Mountain grassland dynamics: integrating phenotypic plasticity in a new agent-based model

Ph.D. defence of

Clément Viguier

realised under the supervision of

Björn Reineking

at IRSTEA Grenoble - TEGR

Context

Mountain grasslands in a changing world

The value of mountain grasslands' diversity.

Ecosystem services

Benefits that humans freely gain from the natural environment

- Argument for nature conservation
- Tool for management

Assessing grassland ecosystem services

Trait: morphological, anatomical, biochemical, physiological or phenological features of individuals or their component organs or tissues - TRY database

Drivers, global change and services

Summary statistics

Estimate

Models to understand and predict

- Understanding by explaining
- Emerging behaviour
- Allow exrtapolations
- Experiment at low cost

A gap to fill

Combine the species diversity and ecological processes of large scale models with the plant level processes of small scale models.

Molécular	Organ	Individual	Communuty	Landscape	
\$<	s, min mm	h, j cm	i cm, m	j, week m, km	
			•		

Physiological model Growth/development model

DGVMs

Intra-specific variability matters and impacts the community responses

Variance decomposition into the different levels. From Albert and al. 2010.

Should be considered in:

- Dynamic models

- ES assessments

Up to 40% of the total variability of some traits.

Strong impact on community response

Phenotypic plasticity, one source of variation

Plasticity

Often overlooked.

Hard to study in empircal studies.

Potential for rapid adaptation to climate change.

Potential for mitigation of the effects of environmental variability.

Questions

Technical and scientific interrogations

How does phenotypic plasticity impact grassland community properties & dynamics?

How model diverse plant communities integrating phenotypic plasticity?

How does phenotypic plasticity impact grassland community properties?

Introduction

State of the art and concepts

The concept of niche

How a species fit in a set of env. conditions.

Hutchinton: n-dimension volume.

Translate the impact of an environmental factor on the fitness function (growth, survival and reproduction)

Affected by biotic condition fundamental → realised

Despite the similar functioning Why do not plant share the same niche?

The leaf economic spectrum

The leaf economic spectrum

Wright et al. (2003)

The leaf economic spectrum

 Exchange are per mass unit

Dimension reduction

Cell wall/cell volume

Wright et al. (2003)

Trade-offs and strategy space

Dimension reduction \rightarrow generalise trade-offs to other processes: reproduction, geometry, etc...

Continuous traits and growth forms:

- → same functioning but species differences
- → diversity of processes
- → allows plasticity

Plasticity as a strategy

Active plasticity: anticipatory, and often highly integrated, phenotypic changes in response to some environmental cue

Modelling plasticity

Finalist perspective

Plasticity in models: dimensions, objectives and assumptions

Dimensions: what traits are plastic,

Objective: what drives the changes,

Assumptions: implicit or explicit rules

Effect on community's diversity

Niche partitionning vs competitve exclusion

We do not agree, yet

All effects

We do not agree, yet

All effects

Results

Presentation of MountGrass
Individual- and community-level effects of plasticity

Model overview

MountGrass' world representation

Obj: community properties and dynamics emerge from plant fcting.

individual

IBM spatially explicit

- Scales and resolutions
- Cm, day
- Seasons
- Grid

MountGrass' processes

Main processes

Plant representation

Based on trade-offs and strategy space

4 vegetative compartments

Par, pas, r:s

Different dry volumic masses

Thange the cost of exchange area

But also alters turn-over and respiration

How does the phenotype impact the plant growth?

The components of plant growth

TISSUE EFFICIENCY

sp. B sp. A Gain Carbon per mass unit Cost Greater resource availability Proportion of active tissues Net gain

BALANCE

How does plasticity fit this representation and drive the phenotype?

Algorithms

PE: potential evapo-transpiration AP: potential bsorption

- Objective functions
- Plastic dimensions
- Assumptions

• Objective function: equilibrium, axis: root:shoot ratio

Drought

One among 3

The future: between species memory and individual experience

How make it a strategy, and not only a process? Make the projection definition species specific

Memory: genetic memory of the species

Reactivity: relative weight given to the individual experience

Simulation results

Individual-level simulations

The plasticity and the potential niche

Simulation set-up

Simulations

- 20 Parameter sets
- Plastic and non plastic
- Gradient of water availability
- N * m phenotypes

Each simulation

• Size/lenght

Homogeneous conditions & static gain

 No shift in best strategy (proportion of active tissues)

- Reduction of growth differences (not shown)
- Little change in maximum biomass

Static gain

Widenning of the potential niche

Increase in potential species diversity

But not functional diversity

No change in dominant strategies

Simulation set-up

- Simulation
- N Parameter sets
- M conditions
- 2 algorithms

- Each simulation
- Size, length, ...

Heterogeneous conditions & dynamic gain

 Increase of relative BM (~ n%)

 Changes in dominant strategy (assymetric gain)

Reduction of growth differences

Dynamic gain

Consequences at the community level?

Shift in dominant strategy

Higher potential species diversity

 Competitive exclusion by exploitative species?

Community-level simulations

Community structure and diversity

The realised balance between mechanisms

Simulation set-up

12 parameter sets300 years400 phenotypes6 sites

Partially shared seedbank

Effect of the niche widening on diversity

reduction of fitness differences
 reduction of niche
 differences

Toward neutral situation

Effect on dominant strategy (asymmetric gain)?

Dominant strategies variability

Effects on dominant strategy << effects on community structure

Yet, some differences should emerge (extended simulations needed)

Different meta-community structure

A shift in community structure

- From distinct dominated communities to diverse communities with overlap
- Niche overlap at the metacommunity scale. Tissue efficiency more important than memory.
- Reduces the importance of the Root:Shoot ratio axis → better sampling on the other two dimensions (static gain > dynamic gain)

Discussion

Impact on community dynamics and community modelling

Community dynamics and stability

Results → hypothesis → simulation plan + limitations

Community variability and overlap → soft abundance changes, not critical transition → but need to establish stable communities (better exploration of trait space) to be sure not just sampling

Convergence vs divergence

Niche differentiation

Avoidance vs resistance vs resilience

Solution:

Change assumptions

2 dimensions to plasticity as strategy

...but increase model complexity

The frontiers of plasticity

- Traits are measures
- Plasticity is a shift in what is considered constant (allometry, growth rate, growth traits, plasticity traits > genes?)
- Measure of plasticity
- Plasticity of plasticity traits
- Plasticity = question of complexity of models
- How deep should we go in the rabbit hole
- Can we extract some general rule, behaviour that goes with the increasing complexity?

Conclusion & Perspectives

New hypothesis and simulations Model developments

Diverse community framework

- Diverse strategies
- Resource dependant optimum
- Integrated plasticity in coherent framework
- Plasticity as a strategy

but...

- Plasticity leads to high convergence, may need to diversify objective functions or assumptions...
- Strategy space must be better sampled for each parameter set

Challenge the gaussian

Plasticity is more than ISV

- Need to look at the process (even if not PP)
- Niche widdening and competition reduction
- Challenge strong hypotheses

To go beyond

Better calibration to confirm results

- Explore the plasticity as a strategy
- Climate scenarios
- Management and perturbations

- New forms of plasticity
- + exploration of other strategy axis (reproduction, frost resistance)
- → Multi-risk plasticity framework

- Stability/invasibility
- Epigenetics

Thank you