Northwestern University

MATH 230-1 Final Exam Fall Quarter 2023 December 5, 2023

Last name: _	SOLUTIONS	Email address:
First name: _		NetID:

Instructions

• Mark your section.

Section	Time	Instructor
31	9:00	Lee
41	10:00	Lee
51	11:00	Wunsch
61	12:00	Cañez
71	1:00	Coles
81	2:00	Coles

- This examination consists of 13 pages, not including this cover page. Verify that your copy of this examination contains all 13 pages. If your examination is missing any pages, then obtain a new copy of the examination immediately.
- This examination consists of 8 questions for a total of 100 points.
- You have two hours to complete this examination.
- Do not use books, notes, calculators, computers, tablets, or phones. Use only material covered in this course (i.e., in the textbook or lecture) and not any formulas you may know from elsewhere that we did not cover.
- Write legibly and only inside of the boxed region on each page.
- Cross out any work that you do not wish to have scored.
- Show all of your work. Unsupported answers may not earn credit.

- 1. (This problem has four parts and continues on the next page.) Determine whether each of the following statements is true or false. Justify your answer.
 - (a) (5 points) The triangle with vertices (0,0,0), (-2,2,1), and (-5,1,2) has area larger than 4.

Sides are
$$\langle -2,2,1 \rangle$$
 and $\langle -5,1,2 \rangle$
 $\langle -2,2,1 \rangle \times \langle -5,1,2 \rangle = \begin{vmatrix} 7 & 1 \\ -2 & 2 \\ -5 & 1 & 2 \end{vmatrix} = \langle 3,-1,8 \rangle$

area of
$$=\frac{1}{2}\left(\operatorname{area of}\right)=\frac{1}{2}\left(\operatorname{cross product}\right)$$

 $=\frac{1}{2}\left(\operatorname{q+1}+64\right)=\frac{1}{2}\left(\operatorname{q+1}\right)$
 $=\frac{1}{2}\left(\operatorname{q+1}\right)$

(b) (5 points) The cross-sections of the paraboloid $z = 2x^2 + 4y^2$ at fixed x = k are ellipses.

$$Z = 2k^2 + 4y^2$$
 is a parabola FALSE

(c) (5 points) The limit $\lim_{(x,y)\to(0,3)} \frac{x^2 - x + 2y^2}{(x^2 + y^2)^4}$ exists.

function is continuous at (013)

so
$$\lim_{(x,y)\to(0,1)} \frac{x^2-x+2y^2}{(x^2+y^2)^4} = \frac{0^2-0+2\cdot 3^2}{(0^2+3^2)^4} = \frac{18}{9^4}$$

TRUE

(d) (5 points) There is a point (a, b, f(a, b)) on the graph of $f(x, y) = 2x^3y$ at which the tangent plane is parallel to the plane z = 12x + 2y - 100.

tangent plane is

$$Z = 2a^3b + 6a^2b(x-a) + 2a^3(y-b)$$

For $a = 1$ and $b = 2$ get

 $2 = 4 + 12(x-1) + 2(y-2)$, which

is parallel to $2 = 12x + 2y - 100$

TRUE

2. (10 points) Consider the intersecting lines with parametric equations

$$\begin{cases} x = -8 + t \\ y = t \\ z = 14 - 3t \end{cases}$$
 and
$$\begin{cases} x = -3t \\ y = 3 + 2t \\ z = 1 - 2t. \end{cases}$$

Find parametric equations for the line which is perpendicular to both of these lines and passes through their point of intersection. If you are having trouble finding the point of intersection, use (x_0, y_0, z_0) in place of this point for partial credit.

The perpendicular direction becomes

$$-8+t_1=-3t_2$$
 $-8+t_1=-3t_2$
 $-9+t_1=-3t_2$
 $-9+t_1=$

= (direction) x (direction)
(ine 1) x (direction)

= (direction) x (direction)
(ine 2)

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & -3 \\ -3 & 2 & -2 \end{vmatrix} = \langle 4, 11, 5 \rangle$$

- 3. Consider the surfaces with equations y = 3x and $x^2 + z^2 = 4$.
 - (a) (5 points) Find a set of parametric equations, with correct parameter bounds, for the portion of the curve where these surfaces intersect that lies in the region where $z \ge 0$.

1st approach:
$$\chi = t$$
, $y = 3t$, $z = \sqrt{4-t^2}$, $-2 \le t \le 2$
the bounds on t positive square root
come from Solving since $z \ge 0$
 $z = \sqrt{4-t^2} \ge 0$.
2nd approach: $\chi = 2 \cos t$, $\chi = 6 \cos t$, $z = 2 \sin t$

2nd approach:
$$X = 2 \cos t$$
, $y = 6 \cos t$, $z = 2 \sinh t$
 $0 \le t \le T$

(b) (5 points) Setup an integral which gives the arclength of this portion of the curve of intersection. Simplify your integral expression as much as you can without actually evaluating it.

| st approach:
$$\vec{r}(t) = \langle t, 3t, \sqrt{4-t^2} \rangle$$

$$\vec{r}'(t) = \langle 1, 3, \frac{-2t}{2\sqrt{4-t^2}} \rangle$$

$$\text{arclength} = \int_{-2}^{2} |\vec{r}'(t)| dt = \int_{-2}^{2} \sqrt{1+q+t^2} dt = \int_{-2}^{2} \sqrt{10+\frac{t^2}{4-t^2}} dt$$

$$2^{nd} \text{ approach}: \vec{r}(t) = \langle 2\cos t, b\cos t, 2\sin t \rangle$$

$$\vec{r}'(t) = \langle -2\sin t, -b\sin t, 2\cos t \rangle$$

$$\text{arclength} = \int_0^{\pi} \sqrt{4\sin^2 t + 3b\sin^2 t + 4\cos^2 t} \, dt = \int_0^{\pi} \sqrt{4+3b\sin^2 t} \, dt$$

- 4. Consider the function $f(x,y) = y^2 \cos(xy)$.
 - (a) (5 points) Find a direction in which the rate of change of f(x,y) at $(\frac{\pi}{2},1)$ is positive. Justify your answer.

$$\nabla f = \langle -y^3 \sin(xy), 2y \cos(xy) - xy^2 \sin(xy) \rangle$$

$$\nabla f \left(\frac{\pi}{2}, 1 \right) = \langle -1, -\frac{\pi}{2} \rangle \cdot \vec{u} > 0$$

$$for \vec{u} = \langle -1, 0 \rangle \text{ for } (\text{Get } \text{Value } \text{example } \text{of } 1)$$

$$\vec{u} = \langle 0, -1 \rangle \text{ is another } \text{example } (\text{Get } \frac{\pi}{2})$$

(b) (5 points) Compute f_{xx}, f_{xy}, f_{yx} , and f_{yy} .

$$f_{x} = -y^{3} \sin(xy)$$

$$f_{y} = 2y\cos(xy) - xy^{2} \sin(xy)$$

$$f_{xx} = -y^{4} \cos(xy)$$

$$f_{yy} = 2\cos(xy) - 2xy \sin(xy)$$

$$- 2xy \sin(xy) - x^{2}y^{2} \cos(xy)$$

$$- xy^{3} \cos(xy)$$

$$= f_{yx}$$

- 5. Consider the surfaces with equations $3z^2 = 1 + x^2 + y^2$ and $2xy + z^2 = 3$.
 - (a) (5 points) Find normal vectors to each surface at an arbitrary point (x, y, z).

$$3z^{2}-x^{2}-y^{2}=1$$

$$f(x,y,z)$$

$$f(x,z)$$

$$f(x,z$$

(b) (5 points) The point (1,1,1) lies on both surfaces. Find the cosine of the angle between the normal vectors to each surface at (1,1,1). Your answer should be expressed using square roots but can otherwise be left unsimplified.

Normal to 1st =
$$\nabla f(1_1(11)) = \langle -2, -2, 6 \rangle = U$$

Normal to $2^{nd} = \nabla g(1,|11) = \langle 2,2,2 \rangle = V$
 $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$
 $\Rightarrow \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{-4 - 4 + 12}{\sqrt{4 + 4 + 36} \sqrt{4 + 4 + 4}}$
 $= \frac{4}{\sqrt{44} \sqrt{12}}$

- 6. Consider the function $f(x,y) = \frac{e^{2x}}{y}$.
 - (a) (5 points) Find an equation of the tangent plane to the graph of z = f(x, y) at (0, 1, 1).

$$f_{x} = \frac{2e^{2x}}{y} \qquad f_{y} = -\frac{e^{4x}}{y^{2}}$$

$$Z = f(0,1) + f_{x}(0,1)(x-0) + f_{y}(0,1)(y-1)$$

$$Z = 1 + 2x - (y-1)$$

(b) (5 points) Justify the fact that using the tangent plane found in (a) to approximate the value of $\frac{e^{2(0.3)}}{0.9}$ results in an error no larger than $\frac{1}{2}\frac{4e}{(0.9)^3}(0.4)^2$. (Using the tangent plane to approximate the value is the same as using what the book calls the linearization to approximate the value.)

For
$$0 \le x \le 0.3$$
, $0.9 \le y \le 1$

$$|f_{xx}| = \left| \frac{4e^{2x}}{y} \right| \le \frac{4e^{0.6}}{0.9} \le \frac{4e}{(0.9)^3}$$

$$|f_{xy}| = \left| -\frac{2e^{2x}}{y^2} \right| \le \frac{2e^{0.4}}{(0.9)^2} \le \frac{2e}{(0.9)^3} \le \frac{4e}{(0.9)^3}$$

$$|f_{yy}| = \left| \frac{2e^{2x}}{y^3} \right| \le \frac{2e^{0.4}}{(0.9)^3} \le \frac{4e}{(0.9)^3}$$

So error $\le \frac{1}{2} \left(\frac{4e}{(0.9)^3} \right) \left(\frac{10x}{0.3} + \frac{10y}{0.1} \right) = \frac{1}{2} \left(\frac{4e}{(0.9)^3} \right) \left(0.4 \right)^3$

- 7. Consider the function $f(x,y) = 6xy x^3 3y^2$.
 - (a) (10 points) Find all critical points of f(x,y) and determine whether each is a local minimum, a local maximum, or a saddle point.

f_X =
$$6y - 3x^2 = 0$$
 $\xrightarrow{\text{Pluy in } x = y}$ $6y - 3y^2 = 0$

f_Y = $6x - 6y = 0 \rightarrow x = y$

f_X = $-6x$ f_X = $-6x$ f_Y = $-6x$ $y = 0$

@ $(6,0)$: f_X f_Y - $(4xy)^2 = 0 - 36 < 0$

saddle point

(0,0), (2,2)

@
$$(2,2)$$
: $fxxfyy-(fxy)^2=(-12)(-6)-36>0$
local max and $fxx=-12<0$

(b) (10 points) Find the points at which f(x,y) has an absolute maximum or an absolute minimum on the triangle with vertices (0,0),(0,1), and (1,1).

On
$$y=1: f(x_{11})=b_{X}-x^{3}-3$$

 $f_{x}=b-3x^{2}=0 \rightarrow X=\pm \sqrt{2} \text{ not}$
 $f_{x}=b-3x^{2}=0 \rightarrow X=\pm \sqrt{2} \text{ not}$
 $f_{y}=b_{y}=0 \rightarrow X=0 \text{ in region}$
 $f_{y}=b_{y}=0 \rightarrow X=0 \text{ in proposition}$
 $f_{y}=b_{y}-3x^{2}=0 \rightarrow X=0 \text{ in propos$

8. (10 points) Using the method of Lagrange multipliers, find the points on the double cone $z^2 = x^2 + y^2$ that are closest to the point (1, 2, 0). You do not have to justify why the points you find are closest instead of farthest. You can take it for granted that (0, 0, 0) is not the point you want.

minimize
$$f(x_1y_1z) = (x-1)^2 + (y-2)^2 + z^2$$

(square of distance to (11210))
Constraint $g(x_1y_1z) = z^2 - x^2 - y^2 = 0$
 $\nabla f = x \nabla g \longrightarrow \langle 2(x-1), 2(y-2), 2z \rangle = \lambda \langle -2x, -2y_12z \rangle$
 $z = x^2 + y^2$
 z

THERE IS NO EXAMINATION MATERIAL ON THIS PAGE.

YOU MUST SUBMIT THIS PAGE.

If you	would	d like	work	on the	nis pa	ge	scored,	then	clearly	indicate	e to	which	question	the	work	belongs	and
indica	te on	the p	age co	ontain	ing t	he (original	ques	tion tha	at there	is v	vork on	this pag	e to	score.		

THERE IS NO EXAMINATION MATERIAL ON THIS PAGE.

YOU MUST SUBMIT THIS PAGE.

If you	would	d like	work	on the	nis pa	ge	scored,	then	clearly	indicate	e to	which	question	the	work	belongs	and
indica	te on	the p	age co	ontain	ing t	he (original	ques	tion tha	at there	is v	vork on	this pag	e to	score.		

THERE IS NO EXAMINATION MATERIAL ON THIS PAGE.

YOU MUST SUBMIT THIS PAGE.

If you	would	d like	work	on the	nis pa	ge	scored,	then	clearly	indicate	e to	which	question	the	work	belongs	and
indica	te on	the p	age co	ontain	ing t	he (original	ques	tion tha	at there	is v	vork on	this pag	e to	score.		

December 5, 2023	MATH 230-1 Final Exam	Page 13 of 13
THERE IS	NO EXAMINATION MATERIAL ON THIS	S PAGE.
1112102 18	DO NOT WRITE ON THIS PAGE.	, 11132.