Predicting Stock Prices using Neural Networks (W/ python)

Imports

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pandas_datareader as web
import datetime as dt

from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM
```

Load Data

```
In [101... company = 'FB'

start = dt.datetime(2012,1,1)
end = dt.datetime(2018,12,31)

data = web.DataReader(company, 'yahoo', start, end)
data
```

Out[101		High	Low	Open	Close	Volume	Adj Close
	Date						
	2012-05-18	45.000000	38.000000	42.049999	38.230000	573576400	38.230000
	2012-05-21	36.660000	33.000000	36.529999	34.029999	168192700	34.029999
	2012-05-22	33.590000	30.940001	32.610001	31.000000	101786600	31.000000
	2012-05-23	32.500000	31.360001	31.370001	32.000000	73600000	32.000000
	2012-05-24	33.209999	31.770000	32.950001	33.029999	50237200	33.029999
	•••						
	2018-12-24	129.740005	123.019997	123.099998	124.059998	22066000	124.059998
	2018-12-26	134.240005	125.889999	126.000000	134.179993	39723400	134.179993
	2018-12-27	134.990005	129.669998	132.440002	134.520004	31202500	134.520004
	2018-12-28	135.919998	132.199997	135.339996	133.199997	22627600	133.199997
	2018-12-31	134.639999	129.949997	134.449997	131.089996	24625300	131.089996

1665 rows × 6 columns

Prepare the data

```
x_train =[]
y_train =[]

for x in range(prediction_days, len(scaled_data)):
    x_train.append(scaled_data[x-prediction_days:x,0])
    y_train.append(scaled_data[x,0])

x_train, y_train = np.array(x_train), np.array(y_train)

x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
```

Build Model

```
#0 modelo que vamos construir é um modelo sequencial, isto significa de grosso m
model = Sequential()

#LSTM ->
model.add(LSTM(units=60, return_sequences=True, input_shape=(x_train.shape[1],1)
model.add(Dropout(0.2))
model.add(LSTM(units=60, return_sequences=True))
model.add(LSTM(units=60))
model.add(LSTM(units=60))
model.add(Dropout(0.2))
model.add(Dropout(0.2))
model.add(Dense(units=1))

model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(x_train, y_train, epochs=25, batch_size=32)
Froch 1/25
```

```
Epoch 1/25
Epoch 2/25
51/51 [================] - 6s 114ms/step - loss: 0.0029
Epoch 3/25
Epoch 4/25
51/51 [================== ] - 6s 111ms/step - loss: 0.0028
Epoch 5/25
Epoch 6/25
51/51 [==================] - 5s 93ms/step - loss: 0.0019
Epoch 7/25
51/51 [==================] - 5s 93ms/step - loss: 0.0028
Epoch 8/25
51/51 [================== ] - 7s 145ms/step - loss: 0.0021
Epoch 9/25
51/51 [=================== ] - 6s 121ms/step - loss: 0.0023
Epoch 10/25
Epoch 11/25
Epoch 12/25
Epoch 13/25
Epoch 14/25
51/51 [=================] - 6s 120ms/step - loss: 0.0018
Epoch 15/25
51/51 [==================] - 7s 128ms/step - loss: 0.0024
Epoch 16/25
51/51 [=================] - 5s 94ms/step - loss: 0.0017
Epoch 17/25
51/51 [==================] - 4s 81ms/step - loss: 0.0017
```

```
Epoch 18/25
    Epoch 19/25
    Epoch 20/25
    51/51 [=================] - 4s 82ms/step - loss: 0.0017
    Epoch 21/25
    Epoch 22/25
    Epoch 23/25
    51/51 [==================] - 4s 84ms/step - loss: 0.0016
    Epoch 24/25
    51/51 [==================] - 4s 82ms/step - loss: 0.0013
    Epoch 25/25
    Out[103... <tensorflow.python.keras.callbacks.History at 0x7f881d4d8970>
```

Testing Model Accuracy on Existing data

```
In [104... test_start = dt.datetime(2019,1,1)
    test_end = dt.datetime.now()

    test_data = web.DataReader(company, 'yahoo', test_start, test_end)
    actual_prices = test_data['Close'].values

    total_dataset = pd.concat((data['Close'], test_data['Close']), axis=0)

    model_inputs = total_dataset[len(total_dataset) - len(test_data) - prediction_days:
    model_inputs = model_inputs.reshape(-1,1)
    model_inputs=scaler.transform(model_inputs)
```

Make predictions

Plot Test Predictions

```
In [106... plt.plot(actual_prices, color='black', label=f'Actual {company} price')
    plt.plot(predicted_prices, color='green', label=f'Predicted {company} price')
    plt.title(f'{company} Share Price')
    plt.xlabel('Time')
    plt.ylabel(f'{company} Share Price')
    plt.legend()
    plt.show()
```

FB Share Price

Predict Next Day

WARNING:tensorflow:Model was constructed with shape (None, 60, 1) for input Kera sTensor(type_spec=TensorSpec(shape=(None, 60, 1), dtype=tf.float32, name='lstm_3 a_input'), name='lstm_3 a_input', description="created by layer 'lstm_3 a_input'"), but it was called on an input with incompatible shape (None, 59, 1). Prediction [[295.9717]]

```
In [108... print(dt.datetime.now())
```

2021-05-18 21:04:33.478578