AI in Built Environment DCP4300

Lec10: Computer Vision

Object detection/ Segmentation

Dr. Chaofeng Wang
Jianhao Gao (TA)
University of Florida
College of Design Construction and Planning

Major Tasks of Computer Vision

Classification

Object detection

Segmentation

Major Tasks of Computer Vision

Classification

Object detection Object detection

Localization + Classification (sub-image)

Scenarios to use object detection

Multiple objects of interest in the image

Need to know the location of objects

The objects of interest are not predominant

Key points in the history of object detection

Early stage: Hand-engineered features + Simple classifiers

Feature that looks similar to the bridge of the nose is applied onto the face

Feature that looks similar to the eye region which is darker than the upper cheeks is applied onto a face

Viola–Jones method

Viola, P., & Jones, M. (2001). Robust real-time object detection. International journal of computer vision, 4(34-47), 4.

Sliding windows + Simple linear classifiers

Speed is ok, but performance is not good

Sliding windows + Neural networks

Performance is higher but slower

Example of a convolutional neural network classifier

Convolutional Implementation of Sliding Windows

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229. https://arxiv.org/abs/1312.6229

Convolutional Implementation of Sliding Windows

Disadvantages:

- 1. Computationally expensive, slow
- 2. Bounding box prediction not accurate

Anchor-based One-stage algorithm

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf

Anchor-based One-stage algorithm

YOLO

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon You Only Look CVPR_2016_paper.pdf

Traditional CV: Segmentation

Anchor-based Two-stage algorithm

Region Proposals (R-CNN)

Stage-1: Generate region proposals from image

Stage-2: Predict bounding boxes from region proposals

R-CNN

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).

https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

Selective search: J.Uijlings,K.vandeSande,T.Gevers,andA.Smeulders.Selective search for object recognition. *IJCV*, 2013. https://staff.fnwi.uva.nl/th.gevers/pub/GeversIJCV2013.pdf

R-CNN

It's very slow: Too much proposals; Each needs to be classified, independently.

Fast R-CNN

Input image-> ConvNet->Conv feature map->proposals->FCs...

Conv feature map

Faster R-CNN

Input image-> ConvNet->Conv feature map by a network->proposals->FCs...

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 91-99. https://proceedings.neurips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125). http://openaccess.thecvf.com/content_cvpr 2017/papers/Lin Feature Pyramid Networks CVPR 2017 paper.pdf

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125). http://openaccess.thecvf.com/content_cvpr 2017/papers/Lin Feature Pyramid Networks CVPR 2017 paper.pdf

One-stage vs. Two-stage

One-stage detectors:

Computational demand is relatively low

Generally faster than two-stage methods

Suitable for real-time detections

Not good at recognizing irregularly shaped objects or a group of small objects.

Popular one-stage detectors include the YOLO, SSD, and RetinaNet.

Two-stage detectors:

Demand more computational resources

Generally slower than one-stage methods

Two-stage methods achieve the highest detection accuracy

Various two-stage detectors include region convolutional neural network (RCNN), with evolutions

Faster R-CNN or Mask R-CNN. The latest evolution is the granulated RCNN (G-RCNN).

Two-stage object detectors first find a region of interest and use this cropped region for classification.

However, such multi-stage detectors are usually not end-to-end trainable because cropping is a non-differentiable operation.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 91-99. https://proceedings.neurips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

Anchor free methods

CornerNet

http://openaccess.thecvf.com/content_ECCV_2018/papers/Hei_Law_CornerNet_Detecting_Objects_ECCV_2018_paper.pdf

CenterNet

https://openaccess.thecvf.com/content_ICCV_2019/papers/Duan_CenterNet_Keypoint_Triplets_f or_Object_Detection_ICCV_2019_paper.pdf

FSAF

http://openaccess.thecvf.com/content CVPR 2019/papers/Zhu Feature Selective Anchor-Free Module for Single-Shot Object Detection CVPR 2019 paper.pdf

FCOS

https://openaccess.thecvf.com/content_ICCV_2019/papers/Tian_FCOS_Fully_Convolutional_On_e-Stage_Object_Detection_ICCV_2019_paper.pdf

SAPD

https://arxiv.org/pdf/1911.12448

Heatmaps Embeddings

CornerNet

Proceedings of the European conference on computer vision (ECCV) (pp. 734-750).http://openaccess.thecvf.com/content ECCV 2018/papers/Hei Law CornerNet Detecting Objects ECCV 2018 paper.pdf

Metrics

Intersection Over Union (IOU): The ratio of intersection of ground truth and predicted bounding box or segmentation outputs over their union.

Image

Semantic Segmentation

Instance Segmentation

Popular algorithms:

U-Net
Fast Fully Convolutional Network (FastFCN)
DeepLab
Mask R-CNN

•••

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In *Proceedings of the IEEE international conference on computer vision* (pp. 2961-2969). https://arxiv.org/pdf/1703.06870

Demo: Object detection and instance segmentation

Will run this demo in a Jupyter notebook on Google Colab:

https://colab.research.google.com/drive/1_FT8lzry_7uYRQ-jXF0Rg75H5vKB_oy2?usp=sharing