Corrections to be noted in Volume 68 of the JOURNAL OF RESEARCH of the National Bureau of Standards—D. Radio Propagation

Page	Column	Line	Now reads in part	Should read
5	2	Footnote 4,	reffect	reflect
20	2	Fig. 2,	Rae Farnborough	R. A. E. Farnborough
$\frac{22}{32}$	1 1	4 from	peak of 0400	peak at 0400
		16 fm	$E_R = E_R$	$E_{R'} = E_R$
48		5 from		$-4\pi\delta(3x)$
		bottom]
49 50		eq (6) 7 from		
E1	1,	bottom	$\begin{vmatrix} \text{of } (q) : \dots & \\ d\omega \frac{e^{-i\omega t_{\omega}}}{\omega^2 - \omega_l} \int_{-\infty}^{\infty} dt_0 \frac{e^{\omega t_0 +}}{\omega^2 - \omega_l} & \\ \end{vmatrix}$	of (9): $\frac{e^{-i\omega t}}{dt} \int_{-\infty}^{\infty} dt \frac{e^{i\omega t_0 + t}}{dt}$
51			$ \frac{d\omega}{\omega^2 - \omega_l} \int_{-\infty}^{\infty} dt_0 = -\dots $	$\begin{bmatrix} a\omega & \omega^2 - \omega_{pl} \end{bmatrix}_{-\infty} = \begin{bmatrix} a\omega_0 & \omega^2 - \omega_{pl} \\ 0 & \omega^2 \end{bmatrix}$
56 70		9 from bottom 2 from	$\left \left(\operatorname{grad} \frac{\partial}{\partial} z \right) \right $	$\sqrt{\operatorname{grad} \frac{\partial}{\partial z}}$
90		bottom	insert a brace after the times sign and bef e^{-ixt}_{m}	Fore to the minus 1 superscript. $\begin{vmatrix} e^{-ixt_m} \end{vmatrix}$
110	2	Fig. 5,	(b) Alternative sending antennas on	(b) Horizontal magnetic dipole (vertica
112	1	Table 2, 9	the ground $\sigma = 1.6 \text{ p}\mu - \text{mho/m}$	$\sigma = 1.6 \ \mu - \text{mho/m}$
204	1		becomes small	becomes large, while the rate of downward diffusion of SF ₆ becomes small.
211 215	Abstract	Title	[Crary, 1962]an Ionospheric"	[Crary, 1961] an Ionospheric C-Region"
216	2	legend	χ^{θ} =	$\chi =$
241 242	Fig. 2 Fig. 4	1	$\rho = 0.063$ $\rho = 0.663$	$ \begin{array}{c} \rho = 0.676 \\ \rho = 0.676 \end{array} $
Pg. 4 of				
Cover	Feb. 1964 issue	16 of Contents	Ionospheric"	
318	1	• 1	dt	$-\frac{\partial}{\partial z}$
339	Title		and Ionsphericthe θ polarization	and Ionospheric the ϕ polarization
370		eq (22) and	$\cosh^2(\Delta\sqrt{1-p^2c^2\theta}$	$\cosh^2\left(\Delta\sqrt{1-p^2c^2\theta}\right)$
604	2	(23) Fig. 1	Replace figure 1 with the new figure repro	
710 739	2	2 eq (6)	$\left egin{array}{ll} (b+s)^2 \\ e^{i(k_r)}. \end{array} \right $	$(b+\delta)^2 = e^{i(kr)}$
748		5 from bottom	the 14th	the 17th
758 763		Fig. 2 and 3.	Interchange these two figures, the legends	
	9	bottom	$-\delta$, where $\delta =$	$-\delta$, where $\delta = \rho'$ does
778	(1	10 10, 14, 15, 22, 27, and 48	m/sec ⁻¹	m sec ⁻¹
779	2	16	m/sec ⁻¹	m sec ⁻¹
815 829		eq (10) eq (12)	$\left \begin{array}{c} \psi_0 \hat{\ \ } \\ f'_{t_m} \end{array} \right $	$egin{array}{c} \psi_0\hat{m{x}}.\ f_{\ell_m} \end{array}$
969		3 from bottom	Y_Q and Z_Q	<i>"</i>
973		7	ing in order	ing) in order

Corrections to be noted in Volume 68 of the JOURNAL OF RESEARCH of the National Bureau of Standards—D. Radio Propagation—Continued

Page	Column	Line	Now reads in part	Should read
975			$e^{-d_0\int_0^{z/d}d_0jH}$	
977		eq (25) eq (27)	$egin{array}{c} \cdot h_{a heta} \left\{ \ldots \right. \ ha_{artheta} \left\{ \ldots \right. \end{array}$	$egin{array}{c} \cdot h_{aartheta} \left\{ & \ h_{aartheta} \left\{ & \ \end{array} ight.$
978		7 from		$\begin{cases} \vdots \\ \gamma = 0 \end{cases}$ $\frac{\partial/\partial \gamma}{\partial \rho} \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} = 0$
979		5 from bottom 2 from bottom	$\begin{cases} \int_{\nu=0}^{\infty} \int_$	$\begin{vmatrix} \vdots \\ y_{r=0} \end{vmatrix} = h_z(\sqrt{X_2 + Y_2})$
980 990	1	6 5 through 14 in Section 2	$=(\rho, l)K_1(\rho/l)$ $V_1(\omega)$	$v_1(\omega)$
997		eq (10)	$\left\{ -\frac{x - 2\rho xy + y^2}{2(1 - \rho^2)\sigma} \right\} \cdot \dots + \frac{R^3}{\Omega^2 \sqrt{1 - k^2}k} e^{-\frac{R}{\Omega(1 - k^2)}} I_1 \dots$	$\left\{-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)\sigma}\right\}.$
999		eq (25)	$+\frac{R^3}{\Omega^2\sqrt{1-k^2k}}e^{-\frac{R}{\Omega(1-k^2)}}I_1$	$+ \frac{R^3}{\Omega^2 \sqrt{1 - k^2 k}} e^{-\frac{R^2}{\Omega(1 - k^2)}} I_1$
1000	,	eq (29)	$\overline{P}_r = \frac{T}{\sigma_2 \sigma_2^{3m}} \Big _{z=\frac{T}{4N}}$	$P_c =$
1001		eq (38)	$\left[\overline{\sigma_2 \sigma_2} \right]^m \right]_z = \frac{T}{4N} \cdots$	$\left[\frac{\overline{\sigma_1 \sigma_2}}{M} \right] z = \frac{T}{4N}$
1002		eq (43)	$=rac{1}{2\pi}\int\limits_{0}^{2\pi}\int\limits_{0}^{\infty}$	$=rac{1}{2\pi}\int\limits_{0}^{2\pi}\int\limits_{0}^{\infty}\int$
$\frac{1013}{1017}$	1 2	29 3 from	of X and	
1019	2	bottom References	Insert the following reference in this alphab	etical listing: Rice, 0. (1945), The mathematica
1051		5	analysis of random noise, Bell System Tecumulants κ _ν ,	cumulants κ_n ,
1100	2	11	term in κ_n $\left\{\frac{\cos \theta_s \cos (\xi_s - \sigma)}{d \cos \gamma_s}\right\}$	$\left\{\frac{\cos\theta_s\cos(\xi_s-\sigma)}{d\sin\gamma}\right\}$
1103	1	bottom 3 from bottom eq (21)	AB CD $G = \frac{AB}{CD} =$	IC $I'R$ $G = \frac{IC}{I'R} =$
1111	2	1st line eq (11)		
1193 1195 1237 1241	2 1 2	eq (5) 17 Title Fig. 11(b),	$\frac{dN^{-}}{dt} = -\gamma_{p}N^{-} - \gamma nN^{-}$ $*^{2} = \dots$ $\tilde{\pi}_{2} = \dots$ Ionsphere	lonosphere
1281		last eq (30)	disappearance of Es-g. $\prod_{k=1}^{j-1}\mathscr{H}_{e,k}\prod_{k=1}^{j}p_kT_kdv,\!\dots$	$egin{aligned} ext{disappearance of Es-q.} \ &\prod_{k=1}^{J-1}\mathscr{H}_{e,k} \prod_{k=1}^{J} p_k T_k dv, \end{aligned}$

This new figure replaces the figure shown on page 604, column 2.