The permutability of σ_i -sylowizers of some σ_i -subgroups in finite groups

Zhenya Liu and Wenbin Guo

Abstract

Let $\sigma = \{\sigma_i | i \in I\}$ be a partition of the set of all primes \mathbb{P} , G a finite group and $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(|G|) \neq \emptyset\}$. A subgroup S of a group G is called a σ_i -sylowizer of a σ_i -subgroup S in G if S is maximal in S with respect to having S as its Hall σ_i -subgroup. The main aim of this paper is to investigate the influence of σ_i -sylowizers on the structure of finite groups. We obtained some new characterizations of supersoluble groups by the permutability of the σ_i -sylowizers of some σ_i -subgroups.

1 Introduction

Let π denotes a set of primes. The concept of π -Sylowizers has been introduced by W. Gaschutz [1]. If R is a π -subgroup of the group G, then a π -Sylowizer of R in G is a subgroup S of G maximal with respect to containing R as a Hall π -subgroup.

 \mathbb{P} is the set of all primes and n is a natural number. Let $\sigma = \{\sigma_i | i \in I\}$ is some partition of all primes \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. We write $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$.

Following [5], two subgroups H and T of a group G are conditionally permutable (or in brevity, c-permutable) in G if there exists an element $x \in G$ such that $HT^x = T^xH$.

2 Preliminaries

Lemma 2.1. Let H be a σ_i -subgroup of G for some $\sigma_i \in \sigma(G)$. Assume that K is a subgroup satisfying $H \leq K \leq G$ and T is a σ_i -sylowizer of H in K. Then there is a σ_i -sylowizer S of H in G such that $T = S \cap K$.

Proof Since H is a Hall σ_i -subgroup of T, there is a σ_i -sylowizer S of H in G such that $S \geq T$. Then H is a Hall σ_i -subgroup of $S \cap K$. Since $T \leq S \cap K$ and T is a σ_i -sylowizer of H in K, we get $T = S \cap K$ by the maximality of T.

Keywords: Finite group; σ -permutable subgroup; supersoluble group Mathematics Subject Classification (2021): 20D10, 20D15, 20D20, 20D35

Lemma 2.2. Let R be a σ_i -subgroup of G for some $\sigma_i \in \sigma(G)$. Assume that N is a normal subgroup of G and R is a Hall σ_i -subgroup of RN. Then S is a σ_i -sylowizer of R in G if and only if S/N is a σ_i -sylowizer of RN/N in G/N.

Proof Let S be a σ_i -sylowizer of R in G. Since R is a Hall σ_i -subgroup of RN, R is a Hall σ_i -subgroup of SN. Thus $N \leq S$ by the maximality of S and so RN/N is a Hall σ_i -subgroup of S/N. If S/N is not a σ_i -sylowizer of RN/N in G/N, then there is a σ_i -sylowizer S_0/N of RN/N in G/N such that $S_0/N > S/N$. Now, $S_0 > S$ and R is a Hall σ_i -subgroup of S_0 , which contradicts the fact that S is a σ_i -sylowizer of R in G. Thus S/N is a σ_i -sylowizer of RN/N in G/N.

Conversely, if S/N is a σ_i -sylowizer of RN/N in G/N, then R is a Hall σ_i -subgroup of S. If S is not a σ_i -sylowizer of R in G, then there is a σ_i -sylowizer S_0 of R in G such that $S_0 > S$. Therefore RN/N is a Hall σ_i -subgroup of S_0/N , which contradicts the fact that S/N is a σ_i -sylowizer of RN/N in G/N. Thus S is a σ_i -sylowizer of R in G.

Lemma 2.3. Let R be a σ_i -subgroup of a σ -full group G for some $\sigma_i \in \sigma(G)$ and S a σ_i -sylowizer of R in G. If S is σ -permutable in G, then $O^{\sigma_i}(G) \leq S$. In particular, $S = RO^{\sigma_i}(G)$ is the unique σ_i -sylowizer of R in G.

Proof Let Q be a Hall σ_j -subgroup of G with $\sigma_j \in \sigma(G)$ and $\sigma_i \cap \sigma_j = \emptyset$. Since S is σ -permutable, we have $SQ \leq G$. Note that since R is a Hall σ_i -subgroup of SQ, we have QS = S by the maximality of S. Hence $Q \leq S$. It shows that $O^{\sigma_i}(G) \leq S$.

Lemma 2.4. Let R be a σ_i -subgroup of a σ -full group of Sylow type G for some $\sigma_i \in \sigma(G)$ and S a σ_i -sylowizer of R in G. Then S is c-permutable with every Hall σ_j -subgroup of G for all $\sigma_j \in \sigma(G)$ if and only if |G:S| is a σ_i -number.

Proof The sufficiency is evident, we only need to prove the necessity.

Let Q be a Hall σ_j -subgroup of G with $\sigma_j \in \sigma(G)$ and $\sigma_i \cap \sigma_j = \emptyset$. Since S is c-permutable with Q, we have $SQ^x = Q^xS$ for some element $x \in G$. Note that since R is a Hall σ_i -subgroup of SQ^x , we have $Q^xS = S$ by the maximality of S. Hence $Q^x \leq S$. It implies that |G:S| is a σ_i -number. \square

3 Results

Theorem 3.1. Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, \dots, H_t\}$ be a complete Hall σ -set of G such that H_i is a nilpotent σ_i -subgroup for all $i = 1, \dots, t$. Suppose that for any $\sigma_i \in \sigma(G)$, every maximal subgroup of any non-cyclic H_i has a σ_i -sylowizer that is c-permutable with every member of \mathcal{H} , then G is supersoluble.

Proof Assume that this is false and let G be a counterexample of minimal order. Then:

(1) Let N be a minimal normal subgroup of G. Then G is supersoluble.

We consider the quotient group G/N. It is clear that G/N is a σ -full group of Sylow type and $\mathcal{H}N/N$ is a complete Hall σ -set of G/N such that H_iN/N is nilpotent. Let H/N be a maximal subgroup of H_iN/N and H_{σ_i} be a Hall σ_i -subgroup of H contained in H_i . Then $H = H_{\sigma_i}N$. Since $H_{\sigma_i} \cap N = N_{\sigma_i} = H_i \cap N$, where N_{σ_i} denotes a Hall σ_i -subgroup of N, we have that

$$|H_i: H_{\sigma_i}| = \frac{|H_i||N|}{|H_i \cap N|} \cdot \frac{|H_{\sigma_i} \cap N|}{|H_{\sigma_i}||N|} = |H_i N: H| = q$$

for some $q \in \sigma_i$. This shows that H_{σ_i} is a maximal subgroup of H_i . If H_iN/N is non-cyclic, then so is H_i . Thus if S/N is a σ_i -sylowizer of H/N in G/N, then S is a σ_i -sylowizer of H_{σ_i} in G by Lemma 2.2. Moreover, if S is c-permutable with every member of \mathcal{H} , then S/N is c-permutable with every member of $\mathcal{H}N/N$ by Lemma 2.4. It shows that G/N satisfies the hypotheses. Thus G/N is supersoluble by the choice of G.

(2) N is the unique proper minimal normal subgroup of G and $\Phi(G) = 1$.

Let p be the smallest prime divisor of G and $p \in \sigma_i$. If H_i is cyclic, then G is p-nilpotent. This shows that G has a proper minimal normal subgroup. Thus we may assume that H_i is non-cyclic. Let M be a maximal subgroup of H_i of index p and S a σ_i -sylowizer of M in G that is c-permutable with every member of \mathcal{H} . Then |G:S|=p by Lemma 2.4 and so $S \subseteq G$. Therefore we may choose a proper minimal normal subgroup of G contained in S, say N. By Claim (1), G/N is supersoluble. Moreover, N is the unique minimal normal subgroup of G. Since the class of all supersoluble groups is a saturated formation, we may assume further that $|\Phi(G)|=1$.

(3) N is soluble.

Assume that N is not soluble. Then p=2 and 2||N|. Let P be a Sylow 2-subgroup of H_i . Then $N_2=P\cap N$ is a Sylow 2-subgroup of N. If $N_2\leq \Phi(H_i)$, then $N_2\leq \Phi(P)$, and so N is 2-nilpotent by Tate's theorem, a contradiction. Hence $N_2\nleq \Phi(H_i)$. Thus there is a maximal subgroup K of H_i such that $H_i=KN_2$. Let S_0 be a σ_i -sylowizer of K in G that is c-permutable with every member of \mathcal{H} . Then $|G:S_0|=2$ by Lemma 2.4. Thus $G=S_0H_i=S_0N_2=S_0N$. Now, $|N:N\cap S_0|=|G:S_0|=2$, which implies that $N\cap S_0\unlhd N$. Since $N\cap S_0\unlhd S_0$, we have $N\cap S_0\unlhd S_0$. Note that N is a minimal normal subgroup of S_0 , we have $N\cap S_0=1$. Thus $|N|=|G:S_0|=2$, a contradiction.

(4) Final contradiction.

By Claim (3), we may assume that N is a q-subgroup for some prime $q \in \sigma_j$. Since $\Phi(G) = 1$, there is a maximal subgroup T of G such that G = TN. Let T_{σ_j} be a Hall σ_j -subgroup of T contained in H_j . Then $H_j = T_{\sigma_j}N$ is a Hall σ_j -subgroup of G. If H_j is cyclic, then G is supersoluble by the supersolublity of G/N. Thus we may assume that H_j is non-cyclic. Let $Q \geq T_{\sigma_j}$ be a maximal subgroup of H_j and Y a σ_j -sylowizer of Q in G that is C-permutable with every member of H. Then |G:Y| = Q by Lemma 2.4 and $N \nleq Y$. Otherwise $H_j = QN \leq Y$, which contradicts the fact

that Q is a Hall σ_j -subgroup of Y. Thus G = YN and so |N| = |G:Y| = q. It implies that G is supersoluble, a contradiction. This contradiction completes the proof.

Theorem 3.2. Let \mathfrak{F} be a soluble saturated formation containing all supersoluble groups and let E be a normal subgroup of G with $G/E \in \mathfrak{F}$. Suppose that G is a σ -full group of Sylow type and $\mathcal{H} = \{H_1, \dots, H_t\}$ is a complete Hall σ -set of G such that H_i is a nilpotent σ_i -subgroup for all $i = 1, \dots, t$. If for any $\sigma_i \in \sigma(E)$, every maximal subgroup of any non-cyclic $H_i \cap E$ has a σ_i -sylowizer that is c-permutable with every member of \mathcal{H} , then $G \in \mathfrak{F}$.

Proof The conclusion holds when E = G by Theorem 3.1, thus we may assume that E < G. Let N be a minimal normal subgroup of G contained in E.

(1) E is supersoluble.

Let Q be a maximal subgroup of a non-cyclic Hall σ_i -subgroup $H_i \cap E$ of E and S a σ_i -sylowizer of Q in G that is c-permutable with member of \mathcal{H} . By Lemma 2.4, |G:S| is a σ_i -number. Let $Y = S \cap E$. Since $|E:Y| = |E:S \cap E| = |SE:S|$ divides |G:S|, |E:Y| is a σ_i -number. Hence Y is a σ_i -sylowizer of Q in E and Y is c-permutable with every member of $\mathcal{H} \cap E$ by Lemma 2.4. Thus E is supersoluble by Theorem 3.1.

(2) N is the unique minimal normal subgroup of G contained in E and $N \cap \Phi(G) = 1$.

Consider the quotient group G/N, evidently $(G/N)/(E/N) \in \mathfrak{F}$. Since E is supersoluble by Claim (1), we have that N is a p-group for some prime p. Without loss of generality, we may write $E_i = H_i \cap E$ for all $i \in \{1, \dots, t\}$ and assume that $p \in \sigma_i$ for some i. Let J/N be a maximal subgroup of E_i/N , then J is a maximal subgroup of E_i . If S/N is a σ_i -sylowizer of J/N in G/N, then S is a σ_i -sylowizer of J in G by Lemma 2.2. Moreover, if S is C-permutable with every member of H, then S/N is C-permutable with every member of H is a maximal subgroup of $E_j/N/N$ and I_{σ_j} a Hall σ_j -subgroup of I contained in I, where I is a I is a maximal subgroup of I is a I is a I is a I in I is a I in I in

(3) N is an elementary abelian p-subgroup, where p is the largest prime divisor of |E|.

Since E is supersoluble by Claim (1), the Sylow p-subgroup E_P of E is normal in G. Note that N is the unique minimal normal subgroup of G contained in E, $N \leq E_P$ is an elementary abelian p-subgroup.

(4) $G \in \mathfrak{F}$.

Without loss of generality, we may assume that $p \in \sigma_i$. If E_i is cyclic, then |N| = p and so $G \in \mathfrak{F}$. Assume that E_i is non-cyclic. Since $N \nleq \Phi(G)$, there is a maximal subgroup M of G such that G = MN and $M \cap N = 1$. Thus $E_i = N(M \cap E_i)$ and $H_i = NM \cap H_i = N(M \cap H_i) = NM_i$. Since $M_i < H_i$, we may choose $P < H_i$ such that $M_i \le P$. Since $M \cap E_i \le P$, $P \cap E_i = P \cap N(M \cap E_i) = (P \cap N)(M \cap E_i)$. Note that $M \cap N = 1$, we have

$$|E_i : E_i \cap P| = |N(M \cap E_i) : (P \cap N)(M \cap E_i)| = |N : P \cap N| = p.$$

Hence $R = E_i \cap P$ is a maximal subgroup of E_i . Let S be a σ_i -sylowizer of R in G that is c-permutable with every member of \mathcal{H} . Then |G:S| is a σ_i -number by Lemma 2.4. Since G is soluble, we may write $S = RS_{\sigma'_i}$ and $M = M_i M_{\sigma'_i}$. Note also that |G:S| and |G:M| are σ_i -number in G, $S_{\sigma'_i}$ and $M_{\sigma'_i}$ are also Hall σ'_i -subgroups of G. Thus there is an element g of G such that $S_{\sigma'_i}^g = M_{\sigma'_i}$. Since $G = H_i S^g$, we may write g = xy, where $x \in H_i$ and $y \in S^g$. Note that since $R = E_i \cap P \subseteq H_i$, we have $R^y = R^{xy} \subseteq S^g$ and so $R \subseteq S^g$. Thus $S^g = RM_{\sigma'_i}$. Since $RM_i = (P \cap E_i)M_i = P \cap E_iM_i = P \cap NM_i = P \subseteq G$, we have $RM \subseteq G$. Since M is a maximal subgroup, either RM = M or RM = G.

If RM = G, then $RM_i = P$ is a Hall σ_i -subgroup of G, which is impossible. Thus RM = M and so $R \leq M \cap E_i$. Since $G = MN = ME_i$, we have $E_i \nleq M$. Note that since $R \lessdot E_i$, we have $R = M \cap E_i$. Thus $|N| = |G:M| = |E_i:E_i \cap M| = |E_i:R| = p$. By [7, Theorem 2], $G \in \mathfrak{F}$, as required.

References

- [1] W. Gaschiitz, Sylowisatoren, Math. Z., **122** (1971), 319-320.
- [2] A. N. Skiba, On σ -subnormal and σ -permutable subgroups of finite groups, J. Algebra, 436 (2015), 1-16.
- [3] W. Guo, A. N. Skiba, On Π-permutable subgroups of finite groups, Monatsh Math, **185**(3) (2018), 443-453.
- [4] A. N. Skiba, On some results in the theory of finite partially soluble groups, Comm. Math. Stat, 4 (2016), 281-309.
- [5] W. Guo, K.P. Shum, A. N. Skiba, Conditionally permutable subgroups and supersolubility of finite groups, Southeast Asian Bull. Math., **29**(3)(2005), 493-510.
- [6] D. Lei, X, Li, The permutability of p-sylowizers of some p-subgroups in finite groups, Arch. Math., **114** (2020), 367-376.
- [7] A. Ballester-Bolinches, M.C. Pedraza-Aguilera, On minimal subgroups of finite groups. Acta Math. Hung., **73**(4), (1996), 335-342.