17.08.2024

C

E

F

Digital Electronics

нех	Decimal	Oxtal	Binary
O	0	1	1
1	l	2	
2	2	3	
3	3 4	4	
2 3 4 5 6	5	5	
6	6	6	
7	7	7	~
g	8		
9	9		
A			
В			

· Gray code

Binary Ex-OR of next - next lit viceversa

Adder, subsactor, BCD -> Excess -3, Porallel adder, Subrava.

Encoder, decoder, music

Katch, Thip flop

Combinational & dequential circuit

Register 2 counter

maven > 7 ring design, vorstieagh

c-digital

-7am

ADD AND, OR, NOT ->

parity generation

Mux, Encoder,

| > 2 > 1, 4 > 1 -> Implement Boolean Function >

· <u>Sequential</u> Tatch, Flip Flop. → T, D | Gedge trigering, level Regides, Obliff régietes, Countre

· Forte Stomachine model More machine,

. Timing,

-> setup time, hold time (Metaelalilly)

- · Maximum opprating 'f' of Flipleon
- · Delay, probagition delay

-7 gete delay, wire delay

propalation delay, line delay

Memory

SRAM , DRAM

4 Transitions

- · require, condant nower
- · facter chan DRAM
- · greater storage than DRAM
- · use less power to perform
- · low power consumption
- · forter access expeeds
- · used in speed sensitive sache
- x less memory sapacity
- x high manufaturing cost
- x complex design

eache,

main memory.

· periodic regrech of nowes

Α	B	C
0	0	1
0	1	1
1	0	1
1	1	To

- >	NA	ND

A		45
B-		44—c
	4	J-15

A	B	C
0	0	1
0	1	0
1	0	0
1	1	10

$$(010 \Rightarrow ?$$

 $(2^{5})(0 \times 2^{5}) + (1 \times 2^{5})(0 \times 1)$

=> 1001011

Addition
$$\rightarrow 00$$
 01 01 10 11

Subtractor
$$\Rightarrow \frac{01}{00}$$
 $\frac{11}{10}$ $\frac{10}{01}$

Mulliplexer

5,	50	Y
0	0	Ĩ.
0	1	$\mathcal{I}_{\mathtt{i}}$
1	0	$\widehat{\mathbb{I}}_2$
t	1	$\overline{\mathbb{I}_3}$

Brioder

4:2 Encoder

$$A_{11} = Y_3 + Y_2$$
 $A_0 = Y_2 + Y_1$

$$\frac{8:3}{A_2 - Y_7 + Y_6}$$

$$A_2 = Y_7 + Y_6 + Y_3 + Y_2$$
 $A_1 = Y_7 + Y_6 + Y_3 + Y_1$

Priority encodes

Y3-7 Highest priority

Y _g	Y 2	Υ,	Y _o	Α,	Α.	<i>V</i>	,
0	0	0	0	*	*	0	
0	0	0	1	0	0	1	
0	0	1	×	0	1	1	
0	01	x	×	1	0	1	
1	X	X	*	1	1	1	

58 Katel

5 \	R	a	ā
0	0	LHE	Latel
0	Y	0	1
,	0	1	0
1	7	0	0

O Kolel

Jr Kaleh

Fly Flop

S R Flynflon

5 R	an	Ann
00	0	0
00	(t.
01	0	0
01	1 /	0
10	0	1
10	(1
()	0	₹ .
) (I	X

JK Flington

JK	Qu	Qr.
00	0	0
00	1,	10
0 1	\~i	0
01	10	1:
`, c		, ;
ì	1 1	1 1 0

D - Flip Flop

Bi-directional shift raghter

CIK	0.	Q2	Q, 4	4_	
0	t	0	0 1	4	1
1	1	(0 0		١
2	0	1	10		
3	0	0	1.1	, –	/

ghonron bounder n-stage yeiled 2n state of land stage fed back

ر ا	CLK	10.	Q.	2 6	3	Q_{4}	6
	0	0	0	0	1	-<	
	1/	0	0	0	0		
	3	1	0.	0	0		
	4	i P	1	0	0)
	5	,	<i>l</i> ,	e (0		/
l			, .	1	1	. 1	
7	110		2	1	-/		
			-1	ı	1		

21-06-2024

block

Skew - time difference for a clock signal to arive at

diso different registers

delay - time taken by clock to reach sink from all source

glitch
jitter - fluxtuations in the timing of clock edges

hold time
metastalicity-

Control signal - CLK, Clr

Data signal -

 $m \times 10^{-3}$ $k \times 10^{3}$ $k \times 10^{3}$ $k \times 10^{3}$

Timing

Setup time - time duration what input must be stable hold time - minimum time whe input before triggering of clk

Max's' of Illip Flop-

propagation delay,

gate delay - uruit component, signal processing.

wire delay-distance travelled, transmission medium

signal uped

1²C - 100 kbih/s - standard mode 400 klik/s - fact mode 1 Mbit/s - fact mode plus 3.4 Mbit/s - high enced mode

Combinational circuit

Z = {A, B, C, D € 0, 2, 5, 7, 8, 10, 13, 15)

Product of Sum

$$P_{+}a+P$$
)

 $P_{+}a+P$)

 $P_{+}a+P$)

 $P_{+}a+P$)

 $P_{+}a+P$)

Implement function fabe, d) = 2 (0,1,5,6,7,9,10,15)

8:1 MUS a, b, c as select line

a	16	1	c	0	c	fL
0000	0	1	,	0		1
0	0	0	1	1		ı
ð	0	1		0	1	0
	0 0 0	1	-	(0
0	1	10	, [0		0
0	٠,	0		1		1
0	,	1	1	0		t
0	١,	1		l	l	1
(0	0	1	0	1	0
7	0	0		ı		1
`i\	0	1		0		1
- , \	0 0 0 0 1	U		((0
	1	0		0	() 7
1	,	0	4.	1	(פ
,	1	1		0		0
(1	1		l		1

	ā	d	* [']
D _o	0	0	1,
Di	2	3	0
D2	4	3	d
\mathcal{O}_3	6	1	1
De	8	9	d
D_5	(10)	11	d
\mathcal{D}_{b}	12	13	0
D7	14	(F)	d
	1.	<i>:</i>	
	2		

5(a,b,c,d): {(0,1,5,6.7,9,10,15)

		ā ā	ēd	$c\bar{d}$	cd	
d	Do	0	0	2	3	→ c
	D,	4	3	(6)	0	→d+c
	Da	g	9	0	"	→ cod
	D3	12	13	14	(3)	->dc

Moore State madine

-> not depended on input

-> 0/p is the Sn of present state only

Mealy state machine

Sequence detector

1001

overlaying

non-overlaping

Maximum operating if of flipflop.

MIPS Architecture

8 bil program counter add, sub, and, or, set, addi, beg, j, lb, 3b

Verilog - Civilian Dot-bus pass over a sell a solve weed in sell VHDL - Defence 7

SPICE model -> not for high complex ship.

Jerign rule sheeker

Jerually functionality sexted > Electrical rule sheeker

NMOS, PMOS, enhansement MOS, depletion MOS

Freshold, I.-V. characterister

Io.V. Transfer characteristes

if gar semon > threshold

send notification

if San sensor > dangereou value

edt value.

$$\Rightarrow$$
 Front end \Rightarrow 7m \Rightarrow 63k \Rightarrow 8ack end \Rightarrow 6m \Rightarrow 60drg \Rightarrow \Rightarrow 62k \Rightarrow 6m \Rightarrow 62k \Rightarrow 6c, C++, C \Rightarrow 63k \Rightarrow 8bck end \Rightarrow 6m \Rightarrow 6st \Rightarrow 6psp, PD \Rightarrow 6k

Techning > Repair, >

Thoider > extension.

Jull or no load -> soon will Bt

= sable, of thyrudos

Find Visual imperior

1. MOSFET -> diagnoui. 2. Relong. ->

Embedded

VLSI *Dsi*gn Test

Verilog

.Verification
- Timiz

·Tecl

· Logic Synthesis

H DL

$$29. XY + X'Z + YZ$$

21. octal to binary 7263 1111

22. sum of binary number 00 11100111

+ 256 + 128 + 64 + 32 + 16+8+4+2+1

2 -1 = 1023

93.

24. 12547 no of bite required to represent in BCD

- 16. Group of flipflops, used to store information are salled registers
- 20. The orsor in on ADC is often termed as
- 25. Which of the following is the fastest logic family.
- 26 ersor cossecting code.

- I Typical instruction type
 - Arithmetic, Branch, Data tranefer, Togic a bit oriented logic
- 2. Addressing modes
 - Implied / Ingelieit, Stack, Immediate, Direct, Indirect, Register olirect, Register indirect, Relative addressing, Indexed Auto - Increment, Auto - decrement.
 - 3. Stack used for storing return adolrers when a function in valled

Stack segment is used to store interupt & subsouline return addreu segister.

Law I of Boolean Algebra

- · Commutative
- · Associative
- · Distributive
- Scientity
- · Involution
- · Absorption
- · Der Morgani theorem

Copy constructor >

Default constructor.

	cD		4	
AB .	100	C D	CD	CD
ĀŌ	0 .	1,	0 2	13,
ĀB	0	1	0 6	1.4
AB	0	1 0	0-,0	1 /4
AB	0	1 3	014	1 16

- 1. C- set, get Serial Baud
- 2. D-control
- 3.