TP Régression linéaire

Le lien entre les contraintes σ et les déformations ϵ est donné par la relation de comportement. Cette relation est obtenue par des expériences, notamment des essais de traction.

Les conférences internationales Numisheet s'intéressent à la mise en forme des tôles et donc à l'emboutissage. Elles proposent des cas tests pour comparer les codes de calcul entre eux et les confronter à des mesures sur des pièces réelles.

A la conférence de 1999, un des matériaux utilisés dans les cas test était l'aluminium 6016. Des essais de traction uniaxiale menés sur ce matériau étaient fournis :

σ (MPa)	118.145	123.404	130.836	143.737	157.003	168.125	177.202	184.978
ε (%)	0.248818	0.378909	0.704909	1.55291	2.60227	3.62727	4.62536	5.632
σ (MPa)	191.685	197.264	201.735	205.737	209.274	212.308	214.561	216.758
ε (%)	6.68036	7.71791	8.711	9.75936	10.8566	11.9798	13.0114	14.1584
σ (MPa)	218.529	219.98	221.172	222.094	222.851	223.448	223.749	223.867
ε (%)	15.3273	16.5355	17.7166	18.9329	20.1883	21.5147	22.883	24.3088

Tracer la courbe contrainte σ en fonction des déformations ε.

Lors de la mise en forme, la limite d'élasticité est déplacé. Nous cherchons à modéliser le comportement plastique du matériau. Une des approximations de cette courbe est la loi d'Hollomon: $\sigma = K\epsilon^n$

avec 2 paramètres à identifier pour le matériau, le module K et l'exposant d'écrouissage n.

- Transformer l'écriture de la loi d'Hollomon pour utiliser une régression linéaire pour déterminer les paramètres K et n.
- Programmer un script Scilab pour déterminer les deux coefficients.
- Quelle est l'erreur maximale par rapport aux mesures.