Operating Systems

Virtual Memory

Background

- ☐ The term "virtual memory" refers to something which appears to be present but actually it is not.
- The virtual memory technique allows users to use more memory for a program than the real memory of a computer.
- ☐ Virtual memory is a **concept** that we use when we have processes that exceed the main memory.
- When computer runs out of physical memory, it writes its requirement to the hard disc in a swap file as "virtual memory".

Demand Paging

- ☐ Bring a page into memory only when it is needed
- Less I/O needed
- Less memory needed
- Faster response
- More users
- Disadvantage: Page fault interrupt
- ☐ Required hardware support:
- Page Table with valid-invalid bit
- Secondary memory

Demand Paging in OS

Valid-Invalid Bit

- An extra bit in the page table which indicates the existence of the page in the main memory.
- ☐ Attempt to access page
- ☐ If page is valid (in memory) then continue processing instruction as normal.
- ☐ If page is invalid then a page-fault trap / page-fault interrupt occurs.
- \square Page is needed \Rightarrow reference to it
- Invalid reference \Rightarrow abort
- Not-in-memory ⇒ bring to memory

Page Fault

If there is ever a reference to a page, first reference trap to $OS \Rightarrow page fault$

- 1. OS looks at another table to decide:
 - Invalid reference \Rightarrow abort.
 - Just not in memory.
- 2. Find empty/ free frame.
- 3. Load page from disk into frame.
- 4. Reset tables, validation bit = 1.
- 5. Restart instruction that caused page fault

Demand Paging Flowchart

Page Replacement

Page Replacement Algorithms:

- ☐ FIFO (First In First Out)
- ☐ LRU (Least Recently Used)
- □ OPT (Optimal)

FIFO (First In First Out)

□ Selects the page for replacement that has been in the memory for the longest amount of time

LRU (Least Recently Used)

Less Used

- ☐ Replace the least recently used page in the past
- ☐ Can be implemented by associating a counter with every page that is in main memory

Optimal

☐ Replace the page which is not used in longest dimension of time in future

Here, this one is optimal as it has only 6 page replacement