A Fuzzy Logic Based System for Geolocated Augmented Reality Field Service Support

Anasol Peña-Rios, Hani Hagras, Michael Gardner

The Intelligent Environments Research Group School of Computer Science and Electronic Engineering University of Essex, Wivenhoe Park, Colchester, UK

Gilbert Owusu

Business Modelling and Operational Transformation Practice, British Telecom Adastral Park, Martlesham Heath, Ipswich, UK

Presented by : A. V. S. Piyawardana 179413F

Department of Computational Mathematics, Faculty of Information Technology, University of Moratuwa, Sri Lanka

Outline

- Motivation
- Introduction
- Proposed Fuzzy Logic Based System
- The System Implementation
- Experiments and Results
- Conclusion

Motivation

Challenge for Augmented Reality (AR) based field service tools;

• Helping users to move to the correct location where the company's assets and infrastructure located in the field.

The Proposed AR system is based on fuzzy logic mechanisms;

 Provides the user with directions for asset location by comparing user's current position with asset's location in real time.

Introduction

- Augmented Reality (AR) tries to solve the challenge of physical/virtual world's exclusion from one another by adding computer-generated objects and combining them with physical elements in a shared environment to make them appear as if they co-exist in the same direction.
- AR-based field service applications face difficulty in providing information to move the user to the correct location because of the uncertainty generated by sensors and human error.
- The Fuzzy Logic System will deal with that problem and provide field service engineers with directions to reach specific assets based on private maps.

Proposed Fuzzy Logic Based System

Proposed Fuzzy Logic Based System

- A mobile device captures location and orientation of the engineer, based on GPS and compass sensor information.
- Engineer's latitude and longitude is captured in decimal degrees (DD).
- This information is sent to the server, in the server, a software agent obtains the DD coordinates of the selected asset from the main database, and calculates the difference between engineer's position and asset's position.
- The difference is used as the input to the Fuzzy Logic inference system, which provides two outputs: direction and movement.

Head Mounted Display (HDM)

- The software agent process the output to provide the user with humanunderstandable instructions to locate the asset.
- Finally, the instructions are sent to the head-mounted display (HDM) then the
 engineer can hear them using text to voice functionality and visualize the
 asset location when it has arrived at the goal location.

AR smart glasses: Microsoft HoloLens is used Only relevant information is displayed Information is automatically available when needed, and can be enriched with additional online information flexibility, can be used hands-free

Compass Rose and Positioning Diagram


```
Longitude = asset_longitude – user_longitude
Latitude = asset_latitude – user_latitude
```

Linguistic Variables and Linguistic Values

Longitude : [Negative, Zero, Positive]

Latitude : [Negative, Zero, Positive]

Direction : [North, East, South, West]

Movement : [Go Further, Stay]

Positioning Rule Base

Code in Positioning Diagram	Antecedents		Consequents	
	∆ Longitude (X)	△ Latitude (Y)	Direction	Movement
A	Negative	Negative	North	Go Further
D	Negative	Zero	East	Go Further
G	Negative	Positive	East	Go Further
В	Zero	Negative	North	Go Further
GOAL	Zero	Zero	North	Stay
Н	Zero	Positive	South	Go Further
С	Positive	Negative	West	Go Further
F	Positive	Zero	West	Go Further
I	Positive	Positive	South	Go Further

9 Fuzzy Rules

```
IF (Longitude = Negative) AND (Latitude = Negative) THEN (Direction = North) AND (Movement = Go Further)
IF (Longitude = Negative) AND (Latitude = Zero) THEN (Direction = East) AND (Movement = Go Further)
IF (Longitude = Negative) AND (Latitude = Positive) THEN (Direction = East) AND (Movement = Go Further)
IF (Longitude = Zero) AND (Latitude = Negative) THEN (Direction = North) AND (Movement = Go Further)
IF (Longitude = Zero) AND (Latitude = Zero) THEN (Direction = North) AND (Movement = Stay)
IF (Longitude = Zero) AND (Latitude = Positive) THEN (Direction = South) AND (Movement = Go Further)
IF (Longitude = Positive) AND (Latitude = Negative) THEN (Direction = West) AND (Movement = Go Further)
IF (Longitude = Positive) AND (Latitude = Zero) THEN (Direction = West) AND (Movement = Go Further)
IF (Longitude = Positive) AND (Latitude = Positive) THEN (Direction = South) AND (Movement = Go Further)
```

Membership Function : Antecedent : Latitude Difference

Membership Function : Antecedent : Longitude Difference

Membership Function : Consequent : Rotation

Membership Function: Consequent: Displacement

Defuzzification and Post Processing Output

- The result of inferrence engine is defuzzified into a crisp number using height defuzzification method.
- Difficult to interpret by a human, additional post processing step is required.
- Compare the previous value with the new value obtained by FLS.
- Previous direction: North, New value: South, the system suggests to 'Go Further' by 'Making U-Turn' assuming the natural human walking.

Condition	Human-understandable direction	
If previous heading is the same as new heading	Keep Heading	
If previous heading is directly opposite as new heading	Make a U-Turn	
If previous heading is next on the left side of the new heading	Turn Right	
If previous heading is next on the right side of the new heading	Turn Left	

Experiments and Results

- 110 path explorations in an area of nearly 5000 square meter, locating the asset (underground cables).
- Locate the engineer in an initial coordinate, where after getting feedback from the system, he moved following the given instructions.
- The system is continously updated as soon as it detected a deference of the location.

An Asset position

Experiments and Results

- (a) Field engineer
- (b) Mobile app
- (c) View from HoloLens

(a) (b)

(c)

Summary and Conclusion

 Proposed an innovative Augmented Reality system combined with fuzzy logic mechanisms to create a system able to direct engineers and technicians to an asset's location, targeting the issue of uncertainty generated by sensors and human error.

Thank you