Quick Recognition Patterns

"Existence" patterns → Usually R.E.

- "∃y such that..."
- "some element has property P"
- "at least one thing happens"
- "the set intersects with..."
- "there is a witness"

Examples:

- $\{x \mid x \in W_x \cup E_x\} \rightarrow "x \text{ exists in at least one set"} \rightarrow \textbf{r.e.}$
- $\{x \mid W \ x \cap E \ x \neq \emptyset\} \rightarrow$ "some element exists in both" \rightarrow **r.e.**
- $\{x \mid \exists y > x. \ y \in E_x\} \rightarrow$ "some large y exists" \rightarrow **r.e.**

"Universal" patterns → Usually NOT R.E.

- "∀y such that..."
- "every element has property P"
- "all things must satisfy..."
- "nothing bad happens"

Examples:

- $\{x \mid \forall y \in W \ x. \ \phi \ x(y) > x\} \rightarrow$ "every computation is large" \rightarrow **not r.e.**
- $\{x \mid \phi \ x \text{ is total}\} \rightarrow \text{"defined for ALL inputs"} \rightarrow \textbf{not r.e.}$

The Intuitive Rule

Can you "witness" membership by finding something finite?

- Yes → Probably r.e. (search until you find the witness)
- No → Probably not r.e. (you'd need to check infinitely many things)

For $\{x \mid x \in W_x \cup E_x\}$: You can witness membership by either:

- Finding some y,t such that H(x,y,t) ($x \in W x$), OR
- Finding some y,z,t such that S(x,y,z,t) ($x \in E_x$)

This is finite searching \rightarrow **r.e.**

For $\{x \mid \forall y > x. \ y \in W_x\}$: To verify membership, you'd need to check infinitely many y values \rightarrow **not r.e.**

90% of the time, this heuristic works immediately.	