CS 383: Machine Learning

Prof Adam Poliak
Fall 2024
09/19/2024
Lecture 07

Announcements

HW02 is due Sunday night

- Reading quiz: Thursday
 - Duame 7.6 (2+ pages)
 - ISL 59-63 (4+ pages)
- Midterm 1: Thursday October 3rd

My accuracy

Speeding up K-NN

Runtime: exercise!

 Don't need to sort all distances – for small K, we can find the top K neighbors in linear time

- Save matrix of pair-wise distances across K
- Use less of the training data
- Put each training example in a "zone" or "cluster". For each test example, identify cluster and only consider neighbors within that cluster

Outline

Reading quiz #3

Simple linear regression

SGD (Stochastic Gradient Descent)

Normal equations solution

Outline

Reading quiz #3

Simple linear regression

SGD (Stochastic Gradient Descent)

Normal equations solution

Goals of Inference

 Which of the features/explanatory variables/predictors (x) are associated with the response variable (y)?

2) What is the relationship between x and y?

3) Is a linear model enough?

4) Can we predict y given a new x?

Linear Regression so far

Output (y) is continuous, not a discrete label

<u>Learned model</u>: <u>linear function</u> mapping input to output (a weight for each feature + bias)

<u>Goal</u>: minimize the <u>RSS</u> (residual sum of square) or <u>SSE</u> (sum of squared errors)

$$RSS = \sum_{i}^{n} (y_i - \widehat{y}_i)^2$$

Regression Example

Example: predict sales from TV advertising budget

Cost Function: sum of squared errors

Outline

Reading quiz #3

Simple linear regression

SGD (Stochastic Gradient Descent)

Normal equations solution

Process Learning Weights

- 1. Randomly initialize weights
- 2. Make predictions \hat{y}
- 3. Compute loss function quantify how close \hat{y} and y are
- 4. Update weights accordingly based on the loss function aka Optimization
- 5. Repeat 2-4

How to update the weights

- Find the direction of the derivative of the loss function aka gradient of the loss
- 2. Move the weight in that direction

3. Then make a prediction on a new $x_{\{i\}}$, $y_{\{i\}}$ pair, and repeat 1 and 2

4. Repeat this for every example in our training set

Loss function properties

9/19/24

Moving to 2 weights

Computing the gradient of \mathcal{L} partial derivatives

$$abla_{\overrightarrow{w}}\mathcal{L} = \begin{bmatrix} \frac{d\mathcal{L}}{dw_0} \\ \frac{d\mathcal{L}}{dw_1} \\ \vdots \\ \frac{d\mathcal{L}}{dw_p} \end{bmatrix}$$

What can we do after we computed the gradients?

Updating weights based on gradients

$$\Delta_{\overrightarrow{w}}\mathcal{L} = \eta \nabla_{\overrightarrow{w}}\mathcal{L}\left(\underset{w}{\rightarrow}\right)$$

Update each individual weight:

$$w_i \leftarrow w_i - \eta \frac{d\mathcal{L}(\overrightarrow{w})}{dw_i}$$

If we want to perform gradient ascent, we ...

$$w_i \leftarrow w_i + \eta \frac{d\mathcal{L}\left(\frac{\rightarrow}{w}\right)}{dw_i}$$

Updating weights based on gradients

$$\Delta_{\overrightarrow{w}}\mathcal{L} = \eta \nabla_{\overrightarrow{w}}\mathcal{L} \left(\underset{w}{\rightarrow} \right)$$

Update each individual weight:

$$w_i \leftarrow w_i - \eta \frac{d\mathcal{L}(\overrightarrow{w})}{dw_i}$$

If we want to perform gradient ascent, we ...

$$w_i \leftarrow w_i + \eta \frac{d\mathcal{L}\left(\frac{\rightarrow}{w}\right)}{dw_i}$$

Step size

Gradient Descent

- 1. Randomly initialize $\underset{w}{\rightarrow}$
- 2. For every $\{x_i, y_i\}$ pair in our training set:

Compute the gradient of the loss

$$\frac{d\mathcal{L}\left(\underset{w}{\rightarrow}\right)}{dw_{i}}$$

Update each weights based on the gradients

$$w_i \leftarrow w_i - \eta \frac{d\mathcal{L}(w)}{dw_i}$$

- 3. Repeat 2 until convergance (or max epochs)
- 4. return β_i

Stochastic Gradient Descent

- 1. Randomly initialize $\underset{w}{\rightarrow}$
- 2. Randomly choose a $\{x_i, y_i\}$ pair in our training set without replacement until all pairs are used:

Compute the gradient of the loss

$$\frac{d\mathcal{L}(\underset{w}{\rightarrow})}{dw_{i}}$$

Update each weights based on the gradients

$$w_i \leftarrow w_i - \eta \frac{d\mathcal{L}(w)}{dw_i}$$

- 3. Repeat 2 until convergence (or max epochs)
- 4. return β_i

Outline

Reading quiz #3

Simple linear regression

SGD (Stochastic Gradient Descent)

Normal equations solution – see handout posted on slack with derivation

Pros and Cons

Gradient Descent

- Requires multiple iterations
- Need to choose η
- Works well when n is large
- Can support online learning

Normal Equation

- Non-iterative
- No need to choose η
- Slow if p is large
 - Matrix inversion is $O(p^3)$

34

iteration: 2, cost: 0.350001

iteration: 12, cost: 0.138047

iteration: 40, cost: 0.014064

iteration: 100, cost: 0.000105

