

**ON SPHERICALLY SYMMETRIC SOLUTIONS
WITH HORIZON
IN MODEL WITH MULTICOMPONENT
ANISOTROPIC FLUID**

H. Dehnen¹,

Universität Konstanz, Fakultät für Physik, Fach M 568, D-78457, Konstanz

V.D. Ivashchuk²

Center for Gravitation and Fundamental Metrology, VNIIMS, 3/1 M.

Ulyanovoy Str., Moscow 119313, Russia and

*Institute of Gravitation and Cosmology, PFUR, 6 Miklukho-Maklaya Str.,
Moscow 117198, Russia*

Abstract

A family of spherically symmetric solutions in the model with m -component multicomponent anisotropic fluid is considered. The metric of the solution depends on parameters $q_s > 0$, $s = 1, \dots, m$, relating radial pressures and the densities and contains $(n - 1)m$ parameters corresponding to Ricci-flat “internal space” metrics and obeying certain $m(m - 1)/2$ (“orthogonality”) relations. For $q_s = 1$ (for all s) and certain equations of state ($p_i^s = \pm\rho^s$) the metric coincides with the metric of intersecting black brane solution in the model with antisymmetric forms. A family of solutions with (regular) horizon corresponding to natural numbers $q_s = 1, 2, \dots$ is singled out. Certain examples of “generalized simulation” of intersecting M -branes in $D = 11$ supergravity are considered. The post-Newtonian parameters β and γ corresponding to the 4-dimensional section of the metric are calculated.

PACS number(s): 04.20.Jb, 04.50.+h, 04.70.Bw

Key words: multidimensional gravity, branes, multicomponent fluid

¹Heinz.Dehnen@uni-konstanz.de

²ivas@rgs.phys.msu.su

1 Introduction

This paper is devoted to spherically-symmetric solutions with a horizon in the multidimensional model with multicomponent anisotropic fluid defined on product manifolds $\mathbf{R} \times M_0 \times \dots \times M_n$. These solutions in certain cases may simulate black brane solutions [1, 2, 3] (for a review on p -brane solutions see [4] and references therein).

We remind that p -brane solutions (e.g. black brane ones) usually appear in the models with antisymmetric forms and scalar fields (see also [5]-[15]). Cosmological and spherically symmetric solutions with p -branes are usually obtained by the reduction of the field equations to the Lagrange equations corresponding to Toda-like systems [14]. An analogous reduction for the models with multicomponent "perfect" fluid was done earlier in [18, 19].

For cosmological models with antisymmetric forms without scalar fields any p -brane is equivalent to an multicomponent anisotropic perfect fluid with the equations of state:

$$p_i = -\rho, \quad \text{or} \quad p_i = \rho, \quad (1.1)$$

when the manifold M_i belongs or does not belong to the brane world-volume, respectively (here p_i is the pressure in M_i and ρ is the density, see Section 2).

In this paper we find a new family of exact spherically-symmetric solutions in the model with m -component anisotropic fluid for the following equations of state (see Appendix for more familiar form of eqs. of state):

$$p_r^s = -\rho^s(2q_s - 1)^{-1}, \quad p_0^s = \rho^s(2q_s - 1)^{-1}, \quad (1.2)$$

and

$$p_i^s = \left(1 - \frac{2U_i^s}{d_i}\right) \rho^s / (2q_s - 1), \quad (1.3)$$

$i > 1$, $s = 1, \dots, m$, where for s -th component: ρ^s is a density, p_r^s is a radial pressure, p_i^s is a pressure in M_i , $i = 2, \dots, n$. Here parameters U_i^s ($i > 1$) and the parameters $q_s = U_1^s > 0$ obey the following "orthogonality" relations (see also Section 2 below)

$$B_{sl} = 0, \quad s \neq l \quad (1.4)$$

where

$$B_{sl} \equiv \sum_{i=1}^n \frac{U_i^s U_i^l}{d_i} + \frac{1}{2-D} \left(\sum_{i=1}^n U_i^s \right) \left(\sum_{j=1}^n U_j^l \right), \quad (1.5)$$

$q_s \neq 1/2$; and $s, l = 1, \dots, m$. The manifold M_0 is d_0 -dimensional sphere in our case and p_0^s is the pressure in the tangent direction.

The one-component case was considered earlier in [1]. For special case with $q_s = 1$ see [2] and [3] (for one-component and multicomponent case, respectively).

The paper is organized as follows. In Section 2 the model with multicomponent (anisotropic or “perfect”) fluid is formulated. In Section 3 a subclass of spherically symmetric solutions (generalizing solutions from [3]) is presented and solutions with (regular) horizon corresponding to integer q_s are singled out. Section 4 deals with certain examples of two-component solutions in dimension $D = 11$ containing for $q_s = 1$ intersecting $M2 \cap M2$, $M2 \cap M5$ and $M5 \cap M5$ black brane metrics. In Section 5 the post-Newtonian parameters for the 4-dimensional section of the metric are calculated. In the Appendix a class of general spherically symmetric solutions in the model under consideration is presented.

2 The model

Here, we consider a family of spherically symmetric solutions to Einstein equations with an multicomponent anisotropic fluid matter source

$$R_N^M - \frac{1}{2}\delta_N^M R = kT_N^M \quad (2.1)$$

defined on the manifold

$$M = \underbrace{\mathbf{R}_r}_{\text{radial variable}} \times \underbrace{(M_0 = S^{d_0})}_{\text{spherical variables}} \times \underbrace{(M_1 = \mathbf{R}) \times M_2 \times \dots \times M_n}_{\text{time}} \quad (2.2)$$

with the block-diagonal metrics

$$ds^2 = e^{2\gamma(u)}du^2 + \sum_{i=0}^n e^{2X^i(u)}h_{m_i n_i}^{(i)}dy^{m_i}dy^{n_i}. \quad (2.3)$$

Here $\mathbf{R}_r = (a, b)$ is interval. The manifold M_i with the metric $h^{(i)}$, $i = 1, 2, \dots, n$, is the Ricci-flat space of dimension d_i :

$$R_{m_i n_i}[h^{(i)}] = 0, \quad (2.4)$$

and $h^{(0)}$ is standard metric on the unit sphere S^{d_0}

$$R_{m_0 n_0}[h^{(0)}] = (d_0 - 1) h_{m_0 n_0}^{(0)}, \quad (2.5)$$

u is radial variable, κ is the multidimensional gravitational constant, $d_1 = 1$ and $h^{(1)} = -dt \otimes dt$.

The energy-momentum tensor is adopted in the following form

$$T_N^M = \sum_{s=1}^m T_N^{(s)M}, \quad (2.6)$$

where

$$T_N^{(s)M} = \text{diag}(-(2q_s - 1)^{-1}\rho^s, (2q_s - 1)^{-1}\rho^s\delta_{k_0}^{m_0}, -\rho^s, p_2^s\delta_{k_2}^{m_2}, \dots, p_n^s\delta_{k_n}^{m_n}), \quad (2.7)$$

$q_s > 0$ and $q_s \neq 1/2$. The pressures p_i^s and the density ρ^s obeys the relations (1.3) with constants U_i^s , $i > 1$.

The “conservation law” equations

$$\nabla_M T_N^{(s)M} = 0 \quad (2.8)$$

are assumed to be valid for all s .

In what follows we put $\kappa = 1$ for simplicity.

3 Exact solutions

Let us define

$$1^o. \quad U_0^s = 0, \quad (3.1)$$

$$2^o. \quad U_1^s = q_s, \quad (3.2)$$

$$3^o. \quad (U^s, U^l) = U_i^s G^{ij} U_j^l \quad (3.3)$$

where $U^s = (U_i^s)$ is $(n + 1)$ -dimensional vector and

$$G^{ij} = \frac{\delta^{ij}}{d_i} + \frac{1}{2 - D} \quad (3.4)$$

are components of the matrix inverse to the matrix of the minisuperspace metric [16, 17]

$$(G_{ij}) = (d_i \delta_{ij} - d_i d_j), \quad (3.5)$$

$i, j = 0, \dots, n$, and $D = 1 + \sum_{i=0}^n d_i$ is the total dimension.

In our case the scalar products (3.3) are given by relations:

$$(U^s, U^l) = B_{kl} \quad (3.6)$$

with B_{kl} from (1.5) and hence due to (1.4) vectors U^s are mutually orthogonal, i.e.

$$(U^s, U^l) = 0, \quad s \neq l. \quad (3.7)$$

It is proved in Appendix that the relation 1° implies

$$(U^s, U^s) > 0, \quad (3.8)$$

for all s .

For the equations of state (1.2) and (1.3) with parameters obeying (1.4) we have obtained the following spherically symmetric solutions to the Einstein equations (2.1) (see Appendix)

$$ds^2 = J_0 \left(\frac{dr^2}{1 - \frac{2\mu}{r^d}} + r^2 d\Omega_{d_0}^2 \right) - J_1 \left(1 - \frac{2\mu}{r^d} \right) dt^2 + \sum_{i=2}^n J_i h_{m_i n_i}^{(i)} dy^{m_i} dy^{n_i}, \quad (3.9)$$

$$\rho^s = \frac{(2q_s - 1)(dq_s)^2 P_s (P_s + 2\mu) (1 - 2\mu r^{-d})^{q_s-1}}{2(U^s, U^s) (\prod_{s=1}^m H_s)^2 J_0 r^{2d_0}}, \quad (3.10)$$

by methods similar to obtaining p -brane solutions [14]. Here $d = d_0 - 1$, $d\Omega_{d_0}^2 = h_{m_0 n_0}^{(0)} dy^{m_0} dy^{n_0}$ is spherical element, the metric factors

$$J_i = \prod_{s=1}^m H_s^{-2U^{si}/(U^s, U^s)}, \quad (3.11)$$

$$H_s = 1 + \frac{P_s}{2\mu} \left[1 - \left(1 - \frac{2\mu}{r^d} \right)^{q_s} \right]; \quad (3.12)$$

$P > 0$, $\mu > 0$ are constants and

$$U^{si} = G^{ij} U_j^s = \frac{U_i^s}{d_i} + \frac{1}{2-D} \sum_{j=0}^n U_j^s. \quad (3.13)$$

Using (3.13) and $U_0^s = 0$ we get

$$U^{s0} = \frac{1}{2-D} \sum_{j=0}^n U_j^s \quad (3.14)$$

and hence one can rewrite (3.9) as follows

$$\begin{aligned} ds^2 = J_0 & \left[\frac{dr^2}{1 - \frac{2\mu}{r^d}} + r^2 d\Omega_{d_0}^2 - \left(\prod_{s=1}^m H_s^{-2q_s/(U^s, U^s)} \right) \left(1 - \frac{2\mu}{r^d} \right) dt^2 + \right. \\ & \left. + \sum_{i=2}^n \left(\prod_{s=1}^m H_s^{-2U_i^s/(d_i(U^s, U^s))} \right) h_{m_i n_i}^{(i)} dy^{m_i} dy^{n_i} \right]. \end{aligned} \quad (3.15)$$

These solutions are special case of general solutions spherically symmetric solutions obtained in Appendix by method suggested in [19].

Black holes for natural q_s .

For natural

$$q_s = 1, 2, \dots, \quad (3.16)$$

the metric has a horizon at $r^d = 2\mu = r_h^2$. Indeed, for these values of q_s the functions $H_s(r) > 0$ are smooth in the interval $(r_*, +\infty)$ for some $r_* < r_h$. For odd $q_s = 2m_s + 1$ (for all s) one get $r_* = 0$.

A global structure of the black hole solution corresponding to these values of q_s will be a subject of a separate publication.

It was shown in [1] that in one-component case for $2U^{s0} \neq -1$ and $0 < q_s < 1$ one get singularity at $r^d \rightarrow 2\mu$.

Remark. For non-integer $q_s > 1$ the function $H_s(r)$ have a non-analytical behavior in the vicinity of $r^d = 2\mu$. In this case one may conject that the limit $r^d \rightarrow 2\mu$ corresponds to the singularity (in general case) but here a separate investigation is needed.

4 Examples: generalized simulation of intersecting black branes

The solutions with a horizon from the previous section allow us to simulate the intersecting black brane solutions [4] in the model with antisymmetric forms without scalar fields [2] when all $q_s = 1$.

These solutions may be also generalized to the case of general natural $q_s \in \mathbf{N}$. In this case the parameters U_i^s and the pressures have the following form

$$\begin{aligned} U_i^s &= q_s d_i, & p_i^s &= -\rho^s, & i \in I_s; \\ &0, & (2q_s - 1)^{-1} \rho^s, & i \notin I_s. \end{aligned} \quad (4.1)$$

Here $I_s = \{i_1, \dots, i_k\} \subset \{1, \dots, n\}$ is the index set [4] corresponding to “brane” submanifold $M_{i_1} \times \dots \times M_{i_k}$.

The “orthogonality” relations (1.4) lead us to the following dimension of intersection of brane submanifolds [4]

$$d(I_s \cap I_l) = \frac{d(I_s)d(I_l)}{D-2}, \quad s \neq l, \quad (4.2)$$

where $d(I_s) = \sum_{i \in I_s} d_i$ is dimension of p -brane worldvolume.

Remark. The set of Diophantus equations (4.2) was solved explicitly in [20] for so-called “flower” Ansatz from [21]. The solution in this case takes place for infinite number of dimensions $D = 6, 10, 11, 14, 18, 20, 26, 27, \dots$ etc.

As an example, here we consider a “generalized simulation” of intersecting $M2 \cap M5$, $M2 \cap M2$ and $M5 \cap M5$ black branes in $D = 11$ supergravity. In what follows functions H_s , $s = 1, 2$, are defined in (3.12).

a). For an analog of intersecting $M2 \cap M5$ branes the metric reads:

$$\begin{aligned} ds^2 &= H_1^{1/(3q_1)} H_2^{2/(3q_2)} \left[\frac{dr^2}{1 - 2\mu/r^d} + r^2 d\Omega_{d_0}^2 \right. \\ &\quad \left. - H_1^{-1/q_1} H_2^{-1/q_2} \left\{ \left(1 - \frac{2\mu}{r^d} \right) dt^2 + dy^{m_2} dy^{m_2} \right\} \right. \\ &\quad \left. + H_2^{-1/q_2} h_{m_3 n_3}^{(3)} dy^{m_3} dy^{n_3} + H_1^{-1/q_1} dy^{m_4} dy^{m_4} + h_{m_5 n_5}^{(5)} dy^{m_5} dy^{n_5} \right], \end{aligned} \quad (4.3)$$

where $M2$ -brane includes three one-dimensional spaces: M_2 , M_4 and the time manifold M_1 ; and $M5$ -brane includes M_1, M_2 and M_3 ($d_3 = 4$).

b). An analog of two electrical $M2$ branes intersecting on the time manifold has the following metric

$$\begin{aligned} ds^2 &= H_1^{1/(3q_1)} H_2^{1/(3q_2)} \left[\frac{dr^2}{1 - 2\mu/r^d} + r^2 d\Omega_{d_0}^2 \right. \\ &\quad \left. - H_1^{-1/q_1} H_2^{-1/q_2} \left(1 - \frac{2\mu}{r^d} \right) dt^2 \right] \end{aligned} \quad (4.4)$$

$$+H_1^{-1/q_1}h_{m_2n_2}^{(2)}dy^{m_2}dy^{n_2}+H_2^{-1/q_2}h_{m_3n_3}^{(3)}dy^{m_3}dy^{n_3}+h_{m_4n_4}^{(4)}dy^{m_4}dy^{n_4}\Big],$$

where $d_2 = d_3 = 2$.

c). For an analog of two intersecting $M5$ branes the dimension of intersection is 4 and the metric reads

$$\begin{aligned} ds^2 = & H_1^{2/(3q_1)}H_2^{2/(3q_2)}\left[\frac{dr^2}{1-2\mu/r}+r^2d\Omega_2^2\right. \\ & -H_1^{-1/q_1}H_2^{-1/q_2}\left\{\left(1-\frac{2\mu}{r}\right)dt^2+h_{m_2n_2}^{(2)}dy^{m_2}dy^{n_2}\right\} \\ & \left.+H_1^{-1/q_1}h_{m_3n_3}^{(3)}dy^{m_3}dy^{n_3}+H_2^{-1/q_2}h_{m_4n_4}^{(4)}dy^{m_4}dy^{n_4}\right]. \end{aligned} \quad (4.5)$$

Here $d_0 = d_3 = d_4 = 2$ and $d_2 = 3$.

For the density of s -th component we get in any of these three cases

$$\rho^s = \frac{(2q_s-1)d^2P_s(P_s+2\mu)(1-2\mu r^{-d})^{q_s-1}}{4(H_1H_2)^2J_0r^{2d_0}}, \quad (4.6)$$

where

$$J_0 = \prod_{s=1}^2 H_s^{d(I_s)/(9q_s)} \quad (4.7)$$

and $d(I_s) = 3, 6$ for $M2, M5$ branes, respectively.

5 Physical parameters

5.1 Gravitational mass and PPN parameters

Here we put $d_0 = 2$ ($d = 1$). Let us consider the 4-dimensional space-time section of the metric (3.15). Introducing a new radial variable by the relation:

$$r = R \left(1 + \frac{\mu}{2R}\right)^2, \quad (5.1)$$

we rewrite the 4-section in the following form:

$$\begin{aligned} ds_{(4)}^2 = & \left(\prod_{s=1}^m H^{-2U^{s0}/(U^s,U^s)}\right)\left[-\left(\prod_{s=1}^m H_s^{-2q_s/(U^s,U^s)}\right)\left(\frac{1-\frac{\mu}{2R}}{1+\frac{\mu}{2R}}\right)^2 dt^2\right. \\ & \left.+\left(1+\frac{\mu}{2R}\right)^4 \delta_{ij}dx^i dx^j\right] \end{aligned} \quad (5.2)$$

$i, j = 1, 2, 3$. Here $R^2 = \delta_{ij}x^i x^j$.

The parameterized post-Newtonian (Eddington) parameters are defined by the well-known relations

$$g_{00}^{(4)} = -(1 - 2V + 2\beta V^2) + O(V^3), \quad (5.3)$$

$$g_{ij}^{(4)} = \delta_{ij}(1 + 2\gamma V) + O(V^2), \quad (5.4)$$

$i, j = 1, 2, 3$. Here

$$V = \frac{GM}{R} \quad (5.5)$$

is the Newtonian potential, M is the gravitational mass and G is the gravitational constant.

From (5.2)-(5.4) we obtain:

$$GM = \mu + \sum_{s=1}^m \frac{P_s q_s (q_s + U^{s0})}{(U^s, U^s)} \quad (5.6)$$

and

$$\beta - 1 = \sum_{s=1}^m \frac{|A_s|}{(GM)^2} (q_s + U^{s0}), \quad (5.7)$$

$$\gamma - 1 = - \sum_{s=1}^m \frac{P_s q_s}{(U^s, U^s) GM} (q_s + 2U^{s0}), \quad (5.8)$$

where

$$|A_s| = \frac{1}{2} q_s^2 P_s (P_s + 2\mu) / (U^s, U^s) \quad (5.9)$$

(see Appendix) or, equivalently,

$$P_s = -\mu + \sqrt{\mu^2 + 2|A_s|(U^s, U^s)q_s^{-2}} > 0. \quad (5.10)$$

For fixed U_i^s the parameter $\beta - 1$ is proportional to the ratio of two quantities: the weighted sum of multicomponent anisotropic fluid density parameters $|A_s|$ and the gravitational radius squared $(GM)^2$.

5.2 Hawking temperature

The Hawking temperature of the black hole may be calculated using the well-known relation [22]

$$T_H = \frac{1}{4\pi\sqrt{-g_{tt}g_{rr}}} \left. \frac{d(-g_{tt})}{dr} \right|_{horizon}. \quad (5.11)$$

We get

$$T_H = \frac{d}{4\pi(2\mu)^{1/d}} \prod_{s=1}^m \left(1 + \frac{P_s}{2\mu}\right)^{-q_s/(U^s, U^s)}. \quad (5.12)$$

Here all q_s are natural numbers.

For any of $D = 11$ metrics from Section 4 the Hawking temperature reads
 $T_H = \frac{d}{4\pi(2\mu)^{1/d}} \prod_{s=1}^2 \left(1 + \frac{P_s}{2\mu}\right)^{-1/(2q_s)}.$

6 Conclusions

In this paper, using the methods developed earlier for obtaining perfect fluid and p-brane solutions, we have considered a family of spherically symmetric solutions in the model with m-component anisotropic fluid when the equations of state (1.2)- (1.4) are imposed. The metric of any solution contains $(n - 1)$ Ricci-flat "internal" space metrics and depends upon a set of parameters U_i^s , $i > 1$.

For $q_s = 1$ (for all s) and certain equations of state (with $p_i^s = \pm\rho^s$) the metric of the solution coincides with that of intersecting black brane solution in the model with antisymmetric forms without dilatons [3]. For natural numbers $q_s = 1, 2, \dots$ we have obtained a family of solutions with regular horizon.

Here we have considered three examples of solutions with horizon, that simulate (by fluids) binary intersecting $M2$ and $M5$ black branes in $D = 11$ supergravity.

We have also calculated (for possible estimations of observable effects of extra dimensions) the post-Newtonian parameters β and γ corresponding to the 4-dimensional section of the metric and the Hawking temperature as well.

Acknowlegments

This work was supported in part by the Russian Ministry of Science and Technology, Russian Foundation for Basic Research (RFFI-01-02-17312-a) and DFG Project (436 RUS 113/678/0-1(R)). V.D.I. thanks colleagues from the Physical Department of the University of Konstanz for hospitality during his visit in August-October 2003.

Appendix

A Lagrange representation

It is more convenient for finding of exact solutions, to write the stress-energy tensor in cosmological-type form

$$(T_N^{(s)M}) = \text{diag}(-\hat{\rho}^s, \hat{p}_0^s \delta_{k_0}^{m_0}, \hat{p}_1^s \delta_{k_1}^{m_1}, \dots, \hat{p}_n^s \delta_{k_n}^{m_n}), \quad (\text{A.1})$$

where $\hat{\rho}^s$ and \hat{p}_i^s are "effective" density and pressures of s -th component, respectively, depending upon the radial variable u and the physical density ρ^s and pressures p_i^s are related to the effective ("hat") ones by formulas

$$\rho^s = -\hat{p}_1^s, \quad p_r^s = -\hat{\rho}^s, \quad p_i^s = \hat{p}_i^s, \quad (i \neq 1), \quad (\text{A.2})$$

$$s = 1, \dots, m.$$

The equations of state may be written in the following form

$$\hat{p}_i = \left(1 - \frac{2U_i^s}{d_i}\right) \hat{\rho}^s, \quad (\text{A.3})$$

where U_i^s are constants, $i = 0, 1, \dots, n$. It follows from (A.2), (A.3) and $U_1^s = q_s$ that

$$\rho^s = (2q_s - 1)\hat{\rho}^s. \quad (\text{A.4})$$

The "conservation law" equations $\nabla_M T_N^{(s)M} = 0$ may be written, due to relations (2.3) and (A.1) in the following form:

$$\dot{\hat{\rho}}^s + \sum_{i=0}^n d_i \dot{X}^i (\hat{\rho}^s + \hat{p}_i^s) = 0. \quad (\text{A.5})$$

Using the equation of state (A.3) we get

$$\dot{\hat{\rho}}^s = -A_s e^{2U_i^s X^i - 2\gamma_0}, \quad (\text{A.6})$$

where $\gamma_0(X) = \sum_{i=0}^n d_i X^i$ and A_s are constants.

The Einstein equations (2.1) with the relations (A.3) and (A.6) imposed are equivalent to the Lagrange equations for the Lagrangian

$$L = \frac{1}{2} e^{-\gamma+\gamma_0(X)} G_{ij} \dot{X}^i \dot{X}^j - e^{\gamma-\gamma_0(X)} V, \quad (\text{A.7})$$

where

$$V = \frac{1}{2} d_0 (d_0 - 1) \exp(2U_i^0 X^i) + A_s \exp(2U_i^s X^i) \quad (\text{A.8})$$

is the potential and the components of the minisupermetric G_{ij} are defined in (3.5),

$$U_i^0 X^i = -X^0 + \gamma_0(X), \quad U_i^0 = -\delta_i^0 + d_i, \quad (\text{A.9})$$

$i = 0, \dots, n$ (for cosmological case see [18, 19]).

For $\gamma = \gamma_0(X)$, i.e. when the harmonic time gauge is considered, we get the set of Lagrange equations for the Lagrangian

$$L = \frac{1}{2} G_{ij} \dot{X}^i \dot{X}^j - V, \quad (\text{A.10})$$

with the zero-energy constraint imposed

$$E = \frac{1}{2} G_{ij} \dot{X}^i \dot{X}^j + V = 0. \quad (\text{A.11})$$

It follows from the restriction $U_0^s = 0$ that

$$(U^0, U^s) \equiv U_i^0 G^{ij} U_j^s = 0. \quad (\text{A.12})$$

Indeed, the contravariant components $U^{0i} = G^{ij} U_j^0$ are the following ones

$$U^{0i} = -\frac{\delta_0^i}{d_0}. \quad (\text{A.13})$$

Then we get $(U^0, U^s) = U^{0i} U_i^s = -U_0^s / d_0 = 0$. In what follows we also use the formula

$$(U^0, U^0) = \frac{1}{d_0} - 1 < 0 \quad (\text{A.14})$$

for $d_0 > 1$.

Now we prove that $(U^s, U^s) > 0$ for all $s > 0$. Indeed, minisupermetric has the signature $(-, +, \dots, +)$ [16, 17], vector U^0 is time-like and orthogonal to any vector $U^s \neq 0$. Hence any vector U^s is space-like.

B General spherically symmetric solutions

When the orthogonality relations (A.12) and (3.7) are satisfied the Euler-Lagrange equations for the Lagrangian (A.10) with the potential (A.8) have the following solutions (see relations from [19] adopted for our case):

$$X^i(u) = - \sum_{\alpha=0}^m \frac{U^{\alpha i}}{(U^\alpha, U^\alpha)} \ln |f_\alpha(u - u_\alpha)| + c^i u + \bar{c}^i, \quad (\text{B.1})$$

where u_α are integration constants; and vectors $c = (c^i)$ and $\bar{c} = (\bar{c}^i)$ are dually-orthogonal to co-vectors $U^\alpha = (U_i^\alpha)$, i.e. they satisfy the linear constraint relations

$$U^0(c) = U_i^0 c^i = -c^0 + \sum_{j=0}^n d_j c^j = 0, \quad (\text{B.2})$$

$$U^0(\bar{c}) = U_i^0 \bar{c}^i = -\bar{c}^0 + \sum_{j=0}^n d_j \bar{c}^j = 0, \quad (\text{B.3})$$

$$U^s(c) = U_i^s c^i = 0, \quad (\text{B.4})$$

$$U^s(\bar{c}) = U_i^s \bar{c}^i = 0. \quad (\text{B.5})$$

Here

$$\begin{aligned} f_\alpha(\tau) = & R_\alpha \frac{\sinh(\sqrt{|C_\alpha|}\tau)}{\sqrt{|C_\alpha|}}, \quad C_\alpha > 0, \quad \eta_\alpha = +1, \\ & R_\alpha \frac{\cosh(\sqrt{|C_\alpha|}\tau)}{\sqrt{|C_\alpha|}}, \quad C_\alpha > 0, \quad \eta_\alpha = -1, \\ & R_\alpha \frac{\sin(\sqrt{|C_\alpha|}\tau)}{\sqrt{|C_\alpha|}}, \quad C_\alpha < 0, \quad \eta_\alpha = +1, \end{aligned} \quad (\text{B.6})$$

$$R_\alpha \tau, \quad C_\alpha = 0, \quad \eta_\alpha = +1,$$

$\alpha = 0, \dots, m$; where $R_0 = d_0 - 1$, $\eta_0 = 1$, $R_s = \sqrt{2|A_s|(U^s, U^s)}$, $\eta_s = -\text{sign} A_s$ ($s = 1, \dots, m$).

The zero-energy constraint, corresponding to the solution (B.1) reads

$$E = \frac{1}{2} \sum_{\alpha=0}^m \frac{C_\alpha}{(U^\alpha, U^\alpha)} + \frac{1}{2} G_{ij} c^i c^j = 0. \quad (\text{B.7})$$

Special solutions. The (weak) horizon condition (i.e. infinite time of propagation of light for $u \rightarrow +\infty$) lead us to the following integration constants

$$\bar{c}^i = 0, \quad (\text{B.8})$$

$$c^i = \bar{\mu} \sum_{\alpha=0}^m \frac{U_1^\alpha U^{\alpha i}}{(U^\alpha, U^\alpha)} - \bar{\mu} \delta_1^i, \quad (\text{B.9})$$

$$C_\alpha = (U_1^\alpha)^2 \bar{\mu}^2, \quad (\text{B.10})$$

where $\bar{\mu} > 0$, $\alpha = 0, \dots, m$. For analogous choice of parameters in p -brane case see [13, 14, 4].

We also introduce a new radial variable $r = r(u)$ by relations

$$\exp(-2\bar{\mu}u) = 1 - \frac{2\mu}{r^d}, \quad \mu = \bar{\mu}/d > 0, \quad d = d_0 - 1, \quad (\text{B.11})$$

and put $u_s < 0$ and $A_s < 0$ for all s and also $u_0 = 0$.

The relations of the Appendix imply the formulae (3.9) and (3.10) for the solution from Section 3 with

$$H_s = \exp(-\bar{\mu}q_s u) f_s(u - u_s), \quad A_s = -\frac{(dq_s)^2}{2(U^s, U^s)} P_s(P_s + 2\mu), \quad (\text{B.12})$$

$$P_s > 0.$$

References

- [1] H. Dehnen, V.D. Ivashchuk and V.N. Melnikov, On black hole solutions in model with anisotropic fluid, gr-qc/0211049, to appear in *Grav. Cosmol.*
- [2] V.D. Ivashchuk, V.N. Melnikov and A.B. Selivanov, Multidimensional black hole solutions in model with anisotropic fluid, *Grav. Cosmol.* **7**, 4(12), 308-310 (2001); gr-qc/0205103
- [3] V.D. Ivashchuk, V.N. Melnikov and A.B. Selivanov, Simulation of intersecting black brane solutions, hep-th/0211247, to appear in *Grav. Cosmol.*
- [4] V.D. Ivashchuk and V.N. Melnikov, Exact solutions in multidimensional gravity with antisymmetric forms, topical review, *Class. Quantum Grav.*, **18** (2001) R87-R152; hep-th/0110274.
- [5] K.S. Stelle, "Lectures on supergravity p-branes ", hep-th/9701088.
- [6] G.T. Horowitz and A. Strominger, Black string and p-branes, *Nucl. Phys.* **B 360**, 197-209 (1991)
- [7] M.J. Duff and J.X. Lu, *Nucl. Phys.* **B 354**, 129 (1991).
- [8] H. Lü and C.N. Pope, Black p-branes and their vertical dimensional reduction, *Nucl. Phys.* **B 489**, 264-278 (1997); hep-th/9609126.
- [9] M. Cvetic and A. Tseytlin, Non-extreme black holes from non-extreme intersecting M -branes, *Nucl. Phys.* **B 478**, 181-198 (1996); hep-th/9606033.
- [10] M. Costa, Black composite M -branes, *Nucl. Phys.* **B 490**, 603-614 (1997); hep-th/9610138.
- [11] I.Ya. Aref'eva, M.G. Ivanov and I.V. Volovich, Non-extremal intersecting p-branes in various dimensions, *Phys. Lett.* **B 406**, 44-48 (1997); hep-th/9702079.
- [12] N. Ohta, Intersection rules for non-extreme p-branes, *Phys. Lett.* **B 403**, 218-224 (1997); hep-th/9702164.
- [13] K.A. Bronnikov, V.D. Ivashchuk and V.N. Melnikov, The Reissner-Nordström problem for intersecting electric and magnetic p-branes, *Grav. Cosmol.* **3**, 3(11), 203-212 (1997); gr-qc/9710054.
- [14] V.D. Ivashchuk and V.N. Melnikov, Multidimensional classical and quantum cosmology with intersecting p -branes, *J. Math. Phys.*, **39**, 2866-2889 (1998); hep-th/9708157.

- [15] V.D. Ivashchuk and V.N. Melnikov, Black hole p-brane solutions for general intersection rules, *Grav. Cosmol.*, **6**, 1(21), 27-40 (2000); hep-th/9910041.
- [16] V.D. Ivashchuk and V.N. Melnikov, Perfect-fluid type solution in multidimensional cosmology, *Phys. Lett. A* **136**, 465-467 (1989).
- [17] V.D. Ivashchuk, V.N. Melnikov and A.I. Zhuk, On Wheeler-DeWitt equation in multidimensional cosmology, *Nuovo Cimento B* **104**, 5, 575-581 (1989).
- [18] V.D. Ivashchuk and V.N. Melnikov, Multidimensional cosmology with m -component perfect fluid, *Int. J. Mod. Phys. D* **3**, 4, 795-811 (1994); gr-qc/ 9403063.
- [19] V.R. Gavrilov, V.D. Ivashchuk and V.N. Melnikov, Integrable pseudo-Euclidean Toda-like systems in multidimensional cosmology with multicomponent perfect fluid, *J. Math. Phys.* **36**, 5829-5847 (1995).
- [20] V.D. Ivashchuk and V.N. Melnikov, Intersecting p-brane solutions in Multi-dimensional gravity and M-Theory, hep-th/9612089; *Grav. Cosmol.*, **2**, No. 4 (8), 297-305 (1996).
- [21] I.Ya. Aref'eva and A.I. Volovich, Composite p-branes in diverse-dimensions, *Class. Quantum Grav.* **14**, 2991-3000 (1997); hep-th/9611026.
- [22] J.W. York, *Phys. Rev. D* **31**, 775 (1985).