# **Experiment No.: 8**

### <u>Aim</u>

Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm.

#### **CO3**

Use different packages and frameworks to implement text classification using SVM and clustering using k-means

#### **Procedure**

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.tree import plot_tree
df = sns.load_dataset('iris')
print(df.head())
print(df.info())
df.isnull().any()
print(df.shape)
sns.pairplot(data=df, hue='species')
plt.savefig("pne.png")
# correlation matrix
sns.heatmap(df.corr())
plt.savefig("one.png")
target = df['species']
df1 = df.copy()
df1 = df1.drop('species', axis=1)
```

```
print(df1.shape)
print(df1.head())
# defining attributes
x = df1
print(target)
# label encoding
le = LabelEncoder()
target = le.fit_transform(target) # learn scaling parameters(species)
print(target)
y = target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
print("Training split input: ", x_train.shape)
print("Testing split input: ", x_test.shape)
# defining the decision tree algorithm
dtree = DecisionTreeClassifier()
dtree.fit(x train, y train)
print('Decision tree classifier created')
# predicting the value of test data
y_pred = dtree.predict(x_test)
print("Classification report: \n", classification_report(y_test, y_pred))
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5, 5))
sns.heatmap(data=cm, linewidths=.5, annot=True, square=True, cmap='Blues')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
all_sample_title = 'Accuracy score: {0}'.format(dtree.score(x_test, y_test))
plt.title(all sample title, size=15)
plt.savefig("two.png")
plt.figure(figsize=(20, 20))
dec_tree = plot_tree(decision_tree=dtree, feature_names=df1.columns, class_names=["setosa",
"vercicolor", "verginica"],filled=True, precision=4, rounded=True)
```

plt.savefig("three.png")

### **Output Screenshot**

```
p11 ×
C:\ALBINA\ml\venv\Scripts\python.exe C:/ALBINA/ml/p11.py
  sepal_length sepal_width petal_length petal_width species
0
          5.1
                  3.5
                          1.4
1
          4.9
                     3.0
                                1.4
                                            0.2 setosa
2
          4.7
                   3.2
                                1.3
                                           0.2 setosa
3
          4.6
                   3.1
                                1.5
                                           0.2 setosa
          5.0
                    3.6
                                1.4
                                           0.2 setosa
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
 # Column
              Non-Null Count Dtype
                -----
   sepal_length 150 non-null float64
   sepal_width 150 non-null
                            float64
 1
    petal_length 150 non-null
                             float64
    petal_width 150 non-null
                              float64
   species
             150 non-null
                              object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
None
(150, 5)
```

```
sepal_length sepal_width petal_length petal_width
     5.1 3.5 1.4 0.2
      4.9
1
            3.0
                    1.4
                            0.2
2
     4.7
            3.2
                    1.3
                            0.2
            3.1
                    1.5
3
      4.6
                            0.2
            3.6
                    1.4
4
      5.0
                            0.2
0
     setosa
1
     setosa
2
     setosa
3
     setosa
4
    setosa
    . . .
  virginica
145
146
   virginica
147
   virginica
148
   virginica
149
   virginica
Name: species, Length: 150, dtype: object
2 2]
Training split input: (120, 4)
Testing split input: (30, 4)
Decision tree classifier created
Classification report:
        precision recall f1-score support
     0 1.00
              1.00
                    1.00
                           10
```



# **Result**

The program was executed and the result was successfully obtained. Thus CO3 was obtained.