Two forms of curl in 2D

curl, can be interpreted as soluted good:
$$\binom{0}{-1}\binom{0}{x} = \binom{0}{-1}\binom{0}{x}$$

div o curl, = 0 and cull o grad = 0.

$$\left[\underline{u}, \alpha \alpha, \varphi \right]_{2} = \int (u \varphi_{y} - v \varphi_{x}) dA = \int \Psi(v_{x} - u_{y}) dA + boundary trans
 = \left[\alpha \alpha_{x} \underline{u}, \Psi \right]_{1} + \cdots$$

Lihevise [grad
$$\phi$$
, \underline{u}]₂ = [ϕ , $-$ div \underline{u}], +---

Represent there relationships as "exact sequences"

$$\begin{array}{cccc}
\mathbb{R} & \xrightarrow{\text{grad}} & \mathbb{R}^2 & \xrightarrow{\text{curl}_2} & \mathbb{R} \\
\uparrow & \mathbb{Q}_L & \uparrow_2 & \mathbb{Q}_L & \uparrow_1 \\
\mathbb{R} & \xleftarrow{\text{-div}} & \mathbb{R}^2 & \xleftarrow{\text{curl}_1} & \mathbb{R}
\end{array}$$

Adjoints under inner products

which neveal two forms of scalar Laplacian:

$$L = -\nabla^2 = -div \circ gad = cull_2 \circ curl,$$

and the Helmholt, de composition

for some &, W

mia exploits orthogonality

[god
$$\phi$$
, curl, f]₂ = [ϕ , - div \circ curl, f]₂ = 0
= [curl₂ \circ god ϕ , f]₂ = 0

with potentials determined via $L\phi = -div \, \underline{u}$, $LW = curl_2 \, \underline{u}$ (assuming $\Delta \underline{u} = (curl_2 - gradodiv) \underline{u} = -\nabla^2 \underline{u} = 0 \Rightarrow \underline{u} = 0$, i.e. no holes)

Four forms of cust over polygons Signed incidence metricus A_{jk} , b_{ij} Satisfys BA = O $V \xrightarrow{A} \Sigma \xrightarrow{B} F$ Verticus Edses FacesLinear products $[\phi, \psi]_{v} = \phi^{T}M^{v}\psi = \sum_{k,k} \phi_{k} M_{kk}^{v}, \psi_{k}$ $[\psi, \psi]_{\Sigma} = \psi^{T}M^{\Sigma}\psi$ $[f, g]_{E} = f^{T}M^{E}g$

Define
$$\{gad^{\vee}\phi\}_{j} = \sum_{k} A_{jk} \frac{t_{j}}{t_{j}^{2}} \phi_{k}$$
 $\{curl^{c}u\}_{j} = \frac{1}{A_{i}} \sum_{j} b_{ij} b_{j} \cdot \underline{u}_{j}$

Then $\{curl^{c}\circ gad^{\vee}\phi\}_{i} = \frac{1}{A_{i}} \sum_{i,k} B_{ij} A_{jk} \phi_{k} = 0$

and $\{curl^{\vee}\phi\}_{j} = \sum_{k} gad^{\vee}\phi$ $\{div^{c}u\}_{i} = \frac{1}{A_{i}} \sum_{j} \underline{a}_{ij} \cdot \underline{u}_{j}$

Then $\{div^c \circ curl^v \phi\} = \frac{1}{A_i} \sum_{jk} B_{ji} A_{jk} \phi_{k} = 0$ $A_{ij} = -\underline{\varepsilon}_i B_{ji} \underline{\delta}_j$

Two exact sequences, plus adjoints under inner products

Two Scalar Laplacians:
$$L_{\gamma} = - \operatorname{div}' \operatorname{gad}' = \operatorname{curl}' \operatorname{curl}'$$
(for suitable M^{2})
$$L_{\varphi} = - \operatorname{div}' \operatorname{gad}' = \operatorname{curl}' \operatorname{curl}'$$

Helmholtz:
$$u = (grad^{\vee}\phi + curl^{\circ}f) + (curl^{\vee}W - grad^{\circ}g)$$

Parallel to edges

Normal to edges

with
$$L_{\nu}\phi = -\widetilde{div}^{\nu}\mu$$
, $L_{F}f = curl^{\nu}\mu$ (again assuming no holes)
 $L_{\nu}\psi = \widetilde{curl}^{\nu}\mu$ $L_{F}g = div^{\nu}\mu$

Eight forms of curl over princh and hugh networks

$$T \leftarrow \frac{A}{L} \leftarrow C$$
Transles Links Cell Centres
$$A^{T}B^{T} = O$$

Two scaled Laplacians:
$$L_7 = - \operatorname{div}_0 \operatorname{grad}^c = \operatorname{CURL}^c \circ \operatorname{CURL}^c$$

$$L_C = - \operatorname{div}_0 \operatorname{grad}^c = \operatorname{CURL}^c \circ \operatorname{CURL}^c$$

So for a general triangulation/terrelation, there are
16 operators, including 8 curls, 8 potentials, 4 scalar Laplacians.

When links and edges are orthogonal

8 operators, 4 cents, 4 potentials, 2 Laplacians $\widetilde{L_V} = L_T, \ L_P = L_C.$ $-\widetilde{aiv'} = div'$ $-\widetilde{gad}' = gad'$ $\widetilde{CURL'} = curl'$ etc.