AD

AD-E400 726

TECHNICAL REPORT ARLCO-TR-80024

fuze gear train efficiency

G. G. LOWEN
CITY COLLEGE OF NEW YORK
NEW YORK, NEW YORK

F. R. TEPPER ARRADCOM

NOVEMBER 1981

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

81 11 30 064

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report ARLCD-TR-80024 AD-A1877 93	13
4. TITLE (and Subititie)	S. TYPE OF REPORT & PERIOD COVERED
FUZE GEAR TRAIN EFFICIENCY	
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(8)
G.G. Lowen, City College of New York	``
F.R. Tepper, ARRADCOM	
9. PERFORMING OPGANIZATION NAME AND ADDRESS	
ARRADCOM, LCWSI,	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
Nuclear and Fuze Div (DRDAR-LCN)	'
Dover, NJ 07801	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
ARRADCOM, TSD	November 1981
STINFO Div (DRDAR-TSS)	13. NUMBER OF PAGES
DOVER, MJ 0/801 14. MONITORING AGENCY NAME & ADDRESS(I different from Controlling Office)	18. SECURITY CLASS, (of this report)
	, , , ,
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	1
,	
Approved for public release; distribution unlimit	ed.
,	
14 Note that the second	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	an Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Clock gear Safing and arming	
Involute gear Timing Ogival gear	
Gear train	
Or or under	
20. ABSTRACT (Cantinus un reverse side if necessary and identify by block number)	
This report describes the results of an analytical	study of the point ef-
ficiencies of various types of fuze gear trains.	Involute and clock-tooth
profiles for two and three pass step-up gear meshe	s which operate in spin and
nonspin environments are compared, and the different clusions of an investigation concerning the geometric	nces explored. The con-
fluence the point efficiencies of multipass step-up	D gear trains are discussed
The analyses on which these results are based are	given in detail.
•	

DD 170M 1473 EDITION OF ! NOV 45 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

CONTENTS

•	Page
Introduction	1
Summary	2
Friction Circle and Efficiency of Single Gear and Pinion Combination	2
Efficiency Comparison Between Involute and Clock Gear Type Single Pass Step-up Gear Trains	2
Efficiency Comparisons Between Involute and Clock Two and Three Pass Step-up Gear Trains in Spin and Nonspin Environments	4
Revision of Program INVOL3	4
Revision of Program INVOL4	4
Design of Clock Tooth Gear and Pinion Set According to British Standard No. 978	5
Revision of Program CLOCK3	5
Revision of Program CLOCK4	6
Friction Circle and Efficiency of Single Gear and Pinion Combination	6
Friction Circle	6
Efficiency of Single Gear and Pinion Combination	8
Efficiency Comparisons Between Involute and Clock Gear Type Single Pass Step-up Gear Trains	9
Efficiencies of Single Pass Step-up Gear Meshes with Involute and Clock Gear Type Teeth	10
Conclusions of Efficiency Comparisons	12
Position of Line of Action of Force of Gear on Pinion in Involute and Clock Gear Meshes	16
Position of Line of Action of Force of Gear on Pinion in an Involute Mesh	16
Position of Line of Action of Force of Gear on Pinion in a Clock Gear Mesh	23

Co	nclusions of Comparison of Distances r _M	31
	ency Comparisons Between Invlute and Clock Gear Type d Three Pass Step-up Trains With and Without Spin	3
0 v	erall Conclusions	42
	neral Factors Which Influence the Point Efficiencies of Altipass Step-up Gear Meshes	43
Ex	planation of Higher Efficiencies of Three-Pass Trains	45
Refere	nces	48
Append	lixes	
A	Computer Program INVOL3 (Revised)	49
В	Computer Program INVOL4 (Revised)	71
С	Design of Clock Tooth Gear and Pinion Set According to British Standard No. 978	93
מ	Computer Program CLOCK3 (Revised)	111
E	Computer Program CLOCK4 (Revised)	155
Distri	bution List	183

TABLES

1	Comparison of single pass step-up gear efficiencies as functions of coefficient of friction with nonzero pivot radii	1
2	Comparison of single pass step-up gear efficiences as functions of coefficient of friction with zero pivot radii	1:
3	Typical output of program INVOL2 for table 2	14
4	Typical output of program CLOCK2 for table 2	1
5	Distance r_{M} of line of action from pinion axis according to equations 15 through 17	21
6	Influence of pressure angle on distance $r_{\mbox{\scriptsize M}}$ according to equations 15 through 17	2:
7	Comparison of line of action distances $\boldsymbol{r}_{\boldsymbol{M}}$ for clock gear and involute meshes	28
8	Angles PSID and LAMDAD as functions of angle PHID for same clock gear mesh of table 2	3(
9	Step-up gear train comparisons with and without spin	3
0	Comparison of referred friction moments	47

Accession For	
BEIS CHARI	
Drife this	Ĭ
th authouseed	Ü
Jack Mileniden	
Rv.	
Distribution	
Avall dottey	Codes
Art 1 and	/or
Dist Openial	
A	

FIGURES

1	Free-body diagram of single gear and pinion combination	
2	Line of action of force of gear on pinion in an involute step-up mesh	1
3	Position of line of action of force of gear on pinion in round on round phase of motion of clock gear mesh	2
4	Position of line of action of force of gear on pinion in round on flat phase of motion of clock gear mesh	2
5	Basic configuration of two pass step-up gear train	3
6	Basic configuration of three pass step-up gear train	3
7	Point efficiencies of two and three pass step-up gear trains in a spin environment for one tooth cycle of the input gear	4

INTRODUCTION

The point efficiencies of various types of fuze related step-up gear trains were investigated and insights concerning the reasons for the resulting differences in these efficiencies are provided. The investigation also represents an application and extension of the tools furnished in Fuze Gear Train Analysis (FGTA) (ref 1).

The FGTA report (ref 1) deals primarily with the derivation of expressions and their subsequent computer formulation for point and cycle efficiencies of two and three pass step-up gear trains, with involute or clock gear teeth, which must operate in a spin environment. These programs are easily modified to simulate nonspin environments. In addition, derivations and computer programs are given for efficiency analyses of single pass involute and clock gear meshes which operate in nonspin environments. The report also contains a program for the design of the unity contact ratio involute meshes having unequal addenda, which were used in the study.

The present report gives the results of the efficiency comparisons between involute and clock gear two and three pass step-up gear trains which operate in spin and nonspin environments.

To perform these comparisons and to make their results as meaningful as possible, a number of preliminary tasks had to be carried out. Since no American standard for the design of clock tooth gear and pinion sets could be found, a computer program was written which uses British Standard No. 978 (ref 2). The three pass step-up gear trains were modeled after the M125A1 (brass) safety and arming device, and since no comparable two pass step-up train was initially available a two pass train with essentially the same step-up ratio was designed.

In order to simulate the randomness of the gear train assembly and to start the simulations with the worst possible starting conditions, the initialization parameters J_4 have been introduced into the programs. These parameters make it possible to start the motion of any mesh anywhere between 0% and 100% of the total angle from earliest to latest tooth contact in a single tooth cycle of the driving gear. The worst starting condition for an involute mesh occurs at the start of approach action, i.e., when J_4 equals zero. For a clock gear mesh it occurs at the end of the recess action when J_4 equals unity.

To learn more concerning the geometrical factors which influence the point efficiencies of multipass step-up gear trains, additional analyses pertaining to compound gears and single pass meshes with involute and clock type teeth were performed. It was found that the distance of the line of action of the resultant force of the driving gear on the driven pinion from the friction circle, associated with the pinion pivot, is an important indicator of efficiency in step-up meshes. This distance, which depends on a number of parameters in addition to pivot radius and coefficient of friction, may be used as an optimization criterion in future work.

SUMMARY

Friction Circle and Efficiency of Single Gear and Pinion Combination

The concept of the friction circle was reviewed and related to the efficiency of a compound gear and pinion. The resulting expression, associated with this simple model in which the input force acts on the pinion while the equilibrating output force acts on the gear, indicated that the input-output efficiency is a function of the distance of the line of action of the input force from the friction circle. The larger this distance, the greater becomes this efficiency booking will occur if this distance becomes zero or the line of action passes inside the friction circle.

Efficiency Comparison Between Involute and Clock Gear Type Single Pass Step-up Gear Trains

Computer comparison of point efficiencies for increasingly severe friction conditions between involute and clock gear single pass step-up gear trains are presented here. Subsequently, analytical expressions for the distance of the line of action of the resultant force of the gear on the pinion from the pinion exis are given for both types of gearing and discussed. (The distance to the pinion exis, rather than the one to the friction circle was choosen for simplicity.)

Comparing the point efficiencies of the two types of gear trains revealed:

- 1. Regardless of the magnitude of the coefficient of friction, the point efficiency at initial contact, i.e., at the earliest possible position during approach action, is always higher for the clock gear mesh than for the involute mesh. This effect becomes especially pronounced for higher values of the coefficient of friction, when the involute mesh indicates a tendency to lock. This result may explain the greater tolerance of clock tooth trains when foreign material is unintentionally present.
- 2. The maximum point efficiencies of both types of meshes are essentially the same for a given coefficient of friction and occur at or near the pitch point.
- 3. The efficiencies of both types of meshes decrease during recess action w the greater decrease taking place in the clock gear configuration.
- 4. As a consequence of the above, the worst starting condition, i.e., the greatest danger of stalling due to a limited input moment and a high coefficient of friction, is associated with the beginning of approach action for involute meshes and the end for recess action for clock gear meshes.

The following conclusions were obtained from work performed concerning the distance of the line of action of the resultant force of the gear on the pinion from the pinion axis in involute meshes:

- 1. An increase of the coefficient of friction causes a decrease in this distance, becoming especially pronounced at initial contact if the approach angle is large.
- 2. The distance is generally smaller during approach action than during recess action.
- 3. An increase in the step-up ratio of a mesh in which the pinion remains the same causes a small decrease in the distance.
- 4. When the pitch radius of the pinion is large, this distance becomes larger.
- 5. An increase in the pressure angle of a given mesh decreases this distance from the line of action of the force to the pinion axis.

Comparing clock gear and involute meshes relative to the line of action of the force of the gear on the pinion from the pinion axis revealed:

- 1. Just as the point efficiency at initial contact is higher for the clock gear meshes than for involute meshes, regardless of the magnitude of the coefficient of friction, the distance is always larger for clock meshes at that instant. This difference in magnitude becomes more pronounced as the coefficient of friction increases.
- 2. The increase of the distance as approach action progresses is smaller for comparable clock meshes than for involute meshes. At the pitch point, the distance is essentially the same for both types of configurations. During recess, this distance decreases more for clock meshes than for involute meshes because the approach angle is larger in involute meshes while the reverse is true for the recess angle.

There is a proportional relationship between the distance of the line of action from the pinion axis and the point efficiency for any given contact condition, and, therefore, any geometrical change which increases this distance will also increase the point ϵ fficiency.

Since the point efficiency of involute meshes is only undesirable at the very beginning of the approach action, any modification which decreases contact before the pitch point, while maintaining an acceptable contact ratio, may produce gear meshes with generally higher point efficiencies than are found in clock gear meshes.

Efficiency Comparisons Between Involute and Clock Two and Three Pass Step-up Gear Trains in Spin and Nonspin Environments

The two pass trains were designed to have the same step-up ratio as the three pass trains and the newly introduced initialization parameters were used to obtain the worst posssible starting conditions for all individual meshes.

The comparisons led to the following conclusions:

- For a given mesh and spin condition there is no significant difference in the range of point efficiencies between involute and clock gears.
- 2. Without spin the two pass step-up trains are more efficient than the three pass trains.
- 3. With spin the three pass meshes are slightly more efficient than the two pass meshes.
- 4. All mesh point efficiencies are independent of the magnitude of the spin velocity.

Revision of Program INVOL3

A revised version, as well as an updated description of program INVOL3 which allows the determination of point and cycle efficiencies for three pass involute tooth step-up gear trains operating in a spin environment is given in appendix A. (All meshes have unity contact ratio.)

The original program was listed and described in detail in appendix C-3 of reference 1.

The present version of the program contains three initialization parameters J_1 which allow the initial point of contact of each of the three meshes to be chosen arbitrarily. Further, for convenience and appropriate checking, certain gear and fuze parameters have been made part of the data and/or the output of the program. The data used in the new sample program are identical to those of the original sample program in reference 1. In order to obtain the worst starting conditions for an involute train, the three initialization parameters were set equal to zero in the sample program.

Revision of Program INVOL4

A revised version, as well as an updated description of program INVOL4 which allows the determination of point and cycle efficiencies for two pass involute tooth step-up gear trains operating in a spin environment is given in appendix B. (All meshes have unity contact ratio.)

The original program was listed and described in detail in appendix C-4 of reference 1.

The present version of the program contains two initialization parameters J_i which allow the initial point of contact of each of the two meshes to be chosen arbitrarily. Further, for reasons of convenience, and to allow appropriate checking, certain gear and fuze parameters have been made part of the data and/or the output of the program.

The data used in the new sample program differ from those used in reference 1. A new gear train, which has essentially the same step-up ratio as the three pass train, was designed. The gear parameters associated with this train were obtained with the help of program INVOL1 (originally given in appendix C-1, reference 1). The output of this program, one for each of the two mashes, is listed in appendix B. In order to obtain the worst possible starting conditions for an involute train, the two initialization parameters were set equal to zero in the sample program.

Design of Clock Tooth Gear and Pinion Set According to British Standard No. 978

Program BRITSTD for the design of clock tooth gear and pinion sets, according to British Standard No. 978 (ref 2), is given in appendix C. This program furnishes all necessary input parameters (i.e., gear and pinion dimensions) for programs CLOCK1 and CLOCK2, which are both listed in appendix F of reference 1, as well as the revised programs CLOCK3 and CLOCK4, which are given in appendixes D and E, respectively, of the present report.

The appendix also shows how to determine the center of curvature coordinates of the addendum radius of clock teeth with data from the standard. The associated computer program is listed in the appendix. In addition, five sample outputs are given. These furnish the input data for the sample runs of the revised programs CLOCK3 and CLOCK4.

Revision of Program CLOCK3

A revised version, as well as an updated description, of program CLOCK3, which allows the determination of point and cycle efficiencies for three pass clock tooth step-up trains operating in a spin environment is given in appendix D.

The original program was listed and described in appendix I-1 of reference 1.

The present version of the program contains three initialization parameters J_i which allow the initial point of contact of each of the three meshes to be chosen arbitrarily. Certain gear and pinion parameters have been added to the

input as well as to the output of the program. The data used in the sample program are identical to those in reference 1 with respect to diametral pitch and number of teeth of the individual meshes. The specific tooth dimensions were obtained with the help of program BRITSTD. (See first three sets of outputs in appendix C.) In order to approximate the worst starting conditions for a clock tooth train, the three initialization parameters were set equal to 0.9 in the sample program.

Revision of Program CLUCK4

A revised version, as well as an updated description, of program CLOCK4, which allows the determination of point and cycle efficiencies of two pass clock tooth step-up gear trains operating in a spin environment is given in appendix E.

The original program was listed and described in appendix I-2 of reference 1.

The present version of the program contains two initialization parameters J_i which allow the initial point of contact of each of the two meshes to be chosen arbitrarily. Certain gear and pinion parameters have been added to the input as well as to the output of the program.

The data used in the new sample program differ from those used in reference 1. The new clock tooth train has the same step-up ratio, gear and pinion tooth numbers, and diametral pitches as were given to the new involute tooth two pass train (appendix B of the present report). The specific tooth dimensions were obtained with the help of program BRITSTD (fourth and fifth output sets in appendix C). In order to approximate the worst starting conditions for a clock tooth train, the two initialization parameters were set equal to 0.9 in the sample program.

FRICTION CIRCLE AND EFFICIENCY OF SINGLE GEAR AND PINION COMBINATION

Friction Circle

A free-body diagram of a single gear and pinion combination is shown in figure 1. The common pivot shaft has the radius ρ . This compound gear is driven in a clockwise direction by the input force F_1 which acts on the pinion portion of the combination at distance a from the pivot axis O. Force F_0 , at distance b from the pivot axis, is exerted by the next component of the gear train on the gear portion of the combination. The pivot bearing applies the reaction R on the pivot shaft. It consists of the normal component N and the tangential friction force component μ N (where μ represents the coefficient of friction between pivot shaft and bearing). Since the friction force must oppose rotation, the vector sum

R = N + |A|N (1)

Figure 1. Free-body diagram of single gear and pinion combination

can only be satisified if the line of action of force R is located at the right hand side of the pivot center O. Varignon's theorem is used to determine the distance $\mathbf{r_f}$ of this line of action from the pivot axis. This theorem states that the moment of a force with respect to an axis equals the sum of the moments of the components of this force with respect to the same axis. Taking moments with respect to point O, one obtains for the forces R and μ N:

$$r_{\rm f}R = \rho \mu N$$
 (2)

(Note that the normal component N exerts no moment about point 0.) With

$$N = R\cos \phi$$
, and (3)

$$\mu = \tan \Phi$$
 (4)

one obtains from equation 2,

$$r_f = \rho \sin \phi$$
 (5)

This distance r_f represents the radius of the so-called friction circle and regardless of its direction, the bearing reaction R will always be tangent to this circle.

Efficiency of Single Gear and Pinion Combination

While figure 1 represents a simplified description of the loading condition of a single gear and pinion combination, since forces $\mathbf{F_i}$ and $\mathbf{F_o}$ are parallel, one may still obtain valuable insights concerning efficiency and locking from it.

To obtain the relationship between forces F_o and F_i , the following force and moment equilibrium conditions are used:

$$\sum F_y = 0: -F_1 - F_0 + R = 0$$
 (6)

$$\sum_{i=0}^{\infty} m_{i} = 0; \quad bF_{0} - aF_{i} + r_{f}R = 0$$
 (7)

The moment equation 7 may be rewritten with the help of equation 6.

$$bF_0 - aF_1 + r_f(F_1 + F_0) = 0$$
 (8)

The above furnishes the following expression for the output force Fo.

$$F_{0} = F_{i} \left(\frac{a - r_{f}}{b + r_{i}} \right) \tag{9}$$

Equation 9 may now be used to devise an efficiency expression. Assume that the combination gear rotates through a clockwise angle $\Delta\theta$.

The work done by force Fi is given by

$$W_1 = F_1 a \Delta \theta \tag{10}$$

The work of force F_{O} becomes for the same rotation

$$W_{o} = -F_{i}b \Delta \theta \left(\frac{a - r_{f}}{b + r_{f}}\right) \tag{11}$$

The efficiency η may now be found from the ratio of the output to the input work. Thus,

$$\eta = \left| \frac{W_0}{W_1} \right| = \frac{1 - \frac{r_f}{a}}{1 + \frac{r_f}{b}}$$
 (12)

The following conclusions concerning the efficiency of single gear and pinion combinations are drawn from equation 12:

- 1. The friction circle radius r_f should be as small as possible.
- 2. The distance b should be as large as possible. This generally offers no difficulty in step-up gear trains since force Fo is applied to the gear portion of the combination which has a relatively large pitch radius.
- 3. Most importantly, the distance a should be as large as possible. This condition is critical in step-up gear trains since force $\mathbf{F_i}$ acts on the pinion portion of the combination and the associated distance a is never very large.

Equation 12 shows that friction locking may occur when a $\leq r_f$, i.e., when the line of action of the force on the pinion passes either tangent to or inside of the friction circle.

EFFICIENCY COMPARISONS BETWEEN INVOLUTE AND CLOCK GEAR TYPE SINGLE PASS STEP-UP GEAR TRAINS

To make the conclusions of the comparisons more general, the influence of the position of the line of action of the force of the gear on the pinion, with respect to the pinion pivot, on the mesh efficiencies is discussed for both types of gearing.

Efficiencies of Single Pass Step-up Gear Meshes with Involute and Clock Gear Type Teeth

Point efficiency comparisons between similar involute and clock gear type meshes are given in table 1. The involute mesh was designed with the help of computer program INVOL1 (ref 1). The efficiency computations for the involute mesh were obtained from computer program INVOL2 (ref 1). Computer program BRITSTD, which is listed and discussed in appendix C forms the basis of the design of the clock gear train. The efficiency computations of this single step-up mesh were made with computer program CLOCK2 (ref 1).

Both types of meshes have the following data in common:

 $P_d = 44$, diametral pitch

No = 48, number of teeth of gear

 $N_p = 8$, number of teeth of pinion

 ρ_N = 0.060 in. (0.152 cm), pivot radius of gear (also subscript 1)

 $\rho_{\rm ri}$ = 0.030 in. (0.076 cm), pivet radius of pinion (also subscript 2)

The coefficient of friction is varied from μ = 0.1 to μ = 0.8.

The specific data for the involute mesh, as designed by INVOL1 to have unequal addenda and unity contact ratio, are as follows:

 $\theta = 20^{\circ}$ the pressure angle

 $R_n = 0.54545$ in. (1.3854 cm) $r_n = 0.09091$ in. (0.2309 cm) (pitch radii)

 $R_b = 0.51256$ in. (1.3019 cm) $r_b = 0.08543$ in. (0.2170 cm) (base circle radii)

 $R_o = 0.55609$ in. (1.4125 cm) $r_o = 0.10985$ in. (0.2790 cm) (outside radii)

The specific data for the clock gear mesh, as obtained with the help of program BRITSTD, are given by:

 $R_p = 0.54545$ in. (1.3854 cm) $r_p = 0.09091$ in. (0.2309 cm) (pitch radii)

 $a_C = 0.54157$ in. (1.3756 cm) $a_p = 0.09083$ in. (0.2307 cm) (positions of centers of curvature)

Table 1. Comparison of single pass step-up gear efficiencies as functions of coefficient of friction with nonzero pivot radii. (Obtained with programs INVOL2 and CLOCK2)

	Clock tooth shape efficiency			Involute tooth shape efficiency		
Coeffi- cient of friction (µ)	Initial contact point (Ep)	Maximum point (Ep)	Final contact point (Ep)	Initial contact point (Ep)	Maximum point (Ep)	Final contact point (Ep)
0.1	0.933	0.956	0.883 '	0.900	0.954	0.919
0.2	0.866	0.913	0.785	0.796	0.912	0.846
0.3	0.800	0.872	0.700	0.688	0.874	0.781
0.4	0.734	0.833	0.626	0.576	0.834	0.721
0.5	0.668	0.796	0.562	0.460	0.806	0.666
0.6	0.602	0.760	0.505	0.340	0.776	0.615
0.7	0.536	0.726	0.455	0.214	0.748	0.568
0.8	0.471	0.693	0.409	0.084	0.722	0.525

- ρ_{G} = 0.04886 in. (0.1241 cm) ρ_{P} = 0.01591 in. (0.0404 cm) (radii of tooth curvature)
- $t_G = 0.03608$ in. (0.0916 cm) $t_p = 0.02382$ in. (0.0605 cm) (tooth thicknesses at pitch circles)

Similar efficiency comparisons for the same meshes are given in table 2. To illustrate the effects of tooth contact friction only, the pivot radii ρ_N and ρ_n were made equal to zero.

Both tables show maximum point efficiencies and point efficiencies for the earliest possible contact of the meshes (at the maximum angles of approach), as well as for the final contact, when a new set of teeth is about to come into engagement.

The data for tables 1 and 2 are derived from the typical outputs of program INVOL2 and CLOCK2 which are shown in tables 3 and 4, respectively.

Conclusions of Efficiency Comparisons

Inspection of table 1 permits the following conclusions:

- 1. Regardless of the magnitude of the coefficient of friction, the point efficiency ε_p at initial, i.e., earliest possible, contact is always higher for the clock gear mesh than for the involute mesh. This effect becomes especially pronounced for higher values of the coefficient of friction, when the involute mesh indicates a tendency to lock. This result may explain the greater tolerance of clock tooth type trains for the presence of foreign material during assembly.
- 2. Both involute and clock gear point efficiencies increase steadily after initial contact has been made and until maximum point efficiency is reached. The rate of increase of efficiency is much greater for the involute mesh (tables 3 and 4).
- 3. The maximum point efficiencies of both mesh types are essentially the same for a given coefficient of friction. They occur when the contact point hetween gear and pinion coincides with the line connecting their pivots. Since in this position there is no relative velocity between the contacting surfaces of the teeth, there is also no friction force.
- 4. The efficiencies of both mesh types decrease steadily after the maximum has been reached at pitch point contact. The rate of this decrease is much less pronounced for the involute mesh. The latest possible contact efficiency of the involute mesh is higher than that of the clock gear (table 1). Therefore, if one can design a modified involute step-up mesh which avoids contact before the pitch point as much as possible and still has an acceptable contact ratio, it may show higher efficiencies than a comparable clock gear mesh.

Table 2. Comparison of single pass step-up gear efficiencies as functions of coefficient of friction with zero pivot radii. (Obtained with programs INVOL2 and CLOCK2)

	Cle	ock tooth o			Involute tooth shape efficiency	
Coeffi- cient of friction (µ)	Initial contact point (Ep)	Maximum point (Ep)	Final contact point (Ep)	Initial contact point $(\frac{\varepsilon}{p})$	Mack imum point (E p)	Final contact point (Ep)
0.1	0.977	1.000	0.929	0.947	0.999	0.964
0.2	0.954	0.999	0.867	0.890	0.999	0.930
0.3	0.930	0.998	0.812	0.830	0.998	0.899
0.4	0.906	0.998	0.765	0.765	0.998	0.870
0.5	0.881	0.997	0.722	0.697	0.997	0.843
0.6	0.856	0.997	0.684	0.623	0.996	0.818
0.7	0.831	0.996	0.650	0.545	0.995	0.795
0.8	0.804	0.996	0.619	0.460	0.994	0.773

Table 3. Typical output of program INVOL2 for table 2

GEAR MITCHLRADIUS (GAPRE). # \$54545.	PINION PITCH RADIUS (PP) # .09091
GEAR QUISIDE RADIUS (CAPRO) + +55609	PINION.DUTSIDERADIUS FOR UNITY CONTACT RATTO (ROFIN) = .10985
PRESSURE ANGLE IN DEGREES (THETAD)	20.00
GEAR PIVOT RADIUS (RHOCAPN) # +060	PINION PIVOT RADIUS. (RHON) + .030
COEFFICIENT OF FRIGTION (HU) #10	gramming a superior of the control o
RANGE DIVISOR (K) R 50	

.ALPHAD = .16.61	. 5 = .1.0	POINTEF :	8996
AL PHAD . 16.76	9 = 1.0		9014
<u> ALPHAD = 16.91.</u>	<u>5_ =_l.o</u> _		
ALPHAD = 17.06	5 * 1.0	POINTEF :	.9051
ALPHAD # .17.21.	S. *. 1 . 0	POINTEF.	. 9070
ALPHAD = 17.36	5 = 1.0		9088
LALPHAT ALS 7.51			t. •9106.
ALPHIU = 1 '.66	5 × 1.0	POINTEF :	4 .9125
ALPHA, H. C. AAL	5 4 1 0	POINTER	تعذفب
ALPHAD - 17.96	S = 1.0		9162
_ALPHAD=18.11.	\$= 1.0	POINTEF.:	. 9180
ALPHAD 4 18.26	5 = 1.0	POINTEF :	49199
ALPHAD # 18.41	5 . 1.0		. 9217
ALPHAD # 18.56	5 ≃ 1.0		. 9236
ALPHAD 18.71	S. W. LaO.	POINIL	9254
ALPHAD = 18.86	5 = 1.0	POINTEF :	.9273
ALPHAD = 19.01	5 = 1.0		9291
AI PHAD # 19.16	5 = 1.0		• 9310
.ALPHAD = 19.31	5 .* .1.0	POINTEF :	9328
AI PHAD = 19.46	5 = 1.0	POINTER &	.9347
ALPHAD . 14.61			9.166
ALPHAD = 19.76	5 = 1.0		. 9384
ALPHAD # 19.91	\$ = 1.0	POINTEF :	• •9403
ALPHAD # 20.06	5 = 1.0	POINTEF (.9471
ALPHAD = 20.21	. 5 4 1.0	POINTER :	
AI PHAD = 20.36	\$ * 1.0		9459
ALPHAD # 20.51	. S L.O.	POINTER	9477
ALPHAD = 20.66	5 × 1.0	POINTEF (49496
AL PHAD = 20.81	5 × 1.0		9515
AI PHAD . PO. 96	5 *-1.0		9941
ALPHAD = P1.11	5 *-1.0	POINTER	4 49524
ALPHAD & PI.26	5 3-1.0	POINTEF :	• 9506
ALPHAD = 21.41.	S » i 0	POINTEE	9489
AL PHAD = 21.56	5 =-1.0		9471
ALPHAD = 21.71	5 *-1.0		9454
ALPHAD # 21486	5 ×-1.0	POINTEE :	9437
ALPHAD = 22.01	5 *-1.0	POINTEF :	.9420
ALPHAD . 22.16	5 4-1.0	40 . 4	9402
VE-75- WHETE			
ALPHAD = 72.46	5 *-1.0	POINTEE	• ,9368
ALPHAD . P2.61	S *-1.0	POINTEF :	.9350
ALPHAD . 22.76	5 *-1.0		9333
WT6480 = 55'01	5 *-1.0	, ,, , ,	* .9316
ALPHAD = 23.06	5 ==1.0		9299
ALPHAD*23.21.	S. x=1 a 0.	POINTEE	LA9281.
ALPHAD # 21.36	5 ==1.0	POINTER	9264
	S ==1.0		
ALPHAD # 21.66	S **1.0		• •9230
ALPHAD # 23.81	5 *-1.0	POINTEF (.4212
ALPHAD # 23.96	5 =-1.0	POINTEF :	9195
-,			,

Table 4. Typical output of program CLOCK2 for table 2

10 AUD 1 1 WIND	16510 # 404		PHIDOT =	1,0		SANHPD =	10.0491	ALPHO =	7,5641
	``			ļ					
13 = 136es fp	= • 42,382		K = 524						
# dN + # 9 # 51	u.		¥E.=_ 10						
_	3.5016	0220*9- = 100Tcd	St := 1 .0	ŧŧ	1036	ETAPRC #	98.0623	POINTEF =	.933
= 174.431	- 2.599	,	=-1.0	15	ĺ	ETAPRC =	ļ	POINTEF =	.935
1 = 174.58		4			7.6997	ETAPRD *	1	POINTEF =	.937
= 174.13	H	ı	=-1-0	1	ñ.1326	ETAPRU =		POINTEF =	626
174.48	H	1	=-1.0	1	-188e	ETAPPC		POINTEF .	.941
= 177.03	11	H	E-1.0	ۍ اا	-,2676	ETAPRO =		POINTEF =	649
= 177-18	310	>1001 = -5		*	3696	ETAPRO =	1	POINTEF	545
= 177-331	H	11 10	1.0))	4964	ETAPRO =		POINTEF #	645
= 177.64	ı	= LOGIA	z=1.0	#, -	į			POINTEF #	\$ 0 5 0
= 177.531	**	= LDOTS	D• [-					POINTEF #	000
- 177° =	14	SESTING TOUTS	i Q	ETAGRE = 9	91 6063	T APRIL .	196 9 98	# 431NIO	255
164-4-13		C 10015	0.7	11		TANKE H	•	TOTAL E	
7	23:0 - 357:8:01	1 10017	0 1 2 2 X		7240	FIADOC =	60-00-00	POINTER H	955
= 17a.3al	1 #	Alnut a +5	1	18				A MAINICA	un D
1/20.531	ti	Sibor = -5		11	!	-	6674.4	POINTEF #	952
= 17a.601		21.001 = -5	0.0	H		H	A3.8629	POINTEF X	95
= 174.831	•	- = T001<	1	.		ETAPRC .	93,1561	POINTEF =	948
179.991	ı	0	= 1.0		j	EIBPRD 3		POINTEF #	7.96.
= 179.33I	н	pologr = -6.ules	0.1 =	11		ETADAD =		POINTEF =	945
= 179.281	= Cice	0210°- = 1001cd	1.0	Ħ,	!	ETAPRC =	1.2164	POINTEF =	. 943
= 170.43	11	= 1001		14		ETABRO =	0.6101	POINTEF =	1961
185-6/1 日	CONTRACTOR OF THE CONTRACTOR O	The state of the s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	؟ ا - راه	20010	E LAPPED HE	2020401	210	
172,421	140-040 = 0410 041-0414 = 0410	1 11	20000 H &			= 45.07.23 = 47.1232		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4504046 1	1010	1	H	1		# 9A-1860		• •	
1610-171	- 11	11	H	SF = 1.0	- 1	1		= 431	
= 1e1.331	i)	H		Sf = 32		= 190,3279		626. =	
= 10-+4R1	H	1	6 = .08608	H	ETAGFB.	=_101.4019	i	= .927	
= 1c7.631	11	• ·	•	SF = 1.0		= 1n2.4779	_	= .925	
1ec.,791	- 1	>1001c	1	-		֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		= - + 923	
166-101 =	H	P 4	6 H . CA467	* H		н		126. =	
1919091	11		- G # * CG425	; ;			į	616	
101-101-	Tales of the state	1 1 10017	19703 H 9	100	A TABLE	1000,000	TO TO THE PERSON NAMED IN COLUMN 1	116.	
121-291		, ,					ļ		
104.131	H		٨	H 1				5 F	
TEDALUT"	ų		1	j.	101011	1	1	116* :-=	
1624161 =	11	0- = 1001c	\$6290 = A			Taknolli =	_	506.	
1410 = 101-4913	1500 000 H DITC	1945 4 1 1951/0	82201° = 0	11 10 10 10 10 10 10 10 10 10 10 10 10 1	E LACTU	= 112eIPII	DOINIET	2000	
100.000	1	1		: - 	FTAGED	- 11.5.240		1	
162.751	i i		COTON - D			٠,		1.1	
1 107-61	H (1	19107 - 6 E	. L		# 11503/C/		1	
PA CR1	i ı	ļ	•	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟֝֓֓֓֓֓֡֓֓֡֓֡֓֓֡֓֓֡֡֝֡֡֡֡֝֡֡֡֡֡֝֡֡֡֡֡֡֡֡		• -		400	
4 1 1 1 1	+ +	50 1 10015				10000111		100	
TEN CAT I	1 1	1 1	251013 = 9	1	CAPCED.	7,000		100	
191.541	1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0/100 1 0		FIAGE	1004 OF 1		1000	
183043	1 1 1 m	11	6 x .08123	1 1	FTAGEO	= 121.4882			
				•		30/10 1 34			
			70.00	- 1		122 404.	100 00	100	

The results of efficiency computations for involute and clock gear meshes with zero pivot radii (table 2) show the same general tendencies as were found for the configurations of table 1. In addition, it confirms the well-known rule of making the pivot radii as small as possible in order to assure high point efficiencies.

Position of Line of Action of Force of Gear on Pinion in Involute and Clock Gear Meshes

The section on efficiency of single gear and pinion combination showed that to avoid locking and to improve the efficiency of a single compound gear and pinion it is desirable to have the line of action of the input force pass as far as possible from the friction circle and with that from the pivot of the pinion. The following provides some insights concerning the position of this line of action in involute and clock gear meshes during the various phases of contact. It is intended to serve as a starting point for future work on mesh efficiency improvement.

Position of Line of Action of Force of Gear on Pinion in an Involute

The force of the gear on the pinion, together with the associated line of action, as it appears during both approach and recess, is shown in figure 2. F_a represents the contact force during approach and F_r is the same force during recess. As indicated in the figure, the direction of the friction force component μF is reversed as contact changes from approach to recess. It is to be recalled that this is due to a similar change in the direction of the relative velocity between the gear and pinion contact points. Since the relative velocity is zero when contact occurs at the pitch point, the friction component also vanishes at that instant. (For a discussion of the above concepts see appendix A-1 (ref 1). The normal component F of the contact force retains its direction throughout the complete cycle of motion.

The distance of the line of action of the resultant force from the pinion pivot 0_n is smaller during most of the approach motion than it is during recess motion (fig. 2). The symbols r_{Ma} and r_{Mr} are used for this distance during approach and recess, respectively, while r_{Mp} is used for pitch point contact. The following gives analytical expressions for these terms and discusses possible ways of maximizing them:

1. Distance r_{Ma} During Approach Motion

The distance of the line of action from point Ω_n may be determined with the help of Varignon's theorem, i.e., the sum of the moments of the forces F and μF with respect to point Ω_n equals the moment of the resultant F_a with respect to the same point. Thus, vectorially

Figure 2. Line of action of force of gear on pinion In an involute step-up mesh

which the state of the property of the state of the state

 $\overline{r}_{Ma} \times \overline{F}_{a} = [-r_{b}\overline{n}_{\theta} + (d-a_{a})(-\overline{n}_{\theta T})] \times [\overline{F}\overline{n}_{\theta T} + \mu \overline{F}\overline{n}_{\theta}]$ (13)

where

μ = coefficient of friction between teeth

 F_a = resultant force during approach, equal to F $\sqrt{1 + \mu^2}$

F = normal component of resultant force

HF = friction component of resultant force

rb = pinion base radius

d = distance LL' (fig. 2)

 a_a = distance from point L to gear and pinion contact point C_a during approach. ($a_a < LP$)

$$\begin{bmatrix} \overline{n}_{\theta} = \sin\theta \overline{i} + \cos\theta \overline{j} \\ n_{\theta T} = -\cos\theta \overline{i} + \sin\theta \overline{j} \end{bmatrix}^{2}$$

When equation 13 is solved for the moment arm r_{Ma} , which represents the perpendicular distance from the line of action to point 0_n , one obtains the following scalar quantity:

$$r_{Ma} = \frac{r_{b} - \mu(d - a_{a})}{\sqrt{1 + \mu^{2}}}$$
 (14)

For greater insight the above expression is rewritten with the help of

 $\mathbf{r_b} = \mathbf{r_p} \mathbf{cos} \ \theta \text{, where } \mathbf{r_p} \text{ is the pinion pitch radius}$

d = $(R_p + r_p) \sin^0$, where R_p is the gear pitch radius

 $a_a \sim K_a R_p \sin \theta$, where $K_a \sim C_a L/LP$ <1 since the length $C_a L$ is less than the distance LP. The closer the contact of gear and pinion to point L along line LP, the smaller is K_a

 $^{^{1}\}text{See}$ equations A-4 and A-5 of reference 1 for these unit vectors. θ is the pressure angle.

Thus, one obtains for equation 14

$$r_{Ma} = \frac{r_p}{\sqrt{1 + \mu^2}} \left\{ \cos \theta - \mu \sin \theta \left[1 + \frac{R_p}{r_p} (1 - K_a) \right] \right\}$$
 (15)

2. Distance r_{Mp} for Contact at the Pitchpoint

Since there is no friction component when contact takes place at the pitch point, the distance r_{M} becomes

$$r_{Mp} = r_b = r_p \cos \theta \tag{16}$$

3. Distance rmr During Recess Motion

For contact during recess, the sign of the friction component μ_{Fn_0} in equation 13 must be reversed. Also since contact is now made after the pitch point, the distance from point L to the contact point (not specifically called out in fig. 2) becomes

$$a_r = K_r R_p \sin \theta$$

where

$$K_r > 1$$

The resulting scalar expression has the form

$$r_{Mr} = \frac{r_p}{\sqrt{1 + u^2}} \{\cos\theta - \mu \sin\theta \left[\frac{R_p}{r_p} (K_r - 1) - 1 \right] \}$$
 (17)

If the above is expressed similar to equation 14, it becomes

$$r_{Mr} = \frac{r_b + \mu (d - a_r)}{\sqrt{1 + \mu^2}}$$
 (18)

4. Conclusions for Involute Meshes

Equations 15 through 17 and the data in tables 5 and 6 were used to draw the following conclusions concerning the distance r_M of the line of action of the resultant force of the gear on the pinion from the pinion pivot: 2

For All Contact Conditions.

- 1. The larger the pitch radius of the pinion, the larger becomes the distance r_M and with that the less becomes the danger of locking or of obtaining excessively low efficiencies according to equation 12. (Note that the symbol r_M now replaces the symbol a in this expression. Further, it must be understood that equations 15 and 17 are not valid for contact at the pitch point.)
- 2. With the exception of a short distance, at the beginning of recess motion, an increase of the coefficient of friction decreases the distance $r_{\rm M}$. (Compare columns III and IV of table 5.)
- 3. For otherwise fixed conditions an increase in the step-up ratio $R_{\rm p}/r_{\rm p}$ generally causes a small decrease in the distance $r_{\rm M}$
- 4. For equal distances along the line LL' before and after the pitch point (fig. 2), i.e., for $K_a=1-x$ and $K_r=1+x$, the distance r_M is always smaller for the approach case. (Compare values for $K_a=0.8$ and $K_r=1.2$ in all columns of table 5. Similar information is contained in all rows of table 6.)
- 5. For otherwise fixed conditions, the distance r_{M} decreases as the pressure angle is increased (table 6).

For Contact During Approach. For any given configuration, the factor K_a should be as close to unity as possible in order to avoid excessively small values of $r_{\rm Ma}$. This implies that initial contact between the gear and the pinion should be near the pitch point, i.e., the angle of approach should be small.

it is to be noted that r_{Ma} is always less than r_b which represents its value at the pitch point (equation 16 and columns III, IV and V of table 5).

For Contact During Recess. For any set of fixed conditions the maximum value of r_M is reached shortly after the pitch point is passed. This maximum value of r_{Mr} is larger than the associated distance r_{Mp} at the pitch point. This maximum

²The distance from the pinion friction circle gives direct information concerning the possibility of locking. Any conclusions concerning mesh efficiency must also take the distance of this line of action from the gear pivot into account.

Table 5. Distance $r_{\rm M}$ of line action from pinion axis according to equations 15 through 17 [for pressure angle θ = 20 °]

Approach factor K _a	Recess factor K _r	Distances r_{Ma}, r_{Mp}, r_{Mr} for $\mu = 0.1$ $R_p/r_p = 6$	Distances r_{Ma}, r_{Mp}, r_{Mr} for $\mu = 0.3$ $R_p/r_p = 6$	Distances r _{Ma} , r _{Mp} , r _M r for $\mu = 0.1$ $R_p/r_p = 8$
0.4	-	0.778 r _p	0.448 r _p	0.737 r _p
0.6	-	0.819	0.566	0.792
0.8	_	0.860	0.684	0.846
0.9	-	0.880	0.749	0.873
0.95	-	0.891	0.772	0.887
Pitch point	-	0.934 r _p =r _b	0.934 r _p	0.934 r _p
-	1.001	0.968	0.997	0.969
-	1.01	0.966	0.993	0.966
-	1.10	0.949	0.939	0.942
-	1.20	0.928	0.880	0.914
-	1.40	0.880	0.762	0.860

Table 6. Influence of pressure angle on distance r_M according to equations 15 through 17 [for μ = 0.1, R_p/r_p = 6]

Pressure angle θ (degrees)	Approach distance r _{Ma} (K _a = 0.9)	Pitch point distance r _{Mp}	Recess distance r _{Mr} (K _r = 1.1)		
14	0.927 r _p	0.970 r _p	0.975 r _p		
16	0.913	0.961	0.967		
18	0.897	0.951	0.958		
20	0.880	0.940	0.948		
22	0.863	0.927	0.937		
24	0.844	0.913	0.925		

value increases with an increase in the coefficient of friction (conclusion no. 2 above).

Position of Line of Action of Force of Gear on Pinion in a Clock Gear Mesh

Distance r_{Mrd} for Round on Round Phase of the Motion

The normal force F of the gear on the pinion, together with the friction force μF for a typical contact condition during the round on round phase of the motion is shown in figure 3. While the normal force always has the direction of the unit vector n_λ , the direction of the friction force depends on the direction of the relative velocity $\overline{V}_{S/T}$, between the contact point S of the gear and the contact point T of the pinion (fig. 3). Equation E-50 (ref 1) shows that the sense of this friction force may be obtained with the signum function $s_R = V_{S/T}/\left|V_{S/T}\right|$. The friction force with a positive s_R is shown in figure 3.

Varignon's theorem was used to determine the distance r_{Mrd} of the line of action of the resultant force F_{rd} from the pinion pivot Ω_n , i.e.,

$$\overline{r}_{Mrd} \times \overline{F}_{rd} = (a_p \overline{n}_p - \rho_p \overline{n}_{\lambda}) \times (\overline{Fn}_{\lambda} + \mu s_R \overline{Fn}_{N\lambda})$$
 (19)

where

$$F_{rd} - F\sqrt{1 + \mu^2}$$

- ap = O_nC_p, the distance from the pivot to the center of curvature of the pinion profile
- $ho_{
 m p}$ = radius of curvature of pinion profile

$$\overline{n_p}$$
 = $\cos (\psi - \delta_p) \overline{1} + \sin (\psi - \delta_p) \overline{j}$,
see equation E-4 (ref 1)

$$\overline{n}_{\lambda}$$
 = $\cos \lambda \overline{1} + \sin \lambda \overline{1}$, see equation E-2 (ref 1)

$$\overline{n}_{N\lambda}$$
 = $-\sin\lambda \overline{1} + \cos\lambda \overline{1}$, see equation E-3 (ref 1)

Position of line of action of force of gear on pinion in round on round phase of motion of clock gear mesh (gear not shown) Figure 3.

When equation 19 is solved for the absolute value of the moment arm $\mathbf{r}_{\mathrm{Mrd}}$, one obtains

$$r_{Mrd} = \frac{1}{1 + \mu^2} \left\{ a_p \left[\sin \left(\lambda - \psi + \delta_p \right) + \mu a_R \cos \left(\lambda - \psi + \delta_p \right) \right] - \mu a_R \rho_p \right\}$$
 (20)

Distance r_{Mf} for Round on Flat Phase of the Motion

The normal force F of the gear on the pinion, together with the associated friction force μF for a typical contact condition during the round on flat phase of the motion is shown in figure 4. This contact is made at point T of the radial pinion flank which is at a distance g from the pinion pivot O_n . The normal force always has the negative direction of the unit vector \overline{n}_{NF} (equation E-22, ref 1), while the friction force has the direction of the unit vector \overline{n}_{F} (eq E-23, ref 1) at all times.

Since friction force, μF , does not exert a moment about the pivot point, Ω_n , the moment of the resultant force, F_f , at the distance r_{Mf} , must be equal to the moment of force F at the distance g. Thus,

$$\overline{r}_{Mf} \times \overline{F}_{f} = g\overline{n}_{F} \times F(-\overline{n}_{NF})$$
 (21)

where, again

$$F_{\pi} = F \sqrt{1 + \mu^2}$$

When equation 21 is solved for the absolute value of the moment arm $r_{Mf}, \; \text{one obtains}$

$$r_{\text{Mf}} = \frac{8}{\sqrt{1 + \mu^2}} \tag{22}$$

Distance r_{MP} for Contact on the Line of Centers (Pitch Point)

When contact points S and T coincide with the line of centers, i.e., the line connecting the gear and pinion pivots, the relative velocity $\overline{V}_{S/T}$ vanishes as it changes directions. The clock gear computer programs indicate the passing of the contact points through the line of centers by a change of sign of the signum parameter. Such a change of sign of the parameter s_R between the angles ϕ = 178.0813° and ϕ = 178.2313° while the mesh is in the round on round phase of the motion is shown in table 4. Since all presently examined clock gear

Figure 4. Position of line of action of force of gear on pinion in round on flat phase of motion of clock gear mesh

meshes show centerline contact during the round on round phase of motion, the derivation for the distance of the line of action from the pinion pivot must use the round on round parameters of equations 19 and 20.

With $\overline{V}_{S/T}=0$, the friction component μ F vanishes and the normal force F becomes the resultant force of the gear on the pinion (fig. 3). The normal distance r_{Mp} of force F from the pinion pivot may be obtained by setting $\mu=0$ in equation 20. This furnishes

$$r_{Mp} = a_{p} sin (\lambda - \psi + \delta_{p})$$
 (23)

As previously, the absolute value of $\boldsymbol{r}_{\boldsymbol{Mp}}$ is desired.

Comparison of Line of Action Distances $\tau_{\underline{M}}$ for Clock and Involute Type Meshes

Comparison of the distances of the lines of action of resultant forces of the gear on the pinion from the pinion pivots for comparable clock gear and involute type meshes which operate with coefficients of friction of 0.1 and 0.8 is shown in table 7.

The gear and pinion sets are those described in the section on single pass step-up gear meshes with involute and clock gear type teeth and which form the bases of tables 3 and 4. Both have a diametral pitch of 44 and the numbers of the teeth of the gears and the pinions are 48 and 8, respectively.

The computations for the involute gear mesh are based on equations 14, 16, and 18. Specific parameters for the evaluation of these expressions are as follows:

$$r_b = r_p \cos \theta = 0.09091 \cos 20 = 0.08543 in. (0.2170 cm)$$

$$d = (R_b + r_b) \tan \theta = (0.51255 + 0.08543) \tan 20$$
$$= 0.21764 \text{ in. } (0.5528 \text{ cm})$$

The distances a_a and a_r are computed with the help of equation A-203 (ref 1), i.e.,

$$\mathbf{a}_{\mathbf{a}}, \mathbf{a}_{\mathbf{r}} = \mathbf{R}_{\mathbf{b}} \alpha \tag{24}$$

Table 7 Comparison of line of action distances $\mathbf{r}_{\tilde{\mathbf{M}}}$ for clock gear and involute meshes

Distance r_{M} for $\mu = 0.1$

Distance r_{M} for $\mu = 0.8$

Contact		mesh		e mesh	Clock		Involut		
angle	In.	Eq no.		Eq no.	In.	Eq no.	I.n.	Eq no.	
(deg)	(cm)		(cm)		(cm)		(cm)		
0.00	0.0864	20	0.0781	14	0.0523	20	0.0235	14	
	(0.2195)		(0.1984)		(0.1328)		(0.0597)		
	(002200)		(012701)		(012020)		(0,000,,,		
0.90	0.0883	20	0.0789	14	0.0589	20	0.0286	14	
	(0.2243)		(0.2004)		(0.1496)		(0.0726)		
1.80	0.0891	20	0.0797	14	0.0640	20	0.0336	14	
1.00	(0.2263)	20	(0.2024)	14	(0.1626)	20	(0.0853)	7-4	
	(0.2263)		(0.2024)		(0.1626)		(0.0000)		
1.80	Pitch		(*)		Pitch		(*)		
	point		` '		point		• •		
	0.0907	23			0.0907	23			
	(0.2304)				(0.2304)				
	(,				(012001)				
1.95	0.0911	20	0.0798	14	0.0768	20	0.0334	14	
	(0.2313)		(0.2029)		(0.1951)		(0.0848)		
	(,		(0,120,17)		(,		(0000,0)		
3.30	0.0889	20	0.0810	14	0.0700	20	0.0420	14	
	(0.2259)		(0.2057)		(0.1778)		(0.1067)		
			•						
3.45	0.0885	22	0.0812	14	C.0694	22	0.0428	14	
	(0.2248)		(0.2062)		(0.1763)		(0.1087)		
4.244	(*)		Pitch		(*)		Pitch		
			point				point		
			0.0854	16			0.0854	16	
			(0.2169)				(0.2169)		
4.39	(*)		0.0879	18	(*)		0.0853	18	
4.37	(")			10	(~)			10	
			(0.2233)				(0.2167)		
6.90	0.0802	22	0.0861	18	0.0634	22	0.0712	18	
	(0.2037)		(0.2187)	••	(0.1610)		(0.1808)		
	(312031)		(012201)		(011010)		(312000)		
7.35	0.0809	22	0.0853	18	0.0635	22	0.0687	18	
	(0.2055)		(0.2167)		(0.1613)		(0.1745)		
	,								

^{* =} not computed

The angle α for any position of the involute mesh may be obtained from table 3. What is referred to as contact angle in table 7 is obtained from the formulation

Contact angle =
$$\alpha - 16.61^{\circ}$$
 (25)

where 16.61° represents the earliest possible contact angle of the involute mesh. The total angle of rotation of the gear for one cycle of contact is obtained from the difference between the initial and final angles, i.e., 23.96° - 16.61° m 7.35°. By way of the change of sign of the signum parameter, the pitch point contact for this mesh occurs between $\alpha = 20.81^{\circ}$ and 20.96° (table 3). A more precise computation, according to equation A-216 (ref 1), gives the value of 20.854° for this angle.

The computations for the clock gear mesh are based on equation 20 for the round on round phase of motion and on equation 22 for the round on flat phase. The pitch point computations, i.e., when the contact points are located on the line of centers, make use of equation 23.

Table 4 furnishes the following required parameters:

 $a_p = 0.09083$ in. (0.2307 cm)

 $\rho_p = 0.01591 \text{ in. } (0.0404 \text{ cm})$

 $\delta_{2} = 2.524^{\circ}$

In addition, table 4 shows that round on round contact starts when $\phi = 176.2813^\circ$ and that contact coincides with the line of centers shortly after $\phi = 178.0813^\circ$. The latter is indicated by the change of sign of the signum parameter s_R . The round on flat phase of the motion begins at $\phi = 179.7313^\circ$ and ends at $\phi = 183.6313^\circ$.

Similar to equation 25, the contact angle for the clock gear mesh is determined by way of

Contact angle =
$$\phi - 176.2813^{\circ}$$
 (26)

The total angle of rotation of the gear for one contact cycle is again 7.35°. The values of the variables ψ , s_R and g, which are needed for the various computations, may also be found in table 4. The necessary values of the angle λ are shown in table 8.

Table 8. Angles ψ (PSID) and λ (LAMDAD) as functions of angle $\varphi(\text{PHID})$ for same clock gear mesh of table 2

φ	¥	λ
φHIO = 176.2813 PHIO = 176.4313 PHIO = 176.5813 PHIO = 176.5813 PHIO = 176.68813 PHIO = 177.0313 PHIO = 177.0313 PHIO = 177.4813 PHIO = 177.4813 PHIO = 177.4813 PHIO = 177.9313 PHIO = 177.9313 PHIO = 178.0813 PHIO = 178.0813 PHIO = 178.3813	pSID = 3.5016 pSID = 2.5994 pSID = 2.5994 pSID = 1.6993 pSID = 359.9038 pSID = 359.9078 pSID = 358.1125 pSID = 356.3235 pSID = 356.3235	\\ \text{LAMDAD = 262.9153} \\ \text{LAMDAD = 263.0789} \\ \text{LAMDAD = 263.2192} \\ \text{LAMDAD = 263.3363} \\ \text{LAMDAD = 263.4303} \\ \text{LAMDAD = 263.5013} \\ \text{LAMDAD = 263.5744} \\ \text{LAMDAD = 263.5744} \\ \text{LAMDAD = 263.5767} \\ \text{LAMDAD = 263.5767} \\ \text{LAMDAD = 263.5761} \\ \text{LAMDAD = 263.5126} \\ \text{LAMDAD = 263.570} \\ \text{LAMDAD = 263.2448} \\ \text{LAMDAD = 263.2448} \\ \text{LAMDAD = 263.2448} \\ \text{LAMDAD = 263.1097} \end{array}
PHID = 178.3813 PHID = 179.5313 PHID = 178.6813 PHID = 178.6313 PHID = 179.1313 PHID = 179.1313 PHID = 179.4313 PHID = 179.4313	psiD = 350.9527 psiD = 350.0555 psiD = 349.1574 psiD = 348.2583 psiD = 347.3583 psiD = 346.4573 psiD = 346.4573 psiD = 346.6522 psiD = 344.6522	LAMDAD = 263,1097. LAMDAD = 262,9516 LAMDAD = 262,7705. LAMDAD = 262,5662 LAMDAD = 262,3389. LAMDAD = 262,0885. LAMDAD = 261,5180. LAMDAD = 261,5180.

The specific choices of the contact angles in table 7 are based on the various regime changes. Thus,

- C.A. = 0° represents initial contact
- C.A. = 1.80° represents near pitch point contact for the clock gear mesh. (Both equations 20 and 23 are evaluated with the associated data.)
- C.A. = 3.45° represents the beginning of the round on flat phase of the motion of the clock gear mesh.
- C.A. = 4.244° represents pitch point contact for the involute mesh.
- C.A. = 6.90° represents contact at the minimum of the distance g for the clock gear mesh.
- C.A. = 7.35° represents final contact for both meshes.

Computations are omitted whenever no significant changes occur.

Conclusions of Comparison of Distances rm

The results of table 7 were used to show that the differences in point efficiencies between clock gear and involute meshes, for a given coefficient of friction, are reflections of the associated differences in the magnitudes of the distances \mathbf{r}_{M} .

- 1. Just as the point efficiency at initial contact is higher for the clock gear mesh than for the involute, regardless of coefficient of friction, the distance r_M is also always larger for the clock mesh at that instant. This difference in magnitude becomes more pronounced as the coefficient of friction is increased.
- 2. The magnitude of $r_{\rm M}$ increases after the initial contact in both types of meshes until the pitch point is reached, or until shortly after the pitch point is passed. Parallel increases of point efficiencies, with maxima at or soon after the pitch point may be found in tables 3 and 4.
- 3. At the pitch point, r_M is independent of the coefficient of friction. The associated value of r_M is somewhat larger for the clock gear mesh. The pitch point is reached after 1.80° of gear rotation, after initial contact, in the clock gear mesh of table 7, while 4.24° of gear rotation for the involute mesh is required. Thus, the angle of approach of the clock mesh is considerably smaller.

4. Just as the point efficiencies of both meshes decrease steadily after the maxima have been reached, there is a continuous decrease in the magnitudes of the associated r_M . For a given coefficient of friction, this decrease is smaller for the involute mesh.

Since, according to equation 22, $r_{\rm M}$ is proportional to the round on flat phase distance g near the end of contact, the above efficiency decrease may possibly be controlled by increasing the minimum value of g by an appropriate redesign of the tooth.

Any change in geometry which increases the magnitude of the distance $r_{\underline{M}}$ will also increase the point efficiency of the mesh.

EFFICIENCY COMPARISONS BETWEEN INVOLUTE AND CLOCK GEAR TYPE TWO AND THREE PASS STEP-UP TRAINS WITH AND WITHOUT SPIN

The physical configurations and the associated analyses are those of the FCTA (ref 1). The two pass and three pass configurations are shown in figures 5 and 6, respectively.

The point efficiency computations for the involute tooth type trains were obtained with the help of programs INVOL3 and INVOL4. The programs CLOCK3 and CLOCK4 supplied the point efficiencies of the clock tooth type trains.

As discussed earlier, the above programs were modified by the introduction of the initialization parameters J_4 . These parameters make it possible to vary the initial points of contact of the individual meshes, and with that allow the determination of that starting configuration of a given train which results in the lowest point efficiency. Investigation showed that the worst starting condition for an involute tooth type train occurs when all meshes make their initial contact at the earliest possible point during approach motion. For clock tooth type trains the worst starting condition is associated with a configuration where all meshes have their motion initiated as late as possible during recess motion. (This has been shown to be true for single pass meshes in the section entitled Efficiency Comparisons between Involute and Clock Gear Type Single Pass Step-up Gear Trains.)

The involute as well as the clock tooth type two pass step-up gear trains were designed with a step-up ratio of 47.265 in order to be comparable to the three pass trains which have a step-up ratio of 47.25 and whose configurations are identical with that of the M125Ai (brass) safing and arming mechanism.

The essential parameters of all fuze gear trains and the specific conditions of the associated computer programs follow. Subsequently, the results of the efficiency comparisons are shown in table 9 and figure 7.

Figure 5. Basic configuration of two pass step-up gear train (shown with involute tooth nomenclature)

Figure 6. Basic configuration of three pass step-up gear train (shown with clock gear teeth)

the court of the second of the

Table 9. Step-up gear train comparisons with and without spin $\overset{\star}{}$

		step-up mes fficiency	h	Three	e step-up o efficienc	
Number and type	Initial contact point (Ep)	Maximum point	Minimum point	Initial contact point $(\frac{\varepsilon}{p})$	Maximum point	Minimum point (E _p)
1. Involute, no spin	0.618	0.787	0.618	0.507	0.708	0.507
2. Involute with spin	0.314	0.440	0.314	0.320	0.481	0.320
3. Clock, no spin	0.611	0.794	0.600	0.499	0.699	0.489
4. Clock with spin	0.319	0.448	0.316	0.320	0.476	0.315

^{*} All have worst possible starting condition.

1. Two Pass Step-up Gear Trains (Fig. 5)

The common parameters of both the involute and the clock type two pass gear trains are listed below. Those parameters and program details which are specific to either one of the trains are discussed separately.

Mesh No. 1 (gear 1 and pinion 2)

 $P_{d1} = 50$, diametral pitch

 N_{C1} = 55, number of teeth of gear 1

 $N_{r2} = 8$, number of teeth of pinion 2

 $R_{\rm nl}$ = 0.550 in. (1.397 cm), pitch radius of gear 1

 $r_{n2} = 0.080$ in. (0.203 cm), pitch radius of pinion 2

Mesh No. 2 (gear 2 and pinion 3)

 $P_{d2} = 70$, diametral pitch

 $N_{G2} = 55$, number of teeth of gear 2

 $N_{\rm P3} = 8$, number of teeth of pinion 3

 $R_{\rm p2} = 0.39286$ in. (0.9979 cm), pitch radius of gear 2

 $r_{p3} = 0.05714$ in. (0.1451 cm), pitch radius of pinion 3

Further Common Parameters

 $m_1 = 0.12 \times 10^{-3} \text{ lb-sec}^2/\text{in.}$ (2.101 x 10^{-2} kg), mass of gear 1

 $m_2 = 0.253 \times 10^{-4} \text{ lb-sec}^2/\text{in.}$ (4.430 x 10^{-3} kg), mass of gear and pinion 2

 $m_3 = 0.153 \times 10^{-5} \text{ lb-sec}^2/\text{in.}$ (2.679 x 10^{-4} kg), mass of pinion 3

 ρ_1 = 0.062 in. (0.157 cm), pivot radius of gear 1

 ρ_2 = 0.025 in. (0.064 cm), pivot radius of gear and pinion 2

 ρ_{3} = 0.018 in. (0.046 cm), pivot radius of pinion 3

61 = 0.225 in. (0.572 cm), location of gear 1 from fuze body center

 \Re_2 = 0.497 in. (1.262 cm), location of gear and pinion 2 from fuze body center

- \Re_3 = 0.640 in. (1.626 cm), location of pinion 3 from fuze body center
- $md^2 = 0.275 \times 10^{-5} \text{ lb-sec}^2\text{-in.}$ (3.105 x 10^{-7} kg-m^2), the rotor parameter product of gear 1, responsible for input moment M_{in} in inch pounds when the quantity is multiplied by the square of the spin angular velocity.

Parameters and Computational Details Specific to the Involute Tooth Type Two Pass Step-up Gear Train

The gear and pinion parameters which are specific to the two meshes of the involute two pass gear train are listed in appendix B. They are also shown in appendix B as the output listings of program INVOLI, which computes the dimensions of involute meshes with unequal addenda and unity contact ratio. (See reference 1 for program listing and discussion.)

Point efficiency results of two computer runs for two pass involute trains are shown in table 9. Both runs were made with program INVOL4. Run A-1 simulates zero spin velocity, while run A-2 was made for 1000 rpm. An overall coefficient of friction of μ = 0.2 and a range divisor K = 25 were used for both runs. (See appendix B for an explanation concerning the range divisor.) To get the lowest possible starting point efficiency, the initialization parameters J_1 and J_2 were set equal to zero. For these conditions both meshes make initial contact at the beginning of their approach motion. To obtain run A-1, which simulates zero spin and with that the absence of any centrifugal forces on the train components, program INVOL4 was modified by introducing the input moment M_{10} , equal in magnitude to one corresponding to a spin of 1000 rpm. The output of run A-2 is reproduced in appendix B. The output of run A-1 is not given.

Parameters and Computational Details Specific to the Clock Tooth Type Two Pass Step-up Gear Train

The gear and pinion parameters which are specific to the two meshes of the clock tooth type gear train are listed in appendix E. These parameters were obtained with the help of the computer program BRITSTD, which is shown and discussed in appendix C.

$$M_{\text{in}} = md^{2\omega}^{2} = 0.275 \times 10^{-5} \left(\frac{1000 \times 2\pi}{60}\right)^{2}$$

= 0.30157 x 10⁻¹ in.-1b (0.34073 x 10⁻² N.m.)

³This moment is given by

Point efficiency results of two computer runs for two pass clock trains are given in table 9. Results for both runs were obtained with the help of the computer program CLOCK4. Run A-3 was made for zero spin, while run A-4 simulates a spin of 1000 rpm. Again, an overall coefficient of friction $\mu=0.2$ and a range divisor K = 25 were used. Since the lowest starting efficiency for this type of gear train is obtained when both meshes make initial contact at the end of recess motion, the initialization parameters J_1 and J_2 were both set equal to 0.9 for these runs. While run A-3 is not shown in this report, the complete output listing of run A-4 is reproduced in appendix E. To obtain run A-3, which simulates zero spin, the input moment was again directly introduced into program CLOCK4 in the manner discussed earlier in connection with the two pass involute train.

2. Three Pass Step-up Gear Trains

As stated before, the basic configuration of both types of three pass step-up gear trains was taken from that of the M125Al (brass) safing and arming mechanism. The following first enumerates all parameters which are common to both the involute and the clock tooth type gear trains. Subsequently, those parameters and computational details which are specific to either of the two are discussed separately.

Mesh No. 1 (gear 1 and pinion 2)

 $P_{d1} = 44$, diametral pitch

 $N_{G1} = 42$, number of teeth of gear 1

 $N_{p2} = 8$, number of teeth of pinion 2

 $R_{p1} = 0.47727$ in. (1.2123 cm), pitch radius of gear 1

 $r_{p2} = 0.09091$ in (0.2309 cm), pitch radius of pinion 2

Mesh No. 2 (gear 2 and pinion 3)

 $P_{d2} = 65$, diametral pitch

 $N_{G2} = 27$, number of teeth of gear 2

 $N_{p3} = 9$, number of teeth of pinion 3

 $R_{\rm n2} = 0.20769$ in. (0.5275 cm), pitch radius of gear 2

 $r_{p3} = 0.06923$ in. (0.1758 cm), pitch radius of pinion 3

- Mesh No. 3 (gear 3 and pinion 4)
 - $P_{A3} = 77$, diametral pitch
 - $N_{G3} = 27$, number of teeth of gear 3
 - $N_{PA} = 9$, number of teeth of pinion 4
 - $R_{p3} = 0.17532$ in. (0.4453 cm), pitch radius of gear 3
 - $r_{n4} = 0.05844$ in. (0.1484 cm), pitch radius of pinion 4

Further Common Parameters

- $m_1 = 0.12 \times 10^{-3} \text{ lb-sec}^2/\text{in} \cdot (2.101 \times 10^{-2} \text{ kg}), \text{ mass of gear 1}$
- $m_2 = 0.85 \times 10^{-5} \text{ 1b-sec}^2/\text{in} \cdot (1.488 \times 10^{-3} \text{ kg}), \text{ mass of gear and pinion 2}$
- $m_3 = 0.34 \times 10^{-5} \text{ lb-sec}^2/\text{in} \cdot (5.953 \times 10^{-4} \text{ kg}), \text{ mass of gear and pinion 3}$
- $m_4 = 0.15 \times 10^{-5} \text{ lb-sec}^2/\text{in.} (2.626 \times 10^{-4} \text{ kg}), \text{ mass of pinion 4}$
- $p_1 = 0.062$ in. (0.157 cm), pivot radius of gear 1
- ρ_2 = 0.025 in. (0.064 cm), pivot radius of gear and pinion 2
- ρ_3 = 0.018 in. (0.046 cm), pivot radius of gear and pinion 3
- ρ_4 = 0.016 in. (0.041 cm), pivot radius of pinion 4
- 61 0.225 in. (0.572 cm), location radius of gear 1 from fuze body center
- 62 = 0.436 in. (1.107 cm), location radius of gear and pinion 2 from fuze body center
- 63 = 0.504 in. (1.280 cm), location radius of gear and pinion 3 from fuze body center
- €4 ≈ 0.520 in. (1.321 cm), location radius of pinion 4 from fuze body center
- $md^2 = 0.275 \times 10^{-5} \text{ lb-sec}^2 \text{in.}$ (3.105 x 10^{-7} kg-m^2), rotor parameter of gear 1, responsible for input moment M_{in} . This quantity becomes in.-lb when multiplied by the square of the spin angular velocity.

Parameters and Computational Details Specific to the Involute Tooth Type Three Paus Step-up Gear Train

The gear and pinion parameters specific to the three pass involute step-up gear train are listed in appendix A. They were originally computed with program INVOL1 (appendix C of ref 1).

Point efficiency results of two computer runs for three pass involute trains are shown in table 9. Results for both runs were obtained with the help of the computer program INVOL3. Run B-1 simulates zero spin velocity, while run B-2 was made for a spin velocity of 1000 rpm. An overall coefficient of friction μ = 0.2 and a range divisor K = 25 were used for both runs. Since the lowest starting efficiency for this type of gear train occurs when all three meshes make initial contact as early as possible during their approach motion, the initialization parameters J_1 , J_2 and J_3 were set equal to zero. To obtain run B-1, which simulates zero spin and with that the absence of centrifugal forces on the gear train components, the computer program INVOL3 was also modified by introducing an input moment M_{1n} equal in magnitude to a moment which corresponds to a spin of 1000 rpm.

The output listing of run B-2 is reproduced in appendix A. The output listing of run B-1 is not given.

Parameters and Computational Details Specific to the Clock Tooth Type Three Pass Step-up Gear Train

The gear and pinion parameters of the three mashes of the three pass clock step-up gear train are listed in appendix D. These parameters were computed with the help of computer program BRITSTD (appendix C).

Point efficiency results of two computer runs for three pass clock trains are shown in table 9. Results for both runs were obtained by way of the computer program CLOCK3. Run B-3 was made for zero spin, while run B-4 simulates a spin of 1000 rpm. Again, an overall coefficient of friction μ = 0.2 and a range divisor K = 25 are used. Since clock type three pass step-up trains experience the lowest point efficiency at starting when all three meshes make initial contact at the end of their recess motion, the initialization parameters J_1 , J_2 and J_3 were set equal to 0.9 for both runs. To obtain run B-3, which simulates zero spin, the input moment M_{11} was again modified in the manner described above for the three pass involute train. The computer output listing of run B-4 is reproduced in appendix D. The output of run B-3 is not given.

3. Conclusions of Efficiency Comparisons and Discussion

Initial contact, maximum and minimum point efficiencies during one tooth cycle of the input gear for two and three pass step up meshes, with involute and clock type teeth, which operate with or without the presence of spin, are shown in table 9. Graphs of point efficiency versus input gear rotation in a spin environment for the four types of gear trains are shown in figure 7. In each case one tooth cycle of the input gear is shown, using the data in appendixes A, B, D and E (i.e., from computer programs INVOL3, INVOL4, CLOCK3, and

Figure 7. Point efficiencies of two and three pass step-up gear trains in a spin environment for one tooth cycle of the input gear

CLOCK4). All input gear rotation data are adjusted to a zero degree start by subtracting the initial angle in each case.

Subsequently, general factors which influence the point efficiency in multipass step-up gearing are discussed. In addition, an explanation is given for the fact that the mid-cycle efficiencies of the three pass meshes are somewhat higher than those of the two pass meshes when both operate in a spin environment.

The point efficiency comparisons were obtained with the following conditions common to all over-all and component meshes:

- a. The worst possible starting conditions were used for all component meshes ($J_1=0$, for the involute meshes, and $J_1=0.9$, for the clock gear meshes).
- b. All meshes have essentially the same step-up ratio (47.265 for the two pass trains and 47.25 for the three pass trains).
- c. When spin was simulated, the constant input moment used approximated the one produced by an appropriately sized rotor at a spin rate of 1000 rpm. For the no-spin runs, the identical constant input moment was used.
- d. The same coefficient of friction, i.e., $\mu = 0.2$, was used for all mashes and conditions. It applies to pivot as well as to tooth contact friction.
- e. All involute meshes have unity contact ratio. This also applies to clock type meshes since in this type of gearing there can never be more than one set of teeth in contact.

Overall Conclusions

The following conclusions were drawn from table 9 and figure 7:

- 1. For a given mesh and spin condition there is no significant difference in maximum and minimum point efficiencies for the types of involute and clock gearing used. (Compare runs A1 to A3, B1 to B3, A2 to A4, and B2 to B4.)
- 2. In the absence of spin the two pass step-up meshes show higher maximum and minimum point efficiencies than the three pass mashes. (Compare runs Al and Bl as well as runs A3 and B3.)
- 3. While it is somewhat surprising that there is no difference between the initial contact, i.e., minimum, point efficiencies of two and three pass gear trains operating in a spin environment, it is even more surprising that the maximum efficiencies of the three pass trains are somewhat higher than those of the two pass trains. (Compare runs A2 and B2 as well as runs A4 and B4 in table 9.)

The average point efficiency of the three pass gear trains is higher (fig. 7). This fact is reflected by the somewhat higher cycle efficiencies of the three pass trains. (For a definition of the cycle efficiency ϵ_C see equation 4, [ref l.]) The following values for the various cycle efficiencies are listed at the end of the computer outputs in the previously mentioned appendixes:

two pass involute: $\epsilon_{\rm C}$ = 0.385, three pass involute: $\epsilon_{\rm C}$ = 0.414

two pass clock: $\epsilon_C = 0.379$, three pass clock: $\epsilon_C = 0.404$

These lower efficiencies of the two pass trains have their cause in the need for a heavier gear in the second mesh of these trains. This causes a larger centrifugal force and with that a larger referred pinion friction moment than is the case for the three pass trains. (For detail see the discussion in the section entitled Explanation of Higher Efficiencies of Three-Pass Trains.)

The graphs of the two pass trains show the multiple cyclic variations in point efficiency of the second mesh superposed on the single cycle of point efficiency of the first mesh. Similar superpositions of mesh point efficiencies may be observed in the graphs of the three pass trains.

A decrease in the amplitudes of all cyclic variations, based on geometrical rather than frictional modifications, represents a meaningful optimization goal for this type of gear train (fig. 7). This might be facilitated by decreasing the approach action of all involute meshes as much as possible, while maintaining at least a unity contact ratio.

General Factors which Influence the Point Efficiencies of Multipass Step-up Gear Meshes

To understand the factors which determine the point efficiencies of multipass step-up trains, one must consider the general form which the associated expression takes with or without the presence of spin.

Equation 3 of reference 1 defines point efficiency as

$$\varepsilon_{p} = K_{RATIO} = \frac{M_{o}}{M_{fn}}$$
 (27)

where

K_{RATIO} instantaneous angular velocity ratio of the output pinion to the input gear

M_o = the instantaneous output equilibrant moment

Min - the instantaneous input moment

The output moment expression for the various meshes and contact conditions was shown in reference 1 to be of the $form^4$

$$M_0 = K_{in} M_{in} - \sum K_i \omega^2$$
 (28)

where

K_{in} = a constant for a given train configuration which depends on various geometric parameters associated with the gears and pinions of the train. In addition it is a function of the tooth geometry, the pivot locations, the pivot radii, and the overall coefficient of the friction.

 K_1 constants which are dependent on the same parameters as K_{in} . In addition they are functions of the individual gear or gear and pinion masses m_4 . (i = 1, 2, 3 for two pass meshes, while for three pass meshes i = 1, 2, 3, 4.)

 ω = the constant angular velocity of the fuze body.

For a rotor driven mechanism, with constant spin velocity, the input moment $\mathbf{M}_{1:n}$ has the form

$$M_{in} = m_1 \, \delta l_{1r_c} \, \omega^2 \, \sin \alpha \tag{29}$$

where

 m_1 = mass of the rotor, i.e., of gear 1

 \Re_1 = distance from spin axis to rotor pivot axis

r = distance of rotor center of mass from rotor pivot axis

a = rotor angle with respect to fuze body

Substitution of equations 28 and 29 into equation 27, followed by some rearrangement of terms, gives the following expression for the point efficiency of spin rotor driven gear meshes:

$$\varepsilon_{p} = K_{RATIO} \left(K_{in} - \frac{\sum K_{i}}{K_{in}m_{1} R_{1}r_{c}sin\alpha} \right)$$
(30)

 $^{^4}$ See the following expressions in reference 1: A-125, A-193, H-81, H-118, H-158, H-180, H-216, H-218, H-239, H-241, H-260, H-261, H-277, and H-278.

Equation 30 shows that the point efficiency is independent of spin velocity. It may be maximized for a given configuration by making the constant K_{in} together with the denominator of the second term inside the parenthesis as large as possible, while keeping the summation term as small as possible.

No conclusions concerning the influence of the angular velocity ratio κ_{RATIO} on the point efficiency may be drawn since the terms inside the parenthesis are also related to various gear ratios.

In case these types of gear trains operate without spin and the input moment is supplied by a spring, equation 28 becomes

$$M_o = K_{in} M_{in}, \qquad (31)$$

and the point efficiency expression (equation 27) reduces to

$$\epsilon_{\rm p} = K_{\rm RATIO} K_{\rm in}$$
 (32)

For a given velocity ratio of the train, the point efficiency can again be maximized by maximizing the constant K_{in} . This value is larger for a two pass configuration than for a three pass. (Refer to cases 1 and 3 of table 9.)

Explanation of Higher Efficiencies of Three-Pass Trains

The unexpectedly equal or higher point efficiencies of the three pass meshes, when compared with those of the two pass meshes, may be principally explained by the need for a larger pitch radius, and with that of a larger mass, for gear no. 2. This larger mass, and the associated larger spin axis to pivot axis distance, causes a larger centrifugal force and with that a larger pivot friction moment than is the case for the comparable mesh of the three pass train with its lower step-up ratio. In addition, the increased step-up ratio contributes to the decrease in the available input moment. (See discussion concerning referred friction moments below.)

The above is best illustrated by comparing the sums of the individual pivot friction moments due to centrifugal forces only, as referred to the input gear, for both types of gear trains.

Every effort was made during the design of the two pass train to keep the gear and pinion masses, together with the spin axis to pinion axis distance, as small as possible (table 10).

If the friction moment on an individual gear and, or, pinion is given by M_{fi} , the referred friction moment M_{fli} , acting on the input gear, may be found by way of the principle of virtual work from

$$M_{f1i} = M_{fi} \dot{\phi}_i / \dot{\phi}_i \tag{33}$$

where

- \$\dph_i^\dagger^1 = angular velocity ratio between the ith gear and, or, pinion and gear no. 1 (Average values must be used for clock type gears.)
- i = the gear or pinion number. For the two pass train i = 1, 2, 3 and for the three pass train i = 1, 2, 3, 4.

The friction moment due to the centrifugal force only on any individual component is given by

$$M_{e_1} = m_4 \delta l_1 \rho_1 \mu \omega^2 \tag{34}$$

where

m4 = mass of individual component

 $d\hat{t}_i$ - distance from spin axis to individual pivot axis

ρ, = individual pivot radius

u = coefficient of friction

The parameters of equations 33 and 34 together with the referred moments $M_{\rm fli}$ for both types of gear trains are listed in table 10. The sum of the referred friction moments is higher for the two pass meshes than for the three pass meshes, and thus represents a greater reduction of the identical input moment. For a spin rate of 1000 rpm and a coefficient of friction of μ = 0.2, these friction moments become 1.02 x 10^{-2} and 0.71 x 10^{-2} in.-1b, respectively. This shows a considerable increase of friction for the two pass train if one considers that the input moment $M_{\rm in}$ has a magnitude of 3.01 x 10^{-2} in.-1b. (See data printouts in the various computer programs in the appendixes.)

Table 10. Comparison of referred friction moments

Parameter	Two pass train	Three pass train
\mathfrak{A}_1	0.225 in. (0.572 cm)	0.225 in. (0.572 cm)
\mathfrak{R}_2	0.497 (1.262)	U.436 (1.107)
61 ₃	0.640 (1.626)	0.504 (1.280)
67 ₄	-	0.520 (1.321)
m ₁	$0.120 \times 10^{-3} \text{ 1b-s}^2/\text{in}.$ $(2.101 \times 10^{-2} \text{ kg})$	$0.120 \times 10^{-3} \text{ lb-s}^2/\text{in}$. (2.101 x 10^{-2} kg)
¹¹ 2	0.253×10^{-4} (4.430 × 10^{-3})	0.850×10^{-5} (1.488 × 10^{-3})
2 3	0.153 x 10 ⁻⁵ (2.679 x 10 ⁻⁴)	0.340×10^{-5} (5.953 × 10^{-4})
m 4	-	$\begin{array}{c} 0.150 \times 10^{-5}) \\ (2.62 \times 10^{-4}) \end{array}$
° ₁	0.062 in. (0.157 em)	0.062 in. (0.157 cm)
ρ ₂	0.025 (0.064)	0.025 (0.064)
ρ ₃	0.018 (0.046)	0.018 (0.046)
P ₄	41	0.016 (0.041)
\$ ₂ /\$ ₁	6.875	5.25
\$ ₃ /\$ ₁	47.265	15.75
ۀ ₄ /ۀ ₁		47.25
M _{f11}	1.674 x $10^{-6} \mu \omega^2$ in1b (0.189 x $10^{-6} \mu \omega^2$ (N.m.)	1.674 x $10^{-6} \mu \omega^2$ in1b $(0.189 \times 10^{-6} \mu \omega^2 (N.m)$
M _{t'12}	21.61 x $10^{-7} \mu \omega^2$ (0.244 x $10^{-6} \mu \omega^2$)	$4.864 \times 10^{-7} \mu \omega^2$ (0.550 × 10 ⁻⁷ $1 \mu \omega^2$)
M _{E13}	$8.331 \times 10^{-7} \mu\omega^2$ (0.941 × $10^{-7} \mu\omega^2$)	$4.858 \times 10^{-7} \mu \omega^2$ (0.549 x $10^{-7} \mu \omega^2$)
M _{f14}	-	$5.897 \times 10^{-7} \mu \omega^2$ (0.666 × $10^{-7} \mu \omega^2$)
Sum of referred Friction moments	$46.681 \times 10^{-7} \mu \omega^2$ (5.275 × $10^{-7} \mu \omega^2$)	$32.359 \times 10^{-7} \mu \omega^2$ $(3.657 \times 10^{-7} \mu \omega^2)$

REFERENCES

- 1. G.G. Lowen, City College of N.Y., and F.R. Tepper, ARRADCOM, "Fuze Gear Train Analysis," Technical Report ARLCD-TR-79030, ARRADCOM, Dover, NJ, December 1979.
- 2. British Standard No. 978 for Gears for Instruments and Clockwork Mechanisms, Part 2, Cycloidal Type Gears (1952).

APPENDIX A

COMPUTER PROGRAM INVOL3 (REVISED)

The original program descriptions were given in appendix C of Fuze Gear Train Analysis (ref A-1). The present appendix contains revised descriptions, listings and sample outputs of computer program INVOL3, which computes point and cycle efficiencies for three pass involute gear trains in a spin environment. All meshes have unity contact ratio.

The following changes were made:

- 1. The diametral pitches of all three meshes are given as data and are printed in the output.
- 2. The numbers of teeth of all three meshes are given as data and are printed in the output.
- 3. The initialization parameters 3 (one for each mesh) are introduced. They are given as part of the data and are printed in the output. This parameter allows the initial point of contact of a given mesh to be chosen at an arbitrary point within the range of possible contact points.
- 4. The angles β (equations A-200 and A-202, ref A-1) are now printed out by the program in order to be able to judge the effects of various changes in the configuration of the gear train.

The computer program INVOL3 is based on the moment input-output relationship for a three pass step-up gear train operating in a spin environment. All meshes have unity contact ratio. The nomenclature of the program is chosen to coincide as closely as possible with that of the original derivations. The expressions for the contact geometry and other auxiliary geometric terms may be found in appendix A (ref A-1).

Input Parameters

The following parameters represent the input data for the program. Those which involve gear dimensions only must be obtained from the results of INVOL1 (ref A-1) since the moment expressions are derived for unity contact ratio only:

PSUBD1 - rd1

PSUBD2 = Pd2

 $PSUBD3 = P_{d3}$

 $NG1 = N_{G1}$

 $NP2 = N_{P2}$

 $NG2 = N_{G2}$

NP3 = N_{P3}

 $NG3 = N_{G3}$

NP4 - NP4

MU $\approx \mu$, coefficient of friction at all pivots and at all tooth contact points

RPM, revolutions per minute of the fuze body

 $CAPRP1 = R_{p1}$

CAPRP2 = R_{p2}

CAPRP3 = R_{p3}

RP2 = r_{p2}

RP3 = r_{p3}

 $RP4 = r_{p4}$

THETA1 = θ_1

THETA2 = 02

THETA3 = θ_3

ISTOP, arbitrary single digit integer for multiple data sets. It must be zero for last set of data.

R1 = 67,

R2 = 67₂

R3 = R₃

R4 ≠ 6R4

RHO1 = ρ_1

RH02 = P₂

RH03 = ₽3

RHO4 = ρ_A

CAPRB1 = R_{b1}

 $GAPRB2 = R_{b2}$

$$CAPRB3 = R_{b3}$$

$$RB2 = r_{b2}$$

RB3 =
$$r_{b3}$$

$$RB4 = r_{h/2}$$

$$CAPRO2 = R_{O2}$$

$$RO3 = r_{o3}$$

M1 =
$$m_1$$
, mass of input gear 1

$$M2 = m_2$$
, mass of gear and pinion 2

M3 =
$$m_3$$
, mass of gear and pinion 3

M4 =
$$M_4$$
, mass of pinion 4

 $K = K_3$, the range divisor which is associated with gear 3, the driving gear of the last mesh (eq. A-211, ref A-1)

J1, J2, J3, initialization parameters

Computations

Computation of MIN, GAMMAS and BETAS

To start with, the program computes the input moment

$$MIN = M_{in} = md^2\omega^2$$
 (A-1)

Subsequently, the angles γ_2 , γ_3 , γ_4 and β_1 , β_2 , β_3 are established according to the expressions given in appendix A (ref A-1).

Determination of the Gear Train Constants

The determination of the gear train constants consists of the following:

RATIO = K_{RATIO} (eq 2, ref A-1). Since the angular velocity is constant, this parameter may be expressed in terms of the applicable base radii, i.e.,

$$\frac{R_{b1} \times R_{b2} \times R_{b3}}{r_{b2} \times r_{b3} \times r_{b4}}$$

TEST1, TEST2, and TEST3 represent the tangent functions of the mesh pressure angles, which are used in conjunction with the values of the signum functions s.

D1, D2, and D3 are given by equations A-204, A-217, and A-223, reference 1, respectively, and represent the distances between the points of tangency to the base circles along the lines of action of the three meshes.

MTOT = 0 represents the initialization of the sum of the output moments. This is used for the determination of the cycle efficiency.

Determination of Eurliest and Latest Possible Values of ALPHAS, Initialization of ALPHAS. Centrifugual Forces

The determination of the earliest and latest possible angles of rotation is accomplished with the help of subroutine ALPHA, at the end of the program, which makes use of equations A-205, A-206, A-218, A-219, A-224, and A-225, reference A-1. The angles of initial contact α_i are determined with the help of the initialization parameters J_i according to:

$$\alpha_{i} = \alpha_{iIN} + J_{i}(\alpha_{iFIN} - \alpha_{iIN})$$
 (i=1,2,3) (A-2)

The additional parameter J_4 serves to distinguish between the two possible contact conditions of mesh no. 1. $J_4=0$ when the first set of teeth is in contact. $J_4=1$ when the latest possible value of α_1 has been reached and contact is transferred to the second set of teeth. $J_4=0$ at all times when $J_1=0$, i.e., contact is made in mesh no. 1 at the earliest possible point, and, therefore, contact need never be transferred to the second set of teeth to obtain a complete cycle (cards no. 116 and 131).

The angular increments of gears 3, 2, and 1, i.e., DELAL3, DELAL2, and DELAL1 are determined with the help of equations A-211 through A-213 (ref A-1), respectively.

The centrifugal forces, which act on the pivots of the various gear and/or pinion assemblies, are obtained by way of equations A-33, A-57, A-84, and A-107 (ref A-1).

Point and Cycle Efficiencies

Both point and cycle efficiencies are based on equations A-125 (ref A-1) for the output moment MO4 = $M_{O.4}$.

The point efficiency is computed directly in the manner of equation 3, (ref A-1) i.e.,

$$\epsilon_{\rho} = K_{RATIO} \frac{M_{O4}}{M_{in}} = POINTEF$$
 (A-3)

The cycle efficiency is treated in the manner of equations C-8, (ref A-1), i.e.,

$$\varepsilon_{\rm p} = \frac{K_{\rm RATIO} \Delta \alpha_1}{M_{\rm in}} \frac{1M_{\rm o}4}{(\alpha_{\rm 1FIN} - \alpha_{\rm 1IN})} = {\rm CYCLEFF}$$
(A-4)

The program gives the summation as

$$MTOT = 2M_{04}$$
 (A-5)

Gear Train Motion Model

The simulation of the gear train motion, which is necessary for the computation of both POINTEF and CYCLEFF, is found in a loop which starts with statement label no. 14 (card no. 129) and ends with card no. 215. As discussed earlier, the motions of the individual driving gears are initialized with the help of the parameters J_1 , J_2 , and J_3 . The position of each mesh is subsequently incremented by the appropriate DELAL1, DELAL2, or DELAL3. Whenever the J_1 's (i=1,2,3) are not equal to zero, and one of the angles α_{iFIN} has been reached, the particular mesh is reset to its respective angle α_{iFIN} . Since mesh 2 and 3 go through numerous cycles while mesh 1 goes through one cycle, this type of resetting occurs many times (cards no. 129 and 130). When J_1 = 0, i.e., contact in mesh 1 is made at the earliest possible point, CYCLEFF is determined and the computation is ended once the angle ALIFIN - DELAL1 is reached. When J_1 ≠ 0, the above occurs when ALPHA1 reaches the magnitude of its initial angle minus DELAL1. (The nature of the numerical integration requires that only K computations be included.)

The values of the signum functions s_1 , s_2 , and s_3 are determined continuously according to equations A-216, A-222, and A-227 (ref A-1).

The instantaneous distances to the contact points, i.e., $A1 = a_1$ and $A2 = a_2$, and $A3 = a_3$ are determined for each of the mashes by an appropriate adaptations of equation A-203 (ref A-1) (also eqs A-214, A-220, and A-226, ref A-1).

The determination of the instantaneous output moment M04 = $\rm M_{\rm O4}$ requires the continuous computation of the variable quantities $\rm A_1$ to $\rm A_{\rm 20}$, $\rm G_1$ to $\rm G_6$ and $\rm D_1$ to $\rm D_4$, which are given originally in conjunction with the various equilibrium conditions in appendix A (ref A-1). The program uses the following nomenclature for these variables:

AA1 to AA20

CC1 to CC6

DD1 to DD4

Output

Again, the output of the program is best explained by means of the sample computation which is shown at the end of the program. This example uses the gear data of the first three sample computations of program INVOLL. The output lists the following:

Input Parameters

Mesh No. 1

CAPRP1 =
$$R_{pl}$$
 = 0.47727 in. (1.2123 cm) PSUBD1 = P_{dl} = 44
CAPRB1 = R_{bl} = 0.44849 in. (1.13916 cm) NG1 = N_{Gl} = 42
CAPRO1 = R_{ol} = 0.48791 in. (1.2393 cm) NF2 = N_{p2} = 8
RP2 = r_{p2} = 0.09091 in. (0.2309 cm) J1 = 0
RB2 = r_{b2} = 0.08543 in. (0.2170 cm)
RO2 = $r_{o2}^{'}$ = 0.11000 in. (0.2794 cm) (This is a ROFIN as given by INVOL1.)

Also,

THETA1 =
$$\theta_1$$
 = 20°

Mesh No. 2

CAPRP2 =
$$R_{p2}$$
 = 0.20769 in. (0.5275 cm) PSUBD2 = P_{d2} = 65
CAPRB2 = R_{b2} = 0.19517 in. (0.4957 cm) NG2 = N_{G2} = 27

```
CAPRO2 = R_{02} = 0.21579 \text{ in. } (0.5481 \text{ cm}) \text{ NP3} = N_{P3} =
                    = r_{o3} = 0.06923 in. (0.1758 cm) J2 = 0
           RP3
                     = r_{h3} = 0.06506 \text{ in. } (0.1652 \text{ cm})
           RB3
                     = r_{-2} = 0.08089 \text{ in. } (0.2055 \text{ cm})
           RO3
Also
     THETA2
     Mesh No. 3
           CAPRP3 = R_{n3} = 0.17532 in. (0.4453 cm)
                                                                       PS UBD3
                                                                                                   77
          CAPRB3 = R_{h3} = 0.16475 in. (0.4183 cm)
                                                                       NG3
                                                                                                  27
          CAPRO3 = R_{0.3} = 0.18216 in. (0.4627 cm)
                                                                       NP4
                       r_{n/4} = 0.05844 \text{ in. } (0.1484 \text{ cm})
           RP4
                        r_{bA} = 0.05492 \text{ in. } (0.1395 \text{ cm})
           RB4
                              - 0.06828 in. (0.1734 cm)
           RO4
Also,
     THETA3 =
In addition.
          MU
                               = 0.2
                     = 1000
           RPM
                    = m_1 = 0.12 \times 10^{-3} \text{ lb-sec}^2/\text{in} \cdot (2.101 \times 10^{-2} \text{ kg})
           М1
                              = 0.85 \times 10^{-5} \text{ lb-sec}^2/\text{in.} (1.488 \times 10^{-3} \text{ kg})
           M2
                              = 0.34 \times 10^{-5} \text{ lb-sec}^2/\text{in} \cdot (5.952 \times 10^{-4} \text{ kg})
          М3
                     ≖ ma
                              = 0.15 \times 10^{-5} \text{ lb-sec}^2/\text{in} \cdot (2.626 \times 10^{-4} \text{ kg})
           M4
                     ~ m<sub>Λ</sub>
                              = 0.225 in. (0.5715 cm)
           R1
                     = fR<sub>1</sub>
           R2
                              = 0.436 in. (1.1074 cm)
                     ™ fR<sub>2</sub>
           R3
                              = 0.504 \text{ in. } (1.2802 \text{ cm})
                     = 6R2
```

= 0.520 in. (1.3208 cm)

- 6₹,

R4

RHO1 = ρ_1 = 0.062 in. (0.1575 cm) RHO2 = ρ_2 = 0.025 in. (0.0635 cm) RHO3 = ρ_3 = 0.018 in. (0.0457 cm) RHO4 = ρ_4 = 0.016 in. (0.0406 cm) MD = md² = 0.275 x 10⁻⁵ 1b-sec²-in. (3.105 x 10⁻⁷ kg-m²) K = 25

Computed Values

The point efficiency is given as a function of the angle α_1 , together with the signum parameters s_1 , s_2 , and s_3 (given for checking purposes). The cycle efficiency is shown at the end of the output. In addition, the input moment MIN is printed out as well as BETA1D, BETA2D, AND BETA3D.

Computer program INVOL3

	PROGRAM INVOL3 74/74 OPT=1	FIN 4.8+508 04	04/15/81	6
-	PRGGRAM INVO.3(INPUT, OUTPUT, TAPES=INPUT, TAPES=GUTPUT)	APES=INPUT,TAPEG=GUTPUT)		
	C PGINT AND CYCLE EFFICIENCIES FOR THREE PASS INVOLUTE STEP C IN SPIN ENVIRONMENT (ALL RESMES HAVE UNITY CONTACT RATIO)	EFFICIENCIES FOR THREE PASS INVOLUTE STEP-UP HENT (ALL MESHES HAVE UNITY CONTACT MATIO)		
ហ	-	PEAL WIN, MU, WI, WI, WI, WI, WIGH, WIOI, WD, JI, JI, JI, JI, JI, WGI, WGI, WGI, WPI, NPI, NPI, NPI, NPI, NPI, NPI, NPI, N		
ı	C READ AND MRITE INPUT DATA			
5	100	REAE(S.1)FSUBD1.PSUBD2.PSUBD3.NG1.NP2.NG2.NG3.NG3.NG4.NB1.RG7.NG1.CAPRP1.CAPRP2.CAPRP3.RP2.RP4.THETA1.THETA2.THETA3.ISTOP		
ı				
ī.	REAJ(5,4)(APNST,JAPNSZ,LAPNSZ,RAZ,RAZ,ROZ,ROZ,ROZ,ROZ,ROZ,ROZ,ROZ,ROZ,ROZ,RO	, MGZ, MG3, MG4 , MG2, MG3, MG4		
	READ: 5,7)WD, 4,41,42,43 PI = 3,14159			
9				
	022 = 02EGA*CHEGA FORANT(SF10.4/FF10.0/F10.3,F10.0/6F10.5/3F10.4/II) FORANT(SF10.4)	0.0/6F10.5/3F10.4/I1)		
35	Y (7) *			
	6 FUREAT (4E16.2) 7 FORMAT (E10.2/13/3F10.2)			
30	C COMPUTATION OF MIN. GAMMAS AND BETAS	ETAS		
	KIN = X			
35	GAMMA2 = ACGS((R1+R1) 1(291+R2))	- (CAPRPI+RPZ)*(CAPRPI+RPZ))/		
	GABA37 = ACUS((M2*M2 + M3*M3) 1(2R2*R3))	(caracatro)		
;	TAKEMAN = CAMERAL + CAMERA	- (CAPRP3+RPA)*(CAPRP3+RP4))/		
\$	1(1.*43*84) GARZIA = GARZA3 + GARAAP GARZIA - AFGE(((FABDD)+BDD)*(FADDD)+BPD)	CAPEPI+EP2) + B1*61 - R2*82)/		
		+ R2+R2		
\$	-	Capada+RP4) + R3*R3 - R4*R4)/		
	1(2, *3*(CAPRP3 + RP4))) BETA1 * PI - DELTA2			
5	BETA2 RFTA3			
}	BETAID = BETAI/Z BETAID = BETAI/Z			
	BETA3D * BETA3/Z BETA3D * BETA3/Z	THE WAY WOO WAS NOT MAKE MAKE THE MEETINGS		
55		HRIECAGOTYGOGU, FOUGATIONAL, MELINAL, M		
	#M11E(6,3)#1,#4,#0,#4,#0,#1;#E[6,10)#PD1,##13,##13,##1	í		

	PROGRAM INVSL3 74/74 GPT=1 FTM 4.8+508	04/15/81
99	50	.2/)
8	2F4.0.3X,*MG3 = 3 3 46X,*CAPRP1 = 4, 5 RP2 = 9, F8.5, 3	111
22	60 FURIAL ES, 50.50, 50. FIRE IX. AS 20.531, FARS = FT.55.3X, PR4 9 FORUXT(60.781 = *, FT.5, 3X, PR2 = *, FT.5, 3X, PR3 = *, FT.5, 3X, PR4 1/6x, 2x1 = *, FT.5, 3X, *, *, FT.5, 3X, PR4 = *, FT.5, 5, 3X, PR4 3 = *, FT.5, 5, 3X, PR4 3 = *, FT.5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	±*,£7.5 K.
ž	11 FORSA1 (6X, CAPAB) = , F7.5, 3X, CAPRA2 = , F7.5, 3X, CAPRAB 11 FORSA1 (6X, CAPAB) = , F7.5, 3X, F7.5, 3X, FRB4 = , F7.5, 5X, FRB4 = , F7.5, F7.5, FRB4 = , F7.5, F7.5, FRB4 = , F7.5	=*,F7.5, =*,F7.5,3x =*,F4.2.
80	υ υ υ	
885	u	
8	C DETERMINATION OF RATION OF TEST! OF T	
8		
100	C DETERMINATION OF EARLIEST AND LATEST PESSIBLE VALUES OF ALPHAS CALL ALPHA(CAPPED, REZ, THETA1, CAPROT, ROZ, ALIIM, ALIFIN) CALL ALPHA(CAPPED, REZ, THETA2, CAPROZ, ROZ, ALIZIM, ALIFIN) CALL ALPHA(CAPPED, REZ, THETA2, CAPROZ, ROZ, ALIZIM, ALIFIN)	
105	DELAI DELAI DELAI	
110	110 C INITIALIZATION OF ALPHAS C ALPHAT = ALIZH + (ALIFIN-ALIIN)*-U! ALPHAZ = ALIZH + (ALIZIN)*-UZ ALPHAZ = ALIZH + (ALIZIN)*-UZ	

	PROGRAM INVOL3 74/74 OPT=1	FTN 4.8+509 04/15/
211	U	
120		
125	25 C DENOM = 1. + MU-MU C UFDATE VALUES OF ALPHAS	
130		
135	C TEST TO LETERWINE IF CONTACT POINT IS IN APPROACH OR RECESS S	JACH OR RECESS
1	IF(ALPHAI .LT. TESTI)SI = IF(ALPHAI .LT. TEST2)S2 = IF(ALPHAI .LT. TEST3)S3 = IF(ALPHAI .GT. TEST3)S1 = IF(ALPHAI .GT. TEST3)S1 = IF(ALPHAI .GT. TEST3)S2 = IF(ALPHAI .GT. TES	
1.65		
፳	C DETERMINATION OF INPUT FOR A: = ALPHAN-CAPABI A2 = ALPHAS-CAPAB2 A3 = ALPHAS-CAPABB	
Ř	AA2 = 1 = 51M(= 1 = 5	ENCOR; + REJ+(153) ENCOR) - RU+(153)
9		+ KJ+(S2-1.) ENCH) - KU+(1.+53)
165	AAE 1*CDS(AAB AAB AAT(1*CDS(+ ir(r=(152) DENCH!) + ir(d=(1.+53)
170		(1.+51eMCeMC)

25 58 58 50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51	PROCEAM INVOLS A412 = A85([S:N(GAMMA2] - MU-COS(GAMMA2])/DENOM) A413 = A85([S:N(GAMMA2] - MU-COS(GAMMA2])/DENOM) A414 = A85([MI-L+14])/DENOM) A415 = A85([MI-L+14])/DENOM) A415 = A85([MI-L+14])/DENOM) A415 = A85([MI-L+14])/DENOM) A415 = A85([MI-L+14])/DENOM) A416 = A85([MI-L+14])/DENOM) A417 = A85([MI-MU-MU-MU-MU-MU-MA])/DENOM) A418 = A85([MI-MU-MU-MU-MU-MU-MU-MU-MU-MU-MU-MU-MU-MU-	FTN 4.8+508 (SAMMA2))/DENOM) -THETA1) - (1MED-MU-S1) (GAMMA2))/DENOM) 1A2-THETA1) - (1MED-MU-S1) 1A2-THETA2) - MU-(1.+S2) 1A1+THETA1) + MU-(1.+S2) 1A1+THETA1) + MU-(1.+S1) 4*(AA2+AA4) (AA7+AA19)) (AA7+AA19)) (AA7+AA19)) (AA7+AA19)) (AA7+AA19)) (AA7+AA19) (AA7+AA19)) (AA7+AA19)) (AA19-T1-CCS) - T2-CCS-DD1-DD2 +CC1 FF (ATTW-T1-CCS) - T2-CCS-DD1-DD2 +CC1 FF (ATTM-T1-CCS) - T2-CCS-DD1-DD2 +CC1 - T2-CCS-DD1-DD2 +CC1 - T2-CCS-DD1-DD2 - T2-CCS-	10.31.38	
220				

SUBROUTINE ALPHA		74/74 OPT=1		FTH 4.8+508	04/15/81 10.31.38	10.31.38	ā
	SUBROU	TINE AL	SUBROUTINE ALPHA(CAPRB, RB, THETA, CAPRO, RO, ALIN, ALFIN)	ALFIN)			
ယ ပ	THIS SUB	ROUTINE	THIS SUBROUTINE COMPUTES THE INITIAL AND FINAL VALUES OF ALPHAS	ALUES OF ALPHAS			
u vo	ALIN =	((CAPR	ALIN * ((CAPRB + RB)*IAN(THETA) - SQRT(RO*RG - RB*RB))/CAPRB	- RB+RB) / CAPRB			
	RETURN	#	AALFIN & SQRI(CAPROGLAFKU - CAFKBOLFFRE)/CAFRUS RETURN END				

```
RO4 = .06828
                                                                                                                                                            8.84
                                                                                                                                                            .06506
                                                                                                                                                                            .08089
                 ó
                                                                                                                                                           RB2 = .08543
                                                                                                                                                                            RO2 = .11000
                                                                                                                         .34000E-05
                                                                                                                                         € .01600
                                                                                      THETA3 = 20.00000
                 27
                                                                                                        R4 = .52000
                                                                                                                                          240<del>4</del>5
                                                                                                                                                           CAPRB3 = .16475
                                                                                                                                                                            CAPRO3 = .18216
                  Ē
                                                                                                                                          RH03 = .01800
                 MP3 = 9.
                                                                      .05844
                                                    CAPRP3
PSUB03 = 77
                                                                                                                         .85000E-05
                                                                                                        R3 = .50400
                                                                     RP3 = .06923 RP4 =
                                                                                      THETA2 . 20.00000
                                                    CAPRP2 = .20769
                                                                                                                                                                           CAPR02 = .21579
                  NG2 = 27.
                                                                                                                                                           CAPRB2 = .19517
                                                                                                                                          RHO2 = .02500
                                                                                                                         .
24:
                                                                                                        R2 * .43600
PSUBD2
                                                                                                                        .12000E-03
                                                                                      THETA: = 20.0000C
                                   .30157E-01
                                                    = .47727
                 KP2
                                                                                                                                                                           CAPRO1 = .48791
                                                                                                                                                            = .44949
                                                                    16060.
                                                                                                                                                                                              .275E-05
                                                                                                                                          .06200
                                                                                                                                                                                                                RANGE DIVISOR
                                                                                                        R1 = .22500
                                                     CAPRPI
                                                                                                                                                             CAPRB1
                                                                      RP2 =
                                    H 7/15
                                                                                                                                            2
```

 ALPHAI = 15.97 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 15.97 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.04 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.04 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.04 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.14 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.12 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.24 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.28 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.36 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.36 (DEG)
 51 x 1.0
 52 x 1.0
 53 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.36 (DEG)
 51 x 1.0
 52 x 1.0
 POINT EFFICIENCY

 ALPHAI = 16.46 (DEG)<

=0.00

ᇊ

×0.00

5

21 =0.00

Computer program INVOL3 (cont)

.39184 .39758 .40338	42109 42710 43316 43928 44174	.43098 .43098 .42232 .41802 .41375 .40527	.39687 .38552 .38871 .39190 .39509 .39828 .40147	.40786 .41105 .411425 .42064 .42384 .42346 .41918	41068 40228 40228 39396 37024 36844 35624	.35714 .37267 .37267 .38387 .38955 .39529 .40107 .40690 .41873
EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY	EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY					
POINT POINT POINT POINT POINT	POINT POINT POINT POINT		POINT FINION FIN	POINT POINT POINT POINT POINT POINT	FUIDS POINT FUIDS	POINT POINT POINT POINT POINT POINT POINT POINT POINT
	0000000 11111111	20000000000000000000000000000000000000		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	**************************************
888888						
44444			`fffffffff;	++++++++++		
*****		* * * * * * * * * * *		* * * * * * * * *		
222223		************	. W W W W W W W W			8888888888888
000000	000000		000000000			00000000000
		* * * * * * * * * * *				
ហើលសំស						ักผิญ พี่มีผัญ พัญ พัญ
			·		,	
16.99 17.02 17.06 17.09		17.43 17.43 17.50 17.53 17.53 17.63 17.63 17.63	17.70 17.73 17.84 17.87 17.87 17.90 17.90 17.90	18.01 18.07 18.07 18.11 18.11 18.24 18.28	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18.68 18.72 18.72 18.75 18.82 18.85 18.85 18.85 18.95 18.95
ALPHA1 ALPHA1 ALPHA1 ALPHA1	ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI	ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI	ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI	ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI	ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI	ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI

Computer program INVOL3 (cont)

19.26 (1056) 51 10 52 110 53 110 6001 EFFICIENCY 19.28 (1056) 51 110 52 110 53 110 6001 51	ALPHA: = ALPHA! = ALP	19.05	(DEG) (DEG) (DEG)	S 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	0000	2222	0,000	53 # 1.0 53 # -1.0 53 # -1.0	THICK THICK THICK		= .43078 = .43323 = .43169
19.56 (100) 19.78	LPHA! *	19.22	(9£6) (0£6)	 	0.0	22.23	0.0	53 * 1.0		EFFI	.42856.42693
19.25 19.60 51 19.0 52 19.0	PHA1 =	19.26	(DEG)	÷ 5	0.0	225	0.0	77		EFFI	42538
19.45 (0.00) 51 1.0 52 1.0 53 1.0 51 1.0 52	PHA1	19.33	(DEG)	553		888		11			- 42215
19.45 (DEG) 51 11.0 52 11.0 53 11.0	LPHA1 =	19.39	(DEG)		0	22	9	, H	-		- 41887
19.50 (BEG) 51 m 1.0 52 m 1.0 53 m 1.0 50 m 1 EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 53 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIENCY 19.50 (BEG) 51 m 1.0 52 m 1.0 50 m EFFICIE	LPHA1 =	19.43	(DEG) (DEG)	2.2	 	222	0 0	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2			= .41721 = .41554
19.56 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.56 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.56 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 S3 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 S3 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 52 x 1.0 S3 x 1.0 POINT EFFICIENCY 19.77 (0EG) 51 x 1.0 S2 x 1.0 POINT EFFICIENCY 19.7	LPHA1 =	19.50	(DEG)		 0, 0	25		* *		EFFICIENCY FFFICIENCY	* 40896
19-50 (DEG) 51 = 1-0 52 = 1-0 53 = 1-0 701M FFFICIENCY = 19-50 (DEG) 51 = 1-0 52 = 1-0 53 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 53 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 53 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 53 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 53 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 53 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 53 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 52 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 52 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 52 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 52 = 1-0 701M FFFICIENCY = 19-77 (DEG) 51 = 1-0 72 = 1	LPHA1 =	19.55	(DEG)	. *	0	225	-	. H		_	= .4149B
19-66 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-73 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-73 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-80 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-80 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-80 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-90 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-90 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-90 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-90 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 19-90 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-10 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-10 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-10 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-11 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x 1.0 52 x 1.0 53 x 1.0 Point Efficiency x 20-12 (beg) 51 x	LPHA1 =	19.60	(DEG) (DEG)	2 Z	- <u>-</u>	25 *	0.0	H #		EFFI	= .4210= 427:7
19.77 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 19.87 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 19.87 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 19.87 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 19.97 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 19.97 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.04 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (0EG) 51 x 1.0 52 x 1.0 52 x 1.0 53 x 1.0 POINT EFFICIENCY = 20.05 (LPHAT =	13.65	(DEG)	15		\$ 22	6.	u :			≈ .43335 = 43358
# 19-77 (DEG) 51 # 11.0 \$2 # 13.0 \$23 # 13.0 \$0.00	H H	19.73		. H	0	22		1 11			* .44587
### 19-80 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 PDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 DDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 DDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 DDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 DDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 DDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 DDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 DDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 # 1-10 S3 # 1-10 DDINT EFFICIENCY ### 19-90 (DEG) S1 # 1-10 S2 #	# # 	19.77		2.2	0.0	88	0.0	H H			.45222.45862
# 19.97 (DEG) \$1 = 1.0 \$2 = 1.0 \$3 = 1.0 POINT EFFICIENCY = 19.97 (DEG) \$1 = 1.0 \$2 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 \$2 = 1.0 POINT EFFICIENCY = 19.94 (DEG) \$1 = 1.0 POINT EFFIC	•	19.83		. T	0,	3	0.1	# #			= .4650€
### 19.94 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 19.94 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 52 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = 1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = -1.0 POINT EFFICIENCY = 20.00 (PEG) 51 = -	* *	19.87		2 2	 0 0	2 2	- 7				= .47160 = .47775
### 10.00 (10.00) 51 # 1.00 52 # 1.00 53 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 53 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 53 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 53 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 53 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 53 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 52 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 52 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 51 # 1.00 POINT EFFICIENCY ### 20.00 (10.00) 52		19.94		S;	0,1	25	0,0	- 1			- 48137
### 20.04 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.07 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.07 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.01 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.01 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.021 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.027 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.027 (DEG) \$1 # 1,0 \$2 # -1,0 \$2 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # 1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.031 (DEG) \$1 # -1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.032 (DEG) \$1 # -1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.032 (DEG) \$1 # -1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.032 (DEG) \$1 # -1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.032 (DEG) \$1 # -1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.032 (DEG) \$1 # -1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.032 (DEG) \$1 # -1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.032 (DEG) \$1 # -1,0 \$2 # -1,0 \$3 # -1,0 \$0 POINT EFFICIENCY ### 20.032 (DEG) \$1 # -1,0 \$2 # -1,0	H H	20.00	(DEG)		90	2 2	90	· •			* .47621
### 20.10 (0.65) 51 # 1.0 \$2 # -1.0 \$3 # -1.0 \$0	H 1	20.04	(DEG)	× 2	, , 0, 0	: S	۰،۰ ۲۳	7 7		EFFICIENCY	= .47147 - ASET
### 20.14 (PEG) \$1 # 1,6 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.21 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.21 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.21 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.21 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.31 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.31 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.41 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.44 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.44 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # 1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 \$3 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.54 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.55 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.55 (DEG) \$1 # +1,0 \$2 # +1,0 POINT EFFICIENCY # 20.55 (DEG) \$1 # +1,0 POINT EFFICIENCY # 20.55 (DEG) \$1 # +1,0 POINT EFFI	H H	29.10	(0EG)	5.5	90	22.2	7	1			- 46206
# 20.21 (DEG) 51 # 1.0 52 # -1.0 53 # -1.0 POINT EFFICIENCY # 20.21 (DEG) 51 # 1.0 52 # -1.0 S3 # -1.0 POINT EFFICIENCY # 20.21 (DEG) 51 # 1.0 52 # -1.0 S3 # -1.0 POINT EFFICIENCY # 20.31 (DEG) 51 # 1.0 52 # -1.0 S3 # -1.0 POINT EFFICIENCY # 20.31 (DEG) 51 # 1.0 52 # -1.0 S3 # -1.0 POINT EFFICIENCY # 20.41 (DEG) 51 # 1.0 52 # -1.0 S3 # -1.0 POINT EFFICIENCY # 20.44 (DEG) 51 # 1.0 52 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.51 (DEG) 51 # 1.0 52 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.51 (DEG) 51 # 1.0 52 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.54 (DEG) 51 # 1.0 52 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.64 (DEG) 51 # 1.0 52 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.64 (DEG) 51 # 1.0 52 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.64 (DEG) 51 # 1.0 52 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # 1.0 S2 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # 1.0 S2 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # 1.0 S2 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # 1.0 S2 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 S3 # 1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 S3 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 S3 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT EFFICIENCY # 20.65 (DEG) 51 # -1.0 S2 # -1.0 POINT	• •	20.14	(DEG)	* *	0.0	85	9 c	2.2.0		EFFICIENCY	* .45739 * 4577
### 20.27 (DEG) \$1 # 1.0 \$2 # # 1.0 \$23 # -1.0 \$01NJ EFFICIENCY #	H H	20.21	(DEG)	 	0	22.	1	S 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		EFFICIENCY	. 44813
20.31 (DEG) 51 x 1.0 52 x -1.0 53 x -1.0 POINT EFFICIENCY x 20.31 (DEG) 51 x 1.0 52 x -1.0 53 x -1.0 POINT EFFICIENCY x 20.31 (DEG) 51 x 1.0 52 x -1.0 53 x -1.0 POINT EFFICIENCY x 20.34 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.44 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (DEG) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.55 (DEG) 51 x -1.0 52 x -	h 1	20.24	(DEG)	55 5		ន	77	2. T. T.		EFFI	= .44353 = 43896
## 20.34 (DEG) \$1 # 1,0 \$2 # = 1,0 \$23 # = 1,0 POINT EFFICIENCY # ## 20.34 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.41 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.44 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.54 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.54 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.54 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.54 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.77 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.77 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 \$3 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # = 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 \$2 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1 # 1,0 POINT EFFICIENCY # ## 20.65 (DEG) \$1	4 14	20.31	(DEG)	2.2	20.	225	1	53	_	E F F F	* .4344
20.44 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.44 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.44 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.54 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.64 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.64 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.64 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.71 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.71 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.64 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.64 (0.66) 51 x 1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.64 (0.66) 51 x -1.0 52 x -1.0 53 x 1.0 POINT EFFICIENCY x 20.64 (0.66) 51 x -1.0 52 x -1.0 POINT EFFICIENCY x 20.64 (0.	N I	20.34	(050)	133 H	0,0	22	0 0 1 1	200			* .42990
### 20.44 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ## 20.54 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.51 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.54 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.54 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.65 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.65 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.65 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.71 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.72 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.62 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.62 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.62 (DEG) S1 # 1,0 S2 # = 1,0 POINT EFFICIENCY ### 20.62 (DEG) S1 # = 1,0 POINT EFFICIENCY ### 20.62 (D	H H	20.41	(DEG)	 	9	25	7	3 EX			41755
# 20.51 (DEG)	H H	20.44	(DEG)	2.2	 0 0		0.0	23 22 2.1.			= .42106 = .42445
# 20.54 (DEG) 57 # 5.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.58 (DEG) 51 # 1.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.58 (DEG) 51 # 1.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.68 (DEG) 51 # 1.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.68 (DEG) 51 # 1.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.71 (DEG) 51 # 1.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.75 (DEG) 51 # 1.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.75 (DEG) 51 # 1.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.68 (DEG) 51 # 1.0 \$2 # 7.0 \$3 # 1.0 POINT EFFICIENCY # \$20.88 (DEG) 51 # 7.0 \$2 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 \$2 # 7.0 POINT EFFICIENCY # \$20.92 (DEG) 51 # 7.0 POINT EFFICIENCY		20.51	(0)	. 55	5	2 2	7	S3.			= .4278
20.65 (0.65) 51 1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.68 (0.65) 51 1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.68 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.71 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.72 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 52 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 52 2.1.0 53 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 S2 2.1.0 POINT EFFICIENCY = 20.62 (0.65) 51 2.1.0 POIN	H F	20-54	(DEG)	 	0,5	3 2	7 7	S S S S S S S S S S S S S S S S S S S		EFFI	= .4312 ⁴
## 20.65 (DEG) ST # 1.0 \$2 # -1.0 \$3 # 1.0 POINT EFFICIENCY # 4		20.61	(DEG)	2.5	0	82.	7	S3 = 1.0	_	EFFI	* 4380
20.71 (DEG) 51 = 1.0 52 = -1.0 53 = 1.0 POINT EFFICIENCY = 20.78 (DEG) 51 = 1.0 52 = -1.0 53 = 1.0 POINT EFFICIENCY = 20.78 (DEG) 51 = 1.0 52 = -1.0 53 = 1.0 POINT EFFICIENCY = 20.62 (DEG) 51 = 1.0 52 = -1.0 53 = 1.0 POINT EFFICIENCY = 20.88 (DEG) 51 = 1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY = 20.88 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY = 20.98 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY = 20.98 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY = 21.05 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY = 21.05 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY = 21.05 (DEG) 51 = -1.0 S2 = -1.0 POINT EFFICIENCY = 21.05 (DEG) 51 = -1.0 S2 = -1.0 POINT EFFICIENCY = 21.05 (DEG) 51 = -1.0 S2 = -1.0 POINT EFFICIENCY = 21.05 (DEG) 51 = -1.0 POI		20.65	(DEG)		÷ -	8 8	e e 7 7	88.		EFFICIENCY FFFICIENCY	- 4414/
= 20.78 (DEG) 51 = 1.0 52 = -1.0 53 = 1.0 POINT EFFICIENCY =4 = 20.62 (DEG) 51 = 1.0 52 = -1.0 53 = 1.0 POINT EFFICIENCY =4 = 20.62 (DEG) 51 = 1.0 52 = -1.0 53 = -1.0 POINT EFFICIENCY =4 = 20.88 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 20.98 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 20.98 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 20.98 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 52 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 52 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 52 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 S3 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 POINT EFFICIENCY =4 = 21.05 (DEG) 51 = -1.0 POINT EFFICIENCY =4		20.71	(DEG)	55		22.	7	38		EFF	4482
20.62 (DEG) 51 1.0 52 1.10 53 1.0 POINT EFFCIENCY 1.4 20.88 (DEG) 51 1.0 52 1.10 53 1.0 POINT EFFCIENCY 1.4 20.88 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 20.98 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 20.98 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 20.98 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 20.98 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 21.05 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 21.05 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 21.05 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 21.05 (DEG) 51 1.0 52 1.0 53 1.0 POINT EFFCIENCY 1.4 21.05 (DEG) 51 1.0 EFFCIENCY 1.4 21.05 (DE	# 1	20.75	(050)	# 1 5		25	9 9	SS # 1.0		EFFI	= .45164 - 4550/
1 = 20.48 (DEG)		20.62	(DEG.)		0	22.5	7	3 S2		EFFI	. 4584
1 = 20.32 (DEG) 51 = -1.0 52 = -1.0 53 = -1.0 701RI EFFICIENCY = .4 1 = 20.32 (DEG) 51 = -1.0 52 = -1.0 53 = -1.0 POINT EFFICIENCY = .4 1 = 20.35 (DEG) 51 = -1.0 52 = -1.0 53 = -1.0 POINT EFFICIENCY = .4 1 = 20.35 (DEG) 51 = -1.0 52 = -1.0 53 = -1.0 POINT EFFICIENCY = .4 1 = 21.05 (DEG) 51 = -1.0 52 = -1.0 53 = -1.0 POINT EFFICIENCY = .4 1 = 21.05 (DEG) 51 = -1.0 52 = -1.0 POINT EFFICIENCY = .4 1 = 21.05 (DEG) 51 = -1.0 52 = -1.0 POINT EFFICIENCY = .4 1 = 21.05 (DEG) 51 = -1.0 FILE CONTRIBUTION = .4 1		20.05	(0EG)	* 55	5.0	52 =	0, 0 T	S			.45801
* 20.95 (DEG) 51 * -1.0 52 * -1.0 53 * -1.0 POINT EFFICIENCY * .4 1.20.96 (DEG) 51 * -1.0 52 * -1.0 53 * -1.0 POINT EFFICIENCY * .4 1.20.02 (DEG) 51 * -1.0 52 * -1.0 53 * -1.0 POINT EFFICIENCY * .4 1.20.02 (DEG) 51 * -1.0 52 * -1.0 POINT EFFICIENCY * .4 1.20.02 (DEG) 51 * -1.0 52 * -1.0 POINT EFFICIENCY * .4 1.20.02 (DEG) 51 * -1.0 52 * -1.0 POINT EFFICIENCY * .4 1.20.02 (DEG) 51 * -1.0 52 * -1.0 POINT EFFICIENCY * .4 1.20.02 (DEG) 51 * -1.0 52 * -1.0 POINT EFFICIENCY * .4 1.20.02 (DEG) 51 * -1.0 52 * -1.0 POINT EFFICIENCY * .4 1.20.02 (DEG) 51 * -1.0 1.20	* *	20.92	(0EG)	* * 15	? ? ? T	2 2	P 0	53 = 1.0			= .43404 = .44912
1 = 21.02 (BEG) 51 = 1.0 52 = 1.0 53 = 1.0 POINT EFFICIENCY = .4 1		20.95	(063)	£ 5	0.0	25		S3 = -1.0		EFFI	4436
1 = 21.05 (DEG) 51 = -1.0		21.02	(DEG)		; o	22		23	POINT	EFFI	43282
		21.05	(DEG)	51	1.0	22	9.0			EFFI	= .41061

Computer program INVOL3 (cont)

.40586 .40348 .39870 .38586 .39584 .4088 .40595	.41621 .42138 .42138 .43112 .43712 .45317 .45317 .45317 .45221 .45221	.4448 .44189 .43930 .43671 .43411 .43151 .42629 .41258 .4179	42830 43361 443361 44336 45519 4628 46287 46287 46847 46927	.45807 .45253 .45263 .4703 .43616 .42646 .42646 .42646 .39631 .39631 .39631 .39631
	* * * * * * * * * * * * *			
EFFICIENCY				EFFICIENCY
POINT	POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT	POINT POINT POINT POINT POINT POINT POINT POINT POINT	POLON TO POL	POINT
			** ** ** ** ** ** ** ** ** ** ** ** **	
******	222222222 * * * * * * * * * * * * * * *	22222222 *****************************	*****	
	21.46 (966) 21.43 (966) 21.53 (966) 21.53 (966) 21.63 (966) 21.63 (960) 21.65 (960) 21.76 (960) 21.83 (960)			22.74 (PEG) 22.74 (PEG) 22.75 (PEG) 22.78 (PEG) 22.78 (PEG) 22.85 (PEG) 22.95 (PEG) 22.98 (PEG) 22.98 (PEG) 23.08 (PEG) 23.08 (PEG) 23.08 (PEG) 23.18 (PEG) 23.18 (PEG)
ALPHAI = ALP	ALPHAI = ALP			ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI

Computer program INVOL3 (cont)

.40583 .40818 .41519 .41519 .41519 .41519 .42210 .4223 .4233	.38969 .39455 .39455 .40437 .40933 .41432 .42441 .42246 .42346 .42346 .42346
	H H H H H H H H H H H H
	EFFICIENCY
	POOLOGO DE LA COLOGO DEL COLOGO DE LA COLOGO DEL COLOGO DE LA COLOGO DELA COLOGO DE LA COLOGO DE LA COLOGO DE LA COLOGO DE LA COLOGO DE
**************************************	222222222222222222222222222222222222222
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>888888888888</b>
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
uuuuuuu 4 4 4 m m m m m m m m m m m m m	24 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI	ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI ALPHAI

CYCLE EFFICIENCY = .414

### REFERENCE

A-1 G.G. Lowen, City College of N.Y., and F.R. Tepper, ARRADCOM, "Fuze Gear Train Analysis," Technical Report ARLCD-TR-79030, ARRADCOM, Dover, NJ, December 1979.

### APPENDIX B COMPUTER PROGRAM INVOL4 (REVISED)

The original program descriptions were given in appendix C of Fuze Gear Train Analysis (ref B-1). The following appendix contains revised descriptions, listings and sample outputs of computer program INVOL4, which computes point and cycle efficiencies for two pass involute gear trains in a spin environment. All meshes have unity contact ratio.

### The following changes were made:

- 1. The diametral pitches of both meshes are given as data and are printed in the output.
- 2. The numbers of teeth of both meshes are given as data and are printed in the output.
- 3. The initialization parameters J (one for each of the two meshes) are introduced. They are given as part of the data and are printed in the output. Again, these parameters allow the arbitrary choice of the initial point of contact of a given mesh anywhere within the range of possible contact points.

In addition to these changes, it contains gear computations (according to program INVOL1) which are necessary to give the two pass step-up gear train the same overall gear ratio as that of the three pass step-up gear train.

The program INVOL4 is based on appendix A (ref B-1) which derives the moment input-output relationship for a two pass step-up gear train, operating in a spin environment. Here again, all meshes have unity contact ratio. INVOL4 is very similar to INVOL3 in its construction. Again, the expressions for the contact geometry and other auxiliary geometric terms may be found in appendix A (ref B-1).

### Input Parameters

The following parameters represent the input data for the program. Those which involve gear dimensions only must be obtained from the results of INVOL1 (ref B-1) since the moment expressions are again derived for unity contact ratio only.

PSUBD1 = Pd1

 $PSUBD2 = P_{d2}$ 

 $NG1 = N_{G1}$ 

 $NP2 = N_{P2}$ 

NG2 - N_C

 $NP3 = N_{P2}$ 

MU = μ, coefficient of friction at all pivots and at all tooth contact points

RPM, revolutions per minute of the fuze body

 $CAPRP1 = R_{p1}$ 

CAPRP2 = R_{p2}

 $RP2 = r_{p2}$ 

 $RP3 = r_{p3}$ 

THETAL =  $\theta_1$ 

THETA2 = 02

ISTOP arbitrary single digit integer for multiple data sets. It must be zero for last set of data.

R1 = 67

R2 = 62

R3 = 6R3

RH01 = ρ₁

RH02 = ρ₂

RH03 = 03

CAPRB1 = R_{b1}

CAPRB2 = R_{b2}

 $RB2 = r_{b2}$ 

RB3 =  $r_{b3}$ 

CAPRO1 = R_{o1}

CAPRO2 = R_{o2}

 $RO2 = r_{o2}$ 

 $RO3 = r_0$ 

M1 = m₁, mass of input gear 1

 $m_2$ , mass of gear and pinion 2

M3 mass of pinion 3

- MD =  $md^2$ , mass-distance product contained in the expression for the input moment  $M_{in}$
- $K = K_2$ , the range divisor which is associated with gear 2, the driving gear of the last mesh for this case (eq A-207, ref B-1)

Jl, J2, initialization parameters

### Computations

Computation of MIN, Gammas and Betas

To start with, the program computes the input moment

$$MIN = N_{in} = md^2\omega^2$$
 (8-1)

The program computes the angles  $Y_2,\ Y_3$  and  $\beta_1,\ \beta_2$  according to the expression given in appendix A (ref B-1).

Determination of the Gear Train Constants

The determination of the gear train constants consists of the following:

RATIO = K_{RATIO}, (eq 2, ref B-1). Since the angular velocity is constant, this parameter may be expressed in terms of the applicable base radii, i.e.,

$$\frac{R_{b1} \times R_{b2}}{r_{b2} \times r_{b3}}$$

TEST1 and TEST2 represent the tangent functions of the mesh pressure angles, which are used in conjunction with the values of the signum functions s.

D1 and D2 are given by equations A-204 and A-217 (ref B-1), respectively, and represent the distances between the points of tangency to the base circles along the lines of action of the two meshes.

MTOT = 0 represents the initialization of the sum of the output moments. This is used for the determination of the cycle efficiency.

Determination of Earliest and Latest Possible Values of ALPHAS, Initialization of ALPHAS. Centrifugal Forces

The determination of the earliest and latest possible angles of rotation is accomplished with the help of subroutine ALPHA, at the end of the program, which makes use of equations A-205, A-206, A-218, and A-219 (ref B-1). The angles of initial contact  $\alpha_1$  are determined with the help of the initialization parameters  $J_1$  according to:

$$\alpha_{i} = \alpha_{iIN} + J_{i}(\alpha_{iFIN} - \alpha_{iIN}) \quad (i=1,2)$$
 (B-2)

The additional parameter  $J_3$  serves to distinguish between the two possible contact conditions of mesh no. i.  $J_3=0$  while the first set of teath is in contact.  $J_3=1$  when the latest possible value of  $\alpha_1$  has been reached and contact is transferred to the second set of teeth.  $J_3=0$  at all times when  $J_1=0$ , i.e., contact is made in mash no. 1 at the earliest possible time, and therefore, contact need never be transferred to the second set of teeth to obtain a complete contact cycle (cards no. 93 and 106).

The argular increments of goars 2 and 1, i.e., DELAL2 and DELAL1, are determined with the help of equations A-207 and A-208 (ref B-1), respectively.

The centrifugal forces, which act on the pivots of the various gear and/or pinion assemblies, are obtained by way of equations A-131, A-154, and A-178 (ref B-1).

Point and Cycle Efficiencies

Both point and cycle efficiencies are based on equations A-193 (ref B-1) for the output moment MO3  $\approx$  M_{O3}.

The point efficiency is computed directly in the manner of equation 3 (ref B-1) i.e.,

$$\varepsilon_{\rm p} = K_{\rm RATIO} \frac{M_{\rm o3}}{M_{\rm in}} = POINTEF$$
 (B-3)

The cycle efficiency is treated in the manner of equation A-3 of appendix A, i.e.,

$$\epsilon_{\rm C} = \frac{K_{\rm RATIO}}{M_{\rm in}} \frac{\Delta \alpha_1}{(\alpha_{\rm 1FIN} - \alpha_{\rm 1IN})} = {\rm cycleff}$$
 (B-4)

The program gives the summation as

 $MTOT = \Sigma M_{O3}$ 

(B-5)

Gear Train Motion Model

The simulation of the gear train motion, which is necessary for the computation of both POINTEF and CYCLEFF, is found in a loop which begins with statement label no. 14 (card no. 105) and ends with card no. 171.

The motions of the individual driving gears are initialized with the help of the parameters  $J_1$  and  $J_2$ . The position of each mesh is subsequently incremented by the appropriate DELAL1 and DELAL2. Whenever the  $J_1$ 's (i=1,2) are not equal to zero, and one of the angles  $\alpha_{iFIN}$  has been reached, the particular mesh is reset to its respective angle  $\alpha_{iIN}$ . Since mesh 2 goes through a number of cycles while mesh 1 goes through one cycle, mesh 2 has to be reset to its starting position AL2IN once the angle AL2FIN has been reached. This is accomplished by the conditional statement on card no. 105. When  $J_1$  = 0, i.e., contact in mesh 1 is made at the earliest possible point, CYCLEFF is determined and the computation is ended once the angle AL1FIN - DELAL1 is reached. When  $J_1$  # 0, the above occurs when ALPHA1 reaches the magnitude of its initial angle minus DELAL1. (The nature of the numerical integration requires that only K computations be included.)

The values of the signum functions  $s_1$  and  $s_2$  are determined continuously according to equations A-216 and A-222 (ref B-1).

The instantaneous distances to the contact points, i.e.,  $Al = a_1$  and  $A2 = a_2$ , are determined for each of the meshes by appropriate adaptations of equation A-203 (ref B-1) (also equations A-214 and A-220 (ref B-1)).

The determination of the instantaneous output moment MO3 =  $M_{o3}$  requires the continuous computation of the variable quantities  $A_1$  to  $A_{14}$ ,  $C_1$  to  $C_4$  and  $D_1$  to  $D_3$ , which are given originally in conjunction with the various equilibrium conditions in appendix A (ref B-1). The program uses the following nomenclature for these variables:

AA1 to AA14

CC1 to CC4

DD1 to DD3

Output

The output of the program is again best explained with the help of the sample computation shown at the end of the program. This example uses the gear data with the help of computer program INVOLL. The output lists the following:

### Input Parameters

Mesh No. 1

CAPRP1 = 
$$R_{p1}$$
 = 0.55000 in. (1.3970 cm) PSUBD1 =  $P_{d1}$  = 50  
CAPRB1 =  $R_{b1}$  = 0.51683 in. (1.3127 cm) NG1 =  $N_{G1}$  = 55  
CAPRO1 =  $R_{o1}$  = 0.55936 in. (1.4208 cm) NP2 =  $N_{p2}$  = 8  
RP2 =  $r_{p2}$  = 0.08000 in. (0.2032 cm) J1 = 0  
RB2 =  $r_{b2}$  = 0.07518 in. (0.1910 cm)  
RO2 =  $r_{b2}^{'}$  = 0.09655 in. (0.2452 cm) (This is a ROFIN as given

Also,

THETA1 =  $\theta_1 = 20^\circ$ 

Mesh No. 2

CAPRP2 = 
$$R_{p2}$$
 = 0.39286 in. (0.9979 cm) PSUBD2 =  $P_{d2}$  = 70  
CAPRB2 =  $R_{b2}$  = 0.36916 in. (0.9377 cm) NG2 =  $N_{G2}$  = 55  
CAPRO2 =  $R_{o2}$  = 0.39954 in. (1.0148 cm) NP3 =  $N_{P3}$  = 8  
RP3 =  $r_{p3}$  = 0.05714 in. (0.1451 cm) J2 = 0  
RB3 =  $r_{b3}$  = 0.05370 in. (0.1364 cm)  
RO3 =  $r_{o3}$  = 0.06898 in. (0.1752 cm)

Also,

THETA2 =  $\theta_2 = 20^{\circ}$ 

In addition,

 $MU = \mu = 0.2$ 

RPM = 1000

M1 =  $m_1$  = 0.12 x 10⁻³ 1b-sec²/in. (2.101 x 10⁻² kg)

M2 =  $m_2$  = 0.253 x  $10^{-4}$  1b-sec²/in. (4.430 x  $10^{-3}$  kg)

M3 =  $m_3$  = 0.153 x 10⁻⁵ 1b-sec²/in. (2.679 x 10⁻⁴ kg)

R1 =  $\Re_1$  = 0.225 in. (0.5715 cm) R2 =  $\Re_2$  = 0.497 in. (1.2624 cm) R3 =  $\Re_3$  = 0.640 in. (1.6256 cm) RH01 =  $\rho_1$  = 0.062 in. (0.1575 cm) RH02 =  $\rho_2$  = 0.025 in. (0.0635 cm) RH03 =  $\rho_3$  = 0.018 in. (0.0457 cm) MD =  $\operatorname{md}^2$  = 0.275 x 10⁻⁵ 1b-sec²-in. (3.105 x 10⁻⁷ kg~m²) K = 25

### Computed Values

The point efficiency is given as a function of the angle  $\alpha_1$ , together with the signum parameters  $s_1$  and  $s_2$  (given for checking purposes). The cycle efficiency is shown at the end of the output. In addition, the input moment MIN is printed out.

Use of Computer Program INVOL1 to Obtain Unity Contact Ratio Parameters for Both Meshes

The following gives the outputs of computer program INVOL1 (app A, ref B-1) for the present two pass step-up gear mesh with a total step-up ratio of (55/8)  $\times$  (55/8) = 47.265. The above is essentially the same as the gear ratio of the three pass gear train of appendix A.

## Output of computer program INVOLI

GFAP PRESSURE ANGLE AT OUTSIDE RADIUS (THEOGD) = 22.48626 PINION PRESSURE ANGLE AT FINAL OUTSIDE RADIUS (THEOPD) = 38.84456 CFAR TOOTH THICKNESS AT RASE CIRCLE (CAPTB) = .03765 THEORETICAL PINION TOOTH THICKNESS AT BASE CIRCLF (T9) = .03984 GFAR TOOTH THICKNESS AT OUTSIDE RADIUS (CAPTO) = .61572 PINION 130TH THICKNESS AT FINAL DUTSIDE RADIUS (70) = .62551 PADIUS OF ROOT CIFCLE OF GEAR (CAPROOT) = .51622 MINIMUM ALLOWARLE RADIUS OF ROOT CIRCLE OF GEAR (CAPRHIN) = .45360 GFAR TOOTH THICKNESS AT PITCH CIRCLE (CAPTC) = .02367 PINION TOOTH THICKNESS AT PITCH CIRCLE (TC) = .03916 .55936 ORIGINAL PINION BLANK RADIUS (RO) * .11064 .55066 PINION PITCH RADIUS (RP) = PINION OUTSIDE RADIUS FOR UNITY CONTACT RATIO (ROFIN) # .09655 GEAR BASE RADIUS (CAPRR) = .51683 FINION BASE RADIUS (RB) = STAMBARD TOOTH THICKNESS AT PITCH RAGII (TSTAND) = .03142 OPIGINAL CONTACT RATIO (CRATIO) = 1.349 HAB MITHDOAWAL DISTANCE (C) = .01064 FINAL CONTACT RATIO (CRFIR) = 1.000 PINION NUMBER OF TEETH (NP) = 8 DIAMETRAL PITCH (PSUMD) = 50.00 GEAR MUMBER OF TEETH (1667 = 55 PRESSURE ANGLE (THETA) = 20.00 GFAR BLANK RADIUS (CAPRO) = GEAR PITCH RADIUS (CAPRP) -

PADIUS OF POOT CIRCLE OF PINION (ROOT) # .06750

THE GEAR IS NOT UNDERCUT

# Output of computer program INVOL! (cont)

GFAR PRESSUPE ANGLE AT OUTSIDE RADIUS (THEOGD) = 22.49626 PINION PRESSURE ANGLE AT FINAL OUTSIDE RADIUS (THEOPD) * 38.86456 GFAR TOOTH THICKNESS AT RASE CIPCLE (CAPTB) = .02689 THEORETICAL PINION TOOTH THICKNESS AT BASE CIRCLE (TB) = .02789 GFAR TROTH THICKNESS AT RUTSIDE RADIUS (CAPTO) = .01195 PINION TOOTH THICKNESS AT FINAL CUTSIDE RADIUS (TO) = .01822 RADIUS OF ROOT CIRCLE OF GEAR (CAPROOT) = .36873 MINIMUM ALLOWABLE PADIUS OF ROOT CIPCLE OF GEAR (CAPRMIN) = .34543 GFAR TOOTH THICKNESS AT PITCH CIRCLE (CAPTC) = .01691 PINION TOOTH THICKNESS AT PITCH CIRCLE (TC) = .02797 GFAP BLAME RADIUS (CAPRO) = .39954 DFIGINAL PINION BLANK RADIUS (RO) = .67903 GFAR PITCH PADIUS (CAPAP) = .39286 PINION PITCH RADIUS (RP) = .05714 .36916 PIMIOM BASE RADIUS (88) = PINION OUTSIDE RADIUS FOR UNITY CONTACT RATIO (ROFIN) = .06896 STANDARD TOOTH THICKNESS AT PITCH RADII (TSTAND) = .02244 OPIGINAL CONTACT RATIO (CRATIO) = 1,349 HOB WITHDRAWAL DISTANCE (C) = .00760 FINAL CONTACT RATIO (CPFIN) = 1.000 PINION NUMBER OF TEETH (NP) = 8 STAMETRAL PITCH (PSUMD) = 70.00 PRESSURE ANGLE (THETA) = 20.00 GFAR NUMBER OF TEETH (NG) = 55 FFAR BASE RADIUS (CAPRB) =

PADTUS OF ROOT CIRCLE OF PINION (ROOT) = .84622

THE GEAR IS NOT UNDERCUT

### Computer program INVOLA

FTN 4.8+508

74/74 0PT=1

PROGRAM INVOLA

A STATE OF THE PROPERTY OF THE

PROGRAM INVOL4(INPUT,OUTPUT,TAPES=IMPUT,TAPES=CUTPUT)  C PQINT AND CYCLE FFICIENCIES FOR TWO PASS INVOLUTE STEP-UP GEAR TRAIN  C IN SPIN ENVIRONMENT (ALL MESHES HAVE UNITY CONTACT RATIO)		<b>5</b> .	READ(5,5) CAPRO1, CAPRO2, RO2, RO3 READ(5,5) CAPRO1, CAPRO2, RO3 READ(5,5) W1, W2, W3 READ(5,7) WD, K, J1, J2 1 FORWARI (2FF0.0) F10.0) F10.0 / 4F10.5/2F10.4/I1) 2 FORWARI (3F0.5)	3 FORMAT(3F10.5) 4 FORMAT(4F10.5) 5 FORMAT(4F10.5) 6 FORMAT(4F10.4) 7 FORMAT(5E10.4)		C COMPUTATION OF MIN, GAMMAS AND BETAS C MIN = MD-OM2 GAMMA2 = ACOS((R!*R! + R2*R2 - (CAPRP!+RP2)*(CAPRP!+RP2))/ i(2.*R!*R2) = ACOS((R2*R2 + R3*R3 - (CAPRP2*RP3)*(CAPRP2*RP3))/	5 5	pi	MRITE(6,9)R1,R2,R3,W3,M3 MRITE(6,10)RHO1,RHO2,RRO3 MRITE(6,11)CAPRB1,CAPRB2,RB3,RB3 MRITE(6,12)CAPR3,CAPRO2,RO3,RG3 MRITE(6,13)W3,K,U1,U2	6 FORMAT(et*,5x,*PSUBD1 =*,F5.0,3x,*PSUBD2 =*,F5.0//6x, 1*KG1 =*,F4.0,3x,*PR2 =*,F4.0,3x,*WG2 =*,F4.0,3x,*PPB =*,F4.0,7,*PPG =*,F4.0,3x,*PPB =*,F4.0// 2	9 FORMAT(6x,*R1 =*,F7.5,3x,*R2 =*,F7.5,3x,*R3 e*,F7.5/6x,*Eff e*, 1E12.5,3x,*M2 =*_E12.5,3x,*W3 =*,E12.5/) 10 FORMAT(6x,*Rh01 =*,F7.5,3x,*Rh02 =*,F7.5,3x,*Rh03 =*,F7.5,)
<b>-</b>	M.	9	ñ	8	23	8	SE SE	\$	ž.	S	K)

### Computer program INVOL4 (cont)

THE WAR THE PROPERTY WITH THE PROPERTY OF THE PARTY OF TH

	PROCRAM INVOLA 74/74 DPT=1 FTM 4.8+508 04/15/81 10.3
3	11 FORMAT(6X, CAPRB1 ==, F7.5, 3X, +CAPRB2 ==, F7.5, 3X, +RB2 ==, F7.5, 3X, 1983 ==, F4.2, 5X, 1983 ==, F4.2
8	C CONVERSION TO RADIAMS
6	Z * PI/180.  THEIA! = THEIA!*Z  THEIA2 = THEIA2*Z  C DETERMINATION OF GEAR TRAIN CONSTANTS
ħ	RATIO = (CAPRE2*CAPRBI)/(RBZ*RB3) TESI1 = TAW(THETA1) TESI2 = TAW(THETA2) D1 = (CAPRBI + RE2)*TAW(THETA1) D2 = (CAPRB2 + RB3)*TAW(THETA2) WIOT = 0.
9	C DETERBINATION OF EARLIEST AND LATEST POSSIBLE VALUES OF ALPHAS C CALL ALPHA(CAPRB1, RB2, THETA1, CAPRO1, RC2, ALIIN, ALIFIN) CALL ALPHA(CAPRB1, RB3, THETA2, CAPRO2, RC3, ALIIN, ALIFIN)
Ž.	C DELAL2 = (AL2FIN - ALZIN)/K DELAL1 = DELAL2-R52/CAPR81 C INITIALIZATION OF ALPHAS
8	C ALPHAI = ALIIN + (ALMFIN-ALIIM)=UI ALPHAZ = ALZIN + (ALZFIN-ALZIM)=UZ ALPHII = ALPHAI U3 = 0
S.	£ #
001	T = W0.872-032 T = W0.872-032 C DENOM = 1. + W0.80 C UPDATE VALUES OF ALPHAS
105	14 IF(ALPHAZ .GT. ALZFIN)ALPHAZ = ALZIN IF(ALPHAT.GT.ALFIN)J3*1 IF(ALPHAT.GT.ALFIN)ALPHAT*ALIIN
5.	C TEST TO DETERVINE IF CONTACT POINT IS IN APPROACH OR RECESS  C IF RECESS, S = 1.  C AT PITCH POINT, S = 0.  C IF (ALPHAT .LT. TESTI)S1 = 1.

### Computer program INVOLA (cont)

FIN 4.8+508 04/15/81 10.35.05			MU*(\$2-1.)* OM) MU*(152)*COS(BETA2	(1) 51+MU+MU) 51+MU+MU) 	a(15a)manmar (m)	+ MU*(1.+51)**			,	**,F5.1,3X,*S2 **,F5.1,3X,		CR. [41.EQ.0. AMD.
INVCL4 74/74 OPI=1		4 OF INPUT FOR INC	•	1-THEIA2)//DENGW:  AA4 = AB5((20-51x(GAMZA3)) - CD5(GAMZA3))/DENGW:)  AA5 = AB5((20-51x(GAMZA3) - CD5(GAMZA3))/DENGW:)  1CO5(BEIA1+THEIA1)/DENGW:)  AA6 = AB5((SIV)(SIV)/DENGW:) - MU-CD5(GAMZA2)/DENGW:)  AA7 = AB5((SIV)(SIV)/DENGW:) - MU-CD5(GAMZA2)/DENGW:)	1005(BEAZ-THETA2)/DENOM) AAB = ABS((MU*(1,-ST)*COS(BETA:+THETA1) - (1,-MU*MU*S1)* 15IN(BETA1+THETA1)/DENOM) AAB = ABS((MU*(1,-ST)*COS(BETA:+THETA1) - (1,-MU*MU*S1)* 15IN(BETA1+THETA1)/DENOM) AAB = ABS((MU*(1,-ST)*COS(GAMMA2))/DENOM) AAB = ABS((MU*(1,-MU*COS)*COS(GAMMA2))/DENOM)	A210 = A55(101,-704A02)/55INGBETAZ-INFIAZ)	AAI3 = ASJ   Mar.   1.453   0.534   DE NOTTELAT)   1. AAI3 = MJ/DENOM CCT = WID-ENOM CC2 = CAPARG3 = (AA2+AA4) CC3 = MIN-PHO2 = (AA2+AA4) CC3 = MIN-PHO2 = (AA5+AA10)		C OUTPUT WOMENT	M03 = (DD1-DD2)/(CC2+D03)+(MIN-T) PCINIEF = RAIIO+M03/MIN MRIEG(s.5)ALPHD.51.52.POINIEF 15 FOWATIGK.ALPHAT = *, *6.2.3X,*51 1+POINI EFFICIENCY = *, F7.5) MIDI = MICT + M03	C ADVANCE GEAR TRAIN ID MEXT POSITION	ALPMAI = ALPMAI + DELALI F(J3-EG) : AND. AlPMAI GT.ALPMII-DELALI) .GR. [J1.EQ.OAND IALPMAI GT.AII FIDELALI) GGO TO 16 ALPMAZ - ALPMAZ + DELALI°CAPRBI/RBZ GD TO 14
PROGRÁM INVCLA	511	20	521	130	135	140	2 <b>4</b> 2	150	351	<b>3</b>	165	170

### Computer program INVOLA (cont)

PROGRAM INVOL4 74/74 OPT=1 FTN 4.8+508

16 CYCLEFF = (RATIO-DELALI*MIOI)/(MIN*(ALIFIN-ALIIN))
**RITE(6,17)CYCLEFF
17 FORWAT(*0*,5X,*CYCLE EFFICIENCY =*,F5.3)
STOP
END
END

175

PAGE

04/15/81 10.35.05

85

74/74 OPT=1 SUBROCTINE ALPHA

FIN 4.8+508

PAGE

04/15/81 10.35.05

THIS SUBROUTINE COMPUTES THE INITIAL AND FINAL VALUES OF ALPHAS SUBROUTINE ALPHA(CAPRB, RB, THETA, CAPRO, RO, ALIN, ALFIN)

ALIN = {(CAPRB + RB)*IAN(THEIA) - SQRI(RO*RG - RB*RB)}/CAPRB
ALFIN = SQRI(CAPRO*CAPRG + CAPRB*CAPRB)/CAPRB
RETURN
END

86

### Computer program INVOL4 (cont)

```
RO3 = .06898
                                                                                                                                                                                                                                                          BB3 = .05370
                                                                                                                                                                                                     M3 = .15300E-05
                                                                                                                                                                                                                                                                                        CAPRO2 = .39954 . RG2 = .09655
                                                                                                                                                                                                                                                            CAPREZ = .36916 R82 = .07518
                                                                                                                                                                                                                              BHC2 * .02550 RHC3 * .01800
                                                                                                                                                                        R1 = .22500 R2 = .49700 R3 = .54000
                                                                                                                                                                                                     H1 = ,12050E-03 H2 = ,25350E-04
                                                                                                                                            THETA! = 20.000 THETA2 = 20.000
                                                                                    CAPRP1 = .55000 CAPRP2 = .39286
                                                                                                                 RP2 = .08000 RP3 = .05714
PSUBD1 = 50. PSUBD2 = 70.
                             MGT = 55. MP2 = 8.
                                                                                                                                                                                                                                                                                                                                                  RANGE DIVISOR = 25
                                                                                                                                                                                                                                                                                                                                                                              J1 =0.06 J2 =0.00
                                                        MIN - .30157E-01
                                                                                                                                                                                                                                                          CAPPB1 = .51683
                                                                                                                                                                                                                                                                                        CAPRO1 = .55936
                                                                                                                                                                                                                                                                                                                      ID = .275E-05
                                                                                                                                                                                                                                AHD1 = .06200
```

31414	32266	.32695	.33126	.33560	-33395	.34432	.34871	.35313	.35756	.36202	.36649	.37099	.37551	37383	.37143	.36901	.36660	.36417	.36174	.35931	.35686	.35441	.35196	.34950	-33295	.33738	.34183	.34630	.35079	.35530
	Ħ	M	Ħ				•	H	H	Ħ	Ħ	Ħ	*	#	Ħ	M	¥	•	•	Ħ		×	Ħ	٠	M	Ħ	Ħ	Ħ	H	4
POINT EFFICIENCY				POINT EFFICIENCY		POINT EFFICIENCY								POINT EFFICIENCY			POINT EFFICIENCY	_		POINT EFFICIENCY	POINT EFFICIENCY		POINT EFFICIENCY	_	INT EFFICIENCY		-	POINT EFFICIENCY		POINT EFFICIENCY
					_	5		5							2	2	_	5	5	2				2						2
1.0	. T	1.0	1.0		0.1	7.	1.0		1.0	0	1.0	1.0	- 0.	1.0 1.0	1,1	7.7	9.1.	1.L	1.6	7,5	1.0	1.1.	1.0	1 - ×	9.1	7.	- H		1.0	-
2.5								23			22			•													_	S		23
0.1	1.0	1.0	1.0	1.0	1.0	5.			1.0	1.0	1.0	1.0		1.0	1.0	7.0	1.0	- 1.0	- 0.0	1.0	1.0		1.0		1.0		1.0	1.0	1.0	7.
2 2	5	5	2	2	S	5	Š	š	š	5	2	S	2	ÿ	S	2	5	5	š	2	š	š	š	S	š	š	55	2	S	Ğ,
17.17	17.25	:7.29	17.32	17.35	17.40	17.44	17.48	17.51	17.55	17.59	17.63	17.67	17.71	17.74	:7.78	17.82	17.86	17.90	17.93	17.97	18.01	18.05	18,09	18.12	18.16	18.20	18.24	•	18.32	18.35
		*	*	H	×									•	*	#			1						*	•	۱	*	•	×
ALPHA1	AL PHA1	ALPHA:	ALPHAI	ALPHAI	ALPHAI	ALPHAI	AL PHAS	ALPHA1	ALPHAT	ALPHA!	ALPHAS	ALPHAT	ALPHAI	ALPHA	ALPHAI	ALPHAI	ALPHAI	ALPHAI	A: PHA1	ALPHAS	A: PHA1	ALPHAI	ALPHAT	ALPHAI	ALPHA1	ALPHA1	ALPHAI	ALPhA1	ALPHAI	ALPIA

Computer program INVOLA (cont)

				?						•	į
****	18.51	š	H	1.0	2 2		POINT	_	EFFICIENCY	4	37356
# <del></del> ,	18.54	Ñ		0	2	1.0		_	EFF I CIENCY	٠	.37818
,	18.58	is i	* *	٠	88		POINT PATES		EFFICIENCY	W W	38281
٠	8.66	ច		9	8	-		_	EFFICIENCY	H	.39216
- ;	8.70	2		٠. و و	88	0,5	POINT FAIRE		EFFICIENCY		.39686
	8.77	is		9 0	2 22	7 7			EFF ICIENCY		.39251
-	9.0	2	w	1-0	3	7		_	EFFICTENCY		38995
	18.85	ស៊ីស	H #	0 0	33	- 0 - 1	POINT		EFFICIENCY		36739
. =	8.92	2	H	9	3	7			EFFICIENCY		.38223
÷,	96.0	<u>ت</u> د	<b>H</b> (	۰ 	8 5	•	DOING		EFFICIENCY		37965
	9.0	ñ	+ #	9 9	2 2	֓֓֓֓֓֓֞֓֓֓֟֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Poliki		EFFICIENCY		37446
	9.08	ũ	H	0.	2	7			FFICIENCY		37186
- 1	9.12	5	H	<b>0</b> .	8	7			EFFICIENCY	*	.35925
	ה מ	ī, č	H #	9 6	2 %		Print		PEFFICIENCY		35.630
	2.3	ï			2 2	-			EFFICIENCY		.36113
_	9.27	Ş		0.	25		•	_	EFFICIENCY	¥	.36578
	9.31	5		0,1	22				EFFICIENCY	4	37045
		ñ	H H	٠ 	3 5				FFICIENCY	H H	37986
-	9.42	2		0	3		D POINT		EFFICIENCY		38460
-	9.46	Š	H	1.0	22			_	EFFICIENCY	ĸ	.38936
	19.50	ī v		0 0	3 5	0.0	POTAT		EFFICIENCY	H H	39414 39894
-	9.57	Š		0.	22	-			EFFICIENCY	H	.40376
•••	9.61	ភ	<b>x</b> 1	•	2 2	_	POINT		EFFICIENCY	W 1	.40861
- ~	0.00	n ii		9 9	3 5				EFFICIENCY		41836
ٽټ. د	9.73	š		P.	S	7		_	EFFICIENCY	4	41646
<b>.</b>	9.76	S i		÷.	88	7 7		-	EFFICIENCY	• 1	41375
- 3	20.00	ñ		9 9	2 2		Pozer	-	EFFICIENCY		40832
-	9.88	S		1.0	2	7			EFFICIENCY	*	.40560
	9,92	š		•	S	7	0 1		EFFICIENCY	4	.40287
	200	ñ	. +	9 0	3 8	1			FFFICIENCY	H H	39746
ñ	20.03	Š			8	7			FFICIENCY		39466
Ġ	0.0	ŝ		0.1	S	7	POINT		<b>EFFICIENCY</b>		.39190
7	20.11	ī, v		9 9	3 8	7	POINT OF		EFFICIENCY	* 1	216915
1 (5	91.0	5			S	-			EFFICIENCY		37575
	20.22	S		0.	22			_	EFFICIENCY		.38057
ä	20.26	ÿ	H	D. 1	22		0	_	EFFICIENCY		38540
ri è	26.30	,		0,	8	- :	٥.		EFFICIENCY	# (	.39026
4 6	,	7			7 5					•	51085.
ľ	200	7			10				EFFICIENCY		40495
Č	23.45	5		-	8	1			EFFICIENCY		40990
ä	20.49	š	ĸ	1.0	22	-	•		EFFICIENCY		.41486
Ö	20.53	š	H		22		POINT		FFICIENCY		41985
~ (	20.56	<u>ت</u> د	M I	•	2	<u>.</u>	Peint		EFFICIENCY	* !	-424E6
4 6		'n		2 5	7 5					•	42405
16	20.00	ñű		? .	35				EFFICIENCY		C. C

Computer program INVOL4 (cont)

5	2 2	8	2	82	8	8	54	ຄ	ሧ	Z.	õ	5	22	Ż.	řΣ	Ñ	S.	ıν.	Ŋ	Ž:	2	<u> </u>	'ny	2 2	? =	9	2	9	Ξ	ū	= 9	<u>n</u> 9	9	Ξ	<u>.</u>	1 :		Ð	Ø)	<b>y</b> (	פַ פַ			<b>1</b>	<u>.</u> ,	2 :	: 9	<u>, , , , , , , , , , , , , , , , , , , </u>	*	22	go y	t s	2
0000	43514	43228	.42942	42978	.42538	.42100	-41664	.41229	-4079E	40365	38349	.38701	.39052	.39404	.39755	.40105	40455	.40805	.41155	41504	.41852	42201			428	42458	4202	.415	.41171	.407	103	39639	3	.38641	.36697	3703	37707	38043	.38379	.3871	90309	39717	40051	4038	-40717	41049	41040	-40621	40204	39789	.39376	2005	000
		Ħ	H	H	•	Ħ	Ħ.	Þ	H	Ħ	Ħ	Ħ	Ħ		*	M	ĸ	Ħ	H	H	Ħ				×		#	Ħ	H	4	H	* *							H	H		W		H	* 1				h	N			ı
CCCTCTCMCV	EFFICIENCY	EFFICIENCY	EFF ICIENCY	EFFICIENCY	<b>EFFICIENCY</b>	<b>EFFICIENCY</b>	<b>EFFICIENCY</b>	EFFICIENCY	EFF ICIENCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	<b>EFFICIENCY</b>	<b>EFFICIENCY</b>	EFFICIENCY	<b>EFFICIENCY</b>	EFFICIENCY	EFF ICTSMCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	ECT TOTAL	FEFTCTEMON	EFFICIENCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	<b>EFFICIENCY</b>	EFFICIENCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	EFF LEMEN	EFFICIENCY	<b>EFFICIENCY</b>	EFFICIENCY	EFFICIENCY	FFFFFFFF	EFFICIENCY	<b>EFFICIENCY</b>	EFFICIENCY	EFFICIENCY	EFFICIENCY FEFTCTENCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	EFF ICIENCY	EFFICIENCY	EFF LLEMON	100000
Potest	POINT	POINT	POINT	PARKT	POINT	PCINT																MID							POINT	POINT	TALL OF								701M					POINT			POTM	POINT	POINT	POINT	E S	i i	
7	7	0.1-	1.0		0,1		۰, ۲	• •	۰ ا	0, 1 T	-	0	<u>.</u>	0,	<b>-</b>	-	0		0	- 0	)  -	0 0			0-1-	0.7	-1.0	1.0	7.0	0.7	7		7	1,0	0.	9 0	0	1.0	0.			0.	0.7	0,	2 .	9 0	0	0.1	0.1	6,4	0 e	• -	
•		Ħ	¥	H	Ħ	R	Ħ	Ħ	¥	H	Ħ	×	H	Ħ	H	H	M	H	H	H	H	# 1			Ħ	#	Ħ	H	*	4	# 1		#	H	<b>1</b>	H #		*	H			¥	Ħ	Ħ			H	H		×			J
S	18	22	22	22	22	S	8	S	8	S	S	S	22	S	S	S	S	2	27	8	3	38	3 5	5	22	22	\$2	22	22	8	7 6	70	S	22	S	3 8	8	22	8	3 5	ï	22	S	8 :	3 5	3 6	S	22	25	3	38	3 5	
-		0.	1.0	1.0	10.1	1.0	0. T	0.1	٠ آ	0.1	5	0		0,1	1,0	9		0	0.	0.1.	۰ ۲	ָ ֖֖֭֓֞֞֞֞֞֞֞֞֞֩֞	7	7	7	7.0	-1-0	° 7	٥. آ	-1.0	9 6		0.1	0.1	0 1	7	0-1-	-1.0	0.1		9		0.1	-	, e		0.1	1.0	1.0	0.1			
	H	*	*	Ħ	H	Ħ	H	H	H	0	×	H	н	*	H	Ħ	Ħ	H	Ħ	u	۴	H 1		H	H	H	H	H	H	H	H (		H	Ħ	# 1	H H	W	H	W	11	1 1	Ħ	H	H (		4 H	M	H	Ħ	ĸ	<b>K</b> H		ı
Ü	2	S	S	Ş	Š	S	Š	Ñ	ñ (	2	5	S	Ñ	Š	S	Š	'n	i N	7	5	7	ñů	i	5	5	S	51	s	5	Š	ñ	i	'n	Š	5	ñō	Š	š	Š	ž č	i	2	5	ភ	ñ	i	S	S	S	ទី	Š	i	
20. 73	20.75	20.79	20.83	20.87	26.91	20.9	20.98	21.02	21.06	21.10	71.14	21.17	21.21	21.25	21.29	21.33	21.36	21.40	7		7.17	21.23			21.71	21.75	21.78	21-62	21.86	21-90	40.5	22.01	22.05	22-09	22.13	22.20	22.24	22-28	22.32	32.72	22.43	22.47		22.55	3 5	22.66	22.70	22.74	22.77	22.5	22.53	22.43	1
			*		H	Ħ	u		٠	*	٠	H	Ħ	H	H	H	H	*	¥	*	×			H	H	Ħ	11	#	14	H	H (		ı	H	H (			H				H							Ħ		<b>u</b> H		J
1 044	ALPHA1	ALPHA1	ALPHA1	A . PHA 1	ALPHA1	LPHA1	ALPHA1	AL PHA:	1	A PHA	H	ALPHA!	ALPHA1	L'PHA!	ALPHA1	- PA	HA	HAI	HAI	FHA		4	044	PHA	PHAT	ALPHA!	R.L.PHA1	LPHAI	LPHA!	ALPHA1			ALPHA:	ALPHA1	ALPHA?		ALPHA1	LPHAT	ALPHA1		PHAT	ALPHAT	ALPHAE	ALPHA1		1	LPH:AT	ALPHAI	LPHAI	ALPHA1		A I PHAT	

Computer program INVOLA (cont)

.37332	.36928	.35055	.35378	.35700	.36021	.36342	.36663	.36983	.37303	.37623	.37942	.38261	.38579	.36897	.39214	.39531
11	H	И	16	ı	H	#	H	Ħ	H	Ħ	H	H	4	u	W	
	T EFFICIENCY	T EFFICIENCY	T EFFICIENCY	I EFFICIENCY			T EFFICIENCY	I EFFICIENCY	T EFFICIENCY	IT EFFICIENCY	IT EFFICIENCY					IT EFFICIENCY
POINT	POINT	POINT	PCINT	POINT	POINT	POIN	POINT	POINT	POINT	POINT	POINT	POINT	POINT	POINT	POINT	POINT
1.0	٠ -		1.0	1.0	1.0	.0	0.1	1.0	1.0	0, 1	1.0	0.7	1.0	0.	-0	0.1
н	H	H	Ħ	H	и	H	#	Ħ	Ħ	11	Ħ	11	ŧi	Ħ	H	H
23	S	25	22	\$2	52	25	22	22	25	52	22	22	23	22	52	22
0	o	0	0	0	င္	٥.	0	9	ó	0	0	0	0	ó	0	Ö
ï	٦	7	ī	ī	ī	ī	7	ī	ï	ī	ĩ	ī	ī	ī	ĩ	ī
H	Ħ	Ħ	Ħ	11	Ħ	u	16	Ħ	11	11	ŧ	13	11	H	#1	н
51	š	Si	S	S	S	Ş	S	S	Ş	S	51	S	S	S	S	51
23.04	23.08	23.12	23.16	23.19	23.23	23.27	23.31	23.35	23.38	23.42	23.46	23.50	23.54	23.57	23.61	23.65
- 11	-N	Ħ	H	#	H	il	Ħ	Ħ	4	H	Ħ	. 11	#	H	H	H
ALPHA1	ALPHA1	ALPHA1	A LPHA1	ALPHA1	ALPHA1	ALPHA1	ALPHA1	ALPHA1	ALPHA1	ALPHA!	ALPHA!	ALPHA1	ALPHA1	ALPHAI	ALPHA1	AL PHA1

### REFERENCE

B-1 G.G. Lowen, City College of N.Y., and F.R. Tepper, ARRADCOM, "Fuze Gear Train Analysis," Technical Report ARLCD-TR-79030, ARRADCOM, Dover, NJ, December 1979.

### APPENDIX C

DESIGN OF CLOCK TOOTH GEAR AND PINION SET ACCORDING TO BRITISH STANDARD NO. 978

The present appendix deals with the design of clock teeth according to British Standard No. 978 (ref C-1): Gears for Instruments and Clockwork Mechanisms; Part 2, Cycloidal Type Gears.  * 

Computer program BRITSTD, shows the design of gear and pinion meshes with clock teeth in such a manner that its output data may serve as the input data for the computer programs CLOCK1, CLOCK2, CLOCK3, and CLOCK4 of Fuze Gear Train Analysis (ref C-2).

### British Standard No. 978

The British Standard No. 978 (ref C-1) is used to determine the important dimensions for clock type gears and pinions. It originally employs the module (m) as a basic parameter. It is presently more practical to operate in terms of diametral pitch  $(P_{\rm d})$ , so that

$$P_{\mathbf{d}} = \frac{1}{n} \tag{C-1}$$

With the above, the module may become an irrational fraction.

### Gear Design Parameters

The important design parameters for the gears of step-up meshes are shown in tables 2 and 3 of reference C-1. These parameters are: the tooth thickness along the pitch circle, the addendum, and the radius of curvature of the addendum. The addendum factor f as well as the addendum radius factor  $f_{\rm r}$  of table 3 of reference C-1 are functions of the gear ratio and the number of teeth in the mating pinion. Similar information is given by charts 1 and 2 of reference C-1.

### Pinion Design Parameters

Pinions are designed according to clause 5, and figures 3 and 4, as well as table 4 of reference C-1.

^{*}This standard was used since it was the only complete standard available to the authors at the time this work was undertaken.



Figure C-1. Geometry of clock tooth for determination of center of curvature C

### 1. Determination of Center of Curvature of Addendum Radius

Before the clock gear design program proper can be shown, it is necessary to derive a procedure by which the location of the center of curvature C of the addendum radius of curvature may be determined whenever the center of curvature is not located on the intersection of the center line of the tooth and the pitch circle, i.e., the addendum height equals the radius of curvature of the addendum.

The British Standard (ref C-1) provides information concerning the tooth thickness  $t_t$  along the pitch circle, the addendum height H, as well as the radius of curvature  $\rho$  of the addendum. (Note change of nomenclature when compared to reference C-1.)

A schematic representation of a clock tooth which is used in the determination of the coordinates  $C_X$  and  $C_y$  of the center of curvature C is shown in figure  $C^{-1}$ . The following derivation is based on the idea that the location of the center of curvature of a circle of radius  $\rho$  may be determined if the coordinates of the two points W and V on this circle are known. The equation of this circle is given by

$$(x - c_x)^2 + (y - c_y)^2 = \rho^2$$
 (C-2)

For point V with the known coordinates x =  $r_{px}$  and y =  $r_{py}$ , the above becomes

$$(r_{px} - C_x)^2 + (r_{py} - C_y)^2 = \rho^2$$
 (C-3)

For point W with the known coordinates x = 0 and  $y = r_0$ , one obtains

$$c_{x}^{2} + (r_{o} - c_{y})^{2} = \rho^{2}$$
 (c-4)

where

r_p = pitch radius

$$r_o = r_p + H$$
 (C-5)

$$\beta = \tan^{-1}(t_t/2r_p) \tag{C-6}$$

$$r_{px} = -r_{p} \sin\beta \tag{C-7}$$

$$r_{py} = r_{p} \cos \beta \tag{C-8}$$

Simultaneous solution of equations C-3 and C-4 leads to

$$C_{y} = \frac{-(CD - r_{o}E^{2}) + \sqrt{(CD - r_{o}E^{2})^{2} - (D^{2} + E^{2})(C^{2} - AE^{2})}}{D^{2} + E^{2}}$$
(C-9)

and

$$C_{x} = \frac{C + DC_{y}}{E} \tag{C-10}$$

where, in the above

$$A = \rho^2 - r_0^2$$
 (C-11)

$$B = \rho^2 - r_p^2 \tag{C-12}$$

$$C = A - B \tag{C-13}$$

$$D = 2(r_0 - r_{py}) (C-14)$$

$$E = 2r_{px} (C-15)$$

It is to be noted that the smaller of the two possible solutions in equation C-9 must govern.

### 2. Computer Program BRITSTD

The computer program BRITSTD is designed to furnish the input parameters necessary for computer programs CLOCK1, CLOCK2, CLOCK3, and CLOCK4 of reference C-2.

Input Parameters. The following parameters represent the input data for the computer program:

PSUBD = Pd, the diametral pitch.

NG =  $N_G$ , number of teeth of the gear

 $NP = N_p$ , number of teeth of the pinion

F = f, constant for addendum computation (tables 2 and 3 or chart 1 of reference C-1). Obtained by linear interpolation if not directly available from standard.

FR  $f_r$ , constant for determination of radius of curvature  $\rho$  (see tables 2 and 3 or chart 2, ref C-1). Also obtained by linear interpolation if not directly available from tables.

PROFILE = 1, corresponds to Profile A of figure 4 and table 4 (ref C-1)

PROFILE = 2, corresponds to Profile B of figure 4 and table 4 (ref C-1)

PROFILE = 3, corresponds to Profile C of figure 4 and table 4 (ref C-1)

ISTOP = arbitrary single digit integer for multiple data sets.

Must be zero for last data set.

### Computations.

Design of Gear. To start with, the program determines the module with the help of equation C-1. It further determines (for nomenclature, see figure C-1):

TTG =  $t_{tG}$ , according to table 2 of reference C-1. Note that the subscript G stands for gear.

ADDG = H_G, according to table 2 of reference C-1

RHOG =  $\rho_G$ , according to table 2 of reference C-1

CAPRP =  $R_p = \frac{N_G m}{2}$ 

 $ROG = R_{OG} = R_{D} + H_{G}$ 

BETAG =  $\beta_G = \frac{t_{cG}}{(2R_B)}$ 

CAPRPX =  $R_{tox}$ , the x coordinate of point V (fig. C-1)

CAPRPY =  $R_{py}$ , the y coordinate of point V (fig. C-1)

The subroutine CENTER computes the x and y coordinates  $C_x$  and  $C_y$  of the center of curvature according to equations C-10 and C-9, respectively, together with the distance a = 0C, as well as the maximum tooth thickness according to

$$t = 2 (\rho - C_x) \tag{G-16}$$

For programming purposes the maximum tooth thickness of the gear becomes

TG - t_G

while for the pinion it is expressed by

TP = tp

Pinion Design. The computation of the pinion parameters starts with the determination of the pinion radius

 $RP = r_{D}$ 

It is to be noted that the designations of all pinion variables are similar to those of the gear variables with the letter P substituted for the letter G.

Statement numbers 29 through 34 represent profile selection tests according to figure 4 and table 4 of reference C-1. The resulting computations depend upon the pinion profile chosen as well as the number of pinion teeth involved. The specific pinion parameters are computed according to the formulae in the table 4 (ref C-1). Whenever the addendum radius center of curvature does not coincide with the pitch point, subroutine CENTER is called for the determination of the desired dimensions.

Mesh Starting Test. The mesh starting test is based upon equation E-49 (ref C-2), which, when satisfied, assures that initial contact is made in the round on round phase of contact. To perform this test, the parameters b (the center distance between gear and pinion), the angle  $Y_G$ , according to equation D-5 (ref C-2), and the length of flat  $f_G$ , according to equation D-7, (ref C-2), must first be determined. If the mesh starts in the normal manner, the program will print out MESH BEGINS IN NORMAL MANNER. In case the mesh causes an abnormal situation, the program will print MESH BEGINS WITH FLAT ON ROUND.

Output. The output of the program is best explained with the help of the first of the five sets of results shown at the end of the program. The underlined values represent the needed inputs to all computer programs dealing with clock teeth. The relevant values of the first three sets of results will serve as input to the revised computer program CLOCK3, as given in appendix D. Similarly, the relevant values of the fourth and fifth sets of results represent input for the revised computer program CLOCK4, given in appendix E.

### Input Parameters.

PSUBD	=	P _d =	44
F	-	f =	1.450
FR	-	fr =	2.137
PROFILE	***	2.0	
NG	-	n _G =	42
NP	=	np =	8

### Computed Values.

For t	he gear	Fo	r the p	<u>In.co</u>
CAPRP = R _p	= 0.47727 in. (1.2122 cm)	RP	≖ r _p	= 0.09091 in. (0.2309 cm)
AG = a _G	= 0.47343 in. (1.2025 cm)	AP	= ap	- 0.09083 in. (0.2307 cm)
RHOG - PG	= 0.04857 in. (0.1234 cm)	RHOP	- ρ _p	- 0.01591 in. (0.0404 cm)
TG □ t _G	- 0.03609 in. (0.0917 cm)	TP	■ tp	= 0.02382 in. (0.0605 cm)
TTG = tt6	, = 0.03568 in. (0.0906 cm)	TTP	= t _{tP}	- 0.02386 in. (0.0606 cm)
CXG = C _{X G}	(0.03052 in-	CXP	= C _{kP}	- 0.00400 in- (0.0102 cm)
cyc = c _{yc}	= 0.47245 in. (1.2000 cm)	CYP	- c _{yP}	- 0.09074 in. (0.2305 cm)

Also, MESH BEGINS IN NORMAL MANNER

Computer program BRITSTD

	REAL MG MP MOU
	1999 AEAD (S.1) PEUGEL MONTH, FRANKEILE LETON
	hall fe (6-22 postable) a fe fe page 1.C.
	2 PORMATICALAMENTO CONFORM ROLF OF THE 3. LAKAGER WAS TRAILED
	Index Profits = 1.7Pcs   1.7Pc
	'
=	C DESIGN OF GEAS
	116 = 1.576400
	00med = 50mg
	COURSE SECT
	NOS B CAPRP & ADD
	CHING TIS CONTROL TO THE CONTROL TO
	CAPATA & FIGHT FILES
	CALL CRIFE CHACGE AUG - CAPAPA - CAPAPA - TO - CALL CRIFE CRIFE CAPAPA - TO - CALL CRIFE CRIFE - CAPAPA - CAPAPA - TO - CALL CRIFE - CAPAPA - CAPAPA - TO - CALL CRIFE - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - TO - CAPAPA - TO - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - CAPAPA - TO - CAPAPA - T
	WAITE(6,3)CAPRP.AG-RHOG.FG-WW.TTG-CXG.CYG
	1 FOGMATI 6X10CAPMP goofBo5/04.005 aoFB55/6X.00MGG goof 05/04.
	For Marked Coffee And Mearte   Marked Coffee   Marked Coffee   Mearted
E.	
	C PINION DESIGN
	AP a terendo/2.
	IF NF "LE: 14" ANO, PROFILE .EG. 1.160 TO 4
2	16 Feb 145 1 10 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	If (we see 110 - AND PROFILE REQ. 10:62 10 R
	[ [ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
25	4 (NOTE: 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1
	AP to RP
	TP S 2 - SPADO LOTTE & ELOH B. CHURO TO ME
	S. CORMAT (GASORD MOST MASSACRATION MOST MOST / GASORD MOST MOST MOST MOST MOST MOST MOST MOST
9	1F0,5/6x,+4p =0,F4.8/]
	60 TU 162 61 TP 2 1 65em2 6 TP 2 1 65em2
	Open 10 s qCG y
	Ande a Taesqu
÷.	SIGN BY TOOLS.
	Box & -80-(18(-86))
	RPY & RPOCOS (METAF)
	CALL CENTER (BANDS - NOS - REALS - NOS - N
2	7 TFP m 1 05.4MO
	ADDR = BESSEND

Computer program BRITSID (cont)

	ROP = ND + AODP
¥	#E12P # 119/12-69P
	RPX a PD-SIN (BETAP)
	RPY & GESCOS(HETAP)
	CALL CENTERIANDS ROFS ROFS APS TO CAPS CYPS
٥	9 HHOD = .625eHOD
	TO B OF THE STATE
	# E service
	₩0 ₹0 102
4	9 ITP = 1.25eMgD
	CHARACTER A GOLD
	ROP 11 AP + ADDP
	WEIGH & HEALL CONT.
78	APA a sepecial (sepan)
	CALL CENTRACE HOW REAL PROTECTION
	60 10 10
*	19 1F = 1,256400
	004875   3 QXXX
	FOR * RP + ADP
	UETAP # TEP/12. 00P;
	Carlot and the carlot
•	NET IN STRUCTURE AND THE WAS THE THE TABLE TO THE TABLE TABLE THE TABLE THE TABLE TABLE THE TABLE
	160 MATE (6.481; RP. AD-SHOP, PP. NP-7 PP-CAP
	101 FORMATCHAIGHD -C.P.B. 2/641648 BENEFASTAKAFRIND COSTACKAKATE NO.
•	AFR A.
	3
	C MESH STARTING TEST
	ie a state a pe
9.6	GAMMAG & ASIN (RH-Q6/A8)
	TEFE ARCSINGARIANE
	IS a R & SHAIL (FOTO & BIND FINAL) IF (a . It . TFC   GA   10   10   10   10   10   10   10   1
	163 MAITE(6,184)
2	164 FORMATIASA MESTAS IN MORMAL MANEESES
	FIGTOR *#E. 0160 TO 1006
	165 WITE(6.66)
	116 FORMATISALEMECE BEGINS MITH FLAT ON ROUMDES
	IF(1STCP -NE. 0)60 TO 1000
	3098 510p

Computer program BRITSTD (cont)

SummouTI	SHROWING CENTER 18/18 OFFEL PAGE 1
-	SUBREUTINE CENTER INHO, BOTH X SHY, BAST, CX, CV)
	A # RYCHRIG - ROAR - RYARY B # RWG-RHG - RXARA - RYARY
8	D = 2.e(0 u Ry)
	ROOT E SARTICOD - ROEFFINES - 10-00-EFFINESFINESFINESFINESFINESFINESFINESFIN
:	CY2 = (=COD#ROFEEE = ROOT)/(DeDvEeE)
	\$ 1.7 × 3.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7 × 4.7
	יין לא אין נון אין אין אין אין אין אין אין אין אין אי
15	A = SQRT(CRCC+CFCY)
	METURA END

a)
네그건
ब्राम्यय

CAPRP = .4727
AG = .47343
AHG = .47343
AHG = .04857
TG = .09091
AP = .09083
AP = .09083
TP = .02382
HP = .84
TP = .02382
TP = .02382
TP = .00386
CYP = .00386

MFSH BEGINS IN NORMAL MANNER

PSURD = 65. F = 1.465 FR = 2.160 PROFILE = 2. CAPRP = .20769 AG = .20559 RHOG = .01323 IG = .02439 NG = 27. ITG = .02415 CXG = .02415 CXG = .02415 CYG = .02617 RP = .06923 AP = .06923 AP = .06917 IP = .01613 NP = 9.0613 MFSH BEGINS IN NORMAL MANNER

Psurn = 77.

F = 1.463 FR = 2.740 PROFTLE = 2. AG = 17355 RHOG = 02405 TG = 02058 NG = 27

NG = 27. TTG = .0203 CXG = .0177CYG = .1726 RP = .05844
AP = .05839
RHOP = .009
TP = .01342
NP = 9.

HESH REGINS IN NORMAL MANNER

Computer program BRITSID (cont)

PSUBD # 50c	FR = 2.1tl	. 555ec	AG # 554556	16 x 60375	TTG # 03140	AP & .04000	١ -	1	CXP = 00352	"							

Computer program BRITSTD (cont)

### REFERENCE

- C-1 British Standard No. 978 for Gears for Instruments and Clockwork Mechanisms, Part 2, Cycloidal Type Gears (1952).
- C-2 G.G. Lowen, City College of N.Y., and F.R. Tepper, ARRADCOM, "Fuze Gear Train Analysis," Technical Report ARLCD-TR-79030, ARRADCOM, Dover, NJ, December 1979.

APPENDIX D

COMPUTER PROGRAM CLOCK3 (REVISED)

The original program descriptions were given in appendix I of Fuze Gear Train Analysis (ref D-1). The following appendix contains revised descriptions, listings and sample outputs of computer program CLOCK3, which computes point and cycle efficiencies for three pass clock gear trains in a spin environment.

The following changes were made:

- 1. The diametral pitches of all three meshes are given as data and are printed in the output.
- 2. The initialization parameters J are introduced. They are given as part of the data and are listed in the output. These parameters allow the initial points of contact of the three meshes to be chosen at arbitrary points within the ranges of possible contact points.

The kinematics of computer program CLOCK3 is based on the work in appendix G (ref D-1), while the moment input-output relationships are derived in appendix H (ref D-1). Even though the fuze related geometry produces different expressions for the various meshes, the kinematic computations of the individual meshes are very similar to those shown in computer program CLOCK1 in appendix F (ref D-1) for the single mesh in the standard position. It is also assumed that all three meshes will have been tested by computer program CLOCK1 (ref D-1) for their geometric suitability, i.e., whether there is enough room for tip radii.

### Input Parameters

The following parameters represent the input data for the program (for explanations and nomenclature, see appendixes C and F, reference D-1):

PSUBD1, PSUBD2, PSUBD3 =  $P_{d1}$ ,  $P_{d2}$ ,  $P_{d3}$ 

MU, coefficient of friction

RPM, spin velocity

CAPRP1, CAPRP2, CAPRP3, RP2, RP3, RP4, pitch radii of gears and pinions with nomenclature of figure G-1 (ref D-1)

RHOG1, RHOG2, RHOG3, RHOP1, RHOP2, RHOP3, radii of curvature of circular arc portion of gear and pinion teeth

ACG1, ACG2, ACG3 $^{D-1}$  =  $a_{CG1}$ , distance from the center of rotation of the gear of the ith mesh to the center of curvature of the circular arc portion of the gear tooth. (Unless otherwise noted, this and all following numbering schemes refer to those associated with the mesh mechanics as given in the text of appendixes G and H of reference D-1).

ACP1, ACP2, ACP3 =  $a_{\rm CP1}$ , distance from the center of rotation of the pinion of the ith mesh to the center of curvature of the circular arc portion of the pinion tooth

R1, R2, R3, R4 = 6, (nomenclature of fig. G-1, ref D-1)

TG1, TG2, TG3, TP1, TP2, TP3, maximum thicknesses of gear and pinion teeth (mesh nomenclature)

NG1, NG2, NG3, NP2, NP3, NP4, numbers of teeth in various gears and pinions (nomenclature of fig. G-1, ref D-1)

RH01, RH02, RH03, RH04, gear and/or pinion pivot radii (nomenclature of fig. G-1, ref D-1)

M1, M2, M3, M4, masses of gear and/or pinion combinations

 $MD = md^2$ , see appendix A of this report

K, range divisor

Jl, J2, J3, initialization parameters

The angular velocity of the input gear is incorporated into the program as PHDOTI = 1. All velocity computations are based on this model. The input motion in the fuze gearing model is negative (fig. G-1, ref D-1).

Computations

Computation of Gear Tooth Parameters

The tooth parameters of the gears and pinions of all three meshes are first computed. These computations are essentially the same as those shown in computer program CLOCK1 (ref D-1) for a single mesh. Certain parameters are omitted because they have been checked separately by using computer program CLOCK1 (ref D-1) and are not required for the kinematics of computer program CLOCK3 (ref D-1).

 $^{^{}D-1}$ Since many parts of the computer program were written before the nomenclature for these distances was changed in the report from acci and acri to aci and api, there is a certain discrepancy between the program and the report.

In addition, the pivot to pivot distances B1, B2 and B3 are obtained.

Computation of MIN, GAMMAS and BETAS

To begin with, the program computes the input moment

$$MIN = M_{in} = md^2 \omega^2$$
 (D-1)

Subsequently, the angles  $\gamma_2$ ,  $\gamma_3$ ,  $\gamma_4$  and  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$  are established according to the expressions of appendix A (ref D-1).

Computation of Other Parameters

The angles  $\Delta \phi$ , and  $\Delta \psi$ , between the centerlines of adjacent gear and pinion teeth, respectively, are determined in this section of the computations. In addition, the lengths  $L_1$  are found (equations G-7, G-53 and G-88, ref D-1). Finally, the centrifugal forces  $Q_1$ ,  $Q_2$ ,  $Q_3$  and  $Q_4$  are computed according to equations H-65, H-46, H-25 and H-6 (ref D-1), respectively.

Preliminary Computations for Mesh 1

Determination of Transition Angle. The primary consideration for determining the transition angles in the fuze related clock gear meshes is identical with that used in appendix F (ref D-1). The transition angle  $\psi_{\rm T}$  is established as that angle for which, depending upon whether the input angle  $\phi$  has counterclockwise or clockwise motion, a small increase or decrease in  $\phi$ , respectively, will cause the associated value of g to become smaller than its transition value  $f_{\rm p}$ . Since the gear mesh I turns in a clockwise direction, the above increment of  $\phi$  will be negative.

The program uses this criterion in the following manner:

- 1. Transition angles  $\psi_{1\,T1}$  and  $\psi_{1\,T2}$  are computed according to equation G-39 (ref D-1).
- 2. The subroutine TRANS1 (which is valid for meshes in which the input gear has clockwise rotation, as is the case also for mesh 3) is called, and the angle  $\phi_{1T1}$  (PHIT), which is associated with  $\psi_{1T1}$ , is computed with the help of equations G-40 and G-41 (ref. D-1).
- 3. The angle  $\phi$  is made slightly smaller than  $\phi_{1T1}$  to produce the angle PHINEXT, and equation G-29 (ref D-1) is used to find the associated angle PSINEX. Since there are two such angles, the subroutine selects the one which is

closest in value to the transition angle  $\psi_{1\,T_1}$  . Subsequently, the associated value of  $g_{1\,1}$  is computed according to equation G-27 (ref D-1).

- 4. Steps 1 and 2 are then repeated identically for the second transition angle  $\psi_{1m2}$ . This results in the determination of  $g_{12}$ .
- 5. Control returns to the main program, and that value of  $\psi_{1T}$  is chosen for which the associated value of  $g_1$  is smaller than  $f_{\rm pl}$ .

For checking, a subsidiary test, which is similar to the one shown in appendix F (ref D-1), is added to the program. It is based on the idea that, for the correct transition angle  $\psi_{1,T}$ , the line representing the flat portion of the pinion will make a smaller angle with the centerline  $O_1O_2$  than will be the case for the incorrect one. TEST11 and TEST12 find these angles with the help of the expressions shown below. These expressions hold for all values of  $\beta_1$  and make use of a new variable  $\psi_{1,T}$  which had to be introduced since the tests require that the transition angles be expressed in a range between -180° and +180°. Thus,

For  $0^{\circ} < \psi_{\text{test}} < 180^{\circ}$ 

TESTI1 = 
$$\pi - \beta_1 + \psi_{test} - \alpha_{Pl}$$
 (D-2)

For -180°  $< \psi_{\text{test}} < 0$ °

TEST12 = 
$$\pi + \beta_1 - (\psi_{test} + 2\pi - \alpha_{p1})$$
 (D-3)

To determine the angle  $\psi_{\text{test}}$ , let

$$\psi_{\text{test}} = \psi_{1\text{T}} \text{ if } -180^{\circ} < \psi_{1\text{T}} < 180^{\circ}$$
 (D-4)

$$\psi_{\text{test}} = \psi_{1\text{T}} + 2\pi \text{ if } \psi_{1\text{T}} < -180^{\circ}$$
(D-5)

$$\psi_{\text{test}} = \psi_{1T} - 2\pi \text{ if } \psi_{1T} > 180^{\circ}$$
 (D-6)

Determination of Correct Sign for Round on Flat Regime. The sign preceding the square root in equation G-29 (ref D-1), for the round on flat regime, is determined with the help of  $\phi_{1T}$ . The condition yielding that angle  $\psi_{1T}$  which is closest to the angle  $\psi_{1T}$  governs. The variable SIGNIF is used for the sign in question.

Computation of Latest and Earliest Possible Values of  $\phi_1$  and  $\psi_1$ . The latest and earliest possible values of the gear and pinion angles  $\phi_1$  and  $\psi_1$ , respectively, are found by continuously evaluating the round on flat regime equation G-29 (ref D-1), using the previously determined value of SIGNIF, and simultaneously checking the contact condition for the subsequent set of teeth as given by equation G-46 (ref D-1). This loop is initiated at the transition angle  $\phi_{1:T}$ , and it is terminated when the condition of equation G-46 (ref D-1) is met. This allows the determination of the angles PHIIF and PSIIFF, at which the first set of teeth loses contact, as well as of the angles PHIII and PSIII at which the second set of teeth simultaneously comes into engagement. The earliest possible engagement angles PHIII and PSIII are obtained by adding  $\Delta\phi_1$  to the loss of contact angle PHIIF and PSIIFF represent the latest possible values of  $\phi_1$  and  $\psi_1$ .)

Determination of Correct Sign for Round on Round Regime. Equation G-12 (ref D-1) is used to determine the angle  $\psi_1$ , while the gear and pinion are in the round on round regime. The correct sign for this expression is obtained by comparing the value  $\psi_1$ , as computed with PHIII, with the value for PSIII. SIGNIR is the variable used for the desired sign.

Preliminary Computations for Mesh 2

Determination of Transition Angle. The primary criterion for determining the transition angle is again similar to that used in appendix F (ref D-1) and described earlier for mesh 1.

- 1. Transition angles  $\psi_{2T1}$  and  $\psi_{2T2}$  are computed according to equation G-79 (ref D-1).
- 2. The subroutine TRANS2, which is valid for meshes in which the input gear has counterclockwise rotation, is called, and the angle  $\phi_{2T1}$ , which is associated with  $\psi_{2T1}$  is computed with the help of equations G-80 and G-81 (ref D-1).
- 3. The angle  $\phi_2$  is made slightly larger than  $\phi_{2T1}$  to produce the angle PHINEXT, and equation G-71 (ref D-1) is used to find the associated output angle PSINEX. Since there are two such angles, the subroutine selects the one which is closest to the transition value  $\psi_{2T1}$ . Subsequently, the associated value of  $g_{21}$  is computed according to equation G-69 (ref D-1).

 $^{^{}D-2}$ As in appendixes A and B, the actual initial contact does not necessarily coincide with the earliest possible one. Again, use is made of the initialization parameters  $J_4$  (i = 1, 2, 3).

- 4. Steps 2 and 3 are then repeated identically for the second transition angle  $\psi_{2T2}$ . This results in the determination of  $g_{22}$ .
- 5. Control returns to the main program, and that value of  $\psi_{2T}$  is chosen for which the associated value of  $g_2$  is smaller than  $f_{\pi^2}$ .

The procedure for the associated subsidiary test for the transition angle is similar to that for mesh 1 and is given by:

For 0° 
$$< \psi_{test} < 180°$$

TEST21 = 
$$\pi - \beta_2 + \psi_{\text{test}} + \alpha_{\text{P2}}$$
 (D-7)

For  $-180^{\circ} < \psi_{\text{test}} < 0^{\circ}$ 

TEST22 = 
$$\left|\beta_2 + \pi - (\psi_{\text{test}} + 2\pi + \alpha_{\text{P2}})\right|$$
 (D-8)

To determine the angle  $\Psi_{\text{test}}$ , let

$$\psi_{\text{test}} = \psi_{2T} \text{ if } -180^{\circ} < \psi_{2T} < 180^{\circ}$$
 (D-9)

$$\psi_{\text{test}} = \psi_{2\text{T}} + 2\pi \text{ if } \psi_{2\text{T}} < -180^{\circ}$$
 (D-10)

$$\psi_{\text{test}} = \psi_{2\text{T}} - 2\pi \text{ if } \psi_{2\text{T}} > 180^{\circ}$$
 (D-11)

Determination of Correct Sign for Round on Flat Regime. The sign preceding the square root in equation G-71 (ref D-1), for the round on flat regime, is determined with the help of  $\phi_{2T}$ . The condition yielding that angle  $\psi_{2T}$  which is closest to the angle  $\psi_{2T}$  governs. The variable SIGN2F is used for the sign in question.

Computation of Latest and Earliest Possible Values of  $\phi_2$  and  $\psi_2$ . The latest and earliest possible values of the gear and pinion angles  $\phi_2$  and  $\psi_2$ , respectively, are found by continuously evaluating the round on flat equation G-71 (ref D-1), using the previously determined value of SIGN2F, and simultaneously checking the contact condition for the subsequent set of teeth, as given by equation G-86 (ref D-1). This loop is initiated at the transition angle  $\phi_{27}$  and is terminated when the condition of equation G-86 (ref D-1) is met. (Recall that in meshes 1 and 3 the driving gear turns clockwise, while in mesh 2 it turns in a counterclockwise direction.) This allows the determination of the two angles PHI2F and PSI2FF at which the first set of teeth loses contact as well as of the angles PHI2I and PSI2I at which the second set of teeth simultaneously comes into contact. The earliest possible engagement angles PHI2I and PSI2I are obtained by

subtracting  $\Delta\phi_2$  from the loss of contact angle PSI2F and by adding  $\Delta\psi_2$  to the loss of contact angle PSI2FF. (PHI2F and PSI2FF represent the latest possible values of  $\phi_2$  and  $\psi_2$ .)

Determination of Correct Sign for Round on Round Regime. Equation G-58 (ref D-1) is used to determine the angle  $\psi_2$  while the gear and pinion are in the round on round phase of motion. The correct sign for this expression is obtained by comparing the value of  $\psi_2$ , as computed with PHI2I, with the previously obtained value for PSI2I. SIGN2R is the variable used for the desired sign.

Preliminary Computations for Mesh 3

Determination of Transition Angle. The determination of the transition angle for mesh 3 runs along parallel lines to the one shown for mesh 1 since the driving gear also rotates in a clockwise direction. In all cases, the parameters of appendix G (ref D-1) are used.

- 1. Transition angles  $\psi_{3T1}$  and  $\psi_{3T2}$  are computed with the help of equation G-99 (ref D-1).
- 2. The subroutine TRANS1 determines the angle  $\phi_{3T1},$  associated with  $\psi_{3T1},$  to equations G-100 and G-101 (ref D-1).
- 3. PHINEXT, which is now obtained by a decrease of the angle  $\phi_3$  from  $\phi_{3T1}$ , serves as the input variable of equation G-94 (ref D-1), and is used to determine PSINEX. Appropriate controls, as described before, determine the angle  $\psi_{3T1}$ . In addition, the associated value of  $g_{31}$  is computed with the help of equation G-95 (ref D-1).
- 4. Steps 2 and 3 are again repeated for the second transition angle  $\psi_{3\,m2}$  and  $g_{2\,2}$  is determined.
- 5. After control is returned to the main program, that value of  $\psi_{3\,T}$  is chosen for which the associated value of  $g_3$  is smaller than  $~f_{p3}.$

The subsidiary test for the transition angles runs parallel to that described for mesh 1, i.e.,

For 0°  $< \psi_{\text{test}} < 180$ °

TEST31 = 
$$\left| \pi - \beta_3 + \psi_{\text{test}} - \alpha_{\text{P3}} \right|$$
 (D-12)

For  $-180^{\circ} < \psi_{\text{test}} < 0^{\circ}$ 

TEST32 = 
$$\pi + \beta_3 - (\psi_{test} + 2\pi - \alpha_{p3})$$
 (D-13)

To determine the angle  $\psi_{test}$ , let

$$\psi_{\text{test}} = \psi_{3\text{T}} \text{ if } -180^{\circ} < \psi_{3\text{T}} < 180^{\circ}$$
(D-14)

$$\psi_{\text{test}} = \psi_{3T} + 2\pi \text{ if } \psi_{3T} < -180^{\circ}$$
(D-15)

$$\psi_{\text{test}} = \psi_{3\text{T}} - 2\pi \text{ if } \psi_{3\text{T}} > 180^{\circ}$$
 (D-16)

Determination of Correct Sign for Round on Flat Regime. The sign preceding the square root in equation G-94 (ref D-1), for the round on flat regime, is determined with the help of the angle  $\phi_{3m}$ . The condition yielding that angle  $\psi_{3T}$  which is closest to the angle  $\psi_{3T}$  will govern. The variable SIGN3F is used for the sign in question.

Computation of Latest and Earliest Possible Values of  $\phi_3$  and  $\psi_3$ . The latest and earliest possible values of the gear and pinion angles  $\phi_3$  and  $\psi_3$ , respectively, are found by continuously evaluating the round on flat regime equation G-94 (ref D-1), using the previously determined value of SIGN3F, and simultaneously checking the contact condition for the subsequent set of teeth, as given by equation G-102 (ref D-1). This loop is initiated at the transition angle  $\phi_3$  and it is terminated when the condition of equation G-102 (ref D-1) is met. This allows the determination of the two angles PHI3F and PSI3FF at which the first set of teeth loses contact as well as the angles PHI3I and PSI3I at which the second set of teeth simultaneously comes into contact. The earliest possible engagement angles PHI3I and PSI3I are obtained by adding  $\Delta\phi_3$  to the loss of contact angle PHI3F and PSI3FF represent the latest possible values of  $\phi_3$  and  $\psi_3$ .)

Determination of Correct Sign for Round on Round Regime. Equation G-87 (ref D-1) is used to determine the angle  $\psi_3$  while the gear and pinion are in the round on round phase of motion. The correct sign for this expression is obtained by comparing the value of  $\psi_3$ , as computed with PHI3I, with the previously obtained value for PSI3I. SIGN3R is the variable used for the desired sign.

Gear Train Motion Model: Initial Contact Angles, Point and Cycle Efficiency. The simulation of the gear train model, which is necessary for the computation of both POINTEF and CYCLEFF, is found in a loop, starting with statement label no. 29 (card no. 459) and ending with card no. 824. The motions of the individual driving gears are initialized at the angles PHI1, PHI2 and PHI3, respectively, with the help of the initialization parameters J, according to

$$\phi_i = \phi_{iT} + J_i (\phi_{iF} - \phi_{iT}) (i=1,2,3)$$
 (D-17)

The additional parameter  $J_4$  is set equal to zero to mark the first cycle of computations (see statement no. 456).  $J_4$  becomes equal to unity for all subsequent computations (see statement no. 823).

The parameter  $J_5$  is used to distinguish between the two possible contact conditions of mesh no. 1.  $J_5=0$  whenever the first set of teeth is in contact.  $J_5=1$  once the latest possible value of  $\phi_1$  has been reached, and contact must be transferred to the second set of teeth in order to obtain a complete cycle of motion for this mesh.  $J_5=0$  at all times if  $J_1=0$ , i.e., contact is made in mesh no. 1 at the earliest possible point.

The meshes will be in round on round contact until they reach their respective transition angles PHILT, PHI2T and PHI3T. Once the transition angles are passed, the meshes will be in round on flat contact. These regimes continue until the latest possible angles PHILF, PHI2F and PHI3F are reached.

The increment DDPHII of the angle PHII of the input gear 1 is obtained from an adaptation of equations A-211 and A-213 (ref D-1), in which tooth numbers, rather than base circle radii, are used. The increment DDPHI2 of gear 2 is related to the increment of the pinion angle PSI1. Similarly, the increment DDPHI3 is obtained with the help of the pinion angle PSI2.

While the motion of gear l is terminated when the angle PHII reaches one increment before its starting angle, both gears 2 and 3 must be reset to their respective earliest angles whenever they have reached PHI2F and PHI3F, respectively.  $^{D-3}$ 

The appropriate choice of moment equation depends upon which of the eight possible combinations of contact conditions, as indicated by table H-1 (ref D-1), is applicable.

The following discusses the kinematics of the individual mashes as well as the determination of the point and cycle efficiencies in greater detail.

### Kinematica.

### 1. Mesh 1

Depending on whether PHII is larger or smaller than PHIIT, the parameters of the round on round or the round on flat regime are computed. (Recall that gear I turns in a clockwise direction.)

 $^{^{}D-3}$ If  $J_1 = 0$ , the computation is terminated for PHI1 < PHI1F + DDPHI1. If  $J_1 > 0$ , and, therefore,  $J_5 = 1$ , computation is terminated when PHI1 < PHI1A + DDPHI1. In the above, PHI1A represents the starting angle of mesh 1 in the manner of equation D-17. (See statement no. 454.)

For the round on round phase, the following calculations are made:

 $\psi_1,$  according to equation G-11 (ref D-1), and with the help of the previously determined SIGNIR

 $\lambda_1$ , according to equation G-13 and G-14 (ref D-1)

 $\dot{\Psi}_1$ , according to equation G-15 (ref D-1)

 $V_{\rm S1/Tl_p}$ , according to equation G-20 (ref D-1)

 $\mathbf{s}_{1R}$ , according to equation H-1 (ref D-1) as adapted to mesh 1

For the round on flat phase, the following calculations are made:

 $\psi_{1},$  according to equation G-29 (ref D-1) and with the help of the previously determined SIGNIF

g1, according to equation G-27 (ref D-1)

 $\dot{\psi}_1$ , according to equation G-30 (ref D-1)

 $V_{\rm Sl/Tl_m}$ , according to equation G-33 (ref D-1)

 $s_{1F}$ , according to equation H-2 (ref D-1) as adapted to mesh 1

### 2. Mesh 2

The increment DDPHI2, for each round of computations, is obtained with the help of the change in the angle  $\psi_1$  between the present and the previous computation, i.e., as shown at statement label no. 31:

$$DDPH12 = PS11 - PS11P (D-18)$$

For the first round of computations, the previous  $\psi_1$ , i.e., PSIIP, is equal to that PSII which corresponds to PHIIA.

It must be recalled that gear 2 rotates in a positive direction, and therefore, the angle  $\phi_2$  increases with continued motion. The angle PHI2 is reindexed to PHI2I once it becomes larger than PHI2F.

As for mesh 1, comparison with the transition angle decides whether the mesh is in the round on round or in the round on flat regime.

The following round on round parameters are calculated:

 $\psi_2,$  according to equation G-58 (ref D-1), and with the help of the previously determined SIGN2R

 $\lambda_2$ , according to equations G-59 and G-60 (ref D-1)

Note that the input anglular velocity for mesh 2, i.e.,  $\tilde{\phi}_2,$  equals the momentary value of  $\tilde{\psi}_1$  .

 $\dot{\psi}_2$ , according to equation G-61 (ref D-1)

 $V_{\rm S2/T2_p}$ , according to equation G-63 (ref D-1)

 $\mathbf{s}_{2R}$ , according to equation H-1 (ref D-1), as adapted to mesh 2

For the round on flat phase, the following calculations are made:

 $\psi_2,$  according to equation G-71 (ref D-1), and with the help of the previously determined SIGN2F

g2, according to equation G-69 (ref D-1)

Again,  $\dot{\phi}_2$  equals the momentary value of  $\dot{\psi}_1$ 

 $\dot{\psi}_{2}$ , according to equation G-72 (ref D-1)

 $V_{S2/T2_w}$ , according to equation G-74 (ref D-1)

 $\mathbf{s}_{2F}$ , according to equation H-2 (ref D-1), as adapted to mesh 2

### 3. Mesh 3

The increment DDPHI3, for each round of computations, is obtained with the help of the change in the angle  $\psi_2$  between the present and the previous computation, i.e., as shown at statement label no. 33:

$$DDPHI3 = PSI2 - PSI2P (D-19)$$

For the first round of computations, the previous  $\psi_2$ , i.e., PSI2P, is equal to that PSI2 which corresponds to the initial value of PHI2, as obtained with the help of  $J_2$ .

Gear 3 rotates in a negative (clockwise) direction, and therefore, the angle  $\phi_3$  decreases with continued rotation. The angle PHI3, which represents this angle, is re-indexed to PHI3I once it becomes smaller than PHI3F.

As for meshes 1 and 2, comparison with the applicable transition angle decides whether the mesh is in the round on round or in the round on flat regime.

The following round on round parameters are calculated:

 $\psi_3, \mbox{ according to equation G-87 (ref D-1), and with the help of the previously determined SIGN3R$ 

 $\lambda_2$ , according to equation G-89 and G-90 (ref D-1)

Note that the input angular velocity for mesh 3, i.e.,  $\dot{\phi}_3$ , equals the momentary value of  $\dot{\Psi}_2$ .

 $\dot{\psi}_3$ , according to equation G-91 (ref D-1)

 $V_{83/T3_n}$ , according to equation G-92 (ref D-1)

s3R, according to equation H-1 (ref D-1) as adapted to mesh 3

For the round on flat phase, the following calculations are made:

 $\psi_3,$  according to equation G-94 (ref D-1), and with the help of the previously determined SIGN3F

g3, according to equation G-95 (ref D-1)

Again,  $\dot{\psi}_3$  is equal to the momentary value of  $\dot{\psi}_2$ .

 $\dot{\psi}_{3}$ , according to equation G-96 (ref D-1)

 $V_{\rm S3/T3_{H}}$ , according to equation G-97 (ref D-1)

 $s_{3F}$ , according to equation H-2 (ref D-1) as adapted to mesh 3

Moment Computations, Point and Cycle Efficiencies. Regardless of the combination of contact conditions, the point efficiency is computed according to equation 3 (ref D-1), i.e.,

$$\varepsilon_{\rm p} = \text{POINTEF} = K_{\rm RATIO} \frac{M_{\rm o}41}{M_{\rm in}}$$
(D-20)

where, with  $\phi_1 = -1$ ,

$$K_{RATIO} = |\vec{\psi}_3|$$
 (D-21)

The cycle efficiency determination is based on equation C-10 (ref D-1), which represents an adaptation of equation 4 (ref D-1):

$$\varepsilon_{C} = \frac{\Delta \phi_{1} \Sigma \varepsilon_{p}}{\phi_{1FIN} - \phi_{1IN}}$$
 (D-22)

The associated expression in the program, at statement label no. 45, becomes

where

$$MTOT = MTOT + POINTEF$$
 (D-24)

The moment computations begin with the statement label no. 35, and initially consist of the determination of the variables Al to A64 and Cl to C32, appendix H (ref D-1). The governing contact combination (table H-1, ref D-1) is determined with the help of the 8 moment control statements, which start with card no. 748. Once the appropriate combination is established, the program is directed to one of the 8 associated moment expressions. These expressions for M₀₄₁ coincide in nomenclature with those given by equations H-81, H-118, H-158, H-180, H-216, H-218, H-239 and H-241 (ref D-1). They are listed in the above order, beginning with statement label no. 36 and ending with statement label no. 43.

In devising the control statements, the manner of rotation of the individual mesh input gears had to be taken into account. Thus:

For mesh 3:

Round on round (R) corresponds to PHI3I > PHI3 > PHI3T Round on flat (F) corresponds to PHI3T > PHI3 > PHI3F

For mesh 2:

Round on round (R) corresponds to PHI2I < PHI2 < PHI2T
Round on flat (F) corresponds to PHI2T < PHI2 < PHI2F

### For mesh 1:

Round on round (R) corresponds to PHILI > PHIL > PHILT Round on flat (F) corresponds to PHILT > PHIL > PHILF

### Output

The output of the program is best explained with the help of the sample problem at the end of the program.

Input Parameters (first sets of gear data, appendix C)

### Mesh 1

CAPRP1	-	R., 1	= 0.47727	in.	(1.2122	cm)	PSUBD1		P _{d1} = 44
RP2	-	r _{p2}	<b>0.09091</b>	in.	(0.2309	cm)	J1	**	0.90
ACG1	•	a _{G1}	= 0.47343	in.	(1.2025	cm)			
ACP1	**	a _{P1}	= 0.09083	in.	(0.2307	cm)			
RHOG1	**	ρ _{G1}	= 0.04857	in.	(0.1234	cm)			
RHOP1	-	ρ _{P1}	- 0.01591	in.	(0.0404	cm)			
TG1	-	^t G1	- 0.03609	in.	(0.0917	cm)			
TP1	•	t _{P1}	- 0.02382	<b>1</b> n.	(0.0605	cm)			
NG1	-	n _{G1}	<b>-</b> 42						
NP2	-	n _{P2}	<b>=</b> 8						

### Mesh 2

CAPRP2 = 
$$R_{p2}$$
 = 0.20769 in. (0.5275 cm) PSUBD2 =  $P_{d2}$  = 65  
RP3 =  $r_{p3}$  = 0.06923 in. (0.1758 cm) J2 = 0.90  
ACG2 =  $a_{G2}$  = 0.20559 in. (0.5222 cm)  
ACP2 =  $a_{p2}$  = 0.06917 in. (0.1757 cm)

RHOG2 = 
$$\rho_{G2}$$
 = 0.03323 in. (0.0844 cm)

RHOP2 = 
$$\rho_{p2}$$
 = 0.01077 in. (0.274 cm)

$$TG2 = t_{G2} = 0.02438 \text{ in. } (0.0619 \text{ cm})$$

TP2 = 
$$t_{p2}$$
 = 0.01613 in. (0.0410 cm)

$$NG2 = n_{G2} = 27$$

$$n_{P3} = n_{P3} = 9$$

### Mesh 3

CAPRP3 = 
$$R_{p3}$$
 = 0.17532 in. (0.4453 cm) PSUBD3 =  $P_{d3}$  = 77

$$RP4 = r_{p4} = 0.05844 \text{ in. } (0.1484 \text{ cm})$$
 J3 = 0.90

$$ACG3 = a_{G3} = 0.17355 \text{ in. } (0.4408 \text{ cm})$$

ACP3 = 
$$a_{p3}$$
 = 0.05839 in. (0.1483 cm)

RHOG3 = 
$$\rho_{G2}$$
 = 0.02805 in. (0.0712 cm)

RHOP3 = 
$$\rho_{m3}$$
 = 0.00909 in. (0.0231 cm)

$$TG3 = t_{G3} = 0.02058 in. (0.0523 cm)$$

TP3 = 
$$t_{p3}$$
 = 0.01362 in. (0.0346 cm)

$$NG3 = n_{G3} = 27$$

$$NP4 = n_{PA} = 9$$

### In addition

$$MU = \mu = 0.2$$

M1 = 
$$m_1$$
 = 0.12 x 10⁻³ 1b-sec²/in. (2.101 x 10⁻² kg)

$$M2 = m_2 = 0.85 \times 10^{-5} \text{ lb-sec}^2/\text{in.} (1.488 \times 10^{-3} \text{ kg})$$

M3 = 
$$m_3$$
 = 0.34 x 10⁻⁵ 1b-sec²/in. (5.953 x 10⁻⁴ kg)

M4 = 
$$m_4$$
 = 0.15 x  $10^{-5}$  1b-sec²/in. (2.626 x  $10^{-4}$  kg)

R1 = 
$$6R_1$$
 = 0.225 in. (0.572 cm)

R2 = 
$$\Re_2$$
 = 0.436 in. (1.107 cm)  
R3 =  $\Re_3$  = 0.504 in. (1.280 cm)  
R4 =  $\Re_4$  = 0.520 in. (1.321 cm)  
RH01 =  $\rho_1$  = 0.062 in. (0.157 cm)  
RH02 =  $\rho_2$  = 0.025 in. (0.064 cm)  
RH03 =  $\rho_3$  = 0.018 in. (0.046 cm)  
RH04 =  $\rho_4$  = 0.016 in. (0.041 cm)  
MD = ind² = 0.275 x 10⁻⁵ 1b-sec²-in. (3.105 x 10⁻⁷ kg-m²)

### Computed Values

At the beginning of the output, one finds MIN =  $M_{in}$ . Subsequently, the following are listed for each mesh:

fpi, the length of the pinion flats

 $\beta_4$ , the fuze body pivot to pivot line angles

 $\psi_{\mathbf{T}_{\mathbf{1}}}$  and  $\phi_{\mathbf{T}_{\mathbf{1}}}$  , the transition angles

 $\varphi_{\mbox{\scriptsize I}\mbox{\scriptsize I}\mbox{\scriptsize I}}$  and  $\psi_{\mbox{\scriptsize I}\mbox{\scriptsize I}}$  , the earliest angles

 $\phi_{F,i}$  and  $\psi_{F,i}$  , the latest angles

Finally, for the full range of the input angle  $\phi_1$ , the point efficiency POINTEF is listed, in addition to other parameters which are useful for checking purposes. Note that DPSI1, DPSI2 and DPSI3 represent  $\psi_1$ ,  $\psi_2$ ,  $\psi_3$ , respectively. The cycle efficiency CYCLEFF is found at the end of the output.

### Computer program CLOCK3

	PROGRAM CLOCKS		74/74 OFT=1	FTN 4.6+420	07/35/79	Ě	06.15.34
-	•	PROGRAM	CLDCX3(1)P	PROGRAM CLOCK3(IMPUT.CUTPUT,TAPES=IMPUT,TAPEG=GUTPUT)	< 1	- (	
	<b></b>	POINT A	NO CYCLE EF AIN IN SPIN	POINT AND CYCLE EFFICIENCIES FOR THREE PASS CLOCK (OGIVAL) STEP UP GEAR TRAIN IN SPIN ENTINOMIENT	< < < \$ 5	N 60 41	
<b>L</b> O	u	REAL MU	LXI.LYI.LI.	MU, LAMOA1, LAMDA2, LAMOA3, MO4, MO41, MO42, NO343, MO49, MO45, MO35, MO3, MO53, MS3, LX1, LX1, LX1, LX2, LX3, LX3, LX3, LX2, LX3, LX3, LX2, LX3, LX3, LX3, LX3, LX3, LX3, LX3, LX3	A 104.5	W 60 L	
9		2N,M1,M2 1 PEAD (5 EEAD (5 1,ACP1,A	2%,81,82,823,84,8101,80 BEAD (5,61) PSUBD1,PSI EEAD (5,64) BU,RPBC.CAI 1,ACP1,ACP2,ACP3,ISTOP	2%,#T.#Z,#3,#4,#TOT.#D,1L1,1L2,L13,K.d1,d2,d3,d4,d5 READ (5,61) PSUBD1,PSUBD2,PSUBD3,#G1,RP2,NG2,*P3,NG3,NP4 READ (5,64) MU,PRW1,CAPRP1,CAPRP2,CAPRP3,RP2,RP3,RP4,ACG1,ACG2,ACG3 1,ACP1,ACP2,ACP3,ISTOP	V CCC	***	
iņ.		READ (5.82) READ (5.62) READ (5.63) READ (5.85) READ (5.85)	_	R1, R2, R3, R4 Mood, AHOG2, RHOG3, RHOP1, RHOP2, RHOP3 TG1, TG2, TG3, TP1, TP2, TP3 R1, R2, KG3, RH RHO1, RHC2, RHG3, RHO4, RD, K, J1, J2, J3	<<<<	2225	
2	,	Z=PI/186. OME:3A=8PM-2. OMZ=DMEGA+OMPHOOT1==1.	Z=PI/186. ONE:3A=8PH*2.*PI/60. ONZ=DNEGA*ONEGA PHOOT1==1.			2822	
8	<b></b>	CXG1=RY CXG1=RY DELG1=A	COMPUTATION OF GEAR TOO CXG1=RHOG1-TG1/2, DELG1=ASIN(CXG1/CAPRP1)	COMPUTATION OF GEAR TOOTH PARAMETERS CXG1=RHOG1-TG1/2. DELG1=ASIM(CXG1/CAPRP1)	<b>4444</b>	2222	
8		CEPT-RHUPT-1P DELPT-ASIM(CK GANNOTE-SIM(RA ALPHD:+GANNOTE FPI-ACPT-COS(	CZFT: RANDI-191/2. DELPT-ASIM(CXP1/RP2) GANNUP1-ASIM(RHQP1/RP2) ALPHOT-GANNUP1-DELP1 FP1-ACP1-CGS(GANNUP1) 81-CAPRP1-RP2	P2) /aP2) P1	~~~~	3366	
×		C4G2=RH D5LG2=RH CXP2=RH DELP7=A GABMP2=	CJC2-FHGG2-TC2/2. DELC2-ASIN(CXG2/CAPR?) CXP2-FHGP2-TP2/2. DELP2-ASIN(CXP2/RP3) GANND2-ASIN(RHGP2/RP3)	.kprp2] P33) (/RP3)		24848	
\$		FP2=ACP2+COS( B2=CAPRP2+RP3 CXG3=RHGG3-TG DELG3=ASIM(CX	FP2=ACP2+CDS(GMMP2) 82=CAPRP2+AP3 CXG3=RHDG3-1G3/2, DELG3=ASIM(CXG3/CAPRP3)	P2) J.PRP3)	<<<<	18625	
ā.		CXP3=RH DELP3=A GAMMP3= ACPHP3= FP3=ACP	CXP3=RHCP3-TP3/2, DELP2=ASIN(CXP3/RP4) GAMMP3-ASIN(RHCP3/RP4) ALPH23-GAMMP3-DELP3 FP3-ALP3-GAMMP3-DELP3	P4; //RP4] P3 P3	4444	22482	
S	uuu	83=CAPNP3+KPA COMPUTATION DI MIN=20+OMZ DELTA2+ACOS(()	63-CAPRP3-KP4 COMPUTATION OF MIN, MIN=40-OM2 DELTA2=ACOS((CAPRP)	63=C.PRP3+EP4 COMPUTATION OF MIN, GAMMAS AND BETAS NIN=:40-OM2 DELTA2=ACDS(((CAPRP1+RP2)+{CAPRP1+RP3}+R1+R1-R2+R2)/(2.+R1+(CAPRP1	. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	800-25	

Computer program CLOCK3 (cont)

8																																													
73	48	y 2	8	ת ה	9	62	3	3	9	67	8	9 6	? ;	7	73	7	73	9 5	- 6	6	8	5	2 6	3 2		98	6	8	2	8	5	6	<u> </u>	i d	8	6	8	8	0	5	202	200	50	106	
91/31/79	44	< <	٠.	< <	<	<	∢ •	< ∙	< <	<	⋖ :	< •	< <	<	<	⋖	⋖ :	< -	< 4	<	<	⋖ •	< <	<	۲ ۲	; ◄	<	•	<	٩	₹	<	< 4	< •	< •	4	<	⋖	⋖ :	<	≺ •	< <	<	<b>*</b>	
OPT=1 FTM_4.6+420	+RP21)} Delia=acos({{caphp2+RP3}+{caphp2+RP3}+R2+R3-R3+R2+R3+R2+C2+C2+C2+RP2}	+8P3))} DE.TA4=ACOS({{CAPRP3+RP4}*(CAPRP3+RP4}+R3*R3-R4*R4}/(2.*R3*(CAPRP3		GABELL2=ACOS((R1=R1+R2=R2=(CAPEP1+RP2)*(CAPRP1+RP2))/(Z.*K1*K2))	CARTSPEALUS (	CANTAP=ACOS ((R3-83-83-84-84-{CAPRP3+8P4)+(CAPRP3+8P4))/(2.+R3-84))	GANCLA = GANCZA3+GANNAP	DELTA2	3ET42=GAMMAA2+PI-DELTA3 3ET42=GAMMA2+BI-DELTA3	121/2	142/2	1/23/7	MRITE (6.65) PSUBDI,PSURDZ,FSUBDI,MIN,MULKFM.LAFRFI,CAFRFZ,CAFRFS, one to no ecc. ecc. ecc. ecc. acm acm acm.	NOTE: AND					(6.70) RHO1, RHO2, RHO3, RHO4, NO. R., PHODII, 41, 42, 44	(C.C.) Prints Detail Details D	_	COMPUTATION OF OTHER PARAMETERS	•	7. /WG1=Z	7 m Z A M / T	7. W.C.W	7./Mr.3×2	7.654.5		PHOP2	1940P3	-042	roll(2	CM2	Q12	AND THE PROPERTY OF THE PARCE OF		DETERMINATION OF TRANSITION ANGLE OF MESH 1		att=rhogi-cos(betai+alphpi)+fpi+sim(betai+alphpi)	BIT=-RHOGI • SIN(BETAT+ALPHP1)+FPT • COS(BETAT+ALPHP1)	CIT*(ACGI*ACGI-BROGI*BROGI-BI*BI*FFI)/(2.*BI)	XQD:(T=A1]•A1[+8][-6][-C]:•C]]	711EA1F30811MUTT] Y172=A1F-5Q4T(MODTT)	
3 74/74	1+RP21)} DELTA3=AC	+RP3)) DELTA4=AC	1+89411)	CAMPIA2=AC	GARRESPEAC GARRESSES	GANCAP = AC	C. M. C. A G.A.	BETAL = PI - DELTA2	3E T 4.2 = GAM	BETATO-RETAIN	BETA20=BETA2/Z	BETA39=BETA3,Z	WRITE (6.	RPZ.XP3.R	MALTE (6.					MALTE (D.		COMPUTATI		DPHI1=360./NG1=Z	7.7.4M/ .09E=11540	7=75M/-098=71Hd0	000 = 715 HO	7-50%/-00551H40	1 = SHOG1 + SHOP1	12=REDG2+RHOP2	L3=RHOG3+RHOP3	G1=31+R1+O82	02=52 • R2 • OH2	Q3=M3+R3+OM2	Q4=M1+84+CM2		MELLEIM	DETERMINA		A11=RHDG1	B1T=-PHOG	C1 T*( ACG1	ROOF 1 T-A1	Y112=A11	
PROGRAM CLOCKS	÷ -	<u>*</u> -	-		-	•								_							u	Ü	u															<b>,</b> ()	·	,					
	12				ပ္အ				23				2				2				9	}			ł	2				8	}				S.				8	;				ŝ	

8																																																					
67	107	108	109	9	111	112	113	114	115	115	11	118	119	20	121	122	123	124	125	126	127	128	129	136		5	3	3	2 0	9	5	Ċ	2 0	0 4	3	2	143	4	145	146	147	148	149	<u>5</u>	151	152	2 4	, u	ÿ	157	158	159	
97/18/10	•	4	<	-		<			•	•	. •	~	<	<	4	<	<	•	⋖	⋖	<	4	•	•	•	•	٠ <	٠.	۲ -	•	< <	•	٠.	< -	۲ -	. =	<	<	<	<	•	<	<	⋖	⋖	⋖・	< •	< <	٠ <	•	•	~	
6												~	. N	,						Ë	•					113	•												-														
													=							H						į	•												ES.														
2												<u> </u>	į	: i						11						-													D.														
6.4										1	:	1	- T	•						2						ě	Č												1		11	Ē									s		
FTN 4.6+420										3		,	,							61.2							9												DEC	į	2	A									2	)	
Ľ										•			, č							ğ						i	, ,												6.6	5	7	Ţ									8	}	
											7	,	7							ä						i	E												8	5	, ac	N/ BE									11		
						-	: 5		1 5	1				( )	٠.					Ü							3														200	35.	;							<b>7</b>			
						î			,	7	Ē	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֡֓֓֡	1	֓֞֜֞֜֜֞֜֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֟֓֓֓֓֓֓֡֓֜֓֓֓֓֡֓֡֓֡֓֡֡֡֡֡֡֡֓֡֓֡֡֡֡֡֡֡֡						Ċ						-	į							Ä	Ä				ě	¥ 7	è	1	•						•	7			
										7117	2 E	7	7	3						:							Ĭ							ç	÷2-				2	<u>.</u>	Š	-		110					- 1	115	7117	֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	
				_		6	1		7 1	2=2	1=AB	Z=45	1=AB	22.43		16.4			- 1	7							, E							H	2.5		•	2	i	7		4		115				Œ	Ξ,	1=75	2 :	<u> </u>	
		•	F .	1		150 6-21000-2000-2000		#51   E   1 = F 5   1   1 + 2 - 4   1	PSITE12=PSITIA-2-PT	PSITE12=PSITIZ+Z.*FI	E511	2	E51		101011111111111111111111111111111111111	P31112#P31112#		-		PSI1120,1E3112	Ì		N				Š		10 3					PHI1T=PHI1T+2.*PI	11=1			S			i			17.18				1. X.	2, X1	51.1F	5115	:	
Ţ		į		ž						Š	F (	F (	∓ i ∵	F ;					בַּיב	1120	۲.		8				₹. 5							F	PSI		•	2		Ē				11 F # 1	212	į		YIF	TIE.	₽.	~ !	ē	
0PT=1			22	2	-	2		d.	Id	4	ы. 19	۰ بیر	6 (	D .	9	0	7/1	17/2	SI	PSI			=				Ē		=					0	9	7	7	Ē	ì	ö Z		Ē	Ę	14.5	ă		•	AN2	1832	9	0	֡֝֟֝֟֝֟֝֝֡֟֝֝֡֟֝֡֟֝	
7.4		<u>.</u>	PS[11]=2.+ATAN2(V1:1.AT!)	PSI112=2 ATAN2(Y112, K11)	PS1:E11=PS1111	PSITE12=PSI1T2	(PSI111.G1.P1)	(FS1111. LT.P1)	(FSI112.GT.PI)	[PSI:T2.LT.PI)	(SITE!1.GE.O.) TEST1=ABS(FI-BEIAT+PSI)E11-ALFM-1)A	2	(DSITER: LT.O.) TESTITABON PLANCIAL [FULL FILL BANK AND	2	(PSI:11.LT.0.)	(251112.LT.0.)	7/11115d=Q111115d	PSI112D=PSI112/2	#ATTE (6,46) PSITITO, 155111	£,	21		IF (G11.GT.FP1) GG 10	111	1111		CALL TRANS! (RMOG: ALPHP1, BETA!, FP1, ACG; 61, DELU: . L. FS: . L. L. F.		IF (G12.LT.FP1) G0	MHITE (6.72)		PHI:T=PHI1T2	PSI1T=PSI1T2	7.17	IF (PSI1T.LT.O.)	PHI:TD=PHI11/Z	PSI110=PSI11/Z	WRITE (6,73) PHI1TD, PSI1TD		DETERMINATION OF CORRECT SIGN FOR ROUND OF TAX		AIF=ACG1 *COS(PHI11+DELG1+ALPH71)	7	CTF=RMCG1 000TrF=A1S+A1S+R1F+B1F+C1F=C1F	ACCOUNT AND ACCOUNT (BOOM 1F)	VIES=A1F-SORT(ROOT1F)	ن ا	PSI1F1=2. • ATAN2 (Y1F1, X1F)	PSI1F2=2. • ATAN2(Y1F2, K1F)	IF (PSI1F1.LT.0.) PSI1F1=PSI1F1+Z.*P1	(PSI1F2.LT.0.) PSI1FZ=PSI1FZ+2.*F1	. S	:
74/74		-81T+C1T	1=2.	2-2	1126	12=	2111	511	5111	:15	S118	Site	511	5:11	:15	115	<u> </u>	20*1	9	<u></u>	CALL TRANS1		211.	FILEX:111	PS:11=PSI1T1	4	TRA		512.	9 9		T=PH	T=PS	PHI	P511	T0=P	10 <u>-</u> 0	9		Z.		5		CTF=KHCGI			XIF-61F+C1F	£ 1=;	2	F51	3	IF (ABS)	-
		#11#	<b>SI11</b>	<b>SI11</b>	3:15	5176	1 ·			<u>ن</u>	<u>.</u>	<u></u>	ii.	: :	<u>.</u>	L.	SI	215	1	1111	ALL	1611)	<u>ت</u>	LIH	1150	4 57	SALL	1612)	31	1171	\$100	H	1154	JI.	11	Ë	126	114		DETE		A15.	119	֓֞֞֝֞֞֞֓֞֓֓֓֓֓֓֓֓֓֟֟ ֓֓֓֞֓֓֓֓֞֓֞֓֞֓֓֞֓֞֞֓֞֓֞֞֞֓֓֓֞֓֞֓֓֓֡	,		XIE	PSI	FSI	IF.	4		3
8		×	n.	a	a.	а.	-	-	-		_	_		_	_		•	_		_	_	Ĭ		_	_	_	~					М		7																			
<u>ت</u>																																							Ų	u	u												
PROGRAM CLGCK3																																																					
<u>a</u>																																																					
					0					ŝ	<u>}</u>				20					8					30					36	3				140	:				145				į	Š				155	}			

Computer program CLOCK3 (cont)

	PROGRAM CLOCKS	5	74/74	0PT=1		FTR 4	FTN 4.6+426	67/18/79	61/	08.15.34
166	UUK	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	J 6 1F=1. ST AND E	ARLIE!	BO TO G BIGNIF=1. LATEST AND EARLIEST POSSIBLE VALUES OF PHI AND PSI FOR	OF PHI AND PSI	FOR RESH 1	4444	160 161 162 163	
165	-	6 00 7 PHID PHII AIF	DO 7 I=1,2006 FHID1=PHI1ID-(I-1.)/100. PHI1=PHID1-2 A1F=ACG1*COS(PHI1*DELG1*	-(1-1)- (PHI1*	DO 7 I=1,200G FHIS1=PHIID-(I-1.)/10G. PHII=PHIB1.2 AIF=ACG1+COS(PHII+DELG1+ALPHP1)-B1=COS(BETA1+ALPHP1)	05(BETA1+AEPHP	5	<b>4444</b>	165 166 167 168	
0,1		2007 2007 217 217	E1F=-ACG1*SI C1F=RHDG1 ROGT1F=A1F*A Y1F=A1F+SIGH X1F=E1F+C1F	N(F91) 1F+91 1F*SQF	BIS=ACG:*SIN(F911+DELG:+ALPHP!)+B1*SIN(BETA:+ALPHP!) C:=RHDG: ROGITE=A1F*AIF+B1F*B1F*B1F-C1F*C1F XIE=B1F*GIGHIF*SQRI(RDGITF)	sin( betatalphi	<b>.</b>	4444	169 170 171 172	
175		PSI1F= 1F (PS LX1=81 1DELG1) LY1=91	PSIJF=2.*4JAN2(Y1F,X1F) IF (PSIJF.L1.0.) PSIJF= IF (PSIJF.L1.0.) PSIJF= DELG1) LY1-91*SIN(BETA1)+ACP1* LY1-91*SIN(BETA1)+ACP1*	M2(Y18 .0.) F ETA1)+ ETA1)+	PSIJF=2.*ATAN2(Y1F,X1F) IF (PSIJF_LT.0.) PSIJF=PSIJF+2.*PI JE (PSIJF_LT.0.) PSIJF=PSIJF+2.*PI DELG) LY1=g1*COS(BETA1)+ACP1*COS(PSIJF—DPSIJ+DELP1)-ACG1*COS(PHIJ+DPHIJ+ DELG) LY1=g1*SIN(BETA1)+ACP1*SIN(PSIJF—DPSIJ+DELP1)-ACG1*SIN(PHIJ+DPHIJ+	I1+DELP1}-ACG1: I1+DELP1}-ACG1:	•COS (PHI 1+DPHI 1-	44444·	174 175 176 177	
180	,,,,,	_	DELGI) DELGI) DELEJSQRT(LXI-LXI+LYI*LYI) DELEJI-LI IF (DELELJ-LE.O.) GO TO 8 COMTINUE	E.O.)	Y1*LY1) GO TO 8			<b>4444</b>	179 180 162 183	
185	-	PSI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7111F=7111 PS11FF=PS111 PHII:=PHIIF+DPHII PSIII:=PS111-LT.O.) PSII	DPHI1 -0PSI1	FF = PM			44444	185 185 186 188 188	
8	,	94 S	PSIIID=PSIII/Z PHITED=PSIIF/Z PSIIFD=PSIIFF/Z WRITE (6,74) PH	/2 /2 PH31]	SSIID=PSIII/Z PHIIFD=PHIIF/Z PSIIFD=PSIIFF/Z HAITE (6,74) PHIIID,PSIIID,PHIIFD,PSIIFD	11FD			190 192 193	
195	បប្	DETER ATR=1 BTR=1	MINATIGH NCG1+SIN NCG1+CDS	R OF C [PH11] [PH11]	OETERMINATION OF CORRECT SIGN FOR ROUND ON ROUND REGIME OF MESH AIR=ACG1*SIM(PHII1+DELG1-DELP1)-B1*SIM(BETA1-DELP1) BIR=ACG1*COS(PHII1+DELG1-DELP1)-B1*COS(BETA1-DELP1)	UND ON ROUND RICHARD SELPT	EGINE OF NESH 1	<b>4444</b>	194 195 196 198	
200		11A1) ROOT YIR2	CIR=(ACP1+ACP1+A TAA1)/(2ACP1) TAA1)/(2ACP1) VIRI=AIR+AIR+BI VIRI=AIR+SORI(ROGTIR) YIRZ=KIR-SQRI(ROGTIR)	P1+ACK P1) 1R+815 1 (ROO) 1 (ROO)	CIRE!ACP!ACP!+ACO!*ACG!+B!*B!-L!*L!-Z.*ACG!*B!*CUS[PHIIL+DELG!-BE TAT!)/(2.*ACP!) YOOT!R=A!R*SORT(ROOT!R) YIR1=A!R*SORT(ROOT!R)	-2.•ACG1•B1•CD	5(PH111-45ELG1-8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
205		PS127	PSIRESHRADA PSIRES - 47AMZ(Y181,X1R) PSIRES - 47AMZ(Y182,X1R) [F (PSIRELLIO.) PSIRES F (ABS(PSIRELLO.) PSIRES F (ABS(PSIRE) PSIRES	AN2(Y1 F.O.) F.O.) F.O.)	XINGER-CATANZ(YIRI,XIR) PSI:H2=2.*ATANZ(YIRI,XIR) PSI:H2=2.*ATANZ(YIR2,XIR) IF (PSI:R1-11.0.) PSI:R2=PSI:R1+2.*PI IF (PSI:R1-11.0.) PSI:R2=PSI:R2+2.*PI IF (PSI:R1-11.0.) PSI:R2-PSI:R2+2.*PI IF (PSI:R2-R2-R2)	1182)) 60 10	<b>5</b> 1	<b>44444</b>	20	
210	<b></b>	SIGNIR=- 60 TO 10 9 SIGNIR=1	SIGNIR=1. GO TO 10 SIGNIR=1.					444	222	

07/31/79 08.15.34	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A 211 / 212 / 213 / 214 / 220 / 222 / 222 / 222 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223 / 223	A 224 A 225 A 226 A 227	A 229 A 230 A 231 A 232	A 234 A 235 A 236 A 237	~ ~ ~ ~ ~	~ < < < < <	A 251 A 253 A 253 A 254 A 256 A 256	A 258 A 269 A 261 A 262 A 263 A 264 A 265
FTH 4.6+420	INESH 2 Angle of Nesh 2	+FP2+SIN(BETA2-ALPHP2) FP2+COS(BETA2-ALPHP2) 2+82-FP2+FP2)/(2.+82) 2T		PSIZI1.GT.Bl	TEST21=ABS(BETA2+PI-(PSITE21+2.*PI+ALPHP2))/Z TEST22=ABS(PI-BETA2+PSITE22+ALPHP2)/Z TEST22=ABS(BETA2+PI-(PSITE22+2.*PI+ALPHP2))/Z 'SIZIT=PSIZIT+2.*PI 'SIZI2=PSIZIZ+2.*PI	111/Z 12/Z 12/21	GZ1, GZ1.GT.FP2) GZ TO 11 17 (GZ1.GT.FP2) GZ TO 11 PRIZT=PHIZT1 PSIZT=PSIZT1 GZ TO 13 CZLL TRANSZ (BROGZ.ALPHP2,BETAZ,FP2,ACGZ.BZ,DELGZ,Z,PSIZTZ,PHIZTZ,	+2.*PI +2.*PI	PRIZID=PRIZIZ/Z BRITE (6.75) PHIZID.PSIZID DETERMINATION OF CORRECT SIGN FOR ROUGD ON FLAT REGIME OF MESH 2 A2F=ACG2*COS(PHIZI-DELG2-ALPHP2)+B2*COS(BETA2-ALPHP2) B2F=-ACG2*SIN(PHIZI-DELG2-ALPHP2)+B2*SIN(BETA2-ALPHP2)
:LOCK3 74/74 ОРТ=1	PRELIMINARY COMPUTATIONS FOR MESH 2 DETERMENATION OF TRANSITION ANGLE OF	10 A2T=-RHOG2+COS(BETAZ-ALPHP2)+FP2+SIN(BETAZ-ALPHP2) B2T=RHOG2+SIN(BETAZ-ALPHP2)+FP2+COS(BETAZ-ALPHP2) C2T=(ACG2+ACG2-RHOG2-BZ+B2-FP2+FP2)/(2.+B2) ROOT2T=AZT+AZT+B2T+B2T-C2T+C2T Y2TT=AZT+SQFT(ROOT2T) Y2T2-AZT+SQPT(ROOT2T)	r=e21+c21 [211=2.*ATAN2(Y2 [212=2.*ATAN2(Y2 [TE21=PS[21]	(PSIZII.GI.PI) P (PSIZII.LI.PI) P (PSIZIZ.GI.PI) P (PSIZIZ.LI.PI) P (PSITEZI.GE.O.)	າກາຽລ	TID=PSI2 T2D=PSI2 E (6.48) E (6.49) TRANS2	1621, 621, 67, FP2) GG TO 11 PH:21=FM:211 PS:21=FS:221 GC TO 13 11 CALL TRANS2 (RHOG2, ALPHP2, BE 162)	IF (G22.LT.FP2) G0 T0 12 WRITE (6,75) S10P 12 PHIZT=PHIZT2 PSIT=PSIZT2 13 IF (PHIZT-LT.0.) PHIZT=PHIZT+2.*PI IF (SYIZT-LT.0.) PSIZT=PSIZT+2.*PI	POLIZIO=PRIZIZZ PRIZIO=PRIZIZZZZ WRITE (6.75) PHIZIO.PSIZIO DETERMINATION OF CORRECT SIGN FOR ROUND ON FLAT REGIME A2F=ACGZ+COS(PHIZI-DELGZ-ALPHPZ)-B2+COS(BETAZ-ALPHPZ) B2F=-ACGZ+SIN(PHIZI-DELGZ-ALPHPZ)+BZ+SIN(BETAZ-ALPHPZ)
PROGRAM CLOCKS	00001								
	215	220	225	230	235	240	245	255	260

Computer program CLOCK3 (cont)

07/31/79 08.15.34	A 266 A 267 A 268 A 269 A 270 A 271	A 213 A 214 A 215 A 216 A 216 A 217	A 278 A 280 A 281 A 282	A 283 A 285 A 285 A 286 A 286 A 286	A 289 A 291 A 292 A 293	44444	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	
FTN 4.6+420		[21] GO TO 14	PHI AND PSI FOR WESH 2	(8ETAZ-ALPHP2) M RETAD-ALPHP2)		IF (PSI2F.LT.O.) PSI2F=PSI2F+2.*PI LX2=62*COS(BETA2)+ACP2*COS(PSI2F+DPSI2-DELP2)-ACG2*COS(PHI2-DPHI2- DELG2) LY2=62*SIN(BETA2)+ACP2*SIN(PSI2F+DPSI2-DELP2)-ACG2*SIN(PHI2-DPHI2- DELG2)			e	DETERMINATION OF CORRECT SIGN FOR ROUND ON ROUND REGIME OF MESH 2 A2R=82*SIN(BETA2*DELP2)-ACG2*SIN(PHI2I-DELG2*DELP2) 82A=82*CUS(BETA2*OELP2)-ACG2*CUS(PHI2I-DELG2*DELP2) C2R=(L2*L2-82*82-ACG2*ACG2-ACP2*ACP2+2.*ACG2*82*CUS(PHI2I-DELG2-BE
0PT=1	C2F=-RHJG2 RG012F=AZF+AZF+BZF+BZF-EZF•C2F Y2F1=AZF+SGRT(RG012F) Y2F2=AZF-SGRT(RCG1ZF) X2F5BZF+C2F PSIZF1=C2+ATAN3(Y2F1, XZF) PSIZF1=2-*, TAN3(Y2F1, XZF)	F   FSIZF1.LT.0.  PSIZF1=PSIZF1+2.*PI   F   FSIZF2.LT.0.  PSIZF2=PSIZF2+2.*PI   F   FSIZF2.LT.0.  PSIZF2=PSIZF2+2.*PI   F   FSIZF2.LT.0.  PSIZF2-PSIZT)  GO TO 14   FSIZF2.PID=PSIZF1/2   FSIZF2.PID=PSIZF2/Z	SIUNZFET. GG TG 15 SIGNZFE1. LATEST AND EARLIEST POSSIBLE VALUES OF PHI AND PSI FOR MESH	DQ 16 I=1,1000 PHIC2=PHIC2+Z AZF=ACG-COS(PHIZ-DELGZ-ALPHPZ)-BZ+COS(BETAZ-ALPHPZ) ASF=ACG-COS(PHIZ-DELGZ-ALPHPZ)-BZ+CIM(BETAZ-ALPHPZ)	C2FRHDG2 RDG12F-A2F-A2F-B2F-C2F-C2F YZF-A2F-SIGNZF-SQRT(RDG12F) FSI2F-SZ-AAN2(V2F, X2F)	IF (PSIZF.LT.Q.) PSIZF=PSIZF+2.*PI LXZ-82*CJS(BEIAZ)+ACP2*COS(PSIZF+DPSIZ- DELG2: LYZ-8Z*SIN(BEIAZ)+ACP2*SIN(PSIZF+DPSIZ- DELG2)	.0.) GD TG 17	99,12F=59,12F 94121=9412F=09412 95121=9512F+09512 FF (PS121.GT.2.*PI) PS121=PS12I=2.*PI PH1210=PH121/Z	PHIZEDEPHIZE/Z PSIZEDEPSIZEF/Z WRITE (6.77) PHIZED,PSIZED,PHIZED,PSIZED	DETERMINATION OF CORRECT SIGN FOR ROUND ON ROUND REGIME OF MESH A2R=82*SIN(BETA2+DELP2)-AGG2*SIN(PHI2I-DELG2+DELP2) 82A=82*COS(BETA2+DELP2)-AGG2*GOS(PHI2I-DELG2+DELP2) C2R=(L2+L2-82*82-AGG2+AGG2-ACP2*ACP2+2.*AGG2*82*COS(PHI2I-DELG2-
13 74/74	C25 = -RMJG2 R0012F=A2F + A2F + B2F + B2F - C2 Y2F 1 = A2F + SQRT (R0012F) Y2F 2 = A2F - SQRT (R0012F) X2F = B2F + C2F PS12F 1 = 2 - A1 RM2 (Y2F 1, XZF) PS12F 2 - A1 RM2 (Y2F 1, XZF)	IF (PSIZF1.LT.0)  IF (PSIZF2.LT.0)  IF (ABS(PSIZF1-P)  PSIZF10=PSIZF1/Z  PSIZF20=PSIZF2/Z	SIGNZFETT. GG TG 15 SIGNZFET. LATEST AND EV		C2FRHGS2 RDGIZE-AZF-AZF-BZF-BZF- YZF-AZF-SIGNZF-SQRT(ROO XZF-EZF-CZF PSIZF-Z -*AIANZ(YZF, XZF)	IF (PSI2F.LT. LX2=62*COS(8) IDELG2) LY2=62*SIN(8)		PSIZFF=PSIZF PHIZI=PHIZF-DPHIZ PSIZI=PSIZFF+DPSIZ IF (PSIZI-GT.Z.*PI PHIZID=PHIZI/Z	PHIZED=PHIZE/Z PHIZED=PHIZE/Z PSIZED=PSIZEF/Z WRITE (6,77) PH	DETERMINATION A28=82*SIN(B) 828=62*COS(B) C28=(L2*L2-B)
PROGRAM CLOCKS				ភ <u>ក</u>		- •	16		·	าคถ
	270	275	260	285	290	582	300	305	310	315

Computer program CLOCK3 (cont)

	PROGRAM CLOCK3 74/74 0PT=1 FTW 4.6+420	20 07/31/79	/79 08.15.34	-
320	11A2)}/(2.*ACP2} ROG12R=A2R*A2R*B2R-C2R*C2R Y2R!=A2R*SGR1{ROG12R} Y2R!=A2R*SGR1{ROG12R}	दबदद	319 321 322	
325	= 22K+LZN 2R1=2. • AIAN2(YZR1, XZR) 2R2=2. • AIAN2(YZR2, XZR) (PSI2R1.II.0.) PSI2R1=PSI2R1+2.•PI (PSI2R2.II.0.) PSI2R2=PSI2R2+2.•PI	< <b>&lt; &lt; &lt;</b> <	324 324 326 327	
330	IF (ABS/PS121-PS12R1).LT.ABS(F5121-PS12R2); GO TO 18 SIGNAR-1. SO TO 19 18 SIGNAR-1. C BOCKINTARDY COMMITATIONS AND MECH 2	44444	328 330 331 331	
335		< < <	335 335 336	
340	<del>0</del>	44444	337 339 340 341	
345		4444	343 345 345 347	
350	(PSI3T1.GT.PI) P (PSI3T1.LT.PI) P (PSI3T2.GT.PI) P (PSI3T2.LT.PI) P (PSI3TE31.GE.0.) (PSI3TE31.LT.0.)	# # # # # # # # # # # # # # # # # # #	348 349 350 351 353	
355	IF (FSITE32.GE.Q.) TEST32=ABS(PI~BETA3+PSITE32-ALPHP3)/Z IF (FSITE32.LI.Q.) TEST32=ABS(PHEFA3-(PSITE32+2.*PI-ALPHP3))/Z IF (FSI3T1.LI.Q.) PSI3T1=PSI3T1+2.*PI IF (PSI3T2.LI.Q.) PSI3T2=PSI3T2+2.*PI PSI3T1D=PSI3T1/Z	<b>4444</b>	354 355 356 357	
360	P513:22=P51312/Z WRITE (6.50) P51315D,TE5732 WRITE (6.51) P51312D,TE5732 CALL TRANS! (RMCG3.ALPHP3,BETA3,FP3,ACG3,B3,DELG3,Z,P513T1,PH13T1,	4444	359 350 362 363	
365	IF (G3GT.FP3) GD TD 20 PHIST=PHIST1 PSIST=PSIST1 GD TG 22 20 CALL TRANS1 (RHGG3,ALPHP3,BETA3,FP3,AGG3,B3,DELG3,Z,PSIST2,PHIST2,	<b>4444</b>	364 365 367 368	
370	1632, LT. FP3) GO TO 21 WRITE (6,78)	<b>⋞</b> ⋞⋖	369 370 371	

Computer program CLOCK3 (cont)

07/3:/79 08.15.34		A 378 A 379 A 360 A 361		1 388 1 390 1 390 1 390	1 1 2 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 3 4 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	1 398 1 399 1 401 1 402	404 405 406 4007	4132110	42.6	413 1420 421 1423 1423
PROGRAM CLOCK3 74/74 OPT=1 FTN 4.6+420 07/	21	PSISIDEPSIBITA  WRITE (6.79) PHIBID.PSIBID  C DETERMINATION OF CORRECT SIGN FOR ROUND GN FLAT REGIME OF MESH 3	ı		IF (FSI3F2.LT.O.) PSI3F2=PSI3F2+PJ IF (ABC(PSI3F1-PSI3T).LT.ABS(PSI3F2-PSI3T)) GO TO 23 SIGN3F=-1. GO 24 23 SIGN3F=1.	, , , , , , , , , , , , , , , , , , ,	PH133-PH1D3-Z , A3F=ACG3-CG3(PH13+DELG3+ALPHP3)-B3-CG5(BETA3+ALPHP3) B3F=ACG3-5IN(PH13+DELG3+ALPHP3)+B3-SIN(BETA3+ALPHP3) C3F=ABG3-5IN(PH13+DELG3+ALPHP3)+B3-SIN(BETA3+ALPHP3) RDG125FA3F-A3F+B3F-83F-C3F-C3F Y3F=ACF+S(ANT-F-SAF-C3F-C3F)-C3F-C3F-C3F-C3F-C3F-C3F-C3F-C3F-C3F-C3F	-	•	25 CONTINUE 26 PHI3F=PHI3 PSI3F=PSI3F PHI3F=DPSI3 PSI3I=PSI3FF-DPSI3 IF [PSI3I-LI.O.] PSI3I*PSI3I+2.*PI
	375	380	385	390	395	400	405	410	415	420

Computer program CLOCK3 (cont)

08.15.3												
61/	425 426 426	428 429 430	5 6 6	434 435 436	4 4 6 8 4 4 4 6 8 4 5 6 6 4 4 6 8 6 4 4 6 8 6 4 6 6 6 6 6 6 6	444 445 445 455 455	444 449 450 451	454 454 455 457 457	458 459 461 462 463 463	465 465 467	468 469 470 471 472	474 475 476
61/131/79	< < <	~~~	< < <		< < < < <		~ ~ ~ ~ ~ .		~~~~	. < < <	<b>44444</b>	~ ~ ~ ~
FTN 4.6+420 0:	PSI3I=PSI3;+2.•PI	PHIJED=PHIJE/Z PSIJED=PSIJEF/Z KRITE (6,85) PHIJID,PSIJID,PHIJFD,PSIJFD	ECT SIGN OF ROUND ON ROUND REGIME FOR MESH 3	A3A::CG3*SIN(PHI3I+DELG3-DELP3)-B3*SIN(BETA3-DELP3) B2R:ACG3*CO5(PHI3I+DELG3-DELP3)-B3*CC5(BETA3-DELP3) P3F:ACC3*CC9ACG3*ACG3+B3*B3-L3*L3*L3*2.*ACG3*B3*CO5(PHI3I+DELG3-BE	R-C3R*C3R	PSI3A1=2.*ATANZ(Y3K1,K3R) PSI3A2=2.*ATANZ(Y3K2,K3R) PSI3A2=2.*ATANZ(Y3K2,K3R) F (PSI3A2-LT.0.) PSI3A3=PSI3R1+2.*PI F (PSI3A2.LT.0.) PSI3A3=PSI3A2+2.*PI F (PSI3A2.LT.0.) PSI3A1-PSI3A2)) GO TO 27	SIG-7R=-1. GU TO 28 SIGH3R=1. GEAR TRAIN MODIL, KINEMATICS	DUBHIT=NP2*NP3*(PHI3I~PHI3F)/(K*NGI*NG2) PHITA=PHITI+(PHITF-PHITI)*d1 ** 14=0. d4=0.	PHIIF) US=1. PHIIF) PHII=PHIII 		1F (PHI).LE.PHI)T) GO TG 30 ARRACGISTN(PHI)TPELGI-PELPI)-BI*SIN(BETAT-DELPI) BIRACGISTN(PHI)TPELGI-DELPI)-BI*COS(BETAT-DELPI) CRESACRISCOS(PHI)TDELGI-DELPI)-BI*COS(BETAT-DELPI) ALD / (2.*ACPI*ACPI*ACGI*ACGI*BI*BI-LI*LI*LI*Z.*ACGI*BI*COS(PHI)*DELGI-BET ALD / (2.*ACPI) ALD / (2.*ACPI) ALD / (2.*ACPI)	
GPT=1	<u>-</u>	/Z :/Z PHI3ID.F	OF CORF	PH131+DE PH131+DE 3+ACG3*A	73) 3R+B3R+B3 [(ROOT3R)	INZ(Y3R1, INZ(Y3R2, I.O.) PSI I.O.) PSI	TION MOD	3*(PH13! PH11F-PH PH11	PHI1 PHI1F) US= PHI1F) PHI LAMD.PHI1 CO TO AS	}	HI1T) GO PHI1+DEL PHI1+DEL 1+ACG1+A	K*SQKI(K P(YIR,XSR P.) PSI1=
74/74	IF (PSI31.LT.0.) PHI3ID=PHI3I/Z PSI3ID=PSI3I/Z	PHISED=PHISE/Z PSISED=PSISEE/Z KRITE (6,80) PH	DETERMINATION OF CORRECT	CG3+51N(ACG3+CO5(ACG3+ACG3+ACG3+ACG3+ACG3+ACG3+ACG3+ACG3+		PSI341=2.*ATANZ(Y3K1,K3R) PSI342=2.*ATANZ(Y3K2,K3R) PSI342:1.0.) PSI341= IF (PSI3R2,LT.0.) PSI342- IF (ABS(PSI31-PSI3R1).LT.	SIG**7R=-1. GU TO 28 SIGNJR=1. GEAR TRAIN NO	00PH[1=NP2-NP3-(PH13I-PH13F) PH11A=PH111+(PH11F-PH111)•41 PH18=PH18A+DDPH11 A410. 45=0.	PARITE (6,52) PHILE-PHIFF) US=1.  IF (PHILLE-PHIFF) US=1.  IF (PHILLE-PHIFF) PHIT-PHIII  PHID-PHII/Z  IF (163-EG-1.AND.PHILLE-PHI	-	1F (PH11.LE.PH111) GO TG 30 A1R=ACG1-SIN(PH11+DELG1-DELP1) C1R=(ACP1-ACS(PH11+DELG1-DELP1) C1R=(ACP1-ACP1+ACG1+ACG1+B1+B1) 1a1))/(2.4CP1) RAGITR=A1R+A1R+B1R+B1R-C1R+C1R	71%====================================
PROGRAM CLOCKS	1F ( FHI3		C DETE		7381 7381 7382 7382	S d d H H	SIG" GU T 27 SIGN C GEAR	<b>78</b>	29 PH I	C MESH 1		THE PARTY OF THE P
PROGRA												
	425	430		435	440	445	450	455	460	465	470	475

3 74/74 OPF:1 [F (PSI1.GI.2.*PI) PSI1=PSI1-2.*PI PSI10=PSII,Z
PSITURENSILY.  10.10.27.11.7.  17.10.4.5(PHI1-PHI11).LT0001) PSITP=PSITI  17.10.4.5(PHI1-PHI11).LT0001) PSITP=PSITI  5.47.5(PH.1-PHI11).LT0001) PSITP=PSITI  5.47.5(PH.1-PELGI!)/LT  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.7.  6.10.
<pre>1</pre>
SIRYSTIK/HBS(VS)TK) 60 F9 STIK/HBS(VS)TK) 61 F= LCG1+COS(PHIT+DELG1+ALPHP1)+B1+COS(BETA1+ALPHP1) 81 F= LACG1+SIN(PHIT+DELG1+ALPHP1)+B1+SIN(BETA1+ALPHP1) CTF=PHOG1
ROOI1F=A1F*A1F*B1F=CFFCIF YFFA1F*CIGNTF=SQRT(ROOI1F) X1F*B1F+C1F PSIT=2.*AIANZ(Y1F,X1F) IF (PSIT.LT.0.) PSIT=PSIT+Z.*PI
IF (FSI1.GT.2.*PJ) PSI1=PSI1-2.*PI IF : 4.60.6.) PSI1P=PSI1 PSI10=PSI1X/Z GI=(LGGI*SIM(PHI1+DELG1)+RHDG1*CDS(PSI1-ALPHP1)-B1*SIN(BETA1))/SIN
PSGG[1=PHOD]1*(ACG1*COS(PH]1-PS]1+DELG1+ALPHP1])/(A1F*COS(PS]1)-B1  F*S[1,PS]1)  VS]1F=PHDG]1*(ACG1*SIN(PS]1-ALPHP1-PH]1-DELG1)-RHGG1  SIF=VS]1F/ABS(VS]1F)
МЕSH 2 ООРН[2=PSI1-PSI1P FF ( ∪4-EC.O.) РН[2=PH[2]+[РН]2F-РН[2])•J2 РН[2-РН]2+50РН[2
IF (PHI2.GT.2.*PI) PHI2=PHI2-2.*PI PSITP=PSIT F (PHI2.GT.PHI2F) PHI2=PHI2I PHI20=PHI2/2 IF (PHI2.GE.PHI2T) GO TO 32
A2R=82*5IN(BETA2+DELP2)-ACG2*5IN(PHIZ-DELG2+DELP2) 82R-82*COS(BETA2+DELP2)-ACG2*COS(PHIZ-DELG2+DE[P2) C2R={12*12*22*82*ACG2*ACG2-ACP2*ACP2+2.*ACG2*82*COS(PHI2-DELG2-BET RG5:}/{2:*ACP2} RG5:2R-A2R-A2R*82R*82R-C2R*C2R
Y26:426-51GN2R-5QRT(RODIZR) PS12:2: AIANZ(Y2R.X2R) IF (PS12:LI.O.) PS12:PS12+2.*PI ET (PS12:LI.O.) PS12:PS12+2.*PI
7/7:57.7

Computer program CLUCK3 (cont)

07/31/79 08.15.34	A 531 A 533 A 533 A 534 A 535 A 536 S36	A 538 A 540 A 541 A 541 A 541	A 543 A 543 A 545 A 546	A 549 A 559 A 551 A 553 A 553	A 554 A 555 A 556 A 557	A 559 A 561 A 561 A 562 A 563	> 564 > 565 > 566 > 568 > 569	A 570 A 572 A 573 A 573 A 573	A 515 A 576 A 577 A 579 A 580 A 582 A 582 A 583
01/	2)/12	2-C05{			))/SIM			, ,	E1/((a
FTN 4.6+420	IF (ABS(PHI2-PHI2!).LI0001) PSI2P=PSI2I SLAW2=(B2-5.) PSI2P=PSI2 SLAW2=(B2-SIN(BEIA2)+ACP2-SIN(PSI2-DELP2)-ACG2-SIN(PHI2-DELG2))/12 SLAW2=(B2-CCS(BEI*2)+ACP2-SOS(PSI2-DELP2)-ACG2-COS(PHI2-DELG2))/12 LAMDA2=ATAN2(SLAW2.CLAW2) PHOG:2=PSDGT:	PSD2:2-PHDO12*ACG2*(-SIN(PHIZ-PSIZ-DELG2+DELP2)-B2/ACP2*SIN(PHIZ-D ELG2-BEIA2))/(AZR-COS(PSIZ)-BZR*SIN(PSIZ)) VSTG2-PHDO12*(ACG2-COS(PHIZ-DELG2-LAWDA2)+RHOG2)-PSDO12*(ACP2*COS( PSIZ-DELP2-LAWDA2)-RHOP2) S2R-VST2R/ABS(VSIZR)	CO TO 33- CO TO 33-COS(PHI2-DELG2-ALPHP2)-B2*COS(BETA2-ALPHP2) B2FACG2-SIN(PHI2-DELG2-ALPHP2)+B2*SIN(BETA2-ALPHP2) C2FRHOG2 RODIOETEAPF-ASPENSE-B2F-C2F*C2F YOR -ATEXTED FOR FROM FROM THE PARTY FOR THE PARTY F	:+2.*pI 	PSI20;=PSI2)Z G2=(4CG2-5IN(FHI2-DELG2)-RHDG2+CD5(PSI2+ALPHP2)-B2+SIN(BETA2))/SIM (PSI2-ALPHP2) PHD3I2=PSDB11 PSDB12=(FHDD12+ACG2+CD5(PHI2-DELG2-ALPHP2-PSI2))/(A2F+CD5(PSI2)-B2	F*SIM(PSI2)) VSIZF=PHDGI2*(ACG2*SIM(PSI2+ALPHP2-PHI2+DELG2)+RHDG2) S2F=VSIZF/ABS(VST2F) WESH 3	DDPHI3=PSI2-PSI2P If (J4.EQ.O.) PHI3=PHI3I+(PHI3F-PHI3I)*J3 PHI3=PHI3+DDPHI3 If (PHI3,GI.2.*PI) PHI3=PHI3-2.*PI	IF (PHI3.LI.PHI3F) PHI3=PHI3I PHI3.PHI3.Z IF (PHI3.LE.PHI3I) GD IG 34 A3R-AGG3-SIM(PHI3+DELG3-DELP3)-B3•SIM(BETA3-DELP3) B3R-AGG3-COS(PHI3+DELG3-DELP3)-B3*COS(BETA3-DELP3)	L34:   RLY3-MCD3-ACC3+63FG3-L3-L3-L3-L3-L3-L3-L3-L3-L3-L3-L3-L3-L3
0PT=1	IF (ABS(PHI2-PHIZI).II0 SLAW2=(B2-SIN(BETA2)+ACP2 LAM2=(B2-CIS(BETA2)+ACP2 LAM2=(B2-CIS(BETA2)+ACP2 LAMD2=ATAN2(SLAM2).CLAW2) IF (LAMDA2-ATA2(SLAM2).CLAW2) PHOGI2-PSDGII.	PSD2:2-PHD012*ACG2*(-51N( ELG2-BE1A2))/(AZR*COS(PSI VST2P-PHD012*(ACG2·COS(PH PSIG-DELP2-LAMDA2)-RHDP2) S2R:VST2R/ABS(VSIZR)	CO TO 33 A2F-ACG2-CDS(PHI2-DELG2-ALPHP2 B2FACG2-SIN(PHI2-DELG2-ALPHP C2FRHDG2 SGD12F-AZF-AZF-B2F-GZF-CZF-CZF VGC-ACK-CHPE-CDG170DG1761	X2F=U2F+C2F FSI2:2.~AIAN2(Y2F, K2F) IF (FSI2:1T.0.) PSI2=>SI2+2PI IF :PSI2.GT.2PI) PSI2=PSI2-2PI IF :J4:E0.0.) PSI2==PSI2	*HI2-DELG2}	(ACG2*5IN(P (VST2F)	DPHI3=PSI2-PSI2P If (J4.EQ.O.) PHI3=PHI3I+(PHI3F-PH *HI3=PHI3+DDPHI3 If (PHI3.GI.2.*PI) PHI3=PHI3-2.*PI	IF (PHI3.LI.PHI3F) PHI3=PHI3I PHI3.D=PHI3.LE.PHI3I GO IG 34 ASR-ACGS-SIM(PHI3+DELG3-DELP3 BSR-ACGS-COS(PHI3+DELG3-DELP3	1A3);/(2.*50P3) RCO
74/74	IF (ABS(PH12-F)  SLAW2=(B2-SIN)  SLAW2=(B2-SIN)  LAMDA2=ATAN2(E)  IF (LAMDA2.LI  PHDG12=PSDG1F	PSDS12=PHBDT2*ACG2*( ELG2*BETA2))/(AZR*CD VST74=PHDGT2*CACG2*C PSIZ*DELP2*LAMBA2)*R S2R*VST2R/ABS(VST2R)	CO 10 33 AZF=4CG2+CD5(F B2FACG2+SIN( C2F:-RHDG2 ROG12F=AZF+AZF V5C-43F4CD3	X2F=U2F+C2F FSI2:2.*AIAN2(Y2F,X2F) IF (FSI2:LI.O.) PSI2=> IF :PSI2:GI.2.PI) PSIF IF :DSI2:GI.2.PI) PSIF	PSI23=PSI2/Z G2=(ACG2+SIN(F 1(PSI2+ALPHP2) PHDSI2=PSDGT1 PSDGT2=(PHDGT2	1F*SIM(PSI2)) VST2F=PHOGT2*(ACG2*S S2F=VST2F/ABS(VST2F) WESH 3	ОБРНІЗ-РSI2-РSI2Р IF (J4.EQ.O.) РИІІ РНІЗ-РНІЗ-ОБРНІЗ IF (РНІЗ-ОБРНІЗ PSI2P-PSI2	IF (PHI3.LT.PP PHI30=PHI3/Z IF (FHI3.LE.PP A3R=ACG3-SIM(F	List Refuse ALCASANCOS AC A3) ((2. *ACP3) RCO
PROGRAM CLOCKS	IF (U IF (U SLAW) CLAWD CLAWD LLAWD IF (I	PSDS1 1ELG2- VST74 1PS12- S2R-V	22 CO TO 33 32 A2F=4CG2 62F=4CG2 C2F=4CG4 RQUS2F=4C	1	PSI20 G2=(A 1 (PSI2 PPG01 PSD01 PSD01	17*51R VST2F S2F=V C MESH	R	1 PH130 PH130 1 F ( PH130 PH30 PH30 PH30 PH30 PH30 PH30 PH30 PH	18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30
	535	540	545	550	555	560	565	570	580

CLK#3=(80+CGS; RETR3)+ACP3+CGS(PSIG+DELP3)-ALG3+CGS(PHI3+DELG3))/13 LIE/LAWDA3.LT.0.0) LAMDA3=LAMDA3+2.*PI FECHANDA3.LT.0.0) LAMDA3=LAMDA3+2.*PI FECHANDA3.LT.0.0) LAMDA3=LAMDA3+2.*PI FECHANDA3.LT.0.0) LAMDA3=LAMDA3+2.*PI FECHANDA3.LT.0.0) LAMDA3—LAMDA3+2.*PI IS 100-10-10-10-10-10-10-10-10-10-10-10-10-	3 A 584 A 585 A 586		A 593 A 595 A 595 A 595 A 597	-	~ ~ ~ ~ .	A 610 4 610 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612 4 612	A 610 A A 613 A 613 A 610 A 61	A 621 A 621 A 622 A 623 A 623	A 625 A 625 A 627 A 628	
### ### ### ### ### ### ### ### ### ##	COS(PSI3+DELP3)-ALG3+COS(PHI3+DELG3))/L: LAMDA3+2.+PI	3-SIN(PHI3-DELG3-EETA3)+SIN(PHI3-PSI3+DI -E3R+SIN(PSI3)) 3+DELG3-LAKGA3)+R+JG3)-PSGOT3+(ACP3+CGS	PHP3)-B3-CCS(BETA3-ALPHP3) LPHP3)-B3-SIM(BETA3-ALPHP3) -C3F	2.*PI HOG3*COS(PSI3-ALPHP3)-83*SIN(BETA3))/SII	]-PSI3+DELG3+4LPHP3}/(A3F•COS(PSI3)-B3F. 3-ALPHP3-PHI3-DELG3)-RHOG3)		(GAMMAA))/DN) MDA3)-(1.+%G-MU-S3R)*COS(LAMDA3))/DN) (GASMAA))/SN) (LAMDA3)*WU-(S3R-1.)*COS(LAMDA3))/DN) (LAMDA3)*WU-(1.453R)*SIN(LAMDA3))/DN) MDA2)-(1#32-#U-S2R)*COS(UMMDA2))/DN)	{Camma3}}/DN} {Lamba3+20*(1.+538)*COS(LAMba3}}/DN} {Lamba2-20*(1.+528)*COS(LAMba2)}/DN} \$Comma3}/DN} \$(IAMba2)+TH(528-1.)*SIN(LAMba2}}/DN}	AND ALL AND AND AND AND AND AND ALL AN	\$(LAMDA1)-KU-(1.+\$!R)*\$IN(LAMDA1)}/DN) N(LAMDA1)+KU-(1.+\$!R)*CUS(LAMDA1)}/DN) AMDA2)+(1WU*SZR)*CUS(LAMDA2)}/DN) KUPA11-AIDHO1-WU*SZR)*CUS(LAMDA2)}/DN)
	CL##3=(83°CDS,8ET#3)+ACP3 L##543=ATAN2(SL#M3,CL#W3) IF (LAWDA3,LT.0.0) LAMDA3 PHOGITA-DCONTS	PSG513=PH30T3-AGG3-183/AG LG3-2ELP3) / (A33-CG5(PSI3 PST-4E-PH0DT3-(AGG3-CG5/PH) PSI3-DELP3-LAWDA3)-RHQP3) SGR /SIGR/ABS(VSI3P)	0 10 35 43F=4CG3+CDS(PHI3+DELG3+A 83F-7-AC33+SIN(PHI3+DELG3+A CGF-9HOG3 73F-43F-8GF-8GF-CG 73F-43F-8GF-SGF-CGF	X3FFC3F+C3F PSI3-2.*XIANZ(Y3F.X3F) IF (-SI3.11.0.) PSI3=PSI3 PSI3=PSI3/Z PSI3-PSI3/Z (PSI2-AIPEG3)+I	рноэта=PSOCT2 PSO-T3=PHGOT3+ACG3+COS(PH) SIN-FST3+) SSTS=PHDOT3+(ACG3+SIN(PS) SSTS-PHDOT3+(ACG3+SIN(PS)	MOMENT COMPUTATIONS	A1-255(170-50) A2-255(170-50) A2-255(170-50) A2-255(170-60) A3-255(170-60) A3-255(170-60) A3-255(11-20) A3-25(11-20) A3-25(11-2	7485( MU-SIN(GA7VA3)-CC3 7.5.5( (1,-KG*KG·S3R)*SI 7.6.5( (1,-KG*KG·S2R1,)*SI 7.485( (KQ*KG*S2R1,)*SI 7.485( (1,+KG*KG*S2R1*C)*SI 7.485( (1,+KG*KG*S2R1*C)*C	A12-485( Wu e (51R-1.) - 851M; A13-485( (11-480-82) - 800-8 A14-485( (11-480-82) - 800-8 A15-485( Wu e (151R) - GGS( A16-485( Wu e (151R) - GGS(	A17=A55(((1.—MU-MU-S18)+CC MB-EB5((1.—MU-WU-518)+S) A19=AB5(((1.—MU-WU-518)+S) A20=AB5((MU-MU-S18)+S18) A20=AB5(MU-MU-S28)+S18((1.—MU-WU-518)+CC A20-AB5((1.—MI-MI-S28)+S18((1.—MI-MI-S28)+S18)

Computer program CLOCK3 (cont)

ġ																																			
61/	638 638	649	642	6 6	645	646	848	9.50	651	653	654	656	657	2 G	99	661	2 6 6 7 <b>6</b> 6 6 3	99	200 200 200 200 200 200 200 200 200 200	667	666 666	670	671	673	674	675 376	229	678	680	681	683	685	686	688 689	
61/16/10	444	< <	⋖・	۷ <	⋖	۷ ح	∢ .	< <	∢.	۷ ح	₹ .	< ≺	۷.	< <	<b>«</b>	⋖・	<	∢ .	< <	₹ :	< <	<b>«</b>	4 4	<	₹ :	4 4	⋖	<b>4</b> •	۲ ح	4 4	. 4	4 4	4 4	4 4	
FTR 4.6+420 . 07/	DN) II+(1,-52R)+CDS(LAMDA2))/DN)  }+(MJ-MU-51+-1,-50S(PSII-ALP	(NO/)	HP1)+M3+(S1F-1-)+COS(PSI1-ALP		1+(1,+MJ*KJ*S1F)*CDS(2511-ALPH		10+(1.+53R)+SIM(LAMDA3))/DN)	TILL TELEBOORE JASIN POLETALP	(Ng)	-RU*BU*54K}*5IN(LABOAS)}/ON} #P2}-BU*(1.+52F)*SIN(PSI2+ALPH		100) 102)+M1-(52F-1.)+COS(PSI2+ALPH		141 J-MC+(1,+51P)*COS(PSI1-ALM	OM)	-(1.+KU+M+S2F)+COS(PSI2+ALPH	)+(MU+KU+S1F-1.)+COS(PSI1-ALP		DN) IP2)-MU+(1,-52F)+COS(PSI2+ALPH		- HO-MET-514 - COS( LAMBAR ; ) / DAS	-(1,+WU+MJ+52F)+CDS(PSI2+ALPH	(MC) ((140041)5(D)+(C15-1)+(MC)	(NO.)	(P3)-4U+(1,+53F)+CD5(PSI3-ALPH		1)-(1KU*KU*53F)+CDS(PSI3-ALP		HP3)+MU+(S3F-1.)+C0S(PS13-ALP	#617+015(05(05(05))		10N) +(1.+6J*MJ*S3F)+COS(PSI3-ALPH)	()+(1,-213-310+S2F)+COS(PS12+ALP	/Dec.)	
74/74 OPT=1	423-48S([WU+SIN(GAMMA2]+COS(GAMMA2))/DN) 424-48S([i1.+MU+M2+S2R]+SIN([AMMA2]+RU+(1S2R)+COS([AMMA2])/DN) 425-48S([-MU+(1.+S1F)+SIN(PSI1-ALPHP1)+(MU+MU+S1F-1.)+COS(PSI1-ALP	HF1)1/DB3 A26-285((-51N(GAMMA2)+HB3+COS(GAMMA2))/DN)	#427=485((-;1,+#8=#40=51F)=SIM(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+#3=(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSI1-ALPHP1)+(S1F-1,)+COS(PSII-ALPHP1)+(S1F-1,)+COS(PSII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+(SII-ALPHP1)+	1HP11)/DN) A28=48S(1,/DN)	429=485((MJ+(S1F-1.)+SIN(PSI1-ALPHP1)+(1.+MJ+MJ+S1F)+COS(PSII-ALPH	181),/DN) A3G=ABS(#U/DN)	A31=185(((1,-HU-HU-HU-CGS(LAMDA3)-HU-(1,+S3R)+SIM(LAMDA3))/DN)	A42-1455   (   ===============================	A33=4BS((MU+SIN(GAMMA3)-COS(GAMMA3))/DM)	A34=xB5({ML*(1.+534)*CD5(LMMDA3)+{1FU*ML*SK}*SM(LMMDA3)}/DA) A35=xB5({(1ML*ML*S2F)*CD5(PSI2+ALPH2)-MU*(1.+52F)*SIK(PSI2+ALPH	[P2]) DN)	A30=385{(11.480=82=32=3880=82=82=3880=82)/04} A37=285{(11.480=80=82=388=810=812+81PHP2}+80=(82F=1.)+60\$(P\$12+81PH	1P2)) (DN)	A48=1:85( (1,-#0*@0*01*)*01K(P01)-ALTHY)-#0*(1,+917)*(000(P01)-ALTHY) 191)//px)	A39=ABS((MU+SIN(GAMMA2)+COS(GAMMA2))/DN)	A40=>BS((MG+(52F-1.)+SIN(PSI2+ALPHP2)-(1.+MG+MG+S2F)+CGS(PSI2+ALPH B3an)	172)}/DS    A41=ABS((-MU*(1.+5:F)*SIN(PSI1-ALPHP1)+(MU*KU*S1F-1.)*COS(PSI1-ALP	(NC/((IdHi	A42=kB5((K1-COS(GAMMA2)-SIM(GAMMA2))/ON) A43=kB5(((1,+MU-MU-S2F)*SIM(PSI2+ALPHP2)-MU-(1,-S2F)*COS(PSI2+ALPH	1P2) ), DN)	A44=185((#D*(SIR-I.)*SIN(LABBA)-[1.4RD*BJ*SIX)*CDS(LABBA:)/DN) A45-285((#D*SIX(GABBAD:4CDS(GABBAD))/DN)	145:185( 190+(52F-1.)+5IN(PSI2+ALPHP2)-(1.+NU+MU+52F)+COS(PSI2+ALPH	1921/08) 847-1951(-11 ABIANTIASID)=STM(188081)+R16(1 -510)+CDS(1ABIA1)/08)	A48=185((-SIN(GAR7A2)+HU-COS(GARMAZ))/ON)	449=185(((1Wowto-S3F)-SIN(PSI3-ALPHP3)-480-(1.+53F)-CD5(PSI3-ALPH	173);;on) ASosass((-EurSIN(GAMBAE)-COS(GAMBAE))/DN)	A51=ABS( -MU*(1.+53F)+SIN(PSI3-ALPHP3)-(1KU*WU*S3F)+CDS(PSI3-ALP	(HP3))/ON) #53-#BC((+CTM/Cample A) Amil-COS(Cample A)) (Only	#52=#53((-(1.+MG-MU-S3F)-SIN(PS3=ALPHPS)+MU-(S3F-1.)+COS(PS13-ALP	1992): / (DN) 454-1857 [ (Blistels 1862): - 1-6518 [ BC12+1 BB92 ] - Eise [ 1-452 Eise CD5 [ BC12+1 BB	(P2) 2.00)	A55:XBS([MD+SIM(GAKKA3)-COS(GAMKA3))/DN) A56:ABS((MD+(S3F-1.)+SIM(PSIG-ALPHP3)+(1.+KO+MU+S3F)+COS(PSI3-ALPH	1F3) /DN  A57=a65((-#1,-52f)*SIR(PS12+ALPHP2)+(1,-413-MU*S2f)*COS(PS12+ALP	1+22)   /DN)   A58=A85{ (-SIN{GABTA3} -PE-COS{GAMKA3} } /DN)	
PROGRAM CLOCKS	222	H W	2	¥ .	*		4		¥ :	44	16	4 4	4.	4 01	et .	7	¥	1		16	4	ંનો		4	74		¥	H.	4 4	1H.	162		17 at	14.5	
		749			645			650	}			Ç			660			,	665			670			ļ	6/5			980			685			

PROGRAM CLOCKS	CLDCK3 74/74	QPT=1	FTM 4.6+420 0:	80 61/18/10
069	A59=ABS([- 1HP3);}/DN] A60=ABS([W A61=ABS([W	A59=ABS([-(1,+MJ+KU-S3F]*SIN(PSI3-ALPHP3 HP3)}/DN] A60=ABS[[MJ*(1,+S2R]*SIN(LAMDA2)+{MU*WL* A61=ABS([MU*SIN(GAZWA3)-CGS(GAMMA3)]/DN)	A59=ABS([-(1,+WJ+KU-53F]*SIN(PSI3-ALPHP3)+W;*(53F-1,)*CDS(PSI3-ALP HP3)}/DN) A60=ABS[[W1*(1,+S2R]*SIN(LAMDA2)+{WU-MU*S2R-1,)*CDS(LAMDA2)}/DN) A61=ABS([WU*SIN(GLWMA3)-CDS(GAMMA3)]/DN)	-
695	A62=A85 (NU= (S3F-I 1P3) y DM A63=E85 ((NU=NU-S2 A64=A85 ((-5IN(GAMP) C1=YU-RDA(A (A1=A3))	######################################	A62=ABS((MU*(S3F=1-)*SKN(PSI3*ALPHP3)+(1.+MU*MU*S3F)*CUS;PSI3*ALPH P3})/DN) A63=*BS((MU*MU*S2R-f.)*SIN(LAMDA2)*WU*(1.+S2R)*CUS(LAMDA2))/DN) A64-ABS((~SIN(GAMTA3)-MU*COS(GAMMA3))/DN) CIT*U*RHQ4*(AI*A3)	A 6995 A 6995 A 6997 A 6997
700	LZ 74,73 - (11,05,24 - (12,05)  1 (21,05) - (13,05) - (13,05)  1 (21,05) - (14,05) - (15,05)  1 (21,05) - (14,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05)  (21,05) - (15,05	LC-aCrys (Not-2487CLS) (1913-94ELF) (2.24C) 3-238-8HG4 (42-44) (2.24E) 8HG3 (45-48) - MC-538-8HGG (8.4C) (PHI3-DELG3-LAMDA3) (4.24E) 4HG3-CC	LC=LC+S-(SGC-SGR-CUS)	A 760 A 760 A 703
705	LS=ECSTRANGS 1) -SIN(PSI2-DELP2-LAS C6=ACG2-(SIN(PHI2-DE 1RHD2-(A11+A14)-BU-RH C7=EU-RHD2-(A13+A16)	LD=ECGNHUS+(RO+NS)=NA-SZKN=FRUN 1)-SIN(PSIZ-DELPZ-LAWDAZ)) CG=ACGZ-(SIN(PHIZ-DELGZ-LAMDAZ) RHGZ-(AII+AI4)-WU-RHGGZ-SZR CZ=EU-RHGZ-(AI3+AI6)	CS=XCSMHGS (NS-AB)-NG-SCH-MM-PF-L-LAMDAZ (NG-SCH-LDS-CS-LAMDAZ)) -51N(PSIZ-DELPZ-LAMDAZ)) -51N(PSIZ-DELPZ-LAMDAZ)-NG-SZR-COS(PHIZ-DELGZ-LAMDAZ))-NG-R-CCS-(CS-NC)-NG-NC)-NG-SZR-COS(PHIZ-DELGZ-LAMDAZ))-NG-CC-XCS-(SIN(PHIZ-DELGZ-LAMDAZ)-NG-SZR-COS(PHIZ-DELGZ-LAMDAZ))-NG-CCX-XU-R-CCS-SZR-CCS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS	A 705 A 705 A 705 A 707
710	LOS - (ALMY) (51% (95) + 10 + 8H00 - (A12+A15) + 20 + C9 = MU-SHOI + (A18+A20) C10 - EU-SHOI + (A18+A20) C10 - EU-SHOI + (A17+A19) C1 - C10 - C1	LB=-(ALPY=(S)MPS1:>DELEY=-CARD 10.8H02(18.24.15)+22.51R+RHGPT C9=RH02(18.24.20) C10=RH-RHS1*(A18.420) C10=RH-RHS1*(A17.420)+ACG**(S1*(S1*1.4.894.30))+ACG**(S1*1.4.894.30)	LB=-(ALVI)(1)N(PS):+DELF:+EARLAXI)-=BUSSIN=(US(PS):+DELF)-LAMUAT/)+B US-MU2-KG1:(A18-5)-VU-5/R8-MHQP?) C10-KU-RHG]:(A18-A20) C10-KU-RHG]:(A17-A19)-ACG1-(SIM(PHI1-DELG:-LAMDAI)-MU-SIR-COS(PHI1- +DELG:-LAMDAI)-HU-SIR-RHGG1 TOTAL C11-(ANDAI)-HU-SIR-RHGG1	A A A A A A A A A A A A A A A A A A A
715	1 * FH32* ( A21* A24) 1 * FH32* ( A21* A24) C12 * W0 * FH32* ( A23* A26) C13 * G1 * S10* FHG2* ( A22* A22* A22* A22* A22* A22* A22*		C12:KU-RHG1* (A23+A24)-HU-RHG2*S2R C12:KU-RHG2* (A23+A25) C13:KU-RHG1* (A22+A25) C13:KU-RHG1* (A28+A29)+HU-S1F*RHGG1*ACG1*(KU-S1F*SIN(PHI1+DELG1-PSI	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
720	144EHP1 - COS (PH11+DE C16=3U+RHC3+(A31+A34) 1+DEC3-LAMDA3) - PHDG3 C17=XU+RHC3+(A33+A36) C18=XI+PHC3+(A33+A36)	11-ALPHP1)-CDS(PH11-DELG1-PS11-ALPHP1) C16-20-8HC3-(A31-A34)-ACG3-(SIN(PH13-D) 1+DELC3-(A30-A3)-RPDG3-MU-S3R C17-ZUN-RHO3-(A33-A36) C18-ZUN-RHO3-(A30-A35)-G3	1+AE+HP1)-CDS(PH1+DELGT-PSI1+ALPHP1) C16=3U+RHC3+(A31+A34)+ACG3+(SIN(PH13+DELG3-LAMDA3)-MU+S3R+COS(PH13 +DELC3-LAMDA3)-RHDG3+MU+S3R C17=ATH-RHO3+(A33+A35) C18=3H+PHC3+(A32+A31)-G3	A 721 A 721 A 722 A 723
725	C19=-Mt BHOZ (A37+40 1N(PH12-DELG2-PS12-ALP C20-WU-RHOZ-(A39+A42) C21-Mt-ABD2-(A39+A41)	C19= My-RHO2 - (A37+A0)+ACG2 - (COS (PHI2-D) N(PHI2-DELG2-PSI2-ALPHP2))-My-S2F-RHGG2 C20-SU-RHG2 - (A39+A2) SHM2 - (A39+A2) + (A39+A1)+G1	C19==101-102-(-2-7-10-)	A 725 A 726 A 727 A 728
730	1M(PH(2-DELG2-PS)27-ALP C23=TU-RHO2-(A45-A4CB) C24=TU-RHO2-(A45-A4T C1+DELP1-LABDA1))-BU-S C25-EH-RHO3-(A50-A52)		LAST - LEGG - PSIZ-ARPHP2]) - MIN-SZF-RPHGGZ C23 = NU-RPHG2 - (A45+A48) 1+DELP1 - LANDA1) - MU-SIR-CDS(PSII+DELP1-LANDA1) - SIN(PSI 1+DELP1 - LANDA1) - MU-SIR-RPHDP1	A 730 A 732 A 733
<b>8</b> 5	CG - CG - MILP BRICK (AG9-ASC) CZ 7 - 210 * RHG3 * (A53-ASC) SM (PHI 3 * PECG-PSI3-ALP C28 - 210 * RHG3 * (A55-ASR) C28 - 211 * RHG3 * (A55-ASR)	C26 : G3-MU-BRICK = ( 449-451 ) C27 : -2U-RRG3 = ( 453-456 ) +ACG3 = ( -COS ( PHI 3+D N ( PHI 3+DE LG3-PSI3+AL PHP3 ) ) +MU=S3F=RRGG3 C23-MU-RRG3 = ( 455-458 )	C26-G3-MU-RHG4+(449+A51) C27-XU+RHG3+(453+A56)+ACG3+(-CB5(PH13+DELG3-P513+ALPHP3)+MU+S3F+S1 K(PH13+DELG3-P513+ALPHP3)}+MU+S3F+RHGG3 C28-MH+RHG3+(455+A58)	A 735 A 737 A 738
740	C30=22+RHC3+(A59+A62) !! PHI3+DELG3-PSI3+ALPH C31=MI+RHC3+(A61+A64)	C30=221-8713+ (A59+A62)-ACG3+(CDS(PH13+D (PH13+DELG3-P513+ALPHP3))+8U+53F=84DG3 C31=8U+8HG3+(A61+A64)	C30=221-RHQ3+{A59+A62}-ACG3+(CD5(PH13+DELG3-P513+ALPHP3)-911+S3F+S1N {PH13+DELG3-P513+ALPHP3}}+810+S3F+8HDG3 C31=810+8HD3+(A61+A64)	A 741 A 741

Computer program CLOCK3 (cont)

PROGRAM CLOCKS	74/74 OPT=: FTM 4.6+420	120 07:	97/16/70
8 4 8	C32=MU-RNG3+(A60+A63)-ACP2+(SIN(PS12-DELP2-LAMDA2)-MU-S2R+COS(PS12 I-DELP2-LAMOA2}}-MU-S2R+RNGP2 MCMENT CONTROL	52R•COS ( P512	A 743 A 744 A 745 A 746
71 8 F	((PHI1.GE.PHI1I).AND.(PHIZ.LE.PHIZI).AND.(PHI3.SE.PHI3I)) ((PHI1.LE.PHIII).AND.(PHIZ.LE.PHIZI).AND.(PHI3.GE.PHI3I))	413T)) GO TO 413T)) GO TO	444
F 28 F	 	413T)) GO TO	A 751 A 752 A 753 A 754
Ser Williams	((PHII.LE.PHIII).AND.(PHIZ.SE.PHIZI).AND.(PHIS.LE.PHISI)) ((PHII.GE.PHIII).AND.(PHIZ.GE.PHIZI).AND.(PHIS.LE.PHISI))	413T)) GO TO	~~~
7 4 H	((PHI1.GE.PHI1T).AND.(PHI2.LE.PHI2T).AND.(PHI3.LE.PHI3T)) ((PHI1.LE.PHI1T).AND.(PHI2.LE.PHI2T).AND.(PHI3.LE.PHI3T))	H31) GO 10	
MOME*17 MO41=M3 3-Q1+C2	MOME":T EXPRESSIONS MO4!=MIN"C2*C5*C8/(C3*C6*C10)-Q4*C1-Q2*C2*C5*C7/(C3*C6)-Q3*C2*C4/C 3-01":C2*C5*C8*C9/(C3*C6*C10)	)- <b>0</b> 3-C2-C4/C	A 765 A 765 A 766 A 767
POINTEFE WALTE (6 013,518,	#SIMERTEANS(PSDOI3)-MO4/WIN #PSIMER = #ASS(PSDOI3)-MO4/WIN #RAITE (6.53) PHIND.PHI2D.PHI3D.PSIND.PSIZD.PSIZD.PSIZD.PSOOT1.PSDOI #RAITE (6.53) PHIND.PHIZD.PHI3D.PSIND.PSIZD.PSIZD.PSIZD.PSIZD.PSIZD.PSOOT1.PSO ####################################	1,PS0012,PS0	A 770 A 772 A 772 A 773
30.49.44	#b042.HIN+C2+C5+C13/(C3+C1+C15)-O1+C2+C5+C13+C14/(C3+C11+C15)-O2+C 12-C5+C12/(C3+C11)-O3+C2+C4/C3-Q4+C1 HC4+2042 POINTEF=48S(PSD013)+MO4/WIN HRITE (C5-4) PHILOPHIAD, PSI10, PSI20, PSI30, PSD011, PSD012, PSD 1073, AP, A39, A1F, G1, POWINTEF	11+C15)-02+C 1,P\$D0T2,PS0	A 775 A 775 A 776 A 776 A 778
0343	GD TG 44 #043=#IN-C2+C18+C21/(C15+C16+C19)-Q1+C2+C14+C18+C21/(C15+C16+C1 Q2+C2+C18+C20/(C16+C19)-Q3+C2+C17/C16-Q4+C1 #04:#043	15*C16*C19)-	A 780 A 781 A 782 A 783
PO1911E BF11E D13,52 G0 TO MD44=N	UNITEFERBS PSD013)*804/8110.PNISD.PSIZD.PSIZD.PSIZD.PSD011.PSD012.PSD  BFILE (6.55) PHITD.PNIZD.PNIZD.PSIZD.PSIZD.PSIZD.PSUZD.PSD011.PSD012.PSD  1013.528.51F.G1.52F.G2.PG1NIEF  G0 TO 44  M044=M1N4C2=C18*C24/(C10*C16*C22)-Q1*C2*C18*C24/(C10*C16*C22)-Q  12*C2*C18*C24/(C16*C22)-G3*C2*C17/C16*P6*C1	1. PSD012, PSD	A 784 A 785 A 786 A 787 A 787 A 789
#04=#044 POINTEF= #PITE (6 013.51R;	#24*#044 PGINIEF=ABS(PSD013)*#04/#IN MPITE (6.56) PHITO,PHIZO,PHI3O,PSI1O,PSI2O,PSI3O,PSD011,PSD012,PSO GG 10.44	1.PSDG12.PSD	A 792 A 792 A 793 A 793
3	mJ45=#IN+C21+C26+C29/(C15+C19+C27)-Q1+C14+C21+C26+C29/(C15+C19+C27	[C15*C19*C27	A 795

Computer program CLOCK3 (cont)

07/31/79 08.15.3		A 800 A 800 A 800 A 800 A 800 A 800	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* * * * * * * * * * * * * * * * * * *	A A A B 822 8 822 8 822 8 73 22 11 0	A 825 A 825 A 827 A 828	**************************************	A A A A A A A A A A A A A A A A A A A
74/74 OPT=1 FTM 4.6+420	)-02-620*C26*C29/(C19*C27)-03*C26*C28/C27-04*C25 504:W045 PO[NH[F=A85 PSDG13)*M04/WIM PUTAN DETAN DETA	HITTS.S.F. (61.57) FRITO-FRIZZO, MASSELFERO, FRIZZO, F			GD TO 44 MD48-MIN-C13-C26-C32/(C11-C15-C30)-Q1-C13-C14-C26-C32/(C11-C15-C30) 1)-C2-C12-C26-C32/(C11-C30)-Q3-C26-C31/C30-Q4-C25 MD4-EQ48 MD1N:FE-RS(DSDNT3)-MMA/MIN	#RIFE (6,60) PMITD.PHIZD.PHIZD.PSITD.PSIZD.PSIZD.PSOOT1,PSOOT2,PSD 1073.52R.SIF.G1,S3F.G3,PQINTEF #107=#107=#107=#107 + 44=1.  J4=1.  J4=1.  J6=1.  J6=1.  J6=1.  J6=1.	CYCLEFF=-MTGI*-DOPHII/[PMIIF-PHIII] MRITE (6,81) CYCLEFF MTGI=0. IF (1STOP.NE.0) GO TC :	FORMAT (6X,94PS]1710 =,F9.4,3X,8HfEST11 =,F9.4) FORMAT (6X,94PS]1125 =,F9.4,3X,8HfEST11 =,F9.4/) FORMAT (6X,94PS]1170 =,F9.4,3X,8HfEST21 =,F9.4/) FORMAT (6X,94PS]3710 =,F9.4,3X,8HfEST31 =,F9.4/) FORMAT (6X,94PS]3710 =,F9.4,3X,8HfEST31 =,F9.4/) FORMAT (6X,94PS]3720 =,F9.4,3X,8HfEST31 =,F9.4/) FORMAT (6X,94PS]3720 =,F9.4,3X,8HfEST32 =,F9.4//) FORMAT (6X,94PS]3720 =,F9.4,3X,8HfEST32 =,F9.4//) FORMAT (6X,94PS]3720 =,F9.4,3X,8HfEST32 =,F9.4//)	De512 DP513 SIR 52R S3R SIF G1 S2F G2  GMITEF/)  [G4.6[FG.2.2x].3[F5.0.2x],3[F3.0.2x],36x,F5.3)  [G5.6[FG.2.2x].3[F5.0.2x],5X,3[F3.0.2x],F5.3,26x,F5.3,2  [G5.6[FG.2.2x].3[F5.0.2x],10x,F3.0.2x,F3.0.2x,F5.3,2  3.14x,F5.3)  [G4.6[F6.2.2x],3[F5.0.2x],F3.0,7x,F3.0,14x,F3.0,2x,F5.4,2  [G5.6[F6.2.2x],3[F5.0.2x],15x,3[F3.0,2x,F5.3,2x],F5.
PROGRAM CLOCKS		41	605	010	43	820 44	825 45	630 C C C C C C C C C C C C C C C C C C C	4 K K K K K K K K K K K K K K K K K K K

	PROGRAM CLOCKS	74/74	0PT=1	FI	FTN 4.6+420	01/31/79	8
850	58 FCRMA 1F5.3.	: FCRÚAT (6X.6( 1FS.3,2X,FS.3) : FDRMAT (6X.6(	(F6.2.2X), ) (F5.2.2X),	SB FCRMAT (6X.6(F6.2.2X),3(F5.0.2X),F3.0,24X,F3.0,2X,F5.3,2X,F9.0,2X, 1F5.3.2X,F5.3) 59 FORMAT (6X.6(F6.2.2X),3(F5.0,2X),2(F3.0,2X),29X,F3.0,2X,F5.3,2X,F5	X, F5.3,2X, F3.0,2X, F3.0,2X, F5.3,2X, FE	. A 849 A 850 5 A 851	
358	1.3) 60 FORMAT 12x, 55 61 FORMAT 62 FORMAT	1.3) FORMAT (6X.6(FG. 12X,F5.3,2X,F5.3) FORMAT (3F10.4/6 FORMAT (6F10.4)	.3) FDRMAT (6x.6(F6.2.2X). 2x.F5.3.2x.F5.3) FORMAT (3F10.4/6F10.0) FORMAT (6F10.4)	1.3} 60 FURMAT (6X.6(F6.2,2X),3(FS.0,2X),5X,F3.0,7X,F3.0,2X,F5.3,14X,F3.0, 61 FURMAT (3f10.4/Ff10.0) 62 FURMAT (6F10.4)	.2X,F5.3,14X,F3.0,	<b>4444</b>	
960	63 FOREAT 64 FOREAT 65 FOREAT 1 0.05E41 7 8 5.7	* **	.4) 3,F10.0/66 .4/F10.4/6 5x,8HPSUBC =,F9.6,3)	FORMEXT (FF10.4)   FORMEXT (F10.3,F10.0/FF10.5/FF10.5/II)   FORMEXT (F10.4/F10.4/F10.6/3F10.2)   FORMEXT (F1H,5X,8HPSUBOI =,F5.0,3X,8HPSUBOZ =,F5.0,3X,8HPSUBO3 =,F5   I.O.//KX,SHRIN =,F9.6,3X,44MU.*,F6.3X,5X,5HPPM =,F6.0/KX,8HPZNBO3 =,F3   F8.5,3X,6HTAPPDZ = F8.6,3X,44MU.*,F6.3X,5X,5X,5X,5X,5X,5X,5X,5X,5X,5X,5X,5X,5X	0,3X,8HPSUBO3 =,F5 -0//6X,8MCAPRP1 =,	A 858 A 858 A 859 5 A 860 5 A 861	
59	393 = . 4ACG3 67 FORMA 1HRHDP 68 FORMA	F8.5.3X =. F8.5/ T (6x.7 T =. F8.	.5HRP4 = . F /6x,6HACP1 HRHOG1 = . F 5,3x,7HRHC	3P3 = F8.5.3X.5HPP4 = F8.5//6X, GHACGI = F8.5,3X, GHACG2 = F8.5,3X.6HACG3 = F8.5,3X, GHACG3 = F8.5//6X, GHACP1 = F8.5,3X, GHACP2 = F8.5,3X, GHACP2 = F8.5,3X, GHACP2 = F8.5,3X, 7.7HBPG3 =	нАСС2 =, FB.5,3X.6H X,6HACP3 =,FB.5,7 HRMDG3 =,FB.5,3X.7 5/) =,FB.5,3X,5HFP1 =	_	
870	1, F8.5 69 FORMA 1, F5.0 70 FORMA	.3X,5HT 1 (6X,5 3X,5HX 1 (6X,6	P2 = F8.5, HWG1 = F5. P3 = F5.0, HRHG1 = F6.	1, F8.5,3x,5HTP2 =,F8.5,3x,5HTP3 =,F8.5/) 69 FCR24T (6X,5HWC1 =,F5.0,3X,5HWC2 =,F5.0,3X,5HWC2 =,F5.0,3X,5HWC2 =,F5.0,3X,5HWC2 =,F5.0,3X,5HWC4 =,F6.3,3X,5HWC4 =,F6.3,XX,5HWC4	=,F5.0,3X,5HMP2 = HO3 =,F6.3,3X,6HBH	4444	
875	114 = 104 2441 = 17 71 FORMAT   1 10 72 FORMAT   73 FORMAT   73 FORMAT   73 FORMAT   74 FORMAT   75 FO	F6.3//F F. (6x.8) T. (6x.8) T. (6x.3)	A.4H2 =, 3X,4H2 =, HBETAID =, OHSOMETHID HPHIIID =,	104 = ; 0-3, 0A, 45M2 = ; 11.4.4, 0A, 5M2, 4M2 = ; 0-1, 0A, BHITMANI = ; 19-1, 1/0A, 10-1, 1-1, 1-1, 1-1, 1-1, 1-1, 1-1, 1-		. A 872 A 873 A 875 A 876 A 876	
880	74 FORMAT 1X, 8HPS 75 FORMAT 76 FORMAT		FURMAT (6X.BHPHI1ID = (1X.BHPSILED = FB.4/) FORMAT (6X.30HSDMETHIN FURMAT (6X.BHPHI2ID =	FURMAT (6X,8HPMI11D =,FB.4,3X,6HPSI11D =,FB.4,3X,8HPK11FD =,FB.4,3 FURPSITED =,FB.4//) FORMAT (6X,8HPMI21D =,FB.4,3X,8HPSI21D =,FB.4) FORMAT (6X,8HPMI21D =,FB.4,3X,8HPSI21D =,FB.4,3X,8HPMI2FD =,FB.4,3	,8HPKI1FD =,F8.4,3		
885	1. SPIN-SIZED 7. SPIN-SIZED 7. FORMAT (GX. 7. FORMAT (GX. 1. SPIN-SIZED 8.1 FORMAT (140) 8.1 FORMAT (140)	51250 = 1 (6x.3   6x.3   1 (6x.8   5x.8   1 (6x.8   5x.8   5x.8   1 (5x.8   5x.8   5x.	1X, 801512FD 8. P8.4//) FORMAT (6X.30450EFTH)R FORMAT (6X.8HPH131D 8. FORMAT (6X.8HPH131D 8. FORMAT (14.0 6X.10HPM)	*SOFFSIZED =, B.4//) FORMAT (BX.3045OHETHING IS WRONG WITH WESH 3) FORMAT (BX.8HPHI31D =, FB.4,3X,8HPSI31D =, FB.4) FORMAT (BX.8HPHI31D =, FB.4,3X,8HPSI31D =, FB.4,3X,8HPHI3FD =, FB.4,3 FORMAT (BX.8HPHI31D =, FB.4,3X,8HPSI31D =, FB.4,3X,8HPHI3FD =, FB.4,3 FORMAT (BX.8HPHI31D =, FB.4,3X,8HPSI31D =, FB.4,3X,8HPHI3FD =, FB.4,3X,8HPSI31D =, FB.4,3X	,844PHI3FD =, F8.4.3	A 885 A 885 A 886 A 886	
968	82 FORMAT 83 FORMAT 15/) 64 FORMAT	T (4F10.5) T (6X.4HR1 T (6X.5HFP)	.5) HRI = .FB.: HFPI = .FB.	(4F10.5) (4F10.5) (6X.4HR] =,F8.5,3X,4HR2 =,F8.5,3X,4HR3 =,F8.5,3X,4HR4 =,F8. (6X.5HFP] =,F8.5,3X,5HFP2 =,F8.5,3X,5HFP3 =,F8.5)	F8.5,3X,4HR4 =,F8. : =,F8.5/)		
\$695	85 FORMAT 86 FORMAT 1E15.5/} END	1 (4E15.5) 1 (6X,4HM1 /)		*, E15.5,3X,44#2 *,E15.5,3X,44#3 *,E15.5,3X,44#4 *,	=,E15.5,3X,4HB4 =,	A 894 A 894 A 895 A 896-	

Computer program CLOCK3 (cont)

5																									
	-	4	m	4	Ŋ	9	7	<b>co</b>	Ø	<u>•</u>	=	13	<b>(1)</b>	14	5	9	11	18	19	20	5	22	23	7	25
	6	80	₩.	20	•	90		<b>m</b>	<b>6</b>	<b>6</b>	60	ØD.	<b>c</b>	酚	60	60	80	œ	<b>©</b>	<b>60</b>	60	<b>60</b>	<b>6</b>	<b>#</b>	•
	SUGROUTINE TRANST (PHOG, ALPHP, BETA, FP, ACG, B, DELG, Z, PSIT, PHIT, G)	4159	ST={-RHOG+COS(PSIT-ALPHP)+B+SIN(BETA}+FP+SIN(PSIT-ALPHP)}/ACG	CT=(@HDG>SIN(PSIT-ALPHP)+B>CDS(BETA)+FP>COS(PSIT-ALPHP))/ACG	PHIT=ATAN2;ST,CT)-DELG	PHINEXT=PLIT1•Z	AF=ACG*COS(PHINEXT+DELG+ALPHP)-B*COS(BETA+ALPHP)	8F=-2CG=SIM(PHINEXI+DELG+ALPHP)+B•SIN(BETA+ALPHP)	9	RDGIF=AF-AF+BF+BF-CF+CF	YF1=AF+SQR1(ROOTF)	YF2=AF-SQRT(ROOTF)	CF	PSINEX:=2.*ATAN2(YF1,XF)	PSINEX2=2. *ATAN2(YF2.XF)	IF (PSINEX1.LT.O.) PSINEX1=PSINEX1+2.*PI	IF (FSIMEX2.LT.O.) PSINEX2=PSINEX2+2.*PI	IF (ABS(PSINEX!-PSII).LI.ABS(PSINEX2-PSII)) GO 10 1	PSINEX1=PSIMEX2	2	PSINEX1=PSINEX1	2 G=(ACG+SIN(PHINEXT+DELG)+RHOG+COS(PSINEXT-ALPHP)-B+SIN(BETA))/SIN(	PSIPEXT-ALPHP)		
	Sugreon	PI=3,14159	ST=[-18]	E( = 13	PHIT=A	PHINEX	AF=ACG	8F=-3C	CF=R+DG	ROGIF	YF1=1F	YF2=AF	XF=BF+CF	PSINEX	PSISEK	IF :PS	H (3	1F (48	PSINEX	50 70 2	1 PSINEX	2 G= (ACG	1PSIPEX.	RETURN	ENO
SOBRECT INE INVASI					ĸ					2					15					2					25
										Ĩ					=					Ň					H

Computer program CLOCK3 (cont)

	SUBROUTINE TRANS2	TRANSS	74/74	OPT=! FTN 4.6+420	07/3	1/79	07/31/79 06.15.34
	-	Sue Sue	SUBACULINE TI PI=3.14159	SUBREUTINE TRANS2 (WHOG, ALPHP, BETA, FP, ACG, B, DELG, Z, PSIT, PHIT, G) Pl=3.14159	6	<b>~</b> °	
	,		=(FHOG+CGS =(-PHOG+SI	SI=(RHOG-COS(PSIT+ALPHP)+B-SIM(BETA;+FP-SIM(PSIT+ALPHP))/ACG CT=(-RHOG-SIM(PSIT+ALPHP)+B-COS(BETA)+FP-COS(PSIT+ALPHP))/ACG	.00	4 (7) <b>4</b>	
	u)	E E	PHIT=ATAN2(ST.CT)	PHII=ATANZ(SI,CT)+DELG PHINEXT=PHIT+.1*Z	00	in io	
		u. u. :L ≪ 80 t)	AF=ACG•COS(P) BF=-ACG•SIN() CF=-9HOG	AF ACG-COS(PHINEXT-DELG-ALPHP)-B-COS(BETA-ALPHP) BF= x-CG-COS(N(PHINEXT-DELG-ALPHP)+B-SIN(BETA-ALPHP) CF= -9HOG	000	<b>~ 50 €</b>	
•	0.	Y.F.	ROOTF=AF*AF+BF*BF- YF1=AF+SQRT(ROOTF)	MOOJF=AF+AF+BF-BF-CF-CF YF]=AF+SQRI(ROOJF)	, , ,	2=	
		YF.	YF2:4F-SQ2T(RQGTF) XF:8F+CF SCINCY:-2 *4T4M2CV	VF2-4F-SQRT(ROOIF) KF-8F-CF SCTMEX+-3 - sataut/ve+ xel	000	553	
-	ı <u>s</u>	PSI	INEX2=2. • AT	PSINEX=2-AIAXX(YE2,XF) PSINEX=2-AIAXX(YE2,XF) IF (PSINEX=2-AIAX) IF (PSINEX=11.0.) PSINEX=PSINEX2+2-PI	0000	. <del>.</del>	
'n	20	# 12 B ;	IF (ABS(PSINEX) PSINEXT=PSINEXZ GO TO 2	IF (ABS(PSINEXI-PSIT).LT.ABS(PSINEX2-PSIT)) GO TO 1 PSINEXI=PSINEX2 GO TO 2	,000	8 6 8	
ñ	25	A C.	PSINEXI=PSINEXI G=(ACG+SIN(PHIN PSINEXI+ALPHP) RETURN END	PSINEXI=PSINEXI G={ACG*SIN(PHINEXT-DELG)-RHOG*COS(PSINEXT+ALPHP)-B*SIN(BETA))/SIN( RETURN END	), NIS/	ដឧធឧង	

```
PHOP2 = .01077 RHOP3 = .00909
                                                                                                                                                                                                .01613 TP3 = .01362
                                                                                                                                                                                                                      .15000E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PHI3FD =246.8760 PS13FD #103.7458
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PS12FD <351.4384
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PSI1TD =332.4403
PSI11D =311.7642 PHITFD =131.6444 PSI1FD =356.7042
                                                                                                                                                                                                                             ĭ
                                                                                                                                                                               19210. = 191591
                                                                                                                                    NP4 x
                                                                                                                                                                                                      172 =
                                                                                                                                                                                                                           .34000E-05
                                                                                                                                                                                                      TG3 = .02058 TP1 = .02382
                                                                                                                                      MP3 =
                                                                                                                                                          E2 = .43600 R3 = .50405 R4 = .52000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PSI210 = 12.3618
PSI210 = 31.4084 PHIZFD =214.2458
                                                                                                                                                                                                                                                                                                                                                                                         BETAID =135.8183 BETA2D =207.7654 BETA3D =247.3601
                                            .17532
                                                                                                                                                                                   .02805
                                                                                                                                                                                                                                                      RHO4 #
                                                                                                                                     NG3 = 27. NP2 = 8.
                                                                                                                                                                                                                                .
                                                                                                               .06917 ACP3 = .05839
                                                                                          ACG3 = ,17355
                                              CAPRP3 =
                                                                                                                                                                                                                                                                                                                                                                    FP2 = .06833 FP3 = .05768
                                                                   RP3 = .06923 RP4 = .05844
                                                                                                                                                                                  #HOG2 = .03323 RHOG3 =
PSU803 = 77.
                                                                                                                                                                                                                                                       225C3 = .018
                                                                                                                                                                                                                               .85000E-03
                         gpm = 1000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      7E5121 = 43.1735
7E5122 = 8.697;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TEST31 = 8.6883
TEST32 = 43.1790
                                                                                                                                                                                                                                                                                                                                                                                                                             FESTIS = 9.0647
TESTIS = 47.9494
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            251315 = 32.7639
P51315 = 63.7458
                                                CAPRP2 = .20769
                                                                                              ACG2 = .20559
                                                                                                                                                                                                            162 = .02438
                                                                                                                                                                                                                                                                                                                                                    13 × .90
     PSUB02 = 65.
                                                                                                                                                                                                                                                        .062 RHO7 = .025
                          M. = .200
                                                                                                                                                                                                                                   *
2
                                                                                                                                           KG1 = 42. NG2 = 27.
                                                                                                                      ACP2 #
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PSI371D - 82.7669
PSI372D - 117.2516
                                                                                                                                                                                                                                  .12000E-63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PSI2110 = 337.8854
PSI2120 = 12.3618
                                                                                                                                                                                                                                                                                                                                                   04. ≠ 50 06. = 10
                                                                                                                                                                                                                                                                                                                                                                                                                                 PSI1110 = 332,4403
PSI1120 = 11,3250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PHI3TD =247.6360
PHI3ID =254.2093
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PHITTO =136.2544
PHITTO =140.2158
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PHI2TD =207.2958
PHI2TD =200.9124
                                                  = .47727
                                                                                                                                                                                         .04857
                                                                                                                                                                                                                                                                                   .2750E-05
                                                                                                                      .09083
                                                                                                                                                                                                               .03609
                                                                                                                                                                                                                                                                                                                                                                           FP1 = .08943
                             MIN = .030157
                                                                                                 .47343
                                                                                                                                                                                                                                                                                                                                4-1- = 1100Hg
                                                                                                                                                                    ,22500
                                                                          16060
         PSUBD1 = 44.
                                                                                                                                                                                                                                                               2010
1 | |
                                                                                                                          (CP1 ×
                                                                                                   ACG1 =
                                                      CAPRF
                                                                             RP2 =
                                                                                                                                                                                                                  ¥ :51
                                                                                                                                                                                            RHOG1
```

Computer program CLOWK3 (cont)

POINTER	3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117 3117
8	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
S3F	
8	66.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$25	10 th the thin the th
3	
Š	
538	
Š	£ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ž	
DPS13	\$ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
DPS12	# # # # # # # # # # # # # # # # # # #
11540	សំណើស់សំណើស់លើសំណើស់សំហើស់សំហើស់លើសំហើស់សំណើសំហើស់សំហើស់សំហើសំហើស់សំហើស់សំហើស់សំហើស់សំហើស់សំហើស់សំហើស់សំហើស់
F513	\$277.000.000.000.000.000.000.000.000.000.
P512	\$2.50.0000000000000000000000000000000000
PS11	### ### ##############################
<b>F</b> 13	22222222222222222222222222222222222222
<b>PH</b> £2	22222222222222222222222222222222222222
HI	25025252525255555555555555555555555555

42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274 42274	444444444444444444444444444444444444444	2 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	750. 750. 750.	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
* * * * * * * * * * * * * * * * * * * *		
.065 .065 .065 .065 .065 .064 .064 .064 .065 .065 .065 .065 .065	.063	
	*******	*************
		*********
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	ស្តីស្តីស្នីស្នីស្នីស្នីស្នីស្នីស្នីស្នីស្តីស្តីស្តីស្តីស្តី ស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តី	
ស់សំសំសំសំសំស់សំសំសំសំសំសំសំសំសំសំសំសំស	ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស	ាសស់សំសំសំសំសំសាសស់លេសសង់លេសំលំហំលេស
65.39 667.02 667.02 667.02 667.02 73.56 73.19 88.15 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.19 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88.10 88	65.27 66.77 68.26 68.26 69.85 71.43 71.43 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73	88.87 99.49 99.11 99.31 99.31 98.51 100.67 100.67 100.67 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.
5.83 4.74 4.74 4.20 3.65 2.05 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11	22112212121212121212121212121212121212	24.54 22.25.44 22.25.44 22.25.44 22.25.44 22.25.44 22.25.44 22.25.44 22.25.44 23.25.44 25.26 25.26 25.26 25.26 25.26 25.26 25.26 25.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.26 26.
317.39 317.57 317.57 318.25 318.25 318.25 318.25 318.25 318.26 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 318.28 31	222	3325 - 9.8 6.9 3.25 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.
253. 66 253. 12 253. 12 252. 03 252. 03 253. 12 253. 12 253. 12 253. 13 253. 1	22.22.20.20.20.20.20.20.20.20.20.20.20.2	245.83 245.31 244.26 243.73 242.68 242.68 242.68 242.68 253.15 253.15 253.16 253.16 253.16 253.16 253.16 253.16 253.16 253.16 253.16 253.16 253.16
209.43 209.61 209.61 209.96 210.33 210.33 210.34 211.59 211.59 211.51 212.26 213.43 213.50 213.50	214.0 214.0 2201.2 201.0 201.0 201.0 202.0 202.0 202.0 202.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0 203.0	200 20 20 20 20 20 20 20 20 20 20 20 20
299 13 299 14 29 299 14 29 299 14 29 299 14 29 299 14 299 299 14 299 299 299 299 299 299 299 299 299 29		
	1388 1388 1388 1388 1377 1517 1517 1517 1517 1517 1517 1517	

446 446 446 446 447 447 447 447	244 424 714 714 712 804
7.26	25.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00
	:
0.068 0.067 0.067 0.067 0.067 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.	
0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089	0.086 0.086 0.086 0.086 0.086 0.086
	rrrrr
rrrrrrrrrrrrrrrrr	
# # # # # # # # # # # # # # # # # # #	တို့ တို့ ကို ထို တို့ ရှုံ
ê % à ë ë ë ë ë ë ë ë ë ë ë ë ë ë ë ë ë ë	
ស់សំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំស	ស្រុសស្រុសស្រុស ស្រុសស្រុសស្រុស
Exercises	86.47 88.14 89.14 91.49 92.16
25.5.1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2	23.73 23.73 22.70 22.66
22222222222222222222222222222222222222	338.24 338.24 238.42 338.60 338.79
22222222222222222222222222222222222222	245-62 245-07 245-07 245-89 246-44 243-90
2006 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	202.28 203.46 203.65 203.83 204.01
7.0.0	135.05 14.75 15.05 15.05 15.05 15.05 15.05

402 428 428 428 428 428 428 428 428 428 42	200 200 200 200 200 200 200 200 200 200	340 376 376 376 381 386 388 388 375 375	938 948 948 948 948 948 938 938 948 948 948 948 948 948 948 948 948 94
420 620 620 620 620 620 620 620 620 620 6	789 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	653	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
0 0 to 0 0		<b>:</b>	
		200. 200. 200. 200. 200. 200. 200. 200.	000 000 000 000 000 000 000 000 000 00
<del>.</del>			
.085 .085 .085 .085 .085 .085 .085 .084 .084 .084	4890. 4890. 4890. 4890. 6890. 6890. 6890. 6890.		. 082
	:		
			++++++
9 6 7 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	7 CV CV 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac
		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	÷ ÷ ÷ ÷ ÷ ÷ ÷ † † † † † † † † † † † † †
សាំ ហាំ ហាំ ហាំ ហាំ ហាំ ហាំ ហាំ ហាំ ហាំ ហ	តំ តេំ សំ	ហំហំពំលំលំលំលំលំលំលំលំលំលំលំលំ	ស់ លើសាស់ សំសំសំសំសំសំសំសំសំសំសំសំសំសំសំ
8.88 3.48 3.45 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5	25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58 25.58	103.61 693.73 66.78 66.78 72.70 72.71 73.75 74.70 77.08 80.34 80.34	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
22.02 26.52 26.52 26.52 27.72 27.72 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73	17. 1. 4. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	2.50 2.20 2.20 2.20 2.20 2.20 2.20 2.20	337.78 23.57.78 23.56.73 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.54.56 23.56 23.56 23.56 23.56 23.56 23.56 23.56 23.56 23.56 23.56 23.56 23
339.15 339.33 339.33 339.25 339.25 339.26 340.42 340.42 340.42 341.17 341.72 341.72	24.29.29.29.29.29.29.29.29.29.29.29.29.29.	244. 46 344. 34 344. 34 345. 49 345. 19 345. 37 345. 37 346. 69 346. 68	246.82 241.10 241.10 241.10 241.10 241.10 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 248.23 24
243.56 242.81 241.22 241.22 241.22 241.13 254.21 255.57 255.67 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 256.93 25	24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 24.25 25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.	246.92 255.25 255.25 255.25 255.25 255.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 256.25 25	247.55 247.55 247.55 246.41 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 246.43 24
204.35 204.35 204.34 204.34 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 205.33 20	207.68 207.68 207.68 208.04 208.41 208.77 208.77 208.77 208.52 208.52	209.69 200.87 210.05 210.23 210.54 210.78 210.78 211.14 211.14 211.14 211.14 211.14 211.14 211.14	212.04 212.22 212.24 212.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 213.25 21
6.66.66.66.66.66.66.66.66.66.66.66.66.6	24 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	134.02 133.99 133.92 133.93 133.83 133.73 133.73 133.73 133.73 133.73 133.65	2

.082 .082 .082 .082 .082 .082 .081	
नेनेनेनेनेनेनेनेने	
46. 46. 47. 47.	
សំ ហំ	
71.67 73.24 74.79 76.35 17.91 77.47 81.02 81.13 86.13 86.13	
28-22 27-69 27-169 27-169 28-66 28-66 28-68 28-68 28-68 28-68 28-68 28-68 28-68 28-68 28-68 28-68 28-68 28-68 28-68 28-68	
250.21 250.23 250.23 250.24 250.24 251.26 251.44 251.63 251.64 251.64 251.64 251.64	_
251.55 251.03 250.03 250.05 249.96 248.94 248.94 247.35 246.86	7 × .404
201.98 202.15 202.53 202.56 202.65 203.03 203.20 203.32 203.33 203.55 203.73	EFFICIENCY
132.94 (32.95 (32.87) (32.87) (32.80) (32.70) (32.70) (32.66) (32.66) (32.66) (32.66) (32.66) (32.66) (32.66)	CYCLE !

> .056 .056 .056

### REFERENCE

D-1 G.G. Lowen, City College of N.Y., and F.R. Tepper, ARRADCOM, "Fuze Gear Train Analysis," Technical Report ARLCD-TR-79030, ARRADCOM, Dover, NJ, December 1979. APPENDIX E

COMPUTER PROGRAM CLOCK4 (REVISED)

The original program descriptions were given in appendix I of Fuze Gear Train Analysis (ref E-1). The following appendix contains revised descriptions, listings and sample outputs of computer program CLOCK4, which computes point and cycle efficiencies for two pass clock gear trains in a spin environment.

The following changes were made:

- 1. The diametral pitches of both meshes are given as data and printed in the output.
- 2. The initialization parameters J (one for each of the two meshes) are introduced. They are given as part of the data and are printed in the output. Again, these parameters allow the arbitrary choice of the initial point of contact anywhere within the possible range of contact points.

The kinematics of computer program CLOCK4 is again based on the work in appendix G (ref E-1). The moment input-output relationships are derived in appendix H (ref E-1). This program is in many ways very similar to computer program CLOCK3 with the exception that only two meshes are involved, and therefore, wherever possible, reference will be made to computer program CLOCK3. Again, it is assumed that the two meshes will have been tested by computer program CLOCK1 for their geometric suitability. The format of the following is identical to that used in appendix D.

Input Parameters

The following parameters represent the input data for the program (appendix D):

PSUBD1, PSUBD2

MU

RPM

CAPRP1, CAPRP2, RP2, RP3

RHOG1, RHOG2, RHOP1, RHOP2

ACG1, ACG2, ACP1, ACP2

R1, R2, R3

TG1, TG2, TP1, TP2

NG1, NG2, NP2, NP3

RHO1, RHO2, RHO3

M1, M2, M3

MD

K

J1, J2

The angular velocity of the input gear is incorporated into the program as PHDOT1 = -1. All velocity computations are based on this model. The input motion in the fuze gearing model is negative (fig. A-10, ref E-1).

### Computations

Computations of Gear Tooth Parameters

The required computations are identical to those for the revised computer program CLOCK3 in appendix D, with the exception that only two meshes are considered.

Computation of MIN, GAMMAS and BETAS

The input moment is computed in the manner of equation D-1 of appendix D. In addition, the angles  $\gamma_2$ ,  $\gamma_3$ ,  $\beta_1$  and  $\beta_2$  are found according to the expressions given in appendix A (ref E-1).

Computations of Other Parameters

The computations of the angles  $\Delta\phi_1$  and  $\Delta\psi_1$ , the length  $L_1$  as well as the centrifugal forces  $Q_1$ ,  $Q_2$  and  $Q_3$  (called  $Q_{3p}$  by equation H-245, ref E-1) are identical to those described in the parallel section dealing with computer program CLOCK3 in appendix D.

Preliminary Computations for Mesh 1

The preliminary computations for mesh 1 are similar to those discussed in appendix  $\mathbf{D}_{\bullet}$ 

Preliminary Computations for Mesh 2

The preliminary computations for mesh 2 are similar to those discussed in appendix  $D_{\bullet}$ 

Gear Train Motion Model: Initial Contact Angles, Kinematics, Point and Cycle Efficiencies

The simulation of the gear train model, which is necessary for the determination of both POINTEF and CYCLEFF, is found in a loop starting with statement label no. 20 and ending with card no. 542. The motions of the individual driving gears are initialized at the angles PHII and PHI2, respectively, with the help of the initialization parameters  $J_1$  (i=1,2) according to equation D-17 (app D).

The additional parameter  $J_3$  is set equal to zero to mark the first cycle of computations (statement no. 318).  $J_3$  becomes equal to unity for all subsequent computations (see statement no. 541).

The parameter  $J_4$  is used to distinguish between the two possible contact conditions of mesh no. 1.  $J_4=0$  whenever the first set of teeth is in contact.  $J_4=1$  once the latest possible value of  $\phi_1$  has been reached, and contact must be transferred to the second set of teeth in order to obtain a complete cycle of motion for this mesh.  $J_4=0$  at all times if  $J_1=0$ , i.e., contact is made in mesh no. 1 at the earliest possible point.

Both meshes will be in round on round contact until either reaches its respective transition angle PHILT or PHILT. Once the transition angles are past, the meshes will be in round on flat contact. These regimes continue until the final angles PHILF and PHILF are reached.

The increment DDPHII of the input goar 1 is obtained from an adaptation of equations A-207 and A-208 (ref E-1), in which tooth numbers, rather than bose circle radii are used. The increment DDPHI2 of gear 2 is related to the increment of the pinion angle PSII.

While the motion of gear 1 is terminated when the angle PHII reaches one increment before the starting angle, gear 2 must be reset to its earliest possible angle PHI2I whenever its latest angle PHI2F has been reached."

If  $J_1=0$ , the computation is terminated for PHI1 < PHI1F + DDPHI1. If  $J_1\pm 0$ , and therefore  $J_4=1$ , computation is terminated when PHI1 < PHI1A + DDPHI1. In the above, PHIIA represents the starting angle of mesh 1 in the manner of equation D-17. (Card no. 316).

The appropriate choice of moment equation depends upon which of the four possible combinations of contact conditions, as indicated by table H-2 (ref E-1), is applicable.

The following discusses the kinematics of the individual meshes as well as the determination of the point and cycle efficiencies where they differ from the description in appendix D.

Kinematics. The program only utilizes the kinematics of meshes 1 and 2. These are identical with those for the revised computer program CLOCK3, as given in appendix D.

Moment Computations, Point and Cycle Efficiencies. Regardless of the combination of contact conditions, the point efficiency is computed according to equation 3 (ref E-1), i.e.,

$$\varepsilon_{\rm p} = \text{POINTEF} = K_{\rm RATIO} \frac{M_{\rm o}3i}{M_{\rm in}}$$
(E-1)

where, with  $\dot{\phi}_1 = -1$ 

$$K_{RATIO} = \begin{vmatrix} \mathbf{\hat{\psi}}_2 \end{vmatrix}$$
 (E-2)

The cycle efficiency determination is based on equation I-21 through I-23 (ref E-1).

The moment computations begin with the statement label no. 24, and initially consist of the determination of selected variables between All and A72 and selected variables between C6 and C36, as applicable to the analyses of appendix H (ref E-1). The governing contact combination (table H-2, ref E-1) is determined with the help of the four moment control statements, which start with card no. 508. Once the appropriate combination is established, the program is directed to one of the four associated moment expressions. These expressions for M₀₃₁ coincide with those given by equation H-260, H-261, H-277 and H-278 (ref E-1). They are listed in the above order beginning with statement label no. 25 and ending with statement label no. 28.

The rationale of the control statements for meshes 1 and 2 is identical to that given for revised computer program CLOCK3 (appendix D).

Output

The output of the program is best explained with the help of the sample problem at the end of the program.

Input Parameters (see fourth and fifth sets of gear data of appendix C)

### Mesh 1

CAPRP1	= R _{p1}	= 0.55000 in.	(1.397 cm)	PSUBD1	$= P_{d1} = 50$
RP2	= r _{p2}	= 0.08000 in.	(0.2032 cm)	J1	- 0.90
ACG1	- a _{Gl}	= 0.54656 in.	(1.3883 cm)		
ACP1	- apl	= 0.07998 in.	(0.2031 cm)		
RHOG1	- PG1	= 0.04322 in.	(0.1098 cm)		
RHOP1	- P _{P1}	= 0.01400 in.	(0.0356 cm)		•
TG1	- t _{G1}	= 0.03175 in.	(0.0806 cm)		
TP1	- t _{P1}	= 0.02096 in.	(0.0532 cm)		
NG1	" n _{G1}	<b>=</b> 55			
NP2	= n _{P2}	<b>-</b> 8			

### Mesh 2

CAPRP2 = 
$$R_{p2}$$
 = 0.39286 in. (0.9978 cm) PSUBD2 =  $P_{d2}$  = 70 RP3 =  $r_{p3}$  = 0.05714 in. (0.1451 cm) J2 = 0.90 ACG2 =  $a_{G2}$  = 0.39040 in. (0.9916 cm) ACP2 =  $a_{P2}$  = 0.05709 in. (0.1450 cm) RH0G2 =  $\rho_{G2}$  = 0.03087 in. (0.0784 cm) RH0P2 =  $\rho_{P2}$  = 0.01000 in. (0.0254 cm) TG2 =  $t_{G2}$  = 0.02268 in. (0.0576 cm) TP2 =  $t_{P2}$  = 0.01497 in. (0.0380 cm) NG2 =  $n_{G2}$  = 55

### In addition

MU = 0.2  
RPM = 1000  
M1 = 
$$m_1$$
 = 0.12 x 10⁻³ 1b-sec²/in. (2.101 x 10⁻² kg)  
M2 =  $m_2$  = 0.253 x 10⁻⁴ 1b-sec²/in. (4.430 x 10⁻³ kg)  
M3 =  $m_3$  = 0.153 x 10⁻⁵ 1b-sec²/in. (2.679 x 10⁻⁴ kg)  
R1 =  $6 k_1$  = 0.225 in. (0.572 cm)  
R2 =  $6 k_2$  = 0.497 in. (1.2624 cm)  
R3 =  $6 k_3$  = 0.640 in. (1.6256 cm)  
RH01 =  $p_1$  = 0.062 in. (0.157 cm)  
RH02 =  $p_2$  = 0.025 in. (0.064 cm)  
RH03 =  $p_3$  = 0.018 in. (0.041 cm)  
MD =  $p_3$  = 0.275 x 10⁻⁵ 1b-sec²-in. (3.105 x 10⁻⁷ kg-m²)

### Computed Values

At the beginning of the output, one finds MIN =  $M_{in}$ . Subsequently, the following are listed for each mesh:

fpi, the length of the pinion flats

 $\beta_i$ , the fuze body pivot to pivot line angles

 $\psi_{T_i}$  and  $\phi_{T_i}$ , the transition angles

 $\phi_{T_{i}}$ , and  $\psi_{T_{i}}$ , the earliest angles

 $\psi_{P1}$  and  $\psi_{P1}$  , the latest angles

Finally, for the full range of the input angles  $\phi_1$ , the point efficiency POINTEF is listed, in addition to other parameters which are useful for checking purposes. Note that DPSII and DPSI2 represent  $\psi_1$  and  $\psi_2$ , respectively. The cycle efficiency CYCLEFF is found at the end of the output.

### Computer program CLOCK4

	PROGRAM CLOCK4	LOCK4 74/74 OFT=1 FTK 4_6+420 07/31/79	Ä		Š.
-		PROGRAM CLOCK4(IMPUT.OUTKUT.TAPES=IMPUT.TAPE6=GUTPUT)		- c	
	u u	POINT AND CYCLE EFFICIENCIES FOR TWO PASS CLOCK (OSIVAL) STEP-UP A		4 m	
		GEAR TRAIN IN SPIN ENVIRONMENT		<b>4.</b> N⊔	
n	J	REAL BU, LANDA!, LANDA2, LX1, LY1, L1, LX2, LY2, L2, NP2, WP3, WG1, WG2, WIN, W1 A	٠.	91	
		1,82,83,803,8031,8032,8033,8034,8101,80,LL1,LL2,R,44,42,02,02,43, + 2F80 (5,461 P5)2801,85,861,892,862,893		- 60	
		READ		۵۰ خ	
0		READ (5,58) R1,R2,R3 READ (5,41) RHOG1,RHOG2,RHOP1,RHOP2 A		=	
		(5.42)	<b>~</b> ~	2 E	
		- ~	٠	7	
ē		PI=3,14159 A		<del>ر</del> 5	
		Z=F:/100. CREGA=PPW=2.*PI/60.	<b>.</b>	11	
		GRZ=CMEGA-CMEGA	<b>~</b> ~	<b>5</b> 5	
ğ	U		4	20	
<u> </u>	U	CCMPUTATION OF GEAR TOOTH PARAMETERS FOR BOTH MESHES	4 4	3 5	
	U		<	1 2	
		CAC-THATCH TAGA CAPPELL	4	24	
Ş		CXP1=RNDF1-TP1/2.	۷.	52	
ļ.		DE: PI = ASIN(CXP1/RP2)	∢.	52	
		GAMMET=ASIN(RKOP1/RP2)	< =	787	
		FP144CD1+CCS(GAMP)		29	
õ			⋖	9	
:		CXG2=R+E/G2-TG2/2.	۷.	31	
		DELC2=ASIM(CXG2/CAPRP2)	٠.	32	
		CXP2=EHQP2-1F2/2.	٠,	3 4	
ñ		CANTEROLA (CATAL TO CATAL TO C	4	32	
}		ALPHD2=GAMMP2-DELP2	€ .	98	
		FP2=LC02+COS(GACMP2)	٠.	37	
	•	82=C2F2P2+RP3	• <	3 8	
ģ	ט ע	COMPSEATION OF MIN, GAMMAS AND BETAS	4	2	
	U	Carter - Cart - Little of Table - Little of	۷ <	- 4	
		#IN-MACOS(([CAPRP1+RP2]*[CAPRP1+RP2]+R1*R1-R2*R2}/(2.*R1*[CAPRP1	4	ů.	
		[+1492]))(1-464-61-64-64-64-64-64-64-64-64-64-64-64-64-64-	< <	<b>1</b> 1	
£		OFICIAD=ACOS(((CAPARZ+RP3)*(CAPARZ+RP3)**(AAPARANZ-R2-R3-R3-R3) AA-R4-(CAPARZ-R3-R3-R3-R3-R3-R3-R3-R3-R3-R3-R3-R3-R3-	t <b>«</b>	t f	
		GAMP::2=ACDS((R1+R2+R2+R2-(CAPRP1+RP2)*(CAPRP1+RP2))/(2.*R1+R2))	•	41	
		GANNSD=ACOS((RZ-RZ-RB-NB-NB-(CAPRPZ-RPB)-(CAPRPZ-RPB))/(Z-eRZ-RB)) Carryd-Gannsd-Carryd	< <	\$ <del>\$</del>	
Ş		BETA:=PI-DELTA2	< ⋅	20	
		861122	< <	2 2	
		SELATOR SELATOR	: ◀	53	

Computer program CLOCK4 (cont)

COVER OF THE PROPERTY OF THE P

PAGE

	PROGRAM CLDCK4 74/74 OPT=1	01/31/79		98,11.05
<b>5</b> 5	MRITE (6.45) 1CG2.4CP1.4CP2 MRITE (6.48) WRTE (6.59)	4444	555	
<b>\$</b>	MALIE (6.45) PHOCE, PHOCE, PHOPE, HARDPZ MATIE (6.45) TG1, TG2, TP1, TP2 MATIE (6.62) RHO1, RHO2, RHO3, MD, K, PHOUT1, J1, J2 MATIE (6.49) RHO1, RHO2, RHO3, MD, K, PHOUT1, J1, J2 MATIE (6.49) RHO1, RHO2, RHO3, MD, K, PHOUT1, J1, J2 MATIE (6.49) RHO1, PP2	44444	27 - C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
8	C COMPUTATION OF OTHER PARAMETERS C DPHII=360,/MGI+Z		2667	
92	DPS[1=360_/NP2*Z DPH[2=360_/NP3*Z DPS[2=360_/NP3*Z L]=640G1+8+0P1 L2=8+0G2+6+0P2 Q1=W1=R1+0P2	~ ~ ~ ~ ~ ~	862772 1377	
£	ပ () ပ	4444	* 25 2 E E	
2			6 4 5 5 6 5 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7	
8 (		<b>44444</b>	2 2 2 2 2 2 3 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
s 18	PSIELIEPSITII  PSIELIE-PSITII  IF (PSITII.GE.PI) P  IF (PSITIZ.GE.PI) P		666666666666666666666666666666666666666	
90 50 20 20	IF (PSIIII LI.O.) PSIIIPANS(PTREIN (PSIIEIZTA-TALTALTALTALTALTALTALTALTALTALTALTALTALT		y 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	CALL TRANS: (MAGGI, ALPHPI, BETAI, FPI, ACGI, EI, DELGI), L. PSINII, PHAINII,	<	g	

89																																													
/79	101	109	110	=	112	1 4	15	116	117	18	6 5	3 5	122	123	124	125	120	128	129	130	131	132	133	134	300	2 2 2 2	38	139	19	141	142	143	Ä	146	147	148	4 t	12	152	153		150	157	158	70
07/31/79	< <				< •			~			< -				≺						⋖	◄	< ⋅	≺ •	< •	( 4	<	*	. 4	~	∢.	∢ •	< 4	₹	~	∢ .	< •	<	<	<	⋖ •	< <	<	∢ •	≪
FTN 4.6+420 07/					CALL TRANS! (RHOG1, ALPHP1, BETA!, FP1, ACG1, B1, DELG1, Z, PS11T2, PH11T2,						I+2.*+PI	I+2. *PI				SIGN FOR ROUND ON FLAT REGIME OF MESH 1	Condition of the Authority of the Condition of the Condit	######################################		C15					4	1177142.471	11)FZ+Z;#F1  C/BCT+E9=DGT+T1  GO TO 5	3				LATEST AND EARLIEST POSSIBLE VALUES OF PHI AND PSI FOR MESH 1				A:F=aCG1.COS(PH11+DELG1+ALPHP1)-B1*COS(BETA1+ALPHP1)	BIF=-ACGI*SIN(PHI1+DELC1+ALPHP1)+BI*SIN(BETA1+ALPHP1)	u.				IF (PSI1F.LT.O.) PSI1F=PSI1F+Z.*PI .u. ncoc.ertcococ.ect.etasct1+AF:p1-1CG1+COS(PHI1+DPHI1+		LY1=81-SIN(BETA1)+ACP1-SIN(FSI1F-DPSI1+DELP1)-ACG1*SIN(PHI1+DPHI1+	
74/74 GPT=1	5	IF (GII, GI, FFI) GO 10 &	0.0000000000000000000000000000000000000	7	TRANS! (RHOG!, ALPHP1, B	5	TE (G12.LI.FPI) GU IU 3	(10:0)	T=PHI112		.0.	IF (PSIII.LI.G.) PSIIT=PSIII+Z.*PI	PHIIID=PHIII/Z	PSITIU=PSITI/4 SOITE (6 53) BHITTO BSITIO		DETERMINATION OF CORRECT SI		ACG1 *COS (PHI11 + DELG1 + AL	#17 = - ACG1 = 5 LP ( P31 : 1 + 5 LC 1 + 5 CC1 + 4 CC1	C.T 48000) DOGG 146 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 - 816 -	Y151=A1F+50RT(ROOT1F)	Y1F2-AtF-SORT(ROOT1F)	XIF=BIF+C1F	PSITF1=2.*ATAN2(YTF1,X1F)	FS: 1F2=2. +ATAN2(Y:F2, X1F)	IF (PSI1FI, LT.O.) PSI1FI=PSI1FI+Z.*PI	IF (PSITE2.LI.O.) PSITEZEPSITEZETETE	285(P311F1-P311);	S16N1F=-1.			ST AND EARLIEST POSSIBL		DO / 1=1,2600 BHTD1=PHT[10-(1-1,)/100,	PHI :=PHIDI*Z	ACGI + COS ( PHI 1 + DELG: + ALP	-ACGI -SIN(PHII+DELGI+AL	C1F=8HGG1 0001:71-8:61-8:61-8:61-616-61-716-71		XIFEBIFFCIF	PSI1F=2. *ATAN2(Y1F,X1F)	TH COSTABLETON PSITHEPSITHAZAMPI	al -cust serval practicus;	E1-SIN(BETA1)+ACP1-SIN(	<b>:</b>
PROGRAM CLOCKS	1611)	11 41		4 01 00	2 CALL	1612)	1 ( )		TIHE E		1) JI *	) <u>41</u>	T d	100		C DETE			130		×151	Y1F2	XIF	115d	FSI	) is 1			1 CT CC	105 W	1	C LATE	1	. 55 5 Hg	111111111111111111111111111111111111111		E 19	- C15	5) H	: Lu. X	PSII	H 1	13 * (Y) *	= 1 \ 7 = 1 \ 1	105701)
			•	2			1	2				20				S				5	2				135					5				145				150				155			

PROGRAM CLOCK4	74/74	07/31/79 A 160 A 161	3 08.11.05
B P P P P P P P P P P P P P P P P P P P	DECELLICE.) GD TO 8  CON::NUE PA:IFF=PA:IF PS:IFF=PA:IF PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS:IFF=PS	A 163 A 163 A 165 A 165 A 166	. OJ M 44 IO IO Io Io
THE SECTION	IF (PSIII.LT.O.) PSIII=PSIII+2.*PI PHIIID=PHIII/Z PHIIFD=PHIIF/Z PSIIID=PSIIIF/Z PSIIID=PSIIIF/Z WRITE (6,53) PHIIID.PSIIID,PHI!FD.PSIIFD		n n o = 0 m s
D * 111	DETERMINATION OF CORRECT SIGN FOR ROUND ON ROUND REGIME OF WESH 1 A1R-ACG1*SIN(PHI1I+DELG1-DELP1)-B1*SIN(BETA1-DELP1) B1R-ACG1*CCS(PHI1I+DELG1-DELP1)-B1*COS(BRIA1-DELP1)	A 175 A 176 A 177 A 177	r IO 80 1~ 50 6
E E E E E E E E E E E E E E E E E E E	CIR=(ACT) *ACF) *A		n ⇔ ← 6/ w 4 fu fu fu
200 00 00 00 00 00 00 00 00 00 00 00 00	IF (PSI:R1_LL1.0.) PSI:R1=PSI:R1+2.*PI IF (PSI:R2_LL1.0.) PSI:R2=PSI:R2+2.*PI IF (ABS(PSI:I-PSI:R1)_LT_ABS(PSI:I-PSI:R2)) GO TO 9 GO TO TO SIGNIR=1. GOINTRAIN.	A 188 A 189	~ a a a a ~ a a a
10 A21	DETERMINATION OF TRANSITION ANGLE OF MESH 2  MATE-RHOG2-COS(BETA2-ALPHP2)+FP2-SIN(BETA2-ALPHP2)  MATE-RHOG2-SIN(BETA2-ALPHP2)-FP2-COS(BETA2-ALPHP2)		. N. 70 L- 40 Q
22220	C2T='ACG2-ACG2-RHGG2-RHGG2-B2-B2-FP2*FP2)/(2.*B2) RCGI2T=A2T-A2T-A2T-B2T-C2T-C2T Y2TI=A2T-SQRT(RGGI2T) Y2T2=A2T-SQRT(RGGI2T)	A 202 A 202 A 203 A 203	0 - 0 M 4
124 124 127 127	211=2.*ATAN2(Y2 212=2.*ATAN2(Y2 1E21=PS12T1 1E22=PS12T2 (PS12T1.GT.PI)	A 206	5 9 7 9 6 5
7 I I I	(FS12T1.LT.PI) PSITE21=PSITE21+2.*PI (PSI2T2.GT.PI) PSITE22=PSITE22-2.*PI (PSI2T2.LT.PI) PSITE22=PSITE22+2.*PI	A 231	n – c

ģ																																						
07/31/79	213	216	218	52	222	223	224	226	227	229	533	232	233	234	235	237	238	239	24.	242	243	244	246	1 247	248	25.50	52	1 252	253	7 7	38	1 257	258	260	1 261	A 262	4 264	262
07/3	444	<b>4</b>	∢ •	< ≪	< <	•	~ •	* *	< •		•	< <	•	≪ •	~ ~	<	**	•	~ ~	· •	•	•	•		•		`		•		• ~	_	•	•	. –			-
FTW 4.6+420	TEST21=ABS(PI-BETA2+PSITE21+ALPHP2)/Z TEST21=ABS(PI+BETA2-{PSITE21+2.*PF+ALPHP2})/Z TEST22=ABS(PI-BETA2+PSITE22+ALPHP2)/Z	TEST22=ABS(PI+BETA2-(PSITE22+2.*PI+ALPNP2))/Z PSI211=PSI211+2.*PI	PSI212=PSI212+2.*PI		21	PSIZ: ZU,   ES: ZZ   (RHOG2, ALPHP2, BETA2, FP2, ACG2, B2, DELG2, Z. PS: 271, PHI2T1,				GG IG 13 Compared founce at bube gette, FPS, ACG2.82, DELG2.Z.PSI212.PHI212.						PHI21=PHI21+2.**!	1/2-74:71		ē	DETERMINATION OF CORRECT SIGN FOR ROUND OF FLAT REGIME OF MESH 2		42F=4CG2*CCS(PHI2T-DELG2-ALPHP2)-82*COS(BETA2-ALPHP2)		₹F•C2F					PSI2F1=PSI271+2.*PI	-PSI2F2+2.*PI	IF (185(PSI2FI-PSI2T).[T.A85(PSI2FZ-PSIZI))					LATEST AND EARLIEST POSSIBLE VALUES OF PHI AND PSI FOR MESH 2		
OPT=1			_	11/2	ARITE (6.33) PSI211D. TEST21	(RHOG2, ALPHP2, B	;	72) 60 10 11		Cana I Couna I		:P2) G0 T0 12	_					2/1	WRITE (6.55) PHI2TO, PSI2TO	N OF CORRECT		5(PHI2T-DELG2-	N( rel12: -05:05	CZF = "KAUCZ. RGCT2F= 42F+ 42F+82F+82F-C2F+C2F	Y2F:=A2F+SQRT(ROOT2F)	Y2F2=A2F-5QPT(H0012F)	X2F=82F+C2F BS:7F+=9 **T&N2(Y2F:_X2F)	TAN2 (Y2F2, X2F	IF (PSI2FI_LT.O.) PSI2Ft=	(cSI2f2,LT.0.) PSI2f2=PSI2f2+2.*PI	2¢1-PSI2T).LT 2¢1/7	252/2				EARLIEST POSS	200	PHID2=PHI2TD+(1-1.)/100.
74/74	(PSITE21.GE.O.) (PSITE21.LT.O.)			PSI2T10=PS <b>I2T1/Z</b> PSI2T20=PS <b>I2T2/Z</b>	TE (6.33)	MRITE (6,34) CALL TRANS2	•	IF (G21.GT.FP2)	PSI2T=PSI2T:	GG TG 13	12 (2	IF (G22.LT.FP2)	STOP	PH121=PH1212	PS12T=PS12T2	IF (PHI21.LT.O.)	TF (PSIZI.LI.0 PHI2IN=PHI2I.Z	PSI2TD=PSI2T/Z	ITE (6,55	TERMINATIO		F=4062*CB	のでは、これのことのできません。	072F=A2F*	F:=A2F+50	F2-42F-50	X2F=82F+C2F 8517F1+7 **	1252=2.*A	(PS12F1.	(=S12F2.	IF (185(PS12F1-P	PSI2F2D=PSI2F2/Z	S:G:2F=-1.	52 25	Site Site	TEST AND	DG 16 I=1,1000	102=PH121
PRIGRAM CLOCK4	EL IL II			I i i d	U.S.	# 15	1621)	#I	184	3	-	94 T	9012	12 PH:		13 EF	- 1 d	[Sd		ט נ		A2i	i i i	3 8	727	42	CN II	מי מי	u.	11	u. 0	2 8	23		d .	ניטע	15	T.
	į	, i		ç				225			230				235				240				245				256				255			1	260			265

Computer program CLOCK4 (cont)

	PROGRAM CLDCK4	ZX A	74/74	ò	OPT=1		FTN 4.6+420		61/18/10	61/1	.11.90
		PH12 A2F=	PHI2=PHID2*Z A2F=ACG2+CDS H2F=ACG2+CS	IHd)S	PHI2=PHID2+Z A2F=ACG2+COS(PHI2-DELG2-ALPHP2)-B2+COS(BETA2-ALPHP2) BOS-ACC3+CIN(PHI2-DELG2-ALPHP2)+R3+SIN(RETA2-ALPHP2)	-82•COS(BETA) 1+82•SIN(BETA)	:-ALPHP2}		444	266	
210		22.5	C2F=-RH3G2	35.4	C2F=-RHGG- C2F=-RHGG- C0T2F=A3F*A3F*R3F-R3F-C3F				<b>4 4</b>	269	
2		72F=	A2F+SIG	N2F+S	Y2F=A2F+SIGNZF+SQRT(ROOT2F)				<	271	
		X2F=	X2F=52F+C2F DS13E=3 estamp(Y3F X3F)	A)CRI	2F X2F1				< <	272	
		11	PSI2F.11	1.0.)	IF (PSI2F.LT.0.) PSI2F=PSI2F+2.*PI	PI.			: ≺	274	
275		LX2=82	82*C05(E	BETA2	LX2=82+COS(BETA2)+ACP2+COS(PS12F+DPS12-DELP2)-ACG2+COS(PH12-DPH12- DELCO	F+ <b>DP</b> SI2-DELP	:)-ACG2+COS	(PHI2-DPHI2-	<b>۲</b> ۹	275	
		LY2=	92+SIN(E	BETA2	ue.uz. LY2=82+5IN(BETA2)+ACP2+SIN(PSI2F+DPSI2-DELP2)-ACG2+SIN(PHI2-DPHI2-	F+02512-DELP	)-ACG2+51N	(PHI2-DPHI2	<b>×</b>	277	
		TOELG2)	(2)	;	DELG2)				< <	278	
280		DELE		} . :3	*******				۲ ح	38,7	
	,		IF (DELEL2. LE.O.)	LE.0.	1 60 10 17				∢ •	281	
	<b>*</b>	16 CONT	CONTINUE DHIOF-DHIO						< <	28.5	
	-		PSIZFF=PSIZF	ı.					<	264	
382		PH12	PHI21=PHI2F-3PHI2	IHdC-	7:				< ٠	265	
		7517	05121	֓֞֞֜֜֞֜֞֜֜֓֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֡֓֓֡֡֡֡֜֜֜֜֡֓֡֓֡֡֡֡֡֡	PSIZI=PSIZFF+UPSIZ TF (05121 CT 2 =01) PSISI=PSISI=9.=PI	-9. ePT			< <	280	
		PHIZ	PHI210=PHI21/2	2/1	7776 1 11	•			<	288	
		PS12	PS1210=PS121/Z	7/1					⋖	289	
290		PH12	PHI2FD=PHI2F/Z	F/2					< <	8 6	
		101	F 16 56	7/1	PSIZEUSPSIZEE/L WRITE 16.56) PH1910,PS1210,PH12FD,PS12FD	FD. PS12FD			< <	Š	
	U								<	293	
	U	DETE	RMINATIC	PO NO	DETERMINATION OF CORRECT SIGN FOR ROUND ON ROUND REGIME	JR ROUND ON	HOUND REGIN	E OF MESH 2	∢.	8	
295	u	1001	00.00TM/6	05.11.	128-83-51N(BEIA74DE1B2)-4067-51W(BW[21-DE1624D]	#C PHT 21-DE1 G	1001		< <	295	
		B2R=	82+C05(	BETA2	R2R=B2+514  BE AZ+DE[P2]-ACC2+COS(PHI2I-DELG2+DELP2)	SCH121-DELG	+0ELP2)		<	262	
		CZR	(12-12-1	82.82	C2R=(L2+L2-B2+B2-ACG2+ACG2-ACP2+ACP2+2.+ACG2+B2+COS(PH121-DELG2-BE	ACP2+2. • ACG	*82 + COS (PH	1121-DELG2-BI	<b>*</b>	298	
1		1TA2)	ITA2) 1/(2ACP2)	(22)					⋖ '	295	
300		1001	ROG 12R=A2R•AZR+62R•6Z	AZR+8	ROO12R=A2R+A2R+82R+82R-C2R+C2R	•			< -	8	
		Y282	7282=A28+5081(R0012R) 7282=A28-5081(R0012R)	2 2	012R)				< <	302	
		X2R=	X2R=B2R+C2R	,	•				⋖	303	
306		PS12	181=2. • 41	TAN2(	PSI2R1=2.+ATAN2(Y2R1,X2R)				<b>«</b>	364 704	
n		101	PS1281	1	FS1282=2=41482;1282-628] FF {PS1281:(T.O.) PS1281=PS12834	+2.*PI			<	306	
		. L	PS12R2.1		IF (PSI2R2.LT.G.) PSI2R2-PSI2R2+2PI	-2. •PI			< <	357	
		11	ABS ( PS I :	51-PS	IF (ABS[PSI21-PSI2R1).LT.ABS(PSI2I-PSI2R2)) GO TO	(21-PS12R2))	GO TO 18		<	308	
		210	SIGN2R=-1.						⋖ ·	60	
310	•		GU 10 19						< <	5 5	
		10 DI							. ≺	312	
	o c	GEAR	TRAIN .	MOTIO	GEAR TRAIN MOTION MODEL, KINEMATICS	rics			⋖ •	313	
315		19 DDPH	11.1=NP2=	(PH12	DDPH: 1 = NP2 = (PHI2F-PHI2I)/(K+MG1)				: <b>&lt;</b>	315	
			A=PH[1]	1Hd)+	PH11A=PH111+(PH11F-PH111)+J1				∢ :	316	
		PHI1	PHI 1=PHI 1 <b>A+00PHI 1</b> J3=0		<b>-</b>				< <	317	
		,	•							,	

Computer program CLOCK4 (cont)

PROGRAM CLOCK4	сгоска	74/74	0PT=1		FIN 4.5+420	67/31/79	08.11.05
	20 PHITE IF (PP	J4=0. #RITE (6,35) PHI:-PHII-DDPHII IF (PHI).LE.PHIIF) IF (PHI).LE.PHIIF)	PH11 PH11F) PH11F)	J4=0. ARITE (6,35) PHIT-PHIT-DDPHIT IF (PHIT-LE,PHITF) J4=1. IF (PHIT-LE,PHITF) PHIT=PHIT		A 320 A 321 A 321 A 323	
00	PHID IF (1 ##ISF4	=PHI1/Z J4.Eq.1 DDFHI1)	. AND .	AND.PHI1.LE.PHIIA+DGPHI1).OR.(J1.E0.0AND.PHI1.LE.P ) GD TD 30	EQ.O.,AND.PHI1.LE.I	~~~~	
J	•	PH11.LE.1 CG1*CGS (ACP1*AC	PHI15) (PHI1+ (PHI1+ P1+ACO	F :PHI1.LE.PHIII)	P1) P1) •COS(PHI1+DELG1-BE)	A 333 A 331 A 331 A 333	
		######################################	18+615 18+508 18+508	######################################		A 336 A 336 A 336 A 338	
		IF (PSI:.GT.2.*PI) PSI:= PSI::SPSI:/Z IF (abs(PHII-PHII).LI.0 IF (abs(Phii-PHII).LI.0	2.*PI)	<pre>If (FSI: GF.2.*P) PSI: =PSI: /2.*P) PSI: =PSI: /2.*P) If (.55(PHI-PHII) . II. 0. 0.001) PSI: P=PSI: II. (.3.*E0.). PSI: P=PSI: P. (.3.*E0.). PSI: PSI: PSI: PSI: PSI: PSI: PSI: PSI:</pre>	ATACOPTICAL TACKETS		
	CLAMP LANDA 1F (L	1=(B1+CO) 1=(B1+CO) 11=#TANZ 11=#TANZ 11=#TANZ 11=#TANZ	S(BET4) (SLAM1) (T.O.)	CLAW:= {B1:COS; BF:T1:+ACP1:+COS(PS:11+DELP1)-ACG1.*COS(PH:1+DELG1)}/L1 LANDA1=#TANZ[SLAW:.CLAW:) IF (LAWDA1.LT.O.) LAWDA1=LANDA1+2.*PI PFSOGTI=PHODTIPACS:(B1/ACP1:*SIN(PH:1+DELG1-BETA1)+SIN(PH:1+DS:11+DE	COS(PHI I+DELGI)/LI 1)+SIN(PHII-PSI1+C		
		Lui JELFI J. (ACGI+C VSITE = HHDGI 1+ (ACGI+C VSIT+DEL PI-LAMDAI) - H SIR+VSI 14/48S(VSITR) GO TO 22	(ACG1 4EDA1) S(VST1	Luiserija (Alimenes(FSI)) - Pimesim(FSI)) VSITR==HGGI]: (ACG) - FUGS(PH[1+DELGI-LAMBA!)+RHGGI)-PSDGI: (ACP1*COS( SITR=VSIIA/ABS(VSIIR) GG IG 22	)-PSDGT1*{ACP1*CDS(		
	Z1 A1F=ACG1* B1F=ACG1* C1F=PHOS1 Y1F=A1F=A1F+A1	4CG1+COS -ACG1+SIN -HOG1 F=A1F+A1 1F+SIGN	N(PHII N(PHII 1F+81F	AIF=ACG1+COS(PHIT+DELG;+ALPHPI)-B1+COS(BEIAT+ALPHPI) CIF=PHOG1 RDUI:F=AIF+AIF+B1F+B1F-CIF+CIF RDUI:F=AIF+AIF+B1F+B1F-CIF+CIF FIF-SIGNIF-SGRI(ROUI:F)	LPHP1)	4 355 4 355 4 355 4 355 4 355 8 354 8 358	
	1189 1189 1199 1199 1199 1199	PSI=21-TC1F PSI=2-TC1F F (PSI:LL.C.) PSI=PSI FF (PSI:SI.2.*PI) PSII= FF (PSII:SI.2.*PI) PSII= FF (PSII:SII:SII:SII:SII:SII:SII:SII:SII:SII	2(Y1F, 0.) PS 2.*PI)	AIF-SITELF F(FSI-LT-ANZ(YIF,XIF) F(FSI-LT-C.) PSII=PSII+2.*PI IF (PSII.GI.2.*PI) PSII=PSII-2.*PI PSIID=PSII.Z		A 360 A 360 A 361 A 363	
		G1=(ACG:+SIR( (PSI:-AEF#P1) PSIOGI=PHOGT1 F+SIR(FSII)	(PHI1+	15 (3.5 EV.C.) PSITE SITE (3.1 PER SIN (BETAI))/SIN (BETAI)	-81*5IN(BETA!}}/5IN }/(A1F*COS(FSI:)-81		
o	SIFE	SIF=VSIIF/ABS(VSI:F)	S(VST:	18)		A 370	

C REST 0	372
411P9-11Sd-11Sd-11Sd-11Sd-11Sd-11Sd-11Sd-11S	
IF (J3.EQ.O.) PHI2=PHI2I+(PHI2F-PHI2I)*J2 PHI2:PHIZ+DDPHI2	A 375 A 376 A 377
PH12F) PH12=PH12I	
IF (FHI2.0E, PHI2T) GO TO 23	1 380
122 - 92 - 51N(BETAZ+DELPZ)-ACCZ+SIN(PHIZ-DELGZ+DELPZ) 827 - 92 - COS(BETAZ+DELPZ)-ACGZ+COS(PHIZ-DELGZ+DELPZ)	382
C2R:(L2*L2*L2*B2*B2-ACG2*ACG2-ACP2*ACP2+2.*ACG2*B2*COS(PHI2-DELG2-BET )	1 383
RDG:2R=A2R+B2R+B2R+C2R	1 385
Y2R-x2R+SICN2P*SQRT(RQD12R) X2R-::2R+C2R	1 387
PSI2-2.*ATAN2(Y2R.X2R)	388
IF (PSI2.LT.0.) PSI2=PSI2+2.•PI	380
PSIZ)=PSIZ)2 IF (485(PHI2-PHI2I).LT.0.0001) PSI2P=PSI2I	391
IF (.13.EQ.C.) PSI2P=PSI2	392
Statt=(B2-5IN(BETA2)+ACP2-5IN(PSIA-DELP2)-ACG2-5IN(FRIA-DELG2));i2	394
LANDS-2-ATANZ(SLAM2, CLAM2)	395
If (LAXDA2.LT.O.) LAMBAZ-LAMBAZ+Z.orl	397
PSD212=PHD012*ACG2+(-SIN(PHI2-PSI2-DELG2+DELP2)-B2/ACP2+SIN(PHI2-D	398
;ELG2-6ETA2))/(A2R-COS(PSI2)-82R-SIN(PSI2))	388
VSIVE=PHODIZ=(ACG/+CUS(PHIZ-URICK-LARGER)+NOCK)   100/4-100/1	4 4C1
S2R=UST2R/48S(VST2R)	1.402
GU 10 24	404
23 A2F=ACG2+CUS(FM1Z-DELG2-ALFRZ)	405
C2F=-RH0G2	406
RODIZF=A2F+B2F+B2F+C2F+C2F	408
X2F = U2F = C2F	409
PSIZ:2. *ATANZ(YZF, XZF)	410
IF (:SI2.LT.G.) PSIZ=PSIZ+Z.*PI	A 412
G2=(ACG2+SIN(PHI2-DELG2)-PHOC2+COS(PSI2+ALPHP2)-B2+SIN(BETA2))/SIN	A 413
I(PSIZ+ALPHPZ)	415
PSSCT2=(PHDD12+ACG2+CDS(PH12-DELG2-ALPHP2-PSI2))/(A2F+CDS(PSI2)-62	£ 416
(F-SIN(PSI2))	A 417 A 418
VSIZF=PH3U12*(ACGZ*SIM(*SIZ*ACFRZ*FFFLATATELGZ;************************************	A 419
	A 420
C MOMENT COMPUTATIONS	A 421 A 422
76	A 423

Computer program CLOCK4 (cont)

79 68.11	425 425 427 628	£33 £31 £32 £32	435 435 435 437	438 440 441 442	444 444 445 445	450 450 451 451	454 455 455 456 458	455 460 460 462 463	466 466 468	470 471 473	474 475 476
67/31/79	च च च च च च च च च च	: 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 4 4 4 4 4 4	44444		194994 44444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			4 4 4 4 4 4 4 4
FTM 4.6+420 07/	411=485(({1,+MU*MU*S2R)*CDS(LAMDA2)=ED*(S2R-1.)*SIN(LAMDA2)}/DN) 412=485((-(1,+MU*MU*S2))*ED*SIN(GAMMA2))/DN) 414=±85((-(1,+MU*MU*S2R)*SIN(GAMMA2))/DN) 414=±85((-(1,+MU*MU*S2R)*SIN(LAMDA2)=MU*(1,-S2R)*CDS(LAMDA2))/DN) 415-±85((-(1,+MU*MU*S2R)*SIN(LAMDA2)=MU*(1,-S2R)*CDS(LAMDA1)/DN)	A16:28S((U1-COS(GAMMA2)-SIN(GAMMA2))/DN) A17:28S(((I1-AU-MU-SIR)-COS(LAWDA1)-MU-(1.+51R)*SIN(LAWDA1))/DN) A18:28S(((I1-AU-MU-SIR)-SIN(LAMDA1)-MU-(1.+51R)*COS(LAMDA1))/DN) A18:28S(((I1-MU-MU-SIR)-SIN(LAMDA1)+RU-(1.+51R)*COS(LAMDA1))/DN)	A20-ABS(WU=(1,-S2R)-SIN(LAMDA2)+(1,-WU-WU-S2R)-COS(LAMDA2))/DN) A21-ABS((NU=(1,-WU-WU-S1F)-SIN(PSII-ALPHPI)-WU-(1,+S1F)-COS(PSII-ALPH- PI)) ON) A23-ABS((WU-SIN(GAHMA2)+COS(GAMMA2))/DN)	#426.455((1.+#G*#G*PC*2R)*SIN(LARDAZ)~CU*(1SZR)*CUS(LAMDAZ))/UN) #225.455((-#UU*(1.+SIF)*SIN(PSII-ALPHPI)+(#U*#U*#U*SIF-1.)*COS(PSII-ALP #7:1;/DN) #426.455((-SIN(GAMBAZ)+#U*COS(GAMMAZ))/DN) #427.485((-(1.+#GV*#U*SIF)*SIN(PSII-ALPHPI)+#U*(SIF-1.)*COS(PSII-ALP	H211/DN) A20=A55(1./DN) A20=A55(1./DN) F1): DN) A30=A55(2U/DN)	ASI DO (1.4E) ((1.4E) WO (1.4E) SIN (PSIL+ALPHPIN (1.4E) (	A40.=85( [mis(52F':.) 5]N(P512+ALTHP2) (1.450*mU-24]-UD3(15342+ALTHP2) (1.450*mU-24]-UD3(15344ALTHP2) (1.450*mU-24]-UD3(15344ALTHP2) (1.450*mU-24]-UD3(15344B) (1.450*mU-24]-UD3(15344B) (1.450*mU-24]-UD3(15344B) (1.450*mU-27]-UD3(15344B) (1.450*mU-27]-UD3(15344B) (1.450*mU-27] (1.450*mU-27]-UD3(15344B) (1.450*mU-27]	P2): DN) A44-1-48;(4U+(51R-1.)+S[N:LAMDA!)-(1.+EU-21R;*COS(LAMDA!))/DN) A445-18;(4U+(51R-1.)+S[N:LAMDA!)+(1.+EU-21R;*COS(LAMDA!))/DN) A465-18;(4U+(51R-1.)+S[N:LAMDA!)+(1.+EU-EU-SIR)*COS(PSI2+ALPH P2::-CN)	######################################	#89-185(( WU-WU-S2F-1.)*SIN(PSIZ+ALPH2)-WU*(1.+52F)*COS(PSIZ+ALPH *2.7:50) 470-185(( WU-SIN(G1RKA3)-COS(GANRA3))/DN) 471-185((-WU-(1.+52F)*SIN(PSIZ+ALPHP2)+(1WU*MU-S2F)*COS(PSIZ+ALP	HF21)/DW) 472:455((-SIN(GAMERA)-WU-COS(GAMMAS))/DW) CGSACG2=(SIN(PH12-PELG2-LAMDA2)-WU-S2R=COS(PH12-DELG2-LAMDA2))-WJ- RHC2-(A11+A14)-WU-RHDG2=52R
1=140	+#U+#U+5 S (GARCA2 +#U+#U+	COS (GA98 -20-860 · S N)	N) (152R) -Mij-Mij-S SIN(Gilla	+#U+#U+ +(1.+51F +(GAMMA2 +##U+??U+	(S1F-1.)	S + OM + OM + S + OM + OM + S IN (GARRY	(1.+51F *(1.+51F *(05(GAYZ	(STR-1.) SIN(GESS (S2F-1.)	(1.+523) (1.+523) (1.+523) (1.+523)	SIN(GARK -11.+52F	N ( GAMERA 3 ( PHI 2 - DE 4 ) - MU + RH
14/74	#85(((1. -85(('1.	A16-185( (10-10) A17-185( (11-18) A19-185( (11-18) A19-185( (11-18)	A21=ABS(WU*(1, A21=ABS((WU*(1, A22=2BS((1,-M P1)) DN) A23=ABS((WU*SI)	A24-85([1. A25-285([-MU HF1;)/DN) A26=885([-SI A27=485([-(1	1H211/DN) A28=A85(1_/DN) A29=A85(4MJ*(5 F1); DN)	A37 = 433 ((1. 428 = 485 ((1. 171); DN) A39 = 485 ((1.	A47:=453 ( 1804 A47:=453 ( 1804 HPT) / DN) A42:=485 ( 1804 A43:=485 ( 11.	192)) 08) A44-485(20- A45-785(20- A46-185(20-	15-) 158: -02:) 158: -02:) 158: -02:) 158:	A69-285([(WU= 102))-DN) A70=285([WU= A71=285((HU=	1492;}/DN) 472=485(-5IN(GAMERA)-MU=CO GG-AGG2=(SIN(PHIQ-PELGZ-LAM TRHCZ-(A11+A14)-MU-RHDG2=52R
PROGRAM CLOCK4			2	# # # # # # # # # # # # # # # # # # #	1H31 A28: A22: A22: A230-	1541 1524 1017 1017 1017	1721 1721 1421: 1401: 1404:	्में हैं कि हैं ति वे वे वे वे हैं हैं	TO THE POST OF THE	A509 1529 1529 A705 A711	1452. 272. 66-3 18402
	425	430	435	. 440	445	450	455	460	465	470	475

Computer program CLOCK4 (cont)

. 0

08.11							
67/31/79	A 478 A 479 A 480 A 481 A 483 A 483 A 483	A 486 A 486 A 486 A 489 A 490 A 490 A 490 A 490 A 490	A 495 A 495 A 497 A 497	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A	512 512 513 513 513 513 513 513 513 513 513 513	A 526 A 526 A 526 A 526 A 528 A 530
FIN 4.6+420 07/:	C7=MU-RHG2=(A13+A16) C8=-/ACPI-(SINFPSI+DELPI-LAMDA1)-MU-SIR-COS(PSII+DELPI-LAMDA1)+MI U-RHG2=(A/2+A15)-MU-SIR-RHG2I) CC.ADU-RHG1=(A18+A20) C10=HU-RHG1=(A18+A20) C10=HU-RHG1=(A18+A20) C10=HU-RHG1=(A18+A20) C10=HU-RHG1=(A18+A20) C10=HU-RHGA1)-MU-SIR-RHG3  C11=ACG2=(SINFPH)-BC1-C2ELG2-LAMDA2)-MU-SIR-COS(PHII-ABC2=(SINFPH)-BC1-C3-C3-C3-C3-C3-C3-C3-C3-C3-C3-C3-C3-C3-	**************************************	C21=-Wu-RHG2-(A53+A41)+G1 C22=-Wu-RHG2-(A53+A46)+ACG2-(COS(PHIZ-DELG2-PSIZ-ALPHP2)+WU-S2F+SI C23=-Wu-RHG2-(A53+A46)+ACG2-(COS(PHIGG2 C23-Wu-RHG2-(A45+A48) C24:-Wu-RHG2-(A44+A47)+ACPI-(WU-SIR+COS(PSII+DELPI-LAMDAI)-SIN(PSI	.1K+HKTUP1 -MU-S2R+RHGP2+ACP2+{MU-S2R+COS(PSI2-DELP2-LAM AMDA2}}	(PHI2.LE.PHI2T) GG TO 25 (PHI2.LE.PHI2T) GG TO 26 (PHI2.GE.PHI2T) GG TO 27 (PHI2.GE.PHI2T) GG TO 28	MC31=MIN*C8*C34/(C6*C10)-Q1*C8*C9*C34/(C6*C10)-Q2*C7*C34/C6*-O3*C33 MC3=C30 MC3-C30 MC3-C30 MC3-C30 MC3-C30 MC3-C30 MC3-C30 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C34 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C33 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C34 MC3-C3	POINTER #ABS PDD0127*#U3/#IN MARITE (6,37) PHI1D, PHI2D, PSI1D, PSI2D, PSD011, PSD612, SZR., SIF, G1, PGIN TEF G0 TO 29 MG033#IN*C21*C36/(C15*C19)-Q1*C14*C21*C36/(C15*C19)-Q2*C20*C36/C19 -Q3-S933 POINTEF = ABS(PSD012)*#03/#IN
PROGRAM CLOCK4 74/74 OPT=1	C7=MU-RHG2=(A13+A16) C8=-/ACP1=(SINFPSI1+DELP1-LAMB) 10-RHG2=(A/2+A15)+BG3=SIR=RHG3+1) CC-RU=RHG1=(A18+A20) C10-HU-RHG1=(A17+A19)+ACG1=(SI 1+DELG1=LAYGA1)-HU-SIR-RHGG1 C11-ACG2=(SINFPHIG1-DELG2-LAMBG1	1.8H02*(A21.4A4)-E2:R40G2*52R C12=xU*RHG2*(A23+A26) C13=G1-MU*RHG2*(A23+A26) C13=G1-MU*RHG1*(A22+A26) C15-xU*RHG1*(A29+A30) C15-xU*RHG1*(A29+A30) 11+A_PHP1)-CGS(PHI1+DELG1-PSII*ALPHP1)) C15-MI*RHG2*(CGS(PHI1+DELG1-PSII*ALPHP1)) C16-MI*RHG2*(CGS(PHI2-PSII*ALPHP1)) C16-MI*RHG3*(A37*A40)+AGG2*(CGS(PHI2-PSII*ALPHP1))	C21=-ML, RHG2 (A38+A41)+G1 C22=-ML, RHG2 (A63-A46)+ACG2 (COS(PH12-D 1N(PH12-DEC2-PS12-ALPHP2))+ML6-S2F-6HGG2 C23-XU-RHG2 (A45-A48) C24:-YU-RHG2 (A46-A47)+ACP1*(WU-S1R+COS	11+DELPY-LANDAI)   -4-5-51 NORMONY C33-5XU-8H-G3-(A66+A69) C34-514-8H-G3-(A65+A67) -48U-52R- 1DA21-51 NIFS[2-DELP2-LANDA2]) C35-5XU-8H-G3-(A70+A72)		25 MC31-MIN-CB-C34/(C6-C10)-Q1-M03-W3-T031 M03-2T031 PGINIEF ABS (PSDGT2)-M03/MIN M31F (6.36) PHID, PHI2D, PS GJ TO 29 26 M03-C139-C34/(C11-C15)-1-43-C33 M03-C13-C13-C13-C34/(C11-C15)-1-43-C33	POINTEFABS(PSDDIZ)*MU3D.PN MRITE (6.37) PHITD.PHIZD.PS ITEC CD TO 29 27 MU3DEMIN*C21*C36/(C15*C19)** 1-03-033 POINTEF=ABS(PSDDIZ)**MO3/MIN
PROGRAM	480	490	495	200	505	515 520	525 530

	PROGRAM CLOCK4 74/74 OPT=1 FTN 4.6+420	01/31/19	8
	WRITE (6,38) PHITD, PHIZD, PSI2D, PSI2D, PSOOT1, PSOOT2, SIF, G1, SZF, G2.P	44	
į	GO TG 29 28 M03=MIN-C24-C36/(C10-C22)-Q1-C9-C24-C36/(C10-C22)-Q2-C23-C36/C22-	A 534	
ç	103*L35 M03*F034	A 536	
	POINTEF=ABS(PSDGT2)*MG3/MIN *RITE (6,39) PMI1D,PMI2D,PSI1D,PSI2D,PSDGT1,PSDGT2,S1R,S2F,G2,PGIN	A 537 N A 538	
3	11EF 20 0701=8701+POINTEF	< <	
;	J3=1.	A 541	
	30 CVCLEFF=-WIOT-DDPHI1/(PHI1F-PHI1I) WPITE (6.57) CYCLEFF	A 543	
8	MIOT=0. IF (ISTOP.NE.0) G3 TO 1	A 546	
	one o	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
550		A 555	
		A 551 A 552	
	FORMAI (64.9HPS[212D =,F9.4,3X,8HTES121 FORMAI (6X,9HPS[212D =,F9.4,3X,8HTES122	A 553	
555	FORMAT (93H PHI1 PHI2 PSIT	⋖ '	
	1 52F 51F 51 52F 52 PUNIET/) 36 FGRHAT (6x,4(F6.2,2x),2(F5.0,2x),2(F3.0,2x),24x,F5.3)	< <	
	FORMAT	∢.	
260	FORMS T	A 550	
	FORMAT	A 561	
	41 FORMAT (4F10.4) 42 FORMAT (4F10.4)	A 563	
200	FORMET	A 564	
Ř	FORMAT (141,5X,84PSUBD1 = ,F5.0,3X,8HPSUBD2 = ,	<	
	1,3X,4H2U =, F6.3,3X,5HRPM =, F6.0//6X,8HCAPRP1 =, F8.5,3X,8HCAPRP2 =,	∢•	
	2=,F8.5,3x,6HACP! =,F8.5,3x,6HACP2 =,F8.5/)	< <	
570	46 FDRMAT (6x,7HRHOG1 =,F8.5,3x,7HRHOC2 =,F8.5,3x,7HRHOP1 =,F8.5,3x,7	7 A 570	
	INMMUP2 = ,F8.5/) 47 F093AT (6x,SMTG1 =,F8.5,3X,SMTG2 =,F8.5,3X,SMTP1 =,F6.5,3X,SMTP2	A 5/1	
	1,F8.5/) 48 FORMAI (6x 54MG) = F5.0.3X.54MG2 = F5.0.3X.54MP3 = F5.0.3X.54MP3 =	A 574	
575	Stand on the State of State of the State of	⋖•	
	49 FLEAR (04, ONKELL F.FO.5, 54, ONFORE F.FO.5, 53, ONFORS F.F. (04, 24, 24, 44, 18, 2, 34, 44, 44, 18, 2, 34, 44, 44, 18, 2, 34, 44, 44, 18, 2, 34, 44, 44, 18, 2, 34, 44, 44, 18, 2, 34, 44, 44, 44, 44, 44, 44, 44, 44, 44	< <	
	2J2 =.F4.2//)	∢ •	
580	50 FURBAT (6X.8KBETATU =.FB.4.3X.8KBETATU =.FB.4/) 51 FURBAT (6X.30HSOMETHING IS ERONG WITH MEST 1)	A 579	
}	FORMAT	< 4	
	53 FUKAAI (64.8HPHIII) *,F8.4.3X.8HFSIILU *,F8.4.3A.6HFNIIFU *,F8.4.3 1X.8HPSIIFD *,F8.4//)	3 A 582 A 583	

Computer program CLOCK4 (cont)

	PROGRAM CLOCK4	74/74	74/74 OPT=1	FTN 4.6+420	61/31/16	07/31/79 08.11.05	
	SE FGB	#4T (6X,3	S4 FGRMAT (6X,30HSGMETHING IS MRONG MITH BESH 2)	¥ 2)	<		
585	55 FOR	24T (6x.	HPHI210 =, F8.4,3X,8HPSI210 =	.F3.4)	A 585		
	56 FOR	24T (6x.1	56 FDR2AT (6x,8HPH121D =,F8.4,3X,BHPS121D =,F8.4,3X,8HPH12FD =,F9.4,3	.FB.4.3X,8HPH12FD =,F			
	1x.8	HPS12FD a	1X.8HPS12FD = F8.4//}		A 587		
	S7 FOR	31-1 (THO.	57 FORMAT (THO, SX, 18HCYCLE EFFICIENCY =, F5.3)	3)	A 588		
	58 608	ORZAT (3F10.5)	(6)		583 ¥		
290	59 108	23T (6x.4	HR1 = F8.5.3X.4HR2 = F8.5.3X	.4HR3 =, FB.5/)	A 590		
)	60 FOR	MAT (6X.E	60 FORMAT (6X,5HFP1 =,F8.5,3X,5HFP2 =,F8.5/)		A 591		
	61 FOR	61 FORMAT (3515.5)	.5)		A 592		
	62 FOR	214T (6X.4	62 FORZAT (6x, 4HM1 =, E15.5, 3X, 4HM2 =, E15.5, 3X, 4HM3 =, E15.5/)	3X,4HM3 =,E15.5/)	A 593		
	CER				- ¥65 Y		

PAGE

SUBROUTINE TRANS1	TRANS	14/74	1=1 <b>0</b> 0	FTN 4.6+423	07/31/79 08.11.95	გ ი	3.11.95
-	าร	SUBROUTINE 1 PI=3.14159	RANS1 (RHOS, ALPHP, BE	SUBROUTINE TRANS! (RHOS, ALPHP, BETA, FP, ACG, B, DELG, Z, PSIT, PHIT,G) PI=3.14159	<b>60 60 60</b>	- 4 6	
v	SSEE	ST=(-RHGG*CUS(PS): CT=(RHGG*SIM(PSIT- PHIT=ATAN2(ST,CT)- PHINEXT=PHIT1*2 AF=ACG*COS(PHINEXT	SI=(-RHOG*COS(PS)1-ALPHP)+B*CDS(BEIA)+FP*COS(PSIT) CI=(RHOG*SIN(PSIT-ALPHP)+B*COS(BEIA)+FP*COS(PSIT) PHII = XIANZ(SI,-XI)-DELG PHINEXT=PHIT1*2 AF=ACG*COS(PHINEXI+DELG+ALPHP)-B*COS(BEIA+ALPHP) AF=ACG*COS(PHINEXI+DELG+ALPHP)-B*COS(PEIA+ALPHP)	ST=(-RHOG*CUS(PS)T-ALPHP)+B*CUS(BETA)+FP*CUS(PS)T-ALPHP))/ACG PHT=ATAN2(ST-2T)-DELG PHINEXT=PHTT1*2 AF=ACG*COS(PHINEXT+DELG*ALPHP)-B*CUS(BETA*ALPHP)		45010	
0	## G * *	BF=-ACG*SIN(PHINEX CF=RHOG RCOIF=AF*AF+BF*BF- YF1=#F+SQFT(ROOTF) YF2=AF-SQRT(ROOTF)	BF=ACG*SIN(PHINEXI+DELG*ALTH*)*D**3±N(DC**ATT*)*D**3±N(DC**ATT*)*D**3±N(DC**ATT*)*D**3±N(DC**ATT*)*D**3±N(DC**ATT*)*D**3±N(DC**ATT*)*D**3±N(DC**ATT*)*D**3±N(DC**ATT*)*D**ATT*)*D**ATT**ATT**ATT**ATT**		*****	00 + 0 0	
ē.	X 0 0 H H F	XF=EF+CF PSINEX1=2.*/ PSINEX2=2.*/ IF (PSINEX1: IF (PSINEX2:	PSINEX:=2.*ATAN2(YF1.XF) PSINEX:=2.*ATAN2(YF2.XF) PSINEX:22.*ATAN2(YF2.XF) IF (PSINEX:-LI.O.) PSINEX:=PSINEX:*2.*PI IF (PSINEX:-LI.O.) PSINEX:-PSINEX:-PSINEX:-FI	PSINEX:=2.*ATAN2(YF1,XF) PSINEX:=2.*ATAN2(YF2,XF) PSINEX:2=2.*ATAN2(YF2,XF) IF (PSINEX:.LI.O.) PSINEX:=PSINEX2+2.*PI IF (PSINEX:.LI.O.) PSINEX:-PSINEX2+2.*PI **C.**CC******************************	<b>89 89 89 89</b>	40078	
50	+ <b>4</b>	PSINEXT=PSINEXZ GD TO 2 I PSINEXT=PSINEXT C=CACG=SIN(PHINEXT=COLOR)	EX2 EX1 HINEXT+DELG)+R:+DG+C: IB)	IT (ADSIVERED PSINEXZ) GD TO 2 T PSINEXT=PSINEXT T PSINEXT=PSINEXT PSINEXT=PSINEXT PSINEXT=PSINEXT ACGGSIN(PRINEXT+DELG)+R+DG*CDS(PSINEXT-ALP+P)-B*SIN(BETA))/SIN( ACGT OF TAX PSINEXT-ALP+PSINEXT-ALP+P)-B*SIN(BETA))/SIN(		92228	
25	2 25 25	RETURN			<b>6</b> 6	¥ %	

Computer program CLOCK4 (cont)

SUBROUTINE TRANS2	TRAMS2	74/74	4 OPT=:1 FIN 4.6+420	61/31/19	67/1	08.11.05
<b>,</b> -	Sus FIG	ROUTINE 1	SUBROUTINE TRANS2 (RHOG, ALPHP, BETA, FP, ACG, B, DELG, Z, PSIT, PMIT, G) PI=3.14159	<u>(</u>	* 01 M	
<b>v</b> r	E P P F F F F F F F F F F F F F F F F F	SI=   PHOG + COS   PS   I + PHOG + COS   PS   PH   I + PS   PH   I + I + I + I + I + I + I + I + I + I	\$\frac{5}{5} = (8HOG=COS(FSIT+ALPHP)+8=\$IN(BEIA)+FF=SIN(FSIT=ALPHP))/ACG CT=(=HDOG=SIN(FSIT+ALPHP)+8=COS(8ETA)+FF=COS(PSIT+ALPHP))/ACG CT=(=HDOG=SIN(FSIT+CFIC) PHITEXT=FHIT+.1*2 AF=XCG=COS(PHINEXT-DELG=ALPHP)+8=CIN(BETA-ALPHP) AF=XCG=COS(PHINEXT-DELG=ALPHP)+8=SIN(BETA-ALPHP)	500000	4 N O L O O	
01		EFE-FROG ROOTF=AF-AF-BF-BF- YF1=AF-SQRI(ROOTF) YF2=AF-SQRI(ROOTF)	CF==FHOG RCOTF=AF+SF+BF+BF+BF+CF+CF YF1=AF+SQAT(ROOTF)	,,,,,,,,,,	5-254	
ž.	5 8 8 FF FF	INEXT=2.*; INEXZ=2.*; IPSINEX1 (PSINEX1 (ABS(PSI)	PSINEXI=2.*AIANZ(YF1.XF) PSINEXI=2.*AIANZ(YF2.XF) IF (PSINEXI.II.0.) PSINEXI*PSINEXI*Z.*PI IF (PSINEXI.II.0.) PSINEXX*PSINEXI*Z.*PI IF (PSINEXI.II.0.) PSINEXX*PSINEXZ-PSII.) GD TG T	, , , , , , , , , , , , , , , , , , , ,	25750	
20	PSII 2 64 64 64 64 64 64 64 64 64 64 64 64 64	PSINEXT=PSINEXZ CO TO Z PSINEXT=PSINEXT G=(ACG*SIN(PHIN IPSINEXT+ALPHP) RETURM	PSINEXT=PSINEXZ cd to 2 psinext=PSINEX; G=(accin t) + By the t + By to the time time to the time time time time time time time tim	)/51%(	488888	

PSUB02 = 76.

```
.051
.051
                                                                                                                                                                                                                                                                                                                                                                           \mathfrak{g}
                                                                                                                                                                                                                                                                                                                                                 PSI2FC =349.4878
                                                 RHCP2 = .01000
                                                                                                                                                                                                                                                                                                                                                                                           071
070
170
170
170
170
                                                                                   .15300E-05
                                                                 TP1 = .02096 TP2 = .01497
                                                                                                                                                                                                                                                                                                                                                                                              PSI11D #331,1673
PSI11D #311,9198 PHI1FD #131,6734
                                                                                                                                                                                                                                                                                                                                                 PHI2FD =214.8216
                                                                                                                                                                                                                                                                                                                                                                            $2R
                                                                                                                                                                                                                                                                                                                                                                                                                     †††††
                                                  BHOP1 = .01400
                                                                                                                                                                                                                                                                                                                                                                                             44444444
                                                                                   .25300E-04
                                                                                                                                                                                                                                   PSI1710 = 331.1623 TEST11 = 8.5908
PSI1720 = :1.5011 TEST12 = 48.9297
                                                                                                                                                                                                                                                                                                        PSI2TZD = 335.0370 IEST21 = 48.8749
PSI2TZD = 15.2351 IEST22 = 8.6768
                                                                                                                                                                                                                                                                                                                                         PHIZID =211.0816 PSIZID = 15.2351
PHIZID =208.2761 PSIZID = 34.4878
                                                                                                                                                                                                                  BETA1D #135.0146 BETA2D #211,4664
                                                   HOG1 = .04322 BHDG2 = .03087
ACG2 - .39040
                                                                  .03175 TG2 = .02268
                                                                                                                                                                                                   FP2 = .05621
                                 R2 = .49700
                                                                                                                                                                                                                                                                                                                                                                                            352.94
352.94
353.20
353.45
353.70
354.20
354.20
                                                                                  . 12500E-03
                                                                                                    .062 RHC2
                                                                                                                                                                        J1 = .90 J2 = .90
                                                                                                                                                                                                                                                                     PHIITO =135.4134
PHIITD =138.2188
                                                                                                                    .27506-05
                                                                                                                                                                                                   FP1 = .07875
54656
                                 .22500
                                                                                                                                                        PHOOT1 = -1.0
                                                                                                                                       * 25.0
                                                                                                                                                                                                                                                                                                                                                                                             132.25
132.25
132.25
132.21
132.14
132.16
```

PCINTEF

8 6 6 6 8 8		* 4 4 4 4 4 4 4 4 4 4 4 4		
	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	150-	2000 2000 2000 2000 2000 2000 2000 200	4.00 4.00 4.00
		4. **		22
170. 170. 170. 170.	072			
444444	÷	++++++++++	<u>:</u>	++++++
	4			
444444	\$ <del>\$</del> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	* * • • • • • • • • • • •	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	\$ <b>5 6 6</b> 6 6 6 6 5 6 <b>5 6 6 9 9</b>
ம் ம் ம் ம் ம் ம்	*************	*****	************	*****
25.97 24.28 20.53 20.93 19.25	2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	35. 22. 23. 23. 23. 23. 23. 23. 24. 25. 26. 26. 26. 26. 26. 26. 26. 26. 26. 26	14.82 11.01 11.02 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03	27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28
354.69 354.94 355.13 355.43 355.67	3356-45 3312-32 3312-32 3312-32 3312-32 3313-32 3313-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-32 34-3	1	317-928 318-18 318-18 319-23 319-23 319-23 320-21 320-53 321-328 321-328 321-328	22. 22. 22. 22. 23. 23. 23. 23. 23. 23.
205.52 209.76 210.01 210.25 210.50	84444444444444444444444444444444444444	2009.58 2008.54 2009.58 2009.58 2009.58 2009.58 2009.58 2009.58	24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	208.28 208.54 208.54 209.06 209.32 209.32 210.10 210.36 210.86 211.15
	131.79 131.73 131.62 131.62 138.12 138.14 138.07 138.03 137.99 137.99	137.78 137.78 137.78 137.69 137.51 137.53 137.54 137.56	137.23 137.23 137.23 137.23 137.28 137.28 136.92 136.92 136.92 136.92 136.92	7.96.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.73 5.66.7

.413	100	398	396	.390	.387	.383	127	375	372	.369	409	.413	.417	9 6	200		.421	.416	414	704	195	000	385	.380	375	1.90	363	36.	357	35.	- 000	385	9	565	# h	469	399	366	20.0	373	.374	300	100	. 40 P.	5	347	344	196	35.0		}
.055		.053	.052	.052	.052	150.	10.	ָהָיים היים היים	100	.051										420	4	95	054	.053	.053	700	20.0	150.	.051	.051	10.0	3									.056	.655	450	, i	8	.052	.052	.051		9 6	•
≓.	: -	: -:	<b>.</b> :	-:	<b>:</b>	<u>.</u> .	<u>:</u> .			<b>:</b>												: .:	-	÷	<u>.</u>	<b>:</b> .		<u>.</u>	<b>.</b> .		<u>.</u> .	:									-:	<u>.</u> .	<u>.</u> .	, ,	: -	: ,:	-:	÷.	<b>:</b> .		:
																			1	970	9 6	ָ קריים קריים	.078	.078	.078	B/5.	67.7	.077	.077	.677	.077	920	920	076	9.49	070	976	-075	מונים	270	.075	.075	275	V. K.	92.0	-074	.074	.674	.073	. 074	į.
																				<b>:</b> .	: .		: <b>_</b>		-	<u>.</u>	: _	: -:	<u>,</u>	-	<u>.</u> .	: .:	: <u>-</u> :	,.	<b>:</b> .	: .:	<b>;</b> ;	<b>.</b> .	<u>.</u>	: ;:	-	-		, ,	: .	: .:	-:	÷.	<u>:</u> ,	<u>.</u> .	:
												ť				; -	: _:	-	<b>:</b>	<b>:</b>													7					<b>;</b>	<u>.</u> ,	: -:											
₹,	i	ï	7	ī	٦		ï	7	ī	ī	٢	ĩ	7	7	7	īī	ï	ĩ	ĩ																																
9	1	1	9	9	9	-47	-47	į	į	e	-47	-47.	÷	-41	-47		-47	-47	-48	9 6		9	4	6	÷	ရှာ (	6 9	8	-48	-47	ç; ç	ŗ	4	-48.	89 5	9 4	-49	5	ញ 1	40	-43-	50.	ig i	ទ ម	វុទ្ធ	វុ	Š,	-49-	69	9	;
<b>,</b>						7.	٠,				7.	7.	۲.	۲,				7.	7,	<b>,</b> ,	:,	:,		7.	7.	٠,		: ;:	7	7.	۲,	: .	:	7.	<u>ب</u> ،			.,	<del>,</del> ,	: .		7.	l* 1	ب ا	:,			7.	ı.' ı	, · ·	:
11.14	9 ·			1.89	S	358.24	356.44	354.67	352.33	349.57	34.48	32.68	30.28	29.08	27.28	22.43	21.89	20.58	18.27	16.47	9.60	70.01	90	7.21	5.33	44	1,57	357.86	355.02	354,23	352.47	350-74 36-38	32.64	30.80	28.96	26.72	23.43	21.58	19.73	16.97	14,15	12.26	10 36	. 4. n	, o	2.70	80	350.92	357.06	355.22	193.44
325.22		270	32: 37	326.53	326.79	327.05	327.3	327.58	370.00	328.36	328 62	328 . 83	329-15	329.4	329.67	329-94	330.46	330-73	300-99	331.25	100	331.18	332.31	332.57	332.84	333.10	333.3	333.00	334.17	334.44	334.70	334.00	333.51	335.78	236.05	2.000	335.85	3.7.12	327.39	337.63	338.20	338. 17	338.74	339-01	339-KG	300	340.09	340.36	340.93	360	71 - 1+5
211.67	211.93	217.13	21.4.4	212.98	213.54	213.50	213.76	214.02	214.28	214.81	208.28	208.54	208.80	205.06	205.33	209.59	210.11	210.38	210.64	210.90	211.17	4.1.4	211.00	212.42	212.49	212-75	213-62	213-23	213.82	214.09	214.36	214.62	209-54	208.81	205.08	209.33	209.89	210.16	0.0	21.0.010	211-24	211.51	211.78	212.05	212.32		213.13	213.40	2:3.67	2:3.94	2:4-21
136.28	136.24	130.20	36.10	136.39	136.05	136.01	135.97	135.93	135.90	135.80	135.78	135.74	135.71	135.67	135.63	135.59	25.4	135.48	135.44	135.40	135.36	135.32	135.23	135.21	135.17	135.13	135.10	133,05	104.00	134.94	134.91	10 mm	134.70	134.75	134.72	134.68	134,60	134,56	134,52	134.45	4.4	134.37	134.33	134.30	134.26	134-145	71. 46.1	134.11	134.07	134.03	133,59

Computer program CLOCK4 (cont)

132 65	440	261 64	251 GE	•	-46			074	-	.051	331
00.00	11.4.0	24.4	200	:,	191		: _	07.0		140	328
36.55	61.4.7		200	.,		ï	: .	1	:		9
133-88	208.28	341.40	34.45	: (		: ,	٠,	515			
133.84	208.55	342.25	32.63	7.	-49.	;	÷	.073			367
133.80	208.E2	342.52	30.78		-48.	7	<b>-</b> :	.073			.371
133.76	209.08	342.79	26.94	7.	-48.	7	<b>.</b> :	.073			.374
133.73	209.35	343.06	27.99	7.	-43.	٦.	<b>.</b> .	.073			.377
133.69	209. 2	343.33	25.25	7.	-48.	-	-	.073			380
133.65	209-89	343.60	23.41	7	-46.		-:	.073			.379
133.61	210.16	363.97	21.57		-48.	-	-	.073			.375
133.57	210.43	344.14	19.73	7	-48	-	-	073			.376
200	340	200	17.00		00%			071			366
20.00	200	111111111111111111111111111111111111111	200			:,	: .				000
13.3.50	210.9	10.440	50.03	:,		:	: .	700	•	(	700
133.46	211.23	344.34	14.19		-69-		<b>.</b>	.073	<u>.</u>	900	308
133.42	211.50	345-27	12.32	7.	-49.		-	-673		.055	.353
133.38	2:1.77	345.48	10.44	7.	-49.		<del>.</del>	.072	<b>:</b>	.054	. 349
133.34	212.63	345.74	8.55	7.	-50.		<b></b>	.072	<b>.</b> :	.054	.345
133.31	212.30	346.01	6.65	٦.	-50.		<b>-</b>	.072	<b>-</b> :	.053	. 341
133.27	212.57	346.27	4.77	7.	-49		<b>-</b>	.072	<b></b>	.053	.337
133.23	212.63	346.54	9.84	7	-49		-	.072	<b>-</b> :	.052	.334
123 10	21.4.6	346 A:	100		-49		· +	070		.052	.331
	40.00		9 0 000	: ,			: _	670		150	328
11.77	200	10.140	000.000	: .			: .	4.00	: .	, u	326
133.12	213.53	10.140	357.35		-48		<u>.</u>	.072	<b>:</b> ,	100	325
133.08	213.89	347.60	355.55	7.	-47.			-012		160.	374
133.04	214.16	347.86	353.79	7.	-46.			.072	<u>.</u>	.051	.322
133.00	214.42	348.13	.52.36	7.	-45.		<u>.</u> :	.072	<b>-</b> -	.051	.326
132.96	214.68	343.39	350.37	7.	-44.		· •	.072	<b>.</b> :	.051	.318
132.93	208.28	348.65	34.48	7.	-47.	ť	<del>-</del>	.072			.353
132.89	208.54	348.91	32.68	7.	-47.	7	-	.072			.355
132.85	208.80	349.17	30.89	7.	-47.	ï	<b>:</b>	.072			.360
132.61	209.06	349.44	29.11	7.	-47.	7	-:	-072			.363
132.77	209.32	349.70	27.33	7.	-47.	;	÷	.072			.356
132.73	209.56	349.96	25.55	7.	-47.	;	-:	.072			.369
132.70	209.84	350.21	23.78	7.	-47.	<b>:</b>	7.	.072			370
132.66	210.10	356.47	22.00	۲.	-47.	<b>:</b>	<b>;</b>	.072			.366
132.62	210.36	350.73	20.23	7.	-47.	, **	<del>-</del> :	.072			.363
132.58	210.61	350.99	18.46		-46.	-:	<b>-</b> :	.072			.359
132.54	210.87	351.24	16.69		-46.	<del>-</del>	<del>.</del>	.071			.356
132.51	211.13	351.56	14.93	7.	-47.		<b>:</b>	.071	<b>:</b>	. 056	.352
132.47	211.38	351.76	13.15	7.	-47.		<u>:</u>	.071	<b>:</b>	.055	.348
132.43	2:1.64	352.01	11.37	7.	-47.		<b>-</b> :	.071	<b>-</b> ;	.055	.344
132.39	211.89	352.27	9.57	7.	-47.		<u>,</u>	.071	<b>:</b>	.054	.341
CYCLE E	FFICIENC	CYCLE EFFICIENCY = .379									

### REFERENCE

E-1 G.G. Lowen, City College of N.Y., and F.R. Tepper, ARRADCOM, "Fuze Gear Train Analysis," Technical Report ARLCD-TK-79030, ARRADCOM, Dover, NJ, December 1979.

### Commander

U.S. Army Armament Research and Development Command

ATTN: DRDAR-LCN, H. Grundler

G. Demitrack

L. Horowitz

A. Nash

R. Brennan

B. Frey

S. Israels

C. Janow

R. Nitzsche

H. Rand

R. Shaffer

G. Taylor

F. Tepper (15)

L. Wisse

DRDAR-TSS (5)

DRDAR-GCL

Dover, NJ 07801

### Administrator

Defense Technical Information Center ATTN: Accessions Division (12) Cameron Station

Alexandria, VA 22314

### Director

U.S. Army Materiel Systems Analysis Activity

ATTN: DRXSY-MP

Aberdeen Proving Ground, MD 21005

### Commander/Director

Chemical Systems Laboratory U.S. Army Armament Research and

Development Command

ATTN: DRDAR-CLJ-L

DRDAR-CLB-PA

APG, Edgewood Area, MD 21010

### Director

Ballistics Research Laboratory

U.S. Army Armament Research and

Development Command

ATTN: DRDAR-TSB-S

Aberdeen Proving Ground, MD 21005 Chief
Benet Weapons Laboratory, LCWSL
U.S. Army Armament Research and
Development Command
ATTN: DRDAR-LCB-TL
Watervliet, NY 12189

Commander
U.S. Army Armament Materiel
Readiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299

Director
U.S. Army TRADOC Systems
Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002

Commander
Harry Diamond Laboratories
ATTN: Library
DRXDO-DAB, D. Overman
Washington, DC 20418

City College of the City University of New York Mechanical Engineering Department ATTN: Dr. G. Lowen (10) 137 St. and Convent Avenue New York, NY 10031