第十二次习题课 级数

- . 常数项级数

1. 设级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则必收敛的级数为 []. [D] $u_n = \frac{(-1)^n}{n}$ $u_n = \frac{(-1)^n}{n}$ (A) $\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$ 。 (B) $\sum_{n=1}^{\infty} u_n^2$ 。 (C) $\sum_{n=1}^{\infty} (u_n - u_{2n})$ 。 (D) $\sum_{n=1}^{\infty} (u_n + u_{n+1})$ 。

2.
$$\exists \exists \lim_{n=1}^{\infty} (-1)^{n-1} u_n = 2, \sum_{n=1}^{\infty} u_{2n-1} = 5, \quad \exists \lim_{n=1}^{\infty} u_n = 1.$$
 [8]

3. 设
$$0 < a < \frac{1}{a}$$
 则下列级数中肯定收敛的是 [D]. [D

3. 设
$$0 < a_n < \frac{1}{n}$$
,则下列级数中肯定收敛的是 []. [D]
$$a_{m-1} = \frac{1}{m}$$
 (A) $\sum_{n=1}^{\infty} a_n$; (B) $\sum_{n=1}^{\infty} (-1)^n a_n$; (C) $\sum_{n=1}^{\infty} \sqrt{a_n}$; (D) $\sum_{n=1}^{\infty} a_n^2 \ln n$ by $n > \infty$

4. 设常数
$$\lambda \neq 0$$
, $a_n > 0$, 级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数 $\sum_{n=1}^{\infty} (-1)^n (n \tan \frac{\lambda}{n}) a_{2n}$ []. $\gamma < -$

5. 设正项级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛,则 [] [D] $(n \text{ tan } A)$ an $\sum a_n$ (A) 极限 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ 小于等于 1; $n \cdot \text{tan } A = \sum a_n$ (B) 极限 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ 小于等于 1; $n \cdot \text{tan } A = \sum a_n$

(C) 若极限
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$$
 存在,其值小于 1; (D) 若极限 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 存在,其值小于等于 1;

6. 设参数
$$a \neq 0$$
,则 $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + a^2})$ 收敛性的结论是 [B]

设
$$a_n > 0$$
, $p > 0$, $\lim_{n \to \infty} \left[n^p \left(e^{\frac{1}{n}} - 1 \right) a_n \right] = 1$, 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 p 的取值范围

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = 2$$

$$\lim_{n\to\infty} \frac{1}{n} = 1$$

$$\lim_{n\to\infty} \frac{1}{n} = 1$$

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = 0$$

解:
$$\lim_{n\to\infty} \frac{a_n}{\frac{1}{n^{p-1}}} = 1, \quad p > 2$$

8. 判断
$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$$
 的收敛性.

8. 判断
$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$$
 的收敛性.
$$\frac{a^n \cdot n!}{(n+1)^{n+1}} = \frac{a}{(n+1)^n}$$
解:
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{|a|}{e} \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n$$

|a| < e, 绝对收敛; |a| > e, 发散;

$$|a| = e, |u_{n+1}| > |u_n|$$
 (因为 $\left(1 + \frac{1}{n}\right)^n$ 单调上升趋于 e) 发散.
$$\lim_{n \to \infty} \frac{y(1 + \frac{1}{x})^n}{|u_n|} = x \cdot \ln x + \frac{1}{x}$$

9. 设 $a_n > 0$, 单调减且级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散, 试问 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 是否收敛? 证明结论。

9. 设
$$a_n > 0$$
,单调减且级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 是否收敛?证明结论。
[收敛]

10. 讨论级数 $\sum_{n=1}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p}\right)$ 的收敛性 $(p > 0)$.

$$\mathcal{M} \neq \mathcal{E}$$

$$\mathcal{M} + \mathbf{M} + \mathbf$$

10. 讨论级数
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p} \right)$$
 的收敛性 $(p > 0)$.

$$c_n \sim \frac{1}{2n^{2p}}$$
 当 $n \to \infty$ 时.
$$= \chi - \sqrt{\chi^2 + o(\chi^2)}$$
(1) $p > 1$, $\sum_{n=1}^{\infty} c_n$ 绝对收敛, 故 $\sum_{n=1}^{\infty} b_n$ 绝对收敛.
$$a_n = \frac{(-1)^n}{n!} b_n = \ln(1 + a_n)$$

(2)
$$0 时, $\sum_{n=1}^{\infty} c_n$ 发散, $\sum_{n=1}^{\infty} a_n$ 收敛, 故 $\sum_{n=1}^{\infty} b_n$ 发散. $C_n = \alpha_n - b_n$ $C_n =$$$

(3)
$$\frac{1}{2} 时, $\sum_{n=1}^{\infty} c_n$ 绝对收敛, $\sum_{n=1}^{\infty} a_n$ 收敛,故 $\sum_{n=1}^{\infty} b_n$ 条件收敛.$$

(不能用 Leibnize 方法)

11. 常数项级数和积分的估值

设
$$a_n = \int_0^{\frac{\pi}{4}} \underbrace{\tan^n x dx}, \text{ 讨论级数} \sum_{n=1}^{\infty} \frac{a_n}{n^p} \text{ 的收敛性.}$$

$$\frac{1}{2(n+1)} = \int_{0}^{1} \frac{t^{n}}{t^{n}} dt \leq a_{n} = \int_{0}^{1} \frac{t^{n}}{t^{n}} dt \leq \int_{0}^{1} \frac{t^{n}}{t^{n}} dt \leq \int_{0}^{1} t^{n} dt = \frac{1}{n+1}$$

$$\Re: \ \, \Leftrightarrow \tan x = t \,, \quad \frac{1}{2(n+1)} = \int_0^1 \frac{t^n}{2} dt < a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx = \int_0^1 \frac{t^n}{1+t^2} < \int_0^1 t^n dt = \frac{1}{n+1}, \\
\frac{1}{n^p(n+1)} < \frac{a_n}{n^p} < \frac{1}{n^{p+1}}. \qquad \qquad \frac{Cm}{n^p} \sim \frac{1}{n^{p+1}}.$$

所以当且仅当 p > 0时, 原级数收敛.

12. 设两条抛物线
$$y = nx^2 + \frac{1}{n}$$
 和 $y = (n+1)x^2 + \frac{1}{n+1}$,

记他们交点坐标的绝对值为 a。

(1) 求这两条抛物线所围成的平面图形的面积
$$S_n$$
.
(2) 求级数 $\sum_{n=1}^{\infty} \frac{S_n}{a_n}$ 的和。 $S_n = \int_{-\frac{1}{n+1}}^{-\frac{1}{n+1}} \left[h \times^2 + \frac{1}{h} - (h+1) \times^2 - \frac{1}{h+1} \right] dx$

解: (1)
$$a_n = \frac{1}{\sqrt{n(n+1)}}$$

$$S_n = 2 \int_0^{a_n} \left[nx^2 + \frac{1}{n} - (n+1)x^2 - \frac{1}{n+1} \right] dx = \frac{4}{3} a_n^3$$

(2)
$$\sum_{n=1}^{\infty} \frac{S_n}{a_n} = \frac{4}{3} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{4}{3}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \frac{4}{3} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{4}{3}$$

13.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x} \quad (x \neq -n)$$

= 4 an3

解:级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 $(x \neq -n)$ 当 n 充分大 $($ 即 $n+x>0)$ 时是交错级数,且 $\left\{\frac{1}{n+x}\right\}$ 单

调减少趋于零,所以
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 $(x \neq -n)$ 收敛;又由于 $\left| \frac{(-1)^{n+1}}{n+x} \right| \sim \frac{1}{n} (n \to \infty)$, $\sum_{n=1}^{\infty} \frac{1}{n}$ 发

散,所以级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 $(x \neq -n)$ 条件收敛。

14.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$$
;

$$\sin \frac{x}{n} \sim \frac{x}{n} a \frac{x}{n} \leq \sin \frac{x}{n} \leq b \frac{x}{n}$$

解: 当
$$x = 0$$
时 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$ 的一般项都为零,所以级数绝对收敛。

设
$$x \neq 0$$
, $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n} \stackrel{\cdot}{=} n$ 充分大(即 $n > \frac{2|x|}{\pi}$)时是交错级数,且 $\left|\sin \frac{x}{n}\right|$ 单调减少趋于零,所以 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$ 收敛;又由于 $\left|(-1)^{n+1} \sin \frac{x}{n}\right| \sim \frac{|x|}{n} (n \to \infty)$, $\sum_{n=1}^{\infty} \frac{|x|}{n}$ 发散,所以

级数
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$$
 条件收敛。

15.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$$

$$\underline{n^{\frac{1}{n}}} > 1 \qquad \underline{n^{-\frac{1}{n}}} > 1 \qquad \underline{n^{-\frac{1}{n}}} > 1 \qquad \underline{n^{-\frac{1}{n}}} > 1$$

解:
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
, 因此 $\lim_{n\to\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$ 不存在,所以 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$ 发散。

16.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n}$$

16.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n}$$
解:
$$\exists x \in (k\pi - \frac{\pi}{6}, k\pi + \frac{\pi}{6})$$
 时,由于
$$|(-1)^{n+1} \frac{4^n \sin^{2n} x}{n}| = \frac{1}{n} (4 \sin^2 x)^n$$

$$0 \le 4\sin^2 x < 1$$
, $\sum_{n=1}^{\infty} \frac{1}{n} (4\sin^2 x)^n$ 收敛,所以级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n}$ 绝对收敛。

当
$$x = k\pi \pm \frac{\pi}{6}$$
 时, $\sin^2 x = \frac{1}{4}$,所以 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 是条件收敛级

数。

在其他情况下,由于 $\left|(-1)^{n+1} \frac{4^n \sin^{2n} x}{n}\right| = \frac{1}{n} (4 \sin^2 x)^n$, $4 \sin^2 x > 1$,级数的一般项

17.
$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x \cos(n-1)x}{n^p} = \frac{\sin(n+1)x \cos(n-1)x}{2n^p} = \frac{\sin(n+1)x \cos(n+1)x}{2n^p} = \frac{\sin($$

解: 当 $x = \frac{k\pi}{2}$ 时,级数的一般项都为零,所以级数 $\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p}$ 绝对收敛。

设
$$x \neq \frac{k\pi}{2}$$
。当 $p > 1$ 时,由于 $\left| \frac{\sin(n+1)x\cos(n-1)x}{n^p} \right| \leq \frac{1}{n^p}$,所以级数

Isinanx Topa

 $\frac{\sum ginnx}{\sum e^{inx}} = \frac{\sum (cosnx + icinnx)}{}$

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p}$$
绝对收敛。

当
$$0 时,由于$$

$$\frac{\sin(n+1)x\cos(n-1)x}{n^p} = \frac{\sin 2nx}{2n^p} + \frac{\sin 2x}{2n^p},$$

由 Dirichlet 判别法, $\sum_{n=1}^{\infty} \frac{\sin 2nx}{2n^p}$ 收敛,而 $\sum_{n=1}^{\infty} \frac{\sin 2x}{2n^p}$ 发散,所以级数

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p} \, \sharp \, \mathring{\mathbb{D}} \, \mathring{\mathbb$$

当 $p \le 0$ 时,由于级数的一般项不趋于零,所以级数

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p} \, \not \Xi_{n}^{\sharp h}.$$

18.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \underbrace{\left(\frac{a}{1+a^n}\right)} (a>0).$$
解: 设 $x_n = \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n}$ 。

当
$$a > 1$$
 时, $\lim_{n \to \infty} \sqrt[n]{|x_n|} = \frac{1}{a} < 1$, 所以级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n}$ 绝对收敛;

当 0 < a < 1 时,由于 $\sum_{i=n}^{\infty} \frac{(-1)^{n+1}}{n}$ 收敛, $\left\{\frac{a}{1+a^n}\right\}$ 单调有界,由 Abel 判别法,级数

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n}$$
收敛,但由于 $|x_n| \sim \frac{a}{n} (n \to \infty)$, $\sum_{n=1}^{\infty} \frac{a}{n}$ 发散,所以级数条件收敛。

19. 设正项级数 $\sum_{n=1}^{\infty} x_n$ 收敛,{ x_n } 单调减少,利用 Cauchy 收敛原理证明: $\lim_{n\to\infty} nx_n = 0$ 。

证 由
$$\sum_{n=1}^{\infty} x_n$$
 收敛,对任意给定的 $\varepsilon > 0$,存在正整数 $N > 0$,对一切 $m > n > N'$,成立

$$0 < |x_{n+1} + x_{n+2} + \dots + |x_m| < \frac{\varepsilon}{2} \qquad \qquad \longrightarrow \qquad \text{with} < \mathcal{D}$$

取 N = 2(N'+1),则当 n > N 时,有 $\left\lceil \frac{n}{2} \right\rceil > N'$,于是成立

$$0 < \frac{n}{2}x_n < x_{\left[\frac{n}{2}\right]} + x_{\left[\frac{n}{2}\right]+1} + \dots + x_n < \frac{\varepsilon}{2},$$

即

$$0 < nx_n < \varepsilon$$

20. 若级数
$$\sum_{n=1}^{\infty} x_n$$
 收敛, $\lim_{n\to\infty} \frac{x_n}{y_n} = 1$, 问级数 $\sum_{n=1}^{\infty} y_n$ 是否收敛?

$$\mathbf{k}$$
 $\sum_{n=1}^{\infty} y_n$ 不一定收敛。

发散。

21. 设正项数列 $\{x_n\}$ 单调减少,且级数 $\sum_{n=1}^{\infty} (-1)^n x_n$ 发散。问级数 $\sum_{n=1}^{\infty} \left(\frac{1}{1+x}\right)^n$ 是否收敛? 并说明理由。

解 级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{1+x_n}\right)^n$$
 收敛。

因为正项数列 $\{x_n\}$ 单调减少,所以必定收敛。如果 $\lim_{n\to\infty}x_n=0$,则 $\sum_{i=1}^{\infty}(-1)^nx_n$ 是Leibniz

级数, 因此收敛, 与条件矛盾, 所以必定有 $\lim_{n\to\infty} x_n = \alpha > 0$, 于是当 n 充分大时,

$$\left(\frac{1}{1+x_n}\right)^n < \left(\frac{1}{1+\frac{\alpha}{2}}\right)^n, 因此 \sum_{n=1}^{\infty} \left(\frac{1}{1+x_n}\right)^n 收敛.$$

22. 若 $\{nx_n\}$ 收敛, $\sum_{n=2}^{\infty}n(x_n-x_{n-1})$ 收敛,则级数 $\sum_{n=1}^{\infty}x_n$ 收敛。

证 令 $a_n = x_n, b_n = 1$,则 $B_k = \sum_{i=1}^k b_i = k$ 。 利用 Abel 变换,得到

$$\sum_{k=1}^{n} x_k \neq nx_n \qquad \sum_{k=1}^{n-1} k(x_{k+1} - x_k) \circ = \underbrace{n}_{n-1} \underbrace{x_k}_{n-1} \underbrace{x_k}_{n-$$

由于

$$\sum_{n=1}^{\infty} n(x_{n+1} - x_n) = \sum_{n=1}^{\infty} [(n+1)(x_{n+1} - x_n) \cdot \frac{n}{n+1}],$$

因为数列
$$\left\{\frac{n}{n+1}\right\}$$
单调有界,级数 $\sum_{n=1}^{\infty}(n+1)(x_{n+1}-x_n)=\sum_{n=2}^{\infty}n(x_n-x_{n-1})$ 收敛,由 Abel 判

别法, $\sum_{n=1}^{\infty} n(x_{n+1}-x_n)$ 收敛。再由数列 $\{nx_n\}$ 的收敛性,即可知级数 $\sum_{n=1}^{\infty} x_n$ 收敛。

23. 设
$$f(x)$$
 在[-1,1]上具有二阶连续导数,且

$$\lim_{x\to 0}\frac{f(x)}{x}=0.$$

证 由
$$\lim_{x\to 0} \frac{f(x)}{x} = 0$$
 可知 $f(0) = 0$, $f'(0) = 0$, 于是

$$f\left(\frac{1}{n}\right) \sim \frac{f''(0)}{2} \cdot \frac{1}{n^2} (n \to \infty),$$

所以级数 $\sum_{i=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛。

24. 已知任意项级数
$$\sum_{n=1}^{\infty} x_n$$
 发散,证明级数 $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) x_n$ 也发散。

证 采用反证法。令
$$y_n=(1+\frac{1}{n})x_n$$
,若 $\sum_{n=1}^{\infty}y_n$ 收敛,因为 $\left\{\frac{n}{n+1}\right\}$ 单调有界,则由 Abel 判 $\sum_{n=1}^{\infty}\frac{n+1}{n}$ 以 $\sum_{n=1}^{\infty}\frac{n+1}{n}$ 以 $\sum_{n=1}^{\infty}\frac{n+1}{n}$ 以 $\sum_{n=1}^{\infty}\frac{n+1}{n}$

别法,
$$\sum_{n=1}^{\infty} x_n = \sum_{n=1}^{\infty} \frac{n}{n+1} y_n$$
 收敛,与条件矛盾,所以级数
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) x_n$$
 发散。

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) x_n \, \, \text{ Ξ th } .$$

25. 利用

其中 γ 是 Euler 常数,求下述 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 的更序级数的和:

$$\searrow_{n=1}^{n-1} 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \cdots$$

解. 设
$$b_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
,设级数

$$\sum_{n=1}^{\infty} \frac{1}{3} + \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \cdots \\
k = \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \frac{1}{n} + \cdots + \frac{1}{4n-3} + \frac{1}{4n-1} - \frac{1}{2n} + \cdots$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n, \quad 2335$$

$$\sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \frac{1}{n} + \cdots + \frac{1}{4n-3} + \frac{1}{4n-1} - \frac{1}{2n} + \cdots + \frac{2n} + \cdots + \frac{1}{2n} + \cdots + \frac{1}{2n} + \cdots + \frac{1}{2n} + \cdots + \frac{1}{2n} +$$

23. 设
$$f(x)$$
 在 $[-1,1]$ 上具有二阶连续导数,且
$$\lim_{x\to 0} \frac{f(x)}{x} = 0 \text{ }$$
 证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛。
$$\lim_{x\to 0} \frac{f(x)}{x} = 0 \text{ }$$
 可知 $f(0) = 0$, 于是
$$\lim_{x\to 0} \frac{f(x)}{x} = 0 \text{ }$$
 可知 $f(0) = 0$, 于是

$$S_h = a_n + b_n - c_m$$

的部分和数列为 $\{S_n\}$,则

$$S_{3n} + \frac{1}{2}(b_n + \ln n) = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \dots + \frac{1}{4n-3} + \frac{1}{4n-1},$$

$$S_{3n} + \frac{1}{2}(b_n + \ln n) + \frac{1}{2}(b_{2n} + \ln 2n) = b_{4n} + \ln 4n,$$

于是

$$S_{3n} = b_{4n} - \frac{1}{2}b_n - \frac{1}{2}b_{2n} + \frac{3}{2}\ln 2$$
.

由
$$\lim_{n\to\infty} b_n = \gamma$$
,得到

$$\lim_{n\to\infty} S_{3n} = \frac{3}{2} \ln 2 .$$

由于
$$\lim_{n\to\infty} S_{3n+1} = \lim_{n\to\infty} S_{3n+2} = \lim_{n\to\infty} S_{3n}$$
,所以

$$\lim_{n\to\infty} S_n = \frac{3}{2} \ln 2 .$$