Reinforcement Learning Course Projects

Partha Sarathi Mohapatra EE18D703

21 July 2020

Hierarchical Reinforcement Learning

In this Hierarchical Reinforcement Learning implementation there are in total 12 options (8 multi-step options and 4 primitive options). But if we take into consideration initiation states (\mathcal{I}) and the termination conditions $(\beta(s))$ of each multi-step options, then only 2 multi-step options (so in total 6 options including the primitive ones) will be valid in each state.

The size of Q(s, o) table will be $|\mathcal{S}| \times |\mathcal{O}|$, where \mathcal{S} and \mathcal{O} represents the state space and the set of options respectively. So for 12 options the required memory size is $|\mathcal{S}| \times 12$. But as discussed above in each state only 6 options are valid, so only $|\mathcal{S}| \times 6$ size of memory is sufficient for storing all Q values (if we consider only the 2 valid multi-step options in each state as either clockwise or anticlockwise options, same indices can represent different multi-step options depending upon the initiation states \mathcal{I}).

1 SMDP Q-learning

We implement the SMDP Q-learning with eight predefined (multi-step) options for the two goal states G1 and G2 where the starting state was chosen randomly in the room 1. To visualize the learned Q- values we plot the heat maps for four primitive actions and multi-step options (combining all clockwise multi-step options as one and all anticlockwise multi-step options as another) in the following figures.

Heat maps for goal G1:

Figure 1: Heat map showing Q-values for "UP" and "RIGHT" actions for goal G1

Figure 2: Heat map showing Q-values for "DOWN" and "LEFT" actions for goal G1

Figure 3: Heat map showing Q-values for anticlockwise and clockwise options for goal G1

Heat maps for goal G2:

Figure 4: Heat map showing Q-values for "UP" and "RIGHT" actions for goal G2

Figure 5: Heat map showing Q-values for "DOWN" and "LEFT" actions for goal G2

Figure 6: Heat map showing Q-values for anticlockwise and clockwise options for goal G2

1.1 Observations

- (i) As can be seen from the above heat maps, the goal state has the highest Q-value (value of +1); as the only reward is +1, which the agent can get after reaching the goal.
- (ii) Other states Q-values not only depend upon the number of steps needed to reach the goal but also the option taken in that state. For example in figure 2 and 5 for "DOWN" action the states which will directly lead to the goal state with "DOWN" action (the states directly above the goal) has higher Q-values than other nearer state for which the same action will not directly lead to the goal. For other options also similar patterns can be observed.
- (iii) Initial state in center of room 4:(Heat maps for this case are shown in figures 7-12) If the initial state of the agent is changed to the center of room 4 (state 90), we see that for goal G1, most of the times, the agent first takes the anticlockwise multi-step option from room 4 to hallway of room 3 (state 77) and then the multi-step option to hallway of room 2 (state 56), which is also G1. For goal G2, the agent takes the same multi-step options to state 77 and then to state 56, thereafter it takes primitive actions to reach the goal G2 (state 64). These are represented abstractly below:

```
For goal G1:
90 \xrightarrow{\text{multi-step option}} 77 \xrightarrow{\text{multi-step option}} 56
For goal G2:
90 \xrightarrow{\text{multi-step option}} 77 \xrightarrow{\text{multi-step option}} 56 \xrightarrow{\text{primitive actions}} 64
```

We repeat the above implementation for both goal states G1 and G2 by changing the initial state to the center of the room 4 and plotted the learned Q- values in the figures shown below:

Heat maps for goal G1 with initial state in the centre of room 4:

Figure 7: Heat map showing Q-values for "UP" and "RIGHT" actions for goal G1 with initial state in center of room 4

Figure 8: Heat map showing Q-values for "DOWN" and "LEFT" actions for goal G1 with initial state in center of room 4

Figure 9: Heat map showing Q-values for anticlockwise and clockwise options for goal G1 with initial state in center of room 4

Heat maps for goal G2 with initial state in the centre of room 4:

Figure 10: Heat map showing Q-values for "UP" and "RIGHT" actions for goal G2 with initial state in center of room 4

Figure 11: Heat map showing Q-values for "DOWN" and "LEFT" actions for goal G2 with initial state in center of room 4

Figure 12: Heat map showing Q-values for anticlockwise and clockwise options for goal G2 with initial state in center of room 4

2 Intra-option Q-learning (Bonus)

In this section we implement the intra-option Q-learning, where the agent learns simultaneously many options in off-policy and select the optimal one. To learn the optimal options policy (reaching terminal state in less number of steps) we used a step reward of -1 (used for that option only and this reward is not used to solve the original problem).

We plot the heat maps for the learned Q-values for both goal states G1 and G2 in the following figures.

Heat maps for goal G1:

Figure 13: Heat map showing Q-values for "UP" and "RIGHT" actions for goal G1

Figure 14: Heat map showing Q-values for "DOWN" and "LEFT" actions for goal G1

Figure 15: Heat map showing Q-values for anticlockwise and clockwise options for goal G1

Heat maps for goal G2:

Figure 16: Heat map showing Q-values for "UP" and "RIGHT" actions for goal G2

Figure 17: Heat map showing Q-values for "DOWN" and "LEFT" actions for goal G2

Figure 18: Heat map showing Q-values for anticlockwise and clockwise options for goal G2

2.1 Observations (for the bonus question)

- (i) From the heat maps of the learned Q-values for intra-option Q-learning, we notice some similar observations as for SMDP Q-learning such as goal state having the highest Q-values and states Q-values depends on its location relative to the goal and also to the option taken there.
- (ii) But one notable thing is for same goal the states have higher Q-values in intra-option Q-learning as compared to SMDP for the multi-step options, which is evident as in intra-option we leaned and compared many similar options. For this reason it also takes much time as compared to SMDP to learn the policy.

(iii) Initial state in center of room 4:

If the initial state of the agent is changed to the center of room 4 (state 90), we see similar observations as in the case of SMDP Q-learning, but in this case, the agent takes primitive action much more often as compared to the previous cases.