Prellberg

I - --- 17

Lecture 18

MAS115 Calculus I Week 6

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

2007/08

Prellberg

Lecture 16 Lecture 17

- Rules of Differentiation
- Higher Derivatives
- Derivatives of Trigonometric Functions
- The Chain Rule

Parametric equations

Lecture 16 Lecture 17

Describe a point moving in the xy-plane as a function of a parameter t ("time") by two functions

$$x = x(t)$$
, $y = y(t)$

This may be the graph of a function, but it need not be.

Prellberg

Lecture 16 Lecture 17

DEFINITION Parametric Curve

If x and y are given as functions

$$x = f(t), \qquad y = g(t)$$

over an interval of t-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a **parametric curve**. The equations are **parametric equations** for the curve.

- t is called a parameter for the curve.
- If $t \in [a, b]$, then

$$(f(a), g(a))$$
 is the initial point $(f(b), g(b))$ is the terminal point

Example: Motion on a Circle

$$x = \cos t$$
, $y = \sin t$, $0 \le t \le 2\pi$

describes motion on a circle with radius 1:

The motion starts at initial point (1,0) and traverses the circle $x^2 + y^2 = 1$ anticlockwise once, ending at the terminal point (1,0).

Example: Moving along a parabola

Lecture 16 Lecture 17

$$x = \sqrt{t}$$
, $y = t$, $t \ge 0$

solve this as y = f(x):

$$y = t = (\sqrt{t})^2 = x^2$$

Note that the domain of f is $[0,\infty)$

Lecture 17 Lecture 18

Find a parametrisation for the line segment from (-2,1) to (3,5):

• start at (-2,1) for t=0

$$x = -2 + at , \quad y = 1 + bt$$

• end at (3,5) for t=1

$$3 = -2 + a$$
, $5 = 1 + b$

• we conclude a = 5 and b = 4

Solution:
$$x = -2 + 5t$$
, $y = 1 + 4t$, $0 \le t \le 1$

Lecture 16 Lecture 17

A parametrised curve x = f(t), y = g(t) is differentiable at t if f and g are differentiable at t.

If y is a differentiable function of x, say y = h(x), then y = h(x(t)) and by the Chain Rule

$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$$

Therefore, if $\frac{dx}{dt} \neq 0$

Parametric Formula for dy/dx

If all three derivatives exist and $dx/dt \neq 0$,

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

Example: Moving along an Ellipse

Compute the slope at a point (x, y) of

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

• Parametrisation (use $\cos^2 t + \sin^2 t = 1$):

$$x = a \cos t$$
, $y = b \sin t$, $0 \le t \le 2\pi$

• Differentiate $\frac{dx}{dt} = -a \sin t$, $\frac{dy}{dt} = b \cos t$ and therefore

$$\frac{dy}{dx} = \frac{b\cos t}{-a\sin t}$$

 \bullet Eliminating t, we obtain

$$\frac{dy}{dx} = -\frac{b^2}{a^2} \frac{x}{y}$$

Lecture 17 Lecture 18

$$y' = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \quad y'' = ?$$

Remember y'' = (y')':

Parametric Formula for d^2y/dx^2

If the equations x = f(t), y = g(t) define y as a twice-differentiable function of x, then at any point where $dx/dt \neq 0$,

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}.$$

Example continued: $y' = -\frac{b}{a} \frac{\cos t}{\sin t}$ gives

$$y'' = \frac{\frac{d}{dt} \left[-\frac{b}{a} \frac{\cos t}{\sin t} \right]}{-a \sin t} = -\frac{b}{a^2} \frac{1}{\sin^3 t} = -\frac{b^4}{a^2} \frac{1}{y^3}$$

 $0 \le t \le 2\pi$

Lecture 16

Standard Parametrizations and Derivative Rules

CIRCLE
$$x^2 + y^2 = a^2$$
:
 $x = a \cos t$
 $y = a \sin t$
ELLIPSE $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$:
 $x = a \cos t$
 $y = b \sin t$

Function
$$y = f(x)$$
: Derivatives

 $0 \le t \le 2\pi$

Lecture 16 Lecture 17 Lecture 18

We want to compute y' but don't have y = f(x) but rather

$$F(x,y)=0\;,$$

an implicit relation between x and y.

• One way is parametrisation, for example $x = \cos t$, $y = \sin t$ gives

$$F(x,y) = x^2 + y^2 - 1 = 0$$
.

We've just done this.

• Another way, if no obvious parametrisation of F(x, y) = 0 is possible: Differentiate the relation directly!

Lecture 16 Lecture 17

Given $y^2 = x$, compute y':

• Of course we know already that we have two solutions $y_{1,2}=\pm\sqrt{x}$ with derivatives $y'_{1,2}=\pm\frac{1}{2\sqrt{x}}$.

New method:

solve for y' to get

$$y' = \frac{1}{2y}$$

• Substituting $y = y_{1,2} = \pm \sqrt{x}$ gives the above result.

Lecture 16 Lecture 17

Implicit Differentiation

- Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
- 2. Collect the terms with dy/dx on one side of the equation.
- 3. Solve for dy/dx.

Return to ellipse: differentiate

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

directly

$$\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0$$

Solve for y':

$$y' = -\frac{b^2}{a^2} \frac{x}{v}$$

Lecture 16 Lecture 17 Lecture 18

Implicit differentiation also works for higher derivatives:

We had

$$\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0$$

Differentiate again:

$$\frac{2}{a^2} + \frac{2(y'^2 + yy'')}{b^2} = 0$$

Now insert $y' = -\frac{b^2}{a^2} \frac{x}{y}$ and simplify (this takes a few steps)

$$y'' = -\frac{b^4}{a^2} \frac{1}{v^3}$$

Notice that y' and y'' are identical to the result obtained using parametric equations.

Revision

Lecture 16

Lecture 17

- Parametric Equations
 - Parametric Differentiation
 - Implicit Relation
 - Implicit Differentiation

Lecture 17

Lecture 1

Differentiate $y = x^{\frac{p}{q}}$ using implicit differentiation:

write

$$y^q = x^p$$

differentiate

$$qy^{q-1}y'=px^{p-1}$$

• solve for y':

$$y' = \frac{p}{q} \frac{x^{p-1}}{y^{q-1}} = \frac{p}{q} \frac{x^p}{y^q} \frac{y}{x} = \frac{p}{q} \frac{y}{x} = \frac{p}{q} \frac{x^{\frac{p}{q}}}{x} = \frac{p}{q} x^{\frac{p}{q}-1}$$

THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then $x^{p/q}$ is differentiable at every interior point of the domain of $x^{(p/q)-1}$, and

$$\frac{d}{dx}x^{p/q} = \frac{p}{q}x^{(p/q)-1}.$$

Linearisation

"Close to" the point (a, f(a)), the tangent

$$y = f(a) + f'(a)(x - a)$$

is a "good" approximation for y = f(x)

DEFINITIONS Linearization, Standard Linear Approximation

If f is differentiable at x = a, then the approximating function

$$L(x) = f(a) + f'(a)(x - a)$$

is the linearization of f at a. The approximation

$$f(x) \approx L(x)$$

of f by L is the **standard linear approximation** of f at a. The point x = a is the **center** of the approximation.

Lecture 17

Lecture 18

Compute the linearisation for

$$f(x) = \sqrt{1+x} \; , \quad a = 0$$

$$f(0) = 1$$
, $f'(0) = \frac{1}{2}$

$$L(x)=1+\frac{1}{2}x$$

So "near" x = 0 we have

$$\sqrt{1+x} \approx 1 + \frac{1}{2}x$$

Example

Lecture 17

Approximation	True value	True value - approximation
$\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.10$	1.095445	$<10^{-2}$
$\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$	1.024695	<10 ⁻³
$\sqrt{1.005} \approx 1 + \frac{0.005}{2} = 1.00250$	1.002497	<10 ⁻⁵

Differentials

- The derivative $y' = \frac{dy}{dx}$ is not a ratio!
- Introduce two new variables dx and dy with the property that if their ratio exists, it will be equal to the derivative:

DEFINITION Differential

Let y = f(x) be a differentiable function. The **differential** dx is an independent variable. The **differential** dy is

$$dy = f'(x) dx$$
.

Differentials

Lecture 16

Geometrically, dy is the change in the linearisation of f if x changes by dx

Estimating with Differentials

Lecture 17

True value:

$$f(a + \Delta x) = f(a) + \Delta f$$

Approximation:

$$f(a + \Delta x) \approx f(a) + \Delta y$$

= $f(a) + f'(a)\Delta x$

• The approximation error is

$$\Delta f - f'(a)\Delta x = f(a + \Delta x) - f(a) - f'(a)\Delta x$$
$$= \underbrace{\left[\frac{f(a + \Delta x) - f(a)}{\Delta x} - f'(a)\right]}_{\epsilon} \Delta x$$

• As $\Delta x \to 0$, we find that $\epsilon \to 0$.

Theorem

If f(u) is differentiable at u = g(x) and g(x) is differentiable at x then $(f \circ g)'(x) = f'(g(x))g'(x)$.

Proof.

We have $\Delta u = (g'(x) + \epsilon_1)\Delta x$ with $\epsilon_1 \to 0$ as $\Delta x \to 0$.

Similarly, $\Delta y = (f'(u) + \epsilon_2)\Delta u$ with $\epsilon_2 \to 0$ as $\Delta u \to 0$.

Together,

$$\frac{\Delta y}{\Delta x} = (f'(u) + \epsilon_2)(g'(x) + \epsilon_1).$$

Therefore.

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(u)g'(x) .$$

Extreme Values of Functions

Lecture

Lecture 17

Lecture 1

DEFINITIONS Absolute Maximum, Absolute Minimum

Let f be a function with domain D. Then f has an **absolute maximum** value on D at a point c if

$$f(x) \le f(c)$$
 for all x in D

and an **absolute minimum** value on D at c if

$$f(x) \ge f(c)$$
 for all x in D .

Example

Lecture 18

	Domain	abs. max.	abs. min.
(a)	$(-\infty,\infty)$	none	0, at 0
(b)	[0, 2]	4, at 2	0, at 0
(c)	(0, 2]	4, at 2	none
(d)	(0,2)	none	none

Existence of a Global Maximum/Minimum

Lecture 17

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute maximum value M and an absolute minimum value m in [a, b]. That is, there are numbers x_1 and x_2 in [a, b] with $f(x_1) = m$, $f(x_2) = M$, and $m \le f(x) \le M$ for every other x in [a, b] (Figure 4.3).

at interior points

Minimum at interior point, maximum at endpoint

Prellberg

Local (Relative) Extreme Values

Lecture

Lecture 17

Lecture 1

DEFINITIONS Local Maximum, Local Minimum

A function f has a **local maximum** value at an interior point c of its domain if

$$f(x) \le f(c)$$
 for all x in some open interval containing c.

A function f has a **local minimum** value at an interior point c of its domain if

$$f(x) \ge f(c)$$
 for all x in some open interval containing c.

Prellberg

Finding Extreme Values

Lecture 1

Lecture 17

Lecture 1

Theorem

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.

Finding Extreme Values

Lecture 17

Lecture 18

Theorem

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.

Proof.

If at a local *maximum c* the derivative

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

exists, then

$$f'(c) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$$

and $f'(c) = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \ge 0$

so that f'(c) = 0. (Similarly for *minimum*.)

Revision

Lecture 16

Lecture 1

Lecture 18

- Linearisation, Differentials
- Proof of the Chain Rule
- Local and Global Extrema

Prellberg

Finding Extreme Values

Lecture 1

Lecture 1

Lecture 18

Theorem

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.

Finding Extreme Values

Where can a function f possibly have an extreme value?

- at interior points where f' = 0
- at interior points where f' is not defined
- at endpoints of the domain of f.

DEFINITION Critical Point

An interior point of the domain of a function f where f' is zero or undefined is a **critical point** of f.

How to Find the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

- 1. Evaluate f at all critical points and endpoints.
- 2. Take the largest and smallest of these values.

Find the absolute extrema of $f(x) = x^2$ on [-2, 1]:

- f is differentiable on [-2,1] with f'(x) = 2x
- critical point: $f'(x) = 0 \implies x = 0$
- endpoints x = -2, x = 1
- f(0) = 0, f(-2) = 4, f(1) = 1

Therefore f has an absolute maximum value of 4 at x=-2 and an absolute minimum value of 0 at x=0.

Find the absolute extrema of $g(t) = 8t - t^4$ on [-2, 1]:

- g is differentiable on [-2,1] with $g'(t) = 8 4t^3$
- critical point: $g'(t) = 0 \implies t = \sqrt[3]{2} > 1$
- endpoints t = -2, t = 1
- g(-2) = -32, g(1) = 7

Therefore g has an absolute maximum value of 7 at t=1 and an absolute minimum value of -32 at t=-2.

Find the absolute extrema of $f(x) = x^{2/3}$ on [-2,3]:

- f is differentiable on $[-2,0) \cup (0,3]$ with $f'(x) = \frac{2}{3}x^{-1/3}$
- critical point: f'(x) = 0 or f'(x)undefined $\Rightarrow x = 0$
- endpoints x = -2, x = 3
- $f(-2) = \sqrt[3]{4}$, f(0) = 0, $f(3) = \sqrt[3]{9}$

Therefore f has an absolute maximum value of $\sqrt[3]{9}$ at x=3 and an absolute minimum value of 0 at x=0.

Rolle's Theorem

Lecture 1

ecture 1

Lecture 18

Theorem

Let f(x) be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b) then there exists a $c \in (a, b)$ with

$$f'(c)=0.$$

Rolle's Theorem

Lecture 16

Lecture 1

Lecture 18

Theorem

Let f(x) be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b) then there exists a $c \in (a,b)$ with

$$f'(c)=0.$$

Proof.

minimum.

• f is continuous on [a, b], so it has absolute maximum and

- these occur only if f'(x) = 0 on (a, b), or else at a or b.
- if one of them occurs at $c \in (a, b)$, then f'(c) = 0 (and we're done).
- if not, both must occur at the endpoints. But as f(a) = f(b), f(x) must then be constant and therefore f'(x) = 0 on [a, b].

Rolle's Theorem

Theorem

Let f(x) be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b) then there exists a $c \in (a, b)$ with

$$f'(c)=0.$$

All assumptions are necessary:

(a) Discontinuous at an endpoint of [a, b]

(b) Discontinuous at an interior point of [a, b]

(c) Continuous on [a, b] but not differentiable at an interior point

Lecture 18

Horizontal tangents of $f(x) = \frac{x^3}{3} - 3x$ on [-3, 3]:

•
$$f(-3) = 0$$
, $f(3) = 0$

• by Rolle's Theorem there exists a $c \in [-3, 3]$ with f'(c) = 0

We find indeed from $f'(x) = x^2 - 3 = 0$ that $x = \pm \sqrt{3}$.

Prellberg

Lecture 17

Show that $x^3 + 3x + 1 = 0$ has exactly one real solution:

- Consider $f(x) = x^3 + 3x + 1$
- $f'(x) = 3x^2 + 3 > 0$ for all $x \in (-\infty, \infty)$
- If there were two solutions with f(x) = 0, then by Rolle's Theorem for some c we have f'(c) = 0. Therefore f(x) = 0 can have at most one solution.

Furthermore, as f(-1) = -3 and f(0) = 1, the Intermediate Value Theorem implies that there is a solution to f(x) = 0 in (-1,0).

l - -t.... 16

Lecture 1

Locald .

Lecture 18

Let f(x) be continuous on [a, b] and differentiable on (a, b). Then there exists a $c \in (a, b)$ with

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

MAS115 Prellberg

Lecture 18

The Mean Value Theorem

Lecture 16

Theorem

Let f(x) be continuous on [a, b] and differentiable on (a, b).

Then there exists a $c \in (a, b)$ with

$$f'(c) = \frac{f(b) - f(a)}{b - a} .$$

Proof.

• straight line through (a, f(a)) and (b, f(b)) given by

$$g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

- for h(x) = f(x) g(x), both h(a) = 0 and h(b) = 0
- apply Rolle's Theorem: there is a $c \in (a, b)$ with h'(c) = 0
- apply Rolle's Theorem: there is a $c \in (a, b)$ with h'(c) = 0 as $h'(x) = f'(x) \frac{f(b) f(a)}{b a}$, this implies $f'(c) = \frac{f(b) f(a)}{b a}$.

The Mean Value Theorem

Lecture 1

Lecture 1

Lecture 18

Theorem

Let f(x) be continuous on [a, b] and differentiable on (a, b). Then there exists a $c \in (a, b)$ with

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

$$f(x) = \sqrt{1 - x^2}$$
 on $[-1, 1]$:

- f(x) is continuous on [-1,1] and differentiable on (-1,1) (but not at ± 1)
- therefore there is a $c \in (-1,1)$ with

$$f'(c) = \frac{f(-1) - f(1)}{1 - (-1)} = 0$$

(We compute easily that c = 0)

$$f(x) = x^2 \text{ on } [0, 2]$$
:

- f(x) is continuous and differentiable on [0, 2]
- therefore there is a $c \in (0,2)$ with

$$f'(c) = \frac{f(2) - f(0)}{2 - 0} = 2$$

(We compute easily that c=1)

Corollary If f'(x) = 0 on (a, b) then f(x) = C for all $x \in (a, b)$.

Proof.

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

For any $x_1, x_2 \in (a, b)$ with $x_1 < x_2$ there is a $c \in (x_1, x_2)$ with

but as f'(c) = 0 by assumption, it follows that

$$f(x_2)=f(x_1).$$

As x_1 and x_2 are chosen arbitrarily in (a, b), f(x) is constant for all $x \in (a, b)$.

Lecture 18

Corollary

If f'(x) = g'(x) on (a, b) then

$$f(x) = g(x) + C$$

for all $x \in (a, b)$.

Proof.

Consider h(x) = f(x) - g(x). As

$$h'(x) = f'(x) - g'(x) = 0$$

on (a, b), h(x) = C by the previous

Corollary and so f(x) = g(x) + C.

Lecture 16
Lecture 17
Lecture 18

Find the function f(x) whose derivative is $\sin x$ and whose graph passes through (0,2):

• $g(x) = -\cos x$ satisfies

$$g'(x) = \sin x = f'(x)$$

• Therefore f(x) = g(x) + C, i.e.

$$f(x) = -\cos x + C$$

• f(0) = 2 gives

$$2 = -\cos 0 + C$$

so that C = 3

$$f(x) = 3 - \cos x$$

Reading Assignment

Lecture 16

Lecture 17

Lecture 18

Sections 4.3 and 4.4 (needed for coursework 7)

MAS115

Prellberg

Lecture 1

. . .

Lecture 18

The End