3 0	Levine 3-1	()9-1.5)
=30 .		
30) P=1, Y=12 w. x: WETE	1 (linear roceling)
30	$\Rightarrow h^*(x) = \beta_0 + \beta_1 x, Y = $	h (x) + E
30	$g(x) = b_0 + b_1 x$	Canon due to
_0 =0	A:02S= $b_0=y-R \stackrel{Sy}{=} X$, $b_1=$ Y=g(x)+e+Residials (a	12 5 Calion
10 (20)	How well does a predict	
30	SSE = E P = E (4: - g(x)	
30 ()	interpretable 1 unital	
30 (1	y-metric - savanned	
10	Not so important.	
0	MSE:= 1 SSE unita	. 4- metric-spanned
30	mean forget this.	intempretable.
30 30	Ennon	
9	12MSE = MSE units. 4	Very interpretable
90	roof mean square e with a cinon from a normal dis	- realization st, you can show
95%		nodel is.

Consider the null model SSE0 = (41 - 4) = Jist'a (n-1) Sy - (n-1) IE) residials

more important x E Y = & red, green to A = & WO + W, X : WO, W, EMZ $Q = A(x) = b_0 + b_1 x$ Tyred if x=0

Tyreen if x=1 2et B prove A:OLS returns

= 7red + (7green - 7red) X

= 0.7 + 0.2 x

= 4g-9R $b_0 = y - b_1 \bar{x} = (P y_g + (1-P) y_r) - (y_g - y_n) P$ P4g + (1-P) 4n- P4g + P4n = Yn-Pyr + Pgr Ÿg. 9n (ned) relevance 0

L=3 ef. X E gred, green, blue & x = 1 x = b x =X E Elow, medium, high to ordinal calegory 39 39 39 39 39 $X_1 = 1$ X=M $X_2 = 1$ X=H7, if x = 20w Ym if x = medium you wish to constrain A:OLS give you this'

Consider the 12.VS X, Y They are dependent if ("annociated" if) 1 x., x2 s.t. P(4 X=x1) + P(4 X=x2) e:= Condx, y] = Oxy entimated by COV/X,4] = E/(X-1/x) entimated by *CC Xc = X-Mx Yc = Y- hy Oxy = E (X-Mx) (y-hy) = E/Xcyc = E/21 7 = Xc/c

Connelation E Eannockting dependent of X= X2