[Homework 2]: Finite Markov Chains, Coupling

Problem 1 (Optimal Coupling)

Let Ω be a finite state space and μ, ν be two distributions over Ω . Prove that there exists a coupling ω of μ and ν such that

$$\mathbf{Pr}_{(X,Y)\sim\omega}\left[X
eq Y
ight]=D_{\mathrm{TV}}(\mu,
u).$$

You need to explicitly describe how ω is constructed.

Problem 2 (Stochastic Dominance)

Let $\Omega \subseteq \mathbb{Z}$ be a finite set of integers. Let μ and ν be two distributions over Ω . We say μ is stochastic dominance over ν if for $X \sim \mu$, $Y \sim \nu$ and any $a \in \Omega$,

$$\mathbf{Pr}\left[X \geq a\right] \geq \mathbf{Pr}\left[Y \geq a\right].$$

We write $\mu \succeq \nu$.

- Consider the binomial distirbution $\operatorname{Binom}(n,p)$ where $X \sim \operatorname{Binom}(n,p)$ satisfies for any $a=0,1,\ldots,n$, $\operatorname{Pr}[X=a]=\binom{n}{a}\cdot p^a\cdot (1-p)^{n-a}$. Prove that for any $p,q\in[0,1]$, $\operatorname{Binom}(n,p)\succeq\operatorname{Binom}(n,q)$ if and only if $p\geq q$.
- A coupling ω of μ and ν is monotone if $\mathbf{Pr}_{(X,Y)\sim\omega}\left[X\geq Y\right]=1$. Prove that $\mu\succeq\nu$ if and only if a monotone coupling of μ and ν exists.
- Consider the Erdős–Rényi (https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model) model $\mathcal{G}(n,p)$ for random graph. In this model, each $G\sim \mathcal{G}(n,p)$ is a simple undirected random graph with n vertices where each $\{i,j\}\in \binom{[n]}{2}$ is present with probability p independently. Prove that for any $p,q\in[0,1]$ satisfying $p\geq q$, it holds that $\mathbf{Pr}_{G\sim\mathcal{G}(n,p)}\left[G \text{ is connected}\right]\geq \mathbf{Pr}_{H\sim\mathcal{G}(n,q)}\left[H \text{ is connected}\right].$

Problem 3 (Total Variation Distance is Non-Increasing)

Let P be the transition matrix of an irreducible and aperiodic Markov chain with state space Ω . Let π be its stationary distribution. Let μ_0 be an arbitrary distribution on Ω and $\mu_t^{\mathtt{T}}=\mu_0^{\mathtt{T}}P^t$ for every $t\geq 0$. For every $t\geq 0$, let $\Delta(t)=D_{\mathtt{TV}}(\mu_t,\pi)$ be the total variation distance between μ_t and π . Prove that $\Delta(t+1)\leq \Delta(t)$ for every $t\geq 0$.