$D \rightarrow K^+K^-\pi^+\pi^-$ analysis at LHCb and BESIII

Martin Tat

Oxford LHCb

30th May 2022

Outline

- 1 LHCb
 - Summary of LHCb analysis status
- 2 BESIII
 - Measurement of CP even fraction F₊
- Summary

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$
 GGSZ+GLW analysis at LHCb

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$

GGSZ+GLW analysis at LHCb

Summary of LHCb analysis status

- Previously on γ measurement in $B^{\pm} \to Dh^{\pm}$, $D \to K^+K^-\pi^+\pi^-$:
 - Model-independent binned GGSZ and inclusive GLW analysis
 - WG approval on 10th March
 - Received 1st comments from RC reviewers, replies sent back

Results for γ

$$\gamma = (103 \pm 14)^{\circ}$$
 $\delta_B^{DK} = (92 \pm 14)^{\circ}$
 $r_B^{DK} = 0.117 \pm 0.020$
 $\delta_B^{D\pi} = (296 \pm 84)^{\circ}$
 $r_B^{D\pi} = 0.004 \pm 0.005$

- Sign error in the strong phase? $\gamma \rightarrow 180^{\circ} \gamma$
- Unfortunately, sign error looks unlikely...
 - Interference fractions agree between LHCb and CLEO models
 - BESIII data seems to support the sign from the model

Resonance	LHCb model phase (rad)	CLEO model (rad)
$D^0 \to [\phi(1020)\rho^0]_{L=0}$	0 (fixed)	0 (fixed)
$D^0 o K_1(1400)^+ K^-$	1.05	-1.79
$D^0 o K_1(1270)^+ K^-$	2.02	-2.56

 $K^{+}K^{-}\pi^{+}\pi^{-}$

$D \rightarrow K^+K^-\pi^+\pi^-$ strong-phase analysis as BESIII

$$D \rightarrow K^+K^-\pi^+\pi^-$$

strong-phase analysis as BESIII

Measurement of CP even fraction F_+

- BESIII: e^+e^- collider at $\psi(3770) o D^0 ar{D^0}$ threshold
- Reconstruct signal mode $D o KK\pi\pi$ and a tag mode D o f
- Signal mode is quantum correlated with tag mode
- Measure BF with CP even/odd tags to determine F_+

$$\begin{aligned} &\mathsf{BF}(KK\pi\pi|f) = &\mathsf{BF}(KK\pi\pi) \times \left(1 - \lambda_{\mathrm{CP}}(2F_{+} - 1)\right) \\ &\mathsf{BF}(KK\pi\pi|f) = &\mathsf{BF}(KK\pi\pi) \times \left(K_{i} + K_{-i} \mp 2\sqrt{K_{i}K_{-i}}c_{i}(2F_{+} - 1)\right) \end{aligned}$$

F_{+} measurement with CP tags

0T/ST ratio (10[™])

(c)
$$K_L^0 \pi^+ \pi^-$$
 tag

KKππ vs K, ππ double tag yields

- F. = 1 prediction

F. = 0 prediction

8 K_cxx bin

(c)
$$\mathcal{K}_{L}^{0}\pi^{+}\pi^{-}$$
 tag

Summary

- LHCb $B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$ GGSZ+GLW analysis:
 - ullet Final result of GGSZ part: $\gamma=103\pm14$
 - In RC, currently waiting for further comments
 - Sign of s_i remains uncertain
- BESIII $D \to K^+ K^- \pi^+ \pi^-$ strong-phase analysis:
 - Final result: $F_{+} = 0.73 \pm 0.04$
 - First model independent measurement of F_+ for $D^0 o K^+ K^- \pi^+ \pi^-$
 - Analysis required model-dependent efficiency corrections
 - Will present to BESIII on Friday 26th May before entering RC

Thank you!

 $K^{+}K^{-}\pi^{+}\pi^{-}$