Blatt 05 für die Übungen am 28./29. November 2022

Themen: Bewegungen, Spiegelungen

Aufgabe 4.13. Sei $g \subset \mathbb{R}^2$ eine Gerade. Wir bezeichnen mit $\sigma_g : \mathbb{R}^2 \to \mathbb{R}^2$ die Spiegelung an g.

- (i) Vervollständige den folgenden Satz: Für einen Punkt $P \in \mathbb{R}^2$ gilt $\sigma_q(P) = P$ genau dann, wenn
- (ii) Sei $h \subset \mathbb{R}^2$ eine weitere Gerade, die parallel zu g verläuft. Zeige, daß $\sigma_g(h)$ ebenfalls parallel zu g verläuft.

Aufgabe 4.14. Sei g eine Gerade in \mathbb{R}^2 .

- (i) Sei g gegeben durch $g = \{P + \lambda \cdot v \mid \lambda \in \mathbb{R}\}$ mit Richtungsvektor $v = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$. Was ist der Vektor einer Geraden, die senkrecht auf g steht?
- (ii) Wir betrachten die Gerade

$$g:=\{\left(\begin{array}{c}2\\3\end{array}\right)+\lambda\left(\begin{array}{c}1\\1\end{array}\right)\,|\,\lambda\in\mathbb{R}\}.$$

Was ist die Spiegelung von $P = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ entlang von g?

Hinweis: Aus der linearen Algebra (oder der Schule) wissen wir, daß zwei Vektoren im \mathbb{R}^n senkrecht aufeinander stehen, wenn ihr Skalarprodukt 0 ergibt.

Aufgabe 4.15. Sei $P \in \mathbb{R}^2$ ein Punkt.

- (i) Gib eine (geometrische) Definition der Punktspiegelung σ_P an P an.
- (ii) Kann man eine Punktspiegelung mit Hilfe von Spiegelungen, Drehungen, Translationen beschreiben?
- (iii) Zeige: Für jede Gerade $g \subset \mathbb{R}^2$ ist $\sigma_P(g)$ parallel zu g.

Wir werden die Aufgaben gemeinsam in der Übung lösen. Es ist jedoch hilfreich, wenn Sie sich vorher etwas dazu überlegen.