Un auto-morphisme bidendriforme de WQSym Séminaire DGeCo: Jussieu

Hugo Mlodecki

Directeurs:

Florent Hivert Viviane Pons

17 Mars 2022

Exemples d'algèbres de Hopf

- Arbres binaires, PBT, Loday-Ronco
- Fonctions symétriques non-commutatives, Sym
- Fonctions quasi-symétriques, QSym
- Permutations, FQSym, Malvenuto-Reutenauer
- Mots tassés, WQSym, Hivert

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

ϵ

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- \bullet ϵ
- 1

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- 6
- 1
- 122111

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- €
- 1
- 122111
- 123
 132
 213
 231
 312
 321 212 221 112 121 211 122 111

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- ϵ
- 1
- 122111
- 123 132 213 231 312 321
 122 212 221 112 121 211 111

Mots tassés de taille *n* [OEIS A000670]

n	1	2	3	4	5	6	7	8
PW_n	1	3	13	75	541	4683	47293	545835

Tassement

Exemple

24154 ∉ **PW**

Tassement

Exemple

24154 $\notin PW$ mais $pack(24154) = 23143 \in PW$

Tassement

Exemple

24154 **∉ PW**

mais

$$pack(24154) = 23143 \in PW$$

Une représentation : #lignes ≤ #colonnes

retrait lignes vides

 \rightarrow pack \rightarrow

2 3 1 4

4/24

Algèbre de Hopf

Exemple

WQSym

$$\bullet \quad _{3112} + \ _{212} - 3 \ _{212341} - \frac{5}{3} \ _{111}$$

Algèbre de Hopf

Exemple

WQSym

$$\bullet \ \mathbb{R}_{3112} + \mathbb{R}_{212} - 3\mathbb{R}_{212341} - \frac{5}{3}\mathbb{R}_{111}$$

Algèbre de Hopf

Exemple

WQSym

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- Un produit associatif unitaire ·
- Un coproduit coassociatif counitaire Δ
- La relation de Hopf $\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$

6/24

 \mathbb{R}_{24231}

2 4 2 3

6/24

2 4 2 3

•

Déconcaténation réduite

2 4 2 3

2 4 2 3

$$\mathbb{R}_{24231} \qquad \stackrel{\triangle}{\rightarrow} \qquad \stackrel{\bullet}{\longrightarrow} \qquad$$

2 4 2 3

 $\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$

6/24

2 4 2 3

$$\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$$
 $\mathbb{R}_{121}\otimes\mathbb{R}_{21}$

 \mathbb{R}_{24231}

$$\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$$
 $+$ $\mathbb{R}_{121}\otimes\mathbb{R}_{21}$ \mathbb{R}_{24231} $\stackrel{\Delta}{ o}$ $\mathbb{R}_{1312}\otimes\mathbb{R}_{1}$ $+$ $\mathbb{R}_{24231}\otimes\mathbb{R}_{\epsilon}$

•

3

2

1 3

Désassemblage horizontal

2

1 3

Désassemblage horizontal

Désassemblage horizontal

 \mathbb{Q}_{2413}

Désassemblage horizontal

$$\mathbb{Q}_{\epsilon}\otimes\mathbb{Q}_{2413_{+}}\,\,\mathbb{Q}_{1}\otimes\mathbb{Q}_{132_{+}}\,\,\mathbb{Q}_{21}\otimes\mathbb{Q}_{21}$$

$$\mathbb{Q}_{2413}$$
 $\overset{\Delta}{ o}$ $\mathbb{Q}_{213}\otimes\mathbb{Q}_{1}$ $\mathbb{Q}_{2413}\otimes\mathbb{Q}_{\epsilon}$

Auto-dualité

ullet et $\mathbb Q$ bases de **WQSym*** et **WQSym**

Demis coproduits Bigèbre bidendriforme Éléments primitifs

Auto-dualité

- \bullet \mathbb{R} et \mathbb{O} bases de **WQSym*** et **WQSym**
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de **WQSym**

tion Demis coproduits Bigèbre bidendriforme Éléments primitifs

Auto-dualité

- ullet et $\mathbb Q$ bases de **WQSym*** et **WQSym**
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de WQSym
- 2005 Foissy démontre l'auto-dualité des bigèbre bidendriforme (rigidité)

tion Demis coproduits Bigèbre bidendriforme Éléments primitifs

Auto-dualité

- ullet et $\mathbb Q$ bases de **WQSym*** et **WQSym**
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de WQSym
- 2005 Foissy démontre l'auto-dualité des bigèbre bidendriforme (rigidité)
- Pas d'isomorphisme explicite

Demis coproduits

Exemple de coproduits gauche et droit

$$\begin{array}{c} \bullet \ \ \tilde{\Delta}(\mathbb{Q}_{12536434}) = \mathbb{Q}_{1} \otimes \mathbb{Q}_{1425323} + \mathbb{Q}_{12} \otimes \mathbb{Q}_{314212} + \mathbb{Q}_{1233} \otimes \mathbb{Q}_{2311} \\ + \mathbb{Q}_{123434} \otimes \mathbb{Q}_{12} + \mathbb{Q}_{1253434} \otimes \mathbb{Q}_{1} \end{array}$$

Demis coproduits

Exemple de coproduits gauche et droit

- $\bullet \ \tilde{\Delta}(\mathbb{Q}_{12536434}) = \mathbb{Q}_1 \otimes \mathbb{Q}_{1425323} + \mathbb{Q}_{12} \otimes \mathbb{Q}_{314212} + \mathbb{Q}_{1233} \otimes \mathbb{Q}_{2311}$ $+\mathbb{O}_{123434}\otimes\mathbb{O}_{12}+\mathbb{O}_{1253434}\otimes\mathbb{O}_{1}$
- $\Delta_{\succ}(\mathbb{Q}_{12536434}) = \mathbb{Q}_1 \otimes \mathbb{Q}_{1425323} + \mathbb{Q}_{12} \otimes \mathbb{Q}_{314212} + \mathbb{Q}_{1233} \otimes \mathbb{Q}_{2311}$
- $\Delta_{\prec}(\mathbb{Q}_{12536434}) = \mathbb{Q}_{123434} \otimes \mathbb{Q}_{12} + \mathbb{Q}_{1253434} \otimes \mathbb{Q}_{1}$.

Demis coproduits

Définitions

- ullet $\Delta_{\succeq}(\mathbb{Q}_u) := \sum_{i=1}^{u_n-1} \mathbb{Q}_{u|_{\leq i}} \otimes \mathbb{Q}_{\mathsf{pack}(u|_{>i})},$
- $\Delta_{\preceq}(\mathbb{Q}_u) := \sum_{i=u_n}^{\mathsf{max}(u)-1} \mathbb{Q}_{u|<_i} \otimes \mathbb{Q}_{\mathsf{pack}(u|>_i)}$.

Exemple de coproduits gauche et droit

- $\tilde{\Delta}(\mathbb{Q}_{12536434}) = \mathbb{Q}_1 \otimes \mathbb{Q}_{1425323} + \mathbb{Q}_{12} \otimes \mathbb{Q}_{314212} + \mathbb{Q}_{1233} \otimes \mathbb{Q}_{2311} + \mathbb{Q}_{123434} \otimes \mathbb{Q}_{12} + \mathbb{Q}_{1253434} \otimes \mathbb{Q}_{1}$
- $\bullet \ \Delta_{\succeq}(\mathbb{Q}_{12536434}) = \mathbb{Q}_1 \otimes \mathbb{Q}_{1425323} + \mathbb{Q}_{12} \otimes \mathbb{Q}_{314212} + \mathbb{Q}_{1233} \otimes \mathbb{Q}_{2311},$

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Bigèbre bidendriforme

$$(a \prec b) \prec c = a \prec (b \prec c + b \succ c),$$
$$(a \succ b) \prec c = a \succ (b \prec c),$$
$$(a \prec b + a \succ b) \succ c = a \succ (b \succ c).$$

$$(\Delta_{\prec} \otimes \operatorname{Id}) \circ \Delta_{\prec}(a) = (\operatorname{Id} \otimes \Delta_{\prec} + \operatorname{Id} \otimes \Delta_{\succ}) \circ \Delta_{\prec}(a),$$
 $(\Delta_{\succ} \otimes \operatorname{Id}) \circ \Delta_{\prec}(a) = (\operatorname{Id} \otimes \Delta_{\prec}) \circ \Delta_{\succ}(a),$
 $(\Delta_{\prec} \otimes \operatorname{Id} + \Delta_{\succ} \otimes \operatorname{Id}) \circ \Delta_{\succ}(a) = (\operatorname{Id} \otimes \Delta_{\succ}) \circ \Delta_{\succ}(a).$

$$\begin{split} & \Delta_{\succ}(a \succ b) = a'b'_{\succ} \otimes a'' \succ b''_{\succ} + b'_{\succ} \otimes a \succ b''_{\succ} + ab'_{\succ} \otimes b''_{\succ} + a' \otimes a'' \succ b + a \otimes b, \\ & \Delta_{\succ}(a \prec b) = a'b'_{\succ} \otimes a'' \prec b''_{\succ} + b'_{\succ} \otimes a \prec b''_{\succ} + a' \otimes a'' \prec b, \\ & \Delta_{\prec}(a \succ b) = a'b'_{\prec} \otimes a'' \succ b''_{\prec} + b'_{\prec} \otimes a \succ b''_{\prec} + ab'_{\prec} \otimes b''_{\prec}, \\ & \Delta_{\prec}(a \prec b) = a'b'_{\prec} \otimes a'' \prec b''_{\prec} + b'_{\prec} \otimes a \prec b''_{\prec} + a'b \otimes a'' + b \otimes a. \end{split}$$

10/24

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Demis coproduits Bigèbre bidendriforme Éléments primitifs

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Séries

n	1	2	3	4	5	6	7	8
WQSym _n	1	3	13	75	541	4 683	47 293	545 835
TPrim _n	1	1	4	28	240	2 384	26 832	337 168

WQSym Bigèbre bidendriforme Bases Pet 0 Une bijection Demis coproduits Bigèbre bidendriforme Éléments primitifs

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Corollaire

WQSym est auto-duale.

Élément primitif

P est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

 $Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$

Définitions

Élément primitif

$$P$$
 est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

$$Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

$$ilde{\Delta}(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Définitions

Élément primitif

P est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

$$\mathsf{Ex}:\,\mathbb{R}_{1213}-\mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

$$ilde{\Delta}(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Elément totalement primitif

P est une élément totalement primitif $\iff \Delta_{\prec}(P) = \Delta_{\succ}(P) = 0$

$$\mathsf{Ex}:\,\mathbb{R}_{12443}-\mathbb{R}_{21443}-\mathbb{R}_{23441}+\mathbb{R}_{32441}$$

Définitions

Élément primitif

P est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

$$\mathsf{Ex}:\,\mathbb{R}_{1213}-\mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

$$ilde{\Delta}(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Elément totalement primitif

P est une élément totalement primitif $\iff \Delta_{\prec}(P) = \Delta_{\succ}(P) = 0$

$$\mathsf{Ex}:\, \mathbb{R}_{12443} - \mathbb{R}_{21443} - \mathbb{R}_{23441} + \mathbb{R}_{32441}$$

$$\hat{\Delta}(\mathbb{R}_{12443}) = \mathbb{R}_{1233} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{12} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{1332}$$

$$ilde{\Delta}(\mathbb{R}_{21443}) = \mathbb{R}_{2133} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{21} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{1332}$$

$$ilde{\Delta}(\mathbb{R}_{23441}) = \mathbb{R}_{1233} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{12} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{2331}$$

$$ilde{\Delta}(\mathbb{R}_{32441}) = \mathbb{R}_{2133} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{21} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{2331}$$

Mon but

Isomorphisme bidendriforme explicite entre WQSym et sa duale

Mon but

Isomorphisme bidendriforme explicite entre WQSym et sa duale Isomorphisme explicite entre TPrim(WQSym) et le dual

12/24

Mon but

Isomorphisme bidendriforme explicite entre **WQSym** et sa duale Isomorphisme explicite entre TPrim(WQSym) et le dual

Construction de deux bases de totalement primitif (dans WQSym et WQSym*)

Forêts biplanes, représentation de décompositions

44523315

F_{Rske}(8767595394312)

F_{Rske}(8767595394312)

Factorisation en descentes globales

$$F_{Rske}(8767595394312) = T_{Rske}(65453731721) T_{Rske}(12)$$

Factorisation en descentes globales

+ tassement

$$\begin{aligned} F_{\text{Rske}}(8767595394312) &= \\ T_{\text{Rske}}(65453731721) \, T_{\text{Rske}}(12) \end{aligned}$$

$$\begin{split} F_{\text{Rske}}(8767595394312) &= \\ T_{\text{Rske}}(65453731721) \, T_{\text{Rske}}(12) \end{split}$$

Retrait des lettres de valeur max

$F_{Rske}(8767595394312) =$ T_{Rske} (65453731721) T_{Rske} (12)

Factorisation en descentes globales

$$\begin{aligned} &\mathsf{F}_{\mathsf{Rske}}(8767595394312) = \\ &\mathsf{T}_{\mathsf{Rske}}(65453731721)\,\mathsf{T}_{\mathsf{Rske}}(12) \end{aligned}$$

Distinction de deux groupes de facteurs

$$\begin{aligned} &\mathsf{F}_{\mathsf{Rske}}(8767595394312) = \\ &\mathsf{T}_{\mathsf{Rske}}(65453731721)\,\mathsf{T}_{\mathsf{Rske}}(12) \end{aligned}$$

Remise des lettres de valeur max + tassement

Irréductible rouge

Un mot tassé w est rouge irréductible si il n'est pas décomposable par cet algorithme.

$$\begin{aligned} &\mathsf{F}_{\mathsf{Rske}}(8767595394312) = & \mathsf{On boucle} \\ &\mathsf{T}_{\mathsf{Rske}}(65453731721)\,\mathsf{T}_{\mathsf{Rske}}(12) = & & & & & & \\ &\mathsf{T}_{\mathsf{Rske}}(12) & & & & & & & \\ &\mathsf{T}_{\mathsf{Rske}}(12) & & & & & & & \\ &\mathsf{T}_{\mathsf{Rske}}(12) & & & & & & & \\ &\mathsf{T}_{\mathsf{Rske}}(12) & & & & & & & \\ &\mathsf{T}_{\mathsf{Rske}}(12) & & & & & & & \\ &\mathsf{T}_{\mathsf{Rske}}(12) & & & \\ &\mathsf{T}_{\mathsf{Rsk$$

Irréductible rouge

Un mot tassé w est rouge irréductible si il n'est pas décomposable par cet algorithme.

14/24

$$F_{Rske}(8767595394312) =$$

$$((1/212) \triangleright 3431421)/(1 \triangleright 1)$$

Irréductible rouge

Un mot tassé w est rouge irréductible si il n'est pas décomposable par cet algorithme.

 $\forall n, RougeIrréductible_n = \mathsf{TPrim}_n$.

Le début de la base $\mathbb P$

$$\mathbb{P}_{\underbrace{1}} := \mathbb{R}_{1},$$

$$\mathbb{P}_{t_{1},...,t_{k}} := (...(\mathbb{P}_{t_{k}} \prec ...) \prec \mathbb{P}_{t_{2}}) \prec \mathbb{P}_{t_{1}},$$

$$\mathbb{P}_{\underbrace{\ell_{1},...,\ell_{g}}_{\mathsf{F}_{\mathsf{Rske}}(u)}} := \langle \mathbb{P}_{\ell_{1}}, \mathbb{P}_{\ell_{2}}, ..., \mathbb{P}_{\ell_{g}}; \mathbb{P}_{\mathcal{T}(w)} \rangle.$$

Forêt rouge de 8767595394312

 $F_{\mathbb{R}}(8767595394312) =$

La partie droite!

Forêt rouge de 8767595394312

$F_{\mathbb{R}}(8767595394312) =$

Positions des max

Fils droits

$F_{\mathbb{R}}(8767595394312) =$

On reboucle

$F_{\mathbb{R}}(8767595394312) =$

Forêt rouge de 8767595394312

La base \mathbb{P}

$$egin{aligned} \mathbb{P}_{\overbrace{1}} &:= \mathbb{R}_1, \ \mathbb{P}_{t_1,...,t_k} &:= (...(\mathbb{P}_{t_k} \prec ...) \prec \mathbb{P}_{t_2}) \prec \mathbb{P}_{t_1}, \ &:= \langle \mathbb{P}_{\ell_1}, \mathbb{P}_{\ell_2}, ..., \mathbb{P}_{\ell_g}; \mathbb{P}_{\mathcal{T}(w)}
angle, \end{aligned} \ \mathbb{P}_{\ell_1} &:= \Phi_I(\mathbb{P}_{r_1,...,r_d}).$$

La base $\mathbb P$

$$\mathbb{P}_{1}:=\mathbb{R}_{1},$$
 $\mathbb{P}_{t_{1},...,t_{k}}:=(...(\mathbb{P}_{t_{k}}\prec...)\prec\mathbb{P}_{t_{2}})\prec\mathbb{P}_{t_{1}},$
 $\mathbb{P}_{t_{1},...,t_{k}}:=\langle\mathbb{P}_{\ell_{1}},\mathbb{P}_{\ell_{2}},...,\mathbb{P}_{\ell_{g}};\mathbb{P}_{T(w)}\rangle,$
 $\mathbb{P}_{\ell_{1}}$
 $:=\Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}}).$

Exemple 4 1

17/24

$$egin{aligned} \mathbb{P}_{\overbrace{1}} &:= \mathbb{R}_1, \ \mathbb{P}_{t_1,...,t_k} &:= (...(\mathbb{P}_{t_k} \prec ...) \prec \mathbb{P}_{t_2}) \prec \mathbb{P}_{t_1}, \ \mathbb{P}_{\ell_1} &:= \langle \mathbb{P}_{\ell_1}, \mathbb{P}_{\ell_2}, ..., \mathbb{P}_{\ell_g}; \mathbb{P}_{\mathcal{T}(w)}
angle, \ \mathbb{P}_{\ell_1} &:= \Phi_I(\mathbb{P}_{r_1,...,r_d}). \end{aligned}$$

Théorème [M.]

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_{R_n}}$ est une base de **WQSym**_n*,
- $(\mathbb{P}_t)_{t \in \mathfrak{T}_{P}n}$ est une base de Prim_n*
- $(\mathbb{P}_t)_{t \in \mathfrak{N}_{R_n}}$ est une base de TPrim_n.

F_{Bske}(8967647523314)

F_{Bske}(8967647523314)

Factorisation en descentes globales

$$F_{Bske}(8967647523314) = T_{Bske}(67647523314) T_{Bske}(12)$$

Factorisation en descentes globales + tassement + échange

$$\begin{split} F_{\mathsf{Bske}}(8967647523314) &= \\ T_{\mathsf{Bske}}(67647523314) \, T_{\mathsf{Bske}}(12) \end{split}$$

$$\begin{split} F_{Bske}(8967647523314) &= \\ T_{Bske}(67647523314) \, T_{Bske}(12) \end{split}$$

Retrait de la dernière lettre

$$\begin{split} F_{\mathsf{Bske}}(8967647523314) &= \\ T_{\mathsf{Bske}}(67647523314) \, T_{\mathsf{Bske}}(12) \end{split}$$

Factorisation en descentes globales

$$\begin{split} F_{Bske}(8967647523314) &= \\ T_{Bske}(67647523314) \, T_{Bske}(12) \end{split}$$

Distinction de deux groupes de facteurs

3 3

Irréductible bleu

Un mot tassé w est **bleu irréductible** si il n'est pas décomposable par cet algorithme.

3

Squelette bleu de 8967647523314

$$\begin{split} F_{Bske}(8967647523314) &= \quad \text{On boucle} \\ T_{Bske}(67647523314) \, T_{Bske}(12) &= \\ & \\ T_{ske}(1) \, T_{ske}^*(12) \, T_{Bske}(12) \, \\ & \\ \hline \end{split}$$

Irréductible bleu

Un mot tassé w est **bleu irréductible** si il n'est pas décomposable par cet algorithme.

18/24

$$F_{Bske}(8967647523314) = ((1/122) \triangle 3431421)/(1 \triangle 1)$$

Irréductible bleu

Un mot tassé w est **bleu irréductible** si il n'est pas décomposable par cet algorithme.

 $\forall n$, Bleulrréductible_n = Rougelrréductible_n = TPrim_n.

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}} := \mathbb{Q}_{1},$$

$$\mathbb{O}_{t_{1},...,t_{k}} := (...(\mathbb{O}_{t_{k}} \prec ...) \prec \mathbb{O}_{t_{2}}) \prec \mathbb{O}_{t_{1}},$$

$$:= \langle \mathbb{O}_{\ell_{1}}, \mathbb{O}_{\ell_{2}}, ..., \mathbb{O}_{\ell_{g}}; \mathbb{O}_{\mathcal{T}^{*}(w)} \rangle.$$

 $F_{B}(8967647523314) =$

La partie droite!

 $F_B(8967647523314) =$

La dernière lettre est-elle présente dans le reste du mot?

20/24

Fils droits

 $F_{B}(8967647523314) =$

20/24

 $F_{B}(8967647523314) =$

 $F_{B}(8967647523314) =$

 $F_B(8967647523314) =$

La base O

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{T^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi_i^{lpha}(\mathbb{O}_r).$$

La base ①

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{T^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi^{lpha}_i(\mathbb{O}_r).$$

Exemple

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{T^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi_i^{lpha}(\mathbb{O}_r).$$

Théorème [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}_{Bn}}$ est une base de **WQSym**_n,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}_{Bn}}$ est une base de Prim_n,
- $(\mathbb{O}_t)_{t\in\mathfrak{N}_{Rn}}$ est une base de TPrim_n.

Théorèmes [M.]

Théorème [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}_{Bn}}$ base de **WQSym**_n,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}_{Bn}}$ base de Prim_n,
- $(\mathbb{O}_t)_{t\in\mathfrak{N}_{\mathsf{R}_n}}$ base de TPrim_n .

Théorème[M.]

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_{Rn}}$ base de **WQSym**_n*,
- $(\mathbb{P}_t)_{t \in \mathfrak{T}_R n}$ base de Prim_n*,
- $(\mathbb{P}_t)_{t \in \mathfrak{N}_{R_n}}$ base de TPrim_n^* .

Rigidité

∀ bijection entre les mots irréductibles bleus et rouges, recoloration des squelettes

Forêts bicolores à travers un exemple

 $T_{BR}(DDDCCCEBBE9FA587653213449)$

Forêts bicolores à travers un exemple

 $T_{BR}(DDDCCCEBBE9FA587653213449) =$

 $T_{BR}(DDDCCCEBBE9FA587653213449) =$

 $T_{BR}(DDDCCCEBBE9FA587653213449) = T_{RB}(DCBDDE7A9875F633422211145) =$

Théorèmes [M.]

Théorème [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}_{Bn}}$ base de **WQSym**_n,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}_{R_n}}$ base de Prim_n,
- $(\mathbb{O}_t)_{t\in\mathfrak{N}_{R_n}}$ base de TPrim_n.

Théorème [M.]

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_{R_n}}$ base de **WQSym**_n*,
- \bullet $(\mathbb{P}_t)_{t\in\mathfrak{T}_{\mathbf{p}n}}$ base de Prim_n*,
- $(\mathbb{P}_t)_{t\in\mathfrak{N}_{P_n}}$ base de TPrim_n.

Bijection [M.]

Involution grâce aux forêts bicolores.

Isomorphisme bidendriforme entre WQSym et WQSym*.