

HyPA: A Hybrid Pod Autoscaler

Autoscaling of container-orchestration environments for enhanced VoIP performance

Dominik Gratz, René Hueber

Supervisors: Zahra Najafabadi Samani, PhD Juan Aznar Poveda, PhD

Cooperation with World-Direct

- Subsidiary company of A1
- Manages over 90.000 VoIP ports
- Transitions its telephone infrastructure to Kubernetes
 - Microservices
 - API-first approach
 - Zero-Downtime architecture

Cooperation with World-Direct

- Subsidiary company of A1
- Manages over 90.000 VoIP ports
- Transitions its telephone infrastructure to Kubernetes
 - Microservices
 - API-first approach
 - Zero-Downtime architecture

Pros

- Less complexity on the client side
- Central maintenance
- High flexibility and scalability

Cooperation with World-Direct

- Subsidiary company of A1
- Manages over 90.000 VoIP ports
- Transitions its telephone infrastructure to Kubernetes
 - Microservices
 - API-first approach
 - Zero-Downtime architecture

Pros

- Less complexity on the client side
- Central maintenance
- High flexibility and scalability

Cons

- Complex infrastructure
- Efficient architectures necessary
- Timely scaling

Problem formulation: Scaling realtime applications

- Challenges in VoIP:
 - Stateful protocols
 - Time-sensitive signaling
 - Sessions over a long period of time

Problem formulation: Scaling realtime applications

- Challenges in VoIP:
 - Stateful protocols
 - Time-sensitive signaling
 - Sessions over a long period of time
- High call volume traffic:
 - Increased load on the telephone system core
 - Increased latency
 - Call failures

Problem formulation: Scaling realtime applications

- Challenges in VoIP:
 - Stateful protocols
 - Time-sensitive signaling
 - Sessions over a long period of time
- High call volume traffic:
 - Increased load on the telephone system core
 - Increased latency
 - Call failures
- Default Kubernetes scaling is not enough:
 - Static thresholds
 - Limited option for custom parameters
 - No hybrid scaling approach

Thesis goal

HyPA

- Hybrid scaling:
 - Horizontal → variable number of replicas (pods)
 - ullet Vertical o variable CPU/memory assignment of a pod
- Pod Autoscaling:
 - Automatically scale service pods at runtime

Thesis goal

HyPA

- Hybrid scaling:
 - Horizontal → variable number of replicas (pods)
 - ullet Vertical o variable CPU/memory assignment of a pod
- Pod Autoscaling:
 - Automatically scale service pods at runtime

Challenges

- Maintain high call throughput with small latency
- Resource conservation
- Ensure no service downtime

Proposed Model

Overview

- RL learning approach
- Deployed in customer namespace
- Baseline model
- Focuses on CPU scaling

Proposed Model

Overview

- RL learning approach
- Deployed in customer namespace
- Baseline model
- Focuses on CPU scaling

Model complexity reductions

- No vertical memory scaling
- Discrete finite action space

Infrastructure Model

Store metrics Load metrics Schedule pods Deploy services Scale action Client namespace 1 Shared namespace Monitoring namespace Service metrics Container metrics Service Mesh Metric Server HvPA Client namespace N Scale Schedule **DB** Cluster

Service Mesh

HvPA

Service metrics

API

Scheduler

Deploy

Model Training (1)

Call Data

- No existing datasets
- Analyzed historic call data
- Cover all ranges of clients
- Train a baseline model

Model Training (1)

Call Data

- No existing datasets
- Analyzed historic call data
- Cover all ranges of clients
- Train a baseline model

Call Generation

- Based on real call patterns
- Custom scenarios utilizing SIPp

Model Training (2)

Model Training (3)

Model Training (4)

Model Training (5)

Model Training (6)

Model Training (7)

Model Training (8)

RL Training Disadvantage

Training duration

- Time-consuming tasks:
 - Scaling operation
 - Environment response
 - Data collection
- Significant delay after every agent decision (step)
- Limits training rate of model

RL Training Disadvantage

Training duration

- Time-consuming tasks:
 - Scaling operation
 - Environment response
 - Data collection
- Significant delay after every agent decision (step)
- Limits training rate of model

Problem

- Development and retraining time consuming
- Significant training duration reduction needed

RL Training Optimization

Analytical Model

- Finite scaling options covering WD's cases
- Deploying all scaling options
- Same workload everywhere
- Only metric collection switched

RL Training Optimization

Analytical Model

- Finite scaling options covering WD's cases
- Deploying all scaling options
- Same workload everywhere
- Only metric collection switched

Improvement

- Faster environment response
- Broader agent decision exploration
- Training three times faster

Evaluation HyPA

Evaluation Competitors

Horizontal Pod Autoscaler (HPA)

- Kubernetes default
- Threshold based
- Reactive autoscaler
- No expert knowledge for setup

Evaluation Competitors

Horizontal Pod Autoscaler (HPA)

- Kubernetes default
- Threshold based
- Reactive autoscaler
- No expert knowledge for setup

Multi-Objective-Hybrid-Autoscaling (MOHA)

- Machine Learning based (NN, SVM, LR)
- Hybrid scaling
- Code modifications to support usecase

Evaluation Scenarios

Call Volume Groups

Group	Call volume	Client share	
light	$< 10^{4}$	31.99 %	
medium	$10^4 - 10^5$	53.02 %	
heavy	$10^5 - 10^6$	14.34 %	
very heavy	$\geq 10^6$	0.65 %	

Evaluation Scenarios

Call Volume Groups

Group	Call volume	Client share	
light	$< 10^{4}$	31.99 %	
medium	$10^4 - 10^5$	53.02 %	
heavy	$10^5 - 10^6$	14.34 %	
very heavy	$\geq 10^6$	0.65 %	

Scenarios

- Random common client
- 2 Averaged call volume per group

Scenario 1 Visualization

Scenario 1 Result Calls

Scenario 1 Result Latency

Scenario 2 Visualization

Hour	light	medium	heavy	very heavy
7	1	3	51	984
8	2	7	159	3069
9	2	9	193	4187
10	2	9	191	7196
11	2	8	175	3901
12	1	4	91	2468
13	1	6	128	3058
14	1	6	127	3025
15	1	5	109	2901
16	1	3	75	1803
17	1	2	36	726
Client share	31.99%	53.02%	14.34%	0.65%

Scenario 2 Result Calls

Scenario 2 Result Latency

Project Timeline Related work Related work Research Hybrid scaling Reinforcement learning Code base Connectors Setup RL agent Call-generator Logging Policy evaluation environment Implementation RL training infrastructure RL training enviroment Model evaluation Evaluation Model training Write thesis Thesis Write thesis 07-2023 09-2023 11-2023 01-2024 03-2024 05-2024

References I

Achim Zeileis Reto Stauffer. *UIBK Latex Beamer Theme*.