Analiza zstępująca. Gramatyki typu LL(k)

Języki formalne i techniki translacji - Wykład 9

Maciek Gębala

6 grudnia 2022

Maciek Gehala

naliza zstępująca. Gramatyki typu LL(k)

Analiza metodą zstępującą

- Mamy ciąg tokenów (terminali) $w \in T^*$ i gramatykę G = (N, T, P, S).
- Chcemy sprawdzić czy $w \in L(G)$?
- Szukamy lewostronnego wyprowadzenia dla w.
- Budujemy drzewo wyprowadzenia dla w zaczynając od korzenia i tworząc wierzchołki w porządku preorder.

Maciek Gęba

naliza zstępująca. Gramatyki typu *LL(k*

Przykład

ullet Weźmy napis w=cad i gramatykę

 $\mathcal{S} \ o \ \mathit{cAd}$

 $A \rightarrow ab|a$

- Zaczynamy od symbolu początkowego, pierwszą literą w jest c więc bierzemy produkcję $S \to cAd$ i wyprowadzamy $S \Rightarrow cAd$
- Pierwsza litera cAd jest zgodna z pierwszą literą w więc przechodzimy do symboli A i a. Możemy teraz użyć produkcji A → ab i otrzymać ciąg cabd.
- Druga litera się zgadza więc sprawdzamy trzecią. Niestety mamy d i b czyli źle. Musimy wrócić do A i poszukać alternatywnego wyprowadzenia.
- ullet Używamy produkcji A
 ightarrow a i tym razem jest dobrze.
- Uzyskaliśmy wyprowadzenie: $S \Rightarrow cAd \Rightarrow cad$.

Maciek Gębala

Analiza zstępująca. Gramatyki typu LL(

Przykład

Weźmy gramatykę

 $S \rightarrow aAd|aB$

 $A \rightarrow b|c$

 $\textit{B} \rightarrow \textit{ccd} | \textit{ddc}$

- Weźmy słowo w = accd
- $S \Rightarrow aAd$

• $S \Rightarrow aAd \Rightarrow abd$ źle, $abd \neq accd$, nawracamy

• $S \Rightarrow aAd \Rightarrow acd$ źle, $acd \neq accd$, nawracamy

S ⇒ aB

• $S \Rightarrow aB \Rightarrow accd$ OK

Anali	za zstępi	ująca. G	ramatyki	typu	ı

Notatki
Notatki
Notatki
· Vocalia
Notatki

Faktoryzacja lewostronna Notatki Kiedy nie jest jasne na podstawie pierwszego symbolu, którą produkcję wybrać do rozwinięcia nieterminala, przekształcamy te produkcje tak aby decyzję podjąć później. Przykład instr → if wyr then instr else instr|if wyr then instr ullet instr o if wyr then instr koniec $\mathit{koniec} \rightarrow \mathit{else} \; \mathit{instr} | \varepsilon$ Algorytm lewostronnej faktoryzacji gramatyki Notatki ullet Dla każdego nieterminala ${\it A}$ znajdź najdłuższy prefiks ${\it \alpha}$ wspólny dla co najmniej dwóch prawych stron A-produkcji. • Jeśli $\alpha \neq \varepsilon$ to zamień produkcje $A \rightarrow \alpha \beta_1 | \dots | \alpha \beta_n | \gamma_1 | \dots | \gamma_m$ na produkcje $\rightarrow \alpha B |\gamma_1| \dots |\gamma_m|$ $B \rightarrow \beta_1 | \dots | \beta_n$ gdzie B jest nowym dodatkowym nieterminalem. • Transformację powtarzamy dopóki zmienia ona gramatykę. Analizatory przewidujące Notatki Często uważnie tworząc gramatykę, usuwając w niej lewostronną rekurencję i wykonując lewostronną faktoryzację możemy uzyskać gramatykę, która przy wyprowadzeniu nie potrzebuje nawrotów. Wyprowadzenie w takiej gramatyce może być łatwo sprawdzane prostym, deterministycznym automatem ze stosem. Przykład Notatki Weźmy gramatykę \rightarrow E+T|T $\rightarrow T*F|F$ \rightarrow (E)|id • Eliminujemy lewostronną rekurencję F \rightarrow TG G $+TG|\varepsilon$ FV

• Gramatyka nie potrzebuje lewostronnej faktoryzacji.

* $FV|\varepsilon$ (E)|id

Działanie analizatora przewidującego na id + id * id

Stos	Wejście	Wyjście
\$ <i>E</i>	id + id * id\$	
\$GT	id + id * id\$	$E \rightarrow TG$
\$GVF	id + id * id\$	$T \rightarrow FV$
\$GV	+id*id\$	$F \rightarrow id$
\$ <i>G</i>	+id*id\$	V ightarrow arepsilon
\$GT	id * id\$	$G \rightarrow +TG$
\$GVF	id * id\$	$T \rightarrow FV$
\$ <i>GV</i>	* <i>id</i> \$	$F \rightarrow id$
\$GVF	id\$	$V \rightarrow *FV$
\$GV	\$	$F \rightarrow id$
\$ <i>G</i>	\$	V ightarrow arepsilon
\$	\$	G oarepsilon

Maciek Gebala

naliza zstępująca. Gramatyki typu LL(k)

Zbiory FIRST i FOLLOW

 FIRST pomaga wybrać produkcję którą możemy użyć do wyprowadzania napisu.

$$\textit{FIRST}(\alpha) = \{ x \in T \ : \ \exists_{\beta} \ \alpha \Rightarrow^* x \beta \}$$

 FOLLOW pomaga synchronizować symbole podczas odzyskiwania kontroli w trybie paniki.

$$FOLLOW(A) = \{x \in T : \exists_{\alpha} \exists_{\beta} S \Rightarrow^* \alpha Ax\beta\}$$

 Na podstawie tych funkcji generujemy tablicę analizatora przewidującego która dla nieterminala A i terminala a wyznacza którą produkcję możemy użyć.

Maciek Gębala

Analiza zstępująca. Gramatyki typu LL(k

Wyznaczanie FIRST(X)

Dla wszystkich symboli X z gramatyki G tworzymy zbiory FIRST według następujących reguł

- Jeśli X jest terminalem to $FIRST(X) = \{X\}.$
- **3** Jeśli $X \to \varepsilon$ jest produkcją to do FIRST(X) dodajemy ε .
- Jeśli X jest nieterminalem i $X \to Y_1 Y_2 \dots Y_k$ to a dodajemy do FIRST(X) jeżeli istnieje i takie, że $a \in FIRST(Y_i)$ oraz $\varepsilon \in FIRST(Y_i)$ dla każdego j < i. $\varepsilon \in FIRST(X)$ jeśli należy do wszystkich $FIRST(Y_i)$

Ponadto

- $FIRST(X\alpha) = FIRST(X)$ gdy $\varepsilon \notin FIRST(X)$
- $\bullet \ \mathit{FIRST}(\mathit{X}\alpha) = \mathit{FIRST}(\mathit{X}) \cup \mathit{FIRST}(\alpha) \ \mathsf{gdy} \ \varepsilon \in \mathit{FIRST}(\mathit{X})$

Maciek Gębala

Analiza zstępująca. Gramatyki typu LL(

Wyznaczanie FOLLOW(A)

Dla wszystkich nieterminali A FOLLOW(A) tworzymy według następujących reguł

- lacktriangledown Dla symbolu początkowego S do FOLLOW(S) dodajemy \$.
- Jeśli mamy produkcję A → αBβ to do FOLLOW(B) dodajemy wszystkie symbole z FIRST(β) poza ε.
- Jeśli mamy produkcję $A \to \alpha B$ albo produkcję $A \to \alpha B\beta$, gdzie $\varepsilon \in FIRST(\beta)$ to do FOLLOW(B) dodajemy wszystkie symbole z FOLLOW(A).

Notalki
Notatki
Notatki
Notatki

Przv	ıkłar	Ч
1 14	y ixia	J

- $FIRST(E) = FIRST(T) = FIRST(F) = \{(, id\}$
- $FIRST(G) = \{+, \varepsilon\}$
- $FIRST(V) = \{*, \varepsilon\}$
- *FOLLOW*(*E*) = *FOLLOW*(*G*) = {),\$}
- $FOLLOW(T) = FOLLOW(V) = \{+, \}$
- $FOLLOW(F) = \{+, *,), \$\}$

Maciek Gehala

Analiza zstenujaca Gramatyki tynu I I (k)

Budowa tablic analizatora przewidującego

Dla każdej produkcji ${\it A}
ightarrow lpha$

- dla każdego $a \in T$ jeśli $a \in FIRST(\alpha)$ to wpisz $A \to \alpha$ do M[A, a].

Maciek Gębal

naliza zstępująca. Gramatyki typu LL(k

Przykład

Maciek Gebala

Analiza zstepujaca, Gramatyki typu LL(k

Gramatyki LL(1)

- Pierwsze L przeglądanie od lewej do prawej.
- Drugie L tworzenie lewostronnego wyprowadzenia.
- 1 używanie do podejmowania decyzji jednego symbolu w każdym kroku.
- Dla każdego nieterminala z dwóch różnych prawych stron produkcji nie da się wyprowadzić ciągów zaczynających się od tego samego terminala.

Niestety nie wszystkie gramatyki bezkontekstowe dają się sprowadzić do postaci LL(1).

lotatki
lotatki
lotatki
lotatki

Gramatyki *LL*(1)

Gramatyka jest typu *LL*(1) gdy z (rozpatrujemy wyprowadzenia lewostronne)

$$S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx, \qquad S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy$$

oraz

$$FIRST(x) = FIRST(y)$$

wynika, że $\beta = \gamma$.

Inaczej: jeśli $S\Rightarrow^*wA\alpha\Rightarrow w\beta\alpha\Rightarrow^*wx$, to aby odgadnąć następny krok w wyprowadzeniu należy poznać pierwszy znak x.

Maciek Gebala

Analiza zstepujaca. Gramatyki typu LL(k)

Notatki

Testowanie na własność LL(1)

G jest *LL*(1), gdy dla $S \Rightarrow^* wA\alpha$ i dowolnych produkcji $A \to \beta$, $A \to \gamma$ mamy

 $FIRST(\beta\alpha) \cap FIRST(\gamma\alpha) = \emptyset.$

Zalety własności: FIRST można efektywnie obliczyć!

Maciek Gęba

Analiza zstępująca. Gramatyki typu LL(k

Dowód własności

- Niech $c \in FIRST(\beta\alpha) \cap FIRST(\gamma\alpha)$, $\beta \neq \gamma$. Wtedy potrafimy zbudować wyprowadzenia z $\beta\alpha$ i $\gamma\alpha$ uzyskując c na pierwszym miejscu. Otrzymamy $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wcx$ i $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wcy$, ponieważ FIRST(cy) = c = FIRST(cx), z definicji LL(1) mielibyśmy $\beta = \gamma$. Zatem gramatyka nie jest LL(1).
- ③ Niech *G* nie będzie *LL*(1), tj.: jeśli $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wcx$ i $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wcy$, wtedy $c \in FIRST(\beta\alpha) \cap FIRST(\gamma\alpha)$. (oczywiste!)

Maciek Gebala

Analiza zstepujaca. Gramatyki typu LL(k

Test na LL(1)

G jest LL(1) wtedy i tylko wtedy, gdy dla każdego A i każdej produkcji $A \to \beta|\gamma: FIRST(\beta \ FOLLOW(A)) \cap FIRST(\gamma \ FOLLOW(A)) = \emptyset.$

Dowód (\Leftarrow) - z pustości wynika LL(1)

Oczywiście:

- Jeśli $S\Rightarrow^*wA\alpha\Rightarrow w\beta\alpha\Rightarrow^*wx$ to FIRST(x) należą do $FIRST(\beta\ FOLLOW(A))$.
- Gdyby $S\Rightarrow^* wA\alpha\Rightarrow w\gamma\alpha\Rightarrow^* wy$ oraz FIRST(x)=FIRST(y)=c, to mielibyśmy $c\in FIRST(\beta\,FOLLOW(A))\cap FIRST(\gamma\,FOLLOW(A))$.
- Ale jest to niemożliwe.

Notatki
Notatki
Notatki

Zakładamy, że $c \in FIRST(\beta FOLLOW(A)) \cap FIRST(\gamma FOLLOW(A))$. Dowód: (\Rightarrow) z LL(1) wynika pustość lacktriangledown $c \in FIRST(eta) \cap FIRST(\gamma)$ wtedy $S \Rightarrow^* vA\alpha \Rightarrow v\beta\alpha \Rightarrow^* vcx$ dla pewnego x, $S \Rightarrow^* vA\alpha \Rightarrow v\gamma\alpha \Rightarrow^* vcy$ dla pewnego y, i FIRST(cy) = c = FIRST(cx). Równocześnie $\beta \neq \gamma$, więc G nie jest LL(1)! **3** $c \notin FIRST(\beta)$, $c \notin FIRST(\gamma)$, ale $c \in FOLLOW(A)$; $\begin{array}{l} \varepsilon \in \mathit{FIRST}(\beta), \, \varepsilon \in \mathit{FIRST}(\gamma). \ \, \mathsf{Wtedy:} \\ S \Rightarrow^* \mathit{vA}\alpha \Rightarrow \mathit{v}\beta\alpha \Rightarrow^* \mathit{v}\alpha \Rightarrow^* \mathit{vcx}. \ \, \mathsf{Także} \\ S \Rightarrow^* \mathit{vA}\alpha \Rightarrow \mathit{v}\gamma\alpha \Rightarrow^* \mathit{v}\alpha \Rightarrow^* \mathit{vcx}. \ \, \mathsf{Wtedy:} \\ \mathsf{V}\alpha \Rightarrow^* \mathsf{V}\alpha$ Test na LL(1) Notatki Dowód: (⇒) z LL(1) wynika pustość • $c \in FIRST(\gamma)$, $c \notin FIRST(\beta)$, ale $c \in FOLLOW(A)$ • $i \in FIRST(\beta)$. Wtedy: $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* w\alpha \Rightarrow^* wcx$. Także: $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wcy\alpha \Rightarrow^* wcycx$. Ponieważ FIRST(cx) = c = FIRST(cycx) oraz $\beta \neq \gamma$, mamy sprzeczność z LL(1). Tabele parsowania dla *LL*(1) Notatki • M[A, a] zawiera $A \rightarrow \beta$, jeśli $a \in FIRST(\beta FOLLOW(A))$. • Zgodnie z poprzednim twierdzeniem nie ma konfliktów dla LL(1). • Parsing z taką tabelą określa jednoznacznie jedyne możliwe wyprowadzenie lewostronne. Gramatyka spoza LL(1) Notatki • Gramatyka G $\mathcal{S} \ o \ arepsilon |abA|$ A → Saa|b • G nie jest LL(1): $S \Rightarrow abA \Rightarrow abSaa \Rightarrow ababAaa \Rightarrow^* ab\underline{a}...$ $S \Rightarrow abA \Rightarrow abSaa \Rightarrow ab\underline{a}a$ \bullet Jeden znak nie wystarczy aby rozróżnić pomiędzy $\mathcal{S} \to \varepsilon$ i $\mathcal{S} o ab \mathbf{A}$ dla drugiego kroku wyprowadzenia.

Notatki

Test na LL(1)

 $FIRST_k(\alpha)$ zdefiniowane tak jak $FIRST(\alpha)$:

- $\exists \, \alpha \Rightarrow^* w$, w składa się z terminali, $|w| \geqslant k$ i x jest prefiksem w długości k, to $x \in FIRST_k(\alpha)$, lub
- $\exists \alpha \Rightarrow^* w$, w składa się z terminali, |w| < k i x = w, to $x \in FIRST_k(\alpha)$.

Gramatyka LL(k)

Gramatyka jest $LL(k) \Leftrightarrow z$

$$S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx$$

$$S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy$$

 $FIRST_k(x) = FIRST_k(y)$

wynika, że $\beta = \gamma$.

Inaczej: jeśli $S\Rightarrow^* wA\alpha\Rightarrow w\beta\alpha\Rightarrow^* wx$, to wystarcza poznać k znaków x aby określić następny krok wyprowadzenia $S\Rightarrow^* wA\alpha$.

Gramatyka nie-LL(k) dla dowolnego k

Przykład

Gramatyka

 $S \rightarrow A|B$

 $A \rightarrow aAb|0$

 $B \rightarrow aBbb|1$

definiuje

$${a^n0b^n: n \geqslant 0} \cup {a^n1b^{2n}: n \geqslant 0}.$$

Jest to język rozpoznawany deterministycznym automatem ze

stosem, ale nie jest w żadnym LL(k). (Blok symboli a może być dowolnie długi i nie można się zdecydować na $S \Rightarrow A \text{ lub } S \Rightarrow B$.)

Podstawowa własność

 ${\it G}$ jest ${\it LL}(k)$ wtedy i tylko wtedy, gdy dla dowolnych ${\it S} \Rightarrow^* {\it wA} \alpha$, oraz ${\it A}
ightarrow {\it \beta}, {\it A}
ightarrow {\it \gamma}$ mamy

$$FIRST_k(\beta\alpha) \cap FIRST_k(\gamma\alpha) = \emptyset$$

Następująca własność nie jest równoważna LL(k)!

Jeśli $\overrightarrow{A} \rightarrow \overrightarrow{\beta}, \overrightarrow{A} \rightarrow \gamma, \overrightarrow{\beta} \neq \gamma$, to $FIRST_k(\overrightarrow{\beta} \ FOLLOW_k(A)) \cap FIRST_k(\gamma \ FOLLOW_k(A)) = \emptyset$

Przykład

S o aAaa|bAba i A o b|arepsilon, to widać z definicji, że gramatyka jest LL(2).

Ale: $FOLLOW_2(A) = \{aa, ba\},\$

 $FIRST_2(b FOLLOW_2(A)) \cap FIRST_2(\varepsilon FOLLOW_2(A)) = \{ba\}$

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Konstrukcja parsera LL(k)Notatki ullet G - gramatyka LL(k), $wx \in L_G$ • Konstruujemy lewostronne wyprowadzenie dla wx, zakładamy, że mamy $S \Rightarrow^* w\alpha$, takie że α zaczyna się nieterminalem, $\alpha \Rightarrow^* \mathbf{X}$. \bullet Z definicji, z w i k następnych znaków x można określić następny krok wyprowadzenia. • Problem: w nie można przechować na stosie (tam jest α). Tabele LL(k)Notatki $L_1 \oplus_k L_2 = \{w: \exists_{x \in L_1} \exists_{y \in L_2} \ (w = xy \land |xy| \leqslant k) \lor (w = \textit{FIRST}_k(xy))\}$ $T_{A,L}$ trzeba traktować jednocześnie jako funkcję. Niech u ma długość k. Wtedy $\bigcirc \ \, \textit{$T_{A,L}(u)$} = \texttt{error}, \quad \text{jeśli dla żadnej produkcji $A \to \alpha$ nie zachodzi}$ $u \in FIRST_k(\alpha) \oplus_k L$, $\begin{array}{ll} \bullet & T_{A,L}(u) = (A \rightarrow \alpha, \langle Y_1, \ldots, Y_m \rangle) & \text{jeśli dla dokładnie jednej} \\ & \text{produkcji } A \rightarrow \alpha \text{ mamy } u \in \mathit{FIRST}_k(\alpha) \oplus_k L, (\langle Y_1, \ldots, Y_m \rangle) \\ \end{array}$ zdefiniowane poniżej) $lacktriangledown T_{A,L}(u) = ext{error}$ jeśli dla więcej niż jednej produkcji A o lphamamy $u \in FIRST_k(\alpha) \oplus_k L$, (dla języka LL(k) nie powinno to Definicja $\langle Y_1, \ldots, Y_m \rangle$ Notatki Niech $\alpha = x_0 B_1 x_1 B_2 x_2 \dots B_m x_m$, gdzie B_i jest nieterminalem, a x_i to ciąg terminali. Wtedy: $Y_i = FIRST_k(x_iB_{i+1}\dots B_mx_m \oplus_k L).$ Y_i mówi jakie ciągi wyprowadzane za B_i są dopuszczalne o ile skorzystamy z $A \rightarrow \alpha$. Konstrukcja tabel LL(k)Notatki Konstruujemy tylko takie $\mathcal{T}_{A,L}$, które okazują się niezbędne: dla sytuacji początkowej $\mathcal{I}=\{\mathcal{T}_{\mathcal{S},\{\varepsilon\}}\}$ rozszerzamy dopóty, dopóki coś nowego się pojawia. Regula: jeśli T. T(u)(A $x_0B_1x_1B_2x_2...B_mx_m, \langle Y_1,...,Y_m\rangle),$

dołącz T_{B_i,Y_i} do \mathcal{I} .

Parser LL(k)

- $\ \ \, \textbf{Na początku} \,\, \textit{$T_{\mathcal{S},\{\varepsilon\}}$ na stosie.}$
- Krok parsera:
 - M[T_{A,L}, u] zdefiniowany jak następuje: niech
 T_{A,L}(u) = (A → x₀B₁x₁B₂x₂...B_mx_m, ⟨Y₁,..., Y_m⟩),
 wtedy usuń T_{A,L} ze stosu, zapisz x₀T<sub>B₁, y₁, x₁,..., T_{B_m, y_m}, x_m na
 stosie, (głowica nie porusza się).
 M[a, av] = usuń a ze stosu i przesuń głowicę o 1 pozycję,
 M[\$\frac{1}{2}\$, \$\frac{1}{2}\$] = accept,
 M[\$X\$, \$\frac{1}{2}\$] = reject, w p.p.
 </sub>

Podstawowa własność

Dla każdej LL(k)-gramatyki LL(k)-parser określa wyprowadzenie lewostronne gdy $w \in L_G$, lub daje komunikat błędu w przeciwnym wypadku.

Dowód długi i oczywisty.

Notatki
Notatki
Notatki
Notatki Notatki
Notatki