Time domain $\boldsymbol{x}(t)$	Laplace transform $X(s)$	ROC
	X(s) = 1	All s
Unit step $x(t) = u(t)$	$X(s) = \frac{1}{s}$	$\operatorname{Re}\{s\}>0$
Exponential $x(t) = e^{-at}u(t)$	$X(s) = \frac{1}{a+s}$	$\operatorname{Re}\{s\} > -a$
\mathbf{Ramp} $x(t) = tu(t)$	$X(s) = \frac{1}{s^2}$	$\operatorname{Re}\{s\}>0$
$\label{eq:higher order ramp} \mathbf{x}(t) = t^n u(t)$	$X(s) = \frac{n!}{s^{n+1}}$	$\operatorname{Re}\{s\}>0$
Cosine $x(t) = \cos(\omega_0 t)u(t)$	$X(s) = \frac{s}{\omega_0^2 + s^2}$	$\operatorname{Re}\{s\}>0$
Sine $x(t) = \sin(\omega_0 t)u(t)$	$X(s) = \frac{\omega_0}{\omega_0^2 + s^2}$	$\operatorname{Re}\{s\}>0$
Decaying cosine $x(t) = e^{-at}\cos(\omega_0 t)u(t)$	$X(s) = \frac{a+s}{(a+s)^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > -a$
Decaying sine $x(t) = e^{-at} \sin(\omega_0 t) u(t)$	$X(s) = \frac{\omega_0}{(a+s)^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > -a$