EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

cited in the European Search Report of EPO37608841 Your Ref.: NSC-M817-50

PUBLICATION NUMBER

: 07310141

PUBLICATION DATE

28-11-95

APPLICATION DATE

06-07-94

APPLICATION NUMBER

06154512

APPLICANT: KAWASAKI STEEL CORP;

INVENTOR: SAITO YOSHIYUKI;

INT.CL.

: C22C 38/00 C21D 8/02 C22C 38/18

TITLE

: SEAWATER RESISTANT STEEL FOR HIGH TEMPERATURE MOISTY ENVIRONMENT

AND ITS PRODUCTION

ABSTRACT :

PURPOSE: To produce a seawater resistant steel small in the amt. of corrosion and small in pitting corrosion in a high temp, moisty environment such as the ballast tank of a tanker.

CONSTITUTION: A steel essentially consisting of 0.5 to 3.5% Cr and contg. one or more kinds of ≤1.5% Ni and ≤0.8% Mo and/or one more kinds of 0.005 to 0.05% Nb and 0.005 to 0.05% Ti or a steel having a compsn. similar to the same is subjected to hot rolling and is thereafter subjected to accelerated cooling at a cooling rate in the range of 3 to 20°C/sec, and the cooling is stopped in the range of 400 to 600°C.

COPYRIGHT: (C)1995,JPO

THE PLOE BLANK (1877)

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-310141

(43)公開日 平成7年(1995)11月28日

(51) Int.Cl.6

識別記号 庁内整理番号 技術表示箇所

C 2 2 C 38/00

301 F

FΙ

C 2 1 D 8/02

A 7217-4K

C 2 2 C 38/18

審査請求 未請求 請求項の数8 OL (全 13 頁)

(71)出願人 000001258 (21)出願番号 特願平6-154512 川崎製鉄株式会社 兵庫県神戸市中央区北本町通1丁目1番28 平成6年(1994)7月6日 (22)出願日 (72)発明者 塩谷 和彦 (31) 優先権主張番号 特願平5-169907 千葉県千葉市中央区川崎町1番地 川崎製 (32)優先日 平5(1993)7月9日 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 日本 (JP) (33)優先権主張国 (31) 優先権主張番号 特願平5-247934 (72) 発明者 今津 司 (32)優先日 平5(1993)10月4日 千葉県千葉市中央区川崎町1番地 川崎製 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平5-290157 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 平5(1993)11月19日 内 (32)優先日 (33)優先権主張国 日本(JP) 最終頁に続く

(54) 【発明の名称】 高温多湿環境用耐海水鋼およびその製造方法

(57)【要約】

【目的】 タンカーのパラストタンクなどのような高温 多湿環境下で腐食量が少なく、かつ孔食の少ない耐海水 鋼を提供する。

【構成】 Cr:0.5~3.5%を主成分とし、N

i:1.5%以下、Mo:0.8%以下のうちの1種以 上、および/または0.005~0.05%のNb、 0. 005~0. 05%のT1のうちの1種以上を含む 鋼、およびそのような組成の鋼を熱間圧延後、3~20 ℃/secの範囲の冷却速度で加速冷却し、400~6 00℃の範囲で冷却停止して製造する。

【特許請求の範囲】

【請求項1】 重量%でC:0.1 %以下、Si:0.50%以 下、Mn:1.50%以下、Al:0.005 ~0.050 %、Cr:0.50 ~3.50%を含み、残部がfeと不可避的不純物とからなる ことを特徴とする高温多温環境用耐海水鋼。

【請求項2】 重量%でC:0.1 %以下、Si:0.50%以 下、Mn: 1.50%以下、Al: 0.005 ~0.050 %、Cr: 0.50 ~3.50%であり、かつ1.5 %以下のNi、0.8%以下のNo の 1 種以上の合計を1.5 %以下含み、残部がFeと不可避 的不純物とからなることを特徴とする高温多温環境用耐 10 海水鐵.

【請求項3】 重量%でC:0.1 %以下、Si:0.50%以 下、Mn: 1.50%以下、Al: 0.005 ~0.050 %、Cr: 0.50 ~3.50%であり、かつ0.005 ~0.05%のNb、0.005 ~0. 05%のTiの1種以上の合計を0.005 ~0.05%含み、残部 がFeと不可避的不純物とからなることを特徴とする高温 多湿環境用耐海水鋼。

【請求項4】 重量%でC:0.1 %以下、Si:0.50%以 下、Mn: 1.50%以下、Al: 0.005 ~0.050 %、Cr: 0.50 の1種以上の合計が1.5%以下、さらに0.005~0.05% のNb、0.005~0.05%のTiの1種以上の合計を0.005~ 0.05%含み、残部がFeと不可避的不純物とからなること を特徴とする高温多湿環境用耐海水鋼。

【請求項5】 重量%でC:0.1 %以下、Si:0.50%以 下、Mn:1.50%以下、Al:0.005 ~0.050 %、Cr:0.50 ~3.50%を含み、残部がFeと不可避的不純物とからなる 蝌材を、熱間圧延後、3~20℃/secの範囲の冷却速度で 加速冷却し、該加速冷却を 400~ 600℃の温度で停止 し、以後空冷を行うことを特徴とする高温多湿環境用耐 30 海水鋼の製造方法。

【請求項6】 重量%でC:0.1 %以下、Si:0.50%以 下、Mn:1.50%以下、A1:0.005 ~0.050 %、Cr:0.50 ~3.50%であり、かつ1.5 %以下のNi、0.8%以下のNo の1種以上の合計を1.5%以下含み、残部がFeと不可避 的不純物とからなる鋼材を、熱間圧延後、3~20℃/sec の範囲の冷却速度で加速冷却し、該加速冷却を 400~ 6 00℃の温度で停止し、以後空冷を行うことを特徴とする 高温多湿環境用耐海水鋼の製造方法。

【請求項7】 重量%でC:0.1 %以下、Si:0.50%以 40 下、Ma:1.50%以下、Al:0.005 ~0.050 %、Cr:0.50 ~3.50%であり、かつ0.005 ~0.05%のNb、0.005 ~0. 05%のTiの1種以上の合計を0.005 ~0.05%含み、残部 がFeと不可避的不純物とからなる鋼材を、熱問圧延後、 3~20℃/secの範囲の冷却速度で加速冷却し、該加速冷 却を 400~ 600℃の温度で停止し、以後空冷を行うこと を特徴とする高温多湿環境用耐海水鋼の製造方法。

【請求項8】 重量%でC:0.1 %以下、Si:0.50%以 下、Mn: 1.50%以下、Al: 0.005 ~0.050 %、Cr: 0.50

の1種以上の合計が1.5%以下、さらに0.005~0.05% のNb、0.005~0.05%のTiの1種以上の合計を0.005~ 0.05%合み、残部がFeと不可避的不純物とからなる鋼材 を、熱間圧延後、3~20℃/secの範囲の冷却速度で加速 冷却し、該加速冷却を 400~ 600℃の温度で停止し、以 後空冷を行うことを特徴とする高温多湿環境用耐海水鋼 の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、船舶用鋼材にかかわ り、特に船舶における高温多湿環境、すなわちパラスト タンクや海水配管などが曝される厳しい環境に適用され る際に、船舶の腐食防止に関するメンテナンスフリー 化、安全性などをはかるための鋼材およびその製造方法 に関するものである。

[0002]

【従来の技術】国際海事機構(IMO) での規制により、19 93年7月以降に新造されるタンカーでは、ダブルハル構 造をとることが義務づけられている。ダブルハル区画は \sim 3.50%であり、かつ1.5%以下のNi、0.8%以下のMo 20 パラストタンクとして使用され、貨油タンクを保護した 構造となり、事故などの場合、漏れた油による海洋汚染 の防止を目的とするものである。

> 【0003】ダブルハル構造とすることにより、パラス トタンクの海水に曝される表面積が大幅に増大(2~3 倍) するため、塗装および防食面での問題点がクローズ アップされる。塗装としては、タールエポキシ樹脂塗料 を1~2回塗装するが、狭い空間での作業であり、3K の代表的な職場となっている。補修にいたっては新造の 際より多大な費用がかかり、危険性も高く、作業者不足 も問題である。防食面では、タールエポキシ樹脂塗料と 電気防食を併用しているが、パラストタンク内には、海 水が出入りし、厳しい腐食環境である。バラストタンク 内に海水がある場合は、電気防食の効果により、ほとん ど腐食を受けないが、海水に漬かっていないパラストタ ンク最上部およびアッパーデッキ裏は高温でかつ飛沫帯 という厳しい腐食環境となる。バラストタンク内に海水 がない場合は、高温多湿環境となり、電気防食の効果が 期待できず、タールエポキシ樹脂塗料のみの防食とな る。このようなパラストタンクの寿命は約10年といわれ ており、船の寿命(20年)の半分である。残り10年は補 修塗装で安全性を維持しなければならない。

【0001】バラストタンクはこのような厳しい腐食環 境と悪条件での塗装作業が大問題であり、鋼材面からの 改善すなわち高温多湿環境下での耐海水性に優れた船舶 用鋼材の開発が望まれている。一方、海洋環境に使用す ることを目的とした耐海水蜊の開発は、1960年半ばから 始まった。耐海水鋼における耐食性はさび層の特性に依 存し、そして、このさび層の特性には合金元素が関与し ていると考えられている。海洋大気部、飛沫帯、海中部 \sim 3.50%であり、かつ1.5%以下のNi、0.8%以下のNo 50 において耐食性に及ぼす合金元素の効果は違うが、一般

に、この環境においては、Cr、Ni、Mo、Cuが耐食性に有 効な元素といわれている。そして、この結果をもとにし て飛沫帯用、海中用、あるいは両用といった使用環境に 合わせて溶接構造用耐海水鋼が開発されてきた。これら は、水門、鋼矢板、ブイ、桟橋などに使用されている。

【0005】耐海水鋼の1例は、特開昭51-25420号公報 に開示されているが、これらの鋼材は上記のような海洋 構造物や港湾施設に使用され、その環境は大気温度程度 の海水で、本発明鋼が使用される環境、つまり海水が出 入りし、高温多湿なパラストタンク内環境とは腐食環境 10 が異なる。そのため、特開昭51-25420号に代表される耐 海水性鋼材はCuが必須元素となっているが、本発明鋼で はCuは添加していない。これは、バラストタンク内は高 温多湿で海水が出入りする腐食環境であり、Cuはこの環 境では耐食性には効果がない、もしくは耐食性に悪影響 を及ぼすと考えられるからである。

【0006】耐海水性を有し、Cuを添加していないもの としては特開平5-302148号公報があるが、これは強磁 性型のフェライトを得るために、Si: 0.5 ~ 2%、Al: 0.5~3%も含有している。他に特開昭64-79346号公報 20 が開示されている。これはAIを7~20%も含有するた め、鉄筋のようにほとんど溶接しない用途には問題ない が、本発明が適用されるパラストタンクのように溶接が 多い用途には問題がある。

[0007]

【発明が解決しようとする課題】現在、船舶に適用され ている鋼材は、強度、靭性、溶接性を考慮した成分設 計、プロセス設計により製造されているが、耐食性、防 食性に関しての対策はほとんど考慮されていないのが現 状である。そこで、本発明は合金元素の添加、圧延後の 30 加速冷却によって、特に腐食環境の厳しいパラストタン クや、海水配管用等に耐食性の優れた鋼材を提供するも

【0008】パラストタンクの腐食環境は、上述のよう に海水の出入りおよび高温多湿環境である。タンカーを 想定した場合の腐食環境は、次の通りである。中近東か ら日本に原油を輸送する場合、日本から中近東までは、 貨油タンクは空であり、船のパランスを保ち、安全航行 のためにバラストタンクに海水をほぼ満水にする。この 帯に近い状況である。貨油タンクに原油を満載し、中近 東から日本に向かう場合は、パラストタンクの海水は抜 き、空とする。この時のパラストタンク内は船底に残留 した海水と甲板からの熱で高温多湿状態となる。これら の腐食環境に曝される1サイクルは約40日間である。

【0009】本発明は、上記の問題を解決し、高温多湿 の環境下で耐海水性が優れる鋼材およびその製造方法を 提供することを目的とする。

[0010]

【課題を解決するための手段】発明者らは、これらの腐 50 徴とする高温多湿環境用耐海水鋼の製造方法であり、第

食環境を模擬するために、図1に示すような腐食試験装 置を用いて合金元素の影響を調査した。その結果、以下 に示す化学組成を有する鋼材の耐食性が優れていること を見出した。そして、適正な製造方法により、さらに耐 食性が向上できることを見出した。

【0011】すなわち本発明は次のとおりである。第1 の発明は、重量%でC:0.1 %以下、Si:0.50%以下、 Nn: 1.50%以下、Al: 0.005 ~0.050 %、Cr: 0.50~3. 50%を含み、残部がFeと不可避的不純物とからなること を特徴とする高温多湿環境用耐海水鋼であり、第2の発 明は、重量%でC:0.1 %以下、Si:0.50%以下、Ma: 1.50%以下、Al:0.005 ~0.050 %、Cr:0.50~3.50% であり、かつ1.5 %以下のNi、0.8 %以下のNoの 1 種以 上の合計を1.5 %以下含み、残部がFeと不可避的不純物 とからなることを特徴とする高温多湿環境用耐海水鋼で あり、第3の発明は、重量%でC:0.1 %以下、Si:0. 50%以下、Mn: 1.50%以下、AI: 0.005~0.050 %、C r: 0.50~3.50%であり、かつ0.005~0.05%のNb、0.0 05 ~0.05%のTiの1 種以上の合計を0.005 ~0.05%含 み、残部がFeと不可避的不純物とからなることを特徴と する高温多湿環境用耐海水鋼であり、第4の発明は、重 量%でC:0.1 %以下、Si:0.50%以下、Mn:1.50%以 下、Al:0.005 ~0.050 %、Cr:0.50~3.50%であり、 かつ1.5 %以下のNi、0.8 %以下のMoの1種以上の合計 が1.5 %以下、さらに0.005 ~0.05%のNb、0.005 ~0. 05%のTiの1種以上の合計を0.005 ~0.05%含み、残部 がFeと不可避的不純物とからなることを特徴とする高温 多湿環境用耐海水鋼であり、第5の発明は、重量%で C:0.1 %以下、Si:0.50%以下、Mn:1.50%以下、A 1:0.005 ~0.050 %、Cr:0.50~3.50%を含み、残部 がFeと不可避的不純物とからなる鋼材を、熱間圧延後、 3~20℃/secの範囲の冷却速度で加速冷却し、該加速冷 却を 400~ 600℃の温度で停止し、以後空冷を行うこと を特徴とする高温多温環境用耐海水鋼の製造方法であ り、第6の発明は、重量%でC:0.1 %以下、Si:0.50 %以下、Nn:1.50%以下、Al:0.005 ~0.050 %、Cr: 0.50~3.50%であり、かつ1.5 %以下のNi、0.8 %以下 のMoの 1 種以上の合計を1.5 %以下含み、残部がFeと不 可避的不純物とからなる鋼材を、熱間圧延後、3~20℃ 時の腐食環境は海水中とバラストタンク上部では、飛沫 40 /secの範囲の冷却速度で加速冷却し、 該加速冷却を400 ~ 600℃の温度で停止し、以後空冷を行うことを特徴と する高温多湿環境用耐海水鋼の製造方法であり、第7の 発明は、重量%でC:0.1 %以下、Si:0.50%以下、M n:1.50%以下、AI:0.005 ~0.050 %、Cr:0.50~3.5 0%であり、かつ0.005 ~0.05%のNb、0.005 ~0.05% のTiの1種以上の合計を0.005~0.05%含み、残部がFe と不可避的不純物とからなる鋼材を、熱間圧延後、3~ 20℃/secの範囲の冷却速度で加速冷却し、該加速冷却を 400~ 600℃の温度で停止し、以後空冷を行うことを特

8 の発明は、重量%でC:0.1 %以下、Si:0.50%以 下、Mn:1.50%以下、Al:0.005 ~0.050 %、Cr:0.50 ~3.50%であり、かつ1.5 %以下のNi、0.8 %以下のMo の1種以上の合計が1.5%以下、さらに0.005~0.05% のNb、0.005 ~0.05%のTiの1種以上の合計を0.005 ~ 0.05%含み、残部がFeと不可避的不純物とからなる鋼材 を、熱間圧延後、3~20℃/secの範囲の冷却速度で加速 冷却し、該加速冷却を 400~ 600℃の温度で停止し、以 後空冷を行うことを特徴とする高温多湿環境用耐海水鋼 の製造方法である。

[0012]

【作用】以下本発明について詳細に説明する。本発明の 課題は、海水中と湿度 100%の大気中での繰返し環境下 における腐食量の低減、および局部腐食を起こさず滑ら かな腐食面を保つことのできる高温多湿環境用耐海水鋼 を提供することである。

【0013】腐食量の低減については、パラストタンク 内は塗装および電気防食で防食するが、腐食量が少ない ことは、塗装面のさび発生が少ないことであり、滑らか な腐食面を呈することは、腐食により歪みの集中あるい 20 は金属疲労の原因となるような状況を避けるためであ る。この2点を満足するためには、本発明は適度なCrお よびNi、MoさらにNb、Tiの添加が有効であり、さらに熱 間圧延後に炭化物の生成を抑制することにより、Cr、No の効果が一層大きくなることを見い出した。

【0014】以下、高温多湿環境用耐海水鋼の組成限定 理由、およびその製造方法の限定理由を述べる。

C:0.1%以下

Cは、添加量が少ないほど、耐食性、溶接性に有利であ るが、強度を左右する元素であるため、上限を0.1 %と 30

【0015】Si:0.50%以下

Siは、添加量が少ないほど靭性に悪影響を及ぼさないの で上限を0.50%とした。

Mn: 1.50%以下

Mnは、強度、靱性、溶接性に重要な役割をする元素であ るが、1.50%を超えると、靭性、溶接性に悪影響を及ぼ すので、上限を1.50%とした。

[0 0 1 6] Al: 0.005 ~0.050 %

AIは、脱酸剤として添加するが、溶接性に悪影響を及ぼ 40 さない範囲で0.005 ~0.050 %とした。

Cr: 0.50~3.50%

本発明で耐食性に最も有効な元素がCrである。腐食環境 が酷しいため、0.50%未満の添加では、腐食量の低減お よび滑らかな腐食面に対する効果は認められない。0.50 %以上の添加でこれらに対する効果が現れはじめるの で、下限を0.50%とした。Cr添加量を徐々に増加する と、腐食量の低減には明確な効果が現れる。しかし、3. 50%を超えると急激に表面状況が孔食状となる。さらに Cr添加量を増加させ、9%の添加ではステンレス鋼とほ 50 超えると、変態生成物が増加し靭性が劣化するため、冷

ぼ同等の孔食のみの腐食形態となる。腐食量を低減し滑 らかな腐食表面を呈する領域は3.5%までであることか ら、Cr添加の上限を3.50%とした。好ましくは1.2 ~3. 0 %Crの添加量が良い。

【0017】Crが炭化物、窒化物などの形態をとるとそ れだけ有効なCrが減少するので、Crを固溶状態としてお くことが望ましい。

Ni:1.5%以下

Crの添加によって耐食性を向上させるが、さらに望まし くはNiを添加することにより、耐食性を向上させるとと もに、腐食面を均一にする効果が認められる。しかし、 この範囲を超えての添加は、鋼材の強度、硬さが上昇傾 向にあり、材質的に、あるいは溶接性等に問題が出るこ とが予想されるのでNiの添加量は1.5%以下とした。

【0018】Mo:0.8%以下

Moの添加は、Niと同様の効果はあるが、Niよりさらに材 質的、溶接性での問題が出ることが予想されるので、Mo の添加範囲は0.8 %以下とした。

Ni+Mo:1.5 %以下

NiとMoは、ほぼ同様の効果が期待できる。上限値は上記 のようにNi、Moとも材質的、溶接性での問題があること から、上限値をNi+Moで1.5 %とした。

$[0\ 0\ 1\ 9]\ Ti: 0.005 \sim 0.05\%$

耐食性に有効な元素はCr、Ni、Moであるが、製造工程に おいてCr、Moは炭化物を形成しやすく、耐食性を有効に 発揮する固溶Cr、固溶Moを損なう。Tiは炭化物形成元素 であり、Cとの親和力がCr、Moよりも強いのでTi炭化物 が優先的に形成し、このためCr、Mo炭化物の形成を減少 させ固溶量の減少が防げる。0.005 %未満ではこの効果 が認められない。0.05%を超すと母材靱性が損なわれる ようになるので0.005 ~0.05%に限定する。

[0020] Nb: $0.005 \sim 0.05\%$

NbもTiと同様、炭化物形成元素である。Nbの添加により Cr、Mo炭化物の形成を減少させ、固溶Cr、固溶Moによる 耐食性が有効に発揮される。0.005 %未満ではこの効果 が認められない。また0.05%超では靱性を劣化させるの でNbの添加量の上限を0.05%とする。

[0 0 2 1] Nb+Ti: $0.005 \sim 0.05\%$

Cr、No炭化物の生成を抑制し、固溶Cr、No量を増大させ ることにより耐食性を有効に発揮させる効果は、NbとTi ともほぼ同等である。しかし、Nb+Ti添加量が0.005 % 以上でないとその効果が認められない。また靱性面から 上限値は0.05%とした。

【0022】次に、高温多湿環境用耐海水鋼の耐腐食性 をさらに向上させる製造条件の限定理由について述べ る。熱問圧延後の冷却速度が3℃/sec未満では、冷却中 にCr炭化物およびMo炭化物が折出するため、固裕Crおよ びMoによる耐海水腐食性の効果がうすれる。そのため冷 却速度の下限を3℃/secとした。冷却速度が20℃/secを

却速度の上限を20℃/setとした。加速冷却後の冷却停止 温度が600 ℃超えでは、加速冷却後にCr炭化物およびMo 炭化物が析山するため、固溶CrおよびMoによる耐海水腐 食性の効果がうすれる。そのため、冷却停止温度の上限 を600 ℃とした。加速冷却後の冷却停止温度が400 ℃未 満では、変態生成物が増加し物性が劣化するため、冷却 停止温度の下限を400 ℃とした。

[0023]

【実施例】

実施例1 (請求項1に対する実施例)

図1に示す試験装置を用いて、船舶のパラストタンクを 模擬した試験を行った。ここで、試験法について述べ る。図1に示すように試験槽1にASTN D1141による人工 海水2で試験槽1の半分を満たした。試験材4をこの人 工海水中に1週間浸漬し、その後、この試験材4を湿度 100%の大気3中に引き上げ1週間放置、その後、再度 人工海水2中に1週間浸渍というサイクルを繰り返し た。試験材取り付けドラム5の回転速度は人工海水中、 湿度 100%大気中ともに、0.5m/secであり、試験槽1の 下部から空気をパブリングして、海水を攪拌させるとと 20 もに海水中に酸素を補給する。試験槽蓋部は、密閉状態 に近いため、人工海水と大気温度の差は1℃以下であ り、大気中の湿度はほぼ 100%である。本実施例1はこ の装置を用いて40℃の人工海水浸渍 1 週間と湿度 100 %、40℃の大気中1週間を1サイクルとした腐食試験を 5サイクル行った。なお、試験材は1150℃、1時間加熱 後熱間圧延を行い、その後空冷(冷却速度:0.5 ℃/se c) することにより作製した。

【0024】試験材の成分を表1に、腐食量測定結果、 腐食面の表面状況評価および腐食深さの測定結果を表2 30 に示す。腐食深さ測定結果は、デプスゲージを用いて人

きいものから10点剤定し、その最大腐食深さと平均腐食深さを示した。また試験終了後さびを除去し、あとの表面の滑らかさから腐食面の表面状況を判定した。均一な腐食でしかも凹凸の小さいほど©の方向であり、〇、

ム、×の順に腐食面が不均一で凹凸が大きくなるとして判定した。また、図2にはCr量に対する腐食量、図3にはCr量に対する腐食業さの関係を示す。比較材としては、従来、船舶に採用されている鋼種でNK規格(日本海事協会)KA36を同時に試験した。試験の結果は以下の通りである。

[0025]

【表1】

(wt96)

鋼 種	С	Si	Mπ	P	S	Ст	Al
発明解 1	0.06	0.31	1, 42	C. 020	0.005	0. 68	0. 025
発明鋼 2	0, 06	0, 32	1.40	C. 020	0.005	1.01	0. 020
発明頌 3	0.05	0.30	1 45	C. 020	0.005	2.04	0. 021
発明鏡 4	0, 05	0, 31	1, 40	C. 020	0.005	2. 98	0.022
発明網 5	0,05	0.32	1. 38	0.020	0,005	3, 41	0.025
比较值 1	0.06	0.30	1.40	C, 020	0,005	0. 45	0.020
比较戰 2	0.05	0.31	1.40	C, 020	0,005	3. 78	0.024
肝核觀 3	0. 05	0.32	1.40	G. 020	0.005	5. 10	0. 020
比较解 4	0.05	Q. 33	1, 39	0.022	0.005	6, 07	0.023
比較語 5	0. 05	Q. 31	1.40	0.022	0. 005	9. 05	0.025
出紋鋼 6	U.Ub	U 32	1.38	0. 020	0. 005	13. 10	0. 022
KA36	0, 10	0.34	1 42	O. D17	0.002	0. 02	0. 023

[0026]

【表2】

-										
	40℃、5サイクル									
鋼種		宽 会 量		関食深さ						
	腐食量 (mg/cm²)	平均板厚減少量 (片面、ma)	比較対KA36 との比 (90)	最大協会 深さ (ma)	平均資食 深さ (ma)	資食面の表面 状況評価				
発明資1	7 4	0.094	79	0, 42	0.36	0				
発明鋼 2	7 2	0.092	77	0. 43	0, 31	0				
発明網3	57	0.073	61	0. 36	0. 24	9				
発明鋼 4	3 5	0.045	3 7	0. 33	0. 25	٥				
発明網 5	3 4	0.043	3 6	0. 45	0. 31	0				
比较鋼 1	83	0.106	8 8	0, 52	0. 39	Δ				
比較鋼 2	3 2	0.041	3 4	0. 51	0.36	Δ				
比较網3	3 8	0.048	4 0	0, 49	0, 36	×				
比较網 4	4 3	0. 055	4 6	0.55	0. 48	×				
比较網 5	3 0	0.038	3 2	0. 69	0. 61	×				
比較銀 6	6	0.008	6	1.09	0. 81	×				
KA36	9 4	0.120	100	0,50	0, 41	Δ				

【0027】(1) 腐食量

Crの添加量を多くするにしたがって腐食量は減少する が、5~6%Crでやや腐食量が増加する。さらにCrの添 加量を多くすると、腐食量は減少する。なお、腐食量 は、初期試験片重量と上記の腐食試験後、脱錆した試験 片重量の差から求め、単位試験片表面積あたりに換算し た。また平均板厚減少量は、腐食量からの計算値であ る。

(2) 腐食深さおよび腐食形態

腐食深さは、 $3 \sim 4$ %Cr添加までは比較材KA36より小さ 30 の測定結果を表 6 に示す。 くなるが、さらにCr添加量を多くすると、最大腐食深 さ、平均腐食深さとも次第に大きくなる。3.5 %Cr以下 では、全面腐食形態を呈するが、それ以上になると局部 腐食形態となる。比較例2~4ではほぼ全面が均一な腐 食を受けず、局部腐食であった。局部腐食状態では、応 力集中を受けるなど使用上に問題が出てくる。鋼材の腐

食量が小さく、腐食面が滑らかであるCr添加範囲は3.5 %Cr以下であり、0.5 %未満の添加では、その効果が小 さいことがわかる。

【0028】実施例2、3、4(請求項2、3、4に対 する実施例)

請求項2に対する試験材の成分を表3に、腐食量測定結 果、腐食面の表面状況評価および腐食深さの測定結果を 表4に示す。請求項3に対する試験材の成分を表5に、 腐食量測定結果、腐食面の表面状況評価および腐食深さ

【0029】請求項4に対する試験材の成分を表7に、 腐食量測定結果、腐食面の表面状況評価および腐食深さ の測定結果を表8に示す。

[0030]

【表3】

12 (v1%)

劉程	С	Si	Mn	P	s	Al	Cr	Νi	Мо	Ni+Ko
発明調1	0,06	0, 31	1.42	0.014	0, 004	0.022	1.02	0.42	0. 15	0. 57
発明鋼 2	0.06	0.32	1.43	0.010	0.003	0.023	1. 02	0, 80	0, 27	1,07
発明網3	0.06	0.30	1. 40	0,011	0.004	0.025	1. D3	1.20	-	1.20
発明鋼 4	0. 05	0. 31	1 42	0.009	O. 0D4	0.022	2. 02	0.42	0.21	0.63
発明鋼 5	0.05	0.32	1.40	0.009	0.004	0. 025	2. 02	0. 84	0,44	1.28
発明鋼 6	0.05	0.33	1. 42	0.008	0.004	0.022	2. 01	1	0.60	0.60
発明鋼?	0, 05	0, 35	1.4.	0.010	0.003	0.023	3.00	0.40	0, 15	0.55
比较鋼 1	0,06	0, 32	1 40	0.020	0.005	0.020	1 01			0.00
比较鋼 2	0.05	0.30	1.45	0, 020	0,005	0. 021	2.04	_		0.00
比较到 3	0.05	0. 31	1.40	0.020	0,005	0, 022	2. 98	_	_	0.00
比較鋼 4	0.05	0.33	1.41	0.008	0.004	0.021	2.02	1. 78		1.78
比較鋼 5	0,05	0, 30	1.39	0.009	0.005	0, 025	2.02	-	1.02	1.02
比較關 6	0, 05	0, 31	1.40	0.008	0.004	0.022	2, 01	1, 80	1.00	2 80
KA36	0. 10	0.34	1.42	0.017	0.902	0.023	0. 02	0.01	0.01	0. 02

[0031]

* *【表4】

			40°C 51	トイクル			
鋼粒		腐鱼量			府 企 深	ŧ	vE。 (段材)
	腐食量(mg/cm²)	平均极厚减少量 (片面、 ma)	比較材KA36 との比(90	最大腐食 深さ(mm)	平均将食 深さ(mn)	腐食面の表面 状況評価	J
発明網1	5 5	0.083	6 9	0.42	0. 31	0	
発明網2	58	0.074	6 2	0.40	0.29	0	
発明網3	5 5	0.070	5 9	0, 38	0. 28	0	
比較到 1	7 2	0. 092	77	0.43	0, 31	0	
発明網4	4.8	0.061	5 1	0.34	0. 24	Ø	270
発明網5	4 6	0.059	4 9	0.32	0.23	Ø	265
発明網 6	4 9	0.062	5 2	0.35	0. 24	6~0	270
比較鋼 2	57	0.073	61	0.36	0, 24	0	
発明網7	3 1	0.039	3 3	0.30	0, 27	⊚~ ○	
比較網 3	35	0.045	3 7	0.33	0. 27	0	
比較網4	47	D. 060	5.0	0, 32	0, 24	0	240
Hate	5 0	0.064	5 3	0, 35	0.25	0	2 4 5
比較網 6	4 6	0.059	4 9	0.31	6.23	0	200
KA36	9 4	0. 120	100	0.50	0.41	Δ	260

[0032]

【表5]

14 (m%)

										(MC20)
銅種	С	Si	Mn	P	S	Сr	Al	Nb	T i	Nb+Ti
発明鋼 1	0, 06	0, 31	1.40	0.021	0.005	0.70	0, 023	0. 021	0.026	0.047
発明鋼 2	0.06	0, 32	1. 39	0.020	0.005	1.01	0.023	0.020	_	0,020
発明貿3	0.06	OL 30	1.41	0.020	0.005	1.05	0.024	_	0.030	0.030
発明鋼 4	0, 05	0, 30	1.40	0.020	0.005	2.00	0.023	0, 030	0, 015	0.045
発明鋼 5	0.05	Q 31	1.40	0, 020	0.005	2.00	0.023	0.020	0.020	0.040
発明網 6	0. 05	0.32	1, 38	0. 020	0.005	3, 35	0,024	0, 025	0.020	0. 045
比较獨 1	0. 06	0. 31	1.42	0.020	0.005	0.68	0.025	_	_	0
比較鋼 2	O. 06	0.32	1.40	0. 020	0.005	1.01	0.020	-	-	0
比較鋼 3	0. 05	0.30	1.45	0, 020	0, 005	2.04	0.021	-	-	0
比较網4	0. 05	0. 31	1. 41	0. 020	0.005	2. 04	0, 021	0.003	-	0.003
比較網 5	0.05	0, 32	1.38	0. 020	0.005	3. 41	0,024	-	_	0
比较简 6	0, 05	0.30	1.40	0, 019	0.005	2,00	0.024	0.060	_	0. 360
比較鋼?	0.05	0. 31	1 41	0.020	0.004	2.01	0.023	_	0.065	0.065
比较解8	0, 05	0.32	1, 42	0, 020	0.005	2.00	0.023	0.030	0.030	0, 060
KA36	0.10	0. 34	1.42	0. 017	0.002	0, 02	0.023	-	-	0

[0033]

* *【表6】

			4 0 ℃、5 ዓ	ケイクル]
鋼積		腐食量			腐 食 深	ŧ	νE ο
	腐食量 (ng/cm²)	平均规学减少量 (计面、m)	比較材KA36 との比(60	最大腐食 深さ (nuo)	平均腐食 深さ (nn)	質食面の表面 状況評価	(母材) J
発明鋼1	6 5	0.083	6 9	0.40	0.29	0~0	
比較鋼1	7 4	0.094	7 9	0.42	0.36	0	
発明鋼 2	6 0	0.076	6 4	0.35	0.24	©	
発明鋼 3	58	0.074	6 2	0. 35	0.23	Ø	
比較實2	7 2	0.092	77	0.43	0.31	0	
発明鋼 4	4 9	0. 062	5 2	0. 31	0.24	0	300
発明第5	5 2	0. 066	5 5	0, 32	0.22	0	295
比較網3	57	0.073	6 1	0, 36	0. 24	0	
比较網4	56	0.071	60	0. 33	0.25	8	
発明鋼 6	30	0.038	3 2	0, 45	0, 30	0	
比较第5	3 4	0.043	3 6	0.45	0, 31	0	
社會公司 6	5 0	0.064	5 3	0.32	0.24	0	245
比较解了	50	C- 064	5 3	0.33	0, 24	0	246
比较到8	5 0	0.064	5 3	0.33	0.25	0	247
KA36	9 4	0.120	100	0.50	0.41	Δ	260

[0034]

【表7】

特開平7-310141

15

(wt%)

16

													(#1707
公	С	Si	Мn	P	S	Αİ	Ст	Νi	Мо	Ni+Ko	NЬ	Тi	Nb+Ti
発明網1	0, 06	0. 31	1.39	0.010	0. 005	0. 023	1.00	0, 78	0. 24	1. 02	0. 010	0. 015	0. 025
発明鋼 2	0.08	0. 30	1.40	0. 011	0, 005	0.024	1. 03	1. 16		<u>1</u> 16	0. 011	0, 012	D. 023
発明期3	0.06	0. 32	L 41	0.010	0, 005	0, 025	1. 01	0. 75	0. 20	0. 95	-	0. 020	0. 020
発明鋼 4	O, C5	0, 31	1. 42	0.010	0.004	0. 020	2. 05	0. 82	0.40	1.22	0. 012	0. 010	0, 022
発明鋼 5	0, 05	0, 31	1. 41	0.010	0, 004	0, 022	2. 02	_	0. 58	0. 58	0, 030	_	0. 030
発明網 6	0. 05	0. 32	1. 43	0.010	0.003	0. 025	3. 01	0. 39	0. 15	0. 54	0, 010	0. 010	0, 020
比较鋼1	0.06	0. 31	1. 42	0.014	0. DD4	0. 022	1. 02	0.42	0. 15	0. 57	1	_	0
比較鋼 2	0. 06	0. 32	1. 43	0.010	0. 003	0. 023	1. 02	0. 80	0, 27	1. 07	1	-	0
比较網 3	0. 06	0. 30	1.40	0.011	0. 004	0, 025	1. 03	1. 20	-	1.20	_		0
比較網4	0. 06	0. 31	1.40	0. 010	0. 005	0. 023	1,00	0.78	0. 27	1.05	0, 004		0.004
比較網 5	0. 05	0. 32	1. 40	0, 009	0,004	0. 025	2. 02	0. 84	0. 44	1, 28			0
比較鋼 6	0.05	0. 30	1. 39	0. 008	0, 004	0. 022	2.01	_	0, 60	0.60	-	-	0
比較绸?	0. 05	0. 31	1. 41	0.009	0.004	0. 022	2.01	3, 42	0. 19	0.61		0.003	0.003
比較鋼 8	0, 05	0. 35	1. 41	0, 010	0.003	0, 023	3, 00	0.40	0. 15	0, 55			0
KA36	0. 10	0. 34	1.42	0.017	0.002	0. 02	0. 023			C	_		0

[0035]

* *【表8】

	. 40℃、5サイクル									
解種	_	第 金 魚			安全 深	ੇ ਹ				
	原会量 (mg/cm²)	平均被厚绿心量 (片面、 🖦)	比較材KA36 との比 CO	最大資食 深さ(mm)	平均隔点 深さ (mm)	順食面の表面 状況評価				
発明鋼 1	5 4	0.069	5 7	0, 31	0. 24	©				
発明網 2	5 1	0.065	5 4	0. 32	0, 22	0				
発明鋼 3	5 2	0.066	5 5	0. 33	0, 23	0				
比較鋼1	65	0.083	6 9	0.42	0.31	0				
比較鋼 2	58	0.074	6 2	0, 40	0. 29	0				
比較期 3	5 5	0.070	5 9	0, 38	0. 28	0				
比較鋼 4	58	0.074	6 2	0, 37	0. 29	0				
発明鋼 4	38	0.048	4 0	0.31	0. 21	0				
発明鋼 5	4 3	0.055	4 6	0, 30	0, 21	9				
比较第5	4 6	0.059	4 9	0. 32	0,23	0				
比較網 6	49	0.062	5 2	0.35	0. 25	0~0				
比较辉?	4 9	0.062	5 2	0.35	0.26	©~ O				
発明網 6	27	0. 034	2 9	0.30	0.26	⊚~ ○				
比较網 8	3 1	0.039	3 3	0.30	0, 27	% ~0				
KA36	9 4	0. 120	100	0.50	0, 41	Δ				

【0036】以上の腐食試験片の製造方法、腐食試験の 試験方法および評価方法、試験条件は実施例1と全く同 じである。鋼材の腐食量が小さく、腐食面が滑らかであ るCr添加範囲は、実施例1同様0.5 ~3.5 %Crであっ た。表 4 ではCr 虽が同レベルでの発明網と比較網を比較 50 食形態となる。特に、Ni、Moの添加は腐食量の軽減に効

している。発明例1~3と比較例1は1%Cr、発明例4 ~6と比較銅2は2%Cr、発明鋼7と比較鋼3は3%Cr である。Ni+Mo量が多くなるにしたがい、腐食量、腐食 深さが小さくなり、腐食面の凹凸も小さくなり、均一腐

果がある。

【0037】しかし、発明鋼4、5、6と比較鋼4、 5、6を比較すると分かるように、Ni、Moが適正範囲外 となると朝性が劣化する。表 6 はCr量が同レベルでの発 明鋼と比較鋼を比較している。発明鋼1と比較鋼1は0. 7 %Cr、発明鋼2、3と比較鋼2は1%Cr、発明鋼4、 5と比較鋼3、4は2%Cr、発明鋼6と比較鋼5は3.4 %Crである。Nb+Ti量が多くなるにしたがい、腐食量、 腐食深さが小さくなる。また、発明鋼4、5と比較鋼 多いと母材の靱性は低下する。

【0038】表8では上記と同様、Cr量が同レベルでの 発明鋼と比較鋼を比較している。前述したように、Ni、 MoおよびNb、Ti添加により腐食量、腐食深さが小さくな* *っている。

実施例5 (請求項5に対する実施例)

供試材として請求項1についての実施例で用いた表1の 発明鋼2、3、4と、比較材として従来鋼のKA36を使用 して1150℃、1時間加熱後熱間圧延を行い、表9に示す 製造条件で製造した試験材から得た試験片を、実施例1 で用いた同じ試験装置を用いて腐食試験を行った。腐食 試験の試験方法および評価方法、試験条件は実施例1と 全く同じである。その腐食量測定結果、腐食面の表面状 6、7、8を比較すると分かるように、Nb、Ti添加量が 10 祝評価および腐食深さの測定結果、母材シャルビー衝撃 試験結果を表10に示す。

[0039]

【表 9 】

製造条件	圧延後の冷却速度 (で/sec)	冷却停止温度 (°C)	備 考
A	0. 5	_	本発明の製造条件範囲外
В	5	500	本発明の製造条件範囲内
С	1 5	650	本発明の製造条件範囲外
D	1 5	500	本発明の製造条件範囲内
E	15	350	本発明の製造条件範囲外
F	2 5	500	本発明の製造条件範囲外

[0040]

※ ※【表10】

	#E-ti			40℃、54	サイクル				
纸 極	製造系		房 食 量			腐食深	*	yE o	
	条件	腐食量 (mg/cm²)	平均板厚減少量 (片面、ma)	比較材KA36 との比(別)	最大顧食 深さ(BB)	平均腐食 深さ (am)	腐食面の表面 状況評価	(母材) J	
発明鋼 2	A	7 2	0.092	77	0. 43	0. 31	0		比較例
発明編 2	В	60	0.076	6 4	0. 36	0. 24	0~@		本発明例
発明鋼 2	С	68	0.087	7 2	0. 42	0. 29	0		比較例
発明第2	D	5 6	D. 071	6 0	0. 34	0. 26	O~©		本発明例
発明鋼 3	A	5 7	0.073	6 1	0.36	0. 24	0		比較例
発明鋼 3	đ	4 8	0.061	5 1	0. 34	D. 23	0		本発明例
発明鋼 4	A	3 5	0.045	3 7	0. 33	0. 25	0	2 9 D	比較例
発明鋼 4	В	3 3	0.042	3 5	0. 27	0. 20	0	302	本発明例
発明鋼 4	С	3 5	0.045	3 7	0. 32	0. 26	0	292	比較例
発明鋼 4	D	2 8	0.037	3 1	0, 29	0. 22	0	310	本発明例
発明鋼 4	E	2 9	0.037	3 1	0. 29	0. 23	0	220	比較例
発明鋼 4	F	30	0.038	3 2	0. 31	0. 24	©	210	比较例
KA36	A	9 4	0.120	100	0. 50	0. 41	Δ	260	比较例

【0041】その結果を次にまとめると次のとおりであ る。

(1) 腐食量

圧延後空冷という条件で試験材を製造した実施例1では Cr添加により従来鋼KA36より腐食量は減少するが、圧延 50 後の加速冷却、冷却停止条件を本発明の条件範囲内で製

-304-

造することにより、腐食量はさらに顕著に減少する。腐 食深さについても本発明範囲内の条件で製造することに より、腐食深さは小さくなる傾向にある。

(2) 靱性

本発明の範囲内の条件で製造を行っても、朝性の劣化が 見られないが、冷却速度の上限を上に、または冷却停止 温度の下限を下に超えると、吸収エネルギー (FE。) が上昇し、朝性が劣化する。

【0042】実施例6、7、8(請求項6、7、8に対する実施例)

1150℃で1時間加熱後、熱間圧延を行い、表9に示す製造条件で製造した試験材から得た試験片を、実施例1で用いたと同じ試験装置を用いて腐食試験を行った。腐食量測定結果、腐食面の表面状況評価、腐食深さの測定結果、母材シャルピー衝撃試験結果を請求項6に対して表11に、請求項7に対して表12に、請求項8に対して表13*

*に示す。安11における発明網7は請求項2についての実施例で用いた発明網7であり、表12における発明網6は 請求項3についての実施例で用いた発明網6であり、表 13における発明網6は請求項4についての実施例で用い た発明網6である。腐食試験の試験方法および評価方 法、試験条件は実施例1と全く同じである。

20

【0043】熱問圧延後、本発明範囲内の加速冷却、冷却停止条件で製造することにより、腐食量は減少する。 腐食深さについても本発明範囲内の条件で製造すること 10 により、腐食深さは小さくなる傾向にある。本発明の範囲内の条件で製造を行っても、靱性の劣化が見られないが、冷却速度の上限を上に、または冷却停止温度の下限を下に超えると、0℃でのシャルビー吸収エネルギー(▼E。)が上昇し、靱性が劣化する。

[0044]

【表11】

	-			40℃、5+	ナイクル				
鋼柱	湿 造		路 金 量		腐食深さ			,E	
番	条件	腐食量 (ng/cm²)	平均板厚減少量 (片面、mm)	比較材KA36 との比(%)	最大腐食 深さ(mm)	平均厲食 深さ (ma)	腐食面の表面 状況評価	(母材) J	
発明第7	Α	3 1	0.039	3 7	0.30	0. 27	@~ 0	266	比較例
発明網?	В	2 7	0.034	3 3	0.27	0. 26	Ø	285	本発明例
発明網7	c	3 0	0.038	3 8	0.30	0. 26	©~ O	266	比較例
発明鋼 7	D	26	0.033	2 8	0. 28	0, 25	Ø	290	本発明例
発明鋼 ?	E	2 6	0.033	2 8	0, 28	0. 26	Ø	212	比较例
発明鋼 7	F	2 7	0.034	2 9	0, 29	0. 27	୭~ ○	195	比較例
KA36	A	9 5	0.121	100	0. 50	0. 41	Δ	260	比較例

[0045]

※30※【表12】

		1		40℃、51	ナイクル				
编琶	遊遊		廣 食 量			庭 金 猱	t	vE。 (母材)	
条件	爾食量 (ng/cm²)	平均板厚減少量 (片面、cm)	比較材KA36 との比(K)	最大腐食 深さ(mm)	平均関食 深さ (ma)	庭食面の表面 状況評価	J		
発明鋼 6	Α	3 0	0.038	3 2	0. 45	0.30	0	270	比較例
発明網 6	В	2 8	0.036	3 0	0.40	0. 28	©~0	275	本発明例
発明貿 6	С	3 0	0.038	. 32	0. 45	0.31	0	272	比較例
発明鋼 6	Q	27	0.034	2.9	0.37	0. 27	⊚~ 0	278	本発明例
免叨氧6	E	2 7	0.034	2 9	0.37	0.27	@~O	220	比较例
発明鋼 6	F	2 8	0.036	3 0	0.38	0.28	७~ ○	202	比較例
КЛЗ6	٨	9 4	0.120	100	0. 50	0.41	Δ	260	比較例

[0046]

【表13】

		21						22	
網種	製造条件	40℃、5サイクル]	
		窮 食 並			腐食深さ			vE。 (母材)	
		商金量 (ng/cm²)	平均板厚減少量 (片面、mm)	比較材KA36 との比(%)	最大腐食 深さ (mg)	平均腐食 深さ (mm)	腐食面の表面 状況評価	(母材) J	
発明鋼 6	A	2 7	0.034	2 9	0, 30	0.26	©~ C	295	比較例
発明鋼 6	В	23	0.029	2 4	0. 27	0.19	Ø	295	本発明例
発明紙 6	С	2 6	0.033	2 8	0.30	D. 25	⊚~ ○	2 9 D	比較例
発明鋼 6	D	2 1	0.027	2 2	0. 25	0.13	0	310	本発明例
発明網 6	E	2 1	0.027	2 2	0. 25	0. 13	©	220	比較例
発明鋼 6	F	2 2	0.028	2 3	0. 27	0. 19	©	202	比較例
KA36	A	9 4	0.120	100	0. 50	0. 41	Δ	260	比較例

[0047]

【発明の効果】以上のように、本発明による高温多湿環 境用耐海水鋼は、苛酷な腐食環境である船舶のバラスト タンク、海水配管などに適用することにより、優れた耐 食性を有し、船舶のメンテナンスフリー化に寄与すると ともに、船舶に安全性を付与、維持するものである。

【図面の簡単な説明】

【図1】パラストタンク模擬試験装置の概略を示す説明 図である。

【図2】試験材(発明鋼および比較鋼)の腐食量に及ぼ すCr添加量の影響を示す特性図である。

【図3】試験材(発明鋼および比較鋼)の最大腐食深 さ、平均腐食深さに及ぼすCr添加量の影響を示す特性図

である。

【符号の説明】

- 1 試験槽
- 2 人工海水
- 3 湿度 100%大気
- 4 試験材
- 5 試験材取り付けドラム
 - 6 回転軸
 - 7 ヒーター
 - 8 空気パブリング配管
 - 9 試験材位置(海水中)
 - 10 試験材位置 (大気中)
 - 11 人工海水面

【図1】

[図2]

(13)

特開平7-310141

Cr添加量(mass%)

フロントページの続き

(31)優先権主張番号 特願平6-53916

(32) 優先日 平 6 (1994) 3 月24日

(33)優先権主張国 日本(JP)

(72)発明者 木村 光男

千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内

(72)発明者 斉藤 良行

千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内 THIS PAGE BLANK (USPTO)

<u>}</u> `