实变函数第十次作业

16231057 王延鹏

June 25, 2020

8.1

5

(i) Proof.

当 $1 \le p < \infty$ 时,对于任意的 $f \in L^p(E)$ 。定义有限支集函数 g_n 满足在 $E \cap [-n,n]$ 上 $g_n = |f|$,在 $E \setminus [-n,n]$ 上 $g_n = 0$,所以 $\{g_n\}$ 点态收敛到 |f|。并且 $\int_E g_n^p \le \int_E |f|^p < \infty$,所以 $g_n \in L^p(E)$ 。此外

$$|g_n - f|^p \le (|g_n| + |f|)^p \le 2^p |f|^p$$

由控制收敛定理 $||g_n - f||_p \to 0$, 所以是稠密的

(ii) Proof.

若 f=sin(x),那么 $f\in L^{\infty}(R)$,但是对于任意的有限支集函数 g, $\left\|sin(x)-g\right\|_{\infty}>\frac{1}{2}$,所以不是稠密的

6

Proof.

 $\Phi(x) = T(\chi_{[a,b]}), \ \ \forall \exists \exists \ [c,d] \subset [a,b]$

$$|\Phi(d) - \Phi(c)| = |T(\chi_{[c,d]})| \le ||T||_* ||\chi_{[c,d]}|| = ||T||_* (d-c)$$

由于 T 是有界线性泛函所以 $\|T\|_* < M$,所以 $\Phi(x)$ 是满足 Lipschitz 条件的,从而绝对连续。那么 $\Phi(x) = \int_a^x g$, $T(\chi_{[c,d]}) = \int_a^b g \cdot \chi_{[c,d]}$,即 $T(f) = \int_a^b g \cdot f$ 对于所有 $L^1[a,b]$ 上的示性函数 f 成立,从而对于阶梯函数成立。

进一步,如果 $f\in L^1[a,b]$ 是简单函数,由于阶梯函数在 $L^1[a,b]$ 上是稠密的,所以在 $L^1[a,b]$ 下存在一列阶梯函数一致有界 $\{\varphi_n\}\to f$,由于 T 是线性有界泛函,根据 T 的连续性 $\lim_{n\to\infty}T(\varphi_n)=T(f)$ 。另一方面, φ_n 有界,g 可积,由控制收敛定理

$$\lim_{n \to \infty} \int_{a}^{b} \varphi_n \cdot g = \int_{a}^{b} f \cdot g$$

因此, $T(f) = \int_a^b g \cdot f$ 对于 $L^1[a,b]$ 上的简单函数 f 成立。对于 $L^1[a,b]$ 上的简单函数 f

$$\left| \int_{a}^{b} g \cdot f \right| = \left| T(f) \right| \le \left\| T \right\|_{*} \cdot \left\| f \right\|_{p}$$

那么根据 Lemma $4,\ g\in L^\infty$ 。从而对于任意的 $f\in L^1[a,b]$,线性泛函 $f\to \int_a^b f\cdot g$ 是有界的。那么根据 proposition $9,\ T$ 和 $f\to \int_a^b f\cdot g$,对于 $f\in L^1[a,b]$ 有界的,并且在 $L^1[a,b]$ 上的稠密子集中相等,从而 $L^1[a,b]$ 上相等。

17.1

2

Proof.

 \Rightarrow

 μ 满足有限可加性,

$$\mu(\emptyset) = \mu(\emptyset \cup \emptyset) = \mu(\emptyset) + \mu(\emptyset)$$

所以 $\mu(\emptyset)=0$,对于任意一列不相交集合 $\{E_k\}$,令 $A_n=\cup_{k=1}^n E_k$,那么 $\{A_n\}$ 是一列递增的集合

$$\mu(\bigcup_{k=1}^{\infty} E_k) = \mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} A_n = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(E_k) = \sum_{k=1}^{\infty} \mu(E_k)$$

 \Leftarrow

令 $E_1 = A_1$, $E_k = A_k \setminus A_{k-1}$, 这样 $\{E_k\}$ 是不相交的集合,根据可列可加性

$$\mu(\bigcup_{k=1}^{\infty} A_k) = \mu(\bigcup_{k=1}^{\infty} E_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(E_k)$$

其中 $\mu(E_k) = \mu(A_k) - \mu(A_{k-1})$,所以

$$\lim_{n \to \infty} \sum_{k=1}^{n} \mu(E_k) = \mu(A_1) + \lim_{n \to \infty} \sum_{k=2}^{n} \mu(A_k) - \mu(A_{k-1}) = \lim_{n \to \infty} \mu(A_k)$$

5

(i) Proof.

 $\mu(E_1\Delta E_2)=\mu(E_1\setminus E_2)+\mu(E_2\setminus E_1)=0$,由于测度都是非负的,所以 $\mu(E_1\setminus E_2)=\mu(E_2\setminus E_1)=0$ 。由可列可加性

$$\mu(E_1) = \mu(E_1 \cap E_2) + \mu(E_1 \setminus E_2) = \mu(E_2 \cap E_1) + \mu(E_2 \setminus E_1) = \mu(E_2)$$

(ii) Proof.

由于 μ 是完备的,如果 $\mu(E_1 \Delta E_2) = 0$,因为 $E_1 \setminus E_2 \subset E_1 \Delta E_2$,所以 $E_1 \setminus E_2 \in \mathcal{M}$ 。那 $\Delta E_2 \cap E_1 = E_1 \setminus (E_1 \setminus E_2) \in \mathcal{M}$,从而 $E_2 = (E_2 \cap E_1) \cup (E_2 \setminus E_1) \in \mathcal{M}$

6

Proof.

首先证明 \mathcal{M}_0 是 σ 代数。(1) 显然 $\emptyset \in \mathcal{M}_0$, $X_0 \in \mathcal{M}_0$ 。(2) 对于任意的 $A \in \mathcal{M}_0$,因为 $A \in \mathcal{M}$, $X_0 \in \mathcal{M}$,所以 $X_0 \setminus A \in \mathcal{M}$,并且 $X_0 \setminus A \subset X_0$,所以 $X_0 \setminus A \in \mathcal{M}_0$ 。即 \mathcal{M}_0 对 取余集封闭。(3) 设 $\{E_k\}$ 是 \mathcal{M}_0 中的一列集合,由于 $E_k \in \mathcal{M}$ 并且 \mathcal{M} 对可列并封闭,所以 $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ 。另一方面由于 $\{E_k\}$ 都是 X_0 的子集,所以 $\bigcup_{k=1}^{\infty} E_k \subset X_0$,从而 $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}_0$

下面证明 μ_0 是一个测度。 $(1)\mu(\emptyset) = \mu_0(\emptyset) = 0$ 。(2) 对于 \mathcal{M}_0 中可列不相交的集合 $\{E_k\}$,由于 \mathcal{M}_0 对于可列并封闭,所以 $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}_0 \subset \mathcal{M}$

$$\mu_0(\bigcup_{k=1}^{\infty} E_k) = \mu(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k) = \sum_{k=1}^{\infty} \mu_0(E_k)$$

综上 $(X_0, \mathcal{M}_0, \mu_0)$ 是一个测度空间

9

Proof.

首先证明 \mathcal{M}_0 是一个 σ 代数。 $(1)\emptyset \in \mathcal{M}_0$, $X \in \mathcal{M}_0$ (2) 任取 $E \in \mathcal{M}_0$, $E = A \cup B$,其中 $B \in \mathcal{M}$, $A \subseteq C \in \mathcal{M}$, $\mu(C) = 0$ 。

$$X \setminus E = (X \setminus A) \cap (X \setminus B)$$

$$= [(X \setminus C) \cup (C \setminus A)] \cap (X \setminus B)$$

$$= [(X \setminus C) \cap (X \setminus B)] \cup [(C \setminus A) \cap (X \setminus B)]$$

其中 $[(X \setminus C) \cap (X \setminus B)] \in \mathcal{M}$, $[(C \setminus A) \cap (X \setminus B)] \subseteq C$, 并且 $\mu(C) = 0$, 所以 $X \setminus E \in \mathcal{M}_0$, 即 \mathcal{M}_0 对取余集封闭 (3) 设 $\{E_k\}$ 是 \mathcal{M}_0 中的一列子集,其中 $E_k = A_k \cup B_k$,这里设 $B_k \in \mathcal{M}$, $A_k \subseteq C_k$,并且 $\mu(C_k) = 0$,那么 $\bigcup_{k=1}^{\infty} E_k = (\bigcup_{k=1}^{\infty} A_k) \cup (\bigcup_{k=1}^{\infty} B_k)$ 。其中根据 \mathcal{M} 对于可列并的封闭性, $\bigcup_{k=1}^{\infty} B_k \in \mathcal{M}$;同样的, $\bigcup_{k=1}^{\infty} A_k \subseteq \bigcup_{k=1}^{\infty} C_k \in \mathcal{M}$,并且 $\mu(\bigcup_{k=1}^{\infty} C_k) = 0$ 。由此 \mathcal{M}_0 对于可列并封闭。

接下来证明, μ_0 是良定义的,若 $E = A \cup B = A' \cup B'$,其中 $B, B' \in \mathcal{M}$; $A \subseteq C, A' \subseteq C', \mu(C) = \mu(C') = 0$ 并且 $\mu(B) \neq \mu(B')$ 。不妨设 $\mu(B) > \mu(B')$,那么 $B \setminus B' = A' \setminus A$,有 $0 < \mu(B \setminus B') = \mu(A' \setminus A) \leq \mu(C') = 0$,矛盾。所以 $\mu_0(E) = \mu(B) = \mu(B')$

对于 $E \in \mathcal{M}_0, E = A \cup B, A \subset C, \mu(C) = 0$,满足 $\mu_0(E) = \mu(B) = 0$,所以对于 E 的任意 子集 $S = S \cup \emptyset$,其中 $\emptyset \in \mathcal{M}$, $S \subseteq E \subseteq (C \cup B) \in \mathcal{M}$,并且 $\mu(C \cup B) = \mu(B) + \mu(C) = 0$,所 以 $S \in \mathcal{M}_0$ \mathcal{M}_0 是包含 \mathcal{M} 的最小的完备测度空间,设 $\{\mathcal{N}\}$ 为所有包含 \mathcal{M} 的完备测度空间。对于任意的 $E = A \cup B \in \mathcal{M}_0$,根据 A, B 的定义, $A \in \mathcal{N}, B \in \mathcal{N} \Rightarrow E \in \mathcal{N}$,所以 $\mathcal{M}_0 \subseteq \bigcap \mathcal{N}$ 。另一方面, $\bigcap \mathcal{N} = \mathcal{M}_0 \bigcap (\bigcap_{\mathcal{N} \neq \mathcal{M}_0} \mathcal{N}) \subseteq \mathcal{M}_0$ 。因此 $\mathcal{M}_0 = \bigcap \mathcal{N}$,即包含 \mathcal{M} 的最小完备测度空间 \square

17.2

12

Proof.

 $A = \{x \in E : f(x) > 0\}$

13

(i) Proof.

设 $X = A \cup B$, $\mu = \mu_1 - \mu_2$, 满足 $\mu_1(A) = \mu_2(B) = 0$;

- (1) 若 $E \subset B$,由于 μ_2 是测度,由单调性 $0 = \mu(B) \ge \mu_2(E) \ge 0$,因此 $\mu_2(E) = 0$
- (2) 若 $E \subset A$, $\mu_2(E) = -\mu(E)$, 由于 μ, μ_2 都是测度,所以 $0 \ge -\mu(E) = \mu_2(E) \ge 0$, 因 此 $\mu_2(E) = 0$ 。

那么对于任意的 E,根据测度的可列可加性 $\mu_2(E)=0$

(ii) Proof.

下面证明 Jordan 分解的唯一性,设 $\{A,B\}$ 是一个 Hahn 分解, $v=v^+-v^-,v^+(E)=v(E\cap A)$ $v^-(E)=-v(E\cap B)$,其中 $v^+(B)=v^-(A)=0$ 。若除此之外还可以分解为 $v=v_1^+-v_1^-,v_1^+(B')=v_1^-(A')=0$ 。由于测度非负 $v(A')=v_1^+(A')\geq 0$, $v(B')=-v_1^-(B')\leq 0$,那么 $\{A',B'\}$ 也是一个 Hahn 分解。由于两个 Hahn 分解之间相差一个零集 N,不妨设 $A'=A\setminus N,B'=B\cup N$ 。对于集合 E

- (1) 若 $E \subset N$,由于 $E \subset A$, $v^-(E) = 0$, $v^+(E) = v(E) = 0$;另一方面 $E \subset B'$, $v_1^+(E) = 0$, $v_1^-(E) = v(E) = 0$
- (2) 若 $E \subset A' \cup B$, $0 = v v = [v^+ v_1^+] [v^- v_1^-] = \mu_1 \mu_2$ 。可以验证 μ_1, μ_2 都是恒为 0 的测度,并且在 $A' \cup B$ 上 $\mu_1(B) = \mu_2(A') = 0$,根据 (i) 的结论, $\mu_2 = 0$,即 $v^- = v_1^-$;那么 $\mu_1 = v^+ v_1^+ = 0$,即 $v^+ = v_1^+$

综上,对于任意的集合 E 都有 $v^- = v_1^-, v^+ = v_1^+$,所以分解是唯一的

注: 这道题第二问不太会

16

Proof.

设 $\{A,B\}$ 是 X 的一个 Hahn 分解,令 $K = \{\sum_{k=1}^{n} \left| v(E_k) \right| : \{E_k\}_{k=1}^{m}$ 是有限个不相交的可测子集 $\}$,由于 $\{A,B\}$ 是 X 的两个可测子集,并且 $v^+(B) = v^-(A) = 0$

$$|v|(X) = v^{+}(X) + v^{-}(X) = v^{+}(A) + v^{-}(B) = v(A) + v(B) \in K$$

所以 $|v|(X) \leq \sup K$ 。

$$\sum_{k=1}^{n} |v(E_k)| = \sum_{k=1}^{n} |v^+(E_k) - v^-(E_k)|$$

$$\leq \sum_{k=1}^{n} |v^+(E_k)| + |v^-(E_k)|$$

$$= \sum_{k=1}^{n} v^+(E_k) + v^-(E_k)$$

$$= v^+(\bigcup_{k=1}^{n} E_k) + v^-(\bigcup_{k=1}^{n} E_k) \quad 漢度可列可加$$

$$\leq v^+(A) + v^-(B) \quad 漢度单调性$$

$$= |v|(X)$$

因此 $\sup K \leq |v|(X)$, 综上 $|v|(X) = \sup K$