5.6. Поверхностные интегралы

1* Поверхностные интегралы I рода (по участку поверхности)

Задача. Масса поверхности

 $\overline{u=u(x,y,z)}$ - плотность (физ. смысл)

Элементарная масса: $dm = u_{\rm cp.}(\xi,\eta,\zeta)d\sigma$, $d\sigma$ - элемент поверхности

$$M = \iint_S dm = \iint_S u(x,y,z)$$
 - пов. инт. I рода

 $\mathbf{Def.}\ 1)$ Дробление S на элементы $\Delta\sigma_k$ коорд. плоскостями $x=x_i,y=y_j$

- 2) Ср. точка (ξ_k, η_k, ζ_k)
- 3) Инт. сумма $v_n = \sum_{k=1}^n u(\xi_k, \eta_k, \zeta_k) \Delta \sigma_k$

4)
$$\iint_{S} u(x, y, z) \Delta \sigma = \lim_{\substack{n \to \infty \\ \tau = \max \Delta \sigma_k \to 0}} v_n$$

Свойства: Смена обхода поверхности S не меняет знака интеграла: $\iint_{S^+} u d\sigma = \iint_{S^-} u d\sigma$

Вычисление

Mem. Вычисление $\int_L f(x,y)dl$

- 1) Параметризация L $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $t \in [\alpha, \beta]$
- 2) $dl = \sqrt{\varphi'^{2}(t) + \psi'^{2}(t)} |dt|$
- 3) $f(x,y) = \widetilde{f}(t)$

$$\iint_L f(x,y)dl = \int_{\alpha}^{\beta} \tilde{f}(t)\sqrt{\varphi'^2(t) + \psi'^2(t)}|dt|$$

Поверхностный

$$\iint_{S} u(x, y, z) d\sigma$$

- 1) Параметризация S: самая частая $z=z(x,y),(x,y)\in D$ пределы интегрирования
- 2) $d\sigma = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} |dxdy|$, но т. к. в двойном интеграле договорились, что dxdy > 0

(площадь), модуль можно не ставить (область D проходится в направлении против часовой стрелки)

3)
$$u(x, y, z) = \tilde{u}(x, y, z(x, y)) = \tilde{u}(x, y)$$

$$\iint_{S} u(x, y, z) d\sigma = \iint_{D^{+}} \tilde{u}(x, y) \sqrt{1 + z_{x}'^{2} + z_{y}'^{2}} dx dy$$

Ex. S:
$$x^2 + y^2 = z^2$$
, $z = 0$, $z = 1$

u(x, y, z) = z

$$\iint_{S} z d\sigma = \begin{bmatrix} S : z = \sqrt{x^{2} + y^{2}} \\ D : \text{kpyr}, x^{2} + y^{2} = 1 \\ d\sigma = \sqrt{1 + \frac{x^{2}}{x^{2} + y^{2}}} + \frac{y^{2}}{x^{2} + y^{2}} dx dy = \sqrt{2} dx dy \end{bmatrix} = \iint_{D} \sqrt{x^{2} + y^{2}} \sqrt{2} dx dy = \sqrt{2} \int_{0}^{2\pi} d\varphi \int_{0}^{\varphi} \rho \varrho d\varphi = \sqrt{2} \int_{0}^{2\pi} \rho \varrho \varphi \varphi d\varphi = \sqrt{2} \int_{0}^{2\pi} \rho \varrho \varphi \varphi d\varphi = \sqrt{2} \int_{0}^{2\pi} \rho \varrho \varphi \varphi \varphi d\varphi = \sqrt{2} \int_{0}^{2\pi}$$

$$\sqrt{2}2\pi \frac{\rho^3}{3}\Big|_0^1 = \frac{2\sqrt{2}\pi}{3}$$
2* II рода

Задача Поток

Будем говорить о потоке вектора $\overrightarrow{F} = (P, Q, R)$ через площадку S в направлении нормали \overrightarrow{n}^+ или \overrightarrow{n}^-

Если задано поле жидких скоростей, то потоком называют количество жидкости, протекающей через S за время Δt

В простой ситуации поток $\Pi = FS(\overrightarrow{F} \perp S, \overrightarrow{F} = const)$

В общем случаем \overrightarrow{F} - переменная, S - искривленная и $\angle \overrightarrow{F}, S \neq \frac{\pi}{2}$

Переходим к вычислению элементарного потока $d\Pi$

 $d\sigma$ - малый элемент поверхности (почти плоский)

В пределах $d\sigma$ \overrightarrow{F} меняется мало, за среднее берем $\overrightarrow{F}=(P,Q,R)$, где P=P(x,y,z),Q=Q(x,y,z),R(x,y,z)

Разберемся с наклоном: если площадка перпендикулярна, то $d\Pi = Fd\sigma$, но в нашем случае высота цилиндра равна пр. $\overrightarrow{n}\overrightarrow{F} = (\overrightarrow{n}, \overrightarrow{F}) = F\cos\varphi$, где \overrightarrow{n} - единичный вектор нормали, φ - угол между нормалью и потоком, $d\Pi = (\overrightarrow{F}, \overrightarrow{n})d\sigma = F_n d\sigma$

Пусть $\overrightarrow{n} = (\cos \alpha, \cos \beta, \cos \gamma)$, тогда $d\Pi = (\overrightarrow{F}, (\cos \alpha, \cos \beta, \cos \gamma))d\sigma = (P\cos \alpha, Q\cos \beta, R\cos \gamma)d\sigma$

Итак,
$$\Pi = \iint_{S^{\overrightarrow{n}}} d\Pi = \iint_{S^{\overrightarrow{n}}} F_n d\sigma = \iint_{S^{\overrightarrow{n}}} (\overrightarrow{F}, \overrightarrow{n}) d\sigma = \iint_{S^{\overrightarrow{n}}} (P\cos\alpha + Q\cos\beta + R\cos\gamma) d\sigma$$

Но, еще нет координатной записи подынтегрального выражения

Спроектируем $d\sigma$ на координатные плоскости

Сначала разрежем поверхность S на элементы плоскостями x = const, y = const (уточним форму $d\sigma$). Т. к. $d\sigma$ мал, то можно считать его плоским параллелограммом

Тогда $\cos \gamma d\sigma = \pm dxdy \; (\gamma$ - угол между нормалью и осью Oz)

Нашли последнее слагаемое $\iint_{S^{\overrightarrow{n}}} R\cos\gamma d\sigma$ в исходном интеграле (I рода, т. к. по участку $d\sigma$)

Найдем $\iint_{S^{\overrightarrow{n}}}Q\cos\beta d\sigma$, разобьем поверхность на участки $d\sigma$ плоскостями x=const,y=const Аналогично $\cos\beta d\sigma=\pm dxdz$

Тогда в $\iint_{S^{\overrightarrow{n}}} P \cos \alpha d\sigma$ $\cos \alpha d\sigma = \pm dydz$

Окончательно, поток $\Pi=\iint_{S^{\overrightarrow{n}}}\pm Pdydz\pm Qdxdz\pm Rdxdy=\iint_{S^{\overrightarrow{n}}}(P\cos\alpha+Q\cos\beta+R\cos\gamma)d\sigma$ - связь интегралов I и II рода

Nota. Формулу интеграла можно получить еще так: $(\overrightarrow{F}, \overrightarrow{n})d\sigma = \overrightarrow{F}\overrightarrow{n}d\sigma = \overrightarrow{F}\overrightarrow{d\sigma}$, где $\overrightarrow{d\sigma} = (\pm dydz, \pm dxdz, \pm dxdy)$

Def. Математическое.

Определим $I = \iint_{S^{\overrightarrow{n}}} f(x, y, z) dx dy$

 $I = \lim_{\substack{n \to \infty \\ \tau = \max \Delta s_k \to 0}} \sum_{k=1}^n f(\xi_k, \eta_k, \zeta_k) \Delta s_k \ \left(\Delta s_k = \Delta x \Delta y - \text{любого знака, согласованного с обходом}\right)$

Свойства: Меняет знак при смене обхода с \overrightarrow{n}^+ на \overrightarrow{n}^-

Вычисление

 $\overline{1)}$ Параметризация S для $\iint R dx dy$ z=z(x,y), для $\iint Q dx dz$ y=y(x,z), для $Pdydz \quad x = x(y, z)$

- Пределы интегрирования $D_{xy}=$ пр. $_{Oxy}S$ и т. д. 2) $dxdy\to\pm dxdy$, если обход D_{xy} в направлении против часовой стрелки
- 3) $R(x, y, z) = \tilde{R}(x, y, z(x, y)), \dots$