Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) $(M\Gamma T \mbox{ у им. } \mbox{ H.Э. Баумана})$

ФАКУЛЬТЕТ	«Информатика и системы управления»		
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»		
НАПРАВЛЕНИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»			

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №15

Название:	Формирование эффективных программ на Prolog		
Дисциплина:	Функциональн	ое и логическое программир	оование
Студент	ИУ7-64Б _{Группа}	 Подпись, дата	С. Д. Параскун И. О. Фамилия
Преподаватель			Н. Б. Толпинская
Преподаватель		Подпись, дата	И. О. Фамилия Ю. В. Строганов
		Подпись, дата	И. О. Фамилия

1. Практическое задание

1.1 Задание

В одной программе написать правила, позволяющие найти:

- 1. Максимум из двух чисел:
 - без использования отсечения;
 - о с использованием отсечения;
- 2. Максимум из трех чисел:
 - без использования отсечения;
 - о с использованием отсечения.

Убедиться в правильности результатов.

Для каждого случая пункта 2 обосновать необходимость всех условий тела.

Для одного из вариантов вопроса и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы. Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг нужно начинать с нового состояния резольвенты.

1.2 Код программы

```
domains

num = integer.

predicates

maxOfTwo(num, num, num).
maxOfTwoCut(num, num, num).
maxOfThree(num, num, num).
```

```
maxOfThreeCut(num, num, num, num).
10
11
12 clauses
13
      maxOfTwo(Num1, Num2, Num1) :- Num1 >= Num2.
14
      maxOfTwo(Num1, Num2, Num2) :- Num2 >= Num1.
15
16
      maxOfThree(Num1, Num2, Num3, Num1) :- Num1 >= Num2, Num1 >= Num3.
17
      maxOfThree(Num1, Num2, Num3, Num2) :- Num2 >= Num1, Num2 >= Num3.
18
      maxOfThree(Num1, Num2, Num3, Num3) :- Num3 >= Num1, Num3 >= Num2.
19
20
      maxOfTwoCut(Num1, Num2, Num1) :- Num1 >= Num2, !.
21
      maxOfTwoCut(_, Num2, Num2).
22
23
      maxOfThreeCut(Num1, Num2, Num3, Num1) :- Num1 >= Num2, Num1 >= Num3, !.
      maxOfThreeCut(_, Num2, Num3, Num2) :- Num2 >= Num3, !.
25
      maxOfThreeCut(_, _, Num3, Num3).
26
27
  goal
28
29
      %maxOfTwo(1, 2, Max).
30
      %maxOfTwo(2, 1, Max).
31
      %maxOfTwo(2, 2, Max).
32
      %maxOfTwoCut(1, 2, Max).
33
      %maxOfTwoCut(2, 1, Max).
34
      %maxOfTwoCut(2, 2, Max).
35
      %maxOfThree(1, 2, 3, Max).
36
      %maxOfThree(1, 3, 2, Max).
37
      %maxOfThree(3, 2, 1, Max).
38
      %maxOfThree(3, 2, 3, Max).
39
      %maxOfThreeCut(1, 2, 3, Max).
40
      %maxOfThreeCut(1, 3, 2, Max).
41
      %maxOfThreeCut(3, 2, 1, Max).
42
      maxOfThreeCut(3, 2, 3, Max).
43
```

1.3 Таблицы выполнения программы

Запрос для задания 2.a: maxOfThree(1, 3, 2, Max).

№ ша- га	Состояния резольвенты и вывод: дальнейшие действия (почему?) Резольвента: о maxOfThree(1, 3, 2, Max)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (подстановка) maxOfThree(1, 3, 2, Max) = maxOfTwo(Num1, Num2, Num1). Унификация неуспешна	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?) Прямой ход, переход к следующему приложению
2			
3	Резольвента: $\circ \ 1>=2,$ $\circ \ 1>=3$	maxOfThree(1, 3, 2, Max) = maxOfThree(Num1, Num2, Num3, Num1). Унификация успешна Подстановка: {Num1=1, Num2=3, Num3=2, Max=Num1}	Прямой ход, решение цели резольвенты (1 $>=2$)
4	Резольвента: • maxOfThree(1, 3, 2, Max)	1 >= 2. Ложь	Откат, переход к следующему шагу относительно 3
5	Резольвента: $3>=2,$ $3>=1$	maxOfThree(1, 3, 2, Max) = maxOfThree(Num1, Num2, Num3, Num2). Унификация успешна Подстановка: {Num1=1, Num2=3, Num3=2, Max=Num2}	Прямой ход, решение цели резольвенты (3 >= 2)
6	Резольвента: • 3 >= 1	3>=2. Правда	Прямой ход, решение цели резольвенты (3 $>=1$)
7	Резольвента: пуста Вывод: Мах=3	3 >= 1. Правда Подстановка: {Num1=1, Num2=3, Num3=2, Max=3}	Откат, переход к следующему шагу относительно 5
8	$\begin{array}{c} ext{Резольвента:} \\ ext{\circ} \ 2>=3, \\ ext{\circ} \ 2>=1 \end{array}$	maxOfThree(1, 3, 2, Max) = maxOfThree(Num1, Num2, Num3, Num3). Унификация успешна Подстановка: {Num1=1, Num2=3, Num3=2, Max=Num3}	Прямой ход, решение цели резольвенты (2 $>=3$)

№ ша- га	Состояния резольвенты и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: $T1=T2$ и каков результат (подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
9	Резольвента: • 2 >= 1	2>=1. Ложь	Откат, переход к следующему шагу относительно 8
10	Резольвента: • maxOfThree(1, 3, 2, Max)	maxOfThree(1, 3, 2, Max) = maxOfTwoCut(Num1, Num2, Num1). Унификация неуспешна	Прямой ход, переход к следующему предложению
11- 14	Резольвента: o maxOfThree(1, 3, 2, Max)	Унификация неуспешна	Откат, достижение конца БЗ, заверше- ние работы

апрос для задания 2.a: $\max OfThreeCut(1, 3, 2, Max).$

№ ша- га	Состояния резольвенты и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: $T1=T2$ и каков результат (подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
1	Резольвента: • maxOfThreeCut(1, 3, 2, Max)	maxOfThreeCut(1, 3, 2, Max) = maxOfTwo(Num1, Num2, Num1). Унификация неуспешна	Прямой ход, переход к следующему предложению
2-7			
8	$egin{array}{ll} {\sf Резольвента:} & \circ & 1>=2, & & & & \\ & \circ & 1>=3, & & & & \\ & \circ & ! & & & & \end{array}$	maxOfThreeCut(1, 3, 2, Max) = maxOfThreeCut(Num1, Num2, Num3, Num1). Унификация успешна Подстановка: {Num1=1, Num2=3, Num3=2, Max=Num1}	Прямой ход, решение цели резольвенты (1 >= 2)
9	$\begin{array}{c} ext{Резольвента:} \\ ext{\circ} \ 1 >= 3, \\ ext{\circ} \ ! \end{array}$	1>=2. Ложь	Откат, переход к следующему шагу относительно 8

№ ша- га	Состояния резольвенты и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: $T1=T2$ и каков результат (подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
10	$egin{array}{cccccccccccccccccccccccccccccccccccc$	maxOfThreeCut(1, 3, 2, Max) = maxOfThreeCut(Num1, Num2, Num3, Num2). Унификация успешна Подстановка: {Num1=1, Num2=3, Num3=2, Max=Num2}	Прямой ход, решение цели резольвенты $(1 >= 2)$
11	Резольвента: • 3 >= 1, •!	3>=2. Правда	Прямой ход, решение цели резольвенты (3 $>=1$)
12	Резольвента:	3 >= 1. Правда	Прямой ход, решение цели резольвенты (!)
13	Резольвента: пуста Вывод: Мах=3	Операция отсечения	Откат к пункту 10, завершение работы