Supplementary Homework Exercises for Section 11.10: Taylor Series

Exercises

Answer each of the following questions.

- S1. Suppose that f is a continuous function that is increasing on $(-\infty, 3)$ and decreasing on $(3, \infty)$. Explain why the series $1 0.5(x 2) + 0.4(x 2)^2 0.3(x 2)^3 + \cdots$ cannot be the Taylor series for f centered at x = 2.
- S2. If $f^{(n)}(0) = (n+1)!$ for n = 0, 1, 2, ..., find the Maclaurin series for f and its radius of convergence.
- S3. Using the definition, find the Maclaurin series for each of the following functions.
 - (a) $f(x) = \ln(1+x)$
 - (b) $f(x) = e^{5x}$
- S4. Using the definition, find the Taylor series for each of the following functions centered at the indicated point.
 - (a) $f(x) = \frac{1}{x}$, a = -1
 - (b) $f(x) = \sin x, a = \pi/2$
- S5. Let $f(x) = x \cos(x^3)$.
 - (a) Using a know Macaularin series (see table from notes), obtain a Maclaurin series for f.
 - (b) Evaluate $\int x \cos(x^3) dx$ as an infinite series.
 - (c) Approximate $\int_0^1 x \cos(x^3) dx$ using a degree 4 Taylor polynomial for $y = \cos(x)$. (*Note:* the polynomial that you end up integrating should have degree 13.)
- S6. Using a known Maclaurin series, determine which function has $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$ as its Maclaurin series.