Report for Assignment 2: "Text Classification with Linear Classifiers"

Baltzi Sofia (P3351915), Kafritsas Nikos(P3351905), Mouselinos Spyridon (P3351914) May 20, 2020

0. Introduction

The purpose of this document is to report the results for the 2nd Assignment of class Text Analytics, April – June 2020. Code for the assignment can be found by following the link:

https://colab.research.google.com/drive/1xSfDDj0WrLiWZT 8JzguKASKU02g2fcV?usp=sharing

1. Data

The dataset used in the assignment is the "Twitter Sentiment Analysis 2", found in Kaggle. It includes 99,989 tweets, which belong to either one of two classes: "Positive (1)" or "Negative (0)". Data set is not balanced, having 56,457 tweets belonging to class Positive and 43,532 to class Negative. The average length of tweet is 59 characters. A splitting schema of training (70% - 69,992 tweets), development (15% - 14,998 tweets) and test set (15% - 14,999 tweets) was applied. The ratio of Positive to Negative tweets was preserved while applying the splitting schema.

2. Data Preprocessing

In tweets one can find hashtags, links and contractions, thus, before applying any classification algorithm, dataset was processed by method *preprocess*. This method converts the tweets to lowercase, substitutes contractions with full phrases, removes links, special characters and lemmatizes, if needed, each word.

3. Classification Algorithms

In the next subsections, the classifiers used, as well as the results obtained by each one, will be presented. In order to find the best parameters for each model, grid search was performed on:

- the n-gram range: either unigrams and bigrams or unigrams and trigrams
- the use of idf or not
- min_df
- max df
- · the specifics of the classifier

Parameters were fitted on training set and tuned on development set. The set of parameters that gave the best results in the evaluation phase was used for predictions on test set.

Along with the classifiers used, there will be presented Confusion Matrices, calculated statistics and Learning curves.

3.1. Dummy classifier

As a baseline, a Dummy classifier was used, giving a comparison point for the rest of classifiers. This one replies with the most common of the two classes, giving train accuracy of 56.46% and test accuracy of 56.47%. Weighted F1 score was 41% in both train and test set. Resulting Confusion Matrix on test set is shown below:

Confusion Madriu		Predicted		
	Confusion Matrix	Negative (0)	Positive (1)	
<u>–</u>	Negative (0)	0	6,530	
Real	Positive (1)	0	8,469	

3.2. Logistic Regression

The first classifier used was closed-form Logistic Regression. Along with grid search on feature transformation, the hyperparameter C (Inverse of regularization strength) was also tuned. The best values of parameters were found to be:

```
{'C': 1.0, 'use_idf': False, 'max_df': 0.7, 'min_df': 0.0, 'vect__ngram_range': (1, 2}
```

Resulting Confusion Matrix on test set is shown below:

Confusion Matrix		Predicted		
	Confusion Matrix	Negative (0)	Positive (1)	
-	Negative (0)	4,664	1,866	
Real	Positive (1)	2,071	6,398	

Statistics on train, development and test set, along with Learning curves are presented below:

Train Set				
train f1-score				
	precision	recall	f1-score	support
0	0.73	0.75	0.74	30472
1	0.80	0.78		39520
-	0.00	0.70	0.75	33320
accuracy			0.77	69992
macro avg	0.77	0.77	0.77	69992
weighted avg	0.77	0.77	0.77	69992
Development Se	t			
dev f1-score:				
· - ·	precision	recall	f1-score	support
0	0.70	0.72	0.71	6530
1	0.78	0.76	0.77	8468
accuracy	. 74		0.74	14998
macro avg	0.74	0.74		14998
weighted avg	0.74	0.74	0.74	14998
Test Set				
test f1-score:				
	precision	recall	f1-score	support
0	0.69	0.71	0.70	6530
1	0.77	0.76	0.76	8469
accuracy			0.74	14999
			0.73	4.4000
macro avg	0.73	0.73	0.73	14999

3.3. Logistic Regression SGD

The second classifier used was Logistic Regression with SGD. Along with grid search on feature transformation, the hyperparameters alpha (Constant that multiplies the regularization term) and penalty (Regularization term) were also tuned. The best values of parameters were found to be:

```
{'alpha': 0.0001, 'penalty': 'elasticnet', 'use_idf': True, 'max_df': 0.7, 'min_df': 0.0, 'ngram_range':(1, 2)}
```

Resulting Confusion Matrix on test set is shown below:

Confusion Matrix		Predicted		
	Confusion Matrix	Negative (0)	Positive (1)	
ē	Negative (0)	4,715	1,815	
Real	Positive (1)	2,164	6,305	

Statistics on train, development and test set, along with Learning curves are presented below:

Train Set				
train f1-sco	re: 77.21%			
	precision	recall	f1-score	support
0	0.70			30472
1	0.79	0.76	0.77	39520
accuracy			0.75	69992
macro avg	0.74	0.75		
weighted avg				69992
Development S	Sot			
dev f1-score				
uev 12 3core	precision	recall	f1-score	support
	p			
0	0.69	0.72	0.70	6530
1	0.77	0.75	0.76	8468
accuracy			0.74	
macro avg				
weighted avg	0.74	0.74	0.74	14998
Test Set				
test f1-score				
	precision	recall	f1-score	support
0	0.69	0.72	0.70	6530
1	0.78		0.76	8469
accuracy			0.73	
macro avg				
weighted avg	0.74	0.73	0.74	14999

3.4. Naive Bayes

The third classifier used was Naïve Bayes. Along with grid search on feature transformation, the hyperparameter alpha (Additive smoothing parameter) was also tuned. The best values of parameters were found to be:

```
{'min_df': 0.0, 'max_df': 0.65, 'ngram_range': (1, 2), 'use_idf': False, 'alpha': 1.0}
```

Resulting Confusion Matrix on test set is shown below:

Confusion Matrix		Predicted		
	Confusion Matrix	Negative (0)	Positive (1)	
Real	Negative (0)	4,019	2,511	
Re	Positive (1)	1,456	7,013	

Statistics on train, development and test set are presented below:

	and test set	<u>'</u>				
	Train Set					
	train f1-scor			_		
		precision	recall	f1-score	support	
	0	0.77	0.65	0.70	30472	
	1	0.76	0.85	0.80	39520	
	accuracy			0.76	69992	
	macro avg	0.77	0.75	0.75	69992	
	weighted avg	0.76	0.76	0.76	69992	
	Development S	Set				
	dev f1-score:					
		precision	recall	f1-score	support	
	0	0.75	0.62	0.68	6530	
	1	0.74	0.84	0.79	8468	
	accuracy			0.74	14998	
	macro avg	0.74	0.73	0.73	14998	
	weighted avg	0.74	0.74	0.74	14998	
	Test Set					
	test f1-score	e: 77.95%				
		precision	recall	f1-score	support	
	0	0.73	0.62	0.67	6530	
	1	0.74	0.83	0.78	8469	
	accuracy			0.74	14999	
	macro avg	0.74	0.72	0.72	14999	
	weighted avg	0.74	0.74	0.73	14999	
L						

3.5. MLPs

The fourth classifier used was MLP. Along with grid search on feature transformation, the hyperparameter hidden_layer_sizes was also tuned. The best values of parameters were found to be:

```
{'min_df': 0, 'ngram_range': (1, 2), 'hidden_layer_sizes': (20, 20)}
```

Resulting Confusion Matrix on test set is shown below:

Confusion Matrix		Predicted		
	Confusion Matrix	Negative (0)	Positive (1)	
Real	Negative (0)	4,342	2,188	
Re	Positive (1)	1,743	6,726	

Statistics on train, development and test set are presented below:

Train Set				
train f1-scor	e: 80.14%			
	precision	recall	f1-score	support
0	0.75	0.70	0.72	30472
1	0.78	0.82	0.80	39520
accuracy			0.77	69992
macro avq	0.77	0.76	0.76	69992
weighted avg	0.77	0.77	0.77	69992
Development S				
dev f1-score:				
	precision	recall	f1-score	support
0	0.72	0.67	0.70	6530
1	0.76	0.80	0.78	8468
accuracy			0.74	14998
macro avg	0.74	0.74	0.74	14998
weighted avg	0.74	0.74	0.74	14998
Test Set				
test f1-score				
	precision	recall	f1-score	support
0	0.71	0.66		6530
1	0.75	0.79	0.77	8469
accuracy			0.74	14999
macro avg	0.73	0.73		
weighted avg	0.74	0.74	0.74	14999

4. ROC curves

In this section, ROC curves, that graphically depict the diagnostic ability of the classifiers, are presented. Curves show the trade-off between sensitivity (True Positive Rate) and False Positive Rate (1-specificity). Classifiers giving curves closer to the top-left corner indicate a better performance. Thus, the classifiers that were tuned for the purposes of this assignment are compared to one that gives points lying along the diagonal (FPR = TPR). It can be observed that all classifiers perform closely, with Logistic Regression being slightly better.

5. Bootstrapping

Taking all the above scores into consideration, the logistic regression classifier was found to have the highest macro-averaged F1 score on the test set. By employing the method of bootstrap statistical significance testing, this part attempts to check if the apparent differences in terms of macro-averaged F1 score between the logistic regression classifier and the rest of them are due to model superiority or simply by chance. More specifically, there are 2 hypotheses:

- A) H₀: The classifier A (logistic regression) is not better than classifier B
- B) H_A: The classifier A (logistic regression) is truly better than classifier B

Each comparison estimates a p-value (probability of obtaining an equal or better increase of the macro-averaged F1 score on the test set than the observed one, given that the 2 classifiers being compared have equal potential). The testing part involved creating 50 versions of the test set by sampling with replacement. The p-values are demonstrated below:

Classifier	P-value	Macro averaged f1 score (best= 0.7339)
Logistic Regression with SGD	0.08	0.7317
Naïve Bayes	0	0.7245
Multi Layered Perceptron	0.1	0.7311

The results show that only in the case of Naïve Bayes, the p-value are is less than 0.01, and thus the null hypothesis is rejected in favor of the alternative, which means logistic regression is a truly better classifier. For the other 2 classifiers, there is not enough evidence to believe that their alleged differences from the logistic regression is statistically significant (besides, the difference is very little).