数据手册

STM8S105xx

基础型系列,16MHz STM8S 8位单片机,Flash最多32K字节集成数据EEPROM,10位ADC,定时器,UART,SPI,I²C

芯片特点

内核

- 高级STM8内核,具有3级流水线的哈佛 结构
- 扩展指令集

存储器

- 中等密度程序和数据存储器:
 - 最多32K字节Flash; 10K次擦写后在55°C环境下数据可保存20年
 - 数据存储器:多达1K字节真正的数据 EEPROM:可达30万次擦写
- RAM: 多达2K字节

时钟、复位和电源管理

- 3.0~5.5V工作电压
- 灵活的时钟控制,4个主时钟源
 - 低功率晶体振荡器
 - 外部时钟输入
 - 用户可调整的内部16MHz RC
 - 内部低功耗128kHz RC
- 带有时钟监控的时钟安全保障系统
- 电源管理:
 - 低功耗模式(等待、活跃停机、停机)
 - 外设的时钟可单独关闭
- 永远打开的低功耗上电和掉电复位

中断管理

- 带有32个中断的嵌套中断控制器
- 6个外部中断向量,最多37个外部中断

定时器

- 2个16位通用定时器,带有2+3个 CAPCOM通道(IC、OC 或 PWM)
- 高级控制定时器: 16位,4个CAPCOM 通道,3个互补输出,死区插入和灵活的 同步
- 带有8位预分频器的8位基本定时器

- 自动唤醒定时器
- **2**个看门狗定时器:窗口看门狗和独立看 门狗

通信接口

- 带有同步时钟输出的UART,智能卡, 红外IrDA,LIN接口
- SPI接口最高到8Mbit/s
- I²C接口最高到400Kbit/s

模数转换器(ADC)

■ 10位,±1LSB的ADC,最多有10路通道,扫描模式和模拟看门狗功能

I/O 端口

- 48脚封装芯片上最多有38个I/O,包括16个高吸收电流输出
- 非常强健的I/O设计,对倒灌电流有非常 强的承受能力

开发支持

■ 单线接口模块(SWIM)和调试模块(DM),可以方便地进行在线编程和非侵入式调试

表1 产品列表

系列	型号			
STM8S105xx	STM8S105K4, STM8S105K6, STM8S105S4, STM8S105S6, STM8S105C4, STM8S105C6			

本文档英文原文下载地址:

http://www.st.com/stonline/products/literature/ds/14771.pdf

2 详细描述

STM8S105xx基础型系列8位单片机提供容量为16K~32K字节的Flash程序存储器,集成真正的数据EEPROM。在STM8S微控制器系列的参考手册(RM0016)中,被归为中密度系列。

STM8S105xx基础型系列所有的单片机具有以下性能:

- 更低的系统成本
 - 内部集成真正的EEPROM数据存储器,可以达到30万次的擦写周期
 - 高度集成了内部时钟震荡器、看门狗和掉电复位功能
- 高性能和高可靠性
 - 16MHz CPU时钟频率
 - 强大的I/O功能,拥有分立时钟源的独立看门狗
 - 时钟安全系统
- 缩短开发周期
 - 可根据具体的应用在通用的产品系列中选择,具有合适的封装、存储器大小和外设模块的芯片
 - 完善的文档和多种开发工具选择
- 产品可延续性
 - 最新技术打造的高水平内核和外设
 - 系列产品广泛适应2.95V~5.5V的工作电压

表2 STM8S105xx基础型系列产品特点

芯片型号	引脚	GPIO 数目	外部中断引脚	定器入获出较道时输捕输比通道	定时器互补输出	AD转换通道	高吸收电流I/O	Flash程 序存储器 (字节)		数据 EEPRO M存储 器 (字节)	RAM (字节)	外设
STM8S105C6	48	38	35	9	3	10	16		32K	1024	2K	高级控制定时器(TIM1)
STM8S105C4	48	38	35	9	3	10	16		16K	1024	2K	通用定时器(TIM2和TIM3)
STM8S105S6	44	34	31	8	3	9	15	中密	32K	1024	2K	基本定时器(TIM4)
STM8S105S4	44	34	31	8	3	9	15	度	16K	1024	2K	SPI, I ² C, UART
STM8S105K6	32	25	23	8	3	7	12		32K	1024	2K	窗口看门狗,独立看门狗
STM8S105K4	32	25	23	8	3	7	12		16K	1024	2K	ADC

图4 LQFP44引脚图

- 1. (HS)高吸收电流。
- 2. (T)真正的开漏输出(没有P-buffer和连接到Voo的保护二极管)。
- 3. []复用功能重映射选项(如果相同的复用功能显示两次,用户也只能选择其中的一个,并不是其中一个是另一个的备份)。

工作条件

表17 通用操作条件

符号	参数	条件	最小值	最大值	单 位
f _{CPU}	内部CPU时钟频率		0	16	MHz
V_{DD}/V_{DD_IO}	标准工作电压		2.95	5.5	V
P _D	功率消耗 温度标号6: T _A =85℃ 温度标号3: T _A =125℃	44和48脚的产品,8个标准端口的输出,同时有2个大电流吸收端口和2个开漏端口 ⁽¹⁾ 。		443	mW
	功率消耗 T _A =125℃ 温度标号3	32脚的产品,8个标准端口的输出,同时有2个大电流吸收端口 ⁽¹⁾ 。		360	11100
T _A	立体沿岸(沿岸村口C)	最大功率消耗	-40	85	
	环境温度(温度标号6)	低功率消耗 ⁽²⁾	-40	105	
	五秦沮丧(沮丧扫5)	最大功率消耗	-40	125	
	环境温度(温度标号3)	低功率消耗 ⁽²⁾	-40	140	$^{\circ}\!\mathbb{C}$
T _J	结温度范围		见表		

- 1. 有关计算方法,请参考9.4节。
- 2. 在低功耗状态,只要TJ不超过TJMAX (请参考9.4节), TA就可以延伸到这个范围。

图10 不同f_{CPUmax}及V_{DD}对比

表18 在上电/掉电时的工作条件

符号	参数	条件	最小值	典型值	最大值	单位
t _{VDD}	V _{DD} 上升速率		2 ⁽¹⁾		8	110/\/
	V _{DD} 下降速率		2 ⁽¹⁾		∞	μs/V
t _{TEMP}	复位释放延迟	V _{DD} 上升			1.7 ⁽¹⁾	ms
V _{IT+}	上电复位阀值		2.65	2.8	2.95	V
V _{IT-}	掉电复位阀值		2.58	2.7	2.88	V
V _{HYS(BOR)}	掉电复位滞后			70		mV

^{1.} 由设计保证,未在生产上测试。

