Aula 2 – Representação do Conhecimento

Parte 1 – Sistemas Baseados em Conhecimento 22705/1001336 - Inteligência Artificial 2019/1 - Turma A Prof. Dr. Murilo Naldi

Agradecimentos

 Agradecimentos pela base do material utilizado nesta aula foi cedido ou adaptado do material dos professores Maria Carmo Nicoletti, Maria Carolina Monard, Solange Rezende, Andréia Bonfante, Heloísa Camargo e Ricardo Cerri.

Agentes Inteligentes

 Agente é tudo que pode se considerado capaz de perceber seu ambiente por meio de sensores e agir sobre esse ambiente por intermédio de atuadores.

SBC

 Sistemas de IA que representam e utilizam conhecimento são usualmente chamados de Sistemas Baseados em Conhecimento

 Utilizam informações sobre o cenário de aplicação (ambiente) para tomar decisões (ações)

Simulam conhecimento

 Essas informações do ambiente podem ser:

- Percepções
- Modelo

síntese análise compreensão conhecimento informação dados

Componentes do SBC

Funcionamento de um SBC

Construção de SBC

- Podemos construir um SBC informando todo o conhecimento que ele precisa saber. Essa é chamada abordagem manual de construção de SBC.
- Além disso, podemos também equipar o sistema com mecanismos que permitam aprender sozinho, criando conhecimento geral sobre o domínio a partir de um conjunto de dados (percepções). Essa é chamada abordagem automática para construção de SBC, ou aprendizado de máquina.

Conhecimento baseado em lógica

- Um forma de expressar conhecimento é por meio da lógica
 - Inferência permite simular conhecimento
- Veremos que a lógica para um SBC é composta de:

Sintaxe Semântica Verdade Mundo possível Modelo Consequência lógica Inferência Lógica Consistência Completeza

Lógica - Sintaxe

 Sintaxe – sentenças da BC são expressas de acordo com a sintaxe da linguagem de representação, que especifica todas as sentenças que são bem formadas.

Exemplo:

- cliente ? compra = 1: compra = 0;
 - sintaxe está correta em C
- cliente ? compra == 1 : !compra
 - sintaxe está incorreta em C

Lógica - Semântica

 Semântica – significado das sentenças presentes no SBC e sua relação com ambiente

- Exemplo:
 - cliente ? compra = 1: compra = 0;
 - ?- Se cliente for verdadeira, então ele efetua compras (compra é verdadeiro)!
 - caso contrário, é falso.

Lógica

- Consequência lógica aplicação de uma regra (modus ponens, por exemplo), a partir de informações prévias, para derivar novas informações.
- Inferência lógica aplicação da consequência.
- Consistência um algoritmo de inferência é consistente quando deriva apenas sentenças permitidas.
- Completeza um algoritmo de inferência é completo se puder derivar qualquer sentença permitida.
 - Não há casos permitidos que ele não cubra.

Lógica - Modelo

 Conjunto de informações, fatos e regras que se aplicam ao mundo do SBC e, portanto, servem de base inferência e tomada de decisão sobre esse mundo

Exemplo:

- Em um SBC bancário, informações (fatos) e regras de negócio sobre o funcionamento bancário e do mercado são utilizados como modelo de mundo
 - Nem sempre estará alinhado com a realidade, mas é o objetivo!

Lógica Proposicional

- As sentenças declarativas (sintaxe) que possuem um semântica verdadeiro ou falso
- Estas sentenças recebem o nome de proposições.
- Símbolo de Pontuação : (,)
- Símbolo de verdade : true, false
- Símbolos Proposicionais

$$P, Q, R, S, P_1, Q_1, R_1, S_1, ...$$

Conectivos Proposicionais

$$\neg, \wedge, \wedge, \rightarrow, \leftrightarrow$$

Lógica proposicional

- Na lógica proposicional, proposições tem significado semântico
 - Exemplo: *H* é chover, *G* é campo está molhado
- Tabela verdade dá o valor verdade de uma proposição a partir de todas as combinações de valores das proposições atômica

Н	G	¬ H	HŸG	H^G	H → G	H ↔ G
T	T	F	T	T	T	T
T	$oldsymbol{F}$	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	$oldsymbol{F}$	F
F	T	T	T	F	T	\boldsymbol{F}
F	F	T	$\boldsymbol{\mathit{F}}$	F	T	T

Redes de inferência

- São padrões de inferência comuns que podem ser aplicados para derivar cadeias de conclusões que levam aos objetivos desejados.
- Exemplo:
 - Problema: dado um conjunto de proposições $P = \{p_1, p_2, ..., p_n\}$ (premissas) encontre o valor verdade de uma proposição q (objetivo)
 - As proposições podem derivar proposições intermediárias até o objetivo
 - Exemplo: $p_1 \rightarrow p_2$, $p_2 \rightarrow p_3$, $p_3 \rightarrow q$

Regras de inferência

Algumas regras de inferência comuns são:

Modus Ponens:

Eliminação de Bicondicional:

$$\alpha \Rightarrow \beta, \alpha$$
 β

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$

Eliminação de E:

$$\frac{\alpha^{\prime}\beta}{\alpha}$$

$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$

• Também possuem versões generalizadas.

Exemplo

• Base de conhecimento

R1: $\neg p_{11}$

R2: $b_{11} \Leftrightarrow (p_{12} \lor p_{21})$

R3: $b_{21} \Leftrightarrow (p_{11} p_{22} p_{31})$

R4: $\neg b_{11}$

R5: b₂₁

• Provar $\neg p_{12}$

Exemplo

• Eliminação de bicondicional aplicada a R2:

R6:
$$b_{11} \Rightarrow (p_{12} p_{21}) (p_{12} p_{21}) \Rightarrow b_{11}$$

• Eliminação de E da R6:

R7:
$$((p_{12} \ ^{\vee} p_{21}) \Rightarrow b_{11})$$

• Contraposição:

R8:
$$\neg b_{11} \Rightarrow \neg (p_{12} \lor p_{21})$$

Modus Ponens com R8 e R4:

R9:
$$\neg (p_{12} \ ^{\vee} p_{21})$$

Regra de De Morgan:

R10:
$$\neg p_{12} \land \neg p_{21}$$

Eliminação de E da R10:

R11:
$$\neg p_{12}$$

Lógica de Primeira Ordem

- Também conhecida como Lógica de Predicados
- Permite representar conhecimento e raciocinar usando relações entre objetos, classes e subclasses.
- Permitem generalizações por meio de atribuições de características (predicados) para classes
- Quantificadores expressão as propriedades de uma coleção inteira de objetos
 - Universal ∀
 - − Existencial ∃

Termos

- Termos são expressões lógicas que se referem a objetos.
 - Símbolos são termos
- Nem sempre um termo é representado por um símbolo
 - pai(joao) se for uma função é, portanto, um termo.
- Termos podem ser
 - Constantes
 - Variáveis
 - Funções

Predicados e Funções

- Predicados são utilizados para representar propriedades ou relações entre termos
- Exemplos:
 - aluno(joao) //relação unária
 - ama(joao, maria) //relação binária
- Funções são utilizadas para representar os termos (objetos)
- Exemplos:
 - pessoa(pai(joao))
 - objeto(computador(maria))

Sintaxe e Semântica

- O valor verdade de uma sentença pode ser calculado a partir de uma interpretação usando as mesmas regras da lógica proposicional e mais:
 - ∀X p(X) é verdade se e só se p(X) é verdade para todo X do domínio
 - ∃X p(X) é verdade se existe pelo menos um valor de X no domínio para o qual p(X) é verdade

Uso de predicados e quantificadores

- Exemplo de categoria: aluno
 - Todos os alunos são inteligentes.
 - \forall X alunos(X) \rightarrow inteligente(X)
 - **Nenhum** aluno é inteligente.
 - \forall X alunos(X) → \neg inteligente(X)
 - Alguns alunos são inteligentes.
 - $\exists Y alunos(Y) \rightarrow inteligente(Y)$
 - Alguns alunos não são inteligentes.
 - $\exists Y alunos(Y) \rightarrow \neg inteligente(Y)$

Conexões entre ∀ e ∃

- Dois quantificadores estão conectados entre si por meio de negação ¬
- Exemplos:
 - \forall X ¬ gosta(X, doença)
- é equivalente a
 - $\neg \exists X gosta(X, doença)$
- E
 - $\forall X \ gosta(X, sorvete)$
- é equivalente a
 - $\neg \exists X \neg gosta(X, sorvete)$

Igualdade

- O símbolo de igualdade é utilizado para fazer indicações que afetam dois termos fazerem referência ao mesmo objeto.
 - pai(joão) = henrique
- É utilizado para expressar fatos sobre uma dada função, por exemplo:
 - ∃ X, Y irmão(X, ricardo) ^ irmão(Y, ricardo) ^
 ¬(X=Y)

• A função do consultor é ajudar um usuário a decidir se ele deve investir numa conta de poupança ou no mercado de ações. Alguns investidores podem desejar dividir o seu dinheiro entre as duas opções. O investimento que será recomendado para um determinado investidor depende de sua renda e da sua quantia atual em poupança, de acordo com o seguinte critério:

- Indivíduos com uma conta de poupança inadequada devem sempre, como prioridade mais alta, aumentar a quantia poupada, independentemente de sua renda.
- Indivíduos com uma conta de poupança adequada e uma renda adequada deveriam considerar um investimento mais arriscado, mas potencialmente mais lucrativo, no mercado de ações.
- Indivíduos com uma renda pequena que já tenham uma conta de poupança adequada podem desejar dividir a sua renda excedente entre poupança e ações.

• A adequação entre poupança e renda é determinada pelo número de dependentes que um indivíduo mantém. Pela nossa regra, para uma poupança adequada, o indivíduo deve ter no mínimo R\$5.000,00 no banco para cada dependente. Uma renda adequada deve ser estável e fornecer ao menos R\$15.000,00 ao ano, mais um adicional de R\$4.000,00 por cada dependente.

 As estratégias de investimento são representadas por implicações.

```
¬adequada(conta_poupanca) → investimento (poupanca).
```

```
adequada(conta_poupanca) ^ adequada(renda) → investimento(acoes).
```

```
adequada(conta_poupanca) ^{\wedge} ¬adequada(renda) \rightarrow investimento(combinacao).
```

Para determinar se renda e poupança são adequadas são usadas funções: poupança_min determina a poupança adequada mínima recebendo o número de dependentes como argumento e retornando esse número vezes 5.000.

```
∀X quantia_poupada(X) ^ ∃Y (dependentes(Y) ^ maior(X,poupanca_min(Y)))

→ adequada(conta_poupanca).
```

```
∀X quantia_poupada(X) ^ ∃ Y (dependentes(Y) ^ ¬maior(X,poupanca_min(Y)))

→ ¬adequada(conta poupanca).
```

 As definições de renda adequada devem estar relacionadas aos ganhos, renda e dependentes.

 $\forall X \text{ ganhos}(X, \text{estavel}) \land \exists Y \text{ (dependentes}(Y) \land \text{maior}(X, \text{renda}_{\min}(Y))) \rightarrow \text{adequada}(\text{renda}).$

 $\forall X \text{ ganhos}(X, \text{estavel}) \land \exists Y \text{ (dependentes}(Y) \land \neg \text{maior}(X, \text{renda}_{\min}(Y))) \rightarrow \neg \text{adequada}(\text{renda}).$

 $\forall X \text{ ganhos}(X, \neg \text{estavel}) \rightarrow \neg \text{adequada}(\text{renda}).$

• A função renda_min calcula a renda mínima adequada:

```
renda min(X) \equiv 15000 + (4000 * X)
```

• A função poupança_min calcula a poupança mínima adequada:

```
poupanca min(X) \equiv (5000 * X)
```

• A descrição de um investidor em particular que será consultado pelo SBC:

quantia_poupada(22000). ganhos(25000,estável). dependentes(3).

SBC Lógico Completo

- 1) \neg adequada(conta_poupanca) \rightarrow investimento (poupanca).
- 2) adequada(conta poupanca) ^ adequada(renda) → investimento(acoes).
- 4) ∀X quantia_poupada(X) ^ ∃Y (dependentes(Y) ^ maior(X,poupanca_min(Y))) → adequada(conta_poupanca).
- 5) $\forall X$ quantia_poupada(X) $\exists Y$ (dependentes(Y) \neg maior(X,poupanca_min(Y)))
 - \rightarrow ¬adequada(conta_poupanca).
- 6) ∀X ganhos(X,estavel) ^ ∃Y (dependentes(Y) ^ maior(X, renda_min(Y)))

 → adequada(renda).
- 7) $\forall X \text{ ganhos}(X, \text{estavel}) \land \exists Y \text{ (dependentes}(Y) \land \neg \text{maior}(X, \text{ renda } \min(Y)))$
 - $\rightarrow \neg$ adequada(renda).

- 8) $\forall X \text{ ganhos}(X, \neg \text{estavel}) \rightarrow \neg \text{adequada}(\text{renda}).$
- 9) renda_min(X) $\equiv 15000 + (4000 * X)$
- 10) poupanca min(X) \equiv (5000 * X)
- 11)quantia_poupada(22000).
- 12)ganhos(25000,estavel).
- 13)dependentes(3).

Passo 1

 Utilizar a conjunção de 12 e 13 com as duas primeiras componentes da premissa de 7 e 9:

```
ganhos(25000, estavel) ^{\wedge} dependentes(3) ^{\wedge} \neg maior(25000, renda_min(3))) \rightarrow \neg adequada(renda).
```

Aplicando modus ponens, a conclusão

¬adequada(renda)

é produzida e adicionada ao conjunto de sentenças.

Passo 2

 Utilizar a conjunção de 11 e 13 com as duas primeiras componentes da premissa de 4 e 10:

```
quantia_poupada(22000) ^{\circ} dependentes(3) ^{\circ} maior(22000, poupanca_min(3))) \rightarrow adequada(conta_poupanca).
```

Aplicando modus ponens, a conclusão

adequada(conta_poupanca)

é produzida e adicionada ao conjunto de sentenças.

Passo 3

- Utilizar a conjunção das duas conclusões anteriores:
 ¬adequada(renda) e adequada(conta_poupanca)
- Com as duas premissas da 3: adequada(conta_poupanca) ^ ¬adequada(renda) → investimento(combinacao).
- Aplicando modus ponens, a conclusão

investimento(combinacao)

é produzida e apresentada como resposta.

Exercício

- Fazer um programa com um conjunto de regras para implementação do consultor financeiro
 - conta de poupança inadequada -> poupança.
 - conta de poupança adequada e uma renda adequada -> ações.
 - renda pequena e conta de poupança adequada -> poupança e ações.
- Para uma poupança adequada, o indivíduo deve ter no mínimo R\$5.000,00 no banco para cada dependente. Uma renda adequada deve ser estável e fornecer ao menos R\$15.000,00 ao ano, mais um adicional de R\$4.000,00 por cada dependente.