Лабораторная работы 2.2.6

Старостин Александр, Б01-401 $11 \ {\rm февраля}, \ 2025 \ {\rm год}$

Определение энергии активации по температурной зависимости вязкости жидкости

1 Аннотация

Цель работы: 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязкости жидкости по закону Стокса и расчёт энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром около 1 мм).

2 Теоретическая часть

2.1 Энергия активации

Для того чтобы перейти в новое состояние, молекула жидкости должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно описать формулой

$$\eta = Ae^{W/kT} \tag{1}$$

Из формулы (1) следует, что существует линейная зависимость между величинами $ln\eta$ и 1/T, и энергию активации можно найти по формуле

$$W = k \frac{d(\ln \eta)}{d(1/T)} \tag{2}$$

2.2 Измерение вязкости

По формуле Стокса, если шарик радиусом r и со скоростью v движется в среде с вязкостью η , и при этом не наблюдается турбулентных явлении, тормозящую силу можно найти по формуле (3)

$$F = 6\pi \eta \frac{d}{2}v\tag{3}$$

Для измерения вязкости жидкости рассмотрим свободное падение шарика в жидкости. При медленных скоростях на шарик действуют силы Архимеда и Стокса, выражения для которых мы знаем. Отсюда находим выражения для установившейся скорости шарика и вязкости жидкости

$$v = \frac{2}{9}g\frac{d^2}{4}\frac{\rho - \rho}{\eta} \tag{4}$$

$$\eta = \frac{2}{9}g\frac{d^2}{4}\frac{\rho - \rho}{v} \tag{5}$$

Как видим, измерив установившуюся скорость шарика и параметры системы можно получить вязкость по формуле (5).

2.3 Экспериментальная установка

Для измерений используется стеклянный цилиндрический сосуд B, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда ≈ 3 см, длина ≈ 25 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками, b время падения определяют установившуюся скорость шарика v. Сам сосуд B помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате. Схема прибора (в разрезе) показана на рис. 1.

Рисунок 1: Установка для определения коэффициента вязкости жидкости.

2.4 Другие формулы

Время релаксации:

$$\tau = \frac{2d^2\rho}{9*4\eta} \tag{6}$$

Путь релаксации:

$$S = v\tau \tag{7}$$

3 Ход работы

3.1 Измерение диаметра шариков

Отберём 10 стальных и 10 стеклянных шариков различного размера и с помощью микроскопа измерим их средние размеры. Данные измерений приведены в таблице 1. Приборная погрешность измерений $\sigma_{\rm d~npu6}=0.02$ мм.

Nº	Материал	Диаметр, мм
1	Стекло	1,94
2	Стекло	2,02
3	Стекло	1,78
4	Стекло	1,98
5	Стекло	1,96
6	Стекло	1,92
7	Стекло	1,96
8	Стекло	1,96
9	Стекло	1,98
10	Стекло	1,94

$N_{\overline{0}}$	Материал	Диаметр, мм			
1	Сталь	0,76			
2	Сталь	0,72			
3	Сталь	0,76			
4	Сталь	0,80			
5	Сталь	0,68			
6	Сталь	0,72			
7	Сталь	0,72			
8	Сталь	0,76			
9	Сталь	0,72			
10	Сталь	0,76			

Таблица 1: Измеренные диаметры шариков

Плотности шариков равны: $\rho_{\rm стекло} = (2.5 \pm 0.1) \ {\rm г/cm}^3$ и $\rho_{\rm сталь} = (7.8 \pm 0.1) \ {\rm г/cm}^3$

Получаем, что: $\overline{d_{\text{стекло}}}=1,94$ мм и $\overline{d_{\text{сталь}}}=0,76$ мм

Случайная погрешность:
$$\sigma_{\rm cn}=\sqrt{\frac{\sum_i^n(d_i-\overline{d})^2}{n(n-1)}}$$
 $\sigma_{\rm cn~ctek,no}=0,02~{
m MM}$

 $\sigma_{\text{сл стекло}} = 0,02 \text{ мм}$ $\sigma_{\text{сл сталь}} = 0,01 \text{ мм}$

Полная погрешность: $\sigma_d = \sqrt{\sigma_{\mathrm{d~cnyq}}^2 + \sigma_{\mathrm{d~npu6}}^2}$

$$\begin{split} &\sigma_{\text{стекло}} = 0,03 \text{ мм} \\ &\sigma_{\text{сталь}} = 0,02 \text{ мм} \end{split}$$

3.2 Измерение установившихся скоростей падения шариков

Измеренные длины цилиндра установки (см. рис. 1): $l_1 = l_2 = (10.0 \pm 0.1)$ см

Измерения произведём для 5 значений температуры от 25 до 50 °C. При помощи секундомера измерим время прохождения шариком участков l_1 ($\sigma_t = 0.3$ с). Вычисляем установившуюся скорость шариков в жидкости. По графику на рис. 2 определим плотность глицерина для каждой температуры. По формуле (5) рассчитываем вязкость глицерина. Примем $g = (9.81 \pm 0.01) \text{ м/c}^2$. Результаты представлены в таблице (2).

Рисунок 2: График плотности глицерина в зависимости от температуры.

No॒	темп, $^{\circ}C$	T, K	$ ho_{\scriptscriptstyle { m \Gamma}{ m J}},{\scriptstyle { m \Gamma}/{ m cm}^3}$	материал	t, c	v , cm/c	τ , c	S, cm	η, Па*с
1	20	293	1,260	сталь	53, 7	0,19	2,02	0,38	1,24
2				сталь	43, 1	0,23	2,75	0,63	0,91
3				стекло	38, 3	0,26	5,33	1,39	0,98
4				стекло	34, 7	0,29	5,94	1,72	0,88
5	30	303	1,256	сталь	21, 1	0,47	5,33	2,51	0,47
6				сталь	20, 4	0,49	5,56	2,73	0,45
7				стекло	21, 8	0,46	9,50	4,37	0,55
8				стекло	20, 0	0,50	10,25	5,12	0,51
9	40	313	1,253	сталь	13, 2	0,76	7,82	5,94	0,32
10				сталь	14, 4	0,69	7,36	5,08	0,34
11				стекло	10, 6	0,94	19,36	18,20	0,27
12				стекло	9, 1	1,10	22,73	25,00	0,23
13	45	318	1,249	сталь	10, 1	0,99	11,92	11,80	0,21
14				сталь	6, 3	1,59	19,25	30,62	0,13
15				стекло	6, 2	1,61	32,67	52,60	0,16
16				стекло	5, 8	1,72	34,85	59,94	0,15
17	50	323	1,247	сталь	5,0	2,00	25,03	50,06	0,10
18				сталь	4,0	2,50	31,29	78,22	0,08
19				стекло	4, 1	2,44	47,52	115,95	0,11
20				стекло	4, 2	2,38	47,52	113,10	0,11

Таблица 2: Результаты измерений установившихся скоростей шариков и соответствующих плотностей глицерина

Погрешности:
$$\begin{split} &\sigma_T = 0.3 \text{ K} \\ &\sigma_\rho = 0.001 \text{ г/см}^3 \\ &\sigma_v = v \sqrt{\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2} \\ &\sigma_\eta = \eta \sqrt{\left(\frac{\sigma_g}{q}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_v}{v}\right)^2 + \frac{\sigma_\rho^2 + \sigma_\rho^2}{(\rho - \rho)^2}} \end{split}$$

Средняя относительная погрешность измерений вязкости $\varepsilon_{\eta}=9.5\%$

3.3 Оценка времени и пути релаксации. Анализ применимости формулы Стокса

Все результаты представлены в таблице (2).

$$\tau = \frac{2}{9} \frac{d^2}{4} \frac{\rho}{\eta}, \qquad \varepsilon_{\tau} = \sqrt{\left(2 \frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{\rho}}{\rho}\right)^2 + \left(\frac{\sigma_{\eta}}{\eta}\right)^2}$$
 (8)

$$S = v\tau, \qquad \varepsilon_S = \sqrt{\left(\frac{\sigma_v}{v}\right)^2 + \left(\frac{\sigma_\tau}{\tau}\right)^2} \tag{9}$$

Тогда:

$$\langle \varepsilon_{\tau} \rangle = 10.8\%, \qquad \langle \varepsilon_{S} \rangle = 6.2\%$$

Как видим, во всех экспериментах путь релаксации пренебрежимо мал. Следовательно формула Стокса применима.

3.4 График зависимости $ln\eta$ от 1/T

Рисунок 3: График зависимости $ln\eta$ от 1/T.

По методу наименьших квадратов вычислим угол наклона прямой.

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = (6570 \pm 160) \text{ K}$$

Прямая, полученная по МНК не проходит через 0. Это объясняется тем, что в формуле (1) есть константа A. Коэффициент b прямой соответственно равен lnA.

3.5 Вычисление энергии активации

При помощи формулы (2) рассчитаем энергию активации:

$$W = k * k_{\text{накл}} = 1.38 * 10^{-23} \text{ Дж/K} * 6570 \text{ K} = 9.07 * 10^{-20} \text{ Дж}$$

3.6 Оценка погрешностей

Случайная погрешность энергии активации:

$$\begin{split} \sigma_k &= \frac{1}{\sqrt{20}} \sqrt{\frac{\left\langle y^2 \right\rangle - \left\langle y \right\rangle^2}{\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2} - k^2} = 160~K \\ \sigma_W &= W \frac{\sigma_k}{k} = 9.07*10^{-20}~\text{Дж}*2.4\% = 0.218*10^{-20}~\text{Дж} \end{split}$$

Приборная погрешность энергии активации:

$$\sigma_W=W\sqrt{\left(rac{\sigma_T}{T}
ight)^2+\left(rac{\sigma_\eta}{\eta lnrac{\eta}{A}}
ight)^2}=0.010*10^{-20}$$
 Дж

Полная погрешность энергии активации:

$$\sigma_W = \sqrt{{\sigma_W}^2 + {\sigma_W}^2} = 0.037*10^{-20}$$
 Дж $\varepsilon_W = 2.5\%$

4 Вывод

$$W = (9.07 \pm 0.04) * 10^{-20}$$
 Дж

Измерили скорости падения шариков при разной температуре жидкости, вычислили вязкость жидкости по закону Стокса и рассчитали энергию активации.