Électromagnétisme S17 Loi d'Ampère, nabla et laplacien

Iannis Aliferis

Université Nice Sophia Antipolis

Loi d'Ampère intègrale Loi d'Ampère (forme intégrale)	. 3
Loi d'Ampère locale Loi d'Ampère (forme locale)	. 5
Opérateur nabla L'opérateur nabla Opérations avec le nabla (1) Opérations avec le nabla (2) Opérations avec le nabla (2)	. 8
Identités vectorielles Dérivées secondes spatiales	10
Laplacien scalaire et vectoriel Le(s) Laplacien(s): nabla au carré	12 . 13

Loi d'Ampère intégrale

Loi d'Ampère (forme intégrale)

- ▼ [Lignes de champ magnétique] : boucles autour des courants
- **▼ Loi d'Ampère** (1826) :

« La [circulation] du champ \vec{B} , calculée sur une courbe Γ fermée, est proportionnelle au courant traversant une surface S (ouverte) associée à la courbe Γ »

$$\oint_{\Gamma} \vec{B} \cdot \hat{t} \, dl = \mu_0 \int_{S} \vec{J} \cdot \hat{n} \, dS$$
(1)

- lackloss Γ le bord de S; sens $\hat{m{t}}$, $\hat{m{n}}$ règle main droite [théorème rotationnel]
- $\blacktriangledown \int_S \vec{J} \cdot \hat{n} \, \mathrm{d}S$: le courant *enlacé* par la courbe Γ

lacktriangle À chaque Γ , une infinité de S associées

3

2

Loi d'Ampère locale

Loi d'Ampère (forme locale)

▼ [Loi Ampère intégrale] :

$$\oint_{\Gamma} \vec{B} \cdot \hat{t} \, dl = \mu_0 \int_{S} \vec{J} \cdot \hat{n} \, dS$$

▼ Appliquer théorème de Stokes [théorème rotationnel] :

$$\int_{S} \overrightarrow{\mathbf{rot}} \, \vec{\mathbf{B}} \cdot \hat{\mathbf{n}} \, \mathrm{d}S = \mu_0 \int_{S} \vec{\mathbf{J}} \cdot \hat{\mathbf{n}} \, \mathrm{d}S$$

pour toute surface ouverte ${\cal S}$

▼ Loi d'Ampère (forme locale) :

$$\overrightarrow{\mathsf{rot}}\, \vec{B} = \mu_0 \vec{J}$$
 (2)

▼ Le champ \vec{B} « tourne » autour de \vec{J} [visualisation rotationnel] [pourquoi rotationnel]

Opérateur nabla

6

L'opérateur nabla

- ▼ « Opérateur » : doit agir sur quelque chose! (il ne doit jamais rester seul)
- ▼ Champs (scalaires ou vectoriels) : fonctions de plusieurs variables
- ▼ Coordonnées cartésiennes : les trois dimensions sont équivalentes [systèmes coordonnées]
- ▼ Définir un « vecteur » spécial :

$$\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)^T \tag{3}$$

$$\vec{\nabla} = \frac{\partial}{\partial x}\hat{e}_x + \frac{\partial}{\partial y}\hat{e}_y + \frac{\partial}{\partial z}\hat{e}_z$$

▼ L'opérateur nabla est un vecteur gourmand! il agit sur des champs (scalaires ou vectoriels)

J

Opérations avec le nabla (1)

- lacktriangledown On peut traiter $\vec{
 abla}$ comme un vecteur ordinaire
- 1. Vecteur fois scalaire : $\Phi(x,y,z)$ champ scalaire

$$\vec{\nabla}\Phi = \frac{\partial\Phi}{\partial x}\hat{e}_{x} + \frac{\partial\Phi}{\partial y}\hat{e}_{y} + \frac{\partial\Phi}{\partial z}\hat{e}_{z} = \overrightarrow{\mathsf{grad}}\Phi \qquad [\mathsf{gradient}] \tag{4}$$

2. Vecteur \cdot vecteur $: \vec{A}(x,y,z)$ champ vectoriel

$$\vec{\nabla} \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \text{div } \vec{A} \quad \text{[divergence cartésiennes]}$$
 (5)

3. Vecteur \wedge vecteur : $\vec{A}(x,y,z)$ champ vectoriel

$$\vec{\nabla} \wedge \vec{A} = \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \overrightarrow{\text{rot}} \vec{A} \quad \text{[rotationnel cartésiennes]}$$
 (6)

8

Opérations avec le nabla (2)

- ▼ Les résultats sont valables dans *tous* les systèmes de coordonnées ! $\vec{\nabla} \Phi = \overrightarrow{\mathbf{grad}} \Phi$ $\vec{\nabla} \cdot \vec{A} = \operatorname{div} \vec{A}$ $\vec{\nabla} \wedge \vec{A} = \overrightarrow{\operatorname{rot}} \vec{A}$
- lacktriangle Mais $\vec{
 abla}$ a une expression uniquement en cartésiennes

p.ex., en sphériques $\vec{\nabla} \neq \frac{\partial}{\partial r}\hat{e}_r + \frac{\partial}{\partial \theta}\hat{e}_\theta + \frac{\partial}{\partial \phi}\hat{e}_\phi$!!!

Opération	De	À
$\overrightarrow{grad}\Phi$ div $ec{A}$	scalaire Φ vecteur $ec{A}$	vecteur $ec{m{ abla}}\Phi$ scalaire $ec{m{ abla}}\cdotec{m{A}}$
$\overrightarrow{\operatorname{rot}} ec{A}$	vecteur $ec{A}$	vecteur $ec{m{ abla}}\wedgeec{m{A}}$
[laplaciens]		_
$\Delta\Phi$	scalaire Φ	scalaire $ abla^2\Phi$
$ec{\Delta}ec{A}$	vecteur $ec{A}$	vecteur $ec{ abla}^2ec{A}$

0

10

Identités vectorielles

Dérivées secondes spatiales

▼ Plutôt simples :

$$\begin{array}{l} \operatorname{div} \: \overrightarrow{\mathsf{grad}} \: \Phi = \vec{\nabla} \cdot (\vec{\nabla} \: \Phi) \triangleq \boxed{\nabla^2 \Phi} \\ \overrightarrow{\mathsf{rot}} \: \overrightarrow{\mathsf{grad}} \: \Phi = \vec{\nabla} \land (\vec{\nabla} \: \Phi) = \vec{\mathbf{0}} \\ \operatorname{div} \: \overrightarrow{\mathsf{rot}} \: \vec{A} = \vec{\nabla} \cdot (\vec{\nabla} \land \vec{A}) = 0 \end{array}$$

▼ Et une plus compliquée :

$$\overrightarrow{\operatorname{rot}} \; \overrightarrow{\operatorname{rot}} \; \overrightarrow{A} \triangleq \overrightarrow{\operatorname{\mathsf{grad}}} \; \operatorname{\mathsf{div}} \vec{A} - \overrightarrow{\Delta} \vec{A} \ \overrightarrow{\nabla} \wedge (\vec{\nabla} \wedge \vec{A}) \triangleq \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \overrightarrow{\nabla}^2 \vec{A}$$

utiliser
$$ec{A} \wedge (ec{B} \wedge ec{C}) = ec{B} (ec{A} \cdot ec{C}) - (ec{A} \cdot ec{B}) ec{C}$$

 $\Delta\Phi=
abla^2\Phi$ et $ec{m{\Delta}}ec{A}=ec{m{
abla}^2}ec{A}$ [laplaciens]

11

Laplacien scalaire et vectoriel

12

Le(s) Laplacien(s) : nabla au carré

- lacktriangle L'opérateur $\vec{
 abla}\cdot\vec{
 abla}$ prend deux formes :
- 1. Opérateur sur un scalaire : laplacien *scalaire* [identités vectorielles] $\vec{\nabla} \cdot (\vec{\nabla} \Phi)$:

$$\Delta \Phi \triangleq \nabla^2 \Phi \triangleq (\vec{\nabla} \cdot \vec{\nabla}) \Phi
\stackrel{\text{cart}}{=} \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}$$
(7)

formules plus compliquées dans les autres systèmes!

2. Opérateur sur un vecteur : laplacien *vectoriel* [identités vectorielles] $\vec{\nabla}(\vec{\nabla}\cdot\vec{A}) - \vec{\nabla}\wedge(\vec{\nabla}\wedge\vec{A})$:

$$\vec{\Delta} \vec{A} \triangleq \vec{\nabla}^2 \vec{A} \triangleq (\vec{\nabla} \cdot \vec{\nabla}) \vec{A}
\stackrel{\text{cart}}{=} (\vec{\nabla} \cdot \vec{\nabla}) (A_x \hat{e}_x + A_y \hat{e}_y + A_z \hat{e}_z)
= (\nabla^2 A_x) \hat{e}_x + (\nabla^2 A_y) \hat{e}_y + (\nabla^2 A_z) \hat{e}_z$$
(8)

Décomposition en composantes $\nabla^2 A_i$ uniquement en cartésiennes!

13

