

<110> Walker, Michael G.
van der Spek, Peter J.
Kremer, Andreas
Murry, Lynn E.

<120> CELL DIFFERENTIATION cDNAs INDUCED BY RETINOIC ACID

<130> PB-0017 US

<140> To Be Assigned
<141> Herewith

<160> 7
<170> PERL Program

<210> 1
<211> 1301
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 238040

<400> 1
agagccacag ataccctacc cgaggccccac ctggccacccc ccgctcagtgc ccccccagggt 60
ccccctaccac tcctcagtgc tctccgtcac ccggccctgtg gtggctctg ccacgcattcc 120
cacactgcct tctgccccacc agccctcgt gatccctgcc acacacccag ctttgcctccg 180
tgaccaccag atccccgtga tcgcagccaa ctatccagat ctgccttctg cctaccaacc 240
cggtattctc tctgtcttc attcagcaca gcctcctgcc caccagcccc ctatgatctc 300
aacccaaataat ccggagctct tccctgccc ccagtcccccc atgtttccag acacccgggt 360
cgctggcacc cagaccacca ctcatttgc ttggatccca cctaaccatg cccctctgg 420
caccaccctc ggtgcccagc tacccctca agcccccagat gccttgcctc tcagaaccca 480
ggccacccag ctccccatata tcccaactgc ccagccctct ctgaccacca cctccaggc 540
ccctgtgtct cctgcccattc aaatctctgt gcctgctgcc acccagcccc cagccctccc 600
caccctcctg ccctctcaga gccccactaa ccagacccatca cccatcagcc ctacacatcc 660
ccattccaaa gccccccaaa tcccaaggga agatggccccc agtcccaagt tggccctgtg 720
gctgcccctca ccagctccca cagcagcccc aacagccctg ggggaggctg gtcttgcga 780
gcacagccag agggatgacc ggtggctgt ggtggcaactc ctggtgccaa cgtgtgtctt 840
tttgggtggc ctgcttgac tgggcattgt gtactgcacc cgctgtggcc cccatgcacc 900
caacaaggcgc atcaactgact gctatcgct ggtcatccat gctgggagca agagcccaac 960
agaacccatg ccccccaggc gcagccctcac aggggtgcag acctgcagaa ccagcgtgtg 1020
atggggtgca gaccccccctc atggagtatg gggcgctgga cacatggccg gggctgcacc 1080
agggacccat gggggctgccc cagctggaca gatggctcc tgctccccag gcccagccag 1140
ggtcctctct caaccactag acttggctct caggaactct gcttgcctggc ccagcgtctc 1200
tgaccaagga tacaccaaag cccttaagac ctcagggggc gggtgctggg gtcttctcca 1260
ataaatgggg tgtcaaccgt taaaaaaaaaaa aaaaaaggc g 1301

<210> 2
<211> 5679
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 411448

<220>
<221> unsure
<222> 1657-1658, 1663, 1667, 1672, 1675
<223> a, t, c, g, or other

<400> 2
agcccccacccccaggc cactcaccc ccccaactac ccaggacaga ggatgcccag 60
ccagccgagc tccgggcaat accggccccc cacggtaac atggggcagt attacaagcc 120

agaacagtt aatggacaaa ataacacgtt ctgggaaagc agtacaagt aactacagcc 180
 aaggaaatgt caacaggccc cccaggccgg ttccctgtggc aaattacccc cactcacctg 240
 ttccaggaa cccccacccc cccatgacc ctgggagcag catccctcca tacctgtccc 300
 ccagccaaga cgtcaaaacca cccttcccgc ctgacatcaa gccaaatatg agcgctctgc 360
 caccacccccc agccaaccac aatgacgagc tgccgctcac attccctgtg cgggatggcg 420
 tggtgctgga gcccttcgc ctggagcaca acctggcggt cagcaaccat gtgttccacc 480
 tgcggccac ggtccaccag acgctgtgt ggaggtctga cctggagctg cagttcaagt 540
 gctaccacca cgaggacccg cagatgaaca ccaactggcc cgccctcggtg caggtcagcg 600
 tgaacgcccac gccccctcacc attgagcgcg ggcacaacaa gacctccac aagcccctgc 660
 acctgaagca cgtgtgccag ccgggcccga acaccatcca gatcaccgtc acggcctgtc 720
 gctgctccca cctcttcgtg ctgcagctgg tacaccggcc ctccgtccgc tctgtgtc 780
 aaggactcct caagaagcgc ctctgtcccg cagagcaactg tattcacgaaa atcaagcgg 840
 atttcagcag cgtggctgc tcctcggca acacgaccct caacggggag gatgggtgg 900
 agcagacggc catcaaggtg tctctgaagt gccccatcac attccggcgc atccagctgc 960
 ctgctcgagg acacgattgc aagcatgtgc agtgcttga tctggagtca tacctgcagc 1020
 tgaattgcga gagagggacc tggaggtgtc ctgtgtcaa taaaaccgct ctgctggagg 1080
 gcctggaggt ggatcagtag atgtggggaa tcctgaatgc catccaaacac tccgagttt 1140
 aagaggtcac catcgatccc acgtgcagct ggcggccggt gcccatcaag tggactac 1200
 acatcaagga tgaccctgtat ggcataccct ccaagcggtt caagaccatg agtcccagcc 1260
 agatgatcat gcccaatgtc atggagatga tcgcagccct gggccccggc ccgtccccct 1320
 atcccccctcc gcctccccc gggggcacca actccaaacga ctacagcagc caaggcaaca 1380
 actaccaagg ccatggcaac tttgacttcc cccacgggaa ccctggaggg acatccatga 1440
 atgacttcat gcacggggcc cccagctct cccacccccc ggacatgccc aacaacatgg 1500
 cgcctctga gaaacccctc agccacccca ctgaccagcc ccacccctcc atacaacaaag 1560
 caggccctcc attacatcac atgggggtc agccacccca actccaaacga ctacagcagc 1620
 agccgcaca ggccgctccc agcagccatc cccacgggaa ccctggaggg aacccctct 1680
 cagccttaga gggtcagggc ggagcgcagg agccacccca atcccttcgcg accacacccc 1740
 atctccctcc cgaactcaca aatccctgacg cccacgggaa ccctggaggg aacccctct 1800
 tgccgagcaa tagtaacgat gacccctgt ctctgcattcc tacccccacct accaaacaca 1860
 gtcggggccca tccctccaca ctctgcattcc ccagagccac gggctgtggg ggggggagcc 1920
 tgggagcctg tggcctcaga ccggcccccga ctcccccgtc gcaacttccctc atcccttcgc 1980
 gggctgtggg gggtagggag ggtgcaccag cccacgggaa ccctggaggg aacccctct 2040
 aggctgtgtg ggtctggagc ccacgtccca gggccacacc cccacgggaa ccctggagg 2100
 agcgcaggcc tgaagaccac cctcccgaga ggaaccagcc cggtaaagagg gggccaccc 2160
 atgcggcttc ccggccctcc cgcgtgtgcc gattccaaat gacccctccat ccacccctcc 2220
 gttcttccat cttcttagact gtaaccctgc cccacgggaa ccctggaggg aacccctct 2280
 cagtgactgt ggagcctgag aaggcccccg gggccacacc cccacgggaa ccctggagg 2340
 agcactggca gttgggtggca gtgagaccag gggccaccc accaccacc accaaaaagg 2400
 acaaaccctc gggaaagaca acgtctctcg gggccaccc accaccacc accaaaaagg 2460
 cctataagcc aagataacccc ataaacacac tcagaaagca gggccaccc accaccacc 2520
 gtgtttgaga gggggcttcgc catttcgtct tggggactgg tggggaaagag gggccaccc 2580
 cttctgagcc agacgtccct gaggtccacc tccaaagctca gacaggccca ggctttggg 2640
 acagagagat caggtgaaca cccaaacaaa gtgattgtgc ctttgggttgg gggccgcggg 2700
 catataacat gtcaagaagca aacaggagcg gcaacttcta acttgcctcc aacccactct 2760
 ctttttaaac agcaacaatt taaagctat aagtccatcg gggccaccc accaccacc 2820
 tggacagcaa gcaaaccatt tcttcgtcc tgggacttcc accccctct gtccatgttc 2880
 ccacccctcc aagacttccg tgggacaccc tgggacttcc accccctct gtccatgttc 2940
 atcagatggc aagggcagtg cgtgaaagg cccggggagg gggccaccc accaccacc 3000
 caatgggtgc tggcagccc ctccctctgt ccctgtgtc caagccgtc cccgggtc 3060
 agcccaggcc atggacatgt gcaccaggat gtacctgcag gcatcagggg gggccaccc 3120
 tggggactgg tggggactgg cccatgggg gggccaccc accaccacc 3180
 tggggactgg cccatgggg gggccaccc accaccacc 3240
 ccacccctcc aagacttccg tgggacttcc accccctct gtccatgttc 3300
 ccctccaccg ctttggctca tctggcttac cactctccat gggccaccc accaccacc 3360
 ctgtgttccat tttgtttcaag gttggctgt gggccaccc accaccacc 3420
 ccagggtgtc ccgtcaactgg ggtcccatct gtaaattttt tggggactgg cccgggtc 3480
 cctggggccc tttccgtct tccctccgc tggggactgg cccgggtc accccctcc 3540
 ttttaccgga aagggtggccc cagctgtga tggggactgg cccatgggg gggccaccc 3600
 ttttctgttag gaaagctgcc attggccccc gggccaccc accaccacc 3660
 gtttttcaa atagcgtgtt gttcgtatg caaatcaatt attttaagaa tggggactgg 3720
 aaatatctt gtgaatattt tagtacgtc tttgataata ttcaacattt tggggactgg 3780
 gttatacgtt ttgtgtgtt tttaaaata cctggactca atgacaaaaga ccggacttcc 3840
 tttgtgttct ttaaacaaaaa aaaaaaaaaa caaccaggcc tatttgtaca gttgaagggg 3900
 tgaacagaat gggccggctgt gttggggatg ggaacacccg gcaacccgtt atttagagcc 3960
 atccctcagt cagctggcag ggacaagcca acggcaggta gcatgtggcc accccctcc 4020
 agtgcgtgtc gcctggcaag tggccacccg ccatctgggaa attaagctcc 4080

agacagactt acagatgcct tccttaggag ttcttgcttc ttgcgttgat actttgcccc 4140
 agaaaaggcct gggattcatt ctggttctta tcaggggtgt tccacactct gctcacaggt 4200
 ggatcccacgg ctttccagtg cagagagtgc agatgctccc tgcaagcccgag gccccggca 4260
 cctcctgcaa ccatctctgg gctcagcacc tgaggccgggt ttcttgggtc ccctctccag 4320
 caaggctcca ccagcaagct cggcccgagag cttcccttcc ggctggctct gaaccgtgcg 4380
 tgggcctac agcctgcagt ctggagacaa gcttcccg agtgcctgg gagccaggcc 4440
 agggtgtgag ggaggtgcag aggcatccgg ggcggggagca agccccagggt tggacagggt 4500
 gcaggtagac aacgcccata aacagagatg gtcctgaact ctggagagat cttccctgta 4560
 tccttcgga cgactacttg gagccataag taacctcagc aaaaacgagg cctctgcaag 4620
 ccactttcc atgccaagca tccacccggc ccacaggcat gtttctggc ccactccgca 4680
 agatggacag ggagccagca ggcaggccgg aaggggcaag tacaggcaat caccggccatc 4740
 ttcttggtt gaagctttat ccatgtatca tggccgtgt agcattttt ttttttaaga 4800
 aactgcta atcttctccc taatggaaagc cctgatcccc cagagagcta caggctgtct 4860
 cccgacgggc ctcgggcctg acccgctcac acagggccgt gtcaacagca gcgactcaag 4920
 ggacgtgtgt acatatgtaa atgagaaata gagacgtgtc aacagatgca ttcatattctc 4980
 ttggaatgtg tattgtttt attttgcgaa acaaaaacaaa aaaaaaaaaa aagcttgaa 5040
 ctccatcacg tggaaaaact agatctgtt ggttatagca tttgtgagtt ctccacgtct 5100
 gtctctctcg ctcatgtat atactctgac cctgagtgga aagggggttt ttttctgttt 5160
 ttatatttacc tacatgtact attagctt cttgtactag tcctgccacc ttttctgttt 5220
 tagggtcta tggaaataat gaaaagaaac ggggatttca gaagaaaatt gtaaccaaatt 5280
 tcatactttg tataattttt gatatcatga tcacaggtga ttccacacgta cacacataaa 5340
 cacacccacc agtgcagcct gaagtaactc ccacagaaac catcatcgct ttttacatc 5400
 gtatgtacaa tgaatcatt tcatacttta aactggtcaa aaaactaatt gtgatttcta 5460
 gtctgc当地 gctgtatgta gtttagatgat gtgacaacct ctaatattt tctaataaaat 5520
 atgtatttgc atgaaacccctg tatatttagt gttcatgtgg ttatatttgc tttaaagatc 5580
 aaattatttgc actattgcta gacatttcta tactctgttg taacactgag gtatctcatt 5640
 tgcccatgtt aatttttttca taaataaattt gacaaaaaac 5679

<210> 3
 <211> 3513
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 454163

<400> 3
 cggggaggaa ggagtgtgca gagtgtcacc attcaggtgt cctggaaag atgaaagcac 60
 ccccgccaag aagacagaca ttccctggcg gctgaagcag atgctggata tcctgggtta 120
 tgaagagcag cagcaggccg ccgcgggggtg aggcaaggcc ctgcctggag tacctgtgc 180
 agcacaagat cctggagact ctctgcacgc tggcaaggcc cgagtacccc ccaggcatgc 240
 ggcagcagggt gttccagttc ttcaagcaagg ttctggcgca ggtcagcac cccctgtgc 300
 attaccttag cgtccacagg cctgtgcaga aactcctccg acttgggtgg actgcttccg 360
 gatccgttac agaaaaaggag gagggtcagtt tacaccacgt cctctgtcc aagatccagc 420
 aggacccaga gtcgtcgcc tacatctgg aaggtaaaaa gattgttagt aggaagaaaag 480
 catgcggaga acccactgca ctgcctaagg acacaacccag ccacggggac aaggactgct 540
 cccacgatgg tgctctcgcc aggccccagc tggacggggc gtcctgtgg gcccaggcct 600
 tgaacagcca catgcctgt gagaccgagg agtcgtaccc tggaccaca gagaccaacc 660
 tgattacctc ctcgttggg ctgtgcaga gcaagaagag tcgggtggcc ttgaaggccc 720
 aggagaacct gtcgtccctg gtgagcatgg ctcctccagc agtcgccacc tacctggtac 780
 agagcagcgc ctgcgtccct ggcacccctt ccagttgtac cggtccatgc 840
 ctgtcttcctt ggaccccgca gacattgcca ctttagaggg catcagctgg aggttaccca 900
 gtgcggcgct tggatgggtc tcctccctg gcaaggaggc cttggctgc ttcttgggtc 960
 ggtttgatta ctgcgaccac ctcatcacag aggcacacac ggtgggtcg gacgccttgg 1020
 cgaaggctgt ggctgagaac ttcttcgtgg agaccctgca gccccagctc ctgcacgtgt 1080
 cccgagcagag catcttgacc tccaccggcc tcctcacacg catgctgcgc cagcttgcgt 1140
 cccctgcgtc gtcggggag gccgtggcct tcctctggg cacagaccgg cagcctgaag 1200
 cccccggggca aaccccccac accctgtatg ctcatctcat cggccattgt gaccacctct 1260
 ctgatgagat cagcatcacc acactccggc tggggatggg gtcgtgcag aagccccacg 1320
 aggggatcat ccacagccctg gtccgtgcac accttgggg ccggcccttac gtggcctggg 1380
 gtcaccacca gctgtggagc tatgaggaca ccctagaccc ggaggaagac ccctacttca 1440
 ccgacagctt ctcgttccctt ggcttcaaa ctcccgcaaa gcctgccttca gtcctgtct 1500
 ccagttacga tggccaaaaca gcgtgaccg agatgtctaa caggagtgc gtcctccgct 1560
 cgcctctgg ggctggccctc tgaccccccac accttggac ccccatgaccc cggagcggacc 1620
 ttcttcgag gcccacttcc tccgagtgtc gtttgcacgc atgtcccgga ttctggatca 1680

gcccatacgc ctgaacctgc aggtgaccc ggtcctgtcc cggttgcggc tcttccccca 1740
 ccccatatt catgagtacc tgctggatcc gtacatcagc ctggcccccgg gctgcaggag 1800
 ctttctcc gtgttggtga gggtgatcg ggacttgcg cagagaatcc agagggtacc 1860
 ccagttccca ggcaagctgc tcctgggtcg caacagtta cgggccaggc ttctggggag 1920
 cagctggacc accagaccc cctccaggc gtgggtgtc tggaggagtt ctgcaaggag 1980
 ctggctgcca ttgccttcgt caagttccc ccacatgatc ctgcgcagaa cgtctcccc 2040
 gcccggaaag ggcaggctg agccagcacc agggcggtgg gagactcctg tccacaccc 2100
 tgcccccagag ctgcctcctg cctggactg cgcacact cccctcctgg gatggggctt 2160
 ctgctcccg gctcaactcaa ggagactgcg gcatgttgac cacccagac tgggttcag 2220
 ggaatgggca tgccagggtgc caaggagcc aacagatggc ttccaggca gcaaggctc 2280
 tggggccttc ttggaggagc ttgggtgaca gccagggtgag caccagacc ccagaccc 2340
 atgtgctgtg tgccctggcc cttctgtact ggcatttgt ggcaggggcc aagcctgtga 2400
 ctcaactcca ggggcaagat ggggagtgag ctgatggct cgagactggc caggagcc 2460
 gcccagttag atggggcctg gagcctgtc tigtgtcacat tagtaccat gggagctgct 2520
 gagacctgac atttgtccc ctgcctacat ggcttggccc atggagaagg agcagtgaat 2580
 gggatcgctg gggaaagcccc tcttcctgct ctgtccccc gaaaactgtt gcaaaaactcc 2640
 cagccgcctc atggcaaatg cccaaagcat gttccgcacc caggcggggg cccctgctaa 2700
 tgagaacctt ggtcagctg cagccaggag gggagcgggc ccaggagcca ggctcaggc 2760
 cagctggttc ctctctggcg ccttctgaac ccgtctcagc agtccacag cacctggca 2820
 gaggtcagag accaggggag gccgggcctt gcccctccct ctgcccaggg cccagtgttc 2880
 ttgatagaag acccttctgg ggagccaggag agctcagggg acagataagg gaaggacgcc 2940
 ccctgactcc aggccccctga gcctggcggg aagtggctgc ggcccaggca gccagtcctg 3000
 gtgggtttct ccctgcatgc cctccgtggc tgggctgcca cccaccccg cccgaatctg 3060
 tcttgacactg caggaataca cgggcggcgc caggcattac ctacacagcgg gactacacag 3120
 ttgctggctt tgctccctggg caaggaggag caggccagag cctcttttc ttccctttct 3180
 tgcccatgccc gcttctagaa gccaggcaca gtttgcggag aggtgacacg aaacaggagg 3240
 aaactcagtg acctctgcct ctccacatt cctcccccgcg ggggaggacc tcgcccctct 3300
 gaagagcacc gtgcacatgt gggtgcacaa acgtgggtgt tgggtggac ggggcgcaga 3360
 tctccgtgga tgaactgcgt ctggactctt agattctaa aatattcgag ggtttggag 3420
 tcacagaccc tcccctctcc tcagtgcact ttggcatattg cacgggtgtct tccccggaca 3480
 gcacagcaat aaatggtgta attgcgtgaa aaa 3513

<210> 4
 <211> 2970
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 988966.17

<400> 4
 gtgggtacaa gatgacggag cccggcgccct ctcccggagga cccttgggtc aaggcaagcc 60
 ccgtggcgcc gcacggccgc gaggggagggg cgggtcgccg tcgtgcacgt aggggggccc 120
 gaagacgagg ggcttccctc ctgtccccaa agtccccccac gcttcctgtg ccccgggct 180
 gcagagaaga cagctctcacc ccccgctgtg ccaagggttga gtatgcctac agcgacaca 240
 gcctggaccc ctagatgttag gacagtattt accccaggaa ggcttacaag gagtcctaca 300
 aagaccggcg gccggcgccgc cacactcagg ctgagcggaa gaggaggac gccatcaaga 360
 gaggctatga tgaccttcg accatcgcc ccaattggca gcagcggac ttctccattg 420
 gtcacaaaaa gtcagcaaa gccatcggtc tacaaaagac cattgactac attcagttt 480
 tgcacaagga gaagaaaaag caggaggagg aggtgtccac gttacgcggat gatgtcaccg 540
 ccctaaagat catgaaagtgc aactatgagc agattgtgaa ggcacaccgg gacaaccccc 600
 atgaagggggaa ggaccaggc tctgaccagg tcaagttca cgtgtttca ggcacatcg 660
 attccctgtt ccagtccttc aatgcctca ttcagttggc cagcttccag gagctgtcag 720
 catgtgtctt cagctggatc gaggaggact gtaagccctca gaccctgcgg gagattgtga 780
 ttggcgtcct gcaccaattt aaaaaccaggc ttactgacc gtttcttggaa aacctggaga 840
 acagccaaca agaggccctt gaatctctac gtggccactg aactgtctgg cccgggagac 900
 tggactacaa cacctcacac tggtcagctg gtttctactt ggtttttggg ttttcccg 960
 cccattttat cttcagcgga gcccggtgt ttgttttgc aaagcttctg attaatttat 1020
 tatattgacg ataaaactca aacctaccca gccttcccccc cactccatgg aagtccctgg 1080
 gatggcgctc tgctctggac accccaaaga gtcctggcc ttcagccct ttattcaagc 1140
 ctcagattc tgctcatgt ctacatagat ttggaaactg ttccctctg ttttggtctc 1200
 ttggcaaca tttttggccc aagtttggc aacatttggc ccaagttgg gcattttggc 1260
 agtagctgta tgggagaaaa agagtaagag gaaatattcc cacagccatg aagggtgaaa 1320
 gggcaccttgc tgccttagact agggctgcct ggtcagttcc aggtgaggcc aagggttcc 1380
 tggccatctc agggaggggc caccaggttc cttccctcac cccatattcc atcaccttcc 1440

tcctctgtc tgggtggtaa gggaaagccct cccggttccc acaggctatg atgctgcatt 1500
 gcagaggcag gtataacaca gcactacata ttggaaattt tttatTTTtc taaataccaa 1560
 tgcagttttgc ctacggttac aattttgaaa tattaactga gcctcaaaat caccctttct 1620
 gtcaagcata tcttggcctc tcccattgtct cagtggccgc tgcatTTTCTC ccaggacttg 1680
 ggggtgggtt gaaaagcgta caaaaagatac ttAAAAGGGC tcctgggtt cacaagccca 1740
 gcaggcctcg agtgaaggccg tggggccctcc aaatgctcg tttatagcaa cctctctcta 1800
 ccctagttct ccaaatttac ttctgccttc ctcaggTTTt atatctggca ggTTTgacta 1860
 tccagaggaa attaaatatt tttatataaa attaaattat aataaaatatt gccaaatgct 1920
 ttcccttagc attgttccaa gtctaaatgt taacctcaag ctactgcaat tttagacaatg 1980
 aaatgggctg ggtctacccc cagccaccag ccctcatctt ctctacccag tgctctggtt 2040
 tatgcttgtc tcctgactgc tctgcttaaa ggtgaaaatgta gcaggaacaaa caacaaaagc 2100
 caaccaaaaa caaggttagcc agtgcacagac atctcactct tctgacatcc tgcaGTCccc 2160
 accagtcctg accgtgggcc cctcagggtt ctgggagtgt gacgTTgtaa tcttcatccg 2220
 tctctatccc aacttcctca aagaactgct tcttgcTTTt ggggtatcct tcaagtattg 2280
 catcagacag ctctgttagcc atcctcttcc tcttccTCCa ctcttacag tacttctgccc 2340
 tctctctgtc cacctgctct ttctcttctg gagtcacatg attggtagct gctttaatgt 2400
 tcttcaatct ctctctgttag ccagcggcat tccttcttta actcctggat ttcttctgc 2460
 atctctgtgt tggtcaggGC actagataat tccttgagct cagcctccat gtagcggcag 2520
 ctctgctgca agctctgcac ctttagcagt gaggccacga ttttgcacat taggacttga 2580
 aggtcagcat cactcaccat gtcaaactgg tcctgatccg caaaatagat ttctgcttg 2640
 ccgtacatct tctctttgtat cttgccttgc tgcccaGCT gctccagcgt cttcaccacc 2700
 accggcTTgc ccagtccgtg ttcccgcgtg aggttcccgaa acacatcctg ggagctgttag 2760
 ggccgggtct gtcctgcag gtacctcagg aggatcccg gggctcccgc cgcagcttct 2820
 gccccggcctt tactcatcgc ctTTTCCGCC acccaactca gaaagccgga cgtttagtt 2880
 ggtggtccgg ggcggtagc gggctcgtgg aaaaccccg g tctgttgtgc tgatgcctgg 2940
 tctgttggtt cgttttggga tcaccttgat 2970

<210> 5
 <211> 1671
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 254749.3

<220>
 <221> unsure
 <222> 16
 <223> a, t, c, g, or other

<400> 5

ctggtcgtcg tctgcngcgg ctgcggcggc tgaggagccc ggctgaggcg ccagtacccg 60
 gcccggTccg catttccggc ttccggcttc ggTTTccctc gcccggcac gccccggccc 120
 cgcccccagcc ctctgtatcc ctgcggcccc ggctccggcc gcccggctct gcccggcaaa 180
 tgatgtatgt ggcgctgagcc aagaccttcg ggcagaagcc cgtgaagtcc cagctggagg 240
 acgacggcga gttctacatg atcggctccg aggtggggaa ctacccctcg atgttcccgag 300
 gttctctgtc caagagatac ccctcaactct ggaggcgcgt agccactgtg gaagagagga 360
 agaaaatagt tgcatcgta catgtaaaaa aaacaaaacc taacactaag gatcacggat 420
 acacgactct agccaccagt gtgaccctgt taaaagcctc ggaagtggaa gagattctgg 480
 atggcaacga tgagaagtagc aaggctgtgt ccatcagcac agagcccccc acctacctca 540
 gggAACAGAA ggccaagagg aacagccagt gggtaaccac cctgccccac agctcccacc 600
 acttagatgc cgtgccatgc tccacaacca tcaacagggaa ccgcacatggc cgagacaaga 660
 agagaacctt cccccTTTgc tttgtatgacc atgacccaggc tggtatccat gagaacgcatt 720
 ctcagcccga ggtgctggc cccatccggc tggacatggc gatcgatggg cagaagctgc 780
 gagacgcctt cacctggAAC atgaatgaga agttgtatgac gcctgagatg ttttcagaaa 840
 tcctctgtca cgatctggat ttgaacccgc tgacTTTGT ggcacccatc gcctctgcca 900
 tcagacacgca gatcgagtcc tacccacgg acagcatctt ggaggaccag tcagaccaggc 960
 ggcgtcatcat caagctgaac atccatgtgg gaaacatttc cctggTggac cagTTTgagt 1020
 gggacatgtc agagaaggag aactcaccag agaagttgc cctgaagctg tgctcgaggc 1080
 tggggTTTggg cggggaggtt gtcaccacca tcgcatacag catccggggaa cagctgagct 1140
 ggcacatcgaa gacctacggc ttcaGcgaga accctctgccc cacagtggag attGCCatcc 1200
 ggaacacggg cgtatcgggac cagtggtgcc cactgctggc gactctgaca gacgctgaga 1260
 tggagaagaa gatcccgac caggacagga acacgaggcg gatgaggcgct ttggccaaca 1320
 cggccccggc ctggtaacca gcccattcgc acacggctcc cacggagcat ctcagaagat 1380
 tggggccctt ctccTCCATC ttctggcaag gacagaggcg agggacacg ccagcgccat 1440

cctgaggatc ggggtgggggt ggagtggggg cttccaggtg gcccttcccg gcacacattc 1500
 catttgtga gccccagtc tgccccccac cccaccctcc ctaccctcc ccagtctctg 1560
 gggtcaggaa gaaaccttat tttaggttgt gttttgttt tgtaggag ccccaggcag 1620
 ggctagtaac agttttaaa taaaaggcaa caggtcatgt tcaatttctt c 1671

<210> 6
 <211> 635
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 411448

<220>
 <221> unsure
 <222> 552, 554, 557-558
 <223> unknown or other

<400>	6
Pro Pro Thr Pro Arg Gly His Ser Pro Pro Pro	Thr Thr Gln Asp
1 5 10 15	
Arg Gly Cys Pro Ala Ser Arg Ala Pro Gly Ser	Thr Arg Pro Pro
20 25 30	
Arg Ser Thr Trp Gly Ser Ile Thr Ser Gln Asn	Ser Leu Met Asp
35 40 45	
Lys Ile Thr Arg Ser Arg Glu Ala Ala Thr Ser	Asn Tyr Ser Gln
50 55 60	
Gly Asn Val Asn Arg Pro Pro Arg Pro Val Pro	Val Ala Asn Tyr
65 70 75	
His Ser Pro Val Pro Gly Asn Pro Thr Pro Pro	Met Thr Pro
80 85 90	
Gly Ser Ser Ile Pro Pro Tyr Leu Ser Pro Ser	Gln Asp Val Lys
95 100 105	
Pro Pro Phe Pro Pro Asp Ile Lys Pro Asn Met	Ser Ala Leu Pro
110 115 120	
Pro Pro Pro Ala Asn His Asn Asp Glu Leu	Arg Leu Thr Phe Pro
125 130 135	
Val Arg Asp Gly Val Val Leu Glu Pro Phe	Arg Leu Glu His Asn
140 145 150	
Leu Ala Val Ser Asn His Val Phe His Leu	Arg Pro Thr Val His
155 160 165	
Gln Thr Leu Met Trp Arg Ser Asp Leu Glu	Leu Gln Phe Lys Cys
170 175 180	
Tyr His His Glu Asp Arg Gln Met Asn Thr	Asn Trp Pro Ala Ser
185 190 195	
Val Gln Val Ser Val Asn Ala Thr Pro Leu	Thr Ile Glu Arg Gly
200 205 210	
Asp Asn Lys Thr Ser His Lys Pro Leu His	Leu Lys His Val Cys
215 220 225	
Gln Pro Gly Arg Asn Thr Ile Gln Ile	Thr Val Thr Ala Cys Cys
230 235 240	
Cys Ser His Leu Phe Val Leu Gln Leu Val	His Arg Pro Ser Val
245 250 255	
Arg Ser Val Leu Gln Gly Leu Leu Lys	Lys Arg Leu Leu Pro Ala
260 265 270	
Glu His Cys Ile Thr Lys Ile Lys Arg Asn	Phe Ser Ser Val Ala
275 280 285	
Ala Ser Ser Gly Asn Thr Thr Leu Asn Gly	Glu Asp Gly Val Glu
290 295 300	
Gln Thr Ala Ile Lys Val Ser Leu Lys Cys	Pro Ile Thr Phe Arg
305 310 315	
Arg Ile Gln Leu Pro Ala Arg Gly His Asp	Cys Lys His Val Gln
320 325 330	
Cys Phe Asp Leu Glu Ser Tyr Leu Gln Leu	Asn Cys Glu Arg Gly
335 340 345	

Thr Trp Arg Cys Pro Val Cys Asn Lys Thr Ala Leu Leu Glu Gly
 350 355 360
 Leu Glu Val Asp Gln Tyr Met Trp Gly Ile Leu Asn Ala Ile Gln
 365 370 375
 His Ser Glu Phe Glu Glu Val Thr Ile Asp Pro Thr Cys Ser Trp
 380 385 390
 Arg Pro Val Pro Ile Lys Ser Asp Leu His Ile Lys Asp Asp Pro
 395 400 405
 Asp Gly Ile Pro Ser Lys Arg Phe Lys Thr Met Ser Pro Ser Gln
 410 415 420
 Met Ile Met Pro Asn Val Met Glu Met Ile Ala Ala Leu Gly Pro
 425 430 435
 Gly Pro Ser Pro Tyr Pro Leu Pro Pro Pro Pro Gly Gly Thr Asn
 440 445 450
 Ser Asn Asp Tyr Ser Ser Gln Gly Asn Asn Tyr Gln Gly His Gly
 455 460 465
 Asn Phe Asp Phe Pro His Gly Asn Pro Gly Gly Thr Ser Met Asn
 470 475 480
 Asp Phe Met His Gly Pro Pro Gln Leu Ser His Pro Pro Asp Met
 485 490 495
 Pro Asn Asn Met Ala Ala Leu Glu Lys Pro Leu Ser His Pro Met
 500 505 510
 Gln Glu Thr Met Pro His Ala Gly Ser Ser Asp Gln Pro His Pro
 515 520 525
 Ser Ile Gln Gln Gly Leu His Val Pro His Pro Ser Ser Gln Ser
 530 535 540
 Gly Pro Pro Leu His His Ser Gly Ala Pro Pro Xaa His Xaa Ser
 545 550 555
 Gln Xaa Xaa Arg Gln Pro Pro Gln Ala Ala Pro Ser Ser His Pro
 560 565 570
 His Ser Asp Leu Thr Phe Asn Pro Ser Ser Ala Leu Glu Gly Gln
 575 580 585
 Ala Gly Ala Gln Gly Ala Ser Asp Met Pro Glu Pro Ser Leu Asp
 590 595 600
 Leu Leu Pro Glu Leu Thr Asn Pro Asp Glu Leu Leu Ser Tyr Leu
 605 610 615
 Asp Pro Pro Asp Leu Pro Ser Asn Ser Asn Asp Asp Leu Leu Ser
 620 625 630
 Leu Phe Glu Asn Asn
 635

<210> 7
 <211> 268
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 988966.17

<400> 7

Met	Thr	Glu	Pro	Gly	Ala	Ser	Pro	Glu	Asp	Pro	Trp	Val	Lys	Ala
1		5			10						15			
Ser	Pro	Val	Gly	Ala	His	Ala	Gly	Glu	Gly	Arg	Ala	Gly	Arg	Ala
					20			25			30			
Arg	Ala	Arg	Arg	Gly	Ala	Gly	Arg	Arg	Gly	Ala	Ser	Leu	Leu	Ser
					35			40			45			
Pro	Lys	Ser	Pro	Thr	Leu	Ser	Val	Pro	Arg	Gly	Cys	Arg	Glu	Asp
					50			55			60			
Ser	Ser	His	Pro	Ala	Cys	Ala	Lys	Val	Glu	Tyr	Ala	Tyr	Ser	Asp
					65			70			75			
Asn	Ser	Leu	Asp	Pro	Asp	Asp	Glu	Asp	Ser	Asp	Tyr	His	Gln	Glu
					80			85			90			
Ala	Tyr	Lys	Glu	Ser	Tyr	Lys	Asp	Arg	Arg	Arg	Arg	Ala	His	Thr
					95			100			105			
Gln	Ala	Glu	Gln	Lys	Arg	Arg	Asp	Ala	Ile	Lys	Arg	Gly	Tyr	Asp

	110		115		120									
Asp	Leu	Gln	Thr	Ile	Val	Pro	Thr	Cys	Gln	Gln	Gln	Asp	Phe	Ser
				125					130					135
Ile	Gly	Ser	Gln	Lys	Leu	Ser	Lys	Ala	Ile	Val	Leu	Gln	Lys	Thr
				140					145					150
Ile	Asp	Tyr	Ile	Gln	Phe	Leu	His	Lys	Glu	Lys	Lys	Lys	Gln	Glu
				155					160					165
Glu	Glu	Val	Ser	Thr	Leu	Arg	Lys	Asp	Val	Thr	Ala	Leu	Lys	Ile
				170					175					180
Met	Lys	Val	Asn	Tyr	Glu	Gln	Ile	Val	Lys	Ala	His	Gln	Asp	Asn
				185					190					195
Pro	His	Glu	Gly	Glu	Asp	Gln	Val	Ser	Asp	Gln	Val	Lys	Phe	Asn
				200					205					210
Val	Phe	Gln	Gly	Ile	Met	Asp	Ser	Leu	Phe	Gln	Ser	Phe	Asn	Ala
				215					220					225
Ser	Ile	Ser	Val	Ala	Ser	Phe	Gln	Glu	Leu	Ser	Ala	Cys	Val	Phe
				230					235					240
Ser	Trp	Ile	Glu	Glu	His	Cys	Lys	Pro	Gln	Thr	Leu	Arg	Glu	Ile
				245					250					255
Val	Ile	Gly	Val	Leu	His	Gln	Leu	Lys	Asn	Gln	Leu	Tyr		
				260					265					