The Network Layer

Gihan Dias

Network Layer

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

- Establishing,
- Maintaining &
- Terminating connections
- Isolating upper layers
 - from data transmission technologies
- Addressing
- Routing

Packet Switching

- Network comprises a set of nodes (switches or routers)
 - intermediate stations

Packet Switching (cont.)

- Data stream is divided into packets
- Each packet comprises data and a header

Header

Data

- Data sent from one host to another
 - end stations
- Each node switches each incoming packet through a link to another node
- Packets make their way through the network from node to node and finally to their destination

Packet Switching

Types of Networks

- Connectionless
- Connection-oriented

Connectionless Networks

- Datagram service
- No need to establish connection
- Routing on a per-packet basis
- Generally no error control

Connectionless switching

- Each packet contains the destination address
- Each node contains a forwarding table giving the next hop for each destination address

Forwarding Table for Router A

Packet Forwarding (connectionless)

Connection-oriented Networks

- Connection set up between end stations before data is transferred
- End stations exchange sequenced packet streams
- Routing on per-connection basis
- Network generally provides error control

- Each incoming virtual circuit on a switch has a connection identifier
 - unique for each link
- Each outgoing virtual circuit on a switch has a connection identifier
 - unique for each link
- Each switch has a forwarding table relating incoming and outgoing CIs

Forwarding Table for A (connection-oriented)

Packet Forwarding (CO)

Comparison of CO and CL Networks

Issue	Connectionless	Conn-oriented	
Setup	Not needed	Needed	
Addressing in packet	Destination address	Connection ID	
State	No state in routers	State in routers	
Routing	Per-packet	Per-connection	
Failures	Minimal	VCs are terminated	
Quality of Service	Difficult	Possible	
Congestion control	Difficult	Possible	

Addressing

- Function of addressing
 - to identify end stations

e.g.

- Names
- NIC Numbers / Registration Nos.
- Postal Addresses
- Telephone Numbers

Types of addressing

- Flat
- Hierarchical

- Addressing is done in several layers
 - physical
 - data-link
 - network
 - application

Flat Addressing

- Personal Names
 - Gihan Dias
 - Shantha Fernando
 - Gihan Fernando
- Ethernet Addresses
 - -54b37630e050
 - -549395b2a750

Hierachical Addresing

Postal Address

V. C. Silva
Dept. of Computer Sci. & Eng.
University of Moratuwa
Moratuwa
Sri Lanka

operator code

Telephone No

country code
94 11 2 640382
area code

telephone no 21

- Function
 - to set up a connection or route a packet from source to destination
- End systems
 - do not relay traffic
- Intermediate systems
 - route traffic from one subnet to another
 - phys & DL conn between ES-IS & IS-IS

- Forwarding
 - done by a router on arrival of each packet
 - switches a packet from an input line to an output line
 - based on a forwarding table
- Routing
 - builds forwarding tables
 - based on a number of factors

Properties Desirable in a Routing Algorithm

- correctness
- simplicity
- robustness
- stability
- fairness
- optimality

Types of Routing

- Static (non-adaptive)
 - routing tables are pre-defined
 - address-based (hierarchical)
- Dynamic (adaptive)
 - Network runs a routing protocol to compute routes
 - centralised
 - distributed

Types of Routing (contd.)

- Source routing
 - source station specifies route

- Each intermediate station contains a routing table containing the next hop for each address
 - Most tables include a default route
- Suitable for small networks
- Not resilient
- Labour consuming

Hierarchical routing

- use a prefix of the destination address (most significant part)
- If prefix is in routing table route accordingly
- else use default route

Simplifies the routing table

Dynamic (adaptive) Routing

- Intermediate Stations exchange routing information periodically
- Each station computes best path to each destination
- Based on
 - link speed delay
 - congestion error rate
 - cost policy

Distance

In routing, distance may be defined by

- no. of hops
- physical distance
- delay
- bandwidth (inverse)
- communication cost
- etc.

- Shortest Path Routing
 - calculates the shortest path between pairs of nodes
- Flooding
 - packets are sent on all unused links
- Distance Vector Routing
 - each router has table of distances to each destination

Routing Mechanisms (cont.)

- Link State Routing
 - keeps track of the state of each link
- Broadcast Routing
 - sends packet to all nodes in a network

- In a large network, it is infeasible to keep track of all nodes
 - over 100,000 networks on the Internet
- routers are grouped into regions
 - each region handles internal routing
- gateways handle routing between regions
- may need more than two levels

Hierarchical Routing

Multicast Routing

- Sending a packet to a subset of hosts
- May have a number of multicast groups
- At each router, packet may be forwarded to zero or more links
- Router must keep track of which groups are accessible via each link

Congestion

A network is congested when the offered traffic approaches its capacity

- attempts to avoid congestion
- Closed loop
 - takes action when congestion is about to occur
 - monitor system
 - pass information to appropriate place
 - take action

Quality of Service

Applications have differing requirements

Application	Reliability	Delay	Jitter	Bandwidth
e-mail	hign	not critical	don't care	low
File Transfer	hign	not critical	don't care	medium
Web	hign	< 2s	don't care	medium
Remote login	hign	<2s	not critical	low
Audio streamng	low	not critical	significant	medium
Video streaming	low	not critical	significant	high
Telephony	low	<0.2s	critical	low
Video conf	low	<0.2s	critical	High

QoS Techniques

- Over provisioning
- Buffering
- Traffic Shaping

- Integrated Services
 - -e.g. RSVP
 - ensure a quality of service for each flow
- Differentiated Services
 - divide traffic in to classes
 - provide different services (bandwidth, priority, delay) for each class

Internetworking

- Networks differ from each other
- Issues in interconnection
 - service offered
 - protocols
 - addressing
 - packet size
 - quality of service
 - security
 - etc.

Interconnection Methods

- Physical Layer
 - repeaters and hubs
- Data Link Layer
 - bridges and switches
- Network Layer
 - routers
- Transport Layer
 - transport gateways
- Application Layer
 - application gateways