Universidade de Brasília Faculdade de Tecnologia, Departamento de Engenharia Elétrica

Treinamento CIS - 3º Período (Redes Neurais)

1. Conteúdos do Período

- a. Introdução a Redes Neurais:
 - i. Perceptron;
 - ii. Função de ativação;
 - iii. Vetor de Pesos e Bias;
 - iv. Operações vetoriais;
 - v. Feed Forward;
 - vi. Backpropagation;
 - vii. Gradiente descendente;
 - viii. Ótimo local e global;
 - ix. Learning rate;
 - x. Métricas de avaliação;
 - xi. Função de custo;
 - xii. Overfitting e underfitting;
- b. Implementação de Regressão Linear com perceptron;
- c. Problemas lineares e não lineares;
- d. Implementação usando TensorFlow.

2. Conteúdo Essenciais

- **a.** An Introduction to Perceptron Vídeo explicando o conceito do Perceptron
- b. <u>Playlist Redes Neurais Artificiais</u> (PT-BR) ou <u>Playlist Neural</u>
 <u>Networks 3blue1brown</u> (EN US) Playlist que explica o que são
 Redes Neurais, Gradiente descendente e Backpropagation. Playlist com os conceitos fundamentais sobre o perceptron e
 redes neurais (Português)
 - i. Vetor de Pesos
 - ii. Funções de ativação
 - iii. Backpropagation
 - iv. Gradiente descendente
- c. Neural Networks from Scratch in Python
 - i. Passo a passo para criar uma rede neural a partir do zero em python
- 3. Conteúdos Complementares
 - a. Playlist Neural Networks StatQuest
 - b. <u>MIT Introduction to Deep Learning</u> Aula do MIT sobre fundamentos do Deep Learning.
 - c. <u>Neural Networks and Deep Learning</u> Aulas do curso 1 da especialização em Deep Learning do deeplearning.ai.
 - d. <u>Improving Deep Neural Networks: Hyperparameter Tuning,</u>

Universidade de Brasília Faculdade de Tecnologia, Departamento de Engenharia Elétrica

Regularization and Optimization - Aulas do curso 2 da especialização em Deep Learning do deeplearning.ai.

- e. <u>DeepLearning Book</u> Livro em português sobre Deep Learning. Para o quarto período, recomenda-se os capítulos 1 ao 21.
- f. Neural Networks and Deep Learning Book
- g. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow - Livro completo: Para o quartoperíodo recomenda-se o capítulo 10.

4. Tarefas

- a. Base de Dados do Período Credit Card Fraud Detection
- b. Atividade obrigatória:
 - i. Criar uma rede neural "from scratch" de classificação binária para prever fraudes nas transações com cartões de crédito. Use como embasamento a playlist Neural Networks from Scratch in Python:
 - 1. A rede deve conter uma camada oculta (quantidade de neurônios a critério)
 - 2. Separe a label das features e o dataset em subsets de treinamento e teste:
 - 3. Inicialização randômica dos pesos;
 - 4. Defina a função de ativação e calcular sua derivada (Sinta-se à vontade para experimentar mais de uma);
 - 5. Treine o modelo testando diferentes valores de épocas e learning rate, identificando quando acontece Overfitting e Underfitting.

Universidade de Brasília Faculdade de Tecnologia, Departamento de Engenharia Elétrica

- 6. Fazer as previsões nos dados de teste e avaliar o modelo.
- c. Atividades sugeridas:
 - Testar o efeito da Regularização ou outros métodos de otimização;
 - ii. Testar o efeito de mais uma camada oculta de neurônios;
 - iii. Comparar com a implementação usando TensorFlow;
 - iv. Aplicar as técnicas em outro conjunto de dados como o MNIST, que pode ser importado diretamente para o notebook através do Keras.
- d. No meio do período, haverá uma reunião com o monitor para consolidação das informações;
- e. A entrega é individual e deverá ser colocada no seu GitHub pessoal