Assignment 2

(Submission deadline-8th Sept 2021, 5 PM)

- 1. In a liquid phase reaction, 30% of the reactant disappears in 34 minutes for initial reactant concentrations of 0.04 and also for 0.8 mol/liter. What rate law represents the disappearance of the reactant?
- 2. In a batch reactor, a reactant, with $C_{A0} = 1$ mol/liter, is converted 80% in 8 min; and after 18 min, the conversion is 90%. Find a rate law to represent this reaction.
- 3. A first order reversible liquid-phase reaction $A \leftrightarrow B$ takes place in a constant volume batch reactor. With $C_{A0} = 0.5$ mol/liter and $C_{B0} = 0$, after 8 minutes conversion of A is 0.333 while equilibrium conversion is 0.667. Find the rate law for this reaction.
- 4. The kinetics of thermal decomposition of species A is carried out in a differential packed bed reactor. From the data given in the table below, determine the rate law parameters.

Run	Rate mol/(liter.s)	Concentration of	Temperature		
		A in the reactor	(K)		
		mol/liter			
1	4.9×10 ⁻⁴	0.2	700		
2	1.1×10 ⁻⁴	0.02	750		
3	2.4×10 ⁻³	0.05	800		
4	2.2×10 ⁻²	0.08	850		
5	1.18×10 ⁻¹	0.1	900		
6	1.82×10 ⁻²	0.06	950		

Hint: Use Arrhenius equation $[k = Aexp(-E_a/RT)]$ for temperature dependence of rate constant. Use non-linear regression using MATLAB to obtain α , A, and E_a . Include the MATLAB code in your solution.

5. The following data are obtained at 0 °C in a constant volume batch reactor using pure gaseous A:

Time (min)	0	2	4	6	8	10	12	14	8
Partial pressure	760	600	475	390	320	275	240	215	150
mmHg									

The stoichiometry of the decomposition is A \rightarrow 2.5R. Find a rate law which satisfactorily represents this decomposition using (i) Integral approach and (ii) Differential approach.