1 Problem statement

- The goal is to forecast a dependent variable $\mathbf{y} \in \mathbb{R}^r$ with r targets from an independent
- input object $\mathbf{x} \in \mathbb{R}^n$ with n features. We assume there is a linear dependence

$$y = \Theta x + \varepsilon \tag{1}$$

- between the objects **x** and the target variable **y**, where $\Theta \in \mathbb{R}^{r \times n}$ is the matrix of model
- parameters, $\boldsymbol{\varepsilon} \in \mathbb{R}^r$ is the residual vector. The task is to find the matrix of the model
- parameters Θ given a dataset (\mathbf{X}, \mathbf{Y}) , where $\mathbf{X} \in \mathbb{R}^{m \times n}$ is a design matrix, $\mathbf{Y} \in \mathbb{R}^{m \times r}$ is a
- 7 target matrix

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m]^T = [\boldsymbol{\chi}_1, \dots, \boldsymbol{\chi}_n]; \quad \mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_m]^T = [\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_r].$$

- The columns χ_i of the matrix **X** respond to object features. The examples of how to con-
- struct the dataset for a particular application task are described in Section Computational
 experiment.
- The optimal parameters are determined by minimization of an error function. Define the quadratic error function:

$$S(\mathbf{\Theta}|\mathbf{X}, \mathbf{Y}) = \left\| \mathbf{Y}_{m \times r} - \mathbf{X}_{m \times n} \cdot \mathbf{\Theta}^{T} \right\|_{2}^{2} \to \min_{\mathbf{\Theta}}.$$
 (2)

The solution of the problem (2) is given by

$$\mathbf{\Theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}.$$

The linear dependent columns of the matrix \mathbf{X} leads to an instable solution for the optimization problem (2). If there is a vector $\boldsymbol{\alpha} \neq 0$ such that $\mathbf{X}\boldsymbol{\alpha} = 0$, then adding the vector $\boldsymbol{\alpha}$ to any column of the matrix $\boldsymbol{\Theta}$ does not change the error function $S(\boldsymbol{\Theta}|\mathbf{X},\mathbf{Y})$. In this case the matrix $\mathbf{X}^T\mathbf{X}$ is not invertible. To avoid the strong linear dependence, feature selection and dimensionality reduction techniques are used.

₁₉ 2 Feature selection

- The feature selection goal is to find the index set $\mathcal{A} = \{1, \dots, n\}$ of the matrix **X** columns. To select the set \mathcal{A} among all possible $2^n - 1$ subsets, introduce the feature selection quality
- 22 criteria

13

$$\mathcal{A} = \underset{\mathcal{A}' \subseteq \{1,\dots,n\}}{\operatorname{arg\,max}} Q(\mathcal{A}'|\mathbf{X}, \mathbf{Y}). \tag{3}$$

Once the solution \mathcal{A} for the problem (3) is known, the problem (2) becomes

$$S(\mathbf{\Theta}_{\mathcal{A}}|\mathbf{X}_{\mathcal{A}},\mathbf{Y}) = \left\|\mathbf{Y} - \mathbf{X}_{\mathcal{A}}\mathbf{\Theta}_{\mathcal{A}}^{T}\right\|_{2}^{2} = \rightarrow \min_{\mathbf{\Theta}_{\mathcal{A}}},$$
(4)

where the subscript \mathcal{A} indicates columns with indices from the set \mathcal{A} .

5 2.1 Quadratic Programming Feature Selection

29

30

39

One of the approach to the feature selection is to maximize feature relevances and minimize pairwise feature redundancy. The QPFS algorithm selects non-correlated features, which are relevant to the target vector ϕ for the linear regression problem (r = 1)

$$\|oldsymbol{\phi} - \mathbf{X}oldsymbol{ heta}\|_2^2
ightarrow \min_{oldsymbol{ heta} \in \mathbb{R}^n}.$$

Introduce two functions: $\operatorname{Sim}(\mathbf{X})$ and $\operatorname{Rel}(\mathbf{X}, \boldsymbol{\phi})$. The $\operatorname{Sim}(\mathbf{X})$ measures the redundancy between features, the $\operatorname{Rel}(\mathbf{X}, \boldsymbol{\phi})$ contains relevances between each feature and the target vector $\boldsymbol{\phi}$. We want to minimize the function Sim and maximize the Rel simultaneously.

QPFS offers the explicit way to construct the functions Sim and Rel. The method minimizes the following functional

$$(1 - \alpha) \cdot \underbrace{\mathbf{a}^T \mathbf{Q} \mathbf{a}}_{\text{Sim}} - \alpha \cdot \underbrace{\mathbf{b}^T \mathbf{a}}_{\text{Rel}} \to \min_{\mathbf{a} \in \mathbb{R}^n_+}.$$
 (5)

The matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ entries measure the pairwise similarities between features. The vector $\mathbf{b} \in \mathbb{R}^n$ expresses the similarities between each feature and the target matrix \mathbf{b} . The normalized vector \mathbf{a} shows the importance of each feature. The functional (5) penalizes the dependent features by the function Sim and encourages features relevant to the target by the function Rel. The parameter α allows to control the trade-off between the functions Sim and the Rel. The authors of the original QPFS paper suggested the way to select α and make $\operatorname{Sim}(\mathbf{X})$ and $\operatorname{Rel}(\mathbf{X}, \boldsymbol{\phi})$ impact the same

$$\alpha = \frac{\overline{\mathbf{Q}}}{\overline{\mathbf{Q}} + \overline{\mathbf{b}}},$$

where $\overline{\mathbf{Q}}$, $\overline{\mathbf{b}}$ are the mean values of \mathbf{Q} and \mathbf{b} respectively. Apply the thresholding for \mathbf{a} to find the optimal feature subset:

$$j \in \mathcal{A} \Leftrightarrow a_j > \tau$$
.

To measure similarity the authors use the absolute value of sample correlation coefficient between pairs of features for the function Sim, and between features and the target vector ϕ for the function Rel

$$\mathbf{Q} = \left\{ \left| \operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\chi}_j) \right| \right\}_{i,j=1}^n, \quad \mathbf{b} = \left\{ \left| \operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\phi}) \right| \right\}_{i=1}^n.$$
 (6)

The problem (5) is convex if the matrix \mathbf{Q} is positive semidefinite. In general it is not always true. To satisfy this condition, the matrix \mathbf{Q} spectrum is shifted and the matrix \mathbf{Q} is replaced by $\mathbf{Q} - \lambda_{\min} \mathbf{I}$, where λ_{\min} is a \mathbf{Q} minimal eigenvalue.

The functional (5) corresponds to the quality criteria $Q(A|\mathbf{X}, \boldsymbol{\phi})$

$$\mathcal{A} = \underset{\mathcal{A}' \subseteq \{1, \dots, n\}}{\operatorname{arg \, max}} Q(\mathcal{A}' | \mathbf{X}, \boldsymbol{\phi}) \Leftrightarrow \underset{\mathbf{a} \in \mathbb{R}_{+}^{n}, \|\mathbf{a}\|_{1} = 1}{\operatorname{arg \, min}} \left[\mathbf{a}^{T} \mathbf{Q} \mathbf{a} - \alpha \cdot \mathbf{b}^{T} \mathbf{a} \right]. \tag{7}$$

~ 2.2 Multivariate QPFS

47

48

49

50

51

52

53

54

55

First approach to apply the QPFS algorithm to the multivariate case (r > 1) is to aggregate feature relevances through all r components. The term $Sim(\mathbf{X})$ is still the same, and the matrix \mathbf{Q} and the vector \mathbf{b} are equal to

$$\mathbf{Q} = \left\{ \left| \operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\chi}_j) \right| \right\}_{i,j=1}^n, \quad \mathbf{b} = \left\{ \sum_{k=1}^r \left| \operatorname{corr}(\boldsymbol{\chi}_i, \boldsymbol{\phi}_k) \right| \right\}_{i=1}^n.$$

This approach does not use the dependencies in the columns of the matrix \mathbf{Y} . Let consider the following example:

$$\mathbf{X} = [\boldsymbol{\chi}_1, \boldsymbol{\chi}_2, \boldsymbol{\chi}_3], \quad \mathbf{Y} = [\underbrace{\boldsymbol{\phi}_1, \boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_1}_{r-1}, \boldsymbol{\phi}_2],$$

We have three features and r targets, where first r-1 target are the identical. The pairwise features similarities are given by the matrix \mathbf{Q} . Matrix \mathbf{B} entries shows pairwise relevances features to the targets. The vector \mathbf{b} is obtained by summation of the matrix \mathbf{B} over columns.

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0.8 \\ 0 & 0.8 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0.4 & \dots & 0.4 & 0 \\ 0.5 & \dots & 0.5 & 0.8 \\ 0.8 & \dots & 0.8 & 0.1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} (r-1) \cdot 0.4 + 0 \\ (r-1) \cdot 0.5 + 0.8 \\ (r-1) \cdot 0.8 + 0.1 \end{bmatrix}$$

We would like to select only two features. For such configuration the best feature subset is $[\chi_1, \chi_2]$. The feature χ_2 predicts the second target ϕ_2 and the combination of features χ_1, χ_2 predicts the first component. The QPFS algorithm for r=2 gives the solution $\mathbf{a}=[0.37,0.61,0.02]$. It coincides with our knowledge. However, if we add the collinear columns to the matrix \mathbf{Y} and increase r to 5, the QPFS solution will be $\mathbf{a}=[0.40,0.17,0.43]$. Here we lost the relevant feature χ_2 and select the redundant feature χ_3 . To take into account the dependencies in the columns of the matrix \mathbf{Y} we extend the QPFS functional (5) to the multivariate case. We add the term $\mathrm{Sim}(\mathbf{Y})$ and extend the term $\mathrm{Rel}(\mathbf{X},\mathbf{Y})$:

$$\alpha_1 \cdot \underbrace{\mathbf{a}_x^T \mathbf{Q}_x \mathbf{a}_x}_{\operatorname{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{a}_x^T \mathbf{B} \mathbf{a}_y}_{\operatorname{Rel}(\mathbf{X}, \mathbf{Y})} + \alpha_3 \cdot \underbrace{\mathbf{a}_y^T \mathbf{Q}_y \mathbf{a}_y}_{\operatorname{Sim}(\mathbf{Y})} \to \min_{\mathbf{a}_x \in \mathbb{R}_+^n \|\mathbf{a}_x\|_1 = 1}.$$
 (8)

Determine the entries of matrices $\mathbf{Q}_x \in \mathbb{R}^{n \times n}$, $\mathbf{Q}_y \in \mathbb{R}^{r \times r}$, $\mathbf{B} \in \mathbb{R}^{n \times r}$ in the following way

$$\mathbf{Q}_{x} = \left\{ \left| \operatorname{corr}(\boldsymbol{\chi}_{i}, \boldsymbol{\chi}_{j}) \right| \right\}_{i,j=1}^{n}, \quad \mathbf{Q}_{y} = \left\{ \left| \operatorname{corr}(\boldsymbol{\phi}_{i}, \boldsymbol{\phi}_{j}) \right| \right\}_{i,j=1}^{r}, \quad \mathbf{B} = \left\{ \left| \operatorname{corr}(\boldsymbol{\chi}_{i}, \boldsymbol{\phi}_{j}) \right| \right\}_{i=1,\dots,r}^{i=1,\dots,n}.$$

The vector \mathbf{a}_x shows the feature importances, while \mathbf{a}_y is a vector with the importance of each target. The targets which are correlated will be penalized by $\operatorname{Sim}(\mathbf{Y})$ and have the lower importances.

- Statement 1. For the case r = 1 the proposed functional (8) coincides with the original QPFS algorithm (5).
- Proof. If r is equal to 1, then $\mathbf{Q}_y = 1$, $\mathbf{a}_y = 1$, $\mathbf{B} = \mathbf{b}$. It reduces the problem (8) to

$$\alpha_1 \cdot \mathbf{a}_x^T \mathbf{Q}_x \mathbf{a}_x - \alpha_2 \cdot \mathbf{a}_x^T \mathbf{b} \to \min_{\mathbf{a}_x \in \mathbb{R}_+^n \|\mathbf{a}_x\|_1 = 1}.$$

- Setting $\alpha = \frac{\alpha_2}{\alpha_1 + \alpha_2}$ brings to the original QPFS problem (5).
- The coefficients α_1 , α_2 , and α_3 control the influence of each term to the functional (8) and satisfy the conditions:

$$\alpha_1 + \alpha_2 + \alpha_3 = 1$$
 $\alpha_i \ge 0, i = 1, 2, 3.$

- We balance the terms $Sim(\mathbf{X})$ and $Rel(\mathbf{X}, \mathbf{Y})$ by fixing the proportion between α_1 and α_2 .
- Statement 2. Balance between the terms $Sim(\mathbf{X})$ and $Rel(\mathbf{X}, \mathbf{Y})$ for the problem (8) is achieved by the following coefficients:

$$\alpha_1 = \frac{(1 - \alpha_3)\overline{\mathbf{B}}}{\overline{\mathbf{Q}}_x + \overline{\mathbf{B}}}; \quad \alpha_2 = \frac{(1 - \alpha_3)\overline{\mathbf{Q}}_x}{\overline{\mathbf{Q}}_x + \overline{\mathbf{B}}}; \quad \alpha_3 \in [0, 1],$$

- where $\overline{\mathbf{Q}}_x$, $\overline{\mathbf{B}}$ are the mean values of \mathbf{Q}_x and \mathbf{B} respectively.
- ⁷⁰ Proof. The impact of these terms are equal if $\alpha_1 \cdot \text{Sim}(\mathbf{X}) = \alpha_2 \cdot \text{Rel}(\mathbf{X}, \mathbf{Y})$. The mean
- values of the terms $Sim(\mathbf{X})$ and $Rel(\mathbf{X}, \mathbf{Y})$ are given by the mean values \mathbf{Q}_x and \mathbf{B} of the
- corresponding matrices \mathbf{Q}_x and \mathbf{B} . Since $\alpha_1 + \alpha_2 + \alpha_3 = 1$, we obtain $(1 \alpha_3 \alpha_2)\overline{\mathbf{Q}}_x = \alpha_2\overline{\mathbf{B}}$.
- Express α_2 to get

$$\alpha_2 = \frac{(1 - \alpha_3)\overline{\mathbf{Q}}_x}{\overline{\mathbf{Q}}_x + \overline{\mathbf{B}}}.$$

- The value for α_1 is derived from the $\alpha_1 + \alpha_2 + \alpha_3 = 1$.
- We apply the proposed algorithm to the discussed example. The given matrix \mathbf{Q} corresponds to the matrix \mathbf{Q}_x . We additionally define the matrix \mathbf{Q}_y by setting $\mathrm{corr}(\boldsymbol{\phi}_1, \boldsymbol{\phi}_2) = 0.2$ and all others entries to one. Figure 1 shows the importances of features \mathbf{a}_x and targets \mathbf{a}_y with respect to α_3 coefficient. If α_3 is small, the impact of all targets are almost equal and the feature $\boldsymbol{\chi}_3$ dominates the feature $\boldsymbol{\chi}_2$. When α_3 becomes larger than 0.2, the importance $(\mathbf{a}_y)_5$ of the target ϕ_5 grows up along with the importance of the feature $\boldsymbol{\chi}_2$.

3 Feature categorization

- 82 Feature selection algorithms eliminate features which are not relevant to the target variable.
- 83 To determine whether the feature is relevant the t-test could be applied for the correlation
- 84 coefficient.

$$r = \operatorname{corr}(\boldsymbol{\chi}, \boldsymbol{\phi}), \quad t = \frac{r\sqrt{m-2}}{1-r^2} \sim \operatorname{St}(m-2).$$

Figure 1: Feature importances \mathbf{a}_x and \mathbf{a}_y with respect to the α_3 coefficient

$$H_0: r=0$$

$$H_1: r \neq 0$$

If features are relevant, but correlated, feature selection methods pick the subset of them to reduce the multicollinearity and redundancy. The goal is to find relevant, non-correlated features. However, in this case the correlations between targets in matrix **Y** are crucial. To measure the dependence of each feature or target, the Variance Inflation Factor is computed

$$\operatorname{VIF}(\boldsymbol{\chi}_j) = \frac{1}{1 - R_j^2}, \quad \operatorname{VIF}(\boldsymbol{\phi}_k) = \frac{1}{1 - R_k^2},$$

where $R_j^2(R_k^2)$ are coefficients of determination for the regression of $\chi_j(\phi_k)$ on the other features(targets).

On that basis, we categorize features into 5 disjoint groups:

1. non-relevant features

92

93

95

96

$$\{j : corr(\boldsymbol{\chi}_i, \boldsymbol{\phi}_k) = 0, \forall k \in \{1, \dots, r\}\};$$

2. non-X-correlated features, which are relevant to non-Y-correlated targets $\{j: (\text{VIF}(\boldsymbol{\chi}_j) < 10) \text{ and } (\text{VIF}(\boldsymbol{\phi}_k) < 10, \forall k \in \{1, \dots, r\}: \text{corr}(\boldsymbol{\chi}_j, \boldsymbol{\phi}_k) \neq 0)\};$

3. non-X-correlated features, which are relevant to Y-correlated targets $\{j: (\text{VIF}(\boldsymbol{\chi}_j) < 10) \text{ and } (\exists k \in \{1, \dots, r\}: \text{VIF}(\boldsymbol{\phi}_k) > 10 \& \text{corr}(\boldsymbol{\chi}_j, \boldsymbol{\phi}_k) \neq 0)\};$

4. X-correlated features, which are relevant to non-Y-correlated targets $\{j: (\text{VIF}(\boldsymbol{\chi}_j) > 10) \text{ and } (\text{VIF}(\boldsymbol{\phi}_k) < 10, \forall k \in \{1, \dots, r\}: \text{corr}(\boldsymbol{\chi}_j, \boldsymbol{\phi}_k) \neq 0)\};$

5. X-correlated features, which are relevant to Y-correlated targets $\left\{j: \left(\operatorname{VIF}(\boldsymbol{\chi}_j) > 10\right) \text{ and } \left(\exists k \in \{1, \dots, r\} : \operatorname{VIF}(\boldsymbol{\phi}_k) > 10 \ \& \operatorname{corr}(\boldsymbol{\chi}_j, \boldsymbol{\phi}_k) \neq 0\right)\right\}.$

Figure 2: Sorted feature importances for the QPFS algorithm

Figure 3: RMSE with respect to size of active set, features are ranked by QPFS algorithm

Experiment

Figure 4: Targets importances for ECoG data, each component is related to one of the axis