MATH 552 Homework 4*

Problem 20.3b Using results in Sec. 20, show that the coefficients in the polynomial P(z) in part (a) can be written

$$a_0 = P(0), \quad a_1 = \frac{P'(0)}{1!}, \quad a_2 = \frac{P''(0)}{2!}, \quad \cdots, \quad a_n = \frac{P^{(n)}(0)}{n!}.$$

Solution.

We claim that for any $m \in \mathbb{Z}_{\geq 0}$,

$$P^{(m)}(z) = \sum_{i=0}^{n-m} \frac{(m+i)!}{i!} a_{(m+i)} z^{i}.$$

First, let m = 0. Then,

$$P^{(0)}(z) = \sum_{i=0}^{n-0} \frac{(0+i)!}{i!} a_{(0+i)} z^i = \sum_{i=0}^{n} a_{(i)} z^i.$$

This is what we expect for P(z), so the claim holds for m = 0. Then, let $k \in \mathbb{Z}_{\geq 0}$ be given and suppose the claim is true for m = k.

$$P^{(k+1)}(z) = \frac{dP}{dz} [P^{(k)}(z)] \qquad \text{(using repeated differentiation)}$$

$$= \frac{dP}{dz} \left[\sum_{i=0}^{n-k} \frac{(k+i)!}{i!} a_{(k+i)} z^i \right] \qquad \text{(using the claim)}$$

$$= \frac{dP}{dz} \left[\sum_{i=1}^{n-k} \frac{(k+i)!}{i!} a_{(k+i)} z^i \right] \qquad \text{(} i = 0 \text{ will yield constant with derivative} = 0)$$

$$= \sum_{i=1}^{n-k} \frac{i(k+i)!}{i!} a_{(k+i)} z^{i-1} \qquad \text{(differentiating each term using power rule)}$$

$$= \sum_{i=1}^{n-k} \frac{(k+i)!}{(i-1)!} a_{(k+i)} z^{i-1} \qquad \text{(rewriting factorial)}$$

$$= \sum_{i=0}^{n-k-1} \frac{(k+i+1)!}{i!} a_{(k+i+1)} z^i \qquad \text{(shifting index)}$$

If the claim is valid for k + 1, then we can replace k by k + 1 on both sides:

$$P^{(k+1)}(z) = \sum_{i=0}^{n-k-1} \frac{(k+1+i)!}{i!} a_{(k+1+i)} z^{i}$$

This exactly matches the result from differentiating $P^{(k)}(z)$, so the claim must be valid for m = k + 1. By induction, then, the claim is true for all $m \in \mathbb{Z}_{>0}$.

Homework 4* MATH 552

Using this result, $P^{(m)}(0) = \frac{(m+0)!}{0!} a_{(m+0)}$, because the sum contains $(0)^i$ which is 0 for all i > 0. Thus, for $n \in \mathbb{Z}_{\geq 0}$:

$$P^{(n)}(0) = n!a_n$$

 $a_n = \frac{P^{(n)}(0)}{n!}.$

Problem 20.8b Use the method in Example 2, Sec. 19, to show that f'(z) does not exist at any point z when f(z) = Im z.

Solution.

If $f(z) = \operatorname{Im} z$, then

$$\frac{\Delta w}{\Delta z} = \frac{\operatorname{Im} z + \operatorname{Im} \Delta z - \operatorname{Im} z}{\Delta z} = \frac{\operatorname{Im} \Delta z}{\Delta z}$$

If the limit of $\Delta w/\Delta z$ exists, it can be found by letting the point $\Delta z = (\Delta x, \Delta y)$ approach the origin (0,0) in the Δz plane in any manner. In particular, as Δz approaches (0,0) horizontally through the points $(\Delta x,0)$ on the real axis,

$$\operatorname{Im} z = \operatorname{Im}(\Delta x + i0) = 0.$$

In that case,

$$\frac{\Delta w}{\Delta z} = \frac{0}{\Delta z} = 0.$$

Hence if the limit of $\Delta w/\Delta z$ exists, its value must be unity. However, when Δz approaches (0,0) vertically through the points (0, Δy) on the imaginary axis, so that

$$\operatorname{Im} z = \operatorname{Im}(0 + i\Delta y) = \Delta y = \frac{\Delta z}{i},$$

we find that

$$\frac{\Delta w}{\Delta z} = \frac{\Delta z}{i\Delta z} = -i.$$

Hence the limit must be -i if it exists. Since limits are unique, it follows that dw/dz does not exist anywhere.

Problem 24.1a Use the theorem in Sec. 21 to show that f'(z) does not exist at any point if $f(z) = \overline{z}$.

Solution. Let f(z) = u(x,y) + iv(x,y) and z = x + iy. Since $\overline{z} = x - iy$, u(x,y) = x and v(x,y) = -y.

$$u_x = 1, u_y = 0$$

$$v_x = 0, v_y = -1$$

Since $u_x = 1 \neq v_y = -1$, the Cauchy-Riemann equations are not satisfied and the derivative cannot exist.

Problem 24.2b Use the theorem in Sec. 23 to show that f'(z) and its derivative f''(z) exist everywhere, and find f''(z) when $f(z) = e^{-x}e^{-iy}$.

Solution.

$$\begin{split} f(z) &= e^{-x}e^{-iy} \\ f(z) &= e^{-x}(\cos -y + i\sin -y) \\ f(z) &= e^{-x}\cos y + e^{-x}(-i\sin y) \\ f(z) &= u(x,y) + v(x,y) \text{ where } u(x,y) = e^{-x}\cos y, v(x,y) = -e^{-x}(i\sin y) \end{split}$$
 (rearranging)

Homework 4* MATH 552

We can now check the Cauchy-Riemann equations:

$$u_x = -e^{-x}\cos y, u_y = -e^{-x}\sin y$$
$$v_x = e^{-x}\sin y, v_y = -e^{-x}\cos y$$

Since the Cauchy-Riemann equations hold, and u(x, y), v(x, y), and their partials are continuous everywhere, f'(z) exists everywhere and

$$f'(z) = u_x(x,y) + iv_x(x,y) = -e^{-x}\cos y + ie^{-x}\sin y.$$

To take the second derivative, let

$$f'(z) = s(x,y) + t(x,y)$$
 where $s(x,y) = -e^{-x}\cos y, t(x,y) = e^{-x}(i\sin y).$

We can now check the Cauchy-Riemann equations again:

$$s_x = e^{-x} \cos y, s_y = -e^{-x} \sin y$$
$$t_x = e^{-x} \sin y, t_y = e^{-x} \cos y$$

Since they hold again, and s(x, y), t(x, y), and their partials are continuous everywhere, f''(z) exists everywhere and

$$f''(z) = s_x(x, y) + it_x(x, y) = e^{-x} \cos y - ie^{-x} \sin y.$$

Problem 24.4b Use the theorem in Sec. 24 to show that $f(z) = e^{-\theta} \cos(\ln r) + ie^{-\theta} \sin(\ln r)$ is differentiable in the domain $(r > 0, 0 < \theta < 2\pi)$, and also to find f'(z).

Solution.

$$f(z) = u(r,\theta) + iv(r,\theta)$$
 where $u(r,\theta) = e^{-\theta}\cos(\ln r), v(r,\theta) = e^{-\theta}\sin(\ln r)$

We can now check the Cauchy-Riemann equations:

$$ru_r = r\left(-e^{-\theta}\sin(\ln r)\frac{1}{r}\right) = -e^{-\theta}\sin(\ln r)$$
$$u_\theta = -e^{-\theta}\cos(\ln r)$$
$$rv_r = r\left(e^{-\theta}\cos(\ln r)\frac{1}{r}\right) = e^{-\theta}\cos(\ln r)$$
$$v_\theta = -e^{-\theta}\sin(\ln r)$$

Since the Cauchy-Riemann equations hold, and u(x, y), v(x, y), and their partials are continuous throughout the domain, f'(z) exists throughout the domain and

$$f'(z) = e^{-i\theta} (u_r(r,\theta) + iv_r(r,\theta)) = \frac{e^{-i\theta}}{r} (-e^{-\theta} \sin(\ln r) + ie^{-\theta} \cos(\ln r)).$$