CDStore: Toward Reliable, Secure, and Cost-Efficient Cloud Storage via Convergent Dispersal

Mingqiang Li, Chuan Qin, Patrick P. C. Lee
The Chinese University of Hong Kong

USENIX ATC'15

Multiple-Cloud Storage

- Exploits diversity of multiple-cloud storage:
 - Reliability
 - Fault tolerance
 - No vendor lock-in [Abu-Libdeh, SOCC'10]
 - Security

Secret Sharing

- Input: secret; output: multiple shares
- > Properties:
 - Reliability: secret is recoverable from enough shares
 - Security: secret is inaccessible without enough shares
- > Examples:
 - Shamir's [CACM'79]; Ramp's [Crypto'84]; AONT-RS [FAST'11]

Challenges

- Secret sharing prohibits deduplication
 - Reason: Security builds on embedded randomness
 - → Identical secrets lead to different shares
 - → High bandwidth and storage overhead
- ➤ Our HotStorage'14 paper convergent dispersal:
 - Replaces random input with deterministic hash derived from original secret

> How to deploy in a real system?

Shares

Our Contributions

- CDStore: a unified multi-cloud storage system with reliability, security, and cost efficiency
 - Also applicable for distributed storage systems
- > A new instantiation of convergent dispersal
 - Higher throughput than our prior approach
- Two-stage deduplication
 - Bandwidth and storage savings
 - Secure
- Trace-driven experiments and cost analysis

CDStore Architecture

- Client-server model
- ➤ For whom? an organization that needs storage outsourcing for users' data
- > For what workload? backup and archival

Goals

> Reliability:

- Availability if some clouds are operational
- No metadata loss if CDStore clients fail

> Security:

- Confidentiality (i.e., data is secret)
- Integrity (i.e., data is uncorrupted)
- Robust against side-channel attacks

> Cost efficiency:

- Low storage cost via deduplication
- Low VM computation and metadata overheads

Assumptions

- > Reliability:
 - Efficient repair is not considered
- > Security:
 - Secrets drawn from large message space, so bruteforce attacks are infeasible [Bellare, Security'13]
 - Encrypted and authenticated client-server channels
- Cost efficiency:
 - No billing for communication between co-locating VMs and storage

Convergent AONT-RS (CAONT-RS)

- > Extension of AONT-RS [Resch, FAST'11]
- Optimal asymmetric encryption padding (OAEP) AONT
 - Single encryption on a large block
- Other instantiations in our prior HotStorage'14 paper on Ramp's and Rivest's AONT

CAONT-RS Encoding

- ➤ Generate CAONT package (Y, t):
 - $h = \mathbf{H}(X)$
 - $Y = X \oplus \mathbf{G}(h)$
 - $\mathbf{G}(h) = \mathbf{E}(h, C)$
 - $t = h \oplus \mathbf{H}(Y)$

H(.): hash function (e.g., SHA-256)

G(.): generator function

E(.): encryption function (e.g., AES-256)

C: constant value block

Encode CAONT package with Reed-Solomon codes

Deduplication

- Deduplication at the secret level
 - Same secret → same shares that are dedup'ed
 - Ensure the same share in the same cloud
 - Share i stored in cloud i, where i = 0, 1, ..., n-1
- Naïve approach: client-side global deduplication
 - Saves most upload bandwidth and storage
 - Susceptible to side-channel attacks
 - Attackers can infer if other users have stored same data

Two-Stage Deduplication

- > Decomposes deduplication into two stages:
 - Client-side intra-user deduplication
 - Each CDStore client uploads unique shares of same user
 - Effective for backup workloads
 - Server-side Inter-user deduplication
 - Each CDStore server dedups same shares from different users
 - Effective if many users share similar data (e.g., VM images)
- > Fingerprint index maintained by CDStore servers

CDStore Implementation

- ➤ C++ implementation on Linux
- > Features:
 - Content-defined chunking (avg size = 8KB)
 - Parallelization of encoding and I/O operations
 - Batched network and storage I/Os
- ➤ Open issues:
 - Storage reclaim via garbage collection and compression
 - Multiple CDStore servers per cloud
 - Consistency due to concurrent updates

Experimental Setup

> Testbeds:

- Local machines: Xeon 2.4GHz (slow), i5 3.4GHz (fast)
- LAN: Multiple i5 machines via 1Gb switch
- Cloud: Google, Azure, AWS and Rackspace

> Datasets:

- Synthetic unique and fully duplicate data
- FSL dataset from Stony Brook University
 - Weekly file system snapshots
- Our own 156 VM images in a programming course
 - Weekly VM image snapshots

Encoding Speeds

- OAEP-based AONT brings high performance gain
 - CAONT-RS achieves 183MB/s on Local-i5
- Encoding speed slightly decreases with n
 - RS coding has small overhead
- Multi-threading boosts speed (details in paper)

Storage Savings

- Intra-user dedup achieves high saving
 - At least 98% after Week 1
- Inter-user dedup is effective for VM dataset
 - Week 1: 93.4%
 - After Week 1: 11.8% 47.0%

Transfer Speeds

- (Single-client) upload speeds in LAN:
 - Unique data ~ 77MB/s (network bound)
 - Duplicate data ~ 150MB/s (bounded by encoding + chunking)
- > Performance in cloud bounded by Internet bandwidth
- Aggregate upload speeds increase with number of clients (details in paper)

Cost Analysis

- Compared to solutions w/o dedup:
 - (1) single cloud; (2) multiple clouds with AONT-RS
- ➤ At least 70% savings when dedup ratio is 10x 50x
- > Jagged curves due to switching cheapest VM instances

Conclusions

- CDStore: a unified multi-cloud storage system with three goals in mind: reliability, security, and cost efficiency
- ➤ Building blocks:
 - Convergent dispersal
 - Two-stage deduplication
- > Source code:
 - http://ansrlab.cse.cuhk.edu.hk/software/cdstore