36700 – Probability and Mathematical Statistics

Spring 2019

Homework 5

Due Friday, March 1st at 12:40 PM

All homework assignments shall be uploaded using Gradescope through the Canvas portal). Late submissions are not allowed.

- 1. Let $X_1,...X_n \stackrel{iid}{\sim} U(\theta,1)$, where $\theta \in (\infty,1)$ is an unknown parameter. In the last homework assignment we found the MLE of θ . Let $\hat{\theta}_n$ be the MLE. Is $\hat{\theta}_n$ asymptotically normal? If yes, find the asymptotic mean and variance. Otherwise, find a sequence r_n and a_n such that $r_n(\hat{\theta}_n a_n)$ converges in distribution to a non-degenerate (not point mass) distribution.
- 2. Let X be a random variable (potentially multi-dimensional) with density function $f(\theta;x)$ where $\theta \in \mathbb{R}^1$ is a parameter. Assume that $L(\theta;x) = f(\theta;x)$ is a smooth function of θ (smooth enough such that all the continuity and differentiability involved in the score function and Fisher information are satisfied). Let $T(X) \in \mathbb{R}^1$ be a function of X. Let $\phi(\theta) = \mathbb{E}_{\theta}T(X)$. Assume that $\phi(\theta)$ is differentiable and $\operatorname{Var}_{\theta}(T(X)) < \infty$ for all θ . Prove that

 $\mathbb{E}_{\theta} \left[\dot{\ell}(\theta; X) T(X) \right] = \phi'(\theta) .$

3. In the same context as the previous problem, assume in addition that $\mathbb{E}_{\theta}(T(X)) = \theta$ (in other words, T(X) is an unbiased estimator of θ). Prove the **Cramer-Rao Lower Bound**

$$\operatorname{Var}_{\theta}(T(X)) \ge \frac{1}{\operatorname{Var}_{\theta}(\dot{\ell}(\theta; X))} = \frac{1}{I(\theta)}.$$

- 4. (This problem is worth 10 points) Let $X_1, ..., X_n$ be iid samples from $N(\mu, \sigma^2)$. Now (μ, σ^2) is a two-dimensional parameter. (It is indeed easier to view σ^2 , not σ , as the parameter). Use notation $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2)$.
 - (a) Derive $\hat{\theta}_n$, the MLE of $\theta = (\theta_1, \theta_2)$.
 - (b) Now the score function is a two-dimensional vector-valued function:

$$\dot{\ell}(\theta; X_i) = \nabla_{\theta} \ell(\theta; X_i) = \begin{bmatrix} \frac{\partial \log f(\theta; X_i)}{\partial \theta_1} \\ \frac{\partial \log f(\theta; X_i)}{\partial \theta_2} \end{bmatrix}.$$

In this case the Fisher information becomes a matrix

$$I_1(\theta) = \mathbb{E}_{\theta} \left[(\nabla_{\theta} \ell) (\nabla_{\theta} \ell)^T \right] = -\mathbb{E}_{\theta} \nabla_{\theta}^2 \ell$$

where $\nabla_{\theta}^{2}\ell$ is the Hessian matrix of $\ell(\theta; X_{i})$, viewed as a function of θ . Find $I_{1}(\theta)$ for the normal distribution.

- (c) Find the limiting distribution of $\sqrt{n}(\hat{\theta}_n \theta)$. You can directly use asymptotic normality of MLE.
- (d) The quantity $\eta = \frac{\mu}{\sigma}$ is called the **coefficient of variation**. Find $\hat{\eta}_n$, the MLE of η , and the limiting distribution of $\sqrt{n}(\hat{\eta}_n \eta)$.
- 5. Let $X_1, ..., X_n$ be iid samples from a common distribution. Let $\mu = \mathbb{E}X_1$ and $\sigma^2 = \text{Var}(X_1)$, both finite. The MoM estimates of μ and σ^2 are

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad \hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2.$$

(a) Use multivariate CLT and results in homework 3 (e.g., continuous mapping and/or Slutsky's theorem) to derive the limiting distribution of

$$\sqrt{n} \left[\begin{array}{c} \hat{\mu}_n - \mu \\ \hat{\sigma}_n^2 - \sigma^2 \end{array} \right] .$$

Do you need any additional assumptions for this result to hold?

- (b) Compare the result in part (a) to part (c) of the previous problem.
- (c) Find the limiting distribution of

$$\sqrt{n} \left(\frac{\hat{\mu}_n}{\hat{\sigma}_n} - \frac{\mu}{\sigma} \right) ,$$

and compare with the previous problem.

Optional problem. (This problem is not conceptually hard. But the derivation requires some careful book keeping.) Let $(X_1, Y_1), ..., (X_n, Y_n)$ be iid pairs from a joint distribution on \mathbb{R}^2 . Assume that $Var(X_1)$ and $Var(Y_1)$ are both finite. Find an estimate of the correlation coefficient and prove asymptotic normality.