Categoricity for Patterns of Order 2

Timothy J. Carlson

The Ohio State University, Columbus, OH 43210 USA email: carlson.6@asc.ohio-state.edu

In this paper we show how a Categoricity Theorem for patterns of resemblance of order 2, in analogy to Theorem 9.1 of [1] for \mathcal{R}_1 , follows from [2]. This is the result alluded to in the last paragraph of the introduction to [2] where it is stated

... a method of generating the core is established which shows that the order in which patterns of embeddings of this level occur is the same for reasonable hierarchies.

As a consequence, if a reasonable hierarchy \mathcal{B} (see the Categoricity Theorem below) has arbitrary long finite chains in the interpretation of \leq_2 then a finite structure is a pattern of resemblance of order two iff it is isomorphic to a finite substructure of \mathcal{B} (see Corollary 0.8). These results apply to the version of \mathcal{R}_2 defined in the introduction to [2] as initial segments are reasonable hierarchies.

Our basic reference is [2].

We will work in the theory $\mathsf{KP}\omega$ i.e. Kripke-Platek Set Theory plus the Axiom of Infinity.

Fix a language \mathcal{L} including the binary relation symbol \leq . Let \mathcal{L}_2 be the expansion of \mathcal{L} by binary relation symbols \leq_1 and \leq_2 . We also write \leq_0 for \leq . We use *structure* to refer to what is more commonly called a partial structure where the interpretations of the function symbols are allowed to be partial. We will write $|\mathbf{P}|$ for the universe of a structure \mathbf{P} .

For the remainder of the paper, let \mathcal{R} be an EM structure (see Section 3 of [2]) for \mathcal{L} on the class of ordinals with $\preceq^{\mathcal{R}}$ the usual ordering. We assume the restriction of \mathcal{R} to any ordinal is a set, there is a restriction with ω indecomposables and the indecomposables are cofinal in the ordinals.

Since \mathcal{R} is an EM structure, it can be recovered by its restriction to the ω^{th} indecomposable which implies the set of indecomposables is Δ -definable and the function which maps an indecomposable λ to $\mathcal{R} \upharpoonright \lambda$ is Σ -definable.

We also assume \mathcal{B} is a structure for \mathcal{L}_2 whose arithmetic part (i.e. restriction to \mathcal{L}) is an arithmetic structure with respect to \mathcal{R} (Definition 4.1 of [2]) in which the interpretation of each function symbol is total. We do not require that \mathcal{B} be well-ordered with respect to the interpretation of \preceq though our main focus will be on those \mathcal{B} which are. Recall that $\preceq_k^{\mathcal{B}}$ respects $\preceq_{k-1}^{\mathcal{B}}$ if

$$\alpha \preceq_{k-1}^{\mathcal{B}} \beta \preceq_{k-1}^{\mathcal{B}} \gamma \text{ and } \alpha \preceq_{k}^{\mathcal{B}} \gamma \implies \alpha \preceq_{k}^{\mathcal{B}} \beta$$

for all α, β, γ .

Categoricity Theorem for \mathcal{R}_2 . If

- (a) For k = 1, 2, $\mathcal{B} \upharpoonright \alpha \preceq_k^{\infty} \mathcal{B} \upharpoonright \beta$ whenever $\alpha \preceq_k^{\mathcal{B}} \beta$.
- (b) $\preceq_1^{\mathcal{B}}$ and $\preceq_2^{\mathcal{B}}$ are partial orderings of the universe of \mathcal{B} with $\preceq_2^{\mathcal{B}} \subseteq \preceq_1^{\mathcal{B}} \subseteq \preceq_0^{\mathcal{B}}$.
- (c) $\preceq_k^{\mathcal{B}} respects \preceq_{k-1}^{\mathcal{B}} for \ k = 1, 2.$
- (d) The arithmetic part of \mathcal{B} is $\mathcal{R} \upharpoonright \lambda$ for some λ which is indecomposable in \mathcal{R} .

then the core of \mathcal{B} is isomorphic to an initial segment of the core of $\mathcal{R}_2 \upharpoonright \lambda$.

 \mathcal{R}_2 is defined in Definition 5.4 of [2].

For the rest of the paper, assume \mathcal{B} satisfies (a)-(c) of the theorem. We do not assume that \mathcal{B} is necessarily well-ordered by $\leq^{\mathcal{B}}$.

Definition 0.1 A pattern P is \mathcal{B} -covered if there is a covering of P in \mathcal{B} .

See Definition 5.3 of [2] for the definition of pattern (short for pattern of resemblance of order two). See Definition 5.2 of [2] for the definition of covering. That definition is slightly different from that used in [1] in that the range of a covering is required to be closed (Definition 2.3 of [2]).

Definition 0.2 Assume **P** is a pattern, h is a function from the universe of **P** into the universe of \mathcal{B} and φ is a regressive function on the nonminimal indecomposable elements in the range of h (i.e. $h(\alpha) < \alpha$ for any nonminimal

element in the range of h which is indecomposable in \mathcal{R}). Suppose also that \mathbf{P} is a closed substructure of the pattern \mathbf{P}^+ . A function h^+ of the universe of \mathbf{P}^+ into the universe of \mathcal{B} extends h above φ if h^+ extends h and

$$\varphi(h(a)) < h^+(b)$$

for any indecomposable b in \mathbf{P}^+ and any indecomposable a in \mathbf{P} such that $(-\infty, a)^{\mathbf{P}} \prec^{\mathbf{P}^+} b \prec^{\mathbf{P}^+} a$.

Definition 0.3 Assume P and P^+ are patterns and P is a closed substructure of P^+ . The rule $P|P^+$ is **cofinally valid** in $\mathcal B$ if for every covering h of P in $\mathcal B$ and every regressive function φ on the nonminimal indecomposable elements in the range of h there is a covering h^+ of P^+ into $\mathcal B$ which extends h above φ .

Lemma 0.4 Every generating rule is cofinally valid in \mathcal{B} .

Proof. The only properties of \mathcal{R}_2 used in the proof of part 2 of Lemma 13.11 of [2] and the supporting lemmas are the preliminary properties we have assumed of \mathcal{B} . Therefore, the proof carries over with \mathcal{R}_2 replaced by \mathcal{B} .

The proof is by induction on the generation of the generating rules (Definition 13.10 of [2]).

Suppose \mathbf{P}^+ is 1-correct arithmetic extension of \mathbf{P} . The proof that $\mathbf{P}|\mathbf{P}^+$ is cofinally valid in \mathcal{B} is analogous to the proof of Lemma 8.4 of [2]. Assume h is a covering of \mathbf{P} in \mathcal{B} and φ is a regressive function on the nonminimal indecomposables in the range of h. Notice that any covering of \mathbf{P}^+ in \mathcal{B} which extends h vacuously extends h above φ since there are no new indecomposable elements (by Lemma 4.9 of [2]). By Lemma 4.5 of [2], there is an embedding h^+ of the arithmetic part of \mathbf{P}^+ in \mathcal{R} which extends h. Clearly, the range of h^+ is contained in λ . A straightforward argument using the fact that \mathbf{P}^+ is a 1-correct arithmetic extension of \mathbf{P} (Definitions 4.8, 7.1 and 8.1 of [2]) shows h^+ is a covering of \mathbf{P}^+ in \mathcal{B} .

Suppose \mathbf{P}^+ is obtained from \mathbf{P} by 1-reflecting X downward from b to a. The proof that $\mathbf{P}|\mathbf{P}^+$ is cofinally valid in \mathcal{B} is analogous to the proof of Lemma 9.3 of [2]. Assume h is a covering of \mathbf{P} in \mathcal{B} and φ is a regressive function on the nonminimal indecomposables in the range of h. Since h is a covering and $a \prec_1^{\mathbf{P}} b$, $h(a) \prec_1^{\mathcal{B}} h(b)$ implying $h(a) \prec_1^{\infty} h(b)$ in \mathcal{B} . Therefore, there is \tilde{X} such that $h[(-\infty, a)^{\mathbf{P}}] \cup \{\varphi(h(a))\} < \tilde{X} < h(b)$ and $h[(-\infty, a)^{\mathbf{P}}] \cup \tilde{X}$ is both closed and a covering of $h[(-\infty, a)^{\mathbf{P}}] \cup h[X]$. Let h^+ be the order

isomorphism of \mathbf{P}^+ and $h[|\mathbf{P}|] \cup \tilde{X}$. A straightforward argument using the fact that \mathbf{P}^+ is obtained from \mathbf{P} by 1-reflecting X downward from a to b (Definition 9.1 of [2]) shows that h^+ is a covering of \mathbf{P}^+ which extends h above φ .

Suppose \mathbf{P}^+ is obtained from \mathbf{P} by 2-reflecting X downward from b to a. The proof that $\mathbf{P}|\mathbf{P}^+$ is cofinally valid in \mathcal{B} is analogous to the proof of Lemma 9.6 of [2] and similar to the proof in the previous paragraph (using Definition 9.4 of [2] instead of Definition 9.1).

Assume $\mathbf{P}|\mathbf{P}^+$ is a generating rule which is cofinally valid in \mathcal{B} and $\mathbf{P}|\mathbf{P}^*$ is obtained by 2-reflecting $\mathbf{P}|\mathbf{P}^+$ upward from a to b. The proof that $\mathbf{P}|\mathbf{P}^*$ is cofinally valid in \mathcal{B} is analogous to the proof of Lemma 10.3 of [2]. Let $X = |\mathbf{P}^+| \setminus |\mathbf{P}|$. By Definition 10.1 of [2], \mathbf{P}^+ is a continuous extension of \mathbf{P} at a (see Definitions 7.1 and 7.4 of [2]) and $a \preceq_2^{\mathbf{P}} b$. Assume h is a covering of \mathbf{P} in \mathcal{B} and φ is a regressive function on the nonminimal indecomposables in the range of h. Since $a \preceq_2^{\mathbf{P}} b$, $h(a) \preceq_2^{\mathcal{B}} h(b)$ implying $h(a) \preceq_2^{\infty} h(b)$ in \mathcal{B} . Since $\mathbf{P}|\mathbf{P}^+$ is cofinally valid in \mathcal{B} , there are cofinally many X below h(a) such that $h[(-\infty, a)^{\mathbf{P}}] \cup X$ is closed and a covering of $(-\infty, a)^{\mathbf{P}} \cup X$ (as a substructure of \mathbf{P}^+). Since $h(a) \preceq_2^{\infty} h(b)$ in \mathcal{B} , there are cofinally many X below h(b) such that $h[(-\infty, a)^{\mathbf{P}}] \cup X$ is closed and a covering of $(-\infty, a)^{\mathbf{P}} \cup X$. Choose such X such that $\varphi(h(b)) < X$. A straightforward argument using the fact that $\mathbf{P}|\mathbf{P}^*$ is obtained by 2-reflecting $\mathbf{P}|\mathbf{P}^+$ upward from a to b (Definition 10.1 of [2]) shows that h^+ is a covering of \mathbf{P}^* which extends h above φ .

Assume $\mathbf{P}_i|\mathbf{P}_{i+1}$ is a generating rule which is cofinally valid in \mathcal{B} for i < n and \mathbf{P}^+ is a closed substructure of \mathbf{P}_n which extends \mathbf{P}_0 . An easy argument by induction shows $\mathbf{P}_0|\mathbf{P}_i$ is cofinally valid in \mathcal{B} for $i \leq n$. The fact that $\mathbf{P}_0|\mathbf{P}_n$ is cofinally valid in \mathcal{B} clearly implies that $\mathbf{P}_0|\mathbf{P}^+$ is also.

Assume $\mathbf{P}|\mathbf{P}^+$ is a generating rule which is cofinally valid in \mathcal{B} and h is a continuous embedding of \mathbf{P} in \mathbf{Q} . Let \mathbf{Q}^+ be a minimal lifting (Definitions 12.1 and 12.4 of [2]) of $\mathbf{P}|\mathbf{P}^+$ to \mathbf{Q} with respect to h and let h^+ be the lifting map. The proof that $\mathbf{Q}|\mathbf{Q}^+$ is cofinally valid in \mathcal{B} is analogous to the proof of Lemma 13.8 of [2]. By identifying \mathbf{P} and \mathbf{P}^+ with their images under h^+ , we may assume h^+ is the identity on $|\mathbf{P}^+|$. Assume f is a covering of \mathbf{Q} in \mathcal{B} and assume φ is a regressive function on the nonminimal indecomposables in the range of f. By increasing the values of φ if necessary, we may assume that $f[(-\infty,a)^{\mathbf{Q}}] \leq \varphi(h(a))$ whenever $a \in |\mathbf{P}|$ and h(a) is indecomposable. Since $\mathbf{P}|\mathbf{P}^+$ is cofinally valid in \mathcal{B} , there is a covering g of \mathbf{P}^+ in \mathcal{B} which extends the restriction of f to $|\mathbf{P}|$ above the restriction of φ to the indecomposables in $f[|\mathbf{P}|]$. The restriction of f to the idecomposables of \mathbf{Q}^+ is order

preserving. By Lemma 4.5 of [2], this map extends to a unique arithmetic embedding of the arithmetic part of \mathbf{Q}^+ in \mathcal{B} which must extend both f and g. Therefore, $f \cup g$ is an arithmetic embedding of the arithmetic part of \mathbf{Q}^+ in \mathcal{B} . Let \mathbf{Q}^* be the pattern with the same arithmetic part as \mathbf{Q}^+ which is induced by \mathcal{B} through $f \cup g$ i.e. so that $f \cup g$ is an embedding of \mathbf{Q}^* in \mathcal{B} . Consider the structure \mathbf{Q}' which has the same arithmetic part as \mathbf{Q}^+ so that the interpretation of \leq_k is the intersection of the interpretations of \leq_k in \mathbf{Q}^+ and \mathbf{Q}^* . A straightforward argument shows \mathbf{Q}' is a lifting of $\mathbf{P}|\mathbf{P}^+$ to \mathbf{Q} . Since \mathbf{Q}^+ is a minimal lifting of $\mathbf{P}|\mathbf{P}^+$ to \mathbf{Q} , \mathbf{Q}' must be a cover of \mathbf{Q}^+ (actually, equal to \mathbf{Q}^+) implying \mathbf{Q}^* is a cover of \mathbf{Q}^+ . Therefore, $f \cup g$ is a covering of \mathbf{Q}^+ in \mathcal{B} . Clearly, $f \cup g$ extends f above φ .

Lemma 0.5 Assume P and Q are patterns and P generates Q. Any covering of P in B extends to a covering of Q in B.

Proof. Straightforward from the previous lemma (see Definition 14.2 of [2]). **QED**

The following two lemmas will be used only to show that if the arithmetic part of \mathcal{B} is the restriction of \mathcal{R} to an indecomposable of \mathcal{R} then every \mathcal{B} -covered pattern is covered i.e. \mathcal{R}_2 -covered. Hence, if one is willing to accept the assumption that every pattern is covered (which increases the proof-theoretic strength of the metatheory to just beyond $\mathsf{KP}\ell_0$) then these lemmas can be omitted.

The next lemma is an observation that the proofs of parts 3, 4, 6 and 8 of Lemma 14.8 in [2] actually prove stronger assertions. Notice that in our base theory $\mathsf{KP}\omega$, saying that a linear ordering is order isomorphic to an ordinal is stronger than saying it is a well-ordering.

Lemma 0.6 Assume \mathbf{P}_n $(n \in \omega)$ is an increasing sequence of patterns such that $\mathbf{P}_n|\mathbf{P}_{n+1}$ is a generating rule for each $n \in \omega$. Let \mathbf{P}_{∞} be the union of the \mathbf{P}_n $(n \in \omega)$.

- 3*. Every covering of P_0 in \mathcal{B} extends to a covering of P_{∞} in \mathcal{B} .
- 4*. Assume $(|\mathcal{B}|, \preceq^{\mathcal{B}})$ is order isomorphic to an ordinal. If \mathbf{P}_0 is \mathcal{B} -covered then $(|\mathbf{P}_{\infty}|, \preceq^{\mathbf{P}_{\infty}})$ is order isomorphic to an ordinal
- 6* If \mathbf{P}_{∞} is a well-ordered structure (i.e. $\preceq^{\mathbf{P}_{\infty}}$ is a well-ordering of \mathbf{P}_{∞}) and \mathbf{Q} is a closed substructure of \mathbf{P}_{∞} which is a covering of \mathbf{P}_n then $|\mathbf{P}_n| \preceq^{\mathbf{P}_{\infty}}_{pw} |\mathbf{Q}|$.

8*. Assume P_n $(n \in \omega)$ is fair and P_{∞} is a well-ordered structure.

(a) For k = 1, 2 and $a, b \in |\mathcal{R}|$

$$a \preceq_k^{\infty} b \implies a \preceq_k^{\mathbf{P}_{\infty}} b$$

(b) If $(|\mathbf{P}_{\infty}|, \preceq^{\mathbf{P}_{\infty}})$ is order isomorphic to an ordinal then \mathbf{P}_{∞} is isomorphic to $\mathcal{R}_2 \upharpoonright \delta$ for some δ which is indecomposable in \mathcal{R} .

Proof. Part 3* follows from Lemma 0.5.

Part 4* follows from part 3*.

For part 6*, notice that parts 1, 5 and 7 of Lemma 14.8 of [2] implies that \mathbf{P}_{∞} satisfies our preliminary assumptions on \mathcal{B} i.e. the arithmetic part of \mathbf{P}_{∞} is an arithmetic structure with respect to \mathcal{R} and parts (a)-(c) of the Categoricity Theorem hold. Taking \mathcal{B} to be \mathbf{P}_{∞} in part 3* we see there is a covering of \mathbf{P}_{∞} into itself which extends the covering of \mathbf{P}_n onto \mathbf{Q} . Since \mathbf{P}_{∞} is well-ordered, we must have $|\mathbf{P}_n| \leq_{pw}^{\mathbf{P}_{\infty}} |\mathbf{Q}|$.

The proof of part 8 of Lemma 14.8 of [2] actually shows part 8*(a) if we replace applications of part 6 of Lemma 14.8 by applications of part 6* above.

For part 8*(b), we may assume the arithmetic part of \mathcal{B} is $\mathcal{R} \upharpoonright \delta$ for some ordinal δ which is indecomposable in \mathcal{R} by parts 1 and 5 of Lemma 14.8 and Lemmas 4.4 and 4.5 of [2]. A simple induction using part 7 of Lemma 14.8 of [2] and part 8*(a) shows that for $\alpha \leq \delta$, the restriction of $\leq_k^{\mathcal{B}}$ to α is the same as the restriction of $\leq_k^{\mathcal{R}_2}$ to α for k = 1, 2. QED

Lemma 0.7 If the arithmetic part of \mathcal{B} is isomorphic to an initial segment of \mathcal{R} then any \mathcal{B} -covered pattern is covered.

Proof. Assume h is a covering of the pattern **P** in \mathcal{B} . Let \mathbf{P}_n $(n \in \omega)$ be a fair sequence of patterns with $\mathbf{P}_0 = \mathbf{P}$.

By part 3^* of the previous lemma, there is a covering h^+ of \mathbf{P}_{∞} in \mathcal{B} which extends h. By part $8^*(b)$ of the previous lemma, \mathbf{P}_{∞} is isomorphic to an initial segment of \mathcal{R}_2 . The restriction of that isomorphism to $|\mathbf{P}|$ is a covering of \mathbf{P} in \mathcal{R}_2 .

Proof of the Categoricity Theorem. Our proof will follow the general lines of the proof of Theorem 9.1 of [1].

Claim1. Assume **P** is \mathcal{B} -covered and **P**' is a minimal element with respect to $\preceq_{pw}^{\mathcal{B}}$ (the pointwise partial ordering of finite subsets of \mathcal{B}) among the closed substructures of \mathcal{B} which are coverings of **P**.

- (i) If **Q** is a substructure of \mathcal{B} which is a cover of **P** then $|\mathbf{P}'| \leq_{pw} |\mathbf{Q}|$.
- (ii) $\mathbf{P} \cong \mathbf{P}'$.

For (i), suppose \mathbf{Q} is a substructure of \mathcal{B} which is a cover of \mathbf{P} . By Theorem 14.10 of [2], there are finite closed substructures \mathbf{R} and \mathbf{P}^* of \mathcal{R}_2 which are isominimal in \mathcal{R}_2 and isomorphic to $\mathbf{P}' \cup \mathbf{Q}$ (with a slight abuse of notation) and \mathbf{P} respectively. Let $\overline{\mathbf{P}'}$ and $\overline{\mathbf{Q}}$ be the images of \mathbf{P}' and \mathbf{Q} respectively under the isomorphism of $\mathbf{P}' \cup \mathbf{Q}$ and \mathbf{R} . By part 2 of Theorem 14.10 of [2], $|\mathbf{P}^*| \leq_{pw} |\overline{\mathbf{P}'}|$, $|\overline{\mathbf{Q}}|$. By part 5 of Theorem 14.10 of [2], $|\overline{\mathbf{P}'} \cup \overline{\mathbf{Q}}|$ generates $\mathbf{P}^* \cup \overline{\mathbf{P}'} \cup \overline{\mathbf{Q}}$. By Lemma 0.5, there is a covering h of $\mathbf{P}^* \cup \overline{\mathbf{P}'} \cup \overline{\mathbf{Q}}$ in \mathcal{B} which extends the isomorphism of $|\overline{\mathbf{P}'}| \cup \overline{\mathbf{Q}}|$ with $|\mathbf{P}'| \cup \mathbf{Q}|$. Let $|\mathbf{P}''|$ be the image of $|\mathbf{P}^*|$ under |h|. We have $|\mathbf{P}''| \leq_{pw} |\mathbf{P}'|$, $|\mathbf{Q}|$. By the minimality of $|\mathbf{P}'|$, $|\mathbf{P}''| = \mathbf{P}'$. Therefore, $|\mathbf{P}'| \leq_{pw} |\mathbf{Q}|$.

For part (ii), follow the argument for part (i) (one may take $\mathbf{Q} = \mathbf{P}'$) to conclude from $\mathbf{P}'' = \mathbf{P}'$ that $\mathbf{P}^* = \overline{\mathbf{P}'}$. Since $\mathbf{P}^* \cong \mathbf{P}$ and $\overline{\mathbf{P}'} \cong \mathbf{P}'$, $\mathbf{P} \cong \mathbf{P}'$.

For any covered pattern \mathbf{P} , let \mathbf{P}^* be the isominimal substructure of \mathcal{R}_2 which is isomorphic to \mathbf{P} . For \mathbf{P} an isominimal substructure of \mathcal{B} , define $f_{\mathbf{P}}$ to be the isomorphism of \mathbf{P} and \mathbf{P}^* . Let f be the union of the $f_{\mathbf{P}}$. A straightforward argument shows f is an embedding of the core of \mathcal{B} into the core of \mathcal{R}_2 .

To show the range of f is an initial segment of \mathcal{R}_2 , assume $\alpha < \beta$ where β is in the range of f. There is an isominimal substructure \mathbf{P} of \mathcal{B} such that β is in the range of $f_{\mathbf{P}}$. Let \mathbf{P}_n ($n \in \omega$) be a fair sequence with $\mathbf{P}_0 = \mathbf{P}$ and let \mathbf{P}_{∞} be the union of the \mathbf{P}_n . By Lemma 14.9 of [2], there is an isomorphism g of \mathbf{P}_{∞} with $\mathcal{R}_2 \upharpoonright \delta$ for some δ which is indecomposable in \mathcal{R} and the image of \mathbf{P}_n under g is \mathbf{P}_n^* for each $n \in \omega$. Fix n such that α is in \mathbf{P}_n^* . By Lemma 0.5 and Claim 1, there is an isominimal substructure \mathbf{Q} of \mathcal{B} which is isomorphic to \mathbf{P}_n . Since α is in \mathbf{P}_n^* which the range of $f_{\mathbf{Q}}$, α is in the range of f. \mathbf{QED}

Corollary 0.8 Assume \mathcal{B} satisfies (a)-(d) of the Categoricity Theorem for \mathcal{R}_2 . If there are arbitrarily long finite chains in $\preceq_2^{\mathcal{B}}$ then the core of \mathcal{B} is isomorphic to the core of \mathcal{R}_2 and a finite structure is isomorphic to a finite closed substructure of \mathcal{B} iff it is a pattern of resemblance of order 2.

Proof. Assume there are arbitrarily long finite chains in $\preceq_2^{\mathcal{B}}$. By the Categoricity Theorem, the core of \mathcal{B} is isomorphic to an initial segment of the core of \mathcal{R}_2 . Since this initial segment contains arbitrarily long finite chains in \leq_2 , it must be the entire core of \mathcal{R}_2 by part 2 of Theorem 14.10 of [2]. Hence, every pattern of resemblance of order two is isomorphic to a substructure of \mathcal{B} . The converse is straightforward after noticing that condition (a) of the Categoricity Theorem implies that α is indecomposable whenever $\alpha \preceq_1^{\mathcal{B}} \beta$ and both α and β are indecomposable whenever $\alpha \preceq_2^{\mathcal{B}} \beta$. **QED**

Corollary 0.9 Assume \mathcal{R}'_2 is the alternate definition of \mathcal{R}_2 from the introduction to [2] using Σ_1 and Σ_2 elementarity. $\mathcal{R}'_2 \upharpoonright \delta$ satisfies the (a)-(d) of the Categoricity Theorem for each indecomposable δ and, hence, the conclusions of the Categoricity Theorem and the previous corollary hold for \mathcal{R}_2 .

Proof. Straightforward after noting that in \mathcal{R}'_2 , if $\alpha < \beta$, β is a limit ordinal and $\alpha \leq_1 \xi$ for all ξ with $\alpha \leq \xi < \beta$ then $\alpha \leq_1 \beta$. QED

One can prove that \leq_2 in \mathcal{R}'_2 has arbitrarily long finite chains well within ZF.

References

- 1. Elementary patterns of resemblance, Annals of Pure and Applied Logic 108 (2001), pp. 19-77.
- 2. Patterns of resemblance of order 2, Annals of Pure and Applied Logic 158 (2009), pp. 90-124.