[EEC3600-001] 수치해석				
소속: 전기전자공학부	이름: 장준영			
Python Programming	HW number: #4			

4.1. (4.1.1) Least Squares with orthogonal columns. (4.1.2) Least Squares and QR Factorization

a. 문제

Problem 4.1.1 (least squares with orthogonal columns) Suppose the $m \times n$ matrix Q has orthogonal columns, i.e., $Q^{\top}Q = I_{n \times n}$.

- (a) Show that $\hat{x} = Q^{T}b$ is the vector that minimizes $||Qx b||_{2}^{2}$.
- (b) What is the computational complexity of computing \hat{x} , given Q and b, and how does it compare to the complexity of a general least squares problems with an $m \times n$ coefficient matrix?

문제 4.1.1

Problem 4.1.2 (least squares and QR factorization) Suppose the $A \in \mathbb{R}^{m \times n}$ has linearly independent columns and QR factorization A = QR, and $b \in \mathbb{R}^m$. The vector $A\hat{x}$ is the linear combination of the columns of A that is closest to the vector b, i.e., it is the projection of b onto the set of linear combinations of the columns of A.

- (a) Show that $A\hat{x} = QQ^{\top}b$, where QQ^{\top} is called the projection matrix (can you think of its geometry?)
- (b) Show that $||A\hat{x} b||_2^2 = ||b||_2^2 ||Q^{\top}b||^2$. (This is that square of the distance between b and the closest linear combination of the columns of A.)

문제 4.1.2

b. 풀이

- 4.2. (Permutation Matrix) B가 A의 행 교환으로 생성된 행렬일 때, A의 역행렬을 알고 있다면 B의 역행렬을 (직접 구하지 말고) 구하시오.
 - a. 문제

Problem 4.2 Let

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & -4 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 & 1 & 3 \\ 3 & -1 & 2 \\ -2 & 2 & -4 \end{bmatrix}$$

(note that **B** is obtained by interchanging the first two rows of **A**). Knowing that

$$\mathbf{A}^{-1} = \begin{bmatrix} 0.5 & 0 & 0.25 \\ 0.3 & 0.4 & 0.45 \\ -0.1 & 0.2 & -0.15 \end{bmatrix}$$

determine \mathbf{B}^{-1} .

(Caution!) Do not directly compute the matrix inversion, but use A^{-1} to compute B^{-1} .

b. 풀이

여기서는 [행⇔ 2행 교환은 수행하는 정A각행령

$$\Rightarrow \beta = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$F: B' = \begin{bmatrix} 0 & 0.5 & 0.25 \\ 0.4 & 0.3 & 0.45 \\ 0.2 & -0.1 & -0.15 \end{bmatrix}$$

4.3. (Least Square Method 적용 1) 질량-연비 관계 추정

a. 문제

Problem 4.3The following table displays the mass M and average fuel consumption ϕ of motor vehicles manufactured by Ford and Honda in 2008. Fit a straight line $\phi = a + bM$ to the data and compute the standard deviation.

Model	M(kg)	$\phi(\text{km/liter})$
Focus	1198	11.90
Crown Victoria	1715	6.80
Expedition	2530	5.53
Explorer	2014	6.38
F-150	2136	5.53
Fusion	1492	8.50
Taurus	1652	7.65
Fit	1168	13.60
Accord	1492	9.78
CR-V	1602	8.93
Civic	1192	11.90
Ridgeline	2045	6.38

b. Python 코드

c. Python 출력 결과

\Users\SAMSUNG\OneDrive\Desktop\대학\Solution 모음\25-1\수치해석\HW\HW_4\hw4_3.py" " 회귀계수: a = 18.4099, b = -0.005833

d. 문제 해결 과정

- 1) $A^T A, A^T \emptyset$ 각각 계산.
- 2) 가우스 소거법 -> Backward Substitution 사용하여 $x = \begin{bmatrix} a \\ b \end{bmatrix}$ 구하기.

4.4. (Least Square Method 적용 2) Linear vs Quadratic

a. 문제

Problem 4.4 Fit a straight line and a quadratic to the data in the following table. Which

		2.5						
y	6.008	15.722	27.130	33.772	5.257	9.549	11.098	28.828

is a better fit?

b. Python 코드

```
# 가우스 소거 + 백워드 서브스티튜션
 def gaussian elimination(A, b):
     A = A.astype(float)
     b = b.astype(float)
     n = len(b)
     # Forward Elimination
     for i in range(n):
         for j in range(i+1, n):
             factor = A[j, i] / A[i, i]
             A[j, i:] -= factor * A[i, i:]
             b[j] -= factor * b[i]
     x = np.zeros(n)
     for i in range(n-1, -1, -1):
         x[i] = (b[i] - A[i, i+1:] @ x[i+1:]) / A[i, i]
x = np.array([1.0, 2.5, 3.5, 4.0, 1.1, 1.8, 2.2, 3.7])
y = np.array([6.008, 15.722, 27.130, 33.772, 5.257, 9.549, 11.098, 28.828])
A1 = np.vstack((np.ones_like(x), x)).T
ATA1 = A1.T @ A1
ATy1 = A1.T @ y
x1 = gaussian_elimination(ATA1.copy(), ATy1.copy())
y_pred1 = A1 @ x1
rss1 = np.sum((y - y_pred1)**2)
A2 = np.vstack((np.ones_like(x), x, x**2)).T
ATA2 = A2.T @ A2
ATy2 = A2.T @ y
x2 = gaussian_elimination(ATA2.copy(), ATy2.copy())
y_pred2 = A2 @ x2
rss2 = np.sum((y - y_pred2)**2)
print("1차 회귀식: y = \{:.4f\} + \{:.4f\}x".format(x1[0], x1[1]))
print("RSS = \{:.4f\}".format(rss1))
print("2차 회귀식: y = {:.4f} + {:.4f}x + {:.4f}x^2".format(x2[0], x2[1], x2[2]))
print("RSS = {:.4f}".format(rss2))
```

c. Python 출력 결과

d. 문제 해결 과정

- 1) y = a + bx에 대한 선형회귀 수행.
- 2) $y = a + bx + cx^2$ 에 대한 이차회귀 수행.
- 3) Python 코드 동작과정 설명
 - A^TA, A^Tb 각각 계산.
 - 가우스 소거법 -> Backward Substitution 사용하여 계수 최적화.
 - 각 방법에 대한 $rss = \sum (y \hat{y})^2$ 계산. -> 비교.

4.5. (Least Square Method 적용 3) sin, cos 계수 추정

a. 문제

Problem 4.5 Determine a and b for which $f(x) = a \sin(\pi x/2) + b \cos(\pi x/2)$ fits the following data in the least-squares sense.

x	-0.5 -3.558	-0.19	0.02	0.20	0.35	0.50
y	-3.558	-2.874	-1.995	-1.040	-0.068	0.677

b. Python 코드

```
def gaussian_elimination(A, b):
       A = A.astype(float)
       b = b.astype(float)
       n = len(b)
       for i in range(n):
             for j in range(i+1, n):
                 factor = A[j,i] / A[i,i]
A[j,i:] -= factor * A[i,i:]
                  b[j] -= factor * b[i]
       x = np.zeros(n)
       for i in range(n-1, -1, -1):
             x[i] = (b[i] - A[i,i+1:] @ x[i+1:]) / A[i,i]
  x_{vals} = np.array([-0.5, -0.19, 0.02, 0.20, 0.35, 0.50])
  y_vals = np.array([-3.558, -2.874, -1.995, -1.040, -0.068, 0.677])
  A = np.column_stack((
       np.sin(np.pi * x_vals / 2),
       np.cos(np.pi * x_vals / 2)
 ATA = A.T @ A
 ATy = A.T @ y_vals
 params = gaussian_elimination(ATA.copy(), ATy.copy())
 a, b = params
 y_pred = A @ params
 rss = np.sum((y_vals - y_pred)**2)
 print(f"회귀식: f(x) = {a:.4f} * sin(πx/2) + {b:.4f} * cos(πx/2)")
 print(f"RSS = {rss:.6f}")
x_plot = np.linspace(-0.6, 0.6, 300)
y_plot = a * np.sin(np.pi * x_plot / 2) + b * np.cos(np.pi * x_plot / 2)
plt.figure(figsize=(8, 5))
plt.igule(ilgs12e=(a, 3))
plt.scatter(x_vals, y_vals, color='red', label='Data points')
plt.plot(x_plot, y_plot, label=r'$f(x) = a \sin(\frac{\pi x}{2}) + b \cos(\frac{\pi x}{2})$', color='blue')
plt.title("Least Squares Fit of f(x) = a*sin(pi*x/2) + b*cos(pi*x/2)")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
```

c. Python 출력 결과

d. 문제 해결 과정

- 1) sin함수, cos함수에 각각 주어진 x 데이터 입력하여 계수행렬 A 생성.
- 2) Ax=y 풀기.
 - $A^T A, A^T b$ 각각 계산.
 - 가우스 소거법 -> Backward Substitution 사용하여 계수 최적화.

4.6. (Least Square Method 적용 4) 방사능 물질의 반감기 추정

a. 문제

Problem 4.6 The intensity of radiation of a radioactive substance was measured at half-year intervals. The results were

t (years)	0	0.5	1	1.5	2	2.5
γ	1.000	0.994	0.990	0.985	0.979	0.977
t (years)	3	3.5	4	4.5	5	5.5
γ	0.972	0.969	0.967	0.960	0.956	0.952

where γ is the relative intensity of radiation. Knowing that radioactivity decays exponentially with time, $\gamma(t) = ae^{-bt}$, estimate the radioactive half-life of the substance.

b. Python 코드

```
def gaussian_elimination(A, b):
    A = A.astype(float)
    b = b.astype(float)
    n = len(b)
    for i in range(n):
         for j in range(i+1, n):
             factor = A[j,i] / A[i,i]
             A[j,i:] -= factor * A[i,i:]
             b[j] -= factor * b[i]
    x = np.zeros(n)
    for i in range(n-1, -1, -1):
         x[i] = (b[i] - A[i,i+1:] @ x[i+1:]) / A[i,i]
t = np.array([0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5])
gamma = np.array([1.000, 0.994, 0.990, 0.985, 0.979, 0.977,
                  0.972, 0.969, 0.967, 0.960, 0.956, 0.952])
Y = np.log(gamma)
A = np.vstack((np.ones_like(t), -t)).T # Y = c - bt
ATA = A.T @ A
ATY = A.T @ Y
params = gaussian_elimination(ATA.copy(), ATY.copy())
c, b = params
a = np.exp(c)
half_life = np.log(2) / b
print(f" 계 4: a = {a:.6f}, b = {b:.6f}")
print(f"Radioactive Half-life ≈ {half_life:.4f} years")
t_plot = np.linspace(0, 6, 200)
gamma_fit = a * np.exp(-b * t_plot)
```

c. Python 출력 결과

- d. 문제 해결 과정
 - 1) $\gamma(t) = ae^{-bt}$; $\ln{\{\gamma(t)\}} = \ln a bt$ $\therefore Y = c bt \ (c = \ln a)$
 - 2) Ax=y 풀기.
 - $A^T A, A^T b$ 각각 계산.
 - 가우스 소거법 -> Backward Substitution 사용하여 계수 최적화.

4.7. (Least Square Method 적용 5) 다변수

a. 문제

Problem 4.7 Linear regression can be extended to data that depend on two or more variables (called multiple linear regression). If the dependent variable is z and independent variables are x and y, the data to be fitted have the form

x_1	y_1	z_1
x_2	y_2	z_2
x_3	y_3	z_3
:	:	:
x_n	y_n	z_n

Instead of a straight line, the fitting function now represents a plane:

$$f(x,y) = a + bx + cy.$$

Show that the normal equations for the coefficients are

$$\begin{bmatrix} n & \Sigma x_i & \Sigma y_i \\ \Sigma x_i & \Sigma x_i^2 & \Sigma x_i y_i \\ \Sigma y_i & \Sigma x_i y_i & \Sigma y_i^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \Sigma z_i \\ \Sigma x_i z_i \\ \Sigma y_i z_i \end{bmatrix}$$

b. 풀이

Solution
$$\mathbb{Z}_{A} = \alpha + b \chi_{A} + c y_{A}$$

$$O = \begin{bmatrix} \alpha \\ b \\ c \end{bmatrix}, \quad \mathcal{Z} = \begin{bmatrix} Z_{1} \\ Z_{2} \\ Z_{1} \end{bmatrix}, \quad A = \begin{bmatrix} 1 & \chi_{1} & y_{1} \\ 1 & \chi_{2} & y_{2} \\ 1 & \chi_{1} & \chi_{2} & y_{3} \end{bmatrix}$$

Normal Equation \mathbb{C} This is $X_{1} = X_{2} = X_{3} = X_{4} = X_$