

Data Representation

• For example, We have the following data

Age	GPA	Hours Studied
20	3.4	15
21	3.6	10
19	3.2	18

- How do we represent the data?
- Every row is a vector representing one student.
 Every column is a vector representing a feature.

Data Representation

• Suppose we have the grades obtain for each student as well.

Age	GPA	Hours Studied	Grades
20	3.4	15	80
21	3.6	10	50
19	3.2	18	90

 How can we train from this data to predict the grades of any students whose features are known?

Linear Algebra

• Linear algebra is the study of vectors and certain rules associated with vectors.

- Linear algebra is the study of vectors and certain rules associated with vectors.
- The vectors many of us know from school are called "geometric vectors", which are usually denoted by a small arrow above the letter, e.g., \vec{x} and \vec{y} .
- We will discuss more general concepts of vectors and use a bold letter to represent them, e.g., x and y.
- One major idea in mathematics is the idea of "closure".
- This is the question: Does the resultant of the addition of two vectors belong from the same set or outside the set? Does the resultant of the scalar multiplication of a vectors with a scalar belong from the same set or outside the set?

• In general, vectors are special objects that can be added together and multiplied by scalars to produce another object of the same kind.

Examples:

- 1. Geometric vectors. This example of a vector may be familiar from high school mathematics and physics. Two geometric vectors can be added, such that $\vec{x} + \vec{y} = \vec{z}$ is another geometric vector. Furthermore, multiplication by a scalar $\lambda \vec{x}$, $\lambda \in \mathbb{R}$, is also a geometric vector.
- Polynomials are also vectors; see Figure 2.1(b): Two polynomials can be added together, which results in another polynomial; and they can be multiplied by a scalar λ ∈ R, and the result is a polynomial as well.

Examples:

- 1. Geometric vectors. This example of a vector may be familiar from high school mathematics and physics. Two geometric vectors can be added, such that $\vec{x} + \vec{y} = \vec{z}$ is another geometric vector. Furthermore, multiplication by a scalar $\lambda \vec{x}$, $\lambda \in \mathbb{R}$, is also a geometric vector.
- Polynomials are also vectors; see Figure 2.1(b): Two polynomials can be added together, which results in another polynomial; and they can be multiplied by a scalar λ ∈ R, and the result is a polynomial as well.

Examples:

- 3. Audio signals are vectors. Audio signals are represented as a series of numbers. We can add audio signals together, and their sum is a new audio signal. If we scale an audio signal, we also obtain an audio signal. Therefore, audio signals are a type of vector, too.
- 4. Elements of \mathbb{R}^n (tuples of n real numbers) are vectors. \mathbb{R}^n is more abstract than polynomials. For instance,

$$a = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^n$$

is an example of a triplet of numbers. Adding two vectors $a, b \in \mathbb{R}^n$ component-wise results in another vector: $a + b = c \in \mathbb{R}^n$. Moreover, multiplying $a \in \mathbb{R}^n$ by $\lambda \in \mathbb{R}^n$ results in a scaled vector $\lambda a \in \mathbb{R}^n$.

An array of numbers is called a matrix.

A matrix with n number of rows and m number of columns is known as an $n \times m$ matrix.

Example:

Data can often be represented or abstracted as an $n \times d$ data matrix, with n rows and d columns, where rows correspond to entities in the dataset, and columns represent attributes or properties of interest.

$$D = \begin{pmatrix} x_1 & x_{11} & x_{12} & \dots & x_{1d} \\ x_2 & x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_n & x_{n1} & x_{n2} & \dots & x_{nd} \end{pmatrix}$$

Example:.

$$D = \begin{pmatrix} x_1 & x_{11} & x_{12} & \dots & x_{1d} \\ x_2 & x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_n & x_{n1} & x_{n2} & \dots & x_{nd} \end{pmatrix}$$

where x_i denotes the *i*th row, which is a d-tuple given as

$$\boldsymbol{x_i} = (x_{i1}, x_{i2}, \dots, x_{id})$$

And X_i denotes the jth column, which is an n-tuple given as

$$X_{j} = \left(x_{1j}, x_{2j}, \dots, x_{nj}\right)$$

- Depending on the application domain, rows may also be referred to as entities, instances, examples, records, transactions, objects, points, feature-vectors, tuples, and so on.
- Likewise, columns may also be called attributes, properties, features, dimensions, variables, fields, and so on.
- The number of instances n is referred to as the **size** of the data, whereas the number of attributes d is called the **dimensionality** of the data.
- The analysis of a single attribute is referred to as univariate analysis.
- The simultaneous analysis of two attributes is called bivariate analysis.
- The simultaneous analysis of more than two attributes is called multivariate analysis.

The following are the operations of matrices

- **1.** Matrix addition M + N (only possible of both matrices have same size)
- **2.** Scalar multiplication λM ($\lambda \in \mathbb{R}$)
- **3. Matrix multiplication** *MN* (only possible if the number of column of the first matrix is equal to the number of rows of the second matrix).

If M is a $m \times p$ matrix and N is a $p \times n$ matrix then MN will be a $m \times n$ matrix