Homework 3

Math 55b Due Tuesday, 17 Feb 2009.

- 1. Give an example of a differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) is not continuous.
- 2. Let \mathcal{F} be the smallest collection of functions $f:[0,1] \to \mathbb{R}$ that contains C[0,1] and is closed under pointwise limits: whenever $f_n \in \mathcal{F}$ and $g(x) = \lim f_n(x)$ exists for each $x \in [0,1]$, then $g \in \mathcal{F}$.

Prove that $g \in \mathcal{F}$, where g(x) = 1 if $x \in \mathbb{Q} \cap [0,1]$ and g(x) = 0 otherwise.

3. Let (X, d) be a metric space, let S denote the set of Cauchy sequences $s = (x_i)$ in X. Prove that the function

$$\overline{d}(s, s') = \lim_{i \to \infty} d(x_i, x_i')$$

exists for all pairs $s, s' \in S$, and satisfies the triangle inequality.

Let \overline{X} be the quotient of S by the equivalence relation $s \sim s'$ if $\overline{d}(s,s') = 0$. Observe that \overline{d} is naturally a function on \overline{X} as well, and prove $(\overline{X},\overline{d})$ is a complete metric space. Finally define a natural isometric map $\pi:X\to \overline{X}$, and prove that $\pi(X)$ is dense.

4. Let $X = \ell^1(\mathbb{N})$ be the vector space of all sequences $a : \mathbb{N} \to \mathbb{R}$ such that $\|a\|_1 = \sum |a_i| < \infty$. Prove that the metric $d(a,b) = \|a-b\|$ makes X into a complete metric space. Prove that the closed unit ball $\overline{B}(0,1)$ in X is not compact. Finally prove that for any $b \in X$ the set

$$K(b) = \{ a \in \ell^1(\mathbb{N}) : |a_i| \le |b_i| \ \forall i \}$$

is compact.

- 5. Let X = B[0,1] denote the vector space of bounded functions $f: [0,1] \to \mathbb{R}$. Is there a metric on X such that $d(f_n,g) \to 0$ if and only if $f_n(x) \to g(x)$ for all $x \in [0,1]$?
- 6. Does the sequence of functions $f_n : [0,1] \to \mathbb{R}$ given by $f_n(x) = \sin(nx)$ have a uniformly convergent subsequence?
- 7. Let $\alpha > 0$ be rational. Without appeal to calculus, determine

$$\lim_{n\to\infty} (n+1)^{\alpha} - n^{\alpha}.$$