

# Time redundancy

## **Time redundancy**

- Both hardware and information redundancy can require large amount of extra hardware
- time redundancy attempt to reduce the amount of extra hardware at the expense of additional time
- in many applications time is less important than hardware

# **Transient fault detection**

Transient faults can be detected by repeating computation several times



p. 3 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# Distinguishing b/w transient and permanent faults

- Time redundancy can be used to distinguish between transient and permanent faults:
  - re-compute after the detection of the first fault
  - if fault disappears, then it was transient
  - if not, the fault is permanent, remove the faulty part of the system
- Saves resources

### **Permanent fault detection**

- Permanent faults can be detected by repeating computation several times using different coding schemes
  - (+) minimum extra hardware is used

p. 5 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# Permanent fault detection scheme Time $t_0$ data X compute $t_0+\Delta t$ data X encode e(X) $t_0+\Delta t$ decode e(X) $t_0+\Delta t$ result $t_0+\Delta t$ decode e(X) $t_0+\Delta t$ decode e(X) $t_0+\Delta t$ result $t_0+\Delta t$ decode e(X) $t_0+\Delta t$ decode e(X)

# **Coding schemes**

- Four different approaches to coding:
  - alternating logic
  - recomputing with shifted operands
  - recomputing with swapped operands
  - recomputing with duplication and comparison

p. 7 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# **Alternating logic**

- At time t<sub>0</sub>, use the original data
- At time  $t_0+\Delta t$ , use the complement of the data
- · 2 applications:
  - transmition of digital data over wire media
  - fault detection in digital circuits
- Suitable for stuck-at type fault detection

p. 8 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

## **Alternating logic time redundancy**



Faulty line causes both, data and complement, to become 1.

p. 9 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

### **Duality**

- Alternating logic concept can be used for detecting fault in logic circuits which implement self-dual functions
- A dual of a function f is defined as

$$f_d(X_1, X_2, ..., X_n) = f'(X'_1, X'_2, ..., X'_n)$$

 If the input (x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>) is applied to the circuit computing f and (x'<sub>1</sub>,x'<sub>2</sub>,...,x'<sub>n</sub>) is applied to the circuit computing f<sub>d</sub>, then the outputs will be complementary

p. 10 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# **Computing dual function (1)**

- Dual of f can be obtained as follows:
  - replace AND with OR, and OR with AND
  - replace 0 with 1, and 1 with 0

$$f = X_1 X'_2 + X_3 \rightarrow f_d = (X_1 + X'_2) X_3$$

p. 11 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# **Computing dual function (2)**

- · We can also compute a dual of f by
  - complementing f
  - replacing each variable by its complement

$$f = x_1 x'_2 + x_3$$
  

$$f' = (x'_1 + x_2). x'_3$$
  

$$f_d = (x_1 + x'_2). x_3$$

p. 12 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# **Example**



p. 13 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# **Self- duality**

- A function is self-dual if  $f_d = f$
- For example, sum and carry are self-dual functions

| <b>X</b> <sub>1</sub> | x <sub>2</sub> | <b>x</b> <sub>3</sub> | $f_{\text{sum}}$ | f <sub>carry_out</sub> |
|-----------------------|----------------|-----------------------|------------------|------------------------|
| 0                     | 0              | 0                     | 0                | 0                      |
| 0                     | 0              | 1                     | 1                | 0                      |
| 0                     | 1              | 0                     | 1                | 0                      |
| 0                     | 1              | 1                     | 0                | 1                      |
| 1                     | 0              | 0                     | 1                | 0                      |
| 1                     | 0              | 1                     | 0                | 1                      |
| 1                     | 1              | 0                     | 0                | 1                      |
| 1                     | 1              | 1                     | 1                | 1                      |

p. 14 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

### **Self- duality**

 For a circuit implementing a self-dual function, if the application of an input assignment (x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>) followed by the input assignment (x'<sub>1</sub>,x'<sub>2</sub>,...,x'<sub>n</sub>) produces output values which are equal, then the circuit has a fault

p. 15 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

## **Recomputing with shifted operands**

- At time t<sub>0</sub>, use the original data
- At time  $t_0 + \Delta t$ , encode using left shift and decode using right shift
- Suitable for fault detection in ALUs with bit-sliced organization

p. 16 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# **Recomputing with shifted operands**

- · Basic principle
  - during first computation, ith bit is erroneus
  - during second computation, (i-1)th bit will be affected because of the left shift
  - after the right shift, the results will disagree in both, ith and (i-1)th bits
- An extra bit is required for left shift

p. 17 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab



# **Recomputing with swapped operands**

- At time t<sub>0</sub>, use the original data
- At time t<sub>0</sub>+∆t, swap the upper and lower halves of the operands
- Suitable for fault detection in ALUs with bit-sliced organization

p. 19 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# Recomputing with swapped operands



By comparing upper and lower halves of both results, the error will be detected

p. 20 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# Recomputing with duplication and comparison

- At time t<sub>0</sub>, perform operation on duplicated lower halves of the operands
  - compare results and, if agree, store one to represent the lower half of the final output
- At time t<sub>0</sub>+∆t, perform operation on duplicated upper halves of the operands
  - compare results and, if agree, store one to represent the upper half of the final output

p. 21 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# Recomputing with dublication and comparison



By comparing two halves of the result, the error will be detected

p. 22 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

# **Time redundancy for error correction**

 Time redundancy can provide error correction if the computations are repeated 3 or more times

p. 23 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

#### **Next lecture**

Software redundancy

Read chapter 7 of the text book

p. 24 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab