Билет 19. Решение внутренней краевой задачи Дирихле для уравнения Лапласа в круге. Формула Пуассона

Задача Дирихле в круге:

$$\begin{cases} \Delta u = 0, \\ u(r, \varphi)|_{r=a} = f(\varphi) \end{cases}$$

Или в полярных координатах:

$$\begin{cases} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial^2 \varphi} = 0, \\ u|_{r=a} = f(\varphi), 0 \le \varphi < 2\pi, 0 \le r \le a \end{cases}$$

Решение:

Метод разделения переменных: $u(r,\varphi) = R(r)\Phi(\varphi)$ Подставим в задачу Дирихле в полярных координатах:

$$\frac{r\frac{\partial}{\partial r}\left(r\frac{\partial R}{\partial r}\right)}{R(r)} = -\frac{\Phi''(\varphi)}{\Phi(\varphi)} = \lambda = const \tag{1}$$

Получим:

$$r\frac{\partial}{\partial r}\left(r\frac{\partial R}{\partial r}\right) - \lambda R(r) = 0 \tag{2}$$

Уравнение Эйлера:

$$r^2R'' + rR' - \lambda R = 0 \tag{3}$$

Частное решение в виде $R = r^m, m = const.$

$$r^2(m-1)mr^{m-2} + rmr^{m-1} - \lambda r^m = 0$$

 $m = \pm \lambda^2(\lambda > 0)$ или $\lambda = 0$

Если $\lambda=0$, то $R(r)=C_0\ln r+C_1$. Решение должно быть ограничено в центре круга при r=0, поэтому из двух найденных решений берем $r^{\lambda^2}=r^n$ и $u(r,\varphi)$ должна быть непрерывной и конечной в круге.

$$\Phi'' + \lambda \Phi = 0, \Phi(\varphi) = \Phi(\varphi + 2\pi)$$

$$\Phi(\varphi) = A_n \cos n\varphi + B_n \sin n\varphi$$

Все частные решения: $u_n(r,\varphi) = r^n(A_n \cos n\varphi + B_n \sin n\varphi), n = 0, 1...$

$$u(r,\varphi) = \sum_{n=0}^{\infty} r^n (A_n \cos n\varphi + B_n \sin n\varphi)$$
(4)

Найдем A_n и B_n разложение $f(\varphi)$ в $(0,2\pi)$ в ряде Фурье.

$$f(\varphi) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} r^n (\alpha_n \cos n\varphi + \beta_n \sin n\varphi)$$
 (5)

$$\alpha_0 = \frac{1}{\pi} \int_{0}^{2\pi} f(\varphi) d\varphi, \ \alpha_n = \frac{1}{\pi} \int_{0}^{2\pi} f(\varphi) \cos n\varphi d\varphi, \quad n = 0, 1..$$
$$\beta_n = \frac{1}{\pi} \int_{0}^{2\pi} f(\varphi) \sin n\varphi d\varphi, \quad n = 0, 1..$$

Тогда получаем: $A_0=\frac{\alpha_0}{2}, A_n=\frac{\alpha_n}{a^n}, B_n=\frac{\beta_n}{a^n}$

$$u(r,\varphi) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n \left(\alpha_n \cos n\varphi + \beta_n \sin n\varphi\right) \tag{6}$$

Подставим выражение для коэффициентов Фурье в формулу (6), тогда получим:

$$u(r,\varphi) = \frac{1}{\pi} \int_{0}^{2\pi} f(\varphi) \left(\frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a} \right)^{n} (\cos n\varphi \cos n\alpha + \sin n\varphi \sin n\alpha) \right) d\alpha = \frac{1}{\pi} \int_{0}^{2\pi} f(\varphi) \left(\frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a} \right)^{n} (\cos n(\varphi - \alpha)) \right) d\alpha$$

$$\left\{\cos n(\varphi - \alpha) = \frac{e^{in(\varphi - \alpha} + e^{-in(\varphi - \alpha)}}{2}, q = \frac{r}{a} < 1\right\} = \frac{1}{2} \left(1 + \sum_{n=1}^{\infty} \left(qe^{i(\varphi - \alpha)}\right)^n + \left(qe^{-i(\varphi - \alpha)}\right)^n\right) =$$

$$= \frac{1}{2} \left(1 + \frac{qe^{i(\varphi - \alpha)}}{1 - qe^{i(\varphi - \alpha)}} + \frac{qe^{-i(\varphi - \alpha)}}{1 - qe^{-i(\varphi - \alpha)}}\right) = \frac{1}{2} \frac{1 - q^2}{1 - 2q\cos(\varphi - \alpha) + q^2} = \frac{1}{2} \frac{a^2 - r^2}{a^2 - 2ar\cos(\varphi - \alpha) + r^2}$$

$$u(r, \varphi) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f(\alpha)(a^2 - r^2)}{a^2 - 2ar\cos(\varphi - \alpha) + r^2} d\alpha, \quad (r < a) \tag{7}$$

1 Теормин. Теоремы единственности и устойчивости решения задачи Коши для уравнения колебания

Задача Коши для однородного уравения колебаний: $-\infty < x < \infty, t > 0$.

$$\begin{cases} u_{tt} = a^2 u_{xx}, \\ u(x,0) = \varphi(x), u_t(x,0) = \psi(x) \end{cases}$$

Теорема. Пусть u(x) дважды непрерывно дифференцируема, а $\psi(x)$ непрерывно дифференцируема на бесконечной прямой. Тогда решение задачи Коши существует, единственно и определяется формулой Даламбера:

$$u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\alpha) d\alpha.$$

Теорема. Пусть начальные функции $\varphi_s(x)$ и $\psi_s(x)$ (s=1,2) двух задач Коши, удовлетворяют условиям : $|\varphi_1(x)-\varphi_2(x)| \leq \epsilon$, $x \in (-\infty,\infty)$ и $\int\limits_a^b |\psi_1(z)-\psi_2(z)| \, dz \leq \epsilon^2 (b-a)^2$, тогда выполняется для решений этих задач с $t \in [0,T]$ $|u_1(x,t)-u_2(x,t)| \leq \epsilon (1+T)$ (устойчивость).