1 Correction du DM1

1.1 Préliminaire

Raisonnons par l'absurde et supposons que B_f appartient à l'image de f. Il existe alors un antécédent $x \in E$ tel que $f(x) = B_f$. On distingue deux cas :

- Soit x appartient à B_f . Comme $f(x) = B_f$ cela signifie que x appartient à f(x) mais par définition B_f est l'ensemble $\{x \in E, x \notin f(x)\}$, donc x ne peut pas appartenir à f(x), contradiction.
- Soit x n'appartient pas à B_f . Comme $f(x) = B_f$ cela signifie que x n'appartient pas à f(x) mais par définition B_f est l'ensemble $\{x \in E, x \notin f(x)\}$, donc x appartient à B_f , contradiction.

1.2 Relations d'équivalences

- 1. Le fait que = soit une relation d'équivalence est immédiat à vérifier. Pour le parallélisme des droites, il faut citer des propriétés géométriques, par exemple que deux droites parallèles à une même droite sont parallèles entre elles (ce qui montre la transitivité). Pour la relation d'égalité modulo 5, il est bon de revenir à la définition : on a $m \equiv_5 n$ lorsque m = n + 5k pour un certain entier k. Il est facile de voir que \equiv_5 est réflexive (prendre k = 0) et symétrique car si m = n + 5k on a n = m + 5(-k). Pour la transitivité, il faut rédiger un minimum : si m = n + 5k et m = p + 5k' alors n = p + 5(k' k) donc $n \equiv_5 p$.
- 2. Il est clair que pour tout x on a $x \in C_x$ (car une relation d'équivalence est réflexive i.e. $x\mathcal{R}x$ pour tout x). Donc tout élément appartient à au moins une classe d'équivalence. Pour montrer que les classes d'équivalences forment une partition de E il faut montrer que deux classes d'équivalences sont soit disjointes soit confondues, ou encore que chaque élément de E n'appartient qu'à une seule classe d'équivalence. Soit x,y deux éléments de E et supposons que $C_x \cap C_y$ ne soit pas vide. On veut montrer qu'alors $C_x = C_y$. Pour cela prenons $z_0 \in C_x \cap C_y$. Pour tout $x' \in C_x$ on a $x\mathcal{R}x'$ (par définition de C_x) et par ailleurs $x\mathcal{R}z_0$ (car $z_0 \in C_x$) donc par symétrie et transitivité on a $x'\mathcal{R}z_0$. Tout élément dans C_x est donc en relation avec z_0 , cela montre que $C_x \subset C_{z_0}$. Il est facile de vérifier que réciproquement, tout élément en relation avec z_0 est en relation avec x si bien que $C_{z_0} \subset C_x$, ce qui permet d'affirmer que $C_x = C_{z_0}$. Mais de même on obtiendrait $C_y = C_{z_0}$. Finalement $C_x = C_y = C_{z_0}$ donc les deux classes d'équivalences sont égales. Cela montre que deux classes d'équivalences qui ne sont pas disjointes sont égales.
- 3. Cette question est plus délicate. Soit \mathcal{C} un élément de $C_{\mathcal{R}}$, c'est à dire une classe d'équivalence. On veut attribuer une valeur $\tilde{f}(\mathcal{C})$ à la classe \mathcal{C} . Pour cela, on choisit n'importe quel élément x de \mathcal{C} et on pose $\tilde{f}(\mathcal{C}) := f(x)$. On remarque que f est constante sur chaque classe d'équivalence, en effet par hypothèse si x et x' sont en relation par \mathcal{R} on a f(x) = f(x') or deux éléments d'une même classe d'équivalence sont toujours en relation par \mathcal{R} par définition. Ainsi la valeur f(x) ne dépend pas du choix de $x \in \mathcal{C}$. On définit bien une application $\mathcal{C} \mapsto \tilde{f}(\mathcal{C})$ et on a bien pour tout x dans E:

$$\tilde{f}(C_x) = f(x).$$

1.3 Relations d'ordre

- 1. Le fait que \leq soit une relation d'ordre est clair. De même pour \subset . Pour la relation a|b il est facile d'établir la réflexivité et la transitivité (si a divise b et b divise c alors a divise c). En revanche pour l'anti-symétrie il faut justifier que si a|b alors $a \leq b$ si bien que (a|b et $b|a) \Longrightarrow a \leq b$ et $b \leq a$, donc a = b.
- 2. La relation \leq sur \mathbb{R} est bien un ordre total (c'est une propriété de \mathbb{R} , on a toujours $x \leq y$ ou $y \leq x$). La divisibilité n'est pas un ordre total, en effet on a ni 3|5 ni 5|3. De même la relation $A \subset B$ n'est, en général, pas un ordre total, prendre par exemple les singletons $\{0\}$ et $\{1\}$: aucun n'est inclus dans l'autre.
- 3. On peut imaginer la relation suivante : prendre n'importe quel ensemble F et définir la relation \mathcal{R} comme étant la partie $\{(x,x),x\in F\}$. On obtient ainsi une relation réflexive, anti-symétrique, transitive (c'est facile à voir), qui est donc une relation d'ordre. Mais c'est l'ordre le moins total, et le moins intéressant que l'on puisse imaginer : on ne peut **jamais** comparer deux éléments distincts, tout ce qu'on peut dire c'est que $x \leq x$ pour tout x!
- 4. Montrons qu'un bon ordre est toujours un ordre total. Soit x, y dans E et considérons la partie $\{x, y\}$. Comme c'est un bon ordre, cette partie possède un plus petit élément. Si ce plus petit élément est x, c'est que $x \le y$, sinon c'est que $y \le x$, mais c'est forcément l'une des deux possibilités. L'ordre est donc bien total.
- 5. Il est facile de voir que 1 est le plus petit élément pour la relation de divisibilité : il divise tout le monde (il est plus petit que tout le monde). Il n'y a pas de second plus petit élément, mais tout nombre premier est un nombre "minimal" pour la relation de divisibilité (une fois qu'on a retiré le nombre 1), car il n'est divisible (i.e. "plus petit" pour la divisibilité) par aucun nombre à part lui-même (et 1, qui a été retiré du jeu).