Seminar on Moduli Theory Lecture 6

Neeraj Deshmukh

October 2, 2020

Last Week

- 1 Presheaves, and Yoneda Lemma.
- Sites and sheaves.
- **3** Topologies on $(Ring)^{opp}$ and Sch.

Lemma

We have the follow inclusion of topologies:

 $Zariski \subset \acute{E}tale \subset fppf \subset fpqc.$

Defining Schemes without locally ringed spaces.

Representable morphisms of functors. (Morphisms of representable functors are always representable!)

A useful lemma about the diagonal

Lemma

Let $\mathcal C$ be a category. Let $F:\mathcal C^{opp}\to Sets$ be a functor. Assume $\mathcal C$ has products of pairs of objects and fibre products. The following are equivalent:

- **1** the diagonal $\Delta : F \rightarrow F \times F$ is representable,
- ② for every U in C, and any $\xi \in F(U)$ the map $\xi : h_U \to F$ is representable,
- **③** for every pair U, V in C and any $\xi \in F(U)$, $\xi' \in F(V)$ the fibre product $h_U \times_{\xi,F,\xi'} h_V$ is representable.

Schemes (with affine diagonal)

Schemes

Characterising fpqc sheaf property

Lemma

Let $F: Sch \rightarrow Sets$ be a presheaf. Then F satisfies the sheaf property for the fpqc topology if and only if it satisfies

- 1 the sheaf property for every Zariski covering, and
- 2 the sheaf property for $\{V \to U\}$ with V, U affine and $V \to U$ faithfully flat.

Characterising fpqc sheaf property

Theorem (Grothendieck)

Every representable functor satisfies the sheaf property in the fpqc topology.

Amitsur's Lemma

Let $f:A\to B$ be a faithfully flat ring map. Then, the following sequence of A-modules is exact:

$$0 \to A \overset{f}{\to} B \overset{e_1-e_2}{\to} B \otimes_A B$$

What happens at $B \otimes_A B$?

subcanonical sites and a non-canonical site