	Tasks (use MATLAB or OCTAVE to solve the following problems, ALL SOLUTIONS Should be submitted in m files)
Task 1	Hyperbolic Cosine The hyperbolic cosine function is defined by the equation
	$\cosh x = \frac{e^x + e^{-x}}{2}$
	Write a program to calculate the hyperbolic cosine of a user-supplied value x.
	Use the program to calculate the hyperbolic cosine of 3.0. Compare the answer
	that your program produces to the answer produced by the MATLAB intrinsic
	function cosh (x). Also, use MATLAB to plot the function cosh (x). What is
	the smallest value that this function can have? At what value of x does it occur?
Task 2	Plot the functions $f(y) = \sin y$ and $f(y) = \cos 2y$ for $y = 2 = 0$, the
Tusk Z	Plot the functions $f_1(x) = \sin x$ and $f_2(x) = \cos 2x$ for $-2\pi \le x \le 2\pi$ on the same axes, using a solid blue line for $f_1(x)$ and a dashed red line for $f_2(x)$. Then
	calculate and plot the function $f_3(x) = f_1(x) - f_2(x)$ on the same axes using a
	dotted black line. Be sure to include a title, axis labels, a legend, and a grid on
	the plot.
Task 3	Plot the function $f(x) = 2e^{-2x} + 0.5e^{-0.1x}$ for $0 \le x \le 20$ on a linear set of axes.
Task 4	
	Plot the function $y(x) = e^{-0.5x} \sin 2x$ for 100 values of x between 0 and 10.
	Use a 2-point-wide solid blue line for this function. Then plot the function
	$y(x) = e^{-0.5x} \cos 2x$ on the same axes. Use a 3-point-wide dashed red line for
	this function. Be sure to include a legend, title, axis labels, and grid on the
	plots.

Task 5	 Create a 3 × 3 matrix of zeros. Create a 3 × 4 matrix of zeros. Create a 3 × 3 matrix of ones. Create a 5 × 3 matrix of ones. Create a 4 × 6 matrix in which all the elements have a value of pi. Use the diag function to create a matrix whose diagonal has values of 1, 2, 3. Create a 10 × 10 magic matrix.
	 a. Extract the diagonal from this matrix. b. Extract the diagonal that runs from lower left to upper right from this matrix. c. Confirm that the sums of the rows, columns, and diagonals are all the same.
Task 6	Using the matrices below, perform the following operations in MATLAB®: $a = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad b = \begin{bmatrix} 7 & 5 & 6 \end{bmatrix} \qquad c = \begin{bmatrix} 19 & 23 \\ 31 & 29 \\ 17 & 13 \end{bmatrix}$ (a) Create a matrix called f with the transpose of the first column of c . (b) Create a matrix e with the first row of a , second row of b , and transpose of second column of c , in that order. (c) Insert matrix f between the third and second row of e to create a matrix called d . (d) Create a 3 × 3 matrix m with the diagonal elements of matrix a and all other elements as 0. (e) In the previous matrix m , fill the other diagonal of m with elements of b , and the remaining elements with corresponding elements of a .

Task 7	1. Plot x versus y for $y = \sin(x)$. Let x vary from 0 to 2π in increments of
	0.1π .
	2. Add a title and labels to your plot.
	3. Plot x versus y_1 and y_2 for $y_1 = \sin(x)$ and $y_2 = \cos(x)$. Let x vary from
	0 to 2π in increments of 0.1π . Add a title and labels to your plot.
	4. Re-create the plot from Exercise 3, but make the $\sin(x)$ line dashed and red.
	Make the $cos(x)$ line green and dotted.
	5. Add a legend to the graph in Exercise 4.
Task 8	Use the following commands, and see the difference in the plots on the same figure, and on 3 subplots. explain!
	x1 = 0:2:20;
	$y1 = \sin(2*x1);$
	plot(x1, y1)
	hold on
	x2 = 0:1:20;
	$y2 = \sin(2*x2);$
	plot(x2, y2)
	x3 = 0:0.1:20;
	$y3 = \sin(2*x3);$
	plot(x3, y3)