Lesson 11. Dynamics of Market Price

1 Last time: a market equilibrium model with price dynamics

- Market with single commodity
- Variables:

 Q_d = quantity demanded Q_s = quantity supplied P = unit price

• Equations:

$$Q_d = \alpha - \beta P \qquad (\alpha, \beta > 0) \tag{1}$$

$$Q_s = -\gamma + \delta P \qquad (\gamma, \delta > 0) \tag{2}$$

$$Q_{d} = \alpha - \beta P \qquad (\alpha, \beta > 0)$$

$$Q_{s} = -\gamma + \delta P \qquad (\gamma, \delta > 0)$$

$$\frac{dP}{dt} = j(Q_{d} - Q_{s}) \qquad (j > 0)$$

$$(3)$$

- What does (3) say about how the price changes over time?
 - $Q_d > Q_s \Rightarrow dP/dt > 0 \Rightarrow$ price increases over time
 - $Q_d < Q_s \Rightarrow dP/dt < 0 \Rightarrow$ price decreases over time
 - $Q_d = Q_s \Rightarrow dP/dt = 0 \Rightarrow$ price stays the same over time
- Two types of equilibrium price:
 - market-clearing equilibrium price: demand equals supply, or $Q_d = Q_s$
 - intertemporal equilibrium price: price is constant over time, or dP/dt = 0
 - o In this model, by (3), these two types of equilibrium price are the same
 - o This may not be true in every model
- Substitute (1) and (2) into (3) to obtain the differential equation:

• This is a differential equation of the form

$$\frac{dy}{dt} + ay = b$$
 with definite solution $y(t) = \left(y(0) - \frac{b}{a}\right)e^{-at} + \frac{b}{a}$

• Therefore, we can find P(t):

• In Lesson 1, we used (1) and (2) with the equilibrium condition $Q_d = Q_s$ to find $P^* = \frac{\alpha + \gamma}{\beta + \delta}$

• So, we can rewrite P(t) as

2 Dynamic stability

• As $t \to \infty$, the price $P(t) \to$

• The price adjustment process defined by the model (1)-(3) is **dynamically stable**: P(t) converges to a constant P^* with enough time

• How does P(t) converge to P^* ?

3 Ensuring dynamic stability

• Suppose we do <u>not</u> assume $\alpha, \beta, \gamma, \delta > 0$

• What restrictions do we need to impose on α , β , γ , δ to ensure dynamic stability?

• In order for $P(t) \rightarrow P^*$, we need

• In words:

When the demand curve is negatively sloped () and the supply curve is positively sloped (), this happens automatically