GREEN- NOT SURE

YELLOW- SURE

Comprehensive Question Preview

Questions	Choices
What is the first order predicate calculus statement equivalent to the following? Every teacher is liked by some student	1. \forall (x) [teacher (x) \rightarrow \exists (y) [student (y) \rightarrow likes (y, x)]] 2. \forall (x) [teacher (x) \rightarrow \exists (y) [student (y) $^{\land}$ likes (y, x)]] 3. \exists (y) \forall (x) [teacher (x) \rightarrow [student (y) $^{\land}$ likes (y, x)]] 4. \forall (x) [teacher (x) $^{\land}$ \exists (y) [student (y) \rightarrow likes (y, x)]]
At what condition will a function f(x,y) will have minimum value at (a,b)	1. rt - s²>0 and r<0 2. rt - s²>0 and r>0 3. rt - s²<0 and r<0 4. rt - s²<0 and r>0
Suppose p is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and p has a poisson distribution with mean 3. What is the probability of observing fewer than 3 cars during any given minute in this interval?	1. 8 / (2e³) 2. 9 / (2e³) 3. 17 / (2e³) 4. 26 / (2e³)
person with the lower number wins, In case of a tie; they roll the dice repeatedly until there is no tie. Define a trial as a throw of the dice by P and Q. Assume that all 6 numbers on each dice are equi-probable and that all trials are independent. The probability (rounded to 3 decimal places) that one of them wins on the third trial is	1. 0.6944 2. 0.1157 3. 0.023 4. 0.463
Two alternative packages A and B are available for processing a database	1.

having 10k records. Package A requires 0.0001n² time units and package B requires 10nlog₀n time units to process n records. What is the smallest value of k for which package B will be preferred over A?	12 2. 10 3. 6 4.
Consider the series $X_{n+1} = X_n/2 + 9/$ (8 X_n), $X_0 = 0.5$ obtained from the Newton-Raphson method. The series converges to	1. 1.5 2. √2 3. 1.6 4. 1.4
Consider the problem of a chain $<$ A ₁ , A ₂ , A ₃ , A ₄ $>$ of four matrices. Suppose that the dimensions of the matrices A ₁ , A ₂ , A ₃ and A ₄ are 30 × 35, 35 × 15, 15 × 5 and 5 × 10 respectively. The minimum number of scalar multiplications needed to compute the product A ₁ A ₂ A ₃ A ₄ is	2.
F(z) is a function of the complex variable $z=x+i$ y given by $F(z)=i$ $z+k$ $Re(z)+i$ $Im(z)$. For what value of k will $F(z)$ satisfy the Cauchy-Riemann equations?	1.0 2.1 31 42
In the Taylor series expansion of e^x about $x = 2$, the coefficient of $(x-2)^4$ is	1. 1/4! 2. 2 ⁴ /4! 3. e ² /4! 4. e ⁴ /4!
For existence of Laplace transform which is correct?	1.Sectionally continuous function 2. Function of exponential order 3. Function of class A 4. Function of inerrable
If the region of convergence of $x_1[n] + x_2[n]$ is $1/3 < z < 2/3$, then the region of convergences of $x_1[n] - x_2[n]$ includes	1. 1/3 < z < 3 2.

	0/0 - 1-1 - 0
	2/3 < z < 3
	3. 3/2 < z < 3
	4
	1/3 < z < 2/3
In an analysis of variance problem involving 3 treatments and 10 observations per treatment, SSE = 399.6. The MSE for this situation is	1.133.2 2.13.32 <mark>3.14.8</mark> 4.30.0
Which of the following values cannot occur in a chi-square distribution?	1.100.0 2.38.4 3.0.61 <mark>42.45</mark>
Consider an undirected random graph of eight vertices. The probability that there is an edge between a pair of vertices is 1/2. What is the expected number of unordered cycles of length three?	1.1/8 2.1 <mark>3.7</mark> 4.8
	1. x = x ⁻¹ , for any x belonging to G
(G, *) is an abelian group. Then	2. (x * y)² = x² * y², for any x, y belonging to G 3.
	x = x², for any x belonging to G 4. G is of finite order
Which one of the following statements is FALSE?	1.Context-free grammar can be used to specify both lexical and syntax rules. 2.Type checking is done before parsing. 3.High-level language programs can be translated to different Intermediate Representations. 4.Arguments to a function can be passed using the program stack.
	The set of all strings containing the substring 00
Which one of the following languages over the alphabet {0,1} is described by the regular expression: (0+1)*0(0+1)*0(0+1)*?	2. The set of all strings containing at most two 0's
	3. The set of all strings containing at least two 0's
	4. The set of all strings that begin and end with either 0 or 1
	1.L1 ∈ P and L2 is finite 2.L1 ∈ NP and L2 ∈ P 3.L1 is undecidable and L2 is decidable 4.L1 is recursively enumerable and L2 is recursive

How many tokens will be generated by the scanner for the following statement? x = x * (a + b) - 5;	<mark>1.12</mark> 2.11 3.10 4.7
Incremental-Compiler is a compiler	1.which is written in a language that is different from the source language2.compiles the whole source code to generate object code afresh 3.compiles only those portion of source code that have been modified 4.that runs on one machine but produces object code for another machine
Let S be an NP-complete problem and Q and R be two other problems not known to be in NP. Q is polynomial time reducible to S and S is polynomial-time reducible to R. Which one of the following statements is true?	1.R is NP-complete 2.R is NP-hard 3.Q is NP-complete 4.Q is NP-hard
A 3-ary max heap is like a binary max heap, but instead of 2 children, nodes have 3 children. A 3-ary heap can be represented by an array as follows: The root is stored in the first location, a[0], nodes in the next level, from left to right, is stored from a[1] to a[3]. The nodes from the second level of the tree from left to right are stored from a[4] location onward. An item x can be inserted into a 3-ary heap containing n items by placing x in the location a[n] and pushing it up the tree to satisfy the heap property. Which one of the following is a valid sequence of elements in an array representing 3-ary max heap?	1.1,3,5,6,8,9 2.9,6,3,1,8,5 3.9,3,6,8,5,1 4.9,5,6,8,3,1
The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, and 42. Which one of the following is the postorder traversal sequence of the same tree?	1.10, 20, 15, 23, 25, 35, 42, 39, 30 2.15, 10, 25, 23, 20, 42, 35, 39, 30 3.15, 20, 10, 23, 25, 42, 35, 39, 30 4.15, 10, 23, 25, 20, 35, 42, 39, 30
Consider a hash table of size seven, with starting index zero, and a hash function $(3x + 4) \mod 7$. Assuming the hash table is initially empty, which of the following is the contents of the table when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing? Note that '_' denotes an empty location in the table.	1.8, _, _, _, _, 10
Which of the following algorithms sort n integers, having the range 0 to $(n^2 - 1)$, in ascending order in O (n) time?	 Selection sort Bubble sort Radix sort Insertion sort
How many times will the following loop be executed? LXI B, 0007 H	1.5 <mark>2.7</mark> 3.9 4.4
LOOP : DCX B	

MOV A, B	
ORA C	
OKA C	
JNZ LOOP	
addition of 87 H and 79 H.	1.11, 1, 1, 1 2.10, 0, 1, 0 3.1, 1, 0, 0 4.00, 0, 1, 1
A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit. The number of bits in the tag field of an address is	1.11 2.14 <mark>3.16</mark> 4.27
	1. 3 + n ternary digits
A computer uses ternary system instead of the traditional binary system. An n bit string in the binary system will occupy	2. 2n / 3 ternary digits 3.
Sumg in the binary system will occupy	n(log₂3) ternary digits
	4. n(log₃2) ternary digits
	1.Directory based protocol 2.Snoopy bus protocol 3.Cache coherency protocol4.Cache consistency protocol
Consider a process executing on an operating system that uses demand paging. The average time for a memory access in the system is M units if the corresponding memory page is available in memory and D units if the memory access causes a page fault. It has been experimentally measured that the average time taken for a memory access in the process is X units. Which one of the following is the correct expression for the page fault rate experienced by the process?	1.(D - M) / (X - M) <mark>2.(X - M) / (D - M)</mark> 3.(D - X) / (D - M) 4.(X - M) / (D - X)
Consider three processes, all arriving at time zero, with total execution time of 10, 20 and 30 units, respectively. Each process spends the first 20% of execution time doing I/O, the next 70% of time doing computation, and the last 10% of time doing I/O again. The operating system uses a shortest remaining compute time first scheduling algorithm and schedules a new process either when	<mark>1.10.6%</mark> 2.29.1% 3.24.8% 4.89.4%

an colore that morning process finishes its	
or when the running process finishes its compute burst. Assume that all I/O operations can be overlapped as much as possible. For what percentage of time does the CPU remain idle?	
A shared variable x, initialized to zero, is operated on by four concurrent processes W, X, Y, Z as follows. Each of the processes W and X reads x from memory, increments by one, stores it to memory, and then terminates. Each of the processes Y and Z reads x from memory, decrements by two, stores it to memory, and then terminates. Each process before reading x invokes the P operation (i.e., wait) on a counting semaphore S and invokes the V operation (i.e., signal) on the semaphore S after storing x to memory. Semaphore S is initialized to	
two. What is the maximum possible value	
of x after all processes complete	
execution?	
The simplified SOP (Sum Of Product) form of the Boolean expression (P + Q' + R').(P + Q' + R') is	1.(P'.Q + R') <mark>2.(P + Q'.R')</mark> 3.(P'.Q + R) 4.(P.Q + R)
	1.100 Ω cm
The resistivity of a pure silicon is about	<mark>2.6000 Ω cm</mark>
	3.3 x 105 Ω m
	4.6 x 10-8 Ω cm
In a transistor, the base current is about of emitter current	1.25% <mark>2.5%</mark> 3.30% 4.10%
In RS flip-flop, the output of the flip-flop at time (t+1) is same as the output at time t, after the occurance of a clock pulse if:	1.S=R=1 2.S=0, R=1 3.S=1, R=0 4. <mark>S=R=0</mark>
	1. 2 ⁻¹²⁸ to (1 - 2 ⁻²³) × 2 ¹²⁷
The range of representable normalized numbers in the floating point binary fractional representation in a 32-bit word with 1-bit sign, 8-bit excess 128 biased exponent and 23-bit mantissa is	2. $(1 - 2^{-23}) \times 2^{-127}$ to 2^{128} 3. $(1 - 2^{-23}) \times 2^{-127}$ to 2^{23}
	4. 2 -129 to $(1 - 2 \cdot 2^{3}) \times 2^{127}$
A software system crashed 20 times in	
A software system crashed 20 times in the year 2017 and for each crash, it took 2 minutes to restart. Approximately, what was the software availability in that year?	1.96.9924% 2.97.9924% 3.98.9924% <mark>4.99.9924%</mark>
	1.using sampling in place of exhaustive
	testing of software
Statistical software quality assurance in	2.Surveying customers to find out their
software engineering involves	opinions about product quality. 3.tracing each defect to its underlying cause, isolating the vital few causes, and
	dados, isolating the vital levy causes, and

	moving to correct them 4.tracing each defect to its underlying causes, and using the Pareto principle to correct each problem found
Consider the following C code. Assume that unsigned long int type length is 64 bits.	porrect each problem round
unsigned long int fun(unsigned long int n){	
unsigned long int i, $j = 0$, sum = 0;	•
for (i = n; i > 1; i = i/2) j++;	2. 5 3. 6
for $(j=n; j > 1; j =$	4. 40
return(sum); }	
The value returned when we call fun with the input 240 is	
How can we make a C++ class such that	1 Not possible
	2.By making destructor private
new operator? If user tries to create an	3.By making constructor private
object directly, the program produces	4.By making both constructor and
compiler error.	destructor private
Consider an IP packet with a length of	
4,500 bytes that includes a 20-byte IPv4	
header and a 40-byte TCP header. The	
packet is forwarded to an IPv4 router that	
supports a Maximum Transmission Unit	
(MTU) of 600 bytes. Assume that the	1.144 2.124 3.64 4.256
length of the IPheader in all the outgoing	1.144 2.124 3.04 4.230
fragments of this packet is 20 bytes.	
Assume that the fragmentation offset	
value stored in the first fragment is 0.The	
fragmentation offset value stored in the	
third fragment is	
Consider a TCP client and a TCP server	
running on two different machines. After	
completing data transfer, the TCP client	
calls close to terminate the connection	
and a FIN segment is sent to the TCP	
server. Server-side TCP responds by	1.LAST-ACK 2.TIME-WAIT 3.FIN-WAIT-1
sending an ACK, which is received by the	4.FIN-WAIT-2
client-side TCP. As per the TCP	
connection state diagram (RFC 793), in	
which state does the client-side TCP	
connection waits for the FIN from the	
server-side TCP?	
A souday O say !	1.
A sender S sends a message m to	1 and 2 only
receiver R, which is digitally signed by S	0 1 only
with its private key. In this scenario, one	<mark>2. 1 only</mark> 3.
■	

or more of the following security violations can take place.	
1. S can launch a birthday attack to replace m with a fraudulent message	4. 2 and 3 only
 A third party attacker can launch a birthday attack to replace m with a fraudulent message 	
3. R can launch a birthday attack to replace m with a fraudulent message	
Which of the following are possible security violations?	
Suppose that everyone in a group of N people wants to communicate secretly with the N-1 others using symmetric key cryptographic system. The communication between any two persons should not be decodable by the others in the group. The number of keys required in the system as a whole to satisfy the confidentiality requirement is	1.2N 2.N(N-1) <mark>3.N(N-1)/2</mark> 4.(N-1)^2
The connection between storage and Microsoft's Content Delivery Network is stated to be at least percent uptime.	1.90.8 <mark>2.99.9</mark> 3.95.3 4.94.6
Predict the correct statement about	1.A single copy of the operating system resides in each processor. 2.Useful for situations where data must remain in memory to process. 3.Bottlenecks increase with uniprocessor system because tasks are not shared. 4.The problems with memory contention are unlikely.
Speed of HPC systems has enhanced from Gflops to	1.Tflops 2.Pflops 3.Eflops 4.Mflops
Job throughput, data access and storage are elements of	1.Adaptation
result of SELECT DISTINCT w, x FROM R, S	1. R has no duplicates and S is non-empty 2. R and S have no duplicates 3. S has no duplicates and R is non-empty
	4. R and S have the same number of tuples
A FAT (file allocation table) based file system is being used and the total overhead of each entry in the FAT is 4 bytes in size. Given a 100 x 10° bytes disk on which the file system is stored and data block size is 10° bytes, the maximum size of a file that can be stored	1. 99.55 to 99.65 2. 100.5 to 101.4 3. 97.2 to 98.5 4.

on this disk in units of 10° bytes is	89.1 to 91.2
Consider the following relational schema: Suppliers(sid: integer, sname: string, city: string, street: string) Parts(pid:integer, pname:string, color:string) Catalog(sid:integer, pid:integer, cost:real) Assume that, in the suppliers relation above, each supplier and each street within a city has a unique name, and (sname, city) forms a candidate key. No other functional dependencies are implied other than those implied by primary and candidate keys. Which one of the	1. The schema is in BCNF 2. The schema is in 3NF but not in BCNF 3. The schema is in 2NF but not in 3NF 4. The schema is not in 2NF
of relation r?	1.Pk(r1) \rightarrow Pk(r2) 2.Pk(r2) \rightarrow Pk(r1) 3.Pk(r2) \rightarrow Pk(r1) and Pk(r1) \rightarrow Pk(r2) 4.Pk(r2) \rightarrow Pk(r1) or Pk(r1) \rightarrow Pk(r2)
A man travelling on f(x, y) = sin(xy). His shadow passing through the origin in a straightline (sun travels with him overhead). What is the slope of the line travelling on which would lead him to the lowest elevation?	1.There isn't such a line 2.1 31 4.0
a11 = a12 = a21 = +1 and a22 = -1. Then the eigenvalues of the matrix	1. 1024 and -1024 2. 1024√2 and -1024√2 3. 4√2 and -4√2 4. 512√2 and -512√2
The grammar whose productions are	 The sentence if a then if b then c:= d has two parse trees The left most and right most derivations of the sentence if a then if b then c:= d give rise to different parse trees the sentence if a then if b then c:= d else c:= f has more than two parse trees the sentence if a then if b then c:= d else c:= f has two parse trees

```
What is the time complexity of fun()?
int fun(int n)
int\ count = 0;
for (int i = n; i > 0; i \neq 2)
                                                   1.O(n^2) 2.O(nLogn) 3.O(n) 4.O(n Log n Log n)
    for (int j = 0; j < i; j++)
    count += 1;
return count;
                                                    1 and 2
Consider the following three claims
1. (n + k)^m = \Theta(n^m), where k and m are constants
                                                   1 and 3
2. 2^{n+1} = O(2^n)
3. 2^{2n+1} = O(2^n)
                                                   2 and 3
Which of these claims are correct?
                                                   1, 2 and 3
Consider the following function that takes
reference to head of a Doubly Linked List as
parameter. Assume that a node of doubly linked list
has previous pointer as prev and next pointer
as next.
void fun(struct node **head_ref)
  struct node *temp = NULL;
  struct node *current = *head_ref;
                                                   2 <--->1 <--->4<---> 3<---> 6<---> 5
  while (current != NULL)
                                                       --> 4<---> 3 <---> 6
    temp = current->prev;
    current->prev = current->next;
    current->next = temp;
                                                    6<---> 5<---> 4 <---> 3<---> 1<---> 2
    current = current->prev;
  if(temp != NULL )
     *head ref = temp->prev;
Assume that reference of head of following doubly
linked list is passed to above function 1<---> 2
```

<> 3<> 4<> 5<> 6. What should be the modified linked list after the function call?	
Let G be a graph with 100! Vertices, with each vertex labeled by a distinct permutation of the numbers 1,2,, 100. There is an edge between vertices u and v if and only if the label of u can be obtained by swapping two adjacent numbers in the label of v. Let y denote the degree of a vertex in G, and z denote the number of connected components in G. Then, $y + 10z = $	1.109 2.110 3.108 4.107
The instruction pipeline of a RISC processor has the following stages: Instruction Fetch (IF), Instruction Decode (ID), Operand Fetch (OF), Perform Operation (PO) and Writeback (WB). The IF, ID, OF and WB stages take 1 clock cycle each for every instruction. Consider a sequence of 100 instructions. In the PO stage, 40 instructions take 3 clock cycles each, 35 instructions take 2 clock cycles each, and the remaining 25 instructions take 1 clock cycle each. Assume that there are no data hazards and no control hazards. The number of clock cycles required for completion of execution of the sequence of instructions is	1.218 <mark>2.219</mark> 3.215 4.210
What for the swap space in the disk is used?	1.Saving temporary html pages 2.Saving process data 3.Storing the super-block 4.Storing device drivers
Consider the min-term list form of a Boolean function F given below. $(P,Q,R,S) = \sum (0,2,5,7,9,11) + d(3,8,10,12,14)$ Here, m denotes a min-term and d denotes a don't care term. The number of essential prime implicants of the function F is	1.2 2.4 <mark>3.3</mark> 4.6
Coupling is a measure of the strength of the interconnections between software modules. Which of the following are correct statements with respect to module coupling?	
P: Common coupling occurs when one module controls the flow of another module by passing it information on what to do.	1.P and Q only 2.P and R only 3.Q and R only 4.All of P, Q and R
Q: In data coupling, the complete data structure is passed from one module to another through parameters.	
R: Stamp coupling occurs when modules share a composite data structure and use only parts of it.	
Consider the following pseudo code	
while (m < n)	
if $(x > y)$ and $(a < b)$ then $a=a+1$	1.5 2.4 3.3 4.2
y=y-1	
end if	

```
m=m+1
end while
What is cyclomatic complexity of the above
pseudo code?
Consider the following C program.
#include
struct Ournode
 char x,y,z;
int main()
 struct Ournode p = {'1', '0', 'a'+2};
 struct Ournode *q = \&p;
  printf ("%c, %c", *((char*)q+1), *((char*)q+2));
 return 0;
The output of this program is:
                                            1.Self inductance 2.Mutual inductance
The principle of operation of LVDT is
based on the variation of
                                            3.Reluctance 4.Permanence
Which one of the following decides the
                                            1.Deflecting system 2.Controlling system
time of response of an indicating
                                             3.Damping system 4.Pivot and jewel
nstrument?
                                             bearing
For a feedback control system of type 2,
                                             1.Infinite 2.Constant 3.Zero 4.Indeterminate
the steady state error for ramp input is,
When a potentiometer is used for
measurement of voltage of an unknown
source, the power consume in the circuit
                                            1.high 2.Very high 3.ideally zero 4.small
of the unknown source under null
conditions is
Two incandescent light bulbs of 40 W and 1. Bulbs together consume 50W
                                             2. 40W bulb grow brighter
60 W rating are connected in series
                                            3. 60W bulbs glow brighter
across the mains. Then
                                            4. Bulbs together consume 100W
                                             \int_0^T |x(t)| dt < \infty
Fourier series of any periodic signal x(t) can
only be obtained if
                                            finite number of discontinuities within finite
                                            time interval t
                                                    both (a) and (b) are correct
```

	4. infinite number of discontinuities
Rectifier moving coil instruments respond to	1.rms value for symmetrical square wave form 2.rms value for all wave forms 3.Peak value, irrespective of the nature of the wave form 4.Average value for all wave forms
The transfer function of a MIMO system with the state space representation of , is given by ,	1.C(sI - A)^-1 2.C(sI - A)^-1 + D 3.(sI - A)^-1B + D 4.C(sI - A)^-1B + D
A d.c. voltmeter has a sensitivity of 1000 ohm/volt. When it measures half full scale in 100 V range, the current through the voltmeter will be	1.50 mA 2.100 mA 3.1 mA <mark>4.0.5 mA</mark>
The sensitivity of an instrument is the	1.Closeness of the output values for repeated applications of a constant input. 2.Smallest increment in the input that can be detected certainly 3.Largest input change to which the instrument fails to respond 4.Ratio of the change in the magnitude of the output to the corresponding change in the magnitude of the input.
In an induction type of meter, maximum torque is produced when the phase angle between the two fluxes is	1.60° 2.45° <mark>3.90°</mark> 4.0°
For a type one system, the steady - state error due to step input is equal to	1.infinite. 2.zero. 3.0.25. 4.0.5.
A lens is having a system constant $k_1=0.8$, radius of the object is 40 μ m, distance of object from lens is 133.33 μ m and wavelength of light as 350 nm. Its resolution is	1. 400nm <mark>2. 466.66 nm</mark> 3. 566.66 nm 4. 460.66 nm
	1.sensed signal. 2.desired variable value. <mark>3.error signal.</mark> 4.servo-signal.
Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of	1.settling time. 2.rise time. 3.natural frequency. 4.damping ratio.
A unity feedback system with open-loop transfer function $G(s) = 4/[s(s + p)]$ is critically damped. The value of the parameter p is	1.4 2.3 3.2 4.1

The difference between two value and	1 Deletive amen O Abachuta amen 2 Ocean
The difference between true value and measured value is known as	1.Relative error 2.Absolute error 3.Gross error 4.Probable error
In the Bode-plot of a unity feedback control system, the value of phase of G(jw) at the gain cross over frequency is -125°o. The phase margin of the system is	1. -125^o 255^o. <mark>3.55^o 4</mark> .125^o.
The maximum current that a 2W, 80 k Ω resistor can safely conduct is:	1. 40KA <mark>2. 5mA</mark> 3. 25 μA 4. 160KA
To prevent a DC return between source and load, it is necessary to use	 inductor between source and load resistor between source and load either (a) or (b) capacitor between source and load
Which of the following is the dynamic characteristics of an instrument ?	 Fidelity Reproducibility Dead zone Sensitivity
In measurement systems, which of the following static characteristics are desirable:	 All the answers are correct Reproducibility Sensitivity Accuracy
If the quantity is slowly varied from zero, output is not shown until some minimum value of input is exceeded. This minimum value of input is called	 Sensitivity Reproducibility Threshold Accuracy
Which of a following is not a basic element of a transformer?	1.primary winding 2.Core 3.Secondary winding 4.Mutual flux
An ideal voltage source should have	 small value of emf zero source resistance large value of emf infinite source resistance
A lossy capacitor Cx , rated for operation at 5 kV, 50 Hz is represented by an equivalent circuit with an ideal capacitor Cp in parallel with a resistor Rp . The value Cp is found to be 0.102 μ F and value of Rp = 1.25M Ω . Then the power loss and tan δ of the lossy capacitor operating at the rated voltage, respectively, are	1. 20 W and 0.025 2. 10 W and 0.0002 3. 10 W and 0.0025 4. 20 W and 0.04
Consider a characteristic equation given by $s^2 + 3s^3 + 5s^2 + 6s + K + 10$ The condition for stability is	1. K > 5 2 10 < K 3. K > - 4 4 10 < K < - 4
Two resistors connected in series have an equivalent resistance of 18 ohms and when connected in parallel have an equivalent resistance of 4 ohms. Find the value of both the resistances.	1. 2 ohm , 2 ohm 2. 14 ohm , 4 ohm <mark>3. 12 ohm ,6 ohm 4. 9 ohm ,9 ohm</mark>
The steady state error of a stable 'type 0' unity feedback system for a unit step function is	1. 1/1+K _p 2. 1/K _p . 3. 0

	4
	4. ©
Transform is	 Laplace Transform Fourier Transform
often used in transient and stability	3. Z-Transform
analysis of	4. DTFT
	1.should be mounted in horizontal position
	2.either mounted in vertical position or
	mounted in horizontal position
The switch board instruments	3.neither mounted in vertical position nor
	mounted in horizontal position
	4.should be mounted in vertical position
	4.Should be mounted in vertical position
	2.5 micron to 6 micron
	2.5 IIICIOII to 6 IIICIOII
	2.
In foil strain gauge the thickness of foil	25 micron (or) less
varies from	3.
	25 micron to 60 micron
	4.
	2.5 micron to 5 micron
The unit impulse recognize of a linear	
The unit impulse response of a linear variant system is the unit step function	
variant system is the unit step function	1. <i>ae</i> -at
	2. 1 - e^{-at}
For t > 0, the response	3. $a(1 - e^{-at})$
system to an excitation $e^{-t}(t)$, $a > 0$ will	4. $(1/a)(1 - e^{-at})$
The characteristic polynomial of system is	1. stable
$q(s) = 2s^5 + s^4 + 4s^3 + 2s^2 + 2s + 1$.	2. unstable
The system is	3. marginally stable
The system is	4. oscillatory
	1.
	Are independent of the core position
	<mark>2.</mark>
	Vary unequally depending on the core
	position
In a LVDT, the two secondary voltages	position
	3.
	Vary equally depending on the core
	position
	4.
	Are always in phase quadrature
A piezoelectric crystal having dimensions	1. 25 N
, ,	2.38N
sensitivity of 0.055 Vm/N is used for force	l l
measurement. The force applied if the	30.3 N
voltage developed is 100V is	4.
	21.8NN
	A thermostatic control
L.,	2. Traffic Light Control
Which one of the following is open loop?	3. The respiratory system of man
	4. A system for controlling the movement
	of the slide of a copying milling machine

The dead zone of a certain pyrometer is 0.125 % of the span. The calibration is 8000C to 18000C. What temperature change must occur before it is detected?	1. 2.25 degree C 2. 0.25 degree C 3. 12.25 degree C 4. 1.25 degree C
According to application, instruments are classified as	1.moving coil 2.both switch board and portable 3.portable 4.switch board
A half adder can be constructed using	One XOR gate and one AND gate One XOR and one OR gates with their outputs connected in series One XOR and one OR gates with their outputs connected in parallel Two XNOR gates only
Which of the following essential features is possessed by an indicating instrument?	1.Damping device 2.All of the options specified 3.Controlling device 4.Deflecting device
Consider a feedback control system with loop transfer function $(s)H(s) = K(1 + 0.5s)/s(1 + s)(1 + 2s)$ The type of the closed loop system is	1. one 2. zero 3. two 4. three
1 1 000/ (1. 2.1sec 2. 2.5 sec 3. 2.7 sec 4. 2.3 sec
A device prevents the oscillation of the moving system and enables the latter to reach its final position quickly	1.any of the options specified <mark>2.damping</mark> 3.controlling 4.deflecting
$(2s^2+6s+5)/(s+1)^2(s+2)$. The characteristic	1. $(s + 1)^2 (s + 2) = 0$ 2. $2s^2 + 6s + 5 - (s + 1)^2 (s + 2) = 0$ 3. $2s^2 + 6s + 5 + (s + 1)^2 (s + 2) = 0$ 4. $2s^2 + 6s + 5 = 0$
A pressure gauge is calibrated from	1. Resolution of 0.5 kN/m^2 2. dead zone of 0.125 kN/m^2 3. Threshold of 0.125 kN/m^2 4. Resolution of 0.125kN/m^2
A 0-10A ammeter has 100 divisions which can read to 1/4 division. The resolution of the meter is	1. 1.025A 2. 2.025A <mark>3.</mark>

	la comu
	0.025A
	4.
	0.125A
	1. 60°
The phase margin (in degrees) of a	2. 30°
system having the loop transfer function	330°
(s) $H(s) = 2\sqrt{3}/s(s + 1)$ is	4. 45°
A star connected system has three	
l	1. 2R 2. R/2
in one of the three arms of the equivalent	Z. R/Z
delta system is	6. R/3 4. 3R
The spring material used in a spring	1.Most be of low temperature co-efficient
pontario de moderno de marco de moderning	2.All of the options specified 3.Should
property.	have low specific resistance 4.Should be
In the Dade what of a cost of the	non-magnetic
In the Bode - plot of a unity feedback	1 125°
control system, the value of phase of $(j\omega)$	
at the gain cross over frequency is -	<mark>3. 55⁰</mark>
125°. The phase margin of the system is	4. 125º
	 Critically damped response
A control system having unit damping	Oscillatory response
factor will give	3. Undamped response
	4. No response
The initial slope of the Bode plot for a	1. 60 db/decade
transfer function having three poles at	220db/decade
orgin is	360db/decade
	4. 20db/decade
A 100 kilo ohm resistor with a 1 W nower	Wire wound resistor
A 100 kilo ohm resistor with a 1 W power rating is likely to be a	
"	Neither carbon nor wire wound resistor
	4. Either carbon or wire wound resistor
	1. increase the speed of response
r pridee lag compensation im	2. increase bandwidth
	3. increase overshoot
The polar plot of $(s) = 10/$	4. improve relative stability
(s+1) ² intercepts real axis at $\omega = \omega_0$.	1 2.5, 1
Then, the real part and ω_0 are	2 5, 2
respectively given by:	3 5, 1
grounds, given by.	4 5, 0.5
Introduction of integral action in the	Marginally stable system
forward path of a unity feedback system	System with no steady state error
results in a	3. System with increased stability margin
	System with better speed of response
For the system 2 /(s +1) , the	1. 1 s
approximate time taken for a step	2. 2 s
response to reach 98% of the final value	3. 4 s
	4. 8 s
A given system is characterized by the	linear and unstable.
	nonlinear and unstable.
$[d^2y(t)/dt^2]$ - $[dy(t)/dt]$ - $2y(t)$ = $x(t)$. The	3. linear and stable.
system is:	4. nonlinear and stable.

	14 14 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gain cross over frequency is the	1. Magnitude is 0 db
frequency at which	2. phase is 180º 3. magnitudes is 1db
	4. phase is -180°
A 0-10 V voltmeter is showing null	
deflection when input is < 11/ This is	1.Dead space 2.Sensitivity 3.Hysteresis 4.Nonlinearity
characterized bystatic character.	<u> </u>
A dynamometer wattmeter can be used	1.A.C. only 2.D.C. only <mark>3.both D.C. and</mark>
for	A.C. 4.any of the options specified
Which of the following devices may be	1.All are correct answer
used for extending the range of	2.Shunts 3.Multipliers 4.Current
	transformers
While forming the Routh Array, the	1. unstable
situation of a row of zeros indicates that	is not sensitive to variations inn gain is stable
the system	4. has symmetrically located roots
Which of the following are integrating	1.Ammeters 2.Voltmeters 3.Wattmeters
instruments ?	4.Ampere-hour and watt-hour meters
A moving-coil permanent-magnet	
instrument can be used as by	1.ballistic galvanometer 2.flux-meter 3.ammeter 4.voltmeter
using a low resistance shunt.	S.ammeter 4.volumeter
	1.by using a low resistance shunt 2.by
A moving-coil permanent-magnet	using a high series resistance <mark>3.by</mark>
instrument can be used as flux-meter	eliminating the control springs 4.by making
The unit step response of a first order	control springs of large moment of inertia
The unit step response of a first order system is 0.865 at 2 seconds. The 5%	1. 3
	2. 5
	3. 4 4. 2
Which of the following is an essential part	1.An operating torque system 2.Revolution
of a motor meter ?	registering device 3.All of the options
The impact of negative feedback on which	specified 4.A braking device
of the following are disadvantageous?	l 1. i and iii
	2. iii and iv
i) Gain ii)	3. ii and iv
Stability iii)	4. i and ii
Bandwidth iv) Noise	
	1.recording instrument 2.integrating
An ammeter is a	instrument <mark>3.secondary</mark>
	instrument4.absolute instrument
For a type one system, the steady - state	1.0.5 2.infinite 3.0.25 4.zero
error due to step input is equal to	
In a portable instrument, the controlling	1.eddy currents 2.gravity 3.spring 4.all of
torque is provided by	the specified options
The pointer of an indicating instrument	1.very heavy <mark>2.very light </mark> 3.either (very light) or (very heavy) 4.neither (very light)
should be	nor (very heavy)
In majority of instruments damping is	1.fluid friction 2.all of the options specified
provided by	3.eddy currents 4.spring
Two resistors connected in series have an	
equivalent resistance of 18 ohms and	1. 2 ohm ,2 ohm
when connected in parallel have an	2. 14 ohm ,4 ohm
equivalent recictance of a crime. Time the	<mark>3. 12 ohm ,6 ohm 4. 9 ohm ,9 ohm</mark>
value of both the resistances.	5 Olilli ,5 Olilli

Sensitivity of a potentiometer can be increased by	Decreasing the length of potentiometer wire increasing the length of potentiometer
	wire 3. Decreasing the current in potentiometer wire
	Decreasing the resistance in the rheostat in series with the battery
	1. $0.8~\Omega$ in series with the meter 2. $1.0~\Omega$ in series with the meter 3. $0.04~\Omega$ in parallel with the meter 4. $0.05~\Omega$ in parallel with the meter
mode, the screen shows a figure which changes from ellipse to circle and back to ellipse with its major axis changing orientation slowly and repeatedly. The	 The signals are not sinusoidal The amplitudes of the signals are very close but not equal There is a constant but small phase difference between the signals The signals are sinusoidal with their frequencies very close but not equal
The power consumption in PMMC instruments is typically about	 0.25 W to 2 W 0.25 mW to 2 mW All the answers are wrong 25 μW to 2 mW
The pressure coil of a dynamometer type wattmeter is	Highly inductive Highly resistive Purely resistive Purely inductive
The potential transformers are used to measure large voltage using	 Low range ammeter Low range voltmeter High range voltmeter High range ammeter
No eddy current and hysteresis losses occur in	Electrodynamo meter instruments Moving iron instruments PMMC instruments Electrostatic instruments
In moving coil meters, damping is provided by	The coil spring attached to the moving mechanism damping vane in the air tight chamber dedy current disc the aluminium frame of the coil
The bridge method commonly used for finding mutual inductance is	 Wien bridge De Sauty bridge Heaviside Campbell bridge Schering bridge
A triangular waveshape is obtained	 By differentiating a sine wave By integrating a square wave By differentiating a square wave By integrating a sine wave
If a capacitor is connected across a portion of resistance of multiplier of the wattmeter then the pressure coil of the circuit becomes	Capacitive Inductive Non inductive Non capacitive
Ballistic galvanometer are principally used for the measurement of	 Power Voltage Electric charges

	4. 0
	4. Current
Two resistors 5 Ω and 3 Ω are connected	
in series with a voltage source of 20 V.	2. 8V
What is the voltage drop across 3 Ω	<mark>3. 7.5V</mark>
resistor?	4. 12.5V
	1.0.637
	2. 1.414
Form factor for a sine wave is	
	3.1.11
	4. 0.707
	1.
	n⁻¹X(z)
	2.
The - transform of vin killin	
The z-transform of x[n-k] is	kX(z ⁻¹)
	3.
	z-k X(z)
	4.
	X(k ⁻¹ z)
	` ,
A network has 12 branches and 8	1. 4
independent loops. How many nodes are	<mark>2. 1</mark> 9
there in the network?	<mark>3. 5</mark>
	4. 17
	1. joule/sec
Which of the following is not the same as	2. amperes/volt
watt?	3. (Amperes) ² x ohm.
	4. amperes x volts
	1. Non inductive shunt in case of
	ammeters and are generally self
	compensated in case of voltmeters
The frequency expers in industion	2. Self compensated in case of ammeters
	and non inductive shunt in case of
instruments can be compensated by the	voltmeters
use of	3. Self compensated in case of both
	D. Sell Collipensated III Case of Dotti
	•
	ammeters and voltmeters
	ammeters and voltmeters 4. Non inductive shunt in both ammeters
	ammeters and voltmeters
	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters
	ammeters and voltmeters 4. Non inductive shunt in both ammeters
In a moving coil of a meter swamping	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error
	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters
In a moving coil of a meter swamping	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error
In a moving coil of a meter swamping	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption
In a moving coil of a meter swamping resistance is added to	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the currents flowing away from the point and	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem 3.Superposition theorem 4.Thevenin's
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the currents flowing away from the point and	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem 3.Superposition theorem 4.Thevenin's
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the currents flowing away from the point and the voltage in the circuit is the algebraic	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem 3.Superposition theorem 4.Thevenin's
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the currents flowing away from the point and the voltage in the circuit is the algebraic sum of the voltages in the circuit' represents -	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem 3.Superposition theorem 4.Thevenin's
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the currents flowing away from the point and the voltage in the circuit is the algebraic sum of the voltages in the circuit' represents - Power consumed by a balanced 3-phase,	 ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem 3.Superposition theorem 4.Thevenin's theorem 1. π/8
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the currents flowing away from the point and the voltage in the circuit is the algebraic sum of the voltages in the circuit' represents - Power consumed by a balanced 3-phase, 3-wire load is measured by the two	ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem 3.Superposition theorem 4.Thevenin's theorem 1. $\pi/8$ 2. $\pi/4$
In a moving coil of a meter swamping resistance is added to The statement 'In any circuit of linear impedances, the currents flowing towards a point is equal to the sum of the currents flowing away from the point and the voltage in the circuit is the algebraic sum of the voltages in the circuit' represents - Power consumed by a balanced 3-phase,	 ammeters and voltmeters 4. Non inductive shunt in both ammeters and voltmeters 1. Reduce the frequency error 2. Reduce the temperature error 3. Reduce the power consumption 4 All of these 1.Kirchhoff's law 2.Norton's theorem 3.Superposition theorem 4.Thevenin's theorem 1. π/8

reads twice that of the second. Then the load impedance angle in radians is	
Three impedances are in series Z1= (2.12+j2).12; Z2= 10+j10; Z3=-j5. Find applied voltage V if voltage across Z1 is 26.59-j4.69 V	
	1. Vertical
The gravity controlled instruments has to be kept	2. Horizontal
	3. Inclined at 45 degree
	4. Inclined at 75 degree
A 10mH inductor has current i=5 cos2000t A. Obtain the voltage across the inductor.	1.1000 cos (2000t+90) 2.100cos 2000t V 3.100 cos (2000t+90) V 4.1000 Sin 2000t V
	1.
	(dX[z]/dz)
Th 4	2. z(dX[z]/dz)
The z-transform of the signal nx[n] is	3.
	$(d^2X[z]/dz^2)$
	<mark>4.</mark>
	-z(dX[z]/dz)
For the measurement of low resistances, Kelvin's double bridge has high accuracy because	It has two set of ratio arms which eliminates effect of resistance of connecting lead It has two null indicator It has a null indicating galvanometer
	4. It has four sets of ratio arms which eliminates the effect of resistance of connecting lead
What is one disadvantage of an S-R flip-flop	It has no Enable input It has no clock input It has only a single output It has a RACE condition
A network has 7 nodes and 5 independent loops. The number of branches in the network is:	1.11 2.12 3.13 4.10
When the current through the coil of an electromagnet reverses, the	direction of the magnetic field reverses direction of the magnetic field remains unchanged magnetic field expands magnetic field collapses
	Stationary system of the instrument
Damping torque is the torque which acts on	Moving system of the instrument only when it is stationary Moving system of the instrument only when it is moving

	Stationary system of the instrument only when the moving system is moving
If $x[n]$ is real and odd, then its discrete Fourier series coefficient c_k will be	1. real 2.
R1 and R4 are the opposite arms of a Wheatstone bridge as are R3 and R2. The source voltage is applied across R1 and R3. Under balanced conditions which one of the following is true	1. R1 = R2+ R3+ R4 2. R1 = R3R4 / R2 3. R1 = R2R4 / R3 4. R1 = R2R3 / R4
Discrete Fourier Series is dual if	1. $c[n] \overset{DFS}{\longleftrightarrow} \frac{1}{N_0} x[-k]$ 2. $c[n] \overset{DFS}{\longleftrightarrow} x[k]$ 3. $c[n] \overset{DFS}{\longleftrightarrow} x[-k]$ 4. $c[n] \overset{DFS}{\longleftrightarrow} N_0 x[k]$
For the measurement of unknown inductance in terms of known capacitance, the suitable ac bridges are	Maxwell and Hay's bridge Maxwell and Schering bridge Hay's and Wien's bridge Maxwell and Wien's bridge
In a ballistic galvanometer, the deflecting torque is proportional to The effect of stray magnetic field on the actuating torque of a portable instrument is maximum when the operating field of the instrument and the stray fields are	1. the current through coil 2. square of current through coil 3. square-root of current through coil 4. sine of measured 1. perpendicular 2. parallel 3. inclined at 60%
The power in a dc circuit is measured using ammeter and a voltmeter. The	4. inclined at 30%1. the sum of power consumed by load and the voltmeter

The power indicated is	power consumed by the voltmeter the power consumed in the load the sum of power consumed by load and the ammeter
A 0-300 V voltmeter has an error of \pm 2% of full scale deflection. What would be the range of readings if true voltage is 30 V?	1. 24V - 36 V 2. 20V to 40 V 3. 29.4V - 30.6 V 4. 24.4 V - 36.6 V
Tick the correct relationship	1. $X^*(\Omega) \leftrightarrow x^*[n]$ 2. $X^*(\Omega) \leftrightarrow -x^*[n]$ 3. $X^*(-\Omega) \leftrightarrow x^*[n]$ 4. $X^*(-\Omega) \leftrightarrow -x^*[n]$
Sensitivity of a wheat-stone bridge is given by 0.429 mm/ Ω . Find the require change of resistance in the unknown arm to produce a change in deflection of 3 mm of the galvanometer.	1. 7Ω 2. 14.3Ω 3. 0.143Ω 4. 0.007Ω
Fourier transform of unit step sequence is	$\frac{1}{\pi} \frac{\delta(\Omega)}{\delta(\Omega)}$ 2. $\frac{1}{1-e^{-j\Omega}}$ 3. $\frac{\pi}{\infty} \delta(\Omega) + \frac{1}{1-e^{-j\Omega}}$ 4. $1 - e^{-j\Omega}$
current and voltage measurements:	 in dc circuits only in magnetic circuits in both ac and dc circuits in ac circuits only
In an oscilloscope screen, linear sweep is applied at the	 vertical axis horizontal axis origin

	4. both horizontal and vertical axis
	1
If $x(\omega) = \delta(\omega - \omega_0)$, then x	$e^{-j\omega_0 t}$ 2. $\delta(t)$ 3. $\frac{1}{2\pi} e^{j\omega_0 t}$ 4.
	<u> </u>
Brook's deflection potentiometer is used when the unknown voltage	 Constant linear Varying All the answers are correct
The phase displacement of the rotor EMF in drysdale potentiometer being equal to	3. angle of rotor from zero position 4. angle of rotor with reference to stator coil
The dielectric loss of a capacitor can be measured by which one of the following?	 Schering bridge Owen bridge Wien bridge Maxwell bridge
Schering bridge can be used to measure which one of the following ?	Q of a coil Inductance and its Q-value Very small resistance Capacitance and its power factor
The advantages of Hay's bridge over maxwell's inductance -capacitance bridge is because	1. It can be used for measurement of inductance of low Q coils 2. It can be used for measurement of inductance of high Q coils 3. Its equation for balance do not contain any frequency term 4. All answers are wrong
Inductance is measured by which one of the following ?	Wien bridge Schering bridge Maxwell bridge Owen bridge
An average-reading digital multimeter reads 10V when fed with a triangular wave, symmetric about the time-axis.For the same input an rms-reading meter will read	1. 20√3 2. 10/√3 <mark>3. 20/√3</mark> 4. 10√3
In a multimeter, internal battery is required to measure	 Voltage Resistance frequency current

	1 100 00001 \/ 0 1000 0' 00001 \/
A 10mH inductor has current i=5 cos2000t A. Obtain the voltage across the inductor.	1.100cos 2000t V 2.1000 Sin 2000t V 3.100 cos (2000t+90) V 4.1000 cos (2000t+90)
Modern electronic multimeters measure resistance by	applying a constant voltage across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling
A Hartley oscillator is used for	 radio frequencies audio frequency micro wave frequencies very low frequencies
In RC phase-shift oscillator circuits.	pure sine wave output is possible transistor parameters determine oscillation frequency. feedback factor is less than unity there is no need for feedback
A Wheatstone bridge cannot be used for precision measurements because errors are introduced in to on account of	 all the answers are right contact resistance thermo-electric EMF Resistance of connecting leads
The input signal for an instrumentation amplifier usually comes from	 An inverting amplifier A resistor A differential amplifier A wheat- stone bridge
perfectly symmetrical	 there will be no common mode amplification there will be a small ac voltage there will be 0 volt at the output there will be no ac output voltage
Which of the following is not a property of ideal op-amps?	 Output impedance is infinite. Bandwidth is infinite. Input impedance is infinite. Gain is infinite
input voltage is	1. 2 μV 2. 10 V <mark>3. 5 μV</mark> 4. 1 V
In a nonlinear op-amp circuit, the	 Op amp never saturates Feedback loop is never opened Output shape is the same as the input shape Op amp may saturate
In a differential amplifier, the CMRR is limited mostly by the	 CMRR of the op amp Gain-bandwidth product Tolerance of the resistors Supply voltages
An op-amp has an open-loop gain of 75,000 and a cutoff frequency of 100 Hz. At 1 kHz the open-loop gain is down by	1. 10 dB. 2. 3 dB. <mark>3. 20 dB.</mark> 4. 6 dB.

The output of a logic gate is "1" when all its input are at logic "0". The gate is either	1. NAND/ EX-OR gate 2. NOT / EX-NOR gate 3. AND / EX-OR gate 4. OR / EX-NOR gate
Decimal 43 in Hexadecimal and BCD number system is respectively	1. 2B, 0011 0100 2. B2, 0100 0011 <mark>3. 2B, 0100 0011</mark> 4. B2, 0100 0100
Which of the following best describes a full adder:	 It is made of 2 half adders and a NOT gate It is made of 2 half adders and an AND gate. It is made of 2 half adders and nothing else It is made of 2 half adders and an OR gate
How many unique symbols are used in the decimal number system?	 Nine Ten Unlimited One
A basic S-R flip-flop can be constructed by cross-coupling which basic logic gates	 AND or NOR gates XOR or XNOR gates NOR or NAND gates AND or OR gates
Which of the following statements represent the two best methods of logic circuit simplification?	 Karnaugh mapping and circuit waveform analysis Boolean algebra and actual circuit trial and error evaluation Actual circuit trial and error evaluation and waveform analysis Boolean algebra and Karnaugh mapping
Why NAND gate implementation is preferred over NOR gate implementation?	 Consume less power Provide maximum density Higher Mobility of NMOS Can be used to make any gate
What is the radix for binary numbers?	1. 1 2. 8 <mark>3. 2</mark> 4. 4
Which of the following is minimum error code?	 Grey code Octal code Excess 3 code Binary code
The 2's complement of the number 1101101 is	1. 0111110 2. 0110010 3. 0101110 4. 0010011
The 2's complement of the number 1101110 is	1. 0010011 2. 0010001. 3. 0010001. 4. 0010010.
A sequence of equally spaced timing pulses may be easily generated by which type of counter circuit	 binary johnson clock shift register sequencer

Convert the following decimal number to (237) ₁₀ to base 5 Mercury thermometer can be used to	1. 1427 2. 1422 3. 1323 4. 1423 1. 250 2. 750
measure the temperature upto °C.	<mark>3. 350</mark> 4. 100
current drawn from the source	decreases Increases is cut off remains the same
of 15 kHz Which of the following	1. 12 kHz and 9 kHz 2. 12 kHz only <mark>3. 12 kHz and 8 kHz</mark> 4. 8 kHz only
S-R type flip-flop can be converted into D type flip-flop if S is connected to R through	 OR gate Inverter AND gate Full Adder
The ratio of output signal or response of the instrument" to a change in input or measured variable is called:	sensitivity precision resolution threshold
One kilowatt hour of electrical energy is the same as	1. 36 x 10 ^s watts 2. 36 x 10 ^s joules 3. 36 x 10 ^s ergs 4. 36 x 10 ^s B.T.U.
An RLC resonant circuit has a resonance frequency of 1.5 MHz and a bandwidth of 10 kHz. If C = 150 pF, then the effective resistance of the circuit will be	1. 29.5Ω 2. 9.5Ω 3. 14.75Ω <mark>4. 4.7Ω</mark>
How many different combinations may be obtained with three resistors, each having the resistance R?	1. 3 2. 5 3. 6 <mark>4. 4</mark>
If the open loop transfer function is a ratio of a numerator polynomial of degree "m" and a denominator polynomial of degree "n", then the integer (n-m) represents the number of	1.break way points 2.unstable poles 3.separate root loci <mark>4.asymtotes</mark>
An opamp is	1.a high gain push pull amplifier 2.a low impedance amplifier. 3.a differential amplifier 4.a direct coupled amplifier
Slew rate is the	1.maximum rate of output voltage change 2.minimum rate of output voltage change 3.zero rate of output voltage change 4.average rate of output voltage change.
The numerical aperture (NA) of a lens is its ability to collect	1. Reflected light
	2.

	Refracted light
	3.
	Deflected light
	4 .
	Diffracted light
	Diffracted light
	1.
	Fabry perot
	<mark>2.</mark>
Which interferometer is used for frequency	Michelson Michelson
domain to time domain coding?	2
	3.
	Sagnac
	4.
	Fizeau
	rizeau
The input noise power of an ADC due to	
rounding is when quantization	1.0.0013 2.0.00013 3.130 4.0.0141
step size is 0.125.	
Ripples will be present in	1.pass band 2.stop band 3.Transition band
band of the chebyshev type II analog filter	
Ripples will be present in	1.pass band 2.stop band 3.in both stop
band of the chebyshev type II analog filter	
is the example of photo	1.Photo diode 2.Photo multiplier 3.Photo
emissive cell	transistor <mark>4.LDR</mark>
In a LVDT, the two secondary voltages	1.Are always in phase quadrature 2.Are independent of the core position 3.Vary unequally depending on the core position 4.Vary equally depending on the core position
A signal x(t) has a Fourier Transform X(w). If x(t) is a real and odd function of t, Then X(w) is	1.a real and even function of w 2.an imaginary and even function of w 3.an imaginary and odd function of w 4.a real and odd function of w
The Trigonometric Fourier Series of an	1.odd harmonic terms 2.sine terms 3.d.c.
S .	
even function of time does not have	terms 4.cosine terms
The transducers which requires an external power and their output is a measure of some variation such as resistance, inductance, capacitance etc., are called as	1.Passive transducer 3.Self generating transducer 4.Primary sensor
The input and output of a continuous time system are respectively denoted by x(t) and y(t). Which of the following descriptions is corresponds to a causal system?	1.y(t) = x(t-2) + x(t+4) 2.y(t) = (t+4) x(t-1) $3.y(t) = (t-4) x(t+1) 4.y(t) = (t+5) x(t+5)$
Which of the following sensors is not a	1.Electrochemical sensor 2.Photo diode
self-generating sensor?	3.Thermocouple 4.Photovoltaic cell
	produces very large voltages can operate only a few times before failure Exists only in theory a non-contacting magnetic sensor
Pressure transducer for measuring blood	
pressure is	Fiber optic transducer Resistive transducer

	Ta
	Strain gauge transducer only Strain gauge or capacitive transducer
A thermo-couple ammeter gives full-scale deflection of 10 A. When it reads one fifth of the scale, the current will be	
The main purpose of performing open-circuit test on a transformer is to measure its	1.Copper loss <mark>2.Core loss</mark> 3.Total loss 4.Insulation resistance
For stimulated emissions to occur from a LASER source, the population of the excited level should be	1. Lesser, small
than that at lower energy level and the radiation density in the medium should be	2. greater, very small
	3. greater, very large 4.
	lesser, large
The phase lead compensation is used to	increase both rise time and overshoot decrease rise time and increase overshoot Increase rise time and decrease overshoot
	4. decrease both rise time and overshoot
Gain cross over frequency of polar plot is the point where plot touches	1. unit circle 2180° 3. 180° <mark>4. 0 db</mark>
Induction type single phase energy meters measure electric energy in	1.VAR <mark>2.kWh</mark> 3.Wh 4.kW
An analog voltmeter uses external multiplier settings. With a multiplier setting	1. 371V 2. 383 V 3. 394 V 4. 406 V
Which of the following instruments indicate the instantaneous value of the electrical quantity being measured at the time at which it is being measured?	Absolute instruments Indicating instrument Recording instruments Integrating instruments
The error of an instrument is normally given as a percentage of	 rms value measured value mean value full-scale value
The bandwidth of a CRO is from 0 - 20 MHz. The fastest rise time a sine wave can have to be accurately reproduced by the instrument is	1. 35 ns 2. 0.175 μs 3. 35 μs <mark>4. 17.5 ns</mark>
Fourier transform of a d.c. signal with unity strength is	1. zero 2. one 3.

	2π δ(ω)
	4. 2 π
System function H(z) for the system described by difference equation y[n]+y[n-1] = x[n] is	1. z/(z+1) 2. 1/(z+1) 3. z(z+1) 4.
A 10mH inductor has current i=5 cos2000t	zero 1.100cos 2000t V 2.1000 Sin 2000t V 3.100 cos (2000t+90) V 4.1000 cos (2000t+90) 1.
	$ X(-\omega) = X(\omega) $ 2.
	$ \frac{\varphi(-\omega) = -\varphi(\omega)}{3.} $ 3. both (a) and (b) are correct 4. $ \frac{\varphi(-\omega) = \varphi(\omega)}{\varphi(\omega)} $
Torque in the induction type energymeter due to current coil is produced by	1. interaction of eddycurrent due to current coil and flux due to pressure coil 2. interaction of eddycurrent due to pressure coil and flux due to pressure coil 3. interaction of eddycurrent due to current coil and flux due to current coil 4. interaction of eddycurrent due to pressure coil and flux due to current due to pressure coil and flux due to current coil
Potentiometer method of dc voltage measurement is more accurate than direct measurement using a voltmeter because	It does not load the circuit at all It uses center zero galvanometer instead of Voltmeters It loads the circuit moderately It loads the circuit to maximum extent
Lissajous pattern in CRO is used for	1. Amplitude measurement 2. Both frequency and phase measurement 3. Frequency measurement 4. Phase measurement

1. CPU & Main memory 2. Main memory & Secondary memory 3. CPU & CD-ROM 4. CPU & Secondary memory
1. Very high 2. Infinity 3. 1 4. 0
low output impedance and high input impedance low input impedance and high output impedance low input and output impedance low input and output impedance high output impedance and high input impedance
1. 300 2. 150 3. 200 <mark>4. 250</mark>
1. INFINITE 2. HIGH 3. LOW 4. ZERO
 Output impedance is infinite. Bandwidth is infinite. Input impedance is infinite. Gain is infinite
 summer Zero-level detector averaging amplifier summer and Zero-level detector
1. A pulse that ends the cycle of operation 2. A pulse that prevents a cycle of operation 3. A pulse that reverses the cycle of operation 4. A pulse that starts a cycle of operation
1. J=1, K=1 2. J=1, K=0 3. J=0, K=1 4. J=0, K=0
1. 0.5 V 2. 15 V 3. 2 V 4. 10 V
1. 2.2 k and 1 k 2. 2.2 k 3. 6.8 k <mark>4. 6.8 k and 10 k</mark>

```
A single-sensor, contact-type ultrasonic
flaw detector uses a frequency of 330
                                           1. 30cm
kHz. When testing a specimen, an echo
                                           2. 60cm
from a flaw is recorded 0.05 mass after
                                           3. 15cm
the transmitted pulse. If the velocity of
                                           4. 120 cm
sound in the test object is 6.0 km/s then
the flaw is at a depth of
Predict the output
class Main {
    public static void main(String args[])
             System.out.println(fun());
                                           Garbage value
    static int fun(int x = 0)
                                           Compiler error
                                           Runtime error
      return x;
    }
                                                 40.5 to 83.7 bar
A pressure gauge has a range of 0 to 80|_{2}.
bar and is guaranteed to be accurate to
                                                46.8 to 53.2 bar
within ±4% f.s.d. calculate the possible
pressure range when the gauge indicates
                                             23.2 to 45.6 bar
50 bar.
                                              56.7 to 90 bar
                                           1. Fidelity
Which of the following is the dynamic
                                           2. Reproducibility
characteristics of an instrument?
                                           3. Dead zone
                                           4. Sensitivity
                                           1. Fiber optic transducer
Pressure transducer for measuring blood
                                          2. Resistive transducer
pressure is
                                           3. Strain gauge transducer only

    Strain gauge or capacitive transducer

                                           1. 2's-complement system
The most commonly used system for
                                           2. 1's-complement system.
representing signed binary numbers is the \frac{1}{3}. 10's-complement system.
                                           4. 9's-complement system.
                                           1. Increases
The resistance of LDR
                                           2. Remains unaltered
 when exposed to radiant energy.
                                           Reaches maximum
                                           Decreases
A lens is having a system constant k, =
                                           1. 460.66 nm
0.8, radius of the object is 40 μm,
distance of object from lens is 133.33 μm 2. 400nm
                                           3. 566.66 nm
and wavelength of light as 350 nm. Its
                                           4. 466.66 nm
resolution is
```

A turbino flow motor counted to an	
for each litre/s flowing. Calculate the	1. 250 litres/s 2. 230 litres/s 3. 270 litres/s 4. 240 litres/s
of	 strain velocity weight stress
absorption & evolution of heat at the junctions of a thermocouple to the current	Seebeck effect Thomson effect Joule heating effect Peltier effect
	1. 300 watt
circuit is	2. 67 watt 3. 100 watt 4. 33 watt
Two resistors of 4 W and 6 W are connected series to a supply of 20 V. The load is in parallel with 6 W .Then the Thevenin's resistance is	1. 4.2 W 2. 2.4 W 3. 4W 4. 10 W
	 NAND gate AND gate OR gate MOR gate
open resistor reads	Zero Low but not zero infinite high but within tolerance
A load that has a resistance of 10Ω is to be connected to a supply that has a constant voltage of 120 volts. If it is desired that the current to the load be varied from 3 to 5 Amperes, what are the	1. 30 Ω, 15A 2. 10 Ω, 10A
Modern electronic multimeters measure resistance by	1. applying a constant voltage across the unknown resistance and measuring the current 2. using a bridge circuit 3. forcing a constant current and measuring the voltage across unknown resistance 4. taking advantage of an electronic bridge compensator for nulling
Conductance is expressed in terms of	1. m/ohm

	lo , ,
	2. ohm/m 3. mho/m
	4. mho
The difference between the helf never	1. quality factor
The difference between the half-power frequencies is called the:	2. cutoff frequency
inequencies is called the.	3. bandwidth
Two resistances R ₁ and R ₂ give combined	4. resonant frequency
resistance of 4.5 ohms when in series	1.3 ohms and 6 ohms 2.3 ohms and 9
and 1 ohm when in parallel. The	ohms 3.1.5 ohms and 3 ohms 4.1.5 ohms and 0.5 ohms
resistances are	
	<mark>1.</mark> <mark>2/jω</mark>
	2.
Fourier transform of age (4) is	2/jω
Fourier transform of sgn (t) is	3.
	1
	4.
	zero
System with memory can be	1.
characterized by	(a) and (d) are correct
a. Linear equation	2.
b. differential equation	(b) and (c) are correct
	3.
c. difference equation	Only (a) is correct
d. system of linear equations	4.
	Only (d) is correct
	1.P(x) being true means that x is a prime
Which one of the following options is	number 2.P(x) being true means that x is
CORRECT given three positive integers x, y and z, and a predicate? $P(x) = \neg(x) = \neg(x)$	true irrespective of the value of x 4.P(x)
1) $\land \forall y (\exists z(x = y*z) \Rightarrow (y = x) \lor (y = 1))$	being true means that x has exactly two
	factors other than 1 and x
Sana has a colouring book in which each	
English letter is drawn two times. She wants to paint each of these 52 prints	
with one of k colours, such that the	
colour-pairs used to colour any two letters	1.9 2.8 <mark>3.7</mark> 4.6
are different. Both prints of a letter can	
also be coloured with the same colour.	
What is the minimum value of k that satisfies this requirement?	
instruments are those which	1. Absolute
measure the total quantity of electrical	2. Indicating
power delivered in a particular time.	3. Recording
	4. Integrating 1.Any of the two markings can be on left
	or right side of the scale 2.Zero marking
Series type ohmmeter	is in the middle of the scale 3.Zero
Denes type offinitieter	marking is on the right-hand side while
	infinite marking is on the left-hand side
	4.zero marking is on the left-hand side

	while infinite marking is on the right-hand side
The wheatstone bridge method of resistance measurement is idealy suitable for the measurement of resistance values in the range of	1.0.001 ohm to 1 ohm 2.0.1 ohm to 100 ohm <mark>3.100 ohm to 10 k- ohm</mark> 4.100 k- ohm to 10 M- ohm
A slide wire potentiometer has 10 wires at 1m each. With the help of a standard voltage source of 1.018 V it is standardized by keeping the jockey at 101.8 cm. if the resistance of the potentiometer wires is 1000 ohm, then the value of the working current will be	1.1 mA 2.0.5 mA 3.0.1 mA 4.10 mA
A Wheatstone bridge requires a change of 6 ohm in the unknown arm of the bridge to produce a change in deflection of 3 mm of the galvanometer. The sensitivity of the instrument is	1.2.0 ohm/mm 2.2% <mark>3.0.5 mm/ohm</mark> 4.0.5 %
The transmitted signal in a GSM system is of 200 kHz bandwidth and 8 users share a common bandwidth using TDMA. If, at a given time, 12 users are talking in a cell, the total bandwidth of the signal received by the base station of the cell will be at least (in kHz)	1. 400 KHz 2. 800KHz 3. 1200KHz 4. 200 KHz
High performance optical fibre sources are in nature and havespectral width	1. Linear, wide 2. non linear, narrow 3. non linear, wide 4. linear, narrow
To improve the resolution of an optical microscope,	1. Increase NA & increase wavelength 2. Increase NA & decrease wavelength 3. Decrease NA & increase wavelength 4. All answers are wrong

In Stimulated Emission incident and stimulated photons will have	
(ii) identical direction & narrow beam width	1. All the answers are correct 2. both (i) & (iv) are correct
	3. both (ii) & (iv) are wrong
	4. both (i) & (iii) are correct
	1. Valence band
so that it can contribute maximum in generation of photocurrent.	conduction band
	all answers are wrong 1.
Light dependent resistors are made up of	BJT 2. low resistance materials 3. MOSFET
	4. <mark>high resistance materials</mark>
	1. Lowered
	increased 3.
	same as before 4. increases and then decreases

	,
The use of instruments is merely confined within laboratories as standardizing instruments.	1.integrating 2.recording 3.absolute 4.indicating
In a digital storage oscilloscope, the input signals are	1. Multiplexed, converted to digital form, stored, converted to analog form and applied to oscilloscope 2. Multiplexed, converted to digital form and
	3. Applied to amplifier, stored as analog signals, multiplexed, converted to digital form, stored in digital form, converted to analog form, and applied to CRO through an amplifier. 4. Directly applied to the oscilloscope
	1. Sine waves with amplitude, frequency and phase
Electromagnetic (EM) radiation can be described as	2.cosine waves of any frequency and amplitude
	3.any waves with a defined frequency and phase, but varying amplitude
	4. any waves with a certain frequency and varying amplitude
	1. Michaelson Interferometer
Which of the following is best suited for biological sensing and interferometry?	2. Fabry-Perot interferometer
	3. Fizeau interferometer
	4. Fiber optic interferometer
If the distance of screen from a CRT to centre of deflection plates is 15 cm, the length of deflection plates is 2 cm, the distance between plates is 1 cm and accelerating voltage is 500 V, the deflection sensitivity is:	1. 0.015 cm/V 2. 33.2 V/cm 3. 0.03 cm/V 4. 60.4 V/cm
In a Q meter, distributed capacitance of coil is measured by changing the capacitance of the tuning capacitor. The values of tuning capacitor are C1 and C2 for resonant frequencies f1 ad 2f1	1. (C1 - 4C2)/3 2. (C1 - 3C2)/2 3.

respectively. The value of distributed capacitance is:	(C1 - C2) /2 4. (C1 - 2C2)/3
In a synchro error detector, the output voltage is proportional to [w(t)]^n, where w(t) is the rotor velocity and n equals	12 21 <mark>3.1 </mark> 4.2
Resistance R1 and R2 have, respectively, nominal values of 10 Ω and 5 Ω , and tolerance of ±5% and ±10%. The range of values for the parallel combination of R1 and R2 is	1. 3.077 Ω to 3.636 Ω 2. 2.805 Ω to 3.371 Ω 3. 3.237 Ω to 3.678 Ω 4. 3.192 Ω to 3.435 Ω
A lens with can capture of light to generate a sharper image	 larger NA, higher order larger NA, lesser order smaller NA, lesser order smaller NA, higher order
If the Numerical Aperture of a lens is 0.6 and the object is placed at a distance of 120μm, what is the radius of the lens?	1. 24μm <mark>2. 72 μm</mark> 3. 36 μm 4. 42 μm
The wavelength of the emitted light from an LED depends on	1. Amount of carriers 2. the type of carriers 3. energy bandgap 4. Mobility
In an LED, light is emitted from, which is close to the junction.	1. Site of carrier recombination 2. valence band 3. conduction band 4. All the answers are right

	1.
	Increased, absence
Photoconductivity is the process of	<mark>2.</mark>
electrical conductivity caused by the of light.	
ureor right.	3. decreased, presence
	4. decreased, absence
Intensity based fiber optic sensors have	
i. a poer	1. All the answers are wrong
II. lower	2.
precision	only (iv) is correct
III. simple and inexpensive systems	3. only (iv) is wrong
precision, screen noise and	4. only (iii) is correct
expensive 	
	1. magnitude spectrum
	2.
Fourier spectrum (Transform) of non-periodic signal will have	Phase spectrum
	3. both (a) and (b) are correct
	· · · · · · ·
	4. constant
How many BCD code bits and how many straight binary bits would be required to	1. 12 BCD, 12 binary
represent the decimal number 643?	2. 16 BCD, 9 binary 3. 12 BCD, 9 binary
	4. 12 BCD, 10 binary
	1.
	Combinational circuits
	<mark>2.</mark>
The logic circuits whose outputs at any instant of time depends only on the present input but	Flip-flops
also on the past outputs are called	3. Sequential circuits
	4. Latches
Ohm's law is not applicable to	1.DC circuits 2.high currents 3.Small resistors 4.semi-conductors

	1
Analysis used for reducing the given	Superposition Mesh
circuit with variable load is	3. Nodal
	4. Maximum power transfer
	1. AND gates, OR gates, and NOT gates
Exclusive-OR (XOR) logic gates can be	2. AND gates and NOT gates
constructed from what other logic gates	3. OR gates only
	4. OR gates and NOT gates
	1.
	0
The input to a peak detector is a	2
triangular wave with a	4 V
neak-to-neak value of 8 V and an	
average value of 0. The output is	3. 8 V
average value of o. The output is	8 V
	4.
	16 V
In a two wattmeter method, the	1. 120º
wattmeters are connected in the line 1	2. 90º
and 2. The load is star connected load.	3. 120º+ Φ
What is the angle between the line	
voltage V₁ and line current l₂?	<mark>4.</mark>
	<mark>90º+ Φ</mark>
The difference between true value and	1.Relative error 2.Absolute error 3.Gross
measured value is known as	error 4.Probable error
	1.Two similar metals connected together
	2.Two wire wound resistors connected
A thermocouple is	together 3.Two inductive coils connected
	together 4.Two dissimilar metals connected together
	1.Light intensity to voltage 2.Electric
	voltage to current 3.Kinetic energy of
A photo-electric transducer converts	electrons into potential energy 4.Electric
	current to voltage
Fiber entire company can be used to se	1. Current
Fiber optic sensor can be used to sense	2. Power
	3. Displacement
	4. Resistance
The resistance of LDR	Increases Remains unaltered
when exposed to radiant energy.	3. Reaches maximum
	4. Decreases
	1.
	107.5 / 700
An AC bridge with	187.5∠ – 70°
7 200 /200 7 150 /00 7]_
$Z_1 = 200 \angle 30^{\circ}, Z_2 = 150 \angle 0^{\circ}, Z_3 = 2$	2.
, in order to balance the bridge the	187.5∠70°
Z ₄ should be	107.5270
	3.

	187.5∠-10°
	4. 187.5∠10°
In amplified DC voltmeter the FET will be used in the	Attenuator stage Input stage output stage meter stage
	 Drysdale potentiometer Crompton's potentiometer AC Polar type potentiometer AC Coordinate type Potentiometer
In a photo detector, when a semiconductor is illuminated by light having an energy E=h \(\gamma \)than its band-gap energy E, the light isin the semiconductor and electron-hole pairs are generated.	lesser, radiated
	4. lesser, absorbed
A moving coil permanent magnet instrument can be used as aby using a low resistance shunt.	1.ammeter 2.voltmeter 3.flux-meter 4.galvanometer
Inductance changes in inductive sensors are caused by physical variable like	4.gaivanometei
a. pressureb. forcec. displacementd. temperature	1.All the given options are correct 2.only (a) and (b) are correct 3.Only (c) is correct 4.Only (d) is correct
For the measurement of flow rate of liquid, the method used is	Conveyor-based methods Bourdon tube Coriolis method Thermal mass flow measurement
When the total charge in a capacitor is doubled, the energy stored:	 is halved is quadrupled is doubled remains the same
The circuits of NOR based S-R latch is classified as asynchronous sequential circuits, why?	1. Because of inverted outputs 2. Because of triggering functionality

	Because of cross-coupled connection
	4.because of non inverted inputs
If open loop gain (AOL) = 200,000, the closed-loop knee voltage of a silicon diode is	1. 1 uV
	<mark>2.</mark> <mark>3.5 uV</mark> 3.
	7 uV 4. 14 uV
Carson's Rule approximates the bandwidth for	<mark>1.Wideband FM</mark> 2. Narrowband FM 3. Wideband AM 4. PM
ideal inductor L. (The circuit now consists of a capacitor and inductor alone). If we let $\omega 0 = 1/\sqrt{LC}$, the voltage across the capacitor at time t > 0 is given by	2. V ₀ 3. V ₀ e ^{-ω0t} Cos(ω ₀ t)
When superposition theorem is applied to any circuit, the voltage source in that circuit is always	 4. V₀ Cos (ω₀t) 1. Active 2.kept as it is 3. Shorted 4. Opened
In Superposition theorem, while considering a source, all other voltage sources are?	1. open circuited 2. short circuited 3. change its position 4. removed from the circuit
A capacitor is generally a	 bilateral and active component non-linear and active component linear and bilateral component active, passive and linear and nonlinear component
A CRT has an anode voltage of 2 kV and parallel deflecting plates 2 cm long and 5mm apart. The screen is at a distance of 30 cm from the centre of deflecting plates. Find the input voltage required to deflect the beam though 3 cm. The input voltage is applied to the deflecting plates through amplifiers having an overall gain of 100.	1.0.1 V <mark>2.1 V</mark> 3.10 V 4.0.01 V
A wattmeter has a current coil of 0.1 ohm resistance and pressure coil of 6.5 kohm resistance. When the input to the meter is 12 A at 250 V with unity power factor	1.0.32 2.0.48 3.0.23 4.0.84

and the current coil is connected on load side calculate the percentage error due to the resistance only.	
Which of the following is not part of phototube?	1.Battery 2.Dynode 3.Anode 4.Cathode
If 1 A current is flowing through a series circuit having 100 resistors of each having resistance of 1 Ohm. What will be the current in the circuit where, these 100 resistors are connected in parallel?	1.10 A. <mark>2.100</mark> A. 3.1000 A. 4.10000 A.
In an opamp inverting amplifier, the input and feedback resis-tances are $2k\Omega$ and $100k\Omega$ respectively. Assuming an open loop gain of 10,000, the gain will be	1.10,000 2.500 3.100 <mark>4.50.</mark>
	1. Constructive
Depending on the relative phase of the waves, interference is	2. destructive 3. both Constructive & destructive
	4. either Constructive or destructive
	1. X-NOR
Which gate generates no output when two of its inputs are at the opposite logic	2. XOR
level?	3.OR
	4. NOR
To reduce the effect of fringing in a capacitive type transducer	1. the transducer is shielded and the shield is kept at ground potential 2. a guard ring is provided and it is kept at the same potential as the moving plate 3. the transducer is shielded and the shield is kept at the same potential as the moving plate 4. a guard ring is provided and it is kept at ground potential
is measured above atmospheric pressure.	1. Gauge pressure 2. Vacuum 3. room pressure 4. Absolute pressure

In Star connected load line current will be equal to	 Phase Voltage Phase Current Line Current line voltage
energy transmission take place between the walls of the tube in	1.Reflection 2.Refraction 3.Dispersion 4.Absorption
	1. Inductances with Q>10 2. Inductances with Q<10 3. Capacitors with high dissipation factor 4. Capacitors with low dissipation factor
	1. wrapped as a coil 2.passing through a flux field 3. that has neutral domains 4. carrying current
a at very low frequencies.	1.Voltage Follower 2.both as voltage follower and high - pass filter 3.Low pass filter 4.high - pass filter
A virtual ground is a ground for	1.current but not for voltage 2.both current and voltage 3.voltage but not for current 4.neither current nor voltage.
	1. Gauge pressure 2. Absolute pressure 3. Vacuum Pressure 4.room pressure
When an Op-Amp is used as a non-inverting amplifier, the input signal is fed into the input and the input is grounded through a resistor.	1.Inverting, non-inverting 2.inverting, inverting 3.Non-inverting, inverting 4.Feedback, slewrate
The common mode input voltage of a differential amplifier is	1.Difference of 2-inputs 2.Summation of 2-inputs 3.Zero 4.Average of 2-inputs
Common Mode Rejection Ratio for an opamp should be What is the minimum number of op-amp required to implement the equation 2V1 + 3V2, V1 and V2 being positive.	1.close to zero 2.as large as posible. 3.close to unity 4.as small as possible 1.1 2.3 3.4 4.2
If 10 V battery is connected across the parallel resistors of 3 Ω , 5 Ω , 10 Ω and	1. 3V 2. 5V 3. 20V <mark>4. 10V</mark>

A P-i-N diode is used as a photo diode incondition.	1. Forward bias 2. reverse bias 3. no bias 4. only ac
The electrodes used in pH measurement have which of the following internal resistances?	1. Very low resistance 2. Moderate resistance 3. Very high resistance 4. No resistance
would be the power dissipated in the same resistors when they are	 1. 10 watts 2. 30 watts 90 watts 4.270 watts.
A function that repeats itself after fixed intervals is said to be:	 reactive periodic a phasor harmonic
The coefficient of coupling for two coils having L1 = 2 H, L2 = 8 H, M =3 H is	1. 5.333 2. 1.333 <mark>3. 0.75</mark> 4. 0.1875
The unit of electrical conductivity is	1. mho / metre 2. mho / sq. m 3. ohm / metre
A circuit contains two un-equal resistances in parallel	4.0hm / sq. m. 1. large current flows in larger resistor 2. smaller resistance has smaller conductance 3. current is same in both 4. potential difference across each is same
The element of electric heater is made of	1. copper 2.

	1
	steel
	3.
	carbon
	4.
	nichrome.
	inchi offie.
	1.R/2 2.
Resistance of a wire is R ohms. The wire	2R
is stretched to double its length, then its	3.4R
resistance in ohms is	4.
	R/4
	Branch voltages are additive
When the resistances are connected in	2. Branch currents are additive
parallel circuit then	3. Resistance's are additive
	4. frequencies are additive
	1.
	high resistance
Ammeter should always have a	2. low resistance
	3. infinite resistance
	5. Illillide lesistance
	4. high voltage
Current through each resistor	1. different
_	2. same
when they are connected in	3. increasing
series is	4. decreasing
	1.
	n-iX(z)
	11 A(2)
	2.
	kX(z ⁻¹)
The z-transform of x[n-k] is	
The 2-transform of America	3
	<mark>z∗ X(z)</mark>
	4
	4. X(k⁻z)
	/ \\\
	1.
In bilinear transformation, the left-half s-plane is mapped to which of the following in the z-domain?	Entirely outside the unit circle z =1
	2
	z. Partially outside the unit circle z =1
	3.
	Partially inside the unit circle z =1
	<mark>4.</mark>

	Entirely inside the unit circle z =1
Which of the following rule is used in the	1. Simpson's rule
	2. Backward difference
bilinear transformation?	3. Forward difference
	<mark>4.</mark>
	Trapezoidal rule
The sensitivity analysis made on the poles of a system results on which of the following of the IIR filters?	1.Poles <mark>2.Zeros </mark> 3.either poles or zeros 4.Both poles and zeros
	Periodic oscillations in the input
In recursive systems, which of the following	2. Non-Periodic oscillations in the input
is caused because of the nonlinearities due to the finite-precision arithmetic operations?	3. Non-Periodic oscillations in the output
	4. Periodic oscillations in the output
	1. a numbering system
In Hardware Description Languages (HDL), LITERALS is/are:	2. scalars.
(TIDE), ETTERALO ISTATE.	Vector. binary coded decimals.
How much inductance is needed to	1. 84.43 mH
resonate at 5 kHz with a capacitance of	2. 3.333 H
12 nF?	3. 11.844 H
In a Q meter the value of shunt	4. 2.652 H 1. 1kΩ
resistance connected across the oscillator	2. 0.02Ω
is typically of the order of	3. 10kΩ
	4. 100Ω
	1.the same as frequency
	2.time required to complete one cycle
The period of a wave is	3.expressed in amperes
	4.inverse of frequency
	1.amplitude 2.
	sampling frequency
The slope overload error in Delta Modulation can be reduced by increasing	3. both amplitude and sampling frequency
	<mark>4. Step</mark>
	size

which are the advantages of geosynchronous satellite?	1.Only (a)
a. ideal for broadcasting and multi-point distribution services	2.Only (c) and (d)
b. visible 24 hours	3.Only (b)
c. almost no Doppler shift	4.all the above
d. covers larger geographical area	
A pure inductor is connected to 1-φ sinusoidal source through a diode. Conduction angle for diode is	1. 90° 2. 180° <mark>3. 360°</mark> 4. 270°
A single-phase full wave rectifier is a	1. single pulse rectifier 2. multiple pulse rectifier 3. two pulse rectifier 4. three pulse rectifier
Which of the following can be measured with the help of piezo electric crystal?	1.Velocity and pressure 2.Force only 3.Sound and force 4.Force and Pressure
Which of the following device is used for calibration of potentiometer?	1. Electrochemical cell 2. Galvanometer 3. Variable dc source 4.Voltmeter
At null position, galvanometer reading will be	1.Maximum 2.Zero 3.Unchanged for further reading 4.Mid-point
To turn off sources, a ideal voltage source is replaced by a/an and a ideal current source is replaced by a/an	1.R=0 for both 2.R= infinity and R=0. 3.R=0 and R= infinity 4.R= infinity for both
One kilowatt hour of electrical energy is the same as	1. 36 x 10 ⁵ watts 2. 36 x 10 ⁵ joules 3. 36 x 10 ⁵ ergs 4. 36 x 10 ⁵ B.T.U.
Superposition theorem is NOT applicable to networks containing:	1.Independent current sources 2.Nonlinear elements 3.Independent voltage sources 4.Transformers
The disadvantages of using multipliers with voltmeters at high voltages are:	1.Only (a) is correct 2.Only (b) is correct 3.

a.The multipliers at high voltages have to be shielded in order to prevent capacitive currents	Only (c) is correct 4.All are correct
b. The metering circuit is not electrically from the power circuit	
c. The power consumption of multipliers becomes large at large voltages	
Correlation is a mathematical Tool for signals	1. Comparison 2. Adding 3. Subtracting 4. Multiplying
Find y(0), when convoluting two sequence $x(n) = \{1,2,1,2\}$ and $h(n) = \{1,-1,1,-1\}$ linearly.	1.1 2.2 3.0 41
Find y(0), when convoluting two sequence $x(n) == \{1,2,1,2\}$ and $h(n) = \{1,-1,1,-1\}$ linearly.	1.0 21 <mark>13. </mark> 4.2
Non- recursive structures are used for	1.both IIR and FIR filters 2.only FIR filters 3.only IIR filters 4.not for both the filters
Which of the following is not suitable either as low pass or a high pass filter?	1. h(n) symmetric and M odd 2. h(n) symmetric and M even 3. h(n) anti-symmetric and M odd 4. h(n) anti-symmetric and M even
Ripples will be present in band of the chebyshev type II analog low pass filter	1.pass band 2.stop band 3.in both stop band and pass band 4.Transition band
If the order of the filter is increasing the transition band attenuation will	1.not change 2.increase 3.decrease 4.become zero
The armature of DC generator is laminated to	1. Reduce Hysteresis loss 2. Insulate the Core 3. Reduce eddy current loss 4. Provide air cooling passage

LVDT is an/a transduce	r 1.Eddy current 2.Resistive 3.Magneto-strict ion 4.Inductive
Capacitive transducers are normally	1.Static 2.Both static and dynamic
employed for measureme	
	1.fsamp > 2fmax
What is the sampling theorem?	2.fsamp ≥ 2fmax
	3.fsamp = fmax
	4.fsamp < 2fmax
An AM signal and a narrowban	
FM signal with identical carriers modulating signals and modulat	ion DSB-SC
index of 0.1 are added togethe	
The resultant signal can be clo	sely <mark>SSB with carrier</mark>
approximated by	4. SSB without carrier
	1. Baudot
The code which provides for parity ch	
is	3. EBCDIC
	4. CCITT-2
	1. bytes per second
The data transmission rate of a mode	<mark>2.</mark> em is <mark>baud rate</mark>
measured in	3.
	bits per second
	4.megahertz
Number of bits needed to hold the	1. n + 1
product of two n-bit 2's complement	<mark>2. 2n</mark>
integers.	3. n 4. More than n
Ma have three resistances of value	1. 2 Ω resistance in series with parallel 2 Ω , combination of 3 Ω and 6 Ω resistance
we have three resistances of values 3Ω and 6Ω . Which of the following	
combination will give an effective	combination of 2 Ω and 6 Ω resistance
resistance of 4 Ω ?	3. All the three resistances in parallel
	4. 6 Ω resistance in series with parallel combination of 2 Ω and 3 Ω resistance
	1. 111110.
Convert the following octal number to	2. 111100 ₂
	3. 100111 ₂
	4. 110111 ₂
Convert the following decimal number (237) ₁₀ to base 7	to 1.456 2. 1422
	L. 1477

	0.057
	3. 357 4.1423
	1. 1
How many 2 to 1 multiplexers are	2. 4
required to construct a 4 to 1 multiplexer	3. 2
	4. 3
	1. To apply Vcc
	2
What is the function of an enable input	2. To connect ground
on a multiplexer chip?	3.
	To active the entire chip
	4.
	To active one half of the chip
	·
Which of the following is an invalid output	1. 1110
state for an 8421 BCD counter?	2. 1000 3. 0010
	4. 0011
	1.
	Data controller
	Data controller
	2.
In a multiplexer, the selection of a	Selected lines
particular input line is controlled by	3.
	Logic gates
	4.
	Both data controller and selected lines
	1.n
	2.
	n²
A decoder converts n inputs to	3.
outputs	2°
	4
	4. nº
	11
A 5-H inductor changes its current by 3 A	1. 8.888 V
in 0.2 s. The voltage produced at the	2. 1.2 V
terminals of the inductor is:	3. 75 V
	4. 3 V
	1.
	Between pre-accelerating and accelerating anodes
In a CRT the focusing anode is located	
	2.After accelerating anode
	3.
	Before accelerating anode
	4.
	Before pre-accelerating anode
Posistance P1 and P2 have reconstitutive	13077 O to 3626 O
Resistance R1 and R2 have, respectively, nominal values of 10 Ω and 5 Ω , and	1.3.077 Ω to 3.636 Ω 2.805 Ω to 3.371 Ω
tolerance of ±5% and ±10%. The range	3.237 Ω to 3.678 Ω
	-

of values for the parallelcombination of R1 and R2 is	4.192 Ω to 3.435 Ω
$(100\pi t + 100)A$ is	1. 50W 2. 125W 3. 44.2W 4. 62.5W
To measure the average temperature of the medium, thermocouples are connected usually in	1.series-shunt 2. Parallel 3. Series 4. series-parallel
	 initial value of the system output static sensitivity of the system steady state value of the system output transient behavior of the system output
The transfer function of a linear system is the	and the input. 3.efficiency of the closed loop 4. ratio of the output, V _o (t) and input V _i (t).
In a closed loop systems with positive value of feedback gain the overall gain of the system will	 decrease increase unaffected non linearly varies
A 3 V DC supply with an internal resistance of 2 Ω supplies a passive non-linear resistance characterized by the relation VNL = I2NL. The power dissipated in the non linear resistance is	1. 2.5W <mark>2. 1.0W</mark> 3. 3.0W 4. 1.5W
A turbine flow meter coupled to an electric voltage generator produces 4 mV for each litre/s flowing. Calculate the output when 1 V is produced.	1. 250 litres/s 2. 230 litres/s 3. 270 litres/s 4. 240 litres/s
Choose two appropriate auxiliary components of a HVDC transmission system from the following	
P. D.C line inductor Q. A.C line inductor	1. P and Q
R. Reactive power sources	2. Q and S <mark>3. P and R</mark>
S. Distance relays on D.C line T. Series capacitance on A.C. line	4. S and T
A load is connected to a network. At the terminals to which the load is connected, $R_{Th} = 10 \Omega$ and $V_{Th} = 40 \text{ V}$. The maximum power supplied to the load is:	1. 80W <mark>2. 40W</mark> 3. 160W 4. 1W

	1. over damped
	2
If the roots of an equation are complex conjugate, then the response will be?	critically damped
conjugate, their the response will be:	3. damped
	4.
	under damped 1.
M/high property of delta function indicates	Replication
Which property of delta function indicates the equality between the area under the	2.
product of function with shifted impulse and the value of function located at unit	Sampling 2
impulse instant	3. Scaling
?	4.
A contact described by the state of the stat	Product
A system described by the differential equation d ² y/dt ² +3dy/dt+2y=x(t) is initially	1. (0.5 + e ^x + 1.5e- ^{2x})u(t) 2. (1- 2e ^x + e- ^{2x})u(t)
at rest. For input $x(t) = 2u(t)$, the output $y(t)$ is	3. (1+2e ⁻¹ -2e ⁻²)u(t) 4. (0.5 + 2e ⁻¹ + 2e ⁻²)u(t)
A potentiometer can be used for	, , ,
a. calibration of ammeter	1.all of the options specified 2.Only (a) is correct
b. measurement of current	3.(b) and (c) are correct 4.(c) is wrong
c. measurement of resistance	4.(c) is wrong
	1.frequency responce
The P controller improves	transient and steady state response
	3. Steady state response 4. Transient response
Most common form of A.C. meters used	1.commutator motor meters 2.mercury
in every day domestic and industrial installations are	motor meters <mark>3.induction type single phase energy meters</mark> 4.GENSET meters
	1.
	Systematic errors mildly depend on the sensitivity of instrument
The systematic errors of an instrument can be reduced by making	Systematic errors does not depend on the sensitivity of instrument
	3. The sensitivity of instrument to
	environmental input as low as possible 4. The sensitivity of instrument to
	environmental input as high as possible
superposition theorem can be applied	1. linear bilateral elements
only to circuits having	Active elements passive elements
	4. non-linear elements

Find the open-loop gain at a frequency of	1. 80000 2. 8000 3. 800 4. 100000
capacitor in the output circuit of an	 to increase collector current to increase voltage gain to block dc collector voltage to reduce noise levels
Frequency modulation is used mostly in	1. telephony 2. radio transmission 3. telegraphy 4. satellite communication
In transistor radio receivers the number of IF amplifier stages commonly used are	1. 6 2. 4 3. 2 4.
Radio broadcasts are generally	1. neither amplitude nor frequency modulation 2. frequency modulation 3. amplitude modulation 4. both amplitude and frequency modulation
If the oscillator output is modulated	1. 711.9 kHz to 712.1 kHz 2. 692 kHz to 732 kHz 3. 71.2 kHz to 71.20 kHz <mark>4.</mark> 702 kHz to 722 kHz
In the output of a DM speech encoder, the consecutive pulses	1.

	the modulator is going through slope overload 2. the accumulator is in saturation 3. the speech signal is being sampled at the Nyquist rate 4. the input to the modulator is essentially constant
A ramp input applied to a unity feedback system results in 5% steady state error. The type number and zero frequency gain of the system are respectively	0 and 1/20 4. 1 and 1/20
An induction wattmeter can be used for	1.A.C. to D.C. convertion 2.A.C. only 3.both D.C. and A.C. 4.D.C. only
If you put an infinite number of resistors R in parallel, what would the total resistance be?	1. R _{Total} would approach infinity as the no. of resistors in parallel approaches infinity 2. R _{Total} would approach zero as the no. of resistors in parallel approaches infinity 3. R _{Total} would approach 1 as the no. of resistors in parallel approaches infinity 4. R _{total} would be the value of the resistor R
Steady state refers to	1. Error at the steady state 2. Error at the transient state 3. Error at both state 4. Precision
A 240 V single-phase ac source is connected to a load with an impedance of 10 L 60 °Ω. A capacitor is connected in parallel with the load. If the capacitor supplies 1250 VAR, the real power supplied by the source is	1. 240W 2. 2880W 3. 1200W 4. 3600W
Zeroes are defined as:	Roots of the denominator of the closed loop transfer function

	0
	2. Roots of the numerator of the closed loop
	transfer function
	3. Parts of the numerator
	4. Parts of the denominator
	1. Venn Diagram
A Karnaugh map (K-map) is an abstract form of diagram organized	Z. Cycle Diagram
as a matrix of squares.	3. Block diagram
	4. Triangular Diagram
A 2A full-scale PMMC type dc ammeter has a voltage drop of 100 mV at 2A. The meter can be converted into a 10A full-scale dc ammeter by connecting a	1. 12.5 m resistor in parallel with the meter 2. 12.5 m resistor in series with the meter 3. 50.0 m resistor in parallel with the meter 4. 50.0 m resistor in series with the meter
What is the true power consumed in a 30 V series RLC circuit if Z = 20 ohms and R = 10 ohms?	1. 22.5Watts 2. 30.0Watts 3. 45.0Watts 4. 15.0Watts
The spring metal in a spring control device should have the following properties.	1. Only (a) and (c) are correct
a. should be non magnetic	2
b. must have low temperature coefficient	All the answers are correct
c. should have low specific resistance	3.
d. should not have subjected to fatigue	Only (b) is correct
	4. (d) is wrong
Two 2H inductance coils are connected in series and are also magnetically coupled to each other. The coefficient of coupling being 0.1. The total inductance of the combination	1. 3.6H 2. 3.2H 3. 0.4H 4. 4.4H
	1.potential transformers
For handling greater currents, induction	2.current transformers
wattmeters are used in conjunction with	3.power transformers
	4.step up transformers

The voltage drop across a 1.5-kW toaster that draws 12 A of current is:	<mark>1. 125 V</mark> 2. 120 V 3. 10.42 V 4. 18 kV
Sinusoidal voltage is given by the expression v = 300 cos (120pt + 30°). What is the frequency?	1.600 KHz 2.600 Hz <mark>3.60 Hz</mark> 4.60 KHz
The value of the time constant in the R-L circuit is?	1. L/R 2. R/L 3.R 4.L
The time constant of an R-C circuit is?	1.R/C 2.R 3.C 4.RC
The reactance offered by the capacitor to alternating current of frequency 50 Hz is 20 ohms. If frequency is increased to 100 Hz, reactance becomes ohms	1. 10 2. 5
What are the two major categories for resistors?	I.low and high ohmic values 2.commercial and industrial 3.low and high power value 4.fixed and variable
In series resonant circuit, increasing inductance to its twice value and reducing capacitance to its half value	will change the resonance frequency will increase the selectivity of the circuit will change the impedance at resonance frequency will change the maximum value of current at resonance
How many connections does a potentiometer have?	1.3 2.4 3.2 4.1
,	 Zero Low but not zero infinite high but within tolerance
Voltage dependent resistors are used	an heating elements to suppress surges for inductive circuits an current stabilizers
The value of current at resonance in a series RLC circuit is affected by the value of	1.R and C 2. C <mark>3. R</mark> 4. L
resistors are doubled, then the voltage across each resistor is	 Halved Doubled Not changed Increased by four times
A source of angular frequency 1 rad/sec has a source impedance consisting of 1Ω resistance in series with 1 H inductance.	1. 1 Ω resistance 2. 1 Ω resistance in series with 1F capacitor

The load that will obtain the maximum	3. 1 Ω resistance in parallel with 1F
power transfer is	capacitor 4. 1 Ω resistance in parallel with 1H
	inductance
	1. Conductance
Reciprocal of resistance is called	admittance Resistivity
	4. Impedance
What is the most commonly used	1 Alumainum 2 Cald
conductor in electronics?	1.Aluminum 2.Gold 3.Copper
	4.Silver
	1. Voltage is same
How one can identify a series circuit	 Power is same Current is same
· ·	4.resistance is same
	in edictance to earne
In s> z mapping if the s pole is -s+jw,	1.outside the unit circle 2.on the unit circle
the digital poles will fall	3.inside the unit circle 4.towards infinity 1. Gain Margin (GM) gives complete
	information about the relative stability of
	the system
M/high and of the following statements	2. GM and PM together gives information
Which one of the following statements regarding the stability of a feedback	about the relative stability of the system 3.A compound whose molecules contain just
control system is correct?	one bromine atom shows two molecular ion
	peaks of similar intensity at M+ and M+2
	position
	4. Cross over frequencies give information
	about the relative stability of the system
The controlling torque for single phase	1.Spring control 2.Gravity control 3.Stiffness of suspension 4.no controlling
power factor meters is provided by	factor
A meter has a full scale deflection of 90° at a current of 1 A. The response of the	
meter is square law. Assuming spring	1.0.25 A 2.0.50 A 3.0.67 A 4.0.707 A
control, the current for a deflection at 45° will be	
Two sinusoidal signals having the same	
amplitude and frequency are applied to the X and Y inputs of a CRO. The	1.Either 90 deg. Or 270 deg. <mark>2.Either zero</mark>
observed Lissajous figure is a straight	or 180 deg. 3.90 deg. 4.Zero
line. The phase shift between the two	
signals would be	
A sinusoidal voltage of 1 V r.m.s. value at 10 Hz is applied across the two	1.The pointer oscillates around zero volt 2. √2 volts
terminals of a PMMC type of voltmeter.	
What is the deflection of the pointer?	3.1 volt 4.Zero volt
The open loop transfer function of a unity	
feedback control system is given as G(s) = K/S(s+1). If the gain K is increased to	1.1/v2 2.1 <mark>3.0</mark> 4.8
infinity, then the damping ratio tend to	
become,	

	One fourth the resistance of one
The combined resistance of two equal resistors connected in parallel is equal to	resistor 2. Twice the resistance of one resistor 3. One half the resistance of one resistor 4. Four times the resistance of one resistor
Which of the following represents a stable	
system? 1. Impulse response of the system decreases exponentially. 2. Area with the impulse response is finite. 3. Eigen values of the system are positive and real. 4. Roots of Characteristic equations of the	
system are real and negative.	
	The inaccuracy due to change in temperature
Hysteresis of an instrument is	2. The reliability of the instrument 3.
	The repeatability of the instrument
	4. Taking different reading when input is first increased and then decreased
Hysteresis loss will be minimal for	1.soft iron 2.steel 3.cobalt steel 4.silicon steel
In the following, which is used as signal conditioning circuit for inductive sensor	1. Schering Bridge 2. Hay's Bridge 3. Desauty's Bridge 4. Wheatstone dc bridge
	1. shunt resistor and series capacitor 2. Series capacitor and resistor 3. shunt capacitor and resistor 4. series resistor and shunt capacitor
The unit-step response of a system starting from rest is given by (t) = 1- e-2	1. 2+s 1. 2+s 2. 2+s

for $t \ge 0$ The transfer function of the system is	3. 1+2s 4. 1+2s
To determine the polarity of the voltage drop across a resistor, it is necessary to know	direction of current through the resistor value of current through the resistor e.m.fs. in the circuit value of resistor
Key items to consider when designing the amplifier are:	1.Only (a), (b) and (c) are correct
a. frequency of operation	2.Only (d) is correct
b. signal amplitude	3.Only (a) and (b) are correct
c. input impedance	
d. mode of operation	4.All are correct
Which of the following is referred to as	1. hi
	2. <mark>hr</mark> 3.hrf
	4.hfe
PD controller improves	transient and steady state response Transient response frequency response
In opamp when the non-inverting input is grounded, the inverting input	4. Steady state response 1.looks like Vdd 2.reduces to zero 3.looks like a virtual
The maximum range of a transmitter depends on	ground 4.attains high values 1. its power 2. its frequency 3. both its power and frequency 4. not on power and frequency
	1.unit ramp 2. frequency 3. unit step 4. impluse
Find out the 10's Complement of 459.	1. 562 <mark>2. 541</mark> 3. 127 4.458
The function of shunt in an ammeter is to	1.increase the resistance of ammeter 2.bypass the current 3.increase the sensitivity of the ammeter 4.bypass the voltage

The resistance in the circuit of the moving coil of a dynamometer wattmeter should be	1.1 ohm 2.high 3.almost zero 4.low
The multiplier and the meter coil in a voltmeter are in	1.series 2.parallel 3.series-parallel 4.shunt-series
	1.supply voltage is low 2.load impedance is low 3.load impedance is high 4.supply voltage is high
Which of the following meters are not used on D.C. circuits	1.moving coil galvanometer 2.Commutator motor meters 3.Induction meters 4.Mercury motor meters
VC = 5 V. The magnitude of the supply voltage is:	<mark>1. 13 V</mark> 2. 7 V 3 7 V 4. 17 V
= 0.25 F. The value of R that will produce unity damping factor is:	1. 4Ω <mark>2. 2Ω</mark> 3. 1Ω 4. 0.5 Ω
F.T. of continuous non-periodic signal is	1. periodic 2. aperiodic 3. both periodic and aperiodic 4. continuous
is an instrument which measures the insulation resistance of an electric circuit relative to earth and one another,	1.Megger 2.Tangent galvanometer 3.Current transformer 4.voltage transformer
If the Nyquist plot of the loop transfer function G(s) H(s) of a closed-loop system encloses the (-1, jo) point in the G(s) H(s) plane, the gain margin of the system in dB is equal to	1.zero. 2.greater than zero. <mark>3.less than zero. 4.infinity.</mark>
untill	1. The trigger pulse is given to change the state 2. Any pulse given to go into previous state 3. They don't get any more pulse 4. enable is set to 0
klass stadt and the second at the second at the second and the second at	1. Provide erroneous result. 2. Remain same 3. Decrease 4.

	Increase
is measured with respect to absolute zero pressure as the datum.	1. Gauge pressure 2. Vacuum Pressure 3.Room prressure 4. Absolute pressure
The Fourier Transform of Signum Function is	1. 2/jω 2. 2jω 3. 2ω/j 4. 2ω/j
Two rectangular waveforms of duration t_1 and t_2 seconds are convolved. What is the shape of the resulting waveform?	1. Triangular 2. Rectangular 3. Trapezoidal 4. Semi-circular
If Energy is finite and Power is Zero, then it is a signal	1. Power Signal 2. Energy Signal 3. Both power and energy signal 4. electric signal
If energy is infinite and power is finite , then it is a signal	1. Energy signal 2. Power signal 3.

	Deally account and
	Both power and energy signal
	4.
	electric signal
	1.
	Correlation
	<mark>2.</mark>
operation involves Time	Convolution
shifting , summation and multiplication.	3.
	Both convolution and correlation
	4.
	summing
	1.
	use an ammeter
To measure a resistance with the help of	Necessary to use volt-ratio box
potentiometer it is	Not necessary to standardize the
	potentiometer
	Necessary to standardize the potentiometer
	1.
	a shift in the input signal also
	results in the corresponding
	shift in the output
	sinit in the output
A system is said to	2. a shift in the input signal does
A System is said to	a shift in the input signal does
the chiff inverient only	
pe silli ilivalialit olliy	not exhibit the corresponding
	not exhibit the corresponding shift in the output
if	shift in the output
	shift in the output 3.
	shift in the output 3. a shifting level does not vary in
	shift in the output 3.
	shift in the output 3. a shifting level does not vary in an input as well as output 4.
	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not
	shift in the output 3. a shifting level does not vary in an input as well as output 4.
	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not
	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output
	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1.
	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1. Sine function
if	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1. Sine function 2.
The function is represented	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1. Sine function 2. Sinc function
The function is represented	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1. Sine function 2. Sinc function
The function is represented	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1. Sine function 2. Sinc function 3.Cosine function
The function is represented by Sint/t.	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1. Sine function 2. Sinc function 3.Cosine function 4. ramp function
Thefunction is represented by Sint/t. The RMS value of the voltage u(t)= 3 + 4	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1. Sine function 2. Sinc function 3.Cosine function 4. ramp function 1. 7 ∨ 2. √17 ∨
The function is represented by Sint/t.	shift in the output 3. a shifting level does not vary in an input as well as output 4. a shifting at input does not affect the output 1. Sine function 2. Sinc function 3.Cosine function 4. ramp function

	[,
Hysteresis errors in Bourdon tubes can be minimized by :	1. selecting proper material 2. avoiding direct entry of steam into it 3. using them well within the designed pressure range 4. proper design and fabrication
 A TV receiver antenna should pick up the TV signal and develop maximum voltage from the available strength of signal It should not suffer from co-channel interference It should reject unwanted signals It should have a very narrowband 	1. 1, 2 and 3 only 2. all statements are correct 3. 2 and 3 only 4. 1 and 2 only
The correct statements are In an electrodynamometer type of	the current coil is made fixed pressure coil is made fixed
wattmeter The input and output of the D.P. meter is Q (input flow rate) and Δp (output differential pressure) and C is the meter constant. Determine the flow rate when $\Delta p = 250$ Pa and C = 0.0004 m³/s per	3. any of the two coils can be made fixed 4. both the coils should be movable 1. 0.00632 m³/s 2. 0.0632 m³/s 3. 0.0632 m³/s
Pa.	4. 0.0412 m³/s
If the instrument is to have a wide range, the instrument should have	 Exponential scale Logarithmic scale Linear scale Square-law scale
For low resistance (from few micro ohms to one ohm) measurement, which bridge is used?	 Guarded Wheatstone bridge Maxwell bridge Kelvin bridge Wheatstone bridge
A vertical amplifier for a CRO can be designed for:	High Bandwidth Less Bandwidth Constant Band Less Gain
The household energy meter is	1.three phase instrument 2.a recording instrument 3.an integrating instrument 4.an indicating instrument
A D flip-flop can be constructed from T flip-flop and gate	1. Ex- OR 2.

	Ex-NOR
	EX-NOR
	3. AND
	AND
	4.
	OR
Have many NAND and a see those in a	1. 1
How many NAND gates are there in a 7400 NAND IC	2. 8 <mark>3. 2</mark>
	3. 2 4. 4
	1. 6
To built mod-19 counter, number of	2. 3
flip-flop required is	3. 4
	4. 5 1. DON'T CARE condition for all possible
	input truth table combinations.
Each Hall codes in a 17 years agreement	2. a LOW output for all possible HIGH
Each "1" entry in a K-map square represents:	input conditions.
represents.	a HIGH output on the truth table for all LOW input combinations.
	4.A HIGH output on the truth table for the
	all HIGH input combinations.
	1.
	Field controlled D.C. motor
	2.
Which of the following is an open loop	Ward leonard control
control system	3.
	Metadyne
	4.
	Stroboscope
	1. No change in output.
In a JK Flip-Flop, toggle means	2. Set Q = 1 and Qbar = 0. 3. Change the output to the opposite
	state.
	4. Set Q = 0 and Qbar = 1.
	1. the output is grounded
	line output is grounded
	2.
M/han a differential amplifier	one-side output is taken
When a differential amplifier	
is operated single-ended,	3.
	both inputs are connected together
	4.
	the output is not inverted

1 m 1 1 1 1 1 m 2 m 2 m 2 m 2 m 2 m 2 m
<mark>1.Fair child μΑ 709</mark> 2.T.I. SN 72709 3.Motorola's MC 1709 4.National Semi-conductor's LM 709.
1. lower energy state to a higher energy state
2. higher energy state to a lower energy state
3. higher energy state 4. lower energy state
1. They do not give the information of the steady state error when the inputs are other than the three basic types 2. Error constant fail to indicate the exact manner in which the error function change with time. 3. They do not give information of the steady state error and fail to indicate the exact manner in which the error function change with time 4. They give information of the steady state error
1.Capacitor only 2.Inductor 3.Resistor 4.Resister and inductor
1.Only (a) is correct 2.Both (a) and (b) are correct
3.All are wrong 4.All are correct
Hartley Wien bridge Hartley and Wien Bridge 4. RC phase shift

1.h(t)=h1(t)h2(t) 2.h1(t)+h2(t) 3.d/dt[h1(t)h2(t)] $\frac{4.h1(t)*h2(t)}{4.h1(t)*h2(t)}$	
13e ^{2t} + 4e ^{-t-1} 23e ^{-2t} - 4e ^{-t+1}	
3.Zero 4.Infinity 1. Four 1×2 decoders and one 2×4 decoder. 2. one 2×4 decoder 3. Two 2×4 decoders and one 1×2 decoder. 4. Two 2×4 decoders	
,	
	1.
	Triang ular
	2. Recta ngular
	3. Trape zoidal 4. Semi- circula
1 differential applifier	r
2. Integrator 3. Differentiator 4. Log amplifier	
1. All (a) (b) (c) and (d)	
2. Only (b) and (c)	
3. Only (c) and (d)	
4. Only (b) and (c)	
	3.d/dt[h1(t)h2(t)] 4.h1(t)+h2(t) 13e²¹ + 4e¹¹² 23e²¹ - 4e¹¹¹ 3.Zero 4.Infinity 1. Four 1×2 decoders and one 2×4 decoder. 2. one 2×4 decoder 3. Two 2×4 decoders 4. Two 2×4 decoders 1. Log amplifier 2. Integrator 3. Differentiator 4. Log amplifier 1. All (a) (b) (c) and (d) 2. Only (b) and (c) 3. Only (c) and (d) 4.

An amplifier has open loop gain of 100, input impedance 1 k Ω and output impedance 100 Ω . For series-series negative feedback with β = 0.99 is used, then the new input and output impedances are	1. 10 Ω and 10 k Ω 2. 10 Ω and 1 k Ω <mark>3. 100 kΩ and 1k Ω</mark> 4. 100 k Ω and 10k Ω
Phase margin of a system is used to specify which of the following	1. Frequency response 2. Absolute stability 3. Relative stability 4. Time response
In an opamp by using binary weight resistors the summing circuit	1.can build a A/D converter 2.can be used as a integrator. 3.can build a D/A converter 4.can be used as a differentiator
An 741IC opamp is used as a differential amplifier. Its positive and negative inputs are at potentials of 2.1 and 1.9 mV respectively. If the gain is 100,000, the output will be	1.0.2 V 2.2 V 3.20 V 4.12 V.
Convolution of two sequences $x_1[n]$ and $x_2[n]$ is	1. $X_1(z)*X_2(z)$ 2. $X_1(z)X_2(z)$ 3. $X_1(z)+X_2(z)$ 4.X1(z) - X2(z)
Pick the odd one	1.variance 2. mean 3. standard deviation 4. Chebyshev inequality