

Course Code:	UCSC0501		L	T	P	Credit
Course Name:	Data	base Engineering	3			3

Course Prerequsites

Data Structures

Course Description:

This course introduces database design and creation using a DBMS product. Emphasis is on data dictionaries, normalization, data integrity, data modelling, and creation of simple tables and queries. Upon completion, students should be able to design and implement normalized database structures by creating simple database tables and queries.

Course Outcomes:

CO1	Define basic functions and features of DBMS & RDBMS.									
CO2	Apply normalization techniques on given database to assure data integrity and consistency.									
CO3	Make use of SQL queries to implement user defined applications.									
CO4	Interpret file organization, indexing and hashing techniques for faster and efficient system performance.									

CO5 Distinguish transaction management and concurrency control methods for system reliability and security

CO-PO Mapping:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	1	1		1	0	0	0	0	0	0	0	3	0	0
CO2	1	3	2	3	3	3	3	3	0	0	0	3	3	3
CO3	2	3	2	3	3	3	3	3	0	0	0	3	3	3
CO4	2	3	2	3	0	0	3	0	0	0	0	3	3	3
CO5	1	3	2	3	0	0	3	3	0	0	0	3	3	3

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Course Contents:

Unit 1 Introduction to Database

8 Hours

Purpose of Database Systems, View of Data, Data Models, Database Architecture, Roles in Database Environment, The Entity-Relationship Model, Entity-Relationship Diagrams, Reduction to Relational Schemas, Introduction to Relational Model, Relational Query Languages- The Relational Algebra

Unit 2 Relational Database Design

5 Hours

The purposes of Normalization, Data Redundancies and Update Anomalies, Functional Dependencies, The Process of Normalization, First Normal Form, Second Normal Form, Third Normal Form, Boyce-Codd Normal Form, Fourth Normal Form, Fifth Normal Form.

Unit 3 Relational Model and Structured Query Language

7 Hours

Structure of Relational Databases, SQL Data Definition Language, Basic Structure of SQL Queries, Additional Basic Operations, Set Operations, Null Values, Aggregate Functions, Nested Subqueries, Modification of the Database, Join Expressions, Views, Integrity Constraints, Accessing SQL from a Programming Language

Unit 4 File Structure, Indexing and Hashing

8 Hours

Overview of Physical Storage Media, File Organization, Organization of Records in Files, Data-Dictionary Storage, Database Buffer. Basic Concepts of Indexing and Hashing, Ordered Indices, B+-Tree Index Files, B-Tree Index Files, Multiple-Key Access, Static Hashing, Dynamic Hashing, Bitmap Indices, Index Definition in SQL.

Unit 5 Transactions and Concurrency Control

7 Hours

Transaction Concept, Simple Transaction Model, Serializability, Concurrency Control- Lock-Based Protocols, Two-phase locking protocols, Graph-based protocols, Multiple Granularity, Timestamp-Based Protocols,

Unit 6 Recovery System

5 Hours

Failure Classification, Storage, Recovery and Atomicity, Recovery Algorithm, checkpoint, Shadow paging, Failure with Loss of Non-volatile Storage, Remote Backup Systems

Text Books:

- 1. Database System Concept by Henry F. Korth, Abraham Silberschatz, Sudarshan (McGraw Hill Inc.) Sixth Edition.
- 2. Database Systems- A practical approach to Design, Implementation and Management by Thomos Connolly,

Reference Books:

- 1. Fundamentals of Database Systems by Ramez Elmasri and Shamkant Navathe Publisher -Pearson Education, 5 th Edition.
- 2. Database Systems: Design, Implementation and management. PeterRof, Carlos Coronel (7th Edition), Publisher Cengage Learning.
- 3. Principles of Database Systems by J.D. Ullaman (Galgotia Publications).

Course Code:	UCSC0502	L	T	P	Credit
Course Name:	Machine Learning	3			3

Course Prerequsites:

Discrete Mathematics, Mathematics for Computer Science, Probability and Statistics.

Course Description:

This course provides an introduction to machine learning and covers the key concepts, algorithms, and techniques used in the field. Topics include supervised and unsupervised learning, linear and logistic regression, decision trees, clustering, and neural networks. Emphasis is placed on both theoretical understanding and practical applications.

Course	Outcomes: After the completion of the course the student should be able to –							
CO1	Explain various concepts and terminology used in machine learning.							
CO2	CO2 Explain the applications and limitations of different types of machine learning algorithms.							
CO3	CO3 Analyze the different types of machine learning models.							
CO4	O4 Evaluate the performance of different machine learning algorithms.							
CO5	CO5 Design custom machine learning algorithms to solve specific problems.							

CO-PO Mapping:

	0													
·	PO1	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	2								1			3	1	1
CO2	2	1							1			3	1	1
CO3		1							1			3	3	2
CO4		2			3				1			3	3	1
CO5	2	1	2	3	3				3	3	1	3	3	3

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Course Contents:

Unit 1 Introduction to Machine Learning

7 Hours

Introduction to machine learning – definition, terminology. Types of machine learning – supervised learning, unsupervised learning, semi-supervised learning, reinforcement learning. Machine learning process. Performance metric in machine learning. Tools and frameworks. Data preprocessing (overview). Data visualization.

Unit 2 Regression 6 Hours

Simple linear regression – hypothesis, cost function, parameter learning with gradient descent, learning rate, gradient descent for linear regression, examples. Simple linear regression in matrix form. Multivariate linear regression – multiple features, hypothesis functions. Gradient descent for multiple variables, feature scaling, polynomial regression.

Unit 3 | Classification - Logistic Regression & Neural Network

7 Hours

Logistic regression – definition, hypothesis representation, decision boundary, cost function, gradient descent for logistic regression. Multiclass classification. Regularization – overfitting & underfitting, cost function, regularized linear regression, regularized logistic Regression.

Neural networks – neuron representation and model, hypothesis for neuron, cost function, solution of a problem using single neuron, gradient descent for a neuron. Multiclass classification with neural network. Learning in neural networks – feedforward neural network, backpropagation algorithm. Loss function – support vector machines (SVMs), softmax regression.

Unit 4 | Classification - Decision Trees and Naïve Bayes

8 Hours

Decision trees – definition, terminology, the need, advantages, and limitations. Constructing and understanding decision trees. Common problems with decision trees. Decision tree algorithms – ID3, CART, random forest, examples. Naïve Bayes classifier. Instance-based classifier – K–Nearest Neighbour classifier.

Unit 5 Unsupervised Learning and Reinforcement Learning

7 Hours

Unsupervised learning: Introduction to clustering, K Means clustering, Hierarchical clustering, Association rule mining. Introduction to reinforcement learning – Q learning.

Unit 6 | Applications of Machine Learning

4 Hours

Introduction to machine learning libraries, applications in structured data, applications in unstructured data – Image, Text, Speech.

Text Books:

- 1. Machine Learning with Python an approach to applied ML, by Abhishek Vijayvargia, BPB publications
- 2. Practical Machine Learning by Sunila Gollapudi Packt Publishing Ltd
- 3. Machine Learning by Tom M. Mitchell, McGraw Hill Education; First edition

Reference Books:

- 1. Machine Learning for dummies John Paul Muller, Wiley Publication
- 2. Ethem Alpaydin Introduction to Machine Learning, PHI 2nd Edition-2013
- 3. http://neuralnetworksanddeeplearning.com

Notes

- The syllabus is subject to minor changes depending on how the course proceeds.
- The inclusion of neural networks can be optional, depending on how the course progresses.

<u>Course</u>	Code:		UCSC05	503								L	Т	P	Credi
Course	Name:		Operati	ing Syste	ems]	3			3
			•												
	Prereq														
Fundan	nentals o	of Electr	onics an	d Comp	uter										
Courco	Descri	ation													
			ourse of	f Compu	tor Scion	nco & En	ginoorii	ng Progr	ammo I	n thic co	urco vo	ı will bo	como fa	miliarw	rith the
								s are cre						iiiiiai vv	itii tiit
ynchr	onisatio	n , the v	arious s	cheduli	ng algoi			manag						etc. This	S
course	will be a	lso help	ful for e	xams lik	e GATE.										
			، ما	_			-								
	Outcon							student v	will be a	ble to -					
				epts of o				1							
CO2								replaced			i.				
CO3	0							ropriate			adla or a	woid do	adlacks		
		•						e manag		es to mai	iule of a	voiu dea	autocks.		
603	milei pi	et miter i	iai repre	stiitatil	ii oi iiie	anu Dul	ici cacil	e manag	ement.						
CO-PO	Mappin	g:													
		P01	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2
	CO1	1	2								1		2	1	
	CO2	2	2			2				1	2				
	CO3	1	1	2	1	3							1		2
	CO4	2	2		1	1								1	2
	CO5				1							1	1	1	
				1											
	ment Sc														
SN	Assessi						htage	Remar							
1				1 (ISE1))%	+			Semina	r, Presen	itation, e	etc.	
2				tion (MS 2 (ISE2)%		course			n Dunggan	.tation o		
3				tion (ES)%)%		nent, Te		Semina	r, Presen	itation, e	etc.	
4	Ellu Sel	nester E	Xallillia	tion (ES	ப்	30	790	100%	ourse co	Jitents					
Course	Conten	ts:													
	Introd													5 He	ours
			Structur	e. Types	of OS. O	S Kerne	l. OS Ser	vices, Us	sers Pres	spective	of OS. S	vstem B	oot Prod	l	
	cture of			c, rypes	01 00, 0	o merme	1, 00 001	V1003, 01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	эрссичс	01 00, 0	y occini D	0001100	.000,	
Unit 2	Proces	s, Threa	ds & Sc	hedulin	ıg									7 H	ours
								rk), Tern			ignals (s	signal, ki	ill), Awai	ting Pro	cess
Termin:								reads (p							
_	s Sched	uling: B	asic Con	cepts, S	chedulir	ig Criter	ia, Sche	duling A	lgorithn	ıs.					
Proces			4	C		(D	0 Tl							0.11	
	Cl		on ana c											8 н	ours
Unit 3	Synchr				iared Me				C - 1	. Cl			C.	1	
U nit 3 Inter-Pi	rocess C	ommuni	ication -				bieiii, Pe	eterson s	Solutio	n, Synch	romzau	on Haru	ware, se	mapnor	es,
J nit 3 nter-Pi	rocess C rocess S	ommuni ynchron	ication - ization:	The Crit		tion Pro									
U nit 3 Inter-Pr	rocess C	ommuni ynchron	ication - ization:	The Crit		tion Pro									
Unit 3 Inter-Pi Inter-Pi Classica	rocess C rocess Sy al Proble	ommuni ynchron ems of Sy	ication - ization:	The Crit		tion Pro								5 H	nurs
Unit 3 Inter-Printer-P	rocess C rocess Sy al Proble	ommuni ynchron ems of Sy ocks	ication - ization: /nchron	The Crit	cical Sec		ethods f	for Hand	ling Doo	dlocker	Deadloc	z Provor	ntion: Do		ours
Unit 3 Inter-Pr Inter-Pr Classica Unit 4 Deadloo	rocess C rocess Sy al Proble Deadlo	ommuni ynchron ems of Sy ecks em Mode	ication - ization: vnchron	The Critization	racteriza	ation; M		or Hand	ling Dea	dlocks;	Deadloc	k Prever	ntion; De		ours
Unit 3 Inter-Pr Inter-Pr Classica Unit 4 Deadloo	rocess C rocess Sy al Proble Deadlo	ommuni ynchron ems of Sy ecks em Mode	ication - ization: vnchron	The Crit	racteriza	ation; M		for Hand	ling Dea	dlocks;	Deadloc	k Prever	ntion; De		ours
Inter-Pi Inter-Pi Classica Unit 4 Deadloo Avoidar	rocess C rocess Sy al Proble Deadlo ck: Syste nce; Dea	ommuni ynchron ems of Sy ecks em Mode dlock De	ication - ization: vnchron el; Deadl	The Crit ization ock Cha and Rec	racteriza	ation; M om Dead	dlock	or Hand	ling Dea	dlocks;	Deadloc	k Prever	ntion; De	adlock	ours ours
Unit 3 Inter-Printer-P	rocess C rocess Sy al Proble Deadlo ck: Systence; Dea	ommuni ynchron ems of Sy cks em Mode dlock De	ication - ization: ynchron el; Deadl etection	The Critization ock Cha and Rec	racteriza overy fr	ation; M om Dead ation of	dlock f Files							adlock 7 He	ours
Unit 3 Inter-Properties of the second	rocess C rocess Sil Proble Deadlo ck: Systence; Dea Buffer Cache: B	ommuni ynchron ms of Sy cks m Mode dlock De Cache a uffer He	ication - ization: /nchron el; Deadl etection nd Inte aders, S	The Critization ock Cha and Rec	racterization for the E	ation; M om Dead ation of Buffer Po	f Files	for Hand arios for on of File	Retriev	al of a B	uffer, Re	ading ar	nd Writin	adlock 7 He	ours Blocks

8 Hours

Unit 6 Memory Management

Memory background, Hierarchy, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Virtual Memory, Demand Paging, Page Replacement Algorithms, Allocation of Frames, Thrashing.

Text Books:

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 8th edition, Wiley India, 2009.
- 2. The Design of Unix Operating System Maurice J. Bach (PHI)

Reference Books:

- 1. Operating Systems -Concepts and design -Milan Milenkovic (TMGH)
- 2. Operating Systems: Internals and Design Principles (8th Edition)- by William Stallings (Pearson Education) 3. Modern Operating Systems by Andrew S. Tanenbaum (Pearson Education International)
- 4. Unix concepts and administration 3rd Edition Sumitabha Das (TMGH).

Course Code:	UCSC0504	L	T	P	Credit
Course Name:	Database Engineering Lab			2	1

Course Prerequsites:

Data Structures, Programming Language

Course Description:

This course is designed to develop SQL programming expertise. Upon completion, students should be able to write programs for database connectivity. Emphasis is on data definition, data manipulation, and data control statements.

Course Outcomes

After completion of the course, students shall be able to -

Design conceptual models of a database using ER modelling for real life applications and also CO1 construct queries in Relational Algebra

CO2 Apply Normalization to generate good database design

CO3 Develop a database for any specified domain according to well-known design principles

CO-PO Mapping:

	PO1	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	3	2	3	3	3	3	3	3	3	3	3	3	3
CO2	1	3	2	3	3	3	3	3	3	3	3	3	3	3
CO3	2	3	3	3	3	3	3	3	3	3	3	3	3	3

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	33%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	End Semester Examination (ESE)	67%	Practical Performance & Viva

Course Contents:

Assessment No. 1- Entity - Relationship Diagrams

2 Hours

Aim and Objectives: Draw ER diagrams for different organizations using any suitable software & Convert them into tables.

Theoretical Background: Study of Entity-Relationship Diagrams, Reduction to Relational Schemas Experimentation: 1. Install Dia software 2. Use E-R sheet to draw E-R diagram.

3. Convert each E-R diagram to relational schema.

Assessment No. 2 - Convert E-R Diagram in Relational Tables

2 Hours

Aim and Objectives: Convert the above designed E-R Diagrams in Relational Schemas.

Theoretical Background: Reduction of E-R schema to Relational Schema

Experimentation: 1. Consider E-R diagrams constructed in experiment No.1 2. Apply rules such as combination of table, redundncy of tables and generate relational shemas.

Assessment No. 3 - Normalisation / Functional Dependencies

Aim and Objectives: Convert the given un-normalized relations into normalized form with 1NF, 2Nf and 3NF

Theoretical Background: Normalization and Functional Dependencies.

Experimentation: 1. Make use of normalization tools and convert the given un-normalized relations into normalized form

Assessment No. 4 - Installation of Database software (PostgreSQL/MySQL/Oracle/SQL Server - any one of these)

2 Hours

Aim and Objectives: Installing Database Software, Administrating it and Creating Users, Connecting to Database Software.

Theoretical Background: Structured Query Language

Experimentation: 1. Installing Database Software 2. Create Database 3. Create user with password 4. create schema

Assessment No. 5 - Data Definition Language

2 Hours

Aim and Objectives: Use DDL Queries to create, alter and drop tables with respect to all types constraints (key, referential, not null)

Theoretical Background: Data Definition Language

Experimentation: 1. Execute DDL command to create, alter and drop tables in SQL, 2. Apply all types of constraints such as primary key, foreign key, not null, etc.

Assessment No. 6 - Data Manipulation Language

2 Hours

Theoretical Background: Modification of the Database

Experimentation: 1. Execute DML command on the table created in experiment no.5

Assessment No. 7 - SQL Query Processing

2 Hours

Aim and Objectives: Display the records using group by, order by, having and between clauses.

Theoretical Background: Basic Structure of SQL Queries, groupby, orderby clause.

Experimentation: 1. Execute SQL queries SQL Queries, groupby, orderby clauses

Assessment No. 8 - SQL Query Processing

2 Hours

Aim and Objectives: Display the results of union, intersection, set difference, Cartesian product and Join operations.

Theoretical Background: SQL set operations and join operations

Experimentation: 1. Execute SQL queries for set operations and join operations.

Assessment No. 9 - SQL Query Processing

2 Hours

Aim and Objectives: Display the records using Aggregate functions and Create Indexes & Views for the table.

Theoretical Background: SQL aggregate functions, index, and views.

Experimentation: 1. Execute SQL queries for aggregate functions, index, and views

Assessment No. 10 - Database Connectivity

2 Hours

Aim and Objectives: Connect database with Java using eclipse.

Theoretical Background: Embedded and dynamic SQL.

Experimentation: 1. Write Java program in eclipse for Database Connectivity 2. Execute SQL queries through java eclipse.

Assessment No. 11 - Static Hashing

2 Hours

Aim and Objectives: Write a program to implement Static Hashing.

Theoretical Background: Indexing and Hashing

Experimentation: 1. Consider any one table as input created in experiment no.4

2. Select search key 3. Apply hash function 4. Find hash value and put record in appropriate bucket.

Assessment No. 12 - Concurrency Control

2 Hours

Aim and Objectives: Write a program to simulate any one concurrency control protocol.

Theoretical Background: Concurrency Control- Lock-Based Protocols

Experimentation: 1. Consider any one table as input created in experiment no.5

2. Create two programs one for shared lock and another for exclusive lock 3. Show result of compatibility matrix.

Assessment No. 12 - Database Logs

2 Hours

Aim and Objectives: Write program to create logs of the different activities.

Theoretical Background: Recovery and Atomicity

Experimentation: 1. Consider any one transaction with basic operation 2. Create deferred and immediate logs.

Course Code:	UCSC0505	L	T	P	Credit
Course Name:	Machine Learning Lab	_	_	1	1

Course Prerequsites:

Mathematics - Discrete Mathematics, Mathematics for Computer Science.

Machine Learning Concepts.

Programming Skills - Basic knowledge of Python.

Course Description:

This machine learning lab course is designed to give students practical experience in implementing and evaluating various machine learning algorithms using real-world datasets. Students will gain hands-on experience with popular algorithms such as linear regression, logistic regression, decision trees, random forests, neural networks, support vector machines, k-means clustering, association rule mining, and more.

Course	• Outcomes: After the completion of the course the student should be able to –						
CO1	Analyze the different types of machine learning algorithms.						
CO2	Apply the different types of machine learning algorithms to real-world data sets.						
CO3	Evaluate the performance of different machine learning algorithms using appropriate metrics and techniques.						
CO4	Make use of modern tools to design and implement machine learning algorithms to solve specific problems.						
CO5	Interpret the results.						

CO-PO	Mappin	ıg:													
		P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
	CO1		1							1			3	1	1
	CO2	2	1			3				3	3	1	3	3	3
	CO3	2	2			3				3	1		1	3	
	CO4	2	2	2		3				3		3	3	3	3
1	COF	2	1		2	2				2	2		2	2	

Assessment Scheme:

SN	Assessment	Weightage	Marks	
1	In Semester Evaluation (ISE)	33%	25	Practical performed/ Quiz/ Project (PBL)/ Mini-Project/ Presentation/ Group Discussion/ Internal Oral etc
2	End Semester Examination (ESE)	67%	50	Oral Examination (OE)

Suggested List of Experiments:

Experiment No. 1 - Linear Regression

Implement a linear regression algorithm to predict a continuous target variable based on one or more predictor variables. E.g. Implement a linear regression model on a housing prices dataset to predict the prices of houses based on their features.

Experiment No. 2 - Logistic Regression

Implement a logistic regression algorithm to classify data into two or more classes based on predictor variables.

Experiment No. 3 - Neural Networks

Implement a neural network algorithm to classify data into multiple classes based on predictor variables.

Experiment No. 4 - Basic two layered artificial neural networks

Implement and train a two-layered artificial neural network to classify images of handwritten digits from the MNIST dataset.

Experiment No. 5 - Support Vector Machines

Implement a support vector machine algorithm to classify data into multiple classes based on predictor variables.

Experiment No. 6 - Decision Trees

Implement a decision tree algorithm to classify data into multiple classes based on predictor variables.

Experiment No. 7 - K-Nearest Neighbour Classifier

Implement a K-Nearest Neighbors classifier on a breast cancer dataset to predict whether a tumor is malignant (cancerous) or benign (non-cancerous).

Experiment No. 8 - Random Forest

Implement a random forest algorithm to classify data into multiple classes based on predictor variables.

Experiment No. 9 - Naïve Bayes Classifier

Implement and evaluate a Naïve Bayes classifier on a dataset of email messages

Experiment No. 10 - K-Means Clustering

Implement a k-means clustering algorithm to cluster data into multiple groups based on similarity of features.

Experiment No. 11 - Association Rule Mining

Implement Apriori algorithm, to mine frequent itemsets and generate association rules from a dataset of retail transactions.

Suggested References:

- 1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron
- 2. Introduction to Machine Learning with Python by Andreas Müller and Sarah Guido
- 3. Mastering Machine Learning Algorithms by Bonzanini Giuseppe and Weideman Manohar
- 4. Machine Learning for dummies John Paul Muller, Wiley Publication

Course	Code:		U(CSC05	06							L	T	P	Credi
Course	Name:				Ad	vance	d Prog	ramm	ing			2		2	3
Cource	Prerequs	ritocı													
Basic Co	oncepts oncepts oncepts	of Prog					lition	al stat	emen	ts, loo	ps. Ba	sic Kn	owled	lge of	
Course	Descript	ion:													
of Java p indepen based co	Description of the control of the co	iing lai itectui ipplica	nguage re, JVM tions v	e. Stud I, JIT c which	ents w ompoi will m	vill lear nents. ake us	rn adv The cose of ac	anced ourse v	featur vill als	e of Ja o enab	va, suc ole stud	h as pl dents t	latforn to deve	n elop G	UI
Course	Outcome	·C•													
CO1	Use know		of fur	ndame	ntal aı	nd oon	conce	ents fo	r prog	rammi	ng.				
CO2	Apply kr subjects	nowled	lge of v	variou	s conc	epts of	f comp	uter s	cience			solutio	ns for	differ	ent
CO3	Develop	progra	ammir	ıg solu	tions 1	to give	n prol	olem.							
CO-PO I	Mapping:														
		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
	CO1	3												1	1
	CO2	2		2		2			1				1	1	1
	CO3			3		3			1				1	2	3
Δεςρεςτ	l nent Scho	ama:													
SN	Assessn					Ma	rks	Rema	ark						
1	In Semes		aluati	on 1 (I	SE)	2		<u> </u>		, Test,	Quiz, S	Semina	ar, Pres	sentat	ion,
2	End Sem (ESE)	iester l	Exami	nation		5	0	Pract conte		Viva E	xam or	ո 100%	% of co	urse	
Course	Contents	:													
Unit 1	Unit 1:		damer	ıtal Pı	ograr	nming	g in Ja	va:						4 H	ours
HotSpot Operato Classes: Defining objects,	Buzzwon , A Simple rs, String: Object-On g Methods Controllin	rds, The Java I s, Inpu riented s, Cons	e Java Progra t and (d Prog tructo	Program, Sou Output rammi r, Pass	ammir irce Fi t, Cont ing Coi	ng Env le Dec rol Flo ncepts format	ironm laratio w, Big , Decla ion to	ent- JV on Rule Numb aring C a Metl	es, Con oers, A classes hod or	nment rraysJa , Decla a Con	s, Data agged A aring M structo	Types Array. Iembe or, Cres	s, Varia Object r Varia ating a	ables, as and ables, and usi	

Interfaces: Defining an Interface, Implementing an Interface, Using an Interface as a Type, Evolving

Interfaces, Default Methods. Inheritance: Definition, Superclasses, and Subclasses, Overriding and Hiding Methods, Polymorphism, Inheritance Hierarchies, Super keyword, Final Classes and Methods, Abstract Classes and Methods, casting, Design Hints for Inheritance, Nested classes & Inner Classes, finalization and garbage collection. Packages: Class importing, Creating a Package, Naming a Package, Using Package Members, Managing Source and Class Files. Developing and deploying (executable) Jar File

Unit 3 | Lambda Expressions

4 Hours

Lambdas in nutshell, How to use Lambdas-Functional Interfaces, Type Checking , type interfaces, Method References, Lambda Expressions

Unit 4 | Files IO & Exception Handling

6 Hours

Exception: Definition, Dealing with Errors, The Classification of Exceptions, Declaring Checked Exceptions, Throw an Exception, Creating Exception Classes, Catching Exceptions, Catching Multiple Exceptions, Re-throwing and Chaining Exceptions, finally clause, Advantages of Exceptions, Tips for Using Exceptions. I/O Streams: Byte Stream – InputStream, OutputStream, DataInputStream, DataInputStream, FileInputStream, FileOutputStream, Character Streams, BufferedStream, Scanner, File, RandomAccesFile.

Unit 5 Networking and Multithreading:

3 Hours

Networking: Overview of Networking, Networking Basics, Working with URLs, Creating a URL, Parsing a URL, Reading Directly from a URL, Connecting to a URL, Reading from and Writing to a URL Connection, Sockets, Reading from and Writing to a Socket, Writing the Server Side of a Socket, Datagrams, Writing a Datagram Client and Server. Multithreading: Processes and Threads, Runnable Interface and Thread Class, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Thread States, Thread Properties, Joins, Synchronization

Unit 6 | Collection and Parallel Data Processing & Performance

4 Hours

Collections: Collection Interfaces, Concrete Collections- List, Queue, Set, Map, the Collections Framework. Parallel Streams - turning sequential streams into parallel streams, stream performance, recursive tasks, splitting processes.

Experiment List

At least 12 experiments shall be performed from list below

burs/experim

1 Create a class called Employee that includes three pieces of information as instance variables-first name, a last name and a monthly salary. Your class should have a constructor that initializes the three instance variables. Provide a set and a get method for each instance variable. If the monthly salary is not positive, set it to 0.0. Write a test application named EmployeeTest that demonstrates class Employee's capabilities. Create two Employee objects and display each object's yearly salary. Then give each Employee a 10% raise and display each Employee's yearly salary again.

- 2 Create class SavingsAccount. Use a static variable annualInterestRate to store the annual interest rate for all account holders. Each object of the class contains a private instance variable savingsBalance indicating the amount the saver currently has on deposit. Provide method calculateMonthlyInterest to calculate the monthly interest by multiplying the savingsBalance by annualInterestRate divided by 12this interest should be added to savingsBalance. Provide a static method modifyInterestRate that sets the annualInterestRate to a new value. Write a program to test class SavingsAccount. Instantiate two savingsAccount objects, saver1 and saver2, with balances of Rs 2000.00 and Rs 3000.00, respectively. Set annualInterestRate to 4%, then calculate the monthly interest and print the new balances for both savers. Then set the annualInterestRate to 5%, calculate the next month's interest and print the new balances for both savers.
- 3 Create Vehicle Interface with name, maxPassanger, and maxSpeed variables. Create LandVehicle and SeaVehicle Inteface from Vehicle interface. LandVehicle has numWheels variable and drive method. SeaVehicle has displacement variable and launch method. Create Car class from LandVehicle, HoverCraft from LandVehicle and SeaVehicle interface. Also create Ship from SeaVehicle. Provide additional methods in HoverCraft as enterLand and enterSea. Similarly provide other methods for class Car and Ship. Demonstrate all classes in a application.
- 4 Develop a mathematical package for Statistical operations like Mean, Median, Average, Standard deviation. Create a sub package in the math package -convert. In "convert" package provide classes to convert decimal to octal, binary, hex and vice-versa. Develop application program to use this package, and build executable jar file of it.
- Develop a class Expr to create and evaluate given expression. Constructor accepts the expression as String. For example, Expr("x^2") or Expr("sin(x)+3*x"). If the parameter in the constructor call does not represent a legal expression, then the constructor throws an IllegalArgumentException. The message in the exception describes the error. Provide eval (double num) and eval(int num) method to evaluate given expression and return evaluated answer. For example, if Expr represents the expression 3*x+1, then func.value(5) is 3*5+1, or 16.Finally, getDefinition() returns the definition of the expression. This is just the string that was used in the constructor that created the .expression object.
- 6 Write a class to represent Roman numerals. The class should have two constructors. One constructs a Roman numeral from a string such as "XVII" or "MCMXCV". It should throw a NumberFormatException if the string is not a legal Roman numeral. The other constructor constructs a Roman numeral from an int. It should throw a NumberFormatException if the int is outside the range 1 to 3999. In addition, the class should have two instance methods. The method toString() returns the string that represents the Roman numeral. The method toInt() returns the value of the Roman numeral as an int.
- 7 Take file name as input to your program, If file is existing the open and display contents of the file. After displaying contents of file ask user do you want to add the data at the end of file. If a user gives yes as response, then accept data from user and append it to file. If file in not existing then create a fresh new file and store user data into it. User should type exit on new line to stop the program.
- Take Student information such as name, age, weight, height, city, phone from user and store it in the file using DataOutputStream and FileOutputStream and Retrive data using DataInputStream and FileInputStream and display the result.
- 9 Write a program to remove whitespaces from a text file. Name of the file is given using command line.

- Write a Swing GUI based network server program. The program is a simple file server that makes a collection of files available for transmission to clients. When the server starts up, it needs to know the name of the directory that contains the collection of files. Specify this directory name through JFileChooser Dialog. You can assume that the directory contains only regular files (that is, it does not contain any sub-directories). When a client connects to the server, the server first reads a one-line command from the client. The command can be the string "index". In this case, the server responds by sending a list of names of all the files that are available on the server. Or the command can be of the form "get <file>", where <file> is a file name. The server checks whether the requested file actually exists. If so, it first sends the word "ok" as a message to the client. Then it sends the contents of the file and closes the connection. Otherwise, it sends
 - the word "error" to the client and closes the connection.
- Fill a HashMap with key-value pairs. Print the results to show ordering by hash code. Extract the pairs, sort by key, and place the result into a LinkedHashMap. Show that the insertion order is maintained.
- Write a program to read a text file one line at a time. Read each line as a String and place that String object into a LinkedList. Print all of the lines in the LinkedList in reverse order.

Text Books:

1. Core Java- Volume I Fundamentals: Cay Horstmann and Gary Cornell, Pearson, Eight edition (Unit 1 to U. 2. Core Java- Volume II Advanced Features: Cay Horstmann and Gary Cornell, Pearson, Eight edition (Unit 1).

Reference Books:

- 1] The Java Tutorials From ORACLE Java Documentation URL: http://docs.oracle.com/javase/tutorial/(R
- 2] The Java Tutorial: A Short Course on the Basics by Raymond Gallardo, Scott Hommel, Sowmya Kannan,
- 3][AVA-The Complete Reference: Herbert Schildt, Oracle Press, Mcgraw Hill, (9th Edition).
- 4]JAVA™ HOW TO PROGRAM, By Deitel Paul, Deitel Harvey. Publisher: PHI Learning..(10th Edition)
- 5] Thinking in Java by Bruce Eckel, Prentice Hall, (4th Edition)
- 6]A Programmer's guide to JAVA SCJP Certification: Khaleed Mughal and Rolf W. Rasmussen, Addison Wes

Course Code: UCSC05	07							L	Т	P	Credit
Course Name:		Mini	Project	t-II]	0	0	2	1
							-	•		•	-
Course Prerequsites											
Data structures, Algorithms, I	rocec	lural P	rograr	nming,	Object	t-Orier	ited Pi	rograi	mming	, Softw	are
Course Description:											
In this course, students will app	ly the	concep	ts they	have le	arned i	in the S	econd	Year a	s well a	as this	
semester. Students will learn to	-	-	-								rill
create a repository of the projec	t on th	ie Web.									
Course Outcomes: After com	nlotin	r the co	urco c	tudonte	r will be	abla t	0				
Course Outcomes: After com CO1 Identify data structures a								ohlem			
CO2 Apply software engineer								Obiciii	•		
CO3 Write cases to test the co		mique	5 10 40	.51 <u>611 u11</u>	<u>u ucvei</u>	орирг	ojece				
CO4 Create and maintain a re		rv of th	eir pro	iect on	the We	b.					
				,							
CO-PO Mapping:											
P01 P02 P03	P04	P05	P06	P07	P08	P09	PO10	PO11	P012	PSO1	PSO2
CO1 1 2			2					1			
CO2 1 1 1		2		1		2	3	2		3	1
CO3 1 1 1		2				1					
CO4 1 1		2				1					
Assessment Scheme:											
SN Assessment		Weigl		Rema							
1 In Semester Evaluation 1	(ISE1	50	%	Proble	m iden	tificatio	on and	Desig	n		
3 In Semester Evaluation 2	(ISE2	50	%	Coding	g, Testir	ng and (Creatin	ig Rep	ository	•	
Course Contents:											
Guidelines for Mini-Project-II											
1. The course Instructors should		the pro	niact to	ame of	3 to 4 c	tudant					
2. The course coordinators should								naina l	iko Alee	rithma	,
Networking, Databases	iu nei	p stude	1115 10	serect p	rojects	ii OIII U	ie uoii	iaiiiS I	ike Aigo	JIIIIIIIS),
3. The course coordinators shou	ld sho	w stud	ents a	demo n	roject d	levelon	ed foll	owing	softwa	ire	
engineering phases	5110	staa	21165 d	p	20,0000	, c.op	Ju 1011	· · · · · · · · · · · · · · · · · · ·	, 501000		

- 4. The course coordinators should guide students to create repositories on the web
- 5. The course coordinators should inculcate in students the significance of testing the code
- 6.The course coordinators should share a common project report format to all batches
- 7. It is recommended to share a common evaluation scheme for the project
- 8. The two phases of evaluation:
- I. In ISE 1, the students shall be graded based on the skills demonstrated to identify and define the problem statement and to design a solution $\frac{1}{2}$
- II. In ISE 2, students shall be graded based on working model of the project, test cases defined and repository maintained for the project

Course Code:	UCSC0508		L	T	P	Credit
Course Name:	Operating Systems Lab				2	1

Course Prerequsites:

Fundamentals of Electronics and Computer

Course Description:

This is one of the core course of Computer Science & Engineering Programme. In this course you will become familiar with the core concepts of OS - how OS work, how a **processes & threads** are created, **inter-process communication & synchronisation**, the various **scheduling** algorithms, **memory management** & memory allocation strategies, etc. This course will be also helpful for exams like GATE.

ı					
	Course	Outcomes:	After the completion of the course the student will be able to -		
	CO1	design and imp	lement programs using system calls with process & thread management.		
CO2 implement process/thread synchronization mechanism to prevent race conditions.					
	CO3	acquire hands-o	on experience with inter-process communication		
	CO4	write programs	to evaluate the performance of various scheduling, page replacement & disk scheduling algorithms.		

CO-PO Mapping:

- F F	0													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	1		1		1			1		1		2	3	
CO2	1	3	2		2			1		1		2	3	1
CO3	1	2	1		2			1		1		2	3	1
CO4	2	2	1		1			1		2		2	3	

Assessment Scheme:

Ī	SN	Assessment	Weightage	Remark
Ī	1	In Semester Evaluation (ISE)	50%	Lab Assignments, Test, Quiz, Presentation, etc.
Ī	2	End Semester Examination (ESE)	50%	External Practical Oral Examination

Course Contents:

Assignment 1: Process Management

System Calls - fork(), exit(), exec(), wait(), waitpid(), getpid(), getppid()

Assignment 2: Thread Management

POSIX threads. pthread_create(), pthread_join(), pthread_exit(), pthread_self()

Assignment 3: Process Scheduling

Evaluate performance of scheduling algorithms-FCFS, SJF, SRTN, RR, Priority Scheduling in terms of turnaround time, response time.

Assignment 4: Process Synchronization

Inter-process Synchronization using semaphores.

Assignment 5: Classical problems of Process Synchronization

Classical problems of Synchronization-Bounded Buffer, Dining Philosopers Problem, and The Reader and Writer Problem.

Assignment 6: Interprocess Communication

Inter-process Communication using pipes, shared memory, and message passing.

Assignment 7: Bankers Algorithm

Banker's Algorithm to find a safe sequence of process execution.

Assignment 8: Implementation of namei algorithm

Conversion of pathname to inode

Assignment 9: Page Replacement Algorithms

Page Replacement Algorithms-FIFO, LRU, OPR

Assignment 10: Disk Scheduling Algorithms

 $Simlation\ of\ disk\ scheduling\ algorithms\ such\ as\ -\ FCFS,\ SSTF,\ SCAN,\ C-SCSN,\ LOOK,\ C-LOOK\ using\ aa\ program.$

Cours	e Code	:	UC	CSA050)1							L	T	P	Credit
Cours	e Nam	e:		Pres	entati	on_and	l_Repo	rt_Wri	ting			2			0
Cours	e Prer	equsit													
Cours	e Desc	riptio													
Cours	e Outc	omes:													
CO1	Use ap	propri	ate cha	arts, ta	bles ar	nd figu	res in p	oresen	tation	and re	port				
CO2	Comp	are and	l identi	ify suit	able to	ols tov	wards j	practic	ing wr	ite-up	and pr	esenta	ation		
CO3	Create	effecti	ive rep	ort and	d prese	entatio	ns of tl	he tech	nical v	vork					
		_	1												
CO-PO	Марр		DOO	DOO	DO 4	DOE	DOC	DOT.	DOO	DOO	D040	DO44	D042	DCO4	DCCO
	604	P01	PO2	PO3	P04	P05	P06	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2
	CO1					2	1		3						
	CO2					2					3				
	CO3					1					3				
Asses	sment	Schem	ie:												
SN		sment				Weig	htage	Rema	rk						
1			Evaluat	tion 1 ((ISE1)		%	 		Test, (Quiz, Se	emina	r, Preser	ntation	, etc.
2			Evaluat			50	%				-		r, Preser		
Cours	e Cont	ents:												-	
Part-I	A Tec	hnical	Repor	rt Writ	ing									8 H	ours
	erimen									d gram	ımar.				
	erimen t repor									outre Di	abta (I	ומח			
	on of p							nectua	гегоре	erty Ki	gnts (1	PKJ,			
ı	erimen		•	•				- I							
1	ble, Ab				•	-			tement	t, Obje	ctives				
	erimen dologie		-		-				dgeme	ents					
1	erimen								_		in repo	orts.			
	erimen					ing sty	le and	metho	d of us	sing cit	tations				
_	erimen cking p		-	_		lagiari	am								
a. Cire	zking p	iagiai i	SIII, D. I	VIIIIIIII	zing pi	iagiaii	5111								
Dart_I	Prese	ntatio	n											6 H	ours
raii															
	3 and			_	C . 1	idec an	d Time	a mana	gamar	nt					
8. PPT 9. Pres	entatio			Numbe	er of sil	iucs an	u IIII	c mana	igemei	It					
8. PPT 9. Pres 10. Pre	sentatio esentat	ion sty	les					cinana	igeinei	IL					
8. PPT 9. Pres 10. Pre	entatio	ion sty	les					c mana	igemei	ıı					

8 Hours

Part - Tolls and Practices

12. MS Office, Open Office, Latex, Beamer, Flash, GNU Plot etc.
13. End Note; Mendeley, Grammarly, Ginger, 1 Checker, Turnitin etc.

Text Books:

Kothari C. R, "Research Methodology", 2nd Edition, New Age International, 1990.

Chopra Deepak and Sondhi Neena, "Research Methodology: Concepts and cases", 2 nd Edition, Vikas Publishing House, New Delhi, 2015

Reference Books:

Melville Stuart and Goddard Wayne, "Research Methodology: An Introduction For Science & Engineering Students", 1st Edition, Kenwyn Juta & Co. Ltd., 1996

G. Ramamurthy, "Research Methodology", 2nd Edition, Dream Tech Press, New Delhi, 2015

Course Code:	UCSPE501	L	T	P	Credit
Course Name:	Project Management	3			3
Course Prerequs	it				
Software Engine	ering				

Course Descriptio

This course develops a foundation of concepts and solutions that supports the planning, scheduling, controlling, resource allocation, and performance measurement activities required for successful

Completion of a project.

This course develops a foundation of concepts and solutions that supports the planning, scheduling, controlling, resource allocation, and performance measurement activities required for successful

Course Outcomes:

I	CO1	Explain basic concept of project management.
ı	UU I	Explain basic concept of project management.

- CO2 Make use of tools and techniques for project activities.
- CO3 Inspect reason for project failures.
- CO4 Design project management plan for real world problem.

CO-PO Mapping:

•	, mapp	,,,,,P,													
		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
	CO1	1										2			
	CO2					3				1				2	1
	CO3		3		2									2	1
	CO4		2	3		1				2		2		3	1

Assessment Scheme:

110000	Sinene seneme.		
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE	50%	100% course contents

Course Contents:

Unit 1 Introduction to Project Management

6 Hours

Project and Project Management (PM), Role of project Manager, System view of PM, Organization, Stakeholders, Project phases and lifecycle, Context of IT projects, process groups, mapping groups to Knowledge areas

Unit 2 Project Integration and Scope Management

8 Hours

Strategic planning and project selection, Developing a Project Management Plan, Directing and Managing Project Work, Monitoring and Controlling Project Work, Performing Integrated Change Control, Closing Projects or Phases Planning Scope Management, Collecting Requirements, Defining Scope, Creating the Work Breakdown

Structure, Validating Scope, Controlling Scope

Unit 3 Project Time Management 4 Hours Planning Schedule Management, Defining Activities, Sequencing and Estimating Activity, Resources & Duration, Developing & Controlling Schedule Unit 4 Project Cost and Risk management 6 Hours Basic Principles of Cost Management, Planning Cost Management, Estimating Costs, Determining the Budget, Controlling Costs Importance, risk management planning, sources of risk, risk identification, qualitative and quantitative risk analysis, risk response planning, risk monitoring and control. **Unit 5 Project Procurement Management** 7 Hours The Importance of Project Procurement Management, Planning Procurements, Tools and Techniques for Planning Procurements, Procurement Management Plan, Statement of Work, Procurement Documents, Source Selection Criteria, Conducting Procurements Administering Procurements, Closing Procurements, Using Software to Assist in Project Procurement Management Unit dUsing OpenProject software for project management 6 Hours Introduction and Overview of New Features of OpenProject software, getting started with OpenProject 2010, Using the Help Feature, Main Screen Elements, Project 2010 Views, Project 2010 Filters, Developing a Work Breakdown Structure, Gantt Charts, Network Diagrams, Critical Path Analysis. Text Books: Information Technology Project Management, 7E, Kathy Schwalbe, Cengage Learning https://opensource. com/article/17/11/how-install-and-use-openproject

Reference Books:

1. The principles of project management by MERI WILLIAMS

Cours	e Code:		UCSF	E502								L	Т	P	Credi
Cours	e Name:		Mobil	e Tech	nology	7						3			3
			•										-	-	-
Cours	e Prerec	usites													
Data (Commun	icatio	n & No	etworl	king, T	CP/II	P Prot	ocol Si	uite						
Cours	e Descri	ption:]												
	e Techno		subjec	t mair	ıly dea	ıls wit	h the	scienc	e of m	obile	comm	unica	tion. It	cove	rs
-	d appro								yers sı	uch as	- data	ı link,	netwo	ork an	d
transp	ort laye	er. It al	so int	roduc	es the	5G ted	chnolo	gy.							
			1												
	e Outcor														
CO1	Explain	the ba	asic ph	ysical	and te	chnica	l funct	ioning	of mo	bile co	mmun	icatio	ıs syst	ems	
	Describ	e the l	basic p	rincip	les of n	nobile	comm	unicat	ion sys	stem a	nd sun	nmariz	ze the v	workir	ng of
CO2	networ														
CO3	Compa	re prin	ciples	of the	moder	n mob	ile an	d wirel	less co	mmun	ication	syste	ms suc	h as 5	G wit
CO4	Illustra	te the	princi	ples an	ıd appl	icatior	ns of w	ireless	syste	ms and	d stand	ards			
			1												
<u>CO-PO</u>	Mappir	ng: PO1	PO2	P03	P04	P05	P06	P07	P08	P09	DO10	DO11	P012	DCO1	DCO
	C01	2	PUZ	PU3	PU4	PU5	P06	PU7	PU6	P09	P010	PUII	PUIZ	1	P302
	CO2	1	2											1	
	C03	1	2		2	2								1	
	CO4	1	1												
				!	ļ.		ļ.	ļ.	ļ		!		ļ	ļ.	ļ
Assess	sment So	cheme	:]											
SN	Assess	ment		•		Weig	htage	Rema	ırk						
1	In Sem						%				Quiz, S	emina	r, Pres	entati	on,
2	Mid Sei						%	—	of cour						
3	In Sem						1%				Quiz, S	<u>emina</u>	r, Pres	<u>entati</u>	on,
4	End Se	mester	Exam	inatio	n (ESE	50	1%	100%	cours	e cont	ents				
Courc	e Conter	atc.	1												
	Introd													6 H	ours
	uction to			twork	s. Appl	icatior	ıs. His	torv. Si	mplifie	ed Ref	erence	Mode	l. Wire		ours
	nission, F							-	-						ad
-	um, Cellı haracter	-	stems:	Frequ	ency M	lanage	ement	and Ch	annel	Assign	ıment,	Types	of han	idoff a	and
ПДПТ	пагагтыг	iciire													
Unit 2	Mediu	m Acc	ess Co	ntrol ((MAC)	& GSN	1 Tele	comm	unicat	tion Sy	stem			8 H	ours
	Motivatio														
	Architect				_		-		•	_				-	
SMS, 11	nternatio	onai ro	amıng	for GS	ıvı, call	record	ung tu	nction	s, subs	criber	and se	ervice	uata m	ıanage	ment
														-	
	34-1-1	Motre	oult I	NION.										6 11	ours
Unit 3	Mobile I														

Unit 4 Mobile Transport Layer

6 Hours

Traditional TCP, Indirect TCP, Snooping TCP, Mobile TCP, Fast retransmit / Fast recovery, Transmission / Timeout freezing, Selective retransmission, Transaction Oriented TCP.

Unit 5 | Mobile Ad hoc Networks (MANETs) :

6 Hours

Introduction, Applications & Challenges of a MANET, Routing, Classification of Routing Algorithms, Algorithms such as DSR, AODV, DSDV, etc., Mobile Agents, Service Discovery.

Unit 6 | 5G Mobile Network - Future of Mobile Communication

6 Hours

10 Pillars of 5G, concept of small cell, Cognitive radio -overview, spectrum optimization literature, key requirements and challenges for 5G cognitive terminal. Wireless spectrum white spaces – Background, TV white space technology, white space spectrum opportunities and challenges.

Text Books:

Textbooks:

- 1. Jochen Schiller, \Mobile Communication", Pearson Education.
- 2. Theodore & S. Rappaport, \Wireless Communications, Principles, Practice", PHI.
- 3. William Stallings, \Wireless Communications and Networks", Pearson Education.
- 4. Jonathan Rodriguez, Fundamentals of 5G Mobile Networks, First Edition 2015 John Wiley & Sons, Ltd

Reference Books:

References:

1. Wireless telecommunications systems and networks / Gary J. Mullett. Cengage Publication.

Course	e Code:		UCSPE	503								L	T	P	Credi
Course	e Name:		Profess Data Sc		ective-I	(Princip	les of Ar	tificial I	ntelligen	ice		3	0	0	3
			1								_				
Course	Prerec	usites:													
Compu	iter Sciei	nce conc	epts, Ma	themati	cs and s	tatistics									
			1												
	e Descri		1				l C I		C+:(-11:				
nis co	urse pro	ovides a	comprel	iensive i	ntroauc	ction to t	ne runa	amentai	s of artii	iciai int	eingence	e and da	ta scienc	e.	
Course	Outcor	nes:	After th	e compl	etion of	the cou	rse the s	student s	hould b	e able to)				
CO1			concep							and dat	a scienc	e.			
CO2			lication												
CO3	Analyz	e and us	e proble	m-solvir	ig and s	earch alg	gorithm	s to solv	e specifi	c proble	ems.				
	Mappir	ng:	1												
		P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO
	CO1	2								1	2		3	1	1
	CO2	1	1							1	2		3	1	1
	CO3	2	2		1	1				1	2		3	1	1
lssess	ment So	cheme:													
SN	18.48														
1	+		aluation)%					l, Semin	ar, Prese	ntation,	etc.
2			Examinat		-	30% 50% of course contents						D			
4	3 In Semester Evaluation 2 (ISE2) 10% Assignment, Test, Quiz, Tutorial, Seminar, Present End Semester Examination (ESE) 50% 100% course contents											entation,	etc.		
4	Enu se	illester i	ZXaIIIIIIa	1011 (E31	رد] 30	790	100%	ourse co	Jiiteiits					
Course	e Conter	ıts:	1												
Unit 1	Introd	uction t	o Artific	ial Inte	lligence	e								5 H	ours
			pplication	on, Appr	oaches,	Types o	f AI, Into	elligent <i>l</i>	Agents, A	Agents &	enviro	nment, E	Ethical co	onsidera	tions
and soc	cietal im	pact of A	AI.												
Unit 2	Proble	m Solvi	ng and S	Search A	llgorith	ımc								ЯΗ	ours
			nd repre				oroblem	as state	space s	earch, p	roductio	n syster	n. proble		Juis
charact	teristics	and issu	es in the	design	of searc	h progra	ams. Pro	blem so	lving age	ents, sea	rching f	or solut	ions.		
			rmed Se					tegies - b	readth	first sea	rch, dep	th first s	earch, d	epth lim	ited
searcii,	biuirec	lionai se	arch. He	ui istic s	ear cir st	rategies	•								
Unit 3	Knowl	edge Re	present	ation, L	ogic, ar	ıd Reas	oning							7 H	ours
	1		erence r					ed syste	ms, Reas	soning v	vith unc	ertainty,	Fuzzy r	easoning	
-		-	t System	s: ES Cha	aracteri	stics, Ar	chitectu	re, Rule	pased ES	S, Rule I	nduction	ı, Introd	uction to	o Natura	ıl
₋angua	ige Proc	essing.													
Init 4	Introd	uction t	o Data S	cience										6 H	ours
			ogy and		ents. Ty	znes of d	lata: Str	uctured :	and unst	tructure	d. guant	titative a	ınd quali		
			al, interv								u, quair				
Init 5	The Da	nta Scien	nce Proc	229										6 H	ours
	-		ience pr		he five s	steps of o	data scie	nce: Ext	lore the	data, ol	btain the	e data, n	nodel the		-
			alize the												
Init 6	Conce	nts & An	plicatio	ns of Da	ata Scie	nce								7 H	ours
		_	data, We				Reportir	ng, Introd	luction	to Progr	amming	, Tools f	or Data S		
Γoolkit	s using l	Python:	Matplotl l Time S	ib, Num	Py, Sciki	t-learn,									n,
P			1												
Text Bo	UUKS:														

- 1. Kevin Night and Elaine Rich, Nair B, "Artificial Intelligence(SIE)", McGraw Hill.
- 2. Dan W.Patterson, "Introduction to AI and ES", Pearson Education.
- 3. Sinan Ozdemir, "Principles of Data Science", Packt.
- 4. Jain V.K., "Data Sciences", Khanna Publishing House, Delhi

References:

- 1. Rich E, Knight K, Nair S B, Artificial Intelligence, Tata McGraw-Hill.
- 2. Luger George F, Artificial Intelligence: Structures and Strategies for Complex Problem solving, Pearson Education.
- 3. Carter M, Minds and Computers: An Introduction to the Philosophy of Artificial Intelligence, Edinburgh University Press.
- 4. Jiawei Han and Jian Pei, "Data Mining Concepts and Techniques", Morgan Kaufmann Publishers

Course Code:	UCSPE503		L	T	P	Credit
Course Name:	Modern Information	Retrieval	3			3

Course Prerequsite

Database systems

Course Description

This is one of the core course of Computer Science & Engineering Programme. In this course you will become familiar with infrormation retrieval . It focuses on the working of Information Retrieval systems like search engines which includes study of underlying mathematics and algorithmic techniques. It focuses on indexing based on statistical models of language, processing, storage and querying of textual data. It also deals with multimedia data.

Course Outcomes: After the completion of the course the student v	will be able to -
--	-------------------

- CO1 Describe various functionalities and capabilities of Information Retrieval System.
- CO2 Acquire knowledge on pre-processing of text and web page.
- CO3 Understand the concepts of information visualization, multimedia IR.
- CO4 | Compare Parallel and Distributed IR

CO-PO Mapping:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	3											3		
CO2	3											3		
CO3	3		2	2	2							3	3	2
CO4	3		2	2	2							3	3	2

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Course Contents:

Unit 1 INTRODUCTION TO INFORMATION RETRIEVAL

7 Hours

Information versus Data Retrieval,Information Retrieval at the Center of the Stage, The Retrieval Process,A Taxonomy of Information Retrieval Models,A Formal Characterization of IR Models,Classic Information Retrieval,Structured Text Retrieval Models,Models for Browsing,Retrieval Performance Evaluation-Recall and Precision,Alternative Measures

Unit 2 TEXT AND WEBPAGE PRE-PROCESSING

7 Hours

Pre-processing Technique ,Inverted index and its comparison , Latent Semantic Indexing, Web Search ,Web Spamming, Sentiment Analysis – Privacy Issues , NLTK (Natural Language Toolkit).

Unit 3 WEB RETRIEVAL AND WEB CRAWLING

6 Hours

Search Engine Architectures, Cluster based Architecture – Distributed Architectures, Search Engine Ranking, Link based Ranking, Simple Ranking Functions, Learning to Rank, Evaluations Search Engine Ranking – Search Engine User Interaction – Browsing – Applications of a Web Crawler - Evaluation.

Unit 4 USER INTERFACES AND VISUALIZATION

7 Hours

How People Search, Search Interfaces Today, Visualization in Search Interfaces , Design and Evaluation of Search Interfaces

Unit 5 PARALLEL AND DISTRIBUTED IR

6 Hours

Parallel Computing, Performance Measures, Parallel IR-MIMD Architectures, SIMD Architectures, Distributed IR-Collection Partitioning, collection Selection, Query Processing, Web Issues

Unit 6 MULTIMEDIA IR

7 Hours

Introduction to multimedia IR,,challenges,content based image retrieval,Audio and music retrieval,Retrieving and Browsing Video,Fusion Models: Combining it All

Text Books:

1.Ricardo Baeza-Yates and Berthier Ribeiro-Neto, —Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.

2.C. Manning, P. Raghavan, and H. Schütze, —Introduction to Information Retrieval, Cambridge University Press, 2012.

Reference Books:

1. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010

Course Code:	UCSC00501		L	T	P	Credit
Course Name:	Software Engineering		3			3
Course Prerequeites						

Course Prerequsites:

Fundamentals of programming

Course Description:

This is one of the important course of Computer Science & Engineering Programme. It is a subject that emerged as a result of the need to manage software projects that are rising in demand day by day. Software is developed in diverse areas and the fact that a systematic approach is required to manage their development spawns this interesting subject of study. The software engineering principles and techniques are explained which are used in developing quality software products.

Course	Outcomes:	After the completion of the course the student will be able to -						
CO1	CO1 learn and understand the Concepts of Software Engineering							
CO2	describe Software Development Life Cycle							
CO3	apply the project management and analysis principles to software project development.							
CO4	Illustrate the de	esign & testing principles to software project development.						

CO-PO Mapping:

														
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	1	1			1					1	2	3		3
CO2	1	1			3			1		1	3	3	3	3
CO3	1				3			1	3		3	3	3	3
CO4	1				3			1			3	3	3	3

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Course Contents:

Unit 1 Introduction 4 Hours

What is software?. Types of software, Characteristics of Software, Attributes of good software, What is software engineering? Software engineering costs , key challenges, Systems engineering & software Engineering

Unit 2 Software Development Process Models

8 Hours

software process,software process model,The waterfall model,Evolutionary development Component-Based Software Engineeri Process Iteration,Incremental delivery,Spiral development,Rapid software development,Agile methods,Extreme programming,R Software prototyping,Computer Aided Software Engineering (CASE),Overview of CASE approach,Classification of CASE tools

Unit 3 Software Requirement Analysis and Specification

8 Hours

System and software requirements, Types of software requirements, Functional and non-functional requirements, Domain requirements, User requirements, Elicitation and analysis of requirements, Overview of techniques, Viewpoints, Interviewing, Scenarios, Use-cases, Process modeling with physical and logical DFDs, Entity Relationship Diagram, Data Dictionary, Requirement validation, Requirement specification, Software requirement Specification (SRS), Structure and contents, SRS format

Unit 4 | Software Design 8 Hours

Design concepts, Abstraction, Architecture, Patterns, Modularity, Cohesion, Coupling, Information hiding, Functional independence, Design of input and Control, Design of User Interface design, Elements of good design Design issues Features of modern GUI - Me Buttons, icons, panels, error Messages etc.

Unit 5 | Software Testing and Quality Assurance | 8 Hours

Verification and validation Techniques of testing, Black-box and White-box testing, Inspections Levels of testing, Junit testing, Integration Testing, Interface testing, System testing, Alpha and beta testing, Regression testing, Design of test cases, Quality management activities, Product and process quality Standards, ISO9000, Capability Maturity Model (CMM)

Unit 6 Current trends in Software Engineering	4 Hours
Software Engineering for projects and products. Introduction to Web Engineering and Agile process	
Text Books:	
1.Software Engineering: A practitioner's approach by Roger S. Pressman, 7th edition, McGraw-Hill International edition 2. Software Engineering: A precise Approach - Pankaj Jalote (Wiley India)	
Reference Books:	
Software Engineering by Ian Sommerville, 7th edition, Addison-Wesley. Fundamentals of Software Engineering by Rajib Mall	

SEMESTER - VI

Sourse Prerequistes: Sasic mathematics, statistics, programming, critical thinking, basic machine learning Sourse Prerequistes: Sasic mathematics, statistics, programming, critical thinking, basic machine learning Sourse Description: This course provides an opportunity to discover the power of data analytics and learn how to extract meaningful insights from which and so an experience in data collection, preprocessing, statistical analysis, and visualization using industry-tandard tools and techniques. Sourse Outcomes: After the completion of the course the student should be able to COUT Replain various concepts and terminology used in data analytics. COU Analyze statistical data analysis techniques for data preparation and exploration. COU Analyze statistical data analysis techniques for data preparation and exploration. COU Identity the appropriate methods and tools to solve business problems using data analytics. COUPO Mapping: POI POI	Course	e Code:		UCSC06	501								L	Т	P	Credi
Dourse Prerequistes: Sasis mathematics, statistics, programming, critical thinking, basic machine learning						Theory)					1			0	3
Session mathematics, statistics, programming, critical thinking, basic machine learning Jourse Description: This course provides an opportunity to discover the power of data analytics and learn how to extract meaningful insights from aw data. Gain hands-on experience in data collection, preprocessing, statistical analysis, and visualization using industry-tandard tools and techniques. Jourse Outcomes: After the completion of the course the student should be able to CO1 Explain various concepts and terminology used in data analytics. CO2 Analyze statistical data analysis techniques for data preparation and exploration. CO3 Apply appropriate tools for data acquisition, preprocessing, analysis, and visualization. CO4 Identify the appropriate tools for data acquisition, preprocessing, analysis, and visualization. CO5 PO8 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01				1	J (. ,	•					ı	L	L		<u> </u>
This course provides an opportunity to discover the power of data analytics and learn how to extract meaningful insights from aw data, Gain hands-on experience in data collection, preprocessing, statistical analysis, and visualization using industry-transful data from the course the student should be able to completion of the course the student should be able to collection. CO2 Analyze statistical data analysis techniques for data preparation and exploration. CO3 Apply appropriate tools for data acquisition, preprocessing, analysis, and visualization. CO4 Identify the appropriate methods and tools to solve business problems using data analytics. CO5 Po8 Po9 Po1 Po2 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps01 Po02 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps01 Po02 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps01 Po02 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps01 Po03 Po9 Po10 Po11 Po12 Ps01 Ps01 Po11 Po12 Ps01 Ps01 Po11 Po12 Ps01 Ps02 Ps03 Ps04 Ps03 Ps04 Ps05 Ps06 Ps07 Ps08 Ps09 Ps	Course	e Prereq	usites:	1												
This course provides an opportunity to discover the power of data analytics and learn how to extract meaningful insights from aw data, Gain hands-on experience in data collection, preprocessing, statistical analysis, and visualization using industry-transful data from the course the student should be able to completion of the course the student should be able to collection. CO2 Analyze statistical data analysis techniques for data preparation and exploration. CO3 Apply appropriate tools for data acquisition, preprocessing, analysis, and visualization. CO4 Identify the appropriate methods and tools to solve business problems using data analytics. CO5 Po8 Po9 Po1 Po2 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps01 Po02 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps01 Po02 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps01 Po02 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps01 Po03 Po9 Po10 Po11 Po12 Ps01 Ps01 Po11 Po12 Ps01 Ps01 Po11 Po12 Ps01 Ps02 Ps03 Ps04 Ps03 Ps04 Ps05 Ps06 Ps07 Ps08 Ps09 Ps	Basic n	nathemat	tice etai	tistics n	rngramn	ning cri	tical thir	ıking h	asic mac	hine lea	rning					
This course provides an opportunity to discover the power of data analytics and learn how to extract meaningful insights from we data. Gain hands-on experience in data collection, preprocessing, statistical analysis, and visualization using industry-tandard tools and techniques. Course Outcomes:	ון אופטר	nauncilla	uco, oldi	usuts, pi	vgi allill	iiig, til	creat till	iniig, D	asic iiiat	inne led	ming					
This course provides an opportunity to discover the power of data analytics and learn how to extract meaningful insights from we data. Gain hands-on experience in data collection, preprocessing, statistical analysis, and visualization using industry-tandard tools and techniques. Course Outcomes:	Ca	. Do'	• • • • • •	1												
aw data, Gain hands-on experience in data collection, preprocessing, statistical analysis, and visualization using industry-tandard tools and techniques. Course Outcomes:						diass	n +b ~ :	wor of 1	ata a:: -1	utica	l loow 1	OV17-1	rtue et	00ni=-r	ا-ئومنا	to fu
Course Outcomes: After the completion of the course the student should be able to																
COUTE OUTCOMES: After the completion of the course the student should be able to COT Explain various concepts and terminology used in data analytics. COZ Analyze statistical data analysis techniques for data preparation and exploration. CO3 Apply appropriate tools for data acquisition, preprocessing, analysis, and visualization. CO4 Identify the appropriate methods and tools to solve business problems using data analytics. CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS01 PS01 PS01 PS01 PS01 PS01 PS01 PS02 PS01 PS01 PS02 PS02 PS03					circe iii c	iata con	cction, p	лергосс	.331116, 30	atistical	anarysi	s, and vi	Suanzan	on using	5 maast	ı y
Explain various concepts and terminology used in data analytics. Analyze statistical data analysis techniques for data preparation and exploration.																
Analyze statistical data analysis techniques for data preparation and exploration. Apply appropriate tools for data acquisition, preprocessing, analysis, and visualization. Apply appropriate tools for data acquisition, preprocessing, analysis, and visualization. Apply appropriate tools for data acquisition, preprocessing, analysis, and visualization. Apply appropriate tools for data acquisition, preprocessing analysis, and visualization. Apply appropriate tools for data acquisition, preprocessing analysis, and visualization analysis. Assessment Scheme: SN Assessment Weightage Remark	Course	Outcon	1es:	After th	e compl	etion of	the cou	rse the s	student s	should b	e able to)				
Identify the appropriate methods and tools to solve business problems using data analytics. Identify the appropriate methods and tools to solve business problems using data analytics. Identify the appropriate methods and tools to solve business problems using data analytics. Identify the appropriate methods and tools to solve business problems using data analytics. Identify the appropriate methods and tools to solve business problems using data analytics. Identify the appropriate methods and tools to solve business problems using data analytics. Identify the appropriate methods and solve Identify the appropriate methods Identify the appropriate Identify the appropri	CO1															
COP Identify the appropriate methods and tools to solve business problems using data analytics.																
POP																
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS01 PS01 PS01 PS01 PS02 PS02 PS02 PS02 PS02 PS03 PS	CO4	Identify	the app	propriate	e method	ds and to	ools to s	olve bus	iness pr	oblems	using da	ita analy	tics.			
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS01 PS01 PS01 PS01 PS02 PS02 PS02 PS02 PS02 PS03 PS	00.50	24		1												
CO1 2 1	CO-PO	Mappin		DOG	DO2	DO 4	DOF	DO.	DO7	DOO	DOO	DO10	DO11	DO12	DCC1	DCC
CO2		CO1			PU3	PU4	PU5	PU6	P07				PU11		PS01	+
CO3						า	2								2	
Statistical Analysis: Descriptive statistics: measures of dispersion – standard deviation, variance, range, IQR (Interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Total Case Studies Statistical Analysis: Inferential Statistics Thours Statistical Analysis: Inferential Statistical Pata Analytics Tools Thours Thou		-		-					-			1				-
SN Assessment In Semester Evaluation 1 (ISE1) 10% Assignment, Test, Quiz, Tutorial, Seminar, Presentation, etc. Mid Semester Evaluation 2 (ISE2) 10% Assignment, Test, Quiz, Tutorial, Seminar, Presentation, etc. In In Semester Evaluation 2 (ISE2) 10% Assignment, Test, Quiz, Tutorial, Seminar, Presentation, etc. In In Semester Evaluation 2 (ISE2) 10% Assignment, Test, Quiz, Tutorial, Seminar, Presentation, etc. In It Introduction 50% 100% course contents Source Contents: Introduction												1				1
SN Assessment Weightage Remark		UU-T				1			L							1
SN Assessment Weightage Remark	Assess	ment Sc	heme:													
In Semester Evaluation 1 (ISE1) 10% Assignment, Test, Quiz, Tutorial, Seminar, Presentation, etc. Mid Semester Examination (MSE) 30% 50% of course contents In Semester Evaluation 2 (ISE2) 10% Assignment, Test, Quiz, Tutorial, Seminar, Presentation, etc. End Semester Examination (ESE) 50% 100% course contents Course Contents: Init 1 Introduction 5 Hours Verview of data analytics, Applications, Data analytics process, Types of data analytics, Business intelligence, Decision upport system, Data mining Init 2 Data Collection and Preprocessing 7 Hours Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling nissing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Init 3 Statistical Analysis: Descriptive statistics 8 Hours Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency — mean, median dmode, Measures of dispersion — standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape — skewness and kurtosis, Data visualization principles and techniques. Init 4 Statistical Analysis: Inferential Statistics 7 Hours Hypothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Init 5 Data Analytics Tools 7 Hours Indicerstanding application scenarios and visualization with DA tools — Microsoft Excel, Python, R, SQL, Microsoft Power BI, ableau 5 Hours Init 6 Case Studies 5 Hours The Case Studies 6 Leichics in data analytics.							Weig	htage	Remar	k						
Mid Semester Examination (MSE) 30% 50% of course contents In Semester Evaluation 2 (ISE2) 10% Assignment, Test, Quiz, Tutorial, Seminar, Presentation, etc. End Semester Examination (ESE) 50% 100% course contents Course Contents: Introduction S Hours				aluation	1 (ISE1)				1		st, Ouiz	Tutoria	l, Semin	ar, Prese	ntation	etc.
In Semester Evaluation 2 (ISE2) 10% Assignment, Test, Quiz, Tutorial, Seminar, Presentation, etc. End Semester Examination (ESE) 50% 100% course contents Fourse Contents: Introduction 5 Hours Overview of data analytics, Applications, Data analytics process, Types of data analytics, Business intelligence, Decision upport system, Data mining Introduction 7 Hours Outline Data Collection and Preprocessing 7 Hours Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling missing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Joint 3 Statistical Analysis: Descriptive statistics 8 Hours Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency — mean, median and mode, Measures of dispersion — standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape — skewness and kurtosis, Data visualization principles and techniques. Joint 4 Statistical Analysis: Inferential Statistics 7 Hours Information Data Analytics Tools 7 Hours Joyothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Joint 5 Data Analytics Tools 7 Hours Inderstanding application scenarios and visualization with DA tools — Microsoft Excel, Python, R, SQL, Microsoft Power BI, ableau 5 Hours Five to ten case studies to be discussed. Sample case studies areas — retail, entertainment industry, travel industry, social media, healthcare, etc. Ethics in data analytics.		+											,	,		
End Semester Examination (ESE) 50% 100% course contents													l, Semina	ar, Prese	ntation.	etc.
Joint 1 Introduction 5 Hours Verview of data analytics, Applications, Data analytics process, Types of data analytics, Business intelligence, Decision upport system, Data mining Joint 2 Data Collection and Preprocessing 7 Hours Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling missing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Joint 3 Statistical Analysis: Descriptive statistics 8 Hours Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median and mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Joint 4 Statistical Analysis: Inferential Statistics 7 Hours Hypothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Joint 5 Data Analytics Tools 7 Hours Joint 6 Case Studies 5 Hours Joint 6 Case Studies 5 Hours Joint 6 Case Studies 5 Hours Joint 6 Case Studies 1 Hours Joint 7 Hours Joint 8 Latistical Analytics Tools 5 Hours Joint 9 Latistical Analytics Tools 7 Hours Joint 9 Latistical Analytics Tools 8 Hours Joint 9 Latistical Analytics Tools 9 Hours Joint 9 Latis															/	
Overview of data analytics, Applications, Data analytics process, Types of data analytics, Business intelligence, Decision upport system, Data mining Unit 2 Data Collection and Preprocessing 7 Hours Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling nissing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Unit 3 Statistical Analysis: Descriptive statistics 8 Hours Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median md mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Unit 4 Statistical Analysis: Inferential Statistics 7 Hours Hypothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Unit 5 Data Analytics Tools 7 Hours Understanding application scenarios and visualization with DA tools – Microsoft Excel, Python, R, SQL, Microsoft Power BI, Tableau Unit 6 Case Studies 5 Hours Tive to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social needia, healthcare, etc. Ethics in data analytics.							-		1							
Overview of data analytics, Applications, Data analytics process, Types of data analytics, Business intelligence, Decision upport system, Data mining Onit 2 Data Collection and Preprocessing 7 Hours Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling nissing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Onit 3 Statistical Analysis: Descriptive statistics 8 Hours Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Onit 4 Statistical Analysis: Inferential Statistics 7 Hours Hypothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Onit 5 Data Analytics Tools 7 Hours Inderstanding application scenarios and visualization with DA tools – Microsoft Excel, Python, R, SQL, Microsoft Power BI, ableau Onit 6 Case Studies 5 Hours Five to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social media, healthcare, etc. Ethics in data analytics.	Course	e Conten	ts:	<u>L</u>												
Unit 2 Data Collection and Preprocessing Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling nissing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Unit 3 Statistical Analysis: Descriptive statistics B Hours Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Unit 4 Statistical Analysis: Inferential Statistics 7 Hours Data Hours Divides the string, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Unit 5 Data Analytics Tools 7 Hours Data Hours Data Hours Data Case Studies 5 Hours Divide Case Studies 5 Hours Divide Case Studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social media, healthcare, etc. Ethics in data analytics.	Unit 1	Introdu	ıction												5 H	ours
Unit 2 Data Collection and Preprocessing Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling nissing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Data Statistical Analysis: Descriptive statistics Bescriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median and mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Data Statistical Analysis: Inferential Statistics Thours dispersion, Non-parametric sets: Chi-square test. Data Analytics Tools Data Analytics Tools Thours dispersion of the parametric statistics of the parametric sets: Chi-square test. Data Case Studies Thours dispersion of the parametric sets of the parametric sets of the parametric sets of the parametric sets. The Case Studies of the case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social media, healthcare, etc. Ethics in data analytics.			-		lications	s, Data a	nalytics	process	, Types o	of data a	nalytics	, Busine	ss intelli	gence, D	ecision	
Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling nissing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Init 3 Statistical Analysis: Descriptive statistics	suppor	t system	, Data m	nining												
Data acquisition methods and sources, Exploratory data analysis (EDA) techniques, Data cleaning techniques: handling nissing values, outliers, and noise, Data validation, Data transformation, Data reduction, Normalization Techniques. Init 3 Statistical Analysis: Descriptive statistics		1_														
Init 3 Statistical Analysis: Descriptive statistics Statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Juit 4 Statistical Analysis: Inferential Statistics 7 Hours																ours
Unit 3 Statistical Analysis: Descriptive statistics Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Unit 4 Statistical Analysis: Inferential Statistics Typothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Unit 5 Data Analytics Tools Inderstanding application scenarios and visualization with DA tools – Microsoft Excel, Python, R, SQL, Microsoft Power BI, Tableau Unit 6 Case Studies Typothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Typothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Typothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Typothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Typothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Typothesis testing, parametric and nonparametric and nonparametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Typothesis testing, parametric and nonparametric and nonparametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Typothesis testing, parametric and nonparametric and nonparametric and nonparametric ests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test.																
Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Juit 4 Statistical Analysis: Inferential Statistics	missin	g values,	outhers	s, and no	ise, Data	validati	ion, Data	a transfo	ormation	i, Data re	eauction	ı, Norma	ilization	Techniq	ues.	
Descriptive statistics: measures of central tendency, variability, and correlation, Measures of central tendency – mean, median mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Juit 4 Statistical Analysis: Inferential Statistics	IIni+ 2	Ctatiat:	cal A	lucia. D	ocani+'	uo eteti	ctics								0 11	01180
Ind mode, Measures of dispersion – standard deviation, variance, range, IQR (interquartile range), Measure of symmetricity/hape – skewness and kurtosis, Data visualization principles and techniques. Juit 4 Statistical Analysis: Inferential Statistics								dale (12)	a m el .	anla#	Mari		Aug 1	d a w ==		
Hape – skewness and kurtosis, Data visualization principles and techniques. Juit 4 Statistical Analysis: Inferential Statistics 7 Hours																
Unit 4 Statistical Analysis: Inferential Statistics 7 Hours Hypothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Unit 5 Data Analytics Tools 7 Hours Understanding application scenarios and visualization with DA tools – Microsoft Excel, Python, R, SQL, Microsoft Power BI, Tableau Unit 6 Case Studies 5 Hours Tive to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social media, healthcare, etc. Ethics in data analytics.											.cci quai	and rails	,c ,, i·ica:	Jui C 01 3	, 111111CU	icity/
Hypothesis testing, parametric and nonparametric, Parametric tests: t-test, z-test, f-test, ANOVA, regression, Non-parametric ests: Chi-square test. Init 5 Data Analytics Tools 7 Hours							-	-								
Init 5 Data Analytics Tools Understanding application scenarios and visualization with DA tools – Microsoft Excel, Python, R, SQL, Microsoft Power BI, Tableau Unit 6 Case Studies Tive to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social media, healthcare, etc. Ethics in data analytics.	Unit 4	Statisti	cal Ana	lysis: In	ferentia	al Statis	tics								7 H	ours
Init 5 Data Analytics Tools Understanding application scenarios and visualization with DA tools – Microsoft Excel, Python, R, SQL, Microsoft Power BI, Tableau Unit 6 Case Studies Tive to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social media, healthcare, etc. Ethics in data analytics.	Hypoth	nesis test	ing, par	ametric	and non	parame	tric, Para	ametric	tests: t-t	est, z-te	st, f-test	, ANOVA	, regress	sion, No	n-param	etric
Understanding application scenarios and visualization with DA tools – Microsoft Excel, Python, R, SQL, Microsoft Power BI, Cableau Unit 6 Case Studies 5 Hours Tive to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social nedia, healthcare, etc. Ethics in data analytics.																
Understanding application scenarios and visualization with DA tools – Microsoft Excel, Python, R, SQL, Microsoft Power BI, Cableau Unit 6 Case Studies 5 Hours Tive to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social nedia, healthcare, etc. Ethics in data analytics.																
Tableau Unit 6 Case Studies Sive to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social nedia, healthcare, etc. Ethics in data analytics.	Unit 5	Data A	nalytics	Tools											7 H	ours
Unit 6 Case Studies Sive to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social nedia, healthcare, etc. Ethics in data analytics.			applicat	tion scen	arios an	d visual	ization	with DA	tools - N	Microsof	t Excel,	Python,	R, SQL, I	Microsof	t Power	BI,
Five to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social nedia, healthcare, etc. Ethics in data analytics.		11														
Five to ten case studies to be discussed. Sample case studies areas – retail, entertainment industry, travel industry, social nedia, healthcare, etc. Ethics in data analytics.		u														
nedia, healthcare, etc. Ethics in data analytics.	Tablea															
	Tablea	Case St														
Text Books:	Tablear Unit 6 Five to	Case St	studies				case stu	idies are	eas – reta	ail, enter	tainmei	nt indus	try, trave	el indust		
ext Books:	Tablear Unit 6 Five to	Case St	studies				case stu	idies are	eas – reta	ail, enter	tainmeı	nt indus	try, trave	el indust		
	Tablean Unit 6 Five to media,	Case St ten case healthca	studies				case stu	ıdies are	eas – reta	ail, enter	rtainmei	nt indus	try, trave	el indust		

- 1. Runkler, Thomas A. Data analytics. Wiesbaden: Springer Fachmedien Wiesbaden, 2020.
- 2. Python for Data Analysis, By Wes McKinney, 2017

References:

- 1. Jiawei Han and Jian Pei, "Data Mining Concepts and Techniques", Morgan Kaufmann Publishers
- 2. The Elements of Statistical Learning, Data Mining, Inference, and Prediction (2nd Edn.), Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer, 2014.
- 3. Spiegelhalter, D. (2019). The art of statistics: Learning from data. Penguin UK.
- 4. Kothari, C. "Research methodology methods and techniques" Published by New Age International (P) Ltd., Publishers 91 (2017).
- 5. Tool links to be updated

Course Co	Code: SC0602 L T								Т	P	Credit						
Course Na	ame:		Comp	mpiler Construction 3										3			
Course Pi																	
Automata	Theory,	Data S	Structu	res													
Course Do	escripti	on:															
Course De			is cou	rse ex	plores	the pr	incipl	es, alg	orithn	ıs, and	data s	tructu	ıres in	volved	in		
the design context-fr generation	n and core	onstru mmars	ction o	of comes of pa	pilers	which	inclu	les La	nguage	proc	essors,	lexica	ıl analy	ysis,			
Course O	utcome	s:]														
CO1	Define	basic c	oncept	s of La	nguage	s and	Langua	ige pro	cessor	s in La	nguage	proce	ssing.				
CO2	Explain	phase	s and p	orocess	ses for :	system	progr	am exe	cution	in deta	ail from	progr	am An	alysis t	o Exec		
CO3	Analyse	e differ	ent ph	ases of	compi	ler in c	letail.										
CO4	Explain	modu	les for	differe	nt prod	esses	in code	gener	ation.								
со-ро ма	nning		1														
CO-1 O Ma	ipping.	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2		
	C01	101	3	100	101	100	100	107	100	107	7 0 1 0	1011	1012	1001	1302		
	CO2		3														
	CO3		2														
	CO4			3		2											
									I	I							
Assessme	nt Sche	eme:															
SN	Assess	ment				Weig	htage	Rema	rk								
1	In Sem	ester E	valuati	on 1 (I	SE1)	10)%	Assign	ıment,	Test, Q	uiz, Se	minar,	Preser	itation	, etc.		
2	Mid Sei				` ,)%	, 0	of cour								
3	In Sem					10						Seminar, Presentation, etc.					
4	End Se	mester	Exami	nation	(ESE)	50)%	100%	course	conte	nts						
Course Co	ntonto		1														
Course Co Unit 1	mienis	i												7 11	ours		
Language	Drocos	coc &	Accom	hlor: I	ntrodu	ction	langua	go pro	coccina	activit	ioc Fu	ndama	ntale o				
processing	g, Funda	ımenta	ls of la	nguage	Specif	ication	ı,Asseı	nblers	: Elem	ents of	assem	bly lar	iguage		iuge		
Unit 2														6 H	ours		
Macros a	nd Macı	ro Pro	cessor	s: Macı	ro defir	nition a	and cal	l. Macr	o expa	nsion.	Nested	macro	calls.				
macro fac																	
Unit 3														8 H	ours		
Phases in specificati down pars parsing, L	on and sing- Re	recogn cursive	ition o	f token	s, Role	of Par	ser, Wr	iting g	ramma	rs for o	context	free e	nviron	ments,	Тор-		
Unit 4														8 H	ours		

	tree, S-attribut	ation and Intermediate Code Generation: Syntax directed definitions, coed definitions, L-attributed definitions, Intermediate languages, assignment	
Unit 5			8 Hours
loops in fl	ow graphs, Dat Run time stora	ode Generation: Sources of optimization, Peephole optimization and basita flow analysis and equations. Issues in design of a code generator and targe management, Basic blocks and flow graphs, Next use information and se	get
Unit 6			8 Hours
Linker &	Loader: Reloc	ation and linking concepts, design of a linker, Self-relocating programs, Loa	aders.
Text Bool	KS:		
McGraw- 1	Hill Publishing	g and Operating Systems"D.M. Dhamdhere, Second revised Edition, 2005, Company limited, New Delhi. 2. "Compilers - Principles, Techniques and lman, Pearson Education.	
Reference	e Books:		
		J. J. Donovan (Mc-Graw Hill).2. "Compilers - Principles, Techniques and T man, Addison Wesley Publishing Company	ools", A.V.

Course Code:	UCSC0603		L	Т	P	Credit
Course Name:	Information Security		3			3
	_	_				

Course Prerequsites: Computer Network, Data Communication, Engg. Mathematics

Course Description:

Course Description: This course gives you practical survey of both the principles and practice of cryptography and network security. In the first part of course, the basic issues to be addressed by a network security capability are explored by providing a tutorial and survey of cryptography and network security technology. The later part of course deals with the practice of network security: practical applications that have been implemented and are in use to provide network security.

Course Outcomes: CO1 Explain the use of Cryptographic algorithms to ensure data protection and integrity CO2 Apply the knowledge of cryptographic techniques to solve the problems on security

CO3 Illustrate the different Network and Internet security protocols in TCP/IP stackCO4 Analyze the security facilities designed to provide system security

CO-PO Mapping:

	PO1	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	-	-	-	-	1	-	-	-	-	-	2	2	2-
CO2	2	3	3	2	2	2	-	2	-	-	-	2	2	2
CO3	1	-	-	-	2	2	-	-	-	-	-	2	2	2
CO4	-	2	2	-	3	3	-	2	-	-	-	2	2	2
CO5														

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	ISE1	10%	
2	MSE	30%	
3	ISE2	10%	
4	ESE	50%	

Course Contents:

Unit 1 Introduction to Information Security

5 Hours

Overview: (2)

Computer Security Concepts, The OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security

Classical Encryption Techniques: (3)

Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, Rotor machines, Steganography

Unit 2 | Symmetric and Asymmetric Key Cryptography

8 Hours

Block Ciphers and the Data Encryption Standard

Block Cipher Structure, Data Encryption Standard (DES), A DES Example, Strength of DES, Block Cipher Design Principles, AES Structure, Multiple Encryption and Triple-DES

Public Kev Cryptography (4)

Principles of Public-Key Cryptosystems, RSA Algorithm, Other Public key Cryptosystems - Diffie-Hellman Key Exchange, ElGamal Cryptographic system

(4)

Unit 3	Cryptographic Authentication Functions	8 Hours

Cryptographic Hash Functions: (3)

Applications of Cryptographic Hash Functions, Two Simple Hash Functions, Requirements and Security, Hash Functions Based on Cipher Block Chaining, Secure Hash Algorithm (SHA)

Message Authentication Codes: (3)

Message Authentication Requirements, Message Authentication Functions, Requirements for MAC and Security of MACs, MACs Based on Hash Functions: MAC, MACs Based on Block Ciphers: DAA and CMAC **Digital Signatures: (2)**

Digital Signatures, ElGamal Digital Signature Scheme, Schnorr Digital Signature Scheme, Digital Signature Standard (DSS)

Unit 4 Key Management and User Authentication

6 Hours

Key management (3)

Symmetric Key Distribution Using Symmetric Encryption, Symmetric Key Distribution Using Asymmetric Encryption, Distribution of Public Keys, X.509 Certificates, Public Key Infrastructure

User Authentication Protocol (3)

Remote User-Authentication Principles, Remote User-Authentication Using Symmetric Encryption, Kerberos, Remote User Authentication Using Asymmetric Encryption.

Unit 5 | Internet security Protocols

8 Hours

Transport-Level Security (2)

Web Security Issues, Secure Sockets Layer (SSL), Transport Layer Security (TLS), HTTPS, SSH

Electronic Mail Security (3)

Pretty Good Privacy (PGP), S/MIME, SET

IP Security (3)

IP Security Overview, IP Security Policy, Encapsulating Security Payload

Unit 6 | Firewall and Intrusion detection system

7 Hours

Firewalls (2)

Introduction, Types of firewall, Firewall configuration, VPN, Types of VPN

IDS (2)

Overview of IDS, IDS Components, Approaches of IDS

SIEM(3)

Introduction to SIEM, SIEM Scenario and process flow, SIEM architecture, SIEM features

Text Books:

Textbooks:

- 1. Williams Stallings Cryptography and Network Security Principles and Practices (Unit 1 to 5) Pearson Education (LPE), 7th Edition
- 2. Network Security, Firewalls, and VPNs, 3rd Edition by J. Michael Stewart, Denise Kinsey (Unit 6)

References:

- 2. Cryptography & Network Security B.A. Forouzan McGrawHill
- 3. Cryptography and network security Atul Kahate (TMGH)
- 4. Handbook of Applied Cryptography Menezes, an Oorschot, and S.A. Vanstone

Course Code:	UCSC0604	L	T	P	Credit
Course Name:	Data Analytics Lab	-	-	1	1

Course Prerequsites:

Mathematics for computer science, machine learning concepts, programming skills.

Course Description:

This data analytics lab course is designed to provide practical experience in extracting meaningful insights from data and presenting them through interactive visualizations and dashboards. It covers a wide range of techniques and tools for exploring, cleaning, transforming, and visualizing real datasets. Students will gain proficiency in using some of the tools like Microsoft Excel, Python, SQL, Microsoft Power BI, and Tableau for tasks like descriptive statistics, data cleaning, feature engineering, predictive modeling, text analytics, and social network analysis.

Course	e Outcomes:	After the completion of the course the student should be able to –						
CO1	Obtain, clean, and preprocess data from various sources, ensuring the data is ready for analysis.							
CO2	Apply various libraries in Python to solve data analytics problems.							
CO3	Implement various statistical analysis methods to any dataset.							
CO4	Perform data analysis and visualization of results.							
CO5	Make use of mo	odern DA tools to solve real-world problems.						

CO-PO Mapping:

•	···upp····	ρ.													
	·	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2
	CO1		1							1			3	1	1
	CO2	2	1							3	3	1	3	3	3
	CO3	2	2							3	1		1	3	
	CO4	2	2	2						3		3	3	3	3
	CO5	2	1		2					3	3		3	3	

Assessment Scheme:

SN	Assessment	Weightage	Remark	
1	In Semester Evaluation (ISE)	33%		Practical performed/ Quiz/ Project (PBL)/ Mini-Project/ Presentation/ Group Discussion/ Internal Oral etc
2	End Semester Examination (ESE)	67%	50	Oral Examination (OE)

Suggested List of Experiments:

Lab experiments cover various aspects of data analytics using tools like – Microsoft Excel, Python, R, SQL, Microsoft Power BI, and Tableau. It includes data exploration, cleaning, transformation, visualization, statistical analysis, predictive modeling, and specialized areas like text analytics or social network analysis. It should provide hands-on experience working with real datasets and applying different techniques to extract meaningful insights.

Experiment No. 1 - Exploratory Data Analysis (EDA)

- a) Perform descriptive statistics on a dataset to understand its central tendency, dispersion, and distribution.
- b) Generate visualizations like histograms, scatter plots, or box plots to explore relationships and patterns in the data.

Experiment No. 2 - Data Cleaning

- a) Handle missing values in a dataset using techniques like imputation or deletion.
- b) Identify and handle outliers using methods such as z-score or interquartile range.

Experiment No. 3 - Data Transformation and Feature Engineering

- a) Apply feature transformation techniques like log transformation or scaling to normalize the data.
- b) Engineer new features by combining existing ones or extracting relevant information.

Experiment No. 4 - Data Visualization

- a) Create interactive visualizations using libraries like Matplotlib, Seaborn, or Tableau to present insights from a dataset.
- b) Design a dashboard with multiple visualizations to showcase key metrics and trends.

Experiment No. 5 - Statistical Analysis

- a) Perform hypothesis testing using t-tests or chi-square tests to analyze relationships between variables.
- b) Conduct regression analysis to model and predict outcomes based on independent variables.

Experiment No. 6 - Predictive Modeling

- a) Build a predictive model (e.g., linear regression, decision tree, or logistic regression) to make predictions.
- b) Evaluate the model's performance using metrics like accuracy, precision, recall, or ROC curves.

Experiment No. 7 - Text Analytics

- a) Perform text preprocessing techniques (tokenization, stemming, stop word removal) on textual data.
- b) Apply sentiment analysis or topic modeling techniques to extract insights from text.

Experiment No. 8 – Clustering and Segmentation

- a) Implement clustering algorithms (e.g., k-means or hierarchical clustering) to identify natural groupings in a dataset.
- b) Use segmentation techniques to divide a customer base into distinct groups based on their characteristics.

Experiment No. 9 - Time Series Analysis

- a) Analyze time series data by visualizing trends, seasonality, and identifying outliers.
- b) Apply forecasting techniques (e.g., ARIMA or exponential smoothing) to predict future values.

Experiment No. 10 – Social Network Analysis

- a) Analyze network data to identify influential nodes, communities, or detect patterns of interaction.
- b) Calculate centrality measures (degree, betweenness, or closeness) to understand network dynamics.

References:

- 1. Python for Data Analysis, By Wes McKinney, 2017
- **Other books / links to be use as required.

Course Code:	UCSC0605	L	Т	P	Credit
Course Name:	Information Security Lab			2	1
Course Prerequ	sites:				

Computer Network and Programing Language like Java/Python

Course Description:

This course is to designed to do the practical implementation of Cryptographic algorithms and have the hands-on experience on open source/free tools available to demonstrate the security concepts.

Course Outcomes

After completion of the course, students shall be able to -

- CO1 Demonstrate encryption and authentication mechanisms
- CO2 | Implement various cryptographic algorithms using various prgramming languages
- CO3 Make use of various security tools to analyze the security concepts

CO-PO Mapping:

		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
	CO1	2			1										
Ī	CO2		2		2									2	
	CO3			2		3			2					2	

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	In Semester Evaluation (ISE)	25	Assignment, Test, Quiz, Seminar, Presentation,etc.
2	End Semester Examination (OE)	25	Oral Exam

Course Contents

(SHA256with DSA)

Certificate

course contents:								
Assessment No. 1 :Classical Encryption Techniques : Substitution Ciphers	2 Hours							
To implement the program of substitution ciphers like Caesar Cipher, Playfair Cipher, Hill Ciph	ner							
Assessment No. 2 : Classical Encryption Techniques : Transposition Ciphers	2 Hours							
To implement the program of Transposition ciphers like Rail fence technique, Columnar transposition								
Assessment No. 3 : Symmetric Ciphers : DES	2 Hours							
Implement a program to perform Encryption and Decryption using DES cipher								
Assessment No. 4 : Symmetric Ciphers : AES	2 Hours							
Implement a program to perform Encryption and Decryption using AES cipher								
Assessment No. 5 : Asymmetric Ciphers : RSA Algorithm 2								
Implement a program to perform Encryption and Decryption using RSA algorithm								
Assessment No. 6 : Key Exchange Algorithm: Diffie Hellman Algorithm	2 Hours							
To implement a program using Diffie Hellman key exchange algorithm								
Assessment No. 7 : Message Integrity using Hash function	2 Hours							
To implement the program on Hash functions –SHA, MD5 etc to show the integrity check on the files transferred								
Assessment No. 8 :Digital Signature algorithm using RSA or DSS Approach 2 Hours								

Implement the Digital Signature algorithm using RSA approach (SHA256withRSA) or DSS approach

2 Hours

Assessment No. 9: Demonstration of Creation of Digital Signature & Digitally Signed

To implement a program to show encryption and decryption using RSA algorithm in	
Assessment No. 10 : Demonstration of SSL protocol	2 Hours
Working of SSL protocol using Network analyzer tools like Wireshark	•
Assessment No. 11 : Demonstration of User Authentication Tools	2 Hours
Use any of the user authentication tool like Kerberos, NTLM, LDAP, RADIUS	•
Assessment No. 12 :Demonstration of Firewall & IDS/ IPS Systems	2 Hours
Use any of the Windows and Linux based firewall for demonstration	•
Assessment No. 13 : Demonstration and Implementation of Malicious Softwares	2 Hours
Assessment No. 14 : Demonstration of VAPT Tools	2 Hours
TextBook:	
1. Williams Stallings - Cryptography and Network Security Principles and Practices	Pearson Education

Course Code:	UCSC0606		L	T	P	Credit
Course Name:	Mobile App	Programming with Dart	2		2	3

Course Prerequsites:

Basic Kowledhe of programming concepts, Object Oriented Programming

Course Description:

The aim of this course is to familiarize students with Flutter, an open-source UI software development kit, used to develop applications for Android, iOS, Linux, Mac, Windows. This course covers the key concepts of app development using flutter and dart.

Course Learning Objectives:

- 1. Understand the fundamentals of Flutter and Dart, including the syntax, structure, and features of both languages.
- 2. Understand and Build visually appealing and responsive user interfaces using Flutter's built-in widgets and layout elements.
- 3. Understand in detail the Material Design and Motion-Rich Widgets.
- 4. Understand the Firebase services and features.

Course Outcomes:

After the completion of the course the student will be able to,

CO1	Install and use Flutter and Dart from the ground up, step-by-step.
CO2	Use Dart Programming Language - Fundamentals and intermediate topics
CO3	Build a robust apps with Flutter using Flutter widgets.
CO4	Design, build, debug Flutter Android and iOS Apps with Material Design Guidelines and Widgets.
CO5	Get Flutter apps to communicate with a realtime database - Firebase.

CO-PO Mapping:

	PO1	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	1	2	0	0	0	0	0	0	0	0	0	2	3	0
CO2	1	0	0	0	2	0	0	0	0	0	0	0	3	0
CO3	1	0	2	1	3	0	0	0	0	0	0	1	1	2
CO4	1	0	2	1	3	0	0	0	0	0	0	0	1	2
CO5	1	0	2	1	0	0	0	0	0	1	1	1	3	1

Assessment Scheme:

Assessment	Weightage	Remark
In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
Mid Semester Examination (MSE)	30%	50% of course contents
In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
End Semester Examination (ESE)	50%	100% course contents
	In Semester Evaluation 1 (ISE1) Mid Semester Examination (MSE) In Semester Evaluation 2 (ISE2)	In Semester Evaluation 1 (ISE1) 10% Mid Semester Examination (MSE) 30% In Semester Evaluation 2 (ISE2) 10%

Course Contents:

Unit 1 | Dart Programming

8 Hours

Introduction, Importance of Flutter, Introduction to Dart, Dart Pad, Installing Dart SDK,, Dart Variables, Data Types, Input of Information to Dart Program, Writing Comments, Operators, flow control statements. **Advanced Dart Programming**: Functions: Creating a Function, Function Return Data Types, Void Function, Function Returning Expression, Functions and Variable Scope, **Object-Oriented Programming (OOP)**, Objects and Classes, Creating a Class, Adding Methods to Classes, Providing Constructors for Your Classes, Getters and Setters, Inheritance, Abstract Class, Dart Project Structure and Dart Libraries

Unit 2	Introduction to Flutter	8 Hours

Flutter SDK, Installing and Configuring Flutter SDK, Creating a New Flutter Project, Setup an Android Virtual Device, Run a Flutter App, Installing Flutter on Mac, Test Your Flutter App on iOS Phone with Windows O.S, Android Studio Sugar and Spice, Run your Apps on a Hardware Device (Physical Phone), Run your Flutter App on Android Phone, Run your Flutter App on Android Phone, Emulator Debug Mode, Introduction to Flutter Widgets, Creating a Flutter App Using Widgets, What is a Material App widget?

Unit 3 Flutter Widgets 8 Hours

Scaffold Widget, Image Widget, Container Widget, Column and Row Widgets, Icon Widget, Layouts in Flutter, Card Widget, App Icons for iOS and Android Apps, Hot Reload and Hot Restart, Stateful and Stateless Widgets, Use a Custom Font

Unit 4 Navigation and Routing

8 Hours

Button Widget, FloatingActionButton, RaisedButton, FlatButton, and IconButton, DropdownButton, OutlineButton, ButtonBar, PopupMenuButton, App Structure and Navigation, Navigate to a New Screen and Back, Navigate with Named Routes, Send and Return Data Among Screens, Animate a Widget Across Screens, WebView Widget in Flutter

Unit 5 | Material Design and Motion-Rich Widgets

8 Hours

Material Design Guidelines Part 1, Introduction, BottomNavigatorBar Widget, DefaultTabController, TabBar, and TabBarView Widgets, ListTile Widget, ListView Widget, Drawer Widget, DataTable Widget, SelectableText Widget, Stack Widget, Material Design Guidelines - Part 2, Input and Selections, Text Field Widget., Checkbox Group and RadioButtonGroup Widgets, Date Picker., Time Picker., Slider Widget., Switch Widget, Dialogs, Alerts, and Panels, Alert Dialog Widget, Cupertino Alert Dialog Widget., Bottom Sheet., Modal Bottom Sheet, Persistent Bottom Sheet., Expansion Panel Widget., Snack Bar Widget.

Unit 6 8 Hours

Introduction, What is the JSON?, How does Firebase Database work?, Firebase authentication (Signup and Login to Flutter App), Configure Your App to use Firebase Services, Adding Firebase to Android App, Adding Firebase to iOS App, Configuring Firebase Authentication, Login to an App Using Firebase User Accounts, Logout Configuration, Firebase Database, Which database is right for your project?, Real Time Database, Cloud Fire store

Text Books:

Flutter Cookbook: Over 100 proven techniques and solutions for app development with Flutter 2.2 and Dart Packt Publishing Limited by Simone Alessandria

Reference Books:

Flutter for Beginners: An introductory guide to building cross-platform mobile applications with Flutter and Dart 2 Packt Publishing Limited by by Alessandro Biessek

Course	e Code:		U	CSC060)7							L	Т	P	Credi
Course	e Name:				N	Mini Pr	oject-Il	II				0	0	2	1
			1												
	e Prereg		•												
	tructure eering B	_	rithm	s, Proc	edura	l Prog	rammi	ing, Ob	ject-0	riente	ed Prog	gramm	ing, So	oftwar	е
Course	e Descri	ption:													
	mini pro														
	orld pro														
	l as this s		er .Stud	lents w	ill dev	elop &	Impler	nent a	solutio	n to ar	ı identi	fied pr	oblem,	maint	ain
reposii	tory on w	veb.													
Course	e Outcon	nes:	After	comple	eting th	ie cour	se, stu	dents w	vill be a	able to					
	Identify real world problems which can be solved using CS concepts and technologies (Operating														
CO1	System, Compiler Construction and Information Security).														
CO2	Describe the proposed solution to the real world problem using a technical report.														
CO3	Implement the proposed solution using Computer Science & Engineering techniques.														
CO4	Build d														
COT	Duna a	ctaneu	projec	стерог	t anu i	IIaIIIta	птеро	SILUTY	OII WCL	<u>,, </u>					
СО-РО	Mappin	 1g:]												
		P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
	CO1	2	1				1		1	3	2	2	3	3	3
	CO2	2	2	3		3	1		2	3	2	3	3	3	3
	CO3	2	2	3		3	1		2	3	2	3	3	3	3
	CO4	2	1	1		3	1		2	3	3	3	3	3	3
_		_		1											
	sment Sc					TA7. *.	1	D							
SN	Assess		roluoti.	on 1 (I	CE1)	-	htage)%	1		atificat	ion on	d Dogie			
<u>1</u> 3	In Seme					1)%)%	1			ion and l Creati			.,	
<u> </u>	1111 Seille	ester E	vaiuatil	011 Z (1 <u>.</u>	ا ۱۵۵	1 30	70	Louin	g, 165ti	ng and	ucieali	ing Kel	ַוטזונטו ַ	y	
Course	e Conten	ıts:]												
C! J - I	lines for	Mini-I	Project	-111											

Guidelines for Mini Project -III

1 The primary objective of the mini project-III is to achieve multi course project based learning.
2 Course Instructor shall form the project team of 3 to 4 students in the batch of students
Each team shall use the knowledge they learned in the TY B.Tech courses to identify the real world problem which can be solved using technology Based on the principles, algorithms, and data structures involved in the design and construction of compilers which includes Language processors, lexical analysis, context-free grammars, Types of parsers and parsing techniques. introduction to intermediate code generation and code optimization.

The solution shall be using the tools & techniques from multiple courses - e.g a solution shall be using data structures, networking algorithm, Web Technology to develop mini project based on practical survey of both the principles and practice of cryptography and network security. As students have undertaken Fundamentals of Web - its recommended to develop user interface using HTML 6 The evaluation shall be done in two phases

Phase 1 ISE-1 In ISE 1 the students shall be graded based on the skills demonstrated to identify the problem statement, define the problem statement & Designing its solution. The partial working model is expected to be completed.

Phase 2 ISE-2 In ISE 2 the students shall be graded based on the complete project implementation and its working.

Followed by the detailed project report which shall cover the technical aspects of the project. Its recommended to share a common project report format to all batches.

All course instructors shall coordinate and work towards common evaluation process.

Course instructors shall demonstrate and discuss sample case studies with students to help them understand the mini project deliverables.

Cours	se Code	٠.	II	CSA60	11							L	Т	Р	Credit
	se Nam					f Econo	mics (Andit (`ourse.	.IV)		2	_	1	Creare
Cours	c main		I ui	idame	itais o	Leone	inics (riuuri (Jourse	11)	_		1		
Cours	se Prer	eausit													
Journ		oquor	1												
Cours	se Desc	criptio													
Basic	know	ledge o	of Micr	o and	Macro	Econo	mics i	s esse	ntial fo	or the	Engine	ers st	udying	g the	
											the ar				
1			-	_	-			-			theory	_			ers'
	us, ana rstand	-			behav	iour th	rough	Indiff	erence	e analy	sis are	e intro	duced	to	
1					n cost	analy	sic and	l study	of cor	nnetit	ive ma	rkets i	is tano	ht to	
											iness (of
1-	nal inc	_		_			•							3	
											demai				
					es, mo	netary	and fi	scal po	olicies	are di	scusse	d to h	elp en	gineer	ing
1	nts to				ico bo	and on	thoso	maana		mia aa	naant	•			
benav	lour o	oi busii	iless ei	nterpr	ise ba	seu on	tnese	macro	econo	mic co	oncept	S.			
Cours	se Outo	omacı]												
Cours															
601					iour w	ith the	help of	ftheor	y of de	mand a	and				
CO1	indiffe				.1	<u> </u>									
CO2	marke		luction	ı runctı	on, the	eory of	costs a	na var	ious co	mpetii	tive				
			a' tha a a			ntion f	ati a v	. and 41		£	inling				
CO3						ption f	unction	i and u	leory ()ı iiiuit	ipner.				
CO4		stand		•											
CO5	Under	stand	Busine	ss cycl	es and	signifi	cance c	of mone	etary a	nd fisc	al polic	ies			
			1												
CO-PO) Mapp				1		1		1						
		P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
	CO1				2		1		2						_
	CO2				2		2		2			2			
	CO3		4		2		1						4		
	CO4		1	1	2		1	2	2		2	1	1		
	CO5		1	1	2		1	3	1		2	2	1		
<u> </u>				1											
—	sment					T		I_							
SN	1	sment					htage								
1		nester				†	<u>%</u>				Quiz, Se				
2	In Sen	nester	Evalua	tion 2	(ISE2)	50	1%	Assign	ıment,	Test, (Quiz, Se	minar,	Preser	ntation	, etc.
3	-														
4															
]												
Cours	se Cont	ents:	l												

Part- I

12 Hours

Microeconomics: Principles of Demand and Supply - Supply Curves of Firms - Elasticity of Supply; Demand Curves of Households - Elasticity of Demand; Equilibrium and Comparative Statics (Shift of a Curve and Movement along the Curve); Welfare Analysis - Consumers' and Producers' Surplus - Price Ceilings and Price Floors; Consumer Behaviour - Axioms of Choice - Budget Constraints and Indifference Curves; Consumer's Equilibrium - Effects of a Price Change, Income and Substitution Effects - Derivation of a Demand Curve; Applications - Tax and Subsidies - Intertemporal Consumption - Suppliers' Income Effect; Theory of Production - Production Function and Iso-quants - Cost Minimization; Cost Curves - Total, Average and Marginal Costs - Long Run and Short Run Costs; Equilibrium of a Firm Under Perfect Competition; Monopoly and Monopolistic Competitio

Part - II 12 Hours

Macroeconomics: National Income and its Components - GNP, NNP, GDP, NDP; Consumption Function; Investment; Simple Keynesian Model of Income Determination and the Keynesian Multiplier; Government Sector - Taxes and Subsidies; External Sector - Exports and Imports; Money - Definitions; Demand for Money -Transactionary and Speculative Demand; Supply of Money - Bank's Credit Creation Multiplier; Integrating Money and Commodity Markets - IS, LM Model; Business Cycles and Stabilization - Monetary and Fiscal Policy - Central Bank and the Government; The Classical Paradigm - Price and Wage Rigidities - Voluntary and Involuntary Unemployment

Text Books:

- 1. Microeconomics, Pindyck, Robert S., and Daniel L. Rubinfeld.
- 2. Macroeconomics, Dornbusch, Fischer and Startz.
- 3. Economics, Paul Anthony Samuelson, William D. Nordhaus.

Reference Books:

- 1. Intermediate Microeconomics: A Modern Approach, Hal R, Varian.
- 2. Principles of Macroeconomics, N. Gregory Mankiw.

Course Code:	UCSPE601	L	T	P	Credit
Course Name:	Ethical Hacking	3			3

Course Prerequsite Computer Network, Data Communication, OS and DBE

Course Description

Ethical hacking course is designed to help learners to develop a deeper understanding of threats to information system. We hope learners will develop a lifelong passion and appreciation for ethical hacking, which we are certain will help in future endeavours. Students will benefit from this learning experience. Almost all aspects of security are covered in this course.

Course Outcomes:

CO)1	Define the basic concepts of components of Information and systems security and ethical hacking .	1
CC)2	Explain different steps involved in ethical hacking with examples and scenarios.	1

CO3 Outline Sesion Hijacking, Firewall, IDS, Honeypot, Web Server and web applications security

CO4 | Summarize Hacking Wireless Network and Mobile Platform like Android,iOS,Balckberry.

CO-PO Mapping:

	_													I
	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	1					2		3		1		3	1	
CO2	1				1	2		3		1		3	3	
CO3	1				1	2		3		1		3	3	
CO4	1				1	2		3		1		3	3	

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	ISE1	10%	
2	MSE	30%	
3	ISE2	10%	
4	ESE	50%	

Course Contents:

Unit 1 Introduction to Ethical Hacking

5 Hours

Essential Terminology, Elements of Information Security, The Security, Functionality, and Usability Triangle, Top Information Security Attack Vectors, Information Security Threat Categories, Types of Attacks on a System, Information Warfare, Hacking Concept and Scope, Vulnerability Assessment, Penetration Testing

Unit 2 Footprinting and Reconnaissance

6 Hours

FootprintingConcept,Footprinting Methodology, Overview of Network Scanning, Scanning Methodology, Enumeration,Vulnerability Assessment Concept, System Hacking, Mulware Threats

Unit 3 Sniffing and Social Engineering

8 Hours

Sniffing Concepts, MAC attacks, DHCP attacks, ARP Poisoning, Spoofing Attack, DNS Poisoning, Sniffing Tools, Social Engineering Concepts and Techniques, Impersonation on Social Networking Site, Identity Theft, Denial of Services

Unit 4 Session Hijacking and Firewall and Web Server 7 Hours IDS and Firewall Concepts and System, Evading IDS, Firewall, Web Server Concepts and attacks, Attack Methodology, Countermeasures, Patch Management Unit 5 Web Application Hacking and SQL Injection 7 Hours Web App concepts and attack methodology, Countermeasures, SQL Injection methodology, SQL Injection Techniques Unit 6 Hacking Wireless Network and Mobile Platform 7 Hours Wireless Concept, Wireless Encryption, Wireless Threats, Hacking Methodology, Bluetooth Hacking, Wireless Security Tool, Mobile Platform Attack Vector, Hacking Android, iOS, Blackberry, Understanding **IoT Hacking, Cloud Computing Text Books:** Textbooks: 1. CEH V10: EC-Council Certified Ethical Hacker Complete Training Guide by IPSpecialist

CEH v10 Certified Ethical Hacker Study Guide, Ric Messier, CEH, GCIH, GSEC, CISSP, SYBEX Publication

References:

Cour	se Co	de:	UCSPE	E602								L	Т	P	Credit
	se Na				ing Lab							_	_	2	1
		e requsi Networl	ites:				ation S	Security	<i>I</i>						
Cour	se De	scriptio	on:												
		king lal		e covei	r tools a	and tec	hnique	es that a	are use	d by ha	ackers a	and per	netratio	on teste	ers.
		ill get e					-			-		-			
Cour	se Ou	tcomes													
After	comp	letion o	of the co	ourse, s	student	s shall	be able	e to -							
CO1	Demo	nstrate	the Fo	otprint	ing and	l Recon	naissa	nce tec	hnique	es .					
CO2	Make	use of d	lifferen	t types	of sca	nning t	ools								
CO3	Evalua	ate vuli	nerabil	ty asse	ssment	and pe	enetrat	ion tes	ting to	ols					
CO4	Demo	nstarat	e the h	acking	of web	server,	web ap	plicati	on and	wirele	ss netv	vork			
			1												
CO-P	O Maj	pping:													
		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
	CO1	1					3		3	3	1		3	3	
	CO2	1				3	3		3	3	1		3	3	
	CO3	1				3	3		3	3	1		3	3	
	CO4	1				3	3		3	3	1		3	3	
				ī											
	ssmei	nt Sche	me:			Г									
_		sment				_	htage	Rema							
1	In Sen	nester E	Evaluat	ion 1 (l	ISE1)	50	%	Assign	ments	compl	eted, q	uiz, ora	l etc		
2	In Sen	iester Ev	<i>r</i> aluatio	n 1 (ISE	E2)	50	%	Assign	ments c	omplet	ed, quiz	z, oral e	tc		
			1												
		ntents:	ļ											0.11	
		nt No. 1												2 Hou	rs
	•	ng and F		aissanc	e									2 11	
		nt No. 2												2 Hou	rs
		etwork												2.11	
		nt No. 3												2 Hou	15
Vulnerability Scanning Experiment No. 4 2 Hours															
			r ———											Z Hou	15
	m Had	nt No. 5	<u> </u>											2 Hou	rc
EXPE	1111161	it NO. 3	,											2 HUU	12
Malw	vare T	hreats													
	erimei	nt No. 6	ó											2 Hou	rs
Expe Sniff			7		_									2 Hou	rs
Expe Sniff		nt No. 7	<u> </u>												
Expe	rime	nt No. 7 neering													
Expe Sniff Expe Socia	rime ı ıl Engi		5											2 Hou	rs
Expe Sniff Expe Socia Expe	erimei al Engi erimei	neering	3											2 Hou	rs

Session Hijacking	
Experiment No. 10	2 Hours
Evading IDS,Firewall and Honeypots	
Experiment No. 11	2 Hours
Hacking Web Servers	
Experiment No. 12	2 Hours
Hacking Web Applications	
Experiment No. 13	2 Hours
SQL Injection	
Experiment No. 14	2 Hours
Hacking Wireless Networks	
Experiment No. 15	2 Hours
Hacking Mobile Platforms	

cour	se Cod	e:	UCSPI	E603								L	Т	P	Credit
Cour	se Nam	ıe:		cation Il Reali		opmen	nt in Au	ıgment	ted Rea	ality-		3			3
Cour	se Prer	eqı													
Com	puter Gi	aph	ics, Ba	sics of	Anima	ation									
Cour	se Desc	rin													
	course			ad at t	hird ve	ar love	al to ac	at tha c	tudant	c fami	iar wit	h Imm	arciva	Tachn	olgies
	ed to AF				-		_							Tecilii	oigies
					1		1			F		P			
Cour	se Outo	com	After 1	the cor	npletic	n of th	ne cour	se the	studer	nt will	be able	to -			
	Differe														
								- 0							
	Demonstrate Unity Game Engine Creating Content for Virtual and Augmented Reality														
CO4															
	Lxpian	1 03	c dasc.	3 111 711	vicap	piicati	0113								
CO-F	O Map	oing													
		01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
	CO1	1	2	2	101	3	3	2	2	2	2		3	3	3
	CO2	3	1	2		3		1	2	2	2	3	3	3	3
	CO3	1	2	3	1	3	3	2	1	2	3	2	2	3	2
	CO4	1	3	2	1		1	<u> </u>			2		1	1	1
	uo i	-	3				1 -								
Asse	ssment	Sch	neme:												
SN	Assess	me	nt			Weig	htage	Rema	ırk						
1	In Sem	este	r Evalı	uation	1 (ISE	10)%	Assign	nment,	Test, (Quiz, Se	eminar	; Prese	ntatio	n, etc.
2	Mid Se	mes	ter Exa	aminat	ion (M	30)%	50% (of cour	se con	tents				
3	In Sem	este	r Evalı	uation	2 (ISE	10)%	Assign	nment,	Test, (Quiz, Se	eminar	; Prese	ntatio	n, etc.
4	End Se	mes	ter Ex	amina	tion (E	50)%	100%	cours	e conte	ents				
ISE 1	and IS	E 2 a	are bas	sed on	assign	ment/	declar	ed test	/quiz/	semin	ar/Gro	up Disc	cussio	ıs etc.	
100	: Assess							-		-			-		
MSE	Acceccr								1 60-70)% we	ightage	e for co	urse c	ontent	
MSE ESE:			roo m	odules) cover				500% 1	Chaar	17				
MSE ESE: (nor	mally la				n will		JV /0 I	יירלה מ	JU /0 1	111601	y				
MSE ESE: (nor					rn will	be iii	,0-								
MSE ESE: (nor	mally la				rn will	be in									
MSE ESE: (norm Note	mally la	Que	estion		rn will	De III									

Introducing Virtual Reality and Augmented Reality,Other Types of Virtual and Augmented Reality-Mixed Reality,Augmented Virtuality,Extended Reality, Quick History tour ofn AR-VR,Evaluating the Technology Hype Cycle

Unit	Exploring the Current State of Virtual Reality & Augmented Reality
TUIII	TEXPLOINING THE CULTERL STATE OF VILLAL REALITY & AUGINERIEU REALITY

10 Hours

Looking at the Available Form Factors in VR, Focusing on Features-Room-scale versus stationary experience, Inside-out tracking, Haptic feedback, Audio, Considering Controllers-Toggle button, integrated hardware touchpad, Gaze controls, Keyboard and mouse, Standard gamepads, Motion controllers, Hand tracking, Eye tracking, Recognizing the Current Issues with VR-Simulator sickness, The screen-door effect, Movement in VR, Health effects, Looking at the Available Form Factors in VR-Mobile devices, AR headset, AR-glasses, Current Issues with Augmented Reality-Form factors and first impressions, Cost and availability, Perceived usefulness, Tracking, Field of view, Visuals

Unit | Creating Content in Virtual and Augmented Reality

8 Hours

Choosing Virtual Reality, Choosing Augmented Reality, Planning Your Virtual Reality Project-Defining Your Virtual Reality Project, Exploring Design Principles in Virtual Reality, Planning Your Augmented Reality Project, Exploring Design Principles in Augmented Reality

Unit Games and Games Engine

6 Hours

Introduction to game engine, Game Engines Today, Introduction to Unity Engine-Install Unity, Configure Unity-on disk, in the cloud, Script Editor-VS Code, Navigating the unity interface, understanding the different window views, Confiure and custmize layout, The transform toolset, handle position control, unity project structure, VR and AR app development in Unity

Unit | Creating Content for Virtual and Augmented Reality

8 Hours

Assessing Design Software-User experience design software, VR/AR-based design tools, Capturing Real Life-Video-capture options, Mass-consumer models, Still-image capture options, Audio options-Voiceover, Sound effects, Background audio, Spatial audio

Unit Virtual and Augmented Reality in the Wild

4 Hours

Exploring Virtual Reality Use Cases-Art, Education, Entertainment, Healthcare, Gaming, Exploring Augmented Reality Use Cases-Art, Education, Industry and commerce, Entertainment, Utilities

Text Books:

- 1. Virtual & Augmented Reality For Dummies, Published by: John Wiley & Sons, Inc.
- 2. Developing 2D games with unity-Independent game prograaming with C#-Jared Halpern

Reference Bool

- 1.The VR Book-Human Centered Design for Virtual Reality-Jason Jerald
- 2. Virtual and Augmented Reality, An educational handbook by Zeynep Tacgin, Cambridge scholares publishing
- 3. Virtual Reality-steven m lavalle, cambridge university press, copyright steven m lavalle 2019

Course	ourse Code: UCSPE604 L T P Credit														
Course	e Name	:	on De	vcelop	ment i	n Augr	nented	d Reali	ty-Virt	ual Re				2	1
									<u> </u>		J			<u> </u>	
Course	e Prere	qusites													
Compu	ıter Gra	phics, B	asics o	of Anin	nation	& C#									
			1												
Cours	e Descr	iption:													
l	ourse is					•	_							_	
ı	l to AR-\ Jnity to		ating 3	a moa	eis usi	ng aav	ancea	SOITW	are too	ois. Dev	elopin	ıg AK a	ina vk	applic	ations
uomg (<i></i>														
Cours	e Outco	mes:	After	the co	npleti	on of t	he cou	rse the	stude	nt wil	be ab	le to -			
CO1	Design	3d mod	dels &	Develo	p VR a	applica	tion ir	1 Unity	,						
CO2	Develo	p AR ap	plicati	ion in l	Jnity										
CO3	Design	Virtual	Tour,	Make ι	ise of	VR Dev	vices fo	or dem	onstra	ting V	R envi	ronme	nt		
СО-РО	Mappi					l	1	1 .	ı	l	l		I		
		P01	PO2	P03	P04	P05	P06	P07	P08	P09		PO11			PSO2
	CO1	2		2	1	3	2	1	3	3	2	1	3	3	2
	CO2	2	1	2	1	3	2	1	2	3	2	3	2	3	2
	C03 2 3 1 3 2 1 1 3 3 2 2 3 2														
Assess	sment S	cheme	•												
SN	Assess		•			Weig	htage	Rema	ırk						
1		ester E	valuati	on 1 ()	SE1)		 1%		nment	s com	oleted.	auiz. c	ral et		
2	†	ester Eva		`		50)%		ments						
ISE bas	sed on F					n ,Quiz	etc								
ESE ha	ving Ex	ternal (ral Ex	am											
			T												
	iment L													<u> </u>	
	Create						. 0.1			1.1					2
Aim &	Object	ive: Lea	irn Ble	nder p	lattori	n. Crea	ate 3d	graphi	cal mo	dels					
EXP 2	Install	ation o	f Unit	v											2
	Object		-		hub. C	reating	g Unity	z hub a	ccoun	t to do	wnloa	d regu	ired m		
1	oad all t		_	-								a roqu			. 010111
EXP 3 Create Basic Scenes in Unity using 3d models and Unity asset store 2															
Aim & Objective: Learn the basic unit interface. Importing assets in scene window. Set objects properties in Inspector window. Generate Graphical scenario and test it															
proper	ties in I	nspecto	or wind	dow. G	enerat	e Grap	hical s	cenari	o and	test it					
FYD 4.	Creati	ng VR 2	nnlica	ation 1	ıcina a	monda	cardh	nard							2
	Object								rting a	nogle	card h	nard ('reate '		
1	y. Apply					-	_								
1	the bas	_		-			-						=		
	T = -	• -												1	
EXP 5	Grab a	nd Rel	ese ob	jects ı	ısing g	google	cardl	oard							2

		,
Aim &	Objective: Create interactive application in VR using google cardboard.	
!	Create Simple game using mobile joysticks in unity	2
Aim & on mob	Objective: Apply the mobile joysticks properties to unity game and create and ile	lriod aok file, run it
EXP 7	Creating AR application using Vuforia platform	2
	Objective: Create Vuforia account and generate the database and upload it on ct on target image	unity. Visualize the
EXP 8	Creating Interactive AR Book	2
	Objective: Learn how to use multiple target images in AR. Apply lean touch puthe book interactive	roperties for
EXP 9	Making of Virtual Tour/ Virtual Walkthrough	2
Aim &	Objective: Capturing 360 degree images of surroundings and make a virtual v	valk through
EXP 1	Test and Configure VR application using HTC Vive	2
	Objective: Download the steam VR asset. Configure it to HTC Vive and test th nrogh HTC Vive	e generated VR
Text Bo	oks:	
	al & Augmented Reality For Dummies,Published by: John Wiley & Sons, Inc. loping 2D games with unity-Independent game prograaming with C#-Jared Ha	alpern
Refere	nce Books:	
2. Virtu publish 3. Virtu Websit 1. https	al Reality-steven m lavalle, cambridge university press, copyright steven m lav	

Course	e Code	:	UCSP	E605								L	Т	P	Credit
Course	e Name	e:	Artifi	cial Ne	ural N	letwoi	ks					3			3
Course Prerec		S:													
Basics	of Mac	hine L	earnin	ıg											
Course Descri															
This is			-				-			_		_	-		his
course	studer	its will	beco	me fan	niliar v	with d	ifferer	it type	s of ar	tificia	neura	al netv	vorks.		
Course Outco			After	the co	mplet	ion of	the co	urse t	he stu	dent w	ill be	able to	o -		
CO1	descri	be the	basic	archit	ecture	of AN	Ns,								
CO2	descri	be and	lanaly	se CN	Ns										
CO3	desrib	e and	analys	e diffe	nt typ	es of I	RNNs								
CO4	apply	ANN c	oncep	ts to d	esign	applic	ations	s in dif	ferent	doma	ains				
			Ì												
со-ро	Mapp	ing:													
		PO1	PO2	PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PSO PSO2											PSO2
	CO1	2												1	1
	CO2	2	2											1	1
	CO3	2	2										1	1	1
	CO4		2	2		2	2		2					3	2
				Ī											
Assess	ment	Schem	ie:												
SN	Asses	sment	Ī			Weig	htag	Rema	ırk						
1	In Sen (ISE1)	nester	Evalua	ation 1	-	10	%	Assig etc,	nment	t, Test,	Quiz,	Semin	ar, Pre	esenta	tion,
2	Mid Se (MSE)		er Examination 30% 50% of course contents												
3	In Sen (ISE2)	nester	Evalua	ation 2		10	%	Assig etc,	nment	t, Test,	Quiz,	Semin	ar, Pre	esenta	tion,
4	End So (ESE)	emeste	er Exar	ninati	on	50	%	100%	cours	se con	tents				
			•												
Course	e Conto	ents:												T	
Unit 1	Intro	ductio	n											4 H	lours
Buildir Engine Underf	ering,	Overfit	ting a	nd	ork, Op	otimizo	ers, Ac	tivatio	n Fun	ctions	, Loss	Funct	ions, F	eature	;

Unit **Convolutional Neural Networks** 6 Hours Building a convolutional neural network, Input Layers, Convolution Layers, Pooling Layers, Dense Layers, Backpropagation Through the Convolutional Layer, Filters and Feature Maps, Backpropagation Through the Pooling Layers, Dropout Layers and Regularization, Batch Normalization, Various Activation Functions, Various Optimizers, LeNet, AlexNet, VGG16, ResNet, Unit **Recurrant Neural Networks** 8 Hours 3 RNN, Bidirectional RNNs (BRNN), Long Short Term Memory (LSTM), Bi-directional LSTM, Sequence-to-Sequence Models (Seq2Seq), Gated recurrent unit GRU Unit **Reinforced Learning** 8 Hours 4 Reinforcement Learning, Q-Learning, Deep Q-Network (DQN), Policy Gradient Methods, Actor-Critic Algorithm, Autoencoding, Convolutional Auto Encoding, Variational Auto Encoding, Autoencoders for Feature Extraction, Auto Encoders for Classification, Denoising Autoencoders, Sparse Autoencoders Unit **Generative Adverserial Networks** 6 Hours Introduction to GANS, How do GANs work, Types of GANS- Vanilla, Conditional GAN, Deep Convolutional GAN Unit 6 Hours 6 Speech Recognition using RNN Connectionist Temporal Classification, RNN Transducer, Decoding, Regularization Text Books: 1. Neural Nttworks and Deep Learning - Charu Aggarwal **Reference Books:** 1. Elements of Artificial Neural Networks - Mehrotra, Mohan and Ranka

2. Deep Learning - Goodfellow, Bengio and Cornville

Cour	se Co	de:	UCSF	PE606								L	Т	P	Credit
Cour	se Na	me:	Artif	icial N	eural	Netw	orks l	Lab						2	1
Cour	se Pr	erequs	•												
		lachine		ing											
Cour	se De	scripti													
			_		_		-		-		e in imp		_		NN
_		_							_	ands-	on expe	rience	with p	opular	
algor	ithms	such as	S CNN,	, KNN	, GAN	and t	heir v	arıatı	ons.						
	αο Ον	taomo	1 4 64 0 10	tho a	omnle	tion (of +b o	aa.i.wa	o tha	atuda	n+:11 k	a abla	t o		
		ze the								stude	nt will b	e abie	ιο -		
											1.4	. .			
LUZ						`					data se				
CU3		iate the iiques.	perto	rman	ce of c	liffere	ent AN	IN alg	orithn	ns usi	ng appr	opriate	e metri	cs and	
			modo	nn too	la to d	logian	andi	mplo	mont	A NINI a	laorith	ma to a	olvo an	ogifian	roblem
LU4	Make	use or	mode	111 100	15 10 0	iesigii	allu i	шріе	ment	AININ c	ngoriun	1115 to 5	oive sp	ecinc p	nobieiii
CO-P	O Ma	pping:]												
-	O Ma	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
	C01	2	102	103	101	103	100	107	1 00	107	1010	1011	1012	1301	1302
	CO2	1	1		1	2	2	1	2	2	1	3	1	3	3
	CO3	2	<u> </u>		1	2				1	1	2	1	1	3
	CO4			1		3				1				3	1
	001		1										1		
Asse	ssme	nt Sche	me:												
SN	Asse	ssment		l		Ma	rks	Rem	ark						
	In Se	mester	Evalua	ation	1										
1	(ISE1	.)				50	%	Assig	gnmen	its coi	npleted	, quiz,	oral et	С	
		nester E	valuat	ion 1											
2	(ISE2)				50)%	Assig	nment	s com	pleted, q	uiz, ora	ıl etc		
C			1												
Cour Cont	se ents:														
	gnme	nt 1													
		ent a sii	mnle /	ANN											
-0 111	Picin	one a sh	inpic I	-1111											
Accia	gnmn	et 2													
USSI	, -														
	ıplem	ent a sii	mple (CNN											

To develop an application using LeNet 5/AlexNet/VGG16/ResNet

To study and make variations in an application based on RNN

Assignment 4

Assignment 5

To study/modify/develop an application based on the LSTM algorithm

Assignment 6

To study/modify/develop an application based on the GRU model

Assignment 7

To develop an application based on the Q-learning algorithm

Assignment 8

To develop an application based on the Q-learning algorithm

Assignment 9

To develop an application using autoencoders for feature extractions

Assignment 10

To develop an application using autoencoders for classification

Assignment 11

To dcevelop an application to generate new images using the Vanilla GAN

Assignment 12

To study/modify/develop an application based on the deep convolutional GANs for image modification.

Note:

The course teacher should conduct lab assignments based on (but not limited to)the above assignments.

The course teacher should preferably implement the assignments in Python. In case the course teacher finds implementation of an assignment using any other language, he/she is free to do so.

References:

- 1. Neural Network Programming with TenserFlow by Manpreet Ghotra and Rajdeep Dua
- 2. Hands on Neural Networks with Keras by Niloy Purkait
- 3. https://machinelearningmastery.com

Course	e Code:		UCSPE	507							_	L	T	P	Credit
Cours	e Name:		Linux I	nternals								3			3
			1												
	e Prereq	-													
Operat	ing Syste	em													
Cours	e Descri	ntion	1												
	ourse ain		 king the	learner	s familia	r with th	ne hasic	· linux ut	ilities ar	nd shell	scrinting	t also	helns th	em to	
	stand the											5. It also	neips en	ciii to	
			_												
Course	e Outcor	nes:	After th	ne comp	etion of	the cou	rse the	student	will be a	ble to -					
CO1	Make u	se of vai	rious lin	ux utiliti	es.										
CO2	Build s	hell scri _l	pts for v	arious ta	isks.										
CO3	Summa	rize the	basics o	f Linux	Kernel r	nodules.									
CO4	Interpr	et the ba	asics of s	system c	alls and	device d	lriver.								
			1												
со-ро	Mappin			I		I		T = -		T	1	1	T	l	1
		P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
	CO1	3	2												2
	CO2	2		2 2 1											2
	CO3	2	1												
	CO4	1	1												
Accord	ment Sc	homo		1											
SN	Assess					Weig	htage	Remar	·k						
1			aluation	1 (ISE1	1)%	+	ment, Te	et Oniz	Semina	r Preser	ntation 6	etc	
2	_			tion (MS		-)%		course			1, 1 10301	itation, c		
3				2 (ISE2))%		ment, Te			r. Preser	ntation, e	etc.	
4				tion (ES		<u> </u>)%		course c			1,110001			
					,			1							
Course	e Conten	its:	1												
Unit 1	Introd	uction t	o Linux	operati	ng syst	em								5 H	ours
Histor	y of Linu	x, featur	es of Lir	ıux, arch	itecture	of unix/	/linux, L	inux Uti	lities- Fi	le handl	ing utili	ties, Sec	urity by	file	
	ssions, Pr														
Scripts	, operati	on, addi	esses, c	ommano	ls; awk:	Executio	on, field	s and re	cords sci	ripts, op	eration,	patterns	s, actions	s, applic	ations
Hnit 2	Workin	na with	the Roy	rno aga	in chall	(hach)								4. H	ourc
	Working with the Bourne again shell (bash) uction, shell responsibilities, pipes and input Redirection, output redirection, running a shell script, the shell as a														
	amming language, shell metacharacters, file name substitution, shell variables, command substitution, shell commands,														
the env	vironmei	ıt, quoti	ng, test	comman											
functio	ns, debu	gging sh	iell scrip	ots.											
** ** 0	T			** 1											
	Introd														ours
	s Kernel, zation pr														and
	API inte		xpioi iii	g uie kei	1101 5 1110	inory in	anagen	ient anu	process	Scheuu	iiiig, iiiti	ouucuo	ii to syst	em cans	anu
Unit 4	System	Call Im	plemer	ntation										6 H	ours
	n Calls, Co		-		Kernel, A	APIs, POS	SIX, and	the C Li	brary, Sv	stem Ca	all Numb	ers, Sys	tem Call		
System	ı Call Haı	ndler, De	enoting t	he Corre	ect Syste	em Call, I	Parame	ter Passi	ng, Impl						
Param	eters, Sy	stem Cal	l Contex	t, Acces	sing the	System	Call fro	m User-S	pace						

7 Hours

Unit 5 Writing Linux Kernel Module

Identify the functionality or feature you want to implement in your module, Define the data structures, variables, and functions needed for your module, Write the code for your module, including the initialization and cleanup functions, Use the appropriate kernel APIs and data structures to interact with the kernel, Write a Makefile that specifies the compilation options, dependencies, and output file for your module, Use the kernel build system (typically using the make command) to compile the module, Load the module into the kernel using the insmod command, Test your module's functionality to ensure it behaves as expected.

Unit 6 Writing Device Drivers

7 Hours

Device Drivers and Kernel Subsystems, Introduction to device drivers and their role in Linux, Examining the kernel's I/O subsystem and driver model, Writing and integrating device drivers into the Linux kernel, Exploring different subsystems, such as networking, storage, and input/output.

Text Books:

- 1. Linux Kernel Development Robert Love 3rd Edition (Pearson Education)
- 2. Linux Kernel Programming Kaiwan N Billimoria Released March 2021 (Packt Publishing)
- 3. The Linux Kernel Module Programming Guide Peter Jay Salzman, Michael Burian, Ori Pomerantz, Bob Mottram, Jim Huang
- Open Source License

Reference Books:

- 1. Operating Systems -Concepts and design -Milan Milenkovic (TMGH)
- 2. Operating Systems: Internals and Design Principles (8th Edition)- by William Stallings (Pearson Education)
- 3. The Design of Unix Operating System Maurice J. Bach (PHI)
- 4. Unix concepts and administration 3rd Edition Sumitabha Das (TMGH).

Course Code:	UCSPE608		L	T	P	Credit
Course Name:	Linux Internals Lab			1		1

Course Prerequsites:

Operating System

Course Description:

This course aims at making the learners familiar with the basic linux utilities and shell scripting. It also helps them to understand the basics of different linux kernel modules, system calls, and device drivers and write basic programs to implement simple - kernel module, system call and device driver.

Course	Outcomes:	After the completion of the course the student will be able to -						
CO1	01 Make use of various linux utilities.							
CO2	D2 Build shell scripts for various tasks.							
CO3	Build simple Linux Kernel modules, system calls and device drivers.							

CO-PO Mapping:

	PO1	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2						2				1		2
CO2	2	2	2					2				1		2
CO3	2	1						2						

Assessment Scheme:

SN	Assessment	Marks	Remark
1	In Semester Evaluation 1 (ISE1)	50%	Assignments completed, quiz, oral etc
2	In Semester Evaluation 1 (ISE2)	50%	Assignments completed, quiz, oral etc

Course Contents: List of Assignments

Assigment 1: Study linux text processing utilities.

Assigment 2: A program on Shell Script

Assigment 3: A program on Shell Script

Assigment 4: Installation and configuration of LINUX Kernel Development Environment using GNU toolchain.

Assignment 5: Download Kernel source code and compile the kernel.

Assigment 6: Implementing a simple system call

Assigment 7: Writing a simple kernel module

Assigment 8: Writing a simple device driver

Text Books:

- 1. Linux Kernel Development Robert Love 3rd Edition (Pearson Education)
- 2. Linux Kernel Programming Kaiwan N Billimoria Released March 2021 (Packt Publishing)
- 3. The Linux Kernel Module Programming Guide Peter Jay Salzman, Michael Burian, Ori Pomerantz, Bob Mottram, Jim Huang
- Open Source License

Reference Books:

- 1. Operating Systems -Concepts and design -Milan Milenkovic (TMGH)
- 2. Operating Systems: Internals and Design Principles (8th Edition)- by William Stallings (Pearson Education)
- 3. The Design of Unix Operating System Maurice J. Bach (PHI)
- 4. Unix concepts and administration 3rd Edition Sumitabha Das (TMGH).

Course Code:	UCSPE609		L	Т	P	Credit
Course Name:	Internet of Thing	gs	2			2

Course Prerequ

Knowledge of Computer Networking, Knowledge of Micro Processors, Micro Controllers, Knowledge of Programming languages such as C, Python, Assembly level.

Course Descript

This course introduces the necessary fundamental principles of Internet of Things. It aims to develop various applications related to smart cities, agriculture etc.

Course Outcome After the completion of the course the student will be able to -

- CO1 | Explain key concepts and terminologies related to Internet of Things (IoT).
- CO2 | Compare different IoT devices based on its architecture.
- CO3 Build IoT solution for real life problems.

CO-PO Mapping:

	PO1	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	1		1									1		
CO2	1		1	1	2							1	2	2
CO3	1	1	2	1	2	1						2	3	

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (IS	1 1119/0	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (30%	50% of course contents
3	In Semester Evaluation 2 (IS	1 1119/0	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (50%	100% course contents

Course Contents

Unit Introduction to IoT

5 Hours

Introduction to Internet of Things-Defination and Characteristics of IoT, Physical design of IoT-IoT Protocols, Logical design of IoT- IoT Communication Model, IoT Communication APIs, IoT Enabling Technologies, IoT Levels & deployment Templates.

Unit | Fundamental IoT Mechanisms & Key Technologies :

6 Hours

Structural aspects of the IoT:Environment characteristics, Traffic characteristics, scalability, Interoperability, Security and Privacy, Open architecture, **Key IoT Technologies**:Device Intelligence, Communication capabilities, Mobility support, Device Power, Sensor Technology, RFID technology, Satellite Technology. **Evolving IoT Standards**: IETF IPv6 Routing Protocol for RPL Roll, Constrained Application Protocol(CoAP), REST, 6LoWPAN, ZigBee IP(ZIP)

Unit Introduction to IoT Devices

7 Hours

What is an IoT Devices, **Rasberry Pi:**Architechture, Pin Configuration, Pin Interface, Installation of Raspian OS, **Arduino:** Architechture, Pin Configuration, Pin Interface **Sensors.** DTH, Touch Sensor, Humidity Sensor, Soil Mositure Sensor.

Unit Building IoT with Arduino & Raspberry Pi

6 Hours

Building IOT with Arduino- Building IOT with RASPERRY PI- IoT Systems - Logical Design using Python – IoT Physical Devices & Endpoints - IoT Device -Building blocks - Pi - Raspberry Pi Interfaces

Unit lot Physical Servers and Cloud Offerings

6 Hours

Introduction to Cloud storage models and communication API's, WAMP –AutoBahn for IoT, Amazon web services for IoT

Unit Case studies Illustrating IoT Design:

5 Hours

Introduction, Home automation, cities, Environment, Agriculture, Productivity applications.

Text Books:

- 1. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6) .
- 2. Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Daniel Minoli, Wiley Publications.

Reference Book

1. The Internet of Things: Connecting Objects to the Web, HakimaChaouchi, Wiley Publications

<u>Cour</u> s	se Cod	e:	UCSPI	E610							_	L	T	P	Credi	
Cours	se Nar	ne:	Intern	et Of T	'hings	(Lab)								2	1	
Know	ledge		puter		_		_	Micro		sors, N	licro C	ontroll	ers, Kr	nowled	ge of	
- 0		0 - 0	, , , ,		, <u>,</u> ,			<u> </u>								
Cours	se Des	cripti														
					-		-			nterne	t of Th	ings. It	aims t	o deve	lop	
varioi	ıs app	licatioi	ns rela	ted to s	mart c	ities, a	gricult	ure etc								
Cour	se Out	comes	After	the con	nnletio	n of th	e cour	se the s	tudent	will h	e able 1	n -				
CO1						using l			rtuuciii	, will b	c abic i					
CO2	 			aspbei			<i>y</i>	-								
CO3				ntel Ar												
СО-Р	О Мар	ping:				1		•				1	1			
		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	
	CO1	1				3							1			
	CO2		1	1	2	3							3	1	2	
	CO3			1	2	3							3	1	2	
Λεερι	cman	t Sche	moı]												
SN	i	smen				Weig	htage	Rema	rk							
1				ion 1 (I	SE1)	_)%			romnle	ted ani	z oral	etc			
2				ion 1 (I		50% Assignments completed, quiz, oral etc 50% Assignments completed, quiz, oral etc										
				(70	1			, -1	_,				
Cours	se Con	tents:														
Expe	Netw	orking	g in Py	thon										2 H	ours	
mple	ment	simple	client	server	messa	ge pass	sing pr	ogram								
	I .															
				aspber				1	D.					2 Hours		
l'o un	dersta	nd Ras	pberry	y Pi Pin	config	guratio	n, Rasp	berry	Pi os se	etup						
Evno	Rlink	ing I E	'D ucir	ıa Racı	nharrs	, Di								2 н	nurc	
Expel Blinking LED using Raspberry Pi Write a program to implement blinking LED using Raspberry Pi																
*******	u prog	514111 6	, mpre		<u> </u>	8 1110	451116 1	шэрьс	11911							
Exper Blinking LED using Arduino									2 Hours							
						ng LED	using A	Arduin	0							
				_	_	_	_	_	_		_					
Expe	Impl	ement	ation (of IoT	with R	aspbe	rry Pi							2 H	ours	
Imple	ement	DHT s	ensor i	nterfac	ce with	Raspb	erry P	i								
				a = _												
			ation			rduino Galileo								2 H	ours	

Exper Implementation of IoT with Raspberry Pi 2 Hour						
To implement Buzzer sensor interface with Raspberry Pi	·					
Experimplementation of IoT with Raspberry Pi	2 Hours					
To implement Touch sensor interface with Raspberry Pi						
Exper DETECT THE VIBRATION OF AN OBJECT USING ARDUING	2 Hours					
To implement Vibration sensor interface with Arduino						
Exper CONNECT WITH THE AVAILABLE WI-FI USING ARDUINO	2 Hours					
To write a program to connect with the available Wi-Fi using Ardui	no					
Text Books:						
1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating India, 2009.	System Principles, 8th edition, Wiley					
2. The Design of Unix Operating System - Maurice J. Bach (PHI)						
Reference Books:						
1. Operating Systems –Concepts and design –Milan Milenkovic (TM	GH)					

- 1. Operating Systems –Concepts and design –Milan Milenkovic (TMGH)
 2. Operating Systems: Internals and Design Principles (8th Edition)- by William Stallings (Pearson Education)
- 3. Modern Operating Systems by Andrew S. Tanenbaum (Pearson Education International) 4. Unix concepts and administration 3rd Edition Sumitabha Das (TMGH).

Course Code:	UCSO0601	L	Т	P	Credit
Course Name:	Cyber Security (Open Elective)	3			3

Course Prerequsite Computer Network, Data Communication

Course Description

Cyber security course is designed to help learners to develop understanding of threats to information system and basic concepts of cyber security. Also they will get exposure to cyber security policies and standards inluding cyber terrorism and cyber forensics.

Course Outcomes:

CO1	Explain the basic components of security and Internet							
CO2	Outline diferent types of cyber attacks ,malware and encryption							
CO3	Describe the process of scanning and tsting the network							
CO4	Explain security policies, standards , cyber terrorism and cyber forensics concepts							

CO-PO Mapping:

	P01	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	1					2		3		1		3	1	
CO2	1				1	2		3		1		3	3	
CO3	1				1	2		3		1		3	3	
CO4	1				1	2		3		1		3	3	

Assessment Scheme:

SN	Assessment	Weightage	Remark
1	ISE1	10%	
2	MSE	30%	
3	ISE2	10%	
4	ESE	50%	

Course Contents:

Unit 1 Introduction to Computer Security

6 Hours

Introduction (3)

Introduction, Identifying Types of Threats, Assessing the Likelihood of an Attack on Your Network, Basic Security Terminology, Concepts and Approaches, How Do Legal Issues Impact Network Security

Networks and the Internet(3)

Network Basics, How the Internet Works, Basic Network Utilities, Other Network Devices, Advanced Network Communications Topics, Cloud Computing

Unit 2 Cyber Attacks and Malware

6 Hours

Cyber Stalking, Fraud, and Abuse (2)

How Internet Fraud Works, Identity Theft, Cyber Stalking, Protecting Yourself Against Cybercrime **Denial of Service Attacks and Malware (4)**

DoS Attacks, Illustrating an Attack, Common Tools Used for DoS Attacks, DoS Weaknesses, Specific DoS Attacks, Real-World Examples of DoS Attacks and Defence, Virus and types of Malware

Unit 3 Hacker Techniques and Encryption

7 Hours

Techniques Used by Hackers (1)

Basic Terminology, The Reconnaissance Phase, Actual Attacks, Malware Creation, Penetration Testing, Dark Web

Industrial Espionage in Cyberspace (3)

What Is Industrial Espionage?,Information as an Asset,Real-World Examples of Industrial Espionage, Protecting Against Industrial Espionage,Trade Secrets,The Industrial Espionage Act, Spear Phishing Encryption (4)

Cryptography Basics, Modern Cryptography Methods, Public Key (Asymmetric) Encryption, PGP, Legitimate Versus Fraudulent Encryption Methods, Digital Signatures, Hashing, Quantum Cryptography

Unit 4 | Computer Security Technology and Policies

6 Hours

Computer Security Technologies (3)

Virus Scanners, Firewalls, Antispyware, IDSs, Digital Certificates, SSL/TLS, VPN, Wi-Fi Security

Security Policies (3)

What Is a Policy,Important Standards,User Policies,Security breaches and access control,Disaster recovery ,Zero Trust and Important Laws

Unit 5 Network Scaning and Cyber Terrorism

6 Hours

Network Scanning (2)

Basics of Assessing a System, Securing Computer Systems, Scanning Your Network, Testing and Scanning Standards

Cyber Terrorism and Information Warfare(4)

Actual Cases of Cyber Terrorism, Weapons of Cyber Warfare, Economic Attacks, Military Operations Attacks, Supervisory Control and Data Acquisitions, Information Warfare, Actual Cases of Cyber Terrorism, Defense Against Cyber Terrorism, Terrorist Recruiting and Communication, TOR and Dark Web

Unit 6 Cyber Detective and Forensics

6 Hours

Cyber Detective (2)

General Searches, Company Searches, Court Records and Criminal Checks, Usenet, Google, Maltego Forensics (3)

General Guidelines, Finding Evidence on a PC and System log, Getting Back Deleted Files, Operating System Utilities, The Windows Registry, Mobile Forensics: Cell Phone Concepts, Expert Witnesses, Additional Types of Forensics

Cyber Security Engineering(1)

Defining Cybersecurity Engineering, Standards, SecML, Modeling

Text Books:

Textbooks:

1. Computer Security Fundamentals, 5th edition Published by Pearson IT Certification (December 23, 2022) © 2023, William Chuck Easttom

References:

- 1. Cryptography & Network Security B.A. Forouzan McGrawHill
- 2. Cryptography and network security Atul Kahate (TMGH)
- 3. Cyber Security: Understanding Cyber Crimes, Computer Forensic and Legal Perspectives- Nina Godbole, Sunit Belapure, Wiley India Publication