Assignment-2

Patel Shahil Manishbhai – 200010039 30th August 2022

1. The following table contains all the integrity constraints for each table definition in the university schema.

Table	Primary Key	Domain of PK	Foreign Key	Not NULL			
classroom	building, room_number	varchar	None	building, room_number			
department	dept_name	varchar	None	dept_name, budget			
course	course_id	varchar	dept_name (references department)	course_id, credits			
instructor	ID	Varchar	dept_name (references department)	ID, name, salary			
section	course_id, sec_id, semester, year	varchar, numeric	course_id (references course), building, room_number (references classroom)	course_id, sec_id, semester, year			
teaches	ID, course_id, sec_id, semester, year	varchar, numeric	course_id, sec_id, semester, year (references section), ID (references instructor)	ID, course_id, sec_id, semester, year			
student	ID	varchar	dept_name (references department)	ID, name			
takes	ID, course_id, sec_id, semester, year	varchar, numeric	course_id, sec_id, semester, year (references section), ID	ID, course_id, sec_id, semester, year			

			(references student)	
advisor	s_ID	varchar	i_ID (references instructor (ID)), s_ID (references student (ID))	s_ID
time_slot	time_slot_id, day, start_hr, start_min	varchar, numeric	None	time_slot_id, day, start_hr, start_min
prereq	course_id, prereq_id	varchar	course_id (references course), prereq_id (references course)	course_id, prereq_id

2. Query used:

SELECT *

FROM student s, department d, takes t, advisor a, instructor i **WHERE** s.name = 'Brown' **and** s.id = t.id **and** s.id = a.s_id **and** a.i_ID = i.id **and** s.dept_name = d.dept_name;

Output:

ID	name	dept	name	tot	cred	dept	name	building	budget	ID	course	_id se	c_id	semester	year	grade	s_ID	i_ID	ID	name	dept	name	salary
76543	Brown	Comp.	Sci.	58		Comp.	Sci.	Taylor	100000	76543	CS-101	1	8600	Fall	2017	Α	76543	45565	45565	Katz	Comp.	Sci.	75000
76543	Brown	Comp.	Sci.	58		Comp.	Sci.	Taylor	100000	76543	CS-319	2		Spring	2018	Α	76543	45565	45565	Katz	Comp.	Sci.	75000

- 3. The following answer contains 2 images for each table 1^{st} before running the query and 2^{nd} the output after running the query.
 - a. Advisor

Figure 1 Advisor Table

SELECT s_id FROM advisor WHERE s_id%2 == 0 Enter SQL commands here 1 -- enter your commands here 2 SELECT s id from advisor 3 WHERE s_Id%2==0 Execute Save the db Load an SQLite database file: Choose File No file chosen

Figure 2 Output after running above query on Advisor

b. classroom

Figure 3 classroom table

Query:

INSERT INTO classroom

VALUES ('IIT', 2000, 150);

SELECT * **FROM** classroom

Figure 4 Output after running the above query

150

2000

IIT

c. course

Figure 5 course table

Query:

```
UPDATE course
SET TITLE = Biology For Engineers', credits = 6
WHERE course_id = 'BIO-101';
SELECT * FROM course
```


Figure 6 Output after running above Query

d. department

Figure 7 department table

Query:

DROP TABLE department

Figure 8 Output after running above query

e. instructor

Figure 9 instructor table

Query:

DELETE FROM instructor

WHERE salary=65000;

SELECT * **FROM** instructor

Figure 10 Output after running above query

Figure 11 prereq table

Query:

SELECT course_id

 ${\bf FROM}$ prereq

WHERE prereq_id LIKE 'C%'

Figure 12 output after running above query

g. section

Figure 13 section table

Query:

DELETE FROM section

WHERE semester = 'Spring' and room_number = 3128;

SELECT * **FROM** section

Figure 14 output after running above query

h. student

Figure 15 student table

Query:

SELECT *

FROM student ORDER BY name

Figure 16 result after running above query

i. takes

Figure 17 takes

Query:

ALTER TABLE takes

ADD Result varchar (50);

SELECT * FROM takes

Enter SQL commands here

Save the db

Execute

```
1 -- enter your commands here
2 ALTER TABLE takes
3 ADD Result varchar(50);
5 ELECT * FROM takes
```

Load an SQLite database file: Choose File No file chosen 00128 CS-101 1 00128 CS-347 1 Fall 2017 A-12345 CS-101 1 Fall 2017 C Spring 2017 A 12345 CS-190 12345 CS-315 Spring 2018 A 1 Fall 12345 CS-347 2017 A 1 19991 HIS-351 1 Spring 2018B 23121 FIN-201 1 Spring 2018 C+ 44553 PHY-101 1 Fall 2017 B-45678 CS-101 Fall 2017 F 45678 CS-101 Spring 2018 B+ 1 45678 CS-319 1 Spring 2018B 54321 CS-101 1 Fall 2017 A-54321 CS-190 Spring 2017 B+ 55739 MU-199 Spring 2018 A-76543 CS-101 2017 A 1 Fall 2 76543 CS-319 Spring 2018 A 2017 C 76653 EE-181 1 Spring 98765 CS-101 1 Fall 2017 C-98765 CS-315 Spring 2018 B

Figure 18 output after running above query

j. teaches

Figure 19 teaches table

Query:

SELECT * FROM teaches **ORDER BY** year;

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2017
10101	CS-347	1	Fall	2017
22222	PHY-101	1	Fall	2017
76766	BIO-101	1	Summer	2017
83821	CS-190	1	Spring	2017
83821	CS-190	2	Spring	2017
98345	EE-181	1	Spring	2017
10101	CS-315	1	Spring	2018
12121	FIN-201	1	Spring	2018
15151	MU-199	1	Spring	2018
32343	HIS-351	1	Spring	2018
45565	CS-101	1	Spring	2018
45565	CS-319	1	Spring	2018
76766	BIO-301	1	Summer	2018
83821	CS-319	2	Spring	2018

Figure 20 output after running above query

k. time_slot

Figure 21 time_slot table

Query:

SELECT time_slot_id, day

 $\textbf{FROM} \ time_slot$

WHERE start_min = 0 and end_hr<10

Figure 22 output after running above query

4. a)

In these question I have taken xxx = 'Music' and yyy = 'Packard' Query:

SELECT DISTINCT student.ID, student.name

FROM student, department, section

WHERE department.dept_name = 'Music' **and** department.building = 'Packard' **and** student.dept_name = department.dept_name and section.building = department.building

Figure 23 Output

b)

Query:

SELECT student.ID, student.name

FROM takes, student

WHERE grade = 'A' and student.id = takes.id

INTERSECT

SELECT student.ID, student.name

FROM takes, student

WHERE grade = 'C' and student.id = takes.id

Figure 24 output

c)

Query:

SELECT DISTINCT classroom.building, classroom.room_number

FROM section, classroom, time_slot

WHERE classroom.building = section.building and classroom.room_number = section.room_number and section.time_slot_id = time_slot.time_slot_id and day = 'W'

Figure 25 output