

Das c-mix Verfahren

Merlin Koglin, Maik Graaf

UHU <u>#</u>

Agenda

- 1. Motivation
 - Chaumsche Mixe
 - Probleme
 - Idee
- 2. c-mix Verfahren
 - Übersicht
 - Precomputation Phase
 - Realtime Phase
- 3. Analyse
 - Sicherheit
 - Performance
- 4. Andwendung
 - Privategrety
 - Kritik

Ansatz der Chaumische Mixe

- Gewährleistung der Anonymität
 - Mixe werden durchlaufen um die Beziehung zwischen Sender und Empfänger zu verschleiern
 - Im Mixnetz findet eine "Zwiebelschalen" artige Entschlüsselung statt
 - Mithilfe der Rückadresse wird der Empfänger einer Nachricht bestimmt

Probleme bisheriger Mix Verfahren

- In Echtzeitsystemen
 - Lange warte Zeiten beim Sammeln der Nachrichten
 - Der Sammelschritt wird deshalb kurz gehalten oder sogar weggelassen
 - Das Verfahren wird somit angreifbarer
 - Für mobile Geräte ungeeignet aufgrund des großen Zeit und Energie Aufwands

Idee von David Chaum

- Vermeidung von Schlüsselberechnungen in Echtzeit
 - Steigerung der Effizienz von Mix-Netzen
 - Energieaufwand verringern
 - Schlüsselberechnung vor der Kommunikation
 - Schlüssel Austausch zwischen Sender und Mixknoten

Kommunkationsübersicht

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Übersicht der zwei Phasen

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Vorbereitung

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Precomputation - Step 1

- Pre Processing
- Knoten N_1 , ... N_n erzeugen einen zufälligen Vektor r_i
 - Vektor enthält einen zufälligen Wert für jeden Nachrichtenslot
- Verschlüsselung mittes ElGamal $\rightarrow E(r_i^{-1})$, Resultat wird an den Network Handler gesendet
 - Diese Verschlüsselung muss dann in der Echzeitphase nicht mehr durchgeführt werden
- NH berechnet Produkt aus allen $E(r_n) \to E(R_n^{-1})$

Precomputation - Step 2

- Mixing
 - Jeder Knoten erzeugt einen weiteren zufälligen Vektor si
 - 2. $E(R_n^{-1})$ wird von jedem Knoten nacheinander mit der jeweils festgelegten Permutation permutiert (Mixing) und gleichzeit der erzeugte s_i^{-1} hineinmultipliziert
 - 3. Der letzte Knoten erzeugt damit $E(P_n(R_n^{-1}) \times S_n^{-1})$

Precomputation - Step 3

- Post Processing
 - 1. Jeder Knoten berechnet nun aus $E(P_n(R_n^{-1}) \times S_n^{-1})$ seinen Entschlüsselungsanteil D(i, r) für den zufälligen Vektor r_i aus Schritt 1.
 - Das jeder Knoten einen eigenen Entschlüsselungsanteil berechnen kann, liegt an der ElGamal Verschlüsselung, die diese Möglichkeit bietet.

Precomputation - Return Path

- Step 1
 - 1. Nodes erzeugen zufällige Vektoren $E(s_i^{\prime -1})$ (ElGamal verschlüsselt).
 - 2. Permutation rückwärts, der letzte Knoten beginnt, gleichzeitig werden s'^{-1} dazumultipliziert
 - 3. Der erste Knoten erhält $E(S_1^{-1})$
- Step 2
 - 1. Wie vorher werden wieder Entschüsselungsanteile für $E(S_1^{\prime -1})$ von allen Knoten berechnet

Echzeit Phase - Step 1

- Preprocessing
 - 1. Ein User verschüsselt seine Nachricht M mit seinem Schüssel $M \times ka_i^{-1}$ und sendet diese an den NH, dieser erhält also $M \times Ka^{-1}$
 - 2. Nun sendet jeder Knoten N_i seinen Wert $ka_i \times r_i$ an den NH.
 - 3. Der NH kann damit die Ka^{-1} mit den zufälligen Vektoren r_i der Knoten austauschen
 - 4. $M \times Ka^{-1} \times \sum_{i=1}^{n} ka_i \times r_i = M \times R_n$

Echzeit Phase - Step 2

- Mixing
 - Jeder Knoten permutiert nacheinander $M \times R_n$ und multipliziert den zufälligen Vektor S_i mit ein
 - Der letzte Knoten erhält damit $P_n(M \times R_n) \times S_n$

Echzeit Phase - Step 3

- Entschlüsselungsanteil
 - Die Knoten N_1 bis N_i senden ihren Entschlüsselungsanteil D(i,x) an den NH
 - Entschlüsselung
 - Der NH Entschlüsselt $E(P_n(R_n^{-1}) \times S_n^{-1})$ mittels D(n,x)
 - $P_n(M \times R_n) \times S_n \times P_n(R_n^{-1}) \times S_n^{-1} = P_n(M)$

Anonymität

- Anhand eines Modells
 - Private Kommunikation der Mixknoten untereinander und eines vertraulichen dritten Punktes
 - Keine Kryptographischen Operation, Sicherstellung durch den vertraulichen dritten Punkt
 - "reale Simulation" des Modells mit Eigenschaften des cMix Protokolls zeigt Anonymität

Integrität

- Die Integrität ist gegeben wenn
 - Die Nachricht M unmodifiziert und an den Empfänger weitergeleitet wird oder...
 - Alle Mixknoten wissen, dass das cMix Protokoll nicht richtig durchgeführt wurde
 - Sicherstellung durch den Mechanismus "Randomized Partial Checking"

Vertraulichkeit

- Schutzziel Anonymität
 - Wird sichergestellt indem Nachrichten vom Sender verschlüsselt werden
 - z.B durch einen öffentlichen Schlüssel einer asymmetrischen Verschlüsselung
 - Diese Verschlüsselung vermeidet aufwändige Publickey-Operationen

Protoyp

- Performance Messung
 - In Python implementiert
 - Auf Instanzen des Amazon Web Service EC2 getestet
 - Jeder Mixknoten hatte zwei Intel Xeon E5-2680 und 3,75
 GB Arbeitsspeicher zur Verfügung
 - Bei einer 1024-bit ElGamal-Verschlüsselung
 - Starke Verbesserung das re-encryption Mixnet ist bis zu 8 mal langsamer

Anzahl Nachrichten	Vorberechnung (Durchschnitt in Sekunden)	Echtzeit (Durchschnitt in Sekunden)
50	1.56	0.20
100	3.02	0.33
500	14.59	1.51
1000	28.87	3.09

Einbettung in PrivaTegrity

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln

Backdoor

- Zweck
 - Nur mit berechtigten Partnern weiter kommunizieren
 - Verhindert unbefugte Inanspruchnahme von Betriebsmitteln