Activity 2 – Introduction to Proof Definitions and Primes

(1) The odd numbers could be defined by:

An integer n is odd when there is another integer k such that n = 2k + 1.

But it would also be fine to use:

An integer n is odd when there is another integer k such that n = 2k - 1.

Explain why these definitions are equivalent. Can you produce yet another definition for "odd"?

(2) To show that a number x is prime (using the original definition) we need to examine all the potential divisors of x and show that none of them (except 1 and x) actually divide evenly into x. This process is known as trial division. On the surface it seems we'd need to do trial division for every number from 2 to x-1. Can we shorten that list?

2

(3) Carry out the Sieve of Eratosthenes only using the primes you find in the first row of the table. If the table were larger, what would the smallest un-sieved composite number be?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

(4) Suppose you wanted to discover all of the primes ≤ 1000 . What primes would you need to use in the sieve?

(5) Figure out what's going on in the prime "table" on page 16 of GIAM. Hint: why are the column headings labeled T and the row headings labeled H?

(6) Use the prime table to find the twin primes between 4900 and 5000.

(7) In a sage cell type range? . (This is how you get help on a sage function.) Now use a for loop and the is_prime function to verify your answer from the previous question.

(8) A Fermat number is a number of the form $2^{2^n} + 1$. The famous mathematician Pierre de Fermat conjectured that they were all prime. Explore this conjecture, at first by hand, and when the numbers get too big switch to sage.