

CSCI 651 Algorithm Concepts

Zhida Li, Ph.D.

College of Engineering and Computing Sciences

Today's - Objectives

- 1st part
 - Getting to know each other
 - Introduction to the course
 - Requirements, assignments, quizzes, exams...
 - Overview of topics to be covered
- 2nd part
 - Introduction to algorithms and data structures

About the Instructor

- Zhida Li, Assistant Professor, NYIT Vancouver, Room 1814, Suite 180.
- Office hours: By appointment (<u>zli74@nyit.edu</u>)

Detecting BGP anomalies using machine learning techniques

2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC ...

Comparison of machine learning algorithms for detection of network intrusions

Q Ding, Z Li, P Batta, L Trajković

Cited by

2016

2018

Citations			265	5			252
h-index			11	1			11
i10-index			12	2			11
				ī	_		80
		ı					40
2016 2017	2018	2019	2020	2021	2022	2023	0

All

Since 2018

About the Instructor (cont.)

- Network anomaly detection:
 - develop new algorithms (echo state networks, graph neural networks, and transformers) to enhance the model robustness for time series data
 - enhance BGPGuard
 - extract additional features based on network topology
- Blockchain:
 - Ethereum phishing detection based on transaction records and labels collected from Etherscan (https://etherscan.io)
- Brain-computer interface:
 - analyze electroencephalogram (EEG) benchmarks
 - develop new algorithms and approaches to analyze data from non-invasive collection of brain signals
- BCI & NEUROTECHNOLOGY SPRING SCHOOL 2023, VIRTUAL BR41N.IO HACKATHON https://www.gtec.at/spring-school-2023/ https://www.br41n.io/Spring-School-2023

About the TA

- Yanqing (Lucis) Li
 - joined NYIT after he graduated from UVic in 2021 Sept. with a major in combined Mathematics and Statistics with a minor in Business
 - love doing analysis work.
 - love watching Netflix, cooking, and playing computer games, like Dota2 and some board games
 - proficient in R, Python, and Java

About You

- How many of you have not taken this course in undergrad?
- Have you ever used algorithm concepts in a project? Have you ever tried to optimize a code?

What is this course all about?

Friday 1:00 PM – 4:00 PM in Room 1821, Suite 180, 2985 Virtual Way, BTC

- Algorithm concepts!
 - Computational complexity (efficiency in time and space)
 - Data structures and their applications
 - Methods to solve problems and design efficient algorithms
 - Theory and proofs!

Abstract Data Structures are reviewed.

The course covers the study of both the design and analysis of algorithms

Space and time complexity; performance evaluation; and NP-Hard and NP-Complete classes are also covered

Why this course? Why Algorithms?

- It is one of the most important courses in computer science.
- Many questions in job interviews are coming from algorithmic concepts.
- It helps you in better understanding, analyzing, and problem solving. It is DIFFICULT but also very FUN.
- There is only a handful of classical problems with nicely designed algorithms. If you know how to solve a classical problem (e.g., the shortest-path problem), you can use it to do a lot of different things
 - Abstract ideas from the classical problems
 - Map your requirement to a classical problem
 - Solve with classical algorithms
 - Modify it if needed

Course-Level Learning Outcomes

1. Explain basic concepts related to the design and analysis of algorithms.

2. Describe classical algorithms and their complexity.

3. Design and analyze their own algorithms; and implement, experiment with, compare, and report on various algorithmic solutions to the same problem.

4. Compare and contrast the notions of NP-completeness and approximation algorithms.

5. Function effectively as a member of a team.

6. Communicate effectively via oral and written means.

7. Utilize machine learning to perform classification/regression.

References

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, <u>Introduction to Algorithms</u>, 4th edition, The MIT Press, 2022. (3rd edition is ok) ISBN-13: 978-0262046305.

3rd edition

4th edition

References

Jon Kleinberg and Éva Tardos, <u>Algorithm</u>
 <u>Design</u>, 1st edition, Pearson, 2005.

 ISBN-13: 978-0321295354.

Other Resources

Other Resources (cont.)

• Jeff Erickson, *Algorithms*, 2019.

ISBN-13: 978-1792644832.

http://jeffe.cs.illinois.edu/teaching/algorithms/

 K. P. Murphy, Probabilistic Machine Learning: An Introduction. Cambridge, MA, USA: The MIT Press, 2022.

ISBN-13: 978-0262046824.

https://probml.github.io/pml-book/book1.html

- Christos Papadimitriou, Sanjoy Dasgupta, and Umesh Vazirani, Algorithms, McGraw Hill, 2006.
 ISBN-13: 978-0073523408.
- Aditya Y. Bhargava, *Grokking Algorithms*, Manning, 2016. ISBN-13: 978-1617292231.
- Gayle Laakmann McDowell, *Cracking the Coding Interview*, 6th Edition, 2015. ISBN-13: 978-0984782857.

Grading Guidelines

• Evaluation will be based on attendance, individual assignments, one group project (in groups of up to 3), two quizzes, one midterm exam, and one final exam.

Item	Contribution to Total Grade
Attendance	5 %
Assignments	25 %
Project	10 %
Quizzes	10 %
Midterm Exam	20 %
Final Exam	30 %
TOTAL	100 %

Grading Guidelines (cont.)

• Evaluation will be based on attendance, individual assignments, one group project (in groups of up to 3), two quizzes, one midterm exam, and one final exam.

Item	Contribution to Total Grade
Attendance	5 %
Assignments	25 %
Project	10 %
Quizzes	10 %
Midterm Exam	20 %
Final Exam	30 %
TOTAL	100 %

Lower Limit (%)	Grade
90	Α
85	A-
80	B+
70	В
65	B-
60	C+
55	С
0	F

Explanation to Grade

Grade	Description	Quality Points	Used in GPA Calculation
Α	Excellent quality and full mastery of the course material, extraordinary distinction	4.0	Yes
A-	Excellent quality and full mastery of the course material	3.7	Yes
B+	Good to excellent comprehension of the course material and the skills necessary to work with course material	3.3	Yes
В	Good comprehension of the course material and the skills necessary to work with course material	3.0	Yes
B-	Reasonably good comprehension of the course material and the skills necessary to work with course material	2.7	Yes
C+	Adequate and slightly above satisfactory comprehension of the course material and met the basic course requirements	2.3	Yes
С	Adequate and satisfactory comprehension of the course material and met the basic course requirements	2.0	Yes
F	Failure	0	Yes

Schedule

- Syllabus on Canvas.
- Updates from announcements.

Before We Start

Any questions?

Do you think this will be a hard class?