Impact of Virtual Reality on Education This dataset delves into the impact of virtual reality (VR) on education, highlighting its potential to enhance learning experiences across various subjects. It encompasses data on student engagement, retention rates, and overall academic performance when VR is integrated into the curriculum. Discover how immersive technologies can revolutionize traditional teaching methods and engage learners in unprecedented ways!

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

import pandas as pd

df=pd.read_csv('//content/drive/MyDrive/AVDS_project/avds_project.csv')

df

→ *		Student_ID	Age	Gender	Grade_Level	Field_of_Study	Usage_of_VR_in_Education	Hours_of_VR_Usage_Per_Week	Engagement_Level
	0	STUD0001	13.0	Non- binary	Postgraduate	Science	No	6.0	1.0
	1	STUD0002	16.0	Non- binary	Undergraduate	Medicine	No	6.0	1.0
	2	STUD0003	15.0	Prefer not to say	High School	Science	No	4.0	5.0
	3	STUD0004	24.0	Female	Postgraduate	Engineering	Yes	2.0	4.0
	4	STUD0005	22.0	Non- binary	Undergraduate	Arts	Yes	10.0	3.0
	4995	STUD4996	18.0	Male	Undergraduate	Engineering	No	10.0	4.0
	4996	STUD4997	25.0	Male	High School	Medicine	No	5.0	1.0
	4997	STUD4998	25.0	Female	High School	Engineering	No	1.0	4.0
	4998	STUD4999	22.0	Female	Undergraduate	Science	No	4.0	3.0
	4999	STUD5000	21.0	Male	Undergraduate	Medicine	Yes	1.0	1.0

5000 rows × 20 columns

<class 'pandas.core.frame.DataFrame'>

df.info()

RangeIndex: 5000 entries, 0 to 4999 Data columns (total 20 columns): # Column Non-Null Count Dtype Student_ID 5000 non-null object Age 4999 non-null float64 Gender 4999 non-null object Grade_Level 4997 non-null object Field of Study 4998 non-null object Usage_of_VR_in_Education 4999 non-null object Hours_of_VR_Usage_Per_Week 4998 non-null float64 Engagement_Level 4998 non-null float64 8 Improvement_in_Learning_Outcomes 4998 non-null object Subject 4997 non-null object 10 Instructor_VR_Proficiency 4995 non-null object 11 Perceived_Effectiveness_of_VR 4999 non-null float64 12 Access_to_VR_Equipment 4994 non-null object 13 Impact_on_Creativity 5000 non-null int64 14 Stress_Level_with_VR_Usage 4998 non-null object 15 Collaboration_with_Peers_via_VR 4999 non-null object 4994 non-null 16 Feedback_from_Educators_on_VR object 17 Interest_in_Continuing_VR_Based_Learning 5000 non-null object 18 Region 4998 non-null object 19 School_Support_for_VR_in_Curriculum 5000 non-null object dtypes: float64(4), int64(1), object(15) memory usage: 781.4+ KB

print(df.columns)

df.isna()

		Student_ID	Age	Gender	Grade_Level	Field_of_Study	Usage_of_VR_in_Education	Hours_of_VR_Usage_Per_Week	Engagement_Level
	0	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False
	4995	False	False	False	False	False	False	False	False
	4996	False	False	False	False	False	False	False	False
	4997	False	False	False	False	False	False	False	False
	4998	False	False	False	False	False	False	False	False
	4999	False	False	False	False	False	False	False	False

5000 rows × 20 columns

df.isna().sum()

df.isna().sum().sum()

→ 40

```
₹
                                              0
                    Student_ID
                       Age
                      Gender
                                               1
                   Grade_Level
                  Field_of_Study
             Usage_of_VR_in_Education
           Hours_of_VR_Usage_Per_Week
                Engagement_Level
                                              2
        Improvement_in_Learning_Outcomes
                                              3
                      Subject
             Instructor_VR_Proficiency
           Perceived_Effectiveness_of_VR
                                              6
             Access_to_VR_Equipment
               Impact_on_Creativity
                                              0
            Stress_Level_with_VR_Usage
          Collaboration_with_Peers_via_VR
          Feedback_from_Educators_on_VR
     Interest_in_Continuing_VR_Based_Learning 0
                      Region
       School_Support_for_VR_in_Curriculum
                                              0
    dtype: int64
```

df1= df.fillna(method='ffill')

df1

→ *		Student_ID	Age	Gender	Grade_Level	Field_of_Study	Usage_of_VR_in_Education	Hours_of_VR_Usage_Per_Week	Engagement_Level
	0	STUD0001	13.0	Non- binary	Postgraduate	Science	No	6.0	1.0
	1	STUD0002	16.0	Non- binary	Undergraduate	Medicine	No	6.0	1.0
	2	STUD0003	15.0	Prefer not to say	High School	Science	No	4.0	5.0
	3	STUD0004	24.0	Female	Postgraduate	Engineering	Yes	2.0	4.0
	4	STUD0005	22.0	Non- binary	Undergraduate	Arts	Yes	10.0	3.0
	4995	STUD4996	18.0	Male	Undergraduate	Engineering	No	10.0	4.0
	4996	STUD4997	25.0	Male	High School	Medicine	No	5.0	1.0
	4997	STUD4998	25.0	Female	High School	Engineering	No	1.0	4.0
	4998	STUD4999	22.0	Female	Undergraduate	Science	No	4.0	3.0
	4999	STUD5000	21.0	Male	Undergraduate	Medicine	Yes	1.0	1.0

df1.isna().sum()

5000 rows × 20 columns

```
<del>_</del>
                                               0
                    Student_ID
                                               0
                       Age
                                               0
                      Gender
                                               0
                                               0
                    Grade_Level
                  Field_of_Study
             Usage_of_VR_in_Education
                                               0
           Hours_of_VR_Usage_Per_Week
                                               0
                 Engagement_Level
                                               0
        Improvement_in_Learning_Outcomes
                                               0
                      Subject
              Instructor_VR_Proficiency
                                               0
           Perceived_Effectiveness_of_VR
                                               0
              Access_to_VR_Equipment
                Impact_on_Creativity
                                               0
            Stress_Level_with_VR_Usage
          Collaboration_with_Peers_via_VR
                                               0
          Feedback_from_Educators_on_VR
     Interest_in_Continuing_VR_Based_Learning 0
                                               0
                      Region
       School_Support_for_VR_in_Curriculum
```

_ 0

dtype: int64

df1.isna().sum().sum()

df1.head()

		Student_ID	Age	Gender	Grade_Level	Field_of_Study	Usage_of_VR_in_Education	Hours_of_VR_Usage_Per_Week	Engagement_Level	Ιι
	0	STUD0001	13.0	Non- binary	Postgraduate	Science	No	6.0	1.0	
	1	STUD0002	16.0	Non- binary	Undergraduate	Medicine	No	6.0	1.0	
	2	STUD0003	15.0	Prefer not to say	High School	Science	No	4.0	5.0	
	3	STUD0004	24.0	Female	Postgraduate	Engineering	Yes	2.0	4.0	
	4	STUD0005	22.0	Non- binary	Undergraduate	Arts	Yes	10.0	3.0	

df1.tail()

→		Student_ID	Age	Gender	Grade_Level	Field_of_Study	Usage_of_VR_in_Education	Hours_of_VR_Usage_Per_Week	Engagement_Level
	4995	STUD4996	18.0	Male	Undergraduate	Engineering	No	10.0	4.0
	4996	STUD4997	25.0	Male	High School	Medicine	No	5.0	1.0
	4997	STUD4998	25.0	Female	High School	Engineering	No	1.0	4.0
	4998	STUD4999	22.0	Female	Undergraduate	Science	No	4.0	3.0
	4999	STUD5000	21.0	Male	Undergraduate	Medicine	Yes	1.0	1.0

SHOW STUDENTS THAT USE VR IN EDUCATION AND ARE NOT INTERESTED IN CONTINUING VR BASED LEARNING

 $df2 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Interest_in_Continuing_VR_Based_Learning'] == 'No')] \\ df2 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Interest_in_Continuing_VR_Based_Learning'] == 'No')] \\ df2 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Interest_in_Continuing_VR_Based_Learning'] == 'No')] \\ df3 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Interest_in_Continuing_VR_Based_Learning'] == 'No')] \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Interest_in_Continuing_VR_Based_Learning'] == 'No')] \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'No')] \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1[(df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1['Usage_of_VR_in_Education'] == 'Yes') & (df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1['Usage_of_VR_in_Education'] == 'Yes') \\ df4 = df1['Usage_of_VR_$

→		Student_ID	Age	Gender	Grade_Level	Field_of_Study	Usage_of_VR_in_Education	Hours_of_VR_Usage_Per_Week	Engagement_Level
	3	STUD0004	24.0	Female	Postgraduate	Engineering	Yes	2.0	4.0
	5	STUD0006	28.0	Male	High School	Science	Yes	10.0	5.0
	6	STUD0007	19.0	Male	Undergraduate	Business	Yes	9.0	4.0
	11	STUD0012	15.0	Non- binary	Undergraduate	Arts	Yes	5.0	1.0
	15	STUD0016	18.0	Female	Postgraduate	Law	Yes	3.0	1.0
	4983	STUD4984	19.0	Female	High School	Arts	Yes	8.0	1.0
	4987	STUD4988	24.0	Prefer not to say	High School	Science	Yes	10.0	2.0
	4992	STUD4993	28.0	Prefer not to say	Undergraduate	Education	Yes	8.0	1.0
	4993	STUD4994	17.0	Non- binary	Undergraduate	Law	Yes	7.0	4.0
	4994	STUD4995	19.0	Male	Postgraduate	Education	Yes	9.0	5.0
1	1243 rc	ws × 20 colum	ns						

len(df2)

→ 1243

SHOW DATA OF STUDENTS WITH NEUTRAL FEEDBACK AND ENGAGEMENT LEVEL GREATER THAN 3

df3=df1[(df1['Feedback_from_Educators_on_VR']=='Neutral')&(df1['Engagement_Level']>3)]
df3

→	S	Student_ID	Age	Gender	Grade_Level	Field_of_Study	Usage_of_VR_in_Education	Hours_of_VR_Usage_Per_Week	Engagement_Level
	2	STUD0003	15.0	Prefer not to say	High School	Science	No	4.0	5.0
	3	STUD0004	24.0	Female	Postgraduate	Engineering	Yes	2.0	4.0
	5	STUD0006	28.0	Male	High School	Science	Yes	10.0	5.0
	6	STUD0007	19.0	Male	Undergraduate	Business	Yes	9.0	4.0
	7	STUD0008	19.0	Male	High School	Education	No	1.0	5.0
49	975	STUD4976	20.0	Male	Undergraduate	Science	Yes	7.0	5.0
49	980	STUD4981	16.0	Non- binary	Postgraduate	Arts	No	7.0	5.0
49	993	STUD4994	17.0	Non- binary	Undergraduate	Law	Yes	7.0	4.0
49	994	STUD4995	19.0	Male	Postgraduate	Education	Yes	9.0	5.0
49	995	STUD4996	18.0	Male	Undergraduate	Engineering	No	10.0	4.0
65	5 rows	× 20 column	S						

len(df3)

→ 655

df1['Instructor_VR_Proficiency'].unique()

⇒ array(['Intermediate', 'Beginner', 'Advanced'], dtype=object)

def VR_Proficiency_grade(Instructor_VR_Proficiency):
 if Instructor_VR_Proficiency=='Beginner':
 return 'c+'
 elif Instructor_VR_Proficiency=='Intermediate':
 return 'B+'
 elif Instructor_VR_Proficiency=='Advanced':
 return 'A+'

df4=df1['Instructor_VR_Proficiency'].apply(VR_Proficiency_grade)

df4

Instructor_VR_Pr	oficiency
0	B+
1	C+
2	A+
3	C+
4	C+
4995	A+
4996	A+
4997	C+
4998	C+
4999	B+
5000 rows × 1 columns	

Statistical analysis of data using pandas

dtyne object

```
df1['Engagement_Level'].mean()
→ 3.0212
df1['Age'].median()
<del>→</del> 21.0
mean_overall=df1[['Age','Hours_of_VR_Usage_Per_Week','Engagement_Level','Perceived_Effectiveness_of_VR','Impact_on_Creativity']].mean()
print(mean_overall)
→ Age
                                      21,1820
     Hours_of_VR_Usage_Per_Week
                                       5.0282
     {\tt Engagement\_Level}
                                       3.0212
     Perceived_Effectiveness_of_VR
                                       2.9518
     Impact_on_Creativity
                                       3.0196
     dtype: float64
mode_overall=df1[['Age','Hours_of_VR_Usage_Per_Week','Engagement_Level','Perceived_Effectiveness_of_VR','Impact_on_Creativity']].mode()
print(mode_overall)
        Age Hours_of_VR_Usage_Per_Week Engagement_Level \
    0 21.0
                                     6.0
        Perceived_Effectiveness_of_VR Impact_on_Creativity
df1['Hours_of_VR_Usage_Per_Week'].mode()
₹
        Hours_of_VR_Usage_Per_Week
      0
                                6.0
     dtype: float64
from sklearn.preprocessing import LabelEncoder
df1=df1.drop(['Gender'],axis=1)
data=df1.drop(['Grade_Level'],axis=1)
le = LabelEncoder()
data['Instructor_VR_Proficiency_encoded'] = le.fit_transform(data['Instructor_VR_Proficiency'])
data['Field_of_Study_encoded'] = le.fit_transform(data['Field_of_Study'])
data['Improvement_in_Learning_Outcomes_encoded'] = le.fit_transform(data['Improvement_in_Learning_Outcomes'])
data['Usage_of_VR_in_Education _encoded'] = le.fit_transform(data['Usage_of_VR_in_Education'])
data['Access to VR Equipment encoded'] = le.fit transform(data['Access to VR Equipment'])
data['Subject_encoded'] = le.fit_transform(data['Subject'])
data['Stress_Level_with_VR_Usage_encoded'] = le.fit_transform(data['Stress_Level_with_VR_Usage'])
data['Collaboration_with_Peers_via_VR_encoded'] = le.fit_transform(data['Collaboration_with_Peers_via_VR'])
data['Feedback_from_Educators_on_VR_encoded'] = le.fit_transform(data['Feedback_from_Educators_on_VR'])
data['Region_encoded'] = le.fit_transform(data['Region'])
data['School_Support_for_VR_in_Curriculum_encoded'] = le.fit_transform(data['School_Support_for_VR_in_Curriculum'])
data
```

₹		Student_ID	Age	Field_of_Study	Usage_of_VR_in_Education	Hours_of_VR_Usage_Per_Week	Engagement_Level	Improvement_in_Learn
	0	STUD0001	13.0	Science	No	6.0	1.0	
	1	STUD0002	16.0	Medicine	No	6.0	1.0	
	2	STUD0003	15.0	Science	No	4.0	5.0	
	3	STUD0004	24.0	Engineering	Yes	2.0	4.0	
	4	STUD0005	22.0	Arts	Yes	10.0	3.0	
	4995	STUD4996	18.0	Engineering	No	10.0	4.0	
	4996	STUD4997	25.0	Medicine	No	5.0	1.0	
	4997	STUD4998	25.0	Engineering	No	1.0	4.0	
	4998	STUD4999	22.0	Science	No	4.0	3.0	
	4999	STUD5000	21.0	Medicine	Yes	1.0	1.0	
5	5000 rd	ows × 29 colum	ıns					

data=data.drop(['Instructor_VR_Proficiency','Field_of_Study','Improvement_in_Learning_Outcomes','Usage_of_VR_in_Education','Interest_in_
data

$\overline{\Rightarrow}$	Student_I	D Age	Hours_of_VR_Usage_Per_Week	Engagement_Level	Perceived_Effectiveness_of_VR	Impact_on_Creativity	Instructo
(STUD000	1 13.0	6.0	1.0	3.0	5	
•	STUD000	2 16.0	6.0	1.0	2.0	3	
2	STUD000	3 15.0	4.0	5.0	5.0	2	
;	STUD000	4 24.0	2.0	4.0	5.0	3	
4	STUD000	5 22.0	10.0	3.0	4.0	1	
49	95 STUD499	6 18.0	10.0	4.0	1.0	1	
49	96 STUD499	7 25.0	5.0	1.0	4.0	5	
49	97 STUD499	8 25.0	1.0	4.0	2.0	3	
49	98 STUD499	9 22.0	4.0	3.0	3.0	3	
49	99 STUD500	0 21.0	1.0	1.0	2.0	4	
500	0 rows × 17 col	ımns					

data=data.drop(['Interest_in_Continuing_VR_Based_Learning'],axis=1)

```
KeyError
                                                 Traceback (most recent call last)
     <ipython-input-151-36b585896afb> in <cell line: 1>()
     ---> 1 data=data.drop(['Interest_in_Continuing_VR_Based_Learning'],axis=1)
                                       – 💲 3 frames –
     /usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py in drop(self, labels, errors)
                if mask.any():
        7068
                          if errors != "ignore":
    raise KeyError(f"{labels[mask].tolist()} not found in axis")
indexer = indexer[~mask]
        7069
     -> 7070
        7071
                      return self.delete(indexer)
        7072
     KeyError: "['Interest_in_Continuing_VR_Based_Learning'] not found in axis"
data=data.drop(['Student_ID'],axis=1)
correlation_matrix = data.corr()
print(correlation_matrix)
```

```
₹
                                                          Age
                                                    1.000000
    Hours_of_VR_Usage_Per_Week
                                                    0.012832
    Engagement Level
                                                    0.007589
    Perceived_Effectiveness_of_VR
                                                    0.012834
    Impact_on_Creativity
Instructor_VR_Proficiency_encoded
                                                    -0.008505
                                                    -0.017905
    Field_of_Study_encoded
                                                    -0.006167
    Improvement_in_Learning_Outcomes_encoded
                                                    0.008336
    {\tt Usage\_of\_VR\_in\_Education} \\ {\tt t\_encoded}
                                                    0.004987
    Access_to_VR_Equipment_encoded
                                                    -0.017800
    Subject_encoded
                                                    -0.001632
    Stress_Level_with_VR_Usage_encoded
                                                    -0.008761
    Collaboration_with_Peers_via_VR_encoded
                                                    0.000293
    Feedback_from_Educators_on_VR_encoded
                                                    -0.009463
    Region encoded
                                                    -0.021031
    School_Support_for_VR_in_Curriculum_encoded -0.007539
                                                    Hours_of_VR_Usage_Per_Week
                                                                        0.012832
    Hours_of_VR_Usage_Per_Week
                                                                        1.000000
    Engagement_Level
                                                                        0.006205
    Perceived_Effectiveness_of_VR
                                                                        0.004169
    Impact_on_Creativity
                                                                        0.010690
    Instructor_VR_Proficiency_encoded
                                                                       -0.006268
    Field_of_Study_encoded
Improvement_in_Learning_Outcomes_encoded
                                                                        0.004176
                                                                        0.001931
    Usage_of_VR_in_Education\t_encoded
                                                                       -0.006403
                                                                        0.019309
    {\tt Access\_to\_VR\_Equipment\_encoded}
    Subject_encoded
                                                                       -0.002538
    {\tt Stress\_Level\_with\_VR\_Usage\_encoded}
                                                                        0.012053
    Collaboration_with_Peers_via_VR_encoded
                                                                       -0.003964
    Feedback_from_Educators_on_VR_encoded
                                                                       -0.010199
    Region_encoded
                                                                       -0.023179
    School_Support_for_VR_in_Curriculum_encoded
                                                                       -0.004049
                                                    Engagement Level
                                                             0.007589
    Hours_of_VR_Usage_Per_Week
                                                             0.006205
    Engagement_Level
                                                             1.000000
    Perceived_Effectiveness_of_VR
                                                            -0.009974
                                                            -0.004200
    Impact_on_Creativity
    Instructor_VR_Proficiency_encoded
                                                            -0.005129
    Field_of_Study_encoded
                                                            -0.017001
    Improvement_in_Learning_Outcomes_encoded
                                                            -0.009602
    Usage_of_VR_in_Education\t_encoded
                                                            -0.012214
    Access_to_VR_Equipment_encoded
                                                            -0.022623
                                                            -0.036225
    Subject encoded
    Stress_Level_with_VR_Usage_encoded
                                                            -0.014311
    Collaboration_with_Peers_via_VR_encoded
                                                             0.006036
    {\tt Feedback\_from\_Educators\_on\_VR\_encoded}
                                                            -0.007255
    Region_encoded
                                                             0.012006
    School_Support_for_VR_in_Curriculum_encoded
                                                            -0.011694
                                                    Perceived_Effectiveness_of_VR
                                                                           0.012834
     Hours_of_VR_Usage_Per_Week
                                                                           0.004169
                                                                          -0.009974
    Engagement_Level
```

df1.describe()

₹

#generates descriptive statistics

•		Age	Hours_of_VR_Usage_Per_Week	Engagement_Level	Perceived_Effectiveness_of_VR	Impact_on_Creativity
С	ount	5000.000000	5000.00000	5000.00000	5000.000000	5000.000000
n	nean	21.182000	5.02820	3.02120	2.951800	3.019600
	std	5.461945	3.14041	1.42715	1.417843	1.437508
	min	12.000000	0.00000	1.00000	1.000000	1.000000
:	25%	16.000000	2.00000	2.00000	2.000000	2.000000
	50%	21.000000	5.00000	3.00000	3.000000	3.000000
	75%	26.000000	8.00000	4.00000	4.000000	4.000000
	max	30.000000	10.00000	5.00000	5.000000	5.000000

df1.corr(numeric_only=True)

	Age	Hours_of_VR_Usage_Per_Week	Engagement_Level	${\tt Perceived_Effectiveness_of_VR}$	Impact_on_Creat
Age	1.000000	0.012832	0.007589	0.012834	-0.0
Hours_of_VR_Usage_Per_Week	0.012832	1.000000	0.006205	0.004169	0.0
Engagement_Level	0.007589	0.006205	1.000000	-0.009974	-0.(
Perceived_Effectiveness_of_VR	0.012834	0.004169	-0.009974	1.000000	0.0
Impact_on_Creativity	-0.008505	0.010690	-0.004200	0.007432	1.0
4					+

df1.cov(numeric_only=True)

٠	$\overline{}$	_
-	→	∇

	Age	Hours_of_VR_Usage_Per_Week	Engagement_Level	Perceived_Effectiveness_of_VR	<pre>Impact_on_Crea</pre>
Age	29.832843	0.220112	0.059153	0.099392	-0.
Hours_of_VR_Usage_Per_Week	0.220112	9.862177	0.027808	0.018563	0.
Engagement_Level	0.059153	0.027808	2.036758	-0.020182	-0.
Perceived_Effectiveness_of_VR	0.099392	0.018563	-0.020182	2.010279	0.
Impact_on_Creativity	-0.066781	0.048257	-0.008617	0.015148	2.

data.cov()

	Age	Hours_of_VR_Usage_Per_Week	Engagement_Level	Perceived_Effectiveness_of_VR
Age	29.832843	0.220112	0.059153	0.099392
Hours_of_VR_Usage_Per_Week	0.220112	9.862177	0.027808	0.018563
Engagement_Level	0.059153	0.027808	2.036758	-0.020182
Perceived_Effectiveness_of_VR	0.099392	0.018563	-0.020182	2.010279
Impact_on_Creativity	-0.066781	0.048257	-0.008617	0.015148
Instructor_VR_Proficiency_encoded	-0.079490	-0.016001	-0.005950	0.016941
Field_of_Study_encoded	-0.067982	0.026466	-0.048965	-0.012340
Improvement_in_Learning_Outcomes_encoded	0.022768	0.003033	-0.006852	0.010618
Usage_of_VR_in_Education\t_encoded	0.013620	-0.010054	-0.008716	0.000560
Access_to_VR_Equipment_encoded	-0.048611	0.030320	-0.016143	0.014621
Subject_encoded	-0.017879	-0.015987	-0.103709	0.006857
Stress_Level_with_VR_Usage_encoded	-0.039023	0.030869	-0.016656	-0.009992
Collaboration_with_Peers_via_VR_encoded	0.000799	-0.006225	0.004308	0.002113
Feedback_from_Educators_on_VR_encoded	-0.042358	-0.026248	-0.008485	-0.005102
Region_encoded	-0.197621	-0.125229	0.029478	0.097356
School_Support_for_VR_in_Curriculum_encoded	-0.020584	-0.006357	-0.008343	-0.004089

df2['Hours_of_VR_Usage_Per_Week_rating']=np.where(df2['Hours_of_VR_Usage_Per_Week']>2.0,'yes','no')
print(df2[['Hours_of_VR_Usage_Per_Week','Hours_of_VR_Usage_Per_Week_rating']])

_		Hours_of_VR_Usage_Per_Week	Hours_of_VR_Usage_Per_Week_rating
	3	2.0	no
	5	10.0	yes
	6	9.0	yes
	11	5.0	yes
	15	3.0	yes
	• • •	•••	•••
	4983	8.0	yes
	4987	10.0	yes
	4992	8.0	yes
	4993	7.0	yes
	4994	9.0	yes

[1243 rows x 2 columns]

<ipython-input-159-f9c3a98ba809>:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus df2['Hours_of_VR_Usage_Per_Week_rating']=np.where(df2['Hours_of_VR_Usage_Per_Week']>2.0,'yes','no')

```
interval=[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0]
label=['1.0-2.0','2.0-3.0','3.0-4.0','4.0-5.0','5.0-6.0','6.0-7.0','7.0-8.0','8.0-9.0','9.0-10.0']
\label{lowests} $$ df_{\colored}$ - Week']$ = pd.cut(df_{\colored}$ - Week']$ - pd.cut(df_{\colored}$ - Week')$ - pd.cut(df_{\colored}$ - We
print(df2[['Hours_of_VR_Usage_Per_Week']].head())
                   Hours_of_VR_Usage_Per_Week 1.0-2.0
 \overline{\Sigma}
            5
                                                               9.0-10.0
            6
                                                                 8.0-9.0
            11
                                                                 4.0-5.0
            15
                                                                  2.0-3.0
            <ipython-input-160-f4fb7f311f3e>:3: SettingWithCopyWarning:
            A value is trying to be set on a copy of a slice from a DataFrame.
            Try using .loc[row_indexer,col_indexer] = value instead
            See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
                 x = df1.groupby('Usage\_of\_VR\_in\_Education')['Instructor\_VR\_Proficiency']
x.count()
→
                                                                             Instructor_VR_Proficiency
              Usage_of_VR_in_Education
                                         No
                                                                                                                                 2473
                                                                                                                                2527
                                        Yes
            dtype: int64
x.value_counts()
₹
                                                                                                                                               count
              Usage_of_VR_in_Education Instructor_VR_Proficiency
                                                                                                                                                    832
                                         No
                                                                                                  Beginner
                                                                                               Intermediate
                                                                                                                                                    826
                                                                                                  Advanced
                                                                                                                                                    815
                                        Yes
                                                                                                  Beginner
                                                                                                                                                    865
                                                                                               Intermediate
                                                                                                                                                    843
                                                                                                  Advanced
                                                                                                                                                    819
            dtyne int64
y=df1.groupby('Instructor_VR_Proficiency')['Usage_of_VR_in_Education']
y.count()
\overline{\mathbf{T}}
                                                                                Usage_of_VR_in_Education
              Instructor_VR_Proficiency
                                  Advanced
                                                                                                                                 1634
                                   Beginner
                                                                                                                                 1697
                               Intermediate
                                                                                                                                 1669
            dtung: int64
y.value_counts()
```

https://colab.research.google.com/drive/17vQFVF8bre79TOqp1Z31CC0eAWDNj4ey#scrollTo=qIG mY7dKFou&printMode=true

count

Instructor_VR_Proficiency	Usage_of_VR_in_Education	
Advanced	Yes	819
	No	815
Beginner	Yes	865
	No	832
Intermediate	Yes	843
	No	826

a=df1.groupby('Field_of_Study')['Usage_of_VR_in_Education']
a.count()

Usage_of_VR_in_Education

Field_of_Study	
Arts	710
Business	727
Education	694
Engineering	693
Law	691
Medicine	737

dtype: int64

Science

dtune int6/

a.value_counts()

count

748

Field of Study Usage of VR in Education

	osuge_or_tk_in_rudeder	
Arts	Yes	364
	No	346
Business	Yes	367
	No	360
Education	Yes	357
	No	337
Engineering	Yes	349
	No	344
Law	Yes	352
	No	339
Medicine	Yes	378
	No	359
Science	No	388
	Yes	360

Field_of_Study_counts = df1['Field_of_Study'].value_counts()
Field_of_Study_percentage = Field_of_Study_counts / Field_of_Study_counts.sum() * 100
import matplotlib.pyplot as plt
plt.bar(Field_of_Study_percentage.index,Field_of_Study_percentage.values)
plt.xlabel("Field_of_Study")
plt.ylabel("Percentage")
plt.title("Field_of_Study_Using_VR")
plt.show()


```
Usage_of_VR_in_Education_counts=df['Usage_of_VR_in_Education'].value_counts()
Usage_of_VR_in_Education_percentage=Usage_of_VR_in_Education_counts/Usage_of_VR_in_Education_counts.sum()*100
label=['YES','NO']
Usage_of_VR_in_Education_percentage.plot(kind='pie',labels=label,autopct='%1.1f%%')
plt.title('Percentage of Usage_of_VR_in_Education ')
plt.show()
```

/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 9 () missing from current font. fig.canvas.print_figure(bytes_io, **kw)

Percentage of Usage of VR in Education


```
Instructor_VR_Proficiency_counts = df['Instructor_VR_Proficiency'].value_counts()
Instructor_VR_Proficiency_percentage =Instructor_VR_Proficiency_counts / Instructor_VR_Proficiency_counts.sum() * 100
import matplotlib.pyplot as plt
plt.bar(Instructor_VR_Proficiency_percentage.index, Instructor_VR_Proficiency_percentage.values)
plt.xlabel("Instructor_VR_Proficiency")
plt.ylabel("Percentage")
plt.title("Percentage of Customers Instructor_VR_Proficiency and grades")
plt.xticks(["Beginner","Intermediate","Advanced"], ['C+', 'B+', 'A+']) # Customize x-axis labels for better readability
plt.show()
```



```
internet_contract_counts = df.groupby(['Improvement_in_Learning_Outcomes', 'Instructor_VR_Proficiency'])['Age'].count()
internet_contract_counts.plot(kind='bar')
plt.xlabel("Instructor_VR_Proficiency")
plt.ylabel("Improvement_in_Learning_Outcomes")
plt.title("Improvement_in_Learning_Outcomes vs Profeciency")
plt.xticks(rotation=45, ha='right')  # Rotate x-axis labels for readability
plt.legend(title="Contract Type")
plt.tight_layout()  # Adjust layout to prevent overlapping labels
plt.show()
```



```
import matplotlib.pyplot as plt
plt.hist(df1['Subject'], bins=10, edgecolor='black') # Adjust 'bins' for desired granularity
plt.xlabel("Subjects")
plt.ylabel("Frequency")
plt.title("Distribution of Subjects")
plt.show()
```



```
import matplotlib.pyplot as plt
plt.hist(df1['Hours_of_VR_Usage_Per_Week'], bins=10, edgecolor='black') # Adjust 'bins' for desired granularity
plt.xlabel("Hours_of_VR_Usage_Per_Week")
plt.ylabel("Frequency")
plt.title("Hours_of_VR_Usage_Per_Week")
plt.show()
```



```
import matplotlib.pyplot as plt
import seaborn as sns
# Select numerical columns
Engagement_Level_cols = df1.select_dtypes(include=['number']).columns
# Create box plots
plt.figure(figsize=(12, 6)) # Adjust figure size as needed
sns.boxplot(data=df1[Engagement_Level_cols])
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for readability
plt.title("Box Plots of Engagement_Level of students using VR")
plt.tight_layout() # Adjust layout to prevent overlapping labels
plt.show()
```


Double-click (or enter) to edit

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np
# Import the necessary function
from sklearn.metrics import accuracy_score
# Drop 'customerID' column as it's not useful for prediction
X=data.drop(['Engagement_Level', 'Age'],axis=1)
y=data['Engagement_Level']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_pred = clf.predict(X_test)
# Now you can use accuracy_score
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
Accuracy: 0.19
```

Naive Bayes Algorithm

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
X = data[['Age','Access_to_VR_Equipment_encoded']] # Use a list of column names within double brackets
y = data['Age']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
clf = GaussianNB()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test__y_pred)
```