# Chapter 4 – Show the Total, Hide Each Gift

"Treasurer checks sums without seeing amounts."

ndhy

July 2, 2025

Prove sums, reveal nothing else.

#### Outline

- 1. Motivation: the privacy gap when values stay in plaintext
- 2. Pedersen commitments binding and hiding
- 3. Commitments as Merkle leaves, root already signed
- 4. Capstone: study roadmap and next projects

#### Plain Values Leak Too Much

- Chapter 3 delivered integrity but not confidentiality.
- An auditor who downloads every leaf can read each gift amount.
- Goal: hide individual gifts while still proving the total budget equals the announced number.

**Key idea**: replace each cleartext leaf with a commitment— a sealed box carrying a unique serial number.

#### **Definition**

Let  $G=\langle g \rangle$  be a cyclic group of prime order q and let h be an independent generator. For a value  $m \in \mathbb{Z}_q$  and random blinding  $r \in \mathbb{Z}_q$ ,

$$C(m,r)=g^m h^r$$
.

- **Hiding** (perfect): *C* reveals no information about *m*.
- **Binding** (computational): producing two openings for the same *C* breaks discrete log.
- Additive homomorphism:  $C(m_1, r_1) C(m_2, r_2) = C(m_1 + m_2, r_1 + r_2)$ .

### From Equation to Intuition

serial number opaque paint 
$$\overbrace{g^m} \cdot \overbrace{h^r} = C$$

- Anyone can recognise the same box by its serial number, yet the content remains hidden by the paint.
- Opening requires the pair (m, r); verification simply checks  $g^m h^r = C$ .

### **Security Sketch**

- **Perfect hiding**: for any  $m_0, m_1$  there exist  $r_0, r_1$  such that  $C(m_0, r_0) = C(m_1, r_1)$ .
- **Binding**: two openings give  $g^{m-m'} = h^{r'-r} \Rightarrow$  discrete-log of h in base g.

## **Private Ledger Pipeline**

- 1. Commit each gift:  $L_i = C(m_i, r_i)$ .
- 2. Hash leaves with Poseidon  $\rightarrow$  Merkle root (Chapter 4).
- 3. Santa signs the root with Ed25519 (Chapter 3).
- 4. To prove the total, reveal openings  $(m_i, r_i)$  for a subset S where  $\sum_{i \in S} m_i$  equals the claimed amount, plus Merkle proofs of each  $L_i$ .
- 5. Verifier checks openings, paths, and the signed root; unseen gifts remain private.

### **Next Steps**

- Proofs, Arguments, and Zero-Knowledge (Justin Thaler) free online text.
- Circom with Poseidon practical path to zk-SNARK circuits.
- Assignment: prepare a two-page brief on assumptions, common pitfalls, and open questions.

#### **Cheat-Sheet**

- Pedersen commitments provide perfect hiding and binding under discrete-log.
- Homomorphism enables sum proofs without revealing parts.
- $\bullet$  Commitment  $\to$  Merkle root  $\to$  signature creates a compact, private, tamper-proof ledger.

