

Artificial Intelligence: Intro to COMS30014

Oliver Ray Seth Bullock Nirav Ajmeri

bristol.ac.uk

What is AI?

- Al involves the use of machines to understand and reproduce and enhance all aspects of intelligent behaviour ranging from
 - Strong AI addressing abstract general-purpose problem solving
 - Weak AI addressing concrete domain-specific task performance
- We subscribe to an Embodied, Declarative, Intelligent Agent perspective which views AI as a synthesis of two key traditions
 - Knowledge-driven AI symbolic, local, white-box (GOFAI)
 - Data-driven AI connectionist, distributed black-box (DEEP-X)
- While AI currently has a strong focus on data-driven deep learning, this is covered in other courses (NOT HERE!)
- We believe a combination of the above dimensions is necessary to address contempory issues within AI:
 - Transparency, Explainability, Interactivity, ...

Turing's 1950 (pre)classification of Al

(After proposing the Turing Test as a means of POSTPONING the need for a formal definition of AI in order to circumvent pointless philosophical discussion that would impede progress on the real purpose of the paper:)

Direct Programming

- Code learnt concepts of the adult mind
- Realised 1960s-1980s in the field of expert systems (as per Machine Intelligence series)

Ab initio Learning

- Code learning mechanisms of the child mind and allow it to learn autonomously from data
- Realised 1980s-1990s in the field of ML (as per Machine Learning journal)
- Learning by (unemotional) punishment and reward in symbolic language of logic and probabilities
 - Inspired reinforcement learning and inductive logic programming
 - Motivated recent Human-Like Computing Network (just taking off)

TuringAl.dvi (ic.ac.uk) Explainable Al | Administration and support services | Imperial College London HLC (ic.ac.uk) https://epsrc.ukri.org/newsevents/pubs/human-like-computing-strategy-roadmap/

What is AI not (only)?

Michie's ML Criteria (EWSL'88)

- Weak criterion of ML (Fig.1):
 - System ... uses training data ... for improved performance
 - International ML meetings ... operating ... unspoken community criterion (p.107) ... "satisfies weak criterion and also involves some biology"
 - Scope of ML (Fig. 2): Neural Networks / Genetic Algorithms / Symbolic Methods
- Strong criterion of ML (Fig.3):
 - ... and also can communicate its internal updates in explicit symbolic form
 - New dictum (p.108): Until you have figured out a way for the machine to tell you what it has learned, it is
 not going to be very interesting to have it learn things anyway.
- **Ultra-strong criterion** of ML (Fig.3):
 - ... and also can communicate its internal updates in explicit and operationally effective symbolic form
 - It must also show skill in the role of coach

Unit Philosophy

This unit gives an intro to knowledge-based methods that (we purport) could be used in combination with currently trendy approaches to better address current issues in Al:

- Interpretable AI ?
- Comprehensible AI ?
- Explainable AI ?
- Interactive AI?
- Trustworthy AI ?
- Ethical AI?

We will concentrate on three key topics:

- Logic Programming
- Genetic Algorithms
- Mult-Agent Systems

Unit Overview

Week	Topic	Lecturer	Lab	
1	Logic Programming I	Oliver Ray	Datalog / Movies	
2	Logic Programming II	Oliver Ray	Prolog / GridWorld	
3	Logic Programming III	Oliver Ray	Metalogic / Oscars	soarch
4	Genetic Algorithms I	Seth Bullock	Simple Genetic Algorithm	search
5	Genetic Algorithms II	Seth Bullock	Coevolutionary Genetic Algorithm	problem solving
6	READING WEEK			
7	Multi-Agent Systems I	Nirav Ajmeri	MAS Simulation I / Mesa	
8	Multi-Agent Systems II	Nirav Ajmeri	MAS Simulation II / Mesa	
9	Timed Coursework			ר
10				COMS30062 (15CP)
11				with practical focus
12	Exam Preparation Oliver, Seth, Nirav			COMS30013 (10CP) with conceptual focus bristol.ac.uk
XMAS	Exam Revision			
JAP	Timed Exam			

Unit Assessment (Exam & Coursework)

- Focus on Artificial GridWorld that agents must efficiently navigate by using charging stations to visit oracles and solve various tasks
- This context will help to develop understanding for the exam and will be directly used in the coursework; and it provides a nice link between Prolog and GAs and MAS

Example GridWorld Tasks

lead all agents out of the maze

Use A* search to solve tasks of form: find(0bj); go(Pos)

visit and query oracles to find secret actor id

In-Person Lectures

- For Disseminating content, clarifying expectations, and giving you the opportunity to ask questions in person
- Tuesdays at 4-6pm in 1.11 in teaching weeks 1-5 & 7-8
- Mandatory for ALL students (both Exam and Coursework)
- Usually comprising two integrated lecture/Q&A sessions
- Lectures are not assessed but vital for all students
- Lectures are recorded on Mediasite (to aid revision)
- You are strongly encouraged to ask questions

- For consolidating taught content with self-study and giving you the opportunity to obtaining feedback from unit staff
- Fridays at 9-11 in 2.11 in teaching weeks 1-5 & 7-8
- Mandatory for ALL students (both Exam and Coursework)
- Comprising predefined TA-supported tutorial exercises
- Labs are not assessed but are vital for all students
- Labs are not recorded (so you must attend live)
- Work individually or in small groups (you need self-organise)
- Raise your hand to get help from the TAs

Non-Teaching Weeks

- No Lectures/Labs in week 6 (Reading Week)
- No Lectures/Labs in weeks 9-11 (Timed Coursework weeks)
- Exam Preparation Session in week 12 (for Exam students only)

(Optional) Drop-In Clinics

- Extra assistance for students struggling with specific issues (especially Prolog-related issues at the start of the course)
- Thursdays at 1-2pm in teaching weeks 1-5 & 7-8
- Drop-ins are not assessed and are 100% optional
- Drop-ins are not recorded (so you must attend live)
- There will be a limited number of TAs on hand to help
- Good opportunity to ask specific questions relating to unit content, lab exercises and related software

- The best way to ask questions outside the live sessions
- Monitored by unit staff who will try to respond within 24hrs
- All students can benefit from seeing the answers
- You can post anonymously if you want
- You can get automatic email notifications (please enable)
- Keeps all information together in one convenient place
- Students are strongly encouraged to try and answer questions as well as asking them!

This unit is taught by three academics:

- Oliver Ray (director)
- Seth Bullock
- Nirav Ajmeri

And it is supported by a team of Teaching Assistants:

 Alexander Quessy; George Brayshaw; Oliver Deane; Charli Posner; and Matthew Nagy

Please contact us in class or via the Unit Discussion Forum!

Oliver - Research Interests

- PhD, Imperial College
 - Abductive Logic Programming (PrologIcA, efficiency)
 - Inductive Logic Programming (HAIL, completeness)
- Research Fellow, University of Bristol
 - Answer Set Programming (XHAIL, non-monotonicity)
 - Machamer-Darden-Craver theory (Huginn, Robot Scientist)
- Senior Lecturer, University of Bristol
 - Event Calculus (XEC, temporal conflict resolution)
 - Cyber Security (Acuity, human-in-the-loop learing)
 - Normative Agents (InstAL+, round-trip revision)
 - Relational Frame Theory (Artomis, theory of mind)
 - Legal Informatics (SUMO, majority opinion in UKSC)
 - Research Director Interactive AI CDT (IAI)

Oliver - Personal Interests

- Dance
 - Latin: Salsa, Bachata, ChaCha, (Son, Tango)
 - Cajun: Zydeco, Two-step, Waltz, Blues
 - Swing: West Coast Swing, (Charelston, Lindy)
 - Jive: Ceroc, Silc, (Rockabilly)
- Drumming
 - Bongos, Congas, (Djembe, Timbales)
- Sport
 - Tag Rugby, Kickboxing, Tennis
 - Bouldering, Weightlifting, Swimming
 - Dog walking!

Seth - Research Interests

Artificial Life: Evolution, Collective Behaviour, Neuroscience, Agent Based Modelling, Robotics, Interdisciplinarity, Complex Systems Simulation, etc.

Evolving Collective Construction

- A swarm of termite-like robots
- Collectively build a specific kind of structure
- No global communication
- No blueprint
- Just artificial pheromones

Evolving Robot Communication

- 2 robots controlled by the same evolved artificial neural network
- Each knows about 1 location
- Only 1 is the best
- They both need to get to it
- They can see each other
- They only have three neurons

Position

Position

Seth - Personal Interests

- Food Cooking it, Eating it
- Music Old Music, New Music

• West Ham – when we're winning..

Niray - Research Interests

- Researcher, TCS-TRDDC, Pune, India
 - Software requirements engineering; Knowledge engineering
- PhD, NC State University, Raleigh NC, USA
 - Socially intelligent agents and multiagent systems
 - Sociotechnical systems
 - Formal specification, reasoning, and verification
 - Privacy and security
 - Ethics and fairness
- Postdoctoral Researcher, NC State University, Raleigh NC, USA
 - AI, ethics, and society
 - Software security
- Lecturer, University of Bristol
 - Al and prosociality
 - Bias and misinformation
 - Privacy and online harm

Niray - Personal Interests

- Cricket!
- Any sport
 - Badminton, Table Tennis, ...

- Arcade gaming
- Board games and card games
- Travelling and trekking
 - Can't swim!

- NULLIANT RIGHT REGISTERS AND SECRET SMARLE SMARLE SAGE SAGE COSTONALS DESCRIPTION OF RECEIVE SCRIPTION OF RANK SCRIPTION OF RECEIVE SCRIPTION OF RANK SCRIPTION OF RECEIVE SCRIPTION OF RANK SCR
 - + No Ads!
 - + No permissions!
 - + Dark mode for strain free viewing

Thank you

Recommended Preparation

Artificial Intelligence: a modern approach (by Stuart Russell and Peter

SWI Prolog

Learn Prolog Now (by ...)

Simply Logical (by Peter Flach)