DISTRIBUTION OF SIPHONOPHORES ALONG THE WEST COAST OF INDIA AND THE LACCADIVE SEA

K. RENGARAJAN

Central Marine Fisheries Research Institute, Cochin 682 018

ABSTRACT

A study has been made of the occurrence and distribution of siphonophores of the west coast of India and the Laccadive Sea based on 331 epipelagic zooplankton samples collected during the cruises of R. V. Varuna. A total of 47 species have been identified and their distribution pattern along the coast and in the oceanic regions determined. Based on their distribution in space, the species are broadly classified into neritic forms, oceanic forms and the species occurring both in the neritic and oceanic waters. Six species belong to the neritic region, fifteen to the oceanic region and twentysix species are distributed in both the oceanic and the neritic waters. The meso and bathy pelagic siphonophores Marrus orthocannoides, Bargmania elongata, Rosacea plicata, Lensia lelouveteau, Abyla haeckeli and Heteropyramis maculata were encountered in the upper 200 m layer and their occurrence in the epipelagic region is of interest.

Frillagalma vityazi, Amphicaryon peltifera, A. ernesti and Marrus orthocannoides have been recorded from the Indian Coast for the first time.

The possibility of using siphonophores particularly Marrus orthocannoides and Lensia lelouveteau as indicators of upwelling in oceanic regions in the Arabian Sea is also discussed.

Introduction

In Recent years considerable amount of work has been carried out on the geographical distribution of pelagic and bathypelagic planktonic organisms from the major oceans of the world and also on their influence on fisheries. Though a good deal of work has been done on general zooplankton and their occurrence along the Indian Coast, very few works have been undertaken on the distribution of various groups of marine zooplankton. A few notable investigations on the distribution of siphonophores from different oceans are of Alvarino (1964, 1967, 1974), Daniel (1974), Moore (1949, 1953), Patriti (1964, 1965, 1966, 1970) and Pugh (1974, 1975).

The present investigation was initiated to understand the distribution pattern of siphonophores in the pelagic division of the sea along the west coast of India and the Laccadive Sea, as there is no information about their distribution in this region. This preliminary study has aided detailed investigations on the quantitative abundance of siphonophores in the continental shelf and oceanic waters, their occurrence in relation to hydrological conditions during different seasons and to find out whether siphonophores could be used as indicator species of water movements.

The author is greatly indebted to Dr. E. G. Silas, Director of the Central Marine Fisheries Research Institute for suggesting this problem, constant guidance, encouragement, helpful suggestions and critically going through the manuscript. He is also thankful to his colleagues Dr. P. V. Ramachandran Nair, Shri C. P. Ramamirtham and Shri K. J. Mathew for the discussions he had with them.

MATERIAL AND METHODS

This investigation is based on 331 zooplankton samples collected during the cruises No. 1 to 3, 7, 8, 30, 31, 42 to 44 and 100 to 106 of the Research Vessel Varuna along the west coast of India and the Laccadive Sea during January, 1962 to December, 1963 and from August, 1966 to February, 1967. The area covered by these cruises lies between 68° 30′ E & 77° 25′ E and 08° 00′ N & 21° 36′ N. In the accompanying figures the day stations are indicated by open circles and the night stations by closed circles. The 200 m and 75 m depth contours have also been shown.

Most of the samples were collected using the Indian Ocean Standard net and a 1 m diameter Nansen net by vertical hauls from 200 m to surface in the oceanic waters or from 5 m above the bottom to surface in the shelf areas and all the samples were preserved in 5% formalin in sea water buffered with 1% Hexamine.

The siphonophores were sorted, identified upto species level and enumerated. The occurrence of different species was plotted on the charts.

The Varuna station list including various particulars was published in the Indian Journal of Fisheries, Volume 11, No. 2 from pages 736 to 965; Volume 12, No. 1 from pages 238 to 457 upto stations 2000 and by Rengarajan (1973) from 2015 to 2079. The details of the stations from 3479 to 3660 are given in the Annexure at the end.

DISTRIBUTION OF SIPHONOPHORES

A total of fortyseven species of siphonophores were identified from this region, five were physonects and the remaining fortytwo calycophores. Of these, four species namely Frillagalma vityazi, Marrus orthocannoides, Amphicaryon peltifera and A. ernesti are recorded for the first time from the Indian Coast. Since the collections were from 200 m depth to surface, all species were from the epipelagic region only. However, some species known to be available only in the deeper waters have also been encountered in the upper 200 metres.

Based on the present investigations the species of siphonophores are grouped broadly into three categories namely neritic species, seen only in the continental shelf area, oceanic species found beyond the shelf edge and the species that occurred both in neritic and oceanic waters (Table 1).

SPECIES DISTRIBUTION

Distribution of various species of siphonophores belonging to 22 genera is discussed below.

Agalmidae '

Agalma elegans (Fig. 1) was found along the west coast of India between Veraval and Cochin in both neritic and oceanic waters, more abundantly beyond 75 m depth. This species was not normally found between the shore and 75 m line except off Karwar and Calicut. Agalma okeni (Fig. 1) occurred abundantly between Mangalore and Cochin. Stray occurrence of this species was recorded off Bombay in the oceanic region and near Karwar. Halistemma rubrum (Fig. 2) was widely distributed both in neritic and oceanic waters. Halistemma sp. (Fig. 2)

Fig. 1. Distribution of Agalma elegans, A. okeni and Frillagalma vityazi

Fig. 2. Distribution of Halistemma rubrum, Halistemma sp., Nanomia bijuga, Marrus orthocannoides and Bargmannia elongata

apparently a young colony with cluster of gelatinous bracts whose distal facets were not clear, and with male and female gonophores was recorded from station No. 764 (Rengarajan, 1973). The specific identification of this specimen (from an oceanic station) was not possible and hence described here as *Halistemma* sp. *Nanomia bijuga* (Fig. 2) is sympatric with *Agalma okeni*, but it was not found beyond north of Karwar. *Frillagalma vityazi* (Fig. 1) was recorded from an oceanic station (No. 3655) near Kalpeni in Lakshadweep area. This was first obtained from the eastern Indian Ocean during a cruise of R. V. *Vityaz* and described by Daniel (1966). This is the second record of the species and that too from the Indian Coast. A single nectophore and two bracts of *Marrus orthocannoides* (Fig. 2) were recorded for the first time from Lakshadweep area from Stn. No. 3564.

Table 1. Species of siphonophores occurred in different environments along the west coast of India and the Laccadive Sea in the upper 200 m layer

Neritic species	Oceanic species	Species occurring in both neritic and oceanic waters
Amphicaryon ernesti Sulculeolaria angusta Lensia tottoni Lensia multilobata Muggiaea delsmani Lensia sp.	Halistemma sp. Frillagalma vityazi * Marrus orthocannoides * Bargmania elongata Amphicaryon peltifera * Rosacea plicata Rosacea cymbiformis Rosacea sp. Vogtia pentacantha V. spinosa Sulculeolaria monoica * Lensia lelouveteau Lensia fowleri * Abyla haeckeli * Heteropyramis maculata	Agalma elegans Agalma okeni Halistemma rubrum Nanomia bijuga Hippopodius hippopus Vogtia glabra Sulculeolaria chuni S. quadrivalvis S. turgida Diphyes chamissonis D. dispar D. bojani Lensia subtiloides L. campanella L. hotspur L. subtilis L. cossack Eudoxoides mitra E. spiralis Chelophyes contorta C. appendiculata Abylopsis eschscholtzi A. tetragona Bassia bassensis Ceratocymba leuckarti Enneagonum hyalinum

^{*}Deep water species.

Pyrostephidae

Eight nectophores of *Bargmania elongata* from an oceanic station off Cochin in Lakshadweep area (No. 3586) during the cruise of *Varuna* were collected in a vertical haul from 200 m to surface (Fig. 2).

Prayidae

The little known species Amphicaryon peltifera was represented by two persistent and two second nectophores from the Lakshadweep region (Fig. 3). Another species, Amphicaryon ernesti was recorded off Karwar within 75 m depth contour and it was not seen at the other stations (Fig. 3). The occurrence of the former species in the oceanic water and the latter in the neritic waters is of interest.

Fig. 3. Distribution of Amphicaryon peltifera, A. ernesti, Rosacea plicata, R. cymbiformis, Rosacea sp. and Hippopodius hippopus

Fig. 4. Distribution of Vogtia pentacantha, V. glabra and V. spinosa,

Rosacea cymbiformis and Rosacea plicata were present in Stn. Nos. 3643 and 3640 respectively near the Lakshadweep group of islands (Fig. 3). The latter was recorded by Alvarino (1967) between 2200 m and 2600 m depth off San Diego, whereas this species was collected in the epipelagic waters during the present investigations. A single young specimen of Rosacea sp. (Fig. 3) was also collected from the same area (Stn. No. 3588) and its specific characters were not clear.

Hippopodidae

Hippopodius hippopus (Fig. 3) was distributed between Cochin and Porbander, more abundantly beyond the 75 m depth contour. Very rarely it was found to occur close to shore (Stn. No. 973) and it was not encountered south of Cochin. One of the oceanic species Vogtia pentacantha (Fig. 4) showed a scattered distribution between Ratnagiri and Cochin and close to the continental shelf edge at two stations (No. 963 and 2052). Vogtia glabra (Fig. 4) occurred between Goa and Mangalore in the neritic waters and in the oceanic waters at two Stns. 2071 and 3524. Another oceanic species Vogtia spinosa (Fig. 4) was recorded for the first time from the Arabian Sea (off Goa and off Cochin). Earlier this species was collected from the oceanic waters below 400 m (Alvarino, 1964) in the Indian Ocean.

Diphyidae

Sulculeolaria chuni (Fig. 5) is widely distributed along the coast, particularly on the continental shelf edge. The nearshore waters are devoid of this species. Sulculeolaria quadrivalvis (Fig. 5) was found to sporadically occur along this region off Veraval, Bombay, Goa, Karwar, Calicut and Trivandrum and in Lakshadweep area. Sulculeolaria turgida (Fig. 6) was found only in waters off Murud, Karwar and Calicut. A neritic species Sulculeolaria angusta (Fig. 5) was found sympatric with S. turgida. They occurred between 75 m and 200 m depth line in the neritic region that too only from four stations (No. 977, 1778, 3483 and 3659) off Veraval, Murud, Karwar and Calicut respectively. Sulculeolaria monoica (Fig. 5) found in the oceanic area between Ratnagiri and Cochin, but at Stn. No. 2024 it occurred just at the continental shelf edge.

Diphyes chamissonis (Fig. 6) is very widely distributed in the Arabian Sea almost in all stations. Diphyes dispar and D. bojani (Fig. 6) were sympatric to each other and found throughout the coast except between Karwar and Mangalore.

Ten species of *Lensia* were recorded from this part of the Indian Coast. Of these, *Lensia subtiloides* was very common and widely distributed both in oceanic and neritic waters (Fig. 7). *Lensia campanella* and *L. hotspur* (Fig. 7) were found throughout this coast except between Goa and Mangalore and sympatrically distributed in other areas.

A single anterior nectophore of Lensia lelouveteau (Fig. 7) was recorded from an oceanic station (No. 943) off Goa. Lensia cossack (Fig. 8) was found only from four stations along the continental shelf edge except off Murud where it was found at 75 m depth. The other three places of occurrence are off Mangalore, Karwar and Ratnagiri. Lensia subtilis (Fig. 8) was present only in the coastal waters near Cochin and off Ratnagiri. A single anterior nectophore of Lensia tottoni (Fig. 7) made its representation in the coastal water off Calicut. Lensia fowleri (Fig. 8) an oceanic species, was seen near Ratnagiri and off Cochin. Lensia multilobata was

Fig. 5. Distribution of Sulculeolaria churi S. auadrivalvis. S. monoica and S. angusta

Fig. 6. Distribution of Sulculeolaria turgida, Diphyes dispar, D. bojani and D. chamissonis

collected only at Stn. No. 970 near Ratnagiri in neritic waters. An anterior nectophore with abnormal characters of *Lensia* sp. was recorded from Stn. No. 747 in the neritic waters off Calicut and it was found difficult to assign it to any known species of *Lensia* because of its broad and smooth nectophore completely occupied by the nectosac and the presence of a large, stumpy, elongate and finger-like somatocyst (Rengarajan, 1973).

A true neritic species *Muggiaea delsmani* (Fig. 8) was found concentrated in the nearshore waters off Veraval, Ratnagiri, Calicut and Cochin. This was also recorded from the Cochin Backwater area (Rengarajan, 1974).

Eudoxoides mitra (Fig. 8) a cosmopolitan species was very common in this region, except in certain pockets along the Maharashtra Coast, and between Karwar and Mangalore. Eudoxoides spiralis (Fig. 8) was present in the neritic waters near Ratnagiri, in the neritic and oceanic waters off Mangalore and in oceanic waters off Cochin.

Chelophyes contorta and Chelophyes appendiculata (Fig. 9) were very common and sympatric throughout the coast and oceanic area of the Lakshadweep.

Abylidae

Abyla haeckeli (Fig. 10) a rare mesopelagic species was obtained from Stn. No. 3578 in the Lakshadweep.

Abylopsis eschscholtzi and Abylopsis tetragona (Fig. 10) were very common and sympatric and continuously distributed along the west coast of India and Lakshadweep.

Bassia bassensis (Fig. 11) another cosmopolitan species is widely distributed in the area investigated.

The peculiarity in the distribution pattern of Ceratocymba leuckarti (Fig. 11) is that it occurred only between Porbander and Goa with a stray and single appearance near Calicut. Enneagonum hyalinum (Fig 11) distributed along the Gujarat Coast, off Bombay and along the southwest coast of India from Karwar to Cape and in the Lakshadweep area. It also occurred in the deeper waters with its high concentration between 415 m and 435 m depths (Pugh, 1974).

Clausophyidae

Heteropyramis maculata (Fig. 11) is one of the rare species recorded from Varuna Stn. No. 943 off Goa. It was also recorded from 1500 m depth and below by Totton (1954).

DISCUSSION

Daniel (1974) has mentioned that only *Diphyes chamissonis* and *Lensia subtiloides* are 'true neritic species'. However, the present collections clearly indicate that these two species occur in the oceanic waters in large numbers (Fig. 6 and 7).

The oceanic species Vogtia pentacantha, Sulculeolaria monoica and Lensia fowleri rarely occurred at one or two stations along the continental shelf edge.

Fig. 7. Distribution of Lensia campanella, L. hotspur, L. multilabata, L. lelauveteau, L. tottoni, L. subtiloides

Fig. 8. Distribution of *Lensia subtilis*, *L. cossack*, *L. fowleri. Muggiaea delsmani, Eudoxoides mitra and E. spiralis*

The stray occurrence of these three species might be due to oscillations of adjacent waters.

The deep water siphonophores Marrus orthocannoides, Bargmania elongata, Rosacea plicata, Lensia lelouveteau, Abyla haeckeli and Heteropyramis maculata were present in the upper 200 m water column.

Marrus orthocannoides was first recorded as a cold water species (temperature range 4.85°C - 8.35°C) by Totton (1954) from sample collected between 1400 m and 700 m in the western tropical Indian Ocean. Alvarino (1964) recorded this species from the Indian Ocean below 400 m depth during the Monsoon Expedition. She classified this as a mesopelagic species. Pugh (1974) found this species in an IKMT oblique haul from 475 m to surface off Fuerteventura in Canary Islands where the water temperature ranged between 11.5°C and 22.0°C. During the present investigation a single nectophore and two bracts of the species were present in a vertical haul from 200 m to surface at which station the temperature was 20.16°C at 200 m and 14.93°C at 300 m depth.

Totton (1954) described Bargmania elongata from a vertical haul from 370 m to surface and subsequently recorded it from Discovery Stn. No. 4246 from 1600 m depth (Totton, 1965). Alvarino (1967) observed this species between 1250 m and 250 m off San Diego and classified it as mesoplanktonic. Stepanyants (1967, 1970) recorded it in the north Pacific and classified it as a bathypelagic species. He also collected it between 4000 m and 3000 m and at 5240 m from the abyssal region. Pugh (1974) collected this species between 360 m and 950 m in great concentration between 500 m and 625 m, off Fuerteventura in the Canary Islands and indicated that Bargmania elongata was more mesopelagic than bathypelagic as suggested by Stepanyants (1967, 1970). The occurrence of this species in the upper 200 metres of our oceanic waters may be an indication of the water mass being brought up from the deeper layers.

Rosacea plicata was also collected from the pelagic oceanic waters during the present investigations, whereas it was recorded between 2000 m and 500 m by Patriti (1965). Leloup (1955) classified this as a mesoplanktonic species. Bigelow and Sears (1937) grouped as a bathypelagic species. Alvarino (1967) collected this species between 2200 m and 2600 m during day time and between 225 m and 450 m during night off San Diego and also considered as a mesoplanktonic form. However, the presence of Rosacea plicata in the upper 200 m is significant and interesting.

Another rare and bathypelagic dipyhid, Lensia lelouveteau was collected in the 200 m to surface in vertical plankton haul during these investigations. Leloup (1955) classified this as a mesoplanktonic species. Alvarino (1967) observed this between 1325 m and 2630 m depth during day time and between 700 m and 2630 m during night off San Diego. Patriti (1965) observed this species between 500 m and 1200 m in the Gulf of Gascogne. Pugh (1974) recorded this off Fuerteventura in the Canary Islands between 900 m and 960 m depth. It may be considered to be more a mesopelagic than a bathypelagic species.

Abyla haeckeli, a rare mesoplanktonic abylid was obtained from 200 m to surface in vertical haul. This was also earlier collected by Alvarino (1964) from below 400 m and classified as mesopelagic.

Fig. 9. Distribution of Chelophyes contorta and C, appendiculate

Fig. 10. Distribution of Abylopsis eschscholtzi, A. tetragora and Abyla haeckeli

One of the six deep water species of siphonophores collected in the upper 200 m layer is *Heteropyramis maculata*. This was recorded by various authors from different depths — from 800 m to 200 m (Leloup, 1934), 450 m to 150 m (Totton, 1954), from below 3000 m to surface (Alvarino, 1967), 400 m to 200 m (Patriti, 1970), 660 m to 500 m and at 50 m (Pugh, 1974).

Thus, it is evident that Marrus orthocannoides, Bargmania elongata, Rosacea plicata and Abyla haeckeli collected from the Lakshadweep regions during December 1966 and Lensia lelouveteau and Heteropyramis maculata collected in the oceanic waters off Goa in April, 1963 are meso/bathypelagic species.

An attempt is made here to find out the probable causes which brought these species to the pelagic region. One of the possible causes is the movement of deeper waters to the upper 200 m water column. Jayaraman (MS) classified the upwellings along the Indian Coast and adjacent seas into three categories. According to him they are:

- "i. Coastal upweling caused by winds transporting surface waters away from the coast and replacement of these surface waters by waters emerging up from below;
 - ii. Upwelling in the open ocean as a result of divergence of some permanent current system, such as equitorial upwelling; and
- iii. A third type of upwelling, though not upwelling sensustricto, caused by major currents passing over deep submarine ridges resulting in the transport of deeper waters nearer to the surface. This type is probably present in the Laccadive region."

The third type of 'upwelling' may be more appropriate here, because the presence of Lakshadweep group of islands and connected ridges in that area might have influenced this type of passing over and upwelling by which the deeper water along with its organisms might have come up to the upper layers.

The vertical temperature profiles for Stn. No. 3564 (the station at which Marrus orthocannoides was observed) and adjacent stations indicate that the upper layers between 0 m and 75 m have a wide temperature range and the thermocline is observed at about 30 m to 35 m. Between 75 m and 200 m the waters are more or less isothermal, the temperature range being 20°C to 22°C. The fact that the particular species is observed in the collection from 200 m to surface is again in conformity with the temperature tolerence limit mentioned by Pugh (1974) viz., 11.5°C to 22.0°C. The upper limit of temperature is quite clearly evidenced in the present investigation as can be seen from the temperature profile (Fig. 12).

It has been observed that subsurface divergence zones exist in the Laccadive area during December - February period, while investigating the relationship between plankton abundance and hydrography in the Laccadive Sea. These divergence phenomenon can also help the upward migration of fauna which are usually abbitating the deeper layers, to such levels upto which the temperature tolerence of the species is possible (Ramamirtham, per. comm.).

From the above facts, Marrus orthocannoides may be regarded here as an indicator of vertical upward transport of water from the deeper regions. The other

RENGARAJAN

Bassia bassensis Ceratocymbo leuckarti Enneagonum hyalinum

Heteropyramis maculata

Fig. 12. The vertical temperature profile for the stations 3564 and 3565 of the R. V. Varuna Cruise.

two mesoplanktonic siphonophores Lensia lelouveteau and Heteropyramis maculata collected off Goa might have probably been transported from the deeper regions by upwelling and this area is noted for this phenomenon.

The result of any plankton investigation particularly the species composition, their seasonal occurrence and quantitative abundance in relation to hydrological conditions will mainly depend upon the regular and uniform sampling method. In this context, the present investigations along the west coast of India and the Laccadive Sea have given encouraging and interesting results.

The quantitative seasonal abundance of different species in relation to hydrographical conditions and their influence in the marine food chain and other related aspects are being investigated in detail based on plankton samples collected regularly and uniformly over a period of several years.

ANNEXURE

R. V. VARUNA Station Particulars (from Station 3479 to 3660)*

Station	Date	Time		Position	Depth at
No.	24.0		Latitude N	Longitude E	Station (m
1	2	3	4	5	. 6
3479	23- 8-1966	1845 - 1850	14° 45′	73° 50/	40
3480	**	2005 - 2025	,,	73° 40′	60
3481	**	2120 - 2205	****	"	, , , ,
3483	24- 8-1966	0315 - 0400	14° 15′	73° ²⁸ ′	106
3484	**	0450 - 0530	**	73° 38′	70
3485	,,	0620 - 0640	,,	73° 48/	60
3486	,,	0740 - 0810	,,	73° 58′	50
3487	**	0905 - 0930	,,	74° 08/	45
3488	,,	1025 - 1055		74° 18/	35
3490	"	1600 - 1615	13° "30/	74° 25/	40
3491	,,	1715 - 1735	,,	74° 151	40
3492	,,	1830 - 1845	,,	74° 05/	50
3493		1940 - 2000	,,	73° 55/	60
3495	25–8–1966	0130 - 0155	12° 45/	74° 10 ′	170
3496	,,	0330 - 0400	••	74° 20 ′	100
3501	,,	1340 - 1405	12° "07/	75° 07/	40
3503	,,	1620 - 1645	12° 00/	74° 40 ′	90
3504	,,	2030 - 2110		74° 32 ′	80
3505	,,	2200 - 2215	11° "15/	74° 54 ′	65
3506		2320 - 2335	,,	74° 03/	60
3507	26- 8-1966	0030 - 0045	,,	75° 12′	50
3508		0210 - 0220	,,	75° 23'	40
3509	7- 9-1966	0730 - 0830	08° "001	77° 11′	60
3510		0930 -	,,	76° 581	90
3511	**	1130 -	"	76° 481	180
3512	7- 9-1966	1415 -	08° "001	76° 38/	720
3513		1615 -		76° 28′	800
3514	**	1815 -	"	76° 187	960
3515	**		"	76° 08′	1150
3516	8- 9-1966	0035 -	08° "331	75° 50′	980
3517	,,	0250 -	,,	76° 00′	600

^{*} The Indian Ocean Standard Net was used for collecting zooplankton samples.

K. RENGARAJAN

ANNEXURE CONTD.

1	2	3	4	5	6
3519	,,	0535 -	08° "55/	76° 20′	50
3521	"	0950 -	08, 22,	76° 17 ′ 76° 07 ′	30 50
3522 3523	**	1105 - 1230 - 1255	,,	76° 07/ 75° 57/	55 55
3523 3524	**	1420 -	,,	75° 47'	200
3525	"	1555 - 1655	**	75° 37′	400
3526	,,	1800 -	,,	75° 27'	270
3527	9- 9-1966	0630 - 0705	09° "32′	75° 461	180
3528	**	0750 - 0835		75° 36′	170
3529	**	0935 - 1020	09° "321	75° 26'	1300
3530	,,	1120 - 1205	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	75° 16′	1800
3531	**	1310 -	09° "581	75° 06′	1500
3532	**	1445 - 1530	**	75° 16′	700
3533 3534	**	1615 - 1640 1735 - 1755	"	75° 26′ 75° 36′	300 180
3534 3535	,,	1733 - 1733 1832 - 1847	,,	75° 41'	60
3539	7-11-1966	1405 - 1515	16° "391	71° 51′	1300 '
3540		1545 - 1625		71° 56′	400
3541	,,	1715 - 1800	"	72° 00'	_
3542	, ,,	1835 - 1920	,, ,,	72° 051	215
3543	,,	2010 - 2045		72° 12′	110
3544	••	2205 -	16° "30′	72° 40/	110
3547	8–11 – 1966	1015 - 1035		72° 09/	22
3549	6-12-1966	1200 - 1305	16° "29′	71° 49′	300
3561	6-12-1966	1105 - 1215	12° 05′	74° 05′	1100
3562	7-12-1966	2135 - 2215	12° 20′	73° 50/	1200
3563 3564	7-12-1966 7-12-1966	1105 - 1310 1605 -	12° "20′	73° 21' 72° 51'	1850 2000
3564 3566	8-12-1966	0215 - 0300	11° 55′	72° 09'	1600
3567		0510 - 0600	11° 41′	71° 52′	
3568	**	0755 - 0850	11° 32′	71° 37'	1300
3569	"	1140 -	11° 09′	71° 44'	500
3570	,,	1405 - 1500	10° 541	71° 561	1600
3571	"	1600 - 1645	10° 57′	72° 06′	,,
3572		1930 -	11° 06′	72° 20/	1800
3573	9-12-1966	1130 -	11° 23′	72° 46′	1700
3574	**	1440 - 1555	11° 34′	73° 03′	1800
3575	**	2330 -	11° 30′	73° 37′	2000
3576 3577	10-12-1966	2340 -	11° 30/ 11° 15/	73° 37/ 73° 53/	2000
3577 3578		0305 - 0410 0700 - 0750	11° 00′	73° 53 ′ 73° 30 ′	1900
3579	**	1000 - 1205	10° 43′	73° 06'	1700
3580	,,	1400 - 1505	10° 27'	72° 42'	
3581	**	1900 - 2025	10° 13′	72° 20'	. >>
3582	11-12-1966	1020 -	10° 00′	72° 00/	42 5
3583	,,	1340 - 1455	09° 51′	72° 14/	2000
3584	**	1645 - 1740	09° 401	72° 29/	1600
3885		2100 -	09° 52′	72° 48′	1800
3586	12–12–1966	0125 - 0220	10° 00′	73° 10′	1900
3587	,,	0450 - 0550	10° 22′	73° 33/	2000
3588	,,,	0850 - 0945	10° 38/	73° 57/ 74° 18/	2750
3589 3590	ş »	1220 - 1320 1615 - 1715	10° 51′ 10° 33′	74° 18 ′ 74° 39 ′	600 2050
3590 3591	**	1615 - 1715 2119 - 2310	10° 33′ 10° 15′	75° 001	950
3592	13-12-1966	0210 - 0300	10° 15′	75° 30'	900
3593	17–12–1966	1215 -	14° 45/	74° 00'	36
3 5 94	"	1332 -		73° 50′	53
3595	"	1500 - 1515	,,	73° 40 ′	62
3 5 96				73° 30 ′	80
3597	17–12–1966	1750 -	14° "45/	73° 20′	104
3598		2100 -	14° 15′	73° 28′	110
3599	18–12–1966	0825 -	,,	73° 38′	89

ANNEXURE CONTD.

	2	A	NNEXURE CONT	5	6
1			4		
3600	**	1040 - 1105	**	73° 48/ 73° 58/	66
3601	"	1200 - 1215 1315 - 1345	**	74° 081	58 49
3602	**	1313 - 1343 1450 - 1500	**	74° 18′	33
3603	**	2350 - 2400	13° "30′	74° 25′	33 37
3605 3606	19-12-1966	0300 -		74° 15'	45
3607		0200	**	74° 05′	55
3608	»,	0400 - 0415	,,	73° 55′	67
3609	**	0600 0630	**	73° 45/	78
3610	**	1110 - 1145	12° 45′	74° 10/	150
3611	,,	1350 - 1415	,,	74° 20/	78
3612	,,	1525 - 1545	,,	74° 30'	55
3613	"	1655 - 1715	,,	74° 40 ′	42
3614	33	1810 - 1825	. ,,	74° 47 ′	18
3615		2315 - 2330	12° 18′	74° 57′	28
3616	20–12–1966	0740 - 0750	12° 12′	75° 03′	20
3617	**	0850 - 0915	,,	74° 53′	, 51
3618	, ,,	1015 - 1035	"	74° 43′	64
3619	**	1215 - 1240	* **	74° 33′ 74° 21′	107 183
3620	**	1320 - 1405 1900 -	11° "32′	74° 21 ′ 74° 40 ′	173
3621	,,	2200 - 2230		74° 53'	73
3622 3623	**	2355 -	**	75° 06'	56
3625 3626	8- 2-1967	0800 - 0900	11° "17′	74° 51′	350
3627		1220 - 1330	11° 341	74° 32′	550
3628	**	1600 - 1750	11° 51′	74° 197	1200
3629	**	2010 - 2200	12° 05′	74° 03/	1400
3630	9- 2-1967	0015 - 0105	12° 20′	73° 541	1600
3632	"	0920 - 1020	12° 201	72° 50/	1800
3633	,,	1255 - 1355	12° 00′	72° 271	1600
3634	,,	1600 - 1645	11° 53′	72° 09/	,,
3635		2000 - 2115	11° 41′	71° 52′	"
3636	10-2-1967	1105 - 1235	11° 31′	71° 48′	1400
3637	**	1505 - 1605	11° 09′	71° 44′	
3638	11- 2-1967	1915 - 2010	10° 48′	71° 51′	1600
3639	11- 2-1967	0945 - 1035	10° 57′	72° 06′	1620
3640	**	1240 - 1345	11° 07′ 11° 23′	72° 21 <i>'</i> 72° 46 <i>'</i>	1700 1800
3641	**	1745 - 1845	11° 23′ 11° 34′	72° 46′ 73° 03′	
3642	12- 2-1967	2145 - 2225 0935 - 1020	11° 46′	73° 21'	2500
3643 3644		1245 - 1340	11° 30′	73° 37'	2000
3645	,,	1615 - 1700	11° 15′	73° 53′	2100
3646	**	2000 - 2100	11° 00′	73° 30'	1900
3647	13- 2-1967	0935 - 1010	10° 43′	73° 05′	
3648	"	1235 - 1325	10° 28′	72° 42'	1750
3649	**	1630 - 1730	10° 147	72° 201	1700
3650		2040 - 2200	10° 00'	72° 00′	2400
3651	14- 2-1967	0855 - 0940	09° 50′	72° 147	1780
3652	**	1130 - 1230	09° 40 ′	72° 28′	1840
3653	,,	1500 - 2030	09° 521	72° 48′	1850
3654		2145 - 2245	10° 07′	73° 10′	1600
3655	15- 2-1967	1210 - 1305	10° 22′	73° 34′	2100
3656	22- 2-1967	0835 - 0950	11° 32′	75° 30′	19.
3657	"	1035 - 1055	11° 32′	75° 18′	45
3658	,,	1220 - 1300	,,	75° 06/	56 72
3659	"	1720 - 1740	**	74° 53/	188
3660	,,	2015 - 2115	**	74° 04′	100

REFERENCES

ALVARINO, A. 1964. Preliminary report on Chaetognatha, Siphonophora and Medusae. In:
Preliminary results of Scripps Institution of Oceanography-Investigations in the Indian Ocean
during Expedition Monsoon and Lusiad 1960 - 1963. S.I.O. Reference No. 64 - 19: 103 - 108
and 200 - 212.

- ————1967. Bathymetric distribution of Chaetognatha, Siphonophorae, Medusae and Ctenophorae off San Diego, California. *Pacific Sci.*, **21** (4): 474 485.
- BIGELOW, H. B. AND M. SEARS 1937. Siphonophorae. Rep. Danish oceanogr. Exped., Medit., Biology, 2: 1 144.
- Daniel, R. 1966. On a new physonectae, Frillagalma vityazi gen. nov., sp. nov. (Siphonophora: Coelenterata) from the Indian Ocean. Ann. Mag. nat. Hist., London, 9 (13): 689 692.
- ————1974. Siphonophora from the Indian Ocean. Memoirs of the Zoological Survey of India, 15 (4): 1-242.
- JAYARAMAN, R. (MS). Present status of upwelling.
- Leloup, E. 1933. Siphonophores Calycophorides et Physophorides provenant des campagnes du Prince Albert ler de Monaco. Resultats des campagnes scientifiques Albert ler Prince de Monaco. 87: 1 67.
- ————1955. Siphonophores. Report on the scientific results of the 'Michael Sars' north Atlantic Deep Sea Exped., 5 (11): 1 24.
- MOORE, H. B. 1949. The zooplankton of the upper waters of the Bermuda area of the North Atlantic. Bull. Bingham Oceanographic collection, Yale University, 12 (2): 1 97.
- ————1953. Plankton of the Florida current. II. Siphonophora. Bull. Mar. Sci. Gulf and Carribean, 2: 559 573.
- PATRITI, G. 1964. Les Siphonophores calycophores du Golfe de Marseille. Recueil des travaux de la Station marine d'Endoume, Facultédes science de Marseils, 35: 185-258.
- ————1965. Contribution a l'etude de siphonophores calycophores recueillis dans le Golfe de Gascogne. *Ibid.*, 37 (53): 151 160.
- ————1966. Contribution a l'etude de siphonophores calycophores recueillis dans le Golfe de Gascogne (3e note). *Ibid.*, **41** (57) : 109 116.
- Pugh, P. R. 1974. The vertical distribution of siphonophores collected during the Sond Cruise, 1965. J. Mar. Biol. Ass. U. K., 54: 25 90.
- ————1975. The distribution of siphonophores in a transect across the North Atlantic Ocean at 32° N. J. exp. mar. biol. Ecol., 20: 77 97.
- RENGARAJAN, K. 1973. Siphonophores obtained during the cruises of R. V. Varuna from the west coast of India and the Laccadive Sea. J. mar. biol. Ass. India, 15 (1): 125 159.
- ————1974. On the occurrence of siphonophores in the Cochin Backwater. *Ibid.*, **16** (1): 280 286.
- STEPANYANTS, S. D. 1967. Siphonophores of the seas of the U. S. S. R. and the North western part of the Pacific Ocean (In Russian). In: Opredeliteli po faune SSSR, 96;: 1 216.
- ————1970. Siphonophores of the southern part of the Kurile-Kamchatka Trench and the adjacent area. Trudy Institute Okeanologia, Akademiya Nauk, SSSR, 96: 222 235.
- TOTTON, A. K. 1954. Siphonophora of the Indian Ocean, together with systematic and biological notes on related species from the other oceans. *Disc. Rep.*, 27: 1 161.
- ------1965. A Synopsis of the Siphonophora. British Museum (Nat. Hist.), Pp.: 1-230.