GMetis - Xeon Phi

David Pereira Rui Brito

August 8, 2013

Outline

- Introduction
- 2 Algorithm Description
- **3** System characteristics
- Metis
- Conclusion

Introduction

- GMetis is a graph partitioning application which uses the Galois framework
- Consists of three major phases
 - Coarsening
 - ★ Find matching nodes
 - ★ Coarsen Graph
 - Initial Partitioning (Clustering)
 - Refinement

Algorithm Description

Formal Description

- Given a graph $G_0 = (V_0, E_0)$:
 - Coarsening
 - **★** G_0 is transformed into a sequence of smaller graphs G_1, G_2, \cdots, G_m such that $|V_0| > |V_1| > |V_2| > \cdots > |V_m|$
 - Partitioning
 - ★ A 2-way partition P_m of the graph $G_m = (V_m, E_m)$ is computed that partitions V_m into two parts, each containing half the vertices of G_0
 - Refinement
 - ★ The partition P_m of G_m is projected back to G_0 by going through intermediate partitions $P_{m-1}, P_{m-2}, \dots, P_1, P_0$

Coarsening

Partitioning

Refinement

Stampede Host

Manufacturer	Intel
Model	Xeon E5-2680
μ Arch	Sandy Bridge
Clock freq	2.70 GHz
#CPUs (sockets)	2
#Cores/CPU	8
#Thread/Core	1
L1 cache size/core	32 KB
L2 cache size/core	256 KB
L3 shared cache size/CPU	20 MB
Vector width	256 bits (AVX)

Table 1: Intel Xeon E5-2680

Stampede Co-processor - Xeon Phi

Manufacturer	Intel
Model	Xeon E5-2680
μ Arch	Sandy Bridge
Clock freq	1.1 GHz
#CPUs (sockets)	1
#Cores/CPU	61
#Thread/Core	4
L1 cache size/core	32KB
L2 cache size/core	512 KB
Vector width	512 bits
Peak SP Gflops/s	2112
Peak DP Gflops/s	1056

Table 2: Intel Xeon Phi

Xeon Phi μ **Architecture**

Important characteristics

- Four hardware threads per core
- In-order dual issue pipeline
- Pipeline does not issue instructions from the same hardware context for two consecutive clock cycles
- Maximum issue rate only attainable with at least 2 threads per core

Number of Hardware Threads per core	Minimum Theoretical CPI per Core
1	1
2	0.5
3	0.5
4	0.5

Table 3: Minimum Theoretical CPI

Conclusion

- Metis and mt-metis have better edgecut;
- Metis and mt-metis have lower runtimes for a smaller number of partitions;
- GMetis is faster for a high number of partitions;
- Metis graph partitioning algorithm is not suitable to run on MIC as it does not use SIMD extensions;
- Metis and mt-metis are written in C whereas GMetis is written in C++ and uses various high level resources (e.g. Templates). This may explain differences in performance.

GMetis - Xeon Phi

David Pereira Rui Brito

August 8, 2013

Questions & Discussion