

(1) Publication number: 0 409 440 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 18.05.94 Bulletin 94/20

(51) Int. CI.5: **B41M 1/30**

(21) Application number: 90307237.9

(2) Date of filing: 03.07.90

(54) Inkable sheet

(30) Priority: 21.07.89 GB 8916732

(43) Date of publication of application : 23.01.91 Bulletin 91/04

(45) Publication of the grant of the patent: 18.05.94 Bulletin 94/20

Designated Contracting States:
 BE CH DE FR GB IT LI NL

G6 References cited:
EP-A- 0 156 532
EP-A- 0 232 040
EP-A- 0 233 703
DATABASE PAPERCHEM, N 59-00818, Institute of Paper; JP-A-88001578
DATABASE PAPERCHEM, N 58-09382, Institute of Paper; JP-A-87152779
DATABASE PAPERCHEM, N 57-06590, Institute of Paper; JP-A-86035278
DATABASE PAPERCHEM, N 57-12105, Institute of Paper; JP-A-86148092

(3) Proprietor: IMPERIAL CHEMICAL INDUSTRIES PLC Imperial Chemical House, Millbank London SW1P 3JF (GB)

72 Inventor: Butters, Alan
17 Mowlands
Capel St. Mary, Ipswich IP7 2BX (GB)
Inventor: Page, Graham Alastair
60 Back-Hamlet
Ipswich, IP3 8AJ (GB)
Inventor: Barker, Roger Nicholas
Rowan Lodge, Pilcox Hall Lane
Pendring, Clacton on Sea, Essex (GB)

(4) Representative: Millross, Christopher Robert et al
ICI Group Patents Services Dept. PO Box 6
Shire Park Bessemer Road
Welwyn Garden City Herts, AL7 1HD (GB)

Ш

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

Background of the Invention

(a) Technical Field of Invention

This invention relates to an inkable sheet, and in particular, to a sheet suitable for use with an automated printing assembly, such as an ink jet printer or a pen plotter.

(b) Background of the Art

15

With the recent proliferation of micro-computers and colour monitors there has been a rapid growth in the amount of information available for display in colour. Presentation of such information has created a demand for hard copy, for example - on paper sheets, but increasingly on transparent polymeric films which are capable of serving as imaged transparencies for viewing in a transmission mode. Preparation of the desired hard copy is conveniently effected by, for example, an ink jet printer or a pen plotter, using an aqueous or an aqueous-organic solvent-based ink.

Ink jet printing is already established as a technique for printing variable information such as address labels, multi-colour graphics, and the like. A simple form of ink jet printer comprises a capillary tube coupled to an ink reservoir and a piezo-electric element which, on application of a voltage pulse, ejects an ink droplet from the capillary tube at high velocity (eg up to 20ms-1) onto an ink receptive sheet. Movement of the ink jet may be computer controlled, and new characters may therefore be formed and printed at electronic speeds. To derive advantage from this high speed operating capability requires the use of an ink-receptive sheet which will quickly absorb the high velocity ink droplet without blotting or bleeding. Although a plastics sheet may be employed, such sheets generally tend to exhibit inferior ink absorption and retention characteristics. In particular, coalescence of adjacent applied ink droplets on the sheet surface tends to yield an applied ink pattern

Pen plotter assemblies are extensively used in drawing offices, and particularly in the generation of computer aided designs. The advent of transparent polymeric recording sheets has revealed that the formation thereon of inked images of acceptable quality usually requires the development of special, and expensive pens. Even so, pattern resolution remains a problem.

(c) The Prior Art

35

Various recording sheets have been proposed for use with ink jet printers. In particular, US patent No 4474850 discloses an ink jet recording transparency said to be capable of being wetted by and absorbing coloured, water-soluble inks to provide high density images which are smear resistant, the transparency com-

(a) a substantially transparent resinous support, such as a polyester or polyvinyl chloride film, and

(b) a substantially clear coating which includes a carboxylated, high molecular weight polymer or copolymer or salts thereof.

The carboxylated polymer or copolymer coating particularly comprises monomers of acrylic or methacrylic acid and esters thereof, vinyl acetates or styrenated acrylics, and usually has a molecular weight of from about 50,000 to 1 million. We have observed that an inked pattern applied to such a film transparency is relatively slow to dry, the ink droplets having a tendency to merge at relatively high loadings, and that such transparencies are particularly susceptible to curling whereby a pattern applied thereto appears distorted when viewed

GB-A-2175516 discloses an ink jet recording medium comprising a substrate and an ink-receiving layer thereon, the receiving layer comprising a hydrophilic resin and a hydrophobic substance, such as a fatty acid or a salt or ester thereof, which is liquid or waxy at normal temperature. A declared object of the disclosed invention is to provide excellent ink absorptivity and light transmittance and to remove image irregularity even when printed onto an area contaminated by skin fat from the impression of a finger print. Even so, a further improvement in image resolution would be beneficial.

JP-A-88001578 discloses a sized paper inkable sheet exhibiting an initial contact angle of more than 120 degrees with an aqueous ethylene glycol-ethylene oxide-propylene oxide ink composition.

We have now devised an inkable sheet which is particularly suitable as a recording sheet for use with an automated printing assembly, such as an ink jet printer or a pen plotter, and which eliminates or substantially overcomes the aforementioned problems.

Summary of the Invention

10

30

35

40

45

Accordingly, the present invention provides an inkable sheet comprising a substrate having on a surface thereof an ink-absorbent resin layer wherein the surface of the absorbent layer remote from the substrate is such that an aqueous - ethylene glycol - n-methyl-2-pyrrolidone (75:20:5 by weight) droplet deposited thereon exhibits an internal contact angle of at least 120°.

The invention also provides a method of preparing an inkable sheet comprising providing on a surface of a substrate an ink-absorbent resin layer and applying a modifying medium to the ink-absorbent layer to yield an ink-absorbent layer having a surface such that an aqueous - ethylene glycoln-methyl-2-pyrrolidone (75:25:5 by weight) droplet deposited thereon exhibits an internal contact angle of at least 120°.

Detailed Description and Preferred Embodiments of the Invention

Contact angles referred to herein are average values measured in accordance with ASTM-D 724-45, save that the supply needle is positioned 1 mm from the sheet surface, and the maximum angle is observed when the test fluid is pumped at a rate of 3.6 µlitres sec⁻¹.

To absorb and retain an aqueous-based ink, the ink-absorbent layer of a sheet according to the invention is of an essentially hydrophilic nature exhibiting a marked affinity for an aqueous ink. Such layers are known in the art, as hereinafter described, and generally are such that an aqueousethylene glycol - n-methyl-2-pyr-rolidone (75:25:5 by weight) droplet deposited on the absorbent surface exhibits an advancing internal contact angle not exceeding about 100°, and is absorbed relatively rapidly into the matrix structure of the absorbent layer.

By treating the surface of the absorbent layer with a modifying medium whereby the aforementioned contact angle is increased to at least 120° relative to the absorbent surface, it has proved possible to reduce the kinetic wetting tendency of the applied aqueous ink medium, thereby limiting the initial spread of individual applied droplets on the absorbent surface and reducing uncontrolled redistribution of droplets under the influence of surface tension, while retaining the rapid absorption characteristics of the absorbent matrix. Interfacial viscosity, involving a viscous interaction between the modified surface and a droplet applied thereto, is believed to contribute to the improved performance.

The maximum theoretical internal contact angle is 180°, although an inkable sheet according to the invention is unlikely to exhibit a value exceeding 175°. An acceptable sheet therefore exhibits an internal contact angle of from 120 to 175°, preferably from 130 to 175°, and particularly from 135 to 175°.

A range of modifiers may be employed in the formulation of a modifying medium for treatment of an inkabsorbent layer in accordance with the invention. These modifiers are suitably of a hydrophilic nature and conveniently comprise materials which are solid at ambient temperature ($\approx 23^{\circ}$ C). A polymeric modifier is particularly suitable, a preferred polymeric modifier exhibiting a low molecular weight less than that of the principal polymeric component of the ink-absorbent layer. A preferred, low molecular weight, non-hydrophobic, polymeric modifier exhibits a molecular weight (number average) not exceeding 100,000, preferably from 5,000 to 100,000, particularly from 7,500 to 50,000, and especially from 9,000 to 15,000.

A blend of two or more modifiers may be employed, a preferred blend comprising a vinyl pyrrolidone polymer and an ethylene oxide polymer, the respective molecular weights (number average) thereof conveniently being in a ratio exceeding 1:1. For example, the respective molecular weights (number average) of the vinyl pyrrolidone polymer and the ethylene oxide polymer are conveniently within the ranges of from 7,000 to 15,000 and from 6,000 to 9,500.

In a modifying medium comprising a blend of modifiers, the respective concentrations of the modifier components may vary over a wide range, but it is generally preferred that the modifier of highest molecular weight should be the principal component of the blend. For example, in a blend comprising two polymeric modifiers, such as a polyvinylpyrrolidone and a polyethylene oxide, that of higher molecular weight is generally present in a percentage concentration by weight of from 55 to 95, preferably from 70 to 90, especially 80, the corresponding percentage concentration of the modifier of lower molecular weight being from 45 to 5, preferably 30 to 10, and especially 20.

The modifying medium is conveniently applied to the ink-absorbent layer by a conventional coating technique - for example by deposition from a solution or dispersion of the modifier(s) in a volatile carrier medium, such as an aqueous and/or organic solvent medium. Methanol and ethanol are suitable organic solvents.

Observations indicate that application of an essentially hydrophilic modifying medium may generate a zone of reduced apparent hydrophilicity, relative to the bulk of the ink-absorbent matrix and at the exposed surface thereof. While residual modifying medium may adhere to the external surface of the absorbent layer as a discrete layer of reduced apparent hydrophilicity (and of thickness not exceeding 1.0 μ m, preferably less

than $0.5\,\mu m$), which may be discontinuous, it appears that the modifying medium may penetrate the absorbent layer, thereby introducing microscopic air inclusions into the surface region thereof. In a preferred embodiment of the invention the ink-absorbent layer therefore comprises an array of micropores extending through the exposed surface and into the bulk of the absorbent layer.

The micropores in the surface zone of reduced apparent hydrophilicity generally exhibit an average diameter of from 0.05 to 0.5 μ m, preferably from 0.15 to 0.25 μ m, and the pore density distribution of the micropores is such that the area of the ink-absorbent surface occupied by micropores is from 5 to 30%, particularly from 10 to 20%, for example 15%, of the exposed surface. Such surface micropores provide improved pattern resolution without significant detriment to the optical characteristics, particularly haze, of the inkable sheet.

10

15

20

The effect of the zone of reduced apparent hydrophilicity is to increase the contact angle of an applied ink droplet relative to the absorbent surface, thus reducing the area of the ink droplet in contact with the absorbent surface and consequently reducing the tendency of neighbouring ink droplets to coalesce. Thus the area of absorption of the ink droplet is reduced, which might be expected to result in an increase in the required drying time. In addition, the presence of a surface region of reduced apparent hydrophilicity on the ink-absorbent layer might also be expected to reduce the rate of ink absorption into the ink-absorbent layer. Surprisingly this is not the case, and an inkable sheet according to the invention demonstrates a reduced tendency to ink coalescence without a corresponding increase in the required drying time. A practical consequence of the afor mentioned property is that the ink loading can be increased, thereby improving image resolution and quality.

The ink-absorbent layer of a sheet according to the invention permits rapid drying of an applied ink pattern, and is desirably such that an aqueous - ethylene glycol (50:50 w/w) -based ink, or similar composition, applied to the surface of a sheet from an ink jet printer will resist off-setting when the inked surface is placed in contact with the surface of a paper sheet within 50 seconds, and preferably within 45 seconds, of application of the ink. Desirably, the applied ink should be absorbed through the surface region of reduced apparent hydrophilicity and into the ink-absorbent layer to an extent such that smudging does not occur within 40 seconds, and preferably within 30 seconds of application of the ink.

The ink-absorbent layer comprises any suitable ink-receptive resin. For example, the ink-absorbent layer conveniently comprises any hydrophilic resin, or a blend of such resins, which can be coated onto the substrate to yield an absorbent layer capable of absorbing and retaining an aqueous-organic ink-solvent medium - for example, by capillary action.

The absorbent layer may comprise voids, such as fissures, cracks, pores, open cells, or the like, having a width or diameter in a range of from 0.001 to 5.0 μ m, although it is preferred that the non-inked absorbent layer should be inherently transparent and non-light scattering and therefore comprise voids of width or diameter from 0.001 to 1.0, preferably from 0.001 to 0.75, and, particularly preferably from 0.01 to 0.05 μ m. The ample - from 4 to 400, and especially from 20 to 100.

A voided ink-absorbent resin layer may be prepared by a variety of methods. Thus, a film substrate may be coated with a formulation comprising a colloidal dispersion in a volatile carrier medium - for example, a coacervate of a polyacid and a polybasic material. Alternatively, a blend of incompatible polymers may be deposited from a mutual solvent. In another method, a polymer may be deposited on a substrate from a blend of solvents such that the least volatile and slower evaporating solvent has poor solvency for the absorbent resin. Step-wise drying of a deposited polymer layer may also be employed to yield the desired porous structure.

Suitable resins for the production of an essentially hydrophilic ink-absorbent layer in accordance with the invention include cellulosics, such as nitrocellulose, ethylcellulose and hydroxyethylcellulose; gelatins; vinyls, such as polyvinylacetate, polyvinylchloride, and copolymers of vinyl chloride and vinyl acetate; acrylics, such polyacrylic acid; and polyvinylpyrrolidones, as described in EP-A-0156532, EP-A-0232040 and EP-A-0233703.

A vinyl pyrrolidone polymer, if employed in the ink-absorbent layer, may comprise a homopolymer or copolymer - for example, with a copolymerisible monomer such as vinyl acetate. A suitable vinyl pyrrolidone polymer will exhibit a molecular weight exceeding that of the principal component of the modifying medium, and generally in excess of about 100,000, preferably from 250,000 to 500,000.

The ink-absorbent resin may comprise a vinyl pyrrolidone polymer and an ester of cellulose containing free carboxylic acid groups. The cellulose ester containing free carboxylic acid groups conveniently comprises an ester of cellulose with a polybasic carboxylic acid or a mixed ester of cellulose derived from at least one polybasic carboxylic acid, the resulting cellulose ester containing free carboxylic groups, as described in EP-A-0198636.

However, a preferred ink-absorbent layer comprises a vinyl pyrrolidone polymer and an acrylic or metha-

crylic polymer, as described in EP-A-0233703. A particularly suitable acrylic or methacrylic polymer for use in conjunction with a vinyl pyrrolidone polymer, has an acid number (mg KOH per g) not exceeding 150, and preferably of from 20 to 120, for example - a copolymer of methacrylic acid and methyl methacrylate with an acid number (mg KOH per g) of from about 60 to 100, particularly about 80. The relative proportions of the respective components in such an ink-absorbent layer may be varied within wide limits, although it is preferred that the vinyl pyrrolidone polymer comprises the major polymeric component, preferably from at least 50 to 852, and especially from 60 to 75% by weight of the resin layer. A particularly preferred ink-absorbent layer comprises (a) a vinyl pyrrolidone polymer, and (b) an acrylic or methacrylic polymer in a weight ratio of about 7:3.

If desired, the ink-absorbent resin may comprise a plasticiser, that is any additive which may be incorporated into a polymeric material to improve its softness, processability and flexibility. They are well known per se in the plastics art, particularly for modifying the characteristics of polyvinyl chloride, and are usually organic materials in the form of moderately high molecular weight liquids or low melting solids. Most commonly they comprise esters of carboxylic acids or phosphoric acid, although hydrocarbons, halogenated hydrocarbons, ethers, glycols, polyglycols and hydrogenated or epoxydised drying oils (eg soya bean oil) may also be employed, as described in EP-A-0232040.

10

35

40

To improve the ageing behaviour of the ink-absorbent resin layer and promote absorption and drying of a subsequently applied ink, a surfactant may, if desired, be incorporated into the resin layer. Suitable surfactants include a non-ionic, fluorocarbon surfactant or a cationic surfactant, such as a quaternary ammonium salt. Additionally a humectant, such as glycerol, may be employed.

If desired, the ink-absorbent layer may additionally comprise a particulate filler to improve the handling characteristics of the sheet. Suitable fillers include oxides of metals or metalloids, such as silica, desirably of a particle size not exceeding 20, and preferably less than 12, for example 8 μ m. The amount of filler employed will be dictated by the desired characteristics of the sheet but will generally be low to ensure that the optical characteristics (such as haze) of the sheet remain unimpaired. Typical filler loadings are of the order of less than 2.0, and preferably from 0.5 to 1.0% by weight of the resin component(s).

The ink-absorbent layer is conveniently applied to the substrate by a conventional coating technique - for example, by deposition from a solution or dispersion of the resin(s) in a volatile medium, such as an aqueous or organic solvent medium.

Drying of the applied ink-absorbent resin layer may be effected by conventional drying techniques - for example, by suspending the coated substrate in a hot air oven maintained at an appropriate temperature. A drying temperature of about 120°C is usually suitable for a polyester substrate.

The thickness of the dry ink-absorbent resin layer may vary over a wide range, but is conveniently within a range of from 2 to 25, and preferably from 5 to 20, for example 15 µm.

A substrate for use in the production of an inkable sheet according to the present invention suitably comprises any polymeric material capable of forming a self-supporting opaque, or preferably transparent, film or sheet

By a "self-supporting film or sheet" is meant a film or sheet capable of independent existence in the absence of a supporting base.

Suitable thermoplastics materials for use in the production of a substrate include a cellulose ester, eg cellulose acetate, polystyrene, a polymer and copolymer of vinyl chloride, polysulphone, a homopolymer or copolymer of a 1-olefine, such as ethylene, propylene and but-1-ene, a polyamide, a polycarbonate, and, particularly, a synthetic linear polyester which may be obtained by condensing one or more dicarboxylic acids or their lower alkyl (up to 6 carbon atoms) diesters, eg terephthalic acid, isophthalic acid, phthalic acid, 2,5-2,6-or 2,7-naphthalenedicarboxylic acid, succinic acid, sebacic acid, adipic acid, azelaic acid, 4,4'-diphenyldicarboxylic acid, hexahydroterephthalic acid or 1,2-bis-p-carboxyphenoxyethane (optionally with a monocarboxylic acid, such as pivalic acid) with one or more glycols, particularly an aliphatic glycol, eg ethylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol and 1,4-cyclohexanedimethanol. A polyethylene terephthalate film is particularly preferred, especially such a film which has been biaxially oriented by sequential stretching in two mutually perpendicular directions, typically at a temperature in the range 70 to 125°, and preferably heat set, typically at a temperature in the range 150 to 250°, for example as described in GB-A-838708.

The substrate may also comprise a polyarylether or thio analogue thereof, particularly a polyarylether-ketone, polyarylethersulphone, polyaryletheretherketone, polyaryletherethersulphone, or a copolymer or thioanalogue thereof. Examples of these polymers are disclosed in EP-A-1879, EP-A-184458 and US-A-4008203, particularly suitable materials being those sold by ICI PLC under the Registered Trade Mark STA-BAR. Blends of these polymers may also be employed.

Suitable thermoset resin substrate materials include additionpolymerisation resins - such as acrylics, vinyls, bis-maleimides and unsaturated polyesters, formaldehyde condensate resins - such as condensates with

urea, melamine or phenols, cyanate resins, functionalised polyesters, polyamides or polyimides.

The substrate is suitably of a thickness from 25 to 300, particularly from 50 to 175, and especially from 75 to 125 µm.

To promote adhesion of the ink-absorbent layer to a polymeric substrate, it is desirable first to treat a surface of the substrate with a priming medium. Creation of a priming layer is conveniently effected by treating a surface of the polymer substrate with an agent known in the art to have a solvent or swelling action on the substrate polymer. Examples of such conventional agents, which are particularly suitable for the treatment of a polyester substrate, include a halogenated phenol dissolved in a common organic solvent eg a solution of p-chloro-m-cresol, 2,4-dichlorophenol, 2,4,5- or 2,4 6- trichlorophenol or 4-chlororesorcinol in acetone or methanol. In addition, and preferably, the priming solution may contain a partially hydrolysed vinyl chloridevinyl acetate copolymer. Such a copolymer conveniently contains from 60 to 98% of vinyl chloride, and from 0.5 to 3% of hydroxyl units, by weight of the copolymer. The molecular weight (number average) of the copolymer is conveniently in a range of from 10,000 to 30,000, and preferably from 16,500 to 25,000.

If desired, a plurality of priming layers may be sequentially applied to a substrate.

The priming agent is suitably applied at a concentration level which will yield a priming layer having a relatively thin dry coat thickness - for example, generally less than 2, and preferably less than 1 μm .

An additional backing layer may be applied to the second (ie uncoated) surface of the substrate to improve the machine-handling properties and reduce curling of the inkable sheet. The backing layer may comprise any of the materials suitable for the formation of the ink-absorbent layer, and preferably comprises a filler, particularly of the kind hereinbefore described. The filler loading in the backing layer is generally less than 2% by weight of the resin component(s), and is preferably less than that of the ink-absorbent layer, for example from

The adhesion of the backing layer to the base sheet may be improved by first treating the surface of the base sheet with a priming medium as hereinbefore described. Priming media which are suitable for improving the adhesion of the ink-absorbent layer to the base sheet may also be used with the backing layer.

An inkable sheet according to the present invention is particularly suitable for use in the preparation of inked transparencies for use in a transmission mode, for example - with an overhead projector. Retention in the ink-absorbing resin layer of the solvent medium of an applied ink ensures rapid drying of the ink, and fa-

The invention is illustrated by reference to the accompanying drawings in which:

Figure 1 is a schematic elevation (not to scale) of a portion of an inkable sheet comprising a substrate layer (1) to one surface of which is bonded an ink-absorbent resin layer (2). The exposed surface (3) of the absorbent layer has been treated with a modifying medium to provide an array of micropores (4) in a

Figure 2 is a fragmentary schematic elevation of a similar sheet in which the ink-absorbent resin layer (2) is bonded to the substrate layer (1), by an intermediate priming layer (6), and

Figure 3 is a fragmentary schematic elevation of a similar sheet in which an additional backing layer (7) is bonded to the second surface of the substrate layer (1).

The invention is further illustrated by reference to the following Examples.

Example 1

20

25

30

35

40

One surface of a biaxially oriented, uncoated, polyethylene terephthalate film substrate of about 100 μm thickness was primed with a solution in acetone of p-chloro-m-cresol (3.75% weight/volume) and VINYLITE VAGH (0.75% wt/vol). VINYLITE VAGH is a copolymer of vinyl chloride (90 wt%) and vinyl acetate (4 wt%) with 2.3 wt% hydroxyl content and of average molecular weight 23,000.

The primed substrate was then dried in a hot air oven maintained at a temperature of 80°C to leave a re-

The primed surface was then coated with a 15% wt/vol mixture of the following materials in a solvent mixture of methanol:methyl cellosolve:ethanol (89:7:4) :-50

Polyvinylpyrrolidone, PVP-K90 (molecular weight; 360,000)	69.00 wt%
Hydroxylated, carboxylated acrylic, DP6-2976	29.57 wt%
(molecular weight; 60,000)	
Melamine formaldehyde, Cymel 300	0.99 wtI
Para toluene sulphonic acid	0.05 wt%
Silica Gasil ERC (average particle size of 8 mm)	0.39 wt%

and the coated substrate was dried at a temperature of 120°C to yield an ink-absorbent resin layer of approximately 13 µm thickness. (PVP-K90 is supplied by GAF(GB) Ltd.).

The ink-absorbent layer was then treated with a modifying mediun comprising a 2 wt% dispersion of the following materials in methanol:-

Polyvinylpyrrolidone, PVP-K15 (molecular weight;10,000) 80.0 wt% Polyethylene oxide, Pluriol 9000 (molecular weight;9,000) 20.0 wt%

and the coated sheet was dried at a temperature of 120°C to yield a microporous surface zone of approximately 0.4 µm thickness (PVP-K15 is supplied by GAF(UK) Ltd.).

The advancing internal contact angle of an aqueous - ethylene glycol -n-methyl-2-pyrrolidone (75:20:5 by weight) droplet on the modified surface zone was determined by the hereinbefore described technique to be 140°.

Characters printed onto the modified surface of the absorbent layer using a high loading of Canon FP510 printer ink was smudge resistant within seconds of printing. Resolution of the characters was excellent.

30 · Example 2

15

This is a comparative Example not according to the invention. The procedure of Example 1 was repeated except that the modifying treatment was omitted.

The advancing internal contact angle of an aqueous - ethylene glycol -n-methyl-2-pyrrolidone (75:20:5 by weight) droplet on the ink-absorbent layer, determined as in Example 1, was observed to be 115°.

Characters printed onto the ink-absorbent layer of the sheet, using a high loading of Canon FP510 printer ink had a poor resolution due to coalescing of the individually printed ink droplets.

40 Claims

45

- 1. An inkable sheet comprising a substrate having on a surface thereof an ink-absorbent resin layer, character-ised in that the surface of the absorbent layer remote from the substrate is such that an aqueous ethylene glycol -n-methyl-2-pyrrolidone (75:20:5 by weight) droplet deposited thereon exhibits an internal contact angle of at least 120°.
- An inkable sheet according to claim 1 wherein the surface of the ink-absorbent layer remote from the substrate exhibits a zone of apparent hydrophilicity less than that of the absorbent layer per se.
- An inkable sheet according to claim 2 wherein the zone of apparent hydrophilicity comprises a polymeric modifier.
 - 4. An inkable sheet according to any one of the previous claims wherein said remote surface comprises an array of micropores.
- An inkable sheet according to claim 4 wherein the average diameter of the micropores is from 0.05 to 0.5 μm.

- An inkable sheet according to either of claims 4 and 5 wherein the micropores occupy from 5 to 30% of the area of said remote surface.
- An inkable sheet according to claim 2 wherein said zone comprises a discrete layer on the surface of the absorbent layer.
 - 8. An inkable sheet according to any one of claims 3 to 7 wherein the polymeric modifier comprises a first vinylpyrrolidone polymer.
- An inkable sheet according to claim 8 wherein the ink-absorbent layer comprises a second vinyl pyrrolidone polymer of molecular weight exceeding that of the first.
 - An inkable sheet according to any one of the preceding claims wherein the ink-absorbent layer comprises
 a copolymer of acrylic acid or methacrylic acid.
- 11. A method of preparing an inkable sheet comprising providing on a surface of a substrate an ink-absorbent resin layer, characterised by applying a modifying medium to the ink-absorbent layer to yield an ink-absorbent layer having a surface such that an aqueous ethylene glycol -n-methyl-2-pyrrolidone (75:20:5) weight) droplet deposited thereon exhibits an internal contact angle of at least 120°.

Patentansprüche

25

30

- Färbbares Substrat, umfassend ein Substrat mit einer Oberfläche aus einer tintenabsorbierenden Harzschicht, dadurch gekennzeichnet, daß die vom Substrat abgewandte Oberfläche der absorbierenden Schicht so ausgebildet ist, daß ein darauf abgeschiedenes wäßriges Ethylenglykol-n-methyl-2-pyrrolidon-Tröpfchen (75:20:5 Gewichtsteile) einen inneren Kontaktwinkel von mindestens 120 aufweist.
- Färbbares Substrat nach Anspruch 1, wobei die vom Substrat abgewandte Oberfläche der tintenabsorbierenden Schicht einen Bereich mit geringerer scheinbarer Hydrophilizität als die absorbierenden Schicht selbst aufwaist
- Färbbares Substrat nach Anspruch 2, wobei der Bereich scheinbarer Hydrophilizität einen polymeren Modifikator umfaßt.
- 4. Färbbares Substrat nach einem der vorstehenden Ansprüche, wobei die abgewandte Oberfläche einen Bereich von Mikroporen umfaßt.
 - Färbbares Substrat nach Anspruch 4, wobei der mittlere Durchmesser der Mikroporen im Bereich von 0,05 bis 0,5 μm liegt.
- 6. Färbbares Substrat nach einem der Ansprüche 4 oder 5, wobei die Mikroporen 5 bis 30 % des Bereichs der abgewandten Oberfläche besetzen.
 - Färbbares Substrat nach Anspruch 2, wobei der Bereich eine gesonderte Schicht auf der Oberfläche der absorbierenden Schicht umfaßt.
 - 8. Färbbares Substrat nach einem der Ansprüche 3 bis 7, wobei der polymere Modifikator ein erstes Vinylpyrrolidon-Polymer umfaßt.
- 9. Färbbares Substrat nach Anspruch 8, wobei die tintenabsorbierende Schicht ein zweites Vinylpyrrolidon 50
 Polymer mit Molekulargewicht über dem des ersten umfaßt.
 - 10. Färbbares Substrat nach einem der vorhergehenden Ansprüche, wobei die tintenabsorbierende Schicht ein Copolymer von Acrylsäure oder Methacrylsäure umfaßt.
- 11. Verfahren zur Herstellung eines f\u00e4rbbaren Substrats, umfassend die Bereitstellung einer tintenabsorbierenden Harzschicht auf einer Oberfl\u00e4che eines Substrats, gekennzeichnet durch das Auftragen eines modifizierenden Mediums auf die tintenabsorbierende Schicht zur Gewinnung einer tintenabsorbierenden Schicht mit einer Oberfl\u00e4che, so da\u00e4 ein darauf abgeschiedenes w\u00e4\u00e4riges Ethylenglykol-n-methyl-2-pyr-

8

rolidon-Tröpfchen (75:20:5 Gewichtsteile) einen inneren Kontaktwinkel von mindestens 120° aufweist.

Revendications

10

25

30

- 1. Support encrable comprenant un substrat dont une surface porte une couche de résine absorbant l'encre, caractérisé en ce que la surface de la couche absorbante éloignée du substrat est telle qu'une goutte d'eau/éthylène glycol/N-méthyl-2-pyrrolidone (75:20:5 en poids) déposée dessus présente un angle de contact interne d'au moins 120°.
- Support encrable suivant la revendication 1, dans lequel la surface de la couche absorbant l'encre éloignée du substrat présente une zone d'hydrophilicité apparente inférieure à celle de la couche absorbante per se.
- 3. Support encrable suivant la revendication 2, dans lequel la zone d'hydrophilicité apparente comprend un agent modificateur polymère.
 - Support encrable suivant l'une quelconque des revendications précédentes, dans lequel cette surface éloignée comprend un réseau de micropores.
- 5. Support encrable suivant la revendication 4, dans lequel le diamètre moyen des micropores est compris entre 0,05 et 0,5 μm .
 - 6. Support encrable suivant l'une quelconque des revendications 4 ou 5, dans lequel les micropores occupent de 5 à 30% de la surface de cette surface éloignée.
 - 7. Support encrable suivant la revendication 2, dans lequel cette zone comprend une couche discrète sur la surface de la couche absorbante.
 - 8. Support encrable suivant l'une quelconque des revendications 3 à 7, dans lequel l'agent modificateur polymère comprend un premier polymère de vinyl pyrrolidone.
 - Support encrable suivant la revendication 8, dans lequel la couche absorbant l'encre comprend un second polymère de vinyl pyrrolidone dont le poids moléculaire est supérieur à celui du premier.
- 35 10. Support encrable suivant l'une quelconque des revendications précédentes, dans lequel la couche absorbant l'encre comprend un copolymère d'acide acrylique ou d'acide méthacrylique.
- 11. Procédé pour préparer un support encrable comprenant la fourniture d'une couche de résine absorbant l'encre sur une surface d'un substrat, caractérisé par l'application d'un milieu modifiant sur la couche absorbant l'encre de façon à fournir une couche absorbant l'encre ayant une surface telle qu'une goutte d'eau/éthylène glycol/N-méthyl-2-pyrrolidone (75:20:5 en poids) déposée dessus présente un angle de contact interne d'au moins 120°.

55

50

Fig. 2.

Fig. 3.

