Indian Institute of Technology Kharagpur Department of Computer Science & Engineering

CS60075
Natural Language Processing
Autumn 2020

Module 7:

Machine Translation 2

16 October 2020

Lexical Translation

• Goal: A model p(e|f,m)

$$\mathbf{e} = \langle e_1, e_2, \dots, e_m \rangle$$

 $\mathbf{f} = \langle f_1, f_2, \dots, f_n \rangle$

- Assumptions
 - Each word e_i in e is generated from exactly one word in f
 - Thus, we have an alignment a_i that indicates which word e_i came from. f_{a_i}
 - Given the alignments a, translation decisions are conditionally independent of each other and depend only on the aligned source word f_{a_i}

Lexical Translation

$$p(\boldsymbol{e}|\boldsymbol{f},m) = \sum_{a \in [0,n]^m} p(\boldsymbol{a}|\boldsymbol{f},m) \times \prod_{i=1}^m p(e_i|f_{a_i})$$

Alignment × Translation | Alignment

IBM Model 1: P(E|F)

- Translation probability
 - For a foreign sentence $f = (f_1, ..., f_{l_f})$ of length l_f
 - To an English sentence $\mathbf{e} = \left(e_1, \dots, e_{l_e}\right)$ of length l_e
 - With an alignment of each English word e_j to a foreign word f_i according to the alignment function $a:j\to i$

$$p(e,a|f) = \frac{\epsilon}{\left(l_f + 1\right)^{l_e}} \prod_{j=1}^{l_e} t\left(e_j|f_{a(j)}\right)$$

Computing P(E|F) in IBM Model 1

$$p(a|f)$$

$$p(e,a|f) = \frac{\epsilon}{\left(l_f + 1\right)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

- ullet A normalization factor, since there are $\left(l_f+1
 ight)^{l_e}$ possible alignments
- Parameter ϵ is a normalization constant
- The probability of an alignment given the foreign sentence

Computing P(E|F) in IBM Model 1

$$p(a|f) p(e|f,a)$$

$$p(e,a|f) = \frac{\epsilon}{\left(l_f + 1\right)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$p(e|f) = \sum_{a} p(e, a|f) = \sum_{a} p(a|f) \times \prod_{j=1}^{t_e} p\left(e_j|f_{a_j}\right)$$

Example

- 1		
\sim	-	-
(1	-	•
u	ч	

e	t(e f)
the	0.7
that	0.15
which	0.075
who	0.05
this	0.025

Haus

e	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

ist

e	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

klein

e	t(e f)	
small	0.4	
little	0.4	
short	0.1	
minor	0.06	
petty	0.04	

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028 \epsilon \end{split}$$

Estimate Translation Probabilities

```
\hat{p}_{\mathrm{MLE}}(e \mid \mathtt{Haus}) = \begin{cases} 0.8 & \text{if } e = \mathtt{house}, \\ 0.16 & \text{if } e = \mathtt{building}, \\ 0.02 & \text{if } e = \mathtt{home}, \\ 0.015 & \text{if } e = \mathtt{household}, \\ 0.005 & \text{if } e = \mathtt{shell}. \end{cases}
```

Estimate Alignments Given t-table

If we have translation probabilities

das		
e	t(e f)	
the	0.7	
that	0.15	
which	0.075	
who	0.05	
this	0.025	

Haus		
e	t(e f)	
house	0.8	
building	0.16	
home	0.02	
household	0.015	
shell	0.005	

ist		
e	t(e f)	
is	0.8	
's	0.16	
exists	0.02	
has	0.015	
are	0.005	

klein		
e	t(e f)	
small	0.4	
little	0.4	
short	0.1	
minor	0.06	
petty	0.04	

The goal is to find the most probable alignment given a parameterized model

Estimating the Alignment $p(e,a|f) = \frac{\epsilon}{(l_e+1)^{l_e}} \prod_{j=1}^{e} t(e_j|f_{a(j)})$

$$p(e,a|f) = \frac{\epsilon}{\left(l_f + 1\right)^{l_e}} \prod_{j=1}^{l_e} t\left(e_j|f_{a(j)}\right)$$

$$a^* = argmax_a p(e, a|f)$$

$$= argmax_a \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= argmax_a \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

Since translation choice for each position is independent, the product is maximized by maximizing each term:

$$a_i^* = argmax \frac{n}{a_i = 0} t(e_i|f_{a_i})$$

Learning Lexical Translation Models

- We'd like to estimate the lexical translation probabilities t(e|f) from a parallel corpus but we do not have the alignments
- Chicken and egg problem
 - If we had the alignments, we could estimate the parameters of our generative model (MLE)
 - If we had the parameters, we could estimate the alignments

klein		
e $t(e f)$		
klein		
e	t(e f)	
small	0.4	
little	0.4	
short	0.1	
minor	0.06	
petty	0.04	

- Incomplete data
 - If we had complete data, we could estimate the model
 - If we had the model, we could fill in the gaps in the data

- Expectation Maximization (EM) in a nutshell
 - 1. Initialize model parameters (e.g., uniform, random)
 - 2. Assign probabilities to the missing data
 - 3. Estimate model parameters from completed data
 - 4. Iterate steps 2-3 until convergence

- Initial step: all word alignments equally likely
- Model learns that: e.g., la is often aligned with the

- After one iteration
- Alignments, e.g., between la and the are more likely

- After another iteration
- Alignments, e.g., between fleur and flower are more likely

- Convergence
- Inherent hidden structure revealed by EM

Parameter estimation from the aligned corpus

The EM Algorithm for Word Alignment

- Initialize the mode, typically with uniform distributions
- Repeat
 - **E Step**: use the current model to compute the probability of all possible alignments of the training data
 - M Step: use these alignment probability estimates to re-estimate values for all of the parameters
- Until convergence (i.e., parameters no longer change)

IBM Model 1 and EM

t-table Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

Alignments

IBM Model 1 and EM: Expectation Step

$$p(a | e, f) = \frac{p(e, a | f)}{p(e | f)}$$

$$= \frac{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a_j})}{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_{a_j})}$$

$$= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a_j})}{\sum_{i=0}^{l_f} t(e_j|f_{a_i})}$$

IBM Model 1 and EM

t-table Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

Alignments

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair (e,f) that word e is a translation of word f:

$$c(e|f) = \sum_{a} p(a|e, f) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a_j})$$

IBM Model 1 and EM: Maximization Step

t-table Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

Alignments

M-step Counts

$$c(\text{the}|\text{la}) = 0.824 + 0.052$$

 $c(\text{the}|\text{maison}) = 0.118 + 0.007$

$$c(\text{the}|\text{la}) = 0.824 + 0.052$$
 $c(\text{house}|\text{la}) = 0.052 + 0.007$ $c(\text{the}|\text{maison}) = 0.118 + 0.007$ $c(\text{house}|\text{maison}) = 0.824 + 0.118$

IBM Model 1 and EM: Maximization Step

t-table **Probabilities**

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

E-step Alignments

$$p(a|\mathbf{e}, \mathbf{f}) = 0.824$$
 $p(a|\mathbf{e}, \mathbf{f}) = 0.052$ $p(a|\mathbf{e}, \mathbf{f}) = 0.118$ $p(a|\mathbf{e}, \mathbf{f}) = 0.007$

Counts M-step

$$c(\text{the}|\text{la}) = 0.824 + 0.052$$

 $c(\text{the}|\text{maison}) = 0.118 + 0.007$ $c(\text{the}|\text{maison}) = 0.118 + 0.007$

$$c(\text{the}|\text{la}) = 0.824 + 0.052$$
 $c(\text{house}|\text{la}) = 0.052 + 0.007$ $c(\text{the}|\text{maison}) = 0.118 + 0.007$ $c(\text{house}|\text{maison}) = 0.824 + 0.118$

Update t-table:

$$p(\text{the}|\text{la}) = c(\text{the}|\text{la})/c(\text{la})$$

Convergence

e	f	initial	1st it.	2nd it.	3rd it.	 final
the	das	0.25	0.5	0.6364	0.7479	 1
book	das	0.25	0.25	0.1818	0.1208	 0
house	das	0.25	0.25	0.1818	0.1313	 0
the	buch	0.25	0.25	0.1818	0.1208	 0
book	buch	0.25	0.5	0.6364	0.7479	 1
a	buch	0.25	0.25	0.1818	0.1313	 0
book	ein	0.25	0.5	0.4286	0.3466	 0
a	ein	0.25	0.5	0.5714	0.6534	 1
the	haus	0.25	0.5	0.4286	0.3466	 0
house	haus	0.25	0.5	0.5714	0.6534	 1

Word Alignment:

Given a sentence pair, which words correspond to each other?

Higher IBM Models

IBM Model 1	Lexical translation
Higher IBM Models IBM Model 2	Adds absolute reordering model
IBM Model 3	Adds fertility model
IBM Model 4	Relative reordering model
IBM Model 5	Fixes deficiency

- Only IBM Model 1 has global maximum
 - Training of a higher IBM model builds upon previous model
- Computationally biggest change in Model 3

IBM Model and EM

- IBM models create a many-to-one mapping
 - Words are aligned using an alignment function
 - A function may return the same value for different input (one-to-many mapping)
 - A function cannot return multiple values for one input (no many-to-one mapping)
- Real world alignments have many-to-many mappings

Decoding

 Goal is to find a translation that maximizes the product of the translation and language models.

$$\underset{E \in English}{\operatorname{argmax}} P(F \mid E)P(E)$$

- Cannot explicitly enumerate and test the combinatorial space of all possible translations.
- The optimal decoding problem for all reasonable model's (e.g. IBM model 1) is NP-complete.
- Heuristically search the space of translations using A*, beamsearch, etc. to approximate the solution to this difficult optimization problem.

Evaluation Metrics

- Manual evaluation is most accurate, but expensive
- Automated evaluation metrics:
 - Compare system hypothesis with reference translations
 - BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002):
 - Modified n-gram precision

 $p_n = \frac{\text{number of } n\text{-grams appearing in both reference and hypothesis translations}}{\text{number of } n\text{-grams appearing in the hypothesis translation}}$

BLEU

BLEU =
$$\exp \frac{1}{N} \sum_{n=1}^{N} \log p_n$$

- Two modifications:
 - To avoid log 0, all precisions are smoothed
 - Each n-gram in reference can be used at most once
 - Ex. Hypothesis: to to to to to vs Reference: to be or not to be should not get a unigram precision of 1
- Precision-based metrics favor short translations
 - Solution: Multiply score with a brevity penalty (BP) for translations shorter than reference, $e^{1-r/h}$

BLEU Scores

	Translation	p_1	p_2	p_3	p_4	BP	BLEU
Reference	Vinay likes programming in Python						
Sys1	To Vinay it like to program Python	$\frac{2}{7}$	0	0	0	1	.21
Sys2	Vinay likes Python	$\frac{3}{3}$	$\frac{1}{2}$	0	0	.51	.33
Sys3	Vinay likes programming in his pajamas	$\frac{4}{6}$	$\frac{3}{5}$	$\frac{2}{4}$	$\frac{1}{3}$	1	.76

BLEU

Correlates somewhat well with human judgments

Problems with Lexical Translation

- Complexity exponential in sentence length
- Weak reordering the output is not fluent
- Many local decisions error propagation