IMDB Movie Reviews Sentiment Classification

Goal of this Project

Hey, this movie is amazing!

Wow, such a terrible movie!

~90% Metric

Technologies overview

Result product

Output Sentiment

Table of Contents

- Introduction
- Machine Learning approach
- Deep Learning approach
- Result overview
- Conclusion

Introduction

NLP

Sentiment Classification

Dataset

This film made John Glover a star. Alan Raimy is one of the most compelling character that I have ever seen on film., positive

• 419,475 unique words

Machine Learning approach

Preprocessing Steps 1/7

Lowercase text

hey, this moeiv is amazing!
you should really watch it! i'm
watching it agein! :)<\br>
http://google.com.

Preprocessing Steps 2/7

Split contractions (can't ->can not)

hey, this moeiv is amazing!
you should really watch it! i am
watching it agein! :)<\br>
http://google.com.

Preprocessing Steps 3/7

• Clean text (remove urls, html tags, special characters...)

Preprocessing Steps 4/7

Correct spelling mistakes

Preprocessing Steps 5/7

• Remove stop words (the, a, is, what,...)

Preprocessing Steps 6/7

Tokenization

Preprocessing Steps 7/7

• Lemmatization (meeting -> meet, was -> be, mice -> mouse,...)

Train-test Split

IMDB Dataset

Training data

Test data

80%

20%

TF-IDF Vectorization

TFIDF
$$(t,d) = TF(t,d) \times DF(t)$$

Term Frequency =
$$\frac{\text{Word occurrences in a sentence}}{\text{No of words in a sentence}}$$

Inverse Document Frequency =
$$log(\frac{Number of sentences}{Number of sentences containing word})$$

TF-IDF Vectorization

good movie 2. good book 3. movie book good

TF	1	2	3
G	1/2	1/2	1/3
М	1/2	0	1/3
В	0	1/2	1/3

	IDF	
G	log(3/3)	
М	log(3/2)	
В	log(3/2)	

TF	G	М	В
1	0	½* log(3/2)	0
2	0	0	½* log(3/2)
3	0	1/3* log(3/2)	1/3* log(3/2)

K-split cross validation

Performance Metrics

		ACTUAL VALUE	
		+ -	
PREDICTED VALUE	+	TP	FN
	-	FP	TN

Confusion Matrix

Accuracy:
$$\frac{TP + TN}{TP + FN + FP + TN}$$

Performance Metrics - Balanced

		ACTUAL VALUE		
		+	-	
PREDICTED VALUE	+	80	10	
	-	20	90	

Confusion Matrix

$$\frac{80+90}{80+10+20+90} = 85\%$$

Performance Metrics - Imbalanced

		ACTUAL VALUE	
		+	-
PREDICTED VALUE	+	980	90
	-	20	10

Confusion Matrix

$$\frac{980 + 10}{980 + 20 + 90 + 10} = 90\%$$

Performance Metrics - Imbalanced

Confusion Matrix

Precision:
$$\frac{1P}{TP + FP}$$

Recall:
$$\frac{TP}{TP + FN}$$

• Best results for each model (*F1 Score*)

- Best performing dataset:
- Split Contraction, Lemmatization, Without Spelling, 25k features

Contractions expanded	150,492
URL's	121
HTML tags	187,484
Other characters	1,822,452
Digits	150,344

• Best TF-IDF features - 25000

Machine learning models

- Logistic Regression
- Random Forest Tree
- XGBoost

Machine learning models

Logistic Regression

$$f(z) = \frac{1}{1 + e^{z}}$$

Machine learning models

Random Forest

Deep Learning approach

Load pre-trained Bert from Hugging Face

Tokenize data using BertTokenizer

Fine tune model on tokenized dataset

Deep Learning model - Transformer

Deep Learning model - BERT

- Bidirectional Encoder Representation from Transformers
- Pretraining Masked language modeling

- Next sentence prediction

• Falsely classified reviews

I don't think this movie is good!

NEGATIVE COMMENT

Further improvements

- More data preprocessing (:) -> 'good', '9/10' -> 'good', balancing?)
- Different ML Classifier
- Different Transformer

Thank you for your attention!