

Multi-Slice Single-Breath-Hold Cardiac CINE with Slice and Time-Dependent Deep Image Prior at 1.5T and 0.55T

Rafael de la Sotta¹, Tabita Catalán^{1,2}, Francisco Sahli^{1,2,3}, *René Botnar^{1,2,3,4} and *Claudia Prieto^{1,2,3}

¹Millenium Institute for Intelligent Healthcare Engineering, Santiago, Chile
²School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
³Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
⁴School of Biomedical Engineering, King's College London, London, United Kingdom

ISMRM & ISMRT

ANNUAL MEETING & EXHIBITION

Honolulu, Hawai'i, USA 10-15 MAY 2025

Declaration of Financial Interests or Relationships

Speaker Name: Rafael de la Sotta

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Motivation

 Cardiac CINE MRI is the gold standard for the assessment of cardiac function.

- Conventional cardiac CINE MRI requires multiple slices and breath-holds, leading to long scan times and to potential slice-misalignment.
- Also, multiple breath-hold can be challenging for some patients.

Objective

To perform a multi-slice single-breath-hold cardiac CINE, reconstructed by a slice and time-dependent deep image prior (ST-DIP) network.

Method Overview

reconstruction by **ST-DIP**

Slice 1

Slice 2

Slice 3

Slice and Time Dependent Deep Image Prior (ST-DIP)

In our loss function all slices (s) and frames (t) are reconstructed simultaneously.

- G: Neural network θ : parameters
- K: Acquired data
- E: Encoding operator (Coil sensitivities, Fourier Transform, Undersampling)
- W: Frequency weighting
- TV: Total variation
- N_s: Number of slices
- N_{T} : Number of frames

Slice and Time Dependent Deep Image Prior (ST-DIP)

We use a **Fixed latent representation** for multi-slice cardiac CINE

Image domain

Slice and Time Dependent Deep Image Prior (ST-DIP)

In-vivo experiments

We tested our method at 0.55T and 1.5T.

		1.5T	0.55T
Acquisition	FOV (mm)	256 x 256	256 x 256
	Resolution (mm)	2 x 2	2 x 2
	Thickness (mm)	8	10
	TE / TR (ms)	1.16 / 2.3	2.85 / 5.7
	FA (°)	60	78
	Number of slices	8	8
	Acquisition time per slice (s)	1	1.5
Reconstruction	Cardiac phase bins	30	30
	Undersampling factor / bin	17	32

Results: High-quality images at 1.5T

Results: High-quality images at 1.5T

Results: High-quality images at 0.55T

Results: High-quality images at 0.55T

Conclusions

- 8 cardiac cines in a single breath-hold at 1.5 and 0.55 T.
- Slice and time-dependent DIP method.
 (see #2629 for a motion corrected approach)
- Outperform conventional reconstruction approaches and TD-DIP.

Future work

Validation with patients.

Acknowledgements

https://i-health.cl/

@iHEALTHMilenio

@KCL_CardiacMR

