Hao Fu Please see part2-1, part2-2, part2-3, and part3 below.

Part 2-1: For yeast data set, the accuracy plot:

Part 2-2: For wine data set, the mean absolute error plot.

Part 2-3 K = 1

	CYT	MIT	NUC	ME3	ME2	ME1	EXC	VAC	POX	ERL
CYT	69	39	21	4	1	0	1	2	1	0
MIT	46	57	13	6	0	0	0	1	0	0
NUC	26	12	34	2	3	0	2	0	2	0
ME3	3	9	2	32	1	0	0	0	0	0
ME2	3	0	2	3	6	1	2	0	1	0
ME1	0	0	1	0	3	6	3	0	1	0
EXC	0	0	1	0	1	3	5	0	0	0
VAC	3	0	1	0	0	1	0	1	0	0
POX	1	1	1	0	0	0	0	0	5	0
ERL	0	0	0	0	0	0	0	0	0	0

K = 30

11 00										
	CYT	MIT	NUC	ME3	ME2	ME1	EXC	VAC	POX	ERL
CYT	89	36	11	1	0	1	0	0	0	0
MIT	48	59	13	3	0	0	0	0	0	0
NUC	25	5	45	1	1	3	1	0	0	0
ME3	3	2	2	40	0	0	0	0	0	0
ME2	4	2	3	3	3	3	0	0	0	0
ME1	0	0	1	0	1	9	3	0	0	0
EXC	0	0	1	0	0	4	5	0	0	0
VAC	2	3	1	0	0	0	0	0	0	0
POX	6	0	2	0	0	0	0	0	0	0
ERL	0	0	0	0	0	0	0	0	0	0

We can see that values in diagonal of the matrices increase as k value increase, suggesting that a higher K better the kNN classification accuracy.

Part 3

Pop	Current Distance	Best Distance	Best Node	Priority Queue		
		∞		(f, 0)		
f (6, 3)	$5\sqrt{2}$	$5\sqrt{2}$	f	(h, 0) (c, 1)		
h (12, 5)	$5\sqrt{2}$	$5\sqrt{2}$	f	(i, 0) (c, 1) (g, 5)		
i (10, 10)	3	3	i	(c, 1) (j, 3) (g, 5)		
c (5, 10)	2	2	c	(e, 0) (b, 0) (j, 3) (g, 5)		
e (2, 4)	$\sqrt{59}$	2	c	(d, 0) (b, 0) (j, 3) (g, 5)		
d (2, 8)	$\sqrt{29}$	2	c	(b, 0) (j, 3) (g, 5)		
b (3, 12)	$2\sqrt{5}$	2	c	(j, 3) (g, 5)		

Finally, we have the node j (13, 11.5), current bound is 3, and it is bigger than 2 then we return result as below:

best node = c, return best distance = 2