ı

1

Zero Inclusive OR

Inclusive OR Immediate

STore Register Unscaled offset

STore Byte Unscaled offset

STore Half Unscaled offset

Unscaled offset

STore eXclusive

STore Word

Register SUBtract SUBtract

Immediate SUBtract Immediate & Set

flags

ī

MOVZ

ORRI

STUR

STURB

STURH

STURW

STXR

SUB

SUBI

IM

R

D

D

D

D

D

R

694-697

550

590-591

7C0

1C0

3C0

5C0

640

658

688-689

788-789

①

LEGv8 **Reference Data**

CORE INSTRUCT	TION SET				
			OPCODE (9		Notes
NAME, MNEN		MAT	(Hex)	OPERATION (in Verilog)	
ADD	ADD	R	458	R[Rd] = R[Rn] + R[Rm]	
ADD Immediate	ADDI	I	488-489	R[Rd] = R[Rn] + ALUImm	(2,9)
ADD Immediate & Set flags	ADDIS	I	588-589	R[Rd], FLAGS = R[Rn] + ALUImm	(1,2,9)
ADD & Set flags	ADDS	R	558	R[Rd], $FLAGS = R[Rn] + R[Rm]$	(1)
AND	AND	R	450	R[Rd] = R[Rn] & R[Rm]	
AND Immediate	ANDI	I	490-491	R[Rd] = R[Rn] & ALUImm	(2,9)
AND Immediate & Set flags	ANDIS	I	790-791	R[Rd], $FLAGS = R[Rn]$ & $ALUImm$	(1,2,9)
AND & Set flags	ANDS	R	750	R[Rd], $FLAGS = R[Rn] & R[Rm]$	(1)
Branch	В	В	0A0-0BF	PC = PC + BranchAddr	(3,9)
Branch conditionally	B.cond	СВ	2A0-2A7	if(FLAGS==cond) PC = PC + CondBranchAddr	(4,9)
Branch with Link	BL	В	4A0-4BF	R[30] = PC + 4; PC = PC + BranchAddr	(3,9)
Branch to Register	BR	R	6B0	PC = R[Rt]	
Compare & Branch if Not Zero	CBNZ	СВ	5A8-5AF	if(R[Rt]!=0) PC = PC + CondBranchAddr	(4,9)
Compare & Branch if Zero	CBZ	СВ	5A0-5A7	if(R[Rt]==0) PC = PC + CondBranchAddr	(4,9)
Exclusive OR	EOR	R	650	$R[Rd] = R[Rn] \wedge R[Rm]$	
Exclusive OR Immediate	EORI	I	690-691	$R[Rd] = R[Rn] \wedge ALUImm$	(2,9)
LoaD Register Unscaled offset	LDUR	D	7C2	R[Rt] = M[R[Rn] + DTAddr]	(5)
LoaD Byte Unscaled offset	LDURB	D	1C2	R[Rt]={56'b0, M[R[Rn] + DTAddr](7:0)}	(5)
LoaD Half Unscaled offset	LDURH	D	3C2	R[Rt]={48'b0, M[R[Rn] + DTAddr] (15:0)}	(5)
LoaD Signed Word Unscaled offset	LDURSW	D	5C4	R[Rt] = { 32 { M[R[Rn] + DTAddr] [31]}, M[R[Rn] + DTAddr] (31:0)}	(5)
LoaD eXclusive Register	LDXR	D	642	R[Rd] = M[R[Rn] + DTAddr]	(5,7)
Logical Shift Left	LSL	R	69B	$R[Rd] = R[Rn] \ll shamt$	
Logical Shift Right	LSR	R	69A	R[Rd] = R[Rn] >>> shamt	
MOVe wide with Keep	MOVK	IM	794-797	R[Rd] (Instruction[22:21]*16: Instruction[22:21]*16-15) = MOVImm	(6,9)
MOVe wide with	MOTTE	73.6	604 607	R[Rd] = { MOVImm <<	(6.0)

SUBtract & Set SUBS R 758 R[Rd], FLAGS = R[Rn] - R[Rm](1) FLAGS are 4 condition codes set by the ALU operation: Negative, Zero, oVerflow, Carry ALUImm = {52'b0, ALU_immediate } BranchAddr = {36'[BR, address [25]], BR_address, 2'b0 } CondBranchAddr = {43'[CNON_D BR_address [25]], COND_BR_address, 2'b0 } DTAddr = {55'[DT_address [8]], DT_address } MOVImm = {48'b0, MOV_immediate } Atomic test&set pair; R[Rm] = 0 if pair atomic, 1 if not atomic Operands considered unsigned numbers (vs. 2's complement)
Since I. B. and CB instruction formats have necedes parrower than 11 bits, they occurve a

R[Rd] = { MOVImm << (Instruction[22:21]*16) } R[Rd] = R[Rn] | R[Rm]

 $R[Rd] = R[Rn] \mid ALUImm$

M[R[Rn] + DTAddr] = R[Rt]

 $\begin{aligned} &M[R[Rn] + DTAddr](7:0) = \\ &R[Rt](7:0) \end{aligned}$

M[R[Rn] + DTAddr](15:0) = R[Rt](15:0)

M[R[Rn] + DTAddr](31:0) = R[Rt](31:0)

M[R[Rn] + DTAddr] = R[Rt]; R[Rm] = (atomic) ? 0 : 1

R[Rd] = R[Rn] - R[Rm]

R[Rd] = R[Rn] - ALUImm

R[Rd], FLAGS = R[Rn] - ALUImm

Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a

(10) If neither is operand a NaN and Value1 == Value2, FLAGS = 4'b0110; If neither is operand a NaN and Value1 < Value2, FLAGS = 4'b1000; If neither is operand a NaN and Value1 > Value2, FLAGS = 4'b0010; If an operand is a Nan, operands are unordered

ii an operana is a i	van, opei	ands are	unoracica		
ARITHMETIC CORE	INSTR	UCTIO	N SET		(2)
			OPCODE/		
		FOR-	SHAMT		
NAME, MNEMON		MAT	(Hex)	OPERATION (in Verilog)	Notes
Floating-point ADD Single	FADDS	R	0F1 / 0A	S[Rd] = S[Rn] + S[Rm]	
Floating-point ADD Double	FADDD	R	0F3 / 0A	D[Rd] = D[Rn] + D[Rm]	
Floating-point CoMPare Single	FCMPS	R	0F1 / 08	FLAGS = (S[Rn] vs S[Rm])	(1,10)
Floating-point CoMPare Double	FCMPD	R	0F3 / 08	FLAGS = (D[Rn] vs D[Rm])	(1,10)
Floating-point DIVide Single	FDIVS	R	0F1 / 06	S[Rd] = S[Rn] / S[Rm]	
Floating-point DIVide Double	FDIVD	R	0F3 / 06	D[Rd] = D[Rn] / D[Rm]	
Floating-point MULtiply Single	FMULS	R	0F1 / 02	S[Rd] = S[Rn] * S[Rm]	
Floating-point MULtiply Double	FMULD	R	0F3 / 02	D[Rd] = D[Rn] * D[Rm]	
Floating-point SUBtract Single	FSUBS	R	0F1 / 0E	S[Rd] = S[Rn] - S[Rm]	
Floating-point SUBtract Double	FSUBD	R	0F3 / 0E	D[Rd] = D[Rn] - D[Rm]	
LoaD Single floating-point	LDURS	R	7C2	S[Rt] = M[R[Rn] + DTAddr]	(5)
LoaD Double floating-point	LDURD	R	7C0	D[Rt] = M[R[Rn] + DTAddr]	(5)
MULtiply	MUL	R	4D8 / 1F	R[Rd] = (R[Rn] * R[Rm]) (63:0)	
Signed DIVide	SDIV	R	4D6 / 02	R[Rd] = R[Rn] / R[Rm]	
Signed MULtiply High	SMULH	R	4DA	R[Rd] = (R[Rn] * R[Rm]) (127:64)	
STore Single floating-point	STURS	R	7E2	M[R[Rn] + DTAddr] = S[Rt]	(5)
STore Double floating-point	STURD	R	7E0	M[R[Rn] + DTAddr] = D[Rt]	(5)
Unsigned DIVide	UDIV	R	4D6 / 03	R[Rd] = R[Rn] / R[Rm]	(8)
Unsigned MULtiply High	UMULH	R	4DE	R[Rd] = (R[Rn] * R[Rm]) (127:64)	(8)

	INSTRUCT	TOTAL OIL				- D	_	ъ.	\neg
R	opcode		Rm	shamt		Rn		Rd	
	31	21	20 16	15	10	9	5 4		0
I	opcode		ALU_it	nmediate		Rn		Rd	
	31	22 21			10	9	5 4		0
D	opcode		DT_ac	ldress	op	Rn		Rt	
	31	21	20	12	11 10	9	5 4		0
В	opcode			BR_ad	dress				
	31 2	6 25							0
CB	Opcode		COND	BR_addre	SS			Rt	
	31 2	4 23					5 4		0
IW	opcode			MOV_imm	nediat	e		Rd	
	31	21					5 4		0

PSEUDOINSTRUCTION SI	ET	
NAME	MNEMONIC	OPERATION
CoMPare	CMP	FLAGS = R[Rn] - R[Rm]
CoMPare Immediate	CMPI	FLAGS = R[Rn] - ALUImm
LoaD Address	LDA	R[Rd] = R[Rn] + DTAddr
MOVe	MOV	R[Rd] = R[Rn]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
X0 - X7	0-7	Arguments / Results	No
X8	8	Indirect result location register	No
X9 - X15	9-15	Temporaries	No
X16 (IP0)	16	May be used by linker as a scratch register; other times used as temporary register	No
X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register	No
X18	18	Platform register for platform independent code; otherwise a temporary register	No
X19-X27	19-27	Saved	Yes
X28 (SP)	28	Stack Pointer	Yes
X29 (FP)	29	Frame Pointer	Yes
X30 (LR)	30	Return Address	Yes
XZR	31	The Constant Value 0	N.A.

© 2017 Elsevier Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface ARM® Edition

(6,9)

(2,9)

(5)

(5)

(5)

(5)

(5,7)

(2,9)

(1,2,9)

					11-bit C	pcoae
Instruc			Opcode	Shamt	Range	
Mnemonic	Format	Width (bits) Binary		Binary	Start (Hex)	
3	В	6	000101	000010	0A0	0BF
MULS	R	11	00011110001	000010	0F	
FDIVS	R	11	00011110001	000110	0F	
FCMPS	R	11	00011110001	001000	0F	
FADDS	R	11	00011110001	001010	0F	
SUBS	R	11	00011110001	001110	0F	
FMULD	R	11	00011110011	000010	0F	
PDIVD	R R	11	00011110011	000110	0F	
FCMPD	R	11 11	00011110011	001000	0F 0F	
FADDD	R		00011110011	001010	OF OF	
FSUBD		11 11		001110	1C	
STURB	D D	11	00111000000			
LDURB	CB	8	00111000010 01010100		2A0	2A7
B.cond	D	11	01111000000		3C	
STURH	D	11	01111000000		3C	
LDURH	R	11	10001010000		45	
AND	R	11	10001010000		45	
ADD	I	10	100100100		488	489
ADDI	I	10	1001000100		490	491
ANDI	В	6	1001001000		490 4A0	49T
BL BL	R	11	100101	000010	4A0 4D	
JDIV	R	11	10011010110	000010	4D	
MUL	R	11	10011010110	011111	4D	
SMULH	R	11	10011011000	011111	4D	
JMULH	R	11	10011011010		4D	
ORR	R	11	10101011110		55	
ADDS	R	11	10101010000		55	
ADDIS	1	10	101101011000		588	589
ORRI	I	10	101100100		590	591
CBZ	CB	8	10110100		5A0	5A7
CBNZ	CB	8	10110101		5A8	5AF
STURW	D	11	10111000000		5C	
LDURSW	D	11	10111000000		5C	
STURS	R	11	101111000100		5E0	
LDURS	R	11	10111100000		5E0 5E2	
STXR	D	11	11001000000		64	
LDXR	D	11	11001000000		64	
EOR	R	11	1100101000010		65	
SUB	R	11	11001010000		65	
SUBI	I	10	1101000100		688	689
EORI	I	10	1101000100		690	691
MOVZ	IM	9	1101001000		694	697
LSR	R	11	110100101		69,	
LSL	R	11	11010011011		691	
BR	R	11	110101110000		6B	
ANDS	R	11	111010110000		75	
SUBS	R	11	11101011000		75	
SUBIS	I	10	1111000100		788	789
ANDIS	I	10	111100100		790	791
40VK	IM	9	1111001000		794	797
STUR	D	11	1111100101		794 7C	
LDUR	D	11	11111000000		70	
STURD	R	11	111111000010		7E	
LDURD	R	11	111111100000		7E	

(1) Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes, e.g., the 6-bit B format occupies 32 (2⁵) 11-bit

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^s \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023

	CEE 754 Symb	J13						
Exponent	Fraction	Object						
0	0	± 0						
0	≠ 0	± Denorm						
1 to MAX - 1	anything	± F1. Pt. Num.						
MAX	0	± ∞						
MAX	≠ 0	NaN						
C D MAY - 255 D D MAY - 2047								

IEEE 754 Symbols

4

IEEE Single Precision and Double Precision Formats:

S Exponent Fraction S Exponent Fraction 52 51

DATA ALIGNMENT

			Word				
		Word					
Half	word	Halfword		Halfword		Halfword	
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte
0	1	2	3	4	5	6	7

Value of three least significant bits of byte address (Big Endian)

EACEFI	TONS	INDROME	EG.	ISTER (ESR)
Except Class (1		Instruction Length (IL)		Instruction Specific Syndrome field (ISS)
31	26	25	24	

EXCEPTION CLASS

	EC	Class	Cause of Exception	Number	Name	Cause of Exception
	0	Unknown	Unknown	34	PC	Misaligned PC
ı						exception
	7	SIMD	SIMD/FP registers	36	Data	Data Abort
			disabled			
	14	FPE	Illegal Execution	40	FPE	Floating-point
			State			exception
	17	Sys	Supervisor Call	52	WPT	Data Breakpoint
			Exception			exception
	32	Instr	Instruction Abort	56	BKPT	SW Breakpoint
ı						Exception

SIZE PREFIXES AND SYMBOLS

ZE I REFIXES AND STIMBOLS										
SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL					
10^{3}	Kilo-	K	210	Kibi-	Ki					
10^{6}	Mega-	M	2^{20}	Mebi-	Mi					
10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi					
10 ¹²	Tera-	T	2 ⁴⁰	Tebi-	Ti					
10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi					
10^{18}	Exa-	E	2^{60}	Exbi-	Ei					
10^{21}	Zetta-	Z	270	Zebi-	Zi					
10^{24}	Yotta-	Y	280	Yobi-	Yi					
10 ⁻³	milli-	m	10 ⁻¹⁵	femto-	f					
10 ⁻⁶	micro-	μ	10 ⁻¹⁸	atto-	a					
10 ⁻⁹	nano-	n	10-21	zepto-	Z					
10 ⁻¹²	pico-	р	10 ⁻²⁴	yocto-	у					