Warum bin ich nicht einfach Staubsaugervertreter geworden?

Inhaltsverzeichnis

1 Grundlagen aktuarieller Kalkulation

2

Kapitel 1

Grundlagen aktuarieller Kalkulation

Sparten

- Umfasst Leben, Kranken, Komposit, Pensionen
- Leben, Kranken, Pensionen sind zusammen Personenversicherung
- Komposit: Schaden/Unfall
- Besonders: priv. Unfall ist Komposit

Definition 1 (Farny) Deckung eines im Einzelnen ungewissen, insgesamt schätzbaren Mittelbedarfs unter Nutzung von Ausgleichsmechanismen im Kollektiv.

Wichtigste Zweige Komposit

- Sachversicherung
- Haftpflichtversicherung
- Transportversicherung
- Technische Versicherung

Prämienzahlweise

- üblicherweise jährlich
- bei unterjährigen Zahlung Ableitung aus Jahresprämie

Diskont und Barwert

- Diskontfunktion bei einjährigem Zinssatz r: $D(t) = (1+r)^{-t}$
- Diskontfunktion bei Rechnungszins i: $D(t) = (\frac{1}{1+i})^t =: v^t$

• Barwert aller Leistungen: $L = \sum_{t=0}^{\bar{n}} D(t) \cdot L_t$

• Barwert aller Prämien: $P = \sum_{t=0}^{\bar{n}} D(t) \cdot P_t$

• Barwert aller Kosten: $K = \sum_{t=0}^{\bar{n}} D(t) \cdot K_t$

Äquivalenzprinzip

$$(\ddot{A}P I): E(P) = E(L) (1.1)$$

$$(\ddot{A}P II): E(P) = E(L) + E(K)$$
 (1.2)

Definition 2

- Falls L und P das Äquivalenzprinzip erfüllen, dann heißt P_{\bullet} Nettorisikoprämienprozess und P_t Nettorisikoprämie.
- L und P erfüllen ÄP und \exists w_t Wahrscheinlichkeit der Prämienzahlung P_t und \bar{P} konstant mit $E(P_t) = \bar{P} \cdot w_t \ \forall \ t \in \{0,...,\bar{n}\}$. \bar{P} konstante Nettorisikoprämie.
- Bruttorisikoprämie: $P^+ := \bar{P} + c \text{ mit } c > 0 \text{ Sicherheitszuschlag.}$
- Alternativ: Sicherheitszuschlag bereits in Nettorisikoprämie enthalten

Notation

- \bar{n} : Modelldauer
- t: Zeit in jahren
- r: einjähriger konstanter Zinssatz
- D(t): Diskontfunktion
- L_t : Versicherungsleistung in t
- q_t : Eintrittswahrscheinlichkeit Leistungsfall in t
- P_t : Prämienzahlung in t
- w_t : Wahrscheinlichkeit Prämienzahöung in t
- K_t : Kosten in t
- L: Leistungsbarwert
- P: Prämienbarwert
- *K*: Kostenbarwert

Sterbetabeln

Alter	Männer				
	I _x	t _x	q _x roh	$q_x^{2.Ord.}$	\mathbf{q}_{x}
	durchlebte	Tote	rohe Sterb-	Sterblichkeit	Sterblichkeit
	Bestandsjahre		lichkeitswerte	2. Ordnung	1. Ordnung
					(Zuschlag 34%)
14	33.700	9	0,000267	0,000226	0,000303
15	35.163	7	0,000199	0,000311	0,000417
16	35.471	11	0,000310	0,000416	0,000557
17	36.430	15	0,000412	0,000529	0,000709
18	36.158	31	0,000857	0,000634	0,000850
19	36.500	28	0,000767	0,000711	0,000953
20	43.193	37	0,000857	0,000755	0,001012
21	64.534	64	0,000992	0,000763	0,001022
22	100.268	74	0,000738	0,000749	0,001004
23	142.584	110	0,000771	0,000719	0,000963

Allgemeine aktuarielle Herangehensweise, spartenübergreifend ähnliches Standardvorgehen zur Bewertung zufälliger zukünftiger Versicherungsleistungen

- Beobachtung von Vergangenheit (Daten) zur Vorhersage der Zukunft
- Anpassung geeigneter Wahrscheinlichkeitsverteilung
- Sorgfalt bzgl. möglicher Änderungen von Annahmen im zeitlichen Verlauf
- typischerweise konstante Prämienhöhe
- Risiko steigt mit zeitlichem Verlauf
- Ansparprozess und Entsparprozess

Rückstellungen

- Ziel: Sicherstellung der dauernden Erfüllbarkeit
- versicherungstechnische Rückstellungen wichtigste Passivposition in der Bilanz des VU
- hohe bedeutung für interne Unternehmensbewertung
- Einfluss auf Besteuerung des VU
- Unterschied zwischen bilanzieller und einzelvertraglicher versicherungsmathematischer Deckungsrückstellung
- \bullet Deckungskapitel $\hat{=}$ Erwarteter Barwert künftiger Leistungen Erwarteter Barwert künftiger Beiträge

Rückstellungen in der Schadenversicherung

- Einzelschadenreserven: für noch nicht vollständig abgewickelte Schäden
- Deckungsrückstellungen: für Haftpflicht, Unfallrenten und Beitragsrückgewähr in Unfall
- Spätschadenpauschalreserve: für IBNR
- Schwankungsrückstellung: relevant für Zweige mit stark variierenden Schadenfällen

Prämienprinzipien

- Ziel: Zuordnung angemessener Prämie durch Bemessung geeigneter Sicherheitszuschläge
- Deckung der Leistungsfälle und zusätzliche Prämie zur Bereitschaft der Risikoübernahme durch VU (Sicherheitszuschlag SZ(X))
- Prämienprinzipien $H(X) := E(X) + SZ(X) = P^+$, X ist das versicherte Risiko
- Sicherheitszuschlag bei gleichem EW höher, wenn Risiko gefährlicher
- Nettorisikoprinzip: H(X) = E(X)
- Erwartungswertprinzip: $H(X) = E(X) + \delta \cdot E(X) = (1 + \delta) \cdot E(X)$
- Varianzprinzip: $H(X) = E(X) + \delta \cdot Var(X)$
- Standardabweichungsprinzip: $H(X) = E(X) + \delta \cdot \sqrt{Var(X)} = E(X) + \delta \cdot \sigma(X)$
- Exponential princip: $H(X) = \frac{1}{a} \cdot ln(M_X(a)) = \frac{1}{a} \cdot ln(E[e^{aX}])$ mit a > 0

Definition 3 (*Ungleichung von Centelli*) $P(X > E(X) + c) \le \frac{Var(X)}{c^2 + Var(X)}$ *Hinweis: SZ wird hier stark überschätzt.*

Beispiele Risikomaße

- Erwartungswert E(X)
- Varianz Var(X)
- Schiefe $\gamma(X)$ (Symmetriemaß
- Tail-Whk P(X > t)
- Ruin- und Verlustwahrscheinlichkeiten

- Bernoulli-Nutzen
- Value at Risk (VaR), Expected Shortfall, Tail Value at Risk (TVaR)