ECON-703 Homework 1

Linshuo Zhou

August 22, 2016

1. Let $g:[1,2] \to [0,6]$ with $g(x)=x^3-x$. Figure 1 is the plot of function g with x on the horizontal axis. Since it is strictly increasing, g must be a bijection.

Figure 1: Figure of g

Figure 2 is the plot of function g^{-1} with y on the horizontal axis.

Figure 2: Figure of g^{-1}

2. Let

$$x_k = \begin{cases} 0 & k = 1, 3, 5, \dots \\ k & k = 2, 4, 6, \dots \end{cases}$$

It is clear that $\{x_k\}$ diverges, since its even terms go to infinity. Moreover, all of its convergent subsequences converge to 0.

3. *Proof.* For all natural numbers k, define

$$A_k = \sup\{a_n : n \ge k\}$$

$$B_k = \sup\{b_n : n \ge k\}$$

and

$$C_k = \sup\{a_n + b_n : n \ge k\}$$

By definition, we would have

$$\limsup_{k \to \infty} a_k = \lim_{k \to \infty} A_k$$

similarly for B_k and C_k .

Fix k, then for all $n \geq k$, we would have

$$a_n + b_n \le A_k + B_k$$

Therefore

$$C_k = \sup\{n \ge k : a_n + b_n\} \le A_k + B_k \tag{1}$$

This relationship holds for all k. We take limit of k on both sides, and the \geq sign preserves under limits. Hence,

$$\limsup_{k \to \infty} (a_k + b_k) \le \limsup_{k \to \infty} (a_k) + \limsup_{k \to \infty} (b_k)$$

The relationship for $\lim \inf$ is proved analogously if we define A_k, B_k and C_k as the infimum for the sequence after k terms. And the key equation, equation (1) will become

$$C_k = \inf n \ge k : a_n + b_n \ge A_k + B_k \tag{2}$$

Take limits on both sides will give us the result.

Let $a_k = (-1)^k, b_k = (-1)^{k+1}$, we would have

$$0 = \limsup_{k} (a_k + b_k) \le \limsup_{k} a_k + \limsup_{k} b_k = 1 + 1 = 2$$

$$0 = \liminf_{k} (a_k + b_k) \ge \liminf_{k} a_k + \liminf_{k} b_k = (-1) + (-1) = -2$$

4. (a)

$$\limsup_{k} x_k = 1$$
$$\liminf_{k} x_k = -1$$

(b)

$$\limsup_{k} x_k = +\infty$$
$$\liminf_{k} x_k = -\infty$$

(c)

$$\limsup_{k} x_k = 1$$
$$\liminf_{k} x_k = -1$$

(d)

$$\limsup_{k} x_k = 1$$
$$\liminf_{k} x_k = -\infty$$

5. Proof. Denote $A = [0,1] \subset \mathbb{R}$. For any $x \in (-\infty,0) \cup (1,\infty)$, let $r = \frac{1}{2} \min\{|x|,|x-1|\}$, it can be seen that $B(x,r) \subset (\infty,0) \cup (1,\infty)$. Therefore, $\mathbb{R} \setminus A$ is open, which gives [0,1] is closed.

Proof. For any $x \in (0,1)$, let $r = \frac{1}{2}\min(x,1-x)$, it can be seen that $B(x,r) \subset (0,1)$. Hence, (0,1) is an open set.

Proof. [0,1) is not open since $\forall r > 0$, $B(0,r) \not\subset [0,1)$. On the other hand, [0,1) is not closed since $\forall r > 0$, $B(1,r) \not\subset \mathbb{R} \setminus [0,1)$.

Proof. (0,1] is not open since $\forall r > 0$, $B(1,r) \not\subset (0,1]$. On the other hand, (0,1] is not closed since $\forall r > 0$, $B(0,r) \not\subset \mathbb{R} \setminus (0,1]$.