ODE Examples

Ahmet Sacan

ODEs in Biology

- Most biological reactions are modeled with the following reaction kinetics:
 - Law of mass action
 - Irreversible Reaction
 - Reversible Reaction
 - Michaelis-menten enzyme kinetics

Ir-reversible Reactions

• Reaction Rate:

• In many reactions, the powers in may not be a, b.

Ir-reversible Reactions

- Example: Combustion
 - e.g., burning sugar (sucrose)

- See ode_examples.mlx

Aftermath of the February 2008 dust explosion and fire at Imperial Sugar refinery in Port Wentworth, Ga.

Reversible Reactions

• Two reactions, occurring simultaneously:

• Example:

• See ode_examples.mlx

Intermediate Reactions

- There may be several intermediate reactions making up the overall reaction
- Example: Reaction of hydrogen and nitric oxide:

• The observed rate equation:

Intermediate Reactions

- The elementary steps are:
 - fast equilibrium: with equilibrium constant
 - slow: with rate constant
 - fast:
- The slowest elementary step controls the reaction rate:

— Rewrite:

Binding Kinetics

• Reversible Receptor-Ligand binding to form Complex:

• At equilibrium:

- Binding, association constant:
- Dissociation constant:
- The kinetics can be determined analytically.
 - See: https://en.wikipedia.org/wiki/Receptor-ligand_kinetics

Binding Kinetics

• Find the steady-state concentration of the bound receptor

• See ode_examples.mlx

Enzyme Kinetics

• Overall reaction:

- But reaction does not follow
- Enzymatic reactions are composed of two steps: association and catalysis:

• Overall reaction rate:

- We need to replace C with measurables.
- Assumptions:
 - P<<S, E<<S
 - Then:

• At steady state, rate of formation & consumption of C equal:

• Define:

• Replace with ():

• Plug back in rate equation:

• Maximum velocity occurs when enzyme is saturated (all enzyme is tied up with)

• rate now becomes:

Michaelis-Menten Enzyme Kinetics

• There is a closed form solution.

Example: Chymotrypsin

Example: Chymotrypsin

• Assume cleavage of substrate by chymotrypsin follows Michaelis-Menten kinetics:

• See ode_examples.mlx

Network of Reactions: Glycolysis

Glycolytic Oscillations

- Repetitive fluctuations in concentrations of metabolites (classical experiments in yeast and muscle)
- G:intracellular glucose/hexose, T:ATP, I:triose phosphates, H:NADH, P:pyruvate, E:ethanol, A:acetate

$$\begin{array}{lll} v_{1}(T,G) & = k_{1}TG \\ v_{3}(T,I,H) & = k_{3}(C_{\mathrm{AD}}-T)I(P_{\mathrm{tot}}-I-T)(C_{\mathrm{N}}^{\mathrm{tot}}-I) \\ & H) \\ v_{5}(I,H) & = k_{5}IH/(K_{\mathrm{H}}+H) \\ v_{7}(P,H) & = k_{7}PH/(H+K_{\mathrm{HP}}) \\ v_{8}(E,H) & = k_{8}E(C_{\mathrm{N}}^{\mathrm{tot}}-H) \\ v_{9}(T) & = k_{9}T \\ v_{11}(A,T) & = k_{11}AT \\ v_{p}(T) & = k_{p}T/(K_{\mathrm{M}}+T) \\ v_{N}(H) & = k_{N}H/(H+K_{\mathrm{HO}}) \end{array}$$

Glycolytic Oscillations

Fig. 3. A simulation of the full model of Fig. 1 with $V_{\rm in} = 0.24$, $k_1 = 0.05$, $k_3 = 0.05$, $k_5 = 0.4$, $k_7 = 0.1$, $k_8 = 0.001$, $k_9 = 0.3$, $k_{11} = 0.02$, $K_{\rm HP} = 0.02$, $K_{\rm HP} = 0.2$, $K_{\rm HO} = 0.2$, $k_{\rm p} = 0.5$, $k_{\rm N} = 0.08$, $C_{\rm AD} = 8$, $P_{\rm tot} = 10$, $C_{\rm N}^{\rm tot} = 8$, E = 2. Shown are the oscillating concentrations of NADH (1), triose phosphates (2), ATP (3) and hexose (4) after the system had relaxed to its limit cycle.

Glycolytic Oscillations

• Limit Cycle in Glycolytic Oscillations is different than oscillations in Lotka-Volterra

Stable Limit Cycle: https://en.wikipedia.org/wiki/Limit_cycle

Lotka-Volterra https://en.wikipedia.org/wiki/Lotka %E2%80%93Volterra_equations

Example

• A generic three-component repressive network:

Mogilner et al., Developmental Cell 11:279-287, 2006.