Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $x^{(i) < j >}$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $\bigcirc \quad x^{< i > (j)}$
- () $x^{(j) < i > }$
- $\bigcirc x^{< j > (i)}$

1/1 points

2.

Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

This specific type of architecture is appropriate when:

$$T_x = T_y$$

Correct

It is appropriate when every input should be matched to an output.

- $\bigcap T_x < T_y$
- $\bigcup T_x > T_y$
- $T_x = 1$

1/1 points

To which of these tasks would you apply a many-to-one RNN Recurrent Neurial Networks that apply).

10/10 points (100%)

Quiz, 10 questions

Speech recognition (input an audio clip and output a transcript)

Un-selected is correct

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct
Correct!

Image classification (input an image and output a label)

Un-selected is correct

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

Correct

Correct!

Recurrent Neural Networks

Quiz, 10 questions

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- Estimating $P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- Estimating $P(y^{< t>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$

1/1 points

You have finished training a language model RNN and are using it Recurrent Neural Networks as follows: 10/10 points (100%)

Quiz, 10 questions

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct

Yes!

6.

		e training an RNN, and find that your weights and ibns are will be a sumber. I 10/10 points (100%) of these is the most likely cause of this problem?
Quiz, 10 questions		Vanishing gradient problem.
		Exploding gradient problem.
	Correct	
		ReLU activation function g(.) used to compute g(z), where z is too large.
		Sigmoid activation function $g(.)$ used to compute $g(z)$, where z is too large.
	✓ 7.	1 / 1 points
vocabulary, and are using an LS		se you are training a LSTM. You have a 10000 word ulary, and are using an LSTM with 100-dimensional ions $a^{< t>}$. What is the dimension of Γ_u at each time step?
		1
		100
		ect rect, Γ_u is a vector of dimension equal to the number idden units in the LSTM.
		300
		10000

Recurrent Neural Networks

Quiz, 10 questions

Here're the update equations for the GRU.

10/10 points (100%)

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

Quiz, 10 questions

9.

Here are the equations for the GRU and the LSTM:

GRU LSTM $\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$ $\Gamma_u = \sigma(W_u[\,c^{< t-1>},x^{< t>}] + b_u)$ $\Gamma_u = \sigma(W_u[\,a^{< t-1>},x^{< t>}] + b_u)$ $\Gamma_r = \sigma(W_r[\,c^{< t-1>},x^{< t>}] + b_r)$ $\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$ $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$ $\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$ $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$ $a^{< t>} = c^{< t>}$ $a^{< t>} = \Gamma_o * c^{< t>}$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

$$\Gamma_u$$
 and $1-\Gamma_u$

Correct

Yes, correct!

- Γ_u and Γ_r
- $igg) 1 \Gamma_u$ and Γ_u
- Γ_r and Γ_u

