WSI - Sieci bayesowskie

Jan Szymczak

Czerwiec 2024

1 Opis problemu

Zadaniem było napisanie implementacji naiwnego klasyfikatora Bayes'a. Następnie algorytm testowany był na danych z biblioteki scikit-learn: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer. Dane w zbiorze są ciągłe, dlatego wykorzystano ciągły rozkład normalny. Dane zostały także podzielone na zbiór trenujący, walidacyjny i testujący. W celu przetestowania jakości działania, przeprowadzone zostały testy na różnych proporcjach podziału zbiorów. Ponadto sprawdzono także działanie w przypadku walidacji krzyżowej.

2 Wyniki

Wyniki testowania proporcji podziałów:

Rysunek 1: Dokładność dopasowania względem wielkości zbioru walidacyjnego

Validation set size vs Standard deviation 0.25 0.24 0.23 Standard deviation 0.22 0.21 0.20 0.19 10 20 30 40 50 60 70 80 90 Validation set size (%)

Rysunek 2: Odchylenie standardowe względem wielkości zbioru walidacyjnego

Najlepsze wyniki daje podział, gdzie zbiór walidacyjny stanowi 10% lub 20% całego zbioru danych. Dla wyższych proporcji dokładność spada, a odchylenie standardowe wzrasta, więc wyniki ulegają pogorszeniu. Wielkość zbioru uczącego jest wtedy po prostu zbyt mała, aby algorytm był w stanie nauczyć się dokładnie. W ostatecznym teście zdecydowano się na podział 80:20, ponieważ zbiór walidacyjny był jescze dzielony na pół, gdzie drugą połowę stanowił zbiór testujący. Wyniki walidacji krzyżowej:

Rysunek 3: Dokładność dopasowania względem ilości podzbiorów, na które dzielone były dane

Number of folds vs Standard deviation

Rysunek 4: Odchylenie standardowe względem ilości podzbiorów, na które dzielone były dane

Najlepsze wyniki pod względem dokładności dają podziały na 6 lub więcej podzbiorów. Z drugiej strony, wraz ze wzrostem ilości podzbiorów rośnie także odchylenie standardowe. W ostatecznym teście zdecydowano się na podział na 10 podzbiorów.

2.1 Ostateczne wyniki

Ostateczne wyniki przy podziale zbiorów w proporcji 8:1:1 (trenujący, walidacyjny, testowy) oraz walidacji krzyżowej z podziałem na 10 podzbiorów:

- \bullet Dokładność na zbiorze walidacyjnym: 92.98%
- Dokładność na zbiorze testującym: 100% (z pewnością nie było to aż 100%, jednak accuracy_score() z pakietu scikit-learn stosuje pewne zaokrąglenie)
- Dokładność w przypadku stosowania walidacji krzyżowej: 93.15%

Uzyskane wyniki są świetne, otrzymane dokładności bardzo wysokie, co świadczy o poprawnym działaniu algorytmu.