

Multi-video Object Synopsis Integrating Optimal View Switching

Zhensong Zhang¹, Yongwei Nie², Hanqiu Sun¹, Qiuxia Lai¹, Guiding Li²

¹The Chinese University of Hong Kong

²South China University of Technology

- Surveillance cameras are widely installed
 - Contain a lot of redundant information
 - Challenges to storage and browsing
 - Various methods, e.g., video fast forward, video skimming, video abstraction, video summarization, video synopsis

- We study the synopsis problem of multi-view surveillance videos
 - Public areas (e.g., bank, museum, hospital, et al.)
 - With overlapped field of view
 - A small set of cameras can generate large data

- Frame-based approaches [Fu et al. 2010; Panda et al. 2017]
 - Connect key frames, one video, view switching
 - Discrete views of moving objects
 - Retain redundancies in regions with no activity

- Object-based approaches [Pritch et al. 2008; Zhu et al. 2016; Mahapatra et al. 2016]
 - Extract path of moving object as tube
 - Directly shift object tubes in spatiotemporal space
 - Display the synopsized videos in a side by side manner

- We propose the unified framework for multi-video object-based synopsis
 - Utilize the advantages of both approaches
 - Condense videos by shifting object tubes in temporal space
 - Display unified synopsis by optimal view switching
 - Joint optimization
 - Optimal temporal offsets of moving objects
 - Optimal viewing sequence

Preprocessing

- Synchronize all the input videos
- Extract the static background of each video
- Detect all the objects in the videos as spatiotemporal tubes
- Group the tubes of the same object in different videos as a single object

Preprocessing

- Synchronize all the input videos
- Extract the static background of each video
- Detect all the objects in the videos as spatiotemporal tubes
- Group the tubes of the same object in different videos as a single object

Preprocessing

- Synchronize all the input videos
- Extract the static background of each video
- Detect all the objects in the videos as spatiotemporal tubes
- Group the tubes of the same object in different videos as a single object

Preprocessing

- Synchronize all the input videos
- Extract the static background of each video
- Detect all the objects in the videos as spatiotemporal tubes
- Group the tubes of the same object in different videos as a single object

- The temporal offset for moving objects
 - $T = \{\delta_i | i \in [1, N]\}$
- The optimal view we select for each frame in the synopsis
 - $K = \{k_t | k_t \in [1, M], t \in [1, L]\}$

Our unified framework for multi-video synopsis

$$E(T,K) = w_a E_a(T,K) + w_o E_o(T,K) + w_{co} E_{co}(T) + w_{vs} E_{vs}(K)$$

Activity cost

Occlusion cost

Chronological order cost

View switching cost

Preserve activities

Avoid occlusions

Keep chronological orders of objects

Switch between views optimally

ACTIVITY COST

Our unified framework

$$E(T,K) = w_a E_a(T,K) + w_o$$

Activity cost E_a

- Preserves activities
- Composed of two parts
 - Penalizes all the activities that are not included in the synopsized videos
 - Favors the view that contains more activities

OCCLUSION COST

Object #2

Our unified framework

$$E(T,K) = w_a E_a(T,K) + w_o E_o(T,K) + w_{co} E_{co}(T) + w_{vs} E_{vs}(K)$$

Occlusion cost E_o

- Prevents collisions between shifted objects
- Sum of the overlapping ratio between all pairs of objects over all selected views

CHRONOLOGICAL ORDER COST

Our unified framework

$$E(T,K) = w_a E_a(T,K) + w_o E_o(T,K) + w_{co} E_{co}(T) + w_{vs} E_{vs}(K)$$

Chronological order cost E_{co}

- The objects appear first in the input videos should also appear first in the synopsis video
- Sum of activities violating the chronological order

$$E_{co} = Act_1 + Act_2$$

- The objects appear first in the input videos should also appear first in the synopsis video
- Sum of activities violating the chronological order

VIEW SWITCHING COST

Our unified framework

$$E(T,K) = w_a E_a(T,K) + w_o E_o(T,K) + w_{co} E_{co}(T) + w_{vs} E_{vs}(K)$$

View switching cost E_{vs}

- Ensures the viewpoints to be changed optimally
- Constrain the current view to be the same as the last view
- Constrain a view should be continuously selected at least 30 frames and at most 150 frames

OPTIMIZATION

Our unified framework

$$E(T,K) = w_a E_a(T,K) + w_o E_o(T,K) + w_{co} E_{co}(T) + w_{vs} E_{vs}(K)$$

- Step 1: optimize *T* first by fixing *K*
- Reduced to the sum of energy terms defined on single object (E_a) or pair of objects (E_o, E_{co})
- **Graph Cuts**

OPTIMIZATION

Our unified framework

$$E(T,K) = w_a E_a(T,K) + w_o E_o(T,K) + w_{co} E_{co}(T) + w_{vs} E_{vs}(K)$$

Step 2: optimize *K* with the known *T*

Node weight: $E_a + E_o$

Edge weight: E_{vs}

Dynamic programming [Arev et al. 2014]

OUR METHOD: SUMMARY

EXPERIMENTS

	Case 1	Case 2	
Video Number	2	4	
Video Length	4 min	10 min	
Frame Rate	30 fps	30 fps	
Angle	> 90°	About 20°	
Synopsis Length	33 sec	33 sec	
Video Comparison		Frame-based approach	

DISCUSSION

Comparisons with previous object-based methods

Method	Feature	Overlapped Fov	# of Output Videos
[Zhu et al. 2016]	Multicamera joint video synopsis, consider the chronological orders of tubes from different views	No	Multiple
[Hoshen and Peleg 2015]	One live Master camera, one or more Slave cameras showing past activities	No	Multiple
[Mahapatra et al. 2016]	Mapping multiple views to a common ground plane	Yes	One
Our Method	Display multi-video synopsis by optimal view switching	Yes	One

EXPERIMENTS

- Performance
 - 10 iterations at most
 - Graph Cuts: 1 10 seconds
 - Dynamic Programming: < 0.1 second
- Time marks
 - Show moving objects with the *original appearance timestamps*

EXPERIMENTS

Multi-video Object Synopsis Integrating Optimal View Switching

Zhensong Zhang¹ Yongwei Nie² Hanqiu Sun¹ Qiuxia Lai¹ Guiqing Li²

¹The Chinese University of Hong Kong ²South China University of Technology

SUMMARY

- A unified framework for multi-video object-based synopsis
 - The occurrences of moving objects in different cameras are treated identically
 - Jointly optimize temporal offsets and optimal view sequence
 - Unified synopsis space of multiple input videos
- Further work
 - User interaction preferences (i.e., frame #, zoom view)
 - More constraints for view selection

THANK YOU!

Zhensong Zhang, Hanqiu Sun, Qiuxia Lai -{zszhang, hanqiu, qxlai}@cse.cuhk.edu.hk
Yongwei Nie, Guiqing Li
-{nieyongwei, ligq}@scut.edu.cn