Урок 58 Теплова дія струму. Закон Джоуля – Ленца Може уполук

Мета уроку:

Навчальна. Пояснити теплову дію струму, сформувати закон Джоуля — Ленца, розглянути практичне застосування теплової дії струму в електронагрівальних приладах.

Розвивальна. Розвивати вміння аналізувати навчальний матеріал, умову задачі, хід розв'язання задач, творчий підхід до вирішення завдань.

Виховна. Формування таких якостей особистості, як працелюбність, уважність, зібраність, спостережливість.

Тип уроку: комбінований урок

Обладнання: навчальна презентація, комп'ютер, амперметр, вольтметр.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Ми вже знаємо, що проходження струму завжди супроводжується виділенням теплоти.

Розглянемо дане явище більш детальніше.

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Закон Джоуля – Ленца

Коли в провіднику йде струм, то вільні заряджені частинки, рухаючись під дією електричного поля, зіштовхуються з іншими частинками і передають їм частину своєї енергії. У результаті середня швидкість хаотичного (теплового) руху частинок речовини збільшується – провідник нагрівається.

Теплову дію струму вивчали англійський фізик Джеймс Джоуль і російський фізик Емілій Ленц. Незалежно один від одного вони дійшли однакового висновку.

Закон Джоуля – Ленца

Кількість теплоти, яка виділяється в провіднику внаслідок проходження струму, прямо пропорційна квадрату сили струму, опору провідника й часу проходження струму:

$$Q = I^2 Rt$$

 ${\it Q}$ – кількість теплоти, яка виділяється провідником зі струмом;

I – сила струму у провіднику;

R – опір провідника;

t – час проходження струму.

Інші формули випливають із Закон Джоуля – Ленца:

$$Q = UIt;$$
 $Q = \frac{U^2}{R}t$

Можна користуватися тільки в тому випадку, коли вся електрична енергія витрачається на нагрівання.

Якщо ж на ділянці кола ϵ споживачі енергії, в яких виконується механічна робота або відбуваються хімічні реакції, даними формулами користуватися не можна.

2. Електронагрівальні пристрої *Питання класу*

• Яке практичне значення має закон Джоуля – Ленца?

Теплова дія струму використовується в різних електронагрівальних пристроях (праски, плити, чайники, електричні каміни, рефлектори, лампи накалювання).

Основною частиною будь-якого електронагрівника є нагрівальний елемент.

За законом Джоуля — Ленца кількість теплоти Q, що виділяється в нагрівальному елементі, обчислюється за формулою $Q = I^2Rt$, отже, *змінюючи час нагрівання* або *силу струму* в нагрівальному елементі, можна *регулювати температуру нагрівника*.

3. Коротке замикання та запобіжники

Якщо увімкнути відразу кілька потужних споживачів, загальний опір кола суттєво зменшиться, відповідно сила струму в колі значно збільшиться.

Коротке замикання – різке збільшення сили струму в колі.

Коротке замикання може виникнути у випадку порушення ізоляції проводів або під час ремонту елементів електричного кола, які перебувають під напругою.

Щоб уникнути пожежі у випадку короткого замикання або перевантаження електричного кола, а також не допустити псування споживачів електричної енергії під час небезпечного збільшення сили струму, використовують запобіжники.

Запобіжники – пристрої, які розмикають коло, якщо сила струму в ньому збільшиться понад норму.

запобіжники.

Робоча запобіжника збільшення біметалева

Автоматичні

частина автоматичного біметалева пластина. у разі сили струму понад норму пластина вигинається, в

результаті чого коло розмикається. Після охолодження запобіжник знову можна повернути в робочий стан.

Плавкі запобіжники, які застосовують в радіотехніці. Уздовж осі скляної трубочки з металевими наконечниками натягнутий тонкий дріт із легкоплавкого матеріалу

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

1. Яка кількість теплоти виділиться протягом години в провіднику опором 10 Ом за сили струму 2 А?

Дано: t = 1 год = 3600 c R = 10 Ом I = 2 AQ - ?

Розв'язання

$$Q=I^2Rt$$

$$[Q]=\mathrm{A}^2\cdot\mathrm{Om}\cdot\mathrm{c}=\mathrm{A}^2\cdot\frac{\mathrm{B}}{\mathrm{A}}\cdot\mathrm{c}=\mathrm{A}\cdot\mathrm{B}\cdot\mathrm{c}=\mathrm{Дж}$$
 $Q=2^2\cdot10\cdot3600=144000~\mathrm{(Дж)}$

Bi∂nовi∂ь: Q = 144 кДж.

2. По провіднику проходить струм 5 А. Визначте опір провідника, якщо впродовж 20 хв виділяється кількість теплоти 10 кДж.

Дано: I = 5 A t = 20 xB = 1200 c Q = 10 кДж = 10000 ДжR - ?

Розв'язання

$$Q = I^{2}Rt$$
 => $R = \frac{Q}{I^{2}t}$
 $[R] = \frac{Дж}{A^{2} \cdot c} = \frac{A \cdot B \cdot c}{A^{2} \cdot c} = \frac{B}{A} = Ом$
 $R = \frac{10000}{5^{2} \cdot 1200} = 0,33 (Ом)$

Відповідь: R = 0.33 (Ом).

3. Визначте кількість теплоти, що дає електроприлад потужністю 2 кВт за 10 хв роботи?

Дано:

$$P = 2 \text{ кВт}$$

 $= 2000 \text{ BT}$
 $t = 10 \text{ xB} = 600 \text{ c}$
 $Q - ?$

Розв'язання

У випадку, коли вся електрична енергія витрачається на нагрівання можна користуватися:

$$Q = UIt;$$
 $P = UI;$ $Q = Pt$ $Q = 2000 \, \mathrm{Bt} \cdot 600 \, \mathrm{c} = 1200000 \, \mathrm{Дж}$

Відповідь: Q = 1,2 МДж.

4. Визначте, на скільки градусів нагріваються 100 г води, якщо на нагрівання їх витрачено всю кількість теплоти, що виділяється при протіканні струму 5 А по провіднику опором 10 Ом протягом 2 хв.

Дано:

$$m = 100 \text{ г} = 0,1 \text{ кг}$$
 $I = 5 \text{ A}$
 $R = 10 \text{ Ом}$
 $\tau = 2 \text{ хв} = 120 \text{ с}$
 $c = 4200 \frac{\text{Дж}}{\text{кг} \cdot \text{°C}}$

Розв'язання

 $Q_1 = cm\Delta t$ – нагрівання води $Q_2 = I^2R au$ – тепло, яке виділяється в провіднику

$$\begin{aligned} Q_1 &= Q_2 \\ cm\Delta t &= I^2R\tau \\ \Delta t &= \frac{I^2R\tau}{cm} \\ \Delta t &= \frac{A^2 \cdot O_{\mathrm{M}} \cdot c}{\frac{\mathcal{J}_{\mathrm{M}}}{\mathrm{K}\Gamma} \cdot {}^{\circ}\mathrm{C}} = \frac{\mathcal{J}_{\mathrm{M}}}{\frac{\mathcal{J}_{\mathrm{M}}}{\mathrm{C}}} = {}^{\circ}\mathrm{C} \end{aligned}$$

$$\Delta t = \frac{5^2 \cdot 10 \cdot 120}{4200 \cdot 0.1} \approx 71 \, (^{\circ}\text{C})$$

Відповідь: $\Delta t \approx 71$ °C.

5. За 10 хв в електричному чайнику нагріли 0,5 кг води від 20 °С до кипіння. Сила струму в мережі 2 A, а опір спіралі електрочайника — 90 Ом. Визначте ККД електрочайника.

Дано:

$$τ = 10 \text{ xB} = 600 \text{ c}$$
 $m = 0.5 \text{ K}\Gamma$
 $t_0 = 20 \text{ °C}$
 $t_K = 100 \text{ °C}$
 $I = 2 \text{ A}$
 $R = 90 \text{ OM}$
 $c = 4200 \frac{\text{Дж}}{\text{K}\Gamma \cdot \text{°C}}$

Розв'язання

$$\eta = \frac{Q_{\text{кор}}}{Q_{\text{повна}}} \cdot 100\%$$

$$Q_{\text{кор}} = cm(t_{\text{к}} - t_{0})$$

$$Q_{\text{повна}} = I^{2}R\tau$$

$$\eta = \frac{cm(t_{\text{k}} - t_{0})}{I^{2}R\tau} \cdot 100\%$$

$$[\eta] = \frac{\frac{Z}{K\Gamma \cdot {}^{\circ}C} \cdot {}^{\circ}K\Gamma \cdot {}^{\circ}C}{A^{2} \cdot 0_{\text{M}} \cdot c} \cdot \% = \frac{Z}{Z} \times \%$$

$$\eta = \frac{4200 \cdot 0.5 \cdot (100 - 20)}{2^{2} \cdot 90 \cdot 600} \cdot 100 \approx 78 \, (\%)$$
Bidnosids: $\eta \approx 78 \, \%$

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Чому нагріваються провідники, в яких тече електричний струм?
- 2. Сформулюйте закон Джоуля Ленца. Чому він має таку назву?
- 3. Як математично записують закон Джоуля Ленца?
- 4. Які перетворення енергії відбуваються всередині електронагрівника в разі його ввімкнення в електричне коло?
 - 5. Що таке коротке замикання?
 - 6. З якою метою застосовують запобіжники?

VII. ДОМАШНЄ ЗАВДАННЯ

Вивчити § 34 – 35, Вправа № 34 (1, 4)

Виконане д/з відправте на Human, Або на елетрону адресу <u>Kmitevich.alex@gmail.com</u>