The Time Value of Money

Five Elements

- Compound interest (interest on interest) (I/Y)
 - o Interest rate (Percentage) per compounding period
- Compounding periods (N)
- Present Value (PV)
- Annuity Payment (PMT)
- Future Value (FV)

Cash Flow

- Time Line
 - o Start time is 0, cash flow usually occurs at the **end** of a period
 - Singed Amount: Inflow (+), outflow (-)
- Compounding: PV -> FV
- Discounting: FV -> PV

Interest Rate Interpretation

- Compounding: Required rate of return 复利率
- Discounting: discounted rate 折现率
- Opportunity cost 机会成本
 - The value that investor forgone when consumption than saving

Interest Rate Composition/Premium

- Real risk-free rate 真实无风险利率
 - Theoretical rate on a single-period that have no inflation in it
- Nominal risk-free rate 名义无风险利率
 - Nominal risk-free rate = real risk-free rate + inflation rate/premium
 - o Inflation premium 通货膨胀溢价
- Types of Risks
 - o Default risk: 违约风险
 - o Liquidity risk: 流动性风险 liquid is better
 - o Maturity risk: 到期风险 long term more risk

Interest Compounding

- Stated/Quoted Annual interest rate: r 名义、挂牌年利率
- Compounding Frequency: m 复利频次
- Periodic interest rate: r/m 期间利率
- Effective Annual Rate (EAR) 有效年利率

○
$$\left(1+\frac{r}{m}\right)^m-1$$
 一年真实回报率

- Continuous Compounding 连续复利
 - o Effective annual rate (EAR): $e^r 1$
- Multiple Years 多期

- o Discrete compounding EAR: $\left(1 + \frac{r}{m}\right)^{m \times t} 1$ 多年利率
- \circ Continuously compounding EAR: $\mathbf{e^{r \times t}} \mathbf{1}$ 多年利率

PV and FV

- Simple Interest 单利
 - \circ $FV = PV \times (1 + r \times t)$
- Discrete Compounding 复利
 - $\circ \quad \mathit{FV} = \mathit{PV} \times \left(1 + \frac{r}{m}\right)^{m \times t}$
- **Continuous Compounding**
 - \circ $FV = PV \times e^{r \times t}$
- **Factor**
 - FV = PV * future value (interest) factor
 - PV = FV * present value (interest) factor
 - PV = FV * discount factor

Annuity 年金

- Annuity
 - o **Equal** cash flow that occurs at **equal** interval over a given **period**.
 - o Finite set of constant sequential cash flow
- Ordinary Annuity 普通年金
 - o Cash flow occurs at the **end** of each period
- Annuity Due 期初年金
 - o Cash flow occurs at the **beginning** of each period
 - 计算器里用 BEN 模式
- **Annuity Due vs Ordinary Due**
 - 多一次复利=少一次折现
 - o Annuity Due > Ordinary Due 恒大
 - $OFV_D = FV_O \times \left(1 + \frac{r}{m}\right)$ $OFV_D = PV_O \times \left(1 + \frac{r}{m}\right)$
- Perpetuity 永续年金
 - o Cash flow last forever: English Bond, Preferred dividend
 - $\circ PV = \frac{PMT}{\underline{r}}$

Unequal Cash Flow 非常规现金流

use cash flow mode. NPV

TVM Problem 时间价值问题

- **Beginning Cash Flow**
 - Cash flow occurs at the beginning
 - MUST use BEN mode to compute discount rate or number of compounding
- Loan Payment and Amortization 按揭贷款

- PMT = interest + principle
- o Interest = beginning balance (剩余本金) * r/m
- o Beginning balance at time=0 is PV
- Ending balance = beginning balance + interest PMT
 - = beginning balance * (1 + r/m) PMT
 - = beginning balance principle 本金的降低

TVM Calculator

- 2nd + FC -> Clear TVM
- 2nd + CPT -> Quit
- 2nd + BEG + 2nd + END -> END
- Keep P/Y = 1 fixed

Cash Flow Calculator

- 2nd + CF -> start cash flow
 - CF_0 initial at time=0
 - C01: payment at time=1
 - o F01: repeated time
- 2nd + CF + 2nd + CE | C -> Clear CF
- IRR + CPT -> IRR

Discounting Cash Flow Applications

NPV and IRR - Definition

- Net Present Value (NPV) 净现值
 - $\bigcirc \quad \mathsf{NPV} = \sum \frac{\mathsf{CF}_i}{(1+r)^n}$
 - o Costs: outflow, benefits: inflow
- Internal Rate of Return (IRR) 内部收益率
 - NPV=0 => IRR
 - o Problems: can have multiple IRRs or no IRR.

NPV and IRR - Reinvestment

- NPV
 - reinvestment at the cost of capital, reflect market-based opportunities of capital, more realistic
- IRR
 - o reinvestment at the required rate of return by **investor**, not realistic

NPV and IRR - Decision Rule

- NPV
 - NPV > 0 => accept
 - NPV < 0 => reject
 - Mutually exclusive project => higher positive NPV
- IRR
 - IRR > required rate => accept
 - IRR < required rate => reject

- Mutually exclusive project => higher IRR
- NPV and IRR conflicts
 - Select the one with highest NPV

Holding Period Return

Holding period return (HPR) 持有期收益率

$$\circ \quad HRP = \frac{P_2 - P_1 + D}{P_1}$$

- Return
 - o Price Appreciation 价格升值: $P_2 P_1$
 - o Cash Received 现金收益: D
- Total Return 总回报: $P_2 P_1 + D$

Multiple Period Return

- Methods
 - o Money-Weighted return: IRR
 - Time-weighted Return
 - geometric mean (If more than one year)

• HPR =
$$\sqrt[n]{(1 + \text{HPR}_1) \times (1 + \text{HPR}_2) \cdots (1 + \text{HRP}_n)} - 1$$

Simple compounding (less than one year)

• HPR =
$$(1 + HPR_1) \times (1 + HPR_2) \cdots (1 + HRP_n) - 1$$

- Comparison
 - Fund contributed before a poor performance: IRR < HPR
 - Fund contributed at a favourable time: IRR > HPR
- Practice
 - Most investment fund use HPR since it is not affected by timing of cash flow
 - o If fund manager has control over the cash flow timing, use IRR may be better

Other Measures

- Assumption
 - \circ Beginning price: P_1 (present value)
 - Ending price: P₂ (face value)
 - o Holding time: t
- **Holding Period Return**

$$\circ \quad HPR = \frac{P_2 - P_1}{P_1}$$

- **Bank Discount Yield (BDY)**
 - US T-bill quoted based on a discount on the face value

$$\bullet \quad BDY = \frac{P_2 - P_1}{P_2} \times \frac{360}{t}$$

- Discussion
 - Not a real yield
 - Use simple interest
 - Use 360 days
- Money Market Yield (MMY)

○ Money market quoted based on a return on the value
$$■ MMY = \frac{P_2 - P_1}{P_1} \times \frac{360}{t} = HPR \times \frac{360}{t}$$

- Discussion
 - Use simple interest
 - Use 360 days
- **DBY and MMY**
 - o Return P2 P1 = BDY \times P₂ = MMY \times P₁
- **Effective Annual Yield (EAY)**
 - Assume daily compounding

• EAY =
$$\frac{P_2^{\frac{365}{t}}}{P_1} - 1 = (1 + HPR)^{\frac{365}{t}} - 1$$

- Formula
 - Given annualized rate: EAY
 - **Effectively Daily Rate EDY and EAR**
 - 每天的回报 365 天复利是年回报
 - $(1 + EDY)^{365} = 1 + EAR$ (geometric compounding)
 - EDY = $(1 + EAY)^{\frac{1}{365}} 1$
 - Holding Period Return: $1 + HPR = (1 + EDY)^{t} = (1 + EAY)^{\frac{t}{365}}$
 - EAY = $(1 + HPR)^{\frac{365}{t}} 1$
- Discussion
 - Use compounding
 - Use 365 days
- **Bond Equivalent Yield (BEY)**
 - o BEY: twice the semi-annual bond, US bond usually quote using this

$$\blacksquare \quad \text{BEY} = 2 \times \left(\frac{P_2}{P_1} \frac{180}{t} - 1 \right)$$

- 利用 EAY 计算出半年的 Effective Semi-annually yield (ESY)
- EAY 是 ESY 的 2 次复利

$$\bullet \quad 1 + EAY = (1 + ESY)^2$$

•
$$BEY = 2 ESY = 2\sqrt[2]{1 + EAY} - 1$$

- o Detailed Formula
 - $(1 + EDY)^{180} = 1 + ESY$ (geometric compounding)

• EDY =
$$(1 + EAY)^{\frac{1}{180}} - 1$$

■
$$1 + HPR = (1 + EDY)^{t} = (1 + ESY)^{\frac{t}{180}}$$

■ ESY = $(1 + HPR)^{\frac{180}{t}} - 1$

• ESY =
$$(1 + HPR)^{\frac{180}{t}} - 1$$