

PolarHT[™] Power MOSFET

IXTA50N20P IXTP50N20P IXTQ50N20P

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 175°C	200	V	
V _{DGR}	$T_J = 25$ °C to 175°C, $R_{GS} = 1M\Omega$	200	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	50	A	
I _{DM}	$T_{_{\rm C}}$ = 25°C, pulse width limited by $T_{_{\rm JM}}$	120	Α	
I _A	T _C = 25°C	50	А	
E _{AS}	T _C = 25°C	1	J	
dV/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 175^{\circ}C$	10	V/ns	
P _D	T _C = 25°C	360	W	
T _J		- 55 +175	°C	
T _{JM}		175	°C	
T _{stg}		- 55 +175	°C	
T _L	1.6mm (0.062 in.) from case for 10s	300	°C	
T _{SOLD}	Plastic body for 10s	260	°C	
M _d	Mounting torque (TO-3P,TO-220)	1.13/10	Nm/lb.in.	
Weight	TO-263	2.5	g	
	TO-220 TO-3P	3.0 5.5	g	
	10-01	5.5	g	

$V_{\rm DSS}$	=	200V
I _{D25}	=	50A
R _{DS(on)}	≤	$60 \mathrm{m}\Omega$

TO-3P (IXTQ)

G = Gate D = DrainS = Source TAB = Drain

Symbol (T _J = 25°C,	Test Conditions unless otherwise specified)			cterist Typ.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$		200			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$		2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0V$	T _J = 150°C				μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, No.$	ote 1			60	mΩ

Features

- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

Advantages

- · Easy to mount
- Space savings
- High power density

Symbol	Symbol Test Conditions C			naracteristic Values		
$(T_J = 25^{\circ}C, un$	lless otherwise specified)	Min.	Тур.	Max.		
g_{fs}	$V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$	12	23	S		
C _{iss}			2720	pF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		490	pF		
C _{rss}			105	pF		
t _{d(on)}	Resistive Switching Times		26	ns		
t.	•		35	ns		
d(off)	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		70	ns		
t,)	$R_{\rm g} = 10\Omega \text{ (External)}$		30	ns		
Q _{g(on)}			70	nC		
Q_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		17	nC		
Q_{gd}			37	nC		
R _{thJC}				0.42 °C/W		
R _{thCS}	(TO-3P)		0.21	°C/W		
	(TO-220)		0.25	°C/W		

Source-Drain Diode

Symbol Test Conditions		Cha	Characteristic Values			
$(T_J = 25^{\circ}C,$	unless otherwise specified)	Min.	Тур.	Max.		
I _s	$V_{GS} = 0V$			50	Α	
SM	Repetitive, pulse width limited by $T_{_{JM}}$			120	Α	
V _{SD}	$I_{\rm F} = 50 \text{A}, \ V_{\rm GS} = 0 \text{V}, \ \ \text{Note 1}$			1.5	V	
t _{rr} Q _{RM}	$ \begin{cases} I_F = 25A, -di/dt = 100A/\mu s \\ V_R = 100V, V_{GS} = 0V \end{cases} $		150 2.0		ns μC	

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

IXYS reserves the right to change limits, test conditions, and dimensions.

		IV	I QJ	DINZUF			
TO-3P (IXTQ) Outline							
1 - GATE 2 - DRAIN (COLLECTOR) 3 - SOURCE (EMITTER) 4 - DRAIN (COLLECTOR)							
	INCH		MILLIM	METERS			
SYM	MIN	MAX	MIN	MAX			
A	.185	.193	4.70	4.90			
A1	.051	.059	1.30	1.50			
A2	.057	.065	1.45	1.65			
b b2	.035 .075	.045	0.90	1.15			
b4	.075	.087 .126	1.90 2.90	2.20 3.20			
C D4	.022	.031	0.55	0.80			
	.780	.799	19.80	20.30			
D1	.665	.677	16.90	17.20			
E	.610	.622	15.50	15.80			
E1	.531	.539	13.50	13.70			
е	.215		5.45				
L	.779	.795	19.80	20.20			
<u>L1</u>	.134	.142	3.40	3.60			
ØP	.126	.134	3.20	3.40			
øP1	.272	.280	6.90 4.90	7.10			
2	.193	.201	4.70	5.10			

Fig. 1. Output Characteristics

Fig. 3. Output Characteristics @ 150°C

Fig. 5. R_{DS(on)} Normalized to I_D = 25A Value vs. Drain Current

Fig. 2. Extended Output Characteristics

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 25A$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 11. Capacitance

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

