EMG-triggered surface FES for arm reaching in tetraplegia

Dimitra Blana, Edward K Chadwick
Institute for Science and Technology in Medicine, Keele University

Neil Postans, Simon Pickard
Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry

Implanted FES for restoring arm function

Implanted FES for restoring arm function

Surface FES for restoring arm function?

Surface FES for restoring arm function?

To optimise the design

Selection of muscle and nerve-cuff electrodes for neuroprostheses using customizable musculoskeletal model

Dimitra Blana, PhD; 1-2 Juan G. Hincapie, PhD; 1 Edward K. Chadwick, PhD; 1-2* Robert F. Kirsch, PhD^{1,3}

¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH; ²Department of Sport and Exercise Science, Aberystwyth University, Aberystwyth, UK; ³Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH

- To optimise the design
- To be a testing platform

- To optimise the design
- To be a testing platform
- To act as (part of) the device controller

- To optimise the design
- To be a testing platform
- To act as (part of) the device controller

EMG-triggered surface FES

The patient was a 56-year old male, 19 months post injury (C4 Frankel A with some denervation at C8, but stimulatable C5,6 & 7).

EMG-triggered surface FES

The patient was a 56-year old male, 19 months post injury (C4 Frankel A with some denervation at C8, but stimulatable C5,6 & 7).

We used an Ottobock STIWELL surface stimulator and placed recording EMG electrodes on the biceps and anterior deltoid, and stimulating electrodes on the triceps and wrist extensors.

The algorithm

Reaching out:

Bringing the arm in:

The deltoid activity is slowly increased while the biceps is off.

When the deltoid reaches the threshold of 10%

the triceps is stimulated and the elbow fully extends.

The deltoid activity is slowly increased while the biceps is off.

When the deltoid reaches the threshold of 10%

the triceps is stimulated and the elbow fully extends.

The deltoid activity is slowly increased while the biceps is off.

When the deltoid reaches the threshold of 10%

the triceps is stimulated and the elbow fully extends.

The biceps activity is then slowly increased.

When it reaches a threshold of 5% the triceps stimulation is turned off and the elbow flexes.

The biceps activity is then slowly increased.

When it reaches a threshold of 5% the triceps stimulation is turned off and the elbow flexes.

Graphical Interface

Sliders for deltoid and biceps "EMG"

control the triceps stimulation

Next steps

EMG-controlled

- Test EMG-triggered surface FES for arm reaching in tetraplegia
- Explore other technologies that could work with FES
- Optimize the choice and combination of EMG control signals using personalised computer simulations

