Cálculo EE

 1° semestre do ano letivo 2020 — , Departamento de Matemática e Aplicações, Universidade do Minho

Teste 1 — novembro 2020

nº de inscrição: regime:

nome completo:

nº de aluno:

v1

A prova tem a duração de 90' e termina com a palavra "Fim".

Grupo I — Para cada questão deste grupo, assinale através de uma cruz na tabela ao lado qual das quatro proposições é verdadeira (existe apenas uma por questão). Cotações — resposta certa: 2.0; nenhuma 0; mais do que uma proposição selecio**nadas:** -0.5; **resposta errada:** -0.5, sendo 0 a cotação mínima neste grupo.

	1	2	3	4	5	6	7	8
Α								
В								
С								
D								

I.1 Qual é a fórmula correta?

1.2 O limite $\lim_{x\to 0} \frac{e^{x^2}-1}{x}$ vale

	Α	0
ı	$\overline{}$	U

$$\overline{\mathsf{C}}$$
 $-\infty$

I.3 Considere a função $f(x) = \frac{\pi}{6} - \arccos(3x - 1)$. Qual das seguintes afirmações está correta?

A função inversa de
$$f(x)$$
 é $f^{-1}(x) = \frac{1 + \cos(\frac{\pi}{6} - x)}{3}$, $x \in [-1, 1]$

B A função inversa de
$$f(x)$$
 é $f^{-1}(x) = \frac{1 + \cos(\frac{\pi}{6} - x)}{3}$, $x \in \mathbb{R}$

C A função inversa de
$$f(x)$$
 é $f^{-1}(x) = \frac{1}{\frac{\pi}{6} - \arccos(3x - 1)}$, $x \in [-5\frac{\pi}{6}, \frac{\pi}{6}]$

1.4 Qual das seguintes expressões é igual a $f(x) = \arctan(\tan x)$, no domínio indicado?

$$A \mid f(x) = x, \quad x \in \mathbb{R} \setminus \{\frac{\pi}{2}\}$$

B
$$f(x) = x, \quad x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$$

$$C$$
 $f(x) = x, x \in \mathbb{R}$

$$D \mid f(x) = x, \quad x \in \mathbb{R} \setminus \{0\}$$

1.5 Qual o conjunto solução S da equação $|x^2 - 1| < 3$?

$$[A]$$
 $S =] - 2, 2[$

$$\mid \mathsf{B} \mid S = \emptyset$$

$$[C \mid S =]0, 3[$$

$$D S =]-1,1[$$

1.6 O limite $\lim_{x \to +\infty} \frac{e^{x^2} - 1}{x}$ vale

$$B$$
 e

$$\lceil \mathsf{C} \rceil + \infty$$

1.7 A derivada da função $f(x) = \arctan(\sqrt{|x|})$ é

A
$$f'(x) = \frac{\sqrt{|x|}}{2x(1+|x|)}$$
 B $f'(x) = \frac{2\sqrt{x}}{1+x^2}$

$$\boxed{\mathsf{B}} \ f'(x) = \frac{2\sqrt{x}}{1+x^2}$$

$$\boxed{\mathsf{C}} \ f'(x) = \frac{1}{1+|x|}$$

$$\boxed{\mathsf{D}} \ f'(x) = \frac{2\sqrt{|x|}}{1+x^2}$$

I.8 Seja $f(x) = \frac{\ln(|x-5|)}{\sqrt{x-3}}$. Então o domínio é

A]3, ∞ [\{5}

B. ∅

C [3, ∞[

D]5, ∞[

Grupo II — Responda na folha que lhe foi fornecida, por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efetuar, bem como as respetivas justificações.

II.1 [4 pontos] Considere a função real de variável real $f(x) = \begin{cases} ax + b & \text{se } x > 0 \\ 1 - 4x + x^2 & \text{se } x \le 0 \end{cases}$ com a, b constantes.

 $\boxed{\mathsf{A}}$ Determine as constantes a e b de modo que f seja contínua em \mathbb{R} .

B Determine as constantes a e b de modo que f seja derivável em \mathbb{R} .

Fim.

Cálculo EE

 1° semestre do ano letivo 2020 — , Departamento de Matemática e Aplicações, Universidade do Minho

Teste 1 — novembro 2020

regime: n^{Q} de inscrição

 $n^{\underline{o}}$ de inscrição: nome completo:

nº de aluno:

v2

A prova tem a duração de 90' e termina com a palavra "Fim".

Grupo I — Para cada questão deste grupo, assinale através de uma cruz na tabela ao lado qual das *quatro* proposições é verdadeira (existe apenas uma por questão). Cotações — resposta certa: 2.0; nenhuma 0; **mais do que uma proposição selecionadas:** -0.5; **resposta errada:** -0.5, sendo 0 a cotação mínima neste grupo.

	1	2	3	4	5	6	7	8
Α								
В								
С								
D								

I.1 O limite $\lim_{x \to +\infty} \frac{e^{x^2} - 1}{x}$ vale

A 1

B 0

 $C - \infty$

 $D + \infty$

1.2 Considere a função $f(x) = \frac{\pi}{4} - \arcsin(3 - \frac{x}{2})$. Qual das seguintes afirmações está correta?

A O contradomínio de f(x) é \mathbb{R}

B O contradomínio de f(x) é $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

C O domínio de f(x) é [4, 8]

D O domínio de f(x) é]4,8[

I.3 Qual é a fórmula correta?

$$\boxed{A} \quad \sinh(2x) = \frac{1 + \tanh^2(x)}{\tanh^2(x) - 1}$$

$$\boxed{\mathsf{B}} \ \sinh(2x) = \frac{1 - \tanh^2(x)}{1 + \tanh^2(x)}$$

$$\boxed{\mathsf{C}} \ \sinh(2x) = \frac{2\tanh(x)}{\tanh^2(x) - 1}$$

$$\boxed{\mathsf{D}} \ \sinh(2x) = \frac{2\tanh(x)}{1-\tanh^2(x)}$$

1.4 O limite $\lim_{x\to 0} \frac{4x^2}{\sin(2x^2)}$ vale

 $A \mid A \mid A$

 $|\mathsf{B}| - \infty$

C 2

D 0

1.5 Seja $f(x) = \sqrt{\ln(x+2)}$. Então o domínio é

 $A = [0, +\infty[$

 $\boxed{\mathsf{B}}$] -1, $+\infty$ [

C $[-1, +\infty[$

D. Ø

1.6 Qual o conjunto solução S da equação $x^2 < 9$?

A $S =]-\infty, 3[$

B S =] - 3,3[

S = [-3, 3]

D S =] - 9,9[

1.7 O valor de $cos(arcsin(-\frac{\sqrt{2}}{2}))$ é

A 1

 $\boxed{\mathsf{B}} - \frac{\pi}{4}$

C $\frac{\sqrt{2}}{2}$

 $D \frac{\pi}{4}$

1.8 Considere a função $g(x) = \ln(2x) \cdot \arctan(x^2)$ definida no seu domínio. Qual a expressão da sua derivada g'(x)?

$$\boxed{A} \quad \frac{1}{x} \arctan(x^2) + \frac{2x \ln(2x)}{\sqrt{1 - x^4}}$$

$$\boxed{\mathsf{B}} - \frac{2x\ln(2x)}{\sqrt{1-x^4}}$$

B
$$-\frac{2x \ln(2x)}{\sqrt{1-x^4}}$$
C
$$\frac{4x \ln(2x)}{\sqrt{1-x^4}2x} \arccos(x^2)$$

$$\boxed{\mathsf{D}} \ \frac{1}{x} \arctan(x^2) + \frac{2x \ln(2x)}{1 + x^4}$$

Grupo II — Responda na folha que lhe foi fornecida, por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efetuar, bem como as respetivas justificações.

II.1 [4 pontos] Considere a função real de variável real definida por $f(x) = \begin{cases} \arctan(x) & \text{se } x \leq 0 \\ -3x \exp(-x) & \text{se } x > 0 \end{cases}$

- Estude a continuidade de f em x = 0.
- Estude a derivabilidade de f em x = 0.
- Determine f'(x).

Fim