Problem 1

Topics was initialized randomly by assigning random documents to them. The probability distribution for the topics words was calculated according to the documents each topic has, and the same for the topic probabilities (π 's).

Additional probability was added for each topic word (0.001), and then the topic word distribution was normalized to sum up to 1.

E step was implemented in the log space, and the convergence depended on the biggest difference between the weights (deltas) to be smaller a certain value (exp(-7)) with maximum number of iterations equal to 50.

Here's the probability distribution (π 's) for the topics

This table shows the top 10 highest probability words for each topic, sorted from the lowest to the highest probability:

مور والخارة	tunining	204	function	n a una l	data	in a t	ا م م ما ما	loomoina	باير مير براد م
algorithm	training	set	function	neural	data	input	model	learning	network
problem	weight	output	unit	function	system	model	input	learning	network
data	set	input	neural	function	learning	algorithm	system	network	model
neural	data	training	set	function	input	algorithm	learning	model	network
set	training	system	neural	function	data	input	learning	model	network
set	error	function	algorithm	input	neural	learning	model	data	network
output	algorithm	neuron	system	input	neural	learning	function	model	network
input	system	algorithm	set	result	neural	learning	function	model	network
data	system	unit	algorithm	model	input	neural	function	learning	network
training	data	input	unit	set	learning	system	model	function	network
data	training	system	set	input	neural	function	learning	model	network
set	training	data	neural	function	learning	input	system	model	network
training	neural	input	algorithm	function	data	set	model	learning	network
training	neural	function	set	system	data	learning	input	model	network
learning	number	neural	pattern	neuron	function	unit	input	model	network
output	set	algorithm	data	function	input	neural	learning	model	network
training	system	neural	set	cell	input	learning	function	model	network
input	error	system	training	set	neural	function	model	learning	network
output	function	algorithm	training	system	learning	input	neural	model	network
neural	data	input	set	system	function	model	learning	algorithm	network
set	unit	neural	error	system	function	input	learning	network	model
data	set	algorithm	input	function	unit	neural	learning	model	network
set	unit	neural	output	data	learning	function	input	model	network
training	set	unit	function	input	neural	algorithm	model	learning	network
algorithm	set	data	neural	unit	input	function	learning	model	network
weight	system	set	error	neural	learning	input	model	function	network
algorithm	training	method	neural	data	input	set	model	function	network
system	result	training	set	algorithm	function	neural	model	learning	network
output	neural	data	set	algorithm	function	learning	model	input	network
word	training	neural	input	set	model	algorithm	function	learning	network

Problem 2

Here are the different EM segmented images for the first image:

Image1 with 10 clusters

Image1 with 20 clusters

Image1 with 50 clusters

Here are the different EM segmented images for the second image:

Image2 with 10 clusters

Image2 with 20 clusters

Image2 with 50 clusters

Here are the different EM segmented images for the third image:

Image3 with 10 clusters

Image3 with 20 clusters

Image3 with 50 clusters

Part 2

Below is the sunset image segmented into 20 segments with different random initialization each time (KMeans with a different seed)

Conclusion: different initialization leads to a bit different results, and that's because each run can converge into a different local minimum.

Although the differences are subtle, but I will focus on one area. The color and size of the light around the sun at the right of the images is different.

