

MGSC 310

Stream Prediction Analysis

Aylo Corshen, Karla Carmona, Alex Rea, Samantha Waters

Content

Problem	What is our business use case. Where do we find a need for data analytics in Spotify?
Data Set	What data we used. How we cleaned it.
Exploratory Graphs	Initial insights
Logistic and Lasso Regression	Trying out our data set with these two methods. Comparing if they worked.
Decision Tree and Random Forest	Predicting counted stream
Conclusions	Our results and recommendations

- Our models are designed to help managers and artists determine song characteristics that lead to a listening length of over 30 seconds (a counted stream)
- Benefits:
 - Financial upside
 - Increase success in the eyes of Labels

The Data Set:

Link Here

- <u>counted_stream</u>
- us_popularity_estimate
- acousticness
- beat_stregnth
- danceability
- dyn_range_mean
- energy
- flatness
- instrumentalness
- valence

- key
- liveness
- loudness
- mechanism
- mode
- organism
- speechiness
- tempo
- time_signature
- Duration

LET'S TALK DATA

Summary Statistics

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
duration	167880	215.893	60.224	30.013	183.503	240.8	1787.761
us_popularity_estimate	167880	99.745	0.893	90.019	99.914	99.999	100
acousticness	167880	0.218	0.246	0	0.031	0.337	0.996
beat_strength	167880	0.548	0.159	0	0.434	0.666	0.99
bounciness	167880	0.58	0.179	0	0.452	0.724	0.973
danceability	167880	0.669	0.159	0	0.562	0.787	0.985
dyn_range_mean	167880	9.098	2.54	0	7.225	10.765	32.343
energy	167880	0.627	0.182	0	0.514	0.761	1
flatness	167880	1.008	0.039	0	0.989	1.034	1.103
instrumentalness	167880	0.032	0.143	0	0	0	0.999
key	167880	5.203	3.682	0	1	8	11
liveness	167880	0.19	0.151	0	0.1	0.236	0.996
loudness	167880	-7.05	3.164	-60	-8.232	-5.083	1.634
mechanism	167880	0.597	0.208	0	0.453	0.758	1
mode	167880						
major	103063	61.4%					
minor	64817	38.6%					
organism	167880	0.348	0.189	0	0.205	0.47	0.962
speechiness	167880	0.142	0.133	0	0.045	0.206	0.961
tempo	167880	122.675	29.822	0	97.005	144.073	218.775
time_signature	167880						
0	39	0%					
1	1017	0.6%					
3	7546	4.5%					
4	157101	93.6%					
5	2177	1.3%					
valence	167880	0.459	0.229	0	0.28	0.626	1
counted_stream	167880						
0	3146	1.9%					
1	164734	98.1%					

Exploratory Data Analysis

Major Vs. Minor in Counted/Not-Counted Streams

Data Cleaning

```
#Merging song and user data sets together
songs <- merge(track_features, session logs, by="track id")</pre>
#omitting any NA value rows just in case
songs_clean <- na.omit(songs)</pre>
colSums(is.na(songs clean))
#turning variable into binary session
songs clean <- songs clean %>%
 mutate(skip_1 = ifelse(skip_1 == "TRUE", 1,0),
          skip_2 = ifelse(skip_2 == "TRUE", 1,0),
          skip_3 = ifelse(skip_3 == "TRUE", 1,0),
          not skipped = ifelse(not skipped == "TRUE", 1,0))
#creating stream counted variable
songs_clean$stream_counted <- ifelse((songs_clean$skip_3 == 1 |</pre>
songs_clean$not_skipped == 1), 1, 0)
```

- Merging datasets
 - song dataset song characteristics
 - user dataset user session characteristics
- removing NA values
- converting to binary
- creating variable determining whether the song was skipped or no ("stream_counted")

Data Cleaning Cont.

- Class imbalance
- Extremely overtrained
- Deceitful models
- Resampling solution

Undersampling

```
table(songs_clean$counted_stream)

[1] "factor"

0 1
3146 164734
```

- There are 3146 total observations
- Created a sample from our data that undersamples our total data frame
- New total of 6292 observations

```
under <- ovun.sample(counted_stream ~ . , data = songs_clean, method = "under", N = 6292)$data
table(under$counted_stream)

1  0
3146 3146</pre>
```

Logistic Regression

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-7.0020038	197.0052229	-0.036	0.971647	
duration	-0.0035284	0.0005573	-6.331	0.000000000244	***
us_popularity_estimate	-0.0738231	0.0334985	-2.204	0.027540	*
acousticness	0.4264435	0.4943988	0.863	0.388385	
beat_strength	4.4317751	1.1527953	3.844	0.000121	***
bounciness	-2.3352897	1.4572264	-1.603	0.109032	
danceability	0.2978882	0.5211672	0.572	0.567607	
dyn_range_mean	-0.0621063	0.0519757	-1.195	0.232122	
energy	0.6118638	0.3601259	1.699	0.089314	
flatness	2.6746740	1.4345547	1.864	0.062257	
instrumentalness	-0.4318761	0.2433486	-1.775	0.075944	
key	0.0000261	0.0083984	0.003	0.997521	
liveness	0.3986247	0.2112599	1.887	0.059175	
loudness	-0.0488163	0.0151427	-3.224	0.001265	**
mechanism	-1.9637104	0.7548990	-2.601	0.009287	**
modeminor	-0.0769325	0.0641281	-1.200	0.230268	
organism	-1.5565586	1.1693703	-1.331	0.183153	
speechiness	-0.6628714	0.3266690	-2.029	0.042440	*
tempo	0.0058844	0.0014245	4.131	0.000036116319	***
time_signature1	12.3710457	196.9729597	0.063	0.949921	
time_signature3	11.6267741	196.9724747	0.059	0.952930	
time_signature4	11.7430807	196.9724728	0.060	0.952460	
time_signature5	11.5683536	196.9727077	0.059	0.953167	
valence	0.3933686	0.1634770	2.406	0.016117	*

Exponentiating Odds

(Intercept)	duration	us_popularity_estimate	acousticness
0.0009100566	0.9964778473	0.9288359817	1.5317999997
beat_strength	bounciness	danceability	dyn_range_mean
84.0805392288	0.0967824379	1.3470112188	0.9397830241
energy	flatness	instrumentalness	key
1.8438647789	14.5076200290	0.6492898153	1.0000260957
liveness	loudness	mechanism	modeminor
1.4897744657	0.9523560771	0.1403367525	0.9259523552
organism	speechiness	tempo	time_signature1
0.2108604792	0.5153693682	1.0059017759	235872.2588995966
time_signature3	time_signature4	time_signature5	valence
112058.2505202505	125879.5379400867	105699.3099984378	1.4819645055

- A 1 unit increase (1 second) in duration will lead to a .4% decrease in the likelihood of a stream counting
- A 1 unit increase in tempo (1 bpm) will increase the likelihood of a stream being counted by .5%

Visualizing Odds

ROC plot training and testing

AUC <dbl>
0.5975678

LASSO

23 23 21 21 19 19 19 19 17 17 16 14 13 9 8 6 5 2 1 1 0

LASSO

			Exp.
		s1	s1
	(Intercept)	3.034	20.7801873
	duration	-0.002	0.9980020
	us_popularity_estimate	-0.034	0.9665715
→	acousticness		1.0000000
	beat_strength	0.445	1.5604902
→	bounciness		1.0000000
→	danceability	·	1.0000000
	dyn_range_mean		1.0000000
→	energy		1.0000000
	flatness	0.275	1.3165307
	instrumentalness	-0.180	0.8352702
→	key		1.0000000
	liveness		1.0000000
	loudness	-0.015	0.9851119
	mechanism	-0.175	0.8394570
	modemajor	0.095	1.0996589
	modeminor	0.000	1.0000000
	organism		1.0000000
	speechiness	-0.145	0.8650223
	tempo	0.000	1.0000000
	time_signature0		1.0000000
→	time_signature1		1.0000000
→	time_signature3		1.0000000
	time_signature4	0.070	1.0725082
	time_signature5	-0.254	0.7756918
	valence	0.245	1.2776213

LASSO - ROC Plot

Decision Tree

Decision Tree Model Accuracy

Pruned Tree

pruned \leftarrow prune(mod_rpart, cp = 0.0038477982)

Original Tree

Test

Train

Using a Random Forest (Thought Process)

- Hyperparameter Tuning
 - Appropriate number of variables to sample from
 - Appropriate number of trees
- Random Forest using complete data vs. Random Forest using sample
- Accuracy Comparison
- Interpretability

Hyperparameter Tuning

 Finding the correct number of variables to sample from

What amount of trees should we use?

Using a Random Forest to Predict a Stream (OOB)

 Random Forest without undersampling

```
Error: vector memory exhausted (limit reached?)
```

Random Forest with undersampling

Random Forest Confusion Matrix

```
Confusion Matrix and Statistics
        Reference
Prediction
           24 104
           814 41028
             Accuracy : 0.9781
              95% CI: (0.9767, 0.9795)
   No Information Rate: 0.98
   P-Value [Acc > NIR] : 0.9972
               Kappa : 0.0446
Sensitivity: 0.99747
          Specificity: 0.02864
       Pos Pred Value: 0.98055
       Neg Pred Value : 0.18750
           Prevalence: 0.98003
       Detection Rate: 0.97756
  Detection Prevalence: 0.99695
     Balanced Accuracy: 0.51306
      'Positive' Class : 1
```

 Random Forest without undersampling

```
Confusion Matrix and Statistics
         Reference
Prediction
        0 595 13518
        1 159 27698
              Accuracy : 0.6741
                95% CI: (0.6696, 0.6786)
   No Information Rate: 0.982
   P-Value [Acc > NIR] : 1
                 Kappa : 0.0476
 Mcnemar's Test P-Value : <0.00000000000000002
           Sensitivity: 0.67202
           Specificity: 0.78912
        Pos Pred Value: 0.99429
        Neg Pred Value: 0.04216
            Prevalence: 0.98203
        Detection Rate: 0.65995
   Detection Prevalence: 0.66374
     Balanced Accuracy: 0.73057
       'Positive' Class: 1
```

 Random Forest using undersampling

Random Forest Interpretability

- While we saw a 67.41% accuracy rate with our random forest, we wouldn't recommend it for business application yet.
- The success of a track most likely has many more variables than we have available
 - ex: Different genres have different expectations on tempo, danceability, ect
 - making a one size fits all model for music is not advisable
- If we where to continue we would love to get a hold of data with more variables such as genre to make models that are more specific to an artist style.

Thank you!

https://github.com/a-rea/mgsc310FinalProject

