Model-theoretical Semantics: Connectives

Connectives

Negation: Tom didn't leave.

Conjunction: Tom danced and Andy sang.

Disjunction: Tom danced or Andy sang.

Conditional: If Andy sang, then Tom danced.

Truth table

p	q	$p\vee q$	p	q	$p \wedge q$	1	p	q	$p \to q$
1	1	1	1	1	1		1	1	1
1	0	1	1	0	0		1	0	0
0	1	1	0	1	0		0	1	1
0	0	0	0	0	0		0	0	1

p	$\neg p$	p	q	$p \leftrightarrow q$
1	0	1	1	1
0	1	1	0	0
		0	1	0
		0	0	1

Meaning

$$\llbracket \text{or} \rrbracket = \begin{bmatrix} 1 \mapsto \begin{bmatrix} 1 \mapsto 1 \\ 0 \mapsto 1 \end{bmatrix} \\ 0 \mapsto \begin{bmatrix} 1 \mapsto 1 \\ 0 \mapsto 0 \end{bmatrix} \end{bmatrix}$$

$$[\![\mathrm{not}]\!] :: t \to t$$

Type
$$[\![\text{and}]\!] :: t \to t \to t$$

 $[\![\text{or}]\!] :: t \to t \to t$

Composition

Logical equivalences

- 1. Double negation elimination
- $\bullet \ \neg \neg p = p$
- 2. Distributive laws
- $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$
- $p \lor (q \land r) = (p \lor q) \land (p \lor r)$
- 3. Associative laws
- $(p \wedge q) \wedge r = p \wedge (q \wedge r)$
- $\bullet \ (p \lor q) \lor r = p \lor (q \lor r)$
- 4. DeMorgan's laws

- 5. Eliminability of the material conditional
- $\bullet \ p \to q = \neg p \vee q$

A sample proof

$$(p \land q) \to r = p \to (q \to r)$$

Proof:
$$(p \land q) \rightarrow r = \neg (p \land q) \lor r$$
 (5)

$$= (\neg p \lor \neg q) \lor r$$
 (4)

$$= \neg p \lor (\neg q \lor r)$$
 (3)

$$= p \rightarrow (\neg q \lor r)$$
 (5)

$$= p \rightarrow (q \rightarrow r)$$
 (5)

Operations on sets

Intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

Union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

Complementation $\overline{A} := \{x \mid x \notin A\}$

Difference $A - B := \{x \mid x \in A \text{ and } x \notin B\}$

Exclusive union $A \cup B := (A \cup B) - (A \cap B)$

