Homework for Network Optimization Models

1. [From Hillier] You and several friends are about to prepare a lasagna dinner. The tasks to be performed, their immediate predecessors, and their estimated durations are as follows:

Task	Task Description	Tasks That Must Precede	Time (minutes)
A	Buy the mozzarella cheese*	_	30
В	Slice the mozzarella	A	5
C	Beat 2 eggs	_	2
D	Mix eggs and ricotta cheese	C	3
E	Cut up onions and mushrooms	_	7
F	Cook the tomato sauce	E	25
G	Boil large quantity of water	_	15
H	Boil the lasagna noodles	G	10
1	Drain the lasagna noodles	H	2
J	Assemble all the ingredients	I, F, D, B	10
K	Preheat the oven	_	15
L	Bake the lasagna	J, K	30

- a. How long till dinner is ready?
- b. ...you got distracted by your phone and were interrupted for six minutes when you should have been cutting the onions and mushrooms. By how much will dinner be delayed?
- 2. [From Hillier] A movie production company is attempting to finish their big Christmas movie in time for Thanksgiving weekend (15 weeks from now). [FYI Thanksgiving is only 3 weeks away] The network model and costs are below. Assume crash times are linear, so Activity D would cost 6 million per week crashed.

Activity	Normal Time (weeks)	Crash Time (weeks)	Normal Cost (millions)	Crash Cost (millions)
A	5	3	\$20	\$30
В	3	2	10	20
C	4	2	16	24
D	6	3	25	43
E	5	4	22	30
F	7	4	30	48
G	9	5	25	45
Н	8	6	30	44

- a. Find a minimal cost to finish the movie on time.
- b. Why is the most expensive crash, activity, B, crashed for 1 week?
- c. Why is the least expensive crash, Activity C, not crashed?

3. [From Hillier] Find a quickest route from Seattle to Denver: the map below shows driving time (in hours) between various city points.

