3.012 Fund of Mat Sci: Structure – Lecture 16 STRU(TVRF OF SOLIDS

Charge density in paraelectric and ferroelectric PbTiO₃

Homework for Mon Nov 7

• Study: Allen and Thomas 3.2.2 up to pag. 140, and 3.4

Last time:

- 1. Symmetry operations: rotation, reflection, inversion, roto-inversion
- 2. Mirror+mirror=rotation
- 3. Periodicity constrains rotations (1, 2, 3, 4, 6)

 → ten crystallographic point groups in 2d
- 4. Bravais lattices
- 5. International tables

Compound ops. with translations: 4) Glides

Illustration of glide symmetry removed for copyright reasons.

See p. 99, figure 3.8 in Allen, S. M., and E. L. Thomas. The Structure of Materials. New York, NY: J. Wiley & Sons, 1999.

Compound ops. with translations: 5) Screw (in 3 dim)

Illustration of rotation and parallel translation removed for copyright reasons.

See p. 130, figure 3.38 in Allen, S. M., and E. L. Thomas. The Structure of Materials. New York, NY: J. Wiley & Sons, 1999.

Figure of object repetition removed for copyright reasons. See page 133, Figure 3.39 in Allen, S. M., and E. L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999.

Space groups

- All possible combinations of point group symmetries with translations
- 230 in total
- We have seen 14 (Bravais lattices)
- Incorporate all possible translation with symmetries, and add screw axis and glide planes

Bravais lattices: simple cubic

Figure by MIT OCW.

Figure by MIT OCW.

α -phase of polonium....

Bravais lattices: body-centered cubic

Figure by MIT OCW.

Ba, Cr, Cs, Fe, K, Li, Mo, Na, Nb, Rb, Ta, Tl, V, W...

Bravais lattices: body-centered cubic

Figure by MIT OCW.

Figure by MIT OCW.

Primitive unit cell and conventional unit cell

Figure by MIT OCW.

Wigner-Seitz cell

Figure by MIT OCW.

Figure by MIT OCW.

Crystal Structure = Lattice + Basis

Crystal Structure = Lattice + basis

Figure by MIT OCW.

Bravais lattices: face-centered cubic

Figure by MIT OCW.

Ag, Al, Au, Ca, Cu, Ir, Ni, Pb, Pd, Pt, Sc, Sr...

Close-Packed Structures

Interstitials in Close-Packed

Figure by MIT OCW.

Interstitials in Close-Packed

Figure by MIT OCW.

Diamond and Zincblend

Oxygen Calcium Titanium

Figure by MIT OCW.

Perovskites

Figure by MIT OCW.

Sodium Chloride (rocksalt)

Source: Wikipedia

Cesium Chloride

Image of the structure of Cesium Chloride removed for copyright reasons.