

MMBT2222A

SMALL SIGNAL NPN TRANSISTOR

PRELIMINARY DATA

Туре	Marking
MMBT2222A	M22

- SILICON EPITAXIAL PLANAR NPN TRANSISTOR
- MINIATURE SOT-23 PLASTIC PACKAGE FOR SURFACE MOUNTING CIRCUITS
- TAPE & REEL PACKING
- THE PNP COMPLEMENTARY TYPE IS MMBT2907A

APPLICATIONS

- WELL SUITABLE FOR PORTABLE EQUIPMENT
- SMALL LOAD SWITCH TRANSISTOR WITH HIGH GAIN AND LOW SATURATION VOLTAGE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Emitter Voltage (I _E = 0)	75	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	40	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	6	V
Ic	Collector Current	0.6	Α
Ісм	Collector Peak Current (t _p < 5 ms)	0.8	Α
P _{tot}	Total Dissipation at T _{amb} = 25 °C	350	mW
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

February 2003 1/5

THERMAL DATA

R _{thj-amb} •	Thermal Resistance Junction-Ambient	Max	357.1	°C/W	
------------------------	-------------------------------------	-----	-------	------	--

[•] Device mounted on a PCB area of 1 cm².

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CEX}	Collector Cut-off Current (V _{BE} = -3 V)	V _{CE} = 60 V			10	nA
I _{BEX}	Base Cut-off Current (V _{BE} = -3 V)	V _{CE} = 60 V			20	nA
Ісво	Collector Cut-off Current (I _E = 0)	$V_{CB} = 75 \text{ V}$ $V_{CB} = 75 \text{ V}$ $T_j = 150 ^{\circ}\text{C}$			10 10	nΑ μΑ
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 3 V			15	nA
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 10 mA	40			V
V _(BR) CBO	Collector-Base Breakdown Voltage (I _E = 0)	Ic = 10 μA	75			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	IE = 10 μA	6			V
V _{CE(sat)*}	Collector-Emitter Saturation Voltage	$I_{C} = 150 \text{ mA}$ $I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}$ $I_{B} = 50 \text{ mA}$			0.3 1	V V
V _{BE(sat)*}	Collector-Base Saturation Voltage	$I_C = 150 \text{ mA}$ $I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}$ $I_B = 50 \text{ mA}$	0.6		1.2 2	V
hfe*	DC Current Gain	Ic = 0.1 mA	35 50 75 100 50 40		300	
f _T	Transition Frequency	$I_C = 20 \text{ mA } V_{CE} = 20 \text{V } f = 100 \text{MHz}$		270		MHz
Ссво	Collector-Base Capacitance	I _E = 0 V _{CB} = 10 V f = 1 MHz		4	8	pF
Сево	Emitter-Base Capacitance	$I_C = 0$ $V_{EB} = 0.5$ V $f = 1$ MHz		20	25	pF
NF	Noise Figure			4		dB
h _{ie} *	Input Impedance	$V_{CE} = 10 \text{ V}$ $I_{C} = 1 \text{ mA}$ $f = 1 \text{ KHz}$ $V_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}$ $f = 1 \text{ KHz}$	2 0.25		8 1.25	ΚΩ ΚΩ
h _{re} *	Reverse Voltage Ratio	V _{CE} = 10 V I _C = 1 mA f = 1 KHz V _{CE} = 10 V I _C = 10 mA f = 1 KHz			8 4	10 ⁻⁴ 10 ⁻⁴
h _{fe} *	Small Signal Current Gain	$V_{CE} = 10 \text{ V}$ $I_{C} = 1 \text{ mA}$ $f = 1 \text{ KHz}$ $V_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}$ $f = 1 \text{ KHz}$	50 75		300 375	
h _{oe} *	Output Admittance	$V_{CE} = 10 \text{ V}$ $I_{C} = 1 \text{ mA}$ $f = 1 \text{ KHz}$ $V_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}$ $f = 1 \text{ KHz}$	5 25		35 200	μS μS

^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 2 %

2/5

ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t_d	Delay Time	$I_C = 150 \text{ mA}$ $I_B = 15 \text{ mA}$		5	10	ns
tr	Rise Time	Vcc = 30 V		12	25	ns
ts	Storage Time	I _C = 150 mA I _{B1} = - I _{B2} = 15 mA		185	225	ns
t _f	Fall Time	$V_{CC} = 30 \text{ V}$		24	60	ns

^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 2 %

SOT-23 MECHANICAL DATA

DIM.		mm		mils		
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	0.85		1.1	33.4		43.3
В	0.65		0.95	25.6		37.4
С	1.20		1.4	47.2		55.1
D	2.80		3	110.2		118
E	0.95		1.05	37.4		41.3
F	1.9		2.05	74.8		80.7
G	2.1		2.5	82.6		98.4
Н	0.38		0.48	14.9		18.8
L	0.3		0.6	11.8		23.6
M	0		0.1	0		3.9
N	0.3		0.65	11.8		25.6
0	0.09		0.17	3.5		6.7

4/5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

