#### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

## НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра информатики и систем управления

### ОТЧЕТ

по лабораторной работе №1

по дисциплине

#### Предиктивная аналитика

| РУКОВОДИТЕЛЬ:      |                  |
|--------------------|------------------|
|                    | Санников А.Н.    |
| (подпись)          | (фамилия, и.,о.) |
| СТУДЕНТ:           |                  |
|                    | Напылов Е.И.     |
| (подпись)          | (фамилия, и.,о.) |
|                    | _М22-ИВТ-1       |
|                    | (шифр группы)    |
| Работа защищена «» |                  |
| Coveran            |                  |

# Содержание

| Содержание                   | 2 |
|------------------------------|---|
| 1. Постановка задачи         | 3 |
| 2. Метод опорных векторов    | 4 |
| 3. Данные и их обработка     | 5 |
| 4. Обучение SVM и результаты | 5 |
| 5. Выводы                    | 8 |

### 1. Постановка задачи

В данной работе требуется решить задачу классификации с помощью метода опорных векторов.

Был выбран датасет, содержащий данные о сетевых взаимодействиях. Требуется определить является ли взаимодействие опасным или безопасным по большому числу признаков трафика. Датасет содержит более 170000 объектов и 84 признака: IP, порты, размеры пакетов, скорости и т.п. Классы: Trojan - вирус и Benign - не вирус.

Список некоторых признаков из датасета:

| 0 El E                              | 155400                           |
|-------------------------------------|----------------------------------|
| 0 FlowID                            | 177482 non-null object           |
| 1 SourceIP                          | 177482 non-null object           |
| 2 SourcePort                        | 177482 non-null int64            |
| 3 DestinationIP                     | 177482 non-null object           |
| 4 DestinationPort                   | 177482 non-null int64            |
| 5 Protocol                          | 177482 non-null int64            |
| 6 Timestamp                         | 177482 non-null object           |
| 7 FlowDuration                      | 177482 non-null int64            |
| 8 TotalFwdPackets                   | 177482 non-null int64            |
| 9 TotalBackwardPac                  | ckets 177482 non-null int64      |
| 10 TotalLengthofFw                  | dPackets 177482 non-null float64 |
| 11 TotalLengthofBw                  | dPackets 177482 non-null float64 |
| 12 FwdPacketLengtl                  | hMax 177482 non-null float64     |
| 13 FwdPacketLengtl                  | hMin 177482 non-null float64     |
| 14 FwdPacketLengtl                  | hMean 177482 non-null float64    |
| 15 FwdPacketLengtl                  | hStd 177482 non-null float64     |
| 16 BwdPacketLengtl                  |                                  |
| 17 BwdPacketLengt                   |                                  |
| 18 BwdPacketLengt                   |                                  |
| 19 BwdPacketLengt                   |                                  |
| 20 FlowBytes/s                      | 177482 non-null float64          |
| 21 FlowPackets/s                    | 177482 non-null float64          |
| 22 FlowIATMean                      | 177482 non-null float64          |
| 23 FlowIATStd                       | 177482 non-null float64          |
| 24 FlowIATMax                       | 177482 non-null float64          |
| 25 FlowIATMin                       | 177482 non-null float64          |
| 26 FwdIATTotal                      | 177482 non-null float64          |
| 27 FwdIATMean                       | 177482 non-null float64          |
| 28 FwdIATStd                        | 177482 non-null float64          |
| 29 FwdIATMax                        | 177482 non-null float64          |
| 30 FwdIATMin                        | 177482 non-null float64          |
| · · · · · · · · · · · · · · · · · · |                                  |

### 2. Метод опорных векторов

Метод опорных векторов (Support Vector Machine, SVM) - это алгоритм машинного обучения, который используется для классификации и регрессии. Он относится к группе методов, называемых линейными классификаторами, которые строят гиперплоскость для разделения данных разных классов. Суть метода заключается в том, чтобы найти гиперплоскость, которая максимально разделяет данные разных классов. Ширина полосы разделения максимизируется. Гиперплоскость - это п-мерная поверхность, где п - число признаков в нашем наборе данных. В случае двух классов, гиперплоскость является линией, которая разделяет два класса. SVM является мощным и гибким алгоритмом, который может быть применен в различных задачах машинного обучения. Однако, он также может быть чувствителен к выбору параметров и ядерной функции, и может иметь проблемы в случае несбалансированных классов.



В математической форме это выглядит так:

$$\left\{egin{aligned} \|\mathbf{w}\|^2 &
ightarrow \min \ c_i(\mathbf{w}\cdot\mathbf{x_i}-b) \geq 1, \quad 1 \leq i \leq n. \end{aligned}
ight.$$

По теореме ККТ эта задача эквивалентна двойственной задаче поиска седловой точки функции Лагранжа:

$$\begin{cases} \mathbf{L}(\mathbf{w}, \mathbf{b}; \lambda) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \lambda_{\mathbf{i}} (c_i((\mathbf{w} \cdot \mathbf{x_i}) - b) - 1) \to \min_{w, b} \max_{\lambda} \\ \lambda_{\mathbf{i}} \geq 0, \quad 1 \leq i \leq n \end{cases}$$
  $\lambda = (\lambda_1, \dots, \lambda_n)$  — вектор двойственных переменных.

Затем задача сводится к задаче квадратичного программирования:

$$egin{cases} -\mathbf{L}(\lambda) = -\sum_{i=1}^n \lambda_{\mathbf{i}} + rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_{\mathbf{i}} \lambda_{\mathbf{j}} c_i c_j (\mathbf{x_i} \cdot \mathbf{x_j}) 
ightarrow \min_{\lambda} \ \lambda_{\mathbf{i}} \geq 0, \quad 1 \leq i \leq n \ \sum_{i=1}^n \lambda_{\mathbf{i}} c_i = 0 \end{cases}$$

$$\mathbf{w} = \sum_{i=1}^n \lambda_{\mathbf{i}} c_i \mathbf{x_i}$$
  $\mathbf{b} = \mathbf{w} \cdot \mathbf{x_i} - c_i, \quad \lambda_i > 0$ 

$$a(x) = sign\left(\sum_{i=1}^n \lambda_{\mathbf{i}} c_i \mathbf{x_i} \cdot \mathbf{x} - b
ight)$$

## 3. Данные и их обработка

Датасет содержит 85 различных признаков, такие как IP, порт, размер пакета, число пакетов, скорость соединения и т.д. Классами являются метки Trojan - вирус и Benign - не вирус. Датасет содержит более 170 000 записей сетевых взаимодействий.

|    | FlowDuration | Timestamp          | Protocol | DestinationPort | DestinationIP | SourcePort | SourcelP    | FlowID                                |        |
|----|--------------|--------------------|----------|-----------------|---------------|------------|-------------|---------------------------------------|--------|
| 84 | 10743584     | 17/07/201701:18:33 | 6        | 80              | 121.14.255.84 | 49975      | 10.42.0.42  | 10.42.0.42-121.14.255.84-49975-80-6   | 73217  |
| 17 | 254217       | 17/07/201710:25:25 | 17       | 443             | 172.217.6.226 | 49169      | 10.42.0.42  | 172.217.6.226-10.42.0.42-443-49169-17 | 72089  |
| 44 | 1023244      | 30/06/201707:16:12 | 17       | 53              | 10.42.0.1     | 37749      | 10.42.0.42  | 10.42.0.1-10.42.0.42-53-37749-17      | 96676  |
| 83 | 286483       | 13/07/201703:48:44 | 17       | 53              | 10.42.0.1     | 41352      | 10.42.0.42  | 10.42.0.1-10.42.0.42-53-41352-17      | 42891  |
| 87 | 65633087     | 05/07/201710:47:35 | 6        | 443             | 107.22.241.77 | 44353      | 10.42.0.151 | 10.42.0.151-107.22.241.77-44353-443-6 | 169326 |
| )8 | 656330       | 05/07/201710:47:35 | 6        | 443             | 107.22.241.77 | 44353      | 10.42.0.151 | 10.42.0.151-107.22.241.77-44353-443-6 |        |

#### Диаграммы рассеивания наиболее интересных признаков:



### Классы сбалансированы:



Текстовые данные (['FlowID', 'SourceIP', 'DestinationIP', 'Timestamp', 'Class']) были закодированы в числа с помощью sklearn.preprocessing.LabelEncoder.

Метки классов закодированы 0 и 1.

```
data.at[data['Class'] == 'Trojan', 'Class'] = 1
data.at[data['Class'] == 'Benign', 'Class'] = 0
```

В результате после всей обработки датасет выглядит так:

|          | FlowID    | SourcelP  | SourcePort | DestinationIP | DestinationPort | Protocol  | Timestamp | FlowDuration | TotalFwdPackets | TotalBackwardPackets | <br>min_ |
|----------|-----------|-----------|------------|---------------|-----------------|-----------|-----------|--------------|-----------------|----------------------|----------|
| 73217    | -0.254680 | -0.301850 | 0.615199   | -0.551040     | -0.374989       | -0.505653 | 1.285073  | -0.038628    | -0.092527       | -0.055528            |          |
| 72089    | 0.846469  | -0.301850 | 0.571479   | 0.048341      | -0.351038       | 1.916987  | 1.531425  | -0.494133    | -0.025086       | -0.027333            |          |
| 96676    | -1.665593 | -0.301850 | -0.047966  | -0.931863     | -0.376771       | 1.916987  | 1.765842  | -0.460738    | -0.193688       | -0.083723            |          |
| 42891    | -1.619663 | -0.301850 | 0.147468   | -0.931863     | -0.376771       | 1.916987  | 0.755896  | -0.492732    | -0.193688       | -0.083723            |          |
| 169326   | -1.224047 | -0.307994 | 0.310249   | -0.696746     | -0.351038       | -0.505653 | -0.346225 | 2.344973     | 0.177238        | 0.000862             |          |
| 5 rows × | 85 column | s         |            |               |                 |           |           |              |                 |                      |          |
| <        |           |           |            |               |                 |           |           |              |                 |                      | >        |

## 4. Обучение SVM и результаты

Данные были поделены на обучающую и тестовую выборки в соотношении 70 на 30.

```
X = data.drop('Class', axis = 1).to_numpy()
y = np.array(data['Class'], dtype='int')

X.shape, y.shape
((177482, 84), (177482,))

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)

y_train.shape, y_test.shape
((124237,), (53245,))
```

Модель достаточно долго обучалась, возможно, это проблема sklearn-a.

```
%%time
model = svm.SVC(verbose=True)
Wall time: 0 ns

%%time
model.fit(X_train, y_train)
[LibSVM]Wall time: 10min 42s
SVC(verbose=True)
```

#### Результаты на обучающей выборке:

|                                       | precision    | recall       | f1-score             | support                    |
|---------------------------------------|--------------|--------------|----------------------|----------------------------|
| 0<br>1                                | 0.97<br>0.93 | 0.93<br>0.98 | 0.95<br>0.95         | 60725<br>63512             |
| accuracy<br>macro avg<br>weighted avg | 0.95<br>0.95 | 0.95<br>0.95 | 0.95<br>0.95<br>0.95 | 124237<br>124237<br>124237 |

#### Результаты на тестовой выборке:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.97      | 0.92   | 0.95     | 26074   |
| 1            | 0.93      | 0.97   | 0.95     | 27171   |
| accuracy     |           |        | 0.95     | 53245   |
| macro avg    | 0.95      | 0.95   | 0.95     | 53245   |
| weighted avg | 0.95      | 0.95   | 0.95     | 53245   |

Точность достигла значения 0.95, что является очень хорошим результатом. При этом на обучающей и тестовой выборке точность идентична, что является идеальным результатом - отсутствует недообучение и переобучение.

### 5. Выводы

В результате работы была решена задача бинарной классификации сетевого трафика на безопасный и вирусный по большому число признаков. Для этого была проведена предобработка данных - кодирование текстовых признаков и последующая нормализация всего датасета. Для классификации был использован метод опорных векторов, который показал отличные результаты - точность 0.95. При этом удалось получить идеальное поведение на тестовой и обучающей выборке, при которой точность оказалась идентичной, что говорит о полном отсутствии переобучения и недообучения.