Apuntes de Teoría de Errores

10 de octubre de 2025

1. Conceptos Fundamentales

1.1. Valor Promedio o Media Aritmética

El mejor estimador del valor verdadero de una magnitud X a partir de N mediciones (x_1, x_2, \ldots, x_N) es el valor promedio \bar{x} :

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

1.2. Dispersión Total (D)

La dispersión total de un conjunto de mediciones es la diferencia entre el valor máximo $(x_{\text{máx}})$ y el valor mínimo $(x_{\text{mín}})$ obtenidos:

$$D = x_{\text{máx}} - x_{\text{mín}}$$

1.3. Tanto por Ciento de Dispersión (%D)

El Tanto por Ciento de Dispersión, a menudo representado como T, es una medida de la calidad o la precisión de una serie de mediciones. Se calcula como la dispersión total dividida por el valor promedio, expresado en porcentaje:

$$\%D = \frac{D}{\bar{x}} \times 100$$

Donde:

- $\,\blacksquare\,\, D \colon$ Dispersión Total.
- ullet \bar{x} : Valor Promedio de las mediciones.

Este valor se utiliza comúnmente en laboratorios de física para decidir si el número de mediciones realizadas es suficiente (por ejemplo, si %D < 2%, suele considerarse suficiente un número pequeño de medidas).

2. Aplicación de la Fórmula del Tanto por Ciento de Dispersión

La fórmula del Tanto por Ciento de Dispersión (%D) se aplica siempre de la misma manera, independientemente del número de mediciones (N), pues solo requiere el valor promedio (\bar{x}) y la dispersión total (D). A continuación, se presentan ejemplos de cómo se aplicaría la fórmula en distintos escenarios.

2.1. Caso 1: N = 2 Variables (Mediciones)

Se realiza una medición dos veces (x_1, x_2) .

- **Mediciones:** x_1, x_2 .
- **Valor Promedio:** $\bar{x} = \frac{x_1 + x_2}{2}$
- **Dispersión Total:** $D = |x_1 x_2|$
- **Tanto por Ciento de Dispersión:**

$$\%D = \frac{|x_1 - x_2|}{\frac{x_1 + x_2}{2}} \times 100$$

2.2. Caso 2: N = 5 Variables (Mediciones)

Se realizan cinco mediciones $(x_1, x_2, x_3, x_4, x_5)$.

- **Mediciones:** x_1, x_2, x_3, x_4, x_5 .
- **Valor Promedio:** $\bar{x} = \frac{\sum_{i=1}^{5} x_i}{5}$
- **Dispersión Total:** $D = x_{\text{máx}} x_{\text{mín}}$ (el mayor valor menos el menor entre las 5 mediciones).
- **Tanto por Ciento de Dispersión:**

$$\%D = \frac{x_{\text{máx}} - x_{\text{mín}}}{\bar{x}} \times 100$$

2.3. Caso 3: N = 15 Variables (Mediciones)

Se realizan quince mediciones $(x_1, x_2, \ldots, x_{15})$.

- **Mediciones:** x_1, x_2, \dots, x_{15} .
- **Valor Promedio:** $\bar{x} = \frac{\sum_{i=1}^{15} x_i}{15}$
- **Dispersión Total:** $D = x_{\text{máx}} x_{\text{mín}}$ (el mayor valor menos el menor entre las 15 mediciones).

■ **Tanto por Ciento de Dispersión:**

$$\%D = \frac{x_{\text{máx}} - x_{\text{mín}}}{\bar{x}} \times 100$$

Conclusión: La fórmula del %D es general y su estructura se mantiene, solo cambian los valores de \bar{x} y D que se calculan a partir del conjunto de datos.

3. Ejercicios Prácticos

3.1. Ejercicio 1: Cálculo del %D con N=4 Medidas

Un estudiante mide el tiempo de caída libre de un objeto y obtiene los siguientes valores (en segundos): $t_1=1,21\,\mathrm{s},\,t_2=1,25\,\mathrm{s},\,t_3=1,20\,\mathrm{s},\,t_4=1,24\,\mathrm{s}.$ Calcule el Tanto por Ciento de Dispersión.

Solución:

1. Cálculo del Valor Promedio (\bar{t}):

$$\bar{t} = \frac{1,21 + 1,25 + 1,20 + 1,24}{4} = \frac{4,90}{4} = 1,225\,\mathrm{s}$$

2. Cálculo de la Dispersión Total (D):

$$D = t_{\text{máx}} - t_{\text{mín}} = 1,25 \,\text{s} - 1,20 \,\text{s} = 0,05 \,\text{s}$$

3. Cálculo del Tanto por Ciento de Dispersión (%D):

$$\%D = \frac{D}{\overline{t}} \times 100 = \frac{0.05}{1.225} \times 100 \approx 4.08\%$$

Resultado: El Tanto por Ciento de Dispersión es 4,08 %.

3.2. Ejercicio 2: Interpretación del %D

Se mide la longitud de una mesa obteniendo $\bar{L}=150,5\,\mathrm{cm}$ y un Tanto por Ciento de Dispersión de $0,5\,\%$. Determine la Dispersión Total (D) y el intervalo en el que se encuentran las mediciones.

Solución:

1. Cálculo de la Dispersión Total (D): De la fórmula $\%D = \frac{D}{L} \times 100$, despejamos D:

$$D = \frac{\%D \times \bar{L}}{100}$$

$$D = \frac{0.5 \times 150.5}{100} = \frac{75.25}{100} = 0.7525 \,\text{cm}$$

2. Cálculo del Intervalo de Medición: Sabemos que $D=L_{\text{máx}}-L_{\text{mín}}$ y que el valor promedio se encuentra cerca del centro del intervalo. Por aproximación, si el error principal es la dispersión, el error absoluto $\Delta L \approx D/2$:

$$\Delta L \approx \frac{D}{2} = \frac{0.7525}{2} = 0.37625 \, \mathrm{cm}$$

El intervalo es $[\bar{L}-\Delta L,\bar{L}+\Delta L]$, por lo que la medida se expresa como:

$$L = (\bar{L} \pm \Delta L) = (150, 5 \pm 0, 4) \text{ cm}$$

(Redondeando el error a una cifra significativa, $\Delta L=0.4\,\mathrm{cm}$). El intervalo aproximado de las mediciones es [150,1 cm, 150,9 cm].

 $\bf Resultado:$ La Dispersión Total es $\bf 0,7525\,\rm cm.$