

Effects of the Distribution of Synaptic Strength on the Spiking Dynamics in a Network of Spiking Neurons

Yeung Chun Yat (1155110319)
Supervisor: Prof. Ching Suk Chi Emily
April, 2021

J

What is a Network?

The Basics

S

Synaptic Spiking Model *Model Implementation*

2

Long-tailed Neuronal Spikes

The Motivation

B

What Explain the Spikes? Analysis & Discussion

What is a Network? The Basics

Dynamics of a Network

• A network models a system with interacting individual components, and consists of **nodes**, **links** and **coupling strengths**

	Representation	Notation
Node	Individual component	i , where $1 \le i \le N$ with
	e.g. Neuron	N = total no. of nodes
Directed Link	Mutual interaction	$A_{ij} = 1$ if node j links to
	e.g. Linkage btw. neurons	i and 0 otherwise
Coupling Strength	Strength of interaction	$g_{ij} \neq 0$ if node j links to
	e.g. Synaptic weight	i and 0 otherwise

Node Link

- Coupling strength matrix **G** contains all g_{ij}
- **G** is the most crucial piece of information about a network
 - : it fully specifies the network structure, i.e., connectivity & interaction

Features of G		
0-Diagonal	Nodes not self-connecting \Rightarrow Diagonal entries $\equiv 0$	
	and $N(N-1)$ possible directed links	
Sparsity	Ratio btw. no. of directed links & $N(N-1)$	
	Note: Most real networks are sparse	
Non-Symmetry	Directed network $\Rightarrow g_{ij} \neq g_{ji}$ in general	

- G has high theoretical importance but, in practice, is difficult to extract
 - **⇒** Requires network reconstruction techniques

- Network measures *summarize* the network structure
- This project focuses on degree and strength

Network Measure	Mathematical	Computational
In/Out-Degree	$k_{\mathrm{in}}(i) = \sum_{j} \mathbb{I}(g_{ij} \neq 0)$	Count the non-zero entries in the <i>i</i> th <i>row</i> of G
	$k_{\mathrm{out}}(i) = \sum_{j} \mathbb{I}(g_{ji} \neq 0)$	Count the non-zero entries in the <i>i</i> th <i>column</i> of G
In/Out-Strength	$s_{\rm in}(i) = \sum_j g_{ij} / k_{\rm in}(i)$	Average the non-zero entries in the <i>i</i> th <i>row</i> of G
	$s_{\text{out}}(i) = \sum_{j} g_{ji} / k_{\text{out}}(i)$	Average the non-zero entries in the <i>i</i> th <i>column</i> of G

- Other finer measures: $k_{\text{in}}^+(i) = \sum_j \mathbb{I}(g_{ij} > 0)$ and $s_{\text{in}}^+(i) = \sum_j g_{ij} \mathbb{I}(g_{ij} > 0) / k_{\text{in}}^+(i)$
 - ⇒ Constructed by replacing the argument in the indicator function with the desired condition

• Network **dynamics** associates with network **structure** through a set of *N* dynamical equations, with the most *generic* form

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = F(\{x_i(t)\}_{i=1:N}, \mathbf{G}, \eta_i, \dots),$$

where x_i is the state of node i, and

 η_i is the noise term with covariance matrix **D**

- \triangleright Numerically solved given suitable initial conditions $\{x_i(0)\}_{i=1:N}$
- \triangleright Specifying a Network Model. We require <u>F</u>, G, D
- Time series $\{x_i(t)\}_{i=1:N}$ form the **network dynamics**

Long-tailed Neuronal Spikes The Motivation

2. Long-tailed Neuronal Spikes

• A network reconstruction method is applied to the *empirical neuronal time* series of cultures of rat embryonic cortices (25 days in vitro) to estimate the *coupling strengths* g_{ij} , leading to the following dataset

Node i	Node j	g_{ij}
1	196	0.0208720006
1	266	0.0156720001
1	267	0.0218959991
÷	÷	÷
2	1	-0.0234200004
2	21	-0.00388139999
2	23	-0.00472760014
:	:	:
4095	4094	0.0089673996

- ➤ 4095 electrodes for data collection ⇒4095 nodes in the giant network
- ightharpoonup (Order) $g_{ij} \sim 10^{-3}$ to 10^{-2}
- \triangleright (Sign) g_{ij} can be +ve or -ve
- > Sparse network with 1.4% sparsity
- Forms the foundation of *all* later simulations

2. Long-tailed Neuronal Spikes

• Experimental neuronal *spike counts* are **highly skewed** and **long-tailed** in distribution, and so are the *synaptic strengths*

Can the very large spike counts be explained by the very large synaptic strengths?

Synaptic Spiking Model Model Implementation

3. Synaptic Spiking Model

- Every neuron is described by
 - (i) membrane potential v(t), and
 - (ii) recovery variable u(t), following

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = 0.04v^2 + v + 140 - u + I(t)$$

$$\frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = a(bv - u),$$

where I(t) is the **synaptic current** term, with a *fire and reset* rule:

When
$$v$$
 assumes $v_{\text{peak}} = 30\text{eV}$, $v(t) \leftarrow c$ and $u(t) \leftarrow u(t) + d$

3. Synaptic Spiking Model

$$\begin{cases} \frac{\mathrm{d}v}{\mathrm{d}t} = 0.04v^2 + v + 140 - u + I(t) \\ \frac{\mathrm{d}u}{\mathrm{d}t} = a(bv - u), \\ v(t) \leftarrow c \text{ and } u(t) \leftarrow u(t) + d \end{cases}$$

- Parameters a, b, c, d are specific to a neuron type (require calibration)
- e.g. Regular spiking neuron: a = 0.02, b = 0.2, c = -65, d = 8

3. Synaptic Spiking Model $\begin{cases} \frac{dv}{dt} = 0.04v^2 + v + 140 - u + I(t) \\ \frac{du}{dt} = a(bv - u), \\ v(t) \leftarrow c \text{ and } u(t) \leftarrow u(t) + d \end{cases}$ **conductance** is incorporated in $I_i(t)$:

$$I_i(t) = \mathbf{G}^{\text{exc}}(t) (V_E - v_i(t)) + \mathbf{G}^{\text{inh}}(t) (V_I - v_i(t)) + \eta_i$$

• Time evolution of $G^{\text{exc/inh}}$ is analytically given by:

$$G_{i}^{\text{exc}} = \beta \sum_{\{j:g_{ij}>0\}} \left(g_{ij} \sum_{k} \exp\left(-\frac{t-t_{j,k}}{\tau_{\text{exc}}}\right) \Theta(t-t_{j,k})\right)$$

$$G_{i}^{\text{inh}} = \beta \sum_{\{j:g_{ij}<0\}} \left(g_{ij} \sum_{k} \exp\left(-\frac{t-t_{j,k}}{\tau_{\text{inh}}}\right) \Theta(t-t_{j,k})\right)$$

- where V_E , V_I , $\tau_{\rm exc}$, $\tau_{\rm inh}$, β are parameters
- Conductance $G^{\text{exc/inh}}$ summarize the *historical* spikes of the *connecting* exc./inh. neurons with impacts scaled by coupling strength g_{ij}
- In turn, conductance affects the current I neuron i experiences

3. Synaptic Spiking Model

- We drive the dynamics using uniformly distributed $\eta_i \sim \mathcal{U}[0, \delta]$
- Within the model, there are two neuron types: Regular & Fast Spiking

- Large-scale periodic, simultaneous spiking
- Sub-period spiking
- Non-uniform spike train

3. Synaptic Spiking Model

- The model succeeds in producing a *long right tail*, with spike counts spreading over a wide range [0,409]
- Synaptic spiking model exhibits more realistic dynamics than previous models
- Spike count distribution of different models:

What Explain the Spikes? Analysis & Discussion

4. What Explain the Spikes?

- Reference networks vary network features of interest while preserving the rest, and are constructed through artificial manipulation of the reconstructed **G**
- Effects of the varied features on the dynamics are studied
- Main results from reference network analysis causal relation
 - The reference network that has rows of **G** shuffled, thus (i) keeping the long-tailed distribution of k_{in} , s_{in} and (ii) making distribution of k_{out} , s_{out} bell-shaped, preserves the distribution of spike counts
 - \triangleright Other reference networks with *bell-shaped* $k_{\rm in}$, $s_{\rm in}$ or *long-tailed* $k_{\rm in}$ distort the spike count distribution
 - \triangleright Only s_{in} remains as the important driving factor of the spiking dynamics
 - \triangleright Conclusion. Long-tailed s_{in} leads to long-tailed spike counts

Conclusion

- The synaptic spiking model successfully generates realistic neuronal spikes with a long tail, with a better performance than previous models
- Reference network analysis. The long-tailed incoming synaptic strength s_{in} leads to the long-tailed spike counts
- This echoes with the conclusion in my FYP part I

Can the very large spike counts be explained by the very large synaptic strengths?

- Yes, in the context of the synaptic spiking model.

In particular, it's the very large incoming synaptic strengths that have an important effect on spike counts.

References

- S. H. Strogatz, *Exploring complex networks*, Nature (London) 410, 268 (2001).
- G. Buzsaki and K. Mizuseki, *The log-dynamic brain: how skewed distributions affect network operations*, Nat. Rev. Neurosci., 2014;15(4):264-278.
- C. Sun, K. C. Lin, Y. T. Huang, E. S. C. Ching, P. Y. Lai and C. K. Chan, *Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings*, BioRxiv 2020.02.06.936781 [Preprint].
- E. M. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural Networks, 2003;14:1569-1572.
- R. F. O. Pena, M. A. Zaks, A. C. Roque, Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise, Journal of Computational Neuroscience, 2018;45:1-28.