MeEn 537 Homework #1

- 1. Work the following problems from chapter 2 in your textbook (for some of these, the answers are very simple and the goal instead is understanding and experience with the toolbox):
 - (a) 2
 - (b) 4
 - (c) 5
 - (d) 10
 - (e) 16
 - (f) 20
- 2. Consider the following sequences of rotation and write the matrix product that will give the resulting rotation matrix (don't perform the operation, just write the correct form):
 - (a) rotate by ϕ in the x-axis, θ in the z-axis, then ψ in the y-axis all in the current frame.
 - (b) rotate by ϕ in the x-axis, θ in the z-axis, then ψ in the y-axis all in the fixed world frame.
- 3. If coordinate frame o_1 is obtained by rotating coordinate frame o_0 by $\frac{\pi}{2}$ about x-axis followed by a rotation of $\frac{\pi}{2}$ about the y-axis, find the rotation matrix R that represents the composite transformation. Sketch the initial and final frames.
- 4. Suppose three coordinate frames (o_0, o_1, o_2) are given, and that

$$R_2^1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}, \quad R_3^1 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Find the matrix R_3^2

5. Compute the rotation matrix given by the following product: (you may use the toolbox and symbolic variables to do this)

$$R_{x,\theta}R_{y,\phi}R_{z,\pi}R_{y,-\phi}R_{x,-\theta}$$

- 6. Let R represent a rotation of 90° about y_0 followed by a rotation of 45° about z_1 . Find the equivalent axis/angle to represent R. Sketch the initial and final frames and the equivalent axis vector k. Also find the equivalent quaternion representation.
- 7. Find the rotation matrix corresponding to the Euler angles $\phi = \frac{\pi}{2}$, $\theta = 0$, and $\psi = \frac{\pi}{4}$. What is the direction of the new x-axis relative to the base frame?

1