

EMC Test Report Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C Model: WLAN AP 8120

IC CERTIFICATION #: 3794G-AP8120

FCC ID: X7CAP8120

APPLICANT: Avaya

4655 Great America Parkway

Santa Clara, CA 95054

TEST SITE(S): Elliott Laboratories

684 W. Maude Avenue

Sunnyvale, CA 94085

and 41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845A-1; 2845A-2; 2845B-3; 2845B-4, 2845B-

5

REPORT DATE: March 5, 2010

FINAL TEST DATES: January 25, 26, 27, 28, 29, 31, February 1, 2, 3,

8, 9, 10 and 11, 2010

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer Elliott Laboratories

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R78416 Page 1 of 24

Test Report Report Date: March 5, 2010

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	March 5, 2010	First release	

File: R78416 Page 2 of 24

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	6
DIGITAL TRANSMISSION SYSTEMS (2400 – 2405.5MHz)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	9
MEASUREMENT UNCERTAINTIES.	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL.	
OTHER EUT DETAILS	11
ANTENNA SYSTEM	11
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	14
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	14
FILTERS/ATTENUATORS	
ANTENNASANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURESEUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	20
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	21
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	22
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	23
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	3

SCOPE

An electromagnetic emissions test has been performed on the Avaya model WLAN AP 8120, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

File: R78416 Page 4 of 24

Test Report Report Date: March 5, 2010

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Avaya model WLAN AP 8120 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Avaya model WLAN AP 8120 and therefore apply only to the tested sample. The sample was selected and prepared by Vipin Naik of Avaya.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R78416 Page 5 of 24

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11b: 10.2 MHz 802.11g: 16.5 MHz 802.11n20 CDD: 17.8 MHz 802.11n40 CDD: 36.8 MHz 802.11n40 SISO: 36.7 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11b: 18.8 dBm (0.076 Watts) EIRP = 0.264 W Note 1 802.11g: 22.9 dBm (0.195 Watts) EIRP = 0.678 W Note 1 802.11n20 CDD: 25.6 dBm (0.364 Watts) EIRP = 2.53 W Note 1 802.11n40 CDD: 21.0 dBm (0.126 Watts) EIRP = 0.874 W Note 1 802.11n40 SISO: 19.1 dBm (0.081 Watts) EIRP = 0.282 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11b: -1.3 dBm/MHz 802.11g: -5.1 dBm/MHz 802.11n20 CDD: -0.6 dBm/MHz 802.11n40 CDD: -6.5 dBm/MHz 802.11n40 SISO: -10.2 dBm/MHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All spurious emissions < -20dBc or < -30dBc Note 2	< -20dBc or < -30dBc Note 2	Complies

File: R78416 Page 6 of 24

15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.9dBµV/m @ 2483.8MHz (-0.1dB)	15.207 in restricted bands, all others <-20dBc <-30dBc Note 2	Complies
-----------------------	-----------------	--	------------------------------------	--	----------

Note 1: EIRP calculated using antenna gain of 5.41 dBi for the non-MIMO operation and 8.41 dBi for the MIMO operation.

Note 2: For those modes that were tested using a peak power meter, a limit of -20dBc was used. For those modes that were tested using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4), a limit of -30dBc was used. Refer to the test data in the appendix for details.

DIGITAL TRANSMISSION SYSTEMS (5725 -5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11a: 16.3 MHz 802.11n40 CDD: 35.8 MHz	>500kHz	Complies
15.247 (b)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11a: 17.1 dBm (0.046 Watts) EIRP = 0.148 W Note 1 802.11n20 CDD: 19.6 dBm (0.091 Watts) EIRP = 0.585 W Note 1 802.11n40 CDD: 22.3 dBm (0.170 Watts) EIRP = 1.10 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	dBm / MHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -20dBc or < -30dBc Note 2	< -20dBc < -30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	52.7dBμV/m @ 11509.8MHz (-1.3dB)	15.207 in restricted bands, all others <-20dBc <-30dBc Note 2	Complies

File: R78416 Page 7 of 24

Test Report Report Date: March 5, 2010

Note 1: EIRP calculated using antenna gain of 5.09 dBi for the non-MIMO operation and 8.09 dBi for the MIMO operation.

Note 2: For those modes that were tested using a peak power meter, a limit of -20dBc was used. For those modes that were tested using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4), a limit of -30dBc was used. Refer to the test data in the appendix for details.

File: R78416 Page 8 of 24

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	The antennas are attached via internal u.FL connectors.	Refer to standard	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	46.9dBμV/m @ 3076.2MHz (-7.1dB)	Refer to standard	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	38.2dBμV @ 2.442MHz (-7.8dB)	Refer to standard	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11b: 13.7 MHz 802.11g: 18.6 MHz 802.11n20 CDD (24GHz): 19.1 MHz 802.11n40 CDD (2.4GHz): 37.3 MHz 802.11a: 17.5 MHz 802.11n40 CDD (5.7GHz): 37.9 MHz 802.11n40 SISO (2.4GHz): 37.3 MHz	Information only	N/A

File: R78416 Page 9 of 24

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions	0.15 to 30 0.015 to 30	± 2.4 ± 3.0
Radiated Emissions Radiated Emissions	30 to 1000 1000 to 40000	$\pm 3.6 \\ \pm 6.0$

File: R78416 Page 10 of 24

Test Report Report Date: March 5, 2010

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Avaya model WLAN AP 8120 is a 802.11abgn wireless router/access point that is designed to wireless connectivity for enterprise network systems. The EUT can be tabletop or wall mounted in normal operation. During testing, the EUT was treated as tabletop, and rotated thru different orientation to simulate wall mounting, as noted. The EUT is powered via a POE connection.

The sample was received on January 25, 2010 and tested on January 25, 26, 27, 28, 29, 31, February 1, 2, 3, 8, 9, 10 and 11, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Avaya	AP8120	802.11abgn AP	Prototype	X7CAP8120

OTHER EUT DETAILS

The following EUT details should be noted: The EUT contains 2 abgn radio modules. One module is used for 2.4GHz operation and one module is used for 5GHz operation. Simultaneous transmission is possible, but never in the same band at the same time. The device supports 2x3 MIMO operation.

ANTENNA SYSTEM

The antenna system used consists of 6 custom antennas mounted on one assembly. The antenna is integral to the device.

ENCLOSURE

The EUT outer enclosure is primarily constructed of plastic. It measures approximately 23.5 cm wide by 15 cm deep by 5.5 cm high. The plastic outer enclosure covers a full metalized inner enclosure

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Inspiron 1501	Laptop	-	-
-	-	USB to Serial	-	-
		Adapter		

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
PowerDsine	PowerDsine	POE Injector	D094565000005	-
	9001G	-	8BA00	

File: R78416 Page 11 of 24

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Polt	То	Description	Shielded or Unshielded	Length(m)
POE	POE Injector	CAT-5	Unshielded	5.0
Serial Port	USB-to-Serial	CAT-5 to Serial	Unshielded	6.0
	Adapter to			
	Laptop			

EUT OPERATION

During testing, the EUT was configured to transmit continuously on the noted channel. Data rate was set to 1Mbs for 802.11b mode and 6Mbs for 802.11g. For MIMO mode testing, please refer to the actual data for the MCS setting.

File: R78416 Page 12 of 24

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on February 11, 2010 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	
CNOATC #2	00502	2045 4 2	684 West Maude Ave,
SVOATS #2	90593	2845A-2	Sunnyvale CA 94085-3518
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 4	211948	2845B-4	Fremont,
Chamber 5	211948	2845B-5	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception, on OATS sites, of predictable local TV, radio, and mobile communications traffic. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R78416 Page 13 of 24

Test Report Report Date: March 5, 2010

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R78416 Page 14 of 24

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R78416 Page 15 of 24

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R78416 Page 16 of 24

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

File: R78416 Page 17 of 24

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

File: R78416 Page 18 of 24

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R78416 Page 19 of 24

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R78416 Page 20 of 24

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R78416 Page 21 of 24

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density		
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz		
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz		
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz		

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R78416 Page 22 of 24

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R78416 Page 23 of 24

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$1000000 \sqrt{30 P}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R78416 Page 24 of 24

Appendix A Test Equipment Calibration Data

Radio Spurious Emissions, 26-Jan-10						
Manufacturer	Description	Model	Asset #	Cal Due		
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/10/2010		
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/10/2010		
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	11/4/2010		
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	9/17/2010		
Radio (Spurious Emiss						
Manufacturer EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz (SA40-Blu)	<u>Model</u> 3115	Asset # 1386	<u>Cal Due</u> 9/2/2010		
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/10/2010		
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	7/29/2010		
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1728	9/25/2010		
Rohde & Schwarz Hewlett Packard	EMI Test Receiver, 20 Hz-7 GHz Microwave Preamplifier, 1- 26.5GHz	ESIB7 8449B	1756 1780	2/10/2010 9/17/2010		
TX Spurious Emission	s, 28-Jan-10					
Manufacturer Hewlett Packard	Description Microwave Preamplifier, 1-	Model 8449B	Asset # 785	<u>Cal Due</u> 6/3/2010		
EMCO Micro-Tronics	26.5GHz Antenna, Horn, 1-18 GHz Band Reject Filter, 5725-5875 MHz	3115 BRC50705-02	1561 1728	6/10/2010 9/25/2010		
Hewlett Packard	High Pass filter, 8.2 GHz (Purple System)	P/N 84300-80039 (84125C)	1767	11/4/2010		
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	9/30/2010		
Radio (Spurious Emiss	sions), 29-Jan-10					
Manufacturer Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	Asset # 785	Cal Due 6/3/2010		
Hewlett Packard	High Pass filter, 8.2 GHz (Blu System)	P/N 84300-80039 (84125C)	1392	6/22/2010		
EMCO Micro-Tronics	Antenna, Horn, 1-18 GHz Band Reject Filter, 2400-2500 MHz	3115 BRM50702-02	1561 1683	6/10/2010 7/29/2010		
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	9/25/2010		
Rohde & Schwarz Hewlett Packard	EMI Test Receiver, 20 Hz-7 GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple	ESIB7 8564E (84125C)	1756 1771	2/10/2010 9/30/2010		
TX Spurious Emission	s, 29-Jan-10					
Manufacturer EMCO Rohde & Schwarz	Description Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz-7 GHz	Model 3115 ESIB7	Asset # 868 1630	<u>Cal Due</u> 6/10/2010 2/26/2010		

File: R78416 Appendix Page 1 of 3

Test Report Report Date: March 5, 2010

		- T	0.1.2 0.1.01 1.11	
Tx/Rx Spurious Emis	sions 31-Jan-10			
		Madal	A	Cal Dua
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	785	6/3/2010
	26.5GHz			
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/10/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	9/30/2010
Howlett Facilities		00042 (041200)	.,,,	3/00/2010
	Purple			
RadioSpurious Emiss	sions, 04-Feb-10			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	785	6/3/2010
	26.5GHz			0, 0, = 0 . 0
EMCO		3115	1561	6/10/2010
	Antenna, Horn, 1-18 GHz			
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	9/30/2010
	Purple			
Radiated Emissions.	30 - 1,000 MHz, 04-Feb-10			
Manufacturer	Description	Model	Asset #	Cal Due
	Biconilog, 30-3000 MHz			
Sunol Sciences		JB3	1549	6/4/2010
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	4/30/2010
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	2/10/2010
Conducted Emission	s - AC Power Ports, 05-Feb-10			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/11/2010
EMCO	LISN, 10 kHz-100 MHz	3825/2	1293	3/18/2010
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1593	6/9/2010
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	2/10/2010
rtoriae a commanz	2 1 66. 1 66. 1 61. 2	20.2.		2, . 0, 20 . 0
Dedicted Emissions	20 4 000 MU- 05 Feb 40			
	30 - 1,000 MHz, 05-Feb-10			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1543	9/2/2010
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/13/2010
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	2/26/2010
rtonao a conwarz	2111 1001 10001101, 20 112 1 0112	20.57	1000	2/20/2010
Canduated Emission	AC Dawer Darta 40 Feb 40			
	s - AC Power Ports, 10-Feb-10			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	7/15/2010
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz -	8595EM	787	5/18/2010
	6.5 GHz			
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	812	2/23/2010
Solar Electronics	LISN	8028-50-TS-24-BNC	904	2/23/2010
		support		
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	11/11/201
				0
				•
Radio Antenna Port (Power and Spurious Emissions), (03-Feb-10		
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/201
2				0
Hewlett Packard	Spocks 0 kHz 40 CHz FT	9564E (94125C)	1393	-
i lewiell Fackalu	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1383	4/10/2010
	(SA40) Blue			
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts	NRV-Z32	1423	10/23/201
				0
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	2/10/2010
				_,,

File: R78416 Appendix Page 2 of 3

Appendix B Test Data

T78071 101 Pages T78130 57 Pages T78249 8 Pages

File: R78416 Appendix Page 3 of 3

Ellio	Elliott EMC Test D				
Client:	Avaya	Job Number:	J78065		
Model:	AP 8120	T-Log Number:	T78071		
		Account Manager:	Dean Eriksen		
Contact:	Vipin Naik		-		
Emissions Standard(s):	FCC 15.247	Class:	В		
Immunity Standard(s):	-	Environment:	-		

For The

Avaya

Model

AP 8120

Date of Last Test: 2/10/2010

	All 2023 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (2.4GHz Bandedges)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 10-15 °C

Rel. Humidity: 35-50 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run#	Mode	Channel	Antenna/ Orientation	Power Setting	Test Performed	Limit	Result / Margin
1.0	h	1 - 2412	Aux		Restricted Band Edge	FCC Part 15.209 /	53.3dBµV/m @
1a	b	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2375.3MHz (-0.7dB)
1.0	h	11 - 2462	Aux		Restricted Band Edge	FCC Part 15.209 /	53.8dBµV/m @
1e	b	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2498.8MHz (-0.2dB)
0 -	~	1 - 2412	Aux		Restricted Band Edge	FCC Part 15.209 /	53.0dBµV/m @
2a	g	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2390.1MHz (-1.0dB)
2h	~	2 - 2417	Aux		Restricted Band Edge	FCC Part 15.209 /	52.2dBµV/m @
2b	g	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2390.0MHz (-1.8dB)
20	g	10 - 2457	Aux		Restricted Band Edge	FCC Part 15.209 /	73.6dBµV/m @
2c		MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.8MHz (-0.4dB)
24	~	11 - 2462	Aux		Restricted Band Edge	FCC Part 15.209 /	53.9dBµV/m @
2d	g	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.8MHz (-0.1dB)

	All Deed Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

,				<u> </u>			
Run #	Mode	Channel	Antenna/ Orientation	Measured Power	Test Performed	Limit	Result / Margin
0	00 000	1 - 2412	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	53.2dBµV/m @
3a	n20 - CDD	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2390.0MHz (-0.8dB)
2 h	*30 CDD	2 - 2417	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	53.9dBµV/m @
3b	n20 - CDD	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2390.0MHz (-0.1dB)
3c	n20 - CDD	3 - 2422	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	53.9dBµV/m @
30	1120 - CDD	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2388.1MHz (-0.1dB)
3d	n20 - CDD	9 - 2452	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	50.5dBµV/m @
30	1120 - CDD	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2487.9MHz (-3.5dB)
3e	n20 - CDD	10 - 2457	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	52.7dBµV/m @
3e	1120 - CDD	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.6MHz (-1.3dB)
3f	n20 - CDD	11 - 2462	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	53.3dBµV/m @
31	1120 - CDD	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.6MHz (-0.7dB)
5a	n40 - CDD -	3 - 2422	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	72.2dBµV/m @
Эа	MCS12	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2388.4MHz (-1.8dB)
5b	n40 - CDD -	4 - 2427	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	52.7dBµV/m @
ÜÜ	MCS12	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2389.6MHz (-1.4dB)
5c	n40 - CDD -	7 - 2447	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	52.2dBµV/m @
JC .	MCS12	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.6MHz (-1.8dB)
5d	n40 - CDD -	8 - 2447	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	53.9dBµV/m @
วน	MCS12	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2484.3MHz (-0.1dB)
5e	n40 - CDD -	9 - 2452	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	53.5dBµV/m @
oe -	MCS12	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2486.6MHz (-0.5dB)

	All Dates Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 9120	T-Log Number:	T78071
	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11b

Run #1a: Low Channel (1) @ 2412 MHz, UP Right Orientation

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2415.311	108.4	Н	-	•	Avg	231	1.0	
2414.589	112.3	Н	-	-	PK	231	1.0	
2414.830	104.1	V	-	-	Avg	188	1.0	
2414.589	108.0	V	-	-	PK	188	1.0	

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2375.271	53.3	Н	54.0	-0.7	Avg	231	1.0	
2389.579	62.6	Н	74.0	-11.4	PK	231	1.0	
2375.391	50.1	V	54.0	-3.9	Avg	188	1.0	
2387.054	59.8	V	74.0	-14.2	PK	188	1.0	

Elliott An MAS company

EMC Test Data

	All 2023 Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
woder:	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1e: High Channel (11) @ 2462 MHz, Up Right

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Fremont Chamber #5 EUT Voltage: POE

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2464.803	107.8	Н	-	-	Avg	232	1.0	UpRight
2464.442	111.7	Н	-	-	PK	232	1.0	UpRight
2464.682	103.2	V	-	-	Avg	207	1.0	UpRight
2464.562	107.0	V	-	-	PK	207	1.0	UpRight

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2498.831	53.8	Н	54.0	-0.2	Avg	232	1.0	UpRight
2483.680	61.7	Н	74.0	-12.3	PK	232	1.0	UpRight
2499.312	49.6	V	54.0	-4.4	Avg	207	1.0	UpRight
2503.761	58.5	V	74.0	-15.5	PK	207	1.0	UpRight

	An Z(ZE) company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
wouei.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11g

Run #2a: Low Channel (1) @ 2412 MHz, Upright Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2408.217	101.5	Н	-	-	Avg	234	1.0	
2414.469	112.1	Н	-	-	PK	234	1.0	
2414.348	99.0	V	-	-	Avg	190	1.0	
2415.189	109.8	V	-	-	PK	190	1.0	

	<u> </u>	· · · · · · · · · · · · · · · · · · ·						
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.060	53.0	Н	54.0	-1.0	Avg	234	1.0	
2390.060	71.8	Н	74.0	-2.2	PK	234	1.0	
2390.059	53.8	V	54.0	-0.2	Avg	190	1.0	
2390.059	72.4	V	74.0	-1.6	PK	190	1.0	

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2b: Channel (2) @ 2417 MHz, Upright Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.049	52.2	Н	54.0	-1.8	Avg	234	1.0	
2389.568	70.4	Н	74.0	-3.6	PK	234	1.0	
2389.808	50.5	V	54.0	-3.5	Avg	190	1.0	
2389.928	67.7	V	74.0	-6.3	PK	190	1.0	

	An Z(ZE) company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
wouer.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2c: Channel (10) @ 2457 MHz, Upright Orientation

Date of Test: 1/25/2010 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #5 EUT Voltage: POE

Duria Lago Signai Ficia Strongth		Jucingui	Direct meas	di cilicili di	neia su engu			
Frequency	Level	Pol	15.209	15.209 / 15.247		Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.812	73.6	Н	74.0	-0.4	PK	215	1.0	
2483.571	51.9	Н	54.0	-2.1	Avg	215	1.0	
2500.164	47.0	V	54.0	-7.0	Avg	212	1.0	
2489.102	65.5	V	74.0	-8.5	PK	212	1.0	

Elliott

EMC Test Data

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Madal	AP 8120	T-Log Number:	T78071
Model.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2d: High Channel (11) @ 2462 MHz, UP Right Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	15.209 / 15.247		Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2464.682	100.7	Н	-	•	Avg	215	1.0	
2466.606	111.5	Н	-	•	PK	215	1.0	
2464.803	98.2	V	-	•	Avg	212	1.0	
2464.803	108.6	V	-	-	PK	212	1.0	

Frequency	Level	Pol	15.209	15.209 / 15.247		Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.80	53.9	Н	54.0	-0.1	Avg	215	1.0	
2483.80	73.2	Н	74.0	-0.8	PK	215	1.0	
2483.560	53.3	V	54.0	-0.8	Avg	212	1.0	
2483.560	71.4	V	74.0	-2.7	PK	212	1.0	

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n20 - CDD, MCS0

Run #3a: Low Channel (1) @ 2412 MHz, UP Right Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2415.429	100.6	Н	-	-	Avg	236	1.0			
2415.308	111.8	Н	-	-	PK	236	1.0			
2415.070	96.8	V	-	-	Avg	193	1.0			
2407.856	108.8	V	-	-	PK	193	1.0			

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	53.2	Н	54.0	-0.8	Avg	236	1.0	
2389.938	71.3	Н	74.0	-2.7	PK	236	1.0	
2389.940	50.7	V	54.0	-3.3	Avg	193	1.0	
2390.060	69.0	V	74.0	-5.0	PK	193	1.0	

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3b: Channel (2) @ 2417 MHz, UP Right Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Dana Lage	olgilai i icia	Juchgui	Direct meas					
Frequency	Level	Pol	15.209	15.209 / 15.247		Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	53.9	Н	54.0	-0.1	Avg	236	1.0	
2390.000	71.8	Н	74.0	-2.2	PK	236	1.0	
2390.000	51.1	V	54.0	-2.9	Avg	193	1.0	
2389.927	67.7	V	74.0	-6.3	PK	193	1.0	

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3c: Channel (3) @ 2422 MHz, UP Right Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Dalla Lago	oignai i icia	i ou ongui	Direct meas	ar criticitie or	nora sa criga	•		
Frequency	Level	Pol	15.209	15.209 / 15.247		Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2388.113	53.9	Н	54.0	-0.1	Avg	222	1.1	
2389.917	72.1	Н	74.0	-1.9	PK	236	1.1	
2390.037	50.2	V	54.0	-3.8	Avg	193	1.0	
2387.512	64.5	V	74.0	-9.6	PK	193	1.0	

	All Delta Company							
Client:	Avaya	Job Number:	J78065					
Modol:	AP 8120	T-Log Number:	T78071					
wouei.	AP 0120	Account Manager:	Dean Eriksen					
Contact:	Vipin Naik							
Standard:	FCC 15.247	Class:	N/A					

Run #3d: Channel (9) @ 2452 MHz, UP Right Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2487.910	50.5	Н	54.0	-3.5	Avg	212	1.0	
2484.664	67.4	Н	74.0	-6.6	PK	212	1.0	
2495.967	47.3	V	54.0	-6.7	Avg	206	1.0	
2485.626	66.6	V	74.0	-7.4	PK	206	1.0	

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3e: Channel (10) @ 2457 MHz, UP Right Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.572	52.7	Η	54.0	-1.3	Avg	215	1.3	
2485.857	72.6	Η	74.0	-1.5	PK	215	1.3	
2483.572	48.9	V	54.0	-5.1	Avg	206	1.0	
2484.173	69.0	V	74.0	-5.0	PK	206	1.0	

Elliott

EMC Test Data

Client:	Avaya	Job Number:	J78065
Modol:	AP 8120	T-Log Number:	T78071
wouei.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3f: High Channel (11) @ 2462 MHz, UP Right Orientation

Date of Test: 1/25/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2457.829	100.4	Н	-	•	Avg	215	1.3	
2465.043	111.6	Н	-	•	PK	215	1.3	
2465.765	96.3	V	-	•	Avg	211	1.0	
2465.765	108.4	V	-	-	PK	211	1.0	

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.560	53.3	Н	54.0	-0.7	Avg	215	1.3	
2485.003	70.6	Н	74.0	-3.4	PK	215	1.3	
2483.560	50.4	V	54.0	-3.7	Avg	211	1.0	
2483.560	68.8	V	74.0	-5.3	PK	211	1.0	

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
wouer.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #5: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n40 - CDD - MCS12

Run #5a: Low Channel (3) @ 2422 MHz, UP Right Orientation

Date of Test: 1/29/2009 Config. Used: Test Engineer: Mark Hill Config Change: None
Test Location: FT #3 EUT Voltage: 120V/ 60Hz

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2429.319	87.3	Н	-	-	Avg	212	1.6	
2416.814	108.3	Н	-	-	Pk	212	1.6	
2428.357	82.4	V	-	-	Avg	175	1.6	
2427.876	100.9	V	-	-	Pk	175	1.6	

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2388.190	52.1	Н	54.0	-1.9	Avg	212	1.6	
2388.196	46.3	V	54.0	-7.7	Avg	175	1.6	
2388.430	72.2	Н	74.0	-1.8	Pk	212	1.6	
2388.436	62.7	V	74.0	-11.3	Pk	175	1.6	

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #5b: Channel (4) @ 2427 MHz, UP Right Orientation

Date of Test: 1/29/2009 Config. Used: Test Engineer: Mark Hill Config Change: None
Test Location: FT #3 EUT Voltage: 120V/ 60Hz

Frequency	/ Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2389.640	52.7	Н	54.0	-1.4	Avg	211	1.6	
2389.158	71.3	Н	74.0	-2.7	Pk	211	1.6	

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 9120	T-Log Number:	T78071
	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #5c: Channel (7) @ 2442 MHz, UP Right Orientation

Date of Test: 1/29/2009 Config. Used: Test Engineer: Mark Hill Config Change: None
Test Location: FT #3 EUT Voltage: 120V/ 60Hz

	- 3							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.620	52.2	Н	54.0	-1.8	Avg	230	1.5	
2486.025	70.7	Н	74.0	-3.3	Pk	230	1.5	

	An Z(ZE) company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
wouer.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #5d: Channel (8) @ 2447 MHz, UP Right Orientation

Date of Test: 1/29/2009 Config. Used: Test Engineer: Mark Hill Config Change: None
Test Location: FT #3 EUT Voltage: 120V/ 60Hz

						-		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2484.342	53.9	Н	54.0	-0.1	Avg	230	1.5	
2483.861	71.3	Н	74.0	-2.7	Pk	230	1.5	
2484.582	56.5	Н	54.0	2.5	Avg	230	1.5	
2484.582	75.2	Н	74.0	1.2	Pk	230	1.5	

Elliott An (XZAS' company

EMC Test Data

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #5e: High Channel (9) @ 2452 MHz, UP Right Orientation

Date of Test: 1/29/2009 Config. Used: Test Engineer: Mark Hill Config Change: None
Test Location: FT #3 EUT Voltage: 120V/ 60Hz

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2458.369	86.7	Н	-	•	Avg	208	1.5	
2454.282	106.7	Н	-	-	Pk	208	1.5	

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2486.620	53.5	Н	54.0	-0.5	Avg	208	1.5	
2483.861	69.8	Н	74.0	-4.2	Pk	208	1.5	
2483.620	54.0	Н	54.0	0.0	Avg	208	1.5	
2483.620	70.7	Н	74.0	-3.3	Pk	208	1.5	

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (2.4GHz **Bandedges - Continued)**

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 10-15 °C

Rel. Humidity: 35-50 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data											
	Avaya	, ,				Job Number:	J78065				
						T-Log Number:	T78071				
Model:	AP 8120					Account Manager:					
Contact:	Vipin Naik										
	FCC 15.247					Class:	NI/A				
							IWA				
Summary	of Result	s - Device	e Operating	j in the 24	00-2483.5 MHz Band	1					
Run #	Mode	Channel	Antenna/ Orientation	Power Setting	Test Performed	Limit	Result / Margin				
1-	n40 - SISO	3 - 2422	Main		Restricted Band Edge	FCC Part 15.209 /	53.8dBµV/m @				
1a	MCS0	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2390.0MHz (-0.2dB)				
14	n40 - SISO -	4 - 2427	Main		Restricted Band Edge	FCC Part 15.209 /	53.2dBµV/m @				
1b	MCS0	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2390.0MHz (-0.8dB)				
10	n40 - SISO -	5 - 2432	Main		Restricted Band Edge	FCC Part 15.209 /	53.7dBµV/m @				
1c	MCS0	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2390.0MHz (-0.3dB)				
1d	n40 - SISO -	6 - 2437	Main		Restricted Band Edge	FCC Part 15.209 /	50.6dBµV/m @				
Iu	MCS0	MHz	(Up Right)	-	(2390 MHz)	15.247(c)	2390.0MHz (-3.4dB)				
1e	n40 - SISO -	6 - 2437	Main		Restricted Band Edge	FCC Part 15.209 /	52.8dBµV/m @				
E	MCS0	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.6MHz (-1.2dB)				
1f	n40 - SISO	7 - 2442	Main	_	Restricted Band Edge	FCC Part 15.209 /	53.2dBµV/m @				
- 11	MCS0	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.6MHz (-0.8dB)				
1g	n40 - SISO -	8 - 2447	Main		Restricted Band Edge	FCC Part 15.209 /	53.4dBµV/m @				
iy	MCS0	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.9MHz (-0.6dB)				
1h	n40 - SISO -	9 - 2452	Main		Restricted Band Edge	FCC Part 15.209 /	53.5dBµV/m @				
111	MCS0	MHz	(Up Right)	-	(2483.5 MHz)	15.247(c)	2483.6MHz (-0.5dB)				
2a	n40 - CDD -	3 - 2422	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	53.7dBµV/m @				
Za	MCS0	MHz	(Up Right)		(2390 MHz)	15.247(c)	2388.4MHz (-0.3dB)				
2b	n40 - CDD -	4 - 2427	Main/Aux		Restricted Band Edge	FCC Part 15.209 /	53.9dBµV/m @				
20	MCS0	MHz	(Up Right)		(2390 MHz)	15.247(c)	2390.0MHz (-0.1dB)				
2c	n40 - CDD -	5 - 2432	Main/Aux	_	Restricted Band Edge	FCC Part 15.209 /	53.9dBµV/m @				
20	MCS0	MHz	(Up Right)		(2390 MHz)	15.247(c)	2390.0MHz (-0.1dB)				
2d	n40 - CDD -	6 - 2437	Main/Aux	_	Restricted Band Edge	FCC Part 15.209 /	51.3dBµV/m @				
Zu	MCS0	MHz	(Up Right)		(2390 MHz)	15.247(c)	2390.0MHz (-2.7dB)				
2e	n40 - CDD -	6 - 2447	Main/Aux	_	Restricted Band Edge	FCC Part 15.209 /	51.8dBµV/m @				
20	MCS0	MHz	(Up Right)		(2483.5 MHz)	15.247(c)	2483.6MHz (-2.3dB)				
2f	n40 - CDD -	7 - 2447	Main/Aux	_	Restricted Band Edge	FCC Part 15.209 /	53.9dBµV/m @				
۷.	MCS0	MHz	(Up Right)		(2483.5 MHz)	15.247(c)	2483.6MHz (-0.1dB)				
2g	n40 - CDD -	8 - 2447	Main/Aux	_	Restricted Band Edge	FCC Part 15.209 /	53.4dBµV/m @				
-9	MCS0	MHz	(Up Right)		(2483.5 MHz)	15.247(c)	2485.5MHz (-0.6dB)				
2h	n40 - CDD -	9 - 2452	Main/Aux	_	Restricted Band Edge	FCC Part 15.209 /	53.9dBµV/m @				
211	MCS0	MHz	(Up Right)		(2483.5 MHz)	15.247(c)	2485.5MHz (-0.1dB)				

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 9120	T-Log Number:	T78071
	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n40 - SISO - MCSO

Run #1a: Low Channel (3) @ 2422 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

and mornal orginal Flora of ongther Flora and avorage values mode and in Flora pour value mode and in Flora in											
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters				
2434.790	94.9	Н	-	-	Avg	210	1.1				
2414.549	107.1	Н	-	-	PK	210	1.1				
2426.172	89.3	V	-	-	Avg	156	1.1				
2430.581	101.8	V	-	-	PK	156	1.1				

	<u> </u>	- · · · · · · · · · · · · · · · · · · ·						
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	53.80	Н	54.0	-0.2	Avg	210	1.1	
2388.297	69.39	Н	74.0	-4.6	PK	210	1.1	
2389.900	48.66	V	54.0	-5.3	Avg	156	1.1	
2389.098	64.85	V	74.0	-9.2	PK	156	1.1	

	An ZAZE) company		
Client:	Avaya	Job Number:	J78065
Model:	AD 9120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1b: Channel (4) @ 2427 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Band Eage Signal Field Strength - Direct measurement of held strength									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2390.000	53.2	Н	54.0	-0.8	Avg	210	1.1		
2390.000	70.1	Н	74.0	-3.9	PK	210	1.1		
2390.000	48.0	V	54.0	-6.0	Avg	156	1.1		
2389.639	63.3	V	74.0	-10.7	PK	156	1.1		

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Madal	AP 8120	T-Log Number:	T78071
woder:	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1c: Channel (5) @ 2432 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Daria Lago	orginal i icia	Outengui	Direct meas	ai cilicili ci	noia sa criga	•		
Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	53.7	Н	54.0	-0.3	Avg	210	1.1	
2388.196	71.2	Н	74.0	-2.8	PK	210	1.1	
2390.000	48.4	V	54.0	-5.6	Avg	156	1.1	
2388.677	64.3	V	74.0	-9.7	PK	156	1.1	

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1d: Channel (6) @ 2437 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Daria Lago	orginal i icia	Outengui	Direct meas	ar criticité or	noia sa criga	•		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	50.6	Н	54.0	-3.4	AVG	210	1.1	
2389.146	66.1	Н	74.0	-7.9	PK	210	1.1	
2356.922	47.6	V	54.0	-6.4	AVG	156	1.1	
2389.146	60.8	V	74.0	-13.2	PK	156	1.1	

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1e: Channel (6) @ 2437 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.632	52.8	Н	54.0	-1.2	AVG	136	1.3		
2486.037	70.2	Н	74.0	-3.8	PK	136	1.3		
2483.632	49.9	V	54.0	-4.1	AVG	198	1.1		
2485.316	66.5	V	74.0	-7.5	PK	198	1.1		

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1f: Channel (7) @ 2442 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Band Eage Signal Field Strength Birect measurement of held strength									
Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.620	53.2	Н	54.0	-0.8	AVG	136	1.3		
2485.304	70.8	Н	74.0	-3.2	PK	136	1.3		
2483.620	51.1	V	54.0	-3.0	AVG	198	1.1		
2485.304	68.2	V	74.0	-5.8	PK	198	1.1		

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Madal	AP 8120	T-Log Number:	T78071
woder.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1g: Channel (8) @ 2447 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Dulla Lage	Band Edge Signal Field Strength Birect measurement of held strength									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.861	53.4	Н	54.0	-0.6	AVG	136	1.3			
2488.190	69.9	Н	74.0	-4.1	PK	136	1.3			
2483.620	50.6	V	54.0	-3.4	AVG	198	1.1			
2485.785	66.3	V	74.0	-7.7	PK	198	1.1			

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Madal	AP 8120	T-Log Number:	T78071
woder.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1h: High Channel (9) @ 2452 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2458.149	94.3	Н	-	-	AVG	136	1.3	
2447.929	105.7	Н	-	-	PK	136	1.3	
2458.129	91.0	V	-	-	AVG	198	1.1	
2459.332	102.0	V	-	-	PK	198	1.1	

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.600	53.5	Н	54.0	-0.5	AVG	136	1.3	
2484.803	71.1	Н	74.0	-2.9	PK	136	1.3	
2483.620	50.5	V	54.0	-3.5	AVG	198	1.1	
2484.823	66.2	V	74.0	-7.8	PK	198	1.1	

Elliott An 公益 company Client: Avaya

EMC Test Data

	All 2023 Company		
Client:	Avaya	Job Number:	J78065
Madalı	AP 8120	T-Log Number:	T78071
wouei.	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n40 - CDD - MCS0

Run #2a: Low Channel (3) @ 2422 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2435.571	96.6	Н		-	Avg	208	1.4	
2410.802	108.1	Н		-	Pk	208	1.4	
2427.154	91.5	V	-	-	Avg	153	1.1	
2417.054	104.0	V	-	-	Pk	153	1.1	

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2388.437	53.7	Н	54.0	-0.3	AVG	208	1.4	
2388.196	72.0	Н	74.0	-2.0	PK	208	1.4	
2389.639	49.8	V	54.0	-4.2	AVG	153	1.1	
2389.399	66.2	V	74.0	-7.8	PK	153	1.1	

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Madal	AP 8120	T-Log Number:	T78071
woder.	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2b: Channel (4) @ 2427 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Daria Lago								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	53.9	Н	54.0	-0.1	AVG	208	1.4	
2390.000	70.9	Н	74.0	-3.1	PK	208	1.4	
2389.399	50.1	V	54.0	-3.9	AVG	153	1.1	
2389.639	65.0	V	74.0	-9.0	PK	153	1.1	

	An ZAZE) company		
Client:	Avaya	Job Number:	J78065
Model:	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2c: Channel (5) @ 2432 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: -Config Change: None Test Engineer: Rafael Varelas Test Location: FT Chamber #4 EUT Voltage: 120V/60Hz

Duria Lago	band Eage Signal Field Strength Direct measurement of held strength									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2390.000	53.9	Н	54.0	-0.1	AVG	208	1.4			
2388.437	71.6	Н	74.0	-2.4	PK	208	1.4			
2389.399	49.9	V	54.0	-4.1	AVG	153	1.1			
2388.437	68.6	V	74.0	-5.4	PK	153	1.1			

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2d: Channel (6) @ 2437 MHz, UP Right Orientation

Date of Test: 2/8/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Daria Lago	orginal i lola	Outengui	Direct meas	ar criticitic or	noia sa criga	•		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	51.3	Н	54.0	-2.7	AVG	208	1.4	
2389.627	67.5	Н	74.0	-6.6	PK	208	1.4	
2356.922	48.7	V	54.0	-5.3	AVG	153	1.1	
2389.627	63.7	V	74.0	-10.3	PK	153	1.1	

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2e: Channel (6) @ 2437 MHz, UP Right Orientation

Date of Test: 2/9/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Daria Lage	orginal i icia	i ou ongui	Direct meas	ar criticitic or	noia sa criga	•		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.632	51.8	Н	54.0	-2.3	Avg	200	1.4	
2485.556	70.4	Н	74.0	-3.6	Pk	200	1.4	
2484.594	47.6	V	54.0	-6.4	AVG	152	1.4	
2484.113	62.6	V	74.0	-11.4	PK	152	1.4	

	An ATE company								
Client:	Avaya	Job Number:	J78065						
Model	AP 8120	T-Log Number:	T78071						
Model.	AF 0120	Account Manager:	Dean Eriksen						
Contact:	Vipin Naik								
Standard:	FCC 15.247	Class:	N/A						

Run #2f: Channel (7) @ 2442 MHz, UP Right Orientation

Date of Test: 2/9/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

						-		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.620	53.9	Н	54.0	-0.1	Avg	200	1.4	
2483.620	70.2	Н	74.0	-3.8	Pk	200	1.4	
2484.342	49.6	V	54.0	-4.4	AVG	152	1.4	
2487.468	65.0	V	74.0	-9.0	PK	152	1.4	

Client:	Avaya	Job Number:	J78065
Madali	AD 0120	T-Log Number:	T78071
woder.	I: AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2g: Channel (8) @ 2447 MHz, UP Right Orientation

Date of Test: 2/9/2010 Config. Used: -Config Change: None Test Engineer: Rafael Varelas Test Location: FT Chamber #4 EUT Voltage: 120V/60Hz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2485.544	53.4	Н	54.0	-0.6	Avg	200	1.4	
2485.544	69.5	Н	74.0	-4.6	Pk	200	1.4	
2484.582	49.3	V	54.0	-4.7	Avg	152	1.4	
2486.987	62.7	V	74.0	-11.3	Pk	152	1.4	

Elliott An (XZAST company)

EMC Test Data

All DUE Company							
Client:	Avaya	Job Number:	J78065				
Madali	AP 8120	T-Log Number:	T78071				
Model.	AP 0120	Account Manager:	Dean Eriksen				
Contact:	Vipin Naik						
Standard:	FCC 15.247	Class:	N/A				

Run #2h: High Channel (9) @ 2452 MHz, UP Right Orientation

Date of Test: 2/9/2010 Config. Used: Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 EUT Voltage: 120V/ 60Hz

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2458.129	94.9	Н		-	Avg	200	1.4	
2445.624	105.8	Н		-	Pk	200	1.4	
2446.827	90.9	V		-	Avg	152	1.4	
2456.927	102.2	V	-	-	Pk	152	1.4	

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2485.544	53.9	Н	54.0	-0.1	Avg	200	1.4	
2490.594	68.4	Н	74.0	-5.6	Pk	200	1.4	
2484.582	49.4	V	54.0	-4.6	Avg	152	1.4	
2484.101	63.5	V	74.0	-10.5	Pk	152	1.4	

	An DOZE company							
Client:	Avaya	Job Number:	J78065					
Madal	AP 8120	T-Log Number:	T78071					
wouei.	AP 0120	Account Manager:	Dean Eriksen					
Contact:	Vipin Naik							
Standard:	FCC 15.247	Class:	N/A					

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 10-15 °C

Rel. Humidity: 40-50 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Note: Preliminary testing showed no radio related emissions below 1 GHz and above 18 GHz.

	All Bazz Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 9120	T-Log Number:	T78071
	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Summary	oi Nesuit	3 - DEVICE	_ '	,	100-2403.3 IVITZ DALIC	ı	
Run #	Mode	Channel	Antenna/ Orientation	Measured Power	Test Performed	Limit	Result / Margin
10	802.11b	1 - 2412	Aux		Radiated Emissions,	FCC Part 15.209 /	53.6dBµV/m @
1a	6UZ.11D	MHz	(Up Right)	-	1 - 26 GHz	15.247(c)	4824.0MHz (-0.4dB)
1b	802.11b	6 - 2437	Aux		Radiated Emissions,	FCC Part 15.209 /	53.4dBµV/m @
ΙÜ	002.110	MHz	(Up Right)	-	1 - 26 GHz	FCC Part 15.209 / 53.6dBµV/m / 15.247(c) 4824.0MHz (-0.4	4874.0MHz (-0.6dB)
1c	802.11b	11 - 2462	Aux		Radiated Emissions,	FCC Part 15.209 /	51.2dBµV/m @
IC	6UZ.11D	MHz	(Up Right)	-	1 - 26 GHz		4924.0MHz (-2.8dB)
2a	002 11a	1 - 2412	Aux		Radiated Emissions,		49.5dBµV/m @
Zd	802.11g	MHz	(Up Right)	-	1 - 26 GHz		4824.0MHz (-4.5dB)
2b	802.11g	6 - 2437	Aux		Radiated Emissions,		48.1dBµV/m @
ZU	002.119	MHz	(Up Right)	-	1 - 26 GHz		4874.0MHz (-5.9dB)
2c	802.11g	11 - 2462	Aux	_	Radiated Emissions,		•
20	002.11g	MHz	(Up Right)	-	1 - 26 GHz		
3a	n20 - CDD	1 - 2412	Main/Aux		Radiated Emissions,		•
	1120 - CDD	MHz	(Up Right)	-	1 - 26 GHz	1 - 26 GHz 15.247(c)	4824.3MHz (-3.0dB)
3b	n20 - CDD	6 - 2437	Main/Aux		Radiated Emissions,		
JU	1120 - CDD	MHz	(Up Right)	-	1 - 26 GHz	ions, FCC Part 15.209 / 45.0dBμV/m @ 4923.9MHz (-9.0dB) ions, FCC Part 15.209 / 51.0dBμV/m @ 4824.3MHz (-3.0dB) ions, FCC Part 15.209 / 52.7dBμV/m @ 4873.9MHz (-1.3dB) ions, FCC Part 15.209 / 4873.9MHz (-1.3dB) ions, FCC Part 15.209 / 48.9dBμV/m @ 15.247(c) 7385.9MHz (-5.1dB) ions, FCC Part 15.209 / 41.8dBμV/m @ 4843.6MHz (-12.2dB)	
3c	n20 - CDD	11 - 2462	Main/Aux		Radiated Emissions,		•
JU		MHz	(Up Right)	-	1 - 26 GHz		
4a	n40 - CDD	3 - 2422	Main/Aux	_	Radiated Emissions,		
4a	1140 - CDD	MHz	(Up Right)	-	1 - 26 GHz		
4b	n40 - CDD	6 - 2437	Main/Aux		Radiated Emissions,		
40	1140 - CDD	MHz	(Up Right)	-	1 - 26 GHz		53.6dBµV/m @ 4824.0MHz (-0.4dB) 53.4dBµV/m @ 4874.0MHz (-0.6dB) 51.2dBµV/m @ 4924.0MHz (-2.8dB) 49.5dBµV/m @ 4824.0MHz (-4.5dB) 48.1dBµV/m @ 4874.0MHz (-5.9dB) 45.0dBµV/m @ 4923.9MHz (-9.0dB) 51.0dBµV/m @ 4824.3MHz (-3.0dB) 52.7dBµV/m @ 4873.9MHz (-1.3dB) 48.9dBµV/m @ 7385.9MHz (-5.1dB) 41.8dBµV/m @
4c	n40 - CDD	9 - 2452	Main/Aux		Radiated Emissions,		
46		MHz	(Up Right)	-	1 - 26 GHz		
6a	n40 - SISO -	3 - 2422	Main/Aux		Radiated Emissions,		
ua	MCS0	MHz	(Up Right)	-	1 - 26 GHz		
6b	n40 - SISO -	6 - 2437	Main/Aux		Radiated Emissions,		
ÜÜ	MCS0	MHz	(Up Right)	-	1 - 26 GHz		
6c	n40 - SISO -	9 - 2452	Main/Aux		Radiated Emissions,		•
ÜÜ	MCS0	MHz	(Up Right)	-	1 - 26 GHz	15.247(c)	1117.9MHz (-15.0dB)

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11b

Date of Test: 1/26/2010 Test Engineer: Suhaila Khushzad Test Location: Chamber #4

Run #1a: Low Channel (1) @ 2412 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4823.990	53.6	V	54.0	-0.4	AVG	198	1.0	RB 1 MHz; VB: 10 Hz
4824.050	55.4	V	74.0	-18.6	PK	198	1.0	RB 1 MHz; VB: 1 MHz
1457.610	41.6	V	54.0	-12.4	AVG	91	1.0	RB 1 MHz; VB: 10 Hz
1457.540	44.3	V	74.0	-29.7	PK	91	1.0	RB 1 MHz; VB: 1 MHz
7233.490	45.6	V	54.0	-8.4	Peak	128	1.3	Peak vs Avg Limit
9647.980	48.3	Н	54.0	-5.7	Peak	189	1.0	Peak vs Avg Limit

	All Debts Company		
Client:	Avaya	Job Number:	J78065
Modal:	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1b: Center Channel (6) @ 2437 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4874.010	53.4	V	54.0	-0.6	AVG	198	1.0	RB 1 MHz; VB: 10 Hz
4873.910	55.5	V	74.0	-18.5	PK	198	1.0	RB 1 MHz; VB: 1 MHz
7307.780	43.1	V	54.0	-10.9	AVG	136	1.0	RB 1 MHz; VB: 10 Hz
7307.240	51.1	V	74.0	-22.9	PK	136	1.0	RB 1 MHz; VB: 1 MHz
8276.790	36.7	Н	54.0	-17.3	AVG	164	1.0	RB 1 MHz; VB: 10 Hz
8279.990	47.9	Н	74.0	-26.1	PK	164	1.0	RB 1 MHz; VB: 1 MHz
1301.730	28.4	V	54.0	-25.6	AVG	67	1.0	RB 1 MHz; VB: 10 Hz
1296.400	38.6	V	74.0	-35.4	PK	67	1.0	RB 1 MHz; VB: 1 MHz
9748.000	44.5	Н	54.0	-9.5	Peak	245	1.6	Peak vs Avg Limit, Note 2

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Client:	Avaya	Job Number:	J78065					
Model	AP 8120	T-Log Number:	T78071					
Model.	I. AP 8120	Account Manager:	Dean Eriksen					
Contact:	Vipin Naik							
Standard:	FCC 15.247	Class:	N/A					

Run #1c: High Channel (11) @ 2462 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4924.040	51.2	Н	54.0	-2.8	AVG	171	1.6	RB 1 MHz; VB: 10 Hz
4923.970	53.2	Н	74.0	-20.8	PK	171	1.6	RB 1 MHz; VB: 1 MHz
7389.250	46.0	Н	54.0	-8.0	AVG	240	1.3	RB 1 MHz; VB: 10 Hz
7389.980	52.7	Н	74.0	-21.3	PK	240	1.3	RB 1 MHz; VB: 1 MHz
2782.540	38.5	Н	54.0	-15.5	AVG	0	1.0	RB 1 MHz; VB: 10 Hz
2757.680	49.4	Н	74.0	-24.6	PK	0	1.0	RB 1 MHz; VB: 1 MHz
1374.950	32.4	V	54.0	-21.6	AVG	67	1.0	RB 1 MHz; VB: 10 Hz
1357.850	44.4	V	74.0	-29.6	PK	67	1.0	RB 1 MHz; VB: 1 MHz

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 9120	T-Log Number:	T78071
	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11g

Date: 1/26/2010 Test Engineer: Mehran Birgani Test Location: FT Chamber #4

Run #2a: Low Channel (1) @ 2412 MHz, Up Right Orientation

F	requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1	374.950	32.4	V	54.0	-21.6	AVG	67	1.0	
4	1824.000	49.5	Н	54.0	-4.5	AVG	158	1.0	
1	357.850	44.4	V	74.0	-29.6	PK	67	1.0	
4	1819.070	61.8	Н	74.0	-12.2	PK	158	1.0	
7	229.170	46.2	Н	54.0	-7.8	PK	232	1.0	Pk vs. Average limit

All DEED Company							
Client:	Avaya	Job Number:	J78065				
Model	AP 8120	T-Log Number:	T78071				
Model.	AP 0120	Account Manager:	Dean Eriksen				
Contact:	Vipin Naik						
Standard:	FCC 15.247	Class:	N/A				

Run #2b: Center Channel (6) @ 2437 MHz, Up Right Orientation

Date: 1/26/2010 Test Engineer: Joseph Cadigal Test Location: FT Chamber #4

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4874.040	48.1	V	54.0	-5.9	AVG	188	1.0	
7314.560	41.7	Н	54.0	-12.3	AVG	237	1.7	
4873.370	61.8	V	74.0	-12.2	PK	188	1.0	
7310.230	53.8	Н	74.0	-20.2	PK	237	1.7	

Client:	Avaya	Job Number:	J78065					
Model:	AP 8120	T-Log Number:	T78071					
Model.	AP 0120	Account Manager:	Dean Eriksen					
Contact:	Vipin Naik							
Standard:	FCC 15.247	Class:	N/A					

Run #2c: High Channel (11) @ 2462 MHz, Up Right Orientation

Date: 1/26/2010 Test Engineer: Joseph Cadigal Test Location: FT Chamber #4

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4923.930	45.0	Н	54.0	-9.0	AVG	169	1.7	
7389.130	44.2	V	54.0	-9.8	AVG	133	1.3	
4926.730	56.8	Н	74.0	-17.2	PK	169	1.7	
7390.730	56.3	V	74.0	-17.7	PK	133	1.3	

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model	AD 0120	T-Log Number:	T78071
woder.	I: AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n20 - CDD

Date: 1/26/2010 Test Engineer: Joseph Cadigal Test Location: FT Chamber #4

Run #3a: Low Channel (1) @ 2412 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4824.290	51.0	Н	54.0	-3.0	AVG	162	1.1	RB 1 MHz; VB: 10 Hz
7235.350	43.9	V	54.0	-10.1	AVG	154	1.6	RB 1 MHz; VB: 10 Hz, Note 2
4819.690	65.2	Н	74.0	-8.8	PK	162	1.1	RB 1 MHz; VB: 1 MHz
7235.220	55.6	V	74.0	-18.4	PK	154	1.6	RB 1 MHz; VB: 1 MHz, Note 2

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Client:	Avaya	Job Number:	J78065
Model:	AP 8120	T-Log Number:	T78071
Model.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3b: Center Channel (6) @ 2437 MHz,Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4873.910	52.7	Н	54.0	-1.3	AVG	191	1.7	
7310.980	46.3	٧	54.0	-7.7	AVG	164	1.3	
4873.710	66.1	Н	74.0	-7.9	PK	191	1.7	
7313.320	59.1	V	74.0	-14.9	PK	164	1.3	

Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
iviodei.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3c: High Channel (11) @ 2462 MHz, Up Right Orientation

Date: 1/26/2010 Test Engineer: Joseph Cadigal Test Location: FT Chamber #4

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4924.510	47.4	Н	54.0	-6.6	AVG	181	1.1	
7385.910	48.9	٧	54.0	-5.1	AVG	162	1.3	
4924.240	60.8	Н	74.0	-13.2	PK	181	1.1	
7380.640	60.6	V	74.0	-13.4	PK	162	1.3	

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #4: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n40 - CDD - MCS0

Date: 1/27/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #4

Run #4a: Low Channel (3) @ 2422 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	
4843.600	41.8	Н	54.0	-12.2	AVG	203	1.0	
4846.530	55.5	Н	74.0	-18.5	PK	203	1.0	
7271.110	40.0	V	54.0	-14.0	AVG	142	1.4	
7277.440	51.1	V	74.0	-22.9	PK	142	1.4	

Client:	Avaya	Job Number:	J78065
Modol:	AP 8120	T-Log Number:	T78071
woder:	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #4b: Center Channel (6) @ 2437 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7306.400	40.0	V	54.0	-14.0	AVG	140	1.3	
7304.070	51.6	V	74.0	-22.4	PK	140	1.3	
4873.630	39.9	Н	54.0	-14.1	AVG	210	1.0	
4868.530	53.7	Н	74.0	-20.3	PK	210	1.0	

Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #4c: High Channel (9) @ 2452 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4904.310	41.3	Н	54.0	-12.7	AVG	173	1.4	
4904.440	55.8	Н	74.0	-18.2	PK	173	1.4	
7361.480	41.1	V	54.0	-12.9	AVG	138	1.3	
7356.650	54.5	V	74.0	-19.5	PK	138	1.3	

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #6: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n40 - SISO - MCSO

Date: 2/9/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #4

Run #6a: Low Channel (3) @ 2422 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1117.850	38.8	V	54.0	-15.2	AVG	79	1.0	RB 1 MHz; VB: 10 Hz, Note 2
1118.810	50.9	V	74.0	-23.1	PK	79	1.0	RB 1 MHz; VB: 1 MHz, Note 2
4844.380	37.0	Н	54.0	-17.0	AVG	143	1.0	RB 1 MHz; VB: 10 Hz
4844.650	52.3	Н	74.0	-21.7	PK	143	1.0	RB 1 MHz; VB: 1 MHz

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Client:	Avaya	Job Number:	J78065
Model:	AD 0100	T-Log Number:	T78071
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #6b: Center Channel (6) @ 2437 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1117.970	39.2	V	54.0	-14.8	AVG	84	1.0	RB 1 MHz; VB: 10 Hz, Note 2
1119.830	51.9	V	74.0	-22.1	PK	84	1.0	RB 1 MHz; VB: 1 MHz, Note 2
4873.370	33.8	Н	54.0	-20.2	AVG	217	1.0	RB 1 MHz; VB: 10 Hz
4879.370	46.7	Н	74.0	-27.3	PK	217	1.0	RB 1 MHz; VB: 1 MHz

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #6c: High Channel (9) @ 2452 MHz, Up Right Orientation

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1117.890	39.0	V	54.0	-15.0	AVG	79	1.0	RB 1 MHz; VB: 10 Hz, Note 2
4904.290	35.6	Н	54.0	-18.4	AVG	139	1.0	RB 1 MHz; VB: 10 Hz
1118.610	52.0	V	74.0	-22.0	PK	79	1.0	RB 1 MHz; VB: 1 MHz, Not2e
4902.190	49.9	Н	74.0	-24.1	PK	139	1.0	RB 1 MHz; VB: 1 MHz

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

	An ZAZZZ company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 19.4 °C

Rel. Humidity: 37 %

Note: Preliminary testing showed no radio related emissions below 1 GHz and above 18 GHz.

Summary of Results - Device Operating in the 5725 - 5850 MHz Band

Run #	Mode	Channel	Antenna/ Orientation	Measured Power	Test Performed	Limit	Result / Margin
10		149 - 5745	Unright		Radiated Emissions,	FCC Part 15.209 /	51.7dBµV/m @
1a	а	MHz	Upright	-	1 - 40GHz	15.247(c)	11489.3MHz (-2.3dB)
1b	а	157 - 5785	Upright		Radiated Emissions,	FCC Part 15.209 /	49.2dBµV/m @
TD	а	MHz	oprigni	-	1 - 40GHz	15.247(c)	11568.9MHz (-4.8dB)
10	0	165 - 5825	Upright		Radiated Emissions,	FCC Part 15.209 /	46.9dBµV/m @
1c	а	MHz	Upright	-	1 - 40GHz	15.247(c)	11649.4MHz (-7.1dB)
2a	n20 - CDD	149 - 5745	Upright		Radiated Emissions,	FCC Part 15.209 /	50.6dBµV/m @
Za	1120 - CDD	MHz	Upright	-	1 - 40GHz	15.247(c)	11489.0MHz (-3.4dB)
2b	n20 - CDD	157 - 5785	Upright		Radiated Emissions,	FCC Part 15.209 /	46.8dBµV/m @
20	1120 - CDD	MHz	Upright	-	1 - 40GHz	15.247(c)	11571.5MHz (-7.2dB)
2c	n20 - CDD	165 - 5825	Upright		Radiated Emissions,	FCC Part 15.209 /	50.5dBµV/m @
20	1120 - CDD	MHz	Upright	-	1 - 40GHz	15.247(c)	17470.0MHz (-3.5dB)
3a	n40 - CDD	151 - 5755	Upright		Radiated Emissions,	FCC Part 15.209 /	52.7dBµV/m @
3a	1140 - CDD	MHz	Upright	-	1 - 40GHz	15.247(c)	11509.8MHz (-1.3dB)
3b	n40 - CDD	159 - 5795	Upright		Radiated Emissions,	FCC Part 15.209 /	51.0dBµV/m @
30	1140 - CDD	MHz	Upright	-	1 - 40GHz	15.247(c)	11590.4MHz (-3.0dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	An ZAZZES company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Note - preliminary scans showed no emissions above 18GHz.

Run #1: Radiated Spurious Emissions, 1000 - 40000 MHz. Operating Mode: 802.11a

Date: 1/27/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #4

Run #1a: Low Channel (149) @ 5745 MHz, Upright Orientation

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5748.130	106.3	Н	-	-	AVG	195	1.0	RB 1 MHz; VB: 10 Hz
5748.630	115.3	Н	-	-	PK	195	1.0	RB 1 MHz; VB: 1 MHz
5746.330	106.3	Н	-	-	PK	195	1.0	RB 100 kHz; VB: 100 kHz
5741.300	102.8	V	-	-	AVG	152	1.1	RB 1 MHz; VB: 10 Hz
5748.070	112.1	V	-	-	PK	152	1.1	RB 1 MHz; VB: 1 MHz

Fundamental emission level @ 3m in 100kHz RBW:	106.3 dBμV/m	
Limit for emissions outside of restricted bands:	86.3 dBµV/m	Limit is -20dBc (Peak power measurement)
Limit for emissions outside of restricted bands:	76.3 dBμV/m	Limit is -30dBc (UNII power measurement)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11489.290	51.7	Н	54.0	-2.3	AVG	217	1.5	
11489.580	65.1	Н	74.0	-8.9	PK	217	1.5	

Elliott Run #1b: Center Channel (157) @ 5785 MHz, Upright Orientation Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Pol 15,209 / 15,247 Detector Azimuth Height Comments

EMC Test Data

All 2022 Company		
Avaya	Job Number:	J78065
AD 0120	T-Log Number:	T78071
AP 0120	Account Manager:	Dean Eriksen
Vipin Naik		
FCC 15.247	Class:	N/A
	Avaya AP 8120 Vipin Naik	AP 8120 T-Log Number: Account Manager: Vipin Naik

Frequency	Level	Pol	15.209	/ 15.24 /	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
EUT Uprigh	t							
5781.270	102.6	V	1	-	AVG	150	1.2	RB 1 MHz; VB: 10 Hz
5782.770	111.5	V	1	-	PK	150	1.2	RB 1 MHz; VB: 1 MHz
5780.130	103.7	V	1	-	PK	150	1.2	RB 100 kHz; VB: 100 kHz
5781.300	106.1	Н	1	-	AVG	185	1.1	RB 1 MHz; VB: 10 Hz
5789.100	114.4	Н	1	-	PK	185	1.1	RB 1 MHz; VB: 1 MHz
5782.630	105.8	Н	-	-	PK	185	1.1	RB 100 kHz; VB: 100 kHz
EUT Flat								
5781.130	99.5	V	-	-	AVG	237	1.8	RB 1 MHz; VB: 10 Hz
5782.130	107.8	V	-	-	PK	237	1.8	RB 1 MHz; VB: 1 MHz
5777.200	98.7	V	-	-	PK	237	1.8	RB 100 kHz; VB: 100 kHz
5781.230	94.5	Н	-	-	AVG	14	1.7	RB 1 MHz; VB: 10 Hz
5780.970	104.1	Н	-	-	PK	14	1.7	RB 1 MHz; VB: 1 MHz
5781.330	95.3	Н	-	-	PK	14	1.7	RB 100 kHz; VB: 100 kHz
EUT Side								
5780.970	101.0	V	-	-	AVG	299	1.2	RB 1 MHz; VB: 10 Hz
5779.470	109.3	V	-	-	PK	299	1.2	RB 1 MHz; VB: 1 MHz
5781.370	101.9	V	1	-	PK	299	1.2	RB 100 kHz; VB: 100 kHz
5781.370	103.0	Н	-	-	AVG	297	1.4	RB 1 MHz; VB: 10 Hz
5779.600	111.4	Н	-	-	PK	297	1.4	RB 1 MHz; VB: 1 MHz
5790.170	103.4	Н	-	-	PK	297	1.4	RB 100 kHz; VB: 100 kHz

Fundamental emission level @ 3m in 100kHz RBW:	105.4 dBμV/m	
Limit for emissions outside of restricted bands:	85.4 dBμV/m	Limit is -20dBc (Peak power measurement)
Limit for emissions outside of restricted bands:	75.4 dBμV/m	Limit is -30dBc (UNII power measurement)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11568.870	49.2	V	54.0	-4.8	AVG	216	1.2	
11568.790	61.7	V	74.0	-12.3	PK	216	1.2	

Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Client: Avaya	Job Number:	J78065
Model: AP 8120	T-Log Number:	T78071
Model. AP 6120	Account Manager:	Dean Eriksen
Contact: Vipin Naik		
Standard: FCC 15.247	Class:	N/A

Run #1c: High Channel (165) @ 5825 MHz, Upright Orientation

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5828.830	106.2	Н	-	•	AVG	189	1.1	RB 1 MHz; VB: 10 Hz
5829.970	114.8	Н	-	•	PK	189	1.1	RB 1 MHz; VB: 1 MHz
5828.870	107.2	Н	-	•	PK	189	1.1	RB 100 kHz; VB: 100 kHz
5829.200	103.4	V	-	•	AVG	151	1.1	RB 1 MHz; VB: 10 Hz
5831.270	112.3	V	-	-	PK	151	1.1	RB 1 MHz; VB: 1 MHz

Fundamental emission level @ 3m in 100kHz RBW:	107.2	dBμV/m
Limit for emissions outside of restricted bands:	87.2	dBμV/m
Limit for emissions outside of restricted bands:	77.2	dBuV/m

Limit is -20dBc (Peak power measurement) Limit is -30dBc (UNII power measurement)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11649.440	46.9	V	54.0	-7.1	AVG	210	1.0	
11647.540	58.9	V	74.0	-15.1	PK	210	1.0	

	All Debts Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2: Radiated Spurious Emissions, 1000 - 40000 MHz. Operating Mode: 802.11n 20 MHz CDD

Date: 1/27/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #4

Run #2a: Low Channel (149) @ 5745 MHz, Upright Orientation

	dBμV/m	108.7	Fundamental emission level @ 3m in 100kHz RBW:
Limit is -20dBc (Pea	7 dBμV/m	88.7	Limit for emissions outside of restricted bands:
Limit is -30dBc (UN	⁷ dBμV/m	78.7	Limit for emissions outside of restricted bands:

Limit is -20dBc (Peak power measurement) Limit is -30dBc (UNII power measurement)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11489.000	50.6	Н	54.0	-3.4	AVG	198	1.0	
11489.160	62.4	Н	74.0	-11.6	PK	198	1.0	
11490.260	49.2	V	54.0	-4.8	AVG	174	1.0	
11490.320	61.4	V	74.0	-12.6	PK	174	1.0	
17230.000	48.4	V	54.0	-5.6	Peak	180	1.0	Note 2, peak reading vs ave limit

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

	All Deed Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AF 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2b: Center Channel (157) @ 5785 MHz, Upright Orientation

	dBμV/m	109.5	Fundamental emission level @ 3m in 100kHz RBW:
Limit is -20dB	dBμV/m	89.5	Limit for emissions outside of restricted bands:
Limit is -30dB	dBμV/m	79.5	Limit for emissions outside of restricted bands:

Limit is -20dBc (Peak power measurement) Limit is -30dBc (UNII power measurement)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11571.520	46.8	Н	54.0	-7.2	AVG	199	1.0	
11571.600	59.9	Н	74.0	-14.1	PK	199	1.0	
11570.200	45.6	V	54.0	-8.4	AVG	235	1.0	
11570.100	57.6	V	74.0	-16.4	PK	235	1.0	
17350.000	45.5	V	54.0	-8.5	Peak	183	1.0	Note 2, peak reading vs ave limit

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

	All Deed Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
wouei.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2c: High Channel (165) @ 5825 MHz, Upright Orientation

Fundamental emission level @ 3m in 100kHz RBW:	107.6	dBμV/m]
Limit for emissions outside of restricted bands:	87.6	dBμV/m	Limit is -20dBc (F
Limit for emissions outside of restricted bands:	77.6	dBμV/m	Limit is -30dBc (L

Limit is -20dBc (Peak power measurement)
Limit is -30dBc (UNII power measurement)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11650.870	48.6	Н	54.0	-5.4	AVG	159	1.0	
11651.170	49.3	V	54.0	-4.7	AVG	208	1.2	
17470.000	50.5	V	54.0	-3.5	Peak	182	1.0	Note 2, peak reading vs ave limit
11650.810	62.1	Н	74.0	-11.9	PK	159	1.0	
11651.220	61.5	V	74.0	-12.5	PK	208	1.2	

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

An DOZO company						
Client:	Avaya	Job Number:	J78065			
Model	AP 8120	T-Log Number:	T78071			
woder.	AP 8120	Account Manager:	Dean Eriksen			
Contact:	Vipin Naik					
Standard:	FCC 15.247	Class:	N/A			

Run #3: Radiated Spurious Emissions, 1000 - 40000 MHz. Operating Mode: 802.11n 40 MHz CDD

Date of Test: 1/28/2010 Test Engineer: Mark Hill Test Location: FT#5

Run #3a: Low Channel (151) @ 5755 MHz, Upright

Fundamental emission level @ 3m in 100kHz RBW:	108.8 dBμV/m	
Limit for emissions outside of restricted bands:	88.8 dBµV/m	Limit is -20dBc (Peak power measurement)
Limit for emissions outside of restricted bands:	78.8 dBμV/m	Limit is -30dBc (UNII power measurement)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1125.020	34.7	V	54.0	-19.3	AVG	94	1.2	RB 1 MHz; VB: 10 Hz
11509.840	52.7	Н	54.0	-1.3	AVG	222	1.0	RB 1 MHz; VB: 10 Hz
1124.940	42.3	V	74.0	-31.7	PK	94	1.2	RB 1 MHz; VB: 1 MHz
11509.990	63.5	Н	74.0	-10.5	PK	222	1.0	RB 1 MHz; VB: 1 MHz
17310.580	57.7	Н	78.8	-21.1	PK	186	1.0	RB 100 kHz; VB: 100 kHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

All DEES Company						
Client:	Avaya	Job Number:	J78065			
Model	AP 8120	T-Log Number:	T78071			
Model.	AF 0120	Account Manager:	Dean Eriksen			
Contact:	Vipin Naik					
Standard:	FCC 15.247	Class:	N/A			

Run #3b: High Channel (159) @ 5795 MHz, Upright

Fundamental emission level @ 3m in 100kHz RBW:	106.7 dBμV/m	
Limit for emissions outside of restricted bands:	86.7 dBµV/m	Limit is -20dBc (Peak power measurement)
Limit for emissions outside of restricted bands:	76.7 dBμV/m	Limit is -30dBc (UNII power measurement)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1125.050	36.0	V	54.0	-18.0	AVG	39	1.0	RB 1 MHz; VB: 10 Hz
11590.360	51.0	Н	54.0	-3.0	AVG	227	1.0	RB 1 MHz; VB: 10 Hz
1125.270	44.8	V	74.0	-29.2	PK	39	1.0	RB 1 MHz; VB: 1 MHz
11592.700	61.9	Н	74.0	-12.1	PK	227	1.0	RB 1 MHz; VB: 1 MHz
17393.440	60.6	Н	76.7	-16.1	PK	191	1.0	RB 100 kHz; VB: 100 kHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

	An 2022 Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78071
Model.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS-GEN Radiated Spurious Emissions - RX Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 18.9 °C

Rel. Humidity: 38 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Antenna/ Orientation	Measured Power	Test Performed	Limit	Result / Margin
1	802.11b	6 - 2437	Aux	Rx	Radiated Emissions,	RSS-GEN	40.1dBµV/m @
I	002.110	MHz	(Up Right)	ĽΧ	1 - 26 GHz	K33-GEN	3076.5MHz (-13.9dB)
2	n20 - CDD	6 - 2437	Main/Aux	Rx	Radiated Emissions,	RSS-GEN	39.3dBµV/m @
Z	1120 - CDD	MHz	(Up Right)	ĽΧ	1 - 26 GHz	K33-GEN	3076.5MHz (-14.7dB)
2	n40 - CDD	6 - 2437	Main/Aux	Rx	Radiated Emissions,	RSS-GEN	39.8dBµV/m @
3	1140 - CDD	MHz	(Up Right)	ĽΧ	1 - 26 GHz	NOO-GEN	3076.5MHz (-14.2dB)

Note: Preliminary testing showed no radio related emissions below 1 GHz

An ZAZZZZ company						
Client:	Avaya	Job Number:	J78065			
Model	AP 8120	T-Log Number:	T78071			
woder.	AP 8120	Account Manager:	Dean Eriksen			
Contact:	Vipin Naik					
Standard:	FCC 15.247	Class:	N/A			

Run #1: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11b

Date: 1/31/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #4

Run #1: Center Channel (6) @ 2437 MHz, Up Right Orientation

Frequency	Level	Pol	RSS-	-GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3076.490	40.1	V	54.0	-13.9	AVG	52	1.4	RB 1 MHz; VB: 10 Hz
3076.440	45.2	V	74.0	-28.8	PK	52	1.4	RB 1 MHz; VB: 1 MHz
1117.780	36.1	V	54.0	-17.9	AVG	104	1.0	RB 1 MHz; VB: 10 Hz
1118.350	48.7	V	74.0	-25.3	PK	104	1.0	RB 1 MHz; VB: 1 MHz

All Balls Company						
Client:	Avaya	Job Number:	J78065			
Model	AP 8120	T-Log Number:	T78071			
Model.	AF 0120	Account Manager:	Dean Eriksen			
Contact:	Vipin Naik					
Standard:	FCC 15.247	Class:	N/A			

Run #2: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n20 - CDD

Date: 1/31/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #4

Run #2: Center Channel (6) @ 2437 MHz, Up Right Orientation

Frequency	Level	Pol	RSS-	-GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3076.460	39.3	V	54.0	-14.7	AVG	48	1.0	RB 1 MHz; VB: 10 Hz
3076.370	45.2	V	74.0	-28.8	PK	48	1.0	RB 1 MHz; VB: 1 MHz
1117.670	36.0	V	54.0	-18.0	AVG	87	1.0	RB 1 MHz; VB: 10 Hz
1119.660	48.7	V	74.0	-25.3	PK	87	1.0	RB 1 MHz; VB: 1 MHz

All Dead Company					
Client:	Avaya	Job Number:	J78065		
Model:	AD 9120	T-Log Number:	T78071		
	AF 0120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Run #3: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n40 - CDD

Date: 1/31/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #4

Run #3: Center Channel (6) @ 2437 MHz, Up Right Orientation

Frequency	Level	Pol	RSS-	-GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3076.490	39.8	V	54.0	-14.2	AVG	52	1.0	RB 1 MHz; VB: 10 Hz
3076.540	45.5	V	74.0	-28.5	PK	52	1.0	RB 1 MHz; VB: 1 MHz
1117.560	35.6	V	54.0	-18.4	AVG	87	1.0	RB 1 MHz; VB: 10 Hz
1118.760	49.7	V	74.0	-24.3	PK	87	1.0	RB 1 MHz; VB: 1 MHz

	An 2/22 Company		
Client:	Avaya	Job Number:	J78065
Madal	AP 8120	T-Log Number:	T78071
Model.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS-GEN Radiated Spurious Emissions - RX Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 45 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Antenna/ Orientation	Measured Power	Test Performed	Limit	Result / Margin
1	802.11a	157 5785 MHz	Aux (Up Right)	Rx	Radiated Emissions, 1 - 26 GHz	RSS-GEN	45.9dBµV/m @ 3075.9MHz (-8.1dB)
2	n20 - CDD	157 5785 MHz	Main/Aux (Up Right)	Rx	Radiated Emissions, 1 - 26 GHz	RSS-GEN	44.3dBµV/m @ 3075.8MHz (-9.7dB)
3	n40 - CDD	151 5755 MHz	Main/Aux (Up Right)	Rx	Radiated Emissions, 1 - 26 GHz	RSS-GEN	46.9dBµV/m @ 3076.2MHz (-7.1dB)

Note: Preliminary testing showed no radio related emissions below 1 GHz

Client:	Avaya	Job Number:	J78065
Model:	AD 9120	T-Log Number:	T78071
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11b

Date: 2/4/2010 Test Engineer: Suhaila Khushzad Test Location: Chamber #5

Run #1: Center Channel (157) @ 5785 MHz, Up Right Orientation

AVG

PK

AVG

PK

Peak

Peak

166

166

167

167

174

299

1.2

1.2

1.0

1.0

1.0

1.0

RB 1 MHz; VB: 10 Hz

RB 1 MHz; VB: 1 MHz

RB 1 MHz; VB: 10 Hz

RB 1 MHz; VB: 1 MHz

Peak vs Avg limit

Peak vs Avg limit

1538.010

1537.950

2496.720

2499.190

2100.090

2496.640

38.9

41.9

34.8

51.0

43.2

43.0

Н

Н

Н

Н

٧

٧

54.0

74.0

54.0

74.0

54.0

54.0

-15.1

-32.1

-19.2

-23.0

-10.8

-11.0

An 2(22) company					
Client:	Avaya	Job Number:	J78065		
Model:	AD 0120	T-Log Number:	T78071		
	AP 0120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Run #2: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n20 - CDD

Date: 2/4/2010 Test Engineer: Suhaila Khushzad Test Location: Chamber #5

Run #2: Center Channel (157) @ 5785 MHz, Up Right Orientation

All Balas Company					
Client:	Avaya	Job Number:	J78065		
Model:	AD 0120	T-Log Number:	T78071		
	AP 0120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Level	Pol	RSS-	GEN	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
44.3	Н	54.0	-9.7	AVG	190	1.0	RB 1 MHz; VB: 10 Hz
48.7	Н	74.0	-25.3	PK	190	1.0	RB 1 MHz; VB: 1 MHz
31.4	Н	54.0	-22.6	AVG	185	0.0	RB 1 MHz; VB: 10 Hz
46.3	Н	74.0	-27.7	PK	185	0.0	RB 1 MHz; VB: 1 MHz
34.4	Н	54.0	-19.6	AVG	123	1.0	RB 1 MHz; VB: 10 Hz
39.4	Н	74.0	-34.6	PK	123	1.0	RB 1 MHz; VB: 1 MHz
36.8	V	54.0	-17.2	AVG	105	1.0	RB 1 MHz; VB: 10 Hz
40.4	V	74.0	-33.6	PK	105	1.0	RB 1 MHz; VB: 1 MHz
38.3	V	54.0	-15.7	AVG	138	1.0	RB 1 MHz; VB: 10 Hz
39.9	V	74.0	-34.1	PK	138	1.0	RB 1 MHz; VB: 1 MHz
42.4	V	54.0	-11.6	Peak	284	1.9	Peak vs Avg limit
42.7	V	54.0	-11.3	Peak	168	1.0	Peak vs Avg limit
	1BμV/m 44.3 48.7 31.4 46.3 34.4 39.4 36.8 40.4 38.3 39.9 42.4	IBμV/m v/h 44.3 H 48.7 H 31.4 H 46.3 H 34.4 H 39.4 H 36.8 V 40.4 V 38.3 V 39.9 V 42.4 V	IBμV/m v/h Limit 44.3 H 54.0 48.7 H 74.0 31.4 H 54.0 46.3 H 74.0 34.4 H 54.0 39.4 H 74.0 36.8 V 54.0 40.4 V 74.0 38.3 V 54.0 39.9 V 74.0 42.4 V 54.0	IBμV/m v/h Limit Margin 44.3 H 54.0 -9.7 48.7 H 74.0 -25.3 31.4 H 54.0 -22.6 46.3 H 74.0 -27.7 34.4 H 54.0 -19.6 39.4 H 74.0 -34.6 36.8 V 54.0 -17.2 40.4 V 74.0 -33.6 38.3 V 54.0 -15.7 39.9 V 74.0 -34.1 42.4 V 54.0 -11.6	IBμV/m v/h Limit Margin Pk/QP/Avg 44.3 H 54.0 -9.7 AVG 48.7 H 74.0 -25.3 PK 31.4 H 54.0 -22.6 AVG 46.3 H 74.0 -27.7 PK 34.4 H 54.0 -19.6 AVG 39.4 H 74.0 -34.6 PK 36.8 V 54.0 -17.2 AVG 40.4 V 74.0 -33.6 PK 38.3 V 54.0 -15.7 AVG 39.9 V 74.0 -34.1 PK 42.4 V 54.0 -11.6 Peak	IBμV/m v/h Limit Margin Pk/QP/Avg degrees 44.3 H 54.0 -9.7 AVG 190 48.7 H 74.0 -25.3 PK 190 31.4 H 54.0 -22.6 AVG 185 46.3 H 74.0 -27.7 PK 185 34.4 H 54.0 -19.6 AVG 123 39.4 H 74.0 -34.6 PK 123 36.8 V 54.0 -17.2 AVG 105 40.4 V 74.0 -33.6 PK 105 38.3 V 54.0 -15.7 AVG 138 39.9 V 74.0 -34.1 PK 138 42.4 V 54.0 -11.6 Peak 284	IBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 44.3 H 54.0 -9.7 AVG 190 1.0 48.7 H 74.0 -25.3 PK 190 1.0 31.4 H 54.0 -22.6 AVG 185 0.0 46.3 H 74.0 -27.7 PK 185 0.0 34.4 H 54.0 -19.6 AVG 123 1.0 39.4 H 74.0 -34.6 PK 123 1.0 36.8 V 54.0 -17.2 AVG 105 1.0 40.4 V 74.0 -33.6 PK 105 1.0 38.3 V 54.0 -15.7 AVG 138 1.0 39.9 V 74.0 -34.1 PK 138 1.0 42.4 V 54.0 -11.6 Peak 284 1.9

An ZZZZ Company						
Client:	Avaya	Job Number:	J78065			
Model:	AD 0120	T-Log Number:	T78071			
	AP 0120	Account Manager:	Dean Eriksen			
Contact:	Vipin Naik					
Standard:	FCC 15.247	Class:	N/A			

Run #3: Radiated Spurious Emissions, 1000 - 26500 MHz. Operating Mode: 802.11n40 - CDD - MCS0

Date: 2/4/2010 Test Engineer: Suhaila Khushzad Test Location: Chamber #4

Run #3: Center Channel (151) @ 5755 MHz, Up Right Orientation

Frequency	Level	Pol	RSS-	-GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3076.150	46.9	V	54.0	-7.1	AVG	51	1.0	MHz; VB: 10 Hz
3076.030	49.5	V	74.0	-24.5	PK	51	1.0	MHz; VB: 1 MHz
1600.070	39.5	V	54.0	-14.5	AVG	209	1.0	MHz; VB: 10 Hz
1600.160	46.6	V	74.0	-27.4	PK	209	1.0	MHz; VB: 1 MHz
1192.620	36.9	V	54.0	-17.1	AVG	178	1.1	MHz; VB: 10 Hz
1197.150	49.5	V	74.0	-24.5	PK	178	1.1	MHz; VB: 1 MHz
2200.210	41.1	V	54.0	-12.9	AVG	194	1.0	MHz; VB: 10 Hz
2200.210	45.3	V	74.0	-28.7	PK	194	1.0	MHz; VB: 1 MHz

Ellio	tt Frompany	EMC Test Data		
Client:	Avaya	Job Number:	J7865	
Model:	AP 8120	T-Log Number:	T78130	
		Account Manager:	Dean Eriksen	
Contact:	Vipin Naik		-	
Emissions Standard(s):	FCC 15.247	Class:	-	
Immunity Standard(s):	-	Environment:	-	

For The

Avaya

Model

AP 8120

Date of Last Test: 2/12/2010

	An ACE company					
Client:	Avaya	Job Number:	J7865			
Model:	AD 0120	T-Log Number:	T78130			
	AP 0120	Account Manager:	Dean Eriksen			
Contact:	Vipin Naik					
Standard:	FCC 15.247	Class:	N/A			

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11b Mode)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 2/1/2010 Config. Used: 1 Test Engineer: Suhaila Khushzad/R. Varelas Config Change: None Test Location: Chamber #5 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: 20 °C Temperature:

Rel. Humidity: 50 %

Summary of Results

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	18.8	Output Power	15.247(b)	Pass	18.8 dBm
2	-	18.8	Power spectral Density (PSD)	15.247(d)	Pass	-1.3 dBm/3kHz
3	-	18.8	Minimum 6dB Bandwidth	15.247(a)	Pass	10.2 MHz
3	-	18.8	99% Bandwidth	RSS GEN	-	13.7 MHz
4	-	18.8	Spurious emissions	15.247(b)	Pass	All Emissions < -30dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All DLES company				
Client:	Avaya	Job Number:	J7865		
Model:	AD 9120	T-Log Number:	T78130		
	AF 0120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Run #1: Output Power

Port: Aux

Power	Frequency (MHz)	Output	Power	Antenna	Result	EI	RP	
Setting ²	Frequency (Minz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	
-	2412	18.1	64.6	5.4	Pass	23.5	0.224	
-	2437	18.8	75.9	5.4	Pass	24.2	0.264	
-	2462	18.7	74.1	5.4	Pass	24.1	0.258	

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the ESI analyzer Note 1: was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 50 MHz. Spurious limit is -30dBc because this method was used.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Analyzer Settings

Rohde&Schwarz,ESI CF: 2462.000 MHz SPAN: 60.000 MHz RB: 1.000 MHz VB: 3.000 MHz Detector: SAMPLE Attn: 20 DB RL Offset: 11.0 DB Sweep Time: 5.0ms Ref Lvl: 10.0 DBM

Vavg: 100 Comments

99% BW: 13.56 MHz Power: 18.74dBm

Delta Freq. 13.560

Delta Amplitude 26.00

An 2023 company				
Client:	Avaya	Job Number:	J7865	
Model:	AD 0120	T-Log Number:	T78130	
	AP 0120	Account Manager:	Dean Eriksen	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	N/A	

Run #2: Power spectral Density

Port: Aux

Power	Frequency (MHz)	PSD	Limit	Result
Setting	Frequency (MHZ)	(dBm/3kHz) Note 1	dBm/3kHz	
-	2412	-1.3	8.0	Pass
-	2437	-2.0	8.0	Pass
-	2462	-2.7	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	All DEES company				
Client:	Avaya	Job Number:	J7865		
Model:	AD 9120	T-Log Number:	T78130		
	AF 0120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Run #3: Signal Bandwidth

Port: Aux

Power	Frequency (MHz)	Resolution	Bandwid	lth (MHz)
Setting	rrequericy (Wiriz)	Bandwidth	6dB	99%
-	2412	100kHz	10.2	13.68
-	2437	100kHz	10.2	13.68
-	2462	100kHz	10.2	13.56

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

	All Date Company				
Client:	Avaya	Job Number:	J7865		
Model:	AD 9120	T-Log Number:	T78130		
	AF 0120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Run #4: Out of Band Spurious Emissions

Port: Aux

Frequency (MHz)	Limit	Result
2412	-30dBc	Pass
2437	-30dBc	Pass
2462	-30dBc	Pass

Plots for low channel

Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

The secondary				
Client:	Avaya	Job Number:	J7865	
Model:	AD 0120	T-Log Number:	T78130	
	AP 0120	Account Manager:	Dean Eriksen	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	N/A	

Plots for center channel

Plots for high channel

	An ACA company				
Client:	Avaya	Job Number:	J7865		
Model:	AD 9120	T-Log Number:	T78130		
	AP 0120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11g Mode)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 2/1/2010 Config. Used: 1
Test Engineer: Suhaila Khushzad/R. Varelas Config Change: None
Test Location: Chamber #5 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 50 %

Summary of Results

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	-	Output Power	15.247(b)	Pass	22.9 dBm
2	-	-	Power spectral Density (PSD)	15.247(d)	Pass	-5.1 dBm/3kHz
3	-	-	Minimum 6dB Bandwidth	15.247(a)	Pass	16.4 MHz
3	-	-	99% Bandwidth	RSS GEN	-	18.6 MHz
4	-	-	Spurious emissions	15.247(b)	Pass	All Emissions < -20dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All 2022 Company		
Client:	Avaya	Job Number:	J7865
Model	AP 8120	T-Log Number:	T78130
Model.	AP 6120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Output Power

Port: Aux

Power	Frequency (MHz)	Output	Power	Antenna	Result	EII	RP
Setting ²	Frequency (Minz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W
-	2412	20.4	109.6	5.4	Pass	25.8	0.381
-	2437	22.9	195.0	5.4	Pass	28.3	0.678
-	2462	19.1	81.3	5.4	Pass	24.5	0.282

Note 1: Output power measured using a peak power meter. The output power limit is 20dBm

Note 2: Power setting - the software power setting used during testing, included for reference only.

Run #2: Power spectral Density

Port: Aux

Power	Frequency (MHz)	PSD	Limit	Result
Setting	riequency (Minz)	(dBm/3kHz) Note 1	dBm/3kHz	
-	2412	-8.0	8.0	Pass
-	2437	-5.1	8.0	Pass
-	2462	-5.6	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	All 2022 Company		
Client:	Avaya	Job Number:	J7865
Model	AP 8120	T-Log Number:	T78130
Model.	AP 6120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #4: Out of Band Spurious Emissions

Port: Aux

Frequency (MHz)	Limit	Result
2412	-20dBc	Pass
2437	-20dBc	Pass
2462	-20dBc	Pass

Plots for low channel

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

Band Edge Signal Field Strength - Direct measurement of field strength

MHz dBc v/h Limit Margin	Frequency	Level	Pol	15.209 / 15.247		Comments
2400 000 -25 8 - -20 0 -5 8	MHz	dBc	v/h	Limit	Margin	
2100.000 20.0	2400.000	-25.8	-	-20.0	-5.8	

Client:	Avaya	Job Number:	J7865
Madalı	AP 8120	T-Log Number:	T78130
wouer.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for center channel

Plots for high channel

	An 2022 Company		
Client:	Avaya	Job Number:	J7865
Model	AP 8120	T-Log Number:	T78130
Model.	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems** Power, PSD, Bandwidth and Spurious Emissions (2.4GHz n20 CDD)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/1/2010 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #3 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 19.6 °C

Rel. Humidity: 38 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A + B	15.247(b)	Pass	25.6 dBm
2	Power spectral Density (PSD) Chain A + B	15.247(d)	Pass	-0.6 dBm/3kHz
-	6dB Bandwidth	15.247(a)	Pass	17.7 MHZ
-	99% Bandwidth	RSS GEN	Pass	19.1 MHz
3	Spurious emissions	15.247(b)	Pass	All Emissions < -20dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client: Avaya									
Model: AP 8120	Elliott EMC Test Data								
Account Manager: Dean Eriksen	Client: Avaya						Job Number:	J7865	
Contact: Vipin Naik Standard: FCC 15.247 Class: N/A	M. J. J. AD 0100					T-l	_og Number:	T78130	
Standard: FCC 15.247 Class: N/A	Model: AP 8120								en
Run #1: Output Power - Chain A + B	Contact: Vipin Naik								
Operating Mode: 802.11n 20 CDD	Standard: FCC 15.247						Class:	N/A	
Power Setting Note 3 - -	Ope Transmitted signal on chain	erating Mode:							
Power Setting Power (dBm) Note 1 17.6 18.5 21.1 dBm 0.128 W 27.6 dBm 0.573	-	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	c ΔII Chains	[mit
Antenna Gain (dBi) Note 2 23.01 23.91 29.5 dBm 0.892 W Pass		_	-						
23.01 23.91 29.5 dBm 0.892 W 1 d33 29.5 dBm 0.892 W 27.6 dBm 0.573 29.5 dBm 0.892 W 27.6 dBm 0.573 29.5 dBm 0.892 W 29.5 dBm 29.5 dBm	Oulpul Power (abm)	_				3	0.128 W	27.6 dBm	0.573 W
2437 MHz Chain 1 Chain 2 Chain 3 Total Across All Chains Limit Power Setting Note 3 -	Antenna Gain (dBi) Note 2	_				N	0.000.W/	Pa	ass
Power Setting Note 3 - -	eirp (dBm)	23.01	23.91			29.5 abiii	U.892 vv		
Power Setting Note 3 - -	2437 MHz	Chain 1	Chain 2	Chain 3	Chain 4	1		<u></u>	
Output Power (dBm) Note 1 22.6 22.6 25.6 dBm 0.364 W 27.6 dBm 0.573 Antenna Gain (dBi) Note 2 5.41 5.41 8.4 dBi Pass eirp (dBm) 28.01 28.01 34.0 dBm 2.530 W Pass 2462 MHz Chain 1 Chain 2 Chain 3 Chain 4 Total Across All Chains Limit Power Setting Note 3 - - - 21.0 dBm 0.126 W 27.6 dBm 0.573 Antenna Gain (dBi) Note 2 5.41 5.41 5.41 8.4 dBi 8.4 dBi Pass		-	-	100		Total Acros	s All Chains	LII	mit
Antenna Gain (dBi) Note 2	Output Power (dBm) Note 1	22.6	22.6			25.6 dBm	0.364 W	27.6 dBm	0.573 W
eirp (dBm) Note 2 28.01 28.01 34.0 dBm 2.530 W 1 d.33 2462 MHz Chain 1 Chain 2 Chain 3 Total Across All Chains Limit Power Setting Note 3 - - - 21.0 dBm 0.126 W 27.6 dBm 0.573 Antenna Gain (dBi) Note 2 5.41 5.41 8.4 dBi 8.4 dBi 8.4 dBi	Antenna Gain (dBi) Note 2	5.41	5.41			8.4 dBi		Pa	acc
Power Setting Note 3 - - Total Actoss Air Chairs Elimit Output Power (dBm) Note 1 17.7 18.3 21.0 dBm 0.126 W 27.6 dBm 0.573 Antenna Gain (dBi) Note 2 5.41 5.41 8.4 dBi 8.4 dBi 8.4 dBi	eirp (dBm) Note 2	28.01	28.01			34.0 dBm	2.530 W	1.0	133
Power Setting Note 3 - - Total Actoss Air Chairs Elimit Output Power (dBm) Note 1 17.7 18.3 21.0 dBm 0.126 W 27.6 dBm 0.573 Antenna Gain (dBi) Note 2 5.41 5.41 8.4 dBi 8.4 dBi 8.4 dBi	2442 MUz	Chain 1	Chain 2	VIII PRITITIONI	WIII HEILII HIII	n .		П	
Output Power (dBm) Note 1 17.7 18.3 21.0 dBm 0.126 W 27.6 dBm 0.573 Antenna Gain (dBi) 5.41		Chairi i	Chain z	CYRRIER	CD3M14	Total Acros	s All Chains	Liı	mit
Antenna Gain (dBi) Note 2 5.41 5.41 8.4 dBi	Power Setting Output Dower (dDm) Note 1	17.7	10 2			21 0 dRm	0 126 W	27 6 dRm	0.573 W
Afficilia Galif (ubi) 5.41 5.41 Dece							U. 120 VV		_
eirp (dBm) Note 2 23.11 23.71 29.4 dBm 0.879 W	eirp (dBm) Note 2					η	0.879 W	Pa	iss

Ν
lote
1:
Output
power
measure
d using a
a peak
power me
ter, spuriou
s limit is
-20dBc

As there is coherency between chains the effective antenna gain is the sum of the individual antenna gains and the eirp is the Note 2: product of the total power and the effective antenna gain

	All Dates Company		
Client:	Avaya	Job Number:	J7865
Model	AP 8120	T-Log Number:	T78130
Model.	AP 6120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2: Power spectral Density

						1	
Power	Frequency (MHz)	PSD (dBm/3kHz) Note 1				Limit	Result
Setting		Chain 1	Chain 2	Chain 3 Chain 4	Total	dBm/3kHz	Result
-	2412	-9.9	-7.9		-5.8	8.0	Pass
-	2437	-2.9	-4.5		-0.6	8.0	Pass
-	2462	-4.7	-4.4		-1.5	8.0	Pass

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

Elliott EMC Test Data Client: Avaya Job Number: J7865 T-Log Number: T78130 Model: AP 8120 Account Manager: Dean Eriksen Contact: Vipin Naik Standard: FCC 15.247 Class: N/A Run #3: Signal Bandwidth Power Resolution Bandwidth (MHz) Frequency (MHz) Bandwidth 99% Setting 6dB 2412 100KHz 17.7 19.1 2437 100KHz 17.8 19.0 2462 100KHz 17.7 19.1 Note 1: Measured on a single chain Note 2: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB 10.0 Analyzer Settings HP8564E,EMI 5.0 CF: 2412,000 MHz 0.0SPAN:50,000 MHz RB 1.000 MHz -5.0 VB 3,000 MHz Detector POS -10.0 Att 20 -15.0 RL Offset 0.00 Sweep Time 50.0ms -20.0 Ref Lvl:9.60DBM -25.0 -30.0 Comments -35.0 99% BW: 19.052 MHz -40.0 2400 2405 2410 2415 2420 2425 2430 Frequency (MHz) Delta Freq. 19.052 Cursor 1 2402.8902 5.93 -20.07 💠 🛧 🚡 × 2421.9418 Delta Amplitude 26.00 Analyzer Settings 0.0 HP8564E,EMI -5.0 CF: 2412,000 MHz -10.0 SPAN:50.000 MHz RB 100 kHz -15.0 VB 100 kHz -20.0 Detector POS -25.0 Att 20 RL Offset 0.00 -30.0 Sweep Time 50.0ms -35.0 Ref Lvl:9.60DBM -40.0 Comments -45.0· 6dB BW: 17.667 MHz -50.0 -55.0· 2400 2405 2410 2415 2420 2425 2430 Frequency (MHz)

Cursor 1 2421.1667 -2.73 💠 🔆 🖫

Cursor 2 2403.5000 -8.73 💠 🛧 🔊 Delta Amplitude 6.00

Delta Freq. 17.667

Client:	Avaya	Job Number:	J7865
Madalı	AP 8120	T-Log Number:	T78130
Model:	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #4: Out of Band Spurious Emissions

	Power Setting Per Chain		Fraguancy (MUz)	Limit	Result	
#1	#2	#3 #4	Frequency (MHz)	LIIIIII	Kesuit	
-	-		2412	-20dBc	Pass	
-	-		2437	-20dBc	Pass	
-	-		2462	-20dBc	Pass	

Note 1: Measured on each chain individually

Plots for low channel

	An 2022 Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number: T78130	
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

	- The Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for center channel

	All 2022 Company		
Client:	Avaya	Job Number:	J7865
Model: A	AD 0120	T-Log Number:	T78130
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for high channel

	An DCZES company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number: T78130	
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems** Power, PSD, Bandwidth and Spurious Emissions(MCS12)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/10/2010 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: Chamber #5 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 19.4 °C

Rel. Humidity: 41 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A + B	15.247(b)	Pass	21.0 dBm (126mW)
2	Power spectral Density (PSD) Chain A + B	15.247(d)	Pass	-6.5 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	36.5 MHz
3	99% Bandwidth	RSS GEN	-	37.3 MHz
4	Spurious emissions	15.247(b)	Pass	All Emissions <-20dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	An ZAZZS company				
Client:	Avaya	Job Number:	J7865		
Model:	AD 9120	T-Log Number:	T78130		
	AF 0120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Operating Mode: 802.11 n40 MHz CDD - MCS12

2422 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains		Limit		
Power Setting ^{Note 3}	-	-			Tulai Aciuss Ali Challis				
Output Power (dBm) Note 1	16.0	17.1			19.6 dBm	0.091 W	27.6 dBm	0.573 W	
Antenna Gain (dBi) Note 2	5.41	5.41			8.4 dBi		Pa	cc	
eirp (dBm) Note 2	21.41	22.51			28.0 dBm	0.633 W	га	33	
2437 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains		Limit		
Power Setting ^{Note 3}	-	-			TOTAL ACTUSS All CHAIRS				
Output Power (dBm) Note 1	17.4	18.5			21.0 dBm	0.126 W	27.6 dBm	0.573 W	
Antenna Gain (dBi) Note 2	5.41	5.41			8.4 dBi		Do	cc	
eirp (dBm) Note 2	22.81	23.91			29.4 dBm	0.874 W	га	Pass	
	-								
2452 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	c All Chaine	Lin	oit	
Power Setting ^{Note 3}	-	-			Total Across All Chains		Limit		
Output Power (dBm) Note 1	14.5	15.3			17.9 dBm	0.062 W	27.6 dBm	0.573 W	
Antenna Gain (dBi) Note 2	5.41	5.41			8.4 dBi		Pa	cc	
eirp (dBm) Note 2	19.91	20.71			26.3 dBm	0.431 W	га	33	

Note 1:	Output power measured using a peak power meter, spurious limit is -20dBc.
	As there is coherency between chains the effective antenna gain is the sum of the individual antenna gains and the eirp is the
	product of the total power and the effective antenna gain

	All Debts Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 9120	T-Log Number: T78130	
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2: Power spectral Density

Power	Frequency (MHz)		PSE	O (dBm/3kHz) Note 1		Limit	Result
Setting	r requericy (ivil iz)	Chain 1	Chain 2	Chain 3 Chain 4	Total	dBm/3kHz	Result
-	2422	-11.5	-9.7		-7.5	8.0	Pass
-	2437	-11.2	-8.3		-6.5	8.0	Pass
-	2452	-10.8	-9.3		-7.0	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	An ZAZZES company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 6120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3: Signal Bandwidth

Power	Frequency (MHz)	Resolution	Bandwid	lth (MHz)
Setting	riequency (winz)	Bandwidth	6dB	99%
-	2422	100kHz	36.5	37.1
-	2437	100kHz	36.8	37.1
-	2452	100kHz	36.7	37.3

Note 1: Measured on a single chain

Note 2: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

	An 2022 Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #4: Out of Band Spurious Emissions

	Power Setting Per Chain		Frequency (MHz)	Limit	Result
#1	#2	#3 #4	riequency (Mnz)	LIIIIIL	Result
-	-		2422	-20dBc	Pass
-	-		2437	-20dBc	Pass
-	-		2452	-20dBc	Pass

Measured with all chains connected together through a combiner, unused ports on the combiner terminated in 50ohms. Note 1: Note 1: Measured on each chain individually

Plots for low channel

	An ZAZZES company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 6120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

	All Deed Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for center channel

Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for high channel

	An DCZES company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (MCS0)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 2/10/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #5 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 19.4 °C

Rel. Humidity: 41 %

Summary of Results

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	-	Output Power	15.247(b)	Pass	19.1 dBm (81mW)
2	-	-	Power spectral Density (PSD)	15.247(d)	Pass	-10.8 dBm/3kHz
3	-	-	Minimum 6dB Bandwidth	15.247(a)	-	36.7 MHz
3	-	-	99% Bandwidth	RSS GEN	-	37.3 MHz
4	-	-	Spurious emissions	15.247(b)	Pass	All Emissions <-20dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All Dates Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 9120	T-Log Number:	T78130
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Output Power

Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output	Power
Setting ²	riequency (Mnz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm)	mW
-	2422	16.5	44.7	5.4	Pass	21.9	0.155		
-	2437	19.1	81.3	5.4	Pass	24.5	0.282		
-	2452	15.9	38.9	5.4	Pass	21.3	0.135		

Note 1: Output power measured using a peak power meter.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Run #2: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	r requericy (wiriz)	(dBm/3kHz) Note 1	dBm/3kHz	
-	2422	-10.8	8.0	Pass
-	2437	-12.8	8.0	Pass
-	2452	-12.2	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

Elliott Run #3: Signal Bandwidth Note 1: 5.0 0.0 -5.0 -10.0

EMC Test Data

An ATAS company				
Client:	Avaya	Job Number:	J7865	
Madalı	AP 8120	T-Log Number:	T-Log Number: T78130	
woden:	AP 8120	Account Manager:	Dean Eriksen	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	N/A	

Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)
Setting	rrequericy (Wiriz)	Bandwidth	6dB	99%
-	2422	100kHz	36.7	37.3
-	2437	100kHz	36.7	37.1
-	2452	100kHz	36.7	37.3

Delta Amplitude 26.00

	All Bull Company				
Client:	Avaya	Job Number:	J7865		
Madali	AP 8120	T-Log Number:	T78130		
wodei:	8120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
2422	-20dBc	Pass
2437	-20dBc	Pass
2452	-20dBc	Pass

Plots for low channel

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

	All DEES company		
Client:	Avaya	Job Number:	J7865
Madali	AP 8120	T-Log Number:	T78130
woder:	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for center channel

Plots for high channel

	An ACE company					
Client:	Avaya	Job Number:	J7865			
Model:	AD 9120	T-Log Number: T78130				
	AP 8120	Account Manager:	Dean Eriksen			
Contact:	Vipin Naik					
Standard:	FCC 15.247	Class:	N/A			

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (5.7GHz Legacy A)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 2/2/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Chamber #4 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 19.4 °C

Rel. Humidity: 41 %

Summary of Results

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	-	Output Power	15.247(b)	Pass	17.1 dBm
2	-		Power spectral Density (PSD)	15.247(d)	Pass	-6.5 dBm/3kHz
3	-		Minimum 6dB Bandwidth	15.247(a)	Pass	16.3 MHz
3	-	-	99% Bandwidth	RSS GEN	-	17.5 MHz
4	_	-	Spurious emissions	15.247(b)	Pass	All Emissions < -30dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	ran burns company		
Client:	Avaya	Job Number:	J7865
Model	AP 8120	T-Log Number: T78130	
Model.	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Output Power

Port: Main

Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output	Power
Setting ²	Frequency (MIDZ)	(dBm) ¹	mW	Gain (dBi)	Kesuii	dBm	W	(dBm) 3	mW
-	5745	16.4	43.7	5.1	Pass	21.5	0.141	8.1	6.5
-	5785	16.6	45.7	5.1	Pass	21.7	0.148	8.2	6.6
-	5825	17.1	51.3	5.1	Pass	22.2	0.166	8.5	7.1

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the ESI analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 50 MHz. Spurious limit is -30dBc because this method was used.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using Avg Sensor and is included for reference only.

An ZCZES company				
Client:	Avaya	Job Number:	J7865	
Model:	AD 0120	T-Log Number: T78130		
	AP 0120	Account Manager:	Dean Eriksen	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	N/A	

Run #2: Power spectral Density

Port: Main

Power	Frequency (MHz)	PSD	Limit	Result
Setting	rrequericy (Minz)	(dBm/3kHz) Note 1	dBm/3kHz	
-	5745	-8.2	8.0	Pass
-	5785	-7.5	8.0	Pass
-	5825	-6.5	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	All 2022 Company				
Client:	Avaya	Job Number:	J7865		
Model:	AD 9120	T-Log Number: T78130			
	P 8120	Account Manager:	Dean Eriksen		
Contact:	Vipin Naik				
Standard:	FCC 15.247	Class:	N/A		

Run #3: Signal Bandwidth

Port: Main

Power	Eroguanay (MUz)	Resolution	Bandwid	lth (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
-	5745	100kHz	16.4	17.4
-	5785	100kHz	16.5	17.5
-	5825	100kHz	16.3	17.5

	All 2023 Company		
Client:	Avaya	Job Number:	J7865
Model:	AP 8120	T-Log Number:	T78130
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #4: Out of Band Spurious Emissions

Port: Main

Frequency (MHz)	Limit	Result
5745	-30dBc	Pass
5785	-30dBc	Pass
5825	-30dBc	Pass

Plots for low channel

Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.

	- The Company		
Client:	Avaya	Job Number:	J7865
Model:	AP 8120	T-Log Number:	T78130
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for center channel

Plots for high channel

	All 2022 Company		
Client:	Avaya	Job Number:	J7865
Model:	AP 8120	T-Log Number:	T78130
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

	An 2022 Company		
Client:	Avaya	Job Number:	J7865
Model:	AP 8120	T-Log Number:	T78130
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems**

Power, PSD, Bandwidth and Spurious Emissions (5.7GHz 802.11n 20 CDD)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/3/2010 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: Fremont Chamber #4 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 19.2 °C

> Rel. Humidity: 40 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A + B	15.247(b)	Pass	19.6 dBm
2	Power spectral Density (PSD) Chain A + B	15.247(d)	Pass	-3.5 dBm/3kHz
-	6dB Bandwidth	15.247(a)	-	Covered by single-chain
-	99% Bandwidth	RSS GEN	-	measurements
3	Spurious emissions	15.247(b)	Pass	All Emissions < -30dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All Date Company			
Client:	Avaya	Job Number:	J7865	
Model:	AD 9120	T-Log Number:	T78130	
	AP 0120	Account Manager:	Dean Eriksen	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	N/A	

Run #2: Power spectral Density

Power	Frequency (MHz)		PSE	O (dBm/3kHz) Note 1		Limit	Result
Setting	rrequericy (Minz)	Chain 1	Chain 2	Chain 3 Chain 4	Total	dBm/3kHz	Result
-	5745	-8.2	-7.5		-4.8	8.0	Pass
-	5785	-8.2	-9.2		-5.7	8.0	Pass
-	5825	-6.3	-6.8		-3.5	8.0	Pass

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	All Date Company			
Client:	Avaya	Job Number:	J7865	
Model:	AP 8120	T-Log Number:	T78130	
		Account Manager:	Dean Eriksen	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	N/A	

Run #3: Out of Band Spurious Emissions

Power Setting Per Chain		Frequency (MHz)	Limit	Result	
#1	#2	#3	riequency (Mnz)	LIIIIIL	Result
-	-		5745	-30dBc	Pass
-	-		5785	-30dBc	Pass
-	-		5825	-30dBc	Pass

Note 1: Measured on each chain individually

Plots for low channel

	All Deed Company		
Client:	Avaya	Job Number:	J7865
Model:	AP 8120	T-Log Number:	T78130
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.

	All 2022 Company		
Client:	Avaya	Job Number:	J7865
Model:	AP 8120	T-Log Number:	T78130
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for center channel

Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Plots for high channel

	Tin Dall's company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

	All Debts Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 9120	T-Log Number:	T78130
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems**

Power, PSD, Bandwidth and Spurious Emissions (802.11n40 CDD MCS0 5.7GHz)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 2/11/2010 Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #5 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18.7 °C

> Rel. Humidity: 38 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A + B	15.247(b)	Pass	22.3 dBm (170mW)
2	Power spectral Density (PSD) Chain A + B	15.247(d)	Pass	-5.6 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	35.8 MHz
3	99% Bandwidth	RSS GEN	-	37.9 MHz
4	Spurious emissions	15.247(b)	Pass	All Emissions < -20dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All Debts Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 9120	T-Log Number:	T78130
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #1: Output Power - Chain A + B

Operating Mode: 802.11n 40 MHz MCS0

Transmitted signal on chain is coherent? yes

5755 MHz	Chain 1	Chain 2	Chain 3 Chain 4	Total Across All Chains		Limit		
Power Setting ^{Note 3}	-	-		TOTAL ACTOS	Total Across All Chains		Limit	
Output Power (dBm) Note 1	19.3	19.3		22.3 dBm	0.170 W	27.9 dBm	0.617 W	
Antenna Gain (dBi) Note 2	5.09	5.09		8.1 dBi		Pass		
eirp (dBm) Note 2	24.39	24.39		30.4 dBm	30.4 dBm 1.099 W		r dss	
5795 MHz	Chain 1	Chain 2	Chain 3 Chain 4	Total Across All Chains		Limit		
Power Setting ^{Note 3}	-	-		Total Across All Chains		LII	TIIL	

5795 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains		Limit	
Power Setting ^{Note 3}	-	-			Total Across All Chains		LIIIIIL	
Output Power (dBm) Note 1	19.2	19.4			22.3 dBm	0.170 W	27.9 dBm	0.617 W
Antenna Gain (dBi) Note 2	5.09	5.09			8.1 dBi		Do	cc
eirp (dBm) Note 2	24.29	24.49			30.4 dBm	1.099 W	.099 W Pass	

Note 1:	Output power measured using a peak power meter, spurious limit is -20dBc.
Note 2:	As there is coherency between chains the effective antenna gain is the sum of the individual antenna gains and the eirp is the
	product of the total power and the effective antenna gain

	An 2022 Company		
Client:	Avaya	Job Number:	J7865
Model:	AD 0120	T-Log Number:	T78130
	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #2: Power spectral Density

Power	Frequency (MHz)		PSD			Limit	Result
Setting	Frequency (MHz)	Chain 1	Chain 2	Chain 3 Chain 4	Total	dBm/3kHz	Result
-	5755	-9.7	-8.8		-6.2	8.0	Pass
-	5795	-8.8	-8.5		-5.6	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	An 2022 Company		
Client:	Avaya	Job Number:	J7865
Madal	AP 8120	T-Log Number:	T78130
iviouei.		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #3: Signal Bandwidth

Power	Fraguanay (MHz)	Resolution	Bandwid	lth (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
-	5755	100kHz	35.8	37.6
-	5795	100kHz	36.2	37.9

Note 1: Measured on a single chain

Note 2: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

	All Debts Company		
Client:	Avaya	Job Number:	J7865
Madal	AP 8120	T-Log Number:	T78130
Model.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Run #4: Out of Band Spurious Emissions

#1	Power Se	tting Per Chain	Frequency (MHz)	Limit	Result
-	-		5755	-20dBc	Pass
-	-		5795	-20dBc	Pass

Measured on each chain individually Note 1:

Plots for low channel, 5755 MHz

30.0

100.0

-40.0 -50.0 -60.0 · -70.0 -¦

1000.0

Frequency (MHz)

400<u>0</u>0.

10000.0

	All 2023 Company		
Client:	Avaya	Job Number:	J7865
Model:	AP 8120	T-Log Number:	T78130
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Additional plot from 5715 - 5755 MHz showing compliance with -20dBc at the band edge.

AT BEED Company				
Client:	Avaya	Job Number:	J7865	
Model:	AP 8120	T-Log Number:	T78130	
		Account Manager:	Dean Eriksen	
Contact:	Vipin Naik			
Standard:	FCC 15.247	Class:	N/A	

Plots for high channel, 5795 MHz

	All 2022 Company		
Client:	Avaya	Job Number:	J7865
Model:	AP 8120	T-Log Number:	T78130
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	N/A

Additional plot from 5795 - 5860 MHz showing compliance with -20dBc at the band edge.

Ellio	tt Company		MC Test Data
Client:	Avaya	Job Number:	J78065
Model:	AP 8120	T-Log Number:	T78249
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		-
Emissions Standard(s):	FCC 15.247	Class:	В
Immunity Standard(s):	EN301 489-17	Environment:	-

For The

Avaya

Model

AP 8120

Date of Last Test: 3/2/2010

	An ZiZE3 company		
Client:	Avaya	Job Number:	J78065
Model:	AP 8120	T-Log Number:	T78249
		Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	В

Conducted Emissions - Power Ports

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 2/10/2010 12:37 Config. Used: 1
Test Engineer: John Caizzi Config Change: none

Test Location: SVOATS #2 EUT Voltage: 230V / 50Hz & 120V / 60Hz

General Test Configuration

The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 39 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
3	CE, AC Power, 230V/50Hz	EN 55022 Class B	Pass	38.2dBµV @ 2.442MHz (-7.8dB)
4	CE, AC Power, 120V/60Hz	EN 55022 Class B	Pass	42.9dBµV @ 2.657MHz (-13.1dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model:	AD 0120	T-Log Number:	T78249
	AP 8120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	В

Run #3: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz. PoE injector #D0945650000058DA00

E	Ellic	ott Ar company					EMC Test Data
Client:		Company					Job Number: J78065
	,						T-Log Number: T78249
Model:	Model: AP 8120						Account Manager: Dean Eriksen
	Vipin Naik						
Standard:	FCC 15.247	7					Class: B
F		4.0	ENICE	000 D	I 5	10 .	
Frequency	Level	AC	Į.	022 B L Margin	Detector	Comments	
MHz 2.616	dBμV 47.7	Line Line	Limit 46.0	Margin 1.7	QP/Ave Peak	+	
2.206	47.7	Line	46.0	1.0	Peak		
2.343	47.0	Line	46.0	1.0	Peak		
2.467	45.5	Line	46.0	-0.5	Peak	†	
3.949	44.6	Line	46.0	-1.4	Peak		
14.675	44.6	Line	50.0	-5.4	Peak		
0.410	42.1	Line	47.5	-5.4	Peak		
0.275	44.5	Line	50.9	-6.4	Peak		
2.308	47.1	Neutral	46.0	1.1	Peak		
2.442	46.9	Neutral	46.0	0.9	Peak		
2.582	46.6	Neutral	46.0	0.6	Peak		
2.039	46.5	Neutral	46.0	0.5	Peak		
2.174	46.4	Neutral	46.0	0.4	Peak		
3.932	43.6	Neutral	46.0	-2.4	Peak		
14.765	44.7	Neutral	50.0	-5.3	Peak		
0.407	40.3	Neutral	47.6	-7.3	Peak		
0.272	39.0	Neutral	51.0	-12.0	Peak		
0.410	38.5	Line	47.7	-9.2	AVG		
2.457	36.1	Line	46.0	-9.9	AVG		
3.953	36.1	Line	46.0	-9.9	AVG		
2.321	35.9	Line	46.0	-10.1	AVG		
2.189	35.3	Line	46.0	-10.7	AVG		
2.600	34.6	Line	46.0	-11.4	AVG		
2.600	44.1	Line	56.0	-11.9	QP	1	
2.457	44.0	Line	56.0	-12.0	QP		
2.189	43.9	Line	56.0	-12.1	QP OB		
2.321 3.953	43.9 43.3	Line Line	56.0 56.0	-12.1 -12.7	QP QP		
0.274	38.2	Line	51.0	-12.7	AVG		
0.274	41.4	Line	57.7	-12.6	QP		
14.675	33.5	Line	50.0	-16.5	AVG		
0.274	42.9	Line	61.0	-18.1	QP		
14.675	40.0	Line	60.0	-20.0	QP		
2.442	38.2	Neutral	46.0	-7.8	AVG		
2.308	36.5	Neutral	46.0	-9.5	AVG		
2.582	35.6	Neutral	46.0	-10.4	AVG		
2.174	35.5	Neutral	46.0	-10.5	AVG		
2.442	45.3	Neutral	56.0	-10.7	QP		
2.308	44.6	Neutral	56.0	-11.4	QP		
3.932	34.4	Neutral	46.0	-11.6	AVG		
0.407	35.9	Neutral	47.7	-11.8	AVG		
2.174	43.9	Neutral	56.0	-12.1	QP		

	Ellic	ott Æ company				EM	C Test Data
Client	Avaya					Job Number:	J78065
Madal	AP 8120					T-Log Number:	T78249
Model	AP 0120	Account Manager: Dean Eri	Dean Eriksen				
	Vipin Naik						
Standard	FCC 15.247	7				Class:	В
2.038	33.5	Neutral	46.0	-12.5	AVG		
2.582	42.9	Neutral	56.0	-13.1	QP		
2.038	41.9	Neutral	56.0	-14.1	QP		
3.932	41.2	Neutral	56.0	-14.8	QP		
0.272	36.3	Neutral	51.1	-14.8	AVG		
14.765	34.2	Neutral	50.0	-15.8	AVG		
0.407	39.2	Neutral	57.7	-18.5	QP		
14.765	40.6	Neutral	60.0	-19.4	QP		
0.272	37.5	Neutral	61.1	-23.6	QP		
	•				•		

	- The Company		
Client:	Avaya	Job Number:	J78065
Madal	AP 8120	T-Log Number:	T78249
woder.	AP 0120	Account Manager:	Dean Eriksen
Contact:	Vipin Naik		
Standard:	FCC 15.247	Class:	В

Run #4: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz. PoE injector #D0945650000058DA00.

	Ellic	ott Ar company					EMC Test Data
Client:		Company					Job Number: J78065
	,						T-Log Number: T78249
Model:	el: AP 8120						Account Manager: Dean Eriksen
	Vipin Naik						
Standard:	FCC 15.247	7					Class: B
_		4.0	ENICE	000 D	I 5	10 .	
Frequency	Level	AC	Į.	022 B	Detector	Comments	
MHz 2.425	dBμV 46.9	Line Line	Limit 46.0	Margin 0.9	QP/Ave Peak		
2.423	46.6	Line	46.0	0.6	Peak		
2.554	46.2	Line	46.0	0.0	Peak		
2.322	45.9	Line	46.0	-0.1	Peak		
2.657	45.7	Line	46.0	-0.1	Peak		
14.696	44.8	Line	50.0	-5.2	Peak	†	
0.231	44.9	Line	52.4	-7.5	Peak		
0.349	38.5	Line	49.0	-10.5	Peak		
2.078	46.8	Neutral	46.0	0.8	Peak		
2.196	46.2	Neutral	46.0	0.2	Peak		
2.428	45.3	Neutral	46.0	-0.7	Peak		
2.313	45.3	Neutral	46.0	-0.7	Peak		
4.036	42.3	Neutral	46.0	-3.7	Peak		
14.659	45.0	Neutral	50.0	-5.0	Peak		
0.346	36.0	Neutral	49.0	-13.0	Peak		
0.462	33.4	Neutral	46.6	-13.2	Peak		
0.228	37.8	Neutral	52.5	-14.7	Peak		
2.657	42.9	Line	56.0	-13.1	QP		
2.539	42.1	Line	56.0	-13.9	QP		
2.425	31.9	Line	46.0	-14.1	AVG		
2.425	41.9	Line	56.0	-14.1	QP		
2.310	31.8	Line	46.0	-14.2	AVG		
0.231	38.1	Line	52.4	-14.3	AVG		
2.073	41.4	Line	56.0	-14.6	QP		
2.539	31.4	Line	46.0	-14.6	AVG		
2.073	31.2	Line	46.0	-14.8	AVG		
2.310	41.1	Line	56.0	-14.9	QP		
2.657	30.8	Line	46.0	-15.2	AVG		
14.696	33.7	Line	50.0	-16.3	AVG		
0.231	44.3	Line	62.4	-18.1	QP		
14.696	40.0	Line	60.0	-20.0	QP		
2.196	32.8	Neutral	46.0	-13.2	AVG		
2.313	32.8	Neutral	46.0	-13.2	AVG		
2.428	32.4	Neutral	46.0	-13.6	AVG		
2.078	41.6	Neutral	56.0	-14.4	QP		
2.196	41.4	Neutral	56.0	-14.6	QP		
2.313	41.3	Neutral	56.0	-14.7	QP		
2.078	31.2	Neutral	46.0	-14.8	AVG		
2.428	40.9	Neutral	56.0	-15.1	QP		
4.036	29.2	Neutral	46.0	-16.8	AVG		
14.659	32.9	Neutral	50.0	-17.1	AVG	1	
4.036	37.4	Neutral	56.0	-18.6	QP		

Client:	Avaya	company				Job Number:	J78065
Madal	AD 0100			T-Log Number:	T78249		
Model:	AP 8120			Account Manager:	Dean Eriksen		
Contact:	Vipin Naik						
Standard: FCC 15.247					Class:	В	
0.346	28.9	Neutral	49.1	-20.2	AVG		
14.659	39.4	Neutral	60.0	-20.6	QP		
0.346	32.9	Neutral	59.1	-26.2	QP		

T78249 (Digital Device) AC CE 10-Feb-10 Page 8 of 8