NAME: Chase /ates

UID: 1351762

CS 2100: Discrete Structures

Homework 3: Graph theory Spring 2023

Overview

Section 7.1

- 1. Exercise 1.a and 1.b on page 515.
- 2. Exercise 4.b and 4.d on page 516.
- 3. Exercise 8.d on pages 516 and 517.

Section 7.2

- 4. Exercise 23.c on page 532.
- 5. Exercise 29 on page 532.
- 6. Exercise 30 on pages 532 and 533.

Section 7.3

- 7. Exercise 2 on page 544
- 8. Exercise 3 on page 544 (with modifications).
- 9. Exercise 8 on page 545 (with modifications).
- 10. Exercise 10.a on page 545.

Section 7.4

- 11. Exercise 3 on page 564.
- 12. Exercise 6.b on page 564.
- 13. Exercise 8.b on page 564.

1. Exercise 1.a and 1.b on page 515

For the graph below:

- a. Find the number of nodes and the number of edges
- b. Find the degree of each node.

2. Exercise 4.b and 4.d on page 516

For the graph below:

- b. Find a walk from 1 to 8 that uses five edges and is not a trail.
- d. Find a circuit starting and ending at 8 that is not a cycle.

3. Exercise 8.d on page 516 and 517

The graph below is not Eulerian. Add the fewest edges possible to create a graph that is Eulerian.

Solution:

4. Exercise 23.c on page 532

Find the minimal spanning tree for the graph below.

5. Exercise 29 on page 532

The graph below shows the mains roads in the Borough of Boatsville, along with the cost of plowing each street during a heavy snowstorm. Find the cheapest set of roads that must be plowed in order for everyone to be able to travel from any point to any other point in town.

6. Exercise 30 on pages 532 and 533

Consider the following algorithm on a simple connected graph:

- Let $G_0 = G$
- Repeat the following as long as possible: If G_i has a cycle, let e be the most expensive edge on that cycle, and let G_{i+1} be the graph obtained by removing e from G_i .
- \bullet The resulting graph has no cycles. Return this as the result T

Find a minimal spanning tree of the graph below using this algorithm.

7. Exercise 2 on page 544

Explain why the two graphs below are not isomorphic.

Solution:

There is no function to translate from one set of vertices to the other wo retaining adjacency.

8. Exercise 3 on page 544 - Modified

Two of the graphs below are isomorphic to each other. Which ones? After deciding, label each of the nodes of the isomorphic grabs and provide an isomorphism for them.

$$a \rightarrow 1$$

$$c \rightarrow S$$

9. Exercise 8 on page 545 - Modified

Show that each of 5 houses can be connected to 2 utilities (for example: water and gas) without lines crossing. Draw the plans graph for this situation and use Euler's Formula to validate your answer

10. Exercise 10.a on page 545

Show that the graph below is planar by redrawing it in the plane with no edge crossings.

11. Exercise 3 on page 564

Explain how to use the adjacency matrix to calculate the degree of a node for these situations:

- A simple graph (no parallel edges, no loops).
- Loops are allowed but not parallel edges.
- Parallel edges are allowed but not loops.
- Both loops and parallel edges are allowed.

Solution:

a) Sum the row of the mode, ignoring the diagonal.

b) Sum the row of the mode, except double any number on the diagonals first.

c) sum the row & column of the mode, ignoring the diagonal

d) sum the row & column of the mode, including the diagonal on both sums

12. Exercise 6.b on page 564

For the graph below, give the corresponding relation on the set $\{1, 2, 3, 4, 5, 6\}$ as a set of ordered pairs.

$$\{2(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(3,6),(4,6),(5,6),(6$$

13. Exercise 8.b on page 564

For the following relation on the set $A = \{1, 2, 3, 4, 5, 6\}$, draw the graph and give the adjacency matrices for relations R and $R \circ R$.

$$R = \{(1,3), (3,1), (1,5), (5,1), (3,5), (5,3), (1,1), (3,3), (5,5)\}$$

