus parâmetros.

Com o SVM linear, a melhora foi bem significativa, após encontrar o valor ideal de C, elevando a taxa de acerto de 66% para 93%, tornando um algoritmo confiável para uso.

O mesmo acontece quando aplicamos o kernel gaussiano sem mudar os parâmetros iniciais. O SVM só consegue mapear os dignósticos para benigno, em todos os casos, o que o torna altamente não confiável, ainda que tenha uma taxa de acerto de 63%.

Tabela VIII VALORES DE C E gamma

Taxa de Acerto de Teste C gamm 0.6256281407035176 0.01 1000 0.6256281407035176 0.01 100 0.6256281407035176 0.01 10 0.6256281407035176 0.01 1 0.6256281407035176 0.01 0.1 0.6256281407035176 0.01 0.01 0.6256281407035176 0.01 0.001 0.6256281407035176 0.1 1000 0.6256281407035176 0.1 1000 0.6256281407035176 0.1 1000	
0.6256281407035176 0.01 100 0.6256281407035176 0.01 10 0.6256281407035176 0.01 1 0.6256281407035176 0.01 0.1 0.6256281407035176 0.01 0.01 0.6256281407035176 0.01 0.001 0.6256281407035176 0.01 0.0001 0.6256281407035176 0.01 0.0001 0.6256281407035176 0.1 1000	
0.6256281407035176 0.01 10 0.6256281407035176 0.01 1 0.6256281407035176 0.01 0.1 0.6256281407035176 0.01 0.01 0.6256281407035176 0.01 0.001 0.6256281407035176 0.01 0.0001 0.6256281407035176 0.1 1000 0.6256281407035176 0.1 1000	
0.6256281407035176 0.01 1 0.6256281407035176 0.01 0.1 0.6256281407035176 0.01 0.01 0.6256281407035176 0.01 0.001 0.6256281407035176 0.01 0.0001 0.6256281407035176 0.1 1000	
0.6256281407035176 0.01 0.01 0.6256281407035176 0.01 0.001 0.6256281407035176 0.01 0.0001 0.6256281407035176 0.1 1000	
0.6256281407035176 0.01 0.001 0.6256281407035176 0.01 0.0001 0.6256281407035176 0.1 1000	
0.6256281407035176 0.01 0.0001 0.6256281407035176 0.1 1000	
0.6256281407035176 0.1 1000	
0.6256201407025176 0.1 100	
0.6256281407035176 0.1 100	
0.6256281407035176 0.1 10	
0.6256281407035176 0.1 1	
0.6256281407035176 0.1 0.1	
0.6256281407035176 0.1 0.01 0.6256281407035176 0.1 0.001	
0.6256281407035176 0.1 0.001 0.9070351758793970 0.1 0.0001	
0.6256281407035176 1 1000	
0.6256281407035176 1 1000	
0.6256281407035176 1 10	
0.6256281407035176	
0.6256281407035176 1 0.1	
0.6256281407035176 1 0.01	
0.8969849246231156 1 0.001	
0.9195979899497487 1 0.0001	
0.6256281407035176 10 1000	
0.6256281407035176 10 100	
0.6256281407035176 10 10	
0.6256281407035176 10 1	
0.6256281407035176 10 0.1	
0.6231155778894473 10 0.01	
0.8944723618090452 10 0.001	
0.9170854271356784 10 0.0001	
0.6256281407035176 100 1000 0.6256281407035176 100 100	
0.6256281407035176 100 100 0.6256281407035176 100 10	
0.6256281407035176 100 10	
0.6256281407035176 100 0.1	
0.6231155778894473 100 0.01	
0.8944723618090452 100 0.001	
0.9145728643216080 100 0.0001	
0.6256281407035176 1000 1000	
0.6256281407035176 1000 100	
0.6256281407035176 1000 10	
0.6256281407035176 1000 1	
0.6256281407035176 1000 0.1	
0.6231155778894473 1000 0.01	
0.8944723618090452 1000 0.001	
0.9246231155778895 1000 0.0001	
0.6256281407035176 10000 1000	
0.6256281407035176 10000 100 0.6256281407035176 10000 10	
0.6256281407035176 10000 10 0.6256281407035176 10000 1	
0.6256281407035176 10000 1	
0.6231155778894473 10000 0.01	
0.8944723618090452 10000 0.001	
0.9246231155778895 10000 0.0001	
0.6256281407035176 100000 1000	
0.6256281407035176 100000 100	
0.6256281407035176 100000 10	
0.6256281407035176 100000 1	
0.6256281407035176 100000 0.1	
0.6231155778894473 100000 0.01	
0.8944723618090452 100000 0.001	
0.9246231155778895 100000 0.0001	

Contudo, ao buscar os valores ideais de C e gamma, percebemos que o uso do SVM com esse kernel passa a ser notoriamente mais satisfatório. Ainda que ele tenha um resultado pior quando se olha somente os diagnósticos benignos, o resultado foi altamente satisfatório, uma vez que antes o algoritmo não tinha nenhuma credibilidade, uma vez que sempre dava o mesmo diagnóstico, e por no dataset de treste (escolhido de forma aleatória) ter mais dados benignos, tem-se uma ffalsa impressão da confiabilidade nesse caso.

Já no último teste, verificamos um comportamento do SVM com o kernel RBF conforme o esperado, conseguindo classificar de forma satisfatória os diagnósticos malignos e no caso dos benignos de forma que supreendeu.

Diante dos resultados, é notável que para considerar o SVM confiável só será possivél após encontrar os valores ideias de seus parâmetros. Ainda que tenhamos um resultado acima de 60%(como observado no caso do kernel gaussiano sem alteração dos parâmetros), precisamos olhar como ele vem se comportando com a amostra como um todo, fazendo multiplas validações.

REFERÊNCIAS

- [1] Bishop, C. Pattern Recognition and Machine Learning. Springer, 2006
- [2] Mitchell, T. Machine Learning. McGraw Hill, 1997.
- [3] Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: the University of California, School of Information and Computer Science.
- [4] Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. Sebastopol, CA: O'Reilly Media.