Class13

Joel Kosareff

Differential Expression Analysis

```
Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs
```

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,

```
rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
Now load the data
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  colData = read.csv(metaFile, row.names = 1)
  head(colData)
```

rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,

rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

```
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

We need to remove the first column in count data

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Next lets remove the zero entries

```
countData = countData[rowSums(countData[])>0, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504

ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Now we set up the DESeq object

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

dds

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371

colData names(2): condition sizeFactor

Next lets get results for the HoxA1 knockdown versus control siRNA

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
summary(res)
```

out of 15975 with nonzero total read count

adjusted p-value < 0.1

LFC > 0 (up) : 4349, 27% LFC < 0 (down) : 4396, 28% outliers [1] : 0, 0% low counts [2] : 1237, 7.7%

(mean count < 0)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

Time for a volcano plot

```
plot( res$log2FoldChange, -log(res$padj) )
```



```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$pvalue < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```



```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
                    "GO"
                                                   "IPI"
[11] "GENETYPE"
                                   "GOALL"
                                                                  "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                   "ONTOLOGYALL"
                                                  "PATH"
                                                                  "PFAM"
[21] "PMID"
                                   "REFSEO"
                                                   "SYMBOL"
                                                                  "UCSCKG"
                    "PROSITE"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                            stat
                                                                      pvalue
```

```
<numeric>
                                  <numeric> <numeric>
                                                       <numeric>
                                                                   <numeric>
ENSG00000279457
                  29.913579
                                 0.1792571 0.3248216
                                                        0.551863 5.81042e-01
ENSG00000187634
                 183.229650
                                 0.4264571 0.1402658
                                                        3.040350 2.36304e-03
ENSG00000188976 1651.188076
                                -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961
                 209.637938
                                 0.7297556 0.1318599
                                                        5.534326 3.12428e-08
                  47.255123
                                 0.0405765 0.2718928
                                                        0.149237 8.81366e-01
ENSG00000187583
ENSG00000187642
                  11.979750
                                 0.5428105 0.5215598
                                                        1.040744 2.97994e-01
ENSG00000188290
                 108.922128
                                 2.0570638 0.1969053 10.446970 1.51282e-25
                                 0.2573837 0.1027266
                                                        2.505522 1.22271e-02
ENSG00000187608
                 350.716868
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163
                                                        8.346304 7.04321e-17
                                                        0.192614 8.47261e-01
ENSG00000237330
                   0.158192
                                 0.7859552 4.0804729
                       padj
                                  symbol
                                              entrez
                                                                       name
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.86555e-01
                                     NΑ
                                                                          NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                              148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                               26155 NOC2 like nucleolar ...
                                  NOC2L
ENSG00000187961 1.13413e-07
                                 KLHL17
                                              339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                               84069 pleckstrin homology ...
                                PLEKHN1
ENSG00000187642 4.03379e-01
                                               84808 PPARGC1 and ESRR ind..
                                  PERM1
ENSG00000188290 1.30538e-24
                                   HES4
                                               57801 hes family bHLH tran..
ENSG00000187608 2.37452e-02
                                  ISG15
                                                9636 ISG15 ubiquitin like...
ENSG00000188157 4.21963e-16
                                    AGRN
                                              375790
                                                                       agrin
ENSG00000237330
                         NA
                                 RNF223
                                              401934 ring finger protein ...
```

Now lets order by p-value

```
res = res[order(res$pvalue),]
write.csv(res[],file ="deseq_results.csv")
```

Pathway Analysis

We are going to use the Gage and Pathview packages for pathway analysis

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications

or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                 "10941"
                                           "151531" "1548"
                                                              "1549"
                                                                       "1551"
              "1576"
 [9] "1553"
                        "1577"
                                 "1806"
                                           "1807"
                                                    "1890"
                                                              "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                              "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                           "54657"
                                                    "54658"
                                                              "54659"
                                                                       "54963"
[33] "574537" "64816"
                        "7083"
                                 "7084"
                                           "7172"
                                                    "7363"
                                                              "7364"
                                                                       "7365"
[41] "7366"
              "7367"
                        "7371"
                                 "7372"
                                           "7378"
                                                    "7498"
                                                              "79799"
                                                                       "83549"
[49] "8824"
                        "9"
                                 "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201"
                         "10606"
                                  "10621"
                                            "10622"
                                                     "10623"
                                                               "107"
                                                                         "10714"
  [9] "108"
               "10846"
                         "109"
                                  "111"
                                            "11128"
                                                     "11164"
                                                               "112"
                                                                        "113"
                         "122481" "122622" "124583" "132"
                                                                        "159"
 [17] "114"
               "115"
                                                               "158"
 [25] "1633"
               "171568" "1716"
                                  "196883" "203"
                                                     "204"
                                                               "205"
                                                                        "221823"
 [33] "2272"
               "22978"
                         "23649"
                                  "246721" "25885"
                                                     "2618"
                                                               "26289"
                                                                         "270"
 [41] "271"
               "27115"
                         "272"
                                  "2766"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                         "2984"
 [49] "2986"
               "2987"
                         "29922"
                                  "3000"
                                            "30833"
                                                     "30834"
                                                               "318"
                                                                         "3251"
                                                               "4830"
                                            "377841" "471"
 [57] "353"
               "3614"
                         "3615"
                                  "3704"
                                                                         "4831"
```

```
[65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                          "50940"
 [73] "51082"
                "51251"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                 "5139"
                                                                          "5140"
                         "51292"
                                                       "5146"
                                                                 "5147"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                          "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                       "5439"
                                                                "5440"
                                                                          "5441"
                                                                "55811"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                          "55821"
[129] "5631"
                "5634"
                         "56655"
                                   "56953"
                                             "56985"
                                                       "57804"
                                                                "58497"
                                                                          "6240"
                         "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
[137] "6241"
                "64425"
                                                                          "84172"
[145] "84265"
                "84284"
                         "84618"
                                   "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                          "9060"
[153] "9061"
                "93034"
                         "953"
                                   "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                          "957"
[161] "9583"
                "9615"
```

The main gage() function requires a named vector of fold changes, where the names of the values are the Entrez gene IDs.

Note that we used the mapIDs() function above to obtain Entrez gene IDs (stored in resentrez) and we have the fold change results from DESeq2 analysis (stored in resentrez).

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)

1266    54855    1465    51232    2034    2317
-2.422719    3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Now lets run gage analysis

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

Lets look at the first few down (less) pathway results:

```
head(keggres$less)
```

```
p.geomean stat.mean
                                                                    p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                   exp1
hsa04110 Cell cycle
                                      0.001448312
                                                      121 8.995727e-06
                                      0.007586381
hsa03030 DNA replication
                                                        36 9.424076e-05
hsa03013 RNA transport
                                      0.073840037
                                                       144 1.375901e-03
hsa03440 Homologous recombination
                                                       28 3.066756e-03
                                      0.121861535
hsa04114 Oocyte meiosis
                                      0.121861535
                                                       102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                        53 8.961413e-03
```

Now, let's try out the pathview() function from the pathview package to make a pathway plot with our RNA-Seq expression results shown in color. To begin with lets manually supply a pathway.id (namely the first part of the "hsa04110 Cell cycle") that we could see from the print out above.

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13

Info: Writing image file hsa04110.pathview.png

We can also generate a pdf

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13

Info: Writing image file hsa04110.pathview.pdf

Now, let's process our results a bit more to automagically pull out the top 5 upregulated pathways, then further process that just to get the pathway IDs needed by the pathwiew() function. We'll use these KEGG pathway IDs for pathwiew plotting below.

```
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
Finally, lets pass these IDs in keggresids to the pathview() function to draw plots for all the
top 5 pathways.
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
```

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
Info: Writing image file hsa04330.pathview.png
And the down regualted pathways
  keggrespathways <- rownames(keggres$less)[1:5]</pre>
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
```

```
Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13
```

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/joelk/Documents/BIMM143/Class13

Info: Writing image file hsa04114.pathview.png

Gene Ontology

We can also do a similar procedure with gene ontology. Similar to above, go.sets.hs has all GO terms. go.subs.hs is a named list containing indexes for the BP, CC, and MF ontologies. Let's focus on BP (a.k.a Biological Process) here.

```
data(go.sets.hs)
data(go.subs.hs)

gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.val
                                             p.geomean stat.mean
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                         424 1.432451e-04
GO:0007610 behavior
                                          0.2243795
                                                         427 2.195494e-04
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                         257 5.932837e-04
GO:0035295 tube development
                                          0.3711390
                                                         391 5.953254e-04
```

\$less

```
p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                               q.val set.size
GO:0048285 organelle fission
                                        5.841698e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0007067 mitosis
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                        1.658603e-08
                                                          142 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.178402e-07
                                                           84 1.729553e-10
```

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.530241	3.530241
GD:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Reactome Analysis

Let's now conduct over-representation enrichment analysis and pathway-topology analysis with Reactome using the previous list of significant genes generated from our differential expression results above.

First, Using R, output the list of significant genes at the 0.05 level as a plain text file:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

The endosomal/vacuolar pathway has the most significant p-value