15. Монотонни функции. Непрекъснатост на монотонните и на обратните функции

# Монотонни функции — дефиниция

### Дефиниция

Казваме, че  $f: D \to \mathbb{R}$ , където  $D \subseteq \mathbb{R}$ , е:

- (a) монотонно растяща, ако за всеки  $x_1 < x_2$  в D имаме  $f(x_1) \le f(x_2),$
- (б) строго монотонно растяща, ако за всеки  $x_1 < x_2$  в D имаме  $f(x_1) < f(x_2),$
- (в) монотонно намаляваща, ако за всеки  $x_1 < x_2$  в D имаме  $f(x_1) \ge f(x_2),$
- (г) <u>строго монотонно намаляваща,</u> ако за всеки  $x_1 < x_2$  в D имаме  $f(x_1) > f(x_2)$ .

# Геометрична илюстрация



# Геометрична илюстрация



# Монотонни функции — непрекъснатост

## Теорема 1

Всяка монотонна функция, дефинирана в интервал, притежава лява и дясна граница във всяка вътрешна точка от дефиниционната си област.

Д-во: Ще разгледаме само случая на монотонно растяща ф-ция. Монотонно намаляващите ф-ции се разглеждат аналогично или можем да използваме, че ако f е монотонно намаляваща, то -f е монотонно растяща. Нека  $f:D\to\mathbb{R}$  е монотонно растяща и D е интервал. Нека т.  $x_0\in D$  не е левият край на интервала D. Ще докажем, че f(x) има лява граница в  $x_0$ .



Разгл.  $M:=\{f(x): x\in D,\ x< x_0\}.$  То е непразно и ограничено отгоре от  $f(x_0)$ . Пол.  $\ell:=\sup M$ . Ще докажем, че  $\lim_{x\to x_0-0}f(x)=\ell$ .

Разсъждаваме аналогично на доказателството на теоремата за ограничените монотонни редици.

Нека  $\varepsilon > 0$  е произволно. Тогава  $\ell - \varepsilon$  не е горна граница на M. Следователно  $\exists x_1 < x_0 : f(x_1) > \ell - \varepsilon$ . Понеже f(x) е монотонно растяща, то за всяко  $x > x_1$  имаме  $f(x) \ge f(x_1) > \ell - \varepsilon$ . От друга страна, щом  $\ell$  е горна граница на M, то  $f(x) \le \ell \quad \forall x < x_0$ . Така установихме, че

$$\forall \varepsilon > 0 \quad \exists x_1 < x_0 : \ell - \varepsilon < f(x) \le \ell \quad \forall x \in (x_1, x_0).$$
 (1)

$$\implies \lim_{x \to x_0 - 0} f(x) = \ell. \tag{2}$$

Аналогично се доказва, че ако т.  $x_0 \in D$  не е десният край на D, f(x) има дясна граница в  $x_0$ .

### Теорема 2

Ако  $f:D o\mathbb{R}$  е мотононна, D е интервал и  $x_0\in D$  не е край на D, то

$$f(x)$$
 е непрекъсната в т.  $x_0 \iff \lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x)$ . (3)

Д-во: В Т-ма 1 доказахме, че лявата и дясната граница на f(x) в т.  $x_0$  съществуват. Нека f(x) е монотонно растяща (случаят на монотонно намаляваща функция се разглежда аналогично). В неравенството

$$f(x) \le f(x_0) \quad \forall x < x_0 \ (x \in D) \tag{4}$$

извършваме граничен преход  $x o x_0 - 0$  и така получаваме

$$\lim_{x \to x_0 - 0} f(x) \le f(x_0). \tag{5}$$

Аналогично в неравенството

$$f(x_0) \le f(x) \quad \forall x > x_0 \ (x \in D) \tag{6}$$

извършваме граничен преход  $x \to x_0 + 0$  и така получаваме

$$f(x_0) \le \lim_{x \to x_0 + 0} f(x). \tag{7}$$

(5) 
$$_{\text{II}}$$
 (7)  $\implies \lim_{x \to x_0 - 0} f(x) \le f(x_0) \le \lim_{x \to x_0 + 0} f(x).$  (8)

Оттук следва, че

$$\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x).$$

$$\updownarrow \qquad (9)$$

f(x) е непрекъсната в т.  $x_0$ 

#### Бележка

Нека  $f: D \to \mathbb{R}$  е мотононна и D е интервал.

(a) Ако D е затворен отляво с ляв край a, то

$$f(x)$$
 е непрекъсната в т.  $a \iff \lim_{x \to a+0} f(x) = f(a)$ . (10)

(б) Ако D е затворен отдясно с десен край b, то

$$f(x)$$
 е непрекъсната в т.  $b \iff \lim_{x \to b-0} f(x) = f(b)$ . (11)

### Твърдение

Нека  $f: \mathcal{D} \to \mathbb{R}$  е мотононно растяща и  $\mathcal{D}$  е интервал.

(a) Ако  $\boldsymbol{D}$  е отворен отляво и ограничен отдолу с ляв край  $\boldsymbol{a}$ , то

или 
$$\exists \lim_{x \to a+0} f(x)$$
, или  $\lim_{x \to a+0} f(x) = -\infty$ . (12)

(б) Ако D не е ограничен отдолу, то

или 
$$\exists \lim_{x \to -\infty} f(x)$$
, или  $\lim_{x \to -\infty} f(x) = -\infty$ . (13)

(в) Ако  $\boldsymbol{D}$  е отворен отдясно и ограничен отгоре с десен край  $\boldsymbol{b}$ , то

или 
$$\exists \lim_{x \to b-0} f(x)$$
, или  $\lim_{x \to b-0} f(x) = +\infty$ . (14)

(г) Ако  $\boldsymbol{D}$  не е ограничен отгоре, то

или 
$$\exists \lim_{x \to +\infty} f(x)$$
, или  $\lim_{x \to +\infty} f(x) = +\infty$ . (15)

## Теорема 3

Ако  $f: D \to \mathbb{R}$  е мотононна и D и f(D) са интервали, то f(x) е непрекъсната в D.



Д-во: Благодарение на Теорема 2 и бележката след нея знаем, че ако f(x) е прекъсната в точка от D, то f(D) се състои от поне два интервала (които не могат да се сведат до един интервал).

На черт.: 
$$f: D \to \mathbb{R}, D = [a, b],$$
  
 $l_1 := \lim_{x \to c - 0} f(x)$  и  $l_2 := \lim_{x \to c + 0} f(x).$   
Имаме

 $f(D) = [f(a), I_1) \cup \{f(c)\} \cup (I_2, f(b)].$ 

# Монотонни функции — обратимост

## Теорема 4

Всяка строго монотонна функция е обратима и обратната ѝ е строго монотонна от същия вид.

Д-во: Нека  $f:D\to\mathbb{R},\,D\subseteq\mathbb{R},$  е строго монотонно растяща функция, т.е.

$$f(x_1) < f(x_2)$$
 sa  $x_1 < x_2 (x_1, x_2 \in D)$ . (16)

Оттук веднага следва, че

$$f(x_1) \neq f(x_2)$$
 sa  $x_1 \neq x_2$ , (17)

т.е. f(x) е инекция.

Следователно  $f:D\to f(D)$  е биекция и има обратна функция  $f^{-1}:f(D)\to D$ .

Ще докажем, че  $f^{-1}(y)$  е също строго монотонно растяща.

Нека  $y_1, y_2 \in f(D)$  са произволни такива, че  $y_1 < y_2$ .

Ще докажем, че  $f^{-1}(y_1) < f^{-1}(y_2)$ .

Допускаме противното, т.е.

$$f^{-1}(y_1) \ge f^{-1}(y_2).$$
 (18)

Полагаме  $x_1 := f^{-1}(y_1)$  и  $x_2 := f^{-1}(y_2)$ .

Тогава  $f(x_1) = y_1$  и  $f(x_2) = y_2$ .

Според направеното предположение (18), имаме  $x_1 \ge x_2$ .

f(x) е строго монотонно растяща  $\implies$  е монотонно растяща

$$\stackrel{x_2 \le x_1}{\Longrightarrow} \quad f(x_2) \le f(x_1) \quad \text{r.e.} \quad y_2 \le y_1. \tag{19}$$

Противоречие.

Случаят на строго монотонно намаляваща функция се разглежда аналогично.

# Непрекъснатост на обратните функции

### Теорема 5

Обратната функция на непрекъсната строго монотонна функция, дефинирана в интервал, е също непрекъсната.

Д-во: Нека  $f: D \to \mathbb{R}$  е непрекъсната и строго монотонна функция и D е интервал. Както вече показахме в Теорема 4, щом f е строго монотонна, то тя има обратна  $f^{-1}$ , която е дефинирана в f(D), и е също строго монотонна.

В Следствието на Т-ма 2 в тема 14 показахме, че областта от стойности на всяка непрекъсната функция, дефинирана върху интервал, е също интервал. Така имаме, че f(D) е интервал.

Прилагаме Теорема 3 към монотонната функция  $f^{-1}$ , дефинирана в интервала f(D). За нейната област от стойности имаме  $f^{-1}(f(D)) = D$ . Следователно тя е интервал и Теорема 3 влече, че  $f^{-1}$  е непрекъсната в f(D).