Analytical and experimental studies of the translationalrotational flow of fluid in a vortex heat generator

Valeriy Nikolsky^{1*}, Vadim Yaris¹, Oleksandr Alieksandrov¹, Antonina Lobodenko¹, Viktor Ved¹

¹Ukrainian State University of Chemical Technology, Dnipro, Ukraine

*Corresponding author: vnikols1@gmail.com

Abstract. The article represents the results of the performed analytical and experimental studies of the hydrodynamics of the translational-rotational motion of a viscous fluid flow in the working space of a vortex heat generator of variable geometry; critical velocity and pressure are determined analytically. The influence of the vortex generation device on the relationship of the above parameters is considered.

Keywords: vortex device, fluid hydrodynamics, current line, rotary motion, momentum, pressure, critical velocity

Аналітичні й експериментальні дослідження поступовообертального плину рідини у вихровому теплогенераторі

Валерій Нікольський 1* , Вадим Яріз 1 , Олександр Алєксандров 1 , Антоніна Лободенко 1 , Віктор Ведь 1

¹Український державний хіміко-технологічний університет, Дніпро, Україна

*Відповідальний автор: vnikols1@gmail.com

Анотація. У статті наведені результати виконаних аналітичних й експериментальних досліджень гідродинаміки поступального-обертального руху потоку в'язкої рідини в робочому просторі вихрового теплогенератора змінної геометрії, аналітично визначені критичні швидкість і тиск. Досліджено вплив пристрою генерації вихрів на співвідношення зазначених параметрів.

Ключові слова: вихровий пристрій, гідродинаміка рідини, лінія струму, обертовий рух, кількість руху, тиск, критична швидкість

1. Вступ

Інтенсифікація процесів тепломасообміну при вдосконалюванні сучасних і створенні нових енергетичних апаратів актуальна.

Спосіб інтенсифікації теплообміну обертанням потоку робочого середовища залучає до себе пильний інтерес. Це порозумівається тим, що властивості вихрових плинів має широкий діапазон технічних застосувань у теплоенергетичному, нафтопереробному, хімічному й іншому устаткуванні [1] - [5].

Одним з енергоефективних, екологічно безпечних пристроїв, що перетворюють енергію вихрового руху рідини у теплову, за допомогою кавітації, ε вихровий теплогенератор.

Відмінною рисою вихрового теплогенератора є використання в якості завихрителя потоку рідини вихрового пристрою певної геометрії. Високий ступінь кручіння потоку теплоносія забезпечує організацію вихрових плинів у робочому тракті вихрового теплогенератора зі зростаючою швидкістю й зменшенням тиску. Це забезпечує низькі

коефіцієнти гідродинамічного опору робочого тракту вихрового теплогенератора й сприяє генерації кавітаційних процесів.

У роботі виконані аналітичні й експериментальні дослідження гідродинаміки поступального-обертального руху потоку в'язкої рідини в робочому просторі вихрового теплогенератора змінної геометрії, визначені критичні швидкість і тиск. Досліджено вплив пристрою генерації вихрів на співвідношення зазначених параметрів.

2. Методика проведення досліджень

При поступальному-обертальному русі рідини по трубі є дві області руху: рух по кільцевому зазорі між радіусом труби й радіусом вихру r_{θ} , усередині кільцевого зазору. Рідина рухається уздовж труби зі швидкістю ω_x і обертається зі швидкістю ω_{ϕ} на підставі збереження моменту швидкості.

На осі труби утворюється циліндрична порожнина радіусом r_{θ} . Вона заповнена повітрям, тому що труба з'єднана з атмосферою.

Точне рішення рівняння поступального-обертального руху рідини являє собою завдання, що важко розв'язується, яке можливе до розв'язання при значних спрощеннях.

Приймаємо наступні спрощення. Рідина рухається в просторі між двома циліндрами: зовнішній з яких (корпус вихрового теплогенератора) нерухомий, внутрішній з радіусом r_6 обертається з кутовою швидкістю ω . У результаті уздовж лінії струму рідини має місце вихровий обертально-поступальний рух теплоносія (рис. 1).

Рисунок. 1. Модель обертально-поступального плину рідини

У сталому поступальному-обертальному русі нестисливої рідини уздовж осі труби вихрового теплогенератора швидкість обертового руху залежить від відстані до осі труби r_{6} , при цьому на рідину діє (протилежно руху) сила в'язкості (тертя), що характеризується коефіцієнтом опору ξ .

$$\frac{dl_{mp}}{dx} = \frac{\xi w_x^2}{2D} \tag{1}$$

Тиск рідини по лінії струму убуває за законом:

$$\frac{dP}{dx} = -\frac{1}{v} \cdot \frac{dl_{mp}}{dx} - \frac{\xi w_x^2}{2vD} \tag{2}$$

Через дію сил в'язкості змінюється момент швидкості $M = \omega_{\varphi} r$.

Для знаходження швидкості руху потоку теплоносія уздовж робочого тракту вихрового теплогенератора визначимо кількість руху рідини на ділянці труби довжиною dx. Радіус вихру при в'якому плині уздовж тракту приймаємо змінною величиною dr_6 , Перетин зазору по якому рухається вихор рідини — $2\pi r_6 dr_6$.

Кількість руху рідини в напрямку лінії струму за одиницю часу змінюється на

величину $\frac{\omega_x^2}{vr_g} 2\pi dr_g$. Зміна кількості руху дорівнює імпульсу сил (сил тиску й тертя)

діючих за цей же час на обраній ділянці.

Силу тиску на ділянці dx, з урахуванням рівняння нерозривності й сталої швидкості поступального руху уздовж осі труби у циліндричних координатах запишемо у вигляді:

$$\pi(\frac{D^2}{4} - r_e^2)dP\tag{3}$$

Підставивши значення dP з вираження [6] знаходимо вираз для сили тиску:

$$\pi \left(\frac{D^2}{4} - r_e^2\right) \frac{\omega_\varphi^2}{v r_e} dr_e \tag{4}$$

Тут ω_{φ} – швидкість обертового руху рідини, визначається з [6].

$$\frac{d^2\omega_{\varphi}}{dr^2} + \frac{1}{r}\frac{d\omega_{\varphi}}{dr} - \frac{\omega_{\varphi}}{r^2} = 0 \tag{5}$$

Рішення рівняння буде мати вигляд:

$$\omega_{\varphi} = ar + \frac{b}{r} \tag{6}$$

Тут a й b – константи.

3 вираження (6) видно, що ϵ два обертові рухи рідини. Перший описується рівнянням:

$$\omega_{o} = ar$$
 (7)

Цей рух характеризується мінімальною зміною швидкості з радіусом r_{θ} , по типу кругового руху твердого тіла. Друга складова руху описується рівнянням:

$$\omega_{\varphi} = \frac{b}{r} \tag{8}$$

і представляє потенційне обертання, тобто $rot\omega = 0$.

Потенційне обертання починається з деякого радіуса r_{s} , тобто при $r \ge r_{s}$. Радіус r_{s} – радіус вихру визначається умовою рівності тиску рідини на поверхні вихру зовнішньому тиску P, тобто $r = r_{s}$.

Константи a й b визначаються із граничних умов.

Силу тертя при русі визначимо як:

$$\frac{\xi \omega_x^{\rm w}}{2\nu D} dx \tag{9}$$

Отже, баланс сил при поступальному-обертальному русі має вигляд рівняння:

$$\frac{2\pi}{v}w_x^2 r_e dx_e = \pi (\frac{D^2}{4} - r_e^2) \frac{w_\phi^2}{v r_e} dr_e - dl_{mp}$$
 (10)

Перетворимо вираження (10) і приведемо до виду:

$$r_{e} \left(w_{x}^{2} - w_{\varphi_{e}}^{2} \frac{D^{2}}{4} - r_{e}^{2} \right) \frac{dr_{e}}{dx} = -\frac{1}{2\pi} \frac{dl_{mp}}{dx}$$
 (11)

Так як з умов нерозривності:

$$\frac{d\omega_x}{dx}(\frac{D^2}{4} - r_g^2) = 0 , (12)$$

тоді:

$$\frac{dr_e}{dx} = \frac{b}{2\omega_e r_e} \left(\frac{D^2}{4} - r_e^2\right) \frac{d\omega_x}{dx} \tag{13}$$

Підставивши вираження (13) у перетворене рівняння балансу сил (10) одержимо:

$$\frac{1}{\omega} \left(\omega_x^2 - \omega_{\varphi_g}^2 \frac{D^2}{4r_g^2} - r_g^2 \right) \frac{d\omega_x}{dx} = \frac{1}{\left(\frac{D^2}{4} - r_g^2\right)} \cdot \frac{dl_{mp}}{dx}$$
(14)

З аналізу отриманого рівняння слідує, що при початковій швидкості

$$\omega_{x_{\!\!1}} \leq \omega_{\varphi_{\!\!\!6_{\!\!1}}} \sqrt{\frac{D^2}{4} - r_{\!\!\!6_{\!\!1}}^2}$$
 похідна $\frac{d\,\omega_x}{dx}$ має позитивний знак і швидкість рідини уздовж

лінії струму зростає, навпаки рідина рухається уповільнено. Отже для того щоб швидкість підвищувалася до критичної, необхідно забезпечити відповідні умови входу рідини в робочий простір вихрового теплогенератора.

При

$$\omega_{x_{1}} = \omega_{\varphi_{\theta_{1}}} \sqrt{\frac{D^{2} - r_{\theta_{1}}^{2}}{2r_{\theta_{1}}^{2}}} , \qquad (15)$$

похідна $\frac{d\,\omega_x}{dx}$ перетворюється в нескінченність, тобто має місце «криза плину».

Поступальна швидкість рідини при поступальному-обертальному русі в довгій трубі не може безперервним образом перейти через значення швидкості

$$\omega_{x_{\!\scriptscriptstyle \parallel}} = \omega_{\varphi_{\!\scriptscriptstyle B}} \, \sqrt{\frac{D^2}{4} - r_{\!\scriptscriptstyle e_{\!\scriptscriptstyle \parallel}}^2}$$
 , й останнє вираження являє собою граничну, або критичну

швидкість плину рідини. При досягненні критичного значення швидкості руху, рідина переходить зі стаціонарного плину в пульсуючий плин.

На бічній поверхні вихру (тобто на поверхні циліндра радіусом r_6) внаслідок наявності відцентрових сил виникають пружні відцентрові хвилі, швидкість поширення яких досягає значення швидкості звуку [6].

$$c = \omega_{\varphi_6} \sqrt{\frac{D^2}{4} - r_e^2} \frac{2r_e^2}{2r_e^2}$$
 (16)

Це ε значення критичної (граничної) швидкості поступального руху рідини, що містить рівняння (10).

Таким чином, $\omega_{\kappa p} = c$.

При поступальному-обертальному русі в трубі змінного перетину, а також при здійсненні корисної зовнішньої роботи (наприклад, пов'язаної з генерацією теплоти на основі кавітаційних ефектів) можливий безперервний перехід через критичну швидкість. Це сприяє зниженню тиску, посиленню ефекту кавітації й підвищенню процесу теплообміну у вихідному пристрої вихрового теплогенератора, що визначає енергоефективність його роботи.

Для оцінки ступеня ефективності вихрового пристрою на роботу вихрового теплогенератора були виконані порівняльні експерименти роботи вихрового теплогенератора при тангенціальному уведенні рідини з вихровим пристроєм і без нього. Експеримент складався в оцінці числа Эйлера E_{U_g} (як показника співвідношення швидкості й тиску) при різних навантаженнях на тракт теплогенератора, обумовленими числами Re_g .

На рис. 2 зіставлені числа Эйлера робочого тракту вихрового теплогенератора із установленим вихровим пристроєм і без нього.

З наведених залежностей видно, що при однаковому гідродинамічному й тепловому навантаженні на тракт вихрового теплогенератора ефективність його роботи в середньому на 35% вище із установленим вихровим пристроєм.

Рисунок. 2. Залежність числа Эйлера E_{U_6} робочого тракту вихрового теплогенератора, від навантаження на тракт ($\mathrm{Re}_{_6}$): 1 — теплогенератор із установленим вихровим пристроєм, 2 — теплогенератор зі знятим вихровим пристроєм

3. Висновки

Виконані аналітичні й експериментальні дослідження поступального-обертального плину рідини у вихровому теплогенераторі.

- 1. Аналітично визначена критична (гранична) швидкість поступального руху рідини. Установлено, що вона прирівнюється до швидкості звуку $\omega_{\kappa p} = c$.
- 2. Установлено, що для підвищення енергоефективності (генерації теплоти) теплогенератора його корпус повинен бути виконаний у вигляді труби змінного перетину.
- 3. Доведено, що при тангенціальному вводі рідини в робочий простір вихрового теплогенератора установка вихрового пристрою підвищує енергоефективність його роботи на 35 %.

Література

- Nikolsky, V., Kuzyayev, I., Alieksandrov, O., Ved, V., Pugach, A., Yaris, V., ... Lopatin, V. (2019). Analytical and experimental studies into the processes of hydrodynamics and heat exchange in the channels of disk pulse devices. *Eastern-European Journal of Enterprise Technologies*, 4(8 (100)), 15-23. https://doi.org/10.15587/1729-4061.2019.174629
- Nikolsky, V., Kuzyayev, I., Dychkovskyi, R., Alieksandrov, O., Yaris, V., Ptitsyn, S., ... Smoliński, A. (2020). A Study of Heat Exchange Processes within the Channels of Disk Pulse Devices. *Energies*, 13(13), 3492. https://doi.org/10.3390/en13133492
- Nikolsky, V., Oliynyk, O., Ved, V., Svietkina, O., Pugach, A., & Shvachka, A. (2018). Design and study of the energy-efficient unified apparatuses for energy-technological manufacturing. *Eastern-European Journal of Enterprise Technologies*, 3(8 (93)), 59-65. https://doi.org/10.15587/1729-4061.2018.132572
- Girin, O., Kuzyayev, I., Nikolsky, V., & Yaris, V. (2020). Discovering and Modelling the Wave-Like Shapes on the Surface of Metal Deposits, being Electrodeposited under the Force Impact. Key Engineering Materials, (844), 135-145. https://doi.org/10.4028/www.scientific.net/kem.844.135
- 5. Promtov, M.A., & Akulin, V.V. (2005). Mekhanizmy generirovaniya tepla v rotorno-impul'snom apparate. *Vestnik TGTU*, (11), 103-106.
- 6. Vukalovich, M.P., & Novikov, I.I. (1972). Termodinamika. M.: Mashinostroyeniye, 672 p.