Math 1080 Class notes Fall 2021

Peter Westerbaan

Last updated: September 19, 2021

Table Of Contents

5.5: Substitution Rule	1
6.1: Velocity and Net Change	28
6.2: Regions Between Curves	35
6.3: Volume by Slicing	40
6.4: Volume by Shells	46
6.5: Length of Curves	52
6.6: Surface Area	57
6.7: Physical Applications	60
8.1: Basic Approaches (to Integration)	68
8.2: Integration by Parts	71
8.3: Trigonometric Integrals	79
8.4: Trigonometric Substitutions	89
8.5: Partial Fractions	95

5.5: Substitution Rule

Theorem 5.6: Substitution Rule for Indefinite Integrals

Let u = g(x), where g is differentiable on an interval, and let f be continuous on the corresponding range of g. On that interval,

$$\int f(g(x))g'(x) dx = \int f(u) du$$

Example. We know

$$\frac{d}{dx} \left[\frac{(2x+1)^4}{4} \right] = 2(2x+1)^3$$

Thus, if $f(x) = x^3$ and g(x) = 2x + 1 then g'(x) = 2, so we let u = 2x + 1, then

$$\int 2(2x+1)^3 dx = \int f(g(x))g'(x) dx$$
$$= \int u^3 du$$
$$= \frac{u^4}{4} + C$$
$$= \frac{(2x+1)^4}{4} + C$$

Procedure: Substitution Rule (Change of Variables)

- 1. Given an indefinite integral involving a composite function f(g(x)), identify an inner function u = g(x) such that a constant multiple of g'(x) appears in the integrand.
- 2. Substitute u = g(x) and du = g'(x) dx in the integral.
- 3. Evaluate the new indefinite integral with respect to u.
- 4. Write the result in terms of x using u = g(x).

a)
$$\int 2x(x^2+3)^4 dx$$

b)
$$\int (2x+1)^3 dx$$

c)
$$\int x^2 \sqrt{x^3 + 1} \, dx$$

d)
$$\int \theta \sqrt[4]{1-\theta^2} d\theta$$

e)
$$\int \sqrt{4-t} \, dt$$

f)
$$\int (2-x)^6 dx$$

Fall 2021

a)
$$\int \sec(2\theta) \tan(2\theta) d\theta$$

b)
$$\int \csc^2\left(\frac{t}{3}\right) dt$$

c)
$$\int \frac{\sin(x)}{1 + \cos^2(x)} \, dx$$

$$d) \int \frac{\tan^{-1}(x)}{1+x^2} dx$$

The acceleration of a particle moving back and forth on a line is $a(t) = \frac{d^2s}{dt^2} = \pi^2 \cos(\pi t) \ m/s^2$ for all t. If s=0 and v=8 m/s when t=0, find the value of s when t=1 sec.

a)
$$\int (6x^2 + 2)\sin(x^3 + x + 1) dx$$

b)
$$\int \frac{\sin(\theta)}{\cos^5(\theta)} d\theta$$

c)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$d) \int \frac{2^t}{2^t + 3} dt$$

$$e) \int 6x^2 4^{x^3} dx$$

$$f) \int \frac{dx}{\sqrt{36 - 4x^2}}$$

g)
$$\int \sin(t) \sec^2(\cos(t)) dt$$

$$h) \int \frac{1}{\sqrt{x}(1+\sqrt{x})^2} \, dx$$

i)
$$\int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx$$

$$j) \int 5\cos(7x+5) \, dx$$

$$k) \int \frac{3}{\sqrt{1 - 25x^2}} \, dx$$

$$l) \int \frac{dx}{\sqrt{1 - 9x^2}}$$

Example. Evaluate the following integrals using the recommended substitution:

a)
$$\int \sec^2(x) \tan(x) dx$$

where $u = \tan(x)$.

b)
$$\int \sec^2(x) \tan(x) dx$$

where $u = \sec(x)$.

Example. Solve the initial value problem: $\frac{dy}{dx} = 4x(x^2 + 8)^{-1/3}, y(0) = 0.$

a)
$$\int xe^{-x^2} dx$$

$$b) \int \frac{e^{1/x}}{x^2} dx$$

c)
$$\int \frac{dt}{8 - 3t}$$

d)
$$\int 5^t \sin(5^t) dt$$

$$e) \int \frac{e^w}{36 + e^{2w}} \, dw$$

Theorem 5.7: Substitution Rule for Definite Integrals

Let u = g(x), where g' is continuous on [a, b], and let f be continuous on the range of g. Then

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

Example. Evaluate the integrals:

a)
$$\int_0^1 \frac{x^3}{\sqrt{x^4 + 9}} \, dx$$

b)
$$\int_{1}^{3} \frac{dt}{(t-4)^2}$$

c)
$$\int_0^3 \frac{v^2 + 1}{\sqrt{v^3 + 3v + 4}} \, dv$$

d)
$$\int_0^1 2x(4-x^2) dx$$

e)
$$\int_{2}^{3} \frac{x}{\sqrt[3]{x^2 - 1}} dx$$

f)
$$\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{1 + \cos(x)} dx$$

$$g) \int_0^{\frac{\pi}{4}} \frac{\sin(x)}{\cos^2(x)} \, dx$$

h)
$$\int_{-\frac{\pi}{12}}^{\frac{\pi}{8}} \sec^2(2y) \, dy$$

i)
$$\int_0^1 (1 - 2x^9) dx$$

j)
$$\int_0^1 (1-2x)^9 dx$$

$$k) \int_0^{\frac{1}{2}} \frac{1}{1 + 4x^2} \, dx$$

$$1) \int_0^4 \frac{x}{x^2 + 1} \, dx$$

$$\mathrm{m} \int_0^{\pi} 3\cos^2(x)\sin(x)\,dx$$

n)
$$\int_0^{\frac{\pi}{8}} \sec(2\theta) \tan(2\theta) d\theta$$

o)
$$\int_0^1 (3t-1)^{50} dt$$

$$p) \int_0^3 \frac{1}{5x+1} \, dx$$

$$q) \int_0^1 x e^{-x^2} dx$$

$$r) \int_{e}^{e^4} \frac{1}{x\sqrt{\ln(x)}} \, dx$$

s)
$$\int_0^{\frac{1}{2}} \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} \, dx$$

$$t) \int_0^1 \frac{e^z + 1}{e^z + z} dz$$

Math 1080 Class notes

$$\mathrm{u}) \int_{1}^{4} \frac{dy}{2\sqrt{y} \left(1 + \sqrt{y}\right)^{2}}$$

$$v) \int_{\ln\left(\frac{\pi}{4}\right)}^{\ln\left(\frac{\pi}{2}\right)} e^w \cos(e^w) \, dw$$

$$(w) \int_0^{\frac{1}{8}} \frac{x}{\sqrt{1 - 16x^2}} dx$$

$$x) \int_{1}^{e^2} \frac{\ln(p)}{p} \, dp$$

y)
$$\int_0^{\frac{\pi}{4}} e^{\sin^2(x)} \sin(2x) dx$$
 z) $\int_{-\pi}^{\pi} x^2 \sin(7x^3) dx$

Example. Average velocity: An object moves in one dimension with a velocity in m/s given by $v(t) = 8\sin(\pi t) + 2t$. Find its average velocity over the time interval from t = 0 to t = 10, where t is measured in seconds.

Example. Prove $\int \tan(x) dx = \ln|\sec(x)| + C$.

Example. Evaluate the integrals:

$$a) \int \frac{x}{(x-2)^3} \, dx$$

b)
$$\int x\sqrt{x-1}\,dx$$

c)
$$\int x^3 (1+x^2)^{\frac{3}{2}} dx$$

$$d) \int \frac{y^2}{(y+1)^4} \, dy$$

e)
$$\int (z+1)\sqrt{3z+2}\,dz$$

$$f) \int_0^1 \frac{x}{(x+2)^3} \, dx$$

Half-Angle Formulas

$$\cos^{2}(\theta) = \frac{1 + \cos(2\theta)}{2}$$
$$\sin^{2}(\theta) = \frac{1 - \cos(2\theta)}{2}$$

Example. Evaluate the integrals:

a)
$$\int \cos^2(x) \, dx$$

$$b) \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx$$

c)
$$\int \frac{1}{x^2} \cos^2 \left(\frac{1}{x}\right) dx$$

$$d) \int x \sin^2(x^2) \, dx$$

e)
$$\int \sin^2\left(\theta + \frac{\pi}{6}\right) d\theta$$

f)
$$\int_0^{\frac{\pi}{4}} \cos^2(8\theta) \, d\theta$$

Example. If f is continuous and $\int_0^4 f(x) dx = 10$, find $\int_0^2 f(2x) dx$.

Example. If f is continuous and $\int_0^9 f(x) dx = 4$, find $\int_0^3 x f(x^2) dx$.

Example. Suppose f is an even function with $\int_0^8 f(x) dx = 9$. Evaluate the following:

a)
$$\int_{-1}^{1} x f(x^2) dx$$
.

b)
$$\int_{-2}^{2} x^2 f(x^3) dx$$
.

Example. Evaluate the integrals:

a)
$$\int \sec^2(10x) dx$$

b)
$$\int \tan^{10}(4x)\sec^2(4x) dx$$

$$c) \int \left(x^{\frac{3}{2}} + 8\right)^5 \sqrt{x} \, dx$$

$$d) \int \frac{2x}{\sqrt{3x+2}} \, dx$$

$$e) \int \frac{7x^2 + 2x}{x} \, dx$$

$$f) \int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

g)
$$\int_0^{\sqrt{3}} \frac{3}{9+x^2} \, dx$$

$$h) \int_0^{\frac{\pi}{6}} \frac{\sin(2y)}{\sin^2(y) + 2} \, dy$$

i)
$$\int \frac{\sec(z)\tan(z)}{\sqrt{\sec(z)}} \, dz$$

$$j) \int \frac{1}{\sin^{-1}(x)\sqrt{1-x^2}} \, dx$$

$$k) \int \frac{x}{\sqrt{4 - 9x^2}} \, dx$$

$$1) \int \frac{x}{1+x^4} \, dx$$

$$m) \int \frac{\cos \sqrt{\theta}}{\sqrt{\theta} \sin^2 \sqrt{\theta}} \, d\theta$$

$$n) \int x^2 \sqrt{2+x} \, dx$$

o)
$$\int \left(\sin^5(x) + 3\sin^3(x) - \sin(x)\right) \cos(x) dx$$

p)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (x^3 + x^4 \tan(x)) dx$$

q)
$$\int_0^{\frac{\pi}{2}} \cos(x) \sin(\sin(x)) dx$$

$$r) \int \frac{1+x}{1+x^2} \, dx$$

Example. Evaluate these more challenging integrals:

a)
$$\int \frac{dx}{\sqrt{1+\sqrt{1+x}}}$$

b)
$$\int x \sin^4(x^2) \cos(x^2) dx$$

6.1: Velocity and Net Change

Definition. (Position, Velocity, Displacement, and Distance)

- 1. The **position** of an object moving along a line at time t, denoted s(t), is the location of the object relative to the origin.
- 2. The **velocity** of an object at time t is v(t) = s'(t).
- 3. The **displacement** of the object between t = a and t = b > a is

$$s(b) - s(a) = \int_a^b v(t) dt.$$

4. The **distance traveled** by the object between t = a and t = b > a is

$$\int_{a}^{b} |v(t)| dt$$

where |v(t)| is the **speed** of the object at time t.

28

Example. Suppose an object moves along a line with velocity (in ft/s) v(t) = 6 - 2t, for $0 \le t \le 5$, where t is measured in seconds.

• Find the displacement of the object on the interval $0 \le t \le 5$.

• Find the distance traveled by the object on the interval $0 \le t \le 5$.

Example. A cyclist rides down a long straight road at a velocity (in m/min) given by v(t) = 400 - 20t, for $0 \le t \le 10$.

• How far does the cyclists travel in the first 5 minutes?

• How far does the cyclists travel in the first 10 minutes?

• How far has the cyclist traveled when her velocity is 250 m/min?

Example. The population of a community of foxes is observed to fluctuate on a 10-year cycle due to variations in the availability of prey. When population measurements began (t = 0), the population was 35 foxes. The growth rate in units of foxes/year was observed to be:

$$P'(t) = 5 + 10\sin\left(\frac{\pi t}{5}\right)$$

• Find P(t).

• Find the population of foxes after the first 5 years, rounded to the nearest whole number of foxes.

Theorem 6.1: Position from Velocity

Given the velocity v(t) of an object moving along a line and its initial position s(0), the position function of the object for future times $t \geq 0$ is

$$\underbrace{s(t)}_{\substack{\text{position} \\ \text{at } t}} = \underbrace{s(0)}_{\substack{\text{initial} \\ \text{position}}} + \underbrace{\int_{0}^{t} v(x) \, dx}_{\substack{\text{displacement} \\ \text{over } [0, t]}}.$$

Theorem 6.2: Velocity from Acceleration

Given the acceleration a(t) of an object moving along a line and its initial velocity v(0), the velocity of the object for future times $t \geq 0$ is

$$v(t) = v(0) + \int_0^t a(x) dx.$$

Example. At t = 0, a train approaching a station begins decelerating from a speed of 80 miles/hour according to the acceleration function $a(t) = -1280(1+8t)^{-3}$, where $t \ge 0$ is measured in hours. The units of acceleration are mi/hr².

• Find the velocity of the train at t = 0.25.

• How far does the train travel in the first 15 minutes (1/4 hour)?

• How long does it take the train to travel 9 miles?

Theorem 6.3: Net Change and Future Value

Suppose a quantity Q changes over time at a known rate Q'. Then the **net change** in Q between t = a and t = b > a is

$$\underbrace{Q(b) - Q(a)}_{\text{net change in } Q} = \int_{a}^{b} Q'(t) dt.$$

Given the initial value Q(0), the **future value** of Q at time $t \geq 0$ is

$$Q(t) = Q(0) + \int_0^t Q'(x) \, dx.$$

Velocity-Displacement Problems

Position s(t)

Velocity: s'(t) = v(t)

Displacement: $s(b) - s(a) = \int_{a}^{b} v(t) dt$

Future position: $s(t) = s(0) + \int_0^t v(x) dx$

General Problems

Quantity Q(t) (such as volume or population)

Rate of change: Q'(t)

Net change: $Q(b) - Q(a) = \int_a^b Q'(t) dt$

Future value of Q: $Q(t) = Q(0) + \int_0^t Q'(x) dx$

6.2: Regions Between Curves

Definition. (Area of a Region Between Two Curves)

Suppose f and g are continuous functions with $f(x) \ge g(x)$ on the interval [a, b]. The area of the region bounded by the graphs of f and g on [a, b] is

$$A = \int_a^b (f(x) - g(x)) dx.$$

Example. Consider the region bounded by the curves $y = \cos(x)$ and $y = 1 - \cos(x)$, $0 \le x \le \pi$. Set up the integral(s) representing the area of this region.

Example. Find the area of the region by integrating with respect to x.

Example. Find the volume of the solid whose base is bounded by the graphs of y = x+1 and $y = x^2 - 1$, with the cross sections in the shape of rectangles of height 2 taken perpendicular to the x-axis.

Definition. (Area of a Region Between Two Curves with Respect to y)

Suppose f and g are continuous functions with $f(y) \ge g(y)$ on the interval [c,d]. The area of the region bounded by the graphs x = f(y) and x = g(y) on [c,d] is

$$A = \int_{c}^{d} (f(y) - g(y)) dy.$$

Example. Find the area of the region bounded by x = 3y, and $x = y^2 - 10$

by integrating with respect to x

by integrating with respect to y

Example. Find the area of the region bounded by $y = x^3$, and $y = \sqrt{x}$ by integrating with respect to x

by integrating with respect to y

Example. Find the area of the region bounded by $y = 4\sqrt{2x}$, $y = 2x^2$, and y = -4x + 6

6.3: Volume by Slicing

General Slicing Method

Suppose a solid object extends from x = a to y = b, and the cross section of the solid perpendicular to the x-axis has an area given by a function A that is integrable on [a, b]. The volume of the solid is

$$V = \int_{a}^{b} A(x) \, dx.$$

Example. Use the general slicing method to find the volume of the solid whose base is the region bounded by the semicircle $y = \sqrt{1 - x^2}$ and the x-axis, and whose cross sections through the solid perpendicular to the x-axis are squares.

Disk Method about the x-Axis

Let f be continuous with $f(x) \ge 0$ on the interval [a, b]. If the region R bounded by the graph of f, the x-axis, and the lines x = a and x = b is revolved about the x-axis, the volume of the resulting solid of revolution is

$$V = \int_{a}^{b} \pi \underbrace{f(x)^{2}}_{\substack{\text{disk} \\ \text{radius}}} dx.$$

Washer Method about the x-Axis

Let f and g be continuous functions with $f(x) \ge g(x) \ge 0$ on [a, b]. Let R be the region bounded by y = f(x), y = g(x), and the lines x = a and x = b. When R is revolved about the x-axis, the volume of the resulting solid of revolution is

$$V = \int_{a}^{b} \pi \underbrace{(f(x)^{2} - g(x)^{2})}_{\text{outer radius}} dx.$$

6.3: Volume by Slicing 41 Math 1080 Class notes

Example. Consider the region bounded by $y = e^{x/4}$, y = 0, x = 0, and x = 6. Find the volume of the solid generated by rotating the region about the x-axis.

Disk and Washer Methods about the y-Axis

Let p and q be continuous functions with $p(y) \geq q(y) \geq 0$ on [c,d]. Let R be the region bounded by x = p(y), x = q(y), and the lines y = c and y = d. When R is revolved around the y-axis, the volume of the resulting solid of revolution is given by

$$V = \int_{c}^{d} \pi (\underbrace{p(y)^{2}}_{\text{outer radius}} - \underbrace{q(y)^{2}}_{\text{inner radius}}) dy.$$

If q(y) = 0, the disk method results:

$$V = \int_{c}^{d} \pi \underbrace{p(y)^{2}}_{\substack{\text{disk} \\ \text{radius}}} dy.$$

6.3: Volume by Slicing 43 Math 1080 Class notes Fall 2021

Example. Consider the region bounded between $y = \sqrt[4]{x}$, y = 2, and x = 0.

Setup the integral with respect to x that gives the area of the region.

Setup the integral with respect to y that gives the area of the region.

Use the disk/washer method to setup the that represents the volume of the solid generated by rotating the region about the x-axis.

Example. Consider the region R between $y = \sqrt{x} + 1$ and $y = x^2 + 1$. Setup the integrals which find the volume of the solid obtained by rotating the region R as indicated below.

45

about the y-axis

about the x-axis

about the line x = 1

about the line y = -1

6.4: Volume by Shells

Volume by the Shell Method

Let f and g be continuous functions with $f(x) \ge g(x)$ on [a, b]. If R is the region bounded by the curves y = f(x) and y = g(x) between the lines x = a and x = b, the volume of the solid generated when R is revolved about the y-axis is

$$V = \int_{a}^{b} \underbrace{2\pi x}_{\substack{\text{shell circumference height}}} \underbrace{f(x) - g(x)}_{\substack{\text{shell height}}} dx.$$

	ple. Consider a general region R revolved around the y -axis. When using the disk/washer method, we integrate with respect to
V	When using the shell method, we integrate with respect to
	ple. Consider a general region R revolved around the x -axis. When using the $\mathbf{disk/washer}$ method, we integrate with respect to
V	When using the shell method, we integrate with respect to

Example. Consider the region bounded between $y = x^3$, y = 8 and x = 0.

Use the disk/washer method to setup the integral that represents the volume of the solid generated by rotating the region about the x-axis.

about the y-axis.

Use the disk/washer method to setup the integral that represents the volume of the solid generated by rotating the region about the line x = -1.

about the line y = 8.

Example. Consider the region R bounded by $y = 4 - x^2$, y = 2, and x = 1. Use the shell method to setup the integral that represents the volume of the solid generated by rotating the region R about the indicated axis of rotation.

about x-axis,

about y-axis,

about the line x = -2,

about the line y = 2.

Example. Consider the region bounded by $y = \frac{1}{x+1}$ and $y = 1 - \frac{x}{3}$. Use both the disk/washer method and shell method to find the volume of the solid generated when R is rotated about the x-axis.

Example. Determine if the fo	ollowing statements are true.	
When using the shell m axis of revolution.	ethod, the axis of the cylindri	cal shells is parallel to the
If a region is revolved ab	bout the y -axis, then the shell r	method must be used.
If a region is revolved about and integrate with respectively	out the x -axis, it is possible to uct to x .	se the disk/washer method
6.4: Volume by Shells	51	Math 1080 Class notes Fall 2021

6.5: Length of Curves

Definition. (Arc Length for y = f(x))

Let f have a continuous first derivative on the interval [a, b]. The length of the curve from (a, f(a)) to (b, f(b)) is

$$L = \int_a^b \sqrt{1 + f'(x)^2} \, dx.$$

Definition. (Arc Length for x = g(y))

Let g have a continuous first derivative on the interval [c, d]. The length of the curve from (g(c), c) to (g(d), d) is

$$L = \int_c^d \sqrt{1 + g'(y)^2} \, dy.$$

6.5: Length of Curves 52 Math 1080 Class notes

Example. Using a geometric argument, we can see that the length of $f(x) = -\frac{3}{4}x + \frac{7}{2}$ on the interval [-6,2] is L=10. Compute this using the arc-length formula.

Example. Find the arc length of the curve $y = \frac{1}{4}x^2 - \frac{1}{2}\ln(x)$, for $1 \le x \le 2$.

Example. Find the arc length of the curve $y = \frac{1}{3}x^{3/2}$ on [0, 12].

Example. Find a curve that passes through (1,2) on [2,6] whose arc length is computed using

$$\int_{2}^{6} \sqrt{1 + 16x^{-2}} \, dx.$$

Example. Suppose f has length L on [a, b]. Evaluate

$$\int_{a/c}^{b/c} \sqrt{1 + f'(cx)^2} \, dx.$$

6.6: Surface Area

Definition. (Area of a Surface of Revolution)

Let f be a nonnegative function with a continuous first derivative on the interval [a, b]. The area of the surface generated when the graph of f on the interval [a, b] is revolved around the x-axis is

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + f'(x)^{2}} \, dx.$$

Example. Find the exact area of the surface obtained by rotating the curve $y=x^3$, $0 \le x \le 2$ about the x-axis.

Example. Find the exact area of the surface obtained by rotating the curve $y = \sqrt{8x - x^2}$, $1 \le x \le 7$ about the x-axis.

Example. Find the exact area of the surface obtained by rotating the curve $y = \frac{1}{2}(e^x + e^{-x}), -\ln(2) \le x \le \ln(2)$ about the x-axis.

6.7: Physical Applications

Definition. (Mass of a One-Dimensional Object)

Suppose a thin bar or wire is represented by the interval $a \le x \le b$ with a density function ρ (with units of mass per length). The **mass** of the object is

$$m = \int_{a}^{b} \rho(x) \, dx.$$

Example. A thin bar, represented by the interval $0 \le x \le 4$, has density in units of kg/m given by $\rho(x) = 5e^{-2x}$. What is the mass of the bar?

Definition. (Work)

The work done by a variable force F moving an object along a line from x=a to x=b in the direction of the force is

$$W = \int_{a}^{b} F(x) \, dx.$$

Example. According to **Hooke's Law**, the force required to keep a spring in a compressed or stretched position x units from the equilibrium position is F(x) = kx, where the positive spring constant k measures the stiffness of the spring.

Suppose a force of 40 N is required to stretch a spring 0.1 m from its equilibrium position. Assuming the spring obeys Hooke's Law, how much work is required to stretch the spring 0.4 m beyond is equilibrium position?

Example (Work from force). How much work is required to move an object from x = 1 to x = 3 (measured in meters) in the presence of a force (in N) given by $F(x) = \frac{2}{x^2}$ acting along the x-axis?

Example. Imagine a chain of length L meters with constant density ρ kg/m is hanging vertically. Using g to represent the acceleration due to gravity, the work required to lift the chain is

$$W = \int_0^L \rho g(L - y) \, dy$$

A 50 meter long chain hangs vertically from a cylinder attached to a winch. Assume there is no friction in the system and the chain has a density of 3 kg/m. How much work is required to wind the entire chain onto the cylinder if a 60-kg load is attached to the end of the chain? Use g for the acceleration due to gravity.

Procedure: Solving Pumping Problems

- 1. Draw a y-axis in the vertical direction (parallel to gravity) and choose a convenient origin. Assume the interval [a, b] corresponds to the vertical extent of the fluid.
- 2. For $a \leq y \leq b$, find the cross-sectional area A(y) of the horizontal slices and the distance D(y) the slices must be lifted.
- 3. The work required to lift the water is

$$W = \int_{a}^{b} \rho g A(y) D(y) \, dy.$$

Note: Lifting problems are a special case of pumping problems where A(y) = 1.

Example. A water tank is shaped like an inverted cone with height 6 meters and base radius 1.5 meters. If the tank is full, how much work is required to pump the water to the level of the top of the tank and out of the tank? Use g for the acceleration due to gravity and note that the density of water is 1000 kg/m^3 .

Example. (Pumping gasoline) A cylindrical tank with a length of 10 m and a radius of 5 m is on its side and half full of gasoline. How much work is required to empty the tank through an outlet pipe at the top of the tank? The density of gasoline is $\rho = 737 \, \text{kg/m}^3$

Procedure: Solving Force-on-Dam Problems

- 1. Draw a y-axis on the face of the dam in the vertical direction and choose a convenient origin (often taken to be the base of the dam).
- 2. Find the width function w(y) for each value of y on the face of the dam.
- 3. If the base of the dam is at y = 0 and the top of the dam is at y = a, then the total force on the dam is

$$F = \int_0^a \rho g \underbrace{(a - y)}_{\text{depth}} \underbrace{w(y)}_{\text{width}} dy.$$

Example. The figure to the right shows the shape and dimensions of a small dam. Assuming the water level is at the top of the dam, find the total force on the face of the dam. Use ρ for the density of the water and g for the acceleration due to gravity.

Example. Force on a building A large building shaped like a box is 50 m high with a face that is 80 m wide. A strong wind blows directly at the face of the building, exerting a pressure of 150 N/m^2 at the ground and increasing with height according to P(y) = 150 + 2y, where y is the height above the ground. Calculate the total force on the building, which is a measure of the resistance that must be included in the design of the building.

8.1: Basic Approaches (to Integration)

Example. Derive the integral formula $\int \sec(ax) dx = \frac{1}{a} \ln|\sec(ax) + \tan(ax)| + C$.

Example. Evaluate $\int \frac{dx}{e^{3x} + e^{-3x}}$.

Example. Evaluate
$$\int \frac{\sin(x) + \cos^4(x)}{\csc(x)} dx$$
.

Note:
$$\begin{cases} \cos^2(x) = \frac{1 + \cos(2x)}{2} \\ \sin^2(x) = \frac{1 - \cos(2x)}{2} \end{cases}$$

Example. Evaluate
$$\int \frac{2x^2 + 3x - 4}{x - 2} dx$$
.

Example. Evaluate $\int \frac{dx}{\sqrt{7-6x-x^2}}$.

8.2: Integration by Parts

Integraton by Parts

Suppose u and v are differentiable functions. Then

$$\int u \, dv = uv - \int v \, du.$$

A good mnemonic is ILATE.

Example. Evaluate $\int xe^{-\frac{x}{2}} dx$.

Integration by Parts for Definite Integrals

Let u and v be differentiable. Then

$$\int_{a}^{b} u(x)v'(x) \, dx = u(x)v(x) \Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x) \, dx$$

Example. Find the area of the region between the x-axis and $f(x) = \frac{\ln(x)}{x^2}$ on [1, e].

Example. Evaluate $\int x^2 \cos(2x) dx$.

Example. Evaluate $\int e^{-x} \sin(3x) dx$.

Example. Evaluate $\int e^{4x} \cos(3x) dx$.

Example. Derive the integral formula

$$\int \ln(x) \, dx = x \ln(x) - x + C$$

Example. Evaluate $\int 10 \cos(\sqrt{x}) dx$

Example. Evaluate $\int_1^e \ln(2x) dx$.

8.3: Trigonometric Integrals

${\bf Important\ trigonometric\ identities}$

Pythagorean Identities	$\sin^2(\theta) + \cos^2(\theta) = 1$
Angle sum formulas	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$
Double angle formulas	
	$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$
	$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$
Half angle formulas	
	$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$
	$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$

Derivation of angle sum formulas

$$\sin(\alpha) = \frac{\overline{DE}}{\overline{EF}} = \frac{\overline{DE}}{\sin(\beta)} \implies \overline{DE} = \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha) = \frac{\overline{DF}}{\overline{EF}} = \frac{\overline{DF}}{\sin(\beta)} \implies \overline{DF} = \cos(\alpha)\sin(\beta)$$

$$\sin(\alpha) = \frac{\overline{CE}}{\overline{AE}} = \frac{\overline{CE}}{\cos(\beta)} \implies \overline{CE} = \sin(\alpha)\cos(\beta)$$

$$\cos(\alpha) = \frac{\overline{AC}}{\overline{AE}} = \frac{\overline{AC}}{\cos(\beta)} \implies \overline{AC} = \cos(\alpha)\cos(\beta)$$

Derivation of the double angle formulas

$$\sin(2\theta) = \sin(\theta + \theta) = \sin(\theta)\cos(\theta) + \cos(\theta)\sin(\theta) = 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos(\theta + \theta) = \cos(\theta)\cos(\theta) - \sin(\theta)\sin(\theta) = \cos^2(\theta) - \sin^2(\theta)$$

Derivation of the half angle formulas

Start with the cosine double angle formula:

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$

Solve for either $\sin^2(\theta)$ or $\cos^2(\theta)$:

$$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \qquad \qquad \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$$

Example. Evaluate the integral $\int \cos^5(x) dx$.

Example. Evaluate the integral $\int \sin^3(x) \cos^{3/2}(x) dx$.

Example. Evaluate the integral $\int 20 \sin^2(x) \cos^2(x) dx$

Example. Evaluate the integral $\int \sec^6(x) \tan^4(x) dx$.

Example. Evaluate the integral $\int 35 \tan^5(x) \sec^4(x) dx$.

Example. Consider the region bounded by $y = \sec(x)$ and $y = \cos(x)$ for $0 \le x \le \pi/3$. Find the volume of the solid generated when rotating this region about the line y = -1.

Example.	Find the le	ength of the	e curve $y =$	$= \ln (2\sec(x))$)) on the in	terval $[0, \pi/6]$.	
8.3: Trigonomet	ric Integrals		8	37		Math 1080	Class notes Fall 2021

$\int \sin^m(x)\cos^n(x)dx$	Strategy
m odd and positive, n real	Split off $sin(x)$, rewrite the resulting even power of $sin(x)$ in terms of $cos(x)$, and then use $u = cos(x)$.
n odd and positive, m real	Split off $cos(x)$, rewrite the resulting even power of $cos(x)$ in terms of $sin(x)$, and then use $u = sin(x)$.
m and n both even, nonnegative integers	Use half-angle formulas to transform the integrand into a polynomial in $\cos(2x)$, and apply the preceding strategies once again to powers of $\cos(2x)$ greater than 1.
$\int \tan^m(x) \sec^n(x) dx$	
n even and positive, m real	Split off $\sec^2(x)$, rewrite the remaining even power of $\sec(x)$ in terms of $\tan(x)$, and use $u = \tan(x)$.
m odd and positive, n real	Split off $sec(x) tan(x)$, rewrite the remaining even power of $tan(x)$ in terms of $sec(x)$, and use $u = sec(x)$.
m even and positive, n odd and positive	Rewrite $tan^m(x)$ in terms of $sec(x)$
$\int \sec^n(x) dx$	
n odd	Use integration by parts with $u = \sec^{n-2}(x)$ and $dv = \sec^2(x) dx$
n even	Split off $\sec^2(x)$, rewrite the remaining powers of $\sec(x)$ in terms of $\tan(x)$, and use $u = \tan(x)$.
$\int \tan^m(x) dx$	Split off $\tan^2(x)$ and rewrite in terms of $\sec(x)$. Expand into difference of integrals substituting $u = \tan(x)$. Repeat the process as needed for remaining powers of $\tan(x)$.

8.4: Trigonometric Substitutions

Example. Verify the formula for the area of a circle with radius a by finding the area under $f(x) = \sqrt{a^2 - x^2}$.

$$a^2 - u^2$$
 $u = a\sin(\theta), -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \text{ for } |u| \le a$

$$a^2 + a^2 \sin^2(\theta) = a^2 \cos^2(\theta)$$

$$a^{2} + u^{2}$$
 $u = a \tan(\theta), -\frac{\pi}{2} < \theta < \frac{\pi}{2},$

$$a^2 - a^2 \tan^2(\theta) = a^2 \sec^2(\theta)$$

$$u^2 - a^2$$
 $u = a \sec(\theta), \begin{cases} 0 \le \theta < \frac{\pi}{2}, & \text{for } u \ge a \\ \frac{\pi}{2} < \theta \le \pi, & \text{for } u \le -a \end{cases}$ $a^2 \sec^2(\theta) - a^2 = a^2 \tan^2(\theta)$

$$a^2 \sec^2(\theta) - a^2 = a^2 \tan^2(\theta)$$

Example.
$$\int \frac{\sqrt{x^2 - 4}}{x^3} \, dx$$

Example.
$$\int \frac{\sqrt{16-x^2}}{x} dx$$

Example.
$$\int \frac{x^3}{(25-4x^2)^{3/2}} dx$$

Example.
$$\int_0^{1/3} \frac{dx}{(9x^2+1)^{3/2}}$$

Example.
$$\int \frac{x}{\sqrt{x^2 - 2x + 10}}$$

8.5: Partial Fractions

Example. Simplify $f(x) = \frac{1}{x-2} + \frac{2}{x+4}$ by finding a common denominator.

Procedure: Partial Fractions with Simple Linear Factors

Suppose f(x) = p(x)/q(x), where p and q are polynomials with no common factors and with the degree of P less than the degree of q. Assume q is the product of simple linear factors. The partial fraction decomposition is obtained as follows.

Step 1: Factor the denominator q in the form $(x-r_1)(x-r_2)\dots(x-r_n)$

Step 2: Partial fraction decomposition

$$\frac{p(x)}{q(x)} = \frac{A_1}{(x - r_1)} + \frac{A_2}{(x - r_2)} + \dots + \frac{A_n}{(x - r_n)}.$$

Step 3: Clear denominators Multiply both sides of the equation in Step 2 by $q(x) = (x - r_1)(x - r_2) \dots (x - r_n)$

Step 4: Solve for coefficients Equate like powers of x in Step 3 to solve for the undetermined coefficients A_1, \ldots, A_n .

Example. Perform partial fraction decomposition on $f(x) = \frac{3x}{x^2 + 2x - 8}$.

Example.
$$\int \frac{28x^3 - 56x^2 + 9}{x^2 - 2x}$$

Procedure: Partial Fractions for Repeated Linear Factors

Suppose the repeated linear factor $(x-r)^m$ appears in the denominator of a proper rational function in reduced form. The partial fraction decomposition has a partial fraction for each power of (x-r) up to and including the mth power; that is, the partial fraction decomposition contains the sum

$$\frac{A_1}{(x-r)} + \frac{A_3}{(x-r)^2} + \frac{A_3}{(x-r)^3} + \dots + \frac{A_m}{(x-r)^m}$$

where A_1, \ldots, A_m are constants to be determined.

Example. Setup the partial fraction decomposition for $f(x) = \frac{x^3 - 8x + 19}{x^4 + 3x^3}$.

Example. Setup the partial fraction decomposition for $g(x) = \frac{2}{x^5 - 6x^4 + 9x^3}$.

Example. Evaluate $\int \frac{x^2 + 1}{(2x - 3)(x - 2)^2} dx.$

Example. Evaluate $\int \frac{8}{3x^3 + 7x^2 + 4x} dx$.

Example. Perform partial fraction decomposition on the following fractions or identify them as irreducible.

$$\frac{1}{x^2 - 13x + 43}$$

$$\frac{x^2}{(x-4)(x+5)}$$

Example. Perform partial fraction decomposition on the following fractions or identify them as irreducible.

$$\frac{7}{(x^2+1)^2}$$

$$\frac{1}{x^2 + 11x + 28}$$

Example. Evaluate $\int \frac{4x}{(x+1)(x^2+1)} dx$

Example. Evaluate $\int \frac{3x^2 + 2x + 12}{(x^2 + 4)^2} dx$

Example. Evaluate $\int \frac{1}{x\sqrt{1+2x}} dx$ using the substitution $u = \sqrt{1+2x}$.