Statisztika

Politológus képzés

Daróczi Gergely

Politológia Tanszék

2011. február 23.

Outline

- 🕕 A mérési hiba
 - Megbízhatóság és érvényesség
- A kutatás megtervezése
 - A kutatás lehetséges céljai
 - A kutatás egységei
 - Ökológiai tévkövetkeztetés
 - Változók és mérési szintek
- Mérési szintek
- A változók közötti kapcsolatról
 - Visual examples
 - A relációk típusai
 - További példák
- A kutatás főbb fázisai

Megbízhatóság és érvényesség

Méréseket végeztünk egy vödör 60°C hőmérsékletű vízben:

A kutatás lehetséges céljai

Brainstorming

A következő kérdések közül melyek lehetnek megfelelő kutatási témák?

- Hány hajléktalan ember él a fővárosban?
- Melyek a leginkább elterjedt öngyilkossági eljárások?
- Milyen színű a banán?

A kutatás lehetséges céljai

Értelmetlennek tűnő kutatási témák

Egy valódi adatfelvétel (N=225.000) adatai alapján:

Egy egyszerű idősor:

A kutatás lehetséges céljai

Brainstorming

textbfA következő kérdések közül melyek lehetnek megfelelő kutatási témák?

- Hány hajléktalan ember él a fővárosban?
- Melyek a leginkább elterjedt öngyilkossági eljárások?
- Milyen színű a banán?
- Mennyibe kerül egy vödör alma?
- Milyen kapcsolat állhat fenn az emberek hajszíne és testsúlya között?
- Melyik a legolvasottab könyv a világon?

Mik lehetnek a témaválasztás fő faktorai?

Definíció: feltáró, leíró és magyarázó kutatások

A kutatás egységei

Mintavételi egység, megfigyelési egység, eset

Milyen alanyokat vizsgálunk az alábbiakban?

- Az idősebb emberek jobban félnek a bűnözőktől, mint a fiatalabbak.
- A gazdasági fejlődés valóban a várható életkor csökkenésével jár együtt?
- Melyik a legnagyobb magyar focidrukker csapat?
- Minél hosszabb az eljegyzés, annál hosszab a házasság.
- Mely foglalkozás bír a legnagyobb presztízzsel?

A megfigyelési egység minden esetben egybeesik a mintavételi egységgel?

Ökológiai tévkövetkeztetés

Egy klasszikus példa

Emile Durkheim (1897): Le Suicide

- A férfiak hajlamosabbak öngyilkosságot elkövetni, mint a nők.
- Az öngyilkosság jellemzőbb az özvegy, elvált vagy házasságon kívül élőkre, mint a házasokra.
- Gyerekes emberek körében kisebb az öngyilkossági arány.
- Az öngyilkossági ráta a protestánsoknál magasabb, mint a katolikusoknál vagy a zsidóknál. Ez annak köszönhető, hogy a katolikus országokban sokkal nagyobb a társadalmi integráltság, mint a protestánsoknál.
- Az öngyilkossági arány kimagasló a katonák körében.

Tétel

Annak a veszélye, hogy egyes emberekről mint elemzési egységekről fogalmazunk meg állításokat csoportokon végzett megfigyelések alapján.

Ökológiai tévkövetkeztetés

Egy légből kapott példa

A Turisztikai Kutató Központ adatai alapján Budapesten 2010-ben 2 millió turista fordult meg. A jelentés azt is tartalmazta, miszerint a Balatonnál ugyanezen évben 2,5 millió ember fordult meg.

Állítható-e a fentiek alapján, hogy...

- Budapest lakó kevésbé barátságos, mint a Balaton körül élő emberek?
- Budapesten kevesebb a látványosság, mint a Balaton környékén?
- a tó kedveltebb turista-célpont?
- a turisták szerint a Balatonnál jobb időzni, mint Budapesten?
- a Balaton környékén több turisztikai adót fizettek, mint a fővárosban?

Egyáltalán: mi mondható el a fenti adatsor alapján?

Változók és mérési szintek

Egy konkrét példa

Hány éves Ön?

- >18
- 19-24
- 25-30
- 31-40
- 41-100
- 100

Mutasd be a fenti példában a változót és annak attribútumait!

Változók és mérési szintek

Tipológia

A változók típusai

- Belső változók
 - Függő változó
 - kvalitatív változók
 - kvantitatív változók
 - Független változó
 - kvalitatív változók
 - kvantitatív változók

Küldő változók

- Kontroll-változó
- Egyéb változók

Hozz 1-1 példát a fentebbi típusokra!

Mérési szintek

Kvalitatív és kvantitatív változók

Kvalitatív változók:

- Nominális: egymást kizáró, a teljes válasz-univerzumot lefedő kategóriák
- Ordinális: u.a., mint fentebb + a kategóriák sorbarendezhetőek

	Nominális	Ordinális	Intervallum	Arány
Klasszifikáció	X	Χ	Χ	Х
Sorrend		Χ	X	Χ
Egyenlő távolságok			X	Χ
Nullpont				X

Kvantitatív változók:

- Intervallum: u.a., mint fentebb + a kategóriák egyenlő távolságra találhatóak
- Arány: u.a., mint fentebb + nullpont

Egy grafikus ábrázolás

ggplot(diamonds, aes(cut, price)) + geom_boxplot() + xlab('') + ylab('') +
scale_y_continuous(formatter="dollar") + theme_bw() + opts(title="53.940 diamonds")

Az adatbázis szerkezete

ggplot2/diamonds

Prices of 50,000 round cut diamonds

Description:

A dataset containing the prices and other attributes of almost 54,000 diamonds. The variables are as follows:

- price. price in US dollars (\\$326--\\$18,823)
- carat. weight of the diamond (0.2--5.01)
- cut. quality of the cut (Fair, Good, Very Good, Premium, Ideal)
- colour. diamond colour, from J (worst) to D (best)
- clarity. a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best))
- x. length in mm (0--10.74)
- y. width in mm (0--58.9)
- z. depth in mm (0--31.8)
- depth. total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43--79)
- table. width of top of diamond relative to widest point (43--95)

Egy grafikus ábrázolás

 $\label{eq:continuous} $$ ggplot(diamonds, aes(carat, price)) + geom_point() + geom_smooth() + ylab('') + scale_y_continuous(formatter="dollar") + theme_bw() + opts(title="53.940 diamonds") $$$

Egy grafikus ábrázolás

ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar() + ylab("N") +
theme_bw() + opts(title="53.940 diamonds")

Egy grafikus ábrázolás

ggplot(diamonds, aes(clarity)) + geom_bar() + ylab("N") + facet_wrap(\sim cut) + theme_bw() + opts(title="53.940 diamonds")

Egy grafikus ábrázolás

 $\label{eq:continuous} $$ ggplot(diamonds, aes(carat, price, color=clarity)) + geom_point() + ylab('') + scale_y_continuous(formatter="dollar") + theme_bw() + opts(title="53.940 diamonds") $$$

Egy grafikus ábrázolás

ggplot(diamonds, aes(carat, price, color=cut)) + geom_point() + ylab('') + facet_wrap(~ clarity,nr scale_v_continuous(formatter="dollar") + theme_bw() + opts(title="53.940 diamonds")

Egy grafikus ábrázolás

Online kutatást végeztünk az Interneten gyémántot árusító emberek között. A megkérdezettek a fentebbi válaszokat adták.

Mit gondolhatunk a kutatás érvényességéről és

A változók közötti kapcsolat lehetséges típusai

Lehetséges kapcsolat két változó között:

- együttjárás,
- korreláció.
- hamis/látszólagos összefüggés,
- hatás,
- a hatás iránya,
- okság.

Statisztikai szignifikáns...

A hatás iránya

 $\label{eq:ggplot} $$\gcd(diamonds, aes(color, price)) + \gcd(besides) + xlab('') + ylab('') + scale_y_continuous(formatter="dollar") + theme_bw() + opts(title="53.940 diamonds") $$$

Magas korreláció

A korrelációs együttható magas értéke nem cáfolható. És?

Korrelálatlan változók

Korreláció

Pozitív ("egyenes arányosság": R=1), negatív ("fordított arányosság": R=-1), lineáris, négyzetes ... és korrelálatlan (R=0) kapcsolat R: korrelációs együttható

A változók és attribútumaik

Teszt!

Milyen változók, milyen mérési szintek feleltethetőek meg az alábbi kérdéseknek/kijelentéseknek?

- Az idősebb emberek jobban félnek a bűnözőktől, mint a fiatalabbak.
- A gazdasági fejlődés valóban a várható életkor csökkenésével jár együtt?
- Melyik a legnagyobb magyar focidrukker csapat?
- Minél hosszabb az eljegyzés, annál hosszab a házasság.
- Mely foglalkozás bír a legnagyobb presztízzsel?

Attribútumok?

A kutatás főbb fázisai

Egy folyamatábra

It was a pleasure!

Daróczi Gergely daroczi.gergely@btk.ppke.hu