(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許番号

第2971006号

(45)発行日 平成11年(1999)11月2日

(24)登録日 平成11年(1999)8月27日

(51) Int.Cl.⁶

識別記号

FΙ

H04L 29/08 5/14 H04L 13/00

307Z

5/14

請求項の数3(全10頁)

(21)出願番号

特爾平7-63743

(22)出願日

平成7年(1995) 3月23日

(65)公開番号

特開平8-265393

(43)公開日

平成8年(1996)10月11日

審查請求日

平成9年(1997)7月30日

(73)特許権者 000001258

川崎製鉄株式会社

兵庫県神戸市中央区北本町通1丁目1番

28号

(72)発明者 鈴木 浩

東京都千代田区内幸町2丁目2番3号

川崎製鉄株式会社東京本社内

(74)代理人 弁理士 渡辺 望稔 (外1名)

審查官 江嶋 消仁

(56)参考文献

特開 昭63-87048 (JP, A)

特開 昭54-24506 (JP, A)

特開 平2-270444 (JP, A)

特開 昭63-292747 (JP, A)

特開 平2-75249 (JP, A)

最終頁に続く

(54) 【発明の名称】 シリアル通信方法およびシリアル通信コントローラ

1

(57)【特許請求の範囲】

【請求項1】少なくとも1つの受信用バッファおよび少なくとも1つの送信用バッファを備えるシリアル通信コントローラにおいて、

全二重通信の送受信時に、前記受信用および送信用バッファをそれぞれ受信用および送信用バッファとして使用し、半二重通信の受信時に、前記受信用および送信用バッファをともに受信用バッファとして使用し、前記半二重通信の送信時に、前記受信用および送信用バッファをともに送信用バッファとして使用することを特徴とするシリアル通信方法。

【請求項2】少なくとも1つの受信用バッファを有し、シリアルデータを受信してパラレルデータに変換し、このパラレルデータを前記受信用バッファに保持する受信部と、少なくとも1つの送信用バッファを有し、送信し

2

ようとするパラレルデータを前記送信用バッファに保持し、このパラレルデータをシリアルデータに変換して送信する送信部と、制御信号により通信方式を全二重通信 または半二重通信に切り換え、前記全二重通信の送受信時に、前記受信用および送信用バッファをそれぞれ受信 用および送信用バッファとして使用し、前記半二重通信の受信時に、前記受信用および送信用バッファをともに 受信用バッファとして使用し、前記半二重通信の送信時に、前記受信用および送信用バッファをともに送信用バッファとして使用するよう設定する切換え手段を備えることを特徴とするシリアル通信コントローラ。

【請求項3】前記切換え手段を制御する制御信号は、外部端子から入力される信号または内部制御レジスタから出力される信号である請求項2に記載のシリアル通信コントローラ。

送信される。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、シリアル通信を制御するシリアル通信方法およびシリアル通信コントローラに関し、詳しくは、半二重通信を行う際に、受信用および送信用バッファをともに受信用または送信用バッファとして使用することができるシリアル通信方法およびシリアル通信コントローラに関する。

[0002]

【従来の技術】一般的に、シリアル通信には全二重通信および半二重通信の2つの通信方式がある。ここで、全二重通信とは、送信および受信を同時に行う通信方式であり、半二重通信とは、送信または受信のいずれか一方だけを一時に行う通信方式である。以下に、シリアル通信を制御するシリアル通信コントローラについて説明する。

【0003】図5は、従来のシリアル通信コントローラの一例のブロック図である。このシリアル通信コントローラ60は、外部CPU(中央演算装置)とシリアル通信コントローラ60は、外部CPU(中央演算装置)とシリアル通信コントローラ60の内部回路とのデータのやり取りを制御するCPUインタフェース16と、シリアルデータを変換する受信データをパラレルデータに変換する受信用シフトレジスタ12と、この受信用シフトレジスタ12に保持する受信用バッファ14a、14b、…、14nと、CPUからバッファ18a、18b、…、18nと、この送信用バッファ18a、18b、…、18nと、この送信用バッファ18a、18b、…、18nと、この送信用バッファ18a、18b、…、18nと、この送信用バッファ18a、18b、…、18nと、この送信用バッファ18a、18b、…、18nと、この送信用バッフ変後に用シフトレジスタ20とから構成されている。

【0004】次に、このシリアル通信コントローラ60 の動作について説明する。まず、受信において、受信用 シフトレジスタ12により、シリアルデータである受信 データはシリアル→パラレル変換されてパラレルデータ として出力され、受信用バッファ14a~14nに順次 保持される。ここで、受信用バッファ14a~14nに 保持することができる最大個数、例えば4個のパラレル データが保持された場合、CPUインタフェース16か らCPUに対して、受信データの読み出しを要求する割 り込み要求信号INTが出力される。CPUは割り込み 要求信号INTを受け取ると、メインルーチンから割り 込みルーチンへ分岐し、読み出し信号RD_をアクティ ブ状態にして、受信用バッファ14a~14nに保持さ れているパラレルデータを保持された順番に応じて、内 部データバス、CPUインタフェース16および外部デ ータバスを通して順次読み出した後、再度メインルーチ ンへ復帰する。このようにして受信データはCPUによ って読み出される。

【0005】また、送信において、CPUはメインルーチンから割り込みルーチンへ分岐し、書き込み信号WR

一をアクティブ状態にして、外部データバス、CPUインタフェース16および内部データバスを通して、送信用バッファ18a~18nに保持することができる最大個数、例えば4個のパラレルデータを順次送信用バッファ18a~18nに書き込んだ後、再度メインルーチンへ復帰する。送信バッファ18a~18nに書き込まれた順番に応じて順次読み出され、送信用シフトレジスタ20によりパラレル→シリアル変換されてシリアルデータである送信データとして出力される。ここで、送信用バッファ18a~18nに書き込まれた全てのパラレルデータが読み出された場合、CPUインタフェース16からCPUに対して、次のパラレルデータの書き込みを要求する割り込み要求信号INTが出力される。このようにして送信データは

4

【0006】このシリアル通信コントローラ60は全二 重通信に対応して設計されているため、受信および送信 は同時に独立して動作させることができる。なお、全二 重通信において、一時に必ず送信または受信のいずれか 20 一方だけを行うようにすることにより、半二重通信にも 対応することが可能である。

【0007】ところで、上述するシリアル通信コントローラ60において、受信用バッファ14a~14nおよび送信用バッファ18a~18nはそれぞれ少なくとも1個、好ましくはそれぞれ複数個設けられる。その理由の1つは、CPUに頻繁に割り込み要求信号INTが出力されるのを防止するためである。

【0008】例えば、受信用バッファおよび送信用バッファが8ビットを1つの単位とするパラレルデータを保 30 持するものであり、それぞれ1個の受信用バッファおよび送信用バッファしか備えていないと仮定する。この場合、8ビットの受信データを受信してこれが受信用バッファに保持される毎に、CPUに対して受信データの読み出しを要求する割り込み要求信号INTが出力される 毎に、CPUに対して次のパラレルデータが 送信用バッファに書き込まれると、これが読み出される 毎に、CPUに対して次のパラレルデータの書き込みを 要求する割り込み要求信号INTが出力されることにな

40 【0009】このように、受信用および送信用バッファの個数が少ないほど、CPUに対して頻繁に受信データの読み出しや送信データの書き込みを要求する割り込み要求信号INTが出力されることになる。このため、CPUは割り込みルーチンの処理に多くの時間を取られてしまい、メインルーチンの処理に充分な時間が避けなくなってしまうという問題点が発生する。

【0010】これに対し、例えばそれぞれ4個の受信用 バッファおよび送信用バッファを備えていると仮定す る。この場合、4個の受信用バッファの全てにパラレル 50 データが保持されるまで、即ち、32ビットの受信デー タが受信されるまで、CPUに対して受信データの読み出しを要求する割り込み要求信号INTが出力されない。また、CPUから4つのパラレルデータが送信用バッファに書き込まれ、これらが全て読み出されるまで、即ち、32ビットの送信データが読み出されるまで、CPUに対して次のパラレルデータの書き込みを要求する割り込み要求信号INTが出力されない。

【0011】このように、n個の受信用バッファおよび n 個の送信用バッファを備えることにより、CPUに対して割り込み要求信号 I NT が出力される回数を 1 I I にすることができる。このため、割り込みルーチンの処理によるオーバヘッドを削減することができ、CPUを 効率良く使用することができる。

【0012】また、複数個の受信用および送信用バッファを備えるもう1つの理由は、高速な通信レートに対応するためである。

【0013】上述するように、受信データが受信用バッファに保持され、受信データの読み出しを要求する割り込み要求信号INTがCPUに対して出力されると、CPUにより受信用バッファに保持されている受信データが読み出される。しかしながら、受信用バッファの個数が少なくかつ通信レートが高速な場合、CPUが受信バッファに保持されている受信データを読み出す前に、次の受信データが受信用バッファに上書きされてしまい、上書きされる前の受信データが消失してしまうという、いわゆる受信オーバランエラーが発生する。

【0014】一方、送信データを送信用バッファに書き込む場合にも、送信用バッファの個数が少なくかつ通信レートが高速な場合、割り込みルーチンの処理によるオーバヘッドのために送信データの書き込みが間に合わなくなり、シリアル通信コントローラから出力される送信データが途中で途切れてしまうという、いわゆる送信アンダランエラーが発生する。

【0015】これらの問題を解決するためにも受信用および送信用バッファの個数を多くすることが有効である。このように、複数個の受信用バッファを備えることにより、高速な通信レートにも対応することができるようになる。このため、できるだけ多くの受信用バッファおよび送信用バッファを備えるのが好ましいことは言うまでもないことである。

【0016】しかしながら、複数個の受信用および送信用バッファを備えるためには、当然のことながらハードウェアの規模が増大する。このため、これらの受信用および送信用バッファの個数を増加させる毎にゲート数(トランジスタ数)が増大し、そのレイアウト面積も増大するという問題点がある。

【0017】また、既に述べたように、シリアル通信コントローラのハードウェアは全二重通信に対応しているにもかかわらず、受信データのエラー確認を行ってから、送信データを出力するように設計されているものが

6

多い。このため、現実的には、シリアル通信コントローラは半二重通信で使用されている場合がかなり多い。例えば、モデムでは全二重通信が用いられているが、FAXモデムやLAN (Local Area Network) 全般、パーソナルコンピュータと周辺機器との接続などにおいては半二重通信が用いられている。

【0018】従来より、ハードウェア的に全二重通信に対応しているシリアル通信コントローラを、ソフトウェア的に半二重通信で使用している場合が多いため、受信の時は送信用バッファが全く使用されておらず、逆に、送信の時は受信用バッファが全く使用されていなかった。このため、受信用または送信用バッファのいずれか全てが無駄になるという問題点もあった。

[0019]

【発明が解決しようとする課題】本発明の目的は、前記 従来技術に基づく種々の問題点をかえりみて、ハードウェア規模を増大させることなく高速な通信レートに対応 することができ、比較的通信レートが低速な場合であっても割り込み処理によるオーバヘッドを削減することが できるシリアル通信方法およびシリアル通信コントローラを提供することにある。

[0020]

【課題を解決するための手段】上記目的を達成するために、本発明は、少なくとも1つの受信用バッファおよび少なくとも1つの送信用バッファを備えるシリアル通信コントローラにおいて、全二重通信の送受信時に、前記受信用および送信用バッファをそれぞれ受信用および送信用バッファをともに受信用に、前記受信用および送信用バッファをともに受信用バッファとして使用し、前記半二重通信の送信時に、前記受信用および送信用バッファをともに送信用バッファとして使用なよび送信用バッファをともに送信用バッファとして使用することを特徴とするシリアル通信方法を提供するものである。

【0021】また、本発明は、少なくとも1つの受信用 バッファを有し、シリアルデータを受信してパラレルデ ータに変換し、このパラレルデータを前記受信用バッフ ァに保持する受信部と、少なくとも1つの送信用バッフ ァを有し、送信しようとするパラレルデータを前記送信 用バッファに保持し、このパラレルデータをシリアルデ 40 ータに変換して送信する送信部と、制御信号により通信 方式を全二重通信または半二重通信に切り換え、前記全 二重通信の送受信時に、前記受信用および送信用バッフ ァをそれぞれ受信用および送信用バッファとして使用 し、前記半二重通信の受信時に、前記受信用および送信 用バッファをともに受信用バッファとして使用し、前記 半二重通信の送信時に、前記受信用および送信用バッフ ァをともに送信用バッファとして使用するよう設定する 切換え手段を備えることを特徴とするシリアル通信コン トローラを提供するものである。

7 【0022】ここで、前記切換え手段を制御する制御信

号は、外部端子から入力される信号または内部制御レジスタから出力される信号であるのが好ましい。

[0023]

【発明の作用】本発明のシリアル通信コントローラは、 制御信号により、通信方式を全二重通信または半二重通 信に切り換える切換え手段を備えるものである。また、 本発明のシリアル通信方法においては、全二重通信によ り受信および送信を同時に行う場合、受信用バッファは 受信用バッファとして使用され、同様に、送信用バッフ ァは送信用バッファとして使用される。一方、半二重通 信により受信を行う場合、受信用バッファおよび送信用 バッファはともに受信用バッファとして使用され、同様 に、送信を行う場合、受信用バッファおよび送信用バッ ファはともに送信用バッファとして使用される。従っ て、本発明のシリアル通信方法およびシリアル通信コン トローラによれば、全二重通信で使用される場合、従来 のシリアル通信コントローラと全く同様に動作すること は勿論、半二重通信の受信または送信で使用される場 合、それぞれ受信用バッファまたは送信用バッファの個 数を倍増することができるため、より高速な通信レート に対応することが可能になるばかりでなく、割り込み処 理によるオーバヘッドを削減してCPUを効率良く使用 することができる。

[0024]

【実施例】以下に、添付の図面に示す好適実施例に基づいて、本発明のシリアル通信方法およびシリアル通信コントローラを詳細に説明する。

【0025】図1は、本発明のシリアル通信コントローラの一実施例のブロック図である。このシリアル通信コントローラ10は、受信部となる受信用シフトレジスタ12および受信用バッファ14a、14b、14c、14dと、CPUインタフェース16と、送信部となる送信用バッファ18a、18b、18c、18dおよび送信用シフトレジスタ20と、切換え手段22とを有している。なお、受信用バッファおよび送信用バッファの個数は特に限定されるものではない。

【0026】このシリアル通信コントローラ10において、受信用シフトレジスタ12は、シリアルデータを所定ビット長のパラレルデータに変換する、いわゆるシリアル→パラレル変換器である。即ち、この受信用シフトレジスタ12にはシリアルデータである受信データが入力され、受信用シフトレジスタ12においてシリアル→パラレル変換され、受信用シフトレジスタ12から所定ビット長を有するパラレルデータとして出力される。

【0027】また、受信用バッファ $14a\sim14d$ は、FIFO(First-In-First-out)形式のバッファである。即ち、これらの受信用バッファ $14a\sim14d$ には、受信用シフトレジスタ12から出力されるパラレルデータが順次入力されて一時的に保持され、受信用バッファ $14a\sim14d$ からパラレルデータが読み出される

場合には、入力された順番に応じて順次読み出される。
【0028】また、CPUインタフェース 1 6は、このシリアル通信コントローラ 1 0 を制御するCPUと、このシリアル通信コントローラ 1 0 の内部回路とのやり取りを制御するものである。このCPUインタフェース 1 6には、CPUから読み出し信号RD」および書き込み信号WR」が入力され、CPUインタフェース 1 6からは割り込み要求信号 INTがCPUに対して出力されている。また、CPUとのやり取りには外部データバス信号が双方向に用いられ、内部回路とのやり取りには内部

8

【0029】また、送信用バッファ $18a\sim18d$ は、受信用バッファ $14a\sim14d$ と同様にFIFO形式のバッファである。即ち、これらの送信用バッファ $18a\sim18d$ には、外部データバス、CPUインタフェース16および内部データバスを通して、CPUから入力されるパラレルデータが一時的に保持され、送信用バッファ $18a\sim18d$ からパラレルデータが読み出される場合には、入力された順番に応じて順次読み出される。

データバス信号が双方向に用いられる。

【0030】また、送信用シフトレジスタ20は、所定ビット長のパラレルデータをシリアルデータに変換する、いわゆるパラレル→シリアル変換器である。即ち、この送信用シフトレジスタ20には、保持された順番に応じて送信用バッファ18a~18dから読み出されるパラレルデータが順次入力され、送信用シフトレジスタ20においてパラレル→シリアル変換され、送信用シフトレジスタ20からシリアルデータである送信データとして出力される。

【0031】最後に、切換え手段22は、このシリアル30 通信コントローラ10の通信方式を全二重通信、または半二重通信のいずれかに切り換えるものである。例えば、切換え手段22に入力される制御信号をハイレベルに設定することにより、このシリアル通信コントローラ10は全二重通信で使用され、逆にローレベルに設定することにより半二重通信で使用される。

【0032】なお、切換え手段22に入力される制御信号は、CPUから専用入力端子を通して入力される制御信号、あるいはCPUによりCPUインタフェース16を介してソフトウェア的に設定される内部制御レジスタから出力される制御信号などであるのが好ましい。

【0033】次に、本発明のシリアル通信方法および上述するシリアル通信コントローラ10の動作について説明する。

【0034】本発明のシリアル通信コントローラ10を全二重通信で使用するには、例えば切換え手段22に入力される制御信号としてハイレベルを設定する。これにより、このシリアル通信コントローラ10は全二重通信で使用され、即ち、受信用バッファ14a~14dは受信用バッファとして、また、送信用バッファ18a~1508dは送信用バッファとして、それぞれ別々に用いられ

る。なお、本発明のシリアル通信コントローラ10を全 二重通信で使用する場合の動作は、図5に示す従来のシ リアル通信コントローラ60の動作と同一であるため、 ここではその説明は省略する。

【0035】一方、本発明のシリアル通信方法を適用して、このシリアル通信コントローラ10を半二重通信で使用するには、切換え手段22に入力される制御信号としてローレベルを設定する。これにより、このシリアル通信コントローラ10は半二重通信で使用され、即ち、受信用バッファ14a~14dおよび送信用バッファ18a~18dは、図2に示すように、受信の場合には全て受信用バッファとして、また、図3に示すように、送信の場合には全て送信用バッファとして用いられる。

【0036】半二重通信の受信において、シリアルデー タである受信データは受信用シフトレジスタ12に入力 され、シリアル→パラレル変換されて所定ビット長、例 えば8ビット長のパラレルデータに変換され、受信用バ ッファ14a~14dおよび送信用バッファ18a~1 8dに順次入力されて一時的に保持される。ここで、受 信用バッファ14a~14dおよび送信用バッファ18 a~18dに保持することができる最大個数、例えば図 示例においては8個のパラレルデータが保持された場 合、CPUインタフェース16からCPUに対して、受 信データの読み出しを要求する割り込み要求信号INT が出力される。CPUは割り込み要求信号INTを受け 取ると、メインルーチンから割り込みルーチンへ分岐 し、読み出し信号RD__をアクティブ状態、例えばロー レベルとして、受信用バッファ14a~14dおよび送 信用バッファ18a~18dに保持されているパラレル データを保持された順番に応じて、内部データバス、C PUインタフェース16および外部データバスを通して 順次読み出した後、再度メインルーチンへ復帰する。こ のようにして受信データは受信される。

【0037】また、半二重通信の送信において、CPU はメインルーチンから割り込みルーチンへ分岐し、書き 込み信号WR_をアクティブ状態、例えばローレベルと して、外部データバス、CPUインタフェースおよび内 部データバスを通して、送信用バッファ18a~18d および受信用バッファ14a~14dに保持することが できる最大個数、例えば図示例においては8個のパラレ ルデータを順次送信用バッファ18a~18dおよび受 信用バッファ14a~14dに書き込んだ後、再度メイ ンルーチンへ復帰する。送信用パッファ18a~18d および受信用バッファし4a~14dに書き込まれたパ ラレルデータは、書き込まれた順番に応じて順次読み出 され、送信用シフトレジスタ20により、パラレル→シ リアル変換されてシリアルデータである送信データとし て出力される。ここで、送信用バッファ18a~18d および受信用バッファし4a~14dに書き込まれた全 てのパラレルデータが読み出された場合、CPUインタ フェース16からCPUに対して、次のパラレルデータの書き込みを要求する割り込み要求信号INTが出力される。このようにして送信データは送信される。

10

【0038】上述するように、本発明のシリアル通信方法を適用して、シリアル通信コントローラを半二重通信で使用する場合には、受信の時に送信用バッファをも受信用バッファとして、同様に、送信の時に受信用バッファとして使用することができる。このため、従来と同数の受信用および送信用バッファとして使用することができるしたが、従来の2倍の個数の受信用および送信用バッファとして使用することができる。【0039】従って、本発明のシリアル通信方法によりは、新規に受信用および送信用バッファを追加するよりは少ないハードウェア規模で、高速な通信レートのシリアル通信に対応することができるし、逆に、通信レートが比較的低速である場合であっても、割り込みルーチンの処理によるオーバヘッドを削減してCPUを効率良く

【0040】次に、具体例を挙げて、本発明のシリアル 20 通信方法およびシリアル通信コントローラをさらに具体 的に説明する。

使用することができる。

【0041】図4は、本発明のシリアル通信コントローラの一実施例の構成回路図である。このシリアル通信コントローラ30は、受信部となる受信用シフトレジスタ12、受信用バッファ14a、14b、14c、14d、受信用ライトポインタ28、受信用リードポインタ32およびマルチプレクサ34と、送信部となる送信用バッファ18a、18b、18c、18d、送信用シフトレジスタ20、送信用ライトポインタ40、送信用リードポインタ42およびマルチプレクサ44と、切換え手段となるセレクタ24a、24b、24c、24d、セレクタ26a、26b、26c、26d、セレクタ36a、36b、36c、36dおよびセレクタ38a、38b、38c、38dとから構成されている。

【0042】ここで、シリアルデータである受信データは受信用シフトレジスタ12に入力され、この受信用シフトレジスタ12の出力信号46はセレクタ24a~24dの入力端0およびセレクタ36a~36dの入力端1に入力されている。同様に、CPUからの入力信号48は、内部データバスを通してセレクタ36a~36dの入力端0およびセレクタ24a~24dの入力端1に入力されている。

【0043】また、受信用ライトポインタ28からはライトイネーブル信号R_WE0、R_WE1、R_WE2、R_WE3、R_WE4、R_WE5、R_WE6、R_WE7が出力され、それぞれセレクタ26a~26dの入力端0およびセレクタ38a~38dの入力端1に入力されている。同様に、送信用ライトポインタ40からはライトイネーブル信号T_WE0、T_WE1、T_WE2、T_WE3、T_WE4、T_WE

5. T_WE6 . T_WE7 が出力され、それぞれセレクタ38a \sim 38dの入力端0およびセレクタ26a \sim 26dの入力端1に入力されている。

【0044】また、セレクタ $24a\sim24$ dおよびセレクタ $36a\sim36$ dの出力信号は、それぞれ受信用バッファ $14a\sim14$ dおよび送信用バッファ $18a\sim18$ dのデータ入力端に入力され、同様に、セレクタ $26a\sim26$ dおよびセレクタ $38a\sim38$ dの出力信号は、それぞれ受信用バッファ $14a\sim14$ dおよび送信用バッファ $18a\sim18$ dのライトイネーブル端WEに入力されている。また、セレクタ $24a\sim24$ dおよびセレクタ $26a\sim26$ dの選択端にはともに選択信号SELRが入力され、同様に、セレクタ $36a\sim36$ dおよびセレクタ $38a\sim38$ dの選択端にはともに選択信号SELTが入力されている。

【0045】また、受信用バッファ $14a\sim14d$ からはパラレルデータRO、R1、R2、R3が出力され、これらのパラレルデータRO~R3はそれぞれマルチプレクサ34のデータ入力端0、1、2、3およびマルチプレクサ44のデータ入力端4、5、6、7に入力されている。同様に、送信用バッファ $18a\sim18d$ からはパラレルデータTO、T1、T2、T3が出力され、これらのパラレルデータTO~T3はそれぞれマルチプレクサ44のデータ入力端0、1、2、3およびマルチプレクサ34のデータ入力端4、5、6、7に入力されている。

【0046】また、マルチプレクサ34の選択端には受信用リードポインタ32から出力される選択信号50が入力され、その出力信号は内部データバスに接続されている。同様に、マルチプレクサ44の選択端には送信用リードポインタ42から出力される選択信号52が入力され、その出力信号は送信用シフトレジスタ20に入力されている。そして、送信用シフトレジスタ20からはシリアルデータである送信データが出力されている。

【0047】このシリアル通信コントローラ30において、受信用シフトレジスタ12、受信用バッファ14a~14d、送信用シフトレジスタ20および送信用バッファ18a~18dは、図1に示すシリアル通信コントローラ10と同一のものであるから、ここではその説明は省略する。また、受信用ライトポインタ28および受信用リードポインタ32と、送信用ライトポインタ40および送信用リードポインタ42とは同様の機能を有するものであるため、ここでは受信用ライトポインタ28および受信用リードポインタ32についてのみ説明する。

【0048】まず、受信用ライトポインタ28は、受信用シフトレジスタ12から出力される出力信号46が保持される受信用バッファ $14a\sim14$ dまたは送信用バッファ $18a\sim18$ dを決定するライトイネーブル信号 $R_{-}WE0\sim R_{-}WE7$ を出力する。この受信用ライト

ポインタ28は、受信用シフトレジスタ12によりシリアル→パラレル変換が終了し、出力信号46が出力される毎にカウントアップされるカウンタを有しており、このカウンタの値に応じてライトイネーブル信号R_WE0~R_WE7の中の1つだけがアクティブ状態にされる。

12

【0049】なお、全二重通信の場合、上述するカウンタの値は '0' ~ '3' の範囲でカウントアップされ、 '3' の次は '0' に初期化される。また、このカウンタの値 '0' ~ '3' に応じて、ライトイネーブル信号 R_WE0~R_WE3の中の1つがアクティブ状態にされる。同様に、半二重通信の場合、上述するカウンタの値は '0' ~ '7' の範囲でカウントアップされ、

'7' の次は '0' に初期化される。また、このカウンタの値 '0' \sim '7' に応じて、ライトイネーブル信号 $R_{-WE0}\sim R_{-WE7}$ の中の1つがアクティブ状態にされる。

【0050】また、受信用リードポインタ32は、受信用バッファ14a~14dから出力されるパラレルデー20 夕R0~R3および送信用バッファ18a~18dから出力されるパラレルデータT0~T3の中から、CPUにより読み出されるパラレルデータを選択する選択信号50を出力するものである。この受信用リードポインタ32は、受信用バッファ14a~14dおよび送信用バッファ18a~18dからパラレルデータが、CPUにより読み出される毎にカウントアップされるカウンタを有しており、このカウンタの値 0~~ 7 に応じて、それぞれマルチプレクサ34のデータ入力端0~7に入力されているパラレルデータR0~R3およびパラレルデータT0~T3の中の1つが選択される。

【0051】なお、全二重通信の場合、上述するカウンタの値は 0 ~ 3 の範囲でカウントアップされ、3 の次は 0 に初期化される。同様に、半二重通信の場合、上述するカウンタの値は 0 ~ 7 の範囲でカウントアップされ、7 の次は 0 に初期化される。

【0052】次に、このシリアル通信コントローラ30の動作について説明する。

【0053】まず、このシリアル通信コントローラ30 40 を全二重通信で使用するには、制御信号SELR、SE LTをともにローレベルに設定する。これにより、セレクタ24a~24d、セレクタ26a~26d、セレクタ36a~36dおよびセレクタ38a~38dは、入力端0に入力される信号が選択出力される。

【0054】即ち、受信用バッファ14a~14dのデータ入力端にはともに受信用シフトレジスタ12の出力信号46が入力され、そのライトイネーブル端WEにはそれぞれライトイネーブル信号R_WE0~R_WE3が入力される。同様に、送信用バッファ18a~18dのデータ入力端にはともに、CPUからの入力信号48

が内部データバスを通して入力され、そのライトイネー ブル端WEにはそれぞれライトイネーブル信号T_WE 0~T WE3が入力される。

【0055】全二重通信の受信において、受信用シフト レジスタ12により、受信データがシリアル→パラレル 変換されて出力信号46が出力される毎に、受信用ライ トポインタ28から出力されるライトイネーブル信号R WEO~R WE3はこの順番でアクティブ状態にさ れる。その結果、受信用シフトレジスタ12の出力信号 46は、受信用バッファ14a~14dにこの順番で保 持される。一方、CPUが受信用バッファ14a~14 dに保持されているパラレルデータR0~R3を読み出 す場合、CPUによりパラレルデータRO~R3が読み 出される毎に、受信用リードポインタ32から出力され る選択信号50はその値が'0'~'3'の順番でカウ ントアップされる。その結果、パラレルデータR0~R 3は、マルチプレクサ34によりこの順番で選択出力さ れ、CPUにより内部データバスを通してこの順番で読 み出される。

【0056】また、全二重通信の送信において、CPU からの入力信号48が入力される毎に、送信用ライトポ インタ40から出力されるライトイネーブル信号T_W E0~T_WE3はこの順番でアクティブ状態にされ る。その結果、CPUからの入力信号48は、送信用バ ッファ18a~18dにこの順番で保持される。一方、 送信用バッファ18a~18dに保持されているパラレ ルデータTO~T3が読み出される場合、パラレルデー タTO~T3が読み出される毎に、送信用リードポイン タ42から出力される選択信号52はその値が '0'~ '3' の順番でカウントアップされる。その結果、パラ レルデータTO~T3は、マルチプレクサ44によりこ の順番で選択出力され、この順番で送信用シフトレジス タ20によりパラレル→シリアル変換されて送信データ として出力される。

【0057】次に、このシリアル通信コントローラ30 を半二重通信の受信で使用するには、制御信号SEL R. SELTをそれぞれローレベルおよびハイレベルに 設定する。これにより、セレクタ24a~24d、セレ クタ26a~26dは、入力端0に入力される信号が選 択出力され、逆に、セレクタ36a~36dおよびセレ クタ38a~38dは、入力端1に入力される信号が選 択出力される。

【0058】即ち、受信用バッファ14a~14dのデ ータ入力端にはともに受信用シフトレジスタ12の出力 信号46が入力され、そのライトイネーブル端WEには それぞれライトイネーブル信号R_WE0~R_WE3 が入力される。同様に、送信用バッファ18a~18d のデータ入力端にはともに受信用シフトレジスタ12の 出力信号46が入力され、そのライトイネーブル端WE にはそれぞれライトイネーブル信号R $_$ WE4 \sim R $_$ W50トアップされる。その結果、パラレルデータ \top 0 \sim \top 3

E7が入力される。

【0059】半二重通信の受信において、受信用シフト レジスタ12により、受信データがシリアル→パラレル 変換されて出力信号46が出力される毎に、受信用ライ トポインタ28から出力されるライトイネーブル信号R _WE0~R_WE7はこの順番でアクティブ状態にさ れる。その結果、受信用シフトレジスタ12の出力信号 46は、受信用バッファ14a~14dおよび送信用バ ッファ18a~18dにこの頤番で保持される。一方、 CPUが受信用バッファ14a~14dに保持されてい るパラレルデータR0~R3および送信用バッファ18 a~18dに保持されているパラレルデータT0~T3 を読み出す場合、CPUによりパラレルデータRO~R 3およびパラレルデータT0~T3が読み出される毎 に、受信用リードポインタ32から出力される選択信号 50はその値が'0'~'7'の順番でカウントアップ される。その結果、パラレルデータR0~R3およびパ ラレルデータT0~T3は、マルチプレクサ34により この順番で選択出力され、CPUにより内部データバス 20 を通してこの順番で読み出される。

14

【0060】次に、このシリアル通信コントローラ30 を半二重通信の送信で使用するには、制御信号SEL R. SELTをそれぞれハイレベルおよびローレベルに 設定する。これにより、セレクタ24a~24d、セレ クタ26a~26dは、入力端1に入力される信号が選 択出力され、逆に、セレクタ36a~36dおよびセレ クタ38a~38dは、入力端0に入力される信号が選 択出力される。

【0061】即ち、送信用バッファ18a~18dのデ 30 ータ入力端にはともにCPUからの入力信号48が入力 され、そのライトイネーブル端WEにはそれぞれライト イネーブル信号T_WEO~T_WE3が入力される。 同様に、受信用バッファ14a~14dのデータ入力端 にはともにCPUからの入力信号48が入力され、その ライトイネーブル端WEにはそれぞれライトイネーブル 信号T_WE4~T_WE7が入力される。

【0062】半二重通信の送信において、CPUからの 入力信号48が入力される毎に、送信用ライトポインタ 40から出力されるライトイネーブル信号T_WEO~ T_WE7はこの順番でアクティブ状態にされる。その 結果、CPUからの入力信号48は、送信用バッファ1 8a~18dおよび受信用バッファ14a~14dにこ の順番で保持される。一方、送信用バッファ18a~1 8dに保持されているパラレルデータT0~T3および 受信用バッファ14a~14dに保持されているパラレ ルデータR0~R3が読み出される場合、パラレルデー タT0~T3およびパラレルデータR0~R3が読み出 される毎に、送信用リードポインタ42から出力される 選択信号52はその値が'0'~'7'の順番でカウン 15

およびパラレルデータRO~R3は、マルチプレクサ4 4によりこの順番で選択出力され、この順番で送信用シ フトレジスタ20によりパラレル→シリアル変換されて 送信データとして出力される。

【0063】このように、シリアル通信コントローラ30においては、制御信号SELR. SELTを適宜設定することにより、このシリアル通信コントローラ30の通信方式を全二重通信または半二重通信のいずれかに切り換えることができる。また、半二重通信で使用する場合、受信では送信用バッファ18a~18dをも受信用バッファとして使用することができ、同様に、送信では受信用バッファ14a~14dをも送信用バッファとして使用することができる。

[0064]

【発明の効果】以上詳細に説明した様に、本発明のシリ アル通信方法およびシリアル通信コントローラにおいて は、シリアルデータの通信方式が全二重通信または半二 重通信のいずれかに切換えられるため、全二重通信で従 来のシリアル通信コントローラと同一動作を行うことが できることは勿論、さらに半二重通信の受信で受信用バ 20 ッファおよび送信用バッファをともに受信用バッファと して使用することができ、同様に、送信でこれらのバッ ファをともに送信用バッファとして使用することができ る。従って、本発明のシリアル通信方法およびシリアル 通信コントローラによれば、新規に受信用および送信用 バッファを追加するよりも少ないハードウェア規模で、 受信用および送信用バッファを増加させることができ、 より高速な通信レートに対応することが可能になるとと もに、割り込み処理によるオーバヘッドを削減して、C PUを効率良く使用することができる。

【図面の簡単な説明】

【図1】 本発明のシリアル通信コントローラの全二重 通信における一実施例のブロック図である。

【図2】 本発明のシリアル通信コントローラの半二重 通信の受信における一実施例のブロック図である。 16

【図3】 本発明のシリアル通信コントローラの半二重 通信の送信における一実施例のプロック図である。

【図4】 本発明のシリアル通信コントローラの一実施 例の構成回路図である。

【図5】 従来のシリアル通信コントローラの一例のブロック図である。

【符号の説明】

10, 30, 60 シリアル通信コントローラ

12 受信用シフトレジスタ

合、受信では送信用バッファ18a~18dをも受信用 10 14a, 14b, 14c, 14d, …, 14n 受信用 パッファとして使用することができ、同様に、送信では パッファ

16 CPUインタフェース

18a, 18b, 18c, 18d, …, 18n 送信用 パッファ

20 送信用シフトレジスタ

22 切換え手段

24a, 24b, 24c, 24d, 26a, 26b, 26c, 26d, 36a, 36b, 36c, 36d, 38a, 38b, 38c, 38d セレクタ

20 28 受信用ライトポインタ

32 受信用リードポインタ

34,44 マルチプレクサ

40 送信用ライトポインタ

42 送信用リードポインタ

46 出力信号

48 入力信号

50. 52. SELR. SELT 選択信号

R_WEO. R_WE1, R_WE2, R_WE3, R _WE4, R_WE5, R_WE6, R_WE7, T_ 30 WE0. T_WE1, T_WE2, T_WE3, T_W E4, T_WE5, T_WE6, T_WE7 ライトイ ネーブル信号

RO, R1, R2, R3, T0, T1, T2, T3 パラレルデータ

フロントページの続き

(58)調査した分野(Int.Cl.⁶, DB名)

H04L 29/08 H04L 5/14