Readings:

Murphy 11

(opt: K&F 18.6, 19.1, 19.2, 19.4)

Learning with Partially Observed Data

Prof. Suchi Saria

Slides adapted from versions by Profs. Eran Segal and Suin Lee

Training Data D

- Until now, we assumed that the training data is fully observed
 - Each instance assigns values to all the variables in our domain

Incomplete Data

In reality, this assumption might not be true.

- Missing values, Hidden variables
- Challenges
 - Foundational is the learning task well defined?
 - Computational how can we learn with missing data?

Types of Missingness

- Missing Completely at Random (MCAR): if the events that lead to the data-item being missing are independent both of observable variables and of unobservable parameters of interest, and occur entirely at random
 - WBC data has only been transcribed for a fraction of the patients by the administrator.
 - (Little et al., JASA 1988)
- Missing Not at Random (MNAR): is data that is missing for a specific reason (i.e. the value of the variable that's missing is related to the reason it's missing)
 - WBC is only measured when patient is sick. Sickness status not observed.
- Missing at Random (MAR): occurs when the missingness is related to a particular variable, but it is not related to the value of the variable that has missing data
 - Male participants are more likely to refuse to fill depression survey but willingness to fill does not depend on depression result.
 - REFS: Jaeger, ECML 2006; Tian, AISTATS 2015

More formally...

Need to understand what led to missing values

• Missing Completely at Random (MCAR): Missingness is totally random; does not depend on anything.

R models whether an element is missing or not. Y is the quantity of interest. (E.g., say your goal were to estimate the mean of Y.)

- $-P(R|Y,X) = P(R|Y,X^{obs},X^{mis}) = P(R|\psi)$
- Cases with missing values a random sample of the original sample
- No systematic differences between those with missing and observed values
- Analyses using only complete cases will not be biased, but may have low power
- Generally unrealistic, although may be reasonable for things like data entry errors

• Missing At Random (MAR): Missingness depends on observed data

- $-P(R|Y,X) = P(R|Y,X^{obs},\psi)$
- e.g., women more likely to respond than men
- So there are differences between those with observed and missing values, but we observe the ways in which they differ
- Can use weighting or imputation approaches to deal with the missingness
- This is probably the assumption made most frequently
- Including a lot of predictors in the imputation model can make this more plausible

- Not Missing At Random (NMAR): Missingness depends on unobserved values
 - -(R|Y,X) cannot be simplified
 - e.g., probability of someone reporting their income depends on what their income is
 - e.g., probability of reporting prior arrests depends on whether or not they had previously been arrested
 - e.g., probability of reporting prior arrests depends on whether or not they are left-handed, and we do not observe left-handedness for anyone
 - i.e., even among people with the same values of the observed covariates, those with missing values on Y have a different distribution of Y than do those with observed Y
 - So we can't just use the observed cases to help impute the missing cases
 - Unfortunately no easy ways of dealing with this...have to posit some model of the missing data process

Treating Missing Data

- How should we treat missing data?
 - Based on data missing mechanism
- Case I: A coin is tossed on a table, occasionally it drops and measurements are not taken (random missing)
 - Sample sequence: H,T,?,?,T,?,H
 - Treat missing data by ignoring it
- Case II: A coin is tossed, but only heads are reported (deliberate missing values)
 - Sample sequence: H,?,?,?,H,?,H
 - Treat missing data by filling it with Tails

We need to consider the data missing mechanism⁸

Modeling Data Missing Mechanism

- Let's try to model the data missing mechanism
- $X = \{X_1,...,X_n\}$ are random variables

- $O_X = \{O_{X_1}, ..., O_{X_n}\}$ are observability variables
 - Always observed
- $Y = \{Y_1, ..., Y_n\}$ new random variables
 - $Val(Y_i) = Val(X_i) \cup \{?\}$
 - Y_i is a deterministic function of X_i and O_{X_1} : $Y_i = \begin{cases} X_i & O_{X_i} = o^1 \\ ? & O_{X_i} = o^0 \end{cases}$

Modeling Missing Data Mechanism

Case I (random missing values)

$$P(Y = H) = \theta \psi$$

$$P(Y = T) = (1 - \theta) \psi$$

$$P(Y = ?) = (1 - \psi)$$

$$L(D : \theta, \psi) = \theta^{M_H} \cdot (1 - \theta)^{M_T} \cdot \psi^{M_H + M_T} \cdot (1 - \psi)^{M_?}$$

Case II (deliberate missing values)

MLE

$$\hat{\theta} = \frac{M_H}{M_H + M_T}$$

$$\hat{\psi} = \frac{M_H + M_T}{M_H + M_T + M_T}$$

Modeling Missing Data Mechanism

Case I (random missing values)

Case II (deliberate missing values)

$$\begin{split} P(Y = H) &= \theta \psi_{O_X \mid H} \\ P(Y = T) &= (1 - \theta) \psi_{O_X \mid T} \\ P(Y = ?) &= \theta (1 - \psi_{O_X \mid H}) + (1 - \theta) (1 - \psi_{O_X \mid T}) \end{split}$$

$$L(D:\theta,\psi) = \theta^{M_H} \cdot (1-\theta)^{M_T} \cdot \psi_{O_X|H}^{M_H} \cdot \psi_{O_X|T}^{M_T} \cdot \left(\theta(1-\psi_{O_X|H}) + (1-\theta(1-\psi_{O_X|T})\right)^{M_T}$$

- In the MAR and MCAR case, the true joint is recoverable.
 - Missing Completely at Random (MCAR)
 - For every X_i , $Ind(X_i; O_{X_i})$, a very strong assumption
 - Sufficient but not necessary for the decomposition of the likelihood
 - Missing at Random (MAR) is sufficient
 - The probability that the value of X_i is missing is independent of its actual value, given other observed values

 For a more general criteria, see paper by Shiptser et al., 2015 (posted in Resources)

Incomplete Data

In reality, this assumption might not be true.

- Missing values, Hidden variables
- Challenges
 - Foundational is the learning task well defined?
 - Computational how can we learn with missing data?

Hidden (Latent) Variables

- Attempt to learn a model with hidden variables
 - In this case, MCAR always holds (variable is always) missing)
- Why should we care about unobserved variables?

Hidden (Latent) Variables

- Hidden variables also appear in clustering
- Naïve Bayes model:
 - Class variable is hidden
 - Observed attributes are independent given the class

How do missing data affect the likelihood function?

Likelihood for Complete Data

Input Data:

Х	Y
x ⁰	y ⁰
x ⁰	y ¹
x ¹	y ⁰

Likelihood:

$$L(D:\theta) = P(x[1], y[1]) \cdot P(x[2], y[2]) \cdot P(x[3], y[3])$$

$$= P(x^{0}, y^{0}) \cdot P(x^{0}, y^{1}) \cdot P(x^{1}, y^{0})$$

$$= \theta_{x^{0}} \cdot \theta_{y^{0}|x^{0}} \cdot \theta_{x^{0}} \cdot \theta_{y^{1}|x^{0}} \cdot \theta_{x^{1}} \cdot \theta_{y^{0}|x^{1}}$$

$$= \left(\theta_{x^{0}} \cdot \theta_{x^{0}} \cdot \theta_{x^{1}}\right) \left(\theta_{y^{0}|x^{0}} \cdot \theta_{y^{1}|x^{0}}\right) \left(\theta_{y^{0}|x^{1}}\right)$$

- Likelihood decomposes by variables
- Likelihood decomposes within CPDs
- Likelihood function is log-concave → unique global maximum that has a simple analytic closed form.

	P(Y X)	
X	y^0	y^1
x ⁰	$\theta_{y^0 x^0}$	$\theta_{y^1 x^0}$
X ¹	$\theta_{y^0 x^1}$	$\theta_{y^1 x^1}$

Example of concave, convex functions in R

A concave function.

No line segment lies above the graph at any point.

A convex function. No line segment lies below the graph at any point.

A function that is neither concave nor convex.

The line segment shown lies above the graph at some points and below it at other points.

Theorem. Let f be a convex function, and let X be a random variable. Then:

$$E[f(X)] \ge f(EX).$$

Moreover, if f is strictly convex, then E[f(X)] = f(EX) holds true if and only if X = E[X] with probability 1 (i.e., if X is a constant).

Source: https://www.economics.utoronto.ca/osborne/MathTutorial/CV1F.HTM

Likelihood for Incomplete Data

Input Data:

X	Y
?	λ ₀
x ⁰	y ¹
?	y 0

Likelihood:

$$\begin{split} L(D:\theta) &= P(y^{0}) \cdot P(x^{0}, y^{1}) \cdot P(y^{0}) \\ &= \left(\sum_{x \in X} P(x, y^{0})\right) \cdot P(x^{0}, y^{1}) \cdot \left(\sum_{x \in X} P(x, y^{0})\right) \\ &= \left(\theta_{x^{0}} \cdot \theta_{y^{0}|x^{0}} + \theta_{x^{1}} \cdot \theta_{y^{0}|x^{1}}\right) \theta_{x^{0}} \cdot \theta_{y^{1}|x^{0}} \cdot \left(\theta_{x^{0}} \cdot \theta_{y^{0}|x^{0}} + \theta_{x^{1}} \cdot \theta_{y^{0}|x^{1}}\right) \\ &= \left(\theta_{x^{0}} \cdot \theta_{y^{0}|x^{0}} + \theta_{x^{1}} \cdot \theta_{y^{0}|x^{1}}\right) \cdot \theta_{x^{0}} \cdot \theta_{y^{1}|x^{0}} \end{split}$$

P(X)	
x^0	X^1
θ_{x0}	θ_{x1}

	P(Y X)	
X	y ⁰	y^1
x ⁰	$\theta_{y^0 x^0}$	$\theta_{y^1 x^0}$
x^1	$\theta_{v^0 x^1}$	$\theta_{v^1 x^1}$

- Likelihood does not decompose by variables
- Likelihood does not decompose within CPDs
- To be seen: Computing likelihood per instance requires inference!

Likelihood with Missing Data

- Multimodal likelihood function with incomplete data
 - Likelihood function is not log-concave → local maxima cannot be obtained by a simple analytic closed form

MLE from Incomplete Data

Take steps proportional to the positive of the gradient.

Gradient Ascent:

- Follow gradient of likelihood w.r.t. to parameters
- Add line search and conjugate gradient methods to get fast convergence

MLE from Incomplete Data

Nonlinear optimization problem

Expectation Maximization (EM):

- Use "current point" to construct alternative function (which is "nice")
- Guaranty: maximum of new function has better score than current point²

MLE from Incomplete Data

Nonlinear optimization problem

Gradient Ascent and EM

- Find local maxima
- Require multiple restarts to find approx. to the global maximum
- Require computations in each iteration

Tailored algorithm for optimizing likelihood functions

Intuition

- Parameter estimation is easy given complete data
- Computing probability of missing data is "easy" (=inference) given parameters

Strategy

- Pick a starting point for parameters
- "Complete" the data using current parameters
- Estimate parameters relative to data completion
- Iterate
- Procedure guaranteed to improve at each iteration

Deriving Expectation Maximization (EM)

$$\ell(\theta) = \sum_{i=1}^{m} \log p(x; \theta)$$

x is always observed z is missing

$$\begin{split} \sum_{i} \log p(x^{(i)}; \theta) &= \sum_{i} \log \sum_{z^{(i)}} p(x^{(i)}, z^{(i)}; \theta) \\ &= \sum_{i} \log \sum_{z^{(i)}} Q_{i}(z^{(i)}) \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_{i}(z^{(i)})} \\ &\geq \sum_{i} \sum_{z^{(i)}} Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_{i}(z^{(i)})} \end{split}$$

Jensen's inequality

If X is a random variable and ψ is a concave function, then

$$\psi(E[X]) \ge E[\psi(X)]$$

See http://cs229.stanford.edu/notes/cs229-notes8.pdf for a write up of this derivation.

Sufficient for the following to the case for the bound to be tight:

$$rac{p(x^{(i)},z^{(i)}; heta)}{Q_i(z^{(i)})}=c$$
 $Q_i(z^{(i)})\propto p(x^{(i)},z^{(i)}; heta)$ $\sum_z Q_i(z^{(i)})=1$

$$Q_{i}(z^{(i)}) = \frac{p(x^{(i)}, z^{(i)}; \theta)}{\sum_{z} p(x^{(i)}, z; \theta)}$$

$$= \frac{p(x^{(i)}, z^{(i)}; \theta)}{p(x^{(i)}; \theta)}$$

$$= p(z^{(i)}|x^{(i)}; \theta)$$

Expectation Maximization (EM) Summarized

Repeat until convergence{

(E-step) For each i, set

$$Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)};\theta).$$

(M-step) Set

$$heta := rg \max_{ heta} \sum_{z^{(i)}} Q_i(z^{(i)}) \log rac{p(x^{(i)}, z^{(i)}; heta)}{Q_i(z^{(i)})}.$$

- Initialize parameters to θ^0
- Iterate E-step and M-step
- In the t-th iteration, we do
- Expectation (E-step):
 - Let o[m] be the observed data in the m-th training instance.
 - For each m and each family X_i,Pa_i, compute P(X_i,Pa_i | o[m], θ^(t))
 - Compute the expected sufficient statistics for each values x, u on X_i,Pa_i, respectively.

$$\overline{M}_{\theta^{(t)}}[X_i = x, \mathbf{Pa}_i = \mathbf{u}] = \sum_{m} P(X_i = x, \mathbf{Pa}_i = \mathbf{u} \mid o[m], \theta^{(t)})$$

- Maximization (M-step):
 - Treat the expected sufficient statistics as observed and set the parameters to the MLE with respect to the ESS

$$\theta_{X_i=x|\mathbf{Pa}_i=\mathbf{u}}^{(t+1)} = \frac{\overline{M}_{\theta^{(t)}}[X_i = x, \mathbf{Pa}_i = \mathbf{u}]}{\overline{M}_{\Omega^{(t)}}[\mathbf{Pa}_i = \mathbf{u}]}$$

X	Y
?	y 0
x ⁰	y¹
?	y 0

Formal Guarantees:

- $L(D:\Theta^{(t+1)}) \ge L(D:\Theta^{(t)})$
 - Each iteration improves the likelihood
- If $\Theta^{(t+1)} = \Theta^{(t)}$, then $\Theta^{(t)}$ is a stationary point of L(D: Θ)
 - Usually, this means a local maximum

• Main cost:

- Computations of expected counts in E-Step
- Requires inference for each instance in training set
 - Exactly the same as in gradient ascent!
- Reading material on EM
 - Please read Andrew Ng's lecture note

EM – Practical Considerations

- Initial parameters
 - Highly sensitive to starting parameters
 - Choose randomly
 - Choose by guessing from another source
- Stopping criteria
 - Small change in data likelihood
 - Small change in parameters
- Avoiding bad local maxima
 - Multiple restarts
 - Early pruning of unpromising starting points

EM in Practice – Alarm Network

- Alarm network
 - Data sampled from true network
 - 20% of data randomly deleted

Statistical evaluation

- Cross-validation test
 - Divide the data (experiments) into training and test data
 - Compute the likelihood function for the Test data

EM in Practice – Alarm Network

Training error

Test error

Partial Data: Parameter Estimation

- Non-linear optimization problem
- Methods for learning: EM and Gradient Ascent
 - Exploit inference for learning
- Challenges
 - Exploration of a complex likelihood/posterior
 - More missing data ⇒ many more local maxima
 - Cannot represent posterior ⇒ must resort to approximations
 - Inference
 - Main computational bottleneck for learning
 - Learning large networks ⇒ exact inference is infeasible
 ⇒ resort to approximate inference

Structure Learning w. Missing Data

- Distinguish two learning problems
 - Learning structure for a given set of random variables
 - Introduce new hidden variables
 - How do we recognize the need for a new variable?
 - Where do we introduce a newly added hidden variable within G?
 - Open ended and less understood...

Structure Learning w. Missing Data

- Theoretically, there is no problem
 - Define score, and search for structure that maximizes it

$$Score_{BIC}(G:D) = l(\hat{\theta}_G:D) - \frac{\log M}{2}Dim(G)$$

Likelihood term will require gradient ascent or EM

Practically infeasible

- Typically we have O(n²) candidates at each search step
- Requires EM for evaluating each candidate
- Requires inference for each data instance of each candidate
- Total running time per search step:
 O(n² · M · #EM iteration · cost of BN inference)

Typical Search

Structural EM

- Basic idea: use expected sufficient statistics to learn structure, not just parameters
 - Use current network to complete the data using EM
 - Treat the completed data as "real" to score candidates
 - Pick the candidate network with the best score
 - Use the previous completed counts to evaluate networks in the next step
 - After several steps, compute a new data completion from the current network

Structural EM

Conceptually

- Algorithm maintains an actual distribution Q over completed datasets as well as current structure G and parameters θ_{G}
- At each step we do one of the following
 - Use <G, θ_G > to compute a new completion Q and redefine θ_G as the MLE relative to Q
 - Evaluate candidate successors G' relative to Q and pick best

In practice

- Maintain Q implicitly as a model $\langle G, \theta_G \rangle$
- Use the model to compute sufficient statistics M_Q[x,u] when these are needed to evaluate new structures
- Use sufficient statistics to compute MLE estimates of candidate structures

Structural EM Benefits

- Many fewer EM runs
- Score relative to completed data is decomposable!

- Each candidate network requires few recomputations
- Here savings is large since each sufficient statistics computation requires inference
- As in EM, we optimize a simpler score
- Can show improvements and convergence

Hint: See proof

Thm 19.5 KF

$$Score_{BIC}(\langle G, \theta_{G} \rangle : D) - Score_{BIC}(\langle G^{Q}, \theta_{G}^{Q} \rangle : D)$$

$$\geq E_{Q} \left[Score_{BIC}(\langle G, \theta_{G} \rangle : D^{+}) \right] - E_{Q} \left[Score_{BIC}(\langle G^{Q}, \theta_{G}^{Q} \rangle : D^{+}) \right]$$

An SEM step that improves in D+ space, improves real score