

Motion Planning of Swarm Robotics Lecture 7

主讲人 Xin Zhou

D. Eng. Candidate in Robotics Zhejiang University

S Contents

- Multi-Agent Path Finding (MAPF)
- Velocity Obstacle (VO)
- Flocking Model
- Trajectory Planning for Swarms
- Formation

S Contents

- Multi-Agent Path Finding (MAPF)
- Velocity Obstacle (VO)
- Flocking Model
- Trajectory Planning for Swarms
- **■** Formation

Warehouse Robot Navigation

Airport Surface Operation

Train Scheduling

Problem Definition

1. Multi-Agent Path Finding (MAPF)

Given

- A graph G = (V, E);
- A set of k agents a_1, a_2, \dots, a_k , each with a start location $s_i \in V$ and a target location $g_i \in V$.

Goal

- Finds collision-free paths for all agents, and
- Minimizes the sum of their travel times.

Challenges

 How to solve MAPF efficiently and effectively?

Actions

- *Move*: move to a neighboring location.
- Wait: wait at its current location.

Both actions take one timestep and have one-unit cost.

Conflicts(= Collisions)

 Vertex conflict: two agents stay at the same location at the same timestep.

 Edge conflict: two agents traverse the same edge in opposite directions at the same timestep.

Rule-based suboptimal solvers

1. Multi-Agent Path Finding (MAPF)

PUSH AND SWAP^[1]

- Agent s with higher priority pushes agent r from a degree-three vertex v.
- Non-complete, non-optimal.

Search-based suboptimal solvers

1. Multi-Agent Path Finding (MAPF)

Hierarchical Cooperative A*(HCA*)[1]

The main idea: agents plan one by one according to some predefined order.

Former agents mark the vertexes they stayed as occupied at that time point.

- Easy to deploy;
- Non-complete, Non-optimal;

- Treat the individual agents as a single 'joint agent'.
- The state-space includes all permutations of placing k agents in V locations.
- Node number of the new graph: $\binom{V}{k} = V \times (V-1) \times (V-2) \times \cdots (V-k+1)$, complexity: $O(V^k)$.
- 5 Agents in a 10*10 grid: New node number $\approx 1e10$.

Independence Detection (ID)

1. Multi-Agent Path Finding (MAPF)

ID attempts to detect independent groups of agents where there is an optimal solution for each group such that the two solutions do not conflict.

Algorithm 2 Independence Detection

- 1: assign each agent to a group
- 2: plan a path for each group
- 3: fill conflict avoidance table with every path
- 4: repeat
- 5: simulate execution of all paths until a conflict between two groups G_1 and G_2 occurs
 - if these two groups have not conflicted before then
 - fill illegal move table with the current paths for G_2
 - find another set of paths with the same cost for G_1
- 9: **if** failed to find such a set **then**
- 10: fill illegal move table with the current paths for G_1
- 11: find another set of paths with the same cost for G_2
- 12: **end if**
- 13: **end if**
- 14: **if** failed to find an alternate set of paths for G_1 and G_2 **then**
- 15: merge G_1 and G_2 into a single group
- 16: cooperatively plan new group
- 17: **end if**
- 8: update conflict avoidance table with changes made to paths
- 19: until no conflicts occur
- 20: $solution \leftarrow paths of all groups combined$
- 21: **return** solution

M*: An enhanced single-agent A*[1]

The main idea: expending children in all directions for conflicting agents only, while expending only one child for non-conflicting agents.

- In general, nodes expand only one child where each agent makes its optimal move.
- When conflicts occur between q agents at node n, M^* traces back from n through all the ancestors until the root node and all these nodes are placed back in *OPEN* set.
- Then q conflicting agents will expend all their branches.
- Similar to ID.

Conflict-Based Search (CBS)

1. Multi-Agent Path Finding (MAPF)

Sonflict-Based Search (CBS)

1. Multi-Agent Path Finding (MAPF)

B C D

Conflict-Based Search (CBS)

1. Multi-Agent Path Finding (MAPF)

N: A CT (high-level) node;

N. constraints: A set of constraints imposed on each agent; *N. solution*: A single consistent solution, solution, i.e., one path for each agent that is consistent with *N. constraints*. *N. cost*: The cost of the current solution. Here, it is the sum

of all agent costs.

R: The root node;

 $SIC(\cdot)$: the sum of all single-agent cost.

OPEN: The open list of CT.

 (a_i, a_j, v, t) : A tuple describing a conflict that agent a_i and a_j stay in vertex v together at timestep t.

Algorithm 1: high-level of CBS

```
Input: MAPF instance R.constraints = \emptyset
```

- 2 R.solution =find individual paths using the low-level()
- R.cost = SIC(R.solution)
- 4 insert R to OPEN
- 5 **while** OPEN not empty **do**

 $P \leftarrow \text{best node from OPEN}$ // lowest solution cost

Validate the paths in P until a conflict occurs.

if *P* has no conflict **then**

return P.solution // P is goal

 $C \leftarrow \text{first conflict } (a_i, a_j, v, t) \text{ in } P$

foreach $agent a_i$ in C **do**

 $A \leftarrow \text{new node}$

A.constraints \leftarrow P.constraints + (a_i, v, t)

A.solution \leftarrow P.solution.

Update A.solution by invoking low-level(a_i)

A.cost = SIC(A.solution)

Insert A to OPEN

S Conflict-Based Search (CBS)

Suboptimal Solvers

PUSH AND SWAP HCA*

Bounded suboptimal solvers return a solution f that guarantees $f \leq \omega \cdot C^*$, where C^* is the cost of the unknown optimal solution. ω is user-defined.

Enhanced CBS (ECBS)

1. Multi-Agent Path Finding (MAPF)

^[1] Röger, Gabriele, and Malte Helmert. "The more, the merrier: Combining heuristic estimators for satisficing planning." *Twentieth International Conference on Automated Planning and Scheduling*. 2010.

1. Multi-Agent Path Finding (MAPF)

Focal Search

- We select a promising subset in *OPEN* as *FOCAL* according to a policy (function) f_1 .
- We select the best node in *FOCAL* to evaluate according to another policy (function) f_2 .

f_1 of the Low Level

n: Nodes; OPEN : The open set of the low level; f(n) = g(n) + h(n): The general A* cost. $f_{\min} = f(n)|n = \min_{n \in \mathit{OPEN}} f(n)$ $FOCAL = \{n|n \in \mathit{OPEN}, f(n) \leq \omega \cdot f_{\min}\},$

f_2 of the Low Level

$$f_2$$
: $n_{\text{next}} = \min_{n \in \text{FOCAL}} h_c(n)$;

 $h_c(n)$: Number of conflicting pairs (see previous slide)

Focal Search for the High Level

f_1 of the High Level

OPEN: the open set of the high level; *OPEN*_i: the open set of the agent a_i in the low level;

$$f_{\min}(i) = f(n)|n = \min_{n \in OPEN_i} f(n); n$$
: low-level node; N : high-level node;

$$LB(N) = \sum_{i=1}^{k} f_{\min}(i); LB = \min(LB(N)|N \in OPEN);$$

N. cost: sum of all agents' solution costs in CT node *N* (same to CBS);

$$FOCAL = \{N | N \in OPEN, N. cost \le \omega \cdot LB\}.$$

f₂ of the High Level

$$f_2$$
: $N_{\text{next}} = \min_{N \in FOCAL} h_c(N)$;

 $h_c(N)$: number of conflicting pairs.

The main idea

Bounded optimality: If we keep selecting the lowest-cost node in the *OPEN* set to evaluate, the solution is optimal (original A*). Now we relief this by selecting from the *FOCAL* set which includes nodes with costs no larger than (ω · lowest-cost).

Quicker search: we choose nodes that are unlikely to have conflict with others (h_c) to reduce the number of CT nodes generated.

(a) Cost comparison, 8 agents, w = 1.5

(b) Bounded algorithms, w = 1.1

^[1] Röger, Gabriele, and Malte Helmert. "The more, the merrier: Combining heuristic estimators for satisficing planning." *Twentieth International Conference on Automated Planning and Scheduling*. 2010. **The proof is in page 24.**

S Contents

- Multi-Agent Path Finding (MAPF)
- Velocity Obstacle (VO)
- Flocking Model
- Trajectory Planning for Swarms
- **■** Formation

Office Environment – 1000 Agents

Description

- 1000 Agents evacuate an office-like environment
- Agents follow a global roadmap to navigate

Intel Quad Core: ~550 FPS Larrabee Simulator [32 Cores]: ~4,500 FPS

VO^[1] (Velocity Obstacle)

VO^[2] (Reciprocal Velocity Obstacle)

VO^[2] (Reciprocal Velocity Obstacle)

ORCA^[3] (Optimal Reciprocal Collision Avoidance)

^[1] Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles[J]. The International Journal of Robotics Research, 1998, 17(7): 760-772.

^[2] Van den Berg J, Lin M, Manocha D. Reciprocal velocity obstacles for real-time multi-agent navigation[C]. 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008: 1928-1935.

^[3] Van Den Berg J, Guy S J, Lin M, et al. Reciprocal n-body collision avoidance[M]. Robotics research. Springer, Berlin, Heidelberg, 2011: 3-19.

Particle Model

Velocity Obstacle (VO)

Static Case

Velocity Obstacle (VO)

Dynamic Case

Multiple Obstacle Case

Selection Velocity Obstacle (VO)

Control Loop

Oscillation of VO

The key problem: agents don't consider others' velocities in the next circle.

Oscillation Avoidance

Comparison

Reciprocal Velocity Obstacle (RVO)

Main idea:

Each agent takes limited responsibility of velocity change.

We choose a new velocity v_A' that is the average of its current velocity v_A and a velocity v that lies outside the velocity obstacle.

RVO is a rule determining how much responsibility each agent should take.

Reciprocal Velocity Obstacle (RVO)

RVO $_{A|B}(v_A, v_B)$: the velocity space of A that A of v_A will be in collision with B of v_B .

\$

Reciprocal Velocity Obstacle (RVO)

The criteria of collision avoidance is $(\boldsymbol{v_A} - \boldsymbol{v_B})^T (\boldsymbol{p_A} - \boldsymbol{p_B}) \geq 0$, i.e., their relative velocity keeps them away.

Strict proof can be found in page 1931 of the paper: Van den Berg J, Lin M, Manocha D. Reciprocal velocity obstacles for real-time multi-agent navigation[C]. 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008: 1928-1935.

Multiple Obstacle Case

