SNE3002 Linear Algebra – 2025 Spring

Eigenvalues and Eigenvectors

April 2, 2025

Def. Eigenvalues and Eigenvectors

Let $A \in \mathbb{R}^{n \times n}$. Suppose that $v \in \mathbb{R}^n$ is a non-zero vector such that Av is a scalar multiple of v. i.e., there exists a scalar λ

$$A\mathbf{v} = \lambda \mathbf{v}$$

Then, v is an eigenvector of A, and λ is the corresponding eigenvalue.

Eigenvalues

Remark. Finding the Eigenvalues

Let $A \in \mathbb{R}^{n \times n}$, λ be a scalar. Then λ is an eigenvalue of A if and only if

$$\det(\lambda I - A) = 0.$$

> Note. Why?

Def. Characteristic polynomial

Let $A \in \mathbb{R}^{n \times n}$. The expression

$$p(\lambda) = \det(\lambda I - A)$$

is called the characteristic polynomial of A.

Eigenvalues

> Q. Find the eigenvalues of the matrix

$$A = \begin{bmatrix} -5 & 2 \\ -7 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & -4 & 4 \\ 2 & -1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

Eigenvectors

Remark. Finding the Eigenvectors

For each eigenvalues λ , find a basis for the eigenvectors by solving

$$(\lambda I - A)\boldsymbol{v} = \mathbf{0}.$$

> Q. Find the eigenvectors of the matrix

$$A = \begin{bmatrix} 5 & -4 & 4 \\ 2 & -1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

- > Eigenvectors describe the direction in which a matrix changes \mathbb{R}^n
- > Eigenvalues describe the stretching that is done in that direction.
- > Suppose $A = \begin{bmatrix} 23/10 & -6/5 \\ 9/20 & 1/5 \end{bmatrix}$, which has $\boldsymbol{v}_1 = [4, \ 1]^\mathsf{T}$ with $\lambda_1 = 2$, and $\boldsymbol{v}_2 = [2, \ 3]^\mathsf{T}$ with $\lambda_2 = 0.5$.

> The vector v_1 gets longer and v_2 gets shorter as A is applied more times.

- > The eigenvalues and eigenvectors is enough to know the effect of matrix A on any vector.
- > For example, we have $A = \begin{bmatrix} 2 & 3 \\ -1 & 6 \end{bmatrix}$,

$$v_1 = [3, 1]^T \lambda_1 = 3$$
, and $v_2 = [1, 1]^T$ with $\lambda_2 = 5$.

$$> Q. A \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Remark. Properties of Eigenvalues and Eigenvectors

- 1) The eigenvalues of A and A^{T} are the same.
- 2) If A is upper or lower triangular, its eigenvalues are on its diagonal.
- 3) If the rank of A is less than n, then A has an eigenvalue 0.
- 4) If A has an eigenpair (v, λ) , then A^n has an eigenpair (v, λ^n)
- 5) With distinct eigenvalues $\lambda_1, \dots, \lambda_k$, corresponding eigenvectors v_1, \dots, v_k are linearly independent

> Proof.

- > Let $A \in \mathbb{R}^{n \times n}$, and their eigenvalues and eigenvectors v_i , λ_i .
- > For a general vector $x \in \mathbb{R}^n$,

$$A\mathbf{x} = A(\Sigma_{i=1}^{n} c_i \mathbf{v}_i) = \Sigma_{i=1}^{n} c_i \lambda_i \mathbf{v}_i$$
$$A^n \mathbf{x} = A^n(\Sigma_{i=1}^{n} c_i \mathbf{v}_i) = \Sigma_{i=1}^{n} c_i \lambda_i^n \mathbf{v}_i$$

$$> \lambda_{max} > 1, \lambda_{max} < 1$$

> Recall, diagonal matrix $D \in \mathbb{R}^{n \times n}$

$$D = \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

 $A \in \mathbb{R}^{n \times n}$ is diagonalizable if there exists an invertible matrix P and a diagonal matrix A such that

$$P^{-1}AP = D.$$

> Then, $A = PDP^{-1}$. $A^n = PDP^{-1}PDP^{-1} \cdots PDP^{-1} = PD^nP^{-1}$

Remark. Diagonalization and eigenvectors

 $A \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, columns of P are n linearly independent eigenvectors of A and diagonal entries of D are corresponding eigenvalues when $P^{-1}AP = D$

> Proof

> Q. Diagonalize the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 4 & -1 \\ -2 & -4 & 4 \end{bmatrix}$$

> Q. Find
$$A^{50}$$
 and \sqrt{A} when $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 4 & -1 \\ -2 & -4 & 4 \end{bmatrix}$.

Matrix Exponential

> Power series of functions

-
$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3 + \cdots$$

$$-\sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 \pm \cdots$$

$$-\cos(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 \pm \cdots$$

> Power series of matrix

-
$$e^A = 1 + A + \frac{1}{2}A^2 + \frac{1}{3!}A^3 + \cdots$$

$$-\sin(A) = A - \frac{1}{3!}A^3 + \frac{1}{5!}A^5 \pm \cdots$$

$$-\cos(A) = 1 - \frac{1}{2!}A^2 + \frac{1}{4!}A^4 \pm \cdots$$

Matrix Exponential

> Q. Compute
$$e^D$$
, where $D = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$

- > Note, if $A = PDP^{-1}$, then
 - $-e^{A} = Pe^{D}P^{-1}$
 - $-\sin(A) = P\sin(D) P^{-1}$
 - $-\cos(A) = P\cos(D) P^{-1}$

Invertibility and Diagonalizability

- > Invertibility: $det(A) \neq 0$
- > Diagonalizability: $\det(\lambda I A) = 0$ $\rightarrow v_1, \dots, v_n$ are linearly independent

Symmetric Matrix

Remark. Eigenvalues and Eigenvectors of a Symmetric Matrix

 $A \in \mathbb{R}^{n \times n}$ is symmetric, then A has n real eigenvalues and n orthogonal eigenvectors.

> This will be linked with SVD. (Next lecture)