

Integral - Teil 2

Fragen?

* Notation. Woher kommt die Notation $\int_a^b f(x) dx$? Siehe dazu DorFuchs https://youtu.be/CN_dujjMAA0.

 ${\bf Eigener\ L\"osungsversuch.}$

Uneigentliche Integrale. Bestimmen Sie:

$$\maltese$$
 a) $\int_0^1 \frac{1}{x} dx$

c)
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

b)
$$\int_0^1 \frac{1}{x^2} dx$$

d)
$$\int_0^\infty \frac{1}{x^2} \, dx$$

Lösung.

Lösung.

a)
$$\int_{0}^{1} \frac{1}{x} dx = \lim_{\varepsilon \to 0^{+}} \int_{0}^{1} \frac{1}{x} dx = \lim_{\varepsilon \to 0^{+}} \left(\lim_{\varepsilon \to 0^{+}} \left(\lim_{\varepsilon \to 0^{+}} \left(\lim_{\varepsilon \to 0^{+}} \left(-\lim_{\varepsilon \to 0^{+}}$$

Oef. Licke von
$$\frac{1}{x}$$

$$\int_{0}^{1} \frac{1}{x^{2}} dx = \lim_{\varepsilon \to 0^{+}} \int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{\varepsilon \to 0^{+}} \left(-\frac{1}{1} + \frac{1}{\varepsilon}\right) = \infty$$

$$\int x^{-2} dx = \frac{x^{-2+1}}{x^{-2+1}} + c$$

c)
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{N \to \infty} \int_{1}^{M} \frac{1}{x^{2}} dx = \int_{-\frac{1}{M}}^{\frac{1}{M}} + \frac{1}{1}$$

$$\frac{1}{x^2}$$

d)
$$\int_{0}^{\infty} \frac{1}{x^{2}} dx = \int_{0}^{\infty} \frac{1}{x^{2}} dx + \int_{0}^{\infty} \frac{1}{x^{2}} dx = \infty$$

$$\frac{\partial DEQ}{\partial E} : \lim_{\varepsilon \to 0^{+}} \left(\lim_{N \to \infty} \int_{\varepsilon}^{M} \frac{1}{x^{z}} dx \right) = \lim_{\varepsilon \to 0^{+}} \left(\lim_{N \to \infty} \frac{-1}{N} + \frac{1}{\varepsilon} \right) = \lim_{\varepsilon \to 0^{+}} \frac{1}{\varepsilon} = \infty,$$

$$\left[-\frac{1}{x} \right]_{\varepsilon}^{M} = -\frac{1}{N} + \frac{1}{\varepsilon}$$

Eigener Lösungsversuch.

, (!) Bei austent immer prifen!

Logarithmische Integration. Spezialfall der Substitutionsregel (nächstes mal!):

$$\int \frac{\mathbf{f}'(x)}{\mathbf{f}(x)} dx = \ln |\mathbf{f}(x)| + c$$

 \star a) Zeigen Sie die Gültigkeit der Gleiden d) $\int \tan(x) dx$

⇒ b)
$$\int \frac{6x+6}{3x^2+6x+2} dx$$
 e) $\int \frac{1}{x \cdot \ln(x)} dx$ c) $\int \frac{x+1}{3x^2+6x+2} dx$

Lösung.

a)
$$\left[\frac{1}{f(x)} \right] + c \right] = \frac{1}{f(x)} \cdot f'(x) = \frac{f'(x)}{f(x)}$$

b)
$$\int \frac{6x+6}{3x^2+6x+2} dx = \ln |3x^2+6x+2| + c$$

c)
$$\frac{1}{6} \int \frac{6 \cdot (x + 1)}{3x^2 + 6x + 2} dx = \frac{1}{6} \ln |3x^2 + 6x + 2| + C$$

d)
$$\int lm(x) dx = \int \frac{-\sin(x)}{\cos(x)} dx = -\ln|\cos(x)| + c$$

e) $\int \frac{1}{x \cdot \ln x} dx = \int \frac{\frac{1}{x}}{\ln x} dx = \ln|\ln x| + c$

e)
$$\int \frac{1}{x \cdot \ln x} dx = \int \frac{\frac{1}{x}}{\ln x} dx = \ln \ln x + C$$

Eigener Lösungsversuch.

EXKURS ZU STAMMFUNKTIONEN.

Sei F eine Stammfunktion von f, d.h. F = f. Wie sehen alle weiteren Stammfunktionen aus? F + C, $C \in \mathbb{R}$.

z.B. ist $F = \sin$ eine Stammfunktion von f = COS und jede weitere Stammfunktion ist von der Form COS.

Beweis.

Seien \mp , G swei beliebige Stammfluhen. von f. 32f: $G = \mp + C$ für ein $C \in \mathbb{R}$. $(G - \mp)^1 = G' - \mp^1 = O$, d.h. $G - \mp$ hat immer $S \neq g$ uny O, d.h. $C \xrightarrow{G - \mp} G - \mp = C$ konstank $\mp 1 cl$. (wit einem $C \in \mathbb{R}$), d.h. $G = \mp + C$ \Box