数季电路与逻辑设计

Digital circuit and logic design

● 第一章 基本知识

主讲教师 于俊清

■提纲

数字信号与系统

数制及其转换

带符号二进制数的代码表示

几种常用的编码

|问题

还有更合理的表示方法吗?

■ 常用机器码

机器码

模的概念

"模"是指一个计量系统的计数范围

- ₩ 如时钟的计量范围是0~11,模=12
- 计算机也可以看成一个计量系统,它也有一个计量范围,即都存在一个"模"
 - ₹ 表示n位的计算机计量范围是0~2°-1,模=2°
- "模"实质上是计量系统产生"溢出"的量,它的值在计量系统上表示不出来,计量系统上只能表示出模的余数
- 任何有模的计量系统,均可化减法为加法运算

• 补码的特征

标准时间3点整,有一只表的当前时间为11点,如何校准时间?

方法一:

顺时针转4个小时

方法二:

逆时针转8个小时

▶ 补码的特征

结论:两种方法是等效的,这种关系记作:

 $-8=4 \pmod{12}$

含义:-8与4对模12是互补的,或者说以12

为模时-8的补码为4

模(或称模数):一个计量系统的范围,记作mod或M

同理,模为12时,-2的补码是10,-5的补码是7

• 补码表示法

整数补码的定义

$$[X]_{n+1} = \begin{cases} X & 0 \le X < 2^n \\ 2^{n+1} + X & -2^n < X \le 0 \end{cases}$$

小数补码的定义

$$[X]_{\uparrow \mid } = \begin{cases} X & 0 \le X < 1 \\ 2 + X & -1 < X \le 0 \end{cases}$$

补码表示法

符号位与原码相同

负数的补码的符号位为1,数值位为其反码的末位加1

例如:[-1010]_补=[-1010]_反+1=10101+1=10110

对于0,在补码中的定义下只有一种表示形式:

$$[+0.00...0]_{\dot{\uparrow}\dot{\uparrow}} = [-0.00...0]_{\dot{\uparrow}\dot{\uparrow}} = 0.00...0$$

• 补码的意义

求补码举例

- **营** 若X =-0.1010, 则[X]_补=2-0.1010=1.0110
- 若X = -1010, 则[X]_补= 2^5-1010 = 10000-1010=10110

带符号数的原码、反码和补码表示

	原码	反码	补码		原码	反码	补码
+0	0000	0000	0000	-0	1000	1111	0000
+1	0001	0001	0001	-1	1001	1110	1111
+2	0010	0010	0010	-2	1010	1101	1110
+3	0011	0011	0011	-3	1011	1100	1101
+4	0100	0100	0100	-4	1100	1011	1100
+5	0101	0101	0101	-5	1101	1010	1011
+6	0110	0110	0110	-6	1110	1001	1010
+7	0111	0111	0111	-7	1111	1000	1001

求补码?

$$[X]_{\lambda} = 0.11111111$$

$$X = -0.111111111, [X]_{\lambda} = ?$$

$$[X]_{h} = 1.000000000 + 0.00000001 = 1.00000001$$

$$X = -0.10101001, [X]_{\lambda} = ?$$

$$[X]_{k} = 1.01010110 + 0.00000001 = 1.01010111$$

■ 负数的补码加法

假设字长为8bits

十进制运算: $(-1)_{10}+(-1)_{10}=(-2)_{10}$

二进制运算

$$(-1)_{10} + (-1)_{10}$$

 $=(10000001)_{\text{原码}}+(10000001)_{\text{原码}}$

 $=(111111111)_{i \mapsto i}+(111111111)_{i \mapsto i}$

= (1111111110) 补码

= (111111110) 計码=(-2) 10

符号位进位直接丢掉

• 补码的减法

十进制运算:(1)10-(2)10=(-1)10

二进制运算

$$(1)_{10}$$
 - $(2)_{10}$

$$= (1)_{10} + (-2)_{10}$$

$$= (-1)_{10}$$

正确

• 补码的减法

十进制运算:(1)10-(1)10=(0)10

二进制运算

$$(1)_{10}$$
- $(1)_{10}$

$$= (1)_{10} + (-1)_{10}$$

- = (00000001)原码+(10000001)原码
- = (00000001) 計码+(11111111) 計码
- = (100000000) 計码

合理

■ 常用机器码

机器码

机器数的应用

- 12 目前计算机中广泛采用补码表示
- 少数机器采用原码进行存储和传输, 计算时用补码表示

机器码的求法对比

机器码 真值为正数		真值为负数		
原码	符号位为0,等于真值	符号为1,等于真值		
反码	符号位为0,等于真值	符号为1,逐位取反		
补码	符号位为0,等于真值	符号为1,逐位取反,末位加1		

机器码的求法对比

真 值	+10001111	-10001111	+0.10011111	-0.10001111
原 码	0 10011111	1 10011111	0.10011111	1.10011111
反 码	010011111	101100000	0 .10011111	1.01100000
补 码	010011111	101100001	0.10011111	1.01100001

三种表示方法均有符号位和数值位两部分,符号位都是用1表示"负",用 0表示"正",而数值位各不相同

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

