Populációdinamika

Kovács Kristóf Péter

May 29, 2017

Kép: Fox and Hare, hannahaha (devianart), 2011.

A program

A program két állatcsoport, számának változásait mutatja be, egy ragadozókból állóét, és annak zsákmányáét. Nem differenciálegyenleteket használ, hanem minden állatot egyenként szimulál.

Állatok szimulálása

Egy állat véletlenszerúen talál táplálékot, melyet egy faktor befolyásol (például a zsákmány száma). Ha nem talál semennyit, elpusztul. Ha egy bizonyos mennyiséghez hozzájut szaporodni fog.

Egy jóllakott hím és nőstény állat a szaporulatnak megfelelő utódot hoz létre. A nemeket az állatok véletlenszerűen kapják.

Az állatoknak van egy megadott élettartama is.

Léptetés

Az állatokat két láncolt listában tároltam. Egy körben ezeken a listákon iterálnak végig ciklusok. A sorra kerülő állat élelmet keres, majd, ha eleget talált, egy szintén jóllakott párt.

A párkeresés a már korábban táplálkozott állat közül történik. A párzás egyel csökkenti a két példány éhségét, így nem kerülnek többször kiválasztásra.

Egy kör lejátszása emiatt a módszer miatt magas példányszám mellett igen hosszúra nyúlhat.

Eremények

A program nagyon érzékeny volt a kezdeti feltételekre. Sokszor előfordult, hogy pár kör alatt kihalt egyik vagy másik faj, vagy a számuk fokozatosan nőtt, amíg a program túlzottan le nem lassult.

Kapott adatok

Az alábbi diagram egy fenntartható arányt mutat:

Kezdeti feltételek:

	róka	nyúl
példányszám	10	100
élettartam	7	3
napi élelem	2	(1)

a rókák 11-szer annyi nyúl mellett vadásznak 100%-os sikerrel

Megfigyelhető, hogy a nyulak száma mindig 1000 köré esik vissza, ennek oka, hogy a rókák itt nem tudták szabályozni a nyulak számát, e miatt be kellett vezetni a nyulaknak is egy táplálékforrást, ami 1000 nyulat tud megfelelően eltartani. Az arány közel ugyanaz maradt, mint kezdetben, azaz 11-szeres.

Ezt azt jelzi, hogy mérvadóan csak a táplálékforrás szabályozta az populációt.

A projekt

Létrehozás

A projekt a **cmake** segítségével jön létre. A C++ és IATEX fájlok fordítását, valamint az adatok Gnuplottal történő ábrázolását CMakeList.txt-k vezérlik.

A projekt legfelső szintjén csak az almappák vannak megadva. Az összetevők négy almappába vannak rendezve: kettő a programnak (futtatható és egyéb programrészek), egy a plottolásnak és egy az ezen dokumantum létrehozásához szükséges forrásoknak.

Három target szerepel a makefile-okban. Mindegyiknek feltétele az előtte levő megléte, tehát, ha üresen indítjuk el a dokumentumot, lefordulnak a forrásfájlok is, stb...

$szim_futtatas$

Gyakorlatilag a program lefordítása és futtatása. A program által kiadott adatsortól függ, amely annak a **custom_command**-nak a kimenete, amely a programrészek lefordítását és összelinkelését vezérlő alprojektet indítja el.

plottolas

A kiadott adatsort ábrázolja a Gnuplot programmal, az elkészült png fáljtól függ. Az ezt létrehozó custom_command a konzolon is beírható

> gnuplot script.p

parancsot hajtja végre. Szükséges hozzá még a Gnuplot package.

dokumentum

A végső PDF létrehozásáért felel. Egy kiegészítő cmake fájlt haszál fel, amit a mappája tartalmaz is. A latex fordító igen érzékeny a képek helyének hivatkozásaira, ezért a használt **UseLA-TEX.cmake** minden képet lemásol és megfelelő útvonalat alkotó mappákba rakja őket. A még nem plottolt ábrákkal ezt nem tudná megtenni, ezért helyettük felülírhatő cserefájlokat generál.

Megosztás

A programot és annak változásait a saját gépemen a **git** segítségével mentettem el a *git add* . és *git commit* parancsokkal a helyi repository-ba.

A kész mentéseket a git push paranccsal töltöttem fel a korábban elkészített online repositoryba, előtte beállítva annak url-jét a git remote add paranccsal.