Basic Text Processing

Regular Expressions

Edited from Dan Jurafsky's book website: https://web.stanford.edu/~jurafsky/slp3/

Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions

Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

- Negations [^Ss]
 - Carat means negation only when first in []

Pattern	Matches	
[^A-Z]	Not an upper case letter	Oyfn pripetchik
[^Ss]	Neither 'S' nor 's'	<pre>I have no exquisite reason"</pre>
[^e^]	Neither e nor ^	<u>L</u> ook here
a^b	The pattern a carat b	Look up <u>a^b</u> now

Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	

Regular Expressions: ? * +

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	oh! ooh! oooh!
o+h!	1 or more of previous char	oh! ooh! oooh!
baa+		baa baaa baaaa baaaaa
beg.n		begin begun beg3n

Stephen C Kleene

Kleene *, Kleene +

Regular Expressions: Anchors ^ \$

Pattern	Matches	
^[A-Z]	Palo Alto	
^[^A-Za-z]	1 "Hello"	
\.\$	The end.	
.\$	The end? The end!	

Example

Find me all instances of the word "the" in a text.

the

Misses capitalized examples

[tT]he

Incorrectly returns other or theology

```
[^a-zA-Z][tT]he[^a-zA-Z]
```

Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

Errors cont.

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

Summary

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

Basic Text Processing

Regular Expressions

Basic Text Processing

More Regular

Expressions:

Substitutions and ELIZA

Substitutions

• Substitution in Python and UNIX commands:

- s/regexp1/pattern/
- e.g.:
- s/colour/color/

Capture Groups

Say we want to put angles around all numbers:

the 35 boxes
$$\rightarrow$$
 the <35> boxes

- Use parentheses () to "capture" a pattern into a numbered register (1, 2, 3...)
- Use $\1$ to refer to the contents of the register $s/([0-9]+)/<\1>/$

Capture groups: multiple registers

- /(the (.*)er they (.*))/\1, the \2erwe \3/
- returns
 the faster they ran, the faster we ran

```
Or

/the (.*)er they (.*)/\setminus 0, the \setminus 1er we \setminus 2/
```

Simple Application: ELIZA

- Early NLP system that imitated a Rogerian psychotherapist
 - Joseph Weizenbaum, 1966.

- Uses pattern matching to match, e.g.,:
 - "I need X"

and translates them into, e.g.

• "What would it mean to you if you got X?

Simple Application: ELIZA

Men are all alike.

IN WHAT WAY

They're always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

- s/.* I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE
 \1/
- s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
- s/.* all .*/IN WHAT WAY?/
- s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

ELIZA

User₁: You are like my father in some ways.

ELIZA₁: WHAT RESEMBLANCE DO YOU SEE

User₂: You are not very aggressive but I think you don't want me to notice that.

ELIZA2: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

User₃: You don't argue with me.

ELIZA3: WHY DO YOU THINK I DON'T ARGUE WITH YOU

User₄: You are afraid of me.

ELIZA₄: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

ELIZA

User₁: You are like my father in some ways.

ELIZA₁: WHAT RESEMBLANCE DO YOU SEE

User₂: You are not very aggressive but I think you don't want me to notice that.

ELIZA2: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

User₃: You don't argue with me.

ELIZA₃: WHY DO YOU THINK I DON'T ARGUE WITH YOU

User₄: You are afraid of me.

ELIZA4: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

ELIZA

User₁: You are like my father in some ways.

ELIZA₁: WHAT RESEMBLANCE DO YOU SEE

User₂: You/are not very aggressive but I think you don't want me to notice that.

ELIZA2: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

User₃: You don't argue with me.

ELIZA3: WHY DO YOU THINK I DON'T ARGUE WITH YOU

User₄: You are afraid of me.

ELIZA₄: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

s/.*YOU DON'T ([A-Z]+) WITH ME/WHY DO YOU THINK I DON'T \1 WITH YOU/
regular expression

s/.*YOU ARE LIKE .*/WHAT RESEMBLANCE DO YOU SEE?/

Basic Text Processing

More Regular

Expressions:

Substitutions and ELIZA

Words and Corpora

Basic Text Processing

How many words?

- I do uh main- mainly business data processing
 - Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
 - **Lemma**: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

How many words?

they lay back on the San Francisco grass and looked at the stars and their

- Type: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12) (or 11?)

How many words in a corpus?

N = number of tokens

 $\it V$ = vocabulary = set of types, $\it |V|$ is size of vocabulary Heaps Law = Herdan's Law = $\it |V| = kN^{\beta}$ where often .67 < $\it \beta$ < .75 i.e., vocabulary size grows with > square root of the number of word tokens

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
COCA	440 million	2 million
Google N-grams	1 trillion	13+ million

Corpora

Words don't appear out of nowhere!

A text is produced by

- a specific writer(s),
- at a specific time,
- in a specific variety,
- of a specific language,
- for a specific function.

Corpora vary along dimension like

- Language: 7097 languages in the world
- Variety, like African American Language varieties.
 - AAE Twitter posts might include forms like "iont" (I don't)
- Code switching, e.g., Spanish/English, Hindi/English:

```
S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)
```

[For the first time I get to see @username actually being hateful! it was beautiful:)]

```
H/E: dost that or ra- hega ... don't wory ... but dherya rakhe

["he was and will remain a friend ... don't worry ... but have faith"]
```

- Genre: newswire, fiction, scientific articles, Wikipedia
- Author Demographics: writer's age, gender, ethnicity, SES

Corpus datasheets

Gebru et al (2020), Bender and Friedman (2018)

Motivation:

- Why was the corpus collected?
- By whom?
- Who funded it?

Situation: In what situation was the text written?

Collection process: If it is a subsample how was it sampled? Was there consent? Pre-processing?

+Annotation process, language variety, demographics, etc.

Basic Text Processing

Word tokenization

Text Normalization

- Every NLP task needs to do text normalization:
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

Space-based tokenization

- A very simple way to tokenize
 - For languages that use space characters between words
 - Arabic, Cyrillic, Greek, Latin, etc., based writing systems
 - Segment off a token between instances of spaces
- Unix tools for space-based tokenization
 - The "tr" command
 - Inspired by Ken Church's UNIX for Poets
 - Given a text file, output the word tokens and their frequencies

Simple Tokenization in UNIX

- (Inspired by Ken Church's UNIX for Poets.)
- Given a text file, output the word tokens and their frequencies

```
tr -sc 'A-Za-z' '\n' < shakes.txt Change all non-alpha to newlines
| sort | Sort in alphabetical order | uniq -c | Merge and count each type
```

```
1945 A 25 Aaron
72 AARON 6 Abate
19 ABBESS 5 Abbess
5 ABBOT 6 Abbey
... 3 Abbot
.... ...
```

The first step: tokenizing

```
tr -sc 'A-Za-z' '\n' < shakes.txt
THE
SONNETS
by
William
Shakespeare
From
fairest
creatures
We
```

The second step: sorting

```
tr -sc 'A-Za-z' '\n' < shakes.txt | sort | head
Α
Α
Α
Α
Α
Α
```

More counting

Merging upper and lower case

10005 in 8954 d

```
tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' '\n' | sort | uniq -c
```

Sorting the counts

```
tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' '\n' | sort | uniq -c | sort -n -r

23243 the
22225 i
18618 and
16339 to
15687 of
12780 a
12163 you
10839 my

What happened here?
```

Issues in Tokenization

- Finland's capital \rightarrow Finland Finlands Finland's ?
- what're, I'm, isn't \rightarrow What are, I am, is not
- Hewlett-Packard \rightarrow Hewlett Packard ?
- state-of-the-art \rightarrow state of the art ?
- Lowercase → lower-case lowercase lower case ?
- San Francisco \rightarrow one token or two?
- m.p.h., PhD. \rightarrow ??

Issues in Tokenization

- Can't just blindly remove punctuation:
 - m.p.h., Ph.D., AT&T, cap'n
 - prices (\$45.55)
 - dates (01/02/06)
 - URLs (http://www.stanford.edu)
 - hashtags (#nlproc)
 - email addresses (someone@cs.colorado.edu)
- Clitic: a word that doesn't stand on its own
 - "are" in we're, French "je" in j'ai, "le" in l'honneur
- When should multiword expressions (MWE) be words?
 - New York, rock 'n' roll

Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O'Reilly

```
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
   ([A-Z]\setminus.)+ # abbreviations, e.g. U.S.A.
... | \w+(-\w+)^*  # words with optional internal hyphens
... | \$?\d+(\.\d+)?\%? # currency and percentages, e.g. $12.40, 82%
... | \.\.\.
                # ellipsis
[][.,;"'?():-_'] # these are separate tokens; includes ], [
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
```

Tokenization: language issues

- French
 - *L'ensemble* → one token or two?
 - L?L'?Le?
 - Want l'ensemble to match with un ensemble

- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

Tokenization: language issues

- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

End-user can express query entirely in hiragana!

Tokenization in languages without spaces

Many languages (like Chinese, Japanese, Thai) don't use spaces to separate words!

How do we decide where the token boundaries should be?

Word tokenization in Chinese

Chinese words are composed of characters called "hanzi" (or sometimes just "zi")

Each one represents a meaning unit called a morpheme.

Each word has on average 2.4 of them.

But deciding what counts as a word is complex and not agreed upon.

•姚明进入总决赛 "Yao Ming reaches the finals"

- •姚明进入总决赛 "Yao Ming reaches the finals"
- •3 words?
- •姚明 进入 总决赛
- YaoMing reaches finals

- •姚明进入总决赛 "Yao Ming reaches the finals"
- •3 words?
- •姚明 进入 总决赛
- YaoMing reaches finals
- •5 words?
- •姚 明 进入 总 决赛
- Yao Ming reaches overall finals

- •姚明进入总决赛 "Yao Ming reaches the finals"
- •3 words?
- •姚明 进入 总决赛
- YaoMing reaches finals
- •5 words?
- 姚 明 进入 总
- Yao Ming reaches overall finals
- •7 characters? (don't use words at all): •姚 明 进 入 总 决
- Yao Ming enter enter overall decision game

Word tokenization / segmentation

So in Chinese it's common to just treat each character (zi) as a token.

- So the **segmentation** step is very simple In other languages (like Thai and Japanese), more complex word segmentation is required.
 - The standard algorithms are neural sequence models trained by supervised machine learning.

Basic Text Processing

Word tokenization

Byte Pair Encoding

Basic Text Processing

Another option for text tokenization

Instead of

- white-space segmentation
- single-character segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts of words as well as whole words)

Subword tokenization

- Three common algorithms:
 - Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
 - Unigram language modeling tokenization (Kudo, 2018)
 - WordPiece (Schuster and Nakajima, 2012)
- All have 2 parts:
 - A token **learner** that takes a raw training corpus and induces a vocabulary (a set of tokens).
 - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters

- Repeat:
 - Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
 - Add a new merged symbol 'AB' to the vocabulary
 - Replace every adjacent 'A' 'B' in the corpus with 'AB'.
- Until k merges have been done.

BPE token learner algorithm

```
function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V \leftarrow all unique characters in C # initial set of tokens is characters

for i = 1 to k do # merge tokens til k times

t_L, t_R \leftarrow Most frequent pair of adjacent tokens in C

t_{NEW} \leftarrow t_L + t_R # make new token by concatenating

V \leftarrow V + t_{NEW} # update the vocabulary

Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus

return V
```

Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-separated tokens.

So we commonly first add a special end-of-word symbol '___' before space in training corpus

Next, separate into letters.

BPE token learner

Original (very fascinating) corpus:

low low low low lowest lowest newer newer newer newer newer wider wider wider new new

Add end-of-word tokens, resulting in this vocabulary:

```
vocabulary
```

_, d, e, i, l, n, o, r, s, t, w

BPE token learner

Merge e r to er

BPE

vocabulary

vocabulary

_, d, e, i, l, n, o, r, s, t, w, er

 $_$, d, e, i, l, n, o, r, s, t, w, er, er $_$

Merge er _ to er_

BPE

Merge n e to ne

ne w _

BPE

The next merges are:

```
      Merge
      Current Vocabulary

      (ne, w)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new

      (l, o)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo

      (lo, w)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__

      (low, __)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__, low__
```

BPE token segmenter algorithm

On the test data, run each merge learned from the training data:

- Greedily
- In the order we learned them
- (test frequencies don't play a role)

So: merge every e r to er, then merge er _ to er_, etc.

- Result:
 - Test set "n e w e r _" would be tokenized as a full word
 - Test set "I o w e r _ " would be two tokens: "low er _ "

Properties of BPE tokens

Usually include frequent words

And frequent subwords

Which are often morphemes like -est or -er

A morpheme is the smallest meaning-bearing unit of a language

• unlikeliest has 3 morphemes un-, likely, and -est

Byte Pair Encoding

Basic Text Processing

Basic Text Processing

Word Normalization and Stemming

Word Normalization

- Putting words/tokens in a standard format
 - U.S.A. or USA
 - uhhuh or uh-huh
 - Fed or fed
 - am, is, be, are

Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., *General Motors*
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (*US* versus *us* is important)

Lemmatization

Represent all words as their lemma, their shared root = dictionary headword form:

- am, are, is \rightarrow be
- car, cars, car's, cars' \rightarrow car
- Spanish quiero ('I want'), quieres ('you want')
- → querer 'want'
- He is reading detective stories
- \rightarrow He be read detective story

Lemmatization is done by Morphological Parsing

Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Parts that adhere to stems, often with grammatical functions

Morphological Parsers:

- Parse cats into two morphemes cat and s
- Parse Spanish *amaren* ('if in the future they would love') into morpheme *amar* 'to love', and the morphological features *3PL* and *future subjunctive*.

Stemming

Reduce terms to stems, chopping off affixes crudely

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.

Porter Stemmer

- Based on a series of rewrite rules run in series
 - A cascade, in which output of each pass fed to next pass
- Some sample rules:

```
ATIONAL \rightarrow ATE (e.g., relational \rightarrow relate)

ING \rightarrow \epsilon if stem contains vowel (e.g., motoring \rightarrow motor)

SSES \rightarrow SS (e.g., grasses \rightarrow grass)
```

Dealing with complex morphology is necessary for many languages

- e.g., the Turkish word:
- Uygarlastiramadiklarimizdanmissinizcasina
- `(behaving) as if you are among those whom we could not civilize'
- Uygar `civilized' + las `become'
 - + tir `cause' + ama `not able'
 - + dik `past' + lar 'plural'
 - + imiz 'p1pl' + dan 'abl'
 - + mis 'past' + siniz '2pl' + casina 'as if'

Sentence Segmentation

- !, ? mostly unambiguous but **period** "." is very ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to classify a period as either (a) part of the word or (b) a sentence-boundary.

An abbreviation dictionary can help

Sentence segmentation can then often be done by rules based on this tokenization.

Basic Text Processing

Word Normalization and Stemming

Basic Text Processing

Sentence Segmentation and Decision Trees

Sentence Segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

Determining if a word is end-of-sentence: a Decision Tree

More sophisticated decision tree features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number

- Numeric features
 - Length of word with "."
 - Probability(word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)

Implementing Decision Trees

- A decision tree is just an if-then-else statement
- The interesting research is choosing the features
- Setting up the structure is often too hard to do by hand
 - Hand-building only possible for very simple features, domains
 - For numeric features, it's too hard to pick each threshold
 - Instead, structure usually learned by machine learning from a training corpus

Decision Trees and other classifiers

- We can think of the questions in a decision tree
- As features that could be exploited by any kind of classifier
 - Logistic regression
 - SVM
 - Neural Nets
 - etc.

Basic Text Processing

Sentence Segmentation and Decision Trees