

Geometría

Centro de Servicios y Gestión Empresarial SENA Regional Antioquia

Conceptos

¿Qué es la geometría?

Es la parte de las matemáticas que trata de las propiedades y medida del espacio o plano, fundamentalmente se preocupa de problemas métricos (cálculo del área y diámetro de figuras o volumen de cuerpos sólidos).

Punto

Es el objeto fundamental en geometría, el punto representa solo posición y no tiene dimensión, es decir, largo cero, ancho cero y altura cero. Se representan por letras mayúsculas.

Recta

Tiene solo longitud, no tiene ancho ni altura ni grosor. Es un conjunto infinito de puntos que se extienden en una dimensión en ambas direcciones. Una recta se puede representar por:

Medida de un segmento

La longitud de un segmento de recta puede medirse en unidades métricas como milímetros, centímetros o en unidades habituales como pies o pulgadas.

Plano

Tiene ancho infinito y largo infinito, sin altura. Un plano es una superficie en dos dimensiones, se puede pensar como un conjunto de puntos infinitos en dos dimensiones.

Plano P

Son figuras planas formadas por una línea poligonal cerrada y su interior. Cualquier figura plana que esté formada por "lados rectos" es un polígono.

Los lados rectos son segmentos

Elementos de un polígono

LADOS. Son cada uno de los segmentos que forman su contorno.

VÉRTICES. Son los puntos donde se unen dos lados.

DIAGONAL: Es el segmento que está al interior del polígono

ÁNGULOS. Son las aberturas entre dos lados consecutivos.

ÁNGULO INTERIOR ÁNGULO EXTERIOR

Hay 2 tipos:

Ángulos interiores: están dentro del polígono.

Ángulos exteriores: están fuera del polígono. Son suplementarios a los internos. La suma de los ángulos externos de un polígono es 360o.

Elementos de un polígono

ALTURA. Es el segmento que va de la base del polígono, al punto más alto y forma un ángulo de 90 con la base.

Polígonos según sus lados

Nombre	Lados	Forma
Triángulo (o trígono)	3	
Cuadrilátero (o tetrágono)	4_	
Pentágono	5	
Hexágono	6	
Heptágono	7	
Octágono	8	
Nonágono	9	\mathcal{Q}
Decágono	10	
Endecágono	11	3
Dodecágono	12	

Diagonales de un polígono

Para calcular las diagonales de cualquier polígono basta con aplicar la fórmula:

$$x = \frac{n(n-3)}{2}$$

Siendo *n* el número de lados del polígono.

Perímetros y áreas

POLÍGONO		PERÍMETRO	ÁREA
TRIÁNGULO		La mejor forma es sumar lo que miden sus tres lados.	$A = \frac{base \cdot altura}{2}$
		P = a + b + c	$A = \frac{b \cdot a}{2}$
CUADRADO		Como los 4 lados miden lo mismo, podemos multiplicar lo que mide un lado por cuatro. $P = 4 \cdot lado$	A = lado · lado
			A = 2
		Los lados son iguales dos a dos.	A = lado mayor · lado menor
RECTÁNGULO		$P = 2 \cdot (a + b)$	$A = b \cdot a$
ROMBO		Los 4 lados miden lo mismo.	A = Diagonal mayor · diagonal menor 2
		P = 4 · lado	$A = \frac{D \cdot d}{}$

Perímetros y áreas

POLÍGONO		PERÍMETRO	ÁREA
ROMBOIDE	·	Los lados son iguales dos a dos. $P = 2 \cdot (a + b)$	A = lado de la base · altura A = b · a
TRAPECIO		La mejor forma es sumar lo que miden sus cuatro lados, ya que, muchas veces, todos miden distinto. P = a + b + c + d	$A = \frac{\text{altura} \cdot (\text{Base mayor} + \text{base menor})}{2}$ $A = \frac{\mathbf{a} \cdot (\mathbf{B} + \mathbf{b})}{2}$
TRAPEZOIDE		La mejor forma es sumar lo que miden sus cuatro lados, ya que, muchas veces, todos miden distinto. P = a + b + c + d	Se divide al trapezoide en dos triángulos (con una diagonal), y se calcula el área de cada triángulo y se suman. A = Atr. 1 + Atr. 2
POLÍGONO REGULAR		Se multiplica lo que mide un lado (todos son iguales) por el número de lados del polígono. P = n · longitud lado	$A = \frac{\text{perímetro} \cdot \text{apotema}}{2}$ $A = \frac{p \cdot \text{ap}}{2}$

¿Qué es una circunferencia?

Es una figura plana que consiste de todos los puntos que están sobre una curva cerrada y de los puntos interiores de ella, en la cual cada punto sobre la curva tiene la misma distancia al centro del círculo.

Elementos de una circunferencia

Centro (O): Es el punto que se encuentra a la misma distancia (es equidistante) de todos los puntos de la circunferencia.

Radio (EO): Es el segmento que une el centro de la circunferencia con cualquiera de sus puntos.

Diámetro (AB): Es el segmento que une dos puntos extremos de la circunferencia, pasando por el centro. Cabe notar que el diámetro el doble del radio.

Elementos de una circunferencia

Cuerda(CD): Es el segmento que une dos puntos de la circunferencia, pero a diferencia del diámetro no pasa por el centro de la figura.

Ángulo central (α): Es el ángulo que se forma entre dos radios de la circunferencia.

Volúmenes

El volumen es una magnitud métrica de tipo escalar Definida como la extensión en tres dimensiones de una región del espacio. Es una magnitud derivada de la longitud, ya que en un ortoedro se halla multiplicando tres longitudes: el largo, el ancho y la altura.

$$V = (6cm)^3$$
$$V = 216cm^3$$

$$V = 216cm^{3}$$

Volúmenes

$$V = \frac{\pi r^2 \cdot h}{3}$$

Esfera

$$V = \frac{4}{3} \pi r^3$$

Prisma

$$V = \frac{5b \cdot ap}{2} \cdot h$$

Cubo

$$V = a^3$$

Piramide

$$V=\frac{a^2\cdot h}{3}$$

Cilindro

$$V = \pi r^2 \cdot h$$

Funciones Trigonométricas

En matemática, las funciones trigonométricas son las funciones determinadas con el objetivo de extender la definición de las razones trigonométricas a todos los números reales y complejos. Estas usualmente incluyen términos que describen la medición de ángulos y triángulos, tal como seno, coseno, tangente, cotangente, secante y cosecante.

Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos.

Funciones Trigonométricas

Identidades trigonométricas fundamentales

Recíprocas

$$\csc x = \frac{1}{\sin x}$$

$$\csc x * \sec x = 1$$

$$\sec x = \frac{1}{\cos x}$$

$$\sec x * \cos x = 1$$

$$\cot x = \frac{1}{\tan x}$$

 $\cot x * \tan x = 1$

Cociente

$$co = h * sen x$$
 $ca = h * cos x$

$$\tan x = \frac{co}{ca} \qquad \cot x = \frac{ca}{co}$$

$$\tan x = \frac{h * \sin x}{h * \cos x} \quad \cot x = \frac{h * \cos x}{h * \sin x}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

Pitagóricas

$$1 = \operatorname{sen}^2 x + \cos^2 x$$

$$\frac{1}{\operatorname{sen}^2 x} = \frac{\operatorname{sen}^2 x}{\operatorname{sen}^2 x} + \frac{\cos^2 x}{\operatorname{sen}^2 x}$$

$$\csc^2 x = 1 + \cot^2 x$$

$$\frac{1}{\cos^2 x} = \frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x}$$

$$\sec^2 x = \tan^2 x + 1$$

Ejemplo

Calcular el valor de x en la figura utilizando las razones trigonométricas vistas:

Solución

Conocemos la hipotenusa y el ángulo. Como queremos calcular el lado opuesto, utilizamos el **seno**:

$$\sin(\alpha) = \frac{\text{opuesto}}{\text{hipotenusa}}$$
$$\sin(28^\circ) = \frac{x}{36}$$

Despejamos la incógnita:

$$x = 36 \cdot \sin(28^{\circ}) = 16.900$$

El lado mide, aproximadamente, 16.900.

GRACIAS

Presentó: Alvaro Pérez Niño Instructor Técnico

Correo: aperezn@sena.edu.co

http://centrodeserviciosygestionempresarial.blogspot.com/

Línea de atención al ciudadano: 01 8000 910270 Línea de atención al empresario: 01 8000 910682

www.sena.edu.co