Day 11 | Mean & Median imputation

Import Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

Import sklearn Libraries

```
In [3]: from sklearn.model_selection import train_test_split
    from sklearn.impute import SimpleImputer
    from sklearn.compose import ColumnTransformer
```

Import Dataset

```
In [4]: df = pd.read_csv('titanic_toy.csv')
```

In [10]: df

Out[10]:

	Age	Fare	Family	Survived
0	22.0	7.2500	1	0
1	38.0	71.2833	1	1
2	26.0	7.9250	0	1
3	35.0	53.1000	1	1
4	35.0	8.0500	0	0
886	27.0	13.0000	0	0
887	19.0	30.0000	0	1
888	NaN	23.4500	3	0
889	26.0	NaN	0	1
890	32.0	7.7500	0	0

891 rows × 4 columns

```
In [9]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- 0 Age 714 non-null float64
1 Fare 846 non-null float64
2 Family 891 non-null int64
3 Survived 891 non-null int64
dtypes: float64(2), int64(2)
memory usage: 28.0 KB
```

Perform Train Test Split

```
In [11]: | X = df.drop(columns=['Survived'])
         y = df['Survived']
In [12]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=2)
In [13]: X_train.shape, X_test.shape
Out[13]: ((712, 3), (179, 3))
In [14]: X_train.isnull().mean()
Out[14]: Age
                   0.207865
         Fare
                   0.050562
         Family
                   0.000000
         dtype: float64
```

Calculate Mean and Median (Age | Fare)

```
In [15]: mean_age = X_train['Age'].mean()
         median_age = X_train['Age'].median()
         mean_fare = X_train['Fare'].mean()
         median_fare = X_train['Fare'].median()
```

Create new column & impute missing values

```
In [17]: X_train['Age_median'] = X_train['Age'].fillna(median_age)
         X_train['Age_mean'] = X_train['Age'].fillna(mean_age)
         X_train['Fare_median'] = X_train['Fare'].fillna(median_fare)
         X_train['Fare_mean'] = X_train['Fare'].fillna(mean_fare
In [18]: X_train.sample(8)
```

	Age	Fare	Family	Age_median	Age_mean	Fare_median	Fare_mean
255	29.0	15.2458	2	29.00	29.000000	15.2458	15.245800
420	NaN	7.8958	0	28.75	29.785904	7.8958	7.895800
673	31.0	NaN	0	31.00	31.000000	14.4583	32.617597
761	41.0	7.1250	0	41.00	41.000000	7.1250	7.125000
82	NaN	NaN	0	28.75	29.785904	14.4583	32.617597
269	35.0	135.6333	0	35.00	35.000000	135.6333	135.633300
254	41.0	20.2125	2	41.00	41.000000	20.2125	20.212500
440	45.0	26.2500	2	45.00	45.000000	26.2500	26.250000

Review Variance

Out[18]:

```
In [19]: print('Original Age variable variance: ', X_train['Age'].var())
    print('Age Variance after median imputation: ', X_train['Age_median'].var())
    print('Age Variance after mean imputation: ', X_train['Age_mean'].var())
    print('Original Fare variable variance: ', X_train['Fare'].var())
    print('Fare Variance after median imputation: ', X_train['Fare_median'].var())
    print('Fare Variance after mean imputation: ', X_train['Fare_mean'].var())
```

Original Age variable variance: 204.3495133904614

Age Variance after median imputation: 161.9895663346054

Age Variance after mean imputation: 161.81262452718673

Original Fare variable variance: 2448.197913706318

Fare Variance after median imputation: 2340.0910219753637

Fare Variance after mean imputation: 2324.2385256705547

Changes in Distribution in Age

```
In [20]: fig = plt.figure()
    ax = fig.add_subplot(111)
    # original variable distribution
    X_train['Age'].plot(kind='kde', ax=ax)
    # variable imputed with the median
    X_train['Age_median'].plot(kind='kde', ax=ax, color='red')
    # variable imputed with the mean
    X_train['Age_mean'].plot(kind='kde', ax=ax, color='green')
    # add Legends
    lines, labels = ax.get_legend_handles_labels()
    ax.legend(lines, labels, loc='best')
```

Out[20]: <matplotlib.legend.Legend at 0x2bca7545e90>

Changes in Distribution in Fare

```
In [21]: fig = plt.figure()
    ax = fig.add_subplot(111)
# original variable distribution
X_train['Fare'].plot(kind='kde', ax=ax)
# variable imputed with the median

X_train['Fare_median'].plot(kind='kde', ax=ax, color='red')
# variable imputed with the mean
X_train['Fare_mean'].plot(kind='kde', ax=ax, color='green')
# add legends
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')
```

Out[21]: <matplotlib.legend.Legend at 0x2bca45f4490>

Check Covariance

In [22]: X_train.cov() Out[22]: **Fare** Age_median Age Family Age_mean Fare_median Fare_mean 204.349513 70.719262 -6.498901 204.349513 204.349513 64.858859 66.665205 Age 70.719262 2448.197914 17.258917 55.603719 2448.197914 **Fare** 57.957599 2448.197914 **Family** -6.498901 17.258917 2.735252 -5.112563 -5.146106 16.476305 16.385048 Age_median 204.349513 57.957599 -5.112563 161.989566 161.812625 53.553455 55.023037 204.349513 55.603719 -5.146106 161.812625 161.812625 51.358000 52.788341 Age_mean Fare_median 64.858859 2448.197914 16.476305 53.553455 51.358000 2340.091022 2324.238526 55.023037 2324.238526 Fare_mean 66.665205 2448.197914 16.385048 52.788341 2324.238526

Check Correlation

Out[24]:		Age	Fare	Family	Age_median	Age_mean	Fare_median	Fare_mean
	Age	1.000000	0.092644	-0.299113	1.000000	1.000000	0.087356	0.090156
	Fare	0.092644	1.000000	0.208268	0.091757	0.088069	1.000000	1.000000
	Family	-0.299113	0.208268	1.000000	-0.242883	-0.244610	0.205942	0.205499
	Age_median	1.000000	0.091757	-0.242883	1.000000	0.999454	0.086982	0.089673
	Age_mean	1.000000	0.088069	-0.244610	0.999454	1.000000	0.083461	0.086078
	Fare_median	0.087356	1.000000	0.205942	0.086982	0.083461	1.000000	0.996607
	Fare_mean	0.090156	1.000000	0.205499	0.089673	0.086078	0.996607	1.000000

Box Plot for Age

```
In [25]: X_train[['Age', 'Age_median',
    'Age_mean']].boxplot()
```

Out[25]: <Axes: >

In [24]: X_train.corr()

Box Plot for Fare

```
In [26]: X_train[['Fare', 'Fare_median', 'Fare_mean']].boxplot()
```

Out[26]: <Axes: >


```
In [ ]:
```