Shuffling

- O processo de "shuffling" dos dados é caro em muitos aspectos
 - Processos iniciais, tolerância a falhas, etc.
 - Dica: Minimize o uso
- Vamos rever alguns exemplos de um programa de contagem de palavras utilizando "shuffling"
 - Baseados em RDD

reduceByKey()

- Perceba que os pares em comum são combinados em cada partição primeiro
 - Reduz de forma significative o tamanho dos dados antes de fazer o "shuffling"
 - Os dados passam então pelo processo de "shuffling" de forma mais rápida

groupByKey()

 Todos os dados passam pelo processo de "shuffling" antes de serem reduzidos

Joins e Shuffling

- Uma instrução "join" combina linhas de dois ou mais Datasets
 - Baseado em relações entra valores de colunas
 - Os valores das colunas são comparados e devem ser iguais
- Para um "join" distribuído, os dados passam por "shuffling"
 - Para que as linhas com os mesmos valores para a (s) coluna (s) de "join" estejam na mesma máquina
 - O "join" pode então ser realizada em cada partição e então combinado
- O tipo "join" acima pode exigir que os dados passem muito pelo processo de "shuffling"
 - Especialmente se você tiver um grande conjunto de dados
 - Shuffling == performance reduzida

Exemplo: Shuffling em Join

- Considere o exemplo abaixo
 - Spark realiza um "shuffle" para realizar o "join" entre os RDDs

```
// RDD de (URL, visit) e.g. { ("index.html", "1.2.3.4"),
// ("about.html", "3.4.5.6"),("index.html", "1.3.3.1") }
> val visits = sc.textFile("visits.txt").map(...)

// RDD de (URL, name) e.g.
// { ("index.html", "Home"), ("about.html", "About") }
> val pageNames = sc.textFile("pages.txt").map(...)

// O join entre eles deve retornar { (about.html, (3.4.5.6,About) ... }
> val joined = visits.join(pageNames)
```


Pré-particionamento para Reduzir o Shuffling

- Queremos minimizer o processo de "shuffling" nos dados
 - Se você fizer um hash-partition por "visits" antes de fazer o "join", então não será necessário fazer o "shuffling"
 - E geralmente, os dados de "visits" é muito maior que os dado de "pages"
 - Então, isso pode reduzir considerávelmente o "shuffling"

Resumo

- Ilustramos algumas preocupações em relação ao "shuffling"
 - Estes são pontos importates para se entender
 - Mas em um nível mais baixo— o COMO dos processos do Spark
 - Estamos pensando em como o interior do Spark se comporta
 - NÃO é o que queremos pensar para cada transformação
 - · Tedioso, complexo e frágil
 - Queremos focar no O QUE
 - Não no COMO
- O Otimizador Catalyst te permite focar no O QUE
 - Ele vai otimizar o COMO para você
 - Quando trabalhando apropriadamento com DataFrames, Datasets, e SQL
 - NÃO usado quando trabalhamos com RDDs

Parte 5.3: O otimizador Catalyst

Visão geral sobre Catalyst

- O Catalyst automáticamente otimiza o seu código Spark
 - Quando é usado SQL, DataFrames, ou Datasets
 - Você foca no O QUE
 - O Catalyst automáticamente busca e realiza o melhor COMO

Como o Catalyst Funciona

- Otimiza a sua transformação de ponta-a-ponta
 - Cria uma representação abstrata (uma árvore)
 - O Plano Lógico de Análise
 - Analisa e otimiza a representação abstrata
 - Usando muitas regras de otimização
 - · Criando o Plano Lógico Análisado e o Plano Lógico Otimizado
 - Converte a representação abstrata para transformações reais
 - · Cria múltiplos planos reais, aplica o modelo de custo e escolhe o melhor
 - Criando assim o Plano Físico

Quais otimizações são feitas pelo Catalyst?

- Provavelmente, mais do que você pode imaginar, incluindo :
 - Predicate Pushdown: Faça com que os filtros sejam uma das primeiras coisas a serem aplicadas
 - Elimina linhas que não atendem as pré-condições de processamento
 - Projection Pushdown: Faça com que as projeções de resultado sejam uma das primeiras coisas a serem aplicadas
 - Eliminando colunas que não vão ser usadas
 - Reduzir o "shuffling": e.g. reduzindo antes de agrupar
 - Ou criando uma relação de uma maneira mais mais eficiente
 - Cruzamento constante: Cruze cálculos de constantes em literais
 - Outras otimizações: e.g. converter operações em Decimal para operações em Long
 - E muito mais
- Faremos alguns exemplos para ver tudo isso em ação

Exemplo: Contagem de palavras com o DSL

- Utiliza o DSL para todas as transformações
 - Será necessário realizar "shuffle" (utiliza o groupBy)
 - Filtra os resultados em dois momentos diferentes
 - Uma vez antes da agregação (counting) ser feita, e outra vez depois

"Esclarecendo" as otimizações do Catalyst

 Utilize o método explain() em um DataFrame/Dataset para visualizer o plano de otimização do Catalyst

```
explain(): Unit — Retorna o Plano Físico
explain(extended: Boolean): Unit — Retorna os Planos Lógico e Físico
```

- Veremos o exemplo de filtragem antes de contagem, e depois de contagem
 - Ambos vão resultar no mesmo plano devido ao Catalyst

Visão geral sobre o retorno do método explain()

- Para o resultado abaixo
 - 1-3 prepara os dados
 - 4 aplica explodes/splits nos dados
 - 5 filta os dados
 - 7 realiza um partial_count
 - 8 realiza o "shuffling" (called an exchange)
 - 9 realiza a contagem final (uma agregação)

Otimização: Predicate Pushdown

- O plano abaixo é sobre uma filtragem antes de uma contagem
 - O slide anterior era sobre uma filtragem depois de uma contagem
- Ambas as transformações possuem exatamente o mesmo plano
 - Mesmo que estejam escritas de formas diferentes
 - O Catalyst antecipa as funções de filtro o máximo possível

Otimização: Reduzir o Shuffling

- O plano minimiza o processo de shuffling
 - Ele faz a contagem em duas etapas— em 7 (local) e em 9 (após o shuffle)
 - Isso é possível porque a contagem é comutativa
 - O Catalyst escolheu o equivalente ao nosso reduceByKey do RDD
 - E não o groupByKey por ser mais caro

Mais detalhes do plano

- Abaixo, mostramos como ocorre o push down dos filtros
 - Do Parsed para Optimized Logical Plan
 - Ele então gera os Planos Físicos, e seleciona o melhor

```
countThenFilterDF.explain(true)
== Parsed Logical Plan ==
'Filter NOT ('word = twinkle)
+- Aggregate [word#1168], [word#1168, count(1) AS count#1292L]
   +- Project [lower(word#1165) AS word#1168]
== Analyzed Logical Plan ==
word: string, count: bigint
Filter NOT (word#1168 = twinkle)
// ...
== Optimized Logical Plan ==
Aggregate [word#1168], [word#1168, count(1) AS count#1292L]
+- Project [lower(word#1165) AS word#1168]
  +- Filter NOT (lower(word#1165) = twinkle)
```


Lambdas Impedem a Otimização do Catalyst

- Abaixo, criamos um filtro utilizando Lambda e depois fazemos a contagem
 - Onde a filtragem acontece no Plano Físico?
 - Após a agregação
 - O Catalyst não pode otimizar Lambdas (ou UDFs) estes são opacos
 - Resultando em uma otimização menos eficiente

```
// Conte e então filtre utilizando Lambda. splitWordsDF utiliza split/explode
> val countThenFilterDF = splitWordsDF.groupBy('word)
      .count.filter(w => w.getString(0)!="twinkle").explain
== Physical Plan ==
*Filter <function1>.apply
8 *HashAggregate(keys=[word#1168], functions=[count(1)])
7 +- Exchange hashpartitioning(word#1168, 200)
6 +- *HashAggregate(keys=[word#1168], functions=[partial_count(1)])
     +- *Project [lower(word#1165) AS word#1168]
4
         +- Generate explode(split(line#852, \s+)), false, false,
                                                                    [word#1165]
           +- *Project [value#850 AS line#852]
             +- *SerializeFromObject [staticinvoke(...) AS value#850]
               +- Scan ExternalRDDScan[obj#849]
1
```


Mas não todas as Lambdas

- Abaixo, utilizamos o método groupByKey com um lambda, contamos, e então filtramos
 - Nosso código de filtragem está depois do agrupamento/agregação
 - No Plano Físico, a filtragem acontece depois da agregação mesmo que o agrupamento use um lambda
 - O Catalyst entende a agregação (contagem) e continua a otimizar
 - No entanto, se o filtro usar um lambda, ele vai continuar não fazendo o push down

Resumo

- Quando usamos DSL não devemos nos preocupar com o COMO
 - O Catalyst vai se preocupar com a eficiência e performance para você
 - Em geral, ele vai escolher a melhor forma de fazer
- Lambdas impedem o Catalyst
 - Mas nem sempre
 - Como vimos no exemplo do groupByKey
 - Você precisa entender como o Spark/Catalyst trabalha
 - explain() é seu amigo em caso de dúvida

Lab 5.2: Acompanhando o funcionamento do Catalyst

Parte 5.4: O otimizador Tungsten

Visão Geral do Tungsten

- Melhora a execução do Spark otimizando o uso de CPU / memória
 - Compreende e otimiza para arquiteturas de hardware
 - Otimizações para as características do Spark

O Formato Binário do Tungsten

- Representações binárias de objetos Java (formato de linha do Tungsten)
 - Diferente de serialização Java e Kryo

Vantagens:

- Tamanho menor comparado a serialização nativa do Java
- Suporta a alocação off-heap
- A estrutura suporta operações do Spark sem deserialização
 - e.g. você pode trabalhar os dados enquanto eles permanecem no formato binário
- Evita a sobrecarga do GC

Resultado:

- Mais velocidade, menos uso de memória e CPU
- Pode processar uma grande massa de dados

Computação com utilização de cache

- Hardwares modernos possuem muitos tipos de memória
 - Memória principal
 - Múltiplos níveis de cache(L1, L2, ...)
 - Registros
 - Todos eles possuem características diferentes
- O Tungsten possue conhecimento dos diferentes tipos de memória e diferentes arquiteturas de hardware
 - Ele gera códigos que são otimizados para utilizer hardwares modernos
- Resultado: Muito mais performance
 - Por exemplo, ele usará um algoritmo de classificação usando cache
 - Trazendo uma melhora de 3x mais performance se comparado a uma versão sem usabilidade de cache

Geração de código em todo os estágios

- O otimizador Tungsten tem como finalidade melhorar a performance
 - Agrupa uma expressão de consulta em uma única função otimizada
- Por exemplo, suponha que estamos definindo o seguinte filtro filter('age>25 && 'age<50)
 - A geração de código gera dinamicamente o bytecode para este
 - Todo o código em uma única função
 - Em vez de interpretação clássica
 - Com o encaixotamento de tipos primitivos, chamadas de funções polimórficas ...

Resultado:

- Elimina chamadas de funções virtuais
- Aproveita os registros da CPU para dados intermediários
- Pode atender / exceder o desempenho da função ajustada manualmente para uma tarefa

Como usamos o Tungsten

- Sinceramente, não pense muito nisso
 - Apenas aproveite os benefícios
- Alguns problemas com lambdas!
 - Eles requerem objetos Java e não podem ser executados com dados no formato Tungsten
 - Isso adiciona uma camada de complexidade para trabalhar com o Tungsten
- Vamos ver isso em ação
 - Podemos ver isso em ação no Plano Físico
- Vamos observar um Plano Físico de um DataFrame e de um Dataset
 - Ilustrando o que o Tungsten está fazendo
 - Explorando alguns problemas com lambdas

Plano Físico do DataFrame

- SerializeFromObject converte os dados para o formato binário do Tungsten
 - A primeira coisa que é feita depois de ler os dados
 - Todas as operações depois disso são feitas neste formato altamente eficiente
 - Operações com asterisco (*) usam a geração de código em todos os estágios

```
// Preparando os dados
> val linesDF = sc.parallelize(Seg("Twinkle twinkle little star", "How I
wonder what you are", "Twinkle twinkle little star")).toDF()
// Vendo o Plano Físico do DataFrames
> linesDF.select(explode (split('value, "\\s+")).as("word") )
       .select(lower('word).as("word")).groupBy('word).count.explain
== Physical Plan ==
*HashAggregate(keys=[word#563], functions=[count(1)])
+- Exchange hashpartitioning(word#563, 200)
+- *HashAggregate(keys=[word#563], functions=[partial_count(1)])
 +- *Project [lower(word#560) AS word#563]
   +- Generate explode(split(value#555, \s+)), false, false, [word#560]
    +- *SerializeFromObject [staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType, fromString, input[0,
java.lang.String, true], true) AS value#555]
      +- Scan ExternalRDDScan[obj#554]
```


Tungsten Melhora a Eficiência

- O exemplo anterior demonstra várias coisas
- As operações processam em cima de dados no formato binário do Tungsten
 - O dado é serializado para esse formato (SerializeFromObject) no início do pipeline
 - Todas as operações depois disso trabalham com o dado nesse formato
 - Alta eficiência de memória
- Boa parte das operações usam a geração de código em todos os estágios
 - Indicados por asterísco (*) antes do nome da operação
 - Alta eficiência de CPU
- Resultado: Execução significativamente mais rápida e uso de memória reduzido
 - Grande vitória para pipelines de dados

Plano Físico de Dataset

- AppendColumnsWithObject converte os dados para o formato Tungsten
 - Após o MapPartitions, que trabalha com objetos Java
 - Observe que o AppendColumnsWithObject NÃO utiliza a geração de código
 - Menos eficiente que o plano anterior

Serialização/Deserialização extra

- Fizemos uma mudança trivial ao carregar os dados
 - Nomeando nossa linha de entrada "linha" em vez do "valor" padrão
 - Observe como isso adiciona um estágio extra no nosso plano
 - Isso representa a serialização extra (para o formato do Tungsten) e após isso um passo de deserialização (para o formato Java) — a função lambda do método flatMap precisa de um objeto Java
 - Isso não é esperado, e adiciona uma sobrecarga extra

```
// Mudança trivial
val linesDF = sc.parallelize(Seq("Twinkle twinkle" ... )) toDF("line")
linesDF.as[String].flatMap(_.toLowerCase().split("\\s")).groupByKey(s =>
s).count.explain
== Physical Plan == // rest of plan as before
+- *Project [value#520]
+- AppendColumnsWithObject < function1>, ... AS value#520]
+- MapPartitions <function1>, obj#516: java.lang.String
+- DeserializeToObject line#509.toString, obj#515: java.lang.String
+- *Project [value#507 AS line#509]
+- *SerializeFromObject [... AS value#507]
+- Scan ExternalRDDScan[obj#506]
```


Lab 5.3: Observando o trabalho do Tungsten

Parte 6: Incrementando a performance

Cache

Joins, Shuffles, Broadcasts, Accumulators

Orientações gerais

Parte 6.1: Cache

Motivos para usar o cache

- Sequencia padrão de execução de um Job do Spark:
 - Construção de um grafo de transformações
 - Após uma ação, execute o DAG, obtenha o resultado
 - Não salva RDDs intermediárias ou Datasets intermediários
- E isso é intencional você pode rapidamente ficar sem memória
 - Mas as vezes você precisa persistir algum RDD
- O Spark permite persistir um RDD/Dataset entre operações
 - Você deve pedir explicitamente por isso
 - RDDs e Datasets possuem a mesma API e comportamento
- Fazemos o uso de cache para:
 - Salvar o resultado de um processamento caro
 - Processos iterativos (machine learning)

Cache

- Abaixo, o RDD 2 é usado para processar dois outros RDDs
 - Faz sentido cachear esse RDD

Mecanismos de cache

- Dados podem ser cacheados em:
 - Memória
 - HD
 - Combinação de ambos
- A ação de cachear um dado em memória é feita pelos executores em um nó worker
- Fique atento aos limites da JVM
 - Mínimo de memória da JVM: 4-8G
 - Máximo de memória da JVM: 40+G
 - Geralmente, quanto mais memória, mais tempo de GC
 - Os limites dependem do seu GC

Níveis de persistência

- O Spark fornece muitos tipos de persistência
 - Os nós armazenam partições para reutilização, para que as ações futuras sejam mais rápidas

Nível de armazenamento	Comportamento
MEMORY_ONLY (nível padrão)	Armazena como objetos Java desserializados na JVM. Se o RDD não couber na memória, algumas partições não serão armazenadas em cache e vão ser reprocessadas.
MEMORY_AND_DISK	Armazena como objetos Java desserializados na JVM. Se o RDD não couber na memória, essas partições serão armazenadas no HD, e vão ser lidas quando for necessário.
MEMORY_ONLY_SER (Java e Scala)	Armazena como objetos Java serializados. Geralmente ocupa menos espaço que os objetos deserializados, porém é necessário mais uso de CPU para fazer a leitura.
MEMORY_AND_DISK_SER (Java e Scala)	Similar ao MEMORY_ONLY_SER, mas armazena no HD as partições que não couberam em memória
DISK_ONLY	Armazena as partições do RDD apenas no HD
MEMORY_ONLY_2, MEMORY_AND_DISK_2, etc	O mesmo que os níveis anteriores, mas replica cada partição em dois nós do cluster
OFF_HEAP (experimental)	Armazenas os dados no formato serializado em off-heap. Reduz a sobrecarga do GC e traz outros benefícios

MEMORY_ONLY (Java Objects)

- cache() ou persist(MEMORY_ONLY)
 - Maior eficiência de CPU
 - Dados armazenados de forma deserialized
 - Aumenta o uso da memória (3x 5x)
 - 1G de dados utiliza entre 3G 5G de memória

MEMORY_ONLY_SER (Serializado)

- persist(MEMORY_ONLY_SER)
 - Opção para uso de memória mais eficiente
 - Menor sobrecarga da memória
 - Uso intensivo de CPU (para serializar/ deserializar)
 - Por padrão utiliza o serializador Java use o serializador 'kryo' para maior performance

MEMORY_AND_DISK

- persist(MEMORY_AND_DISK)
 - Tanto memória quanto HD
 - Pode sobreviver ao despejo de memória

MEMORY_ONLY_2: Cache em múltiplos nós

- persist(MEMORY_ONLY_2)
 - Pode sobreviver a uma falha de nó

OFF_HEAP (Experimental)

- Cache em memória (utiliza o Tachyon/Alluxio)
- Dados em cache distribuídos entre os nós
- Não utiliza o armazenamento da JVM
 - Não deve se preocupar com o Garbage Collection (GC)
 - Pode suportar uma grande massa de dados

Problemas da memória cache

- O cache padrão consome mais memória (2-5x)
 - Mas é mais rápido de processar
 - MEMORY_ONLY
- O cache serializado consome menos memória
 - O tempo de processamento é maior
 - MEMORY_ONLY_SER

Dicas para a usabilidade do cache

- Apenas coloque no cache os dados que são usados com muita frequência
 - Se você cachear muitos dados, sua memória será sobrecarregada
 - Os dados menos usados recentemente serão eliminados
- Se os dados cabem na memória, utilize a opção MEMORY_ONLY (o padrão)
 - Mais eficiência de CPU
- Caso contrário, use o MEMORY_ONLY_SER
 - E escolha uma serialização mais performática
- Não use o HD a menos que seja armazenar dados que são resultados de filtros pesados e de processamento custoso
 - Caso contrário, a recomputação pode ser tão rápida quanto a leitura do disco

Dicas para a usabilidade do cache

- Use armazenamento replicado para recuperação rápida de falhas.
 - Você tem tolerância a falhas de qualquer forma, mas replicando os dados você tem menos tempo de indisponibilidade
- Considere o armazenamento OFF_HEAP (Tachyon)
 - Quando você tem muita memória
 - Quando múltiplas aplicações compartilham do mesmo dado
 - Muitas vantagens
 - Vários executores podem compartilhar o pool de memória no Tachyon
 - Reduz a ação do GC
 - Os dados armazenados em cache não são perdidos quando um executor falha
 - Aplicações externas ao Spark podem acessar os dados

API de persistência

- Os métodos a seguir são utilizados para persistência de dados
 - persist(newLevel: StorageLevel): Defina o nível de armazenamento para newLevel
 - persist(): O mesmo que persist(StorageLevel.MEMORY_ONLY)
 - cache(): O mesmo que persist(StorageLevel.MEMORY_ONLY)
- Abaixo, montamos um exemplo
 - Observe que a chamada de cache não tem nenhum efeito imediato
 - Ela é adicionada ao DAG, e quando é criada, o Spark sabe como armazenar os dados em cache

```
val visits = sc.textFile("visits.txt").map(...)
val pageNames = sc.textFile("pages.txt").map(...)
val joined = visits.join(pageNames) // Vamos reutilizar isso
joined.cache() // Então cacheie
```


Lab 6.1: Cache

