Introduction to IEEE 802.15.4

TUHH Institute of Communication Networks

Koojana Kuladinithi and Yevhenii Shudrenko 31st of March 2025

Course Contents

Online lectures

- Lecture 1 Introduction
- Lecture 2 IEEE 802.15.4
- Lecture 3 IETF 6TiSCH

Physical Meeting 13th to 17th of April

- Lecture 4 Theoretical Analysis
- Cooja Simulations and Experiments
- Industrial visit and a talk
- Team Presentations on self learned material
- Lecture 5 Research Project Results

More details on our padlet, https://tuhh.padlet.org/c00zll01/enabling-industry-4-0-j88rkh1i3j7rzmv3

TSCH Open Issues

- Scheduling: trade off between throughput, delay and power consumption
 - Centralized vs. distributed
 - Time slot length, slotframe size
 - Spectrum sensing and blacklisting of channels
 - Number of cells per link
 - Avoiding internal collisions
 - Adaptive cell allocation (traffic monitoring)
- Synchronization
- Scalability
- Deployment
- ...

6TiSCH Protocol Stack

These slides were prepared using the following references.

[1] RFC 8480 - 6TiSCH Operation Sublayer (6top) Protocol (6P)

[2] RFC 9033 - 6TiSCH Minimal Scheduling Function (MSF)

6TiSCH Overview

6top Protocol (6P)

- Allows neighbors to add/delete/relocate cells
- 6P allocates cells in Slotframe 1

Figure 2. 2 Slotframe Structure when using 6P alongside the Minimal 6TiSCH Configuration

6P Transactions

- 6P messages for allocating (add/delete/relocate) cells among neighbors
- 2- or 3-step
- Use auto cells for the initial transaction

2-Step 6P Transaction

Discuss the protocol behavior for these cases:

- A sends ADD request with only [1,2] in cell list
- 6P Add Request to B is lost
- 6P Response from B is lost

6P Return Code – Status & Error Handling

- Return code indicates the status
- Timeout at the originator handles Req/Res losses

Table 1. 6P return codes

++			
Code	Name	Description	Is Error?
0 1 2 3 4 5 6 7 8 9	RC_SUCCESS RC_EOL RC_ERR RC_RESET RC_ERR_VERSION RC_ERR_SFID RC_ERR_SEQNUM RC_ERR_CELLLIST RC_ERR_BUSY RC_ERR_LOCKED	operation succeeded end of list generic error critical error, reset unsupported 6P version unsupported SFID schedule inconsistency cellList error busy cells are locked	No No Yes Yes Yes Yes Yes Yes
++		}	+

Why is L2 ACK used here?

3-step 6P Transaction

Why do we need SEQ numbers?

Duplicate 6P Messages


```
Node A
                                        Node B
           6P Request (SeqNum=456)
                                     L2 ACK
           6P Response (SeqNum=456)
           L2 ACK
           - - - - - - - - X
                                            no ACK:
                                            link-layer
           6P Response (SeqNum=456)
                                            retransmit
 duplicate |<-----
6P Response
           L2 ACK
  received |
```

Cell Collision

- If two pairs of neighbours use the same cell
 - A & B use Cell [1,2]
 - C & D also use Cell [1,2]

Cell collision does not always result in packet collisions ©

Discuss the probability of cell collision in the given topology. Consider the case where A & B as well as C & D use bidirectional communications.

Cell Collision contd.

- A -> B and C -> D use the cell at [1, 2]
 - They transmit at the same time with the same channel offset.
- A & C are neighbours
 - A TX & C RX (⊗)
 - A RX & C TX (⊗)
 - A TX & C TX (⊗)
 - Is this possible with TSCH based MAC?
 - A RX & C RX (⊚)

How do we identify the cell collision in a distributed manner?

6TiSCH Minimal Scheduling Function (MSF) - RFC 9033

- MSF is built upon the 6p protocol
 - describes the behavior of a node when joining the network
 - describes how the scheduling is managed in a distributed manner

MSF - Joining the Network

- 1. Randomly choose a frequency from the channels through which the network cycles and starts listening for EBs on that frequency.
- 2. Receive EBs, learn the number of neighbors and select a routing parent.
- 3. Set up auto cells.

End of the joining phase:

- Is synchronized to the network
- has selected one neighbor as its routing parent
- has one AutoRxCell
- has one negotiated Tx cell to the selected parent
- starts to send DIOs
- starts to send EBs

Already

network

established

MSF - Distributed scheduling

- 2 types of cells for control messages
 - Minimal: EB, routing info, etc...
 - Auto: 6P messages
- Dedicated cells between a node and its routing parent
 - Selected randomly
- Dedicated cells: monitoring cell usage
 - Cell collisions
 - Packet drops due to queue overflows
 - Cells overprovisioning

MSF – Monitoring the Cell Utilization

- Monitors cell utilization
 - A cell is added/deleted if utilization threshold is crossed
- Monitors cell performance
 - Packet Delivery Ratio (PDR) is low compared to other cells
 relocate

What are the pros/cons of a randomized scheduling?

MSF - Schedule Collisions

To avoid cell collisions

- Monitor PDR per cell Section 5.3²
 of RFC 9033
- If the difference to other cells' PDRthreshold => reallocate cell

Monitoring Cell Usage and Adapting to Traffic

- Reading break
 - Section 5.1² of RFC 9033

- Adaptation to traffic
 - Based on cell utilization:

$$\rho = \frac{cells_used}{cells_elapsed}$$

 Add/remove cells if respective upper/lower thresholds are crossed

Distributed/centralized?
How to avoid the ping pong effect?

Performance Evaluation of 6TiSCH

These slides were prepared using the following reference.

[1] Shudrenko, Yevhenii, and Andreas Timm-Giel. "Modeling end-to-end delays in TSCH wireless sensor networks using queuing theory and combinatorics." Computing (2024):1-25.

End-to-End Delay

Discuss the following:

- What kind of delays are involved when A sends data to S?
- When C sends data to S?
- What is definition of end-to-end delay?

End-to-End Delay contd.

$$D(h) = \sum_{i=1}^{h} D_i = \sum_{i=1}^{h} (D_p + D_s + D_t + T_i),$$

- D_p is the propagation delay
- D_s is the processing delay
- D_t is the transmission delay
- T_i is the queuing delay (sojourn time)
 - Consists of the service time W and queuing time Q

Any delays to be ignored?

Service Time

- D transmits a packet at ASN = 4.
 - How many slots does this packet wait at C?
 - How many slots does this packet wait at A?

Queuing Time

Assume the case where B transmits at ASN = 2 and D transmits at ASN = 4

