Práctico FCEFyN Redes de computadoras

Trabajo Práctico 6

Docentes: Matías R. Cuenca del Rey

Mail: mcuenca@unc.edu.ar
Natasha Tomattis

Mail: natitomattis@gmail.com

Colaborador externo: Matthew Aguerreberry

Ayudantes alumnos: Matías Kleiner, Elisabeth Leonhardt, Agustín Montero, Sergio Sulca

Redes de computadoras Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba

Práctico 6: Aplicación.

Presentación de consignas.

Ejercicio 1: Ruteo Internet. Ruteo interno. Configuración de aplicaciones. Despliegue de aplicaciones.

Recomendaciones

- Lea con cuidado las consignas.
- Tenga certeza de los comandos que ejecuta.
- Para contenerización utilizar Docker CE.
- Para orquestación utilizar Kubernetes (K8s)

Esquema

- Se realizará bajo IPv4. No se usará IPv6.
- Se usarán máquinas virtuales en VirtualBox. La configuración de red debe ser Bridge (Adaptador puente).
- Se usarán containers dentro de una máquina virtual para el router y el servidor DNS.
- Se usará kubernetes dentro de otra máquina virtual para los distintos servicios.
- Todas las acciones sobre los servidores deben ser llevadas a cabo con el comando SSH.

Diagrama

Tabla de asignación de direcciones IPv4

Completar la tabla de asignación de direcciones IP basado en los datos provistos por grupo.

Sistema Autónomo	Red asignada	Cantidad de hosts	Redes

Links de ayuda

Instalación de Docker CE: https://docs.docker.com/install/linux/docker-ce/ubuntu/ Instalación de Docker compose:

https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-16-04

Quagga y otros software OpenSource para ruteo:

https://keepingitclassless.net/2015/05/open-source-routing-comparison/

Strapi: https://hub.docker.com/r/strapi/strapi/

Strapi + Nginx: https://blog.strapi.io/how-to-deploy-a-strapi-application/

Consignas

Configuración de Red

- 1.- Aplicando VLSM, calcular las redes IPv4 para cada sistema autónomo según la información provista por los profesores.
- 2.- Trabajar con un nombre de dominio único para cada sistema autónomo, según la información provista por los profesores.
- 3.- Completar la tabla de asignación de redes que se lista más arriba.
- 4.- Configurar los sistemas autónomos con BGP.
- 5.- Interconectar los sistemas autónomos con al menos otro grupo de trabajo.
- 6.- Configurar OSPF como protocolo de ruteo interno dentro de cada sistema autónomo.

Servidores

- 7.- Instalar en su workstation el siguiente software:
 - VirtualBox
 - kubectl. Configurar alias para el comando kubectl a "k"
 - helm
 - ansible
- 8.- Importar y/o crear servidores en VirtualBox. Asegurarse de tener configurado adaptador puente.
- 8.1.- Importar microk8s: https://bit.ly/2PIELCd
- 9.- Configurar y/o usar usuario "ubuntu" con contraseña "ubuntu".
- 10.- Configurar IP estática en el servidor (netplan).
- 11.- Configurar acceso SSH utilizando clave pública/privada. Todas las acciones sobre los servidores deben ser llevadas a cabo con el comando SSH. Puede implementarlo con Ansible (opcional).

DNS

- 12.- Instalar software de DNS (Bind9, pero puede incluir Webmin)
- 13.- DNS Autoritativo: Configurar DNS en cada sistema autónomo y asignar registro A y PTR a cada dirección IP asignada.
- 14.- DNS Recursivo: Configurar la solución de manera tal que desde cualquier host sea posible resolver cualquier nombre de dominio.

Kubernetes

- 15.- Asegurarse que Kubernetes está instalado y los servicios funcionando:
 - microk8s.start
 - microk8s.enable storage dns ingress
- 16.- Importar la configuración de K8s en su workstation creando el archivo ~/.kube/config con el siguiente contenido. Reemplazar la dirección IPv4 con la asignada a su servidor K8s.

apiVersion:	v1		
clusters:			
- cluster:			

```
certificate-authority-data:
LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUMvakNDQWVhZ0F3SUJBZ01KQ
VBnMXZ6eUQ2RV15TUEwR0NTcUdTSWIzRFFFQkN3VUFNQ1F4RWpBUUJnT1YKQkFNTU
NURX10eTR3TGpBdU1UQWVGdzB4T1RBME1qZ31NekkyTVRSYUZ3MDBOakE1TVRNeU1
6STJNVFJhTUJReApFakFRQmdOVkJBTU1DVEV5Tnk0d0xqQXVNVENDQVNJd0RRWUpL
b1pJaHZjTkFRRUJCUUFEZ2dFUEFEQ0NBUW9DCmdnRUJBTUM2MUVOMUFrTGNaZ1o0Q
UpPb3p4b051ME9tZWhzUlllK3FSM0pKS3ZJWmdlSlN2TnNJeWUySjJlNWcKTGFUUn
p4NUJHZ29WZ2wzcTZ1OU83OW1sL0hPY1NUeGJiWmJGV11WT1J3emVHa1R2OGVxSSs
2NlhJR0srSVdxbgpjcWp6TjlURm9DMkh3MVZLTHA1SFU5Qmc1SW9uRUdnWTNzZjNQ
L1RFQ1VpL2EzWXJIN2dBS3pvN2pYK0twRDcxCkNGZV1KZnVrU1YxWHVLVi90bmhKa
GJpcmN4TEpJNy9qK3djdHRvc1RKNEF1UmdJeG9uNjRSWlqzZXc0RGFDZ0QKekdzMk
w0T1JhalNEV1V0V0dsemZIRjAzNWhGc1dGNHNuVkpSSUdSNTVabERpVGZEU24wRk1
2NGVYd094Q0tHNQpnRkN1dnptTGxjN115UTBEZWJqZ0pka01tVkVDQXdFQUFhT1RN
RkV3SFFZRFZSME9CQ11FRkNHUWRJb0NGN2VNCno5VGNTWHBZaWpNUGMzaVNNQjhHQ
TFVZE13UV1NQmFBRkNHUWRJb0NGN2VNej1UY1NYcFlpak1QYzNpU01B0EcKQTFVZE
V3RUIvd1FGTUFNQkFmOHdEUV1KS29aSWh2Y05BUUVMQ1FBRGdnRUJBS0QvaVZmUEF
TaXlhWTRnWk5OegpDZXUxLys0YU1CU0xwQ3V1UGtpMXZYOVBoWmdNSnpVaWVCZHJJ
NmhuUkYzZWJVK1JVaXR5NURXSnR3cDVCODhSCjZnOElsK1dOdE1OZC8xY3hqcGxxV
nJtZXNCVm1YRVhCcFAwZEpkYnk0aXFmajhEazJoa0ljMU5uaDBjaTRKTGcKOThwaU
5vQlVCYTZVdUxUZ0daT21WazdTMkl1OG9neXFSUjhaTEFlOVpTQUt3azJXU1E0OHF
EU1JLN1hwcEhTMgpXQWRISDF1OVBzUEFuclA3QkxGQlo5ejRFSng0UXpTb2tGYSta
cG9CWGFBekdUQXdxUDFwSkU5NGFpelVnbUFMCk4xQ3Uva2V4YWZlcE9NV0JQS2Q2c
Gt2aVFEdEp6WUZpbTNMQmNIN1M3Snc1dzJ3THZYSENsMUt2Q09oQ1B6RFUKZWRVPQ
otLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
    server: https://192.168.0.10:16443
  name: microk8s-cluster
contexts:
- context:
    cluster: microk8s-cluster
    user: admin
  name: microk8s
current-context: microk8s
kind: Config
preferences: {}
users:
- name: admin
  user:
    password:
eXVvZmlQWnI2SWhPMjV5cUlERXRFZ1lVVW51Wk5yUkIycTdsMzk2cTVJcz0K
    username: admin
```

17.- Instalar helm tiller en Kubernetes utilizando el comando 'helm init'.

Aplicación Web

18.- Desarrollar una aplicación web utilizando Strapi (https://strapi.io). La aplicación debe ser de inventario de recursos de red. Se debe poder crear un registro de equipo de red con su valor de número de serie y un booleano de si está o no conectado a la red. Se debe poder actualizar su valor y se debe poder eliminar un equipo ya existente. Todas estas acciones se deben ejecutar de manera autenticada.

- 19.- Usar github como repositorio para el desarrollo de la aplicación. A través de docker hub configurar un *automated build* para que cada vez que se suba un commit al repositorio se construya automáticamente la imagen de Strapi y se publique en docker hub. Declarar cuál es el hash de la imagen de docker generada.
- 20.- Desplegar la aplicación web sobre Kubernetes:
 - Strapi (deployment)
 - Mongo (stateful set)
 - Services
 - Ingress