4.36 Theorem. Let p be a prime and $a \in \mathbb{Z}$ where $1 \le a < p$. Then there exists a unique integer b < p such that $ab \equiv 1 \pmod{p}$.

Proof. Since (a, p) = 1, by Theorem 1.38, there exists $x, y \in \mathbb{Z}$ such that ax + py = 1. Applying TDA on x with p, x = pq + b for some $q, b \in \mathbb{Z}$ and $0 \le b \le p - 1$. Substitution for x,

$$a(pq + b) + py = 1,$$

$$apq + ab + py = 1,$$

$$ab - 1 = -py - apq,$$

$$ab - 1 = p(-y - aq).$$

By CPI, let $-y - aq = q' \in \mathbb{Z}$ such that ab - 1 = pq'. Thus, by definition, $ab \equiv 1 \pmod{p}$. Furthermore, let $b' \in \mathbb{Z}$ where $1 \leq b' < p$, and WLOG b' < b, such that $ab \equiv 1 \pmod{p}$ and $ab' \equiv 1 \pmod{p}$. By transitivity, $ab \equiv ab' \pmod{p}$. By definition,

$$ab - ab' = pk$$

for some $k \in \mathbb{Z}$. We find,

$$a(b - b') = pk.$$

This implies p|a(b-b'). Since $p \not|a$, p|b-b'. Since $1 \le b, b' < p$ implies $0 \le b-b' < p$, p can only divide if b-b' = 0. Thus, b and b' are the same, i.e., b = b'. Therefore, there exists a unique integer b < p such that $ab \equiv 1 \pmod{p}$.