Machine Learning for Speaker Recognition Log-Likelihood Ratios and Score Calibration Speaker diarization and clustering Beyond Voice Biometrics

Machine Learning for Speaker Recognition

Sandro Cumani

Politecnico di Torino

Outline

- Speaker Identification and Verification:
 - The Speaker Verification Chain
 - Voiceprint Classification PSVM
 - Voiceprint Extraction
 - Generative Classification PLDA extensions
- Log-Likelihood Ratios and Score Calibration
- Speaker diarization and Clustering
- Beyond Voice Biometrics: Face ID, multi- and cross-modal identification

Speaker Recognition

Speaker Recognition:

- Authentication
- Surveillance
- Forensics

Strong territorial presence in Torino:

- ullet Telecom o Loquendo o Nuance Communications
- Research contracts, joint participation to NIST Evaluations

Speaker Recognition

Speaker identification: who is speaking?

Speaker verification: is A speaking?

- Acoustic feature extraction
- Voiceprint extraction
- Voiceprint classification

- Acoustic feature extraction
- Voiceprint extraction
- Voiceprint classification

- Acoustic feature extraction
- Voiceprint extraction
 - Statistical: i-vectors
 - Neural: x-vectors
- Voiceprint classification

From acoustic frames to voiceprints: i-vectors

- ullet State-of-the-art for the last decade (pprox 2010 to pprox 2018)
- Still the best solution for some tasks

From acoustic frames to voiceprints: i-vectors

- State-of-the-art for the last decade (\approx 2010 to \approx 2018)
- Still the best solution for some tasks

From acoustic frames to voiceprints: i-vectors

- State-of-the-art for the last decade (≈ 2010 to ≈ 2018)
- Still the best solution for some tasks.

From acoustic frames to voiceprints: neural networks

- Current state-of-the-art utterance representation
- Non-linear embedding transformations trained for multiclass classification (cross-entropy)

From acoustic frames to voiceprints: neural networks

- Current state-of-the-art utterance representation
- Non-linear embedding transformations trained for multiclass classification (cross-entropy)

- Acoustic feature extraction
- Voiceprint extraction
- Voiceprint classification

Voiceprint vs Audio: is segment \mathcal{T} from speaker \mathcal{E} ?

Voiceprint vs Audio: Generative approach (pre-2010)

- Channel-compensated GMM adapted supervector per speaker
- Compute likelihood for test frames

Voiceprint vs Audio: Discriminative (SVM) approach:

• Train 1-vs-all hyperplane in i-vector space

Voiceprint vs Audio: Discriminative (SVM) approach:

- Train 1-vs-all hyperplane in i-vector space
- Very unbalanced classes
- Few (single) points for target
- Each model has different score dynamics

The Speaker Verification Chain Voiceprint classification - PSVM Voiceprint extraction Voiceprint classification - PLDA extensions

Voiceprint Classification

Voiceprint vs voiceprint: are $\mathcal T$ and $\mathcal E$ from the same speaker?

Voiceprint vs Voiceprint: Generative approach

- Model between-class and within-class variability
- State-of-the-art: PLDA (and variations):

$$oldsymbol{\phi}_{s,i} = oldsymbol{m} + oldsymbol{U} oldsymbol{y}_s + oldsymbol{arepsilon}_{s,i} \;, \;\; oldsymbol{y}_s \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I}) \;, \;\; oldsymbol{arepsilon}_{s,i} \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Lambda}^{-1}
ight)$$

Voiceprint vs Voiceprint: Pairwise SVM^{[1][2]}

- Classify pairs of i-vectors (trials)
- Binary problem: Same- vs Different-speaker trial

^[1] S. Cumani et al. "Pairwise Discriminative Speaker Verification in the I-Vector Space". In: IEEE Transactions on Audio, Speech, and Language Processing 21.6 (2013), pp. 1217–1227.

 ^[2] S. Cumani and P. Laface. "Large scale training of Pairwise Support Vector Machines for speaker recognition".
 In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.11 (2014), pp. 1590–1600.

Voiceprint vs Voiceprint: Pairwise SVM

- Single model trained on background speakers
- Quadratic Kernel (similar to PLDA Log-Likelihood Ratios)

$$s(x,y) = x'Ay + y'Ax + x'Bx + y'By + c'x + c'y + k$$

Voiceprint vs Voiceprint: Pairwise SVM

- N utterances $\to N^2$ pairs \to Primal solver
- Naive approach: $O(N^2D^2)$ per iteration (expanded features)
- Exploit score correlations: $O(N^2D + ND^2)$ per iteration
- Support Vector Filtering: $O(ND^2)$ per iteration

Voiceprint vs Voiceprint: Pairwise SVM

- More accurate, scoring costs as PLDA, both can be combined
- Effective with different front-ends (i-/e-[3]/x-vector)

Decision Costs (lower is better)

^[3] S. Cumani and P. Laface. "Speaker recognition using e-vectors". In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 26.4 (2018), pp. 736–748.

Voiceprint extraction: i-vectors

- Computationally expensive:
 - Fast / large memory or very slow / average memory
 - Not suited for embedded devices
- Simultaneous diagonalization^[4]:
 - Very fast, average memory, significant accuracy degradation

The Speaker Verification Chain Voiceprint classification - PSVM Voiceprint extraction Voiceprint classification - PLDA extensions

Voiceprint extraction: i-vectors

Variational Bayes approximation of posterior distribution^[5]

• Iterative (\approx fast as standard), average memory, same accuracy

^[5] S. Cumani and P. Laface. "Memory and computation trade-offs for efficient i-vector extraction". In: IEEE Transactions on Audio, Speech, and Language Processing 21.5 (2013), pp. 934–944.

The Speaker Verification Chain Voiceprint classification - PSVM Voiceprint extraction Voiceprint classification - PLDA extension:

Voiceprint extraction: i-vectors

Subspace Factorization (FSE)^[6]

Iterative (very fast), very low memory, limited accuracy loss

^[6] S. Cumani and P. Laface. "Factorized Sub-Space Estimation for Fast and Memory Effective I-vector Extraction". In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.1 (2013), pp. 248–259.

Voiceprint extraction: i-vectors

Subspace Factorization

Best solution for low-resource devices (Patent^[7])

Relative Time, Memory and Decision cost (%, lower is better)

^[7] Sandro Cumani and Pietro Laface. "Method and apparatus for efficient i-vector extraction". Patent. US 9406298 B2, 2016.

PLDA for short utterances

I-vectors and short utterances:

- Shorter utterance → less accurate i-vector estimation
- Uncertainty can be quantified (i-vector posterior)

PLDA for short utterances

Natural framework for modeling uncertainty: $PLDA \rightarrow FPD-PLDA$

- Complementary to PSVM
- Probabilistic generative model for i-vectors

The Speaker Verification Chain Voiceprint classification - PSVM Voiceprint extraction Voiceprint classification - PLDA extensions

PLDA for short utterances

Natural framework for modeling uncertainty: $PLDA \rightarrow FPD-PLDA$

- ullet Integrate over uncertainty in PLDA model^[8] (FPD-PLDA)
- Higher accuracy, much slower
- Approximate solutions for fast scoring^[9] (Patent^[10])

^[8] S. Cumani, O. Plchot, and P. Laface. "On the use of i-vector posterior distributions in Probabilistic Linear Discriminant Analysis". In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.4 (2014), pp. 846–857.

^[9] S. Cumani. "Fast Scoring of Full Posterior PLDA Models". In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 23.11 (2015), pp. 2036–2045.

^[10] Sandro Cumani et al. "Fast speaker recognition scoring using i-vector posteriors and Probabilistic Linear Discriminant Analysis". Patent. US 9373330 B2. 2016.

PLDA for short utterances

Natural framework for modeling uncertainty: $PLDA \rightarrow FPD-PLDA$

- Very good results for ABC^[11] team in NIST SRE 2012
- Very effective for short and variable duration utterances

Decision Costs (lower is better)

Non-Linear PLDA

Beyond Gaussian assumptions: Non-Linear PLDA

- PLDA: Gaussian-Linear model
- Remove Gaussian Assumptions
- Limit the impact on scoring time
 - Closed form, simple posteriors

The Speaker Verification Chain Voiceprint classification - PSVM Voiceprint extraction Voiceprint classification - PLDA extensions

Non-Linear PLDA

Non-Linear PLDA: Combine PLDA and density transformations^{[12][13]}

- Transform input space to better match Gaussian assumptions
- Invertible function f
- Corresponds to non-Gaussian density in original space

^[12] S. Cumani and P. Laface. "Non-linear i-vector transformations for PLDA based speaker recognition". IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.4 (2017), pp. 908–919.

^[13] S. Cumani and P. Laface. "Joint estimation of PLDA and non-linear transformations of speaker vectors". In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.10 (2017), pp. 1890–1900.

Non-Linear PLDA

Non-Linear PLDA: Combine PLDA and density transformations

• Apply non-linear, invertible transformation to (i/e/x)-vectors

$$oldsymbol{\phi}_{s,i} = oldsymbol{f}^{-1} \left(oldsymbol{m} + oldsymbol{U} oldsymbol{y}_s + oldsymbol{arepsilon}_{s,i} \;, oldsymbol{artheta}
ight)$$

- ullet Keep PLDA priors $oldsymbol{y}_s \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I})$, $oldsymbol{arepsilon}_{s,i} \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Lambda}^{-1}
 ight)$
- Non-Gaussian likelihood, Conjugate Gaussian prior
 - Closed form, Gaussian posterior
 - Scoring complexity close to PLDA
- f: composition of affine and $\sinh-\sinh^{-1}$ functions
- Training: EM + L-BFGS + modified back-prop

The Speaker Verification Chain Voiceprint classification - PSVM Voiceprint extraction Voiceprint classification - PLDA extensions

Non-Linear PLDA

Non-Linear PLDA: Combine PLDA and density transformations

- Improvement over PLDA, esp. for Text-Dependent (TD)
- Further gains from PSVM and NL-PLDA fusion

Decision Costs (lower is better)

Score calibration

Voiceprint vs Voiceprint: from audio to score

- Ideally, scores represent log-likelihood ratios (LLR)
- LLRs: optimal decision depends only on application-dependent priors and error costs
- In practice, scores \neq LLRs:
 - Non-probabilistic classifiers (PSVM)
 - Incorrect model assumptions
 - Train / Test mismatch

Score calibration: recover LLR interpretation

Score calibration

Non-parametric calibration

Isotonic regression

Discriminative score calibration

- Optimize logarithmic proper scoring rule
- Prior-weighted Logistic Regression^[14]

Generative score calibration: model score generation process

- LLR of LLR is the LLR^[15]
- Constrained vs. uncostrained densities

^[14] N. Brümmer and G. R. Doddington. "Likelihood-ratio calibration using prior-weighted proper scoring rules". In: Proceedings of Interspeech. 2013, pp. 1976–1979.

^[15] D. van Leeuwen and N. Brümmer. "The distribution of calibrated likelihood-ratios in speaker recognition". In: Proceedings of Interspeech. 2013, pp. 1619–1623.

Constrained ML calibration models

- Similar results to discriminative approaches
- Allow for semi- and unsupervised training
- Rely on assumptions on score distribution
 - ullet E.g. CMLG o Tied-variance Gaussians

Unsupervised training:

- Few targets, many non-targets
- Difficult to locate target scores
- Requires accurate modelling of distribution tails

Unsupervised training:

- Theoretical (isotropic) PLDA LLRs: GH distributions^[16]
- ullet Contrained NIG^{[17][18]} / V Γ / GH

[18] Sandro Cumani. "Normal Variance-Mean Mixtures for Unsupervised Score Calibration". In: Proceedings of Interspeech 2019. Sept. 2019, pp. 401–405.

^[16] Work in progress

^[17] Sandro Cumani and Pietro Laface. "Tied Normal Variance—Mean Mixtures for Linear Score Calibration". In: Proceedings of ICASSP 2019. May 2019, pp. 6121–6125.

Unsupervised CMLGH:

- PLDA, NL-PLDA, PSVM, i-/e-/x-vectors
- Low target (speaker) proportion (1:1000 or lower)

Decision Costs (lower is better)

CMLGH score models: beyond calibration

- Model effects of distribution mismatch
- Compensate mismatch at score level
 - Single framework for score normalization and calibration
 - Incorporate duration effects for PSVM and x-vectors
 - Automatic determination of nuisance sources

Duration-dependent score transformations:

CMLGH score models: beyond calibration

- Model effects of distribution mismatch
- Compensate mismatch at score level

SRE-10 - Decision Costs (lower is better)

Speaker diarization

Speaker segmentation and diarization:

- Single audio, multiple speakers
- Identify who is talking when

Speaker clustering

Cluster large number of speakers

- Fraudster detection
- Unsupervised adaptation

Large-scale UPGMA^[19]

- Suited for SID similarities
- Constrained memory, fast, exact UPGMA
- Very fast, approximate silhouette computation

 ^[19] Sandro Cumani and Pietro Laface. "Exact memory-constrained UPGMA for large scale speaker clustering".
 In: Pattern Recognition 95 (2019), pp. 235–246.

Face Identification

Speaker and Face Identification:

- Similar task (same / different identity)
- Different, but similar, frontends
 - i-vectors, x-vectors
 - DNN / CNN embeddings

Face Identification

Speaker and Face Identification:

NL-PLDA and PSVM effective^[20]

SIFACE, Top-1 Accuracy (%, cross-age, higher is better)

^[20] Pablo Negri, Sandro Cumani, and Andrea Bottino. "PLDA-based Classification of Deep Features for Age-Invariant Face Recognition". Submitted to Computer Vision and Image Understanding.

Multi- and cross-modal Identification

Multi-modal and cross-modal identification

- Score-level, classifier, front-end fusion
- Cross-modal representation: joint face-voice embedding
- Multi and cross-modal backends: H-PLDA^[21]

^[21] Sandro Cumani and Pietro Laface. "Scoring Heterogeneous Speaker Vectors Using Nonlinear Transformations and Tied PLDA Models". In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (2018).