

(11) Publication number: 0 327 387 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 09.09.92 Bulletin 92/37

(51) Int. CI.5: **A61F 2/38**, A61F 2/46

(21) Application number: 89301076.9

22) Date of filing: 03.02.89

(54) Orthopaedic joint components, tools and methods.

(30) Priority: 05.02.88 GB 8802671

(43) Date of publication of application : 09.08.89 Bulletin 89/32

(45) Publication of the grant of the patent: 09.09.92 Bulletin 92/37

84) Designated Contracting States : CH DE FR GB LI

56 References cited : DE-A- 2 834 297 FR-A- 2 554 709

FR-A- 2 589 720 GB-A- 1 534 263 US-A- 4 719 908 72 Inventor: Goodfellow, John William
6 Nourse Close
Woodeaton Oxfordshire OX3 9TJ (GB)
Inventor: O'Connor, John Joseph
9 Beaumont Road Headington
Oxfordshire OX3 8JN (GB)

101 Newington Causeway London SE1 6BU (GB)

(73) Proprietor: BRITISH TECHNOLOGY GROUP

LTD

(4) Representative: Parker, Geoffrey et al Patents Department British Technology Group Ltd 101 Newington Causeway London SE1 6BU (GB)

327 387 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

10

20

25

30

35

40

45

50

Description

This invention concerns orthopaedic joint components, tools and methods more particularly for use in relation to the femur at the knee joint. The invention has in fact been conceived initially with a view to application as or for a femoral component of so-called unicompartmental form in a prosthesis according to GB Patent No. I,534,263. It is accordingly appropriate to describe the invention in more detail in terms of such application, but it is to be understood that the invention is more widely applicable to other forms of prosthesis. A prosthetic femoral component according to the preamble of Claim 1 is known from US-A- 47 19 908.

In the present context "unicompartmental" qualifies a component discretely applicable to a femoral condyle to provide a replacement articular surface. While two such components can be used on the associated condyles of a joint, this distinguishes from a bicompartmental component in which a single one-piece femoral component has an associated pair of condylar parts connected by a bridging portion, and also from a tricompartmental component in which the bridging portion defines a patellar articular surface.

In the same context "surface replacement", used hereinafter, involves the provision of a component having a body largely of shell form and defining two principal surfaces in back-to-back disposition, one such surface being intended as the replacement articular surface and the other such major surface to interface with the relevant bone. In this case the bone is of course the femur at the knee and the respective principal surfaces are commonly grossly convex and concave.

Unicompartmental components presently in routine use include two principal types. In each type the articular surface is normally of polyradial shape, that is to say the surface is deliberately non-spherical. This shaping appears to reflect confused thinking which assumes a need for a varying centre of curvature for the articular surface in direct relationship with the fact that there is, in the natural situation, a varying centre of rotation between the femur and tibia during flexion-extension movement. Generation of the latter variation is of course appropriate following surgery if the natural joint function, including the action of retained ligaments, is itself to be closely simulated but study in development of the present invention finds no necessity for a related polyradial curvature.

The routinely used types differ, however, in the form of interface surface configuration used in relation to securement of the component to the bone. In one type the interface surface consists of a plurality of plane facets intended for securement, with or without bone cement, against a closely matched surface cut on the condyle. The other type is of surface replacement form and the corresponding interface sur-

face closely follows the polyradial shape of the articular surface. This type is intended for securement with cement, the condyle being at best relatively coarsely prepared in terms of matching and the cement being deployed to fill gaps resulting from mismatching.

There are difficulties and disadvantages with both types. For the one type the related bone preparation is complex by virtue of the need to cut plural facets in a predetermined relationship to match the component. Moreover this difficulty is compounded by the repetition which is necessary if the bone shaping requires relocation to attain a better final position for the component. Also the interface between the component and bone will necessarily be irregular relative to the trabecular structure of the latter and this will result in the transmission of non-compressive forces through the interface during subsequent patient use of the joint, which forces can lead to component loosening. For the other type the final position for the component is determined in an effectively arbitrary manner and this cannot be reliably compatible with maintenance of normal ligament action or, therefore, joint function.

An object of the present invention is to reduce these difficulties and disadvantages.

To this end the invention in one aspect provides a prosthetic femoral component for the knee joint comprising a body defined between two principal surfaces in back-to-back disposition, one of such surfaces being of three-dimensionally curved convex shape to serve a condyular articulation function, and the other such surface being grossly concave for securement with the femur, said other principal surface having a major area of curved shape to form with the corresponding area of the one surface a shell, and a minor area of essentially planar shape, characterised in that said curved shape is essentially that of a surface of revolution about an axis therethrough, and said planar shape is parallel to said axis.

This component is preferably of unicompartmental surface replacement form.

Preferably the one principal surface and/or major area of the other principal surface is/are spherically shaped and when both are so shaped they are preferably concentric.

In another aspect the invention provides, for use with a component according to the invention, a surgical tool for shaping a femoral condyle, the tool having concave cutting means rotatable about an axis therethrough to describe a surface of revolution substantially equating with that of said component major area, and having a guide member projecting coaxially within said cutting surface.

Preferably in such a tool the cutting means and guide member are relatively adjustable to vary the effective axial length of the latter within the former.

These aspects of the invention together with the preferred and other forms thereof will be clarified by

10

20

25

30

35

40

45

50

consideration of the following further description given by way of example with reference to the accompanying drawings, in which:-

Figures I and 2 respectively schematically illustrate two types of prior art unicompartmental femoral component,

Figure 3 illustrates natural shaping in the femur at the knee joint,

Figure 4 diagrammatically illustrates in side and plan views (a) and (b) one embodiment of a component according to the invention,

Figure 5 similarly illustrates a related surgical tool for use in application of the component of Figure 4, and

Figures 6-8 schematically illustrate successive stages in a procedure for application of the component of Figure 4.

Figure I schematically illustrates in side view a unicompartment femoral component I0 of the first type referred to above. The component has a main body of elongate form as shown defining an articular surface II and an interface surface I2. The articular surface II is longitudinally curved in polyradial manner with progressive increase in curvature towards one end, which end is to be sited posteriorly, and the surface is also transversely curved. The interface surface I2 consists of three plane facets but will commonly be supplemented with one or more projecting elements, usually of pin and/or blade form, to penetrate the bone for purposes of securement.

Figure 2 schematically illustrates in a perspective view a unicompartmental femoral component 20 of the second type referred to above. This component is of surface replacement form and has a shell body of elongate form as shown defining a polyradial articular surface 2l similar to surface II in Figure I and an interface surface 22 which closely concavely approximates surface 2l. Again the interface surface 22 will commonly be supplemented by one or more elements to aid securement with bone, but this will usually be in a less pronounced manner to form a key with cement.

Figure 3 illustrates natural shaping in the femur 30 at the knee joint by way of a diagrammatic section through the sulcus of the trochlear groove. The longitudinal, that is to say the antero-posterior profile of the condyle is seen at 31. Development of the invention rests, in part, on the consideration that this profile and also the related transversely extending areas of the condyle can be very closely represented by a spherical surface as indicated by the circular outline 32. Moreover such a sphere is found to be of substantially constant radius over large bodies of adult population, with "large" in this context extending to National or greater size. This consideration is, of course, counter to current thinking and femoral component design.

Also, although the condylar surface appears to be

continuous with that of the trochlear groove in which the patella articulates, the areas of these surfaces which in fact perform a significant articular function in respective relation to the tibia and patella are found to be quite separate. The trochlear groove area in question is indicated at 33. This again contradicts current thinking whereby femoral components commonly exhibit features designed to accommodate patellar articulation even when the component is not of tricompartmental form.

These considerations and findings in development of the present invention led to the view that an idealised femoral component can have spherical articular shaping. The component is preferably unicompartmental to give flexibility for use in relation to different joint conditions without entailing a necessary constraint to accommodate patella function in all conditions. The component is preferably of surface replacement form with an interface surface which is spherical and concentric with the articular surface. This will simplify manufacture of the component, minimise the need for bone removal and, because the interface will be positioned in a substantially regular manner perpendicularly across the adjacent trabecullar structure, minimise the transmission of non-compressive forces to the bone.

Practical development of the invention to date closely approaches this ideal by way of the unicompartmental component 40 of Figure 4. This component is of one-piece construction and elongate form having a main body composed of a shell body portion 41 for application to the inferior part of a condyle and a continuing secondary body portion 42 for application to the posterior part of the condyle. The component defines a convex spherical articular surface 43 extending continuously over both body portions, while the shell portion defines a major interface surface area 44 substantially of concave spherical shape concentric with articular surface 43, and the secondary portion defines a minor interface surface area 45 of substantially planar shape extending chordally relative to surface 43. The component additionally has a pin 46 projecting radially inwardly from surface 44 and with its axis in parallel and symmetrical relation with surface 45.

The component of Figure 4 differs from the above ideal for compatability with the practical development to date of related securement techniques.

These techniques involve a cutting tool 50 of the form shown by Figure 5. The tool can be termed a spigotted spherically-concave end mill. The tool has a shaft 5l for operable engagement at its free end in a suitable rotary power source. At its other end the shaft carries the milling cutter 52, the concave spherical cutting face of which is coaxial with the shaft and shaped to equate with the interface surface area 44 of the associated component. A spigot 53 projects radially inwardly of the cutting surface coaxially from

55

10

20

25

30

35

40

45

50

the shaft, the relative positions of the cutter and spigot being adjustable axially of the latter in a continuous or discrete incremental manner by a screw or other mechanism. This adjustment suitably covers a small range of movement about a datum length for the spigot equal to the articular spherical radius of the related component.

Successive stages of the presently developed technique are illustrated by the remaining drawings.

In this technique the knee joint is suitably exposed, and a plane facet cut on the tibial plateau of the relevant compartment. This facet is to serve as a basis for securement of a tibial component for association with the subject femoral component, these components being additionally associated with a meniscal component therebetween if the teaching of GB Patent No. I,534,263 is followed.

With the joint in a position of about 90° flexion as shown in Figure 6, a jig 60 of basically three-part form is applied to locate a shoe part 6l between the plane facet already cut and the now-facing posterior portion of the related femoral condyle, a drill guide part 62 across the inferior portion of the condyle, and an alignment part 63 extending parallel to the longitudinal axis of the femoral shaft. The shoe part 6l has an elongate face which is concavely transversely curved against the condyle. The guide part 62 has a smaller bore 64 and a larger bore 65, each axially parallel with the alignment part 63 and in a common plane with the latter. The alignment part 63 is shown to extend externally of the femur, but in an alternative form it can extend internally as an intramedullary nail.

The jig 60 is positioned as indicated in association with a spacer 70 between the shoe part 6l and the tibial plane facet, this spacer serving to represent the thickness of the associated tibial component to be secured to such facet, plus the thickness of any related meniscal component. More specifically this location is such as to position the guide part bore 65 substantially in alignment with the normal spherical radius at the neighbouring point of the condle and at a spacing above the spacer 70 corresponding to the radius R of sphericity for the articular surface 43 of the component intended for use. The radius R is, of course, determined on the basis of preceding X-ray or other pre-surgical examination, and/or assessment following exposure of the joint, substantially to match that of the condyle to be resurfaced.

This jig positioning will result in ligament action being sustained in a normal manner at flexion. Also, it is to be noted that such positioning is determined, in part, by reference to the posterior portion of the condyle where damage due to arthrosis occurs late in the progression of the condition to be obviated by prosthesis. Thus component positioning is determined by reference to joint geometry which is commonly viable in indicating normality for the patient.

In any event, when so positioned, the condyle is

drilled by way of guide part bore 64 and a pin 66 engaged to stabilise the jig position. Then, the condyle is drilled through guide part bore 65 to a depth R.

The next stage following use of jig 60 involves application of a saw block 80 to the condyle whereby the posterior portion can be removed to leave a plane facet as shown by Figure 7. This saw block has pins 8l and 82 to engage in the condyle bores and so position the block in a stable manner.

Thereafter the tool 50 is applied to engage its spigot in the bore in the condyle. Operation of the tool cuts the inferior portion of the condyle to leave a spherically convex face, this face being of markedly higher quality than that from a saw or other tool.

It is to be noted that the tool 50 is operated with its spigot limiting the depth of cut into the bone and that adjustment can be made to progressively reduce the spigot length while allowing intervening applications of the component, or a trial form thereof, to test the positioning by reference to ligament action with the joint extended.

Initially, the spigot length will be R with successive small reductions, of about 0.5 mm, say, being made to this length until testing shows that the component will be equally spaced from the tibia at about 90° flexion and full extension by the thickness of the associated tibial component plus any related meniscal component. It will be appreciated that this progressive adjustment towards the desired result is simplified by the fact that the condyle has previously been sawn to provide a plane facet extending parallel to the direction of adjustment whereby the overall cut area of the condyle does not change in shape at any stage during use of the tool 50. Prismatic or other facetted shapes extending parallel to the direction of adjustment will give a similar facility.

The resultant shaping of the condyle will be seen to receive the component of Figure 4 as shown in Figure 8.

A remaining point to note in relation to the component of Figure 4 is that the interface surfaces 44 and 45 will conform very closely to the indicated spherical and planar shapings, but in practice can vary in fine detail for the purposes of securement. For example, if securement is to rely on the use of cement, these surfaces may be formed with a roughened finish to afford a key while having the indicated overall shapes. Alternatively, or in addition, these surfaces can be relieved to a small extent to provide the same overall shaping within a low peripheral rim whereby a uniformly thin layer of cement is provided between the component and bone during securement. Similarly, where securement involving bone growth is intended, the related component surfaces can be formed with fine pores or like irregularities in accordance with established techniques, while still exhibiting the indicate overall shaping. In this case, the component sur-

10

20

25

30

35

40

45

50

faces can, for example, be relieved such as just mentioned and filled back to the desired shapes with hydroxyapatite or other suitable material.

While the invention has been more fully described with reference to the drawings, it has been indicated in the preceding description that wider application is possible.

Other unicompartmental forms can be advantageous relative to present routine components. For example a polyradial rather than spherical articular surface can be used while employing interface surfaces as described to obtain the related benefits of the latter. Conversely, or in addition, the spherically shaped interface surface area can be of non-spherical revolutionary shape while still allowing benefit from a simplified securement procedure. Again the illustrated form may be improved to have a wholly spherical or other rotationally defined interface surface for use in association with further developed securement procedures.

To the extent that the impact of the invention is wholly confined to treatment of the femoral condyle, the invention is of course applicable to bi- and tricompartmental forms of component.

Similarly the invention, while conceived in relation to use in prosthetic devices involving tripartite femoral, tibial and intervening meniscal components, the invention is equally applicable to device forms involving directly engageable femoral and tibial components.

Claims

- I. A prosthetic femoral component (40) for the knee joint comprising a body (41,42) defined between two principal surfaces (43; 44,45) in back-to-back disposition, one (43) of such surfaces being of three-dimensionally curved convex shape to serve a condyular articulation function, and the other (44,45) such surface being grossly concave for securement with the femur (30), said other principal surface having a major area (44) of curved shape to form with the corresponding area of the one surface a shell, and a minor area (45) of essentially planar shape, characterised in that said curved shape is essentially that of a surface of revolution about an axis therethrough, and said planar shape is parallel to said axis.
- 2. A component according to Claim I wherein at least one of said one principal surface and said major area is spherically shaped.
- 3. A component according to Claim 2 wherein both of said one principal surface and said major area are spherically shaped in mutually concentric manner.
- 4. A component according to Claim I,2, or 3 wherein said two principal surfaces are each of elongate form and said major and minor areas extend over respectively different, mutually adjoining end portions

thereof.

- 5. A component according to any preceding claim wherein said body has an elongate member (46) projecting from said major area along the axis of rotation thereof.
- 6. A component according to Claim 5 wherein said member is of pin form.
- 7.A component according to Claim 5 or 6 wherein said member projects from said major area along said axis to no greater extent than the remainder of said body.
- 8. A component according to any preceding claim of unicompartmental form.
- 9. A component according to any preceding claim in combination with a surgical tool (50) for use in shaping a femoral condyle for securement therewith of said component, such tool having concave cutting means (52) rotatable about an axis therethrough to describe a surface of revolution substantially equating with that of said component major area, and having a guide member (53) projecting coaxially within said cutting means.
- 10. A combination according to Claim 9 wherein said cutting means (52) and guide member (53) are relatively adjustable to vary the effective axial length of the latter within the former.

Patentansprüche

- I. Oberschenkel-Prothesenbestandteil (40) für das Kniegelenk, umfassend einen Körper (4I,42), der zwischen zwei Hauptflächen (43;44, 45) in Rückenzu-Rücken-Anordnung ausgebildet ist, wobei eine (43) solcher Flächen dreidimensional in konvexer Form abgebogen ist, um eine condyläre Gelenkfunktion auszuüben, während die andere (44,45) dieser Flächen grob konkav zur Befestigung mit dem Oberschenkel (30) ist, und wobei die andere Hauptfläche einen überwiegenden Bereich (44) gebogener Form besitzt, um mit dem entsprechenden Bereich der anderen Fläche ein Gehäuse zu bilden, sowie einen kleineren Bereich (45) im wesentlichen planarer Form, dadurch gekennzeichnet, daß die gebogene Form diejenige einer Drehfläche um eine Achse dadurch ist, und wobei die planare Form parallel zu dieser Achse ist.
- 2. Bestandteil nach Anspruch I, bei dem mindestens die eine Hauptfläche (43) und der überwiegende Bereich sphärisch geformt sind.
- 3. Bestandteil nach Anspruch 2, bei dem beide Hauptflächen und der hauptsächliche Bereich sphärisch in gegenseitig konzentrischer Weise geformt sind.
- 4. Bestandteil nach Anspruch I, 2 oder 3, bei dem die beiden Hauptflächen jeweils längliche Form besitzen und der überwiegende und der kleinere Bereich sich über entsprechend unterschiedliche, gegenseitig

5

55

10

15

20

25

35

45

aneinandergrenzende Endabschnitte davon erstrekken.

- 5. Bestandteil nach irgendeinem der vorstehenden Ansprüche, bei dem der Körper ein längliches Glied (46) aufweist, das von dem überwiegenden Bereich entlang dessen Drehachse herausragt.
- 6. Bestandteil nach Anspruch 5, bei dem das Glied die Form eines Bolzens besitzt.
- 7. Bestandteil nach Anspruch 5 oder 6, bei dem das Glied vom überwiegenden Bereich entlang der genannten Achse in einem nicht größeren Ausmaß als das übrige des Körpers herausragt.
- 8. Bestandteil nach irgendeinem der vorstehenden Ansprüche in Einzelfachform.
- 9. Bestandteil nach irgendeinem der vorstehenden Ansprüche in Kombination mit einem chirurgischen Werkzeug (50) zur Verwendung beim Formen eines femuralen Gelenkhöckers zur Befestigung des Bestandteils damit, wobei ein solches Werkzeug ein konkaves Schneidmittel (52) besitzt, das um eine Achse da durch drehbar ist, um eine Drehfläche zu beschreiben, die im wesentlichen der der Überwiegenden Fläche des Bestandteils gleicht, und wobei ein Fürungsmittel (53) koaxial innerhalb des Schneidmittels herausragt.
- I0. Kombination nach Anspruch 9, bei dem das Schneidmittel (52) und das Führungsglied (53) relativ einstellbar sind, um die wirksame Axiallänge des letzteren innerhalb des ersteren zu verändern.

Revendications

- 1.- Composant fémoral prothétique (40) pour l'articulation du genou, comprenant un corps (41,42) défini entre deux surfaces principales (43;44,45) disposées dos à dos, l'une (43) de ces surfaces ayant une forme convexe incurvée dans les trois dimensions pour servir d'articulation condylaire, et l'autre (44,45) de ces surfaces étant en gros concave pour être fixée sur le fémur (30), cette deuxième surface principale ayant une zone plus importante (44) de forme incurvée pour former avec la zone correspondante de la première surface une coquille, et une zone plus petite (45) essentiellement plane, caractérisé en ce que ladite forme incurvée est essentiellement celle d'une surface de révolution autour d'un axe la traversant, et que ladite forme plane est parallèle à cet axe.
- 2.- Composant selon la revendication 1, dans lequel l'une au moins de la première surface principale et de la zone plus grande a une forme sphérique.
- 3.- Composant selon la revendication 2, dans lequel la première surface principale et la zone plus grande sont toutes deux de forme sphérique et concentriques l'une à l'autre.
- 4.- Composant selon l'une des revendications 1à 3, dans lequel les deux surfaces principales ont

- chacune une forme allongée et les zones plus grande et plus petite s'étendent sur des portions terminales adjacentes l'une à l'autre et respectivement différentes de celles-ci.
- 5.- Composant selon l'une des revendications précédentes, dans lequel le corps a un élément allongé (46) se projetant de la zone la plus grande le long de l'axe de rotation de celle-ci.
- 6.- Composant selon la revendication 5, dans lequel ledit élément a la forme d'une broche.
- 7.- Composant selon la revendication 5 ou la revendication 6, dans lequel ledit élément se projette de la zone la plus grande le long de cet axe sur une distance non supérieure au reste du corps.
- 8.- Composant selon l'une quelconque des revendications précédentes, ayant une forme à un seul compartiment.
- 9.- Composant selon l'une des revendications précédentes, en combinaison avec un outil chirurgical (50) utilisé pour former un condyle fémoral pour la fixation sur lui de ce composant, cet outil ayant des moyens d'usinage concaves (52) pouvant tourner autour d'un axe le traversant pour décrire une surface de révolution sensiblement égale à celle de la zone la plus grande du composant, et ayant un élément de guidage (53) se projetant coaxialement à l'intérieur de ces moyens d'usinage.
- 10.- Combinaison selon la revendication 9, dans laquelle les moyens d'usinage (52) et l'élément de guidage (53) peuvent être réglés l'un par rapport à l'autre pour faire varier la longueur axiale effective du dernier à l'intérieur du premier.

6

