

Institut für Betriebs- und Dialogsysteme Lehrstuhl für Computergrafik

Prof. Dr.-Ing. Carsten Dachsbacher

Klausur Computergraphik

WS 2010/2011

Donnerstag, 10. März 2011

Kleben Sie hier nach Bearbeitung der Klausur den Aufkleber hin.

Beachten Sie:

- Trennen Sie vorsichtig die dreistellige Nummer von Ihrem Aufkleber ab. Sie sollten sie gut aufheben, um später Ihre Note zu erfahren.
- Die Klausur umfasst 9 Blätter mit 10 Aufgaben.
- Es sind keine Hilfsmittel zugelassen.
- Vor Beginn der Klausur haben Sie 5 Minuten Zeit zum Lesen der Aufgabenstellungen. Danach haben Sie 60 Minuten Bearbeitungszeit.
- Schreiben Sie Ihren Namen und Ihre Matrikelnummer oben auf jedes bearbeitete Aufgabenblatt.
- Schreiben Sie Ihre Lösungen auf die Aufgabenblätter. Bei Bedarf können Sie weiteres Papier anfordern.
- Wenn Sie bei einer Multiple-Choice-Frage eine falsche Antwort angekreuzt haben und diesen Fehler korrigieren möchten, füllen Sie die betreffende Box ganz aus:

 Falsche Antworten führen zu Punktabzug.

 Jede Multiple-Choice-Aufgabe wird mit mindestens 0 Punkten bewertet.
- Kleben Sie nach Bearbeitung der Klausur den Aufkleber mit Ihrem Namen und Ihrer Matrikelnummer auf dieses Deckblatt.

Aufgabe	1	2	3	4	5	6	7	8	9	10	Gesamt
Erreichte Punkte											
Mögliche Punkte	4	7	6	6	5	6	6	3	12	5	60

Au	ıfgabe 1: Wahrnehmung und Farbräume	(4 Punk	te)					
a.)) Welche Eigenschaft der menschlichen Wahrnehmung wird durch das Weber-Fechner-Gesetz beschrieben? (1 Punkt)							
b.)	Was ist der Gamut eines Monitors? (1 Punkt)							
c.)	Kreuzen Sie die Aussagen an, die auf die jewei	iligen Far	bräume :	zutreffer	n. (2 Punkte)			
	Aussage	RGB	CMY	HSV	CIE xyY			
	Der Farbraum ist additiv.							
	Der Farbraum ist subtraktiv.							
	Der Farbraum ist multiplikativ.							
	Der Farbraum trennt Luminanz von Chrominanz.							
	Der Farbraum kann alle sichtbaren Farben repräsentieren.							
	Der Farbraum wird nativ auf Peripheriegeräten verwendet.							

Matrikelnummer: _____

Name: _____

Hinweise: Die Aussagen können auf mehrere Farbräume zutreffen. Die vorletzte Aussage muss für den HSV-Farbraum nicht überprüft werden; das entsprechende Kästchen fehlt. Falsche Antworten führen zu Punktabzug!

Name:	Matrikelnummer:	

Name:	Matrikelnummer:
-------	-----------------

Aufgabe 2: Prozedurale Modellierung (7 Punkte)

- a.) Nennen Sie einen Vorteil und einen Nachteil prozeduraler Beschreibungen! Nennen Sie zwei Beispiele für deren Modellierung prozedurale Modelle gut geeignet sind! (3 Punkte)
- b.) Was versteht man unter Rauschtexturen nach Perlin? Nennen Sie außerdem zwei wichtige Eigenschaften dieser Rauschtexturen. Geben Sie eine *einfache* Möglichkeit an, um 2D-Rauschtexturen zu berechnen. (4 Punkte)

Name:	Matrikelnummer: _	
	-	

Name:	Matrikelnummer:

Aufgabe 3: Ray-Tracing (6 Punkte)

- a.) Nennen Sie die vier Arten von Strahlen, die beim Whitted-Style-Ray-Tracing auftreten können. Welche dieser Strahlen benötigen zur Berechnung Rekursion? (2 Punkte)
- b.) Nennen Sie die zwei Abbruchkriterien für die Rekursion, die Sie in der Vorlesung kennengelernt haben! Welchen Vorteil haben die Kriterien jeweils? (3 Punkte)
- c.) In welchem Fall ist keine (weitere) Rekursion notwendig, nachdem ein Schnittpunkt gefunden wurde? (1 Punkt)

Name:	Matrikelnummer:	
	· · · · · · · · · · · · · · · · · · ·	

Aufgabe 4: Texturen (6 Punkte)

- a.) Was versteht man unter *Magnification* und *Minification* bei der Texturierung? Nennen und erläutern Sie kurz je eine Möglichkeit, wie Sie den hierbei auftretenden Artefakten begegnen können. (4 Punkte)
- b.) Nennen Sie zwei Parametrisierungen für Environment Maps und für jede angegebene Parametrisierung einen Vorteil *oder* Nachteil. (2 Punkte)

Nan	me:	Matrikelnummer:						
Au	fgabe 5: Räumliche Datenstrukturen (5 Pun	kte)						
,	Begründen Sie, warum und wofür räumliche Datenstrukturen für Ray-Tracing von komplexen Szenen besonders wichtig sind! (2 Punkte)							
,	b.) Betrachten Sie die folgenden Aussagen zu Hüllvolumen-Hierarchien mit achsenparalle len Hüllquadern (BVH), Oktalbäumen (Octree), regulären Gittern und BSP-Bäumer Kreuzen Sie an, für welche der räumlichen Datenstrukturen – so wie Sie sie in de Vorlesung kennengelernt haben – die jeweiligen Aussagen zutreffen. Gehen Sie im Folgenden davon aus, dass Primitive beim Aufbau der Datenstrukturen nicht zerteil werden und für die Traversierung kein Mailboxing eingesetzt wird. (3 Punkte)							
	Aussage	BVH	Octree	Gitter	BSP			
	Der Aufbau-Algorithmus ist adaptiv und passt die Datenstruktur deshalb automatisch an die Geometrie an.							
	Die Datenstruktur wird durch einen Binärbaum repräsentiert.							
	Objekte werden bei der Traversierung potentiell mehrfach von demselben Strahl geschnitten.							
	Bei der Traversierung wird leerer Raum effizient übersprungen.							

Hinweis: Die Aussagen können eventuell auf mehrere Datenstrukturen zutreffen. Falsche Antworten führen zu Punktabzug!

Der Raum wird durch die Datenstruktur immer

Bei der Konstruktion kann die Surface-Area-

Heuristik sinnvoll eingesetzt werden.

achsenparallel unterteilt.

Name:	Matrikelnummer:

Name:	Matrikelnummer:	
_		

Aufgabe 6: Clipping (6 Punkte)

- a.) Mit welchen Kanten der Clipping-Region wird die Strecke $\overline{P_1P_2}$ beim Cohen-Sutherland-Clipping-Algorithmus potenziell geschnitten? Erläutern Sie, wie diese Kanten anhand der Outcodes identifiziert werden! Wovon hängt es ab, mit welchen Kanten die Strecke tatsächlich geschnitten wird? (4 Punkte)
- b.) In welchen Fällen kann der Algorithmus $ausschlie \beta lich$ anhand der Outcodes eine beliebige Strecke \overline{AB} eliminieren? Welche Bitoperation wird mit den Outcodes hierzu durchgeführt? (2 Punkte)

Name:	Matrikelnummer:	

Name:	Matrikelnummer:	
_		

Aufgabe 7: Shading (6 Punkte)

a.) Bewerten Sie folgende Aussagen zu Flat-, Gouraud- und Phong-Shading und kreuzen Sie die zutreffenden Felder an. (3 Punkte)

Aussage	Flat	Gouraud	Phong
Die Normale wird für jeden Pixel aus Normalen der Eckpunkte interpoliert.			
Der Mach-Band-Effekt (Machsche Streifen) kann sichtbar werden / auftreten.			
Die Beleuchtung wird ausschließlich an den Vertex-Positionen berechnet und anschließend interpoliert.			
Für die Berechnung der Beleuchtung wird die Flächennormale des Dreiecks verwendet.			
Die Ebene in Abbildung 1, repräsentiert durch ein Dreiecksnetz, soll diffuse und spekulare Reflexionseigenschaften aufweisen. Dann ändert sich durch eine feinere Unterteilung der Ebene die berechnete Beleuchtung nicht.			
Wird in der Fixed-Function-Pipeline von OpenGL unterstützt.			

Hinweis: Die Aussagen können eventuell auf mehrere Shading-Verfahren zutreffen. Falsche Antworten führen zu Punktabzug!

Abbildung 1: Eine grobe und eine feine Unterteilung derselben Ebene.

Name: Matrikelnummer:

- b.) Wie werden Normalenvektoren beim Phong-Shading interpoliert und warum muss im Allgemeinen nach der Interpolation erneut normalisiert werden? (2 Punkte)
- c.) Kann man das Blinn-Phong-Beleuchtungsmodell mit Flat-Shading kombinieren? Begründen Sie Ihre Antwort! (1 Punkt)

Name: Matrikelnu	ımmer:	
Aufgabe 8: Rasterisierung (3 Punkte)		
Bewerten Sie die folgenden Aussagen und entscheiden Sie, ob s Algorithmus (Z-Puffer-Algorithmus) zutreffen.	sie für den T	Tiefenpuffer
Aussage	Wahr	Falsch
Sichtbarkeit wird vor der Rasterisierung berechnet.		
Opake Primitive können mit korrekter Verdeckungsberechn	ıng 🗀	

Aufgabe 9: OpenGL (12 Punkte)

- a.) Welchen Vorteil haben Dreiecksstreifen (GL_TRIANGLE_STRIP) im Vergleich zu isolierten Dreiecken (GL_TRIANGLES)? (2 Punkte)
- b.) Was versteht man unter einem Indexed Face Set? Welche Optimierung bei der Geometrieverarbeitung wird dadurch erst ermöglicht? (2 Punkte)
- c.) Was versteht man bei OpenGL unter "Blending"? Nennen Sie eine wichtige Anwendung wofür es eingesetzt werden kann! (2 Punkte)
- d.) Geben Sie zwei kommutative Blending-Einstellungen mittels OpenGL-Befehlen an. Gehen Sie dabei davon aus, dass als Blending-Verknüpfungsoperation die Addition eingestellt ist. (2 Punkte)
- e.) Erläutern Sie die Aufgaben eines Vertex-Shaders bzw. Vertex-Programms und welche Ein- und Ausgabedaten zur Verfügung stehen und erzeugt werden müssen bzw. können! (4 Punkte)

Name:	Matrikelnummer:

Name:	Matrikelnummer:
1101110:	

Aufgabe 10: Bézierkurven (5 Punkte)

- a.) Wie nennt man den Algorithmus zur rekursiven Auswertung von Bézierkurven, der auch eine grafische Repräsentation hat? (1 Punkt)
- b.) Zählen Sie vier wichtige Eigenschaften von Bézierkurven, die Sie in der Vorlesung kennengelernt haben, auf. (2 Punkte)
- c.) Verwenden Sie den Algorithmus aus Aufgabe a.), um die kubische Bézierkurve $F(u) = \sum_{i=0}^{3} B_i^3(u) \mathbf{b_i}$, mit den kubischen Bernsteinpolynomen $B_i^3(u)$, deren Kontrollpolygon dargestellt ist, an der Stelle u = 1/3 auszuwerten. Skizzieren Sie grob den Verlauf der Kurve. (2 Punkte)

Name:	Matrikelnummer:	