

Detección de objetos

Estado del arte B.Y. (before YOLO)

- Deformable parts models (DPM)
- R-CNN
- Fast R-CNN

 Region proposals with selective search 2) Feature extraction with CNN

Classify features with a SVM Improve the bounding box

The R-CNN system

You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*†, Ross Girshick[¶], Ali Farhadi*†

University of Washington*, Allen Institute for AI†, Facebook AI Research[¶]

http://pjreddie.com/yolo/

Abstract

We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model's confidence.

YOLO - Mejoras

- Muy buena performance
- Tiempo de ejecución muy rápido (aplicación en tiempo real)

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45

Less Than Real-Time	Train	mAP	FPS
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

YOLO - Algunas definiciones previas

- Grid
- Bounding box

YOLO - Algunas definiciones previas

Output (2 categorías)

YOLO - Arquitectura

YOLO - Output

^{*}Pascal VOC object detection DATASET

1. Divide una imagen en un grid de tamaño SxS

1. Divide una imagen en un grid de tamaño SxS

- Cada celda genera 2 bounding boxes
- Cada bounding box tiene su propia métrica de confianza
- En caso de haber un objeto en una celda, se predice la clase

2. Evalúa en qué grid cae el centro del objeto

- Grid cell encargado de la predicción del objeto
- Tiene 2 bounding boxes, solo uno debe ser usado para entrenar

¿Cuál?

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

Intersection over Union / Índice de Jaccard

- Cada celda tiene más de una bounding box
- Solo uno puede ser utilizado para predecir la clase
- Elegimos el bounding box con mayor índice vs el ground truth box

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{cluster}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \end{split}$$

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \end{split}$$

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{charge}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Predicción

$$7*7*2 = 98$$

Predicción

Predicción | Non-max supression

- 1) Hacemos un pase forward de la imagen en nuestra red
- 2) Seteamos un threshold de confianza

- 3) Non-Max Supression:
 - a) Encontramos el bounding-box con mayor confianza
 - b) Eliminamos todos los bounding-box que tengan alto IOU con este
 - c) Volvemos a encontrar el siguiente bounding-box con mayor confianza (dejando de lado el primero) y repetimos hasta converger

YOLO en el tiempo

YOTO (You Only Try Once)

YOTO (You Only Try Once)

Referencias

You Only Look Once: Unified, Real-Time Object Detection | Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi

YOLO9000: Better, Faster, Stronger | Joseph Redmon, Ali Farhadi

YOLOv3: An Incremental Improvement | Joseph Redmon, Ali Farhadi

YOLOv4: Optimal Speed and Accuracy of Object Detection | Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao

YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors | Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao

Deep Learning specialization (4th course, CNN) - Deeplearning.ai - Coursera

https://www.datacamp.com/blog/yolo-object-detection-explained

https://medium.com/oracledevs/final-layers-and-loss-functions-of-single-stage-detectors-part-1-4abbfa9aa71c

https://naokishibuya.medium.com/yolo-v1-f9312337cf71

