Quiz - 3

Instructions

- The following questions may have more than one correct answers.
- There is no negative marking for wrong answers.
- Correct answers are worth one point. Partially correct answers are worth half a point.
- Refer to the slides from the previous weeks for the definitions of gates.

Questions

1. Consider the following quantum circuit:

If $|\psi\rangle=|+\rangle,$ the output state $|\chi\rangle$ is given by:

a.
$$\frac{1}{2\sqrt{2}} (2|00\rangle + |01\rangle + \sqrt{2}|10\rangle + |11\rangle)$$

b.
$$\frac{1}{2\sqrt{2}} (2|00\rangle - |01\rangle - \sqrt{2}|10\rangle - |11\rangle)$$

c.
$$\frac{1}{2\sqrt{2}} (2|00\rangle + |01\rangle - \sqrt{2}|10\rangle - |11\rangle)$$

d.
$$\frac{1}{2\sqrt{2}} \left(-2|00\rangle - |01\rangle - \sqrt{2}|10\rangle + |11\rangle \right)$$

2. Consider the following quantum circuit:

If $|\psi\rangle=|1\rangle$, then output state $|\chi\rangle$ is _____ and the probability of measuring the output $b_0b_1=00$ is _____.

- a. 'not entangled' and $\frac{1}{4}$.
- b. 'not entangled' and 0.
- c. 'entangled' and 0.
- d. 'entangled' and $\frac{1}{4}$.

3. Consider the following quantum circuit:

If $|\psi\rangle=|1\rangle$, then output state $|\chi\rangle$ is _____ and the probability of measuring the output $b_0b_1=11$ is _____.

- a. 'not entangled' and $\frac{1}{2}$.
- b. 'not entangled' and 0.
- c. 'entangled' and 0.
- d. 'entangled' and $\frac{1}{2}$.

4. If a quantum state is denoted by a point (θ, ϕ) , on the Bloch sphere. Then the state orthonormal to this state has which of the following coordinates?

- a. $(\theta, \pi \phi)$
- b. $(\pi \theta, \pi \phi)$
- c. $(\theta, \pi \phi)$
- d. $(\frac{\pi}{2} \theta, \pi \phi)$

- 5. If the $|+\rangle$ is rotated by 45° about the z-axis. The new coordinates of the state on the Bloch sphere is:
 - a. $(\frac{\pi}{2}, \frac{\pi}{2})$
 - b. $(\frac{\pi}{4}, \frac{\pi}{4})$
 - c. $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$
 - d. $(\frac{\pi}{4}, \frac{\pi}{2})$
- 6. Consider the circuit given below:

If $|\chi\rangle$ is known to be $\frac{|000\rangle+|111\rangle}{\sqrt{2}}$, then the initial states of the qubits q_0,q_1 and q_2 , respectively are?

- a. $q_0 = |+\rangle$, $q_1 = |0\rangle$ and $q_2 = |0\rangle$
- b. $q_0 = |0\rangle, q_1 = |+\rangle \text{ and } q_2 = |0\rangle$
- c. $q_0 = |+\rangle$, $q_1 = |+\rangle$ and $q_2 = |0\rangle$
- d. $q_0 = |0\rangle, q_1 = |0\rangle \text{ and } q_2 = |+\rangle$
- 7. Consider the circuit given below:

If $|\chi\rangle$ is known to be $\frac{|010\rangle+|101\rangle}{\sqrt{2}}$, then the initial states of the qubits q_0,q_1 and q_2 , respectively are?

- a. $q_0 = |+\rangle$, $q_1 = |1\rangle$ and $q_2 = |1\rangle$
- b. $q_0 = |0\rangle, q_1 = |+\rangle \text{ and } q_2 = |0\rangle$
- c. $q_0 = |+\rangle$, $q_1 = |1\rangle$ and $q_2 = |1\rangle$
- d. $q_0 = |1\rangle, q_1 = |+\rangle$ and $q_2 = |1\rangle$

8. Consider the circuit given below:

If $|\chi\rangle$ is known to be $\frac{|011\rangle+|111\rangle}{\sqrt{2}}$, then the initial states of the qubits q_0,q_1 and q_2 , respectively are?

- a. $q_0 = |+\rangle$, $q_1 = |1\rangle$ and $q_2 = |1\rangle$
- b. $q_0 = |0\rangle$, $q_1 = |+\rangle$ and $q_2 = |+\rangle$
- c. $q_0 = |+\rangle$, $q_1 = |+\rangle$ and $q_2 = |+\rangle$
- d. none of the above.
- 9. Consider the following quantum circuit:

The choice(s) of the initial state which remain unchanged as result of this circuit are:

- a. $\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$
- b. $\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$
- c. $\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle |11\rangle)$
- d. $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
- 10. Given a single qubit state of the form, $|\psi\rangle=a\,|0\rangle+b\,|1\rangle\,:\,a,b\in\mathbb{R}$ and $|a|^2+|b|^2=1$. Which of the following transformations will convert $|\psi\rangle$ to $|\phi\rangle$ such that, $\langle\psi|\phi\rangle=0$?
 - a. ZHZH
 - b. Z
 - c. HXHX
 - d. HYH