EBU5303

Multimedia Fundamentals

Digital Broadcasting

Dr. Marie-Luce Bourguet marie-luce.bourguet@qmul.ac.uk

Learning Objectives

- Define broadcasting.
- Explain the building blocks of a digital broadcasting system.
- Describe the MPEG Transport Stream.
- Describe the DVB-S standard.

Reading

DVB—The Family of International Standards for Digital Video Broadcasting by U. Reimer

Available at:

http://www.img.lx.it.pt/~fp/Klagenfurt/Study%20

Material/DVB-

<u>The%20Family%20of%20International%20Standards.pdf</u>

Reading

Fundamentals of Multimedia, by Ze-Nian Li, Mark S. Drew, Jiangchuan Liu (3rd edition)

Part III Multimedia Communications and Networking

Agenda

- What is broadcasting?
- Building blocks of a digital broadcasting system
- Major standards for digital broadcasting
- Digital Video Broadcasting Satellite (DVB-S)

What is Broadcasting?

- In Telecommunications, broadcasting refers to a method of transferring a message to all recipients simultaneously.
- Traditionally Point-to-multipoint communication
 - Simpler transmission scheme than point-to-point
 - High transmission power
- In principle: one-way communication
 - In practice: increasingly interactive, thanks to digital technology
 - View on demand
 - Two-way (movies, shopping, ...)

What is Broadcasting?

What is Broadcasting?

Why Digital Broadcasting?

- Digital signals are more robust
- Better quality: lossless data transmission
- More reliable
- Less expensive
- More flexible
- Time- vs. Frequency-Domain Multiplexing
- Additional devices requiring digital data
- Commercial reasons: better spectral efficiency, more channels, more services (gaming, shopping, internet), mobile reception, data transmission

Benefits of Digital Switchover

- Potential benefits to consumers:
 - A greater choice of services
 - Extra information on programmes and interactive features
 - Easier tuning and new functions
 - Less interference to pictures or sound
- Potential benefits for the company:
 - Less cost due to no more need of simultaneous analogue/digital transmission
 - Requires less spectrum and so saves huge capital expenditure
 - Possibility of diversifying devices, services and applications
- Potential Benefit to Government/regulatory body
 - Wider coverage [reducing digital inequality]
 - Freeing up spectrum which can be sold/offered for other services
 - Better management/regulatiចក្រ³០³

Agenda

- What is broadcasting?
- Building blocks of a digital broadcasting system
- Major standards for digital broadcasting
- Digital Video Broadcasting Satellite (DVB-S)

Aspects of Digital Broadcasting

- Essential stages:
 - Channel coding: error protection of bits
 - Modulation: for transmitting signal onto carrier
- But also...
 - Source coding: data compression
 - Multiplexing: combining into single data stream
 - Signal processing
- Involves video/audio and data

Building blocks of a Digital Broadcasting (DB) system

Fundamental Components of DB

- Audio, Visual (Still/Video), and/or Data
- Transmitter:
 - Compression (*source coding*), e.g., using MPEG2
 - Multiplexing information to single *Transport Stream* (TS)
 - Forward error correction (Channel Coding), e.g., Reed-Solomon
 - Modulation (e.g., OFDM: Orthogonal Frequency-Division Multiplexing)
 - Transmission (antenna (Yagi-Uda, dish) or optical fibre)
- Reverse process at receiver

Transport Stream (TS)

 Transport stream specifies a container format encapsulating packetised Elementary Streams (ES).

Transport Stream (TS)

- A transport stream is a multiplex of elementary streams
 - elementary stream = sequence of TS packets with same PID value in header
 - one set of elementary streams for global signalization
 - describe the TS, the network, the operator, the services, the events, EMM's, etc.
 - one set of elementary streams per service
 - a service is typically a TV channel

E.g. MPEG-TS

- Structure of MPEG-2 TS defined in ISO/IEC 13818-1
- One operator uses several TS
- TS = synchronous stream of 188-byte TS packets
 - 4-byte header
 - optional « adaptation field », a kind of extended header
 - payload, up to 184 bytes
- Multiplex of up to 8192 independent elementary streams (ES)
 - each ES is identified by a Packet Identifier (PID)
 - each TS packet belongs to a PID, 13-bit PID in packet header
 - smooth muxing is complex, demuxing is trivial
- Two types of ES content
 - PES, Packetized Elementary Stream: audio, video, subtitles, teletext
 - sections : data structures

E.g. MPEG-TS

S - Sync TPR - Transport Priority PUSI - Payload Start EI - Error Indicator PID - Packet Identifier (stream ID) SCR - Scrambling Control AF - Adaptation Field CC - Continuity Check Index

Channel Coding

- Channel coding, also known as forward error control coding (FECC), is a process of detecting and correcting bit errors in digital communication systems.
- It is performed both at the transmitter and at the receiver.

Modulation

- Digital Modulation uses discrete signals to modulate a carrier wave.
- The three main types of digital modulation are Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK).

Questions

- What is source coding?
- What is a transport stream?
- What is channel coding?

Today's agenda

- What is broadcasting?
- Building blocks of a digital broadcasting system
- Major standards for digital broadcasting
- Digital Video Broadcasting Satellite (DVB-S)

Why do we need standards?

Safety and reliability

- Users perceive standardised products and services as more dependable
- Increases sales and the take-up of new technologies

Support of government policies and legislation Standards are frequently referenced by regulators and legislators for protecting user and business interests

Interoperability

The ability of devices to work together relies on products and services complying with standards

What would the world be like without standards?

- Products might not work as expected
- They may be of inferior quality
- They may be incompatible with other equipment in fact they may not even connect with them
- In extreme cases, non-standardised products may be dangerous
- Customers would be restricted to one manufacturer or supplier
- Manufacturers would be obliged to invent their own individual solutions to even the simplest needs, with limited opportunity to compete with others

Further info: http://www.etsi.org/standards/why-we-need-standards

Major Standards for Digital Brodcasting

- Digital Video Broadcasting (DVB)
 - Europe, Singapore, Australia and New Zealand.
- Advanced Television System Committee (ATSC)
 - United States, Canada, Mexico, South Korea,
 Dominican Republic and Honduras.
- Integrated Services Digital Broadcasting (ISDB)
 - Japan and the Philippines.
- Digital Terrestrial Multimedia Broadcasting (DTMB)
 - Peoples Republic of China.

Major Standards for Digital Brodcasting

DVB (Digital Video Broadcasting)

- Set of standards that defines digital broadcasting using existing <u>satellite</u>, <u>cable</u>, and <u>terrestrial</u> infrastructures
- Most widely used transmission standard in the world
- Focus of digital television development
- Based on MPEG2 source coding
- DVB-S (1993), -C (1994), -T (1995), -SH, ...
 - Different coding and modulation w.r.t. channel
 - e.g. QPSK in DVB-S, QAM in DVB-C, COFDM in DVB-T
- Spawned ISDB-T, -C, -S (Japan) and A/53-T (US)

DVB family of standards

- Every DVB standard defines the channel coding and modulation, since every channel has a different set of characteristics.
- But for all of them, the system input and output signals are MPEG-2 Transport Streams.
 - DVB-S and DVB-S2 for satellite broadcasting
 - DVB-C for cable systems
 - DVB-T and DVB-T2 for terrestrial broadcasting
 - DVB-H for handheld systems
 - DVB-SH for satellite-to-handheld systems
 - DVB-IPDC for internet protocol datacastover
 - DVB-CPCM for content protection & copy management

DVB family of standards

ATSC (Advanced Television Systems Committee)

- ATSC depends on numerous interwoven standards
 - ATSC (Terrestrial, Cable, Satellite)
 - ATSC-M/H (Mobile/Handheld)
- Established 1990s
- Original specification for HDTV (High Definition Television)
- Uses Dolby, not MPEG for audio
- Mobile reception difficult/impossible until 2008
 - New ATSC-M/H since 2009

ISDB (Integrated Services Digital Broadcasting)

- Covers digital television (DTV) and digital radio
- Maintained by Association of Radio Industries and Businesses (ARIB), Japan
- Main differences compared to DVB:
 - ISDB-S uses 8-PSK (Phase Shift Keying) and Trellis coding instead of QPSK in DVB-S (modulation)
 - In ISDB-T, single 6 MHz TV channel can be split into 13 x 432 kHz subchannels for adaptive use
 - digital audio (1 subchannel),
 - SDTV (multiple subchannels),
 - HDTV (all 13 subchannels).

ISDB family of standards

- ISDB-S for satellite television
- ISDB-T for terrestrial television (mainly used in South America)
- ISDB-Tsb for terrestrial sound
- ISDB-C for cable television
- ISDB-1seg for cell phones, laptops, vehicles

DTMB (Digital Terrestrial Multimedia Broadcast)

- Chinese GB20600-2006 standard
- Initially called DMB-T/H
- DMB-T, T-DMB (South Korea)
- Established 2006
- China
- CMMB: Chinese Mobile Multimedia Broadcasting
 - Mobile and stationary
 - Satellite and terrestrial
 - Standard GY/T 220.1

Agenda

- What is broadcasting?
- Building blocks of a digital broadcasting system
- Major standards for digital broadcasting
- Digital Video Broadcasting Satellite (DVB-S)

Digital Video Broadcasting – Satellite (DVB-S)

- DVB-S: standard for <u>Direct-to-home Broadcasting via Satellite</u> (DBS)
- Defined between 1993 and 1997 by European Standard EN 300 421.

DVB-S Encoding

After the data has been coded following the MPEG-2 standard, it needs to go through the next steps before being transmitted to the satellite:

- Multiplexing and randomisation for energy dispersion
- Reed-Solomon Encoder (Error Protection)
- Convolutional Interleaving
- QPSK modulation

Energy Dispersal and Error Protection

- Energy Dispersal is carried out at the encoding end by scrambling with a pseudo random sequence
 - Energy dispersion is the randomising of the input signal in order to achieve a power-density spectrum of the modulated signal that is as even as possible.
- Error Protection scheme permitting various code rate
 - Reed-Solomon coding RS(204, 188, t=8) is used, where
 16 parity bits are introduced in each transport packet.
 With this the decoder is able to correct up to 8 error bytes in each packet of 204 received bytes.

Reed-Solomon coding

- The Reed-Solomon encoder takes a block of digital data and adds extra "redundant" bits.
- The number and type of errors that can be corrected depends on the characteristics of the Reed-Solomon code.
- A Reed-Solomon code is specified as RS(n,k) with s-bit symbols.

Reed-Solomon coding

- The encoder takes k data symbols of s bits each and adds parity symbols to make an n symbol codeword.
- A Reed-Solomon decoder can correct up to *t* symbols that contain errors in a codeword, where 2*t* = *n*-*k*.
- Example: RS(204,188) with 8-bit symbols. Each codeword contains 204 code word bytes, of which 188 bytes are data and 16 bytes are parity. For this code: n = 204, k = 188, s = 8, 2t = 16, t = 8
 Errors in up to 8 bytes anywhere in the codeword can be automatically corrected.

Interleaving and Modulation

Interleaving

- In order to avoid errors in consecutive packets, the packets are interleaved.
- Modulation: QPSK (Quadrature Phase Shift Keying) is used for modulation
 - With four phases, QPSK can encode two bits per symbol

?

Questions

- What compression standard is used for source coding in DVB-S?
- How does the Reed-Solomon Error Protection scheme work?

Data Rate Calculation (example)

- Assuming the symbol rate is 27.5 MS/s.
- QPSK offers 2 bits/Symbol
- gross_data_rate = 2 bits/symbol X 27.5 Megasymbols/s= 55 Mbit/s;
- QPSK-modulated signal must first be provided with error protection before being fed into the actual modulator.
- Reed-Solomon code with rate (204, 188) is used.
- net_data_rate Reed-Solomon
 - = gross_data_rate x 188/204
 - $= 55 \text{ Mbit/s} \times 188/204$
 - = 50.69 Mbit/s;

Data Rate Calculation (example)

- further error protection in the form of convolutional coding is inserted after the Reed Solomon forward error correction.
- This further expands the data stream.
- $CodeRate = \frac{Input\ Data\ Rate}{Output\ Data\ Rate}$
- In DVB-S, the code rate can be selected within the range of 1/2, 3/4, 2/3,...7/8.
- The net data rate in DVB-S with a code rate of 3/4, after convolutional coding, is then: Net_data_rate_{3/4} = code_rate X net_data_rate_{reed solomon}

$$= 3/4 \cdot 50.69 \text{ Mbit/s} = 38.01$$

Mbit/s;

Observation on data rate

- If the code rate is 1/2, the data stream is expanded by a factor of 2. The error protection is now maximum and the net data rate has dropped to a minimum.
- A code rate of 7/8 provides only a minimum overhead but also only a minimum of error protection. The available net data rate is then at a maximum.
- The code rate can then be used to control the error protection and thus, as a reciprocal of this, also the net data rate.

Exercise

- Assuming a symbol rate of 25 MS/s and QPSK modulation, calculate the bit stream gross data rate.
- Using Reed-Solomon code with rate (204, 188) and a code rate of 1/2, calculate now the bit stream net data rate.

DVB-S2

- Improved version of DVB-S standard, ratified in March 2005.
- It has been designed for:
 - Broadcast Services for standard definition TV and HDTV.
 - Interactive Services including Internet Access for consumer applications
 - Professional applications, Data Content distribution, etc...
- Supports recent improvements in channel coding
- Supports recent improvements in channel modulation
- Typically offers 30% data rate increase under the same condition compared to DVB-S

Functional block diagram of the DVB-S2 system

DVB-S vs. DVB-S2

Satellite EIRP (dBW)	51		53.7	
System	DVB-S	DVB-S2	DVB-S	DVB-S2
Modulation & coding	QPSK 2/3	QPSK 3/4	QPSK 7/8	8PSK 2/3
Symbol rate (Mbaud)	27.5 (α =0.35)	30.9 (α =0.0)	27.5 (α =0.35)	29.7 (α =0.25)
C/N at 27. 5 MHz (dB)	5.1	5.1	7.8	7.8
Useful bitrate (Mbit/s)	33.8	46 (gain = 36%)	44.4	58.8 (gain = 32%)
Number of SDTV programmes	7 MPEG-2 15 AVC	10 MPEG-2 21 AVC	10 MPEG-2 20 AVC	13 MPEG-2 26 AVC
Number of HDTV programmes	1-2 MPEG- 2 3-4 AVC	2 MPEG-2 5 AVC	2 MPEG-2 5 AVC	3 MPEG-2 6 AVC

Agenda

- What is broadcasting?
- Building blocks of a digital broadcasting system
- Major standards for digital broadcasting
- Digital Video Broadcasting Satellite (DVB-S)