TDT4200 assignment 3

September 27, 2019

Introduction

This document aims to answer the tasks given by the third assignment in TDT4200. The associated source code can be found at https://github.com/eldarht/TDT4200_assignment3

Task 0 And comparison

3

The time it took for the application to complete with laplacian1Kernel on average after 5 tries on my computer (Dell LATITUDE E5450) as measured by the time command:

Itterations	Real time	scattery/gathery (proc: 8)	scattery/gathery with ghosts (proc: 8)
1	0.253s	0.743s	0.738s
1024	1 m 38.798 s	50.176s	54.662s

The cpu is a Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz with 4 cores and two threads per core(Hyper threaded).

Task 2

b)

The amount of communication varies depending on the number of ranks. For this task I assume 8 ranks, as that is a good fit for a four core CPU with hyper threading.

Before the loop (setup)

call	description	data
MPI_Bcast	The dimensions of each image section is sendt.	9 unsigned int
	This will send one message to each rank, but	
	the task of sending is delegated.	
MPI_Scatterv	The whole image is divided and border dupli-	5350400 unsigned char
	cates	

The loop (Kernel convolutions)

call	description	data
MPI_Send (even)	After each loop the even numbered ranks sends	53760 unsigned char
	one row for each ghostborder. That is one row	
	for rank zero and two rows for rank 2, 4 and 6.	
	With three itterations this happen three times	
	for each ranks borders.	
MPI_Recv (even)	After each loop the even numbered ranks re-	53760 unsigned char
	cieve one row for each of their borders. That	
	is the same as for the even sends.	
MPI_Send (odd)	After each loop the odd numbered ranks sends	53760 unsigned char
	one row for each ghostborder. That is one row	
	for rank 7 and two rows for rank 1, 3 and 5.	
	This also happens 3 times for each ranks bor-	
	ders.	
MPI_Recv (odd)	After each loop the even numbered ranks re-	53760 unsigned char
	cieve one row for each of their borders. That	
	is the same as for the odd sends.	

In this implementation, the border at the end of the section will always be sendt before the border before the section.

After the loop (Reconstruction)

call	description	data	
MPI_Gatherv	The whole image reconstructed without ghost-	5242880 unsigned char	
	borders		

In Total There are 42 sends/reviecves in the loop and 45 in total, if you consider scatter, gather and broadcast as one each. The total data is 9 unsigned int and 10700800 unsigned char.

d)

I wanted as much of the memory management to be done by MPI as possible. Having the recieve write to the ghost border that was in the bmp image channel, so as to not have to use memory or reconstruct the image section. I did not want to tuch the applykernel() function, as i knew that it already worked

on the rawdata. I had read the ghost_cell_patterns.pdf and followed the simplest instructions for preventing deadlock. Hence the exchange/recieve order is dependent on the process rank.