Geometric stacks in Synthetic Algebraic Geometry

Tim Lichtnau, Hugo Moeneclay

Oktober 2024

Abstract

This is meant as a short summary of the progress of the Master Thesis of Tim Lichtnau so far. We work in Synthetic Algebraic Geometry, i.e. Homotopy Type Theory $+\ 3$ Axioms. A type gets interpreted as a Zariski-sheaf on the site given by the opposite category of finitely presented algebras over a fixed ring [CCH23]. Affine types get interpreted as the representable sheaves.

Definition 0.1. A Grothendieck topology \mathbb{T} is a subclass of affine schemes, such that

- $1 \in \mathbb{T}$
- \mathbb{T} is Σ -stable, i.e. if $X: \mathbb{T}, B: X \to \mathbb{T}$, then $\sum_{x:X} Bx$ belongs to \mathbb{T} .

A map is a \mathbb{T} -cover iff its fibered in \mathbb{T} . Relating to the classical definition, we could call a family of maps of affines $\{U_i \to U\}_{i=1}^n$ covering iff

$$\sum_{i=1}^{n} U_i \to U$$

is a \mathbb{T} -cover.

We fix a topology \mathbb{T} , for which we want to define the notion of (geometric) stack.

Definition 0.2. A type X is a (higher) stack iff its $\|\operatorname{Spec} A\|$ -local for any $\operatorname{Spec} A \in \mathbb{T}$. An n-stack is a stack that is an n-type.

This exactly captures the expected classical notion of a stack for a Grothendieck topology [Moe24b], e.g. a 0-type X is a stack, if for any \mathbb{T} -cover $A \to B$,

$$X^B \to X^A \rightrightarrows X^{A \times_B A}$$

is an equalizer diagram.

Example 0.3 ([Moe24a]).

- The fppf topology is given by the faithfully flat affine schemes.
- The étale topology is given by formaly-étale + faithfully flat affine schemes.
- The smooth topology is given by smooth + faithfully flat affine schemes.

We start by defining the relative setting (this corresponds to fibers of smooth morphism of geometric stacks in [Sim96]). There is a short inductive definition:

Definition 0.4. A stack X is covering, whenever inductively

- $X \in \mathbb{T}$ or
- X is equipped with a map $\mathbb{T} \ni \operatorname{Spec} A \to X$ fibered in covering stacks.

We call a map $X \to Y$ fibered in covering stacks a geometric cover (That corresponds to smooth morphisms in [Sim96])

Definition 0.5. A stack X is geometric iff it merely admits a geometric cover Spec $A \to X$.

We have the following classical labels associated to geometric stacks depending on the topolo-

gies:	${\mathbb T}$	Geometric stacks for T
	étale	(Higher) Deligne Mumford Stacks
	smooth	(Higher) Artin stacks
	fppf	Something similar to Artin stacks?

Example 0.6. Every stack that is a scheme is geometric.

Theorem 0.7 (Stability Results).

- The class of covering / geometric stacks is \sum -stable.
- The class of covering / geometric stacks is closed under quotients: If $X \to Y$ is a geometric cover with X covering / geometric stack, then Y is covering / geometric
- Geometric stacks are closed under taking identity types.
- ullet Every geometric stack is a geometric n-stack for some n
- Covering / Geometric stacks have descent: Both types GeometricStack and CoveringStack are a stack.

It is maybe worth mentioning, that proving descent was surprisingly easy.

Under some very mild condition on the topology 1 (e.g. satisfied by étale or fppf), which is equivalent to saying that every geometric cover between affines is a \mathbb{T} -cover we have the following explicit description depending on the truncation level n:

Theorem 0.8. An n-stack X is geometric if and only if

- (n = 0): there merely exists a map $\operatorname{Spec} A \to X$ whose fibers F merely admit a \mathbb{T} -cover $\mathbb{T} \ni \operatorname{Spec} B \to F$.
- $(n \ge 1)$: there merely exist a map $\operatorname{Spec} A \to X$ whose fibers are covering (n-1)-stacks. Additionally X is covering iff we can choose $\operatorname{Spec} A$ to lie in \mathbb{T} .

For the étale topology we have the following notable results

Theorem 0.9.

- Every Deligne-Mumford stack is a 1-gerbe, i.e. $X \to ||X||_1^{\mathbb{T}}$ is a geometric cover, where the latter means the \mathbb{T} -sheafification of the 1-truncation of X.
- A Deligne-Mumford stack X is covering iff $\pi_0^{\mathbb{T}}X := \|X\|_0^{\mathbb{T}}$ and all higher homotopy groups

$$\pi_i^{\mathbb{T}}(X, x) = \|\Omega^i(X, x)\|_0^{\mathbb{T}}, i \ge 1$$

are covering algebraic spaces for the étale topology.

 $^{^{1}}$ We can always enforce this condition without changing the notion of (covering / geometric) stack 2 One can reformulate also as taking a quotient of Spec A by an equivalence relation satisfying a certain property.

1 Examples

We can reproduce examples from Stacks project: Let $\mu_{\ell} = \operatorname{Spec} R[T]/(T^{\ell} - 1)$ denote the group of ℓ .th roots of unity.

Example 1.1 (Non-example). If $2 \neq 0$, the sheaf quotient of \mathbb{A}^1 by the μ_2 action is not an algebraic space.

Example 1.2 (Not locally-separated examples). Assume $\ell \neq 0$ prime. Let μ_{ℓ} act on Spec B in one of the following ways:

- 1. Let μ_{ℓ} act on Spec $B = \mathbb{A}^1$.
- 2. Put $\ell = 2$. Let μ_2 act on the cross

$$\operatorname{Spec} B \equiv \sum_{x,y:R} xy = 0$$

via the swap.

Then Spec $B/R_{\mu_{\ell}}$ is an algebraic space that is not a scheme.

There is a general way to produce examples of algebraic spaces:

Lemma 1.3. Quotients of geometric stacks X by groups that are covering stacks are geometric stacks, if the isotropy stacks are covering. This happens for example if X has \mathbb{T} -flat identity types or if the group action is free.

Theorem 1.4. Schemes do not have descent, i.e. even if Schemes are stacks, the type of Schemes is not a stack!

Proof. Given a:R, e.g. a=1, the idea is to consider the twisted line with double origin:

$$\sum_{x \in R} \left(\operatorname{Spec} R[T] / (T^2 + a) \right)^{x=0},$$

which is etale-merely a scheme, namely the line with double origin. Then one needs to show, that if it would be a scheme then $T^2 + a$ has a root.

Theorem 1.5. geometric covers for the etale topology are formally étale

Proof. Surprisingly involved. Here is some detail missing ala formally étale implies flat \Box

Proposition 1.6. For the etale or the smooth topology, geometric stacks are stable under taking tangent spaces.

2 A notion of flat for any topology

Definition 2.1. Denote Top the topologies containing Bool, e.g. finer than the Zariski-topology. Let FLAT consists of all the classes of affines $\mathbb P$ containing $1, \perp$ stable under \sum . Given $\mathbb P$: FLAT, $\mathbb T$: Top we say $\mathbb P$ flattens $\mathbb T$ iff $(\mathbb T \subset \mathbb P \text{ and})$

$$\mathbb{T} = \{X : \mathbb{P} \mid ||X||_{\mathbb{T}}\}$$

Theorem 2.2.

- 1. There is at most one \mathbb{P} that flattens a topology. Then we say, the topology is flatten.
- 2. A topology can be idempotently flattened without changing the stacks

3. For any \mathbb{P} : FLAT and any Lavwere Tierney Operator j, $\{X : \mathbb{P} \mid ||X||_j\}$ is flattened by \mathbb{P} .

Topology \mathbb{T}	T-flat
fppf	flat affines
$\acute{\mathrm{e}}$ tale	formally étale + flat affines
Zariski	finite sum of principal opens

The notion of \mathbb{T} -flat turns out to be incredibly useful in the case of the étale -topology (because there \mathbb{T} -flat affines are stable under identity types), for example for showing that Deligne-Mumford stacks are 1-gerbes or that geometric covers are formally étale .

Question: When is an Artin stack Deligne Mumford?

References

- [CCH23] Felix Cherubini, Thierry Coquand, and Matthias Hutzler. A Foundation for Synthetic Algebraic Geometry. 2023. arXiv: 2307.00073 [math.AG]. URL: https://arxiv.org/abs/2307.00073.
- [Moe24a] Hugo Moeneclay. Synthetic Differential Geometry. HoTTUF 2024. 2024. URL: https://hott-uf.github.io/2024/abstracts/HoTTUF_2024_paper_11.pdf.
- [Moe24b] Moeneclay, Hugo. "Sheaves". In: (2024). URL: www.felix-cherubini.de/sheaves.pdf.
- [Sim96] Carlos Simpson. Algebraic (geometric) n-stacks. 1996. arXiv: alg-geom/9609014 [alg-geom]. URL: https://arxiv.org/abs/alg-geom/9609014.