Global Minimum Cuts in Surface Embedded Graphs

Jeff Erickson, Kyle Fox, and Amir Nayyeri

University of Illinois at Urbana-Champaign

Minimum Cut

- Partition vertices of an undirected edgeweighted graph into two non-empty sets
- Minimize weight of edges between sets

Minimum Cut

- Partition vertices of an undirected edgeweighted graph into two non-empty sets
- Minimize weight of edges between sets

Minimum Cut

- Partition vertices of an undirected edgeweighted graph into two non-empty sets
- Minimize weight of edges between sets

Minimum Cuts

- $O(nm + n^2 \log n)$ deterministic [Nagamochi, Ibaraki '92]
- $O(m \log^3 n)$ randomized [Karger '00]

Planar Cuts

- $O(n^2 \log n)$ deterministic [N, 1'92]
- $O(n \log^2 n)$ randomized [K '00]
- O(n log² n) deterministic [Chalermsook, Fakcharoenphol, Nanongkai '04]
- O(n log n log log n) deterministic [Italiano et al. 'I I]
- O(n log log n) deterministic [Łącki and Sankowski 'l l]

Planar Graphs

- Supports thesis of "planar = fast"
- Thesis supported by s,t-cuts, maximum flows, shortest paths, minimum spanning trees, graph isomorphism, approximate TSP, approximate Steiner tree, ...
- Numerous generalizations of planar graphs

Surfaces

- 2-manifolds (with boundary)
- genus g: max # of disjoint simple cycles whose compliment is connected
 - = number of holes
 - = number of handles attached to sphere

Surface Graphs

- Generalizes planar graphs
- Most planar results generalize easily
- s,t-cuts and flows only recently [Chambers, Erickson, Nayyeri STOC/SOCG '09; Italiano et al. '11]

• Can compute minimum cuts in surface graphs in $g^{O(g)}$ $n \log \log n$ time

- Can compute minimum cuts in surface graphs in $g^{O(g)}$ $n \log \log n$ time
- Matches time bound of Łącki and Sankowski for planar graphs

- Can compute minimum cuts in surface graphs in $g^{O(g)}$ $n \log \log n$ time
- Matches time bound of Łącki and Sankowski for planar graphs
- Also matches time bound for minimum s,tcuts by Italiano et al.

Back to the Plane

Minimum cut is dual to the minimum cycle

Back to the Plane

• Minimum cut is dual to the minimum cycle

Difficult to Generalize

- Cycles may not separate dual faces
- Minimum cut may have multiple components

The Algorithm

Is great, but first we need some definitions

Homology

- An even subgraph has even degree on each node
- An even subgraph is separating if removing it from the surface disconnects the surface
- Separating subgraphs form the boundary of a subset of faces

Homology

- * The minimum cut is *dual* to the minimum separating subgraph
- Analogous to main lemma of [Chambers et al. '09]

More Homology

- Intuitively describes how a cycle wraps around surface features
- Two even subgraphs η and η ' are homologous if $\eta \oplus \eta$ ' is separating

 Homology partitions even subgraphs into 2^{2g} homology (equivalence) classes

More Homology

- An even subgraph is \mathbb{Z}_2 -minimal if it is the smallest in its homology class
- Can find a \mathbb{Z}_2 -minimal even subgraph in $g^{O(g)}$ $n \log \log n$ time for any homology class [Italiano et al. 'II]

The Ways to Separate

- Minimum separating subgraphs match one of two criteria:
 - Contractible simple cycle
 - Not a contractible simple cycle

The Ways to Separate

- We describe two algorithms
- Each returns a non-empty separating subgraph or fails
- One algorithm will find the minimum separating subgraph
- Return the smallest result

The Ways to Separate

- Minimum separating subgraphs match one of two criteria:
 - Contractible simple cycle
 - Not a contractible simple cycle

Contractible Cycle

- Can be continuously shrunk to a point
- Bounds a disk

Slicing

- Operation to "slice" surface along a path and lower genus
- Duplicates all vertices and edges on path

Slicing

- Operation to "slice" surface along a path and lower genus
- Duplicates all vertices and edges on path

Slicing

- Operation to "slice" surface along a path and lower genus
- Duplicates all vertices and edges on path

Slicing Away the Genus

 Slice along several paths to make graph planar without destroying minimum separating cycle [Cabello '10]

• Doable in $g^{O(g)}$ $n \log \log n$ time [Italiano et

al. '| |]

Searching the Plane

- Need to separate planar faces
- Could search directly for the shortest cycle that does not repeat vertices in original surface graph [Cabello '10]
- Takes quadratic time!

Close Enough

- Suffices to find minimum planar cycle separating any pair of faces
- Can find cycle in O(n log log n) time [Łącki and Sankowski 'I I]
- Cycle might enclose all the (non-boundary)

faces

• Pick one sliced edge e with copies e₁ and e₂

Pick one sliced edge e with copies e₁ and e₂

- Pick one sliced edge e with copies e₁ and e₂
- Find shortest cycle avoiding e₁ and the shortest cycle avoiding e₂

- Pick one sliced edge e with copies e₁ and e₂
- Find shortest cycle avoiding e₁ and the shortest cycle avoiding e₂

Forbidden Edge Pairs

- Pick one sliced edge e with copies e₁ and e₂
- Find shortest cycle avoiding e₁ and the shortest cycle avoiding e₂

Forbidden Edge Pairs

- Pick one sliced edge e with copies e₁ and e₂
- Find shortest cycle avoiding e₁ and the shortest cycle avoiding e₂
- Return the smaller of the two results

Another Case Down

- Both cycles have at least one outside face so edges of cycle will separate some faces of surface graphs
- Shortest contractible cycle must avoid one copy of e anyway

The Ways to Separate

- Minimum separating subgraphs match one of two criteria:
 - √ Contractible simple cycle
 - Not a contractible simple cycle

Stick to One Side

* There exist **Z**₂-minimal even subgraphs on both sides of the minimum separating subgraph that do not cross the minimum separating subgraph

Finding a Pair of Faces

Finding a Pair of Faces

Fix a face s

Finding a Pair of Faces

- Fix a face s
- Suppose we have some cycle that is separated from s

 Pick an edge on the cycle with incident faces t₁ and t₂

- Pick an edge on the cycle with incident faces t₁ and t₂
- At least one of t₁ and t₂ must be separated from s
- Return the smaller of s,t1 and s,t2 minimum
 cuts

- Pick an edge on the cycle with incident faces t₁ and t₂
- At least one of t₁ and t₂ must be separated from s
- Return the smaller of s,t1 and s,t2 minimum
 cuts

- Pick an edge on the cycle with incident faces t₁ and t₂
- At least one of t₁ and t₂ must be separated from s
- Return the smaller of s,t1 and s,t2 minimum
 cuts

- Pick an edge on the cycle with incident faces t₁ and t₂
- At least one of t₁ and t₂ must be separated from s
- Return the smaller of s,t1 and s,t2 minimum
 cuts

- Pick an edge on the cycle with incident faces t₁ and t₂
- At least one of t₁ and t₂ must be separated from s
- Return the smaller of s,t_1 and s,t_2 minimum cuts

Final Case Closed

- Return the smallest separating subgraph found after taking cycles from all $2^{O(g)}$ \mathbb{Z}_2 -minimal even subgraphs
- $g^{O(g)} n \log \log n$ time spent in total

The Ways to Separate

- Minimum separating subgraphs match one of two criteria:
 - √ Contractible simple cycle
 - ✓ Not a contractible simple cycle

Conclusion

- Return the smallest result found of both cases
- We can find smallest separating subgraphs and minimum cuts in $g^{O(g)}$ n log log n time

Open Problems

- We conjecture a $O(g^k n \log \log n)$ time algorithm exists for some small constant k
 - NP-hard to find arbitrary \mathbb{Z}_2 -minimal even subgraphs
- Is finding the smallest separating simple
 cycle with no repeating vertices FPT in g?
 - Problem is NP-hard, but reduction uses a surface with polynomial complexity

