STAT 4100 Lecture Note

Week Eight (Oct 24, 26, & 28, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Nov/02 18:31:54

Hypothesis Testing (con'd)

UMP level α test for one-sided hypotheses $(H_0: \theta^* \leq \theta_0 \text{ (or } \theta^* = \theta_0) \text{ vs } H_1: \theta^* > \theta_0)$

- Consider cases with only one unknown parameter
- Monotone likelihood ratio (MLR, CB Def 8.3.16): for each pair $\theta_2 > \theta_1$, $f(t \mid \theta_2)/f(t \mid \theta_1)$ is nondecreasing with respect to t for univariate pdfs/pmfs $\{f(t \mid \theta) : \theta \in \Theta \subset \mathbb{R}\}$
 - One-parameter exponential family with $w(\theta)$ nondecreasing w.r.t. θ bears MLR (why?)
- Karlin-Rubin (CB Thm 8.3.17): Suppose T is sufficient for θ and T follows $f_T(t \mid \theta)$ bearing MLR. A UMP level α test for $H_0: \theta^* \leq \theta_0$ (or $\theta^* = \theta_0$) vs. $H_1: \theta^* > \theta_0$ is

$$\phi_c(\mathbf{x}) = \begin{cases} 1, & T(\mathbf{x}) > c, \\ 0, & T(\mathbf{x}) < c, \end{cases}$$

where c is a real number such that $\beta_{\phi}(\theta_0) = \mathbb{E}\{\phi_c(\mathbf{X}) \mid \theta^* = \theta_0\} = \Pr\{T(\mathbf{X}) > c \mid \theta^* = \theta_0\} = \alpha$.

- (Optional) if $\Pr\{T(\mathbf{X}) = c \mid \boldsymbol{\theta}^* = \boldsymbol{\theta}_0\} \neq 0$, then c is taken as the largest real number satisfying that

$$\Pr\{T(\mathbf{X}) \ge c \mid \boldsymbol{\theta}^* = \boldsymbol{\theta}_0\} \ge \alpha \text{ and } \Pr\{T(\mathbf{X}) \le c \mid \boldsymbol{\theta}^* = \boldsymbol{\theta}_0\} \ge 1 - \alpha.$$

Meanwhile, the test function should become $\phi_{c,\gamma}$ instead of ϕ_c , where

$$\phi_{c,\gamma}(oldsymbol{x}) = egin{cases} 1, & T(oldsymbol{x}) > c, \ \gamma, & T(oldsymbol{x}) = c, \ 0, & T(oldsymbol{x}) < c. \end{cases}$$

That is, reject H_0 with probability $\gamma \in [0, 1]$ if observing $T(\mathbf{x}) = c$. The probability γ is chosen to make sure that the size is α , i.e.,

$$\alpha = \mathbb{E}\{\phi_{c,\gamma}(\mathbf{X}) \mid \boldsymbol{\theta}^* = \boldsymbol{\theta}_0\} = \Pr\{T(\mathbf{X}) > c \mid \boldsymbol{\theta}^* = \boldsymbol{\theta}_0\} + \gamma \Pr\{T(\mathbf{X}) = c \mid \boldsymbol{\theta}^* = \boldsymbol{\theta}_0\}.$$

• NOTE: in the Karlin-Rubin theorem, if the hypotheses become $H_0: \theta^* \ge \theta_0$ (or $\theta^* = \theta_0$) vs. $H_1: \theta^* < \theta_0$, then change the signs in the test function, i.e.,

$$\phi_c(\mathbf{x}) = \begin{cases} 1, & T(\mathbf{x}) < c, \\ 0, & T(\mathbf{x}) > c, \end{cases}$$

where c is a real number such that $\beta_{\phi}(\theta_0) = \Pr\{T(\mathbf{X}) < c \mid \theta^* = \theta_0\} = \alpha$.

Example Lec14.1

- iid $X_1, \ldots, X_n \sim \mathcal{N}(\mu, 1)$. Construct UMP level α test for following hypotheses.
 - a. $H_0: \mu = \mu_0 \text{ vs } H_1: \mu = \mu_1 \text{ with } \mu_0 < \mu_1;$
 - b. $H_0: \mu = \mu_0 \text{ vs } H_1: \mu > \mu_0;$
 - c. $H_0: \mu \ge \mu_0 \text{ vs } H_1: \mu < \mu_0;$
 - d. $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0.$

Nonexistence of UMP test for two-sided hypotheses $H_0: \theta^* = \theta_0$ vs $H_1: \theta^* \neq \theta_0$

• (Optional) uniformly most powerful unbiased (UMPU) level α test

Likehood ratio test (LRT, Sec 8.2.1 & 10.3.1)

- $H_0: \boldsymbol{\theta}^* \in \boldsymbol{\Theta}_0 \text{ vs. } H_1: \boldsymbol{\theta}^* \in \boldsymbol{\Theta}_1$
- $\Theta = \Theta_0 \cup \Theta_1$
- Test statistic

$$\lambda(\boldsymbol{x}) = \frac{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} L(\boldsymbol{\theta} \mid \boldsymbol{x})}{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta} \mid \boldsymbol{x})} = \frac{L(\hat{\boldsymbol{\theta}}_{0,\mathrm{ML}} \mid \boldsymbol{x})}{L(\hat{\boldsymbol{\theta}}_{\mathrm{ML}} \mid \boldsymbol{x})}$$

- $-\hat{\boldsymbol{\theta}}_{0,\mathrm{ML}}$: (constrained) MLE for $\boldsymbol{\theta} \in \boldsymbol{\Theta}_0$
- $-\hat{\boldsymbol{\theta}}_{\mathrm{ML}}$: MLE for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$
- Rejection region

$$R = \{ \boldsymbol{x} : \lambda(\boldsymbol{x}) \le c \},$$

where c is chosen to make sure the size is α , i.e.,

$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \beta_{\phi}(\boldsymbol{\theta}) = \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \Pr\{\lambda(\mathbf{X}) \le c \mid \boldsymbol{\theta}\} = \alpha.$$

• Asymptotic rejection region (CB Thm 10.3.3)

$$R \approx \{x : -2 \ln \lambda(x) \ge \chi_{\nu, 1-\alpha}^2\} = \{x : \lambda(x) \le \exp(-\chi_{\nu, 1-\alpha}^2/2)\},$$

where $\chi^2_{\nu,1-\alpha}$ is the $1-\alpha$ quantile of $\chi^2(\nu)$.

- (CB Thm 10.3.1) Because, asymptotically (i.e., as $n \to \infty$), under H_0 ,

$$-2 \ln \lambda(\mathbf{X}) \xrightarrow{d} \chi^2(\nu),$$

where ν = the difference of numbers of free parameters between Θ_0 and Θ .

• (CB Ex. 8.24) For simple hypotheses, is the LRT equivalent to the UMP test?

Example Lec14.3

- iid $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$. Test $H_0 : \mu \leq \mu_0$ vs. $H_1 : \mu > \mu_0$.
 - a. σ^2 is known. Suppose test ϕ has rejection region $\{x : \bar{x} > \mu_0 + z_{1-\alpha} \sqrt{\sigma^2/n}\}$, where $z_{1-\alpha}$ is the $(1-\alpha)$ quantile of standard normal. Show that ϕ is a UMP level α test and is equivalent to the LRT.
 - b. σ^2 is unknown. Suppose test ϕ has rejection region $\{x : \bar{x} > \mu_0 + t_{n-1,1-\alpha} \sqrt{s^2/n}\}$, where $t_{n-1,1-\alpha}$ is the $(1-\alpha)$ quantile of t(n-1). Show that ϕ is of size α and is equivalent to the LRT.

Take-home exercises (NOT to be submitted; to be potentially covered in labs)

CB Ex 8.6(a-b), 8.16, 8.28(a-b), 8.33(a), 8.41