9 Protokol IPv6, NDP

Wednesday, 19 January 2022

09:10

Specifikace, srovnání s IPv4, dual-stack, tunel, NAT64, skupiny adres a globální prefixy, kanonický zápis, komprimace nul, druhy vysílání (unicast, multicast, anycast), druhy adres IPv6 včetně příkladů, ICMPv6, ND (NDP), RFC 4861 – RS, RA, NS, NA, redirect, (DAD) DHCPv6 server, příznakové bity A,O,M

• IPv6

- o následník IPv4
 - větší adresní prostor (2³² vs 2¹²⁸)
- o adresa
 - 128b adresa rozdělená do 8 hextetů rozdělených dvojtečkami
 - □ v prohlížeči se zapisuje do hranatých závorek
 - :: znamená, že daná část je plná nul (lze použít jen jednou a měl by pohltit co nejvíce nul)
 - např. 0123:0000:0000:0000:00ab:0000:0000
 - i) 123::ab:0:0:0
 - ii) 123:0:0:0:ab::
 - speciální:

	::/0	default route
	::/128	nedefinovaná
	::1/128	loopback (pingem lze zjistit funkčnost služeb
	64:FF9B::/9	adresy s vloženým IPv4
	2000::/3	GUA (<i>global unicast address</i>) • globální • ISP dostává prefix, který rozděluje zákazníkům
	fc00::/7	ULA (unique local address) • adresy směrovatelné v množině spolupracujících sítí • podobné jako IPv4 privátní, ale nelze je kvůli absenci NAT použít veřejně
	fe80::/1	LLA (link-local address) • komunikace po lince která končí routerem • "default gateway"
	ff00::/8	skupinové adresy (<i>multicast</i>) 1. FF02::1 ovšechna zařízení na lince 2. FF02::2 všechny routery

o zóna

- zóny se nesmí překrývat
- adresy v zóně musí být unikátní, ale adresa se může objevit v několika zónách
- identifikátory zón (Zone ID)

	2	link-local (fyzická - Ethernet)
	3	realm-local (podsíť)
	4	admin-local (správcovská)
	5	site-local (pobočka)

8	organization-local (organizace)
E	global (internet)

- koexistence IPv4 a IPv6
 - a. Dual Stack
 - hybridní zásobník pro IPv4 a IPv6
 - obě dvě zařízení musí podporovat oba dva protokoly a mít dvě adresy
 - b. Tunnelling
 - zabalení IPv6 datagramu do IPv4
 - IPv6 se zamaskovaně dostane IPv4 sítí
 - c. Translation
 - nutnost při komunikaci IPv4-only a IPv6-only zařízení
 - normalizovaná pravidla pro překlad jednotlivých položek v hlavičce
 - NAT64
- dynamická adresace IPv6
 - o adresuje se GUA a ULA
 - o adresa = prefix + interface
 - NDP (Neighbour Discovery Protocol)
 - odhalování sousedů na 3. vrstvě
 - RS (Router Solicit)
 - □ hledání routeru a žádost o informace
 - RA (Router Advertisement)
 - v náhodných intervalech nebo při přijetí RS zasíláno routery zpět s informacemi (default gateway, GUA prefix)
 - NS (Neightbor Solicit)
 - určení link-local adresy souseda nebo potvrzení dosažitelnosti (zjištění DMAC)
 - □ DAD (Duplicate Address Detection)
 - kontrola, je-li IPv6 adresa unikátní
 - NA (Neighbor Advertisement)
 - Redirect
 - □ routery informují o kratší cestě k cíli
 - ICMPv6 (Internet Control Message Protocol v6)
 - ohlašování chybových stavů
 - testování dosažitelnosti
 - výměna provozních informací
 - oproti ICMPv4 bezpečnostní opatření proti zahlcení
 - vlajky:
 - A (Autonomous)
 - O (Other)
 - M (Managed)
 - a. SLAAC (Stateless Address Autoconfiguration)
 - A = 1
 - přidělování bez použití DHCPv6 serveru
 - odesílá prefix a délku prefixu (link-local nemusí, protože se jedná o zdrojovou adresu)
 - b. Stateless DHCPv6
 - A = 1, O = 1
 - po použití SLAACu pro prefix se posílá DHCPv6 request
 - DHCPv6 pak přidělí DNS server nebo doménové jméno
 - c. Stateful DHCPv6
 - M = 1
 - DHCPv6 přiděluje prefix, adresu i další informace
 - □ adresu přiděluje DHCPv6 server, ne klient