

(NLP)

THE TASK

CLASSIFY QUERIES INTO DIFFERENT INTENT CLASSES

Queries given to AI assistant:

Ex:

Query: "define ambivalence for me please",

Intent class: "definition"

Some Query are out of scope:

oos: "am kind of busy now"

,

THE DATASET

- Language: English.
- Contains 23,700 queries.
- Where 22,500 are in-scope covering
 150 intentens (Grouped by 10
 Domains).
- Only 1,200 are classified as
 Out-of-Scope.
- Two paths:
 - Distinguishing only between intent classes
 - Including OOS as an other intent

DATA ANALYSIS

USING TF-IDF & BAG OF WORDS

Intent: "Alarm"

FEATURE EXTRACTION METHODS

SPARSE REPRESENTATION

- Bag of Words
- - TF- IDF

- Pre-trained on Google News
- Trained with our dataset

DENSE REPRESENTATION – WORD2VEC

CLASSIFIER MODELS & RESULTS

Baseline

Naïve Bayes and BOW

Accuracy: 0.865

Precision: 0.875

Recall: 0.865

F1: 0.863

<<<<

CLASSIFIER MODELS & RESULTS

	ACCURACY	PRECISION	RECALL	F1
L. REGRESSION	0.899	0.904	0.899	0.898
SVM	0.912	0.919	0.912	0.912
DECISION TREE	0.783	0.792	0.783	0.783
RANDOM FOREST	0.399	0.418	0.399	0.378
NÄIVE BAYES	0.732	0.741	0.732	0.724

1 1 1 1 1 1 1 1 1

ERROR ANALYSIS

The Out-Of-Scope class overlap with the other classes

Calculating the misclassification with the confusion matrix we obtained the following results:

Percentage of queries misclassified as oos:

13.3% - 'yes'

6.6% - 'new_card'

20.0% - 'restaurant_reviews'

Percentage oos queries misclassified as in scope:

2.0% - 'travel_suggestion'

2.1% - 'what_can_i_ask_you'

1.9% - 'directions'

CONCLUSIONS

Highlights:

- Sparce representation provided a better performance than word embeddings.
- Pre-trained word embeddings worse than self-trained.
- When including the out of scope class for training the predictions were slightly worse.

THANKS! ANY QUESTIONS?

<<<<

First assignment - Natural Language Processing - Feup - 22/23