ANALIZA III - LISTA 7

1*. Pokazać, że całka krzywoliniowa funkcji f(x,y) wzdłuż drogi σ zadanej we współrzędnych biegunowych poprzez $r=r(\theta), \theta_1 \leq \theta \leq \theta_2$ jest równa

$$\int_{\theta_1}^{\theta_2} f(r\cos\theta, r\sin\theta) \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta.$$

Obliczyc długość krzywej $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$.

- 2. Niech f(x,y)=2x-y i $\sigma(t)=(t^4,t^4),\ 0\leq t\leq 1$. Obliczyć $\int_{\sigma}f\ ds$. Obliczyć długość krzywej σ . Obliczyć długość odcinka krzywej dla $0\leq t\leq t_0$, gdzie $t_0\leq 1$. To samo, gdy $\sigma(t)=(t,t),\ 0\leq t\leq 1$ i porównać.
- 3*. Znaleźć masę przewodu, który powstaje z przecięcia sfery $x^2+y^2+z^2=1$ i płaszczyzny x+y+z=0 jesli gęstość masy w pukcie (x,y,z) wynosi $\rho(x,y,z)=x^2$ gramów na jednostkę długości.
- 4. Obliczyć $\int_{\sigma} f \ ds$, gdzie f(x,y,z) = z i $\sigma(t) = (t\cos t, t\sin t, t), \ 0 \le t \le t_0$.
- 5. Dla krzywej $\sigma(t)=(x(t),y(t),z(t)),~a\leq t\leq b$ niech s(t) oznacza długość odcinka krzywej odpowiadającego przedziałowi czasu [a,t]. Korzystając ze wzoru na długość krzywej pokazać, że

$$\frac{ds}{dt} = \|\sigma'(t)\| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}.$$

Jeśli założmy, że obiekt porusza się po krzywej tak, że w chwili t znajduje się w punkcie $\sigma(t)$, to powyższy wzór mówi, że prędkość w chwili t jest równa długości wektora stycznego do krzywej w punkcie $\sigma(t)$.

- 6. Obliczyć całki krzywolinowe (dwa dowolne punkty liczą się jako jedno zadanie).
 - (a) $\int_{\sigma} x dx + y dy + z dz$, $\sigma(t) = (t^2, 3t, 2t^3), -1 \le t \le 2$,
 - (b) $\int_{\sigma} x dy y dx$, $\sigma(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$,
 - (c) $\int_{\sigma} x dx + y dx$, $\sigma(t) = (\cos \pi t, \sin \pi t)$, $0 \le t \le 2$,
- (d) $\int_{\sigma} yzdx + xzdy + xydz$, gdzie σ składa się z dwóch odcinków łączących punkt (1,0,0) z (0,1,0) i dalej z (0,0,1).
- (e) $\int_{\sigma} x^2 dx xy dy + dz$, gdzie σ jest fragmentem paraboli $z = x^2$, y = 0 od (-1, 0, 1) do (1, 0, 1).
- 7. Pole sił F jest równe F(x,y,z)=(x,y,z). Obliczyć pracę wykonaną przy przesunieciu obiektu wzdłuż paraboli $y=x^2,\,z=0,\,{\rm od}\,\,x=-1$ do x=2.

- 8. Załóżmy, że wektor F jest prostopadły do wektora stycznego $\sigma'(t)$ w punkcie $\sigma(t)$. Pokazac, że $\int_{\sigma} F \circ ds = 0$. Załóżmy, że wektor F jest równoległy do wektora stycznego $\sigma'(t)$ w punkcie $\sigma(t)$ tzn. $F(\sigma(t)) = \lambda(t)\sigma'(t)$, gdzie $\lambda(t) > 0$. Pokazać, że $\int_{\sigma} F \circ ds = \int_{\sigma} ||F|| ds$.
- 9. Niech F(t) oznacza jednostkowy wektor styczny do krzywej σ . Ile wynosi $\int_{\sigma} F \circ ds$?.
- 10. Niech $F(x,y,z)=(z^3+2xy,x^2,3xz^2)$. Pokazać, że $\int_{\sigma}F\circ ds$ wokół obwodu kwadratu jednostkowego jest równa 0.
- 11. Obliczyć $\int_{\sigma}2xyzdx+x^2zdy+x^2ydz,$ gdzie σ jest krzywa zorientowaną łączącą (1,1,1)z(1,2,4).
- 12. Załóżmy, że $\nabla f(x, y, z) = (2xyze^{x^2}, ze^{x^2}, ye^{x^2})$ i f(0, 0, 0) = 5. Obliczyć f(1, 1, 2).
- 13. Niech pole sił będzie określone wzorem $F(x,y,z)=-(x,y,z)/r^3$, gdzie $r=\sqrt{x^2+y^2+z^2}$. Pokazać, że praca potrzebna do przesunięcia obiektu z (x_1,y_1,z_1) do (x_2,y_2,z_2) zalezy tylko od promieni $r_1=\sqrt{x_1^2+y_1^2+z_1^2}$ i $r_2=\sqrt{x_2^2+y_2^2+z_2^2}$.
- 14. Niech $\sigma: [-a, a] \mapsto \mathbb{R}^3$ będzie krzywą. Niech $\gamma(t) = \sigma(-t)$. Pokaż, że $\int_{\sigma} F \ ds = \int_{\gamma} F \ ds$ i $\int_{\sigma} F \circ ds = -\int_{\gamma} F \circ ds$.
- 15*. Niech $\sigma:[a,b]\mapsto\mathbb{R}^3$ i $\gamma:[c,d]\mapsto\mathbb{R}^3$ będą parametryzacjami krzywej takimi, że $\gamma=\sigma\circ\rho$, gdzie ρ jest monotoniczne i C^1 . Jeśli $\sigma(a)=\gamma(c)$ i $\sigma(b)=\gamma(d)$ to $\rho'(s)\geq 0$ i

$$\int_{\sigma} f \, ds = \int_{\gamma} f \, ds, \quad \int_{\sigma} F \circ ds = \int_{\gamma} f \circ ds.$$

Jeśli $\sigma(a) = \gamma(d)$ i $\sigma(b) = \gamma(c)$ to $\rho'(s) \leq 0$ i

$$\int_{\sigma} f \, ds = \int_{\gamma} f \, ds, \quad \int_{\sigma} F \circ ds = -\int_{\gamma} f \circ ds.$$

- 16*. Niech D będzie obszarem, a C jego brzegiem. Niech $\sigma: [a,b] \mapsto \mathbb{R}^3$ i $\gamma: [c,d] \mapsto \mathbb{R}^3$ będą parametryzacjami C takimi, że $\gamma = \sigma \circ \rho$, gdzie ρ jest C^1 i $\rho' > 0$. Niech $\sigma(t) + \varepsilon n_{\sigma}(t) \notin D$ dla $0 < \varepsilon \leq \varepsilon_0$. Wtedy $\gamma(t) + \eta n_{\gamma}(t) \notin D$ dla $0 < \eta \leq \eta_0$. $n_{\sigma} = (\sigma'_2(t), -\sigma'_1(t)), n_{\gamma} = (\gamma'_2(t), -\gamma'_1(t))$.
- 17. Korzystając ze wzoru Greena obliczyć podane całki, przy założeniu, że krzywe sa zorientowane dodatnio (dwa podpunkty liczą sie jako całe zadanie).
 - a) $\int_{\sigma} y dx x dy$, gdzie σ jest brzegiem kwadratu $[-1, 1] \times [-1, 1]$.
 - b) $\int_{\sigma} (y^2 + x^3) dx + x^4 dy$, gdzie σ jest brzegiem kwadratu $[0, 1] \times [0, 1]$.
 - c) $\int_{c}^{b} xy^{2}dy x^{2}ydx$, gdzie σ jest okręgiem $x^{2} + y^{2} = a^{2}$.
- 18^* . Korzystając ze wzoru Greena obliczyć podane całki, przy założeniu, że parametryzacja brzegu σ jest zorientowana dodatnio. Można na początek założyć, że krzywa jest okręgiem.

- a) $\int_{\sigma} \cos \langle (v,n)| ds$, gdzie $n=\frac{n_{\sigma}}{\|n_{\sigma}\|}$ jest jednostkowym zewnętrznym wektorem normalnym do krzywej, v dowolnym ustalonym wektorem, a $\cos \langle (v,n)|$ jest cosinusem kąta między nimi.
- b) $\int_{\sigma}(x,y) \circ n \ ds$. \circ oznacza jak zwykle iloczyn skalarny, $n_{\sigma} = (\sigma'_{2}(t), -\sigma'_{1}(t))$.
- 19. Znaleźć pole elipsy korzystając ze wzoru $A(D) = \frac{1}{2} \int_{\partial D} x dy y dx$.
- 20. Znaleźć pole obszaru ograniczonego przez jeden łuk cykloidy $x=a(\theta-\sin\theta),$ $y=a(1-\cos\theta),$ a>0, $0\leq\theta\leq2\pi$ i oś x.
- 21*. Pokaż, że koło jednostkowe jest obszarem elementarnym. Znajdź parametryzacje $\phi_1, \phi_2, \psi_1, \psi_2$ i pokaż, ze są one równoważne ze standardową parametryzacją okręgu.
- 22*. Niech D będzie obszarem, w którym zachodzi twierdzenie Greena. Załóżmy, że funkcja u(x,y) jest harmoniczna, tzn. $\Delta u = \partial^2 u/\partial x^2 + \partial^2 u/\partial y^2 = 0$ na D. Pokazać, że

$$\int_{\partial D} \nabla u \circ n \ ds = \int_{\partial D} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy = 0,$$

gdzie n jest jednostkowym zewnętrznym wektorem normalnym do krzywej, patrz def. w zadaniu 18.