2015级微积分 II 与线性代数(第二层次)期中试卷

	 	Ξ	四	五	六	总分
得分			- 1			
						1 1

一. 计算下列各题(每题6分, 共48分)

1. 四面体以 A(-1,2,4), B(6,3,2), C(1,4,-1) 和 D(-1,-2,5) 四点为顶点, 求四面体的体积.

2. 求点 P(1,2,3) 到平面 $\Pi:3x+2y-z+4=0$ 的距离, 并判断 P 点与原点在平面 Π 的同侧还是异侧.

3. 求直线
$$L: \begin{cases} 2x-4y+z=0 \\ 3x-y-2z-9=0 \end{cases}$$
 在平面 $\Pi: 4x-y+z=1$ 上的投影直线的方程.

4. 设
$$u = \frac{e^{ax}(y-z)}{a^2+1}$$
,而 $y = a\sin x$, $z = \cos x$, 求 $\frac{du}{dx}$

6. 交换积分次序:
$$\int_0^2 \mathrm{d}y \int_{y^2}^{2y} f(x,y) \mathrm{d}x.$$

7.
$$\iint\limits_{D}\sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y,$$
其中 D 为环形区域 $\{(x,y)\mid a^2\leqslant x^2+y^2\leqslant b^2\}.$

8.
$$\oint_L x ds$$
, 其中 L 为由直线 $y=x$ 及抛物线 $y=x^2$ 所围成的区域的整个边界.

二. (10分) 求直线
$$L: \begin{cases} x+y+z=0 \\ x+z-1=0 \end{cases}$$
 关于平面 $\Pi: 3x+y+5z-6=0$ 的对称直线的标准(或对称) 方程.

三. (10分) 设
$$f(x,y)=\begin{cases} \frac{xy^2}{x^2+y^2}, & (x,y)\neq (0,0)\\ 0, & (x,y)=(0,0) \end{cases}$$
 讨论 $f(x,y)$ 在点 $(0,0)$ 的可偏导性与可微性.

四. (10分) 求两条异面直线

$$L_1: \begin{cases} x-2y+z-7=0, \\ 2x-y+z-6=0 \end{cases} \qquad L_2: \begin{cases} x+y-z+2=0, \\ x-2y+3z+1=0 \end{cases}$$

之间的距离.

五. (11分) 计算 $\int_L (x^2-y)\mathrm{d}x-(x+\sin^2y)\mathrm{d}y$,其中 L 是在圆周 $y=\sqrt{2x-x^2}$ 上由点 (0,0) 到点 (1,1) 的一段圆弧. (提示: 可利用格林公式将圆弧 L 上的曲线积分转换为折线 $(0,0)\to(1,0)\to(1,1)$ 上的曲线积分.

六. (11分) 计算三重积分 $\iiint_V z^2 \mathrm{d}x \mathrm{d}y \mathrm{d}z$, 其中 V 是两个球: $x^2+y^2+z^2 \leqslant R^2$ 和 $x^2+y^2+z^2 \leqslant 2Rz$ (R>0) 的公共部分.

2016级微积分 II 与线性代数(第二层次)期中试卷

 院系
 学号
 姓名

 二
 三
 四
 五
 六
 总分

 得分

- 一. 计算下列各题(每题6分, 共48分)
- 1. 将函数 $\ln(1-2x)$ 展开成 x 的幂级数, 并指出其收敛区间.
- 2. 已知 $(a \times b) \cdot c = 2$, 求 $[(a + b) \times (b + c)] \cdot (c + a)$.
- 3. 设一平面经过原点及点 (6, -3, 2), 且与平面 4x y + 2z = 8 垂直, 求该平面的方程.
- 4. 求直线 $\begin{cases} x 2y + 3 = 0 \\ 2y + z 7 = 0 \end{cases}$ 与平面 3x + 4y + 5z = 6 之间的距离.
- 5. 设函数 f(u,v) 具有二阶连续偏导数, $z=f(xy,x^2-y^2)$, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 6. 求椭圆抛物面 $x^2 + y^2 = z$ 在点 (1,1,2) 的切平面.
- 7. 交换积分次序: $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$.
- 8. 求平面 6x + 3y + 2z 6 = 0 被三个坐标平面所割出的部分的面积.
- 二. (10分) 求幂级数 $\sum_{n=0}^{\infty} (2n+1)x^n$ 的收敛域, 并求其和函数.
- 三. (10分) 函数 f(x,y) 在 (0,0) 处连续,且极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{f(x,y)}{x^2+y^2}$ 存在,求证:f(0,0)=0, $f'_x(0,0)=f'_y(0,0)=0$,并讨论 f(x,y) 在 (0,0) 处的可微性.
- 四. (12分) 求函数 $f(x,y)=x^4+y^4-x^2-2xy-y^2$ 的全部极值.
- 五. (10分) 计算二重积分 $\iint_D |x^2+y^2-1| dx dy$, 其中 $D=\{(x,y)\mid 0\leqslant x\leqslant 1,\ 0\leqslant y\leqslant 1\}$.

六. (10分) 计算三重积分 $I=\iiint_V(x^2+y^2+z)\mathrm{d}x\mathrm{d}y\mathrm{d}z$, 其中 V 是由曲线 $\begin{cases}y^2=2z\\x=0\end{cases}$ 绕 z 轴旋转一周而成的曲面与平面 z=4 所围成的立体.

2017级微积分 II 与线性代数(第二层次)期中试卷

院系			_学号_	_学号						
		Ξ	Ξ	四	五	六	t	总分		
得分										

- 一. 计算下列各题(每题6分, 共42分)
- 1. 设向量a,b 满足|a|=4,|b|=1 及 $(\widehat{a,b})=\frac{\pi}{3},$ 求: 向量a+b 和-a+3b 的夹角.
- 2. 求过点 M(-1,0,4) 且平行于平面 Π : 3x-4y+z-5=0 又与直线 L : $\frac{x+1}{1}=\frac{y-3}{1}=\frac{z}{2}$ 相交的直线方程.
- 3. 求函数 $f(x)=(1+x)\ln(1+x)$ 在 x=0 的处的幂级数展开式.
- 4. 设函数 z=z(x,y) 满足方程 $x+y-z=\mathrm{e}^z$, 求高阶偏导数 $\frac{\partial^2 z}{\partial x \partial y}$.
- 5. 求椭球面 $2x^2 + y^2 + z^2 = 15$ 在点 (1, -3, 2) 处的切平面与平面 xOy 的夹角.
- 6. 求空间曲线 Γ : $\begin{cases} x^2+y^2+2z^2=4x, \\ 2x-3y+5z=4 \end{cases}$ 在点(1,1,1)处切线方程和法平面方程.
- 7. 求二重积分 $\iint_D (x^2+y) d\sigma$,其中 D 是由直线 y=x 与 y=2x 以及 x=2 所围成的有界闭区域。
- 二. (10分) 求幂级数 $\sum_{n=0}^{\infty} \frac{(2n+1)}{n!} x^{2n}$ 的收敛域, 并求其和函数.

三. (10分) 设一平面 Π 垂直于平面 z=0,并通过从点 M(1,-1,1) 到直线 $L: \left\{ \begin{array}{l} y-z+1=0,\\ x=0 \end{array} \right.$ 的垂线,求此平面 Π 方程.

四. (8分) 设 $f(x,y)=\left\{ \begin{array}{cc} (x^2+y^2)\sin\frac{1}{\sqrt{x^2+y^2}}, & (x,y)\neq (0,0)\\ 0. & (x,y)=(0,0) \end{array} \right.$ 证明 f(x,y) 在 (0,0) 处可微.

五. (10分) 求函数 $f(x,y)=x^2+y^2-2x+6y$ 在闭区域 $D:\ x^2+y^2\leqslant 25$ 上的最大值与最小值.

六. (10分) 计算二重积分 $I=\iiint_{\Omega}z\,\mathrm{d}x\mathrm{d}y\mathrm{d}z$,其中 Ω 为曲面 $z=x^2+y^2$ 与曲面 $z=2-\sqrt{x^2+y^2}$ 所围成的闭区域.

七. (10分) 求圆锥面 $z^2=x^2+y^2$ 被柱面 $x^2+y^2=2x$ 所截下的曲面的面积.