Bäume und Wälder

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Definition

- ► G heißt kreisfrei bzw. Wald, falls G keine Kreise enthält.
- ► Ein zusammenhängender Wald heißt *Baum*.
- ▶ Die Knoten eines Waldes mit Grad ≤ 1 heißen Blätter.

Beispiel

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Bemerkung

- ► G ist genau dann kreisfrei, wenn jede Kante eine Brücke ist.
- ▶ Ist G ein Baum mit $n_G \ge 2$, dann hat G mindestens zwei Blätter.
- ▶ Ist G ein Baum mit $n_G \ge 3$, dann hat G höchstens $n_G 1$ Blätter.

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Erinnerung

- ► r_G: Anzahl der Zusammenhangskomponenten von G
- ▶ Es ist $r_G \ge n_G m_G$.
- ▶ Es sei $e \in E$ und $G' := (V, E \setminus \{e\})$. Dann ist $r_{G'} \le r_G + 1$. Weiter ist $r_{G'} = r_G + 1$ genau dann, wenn e eine Brücke ist.

Satz

Es gilt $r_G = n_G - m_G$ genau dann, wenn G kreisfrei ist.

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Folgerung

 ${\it G}$ ist genau dann ein Baum, wenn mindestens zwei der folgenden Bedingungen erfüllt sind.

- ► *G* ist kreisfrei.
- ► *G* ist zusammenhängend.
- ► $m_G = n_G 1$.

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Erinnerung

- ▶ Ist *G* zusammenhängend, dann ist $m_G \ge n_G 1$.
- ▶ Ist *G* kreisfrei, dann ist $m_G = n_G r_G \le n_G 1$.

Bemerkung

- ► Ein Baum ist ein zusammenhängender Graph mit minimal möglicher Kantenzahl.
- Ein Baum ist ein kreisfreier Graph mit maximal möglicher Kantenzahl.

Spannbäume

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Definition

Ein Teilgraph G' = (V', E') von G heißt Spannbaum von G (engl. $spanning\ tree$), wenn G' ein Baum ist und V' = V.

Beispiel

Satz

Jeder zusammenhängende Graph hat einen Spannbaum.

Beweis

Breitensuche.

Es sei G = (V, E) ein zusammenhängender Graph.

Algorithmus (Sukzessives Entfernen von Kanten)

- ▶ Initialisiere B := E.
- ▶ Entferne sukzessive solche Kanten aus B, die keine Brücken in (V, B) sind.
- ▶ Ist das nicht mehr möglich, dann ist (V, B) ein Spannbaum von G.

Es sei G = (V, E) ein zusammenhängender Graph.

Algorithmus (Sukzessives Hinzufügen von Kanten)

- ▶ Initialisiere $B := \emptyset$.
- ► Füge sukzessive solche Kanten zu B hinzu, deren Endknoten in verschiedenen Zusammenhangskomponenten von (V, B) liegen.
- ▶ Ist das nicht mehr möglich, dann ist (V, B) ein Spannbaum.

Es sei G = (V, E, f) ein gewichteter Graph.

Erinnerung

- ▶ (V, E) ist ein Graph, und $f : E \to \mathbb{R}_{\geq 0}$ eine Gewichtsfunktion.
- ▶ Für $T \subseteq E$ heißt $f(T) := \sum_{e \in T} f(e)$ das Gewicht von T.

Definition

Ein minimaler Spannbaum von G ist ein Spannbaum (V, B) von G mit minimalem Gewicht f(B) unter allen Spannbäumen von G.

Es sei G = (V, E, f) ein gewichteter Graph.

Algorithmus (Kruskal)

- ▶ Initialisiere $B := \emptyset$.
- ► Füge sukzessive solche Kanten zu B hinzu, deren Endknoten in verschiedenen Zusammenhangskomponenten von (V, B) liegen, und unter allen solchen jeweils einen von minimalem Gewicht.
- ► Ist das nicht mehr möglich, dann ist (V, B) ein minimaler Spannbaum.

Austauschlemma

Es seien (V, A) und (V, B) zwei Bäume mit derselben Knotenmenge V.

Für jedes $a \in A \setminus B$ gibt es ein $b \in B \setminus A$ so, dass $(V, B \cup \{a\} \setminus \{b\})$ auch ein Baum ist.