Planche nº 39. Familles sommables

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***)

Calculer
$$\sum_{p \in \mathbb{N}^*} \left(\sum_{n \in \mathbb{N}^*, \ n \neq p} \frac{1}{n^2 - p^2} \right)$$
 et $\sum_{n \in \mathbb{N}^*} \left(\sum_{p \in \mathbb{N}^*, \ p \neq n} \frac{1}{n^2 - p^2} \right)$. Que constatez-vous? Que peut-on en déduire?

Exercice nº 2 (**) (CCINP 2017)

On admet que
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

- 1) Montrer que la famille $\left(\frac{1}{p^2q^2}\right)_{(p,q)\in(\mathbb{N}^*)^2}$ est sommable et calculer sa somme.
- 2) Montrer que la famille $\left(\frac{1}{p^2+q^2}\right)_{(p,q)\in(\mathbb{N}^*)^2}$ n'est pas sommable.

Exercice no 3 (****)

Cet exercice constitue un exemple, comme l'exercice n° 1, d'une famille non sommable où on se rend compte que permuter les termes change éventuellement la valeur de la somme. Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{(-1)^{n-1}}{n}$.

- 1) a) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ n'est pas sommable.
 - b) Montrer que la série de terme général u_n converge et que $\sum_{n=1}^{+\infty} u_n = \ln(2)$.
- 2) A partir de la série précédente, on construit une nouvelle série en prenant p termes positifs et q termes négatifs (avec $p \ge 1$ et $q \ge 1$). Par exemple, si p = 2 et q = 1, on s'intéresse à $1 + \frac{1}{3} \frac{1}{2} + \frac{1}{5} + \frac{1}{7} \frac{1}{4} + \frac{1}{9} + \dots$

Etudier la convergence et calculer la somme de la série ci-dessus (on admettra que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$).

Exercice nº 4 (***)

- 1) Montrer que pour tout réel x, $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$.
- 2) a) Soit $x \in \mathbb{R}$. Montrer que la famille $\left(\frac{n^p x^p}{n! p!}\right)_{(n,p) \in \mathbb{N}^2}$ est sommable.
 - b) Déterminer la suite $(a_p)_{p\in\mathbb{N}}$ telle que pour tout réel x, $e^{(e^x)} = \sum_{p=0}^{+\infty} a_p x^p$.

Exercice n° 5 (***IT) (d'après CCINP 2019 MP Math 1)

Soit
$$x \in]-1,1[$$
.

- 1) Montrer que la famille $(x^{k,l})_{(k,l)\in(\mathbb{N}^*)^2}$ est sommable.
- 2) Montrer que $\sum_{p=1}^{+\infty} \frac{\chi^p}{1-\chi^p} = \sum_{n=1}^{+\infty} d(n) \chi^n$ où d(n) est le nombre de diviseurs de n.