Near-optimal Quantum Algorithms for Multivariate Mean Estimation

arXiv:2111.09787

Arjan Cornelissen¹, Yassine Hamoudi², Sofiene Jerbi³

¹QuSoft, University of Amsterdam ²Simons Institute for the Theory of Computing, University of California, Berkeley ³Institute for Theoretical Physics, University of Innsbruck

March 10th, 2022

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \in \mathbb{R}^d.$$

We have

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \in \mathbb{R}^d.$$

Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_d] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_1, X_d] & \mathsf{Cov}[X_2, X_d] & \cdots & \mathsf{Var}[X_d] \end{bmatrix}$$

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega)X(\omega) \in \mathbb{R}^d.$$

Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_d] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_1, X_d] & \mathsf{Cov}[X_2, X_d] & \cdots & \mathsf{Var}[X_d] \end{bmatrix}$$

Multivariate mean estimation:

• Goal: Approximate $\mu \in \mathbb{R}^d$.

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \in \mathbb{R}^d.$$

Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_d] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_1, X_d] & \mathsf{Cov}[X_2, X_d] & \cdots & \mathsf{Var}[X_d] \end{bmatrix}$$

Multivariate mean estimation:

- Goal: Approximate $\mu \in \mathbb{R}^d$.
- Assumption:

$$\mathsf{Tr}[\Sigma] = \sum_{j=1}^d \mathsf{Var}[X_j] < \infty.$$

We have

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \in \mathbb{R}^d.$$

Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_d] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_1, X_d] & \mathsf{Cov}[X_2, X_d] & \cdots & \mathsf{Var}[X_d] \end{bmatrix}$$

Multivariate mean estimation:

- Goal: Approximate $\mu \in \mathbb{R}^d$.
- Assumption:

$$\mathsf{Tr}[\Sigma] = \sum_{j=1}^d \mathsf{Var}[X_j] < \infty.$$

Applications:

- Physics/chemistry simulations
- 2 Computer graphics
- Finance
- Shadow tomography

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

Quantum access model:

Distribution oracle:

$$|0\rangle\mapsto\sum_{\omega\in\Omega}\sqrt{\mathbb{P}(\omega)}\,|\omega\rangle.$$

We have

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

Quantum access model:

Distribution oracle:

$$|0\rangle\mapsto \sum_{\omega\in\Omega}\sqrt{\mathbb{P}(\omega)}\,|\omega\rangle.$$

Random variable oracle:

$$|\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle.$$

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

Quantum access model:

Distribution oracle:

$$|0
angle\mapsto\sum_{\omega\in\Omega}\sqrt{\mathbb{P}(\omega)}\,|\omega
angle.$$

Random variable oracle:

$$|\omega\rangle|0\rangle \mapsto |\omega\rangle|X(\omega)\rangle.$$

Think of

$$|X(\omega)\rangle = |X(\omega)_1\rangle \otimes |X(\omega)_2\rangle \otimes \cdots \otimes |X(\omega)_d\rangle$$

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

Quantum access model:

Distribution oracle:

$$|0
angle\mapsto\sum_{\omega\in\Omega}\sqrt{\mathbb{P}(\omega)}\,|\omega
angle.$$

2 Random variable oracle:

$$|\omega\rangle|0\rangle \mapsto |\omega\rangle|X(\omega)\rangle.$$

Think of

$$|X(\omega)\rangle = |X(\omega)_1\rangle \otimes |X(\omega)_2\rangle \otimes \cdots \otimes |X(\omega)_d\rangle$$

Calls to these routines are *samples*.

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

Goal: Construct estimator $\widetilde{\mu}$, using *n* samples, s.t.

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}$$

$\mathbb{P}\left[\left\ \mu-\widetilde{\mu}\right\ _{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}$	<u>-</u> 3
--	------------

 $\varepsilon(n)$ Remarks Classically d = 1 $d \ge 1$ Quantumly d = 1 $d \ge 1$

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
Classically	d = 1	$\Theta\left(\sqrt{\frac{Var[X]}{n}}\right)$	Monte Carlo sampling
	$d \ge 1$	$\Theta\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}\right)$	Monte Carlo sampling
_ ylmu:	d = 1		
Quantumly	$d \geq 1$		

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
ically	d = 1	$\Theta\left(\sqrt{\frac{\operatorname{Var}[X]}{n}}\right)$ $\Theta\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}\right)$	Monte Carlo sampling
Class	$d \ge 1$	$\Theta\left(\sqrt{\frac{Tr[\Sigma]}{n}}\right)$	Monte Carlo sampling
tumly	d = 1	$\widetilde{\Theta}\left(\frac{\sqrt{Var[X]}}{n}\right)$	Known Var[X] [Mon15;HM19]
Quani	$d \geq 1$		

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
ically	$d=1$ $d\geq 1$	$\Theta\left(\sqrt{\frac{Var[X]}{n}}\right)$	Monte Carlo sampling
Class	$d \ge 1$	$\Theta\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}\right)$	Monte Carlo sampling
tumly	d = 1	$\widetilde{\Theta}\left(\frac{\sqrt{Var[X]}}{n}\right)$	Known Var[X] [Mon15;HM19] Unknown Var[X] our work
Quan	$d \geq 1$		

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
cally	$d=1$ $d\geq 1$	$\Theta\left(\sqrt{\frac{Var[X]}{n}}\right)$	Monte Carlo sampling
Class	$d \ge 1$	$\Theta\left(\sqrt{\frac{Tr[\Sigma]}{n}}\right)$	Monte Carlo sampling
umly _	d = 1	$\widetilde{\Theta}\left(\frac{\sqrt{\operatorname{Var}[X]}}{n}\right)$	Known Var[X] [Mon15;HM19] Unknown Var[X] our work
Quant	$d \geq 1$	$ \Theta\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}\right) \\ \widetilde{\Theta}\left(\frac{\sqrt{\operatorname{Var}[X]}}{n}\right) \\ \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d}\operatorname{Tr}[\Sigma]}{n}, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, \end{cases}\right) $	$ \begin{array}{c} \text{if } n \geq d \\ \text{if } n < d \end{array} $

Goal: Construct estimator $\widetilde{\mu}$, using *n* samples, s.t.

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
ically	$d=1$ $d\geq 1$	$\Theta\left(\sqrt{\frac{Var[X]}{n}}\right)$	Monte Carlo sampling
Class	$d \ge 1$	$\Theta\left(\sqrt{\frac{Tr[\Sigma]}{n}}\right)$	Monte Carlo sampling
	d=1	$\widetilde{\Theta}\left(\frac{\sqrt{Var[X]}}{n}\right)$	Known Var[X] [Mon15;HM19] <i>Unknown</i> Var[X] <i>our work</i>
Quant	$d \geq 1$	$\widetilde{\Theta}\left(\frac{\sqrt{Var[X]}}{n}\right)$ $\widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{dTr[\Sigma]}}{n},\\ \sqrt{\frac{Tr[\Sigma]}{n}}, \end{cases}\right)$	$ \begin{array}{l} if \ n \geq d \\ if \ n < d \end{array} $ Our work

Goal: Construct estimator $\widetilde{\mu}$, using *n* samples, s.t.

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
ically	d = 1	$\Theta\left(\sqrt{\frac{Var[X]}{n}}\right)$ $\Theta\left(\sqrt{\frac{Tr[\Sigma]}{n}}\right)$	Monte Carlo sampling
Class	$d \ge 1$	$\Theta\left(\sqrt{\frac{Tr[\Sigma]}{n}}\right)$	Monte Carlo sampling
umly	d = 1	$\widetilde{\Theta}\left(\frac{\sqrt{Var[X]}}{n}\right)$	Known Var[X] [Mon15;HM19] Unknown Var[X] our work
Quant	$d \ge 1$	$ \widetilde{\Theta} \left(\frac{\sqrt{Var[X]}}{n} \right) $ $ \widetilde{\Theta} \left(\begin{cases} \frac{\sqrt{d Tr[\Sigma]}}{n}, \\ \sqrt{\frac{Tr[\Sigma]}{n}}, \end{cases} \right) $	$ \begin{array}{l} \text{if } n \geq d \\ \text{if } n < d \end{array} $

Crucial observation: quantum speed-up only when $n \ge d$.

Goal: Construct estimator $\widetilde{\mu}$, using n samples, s.t.

$$\mathbb{P}\left[\left\|\mu - \widetilde{\mu}\right\|_{2} \le \varepsilon(n)\right] \ge \frac{2}{3}$$

		$\varepsilon(n)$	Remarks
cally	$d = 1$ $d \ge 1$	$\Theta\left(\sqrt{\frac{\operatorname{Var}[X]}{n}}\right)$	Monte Carlo sampling
Class	$d \ge 1$	$\Theta\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}\right)$	Monte Carlo sampling
umly	d = 1		Known $Var[X]$ [Mon15;HM19] Unknown $Var[X]$ our work
Quant	$d \ge 1$	$\widetilde{\Theta} \left(\left\{ \frac{\sqrt{d \operatorname{Tr}[\Sigma]}}{n}, \frac{\sqrt{\operatorname{Tr}[\Sigma]}}{\sqrt{n}}, \right. \right.$	if $n \ge d$ if $n < d$ Our work

Crucial observation: quantum speed-up only when $n \geq d$.

Goal: Estimate
$$\mu = \mathbb{E}[X] \in \mathbb{R}^d$$
.

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]},$$

using O(1) samples.

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

@ Get an idea of the spread:

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

@ Get an idea of the spread:

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

2 Get an idea of the spread:

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]},$$

using O(1) samples.

@ Get an idea of the spread:

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]},$$

using O(1) samples.

2 Get an idea of the spread: Estimate quantiles a_{ℓ} s.t.

$$\mathbb{P}\left[\|X - \overline{\mu}\|_2 \ge a_\ell\right] \approx \frac{1}{2^\ell},$$
 for $\ell \in \{1, \dots, 2\log(n)\}.$

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

Q Get an idea of the spread: Estimate quantiles a_{ℓ} s.t.

$$\mathbb{P}\left[\left\|X-\overline{\mu}
ight\|_{2}\geq a_{\ell}
ight]pproxrac{1}{2^{\ell}}$$
 ,

for $\ell \in \{1, \ldots, 2 \log(n)\}$.

Stimate truncated mean on every ring:

$$\mathbb{E}[X] \approx \sum_{\ell=1}^k \mathbb{E}[X \cdot \mathbb{1}_{X \in R_\ell}].$$

Quantile estimation

Quantile estimation

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

Want to find $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

Want to find $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $|\widetilde{O}(1)|$ samples from Y Requires $\widetilde{O}(1)$ calls

Want to find
$$\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$$

 $\hookrightarrow \quad \begin{array}{c} \text{Let } a_1 \text{ be the median} \\ \mathbb{P}[Y \geq a_1] \approx \frac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y Requires $\widetilde{O}(1)$ calls

Want to find $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 $\hookrightarrow \quad \begin{array}{c} \text{Let } a_1 \text{ be the median} \\ \mathbb{P}[Y \geq a_1] \approx \frac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y Requires $\widetilde{O}(1)$ calls

Want to find $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 $\hookrightarrow \quad \begin{array}{c} \text{Let } a_1 \text{ be the median} \\ \mathbb{P}[Y \geq a_1] \approx \frac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $|\widetilde{O}(1)|$ samples from YRequires $\widetilde{O}(1)$ calls Want to find $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 $\hookrightarrow egin{array}{l} \mathsf{Let} \ a_1 \ \mathsf{be} \ \mathsf{the} \ \mathsf{median} \ & \mathbb{P}[Y \geq a_1] pprox rac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y Requires $\widetilde{O}(1)$ calls

Want to find $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 $\hookrightarrow egin{array}{l} \mathsf{Let} \ \mathsf{a}_1 \ \mathsf{be} \ \mathsf{the} \ \mathsf{median} \ & \mathbb{P}[Y \geq \mathsf{a}_1] pprox rac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y Requires $\widetilde{O}(1)$ calls

Want to find $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 \hookrightarrow Let a_1 be the median $\mathbb{P}[Y \geq a_1] pprox rac{1}{2}$

We let $Y = \|X - \overline{\mu}\|_2$. Want to find $\mathbb{P}[Y \geq a_\ell] \approx \frac{1}{2^\ell}$ 1. $\left|\begin{array}{ccc} \widetilde{O}(1) \text{ samples from } Y \\ \text{Requires } \widetilde{O}(1) \text{ calls} \end{array}\right| \hookrightarrow \left|\begin{array}{ccc} \text{Let } a_1 \text{ be the median} \\ \mathbb{P}[Y \geq a_1] \approx \frac{1}{2} \end{array}\right|$ \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots Let a_ℓ be the median \vdots Requires $\widetilde{O}(\sqrt{2^{\ell-1}})$ calls \hookrightarrow $\mathbb{P}[Y \geq a_\ell] \approx \frac{1}{2^\ell}$

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

• Amplitude amplification on the ring: Requires $C_1 = \widetilde{O}(\sqrt{2^{\ell}})$ calls.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

• Amplitude amplification on the ring: Requires $C_1 = \widetilde{O}(\sqrt{2^{\ell}})$ calls.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

• Amplitude amplification on the ring: Requires $C_1 = \widetilde{O}(\sqrt{2^{\ell}})$ calls.

- Amplitude amplification on the ring: Requires $C_1 = \widetilde{O}(\sqrt{2^{\ell}})$ calls.
- ② Oracle conversion techniques [GSLW18]: $|\mathsf{u}\rangle \mapsto e^{i2^{\ell} \cdot \mathsf{u}^T \mathbb{E}[X^{(\ell)}]} |\mathsf{u}\rangle$ Requires $C_2 = \widetilde{O}(1)$ calls.

- Amplitude amplification on the ring: Requires $C_1 = \widetilde{O}(\sqrt{2^{\ell}})$ calls.
- ② Oracle conversion techniques [GSLW18]: $|\mathsf{u}\rangle \mapsto e^{i2^{\ell} \cdot \mathsf{u}^T \mathbb{E}[X^{(\ell)}]} |\mathsf{u}\rangle$ Requires $C_2 = \widetilde{O}(1)$ calls.

- Amplitude amplification on the ring: Requires $C_1 = \widetilde{O}(\sqrt{2^{\ell}})$ calls.
- ② Oracle conversion techniques [GSLW18]: $|\mathsf{u}\rangle \mapsto e^{i2^{\ell} \cdot \mathsf{u}^T \mathbb{E}[X^{(\ell)}]} |\mathsf{u}\rangle$ Requires $C_2 = \widetilde{O}(1)$ calls.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

- Amplitude amplification on the ring: Requires $C_1 = \widetilde{O}(\sqrt{2^{\ell}})$ calls.
- ② Oracle conversion techniques [GSLW18]: $|\mathsf{u}\rangle \mapsto e^{i2^{\ell} \cdot \mathsf{u}^T \mathbb{E}[X^{(\ell)}]} \, |\mathsf{u}\rangle$ Requires $C_2 = \widetilde{O}(1)$ calls.
- Gradient estimation [GAW18]: $\|\overline{\mu}^{(\ell)} \mathbb{E}[X^{(\ell)}]\|_{\infty} = \widetilde{O}(\sqrt{\text{Tr}[\Sigma]}/n).$ Requires $n/(C_1C_2)$ calls.
- Conversion to ℓ_2 (Hölder's inequality): $\left\|\overline{\mu}^{(\ell)} \mathbb{E}[X^{(\ell)}]\right\|_2 = \widetilde{O}(\sqrt{d\operatorname{Tr}[\Sigma]}/n).$

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d \operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Open questions:

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d \operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\|\log\frac{1}{\delta}}{n}}\right)$$

• Constant prefactors: [LV20;LV22].

Main result.

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}[\|\mu-\widetilde{\mu}\|_2\geq\varepsilon(n)]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d \operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Open questions:

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\|\log\frac{1}{\delta}}{n}}\right)$$

- Constant prefactors: [LV20;LV22].
- Optimality in different norms?

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Open questions:

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\| \log \frac{1}{\delta}}{n}}\right)$$

- Constant prefactors: [LV20;LV22].
- Optimality in different norms?
- Different access models?

$$\ket{\omega}\ket{0}\mapsto\ket{\omega}\ket{X(\omega)}. \ \ket{\omega}\ket{j}\mapsto e^{iX(\omega)_j}\ket{\omega}\ket{j}.$$

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d \operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Open questions:

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\| \log \frac{1}{\delta}}{n}}\right)$$

- Constant prefactors: [LV20;LV22].
- Optimality in different norms?
- Different access models?

$$|\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle. |\omega\rangle |j\rangle \mapsto e^{iX(\omega)_j} |\omega\rangle |j\rangle.$$

• Can prior knowledge on Σ help?

Open questions:

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\mathsf{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\|\log\frac{1}{\delta}}{n}}\right)$$

- Constant prefactors: [LV20;LV22].
- Optimality in different norms?
- Different access models?

$$\ket{\omega}\ket{0}\mapsto\ket{\omega}\ket{X(\omega)}. \ \ket{\omega}\ket{j}\mapsto e^{iX(\omega)_j}\ket{\omega}\ket{j}.$$

• Can prior knowledge on Σ help?

Thanks for your attention! arjan@cwi.nl

References

- [GAW18] András Gilyén, Srinivasan Arunachalam, Nathan Wiebe. Optimizing quantum optimization algorithms via faster quantum gradient computation. arXiv:1711.00465.
- [GLSW18] András Gilyén, Yuan Su, Guang Hao Low, Nathan Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. arXiv:1806.01838.
 - [HM19] Yassine Hamoudi, Frédéric Magniez. *Quantum Chebyshev's Inequality and Applications*. arXiv:1807.06456.
 - [Hop20] Samuel B. Hopkins. *Mean Estimation with Sub-Gaussian Rates in Polynomial Time*. arXiv:1809.07425.
 - [LM19] Gabor Lugosi, Shahar Mendelson. *Mean estimation and regression under heavy-tailed distributions a survey.* arXiv:1906.04280.
 - [LV20] Jasper C.H. Lee, Paul Valiant. *Optimal Sub-Gaussian Mean Estimation in* ℝ. arXiv:2011.08384.
 - [LV22] Jasper C.H. Lee, Paul Valiant. *Optimal Sub-Gaussian Mean Estimation in Very High Dimensions*.
 - [Mon15] Ashley Montanaro. Quantum speedup of Monte Carlo methods. arXiv:1504.06987