Dynamical Systems and Spotted Owls

Northern spotted owls at old Growth forest in the Pacific Northwest, USA.

Population dynamics is to model the population at yearly intervals, $k=0,1,2\ldots$ The population at year k can be described by a vector $x_k=(j_k,s_k,a_k)$, where j_k,s_k,a_k are the numbers of females in the juvenile, subadult, and adult stages, respectively.

Dynamical Systems and Spotted Owls

Northern spotted owls at old Growth forest in the Pacific Northwest, USA.

Population dynamics is to model the population at yearly intervals, k=0,1,2... The population at year k can be described by a vector $x_k=(j_k,s_k,a_k)$, where j_k,s_k,a_k are the numbers of females in the juvenile, subadult, and adult stages, respectively. Stage-matrix model (R. Lamberson, R. McKelvey, B. R. Noon, and C. Voss, 1992)

 $\begin{bmatrix} j_{k+1} \\ s_{k+1} \\ a_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0.33 \\ 0.18 & 0 & 0 \\ 0 & 0.71 & 0.94 \end{bmatrix} \begin{bmatrix} j_k \\ s_k \\ a_k \end{bmatrix}$ If 50% of the juveniles who

survive to leave the nest also find new home ranges, then the owl population will thrive.

Consider the matrix $A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$.

Consider the matrix
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$$
.
$$\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2. \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2. \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Consider the matrix
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$$
.

$$\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2. \begin{bmatrix} \bar{1} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} = -1 \cdot \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

What do you observe with $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}-1\\3\end{bmatrix}\right\}$ as a subset of \mathbb{R}^2 ?

Hence for
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$$
, the vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue 2 and $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ is an eigenvector with eigenvalue -1.

Hence for
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$$
, the vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue 2 and $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ is an eigenvector with eigenvalue -1.

Question Is $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ also an eigenvector?

Hence for
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$$
, the vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue 2 and $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ is an eigenvector with eigenvalue -1.

Question Is $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ also an eigenvector?

ctd

ctd

$$Ax = \lambda x$$

$$Ax = \lambda x$$

$$Ax - \lambda . x = 0 \Rightarrow (A - \lambda . I)x = 0$$

$$Ax = \lambda x$$

$$Ax - \lambda . x = 0 \Rightarrow (A - \lambda . I)x = 0$$

 $\Rightarrow x \in Null(A - \lambda . I).$

$$Ax = \lambda x$$

$$Ax - \lambda.x = 0 \Rightarrow (A - \lambda.I)x = 0$$

\Rightarrow x \in Null(A - \lambda.I).
$$Null(A - \lambda.I) \neq \{0\} \Leftrightarrow det(A - \lambda.I) = 0$$

Given a matrix A, the polynomial $det(A - \lambda.I) = 0$ is called characteristic polynomial of A(here λ is treated as a variable). Its roots are the eigenvalues of A.

$$Ax = \lambda x$$

$$Ax - \lambda.x = 0 \Rightarrow (A - \lambda.I)x = 0$$

 $\Rightarrow x \in Null(A - \lambda.I).$
 $Null(A - \lambda.I) \neq \{0\} \Leftrightarrow det(A - \lambda.I) = 0$

Given a matrix A, the polynomial $det(A - \lambda.I) = 0$ is called characteristic polynomial of A(here λ is treated as a variable). Its roots are the eigenvalues of A.

Theorem

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Some results

Theorem

If v_1, \ldots, v_r are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{v_1, \ldots, v_r\}$ is linearly independent.

Some results

Theorem

If v_1, \ldots, v_r are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{v_1, \ldots, v_r\}$ is linearly independent.

Note: every $n \times n$ matrix with real entries need not have real eigenvalues/eigenvectors.

Eigenvectors and Difference Equations

Difference equation: $x_{k+1} = Ax_k$ for k = 0, 1, ...

Eigenvectors and Difference Equations

Difference equation: $x_{k+1} = Ax_k$ for k = 0, 1, ... If x_0 is an eigenvector A then $x_k = \lambda^k x_0$.