CSC 225 - Summer 2019

Transitive Closure

Bill Bird

Department of Computer Science University of Victoria

July 30, 2019

Transitive Closure (1)

The **transitive closure** of a graph G is a graph G containing the vertices of G and an edge uv if v is reachable from u in G.

Transitive Closure (2)

Transitive closure graphs are useful for efficiently representing the set of vertices reachable from every vertex.

Transitive Closure (3)

When stored in an adjacency matrix, a transitive closure can be used to look up reachability information in $\Theta(1)$ time.

Transitive Closure (4)

Transitive closures of undirected graphs convert each component into a complete graph.

Transitive Closure (5)

The transitive closure of an undirected graph can be computed in $\Theta(n^2)$ time by traversing each component and adding all possible edges between the vertices in the component.

Computing Transitive Closures (1)

Exercise: Compute the transitive closure of the graph above.

Computing Transitive Closures (2)

Computing Transitive Closures (3)

Computing Transitive Closures (4)

Computing Transitive Closures (5)

Computing Transitive Closures (6)

The set of vertices reachable from each vertex v can be found with a traversal rooted at v.

Computing Transitive Closures (7)

Computing the transitive closure of a directed graph with n traversals requires $\Theta(n(n+m))$ time.

Adjacency Matrices (1)

Note: The topic covered from this slide onward (linear algebra on adjacency matrices) will not be covered on the last exam (but will be relevant to CSC 226).

Adjacency Matrices (2)

Consider the adjacency matrix of the graph above.

Adjacency Matrices (3)

Entry $A_{i,j}$ of an adjacency matrix is 1 if there is an edge from vertex i to vertex j.

Adjacency Matrices (4)

We can also view the value $A_{i,j}$ as counting the number of paths of length 1 from vertex i to vertex j.

Adjacency Matrices (5)

Strange Compulsion: Treat the adjacency matrix A like any other $n \times n$ matrix and try some linear algebra.

Adjacency Matrices (6)

 $\begin{bmatrix} 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

 A^2

The entries of the matrix product $A \cdot A = A^2$ correspond to walks of length 2 in the original graph.

Adjacency Matrices (7)

$$\begin{bmatrix} 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

(A **walk** is similar to a path, but is allowed to repeat vertices and edges)

Adjacency Matrices (8)

$$\begin{bmatrix}
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{bmatrix}$$

The value $A_{0,3}^2$ is 2, since there are two directed walks of length 2 from vertex 0 to vertex 3.

Adjacency Matrices (9)

In general, the entries of the matrix A^k will count walks of length exactly k.

Adjacency Matrices (10)

The value $A_{0,1}^3$ is 2 because there are 2 walks of length 3 from vertex 0 to vertex 1.

Adjacency Matrices (11)

 A^3

Observation: If $A_{i,j}^k > 0$ for any value of k, then vertex j is reachable from vertex i.

Transitive Closure With Matrices (1)

Matrix multiplication can be used to find the transitive closure of a graph.

Transitive Closure With Matrices (2)

Start with the initial graph.

Transitive Closure With Matrices (3)

If A^2 has any non-zero entries, add the corresponding edges to G if they do not already exist.

Transitive Closure With Matrices (4)

Similarly, add all edges corresponding to non-zero entries of A^3 .

Transitive Closure With Matrices (5)

Continue computing matrix powers and adding edges until reaching A^{n-1}

Transitive Closure With Matrices (6)

$$A^{5}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Since the graph has 6 vertices, all paths must have length at most 5.

Transitive Closure With Matrices (7)

Let A be the adjacency matrix for a graph G. Let

$$M = A + A^2 + A^3 + \ldots + A^n$$

The transitive closure C of G will have an edge ij if and only if $M_{ij} > 0$. Multiplying two $n \times n$ matrices requires $\Theta(n^3)$ time in practice¹. Computing the sum above for M therefore requires $\Theta(n^5)$ time.

¹Extremely impractical algorithms for matrix multiplication can achieve $(n^{2.37})$ time

Transitive Closure With Matrices (8)

The sum

$$M = A + A^2 + A^3 + \ldots + A^n$$

can be rewritten (using Horner's rule) as

$$M = \underbrace{A(I + A(I + A(I + \dots)))}_{n \text{ additions}}$$

which requires n additions and n multiplications. This method still requires $\Theta(n^4)$ time.

One More Graph (1)

Consider the directed graph above.

One More Graph (2)

Question: Now that CSC 225 is over, what can you do with all of your newfound free time?

CSC 226 (1)

CSC 226: Algorithms and Data Structures II

CSC 226 (2)

Algorithms for minimum weight spanning trees.

CSC 226 (3)

Algorithms for finding minimum weight paths between two vertices in an edge-weighted graph.

CSC 226 (4)

Balanced search trees, including AVL trees, 2-3 trees (left) and red-black trees (right).

CSC 226 (5)

The graph above is a flow network.

CSC 226 (6)

Consider a network of water pipes, where water is allowed to flow in one direction only.

CSC 226 (7)

Each of the pipes has a maximum capacity (represented by edge weights).

CSC 226 (8)

The vertex s is a **source** and the vertex t is a **sink**

CSC 226 (9)

Except for s and t, the amount of water entering each vertex must equal the amount leaving it (i.e. water flow is conserved).

CSC 226 (10)

The \max flow problem is to find an assignment of values to each edge which maximizes the total volume of water flowing from s to t.

CSC 226 (11)

The assignment above is a maximum flow from s to t. The total volume, or **value**, of the flow is 8.

CSC 226 (12)

CSC 226 covers efficient algorithms to compute maximum flows in networks.

CSC 305 (1)

CSC 305: "Introduction" to Computer GraphicsComputational mathematics, hardware rendering, 3d graphics, ray tracing.

CSC 305 (2)

CSC 305: "Introduction" to Computer Graphics3d graphics courses always involve writing a ray tracer (to generate images like the one above).

CSC 320

CSC 320: Foundations of Computer Science

Formal languages, finite automata (such as the DFA pictured above), computability and complexity.

CSC 330 (1)

CSC 330: Programming Languages

Programming language design and semantics. Case studies of different programming languages.

CSC 330 (2)

CSC 330: Programming Languages

CSC 330 covers functional programming languages, such as F#.

The F# code above computes the sum of a list.

CSC 349a (1)

Problem: Compute $\sqrt{2}$ to 15 significant digits using only elementary arithmetic (+, -, * and /).

CSC 349a (2)

Observation: The value $x = \sqrt{2}$ is a root of the polynomial $f(x) = x^2 - 2$.

CSC 349a (3)

Observation: Since $0 \le \sqrt{2} \le 2$, the value of $\sqrt{2}$ can be approximated by finding a root of the polynomial $f(x) = x^2 - 2$ in the range [a, b], where a = 0 and b = 2.

CSC 349a (4)

By iteratively refining the range [a, b] until a and b converge, the value of $\sqrt{2}$ can be approximated to any number of significant digits.

CSC 349a (5)

By iteratively refining the range [a, b] until a and b converge, the value of $\sqrt{2}$ can be approximated to any number of significant digits.

CSC 349a (6)

This algorithm is called bisection.

CSC 349a (7)

Question: If *n* significant digits of precision are required, what is the running time of the bisection algorithm? Does a faster algorithm exist?

CSC 349a (8)

CSC 349a: Numerical Analysis

Floating point representation, rounding and truncation, root finding, interpolation, numerical linear algebra, numerical differentiation and integra-

CSC 355 (1)

CSC 355: Digital Logic and Computer Organization Circuit design, finite state machines, processor design.

CSC 355 (2)

CSC 355: Digital Logic and Computer Organization

A common CSC 355 assignment is to design an ALU out of logic gates.

CSC 355 (3)

CSC 355: Digital Logic and Computer Organization

The diagram above shows a 1-bit full adder, which adds two bits X and Y, along with a carry-in bit C_{in} , to produce an output bit S and a carry-out bit C_{out} .

CSC 360

CSC 360: Operating Systems

Process creation and management, file systems, resource management, multithreaded programming.

SENG 360: Security Engineering

Access control schemes, malware, network security and intrusion detection, social engineering.

CSC 370: Database Systems

Database management systems, data processing, relational algebra, efficient data storage and retrieval.

400-level courses on algorithms and theory

CSC 421: Introduction to AI (or ECE 470: AI)

CSC 422: Graph Algorithms

CSC 423: Randomized Algorithms

CSC 425: Analysis of Algorithms

CSC 426: Computational Geometry

CSC 428a: Combinatorial Algorithms

CSC 429: Cryptography