DYNAMIC PROGRAMMING

การอบรมโอลิมปิกวิชาการและการพัฒนามาตรฐานวิทยาศาสตร์
และคณิตศาสตร์ สาขาคอมพิวเตอร์ ค่ายที่ 2
ศูนย์คณะวิทยาศาสตร์และเทคโนโลยี
มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี

KNAPSACK PROBLEM

Knapsack Problem

- ปัญหาการหยิบของใส่ถุงเป้ โดยต้องเลือกหยิบของใส่ในถุงให้มี มูลค่ารวมสูงสุด แต่ห้ามใส่ของเกินน้ำหนักที่กำหนด โดยของแต่ละ ชิ้นจะมีน้ำหนักและมูลค่าที่ต่างกันออกไป
- ตัวอย่าง กำหนดให้ถุงเป้รับน้ำหนักได้ไม่เกิน 20

Item	1	2	3	4
Weight	10	15	8	5
Value	8	6	11	5

1

Knapsack Problem

• The idea of dynamic programming

• มักเป็นปัญหาเพื่อหาค่าเหมาะสุด (Optimal Solution) และสามารถหา ความสัมพันธ์เวียนเกิด (Recurrence Relation) ได้

• หาผลลัพธ์เริ่มต้นจากปัญหาย่อย แล้วนำคำตอบที่ได้ไปใช้หาผลลัพธ์ของ ปัญหาที่ใหญ่ขึ้น Knapsack Problem

• กำหนดให้มีสิ่งของ n ชิ้น โดยแต่ละชิ้นจะมีน้ำหนักเป็น W_i และมี มูลค่าเป็น V_i หากเรามีถุงเป้ที่สามารถจุสิ่งของน้ำหนักไม่เกิน W เรา จะเลือกสิ่งของเหล่านี้ได้อย่างไรให้มีมูลค่ารวมสูงสุด โดยที่น้ำหนัก สิ่งของรวมไม่เกิน W

maximizes
$$\sum_{i \in T} v_i$$
 subject to $\sum_{i \in T} w_i \leq W$, $T \subseteq \{1, 2, ..., n\}$

7

Dynamic Programming for Knapsack Problem

• Define an optimal solution to recurrence relation

• กำหนดให้ V[i, w] แทนมูลค่ารวมสูงสุดของการเลือก หรือไม่เลือกของ ชิ้นที่ 1 ถึง i ใส่ถุงเป้ที่รับน้ำหนักได้ไม่เกิน w

• พิจารณากรณีที่เลือกของชิ้นที่ i และกรณีที่ไม่เลือกของชิ้นที่ i ว่ากรณีใด ให้มูลค่ารวมสูงสุดโดยไม่ทำให้น้ำหนักเกิน

• กรณีไม่เลือกของชิ้นที่ i : เหลือสิ่งของต้องพิจารณา i – 1 ชิ้น แต่น้ำหนักที่ ถุงเปรับได้ยังคงเท่าเดิมคือ w ซึ่งจะได้ V[i, w] = V[i-1, w]

• กรณีเลือกของชิ้นที่ i : น้ำหนักที่ถุงเป้รับได้จะลดลงไป w_i ดังนั้นจะได้ $V[i,w]=v_i+V[i-1,w-w_i]$ เมื่อ v_i คือมูลค่าของชิ้นที่ i ที่เพิ่มขึ้น

• กรณีที่ไม่มีของให้พิจารณา หรือถุงเปรับน้ำหนักไม่ได้ นั่นคือ V[0, j] = 0 และ V[i, 0] = 0

.

Dynamic Programming for Knapsack Problem

• Define an optimal solution to recurrence relation (con't)

$$V[i,w] = \begin{cases} \max \ (V[i-1,w], v_i + V[i-1,w-w_i]) \ if \ i > 0 \ and \ w \ge w_i \\ V[i-1,w] \ if \ w < w_i \\ 0 \ if \ i = 0 \ or \ w = 0 \end{cases}$$

Dynamic Programming for Knapsack Problem

- Decompose a problem into sub-problems.
 - Construct an array V[0...n, 0...w] for $1 \le i \le n$ and $0 \le w \le W$ to keep each computing time of sub-problem.

V[i, w]	w = 0	1	2	3	 W
i = 0					
1					
2					
n					

Dynamic Programming for Knapsack Problem

- Define an optimal solution to smaller problem
 - Initial setting:
 - For $0 \le w \le W$, set V[0, w] = 0
 - For $1 \le i \le n$, set V[i, 0] = 0

V[i, w]	w = 0	1	2	3	 w
i = 0	0	0	0	0	 0
1	0				
2	0				
n	0				

Dynamic Programming for Knapsack Problem

• Bottom up computing V[i, w] using iteration (no need recursion)

V[i, w]	w = 0	1	2	3	 w
i = 0	0	0	0	0	 0
1	0				⇒
2	0				\Rightarrow
n	0				\Rightarrow

Dynamic Programming for Knapsack Problem

• Algorithm (return maximum value)

```
Initialize all V[i, 0]=0 and all V[0, w]=0
for i = 1 to n
   for w = 1 to W
      if (w_i \leq w)
         V[i, w] = \max(V[i-1,w], v_i + V[i-1, w-w_i])
      else
         V[i, w] = V[i-1, w]
return V[n, W]
```


Dynamic Programming for Knapsack Problem

• ตัวอย่าง กำหนดให้ W = 10

i	1	2	3	4
V _i	10	40	30	50
w _i	5	4	6	3

V[i, w]	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90

Dynamic Programming for Knapsack Problem

• How to know which items included in knapsack? (con't)

```
//... print items that choose into a knapsack
x=W
For i = n downto 1
   if (item[i, x]==1)
      print i
      x = x - w<sub>i</sub>
return V[n, W]
```

Dynamic Programming for Knapsack Problem

• How to know which items included in knapsack?

```
Initialize all V[i, 0]=0 and all V[0, w]=0
for i = 1 to n
  for w = 0 to W
   if (w<sub>i</sub> ≤ w) and (v<sub>i</sub>+V[i-1, w-w<sub>i</sub>] > V[i-1,w])
      V[i, w] = v<sub>i</sub> + V[i-1, w-w<sub>i</sub>]
      item[i,w]=1 //include
   else
      V[i, w]=V[i-1, w]
      item[i,w]=0 //not include
//continue ->
```

23

Problem (knapsack_1)

มานีอยากทำอาหารให้มานะทาน จึงเดินทางไปจ่ายตลาดด้วยตัวเอง และด้วย ความที่เป็นผู้หญิงจึงต้องการเลือกวัตถุดิบที่ให้คุณค่าทางโภชนาการสูงสุดและมี ความหลากหลาย โดยที่น้ำหนักรวมของวัตุดิบต้องไม่เกินกำลังที่มานีจะถือกลับได้ จงเขียนโปรแกรมเพื่อช่วยมานีชื้อวัตถุดิบ

Input:

บรรทัดที่ 1 คือ จำนวนชนิดของวัตถุดิบในตลาด (n) และน้ำหนัก รวมที่ มานีสามารถถือได้ (W) บรรทัดที่ 2 คือ น้ำหนักของวัตถุดิบแต่ละชนิด ($w_1 \ w_2 \ w_3 \ ... \ w_n$) บรรทัดที่ 3 คือ คุณค่าทางโภชนาการของวัตถุดิบแต่ละชนิด ($v_1 \ v_2 \ v_3 \ ... \ v_n$)

24

Problem (ต่อ)

Output: คุณค่าทางโภชนาการรวมสูงสุด จำนวนชนิดของวัตถุดิบที่เลือก และน้ำหนักรวมที่มานีต้องถือของกลับ

Sample

Input	Output
4 10	46 2 10
6 3 4 2	
30 14 16 9	
5 60	210 3 60
20 10 40 10 30	
40 100 50 60 30	

--

MATRIX CHAIN MULTIPLICATION

27

🛮 การคูณเมทริกซ์

ถ้า $A=[a_{ij}]_{m imes n}$ และ $B=[b_{ij}]_{p imes q}$

$$A imes B$$
 หาค่าได้เมื่อ $n=p$

$$A imes B = C$$
 โดยที่ C มีมิติ $m imes q$

ซึ่ง
$$C = [c_{ij}]_{m imes q}$$
 โดยที่

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\ldots+a_{in}b_{nj}$$

28

EX ตัวอย่างการคูณเมทริกซ์

ให้
$$A=egin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}_{2 imes 3}$$
 และ $B=egin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}_{3 imes 2}$

$$A \times B = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}_{2\times3} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}_{3\times2}$$

$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{bmatrix}$$

$$= \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}_{2\times2}$$

Matrix Chain Multiplication

• กำหนดให้มีเมทริกซ์จำนวน n เมทริกซ์ A_1 , A_2 , ..., A_n ผลคูณลูกโซ่เมทริกซ์ (Matrix chain multipilication) คือ

$$A_1 \times A_2 \times ... \times A_n$$

- โดย
 - \bullet A \times B \neq B \times A
 - $A \times (B \times C) = (A \times B) \times C$

Dynamic Programming for Matrix Chain Multiplication

- Decompose a problem into sub-problems
 - กำหนดให้ A₁, A₂, ..., A₂ คือ matrix chain
 - A, มีขนาดเท่ากับ p_{i-1}× p,
 - $A_{i,j}$ แทนผลลัพธ์ที่ได้จาก $A_i \times A_{i+1} \times ... \times A_j$ ดังนั้น
 - A, มีขนาดเท่ากับ p, x p
 - การคูณ $(A_{i})(A_{i+1})$ ใช้จำนวนการคูณเท่ากับ $p_{i-1} \times p_i \times p_k$ ครั้ง
 - กำหนดให้ m[i, j] เก็บจำนวนการคูณที่น้อยที่สุดของการคูณ $A_i \times A_{i+1} \times ... \times A_i$

Matrix Chain Multiplication

• การหาผลคูณของเมทริกซ์ $A_1 \times A_2$ ที่มีขนาด $p_0 \times p_1$ และ $p_1 \times p_2$ ใช้ เวลาเท่ากับ p₀p₁p₂ ครั้ง

• ตัวอย่าง สมมติให้ A_1 , A_2 , A_3 เป็นเมทริกซ์ขนาด 10×100 , 100×5 และ 5×50 ตามลำดับ

• $A_1 \times (A_2 \times A_3)$ ใช้เวลาเท่ากับ

 $(10 \times 100 \times 50) + (100 \times 5 \times 50) = 50000 + 25000 = 75,000$

Dynamic Programming for Matrix Chain Multiplication

- Decompose a problem into sub-problems (con't)
 - แบ่ง matrix chain เป็น 2 ส่วน ที่ตำแหน่งที่ k ที่ทำให้ได้จำนวนการคูณ น้อยที่สุด นั่นคือ

$$m(1, k) + m(k+1, n) + p_0 \times p_k \times p_n$$

หมายเหตุ ผลรวมนี้จะน้อยสุดเมื่อ $m(1, k)$ และ $m(k+1, n)$ น้อยที่สุด

Dynamic Programming for Matrix Chain Multiplication

• Define an optimal solution to recurrence relation

$$m(i,j) \begin{cases} \min_{i \le k < j} (m(i,k) + m(k+1,j) + p_{i-1}p_k p_j) & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

Dynamic Programming for Matrix Chain Multiplication

- Define an optimal solution to smaller problem
- Initial setting:

m(i, j)	j = 1	2	3	 n
i = 1	0			
2		0		
3			0	
n				0

35

Dynamic Programming for Matrix Chain Multiplication

Bottom up computing

$$m(i,j) = \min_{i \le k < j} (m(i,k) + m(k+1,j) + p_{i-1}p_k p_j)$$

m[i, j]	j = 1	2	3		n
i = 1	0 ~	1/2	<i>E</i> 4	4	ν' Δ
2	\				
3					**
					3
n					0

36

Dynamic Programming for Matrix Chain Multiplication

• Algorithm (return the lowest number of multiplication)

Dynamic Programming for Matrix Chain Multiplication

- ตัวอย่าง ต้องการหาวิธี matrix chain multiplication ของ $A_1\ A_2\ A_3\ A_4\ A_5\ A_6\ ที่มีขนาด 30×20, 20×10, 10×5, 5×5, 5×10 และ 10 ×40 ตามลำดับ$
 - จะได้ p[0..6] = {30, 20, 10, 5, 5, 10, 40}

Dynamic Programming for Matrix Chain Multiplication

• ตัวอย่าง (ต่อ) p[0..6] = {30, 20, 10, 5, 5, 10, 40}

m[i, j]	1	2	3	4	5	6
1	0	6000	4000	4250	5750	12250
2		0	1000	1250	2250	7250
3			0	250	750	4250
4				0	250	2250
5					0	2000
6						0

Dynamic Programming for Matrix Chain Multiplication

• How to find the position of separated matrix?

```
matrixChain_DP (p[0..n])
  for i = 0 to n
    m[i,i] = 0
  for len = 2 to n //diagonals
    for i = 1 to n-len+1
        j = i + len - 1
        m[i, j] = INT_MAX
    for k = i to j-1
        q = m[i, k] + m[k+1, j] + p[i-1]*p[k]*p[j]
        if (q < m[i, j])
        m[i, j] = q
        s[i, j] = k
  return s</pre>
```

40

Dynamic Programming for Matrix Chain Multiplication

• ตัวอย่าง (ต่อ) p[0..6] = {30, 20, 10, 5, 5, 10, 40}

s[i, j]	1	2	3	4	5	6
1	0	1	1	1	3	3
2		0	2	2	3	3
3			0	3	3	3
4				0	4	5
5					0	5
6						0

$$s[1, 6] = 3 \rightarrow (A_1 A_2 A_3) (A_4 A_5 A_6)$$

 $s[1, 3] = 1 \rightarrow (A_1(A_2 A_3)) (A_4 A_5 A_6)$
 $s[4, 6] = 5 \rightarrow (A_1(A_2 A_3))((A_4 A_5)A_6)$

Problem (mChain_1)

จงเขียนโปรแกรมเพื่อหาจำนวนการคูณกันน้อยที่สุดของ matrix chain ที่ กำหนดให้

Input: บรรทัดที่ 1 คือ จำนวนเมทริกซ์ n

บรรทัดที่ 2 คือ ขนาดของเมทริกซ์ $p_0^{}$ $p_1^{}$ $p_2^{}$ $p_3^{}$... $p_n^{}$

Output: จำนวนการคูณที่น้อยที่สุด

Sample

Input	Output
6	12250
30 20 10 5 5 10 40	
3	7500
10 100 5 50	