Table 1. Table of hypotheses and associated specific predictions, whether each was supported ('yes'; signficant at p<0.05), rejected ('no'; opposite trend signficant at p<0.05), or found insigificant ('n.s.'; no significant correlation), and display items showing the results. 'RP' and 'DP' refer to ring- and diffuse- porous species, respectively.

	SCBI		Harvard Forest					
Hypotheses and Specific Predictions	RP	DP	RP	DP	Results			
Warmer early springs result in earlier stem growth and longer growing seasons								
Day of year at which 25% of growth is achieved (DOY_{25}) is negatively correlated with early spring T.	yes	yes	yes	yes	Figs. 3-5			
Day of year at which 50% of growth is achieved (DOY_{50}) is negatively correlated with early spring T.	yes	yes	yes	yes	Figs. 4-5			
Day of year at which 75% of growth is achieved (DOY_{75}) is negatively correlated with early spring T.	n.s.	yes	yes	yes	Figs. 4-5			
Day of year of max growth rate (DOY_{ip}) is negatively correlated with early spring T.	yes	yes	yes	yes	Fig. 4			
Peak growing season length $(L_{PGS} = DOY_{75} - DOY_{25})$ is positively correlated with early spring T.	yes	n.s.	no	yes	Fig. 4			
Maximum growth rates are independent of early spring temperatures.								
Max growth rate (g_{max}) is independent of early spring T.	n.s.	n.s.	no $(+)$	no (-)	Fig. 4			
Annual stem growth responds positively to warmer spring temperatures.								
Annual growth (ΔDBH ; dendrobands) is positively correlated with early spring T.	n.s.	n.s.	yes	no	Fig. 4			
On the centennial time scale, tree ring width (RW) is positively correlated with early spring T.	mixed^1	$\rm mixed^2$	n.s.	no^3	Fig. 6			

 $^{^1}$ One of nine species analyzed had significant positive response to April T_{max} ; one had significant negative response to March T_{max} one of two species analyzed had significant positive response to April T_{max} , both had negative response to May T_{max} one of the two species was negatively correlated with April T_{max} , and the other positively correlated with May T_{max} .

Table 2. Dominant ring- and diffuse-porous species at SCBI and Harvard Forest analyzed here, along with sample sizes.

				dendrometer bands		tree cores	
site	xylem porosity	species	species code	n trees	n tree-years	n cores	date range
SCBI	ring	Red Oak	QURU	34	197	NA	
		White Oak	QUAL	35	229	NA	
	diffuse	American Beech	FAGR	13	89	NA	
		Tulip Poplar	LITU	41	354	NA	
Harvard	ring	Red Oak		118	575	NA	1901-2014
		Black Oak		11	50	NA	
		White Ash		9	27	NA	
	diffuse	American Beech		8	45	NA	
		Black Birch		8	44	NA	
		Grey Birch		5	24	NA	
		White Birch		3	13	NA	
		Yellow Birch		21	90	NA	1952-2013
		Black Cherry		9	37	NA	
		Red Maple		144	669	NA	1930-2014
		Striped Maple		4	16	NA	

Table 3. Summary of parameters describing the phenology and rate of growth for ring- and diffuse- porous species at SCBI and Harvard Forest.

	SC	CBI	Harvard Forest		
	ring	diffuse	ring	diffuse	
window over which T_{max}	3/22-4/9	2/19-5/21	4/2-5/7	3/19-5/7	
is most influential					
DOY_{25}	123 (May 4)	154 (June 4)	132 (May 15)	164 (June 14)	
DOY_{50}	152 (June 2)	172 (June 22)	159 (June 9)	182 (July 2)	
DOY_{75}	180 (June 30)	190 (July 9)	186 (July 6)	199 (July 19)	
DOY_{ip}	152 (June 2)	173 (June 23)	161 (June 11)	183 (July 3)	
$g_{ip} \; (\mathrm{mm/day})$	0.046	0.061	0.03	0.025	
L_{pgs}	56.5	35.8	54.5	35.1	
$\Delta DBH \text{ (mm/yr)}$	4.7	3.6	3.1	1.4	