第20章 对流层改正计算

(作者:李英冰,主题分类:卫星导航)

对流层延迟泛指电磁波信号在通过高度为 50km 以下的未被电离的中性大气层时所产生的信号延迟。常用的对流层延迟模型有霍普菲尔德模型、萨斯塔莫宁模型、勃兰克模型和 NEIL 模型等,本试题采用 NEIL 改正模型。

一、数据文件读取

编写程序读取"坐标信息.txt"文件,数据内容如表 20-1 所示。数据格式为测站名,时间(YYYYMMDD),经度(°),纬度(°),大地高(m),高度角(°)。

表 20-1

数据内容

测站名,时间(YYYYMMDD), 经度(°), 纬度(°), 大地高(m), 高度角(°)

P01, 20170728, 116. 407143, 39. 913607, 45. 234, 20

P02, 20170728, 125. 460913, 43. 850217, 102. 432, 30

P03, 20170728, 82. 650403, 63. 604725, 251. 672, 40

P04, 20170728, 107. 37637, 26. 043428, 35. 277, 45

P05, 20170728, 112. 674792, 1. 514577, 24. 556, 50

P06, 20170728, 138. 283829, -30. 160507, 176. 889, 55

P07, 20170728, 102. 961019, -77. 21885, 435. 279, 60

二、算法实现

1. 湿分量的投影函数计算

湿分量的投影函数为:

$$m_{w}(E) = \frac{\frac{1}{1 + \frac{a_{w}}{1 + \frac{b_{w}}{1 + c_{w}}}}}{\frac{1}{\sin E} + \frac{a_{w}}{\sin E + \frac{b_{w}}{\sin E + c_{w}}}}$$
(1)

式中,E 是高度角;当测站纬度在 $15^{\circ} \sim 75^{\circ}$ 之间,湿分量的系数 $a_w \setminus b_w \setminus c_w$ 用以下内插法求得:

$$p(\phi, t) = p_{avg}(\phi_i) + [p_{avg}(\phi_{i+1} - p_{avg}(\phi_i)] \times \frac{\phi - \phi_i}{\phi_{i+1} - \phi_i}$$
(2)

式中,p 表示要内插的系数 a_w 、 b_w 、 c_w ; ϕ_i 和 ϕ_{i+1} 的系数平均值 p_{avg} 值见表 20-2。当测站 纬度小于 15°时,就取 15°时的值 p_{avg} ; 当测站纬度大于 75°时,就取 75°时的值 p_{avg} 。

表 20-2

湿分量投影函数系数表

纬度	$a_{w}(avg)$	$b_w(avg)$	$c_w(avg)$
15°	0. 00058021897	0. 0014275268	0. 043472961
30°	0. 00056794847	0. 0015138625	0. 046729510
45°	0. 00058118019	0. 0014572752	0. 043908931
60°	0.00059727542	0.0015007428	0. 044626982
75°	0. 00061641693	0. 0017599082	0. 054736038

2. 干分量的投影函数计算(25分)

干分量的投影函数为:

$$m_d(E) = \frac{\frac{1}{1 + \frac{a_d}{1 + \frac{b_d}{1 + c_d}}}}{\frac{1}{\sin E} + \frac{1}{\sin E} - \frac{\frac{1}{1 + \frac{a_{ht}}{1 + c_{ht}}}}{\frac{1}{\sin E} + \frac{b_{ht}}{1 + c_{ht}}}} \times \frac{H}{1000}$$
(3)

式中,E 是高度角; $a_{ht}=2.53\times10^{-5}$; $b_{ht}=5.49\times10^{-3}$; $c_{ht}=1.14\times10^{-3}$;H 为正高。当测站纬度在 $15^\circ\sim75^\circ$ 之间,干分量的系数 a_d 、 b_d 、 c_d 用以下内插法求得:

$$p(\phi, t) = p_{avg}(\phi_i) + \left[p_{avg}(\phi_{i+1} - p_{avg}(\phi_i)) \right] \times \frac{\phi - \phi_i}{\phi_{i+1} - \phi_i} + \left[p_{amp}(\phi_i) + \left[p_{amp}(\phi_{i+1} - p_{amp}(\phi_i)) \right] \times \frac{\phi - \phi_i}{\phi_{i+1} - \phi_i} \times \cos\left(2\pi \frac{t - t_0}{365.25}\right) \right]$$
(4)

式中,p 表示要内插的系数 a_d 、 b_d 、 c_d ; t 为年积日, t_0 = 28 为参考时刻的年积日; ϕ_i 和 ϕ_{i+1} 的系数平均值 p_{avg} 和波动的幅度 p_{amp} 值见表 20-3。

当测站纬度小于 15°时,系数 a_d 、 b_d 、 c_d 的计算公式为:

$$p(\phi, t) = p_{avg}(15^{\circ}) + p_{avg}(15^{\circ}) \times \cos\left(2\pi \frac{t - t_0}{365.25}\right)$$
 (5)

当测站纬度大于 75°时, 系数 a_d 、 b_d 、 c_d 的计算公式为:

$$p(\phi, t) = p_{avg}(75^{\circ}) + p_{avg}(75^{\circ}) \times \cos\left(2\pi \frac{t - t_0}{365.25}\right)$$
 (6)

表 20-3

干分量映射函数系数表

纬度	$a_h(avg)$	$b_h(avg)$	$b_h(avg)$
15°	0. 0012769934	0. 0029153695	0. 062610505
30°	0. 0012683230	0. 0029152299	0. 062837393
45°	0. 0012465397	0. 0029288445	0. 063721774
60°	0. 0012196049	0. 0029022565	0. 063824265
75°	0. 0012045996	0. 0029024912	0. 064258455
纬度	$a_h(amp)$	$a_h(amp)$	$a_h(amp)$
15°	0.0	0.0	0.0
30°	0.000012709626	0. 000021414979	0. 000090128400
45°	0.000026523662	0. 000030160779	0. 000043497037
60°	0.000034000452	0. 000072562722	0. 00084795348
75°	0.000041202191	0. 00011723375	0. 0017037206

3. 延迟改正计算(10分)

对流层延迟由于分量和湿分量组成, 计算公式为:

$$\Delta S = \text{ZHD} \cdot m_d(E) + \text{ZWD} \cdot m(E) \tag{7}$$

式中, ZHD=2.29951×e^{-0.000116×H}, ZWD=0.1, H为正高。

三、计算结果报告(20分)

编程输出测站名、高度角、ZHD、 $m_d(E)$ 、ZWD、 $m_w(E)$ 、 ΔS 等计算结果。

四、参考答案

在"https://github.com/ybli/bookcode/tree/master/Part1-ch11/"目录下给出了参考源程序、测试数据和可执行文件。

编程语言为 C#, 项目名称为 Trop。测试数据在"运行程序与数据"目录下。样例数据的计算结果为:

测站名	高度角	ZHD	m_ d(E)	ZWD	m_ w(E)	延迟改正
P01	20.00	2.287	2.897	0.100	2.911	6.917
P02	30.00	2. 272	1.993	0.100	1.997	4. 727
P03	40.00	2. 233	1.553	0.100	1.554	3.624
P04	45.00	2.290	1.412	0.100	1.413	3.376
P05	50.00	2. 293	1.304	0.100	1. 305	3. 121
P06	55.00	2. 253	1.220	0.100	1. 220	2.871
P07	60.00	2.186	1. 154	0.100	1. 154	2. 639

程序运行界面如图 20.1 所示,主要显示测站站名、高度角、干延迟、湿延迟、映射函数及总延迟改正计算结果等内容。

则站名	高度角	ZHO	m_d(E)	ZWD	m_w(E)	延迟改正
P01	20.00	2.287	2.897	0.100	2.911	6.917
P02	30.00	2.272	1.993	0.100	1.997	4.727
P03	40.00	2.233	1.553	0.100	1.554	3.624
P04	45.00	2.290	1.412	0.100	1.413	3.376
P05	50.00	2.293	1.304	0.100	1.305	3, 121
P06	55.00	2.253	1.220	0.100	1.220	2.871
P07	60.00	2.186	1. 154	0.100	1.154	2.639

图 20.1 用户界面示例