

FROM LORA TO QLORA: BREAKTHROUGH IN MODEL COMPRESSION

PROFESSIONAL TECHNICAL DOCUMENTATION

MADE BY SAFIA TIFOUR

July 31, 2025

Contents

1	From LoRA to QLoRA (Quantized Low-Rank Adaptation) 1.1 Transition: Why Do We Need QLoRA?	2
2	What is QLoRA?	2
3	High-Level Intuition	2
4	Motivation: Why Quantize? 4.1 Large models are memory-intensive	
5	Quantization: What Does 4-bit Mean?	3
6	Challenge: Can we quantize AND still train effectively?	4
7	NF4 Quantization: Why it Matters	4
8	Double Quantization	4
9	Final QLoRA Architecture	4
10	Training Intuition	5

1 From LoRA to QLoRA (Quantized Low-Rank Adaptation)

1.1 Transition: Why Do We Need QLoRA?

While LoRA significantly reduces the number of trainable parameters, it still requires:

- · Loading the full precision (FP16 or FP32) base model into memory
- Using expensive GPUs (with lots of VRAM) for inference/training

So although LoRA is efficient in training, it still:

- Uses large memory
- · Limits fine-tuning to high-end hardware

Problem: Can we do even better — fine-tune *full-sized models* on *low-end consumer GPUs* (e.g., 24GB VRAM)?

Solution: QLoRA, proposed in 2023 by Tim Dettmers et al.

2 What is QLoRA?

QLoRA stands for: Quantized Low-Rank Adapter

It combines:

- · Quantization (4-bit) of the base model weights
- With LoRA-style low-rank adapters for fine-tuning

This allows:

- Training *very large models* (e.g., 65B parameters)
- On a single GPU
- Without performance loss compared to full precision training

3 High-Level Intuition

You know LoRA already: It adapts a frozen model by injecting **low-rank adapters**. Now:

QLoRA = LoRA + Quantization

We go a step further:

- 1. **Compress** the frozen weights to **4-bit precision** (quantization)
- Avoid touching them just use them in forward pass
- 3. Train only the LoRA adapters (A and B) as before in full precision (FP16)

So we:

- · Save memory by quantizing base weights
- · Retain flexibility by training small adapters

4 Motivation: Why Quantize?

4.1 Large models are memory-intensive

Even loading a 13B model in FP16 can require:

~26GB VRAM (13B × 2 bytes/param)

With quantization (e.g., 4-bit):

• Only \sim 6.5GB is needed

4.2 LoRA still loads weights in full precision

LoRA helps by reducing trainable parameters — **but not model size** You still need a high-end GPU just to run the model

4.3 QLoRA enables

- Full LoRA training on quantized weights
- · Efficient memory use
- No major loss in accuracy

5 Quantization: What Does 4-bit Mean?

Quantization = Reducing precision of numbers

Type	Bits	Value Range
FP32	32	Very high precision
FP16	16	Half precision
INT8	8	256 values
INT4	4	Only 16 values!

Table 1: Precision Comparison

In **QLoRA**, the base model weights are stored as **4-bit integers**, not floats. This brings:

- 4× less memory usage
- · Faster data transfer
- Smaller model storage

6 Challenge: Can we quantize AND still train effectively?

Yes — but with care.

QLoRA introduces two innovations to make this work:

- 1. Double quantization
- 2. NF4 (Normalized Float 4-bit) quantization format

7 NF4 Quantization: Why it Matters

Standard INT4 (linear mapping) performs poorly:

· Not enough dynamic range for neural network weights

NF4 (Normalized Float 4-bit) is a custom quantization scheme:

- · Keeps the distribution of values closer to real weights
- Has better performance than INT4 or FP8

Benefits:

- · Matches full-precision accuracy
- · Requires only 4 bits per weight

8 Double Quantization

A second trick QLoRA uses:

Compress not just the weights, but also the quantization constants (scales)

This allows even more memory savings without sacrificing accuracy.

9 Final QLoRA Architecture

Summary of components:

Component	Precision	Trainable?	Notes
Base model weights	4-bit (NF4)	No - Frozen	Saved in quantized form
LoRA adapters (A, B)	FP16	Yes - Trainable	Low-rank matrices
Optimizer state	FP32 or FP16	Yes	Only for adapters

Table 2: QLoRA Architecture Components

10 Training Intuition

Just like LoRA:

- You train $\Delta W = BA$ (low-rank matrices) **only**
- But now the base matrix W is quantized

In forward pass:

$$y = \mathsf{Quantized}(W) \cdot x + \frac{\alpha}{r} \cdot B(Ax)$$

In backward pass:

ullet Gradients only flow through A and B

The quantized W is never updated — it's just used in the computation