תרגיל 1 - תכנון וניתוח אלגוריתמים

שאלה 1

$$\begin{aligned} Maximize \ Z &= 2.5X_1 + X_2 \\ 3X_1 + 5X_2 &\leq 15 \\ 5X_1 + 2X_2 &\leq 10 \\ X_1 &\geq 0, X_2 \geq 0 \end{aligned}$$

1. א - פתרון בשיטה גרפית

X_1	X_2	Z
2	0	5
0	3	3
0	0	0
1.053	2.368	2.6325

$$3X_1 + 5X_2 \le 15 \rightarrow 3X_1 + 5X_2 + X_3 \le 15$$

$$5X_1 + 2X_2 \le 10 \rightarrow 5X_1 + 2X_2 + X_4 \le 10$$

$$X_1 \ge 0, X_2 \ge 0$$

	Z	X1	X2	ХЗ	X4	RHS	יחס
Z	1	-2.5	-1	0	0	0	
ХЗ	0	3	5	1	0	15	$\frac{15}{3} = 5$
Х4	0	5	2	0	1	10	$\frac{10}{5} = 2$

$$R_2 \rightarrow \frac{R_2}{5}$$

$$R_1 \rightarrow R_1 - 3R_2$$

$$R_0 \rightarrow R_0 + 2.5R_2$$

	z	X1	X2	хз	Х4	RHS	יחס
Z	1	0	0	0	0.5	5	
ХЗ	0	0	3.8	1	-0.6	9	
X1	0	1	0.4	0	0.2	2	

(2, 0)

Solution:
$$X_1 = 2, X_2 = 0, X_3 = 9, X_4 = 0, Z = 5$$

- ג.1

$$B^{-1} = (1 - 0.6 \ 0 \ 0.2), B = (1 \ 3 \ 0 \ 5)$$

 $X_b = B^{-1} * b = (1 - 0.6 \ 0 \ 0.2) \cdot (15 \ 10) = (9 \ 2)$

- T .1

 $Maximize~Z=2.5X_1+X_2\rightarrow~Min~Z=~15Y_1+10Y_2$

$$Y_1: 3X_1 + 5X_2 \le 15 \rightarrow 3Y_1 + 5Y_2 \ge 2.5$$

$$Y_2: 5X_1 + 2X_2 \le 10 \rightarrow 5Y_1 + 2Y_2 \ge 1$$

$$X_1 \geq 0, X_2 \geq 0 \rightarrow Y_1, Y_2 \geq 0$$

1. ה -

$$C_B=(0,2.5)$$

$$B^{-1} = (1 - 0.600.2)$$

 $Dual\ Solution: Y^T = C_B * B^{-1} = (0\ 0.5)$

שאלה 2

$$Maximize\ Z = 5X_1 + 2X_2$$

$$X_1+X_2\leq 10$$

$$X_1 = 5$$

$$X_1 \ge 0, X_2 \ge 0$$

- א.2

<i>X</i> ₁	X_2	Z
0	0	0
0	10	20
5	5	35
5	0	25

Maximize
$$Z = 5X_1 + 2X_2 \rightarrow Z - 5X_1 - 2X_2 + 0X_3 + MA_1 = 0$$

 $X_1 + X_2 \le 10 \rightarrow X_1 + X_2 + X_3 = 10$
 $X_1 = 5 \rightarrow X_1 + A_1 = 5$
 $X_1 \ge 0, X_2 \ge 0$

	Z	X1	X2	ХЗ	A1	RHS	יחס
Z	1	-5	-2	0	М	0	
Х3	0	1	1	1	0	10	$\frac{10}{1} = 10$
A1	0	1	0	0	1	5	$\frac{5}{1} = 5$

$$R_1 \to R_1 - R_2$$

$$R_0 \to R_0 + 5R_2$$

	Z	X1	X2	хз	A1	RHS	יחס
Z	1	0	-2	0	M+5	25	
X1	0	0	1	1	-1	5	$\frac{5}{1} = 5$
A1	0	1	0	0	1	5	$\frac{5}{0} = \infty$

(5, 0)

$$R_0 \to R_0 + 2R_2$$

	z	X1	X2	S1	A1	RHS	יחס
Z	1	0	0	2	M+3	35	
X1	0	0	1	1	-1	5	
X2	0	1	0	0	1	5	

(5, 5)

Solution:
$$X_1 = 5, X_2 = 5, X_3 = 0, A_1 = 0, Z = 35$$

- ג.2

$$Maximize \ Z = 5X_1 + 2X_2 \rightarrow Min \ Z = 10Y_1 + 5Y_2$$

$$Y_1: X_1 + X_2 \le 10 \rightarrow Y_1 + Y_2 \ge 5$$

$$Y_2: X_1 = 5 \rightarrow Y_2 = 2$$

$$X_1 \ge 0, X_2 \ge 0 \to Y_1 \ge 0, Y_2 \ge 0$$

- 1т .2

<i>Y</i> ₁	<i>Y</i> ₂	Z
3	2	40
5	0	50

- 2т .2

$$\begin{aligned} \mathit{Min} \ Z &= 10Y_1 + 5Y_2 \to Z - 10Y_1 + 5Y_2 + 0Y_3 + \mathit{MA}_1 + \mathit{MA}_2 = 0 \\ Y_1 + Y_2 &\geq 5 \to Y_1 + Y_2 - Y_3 + A_1 &= 5 \\ Y_2 &= 2 \to Y_2 + A_2 = 2 \\ Y_1 &\geq 0, Y_2 \geq 0 \end{aligned}$$

	Z	Y1	Y2	Y3	A1	A2	RHS	יחס
Z	1	M-10	2M-5	-M	0	0	7M	

A1	0	1	1	-1	1	0	5	5
A2	0	0	1	0	0	1	2	2

$$R_1 \rightarrow R_1 - R_2$$

$$R_0 \rightarrow R_0 - (2M - 5)R_2$$

	Z	Y1	Y2	Y3	A1	A2	RHS	יחס
z	1	M-10	0	-M	0	-2M+5	3M+10	
A1	0	1	0	-1	1	-1	3	3
Y2	0	0	1	0	0	1	2	8

(0, 2)

$$R_0 \to R_0 - (M - 10)R_1$$

	Z	Y1	Y2	Y3	A1	A2	RHS	יחס
Z	1	0	0	-10	-M+10	-M+5	40	
Y1	0	1	0	-1	1	-1	3	
Y2	0	0	1	0	0	1	2	

(3, 2)

Solution:
$$Y_1 = 3, Y_2 = 2, Y_3 = 0, Y_4 = 0, A_1 = 0, A_2 = 0, Z = 40$$

שאלה 3

$$\begin{aligned} Maximize \ Z &= 2X_1 + 2X_2 \\ -X_1 + X_2 &\leq 1 \\ -X_1 + 2X_2 &\leq 4 \end{aligned}$$

$$X_1 \ge 0, X_2 \ge 0$$

3. א - פתרון בשיטה גרפית

אין פתרון אופטימלי

3. ב - פתרון בשיטת הסימפלקס

$$\begin{aligned} Maximize\ Z &= 2X_1 + 2X_2 \to Z - 2X_1 - 2X_2 = 0 \\ -X_1 + X_2 &\leq 1 \to -X_1 + X_2 + S_1 = 1 \\ -X_1 + 2X_2 &\leq 4 \to -X_1 + 2X_2 + S_2 = 4 \\ X_1 &\geq 0, X_2 \geq 0 \end{aligned}$$

	z	X1	X2	S1	S2	RHS	יחס
Z	0	-2	-2	0	0	0	
S1	0	-1	1	1	0	1	_
S2	0	-1	2	0	1	4	_

עבור X1 לא מתקיים מבחן המנה ולכן לא קיים פתרון אופטימלי

- ג.3

$$Min Z = y_1 + 4y_2$$
$$-y_1 - y_2 \ge 2$$

$$y_1 + 2y_2 \ge 2$$
$$y_1, y_2 \ge 0$$

3. ד - אין פתרון אופטימלי

שאלה 4

$$\begin{aligned} \textit{Maximize} \ Z &= 3X_1 - 2X_2 \\ X_1 + X_2 &\leq 1 \\ X_1 + X_2 &\geq 2 \\ X_1 &\geq 0, X_2 \geq 0 \end{aligned}$$

4. א - פתרון בשיטה גרפית

אין פתרון אופטימלי

4. ב - פתרון בשיטת הסימפלקס ובעזרת שיטת M הגדול

$$Maximize~Z=3X_1-2X_2\rightarrow Z-3X_1+2X_2-MS_3=0$$

$$X_1 + X_2 \le 1 \to X_1 + X_2 + S_1 = 1$$

$$X_1 + X_2 \ge 2 \rightarrow X_1 + X_2 - S_2 + S_3 = 2$$

 $X_1 \ge 0, X_2 \ge 0$

	Z	X1	X2	S1	S2	\$3	RHS	יחס
Z	1	-M-3	-M+2	0	М	0	-2M	_

S1	0	1	1	1	0	0	1	$\frac{1}{1} = 1$
S3	0	1	1	0	-1	1	2	$\frac{2}{1} = 2$

$$R_2 \rightarrow R_2 - R_1$$

$$R_0 \rightarrow R_0 + (M+3)R_1$$

	Z	X1	X2	S1	S2	S3	RHS	יחס		
Z	1	0	5	M+3	М	0	-M+3			
X1	0	1	1	1	0	0	1			
S3	0	0	0	-1	-1	1	1			
	(1, 0)									

M אך המקדם של Mאך של ישלייים אי שליליים לפני האל של הנעלמים של R_0 של בשורה בסכום של Ro המקדמים של אילי ולכן אין פתרון אופטימלי (RHS) בסכום

- ג.4

$$Min Z = y_1 + 2y_2$$

$$y_1 + y_2 \ge 3$$

$$y_1 + y_2 \ge -2$$

$$y_1, y_2 \ge 0$$

- т.4

	Z	X1	X2	Х3	Х4	Х5	RHS	יחס
z	1	M-1	M-2	-M	0	0	3M	
Х5	0	1	1	-1	0	1	3	$\frac{3}{1} = 1$
Х4	0	-1	-1	0	1	0	-2	$\frac{-2}{-1} = 2$

$$R_2 \rightarrow R_2 + R_1$$

$$R_0 \rightarrow R_0 - (M-1)R_1$$

	Z	X1	X2	Х3	X4	Х5	RHS	יחס
Z	1	0	-1	-1	0	-M+1	3	
X1	0	1	1	-1	0	1	3	
Х4	0	0	0	-1	1	1	5	

4. ה - אם לאחת הבעיות (הפירמלית או הדואלית) פתרון לא חסום, לבעיה המשימה אין פתרון אפשרי.

שאלה 5

$$\frac{2}{3} < \alpha < 2$$
 - א. התשובה היא: א

$$\alpha > 2$$
 - ב. התשובה היא:

שאלה 6

6. 1

$$(15, 7, 0, 0, 4, 0), Z = 13$$

6. 2

a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13
0	0	2	1	0	1	13	5	2	2	0	0	1

שאלה 7

7. א

$$(0, 4, 5, 0, 0, 0, 11), Z = 11$$

.ד לא פתרון יחיד.

ג.7

$$Min \{ V = 7y_1 + 12y_2 + 10y_3 \}$$
$$-y_1 + y_2 + y_3 \le 2$$
$$-3y_1 + 2y_2 + 4y_3 \le 1$$

$$-y_1 + 4y_2 + 3y_3 \ge 3$$

$$-2y_1 - 8y_3 \le 2$$

$$y_1, y_2, y_3 \ge 0$$

$$C_B = (-1, 3, 0)$$

$$B^{-1} = \left(\frac{2}{5} \frac{1}{5} \frac{1}{10} \ 0 \ \frac{3}{10} \ 0 \ 1 - \frac{1}{2} \ 1 \right)$$

Dual Solution: $Y^T = C_B * B^{-1} = (0.2, 0.8, 0)$

8 שאלה

$$Max \{Z = 24X_1 + 23X_2 + 32X_3 + 20X_4\}$$

$$2X_1 + 7X_2 + 4X_3 + 7X_4 \le 90$$

$$2X_1 + 3X_2 + 2X_3 + 8X_4 \le 65$$

$$4X_1 + 5X_2 + 3X_3 + 3X_4 \le 85$$

$$X_1, X_2, X_3, X_4 \ge 0$$

4	3	2	1	
	X			א
	X			ב
		X		ړ
		Х		Т
		Х		n
Х				I

9 שאלה

9. א

$$\begin{aligned} \mathit{Max} \, \{Z = X_1 + 2X_2 + X_3\} & \to \mathit{Min} \{Z = 2Y_1 + Y_2 - 2Y_3\} \\ & Y_1 \colon X_1 + X_2 - X_3 \le 2 & \to Y_1 + Y_2 - 2Y_3 \ge 1 \\ & Y_2 \colon X_1 - X_2 + X_3 = 1 & \to -Y_1 + Y_2 + Y_3 \ge -2 \\ & Y_3 \colon 2X_1 + X_2 + X_3 \ge 2 & \to -Y_1 + Y_2 - Y_3 = 1 \end{aligned}$$

$$X_1 \ge 0, X_2 \le 0, -\infty \le X_3 \le \infty$$
 $\rightarrow Y_1 \ge 0, -\infty \le Y_2 \le \infty, Y_3 \ge 0$

9. ב

נציב את (0,1,0) לבעיה הדואלית ונקבל:

$$0 + 1 - 2 * 0 = 1 \ge^{True} 1$$

$$0 + 1 + 0 = 1 \ge^{True} - 2$$

$$0 + 1 - 0 = 1 =^{True} 1$$

$$Y_1 = 0 \ge^{True} 0$$

$$-\infty \le^{True} Y_2 = 1 \le^{True} \infty$$

$$Y_3 = 0 \ge^{True} 0$$

$$Z = 2Y_1 + Y_2 - 2Y_3 = 0 + 1 + 0 = 1$$

לפיכך (0,1,0) פתרון אפשרי לבעיה הדואלית

9. ג

*
$$Max \{Z = X_1 + 2X_2 + X_3\}$$

1) $X_1 + X_2 - X_3 \le 2$

2) $X_1 - X_2 + X_3 = 1 \rightarrow 7$) $X_1 = 1 + X_2 - X_3$

3) $2X_1 + X_2 + X_3 \ge 2$

4) $X_1 \ge 0$

5) $X_2 \le 0$

6) X_3 is free

: נציב את 7 במשוואות 1, 3, 4 ו * ונקבל

6)
$$X_3$$
 is free
8) $Max \{ Z = 1 + 3X_2 \}$
9) $1 + X_2 - X_3 \ge 0 \to X_2 \ge X_3 - 1$
10) $2 + 2X_2 - 2X_3 + X_2 + X_3 \ge 2 \to 3X_2 - X_3 \ge 0 \to X_3 \le 3X_2$
11) $1 + X_2 - X_3 + X_2 - X_3 \le 2 \to 2X_2 - 2X_3 \le 1 \to X_2 - X_3 \le \frac{1}{2} \to X_3 \ge X_2 - \frac{1}{2}$
 $10 + 11 \to 12$) $X_2 - \frac{1}{2} \le X_3 \to X_2 - \frac{1}{2} \le 3X_2 \to X_2 \ge -\frac{1}{4}$
 $5 + 12 \to 13$) $0 \ge X_2 > -\frac{1}{4}$

ל 13 נובע כי הערך הגי גבוה עבור עבור X_2 הוא 0, נציב זאת ב 8 ונקבל מ

$$Max \{ Z = 1 + 3 * 0 = 1 \}$$

Z < 1 ועבור כל ערך קטן מ0 בעבור געבר נקבל

 $\Rightarrow Z' \leq 1$

<u>מ.ש.ל</u>

т.9

 $ec{V} = (1,0,0)$ ניעזר בסעיף הקודם, נסמן

13 מסעיף ג' אוזהו זיהו וזהו $V_{X_{\,2}}=0$ מסעיף ג'

הוא חופשי 6 $V_{X_3} = 0$

 $V_{X_1} = 1$ נציב ב 2 את מה שקיבלנו מעלה ונקבל : 14) אונקבל מעלה מה שקיבלנו מעלה ונקבל

15) Z=1 אכן מקיים את 4, נציב ב * ונקבל $V_{X_1}=1\geq 0$

שזהו הערך המקסימלי לפי הנחת סעיף ג, לכן $ec{V}=(1,0,0)$ פתרון אופטימלי

<u>מ.ש.ל</u>

שאלה 10

10. א

טבלת ראשונית

- שיטת הפינה הצפון מערבי
- חישוב ערבים להפחתה משורות ועמודות
 - י חישוב ערכים חדשים

\	A	Ą	1	В		С	היצע	
	40	(-)	30	(+)	24	2		
1	10	05	3	5			140	0
	28	22-	40	(-)	32	(+)		
2			10	00		0	100	10
	20	26-	24	12-	28	(-)		
3	(+	+)			8	30	80	6
ביקוש	10	05	135		8	30		
	4	.0	3	0	7	22		

איטרציה ראשונה

- מצב חדש -
- חישוב ערכים להפחתה משורות ועמודות -
 - חישוב ערכים חדשים -

\	A	A	ı	В		С	היצע	
	40	(-)	30	(+)	24	2		
1	2	5	1:	15			140	0
	28	22-	40	(-)	32			
2	(-	+)	2	.0	8	30	100	10
	20		24	14	28	26		
3	8	0					80	20-
ביקוש	105		135		80			
	4	.0	3	30	2	.2		

איטרציה שניה

\	A	Ą	B 30			С	היצע	
	40	(-)	30		24	20-		
1	5	5	1:	35	(+)	140	0

	28	(+)	40	22	32	(-)		
2	2	0			8	80	100	12-
	20		24	14	28	4		
3	8	0					80	20-
ביקוש	10	05	13	35		80		
	40		3	0		44		

איטרציה שלישית

\	P	Ą	[В		С	היצע	
	40	20	30	(-)	24	(+)		
1			13	35		5	140	0
	28	(+)	40	2	32	(-)		
2	2	5			7	75	100	8
	20	(-)	24	6-	28	4		
3	8	0	(-	+)			80	8
ביקוש	10	05	13	35	8	30		
	2	0	3	0	2	24		

טבלה סופית

\	P	A	E	3	(С	היצע	
	40		30		24			
1			60		80		140	

	28		40		32			
2	10	00					100	
	20		24		28			
3	Ţ	5	7	'5			80	
ביקוש	10	05	13	35	8	30		

10. ב

$$30 * 60 + 24 * 80 + 28 * 100 + 20 * 5 + 24 * 75 = 8420$$

ג.10

\	,	Ą		В		С	היצע	
	20		15		12			
1	10	05	3	35			140	
	14		20		16			
2			1	00		0	100	
	10		12		14			
3					;	80	80	
ביקוש	10	05	1	35		80		

הפתרון האופטימלי לא ישתנה. אך המחיר המינימלי ישתנה, יתחלק בשניים מהמחיר שבסעיף הקודם.

שאלה 11

נשתמש באלגוריתם ההונגרי (מקסימום) לפתרון בעיית השמה.

בשאלה קיים אילוץ שכל עובד יכול לעבוד רק על שני מכונות צמודות, כלומר יש שני אפשרויות לחלוקת מכונות : { (6, 1), (4, 5), (3, 2) } ו { (5, 6), (3, 4), (1, 2) }, לכן נפתור בעזרת האלגוריתם פעמיים.

מכונות עובדים	(1, 2)	(3, 4)	(5, 6)
1	3 + 4 = 7	2 + 5 = 7	6 + 8 = 14
2	5 + 4 = 9	8 + 5 = 13	2 + 7 = 9
3	6 + 3 = 9	2 + 8 = 10	6 + 8 = 14

נמיר את הטבלה לבעיית מינימום על ידי חיסור כל הערכים מהערך הגבוה ביותר

$$C_{ij} = 14 - C_{ij}$$

מכונות עובדים	(1, 2)	(3, 4)	(5, 6)
1	7	7	0
2	5	1	5
3	5	4	0

נחסר מכל שורה את העלות הנמוכה ביותר

$$R_i \to R_i - Min(R_i)$$

מכונות עובדים	(1, 2)	(3, 4)	(5, 6)	
1	7	7	0	-0
2	4	0	4	-1
3	5	4	0	-0

נחסר מכל שורה את העלות הנמוכה ביותר

$$C_i \rightarrow C_i - Min(C_i)$$

מכונות עובדים	(1, 2)	(3, 4)	(5, 6)
עובו ט			

1	3	7	0
2	0	0	4
3	1	4	0
	-4	-0	-0

נבחן את השורות והעמודות

מכונות עובדים	(1, 2)	(3, 4)	(5, 6)
1	3	7	0
2	0	0	4
3	1	4	0

נחסר את הערך המינימלי 1 לכל תא שלא מכוסה

נוסיף את הערך המינימלי 1 לכל תא שמכוסה

עובדים	מכונות	(1, 2)	(3, 4)	(5, 6)
	1	2	6	[0]
	2	0	[0]	5
	3	[0]	3	0

קיבלנו השמה מלאה, נציב אותה בטבלה המקורית ונקבל

עובד	מכונות	רווח
1	(5, 6)	14
2	(3, 4)	13
3	(1, 2)	9
	סה"ב	36

כעת נבדוק עבור האפשרויות השנייה

ות: עובדים	מבונ	(4, 5)	(6, 1)
1	4 + 2 = 6	5 + 6 = 11	8 + 3 = 11
2	4 + 8 = 12	5 + 2 = 7	7 + 5 = 12
3	3 + 2 = 5	8 + 6 = 14	8 + 6 = 14

נמיר את הטבלה לבעיית מינימום על ידי חיסור כל הערכים מהערך הגבוה ביותר

$$C_{ij}=14-C_{ij}$$

מכונות עובדים	(2, 3)	(4, 5)	(6, 1)
1	8	3	3
2	2	7	2
3	9	0	0

נחסר מכל עמודה את המחיר הנמוך ביותר

$$R_i \to R_i - Min(R_i)$$

עובדים	מכונות	(2, 3)	(4, 5)	(6, 1)	
1	1	5	0	0	-3
2	2	0	5	0	-2
3	3	9	0	0	-0

נבחן את השורות והעמודות

מכונות עובדים	(2, 3)	(4, 5)	(6, 1)
1	5	[0]	0
2	[0]	5	0
3	9	0	[0]

קיבלנו השמה מלאה, נציב אותה בטבלה המקורית ונקבל

עובד	מכונות	רווח
1	(4, 5)	11
2	(2, 3)	12
3	(6, 1)	14
	סה"ב	37

נבצע השוואה בין הסכומים שקיבלנו משני ההשמות, וניתן לראות כי ההשמה השנייה בעלת רווח גדול. כלומר הפתרון הוא:

עובד	מכונות	
1	(4, 5)	
2	(2, 3)	
3 (6, 1)		
והרווח לשעה יהיה 370 שקל		