

UNIVERSITÀ DEGLI STUDI DI PAVIA

Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica ed Elettronica

Simulazione degli algoritmi di navigazione robotica Bug1 e Bug2 nell'ambiente PythonRobotics

LAUREANDO: Luca Colombo MATRICOLA: 447407

SOMMARIO

- Contesto
- Obiettivi
- Strumenti utilizzati
- Discretizzazione della mappa
- Algoritmi
- Codice
- Esempi
- Conclusioni

CONTESTO

- PythonRobotics:
 - progetto Open Source che raccoglie un insieme di algoritmi per la navigazione robotica implementati in linguaggio Python
 - simulazioni auto-contenute

NAVIGAZIONE ROBOTICA

 Un sistema di navigazione autonomo è un sistema che permette ad un robot di spostarsi verso una destinazione all'interno di un ambiente in cui sono presenti degli ostacoli, senza il controllo di un operatore

3 sotto-problemi principali:

OBIETTIVI

Lettura mappa degli ostacoli

Implementazione degli algoritmi Bug1 e Bug2

• Creazione del percorso per raggiungere la destinazione

Visualizzazione grafica del percorso

STRUMENTI UTILIZZATI

Linguaggio di programmazione:

- Vantaggi:
 - ottime librerie per calcoli matriciali e operazioni matematiche
 - visualizzazione grafica semplice e intuitiva
 - leggibilità del codice

DISCRETIZZAZIONE DELLA MAPPA

- Mappa: struttura dati che rappresenta l'ambiente dove il robot si muove
- Mappe basate su griglia:
 - lo spazio è suddiviso in celle
 - una cella è occupata se contiene un pezzo di ostacolo, libera altrimenti
 - la risoluzione della mappa determina la dimensione delle celle

ALGORITMI BUG

- Algoritmi completi: viene sempre trovata una soluzione, se questa esiste
- Combinazione di 2 strategie di movimento:
 - motion-to-goal: spostamento verso l'obiettivo
 - boundary-following: circumnavigazione di un ostacolo
- 2 algoritmi:
 - Bug1
 - Bug2

- Motion-to-goal finché non si incontra un ostacolo nel punto detto hit point
- Boundary-following fino a tornare all'hit point:
 - durante la circumnavigazione si cerca il punto più vicino all'obiettivo detto leave point
- Ritorno al leave point seguendo il percorso più breve e al motion-to-goal

- Motion-to-goal finché non si incontra un ostacolo nel punto detto hit point
- Boundary-following fino a quando non si interseca la retta che unisce punto di partenza e punto di fine nel punto detto leave point, più vicino all'obiettivo
- Ritorno al motion-to-goal

CODICE

- OOP: struttura codice uguale per entrambi gli algoritmi
- Classi principali:
 - Map
 - Bug1
 - Bug2
- Funzioni differenziate:
 - controllo "fine boundary-following"
 - controllo "destinazione non raggiungibile"

CODICE

LETTURA MAPPA

- Insieme di poligoni
- File pgm

GENERAZIONE OSTACOLI

- Discretizzazione mappa
- Matrice di booleani

SIMULAZIONE

- Discretizzazione retta
- Strategie di movimento
- Generazione percorso

VISUALIZZAZIONE

- Plot testuale
- Plot grafico (matplotlib)

ESEMPIO BUG1

ESEMPIO BUG2

CONCLUSIONI

- Sono state realizzate le simulazioni degli algoritmi di navigazione robotica Bug1 e Bug2 che verranno integrate nell'ambiente PythonRobotics
- È stata creata una grafica semplice ed intuitiva per la comprensione del funzionamento degli algoritmi
- È stato scritto un software seguendo i paradigmi della programmazione object-oriented per semplificare l'integrazione di nuovi algoritmi che facciano uso di parti comuni come la discretizzazione della mappa
- È stato integrato un sistema di lettura delle mappe da file pgm (immagini greymap) per la creazione di nuovi scenari attraverso software di grafica (paint, photoshop, ...)

UNIVERSITÀ DEGLI STUDI DI PAVIA

Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica ed Elettronica

GRAZIE PER L'ATTENZIONE