Quiz-03 Set-OA Solution

1)
$$g(x) = \sqrt{2x + 3}$$
 $g(x) = (2x + 3)^{1/2}$
 $\lambda : |g'(x)|$
When $x \neq s = 1$ and 3 ,
 $g'(x) : 1/2(2x + 3)^{-1/2} \cdot 2$
 $g'(x) : (2x + 3)^{-1/2}$
 $g'(-1) : (2(-1) + 3)^{-1/2} = (1)^{-1/2}$
 $g'(-1) = 1$. When $\lambda = 1$, $g(x)$ is diverging for root -1 .
 $g'(3) : (2(3) + 3)^{-1/2} = (q)^{-1/2}$
 $g'(3) : 0.3333$. When $\lambda : 0.3333$,
 $g(x)$ is converging for root 3 .

2
$$g(x) : (9x-1)^{3}$$
.
 $(x) : (9x-1)^{2}$.
 $g'(x) : 3(9x-1)^{2}$.
 $g'(x) : 27(9x-1)^{2}$.
 $g'(x) > 1$ for divergence.
 $27(9x-1)^{2} > 1$.

$$(9x-1)^{2} > \frac{1}{27}$$
.
 $(9x-1)(9x-1) > \frac{1}{27}$.
 $81x^{2} - 9x - 9x + 1 - \frac{1}{27} > 0$
 $81x^{2} - 18x + \frac{26}{27} > 0$
 $x + 7 = 9 + \sqrt{3}$
 $81 = 9 + \sqrt{3}$
 $9 - \sqrt{3}$
 $81 = 9 + \sqrt{3}$
 $9 + \sqrt{3}$

is correct as well.

(b)
$$\lambda = |g'(x)| = 0$$
, super-linear convergence $27(9x-1)^2 = 0$
 $(9x-1)^2 = \frac{0}{27}$.
 $8|x^2-18x+1=0$

3-
$$k$$
 $\times k$ $f(\times k)$ $f'(\times k)$ 14.0
2.00 1.43 1.77 8.13
2 1.21 0.194 200.3
3 1.18 0.003 120362

$$\times_{0}$$
 $f(2)$ $f(2)$ $f(2)$ $f(2)$ $f(2)$ $f(2)$ $f(1.43)$ $f(2)$ $f(2)$ $f(2)$ $f(2)$ $f(3)$ $f(3$

×1=1.43.

calculation continues like this.

Duiz-03 Set-OB Solution.

1 Same as Set-OA solution

2 @
$$g(x) = (4x-1)^3$$
 $g'(x) = 3(4x-1)^2(4)$
 $g'(x) = 12(4x-1)^2$
 $g'(x) > 1 \text{ for divergence}$
 $12(4x-1)^2 > 1$
 $12(16x^2 - 8x+1) > 1$
 $192x^2 - 96x+12-1>0$
 $192x^2 - 96x+11>0$
 $192x^2 - 96x+11>0$

** If you received the result x * > 6+53 that is correct as well.

(b) $\lambda s[g'(x)] s O$ For super linear convergence $|2(4x-1)^{2} s O$ $(4x-1)^{2} s O$ $|6x^{2}-8x+1| s O$ |4x-1| s O O

© k
$$\times$$
 k \times k $(3.5) \cdot (4(3.5) \cdot 1)^3$

1st 1 (2) 197 $(3.5) \cdot (4(3.5) \cdot 1)^3$

2nd 2 $(3.85 \times 10^{11}) \cdot (4(2) \cdot 1)^3 \cdot (4(6.785 \times 10^{11})) \cdot (4(6.785 \times 10^{11})) \cdot (4(6.785 \times 10^{11})) \cdot (4(1.994 \times 10^{37})) \cdot (4(1.994 \times 10^{37}) \cdot (4(1.994 \times 10^{37})) \cdot (4(1.994 \times 10^{37})) \cdot (4(1.994 \times 10^{37}) \cdot (4(1.994 \times 10^{37})) \cdot (4(1.994 \times 10^{37})) \cdot (4(1.994 \times 10^{37}) \cdot ($

Calculation continues like this.