第四章 数学规划模型

实际问题中 的优化模型

x~决策变量

f(x)~目标函数

 $g_i(x) \leq 0$ ~约束条件

多元函数 条件极值 决策变量个数n和 约束条件个数m较大

最优解在可行域 的边界上取得

数学规划

线性规划 非线性规划 整数规划

重点在模型的建立和结果的分析

第	4.1 奶制品的生产与销售
PU	4.2 自来水输送与货机装运
章	4.3 汽车生产与原油采购
数	4.4 接力队选拔和选课策略
学	4.5 饮料厂的生产与检修
规	4.6 钢管和易拉罐下料
划	4.7 广告投入与升级调薪
模	4.8 投资的风险与收益
型	

4.1 奶制品的生产与销售

企业生产计划

空间层次

工厂级:根据外部需求和内部设备、人力、原料等条件,以最大利润为目标制订产品生产计划;

车间级:根据生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划.

时间层次

若短时间内外部需求和内部资源等不随时间变化,可制订单阶段生产计划,否则应制订多阶段生产计划.

本节课题

例1 加工奶制品的生产计划

每天: 50桶牛奶 时间480h

至多加工 $100kgA_1$

制订生产计划,使每天获利最大

- 35元可买到1桶牛奶,买吗?若买,每天最多买多少?
- 可聘用临时工人,付出的工资最多是每小时几元?
- ·A₁的获利增加到 30元/kg, 应否改变生产计划?

基本 模型

1桶 或 牛奶

12h

8h

3kgA₁

→ 获利24元/kg

4kgA₂

→ 获利16元/kg

50桶牛奶 时间480h

至多加工 $100 kgA_1$

决策变量

 x_1 桶牛奶生产 A_1

x,桶牛奶生产A,

目标函数

获利 24×3x₁

获利 16×4 x,

每天获利 $\max z = 72x_1 + 64x_2$

约束条件

原料供应 劳动时间 加工能力 非负约束

$$x_1 + x_2 \le 50$$

$$12x_1 + 8x_2 \le 480$$

$$3x_1 \le 100$$

$$x_1, x_2 \ge 0$$

线性 规划 模型 (LP)

比 例 性

模型分析与假设

线性规划模型

 x_i 对目标函数的"贡 献"与 x_i 取值成正比

 A_1,A_2 ,每千克的获利是与各自 产量无关的常数

 x_i 对约束条件的"贡 献"与 x_i 取值成正比

每桶牛奶加工A₁,A₂的数量,时 间是与各自产量无关的常数

可 加 性 x_i 对目标函数的"贡 献"与 x_i 取值无关

A₁,A₂每千克的获利是与相互 产量无关的常数

x,对约束条件的"贡 献"与 x_i 取值无关

每桶牛奶加工A₁,A₂的数量,时 间是与相互产量无关的常数

加工A₁,A₂的牛奶桶数是实数

x,取值连续

模型求解

图解法

约束多

$$x_1 + x_2 \le 50$$

$$| l_1 : x_1 + x_2 = 50$$

$$12x_1 + 8x_2 \le 480$$

$$l_2:12x_1+8x_2=480$$

$$3x_1 \le 100$$

$$l_3:3x_1=100$$

$$x_1, x_2 \ge 0$$

$$| l_4 : x_1 = 0, l_5 : x_2 = 0 |$$

目标 函数

max
$$z = 72x_1 + 64x_2$$

在B(20,30)点得到最优解.

目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形 目标函数的等值线为直线

最优解一定在凸多边 形的某个顶点取得.

3360.000

模型求解

软件实现

LINGO

```
model:

max = 72*x1+64*x2;

[milk] x1 + x2<50;

[time]

12*x1+8*x2<480;

[cpct] 3*x1<100;
```

end

Global optimal solution found.
Objective value:

Total solver iterations: 2

 Variable
 Value
 Reduced Cost

 X1
 20.00000
 0.000000

 X2
 30.00000
 0.000000

Row Slack or Surplus Dual Price

 1
 3360.000
 1.000000

 MILK
 0.000000
 48.00000

 TIME
 0.000000
 2.000000

 CPCT
 40.00000
 0.000000

20桶牛奶生产 A_1 , 30桶生产 A_2 ,利润3360元.

3360.000

结果解释

model:

max = 72*x1+64*x2;

[milk] x1 + x2 < 50;

[time]

12*x1+8*x2<480;

[cpct] 3*x1<100;

end

种

源

Global optimal solution found.

Objective value:

Total solver iterations:

Variable Value Reduced Cost

X1 20.00000 0.000000

X2 30.00000 0.000000

Row Slack or Surplus Dual Price

1 3360.000 1.000000

MILK 0.000000 48.00000

TIME 0.000000 2.000000

CPCT 40.00000 0.000000

原料无剩余←

时间无剩余 ←

加工能力剩余40 ←

"资源"剩余为零的约束为紧约束(有效约束)

Global optimal solution found.

Objective value: 3360.000

Total solver iterations: 2

Variable Value Reduced Cost

X1 20.00000 0.000000

X2 30.00000 0.000000

Row Slack or Surplus Dual Price → 影子价格

1 3360.000 1.000000

MILK 0.000000 48.00000→ 原料增加1单位, 利润增长48

TIME 0.000000 2.000000 → 时间增加1单位, 利润增长2

CPCT 40.00000 0.000000 → 加工能力增长不影响利润

• 35元可买到1桶牛奶, 要买吗?

35 < 48, 应该买!

• 聘用临时工人付出的工资最多每小时几元? 2元!

结果解释

最优解下"资源"增加 1单位"效益"的增量

敏感性分析 ("LINGO|Ranges")

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X1	72.00000	24.00000	8.000000
X2	64.00000	8.000000	16.00000
	Righth	and Side Ran	iges
Row	Current	Allowable	Allowable
	RHS	Increase	Decrease
MILK	50.00000	10.00000	6.666667
TIME	480.0000	53.33333	80.00000
CPCT	100.0000	INFINITY	40.00000

最优解不变时目标函 数系数允许变化范围

(约束条件不变)

x₁系数范围(64,96)

x,系数范围(48,72)

x1系数由24×3=72 增加为30×3=90, 在允许范围内

• A₁获利增加到 30元/kg, 应否改变生产计划?

不变!

结果解释 影子价格有意义时约束右端的允许变化范围

Ranges in whi	ich the basis is	unchanged:
	Objective Coe	efficient Ranges

Current Allowable Allowable
Variable Coefficient Increase
X1 72.00000 24.00000 8.000000
X2 64.00000 8.000000 16.00000

Righthand Side Ranges

Current Allowable Allowable Row RHS Increase Decrease 50.00000 10.00000 6.666667 **MILK** 480.0000 80.00000 TIME 53.33333 100.0000 **CPCT** 40.00000 INFINITY

目标函数不变

原料最多增加10

时间最多增加53

充分条件!

• 35元可买到1桶牛奶,每天最多买多少?

最多买10桶!

例2 奶制品的生产销售计划 在例1基础上深加工

至多 $100 kgA_1$

制订生产计划,使每天净利润最大

- · 30元可增加1桶牛奶, 3元可增加1h时间, 应否投资? 现投资150元, 可赚回多少?
- · B₁, B₂的获利经常有10%的波动,对计划有无影响?
- ·每天销售10kgA₁的合同必须满足,对利润有什么影响?

决策 变量

目标函数

约束 条件

出售 $x_1 \operatorname{kg} A_1, x_2 \operatorname{kg} A_2$, $x_3 \operatorname{kg} B_1, x_4 \operatorname{kg} B_2$

 $x_5 kg A_1$ 加工B₁, $x_6 kg A_2$ 加工B₂

利润
$$\max z = 24x_1 + 16x_2 + 44x_3 + 32x_4 - 3x_5 - 3x_6$$

原料 供应
$$\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

劳动
$$4(x_1 + x_5) + 2(x_2 + x_6)$$
 时间 $+2x_5 + 2x_6 \le 480$

加工能力 $x_1 + x_5 \le 100$

附加约束 $x_3 = 0.8x_5$

 $x_4 = 0.75x_6$

非负约束 $x_1, \dots, x_6 \ge 0$

模型求解

软件实现

LINGO

$$2)\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

2)
$$4x_1 + 3x_2 + 4x_5 + 3x_6 \le 600$$

3)
$$4(x_1 + x_5) + 2(x_2 + x_6)$$

+ $2x_5 + 2x_6 \le 480$

3)
$$4x_1 + 2x_2 + 6x_5 + 4x_6 \le 480$$

Global optimal solution found.

Objective value: 3460.800

Total solver iterations: 2

Variable	e Value	Reduced Cost
X1	0.000000	1.680000
X2	168.0000	0.000000
X 3	19.20000	0.000000
X4	0.000000	0.000000
X5	24.00000	0.000000
X 6	0.000000	1.520000
Row	Slack or Surplus	Dual Price
1	3460.800	1.000000
MILK	0.000000	3.160000
TIME	0.000000	3.260000
CPCT	76.00000	0.000000
5	0.000000	44.00000
6	0.000000	32.00000
TIME CPCT	0.000000 76.00000 0.000000	3.260000 0.000000 44.00000

Global optimal solution found.

Variable

Objective value: 3460.800

Value

Reduced Cost

Total solver iterations: 2

v al labi	ic value	reduced Cost
X	1 0.000000	1.680000
\mathbf{X}^{\prime}	2 168.0000	0.000000
\mathbf{X}_{i}	3 19.20000	0.000000
X	4 0.000000	0.000000
\mathbf{X}	5 24.00000	0.000000
X	6 0.000000	1.520000
Row	Slack or Surplus	Dual Price
1	3460.800	1.000000
MILK	0.000000	3.160000
TIME	0.000000	3.260000
CPCT	76.00000	0.000000
5	0.000000	44.00000
6	0.000000	32.00000

结果解释

每天销售168 kgA₂ 和19.2 kgB₁, 利润3460.8 (元)

8桶牛奶加工成 A_1 ,42桶牛奶加工成 A_2 ,将得到的24kg A_1 全部加工成 B_1

除加工能力外均为 紧约束 30元可增加1桶牛奶,3元可增加1h时间,应否投资?现投资150元,可赚回多少?

Global optimal solution found.

Objective value: 3460.800

Total solver iterations: 2

lotal Sol	ver recruencing.	—
Variable	Value	Reduced Cost
X 1	0.000000	1.680000
X2	168.0000	0.000000
X3	19.20000	0.000000
X4	0.000000	0.000000
X5	24.00000	0.000000
X6	0.000000	1.520000
Row	Slack or Surplus	Dual Price
1	3460.800	1.000000
MILK	0.000000	3.160000
TIME	0.000000	3.260000
CPCT	76.00000	0.000000
5	0.000000	44.00000
6	0.000000	32.00000

结果解释

$$2)\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

2) $4x_1 + 3x_2 + 4x_5 + 3x_6 \le 600$

增加1桶牛奶使利润 增长3.16×12=37.92

增加1h时间使利润 增长3.26

投资150元增加5桶牛奶,可赚回189.6元(大于增加时间的利润增长).

结果解释

B₁,B₂的获利有10%的波动,对计划有无影响

敏感性分析

B₁获利下降10%,超 出X3 系数允许范围

B₂获利上升10%,超 出X4 系数允许范围

波动对计划有影响

Ranges in which the basis is unchanged:			
	Objective	Coefficien	O
.	Current		Allowable
Variable	Coefficient	Increase	Decrease
X1	24.00000	1.68000	INFINITY
X2	16.00000	8.15000	2.10000
X3	44.00000	19.75000	3.166667
X4	32.00000	2.026667	INFINITY
X 5	-3.00000	15.80000	2.533333
X6	-3.00000	1.52000	INFINITY

生产计划应重新制订:如将 x_3 的系数改为39.6计算,会发现结果有很大变化.

每天销售10kgA₁的合同必须满足, 对利润有什么影响?

Global optimal solution found.

Objective value: 3460.800

Total solver iterations: 2

otai soiv	ci itti ations.	4
Variable	Value	Reduced Cost
X1	0.000000	1.680000
X2	168.0000	0.000000
X3	19.20000	0.000000
X4	0.000000	0.000000
X5	24.00000	0.000000
X6	0.000000	1.520000
Row	Slack or Surplus	Dual Price
1	3460.800	1.000000
MILK	0.000000	3.160000
TIME	0.000000	3.260000
CPCT	76.00000	0.000000
5	0.000000	44.00000
6	0.000000	32.00000

结果解释

x₁从0开始增加一个单位时,最优目标函数值将减少1.68

公司利润减少

1.68×10=16.8 (元)

最优利润为

3460.8 - 16.8 = 3444

Reduced Cost是有意义、 有条件的(LINGO没有 给出)

小结与评注

- •由于产品利润、加工时间等均为常数,可建立线性规划模型.
- 线性规划模型的三要素:决策变量、目标函数、约束条件.
- · 建模时尽可能利用原始的数据信息,把尽量 多的计算留给计算机去做(分析例2的建模).
- •用LINGO求解,输出丰富,利用影子价格和灵敏性分析可对结果做进一步研究.

4.2 自来水输送与货机装运

运输问题

生产、生活物资从若干供应点运送到一些需求点, 怎样安排输送方案使运费最小, 或利润最大?

各种类型的货物装箱,由于受体积、重量等限制,如何搭配装载,使获利最高,或装箱数量最少?

例1 自来水输送

收入: 900元/10³t

支出 引水管理费

其他费用:450元/10³t

元/ 10³t	甲	乙	丙	丁
A	160	130	220	170
В	140	130	190	150
C	190	200	230	/

- 应如何分配水库供水量,公司才能获利最多?
- 若水库供水量都提高一倍,公司利润可增加到多少?

问题 分析

总供水量: 160 <总需求量: 120+180=300

总收入900×160=144000(元) 收入: 900元/10³t

支出 引水管理费

其他支出450×160=72000(元) 其他费用:450元/10³t

确定送水方案使利润最大

(二) 使引水管理费最小

模型建立

确定3个水库向4个小区的供水量

决策变量

水库i 向j 区的日供水量为 x_{ij} $(x_{34}=0)$

目标 函数

min
$$Z = 160x_{11} + 130x_{12} + 220x_{13} + 170x_{14}$$

$$+140x_{21} + 130x_{22} + 190x_{23} + 150x_{24} + 190x_{31} + 200x_{32} + 230x_{33}$$

供应 限制

$$x_{11} + x_{12} + x_{13} + x_{14} = 50$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 60$$

$$x_{31} + x_{32} + x_{33} = 50$$

$$30 \le x_{11} + x_{21} + x_{31} \le 80$$

$$70 \le x_{12} + x_{22} + x_{32} \le 140$$

$$10 \le x_{13} + x_{23} + x_{33} \le 30$$

$$10 \le x_{14} + x_{24} \le 50$$

线性 规划 模型 (LP)

模型求解

引水管理费 24400(元)

利润=总收入-其他费用 - 引水管理费 =144000-72000-24400 =47600(元)

部分结果:

Objective Value:		24400.00
Variable	Value	Reduced Cost
X11	0.000000	30.000000
X12	50.000000	0.000000
X13	0.000000	50.000000
X14	0.000000	20.000000
X21	0.000000	10.000000
X22	50.000000	0.000000
X23	0.000000	20.000000
X24	10.000000	0.000000
X31	40.000000	0.000000
X32	0.000000	10.000000
X33	10.000000	0.000000

问题讨论 每个水库最大供水量都提高一倍

总供水量(320) > 总需求量(300) 确定送水方案使利润最大

利润 = 收入(900) - 其他费用(450) - 引水管理费

利润(元/10³t)	甲	乙	丙	丁
A	290	320	230	280
В	310	320	260	300
C	260	250	220	1

目标函数

$$\max \quad Z = 290x_{11} + 320x_{12} + 230x_{13} + 280x_{14}$$

$$+310x_{21} + 320x_{22} + 260x_{23} + 300x_{24} + 260x_{31} + 250x_{32} + 220x_{33}$$

供应限制

A:
$$x_{11} + x_{12} + x_{13} + x_{14} = 50 \; \square \; x_{11} + x_{12} + x_{13} + x_{14} \le 100$$

B, C 类似处理

需求约束可以不变

模型求解

总利润 88700 (元)

运输问题

供应点 ───── 需求点

供需平衡或不平衡

部分结果:

Objective	Value:	88700.00
Variable	Value	Reduced Cost
X11	0.000000	20.000000
X12	100.000000	0.000000
X13	0.000000	40.000000
X14	0.000000	20.000000
X21	30.000000	0.000000
X22	40.000000	0.000000
X23	0.000000	10.000000
X24	50.000000	0.000000
X31	50.000000	0.000000
X32	0.000000	20.000000
X33	30.000000	0.000000

例2 货机装运

三个货舱最大载重(t),最大容积(m³)

前仓:

10; 6800

中仓:

16; **8700**

后仓:

8; 5300

飞机平衡

三个货舱中实际载重必须与其最大载重成比例.

	重量	空间	利润
	(t)	(m^3/t)	(元/t)
货物1	18	480	3100
货物2	15	650	3800
货物3	23	580	3500
货物4	12	390	2850

如何装运, 使本次飞行 获利最大?

模型 假设

• 每种货物可以分割到任意小;

- 每种货物可以在一个或多个货舱中任意分布;
- 多种货物可以混装,并保证不留空隙;
- 所给出的数据都是精确的,没有误差.

已知参数

第i种货物的重量 w_i ,体积 v_i ,利润 p_i (i=1,2,3,4)

货舱j的重量限制 WET_j ,体积限制 VOL_j , (j=1,2,3)分别代表前、中、后仓)

模型建立

决策 变量

 x_{ii} 一第i种货物装入第j个货舱的重量 i=1,2,3,4, j=1,2,3

目标 函数 (利润)

$$\max \quad Z = \sum_{i=1}^{4} p_i \left(\sum_{j=1}^{3} x_{ij} \right)$$

约束 条件

货舱重量
$$\sum_{i=1}^{4} x_{ij} \leq WET_{j}$$

货舱容积
$$\sum_{i=1}^{4} v_i x_{ij} \leq VOL_j$$

10; **6800**

16:

8700

8; **5300**

模型建立

 x_{ii} 一第i 种货物装入第j 个货舱的重量

平衡要求

10; 6800

16; **8700**

8; **5300**

约束 条件

$$\sum_{i=1}^{4} x_{ij} / WET_{j} = \sum_{i=1}^{4} x_{ik} / WET_{k}$$

 $j,k=1,2,3; j\neq k$

货物供应
$$\sum_{i=1}^{3} x_{ij} \leq w_{i}$$

模型求解

Global optimal solution found.

Objective value: 121515.8

Total solver iterations: 12

	ici ations.	12
Variable	Value	Reduced Cost
X(1,1)	0.000000	400.0000
X(1,2)	0.000000	57.89474
X(1,3)	0.000000	400.0000
X(2,1)	7.000000	0.000000
X(2,2)	0.000000	239.4737
X(2,3)	8.000000	0.000000
X(3,1)	3.000000	0.000000
X(3,2)	12.94737	0.000000
X(3,3)	0.000000	0.000000
X(4,1)	0.000000	650.0000
X(4,2)	3.052632	0.000000
X(4,3)	0.000000	650.0000
• • •		

货物2: 前仓7,后仓8;

货物3:前仓3,中仓13;

货物4: 中仓3.

最大利润约121516元

货物~供应点 运输 货舱~需求点 问题

装载平衡要求

4.3 汽车生产与原油采购

例1 汽车厂生产计划

汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量.

	小型	中型	大型	现有量
钢材 (t)	1.5	3	5	600
劳动时间(h)	280	250	400	60000
利润 (万元)	2	3	4	

- 制订月生产计划,使工厂的利润最大.
- 如果生产某一类型汽车,则至少要生产80辆,那么最优的生产计划应作何改变?

模型建立

	小型	中型	大型	现有量
钢材	1.5	3	5	600
时间	280	250	400	60000
利润	2	3	4	

设每月生产小、中、大型汽车的数量分别为x1,x2,x3

$$\max \ z = 2x_1 + 3x_2 + 4x_3$$

s. t.
$$1.5x_1 + 3x_2 + 5x_3 \le 600$$

$$280x_1 + 250x_2 + 400x_3 \le 60000$$

$$x_1, x_2, x_3 \ge 0$$

线性规划 模型(LP)

模型 求解

结果为小数, 怎么办?

Objectiv	e Value:	632.2581	
Varial	ole Value	Reduced Cost	
X1	64.516129	0.000000	
X2	167.741928	0.000000	
X3	0.000000	0.946237	
Row	Slack or Surplus	Dual Price	
2	0.000000	0.731183	
3	0.000000	0.003226	

- 1) 舍去小数: 取 x_1 =64, x_2 =167,算出目标函数值 z=629,与LP最优值632.2581相差不大.
- 2) 试探:如取 x_1 =65, x_2 =167; x_1 =64, x_2 =168等,计算函数值z,通过比较可能得到更优的解.
 - 但必须检验它们是否满足约束条件. 为什么?
- 3) 模型中增加条件: x_1, x_2, x_3 均为整数,重新求解.

模型求解 整数规划(Integer Programming, 简记IP)

t.VVVVVV

max $z = 2x_1 + 3x_2 + 4x_3$ s. t. $1.5x_1 + 3x_2 + 5x_3 \le 600$ $280x_1 + 250x_2 + 400x_3 \le 60000$ x_1, x_2, x_3 为非负整数

IP可用LINGO直接求解

max=2*x1+3*x2+4*x3;1.5*x1+3*x2+5*x3<600; 280*x1+250*x2+400*x3 <60000;

@gin(x1); @gin(x2); @gin(x3);

Global optimal solution found.

Objective va	632.0000	
Extended so	0	
Total solver	3	
Variable	Value	Reduced Cost
X1	64.00000	-2.000000
X2	168.0000	-3.000000
V3	0.00000	_1 00000

IP 结果输出

IP 的最优解 $x_1 = 64$ $x_2=168$, $x_3=0$, 最优值z=632

• 若生产某类汽车,则至少生产80辆,求生产计划.

max
$$z = 2x_1 + 3x_2 + 4x_3$$

s. t. $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$
 $x_1, x_2, x_3 = 0$ 或 ≥80

其中3个子模型应去掉,然后逐一求解,比较目标函数值, 再加上整数约束,得最优解:

$$x_1 = 0, x_2 = 0, x_3 \ge 80$$

$$x_1 = 0, x_2 \ge 80, x_3 = 0$$

$$x_1 = 0, x_2 \ge 80, x_3 \ge 80$$

$$x_1 \ge 80, x_2 = 0, x_3 = 0$$

$$x_1 \ge 80, x_2 \ge 80, x_3 = 0$$

$$x_1 \ge 80, x_2 = 0, x_3 \ge 80$$

$$x_1 \ge 80, x_2 \ge 80, x_3 \ge 80$$

$$x_1, x_2, x_3 = 0$$

 $x_1=80$, $x_2=150$, $x_3=0$,最优值z=610

• 若生产某类汽车,则至少生产80辆,求生产计划.

方法2: 引入0-1变量, 化为整数规划

$$x_1 = 0$$
 或 ≥ 80 口 $x_1 \leq My_1, x_1 \geq 80y_1, y_1 \in \{0,1\}$ **M为大的正数**, $x_2 = 0$ 或 ≥ 80 口 $x_2 \leq My_2, x_2 \geq 80y_2, y_2 \in \{0,1\}$ 本例可取1000

$$x_3 = 0 \implies \ge 80 \quad \forall x_3 \le My_3, x_3 \ge 80y_3, y_3 \in \{0,1\}$$

LINGO中对0-1

变量的限定:

abin(y1);

abin(y2);

abin(y3);

Objective Value:		610.0000
Variab]	le Value	Reduced Cost
X1	80.000000	-2.000000
X2	150.000000	-3.000000
X3	0.000000	-4.000000
Y1	1.000000	0.000000
Y2	1.000000	0.000000
Y3	0.000000	0.000000

最优解同前

• 若生产某类汽车,则至少生产80辆,求生产计划.

方法3: 化为非线性规划

 x_3 =0 或 ≥80

最优解同前.

$$x_1 = 0$$
 或 ≥ 80 口 $x_1(x_1 - 80) \geq 0$ $x_2 = 0$ 或 ≥ 80 口 $x_2(x_2 - 80) \geq 0$

$$x_3(x_3 - 80) \ge 0$$

非线性规划 (Non-Linear Programming, 简记NLP)

```
max=2*x1+3*x2+4*x3;

1.5*x1+3*x2+5*x3<600;

280*x1+250*x2+400*x3<60000;

x1*(x1-80)>0;

x2*(x2-80)>0;

x3*(x3-80)>0;

@gin(x1);@gin(x2);@gin(x3);
```

一般地,整数规划和非 线性规划的求解比线性 规划困难得多,特别是 问题规模较大或者要求 得到全局最优解时.

小结与评注

- 决策变量为整数, 建立整数规划模型.
- 求解整数规划和非线性规划比线性规划困难得多(即便用数学软件).
- · 当整数变量取值很大时,可作为连续变量 处理,问题简化为线性规划.
- •对于类似于 "x=0 或 ≥ 80 "这样的条件,通常引入0-1变量处理,尽量不用非线性规划(特别是引入的整数变量个数较少时).

例2 原油采购与加工

市场上可买到不超过1500t的原油A:

- · 购买量不超过500t时的单价为10000元/t;
- 购买量超过500t但不超过1000t时,超过500t的 部分8000元/t;
- · 购买量超过1000t时,超过1000t的部分6000元/t.

应如何安排原油的采购和加工?

问题 分析

- · 利润: 销售汽油的收入-购买原油A的支出.
- · 难点: 原油A的购价与购买量的关系较复杂.

决策 变量

原油A的购买量,原油A,B生产汽油甲,乙的数量

目标函数

利润(干元)

 $c(x) \sim$ 购买原油A的支出

max
$$z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - c(x)$$

c(x)如何表述?

目标函数

- · x≤500,单价为10千元/t;
- ·500≤ x≤ 1000,超过500t的8千元/t;
- •1000≤ x≤ 1500,超过1000t的6千元/t.

$$c(x) = \begin{cases} 10x & (0 \le x \le 500) \\ 8x + 1000 & (500 \le x \le 1000) \\ 6x + 3000 & (1000 \le x \le 1500) \end{cases}$$

约束 条件

原油供应

$$x_{11} + x_{12} \le 500 + x$$
$$x_{21} + x_{22} \le 1000$$
$$x \le 1500$$

购买 $x \downarrow$

库存500t A

库存1000t

约束 条件

汽油含原油A 的比例限制

$$\frac{x_{11}}{x_{11} + x_{21}} \ge 0.5 \iff x_{11} \ge x_{21}$$

$$\Leftrightarrow 2x_{12} \ge 3x_{22}$$

- 目标函数中c(x)不是线性函数,是非线性规划;
- 对于用分段函数定义的c(x),一般的非线性规划 软件也难以输入和求解;
- 想办法将模型化简,用现成的软件求解.

模型求解

方法1

 x_1, x_2, x_3 ~以价格10, 8, 6(千元/t) 采购A的吨数

$$x = x_1 + x_2 + x_3$$
, $c(x) = 10x_1 + 8x_2 + 6x_3$

目标 函数

max
$$z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - (10x_1 + 8x_2 + 6x_3)$$

·500≤ *x*≤ 1000,超过500t的8千元/t

增加约束 🖵

只有当以10千元/t的价格购买 $x_1=500(t)$ 时,才能以

$$| | (x_1 - 500) x_2 | = 0$$

类似地有
$$(x_2 - 500)x_3 = 0$$

$$0 \le x_1, x_2, x_3 \le 500$$

非线性规划模型,可以用LINGO求解

方法1: LINGO求解

Local optimal solution found.

Objective value: 4800.000

Total solver iterations: 14

lotai soiver	iterations:	14
Variable	Value	Reduced Cost
X11	500.0000	0.000000
X21	500.0000	0.000000
X12	0.000000	0.2666667
X22	0.000000	0.000000
X1	0.000000	0.4000000
X2	0.000000	0.000000
X3	0.000000	0.000000
\mathbf{X}	0.000000	0.000000

用库存的500t原油A、500t原油B生产汽油甲,不购买新的原油A、利润为4800千元.

LINGO得到的是局部最优解,还能得到更好的解吗?

方法1: LINGO求解

计算全局最优解:

选LINGO|Options菜单;

在弹出的选项卡中选择 "General Solver";

然后找到选项"Use Global Solver"将其选中;

应用或保存; 重新求解。

Global optimal solution found.			
Object	ive value:	5000.000	
Extend	led solver step	s: 1	
Total s	olver iteration	43	
Variab	ole Value	Reduced Cost	
X11	0.000000	0.000000	
X21	0.000000	0.900000	
X12	1500.000	0.000000	
X22	1000.000	0.000000	
X1	500.0000	0.000000	
X2	500.0000	0.000000	
X3	0.000000	0.000000	
\mathbf{X}	1000.000	0.000000	

购买1000t原油A,与库存的500t原油A和1000t原油B一起,共生产2500t汽油乙,利润为5000千元.

还有其他建模和求解方法吗?

模型求解 方法2

 x_1, x_2, x_3 ~以价格10, 8, 6(千元/t) 采购A的吨数

引入0-1变量 y₁, y₂, y₃=1~以价格10, 8, 6(千元/t) 采购A

增加
$$500y_2 \le x_1 \le 500y_1$$
 $500y_3 \le x_2 \le 500y_2$ $y=0 \to x=0$ 约束 $x_3 \le 500y_3$ $y_1, y_2, y_3=0$ 或1 $x>0 \to y=1$

0-1线性规划模型, 可用LINGO求解. 购买1000t原油A,与库存的500t原油A和1000t原油B一起,生产汽油乙,利润为5000千元.

与方法1(全局最优解)的结果相同

方法3

直接处理处理分段线性函数c(x)

$$c(x) = \begin{cases} 10x & (0 \le x \le 500) \\ 8x + 1000 & (500 \le x \le 1000) \\ 6x + 3000 & (1000 \le x \le 1500) \end{cases}$$

$$b_1 \le x \le b_2$$
, $x = z_1 b_1 + z_2 b_2$, $z_1 + z_2 = 1$, $z_1, z_2 \ge 0$, $c(x) = z_1 c(b_1) + z_2 c(b_2)$.

$$b_2 \le x \le b_3$$
, $x = z_2 b_2 + z_3 b_3$, $z_2 + z_3 = 1$, $z_2, z_3 \ge 0$, $c(x) = z_2 c(b_2) + z_3 c(b_3)$.

$$b_3 \le x \le b_4$$
, $x = z_3 b_3 + z_4 b_4$,
 $z_3 + z_4 = 1$, $z_3, z_4 \ge 0$,
 $c(x) = z_3 c(b_3) + z_4 c(b_4)$.

$$b_k \le x \le b_{k+1}$$
, $x = z_k b_k + z_{k+1} b_{k+1}$
 $z_k + z_{k+1} = 1$, z_k , $z_{k+1} \ge 0$,
 $c(x) = z_k c(b_k) + z_{k+1} c(b_{k+1})$.

$$b_k \le x \le b_{k+1} \to y_k = 1$$
, 否则, $y_k = 0$

$$z_1 \le y_1, z_2 \le y_1 + y_2, z_3 \le y_2 + y_3, z_4 \le y_3$$

$$z_1 + z_2 + z_3 + z_4 = 1$$
, $z_k \ge 0 \ (k = 1, 2, 3, 4)$

$$y_1 + y_2 + y_3 = 1$$
, $y_1, y_2, y_3 = 0$ 或 1

$$x = z_1 b_1 + z_2 b_2 + z_3 b_3 + z_4 b_4$$

$$c(x) = z_1 c(b_1) + z_2 c(b_2) + z_3 c(b_3) + z_4 c(b_4)$$

IP模型,LINGO 求解,得到的结 果与方法2相同.

小结与评注

- 分段函数无法直接用非线性规划方法或软件求解.
- · 方法1: 增加约束化为非线性规划, 可以用LINGO 求解, 但可能得到的是局部最优解.
- · 方法2: 引入0-1变量, 化为线性规划模型, 可用 LINGO求解.
- 方法3: 直接处理分段线性函数,方法更具一般性.

4.4 接力队选拔和选课策略

分派问题

- ·若干项任务分给一些候选人来完成,每人的专长不同, 完成每项任务取得的效益或需要的资源不同,如何分派 任务使获得的总效益最大,或付出的总资源最少?
- 若干种策略供选择,不同的策略得到的收益或付出的成本不同,各个策略之间有相互制约关系,如何在满足一定条件下作出抉择,使得收益最大或成本最小?

例1 混合泳接力队的选拔

5名候选人4种泳姿的百米成绩

	甲	乙	丙	丁	戊
蝶泳	1'06"8	57"2	1'18"	1'10"	1'07"4
仰泳	1′15″6	1'06"	1'07"8	1'14"2	1'11"
蛙泳	1'27"	1'06"4	1'24"6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

如何选拔队员组成4×100m混合泳接力队?

讨论:丁的蛙泳成绩退步到 1'15"2; 戊的自由泳成绩进步到 57"5,组成接力队的方案是否应该调整?

穷举法: 组成接力队的方案共有5!=120种.

0-1规划模型 c_{ij} ~队员i第j种泳姿的百米成绩(s)

c_{ii}	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3	<i>i</i> =4	<i>i</i> =5
<i>j</i> =1	66.8	57.2	78	70	67.4
<i>j</i> =2	75.6	66	67.8	74.2	71
<i>j</i> =3	87	66.4	84.6	69.6	83.8
<i>j</i> =4	58.6	53	59.4	57.2	62.4

若选择队员i参加泳姿j的比赛,记 $x_{ij}=1$,否则记 $x_{ij}=0$

目标函数

min
$$Z = \sum_{j=1}^{4} \sum_{i=1}^{5} c_{ij} x_{ij}$$

约束条件

每人最多入选泳姿之一

$$\sum_{j=1}^{4} x_{ij} \le 1, \ i = 1, \dots, 5$$

每种泳姿有且只有1人

$$\sum_{i=1}^{5} x_{ij} = 1, \quad j = 1, \dots, 4$$

模型求解

LINGO求解

最优解: $x_{14} = x_{21} = x_{32} = x_{43} = 1$, 其他变量为0;

成绩为253.2(s)=4′13″2

	甲	乙	丙	丁	戊
蝶泳	1'06"8	57"2	1'18"	1'10"	1'07"4
仰泳	1′15″6	1'06"	1′07″8	1'14"2	1'11"
蛙泳	1'27"	1'06"4	1'24"6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

甲~自由泳、乙~蝶泳、丙~仰泳、丁~蛙泳.

讨论 原分配方案:

甲~自由泳、乙~蝶泳、丙~仰泳、丁~蛙泳.

丁蛙泳 c_{43} = 69.6 \rightarrow 75.2 (s),戊自由泳 c_{54} = 62.4 \rightarrow 57.5 (s),方案是否调整? 敏感性分析?

IP一般没有与LP相类似的理论,LINGO输出的敏感性分析结果通常是没有意义的.

 c_{43}, c_{54} 的新数据重新输入模型,用LINGO求解最优解: $x_{21} = x_{32} = x_{43} = x_{51} = 1$,成绩为 4'17"7

新方案: 乙~蝶泳、丙~仰泳、丁~蛙泳、戊~自由泳

混合泳接力队的选拔

指派(Assignment)问题:有若干项任务,每项任务必有且只能有一人承担,每人只能承担一项,不同人员承担不同任务的效益(或成本)不同,怎样分派各项任务使总效益最大(或总成本最小)?

- •人员数量与任务数量相等
- 人员数量大于任务数量(本例)
- •人员数量小于任务数量?

建立0-1规划模型是常用方法

例2 选课策略

课号	课名	学分	所属类别	先修课要求
1	微积分	5	数学	
2	线性代数	4	数学	
3	最优化方法	4	数学;运筹学	微积分;线性代数
4	数据结构	3	数学; 计算机	计算机编程
5	应用统计	4	数学;运筹学	微积分;线性代数
6	计算机模拟	3	计算机;运筹学	计算机编程
7	计算机编程	2	计算机	
8	预测理论	2	运筹学	应用统计
9	数学实验	3	运筹学; 计算机	微积分;线性代数

要求至少选两门数学课、三门运筹学课和两门计算机课为了选修课程门数最少,应学习哪些课程?

选修课程最少,且学分尽量多,应学习哪些课程?

0-1规划模型

课号	课名	所属类别
1	微积分	数学
2	线性代数	数学
3	最优化方法	数学;运筹学
4	数据结构	数学; 计算机
5	应用统计	数学;运筹学
6	计算机模拟	计算机;运筹学
7	计算机编程	计算机
8	预测理论	运筹学
9	数学实验	运筹学; 计算机

决策变量

 $x_i=1$ ~选修课号i 的课程 $(x_i=0$ ~不选)

目标函数

选修课程总数最少

$$\min \quad Z = \sum_{i=1}^{9} x_i$$

约束条件

最少2门数学课, 3门运筹学课, 2门计算机课.

$$x_1 + x_2 + x_3 + x_4 + x_5 \ge 2$$

$$x_3 + x_5 + x_6 + x_8 + x_9 \ge 3$$

$$x_4 + x_6 + x_7 + x_9 \ge 2$$

0-1规划模型

课号	课名	先修课要求
* 1	微积分	
* 2	线性代数	
* 3	最优化方法	微积分;线性代数
4	数据结构	计算机编程
5	应用统计	微积分;线性代数
* 6	计算机模拟	计算机编程
* 7	计算机编程	
8	预测理论	应用统计
* 9	数学实验	微积分; 线性代数

模型求解 (LINGO)

最优解: $x_1 = x_2 = x_3 = x_6 = x_7 = x_9$

=1, 其他为0; 6门课程, 总学分21.

约束条件

先修课程要求

$$x_3 = 1$$
必有 $x_1 = x_2 = 1$

$$x_3 \le x_1, x_3 \le x_2$$

$$2x_3 - x_1 - x_2 \le 0$$

$$x_4 \le x_7 \ \Box \ x_4 - x_7 \le 0$$

$$2x_5 - x_1 - x_2 \le 0$$

$$x_6 - x_7 \le 0$$

$$x_8 - x_5 \le 0$$

$$2x_9 - x_1 - x_2 \le 0$$

讨论: 选修课程最少, 学分尽量多, 应学习哪些课程?

课程最少

$$\min \quad Z = \sum_{i=1}^{9} x_i$$

学分最多

$$\max W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$
$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

两目标(多目标)规划

多目标优化的处理方法:

· 以课程最少为目标, 不管学分多少.

· 以学分最多为目标, 不管课程多少. $\min \{Z, -W\}$

化成单目标优化.

最优解如上,6门 课程,总学分21.

最优解显然是选修 所有9门课程.

多目标规划

在课程最少的前提下 以学分最多为目标.

增加约束	$\sum x_i = 6,$
以学分最多	为目标求解.

课号	课名	学分
* 1 *	微积分	5
* 2 *	线性代数	4
* 3 *	最优化方法	4
4	数据结构	3
5 *	应用统计	4
* 6	计算机模拟	3
* 7 *	计算机编程	2
8	预测理论	2
* 9 *	数学实验	3

最优解: $x_1 = x_2 = x_3 = x_5$ = $x_7 = x_9 = 1$, 其他为0; 总 学分由21增至22.

注意: 最优解不唯一!

可将 $x_9 = 1$ 易为 $x_6 = 1$

LINGO不能告诉优化 问题的解是否唯一.

多目标规划

• 对学分数和课程数加权形成一个目标,如三七开.

 $\Rightarrow \min Y = \lambda_1 Z - \lambda_2 W = 0.7Z - 0.3W$

课号	课名	学分
1 *	微积分	5
2 *	线性代数	4
3 *	最优化方法	4
4 *	数据结构	3
5 *	应用统计	4
6 *	计算机模拟	3
7 *	计算机编程	2
8	预测理论	2

数学实验

9 *

$$Z = \sum_{i=1}^{5} x_i$$

$$W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$
$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

最优解: $x_1 = x_2 = x_3 = x_4$ = $x_5 = x_6 = x_7 = x_9 = 1$, 其他为0; 总学分28.

多目标规划

讨论与思考

min
$$Y = \lambda_1 Z - \lambda_2 W$$
 $\lambda_1 + \lambda_2 = 1$, $0 \le \lambda_1, \lambda_2 \le 1$

$$Z = \sum_{i=1}^{9} x_i$$

$$W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$

$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

$$\lambda_1 < 2/3$$

最优解与 $\lambda_1=0$, $\lambda_2=1$ 的结果相同——学分最多.

$$\lambda_1 > 3/4$$

最优解与 $\lambda_1=1$, $\lambda_2=0$ 的结果相同——课程最少.

选课策略

用0-1变量表示策略选择是常用的方法

- "要选甲 (x_1) 必选乙 (x_2) " 可用 $x_1 \le x_2$ 描述.
- "要选甲 (x_1) 必不选乙 (x_2) " 怎样描述?
- "甲乙二人至多选一人" 怎样描述?
- "甲乙二人至少选一人" 怎样描述?

双(多)目标规划的处理方法

- 加权组合成一个新目标, 化为单目标规划.
- •一个目标作为约束,解另一个目标的规划.

4.5 饮料厂的生产与检修

• 企业生产计划

单阶段生产计划

外部需求和内部 资源随时间变化

多阶段生产计划

• 生产批量问题

考虑与产量无关的固定费用.

给优化模型求解带来新的困难.

例1 饮料厂的生产与检修计划

某种饮料4周的需求量、生产能力和成本

周次	需求量(千箱)	生产能力(千箱)	成本(千元/千箱)
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5
合计	100	135	

存贮费:每周每千箱饮料 0.2 (千元).

- 安排生产计划,满足每周的需求,使4周总费用最小.
- 4周内安排一次设备检修,占用当周15千箱生产能力, 能使检修后每周增产5千箱,检修应排在哪一周?

问题分析

|--|

周次	需求	能力	成本
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5
合计	100	135	

- ·除第4周外每周的生产 能力超过每周的需求;
- 生产成本逐周上升;
- •前几周应多生产一些.

模型假设

- 饮料厂在第1周开始时没有库存;
- 从费用最小考虑, 第4周末不能有库存;
- 周末有库存时需支出一周的存贮费;
- 每周末的库存量等于下周初的库存量.

模型建立

周次	需求	能力	成本
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5

决策变量

 $x_{1} \sim x_{4}$: 第1~4周的生产量

*y*₁~*y*₃: 第1~3周末库存量

存贮费:0.2(千元/周•千箱)

目标 函数

约束 条件

min
$$z = 5.0x_1 + 5.1x_2 + 5.4x_3 + 5.5x_4 + 0.2(y_1 + y_2 + y_3)$$

产量、库存与需求平衡

$$x_1 - y_1 = 15$$

$$x_2 + y_1 - y_2 = 25$$

$$x_3 + y_2 - y_3 = 35$$

$$x_4 + y_3 = 25$$

能力限制

$$x_1 \le 30, x_2 \le 40$$

$$x_3 \le 45, x_4 \le 20$$

非负限制

$$x_1, x_2, x_3, x_4, y_1, y_2, y_3 \ge 0$$

模型求解

LINGO求解

最优解: $x_1 \sim x_4$: 15, 40, 25, 20;

 $y_1 \sim y_3$: 0, 15, 5.

周次	需求	产量	库存	能力	成本
1	15	15	0	30	5.0
2	25	40	15	40	5.1
3	35	25	5	45	5.4
4	25	20	0	20	5.5

4周生产计划的总费用为528 (千元)

讨论

增加库存量(y₁~y₃)为决策变量使 模型清晰并便于检查.

检修计划

· 在4周内安排一次设备检修,占用当周15千箱生产能力, 能使检修后每周增产5千箱,检修应排在哪一周?

周次	需求	能力	成本
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5

检修安排在任一周均可

0-1变量 w_t : $w_t=1\sim$ 检修 安排在第t周(t=1,2,3,4)

约束条件

产量、库存 与需求平衡 条件不变 能力限制

$$x_1 \le 30$$
 $\Rightarrow x_1 + 15w_1 \le 30$

$$x_2 \le 40 \quad \Box \quad x_2 + 15w_2 \le 40 + 5w_1$$

$$x_3 \le 45 \quad \Box \quad x_3 + 15w_3 \le 45 + 5w_2 + 5w_1$$

$$x_4 \le 20 \quad \Box \quad x_4 + 15w_4 \le 20 + 5w_1 + 5w_2 + 5w_3$$

检修计划 0-1变量 $w_t=1$ ~ 检修安排在第t周

目标函数不变

LINGO求解

最优解: $w_1=1, w_2, w_3, w_4=0$;

 $x_1 \sim x_4$: 15, 45, 15, 25; $y_1 \sim y_3$: 0, 20, 0.

总费用由528降为527(千元)

讨论

- 引入0-1变量表示检修
- 检修所导致的生产能力提高的作用,需要更长的时间才能得到充分体现.

例2 饮料的生产批量问题

饮料厂使用同一条生产线轮流生产多种饮料. 若某周开工生产某种饮料,需支出生产准备费8千元. 某种饮料4周的需求量、生产能力和成本(与例1同)

周次	需求量(千箱)	生产能力(千箱)	成本(千元/千箱)
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5
合计	100	135	

存贮费:每周每千箱饮料 0.2 (千元) (与例1同).

• 安排生产计划,满足每周的需求,使4周总费用最小.

问题分析

与例1的主要差别:

需考虑与生产数量无关的费用——生产准备费

模型建立

 c_t ~时段t 生产费用(元/件); h_t ~时段t (末)存贮费(元/件) s_t ~时段t 生产准备费(元); d_t ~时段t 市场需求(件); M_t ~时段t 生产能力(件). 假设初始库存为0.

制订生产计划,满足需求并使T个时段的总费用最小.

决策 变量

 x_t ~时段t 生产量; y_t ~时段t (末) 存贮量;

 $w_t=1$ ~时段t开工生产($w_t=0$ ~不开工).

模型建立 c_t ~生产费, h_t ~存贮费, s_t ~准备费, d_t ~需求量, M_t ~生产能力, x_t ~生产量, y_t ~存贮量, w_t ~开工生产0-1变量.

目标函数

min
$$z = \sum_{t=1}^{I} (s_t w_t + c_t x_t + h_t y_t)$$

约束条件

s.t.
$$y_{t-1} + x_t - y_t = d_t$$
 ~满足需求

$$w_{t} = \begin{cases} 1, & x_{t} > 0 \\ 0, & x_{t} = 0 \end{cases} \quad x_{t} - M_{t} w_{t} \leq 0$$

$$x_{t} \leq M_{t}$$

$$y_{0} = y_{T} = 0, \quad x_{t}, y_{t} \geq 0$$

$$t = 1, 2, \dots, T$$

混合0-1规划模型

模型求解

将所给参数代入模型,用LINGO求解

最优解: $x_1 \sim x_4$: 15, 40, 45, 0; 总费用: 554.0(千元)

与例1的最优解: $x_1 \sim x_4$: 15, 45, 15, 25 的区别!

生产批量(lot-sizing)问题

- · 既含可变费用(生产成本、存贮费)又含固定费用 (生产准备费)的多阶段生产计划问题.
- 关键是引入0-1变量 w_t 表示时段t是否开工生产.

4.6 钢管和易拉罐下料

原料下料问题

生产中通过切割、剪裁、冲压等手段,将原材料加工成规定大小的成材.

优化问题:按照工艺要求,确定下料方案,使所用材料最省,或利润最大.

例1钢管下料

客户需求 📗

原料钢管:每根19m

50根4m

20根6m

15根8m

问题1. 如何下料最节省? 节省的标准是什么?

由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种.如何下料最节省?

钢管下料

切割模式

按照客户需要在一根原料钢管上安排切割的一种组合,如:

合理切割模式的余料应小于客户需要钢管的最小尺寸.

钢管下料问题1

合理切割模式

模式	4m钢管根数	6m钢管根数	8m钢管根数	余料(m)
1	4	0	0	3
2	3	1	0	1
3	2	0	1	3
4	1	2	0	3
5	1	1	1	1
6	0	3	0	1
7	0	0	2	3

为满足客户需要,按照哪些种合理模式切割,每种模式切割多少根原料钢管,最为节省?

节省的 两种标准

- 1. 原料钢管剩余总余量最小.
- 2. 所用原料钢管总根数最少.

决策变量 x_i ~按第i 种模式切割的原料钢管根数(i=1,...,7)

目标1(总余量) min
$$Z_1 = 3x_1 + x_2 + 3x_3 + 3x_4 + x_5 + x_6 + 3x_7$$

模式	4m 根数	6m 根数	8m 根数	余料
1	4	0	0	3m
2	3	1	0	1m
3	2	0	1	3m
4	1	2	0	3m
5	1	1	1	1m
6	0	3	0	1m
7	0	0	2	3m
需求	50	20	15	

约束 满足需求

$$4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$$

$$x_2 + 2x_4 + x_5 + 3x_6 \ge 20$$

$$x_3 + x_5 + 2x_7 \ge 15$$

整数约束: x_i 为整数

最优解: $x_2=12, x_5=15,$

其余为0:

最优值: 27.

按模式2切割12根,按模式5切割15根,共27根,余料27m.

钢管下料问题1

目标2(总根数) min $Z_2 = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

约束条 件不变

$$4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$$

 $x_2 + 2x_4 + x_5 + 3x_6 \ge 20$
 $x_3 + x_5 + 2x_7 \ge 15$
 x_i 为整数

最优解: $x_2=15$, $x_5=5$, $x_7=5$, 其余为0; 最优值: 25.

按模式2切割15根,按模式5切割5根,按模式7切割5根,共25根,余料35m.

与目标1的结果"共切割27根, 余料27m"相比.

目标2切割减少了2根, 但余料增加8m, 为什么?

钢管下料问题1 原料钢管:每根19m

目标1(总余量) ~ x_2 =12, x_5 =15, 共27根, 余27m 目标2(总根数) ~ x_2 =15, x_5 =5, x_7 =5, 共25根, 余35m

模式	4m 根数	6m 根数	8m 根数	余料 (m)
2	3	1	0	1
5	1	1	1	1
7	0	0	2	3

	4m 根数	6m 根数	8m 根数
需求	50	20	15
目标1	51	27	15
目标2	50	20	15

按照目标1比需求多生产1根4m、7根6m, 共46m, 正好等于2根原料(38m)再加8m.

若多生产的也视为余料,则总余量最小等价于总根数最少.

若余料没有用处,通常以总根数最少为目标.

钢管下料问题2

增加一种需求: 10根5m; 切割模式不超过3种.

现有4种需求: 50根4m, 10根5m, 20根6m, 15根8m, 用枚举法确定合理切割模式,过于复杂.

对大规模问题,用模型的约束条件界定合理模式.

决策变量

 x_i ~按第i 种模式切割的原料钢管根数(i=1,2,3).

 r_{1i} , r_{2i} , r_{3i} , r_{4i} ~第i 种切割模式下,每根原料钢管生产4m、5m、6m和8m长的钢管的数量.

钢管下料问题2

目标函数(总根数)

min $x_1 + x_2 + x_3$

约束 条件

满足需求

$$r_{11}x_1 + r_{12}x_2 + r_{13}x_3 \ge 50$$

$$r_{21}x_1 + r_{22}x_2 + r_{23}x_3 \ge 10$$

$$r_{31}x_1 + r_{32}x_2 + r_{33}x_3 \ge 20$$

$$r_{41}x_1 + r_{42}x_2 + r_{43}x_3 \ge 15$$

模式合理: 每根 余料不超过3m

$$16 \le 4r_{11} + 5r_{21} + 6r_{31} + 8r_{41} \le 19$$

$$16 \le 4r_{12} + 5r_{22} + 6r_{32} + 8r_{42} \le 19$$

$$16 \le 4r_{13} + 5r_{23} + 6r_{33} + 8r_{43} \le 19$$

整数约束: $x_i, r_{1i}, r_{2i}, r_{3i}, r_{4i}$ (i=1,2,3) 为整数

整数非线性规划模型

钢管下料问题2 增加约束,缩小可行域,便于求解.

需求: 50根4m, 10根

5m, 20根6m, 15根8m

原料钢管总根数下界:

每根原料钢管长19m

$$\left[\frac{4 \times 50 + 5 \times 10 + 6 \times 20 + 8 \times 15}{19} \right] = 26$$

特殊生产计划:对每根原料钢管

模式1: 切割成4根4m钢管,需13根;

模式2: 切割成1根5m和2根6m钢管,需10根;

模式3: 切割成2根8m钢管, 需8根.

原料钢管总根数上界: 13+10+8=31

$$26 \le x_1 + x_2 + x_3 \le 31$$
 模式排列顺序可任定 $x_1 \ge x_2 \ge x_3$

LINGO求解整数非线性规划模型

Local optimal solution found. **Objective value:** 28.00000 **Reduced Cost** Variable Value **X**(1) 10.00000 1.000000 10.00000 1.000000 X(2)8.000000 1.000000 X(3)R(1,1)0.0000003.000000 0.000000 R(1,2)2.000000 R(1,3)0.0000000.000000R(2,1) 0.0000000.000000R(2,2)1.000000 0.000000 R(2,3)0.000000 0.000000R(3,1)0.000000 1.000000 R(3,2)1.000000 0.0000000.000000 R(3,3)0.0000000.000000R(4,1)0.000000R(4,2)0.000000 0.000000 0.000000R(4,3)2.000000

也是全局最优解

模式1: 每根原料钢管切割成

3根4m和1根6m钢管, 共10根;

模式2: 每根原料钢管切割成

2根4m、1根5m和1根6m钢管,

共10根;

模式3: 每根原料钢管切割成

2根8m钢管,共8根.

原料钢管总根数为28根.

例2易拉罐下料

板材规格1: 正方形,边长 24cm,5万张.

板材规格2: 长方形, 32×28cm, 2万张.

模式2: 2s

模式3: 1s

罐身高10cm, 上盖、下底直 径均5cm.

模式4: 3s

每周工作40h,每只易拉罐利润0.10元,原料余料损失0.001元/cm²(不能装配的罐身、盖、底也是余料).

如何安排每周生产?

问题分析

计算各种模式下的余料损失

模式1: 正方形 边长24cm

上、下底直径d=5cm,罐身高h=10cm.

模式1 余料损失: 24²-10×πd²/4 - πdh=222.6 cm²

	罐身个数	底、盖 个数	余料损失 (cm²)	冲压时间 (s)
模式1	1	10	222.6	1.5
模式2	2	4	183.3	2
模式3	0	16	261.8	1
模式4	4	5	169.5	3

问题分析

目标: 易拉罐利润扣除原料余料损失后的净利润最大.

注意:不能装配的罐身、上下底也是余料.

约束:每周工作时间不超过40h;

原料数量:规格1(模式1~3)5万张,

规格2(模式4)2万张;

罐身和底、盖的配套组装.

模型建立

 x_i ~按照第i种模式的生产张数(i=1,2,3,4);

决策 变量

 $y_1 \sim -$ 周生产的易拉罐个数;

 $y_2 \sim$ 不配套的罐身个数;

 y_3 ~不配套的底、盖个数.

模型建立

 $y_1 \sim 易拉罐个数; y_2 \sim 不配套的罐身; y_3 \sim 不配套的底、盖.$

产量	余料	时间
x_1	222.6	1.5
x_2	183.3	2
x_3	261.8	1
x_4	169.5	3

每只易拉罐利润0.10元,

余料损失0.001元 / cm²

罐身面积πdh=157.1 cm²

底盖面积πd²/4=19.6 cm²

目标

$$\max \quad 0.1y_1 - 0.001(222.6x_1 + 183.3x_2)$$

$$+261.8x_3+169.5x_4+157.1y_2+19.6y_3$$

约束条件

时间约束

$$1.5x_1 + 2x_2 + x_3 + 3x_4 \le 144000 \quad \textbf{(40h)}$$

原料约束

$$x_1 + x_2 + x_3 \le 50000, \quad x_4 \le 20000$$

约束 条件

 $y_1 \sim 易拉罐个数; y_2 \sim 不配套的罐身; y_3 \sim 不配套的底、盖.$

产量	罐身	底、盖
x_1	1	10
x_2	2	4
x_3	0	16
x_4	4	5

配套约束

$$y_2 = x_1 + 2x_2 + 4x_4 - y_1$$

$$y_3 = 10x_1 + 4x_2 + 16x_3 + 5x_4 - 2y_1$$

$$y_1 = \min\{x_1 + 2x_2 + 4x_4, (10x_1 + 4x_2 + 16x_3 + 5x_4)/2\}$$

虽然x_i和y₁, y₂, y₃应是整数,但是因生产量很大,可以把它们看成实数,从而用线性规划模型处理.

模型求解

数据之间的数量级差别太大,可以进行预处理,缩小数据之间的差别,便于减少计算误差.

将所有决策变量扩大10000倍(x_i ~万张, y_i ~万件)

Obje	ective value:	0.4298337
Varia	able Value	Reduced Cost
Y 1	16.02500	0.000000
X1	0.000000	0.000050
X2	4.012500	0.000000
X3	0.3750000	0.000000
X4	2.000000	0.000000
Y2	0.000000	0.2233312
Y3	0.000000	0.0364844

模式2生产40125张, 模式3生产3750张, 模式4生产20000张, 共产易拉罐160250个 (罐身和底、盖无剩余), 净利润为4298元.

下料问题的建模

R

• 确定下料模式

• 构造优化模型

一维问题(如钢管下料)

规格不太多,可枚举下料模式,建立整数线性规划模型,否则要构造整数非线性规划模型,求解困难,可用缩小可行域的方法进行化简,但要保证最优解的存在.

二维问题(如易拉罐下料)

具体问题具体分析(比较复杂)

4.7 广告投入与升级调薪

例1 广告投入

问题 1万元广告费能够新吸引到的目标人数(万人)

	人群1	人群2	人群3	人群4	人群5	人群6	人群7	j
手机		10	4	50	5		2	
,网络		10	30	5	12			
电视	20					5	3	$\Rightarrow a_{ii}$
报纸	8					6	10	9
电台		6	5	10	11	4		
最小(要求)	25	40	60	120	40	11	15	\downarrow l_j
最大(可能)	60	70	120	140	80	25	55	$ \Rightarrow u_i $

5种媒体上分别花费多少广告费?

"少"广告费与"多"吸引人数的数量关系→ 多目标

模型

先在最低要求下,建立广告费最少的模型

决策变量

 $x_i \sim 投入第 i 种媒体的广告费(万元)$

目标函数

Min
$$z_1 = x_1 + x_2 + x_3 + x_4 + x_5$$

约束条件

 $y_i \sim 吸引到的 j$ 类目标人群的数量(万人)

$$y_j = \min(\sum_{i=1}^5 a_{ij} x_i, u_j), j = 1, 2, ..., 7$$

$$y_j \ge l_j, \qquad j = 1, 2, ..., 7$$

$$x_i \ge 0, i=1,2,...,5$$

单目标规划

模型

双目标:广告费最少、吸引人数最多

目标2

$$z_2 = y_1 + \dots + y_7$$

综合:

Min
$$z = (z_1, -z_2)$$

约束同前

多目标规划

求解

LINGO软件实现

约束法:不同广告费约束下,最大化吸引人数

如:
$$x_1 + x_2 + x_3 + x_4 + x_5 \le 6.5$$

LINGO - SUBMODEL: 子模型,实现不同的约束

广告费	总人数
(万元)	(万人)
6.50000	343.799
7.00000	373.057

13.5000 546.248

14.0000 550.000

例2 升级调薪

问题

升级调薪:不得越级

薪资等级IIIIII年薪/万元201510定编/人121515现编/人91215

依次考虑以下要求:

- 1) 年工资总额尽可能不超过600万元
- 2) 每级的人数尽可能不超过定编人数
- 3) II、III级的升级面尽可能达到20%
- 4) III级不足编制的人数可录用新员工

为该单位拟定一个满意的升级调薪方案

模型

 $x_1 \sim II级升I级人数$

决策变量

x,~III级升II级人数

 $x_3 \sim$ 新录用III级人数

薪资等级	I	II	III
年薪/万元	20	15	10
定编/人	12	15	15
现编/人	9	12	15

约束条件

要求1) 年工资总额尽可能不超过600万元

$$20(9+x_1)+15(12-x_1+x_2)+10(15-x_2+x_3)$$

$$510 + 5x_1 + 5x_2 + 10x_3 - d_1^+ + d_1^- = 600$$

正偏差 负偏差

$$d_1^+ \rightarrow \text{Min}$$

均非负,至少1个为0

模型 约束条件 类似

要求2) 定编

$$9+x_1-d_2^++d_2^-=12$$

$$12-x_1+x_2-d_3^++d_3^-=15$$

$$15 - x_2 + x_3 - d_4^+ + d_4^- = 15$$

薪资等级	Ι	II	III
年薪/万元	20	15	10
定编/人	12	15	15
现编/人	9	12	15

要求3)升级面

$$x_1 - d_5^+ + d_5^- = 12 \times 0.2$$

$$x_2 - d_6^+ + d_6^- = 15 \times 0.2$$

优先级 $P_1 >> P_2 >> P_3 >> P_4 > 0$

要求4)新人: x_3 尽量大

min z =
$$P_1 d_1^+ + P_2 (d_2^+ + d_3^+ + d_4^+) + P_3 (d_5^- + d_6^-) - P_4 x_3$$

$$x_i \geq 0$$
为整数; d_i^+ , $d_i^- \geq 0$

目标规划

求解

LINGO软件实现

最优解:

 x_1 =3, x_2 =5, x_3 =5 即从II级提升3人至I级, 从III级提升5人至II级, 新录用III级人员为5名

目标规划,逐级求解

$$d_1^+=0$$
 薪金不超过600万元

$$d_2^+ + d_3^+ + d_4^+ = 0$$
 不超编

$$d_5^- + d_6^- = 0$$
 升级面 $\geq 20\%$

4.8 投资的风险与收益

例1 投资组合 问题

3种股票历年增值信息如表

假设你在1955年投资这3种 股票,希望年收益率至少达 到15%,应如何投资?

- · 若还可投资年收益率5%的 国库券,应如何调整计划?
- 若只希望年收益率至少达 到10%,应如何调整计划?

股票A	股票B	股票C
1.300	1.225	1.149
1.103	1.290	1.260
1.216	1.216	1.419
0.954	0.728	0.922
0.929	1.144	1.169
1.056	1.107	0.965
1.038	1.321	1.133
1.089	1.305	1.732
1.090	1.195	1.021
1.083	1.390	1.131
1.035	0.928	1.006
1.176	1.715	1.908
	1.300 1.103 1.216 0.954 0.929 1.056 1.038 1.089 1.090 1.083 1.035	1.3001.2251.1031.2901.2161.2160.9540.7280.9291.1441.0561.1071.0381.3211.0891.3051.0901.1951.0831.3901.0350.928

模型

 R_i (i=1,2,3) ~ A, B, C每年的收益率(表中的数据减去1), 随机变量

期望: ER_1 =0.0891, ER_2 =0.2137, ER_3 =0.2346

协方差:

$$cov(R_1, R_2, R_3) = \begin{pmatrix} 0.0108 & 0.0124 & 0.0131 \\ 0.0124 & 0.0584 & 0.0554 \\ 0.0131 & 0.0554 & 0.0942 \end{pmatrix}$$

决策变量 x_i (i=1,2,3) ~ 投资A, B, C的比例

假设

市场上没有其他投资渠道,且手上资金(不妨假设为1个单位)必须全部用完

约束条件 $x_1, x_2, x_3 \ge 0, x_1 + x_2 + x_3 = 1$

模型

年收益 $R=x_1R_1+x_2R_2+x_3R_3$

目标函数

期望: $ER = x_1 ER_1 + x_2 ER_2 + x_3 ER_3$

方差:
$$V = D(x_1R_1 + x_2R_2 + x_3R_3) = D(x_1R_1) + D(x_2R_2) + D(x_3R_3)$$

 $+ 2\operatorname{cov}(x_1R_1, x_2R_2) + 2\operatorname{cov}(x_1R_1, x_3R_3) + 2\operatorname{cov}(x_2R_2, x_3R_3)$
 $= \sum_{j=1}^{3} \sum_{i=1}^{3} x_i x_j \operatorname{cov}(R_i, R_j)$

模型

Min V

s.t.
$$x_1ER_1+x_2ER_2+x_3ER_3 \ge 0.15$$

 $x_1+x_2+x_3=1$
 $x_1, x_2, x_3 \ge 0$

二次 规划 模型 (QP)

求解

LINGO软件实现

ABC各占53.01%, 35.64%, 11.35%; 风险(收益方差) 0.0224, 标准差0.1497

扩展讨论

国库券收益率5%(无风险)

期望收益率15%

期望收益率10%

A: 8.69%

B: 42.85%

C: 14.34%,

券: 34.12%;

方差: 0.0208

A: 4.34%,

B: 21.43%

C: 7.17%

券: 67.06%;

方差: 0.0052

"分离定理":

风险资产之间

相对比例不变

(Tobin-----获1981

诺贝尔经济学奖)

例2投资的收益和风险

(选自1998年全国大学生数学建模竞赛A题)

问	题
---	---

n=4种资产

资产	收益率	风险损失率	交易费率	阈值
\mathbf{S}_{i}	$r_i(\%)$	$q_i(\%)$	$p_i(\%)$	$u_i(\overline{\pi})$
$\mathbf{S_1}$	28	2.5	1	103
S_2	21	1.5	2	198
S_3	23	5.5	4.5	52
S_4	25	2.6	6.5	40
存款S	5	0	0	0

给定资金M,设计投资组合方案

另一组数据n=15

使净收益尽可能大,而总体风险(最大者)尽可能小

模型

决策变量

$$x = (x_0, x_1, ..., x_n) \sim$$
投资每种资产的金额

目标函数

 $V(x) \sim$ 投资的净收益, $Q(x) \sim$ 风险

min
$$(Q(x), -V(x))$$

约束条件

购买 $S_i(i=1,...,n)$ 的交易费

购买 $S_i(i=0,...,n)$ 的净收益

$$c_i(x_i) = \begin{cases} 0, & x_i = 0 \\ p_i u_i, & 0 < x_i < u_i \\ p_i x_i, & x_i \ge u_i \end{cases}$$

$$V_i(x_i) = r_i x_i - c_i(x_i)$$

$$V(x) = \sum_{i=0}^{n} V_i(x_i)$$

$$c_0(x_0) = 0$$

模型

决策变量

$$x = (x_0, x_1, ..., x_n) \sim$$
投资每种资产的金额

目标函数

 $V(x) \sim$ 投资的净收益, $Q(x) \sim$ 风险

min
$$(Q(x), -V(x))$$

约束条件

风险损失(最大损失作为指标)

$$Q(x) = \max_{0 \le i \le n} q_i x_i$$

资金平衡
$$I(x) = \sum_{i=0}^{n} (x_i + c_i(x_i)) = M$$

$$x \ge 0$$

多目标规划

求解

LINGO软件实现

加权法

$$\min wQ(x) - (1-w)V(x))$$

s.t.
$$I(x) = M$$
,

$$x \ge 0$$
.

M=1万元

多目标规划模型小结

•解的概念:非劣解、弱非劣解.

•几何意义:有效前沿、弱有效前沿

• 求解思路:效用函数法(加权法),约束法.

·用LINGO求解,通过 Submodel 功能计算 (弱) 非劣解集、有效前沿.

