13 Принцип рівномірної обмеженості

В цій лекції ми розглянемо види збіжності послідовностей лінійних неперервних операторів і з'ясуємо, коли простір $\mathcal{L}(E,F)$ є банаховим в розумінні тої чи іншої збіжності.

§13.1 Види збіжності послідовностей операторів

Означення 13.1. Послідовність операторів $\{A_n\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, **поточково збігається** до оператора A в просторі $\mathcal{L}(E,F)$ при $n\to\infty$, якщо $\forall x\in E$: $\lim_{n\to\infty}A_nx=Ax$.

Означення 13.2. Послідовність операторів $\{A_n\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, **рівномірно збігається** до оператора A в просторі $\mathcal{L}(E,F)$ при $n \to \infty$, якщо $\lim_{n \to \infty} \|A_n - A\| = 0$.

Зауваження 13.1 — Якщо $F = \mathbb{R}$, то простір $\mathcal{L}(E,\mathbb{R})$ є спряженим простором, поточкова збіжність є аналогом слабкої збіжності в спряженому просторі, а рівномірна збіжність є аналогом сильної збіжності в спряженому просторі.

Лема 13.1

Якщо послідовність лінійних обмежених операторів $A_n: E \to F$, де E, F нормовані простори, є такою, що послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є необмеженою, то послідовність $\{\|A_nx\|\}_{n=1}^{\infty}$ є необмеженою в будь-якій замкненій кулі.

Доведення. Припустимо супротивне: послідовність $\{\|A_n x\|\}_{n=1}^{\infty}$ є обмеженою в деякій замкненій кулі $\overline{S}(x_0,\varepsilon)$:

$$\exists (\overline{S}(x_0,\varepsilon), C > 0) : \forall n \in \mathbb{N} : \forall x \in \overline{(x_0,\varepsilon)} : ||A_n x||_F \le C.$$

Кожному елементу $\xi \in E$ поставимо у відповідність елемент $x = \frac{\varepsilon}{\|\xi\|_E} \xi + x_0$, якщо $\xi \neq 0$. Елементу $\xi = 0$ поставимо у відповідність елемент $x = x_0$.

$$\xi \neq 0 \implies \|x - x_0\|_E = \left\| \frac{\varepsilon}{\|\xi\|_E} \xi + x_0 - x_0 \right\|_E = \left\| \frac{\varepsilon}{\|\xi\|_E} \xi \right\|_E = \varepsilon.$$

Це означає, що для довільних $\xi \in E$ всі елементи $x \in \overline{S}(x_0, \varepsilon)$.

Оцінимо наступну величину (використовуючи допоміжну нерівність $||x|| - ||y|| \le ||x+y||$.

$$\left| \frac{\varepsilon}{\|\xi\|_E} \|A_n \xi\|_F - \|A_n x_0\|_F \right| \le \left\| \frac{\varepsilon}{\|\xi\|_E} A_n \xi + A_n x_0 \right\|_F = \left\| A_n \left(\frac{\varepsilon}{\|\xi\|_E} \xi + x_0 \right) \right\|_F \le C. \tag{13.1}$$

Отже,

$$\frac{\varepsilon}{\|\xi\|_E} \|A_n \xi\|_F - \|A_n x_0\|_F \le C.$$

Звідси випливає, що

$$||A_n\xi||_F \le \frac{C + ||A_nx_0||_F}{\varepsilon} ||\xi||_E \le \frac{2C}{\varepsilon} ||\xi||_E.$$

Отже,

$$\exists C_1 = \frac{2C}{\varepsilon} > 0 : \forall \xi \in E : ||A_n \xi||_E \le C_1 ||\xi||_E \implies ||A_n|| \le C_1.$$

Отримане протиріччя доводить лему.

Теорема 13.1 (Банаха—Штейнгауза)

Нехай послідовність лінійних обмежених операторів $\{A_n\}_{n=1}^{\infty}$, що відображають банахів простір E в нормований простір F, поточково збігається до оператора A при $n \to \infty$. Тоді послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є обмеженою, оператор A є лінійним і неперервним, а $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$ (тобто n не залежить від x).

Доведення. Припустимо, що послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є необмеженою. Тоді за лемою 13.1 послідовність $\{\|A_nx\|\}_{n=1}^{\infty}$ є необмеженою на довільній замкненій кулі $\overline{S}(x_0, \varepsilon_0)$. Отже,

$$\exists (n_1 \in \mathbb{N}, x_1 \in \overline{S}(x_0, \varepsilon_0) : ||A_{n_1}x_1||_F > 1.$$

Оскільки A_{n_1} — неперервний оператор,

$$\exists \overline{S}(x_1, \varepsilon_1) \subset \overline{S}(x_0, \varepsilon_0) : \forall x \in \overline{S}(x_1, \varepsilon_1) : ||A_{n_1}x||_F > 1.$$

На кулі $\overline{S}(x_1, \varepsilon_1)$ послідовність $\{\|A_n x\|_F\}_{n=1}^{\infty}$ також є необмеженою. Отже,

$$\exists \overline{S}(x_2, \varepsilon_2) \subset \overline{S}(x_1, \varepsilon_1) : \forall x \in \overline{S}(x_2, \varepsilon_2) : ||A_{n_2}x||_F > 2.$$

Нехай $A_{n_1}, A_{n_2}, \dots, A_{n_k}$ і x_1, x_2, \dots, x_k :

$$n_1 < n_2 < \dots < n_k$$
, $\overline{S}(x_0, \varepsilon_0) \supset \overline{S}(x_1, \varepsilon_1) \supset \dots \supset \overline{S}(x_k, \varepsilon_k)$.

Продовжуючи цей процес при $k \to \infty$, отримуємо послідовність вкладених замкнених куль, таких що

$$\forall x \in \overline{S}(x_k, \varepsilon_k) : ||A_{n_k}x||_F > k, \quad \varepsilon_k \to 0.$$

Оскільки E — повний простір, за принципом вкладених куль

$$\exists x^* \in \bigcap_{k=1}^{\infty} S(x_k, \varepsilon_k) : ||A_{n_k} x^*||_F \ge k, \quad \forall k \in \mathbb{N}.$$

Звідси випливає, що $\exists x^* \in E$ така, що послідовність $\{A_n x^*\}$ не збігається. Це суперечить умові теореми, згідно якої послідовність операторів $\{A_n x\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E.

Покажемо, що оператор A — лінійний. Оскільки

$$A_n(x+y) = A_n(x) + A_n(y), \quad A_n(\lambda x) = \lambda A_n(x),$$

маємо

$$A(x+y) = \lim_{n \to \infty} A_n(x+y) = \lim_{n \to \infty} A_n(x) + \lim_{n \to \infty} A_n(y) = Ax + Ay.$$
$$A(\lambda x) = \lim_{n \to \infty} A_n(\lambda x) = \lambda \lim_{n \to \infty} A_n(x) = \lambda Ax.$$

Крім того,

$$||A_n x||_F \le C ||x||_E \implies \lim_{n \to \infty} ||A_n x||_F = \left\| \lim_{n \to \infty} A_n x \right\|_F = ||Ax||_E \le C ||x||_E.$$

Отже, A — лінійний і обмежений, а значить, неперервний.

Нехай $K\subset E$ — компакт, $\varepsilon>0$. За теоремою Хаусдорфа існує скінчена $\frac{\varepsilon}{3C}$ -сітка M:

$$\forall x \in K : \exists x_{\alpha} \in M, \alpha \in A : ||x - x_{\alpha}||_{E} < \frac{\varepsilon}{3C},$$

де A — скінчена множина.

Оскільки послідовність $\{A_n x\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E, то вона збігається і в кожній точці сітки M:

$$\forall x_{\alpha} \in M : \exists n_{\alpha} : \forall n \ge n_{\alpha} : ||A_n x_{\alpha} - A x_{\alpha}||_F < \frac{\varepsilon}{3}.$$

Нехай $n_0 = \max_{\alpha \in A} n_\alpha$ (сітка M є скінченою, тому максимум існує). Тоді $\forall n \geq n_0$, $\forall x \in S\left(x_\alpha, \frac{\varepsilon}{3C}\right)$

$$\begin{aligned} \|A_n x - Ax\|_F &\leq \|A_n x - A_n x_\alpha + A_n x_\alpha - Ax_\alpha + Ax_\alpha - Ax\|_F \leq \\ \|A_n x - A_n x_\alpha\|_F + \|A_n x_\alpha - Ax_\alpha\|_F + \|Ax_\alpha - Ax\|_F < \\ C\|x - x_\alpha\|_F + \frac{\varepsilon}{3} + C\|x - x_\alpha\|_F = \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \end{aligned}$$

Отже, $\forall n \geq n_0, \ \forall x \in K \colon \|A_n x - A x\|_F < \varepsilon$, до того ж номер n_0 не залежить від точки x. Це означає, що $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$. \square

§13.2 Повнота простору лінійних неперервних операторів

З'ясуємо, коли простір $\mathcal{L}(E,F)$ є повним у розумінні рівномірної або точкової збіжності.

Теорема 13.2

Якщо нормований простір F — банахів, то $\mathcal{L}(E,F)$ — банахів у розумінні рівномірної збіжності.

Доведення. Нехай $\{A_n\}_{n=1}^{\infty}$ — фундаментальна послідовність операторів, тобто

$$||A_n - A_m|| \to 0, \quad n, m \to \infty.$$

Тоді $\forall x \in E$

$$||A_n x - A_m x|| \le ||A_n - A_m|| \cdot ||x|| \to 0, \quad n, m \to \infty.$$

Для кожного фіксованого $x \in E$ послідовність $\{A_n x\}$ є фундаментальною в F. Оскільки простір F є повним за умовою теореми, то послідовність $\{A_n x\}$ збігається

до певного елемента $y \in F$. Позначимо $\lim_{n\to\infty} A_n x$. Отже, ми визначили відображення $A: E \to F$. Його лінійність випливає із властивостей границі. Покажемо його обмеженість: $\{\|A_n\|\}$ фундаментальна в \mathbb{R} , адже

$$|||A_n|| - ||A_m||| \le ||A_n - A_m|| \to 0, \quad n, m \to \infty,$$

а отже $\{\|A_n\|\}$ обмежена в \mathbb{R} , тобто

$$\exists C : \forall n \in \mathbb{N} : ||A_n|| < C.$$

Отже,

$$||A_n x|| \le ||A_n|| \cdot ||x|| \le C||x||.$$

Внаслідок неперервності норми, маємо

$$||Ax|| \lim_{n \to \infty} ||A_n x|| \le C||x||.$$

Покажемо, що A_n рівномірно збігається до A в просторі $\mathcal{L}(E,F)$. Задамо $\varepsilon > 0$ і виберемо n_0 так, щоб $||A_{n+p}x - A_nx|| < \varepsilon$ для $n \ge n_0, \ p > 0$ і для будь-якого $x: ||x|| \le 1$. Нехай $p \to \infty$. Тоді

$$\forall n \ge n_0, x : ||x|| \le 1 : ||Ax - A_n x|| < \varepsilon,$$

звдки

$$||A_n - A|| = \sup_{\|x\| \le 1} ||(A_n - A)x|| \le \varepsilon,$$

а тому $A = \lim_{n \to \infty} A_n$ в розумінні рівномірної збіжності.

Отже, $\mathcal{L}(E, F)$ є банаховим.

Теорема 13.3

Якщо нормовані просторі E і F — банахові, то $\mathcal{L}(E,F)$ — банахів у розумінні поточкової збіжності.

Доведення. Розглянемо точку $x \in E$ і фундаментальну у розумінні поточкової збіжності послідовність $\{A_n\}_{n=1}^{\infty}$.

Оскільки F — банахів простір, то існує елемент $y = \lim_{n\to\infty} A_n x$. Таким чином, визначений оператор $A: E\to F$, такий що y=Ax. Лінійність цього оператора випливає із лінійності границі, а обмеженість — із теореми Банаха-Штейнгауза:

$$||Ax|| = \left\| \lim_{n \to \infty} A_n x \right\| \le \lim_{n \to \infty} ||A_n|| \cdot ||x|| = C||x||.$$

§13.3 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 96–102).
- [2] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 576-578).