databricks*Predicting_IBM_Employee_Attrition_Part_1_Feature_En...

A. Import Libraries and Data Set, and Inspect Data Set

Initiate new SparkSession.

```
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('Employee_Attrition_Part_1').getOrCreate()
```

Import numpy, pandas, and data visualization libraries.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Import IBM Employee Churn / Attrition comma-separated (CSV) file into a PySpark dataframe called churn.

```
churn = spark.read.csv('/FileStore/tables/ibm_hr_emp_churn.csv',
inferSchema=True, header=True)
```

Create copy of churn dataframe for exploratory data analysis and feature engineering.

```
churn1 = churn
```

View first five rows of churn dataframe.

```
display(churn1.head(5))
```

Age _	Attrition •	BusinessTravel	DailyRate -	Department	DistanceFromHome ▼ E
41	Yes	Travel_Rarely	1102	Sales	1
49	No	Travel_Frequently	279	Research & Development	8
37	Yes	Travel_Rarely	1373	Research & Development	2
33	No	Travel_Frequently	1392	Research & Development	3
27	No	Travel_Rarely	591	Research &	2
4)

Ł

Obtain number of rows and columns in churn dataframe.

```
print(churn1.count(), len(churn1.columns))
1470 35
```

View structure / schema of churn dataframe.

churn1.printSchema()

```
root
 |-- Age: integer (nullable = true)
 |-- Attrition: string (nullable = true)
 |-- BusinessTravel: string (nullable = true)
 |-- DailyRate: integer (nullable = true)
 |-- Department: string (nullable = true)
 |-- DistanceFromHome: integer (nullable = true)
 |-- Education: integer (nullable = true)
 |-- EducationField: string (nullable = true)
 |-- EmployeeCount: integer (nullable = true)
 |-- EmployeeNumber: integer (nullable = true)
 |-- EnvironmentSatisfaction: integer (nullable = true)
 |-- Gender: string (nullable = true)
 |-- HourlyRate: integer (nullable = true)
 |-- JobInvolvement: integer (nullable = true)
 |-- JobLevel: integer (nullable = true)
```

```
|-- JobRole: string (nullable = true)
|-- JobSatisfaction: integer (nullable = true)
|-- MaritalStatus: string (nullable = true)
|-- MonthlyIncome: integer (nullable = true)
```

Check for presence of missing values for all features.

from pyspark.sql.functions import col, sum

```
is_null_sum = churn1.select(*(sum(col(c).isNull().cast("int")).alias(c) for c
in churn1.columns))
display(is_null_sum)
```

Age		BusinessTravel	DailyRate	Department		П
•	Attrition ▼	-	-	-	DistanceFromHome ▼	E
0	0	0	0	0	0	
4						•
<u>+</u>						

B. Explore and Engineer Categorical Features

Gather summary statistics for categorical features.

display(churn1.describe())

summary •	Age ▼	Attrition ▼	BusinessTravel	DailyRate ▼	Depart
count	1470	1470	1470	1470	1470
mean	36.923809523809524	null	null	802.4857142857143	null
stddev	9.135373489136729	null	null	403.50909994352804	null
min	18	No	Non-Travel	102	Huma Resou
max	60	Yes	Travel_Rarely	1499	Sales
4					>

Obtain value counts for Attrition variable.

display(churn1.groupBy('Attrition').count())

Generate Churn dummy variable by mapping Attrition categories to 0 or 1. (0 = No, 1 = Yes)

from pyspark.ml.feature import StringIndexer

churn_indexer = StringIndexer(inputCol='Attrition', outputCol='Churn')
churn_dum = churn_indexer.fit(churn1).transform(churn1)
display(churn_dum.groupBy('Churn').count())

Obtain value counts for BusinessTravel variable.

display(churn_dum.groupBy('BusinessTravel').count().orderBy('BusinessTravel'))

BusinessTravel	
Non-Travel	
Travel_Frequently	

Convert BusinessTravel to numeric BusTravLevel (Business Travel Level) variable. (0 = Non-Travel, 1 = Travel_Rarely, 2 = Travel_Frequently)

```
from pyspark.sql import functions as F

churn_btl = churn_dum.withColumn('BusTravLevel', F.when(col('BusinessTravel'))
== 'Non-Travel', 0).when(col('BusinessTravel') == 'Travel_Rarely',
1).otherwise(2))
display(churn_btl.groupBy('BusTravLevel').count().orderBy('BusTravLevel'))
```


Obtain value counts and employee churn probabilities for each Department.

display(churn_btl.withColumn('Dept',
 churn_btl['Department']).groupBy('Dept').agg(F.count('Department').alias('count
'), F.mean('Churn').alias('mean')).orderBy('Dept'))

Create Department dummy variables and add it to churn dataframe.

```
departments = churn_btl.select('Department').distinct().rdd.flatMap(lambda x:
x).collect()
dept_dummies = [F.when(F.col('Department') == dept,
1).otherwise(0).alias(str(dept)) for dept in departments]
churn_dept = churn_btl.select(churn_btl.columns + dept_dummies).drop('Research & Development')
churn_dept = churn_dept.withColumnRenamed('Sales',
'Sales_Dept').withColumnRenamed('Human Resources', 'HR_Dept')
display(churn_dept.head(5))
```

Age _	Attrition •	BusinessTravel -	DailyRate -	Department	DistanceFromHome ▼ E
41	Yes	Travel_Rarely	1102	Sales	1
49	No	Travel_Frequently	279	Research & Development	8
37	Yes	Travel_Rarely	1373	Research & Development	2
33	No	Travel_Frequently	1392	Research & Development	3
27	No	Travel_Rarely	591	Research &	2
4)

<u>*</u>

Obtain value counts and employee churn probabilities for each Education Field.

display(churn_dept.withColumn('EduField',
 churn_dept['EducationField']).groupBy('EduField').agg(F.count('EducationField')
 .alias('count'), F.mean('Churn').alias('mean')).orderBy('EduField'))

27
606
159
464
82

Create Education Field dummy variables and add it to churn dataframe.

```
fields = churn_dept.select('EducationField').distinct().rdd.flatMap(lambda x:
x).collect()
edu_dummies = [F.when(F.col('EducationField') == field,
1).otherwise(0).alias(str(field)) for field in fields]
churn_edu = churn_dept.select(churn_dept.columns + edu_dummies).drop('Life Sciences')
churn_edu = churn_edu.withColumnRenamed('Human Resources',
'HR_Major').withColumnRenamed('Technical Degree',
'Tech_Major').withColumnRenamed('Marketing',
'Market_Major').withColumnRenamed('Medical',
'Med_Major').withColumnRenamed('Other', 'Other_Major')
display(churn_edu.head(5))
```

Age _	Attrition •	BusinessTravel	DailyRate -	Department -	DistanceFromHome ▼ E
41	Yes	Travel_Rarely	1102	Sales	1
49	No	Travel_Frequently	279	Research & Development	8
37	Yes	Travel_Rarely	1373	Research & Development	2
33	No	Travel_Frequently	1392	Research & Development	3
27	No	Travel_Rarely	591	Research &	2
4					•

Obtain value counts for Gender variable.

Ŧ

display(churn_edu.groupBy('Gender').count())

Generate Gender_Dum dummy variable by mapping Gender categories to 0 or 1. (0 = Male, 1 = Female)

```
gender_indexer = StringIndexer(inputCol='Gender', outputCol='Gender_Dum')
churn_gender = gender_indexer.fit(churn_edu).transform(churn_edu)
display(churn_gender.groupBy('Gender_Dum').count())
```


Obtain value counts and employee churn probabilities for each Job Role.

```
display(churn_gender.withColumn('Position',
    churn_gender['JobRole']).groupBy('Position').agg(F.count('JobRole').alias('coun
t'), F.mean('Churn').alias('mean')).orderBy('Position'))
```

Position	
Healthcare Representative	
Human Resources	
Laboratory Technician	
Manager	
Manufacturing Director	
Research Director	
Research Scientist	
Sales Executive	
Sales Renresentative	•

Create Job Role dummy variables and add it to churn dataframe.

```
jobs = churn_gender.select('JobRole').distinct().rdd.flatMap(lambda x:
x).collect()
job_dummies = [F.when(F.col('JobRole') == job, 1).otherwise(0).alias(str(job))
for job in jobs]
churn_job = churn_gender.select(churn_gender.columns + job_dummies).drop('Sales Executive')
churn_job = churn_job.withColumnRenamed('Sales Representative',
'Sales_Rep').withColumnRenamed('Laboratory Technician',
'Lab_Tech').withColumnRenamed('Human Resources',
'HR').withColumnRenamed('Research Scientist',
'Research_Sci').withColumnRenamed('Manufacturing Director',
'Manuf_Dir').withColumnRenamed('Healthcare Representative',
'HC_Rep').withColumnRenamed('Manager', 'Mgr').withColumnRenamed('Research Director', 'Research_Dir')
display(churn_job.head(5))
```

Age _	Attrition •	BusinessTravel	DailyRate -	Department	DistanceFromHome ▼ E
41	Yes	Travel_Rarely	1102	Sales	1
49	No	Travel_Frequently	279	Research & Development	8
37	Yes	Travel_Rarely	1373	Research & Development	2
33	No	Travel_Frequently	1392	Research & Development	3
27	No	Travel_Rarely	591	Research &	2
4					•

Obtain value counts and employee churn probabilities for each Marital Status.

```
display(churn_job.withColumn('Mar_Status',
    churn_job['MaritalStatus']).groupBy('Mar_Status').agg(F.count('MaritalStatus').
    alias('count'), F.mean('Churn').alias('mean')).orderBy('Mar_Status'))
```

Mar_Status	count
Divorced	327
Married	673
Single	470
4)
±	

Create Marital Status dummy variable and add it to churn dataframe.

```
statuses = churn_job.select('MaritalStatus').distinct().rdd.flatMap(lambda x:
x).collect()
marital_dummies = [F.when(F.col('MaritalStatus') == status,
1).otherwise(0).alias(str(status)) for status in statuses]
churn_mar = churn_job.select(churn_job.columns +
marital_dummies).drop('Married')
display(churn_mar.head(5))
```

Age	Attrition •	BusinessTravel	DailyRate	Department -	DistanceFromHome ▼	E
41	Yes	Travel_Rarely	1102	Sales	1	
49	No	Travel_Frequently	279	Research & Development	8	
37	Yes	Travel_Rarely	1373	Research & Development	2	:
33	No	Travel_Frequently	1392	Research & Development	3	
27	No	Travel_Rarely	591	Research &	2	
4)	

<u>*</u>

Obtain value counts for Over18 variable.

display(churn_mar.groupBy('Over18').count())

Obtain value counts for OverTime variable.

display(churn_mar.groupBy('OverTime').count())

Generate Overtime_Dum dummy variable by mapping OverTime categories to 0 or 1. (0 = No, 1 = Yes)

```
ot_indexer = StringIndexer(inputCol='OverTime', outputCol='Overtime_Dum')
churn_ot = ot_indexer.fit(churn_mar).transform(churn_mar)
display(churn_ot.groupBy('Overtime_Dum').count())
```


Drop unengineered or unnecessary categorical features from churn dataframe.

```
cat_cols_to_drop = ['Attrition', 'BusinessTravel', 'Department',
'EducationField', 'Gender', 'JobRole', 'MaritalStatus', 'Over18', 'OverTime']
churn_eng_cat = churn_ot.drop(*cat_cols_to_drop)
```

Obtain number of rows and columns in churn dataframe with engineered categorical features and unengineered numerical features.

```
print(churn_eng_cat.count(), len(churn_eng_cat.columns))
1470 47
```

View structure of churn dataframe with engineered categorical features and unengineered numerical features.

churn_eng_cat.printSchema()

```
root
 |-- Age: integer (nullable = true)
 |-- DailyRate: integer (nullable = true)
 |-- DistanceFromHome: integer (nullable = true)
 |-- Education: integer (nullable = true)
 |-- EmployeeCount: integer (nullable = true)
 |-- EmployeeNumber: integer (nullable = true)
 |-- EnvironmentSatisfaction: integer (nullable = true)
 |-- HourlyRate: integer (nullable = true)
 |-- JobInvolvement: integer (nullable = true)
 |-- JobLevel: integer (nullable = true)
 |-- JobSatisfaction: integer (nullable = true)
 |-- MonthlyIncome: integer (nullable = true)
 |-- MonthlyRate: integer (nullable = true)
 |-- NumCompaniesWorked: integer (nullable = true)
 |-- PercentSalaryHike: integer (nullable = true)
 |-- PerformanceRating: integer (nullable = true)
 |-- RelationshipSatisfaction: integer (nullable = true)
 |-- StandardHours: integer (nullable = true)
 |-- StockOptionLevel: integer (nullable = true)
 |-- TotalWorkingYears: integer (nullable = true)
```

C. Explore and Engineer Numerical Features

Drop unnecessary numerical features from churn dataframe.

```
num_cols_to_drop = ['EmployeeCount', 'EmployeeNumber', 'StandardHours']
churn_uneng_num = churn_eng_cat.drop(*num_cols_to_drop)
```

Remap ordered numerical features so that lowest level is 0 instead of 1.

```
churn_eng_cols = churn_uneng_num.withColumn('Education',
F.when(col('Education') == 1, 0).when(col('Education') == 2,
1).when(col('Education') == 3, 2).when(col('Education') == 4,
3).otherwise(4)).withColumn('EnvironmentSatisfaction',
F.when(col('EnvironmentSatisfaction') == 1,
0).when(col('EnvironmentSatisfaction') == 2,
1).when(col('EnvironmentSatisfaction') == 3,
2).otherwise(3)).withColumn('JobInvolvement', F.when(col('JobInvolvement') ==
1, 0).when(col('JobInvolvement') == 2, 1).when(col('JobInvolvement') == 3,
2).otherwise(3)).withColumn('JobLevel', F.when(col('JobLevel') == 1,
0).when(col('JobLevel') == 2, 1).when(col('JobLevel') == 3,
2).when(col('JobLevel') == 4, 3).otherwise(4)).withColumn('JobSatisfaction',
F.when(col('JobSatisfaction') == 1, 0).when(col('JobSatisfaction') == 2,
1).when(col('JobSatisfaction') == 3,
2).otherwise(3)).withColumn('PerformanceRating',
F.when(col('PerformanceRating') == 1, 0).when(col('PerformanceRating') == 2,
1).when(col('PerformanceRating') == 3,
2).otherwise(3)).withColumn('RelationshipSatisfaction',
F.when(col('RelationshipSatisfaction') == 1,
0).when(col('RelationshipSatisfaction') == 2,
1).when(col('RelationshipSatisfaction') == 3,
2).otherwise(3)).withColumn('WorkLifeBalance', F.when(col('WorkLifeBalance') ==
1, 0).when(col('WorkLifeBalance') == 2, 1).when(col('WorkLifeBalance') == 3,
2).otherwise(3))
```

Extract numerical features from churn dataframe to see correlation matrix between features.

```
num_features = ['Age', 'DailyRate', 'DistanceFromHome', 'Education',
'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel',
'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
'YearsSinceLastPromotion', 'YearsWithCurrManager']
churn_num_feat = churn_eng_cols.select(num_features)
```

Check the number of numerical features.

```
print(churn_num_feat.count(), len(churn_num_feat.columns))
1470 23
```

Convert numerical features PySpark dataframe to Pandas dataframe and generate unannotated correlation matrix heatmap from Pandas dataframe.

```
churn_num_feat_pd = churn_num_feat.toPandas()

corr_hm, ax = plt.subplots()

ax = sns.heatmap(churn_num_feat_pd.corr(), fmt=".2f")

display(corr_hm)
```


Convert numerical features into vector column using VectorAssembler and generate correlation matrix.

```
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.stat import Correlation
```

```
num_feat_vect_col = 'corr_features'
num_feat_vect_assembler = VectorAssembler(inputCols=churn_num_feat.columns,
outputCol=num_feat_vect_col)
num_feat_vect =
num_feat_vect_assembler.transform(churn_num_feat).select(num_feat_vect_col)
```

```
num_feat_corr_matrix = Correlation.corr(num_feat_vect, num_feat_vect_col,
method='pearson')

num_feat_corr_matrix.collect()[0]
['pearson({})'.format(num_feat_vect_col)].values
```

```
Out[42]:
array([ 1.00000000e+00, 1.06609426e-02, -1.68612015e-03,
        2.08033731e-01, 1.01464279e-02, 2.42865426e-02,
        2.98199586e-02, 5.09604228e-01, -4.89187715e-03,
        4.97854567e-01, 2.80511671e-02, 2.99634758e-01,
        3.63358491e-03, 1.90389551e-03, 5.35347197e-02,
        3.75097124e-02, 6.80380536e-01, -1.96208189e-02,
       -2.14900280e-02, 3.11308770e-01, 2.12901056e-01,
        2.16513368e-01, 2.02088602e-01, 1.06609426e-02,
        1.00000000e+00, -4.98533735e-03, -1.68064332e-02,
        1.83548543e-02, 2.33814215e-02, 4.61348740e-02,
        2.96633486e-03, 3.05710078e-02, 7.70705887e-03,
       -3.21816015e-02, 3.81534343e-02,
                                          2.27036775e-02,
        4.73296327e-04, 7.84603096e-03,
                                         4.21427964e-02,
        1.45147387e-02, 2.45254271e-03, -3.78480510e-02,
       -3.40547676e-02, 9.93201496e-03, -3.32289848e-02,
       -2.63631782e-02, -1.68612015e-03, -4.98533735e-03,
        1.00000000e+00, 2.10418256e-02, -1.60753270e-02,
        3.11305856e-02, 8.78327989e-03, 5.30273055e-03,
       -3.66883917e-03, -1.70144447e-02, 2.74728635e-02,
       -2.92508042e-02, 4.02353775e-02, 2.71096185e-02,
```

D. Feature Selection

Select predictor features for modeling by training random forest classification model on entire churn dataframe with all engineered features and filtering out features based off their model importances.

from pyspark.ml.linalg import Vectors

```
feat_assembler = VectorAssembler(inputCols=['Age', 'DailyRate',
'DistanceFromHome', 'Education', 'EnvironmentSatisfaction', 'HourlyRate',
'JobInvolvement', 'JobLevel', 'JobSatisfaction', 'MonthlyIncome',
'MonthlyRate', 'NumCompaniesWorked', 'PercentSalaryHike', 'PerformanceRating',
'RelationshipSatisfaction', 'StockOptionLevel', 'TotalWorkingYears',
'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany',
'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager',
'BusTravLevel', 'Sales_Dept', 'HR_Dept', 'Tech_Major', 'Other_Major',
'Market_Major', 'Med_Major', 'HR_Major', 'Gender_Dum', 'Manuf_Dir', 'Lab_Tech',
'Sales_Rep', 'HC_Rep', 'Research_Sci', 'Mgr', 'Research_Dir', 'HR', 'Divorced',
'Single', 'Overtime_Dum'], outputCol='features')
rfc_model_data = feat_assembler.transform(churn_eng_cols).select(['Churn',
'features'])
from pyspark.ml.classification import RandomForestClassifier
rfc = RandomForestClassifier(labelCol='Churn', featuresCol='features',
seed=101)
rfc_model = rfc.fit(rfc_model_data)
```

List out random forest predictor features and their respective importances.

```
feature_cols = ['Age', 'DailyRate', 'DistanceFromHome', 'Education',
'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel',
'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
'YearsSinceLastPromotion', 'YearsWithCurrManager', 'BusTravLevel',
'Sales_Dept', 'HR_Dept', 'Tech_Major', 'Other_Major', 'Market_Major',
'Med_Major', 'HR_Major', 'Gender_Dum', 'Manuf_Dir', 'Lab_Tech', 'Sales_Rep',
'HC_Rep', 'Research_Sci', 'Mgr', 'Research_Dir', 'HR', 'Divorced', 'Single',
'Overtime_Dum']
dict(zip(feature_cols, rfc_model.featureImportances))
```

{'Manuf_Dir': 0.0014307525239782213,

'HR_Dept': 0.0014589450013845723, 'Divorced': 0.01398568241994397,

'TrainingTimesLastYear': 0.019215258063992938,

```
'Single': 0.013922940057578406,
'PerformanceRating': 0.0042555266738991326,
'BusTravLevel': 0.026054574531989783,
'NumCompaniesWorked': 0.018855002693446442,
'Mgr': 0.0034903043986585641,
'Sales_Rep': 0.026164554840722037,
'StockOptionLevel': 0.035703545113518725,
'HR': 0.0033544220469723476,
'JobLevel': 0.034157180915355988,
'Education': 0.019579278511145808,
'JobInvolvement': 0.033025814097018595,
'Market_Major': 0.006176503129007728,
'YearsSinceLastPromotion': 0.013164764981488554,
'YearsWithCurrManager': 0.030502742062604345,
'Age': 0.12149603900957957,
'Other Major' • 0 0016624111070485878
```

 Based off the above predictor feature importances, unannotated numerical feature correlation matrix heatmap, and business logic / domain knowledge, I have decided to include only these features to build the machine learning models: Age, DistanceFromHome, EnvironmentSatisfaction, JobInvolvement, MonthlyIncome, StockOptionLevel, Sales Rep, Single, BusTravLevel, and Overtime Dum.

Create churn / attrition modeling data by selecting target feature and predictor features for modeling.

```
modeling_cols = ['Churn', 'Age', 'DistanceFromHome', 'EnvironmentSatisfaction',
'JobInvolvement', 'MonthlyIncome', 'StockOptionLevel', 'Sales_Rep', 'Single',
'BusTravLevel', 'Overtime_Dum']
churn_model = churn_eng_cols.select(modeling_cols)
```

Obtain value counts and employee churn probabilities for Overtime_Dum (Overtime dummy) variable, a categorical feature that highly impacts likelihood of employee to churn.

```
display(churn_model.withColumn('OT_Dummy',
    churn_model['Overtime_Dum']).groupBy('OT_Dummy').agg(F.count('Overtime_Dum').al
    ias('count'), F.mean('Churn').alias('mean')).orderBy('OT_Dummy'))
```