

Lab 8: SD Card Reader Circuit

Chun-Jen Tsai and Lan-Da Van
Department of Computer Science
National Yang Ming Chiao Tung University
Taiwan, R.O.C.

Fall, 2024

Lab 8: SD Card Reader Circuit

- In this lab, you will design a circuit to read a text file from an SD card, and using RGB LED to display it.
 - Also show some information in LCD display.
- The lab file submission deadline is on 11/11 by 6:00pm.
- Warning: Please notify TA if you have photosensitive epilepsy. We will assist you in making arrangements to change your lab session.

SD Card Specification (1/4)

Lab 8

- 2. 覆寫保護機制
- 3. 記憶卡容量

4. 容量標準

5. 影片速度等級

6. 匯流排速度等級

7. 速度等級

8. UHS速度等級

SD Card Specification (2/4)

	圖示	檔案系統	容量
SD	S TM	FAT12, FAT16	上限 2 GB
SDHC		FAT32	4GB ~ 32GB
SDXC	S TM	exFAT	32GB ~ 2TB
SDUC		exFAT	SD = Secure Dig SDHC = Secure SDXC = Secure SDUC = Secure

SD Card Specification (3/4)

最低寫入速 度	速度等級 (Speed Class)	UHS 速度等級 (UHS Speed Class)	影片速度等級 (Video Speed Class)	適用拍攝影片
2 MB/s	© Class 2 (C2)	-	-	720p 影片
4 MB/s	(C4)	-	-	720p 影片
6 MB/s	6 Class 6 (C6)	-	V6 Class 6 (V6)	720p 影片
10 MB/s	(C10)	1 Class 1 (U1)	V10 Class 10 (V10)	1080p 影片
30 MB/s	-	3 Class 3 (U3)	V30 Class 30 (V30)	1080p 影片 60/120 fps
60 MB/s	-	-	V60 Class 60 (V60)	4K 影片 60/120 fps
90 MB/s	-	-	V90 Class 90 (V90)	8K 影片 60/120 fps

SD Card Specification (4/4)

- The SD card that we use follows the secure digital high capacity (SDHC) standard, formatted with the FAT32 file system.
- The logical structure is composed of 512-byte blocks, starting at block number 0.
 - An 8GB SD card will be used in the lab.
- SD cards support at least two different I/O interfaces. In this lab, we use the serial Serial Peripheral Interconnect (SPI) interface to read data.

SD Card I/O Interface (1/2)

- An SDHC card has three different operation modes:
 - SPI mode
 - One-bit SD bus mode
 - Four-bit SD bus mode
 SPI Bus Mode

MMC Pin	SD Pin	miniSD Pin	microSD Pin	Name	1/0	Logic	Description				
1	1	1	2	nCS	1	PP	SPI Card Select [CS] (Negative logic)				
2	2	2	3	DI	1	PP	SPI Serial Data In [MOSI]				
3	3	3		VSS	S	S	Ground				
4	4	4	4	VDD	s	S	Power				
5	5	5	5	CLK	1	PP	SPI Serial Clock [SCLK]				
6	6	6	6	VSS	s	S	Ground				
7	7	7	7	DO	0	PP	SPI Serial Data Out [MISO]				
	8	8	8	NC nIRQ	0	OD	Unused (memory cards) Interrupt (SDIO cards) (Negative logic)				
	9	9	1	NC			Unused				
		10		NC			Reserved				
		11		NC			Reserved				

SD Card I/O Interface (2/2)

Lab 8

One-Bit SD Bus Mode

Four-Bit SD Bus Mode

MMC Pin	SD Pin	miniSD Pin	microSD Pin	Name	1/0	Logic	Description	MMC SE			microSD Pin	Name	1/0	Logic	Description
1	1	1	2	CD	1/0		Card Detection (by host), and Non-SPI Mode Detection (by card)		1	1	2	DAT3	I/O	PP	SD Serial Data 3
2	2	2	3	CMD	1/0	PP, OD	Command,		2	2	3	CMD	I/O	PP. OD	Command, Response
				1/00	_		Response		3	3		VSS	S	S	Ground
3	3	3	in a	VSS	S	S	Ground	-	4	4	4	VDD	S	s	Power
4	4	4	4	VDD	S	S	Power		-	-	-		-	PP	Carial alask
5	5	5	5	CLK	1	PP	Serial clock		5	5	5	CLK	4	PP	Serial clock
6	6	6	6	VSS	s	s	Ground	-	6	6	6	VSS	S	S	Ground
7	7	7	7	DAT0	1/0	PP	SD Serial Data 0		7	7	7	DAT0	1/0	PP	SD Serial Data 0
	۰	8	8	NC			Unused (memory cards)		8	8	8	DAT1	I/O	PP	SD Serial Data 1 (memory cards) Interrupt Period (SDID cards share pin
	8 8		nIRQ	0	OD	Interrupt (SDIO cards) (Negative Logic)					nikQ	0	OD	via protocol)	
	9	9	1	NC			Unused		9	9	1	DAT2	1/0	PP	SD Serial Data 2
		10		NC			Reserved			10		NC	3.		Reserved
		11		NC			Reserved			11		NC			Reserved

SD Card Initialization

- During the initialization phase, the SD card controller negotiates with the card to determine which type of card is used: SD, SDHC, SDXC, and SDUC.
 - The controller uses a slower clock (500kHz) to talk to the SD card during the negotiation phase.
- Once the card is initialized, the SD card controller can use a faster clock (e.g., the system clock) for read/write operations, as long as the card can handle the speed.

Serial Peripheral Interconnect (SPI)

- SPI is introduced by Motorola in 1980's for their MCU.
 - Short-distance synchronous serial communications for SD cards, LCDs screens, audio codecs, boot flash, etc.
 - A four-wire, full-duplex, master-slave serial bus
 - One master, multiple slaves
 - Open-loop transmission, no slave acknowledgement protocol

SPI Data Communication

- The master selects the target slave via the CS pin (microSD pin 2) first, then sends the clock signal to the slave.
- The master and slave exchange data one bit per clock cycle using shift registers.
 - Data sizes can be of 8-, 12-, or 16-bit, depending on the device.
 - The data sampling clock edge (rising or falling) also depends on the device → read data sheet of the device!

Physical Structure and File Systems

- The logical structure of an SD card is simply composed of a sequence of 512-byte blocks.
 - Physically, SD cards are divided into 4KB ~ 32KB sectors.
 - 1 block = 512 Bytes
 - 1 sector = one or multiple blocks
- To create directories for file storage on the card, we must first partition the SD card and then format a logical file system on that partition.
- An SD card usually has one partition. However, it is possible to store multiple partitions and multiple file systems on a single SD card.

Disk Partitions

Lab 8

- A physical disk can have several disk partitions, and each partition can be formatted to a file system.
- Typical partition structure of an SDHC card:

If the card is bootable or has more than one partitions, then the Master Boot Record (MBR) and the partition table will not be empty.

FAT32 Structure

- The FAT32 file system is a standard by Microsoft, and popularly used for mass storage devices.
- An FAT32 file system has the following components:
 - Boot sector: 512 bytes, possibly block#0, a.k.a. the super block
 - The boot sector contains information such as the size of the FAT, root directories, boot code, etc.
 - File allocation table (FAT): a table that shows which file is stored in which allocation units (each allocation unit is composed of several consecutive blocks); FAT basically contains many link lists of block numbers (one list per file).
 - Root directory: contains file names, file attributes, and the first allocation unit of all files in the root directory
 - Data area: the data blocks that actually store files

File Structure of an FAT32 Partition

Lab 8

Search for "\path" in

the root directory.

To read a file of "\path\name" in an FAT32 file system, one shall follow the four steps shown in the figure.

However, it is possible

without going through

to read a small file

these steps!

Read in the FAT link list of the file for all the block #'s that store the file data.

Root Directory

FAT32 Partition

Super block

FAT

Data Area

"path" Directory

Read the blocks of the file one by one.

Your file

Read the blocks that contains the info for the "\path" directory file; search inside the "\path" directory file for "filename" and its first entry (the head of the link list of the blocks that stores the file) in the FAT

Sample Project Files of Lab 8

- The sample project files of Lab 8 has a top-level circuit, lab8.v, an SD card controller, sd_card.v, and other supporting files such as: debounce.v, LCD_module.v, clk_divider.v, and lab8.xdc.
- The circuit performs the following actions:
 - When the board is powered up, the SD card controller will initialize itself and enter a ready state.
 - When the user presses BTN2, the circuit reads a block of data from the SD card, and then print the first byte in the block on the LCD module.
 - Every time BTN2 is pressed, the next byte will be displayed.

Output of Lab 8 Sample Circuit

Lab 8

For example, the following message is shown after 9 button hits (different card may show different result):

System Diagram of the Sample Code

The block diagram of the sample code of Lab 8:

SD Controller Signals

Lab 8

The key signals that control SD card operations:

rd_req: Triggers the reading of a block

block_addr[31:0]: The block # of the SD card to read

• init_finished: SD card initialization is finished?

dout[7:0]: Output one byte of data in the block

per clock cycle.

sd_valid: The output byte in dout[7:0] is ready

♦ If you set rd_req to 1 for one clock cycle, the SD card controller will read the data of the target block one byte at a time. Each time a data byte (of the 512 bytes) is ready, the flag sd_valid raises to 1 for one clock cycle.

Tri-color LED Signals

- The key signals that control RGB LED operations:
 - [3:0] rgb_led_r : control RED LEDs
 - [3:0] rgb_led_g : control GREEN LEDs
 - [3:0] rgb_led_b : control BLUE LEDs
- If you set rgb_led_r[0] to 1, the red LED 0 will be turn on.

Tri-color LED Signals

- Due to the excessive brightness of the tri-color LED, it could potentially harm your eyes if not addressed. In this Lab, please reduce the PWM to a duty cycle of 5%.
- You can mix light colors to achieve colors beyond red, blue, and green.

- You must design a circuit that:
 - You can download "test_EASY.txt", "test_NORMAL.txt" or "test_HARD.txt" from E3 and save it on the SD cards.
 - When BTN2 is pressed, the circuit reads the SD card and searches for an ASCII file. This step must not exceed 10 seconds.
 - You must process the information which begins with the word "DCL_START" and ends with the word "DCL_END". You should ignore other noise.
 - The circuit reads the text file and displays the information through a tri-color LED. Upon reading 'DCL_END,' the circuit stops and shows additional information on the LCD display.

- Wait for button 2.
- Find the target ASCII file by searching "DCL_START"
- Show the information provided between "DCL_START" and "DCL_END" through tri-color LED.
- Upon reading "DCL_END", display statistical results and stop your circuit.

ab 8

- In this lab, you will need to identify specific characters in an ASCII file and display them sequentially on four tri-color LEDs.
 - 'R' or 'r' : RED
 - 'G' or 'g': GREEN
 - 'B' or 'b' : BLUE
 - 'Y' or 'y' : YELLOW
 - 'P' or 'p' : PURPLE
 - Other : Close LED
- Reduce the PWM to a duty cycle of 5%.

- For example:
 - "RDCL STARTRGBAPYDCL ENDR"
 - When t = 0, you should read 4 characters and display them via RGB LED together.
 - RDCL_STARTRGBAPYDCL_ENDR

- For example:
 - "RDCL_STARTRGBAPYDCL_ENDR"
 - When t = 2, you should read next character and shift all the information.
 - RDCL_STARTRGBAPYDCL_ENDR

- For example:
 - "RDCL_STARTRGBAPYDCL_ENDR"
 - When t = 4, you should read next character and shift all the information.
 - RDCL_STARTRGBAPYDCL_ENDR

Lab 8

- When you read "DCL_END", close all the tri-color LEDs and print the following information in LCD display.
 - r : The number of character "R" or "r"
 - g: The number of character "G" or "g"
 - ...
 - x: The number of character that is not valid.
- For example, when finish processing "test_EASY.txt":

RGBPYX rgbpyx

RGBPYX 333334

Format of the Input Text File

Lab 8

The sample input text file, test_EASY.txt, is as follows.

ABCDEFGHIJKLMNOPQUSDCLWXYZDCL_STARTRGBYP rgbyp A RGBYPDCL ENDABC

Layout of the File on the SD card

- A newly formatted SD card will have its initial files stored in consecutive 512-byte blocks.
- After some files are deleted, new files added may be stored in non-contiguous blocks.
- You can assume that test.txt is stored in consecutive blocks.

