

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson
Institute of Computing - UNICAMP

ML Process

Hyperparameters tuning

Hyperparameters: parameters of the learning process

Hyperparameter tuning: finding the best combination of hyperparameters that causes the learning process to produce the best model!

Hyperparameter tuning: finding the best combination of hyperparameters that causes the learning process to produce the best model!

- Example: scikit learn SVC models with RBF kernel
 - C: regularization parameter
 - γ: Kernel coefficient
 - Some hyperparameters combinations:
 - $(C, \gamma) \in \{ (10, 0.1), (10, 0.2), (100, 0.1), (100, 1.0) \}$

<u>Search approach</u>: strategy to evaluate the combinations of hyperparameters

- Several approaches
 - Grid search
 - Random search
 - Bayesian optimization
 - 0 ...

Search approach: Grid Search

- Grid search (or parameter sweep) consists on a exhaustive search on a grid defined by the cartesian product of all parameters candidate values
- Example I:
 - ∘ For $C \in \{10, 50, 100\}$, $\gamma = \{0.1, 0.2, 0.5, 1.0\}$, defined by the practitioner
 - $C \times \gamma = \{ (10, 0.1), (10, 0.2), (10, 0.5), (10, 1.0), (50, 0.1), (50, 0.2), (50, 0.5), (50, 1.0), (100, 0.1), (100, 0.2), (100, 0.5), (100, 1.0) \}$

Search approach: Grid Search

 Grid search (or parameter sweep) consists on a exhaustive search on a grid defined by the cartesian product of all parameters candidate values

Example:

- $x_1 = \text{np.arange}(0.05, 1.0, 0.1)$
- $x_2 = \text{np.arange}(0.05, 1.0, 0.1)$

Search approach: Random Search

- Randomly selects values for hyperparameters
 - Bounds (max, min) values are defined by the user

Example:

$$\circ \quad \mathbf{x}_{\mathsf{I}} \in \mathsf{=} [0.0, \mathsf{I}.0]$$

$$x_{2} \in [0.0, 1.0]$$

Search approach: Bayesian optimization

- Selects next set of hyperparameters to evaluate based on the performance of previous ones
 - Can be adjusted to favor exploring unknown regions or to focus on best regions found so far

Example:

- \circ $x_{1} \in = [0.0, 1.0]$
- $x_{2} \in [0.0, 1.0]$

ML Process

Dataset splitting

- On supervised learning tasks, the dataset is usually split into two subsets: training and test
 - \circ Training set: used to train the model (i.e., adjust θ)
 - <u>Test set</u>: check the model generalization
 - Represents new/unseen data

- On supervised learning tasks, the dataset is usually split into two subsets: training and test
 - \circ Training set: used to train the model (i.e., adjust θ)
 - <u>Test set</u>: check the model generalization
 - Represents new/unseen data

- On supervised learning tasks, the dataset is usually split into two subsets: training and test
 - \circ Training set: used to train the model (i.e., adjust θ)
 - <u>Test set</u>: check the model generalization
 - Represents new/unseen data

- On supervised learning tasks, the dataset is usually split into two subsets: training and test
 - \circ Training set: used to train the model (i.e., adjust θ)
 - Test set: check the model generalization
 - Represents new/unseen data

- On supervised learning tasks, the dataset is usually split into two subsets: training and test
 - \circ Training set: used to train the model (i.e., adjust θ)
 - Test set: check the model generalization
 - Represents new/unseen data

- On supervised learning tasks, the dataset is usually split into two subsets: training and test
 - \circ Training set: used to train the model (i.e., adjust θ)
 - <u>Test set</u>: check the model generalization
 - Represents new/unseen data

Never train your model using the test data!

Test set and ML process iterations.

Previously...

Test set and ML process iterations.

Previously...

Test set and ML process iterations.

Test set and ML process iterations.

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model

Feedback and iteration

Cross-validation: use different portions of the training set to train and to evaluate the model

Cross-validation: use different post to train and to evaluate the

Unfrequently used! Ideally, only once!

"double-check" it using the test set.

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model Several approaches:

- Holdout method
- Leave-one-out cross-validation
- k-fold cross-validation
- Leave-p-out cross-validation
- repeated random sub-sampling validation
- k*I-fold cross validation
- ...

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model Several approaches:

 Holdout method: single train/validation partition randomly selected

Cross-validation: use different p Single partition may set to train and to evaluate the cause evaluation bias. Several approaches: Holdout method: single train/validatio tion randomly selected **Training** Split **Validation** Training'

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model Several approaches:

• Leave-one-out cross-validation: I partition per item

Cross-validation: use different portions of the training set to train and to evaluate the model

Several approaches:

Leave-one-out cross-validation: | part

Each partition separates one item for validation and the rest for training.

N train/validation partitions

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model Several approaches:

Leave-one-out cross-validation: I partition per item

Cross-validation: use different portions set to train and to evaluate the model Several approaches:

Report average and stdev

Leave-one-out cross-validation: I partition per item

<u>Cross-validation</u>: use different portions set to train and to evaluate the model Several approaches:

Report average and stdev

Leave-one-out cross-validation: I partition per item

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model Several approaches:

- k-fold cross-validation: split the data in K folds and generate
 I partition per fold
- Example: 3-fold cross-validation

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model Several approaches:

- k-fold cross-validation: split the data in K folds and generate
 I partition per fold
- Example: 3-fold cross-validation

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model Several approaches:

• **k-fold cross-validation**: split the data in K folds and generate

I partition per fold

Example: 3-fold cross-validation

Each partition separates one fold for validation and the rest for training.

3 train/validation partitions

<u>Cross-validation</u>: use different portions of the training set to train and to evaluate the model Several approaches:

- k-fold cross-validation: split the data in K folds and generate
 I partition per fold
- Example: 3-fold cross-validation

Cross-validation: use different portions of the training set to train and to evaluate the Several approaches:

k-fold cross-validation: split the I partition per fold

Example: 3-fold cross-validation

Number of partitions and training/validation operations = K

nerate

Train and evaluate 3 times, report average and stdev

3 train/validation partitions

Key takeaways

- Training Set: part of the dataset used to train the model
- <u>Validation Set</u>: part of the dataset used to evaluate the model when searching for the best model or best set of hyperparameters
- <u>Test set</u>: part of the dataset set aside for final model evaluation. Ideally, should be used only once!
- <u>Cross-validation</u>: resampling method that uses different portions of the training set to train and evaluate models on different iterations
 - k-fold cross-validation: split the data in K folds and generate k partitions - each one using a different fold for validation and the remaining ones for training

Instituto de Computação

UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson
Institute of Computing - UNICAMP