Derivatives of Exponentials and Logs Text

Derivative of the Natural Exponential Function

$$\frac{d}{dx}(e^x) = e^x$$

Derivative of the Natural Logarithm Function

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, \quad x > 0$$

Alternate Derivation Instead of applying Theorem 3 directly, we can find the derivative of $y = \ln x$ using implicit differentiation, as follows:

$$y = \ln x$$
 $e^y = x$
Inverse function relationship
$$\frac{d}{dx}(e^y) = \frac{d}{dx}(x)$$
Differentiate implicitly
$$e^y \frac{dy}{dx} = 1$$
Chain Rule
$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{x}.$$

$$e^y = x$$

No matter which derivation we use, the derivative of $y = \ln x$ with respect to x is

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, \quad x > 0.$$

The Chain Rule extends this formula for positive functions u(x):

$$\frac{d}{dx}\ln u = \frac{d}{du}\ln u \cdot \frac{du}{dx}$$

$$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}, \qquad u > 0.$$
 (2)

EXAMPLE 3 We use Equation (2) to find derivatives.

(a)
$$\frac{d}{dx} \ln 2x = \frac{1}{2x} \frac{d}{dx} (2x) = \frac{1}{2x} (2) = \frac{1}{x}, \quad x > 0$$

(b) Equation (2) with $u = x^2 + 3$ gives

$$\frac{d}{dx}\ln(x^2+3) = \frac{1}{x^2+3} \cdot \frac{d}{dx}(x^2+3) = \frac{1}{x^2+3} \cdot 2x = \frac{2x}{x^2+3}.$$

Notice the remarkable occurrence in Example 3a. The function $y = \ln 2x$ has the same derivative as the function $y = \ln x$. This is true of $y = \ln bx$ for any constant b, provided that bx > 0:

$$\frac{d}{dx}\ln bx = \frac{1}{bx} \cdot \frac{d}{dx}(bx) = \frac{1}{bx}(b) = \frac{1}{x}.$$
 (3)

If x < 0 and b < 0, then bx > 0 and Equation (3) still applies. In particular, if x < 0 and b = -1 we get

$$\frac{d}{dx}\ln\left(-x\right) = \frac{1}{x} \qquad \text{for } x < 0.$$

Since |x| = x when x > 0 and |x| = -x when x < 0, we have the following important result.

$$\frac{d}{dx}\ln|x| = \frac{1}{x}, \quad x \neq 0 \tag{4}$$

The Derivatives of a^u and $\log_a u$

We start with the equation $a^x = e^{\ln(a^x)} = e^{x \ln a}$, which was established in Section 1.6:

$$\frac{d}{dx}a^{x} = \frac{d}{dx}e^{x \ln a} = e^{x \ln a} \cdot \frac{d}{dx}(x \ln a) \qquad \frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$$
$$= a^{x} \ln a.$$

If a > 0, then

$$\frac{d}{dx}a^x = a^x \ln a.$$

This equation shows why e^x is the exponential function preferred in calculus. If a = e, then $\ln a = 1$ and the derivative of a^x simplifies to

$$\frac{d}{dx}e^x = e^x \ln e = e^x.$$

With the Chain Rule, we get a more general form for the derivative of a general exponential function.

If a > 0 and u is a differentiable function of x, then a^u is a differentiable function of x and

$$\frac{d}{dx}a^{u} = a^{u} \ln a \, \frac{du}{dx}.\tag{5}$$

EXAMPLE 5 We illustrate using Equation (5).

(a)
$$\frac{d}{dx} 3^x = 3^x \ln 3$$
 Eq. (5) with $a = 3, u = x$

(b)
$$\frac{d}{dx} 3^{-x} = 3^{-x} (\ln 3) \frac{d}{dx} (-x) = -3^{-x} \ln 3$$
 Eq. (5) with $a = 3, u = -x$

The Derivative of $log_{\sigma}u$

To find the derivative of $\log_a u$ for an arbitrary base $(a > 0, a \ne 1)$, we start with the change-of-base formula for logarithms (reviewed in Section 1.6) and express $\log_a u$ in terms of natural logarithms,

$$\log_a x = \frac{\ln x}{\ln a}$$
.

Taking derivatives, we have

$$\frac{d}{dx}\log_a x = \frac{d}{dx}\left(\frac{\ln x}{\ln a}\right)$$

$$= \frac{1}{\ln a} \cdot \frac{d}{dx} \ln x \qquad \ln a \text{ is a constant.}$$

$$= \frac{1}{\ln a} \cdot \frac{1}{x}$$

$$= \frac{1}{x \ln a}.$$

If u is a differentiable function of x and u > 0, the Chain Rule gives the following formula.

For
$$a > 0$$
 and $a \neq 1$,

$$\frac{d}{dx}\log_a u = \frac{1}{u\ln a}\frac{du}{dx}. (7)$$