Proiect la statistică

Ivan Andrei Valeriu Grupa 321

Exercițiul 1:

a) Funcția de repartiție este continuă, deci inversa ei este $f(y)=\mu+\beta*ln(u/(1-u))$, unde $\mu=0$ și $\beta=1$.

```
1 n=10000
3 - valRepLogistica=function(nr) {
4
      u=runif(nr) #10000 de observatii dintr-o uniforma
 5
 6
      return (log(u/(1-u))) #inversa functiei de repartitie
7 }
 8 test1=valRepLogistica(n)
9 test2=rlogis(n)
10
11 par(mfrow=c(1,2)) #afisam 2 grafice pe o linie
12
13 hist(test1,
        main="Observatii folosind metoda transformarii inverse",
14
15
        xlab="Valori obtinute",
16
        ylab="Nr. de aparitii",
17
        xlim=c(-10, 10),
     cex.main=0.7,
18
       col="blue");
19
20 hist(test2,
     main="Observatii folosind rlogis",
21
        xlab="Valori obtinute",
22
     ylab="Nr. de aparitii",
xlim=c(-10, 10),
23
24
25
      cex.main=0.7,
26 col="red");
```


b) De asemenea, funcția de repartiție este continua, având inversa $f(y)=\beta^*\tan(\pi^*(u-1/2))+\mu$, unde $\beta=1$, $\mu=0$.

```
n=10000
 1
 2
 3 * valorRepCauchy=function(nr){
 4
 5
       u=runif(nr) #10000 de observatii dintr-o uniforma
 6
       return(tan(pi*(u-1/2))) #inversa functiei date
 7
 8
 9
    test1=valorRepCauchy(n) #observatii metoda inversei
10
    test2=rcauchy(n,0,1) #observatii metoda rcauchy
11
12
    par(mfrow=c(1,2)) #afisam 2 grafice pe o linie
13
14
    hist(test1,
          main="Observatii folosind metoda transformarii inverse",
15
          xlab="Valori obtinute",
ylab="Nr. de aparitii",
16
17
          cex.main=0.7,
18
          col="green");
19
20
21
    hist(test2,
          main="Observatii folosing reauchy",
22
          xlab="Valori obtinute",
ylab="Nr. de aparitii",
23
24
          cex.main=0.7,
25
          col="orange");
26
```


Exercițiul 2:

Am notat expresia $e^{(-x^2)/2}[sin(6x)^2+3cos(x)^2sin(4x)^2+1]$ cu h(x). Considerăm f(x) proporțională cu h(x). Deci, f(x)=C*h(x).

Pentru a determina constanta de normalizare, generăm mai întâi observații sub aria determinată de h(x).

Graficul lui h(x):

```
h=function(x){
   return (exp(-x^2/2)*(sin(6*x)^2+3*(cos(x^2))^2*(sin(4*x))^2+1))
}
valori=seq(-3,3,0.0005)
plot(valori, h(valori), type="l", col="red")
grid(nx=NULL, col="lightgray", lty="dotted", lwd=par("lwd"), equilogs=TRUE)
```


Pentru a găsi constanta M, trebuie să studiem maximul funcției dată de raportul:

$$\frac{h(x)}{g(x)} = \sqrt{2\pi} [\sin(6x)^2 + 3\cos(x)^2 \sin(4x)^2 + 1]$$

În acest sens, vom folosi funcția predefinită OPTIMISE, așa cum ni s-a sugerat.

```
raport = function(x) {
    return ( sqrt(2*pi) * ( sin(6*x)^2 + 3*(cos(x))^2 * (sin(4*x))^2 + 1) )
}
M = optimise(raport, c(-0.3,0), maximum = TRUE)
M[2]
### $`objective`
### [1] 10.84551
```

Ne vom folosi de valoarea găsită pentru M ca să mărginim graficul funcției h(x).

```
raport = function(x) {
   return ( sqrt(2*pi) * ( sin(6*x^2) + 3*cos(x^2) * sin(4*x^2) + 1) )
}
M=optimise(raport, c(-0.3,0), maximum = TRUE)
valori = seq(-3,3, 0.0005)
plot(valori, h(valori), type="l", col = "dimgray")
grid(nx = NULL, col = "lightgray", lty = "dotted",
   lwd = par("lwd"), equilogs = TRUE)
lines(valori, dnorm(valori)*M[[2]], col = "red")
```


Urmează să ne folosim de metoda respingerii și să păstrăm valorile acceptate.

```
valoriRetinute = c()
n = 2500 #numar de incercari
contor = 0 #numaram incercarile bune
i = 1
while( i <= n ) {
    u = runif(1,0,1) #generez o observatie din uniforma
    x = rnorm(1,0,1) #generez o observatie din normala standard
    if( u <= h(x)/(M[[2]]*dnorm(x))) {
        valoriRetinute[contor] = x
        contor = contor + 1
    }
    i = i + 1
}
#Astfel procentul de valori obtinute este:
p = contor/n
p</pre>
## [1] 0.8056
```

După cum am notat, $\int h(x) = \int \frac{f(x)}{c}$. Cum $\int f(x) = 1$ și $\int h(x) = \int \frac{f(x)}{c}$, atunci pM= $\frac{1}{c}$, deci C= $\frac{1}{pM}$.

```
M[[2]]*p #integrala lui h
##[1]5.18215
```

```
integrate(h, -Inf, Inf)
```

6.252033 with absolute error < 0.00037

Histograma valorilor obținute nu se așează perfect sub graficul funcției normalizate, deoarece nu am generat observații sub graficul lui h(x).

Exercițiul 3:

Scris analitic:

$$\int_{0}^{1} h(x) = \int_{0}^{1} \cos^{2}(50x) + \sin^{2}(20x) + 2\sin(20x)\cos(50x)dx$$

$$\int_{0}^{1} \cos^{2}(50x) = \int_{0}^{1} \frac{\cos(100x) + 1}{2} dx = \frac{x}{2} + \frac{1}{200}\sin(100x)\Big|_{0}^{1} = \frac{1}{200}(100 + \sin(100)) \approx 0.49$$

$$\int_{0}^{1} \sin^{2}(20x) = \int_{0}^{1} \frac{1 - \cos(40x)}{2} = \frac{x}{2} - \frac{1}{80}\sin(40x)\Big|_{0}^{1} = \frac{1}{2} - \frac{\sin(40)}{80} \approx 0.49$$

$$\int_{0}^{1} 2\sin(20x)\cos(50x) = 2\Big(\frac{1}{60}\cos(30x) - \frac{1}{140}\cos(70x)\Big)\Big|_{0}^{1} \approx -0.02$$

$$\Rightarrow \int_{0}^{1} h(x) \approx 0.96$$

Aplicând metoda Monte-Carlo în R vom obține:

```
nrUnif = 2000
funMonteCarlo = function(x) {
   return ( (cos(50*x) + sin(20*x))^2 ) #functia de la care plecam(vrem sa o integram)
}
Sn = 0#toate observatiile
valInti = c() #integrala calculata pentru i observatii (i se afla intre 1 si n)
valInti[0] = 0
for( i in 1:nrUnif) {
   Xn = runif(1,0,1) #generez o observatie
   Sn = Sn + funMonteCarlo(Xn) #fac suma, adunand h(Xn), unde h este funtia de mai devreme
   valInti[i] = Sn/i
}
valIntMC = Sn/nrUnif #valoarea integralei
valIntMC
```

[1] 0.9647803

Folosindu-ne de INTEGRATE, obținem:

```
valR = integrate(funMonteCarlo, 0, 1)
valR
```

0.9652009 with absolute error < 1.9e-10

Pentru a ne da seama de eficiența acestei metode, reprezentăm grafic șirul de aproximări alături de valorile obținute anterior.

Exercițiul 4:

Pentru acest exercițiu am ales setul de date "**mtcars**" disponibil in seturile de date predefinite in R. Aceste înregistrări reprezintă o listă de mașini alături de care găsim o listă de parametri atât de design, cât și de performanță pentru autovehiculele respective.

> mtcars											
	mpg	cy1	disp	hp	drat	wt	qsec	VS	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1		1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1		2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	1 2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1		2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1		6
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	0.70	8
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

În cele ce urmează, voi încerca să fac o analiză a datelor prezente în tabel și să interpretez pe cât posibil datele obtinute:

```
a) Media
> apply(mtcars,2,mean)
                  cyl
                            disp
                                                  drat
                                                                                                                     carb
                                                               Wt
                                                                        qsec
                                                                                     VS
                                                                                                am
                                                                                                          gear
20.090625
             6.187500 230.721875 146.687500
                                              3.596563
                                                         3.217250 17.848750
                                                                               0.437500
                                                                                          0.406250
                                                                                                      3.687500
                                                                                                                2.812500
```

Ni se afisează valoarea medie pentru fiecare dintre parametrii prezenți în tabel.

b) Suma

Se va afișa suma tuturor parametrilor pentru fiecare mașină în parte, însă nu am putut identifica vreo importanță pentru analiza respectivului rezultat.

c) Cuantilele

```
> apply(mtcars,2,quantile,probs=c(0,0.25,0.50,0.75,1),na.rm=TRUE)
                            hp
                               drat
        mpg cyl
                   disp
                                          wt
                                                 qsec vs am gear
                                                                 carb
     10.400
0%
                 71.100
                          52.0 2.760 1.51300 14.5000
                                                       0
                                                         0
                                                               3
                                                                    1
                                                               3
                                                                    2
25%
    15.425
              4 120.825 96.5 3.080 2.58125 16.8925
                                                          0
50%
    19.200
              6 196.300 123.0 3.695 3.32500 17.7100
                                                         0
                                                               4
                                                                    2
75%
     22.800
              8 326.000 180.0 3.920 3.61000 18.9000
                                                      1
                                                          1
                                                                    4
                                                                    8
100% 33.900
              8 472.000 335.0 4.930 5.42400 22.9000
                                                               5
```

Minimul, prima cuantilă, a doua, a treia și maximul.

d) Histograme și comparația dintre ele

```
> par(mfrow=c(1,3))
> hist(mtcars$wt,main="Weight",xlab="Weight(in 1000)",col="yellow")
> hist(mtcars$mpg,main="MPG",xlab="Miles per Gallon",col="magenta")
> plot(mtcars$mpg, main="Weight vs. MPG", xlab= "Weight(in 1000)", ylab= "Miles per Gallon",col="red")
```


Primele două histograme analizează frecvența aparițiilor unor diverși parametri (în particular, Weight și MPG), iar cel de-al treilea plot realizează o analiză comparativă între cele două histograme.

e) Boxplot

După ce am studiat boxplotul comparativ, am ajuns la concluzia că mașinile în 4 cilindri au consumul cel mai scăzut, deoarece parcurg mai multe mile cu un singur galon de combustibil, iar mediana este cea mai mare.