

COMBINATOIRE ET LOI BINOMIALE

Résumé

Nous reprenons la notion de variable aléatoire discrète vue l'an dernier. Nous nous intéressons à la succession d'expériences aléatoires en nous concentrant majoritairement sur un type : le schéma de Bernoulli. Avant toute chose, nous avons besoin de revenir sur des notions fines de dénombrement.

1 Théorie des ensembles

1.1 Dénombrement

Définition 1 | Cardinal

Soit *E* un ensemble fini.

On appelle **cardinal** de E, noté card(E) ou #E, le nombre d'éléments de E.

Exemples 2 \blacktriangleright Si $E = \{4; 7; -12\}$, alors card(E) = 3.

- ► Si E = [-2, 7], alors card(E) = 10.
- ► Le cardinal de Ø est égal à 0.

Propriété 3

Soient E et F deux ensembles finis.

$$card(E \cup F) = card(E) + card(F) - card(E \cap F)$$

Démonstration. Le cas où E et F sont disjoints est trivial. On s'y ramène ensuite en remarquant que $E \cup F = E \cup (F \setminus E)$. □

Définition 4 | Produit cartésien

Le **produit cartésien** de E et F , noté $E \times F$ est l'ensemble des couples (e,f) où $e \in E$ et $f \in F$.

Propriété 5

Soient *E* et *F* deux ensembles finis.

$$card(E \times F) = card(E) \times card(F)$$

Exemple 6 Soient $E = \{0, 1\}$ et $F = \{a, b\}$.

$$E \times F = \{(0, a); (0, b); (1, a); (1, b)\}$$

Ainsi, $card(E \times F) = 4$.

Définition 7 | *k*-uplet

Soit $k \in \mathbb{N}^*$.

On appelle k-uplet de E un élément (e_1, \dots, e_k) de $E^k = \underbrace{E \times \dots \times E}_{k \text{ fois}}$.

Exemples 8 ► Un numéro de téléphone est un 10-uplet de [0;9]

▶ Les coordonnées d'un point dans le plan sont un couple de **R**, encore appelé 2-uplet de **R**.

Propriété 9

Soient *E* un ensemble fini et $k \in \mathbb{N}^*$.

$$\operatorname{card}\left(E^{k}\right) = \operatorname{card}(E)^{k}$$

Définition 10 | Partie

Une **partie**, ou **sous-ensemble**, de E est un ensemble d'éléments de E.

Exemple 11 Soit $E = \{a; b; c\}$. Les parties de E sont :

 \emptyset , {a}, {b}, {c}, {a;b}, {a;c}, {b;c} et {a;b;c}

Remarque 12 On note $\mathcal{P}(E)$ l'ensemble des parties de E.

Propriété 13

Soit *E* un ensemble fini.

$$\operatorname{card}(\mathscr{P}(E)) = 2^{\operatorname{card}(E)}$$

Démonstration. Posons n = card(E).

Montrons par récurrence sur $n \in \mathbb{N}$, la propriété "card $(\mathcal{P}(E)) = 2^n$ ".

Initialisation : Si n = 0, alors $E = \emptyset$ et donc $\mathscr{P}(E) = \{\emptyset\}$ de cardinal $1 = 2^0$.

Hérédité : Supposons la propriété vraie à un rang $n \in \mathbb{N}$ fixé.

Nous pouvons décomposer E en $E = E' \cup \{a\}$ où E' et $\{a\}$ sont disjoints et card(E') = n.

Ainsi, $\mathscr{P}(E) = \mathscr{P}(E') \cup \{\{a\} \cup x \text{ avec } x \in \mathscr{P}(E')\}$ et l'union est disjointe par construction et les deux cardinaux sont égaux à 2^n .

Finalement, card $(\mathcal{P}(E)) = 2^n + 2^n = 2^{n+1}$.

Nous avons bien montré par récurrence que card $(\mathscr{P}(E)) = 2^{\operatorname{card}(E)}$.

1.2 Combinaisons et arrangements

Soient *E* un ensemble fini de cardinal *n* et $0 \le k \le n$.

Définition 14 | *k*-arrangement

On appelle k-arrangement de E tout k-uplet de E tel que ses k éléments sont distincts.

Exemple 15 Soit E = [0; 5].

 $\{2;3;4\}, \{3;2;4\}, \{5;3;1\}$ ou $\{1;3;5\}$ sont des 3-arrangements de E.

A Attention

L'ordre des éléments **compte** pour des *k*-arrangements.

Définition 16

Soit $n \in \mathbb{N}^*$.

On appelle **factorielle** n le nombre $n! = 1 \times 2 \times \cdots \times n$.

Par convention, 0! = 1.

Propriété 17

Le nombre de k-arrangements de E, noté A_n^k est égal à :

$$n \times (n-1) \times \cdots \times (n-k+1) = \frac{n!}{(n-k)!}.$$

Démonstration. Pour chaque *k*-arrangement, il y a *k* éléments à choisir dans l'ordre.

Pour le premier, il y a n possibilités. Pour le second, il n'y en a plus que n-1 car il doit être distinct du premier, etc.

Par récurrence, on peut montrer qu'il y a $n \times (n-1) \times \cdots \times (n-(k-1))$ possibilités. Enfin,

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times \dots \times (n-k) \times (n-(k+1)) \times \dots \times n}{1 \times 2 \times \dots \times (n-k)}$$
$$= (n-(k+1)) \times \dots \times n$$

Exercice 18

Donner le nombre de podiums possibles pour une course de Formule 1 avec 20 participants.

Définition 19 | *k*-combinaison

On appelle k-combinaison de E toute partie de E à k éléments.

Propriété 20

Le nombre de k-combinaisons de E, noté $\binom{n}{k}$ ou C_n^k est égal à :

$$\frac{n!}{k!(n-k)!}$$

Remarque 21 $\binom{n}{k}$ est lu "k parmi n".

L'ordre des éléments **ne compte pas** pour une k-combinaison.

Propriétés 22

$$\blacktriangleright \binom{n}{0} = \binom{n}{n} = 1$$

$$\blacktriangleright \binom{n}{1} = \binom{n}{n-1} = n$$

► Symétrie:
$$\binom{n}{k} = \binom{n}{n-k}$$

Démonstration. Clair par définition pour les deux premiers points. Pour le second point, choisir k éléments parmi n, c'est aussi renoncer à n-k éléments parmi n.

Théorème 23 | Formule de Pascal

Soit $1 \le k \le n$.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Démonstration. Soit $1 \le k \le n$.

$$\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-1-(k-1))!}$$

$$= \frac{(n-1)!}{k!(n-(k+1))!} + \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= \frac{(n-1)!(n-k)}{k!(n-k)!} + \frac{k(n-1)!}{k!(n-k)!}$$

$$= \frac{(n-1)!(n-k)}{k!(n-k)!} + \frac{k(n-1)!}{k!(n-k)!}$$

$$= \frac{(n-1)!}{k!(n-k)!} ((n-k)+k)$$

$$= \frac{n(n-1)!}{k!(n-k)!}$$

$$= \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}$$

Remarque 24 Avec les résultats précédents, nous pouvons calculer tous les coefficients binomiaux de proche en proche.

Nous allons le faire grâce au célèbre **triangle de Pascal** qui représente les coefficients binomiaux $\binom{n}{k}$.

n^{k}	0	1	2	3	4	5	
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
:	:						٠٠.

La construction se fait ligne par ligne et on obtient les coefficients du dessous par addition des deux supérieurs comme indiqués sur le tableau précédent.

Exercice 25

Construire le triangle de Pascal de sorte à calculer $\binom{8}{3}$, $\binom{8}{5}$ et $\binom{7}{4}$.

Remarque 26 On peut démontrer que pour tout $x, y \in \mathbf{R}$, $(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$. C'est ce qu'on appelle la formule du **binôme de Newton**.

Propriété 27

Soit $n \in \mathbb{N}$.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Démonstration. Soit *E* de cardinal *n*. On a la décomposition de $\mathscr{P}(E)$ en $\mathscr{P}(E) = \bigcup_{k=0}^{n} P_k$ avec

 P_k l'ensemble des parties à k éléments de E. Tous les P_k sont disjoints deux à deux, de cardinal $\binom{n}{k}$.

Par union disjointe,
$$2^n = \operatorname{card}(\mathscr{P}(E)) = \sum_{k=0}^n \operatorname{card}(P_k) = \sum_{k=0}^n \binom{n}{k}$$
.

2 Épreuve de Bernoulli et loi binomiale

Propriété 28 | Succession de variables aléatoires indépendantes

Si X_1 , X_2 , ..., X_n sont des variables aléatoires réelles successives et indépendantes, alors :

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{k=0}^{n} \mathbb{P}(X_k = x_k).$$

Exemple 29 Lancer deux dés équilibrés à la suite revient à lancer deux fois le même dé. On peut modéliser l'expérience aléatoire avec un arbre pondéré.

Propriété 30

La succession de deux épreuves indépendantes d'univers Ω_1 et Ω_2 admet pour univers $\Omega_1 \times \Omega_2$.

Exemple 31 Considérons l'expérience aléatoire suivante.

On lance une pièce de monnaie équilibrée : on note 1 si pile et 0 si face ; puis on lance un dé tétraédrique équilibré numéroté de 1 à 4.

Posons
$$\Omega_1 = \{0; 1\}$$
 et $\Omega_2 = \{1; 2; 3; 4\}$.

Les issues de l'expérience considérée sont les éléments de $\Omega_1 \times \Omega_2$.

On peut construire l'arbre pondéré suivant pour calculer la probabilité de chaque issue mais il n'est pas indispensable par indépendance.

Ainsi, l'issue (0,3) a pour probabilité $\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$.

Définitions 32 | Loi de Bernoulli

Soit *p* ∈]0;1[.

- ▶ Une **épreuve de Bernoulli** de paramètre p est une expérience aléatoire présentant deux issues dont l'une est appelée *succès* de probabilité p et l'autre est l'*échec* de probabilité 1 p.
- ► La variable aléatoire *X* qui prend 1 en cas de succès et 0 en cas d'échec suit la **loi de Bernoulli**, on note :

$$X \sim \mathcal{B}(p)$$
.

x_i	0	1
$\mathbb{P}(X=x_i)$	1 – p	p

Exemples 33 ► Le lancer d'une pièce de monnaie (équilibrée ou non) est une épreuve de Bernoulli.

On lance un dé équilibré à 6 faces. Soit X la variable aléatoire qui prend le résultat du dé, X ne suit pas une loi de Bernoulli car a 6 issues.

► En notant *Y* la loi qui prend 1 si $X \le 2$ et 0 sinon. *Y* suit une loi de Bernoulli de paramètre $\frac{1}{3}$.

Propriété 34

Soit $X \sim \mathcal{B}(p)$.

$$ightharpoonup \mathbb{E}[X] = p$$

$$Var(X) = p(1-p)$$

Démonstration. \blacktriangleright $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{P}(X = x_i) \times x_i = 0 \times (1-p) + 1 \times p = p$

$$Var(x) = \sum_{i=1}^{n} \mathbb{P}(X = x_i) \times (x_i - \mathbb{E}[X])^2 = (0 - p)^2 \times (1 - p) + (1 - p)^2 p$$
$$= p^2 (1 - p) + p(1 - p)^2$$
$$= p(1 - p)(p + 1 - p)$$
$$= p(1 - p)$$

Définition 35 | Loi binomiale

- \blacktriangleright La sucession de *n* épreuves de Bernoulli de paramètre p, identiques et indépendantes, est un **schéma de Bernoulli** de paramètres n et p.
- ▶ Si on note *X* la variable aléatoire qui compte le nombre de succès, *X* suit une **loi binomiale** de paramètres n et p. On note :

$$X \sim \mathcal{B}(n, p)$$
.

Exemple 36 On propose une carte de fidélité à tous les clients qui passent à la caisse d'un magasin.

On suppose que chaque client a une probabilité égale à 0,23 d'accepter la carte de fidélité et que les clients ne s'influencent pas entre eux.

Si 150 clients passent à la caisse un jour, le nombre X de cartes distribuées à la fin de la journée suit une loi binomiale de paramètres 150 et 0,23

Remarques 37 \blacktriangleright Un schéma de Bernoulli de paramètres n et p a pour univers $\{0;1\}^n$.

▶ L'univers d'une loi binomiale $\mathcal{B}(n, p)$ est [0; n].

Tale Spécialité - 2023 / 2024

 \blacktriangleright On peut construire une variable aléatoire Y de loi binomiale $\mathscr{B}(n,p)$ à l'aide d'une somme de *n* variables aléatoires X_i indépendantes de loi $\mathcal{B}(p)$.

$$X_1 + \cdots + X_n = Y \sim \mathcal{B}(n, p)$$

Propriété 38 | Espérance

Si $X \sim \mathcal{B}(n, p)$, alors:

$$\mathbb{E}[X] = np$$
.

Démonstration. On se sert de la remarque précédente, si $X = X_1 + \cdots + X_n$ avec les $X_i \sim \mathcal{B}(p)$ indépendantes.

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = p + \dots + p = np$$

Exemple 39 Dans l'exemple précédent, X a pour espérance $150 \times 0.23 = 34,5$. C'està-dire qu'on peut espérer avoir distribué environ 34 cartes de fidélité dans la journée.

Propriété 40 | Variance et écart-type

Soit $X \sim \mathcal{B}(n, p)$.

$$ightharpoonup Var(X) = np(1-p)$$

$$ightharpoonup \sigma(X) = \sqrt{np(1-p)}$$

Démonstration. Admis.

Théorème 41 | Probabilités des issues

Soit $X \sim \mathcal{B}(n, p)$.

Pour tout $k \in [0; n]$:

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Démonstration. On considère un schéma de Bernoulli de paramètres n et p.

L'événement $\{X = k\}$ est composé des issues correspondants à k succès parmi n expériences indépendantes de Bernoulli de paramètre p.

Il y en a $\binom{n}{k}$ et chaque issue, a pour probabilité le produit $p^k \times (1-p)^{n-k}$. En effet, il y a k succès à probabilité p et n - k échecs à probabilité 1 - p.

П