Escuela Industrial Superior Pedro Domingo Murillo La Paz – Bolivia

Control y Automatización Industrial II CAI- 500 A I/2025

ESTUDIANTE: CHAMBI NINA ARMANDO JUAN

Laboratorio N° 3.- HARDWARE DE PLC's (PARTE II)

I.- OBJETIVOS.-

- Conocer las principales características del hardware de PLC´s.
- Identificar el tipo de interfaces de salida y entrada en el PLC

II.- FUNDAMENTO TEORICO.-

¿Qué es un PLC?

Un PLC (Controlador Lógico Programable, por sus siglas en inglés: Programmable Logic Controller) es un dispositivo electrónico utilizado en la automatización industrial para controlar máquinas y procesos. Su función principal es recibir señales de sensores y dispositivos de entrada, procesarlas mediante un programa lógico y generar señales de salida para controlar actuadores (motores, válvulas, luces, etc.).

Los PLCs son esenciales en fábricas, plantas industriales y sistemas automatizados porque son más robustos y confiables que las computadoras convencionales en entornos industriales hostiles (polvo, humedad, vibraciones, interferencias electromagnéticas, etc.).

Partes principales de un PLC

Un PLC está compuesto por varios elementos esenciales:

1. Unidad Central de Procesamiento (CPU)

- Procesa las instrucciones del programa de control.
- Ejecuta ciclos de escaneo para leer entradas, procesar la lógica y actualizar salidas.
- o Contiene memoria RAM y ROM.

2. Módulos de Entrada

 Reciben señales de sensores y dispositivos (botones, interruptores, sensores de proximidad, etc.). Pueden ser digitales (ON/OFF) o analógicas (valores continuos como temperatura o presión).

3. Módulos de Salida

- Envía señales para controlar actuadores (motores, relés, válvulas, luces, etc.).
- También pueden ser digitales o analógicas.

4. Memoria

- o RAM: almacena variables temporales y datos en ejecución.
- ROM/EEPROM/FLASH: almacena el programa del usuario y datos permanentes.

5. Interfaz de comunicación

- Permite la comunicación con otros dispositivos, como computadoras, HMI (Human-Machine Interface), SCADA y otros PLCs.
- o Protocolos comunes: Modbus, Profibus, Ethernet/IP, CAN, etc.

6. Fuente de alimentación

 Convierte la energía de la red (110/220V AC o 24V DC) en voltajes adecuados para el funcionamiento del PLC.

Ciclo de escaneo de un PLC

El PLC ejecuta su programa en un ciclo repetitivo llamado ciclo de escaneo (scan cycle), que consta de tres fases:

- Lectura de Entradas: Captura el estado actual de los sensores y dispositivos de entrada.
- 2. **Ejecución del Programa:** Procesa la lógica del usuario en función de las entradas.
- 3. **Actualización de Salidas:** Activa o desactiva los actuadores según la lógica del programa.

El tiempo de escaneo varía dependiendo de la complejidad del programa y del hardware del PLC.

Tipos de PLCs

1. PLCs Compactos:

- Todo en un solo módulo (CPU, entradas/salidas y fuente de alimentación).
- Usados en aplicaciones pequeñas y medianas.
- o Ejemplo: Siemens LOGO!, Allen-Bradley MicroLogix.

2. PLCs Modulares:

- Permiten expandir módulos de entradas/salidas, comunicaciones, etc.
- Más flexibles y potentes.
- Ejemplo: Siemens S7-300/400, Allen-Bradley ControlLogix.

3. PLCs Redundantes:

- Utilizados en aplicaciones críticas donde se necesita alta disponibilidad.
- Tienen sistemas de respaldo para evitar fallos.

4. PLCs Distribuidos:

- Se comunican en redes industriales para controlar procesos en diferentes ubicaciones.
- Usados en grandes industrias con múltiples estaciones de control.

Lenguajes de Programación de los PLCs

Los PLCs se programan según la norma **IEC 61131-3**, que define los siguientes lenguajes:

1. Ladder (LD - Diagrama de escalera):

- Basado en contactos y bobinas, similar a los circuitos de relevadores.
- Muy usado en la industria porque es fácil de entender para electricistas.

2. Texto Estructurado (ST - Structured Text):

- Lenguaje similar a Pascal o C.
- Útil para cálculos matemáticos complejos y estructuras de control avanzadas.

3. Diagrama de Bloques de Función (FBD - Function Block Diagram):

 Usa bloques gráficos para representar funciones lógicas y operaciones matemáticas.

4. Lista de Instrucciones (IL - Instruction List) [Obsoleto]:

 Lenguaje basado en instrucciones de bajo nivel, similar al ensamblador.

5. Diagrama de Función Secuencial (SFC - Sequential Function Chart):

- Basado en pasos y transiciones para representar procesos secuenciales.
- Similar a los diagramas de flujo.

Comunicación en PLCs

Los PLCs pueden comunicarse con otros dispositivos mediante diferentes **protocolos industriales**, entre ellos:

- Modbus (RTU/TCP) → Amplio uso en automatización y control.
- **Profibus/Profinet** → Usado en sistemas Siemens.
- Ethernet/IP → Utilizado por Rockwell Automation y Allen-Bradley.
- **CANopen** → Popular en aplicaciones automotrices e industriales.
- DeviceNet, ControlNet, AS-Interface, BACnet, DNP3, etc.

Los PLCs pueden comunicarse con sistemas **SCADA**, **HMIs**, **sensores**, **actuadores**, **bases de datos y la nube**.

Aplicaciones de los PLCs

Los PLCs se usan en una gran variedad de industrias y procesos:

- Manufactura: Líneas de producción, ensamblaje, control de calidad.
- Automoción: Sistemas de prueba, ensamblaje de vehículos, control de robots.
- Alimentos y bebidas: Embotellado, envasado, control de temperatura.
- Industria química y farmacéutica: Mezcla de productos, dosificación de ingredientes.
- Energía y servicios públicos: Control de subestaciones, generación de energía.
- Petróleo y gas: Monitoreo de tuberías, control de válvulas.
- Agua y saneamiento: Estaciones de bombeo, plantas de tratamiento.
- Edificios inteligentes: Control de iluminación, climatización (HVAC), ascensores.
- **Sistemas de transporte:** Semáforos, aeropuertos, trenes automatizados.

Ventajas y Desventajas de los PLCs

Ventajas:

- ✓ Alta confiabilidad y robustez en entornos industriales.
- Fácil mantenimiento y diagnóstico de fallos.
- Modularidad y escalabilidad.
- Bajo consumo de energía.
- Compatibilidad con diversos sensores y actuadores.
- Seguridad en la operación (con redundancia y protección).

Desventajas:

- X Costo inicial alto en comparación con microcontroladores o PCs industriales.
- X Programación menos flexible que lenguajes de alto nivel como Python o C++.
- ➤ Dependencia de fabricantes específicos (Siemens, Allen-Bradley, Schneider, Omron).

Tendencias y Futuro de los PLCs

- Industria 4.0 e IIoT (Industrial Internet of Things): Los PLCs ahora integran conectividad con la nube, análisis de datos y mantenimiento predictivo.
- Edge Computing en PLCs: Capacidad de procesamiento de datos en tiempo real sin depender de servidores externos.
- PLCs con Inteligencia Artificial y Machine Learning: Predicción de fallos y optimización de procesos.
- Integración con robots colaborativos (Cobots): Automatización avanzada con interacción segura con humanos.
- Sustitución parcial por SoftPLCs y PCs industriales en algunas aplicaciones.

III.- DESARROLLO

En el laboratorio se llevó a cabo la inspección visual de los siguientes PLCs:

- CX-1010 (Beckhoff)
- M221 (Schneider Electric)
- S7-1200 (Siemens)
- LOGO! (Siemens)
- MicroLogix 1200 (Allen-Bradley)

La inspección consistió en identificar cada equipo, registrar el código de módulo correspondiente y analizar sus partes principales sin realizar ninguna prueba de encendido o conexión.

Identificación de equipos y módulos

Se procedió a la identificación visual de cada PLC, observando las etiquetas de fabricante, modelo y número de serie. Además, se identificaron los módulos de expansión presentes en aquellos modelos que permiten ampliación de entradas, salidas o comunicación.

1. **CX-1010** (Beckhoff)

- o Diseño modular y estructura metálica.
- Puertos de comunicación en la parte frontal (Ethernet, USB, CompactFlash).
- o Módulos de expansión laterales para entradas y salidas.
- o Montado sobre riel DIN.
- o Sistema de disipación de calor pasivo.

2. M221 (Schneider Electric)

- o PLC compacto con carcasa plástica.
- o Entradas y salidas integradas en la unidad base.
- o Conector para módulos de expansión en el lateral.
- o Borneras de conexión para cableado de alimentación y señales.
- o Indicadores LED en el frontal.

3. **S7-1200** (Siemens)

- o Diseño modular con unidad base y capacidad de expansión.
- o Módulo de fuente de alimentación integrado.

- o Puertos Ethernet y ranuras para tarjetas de memoria.
- o Borneras de conexión organizadas en la parte inferior.
- o Etiquetas identificando cada tipo de entrada y salida.

4. LOGO! (Siemens)

- o PLC compacto con pantalla integrada.
- o Botones de navegación en el frontal.
- o Entradas y salidas digitales en la unidad principal.
- o Ranura para tarjeta de memoria.
- o Borneras con etiquetas de voltajes y conexiones.

5. MicroLogix 1200 (Allen-Bradley)

- o PLC modular con estructura compacta.
- o Conectores de expansión en los laterales.
- o Borneras de conexión en la parte inferior.
- o Puertos de comunicación en el frontal.
- o Carcasa de plástico con disipadores térmicos.

Análisis de partes principales

Después de la identificación general, se realizó una inspección visual detallada de cada parte del PLC, tomando en cuenta las siguientes características:

Fuente de alimentación y voltajes

- Se identificaron las etiquetas con los requerimientos de voltaje de cada PLC.
- Algunos modelos como el **S7-1200** y el **MicroLogix 1200** permiten diferentes opciones de alimentación (24V DC o 120/230V AC).
- En el **CX-1010**, la fuente es externa y debe conectarse mediante terminales dedicadas.
- Se observaron fusibles y protecciones térmicas en algunos modelos.

Entradas y Salidas (I/O)

- Se identificaron entradas y salidas digitales (ON/OFF) y analógicas (variación de voltaje o corriente).
- Modelos como el **LOGO!** tienen un número fijo de I/O en la unidad principal.
- PLCs modulares como el CX-1010 y el S7-1200 permiten agregar más módulos de I/O según la necesidad.
- Se observaron etiquetas y numeraciones en cada terminal de conexión.

Modularidad y Expansión

- El **CX-1010**, **S7-1200** y **MicroLogix 1200** permiten agregar módulos adicionales para aumentar capacidad.
- El **LOGO!** y el **M221** son más compactos, pero también admiten módulos de expansión limitados.
- Se identificaron conectores específicos en los laterales para la conexión de módulos adicionales.

Puertos de comunicación

- Se inspeccionaron los diferentes puertos de comunicación en cada modelo.
- **CX-1010**: múltiples puertos Ethernet, USB y ranura para memoria CompactFlash.
- S7-1200: puerto Ethernet y ranura para tarjeta de memoria.
- MicroLogix 1200: puerto de comunicación RS-232/RS-485.
- M221: puerto de programación y comunicación Modbus.
- LOGO!: conexión Ethernet en modelos más avanzados.

Indicadores y pantallas

- Se verificaron los indicadores LED de estado en cada PLC.
- El **LOGO!** cuenta con una pantalla integrada y botones de control.
- Los demás modelos solo tienen LEDs para indicar alimentación, errores y estado de entradas/salidas.

Hardware de PLC's (PARTE 2) CHAMBI NINA ARMANDO JUAN Colquencona Puspa Sagio Luque Huanca Bons Alejandro Fecha: 27/02/2025 Estudiantes: ... PLC-5 PLC - 1 BECKHOFF CX-1010 (CODIGO TARJETA) Parametro Compacte modular TIPO MODULAR/COMPACTO INDICADORES DE ENTRADA LED / DISPLAY 8 (EL 1008) NÚMERO DE ENTRADAS DIGITALES 24 400 VOLTAJE DE ENTRADA DIGITALES NÚMERO DE ENTRADA DIGITALES NÚMERO DE ENTRADAS ANALÓGICAS VOLTAJE DE ENTRADA ANALÓGICAS INDICADORES DE SALIDA LED / DISPLAY NÚMERO DE SALIDAS DIGITALES TIPO RELÉ NCINA NÚMERO DE SALIDAS DIGITALES TIPO TRANSISTOR LED T69 10. HA 6 RHUDC VOLTAJE DE SALIDAS DIGITALES NÚMERO DE SALIDAS ANALÓGICAS

120-240MAC

Página | 2

R5232

	Porómate	PLC - 3		PLC-4	
Parámetro		SIEMENS S7-1200	SIEMENS S7-1200 (CODIGO TARJETA)	SIEMENS LOGO	SIEMENS LOGO (CODIGO TARJETA)
TIP	O MODULAR / COMPACTO	Compacto	MCDULO Com.	Compacto	AHZAQ
ENTRADAS	INDICADORES DE ENTRADA LED / DISPLAY	KED	KEO	DISPLAY	DISPLAY
	NÚMERO DE ENTRADAS DIGITALES	8		8	
	VOLTAJE DE ENTRADA DIGITALES	12-24N		12-24 Upc	
	NÚMERO DE ENTRADAS ANALÓGICAS	2	H	4	
	VOLTAJE DE ENTRADA ANALÓGICAS	0-1000	0-10000	040000	0-10000
S	INDICADORES DE SALIDA LED / DISPLAY	んどり	LEP	DISPLAY	DISPLY
	NÚMERO DE SALIDAS DIGITALES TIPO RELÉ NC/NA	-		HNA	
SALIDAS	NÚMERO DE SALIDAS DIGITALES TIPO TRANSISTOR	-6	-		_
SAI	VOLTAJE DE SALIDAS DIGITALES	0,140c 2000c			
	NÚMERO DE SALIDAS ANALÓGICAS	-0	2	2	2
	VOLTAJE DE SALIDAS ANALÓGICAS	0-10 Upc	0-10 voc	0-10 upc	0-10Upc
	/OLTAJE DE FUENTE DE LIMENTACIÓN AC O DC	24 VDC	Z4Vbc	24 Upc	12 Upc - 24 UD.
10.50	OMUNICACIÓN PC S232/ ETHERNET/OTROS	Ethernet		ethernal	

VOLTAJE DE FUENTE DE ALIMENTACIÓN AC O DC COMUNICACIÓN PC RS232/ ETHERNET/OTROS

24 Upc

IV.- CONCLUSIONES

En conclusión, mucha de la información encontrada en internet y en otros manuales que se ponen en bibliografía varía en datos, pero los PLCs que vimos en el laboratorio fueron un poco diferentes. Como este laboratorio fue tan solo de reconocimiento y para obtener conocimiento de los PLCs, se aprendió lo siguiente:

- Arquitectura de PLCs (Autómatas Programables).
- Partes de los PLCs como las memorias, el bus de datos, etc.
- Procesos básicos del PLC, como por ejemplo SCAN.
- Tipos de interfaces en E/S, que en el caso de salidas pueden ser tipo transistor o relé.
- Tipos de PLC (Modular/Compacto).
- LEDs/LCDs dependiendo del tipo de PLC.

V.-BIBLIOGRAFIA

Crouzet Millenium II (SA12) + Cables - Venta automatas

Products - PLC - Programmable Logic Controllers - Delta

https://chatgpt.com/

https://deepseek.com/