Redes de Computadores II

Temas: Tabelas de Roteamento.

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

$$d_x(y) = \min\{c(x, v) + d_v(y)\}\$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

^{*} Cada instante de tempo representará cada iteração do processo.

^{**}Cada iteração ocorre com os envios (anúncios) das rotas de cada nó aos seus vizinhos.

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

^{*} Cada instante de tempo representará cada iteração do processo.

^{**}Cada iteração ocorre com os envios (anúncios) das rotas de cada nó aos seus vizinhos.

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

 $\begin{array}{c|cccc} X & Y & Z \\ X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \end{array}$

t∩

Tabela do nó Y

 $\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & & t_0 & & \end{array}$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

$$d_x(y) = \min\{c(x, v) + d_v(y)\}$$

$$d_x(x) = \min\{c(x, x) + d_x(x)\}$$

Tabela do nó Y

	X	Υ	Z	
X	∞	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tabela do nó Z

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

t₀

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

$$\begin{array}{c|cccc} X & Y & Z \\ X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \end{array}$$

t₀

$$d_x(y) = \min\{c(x, v) + d_v(y)\}\$$

$$d_x(x) = \min\{c(x, x) + d_x(x)\}\$$

$$d_x(x) = \min\{0 + 0\} = 0$$

Tabela do nó Y

	X	Υ	Z	
X	∞	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
'	•	t_0	

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

$$\begin{array}{c|cccc} X & Y & Z \\ \hline X & 0 & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ \end{array}$$

t₀

$$d_x(y) = \min\{c(x, v) + d_v(y)\}\$$

$$d_x(x) = \min\{c(x, x) + d_x(x)\}\$$

$$d_x(x) = \min\{0 + 0\} = 0$$

Tabela do nó Y

	X	Υ	Z	
X	∞	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	1	t_0	

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z	
X	0	∞	8	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & t_0 & & \end{array}$$

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

$$d_x(y) = \min\{c(x, v) + d_v(y)\}\$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

	X	Υ	Z		
X	0	∞	∞		
Υ	∞	∞	∞		
Z	∞	∞	∞		
•					

 t_0

Tabela do nó Y

	X	Y	Z	
X	8	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tabela do nó Z

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

$$d_x(y) = \min\{c(x, v) + d_v(y)\}\$$

$$d_x(y) = \min\{c(x, y) + d_v(y), c(x, z) + d_z(y)\}\$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z	
X	0	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	

 t_0

Tabela do nó Y

	X	Υ	Z	
X	8	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t_0	

$$d_x(y) = \min\{c(x, v) + d_v(y)\}$$

$$d_x(y) = \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\}$$

$$d_x(y) = \min\{2 + 0.7 + d_z(y)\}$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z
X	0	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
t_0			

Tabela do nó Y

	X	Υ	Z	
X	8	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tabela do nó Z

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t_0	

$$\begin{aligned} d_x(y) &= \min\{c(x, v) + d_v(y)\} \\ d_x(y) &= \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\} \\ d_x(y) &= \min\{2 + 0.7 + d_z(y)\} \end{aligned}$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z	
X	0	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tabela do nó Y

	X	Υ	Z	
X	8	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tabela do nó Z

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t_0	

$$\begin{aligned} d_x(y) &= \min\{c(x, v) + d_v(y)\} \\ d_x(y) &= \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\} \\ d_x(y) &= \min\{2 + 0.7 + \infty \} \end{aligned}$$

- Após o cálculo do *Distance Vector*, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

 ∞

Tabela do 110 1				
	X	Υ	Z	
X	∞	∞	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tahala do nó V

$$\begin{array}{c|cccc} \text{Tabela do nó Z} \\ \hline & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ \hline & t_0 \\ \end{array}$$

```
d_{x}(y) = \min\{c(x, y) + d_{y}(y)\}\
d_x(y) = \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\}\
d_x(y) = \min\{2 + 0.7 + \infty\}
d_x(y) = \min\{2, \infty\} = 2
```

- Após o cálculo do *Distance Vector*, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & 0 & 2 & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ \end{array}$$

 t_0

Tabela do nó Y

X	8	∞	∞		
Υ	8	∞	∞		
Z	∞	∞	∞		
t_0					

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

$$\begin{aligned} d_{x}(y) &= \min\{c(x, v) + d_{v}(y)\} \\ d_{x}(y) &= \min\{c(x, y) + d_{y}(y), c(x, z) + d_{z}(y)\} \\ d_{x}(y) &= \min\{2 + 0.7 + \infty\} \\ d_{x}(y) &= \min\{2, \infty\} = 2 \end{aligned}$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z	
X	0	2	∞	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tabela do nó Y

	Χ	Y	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t_0	

Tabela do nó Z

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t_0	

$$d_{x}(y) = \min\{c(x, v) + d_{v}(y)\}\$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z
X	0	2	∞
Υ	∞	∞	∞
Z	∞	∞	∞

 t_0

Tabela do nó Y

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t₀	

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t_0	

$$d_x(y) = \min\{c(x, v) + d_v(y)\}\$$

$$d_x(z) = \min\{c(x, y) + d_y(z), c(x, z) + d_z(z)\}\$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

X	Υ	Z
0	2	∞
∞	∞	∞
∞	∞	∞
	0 ∞	0 2 ∞ ∞

 $\tau_{\rm C}$

Tabela do nó Y

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t₀	

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{split} d_{x}(y) &= \min\{c(x, v) + d_{v}(y)\} \\ d_{x}(z) &= \min\{c(x, y) + d_{y}(z), c(x, z) + d_{z}(z)\} \\ d_{x}(z) &= \min\{2 + d_{v}(z), 7 + 0\} \end{split}$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

X	Υ	Z
0	2	∞
∞	∞	∞
∞	∞	∞
	0 &	0 2 ∞ ∞

 $\tau_{\rm C}$

Tabela do nó Y

	X	Y	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t_0	

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

$$\begin{aligned} d_x(y) &= \min\{c(x, v) + d_v(y)\} \\ d_x(z) &= \min\{c(x, y) + d_y(z), c(x, z) + d_z(z)\} \\ d_x(z) &= \min\{2 + d_y(z), 7 + 0\} \end{aligned}$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z
X	0	2	∞
Υ	∞	∞	∞
Z	∞	∞	∞

 t_0

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ \end{array}$$

	X	Y	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t_0	

$$\begin{aligned} d_{x}(y) &= \min\{c(x, v) + d_{v}(y)\} \\ d_{x}(z) &= \min\{c(x, y) + d_{y}(z), c(x, z) + d_{z}(z)\} \\ d_{x}(z) &= \min\{2 + d_{y}(z), 7 + 0\} \end{aligned}$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z
X	0	2	∞
Υ	∞	∞	∞
Z	∞	∞	∞

 t_0

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{aligned} d_x(y) &= \min\{c(x, v) + d_v(y)\} \\ d_x(z) &= \min\{c(x, y) + d_y(z), c(x, z) + d_z(z)\} \\ d_x(z) &= \min\{2 + d_y(z), 7 + 0\} \\ d_x(z) &= \min\{2 + \infty, 7 + 0\} = \min\{\infty, 7\} = 7 \end{aligned}$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞

 τ_0

Tabela do nó Y

	Χ	Y	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
		t _o	

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

$$\begin{aligned} d_x(y) &= \min\{c(x, v) + d_v(y)\} \\ d_x(z) &= \min\{c(x, y) + d_y(z), c(x, z) + d_z(z)\} \\ d_x(z) &= \min\{2 + d_y(z), 7 + 0\} \\ d_x(z) &= \min\{2 + \infty, 7 + 0\} = \min\{\infty, 7\} = 7 \end{aligned}$$

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Y	∞	∞	∞
Z	∞	∞	∞
		t _o	

Tabela do nó Y

	Х	Υ	Z	
X	∞	∞	∞	
Y	2	∞	∞	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	1	t_0	

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t∩	

Tabela do nó Y

	X	Υ	Z	
X	∞	∞	∞	
Y	2	0	∞	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	1	t_0	

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	-	t _o	

Tabela do nó Y

	X	Υ	Z
X	8	∞	∞
Y	2	0	1
Z	∞	∞	∞
t_0			

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	∞	∞	∞
	1	t_0	

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z	
X	0	2	7	
Y	∞	∞	∞	
Z	∞	∞	∞	
t_0				

Tabela do nó Y

	X	Υ	Z	
X	∞	∞	∞	
Υ	2	0	1	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	7	∞	∞
		to	

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z	
Χ	0	2	7	
Υ	∞	∞	∞	
Z	∞	∞	∞	
to				

Tabela do nó Y

	X	Υ	Z
X	∞	∞	∞
Υ	2	0	1
Z	∞	∞	∞
	-	t_0	

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Tabela do nó X

	X	Υ	Z	
X	0	2	7	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_{0}				

Tabela do nó Y

	X	Υ	Z	
X	∞	∞	∞	
Υ	2	0	1	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	7	1	0
		to	

- Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;
- As rotas são atualizadas constantemente a cada mudança na rede.

Realizar os anúncios das rotas e recalcular os vetores em um novo instante de tempo t₁.

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
t_0			

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & & t_1 & \\ \hline \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ \hline & t_1 & \end{array}$$

Tabela do nó Z

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	7	1	0
		t_0	

 t_1

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z	
X	0	2	7	
Υ	∞	∞	∞	
Z	∞	∞	∞	
t_0				

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & & t_1 & \\ \hline \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ \hline Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ \hline & t_1 & & & \end{array}$$

Tabela do nó Z

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

 t_1

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

	X	Υ	Z	
X	0	2	7	_
Υ	∞	∞	∞	
Z	∞	∞	∞	
	l	t_0		
	X	Υ	Z	
X	0	2	7	
Υ	∞	∞	∞	↓
Z	∞	∞	∞	

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

	X	Υ	Z	
X	0	2	7	-
Υ	∞	∞	∞	
Z	∞	∞	∞	
		t_0		
	X	Υ	Z	
X	X 0	Y 2	Z 7	- /
X		Y 2 0	7 1	
X Y Z	0	_	Z 7 1 ∞	

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	I	t_0	

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ \hline & t_1 & \end{array}$$

Tabela do nó Z

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	7	1	0
		t_0	

$$\begin{array}{c|cccc} X & Y & Z \\ X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ \end{array}$$

 t_1

Após o cálculo do *Distance Vector*, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

Tabela do nó Y

Tabela do nó X

rede.

Após o cálculo do *Distance Vector*, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

Tabela do nó Y

Tabela do nó X

rede.

Após o cálculo do *Distance Vector*, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

Tabela do nó Y

Tabela do nó X

rede.

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	I	t_0	

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \\ \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	7	1	0
		t_0	

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Novas rotas

 t_1

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

Tabela do nó X

rede.

rabela do 110 1				
	X	Υ	Z	
Χ	8	∞	∞	
Υ	2	0	1	
Z	∞	∞	∞	
	t_0			
	X	Υ	Z	
X	0	2	7	
Υ	2	0	1	
7	7	1	Λ	

Tahela do nó Y

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & & \end{array}$$

$$d_x(y) = \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\begin{aligned} d_x(y) &= \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\} \\ d_x(y) &= \min\{2 + 0.7 + d_z(y)\} \end{aligned}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & t_0 & & \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$d_x(y) = \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\}$$

$$d_x(y) = \min\{2 + 0.7 + d_z(y)\}$$

$$0 d_z(y) = \min\{c(z, y), +d_y(y)\}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	'	t_0	

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\frac{Z}{7} \qquad d_x(y) = \min\{c(x,y) + d_y(y), c(x,z) + d_z(y)\}$$

$$d_x(y) = \min\{2 + 0.7 + d_z(y)\}$$

$$1$$

$$0 \qquad d_z(y) = \min\{c(z,y) + d_y(y)\}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

$$\begin{array}{c|cccc} & X & Y & Z \\ X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$d_x(y) = \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\}$$

$$d_x(y) = \min\{2 + 0.7 + d_z(y)\}$$

$$d_z(y) = \min\{c(z, y) + \boldsymbol{d}_y(y)\}\$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & t_0 & & \end{array}$$

$$\begin{array}{c|ccccc} & X & Y & Z \\ X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

 $d_z(y) = \min\{1+0\} = 1$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Y	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	1	t_0	

$$\begin{array}{c|ccccc} & X & Y & Z \\ X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$d_x(y) = \min\{c(x, y) + d_y(y), c(x, z) + d_z(y)\}$$

$$d_x(y) = \min\{2 + 0.7 + d_z(y)\}$$

$$d_z(y) = \min\{c(z, y) + d_y(y)\}\$$

$$d_z(y) = \min\{1 + 0\} = 1$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & t_0 & & \end{array}$$

$$\begin{array}{c|ccccc} X & Y & Z \\ X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \\ \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\begin{aligned} d_{x}(y) &= \min\{c(x,y) + d_{y}(y), c(x,z) + d_{z}(y)\} \\ d_{x}(y) &= \min\{2 + 0.7 + d_{z}(y)\} \\ d_{x}(y) &= \min\{2 + 0.7 + d_{z}(y)\} \\ d_{x}(y) &= \min\{2 + 0.7 + 1\} \\ d_{z}(y) &= 1 \end{aligned}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & t_0 & & \end{array}$$

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \\ \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\begin{aligned} d_{x}(y) &= \min\{c(x,y) + d_{y}(y), c(x,z) + d_{z}(y)\} \\ d_{x}(y) &= \min\{2 + 0.7 + d_{z}(y)\} \\ d_{x}(y) &= \min\{2 + 0.7 + d_{z}(y)\} \\ d_{x}(y) &= \min\{2 + 0.7 + 1\} \\ d_{x}(y) &= \min\{2.8\} = 2 \end{aligned} \qquad d_{z}(y) = 1$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	1	t_0	

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \\ \end{array}$$

Tabela do nó Y

	X	Υ	Z
X	8	∞	∞
Υ	2	0	1
Z	∞	∞	∞
t_0			

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$d_x(z) = \min\{c(x,y) + d_y(z), c(x,z) + d_z(z)\}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$d_x(z) = \min\{c(x, y) + d_y(z), c(x, z) + d_z(z)\}$$

$$d_x(z) = \min\{2 + d_y(z), 7 + 0\}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X		
X Y Z		

$$Z \mid \infty \quad \infty \quad t_0$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\begin{aligned} d_{x}(z) &= \min\{c(x,y) + d_{y}(z), c(x,z) + d_{z}(z)\} \\ d_{x}(z) &= \min\{2 + \boldsymbol{d}_{y}(\boldsymbol{z}), 7 + 0\} \end{aligned}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\begin{aligned} d_{x}(z) &= \min\{c(x,y) + d_{y}(z), c(x,z) + d_{z}(z)\} \\ d_{x}(z) &= \min\{2 + \boldsymbol{d}_{y}(\boldsymbol{z}), 7 + 0\} \end{aligned}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
t_0			

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \\ \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\begin{aligned} d_{x}(z) &= \min\{c(x,y) + d_{y}(z), c(x,z) + d_{z}(z)\} \\ d_{x}(z) &= \min\{2 + d_{y}(z), 7 + 0\} \\ d_{x}(z) &= \min\{2 + 1, 7 + 0\} \end{aligned}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
t_0			

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & 0 & 2 & 7 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \\ \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\begin{split} d_{\chi}(z) &= \min\{c(x,y) + d_{y}(z), c(x,z) + d_{z}(z)\} \\ d_{\chi}(z) &= \min\{2 + d_{y}(z), 7 + 0\} \\ d_{\chi}(z) &= \min\{2 + 1, 7 + 0\} \\ d_{\chi}(z) &= \min\{3, 7\} = 3 \end{split}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	I	t_0	

$$\begin{array}{c|ccccc} & X & Y & Z \\ \hline X & 0 & 2 & 3 \\ Y & 2 & 0 & 1 \\ Z & 7 & 1 & 0 \\ & & t_1 & \\ \end{array}$$

Tabela do nó Y

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$$

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$\begin{aligned} d_{x}(z) &= \min\{c(x,y) + d_{y}(z), c(x,z) + d_{z}(z)\} \\ d_{x}(z) &= \min\{2 + d_{y}(z), 7 + 0\} \\ d_{x}(z) &= \min\{2 + 1, 7 + 0\} \\ d_{x}(z) &= \min\{3, 7\} = 3 \end{aligned}$$

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	•	t_0	

Tabela do nó Y

	X	Υ	Z
X	∞	∞	∞
Υ	2	0	1
Z	∞	∞	∞
t_0			

Tabela do nó Z

$$\begin{array}{c|cccc} & X & Y & Z \\ \hline X & \infty & \infty & \infty \\ Y & \infty & \infty & \infty \\ Z & 7 & 1 & 0 \\ & & t_0 & \end{array}$$

$$d_{x}(z) = \min\{c(x, y) + d_{y}(z), c(x, z) + d_{z}(z)\}$$

$$d_{x}(z) = \min\{2 + d_{y}(z), 7 + 0\}$$

$$d_{x}(z) = \min\{2 + 1, 7 + 0\}$$

$$d_{x}(z) = \min\{3, 7\} = 3$$

*Cada

tabela atualiza

 Após o cálculo do Distance Vector, o vetor gerado precisa ser armazenado e para isso cada nó possui uma tabela com as rotas armazenadas;

As rotas são atualizadas constantemente a cada mudança na

rede.

Tabela do nó X

	X	Υ	Z
X	0	2	7
Υ	∞	∞	∞
Z	∞	∞	∞
	ı	t_0	

	X	Υ	Z
X	0	2	3
Υ	2	0	1
Z	7	1	0
		t_1	

Tabela do nó Y

	X	Υ	Z	
X	8	∞	∞	
Υ	2	0	1	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	0	2	7
Υ	2	0	1
Z	7	1	0
t_1			

Tabela do nó Z

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	7	1 t ₀	0

	X	Y	Z	
Χ	0	2	7	
Υ	2	0	1	
Z	3	1	0	
t ₄				

*Cada tabela atualiza apenas seu vetor.

Tabela do nó X

	X	Υ	Z
X	0	2	3
Υ	2	0	1
Z	7	1	0
		t_1	

*Cada tabela atualiza apenas seu vetor.

Z	7	1	0
		t_1	
	X	Υ	Z
X	0	2	3
Y	2	0	1
Z	7	1	0
	•	<u>t</u> 2	

Tabela do nó Y

	Χ	Y	Z
X	8	∞	∞
Υ	2	0	1
Z	∞	∞	∞
'		t_0	

		X	Υ	Z
	X	0	2	7
/	Υ	2	0	1
	Z	7	1	0

Tabela do nó Z

	X	Υ	Z
X	∞	∞	∞
Υ	∞	∞	∞
Z	7	1 t ₀	0

	Χ	Y	Z
X	0	2	7
Υ	2	0	1

X Y Z
X 0 2 7
Y 2 0 1

Tabela do nó X

	X	Υ	Z
X	0	2	3
Υ	2	0	1
Z	7	1	0
		t_1	

X

0

2

0

X

*Cada tabela atualiza apenas seu vetor.

Tabela do nó Y

	Χ	Y	Z
Χ	∞	∞	∞
Υ	2	0	1
Z	∞	∞	∞
	•	t_0	

		•	
	X	Υ	Z
X	0	2	7
Υ	2	0	1
Ζ	7	1	0

Tabela do nó Z

	X	Y	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	7	1	0
	ı	t_0	

7
1

/ 3 11

Z

Tabela do nó X

	X	Υ	Z
X	0	2	3
Υ	2	0	1
Z	7	1	0
	1	t_1	

*Cada tabela atualiza apenas seu vetor.

	X	Υ	Z
X	0	2	3
Υ	2	0	1
Z	3	1	0
	'	t ₂	

Tabela do nó Y

	X	Y	Z	
Χ	8	∞	∞	
Υ	2	0	1	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	0	2	7
Υ	2	0	1
Z	7	1	0

Tabela do nó Z

	X	Υ	Z
X	8	∞	∞
Υ	∞	∞	∞
Z	7	1 t ₀	0

X	Υ	Z
0	2	7
2	0	1
	0	0 2

Z	3		1	0
		4		

X Y Z
X 0 2 3
Y 2 0 1

Tabela do nó X

$\begin{array}{c|cccc} & X & Y & Z \\ X & 0 & 2 & 7 \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \\ & & t_0 & \end{array}$

	X	Υ	Z
X	0	2	3
Υ	2	0	1
Z	7	1	0
	ı	t_1	

Tempo de convergência

	Х	Y	Z
X	0	2	3
Y	2	0	1
Z	3	1	0
		• t ₂	

Tabela do nó Y

	Χ	Y	Z	
X	8	∞	∞	
Υ	2	0	1	
Z	∞	∞	∞	
t_0				

	X	Υ	Z
X	0	2	7
Υ	2	0	1
Z	7	1	0

X	Υ	Z
∞	∞	∞
∞	∞	∞
7	1 t ₀	0
	8	88871

	X	Υ	Z
X		2	7
Υ	2	0	1
7		4	_

Exercícios propostos:

1. Baseado nos exemplos anteriores (conforme grafo abaixo), considere que no momento t₂ houve atualização do custo do segmento YZ, em que YZ=8. Determine para o momento t₃ as atualizações nas tabelas de cada nó.

- 2. Considere o seguinte grafo abaixo:
 - a) Construa as tabelas de cada nó em cada instante de tempo necessário até a convergência;
 - b) Atualize as tabelas para o segmento CD=4;
 - c) Atualize as tabelas para a exclusão do segmento AD.

Exercícios propostos:

- 3. Considere o seguinte grafo abaixo:
 - a) Construa as tabelas de cada nó em cada instante de tempo necessário até a convergência.

Bibliografia

BÁSICA:

- BRITO, S. H. B. IPv6: o novo protocolo da internet. São Paulo: Novatec, 2013.
- COMER, D. Interligação de redes com TCP/IP: princípios, protocolos e arquitetura. Rio de Janeiro: Elsevier; Campus, 2006. v.1.
- SOUSA, L. B. Projetos e implementação de redes: Fundamentos, soluções, arquiteturas e planejamento. 2. ed. São Paulo: Érica, 2011.

COMPLEMENTAR:

- BIRKNER, MATTHEW H. (ED.). Projeto de interconexão de redes: CISCO Internetwork Design - CID. São Paulo: Pearson Education, 2003.
- BRITO, S. H. B. Laboratórios de tecnologias cisco em infraestrutura de redes.
 2.ed. São paulo: Novatec, 2014.
- FREITAS, A. E. S.; BEZERRA, R. M. S. IPv6: conceitos e aspectos práticos. Rio Janeiro: Ciência Moderna, 2015.
- LIMA, João Paulo de. Administração de redes Linux: passo a passo. Goiânia: Terra, 2003.
- STARLIN, G. Redes de computadores: comunicação de dados TCP/IP: conceitos, protocolos e uso. Rio de Janeiro: Alta Books, 2004.
- VASCONCELOS, L.; VASCONCELOS, M. Manual prático de redes. Rio de Janeiro: Laércio Vasconcelos Computação, 2008.