1 TRIGONOMETRY

(1) Fill in the following table with *exact* values.

θ (degrees)	θ (radians $0 \le \theta \le 2\pi$)	$\sin \theta$	$\cos \theta$	tan θ
0°				
30°				
45°				
60°				
90°				
120°				
135°				
150°				
180°				
210°				
225°				
240°				
270°				
300°				
315°				
330°				

- (2) What are the period and amplitude of each of the following functions? Sketch a graph.
 - (a) $\cos\left(x-\frac{\pi}{2}\right)$

SOLUTION: The period is 2π , and the amplitude is 1. The graph is the same as the graph of $y = \sin(x)$. (!!)

(b) $2\sin(x+\pi)-1$

Solution: The period is 2π , and the amplitude is 2.

(c) $-\frac{2}{\pi}\sin\left(\frac{\pi}{2}x\right)$

SOLUTION: The period is 4 and the amplitude is $\frac{2}{\pi}$.

(3) Match the left-hand side of each of the following trigonometric identities with the correct right-hand side.

- (A) $sec^2 \theta$
- (B) $\csc^2 \theta$
- (C) $\cos(\theta + \phi)$
- (D) $sin(\theta + \phi)$
- (E) $cos(2\theta)$
- (F) $\sin(2\theta)$
- (G) $\cos^2 \theta$
- (H) $\sin^2 \theta$

- (I) $\frac{1-\cos 2\theta}{2}$
- (II) $2\sin\theta\cos\theta$
- (III) $\cos\theta\cos\phi \sin\theta\sin\phi$
- (IV) $\sin\theta\cos\varphi + \cos\theta\sin\varphi$
- (V) $1 + \tan^2 \theta$
- (VI) $\cos^2 \theta \sin^2 \theta$
- (VII) $1 + \cot^2 \theta$
- (VIII) $\frac{1+\cos 2\theta}{2}$

SOLUTION:

- (A) (VII)
- (B) (V)
- (C) (III)
- (D) (IV)
- (E) (VI)
- (F) (II)
- (G) (VIII)
- (H) (I)
- (4) Find exact values for the following expressions:
 - (a) $\tan \theta$ when $\sin \theta = 4/5$.

SOLUTION: Draw a triangle!

Then $\tan \theta = \text{opposite/adjacent} = 4/3$.

(b) $\sin\left(\frac{\pi}{12}\right)$

SOLUTION: Use some trig identities! Notice that

$$\frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{1\pi}{12}$$

Then

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$

$$= \sin\left(\frac{\pi}{3}\right)\cos\left(-\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{3}\right)\sin\left(-\frac{\pi}{4}\right)$$

$$= \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) + \frac{1}{2}\left(-\frac{\sqrt{2}}{2}\right)$$

$$= \left[\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}\right]$$

2 EXPONENTIAL FUNCTIONS

- (5) Simplify the following expressions.
 - (a) $\frac{x^2(x^3)^4}{x^4}$ SOLUTION: x^{10}

(b)
$$9^{\frac{1}{3}} \cdot 9^{\frac{1}{6}}$$
 SOLUTION: $9^{\frac{1}{3} + \frac{1}{6}}$

(c)
$$\left(\sqrt{3}\right)^{\frac{1}{2}} \cdot \left(\sqrt{12}\right)^{\frac{1}{2}}$$
 Solution: $\sqrt{3} \cdot \sqrt[4]{4}$

(6) What are the domain and range of each of the following functions?

(a)
$$f(x) = \frac{1}{2 + e^x}$$

SOLUTION: To find the domain, notice that the denominator is never allowed to be zero. When is the denominator zero? When $2 + e^x = 0$. But $2 + e^x$ is never zero, since e^x is always positive. Hence, the domain is all real numbers.

The range of this function is all possible values it will output. When x gets larger and larger, the values of f(x) get smaller and smaller as $2 + e^x$ grows. But it'll never get to zero, so we have a lower bound of 0 (noninclusive). As x goes into the negatives, the denominator gets close to 2, but never reaches it. So the upper bound is 1/2 (noninclusive). The range is therefore $(0, \frac{1}{2})$. A graph of this function is below.

(b)
$$g(x) = \sqrt{1 + 3^{-x}}$$

SOLUTION: To find the domain, first notice that the stuff under the square root is not allowed to be negative. Hence, we must have $1+3^{-x}>0$. Since $3^{-x}>0$, this is always true. So the domain is again all real numbers.

To find the range, notice that 3^{-x} is always bigger than zero. Therefore, $1+3^{-x}$ is always bigger than 1, so $\sqrt{1+3^{-x}}$ is always greater than 1 as well. Hence, the range of g doesn't include any value less than or equal to 1. On the other hand, as x gets far away from zero in the negative direction, $1+3^{-x}$ becomes arbitrarily large. Hence, the range of g(x) includes all numbers larger than 1. So the range is $(1,\infty)$.

A graph of this function is below.

(7) The half-life of phosphorus-32 is about 14 days. If there are 6.6 grams present initially, express the amount of phosphorus-32 remaining as a function of time t. When will there be 1 gram remaining?

SOLUTION: The equation for radioactive decay is

$$A(t) = A_0 \left(\frac{1}{2}\right)^{rt}$$

where r is the decay rate and A_0 is the initial amount. The decay rate is $r=\frac{1}{14\,\text{days}}$, and the initial amount is $A_0=6.6$ grams. So the equation is

$$A(t) = 6.6 \left(\frac{1}{2}\right)^{t/14}.$$

There will be 1 gram left approximately 38 days later.