

Exercice 3 (Circuit préamplificateur, bruit, ADC, 20 points)

Vous trouvez ci-dessous un schéma-bloc de l'acquisition d'un capteur de force piézo-électrique, avec convertisseur A/D. Remplacer svp les blocs 1 et 2 du schéma-bloc par dess circuits électriques détaillés, et déterminer les valeurs des composants passifs. Le schéma équivalent du capteur piézo-électrique (source de charges électriques et capacité parallèle) ainsi que le schéma électrique du bloc 1 sont déjà indiqués. Vous pouvez choisir des résistances quelconques de valeur entre $1k\Omega$ et $10M\Omega$, de même que des condensateurs entre 10pF et $10\mu F$. Il n'existe qu'une seule tension d'alimentation de +5V, et vous devez utiliser comme amplificateur opérationnel le type indiqué dans le tableua ci-dessous. L'impédance de sortie des sorties U_{inP} et U_{inN} du bloc 2 doit être inférieure à $1k\Omega$. V_{ref} est une sortie du circuit ADC de valeur 2.5V, avec impédance de sortie nulle.

Amplificateur opérationnel	AD8629
Largeur de bande à gain unité	2.5MHz
Gain DC en boucle ouverte	350
Courant de biais à l'entrée	30pA
Plage d'entrée	$0V_{\text{supply}}$
Plage de sortie	$0V_{\text{supply}}$
Bruit en tension rapporté à l'entrée	22nV/rtHz
Bruit en courant rapporté à l'entrée	5fA/rtHz

a) Quelle plage de tension Uin voulez-vous choisir? Justifier.

Choisir Cfb de manière à ce que Uin prenne transitoirement la valeur max/min, lorsque la charge Q est variée brusquement de 100pC. (Cp = 600pF) Est-ce que Uin restera constante après une variation indicielle de Q? Si oui, pourquoi, si non, comment évoluera Uin?

Admettons Rfb = $10M\Omega$. Déterminer la fonction de transfert Uin(s)/Q(s), d'abord avec l'hypothèse d'un amplificateur opérationnel idéal, ensuite avec l'hypothèse

Nom		Prénom	
ordre, av	plificateur opérationnel possède ec gain DC en boucle ouverte et au tableau ci-dessus.		-
Détermin	ner le facteur de qualité du circu	it. Est-il stable?	
Calucler	l'effet du courant de biais à l'en	trée sur Uin .	(10 points)

- b) Dessiner le schéma électrique de l'entrée différentielle (bloc 2). L'on souhaite $U_{oN} = 2U_{ref} U_{oP}, \ 0 \leq U_{oP} \leq 2U_{ref}, \ 0 \leq U_{oN} \leq 2U_{ref}.$ La largeur de bande minimale doit être de 10kHz. Justifier brièvement votre circuit et vos calculs. (5 points)
- c) Le convertisseur A/D possède une résolution de 20bit. Quel est la diminution du rapport signal-sur-bruit à la sortie numérique qu'occasionne le bruit des amplificateurs opérationnels (sans bruit en 1/f) et des résistances des deux blocs que vous proposez ? Comparer avec le bruit de quantification ($f_s = 2Msps$). Admettre un signal d'entrée sinusoïdal d'amplitude maximale à une fréquence de 1kHz.

 Justifier votre réponse par un calcul exact ou par une approximation plausible. (5 points)