1 Hilbertovi prostori

- 1. Vektorski prostor s skalarnim produktom
 - Naj bo X vektorski prostor nad \mathbb{R} (ali nad \mathbb{C}).
 - Definicija. Skalarni produkt.
 - Trditev. Cauchy-Schwartzova neenakost.
 - **Definicija.** Norma na vektorskem prostoru X.
 - Trditev. Norma, ki je dobljena iz skalarnega produkta.
 - Trditev. Metrični prostor, porojeni z normo.
- 2. Hilbertovi prostori
 - Definicija. Hilbertov prostor. Banachov prostor.
 - **Zgled.** Standardni skalarni produkti na \mathbb{R}^n in \mathbb{C}^n . Norme, ki ne pridejo iz skalarnega produkta.
- 3. Prostor $L^2([a,b])$
 - Trditev. Standardni skalarni produkt na prostoru C([a,b]).
 - Trditev. Ali je prostor C([a,b]) s standardnim skalarnim produktom Hilbertov?
 - **Zgled.** Kako lahko napolnimo prostor $((0,1),d_2)$?
 - **Definicija.** Kadar pravimo, da lahko napolnimo metrični prostor (M, d)? Napolnitev prostora.
 - Opomba. Kaj je ponavadi prostor \overline{M} ?
 - Opomba. Prostor $L^1(A)$.
 - **Definicija.** Prostor $L^2([a,b])$.
 - Opomba. Ali je produkt dveh $L^2([a,b])$ funkcij $L^1([a,b])$ funkcija? Skalarni produkt na $L^2([a,b])$
 - **Trditev.** Ali je $L^2([a,b])$ vektorski prostor nad \mathbb{R} ?
 - Opomba. Ali je $C([a,b]) \subseteq L^2([a,b])$? Ali je C([a,b]) gost v $L^2([a,b])$? Kaj pomeni, da zaporedje $(f_n)_n \in L^2([a,b])$ konvergira k $f \in L^2([a,b])$?
 - Izrek. Ali je $L^2([a,b])$ Hilbertov prostor? Kako sta povezana prostora $L^2([a,b])$ in C([a,b])? [brez dokaza]
 - Opomba. Kako zgleda skalarni produkt nad $\mathbb{C}?$