Esercizi 10 — 9 pt

1 — 1 pt

Si consideri l'approssimazione di $f'(\overline{x})$ tramite il seguente metodo delle differenze finite $\delta f(\overline{x}) = \frac{-3 f(\overline{x}) + 4 f(\overline{x} + h) - f(\overline{x} + 2h)}{2h}$, per h > 0. Dati $f(x) = (5 + 2^x)$, $\overline{x} = 0$ e h = 1/4, si riporti il valore dell'approssimazione $\delta f(\overline{x})$ così ottenuta.

0.6852

2 — 1 pt

Si consideri la funzione $f(x) = (\gamma x^3 + 7x - 53)$ dipendente dal parametro $\gamma \in \mathbb{R}$ e l'approssimazione di $f'(\overline{x})$ tramite le differenze finite centrate $\delta_c f(\overline{x})$ in un generico punto $\overline{x} \in \mathbb{R}$ con passo h = 1/2. Si riporti l'espressione dell'errore $E_c f(\overline{x}) =$ $f'(\overline{x}) - \delta_c f(\overline{x})$ in funzione del parametro γ .

$$-\gamma/4$$

3 — 2 pt

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -y(t) + 2t & t \in (0, +\infty) \\ y(0) = 1. \end{cases}$$

 $\left\{\begin{array}{ll}y'(t)=-y(t)+2\,t&t\in(0,+\infty),\\y(0)=1.\end{array}\right.$ Utilizzando il metodo di Eulero in avanti con passo h>0, si riporti l'espressione di u_3 in termini di h, ovvero l'approssimazione di $y(t_3)$, essendo $t_n = nh$ per $n = 0, 1, \dots$

$$-3h^3 + 9h^2 - 3h + 1$$

4 — 2 pt

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -y(t) + 2t & t \in (0, +\infty), \\ y(0) = 1. \end{cases}$$

Utilizzando il metodo di Eulero all'indietro con passo h>0, si riporti l'espressione di u_3 in termini di h, ovvero l'approssimazione di $y(t_3)$, essendo $t_n = nh$ per $n = 0, 1, \dots$

$$\frac{6h^4 + 16h^3 + 12h^2 + 1}{(h+1)^3}$$

5-1 pt

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -\left(1 + \frac{t}{2}\right) y(t) & t \in (0, +\infty), \\ y(0) = 3. \end{cases}$$

Utilizzando il metodo di Eulero all'indietro con passo $h=0.1,\,\mathrm{si}$ riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

2.7149

Per l'approssimazione del problema di Cauchy

$$\begin{cases} y'(t) = -y(t) e^{t y(t)} & t \in (0,7), \\ y(0) = 2, \end{cases}$$

si consideri il seguente metodo numerico:

dato
$$u_0 = y_0$$
,
$$\begin{cases} u_{n+1/2} = u_n + \frac{h}{2} f(t_n, u_n) \\ \\ q_n = f(t_n + \frac{h}{2}, u_{n+1/2}) \\ \\ u_{n+1} = u_n + h q_n \end{cases}$$
 per $n \ge 0$,

essendo h > 0 il passo e $t_n = t_0 + n h$ per $n = 0, 1, \dots$

Posto il passo h=0.1, si riporti il valore dell'approssimazione u_3 di $y(t_3)$ così ottenuta applicando il precedente metodo.

1.3627