Brandon Chen MATH 445 HW 4 Due Wednesday 4/25 12 A,D,E 13 A,C

19 11,0

12A Prove theorem 12.5 (The SSS similarity theorem). [Hint: Use the similar triangle construction theorem to construct triangle $\Delta D'E'F'$ that is similar to ΔABC , but with $\overline{D'E'}\cong \overline{DE}$. Then use the hypothesis and a little algebra to show that $\Delta D'E'F'\cong \Delta DEF$

Theorem 12.5: If $\triangle ABC$ and $\triangle DEF$ are triangles such that $\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$, then $\triangle ABC \triangle DEF$

By theorem 12.4, we can construct a triangle $\Delta D'E'F'$ similar to ΔABC with side length $D'E'\cong DE$.

Then by construction of similar triangle, $\frac{AB}{D'E'} = \frac{BC}{E'F'} = \frac{BC}{E'F'}$

By transitive property of similarity, $\Delta DEF \ \Delta D'E'F'$

Then by definition of similar triangle, $\frac{DE}{D'E'} = \frac{D'F'}{D'F'} = \frac{E'F'}{E'F'}$

But we know that D'E' = DE

So
$$DE = D'E', D'F' = D'F', E'F' = E'F'$$

Then
$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

- 12D CONVERSE TO THE ANGLE BISECTOR PROPORTION THEOREM: Suppose $\triangle ABC$ is a triangle and D is a point in the interior of \overline{BC} such that $\frac{BD}{DC} = \frac{AD}{AC}$. Prove that \overline{AD} is the bisector of $\angle BAC$
- 12E Prove that the three midsegments of a triangle yield an admissible decomposition of the triangle into four congruent triangles, each of which is similar to the original one and has one quarter the area.

Construct a triangle ΔABC

Let D be the midpoint of \overline{AB}

Let E be the midpoint of \overline{BC}

Let F be the midpoint of \overline{AC}

$$\frac{AD}{AB} = \frac{1}{2} = \frac{AF}{AC}$$

For triangle $\triangle ADF$, it has angle $\angle BAC \cong \angle DAF$

So by theorem 12.6, SAS similarity, $\Delta ADF~\Delta ABC$

Using a similar argument for $\Delta DBE, \Delta EFC$, we find that

 $\Delta DBE \ \Delta ABC$, and $\Delta EFC \ \Delta ABC$

So $\triangle ADF \triangle DBE \triangle EFC$

So by definition of similar triangles $\frac{AD}{DB} = \frac{AF}{DE} = \frac{DF}{BE}$

Since length AD = DB, then AF = DE and DF = BE

So by SSS congruence, $\Delta ADF \cong \Delta DBE$

Similarly, we show that $\Delta EFC \cong \Delta ADF \cong DBE$

For triangle ΔDEF , it is formed by shared side lengths with the other triangles.

We get that $DF \cong DF$, $DE \cong DE \cong AF$, and $FE \cong FE \cong AD$

Then $\Delta DEF \cong \Delta ADF \cong DBE \cong EFC$

And ΔDEF ΔADF ΔDBE ΔEFC ΔABC

13A

13C