IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: NAKAJIMA, Yuji, et al.

Serial No.: 10/768,965

Filed: February 2, 2004

For. ALLERGEN INACTIVATING METHOD, ALLERGEN INACTIVATING FILTER, AIR TREATING APPARATUS, VIRUS INACTIVATING AGENT, VIRUS INACTIVATING METHOD, VIRUS INACTIVATING FILTER, AIR CONDITIONING UNIT AND AIR CONDITIONER

CLAIM FOR PRIORITY UNDER 35 U.S.C. 119

Date: March 24, 2004

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The benefit of the filing dates of the following prior foreign applications is hereby requested for the above-identified application, and the priority provided in 35 U.S.C. 119 is hereby claimed:

Japanese Appln. No. 2003-207883, filed August 19, 2003

Japanese Appln. No. 2003-348670, filed October 7, 2003

In support of this claim, the requisite certified copies of said original foreign applications are filed herewith.

It is requested that the file of this application be marked to indicate that the applicants have complied with the requirements of 35 U.S.C. 119 and that the Patent and Trademark Office kindly acknowledge receipt of said certified copies.

U.S. Appln. Ser. No. 10/768,965 Claim for Priority Filed: March 24, 2004

In the event that any fees are due in connection with this paper, please charge our Deposit Account No. <u>01-2340</u>.

Respectfully submitted,

ARMSTRONG, KRATZ, QUINTOS, HANSON & BROOKS, LLP,

Donald W. Hanson Attorney for Applicants Reg. No. 27,133

DWH/alw Atty. Docket No. **040040** Suite 1000 1725 K Street, N.W. Washington, D.C. 20006 (202) 659-2930

23850
PATENT TRADEMARK OFFICE

Q:\FLOATERS\DWH\04\040040\03-23-04 Sub PD

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 8月19日

出 願 番 号 Application Number:

特願2003-207883

[ST. 10/C]:

[J P 2 0 0 3 - 2 0 7 8 8 3]

出 願 人
Applicant(s):

三菱重工業株式会社

特許庁長官 Commissioner, Japan Patent Office 2004年 1月27日

【書類名】 特許願

【整理番号】 A000303223

【提出日】 平成15年 8月19日

【あて先】 特許庁長官 殿

【国際特許分類】 F24F 1/00

【発明の名称】 ウイルス不活化剤およびウイルス不活化方法、該不活化

剤を備えたフィルター、並びに該フィルターを具備する

空気調和機

【請求項の数】 18

【発明者】

【住所又は居所】 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業

株式会社先進技術研究センター内

【氏名】 中嶋 祐二

【発明者】

【住所又は居所】 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業

株式会社名古屋研究所内

【氏名】 橋爪 克浩

【特許出願人】

【識別番号】 000006208

【氏名又は名称】 三菱重工業株式会社

【代理人】

【識別番号】 100058479

【弁理士】

【氏名又は名称】 鈴江 武彦

【電話番号】 03-3502-3181

【選任した代理人】

【識別番号】 100091351

【弁理士】

【氏名又は名称】 河野 哲

【選任した代理人】

【識別番号】 100084618

【弁理士】

【氏名又は名称】 村松 貞男

【選任した代理人】

【識別番号】

100092196

【弁理士】

【氏名又は名称】 橋本 良郎

【選任した代理人】

【識別番号】 100100952

【弁理士】

【氏名又は名称】 風間 鉄也

【手数料の表示】

【予納台帳番号】 011567

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0001618

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 ウイルス不活化剤およびウイルス不活化方法、該不活化剤 を備えたフィルター、並びに該フィルターを具備する空気調和機

【特許請求の範囲】

【請求項1】 タンパク質変性剤およびタンパク質分解酵素から成る群から 選択された一つ以上の活性成分を含み、液相においてウイルスを不活化すること を特徴とするウイルス不活化剤。

【請求項2】 タンパク質変性剤およびタンパク質分解酵素の両方を含み、 液相においてウイルスを不活化することを特徴とするウイルス不活化剤。

【請求項3】 前記タンパク質変性剤は尿素である、請求項1または2に記載のウイルス不活化剤。

【請求項4】 前記タンパク質変性剤は界面活性剤である、請求項1または 2に記載のウイルス不活化剤。

【請求項5】 前記界面活性剤はドデシル硫酸ナトリウム (SDS) である、請求項4に記載のウイルス不活化剤。

【請求項6】 前記酵素はプロテアーゼである、請求項1~5の何れか一項に記載のウイルス不活化剤。

【請求項7】 前記ウイルスはエンベロープを有するウイルスである、請求 項 $1\sim6$ の何れか一項に記載のウイルス不活化剤。

【請求項8】 前記ウイルスはエンベロープを有さないウイルスである、請求項1~6の何れか一項に記載のウイルス不活化剤。

【請求項9】 請求項1~8の何れか一項に記載のウイルス不活化剤が存在する溶液にウイルスを接触させることを特徴とする、ウイルスを不活化する方法

【請求項10】 ウイルス不活化フィルターであって、ウイルスをトラップ するフィルターと、このフィルターに付着された請求項1~8の何れか一項に記載のウイルス不活化剤を具備することを特徴とするウイルス不活化フィルター。

【請求項11】 室内の空気を取り入れるための吸込口と、該吸込口から取り入れた空気と冷媒とを熱交換させて冷却または加熱するための室内熱交換器と

、該室内熱交換器で熱交換された空気を室内に戻すための吹出口と、前記吸込口から取り入れて熱交換した空気を前記吹出口から室内に吹き出すための室内送風手段と、前記空気が流れる内部空間に配設されたウイルス不活化剤を担持するウイルス不活化フィルターと、前記内部空間を前記ウイルス不活化剤が活性化する雰囲気に維持する不活化剤活性化手段と、を具備してなることを特徴とする空調用室内ユニット。

【請求項12】 前記内部空間に連通する開口部の一部または全部を閉じて、前記内部空間を半密閉状態または密閉状態に保持する開閉手段を設けたことを特徴とする請求項11に記載の空調用室内ユニット。

【請求項13】 前記内部空間を密閉状態に保持し、前記室内送風手段を運転させて密閉空間内で前記ウイルス不活化剤が活性化する雰囲気とされた空気を撹拌することを特徴とする請求項12に記載の空調用室内ユニット。

【請求項14】 前記不活化剤活性化手段は、前記室内熱交換器の冷却運転により生成された凝縮水を、前記冷却運転の後に行われる前記室内熱交換器の加熱運転により加熱して気化させることを特徴とする請求項11から13のいずれかに記載の空調用室内ユニット。

【請求項15】 前記不活化剤活性化手段は、前記室内熱交換器の冷却運転により生成されてドレン受けに貯留された凝縮水を加熱手段により加熱して気化させることを特徴とする請求項11から13のいずれかに記載の空調用室内ユニット。

【請求項16】 前記内部空間を前記不活化剤活性化手段により高温多湿に維持した後、前記不活化剤担持体から水分を除去する劣化防止運転を行うことを特徴とする請求項14または15記載の空調用室内ユニット。

【請求項17】 前記不活化剤担持体の前記ウイルス不活化剤を活性化する前に、前記内部空間に室内の空気を取り入れて前記不活化剤担持体を通過させて流すウイルス捕集運転を行うことを特徴とする請求項11から16のいずれかに記載の空調用室内ユニット。

【請求項18】 請求項11から17のいずれかに記載の空調用室内ユニットと、冷媒を圧縮するための圧縮機、及び冷媒と室内の空気との熱交換を行わせ

るための室外熱交換器を有する空調用室外ユニットと、これら空調用室内ユニット及び空調用室外ユニットを連結するとともに、冷媒をこれら空調用室内ユニット及び空調用室内ユニットの間で循環させるための冷媒配管と、を備えていることを特徴とする空気調和機。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明はウイルスを不活化するウイルス不活化剤およびウイルス不活化方法に関し、さらに、該不活化剤を備えたウイルス不活化フィルターおよび該フィルターを具備する空気調和機に関する。

[0002]

【従来の技術】

ウイルスが原因となる感染症は現在でも依然として問題になっており、例えばインフルエンザの大流行などは毎年マスメディアを賑わしている。インフルエンザなどについては、医薬品開発による対処が既に行われており、ワクチンを流行前に接種することで感染を防げる可能性が高い。しかし、ごく最近に騒動になったSARSウイルスのように、これまでに発見されていない未知のウイルスが突如出現した場合、そのウイルスに対応するワクチンの開発が間に合わず、多数の感染者を出すに至る。また、例えば天然痘のように既に撲滅されたとされるウイルスなども、バイオテロや感染の進入などによって人為的に感染が拡大されないとも限らない。そうした場合は種痘未接種者などの免疫を持たない人間が死の危険性に曝されることになる。このような未知のウイルス、或いは人の記憶から忘れ去られたウイルスに対して我々人類が取れる対応としては、(1)感染の可能性がある地域に近寄らない、(2)感染の可能性がある人物と接触しない、などがあるが、社会全体の生産性が低下するなど現実的な対処法とはいえない。

[0003]

一般的に、ウイルスを不活化するにはアルコールやアルカリ、次亜塩素酸など を噴霧することが有効である。しかしながら、これらの方法はウイルスを一時的 に不活化するのみである。また、酸・アルカリなどの薬品は、人間を始めとした 生物にとって危険性が高く、迂闊に取り扱えないなどの問題がある。

[0004]

もしウイルスを持続的に不活化する方法が開発されれば、例えば空気調和機に 使用できるような効率の良いウイルス不活化システムを開発することも可能であ る。そのような空調設備を完備することによって、ウイルス蔓延の危険性が生じ た場合でも、閉鎖空間を安全に維持することが可能であるなどの利点が考えられ る。特許文献1には、酵素を固定化した空気浄化フィルターが開示されている。 しかしながら、特許文献1の空気浄化フィルターは微生物を殺菌するためのもの であり、さらに酵素のみを使用していることから、ウイルスを除去する能力に乏 しいと考えられる。

[0005]

【特許文献1】 WO98/04334

[0006]

【発明が解決しようとする課題】

このような状況に鑑み、本発明の目的は、空気調和機などに応用することが可能であり、効果的且つ持続的にウイルスを不活化するウイルス不活化剤およびウイルス不活化方法を提供することである。さらに本発明は、該不活化剤を具備するウイルス不活化フィルター、および該フィルターを具備する空気調和機を提供することを目的とする。

[0007]

【課題を解決するための手段】

上記目的を達成するために、本発明では、その一つの側面において、タンパク質変性剤およびタンパク質分解酵素から成る群から選択された一つ以上の活性成分を含み、液相においてウイルスを不活化することを特徴とするウイルス不活化剤を提供する。

[0008]

また、本発明のもう一つの側面に従えば、タンパク質変性剤およびタンパク質 分解酵素の両方を含み、液相においてウイルスを不活化することを特徴とするウ イルス不活化剤を提供する。

[0009]

前記タンパク質変性剤は尿素であり、また、前記酵素はプロテアーゼであることが好ましい。

$[0\ 0\ 1\ 0]$

好ましくは、前記ウイルスはエンベロープを有するウイルスであるかまたはエ ンベロープを有さないウイルスである。

[0.011]

また、本発明はもう一つの側面に従って、上記のウイルス不活化剤が存在する 溶液にウイルスを接触させることを特徴とする、ウイルスを不活化する方法を提 供する。

$[0\ 0\ 1\ 2]$

また、本発明はもう一つの側面に従って、ウイルス不活化フィルターであって、ウイルスをトラップするフィルターと、このフィルターに付着された上記のウイルス不活化剤を具備することを特徴とするウイルス不活化フィルターを提供する。

[0013]

また、本発明はもう一つの側面に従って、室内の空気を取り入れるための吸込口と、該吸込口から取り入れた空気と冷媒とを熱交換させて冷却または加熱するための室内熱交換器と、該室内熱交換器で熱交換された空気を室内に戻すための吹出口と、前記吸込口から取り入れて熱交換した空気を前記吹出口から室内に吹き出すための室内送風手段と、前記空気が流れる内部空間に配設されたウイルス不活化剤を担持するウイルス不活化フィルターと、前記内部空間を前記ウイルス不活化剤が活性化する雰囲気に維持する不活化剤活性化手段と、を具備してなることを特徴とする空調用室内ユニットを提供する。

$[0\ 0\ 1\ 4]$

好ましくは、前記空調用室内ユニットには、前記内部空間に連通する開口部の一部または全部を閉じて、前記内部空間を半密閉状態または密閉状態に保持する 開閉手段が設けられる。

[0015]

6/

好ましくは、前記空調用室内ユニットは、前記内部空間を密閉状態に保持し、 前記室内送風手段を運転させて密閉空間内で前記ウイルス不活化剤が活性化する 雰囲気とされた空気を撹拌する。

$[0\ 0\ 1\ 6]$

好ましくは、前記不活化剤活性化手段は、前記室内熱交換器の冷却運転により 生成された凝縮水を、前記冷却運転の後に行われる前記室内熱交換器の加熱運転 により加熱して気化する。

$[0\ 0\ 1\ 7]$

好ましくは、前記不活化剤活性化手段は、前記室内熱交換器の冷却運転により 生成されてドレン受けに貯留された凝縮水を加熱手段により加熱して気化する。

[0018]

好ましくは、前記空調用室内ユニットは、前記内部空間を前記不活化剤活性化 手段により高温多湿に維持した後、前記不活化剤担持体から水分を除去する劣化 防止運転を行う。

$[0\ 0\ 1\ 9]$

好ましくは、前記空調用室内ユニットは、前記不活化剤担持体の前記ウイルス 不活化剤を活性化する前に、前記内部空間に室内の空気を取り入れて前記不活化 剤担持体を通過させて流すウイルス捕集運転を行う。

[0020]

さらに、本発明の一つの側面に従って上記の空調用室内ユニットと、冷媒を圧 縮するための圧縮機、及び冷媒と室内の空気との熱交換を行わせるための室外熱 交換器を有する空調用室外ユニットと、これら空調用室内ユニット及び空調用室 外ユニットを連結するとともに、冷媒をこれら空調用室内ユニット及び空調用室 内ユニットの間で循環させるための冷媒配管と、を備えていることを特徴とする 空気調和機が提供される。

$[0\ 0\ 2\ 1]$

【発明の実施の形態】

1. ウイルス不活化剤

ウイルスは、一般にタンパク質および核酸を基本組成とする感染性物質である

7/

。本発明は、本発明者らが、活性成分としてタンパク質変性剤またはタンパク質 分解酵素を用いることによってウイルスを不活化できることに加えて、人体に害 を与えず、且つ、長期間効果が持続し、さらに、経済的に優れたウイルス不活化 が可能であることを明らかにしたことに基づく。また、本発明のウイルス不活化 剤は、例えば空気調和機などの機械に組み込むことも容易であり、実用化に優れ たウイルス不活化剤である。

[0022]

本発明で用いられるタンパク質変性剤は、ウイルスのタンパク質を変性させ、これによってウイルスを不活化させるものである。タンパク質変性剤には尿素、塩酸グアニジン、およびドデシル硫酸ナトリウム(SDS)のような界面活性剤などを用いることができる。

[0023]

タンパク質分解酵素とは、タンパク質およびペプチドを分解する性質を有する酵素を総括的に示す。本発明で用いられるタンパク質分解酵素は、ウイルスのタンパク質を分解し、これによってウイルスを不活化させるものであり、特にプロテアーゼが用いられる。プロテアーゼは周知の酸性、中性および塩基性の何れのプロテアーゼであってよい。例えば、トリプシンなどのセリンプロテアーゼ、パパイン、カルパイン、カテプシンBおよびカテプシンLなどのシステインプロテアーゼ、ペプシン、レニンおよびカテプシンDなどのアスパラギン酸プロテアーゼおよびメタロプロテアーゼなどのプロテアーゼであってよい。また、プロテアーゼによりウイルスを不活化する場合、使用されるプロテアーゼの至適条件を考慮して、温度および補酵素などの条件を実施者が任意に選択してよい。

[0024]

本発明においてウイルスの不活化とは、ウイルスの感染力が失われることを意味する。上記の変性剤や酵素のような活性成分によってウイルスのタンパク質を変性あるいは分解することによって、ウイルスの感染力を失わせることができる。酵素や変性剤による反応は、液相において行われることが好ましい。従って本発明のウイルス不活化剤も、溶液中およびそれに準じた液相において用いられることが好ましい。

[0025]

さらに本発明は、一つの側面において、ウイルスの不活化にタンパク質分解酵素とタンパク質変性剤を併用して使用するというユニークで且つ新しい発想を基に達成された。従って、本発明のこの側面において重要な点の1つは、それらの濃度および処理時間などの詳細な条件ではなく、タンパク質分解酵素とタンパク質変性剤の併用処理を利用してウイルスを不活化すること自体にある。言い換えれば、タンパク質分解酵素の種類および濃度、タンパク質変性剤の種類および濃度などの条件は、可能な組み合わせの全てが本発明に含まれるものである。

[0026]

ウイルスには、本発明で用いたタンパク質分解酵素と類似した効果を持つ溶菌 酵素を有するものもある。そのようなウイルスは当然ながらそれらの酵素に対し て耐性を持っているため、本発明のタンパク質分解酵素によっても不活化するこ とが困難である。しかしながら、タンパク質変性剤がウイルスのタンパク質を変 性することによって、酵素に耐性を有するウイルスにも分解酵素が作用しやすく なるなどの利点が考えられる。また、タンパク質変性剤およびタンパク質分解酵 素の両方を併用することによって、分解酵素の使用濃度を低くすることができる

[0027]

このように、本発明の一つの側面によれば、タンパク質変性剤およびタンパク 質分解酵素の両方を併用することによって、後述の実施例で示すように、より効 率的にウイルスの不活化を行うことが可能である。

[0028]

ウイルスの中には、タンパク質構造体の外側を取り巻く膜構造物を有するもの もあり、これをエンベロープという。これは細胞膜同様、脂質二重膜であり、ウ イルス特異的なタンパク質がその上に存在している。本発明は、エンベロープを 有するウイルスおよび有さないウイルスの両方を対象とするものであり、それに よって、広範囲にわたるウイルスに対して有効な不活化剤および不活化方法を提 供するものである。

[0029]

2. ウイルス不活化方法

以下、タンパク質変性剤およびタンパク質分解酵素を用いてウイルスを不活化 する方法に関して説明する。

[0030]

本発明に従って、タンパク質変性剤を使用してウイルスを不活化する場合、例 えば尿素を用いることができ、尿素は約9M程度の高濃度で用いることが好まし い。

[0031]

また、本発明に従って、タンパク質分解酵素を使用してウイルスを不活化する場合、例えばプロテアーゼを用いることができ、その濃度は、例えばpfu プロテアーゼS(pfu protease S、タカラバイオ社販売)を用いた場合で最終濃度2%であることが好ましい。また、プロテアーゼを使用する場合、処理温度や処理時間などの諸条件によって得られる効果は変動する。従って、使用されるプロテアーゼの濃度は上記に限定されるものではなく、種々の条件で有効に使用することが可能である。

[0032]

さらに、本発明に従ってウイルスを不活化する場合に、タンパク質変性剤およびタンパク質分解酵素を共存させることにより、効率的にウイルスを不活化させることができる。例えば、pfu プロテアーゼS(pfu protease S、タカラバイオ社販売)を用いた場合、単独では最終濃度が2%程度必要であるが、9Mの尿素を共存させた場合では0.2%程度の濃度で十分な不活化効果を得ることができる。

[0033]

3. 空気調和機への利用

本発明のウイルス不活化方法は空気調和機に適用させることが可能である。即ち、その一つの側面に従えば、本発明はウイルス不活化フィルターを提供し、さらに、このウイルス不活化フィルターを空調用室内ユニットに具備する空気調和 機を提供するものである。

[0034]

(1) ウイルス不活化フィルター

本発明に従って提供されるウイルス不活化フィルターは、ウイルスをトラップ するフィルターと、このフィルターに付着されたウイルス不活化剤を具備するも のである。ウイルスをトラップするフィルターは、例えば不織布などで構成する ことができる。ウイルス不活化剤は、タンパク質変性剤およびタンパク質分解酵 素から成る群から選択された一つ以上の活性成分を含む。このウイルス不活化剤 を前述のフィルターに付着させることによって、ウイルスをトラップし不活化す る。ウイルス不活化剤をフィルターに付着させる方法としては、フィルターまた は粒子などの担体に後述の方法で担持させることができる。本発明のウイルス不 活化剤は液相においてウイルスを不活化するものであるが、フィルターの繊維ま たは粒子などの担体に吸湿性を有する材質を用いることによって、繊維の表面ま たは担体粒子の内部などに微小な液相を生じさせ、これによって不活化剤を活性 化させることが可能である。フィルターの材質としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、お よびポリアミド(PA)などから成る繊維を使用することができる。また、担体 の材質としては、例えばアクリル酸-ビニルアルコール共重合体、アクリル酸-ナトリウム重合体などの吸水性ポリマーを使用することができる。

[0035]

(2) 空気調和機

本発明に従って提供される空気調和機は、上述したウイルス不活化フィルターを具備するものである。ウイルス不活化フィルターは、空調用室内ユニットに備えられ、空気調和機が作動した際に吸い込む空気がこのフィルターを通過する構成とする。このような構成のため、空気調和機を作動することによって室内のウイルスをフィルターに捕集し、不活化させることが可能である。

[0036]

【実施例】

以下、実施例を参照して本発明を更に詳しく説明する。実施例では、実験室で操作可能なウイルスを用い、本発明によるウイルス不活化の効果を確認するための基礎試験を行った。

[0037]

1. 不活化剤および不活化方法

(1) 材料

実験室で扱えるウイルスの代表例として、細菌を宿主とするウイルス、即ちバクテリオファージを用いた。バクテリオファージと大腸菌による実験系は、例えばインフルエンザウイルスと人間におけるウイルスの感染および増殖のモデルと考えられる。このバクテリオファージを用いた試験を実施し、試験管内の液中においてバクテリオファージと酵素または変性剤を接触させることによるバクテリオファージの不活化を確認した。

[0038]

バクテリオファージとして、 λファージおよびM13ファージを用いた。これらのファージは、分子生物学的に最もよく研究されており、現在でもcDNAライブラリーの構築、遺伝子の発現解析などに多用されているファージである。 λファージはテンペレートファージであり、細菌細胞に感染した時、増殖して細胞を殺す場合(溶菌感染)と、溶原化してプロファージとなり、宿主菌と行動を共にする場合(溶原化)の二つの生活環をもつファージである。M13ファージは繊維状の一本鎖DNAファージである。これは宿主内で増殖した後、宿主を溶菌することなく菌体外に放出される。それぞれ、大腸菌(E.coli)のXL1-Blue株およびJM109株を宿主とする。双方とも、宿主と同様の性質を保持しない菌株には感染しない。このように性質や宿主が異なるファージを用いて試験することにより、幅広いウイルスに対する適用可能性を評価することができる。なお、大腸菌はLB培地(表1)によって培養し、三角フラスコで一晩、37℃で振盪培養した。

[0039]

【表1】

表1 LB培地の組成

酵母抽出液	5g
NaCl	5g
トリプトン	10g
水	1000mL
寒天(固体培地のみ)	15g

[0040]

(2) 方法

<実施例1 λファージ液の作成>

λ Z A P II (登録商標) vector kit (undigested)およびGigapack (登録商標) III Packaging kit (共に東洋紡販売)を用い、添付マニュアルに従いλファージDNAをパッケージングし、λファージを作成した。

[0041]

宿主菌株としては大腸菌(E. coli)XL1-Blue MRF'を用いた。予め培養しておいたXL1-Blue MRF'に作成した λ ファージを感染させ、さらに培養した。その後、培養液を遠心分離し、 λ ファージ原液を得た。この原液を適度に希釈した溶液 10μ LをXL1-Blue MRF'(〇D~1にSM緩衝液(表 2)で洗浄済み)100 μ Lと混合し、LB培地を用いて37Cで15分間インキュベーションした。この培養液に、0.7%アガロース(agarose LO3、タカラバイオ社販売)を含むLB培地(オートクレーブ滅菌後、恒温槽にて45Cに保持していたもの。以降はトップアガーと称す。)を4 mL加え、攪拌した後、あらかじめ用意しておいた1.5%寒天を含む固体LB培地上に注いだ。トップアガーが十分に冷えて固化したことを確認し、37Cで一晩インキュベーションした。

[0042]

インキュベーション後の固体培地にプラークが出現していることを確認し、5 mLのSM緩衝液を加え、冷蔵庫にて1日間静置した。固体培地を冷蔵庫から取り出し、SM緩衝液を回収し、遠心分離機にかけた($6000 \times g$ 、20分、 2°)。得られた上清を λ ファージ液として以降の不活化実験で用いた。なお、 λ ファージ液は0.5mLずつ1.5mL容のエッペンドルフ社製チューブ(以降、1.5mL容チュー

ブと称す。) に分注し、クロロフォルムを一滴加えた後、4℃で保存した。

[0043]

【表2】

表2 SM緩衝液

Tris-HCI(pH7. 5)	50mM
NaCl	100mM
MgSO ₄ ·7H ₂ O	10mM
ゼラチン	0. 01%

オートクレーブ滅菌する。

[0044]

<実施例2 λファージの活性試験>

以降の試験に使用する λ ファージの実験系が確立していることを証明するために、 λ ファージの活性試験を行い、回収率を算出した。

上記の実施例 1 で作成した λ ファージ液 $40\,\mu$ Lに、 $360\,\mu$ Lの生理食塩リン酸緩衝液(PBS) $+10\,\mathrm{mM}$ MgSO $_4$ \cdot 7H $_2$ O液を添加した。試験中に起こり得る p Hの変動を抑えるために PBS を用い、不活化剤に起因しない λ ファージの感染力低下を最小限にするために $10\,\mathrm{m}$ MgSO $_4$ を共存させた。

[0045]

溶液は1.5mL容チューブに入れ、さらに $600\,\mu$ LのPEG液(20% PEG6000、2.5M NaCl)を加え、氷中で 3 時間静置した。その後、15,000rpmで20分間遠心分離し、上清を捨てた。得られた沈殿物(λ ファージ・PEG複合物)にSM緩衝液を $200\,\mu$ L加え、沈殿物をよく懸濁した。PEG液で処理したこの λ ファージ溶液を、PEG沈殿処理液とした。

[0046]

PEG沈殿処理液をSM緩衝液で希釈した液 10μ Lと、XL1-Blue MRF'のSM 懸濁液 $(100\mu$ L)を混合し、37Cで15分間インキュベーションした。インキュベーション終了後、トップアガーを3mL加えて攪拌し、あらかじめ用意しておいた1.5%寒天を含む固体LB培地上に注いだ。37Cで5時間インキュベーションした後、出現したプラーク数を計数した。得られたプラーク数から、pfu(プラー ク形成単位、pfu/mL)を求めた。

[0047]

比較対照として、実施例1で作成した λファージ液をPEG沈殿処理を行わずにXL1-Blue MRF'に感染させ、プラーク数を計数してpfuを求めた。結果を表3に示した。

[0048]

【表3】

表3 入ファージの活性

試験条件	感染力(pfu/mL)
PEG沈殿処理	1.9×10 ⁸
無処理	9.2×10 ⁸

[0049]

PEG沈殿処理液は、PEG沈殿処理を行った際にSM緩衝液へ懸濁したことにより、実施例1で作成した λ ファージ液の1/5濃度になっている。よって、表3から、PEG沈殿処理後の λ ファージの回収率は($1.9\times10^8\times5$)/(9.2×10^8)×100=103%であった。この結果より、PEG沈殿処理をしても λ ファージがほぼ回収されることが確認された。さらに、PBSおよびMgSO4を使用しても λ ファージの安定性に影響を及ぼさないことが確認された。

[0050]

<実施例3 λファージの不活化試験1>

変性剤または酵素によるλファージの不活化を試験した。変性剤は尿素を用い、酵素はpfu プロテアーゼS(pfu protease S、タカラバイオ社販売)を用いた

実施例 1 で作成した λ ファージ液 $40\,\mu$ Lに、PBS $+10\,\text{mM}$ MgSO $_4$ $.7\text{H}_2$ O液を $352\,\mu$ L添加し、さらにpfu プロテアーゼSを $8\,\mu$ L添加した(最終濃度 $2\,\%$)。これを $1.5\,\text{mL}$ 容チューブに入れ、プロテアーゼ処理液とした。

また、 λ ファージ液 40μ Lに、9 M尿素を含む PBS+10mM MgSO $_4$.7H $_20$ 液を36 0μ L添加し、1.5mL容チューブに入れた。これを尿素処理液とした。

また、ファージ液40μLに、9M尿素を含むPBS+10mM MgSO₄.7H₂O液を352

 μ L添加し、さらにpfu プロテアーゼSを 8μ L添加した(最終濃度 2%)。これを 1.5mL容チューブに入れ、尿素・プロテアーゼ処理液とした。

対照として、 λ ファージ液 40μ LにPBS+10mMgS $0_4.7$ H $_20$ 液を 360μ L添加した。これを無処理液とした。

各処理液を、37℃で1時間インキュベーションした。インキュベーション終了後、600 μ LのPEG液(20% PEG6000、2.5M NaCl)を加え、氷中で3時間静置した。その後、15,000rpmで20分間、遠心分離し、上清を捨てた。得られた沈殿物にSM緩衝液を200 μ L加え、沈殿物をよく懸濁した。この懸濁液をSM緩衝液で 希釈し、この希釈液 10μ Lと、大腸菌XL1-Blue MRF'のSM懸濁液(100μ L)とを 混合し、37℃で15分間インキュベーションした。インキュベーション終了後、トップアガーを3mL加えて攪拌し、あらかじめ用意しておいた1.5%寒天を含む 固体L B培地上に注いだ。37℃で5時間インキュベーションした後、出現したプラーク数を計数し、pfuを求めた。その結果を表 4 に示した。

[0051]

【表4】

表4 各試験条件における λファージの感染力

試験条件	感染力(pfu/mL)	
プロテアーゼ処理	1.8×10 ⁸	
尿素処理	0	
尿素・プロテアーゼ処理	0	
無処理	1.9×10 ⁸	
λファージ液	9.2×10 ⁸	

[0052]

この結果、プロテアーゼ処理液では λ ファージが不活化されていないことが確認された。しかし、9 Mの尿素を添加した尿素処理液では、プロテアーゼの有無に関わらず λ ファージが不活化された。従って、高濃度の尿素によって λ ファージを不活化できることが示された。

[0053]

<実施例4 λファージの不活化試験2>

尿素添加濃度および尿素処理時間を変化させ、λファージの不活化を試験した

実施例 1 で作成した λ ファージ液 40μ Lに、それぞれ 0 M、 3 M、および 9 M の尿素を含む P B S +10m MgSO $_4$ · $7H_2O$ 液 360μ L を混合し、 1 · 5m L 容 チューブに入れた。それぞれの混合液と、対照として λ ファージ液を 3 7 $\mathbb C$ で、 0 、 15 、および 600μ L の P E G 液(20% PEG 6000、 2 · 5m S M NaCl)を加え、氷中で 3 時間静置した。その後、15 ,0 O 00 r pm 0 20 分間遠心分離し、上清を捨てた。得られた沈殿物に 0 S M緩衝液を 0 S M緩衝液で希釈した希釈液 0 0 L 加え、沈殿物をよく懸濁した。この懸濁液を 0 S M緩衝液で希釈した希釈液 0 0 L と、大腸菌 X L 0 - 0 S M 懸濁液(0 0 M 0 E 濁液(0 0 M 0 E 濁液(0 0 M 0 E 浸 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 E 0 S M 0 R 0 S M 0 E 0

[0054]

【表5】

表5 各試験条件における λ ファージの感染力 (pfu/mL)

		試験条件		
処理時間(分)	9M尿素	3M尿素	OM尿素	λファージ液
0	4×106	9.4×10 ⁷	1.1×10 ⁸	8×108
15	0	1.5×10 ⁸	1.1×10 ⁸	
60	0	1.1×10 ⁸	1.4×10 ⁸	

[0055]

前述したように、 λ ファージ液は他の処理液に比べて 5 倍濃度の λ ファージを有する。尿素 0 Mの溶液では、 λ ファージ液の1/5 程度のプラークが観察されたことから、 λ ファージは全く不活化されていないことが確認できた。また 3 Mの尿素を添加した場合でも、 λ ファージは処理時間によらずほとんど不活化されていないことが確認できた。しかしながら、9 Mの尿素を添加した場合では、処理時間 1 5 分以上で、 λ ファージは完全に不活化された。また、尿素添加直後で

も、 λ ファージはある程度不活化されていることが確認できた。従って、 9 Mの 尿素を添加した場合、 λ ファージは極めて急速に不活化されることが示唆された。

[0056]

実施例4において、高濃度の尿素が λ ファージの不活化に有効であることが示唆された。そこでさらに、9 Mの尿素による処理時間を変化させて λ ファージの不活化を試験した。

[0057]

実施例 1 で作成した λ ファージ液 $40\,\mu$ Lと $360\,\mu$ Lの 9 Mの尿素を含む PBS+1 0mM MgSO $_4$ · 7H $_2$ O液を混合し、 1 · 5mL容チューブに入れた。この混合液を 3 7 $\mathbb C$ で、 0 、 7 . 5 、 1 5 、 3 0 、および 6 0 分間インキュベーションした。インキュベーション終了後、 $600\,\mu$ LのPEG液(20% PEG6000、2.5M NaCl)を加え、氷中で 3 時間静置した。その後、15,000 rpmで20分間遠心分離し、上清を捨てた。

[0058]

得られた沈殿物にSM緩衝液を $200\,\mu$ L加え、沈殿物をSM緩衝液に良く懸濁した。この懸濁液をSM緩衝液で希釈した希釈液 $10\,\mu$ Lと、大腸菌XL1-Blue MRF'のSM懸濁液 $(100\,\mu$ L)とを混合し、37Cで15分間インキュベーションした。インキュベーション終了後、トップアガーを 3 mL加えて攪拌し、あらかじめ用意しておいた1.5%寒天を含む固体LB培地上に注いだ。37Cで5時間インキュベーションした後、出現したプラーク数を計数し、pfuを求めた。比較対照として、無処理液のpfuを同様の手順で求めた。これらの結果を表6に示した。

[0059]

【表 6】

表6 9M尿素添加時の λファージの感染力

処理時間(分)	感染力(pfu/mL)		
0	2.8×10 ⁵		
7. 5	0		
15	0		
30	0		
60	0		
λファージ液	8.4×10 ⁸		

[0060]

入ファージの大部分は、9 Mの尿素に接触後、直ちに不活化されることが確認された。その不活化率は約99.96%に達した。なお、尿素を添加した直後であればλファージを回収できたことから、9 Mの尿素の存在はλファージの回収率に影響を与えないと考えられる。

$[0\ 0\ 6\ 1]$

<実施例6 M13ファージ液の作成>

M13ファージのDNAとして、M13mp 18RFI (東洋紡販売)を用いた。宿主菌株は大腸菌 JM109を用いた。M13ファージDNA溶液 1μ Lと滅菌蒸留水9 μ Lを混合し、JM109のコンピテントセル(E.coli JM109、東洋紡販売)に、添付のマニュアルに従って形質転換した。この形質転換した大腸菌を、別途作成していたLB培地(10mL)に接種し、37 $\mathbb C$ で一晩、緩やかに振盪培養した。

[0062]

ーを4mL加えて攪拌した後、あらかじめ用意しておいた1.5%寒天を含む固体L B培地上に注いだ。トップアガーが十分に冷え、固化したことを確認して37℃で 一晩インキュベーションした。

[0063]

[0064]

<実施例7 M13ファージの活性試験>

以降の実施例において使用するM13ファージの実験系が確立していることを 証明するために、M13ファージの活性試験を行い、回収率を算出した。

上記の実施例 6 で作成したM 1 3 ファージ液 $40\,\mu$ Lに、 $360\,\mu$ Lの P B S $+10\,m$ MgSO $_4$.7H $_2$ O液を添加した。試験中に起こり得る p H の変動を抑えるために P B S を用い、不活化剤に起因しないM 1 3 ファージの感染力低下を最小限にするために $10\,m$ M M g S O $_4$ を共存させた。

[0065]

[0066]

得られたPEG沈殿処理液をSM緩衝液で希釈した液10μLと、JM109のSM懸濁液(100μL)を混合し、37℃で15分インキュベーションした。インキュベーション終了後、トップアガーを3mL加えて攪拌し、あらかじめ用意しておいた1.5%寒天を含む固体LB培地上に注いだ。37℃で5時間インキュベーション

[0067]

比較対照として、実施例 6 で作成したM13 ファージ液を PEG 沈殿処理を行わずに JM109 に感染させ、プラーク数を計数してpfuを求めた。結果を表 7 に示した。

[0068]

【表7】

表7 M13ファージの活性

試験条件	感染力(pfu/mL)
PEG沈殿処理	2.0×10 ¹⁰
無処理	1.1×10 ¹¹

[0069]

PEG沈殿処理液は、PEG沈殿処理を行った際にSM緩衝液へ懸濁したことにより、実施例6で作成したM13ファージ液の1/5濃度になっている。表7の値から、PEG沈殿処理後のM13ファージの回収率は約91%であった。この結果より、PEG沈殿処理をしてもM13ファージがほぼ回収されることが確認された。さらに、PBSおよびMgSO4を使用してもM13ファージの安定性に影響を及ぼさないことが確認された。

[0070]

<実施例8 M13ファージの不活化試験1>

変性剤または酵素によるM13ファージの不活化を試験した。変性剤は尿素を用い、酵素はpfuプロテアーゼS(pfu protease S、タカラバイオ社販売)を用いた。

実施例 6 で作成したM 1 3 ファージ液 $40\,\mu$ Lに、P B S + $10\,\text{mM}$ MgSO $_4$.7H $_2$ O液を $352\,\mu$ L添加し、さらにpfu プロテアーゼS を $8\,\mu$ L添加した(最終濃度 2 %)。 これを $1.5\,\text{mL}$ 容チューブに入れ、プロテアーゼ処理液とした。

また、M 1 3 ファージ液 40μ Lに、 9 M尿素を含む P B S + 10mM MgSO $_4$.7H $_2$ O液を 360μ L添加し、 1.5mL容チューブに入れた。これを尿素処理液とした。

また、M 1 3 ファージ液 40μ Lに、 9 M尿素を含む P B S +10mM MgSO $_4$.7H $_2$ O液を 352μ L添加し、さらにpfu プロテアーゼSを 8μ L添加した(最終濃度 2%)。これを 1.5mL容チューブに入れ、尿素・プロテアーゼ処理液とした。

対照として、実施例 6 で作成したM 1 3 ファージ液 $40\,\mu$ Lに、 $360\,\mu$ Lの P B S + $10\,\text{mM}$ MgSO $_4\cdot 7\,\text{H}_2$ O液を混合し、これを無処理液とした。

各処理液を、37℃で1時間インキュベーションした。インキュベーション終了後、600? μ LのPEG液(20% PEG6000、2.5M NaCl)を加え、氷中で3時間静置した。その後、15,000rpmで20分間遠心分離し、上清を捨てた。得られた沈殿物にSM緩衝液を200 μ L加え、沈殿物をよく懸濁した。この懸濁液をSM緩衝液で 希釈し、この希釈液 10μ Lと、大腸菌 JM 10 9のSM懸濁液(100μ L)とを混合し、37℃で15分間インキュベーションした。インキュベーション終了後、トップアガーを3 mL加えて攪拌し、あらかじめ用意しておいた1.5%寒天を含む固体 L B 培地上に注いだ。37℃で5 時間インキュベーションした後、出現したプラーク数を計数し、pfuを求めた。その結果を表8 に示した。

[0071]

【表8】

表8 各試験条件におけるM13ファージの感染力

試験条件	感染力(pfu/mL)	
プロテアーゼ処理	0	
尿素処理	1.1×10 ¹⁰	
尿素・プロテアーゼ処理	0	
M13ファージ液	1.1×10 ¹¹	

[0072]

最終濃度2%のプロテアーゼによって、M13ファージは完全に不活化されることが確認された。9Mの尿素によっては、M13ファージはほぼ50%程度の不活化率が得られた。さらに、プロテアーゼと尿素を両方添加した系では、M13ファージは完全に不活化された。以上のことから、M13ファージの不活化にはプロテアーゼが有効であり、さらに尿素と組み合わせて用いることも有効であることが示唆された。

<実施例9 M13ファージの不活化試験2>

次に、プロテアーゼ濃度を変化させてM13ファージの不活化を試験した。

実施例 6 で作成したM 1 3 ファージ液 $40\,\mu$ Lに、 $352\,\mu$ Lの P B S $+10\,\text{mM}$ MgSO $_4$. 7H $_2$ O液を添加した。 $1.5\,\text{mL}$ 容チューブを用い、pfu プロテアーゼ S (pfu proteas e S、タカラバイオ社販売)をそれぞれ 0、0. 0 8、0. 8、および 8 μ L添加した。各溶液に添加した酵素の最終濃度はそれぞれ 0、0. 0 2、0. 2、および 2%である。

また、実施例 6 で作成したM 1 3 ファージ液 $40\,\mu$ Lに、 9 M尿素を含む P B S +10mM MgSO $_4$ ・7H $_2$ O液を $352\,\mu$ L添加した。1.5mL容チューブを用い、pfu プロテアーゼ S (pfu protease S、タカラバイオ社販売)をそれぞれ 0、0.0 8、0.8、および $8\,\mu$ L添加した。各溶液に添加した酵素の最終濃度はそれぞれ 0、0.0 2、0.2、および 2 %である。

各処理液を、37℃で1時間インキュベーションした。インキュベーション終了後、600? μ LのPEG液(20% PEG6000、2.5M NaCl)を加え、氷中で3時間静置した。その後、15,000rpmで20分間、遠心分離し、上清を捨てた。得られた沈殿物にSM緩衝液を200 μ L加え、沈殿物をよく懸濁した。この懸濁液をSM緩衝液で希釈し、この希釈液 10μ Lと、大腸菌 JM109のSM懸濁液(100μ L)とを混合し、37℃で15分間インキュベーションした。インキュベーション終了後、トップアガーを3mL加えて攪拌し、あらかじめ用意しておいた1.5%寒天を含む固体LB培地上に注いだ。37℃で5時間インキュベーションした後、出現したプラーク数を計数し、pfuを求めた。その結果を表9に示した。

[0074]

表9 尿素およびプロテアーゼの各濃度におけるM13ファージの感染力(pfu/mL)

	試験条件		
プロテアーゼ濃度(%)	OM尿素	9M尿素	M13ファージ 液
0	1.0×10 ¹⁰	6.3×10 ⁹	2.2×10 ¹⁰
0. 02	3.9×10 ⁹	0	
0. 2	5×10 ⁸	0	
2	0	0	

[0075]

プロテアーゼ濃度が高まるにつれてプラーク数が減少しており、M13ファージの不活化は酵素濃度に依存することが確認できた。さらに、9Mの尿素が共存した場合、M13ファージの不活化が高まり、より少ないプロテアーゼ濃度で高い不活化率が得られることが明らかとなった。

[0076]

<実施例10 M13ファージの不活化試験3>

プロテアーゼと尿素が共存する場合のM13ファージの不活化をさらに詳細に 試験した。実施例9の結果から、プロテアーゼ濃度は0.2%とし、尿素濃度お よび処理時間を変化させてM13ファージの不活化を試験した。

実施例 6 で作成したM 1 3 ファージ液 $40\,\mu$ Lに、それぞれ尿素を $0\,\mathrm{M}$ 、 $3\,\mathrm{M}$ 、 および $9\,\mathrm{M}$ 含む $P\,B\,S$ + $10\,\mathrm{mM}$ MgSO $_4$ · $7H_2O$ 液を $359\,\mu$ L添加した。 $1.5\,\mathrm{mL}$ 容チューブ を用い、pfu プロテアーゼ S (pfu protease S、タカラバイオ社販売)を $0.8\,\mu$ L(最終濃度 $0.2\,\%$)添加した。

各処理液を、37℃で0、7.5、15、60分間インキュベーションした。インキュベーション終了後、600? μ LのPEG液(20% PEG6000、2.5M NaCl)を加え、氷中で3時間静置した。その後、15,000rpmで20分間遠心分離し、上清を捨てた。得られた沈殿物にSM緩衝液を200 μ L加え、沈殿物をよく懸濁した。この懸濁液をSM緩衝液で希釈し、この希釈液 10μ Lと、大腸菌 JM109のSM懸濁液 $(100\mu$ L)とを混合し、37℃で15分間インキュベーションした。インキュベ

[0077]

M13ファージの感染力(pfu/mL)

【表10】

表10 試験条件 0.2%プロテアーゼ添加時の各尿素濃度における

処理時間	試験条件			
(分)	9M尿素	3M尿素	OM尿素	M13ファージ液
0	1×10 ⁸	1.1×10 ¹⁰	1.7×10 ¹⁰	1.1×10 ¹¹
7. 5	0	0	2.0×1010	
15	0	0	1.6×10 ¹⁰	
60	0	0	1.1×10 ⁹	

[0078]

プロテアーゼと9Mの尿素が共存した場合、M13ファージの大部分はこれらの活性成分と接触後、直ちに不活化されることが確認できた。3Mの尿素が共存した場合では、活性成分と接触した時点では約50%の不活化に留まっていた。しかし処理時間7.5分が経過した時点で、ほぼ100%が不活化した。尿素が共存しない条件では、プロテアーゼ添加後15分が経過してもほとんど不活化されず、90%以上の不活化率を達成するまでおよそ1時間が必要であった。

上記の表 10 の結果からM 13 ファージの不活化率を算出し、図 2 のグラフに示した。不活化率= $\{1-$ 各処理液の p f u /(無処理液の p f u / $5) <math>\{\times 10$ 0 である。

[0079]

以上の実施例から、本発明のウイルス不活化剤がウイルスの不活化に有効であることが示された。本発明のウイルス不活化剤の活性成分であるタンパク質変性剤およびタンパク質分解酵素は、それぞれ単独でもウイルス不活化に有効である。しかしながらこれらを併用することにより、ウイルス不活化効果を高くするこ

[0080]

2. フィルターおよび空気調和機の実施例

以下、本発明に係る空調用室内ユニット及び空気調和機の一実施形態を、図面に基づいて説明する。

図3は空調用室内ユニット10の断面図、図4は空調用室内ユニット10及び 空調用室外ユニット30よりなる空気調和機100の概略構成を示す斜視図であ る。

[0081]

図3または図4に示すように、この空調用室内ユニット10は、室内の空気を取り入れるための吸込グリル(吸込口)11と、吸込グリル11から取り入れられた室内の空気を冷却または加熱するための室内熱交換器13,14,15と、この室内熱交換器13,14,15で熱交換された空気を室内に戻すための吹出口16と、吸込グリル11から空気を取り入れるとともに、吹出口16から室内に熱交換された空気を吹き出させるためのクロスフローファン(室内送風手段)17と、室内熱交換器14の空気流路上流側近傍で上方となる位置に配設されたウイルス不活化フィルター18とを主たる要素として構成されたものである。なお、空調用室内ユニット10の内部前面から内部上面にかけて配置され、吸込グリル11を通過して室内熱交換器13,14,15に導かれる空気中から塵・ゴミ等の不純物を取り除くためのプレフィルター19が設けられている。

[0082]

上述した空調用室内ユニット10において、吸込グリル11、室内熱交換器13,14,15、吹出口16、クロスフローファン17、及びプレフィルター19については従来周知のものであるので、ここではその説明は省略する。また、吹出口16には、吹出方向を調整するため、周知の吹出ルーバー20及び吹出フラップ21が設けられている。なお、吹出フラップ21の動作により、吹出口16の開閉が可能である。

[0083]

図4は、上述した空調用室内ユニット10を備える空気調和機100の概略構成図である。図4において、図中の符号30は空調用室外ユニットである。この空調用室外ユニット30は、冷媒を圧縮するための圧縮機31、冷媒と室外の空気との熱交換を行わせるための室外熱交換器32、及び室外熱交換器32における冷媒と室外の空気との熱交換を促進させる室外ファン33を有するものである。なお、図5に基づいて後述する四方弁34及び電子膨張弁35も、この空調用室外ユニット30に配設されている。

[0084]

また、符号50は、これら空調用室内ユニット10及び空調用室外ユニット30を連結するとともに、冷媒をこれら空調用室内ユニット10及び空調用室外ユニット30の間で循環させるための冷媒配管である。なお、図中の符号60はリモコン(リモートコントローラ)であり、これにより空気調和機100の運転状態が設定され得るようになっている。

[0085]

ウイルス不活化フィルター18には、たとえば図6ないし図10に示すような 構成を有するものがある。

図 6 はウイルス不活化フィルター 1 8 の第 1 構成例を示す図であって、図 6 (A) は全体図、図 6 (B) は図 6 (A) の部分拡大図である。

ウイルス不活化フィルター18は、フィルター本体18aと、このフィルター本体18aを構成する繊維18bに直接担持されたウイルス不活化剤(以下、単に「不活化剤」と呼ぶ)18cとを備えている。ここで、前記繊維18bとしては、たとえは、ガラス、レーヨン、セルロース、ポリプロピレン、ポリエチレンテレフタレート、ポリアクリル酸系、ポリアクリルアミド系統等の繊維が挙げられる。またさらに、例えばセルファインN(東洋紡販売)のような超吸湿性繊維を用いることもできる。 ここで、不活化剤18cを繊維18bに担持させる場合、物理的に担持する形態に限らず、化学的に担持する形態も利用できる。たとえは、基材のカルボキシル基をアジト化し、アミド結合により不活化剤に含ませる活性成分と化学結合させることで、活性成分を基材に担持させることができる。なお、カルボキシル基に限らず、水酸基やアミノ基等の官能基であっても、化

学結合に利用することができる。このように、化学的に担持する方法は、従来から知られている(新実験化学講座生物化学(1), p. 363~409, 丸善(1978))。

[0086]

本構成例によるウイルス不活化フィルター18によれは、フィルター本体18 aに、ウイルスを不活化する機能を有する不活化剤18cを担持した構成となっているため、不活化し得るウイルス量を大幅に増大することができる。

[0087]

図7はウイルス不活化フィルター18の第2構成例を示す図であって、ウイルス不活化フィルターの要部を示す図である。この構成例では、図7に示すように、吸水性及び/または吸湿性を有する担持体18 dに不活化剤18 cを担持させ、さらに、前記担持体18 dをバインダー(図示せず)を用いて繊維18 eに固定させた構成であることを特徴とする。ここで、前記担持体18 dの材質としては、たとえばポリアクリル酸系、ポリアクリルアミド系、ポリビニルアルコール系などの合成材料、あるいは綿、羊毛、アルギン酸ナトリウム、マンナン、寒天などの天然材料、あるいはレーヨンなどの再生材料等が挙げられる。また、繊維18 eの材質としては、たとえばポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)などの高分子化合物が挙げられる。

[0088]

本構成例によるウイルス不活化フィルター18によれは、吸水性及び/または 吸湿性を有する担持体18dに不活化剤18cを担持させ、さらに前記担持体18dをバインダーを用いて繊維18eに固定させた構成となっているので、上述 した第1構成例と同様な効果を有する。

[0089]

図8(A)は、ウイルス不活化フィルター18の第3構成例を示す図である。 ここで、不活化フィルター18は、複数の不活化剤18cを担持させた担持体18dと、これらを上下からサンドイッチ状に挟む基材18f,18gとから構成されている。

[0090]

ここで、前記担持体18dの材質としては、たとえばポリアクリル酸系、ポリアクリルアミド系、ポリビニルアルコール系、綿、羊毛、レーヨン、アルギン酸ナトリウム、マンナン、寒天が挙げられる。前記基材18f,18gは、繊維18eからなる不織布からなっている。ここで、担持体18dの下側に位置する基材18gとしては、ウイルス粒子(粒径:数十ミクロン~数百ミクロン)の径より小さいメッシュを有した不織布にすることが好ましい。

[0091]

本構成例によるフラット型のウイルス不活化フィルター18によれは、不活化 剤18cを担持した担持体18dを上下の2つの基材18f, 18gによりサンドイッチ状に挟んだ構成となっているので、上述した構成例と同様な効果を有する。

[0092]

また、図8(B)は、ウイルス不活化フィルター18の第4構成例を示す図である。図8(B)に示すようなオープンサンドイッチ式のフラット型のウイルス不活化フィルターであっても、上述した構成例と同様の効果を発揮する。

[0093]

なお、今まで述べてきた第1構成例ないし第4構成例のようなウイルス不活化 フィルター18は、図9に示すように、ケース9に入れてたとえば室内用空調ユニット10の空気流路等に配置されて使用されることができる。

[0094]

図10(A)は、ウイルス不活化フィルター18の第5構成例を示す図である。この不活化フィルター18は、不活化剤を直接担持させた繊維によりフィルター本体18aを構成し、このフィルター本体18aをひだ折りにすることにより構成している。

[0095]

本構成例によるプリーツ型のウイルス不活化フィルター18によれは、不活化剤を直接担持した繊維によりフィルター本体18aを構成し、このフィルター本体18aを構成し、このフィルター本体18aをびだ折りした構成になっているため、上述した構成例のものと比較し

て低圧損であるとともに、ウイルスとの接触機会が増えるので捕集率を高めることができ、さらに水分の蒸発を抑制することができる。

[0096]

図10(B)は、ウイルス不活化フィルター18の第6構成例を示す図である。この不活化フィルター18は、不活化剤18cを担持させた繊維を束ねた断面形状が円形の棒状部材18hであり、これらの棒状部材18hの両端でそれぞれ支持部材18i、18jに連結させた構成となっている。

[0097]

本構成例による棒状型のウイルス不活化フィルター18によれは、不活化剤を担持した繊維により棒状部材18hを構成し、この棒状部材18hの両端をそれぞれ支持部材18i,18jに連結させた構成になっているため、上述した第1構成例ないし第4構成例と比べ、低圧損であるとともに、不活化剤担持量が増大するので不活化能力が大きく、さらに長寿命にすることができる。

[0098]

なお、第6構成例では、棒伏部材の断面形状は円形であったが、特に限定されることはなく、たとえば三角形、四角形、楕円形、あるいは中空体形状でもよい。また、棒状部材の方向性は特に限定されず、縦方向、横方向、あるいは斜め方向等に向きを統一してもよいし、交差させてもよい。さらに、本構成例のウイルス不活化フィルター18を空調用室内ユニット10に実装する場合は、たとえば吹出口16、あるいは吸込グリル11と吹出口16の両方等、空気の流れが速い所等に取り付けるときに好ましく適用できる。

[0099]

図10(C)は、ウイルス不活化フィルター18の第7構成例を示す図である。この不活化フィルター18は、ウレタン等の多孔体18kの表面に不活化剤18cを担持させた構成となっている。

[0100]

本構成例による海綿状型のウイルス不活化フィルター18によれは、上述した 第1構成例ないし第4構成例と同様な効果を有する。

[0101]

上述したフィルター本体の材質としては、たとえば綿や羊毛などの天然繊維レーヨンや酢酸セルロースなどの再生繊維、ポリエチレンやポリエチレンテレフタレートやポリアミドなどの合成繊維の不織布または綿織物、ガラス繊維マット、金属繊維マット、さらにはアクリル酸系、アクリルアミド系、ポリビルアルコール系などの合成樹脂、あるいはアルギン酸ナトリウム、マンナン、寒天などの天然・再生材料である吸水性及び/または吸湿性材料が使用され、前記フィルター本体に前記不活化剤が直接固定、または担持体を介して固定されている。

[0102]

さて、本発明のウイルス不活化剤は液相において反応するものであるが、上述 したようにフィルターの繊維または担持体に吸水性及び/または吸湿性材料を用 いることによって繊維の表面または担持体内部などに微小な液相を生じさせ、こ れによって不活化剤を活性化させることが可能である。

[0103]

また、上述したフィルターの構成によれば、不活化剤は常温、常湿でも活性を有するが、ウイルス不活化剤に含まれる酵素は温度が高いほど活性化されるため、高温多湿の雰囲気にすることによってより活性化させることが可能である。好ましい温度は、酵素の至適温度を超えない範囲で、且つ、空気調和機およびフィルターの耐熱温度以下の温度である。例えば、上記実施例で用いたpfu プロテアーゼS(pfu protease S、タカラバイオ社販売)を使用した場合、好ましい温度範囲は30~80℃である。

$[0\ 1\ 0\ 4]$

ここで、上述したウイルス不活化フィルター18を備えた空調用室内ユニット10には、内部空間Sを高温多湿の不活化剤活性化雰囲気に維持する不活化剤活性化手段が般けられている。なお、ここでの内部空間Sとは、吸込ゲリル11から吸い込んだ空気が吹出口16から流出するまでの空気流路(空間)のことをいう。この不活化剤活性化手段の第1の実施形態では、特別な構成要素を新たに付加することなく、ウイルス不活化フィルター18以外は実質的に空気調和機100が通常備えている構成要素を有効利用して運転できるものである。

[0105]

[0106]

このウイルス不活化運転モードでは、高温多湿の雰囲気とするために水分が必要となる。そこで、室内用空調ユニット10内に設置されている室内熱交換器13,14,15の冷却運転を所定時間継続して実施し、同熱交換器の表面に生成される凝縮水を多湿とするための水分として使用する。なお、室内熱交換器13,14,15の冷却運転は、同熱交換器を蒸発器(エバポレータ)として使用する冷房運転時及び除湿運転時と同様の経路で冷媒を循環させればよく、以下ではこの冷却運転を「凝縮水生成運転」と呼ぶことにする。

[0107]

この凝縮水生成運転では、図5の冷媒回路図に示すように、空調用室外ユニット30側の圧縮機31及び室外ファン33を運転して冷媒を循環させ、空調用室内ユニット10側では、吹出口16に設けたフラップ21を開としてクロスフローファン17を運転する。

[0108]

この時、冷媒の循環経路は、図5に実線矢印で示すように、圧縮機31から吐出された後に四方弁34で循環方向が選択切換されて、室外熱交換器32、電子膨張弁35、室内熱交換器13,14,15及び四方弁34の順に時計廻りに流れて圧縮機31に戻る。このような冷媒の流れとすれば、室内熱交換器13,14,15には気液二相流の冷媒が供給されて空気と熱交換するので、気化熱を奪.われた空気が冷却されると共に、空気中の水分は温度低下により凝縮して熱交換器の表面に付着する。こうして生成された凝縮水は、室内熱交換器13,14,15の表面からドレン受け22に滴下した後、図示しない所定の排水流路を通

[0109]

上述した凝縮水生成運転が終了した後には、生成された凝縮水を加熱して気化させることにより、内部空間Sを高温多湿とする加熱運転に移る。

$[0\ 1\ 1\ 0\]$

この加熱運転では、図5の冷媒回路図に破線矢印で示すように、圧縮機31から吐出された冷媒が、四方弁34の切換操作により凝縮水生成運転時とは逆向きの反時計廻り流れる。すなわち、圧縮機31から吐出された冷媒は、四方弁34から流出して室内熱交換器13,14,15、電子膨張弁35、室外熱交換器32及び四方弁34の順に流れて圧縮機31に戻る。

$[0\ 1\ 1\ 1]$

このようにして、加熱運転においても、冷媒を暖房運転時と同様に循環させれば、室内熱交換器13,14,15に供給された高温高圧のガス冷媒は、空気と熱交換して凝縮する。この結果、室内熱交換器は凝縮器として放熱する機能を発揮するので、この放熱量を加熱手段として使用することにより、熱交換器表面に付着した凝縮水を気化させることができる。

$[0\ 1\ 1\ 2]$

この加熱運転時には、凝縮水の気化・蒸発を促進するべく、暖房運転時とは異なり、空調用室外ユニット30の圧縮機31及び室外ファン33は運転されるが、空調用室内ユニット10側ではクロスフローファン17の運転を停止し、かつ、吹出フラップ21を操作して吹出口16を閉とする。この結果、空調用室内ユニット10の内部空間Sは吹出口16が閉じた半密閉の状態となり、室内熱交換器13,14,15の放熱で内部空間S内の温度が上昇するとともに、室内熱交換器13,14,15の放熱(加熱)を受けて気化した凝縮水の蒸気が内部空間S内に滞留して湿度を上昇させるので、高温多湿の不活化剤活性化雰囲気(ウイルス不活化雰囲気)を容易に形成することができる。

[0 1 1 3]

ただし、凝縮水が気化した蒸気は、略真上に上昇する流路を通過するので、ウイルス不活化フィルター18が確実に吸湿できるようにするためには、ウイルス

$[0 \ 1 \ 1 \ 4]$

なお、ウイルス不活化フィルター18の設置については、少なくとも、通常の 冷房運転や暖房運転を行った場合の空気流経路に配置するとともに、加熱運転に より形成される室内機内部での蒸発空気に接することができる箇所に設置すれば よく、必ずしも不活化フィルターの設置位置を室内熱交換器上方に限定するもの ではない。

[0115]

こうして内部空間Sが不活化剤活性化雰囲気になると、ウイルス活性化フィルター18に担持された不活化剤18cが活性化するので、同フィルター18に捕集されたウイルスは不活化剤18cの作用によって不活化される。このようにしてウイルスを不活化するための加熱運転時間は、目標とするウイルス不活化率に応じて適宜定めればよい。

[0116]

凝縮水生成運転及び加熱運転を行うことにより、空調用室内ユニット10の内部空間Sをウイルスが不活化する雰囲気に必要時間維持することができるので、この雰囲気の中でウイルス不活化フィルター18に担持された不活化剤18cが活性化し、捕集したウイルスを効率よく不活化することができる。

[0117]

また、上述したウイルス不活化運転モードは、操作部等の適所に設けた所定のスイッチ操作により、ワンタッチで実施可能となる。このスイッチ操作は、たとえば図11に示すように、リモコン60に予め設けたウイルスクリアボタン61を押すことによりなされる。すなわち、ウイルスクリアボタン61を押すことにより、ウイルス不活化運転モードを実行する特定の制御信号が生成される。リモコン60のウイルスクリアボタン61を押した場合、赤外線等の制御信号が空調用室内ユニット10の図示しない受信部へ送信される。なお、図示のリモコン60には、上述したウイルスクリアボタン61の他にも、たとえば表示部62、運転/停止操作ボタン63、温度設定スイッチ64、湿度設定スイッチ65及び運

[0118]

この制御信号は、受信部から空気調和機100の図示しない制御部に送られ、この信号を受けた制御部では、所定の制御ステップに基づいて上述した凝縮水生成運転及び加熱運転を行ってウイルスを不活化する。このようなウイルス不活化運転モードの実施は、ウイルスクリアボタン61を押して生成された制御信号が制御部に入力された場合、他の運転モードに優先して実行される。すなわち、冷房運転や暖房運転を実施している状況でウイルスクリアボタン61が押された場合には、実施中の冷房運転または暖房運転を中止してウイルス不活化運転モードに切り替えられる。

[0119]

また、上述したウイルス不活化運転モードは、必要に応じて適宜中断することも可能である。ウイルス不活化運転モードを中断する制御信号は、たとえばウイルスクリアボタン61を再度押すことにより生成されるようにしてもよいし、あるいは、リモコン60に専用の中止ボタンを設けてもよい。このように、リモコン60等のスイッチ操作によりワンタッチでウイルス不活化運転モードの実施及び中断を選択可能にしたので、簡単な操作によって容易にウイルスを不活化する運転が可能になる。なお、このようなウイルス不活化運転モードは、空気調和機100が従来備えている冷暖房運転用のタイマー機能と連動して作動するようにしてもよい。

[0120]

このように、ウイルス不活化運転モードにおいては、高温多湿の雰囲気が形成されるが、室内や室外の環境(温度及び湿度)によって目標到達時間が変動する。すなわち、凝縮水生成運転で生成される凝縮水量が所望の量となるまでの時間や、この凝縮水を気化させて所望の温度及び湿度とするのに要する時間は、上記の環境により異なってくる。そこで、凝縮水生成運転を実施する際には、室内熱交換器13,14,15の表面に凝縮水が生成しやすい運転条件となるように制御するのが好ましい。

[0121]

以下に、凝縮水が生成しやすい運転条件の具体例をあげる。第1の具体例では、絞り機構として設けた電子膨張弁35の開度を通常の冷房運転時との対比で小さく設定して運転する。この結果、冷媒の吸熱量が増して室内熱交換器13,14,15の表面温度がより低下するので、熱交換器表面に結露する凝縮水量を増加させることができる。この喝合、空調用室内ユニット10に設けられている室内温度検出手段の検出値(室内温度)に基づいて電子膨張弁35の開度を調整してもよく、室内温度が高いほど電子膨張弁35の開度は小さくなる。

[0122]

第2の具体例としては、クロスフローファン17の回転速度を通常の冷房運転時より低下させた低速運転を行うことにより、送風する風量を減少させて室内熱交換器13,14,15を通過する風量を少なくしてもよい。このような運転を行っても、空気の吸熱量が減少することによって室内熱交換器13,14,15の表面温度がより低下するので、熱交換器表面に結露する凝縮水量を増加させることができる。

[0123]

第3の具体例としては、外気温度を検出して空調用室内ユニット30に設けられた室外ファン33の回転数を調整してもよい。この場合、外気温度が高いほど室外ファン33の回転数を高く設定すれば室外熱交換器32で凝縮する冷媒量が増加するので、室内熱交換器13,14,15へ供給される気液二相流の冷媒量も増加する。従って、室内熱交換器13,14,15の表面温度はより低下するので、熱交換器表面に結露する凝縮水量を増加させることができる。

[0124]

なお、上述した第1ないし第3の具体例は、単独での採用は勿論のこと、複数 を適宜組み合わせて採用したり、あるいは、全てを組み合わせて採用したりする ことも可能である。

[0125]

ただし、加熱運転に先立ち、必ず凝縮水生成運転を行うといった制御に限られるものではなく、通常の冷房運転により凝縮水が生成される場合には、通常の冷 房運転を冷却運転として位置付けて、冷房運転の後に加熱運転を行うといったウ

[0126]

ところで、ウイルス不活化運転モードでは、上述した凝縮水生成運転及び加熱 運転を実施することにより、不活化剤18cを活性化してウイルスを不活化する という当初の目的を達成することができる。しかし、以下に説明する運転を前後 に加えることにより、ウイルス不活化運転の効率向上や不活化剤18cの高寿命 化などを実現することができる。

[0.127]

最初に、凝縮水生成運転の前に実施する捕集運転について説明する。この捕集運転は、室内のウイルスをウイルス不活化フィルター18に捕集する運転のことであり、クロスフローファン17を運転して吸込グリル11から室内の空気を吸い込み、ウイルス不活化フィルター18を通過させてから吹出口16より室内に戻す運転のことである。この捕集運転では、空気中のウイルスをウイルス不活化フィルター18に捕集することが員的であるから、ウイルス不活化フィルター18を室内空気が流過すればよく、単に空気を循環させるのみの送風運転でよい。また、当然に、通常の冷房・除湿運転や暖房運転を行っても同様にウイルス不活化フィルター18を介して室内空気が循環するので、室内の状況や使用者の好みに応じて、送風運転、冷房・除湿運転及び暖房運転の中から適宜選択すればよい

$[0\ 1\ 2\ 8]$

このようにして空気を循環させると、ウイルス不活化フィルター18を空気が 通過する際、空気はフィルター本体18a等を通過可能であるが、空気とともに 循環するウイルスの多くは通過できずに捕集される。このため、室内の広さ、想 定されるウイルス量及びウイルス不活化フィルター18の捕集能力等を考慮して 適切な運転時間の捕集運転を継続すると、室内のウイルスは、その多くがウイル ス不活化フィルター18に捕集される。こうして多くのウイルスを捕集した状態 でウイルス不活化運転モードを実施すると、1回のウイルス不活化運転で多くの ウイルスを不活化させることができるので、室内のウイルスを効率よく不活化し てウイルス量の少ない室内環境とすることができる。

また、ウイルス不活化モードの加熱運転終了後には、内部空間S内の高温多湿状態をすみやかに解消することが好ましい。これは、特に不活化剤18cの寿命を考慮したとき、不活化剤18cがウイルス不活化フィルター18内に残存する水分との間で加水分解を起こし、自己分解するのを抑制するべく、不活化剤18cの活性化の程度を通常の雰囲気のレベルにまで戻すことができる環境、すなわち、低温・低湿度の雰囲気とすることが、不活化剤の経時的劣化を抑制する上で好ましいことに起因している。

このため、たとえば室内の空気を室外へ排気する周知の換気装置(図示せず)を備えている空調用室内ユニットの場合、不活化剤を活性化状態で保持する所定の不活化剤活性状態保持時間の経過にともない加熱運転が終了した後に適当な運転時間を定めて換気運転を実施する。この換気運転では、室内への直接的な高温高湿の雰囲気の流出による空調フィーリングの低下を防止すべく吹出口フラップ21を閉じた状態として内部空間Sを半密閉状態に保ちつつ、換気ファン(図示せず)の作動により内部空間Sに存在する高温多湿の雰囲気を室外へ排出することができる。

[0130]

換気運転を所定時間行って高温多湿の雰囲気を室外へ排出した後には、換気ファンに加えてクロスフローファン17による送風運転も開始する。この時、吹出口フラップ21を閉状態として内部空間Sの半密閉状態が維持され、この内部空間S内に換気及び送風による空気の流れが生じることによって、ウイルス不活化フィルター18を除湿して乾燥させることができる。なお、このような換気及び送風を併用した劣化防止運転は、内部空間Sの容積等に応じて適当な運転時間を設定すればよい。

[0131]

このようにして、空気調和機100の制御手段が、ウイルス不活化運転モード 終了後に換気運転及び送風運転を実施する劣化防止運転モードを実行すると、内 部空間Sが高温多湿の環境をすみやかに解消して不活化剤18cが無用に活性化 している時間を短縮できるので、その分不活化剤18cの劣化を抑制して寿命を

なお、上述した説明では、空調用室内ユニットが換気装置を備えているものとしたが、換気装置がない空調用室内ユニット10の場合には、換気運転ができないため、加熱運転終了後に半密閉状態の内部空間Sでクロスフローファン17による送風運転を行い、これにより生じる空気の流れでウイルス不活化フィルター18を乾燥させればよい。

[0132]

また、上述した実施形態では、換気装置を備える場合に送風運転と換気運転とを併用したウイルス不活化フィルターの劣化防止運転を、換気装置を備えない場合には送風運転単独による劣化防止運転を行う制御を採用したが、換気装置を備える場合であっても、不活化剤活性化のための高温度や高湿度の程度に応じて、送風運転単独もしくは送風運転と換気運転の併用により不活化剤担持体から水分を除去する劣化防止運転のモードを選択的に実行するようにしてもよい。

[0133]

ところで、これまで説明した空調用室内ユニット10は、吸込グリル11が常に開状態となるため、吹出フラップ21を閉じる加熱運転時等には内部空間Sが 半密閉状態となる。

そこで、上述した実施形態の変形例として、内部空間Sを密閉にして加熱運転を実施する構成の空調用室内ユニット10Aを図12に示して説明する。この変形例では、吸込グリル11Aにたとえば吸入口フラップ12のような吸入口開閉手段を設けておき、加熱運転時など必要に応じて吸込グリル11Aを閉じることができるようになっている。このため、加熱運転時等には、吸込グリル11A及び吹出口16がともにフラップにより閉じられた密閉状態の内部空間Sとなり、ウイルスを不活化する高温多湿の雰囲気が外部に漏出しにくいものとなる。

[0134]

このような密閉状態で加熱運転を実施すると、雰囲気の外部への漏出がないため内部空間 S内の温度及び湿度を維持することが容易になるので、不活化剤 1 8 c を活性化する効率が向上する。すなわち、半密閉状態で加熱運転をするよりも

短時間で目標とするウイルス不活化雰囲気を形成し、また、高温多湿の雰囲気を 維持するために消費する加熱エネルギー量や凝縮水量も少なくてすむ。

[0135]

また、このように内部空間Sを密閉状態とした加熱運転時には、クロスフローファン17を回転させて撹拌することが好ましい。このような撹拌を行うことにより、密閉された内部空間S内における高温多湿の雰囲気は略均一化される。

このため、ウイルス不活化フィルター18は、その全域にわたって不活化剤18cが活性化するようになる。すなわち、ウイルス不活化フィルター18の全域で不活化剤18cが機能し、ウイルスを効率よく不活化できるようになるので、フィルターとしての能力を最大限に有効利用することが可能になる。

[0136]

続いて、不活化剤活性化手段の第2の実施形態を図13及び図14に基づいて 説明する。この実施形態の不活化剤活性化手段は、室内熱交換器13,14,1 5の冷却運転により生成されてドレン受け22に貯留された凝縮水を、ドレン受 け22の近傍適所に設けた電気ヒータ23等の加熱手段により加熱して気化させ 、高温多湿の雰囲気を形成するものである。なお、図中の符号24は断熱材、2 5はドレン受け22の底面に設けたドレン穴である。

[0137]

すなわち、通常の冷房・除湿運転や上述した第1の実施形態の凝縮水生成運転を実施して生成され、熱交換器表面からドレン受け22に滴下したものを貯留する凹部22aを設けておく。この凹部22aは、好ましくはドレンパン22の底面に形成されて空調用室内ユニット10の幅方向へ延びる溝状とされ、略真上に上昇する蒸気がウイルス不活化フィルター18の全域にわたって均等に当たるようになっている。また、凹部22aの凝縮水貯留容量は、内部区間Sを所望の高温多湿とし、必要な加熱運転時間を維持できるだけの水量を確保できるものとする。この凝縮水貯水容量は、凹部22aの断面形状や長さに加えて、ドレン穴25の近傍に設けた堰板22bの高さ等により規定される。

なお、凹部22aは、幅方向へ延びる溝状に限定されることはなく、幅方向へ 一定のピッチで分割配設したものなど、種々の変形例が可能である。

[0138]

このような構成とすれば、上述した第1の実施形態の加熱運転と同様に、内部空間Sを半密閉または密閉状態とし、電気ヒータ23に通電して加熱する。この時、クロスフローファン17は、内部空間Sを半密閉状態とした場合は運転を停止し、密閉状態とした場合は撹拌運転を実施するのが好ましい。この場合、通常の空調用室内ユニットに加熱手段の電気ヒータ23が追加され、ドレン受け22の形状に若干の変更を加えることで不活化剤活性化手段を形成することができる

また、電気ヒータ23の通電は、図11に示した圧縮機31及び室外ファン3 3の運転・停止と同様に、必要な加熱運転時間を確保できるように断続して通電 するなど適宜調整することが望ましい。

[0139]

この結果、内部空間S内は高温多湿の不活化剤活性化雰囲気に維持され、不活 化剤18cが活性化してウイルスを活発に破壊するので、ウイルスを不活化する ことができる。

また、加熱運転の前後に行う捕集運転や換気運転等の各種運転については、上述した第1の実施形態と同様に行えばよい。

[0140]

以上説明したように、本発明の空調用室内ユニット及びこれを備えた空気調和機によれは、ウイルス不活化フィルター18に担持させた不活化剤18cを活性化させる雰囲気とする不活化剤活性化手段を備えているので、ウイルスを積極的に破壊して不活化し、室内のウイルス量を低減してウイルスの感染可能性が低い室内環境を提供することができる。なお、本発明の構成は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。

[0141]

なお、本発明のウイルス不活化剤は、マスク、医療関係者用の着衣、壁紙また は壁面等に使用される塗装材、またはウイルスに感染した患者を搬送する担架お よびカプセルの内部に施用することが可能である。さらに、例えば医療廃棄物お よび病院のような患者を収用する施設内に散布するためのスプレーに用いることも可能である。また、玄関マット、フロアマット、カーペット、自動車のシートなどにも用いることができる。

[0142]

【発明の効果】

本発明に従うと、人体に害を与えずにウイルスを効果的および持続的に不活化するウイルス不活化剤が提供される。

【図面の簡単な説明】

【図1】

λファージの不活化率を示すグラフである。

【図2】

M13ファージの不活化率を示すグラフである。

【図3】

本発明に係る空調用室内ユニットの第1の実施形態を示す断面図である。

【図4】

本発明に係る空気調和機の概略構成を示す斜視図である。

図5

図4に示した空気調和機の冷媒回路図である。

【図6】

ウイルス不活化フィルターの第1構成例を示す図であって、(A)は全体図、(B)は(A)の部分拡大図である。

【図7】

ウイルス不活化フィルターの第2構成例を示す図であって、ウイルス不活化フィルターの要部を示す図である。

【図8】

ウイルス不活化フィルターの別の構成例を示す図であって、(A) はウイルス 不活化フィルターの第3構成例を示す全体図、(B) はウイルス不活化フィルターの第4構成例を示す全体図である。

【図9】

図6ないし図8に示すウイルス不活化フィルターをケース内に納めた状態を示す す平面図である。

【図10】

ウイルス不活化フィルターのさらに別の構成例を示す図であって、(A) はウイルス不活化フィルターの第5構成例を示す全体図、(B) はウイルス不活化フィルターの第6構成例を示す全体図、(C) はウイルス不活化フィルターの第7構成例を示す全体図である。である。

【図11】

リモコンの具体例を示す平面図である。

【図12】

図3に示した空調用室内ユニットについて、その変形例を示す断面図である。

【図13】

本発明に係る空調用室内ユニットの第2の実施形態を示す要部断面図である。

図14

図13の貯留部を示す平面図である。

【符号の説明】

- 10,10A 空調用室内ユニット
- 11, 11A 吸込グリル(吸込口)
- 12 吸入口フラップ(吸入口開閉手段)
- 13, 14, 15 室内熱交換器
- 16 吹出口
- 17 クロスフローファン(室内送風手段)
- 18 ウイルス不活化フィルター(不活化剤担持体)
- 18cウイルス不活化剤
- 19 プレフィルター
- 20 吹出ルーバー
- 21 吹出フラップ(吹出口開閉手段)
- 22 ドレン受け
- 2 2 a 貯留部

- 2 2 b 堰板
- 23 電気ヒータ (加熱手段)
- 2 4 断熱材
- 25 ドレン穴
- 30 空調用室外ユニット
- 3 1 圧縮機
- 3 2 室外熱交換器
- 33 室外ファン
- 3 4 四方弁
- 35 電子膨張弁(絞り機構)
- 50 冷媒配管
- 60 リモコン (リモートコントローラ)
- 61 ウイルスクリアボタン
- 100 空気調和機
- S 内部空間

【書類名】

図面

図1]

[図2]

10;空調用室内ユニット 11;吸込グリル(吸込口) 13,14,15;室内熱交換器

16;吹出口

17; クロスフローファン(室内送風手段)

18; ウィルス不活化フィルター(不活化剤担持体)

21; 吹出フラップ(吹出口開閉手段)

S;内部空間

【図4】

30;空調用室外ユニット

31; 圧縮機

32;室外熱交換器 33;室外ファン 50;冷媒配管

60; リモコン(リモートコントローラ)

100;空気調和機

【図5】

35;電子膨張弁(絞り機構)

◆---;冷房・除湿運転

▼──;暖房運転

【図6】

18; ウイルス不活化フィルター

18a; フィルター本体 18c; ウイルス不活化剤

【図7】

18c;ウイルス不活化剤

【図8】

18; ウイルス不活化フィルター 18c; ウイルス不活化剤

【図9】

18; ウイルス不活化フィルター

【図10】

18; ウイルス不活化フィルター

18a; フィルター本体 18c; ウイルス不活化剤 【図11】

【図12】

10A;空調用室内ユニット 11A;吸込グリル(吸込口)

12;吸込口フラップ(吸込口開閉手段)

【図13】

【図14】

ページ: 1/E

【書類名】

要約書

【要約】

【課題】 ウイルスを効果的に不活化する不活化剤及び不活化方法を提供する。

【解決手段】 タンパク質変性剤およびタンパク質分解酵素から成る群から選択された一つ以上の活性成分を含み、液相においてウイルスを不活化することを特徴とするウイルス不活化剤。

【選択図】 なし

特願2003-207883

出願人履歴情報

識別番号

[000006208]

1. 変更年月日

2003年 5月 6日

[変更理由]

住所変更

住 所

東京都港区港南二丁目16番5号

氏 名 三菱重工業株式会社