Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 7. Tydzień rozpoczynający się 22. kwietnia

Zadania

1. Dane są niezależne zmienne losowe X,Y o rozkładzie U[0,1]. Niech x,y będą wylosowanymi wartościami zmiennych X,Y. Odcinek [0,1] podzielony jest zatem na trzy części (być może jedna część ma długość 0). Jakie jest prawdopodobieństwo, że z tych trzech części można utworzyć trójkąt?

[Do zadań 2–4] Niech (X_1,X_2) będzie dwuwymiarową zmienną losową o gęstości $f(x_1,x_2)=\frac{1}{\pi},$ dla $0< x_1^2+x_2^2<1.$

- 2. Znaleźć gęstości brzegowe zmiennych X_1, X_2 .
- 3. Wykazać że współczynnik korelacji zmiennych X_1, X_2 jest równy zero. Wykazać, że zmienne są zależne.
- 4. Niech $X_1 = Y_1 \cos Y_2$, $X_2 = Y_1 \sin Y_2$, gdzie $0 < Y_1 < 1$, $0 \le Y_2 \le 2\pi$. Znaleźć gęstość $g(y_1, y_2)$ zmiennej (Y_1, Y_2) . Sprawdzić czy zmienne Y_1, Y_2 są niezależne.
- 5. Dana jest *n*-wymiarowa zmienna losowa $\mathbf{X} = (X_1, \dots, X_n)^T$. Zmienną $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ określamy następująco:

$$Y_1 = \bar{\mathbf{X}}, \quad Y_k = X_k - \bar{\mathbf{X}} \quad \text{dla } k = 2, \dots, n.$$

Znaleźć postać (współczynniki) Jacobianu

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \cdots & \frac{\partial x_2}{\partial y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \cdots & \frac{\partial x_n}{\partial y_n} \end{vmatrix}.$$

6. Dane są zmienne losowe X_1, \ldots, X_n . Udowodnić, że:

$$\sum_{k=1}^{n} (X_k - \mu)^2 = \sum_{k=1}^{n} (X_k - \bar{\mathbf{X}})^2 + n (\bar{\mathbf{X}} - \mu)^2.$$
 (1)

[**Zadania 7–8**] Zakładamy, że niezależne zmienne losowe X_k podlegają rozkładowi N (μ, σ^2) .

- 7. Znaleźć (wraz z uzasadnieniem) rozkład zmiennej $M = \frac{n}{\sigma^2} \cdot (\bar{\mathbf{X}} \mu)^2$
- 8. Załóżmy, że zmienne $\bar{\mathbf{X}} = \frac{1}{n} \sum_{k=1}^{n} X_k \text{ oraz } S^2 = \frac{1}{n} \sum_{k=1}^{n} \left(X_k \bar{\mathbf{X}} \right)^2$ są niezależne. Korzystając z równania (1) udowodnić, że $\frac{nS^2}{\sigma^2} \sim \chi^2(n-1) \equiv \operatorname{Gamma}\left(\frac{1}{2}, \frac{n-1}{2}\right)$

[Do zadań 9–10] Boki prostokąta są niezależnymi zmiennymi losowymi X_1 i X_2 o rozkładzie $U[1,2].\ Y_1=2X_1+2X_2\,$ jest obwodem tego prostokąta, $Y_2=X_1X_2\,$ oznacza pole tego prostokąta.

- 9. Znaleźć wartości oczekiwane i wariancje zmiennych Y_1, Y_2 . (Odp.: 6, 2 /3 dla $Y_1, ^9$ /4, 5 5/144 dla Y_2).
- 10. Obliczyć wartość współczynnika korelacji ρ zmiennych Y_1, Y_2 . (Odp.: $\sqrt[3]{330}/55$).

[Do zadań 11–12] Zmienna losowa X podlega rozkładowi normalnemu z parametrami jak poniżej:

$$N \sim \left(\begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 38 & -5 \\ -5 & 4 \end{bmatrix} \right).$$

- 11. Niech $Y_1 = 3X_1 + X_2$, $Y_2 = -4X_1 + 2X_2$. Znaleźć rozkład zmiennej Y.
- 12. Niech $Y_1 = 2X_1 3X_2$, $Y_2 = 4X_1 + 2X_2$. Jaka jest wartość współczynnika korelacji ρ_{y_1,y_2} ?

Witold Karczewski