

Claims:

1 1. A method for detecting anomalous phase measurements in a satellite differential
2 navigation system in which a first satellite receiver and a second satellite receiver each compute
3 phase measurements on a plurality of satellite channels, said method comprising the steps,
4 performed for each of a plurality of iterations, of:

- 5 a) generating a combined phase difference vector;
6 b) generating a phase mismatch vector representing the difference between said
7 combined phase difference vector and an estimated combined phase difference vector;
8 c) generating an averaged estimate vector representing the averaged estimate of said
9 phase mismatch vector over said channels;
10 d) generating a residual vector representing the difference between said phase mismatch
11 vector and said averaged estimate vector;
12 e) generating a vector of controlling signals by linear transformation of said residual
13 vector and said averaged estimate vector;
14 f) generating said estimated combined phase difference vector by successively storing
15 components of said vector of controlling signals for each of said channels; and
16 g) detecting anomalous phase measurements by analyzing said residual vector.

1 2. The method of claim 1 wherein said combined phase difference vector Φc comprises
2 phase differences ($\Phi c_1.. \Phi c_j.. \Phi c_N$) for a j -th satellite channel, and wherein step a) of generating a
3 combined phase difference vector further comprises the step of:

4 calculating said phase difference vector Φc as $\Phi c = \Phi^B - \Phi^R$ where vector Φ^B
5 comprises the full phases measured by one of said satellite receivers for each j -th satellite
6 channel ($\Phi_{B1}.. \Phi_{Bj}.. \Phi_{BN}$) and vector Φ^R comprises the full phases measured by the other satellite
7 receiver for each j -th satellite channel ($\Phi_{R1}.. \Phi_{Rj}.. \Phi_{RN}$).

1 3. The method of claim 1 wherein said first and second satellite receivers are dual
2 frequency (f1 and f2) receivers and wherein said combined phase difference vector Φc
3 comprises phase differences ($\Phi c_1.. \Phi c_j.. \Phi c_N$) for a j -th satellite channel, and wherein step a) of
4 generating a combined phase difference vector further comprises the step of:

5 calculating said phase differences Φc_j of said phase difference vector Φc as

6 $\Phi_{Cj} = (\Phi^B_{2j} - \Phi^R_{2j}) - (\Phi^B_{1j} - \Phi^R_{1j})(f2 / f1)$
 7 where Φ^B_{2j} and Φ^B_{1j} represent the full phase measured by one of the satellite receivers at each j -
 8 th satellite channel at frequencies $f2$ and $f1$ respectively, and
 9 where Φ^R_{2j} and Φ^R_{1j} represent the full phase measured by the other of the satellite receivers at
 10 each j - th satellite channel at frequencies $f2$ and $f1$ respectively.

1 4. The method of claim 1 wherein said step c) of generating an averaged estimate vector

2 $\Delta\Psi$ further comprises the step of:

3 calculating said average estimate vector $\Delta\Psi$ as

$$\Delta\Psi = \left(\sum_{j=1}^N w_j \cdot \Delta\Phi c_j \right) / \left(\sum_{j=1}^N w_j \right)$$

7 where $\Delta\Phi c_j$ represents the components of said phase mismatch vector for a j -th satellite channel,
 8 w_j represents a weight coefficient for each j -th satellite channel, and N represents the number of
 9 satellite channels.

1 5. The method of claim 1 wherein step c) of generating an averaged estimate vector $\Delta\Psi$
2 further comprises the step of:

3 calculating said average estimate vector $\Delta\Psi$ as $\Delta\Psi = \mathbf{H} \cdot \mathbf{G} \cdot \Delta\Phi \mathbf{c}$ where \mathbf{H} is a matrix of
 4 directional cosines, $\Delta\Phi \mathbf{c}$ represents said phase mismatch vector, and \mathbf{G} is a matrix defined by
 5 $\mathbf{G} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}$ where \mathbf{R} is a covariance matrix of phase mismatches.

1 6. The method of claim 1 wherein said step e) of generating a vector of controlling
2 signals further comprises the step of:

3 generating said vector of controlling signals in combined loop filters of each of said
4 plurality of channels.

7. The method of claim 6 where each of said combined loop filters generates a control signal (U_{cj}) for a j -th channel according to the following:

$$U_{ij}(i) = \sum_{k=0}^i \gamma \delta_j(k)$$

$$\begin{aligned}
 6 \quad U_{2j}(i) &= \beta \delta_j(i) + U_{1j}(i) \\
 7 \quad i \\
 8 \quad U_{3j}(i) &= \sum_{k=0} U_{2j}(k) \\
 9 \\
 10 \quad U_{cj}(i) &= \Delta \Psi_j(i) + \alpha \delta_j(i) + U_{3j}(i) + V_{pj}(i)
 \end{aligned}$$

12 where $V_{\text{prj}}(i)$ is a predicted value computed on the basis of a priori data, and α, β, γ are
 13 coefficients of the loop filter.

1 8. The method of claim 7 wherein said coefficients are time dependent and form a
2 Kalman-type filter.

1 9. The method of claim 7 wherein said coefficients are constants and define a third-order
2 channel loop.

1 . 10. The method of claim 1 wherein said step g) of detecting anomalous phase
2 measurements further comprises the steps of:

3 h) comparing residuals of said residual vector with a threshold; and
4 i) determining that a particular channel has an anomalous phase measurement if a
5 residual associated with said particular channel exceeds said threshold.

1 11. The method of claim 10 wherein said step h) of comparing further comprises the step
2 of comparing the absolute value of said residuals to said threshold, wherein said threshold is in
3 the range of 0.2 to 0.25 cycles.

1 12. The method of claim 10 wherein said step g) of detecting anomalous phase
2 measurements further comprises the steps of:
3 j) eliminating said particular channel from subsequent iterations of step a); and
4 repeating steps b) through j) until no residual exceeds said threshold or until a threshold
5 number of said channels remain.

1 13. The method of claim 1 wherein said step g) of detecting anomalous phase
2 measurements further comprises the steps of:
3 h) generating a weighted sum of residual squares for said channels;
4 i) comparing said weighted sum of residual squares to a threshold; and
5 j) determining that an anomalous phase measurement exists if said weighted sum of
6 residual squares exceeds said threshold.

1 14. The method of claim 13 wherein said step g) of detecting anomalous phase
2 measurements further comprises the step of:
3 k) determining that a particular channel has an anomalous phase measurement if a
4 residual associated with said particular channel is the maximum residual in said residual vector.

1 15. The method of claim 14 wherein said step g) of detecting anomalous phase
2 measurements further comprises the steps of:
3 l) eliminating said particular channel from subsequent iterations of step a); and
4 repeating steps b) through l) until said weighted sum of residual squares does not exceed
5 said threshold or until a threshold number of said channels remain.

1 16. The method of claim 13 wherein said step g) of detecting anomalous phase
2 measurements further comprises the steps of:
3 k) eliminating x channels from subsequent iterations of step a), varying the channels
4 eliminated for each iteration of step k); and
5 repeating steps b) through k) until either said weighted sum of residual squares does not
6 exceed said threshold or until x reaches a threshold, incrementing x by one after all combinations
7 of channels for a given x have been eliminated during an iteration of step k).

1 17. The method of claim 1 wherein said steps are performed in one of said satellite
2 receivers.

1 18. The method of claim 17 wherein said one satellite receiver receives phase
2 measurements from the other satellite receiver.

1 19. The method of claim 1 further comprising the step of:
2 h) using information about said anomalous phase measurements detected in step g) in a
3 navigation task.

1 20. The method of claim 19 further comprising the step of:
2 i) generating a cycle slip estimate for a channel determined to have an anomalous phase
3 measurement and using said cycle slip estimate in said navigation task.

1 21. An apparatus for detecting anomalous phase measurements in a satellite differential
2 navigation system in which a first satellite receiver and a second satellite receiver each compute
3 phase measurements on a plurality of satellite channels, said apparatus comprising:
4 a combined phase difference generator for generating a combined phase difference
5 vector;
6 means for generating a phase mismatch vector representing the difference between said
7 combined phase difference vector and an estimated combined phase difference vector;
8 an integrated discriminator for generating an averaged estimate vector representing the
9 averaged estimate of said phase mismatch vector over said channels;
10 means for generating a residual vector representing the difference between said phase
11 mismatch vector and said averaged estimate vector;
12 at least one joint loop filter for generating a vector of controlling signals by linear
13 transformation of said residual vector and said averaged estimate vector;
14 an accumulator for generating said estimated combined phase difference vector by
15 successively storing components of said vector of controlling signals for each of said channels;
16 and
17 a residuals analyzer for detecting anomalous phase measurements by analyzing said
18 residual vector.

1 22. The apparatus of claim 21 wherein said combined phase difference vector Φc
2 comprises phase differences ($\Phi c_1.. \Phi c_j.. \Phi c_N$) for a j -th satellite channel, and wherein said phase
3 difference generator generates said combined phase difference vector Φc as $\Phi c = \Phi^B - \Phi^R$
4 where vector Φ^B comprises the full phases measured by one of said satellite receivers for each j .

5 *th* satellite channel ($\Phi_{B1}.. \Phi_{Bj}.. \Phi_{BN}$) and vector Φ^R comprises the full phases measured by the
 6 other satellite receiver for each *j-th* satellite channel ($\Phi_{R1}.. \Phi_{Rj}.. \Phi_{RN}$).

1 23. The apparatus of claim 21 wherein said first and second satellite receivers are dual
 2 frequency (f1 and f2) receivers and wherein said combined phase difference vector Φ^c
 3 comprises phase differences ($\Phi_{C1}.. \Phi_{Cj}.. \Phi_{CN}$) for a *j-th* satellite channel, and wherein said phase
 4 difference generator generates said phase differences Φ_{Cj} of said phase difference vector Φ^c as
 5 $\Phi_{Cj} = (\Phi_{2j}^B - \Phi_{2j}^R) - (\Phi_{1j}^B - \Phi_{1j}^R)(f2 / f1)$
 6 where Φ_{2j}^B and Φ_{1j}^B represent the full phase measured by one of the satellite receivers at each *j-*
 7 *th* satellite channel at frequencies f2 and f1 respectively, and
 8 where Φ_{2j}^R and Φ_{1j}^R represent the full phase measured by the other of the satellite receivers at
 9 each *j-th* satellite channel at frequencies f2 and f1 respectively.

1 24. The apparatus of claim 21 wherein said integrated discriminator generates said
 2 averaged estimate vector $\Delta\Psi$ as

$$\Delta\Psi = \left(\sum_{j=1}^N w_j \cdot \Delta\Phi_{Cj} \right) / \left(\sum_{j=1}^N w_j \right)$$

6 where $\Delta\Phi_{Cj}$ represents the components of said phase mismatch vector for a *j-th* satellite channel,
 7 w_j represents a weight coefficient for each *j-th* satellite channel, and N represents the number of
 8 satellite channels.

1 25. The apparatus of claim 21 wherein said integrated discriminator generates said
 2 averaged estimate vector $\Delta\Psi$ as $\Delta\Psi = \mathbf{H} \cdot \mathbf{G} \cdot \Delta\Phi^c$ where \mathbf{H} is a matrix of directional cosines,
 3 $\Delta\Phi^c$ represents said phase mismatch vector, and \mathbf{G} is a matrix defined by
 4 $\mathbf{G} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}$ where \mathbf{R} is a covariance matrix of phase mismatches.

1 26. The apparatus of claim 21 wherein said joint loop filter generates said vector of
 2 controlling signals in combined loop filters of each of said plurality of channels.

1 27. The apparatus of claim 26 wherein each of said at least one combined loop filters
 2 generates a control signal (U_{cj}) for a *j-th* channel according to the following:

$$\begin{aligned}
 3 & & i \\
 4 & U_{1j}(i) = \sum_{k=0}^i \gamma \delta_j(k) \\
 5 & \\
 6 & U_{2j}(i) = \beta \delta_j(i) + U_{1j}(i) \\
 7 & & i \\
 8 & U_{3j}(i) = \sum_{k=0}^i U_{2j}(k) \\
 9 & \\
 10 & U_{cj}(i) = \Delta \Psi_j(i) + \alpha \delta_j(i) + U_{3j}(i) + V_{pj}(i)
 \end{aligned}$$

11
 12 where $V_{pj}(i)$ is a predicted value computed on the basis of a priori data, and α, β, γ are
 13 coefficients of the loop filter.

1 28. The apparatus of claim 27 wherein said coefficients are time dependent and form a
 2 Kalman-type filter.

1 29. The apparatus of claim 27 wherein said coefficients are constants and define a third-
 2 order channel loop.

1 30. The apparatus of claim 21 wherein said residuals analyzer detects anomalous phase
 2 measurements by comparing residuals of said residual vector with a threshold and determining
 3 that a particular channel has an anomalous phase measurement if a residual associated with said
 4 particular channel exceeds said threshold.

1 31. The apparatus of claim 21 wherein said residuals analyzer detects anomalous phase
 2 measurements by generating a weighted sum of residual squares for said channels, comparing
 3 said weighted sum of residual squares to a threshold, and determining that an anomalous phase
 4 measurement exists if said weighted sum of residual squares exceeds said threshold.

1 32. The apparatus of claim 31 wherein said residuals analyzer further detects anomalous
 2 phase measurements by determining that a particular channel has an anomalous phase
 3 measurement if a residual associated with said particular channel is the maximum residual in
 4 said residual vector.

1 33. A method for detecting anomalous phase measurements in a satellite differential
 2 navigation system in which a first satellite receiver and a second satellite receiver each compute
 3 phase measurements on a plurality of satellite channels, said method comprising the steps,
 4 performed for each of a plurality of iterations, of:

- 5 a) generating a combined phase difference vector;
- 6 b) generating an increment vector representing the difference between said combined
 phase difference vector and a combined phase difference vector of a preceding iteration,
- 7 c) generating an averaged increment estimate vector representing the averaged estimate
 of said increment vector;
- 8 d) generating an incremental residual vector representing the difference between said
 increment vector and said averaged increment estimate vector;
- 9 e) generating an integrated residual vector from said incremental residual vector; and
- 10 f) detecting anomalous phase measurements by analyzing said integrated residual vector.

1 34. The method of claim 33 wherein step a) of generating a combined phase difference
 2 vector $\Phi c(i)$ further comprises the step of:

3 calculating said phase difference vector $\Phi c(i)$ as $\Phi c(i) = \Phi^B(i) - \Phi^R(i) - \Phi^{BR}(i)$ where
 4 vector $\Phi^B(i)$ comprises the full phases measured by one of said satellite receivers for each *i-th*
 5 iteration and vector $\Phi^R(i)$ comprises the full phases measured by the other satellite receiver for
 6 each *i-th* iteration and $\Phi^{BR}(i)$ is a prediction of satellite movement.

1 35. The method of claim 33 wherein said step c) of generating an averaged increment
 2 estimate vector further comprises the step of:

3 calculating said average estimate vector $\hat{\Delta\Phi}$ as

$$4 \quad \hat{\Delta\Phi}(i) = \mathbf{H}(i) \cdot \mathbf{G}(i) \cdot \Delta\Phi c(i),$$

5 where $\hat{\Delta\Phi}(i)$ represents the components of said average estimate vector for an *i-th* iteration,
 6 \mathbf{H} is a matrix of directional cosines, \mathbf{G} is a matrix defined by $\mathbf{G} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}$ where \mathbf{R} is a
 7 covariance matrix of phase mismatches, and $\Delta\Phi c(i) = \Phi c(i) - \Phi c(i-1)$ where $\Phi c(i)$ is a vector
 8 of combined phase difference at each *i-th* iteration.

1 36. The method of claim 33 wherein said step e) of generating an integrated residual
2 vector further comprises the step of generating integrated residuals $\delta(i)$ as

3
$$\delta(i) = A \cdot \delta(i - 1) + \Delta\delta(i)$$

4 for each i -th iteration, where A is a coefficient in the range 0.995 ... 0.999.

1 37. The method of claim 33 wherein said step f) of detecting anomalous phase
2 measurements further comprises the steps of:

- 3 g) generating a weighted sum of integrated residual squares for said channels;
4 h) comparing said weighted sum of integrated residual squares to a threshold; and
5 i) determining that an anomalous phase measurement exists if said weighted sum of
6 integrated residual squares exceeds said threshold.

1 38. The method of claim 37 wherein said step f) of detecting anomalous phase
2 measurements further comprises the steps of:

- 3 j) eliminating x channels from subsequent iterations of step a), varying the channels
4 eliminated for each iteration of step j); and
5 repeating steps b) through j) until either said weighted sum of integrated residual squares
6 does not exceed said threshold or until x reaches a threshold, incrementing x by one after all
7 combinations of channels for a given x have been eliminated during an iteration of step j).

1 39. The method of claim 33 wherein said steps are performed in one of said satellite
2 receivers.

1 40. The method of claim 39 wherein said one satellite receiver receives phase
2 measurements from the other satellite receiver.

1 41. The method of claim 33 further comprising the step of:

- 2 g) using information about said anomalous phase measurements detected in step f) in a
3 navigation task.

1 42. The method of claim 41 further comprising the step of:

2 h) generating a cycle slip estimate for a channel determined to have an anomalous phase
3 measurement and using said cycle slip estimate in said navigation task.

1 43. The method of claim 33 further comprising the steps of:
2 g) receiving channel indicator alarms from a channel indicator, said channel indicator
3 alarms marking channels with anomalous phase measurements;
4 h) eliminating channels marked with channel indicator alarms from subsequent iterations
5 of step a); and
6 i) repeating steps a) through f).

1 44. The method of claim 43 wherein said step f) of detecting anomalous phase
2 measurements further comprises the steps of:
3 j) generating a weighted sum of integrated residual squares for said channels;
4 k) comparing said weighted sum of integrated residual squares to a threshold; and
5 l) determining that an anomalous phase measurement exists if said weighted sum of
6 integrated residual squares exceeds said threshold.

1 45. An apparatus for detecting anomalous phase measurements in a satellite differential
2 navigation system in which a first satellite receiver and a second satellite receiver each compute
3 phase measurements on a plurality of satellite channels, said apparatus comprising:
4 a) a combined phase difference generator for generating a combined phase difference
5 vector;
6 b) means for generating an increment vector representing the difference between said
7 combined phase difference vector and a combined phase difference vector of a preceding
8 measurement,
9 c) an integrated converter for generating an averaged increment estimate vector
10 representing the averaged estimate of said increment vector;
11 d) means for generating an incremental residual vector representing the difference
12 between said increment vector and said averaged increment estimate vector;
13 e) a digital filter for generating an integrated residual vector from said incremental
14 residual vector; and

15 f) a residuals analyzer for detecting anomalous phase measurements by analyzing said
 16 integrated residual vector.

1 46. The apparatus of claim 45 wherein said combined phase difference generator
 2 generates said combined phase difference vector $\Phi c(i)$ as $\Phi c(i) = \Phi^B(i) - \Phi^R(i) - \Phi^{BR}(i)$ where
 3 vector $\Phi^B(i)$ comprises the full phases measured by one of said satellite receivers for each i -th
 4 iteration and vector $\Phi^R(i)$ comprises the full phases measured by the other satellite receiver for
 5 each i -th iteration and $\Phi^{BR}(i)$ is a prediction of satellite movement.

1 47. The apparatus of claim 45 wherein said integrated converter generates said averaged
 2 increment estimate vector $\hat{\Delta\Phi}$ as

$$3 \quad \hat{\Delta\Phi}(i) = H(i) \cdot G(i) \cdot \Delta\Phi c(i),$$

4 where $\hat{\Delta\Phi}(i)$ represents the components of said average estimate vector for an i -th iteration,
 5 H is a matrix of directional cosines, G is a matrix defined by $G = (H^T R^{-1} H)^{-1} H^T R^{-1}$ where R is a
 6 covariance matrix of phase mismatches, and $\Delta\Phi c(i) = \Phi c(i) - \Phi c(i-1)$ where $\Phi c(i)$ is a vector
 7 of combined phase difference at each i -th iteration.

1 48. The apparatus of claim 45 wherein said residuals analyzer detects anomalous phase
 2 measurements by generating a weighted sum of integrated residual squares for said channels,
 3 comparing said weighted sum of integrated residual squares to a threshold, and determining that
 4 an anomalous phase measurement exists if said weighted sum of integrated residual squares
 5 exceeds said threshold.

1 49. The apparatus of claim 45 wherein said digital filter generates integrated residuals
 2 $\delta(i)$ as

$$3 \quad \delta(i) = A \cdot \delta(i-1) + \Delta\delta(i)$$

4 for each of an i -th iteration, where A is a coefficient in the range 0.995 ... 0.999.

1 50. A method for detecting anomalous phase measurements in a satellite differential
 2 navigation system in which a first satellite receiver and a second satellite receiver each compute

3 phase measurements on a plurality of satellite channels, said method comprising the steps,
4 performed for each of a plurality of iterations, of:
5 a) generating a combined phase difference vector;
6 b) generating an increment vector representing the difference between said combined
7 phase difference vector and a combined phase difference vector of an initial measurement at an
8 initial time,
9 c) generating a corrected increment vector using a cycle slip correction estimate
10 generated in a preceding iteration;
11 d) analyzing channel indicator alarms;
12 e) generating an averaged increment estimate vector representing the averaged estimate
13 of said corrected increment vector using channels not associated with a channel indicator alarm;
14 f) generating a residual vector representing the difference between the corrected
15 increment vector and the averaged increment estimate vector; and
16 g) generating said cycle slip correction estimate using said residual vector.

1 51. The method of claim 50 wherein said step a) of generating a combined phase
2 difference vector further comprises the step of:
3 including a prediction of phase difference in said difference.

1 52. The method of claim 50 wherein said initial time is reset periodically.

1 53. The method of claim 50 further comprising the step of:
2 h) using said cycle slip correction estimate in a navigation task.

1 54. An apparatus for detecting anomalous phase measurements in a satellite differential
2 navigation system in which a first satellite receiver and a second satellite receiver each compute
3 phase measurements on a plurality of satellite channels, said apparatus comprising:
4 a) a combined phase difference generator for generating a combined phase difference
5 vector;
6 b) means for generating an increment vector representing the difference between said
7 combined phase difference vector and a combined phase difference vector of an initial
8 measurement at an initial time;

9 c) a cycle slip correction unit for generating a cycle slip correction estimate;
10 d) means for generating a corrected increment vector using a cycle slip correction
11 estimate generated in a preceding measurement;
12 d) a channel indicator analyzer for analyzing channel indicator alarms;
13 e) an integrated converter for generating an averaged increment estimate vector
14 representing the averaged estimate of said corrected increment vector using channels not
15 associated with a channel indicator alarm;
16 f) means for generating a residual vector representing the difference between the
17 corrected increment vector and the averaged increment estimate vector; and
18 g) a correction unit for generating said cycle slip correction estimates using said residual
19 vector.

1 55. The apparatus of claim 54 wherein said combined phase difference generator further
2 generates said combined phase difference vector by including a prediction of phase difference in
3 said difference.

1 56. The apparatus of claim 54 wherein said initial time is reset periodically.