

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

BLACK BORDERS

- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 61-017151
(43) Date of publication of application : 25.01.1986

(51) Int.CI. G03G 5/082
B01J 19/08
C23C 16/50
G03G 5/08
H01L 21/205

(21) Application number : 59-138332
(22) Date of filing : 03.07.1984

(71) Applicant : MINOLTA CAMERA CO LTD
(72) Inventor : ENOKUCHI YUJI
KITANO HIROHISA
FUJIWARA MASANORI

(54) PLASMA CVD DEVICE

(57) Abstract:

PURPOSE: To eliminate the stagnancy of gas to prevent a fine powder or peeled pieces from being caught into a film on a substrate, by providing exhaust ports near both ends of the substrate and an electrode.

CONSTITUTION: The first exhaust port 6 is provided under lower parts of both of a cylindrical substrate 1 and a cylindrical electrode 2 which is arranged with the same axis as the substrate 1, and the second exhaust port 6' is provided on their upper end parts. Exhaust ports 6 and 6' are connected to a common vacuum pump 7 through exhaust control valves 9 and 9' respectively. Gas passes a gas chamber 3 from an introducing entrance 4 and is mixed and dispersed uniformly and is blown to a discharging area between the electrode 2 and the substrate 1 and is discharged from upper and lower end parts through exhaust ports 6 and 6' as shown by arrows. Thus, the stagnancy of gas near end parts of the cylindrical substrate is eliminated to prevent the occurrence of fine powder.

LEGAL STATUS

- [Date of request for examination]
- [Date of sending the examiner's decision of rejection]
- [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
- [Date of final disposal for application]
- [Patent number]
- [Date of registration]
- [Number of appeal against examiner's decision of rejection]
- [Date of requesting appeal against examiner's decision of rejection]
- [Date of extinction of right]

④ 日本国特許庁 (JP) ⑤ 特許出願公開
 ⑥ 公開特許公報 (A) 昭61-17151

⑦ Int.Cl. ¹	識別記号	序内整理番号	⑧ 公開 昭和61年(1986)1月25日
G 03 G 5/082		7447-2H	
B 01 J 19/08		A - 6542-4G	
C 23 C 16/00		8218-4K	
G 03 G 5/08	105	7447-2H	
H 01 L 21/205		7739-5F	審査請求 未請求 発明の数 1 (全4頁)

⑨発明の名称 プラズマCVD装置

⑩特 願 昭59-138332
 ⑪出 願 昭59(1984)7月3日

⑫発明者 江ノ口 裕二 大阪市東区安土町2丁目30番地 大阪国際ビル ミノルタ
 カメラ株式会社内
 ⑬発明者 北野 博久 大阪市東区安土町2丁目30番地 大阪国際ビル ミノルタ
 カメラ株式会社内
 ⑭発明者 鹿原 正典 大阪市東区安土町2丁目30番地 大阪国際ビル ミノルタ
 カメラ株式会社内
 ⑮出願人 ミノルタカメラ株式会社 大阪市東区安土町2丁目30番地 大阪国際ビル
 ⑯代理人 弁理士 青山 琢 外2名

明細書

1. 発明の名称

プラズマCVD装置

2. 特許請求の範囲

(1) 真空槽内に、両端が開口した円筒状電極とその内部に絶縁を介して回転可能に設けた円筒状の基板とを配置し、電極の内周面に設けた多数の開口から反応ガスを放出し、対向する基板上に皮膜するプラズマCVD装置において、

上記の円筒状電極の両端開口の近傍に、それぞれ真空槽からの排気口を設けたことを特徴とする
 プラズマCVD装置。

3. 発明の詳細な説明

(実施上の利用分野)

本発明は、円筒状基板上に成膜するためのプラズマCVD装置に関する。

(従来技術)

プラズマCVD技術は、電極を比較的低温で成膜できることを特徴とする成膜技術である。プラズマCVD技術において、たとえば高周波放電に

より反応ガスを放電プラズマ状態におくことにより、反応ガスの化学結合は低溫で分解され、活性化された電子が作り出され、そして、この活性化された電子間の反応によりCVD膜が形成される。

プラズマCVD膜の性質は、多種の因子に影響を受ける。この因子には、生成温度、生成ガス比、生成圧力、電極形状、反応容器構造、排気速度、生成RFパワー、RF周波数、プラズマ発生方式等がある。したがって、プラズマCVD膜の成膜のためには、多くの因子を制御せねばならない。

プラズマCVD技術は、種々の物質の成膜に利用されていて、たとえば非晶質シリコン($a\text{-Si}$)を成膜することもできる。 $a\text{-Si}$ は、電子写真用感光体としても造っている。電子写真用感光体として使用する場合、 $a\text{-Si}$ 膜は、大面積の円筒状基板上に、比較的厚($20\sim50\mu\text{m}$)、且つ、均一に成膜されねばならない。

第5図は、従来の $a\text{-Si}$ 用プラズマCVD装置の一例を図式的に示す。アルミニウム円筒からなる基板1は、その両の端りに回転可能に、円筒状

の電極2の内部に設けられる。電極2は、この基板1と板を共通に配置された二枚の円筒板2a, 2bからなり、ガス室3がこの二枚の円筒板2a, 2bにより区画される。外側の円筒板2aには、図示しないガス供給装置から原料ガスを導入するための導入口4が設けられ、一方、内側の円筒板2bには、この円筒板2bの内部の空間(放電領域)に原料ガスを導入するための図示しない多孔の小さな供給口が設けられる。チャンバー(真空槽)5は、電極2、上部5a、下部5bとからなり、上部5aと下部5bとは、電極2に対して垂直されている。チャンバー5内に上記の供給口から導入されるガスは、チャンバー5の下部から、排気口6を介して真空ポンプ7により排気される。RF電源8は、導入口4を介して電極2に供給され、一方、基板1は、接続される。図示しないが、ヒーターは、それぞれ、基板1と電極2に取り付けられ、ヒーター用電極に接続される。

アラズマCVDによる α -Siの成膜は、次のように行われる。バッショングルから、自説放電開始

(参考)では、排気口6は、一個所のみに、通常は真空槽の下端部に設けられている。このため、基板1と電極2との間の放電領域にあるガスは、排気口6に近い側からは流れ出していくが、一方、排気口6に遠い側からは流れ出にくく、基板1の排気口から遠い側の端部近傍において(第5図と第6図とに示す)、ガスの滞留が生じやすい。また、基板1と電極2との端部には、その構造のため、不均一電界による放電の集中部が生じる。このガスの滞留は、放電の集中と相まって、ガス消費量Pの近傍で、 $(SiH_4)_n$ の発熱を発生させやすく、また、放電集中部では膜を剥離させやすい。発生した剥離片や液滴は、基板1と電極2との間の放電領域中のガスの流れにのり、基板1上の隙間に取り込まれ、品質を悪化させ、このため、たとえば、電子写真における白斑点ノイズの原因となる。また、若狭昭58-52650号公報の第4図に示されるアラズマCVD装置においては、排気口は、盛板の上下端から大略等しい位置に設けられている。また、特開昭59

-70760号公報に開示されたアラズマCVD装置においては、同じく盛板の上下端から大略等しい位置に二つの排気口が設けられている。しかしながら、前者の装置の電極は、ガス導入用のガス室とガス導気口とからなる複雑な構造を備えており、複雑の製作が困難となる弱点がある。

本発明の目的は、アラズマCVD装置において、円筒状基板の端部の近傍でのガスの漏れをなくし、微細の発生を抑制するとともに、放電の集中部で膜の剥離が生じたとしても、剥離片をすみやかに放電領域から排出することにより、膜質の劣化を防止することである。

本発明は、上記の従来例とは異った根柢でこの目的を達成する。

(問題点を解決するための手段)

本発明に係るアラズマCVD装置は、真空槽内に、両端が開口した円筒状電極とその内部に軸を共通にして回転可能に設けた円筒状の基板とを配置し、電極の内周面に設けた多孔の開口から原料ガスを放出し、対向する基板上に成膜するアラズ

マCVD装置において、上記の円筒状電極の両端開口の近傍にそれぞれ真空槽からの排気口を設けたことを特徴とする。

(特徴)

盛板と電極との両端近傍にそれぞれ排気口を設けたことにより、ガスの滞留部がなくなり、ガスは、放電領域から両端方向へ流れる。このため、剥離片や液滴は、盛板上の隙間にとりこまれることがない。

(実施例)

以下、送付の図面を参照して、本発明の実施例を説明する。

第1図に示す第一の実施例は、2個の排気口を設けたこと以外は、第5図に示した例と同じである。第一の排気口8は、円筒状基板1とこれと軸を共通に配置した円筒状電極2との両端の下端に設けられ、一方、第二の排気口6'は、上端部の上側に設けられる。各排気口6, 6'は、それぞれ、排気管路分岐9, 9'を介して共通の真空ポンプ7に接続されている。ガスは、第1図にお

特開昭61-17151(3)

いて矢印で示すように、導入口4からガス室3を経て均一に混合放散した後、電極2と導管1との間に放電領域に吹き付けられ、次いで、上下の端部からそれぞれ昇出口6, 6'を通じて排出される。排気調節バルブ9, 9'は、母気の流量を調整する。

第5図に示した従来の装置の場合と異なり、チャンバー5の上端部でのガスの滞留はなくなり、蒸発は発生しなくなる。また、放電集中部で生じるe-Si膜の剥離片は、ガスの流れにのり、放電領域の外へ運ばれる。こうして、痕跡異常の発生は防止できる。

第2図に示す第二の実施例は、2個の母気口を設けたこと以外は、第6図に示した例と同じである。第一の母気口6は、円筒状基板1とこれと並んで共通に配置した円筒状電極2との両者の下端部の下側に設けられ、一方、第二の母気口6'は、上端部の上側に設けられる。母気口6は、母気漏弁9を介して、真空ポンプ7に接続され、一方、母気口6'は、母気漏弁9'を介して、別の真空ポンプ7'に接続される。第2図において、ガス

は、矢印で示されるように流れ、ガスの滞留は生じない。

第3図に示す第三の実施例は、第1図に示した第一の実施例において、基板1と電極2とを水平に配置したことによると相当する。一方の母気口6は、円筒状の基板1と電極2の両者の右端部の下側近傍に設けられ、他方の母気口6'は、これと対称的に、左端部の下側近傍に設けられる。図示しないが、母気口6, 6'は、それぞれ、母気調節弁を介して真空ポンプに接続される。第3図において、ガスは、矢印で示されるように流れ、ガスの滞留は生じない。

第4図に示す第四の実施例は、第2図に示した第二の実施例において、基板1と電極2とを水平に配置したことによると相当する。一方の母気口6は、円筒状の基板1と電極2の両者の右端部の下側近傍に設けられ、他方の母気口6'は、これと対称的に、左端部の下側近傍に設けられる。図示しないが、母気口6, 6'は、それぞれ、母気調節弁を介して真空ポンプに接続される。第4図において、

ガスは、矢印で示されるように流れ、ガスの滞留は生じない。

(発用の効果)

円筒状基板の端部近傍でのガスの滞留はなくなる、このため、蒸発の発生が防止できる。

放電の集中により生じる膜の剥離片は、ガスの流れにのって運ばれるので、基板上の膜にはとどまらない。

この結果、基板上の膜の成長での成長性が向上する。

4. 図面の簡単な説明

第1図から第4図までは、それぞれ、本発明の実施例の図式的な断面図である。

第5図と第6図とは、それぞれ、従来のマスクCVD装置の図式的な断面図である。

- | | |
|--------------|------------|
| 1…円筒状基板、 | 2…円筒状電極、 |
| 3…ガス室、 | 4…導入口、 |
| 5…チャンバー、 | 6, 6'…母気口、 |
| 7, 7'…真空ポンプ、 | 8…RF電源、 |

特開昭61-17151(4)

第5図

第6図

第3図

第4図

