39. Jungumas

Vytautas Vėgėlė

Jungumas

Jungumas (angl. Connectivity) – grafo savybė nusakanti ar grafas yra jungus.

Jungumas apibrėžia mažiausią kiekį elementų, kuriuos reikia pašalinti, jog nebeliktų jokio kelio tarp kurių nors grafo viršūnių.

Jungumo skaičiai

Viršūninio jungumo skaičius (vertex connectivity) — mažiausias skaičius viršūnių, kurias pašalinus, grafas G tampa arba nejungiuoju grafu arba vienos viršūnės grafu. Žymimas $\kappa(G)$. Grafas vadinamas k-jungiuoju, jeigu $\kappa(G) \ge k$ Pilnasis grafas taps nejungus tik pašalinus visas viršūnes išskyrus paskutinę! Ciklinio grafo viršūninis jungumas $\kappa(C_n)=2$ Pilno grafo viršūninis jungumas $\kappa(K_n)=n-1$

Briauninis jungumo skaičius (edge-connectivity) — mažiausias skaičius briaunų, kurias pašalinus, grafas G tampa nejungiuoju grafu. Žymimas $\lambda(G)$. Grafas vadinamas **briaunomis k-jungiuoju**, jei $\lambda(G) \ge k$

Jungumas

Grafo G viršūnė v vadinama sąlyčio tašku (cut vertix/articulation point), jei G-v turi daugiau jungiųjų komponenčių nei grafas G.

Grafo G briauna vadinama *tiltu* (*bridge*), jei, ją pašalinus, gautasis grafas turi daugiau jungiųjų komponenčių nei grafas G.

Jungumas

Kiekvienam grafui V galioja:

$$\kappa(G) \leq \lambda(G) \leq \delta(G)$$

$$\delta(G) = \min_{v \in V} d(v)$$
 (mažiausias viršūnės laipsnis)

Beveik visiems grafams $(\lim_{n\to\infty} \frac{\phi P(n)}{\phi(n)} = 1)$ galioja:

$$\kappa(G) = \lambda(G)$$

Jungioji komponentė

Grafo k-jungioji komponentė (k-connected component) – tai maksimalus *k*-jungusis pografis. Jis dažnai vadinamas *k-komponente*.

Teorema. Dvi skirtingos grafo G k-komponentės turi ne daugiau nei (k-1) bendrų viršūnių.

Nesusikertančios grandinės

Apibrėžimas. Dvi (a,b) -grandinės vadinamos nesusikertančiomis (viršūnėmis nesusikertančiomis), jei jos neturi bendrų viršūnių, išskyrus *a* ir *b*.

Teorema (Hassler Whitney, 1932). Grafas yra *k*-jungusis tada ir tiktai tada, kai bet kuri nesutampančių viršūnių pora sujungta ne mažiau kaip *k* viršūnėmis nesusikertančių grandinių.

Skiriančios viršūnės

Apibrėžimas. Sakoma, kad grafo G viršūnių poaibis S skiria viršūnes a ir b, jei grafe G-S viršūnės a ir b priklauso skirtingoms jungiosioms komponentėms.

Teorema (Karlas Mengeras, 1927). Mažiausias skaičius viršūnių, skiriančių dvi negretimas viršūnes a ir b, yra lygus didžiausiam skaičiui poromis nesusikertančių grandinių, jungiančių a ir b viršūnes.

Skiriančios briaunos

Apibrėžimas. Briaunų aibė R skiria grafo G a ir b viršūnes, jei grafe G-R viršūnės a ir b priklauso skirtingoms jungiamosioms komponentėms.

Teorema. Mažiausias skaičius briaunų, skiriančių grafo G viršūnes a ir b, yra lygus didžiausiam briaunomis nesusikertančių grandinių, jungiančių a ir b viršūnes, skaičiui.