Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 247

email: schulz@ira.uka.de

Matthias Janke, Gebäude 50.34, Raum 249

email: matthias.janke@kit.edu

Länge des Wortes w + x + y + z, $w \le x \le y \le z$;

$$egin{array}{c|cccc} a & b & c & d \\ \hline w & x & y & z \\ \hline \end{array}$$

Huffman-Baum erstellen!

Länge des Wortes w + x + y + z, $w \le x \le y \le z$;

$$egin{array}{c|cccc} a & b & c & d \\ \hline w & x & y & z \\ \hline \end{array}$$

Huffman-Baum erstellen!

1. Schritt: Klar! w und x zusammenfassen

Länge des Wortes w + x + y + z, $w \le x \le y \le z$;

Huffman-Baum erstellen!

2. Schritt: Kommt drauf an ...

Länge des Wortes w + x + y + z, $w \le x \le y \le z$;

$$egin{array}{c|cccc} a & b & c & d \\ \hline w & x & y & z \\ \hline \end{array}$$

Huffman-Baum erstellen!

1. Fall: $w + x \le z$

Dann y und w + x die kleinsten Häufigkeiten!

Länge des Wortes w + x + y + z, $w \le x \le y \le z$;

Huffman-Baum erstellen!

2. Fall: w + x > z

Dann y und z die kleinsten Häufigkeiten!

Länge des Wortes w + x + y + z, $w \le x \le y \le z$;

Länge des Codewortes?

Länge des Wortes w + x + y + z, $w \le x \le y \le z$;

$$egin{array}{c|cccc} a & b & c & d \\ \hline w & x & y & z \\ \hline \end{array}$$

Länge des Codewortes?

2(w+x+y+z) im zweiten Fall.

Länge des Wortes w + x + y + z, $w \le x \le y \le z$;

Länge des Codewortes?

$$3w+3x+2y+z = 2(w+x+y)+(w+x)+z \le 2(w+x+y+z)$$
 im ersten Fall.

Bemerkung: Zeichen in Reihenfolge aufsteigender Häufigkeiten in Linie schreiben oft hilfreich!

Gegenbeispiel:

Wir erinnern uns: T = (V, E) ist gerichteter Baum falls $\exists r \in V : \forall v \in V :$ Es gibt genau einen Weg von r nach v.

Wir erinnern uns: T = (V, E) ist gerichteter Baum falls $\exists r \in V : \forall v \in V :$ Es gibt genau einen Weg von r nach v.

In Einklang bringen mit "intuitivem Verständnis".

Wir erinnern uns: T = (V, E) ist gerichteter Baum falls $\exists r \in V : \forall v \in V :$ Es gibt genau einen Weg von r nach v.

In Einklang bringen mit "intuitivem Verständnis".

Zeige: $\forall v \in V : d^-(v) \leq 1$

Annahme: $\exists v \in V : d^-(v) \geq 2$

$$\Rightarrow |\{y \mid (y,v) \in E\}| \geq 2$$

$$\Rightarrow \exists x, y \in V : x \neq y \land (x, v) \in E \land (y, v) \in E.$$

27

Nach Definition gibt es Weg von v nach x und von v nach y.

 \Rightarrow Es gibt Weg von r nach v, dessen vorletzter Knoten x ist

und es gibt Weg von r nach v, dessen vorletzter Knoten y ist.

 \Rightarrow Es gibt mindestens zwei Wege von r nach v, im Widerspruch zur Definition.

Ein bisschen was zu Summen ...

M endliche Menge, $c:M\to\mathbb{R}$ Funktion, $T\subseteq M$.

$$\sum_{x \in T} c(x)$$

Ein bisschen was zu Summen ...

M endliche Menge, $c:M\to\mathbb{R}$ Funktion, $T\subseteq M$.

$$\sum_{x \in T} c(x)$$

Rekursive Definition!

Ein bisschen was zu Summen ...

M endliche Menge, $c: M \to \mathbb{R}$ Funktion, $T \subseteq M$.

$$\sum_{x \in \{\}} c(x) = 0$$

$$\forall T \subseteq M : \forall y \in M \setminus T : \sum_{x \in T \cup \{y\}} c(x) = \sum_{x \in T} c(x) + c(y)$$

G = (V, E) gerichteter Graph.

Zeige:
$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

G = (V, E) gerichteter Graph.

Zeige:
$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

Vollständige Induktion?

 \rightarrow Doof, wenn bei d^-, d^+ nicht der Graph mit angegeben wird ...

G = (V, E) gerichteter Graph.

Zeige:
$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

$$|E| = |\{(x,y) \mid (x,y) \in E\}|$$

Unterteilen nach erstem Knoten!

G = (V, E) gerichteter Graph.

Zeige:
$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

$$|E| = |\{(x,y) \mid (x,y) \in E\}|$$

= $|\bigcup_{x \in V} \{(v,y) \mid (v,y) \in E \land v = x\}|$

G = (V, E) gerichteter Graph.

Zeige:
$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

$$|E| = |\{(x,y) \mid (x,y) \in E\}|$$

$$= |\bigcup_{x \in V} \{(v,y) \mid (v,y) \in E \land v = x\}|$$

$$= \sum_{x \in V} |\{(v,y) \mid (v,y) \in E \land v = x\}|$$

G = (V, E) gerichteter Graph.

Zeige:
$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

$$|E| = |\{(x,y) \mid (x,y) \in E\}|$$

$$= |\bigcup_{x \in V} \{(v,y) \mid (v,y) \in E \land v = x\}|$$

$$= \sum_{x \in V} |\{(v,y) \mid (v,y) \in E \land v = x\}|$$

$$= \sum_{x \in V} |\{y \mid (x,y) \in E\}|$$

G = (V, E) gerichteter Graph.

Zeige:
$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

$$|E| = |\{(x,y) \mid (x,y) \in E\}|$$

$$= |\bigcup_{x \in V} \{(v,y) \mid (v,y) \in E \land v = x\}|$$

$$= \sum_{x \in V} |\{(v,y) \mid (v,y) \in E \land v = x\}|$$

$$= \sum_{x \in V} |\{y \mid (x,y) \in E\}|$$

$$= \sum_{x \in V} d^{+}(x)$$

G = (V, E) gerichteter Graph.

Zeige:
$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

$$|E| = |\{(x, y) \mid (x, y) \in E\}|$$

= $|\bigcup_{y \in V} \{(x, v) \mid (x, v) \in E \land v = y\}|$

liefert Aussage für d^- .

T = (V, E) gerichteter Baum.

Zeige: $\exists v \in V : d^{+}(v) = 0$.

T = (V, E) gerichteter Baum.

Zeige: $\exists v \in V : d^{+}(v) = 0.$

Annahme: $\forall v \in V : d^+(v) \ge 1$

T = (V, E) gerichteter Baum.

Zeige: $\exists v \in V : d^+(v) = 0$.

Annahme: $\forall v \in V : d^+(v) \ge 1$

$$\Rightarrow \sum_{v \in V} d^+(v) \ge |V|$$

42

T = (V, E) gerichteter Baum.

Zeige: $\exists v \in V : d^+(v) = 0$.

Annahme: $\forall v \in V : d^+(v) \ge 1$

$$\Rightarrow \sum_{v \in V} d^+(v) \ge |V|$$

Andererseits gilt $\sum_{v \in V} d^-(v) \leq \sum_{v \in V} 1 \leq |V|$

T = (V, E) gerichteter Baum.

Zeige:
$$\exists v \in V : d^{+}(v) = 0$$
.

Annahme: $\forall v \in V : d^+(v) \ge 1$

$$\Rightarrow \sum_{v \in V} d^+(v) \ge |V|$$

Andererseits gilt $\sum_{v \in V} d^-(v) \leq \sum_{v \in V} 1 \leq |V|$

Geht nur, wenn $\sum_{v \in V} d^-(v) = |V|$ gilt und $\forall v \in V : d^-(v) = 1$

T = (V, E) gerichteter Baum.

Zeige:
$$\exists v \in V : d^{+}(v) = 0$$
.

Annahme: $\forall v \in V : d^+(v) \ge 1$

$$\Rightarrow \sum_{v \in V} d^+(v) \ge |V|$$

Andererseits gilt $\sum_{v \in V} d^-(v) \leq \sum_{v \in V} 1 \leq |V|$

Geht nur, wenn $\sum_{v \in V} d^-(v) = |V|$ gilt und $\forall v \in V : d^-(v) = 1$

 $d^-(r)$ muss jedoch 0 sein!

T = (V, E) gerichteter Baum.

Zeige:
$$\exists v \in V : d^{+}(v) = 0$$
.

Annahme: $\forall v \in V : d^+(v) \ge 1$

$$\Rightarrow \sum_{v \in V} d^+(v) \ge |V|$$

Andererseits gilt $\sum_{v \in V} d^-(v) \leq \sum_{v \in V} 1 \leq |V|$

Geht nur, wenn $\sum_{v \in V} d^-(v) = |V|$ gilt und $\forall v \in V : d^-(v) = 1$

 $d^-(r)$ muss jedoch 0 sein! Widerspruch!