max_features	n_estimators	min_sample_leaf	\max_{depth}	training accuracy	valid accuracy
auto	50	25	None	0.6641	0.6488
auto	50	25	10	0.633	0.6275
auto	50	25	20	0.6421	0.6359
auto	50	25	40	0.6487	0.6424
auto	50	25	80	0.6613	0.6464
auto	50	50	None	0.6471	0.6433
auto	50	50	10	0.6357	0.6292
auto	50	50	20	0.6361	0.629
auto	50	50	40	0.6441	0.6367
auto	50	50	80	0.6454	0.6388
auto	50	100	None	0.6298	0.6245
auto	50	100	10	0.6227	0.6188
auto	50	100	20	0.6229	0.6243
auto	50	100	40	0.6311	0.628
auto	50	100	80	0.6252	0.6204
auto	100	25	None	0.6612	0.6482
auto	100	25	10	0.6358	0.6307
auto	100	25	20	0.6452	0.6345
auto	100	25	40	0.6536	0.6421
auto	100	25	80	0.6592	0.65
auto	100	50	None	0.6486	0.6466
auto	100	50	10	0.6314	0.6257
auto	100	50	20	0.637	0.631
auto	100	50	40	0.6468	0.6397
auto	100	50	80	0.6462	0.6402
auto	100	100	None	0.6311	0.6262
auto	100	100	10	0.6254	0.6233
auto	100	100	20	0.6297	0.6268
auto	100	100	40	0.6294	0.6247
auto	100	100	80	0.6307	0.6238
auto	200	25	None	0.6631	0.6467
auto	200	25	10	0.6392	0.6318
auto	200	25	20	0.6467	0.6398
auto	200	25	40	0.6508	0.6437
auto	200	25	80	0.6601	0.648
auto	200	50	None	0.647	0.6429
auto	200	50	10	0.635	0.6314
auto	200	50	20	0.6408	0.6357
auto	200	50	40	0.6467	0.6431
auto	200	50	80	0.6469	0.6409
auto	200	100	None	0.6345	0.6316
auto	200	100	10	0.6261	0.621
auto	200	100	20	0.6323	0.6303
auto	200	100	40	0.6319	0.6286
auto	200	100	80	0.6342	0.6308
sqrt	50	25	None	0.6605	0.6467
sqrt	50	25	10	0.6341	0.6266
_					

max_features	n_estimators	min_sample_leaf	max_depth	training accuracy	valid accuracy
sqrt	50	25	20	0.64	0.6327
sqrt	50	25	40	0.6491	0.6451
sqrt	50	25	80	0.6573	0.6437
sqrt	50	50	None	0.6474	0.6426
sqrt	50	50	10	0.6306	0.6254
sqrt	50	50	20	0.6411	0.6328
sqrt	50	50	40	0.6451	0.6404
sqrt	50	50	80	0.6463	0.6396
sqrt	50	100	None	0.6296	0.6237
sqrt	50	100	10	0.6245	0.6198
sqrt	50	100	20	0.6256	0.6253
sqrt	50	100	40	0.6315	0.6289
sqrt	50	100	80	0.6244	0.6209
sqrt	100	25	None	0.6623	0.6474
sqrt	100	25	10	0.6309	0.6246
sqrt	100	25	20	0.6464	0.639
sqrt	100	25	40	0.6525	0.6456
sqrt	100	25	80	0.6611	0.6477
sqrt	100	50	None	0.6465	0.6431
sqrt	100	50	10	0.6306	0.6264
sqrt	100	50	20	0.6382	0.6322
sqrt	100	50	40	0.6474	0.6421
sqrt	100	50	80	0.6469	0.6419
sqrt	100	100	None	0.6328	0.6258
sqrt	100	100	10	0.6235	0.6269
sqrt	100	100	20	0.6324	0.6264
sqrt	100	100	40	0.6323	0.6251
sqrt	100	100	80	0.6299	0.6264
sqrt	200	25	None	0.6646	0.6484
sqrt	200	25	10	0.64	0.6335
sqrt	200	25	20	0.6433	0.64
sqrt	200	25	40	0.6511	0.6433
sqrt	200	25	80	0.6629	0.6503
sqrt	200	50	None	0.6488	0.6423
sqrt	200	50	10	0.6383	0.6291
sqrt	200	50	20	0.6388	0.6372
sqrt	200	50	40	0.6455	0.6417
sqrt	200	50	80	0.649	0.6441
sqrt	200	100	None	0.6303	0.6266
sqrt	200	100	10	0.6297	0.6257
sqrt	200	100	20	0.6319	0.6267
sqrt	200	100	40	0.6338	0.631
sqrt	200	100	80	0.634	0.6336
$\log 2$	50	25	None	0.6172	0.6011
$\log 2$	50	25	10	0.6008	0.5979
$\log 2$	50	25	20	0.6087	0.6021
$\log 2$	50	25	40	0.6102	0.5988

max_featu			\max_depth	training accuracy	valid accuracy
$\log 2$	50	25	80	0.6161	0.6055
$\log 2$	50	50	None	0.5578	0.5556
$\log 2$	50	50	10	0.5391	0.5355
$\log 2$	50	50	20	0.5475	0.5405
$\log 2$	50	50	40	0.5625	0.5586
$\log 2$	50	50	80	0.5382	0.5361
$\log 2$	50	100	None	0.5286	0.521
$\log 2$	50	100	10	0.5074	0.5054
$\log 2$	50	100	20	0.5275	0.5284
$\log 2$	50	100	40	0.5169	0.5174
$\log 2$	50	100	80	0.5537	0.5536
$\log 2$	100	25	None	0.6178	0.6063
$\log 2$	100	25	10	0.6195	0.6101
$\log 2$	100	25	20	0.6331	0.6228
$\log 2$	100	25	40	0.6326	0.6227
$\log 2$	100	25	80	0.6435	0.6322
$\log 2$	100	50	None	0.5886	0.5789
$\log 2$	100	50	10	0.5652	0.5579
$\log 2$	100	50	20	0.5814	0.5772
$\log 2$	100	50	40	0.5665	0.5643
$\log 2$	100	50	80	0.5552	0.5527
$\log 2$	100	100	None	0.5355	0.5312
$\log 2$	100	100	10	0.5429	0.5458
$\log 2$	100	100	20	0.5366	0.5358
$\log 2$	100	100	40	0.5472	0.5489
$\log 2$	100	100	80	0.5184	0.517
$\log 2$	200	25	None	0.6422	0.6319
$\log 2$	200	25	10	0.6293	0.6204
$\log 2$	200	25	20	0.638	0.6297
$\log 2$	200	25	40	0.6366	0.6237
$\log 2$	200	25	80	0.6408	0.626
$\log 2$	200	50	None	0.5798	0.5783
$\log 2$	200	50	10	0.5712	0.5685
log2	200	50	20	0.5817	0.5802
$\log 2$	200	50	40	0.5839	0.5816
$\log 2$	200	50	80	0.5685	0.5641
$\log 2$	200	100	None	0.5133	0.5138
$\log 2$	200	100	10	0.5316	0.5285
log2	200	100	20	0.539	0.5395
log2	200	100	40	0.5528	0.5522
log2	200	100	80	0.5319	0.5328

- C		. 1 1 0	1 (1		1. 1		
\max _features	$n_{estimators}$	min_sample_leaf	\max_{depth}	training accuracy	valid accuracy	test accuracy	tes
sqrt	200	25	80	0.6629	0.6503	0.6508	0.6