TOPOLOGY QUALIFYING EXAM Fall 1994

(Wu and Strecker)

Choose and work any 6 of the following 15 problems. Start each problem on a new sheet of paper. **Do not turn in more than six problems.** A space always mean a topological space below.

- 1. State the axiom of choice and give another statement which is equivalent to the axiom of choice. Then prove one of the implications for the equivalence.
- **2.** Prove that the following statements are equivalent for any space X:
 - i) X is Hausdorff;
 - ii) for any space Y and any pair of continuous maps $f, g: Y \to X$ that agree on a dense subset of Y, then f = g.
 - iii) the diagonal $\Delta \subseteq X \times X$ defined by $\Delta := \{(x_1, x_2) \in X \times X \mid x_1 = x_2\}$ is a closed subset of $X \times X$;
- **3.** Prove or give a counterexample for each of the following implications: separable $\stackrel{(a)}{\Rightarrow}$ second countable $\stackrel{(b)}{\Rightarrow}$ first countable $\stackrel{(c)}{\Rightarrow}$ separable $\stackrel{(d)}{\Rightarrow}$ first countable $\stackrel{(e)}{\Rightarrow}$ second countable $\stackrel{(f)}{\Rightarrow}$ separable
- 4. Prove that every quotient of a locally connected space is locally connected.
- **5.** Give a proof or counterexample for each of the following implications:
 - i) X is locally connected \Rightarrow the connected components of X are open;
 - ii) the connected components of X are open $\Rightarrow X$ is locally connected.
- **6.** Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a collection of spaces and let x be a fixed point in $\prod_{{\alpha}\in A} X_{\alpha}$. Show that

$$D = \left\{ y \in \prod_{\alpha \in A} X_{\alpha} \mid y \text{ and } x \text{ differ in at most finitely many coordinates} \right\}$$

is dense in $\prod_{\alpha \in A} X_{\alpha}$.

- 7. Prove or disprove that any two spaces that are simultaneously discrete and indiscrete must be homeomorphic.
- **8.** Let X be a T_1 regular space with a countable basis and let U be open in X. Show that
 - i) U is a countable union of closed sets of X;
 - ii) There is a continuous function $f: X \to [0,1]$ such that f(x) > 0 for $x \in U$ and f(x) = 0 for $x \notin U$.
- **9.** Let X be a T_1 completely regular space and Y a compactification of X; let $\beta(X)$ be the Stone-Čech compactification of X. Show that there exists a continuous surjective closed map $g:\beta(X)\to Y$ that equals the identity on X.
- 10. Prove that the following statements are equivalent for any space X:
 - i) X is Tychonoff (i.e., T_1 and completely regular);
 - ii) X can be embedded in a compact Hausdorff space.
- 11. Find an error in the following purported "proof" of the jactitation that $2^{\mathbb{R}}$ is metrizable, where $2 = \{0, 1\}$ is a two point discrete space and \mathbb{R} is the set of real numbers.

"PROOF": Consider the inclusion $\mathbb{N} \subseteq \mathbb{R}$, where \mathbb{N} is the set of natural numbers. This induces a "natural" embedding $2^{\mathbb{N}} \hookrightarrow 2^{\mathbb{R}}$ by the map $f \mapsto \hat{f}$ where

$$\hat{f}(r) = \begin{cases} f(r), & \text{if } r \in \mathbb{N} \\ 0, & \text{if } r \in \mathbb{R} \setminus \mathbb{N}. \end{cases}$$

Let U be an open subset of $2^{\mathbb{R}}$. By the definition of the product topology, the projection of U is $\{0,1\}=2$ in all but finitely many coordinates. Thus $U\cap 2^{\mathbb{N}}\neq\emptyset$. So $2^{\mathbb{N}}$ is dense in $2^{\mathbb{R}}$. But $2^{\mathbb{N}}$ is compact and $2^{\mathbb{R}}$ is Hausdorff, so $2^{\mathbb{N}}$ is closed in $2^{\mathbb{R}}$. Thus $2^{\mathbb{N}}=2^{\mathbb{R}}$. But $2^{\mathbb{N}}$ is metrizable since it is a countable product of metrizable spaces. Hence $2^{\mathbb{R}}$ is metrizable.

12. Let \mathfrak{A} be a locally finite collection of subsets in the space X. Show that

$$\overline{\bigcup_{A \in \mathfrak{A}} A} = \bigcup_{A \in \mathfrak{A}} \overline{A}.$$

- 13. Prove or disprove each of the following:
 - i) Every compact subset of a Hausdorff space is closed;
 - ii) every closed subset of a Hausdorff space is compact.
- **14.** Let E^n denote the Euclidean n-dimensional space. For what value of n is it true that $E^n \setminus \{p\}$ is connected and simply connected? Prove your answer.
- 15. Show that in a locally compact Hausdorff space, countable intersections of dense open sets are dense.