Lecture 12: 17 May, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Limitations of classification models

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Limitations of classification models

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Overcoming limitations

- Bagging is an effective way to overcome high variance
 - Ensemble models
 - Sequence of models based on independent bootstrap samples
 - Use voting to get an overall classifier
- How can we cope with high bias?

Dealing with bias

- A biased model always makes mistakes
 - Build an ensemble of models to average out mistakes

Dealing with bias

- A biased model always makes mistakes
 - Build an ensemble of models to average out mistakes
- Mistakes should be compensated across models in the ensemble
 - How to build a sequence of models, each biased a different way?
 - Again, we assume we have only one set of training data

- Build a sequence of weak classifiers M_1 , M_2 , ..., M_n on inputs D_1 , D_2 , ..., D_n
 - A weak classifier is any classifier that has error rate strictly below 50%

- Build a sequence of weak classifiers M_1 , M_2 , ..., M_n on inputs D_1 , D_2 , ..., D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1 \downarrow f |D| = N
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i

dj E D • Wi - weight

 $\sum u_i = 1$

Decision Strup Single node lesson tree

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0</p>

- Build a sequence of weak classifiers M_1 , M_2 , N_1 , N_2 , N_3 , N_4 , N_4 , N_5 , N_6 , $N_$
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D_i
 - Initially all weights equal, D₁
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i

M. Mr. - Mk - voted buch model got an equal rore of kr Weighted vote

- Build a sequence of weak classifiers M_1 , M_2 , ..., M_n on inputs D_1 , D_2 , ..., D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i
- Ensemble output
 - Individual classification outcomes are $\{-1, +1\}$
 - Unknown input x: ensemble outcome is weighted sum $\sum \alpha_i M_i(x)$
 - Check if weighted sum is negative/positive

Initially, all data items have equal weight

```
AdaBoost(D, Y, BaseLeaner, k)
      Initialize D_1(w_i) \leftarrow 1/n for all i;
      for t = 1 to k do
          f_t \leftarrow \text{BaseLearner}(D_t);
           e_i \leftarrow \sum D_i(w_i);
                     i: f_i(D_i(\mathbf{x}_i)) \neq y_i
5.
              exit-loop
           else
10
                D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)} \text{Normalize}
11.
```

- Initially, all data items have equal weight
- Build a new model and compute its weighted error

AdaBoost(D, Y, BaseLeaner, k)

- Initialize $D_1(w_i) \leftarrow 1/n$ for all i;
- for t = 1 to k do

3.
$$f_t \leftarrow \text{BaseLearner}(D_t)$$
;

4.
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i)) \neq y_i} D_t(w_i);$$

- 5. if $e_1 > \frac{1}{2}$ then
- $k \leftarrow k 1$:
- exit-loop
- else

9.
$$\beta_t \leftarrow e_t / (1 - e_t);$$

9.
$$\beta_{t} \leftarrow e_{t} / (1 - e_{t});$$
10
$$D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$$

11.
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%

AdaBoost(D, Y, BaseLeaner, k)

- Initialize $D_1(w_i) \leftarrow 1/n$ for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t);$

4.
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

if
$$e_t > \frac{1}{2}$$
 then $k \leftarrow k - 1$; exit-loop

$$\beta_t \leftarrow e_t / (1 - e_t)$$

9.
$$\beta_t \leftarrow e_t / (1 - e_t);$$
10
$$D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_t)) = y_i \\ 1 & \text{otherwise} \end{cases};$$

11.
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs

AdaBoost(D, Y, BaseLeaner, k)

- Initialize $D_1(w_i) \leftarrow 1/n$ for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t);$

4.
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

- if $e_t > \frac{1}{2}$ then
- $k \leftarrow k 1$:
- exit-loop
- 8. else

9.
$$\beta_t \leftarrow e_t / (1 - e_t);$$

9.
$$\beta_{t} \leftarrow e_{t} / (1 - e_{t});$$
10
$$D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i}; \\ 1 & \text{otherwise} \end{cases};$$

11.
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize

AdaBoost(D, Y, BaseLeaner, k)

- Initialize $D_1(w_i) \leftarrow 1/n$ for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t)$;

4.
$$e_t \leftarrow \sum_{i:f_i(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

- if $e_t > \frac{1}{2}$ then
- $k \leftarrow k 1$:
- exit-loop
- 8. else

$$\beta_t \leftarrow e_t / (1 - e_t);$$

9.
$$\beta_{t} \leftarrow e_{t} / (1 - e_{t});$$

$$D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{t})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$$

11.
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

- Initially, all data items have equal weight
- Build a new model and compute its
- weighted error

 Discard if error rate is above 50 € €
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize
- Final classifier

Final classifier
$$f_{\text{final}}(x) = \underset{y \in Y}{\text{arg max}} \sum_{\substack{y \in Y \\ \textbf{y \in \{\textbf{a},\textbf{j}^{t}: f_{t}(x) = y}}} \log \frac{1}{\beta_{t}} = \textbf{v_{t}}$$

AdaBoost(D, Y, BaseLeaner, k)

1. Initialize
$$D_1(w_i) \leftarrow 1/n$$
 for all i;

2. **for**
$$t = 1$$
 to k **do**

3.
$$f_t \leftarrow \text{BaseLearner}(D_t)$$
;

$$e_t \leftarrow \sum_{i: f_i(D_t(\mathbf{x}_i)) \neq y_i} D_t(w_i);$$

if
$$e_t > \frac{1}{2}$$
 then $k \leftarrow k - 1$;

$$\beta_t \leftarrow e_t / (1 - e_t)$$

$$D_{t+1}(w_i) \leftarrow D_t($$

1.
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$$

$$\begin{array}{l}
\beta_t \leftarrow e_t / (1 - e_t); \\
D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$$

 \blacksquare Each M_i could be a different type of model

11/29

- \blacksquare Each M_i could be a different type of model
- Can we pick best n out of N weak classifiers?

11/29

- Each M_i could be a different type of model
- Can we pick best n out of N weak classifiers?
- Initially all data items have equal weight, select M_1 as model with lowest error rate among N candidates

11/29

- **Each** M_i could be a different type of model
- Can we pick best n out of N weak classifiers?
- Initially all data items have equal weight, select M_1 as model with lowest error rate among N candidates
- Inductively, assume we have selected $M_1, \ldots M_j$, with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}

- **Each** M_i could be a different type of model
- Can we pick best n out of N weak classifiers?
- Initially all data items have equal weight, select M_1 as model with lowest error rate among N candidates
- Inductively, assume we have selected $M_1, \ldots M_j$, with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}

Multipliabre updates

- **Each** M_i could be a different type of model
- Can we pick best n out of N weak classifiers?
- Initially all data items have equal weight, select M_1 as model with lowest error rate among N candidates
- Inductively, assume we have selected $M_1, \ldots M_j$, with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}
- Note that same model M may be picked in multiple iterations, assigned different weights α

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line

 $\frac{2}{\alpha_2}$

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs
- Third separator: horizontal line

■ Final classifier is weighted sum of three weak classifiers

18 / 29

■ Final classifier is weighted sum of three weak classifiers

Gradient Boosting

- AdaBoost uses weights to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
 - Shortcomings of the current model are defined in terms of gradients
 - Gradient boosting = Gradient descent + boosting

- Training data (x_1, y_1) $(x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3$, $F(x_2) = 1.4$
 -

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3$, $F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

■ What should *h* look like?

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3$, $F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$

Gradient Boosting for Regression

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $y_i F(x_i)$

Gradient Boosting for Regression

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model *F* we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $y_i F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals $y_i - [F(x_i) + h(x_i)]$

Gradient Boosting for Regression

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $y_i F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals $y_i - [F(x_i) + h(x_i)]$
- Why should this work?

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i} \delta$$

Gradient descent

Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x)) = (y - F(x))^{2} / 2$$

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

$$J = \sum_{i} L(y_i, F(x_i))$$

Gradient descent

Move parameters against the gradient with respect to loss function

$$\frac{\partial_{0} + \theta_{1} \kappa_{1} + \theta_{2} \kappa_{1}}{\Phi_{i} \leftarrow \theta_{i} - \frac{\partial J}{\partial \theta_{i}}} - loss$$

$$\frac{\partial loss}{\partial \theta_{i}}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

$$J = \sum_{i} L(y_i, F(x_i))$$

$$J = \sum_{i} L(y_{i}, F(x_{i}))$$

$$\frac{\partial J}{\partial F(x_{i})} = F(x_{i}) - y_{i}$$

$$\frac{2 \cdot (y_{i} - F(x_{i}))}{2}$$

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

Residual $y_i - F(x_i)$ is negative gradient

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

$$J = \sum_{i} L(y_i, F(x_i))$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

$$J=\sum_i L(y_i,F(x_i))$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

 Residuals are a special case — gradients for square loss

Madhavan Mukund Lecture 12: 17 May, 2021 DMML Apr-Jul 2021 22 / 29

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

22 / 29

Madhavan Mukund Lecture 12: 17 May, 2021 DMML Apr-Jul 2021

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers

22 / 29

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

 More generally, boosting with respect to gradient rather than just residuals

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

74-41 7-42

- More generally, boosting with respect to gradient rather than just residuals
- Given any differential loss function *L*,
 - Start with an initial model F
 - Calculate negative gradients

$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

- Fit a regression tree h to negative gradients $-g(x_i)$
- Update F to $F + \rho h$
- ho is the learning rate

22 / 29

xn-yn F