```
library(dplyr)
library(uroot)
library(forecast)
library(purrr)
library(modelsummary)
library(ggplot2)

data <- read.table("D:/预删除文件夹/大三下/时间序列/月度温度数据.txt") %>%
    select(-1) %>%
    t() %>%
    as.vector() %>%
    ts(start = c(1948,01),frequency = 12)
plot(data,main="时序图")
```

时序图

acf(as.vector(data),lag.max = 50,main="自相关函数图")

自相关函数图


```
hegy.test(data,c(1,0,0))
##
## HEGY test for unit roots
##
## data: data
##
##
         statistic p-value
          -5.3086 0 ***
## t 1
                           0 ***
## t 2
            -7.2144
## F_3:4
             0.2466 0.7953
         41.0435
                           0 ***
## F_5:6
                           0 ***
## F_7:8
## F_9:10 52.1435
                           0 ***
                           0 ***
## F 11:12 55.0785
                           0 ***
## F_2:12 45.5517
                           0 ***
## F_1:12
            43.936
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Deterministic terms: constant
## Lag selection criterion and order: fixed, 0
## P-values: based on response surface regressions
hegy.test(data,c(1,0,1))
##
## HEGY test for unit roots
##
## data: data
##
##
          statistic p-value
                           0 ***
## t_1
           -6.7687
## t_2 -7.8149
## F_3:4 60.3168
## F_5:6 64.5678
## F_7:8 72.0734
## F_9:10 63.7933
                           0 ***
                           0 ***
                          0 ***
                           0 ***
                           0 ***
                           0 ***
## F_11:12 64.7878
## F_2:12 71.4513
                           0 ***
                           0 ***
## F_1:12 68.1468
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Deterministic terms: constant + seasonal dummies
## Lag selection criterion and order: fixed, 0
## P-values: based on response surface regressions
```

从时序图中可以看到没有明显的趋势,但存在周期波动特征,结合自相关函数图来看,大致可以确定周期为12,若假定有确定的季节趋势,HEGY 检验结果显示不

存在单位根,若假定无没有确定的季节趋势,HEGY 检验结果显示存在单位根,由此可以作两种尝试,一是考虑提取确定性季节趋势,二是不提取,下面首先考虑不提取季节特征

d12 <- diff(data, lag = 12)
plot(d12, main="12 步差分后时序图")</pre>

12步差分后时序图

acf(as.vector(d12),lag.max = 100,main="12 步差分后自相关函数图")

12步差分后自相关函数图

acf(as.vector(d12),type = "partial",lag.max = 100,main="12 步差分后偏自相 关函数图")

12步差分后偏自相关函数图


```
hegy.test(d12,c(1,0,0))
##
##
   HEGY test for unit roots
##
## data:
          d12
##
##
           statistic p-value
## t 1
            -14.8265
                           0
                           0 ***
## t 2
            -12.3119
## F_3:4
            193.6718
## F_5:6
            168.4906
## F_7:8
            182.4369
## F_9:10
            162.681
## F_11:12
            161.442
## F 2:12
            199.6249
## F_1:12
            192.7838
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Deterministic terms: constant
## Lag selection criterion and order: fixed, 0
## P-values: based on response surface regressions
```

可以看到 12 步差分后,自相关函数在周期点上呈现截尾特征,偏自相关函数在周期点上呈现拖尾特征,据此确定 P=0,并分别尝试 Q=1,2,3,对于一个周期内来说,自相关函数呈现拖尾特征,偏自相关函数呈现截尾特征,据此确定 q=0,并分别尝试 p=2,3

```
model1 <- Arima(data,c(2,0,0),c(0,1,3))
model2 <- Arima(data,c(3,0,0),c(0,1,3))
model3 <- Arima(data,c(2,0,0),c(0,1,2))</pre>
```

	SARIMA(2, 0,0)(0,1,3)	SARIMA(3, 0,0)(0,1,3)	SARIMA(2, 0,0)(0,1,2)	SARIMA(3, 0,0)(0,1,2)	SARIMA(2, 0,0)(0,1,1)	SARIMA(3, 0,0)(0,1,1)
ar1	0.147***	0.137***	0.139***	0.130***	0.138***	0.130***
	(0.037)	(0.037)	(0.036)	(0.036)	(0.036)	(0.036)
ar2	0.106**	0.092*	0.098**	0.086*	0.098**	0.085*
	(0.036)	(0.036)	(0.036)	(0.036)	(0.036)	(0.036)
sma1	-0.955***	-0.961***	-0.957***	-0.965***	-0.969***	-0.973***
	(0.037)	(0.037)	(0.041)	(0.041)	(0.027)	(0.027)
sma2	-0.067	-0.059	-0.017	-0.011		
	(0.049)	(0.049)	(0.041)	(0.041)		
sma3	0.068+	0.062				
	(0.039)	(0.039)				
ar3		0.095**		0.097**		0.098**
		(0.036)		(0.036)		(0.036)
BIC	3219.5	3219.2	3215.8	3215.1	3209.3	3208.5

```
map(models,~.$residuals) %>%
    map(Box.test,lag=12)

## $`SARIMA(2,0,0)(0,1,3)`

##
## Box-Pierce test

##
## data: .x[[i]]

## X-squared = 13.401, df = 12, p-value = 0.3406

##
##
##
## $`SARIMA(3,0,0)(0,1,3)`

##
## Box-Pierce test

##
## data: .x[[i]]
```

X-squared = 5.3528, df = 12, p-value = 0.9451

p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

```
##
##
## $`SARIMA(2,0,0)(0,1,2)`
##
## Box-Pierce test
##
## data: .x[[i]]
## X-squared = 14.485, df = 12, p-value = 0.2708
##
## $`SARIMA(3,0,0)(0,1,2)`
##
## Box-Pierce test
##
## data: .x[[i]]
## X-squared = 5.9537, df = 12, p-value = 0.9184
##
##
## $`SARIMA(2,0,0)(0,1,1)`
## Box-Pierce test
##
## data: .x[[i]]
## X-squared = 14.745, df = 12, p-value = 0.2557
##
## $`SARIMA(3,0,0)(0,1,1)`
##
## Box-Pierce test
##
## data: .x[[i]]
## X-squared = 5.9795, df = 12, p-value = 0.9171
```

可以看到所有模型的残差序列都可以认为是纯随机的,可以认为这些模型都较好地提取了序列信息。还可以注意到其中一些模型的部分系数不显著,删去不显著的项之后 BIC 有所上升,综合来看,SARIMA(3,0,0)(0,1,1)模型各项系数显著,且 BIC 最小,残差纯随机性检验的 p 值也很大,故选定该模型进行拟合,拟合结果如下图所示

```
forecast(model6,1000) %>%
  autoplot() +
  labs(title = "6 年预测结果") +
  theme_bw()
```

6年预测结果

下面考虑提取确定性季节特征,首先看仅含有漂移项的模型

```
model_drift <- Arima(data,c(0,0,0),c(0,1,0),include.constant = T)
model_drift %>%
forecast(1000) %>%
autoplot() +
labs(title = "纯漂移项模型长期预测结果") +
theme_bw()
```

纯漂移项模型长期预测结果


```
Box.test(model_drift$residuals,lag = 12)
##
## Box-Pierce test
##
## data: model_drift$residuals
## X-squared = 238.12, df = 12, p-value < 2.2e-16</pre>
```

可以看到从点估计来说,该模型也在一定程度拟合了温度的变化特征,但纯随机性 检验显示该模型的残差序列极其显著地不随机,且显而易见的是该模型的预测方差 会不断变大,这对预测来说也是不好的,下面在之前挑出的 SARIMA(3,0,0)(0,1,1) 模型基础上引入漂移项

```
model_drift2 <- Arima(data,c(3,0,0),c(0,1,1),include.drift = T)
Box.test(model_drift2$residuals)

##
## Box-Pierce test
##
## data: model_drift2$residuals
## X-squared = 0.09526, df = 1, p-value = 0.7576

modelsummary(list("non_drift"=model6,"drift"=model_drift2),stars = T,go
f_map = c("bic","rmse"),fmt = 4)</pre>
```

	non_drift	drift				
ar1	0.1295***	0.1296***				
	(0.0362)	(0.0361)				
ar2	0.0852*	0.0848*				
	(0.0361)	(0.0360)				
ar3	0.0976**	0.0967**				
	(0.0358)	(0.0358)				
sma1	-0.9726***	-0.9799***				
	(0.0274)	(0.0343)				
drift		0.0004				
		(0.0004)				
BIC	3208.5	3214.2				
RMSE	1.80	1.79				
• $p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001$						

```
model_drift2 %>%
forecast(2000) %>%
autoplot() +
labs(title = "含漂移项模型长期预测结果") +
theme_bw()
```

含漂移项模型长期预测结果

可以看到模型的残差也可以认为是纯随机的,各项系数依旧显著且变化不大,但漂移项并不显著,且因为引入了漂移项,BIC 有所上升,不过 RMSE 有所下降。从预测结果来看,预测方差没有越发膨胀,总体而言预测值呈现上升趋势