course: CSC 135-01 - Computing Theory and Programming Languages

instructor: Ted Krovetz

related_notes: <u>2022-04-05</u>

Parsing

W14.2 | Tuesday, April 5, 2022 | 09:03 AM

Two Possible Goals For Parsing

- 1. Build a parse tree; or
- 2. Recognize that a parse tree exist
 - 1. Simple goal is to ask "is this parse-able"

Recognizing

Grammar: $S o aSa \, |bSb| x$

Language: abbxbba

Denervation from the string abbxbba:

- Terminals are lowercase letters
- Nonterminal are uppercase letters

Algorithm For Pushdown Automata (PDA) Parsing

Further abstraction

```
while Stack not empty:
          top = pop
          token = next # Reads what's next in token string, but does not remove
from token string
    if top is a terminal:
```

For each $\operatorname{ ext{elif}} A_i o w_2$

Only works if (cant read his hand writing) has only one production for the current state

Parsing PDA Code

Grammar: $S o aSa \, |bSb| x$

Which production to chose?

First(A) is the set of all first terminals of all strings derived form A

```
A 
ightarrow aA 
ightarrow aB 
ightarrow \ldots 
ightarrow abb
```

 $\mathsf{First}(\mathsf{A}) = \{c \mid cs \in L\left(A\right) where \ 'c' \ is \ a \ terminal \ and \ 's' \ is \ a \ string \ of \ terminals\}$

$$S
ightarrow \ aSa \, |bSb| x$$

- $S \rightarrow aSa \rightarrow \dots all \ start \ with \ 'a'$
- $S \rightarrow aSa \rightarrow \dots all \ start \ with \ 'b'$
- $S \rightarrow x \rightarrow \dots all \ start \ with \ 'x'$
- First(aSa) = {a}
- First(bSb) = {b}
- First(x) = $\{x\}$

Example 01

$$A
ightarrow aA|\lambda \ B
ightarrow aB|\lambda \ B
i$$

$$First(a) = a$$

- ullet $A o aA\dots$ $a\in ext{First(A)}$ doesn't have first terminal
- $First(A) o \lambda$

$$First(B) = b$$

 $First(S) = a, b$

- $ullet \ S
 ightarrow AB
 ightarrow aAB
 ightarrow \ldots a \in First \, (S)$
- $s \rightarrow AB \rightarrow B \rightarrow \dots b \in First(S)$
- $S o AB o B o \lambda$

To Find Sets

- 1. Identify all set constraints
- 2. Seed the first sets with the \in constraints
- 3. Satisfy **C** constraints by copying anything in the Left Hand Side missing in the Right Hand Side
- 4. Repeat step 3 until nothing happens

Methodical way to find First

If you have	you can deduce
$A o \lambda$	nothing

If you have	you can deduce
A o xw	$x \in \ First(A)$
A o Bw	$First\left(B ight) \leq First\left(B ight)$
$A ightarrow Bw$ and $\lambda\in L\left(B ight)$	$First\left(w ight)\leq First\left(A ight)$