# Deep Learning & Applied Al

Linear regression, convexity, and gradients

Emanuele Rodolà rodola@di.uniroma1.it









In deep learning, we deal with highly parametrized models called deep neural networks:



• Each block has a predefined structure (e.g., a linear map)



- Each block has a predefined structure (e.g., a linear map)
- ullet Each block is defined in terms of unknown parameters heta



- Each block has a predefined structure (e.g., a linear map)
- ullet Each block is defined in terms of unknown parameters heta
- Finding the parameter values is called training...



- Each block has a predefined structure (e.g., a linear map)
- ullet Each block is defined in terms of unknown parameters heta
- Finding the parameter values is called training...
- ...which is done by minimizing a function called loss



- Each block has a predefined structure (e.g., a linear map)
- ullet Each block is defined in terms of unknown parameters heta
- Finding the parameter values is called training...
- ...which is done by minimizing a function called loss
- Minimization requires computing gradients, called backpropagation

#### Parametrized models

The parameters describe the behavior of the network, and must be solved for.



### Parametrized models

The parameters describe the behavior of the network, and must be solved for.



$$f_{a,b}(x) = ax + b$$

#### Parametrized models

The parameters describe the behavior of the network, and must be solved for.



From a technical standpoint, our task is to determine the parameters  $\Theta$ .







$$y_i = ax_i + b +$$
noise



$$y_i = ax_i + b +$$
 noise

We start from the simplest non-trivial case for a learning model:



$$f_{\Theta}(x_i) = y_i$$

**Model**: linear + bias (we ignore the noise)

Parameters:  $\Theta = \{a, b\}$ 

**Data**: n pairs  $(x_i, y_i)$ ; the  $x_i$  are called the regressors

We start from the simplest non-trivial case for a learning model:



$$f_{\Theta}(x_i) = y_i$$

**Model**: linear + bias (we ignore the noise)

Parameters:  $\Theta = \{a, b\}$ 

**Data**: n pairs  $(x_i, y_i)$ ; the  $x_i$  are called the regressors

Given a and b, we have a mapping that gives new output from new input.

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all  $i=1,\ldots,n$ .

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all i = 1, ..., n.

**Problem:** Choose a and b minimizing the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{a,b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

where  $\Theta = \{a, b\}$ .

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all i = 1, ..., n.

**Problem:** Choose a and b minimizing the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

where  $\Theta = \{a, b\}$ .

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all  $i = 1, \ldots, n$ .

**Problem:** Choose a and b minimizing the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

where  $\Theta = \{a, b\}$ .

When  $f_{\Theta}$  is linear, this is called a least-squares approximation problem.

# Linear regression: Loss function

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all  $i = 1, \ldots, n$ .

**Problem:** Choose a and b minimizing the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{\Theta} \ell_{\Theta}(\{x_i, y_i\})$$

The error criterion w.r.t. the parameters is also called a loss function, usually denoted by  $\ell$ :

$$\ell_{\Theta}(\{x_i, y_i\}) = \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

# Linear regression: Loss function

The equations:

$$f_{\Theta}(x_i) = y_i$$

must approximately hold for all  $i = 1, \ldots, n$ .

**Problem:** Choose a and b minimizing the mean squared error (MSE) between input and predicted output:

$$\epsilon = \min_{\Theta} \ell_{\Theta}(\{x_i, y_i\})$$

The error criterion w.r.t. the parameters is also called a loss function, usually denoted by  $\ell$ :

$$\ell_{\Theta}(\{x_i, y_i\}) = \sum_{i=1}^{n} (y_i - f_{\Theta}(x_i))^2$$

**Remark:** We minimize the loss w.r.t. the parameters  $\Theta$ , and **not** w.r.t. the data  $(x_i,y_i)$ . Also, the loss is defined on the entire dataset, not on just one data point.

We are considering the following case:



where  $f_{\pmb{\Theta}}$  is linear, and  $\ell_{\pmb{\Theta}}$  is quadratic.

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

In particular, we are interested in the minimizer  $\Theta$ .

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

In particular, we are interested in the minimizer  $\Theta$ .

Finding minimizers for general  $\ell$  is an open problem. The research area is broadly called optimization.

In general, the optimization method depends on the properties of  $\ell.$ 

We need to solve the general minimization problem:

$$\epsilon = \min_{\Theta} \ell(\Theta)$$

In particular, we are interested in the minimizer  $\Theta$ .

Finding minimizers for general  $\ell$  is an open problem. The research area is broadly called optimization.

In general, the optimization method depends on the properties of  $\ell$ .

We will mostly deal with unconstrained problems.

#### Jensen's inequality:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x,y and  $\alpha \in [0,1]$ 

#### Jensen's inequality:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x,y and  $\alpha \in [0,1]$ 



#### Jensen's inequality:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x, y and  $\alpha \in [0, 1]$ 



Let us further assume that f is a differentiable function, so that we can compute its derivative  $\frac{df}{dx}$  at all points x.

#### Jensen's inequality:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x, y and  $\alpha \in [0, 1]$ 



Let us further assume that f is a differentiable function, so that we can compute its derivative  $\frac{df}{dx}$  at all points x.

Intuition tells us that the minimizer x is where  $\frac{df(x)}{dx} = 0$ .

## Convex functions: Global minima

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all x, y and  $\alpha \in (0, 1)$ 

## Convex functions: Global minima

$$f(x + \alpha(y - x)) \le (1 - \alpha)f(x) + \alpha f(y)$$

for all x, y and  $\alpha \in (0, 1)$ 

## Convex functions: Global minima

$$\frac{f(x+\alpha(y-x))}{\alpha} \leq \frac{(1-\alpha)f(x)+\alpha f(y)}{\alpha}$$

for all x,y and  $\alpha\in(0,1)$ 

$$\frac{f(x+\alpha(y-x))}{\alpha} \leq \frac{f(x)}{\alpha} - f(x) + f(y)$$

for all x,y and  $\alpha\in(0,1)$ 

$$\frac{f(x + \alpha(y - x)) - f(x)}{\alpha} + f(x) \le f(y)$$

for all x, y and  $\alpha \in (0, 1)$ 

$$\lim_{\alpha \to 0} \frac{f(x + \alpha(y - x)) - f(x)}{\alpha} + f(x) \le f(y)$$

$$\lim_{\alpha \to 0} \frac{f(x + \alpha(y - x)) - f(x)}{\alpha(y - x)} (y - x) + f(x) \le f(y)$$

$$\frac{df(x)}{dx}(y-x) + f(x) \le f(y)$$

$$\underbrace{\frac{df(x)}{dx}(y-x) + f(x)}_{\text{1st-order Taylor at } f(x)} \leq f(y)$$



Thus, if 
$$\frac{df(x)}{dx} = 0$$
: 
$$f(x) \le f(y)$$

and x is a global minimizer of f.

In deep learning we deal with functions over  $n\gg 1$  parameters:

$$f: \mathbb{R}^n \to \mathbb{R}$$

In deep learning we deal with functions over  $n \gg 1$  parameters:

$$f: \mathbb{R}^n \to \mathbb{R}$$

The notion of derivative is replaced by the notion of gradient:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

which is the vector of partial derivatives of f.

In deep learning we deal with functions over  $n \gg 1$  parameters:

$$f: \mathbb{R}^n \to \mathbb{R}$$

The notion of derivative is replaced by the notion of gradient:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

which is the vector of partial derivatives of f.

Convexity is defined as before:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

In deep learning we deal with functions over  $n \gg 1$  parameters:

$$f: \mathbb{R}^n \to \mathbb{R}$$

The notion of derivative is replaced by the notion of gradient:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

which is the vector of partial derivatives of f.

Convexity is defined as before:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

and we also have the global optimality condition:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \mathbf{0} \implies f(\mathbf{x}) \le f(\mathbf{y}) \text{ for all } \mathbf{y} \in \mathbb{R}^n$$

The gradient  $\nabla_{\mathbf{x}} f(\mathbf{x})$  encodes the direction of steepest ascent of f at point  $\mathbf{x}$ .

The gradient  $\nabla_{\mathbf{x}} f(\mathbf{x})$  encodes the direction of steepest ascent of f at point  $\mathbf{x}$ . In the simple 1D case:



The gradient  $\nabla_{\mathbf{x}} f(\mathbf{x})$  encodes the direction of steepest ascent of f at point  $\mathbf{x}$ . In the simple 1D case:



The gradient  $\nabla_{\mathbf{x}} f(\mathbf{x})$  encodes the direction of steepest ascent of f at point  $\mathbf{x}$ . In the more general case:



The gradient  $\nabla_{\mathbf{x}} f(\mathbf{x})$  encodes the direction of steepest ascent of f at point  $\mathbf{x}$ . In the more general case:



The length of the gradient vector encodes its strength.

The Euclidean distance measures the length of a straight line connecting two points:



The Euclidean distance measures the length of a straight line connecting two points:



The Euclidean distance measures the length of a straight line connecting two points:



The Euclidean distance measures the length of a straight line connecting two points:



Apply Pythagoras' theorem:  $d(a,b)=(|x_b-x_a|^2+|y_b-y_a|^2)^{\frac{1}{2}}$ 

The Euclidean distance measures the length of a straight line connecting two points:



Apply Pythagoras' theorem: 
$$d(a,b)=(|x_b-x_a|^2+|y_b-y_a|^2)^{\frac{1}{2}}$$

In matrix notation:

$$d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2$$

where 
$$\mathbf{a} = \begin{pmatrix} x_a \\ y_a \end{pmatrix}$$
 and  $\mathbf{b} = \begin{pmatrix} x_b \\ y_b \end{pmatrix}$ 

One can generalize to different power coefficients  $p \ge 1$ :

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}}$$

$$\|\mathbf{x} - \mathbf{y}\|_{\mathbf{p}} = (|x_{1} - y_{1}|^{\mathbf{p}} + |x_{2} - y_{2}|^{\mathbf{p}})^{\frac{1}{\mathbf{p}}}$$

One can generalize to different power coefficients  $p \ge 1$ :

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}}$$

$$\|\mathbf{x} - \mathbf{y}\|_{p} = (|x_{1} - y_{1}|^{p} + |x_{2} - y_{2}|^{p})^{\frac{1}{p}}$$

As well as generalize from  $\mathbb{R}^2$  to  $\mathbb{R}^k$ :

$$\|\mathbf{x} - \mathbf{y}\|_p = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$$

One can generalize to different power coefficients  $p \ge 1$ :

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}}$$

$$\|\mathbf{x} - \mathbf{y}\|_{\mathbf{p}} = (|x_{1} - y_{1}|^{\mathbf{p}} + |x_{2} - y_{2}|^{\mathbf{p}})^{\frac{1}{\mathbf{p}}}$$

As well as generalize from  $\mathbb{R}^2$  to  $\mathbb{R}^k$ :

$$\|\mathbf{x} - \mathbf{y}\|_p = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$$

This definition gives us the  $L_p$  distance between vectors in  $\mathbb{R}^k$ .

One can generalize to different power coefficients  $p \ge 1$ :

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}}$$

$$\|\mathbf{x} - \mathbf{y}\|_{\mathbf{p}} = (|x_{1} - y_{1}|^{\mathbf{p}} + |x_{2} - y_{2}|^{\mathbf{p}})^{\frac{1}{\mathbf{p}}}$$

As well as generalize from  $\mathbb{R}^2$  to  $\mathbb{R}^k$ :

$$\|\mathbf{x} - \mathbf{y}\|_p = (\sum_{i=1}^k |x_i - y_i|^p)^{\frac{1}{p}}$$

This definition gives us the  $L_p$  distance between vectors in  $\mathbb{R}^k$ .

The length (or norm) of a vector is simply its distance from the origin:

$$\|\mathbf{x} - \mathbf{0}\|_2 = \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^k |x_i|^2}$$

One can generalize to different power coefficients  $p \ge 1$ :

$$\|\mathbf{x} - \mathbf{y}\|_{2} = (|x_{1} - y_{1}|^{2} + |x_{2} - y_{2}|^{2})^{\frac{1}{2}} \downarrow$$
  
$$\|\mathbf{x} - \mathbf{y}\|_{p} = (|x_{1} - y_{1}|^{p} + |x_{2} - y_{2}|^{p})^{\frac{1}{p}}$$

As well as generalize from  $\mathbb{R}^2$  to  $\mathbb{R}^k$ :

$$\|\mathbf{x} - \mathbf{y}\|_p = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$$

This definition gives us the  $L_p$  distance between vectors in  $\mathbb{R}^k$ .

The length (or norm) of a vector is simply its distance from the origin:

$$\|\mathbf{x} - \mathbf{0}\|_2 = \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^k |x_i|^2} = \sqrt{\mathbf{x}^{\top} \mathbf{x}}$$

# $L_p$ unit balls in $\mathbb{R}^2$



So, for convex functions  $f(\mathbf{x})$ , a global minimizer  $\mathbf{x}$  is found by setting:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

and then solving for  $\boldsymbol{x}$ .

So, for convex functions  $f(\mathbf{x})$ , a global minimizer  $\mathbf{x}$  is found by setting:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

and then solving for x.

- $f(x) = |x|^p$  for  $p \ge 1$
- $f(x) = x \log x$  for x > 0

So, for convex functions  $f(\mathbf{x})$ , a global minimizer  $\mathbf{x}$  is found by setting:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

and then solving for x.

- $f(x) = |x|^p$  for  $p \ge 1$
- $f(x) = x \log x$  for x > 0
- ullet every norm on  $\mathbb{R}^n$ , e.g.,  $f(\mathbf{x}) = \|\mathbf{x}\|_2$

So, for convex functions  $f(\mathbf{x})$ , a global minimizer  $\mathbf{x}$  is found by setting:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

and then solving for x.

- $f(x) = |x|^p$  for  $p \ge 1$
- $f(x) = x \log x$  for x > 0
- ullet every norm on  $\mathbb{R}^n$ , e.g.,  $f(\mathbf{x}) = \|\mathbf{x}\|_2$
- $f(\mathbf{x}) = \max_i \{x_i\} = \max\{x_1, \dots, x_n\}$

So, for convex functions  $f(\mathbf{x})$ , a global minimizer  $\mathbf{x}$  is found by setting:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

and then solving for x.

- $f(x) = |x|^p$  for  $p \ge 1$
- $f(x) = x \log x$  for x > 0
- ullet every norm on  $\mathbb{R}^n$ , e.g.,  $f(\mathbf{x}) = \|\mathbf{x}\|_2$
- $f(\mathbf{x}) = \max_i \{x_i\} = \max\{x_1, \dots, x_n\}$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) = \max_{i} \{\alpha x_i + (1 - \alpha)y_i\}$$

So, for convex functions  $f(\mathbf{x})$ , a global minimizer  $\mathbf{x}$  is found by setting:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

and then solving for x.

- $f(x) = |x|^p$  for  $p \ge 1$
- $f(x) = x \log x$  for x > 0
- ullet every norm on  $\mathbb{R}^n$ , e.g.,  $f(\mathbf{x}) = \|\mathbf{x}\|_2$
- $f(\mathbf{x}) = \max_i \{x_i\} = \max\{x_1, \dots, x_n\}$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) = \max_{i} \{\alpha x_i + (1 - \alpha)y_i\}$$
  
$$\leq \alpha \max_{i} \{x_i\} + (1 - \alpha) \max_{i} \{y_i\}$$

So, for convex functions  $f(\mathbf{x})$ , a global minimizer  $\mathbf{x}$  is found by setting:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

and then solving for x.

- $f(x) = |x|^p$  for  $p \ge 1$
- $f(x) = x \log x$  for x > 0
- ullet every norm on  $\mathbb{R}^n$ , e.g.,  $f(\mathbf{x}) = \|\mathbf{x}\|_2$
- $f(\mathbf{x}) = \max_i \{x_i\} = \max\{x_1, \dots, x_n\}$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) = \max_{i} \{\alpha x_i + (1 - \alpha)y_i\}$$
  
$$\leq \alpha \max_{i} \{x_i\} + (1 - \alpha) \max_{i} \{y_i\}$$
  
$$= \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

# Linear regression: Finding a solution

$$\min_{a,b\in\mathbb{R}} \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

# Linear regression: Finding a solution

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta} \in \mathbb{R}^2} \ell(\mathbf{\Theta})$$

where  $\ell:\mathbb{R}^2 \to \mathbb{R}$  is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

# Linear regression: Finding a solution

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta} \in \mathbb{R}^2} \ell(\mathbf{\Theta})$$

where  $\ell: \mathbb{R}^2 \to \mathbb{R}$  is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

A solution is found by setting  $\nabla_{\boldsymbol{\Theta}} \ell(\boldsymbol{\Theta}) = \mathbf{0}$ :

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} \nabla_{\Theta} (y_i - ax_i - b)^2$$

$$\boldsymbol{\Theta}^* = \arg\min_{\boldsymbol{\Theta} \in \mathbb{R}^2} \ell(\boldsymbol{\Theta})$$

where  $\ell: \mathbb{R}^2 \to \mathbb{R}$  is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

A solution is found by setting  $\nabla_{\boldsymbol{\Theta}} \ell(\boldsymbol{\Theta}) = \mathbf{0}$ :

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} \nabla_{\Theta} (y_i - ax_i - b)^2$$
$$= \sum_{i=1}^{n} \nabla_{\Theta} (y_i^2 + a^2 x_i^2 + b^2 - 2ax_i y_i - 2by_i + 2abx_i)$$

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta} \in \mathbb{R}^2} \ell(\mathbf{\Theta})$$

where  $\ell: \mathbb{R}^2 \to \mathbb{R}$  is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

A solution is found by setting  $\nabla_{\boldsymbol{\Theta}} \ell(\boldsymbol{\Theta}) = \mathbf{0}$ :

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} \nabla_{\Theta} (y_i - ax_i - b)^2$$

$$= \sum_{i=1}^{n} \nabla_{\Theta} (y_i^2 + a^2 x_i^2 + b^2 - 2ax_i y_i - 2by_i + 2abx_i)$$

$$= \sum_{i=1}^{n} \binom{2ax_i^2 - 2x_i y_i + 2bx_i}{2b - 2y_i + 2ax_i}$$

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta} \in \mathbb{R}^2} \ell(\mathbf{\Theta})$$

where  $\ell: \mathbb{R}^2 \to \mathbb{R}$  is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

A solution is found by setting  $\nabla_{\boldsymbol{\Theta}} \ell(\boldsymbol{\Theta}) = \mathbf{0}$ :

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} \nabla_{\Theta} (y_i - ax_i - b)^2$$

$$= \sum_{i=1}^{n} \nabla_{\Theta} (y_i^2 + a^2 x_i^2 + b^2 - 2ax_i y_i - 2by_i + 2abx_i)$$

$$= \left( \sum_{i=1}^{n} 2ax_i^2 - 2x_i y_i + 2bx_i \right)$$

$$= \left( \sum_{i=1}^{n} 2b - 2y_i + 2ax_i \right)$$

$$\boldsymbol{\Theta}^* = \arg\min_{\boldsymbol{\Theta} \in \mathbb{R}^2} \ell(\boldsymbol{\Theta})$$

where  $\ell: \mathbb{R}^2 \to \mathbb{R}$  is defined as:

$$\ell(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

A solution is found by setting  $\nabla_{\mathbf{\Theta}} \ell(\mathbf{\Theta}) = \mathbf{0}$ :

$$\nabla_{\Theta} \sum_{i=1}^{n} (y_i - ax_i - b)^2 = \left( \frac{\sum_{i=1}^{n} 2ax_i^2 - 2x_iy_i + 2bx_i}{\sum_{i=1}^{n} 2b - 2y_i + 2ax_i} \right)$$

We get 2 linear equations in the 2 unknowns a, b:

$$\left(\frac{\sum_{i=1}^{n} ax_{i}^{2} + bx_{i} - x_{i}y_{i}}{\sum_{i=1}^{n} ax_{i} + b - y_{i}}\right) = \begin{pmatrix} 0\\0 \end{pmatrix}$$

The learning model of linear regression is linear in the parameters (while it is **not** linear in x, due to the bias).

Therefore, we can use matrix notation:

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

The learning model of linear regression is linear in the parameters (while it is **not** linear in x, due to the bias).

Therefore, we can use matrix notation:

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

**Remark:** Deep learning frameworks frequently use the alternative expression with the bias encoded separately:

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{Y}} = a \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{\mathbf{X}} + b$$

Familiarize with matrix calculus.

When implementing deep nets, we manipulate matrices, vectors, and tensors.

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations  $y_i = ax_i + b$  at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations  $y_i = ax_i + b$  at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations  $y_i = ax_i + b$  at once and makes the linearity w.r.t. a,b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations  $y_i = ax_i + b$  at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

Setting the gradient w.r.t.  $\theta$  to zero:

$$-2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} = \mathbf{0}$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations  $y_i = ax_i + b$  at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

Setting the gradient w.r.t.  $\theta$  to zero:

$$\mathbf{X}^{ op}\mathbf{X}oldsymbol{ heta} = \mathbf{X}^{ op}\mathbf{y}$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\boldsymbol{\theta}}$$

This expresses all the equations  $y_i = ax_i + b$  at once and makes the linearity w.r.t. a, b evident.

The MSE is simply:

$$\ell(\boldsymbol{\theta}) = \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

Setting the gradient w.r.t.  $\theta$  to zero:

$$\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

We get a closed form solution to our problem.

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\mathsf{T}}\mathbf{y} - 2\mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} \quad \stackrel{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\mathsf{T}}\mathbf{y} - 2\mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} \quad \stackrel{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta}$$

$$\underline{\mathsf{Example:}}\ f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \begin{pmatrix} \theta_1 & \cdots & \theta_n \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_n \end{pmatrix}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

$$\underline{\mathsf{Example:}}\ f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \theta_{i} \theta_{j}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \overset{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

Example: 
$$f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_1} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \theta_i \theta_j \\ \vdots \\ \frac{\partial}{\partial \theta_n} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \theta_i \theta_j \end{pmatrix}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \stackrel{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

Example: 
$$f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \begin{pmatrix} \sum_{j} a_{1j} \theta_{j} + \sum_{i} a_{i1} \theta_{i} \\ \vdots \\ \sum_{j} a_{nj} \theta_{j} + \sum_{i} a_{in} \theta_{i} \end{pmatrix}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\mathsf{T}}\mathbf{y} - 2\mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} \quad \stackrel{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta}$$

Example: 
$$f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \begin{pmatrix} \sum_{i} (a_{1i} + a_{i1}) \theta_{i} \\ \vdots \\ \sum_{i} (a_{ni} + a_{in}) \theta_{i} \end{pmatrix}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \stackrel{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

$$\underline{\mathsf{Example:}}\ f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = (\mathbf{A} + \mathbf{A}^{\top})\boldsymbol{\theta}$$

In the previous slide, for the differentiation step:

$$\mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} \quad \stackrel{\nabla_{\boldsymbol{\theta}}}{\Longrightarrow} \quad -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

what we did is **exactly equivalent** to the element-by-element computation of slide #16, but we did it directly in matrix form.

$$\underline{\mathsf{Example:}}\ f(\boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = (\mathbf{A} + \mathbf{A}^{\top})\boldsymbol{\theta}$$

If  $\mathbf{A}$  is symmetric (e.g.,  $\mathbf{A} = \mathbf{X}^{\top}\mathbf{X}$ ), then:

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = 2\mathbf{A}\boldsymbol{\theta}$$

In the general case, the data points  $(\mathbf{x}_i, \mathbf{y}_i)$  are vectors in  $\mathbf{R}^d$ :

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \mathbf{b}$$
 for  $i = 1, \dots, n$ 

In the general case, the data points  $(\mathbf{x}_i, \mathbf{y}_i)$  are vectors in  $\mathbf{R}^d$ :

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \mathbf{b} \quad \text{for } i = 1, \dots, n$$

Stacking all data points into matrices  $\tilde{\mathbf{X}} = \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots \\ 1 & 1 \end{pmatrix}$  and  $\mathbf{Y}$ , we get:

$$\underbrace{\begin{pmatrix} y_{11} & \cdots & y_{1d} \\ y_{21} & \cdots & y_{2d} \\ \vdots & & \vdots \\ y_{n1} & \cdots & y_{nd} \end{pmatrix}}_{\mathbf{Y}^{\top}} = \underbrace{\begin{pmatrix} x_{11} & \cdots & x_{1d} & 1 \\ x_{21} & \cdots & x_{2d} & 1 \\ \vdots & & \vdots & \vdots \\ x_{n1} & \cdots & x_{nd} & 1 \end{pmatrix}}_{\mathbf{X}^{\top} := (\tilde{\mathbf{X}}^{\top} | \mathbf{1})} \underbrace{\begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & & \vdots \\ a_{d1} & \cdots & a_{dd} \\ b_{1} & \cdots & b_{d} \end{pmatrix}}_{\boldsymbol{\Theta}}$$

According to which, for each output data point  $y_i$  we have:

$$\underbrace{\begin{pmatrix} y_{i1} \\ \vdots \\ y_{id} \end{pmatrix}}_{\mathbf{y}_{i}} = \begin{pmatrix} \sum_{j=1}^{d} a_{j1} x_{ij} + b_{1} \\ \vdots \\ \sum_{j=1}^{d} a_{jd} x_{ij} + b_{d} \end{pmatrix}$$

In the general case, the data points  $(\mathbf{x}_i, \mathbf{y}_i)$  are vectors in  $\mathbf{R}^d$ :

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \mathbf{b} \quad \text{for } i = 1, \dots, n$$

Stacking all data points into matrices  $\tilde{\mathbf{X}} = \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots \\ 1 & 1 \end{pmatrix}$  and  $\mathbf{Y}$ , we get:

$$\underbrace{\begin{pmatrix} y_{11} & \cdots & y_{1d} \\ y_{21} & \cdots & y_{2d} \\ \vdots & & \vdots \\ y_{n1} & \cdots & y_{nd} \end{pmatrix}}_{\mathbf{Y}^{\top}} = \underbrace{\begin{pmatrix} x_{11} & \cdots & x_{1d} & 1 \\ x_{21} & \cdots & x_{2d} & 1 \\ \vdots & & \vdots & \vdots \\ x_{n1} & \cdots & x_{nd} & 1 \end{pmatrix}}_{\mathbf{X}^{\top} := (\tilde{\mathbf{X}}^{\top} | \mathbf{1})} \underbrace{\begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & & \vdots \\ a_{d1} & \cdots & a_{dd} \\ b_{1} & \cdots & b_{d} \end{pmatrix}}_{\boldsymbol{\Theta}}$$

The MSE reads:

$$\ell(\boldsymbol{\Theta}) = \|\mathbf{Y}^{\top} - \mathbf{X}^{\top}\boldsymbol{\Theta}\|_{2}^{2} = \operatorname{tr}(\mathbf{Y}^{\top}\mathbf{Y}) - 2\operatorname{tr}(\mathbf{Y}\mathbf{X}^{\top}\boldsymbol{\Theta}) + \operatorname{tr}(\boldsymbol{\Theta}^{\top}\mathbf{X}\mathbf{X}^{\top}\boldsymbol{\Theta})$$

In the general case, the data points  $(\mathbf{x}_i, \mathbf{y}_i)$  are vectors in  $\mathbf{R}^d$ :

$$\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \mathbf{b} \quad \text{for } i = 1, \dots, n$$

Stacking all data points into matrices  $\tilde{\mathbf{X}} = \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots \\ 1 & 1 \end{pmatrix}$  and  $\mathbf{Y}$ , we get:

$$\underbrace{\begin{pmatrix} y_{11} & \cdots & y_{1d} \\ y_{21} & \cdots & y_{2d} \\ \vdots & & \vdots \\ y_{n1} & \cdots & y_{nd} \end{pmatrix}}_{\mathbf{Y}^{\top}} = \underbrace{\begin{pmatrix} x_{11} & \cdots & x_{1d} & 1 \\ x_{21} & \cdots & x_{2d} & 1 \\ \vdots & & \vdots & \vdots \\ x_{n1} & \cdots & x_{nd} & 1 \end{pmatrix}}_{\mathbf{X}^{\top} := (\tilde{\mathbf{X}}^{\top} | \mathbf{1})} \underbrace{\begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & & \vdots \\ a_{d1} & \cdots & a_{dd} \\ b_{1} & \cdots & b_{d} \end{pmatrix}}_{\boldsymbol{\Theta}}$$

The MSE reads:

$$\ell(\boldsymbol{\Theta}) = \|\mathbf{Y}^{\top} - \mathbf{X}^{\top}\boldsymbol{\Theta}\|_{2}^{2} = \operatorname{tr}(\mathbf{Y}^{\top}\mathbf{Y}) - 2\operatorname{tr}(\mathbf{Y}\mathbf{X}^{\top}\boldsymbol{\Theta}) + \operatorname{tr}(\boldsymbol{\Theta}^{\top}\mathbf{X}\mathbf{X}^{\top}\boldsymbol{\Theta})$$

The closed form solution of  $\nabla_{\Theta} \ell(\Theta) = 0$  is (extra points: show me why):

$$\mathbf{\Theta} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{Y}^{\top}$$

# Wrap-up



Sometimes, the learning model is linear and the loss is  $\mbox{\it quadratic}.$ 

This case can be solved in closed form.

### Wrap-up



Sometimes, the learning model is linear and the loss is quadratic.

This case can be solved in closed form.

The more data points  $(\mathbf{x}_i, \mathbf{y}_i)$  we have, the better.

## Wrap-up



Sometimes, the learning model is linear and the loss is quadratic.

This case can be solved in closed form.

The more data points  $(\mathbf{x}_i, \mathbf{y}_i)$  we have, the better.

In deep learning, linear models usually appear as "pieces" within more complicated nonlinear models.

### Suggested reading

For convexity and optimality, read Sections 3.1.1 and 3.1.3 of the book:

S. Boyd & L. Vandenberghe, "Convex optimization". Cambridge University Press, 2009

Public download link: https://web.stanford.edu/~boyd/cvxbook/bv\_cvxbook.pdf