Gli automorfismi di S_n

La struttura di $Aut(S_n)$

Riflessione 1. Con lo studio dei prodotti semidiretti è nata l'esigenza di studiare la possibile struttura del gruppo degli automorfismi di un dato gruppo. Vediamo quanto possiamo dire su $Aut(S_n)$; in particolare vogliamo dimostrare che:

$$\forall i \geq 3, i \neq 6, \mathcal{A}ut(\mathcal{S}_i) \simeq \mathcal{S}_i$$

Prima di arrivare alla dimostrazione vediamo alcuni risultati preliminari.

Osservazione 1. Siano H,K due gruppi e $H \stackrel{\phi}{\longrightarrow} K$ un automorfismo. Allora dette H_1,\ldots,H_i le classi di coniugio di H e K_1,\ldots,K_j le classi di coniugio di K abbiamo che

$$\forall m_1^i, \exists n_1^j \ t.c. \ \phi(H_m) = K_n$$

Cioè un automorfismo manda classi di coniugio in classi di coniugio.

Dimostrazione. Sia $h_m \in H_m$ e $\gamma = \phi(h_m)$. Certamente γ appartiene ad una classe di coniugio in K (la sua classe di coniugio), che chiameremo K_n . Vogliamo a questo punto dimostrare

$$\phi(H_m) = K_n$$

'⊆' sia $h = sh_m s^{-1}$ un generico elemento di H_m , visto che ϕ è per ipotesi un automorfismo possiamo scrivere:

$$\phi(h) = \phi(sh_m s^{-1}) = \phi(s)\phi(h_m)\phi(s)^{-1} = \phi(s)\gamma\phi(s)^{-1} \in K_n$$

'⊇' Sia $k \in K_n$ un generico elemento della classe di coniugio di γ , sappiamo allora di poter scrivere, per qualche elemento $\check{k} \in K$, $k = \check{k}\gamma\check{k}^{-1}$. Ma la ϕ è una funzione bigettiva, esiste dunque $\check{h} \in H$ tale che $\phi(\check{h}) = \check{k}$. Sappiamo inoltre che $\check{h}h_m\check{h}^{-1}$ continua ad appartenere ad H_m . Possiamo quindi scrivere:

$$\phi(\check{h}h_m\check{h}^{-1}) = \check{k}\gamma\check{k}^{-1} = k$$

e visto che $\check{h}h_m\check{h}\in H_m$ abbiamo la tesi.

Definizione 1 (Automorfismi interni). Sia \mathcal{G} un gruppo e $\mathcal{G} \xrightarrow{C} \mathcal{A}ut(\mathcal{G})$ la funzione coniugio che associa ad ogni elemento $g \in \mathcal{G}$ il coniugio rispetto a g (che è sempre un automorfismo). Sappiamo dal corso di Aritmetica che C è un omomorfismo

L'immagine di C viene detta insieme degli automorfismi interni e si scrive $Int(\mathcal{G})$. Quindi $Int(\mathcal{G}) < \mathcal{A}ut(\mathcal{G})$ sono i coniugi in $\mathcal{A}ut(\mathcal{G})$.

1

Teorema 1.

$$\forall n \geq 3, \ n \neq 6, \ \mathcal{A}ut\left(\mathcal{S}_n\right) \simeq \mathcal{S}_n$$

Dimostrazione. Notiamo innanzitutto che l'affermazione è falsa per n=2, difatti $S_2 \simeq \mathbb{Z}_2$ ma $\mathcal{A}ut(S_2) \simeq \mathbb{Z}_2^* \simeq \{e\}$. Considerato allora $n \geq 3$, siano in S_n .

$$T_{1} = \{(a,b) \ t.c. \ a \neq b\} \subseteq \mathcal{S}_{n}$$

$$T_{2} = \{(a_{(1,1)}, a_{(1,2)})(a_{(2,1)}, a_{(2,2)}) \ t.c. \ (i,j) \neq (k,s) \implies a_{(i,j)} \neq a_{(k,s)}\} \subseteq \mathcal{S}_{n}$$

$$T_{k} = \{(a_{(1,1)}, a_{(1,2)}) \dots (a_{(k,1)}, a_{(k,2)}) \ t.c. \ (i,j) \neq (k,s) \implies a_{(i,j)} \neq a_{(k,s)}\} \subseteq \mathcal{S}_{n}$$

Cioè T_i è l'insieme delle permutazioni che sono prodotto di i trasposizioni disgiunte. Abbiamo quindi che per ogni i, T_i è una classe di coniugio. Osserviamo inoltre che $\bigcup T_i$ è l'insieme di tutti e soli gli elementi di ordine 2 in \mathcal{S}_n . Sia dunque $\phi \in \mathcal{A}ut(\mathcal{S}_n)$, per quanto appena detto sull'unione dei T_i e per l'Osservazione 1 possiamo dire che $\phi(T_1) = T_j$ per qualche j, infatti ϕ deve mandare elementi di ordine 2 in elementi con lo stesso ordine. Contiamo quindi le cardinalità dei vari T_i , abbiamo che:

$$|T_1| = \binom{n}{2}$$

$$|T_k| = \frac{\binom{n}{2}\binom{n-2}{2}\cdots\binom{n-2(k-1)}{2}}{k!} = \frac{n \cdot \dots \cdot (n-2k+1)}{2^k k!}$$

Se abbiamo che $\phi T_1 = T_k$ dobbiamo avere che le cardinalità dei due insiemi sono uguali. Possiamo dire:

$$|T_1| = |T_k| \iff 2^{k-1}k! = (n-2)(n-3) \cdot \dots \cdot (n-2k+1)$$

Se k=2 questa equazione diventa 4=(n-2)(n-3), che non ha soluzioni intere. Nei casi $k\geq 3$ l'equazione è invece equivalente a:

$$2^{k-1} = (n-2)(n-3) \cdot \dots \cdot (n-k+1) \binom{n-k}{k}$$

Questa equazione, per i vari k:

- k=3 Nel caso k=3 questa equazione ha soluzione solo se n=6 (che infatti vedremo essere un caso particolare).
- k>3 In questi casi l'assurdo si ha dal fatto che vogliamo esprimere una potenza di 2 come prodotto di vari fattori fra cui sono presenti un numero pari e un numero dispari (i numeri sono n-2 e n-3, che quindi creano un assurdo per la fattorizzazione se n>4 ma il caso n=4 si esclude con una semplice verifica).

Sappiamo dunque che se ϕ è un automorfismo di \mathcal{S}_n con $n \neq 6$ deve essere che $\phi(T_1) = T_1$. Ma sappiamo anche che ogni elemento di \mathcal{S}_n può essere scritto come prodotto di elementi di T_1 , quindi $\phi \mid_{T_1}$ determina completamente ϕ .

Per quanto visto possiamo dire che $\exists a_1, a_2 \in \{1, \dots, n\}$ tali che

$$\phi((1,2)) = (a_1, a_2)$$

Sappiamo inoltre che (1,2) e (1,3) non commutano, quindi non possono commutare nemmeno $\phi((1,2))$ e $\phi((1,3))$. Dobbiamo quindi avere (senza perdita di generalità)

$$\phi((1,3)) = (a_1, a_3)$$

e inoltre, per iniettività e dobbiamo avere $a_1 \neq a_2 \neq a_3 \neq a_1$. Notiamo che abbiamo:

$$\phi((2,3)) = \phi((1,3)(1,2)(1,3)) = (a_1, a_3)(a_1, a_2)(a_1, a_3) = (a_2, a_3)$$

Vogliamo dimostrare per induzione su i che $\phi((1,i)) = (a_1, a_i)$ e che tutti gli a_j sono due a due distinti. Sia dunque i > 3 e supponiamo quanto detto vero per tutti i numeri fino a i - 1. Sappiamo che (1, i) non commuta con (1, 2), possono esserci quindi solo due casi:

- $\phi((1,i)) = (a_2, a_i)$ per un certo a_i diverso da $a_1, a_2, \ldots, a_{i-1}$. Ma allora avremmo che $\phi((1,i))$ non commuta con $\phi((2,3))$ mentre invece (1,i) commuta con (2,3). Assurdo.
- Deve quindi essere $\phi((1,i)) = (a_1, a_i)$. Ma allora, per iniettività della funzione, dobbiamo avere che $a_i \neq a_j$ per tutti gli j < i (altrimenti (1,i) e (1,j) avrebbero la stessa immagine).

Abbiamo scoperto che ϕ altro non è che un coniugio, infatti vi è un coniugio che fa la stessa cosa: il coniugio rispetto a

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$

Quindi C_{σ} e ϕ sono due automorfismi di S_n che coincidono sulle permutazioni del tipo (1, i), ma allora (visto che sono omomorfismi) devono coincidere su tutto S_n . Dobbiamo quindi avere $\phi = C_{\sigma}$.

Per concludere consideriamo l'omomorfismo:

$$C: \quad \mathcal{S}_n \quad \longrightarrow \quad \mathcal{A}ut\left(\mathcal{S}_n\right)$$

$$\quad \qquad \qquad \qquad C_{\sigma}$$

Sappiamo che, per $n \geq 3$, $Ker(C) = Z(S_n) = \{e\}$, inoltre $Imm(C) = Int(S_n) < Aut(S_n)$. Abbiamo quindi un omomorfismo iniettivo (quindi un automorfismo con l'immagine) tra S_n e $Aut(S_n)$ che ha come immagine $Int(S_n)$ (il gruppo dei coniugi), dunque $S_n \simeq Int(S_n)$.

Concludiamo quindi dicendo che abbiamo dimostrato:

$$S_n \simeq Int(S_n) = Aut(S_n)$$