	DAA Assignment - 1
Ans)	Asymptotic means towards infinity (i.e the input may be of infinite value). These notations are used to tell the time complexity of an algorithm when input is vary large.
	large. Following are A Symptotic notations:
i)	By - Oh (0) \rightarrow $f(n) = O(g(n))$ if $f(n) \leq Cxg(n)$
	This means that g(n) is upper bound of f(n). A tight upper bound.
	Fox X - / Alfo 1
- <u>ii</u>)	By-Onega (12) -> for= si(g(n))
	This means that g(n) is tight lower bound of f(n)
	Big-thota (O)
	This gives we both the upper & buen bound.
	Small-Oh (o)
	This gives just the upper bound. $f(n) = O(g(n))$

	V Page No.
<u>02</u>)	log (n)
	1 = 56 $1 = 1, 2, 4, 8, 76, 32$
	Hence i will take this much value i.e our program will run till 2k
	$\frac{1}{2} = n = k = \log n$
03) A)	96 n = 4
	$3\pi(T(Y) = 3xT(3) \rightarrow 3xT(2) \rightarrow 3xT(1) \rightarrow 3xT(0)$ 81 29 3
	which is bosially 3 k = no of alls.
	Hena, 3h = n => k = logs(n)
<u>As)</u>	log (n)

An) For n = 15 i=1, 5=1 j=2, S=3j=3, S=6 j=4, 5=10 i=5 5=15 The increment in i's linear. But in '5' we con observe that is—t it is the sum of first 5 notinal number (if n=5) Sof So for k 1+3+6+10--- R k (k+1) [The sum of first k natural h = k2 + k (Neglecting tower lower order torms) .. k= Jn Hence O (Jn)

f(15)= f(12) -> f(9)-> f(6)-> f(3) At The fisching rutions in the oridor. 1-3-3-6-9-12 a=1, H= 3=3 + = a x k-1 1x 2 k-1 $\frac{1}{n^2}$ $\frac{3^h}{3^h}$ $\frac{3^h}{3^h}$ $\frac{\log_2 n}{\log_2 n}$ Here Also, there is a TC of addition n2 de to the loops inside the function. : T·(-> 0 (n² * lg, (n)) The jth lap value depends on 'D' i j = 5, j = 1 J=1, j=1,2,3,4,5 j=4/j=5

Con objects observe that for each value of vok vole of R log (n) C-1 n (lig (n ith loop + ith loop. The time complexity is O(Jn) The increment of 'i' depends of value of 'j' n=16 first in patrial numbers.

/ Page No. So for a value of 'h' A= 1,3,6,10, --- k = k(k+1) } The patenal Sim Commula 0 = h2 +1 on k = Jh (After dropping loves terms) TC= O(Jn) 0431 print (" n log (n)")

Page No Dienge (1, h11) i) in Dunge (T, nH): por k in monge (1, mil): print (" n 13") mange (2, n+1, pow (i, 2)): print (i) 015) 016) lets fike k=2 and n= 50 i j=1 < So j= pow (2,2)= 4 250 j² ροω (4,2)² 16 ∠ 50 j² ροω (16,2) = 256 > 50 lik in observe that the value is incrementing at a rate of (2k)k $2, (2^k)^k, ((2^k)^k)^k - - -$ 2 k2^{h²} 2 k³ 2 kч gklyk (lg(n)) which can be simplified to

Insertion Sort is alled Online sorting algorithm as it does not make decisions based on the entire input a partial sonted aver. OID) Recurrya Relation: T(n) = T(n-1) + T(n-2)+1 Using Reconside Tree Neethod. is how function calls This take place $\begin{pmatrix} h-2 \end{pmatrix} \begin{pmatrix} n-3 \end{pmatrix} \begin{pmatrix} n-4 \end{pmatrix}$ T (= 1+2+4+--a=1, 312 2=2 T. Cz Sim of 'n' turns of GP $a(\pi^{h+1}-1) = 2^{hH}-1$

	V Tage No.
	He we consider the Stock Space then S.C. > O(n) else it will be O(1)
<u></u>	Rubble Sent -> Ont O(n2) [W.C)
	Selection Sort -> O(n2) [w.c]
	9 nsortion Sort -> $G(n^2)$ [w. (]
	Meorge Sont -> O(nlogn) [W.C]
	Ovick Sort -> O(n2) [w.C]
022) An)	9n-Place -> Bubble Sont, Selection Sont, 9nsortion Sont
	Online - Bubble Son! Selection Sont.
	Stable -> Bubble Sont, 9nsentin Sont, Marge Sont.
(1)	
~4)	

023 Strate lou = 0 high = n-1 while low Z= high mid = (lov thigh) /2 if an [mid] = farget Julian Inoc. elif an Cmid I L forget low 2 mid H high = mid -1 RECUMSING binary Search (an low high; return -1

Low = 10 mid = low + high / 2 if aur [mid] = tanget olif am [mid] < tanget

return binary Search (am, too mid+1, high) else return binary Search (am, bu, mid-1)