Московский государственный университет имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Теоретическая постановка задачи для задания по алгоритму имитации отжига

Выполнил: Студент гр. 421 Астраханцев Дмитрий Андреевич

Прикладная задача

Дано N независимых работ, для каждой работы задано время выполнения. Требуется построить расписание выполнения работ без прерываний на M процессорах. На расписании должно достигаться минимальное значение $\kappa pu-mepus$ K2.

Критерий К2: суммарное время ожидания (т.е. сумма, по всем работам в расписании, времён завершения работ)

Формальная постановка задачи

Дано:

- \bullet N количество работ.
- *М* количество процессоров.
- $P = \{p_i\}$ множество работ, где $p_i = \{N_i, W_i\}$ и $i = \overline{1, N}$. N_i номер i-й работы, W_i её время выполнения.
- ullet $PU=\{m_j\}$ множество процессоров, где m_j j-й процессор, и $j=\overline{1,M}$.
- $HP = (HP_B, HP_L)$ расписание, где $HP_B : P \to PU$ привязка работ к процессору, HP_L порядок выполнения работ.

При этом выполняются следующие условия, которые позволяют считать расписание корректным:

- $(p_i, p_j) \in HP_L^* \Rightarrow (p_j, p_i) \notin HP_L^*$, где HP_L^* транзитивное замыкание HP_L . Т.е. расписание ациклично.
- $\forall p_i, i = \overline{1,N} \; \exists ! m_k : HP_B(p_i) = m_k$. Т.е. каждая работа должна быть распределена на какой-либо процессор и только на один процессор.

Требуется:

Построить расписание HP.

Минимизируемый критерий:

Определим t_i , как время завершения i-й работы. Тогда

$$t_i = \sum_j W_j + W_i,$$

где

$$j: HP_B(p_j) = HP_B(p_i), (p_j, p_i) \in HP_L^*.$$

Определим T, как

$$T = \sum_{i=0}^{N} t_i.$$

Тогда минимизируемым критерием является

$$\min_{HP\in HP^*}T,$$

где HP^* – множество корректных расписаний.