

Please feel free to introduce yourself to your neighbors—name, pronouns, a hobby, etc.

and/or

Answer the first question on Wooclap!

Learning outcome for Topic 7: The Molecule – VSEPR

LOs: (1) Use the VSEPR model to predict the shapes of molecules with steric #'s 2, 3, 4, 5, and 6. (2) Predict bond and net dipoles

Last lecture...

Lewis structures (2D)

Why is it important to understand 3D molecular structure?

- Shape affects how it interacts with other molecules
- Predict biological activity to design drugs and decipher the function of the molecule

VSEPR Theory – 3D Shapes of Molecules

VSEPR = Valence Shell Electron-Pair Repulsion

- Provides a way to predict the shape of molecules in 3D
- Each group of valence electrons around a central atom is located as far as possible from the others, to minimize repulsions.
- An electron pair or group = electrons that occupy a localized region in a molecule
- A ligand or outer atom = an atom (or group of atoms bonded to an inner atom)
- Steric number or number of electron pairs
 - = the sum of the number of ligands plus number of lone pairs
 - = total # of electron groups associated with atom

Drawing lewis structures to determine the steric number

To determine the steric number of a molecule, it is necessary to draw the Lewis structure. For example:

CH₃Cl

 H_2O

What is the steric number for CIF₃?

The Molecular Shape

Once the steric number is known, we can determine the molecular shape.

• Find the arrangement that maximizes the separation of electron groups from each other to minimize electron pair repulsions

5 Basic Electron Pair Geometries

Variations of the main geometries

Methane has a tetrahedral molecule shape (steric # = 4)

How does this compare to other molecules with same steric #?

Example 1: Ammonia

 Unlike methane, one of ammonia's electron pairs is a lone pair

Example 2: Water

 Unlike methane, two of water's electron pairs are lone pairs

This affects the overall VSEPR shape

Bond angles are not always ideal

Electron pair geometries can differ from ideality, giving rise to differences in bond angles from those predicted from the ideal shapes.

- Electron groups with higher electron density will repel other groups more
- This pushes them further away from other groups
- This causes lower electron density groups to be closer to each other

In terms of decreasing repulsion: (LP = lone pair, BP = bonding pair)

Other examples of non-ideal bond angles

For example: Non-bonding lone pairs

Trigonal Planar geometry

Double bonds

Shapes of Molecules: Steric Number = 2 or 3

BeF₂

CO₃²⁻

SO₂

Shapes of Molecules: Steric Number = 4

Shapes of Molecules: Steric Number = 5

Electron pair Trigonal Bipyramidal geometry Molecular Shape **Trigonal Bipyramidal** Seesaw Linear **T-shaped** Number of 3 2 2 ligands 120° <120° <90° 180° **Bond Angle** 90° <90° CIF₃ I_3^- PF₅ SF₄ **Examples** BrF₃ XeF₂ **SOF**₄ $IO_2F_2^-$

Shapes of Molecules: Steric Number = 6

Number of Electron Dense Areas	Electron- Pair Geometry	Molecular Geometry				
		No Lone Pairs	1 Ione Pair	2 Ione Pairs	3 Ione Pairs	4 Ione Pairs
2	Linear	Linear				
3	Trigonal planar	Trigonal planar	Bent			
4	Tetrahedral	Tetrahedral	Trigonal pyramidal	Bent		
5	Trigonal bipyramidal	Trigonal bipyramidal	Sawhorse	T-shaped	Linear	
6	Octahedral	Octahedral	Square pyramidal	Square planar	T-shaped	Linear

15

VSEPR Terminology

Electron pair geometry

Molecular Shape

Electron group

Steric Number

Ligand

The electron group geometry of a compound is always governed by:

- a) the number of electron groups.
- b) the number of ligands.
- c) the molecular shape.
- d) the steric number.

Steps for applying the VSEPR Theory

and lone pairs

17

Practice: Drawing molecular shapes

wooclap

Draw the molecular shapes for:

CS₂

PbCl₂

What is the bond angle in SF₂?

- a) 180°
- b) 120°
- c) 109.5°
- d) <120°
- e) <109.5°

More Molecular Shape Examples

Draw the molecular shape for:

 C_3H_4

What is the molecular geometry of SF₄?

- A) tetrahedral
- B) trigonal bipyramidal
- C) see-saw
- D) T-shape
- E) linear

Putting it all together: Geometry for polyatomic molecules

Alanine, an amino acid:

What is the molecular geometry of 4.C indicated with a red arrow?

- A) Trigonal planar
- B) Bent
- C) Square planar
- D) Trigonal pyramidal
- E) Tetrahedral

Molecular Polarity

To predict whether a specific molecule is polar or non-polar you must consider two characteristics:

- 1) Type of bonds in the molecule (polar or non-polar)
- 2) Geometric shape of the molecule (VSEPR)

Bonds are polar if:

- Bonded atoms have different electronegativities
- More electronegative atoms have greater tendency to attract electrons (larger $\Delta \chi$)

Molecules are polar if:

- they contain one or more polar bonds
- the individual bond dipoles do not cancel (depends on the molecular shape), creating a net dipole

How polar is my molecule?

Molecular shape $+ \Delta \chi$ \downarrow Polarity
(measured as the dipole moment, μ)

- e.g. Cl_2 e.g. HCl $\Delta \chi = 0$ $\Delta \chi = 1.9$ $\mu = 0 \text{ D}$ $\mu = 1.07 \text{ D}$ $\mu = 1.07 \text{ D}$ $\mu = 1.07 \text{ D}$
- the larger the dipole moment (μ), the more polar the molecule
- units of polarity are debye (D)
 1 Debye = 3.34 x 10⁻³⁰ C m

Polar versus nonpolar molecules

- Water has a bent molecular structure and polar bonds between O --- H
- As a result, the dipoles add together to give the water molecule a net dipole

Molecules that have net dipoles are polar

- Carbon dioxide has a linear molecular structure and polar bonds between C --- O
- Since the polarities of these bond are equal and opposite, they cancel each other out

Molecules that have no net dipoles are non-polar

Which molecules are polar?

More examples: Which molecules are polar?

 I_3 NO_3

Using VSEPR Theory to detect explosives

Behind the Scenes at MIT; http://chemvideos.mit.edu

Detecting Explosives to Save Lives in War Zone

Stefanie explains how her research on designing sensors for explosives depends on the principles of VSEPR (valence shell electron pair repulsion) theory. Stefanie's sensor design amplifies small-scale changes in bond angles following interaction with a target molecule, and she hopes that her work will lead to better detectors for landmines and improvised explosive devices.