

MedFakeDetect: Medical Misinformation Detection

Student: Sara Mangistu

PROBLEM STATEMENT

vaccinate misinformation facts preventation hydrox hydrox

Motivation

- Health-related misinformation spreads rapidly on social media distorting public understanding of medical facts.
 - False or misleading claims about treatments or disease prevention often appear persuasive yet lack scientific basis. Such content undermines trust in healthcare, contributes to delayed or inappropriate treatment, and poses a real risk to individual and public health.
- Goal: Automatically detect and classify medical claims from online platforms as either true or false, supporting efforts to reduce public exposure to harmful misinformation.

Problem Definition

- Input: Social media post/claim
- Output: classification of the post/claim as real or fake

NLP Tasks

Binary text classification

Why is it difficult?

- Diverse formats (short tweets vs. formal claims)
- Complex, noisy text (slang, hashtags, emotions) varies across platforms.
- claims can be partially true, misleading, or lacking context
- Requires contextual medical understanding

TRAINING AND TEST DATA

Data type and labels

Labeled text samples: true/false labels

Datasets

- COVID19 Fake News Dataset NLP (Kaggle,).
 social-media platforms (Twitter, Facebook,
 Instagram...)
- PUBHEALTH-DATASET (Kaggle,).
 Claims related to a range of health topics
- Misinformation-Detection (Github, ?).
 Detect Health Misinformation
- All datasets filtered to retain only binarylabeled examples.
- Expected dataset size (TBD): (20,007, 2)

Post/claim	label
Lemons Kill Cancer Cells Better Than Chemotherapy	Fake
Tai Chi Reported to Ease Fibromyalgia	Real
The coronavirus outbreak is caused by 5G technology	Fake

EVALUATION

Evaluation strategy

- Train/Test split: 80% train, 20% test
- Separate evaluation per dataset. Compare model performance across domains

Evaluation Metrics

- Accuracy (Overall performance)
- Precision/Recall/F1-score
- Confusion Matrix (Error analysis)

Models

- Baseline: Naïve Bayes / Logistic Regression
- Advanced: Fine-tuned BERT
- Domain-specific: BioBERT