# Lecture 09: Ttransformer: Applications

Lan Xu SIST, ShanghaiTech Fall, 2023

#### Transformer

- A new block type in term of encoder-decoder
- Attention only!





#### **Attention Mechanism**

#### Human Vision: Fovea





The **fovea** is a tiny region of the retina that can see with high acuity



# Self-attention Layer Summary

One query per input vector



#### Inputs:

Input vectors: X (Shape:  $N_X \times D_X$ ) Key matrix:  $W_K$  (Shape:  $D_X \times D_Q$ ) Value matrix:  $W_V$  (Shape:  $D_X \times D_V$ ) Query matrix:  $W_Q$  (Shape:  $D_X \times D_Q$ )

#### Computation:

Query vectors:  $Q = XW_Q$ 

Key vectors:  $K = XW_K$  (Shape:  $N_X \times D_Q$ ) Value Vectors:  $V = XW_V$  (Shape:  $N_X \times D_V$ )

Similarities:  $E = QK^T$  (Shape:  $N_X \times N_X$ )  $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape:  $N_X \times N_X$ )

Output vectors: Y = AV (Shape:  $N_X \times D_V$ )  $Y_i = \sum_j A_{i,j} V_j$ 



## How to make self-attention efficient

Sequence Length = N



#### How to make self-attention efficient

- Self-attention is only a module in a larger network.
- Self-attention dominates computation when N is large.



# Skip Calculations with Human Knowledge

Can we fill in some values with human knowledge?



#### Local Attention/Truncated Attention

- Make it local
- Similar to CNN, may sacrifice performance



## Stride Attention

Observe non-local regions









#### Global Attention

- Add special token into original sequence
- Attend **to** every token  $\rightarrow$  collect global information
- Attend **by** every token → it knows global information



# Many Different Choices

Multi-head attention







## Many Different Choices

Longformer https://arxiv.org/abs/2004.05150







(c) Dilated sliding window



(d) Global+sliding window

#### Big Bird

https://arxiv.org/abs/2007.14062



(a) Random attention



(b) Window attention



(c) Global Attention





#### Focus on Critical Parts

- Truncate small value to 0
- Need to quickly estimate the portions with small attention weights



## Clustering of Attention Portions

- Reformer: <a href="https://openreview.net/forum?id=rkgNKkHtvB">https://openreview.net/forum?id=rkgNKkHtvB</a>
- Routing Transformer: <a href="https://arxiv.org/abs/2003.05997">https://arxiv.org/abs/2003.05997</a>



## Clustering of Attention Portions

- Reformer: <a href="https://openreview.net/forum?id=rkgNKkHtvB">https://openreview.net/forum?id=rkgNKkHtvB</a>
- Routing Transformer: <a href="https://arxiv.org/abs/2003.05997">https://arxiv.org/abs/2003.05997</a>



### Learnable Patterns

- A grid should be skipped or not is decided by another learned module
- Sinkhorn Sorting Network: <a href="https://arxiv.org/abs/2002.11296">https://arxiv.org/abs/2002.11296</a>



# Low Rank property of attention matrix

■ Linformer: <a href="https://arxiv.org/abs/2006.04768">https://arxiv.org/abs/2006.04768</a>



## Low Rank property of attention matrix

■ Can even reduce the number of queries → change output sequence length!



## Reduce Number of Keys

Compressed Attention: <a href="https://arxiv.org/abs/180">https://arxiv.org/abs/180</a>
1.10198 Linformer:<a href="https://arxiv.org/abs/2006.04768">https://arxiv.org/abs/200</a><a href="6.04768">6.04768</a>





Attention Mechanism is three-matrix Multiplication



#### Inputs:

Input vectors: X (Shape:  $N_X \times D_X$ ) Key matrix:  $W_K$  (Shape:  $D_X \times D_Q$ ) Value matrix:  $W_V$  (Shape:  $D_X \times D_V$ ) Query matrix:  $W_Q$  (Shape:  $D_X \times D_Q$ )

#### Computation:

Query vectors:  $Q = XW_Q$ 

Key vectors:  $K = XW_K$  (Shape:  $N_X \times D_Q$ ) Value Vectors:  $V = XW_V$  (Shape:  $N_X \times D_V$ )

Similarities:  $E = QK^T$  (Shape:  $N_X \times N_X$ )  $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape:  $N_X \times N_X$ )

Output vectors: Y = AV (Shape:  $N_X \times D_V$ )  $Y_i = \sum_j A_{i,j} V_j$ 



Attention Mechanism is three-matrix Multiplication



Attention Mechanism is three-matrix Multiplication



Attention Mechanism is three-matrix Multiplication



$$(d + d')N^{2}$$

$$N \times d \times N$$

$$d' \times N \times N$$

$$2d'dN$$

$$d' \times N \times d$$

$$d' \times d \times N$$

- If put softmax back, more complicated ......
- Linear decomposition

$$exp(\mathbf{q} \cdot \mathbf{k})$$

$$\approx \phi(\mathbf{q}) \cdot \phi(\mathbf{k})$$

$$\mathbf{q} \rightarrow \phi \rightarrow \phi(\mathbf{q})$$

Efficient attention

https://arxiv.org/pdf/1812.01243.pdf

Linear Transformer

https://linear-transformers.com/

- Random Feature Attention https://arxiv.org/pdf/2103.02143.pdf
- Performer

https://arxiv.org/pdf/2009.14794.pdf

# No Q/K to compute attention

Synthesizer: <a href="https://arxiv.org/abs/2005.00743">https://arxiv.org/abs/2005.00743</a>





#### Attention-free?

Fnet: Mixing tokens with fourier transforms

https://arxiv.org/abs/2105.03824

Pay Attention to MLPs

https://arxiv.org/abs/2105.08050

MLP-Mixer: An all-MLP Architecture for Vision

https://arxiv.org/abs/2105.01601





## **Attention Summary**

- Human Knowledge
- Local Attention, Big Bird
- Clustering
- Reformer
- Learnable Patterns
- Sinkforn
- Representative Key
- Linformer
- Linear-calculation
- Linear Transformer, Performer
- New framework
- Synthesizer.....



- From the aspect of Unsupervised Learning
- Supervised learning works great and comes with guarantees! But large labeled datasets are hard to find.
- Also learn from unlabeled data?
- Big trove of unlabeled data online!





28



- Use Autoregressive Generative Models for unsupervised learning!
- "What I cannot create, I do not understand."
  - ---- Richard Feynman
- "What I can create, I can also understand."
  - ---- Analysis by Synthesis

■ Doing very well at next-token prediction requires more than modeling local correlations → perhaps "reasoning"!

### GPT-1 (Radford et al 2018 )



| DATASET         | TASK                     | SOTA | OURS |
|-----------------|--------------------------|------|------|
| SNLI            | Textual Entailment       | 89.3 | 89.9 |
| MNLI Matched    | Textual Entailment       | 80.6 | 82.1 |
| MNLI Mismatched | Textual Entailment       | 80.1 | 81.4 |
| SciTail         | Textual Entailment       | 83.3 | 88.3 |
| QNLI            | Textual Entailment       | 82.3 | 88.1 |
| RTE             | Textual Entailment       | 61.7 | 56.0 |
| STS-B           | Semantic Similarity      | 81.0 | 82.0 |
| QQP             | Semantic Similarity      | 66.1 | 70.3 |
| MRPC            | Semantic Similarity      | 86.0 | 82.3 |
| RACE            | Reading Comprehension    | 53.3 | 59.0 |
| ROCStories      | Commonsense Reasoning    | 77.6 | 86.5 |
| COPA            | Commonsense Reasoning    | 71.2 | 78.6 |
| SST-2           | Sentiment Analysis       | 93.2 | 91.3 |
| CoLA            | Linguistic Acceptability | 35.0 | 45.4 |
| GLUE            | Multi Task Benchmark     | 68.9 | 72.8 |

GPT-2: Zero-Shot Reading Comprehension

The 2008 Summer Olympics torch relay was run from March 24 until August 8, 2008.

•••

The relay also included an ascent with the flame to the top of Mount Everest on the border of Nepal and Tibet, China from the Chinese side, which was closed specially for the event.

Q: And did they climb any mountains?

A: Everest

GPT-2: Zero-Shot Summarization

Prehistoric man sketched an incredible array of prehistoric beasts on the rough limestone walls of a cave in modern day France 36,000 years ago...

TLDR: The original site in Vallon-Pont-D'arc in Southern France is a Unesco World Heritage site and is the oldest known and the best preserved cave decorated by man. The replica cave was built a few miles from the original site in Vallon-Pont-D'Arc in Southern France. The cave contains images of 14 different species of animals including woolly rhinoceros, mammoths, and big cats.

GPT-2: Zero-Shot Translation

The sentence "Un homme a expliqué que l'opération gratuite qu'il avait subie pour soigner une hernie lui permettrait de travailler à nouveau." translated from French to English, means:

A man told me that the operation gratuity he had been promised would not allow him to travel.



GPT-3: Language Model Metalearning



GPT-3: Few Shot Arithmetic
 12+13 = 25. 34+11 = 44. 64 + 30 = 94. 31+41 = 72.



- GPT-3: General Few Shot Learning
- Autoregressive Language Modeling is universal!



iGPT (Chen et al 2020): Can we apply GPT to images?







Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence. We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate the representations learned by these objectives with linear probes or fine-tuning.

iGPT: Completion



#### iGPT: Feature Learning

|                           |                            |          | PRE-TRAINED ON IMAGENET |              |  |
|---------------------------|----------------------------|----------|-------------------------|--------------|--|
| EVALUATION                | MODEL                      | ACCURACY | W/O<br>LABELS           | W/<br>LABELS |  |
| CIFAR-10                  | ResNet-152 <sup>50</sup>   | 94.0     |                         | ~            |  |
| Linear Probe              | SimCLR <sup>12</sup>       | 95.3     | ~                       |              |  |
|                           | iGPT-L 32x32               | 96.3     | ~                       |              |  |
| CIFAR-100<br>Linear Probe | ResNet-152                 | 78.0     |                         | ~            |  |
|                           | SimCLR                     | 80.2     | ~                       |              |  |
|                           | iGPT-L 32x32               | 82.8     | ~                       |              |  |
| STL-10                    | AMDIM-L13                  | 94.2     | ~                       |              |  |
| Linear Probe              | iGPT-L 32x32               | 95.5     | ~                       |              |  |
| CIFAR-10                  | AutoAugment <sup>51</sup>  | 98.5     |                         |              |  |
| Fine-tune                 | SimCLR                     | 98.6     | ~                       |              |  |
|                           | GPipe <sup>15</sup>        | 99.0     |                         | ~            |  |
|                           | iGPT-L                     | 99.0     | ~                       |              |  |
| CIFAR-100                 | iGPT-L                     | 88.5     | ~                       |              |  |
| Fine-tune                 | SimCLR                     | 89.0     | ~                       |              |  |
|                           | AutoAugment                | 89.3     |                         |              |  |
|                           | EfficientNet <sup>52</sup> | 91.7     |                         | ~            |  |

- DALL-E (Ramesh et al 2020): GPT for Text-to-Image
- Simply train a transformer on concat (caption, image)!

imall dog being groomed and dried by two sets of nands.

I small wet dog getting blown by an air dryer.

I small brown and white dog being groomed.

I small puppy on a towel with people holding it
wo people are using a hair drier on a small dog.





DALL-E: Zero-Shot Image to Image



(a) "the exact same cat on the top as a sketch on the bottom"

(b) "the exact same photo on the top reflected upside-down on the bottom"

(c) "2 panel image of the exact same cat. on the top, a photo of the cat. on the bottom, an extreme close-up view of the cat in the photo."

DALL-E: Zero-Shot Image to Image



(d) "the exact same cat on the top colored red on the bottom"

(e) "2 panel image of the exact same cat. on the top, a photo of the cat. on the bottom, the cat with sunglasses."

(f) "the exact same cat on the top as a postage stamp on the bottom"



- CodeX: Isn't Code JUST another modality?
- Why is it worth the effort to train a model on code?
- GPT-3 had a rudimentary ability to write Python code from a docstring or method name, even though there was little code in the training data.
- Functions can be tested with unit tests and an interpreter

CodeX: The HumanEval Dataset

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all
    of the odd elements that are in even positions.

Examples
    solution([5, 8, 7, 1]) ==> 12
    solution([3, 3, 3, 3, 3]) ==> 9
    solution([30, 13, 24, 321]) ==>0
    """
```

```
return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])
```



- CodeX: The Pass@K Metric
- Definition: Average probability (over all problems) that at least one of K samples passes unit tests.
- Given n>=k samples, where c are correct, an unbiased estimator is:

$$\operatorname{pass@}k := \mathop{\mathbb{E}}_{\operatorname{Problems}} \left[ 1 - \frac{\binom{n-c}{k}}{\binom{n}{k}} \right]$$



- CodeX: Training Details
- Dataset: 159 GB of code collected from 54 million repositories
- For efficient training: fine-tuned from GPT-3 models of different sizes
- Extra spaces in tokenizer.



- Training Codex-S
- Goal: Finetune Codex on standalone functions which are correct
- Gather these functions from
- Competitive programming problems
- Tracing code execution when running integration tests for projects with CI enabled.

Codex and Codex-S Performance



- Codex and Codex-S Limitation
- Binding & Composition

```
def do_work(x, y, z, w):
    """ Add 3 to y, then subtract 4
    from both x and w. Return the
    product of the four numbers. """
    t = y + 3
    u = x - 4
    v = z * w
    return v
```



- Image Captioning using ONLY transformers
- Transformers from pixels to language



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale ICLR2021

- Motivation: unification story for AI (NLP and CV)
- Beauty; Facilitate joint modeling; Share knowledge deeply



- Motivation: unification story for AI (NLP and CV)
- Beauty; Facilitate joint modeling; Share knowledge deeply



**Physics** 





- Image Captioning using ONLY transformers
- Transformers from pixels to language
- SOTA performance on ImageNet-1K

ImageNet-1K image classification





Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR2021

- ViT (10/2020)
- SOTA performance on ImageNet-1K image classfication



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale ICLR2021

- Image Captioning using ONLY Transformers
- Vision Transformers vs. ResNets



Figure 5: Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR2021

Still ongoing ......



Carion et al, "End-to-End Object Detection with Transformers", ECCV 2020

set of image features

56

bipartite matching loss

set of box predictions

 Problem of ViT: don't consider the difference between textual and visual signals



I am a fat cat
I am a fat fat cat cat



I am a fat cat.

Fat cat is me.

Problem of ViT: mainly for image classification



Classification (image-level)





Detection (region-level)





Segmentation (pixel-level)



- Reconsider the good priors for visual signals
- Hierarchy / Locality / Translation invariance





- How about sliding window as in CNN?
- Slow in real computation → Different queries use different key sets



- Key idea: locality by Shifted windows
- Non-overlapped windows (faster real speed than sliding windows)
- Windows are shifted in the next layer



SOTA performance on a variety of tasks

- Backbone-level comparison
  - Performs consistently better than CNN on various object detectors and various model sizes (+3~4.5 mAP)

|             | (a) Var  | ious f | ramev            | vorks |         |              |      |       |
|-------------|----------|--------|------------------|-------|---------|--------------|------|-------|
| Method      | Backbone | APbox  | AP <sub>50</sub> | AP75  | #param. | <b>FLOPs</b> | FPS  |       |
| Cascade     | R-50     | 46.3   | 64.3             | 50.5  | 82M     | 739G         | 18.0 |       |
| Mask R-CNN  | Swin-T   | 50.5   | 69.3             | 54.9  | 86M     | 745G         | 15.3 | +4.2  |
| ATSS        | R-50     | 43.5   | 61.9             | 47.0  | 32M     | 205G         | 28.3 |       |
|             | Swin-T   | 47.2   | 66.5             | 51.3  | 36M     | 215G         | 22.3 | +3.7  |
| RepPointsV2 | R-50     | 46.5   | 64.6             | 50.3  | 42M     | 274G         | 13.6 | . 2 - |
|             | Swin-T   | 50.0   | 68.5             | 54.2  | 45M     | 283G         | 12.0 | +3.5  |
| Sparse      | R-50     | 44.5   | 63.4             | 48.2  | 106M    | 166G         | 21.0 | - 2   |
| R-CNN       | Swin-T   | 47.9   | 67.3             | 52.3  | 110M    | 172G         | 18.4 | +3.4  |

|         | AP <sup>box</sup> | AP <sub>50</sub> | AP <sub>75</sub> | APmask APmask APmask |      |      | paramFLOPs FPS |      |      |     |
|---------|-------------------|------------------|------------------|----------------------|------|------|----------------|------|------|-----|
| DeiT-S† |                   |                  |                  |                      |      |      |                |      |      |     |
| R50     | 46.3              | 64.3             | 50.5             | 40.1                 | 61.7 | 43.4 | 82M            | 739G | 18.0 | +4. |
| Swin-T  | 50.5              | 69.3             | 54.9             | 43.7                 | 66.6 | 47.1 | 86M            | 745G | 15.3 | +4. |
| X101-32 | 48.1              | 66.5             | 52.4             | 41.6                 | 63.9 | 45.2 | 101M           | 819G | 12.8 |     |
| Swin-S  | 51.8              | 70.4             | 56.3             | 44.7                 | 67.9 | 48.5 | 107M           | 838G | 12.0 | +3. |
| X101-64 | 48.3              | 66.4             | 52.3             | 41.7                 | 640  | 45.1 | 140M           | 972G | 10.4 |     |
| Swin-B  | 51.9              | 70.9             | 56.5             | 45.0                 | 68.4 | 48.7 | 145M           | 982G | 11.6 | +3. |

SOTA performance on a variety of tasks

#### Object Detection on COCO test-dev



SOTA performance on a variety of tasks



Recall the model evolution in NLP or sequential data



Can NLP/CV share the same basic modules?

Adapting convolution layers for NLP modeling



Still unleash the power of Transformer in CV





# Summary

- Transformer Applications
  - □ NLP, Vision
  - □ Cross/Multi- Modality

- Next time:
  - □ Prediction Problem