

Reg. No. :				2			5,4163
		in the second			 	-	 _

Question Paper Code: 50384

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third/Fifth/Sixth Semester

Computer Science and Engineering & Mark M. and M. C. CS6303 - COMPUTER ARCHITECTURE

Common to: Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Robotics and Automation Engineering, Information Technology (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What are components of a computer system?
- 2. What are the addressing modes?
- 3. Subtract $(11011)_2 (10011)_2$ using 2's complement.
- 4. Devide $(1001010)_2 \div (1000)_2$.
- 5. Mention the various types of pipelining.
- 6. Mention the various phase in executing an instruction.
- 7. Define strong scaling and weak scaling.
- 8. Difference between Fine-grained multithreading and Coarse-grained multithreading.
- 9. What is virtual memory?
- 10. How many total bits are required for a direct-mapped cache with 16 KB of data and 4-word blocks, assuming a 32-bit address?

PART - B

(5×13=65 Marks)

- 11. a) Explain various instruction formats and illustrate the same with an example. (13) (OR)
 - b) Explain with an example about the operations and Operands of the Computer (13)Hardware?

Downloaded From Rejinpaul Network

www.rejinpaul.com

50	384		
12.	a)	Illustrate the division algorithm with an example.	(13)
		(OR)	
	b)	i) Add the numbers $(0.5)_{10}$ and $(0.4375)_{10}$ using the floating point addition.	$(6\frac{1}{2})$
		ii) Multiply the numbers $(0.5)_{10}$ and $(0.4375)_{10}$ using the floating point	6½)
13.	a)	Explain in detail the operation of the data path.	(13)
		(OR)	
	b)	Explain the pipeline hazard in detail.	(13)
14.	a)	Explain with diagrammatic illustration Flynn's classification.	(13)
	,	(OR)	(10)
	b)	100 marginess Marginess Marginess (100)	(13)
15.			
1(5)	linn'	(OR) _ (OR) _	(13)
	b)		(13)
			(19)
		PART – C (1×15=15 Mar	ks)
16.	a)	i) Suppose you want to achieve a speed-up of 90 times faster with 100 processors. What percentage of the original computation can be sequential?	(8)
		ii) Suppose you want to perform two sums: one is a sum of 10 scalar variables and one is a matrix sum of a pair of two-dimensional arrays, with dimensions 10 by 10. For now let's assume only the matrix sum is parallelizable; we'll see soon how to parallelize scalar sums. What speed-up do you get with 10 versus 40 processors? Next, calculate the speed-ups assuming the matrices grow to 20 by 20.	(7)
		(OR)	
		Assume the miss rate of an instruction cache is 2% and the miss rate of the data cache is 4%. If a processor has a CPI of 2 without any memory stalls and the miss penalty is 100 cycles for all misses, determine how much faster a processor would run with a perfect cache that never missed. Assume the frequency of all	

to require a contract of the contract of the contract of the contract of the Companies

(15)

loads and stores is 36%.