The Mathematics and Statistics of Infectious Disease Outbreaks

Michael Höhle¹

¹Department of Mathematics Stockholm University, Sweden

L9: Univariate outbreak detection¹

¹LaMo: 2020-08-06 @ 15:53:31

MT3002 Michael Höhle 1/28

Overview

- Monitoring of univariate count data time series
 - Statistical Framework for Aberration Detection
 - Simple Algorithm for Ad-Hoc Detection
 - Farrington algorithm and beyond
- A System for Automated Outbreak Detection in Germany
- Discussion

MT3002 Michael Höhle 2 / 28

Outline

- Monitoring of univariate count data time series
 - Statistical Framework for Aberration Detection
 - Simple Algorithm for Ad-Hoc Detection
 - Farrington algorithm and beyond

MT3002 Michael Höhle 3 / 28

German Infection Protection Act (IfSG) data from the Robert Koch Institute (up to W40-2011):

Monitoring count time series

Example: Monitoring German Salmonella Newport Cases

German Infection Protection Act (IfSG) data from the Robert Koch Institute (up to W40-2011):

German Infection Protection Act (IfSG) data from the Robert Koch Institute (up to W40-2011):

German Infection Protection Act (IfSG) data from the Robert Koch Institute (up to W40-2011):

German Infection Protection Act (IfSG) data from the Robert Koch Institute (up to W40-2011):

Monitoring count time series

Example: Monitoring German Salmonella Newport Cases

German Infection Protection Act (IfSG) data from the Robert Koch Institute (up to W40-2011):

MT3002 Michael Höhle 4 / 28

German Infection Protection Act (IfSG) data from the Robert Koch Institute (up to W40-2011):

During Oct-Nov 2011 there was an outbreak associated with mung bean sprouts (RKI, 2012)

MT3002 Michael Höhle 4/28

Example – The EuroMOMO project (1)

- European monitoring of excess mortality for public health action (EuroMOMO)
- Aim: develop and strengthen real-time monitoring of mortality across Europe in order to enhance the management of serious public health risks such as pandemic influenza, heat waves and cold snaps
- Main outcome of mortality monitoring: excess mortality
- In this course: Focus on monitoring aspect

MT3002 Michael Höhle 5 / 28

Example - The EuroMOMO project (2)

Weekly danish mortalities 2000-2008 in 8 age-groups as provided by Statens Serum Institute (Höhle and Mazick, 2010).

MT3002 Michael Höhle 6/28

Monitoring count time series

Example – The EuroMOMO project (2)

Weekly danish mortalities 2000-2008 in 8 age-groups as provided by Statens Serum Institute (Höhle and Mazick, 2010).

MT3002 6 / 28 Michael Höhle

Outline

- Monitoring of univariate count data time series
 - Statistical Framework for Aberration Detection
 - Simple Algorithm for Ad-Hoc Detection
 - Farrington algorithm and beyond

MT3002 Michael Höhle 7/28

Statistical Framework for Aberration Detection (1)

- Univariate time series $\{y_t, t = 1, 2, ...\}$ to monitor
- For each time t we differentiate between two underlying states: in-control (everything is fine) or out-of-control (something is wrong).
- At time $s \ge 1$, the available information is $y_s = \{y_t; t \le s\}$.
- Based on y_s an automatic detection procedure has to decide if there is unusual activity at time s (or not).

MT3002 Michael Höhle 8/28

Statistical Framework for Aberration Detection (2)

- The detectors are initially only based on the one-step-ahead predictive distribution at each time point (Shewhart-like control chart):
 - Let $G(y_s|y_1,\ldots,y_{s-1};\theta)$ be the distribution of Y_s in case everything is in-control.
 - If the actual observed value $Y_s = y_s$ is extreme in G, this is evidence against things being in-control.
 - The alarm threshold $a_{1-\alpha,s}$ at each time point is calculated as the $(1-\alpha)$ 'th quantile of the predictive distribution. If $y_s > a_{1-\alpha,s}$ then we have an alarm.
- This can be generalized to more sequential control charts accumulating information, e.g. cumulative sum (CUSUM) methods.

MT3002 Michael Höhle 9 / 28 Monitoring count time series

Intermezzo: Estimation, prediction and uncertainty

- Data y are the observed value of a random variable Y characterized by a parametric model with density $f(\mathbf{y}; \boldsymbol{\theta})$.
- Aim: predict the value of a random variable **Z**, which, conditionally on Y = y has distribution function $G(z|y;\theta)$, depending on θ .
- Simplest form of the prediction problem:

$$Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} f(y; \boldsymbol{\theta}),$$

and the task is to predict $Z = Y_{n+1}$.

• In time series 1-step-ahead prediction the observations are correlated and the aim is to predict $Z = Y_{n+1}$.

MT3002 Michael Höhle 10 / 28

Outline

- Monitoring of univariate count data time series
 - Statistical Framework for Aberration Detection
 - Simple Algorithm for Ad-Hoc Detection
 - Farrington algorithm and beyond

MT3002 Michael Höhle 11/28

Example: Predicting a new $N(\mu, \sigma^2)$ observation (1)

• Let $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ with unknown μ and σ^2 . Then

$$\frac{Y_{n+1}-\overline{Y}}{s\sqrt{1+\frac{1}{n}}}\sim t(n-1),$$

where $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$ are the sample mean and sample variance of Y, respectively.

• A $(1-2\alpha) \cdot 100\%$ two-sided **prediction interval** (PI) is thus given by

$$\overline{Y} \pm t_{1-\alpha}(n-1) \cdot s \cdot \sqrt{1+\frac{1}{n}}$$
.

MT3002 Michael Höhle 12 / 28

Example: Predicting a new $N(\mu, \sigma^2)$ observation (2)

• A plug-in $(1-2\alpha) \cdot 100\%$ two-sided **prediction interval** for Y_{n+1} is:

$$\overline{Y} \pm z_{1-\alpha} \cdot s$$
.

• Both of these are not to be confused with a $(1-2\alpha) \cdot 100\%$ two-sided **confidence interval** for μ :

$$\overline{Y} \pm z_{1-\alpha} \cdot \frac{s}{\sqrt{n}}$$
.

MT3002 Michael Höhle 13 / 28

Example: Predicting a new $N(\mu, \sigma^2)$ observation (3)

• Illustration: Pls based on n = 5 observations from $N(\mu, \sigma^2)$.

• For n=5 the 95% plug-in PI corresponds to a 85% PI. The 95% CI for μ is 7.2–9.6, which only corresponds to a 46% PI.

MT3002 Michael Höhle 14/28

Monitoring count time series

Summary: Ad-Hoc Outbreak Detection Algorithm

- Predict value y_s at time $s = (s^w, s^y)$ using a set of reference values from window of size 2w + 1 up to b years back.
- Let n = b(2w + 1) and compute threshold as the upper 97.5% quantile of the predictive distribution for y_s , i.e.

$$a_{0.975,s} = \overline{y} + t_{0.975}(n-1) \cdot s \cdot \sqrt{1 + \frac{1}{n}}.$$

• Sound alarm, if $y_s > a_{0.975,s}$.

MT3002 Michael Höhle 15 / 28

Outline

- Monitoring of univariate count data time series
 - Statistical Framework for Aberration Detection
 - Simple Algorithm for Ad-Hoc Detection
 - Farrington algorithm and beyond

MT3002 Michael Höhle 16/28

Challenges of surveillance data

Issues making the statistical modelling and monitoring of surveillance time series a challenge:

- Lack of clear case definitions
- Under-reporting and reporting delays
- Often no denominator data
- Seasonality
- Low number of reported cases
- Presence of past outbreaks
- Existence of concurrent "explanatory" processes

MT3002 Michael Höhle 17/28

Farrington algorithm (1) – basic model

• Predict value y_s at time $s = (s^w, s^y)$ using a set of reference values from window of size 2w + 1 up to b years back.

Prediction at time t=718 with b=5,w=4

• Fit overdispersed Poisson generalized linear model (GLM) to the b(2w+1) reference values where $\mathsf{E}(y_t) = \mu_t$, $\mathsf{Var}(y_t) = \phi \cdot \mu_t$ with $\log \mu_t = \alpha + \beta t$ and $\phi > 0$.

Farrington algorithm (2) – outbreak detection

Predict and compare:

- An approximate (1α) one-sided prediction interval for y_s based on the GLM has upper limit $a_{1-\alpha,s} = \hat{\mu}_s + z_{1-\alpha} \cdot \sqrt{\text{Var}(y_s \hat{\mu}_s)}$
- If the oserved y_s is greater than $a_{1-\alpha,s}$, then flag s as outbreak

Refinements of the algorithm include:

- Computation of the prediction interval on a transformed scale
- Use a re-weighted fit with weights based on Anscombe residuals in order to correct for outliers
- Low count protection

MT3002 Michael Höhle 19/28

Application: Danish mortality data (age group 75-84 years)

• Results of the old and improved Farrington algorithm, respectively, with w=4, b=5 and $\alpha=0.005$ starting at W40-2007:

MT3002 Michael Höhle 20/28

Outline

- 2 A System for Automated Outbreak Detection in Germany

System Design

 Salmon, Schumacher, and Höhle (2016) describes a system integrating outbreak detection algorithms into the epidemiological workflow

Figure source: Salmon, Schumacher, and Höhle (2016)

• Example of using machine learning methods for the more than 30,000 time series

23 / 28

Application on Salmonella Montevideo 2009-2010

Results from the extended Farrington procedure using last five years as reference values:

Michael Höhle MT3002

Salmonella Report for W41–46 of 2013

Weekly Report at National Level:

Serotype	Week 41				Week 42				Week 43				Week 44				Week 45				Week 46			
	Уŧ	Ot	μŧ	Ut	Уt	Ot	μŧ	Ut	Уŧ	ot	μŧ	Ut	Уŧ	Ot	μŧ	Ut	Уŧ	ot	μŧ	Ut	Уt	ot	μŧ	Ut
Salmonella, all serotypes	466	27	512	691	373	23	485	650	370	16	461	620	356	15	439	601	411	8	417	580	290	14	390	540
S. Typhimurium	107	2	151	221	103	1	145	214	108	2	140	208	106	5	134	202	142	4	127	191	90	4	120	181
S. Enteritidis	158	11	154	230	123	12	142	212	115	11	131	194	84	4	124	189	80	1	116	182	62	2	107	168
S. Infantis	25	6	9	18	16	3	8	17	8	1	8	18	10	-	8	17	2	-	7	17	5	-	7	16
S. Derby	4	NA	5	11	2	NA	5	11	7	NA	5	11	3	NA	5	11	4	NA	5	11	1	-	5	11
S. Manhattan	7	NA	0	2	4	NA	0	2	4	NA	0	2	3	NA	0	2	3	NA	0	2	NA	NA	0	2
S. Typhimurium, monophasic	2	NA	0	2	2	NA	0	2	2	NA	0	2	6	NA	0	2	5	NA	0	3	3	NA	0	3
S. Agona	2	NA	1	4	7	4	1	4	2	1	1	4	3	2	1	4	1	NA	1	4	3	2	1	4
S. Virchow	4	NA	3	8	1	NA	3	8	3	NA	3	7	1	NA	3	7	5	1	3	7	1	NA	3	7
S. Muenchen	3	NA	1	4	3	NA	1	4	NA	NA	1	4	3	NA	1	4	2	NA	1	4	NA	NA	1	4

Table source: Salmon, Schumacher, and Höhle (2016)

Discussion

Outline

- Monitoring of univariate count data time series
- A System for Automated Outbreak Detection in Germany
- 3 Discussion

Discussion

- The presented methods are implemented in the R package surveillance (Salmon, Schumacher, and Höhle, 2016)
- Developing, maintaining and improving automatic outbreak detection systems is an interdisciplinary activity!
 - Even more work could be put into user adaptation.
 - Delay adjusted monitoring (Salmon, Schumacher, Stark, et al., 2015)
- The system proved to be a good insurance against missing anything important see e.g. Gertler et al. (2015)

Literature I

Höhle, M. and A. Mazick (2010). "Aberration detection in R illustrated by Danish mortality monitoring". In: Biosurveillance: A Health Protection Priority. Ed. by T. Kass-Hout and X. Zhang. CRC Press, pp. 215-238.

RKI (2012). "Salmonella Newport-Ausbruch in Deutschland und den Niederlanden, 2011". In: Epidemiologisches Bulletin 20. Available as http://www.rki.de/DE/Content/Infekt/EpidBull/ Archiv/2012/Ausgaben/20_12.pdf, pp. 177-184.

MT3002 Michael Höhle 27 / 28

Literature II

Salmon, M., D. Schumacher, and M. Höhle (2016). "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance". In: Journal of Statistical Software 70.10. Also available as vignette of the R package surveillance. DOI: 10.18637/jss.v070.i10.

Salmon, M., D. Schumacher, K. Stark, and M. Höhle (2015). "Bayesian outbreak detection in the presence of reporting delays". In: Biometrical Journal 57.6.

http://dx.doi.org/10.1002/bimj.201400159, pp. 1051-1067.