Autumn 2019-20

1 4

А. Максимальная сумма

1 секунда, 256 мегабайт

Вам дан набор чисел, найдите пару с максимальной суммой по модулю 2^{32} .

Входные данные

В первой строке вам задано одно число $N\left(2\leq N\leq 2\cdot 10^5\right)$ — количество чисел в наборе. В следующей строке вам даны N чисел из набора a_i $\left(0\leq a_i<2^{32}\right)$.

Выходные данные

Выведите максимальную сумму по модулю $2^{32}\,$ пары чисел из набора.

входные данные
2 1 2
выходные данные
3

входные данные
2 4294967294 4294967295
выходные данные
4294967293

входные данные	
5 1 2 3 4 5	
выходные данные	
9	

В. Перестановки

1 секунда, 256 мегабайт

Вам задана перестановка длины N. Определите сколько её подотрезков являются перестановками.

Входные данные

В первой строке вам задано единственное число N $(1 \leq N \leq 5 \cdot 10^5)$ — длина исходной перестановки. В следующей строке вам задана сама перестановка в виде N целых чисел a_i $(1 \leq a_i \leq N)$ раделённых пробелами, все заданные числа попарно различны.

Выходные данные

В первой строке выведите единственное число k — количество подотрезков заданной перестановки, которые сами являются перестановками. В следующих k строках выведите пары чисел определяющие начало и конец подотрезка с перестановкой, в порядке от самого короткого подострезка к самому длинному.

_	
В	кодные данные
4	
1	2 3 4
Вь	ыходные данные
4	
1	1
1	2
1	3
1	<u> </u>

входные данные
4
1 4 3 2

выходные данные 2 1 1

С. Генетический код

1 секунда, 256 мегабайт

Генетический код — совокупность правил, согласно которым в живых клетках последовательность нуклеотидов (ген и мРНК) переводится в последовательность аминокислот (белок).

Правила генетического кода определяют, какой аминокислоте соответствует триплет (три подряд идущих нуклеотида) в мРНК. За редкими исключениями, каждому кодону соответствует только одна аминокислота. Конкретная аминокислота может кодироваться более чем одним кодоном, есть также кодоны, означающие начало и конец белка.

Таблица кодонов:

UUU F	=	CUU	L	AUU	I	GUU	٧
UUC F	=	CUC	L	AUC	I	GUC	٧
UUA I	L	CUA	L	AUA	I	GUA	٧
UUG I	L	CUG	L	AUG	М	GUG	٧
UCU S	5	CCU	Р	ACU	Т	GCU	Α
UCC S	5	CCC	P	ACC	T	GCC	Α
UCA S	5	CCA	Р	ACA	T	GCA	Α
UCG S	5	CCG	Р	ACG	T	GCG	Α
UAU \	Y	CAU	Н	AAU	N	GAU	D
UAC \	Y	CAC	Н	AAC	N	GAC	D
UAA S	Stop	CAA	Q	AAA	K	GAA	Е
UAG S	Stop	CAG	Q	AAG	K	GAG	Е
UGU (2	CGU	R	AGU	S	GGU	G
UGC (Ξ	CGC	R	AGC	S	GGC	G
UGA S	Stop	CGA	R	AGA	R	GGA	G
UGG V	N	CGG	R	AGG	R	GGG	G

Вам дана цепочка мРНК выведите соответствующий ей белок.

Входные данные

Вам дана строка состоящая из заглавных латинских букв 'U', 'C', 'A' и 'G', описывающая нуклеотиды некоторой мРНК, длина которой кратна трём и содержащая не более 10^5 нуклеотидов.

Выходные данные

Выведите описание соответствующего белка.

входные данные	
GGCGAAAAUGAGACCAUCUGUUGCGAUGAG	
выходные данные	
GENETICCDE	

GENETICCDE
входные данные
UUUUUCUUUUUCUUUUUCUUUUUCUUUUUCUUUUUCUUUU
выходные данные
FFFFFFFFFFFFFF

D. Самурай

1 секунда, 256 мегабайт

Райден — начинаущий самурай. Для своих тренировок он нарисовал на стальной пластине круг, и теперь хочет разрубить её, нанеся несколько ударов катаной. Все удары он будет наносить по прямой и хочет узнать на сколько кусков в итоге будет разрублена мишень. Для простоты Райден разместил свою мишень так что её центр совпадает с началом координат, а прямые, по которым он будет наносить удары отметил парами точек.

Входные данные

В превой строке вам заданы два числа N и R $(1 \leq N, R \leq 100)$ — радиус мишени и количество ударов. В следующих N строках вам даны описания ударов в виде пар точек x_1, y_1, x_2 и y_2 все координаты целочисленные и по модулю не превышают 100.

Выходные данные

Для каждого удара выведите количество кусков на которые будет разрублена мишень после данного удара.

```
входные данные
4 10
10 0 10 10
0 100 100 0
0 10 1 0
1 1 -1 -1

Выходные данные
1
1
2
4
```

Е. Двусторонняя игра

1 секунда, 256 мегабайт

Алиса и Боб играют в игру. Игра проходит на числовой прямой на числах от 1 до n включительно. На каждом шаге текущий игрок может поставить крестик на любую незанятую позицию в одной из двух областей ограниченных последним поставленным крестиком и двумя другими ближайшими к нему, игрок, который не может сделать ход, проигрывает. Для того чтобы следить за честностью они позвали вас в качестве судьи и предложили вам сделать первый ход. Вы знаете размер игрового поля и ход, который вы выбрали, определите кто победит при оптимальной игре, первый ход делает Алиса.

Входные данные

В первой строке вам задано единственное число T $(1 \leq T \leq 40000)$ — количество тестовых примеров. Далее в T строках дано само описание стартовых позиций в виде пар чисел N и K $(1 \leq K \leq N \leq 200)$ — длина игровой области и позиция в которую вы ставите первый крестик.

Выходные данные

В ответ на каждый тест в отдельной строке выведите единственное имя, если выигрывает Алиса, то выведите «Alice», в противном случае выведите «Воb».

```
Входные данные

2
1 1
2 1

Выходные данные

Воб Alice
```

F. Тайна

1 секунда, 256 мегабайт

Это интерактивная задача.

Жюри загадало несколько точек на плоскости, ваша задача угадать количество загаданных точек. Для этого вы можете задавать жюри запрос о сумме расстояний до всех загаданых точек от некоторой точки выбраной вами. Загаданные жюри точки лежат в пределах квадарата $[-10^5;10^5] \times [-10^5;10^5]$, они могут совпадать между собой, их будет не более пяти, ваши запросы должны лежать в пределах квадрата $[-10^6;10^6] \times [-10^6;10^6]$. Все координаты загаданных точек целочисленные. Все координаты точек из ваших запросов должны быть целочисленными.

Протокол взаимодействия:

• '? <x> <y>' ($|x|,|y|\leq 10^6$) — в ответ на данный запрос программа жюри выведет сумму расстояний от точки (<x>, <y>) до всех загаданных точек.

$$\sum_{i=1}^{n} \sqrt{(x-x_i)^2 + (y-y_i)^2}$$

• '! <n>' — этот запрос должен быть последним вашим запросом и должен содержать в себе количество точек загаданных жюри.

Каждый запрос должен находиться в отдельной строке. Количество запросов первого типа не должно превышать 50.

Входные данные

В ответ на каждый запрос первого типа система будет отвечать одним числом на отдельной строке с точностью 12 знаков.

Выходные данные

Каждый ваш запрос должен соответсвовать одному из видов указанному в условии и находиться на отдельной строке.

Протокол взаимодействия

Используйте cout.flush() после вывода запроса, чтобы сбросить данные из внутреннего буфера. После того как программа осуществила запрос второго типа она должна немедленно завершиться не выводя больше ничего.

```
ВХОДНЫЕ ДАННЫЕ

0.00000000000000+00

1.000000000000+00

ВЫХОДНЫЕ ДАННЫЕ

? 0 0

? 0 1
! 1
```

```
входные данные

2.000000000000e+00

0.00000000000e+00

выходные данные

? 0 0
? 0 1
! 2
```

В первом тесте жюри загадало точку (0, 0), а во втором две точки (0, 1).

G. Сложение

2 секунды, 64 мегабайта

Вам дан бесконечный массив состоящий из нулей. Обработайте ${\cal Q}$ запросов прибавления некоторого значения к подотрезку этого массива.

Входные данные

В первой строке дано одно число Q ($1 \le Q \le 2 \cdot 10^5$) — количество запросов. В следующих Q строках заданы запросы в виде троек чисел разделённых пробелом l_i , r_i и v_i ($1 \le l_i \le r_i \le 10^{18}$, $|v_i| \le 10^9$) — левая и правая граница запроса и значение которое нужно добавить ко всем элементам отрезка соответственно.

Выходные данные

В качестве ответа выведите контрольную сумму от массива после выполнения всех операций:

$$\sum_{i=1}^{\infty} i \cdot a[i]^2 \pmod{(10^9 + 7)}$$

Входные данные 4 1 1 1 3 5 4 3 4 1 1 5 -1 Выходные данные 159

Н. Кубы

8 секунд, 256 мегабайт

Вам дан набор целых чисел, для каждого из них проверьте является ли оно кубом какого-либо целого числа.

Входные данные

В первой строке вам дано единственное число N $(1 \le N \le 3 \cdot 10^6)$ — количество запросов. В следующих N строках вам заданы сами запросы $a_i \ |a_i| \le 10^{18}$.

Выходные данные

В ответ на каждый запрос выведите «NO», если число не является кубом целого числа, в противном случае выведите целое число, являющееся кубическим корнем.

Входные данные 5 1 8 27 5 15 Выходные данные 1 2 3 NO NO

Произведения

2 секунды, 256 мегабайт

Вам дан массив из N чисел, и запросы в виде пар чисел l и r. В ответ на каждый запрос выведите произведение всех чисел из массива с l-й по r-ю позицию.

Входные данные

В первой строке вам заданы два числа N и Q $(1 \leq N, Q \leq 5 \cdot 10^5)$ — размер исходного массива и количество запросов. В следующей строке вам через пробел заданы N чисел a_i $(0 \leq a_i \leq 10^9)$ — элементы массива. Далее в Q строках вам разделёнными пробелом парами чисел l и r $(1 \leq l \leq r \leq N)$ заданы запросы.

Выходные данные

В ответ на каждый запрос в отдельно строке выведите произведение всех чисел из массива с l-й по r-ю позицию по модулю 10^9+7 .

входные	данные
5 5	
1 2 3 4 5	
1 2	
2 3	
3 4	
4 5	
3 3	

выходные данные2
6
12
20
3

J. Непростой кузнечик

1 секунда, 256 мегабайт

Кузнечик Пётр живёт на числовой прямой и ему нужно попасть из точки 1 в точку n, он может прыгать только в точки чьи координаты делятся на координаты его текущей точки, то есть из точки i прыжок он может осуществить только в точки 2i, 3i, 4i, Помогите ему определить сколькими путями он сможет это сделать, так как ответ может быть очень большой выведите его по модулю $10^9 + 7$.

Входные данные

В единственной строке вам дано одно число $n\ (1 \le n \le 10^{12})$ — пункт назначения кузнечика.

Выходные данные

Выведите единственное число — ответ на задачу.

входные данные	
10	
выходные данные	
2	

входные данные	
20000	
выходные данные	
8016	

К. Сумма цифр

1 секунда, 256 мегабайт

На день рождения Василию подарили число. После некоторых исследований он решил что это число очень маленькое и решил его увеличить. Для этого он будет использовать следующий алгоритм: он проведёт K шагов, на каждом шаге между каждой парой цифр числа, он будет вставлять их сумму.

Входные данные

В первой строке вам задано целое число K $(0 \le K \le 40)$ — количество шагов алгоритма. В следующей строке вам задано целое число N $(0 < N < 10^5)$ — число, которое Василий получил на день рождения.

Выходные данные

Так как само число получится очень большим, выведите сумму его цифр.

входные данные	
1 11	
выходные данные	
4	

 $99 \to 9189 \to 910198179$

18.04.2021 Задачи - Codeforces

Codeforces (c) Copyright 2010-2021 Михаил Мирзаянов Соревнования по программированию 2.0