

Concert Ticket Price Prediction

Sarah Alabdulwahab & Asma Althakafi

RAZORGATOR TICKETS

Online ticket **reselling** platform for sports, theater and concert tickets, and vacation packages for sporting events.

GOAL

Predict the price of concert tickets in USA

WEB SCRAPING PROCESS

Step 1

Beautiful Soup & Selenium

Step 3

Collecting the concert links for each artist

Step 2

Collecting artists

Step 4

Collecting the tickets of each concert

WEB SCRAPED DATASET

Artist

Individual artist or band

Data

Venue, city, state, date, and time

Price

Ticket price in US Dollars

Level

Section and row

ADDITIONAL DATASET

Average and median salaries of each state in USA

• From Wikipedia

CLEANING

Drop duplicated data

Remove festivals from artist

Unify the level feature

Remove outliers

FEATURE ENGINEERING

Extracting the venue, city, state, date, and time

Extracting the day, month, and year from date

Adding a price "class" feature:

• 0 for cheap, 1 for expensive

AFTER CLEANING & FEATURE ENGINEERING

13 Features and 54,234 tickets

•	Ar	tist
---	----	------

• Time

Median Salary

Level

Day

Average Salary

Venue

Month

Price

• City

Year

Price Class

State

VISUALIZATIONS

Moving to Tableau...

CORRELATION BETWEEN THE FEATURES

artist -	1	0.067	-0.17	0.011	0.025	0.012	-0.044	-0.11	0.16	-0.0064	0.025	0.038	-0.15
level -	0.067	1	-0.19	-0.079	0.055	-0.0088	0.12	-0.046	0.046	-0.048	0.041	0.055	-0.16
price	-0.17	-0.19	1	0.027	-0.03	-0.037	0.079	0.0063	0.037	-0.031	0.11	0.11	0.81
venue -	0.011	-0.079	0.027	1	-0.24	0.037	0.033	-0.013	-0.01	-0.033	-0.038	-0.013	0.027
city -	0.025	0.055	-0.03	-0.24	1	0.061	0.1	-0.0037	-0.027	-0.0034	0.19	0.15	-0.042
state -	0.012	-0.0088	-0.037	0.037	0.061	1	-0.0085	0.024	-0.033	-0.0077	-0.17	-0.17	-0.029
time -	-0.044	0.12	0.079	0.033	0.1	-0.0085	1	-0.024	-0.096	-0.17	-0.027	-0.0032	0.033
month -	-0.11	-0.046	0.0063	-0.013	-0.0037	0.024	-0.024	1	-0.87	0.054	-0.0039	-0.0009	-0.00019
year -	0.16	0.046	0.037	-0.01	-0.027	-0.033	-0.096	-0.87	1	-0.078	0.088	0.084	0.042
day -	-0.0064	-0.048	-0.031	-0.033	-0.0034	-0.0077	-0.17	0.054	-0.078	1	-0.11	-0.11	-0.026
median_salary -	0.025	0.041	0.11	-0.038	0.19	-0.17	-0.027	-0.0039	0.088	-0.11	1	0.94	0.098
avg_salary -	0.038	0.055	0.11	-0.013	0.15	-0.17	-0.0032	-0.0009	0.084	-0.11	0.94	1	0.088
price_class -	-0.15	-0.16	0.81	0.027	-0.042	-0.029	0.033	-0.00019	0.042	-0.026	0.098	0.088	1
'	artist -	level -	price -	- neune	aity -	state -	time -	month -	year -	day -	dian_salary -	avg_salary -	price_class -

- 0.8

SPLITING THE DATA

MODELING

LINEAR REGRESSION RESULTS

R Squared	MAE
0.103485	93.756173

Very bad...

REGULARIZATION RESULTS

	R Squared	MAE
Lasso	0.102097	92.454616
Ridge	0.102108	92.453806
Elastic Net	0.102110	92.453659

REGULARIZATION RESULTS

	R Squared	MAE
Lasso		
Ridge		
Elastic Net	0.102110	92.453659

REGRESSION RESULTS

	R Squared	MAE
Linear Regression	0.107720	94.688636
Polynomial Features	0.421972	69.884868
Decision Tree	0.741464	44.595658
Ada Boost	0.709937	49.418598
Random Forest	0.745291	44.589948

REGRESSION RESULTS

	R Squared	MAE
Linear Regression		
Polynomial Features		
Decision Tree		
Ada Boost		
Random Forest	0.745291	44.589948

RANDOM FOREST RESULTS

On validation set:

R Squared	MAE
0.745291	44.589948

On test set:

R Squared	MAE
0.762172	42.128088

CLASSIFICATION RESULTS

	Accuracy	F1
Logistic Regression	0.633631	0.602560
K Neighbors	0.849359	0.848807
Bagging	0.859132	0.858819
Decision Tree	0.863833	0.863353
Ada Boost	0.864294	0.863967
Random Forest	0.860791	0.860482

CLASSIFICATION RESULTS

	Accuracy	F1
Logistic Regression		
K Neighbors		
Bagging		
Decision Tree		
Ada Boost	0.864294	0.863967
Random Forest		

ADA BOOST RESULTS

On validation set:

Accuracy	F1
0.864294	0.863967

On test set:

Accuracy	F1
0.867520	0.867361

CONCLUSION

- Linear Regression was not suitable for this data
- The best regression model is Random Forest
- The best classification model is Ada Boost

THANK YOU!! Any questions?

