The matrices

$$K_2 = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right]$$

and

$$K_3 = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

arose in lectures when studying the free oscillations of N=2 and N=3 masses in a line between two fixed walls and with springs in between them.

- (1) What is K_4 ?
- (2) What is the general form K_N for $N \ge 2$?
- (3) Can you find a way to determine the eigenvectors and eigenvalues of K_N for arbitrary $N \ge 2$?