Bài tập Bài 5.1 PP Bình phương tối thiểu rời rạc

1. Compute the linear least squares polynomial for the data of Example 2.

Example 2 Fit the data in Table 8.3 with the discrete least squares polynomial of degree at most 2.

Solution For this problem, n = 2, m = 5, and the three normal equations are

```
2.5a_1 + 1.875a_2 = 8.7680,
Table 8.3
                                                      2.5a_0 + 1.875a_1 + 1.5625a_2 = 5.4514,
    x_i
            y_i
                                                    1.875a_0 + 1.5625a_1 + 1.3828a_2 = 4.4015.
1
     0
           1.0000
2
  0.25
          1.2840
                                 To solve this system using Maple, we first define the equations
3
  0.50
          1.6487
   0.75
          2.1170
                             eq1 := 5a0 + 2.5a1 + 1.875a2 = 8.7680:
    1.00
          2.7183
                             eq2 := 2.5a0 + 1.875a1 + 1.5625a2 = 5.4514:
                             eq3 := 1.875a0 + 1.5625a1 + 1.3828a2 = 4.4015
                             and then solve the system with
                             solve(\{eq1, eq2, eq3\}, \{a0, a1, a2\})
                             This gives
                                        {a_0 = 1.005075519, \quad a_1 = 0.8646758482, \quad a_2 = .8431641518}
```

2. Compute the least squares polynomial of degree 2 for the data of Example 1, and compare the total error *E* for the two polynomials.

Table 8.1

x_i	y_i	x_i	y_i
1	1.3	6	8.8
2	3.5	7	10.1
3	4.2	8	12.5
4	5.0	9	13.0
5	7.0	10	15.6

2	3.5
3	4.2
4	5
5	7
6	8.8
7	10.1
8	12.5
9	13
10	15.6

Example 1 Find the least squares line approximating the data in Table 8.1.

Solution We first extend the table to include x_i^2 and x_iy_i and sum the columns. This is shown in Table 8.2.

Table 8.2

x_i	y_i	x_i^2	$x_i y_i$	$P(x_i) = 1.538x_i - 0.360$
1	1.3	1	1.3	1.18
2	3.5	4	7.0	2.72
3	4.2	9	12.6	4.25
4	5.0	16	20.0	5.79
5	7.0	25	35.0	7.33
6	8.8	36	52.8	8.87
7	10.1	49	70.7	10.41
8	12.5	64	100.0	11.94
9	13.0	81	117.0	13.48
10	15.6	100	156.0	15.02
55	81.0	385	572.4	$E = \sum_{i=1}^{10} (y_i - P(x_i))^2 \approx 2.34$

3. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute the error *E* in each case. Graph the data and the polynomials.

x_i	1.0	1.1	1.3	1.5	1.9	2.1
y_i	1.84	1.96	2.21	2.45	2.94	3.18

4. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute the error *E* in each case. Graph the data and the polynomials.

x_i	0	0.15	0.31	0.5	0.6	0.75
y_i	1.0	1.004	1.031	1.117	1.223	1.422

5. Given the data:

x_i	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
y_i	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.50	326.72

- a. Construct the least squares polynomial of degree 1, and compute the error.
- **b.** Construct the least squares polynomial of degree 2, and compute the error.
- **c.** Construct the least squares polynomial of degree 3, and compute the error.
- **d.** Construct the least squares approximation of the form be^{ax} , and compute the error.
- **e.** Construct the least squares approximation of the form bx^a , and compute the error.
- **6.** Repeat Exercise 5 for the following data.

x_i	0.2	0.3	0.6	0.9	1.1	1.3	1.4	1.6
y_i	0.050446	0.098426	0.33277	0.72660	1.0972	1.5697	1.8487	2.5015

7. In the lead example of this chapter, an experiment was described to determine the spring constant *k* in Hooke's law:

$$F(l) = k(l - E).$$

The function F is the force required to stretch the spring l units, where the constant E = 5.3 in. is the length of the unstretched spring.

a. Suppose measurements are made of the length l, in inches, for applied weights F(l), in pounds, as given in the following table.

F(l)	1
2	7.0
4	9.4
6	12.3

Find the least squares approximation for k.

b. Additional measurements are made, giving more data:

F(l)	l
3	8.3
5	11.3
8	14.4
10	15.9

Compute the new least squares approximation for k. Which of (a) or (b) best fits the total experimental data?

8. The following list contains homework grades and the final-examination grades for 30 numerical analysis students. Find the equation of the least squares line for this data, and use this line to determine the homework grade required to predict minimal A (90%) and D (60%) grades on the final.

Homework	Final	Homework	Final
302	45	323	83
325	72	337	99
285	54	337	70
339	54	304	62
334	79	319	66
322	65	234	51
331	99	337	53
279	63	351	100
316	65	339	67
347	99	343	83
343	83	314	42
290	74	344	79
326	76	185	59
233	57	340	75
254	45	316	45

9. The following table lists the college grade-point averages of 20 mathematics and computer science majors, together with the scores that these students received on the mathematics portion of the ACT (American College Testing Program) test while in high school. Plot these data, and find the equation of the least squares line for this data.

ACT score	Grade-point average	ACT score	Grade-point average
28	3.84	29	3.75
25	3.21	28	3.65
28	3.23	27	3.87
27	3.63	29	3.75
28	3.75	21	1.66
33	3.20	28	3.12
28	3.41	28	2.96
29	3.38	26	2.92
23	3.53	30	3.10
27	2.03	24	2.81

10. The following set of data, presented to the Senate Antitrust Subcommittee, shows the comparative crash-survivability characteristics of cars in various classes. Find the least squares line that approximates these data. (The table shows the percent of accident-involved vehicles in which the most severe injury was fatal or serious.)

Туре	Average Weight	Percent Occurrence
Domestic luxury regular	4800 lb	3.1
2. Domestic intermediate regular	3700 lb	4.0
3. Domestic economy regular	3400 lb	5.2
4. Domestic compact	2800 lb	6.4
5. Foreign compact	1900 lb	9.6

11. To determine a relationship between the number of fish and the number of species of fish in samples taken for a portion of the Great Barrier Reef, P. Sale and R. Dybdahl [SD] fit a linear least squares polynomial to the following collection of data, which were collected in samples over a 2-year period. Let x be the number of fish in the sample and y be the number of species in the sample.

x	y	x	y	x	y
13	11	29	12	60	14
15	10	30	14	62	21
16	11	31	16	64	21
21	12	36	17	70	24
22	12	40	13	72	17
23	13	42	14	100	23
25	13	55	22	130	34

Determine the linear least squares polynomial for these data.

12. To determine a functional relationship between the attenuation coefficient and the thickness of a sample of taconite, V. P. Singh [Si] fits a collection of data by using a linear least squares polynomial. The following collection of data is taken from a graph in that paper. Find the linear least squares polynomial fitting these data.

Thickness (cm)	Attenuation coefficient (dB/cm)				
0.040	26.5				
0.041	28.1				
0.055	25.2				
0.056	26.0				
0.062	24.0				
0.071	25.0				
0.071	26.4				
0.078	27.2				
0.082	25.6				
0.090	25.0				
0.092	26.8				
0.100	24.8				
0.105	27.0				
0.120	25.0				
0.123	27.3				
0.130	26.9				
0.140	26.2				

- 13. In a paper dealing with the efficiency of energy utilization of the larvae of the modest sphinx moth (*Pachysphinx modesta*), L. Schroeder [Schr1] used the following data to determine a relation between W, the live weight of the larvae in grams, and R, the oxygen consumption of the larvae in milliliters/hour. For biological reasons, it is assumed that a relationship in the form of $R = bW^a$ exists between W and R.
 - a. Find the logarithmic linear least squares polynomial by using

$$\ln R = \ln b + a \ln W.$$

b. Compute the error associated with the approximation in part (a):

$$E = \sum_{i=1}^{37} (R_i - bW_i^a)^2.$$

- **c.** Modify the logarithmic least squares equation in part (a) by adding the quadratic term $c(\ln W_i)^2$, and determine the logarithmic quadratic least squares polynomial.
- **d.** Determine the formula for and compute the error associated with the approximation in part (c).

X=lnx, Y=lny, xấp xỉ bậc nhất của Y theo X w=lnW, r=lnR

W	R	W	R	W	R	W	R	W	R
0.017	0.154	0.025	0.23	0.020	0.181	0.020	0.180	0.025	0.234
0.087	0.296	0.111	0.357	0.085	0.260	0.119	0.299	0.233	0.537
0.174	0.363	0.211	0.366	0.171	0.334	0.210	0.428	0.783	1.47
1.11	0.531	0.999	0.771	1.29	0.87	1.32	1.15	1.35	2.48
1.74	2.23	3.02	2.01	3.04	3.59	3.34	2.83	1.69	1.44
4.09	3.58	4.28	3.28	4.29	3.40	5.48	4.15	2.75	1.84
5.45	3.52	4.58	2.96	5.30	3.88			4.83	4.66
5.96	2.40	4.68	5.10					5.53	6.94

W	R		
0.017	0.154		
0.087	0.296		
0.174	0.363		
1.11	0.531		
1.74	2.23		
4.09	3.58		
5.45	3.52		
5.96	2.40		

14. Show that the normal equations (8.3) resulting from discrete least squares approximation yield a symmetric and nonsingular matrix and hence have a unique solution. [Hint: Let $A = (a_{ij})$, where

$$a_{ij} = \sum_{k=1}^{m} x_k^{i+j-2}$$

and $x_1, x_2, ..., x_m$ are distinct with n < m - 1. Suppose A is singular and that $\mathbf{c} \neq \mathbf{0}$ is such that $\mathbf{c}^t A \mathbf{c} = 0$. Show that the *n*th-degree polynomial whose coefficients are the coordinates of \mathbf{c} has more than n roots, and use this to establish a contradiction.]