Chapter 8 Limit Theorems

Jingchen (Monika) Hu

Vassar College

MATH 241

Outline

1 Central limit theorem

The central limit theorem

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables, each having mean μ and variance σ^2 . Then the distribution of

$$\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

tends to the standard normal as $n \to \infty$.

In words, if the random variables have a finite mean μ and a finite variance σ^2 , then the distribution of the sum of the first n of them is, for large n, approximately that of a normal random variable with mean $n\mu$ and variance $n\sigma^2$

Applications of the CLT

Question

A person has 100 light bulbs whose lifetimes are independent exponentials with mean 5 hours. If the bulbs are used one at a time, with a failed bulb being replaced immediately by a new one. Suppose that it takes a random time, uniformly distributed over (0,.5), to replace a failed bulb. Approximate the probability that all bulbs have failed by time 550. Note that if $X \sim \operatorname{Exponential}(\lambda)$, then $E[X] = \frac{1}{\lambda}$ and $Var(X) = \frac{1}{\lambda^2}$.

ullet Let X_i be the lifetime of bulb i and R_i be the time to replace bulb i

- Let X_i be the lifetime of bulb i and R_i be the time to replace bulb i
- The desired probability is $P\{\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i \leq 550\}$
- What is the distribution of $\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i$?

- Let X_i be the lifetime of bulb i and R_i be the time to replace bulb i
- The desired probability is $P\{\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i \leq 550\}$
- What is the distribution of $\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i$?
- ullet Sum of two independent normal is normal with $\mu_1+\mu_2$ and $\sigma_1^2+\sigma_2^2$

- ullet Let X_i be the lifetime of bulb i and R_i be the time to replace bulb i
- \bullet The desired probability is $P\{\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i \leq 550\}$
- What is the distribution of $\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i$?
- ullet Sum of two independent normal is normal with $\mu_1+\mu_2$ and $\sigma_1^2+\sigma_2^2$
- Thus $\sum_{i=1}^{100} X_i + \sum_{i=1}^{99} R_i$ has mean $100 \times 5 + 99 \times .25 = 524.75$ and variance 2500 + 99/48 = 2502
- Then the desired probability is approximately equal to

$$P\{N(0,1) \le \frac{550 - 524.75}{\sqrt{2502}}\} = P\{N(0,1) \le .505\} = .693$$