Problem Set 1 Due date: 10/25/17

Total Points: 40 (Weighted ×2.5 for rankings)

If you run out of room for an answer, use scratch paper and staple it to this sheet.

Name and Grade:		

1. (1 point) Given the following data:

Graph the data with the horizontal axis being x_1 and the vertical axis x_2 . Shade in points that correspond to y = 0 and leave hollow the ones that correspond to y = 1.

$\frac{x_2}{2}$	у
2	_
_	0
1	0
2	0
4	1
1	0
2	1
3	1
	2 4 1 2

- 2. (1 point) Draw the decision boundary (line) created by a single perceptron that classifies the data perfectly.
- 3. (2 points) Write the equation for the decision boundary created above assuming the perceptron outputs 1 when f(x) > 0 and 0 when f(x) < 0.
- 4. (8 points) You are now given a perceptron with a decision boundary $x_2 + x_1 4 = 0$. Assume the point at (3,2) is moved to (3,1). Use learning rate $\alpha = 0.2$.
 - (a) Graph this new decision boundary.
 - (b) Update the decision boundary using the misclassified point.
 - (c) Was α too high, too low, or fine? (circle one)
 - (d) If α was too high or too low, find a value of α that leads to perfect classification after one update step.

 $5.~(10~{
m points})$ You are given the following data. Hollow points correspond to class 0, shaded points correspond to class 1.

- (a) Draw a Multi-Layer Perceptron that perfectly classifies the data above. Make sure to write out the values for every weight and bias in your MLP.
- (b) On the graph above, draw the decision boundaries that correspond to each perceptron in your MLP.

6. (10 points) You have a neural network with three layers of nodes. Assume all input values are 1 and all biases are -1. Use the activation function $f(x) = x^2$. Draw a diagram of the network and write the output for each node in the final layer.

$$W_1 = \begin{bmatrix} 3 & 3 & 0 \\ 1 & 2 & 2 \\ 3 & 4 & 1 \\ 1 & 3 & 0 \end{bmatrix} \qquad W_2 = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 4 & 4 & 2 & 2 \\ 2 & 0 & 1 & 1 \end{bmatrix}$$

7. (3 points) The neural network learning algorithm (backpropagation) will be covered next week. Backpropagation requires a differentiable activation function, which is why neural networks do not use the Perceptron's step function. A popular activation function is the sigmoid function.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- (a) The sigmoid function is differentiable. Find its derivative.
- (b) Rewrite $\sigma'(x)$ in terms of $\sigma(x)$.
- 8. (2 points) What are the advantages of the Sigmoid function, $\sigma(x) = \frac{1}{1 + e^{-x}}$, over the step function? Circle all that apply.
 - (a) Sigmoids are differentiable.
 - (b) $\sigma(x)$ quickly approaches 1 as $x \to \infty$ and $\sigma(x)$ quickly approaches -1 as $x \to -\infty$, so networks learn quickly.
 - (c) Sigmoids have a simple derivative in terms of the original function, so they are faster to compute than a step function.
 - (d) The inflection point of $\sigma(x)$ is located on the y-axis, which leads to faster computations with vectorized representations
 - (e) Sigmoids can tell you how far away you are from the correct value based on the magnitude of x
- 9. (3 points) There are 16 two-valued boolean functions.

A	В	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	1	0	1	0	1	0	0	1

- (a) Which of the boolean functions above cannot be perfectly classified by a single perceptron?
- (b) What is/are the name(s) of the function(s) you found in part (a)? (A AND B, A NOT B, etc.)