

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Minimale Spannbäume

- Gegeben: Gewichteter, ungerichteter, zusammenhängender Graph G = (V, E)
- Gesucht: Ein aufspannender Baum mit minimalem Gewicht (Summe der Kantengewichte des Baums)
- Aufspannender Baum: Inklusionsmaximaler kreisfreier Teilgraph mit Knotenmenge V

Minimale Spannbäume

- Gegeben: Gewichteter, ungerichteter, zusammenhängender Graph G = (V, E)
- Gesucht: Ein aufspannender Baum mit minimalem Gewicht (Summe der Kantengewichte des Baums)
- Aufspannender Baum: Inklusionsmaximaler kreisfreier Teilgraph mit Knotenmenge V

Berechnung von minimalen Spannbäumen

- Gieriger Algorithmus
- Invariante: Menge A von Kanten, die immer Untermenge eines minimalen Spannbaums ist
- Algorithmus: Finde Kante, die zu A hinzugefügt werden kann, ohne dass Invariante verletzt wird

Definition

Eine Kante, die zu A hinzugefügt werden kann, ohne die Invariante zu verletzen, heißt sicher.

GenerischerMSTAlgorithmus(*G*)

- 1. $A \leftarrow \emptyset$
- 2. while A ist kein minimaler Spannbaum do
- 3. finde Kante (u, v), die sicher für A ist
- $4. \qquad A \leftarrow A \cup \{(u,v)\}$
- 5. return A

GenerischerMSTAlgorithmus(*G*)

Wie findet man eine sichere Kante?

- 1. $A \leftarrow \emptyset$
- 2. **while** *A* ist kein minimaler Spann do
- 3. finde Kante (u, v), die sicher für A ist
- $4. \qquad A \leftarrow A \cup \{(u,v)\}$
- 5. return A

Definition

- Ein Schnitt (S, V S) in einem ungerichteten Graph G = (V, E) ist eine Partition von V.
- Eine Kante $(u, v) \in E$ kreuzt den Schnitt (S, V S), wenn $u \in S$ und $v \in V S$ liegt.

Definition

- Ein Schnitt (S, V S) in einem ungerichteten Graph G = (V, E) ist eine Partition von V.
- Eine Kante $(u, v) \in E$ kreuzt den Schnitt (S, V S), wenn $u \in S$ und $v \in V S$ liegt.

Definition

 Ein Schnitt respektiert eine Menge A von Kanten, wenn keine der Kanten den Schnitt kreuzt.

Beispiel:

Der Schnitt respektiert die gestrichelten Kanten.

Definition

 Ein Schnitt respektiert eine Menge A von Kanten, wenn keine der Kanten den Schnitt kreuzt.

> Zweites Beispiel: Der Schnitt respektiert die gestrichelten Kanten nicht.

Definition

 Eine Kante, die einen Schnitt kreuzt, heißt leicht, wenn sie minimales Gewicht unter allen Kanten hat, die den Schnitt kreuzen.

Definition

 Eine Kante, die einen Schnitt kreuzt, heißt leicht, wenn sie minimales Gewicht unter allen Kanten hat, die den Schnitt kreuzen.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Ein Schnitt, der *A* respektiert.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Ein Schnitt, der *A* respektiert.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Ein Schnitt, der *A* respektiert.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Beweis

• Für einen Baum T bezeichne $w(T) = \sum_{e \in T} w(e)$ sein Gewicht

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Für einen Baum T bezeichne $w(T) = \sum_{e \in T} w(e)$ sein Gewicht
- Sei T min. Spannbaum, der A enthält

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Für einen Baum T bezeichne $w(T) = \sum_{e \in T} w(e)$ sein Gewicht
- Sei T min. Spannbaum, der A enthält
- Annahme: Sei (S, V S) ein Schnitt wie im Satz und sei (u, v) eine leichte Kante, die den Schnitt kreuzt

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Für einen Baum T bezeichne $w(T) = \sum_{e \in T} w(e)$ sein Gewicht
- Sei T min. Spannbaum, der A enthält
- Annahme: Sei (S, V S) ein Schnitt wie im Satz und sei (u, v) eine leichte Kante, die den Schnitt kreuzt
- Wir konstruieren min. Spannbaum T', der A und (u, v) enthält

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Für einen Baum T bezeichne $w(T) = \sum_{e \in T} w(e)$ sein Gewicht
- Sei T min. Spannbaum, der A enthält
- Annahme: Sei (S, V S) ein Schnitt wie im Satz und sei (u, v) eine leichte Kante, die den Schnitt kreuzt
- Wir konstruieren min. Spannbaum T', der A und (u, v) enthält
- Wenn (u, v) in T ist, so sind wir fertig

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Für einen Baum T bezeichne $w(T) = \sum_{e \in T} w(e)$ sein Gewicht
- Sei T min. Spannbaum, der A enthält
- Annahme: Sei (S, V S) ein Schnitt wie im Satz und sei (u, v) eine leichte Kante, die den Schnitt kreuzt
- Wir konstruieren min. Spannbaum T', der A und (u, v) enthält
- Wenn (u, v) in T ist, so sind wir fertig

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Beweis

• Ansonsten: Kante (u, v) bildet Kreis mit Pfad p von u nach v in T

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Ansonsten: Kante (u, v) bildet Kreis mit Pfad p von u nach v in T
- Da u und v auf gegenüberliegenden Seiten des Schnitts (S, V S) liegen, gibt es mind. eine Kante aus p, die auch den Schnitt kreuzt

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Ansonsten: Kante (u, v) bildet Kreis mit Pfad p von u nach v in T
- Da u und v auf gegenüberliegenden Seiten des Schnitts (S, V S) liegen, gibt es mind. eine Kante aus p, die auch den Schnitt kreuzt
- Sei (x, y) eine solche Kante

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Ansonsten: Kante (u, v) bildet Kreis mit Pfad p von u nach v in T
- Da u und v auf gegenüberliegenden Seiten des Schnitts (S, V S) liegen, gibt es mind. eine Kante aus p, die auch den Schnitt kreuzt
- Sei (x, y) eine solche Kante
- (x, y) ist nicht in A, da der Schnitt A respektiert

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Ansonsten: Kante (u, v) bildet Kreis mit Pfad p von u nach v in T
- Da u und v auf gegenüberliegenden Seiten des Schnitts (S, V S) liegen, gibt es mind. eine Kante aus p, die auch den Schnitt kreuzt
- Sei (x, y) eine solche Kante
- (x, y) ist nicht in A, da der Schnitt A respektiert
- Da (x, y) auf dem eindeutig bestimmten Pfad von u nach v in T ist, wird T durch Entfernen von (x, y) in zwei Komponenten aufgeteilt.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Ansonsten: Kante (u, v) bildet Kreis mit Pfad p von u nach v in T
- Da u und v auf gegenüberliegenden Seiten des Schnitts (S, V S) liegen, gibt es mind. eine Kante aus p, die auch den Schnitt kreuzt
- Sei (x, y) eine solche Kante
- (x, y) ist nicht in A, da der Schnitt A respektiert
- Da (x, y) auf dem eindeutig bestimmten Pfad von u nach v in T ist, wird T durch Entfernen von (x, y) in zwei Komponenten aufgeteilt.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Beweis

• Hinzunahme von (u, v) verbindet diese Komponenten wieder (da Pfad p und (u, v) einen Kreis bilden)

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Hinzunahme von (u, v) verbindet diese Komponenten wieder (da Pfad p und (u, v) einen Kreis bilden)
- Definiere: $T' = T \{(x, y)\} \cup \{(u, v)\}$

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Hinzunahme von (u, v) verbindet diese Komponenten wieder (da Pfad p und (u, v) einen Kreis bilden)
- Definiere: $T' = T \{(x, y)\} \cup \{(u, v)\}$
- Wir zeigen, dass T' min. Spannbaum ist

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Hinzunahme von (u, v) verbindet diese Komponenten wieder (da Pfad p und (u, v) einen Kreis bilden)
- Definiere: $T' = T \{(x, y)\} \cup \{(u, v)\}$
- Wir zeigen, dass T' min. Spannbaum ist
- T' ist ein Spannbaum, da T' nach Konstruktion kreisfrei ist und T genauso viele Kanten wie der Spannbaum T hat

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Hinzunahme von (u, v) verbindet diese Komponenten wieder (da Pfad p und (u, v) einen Kreis bilden)
- Definiere: $T' = T \{(x, y)\} \cup \{(u, v)\}$
- Wir zeigen, dass T' min. Spannbaum ist
- T' ist ein Spannbaum, da T' nach Konstruktion kreisfrei ist und T genauso viele Kanten wie der Spannbaum T hat

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Beweis

■ Da (u, v) leichte Kante ist, die (S, V - S) kreuzt und (x, y) ebenfalls (S, V - S) kreuzt, gilt $w(u, v) \le w(x, y)$. Daher

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Da (u, v) leichte Kante ist, die (S, V S) kreuzt und (x, y) ebenfalls (S, V S) kreuzt, gilt $w(u, v) \le w(x, y)$. Daher
- $w(T') = w(T) w(x, y) + w(u, v) \le w(T)$

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Da (u, v) leichte Kante ist, die (S, V S) kreuzt und (x, y) ebenfalls (S, V S) kreuzt, gilt $w(u, v) \le w(x, y)$. Daher
- $w(T') = w(T) w(x, y) + w(u, v) \le w(T)$
- T ist aber min. Spannbaum und somit gilt $w(T) \le w(T')$

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Da (u, v) leichte Kante ist, die (S, V S) kreuzt und (x, y) ebenfalls (S, V S) kreuzt, gilt $w(u, v) \le w(x, y)$. Daher
- $w(T') = w(T) w(x, y) + w(u, v) \le w(T)$
- T ist aber min. Spannbaum und somit gilt $w(T) \le w(T')$
- Daher muss T' ebenfalls min. Spannbaum sein

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Da (u, v) leichte Kante ist, die (S, V S) kreuzt und (x, y) ebenfalls (S, V S) kreuzt, gilt $w(u, v) \le w(x, y)$. Daher
- $w(T') = w(T) w(x, y) + w(u, v) \le w(T)$
- T ist aber min. Spannbaum und somit gilt $w(T) \le w(T')$
- Daher muss T' ebenfalls min. Spannbaum sein

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

Beweis

Es bleibt zu zeigen, dass (u, v) sicher für A ist.

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Es bleibt zu zeigen, dass (u, v) sicher für A ist.
- Dies folgt direkt aus $A \subseteq T'$, da $A \subseteq T$, $(x,y) \notin A$ (weil (x,y) den Schnitt kreuzt und der Schnitt A respektiert) und $(u,v) \in T'$ und weil T' min. Spannbaum ist

Satz 69

Sei G = (V, E) ein zusammenhängender, ungerichteter und gewichteter Graph. Sei $A \subseteq E$ Teilmenge eines minimalen Spannbaums von G ist. Sei (S, V - S) ein Schnitt von G, der A respektiert und sei (u, v) eine leichte Kanten, die diesen Schnitt kreuzt. Dann ist (u, v) sicher für A.

- Es bleibt zu zeigen, dass (u, v) sicher für A ist.
- Dies folgt direkt aus $A \subseteq T'$, da $A \subseteq T$, $(x,y) \notin A$ (weil (x,y) den Schnitt kreuzt und der Schnitt A respektiert) und $(u,v) \in T'$ und weil T' min. Spannbaum ist

Korollar 70

Sei G = (V, E) ein zusammenhängender, ungerichteter, gewichteter Graph. Sei A eine Teilmenge von E, die in einem minimalen Spannbaum von G enthalten ist und sei C eine Zusammenhangskomponente (Baum) im Wald H = (V, A). Wenn (u, v) eine leichte Kante ist, die C mit einer anderen Zusammenhangskomponente in H verbindet, dann ist (u, v) sicher für A.

Korollar 70

Sei G = (V, E) ein zusammenhängender, ungerichteter, gewichteter Graph. Sei A eine Teilmenge von E, die in einem minimalen Spannbaum von G enthalten ist und sei C eine Zusammenhangskomponente (Baum) im Wald H = (V, A). Wenn (u, v) eine leichte Kante ist, die C mit einer anderen Zusammenhangskomponente in H verbindet, dann ist (u, v) sicher für A.

Wald H und Komponente C.

Korollar 70

Sei G = (V, E) ein zusammenhängender, ungerichteter, gewichteter Graph. Sei A eine Teilmenge von E, die in einem minimalen Spannbaum von G enthalten ist und sei C eine Zusammenhangskomponente (Baum) im Wald H = (V, A). Wenn (u, v) eine leichte Kante ist, die C mit einer anderen Zusammenhangskomponente in H verbindet, dann ist (u, v) sicher für A.

Kanten, die *C* verbinden.

Korollar 70

Sei G = (V, E) ein zusammenhängender, ungerichteter, gewichteter Graph. Sei A eine Teilmenge von E, die in einem minimalen Spannbaum von G enthalten ist und sei C eine Zusammenhangskomponente (Baum) im Wald H = (V, A). Wenn (u, v) eine leichte Kante ist, die C mit einer anderen Zusammenhangskomponente in H verbindet, dann ist (u, v) sicher für A.

Leichte Kante ist sicher.

Korollar 70

Sei G = (V, E) ein zusammenhängender, ungerichteter, gewichteter Graph. Sei A eine Teilmenge von E, die in einem minimalen Spannbaum von G enthalten ist und sei C eine Zusammenhangskomponente (Baum) im Wald H = (V, A). Wenn (u, v) eine leichte Kante ist, die C mit einer anderen Zusammenhangskomponente in H verbindet, dann ist (u, v) sicher für A.

Beweis

Der Schnitt (C, V - C) respektiert A und (u, v) ist leichte Kante für diesen Schnitt. Damit folgt das Korollar aus dem vorherigen Satz.

Idee des Algorithmus von Kruskal

- Verwende generischen Algorithmus
- Nimm immer die Kante mit geringstem Gewicht, die zwei Bäume im aktuellen aufspannenden Wald verbindet, und füge diese zu A hinzu
- Seien C und D diese beiden Bäume
- Die Kante ist eine leichte Kante, die C mit einem anderen Baum verbindet
- Damit ist sie sicher f

 ür A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- 5. $A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

Laufzeit:

 $\mathbf{O}(|E|\log|E| + |E| \cdot \text{"Zeit für Zeile 4"})$

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

Wie kann man Zeile 4 implementieren?

Laufzeit:

 $\mathbf{O}(|E|\log|E| + |E| \cdot \text{"Zeit für Zeile 4"})$

- 2. so : Namen nach Gewicht
- 3. **for e.** $h(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u, v)\}$
- 6. return A

- 1. $A \leftarrow \emptyset$
- 2. Sortiere Kanten nach Gewicht
- 3. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 4. **if** u und v sind nicht in der selben Zusammenhangskomponente in Graph H = (V, A) **then**
- $5. \qquad A \leftarrow A \cup \{(u,v)\}$
- 6. return A

Union-Find Datenstrukturen

- Familie von *disjunkten* Mengen $S = \{S_1, ..., S_k\}$
- Für jede Menge gibt es einen Repräsentanten
- Make-Set(x): Erzeuge neue Menge, die nur x enthält
- Union(x,y): Vereinigung der Mengen, die x bzw. y enthalten
- Find(x): Gibt Referenz auf den Repräsentanten der Menge, die x enthält

Idee

Disjunkte Mengen bei Union-Find sind Knoten des Graphen bei Kruskal

Im Beispiel:
{a}, {b,c,d,e}, {f,g}

- 1. $A \leftarrow \emptyset$
- 2. **for each** vertex $v \in V$ **do** Make-Set(v)
- 3. Sortiere Kanten nach Gewicht
- **4. for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 5. **if** Find(u) \neq Find(v) **then**
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. Union(u, v)
- 8. return A

Zu Beginn ist jeder Knoten eine Zusammenhangskomponente in H = (V, A)

- 1. $A \leftarrow \emptyset$
- 2. **for each** vertex $v \in V$ **do** Make-Set(v)
- 3. Sortiere Kanten nach Gewicht
- **4**. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 5. **if** Find(u) \neq Find(v) **then**
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. Union(u, v)
- 8. return A

- 1. $A \leftarrow \emptyset$
- 2. for each vertex $v \in V$ do Sind u und v in derselben
- 3. Sortiere Kanten nach Gew Zusammenhangskomponente?
- 4. **for each** $(u, v) \in E$ geordnet v austeigendem Gewicht **do**
- 5. **if** Find(u) \neq Find(v) **then**
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. Union(u, v)
- 8. return A

```
Kruskal(G)
```

- 1. $A \leftarrow \emptyset$
- 2. **for each** vertex $v \in V$ **do** Make-Set(v)
- Sortiere Kanten nach Gewicht
- for each (u, v) Wenn ja, dann müssen die Gewicht do
- if $Find(u) \neq Zusammenhangskomponenten$ $<math>A \leftarrow A \cup \{(u, v)\}$
- $\overline{\text{Union}(u,v)}$
- return A

Eine einfache Union-Find Datenstruktur

- Jede Menge ist Liste
- Erstes Element ist Repräsentant
- Jedes Listenelement enthält Zeiger auf den Repräsentanten

Implementierung

- Make-Set in **0**(1) Zeit einfach
- Find in **0**(1) Zeit einfach
- Union: Hänge die eine Liste hinter die andere und aktualisiere alle Zeiger

Laufzeit

- Betrachte Sequenz von m Operationen aus Make-Set , Find, und Union
- Laufzeit für Union $\mathbf{O}(m)$ (da wir höchstens m Elemente haben)

Beobachtung

- Wir hängen evtl. immer eine sehr lange Liste an eine sehr kurze
- Wenn wir immer die kurze hinter die lange h\u00e4ngen, m\u00fcssen wir nur die Referenzen in der kurzen Liste aktualisieren
- Aber bringt das etwas (mehr als Konstanten)?

Beobachtung

- Wir hängen evtl. immer eine sehr lange Liste an eine sehr kurze
- Wenn wir immer die kurze hinter die lange h\u00e4ngen, m\u00fcssen wir nur die Referenzen in der kurzen Liste aktualisieren
- Aber bringt das etwas (mehr als Konstanten)?

Ja!

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

Beweis

 Wir analysieren zunächst, wie oft der Repräsentantenzeiger eines Elements einer Menge der Größe k maximal aktualisiert wurde

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Wir analysieren zunächst, wie oft der Repräsentantenzeiger eines Elements einer Menge der Größe k maximal aktualisiert wurde
- Betrachte Element x

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Wir analysieren zunächst, wie oft der Repräsentantenzeiger eines Elements einer Menge der Größe k maximal aktualisiert wurde
- Betrachte Element x
- Jedes mal, wenn der Repräsentantenzeiger von x aktualisiert wurde, war x in der kleineren der vereinigten Mengen

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Wir analysieren zunächst, wie oft der Repräsentantenzeiger eines Elements einer Menge der Größe k maximal aktualisiert wurde
- Betrachte Element x
- Jedes mal, wenn der Repräsentantenzeiger von x aktualisiert wurde, war x in der kleineren der vereinigten Mengen
- Damit hat sich die Größe der Menge mindestens verdoppelt

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Wir analysieren zunächst, wie oft der Repräsentantenzeiger eines Elements einer Menge der Größe k maximal aktualisiert wurde
- Betrachte Element x
- Jedes mal, wenn der Repräsentantenzeiger von x aktualisiert wurde, war x in der kleineren der vereinigten Mengen
- Damit hat sich die Größe der Menge mindestens verdoppelt

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

Beweis

Damit gilt für jedes $k \le n$, dass nach $\lceil \log k \rceil$ Aktualisierungen des Repräsentantenzeigers von x, die Menge, die x enthält, mindestens k Elemente besitzt

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Damit gilt für jedes $k \le n$, dass nach $\lceil \log k \rceil$ Aktualisierungen des Repräsentantenzeigers von x, die Menge, die x enthält, mindestens k Elemente besitzt
- Da die größte Menge maximal n Elemente besitzt, wurde jeder Repräsentantenzeiger maximal $\mathbf{O}(\log n)$ mal aktualisiert (über alle Union-Operationen)

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Damit gilt für jedes $k \le n$, dass nach $\lceil \log k \rceil$ Aktualisierungen des Repräsentantenzeigers von x, die Menge, die x enthält, mindestens k Elemente besitzt
- Da die größte Menge maximal n Elemente besitzt, wurde jeder Repräsentantenzeiger maximal $\mathbf{O}(\log n)$ mal aktualisiert (über alle Union-Operationen)
- Damit ist die Gesamtlaufzeit für die Aktualisierungen der n Objekte $\mathbf{O}(n \log n)$

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Damit gilt für jedes $k \le n$, dass nach $\lceil \log k \rceil$ Aktualisierungen des Repräsentantenzeigers von x, die Menge, die x enthält, mindestens k Elemente besitzt
- Da die größte Menge maximal n Elemente besitzt, wurde jeder Repräsentantenzeiger maximal $\mathbf{O}(\log n)$ mal aktualisiert (über alle Union-Operationen)
- Damit ist die Gesamtlaufzeit für die Aktualisierungen der n Objekte $\mathbf{O}(n \log n)$

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

Beweis

Jedes Make-Set und Find benötigt $\mathbf{O}(1)$ Zeit und es gibt $\mathbf{O}(m)$ davon

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Jedes Make-Set und Find benötigt $\mathbf{O}(1)$ Zeit und es gibt $\mathbf{O}(m)$ davon
- Damit ist die gesamte Laufzeit für die Sequenz $\mathbf{0}(m + n \log n)$

Satz 71

Wenn wir verkettete Listen als Union-Find Datenstruktur benutzen und bei einer Union Operation immer die kürzere hinter die längere Liste hängen und entsprechend aktualisieren, dann benötigt eine Sequenz von m Operationen aus Make-Set, Union und Find, von denen n Operationen Make-Set sind, $\mathbf{0}(m+n\log n)$ Zeit.

- Jedes Make-Set und Find benötigt $\mathbf{O}(1)$ Zeit und es gibt $\mathbf{O}(m)$ davon
- Damit ist die gesamte Laufzeit für die Sequenz $\mathbf{0}(m + n \log n)$

Kruskal(*G*)

- 1. $A \leftarrow \emptyset$
- 2. **for each** vertex $v \in V$ **do** Make-Set(v)
- 3. Sortiere Kanten nach Gewicht
- 4. **for each** $(u, v) \in E$ geordnet nach aufsteigendem Gewicht **do**
- 5. **if** Find(u) \neq Find(v) **then**
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. Union(u, v)
- 8. return A

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

Beweis

 Der Algorithmus hält die Invariante aufrecht, dass die Mengen in der Union-Find Datenstruktur den Zusammenhangskomponenten des durch die bisher ausgewählten Kanten A definierten Graphen entsprechen.

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Der Algorithmus hält die Invariante aufrecht, dass die Mengen in der Union-Find Datenstruktur den Zusammenhangskomponenten des durch die bisher ausgewählten Kanten A definierten Graphen entsprechen.
- Da die Kanten in aufsteigender Reihenfolge ihrer Gewichte betrachtet werden, ist jede Kante, die zwei solche Zusammenhangskomponenten verbindet, eine leichte Kante

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Der Algorithmus hält die Invariante aufrecht, dass die Mengen in der Union-Find Datenstruktur den Zusammenhangskomponenten des durch die bisher ausgewählten Kanten A definierten Graphen entsprechen.
- Da die Kanten in aufsteigender Reihenfolge ihrer Gewichte betrachtet werden, ist jede Kante, die zwei solche Zusammenhangskomponenten verbindet, eine leichte Kante
- Somit ist sie nach Korollar 70 auch sicher

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Der Algorithmus hält die Invariante aufrecht, dass die Mengen in der Union-Find Datenstruktur den Zusammenhangskomponenten des durch die bisher ausgewählten Kanten A definierten Graphen entsprechen.
- Da die Kanten in aufsteigender Reihenfolge ihrer Gewichte betrachtet werden, ist jede Kante, die zwei solche Zusammenhangskomponenten verbindet, eine leichte Kante
- Somit ist sie nach Korollar 70 auch sicher
- Wir wissen, dass der Algorithmus nur sichere Kanten in A einfügt

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Der Algorithmus hält die Invariante aufrecht, dass die Mengen in der Union-Find Datenstruktur den Zusammenhangskomponenten des durch die bisher ausgewählten Kanten A definierten Graphen entsprechen.
- Da die Kanten in aufsteigender Reihenfolge ihrer Gewichte betrachtet werden, ist jede Kante, die zwei solche Zusammenhangskomponenten verbindet, eine leichte Kante
- Somit ist sie nach Korollar 70 auch sicher
- Wir wissen, dass der Algorithmus nur sichere Kanten in A einfügt
- Es bleibt zu zeigen, dass A am Ende des Algorithmus ein aufspannender Baum ist

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Der Algorithmus hält die Invariante aufrecht, dass die Mengen in der Union-Find Datenstruktur den Zusammenhangskomponenten des durch die bisher ausgewählten Kanten A definierten Graphen entsprechen.
- Da die Kanten in aufsteigender Reihenfolge ihrer Gewichte betrachtet werden, ist jede Kante, die zwei solche Zusammenhangskomponenten verbindet, eine leichte Kante
- Somit ist sie nach Korollar 70 auch sicher
- Wir wissen, dass der Algorithmus nur sichere Kanten in A einfügt
- Es bleibt zu zeigen, dass A am Ende des Algorithmus ein aufspannender Baum ist

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

Beweis

Annahme: A ist am Ende des Algorithmus kein aufspannender Baum

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Annahme: A ist am Ende des Algorithmus kein aufspannender Baum
- Da A nur aus sicheren Kanten besteht, ist A dann Teilmenge eines min.
 Spannbaums T

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Annahme: A ist am Ende des Algorithmus kein aufspannender Baum
- Da A nur aus sicheren Kanten besteht, ist A dann Teilmenge eines min.
 Spannbaums T
- Betrachte eine Kante (u, v), aus T A

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Annahme: A ist am Ende des Algorithmus kein aufspannender Baum
- Da A nur aus sicheren Kanten besteht, ist A dann Teilmenge eines min.
 Spannbaums T
- Betrachte eine Kante (u, v), aus T A
- Das Entfernen von (u, v) aus T definiert einen Schnitt (S, V S)

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Annahme: A ist am Ende des Algorithmus kein aufspannender Baum
- Da A nur aus sicheren Kanten besteht, ist A dann Teilmenge eines min.
 Spannbaums T
- Betrachte eine Kante (u, v), aus T A
- Das Entfernen von (u, v) aus T definiert einen Schnitt (S, V S)
- Da A keine Kante enthält, die (S, V S) kreuzt, ist jede Zusammenhangs-komponente von A entweder Teilmenge von S oder von V S

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Annahme: A ist am Ende des Algorithmus kein aufspannender Baum
- Da A nur aus sicheren Kanten besteht, ist A dann Teilmenge eines min.
 Spannbaums T
- Betrachte eine Kante (u, v), aus T A
- Das Entfernen von (u, v) aus T definiert einen Schnitt (S, V S)
- Da A keine Kante enthält, die (S, V S) kreuzt, ist jede Zusammenhangskomponente von A entweder Teilmenge von S oder von V - S
- Wenn nun der Algorithmus (u, v) betrachtet, so liegt u in einer Komponente mit Knoten aus S und v in einer Komponente mit Knoten aus V S

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Annahme: A ist am Ende des Algorithmus kein aufspannender Baum
- Da A nur aus sicheren Kanten besteht, ist A dann Teilmenge eines min.
 Spannbaums T
- Betrachte eine Kante (u, v), aus T A
- Das Entfernen von (u, v) aus T definiert einen Schnitt (S, V S)
- Da A keine Kante enthält, die (S, V S) kreuzt, ist jede Zusammenhangs-komponente von A entweder Teilmenge von S oder von V S
- Wenn nun der Algorithmus (u, v) betrachtet, so liegt u in einer Komponente mit Knoten aus S und v in einer Komponente mit Knoten aus V S

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

Beweis

■ Damit liegen u und v in unterschiedlichen Komponenten und somit ist $Find(u) \neq Find(v)$

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Damit liegen u und v in unterschiedlichen Komponenten und somit ist $Find(u) \neq Find(v)$
- Dann hätte der Algorithmus aber (u, v) in A aufgenommen. Widerspruch!

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Damit liegen u und v in unterschiedlichen Komponenten und somit ist $Find(u) \neq Find(v)$
- Dann hätte der Algorithmus aber (u, v) in A aufgenommen. Widerspruch!
- Somit ist A am Ende des Algorithmus ein aufspannender Baum und auch ein min. Spannbaum, da alle Kanten sicher waren

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Damit liegen u und v in unterschiedlichen Komponenten und somit ist $Find(u) \neq Find(v)$
- Dann hätte der Algorithmus aber (u, v) in A aufgenommen. Widerspruch!
- Somit ist A am Ende des Algorithmus ein aufspannender Baum und auch ein min. Spannbaum, da alle Kanten sicher waren

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Laufzeit:
- Der Algorithmus benötigt $O(|E| \log |E|)$ Zeit zum Sortieren

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Laufzeit:
- Der Algorithmus benötigt $O(|E| \log |E|)$ Zeit zum Sortieren
- Er führt O(|E| + |V|) Operationen mit der Union-Find-Datenstruktur durch

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Laufzeit:
- Der Algorithmus benötigt $O(|E| \log |E|)$ Zeit zum Sortieren
- Er führt O(|E| + |V|) Operationen mit der Union-Find-Datenstruktur durch
- Davon sind |V| Operationen Make-Set

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Laufzeit:
- Der Algorithmus benötigt $O(|E| \log |E|)$ Zeit zum Sortieren
- Er führt O(|E| + |V|) Operationen mit der Union-Find-Datenstruktur durch
- Davon sind |V| Operationen Make-Set
- Somit ist die Laufzeit für die Operationen der Union-Find-Datenstruktur $\mathbf{O}(|E| + |V| \log |V|)$

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Laufzeit:
- Der Algorithmus benötigt $O(|E| \log |E|)$ Zeit zum Sortieren
- Er führt O(|E| + |V|) Operationen mit der Union-Find-Datenstruktur durch
- Davon sind |V| Operationen Make-Set
- Somit ist die Laufzeit für die Operationen der Union-Find-Datenstruktur $\mathbf{O}(|E| + |V| \log |V|)$
- Diese dominieren die Laufzeit der zweiten for-Schleife

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Laufzeit:
- Der Algorithmus benötigt $O(|E| \log |E|)$ Zeit zum Sortieren
- Er führt O(|E| + |V|) Operationen mit der Union-Find-Datenstruktur durch
- Davon sind |V| Operationen Make-Set
- Somit ist die Laufzeit für die Operationen der Union-Find-Datenstruktur $\mathbf{O}(|E| + |V| \log |V|)$
- Diese dominieren die Laufzeit der zweiten for-Schleife
- Insgesamt ist daher die Laufzeit $O(|E| \log |E|)$ (da |V| = O(|E|) für zusammenhängende Graphen)

Satz 72

Der Algorithmus von Kruskal berechnet in $\mathbf{O}(|E|\log|E|)$ einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen G = (V, E).

- Laufzeit:
- Der Algorithmus benötigt $O(|E| \log |E|)$ Zeit zum Sortieren
- Er führt O(|E| + |V|) Operationen mit der Union-Find-Datenstruktur durch
- Davon sind |V| Operationen Make-Set
- Somit ist die Laufzeit für die Operationen der Union-Find-Datenstruktur $\mathbf{O}(|E| + |V| \log |V|)$
- Diese dominieren die Laufzeit der zweiten for-Schleife
- Insgesamt ist daher die Laufzeit $O(|E| \log |E|)$ (da |V| = O(|E|) für zusammenhängende Graphen)

Idee des Algorithmus von Prim

- Verwende generischen Algorithmus
- Nimm immer eine Kante mit minimalem Gewicht, die einen Knoten in Baum A mit einem Knoten verbindet, der nicht in Baum A ist und füge diese zu A hinzu
- Die Kante ist eine leichte Kante, die Baum A mit einem weiteren Knoten verbindet
- Damit ist sie sicher f
 ür A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

1.
$$Q \leftarrow V - \{r\}$$

- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- $2. \boxed{A \leftarrow \emptyset}$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. \quad \boxed{Q \leftarrow Q \{u\}}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u,v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

1.
$$Q \leftarrow V - \{r\}$$

- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. \quad Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. \qquad Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

1.
$$Q \leftarrow V - \{r\}$$

- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. \quad Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u,v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

1.
$$Q \leftarrow V - \{r\}$$

- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. \quad Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u,v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

1.
$$Q \leftarrow V - \{r\}$$

- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. \quad Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u,v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- 5. $Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

1.
$$Q \leftarrow V - \{r\}$$

- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. \quad Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u,v)\}$
- 7. return A

- 1. $Q \leftarrow V \{r\}$
- 2. $A \leftarrow \emptyset$
- 3. while $Q \neq \emptyset$
- 4. Finde Kante (u, v)mit minimalem Gewicht, die den Schnitt (Q, V Q) kreuzt, wobei $u \in Q$
- $5. Q \leftarrow Q \{u\}$
- 6. $A \leftarrow A \cup \{(u, v)\}$
- 7. return A

Prioritätenschlange

- Alle Knoten, die noch nicht zum Baum gehören, werden in Prioritätenschlange Q abgespeichert
- key[v]: minimales Gewicht einer Kante, die v mit Baum verbindet
- parent[v]: Vorgänger von v im Baum
- Menge A implizit gegeben durch $A = \{(v, parent[v]) | v \in V \{r\} Q\}$


```
Prim(G, r)
```

- 1. $Q \leftarrow V$
- 2. **for each** vertex $u \in Q$ **do** key $[u] \leftarrow \infty$
- 3. $\text{key}[r] \leftarrow 0$, $\text{parent}[r] \leftarrow \text{nil}$
- 4. while $Q \neq \emptyset$ do
- 5. $u \leftarrow \text{Extract-Min}(Q)$
- 6. **for each** $v \in Adj[u]$ **do**
- 7. if $v \in Q$ and w(u, v) < key[v] then
- 8. $\ker[v] \leftarrow w(u, v)$, parent $[v] \leftarrow u$

Prim(G,r)

- 1. $Q \leftarrow V$
- 2. **for each** vertex $u \in Q$ **do** key $[u] \leftarrow \infty$
- 3. $\text{key}[r] \leftarrow 0$, $\text{parent}[r] \leftarrow \text{nil}$
- 4. while $Q \neq \emptyset$ do
- 5. $u \leftarrow \text{Extract-Min}(Q)$
- 6. **for each** $v \in Adj[u]$ **do**
- 7. if $v \in Q$ and w(u, v) < key[v] then
- 8. $\ker[v] \leftarrow w(u, v)$, parent $[v] \leftarrow u$

Zu Beginn ist jeder Knoten in der Schlange *Q*

r bildet die Wurzel des

Spannbaums

Graphalgorithmen

```
Prim(G,r)
```

- 1. $Q \leftarrow V$
- **2**. **for each** vertex $u \in Q$ **do** key $[u] \leftarrow \infty$

3.
$$\ker[r] \leftarrow 0$$
, $\operatorname{parent}[r] \leftarrow \operatorname{nil}$

- 4. while $Q \neq \emptyset$ do
- 5. $u \leftarrow \text{Extract-Min}(Q)$
- 6. **for each** $v \in Adj[u]$ **do**
- 7. if $v \in Q$ and w(u, v) < key[v] then
- 8. $\ker[v] \leftarrow w(u, v), \ \operatorname{parent}[v] \leftarrow u$

u ist inzident zu leichter

Kante, die Schnitt

(Q,V-Q) kreuzt

Graphalgorithmen

- 1. $Q \leftarrow V$
- 2. **for each** vertex $u \in Q$ **do** key $[u] \leftarrow \infty$
- 3. $\text{key}[r] \leftarrow 0$, $\text{parent}[r] \leftarrow \text{nil}$
- 4. while $Q \neq \emptyset$ do
- 5. $u \leftarrow \text{Extract-Min}(Q)$
- 6. **for each** $v \in Adj[u]$ **do**
- 7. if $v \in Q$ and w(u, v) < key[v] then
- 8. $\ker[v] \leftarrow w(u, v), \ \operatorname{parent}[v] \leftarrow u$

Prim(G,r)

- 1. $Q \leftarrow V$
- 2. **for each** vertex $u \in Q$ **do** key $[u] \leftarrow \infty$
- 3. $\text{key}[r] \leftarrow 0$, $\text{parent}[r] \leftarrow \text{nil}$
- 4. while $Q \neq \emptyset$ do
- 5. $u \leftarrow \text{Extract-Min}(Q)$
- 6. **for each** $v \in Adj[u]$ **do**
- 7. **if** $v \in Q$ **and** w(u, v) < key[v] **then**
- 8. $\ker[v] \leftarrow w(u, v), \ \operatorname{parent}[v] \leftarrow u$

Gehört v noch nicht zum Baum und könnte über u billiger erreicht werden als bisher bekannt?

Prim(G,r)

- 1. $Q \leftarrow V$
- 2. **for each** vertex $u \in Q$ **do** key $[u] \leftarrow \infty$
- 3. $\text{key}[r] \leftarrow 0$, $\text{parent}[r] \leftarrow \text{nil}$
- 4. while $Q \neq \emptyset$ do
- 5. $u \leftarrow \text{Extract-Min}(Q)$
- 6. **for each** $v \in Adj[u]$ **do**
- 7. if $v \in Q$ and w(u, v) < key[v] then
- 8. $\ker[v] \leftarrow w(u, v), \ \operatorname{parent}[v] \leftarrow u$

Wenn ja, dann ist u neuer Vorgänger von v und key[v] gibt die neuen Kosten für v an

Implementierung

Q als AVL Baum (oder alternativ: Binäre Halde)

Laufzeit

- Initialisierung von $Q: \mathbf{O}(|V|)$
- Ausführung der while-Schleife: O(|V|)-mal
- Extract-Min: $\mathbf{O}(\log |V|)$
- Länge aller Adjazenzlisten: O(|E|)
- Test $v \in Q$: **0**(1)
- Änderung eines Schlüsselwertes: O(log |V|)
- Gesamtlaufzeit: $\mathbf{O}(|V| \log |V| + |E| \log |V|) = \mathbf{O}(|E| \log |V|)$

Satz 73

Der Algorithmus von Prim berechnet einen minimalen Spannbaum eines gewichteten, zusammenhängenden, ungerichteten Graphen in $\mathbf{O}(|E|\log|V|)$ Zeit.

Beweis

- Die Laufzeit haben wir bereits analysiert.
- Die Korrektheit folgt aus der Tatsache, dass wir nur sichere Kanten verwenden und dass der Algorithmus einen Baum berechnet

Graphtraversierung

Breitensuche, Tiefensuche

Kürzeste Wege

Breitensuche, Algorithmus von Dijkstra, Algorithmus von Floyd-Warshall

Minimale Spannbäume

Algorithmen von Kruskal und Prim