Exercises

1) Fill in the A and E matrix given this training data

E	Α	G	С	Т
	0	3/7	1/7	3/7
0	1	0	0	0

Α	Ι	O
I	4/6	2/6
0	3/7	4/7

I to I: 4/6
I to 0: 2/6
0 to I: 3/7
0 to 0: 4/7

Sequence: AAAAATCGGGATAT

Labels: 00000IIIII0I0I

- 2) Huntington's disease is caused by (CAG)_n repeats. Propose an HMM that would identify such repeats.
- 3) Give one possible sequence and labels for the following HMM, assuming orange is possible, white is not possible, IA emits A, etc.

CAG repeat

Α	IA	IG	IC	IT	ОА	OG	ОС	ОТ
IA								
IG								
IC								
IT								
OA								
OG								
ОС								
ОТ								

Give one possible sequence and labels for the following HMM, assuming orange is possible, white is not possible, IA emits A, etc.

Α	IA	IG	IC	IT	ОА	OG	ОС	ОТ
IA								
IG								
IC								
IT								
ОА								
OG								
ОС								
ОТ								

00/00/00/00 AA/AG/GG/GA not poss

IO/IO/IO
AC/AT/GC/GT only

I can't be C/T

ATCGACTGACTTCG 000II00II00000

Exercises

1) What are pseudocounts used to avoid in the EM algorithm? Zero probabilities & log(0)

2) Why does this model not work well in identifying CpG

islands: CpG are not depleted,

can be C or G rich alone,

no dependence on prior state

A		0
	0.8	0.2
0	0.2	0.8

E	Α	C	G	Τ
ı	0.1	0.4	0.4	0.1
O	0.25	0.25	0.25	0.25

- 3) Why do profile HMMs work better for distant homology searches? Profile HMMs have profile at each position, like PSSM
- 4) Propose an HMM model (A and E matrix) for the following:

Sequence: ATCGAAAATCGGGATATATATGACTTAATTCTCGTA

First attempt

Е	Α	G	С	Т
I	1	0	0	1
0	.25	.25	.25	.25

Α	Ι	O
I	.8	
0		.8

CAGACTCAATATAAATTTA 0000000IIIIIIIIIII

But no dependency on prior state, what if we only want AT_n repeat.

Second attempt

Α	IA	IG	IC	ΙΤ	OA	OG	OC	ОТ
IA								
IG								
IC								
IT								
OA				?				
OG				?				
ОС				?				
ОТ				?				

E	Α	G	С	Т
IA				
IG				
IC				
IT				
ОА				
OG				
OG OC				
ОТ				

CAGACTCTATATAT 00000000IIIIIII or 0000000IIIIIIII

Second attempt

Α	IA	IG	IC	IT	OA	OG	OC	ОТ
IA	0							0
IG								
IC								
IT				0	0			
ОА								
OG								
OG OC								
ОТ								

Е	Α	G	С	Т
IA				
IG				
IC				
IT				
ОА				
OG				
ОС				
ОТ				

Collapse?

Sequence:

ATCGAAAATCGGGATATATATGACTTAATTCTCGTA

Labels:

Second attempt alternative

Α	Α	Т	0
Α	0		0
Т		0	
0		0	

E	Α	G	С	Т
Α		0	0	0
Т	0	0	0	
0				

Sequence: ATCGAAAATCGGGATATATATACTTAAT

Labels: 000000000000IIIIIII<mark>0</mark>000000

Today's objectives

- Motif biology and examples
- Position Weight Matrices
- Scoring motifs
- Motif Logos
- Motif finding

Motifs in Biology

A motif is a nucleotide or amino-acid sequence pattern that is widespread and thought to have a biological function

DNA motifs

- transcription factor binding sites
- splice sites
- micro RNA binding sites

Protein motifs

- phosphorylation sites
- localization sequence (nucleus/mito)
- protein binding/interaction sites

Motifs are caused by physical interactions (binding energy)

Types of interactions: varying specificity

DNA - Protein

- restriction enzymes (high specificity)
- transcription factors (medium specificity)
- nucleosomes (low specificity)

Protein - Protein

- post-translational modification sites, e.g. phosphorylation sites
- localization sequences (e.g. nucleus/mito)
- protein binding/interaction sites

Motif representation

Consensus:

ACTGCGCGG

Degenerate sequence: ACTGC[GC][GC][TG][AG]

Motif logo: Position frequency matrix

binding energy or Sequences ΔG ACTGCGCGG **ACTGCGCGA** ACTGCGGGG ACTGCCCTG ACTGCCGGA punoqur **GGGGGGGG**

Why do we need motifs? (i) Different sequences can have the same binding energy, (ii) Not all functional (bound) sequences have the same binding energy

Finding Transcription Factor Binding Sites (TFBS)

Experimental approaches (one by one)

- promoter bashing*
- gel shift*
- footprinting**now high-throughput

Computational approaches (motif finding)

- words
- motifs
 - Expectation maximization
 - Gibbs Sampling
 - Phylogenetic footprinting

Experimental Data: promoter bashing

Where is the cis-regulatory element (transcription factor binding site)?

EMSA: electrophoretic mobility shift assay

Does a protein bind DNA, is there a physical interaction?

DNase footprinting assay

Specific locations of protected segments show the binding site(s) for the protein.

- deoxyribonuclease
 (DNase) is used to cut
 end labeled DNA followed
 by gel electrophoresis
- DNA bound by protein isn't cut

Footprinting assay

Sample of a DNase I footprinting gel.

Footprint -

Samples in lanes 2-4 had increasing amounts of the DNA-binding protein (lambda protein cll); lane 1 had none.

His et al. Bactertophage lembde protein cell binds promoters on the opposite face of the CNA helix from 1994 polymerase. Assure 304 (35 Aug 1983) p. 705, f. 3, 6 Macmillan Magazines Ltd.

Upstream Activating Sequences (UAS)

Table 2 Similar elements in the promoters of genes expressed in gluconeogenesis. Sequences for which no reference is given were taken from the EMBL data base

Gene	Sequence	Position	Reference
ICL1	CGG ATG AAT GGA	-388, -399	Schöler and Schüller 1994
PCK1	CGG GTG AAT GGA	-562, -551	Mercado and Gancedo 1992
ACR1	CGG TTG AAT GGA	-618, -607	Fernández et al. 1994
ACR1	CGG TTT AAT GGA	-679, -668	Fernández et al. 1994
CIT2	CGG ATC AAT GGA	-854, -865	_
PCK1	CGG ATG AAA GGA	-471, -482	Mercado and Gancedo 1992
FBP1	CGG ACG GAT GGA	-508, -493	Rogers et al. 1988
ACS1	CGG ACG AAC GGC	-426, -415	2
MLS1	CGG CCC AAT GGA	-490, -501	Caspary et al. 1997
	CGG CTC AAT GGA	-531, -520	Caspary et al. 1997
	CGG CCG AAT GGG	-229, -240	_
FBP1	CGG ACA CCC GGA	-432, -421	Rogers et al. 1988

Transcription factor binding sites to Position Weight Matrix

Motif models

A Position Weight Matrix (PWM) is a probabilistic representation of a biological motif.

Aligned sequences

Creating a PWM

GAGGTAAAC TCCGTAAGT CAGGTTGGA **ACAGTCAGT TAGGTCATT TAGGTACTG ATGGTAACT CAGGTATAC TGTGTGAGT AAGGTAAGT**

- position frequency matrix (PFM) counts
- position probability matrix (PPM) probabilities
- position weight matrix (PWM) log₂(P(motif/background))

$$\mathsf{PFM} = \begin{matrix} A \\ C \\ G \\ T \end{matrix} \begin{bmatrix} 3 & 6 & 1 & 0 & 0 & 6 & 7 & 2 & 1 \\ 2 & 2 & 1 & 0 & 0 & 2 & 1 & 1 & 2 \\ 1 & 1 & 7 & 10 & 0 & 1 & 1 & 5 & 1 \\ 4 & 1 & 1 & 0 & 10 & 1 & 1 & 2 & 6 \end{bmatrix}.$$

$$\mathsf{PPM} = \frac{A}{G} \begin{bmatrix} 0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \\ 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \\ T & 0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}.$$

Vhy PWM? Background [A,C,G,T]
$$PWM = \begin{bmatrix} A & 0.26 & 1.26 & -1.32 & -\infty & -\infty & 1.26 & 1.49 & -0.32 & -1.32 \\ -0.32 & -0.32 & -1.32 & -\infty & -\infty & -0.32 & -1.32 & -0.32 \\ -1.32 & -1.32 & 1.49 & 2.0 & -\infty & -1.32 & -1.32 & 1.26 \end{bmatrix}$$

Consensus: TAGGTAAGT

Why PWM?

Background [A,C,G,T]

Pseudocounts

Is the probability of a [A,C,T] really zero at position 4?

$$M = \begin{bmatrix} A \\ C \\ G \\ T \end{bmatrix} \begin{bmatrix} 0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \\ 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \\ 0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}.$$

A pseudocount is an amount (not generally an integer, despite its name) added to the number of observed cases in order to change the expected probability in a model of those data, when not known to be zero.

$$\theta_i = \frac{x_i + \alpha}{N + \alpha d} (i = 1, \dots, d)$$

Theta = frequency of base i
x = counts of base i
N = total observations
alpha = pseudocount
d = alphabet size (DNA = 4)

Probability under motif model

Both PPMs and PWMs assume statistical independence between positions in the motif, as the probabilities for each position are calculated independently of other positions.

Given this assumption, the probability of a motif given a sequence is the product of the PPM.

Sequence: ATCATGAT

ATC =
$$.2 \times .2 \times .1 = 0.004$$

TCA = $.2 \times .2 \times .1 = 0.004$
CAT = $.3 \times .5 \times .7 = 0.105$

$$PPM = \begin{matrix} A & 0.2 & .5 & .1 \\ C & 0.3 & .1 & .1 \\ G & 0.3 & .2 & .1 \\ T & 0.2 & .2 & .7 \end{matrix}$$

Entropy

Entropy is a measure of the unpredictability of a state.

$$H = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$$

```
x = [.25, .25, .25, .25]
```

H = 2 (high entropy = unpredictable)

x = [.997, .001, .001, .001]

H = 0.034 (low entropy = predictable)

Information Content

How much information is conveyed by a motif model?

The maximum information encoded in a coin flip is:

$$\log_2(2/1) = 1$$
 bit

The max information encoded in a single base pair is:

$$\log_2(4/1) = 2$$
 bits

The information content of a motif is:

$$IC_{i} = \log_{2}(4) - (H_{i})$$

 $H_{i} = -\sum_{b=A,C,G,T} PPM_{i,b} \log_{2}(PPM_{i,b})$

$$H = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$$

IC is inverse of entropy and conveys how much information a site provides relative to background

IC = average score of sequences of a motif

Information Content

The information content of a site is:

$$IC_{i} = \log_{2}(4) - (H_{i})$$

$$H_{i} = -\sum_{b=A,C,G,T} PPM_{i,b} \log_{2}(PPM_{i,b})$$

$$H = \text{entropy}$$

$$H = -\sum_{i=1}^{n} p(x_{i}) \log_{b} p(x_{i})$$

IC is inverse of entropy and conveys how much information a site provides relative to background

IC = average score of sequences of a motif

Information Content

The information content of a site is:

$$IC_{i} = \log_{2}(4) - (H_{i})$$

 $H_{i} = -\sum_{b=A,C,G,T} PPM_{i,b} \log_{2}(PPM_{i,b})$

Including background, the information content of a motif

$$\begin{split} & \text{is:} \quad IC = \sum_{i=1}^{L} \sum_{b=A,C,G,T} f_{b,i} log_2(f_{b,i}/p_b) \\ & IC = \sum_{i=1}^{L} \sum_{b=A,C,G,T} PPM(b,i)PWM(b,i) \end{split}$$

IC is inverse of entropy and conveys how much information a site provides relative to background

IC = average score of sequences of a motif

Kullback-Leibler information or relative entropy ~Log-likelihood ratio

Information content

To the service of t

- Lower information content
 - fewer informative sites
 - shorter = lower IC
- More sites in a genome expected by chance
- Lower specificity (targets vs random)

- Higher information content
 - more informative sites
 - longer = higher IC
- Fewer sites in a genome expected by chance
- Higher specificity (targets vs random)

Summary of statistical motif model:

- Experimentally identify TFBS (the more the better)
- Generate PWM using these sequences But how does PWM related to binding energy?

Binding energies ~ P(bound)

$$\begin{aligned} \mathbf{K}_{\mathrm{on}} \\ TF + S_i &\Leftrightarrow TF - S_i \\ \mathbf{K}_{\mathrm{off}} \end{aligned}$$

$$K_i = \frac{K_{on}}{K_{off}} = \frac{[TF + S_i]}{[TF][S_i]}$$

$$P_{bound}(S_i) = \frac{1}{1 + e^{(E(S_i) - \mu)}}$$

TF = transcription factor S_i = Sequence i K_{on} = binding rate K_{off} = dissociation rate

K_i = equilibrium constant depends on concentrations, brackets.

Binding energies of all sequences, those on the left are in the bound state

Binding Energy ~ PWM

Binding energy (also called free energy) is the minimum energy required to separate DNA-protein complex.

Binding energy can be defined by PWM:

$$E_j = W \cdot S_j$$

E = energyW = energy matrix S = sequence

F = PPM

u ~ [TF]

$$W(b,i) = \log \frac{\max F(b,i)}{F(b,i)} \rightarrow E_j = E_{\min S_j} - W_{LP} \cdot S_j$$

$$W_{LP} = \log \text{ prob matrix}$$

$$W_{LP} = \log \text{ prob matrix}$$

$$P(\text{bound}|S_j) = \frac{e^{-E_j}}{e^{-\mu} + e^{-E_j}} = \frac{1}{1 + e^{E_j - \mu}}$$

absolute binding probability, 95% bound

relative binding probability vs consensus

PWM energy model with offset

probability model

Stormo (2013)

Finding Transcription Factor Binding Sites (TFBS)

Experimental approaches (one by one)

- promoter bashing*
- gel shift*
- footprinting**now high-throughput

Computational approaches (motif finding)

- words
- motifs
 - Expectation maximization
 - Gibbs Sampling
 - Phylogenetic footprinting

Computational Challenge

- Short 4-12 bp
- Degenerate sequences, low IC
- 1 site every 1kb
- e^{-IC} upper limit of motif frequency

IC(AAA) = 6 exp(-6) = 0.0025 $0.25^3 = 0.0156$

Over-represented motif

Bound or co-regulated genes

Unbound or background genes

First Motif Finding

The Data Set: Sequences containing sites for cAMP receptor protein (CRP)

locus sequence colel taatgtttgtgctggtTTTTGTGGCATCGGGCGAGAATagcgcgtggtgtgaaagactgtTTTTTTGATCGTTTTCACAAAAatggaagtccacagtcttgacag ecoarabop gacaaaaacgcgtaacAAAAGTGTCTATAATCACGGCAgaaaagtccacattgaTTATTTGCACGGCGTCACACTTtgctatgccatagcatttttatccataag ecobglrl ecocrp ecocya $acggtgctacacttgtatgtagcgcatctttctttacggtcaatcagca \textcolor{red}{\textbf{AGGTGTTAAATTGATCACGTTT}} tagaccattttttcgtcgtgaaactaaaaaaaaccactagcagcactagcac$ ecodeop agtgaaTTATTTGAACCAGATCGCATTAcagtgatgcaaacttgtaagtagatttccttAATTGTGATGTGTATCGAAGTGtgttgcggagtagatgttagaata $gcgcataaaaaacggctaaattcttgtgtaaacgattccac \\ \underline{\text{TAATTTATTCCATGTCACACTT}} \\ \text{tcgcatctttgttatgctatggttatttcataccataagcc} \\ \\ \text{tcgcatcataaaccatatggttatttcataccataagcc} \\ \\ \text{tcgcatcatatggttatttcataccataagcc} \\ \\ \text{tcgcatcatatggttattgttatttcataccataagcc} \\ \\ \text{tcgcatcatatggttattgttattgtgtataccataagcc} \\ \\ \text{tcgcatcatatggttattgtatggttatttcataccataagcc} \\ \\ \text{tcgcatcatatggttattgtattgtataccataagcc} \\ \\ \text{tcgcatcatatggttattgtatggttattgtatggttattgtatggttattgtatggttattgtatggttattgtatggttattgtatggttattgtatggttattgtatggttattgtatggttatggttatggttatggttatggttatggttatggttatggttattgtatggt$ ecogale ecoilvbpr gctccggcggggttttttgttatctgcaattcagtacaAAACGTGATCAICCCCTCAATTttccctttgctgaaaaattttccattgtctcccctgtaaaagctgt ecolac ecomale acattaccgccaaTTCTGTAACAGAGATCACACAAagcgacggtggggcgtaggggcaaggaggatggaaagaggttgccgtataaagaaactagagtccgttta ecomalk $ggaggaggcgggaggatgagaacacggc {\color{blue} {\tt TTCTGTGAACTAAACCGAGGTC}} atgtaaggaatttcgtgatgttgcttgcaaaaatcgtggcgattttatgtgcgca$ ecomalt gatcagcgtcgttttaggtgagttgttaataaagatttggAATTGTGACACAGTGCAAATTC gctgacaaaaaagattaaacataccttatacaagactttttttcatATGCCTGACGGAGTTCACACTTgtaagttttcaactacgttgtagactttacatcgcc ecoompa ecotnaa ecouxul cccatgagagtgaaatTGTTGTGATGTGGTTAACCCAAttagaattcgggattgacatgtcttaccaaaaggtagaacttatacgccatcteatccgatgcaagc pbr-p4 ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgCGGTGTGAAATACCGCACAGATgcgtaaggagaaaataccgcatcaggcgctc trn9cat CTGTGACGGAAGATCACTTC
CagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaAAATGAGACGTTGATCGGCACG tdc gatttttatactttaacttgttgatatttaaaggtatttaattgtaataacgatactctggaaagtattgaaagttaATTTGTGAGTGGTCGCACATATcctgtt

For this case, there are 18 sequences of length 105 bp and we are looking for a motif of width 20 bp. There are 86 different 20 bp subsequences per example and $\sim 7 \times 10^{34}$ alignments to check.

Stormo and Hartzell, Proc. Natl. Acad. Sci. (1989)

Alignment (PWM ~ sequence)

Exhaustive and prohibitive

Given a motif of width w, and k sequences of length I, there are L = (I-w+1) possible locations in each sequence, and L^k alignments to check

Algorithms for motif finding

Combinatorial

- Exhaustive search
- Greedy motif clustering

Probabilistic

- Expectation maximization
- Gibbs Sampling

locus
colel
ecoarabop
ecobglrl
ecocrp
ecocya
ecodeop
ecogale
ecoilvbpr
ecolac
ecomale
ecomalt
ecompa

Combinatorial (exhaustive)

Given a set of t DNA sequences, find a pattern that appears in all t sequences with the minimum number of mutations.

Hamming distance, $d_H(v,w)$ = number of mismatches between v and w $d_H(AACA, ACCC) = 2$

Given v = "acgtacgt" and s

v is the sequence in red, x is the sequence in blue

• TotalDistance(v,DNA) = 1+0+2+0+1 = 4

Combinatorial (exhaustive)

1. Pattern-driven algorithm:

```
For W = AA...A to TT...T (4<sup>K</sup> possibilities)
Find d(W, S)

Report W* = argmin(d(W, S))
```

Running time: O(K N 4^{K}) (where N = $\Sigma_{i} |x^{i}|$) d(W, S) is the hamming distance between a word and sequence

Hamming distance = number of mismatches

Advantage: Finds provably "best" motif W

Disadvantage: Time

Combinatorial (faster)

2. Sample-driven algorithm:

```
For W = any K-long word occurring in some x<sup>i</sup>
Find d( W, S )
```

```
Report W* = argmin( d( W, S ) )
or, Report a local improvement of W*
```

Running time: O(K N²)

Advantage: Time

Disadvantage: If the true motif is weak and does not occur in data

then a random motif may score better than any instance of true motif

CONSENSUS (greedy) algorithm

```
sequence 1
                                                                                               sequence 2
                                                                                                                sequence 3
                                                                                              TAGCG
                                                                             ACTGA
                                                                                                              CTTGC
     GREEDYMOTIFSEARCH (DNA, t, n, l)
     bestMotif := (1,...,1)
     s := (1,...,1)
     for s_1=1 to n-l+1
                                                                                               ACTG
                                                            CYCLE 1
        for s_2 = 1 to n-l+1
          if (Score(s,2,DNA) > Score(bestMotif,2,DNA)
            bestMotif, := S1
                                                                                                I_{\text{seq}} = 5.5
            bestMotif2 := S2
     S<sub>1</sub> := bestMotif<sub>1</sub>; S<sub>2</sub> := bestMotif<sub>2</sub>
     for i = 3 to t
       for s_i = 1 to n-l+1
                                                            CYCLE 2
                                                                            ACTG
                                                                                         ACTG
                                                                                                       ACTG
                                                                                                                     ACTG
                                                                            TAGC
                                                                                         AGCG
                                                                                                       CTTG
                                                                                                                     TTGC
          if (Score(s,i,DNA) > Score(bestMotif,i,DNA)
            bestMotif := S
                                                                            0 1 0 1
                                                                                                                     0 \ 1 \ 0 \ 1
                                                                                                       1 1 0 0
                                                                           0 0 1 1
                                                                                         0 \ 1 \ 0 \cdot 2
                                                                                                       0 \ 0 \ 0 \ 2
                                                                                                                     0 \ 0 \ 1 \ 1
       s:= bestMotif;
                                                                         T 1 0 1 0
                                                                                                       0 1 2 0
                                                                                                                     1 1 1 0
     Return bestMotif
                                                                             I_{seq} = 2.8
                                                                                          I_{\text{seq}} = 4.2
                                                                                                        I_{seq} = 4.2
                                                                                                                      I_{seq} = 2.8

    Cycle 1: create word list from first two

  sequences
                                                            CYCLE 3
                                                                                                          ACTG
                                                                                       ACTG
                                                                                       AGCG
                                                                                                          AGCG

    Cycle 2: highest X scoring two-seq

                                                                                       CTTG
                                                                                                          TTGC
   matrices are saved (X=6 saved)
                                                               Most time

    Cycle 3 to t: add words to alignment

  from 2 and save the highest scores.
                                                                                                           I_{seq} = 2.1
```

One motif per sequence

Greedy Algorithms (Consensus)

```
Algorithm:
Cycle 1:
For each word W in S
                                          (of fixed length!)
  For each word W' in S
       Create alignment (gap free) of W, W'
Keep the C₁ best alignments, A₁, ..., A<sub>C1</sub>
ACGGTTG
                     CGAACTT
                                          GGGCTCT
ACGCCTG
                     AGAACTA
                                          GGGGTGT
```

Consensus (greedy) Algorithms

Algorithm:

Cycle t:

```
For each word W in S
```

For each alignment A_j from cycle t-1 Create alignment (gap free) of W, A_i

Keep the C_I best alignments A₁, ..., A_{Ct}

```
ACGGTTG , CGAACTT , GGGCTCT ...
```

ACGCCTG , AGAACTA , GGGGTGT ...

Running time:

$$O(N^2) + O(N C_1) + O(N C_2) + ... + O(N C_n)$$

= $O(N^2 + NC_{total})$

Where $C_{total} = \Sigma_i C_i$, typically O(nC), where C is a big constant

- 1) A motif can be generate from any collection of aligned DNA or protein sequences (T/F)?
- 2) What is the maximum information content of the following degenerate motif, T[AG]A? As information content for a motif increases, the number of hits (above some cutoff) decreases (T/F)?
- 3) Footprinting tells you where a protein binds DNA (T/F)?
- 4) Gel shift can tell you whether a protein binds: a) probe DNA, b) competitor 'cold' DNA, c) both
- 5) Which motif has higher information content?
- 6) What is the probability of TGA with the following motif model?

$$PPM = \begin{bmatrix} A & 0.2 & .5 & .1 \\ C & 0.3 & .1 & .1 \\ G & 0.3 & .2 & .1 \\ T & 0.2 & .2 & .7 \end{bmatrix}$$

- 7) Would you expect more or fewer matches to a high compared to a low information content motif in a genome?
- 8) Both the binding energy model and log-likelihood ratio model of a motif can be derived from the position probability matrix [T/F].
- 9) What is the advantage and disadvantgae of combinatorial motif search over greedy (consensus) search?