- 1ST GENERATION

- General
- Specifications
- Memory organization
- Card life phases
- Security features
- Card commands

EEPROM TELEPHONE CARD - GENERAL

- silicon produced by SGS-Thomson, ST-1305
- silicon produced by Siemens, SLE-4406
- largest volume few hundred millions card per year
- lowest price approx US \$0.60 per card
- used by many telecom operators world-wide
- known as something103 or 104 card eg GPM-103, FE-104
- other variations but downward compatible to 4406
 - 4403 for German telecom, 4409 for GPT

SPECIFICATIONS

- EEPROM technology
- Memory divided into three areas:
 - A 24-bits protected manufacturer area
 - A 40-bits protected issuer area
 - A 5 stage 40-bits abacus counter for tokens
- Storage capacity: Up to 21 064 tokens (not reloadable)

The card when in used is in Countdown Mode

PIN ASSIGNMENTS

ELECTRICAL CHARACTERISTICS

- 5V supply voltage (VCC)
- Acess Time :
 - ◆10 ms to write
 - ◆10 ms to erase
- Low power consumption
- Operating range : 0°C to +50°C
- Ten years minimum data retention

MANUFACTURER AREA (read-only)

PERSONALIZATION (done by card manufacturer)

- Present Transport code
- Write Issuer Area
- Clear counters
- Blow logical fuse
- Set initial value

Writing to the Logical Fuse (Bit 64) changes the 4406 from Personalization Mode to Count Down Mode

This is irreversible

BEFORE AND AFTER FUSE BLOW

- Before (Personalization Mode)
 - 24-bits Manufacturing information (read only)
 - Blank One time write 80-bits Issuer Area
 - Protected by 24-bits transport code
 - 7 attempts to present transport code then the card is useless
 - Loadable counter with value 0-21,064
- After (Count Down Mode)
 - Down Counter from loaded value to zero
 - Issuer and manufacturer information is read only

COUNT DOWN PHASE

- Verify Issuer Data and Manufacturer Data for valid card
- Count down units, Issue Service
- If Empty, Throw away

COUNT MODE

- Any unwritten counter bit can be written at any time
- WRITE Micro-Sequence
- Counter can be loaded with any value at personalization
- A new value can be given to counter without stepping through all intermediate values
- Counters C_1 , C_8 , C_{64} and C_{512} can be erased (refilled) by writing an unwritten bit in the next level counter
- WRITECARRYMicro-Sequence
- Counter C₄₀₉₆ cannot be erased
- Card does not propagate carries between counters
- Carry propagation must be performed by the reader with additional WRITECARRY instructions

COUNT MODE SCHEME

ERASING COUNTER WITH WRITECARRY

To Erase counter	WRITECARRY in
C1	C8
C8	C64
C64	C512
C512	C4096 or Logical Fuse
C4096	Impossible

The WRITECARRY micro-sequence must be performed on an unwritten bit to erase a counter

SECURITY FEATURES

- The manufacturer area contains information unique to one application (for large orders) and are only sold to a specific customer
- The Manufacturer Area cannot be modified
- The manufacture of ICs and cards is controlled by strict security
 - Secured transfer
 - All materials are traced
 - Rejects destroyed
- Protected by Transport Code from silicon to card manufacturer
- Impossibility to reload counter

CARD COMMANDS

- Reset Address Counter (RESET)
- Increment Address Counter and Read Bit (INCREMENT)
- Write Bit (WRITE)
- Present Transport Code (PRESENT)
- Write Carry and Erase Counter Stage (WRITECARRY)

104 CARD COMMENTS

- 104 card is among the lowest priced card, but security offered is very limited
- Security relies on procedural control of chip and card manufacturers
- application not limited to telephone prepaid card application but designer's creativity
- issuer must have control of the terminals to prevent card emulation
- tokens may be lost if card is pulled out between write and write-carry
- this card, will in the mid-term be obsoleted