PROGRAMMING CHALLENGE 8: HASHTABLE CHAINING

The task is to store records of books in a hash table and have direct access to records. Design the hash table as an array of linked list to handle collision of records. A hash function mapped into a location in the array, which contains a pointer to a linked list of records. When a collision occurs, records with the same hash code will be chained together.

Each node in the linked list contains a record of a book and implemented as an instance of the class BookRec.

The class BookRec has the following properties:

	Class: BookRec
Properties	
Identifier	Description
BookID	ID of a book
Title	Title of a book
Pointer	Pointer of node

Task 1

Write program code for the class BookRec, using suitable data types for the attributes.

Evidence 1: Program code for Task 1.

[3]

A linked list is implemented as an instance of the class LinkedList. The class LinkedList has the following properties and methods:

CI	ass: LinkedList	
Properties		
Identifier	Description	
Start	Points to the first node of the linked list	
Methods	The state of the mines had	
Initialise	Initialises Start to be Null.	
IsEmpty	Tests for empty linked list. Returns Boolean.	
AddNode	Adds a new node to the linked list. Takes BookID and Title as arguments	
DeleteNode	Deletes a node from the linked list. Takes Book ID as argument.	
SearchNode	Searches for an existence of a record. Takes Book ID as argument.	
DisplayLinkedList	Displays contents of linked list.	

Task 2

Write program code for the class LinkedList.

Evidence 2: Program code for Task 2.

[16]

The hash table is implemented as an instance of the class HashTable. The class HashTable has the following properties and methods:

	Class: HashTable	
Properties		
Identifier	Description	
Size	Size of the array	
Slots	Array of linked list that makes up the hash table	
Methods		
Initialise	• Initialises Size and Slots.	
Hash	. A hashing function that calculates the address of the hash table	
Display	Displays the contents of the hash table.	
Put	 Puts a record into the hash table after calculating the address to store the record. 	
	Takes BookID and Title as arguments.	
Remove	Removes a record from the hash table.	
	Takes Book ID as argument.	
Search	Searches for a record in the hash table.	
	Takes BookID as argument.	
	Returns Boolean.	

The address in the hash table is calculated from a hashing function as follows:

- The ASCII code is calculated for each character within the BookID.
- The total of all ASCII values is calculated.
- The total is divided by Size and the remainder calculated with modulo arithmetic, where Size is the maximum address location.
- The value returned by the function is the (remainder + 1). This value is
 the address for the record in the hash table.

For example, for a Size of value 17, if the book record has BookID CS733, the value from the hashing function is 2. Therefore, write record with BookID CS733 to the array with address 2.

Task 3

Write program code for the class HashTable, including the Hash function which uses the following specifications:

FUNCTION Hash (BookID: STRING) RETURNS INTEGER

Evidence 3: Program code for Task 3.

[16]

Task 4

Test your program code for Size of value 17, by

a. Putting the following records into the hash table and display the hash table.

BookID	Title
CS733	Basic algorithms
AB944	Master Computing
KS293	Data structures
BK232	Programming exercises
PK199	Testing Python

- b. Removing AB944 from the hash table and display the hash table.
- c. Searching for KS293 from the hash table.

Evidence 4: Screenshots of running Task 4.

[2]

[Total: 37 marks]