[70240413 Statistical Machine Learning, Spring, 2018]

Deep Learning (deep neural nets)

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

March 27, 2018

Why going deep?

- Data are often high-dimensional.
- There is a huge amount of structure in the data, but the structure is too complicated to be represented by a simple model.
- Insufficient depth can require more computational elements than architectures whose depth matches the task.
- Deep nets provide simpler but more descriptive models of many problems.

Resolution in Image Classification

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

Human-Level Control via Deep RL

Deep Q-network with human-level performance on Atari games

[Mnih et al., Nature 518, 529–533, 2015]

AlphaGo

Neural network training pipeline and architecture

[Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature, 484(529), 2016]

AlphaGo

Monte Carlo tree search

[Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature, 484(529), 2016]

AlphaGo

[Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature, 484(529), 2016]

Tencent FineArt

MIT 10 Breakthrough Tech 2013

Introduction The 10 Technologies

Past Years

Deep Learning

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.

http://www.technologyreview.com/featuredstory/513696/deep-learning/

Deep Learning in industry

Face identification

Speech recognition

Web search

History of neural networks

Rosenblatt

Minsky Papert

Ackley Hinton Sejnowski

History of neural networks

Smolensky

Hinton

Hinton et al.

Deep Learning Models

How the human brain learns?

The business end of this is made of lots of these joined in networks like this

Much of our own "computations" are performed in/by this network

Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron on another changes

How the human brain learns?

A typical neuron

Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron on another changes

Model of a neuron

Activation function

Threshold function & piecewise linear function:

Sigmoid function

$$\psi_{\alpha}(v) = \frac{1}{1 + \exp(-\alpha v)}$$

 $a \to \infty$: step function

Activation function with negative values

Threshold function & piecewise linear function:

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Hyperbolic tangent function

McCulloch & Pitts's Artificial Neuron

- The first model of artificial neurons in 1943
 - Activation function: a threshold function

$$y_j = \operatorname{sgn}\left(\sum_i w_{ij} x_i - \theta_j\right)$$

Network Architecture

Feedforward networks

Recurrent networks

Learning Paradigms

- Supervised Learning (learning with a teacher)
 - □ For example, classification: learns a separation plane

Learning Paradigms

- Unsupervised learning (learning without a teacher)
 - Example: clustering

Learning Rules

- Error-correction learning
- Competitive learning
- Hebbian learning
- Boltzmann learning
- Memory-based learning
 - Nearest neighbor, radial-basis function network

Error-correction learning

The generic paradigm:

Error signal:

$$e_j = y_j - d_j$$

Learning objective:

$$\min_{\mathbf{w}} R(\mathbf{w}; \mathbf{x}) := \frac{1}{2} \sum_{i} e_j^2$$

Example: Perceptron

One-layer feedforward network based on error-correction learning (no hidden layer):

Current output (at iteration t):

$$d_j = (\mathbf{w}_t^j)^\top \mathbf{x}$$

■ Update rule (*exercise*?):

$$\mathbf{w}_{t+1}^j = \mathbf{w}_t^j + \eta(y_j - d_j)\mathbf{x}$$

Perceptron for classification

- Consider a single output neuron
- Binary labels:

$$y \in \{+1, -1\}$$

Output function:

$$d = \operatorname{sgn}\left(\mathbf{w}_t^{\top} \mathbf{x}\right)$$

Apply the error-correction learning rule, we get ... (next slide)

Perceptron for Classification

- \bullet Set $\mathbf{w}_1 = 0$ and t=1; scale all examples to have length 1 (doesn't affect which side of the plane they are on)
- Given example x, predict positive iff

$$\mathbf{w}_t^{\top} \mathbf{x} > 0$$

- If a mistake, update as follows
 - Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta_t \mathbf{x}$
 - □ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \eta_t \mathbf{x}$

$$t \leftarrow t + 1$$

Convergence Theorem

For linearly separable case, the perceptron algorithm will converge in a finite number of steps

Mistake Bound

- Theorem:
 - Let S be a sequence of labeled examples consistent with a linear threshold function $\mathbf{w}_*^{\top} \mathbf{x} > 0$, where \mathbf{w}_* is a unit-length vector.
 - The number of mistakes made by the online Perceptron algorithm is at most $(1/\gamma)^2$, where

$$\gamma = \min_{\mathbf{x} \in \mathcal{S}} \frac{|\mathbf{w}_*^{\top} \mathbf{x}|}{\|\mathbf{x}\|}$$

- i.e.: if we scale examples to have length 1, then γ is the minimum distance of any example to the plane $\mathbf{w}_{\star}^{\top}\mathbf{x} = 0$
- \neg 1 is often called the "margin" of \mathbf{W}_* ; the quantity $\frac{\mathbf{W}_*^{\top} \mathbf{X}}{\|\mathbf{x}\|}$ is the cosine of the angle between \mathbf{X} and \mathbf{W}_*

Deep Nets

- Deep neural networks
 - Multi-layer Perceptron
 - CNN
 - Deep recurrent nets
- Deep generative models
 - Auto-encoder
 - RBM
 - Deep belief nets

XOR Problem

Single-layer perceptron can't solve the problem

XOR Problem

- ♦ A network with 1-layer of 2 neurons works for XOR:
 - threshold activation function

Many alternative networks exist (not layered)

Multilayer Perceptrons

- Computational limitations of single-layer Perceptron by Minsky & Papert (1969)
- Multilayer Perceptrons:
 - Multilayer feedforward networks with an error-correction learning algorithm, known as error *back-propagation*
 - A generalization of single-layer percetron to allow nonlinearity

Backpropagation

Learning as loss minimization

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{j} e_j^2(\mathbf{x})$$
$$e_j = y_j - d_j$$

Learning with gradient descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \lambda_t \nabla R(\mathbf{w}; \mathcal{D})$$

Backpropagation

- Step function in perceptrons is non-differentiable
- Differentiable activation functions are needed to calculate gradients, e.g., sigmoid:

$$\psi_{\alpha}(v) = \frac{1}{1 + \exp(-\alpha v)}$$

Backpropagation

 \bullet Derivative of a sigmoid function ($\alpha = 1$)

$$\nabla_v \psi(v) = \frac{e^{-v}}{(1 + e^{-v})^2} = \psi(v)(1 - \psi(v))$$

- Note about the small scale of the gradient
- Gradient vanishing issue
- Many other activation functions examined

Gradient computation at output layer

Output neurons are separate:

Gradient computation at output layer

Signal flow:

$$f_{1}(\mathbf{x}) \bigcirc w_{j1}$$

$$f_{2}(\mathbf{x}) \bigcirc w_{j2}$$

$$\vdots$$

$$\vdots$$

$$f_{M}(\mathbf{x}) \bigcirc w_{jM}$$

$$v_{j} = \mathbf{w}_{j}^{\top} \mathbf{f}(\mathbf{x}) \quad d_{j} = \psi(v_{j}) \quad e_{j} = y_{j} - d_{j}$$

$$R_{j} = \frac{1}{2}e_{j}^{2} \qquad \nabla_{w_{ji}}R = \frac{\partial R_{j}}{\partial e_{j}} \frac{\partial e_{j}}{\partial d_{j}} \frac{\partial d_{j}}{\partial v_{j}} \frac{\partial v_{j}}{\partial w_{ji}}$$

$$= e_{j} \cdot (-1) \cdot \psi'(v_{j}) \cdot f_{i}(\mathbf{x})$$

$$= -e_{j} \psi'(v_{j}) f_{i}(\mathbf{x})$$

$$= -e_{j} \psi'(v_{j}) f_{i}(\mathbf{x})$$
Local gradient: $\delta_{j} = -\frac{\partial R_{j}}{\partial v_{j}} \frac{\partial e_{j}}{\partial v_{j}} \frac{\partial v_{j}}{\partial v_{j}} \frac{\partial v_{j}}{\partial v_{j}}$

Gradient computation at hidden layer

Output neurons are NOT separate:

Gradient computation at hidden layer

$$g_{1}(\mathbf{x}) \bigcirc w'_{i1} \qquad 0 \qquad w_{j1} \qquad 0 \qquad y_{j} \qquad 0 \qquad y_{j} \qquad$$

$$v_i = (\mathbf{w}_i')^{\top} \mathbf{g}$$
 $f_i = \psi(v_i)$ $v_j = \mathbf{w}_j^{\top} \mathbf{f}$ $d_j = \psi(v_j)$ $e_j = y_j - d_j$

$$\nabla w_{ik} R = \sum_{j} \frac{\partial R_{j}}{\partial e_{j}} \frac{\partial e_{j}}{\partial d_{j}} \frac{\partial d_{j}}{\partial v_{j}} \frac{\partial v_{j}}{\partial f_{i}} \frac{\partial v_{i}}{\partial w_{ik}}$$

$$R_{j} = \frac{1}{2} e_{j}^{2}$$

$$= -\sum_{j} e_{j} \psi'(v_{j}) w_{ji} \psi'(v_{i}) g_{k}(\mathbf{x})$$
Local gradient:

$$R = \frac{1}{2} \sum_{j} e_{j}^{2}$$

$$= -\sum_{i} \delta_{j} w_{ji} \psi'(v_{i}) g_{k}(\mathbf{x}) \qquad \delta_{i} = -\sum_{i} \delta_{i} w_{ji} \psi'(v_{i}) g_{k}(\mathbf{x}) \qquad \delta_{i} = -\sum_{i} \delta_{i} w_{i} \psi'(v_{i}) g_{k}(\mathbf{x}) \qquad \delta_{i} = -\sum_{i} \delta_{i} \psi'(v_{i}) \psi'(v_{i}) \psi'(v_{i}) \psi'(v_{$$

Back-propagation formula

- The update rule of local gradients:
 - for hidden neuron *i*:

$$\delta_i = \psi'(v_i) \sum_j \delta_j w_{ji}$$

Only depends on the activation function at hidden neuron i

Flow of error signal:

Back-propagation formula

- The update rule of weights:
 - Output neuron:

$$\Delta w_{ji} = \lambda \cdot \delta_j \cdot f_i(\mathbf{x})$$

Hidden neuron:

$$\Delta w_{ik}' = \lambda \cdot \delta_i \cdot g_k(\mathbf{x})$$

$$\begin{pmatrix} Weight \\ correction \\ \Delta w_{ji} \end{pmatrix} = \begin{pmatrix} learning \\ rate \\ \lambda \end{pmatrix} \cdot \begin{pmatrix} local \\ gradient \\ \delta_{j} \end{pmatrix} \cdot \begin{pmatrix} input \ signal \\ of \ neuron \ j \\ v_{i} \end{pmatrix}$$

Two Passes of Computation

- Forward pass
 - Weights fixed
 - Start at the first hidden layer
 - Compute the output of each neuron
 - End at output layer
- Backward pass
 - Start at the output layer
 - Pass error signal backward through the network
 - Compute local gradients

Stopping Criterion

- No general rules
- Some reasonable heuristics:
 - □ The norm of gradient is small enough
 - The number of iterations is larger than a threshold
 - The training error is stable
 - **...**

Improve Backpropagation

- Many methods exist to improve backpropagation
- E.g., backpropagation with momentum

$$\Delta w_{ij}^t = -\lambda \frac{\partial R}{\partial w_{ij}} + \alpha \Delta w_{ij}^{t-1}$$

Neurons as Feature Extractor

- Compute the similarity of a pattern to the ideal pattern of a neuron
- Threshold is the minimal similarity required for a pattern
- Reversely, it visualizes the connections of a neuron

Vanishing gradient problem

- The gradient can decrease exponentially during back-prop
- Solutions:
 - Pre-training + fine tuning
 - Rectifier neurons (sparse gradients)

- Ref:
 - □ Gradient flow in recurrent nets: the difficulty of learning longterm dependencies. Hochreiter, Bengio, & Frasconi, 2001

Deep Rectifier Nets

Sparse representations without gradient vanishing

- Non-linearity comes from the path selection
 - Only a subset of neurons are active for a given input
- Can been seen as a model with an exponential number of linear models that share weights

[Deep sparse rectifier neural networks. Glorot, Bordes, & Bengio, 2011]

CNN

- Hubel and Wiesel's study on annimal's visual cortex:
 - Cells that are sensitive to small sub-regions of the visual field,
 called a receptive field
 - Simple cells respond maximally to specific edge-like patterns within their receptive field. Complex cells have larger receptive fields and are locally invariant to the exact position of the pattern.

Convolutional Neural Networks

Sparse local connections (spatially contiguous receptive fields)

Shared weights: each filter is replicated across the entire visual field, forming a feature map

CNN

Each layer has multiple feature maps

CNN

The full model

- *Max-pooling*, a form of non-linear down-sampling.
 - Max-pooling partitions the input image into a set of non-overlapping rectangles and, for each such sub-region, outputs the maximum value.

Example: CNN for image classification

- Network dimension: 150,528(input)-253,440—186,624—64,896— 64,896-43,264-4096-4096-1000(output)
 - In total: 60 million parameters
 - □ Task: classify 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes
 - Results: state-of-the-art accuracy on ImageNet

Issues with CNN

- Computing the activations of a single convolutional filter is much more expensive than with traditional MLPs
- Many tuning parameters
 - # of filters:
 - Model complexity issue (overfitting vs underfitting)
 - Filter shape:
 - the right level of "granularity" in order to create abstractions at the proper scale, given a particular dataset
 - Usually 5x5 for MNIST at 1st layer
 - Max-pooling shape:
 - typical: 2x2; maybe 4x4 for large images

Long Short-Term Memory

- A RNN architecture without gradient vanishing issue
- A RNN with LSTM blocks
 - Each block is a "smart" network, determing when to remember,
 when to continue to remember or forget, and when to output

Discussions

Challenges of DL

- Learning
 - Backpropagation is slow and prone to gradient vanishing
 - Issues with non-convex optimization in high-dimensions
- Overfitting
 - Big models are lacking of statistical information to fit
- Interpretation
 - Deep nets are often used as black-box tools for learning and inference

Overfitting in DL

Increasing research attention, e.g., dropout training (Hinton, 2012)

- More theoretical understanding and extensions
 - MCF (van der Maaten et al., 2013); Logistic-loss (Wager et al., 2013); Dropout SVM (Chen, Zhu et al., 2014)

Some counter-intuitive properties

- Stability w.r.t small perturbations to inputs
 - Imperceptible non-random perturbation can arbitrarily change the prediction (adversarial examples exist!)

10x of differences

Cat: 98.96%

Transferability

Cross-model transferability

Target model with Substitute model unknown weights, Train_your_ machine learning mimicking target own model algorithm, training model with known, differentiable function set; maybe nondifferentiable Adversarial crafting Deploy adversarial against substitute examples against the Adversarial target; transferability examples property results in them succeeding

Cross-data transferability

Adversarial Attack & Defense

White-box v.s black-box attack

A game between attack and defense!

Adversarial Training

$$L = \frac{1}{(m-k) + \lambda k} (\sum_{i} L(x_{i}, y_{i}) + \lambda \sum_{j} L(x_{j}^{*}, y_{j}))$$

		Clean	$\epsilon = 2$	$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 16$
Baseline	top 1	78.4%	30.8%	27.2%	27.2%	29.5%
(standard training)	top 5	94.0%	60.0%	55.6%	55.1%	57.2%
Adv. training	top 1	77.6%	73.5%	74.0%	74.5%	73.9%
	top 5	93.8%	91.7%	91.9%	92.0%	91.4%
Deeper model	top 1	78.7%	33.5%	30.0%	30.0%	31.6%
(standard training)	top 5	94.4%	63.3%	58.9%	58.1%	59.5%
Deeper model	top 1	78.1%	75.4%	75.7%	75.6%	74.4%
(Adv. training)	top 5	94.1%	92.6%	92.7%	92.5%	91.6%

Kurakin et al 2017: ADVERSARIAL MACHINE LEARNING AT SCALE

NIPS Challenge

- Google Brain organized the NIPS 2017 contest on Adversarial Attacks and Defenses
- Three sub-tasks
 - Un-targeted adversarial attack (mislead the network)
 - Targeted adversarial attack (mislead to a pre-defined category)
 - Defense against adversarial attacks
- Run all attacks against all defenses to evaluate how each of the attacks performs against each of the defenses
- ♦ 100+ teams in each task
- ♦ We won the 1st places in all three tasks
 - A large-margin from the 2nd in target attack and defense
 - Two papers at CVPR 2018

Criticisms of DL

- Just a buzzword, or largely a rebranding of neural networks
- Lack of theory
 - gradient descent has been understood for a while
 - DL is often used as black-box
- DL is only part of the larger challenge of building intelligent machines, still lacking of:
 - causal relationships
 - logic inferences
 - integrating abstract knowledge

Will DL make other ML methods obsolete?

Quora

2014/12/23

Yes (2 post, 113 upvotes)

- best predictive power when data sufficient
- DL is far from saturated
- Google et al invests on DL, it is the
- "richest" AI topic

No (10 posts, 284 upvotes)

- simpler algorithms are just fine in many cases
- methods with domain knowledge works better
- DL is feature learning, needs other methods to work
- DL is not that well developed, a lot of work to be done using more traditional methods
- No free lunch
- a lot like how ANN was viewed in the late 80s

What are people saying?

Yann LeCun:

• "AI has gone from failure to failure, with bits of progress. This could be another leapfrog"

♦ Jitendra Malik:

- in the long term, deep learning may not win the day; ... "Over time people will decide what works best in different domains."
- "Neural nets were always a delicate art to manage. There is some black magic involved"

Andrew Ng:

- "Deep learning happens to have the property that if you feed it more data it gets better and better,"
- "Deep-learning algorithms aren't the only ones like that, but they're arguably the best certainly the easiest. That's why it has huge promise for the future."

Thank You!