Numerical Analysis – Winter 2021

Project

Issued: Dec. 22, 2021 Due: Jan.12, 2022

说明:本次大作业包括两道题,共20分,其中第一题为10分(6+2+2),第二题为10分(6+4)。提交大作业时,针对每一题的解答,需提供具体的建模、求解思路/方法/算法、相关的结果图示以及编程实现代码。

1. **背景**: 沃尔夫冈·阿马迪乌斯·莫扎特(1756-1791)是有史以来最多产的作曲家之一。1862 年,德国音乐学家路德维希·冯·Köchel 按时间顺序列出了莫扎特的音乐作品。这个列表是 Köchel 数字或"K 数字"的来源,后来常用在莫扎特作品的标题中 (例如,降 e 大调协奏曲 K. 364)。

下表列出了莫扎特 17 部作品的 Köchel 编号和创作日期:

K. No	1	43	75	155	196	219	271	318	351
Year	1761	1767	1771	1772	1774	1775	1777	1779	1780
K. No	385	425	466	503	537	575	599	626	
Year	1782	1783	1785	1786	1788	1789	1791	1791	

问题:

- (1) 为上述数据分别构建线性、二次和三次最小二乘逼近模型,并比较三者确定最优逼近方案;
- (2) 莫扎特的《第 173 号弦乐四重奏》创作于 1773 年,(1) 中哪些逼近模型预测了正确的日期?
- (3) 如果莫扎特 1791 年后还活着,他会在什么时候完成他后续的 100 部作品,即假设采用(1) 中线性、二次和三次模型分别来做预测,他会在哪一年完成 K. 726? 这三个模型得到的结果中哪个更合理? 为什么?

2. 背景: 19 世纪初,Robert Malthus 提出了人口增长的数学模型。该模型假设死亡率与人口规模成正比,基于微分方程 y'(t) = ky(t),因此得到一个纯指数解。事实证明,这个模型并不适用于人口增长的建模,而 P.F. Verhulst 在 1838 年提出的 logistic 函数被认为更合适。logistic 模型考虑了人口增长不仅限于自然死亡的情况(例如可能受环境等因素影响),相应的常微分方程为 y'(t) = ky(t)(1-y(t)/L),其中k是一个考虑了一切可能限制人口增长因素的方程系数。

logistic 模型同时适用于其它问题的建模,包括疾病的传播和信息在给定社区中的传播。在这些问题中,y表示人口/群体中受感染/拥有信息的人数,L是所考虑群体的恒定规模。当初始条件y(0) < L时,得到的 logistic 曲线即是相应问题的解。一般情况下,logistic 函数对系数k和常数L的值变化非常敏感。

应用:一个由10名学生组成的倡议小组想在校园组织一场著名摇滚乐队的音乐会,以庆祝即将到来的毕业。在与乐队经理进行谈判时,他们希望对其他2000名学生保密。然而,关于计划中的音乐会的传闻开始传播......

问题:

- (1) 假设传闻的传播系数k = 0.8, 那么第 7 天的时候,除了倡议小组外,还有多少学生知道关于音乐会的消息? (基于一种迭代算法计算估计)
- (2) 假设传播系数k在倡议小组的控制下,使得 4 天内只有 40 个在校学生 (包含倡议小组的 10 人)知道关于音乐会的消息,那么这个系数k的取值是什么?