## 4.1 Layer initialization and transfer learning

```
# initialize layer weights
import torch.nn as nn
layer = nn.Linear(64, 128)
nn.init.uniform_(layer.weight)
# distribution is now from 0 to 1
```

```
import torch

layer = nn.Linear(64, 128)
torch.save(layer, 'layer.pth')
new_layer = torch.load('layer.pth')
```

Fine-tuning is a type of transfer learning, we can import weights from previous layers and then use a smaller learning rate. We then train part of the network (so freeze early layers)

```
import torch.nn as nn
model = nn.Sequential(nn.Linear(64, 128), nn.Linear(128, 256))

for name, param in model.named_parameters():
    if name == '0.weight':
        param.requires_grad = False
```

## 4.2 Evaluating model performance

Training adjusts model parameters

Validation tunes hyperparameters

Test evaluates final model performance

Compute the mean training loss at the end of each epoch

```
training_loss = 0.0

for inputs, labels in trainloader:
    outputs = model(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step() # update weights
    optimizer.zero_grad() # reset weights
    training_loss += loss.iten()

epoch_less = training_loss / len(trainloader) # calculate mean loss
```

```
validation_loss = 0.0
model.eval() # put model in evaluation mode

with torch.no_grad(): # disable gradeints for efficiency
   for inputs, lables in validationloadeR:
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        validation += loss.item()

epoch_loss = validation_loss / len(validationloader) # calculate mean loss
model.train() # switch back to training mode
```

This is an overfitting graph

# **Overfitting**



#### Loss does not reflect accuracy in predictions

```
import torchmetrics

metric = torchmetrics.Accuracy(task="multiclass", num_classes=3)

for features, labels in dataloader:
    outputs = model(features) # forward pass
    # compute batch accuracy, keeping argmax for one-hot labels
    metric.update(outputs, labels.argmax(dim=-1))

accuracy = metric.compute() # compute accuracy over the whole epoch
metric.reset() # clear state before next epoch
```

## 4.3 Fighting overfitting

Overfitting: the model does not generalize to unseen data

Strategies to fighting overfitting:

- reducing model size
- adding dropout layer regularization technique that randomly deactivates neurons at random

use weight decay to force parameters to remain small

```
optimizer = optim.SGD(model.parameters(), lr=0.001, weight_decay=0.0001)
# encourages smaller weights by adding a penatly during optimization
# helps reduce overfitting, keeping weights smaller and improving
generalization
```

obtain new data or augmenting data

New data is expensive. We can augment data by rotating or scaling the data to generate "new" data points

### 4.4 Improving model performance

Recipe for tackling any deep learning problem

- 1. model to overfit the training set (ensure the problem is solvable)
- 2. set a performance baseline
- 3. reduce overfitting to increase performance on the validation set
- 4. achieve the best possible performance by tuning hyperparameters

```
# 1
features, labels = next(iter(dataloader))
for i in range(1000):
    outputs = model(features)
    loss = criterion(outputs, labels)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

- 2. Experiment with:
  - 1. dropout
  - 2. data augmentation
  - 3. weight decay
  - 4. reducing model capacity

We should balance reducing overfitting strategies and regularization

3. Fine-tune hyperparameters

```
# grid search
for factor in range(2,6):
    lr = 10 ** -factor
```

```
# random search (optimal)
factor = np.random.uniform(2,6)
lr = 10 ** -factor
```