

Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

Dave Seidel, R.J. Thompson, W.M. Klipstein,

J. Kohel, L. Maleki

Time and Frequency Sciences and
Technology Group

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109
U.S.A.

dar

Credits

JPL: LCAP program

Dave Seidel (Systems Engineer)
Rob Thompson (Instrument Manager)
Lute Maleki (Group Sup./Proj. Scientist)
Jim Kohel
Bill Klipstein

GPS Carrier Phase:
Larry Young
Sien Wu

Project Management:
Mike Devirian (Program Manager)
Gail Klein (Project Manager)
Ed Dobkowski (Quality Assurance)
Ulf Israelsson (Discipline Scientist)
Richard Beatty (ISS Program Engineer)

Yale: GLACE, RACE, LCATS

NIST: PARCS, LCATS

Kurt Gibble

Don Sullivan
Tom Heavner
Leo Hollberg
Steve Jefferts
John Kitching

David Lee
Judah Levine
Dawn Meekhof
Craig Nelson
Tom Parker
William Phillips
Hugh Robinson
Steve Rolston
Fred Walls
Andrea De Marchi (Torino)

CU: PARCS, LCATS

Neil Ashby

SAO: PARCS

Bob Vessot
Ed Mattison

Overview of LCAP Flight Projects

International Space Station

- PARCS (Primary Atomic Reference Clock in Space): NIST/CU**

Laser-cooled cesium primary frequency standard (10^{-16} accuracy) operating continuously for at least 30 days, with GPS capability. Will perform relativity experiments and global precise time distribution.

- RACE (Rubidium Atomic Clock Experiment): Yale**

Laser-cooled rubidium clock for ultrahigh accuracy (exceeding a part in 10^{16}), to operate continuously for at least 30 days. Use of clock for relativity experiments and cold collision studies.

Space Shuttle

- LCATS (Laser Cooled Atomic Timekeeping in Space): Joint PARCS/RACE team.**

Flight of laser-cooled microgravity atomic clock along with high stability ion clock/H maser and GPS capability for relativity experiments, tests of spatial isotropy. Tests time transfer and clock technology with some science return.

Space Clock 101

10 cm

JPL

Physics with Clocks in microgravity

- Gravitational frequency shift
(requires stable frequency transfer to ground)
- Local Position Invariance
(requires comparison to another oscillator)
- Kennedy-Thorndike Experiment
(requires cavity oscillator such as SUMO)

Space Clock Challenges

Clock Parts

Microwave electronics

Local Oscillator

Synthesizer

Cavity

More magnetic field control

Thermal Control

Light Baffling/Shutters

Vacuum requirements

Measurement System

Laser Cooling Source

Lasers

Optical Frequency Control

Fibers

Fluorescence detection

Vacuum chamber

Computer Control

Electronics

Magnetic field control

Atom Source

LCAP Timeline

ISS Science Platforms

A) Centrifuge Accommodation Module

B) Columbus Orbiting Facility

C) Japanese Experiment Module (JEM)

D) JEM external facility

E) US Lab

Not shown: Russian Laboratories, Express Pallets

PHRCS

ISS Express Rack

NIST JPL

Cesium Clock Package

NOTE: SAMS hardware available in ARIS Rack only

	Requirement	Constraint	Reserve
Mass	130Kg	195Kg	65Kg
Power	< 500W	<2kW	1.5kW
Volume	162 liters	248 liters	86 liters
length	87cm	90.7cm	3.7cm
depth	46cm	51.6cm	5.6cm
height	45cm	53.1cm	8.1cm

JPL

Space Qualification of Components

Shuttle requirements:

- Vibration Testing:

Instrument should operate after exposure to:

Freq. Range	Design/Protoflight (PF)	Flight Acceptance (FA)
-------------	-------------------------	------------------------

20 to 150 Hz	+6dB/Octave	+6dB/Octave
150 to 1000 Hz	0.06 g ² /Hz	0.03 g ² /Hz
1000 to 2000 Hz	-6dB/Octave	-6dB/Octave

Duration: Design: 2 minutes; PF or FA test: 1 minute

- Environment:

Instrument should operate after exposure to:

Temperature: -5 to 50 C

Pressure: 786 torr to 204 torr (1240 torr/min Max Depressurization rate)

Humidity: 20 to 70%

- Radiation:

~100x Earth dose

New Focus Vortex laser on
vibration test bed at JPL

Laser Configuration

JPL

Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer

GPS Carrier Phase Frequency Transfer

GPS carrier phase technique expected to give:

- 100 ps resolution
- < 10 cm position information
- < 1 mm/s velocity information

Issues:

- Need external antennae
- No high quality rf/optical link between interior/exterior
- Multipath worrisome (need ~-70 dBm)
- visibility of satellites (desire ~12 in view)

Existing GPS antennae will see between 3-6 satellites

Give Position Information to 100 m

ISS Model Views

“Normal” View

Another “Normal” View

