Text Summarization

Review & Interview

一、 文本摘要总结

1. 模型

1.1. Seq2seq

Seq2seq 利用 RNN 分别构建 encoder 和 decoder。将原文按照顺序输入 encoder 中,得到一个 encoder 的隐含层变量,在解码的时候,将 decoder 的隐含层变量与 encoder 的隐含层变量进行注意力计算(加性、乘性),与当前 decoder 的输入(teacher forcing 方法)拼接送入 decoder。

1.2. PGN

为了解决 OOV 的问题,PGN 使用了 copy-net 的思想,将 encoder-decoder 计算注意力得到的 attention 分布与 decoder 预测的 vocabulary 分布结合,利用 source text 的词替换可能是 OOV 的词。

并且 PGN 使用了 Coverage Mechanism, 在损失函数中, 将重复关注的地方加大惩罚,

达到减少重复的目的。

1.3. Bert sum

Bert for summarization 是基于 Bert 的抽取式摘要模型,它将模型的输入格式进行了修改,原本的 Bert 输入为一个或两个句子,开头添加 CLS,句与句之间添加 SEP,而 Bert for summarizatio 是输入多个句子,每个句子开头添加 CLS,结尾添加 SEP。

将每个 CLS 标记取出,在 Bert 结构之后添加一个分类器,选择哪些 CLS 可以作为摘要抽取出来。这个分类器可以使用简单的一层或两次深度网络,也可以使用复杂一点的 transformer 的 encoder。

1.4. MatchSum

其模型结构与 Triple Siamese 相似,有原文、候选摘要、标准摘要三个输入,其中候选摘要是原文通过 bertsum 选出来得分较高的 m 个句子。通过从候选摘要里选出 n 个句子组成不同的摘要组合,与原文进行相似度计算,选出最佳摘要组合。MatchSum 的 loss 由两部分组成:

第一部分是基于候选摘要与原文档的相似度,其目标函数为:

$$L_1 = \max(0, f(D, C) - f(D, C^*) + \gamma_1)$$

同样是想让候选组合C与原文D的距离与标准摘要 C^* 和原文D的距离差小于边界值 γ_1 。 第二部分考虑候选摘要之间的差异性,即基于 margin loss 的思想,认为得分靠前的与得分靠后的有较大的差异,其损失函数可表示为:

$$L_2 = \max(0, f(D, C_i) - f(D, C_i) + (j - i) * \gamma_2), (i < j)$$

这里是对 C_k 进行了排序,当 $f(D,C_j) > f(D,C_i)$, $i,j \in k$ 时,令i < j。这里的思想是,假设 $f(D,C_i) = d_1$,那么排在后面的 $f(D,C_j)$ 则至少大于 $d_1 + (j-i) * \gamma_2$.,以此来拉开 C_i 和 C_j 的距离。

2. 解码策略

2.1. Greedy Decoding

每次选择当前解码出的最大概率的字当作下一次的输入。计算量小, 但是生成的句子可能不是最好的那一个, 也有可能陷入循环。

2.2. Beam Decoding

Greedy Decoding 的改进,每次解码选择当前概率与历史概率加和最大的 K 个字,用这 K 个字当作下一次的输入,当获得<STOP>时视为得到一个 hypothesis。解码停止的条件可以是事前定义好的时间步 T 或者是已获得 hypothesis 的数量 n。

2.3. Top-k sampling

由于 Beam Decoding 总是选择概率最大的几个词进行生成,与人类说话的情况不同。 因此引入随机取样。Top-k sampling 选择每个时间步中概率最大的 K 个词,从中进行随机选取。

2.4. Top-p(Nucleus) Sampling

由于 Top-k sampling 的采样在预测分布比较平缓时丢弃概率较大的词,或者比较集中时保留概率较小的词。

因此 Top-p(Nucleus) Sampling 设定了一个阈值 p,将解码概率从大到小排列,选择相加值大于 p 的前几个词作为采样对象。

$$\sum_{x \in V^{(p)}} P(x|x_{1:i-1}) \ge p.$$

OOV

3.1. Sub-word generation

根据 n-gram 将单词循环拆分成子词,由于这样会生成很多子词,因此加上一个哈希函数,将 n-gram 子词映射到一个 1 到 B 之间的整数。

3.2. Byte Pair Encoding(BPE)

基于词频的方法,确定期望的 subword 词表大小,将所有单词拆分为字符序列并在末尾添加后缀"\w",每次循环寻找出现频率最大的一个连续字节对,将其合并为一个新的 subword,直至达到设定的 subword 词表大小或下一个最高 频的字节对出现频率为 1。

3.3. WordPiece

wordPiece 和 BPE 类似,确定期望的 subword 词表大小,将所有单词拆分为字符序列并在末尾添加后缀"\w",但是 WordPiece 需要在训练集上训练一个语言模型,每次挑选能最大化减少 loss 的 subword,直至达到设定的 subword 词表大小或概率增量低于某一阈值。

3.4. Unigram Language Model

该模型需根据给定词序列优化下一个 subword 出现的概率, 计算每个 subword 的损失, 基于损失对 subword 排序并保留前 X‰。为了避免 OOV,建议保留字符级的单元。

4. Word-Repetition

4.1. Unlikelihood Training

为了解决生成语句重复的问题,在极大似然估计的基础设添加了惩罚项, y_neg 是已经生成过的词。

$$\mathcal{L}_{MLE}^{t} = -\log P(y_{t}^{*} \mid \{y^{*}\}_{< t}) \qquad \qquad \mathcal{L}_{UL}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t}))$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t})$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t})$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t})$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t})$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t})$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t})$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P(y_{neg} \mid \{y^{*}\}_{< t})$$

$$\mathcal{L}_{ULE}^{t} = -\sum_{y_{neg} \in \mathscr{C}_{*}} \log(1 - P($$

4.2. F2 Softmax

将 softmax 进行了拆分, 先根据词频划分不同的类别, 再在每个类别中划分具体的单词。

二、 训练技巧

1. Tensorflow pipeline

Tensorflow 提供了现成的结构进行数据的载入的优化操作。

```
import tensorflow as tf

def preprocess(record):
    ...

dataset = tf.data.Dataset.list_files(".../*.tfrecord")
dataset = dataset.interleave(TFRecordDataset, num_parallel_calls=Z)
dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

tf.data.experimental.AUTOTUNE
```

2. Before Training

2.1. Before Training Check

1.loss:在用很小的随机数初始化神经网络后, 第一遍计算 loss 可以做一次检查(当然要记得把正则化系数设为 0)。

2.接着把正则化系数设为正常的小值,加回正则化项,这时候再算损失/loss,应该比刚才要大一些。

3.试着去拟合一个小的数据集。最后一步,也是很重要的一步,在对大数据集做训练之

前,先训练一个小的数据集,然后看看你的神经网络能够做到 0 损失/loss (当然,是指的正则化系数为 0 的情况下),因为如果神经网络实现是正确的,在无正则化项的情况下,完全能够过拟合这一小部分的数据

2.2. Parameter Tuning

神经网络的训练过程中,不可避免地要和很多超参数打交道,需要手动设定,大致包括: 1.初始学习率 2.学习率衰减程度 3.正则化系数/强度(包括 I2 正则化强度, dropout比例) 对于大的深层次神经网络而言,我们需要花一些时间去做超参数搜索,以确定最佳设定。最直接的方式就是在框架实现的过程中,设计一个会持续变换超参数实施优化,并记录每个超参数下每一轮完整训练迭代下的验证集状态和效果。实际工程中,神经网络里确定这些超参数,我们一般很少使用n 折交叉验证,一般使用一份固定的交叉验证集就可以了。

一般对超参数的尝试和搜索都是在 log 域进行的。例如,一个典型的学习率搜索序列就是 learning_rate = 10 ** uniform(-6, 1)。另外还得注意一点,如果交叉验证取得的最佳超参数结果在分布边缘,要特别注意,也许取的均匀分布范围本身就是不合理的,也许扩充一下这个搜索范围会有更好的参数

2.3. Find Proper Learning Rate

一般来说, 越大的 batch-size 使用越大的学习率。

原理很简单, 越大的 batch-size 意味着我们学习的时候, 收敛方向的 confidence 越大, 我们前进的方向更加坚定, 而小的 batch-size 则显得比较杂乱, 毫无规律性, 因为相比批次大的时候, 批次小的情况下无法照顾到更多的情况, 所以需要小的学习率来保证不至于出错。

3. Training

3.1. Loss not Decrease

- 1)数据的输入是否正常, data 和 label 是否一致。
- 2) 网络架构的选择, 一般是越深越好, 但是也分数据集。 并且用不用在大数据集上 pre-train 的参数也很重要的。
 - 3) loss function 对不对

4. After Training

4.1. Hard Negative Mining

在任何一个深度学习任务中,我们都会遇到一些比较"棘手"的数据,这些数据相比较于 其他的普通数据更难识别,这种特比容易识别错误的例子就称为 hard-negative。

方法: 我们可以先用初始的正负样本(一般是正样本+与正样本同规模的负样本的一个子集)训练分类器, 然后再用训练出的分类器对样本进行分类, 把其中负样本中错误分类的那些样本(hard negative)放入负样本集合, 再继续训练分类器, 如此反复, 直到达到停止条件(比如分类器性能不再提升)。也就是不停的将困难样本拿去训练, 让分类器更好地学习到难以学习的特征, 简单来说就是熟能生巧。