

Gonçalo Figueira — goncalo.figueira@tecnico.ulisboa.pt Complexo Interdisciplinar, ext. 3375 Tel. 218 419 375

1.° semestre 2019/20

Instrumentos ópticos: Objectivos

Desenhar, montar e testar no laboratório montagens ou sistemas ópticos compostos com duas lentes delgadas:

- Microscópio
- Telescópio

Aprender a alinhar e utilizar um goniómetro de Babinet

- Medir a refracção de um prisma
- Medir os ângulos de desvio de uma rede de difracção

O olho humano

Lupa

- Uma só lente convergente: permite aumentar o tamanho aparente
- Objecto colocado próximo da lente, antes do foco ($d_O < f$)
- Imagem é virtual, ampliada e direita

Microscópio composto

Sistema composto por duas lentes convergentes

Objecto: próximo da primeira lente, para lá do foco ($d_{\rm O} > f$)

Imagem: aumentada e virtual

Telescópio

Sistema composto por duas lentes convergentes

Aprox. separadas de $f_{obj} + f_{ocu}$, com $f_{obj} > \overline{f_{ocu}}$

Objecto: no "infinito"; Imagem: aumentada e virtual

Sistema de duas lentes

Objectiva = lente virada para o objecto
Cria uma imagem intermédia (real)
Ocular = lente virada para o observador (olho)
Amplia a imagem intermédia, criando uma imagem virtual

Sistema de duas lentes

Objectiva = lente virada para o objecto
Cria uma imagem intermédia (real)
Ocular = lente virada para o observador (olho)
Amplia a imagem intermédia, criando uma imagem virtual

Sistema de duas lentes: equações dos focos conjugados

Lente 1

$$\frac{1}{f_1} = \frac{1}{d_{O1}} + \frac{1}{d_{I1}}$$

Lente 2

$$\frac{1}{f_2} = \frac{1}{d_{O2}} + \frac{1}{d_{I2}}$$

Distância L1 – L2

$$D = d_{I1} + d_{O2}$$

Goniómetro

Instrumento para medir **ângulos** com grande precisão (0,5' de grau)

- medição das faces de cristais e vidros
- medição do desvio de prismas e redes de difracção

Goniómetro

Desvio angular de um prisma

Depende do comprimento de onda, mas também do ângulo de incidência

Rede de difracção

$\sin \theta_i + \sin \theta_d = \lambda N$

 λ c.d.o. em mm (ex: 0.5·10⁻³ mm)

N núm. linhas por mm (ex: 600 l/mm)

Linhas espectrais

Sugestões

Faça exercícios com traçado de raios para as diversas combinações:

- Lentes convergentes e divergentes
- Objectos reais e virtuais
- Objectos em diversas posições relativamente ao foco

Leia o Guia da Experiência e procure compreender o cálculo das ampliações e posições das imagens

Para uma lâmpada de hélio e outra de mercúrio: calcule os ângulos de desvio das principais riscas espectrais (rede de 600 linhas/mm)