SME-0602 – Trabalho Prático

Prof.: Elias Salomão Helou Neto

Entrega: 30/07/2020

Introdução

A aproximação de funções contínuas através de polinômios possui inúmeras aplicações teóricas e práticas, pois polinômios são facilmente manipuláveis analiticamente e podemos calcular seu valor em um ponto utilizando apenas as operações aritméticas básicas.

O Teorema da Aproximação de Weierstrass afirma que, dada uma função contínua $f: \mathbb{R} \to \mathbb{R}$ e um intervalo [a,b] no qual desejamos aproximá-la, existe uma sequência $\{P_k\}$ de polinômios, onde o grau de P_k é menor ou igual a k, tal que

$$\lim_{k \to \infty} \max_{x \in [a,b]} |f(x) - P_k(x)| = 0.$$

Ou seja, dada uma precisão $\epsilon > 0$, existe um inteiro k_{ϵ} tal que $k > k_{\epsilon}$ implica que $|f(x) - P_k(x)| < \epsilon$ para todo $x \in [a, b]$.

Ao passo que o Teorema da Aproximação nos fornece uma perspectiva otimista, o fato é que a construção dos polinômios P_k não é trivial. Levando em consideração que aprendemos a construir polinômios interpoladores com relativa facilidade, uma primeira tentativa seria utilizar as técnicas de interpolação polinomial que aprendemos para tentar obter os polinômios.

1 Questão 1

Interpole a função

$$f(x) = \frac{1}{1 + 25x^2}$$

nos pontos $x_i = -1 + 2i/k$ com $i \in \{0, ..., k\}$, por um polinômio. Denomine este interpolador de p_k .

Calcule o valor de $e_k := \max_{x \in [-1,1]} |f(x) - p_k(x)|$ e trace um gráfico de e_k por k. Descreva o que você percebe. Este resultado contradiz o Teorema da Aproximação de Weierstrass? Explique.

Splines

Apesar de termos garantida a existência de polinômios que aproximam arbitrariamente bem uma função f contínua qualquer, a construção destes através de interpolação precisa levar em conta a função sendo interpolada ao escolher os nós de interpolação. Para ser mais preciso, dada uma sequência $\{C_k\}$ de conjuntos de pontos de interpolação, onde $C_k = \{x_0^k, \dots, x_k^k\}$, sempre existe uma função f tal que

$$\lim_{k \to \infty} \max_{x \in [a,b]} |f(x) - p_k(x)| = \infty,$$

onde p_k é o polinômio interpolador de f nos pontos C_k . Ou seja, ainda que para determinados pontos de interpolação o comportamento seja melhor do que o observado no exercício anterior (como com os pontos de Chebyshev), sempre haverá uma função para a qual tais pontos falharão.

A solução mais comum para esse dilema é a interpolação polinomial por partes, dando origem à ideia das *splines*. Aqui, entre cada par de pontos x_i e x_{i+1} utilizamos um polinômio de grau n e impomos que a (n-1)-ésima derivada da função polinomial por partes s(x) resultante seja contínua (o que naturalmente implica que as derivadas de ordem inferior também sejam contínuas).

Assim, dado que temos k polinômios, um para cada intervalo $[x_i, x_{i+1}], i \in \{0, \ldots, k-1\}$ e que cada um dos polinômios possui n+1 coeficientes, temos k(n+1) variáveis a serem determinadas.

A condição de interpolação nos dá 2k equações a serem satisfeitas, enquanto as condições de continuidade das derivadas fornecem outras (n-1)*(k-1) equações, totalizando k(n+1)-n+1 equações. Assim, é necessário que "inventemos" n-1 condições extras para completar a construção de uma *spline* interpolante, o que nos confere um certo grau de liberdade para adaptarmonos às circunstâncias. A função interpoladora será obtida "amarrando" esses polinômios obtidos através da solução destas equações: se $x \in [x_i, x_{i+1})$ então $s(x) = p_i(x)$ onde p_i é um polinômio de grau menor ou igual a n.

Aqui utilizaremos o caso n=3, conhecido como splines cúbicas. Duas equações extras são necessárias e utilizamos a condição

$$s''(x_0) = s''(x_k) = 0,$$

conhecida como splines naturais.

2 Questão 2

Interpole a mesma função da questão 1, nos mesmos pontos, agora utilizando splines cúbicas naturais.

Avalie os resultados estudando a quantidade $\max_{x \in [-1,1]} |f(x) - s(x)|$ para cada um dos casos. Faça gráficos desses erros conforme aumenta o número de pontos de interpolação e interprete esses resultados. Compare com os obtidos na questão 1.

Supondo que o erro incorrido seja da forma Ch^q , onde h é a distância entre dois sucessivos pontos de interpolação, estime q utilizando quadrados mínimos para o caso das splines naturais e para o caso da derivada conhecida nos extremos.

Instruções

- O projeto deverá ser entregue até o dia 31 de julho de 2020 através do eDisciplinas;
- O projeto deverá ser executado em grupos de dois ou três alunos;
- Na entrega o aluno deverá enviar um arquivo contendo o relatório final, descrevendo os resultados obtidos e todas as implementações;
- O nome do arquivo deverá conter apenas os números USP dos componentes do grupo, separados pelo caractere de sublinhado "_", seguidos da extensão do arquivo, que poderá ser apenas .rar, .zip ou .tar.gz
- As implementações poderão estar na linguagem do Octave (não faça no Matlab sem testar no Octave!), em Python ou em C/C++. Outras linguagens serão aceitas sob consulta;
- É permitido utilizar rotinas prontas para interpolação, mas você deve indicar a fonte, caso não fique claro no código que trata-se de uma implementação de terceiros.