Machine Learning in Practice: a Crash Course

Lecture 1: Introduction to ML

Conan Hu

Course Information

- Prerequisite:
 - Basic math is preferred: Linear algebra, analysis, probability theory
- Course textbook: No textbook is required. (Other materials are available at the course web page)
- Objective:
 - Basic understandings of fundamental knowledge of ML
 - Basic ability to use some ML techniques to solve real world problems.

Why Take This Course?

• This is different from many courses in the web.

• This is about fundamental knowledge, basic concepts, best practices according to my experience, etc.

Not much about theoretical parts

What is machine learning?

 Machine learning is the study of computer systems that improve their performance through experience (mostly, data)

- In machine learning, we study two types of problems:
 - Supervised learning
 - Unsupervised learning

The first kind of problems

Dog

The first kind of problems

14

... ...

18

57

?

The second kind of problems

Two kinds of problems

- Supervised learning vs. Unsupervised learning
- What are the differences?
- Supervised learning
 - Goal: learn a mapping from inputs x to outputs y
 - Training data: a labeled set of input-output pairs
 - Classification (Categorization, Decision making…)
 - *y* is a categorical variable
 - Regression
 - y is real-valued

Two kinds of problems

- What are the differences?
- Supervised learning vs. Unsupervised learning
- Unsupervised learning
 - We are only given inputs \boldsymbol{x}
 - Goal: find "interesting patterns"
 - Much less well-defined problem
 - Discovering clusters, Clustering
 - Discovering latent factors
 - Dimensionality reduction, Topic modeling

Two kinds of problems

- What are the differences?
- Another popular problem: reinforcement learning
 - It is a supervised learning scenario
 - No desired classification/regression label is given
 - The only teaching feedback is that the result is right or wrong.
 - This is useful for learning how to act or behave when given occasional reward or punishment signals.

Focus of This Course

- What are the typical ML problems?
 - Supervised Learning
 - Regression
 - Classification (decision making)
 - Unsupervised Learning
 - Clustering
 - Dimension reduction
 - Maybe a little bit about Reinforcement Learning
- What are the basic ML methods/algorithms?
- Practical topics about ML:
 - Typical pipeline for ML
 - Popular Python tools for ML: pandas, sklearn, matplotlib, etc

Basic Concepts of Supervised Learning

• Sample, example, instance

- Features, representations, predictors
 - $x_1, x_2, \cdots x_n$
- labels, targets, pattern class, class
 - $y_1, y_2, \cdots y_c$
- Training data
 - $(x_1, y_1), (x_2, y_2), \cdots (x_n, y_n)$
- Model, classifier, regressor
 - f
- Test data
 - $(x_1, y_1), (x_2, y_2), \cdots (x_n, y_n)$
- Training error & test error

Question?

When should we use ML?

- First, we need to articulate the problem.
 - What is the problem we are facing?
 - Is this a typical ML problem? If it is, then what kind?
- We should be relatively easy to get the data.

- There should be some "patterns" in the data.
- Some other existing approaches are not good enough.
 - E.g. use machine learning to sort arrays may not be a good idea

What is a typical pipeline of ML

- It is often an iterative process
- Which step(s) is the most important step(s)?
 - Actually it depends. For performance, data & feature is often the most important one.

A toy example

- 1. Define a ML problem
 - Articulate your problem
 - The goal is to classify an image of fish
 - This is a supervised and classification problem
 - There should be only one fish in the image
 - What are the labels and where are they from?
 - Simple: one fish is salmon or sea bass
 - It can be labelled by some experienced fishers.
 - Determine obtainable inputs
 - The photos of fish
 - Design features: will talk about this later
 - What is the metric, i.e. the evaluation of the goodness of a model?
 - Accuracy: the percentage of correctly classified samples.

- 2. Construct dataset
 - Get some photos of different fish
 - Do some preprocessing:
 - Separate touching or occluding fishes
 - Abandon awful photos
 - ...
 - Ask some fishers to classify them

- 3. Transform data
 - First you need to determine the features
 - say the length of a fish in this problem
 - In practice we often use a lot more features
 - Then get the features from the data
 - Measure the length of the fish in photos
 - These features represent samples in machine learning models
 - Split data into train/test dataset

- 4. Design & train a model (Training)
 - If there is only one feature, what should be the classifier?
 - Histogram!
 - If there are more features available, we often use more complicated model

- 5. Use the model to predict
 - Evaluate the accuracy of this approach on some unseen photos in training to measure the performance of the ML system (Testing)
 - When there is a new image of fish coming, get the length from it and predict the label based on the model (Deploying & Serving)

Question?

Thanks and welcome to give me suggestions and feedbacks afterwards.