

Multi-Sensor-Systeme

Qualitätssicherung und Validierung

Wintersemester 2022/2023

Dr.-Ing. Sören Vogel

- Messunsicherheiten und Einflussfaktoren auf die Qualität eines MSS
- Methoden zur Validierung eines MSS
 - Vorwärtsmodellierung
 - Rückwärtsmodellierung
 - Punktbasierte Verfahren
 - Parameterbasierte Verfahren
 - Flächenbasierte Verfahren / Punktwolkenvergleich
- Anwendungen und Praxisbeispiele

Messunsicherheit von 3D-Punktwolken

Simuliertes Messrauschen eines Velodyne HDL-64 Laserscanners

verändert nach Rakotosaona et al. (2020)

Einflussfaktoren auf die Qualität eines MSS (1)

- Einfluss vieler unterschiedlicher (z.T. voneinander abhängiger)
 Effekte / Einflüsse auf die Qualität der Messergebnisse eines MSS
- Verzweigung / Abhängigkeiten zwischen den einzelnen Einflussgrößen als große Herausforderung

verändert nach Paffenholz et al. (2017) und Ernst (2021)

Einflussfaktoren auf die Qualität eines MSS (2)

- Einfluss vieler unterschiedlicher (z.T. voneinander abhängiger)
 Effekte / Einflüsse auf die Qualität der Messergebnisse eines MSS
- Verzweigung / Abhängigkeiten zwischen den einzelnen Einflussgrößen als große Herausforderung

Einflussfaktoren auf die Qualität eines MSS (3)

- Qualität beinhaltet viele Aspekte:
 - → Genauigkeit (Richtigkeit und Präzision), Zuverlässigkeit, Integrität, Vollständigkeit, Aktualität, Sensitivität, Robustheit, etc.
- Komplexe und ineinandergreifende Prozesskette bei der Betreibung eines (kinematischen) MSS stellt hohe Herausforderungen an die Qualitätsanalyse
- Möglichkeiten und Vorgehen um hohe Qualität zu erreichen:
 - Sensoren und MSS kalibrieren
 - Mathematische Kompensation systematischer Abweichungen
 - Wahl geeigneter Messprozesse in Abhängigkeit der Umgebung, Bewegung, Ausdehnung, etc.
 - Kinematisch: Bewegungsverhalten (Form, Geschwindigkeit, etc.)
 - Art der (Geo-)Referenzierung

Heinz (2021)

Methoden zur Validierung eines MSS

Vorwärtsmodellierung

- Prädiktion der Unsicherheiten einer georeferenzierten Punktwolke, bedingt durch zufällige Abweichungen der individuellen Sensorbeobachtungen sowie verbleibende Abweichungen im Rahmen der Kalibrierung
- Ansetzen eines funktionalen und stochastischen Modells zur Beschreibung der Prozesskette mit Hilfe von Verteilungsfunktionen für die bekannten Einflussgrößen und entsprechender Varianzfortpflanzung oder Monte-Carlo-Simulation
 - → Ziel: Genauigkeit finaler Produkte (z.B. Punktwolke) des MSS a priori zu quantifizieren
- Herausforderung:
 - → Funktionale Zusammenhänge wegen Komplexität häufig nicht vollständig bekannt ("Black-Box"), nicht normalverteilt und zeitlich / räumlich variabel
 - → Unterschiedliche Genauigkeiten trotz identischem MSS möglich
- Basiert auf einer Vielzahl an Annahmen für komplizierte Multisensorsysteme und gewählte Modelle
- → Theoretische Vorgehensweise

Methoden zur Validierung eines MSS

Rückwärtsmodellierung

- Mit dem MSS erfasste Messdaten (z.B. Punktwolken) werden mit unabhängig erfassten Referenz(-werten, -punktwolken, -geometrien, etc.) in Beziehung gesetzt
- Analyse resultierender Abweichungen zur Referenz als Maß für die Genauigkeit des MSS über verschiedene Verfahren
 - Punktbasiert
 - Parameterbasiert
 - Flächenbasiert / Punktwolkenvergleich
- Aussagen zur Präzision anhand von Wiederholungsmessungen möglich
- Keine Separierung / Rückführung von vorliegenden Abweichungen auf einzelne Bestandteile der Prozesskette ohne weiteres möglich, wegen i.d.R. fehlendem Modellwissen
- → Empirische Vorgehensweise

Punktbasiert

- Verwendung einzelner Kontrollpunkte und Abgleich mit Referenzwerten
 - Natürlicher Art (z.B. Gebäudeecken, Verkehrszeichen, Kanaldeckel)
 - Künstlicher Art (z.B. Zielzeichen, optische / haptische Markierungen)
 - Referenz über unabhängige Einmessung (z.B. Tachymetrie, GNSS, TLS)
- Aussagen zur Richtigkeit und Präzision (relative Abstände oder Wiederholmessungen) möglich
- Notwendigkeit der indirekten Extraktion anhand von z.B. Geraden- oder Mittelpunktschätzung sowie Zielzeichenerkennung bedarf geeignete Auflösung der erfassenden Sensorik

Parameterbasiert

- Ableiten und Verwendung von geeigneten geometrischen Größen / Primitiven mit Referenzwerten
 - Natürlicher Art (z.B. Ampel- / Verkehrszeichen-Masten, Bordsteine, Häuserfassaden)
 - Künstlicher Art (z.B. Referenzflächen, Zylinder, Kugeln, Paraboloide)
- Häufig in direktem Zusammenhang zum Endprodukt der Datenerfassung (z.B. objektbeschreibende Parameter wie die Detektion von Verkehrszeichen oder Fahrbahnmarkierungen) und daher starke Abhängigkeit von der jeweiligen Anwendung

Sören Vogel (01-2023) Multi-Sensor-Systeme 10

Flächenbasiert

- (Nahezu) Vollständige Validierung auf Basis von Punktwolkenvergleichen mit einer geeigneten Referenz
 - Unabhängig erfasste (lokale oder georeferenzierte) Punktwolken oder erstellte 3D-Gebäudemodelle bzw. Geländemodelle
- Bestimmung von Abständen zwischen Punktwolke des MSS und Modelloberflächen
- Bestimmung der Richtigkeit und Präzision möglich
- Theoretisch kann die gesamte erfasste Punktwolke des MSS validiert werden, sofern flächendeckend Referenzen vorliegen
- Auf eine entsprechende Sensitivität der Umgebung ist zu achten, sodass auch aussagekräftige Ergebnisse abgeleitet werden können (z.B. geometrische Konfiguration)
- Vielzahl an unterschiedlichen Algorithmen (mit diversen Parametern) um Korrespondenzen (zusätzliche Frage nach deren Definition) zwischen Punktwolke und Referenz zu detektieren

Punktbasiert

Parameterbasiert

Flächenbasiert

Vielzahl an unterschiedlichen Methoden, welche jedoch nicht standardisiert sind

Kombination der einzelnen Möglichkeiten sinnvoll

Cloud-to-Cloud (C2C)

- Zuordnung korrespondierender Punkte und anschließende Berechnung der jeweiligen Abstände
- Unterschiedliche Definition der Korrespondenz ("nächster Nachbar") kann zu fehlerhaften Zuordnungen führen
- Häufige Verwendung einer modellierten Form bzw. Fläche zweiter Ordnung (Quadrik) für jeden einzelnen Referenzpunkt
 - Definition eines Normalenvektors für jeden Punkt, welcher die Suchrichtung vorgibt
- → Ergebnis hängt ab von: Punktdichte, Messabweichungen, Ausreißern

Holst et al. (2017)

Cloud-to-Mesh (C2M)

- Abstand einer 3D-Vermaschung zu einer Punktwolke mittels kürzesten Distanzen zu den jeweiligen Dreiecksflächen der vermaschten Punktwolke
- → Ergebnis hängt ab von: Punktdichte, Messabweichungen (hier insbesondere den zufälligen), Ausreißern

Mesh-to-Mesh (M2M)

- Quasi identisch wie C2M, nur Abstände zwischen zwei Vermaschungen auf Basis der Normalenvektoren
- → Ergebnis hängt ab von: Punktdichte, Messabweichungen (hier insbesondere den zufälligen), Ausreißern

Barnhart & Crosby (2013)

Multiscale-Model-to-Model-Cloud (M3C2)

- Berücksichtigung des Messrauschens durch Verwendung von Kernpunkten i
- → Zusammenfassung mehrere Punkte (und Streuung) in einem Punkt
- 1. Referenzpunktwolke wird auf gewisse Anzahl an Kernpunkten *i* reduziert
- 2. Berechnung eines Normalenvektors N für jeden Kernpunkt i innerhalb eines definierten Radius D/2, sowie $\sigma_i(D)$ als Maß für die Oberflächenbeschaffenheit der Umgebung
- 3. Projektion des Kernpunktes i entlang Normalenvektor in beide Punktwolken auf lokal minimierte Projektionsebenen (mit Radius d/2)
- 4. Distanz zwischen beiden Projektionspunkten i_1 und i_2 als Punktwolkenabstand $L_{\rm M3C2}$

Lague et al. (2013)

Multiscale-Model-to-Model-Cloud (M3C2)

- \rightarrow Grafische Darstellung der eingefärbten Kernpunkte (sowie Standardabweichung der Kernpunkte $\sigma_i(D)$ oder Anzahl der Nachbarn an jedem Kernpunkt) z.B. in CloudCompare
- → I.d.R. geringere rechentechnische Laufzeit, da keine Vermaschung notwendig und Reduktion auf Kernpunkte

→ Ergebnis hängt ab von: systematischen Messabweichungen, da Glättung und Reduktion auf Kernpunkt den Einfluss der anderen Faktoren minimieren

Holst et al. (2017)