第1章

層状化空間・因子化ホモロジー

[?], [?] のレビュー

1.1 conically smooth な層状化空間

1.1.1 層状化空間

定義 1.1: 半順序集合の位相

 (P,\leq) を半順序集合とする. P上の位相 $\mathscr{O}_{\leq} \subset 2^P$ を以下で定義する:

$$U \in \mathscr{O}_{\leq} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \forall x \in U, \, \forall y \in P, \, \left[\, x \leq y \quad \Longrightarrow \quad y \in U \, \right]$$

実際, 空集合の定義から $\emptyset \in \mathcal{O}_{<}$ であり, $\forall U_1, U_2 \in \mathcal{O}_{<}$ に対して $x \in U_1 \cap U_2$ であることは

$$\forall y \in P, \ x \leq y \implies y \in U_1$$
 かつ $y \in U_2$

と同値なので $U_1\cap U_2\in \mathscr{O}_{\leq}$ であり、さらに勝手な開集合族 $\left\{U_{\lambda}\in \mathscr{O}_{\leq}\right\}_{\lambda\in\Lambda}$ に対して $x\in\bigcup_{\lambda\in\Lambda}U_{\lambda}$ は

$$\exists \alpha \in \Lambda, \ \forall y \in P, \ x \leq y \quad \Longrightarrow \quad y \in U_{\alpha} \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

と同値であるから $\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{O}_{\leq}$ であり、 \mathcal{O}_{\leq} は集合 P の位相である.

【例 1.1.1】 [n] の位相

半順序集合 $[2] \coloneqq \{0 \le 1 \le 2\}$ を考える. このとき, 位相 \mathcal{O}_{\le} とは

$$\mathscr{O}_{<} = \{ \emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\} \}$$

のことである. 同様に、半順序集合 $[n] := \{0 \le 1 \le \cdots \le n\}$ に対して

$$\mathcal{O}_{<} = \{\emptyset, \{n\}, \{n-1, n\}, \dots, \{0, \dots, n\}\}$$

が成り立つ.

定義 1.2: 層状化空間・層状化写像

 (P, \leq) を半順序集合とし、定義 1.1 の位相を入れて位相空間にする.

このとき,位相空間 X が P-層状化されている (P-stratified) とは,連続写像 $s\colon X\longrightarrow P$ が存在 することを言うa. 組 $(X,s\colon X\longrightarrow P)$ のことを P-層状化空間 (P-stratified space) と呼ぶ.また, $i\in P$ の逆像 $X_i:=s^{-1}(\{i\})\subset X$ のことを i-層 (i-strata) と呼ぶ.

a s のことを, X の層状化 (stratification) と呼ぶ.

層状化空間 $(X, s: X \longrightarrow P)$, $(X', s': X' \longrightarrow P')$ の間の**層状化写像** (stratified map) とは、連続写像の組み $(f: X \longrightarrow X', \tilde{f}: P \longrightarrow P')$ であって以下の図式を可換にするもののこと:

$$\begin{array}{ccc} X & \xrightarrow{f} & X' \\ \downarrow s & & \downarrow s' \\ P & \xrightarrow{\tilde{f}} & P' \end{array}$$

【例 1.1.2】[n]-層状化空間

半順序集合 $[n] := \{0 \leq \cdots \leq n\}$ に対して【例 1.1.1】の位相を入れる. まず,

$$X_0 = s^{-1}([n] \setminus \{1, \ldots, n\})$$

でかつ $\{1,\ldots,n\}$ は [n] の開集合であるから, s の連続性から X の部分空間 $X_0\subset X$ は閉集合だとわかる. さらに

$$X_0 \cup X_1 = s^{-1}([n] \setminus \{2, \dots, n\}),$$

$$X_0 \cup X_1 \cup X_2 = s^{-1}([n] \setminus \{3, \dots, n\}),$$

$$\vdots$$

$$X_0 \cup \dots \cup X_n = X$$

が成り立つことから,s の連続性より X の部分空間 $X_0 \cup \cdots \cup X_{m \leq n}$ は閉集合だと分かる.

【例 1.1.3】CW 複体

CW 複体 X を与える. $X_{\leq k}$ を X の k-骨格とするとき, $X_k\setminus X_{k-1}$ を $k\in\mathbb{Z}_{\geq 0}$ に写す写像 $s\colon X\longrightarrow\mathbb{Z}_{\geq 0}$ は X の層状化を与える.

直観的には,層状化空間とは defect 付き位相多様体の一般化である.特に X を位相多様体とするとき,[n]-層状化空間 $(X,s\colon X\longrightarrow [n])$ の i-層 X_i とは,多様体 X 上の余次元 d-i の defect を全て集めてきたものだと見做せる.

定義 1.3: 層状化開埋め込み

層状化写像 (f, \tilde{f}) : $(X, s: X \longrightarrow P) \longrightarrow (X', s': X' \longrightarrow P')$ が**層状化開埋め込み** (stratified open embedding) であるとは、以下の 2 条件を充たすことを言う:

- (1) 連続写像 $f: X \longrightarrow X'$ は位相的開埋め込みである^a
- (2) $\forall p \in P$ に対して, f の p-strata への制限 b

$$f|_{X_p}\colon X_p\longrightarrow X'_{\tilde{f}(p)}$$

は位相的開埋め込みである.

以下では混乱が生じにくい場合,層状化空間 $(X,s\colon X\longrightarrow P)$ のことを $(X\stackrel{s}{\to}P)$ や $(X\to P)$ と略記する.さらに,層状化写像 $(f,\tilde{f})\colon (X,s\colon X\longrightarrow P)\longrightarrow (X',s'\colon X'\longrightarrow P')$ のことを $f\colon (X\to P)\longrightarrow (X'\to P')$ と略記し,連続写像 $\tilde{f}\colon P\longrightarrow P'$ のことも f と書く場合がある.

圏 StTop を,

- 第2可算な Hausdorff 空間であるような層状化空間を対象とする
- 層状化開埋め込みを射とする

ことで定義する.

1.1.2 C^0 級層状化空間

定義 1.4: コーン

層状化空間 $(X \xrightarrow{s} P)$ を与える. X の**コーン** (cone) とは、以下のようにして構成される層状化空間 $(\mathsf{C}(X)\,,\,\mathsf{C}(s):\mathsf{C}(X)\longrightarrow\mathsf{C}(P))$ のこと:

• 位相空間 C(X) を,押し出し位相空間

$$\mathsf{C}(X) := \{ \mathsf{pt} \} \coprod_{\{0\} \times X} (\mathbb{R}_{>0} \times X)$$

と定義する:

$$\{0\} \times X \xrightarrow{\{0\} \times \mathrm{id}_X} \mathbb{R}_{\geq 0} \times X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{\mathrm{pt}\} \longleftarrow \{\mathrm{pt}\} \coprod_{\{0\} \times X} (\mathbb{R}_{\geq 0} \times X)$$

• 半順序集合 C(P) を、P に最小の要素 $-\infty$ を付け足すことで定義する. これは半順序集合の

 $[^]a$ i.e. $f \colon X \longrightarrow f(X)$ が同相写像かつ $f(X) \subset Y$ が開集合

^b 層状化写像の定義に登場する図式の可換性より、 $\forall x \in X_p$ に対して $s'\big(f(x)\big) = s' \circ f(x) = \tilde{f} \circ s(x) = \tilde{f}(p)$, i.e. $f(x) \in s'^{-1}\big(\{\tilde{f}(p)\}\} = X'_{\tilde{f}(p)}$ が分かる.

圏における押し出し

$$\mathsf{C}(P) \coloneqq \{-\infty\} \coprod_{\{0\} \times P} ([1] \times P)$$

である.

• 連続写像

$$\mathbb{R}_{\geq 0} \times X \longrightarrow [1] \times P,$$

$$(t, x) \longmapsto \begin{cases} (0, s(x)), & t = 0, \\ (1, s(x)), & t > 0 \end{cases}$$

が誘導する連続写像 $C(X) \longrightarrow C(P)$ を C(s) と書く.

位相空間の圏における押し出しの公式から、位相空間 C(X) とは

$$i_1: \{0\} \times X \longrightarrow \mathbb{R}_{\geq 0} \times X, \ x \longmapsto (0, x),$$

 $i_2: \{0\} \times X \longrightarrow \{\text{pt}\}, \ x \longmapsto \text{pt}$

とおいたときのコイコライザ

$$\{0\} \times X \xrightarrow{i_1} \{\text{pt}\} \sqcup (\mathbb{R}_{\geq 0} \times X) \xrightarrow{q} \mathsf{C}(X),$$

i.e. 商位相空間

$$\frac{\mathbb{R}_{\geq 0} \times X}{i_1(x) \sim i_2(x)} = \frac{\mathbb{R}_{\geq 0} \times X}{\{0\} \times X}$$

のこと. 従って $C(s): C(X) \longrightarrow C(P)$ とは, 連続写像*1

$$\frac{\mathbb{R}_{\geq 0} \times X}{\{0\} \times X} \longrightarrow \mathsf{C}(P), \ [(t, x)] \longmapsto \begin{cases} -\infty, & t = 0\\ s(x), & t > 0 \end{cases}$$
 (1.1.1)

のことである.

以下では、混乱の恐れがない限り層状化空間 $(X \stackrel{s}{\to} P)$ のコーンを $C\left(X \stackrel{s}{\to} P\right)$ と略記する. さらに、 1 点 $[0,*] \in C(Z)$ のことを**コーンポイント**と呼び、pt と略記する.

補題 1.1: 層状化空間のコーンは連結

層状化空間 $(Z \xrightarrow{s} P)$ のコーン $C(Z \xrightarrow{s} P)$ において、位相空間 C(Z) は弧状連結である a .

 a 従って連結でもある

証明 Z を弧状連結成分の disjoint union に分割し、 $Z = \coprod_{i \in \pi_0(Z)} Z_i$ と書く. いま,位相空間 C(Z) の互い に相異なる 2 点 $[t_i, z_i], [t_j, z_j] \in C(Z)$ を任意にとる. ただし $z_i \in Z_i, z_j \in Z_j$ とする.

^{*1} $\mathsf{C}(P)$ の位相 $\mathscr{O}_{\mathsf{C}(P)}$ は、P の位相 \mathscr{O}_P に 1 つの開集合 $\{-\infty\} \cup P$ を加えたものである。 $\forall U \in \mathscr{O}_P$ に対して $\mathsf{C}(s)^{-1}(U) = \mathbb{R}_{>0} \times s^{-1}(U) \in \mathscr{O}_{\mathsf{C}(X)}$ で、かつ $\mathsf{C}(s)^{-1}(\{-\infty\} \cup P) = \mathsf{C}(X) \in \mathscr{O}_{\mathsf{C}(X)}$ なので $\mathsf{C}(s)$ は連続である。

i=j ならば、 z_i と z_j を繋ぐ $Z_i=Z_j$ 上の連続曲線 $\varphi\colon [0,1]\longrightarrow Z_i$ が存在する. よって連続写像

$$\bar{\varphi} \colon [0, 1] \longrightarrow \mathsf{C}(Z), \ s \longmapsto [(1 - s)t_i + st_i, \ \varphi(s)]$$

が $[t_i, z_i]$, $[t_i, z_i]$ を繋ぐ.

 $i \neq j$ とする. このとき, C(Z) 上の連続曲線

$$\varphi_i : [0, 1] \longrightarrow \mathsf{C}(Z), \ s \longmapsto [(1 - s)t_i, \ z_i]$$

 $\varphi_i : [0, 1] \longrightarrow \mathsf{C}(Z), \ s \longmapsto [(1 - s)t_i, \ z_i]$

はそれぞれ $[t_i,z_i],[t_j,z_j]$ とコーンポイント $\mathrm{pt}=[0,*]\in\mathsf{C}(Z)$ を繋ぐ。故に φ_i と φ_j^{-1} を繋ぎ合わせて得られる $\mathsf{C}(Z)$ 上の連続曲線

$$\varphi_i * \varphi_j^{-1} \colon [0, 1] \longrightarrow \mathsf{C}(Z) \,, \ s \longmapsto \begin{cases} \varphi_i(2s), & s \in [0, \frac{1}{2}] \\ \varphi_i(2-2s), & s \in [\frac{1}{2}, 1] \end{cases}$$

がちょうど $[t_i, z_i], [t_j, z_j]$ を繋ぐ.

定義 1.5: C^0 級層状化空間

以下を充たす \mathbf{StTop} の最小の充満部分圏を \mathbf{Snglr}^{C^0} と書き、圏 \mathbf{Snglr}^{C^0} の対象を $\mathbf{C^0}$ 級層状化空間 (C^0 stratified space) と呼ぶ:

(Snglr-1)
$$(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$

(Snglr-2)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$
 かつ X, P が位相空間としてコンパクト $\Longrightarrow \mathsf{C}(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$

(Snglr-3)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}) \implies (X \times \mathbb{R} \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})^a$$

(Snglr-4)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$
 かつ $\mathrm{Hom}_{\mathbf{StTop}}\left((U \to P_U), (X \to P)\right) \neq \emptyset$ $\Longrightarrow (U \to P_U) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$

(Snglr-5)

$$(X \to P) \in \mathrm{Ob}(\mathbf{StTop})$$
 が開被覆 $\{(U_{\lambda} \to P_{\lambda}) \longrightarrow (X \to P)\}_{\lambda \in \Lambda}^{b}$ を持ち、かつ $\forall \lambda \in \Lambda$ に対して $(U_{\lambda} \to P_{\lambda}) \in \mathrm{Ob}(\mathbf{Snglr}^{C^{0}})$ $\Longrightarrow (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^{0}})$

【例 1.1.4】位相多様体は C^0 級層状化空間

(Snglr-1) より、 $* := C(\emptyset \to \emptyset) \in Ob(\mathbf{Snglr}^{C^0})$ である. (Snglr-3) より、 $\forall n \geq 0$ に対して $\mathbb{R}^n = (\mathbb{R}^n \to [0]) \in Ob(\mathbf{Snglr}^{C^0})$ であることが帰納的に分かる. \mathbb{R}^n の任意の開集合 $U \hookrightarrow \mathbb{R}^n$ に対して、

 $[^]aX \times \mathbb{R}$ の層状化は,連続写像 $X \times \mathbb{R} \longrightarrow X$, $(x,t) \longmapsto x$ を前もって合成することにより定める.

 $[^]b$ i.e. $\left\{U_{\lambda}\right\}_{\lambda\in\Lambda},\,\left\{P_{\lambda}\right\}_{\lambda\in\Lambda}$ が、それぞれ位相空間 $X,\,P$ の開被覆を成す.

$$\begin{array}{ccc}
U & \longrightarrow \mathbb{R}^n \\
\downarrow & & \downarrow \\
[0] & \longrightarrow [0]
\end{array}$$

は<mark>層状化埋め込み</mark>であり、従って **(Snglr-4)** より $U\coloneqq (U\to [0])\in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が分かる. 以上の考察と **(Snglr-5)** を併せて、任意の位相多様体 M は^a圏 \mathbf{Snglr}^{C^0} の対象である.

a より正確には,M を<mark>層状化空間 ($M \rightarrow [0]$)</mark> と同一視している.

【例 1.1.4】の意味で, C^0 級層状化空間は位相多様体の一般化と見做せる.しかしまだそこには C^∞ 構造を一般化した構造は入っておらず, C^∞ 多様体の一般化とは見做せない.

補題 1.2: C^0 級層状化空間の層状化は全射

 $\forall (X \xrightarrow{s} P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ に対して、連続写像 s は全射である.

<u>証明</u> s が全射であるような層状化空間 $(X \to P)$ 全体が成す充満部分圏を $\mathcal{T} \subset \mathbf{StTop}$ と書く. \mathcal{T} が条件 $(\mathbf{Snglr-1})$ - $(\mathbf{Snglr-5})$ を充たすことを示せば十分である*2.

(Snglr-1) $(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathcal{T})$ は自明である.

(SngIr-2) $\forall (X \xrightarrow{s} P) \in \mathrm{Ob}(\mathcal{T})$ に対して、(1.1.1) よりそのコーンの層状化は $\mathsf{C}(s)\left(\mathsf{C}(X)\right) = s(X) \cup \{-\infty\} = \mathsf{C}(P)$ であり、全射である。i.e. $\mathsf{C}\left(X \xrightarrow{s} P\right) \in \mathrm{Ob}(\mathcal{T})$ である。

(SngIr-3) $\forall (X \xrightarrow{s} P) \in \mathrm{Ob}(\mathcal{T})$ に対して、 $(X \times \mathbb{R} \to P) \in \mathrm{Ob}(\mathbf{StTop})$ の層状化をあからさまに書くと $(x,\,t) \longmapsto s(x)$ である.

(SngIr-4) $(X \stackrel{s}{\to} P) \in \mathrm{Ob}(\mathcal{T})$ かつ $\mathrm{Hom}_{\mathbf{StTop}} \left((U \stackrel{s'}{\to} P_U), (X \stackrel{s}{\to} P) \right) \neq \emptyset$ であるとする.このとき $(f, \bar{f}) \in \mathrm{Hom}_{\mathbf{StTop}} \left((U \stackrel{s'}{\to} P_U), (X \stackrel{s}{\to} P) \right)$ は \mathbf{Top} における以下の図式を可換にする:

$$U \stackrel{f}{\longleftarrow} X$$

$$s' \downarrow \qquad \qquad \downarrow s$$

$$P_U \xrightarrow{\bar{f}} P$$

(Snglr-5)

1.1.3 C^0 basic

定義 1.6: C⁰ basic

 C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が C^0 -basic であるとは、ある $n \in \mathbb{Z}_{\geq 0}$ およびコンパクトな C^0 級層状化空間 $(Z \to Q) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が存在して $(X \to P) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to Q)$ が成り立つことを言う.

いま、 C^0 basic な $(U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ を 1 つとる. コーンの定義から、U の点を $(v, [t, z]) \in \mathbb{R}^n \times \frac{\mathbb{R}_{\geq 0} \times Z}{\{0\} \times Z}$ と表示することができる.この表示の下で自己同相

$$\gamma \colon \mathbb{R}_{>0} \times T\mathbb{R}^n \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{>0} \times T\mathbb{R}^n \times \mathsf{C}(Z),$$

$$(t, (v, p), [s, z]) \longmapsto (t, (tv + p, p), [ts, z])$$

$$(1.1.2)$$

を考える*3.

さらに、もう 1 つの C^0 basic な $(U' \to P_{U'}) = (\mathbb{R}^{n'} \to [0]) \times \mathsf{C}(Z' \to P') \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ および $f \in \mathsf{Hom}_{\mathbf{Snglr}^{C^0}} \left((U \to P_U), (U' \to P_{U'}) \right)$ をとる。ただし、f はコーンポイントをコーンポイントへ写す、i.e. $\forall u \in \mathbb{R}^n$ に対して $f(u, \operatorname{pt}) \in \mathbb{R}^{n'} \times \{\operatorname{pt}\}$ が成り立つことを仮定する。 $f|_{\mathbb{R}^n} : \mathbb{R}^n \times \{\operatorname{pt}\} \longrightarrow \mathbb{R}^{n'} \times \{\operatorname{pt}\}$ を f のコーンポイントへの制限として、

$$f_{\Delta} : \mathbb{R}_{>0} \times T\mathbb{R}^{n} \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{>0} \times T\mathbb{R}^{n'} \times \mathsf{C}(Z'),$$

 $(t, v, p, [s, z]) \longmapsto (t, f|_{\mathbb{R}^{n}}(v), f(p, [ts, z]))$

とおこう.

【例 1.1.5】

 $Z = Z' = \emptyset$ のとき, f とは単に連続関数 $f: \mathbb{R}^n \longrightarrow \mathbb{R}^{n'}$ のことである. このとき,

$$(\gamma^{-1} \circ f_{\Delta} \circ \gamma)(t, v, p) = \gamma^{-1} \circ f_{\Delta}(t, tv + p, p)$$
$$= \gamma^{-1} (t, f(tv + p), f(p))$$
$$= \left(t, \frac{f(tv + p) - f(p)}{t}, f(p)\right)$$

と計算できるため,f が C^1 級であることと $\forall (v,p) \in T\mathbb{R}^n$ に対して $t \to +0$ の極限,i.e. v に沿った片側方向微分が存在することは同値である.

【例 1.1.5】をもとに、 C^0 basic な C^0 級層状化空間の間の層状化開埋め込みの conically smoothness を定義する. C^∞ 多様体の C^∞ 構造の定義においては、チャート $(U, \varphi \colon \mathbb{R}^n \to U)$ 、 $(V, \psi \colon \mathbb{R}^n \to V)$ の間の変換関数 $\psi^{-1} \circ \varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ が C^∞ 級であることを要請した.次の小節で conically smooth structure の定義を行うが、その際にチャートに対応するものは basic $U = \mathbb{R}^n \times \mathbb{C}(Z)$ から着目している C^0 -級層状化空間 X への層状化開埋め込み $\varphi \colon U \to X$ であり、概ね*42 つのチャート $\varphi \colon U \to X$ 、 $\psi \colon V \to X$ の間の変換関数 $\psi^{-1} \circ \varphi \colon U \to V$ に対して conically smooth (along \mathbb{R}^n) であることを要請する.

^{*3} 接東 $T\mathbb{R}^n$ は \mathbb{R}^{2n} と微分同相である. [?, p.23] の記法に合わせて底空間 \mathbb{R}^n の点を p, p 上のファイバーの元を v としたとき $(v,p)\in T\mathbb{R}^n$ と書いた. 命題??の記法と順番が逆なので注意.

^{*4} コーンポイントをコーンポイントに写さない変換関数も存在しうるので、これだけではいけない.

定義 1.7: \mathbb{R}^n に沿って conically smooth

- C^0 basic $\mathcal{T}(U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$
- C^0 basic $\ \ (U' \to P_{U'}) = (\mathbb{R}^{n'} \to [0]) \times \mathsf{C}(Z' \to P') \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$
- $f \in \text{Hom}_{\mathbf{Snglr}^{C^0}} \left((U \to P_U), \, (U' \to P_{U'}) \right)$ であって、コーンポイントを保存するもの

を与える. このとき, f が \mathbb{R}^n に沿って C^1 級 $(C^1 \text{ along } \mathbb{R}^n)$ であるとは, 以下の図式を可換にする 連続写像

$$\tilde{D}f: \mathbb{R}_{\geq 0} \times T\mathbb{R}^n \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}(Z')$$

が存在することを言う^a:

$$\begin{array}{c} \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n} \times \mathsf{C}\left(Z\right) \xrightarrow{\tilde{D}f} \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}\left(Z'\right) \\ & \uparrow \qquad \qquad \uparrow \\ \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n} \times \mathsf{C}\left(Z\right)_{\gamma \xrightarrow{-1} \circ f_{\Delta} \circ \gamma} \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}\left(Z'\right) \end{array}$$

 a 写像 $\gamma^{-1}\circ f_\Delta\circ\gamma$ の連続性から、拡張 $\tilde{D}f$ は存在すれば一意かつ連続である.

このような拡張が存在するとき、第一変数を t=0 に制限して得られる連続写像を

$$\boldsymbol{Df} \colon T\mathbb{R}^n \times \mathsf{C}\left(Z\right) \longrightarrow T\mathbb{R}^{n'} \times \mathsf{C}\left(Z'\right)$$

と書く. f が \mathbb{R}^n に沿って C^r 級 であるとは, Df が \mathbb{R}^n に沿って C^{r-1} 級であることを言う. f が \mathbb{R}^n に沿って conically smooth であるとは, $\forall r \geq 1$ について C^r 級であることを言う.

1.1.4 conically smooth な層状化空間

次に行うべきは、与えられた C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ の上の conically smooth structure i.e. 変換関数が conically smooth であるような**極大アトラス**を定義することである.この手続きは、次で定義する次元と深さに関する帰納法によって構成される.

定義 1.8: 被覆次元

X を位相空間とする. 以下の条件を充たす最小の $d \in \mathbb{Z}_{\geq -1}$ のことを(存在すれば)X の被覆次元 (covering dimension) と呼び、 $\dim X$ と書く:

(covering)

X の任意の開被覆 $\mathscr U$ に対して,十分細かい細分 $\mathscr V_{\mathscr U} \prec \mathscr U$ が存在して,任意の互いに異なる $\forall m>d+1$ 個の開集合 $V_1,\ldots,V_m\in\mathscr V_{\mathscr U}$ の共通部分が空になるようにできる.特に, \emptyset の被覆次元は -1 と定義する.

点 $x \in X$ における**被覆次元**を以下で定義する:

$$\dim_x X := \inf \left\{ \dim U \ge -1 \mid x \in U \underset{\text{open}}{\subset} X \right\}$$

定義 1.9: 次元と深さ

空でない C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ を与える.

- $(X \to P)$ の点 $x \in X$ における局所的次元 (local dimension) とは、点 x における X の被覆 次元 $\dim_x(X)$ のことを言う.
- $(X \to P)$ の次元 (dimension) とは

$$\dim(X \to P) \coloneqq \sup_{x \in X} \dim_x(X)$$

のこと.

• $(X \stackrel{s}{\to} P)$ の点 $x \in X$ における局所的深さ (local depth) とは、

$$\operatorname{depth}_{\boldsymbol{x}}(\boldsymbol{X} \to \boldsymbol{P}) := \dim_{\boldsymbol{x}}(X) - \dim_{\boldsymbol{x}}(X_{s(\boldsymbol{x})})$$

のこと.

• $(X \to P)$ の深さ (depth) とは,

$$\operatorname{\mathbf{depth}}(X \to P) \coloneqq \sup_{x \in X} \operatorname{depth}_x(X \to P)$$

のこと. ただし, depth(\emptyset) := -1 と定義する.

【例 1.1.6】コーンの深さ

n 次元位相多様体 Z について,定義から $\forall x \in Z$ に対して $\dim_x(Z) = n$ が成り立つ.Z を【例 1.1.4】により C^0 級層状化空間 $(Z \stackrel{s}{\to} [0]) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ と見做すと,これのコーン $\mathsf{C}\left(Z \stackrel{s}{\to} [0]\right)$ について

$$\operatorname{depth}_x \left(\mathsf{C} \left(Z \xrightarrow{s} [0] \right) \right) = \begin{cases} n+1, & x = \mathsf{pt}, \\ 0, & \text{otherwise} \end{cases}$$

であることがわかる.実際 $\mathsf{C}(Z)_{\mathsf{C}(s)(\mathrm{pt})} = \{\mathrm{pt}\}$ であるが,1 点からなる位相空間の<mark>被覆次元</mark>は 0次元なので $\dim_{\mathrm{pt}}(\mathsf{C}(Z)_{\mathsf{C}(s)(\mathrm{pt})}) = 0$ である.一方,コーンポイント以外の点 $x \in \mathsf{C}(Z)$ に対して $\mathsf{C}(s)(x)$ -層は $\mathsf{C}(Z)_{\mathsf{C}(s)(x)} = \mathbb{R}_{>0} \times Z \approx \mathbb{R} \times Z$ であるから, $\dim_x(\mathsf{C}(Z)_{\mathsf{C}(s)(x)}) = n+1$ と計算できる a .

また、 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ に対して

$$\dim((\mathbb{R}^m \to [0]) \times (X \to P)) = m + \dim(X \to P),$$

$$\operatorname{depth}((\mathbb{R}^m \to [0]) \times (X \to P)) = \operatorname{depth}(X \to P)$$

が成り立つ. 従って、 C^0 basic な $(U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ に対して

$$depth(U \to P_U) = depth(C(Z \to P))$$
$$= dim(Z \to P) + 1$$

が成り立つ.

a さらに、 $\forall x \in C(Z)$ に対して $\dim_x C(Z) = n + 1$ である.

次元と深さに関する帰納法を実行する前に、構成したい (1,1)-圏を表す記号の整理をしておこう:

• conically smooth チャートの素材となる, basic が成す圏

Bsc

これは, C^{∞} 多様体の圏 Mfld において \mathbb{R}^n $(\forall n \geq -1)$ 全体が成す充満部分圏に相当するものである.

• 与えられた C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ に対して,その上に入る**極大アトラス***⁵全体が成す集合を返す前層

$$\mathsf{Sm} \colon (\mathbf{Snglr}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$$

この対応が前層であることの直観は、層状化開埋め込み $f\in \operatorname{Hom}_{\mathbf{Snglr}^{C^0}}\left((X\to P),\,(Y\to Q)\right)$ が与えられると、 $(X\to P)$ 上の極大アトラス $\operatorname{Sm}(X\to P)$ が $(Y\to Q)$ 上の極大アトラス $\operatorname{Sm}(Y\to Q)$ を「制限」する写像 $\operatorname{Sm}(f)\colon \operatorname{Sm}(Y\to Q) \longrightarrow \operatorname{Sm}(X\to P)$ によって得られるということである.

• 深さが k 以下,かつ次元が n 以下であるような C^0 級層状化空間全体が成す \mathbf{Snglr}^{C^0} の充満部分圏を

$$\mathbf{Snglr}^{C^0} \underbrace{\leq k}_{\text{depth dimension}}, \underbrace{\leq n}_{\text{dimension}}$$

と書く. 同様に

$$\mathbf{Bsc}_{\leq k,\,\leq n},\qquad \mathsf{Sm}_{\leq k,\,\leq n}\colon (\mathbf{Snglr}_{\leq k,\,\leq n}^{C^0})^{\mathrm{op}}\longrightarrow \mathbf{Sets}$$

と書く.

 $^{^{*5}}$ 存在するか分からないし,存在したとして一意であるとは限らない.実際,例えば C^{∞} 多様体の段階においてさえ \mathbb{R}^4 の上の極大アトラス(i.e. C^{∞} 構造)は非可算無限個存在する [?].

• conically smooth な層状化空間の圏

Snglr

これを作ることが本小節の最終目標である.

帰納法により、 $\forall k \geq -1$ に対して $\mathbf{Bsc}_{\leq k, \leq \infty}$ および $\mathsf{Sm}_{\leq k, \leq \infty} \colon (\mathbf{Snglr}_{\leq k, \leq \infty}^{C^0})^\mathrm{op} \longrightarrow \mathbf{Sets}$ が構成される.

定義 1.10: 帰納法の出発点

(SngIr-1) より $(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathbf{SngIr}_{\leq -1, \leq \infty}^{C^0})$ である.

- (1) $\mathbf{Bsc}_{\leq -1, \leq \infty} \coloneqq \emptyset$
- (2) $\mathsf{Sm}_{<-1,<\infty}(\emptyset) \coloneqq \{*\}$

と定義する.

仮定 1.1: 帰納法の仮定

与えられた $k \ge -1$ に対して以下の構成が完了していると仮定する:

- (1) $\mathbb{B} \operatorname{Bsc}_{\leq k, \leq \infty}$
- (2) 前層 $\mathsf{Sm}_{\leq k, \leq \infty}$: $(\mathbf{Snglr}_{\leq k, \leq \infty}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$
- (3) 関手

$$\mathbb{R} \times (-) \colon \mathbf{Bsc}_{\leq k, \leq \infty} \longrightarrow \mathbf{Bsc}_{\leq k, \leq \infty},$$

$$U \longmapsto \mathbb{R} \times U,$$

$$\left(U \xrightarrow{f} V\right) \longmapsto \left(\mathbb{R} \times U \xrightarrow{\mathrm{id} \times f} \mathbb{R} \times V\right)$$

およびそれが誘導する自然変換。

 a X の極大アトラス $\left\{U_{lpha},\,arphi_{lpha}
ight\}_{lpha\in\Lambda}$ に対して、 $\left\{\mathbb{R} imes U_{lpha},\,\mathrm{id} imesarphi_{lpha}
ight\}_{lpha\in\Lambda}$ を対応づける.

定義 1.11: 圏 $\mathbf{Bsc}_{\leq k+1, \leq \infty}$

帰納法の仮定 1.1 がある $k \geq -1$ において成立しているとする. また, C^0 basic を $U_Z^n \coloneqq (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ と書く. このとき, 圏 $\mathbf{Bsc}_{\leq k+1, \leq \infty}$ を以下で定義する:

(対象)

 C^0 basic ${}^aU_Z^n\in \mathrm{Ob}(\mathbf{Snglr}_{\leq k+1,\leq \infty}^{C^0})$ および、極大アトラス $\mathcal{A}_Z\in \mathsf{Sm}_{\leq k,\leq \infty}(Z o P)$ の組み $(U_Z^n,\,\mathcal{A}_Z)$

を対象とする. これを basic と呼ぶ.

(射)

任意の 2 つの対象 $(U_Z^n,\mathcal{A}_Z),\; (U_W^m,\mathcal{A}_W)\in \mathrm{Ob}(\mathbf{Bsc}_{\leq k+1,\leq \infty})$ に対して、以下の条件を充た す層状化開埋め込み $f\in \mathrm{Hom}_{\mathbf{Snglr}^{C^0}_{\leq k+1,<\infty}}\left(U_Z^n,U_W^m\right)$ を射とする:

f がコーンポイントを保存しない場合

ある層状化開埋め込み $f_0\in \mathrm{Hom}_{\mathbf{Snglr}^{C^0}_{\leq k+1,\,\leq \infty}}\left(U^n_Z,\;\mathbb{R}^m\times\mathbb{R}_{>0}\times W\right)$ が存在して

$$f: U_Z^n \xrightarrow{f_0} \mathbb{R}^m \times (\mathbb{R}_{>0} \times W) \hookrightarrow U_W^m = \mathbb{R}^m \times \mathsf{C}(W)$$

と書けて、かつ $(U_Z^n, f_0) \in \mathcal{A}_{\mathbb{R}^m \times \mathbb{R}_{>0} \times W} \in \mathsf{Sm}(\mathbb{R}^m \times \mathbb{R}_{>0} \times W)$

f がコーンポイントを保存する場合

f は \mathbb{R}^n に沿って conically smooth であって、かつ $Df: \mathbb{R}^n \times U_Z^n \longrightarrow \mathbb{R}^m \times U_W^m$ が単射 であり、かつ

$$\mathcal{A}_{f^{-1}(U_W^m \backslash \mathbb{R}^m)} = \mathrm{Sm}_{\leq k, \, \leq \infty} \big(f|_{f^{-1}(U_W^m \backslash \mathbb{R}^m)} \big) \big(\mathcal{A}_{U_W^m \backslash \mathbb{R}^m} \big)$$

を充たす b . ただし, $U_W^m \setminus \mathbb{R}^m := U_W^m \setminus (\mathbb{R}^m \times \{ \mathrm{pt} \}) = \mathbb{R}^{m+1} \times W$ と略記した.

定義 1.12: 前層 $Sm_{\leq k+1, \leq \infty}$

帰納法の仮定 1.1 がある $k \geq -1$ において成立しているとする. さらに定義 1.11 によって $\mathbf{Bsc}_{\leq k+1,\leq \infty}$ が完成しているとする.

• C^0 級層状化空間 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}_{\leq k+1, \leq \infty})$ に対して、 $X \to P$ のアトラス (atlas) を族

$$\mathcal{A} \coloneqq \left\{ \left(U_{\alpha} \in \mathrm{Ob}(\mathbf{Bsc}_{\leq k+1, \leq \infty}), \, \varphi_{\alpha} \colon U_{\alpha} \hookrightarrow (X \to P) \right) \right\}_{\alpha \in \Lambda} \in \mathsf{Sm}_{\leq k+1, \leq \infty}(X \to P)$$

であって以下の条件を充たすものとして定義する:

(Atlas-1)

A は $(X \to P)$ の開被覆である.

(Atlas-2)

 $\forall \alpha, \beta \in \Lambda$ および $\forall x \in \varphi_{\alpha}(U_{\alpha}) \cap \varphi_{\beta}(U_{\beta})$ に対して、圏 $\mathbf{Snglr}_{\leq k+1, \leq \infty}^{C^{0}}$ の可換図式

 $[^]a$ depth の定義から depth $(Z \to P) \le \dim(Z \to P)$ である。故に【例 1.1.6】から、depth $(Z \to P) \le \dim(Z \to P) = \operatorname{depth} U_Z^n - 1 \le k$ であること、i.e. $(Z \to P) \in \operatorname{Ob}(\mathbf{Snglr}_{\le k, \le \infty}^{C^0})$ が分かる。 b ここで帰納法の仮定 1.1-(3) を暗に使っている。

$$\exists W \stackrel{f_{\beta}}{\hookrightarrow} U_{\beta}$$

$$f_{\alpha} \downarrow \qquad \qquad \downarrow \varphi_{\beta}$$

$$U_{\alpha} \stackrel{f_{\alpha}}{\smile} X$$

が存在して $x \in \varphi_{\alpha} \circ f_{\alpha}(W) = \varphi_{\beta} \circ f_{\beta}(W)$ を充たす。ただし、可換図式中の赤色の部分は全て圏 $\mathbf{Bsc}_{< k+1, < \infty}$ の対象および射からなる。

アトラス A の元 $(U_{\alpha}, \varphi_{\alpha}) \in A$ のことを**チャート** (chart) と呼ぶ.

- C^0 級層状化空間 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}_{\leq k+1, \leq \infty}^{C^0})$ の 2 つのアトラス A, $\mathcal B$ が同値であるとは, $A \cup \mathcal B$ が $(X \to P)$ のアトラスであることを言う.これは $(X \to P)$ のアトラス全体の集合の上に同値関係を定める。 $(X \to P)$ の極大アトラス (maximal atlas) とは,この同値関係によるアトラス A の同値類 [A] のことを言う.
- 前層

$$\mathsf{Sm}_{\leq k+1, \leq \infty} \colon (\mathbf{Snglr}_{\leq k+1, \leq \infty}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$$

を以下のように定義する:

(対象)

任意の C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}_{\leq k+1, \leq \infty})$ に対して

$$\mathsf{Sm}_{\leq k+1, \leq \infty}(X \to P) := \{ [\mathcal{A}] \mid \mathcal{A} \text{ is an atlas of } (X \to P) \}$$

(射)

任意の層状化開埋め込み $f \in \operatorname{Hom}_{\mathbf{Snglr}^{C^0}_{\leq k+1, \leq \infty}} \left((X \to P), \, (Y \to Q) \right)$ に対して,f によるアトラスの引き戻しを対応付ける.

以上の帰納法をまとめて、conically smooth な層状化空間と層状化開埋め込みの圏 Snglr を得る.

 $[^]a$ 同値関係であることの証明は [?, Lemma 3.2.11.] を参照.

定義 1.13: 圏 Snglr

• basic のなす圏 Bsc を以下で定義する:

$$\mathbf{Bsc}\coloneqq\bigcup_{k\geq -1}\mathbf{Bsc}_{\leq k,\,\leq\infty}$$

• 極大アトラスの集合を与える関手 Sm: $(\mathbf{Snglr}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ を以下の右 Kan 拡張として定義する:

$$(\mathbf{Snglr}^{C^0}_{<\infty, \leq \infty})^{\mathrm{op}} \overset{\mathsf{Sm}_{<\infty, \leq \infty}}{\longrightarrow} \mathbf{Sets}$$

$$\downarrow \qquad \qquad \qquad \mathsf{Sm}$$
 $(\mathbf{Snglr}^{C^0})^{\mathrm{op}}$

ただし、 $\mathbf{Snglr}^{C^0}_{<\infty, \leq \infty}\coloneqq \bigcup_{k\geq -1}\mathbf{Snglr}^{C^0}_{\leq k, \leq \infty}$ とおいた.

• **conically smooth な層状化空間** (conically smooth stratified space) と**層状化開埋め込み**の 圏 **Snglr** を以下で定義する:

(対象)

 C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ およびその極大アトラス $\mathcal{A}_{\mathcal{X}} \in \mathrm{Sm}(X \to P)$ の組み $((X \to P), \mathcal{A}_X)$ を対象とする.

(射)

層状化開埋め込み $f \in \operatorname{Hom}_{\mathbf{Snglr}^{C^0}}\left((X \to P),\, (Y \to Q)\right)$ であって、 $f^*\mathcal{A}_Y = \mathcal{A}_X$ を充たすものを射とする.

1.1.5 conically smooth map

ここまでは<mark>層状化開埋め込み</mark>のみを考えていたため,一般の<mark>層状化写像</mark>の conically smoothness を定義しなくてはいけない.

定義 1.14: conically smooth map

2 つの $\underline{\text{basic}}^a X = (U_Z^n, A_Z), Y = (U_W^m, A_W) \in \text{Ob}(\mathbf{Bsc})$ の間の層状化写像 $f: U_Z^n \longrightarrow U_W^m$ が conically smooth であることを、 $\underline{\text{depth}}(Y)$ に関する帰納法によって定義する:

- (1) まず、 $\operatorname{depth}(Y) = -1$ のときは $X = Y = \emptyset$ であり、一意的に定まる X, Y 間の層状化写像が conically smooth であると定義する.
- (2) 深さ $k \ge -1$ の basic に対して定義が完了しているとする. $Y \in \mathrm{Ob}(\mathbf{Bsc})$ の深さが高々 k+1 であるとき,層状化写像 $f\colon X \longrightarrow Y$ が conically smooth であることを以下で定義する:

f がコーンポイントを保存しない場合

ある conically smooth な層状化写像 $f_0: X \longrightarrow \mathbb{R}^m \times \mathbb{R}_{>0} \times W$ が存在して

$$f \colon X \xrightarrow{f_0} \mathbb{R}^m \times (\mathbb{R}_{>0} \times W) \hookrightarrow Y = \mathbb{R}^m \times \mathsf{C}(W)$$

と書ける**b**.

f がコーンポイントを保存する場合

f は \mathbb{R}^n に沿って conically smooth であって、かつ制限

$$f|_{f^{-1}(Y\setminus\mathbb{R}^m)}\colon f^{-1}(Y\setminus\mathbb{R}^m)\longrightarrow Y\setminus\mathbb{R}^m$$

が conically smooth. ただし, $U_W^m \setminus \mathbb{R}^m \coloneqq U_W^m \setminus (\mathbb{R}^m \times \{\text{pt}\}) = \mathbb{R}^{m+1} \times W$ と略記した.

conically smooth な層状化空間 $((X \to P), A_X), ((Y \to Q), A_Y) \in Ob(\mathbf{Snglr})$ の間の層状化写像 $f: (X \to P) \longrightarrow (Y \to Q)$ が conically smooth であるとは、任意のチャートの組み合わせ $(U, \varphi) \in A_X, (V, \psi) \in A_Y$ に対して

$$\psi^{-1} \circ f \circ \varphi \colon U \longrightarrow V$$

が conically smooth (for basics) であることを言う.

命題 1.1: conically smooth map の基本性質

2つの conically smooth map の合成も conically smooth である.

証明 [?, Proposition 3.3.5]

命題 1.1 より, conically smooth な層状化空間の圏を定義できる.

 $a C^0$ basic を $U_Z^n \coloneqq (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ と書く.

 $^{^{}b}$ 【例 1.1.6】より depth(W) < k+1 であり、帰納法の仮定が使える.

定義 1.15: conically smooth な層状化空間の圏 Strat

conically smooth な層状化空間の圏 Strat を以下で定義する:

(対象)

圏 Snglr と全く同じ対象を持つ:

$$Ob(\mathbf{Strat}) := Ob(\mathbf{Snglr})$$

(射)

conically smooth map を射とする.

定義から明らかに Snglr C Strat である. ここで、圏 Strat における特別な射に名前をつけておこう:

定義 1.16: constructuble bundle

• conically smooth な層状化写像 $\pi \in \operatorname{Hom}_{\mathbf{Strat}} \big((E \to P), (B \to Q) \big)$ が**層状化ファイバー** 東 (conically smooth fiber bundle) であるとは、conically smooth な層状化開埋め込みの族 $\big\{ U_{\alpha} \hookrightarrow B \big\}_{\alpha \in \Lambda}, \, \big\{ \varphi_{\alpha} \colon U_{\alpha} \times F_{\alpha} \hookrightarrow E \big\}_{\alpha \in \Lambda}$ が存在して以下を充たすことを言う:

(Bun-1)

 $\forall \alpha \in \Lambda$ に対して、圏 **Strat** における引き戻しの図式

$$U_{\alpha} \times F_{\alpha} \xrightarrow{\varphi_{\alpha}} E$$

$$\text{proj}_{1} \downarrow \qquad \qquad \downarrow \pi$$

$$U_{\alpha} \longleftrightarrow B$$

が成り立つ.

(Bun-2)

族 $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ は B の開基である.

• conically smooth な層状化写像 $\pi \in \operatorname{Hom}_{\mathbf{Strat}} \big((E \to P), (B \to Q) \big)$ が弱構成可能束 (weakly constructuble bundle) であるとは、 $\forall q \in Q$ に対して、 π の q-層への制限

$$\pi|_{\pi^{-1}(B_q)} \colon \pi^{-1}(B_q) \longrightarrow B_q$$

が層状化ファイバー束であることを言う.

- conically smooth な層状化写像 $\pi \in \operatorname{Hom}_{\mathbf{Strat}} \big((E \to P), \, (B \to Q) \big)$ が構成可能束 (constructuble bundle) であることを、 $\operatorname{depth}(E)$ に関する帰納法によって定義する:
 - (1) $\operatorname{depth}(E)=0$ のとき, π が構成可能束であるとは, π が C^{∞} ファイバー束であることを言う.
 - (2) 深さ $k \ge 0$ までの定義が完了しているとする. $\operatorname{depth}(E) \le k+1$ のとき, π が構成可能束であるとは、以下の 2 条件を充たすことを言う:

(cBun-1) π は弱構成可能束である.

(cBun-2) $\forall q \in Q$ に対して、 π が誘導する層状化写像

$$\operatorname{Link}_{\pi^{-1}(B_q)}(E) \longrightarrow \pi^{-1}(B_q) \times_{B_q} \operatorname{Link}_{B_q}(B)$$

が構成可能束である.

1.1.6 管状近傍・ハンドル分解

1.2 層状化空間の接構造

1.2.1 Kan-豊穣化

圏 Kan を,

- Kan 複体を対象に持つ
- Kan 複体の間の自然変換を射に持つ

(1,1)-圏とする. **Kan** は単体的集合の圏 **sSet** の充満部分圏であり,直積 $(\ref{eq:ssection})$ をテンソル積とするモノイダル圏になる.

定義 1.17: 余単体的多様体

以下で定義する関手

$$\Delta_e : \Delta \longrightarrow \mathbf{Strat}$$

のことを**余単体的多様体** (standard cosimplicial manifold) と呼ぶ。:

• $[n] \in \mathrm{Ob}(\Delta)$ を、conically smooth な層状化空間

$$\Delta_e^n := \{ (x^0, \dots, x^n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n x^i = 1 \}$$

に対応付ける.

• $\alpha \in \operatorname{Hom}_{\Delta}([m], [n])$ を、conically smooth な層状化写像

$$\Delta_e(\alpha) \colon \Delta_e^m \longrightarrow \Delta_e^n,$$

$$(x^0, \dots, x^m) \longmapsto \left(\sum_{j, \alpha(j)=0} x^j, \dots, \sum_{j, \alpha(j)=n} x^j\right)$$

に対応付ける.

PSh (Strat^{op}, Sets) から sSet への関手を

$$(-)|_{\Delta} \colon \mathrm{PSh}\left(\mathbf{Strat}, \, \mathbf{Sets}\right) \longrightarrow \mathbf{sSet},$$

$$F \longmapsto F \circ \Delta_{e}$$

で定義する. さらに、 $\forall X, Y \in \text{Ob}(\mathbf{Strat})$ に対して前層 $\text{Hom}_{\mathbf{Strat}}(X, Y) \in \text{PSh}(\mathbf{Strat}, \mathbf{Sets})$ を

$$\widetilde{\operatorname{Hom}_{\operatorname{\mathbf{Strat}}}}(X,Y) \colon \mathbf{Strat}^{\operatorname{op}} \longrightarrow \mathbf{Sets},$$

$$\mathbf{Z} \longmapsto \big\{ f \in \operatorname{Hom}_{\mathbf{Strat}}(\mathbf{Z} \times X, \mathbf{Z} \times Y) \mid \operatorname{proj}_{\mathbf{Z}} \circ f = \operatorname{proj}_{\mathbf{Z}} \big\},$$

 $[^]a$ 幾何学的 n-単体に似ているが、 $x^i \geq 0$ の領域で切り取っていない.

$$(Z \xrightarrow{\alpha} W) \longmapsto \begin{pmatrix} \widetilde{\operatorname{Hom}_{\operatorname{\mathbf{Strat}}}(X,Y)(Z)} \longrightarrow \widetilde{\operatorname{Hom}_{\operatorname{\mathbf{Strat}}}}(X,Y)(W), \\ f \longmapsto \left((w,x) \mapsto \left(w, \operatorname{proj}_{Y} \circ f(\alpha(w),x) \right) \right) \end{pmatrix}$$

で定義する。ただし、conically smooth な層状化写像 $\operatorname{proj}_Z \in \operatorname{Hom}_{\mathbf{Strat}}(Z \times X, Z)$ とは第一成分への射影のことである。同様にして前層 $\widetilde{\operatorname{Hom}}_{\mathbf{Snglr}}(X, Y) \in \operatorname{PSh}\left(\mathbf{Strat}, \mathbf{Sets}\right)$ を

$$\begin{split} \operatorname{Hom}_{\operatorname{\mathbf{Snglr}}}(X,\,Y) \colon \mathbf{Strat}^{\operatorname{op}} &\longrightarrow \mathbf{Sets}, \\ Z &\longmapsto \big\{\, f \in \operatorname{Hom}_{\mathbf{Snglr}}\left(Z \times X,\, Z \times Y \right) \,\big|\, \operatorname{proj}_Z \circ f = \operatorname{proj}_Z \,\big\}, \\ (Z \xrightarrow{\alpha} W) &\longmapsto \left(\stackrel{\operatorname{Hom}_{\operatorname{\mathbf{Snglr}}}(X,Y)(Z) \longrightarrow \operatorname{Hom}_{\operatorname{\mathbf{Snglr}}}(X,Y)(W),}{f \mapsto \left((w,x) \mapsto \left(w,\operatorname{proj}_Y \circ f(\alpha(w),x) \right) \right)} \right) \end{aligned}$$

で定義する.

補題 1.3:

 $\forall X, Y \in \text{Ob}(\mathbf{Strat})$ に対して定まる単体的集合

$$\operatorname{Hom}_{\operatorname{Strat}}(X, Y) := \widetilde{\operatorname{Hom}_{\operatorname{Strat}}}(X, Y)\Big|_{\Delta},$$

 $\operatorname{Hom}_{\operatorname{Snglr}}(X, Y) := \widetilde{\operatorname{Hom}_{\operatorname{Snglr}}}(X, Y)\Big|_{\Delta}$

は Kan 複体である.

証明 [?, Lemma 4.1.4.].

定義 1.18: $(\infty, 1)$ -圏 \mathcal{S} trat, \mathcal{S} nglr, \mathcal{B} sc

Kan-豊穣圏 Strat を以下で定義する:

- Ob(Strat) := Ob(Snglr)
- 補題 1.3 で構成した $\operatorname{Hom}_{\operatorname{Strat}}(X,Y) \in \operatorname{Ob}(\mathbf{Kan})$ を Hom 対象とする.

同様に、Kan-豊穣圏 Snglr を以下で定義する:

- Ob(Snglr) := Ob(Snglr)
- 補題 1.3 で構成した $\operatorname{Hom}_{\operatorname{Snglr}}(X,Y) \in \operatorname{Ob}(\mathbf{Kan})$ を Hom 対象とする.

Kan-豊穣圏 Snglr の対象を Ob(Bsc) に制限して得られる充満部分圏を $\mathcal{B}sc$ と書く.

 \mathbf{Kan} -豊穣圏を homotopy coherent nerve functor N_{hc} : $\mathbf{Cat}_{\Delta} \longrightarrow \mathbf{sSet}$ で単体的集合の圏 \mathbf{sSet} へ埋 め込んだものは $(\infty, 1)$ -圏である [?, Proposition 1.1.5.10.]. 故に以下では \mathbf{Kan} -豊穣圏 \mathbf{Strat} , \mathbf{Snglr} と $(\infty, 1)$ -圏 $N_{hc}(\mathbf{Strat})$, $N_{hc}(\mathbf{Snglr})$ を区別しない.

1.2.2 $(\infty, 1)$ -圏におけるファイブレーション

定義 1.19: $(\infty, 1)$ -ファイブレーション

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ を $(\infty, 1)$ -圏の関手とする.

(lifting property)

包含 $\iota \in \operatorname{Hom}_{\mathbf{sSet}}(\Lambda_j^n, \Delta^n)$ に関して $p \circ f_0 = f \circ \iota$ を充たす任意の $(f_0, f) \in \operatorname{Hom}_{\mathbf{sSet}}(\Lambda_j^n, \mathcal{E}) \times \operatorname{Hom}_{\mathbf{sSet}}(\Delta_j^n, \mathcal{B})$ に対して、以下の図式を可換にする $\bar{f} \in \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{E})$ が存在する:

- p が内的ファイブレーション (inner fibration) であるとは、 $0 < \forall j < \forall n$ に対して (lifting property) を充たすことを言う.
- p が右ファイブレーション (right fibration) であるとは、 $0 < \forall j \leq \forall n$ に対して (lifting property) を充たすことを言う.
- p が**左ファイブレーション** (left fibration) であるとは, $0 \le \forall j < \forall n$ に対して (lifting property) を充たすことを言う.
- p が Kan ファイブレーション (Kan fibration) であるとは、 $0 \le \forall j \le \forall n$ に対して (lifting property) を充たすことを言う.

系??によると、(lifting property) は、 $(\infty, 1)$ -圏 \mathcal{B} における角の図式($p_{[n-1]}(f_{00}), \ldots, \underbrace{\bullet}_{j}, \ldots, p_{[n-1]}(f_{0n})$) \in $(\mathcal{B}_{n-1})^{\times n}$ を n-射 $f \in \mathcal{B}_{n}$ が埋めているならば、 $(\infty, 1)$ -圏 \mathcal{E} における \mathfrak{B} の図式($f_{00}, \ldots, \underbrace{\bullet}_{j}, \ldots, f_{0n}$) \in $(\mathcal{E}_{n-1})^{\times n}$ を埋める n-射 $\bar{f} \in \mathcal{E}_{n}$ が存在することを主張している.

定義 1.20: 充満部分 $(\infty, 1)$ -圏

- $(\infty, 1)$ -圏 \mathcal{C} の部分 $(\infty, 1)$ -圏 $(\text{sub }(\infty, 1)\text{-category})$ とは、単体的部分集合 $\mathcal{S} \subset \mathcal{C}$ であって、その包含写像 $i: \mathcal{S} \hookrightarrow \mathcal{C}$ が内的ファイブレーションであるようなもののこと^a.
- 部分 $(\infty, 1)$ -圏 $S \subset C$ が充満部分 $(\infty, 1)$ -圏 (full sub $(\infty, 1)$ -category) であるとは, $\forall n \geq 0$ に対して以下の条件を充たすことを言う:

(fullsub) $\forall \sigma \in \mathcal{C}_n \cong \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{C})$ に対して、 $\sigma_{[0]}(\Delta^n_0) \subset \mathcal{S}_0 \implies \sigma \in \mathcal{S}_n$ が成り立つ.

 a このとき S は $(\infty, 1)$ -圏になる [?, Tag 01CG]

2つの右ファイブレーション $\mathcal{E} \xrightarrow{p} \mathcal{B}$, $\mathcal{E}' \xrightarrow{p'} \mathcal{B}$ が与えられたとき, これらの間の射とは集合

$$\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E}, \mathcal{E}') := \{ f \in \operatorname{Hom}_{\mathbf{sSet}}(\mathcal{E}, \mathcal{E}') \mid p' \circ f = p \}$$

のことである. $\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}')$ の元を \mathbf{sSet} における可換図式として表すと以下の通り:

$$\mathcal{E} \xrightarrow{f} \mathcal{E}'$$

 $\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}') \subset \operatorname{Hom}_{\mathbf{sSet}}(\mathcal{E},\mathcal{E}')$ を【例??】の方法で単体的集合と見做せる.このようにして得られる単体的集合 $\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}')$ の最大の部分 Kan 複体を $\operatorname{Hom}_{\mathbf{Rfib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}')$ と書く.

定義 1.21: 右ファイブレーションの成す $(\infty, 1)$ -圏

 \mathcal{B} を $(\infty, 1)$ -圏とする. Kan-豊穣圏 \mathcal{R} fib $_{\mathcal{B}}$ を

- 右ファイブレーションを対象とする
- $\operatorname{Hom}_{\mathcal{R}\mathbf{fib}_{\mathcal{B}}}(\mathcal{E},\mathcal{E}')$ を Hom 対象とする

ことで定義する. 以降では $(\infty, 1)$ -圏 $N_{hc}(\mathcal{R}\mathbf{fib}_{\mathcal{B}}) \in \mathrm{Ob}(\mathbf{sSet})$ のことも $\mathcal{R}\mathbf{fib}_{\mathcal{B}}$ と書き, 区別しない.

1.2.3 $(\infty, 1)$ -圏におけるスライス圏

定義 1.22: 単体的集合の join

2 つの単体的集合 $S, T \in \mathrm{Ob}(\mathbf{sSet})$ の **join** とは、単体的集合

 $d_i^n \in \operatorname{Hom}_{\Delta^{\operatorname{op}}}([n], [n-1])$ に対して

$$(d_j^n)^{-1}([i]) = \begin{cases} [i], & -1 \le i < j \\ [i-1], & j \le i \le n \end{cases}$$

$$(d_j^n)^{-1}([n] \setminus [i]) = \begin{cases} [n-1] \setminus [i], & -1 \le i < j \\ [n-1] \setminus [i-1], & j \le i \le n \end{cases}$$

であるから, $S \star T$ の面写像は $n \geq 1, 0 \leq j \leq n$ に対して

$$\partial_j^n : \coprod_{-1 \le i \le n} (S_i \times T_{n-i-1}) \longrightarrow \coprod_{-1 \le i \le n-1} (S_i \times T_{n-i-2}), \tag{1.2.1}$$

$$([i]; (x, y)) \longmapsto \begin{cases} ([-1]; (*, \partial_{j}^{n}y)), & i = -1 \\ ([i]; (x, \partial_{j-i-1}^{n-i-1}y)), & 0 \leq i < j, (i, j) \neq (n-1, n) \\ ([i-1]; (\partial_{j}^{i}x, y)), & j \leq i \leq n-1, (i, j) \neq (0, 0) \\ ([n-1]; (\partial_{j}^{n}x, *)), & i = n \\ ([n-1]; (x, *)), & (i, j) = (n-1, n) \\ ([-1]; (*, y)), & (i, j) = (0, 0) \end{cases}$$

となる.

【例 1.2.1】join $\Delta^0 \star \Delta^0$

 $\Delta^0 \star \Delta^0$ を計算してみよう^a. まず対象は

$$(\Delta^0 \star \Delta^0)_0 = \Delta^0_0 \sqcup \Delta^0_0 = \left\{ \begin{array}{c} \{0\} \\ \bullet \\ \{0\} \end{array} \right\}$$

である. 1-射は

$$(\Delta^0 \star \Delta^0)_1 = \Delta^0_1 \sqcup (\Delta^0_0 \times \Delta^0_0) \sqcup \Delta^0_1$$

であるが、(1.2.1) より始点関数は

$$\partial_1^1|_{\Delta_0^0 \times \Delta_0^0} \colon \Delta_0^0 \times \Delta_0^0 \longrightarrow \Delta_0^0 \sqcup \Delta_0^0,$$
$$(\{0\}, \{0\}) \longmapsto \{0\}$$

終点関数は

$$\begin{split} \partial_0^1|_{\Delta_0^0\times\Delta_0^0} \colon \Delta_0^0\times\Delta_0^0 &\longrightarrow {\color{red}\Delta^0}_0\sqcup {\color{blue}\Delta^0}_0,\\ (\{0\},\,\{0\}) &\longmapsto \{0\} \end{split}$$

となるため、 Δ^0_1 、 Δ^0_1 が縮退していることを考慮すると

$$(\Delta^0 \star \Delta^0)_1 = \left\{ \begin{array}{c} \{0\} \\ \bullet \\ \{0\} \end{array} \right\}$$

と図示できる.

 $[^]a$ 左右の区別を付けるために色を付けた.

【例 1.2.2】join $\Delta^1 \star \Delta^0$

 $\Delta^1 \star \Delta^0$ を計算してみよう. まず対象は

$$(\Delta^{1} \star \Delta^{0})_{0} = \Delta^{1}_{0} \sqcup \Delta^{0}_{0} = \left\{ \begin{array}{cc} \{0\} & \{1\} \\ \bullet & \bullet \\ \\ \{0\} \end{array} \right\}$$

である. 1-射は

$$(\Delta^1 \star \Delta^0)_1 = \Delta^1_1 \sqcup (\Delta^1_0 \times \Delta^0_0) \sqcup \Delta^0_1$$

であるが、(1.2.1) より始点関数は

$$\partial_1^1|_{\Delta_0^1 \times \Delta_0^0} \colon \Delta_0^1 \times \Delta_0^0 \longrightarrow \underline{\Delta}_0^1 \sqcup \underline{\Delta}_0^0,$$
$$(x, \{0\}) \longmapsto \underline{x}$$

終点関数は

$$\begin{array}{c} \partial_0^1|_{\Delta_0^1 \times \Delta_0^0} \colon \Delta_0^1 \times \Delta_0^0 \longrightarrow {\color{red} \Delta^1_0} \sqcup {\color{blue} \Delta^0_0}, \\ (x, \{0\}) \longmapsto \{0\} \end{array}$$

となるため,

$$\Delta^{1} \star \Delta^{0} = \begin{cases} \{0\} & \{1\} \\ & (\mathrm{Id}_{[1]}, \{0\}) \end{cases}$$

と図示できる.ただし,三角形の内部は 2-射 $(\mathrm{Id}_{[1]},\,\{0\})\in\Delta^1_1\times\Delta^0_0\subset(\Delta^1\star\Delta^0)_2$ が埋めている.同様に

$$(\Delta^0 \star \Delta^1)_1 = \left\{ \begin{array}{c} \{0\} & \{1\} \\ \\ (\{0\}, \operatorname{Id}_{[1]}) \\ \\ \{0\} \end{array} \right\}$$

であることが分かる.

【例 1.2.3】join $\Delta^2 \star \Delta^0$

 $\Delta^2 \star \Delta^0$ を計算してみよう. まず

$$(\Delta^{2} \star \Delta^{0})_{0} = \Delta^{2}_{0} \sqcup \Delta^{0}_{0} = \left\{ \begin{array}{c} \{1\} \\ \bullet \\ \bullet \\ \{2\} \\ \\ \{0\} \end{array} \right\}$$

である. 次に1射は

$$(\Delta^2 \star \Delta^0)_1 = {\color{red}\Delta^2}_1 \sqcup (\Delta_0^2 \times \Delta_0^0) \sqcup {\color{red}\Delta^0}_1$$

であるが、(1.2.1) より始点関数は

$$\partial_1^1|_{\Delta_0^2 \times \Delta_0^0} \colon \Delta_0^2 \times \Delta_0^0 \longrightarrow {\color{red}\Delta^2_0} \sqcup {\color{blue}\Delta^0_0}, \\ (x, \operatorname{Id}_{\{0\}}) \longmapsto {\color{blue}x}$$

となり,終点関数は

$$\begin{array}{c} \partial_0^1|_{\Delta_0^2 \times \Delta_0^0} \colon \Delta_0^2 \times \Delta_0^0 \longrightarrow {\color{red}\Delta^2_0} \sqcup {\color{blue}\Delta^0_0}, \\ (x, \operatorname{Id}_{\{0\}}) \longmapsto \{0\} \end{array}$$

となる.従って図式??に倣うと

$$(\Delta^2 \star \Delta^0)_1 = \frac{\Delta^2}{1} \sqcup (\Delta_0^2 \times \Delta_0^0) \sqcup \Delta^0_1 = \left\{ \begin{array}{c} \{0\} \\ \{1\} \\ \{0\} \end{array} \right.$$

と図示できる. ただし、四面体の内部は 3-射 $(\mathrm{Id}_{[2]},\,\{0\})\in\Delta_2^2\times\Delta_0^0\subset(\Delta^1\star\Delta^0)_3$ が埋めている. 同様に、 $\Delta^0\star\Delta^2$ の 1-射を図示すると

$$(\Delta^{0} \star \Delta^{2})_{1} = \Delta^{0}_{1} \sqcup (\Delta^{0}_{0} \times \Delta^{2}_{0}) \sqcup \Delta^{2}_{1} = \begin{cases} \{0\} \\ \{0\} \end{cases}$$

のようになる.

補題 1.4: $(\infty, 1)$ -圏同士の join は $(\infty, 1)$ -圏

 $(\infty, 1)$ -圏同士の join は $(\infty, 1)$ -圏である.

証明 [?, Proposition 1.2.8.3]

定義 1.23: スライス $(\infty, 1)$ -圏

 $(\infty, 1)$ -圏 \mathcal{D}, \mathcal{C} および $(\infty, 1)$ -圏の関手 $p \in \operatorname{Hom}_{\mathbf{sSet}}(\mathcal{D}, \mathcal{C})$ を与える. p に沿った \mathcal{C} のスライス圏 (overcategory)

$$\mathcal{C}_{/p} \colon \Delta^{\mathrm{op}} \longrightarrow \mathbf{Sets}$$

を以下で定義する:

• $\forall [n] \in \mathrm{Ob}(\Delta^{\mathrm{op}})$ に対して、集合

$$\operatorname{Hom}_{p}\left(\Delta^{n}\star\mathcal{D},\,\mathcal{C}\right)\coloneqq\left\{\,f\in\operatorname{Hom}_{\mathbf{sSet}}\left(\Delta^{n}\star\mathcal{D},\,\mathcal{C}\right)\mid f|_{\mathcal{D}}=p\,\right\}$$

を対応付ける。.

• $\forall \alpha \in \operatorname{Hom}_{\Delta^{\operatorname{op}}}([m], [n])$ に対して、写像

$$C_{/p}(\alpha) \colon \operatorname{Hom}_p(\Delta^m \star \mathcal{D}, \mathcal{C}) \longrightarrow \operatorname{Hom}_p(\Delta^n \star \mathcal{D}, \mathcal{C}),$$

$$f \longmapsto f \circ (\alpha_* \star \operatorname{Id}_{\mathcal{D}})$$

を対応付ける.

実際, 単体的集合 $\mathcal{C}_{/p}$ は $(\infty, 1)$ -圏である [?, Tag 018F].

p に沿った C のコスライス圏 (undercategory)

$$\mathcal{C}_{p}$$
: $\Delta^{\mathrm{op}} \longrightarrow \mathbf{Sets}$

を以下で定義する:

• $\forall [n] \in \mathrm{Ob}(\Delta^{\mathrm{op}})$ に対して、集合

$$\operatorname{Hom}_{p}\left(\mathcal{D}\star\Delta^{n},\,\mathcal{C}\right)\coloneqq\left\{\,f\in\operatorname{Hom}_{\mathbf{sSet}}\left(\mathcal{D}\star\Delta^{n},\,\mathcal{C}\right)\,\,\middle|\,\,f|_{\mathcal{D}}=p\,\right\}$$

を対応付ける。.

• $\forall \alpha \in \operatorname{Hom}_{\Delta^{\operatorname{op}}}([m], [n])$ に対して、写像

$$C_{p/}(\alpha) \colon \operatorname{Hom}_p(\mathcal{D} \star \Delta^m, \mathcal{C}) \longrightarrow \operatorname{Hom}_p(\mathcal{D} \star \Delta^n, \mathcal{C}),$$

$$f \longmapsto f \circ (\operatorname{Id}_{\mathcal{D}} \star \alpha_*)$$

を対応付ける.

 $[^]af|_{\mathcal{D}}$ というのは、join の定義における $(\Delta^n\star\mathcal{D})_k$ の disjoint union のうち、添字 i=0 が振られている成分への制限を意味する.

 $^af|_{\mathcal{D}}$ というのは、 join の定義における $(\mathcal{D}\star\Delta^n)_k$ の disjoint union のうち、添字 i=n が振られている成分への制限を意味する.

特に注目すべきは、 $(\infty, 1)$ -圏の関手 $p: \Delta^0 \longrightarrow \mathcal{C}$ をとった場合である.このとき $X \coloneqq p_{[0]}(\{0\}) \in \mathcal{C}_0$ とおいて $\mathcal{C}_{/X}$ 、 $\mathcal{C}_{X/}$ などと書く.

まず、 $(\infty, 1)$ -圏 $\mathcal{C}_{/X}$ の対象 $\varphi \in (\mathcal{C}_{/X})_0 = \operatorname{Hom}_p(\Delta^0 \star \Delta^0, \mathcal{C})$ をとる. すると【例 1.2.1】および $\varphi|_{\Delta^0} = p$ の条件から、 $\varphi_{[1]}: (\Delta^0 \star \Delta^0)_1 \longrightarrow \mathcal{C}_1$ とは図式

$$\varphi_{[0]|\Delta_0^0}(\{0\})$$

$$\varphi = \varphi_{[1]|\Delta_0^0 \times \Delta_0^0}(\{0\} \to \{0\})$$

$$X$$

である. $n\geq 2$ 射に相当する $\varphi_{[n]}\colon (\Delta^0\star\Delta^0)_n\longrightarrow \mathcal{C}_n$ のデータは縮退していて自明である. 従って, φ は (1,1)-圏における X 上のスライス圏の対象と等価なデータを与える.

同様に、 $(\infty, 1)$ -圏 $\mathcal{C}_{/X}$ の 1-射 $f \in (\mathcal{C}_{/X})_1 = \operatorname{Hom}_p(\Delta^1 \star \Delta^0, \mathcal{C})$ とは、【例 1.2.2】 より

のことである. ただし三角形の内部は 2-射 $f_{[2]}|_{\Delta^1_1 \times \Delta^0_0}(\mathrm{Id}_{[2]}, \{0\}) \in \mathcal{C}_2$ が埋めている. これは (1,1)-圏における X 上のスライス圏の射のデータに対応しているが,横向きの矢印を決めるだけでは f が upto homotopy でしか定まらないという点で異なっている.

 $(\infty,1)$ -圏 $\mathcal{C}_{/X}$ の n-射も同様に図示できる.

【例 1.2.4】スライス圏からの forgetful functor

 $(\infty, 1)$ -圏 \mathcal{C} の、 $X: \Delta^0 \longrightarrow \mathcal{C}$ に沿ったスライス圏に対して、**忘却関手** (forgetful functor)

forget:
$$\mathcal{C}_{/X} \longrightarrow \mathcal{C}$$

を次のように定義する:

$$\operatorname{forget}_{[n]} : (\mathcal{C}_{/X})_n = \operatorname{Hom}_X (\Delta^n \star \Delta^0, \mathcal{C}) \longrightarrow \mathcal{C}_n = \operatorname{Hom}_{\mathbf{sSet}} (\Delta^n, \mathcal{C}),$$

$$f \longmapsto f|_{\Delta^n}$$
(1.2.2)

n=0,1,2 の場合, i.e. 【例 1.2.1】,【例 1.2.2】,【例 1.2.3】の図式においては、ちょうど $X\in\mathcal{C}_0$ に対応する青色の頂点(コーンポイント)を除去する操作に対応している. (1.2.2) の定義は $\frac{1}{1}$ ので表している.

1.2.4 $(\infty, 1)$ -圏の limit/colimit

後の議論のため、先取りして $(\infty, 1)$ -圏における limit/colimit を定義しておこう. $(\infty, 1)$ -圏のモデルとして quasi-category を採用する場合、これは **homotopy limit/colimit** と呼ばれることもある.

定義 1.24: $(\infty, 1)$ -圏における始対象と終対象

- $(\infty, 1)$ -圏 C における対象 $x \in C_0$ が始対象 (initial object) であるとは、ホモトピー圏 hC における始対象aであること.
- $(\infty, 1)$ -圏 C における対象 $x \in C_0$ が終対象 (final object) であるとは、ホモトピー圏 hC における終対象 b であること.
- $^{a}(1,1)$ -圏の**始対象**とは、空の図式における余極限のこと、
- $^{b}(1,1)$ -圏の終対象とは、空の図式における極限のこと、

定義 1.25: $(\infty, 1)$ -圏の limit/colimit

 $(\infty, 1)$ -圏の関手 $D: \mathcal{I} \longrightarrow \mathcal{C}$ を与える。

- D の limit とは、スライス $(\infty, 1)$ -圏 $\mathcal{C}_{/D}$ における終対象のこと。 $\lim D \in \mathcal{C}_0$ と書く.
- D の colimit とは、スライス $(\infty, 1)$ -圏 $\mathcal{C}_{D/}$ における始対象のこと。colim $\mathbf{D} \in \mathcal{C}_0$ と書く.

【例 1.2.5】pullback

単体的集合の積 $S \times T \colon \Delta^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ における面写像とは

$$\partial_j^n \colon S_n \times T_n \longrightarrow S_{n-1} \times T_{n-1},$$

 $(x, y) \longmapsto (\partial_j^n x, \partial_i^n y)$

のことであった. 故に、単体的集合 $\Delta^1 \times \Delta^1$ は、 $\Delta^1_0 =: \{ \bullet_0, \bullet_1 \}$ とおくと

$$\Delta^{1} \times \Delta^{1} = (0, 0) \qquad (1, 0)$$

$$(0, 1) \qquad (1, 1)$$

と図示できる. ただし, 2-射以上は縮退していて見えない.

 $(\infty, 1)$ -圏の関手 $D: \Delta^1 \times \Delta^1 \longrightarrow \mathcal{C}$ の limit のことを(存在すれば) pullback と呼び、

$$D(0, 1) \times_{D(1, 1)} D(1, 0) := \lim D \in C_0$$

と書く.

 $^{^{}a}$ (1, 1)-圏の場合からのアナロジーで,D を図式と見做す.

1.2.5 Unstraightening construction

定理 1.1: unstraightening construction

 $(\infty, 1)$ -圏同値

$$\operatorname{PSh}_{(\infty,1)}(\mathcal{B}) \xrightarrow{\cong} \mathcal{R}\operatorname{fib}_{\mathcal{B}}$$

が存在する.

証明 $(\infty, 1)$ -圏同値

Un:
$$\mathbf{PSh}_{(\infty, 1)}(\mathcal{B}) \longrightarrow \mathcal{R}\mathbf{fib}_{\mathcal{B}}$$

は、次のようにして構成される (unstraightening construction):

対象 $F \in \mathbf{PSh}_{(\infty,1)}(\mathcal{B})_0$ に対して、 $(\infty,1)$ -圏の pullback

$$egin{aligned} \operatorname{Un}(F) & \longrightarrow \mathcal{S}\mathrm{paces}_{/*} \ & & \downarrow^{\mathrm{forget}} \ \mathcal{B} & \longrightarrow_F & \mathcal{S}\mathrm{paces} \end{aligned}$$

により得られる右ファイブレーション $\operatorname{Un}(F) \longrightarrow \mathcal{B} \in (\mathcal{R}\mathbf{fib}_{\mathcal{B}})_0$ を対応付ける.

n-射

逆向きの $(\infty, 1)$ -圏同値 (straightning construction)

St:
$$\mathcal{R}$$
fib $_{\mathcal{B}} \longrightarrow \mathbf{PSh}_{(\infty, 1)}(\mathcal{B})$

は難しい. 詳細は [?, Proposition 2.2.3.11] を参照.

1.2.6 $(\infty, 1)$ -圏における米田埋め込み

定義 1.26: twisted arrow category

 $(\infty,1)$ -圏 $\mathcal C$ を与える. このとき, $\mathcal C$ の twisted arrow category と呼ばれる $(\infty,1)$ -圏を以下で定義する:

$$\operatorname{Tw}(\mathcal{C}) \colon \Delta^{\operatorname{op}} \longrightarrow \mathbf{Sets},$$

$$[n] \longmapsto \operatorname{Hom}_{\mathbf{sSet}} \left((\Delta^n)^{\operatorname{op}} \star \Delta^n, \, \mathcal{C} \right),$$

$$\left([m] \xrightarrow{\alpha} [n] \right) \longmapsto \left(f \mapsto f \circ (\alpha_* \times \alpha_*) \right)$$

(∞, 1)-圏の関手

$$\operatorname{pr} \colon \operatorname{Tw}(\mathcal{C}) \longrightarrow \mathcal{C}^{\operatorname{op}} \times \mathcal{C}$$

を以下で定義すると、これは左ファイブレーションになる [?, Tag 03JQ]:

$$\operatorname{pr}_{[n]} \colon \operatorname{Tw}(\mathcal{C})_n \longrightarrow \mathcal{C}_n^{\operatorname{op}} \times \mathcal{C}_n = \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{C}^{\operatorname{op}}) \times \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{C})$$

$$f \longmapsto (f|_{(\Delta^n)^{\mathrm{op}}}, f|_{\Delta^n})$$

 $(\infty, 1)$ -圏における Hom 関手

$$\mathrm{Map}_{\mathcal{C}}:\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\longrightarrow\mathcal{S}\mathbf{paces}$$

の自然な構成は、straightning construction を用いた

$$\operatorname{Tw}(\mathcal{C}) \longrightarrow \mathcal{S}\mathbf{paces}_{*/}$$
 $\operatorname{pr} \downarrow \qquad \qquad \downarrow_{\operatorname{forget}}$
 $\mathcal{C}^{\operatorname{op}} \times \mathcal{C}_{\overset{}{\operatorname{Map}_{\mathcal{C}}} := \operatorname{St}(\mathbf{pr})} \mathcal{S}\mathbf{paces}$

である [?, I.26., p.19].

定義 1.27: $(\infty, 1)$ -圏の米田埋め込み (informal)

 \mathcal{C} を $(\infty, 1)$ -圏とする. $(\infty, 1)$ -圏の米田埋め込み (Yoneda embedding)

$$\sharp \colon \mathcal{C} \longrightarrow \mathbf{PSh}_{(\infty, 1)}(\mathcal{C})$$

とは、 \mathcal{C} から $(\infty, 1)$ -前層の成す $(\infty, 1)$ -圏 $\mathbf{PSh}_{(\infty, 1)}(\mathcal{C})$ への $(\infty, 1)$ -圏の関手であって、対象 $x \in \mathcal{C}_0$ に対して

$$\sharp_{[0]}(x)_{[0]} \colon \mathcal{C}_0^{\mathrm{op}} \longrightarrow \mathcal{S}\mathbf{paces}_0,$$

 $y \longmapsto \mathrm{Map}_{\mathcal{C}}(x, y)$

を充たす a ような $(\infty, 1)$ -圏の関手 $\mathfrak{s}_{[0]}(x) \in \mathbf{PSh}_{(\infty, 1)}(\mathcal{C})_0 = \mathrm{Hom}_{\mathbf{sSet}}(\mathcal{C}^{\mathrm{op}}, \mathcal{S}\mathbf{paces})$ を対応付けるもののこと b .

1.2.7 層状化空間の接構造

定義 1.28: enter-path category

conically smooth な層状化空間 $X \in \mathrm{Ob}(\mathbf{Strat})$ の enter-path $(\infty, 1)$ -category とは、 $(\infty, 1)$ -圏 \mathcal{B} sc のスライス圏

$$\mathcal{E}$$
ntr $(X) := \mathcal{B}$ **sc** $_{/X}$

のこと.

 $[^]a$ $(\infty,1)$ -圏 $\mathcal C$ において、対象 $x,y\in\mathcal C_0$ の間の射の空間 $\mathrm{Map}_{\mathcal C}(x,y)$ は Kan 複体を成すのだった $[?,\mathrm{Tag}\ 01\mathrm{JC}].$

^b 厳密な構成については [?, Tag 03NF] を参照.

定義 1.29: tangent classifier

 $\iota \colon \mathcal{B}\mathbf{sc} \hookrightarrow \mathcal{S}\mathbf{nglr}$ を包含とする. tangent classifier とは, $(\infty, 1)$ -圏の関手

$$au \colon \mathcal{S}\mathrm{nglr} \overset{\hspace{0.1em} riangle}{ o} \mathrm{PSh}_{(\infty,\,1)}\left(\mathcal{S}\mathrm{nglr}\right) \overset{\iota^{*}}{\longrightarrow} \mathrm{PSh}_{(\infty,\,1)}\left(\mathcal{B}\mathrm{sc}\right)$$

のこと.

定義 1.27 より, tangent classifier は conically smooth な層状化空間 $X \in \mathcal{S}$ ngl \mathbf{r}_0 に対して $(\infty, 1)$ -圏の表現可能前層

$$\tau_{[0]}(X) = \operatorname{Map}_{\mathcal{B}sc}(-, X) \in \mathbf{PSh}_{(\infty, 1)}(\mathcal{B}sc)_{0}$$
(1.2.3)

を対応付ける.

定理 1.1 により, tangent classifier τ のことを

$$\tau \colon \mathcal{S}\mathrm{nglr} \xrightarrow{\sharp} \mathrm{PSh}_{(\infty,\,1)}\left(\mathcal{S}\mathrm{nglr}\right) \xrightarrow{\iota^*} \mathrm{PSh}_{(\infty,\,1)}\left(\mathcal{B}\mathrm{sc}\right) \xrightarrow{\simeq} \mathcal{R}\mathrm{fib}_{\mathcal{B}\mathrm{sc}}$$

と見做すこともできる.このとき, $\mathcal{R}\mathbf{fib}_{\mathcal{B}\mathbf{sc}}$ の構成および $(\infty,1)$ -前層 (1.2.3) に対する定理 1.1 の具体的構成から,conically smooth な層状化空間 $X \in \mathcal{S}\mathbf{nglr}_0$ に対して定まる $(\infty,1)$ -圏の右ファイブレーション $\tau_{[0]}(X) \in (\mathcal{R}\mathbf{fib}_{\mathcal{B}\mathbf{sc}})_0$ とは忘却関手

$$\tau_{[0]}(X) \colon \mathcal{E}\mathbf{ntr}(X) \longrightarrow \mathcal{B}\mathbf{sc}$$

のことである. この忘却関手を以下では $au_X := au_{[0]}(X)$ と書く.

定義 1.30: *B*-多様体

- (\mathcal{B}, f) 構造 a とは、 $(\infty, 1)$ -圏の右ファイブレーション $(\mathcal{B} \xrightarrow{f} \mathcal{B}sc) \in (\mathcal{R}fib_{\mathcal{B}sc})_0$ のこと.
- (\mathcal{B}, f) 構造 $\mathcal{B} \xrightarrow{f} \mathcal{B}sc$ を 1 つ固定する. このとき, \mathcal{B} -多様体 $(\mathcal{B}$ -manifold) の成す $(\infty, 1)$ -圏 $\mathcal{M}fld(\mathcal{B})$ とは, $(\infty, 1)$ -圏の pullback

$$\mathcal{M}\mathrm{fld}\left(\mathcal{B}
ight) \longrightarrow (\mathcal{R}\mathrm{fib}_{\mathcal{B}\mathrm{sc}})_{/f} \ \downarrow \ \downarrow_{\mathrm{forget}} \ \mathcal{S}\mathrm{nglr} \longrightarrow_{ au} \mathcal{R}\mathrm{fib}_{\mathcal{B}\mathrm{sc}}$$

のこと、特に、 $\mathcal{M}\mathrm{fld}\,(\mathcal{B})_0$ の元は以下の 2 つのデータから成り、 \mathcal{B} -多様体と呼ばれる:

- conically smooth な層状化空間 $X \in \mathcal{S}$ ngl \mathbf{r}_0
- $-(\infty, 1)$ -圏の関手 $g: \mathcal{E}\mathbf{ntr}(X) \longrightarrow \mathcal{B}$

これらは以下の条件を充たさねばならない:

(lift of tangent classifier)

sSet における以下の図式は可換である:

a [?, Definition 1.1.6] では $(\infty, 1)$ -category of basics と呼ばれている.

1.2.8 \mathcal{B}_{SC} における Hom

しばらくの間、basic $U := ((\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P), \mathcal{A}_Z) \in \mathsf{Ob}(\mathbf{Bsc})$ を 1 つ固定する.これまでと同様に、層状化空間 $\mathsf{C}\left(Z \overset{s} \to P\right) = \left(\mathsf{C}(Z) \overset{\mathsf{C}(s)} \to \mathsf{C}(P)\right)$ のコーンポイント $[0,*] \in \mathsf{C}(Z) = \frac{\mathbb{R}_{\geq 0} \times Z}{\{0\} \times Z}$ のことを pt と書き、 $\mathbb{R}^n \times \{\mathsf{pt}\} \subset \mathbb{R}^n \times \mathsf{C}(Z)$ のことを \mathbb{R}^n と略記することにする.さらに、点 $(0,\mathsf{pt}) \in \mathbb{R}^n \times \mathsf{C}(Z)$ のことを $\mathbf{0}$ と略記し、U の原点 (origin) と呼ぶことにする.

以下では,混乱が生じにくい場合は層状化空間 $(X \stackrel{s}{\to} P)$ の s と P を省略する.さらに,conically smooth atlas を明示しない.

いま,特異単体の変種として,conically smooth な層状化空間 $X \in Ob(Strat)$ の滑らかな特異単体 (smooth singular simplicial set) と呼ばれる単体的集合を

$$\operatorname{Sing}^{\operatorname{sm}}(X) \colon \Delta^{\operatorname{op}} \longrightarrow \mathbf{Sets},$$

$$[n] \longmapsto \operatorname{Hom}_{\mathbf{Strat}}(\Delta_{e}^{n}, X),$$

$$\left([m] \xrightarrow{\alpha} [n]\right) \longmapsto \left(\operatorname{Sing}^{\operatorname{sm}}(X)_{m} \xrightarrow{\Delta_{e}(\alpha)^{*}} \operatorname{Sing}^{\operatorname{sm}}(X)_{n}\right)$$

と定義する*6. これは Kan 複体になる. ここで (1.1.2) を思い出して, 写像

$$\tilde{\gamma} \colon \mathbb{R}_{\geq 0} \times \mathbb{R}^n \longrightarrow \operatorname{Hom}_{\mathbf{Bsc}}(U, U),$$

$$(t, p) \longmapsto \left(\left(v, [s, z] \right) \mapsto \left(tv + p, [ts, z] \right) \right) \eqqcolon \tilde{\gamma}_{t, p}$$

を考える. これを Kan 複体の間の射 (i.e. 自然変換)

$$\gamma \colon \operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{>0} \times \mathbb{R}^n) \longrightarrow \operatorname{Hom}_{\mathcal{B}_{SC}}(U, U)$$
 (1.2.4)

へと格上げすることができる. 実際, $\forall m \geq 0$ に対して, m-単体はそれぞれ

$$\operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{\geq 0} \times \mathbb{R}^n)_m = \operatorname{Hom}_{\mathbf{Strat}}(\Delta_e^m, \mathbb{R}_{\geq 0} \times \mathbb{R}^n),$$

$$\operatorname{Hom}_{\mathcal{B}\mathbf{sc}}(U, U)_m = \left\{ f \in \operatorname{Hom}_{\mathbf{Snglr}}(\Delta_e^m \times U, \Delta_e^m \times U) \mid \operatorname{proj}_{\Delta_e^m} \circ f = \operatorname{proj}_{\Delta_e^m} \right\}$$

であったから,

$$\gamma_{[m]} \colon \operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{\geq 0} \times \mathbb{R}^n)_m \longrightarrow \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}(U, U)_m,$$

$$\left(x \mapsto \left(t(x), p(x)\right)\right) \longmapsto \left(\left(x, u\right) \mapsto \left(x, \tilde{\gamma}_{t(x), p(x)}(u)\right)\right) \eqqcolon \gamma_{[m]t, p}$$

^{*6} 滑らかな特異単体と言ったときは幾何学的 n-単体を用いることが多く、このように定義することは稀だと思う。

と定義すればよい.

さらに、勝手な conically smooth な層状化空間 $Z \in \mathrm{Ob}(\mathbf{Snglr})$ に対して、その自己同相群 (automorphism group)

$$\operatorname{Aut}(Z) : \Delta^{\operatorname{op}} \longrightarrow \mathbf{Sets}$$

を, Kan 複体 $\operatorname{Hom}_{\operatorname{Snglr}}(Z,Z)$ の部分 Kan 複体として次のように定義する:

$$\operatorname{Aut}(Z)_m := \left\{ f \in \operatorname{Hom}_{\operatorname{Snglr}}(Z, Z)_m \mid \forall x \in \Delta_e^m, \ \exists (\operatorname{proj}_Z \circ f|_{\{x\} \times Z})^{-1} \in \operatorname{Hom}_{\operatorname{Snglr}}(Z, Z) \right\}$$

なお、 $\forall m \geq 0$ に対し集合 $\operatorname{Aut}(Z)_m$ は (1, 1)-圏 Snglr における 1-射の合成に関して群になるため、Kan 複体 $\operatorname{Aut}(Z)$ は**群的な Kan 複体** (group-like Kan complex)*7 と見做すことができる.

定義 1.31: 層状化された一般線形群

勝手な basic $U := \mathbb{R}^n \times \mathsf{C}(Z) \in \mathsf{Ob}(\mathbf{Bsc})$ を与える.

Kan 複体 $Hom_{Snglr}(U, U)$ の部分 Kan 複体

$$GL(U): \Delta^{op} \longrightarrow \mathbf{Sets}$$

を次のように定義し、層状化された一般線形群と呼ぶ:

$$\mathbf{GL}(U)_{m} := \left\{ T \in \mathrm{Hom}_{\mathcal{S}\mathbf{nglr}} \left(U, \, U \right)_{m} \, \middle| \, \forall (t, \, p) \in \mathrm{Sing}^{\mathrm{sm}} (\mathbb{R}_{\geq 0} \times \mathbb{R}^{n})_{m}, \, T \circ \gamma_{[m]t, \, p} = \gamma_{[m]t, \, (Tp)_{\mathbb{R}^{n}}} \circ T \right. \right\}$$

ただし、以下の合成写像を $(Tp)_{\mathbb{R}^n}$: $\Delta_e^m \longrightarrow \mathbb{R}^n$ と略記した:

Kan 複体 $Hom_{Snglr}(U, U)$ の部分 Kan 複体

$$O(U): \Delta^{op} \longrightarrow \mathbf{Sets}$$

を次のように定義し、**層状化された直交群**と呼ぶ:

$$O(U) := \operatorname{Sing}^{\operatorname{sm}}(O(n)) \times \operatorname{Aut}(Z)$$

【例 1.2.6】通常の一般線形群

 $Z=\emptyset$ の場合を考える. このとき $U=\mathbb{R}^n$ なので、Kan 複体の射 (1.2.4) とは単に

$$\gamma_{[m]} \colon \Big(x \mapsto \big(t(x), \, p(x) \big) \Big) \longmapsto \Big(\big(x, \, u \big) \mapsto \big(x, \, t(x)u + p(x) \big) \Big)$$

のことであり, $T\in \mathrm{GL}(U)_m$ とは $\forall (t,\,p)\in \mathrm{Sing}^{\mathrm{sm}}(\mathbb{R}_{\geq 0}\times\mathbb{R}^n)$ および $\forall (x,\,u)\in\Delta^m_e\times U=\Delta^m_e\times\mathbb{R}^n$ に対して

$$T \circ \gamma_{[m]t, p}(x, u) = T(x, t(x)u + p(x))$$
$$= \gamma_{[m]t, \operatorname{proj}_{\mathbb{R}^n} \circ T|_{\mathbb{R}^n}(p)} \circ T(x, u)$$

 $^{^{*7}}$ Kan 複体であって, $\Delta^{\mathrm{op}}\longrightarrow\mathbf{Grp}$ でもあるもの.従って,homotopy hypothesis より位相群と見做すことができる.

$$= (x, t(x) \operatorname{proj}_{\mathbb{R}^n} \circ T(x, u) + \operatorname{proj}_{\mathbb{R}^n} \circ T(x, p(x)))$$

が成り立つことを意味する. i.e. $\forall x \in \Delta_e^m$ に対して, $T_x \coloneqq \operatorname{proj}_{\mathbb{R}^n} \circ T|_{\{x\} \times \mathbb{R}^n} \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ とおくと

$$T_x(t(x)u + p(x)) = t(x)T_xu + T_xp(x)$$

が成り立つため, T_x は線型写像である.(1,1)-圏 Snglr の定義より T は開埋め込みであり,単射である.故に,次元の等しい有限次元ベクトル空間の間の単射線型写像 T_x は全単射でもあり, $T_x \in \operatorname{GL}(n,\mathbb{R})$ だと分かった.この事実は,Kan 複体の同型 $\operatorname{GL}(\mathbb{R}^n) \cong \operatorname{Sing}^{\operatorname{sm}} \left(\operatorname{GL}(n,\mathbb{R})\right)$ を意味する.

さて、部分 Kan 複体 Aut $^0(U) \subset \operatorname{Hom}_{\mathcal{B}sc}{}^0(U,U) \subset \operatorname{Hom}_{\mathcal{S}nglr}{}^n(U,U)$ を次のように定義しよう:

$$\operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^{0}(U, U)_{m} := \left\{ f \in \operatorname{Hom}_{\mathcal{S}\mathbf{nglr}}(U, U)_{m} \mid \forall x \in \Delta_{e}^{m}, \ f(x, \mathbf{0}) = (x, \mathbf{0}) \right\},$$
$$\operatorname{Aut}{}^{0}(U)_{m} := \operatorname{Aut}(U)_{m} \cap \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^{0}(U, U)_{m}$$

補題 1.5: 層状化された一般線形群は原点を保つ自己同相群

$$\operatorname{GL}(U) \subset \operatorname{Aut}^0(U) \subset \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^0(U, U)$$

さらに、 $\forall m \geq 0$ 、 $\forall S, T \in \mathrm{GL}(U)_m$ に対して $S \circ T \in \mathrm{GL}(U)$ が成り立つ. i.e. $\mathrm{GL}(U)$ は群的な Kan 複体である.

証明 $\forall m \geq 0$ および $\forall T \in \mathrm{GL}(U)_m$ を 1 つ固定する.

$T \in \operatorname{Hom}_{\mathcal{B}_{\operatorname{sc}}}{}^{0}(U, U)_{m}$

 $\forall x \in \Delta_e^m$ および $\forall t \in \mathbb{R}_{>0}$ に対して $\gamma_{[m]t,0}(x,\mathbf{0}) = (x,\mathbf{0})$ が成り立つ*8ので、

$$(x, \operatorname{proj}_{U} \circ T(x, \mathbf{0})) = T(x, \mathbf{0})$$

$$= T \circ \gamma_{[m]t, 0}(x, \mathbf{0})$$

$$= \gamma_{[m]t, (T0)_{\mathbb{R}^{n}}} \circ T(x, \mathbf{0})$$

$$= \gamma_{[m]t, \operatorname{proj}_{\mathbb{R}^{n}} \circ T(x, \mathbf{0})}(x, \operatorname{proj}_{U} \circ T(x, \mathbf{0}))$$

$$(1.2.5)$$

が言える*9. ここで $\operatorname{proj}_{U} \circ T(x, \mathbf{0}) = \left(\operatorname{proj}_{\mathbb{R}^{n}} \circ T(x, \mathbf{0}), \operatorname{proj}_{\mathsf{C}(Z)} \circ T(x, \mathbf{0})\right) \in U$ であるから, $v_{0} \coloneqq \operatorname{proj}_{\mathbb{R}^{n}} \circ T(x, \mathbf{0}), [s_{0}, z_{0}] \coloneqq \operatorname{proj}_{\mathsf{C}(Z)} \circ T(x, \mathbf{0})$ とおくと (1.2.5) は

$$(v_0, [s_0, z_0]) = (tv_0 + v_0, [ts_0, z_0])$$

を意味する. いま $t \in \mathbb{R}_{\geq 0}$ は任意であったから, $v_0 = 0$, $s_0 = 0$ でなくてはいけない. i.e. $T(x, 0) = (x, v_0, [s_0, z_0]) = (x, 0)$ が示された.

$T \in \operatorname{Aut}^0(U, U)_m$

 $\forall x \in \Delta_e^m$ を 1 つ固定する. (1,1)-圏 \mathbf{Snglr} の定義より $T \in \mathrm{Hom}_{\mathbf{Snglr}}$ $(\Delta_e^m \times U, \Delta_e^m \times U)$ は開埋め込みであるから単射であり,従って $T_x \coloneqq \mathrm{proj}_U \circ T|_{\{x\} \times U} \in \mathrm{Hom}_{\mathbf{Snglr}}$ (U,U) もまた開埋め込みで

^{*8} 定数写像 $\Delta_e^m \longrightarrow \mathbb{R}_{\geq 0}, \, x \longmapsto t$ のことを t と略記している.

^{*9 3} つ目の等号で登場する 0 とは、定数写像 $\Delta_s^m \longrightarrow \mathbb{R}^n, x \longmapsto 0$ のことである.

あって単射である。故に T_x が全射であること,i.e. $T_x(U)=U$ であることを示せば十分である.実際,原点の勝手な開近傍 $\mathbf{0}\in O\subset U$ を $\tilde{\gamma}_{t,0}$ によって拡大することで U の開基を作ることができ,かつ $T\circ\gamma_{t,0}=\gamma_{t,0}\circ T$ が成り立つことが先に示されているので T_x は全射である [?, Lemma 4.3.4.].

合成について閉じていること

 $\forall (x, p) \in \Delta_e^m \times \mathbb{R}^n$ に対して $(x, p, \text{pt}) = \gamma_{[m]1, p}(x, \mathbf{0})$ が成り立つ*10から,

$$T(x, p, \operatorname{pt}) = T \circ \gamma_{[m]1, p}(x, \mathbf{0})$$

$$= \gamma_{[m]1, (Tp)\mathbb{R}^n} \circ T(x, \mathbf{0})$$

$$= \gamma_{[m]1, (Tp)\mathbb{R}^n}(x, \mathbf{0}) \in \{x\} \times \mathbb{R}^n \times \{\operatorname{pt}\}$$

が言える, i.e. $\mathrm{GL}(U)_m$ の任意の元はコーンポイントを保存することに注意する.

ここでもう一つの $\forall S \in \mathrm{GL}(U)_m$ を固定する. $\forall (t,p) \in \mathrm{Sing}^{\mathrm{sm}}(\mathbb{R}_{\geq 0} \times \mathbb{R}^n)_m$ および $\forall x \in \Delta_e^m$ に対して

$$\begin{split} \big((S \circ T) p \big)_{\mathbb{R}^n}(x) &= \operatorname{proj}_{\mathbb{R}^n} \circ (S \circ T) \big(x, \, p(x), \, \operatorname{pt} \big) \\ &= \operatorname{proj}_{\mathbb{R}^n} \circ S \Big(x, \, \operatorname{proj}_{\mathbb{R}^n} \circ T \big(x, \, p(x), \, \operatorname{pt} \big), \, \operatorname{proj}_{\mathsf{C}(Z)} \circ T \big(x, \, p(x), \, \operatorname{pt} \big) \Big) \\ &= \operatorname{proj}_{\mathbb{R}^n} \circ S \Big(x, \, (Tp)_{\mathbb{R}^n}(x), \, \operatorname{pt} \Big) \\ &= \big(S(Tp)_{\mathbb{R}^n} \big)_{\mathbb{R}^n}(x) \end{split}$$

と計算できるため,

$$\begin{split} (S \circ T) \circ \gamma_{[m]t, \, p} &= S \circ \gamma_{[m]t, \, (Tp)_{\mathbb{R}^n}} \circ T \\ &= \gamma_{[m]_{t, \, \left(S(Tp)_{\mathbb{R}^n}\right)_{\mathbb{R}^n}}} \circ S \circ T \\ &= \gamma_{[m]_{t, \, \left((S \circ T)p\right)_{\mathbb{R}^n}}} \circ (S \circ T) \end{split}$$

i.e. $S \circ T \in GL(U)_m$ が言えた.

補題 1.6: 層状化された直交群は一般線形群の部分 Kan 複体

$$O(U) \subset GL(U)$$

<u>証明</u> $\forall m \geq 0$ および $\forall T \coloneqq (A, f) \in \mathrm{O}(U)_m = \mathrm{Sing}^{\mathrm{sm}} \big(\mathrm{O}(n) \big)_m \times \mathrm{Aut}(Z)_m$ を 1 つ固定する. まず、 $\forall \big(x, \, (v, \, [s, \, z]) \big) \in \Delta_e^m \times U = \Delta_e^m \times \mathbb{R}^n \times \mathrm{C}(Z)$ に対して

$$T(x, (v, [s, z])) := (x, (A(x)v, [s, \operatorname{proj}_Z \circ f(x, z)]))$$

と定めることで $T \in \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^0(U,U)_m$ と見做せる. このとき, $\forall (t,p) \in \operatorname{Sing}^{\mathrm{sm}}(\mathbb{R}_{>0} \times \mathbb{R}^n)_m$ に対して

$$(Tp)_{\mathbb{R}^n}(x) = \operatorname{proj}_{\mathbb{R}^n} \circ T\left(x, (p(x), [0, *])\right)$$
$$= \operatorname{proj}_{\mathbb{R}^n}\left(x, (A(x)p(x), [0, *])\right)$$

 $^{^{*10}}$ 定数写像 $\Delta_e^m \longrightarrow \mathbb{R}^n, \ x \longmapsto p$ のことを p と略記している.

$$= A(x)p(x)$$

および

$$T \circ \gamma_{[m]t,p}(x, (v, [s, z])) = T\Big(x, (t(x)v + p(x), [t(x)s, z])\Big)$$

$$= \Big(x, (t(x)A(x)v + A(x)p(x), [t(x)s, \operatorname{proj}_Z \circ f(x, z)])\Big)$$

$$= \Big(x, \tilde{\gamma}_{t(x), A(x)p(x)} \big(A(x)v, [s, \operatorname{proj}_Z \circ f(x, z)]\big)\Big)$$

$$= \gamma_{[m]t, (Tp)_{\mathbb{R}^n}} \circ T\big(x, (v, [s, z])\big)$$

が成り立つため $T \in GL(U)_m$ が言えた.

命題 1.2: ○(U) へのレトラクション

Kan 複体の包含写像

$$O(U) \stackrel{i_1}{\hookrightarrow} GL(U) \stackrel{i_2}{\hookrightarrow} Hom_{\mathcal{B}sc} {}^{0}(U, U) \stackrel{i_3}{\hookrightarrow} Hom_{\mathcal{B}sc} (U, U)$$

は全て Kan 複体のホモトピー同値である.

<u>証明</u> $\forall A \in \mathrm{GL}(n,\mathbb{R}^n)$ を 1 つとる. A を列ベクトルに分割し、それを $A = [a_1,\ldots,a_n]$ と書こう. このとき、正規直交基底 $e_1,\ldots,e_n \in \mathbb{R}^n$ と上三角行列 $R_A \in \mathrm{M}(n,\mathbb{R})$ を次のようにして得る(Gram-Schmidt の正規直交化):

$$e_{i} \coloneqq \begin{cases} \frac{a_{1}}{\|a_{1}\|}, & i = 1\\ \frac{a_{i} - \sum_{k=1}^{i-1} \langle e_{k} | a_{i} \rangle e_{k}}{\|a_{i} - \sum_{k=1}^{i-1} \langle e_{k} | a_{i} \rangle e_{k}\|}, & 1 < i \leq n \end{cases}$$

$$R_{Aij} \coloneqq \begin{cases} \|a_{1}\|, & i = j = 1\\ \|a_{i} - \sum_{k=1}^{i-1} \langle e_{k} | a_{i} \rangle e_{k}\|, & 1 < i = j \leq n\\ \langle e_{i} | a_{j} \rangle, & i < j\\ 0, & i > j \end{cases}$$

ただし $\|\cdot\|$ は \mathbb{R}^n の標準的なノルムである.ここで $Q_A\coloneqq [e_1,\ldots,e_n]$ とおくと $A=Q_AR_A$ が成り立つ.連続写像

GrSm: GL
$$(n, \mathbb{R}) \longrightarrow O(n),$$
 (1.2.6)
 $A \longmapsto Q_A$

は、包含写像 $i_0: O(n) \hookrightarrow GL(n)$ について $GrSm \circ i_0 = Id_{O(m)}$ を充たす.

i_1 のホモトピー逆

 $\forall T \in \mathrm{GL}(U)_m$ および $\forall (x, (v, [0, *])) \in \Delta_e^m \times \mathbb{R}^n \times \mathbb{C}(Z)$ をとる。補題 1.5 の証明より T はコーンポイントを保存するから,【例 1.2.6】と同様にして $\forall (t, p) \in \mathrm{Sing}^{\mathrm{sm}}(\mathbb{R}_{>0}, \mathbb{R}^n)_m$ に対して

$$T\left(x, (t(x)v + p(x), [0, *])\right)$$

$$= T \circ \gamma_{[m]t, p}(x, (v, [0, *]))$$

$$= \gamma_{[m]t, (Tp)_{\mathbb{R}^n}} \circ T(x, v, [0, *])$$

$$= \left(x, \left(t(x)\operatorname{proj}_{\mathbb{R}^n} \circ T(x, v, [0, *]) + \operatorname{proj}_{\mathbb{R}^n} \circ T(x, p(x), [0, *]), [0, *]\right)\right)$$

と計算できる。i.e. $T_x \coloneqq \operatorname{proj}_{\mathbb{R}^n} \circ T|_{\{x\} \times \mathbb{R}^n \times \{[0,*]\}} \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ は線型写像であり,T が開埋め込みであることから $T_x \in \operatorname{GL}(n,\mathbb{R})$ が言える。故に連続写像 (1.2.6) を T_x に適用することができて, $\operatorname{GrSm}(T_x) \in \operatorname{O}(n)$ を得る.

一方, $\forall \big(x,\,(v,\,[s,\,z])\big)\in\Delta^m_e imes\mathbb{R}^n imes\mathsf{C}(Z)$ に対して $\big(x,\,(v,\,[s,\,z])\big)=\gamma_{[m]s,\,v}\big(x,\,(0,\,[1,\,z])\big)$ が成り立つ*11ので,

$$T(x, (v, [s, z]))$$

$$= T \circ \gamma_{[m]s, v}(x, (0, [1, z]))$$

$$= \gamma_{[m]s, (Tv)_{\mathbb{P}^n}} \circ T(x, (0, [1, z]))$$

が言える. 故に、

$$\mathrm{proj}_{\mathsf{C}(Z)} \circ T \big(x, \, (v, \, [s, \, z]) \big) \eqqcolon \big[T^{\mathbb{R} \geq 0}_{x, \, v, \, [s, \, z]}, \, T^{Z}_{x, \, v, \, [s, \, z]} \big] \in \mathsf{C} \left(Z \right)$$

とおくと

$$\left[T_{x,\,v,\,[s,\,z]}^{\mathbb{R}\geq 0},\,T_{x,\,v,\,[s,\,z]}^{Z}\right] = \left[s\,T_{x,\,0,\,[1,\,z]}^{\mathbb{R}\geq 0},\,T_{x,\,0,\,[1,\,z]}^{Z}\right]$$

が成り立つ.

以上の考察から, 写像

$$r_{1[m]} \colon \mathrm{GL}(U)_m \longrightarrow \mathrm{O}(U)_m,$$

$$T \longmapsto \left((x, v, [s, z]) \mapsto \left(x, \, \mathrm{GrSm}(T_x)(v), \, [s, \, T^Z_{x, \, 0, \, [1, \, z]}] \right) \right)$$

が定まり、Kan 複体の射

$$r_1 : \operatorname{GL}(U) \longrightarrow \operatorname{O}(U)$$

を構成する.構成より明らかに $r_1\circ i_1=\mathrm{Id}_{\mathrm{O}(U)}$ が成り立つ.その上,Kan 複体の射

$$H \in \mathcal{F}\mathbf{un}(\mathrm{GL}(U), \mathrm{GL}(U))_1 \cong \mathrm{Hom}_{\mathbf{Kan}}(\mathrm{Sing}^{\mathrm{sm}}([0, 1]) \times \mathrm{GL}(U), \mathrm{GL}(U))$$

の m-射の対応 H_m : $\operatorname{Sing^{sm}}([0,1])_m \times \operatorname{GL}(U)_m \longrightarrow \operatorname{GL}(U)_m$ を次のように定義すると, H が $\operatorname{Id}_{\operatorname{GL}(U)}$ と $i_1 \circ r_1$ を繋ぐホモトピーとなる. i.e. r_1 が i_1 のホモトピー逆であることが示された:

$$(t, T) \longmapsto \left((x, v, [s, z]) \mapsto \left(x, \left(1 - t(x) \right) T_{x, v, [s, z]}^{\mathbb{R}^n} + t(x) \operatorname{GrSm}(T_x)(v), \left[\left(1 - t(x) \right) s T_{x, 0, [1, z]}^{\mathbb{R} \geq 0} + t(x) s, T_{x, 0, [1, z]}^{Z} \right] \right) \right)$$

i2 のホモトピー逆

 $(\infty, 1)$ -圏 \mathcal{B} sc の定義において登場する射は全て conically smooth なので、 $\forall f \in \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^0(U, U)_m$ の微分

$$Df: T(\Delta_c^m \times \mathbb{R}^n) \times \mathsf{C}(Z) \longrightarrow T(\Delta_c^m \times \mathbb{R}^n) \times \mathsf{C}(Z)$$

^{**11} $(s,v) \in \operatorname{Sing^{sm}}(\mathbb{R}_{>0} \times \mathbb{R}^n)_m$ とは、定数写像 $\Delta_e^m \longrightarrow \mathbb{R}_{>0} \times \mathbb{R}^n, \ x \longmapsto (s,v)$ のことである.

が存在する*12. このとき, $T(\Delta_e^m \times \mathbb{R}^n) \approx (\Delta_e^m \times \mathbb{R}^n) \times (\Delta_e^m \times \mathbb{R}^n)$ であり, 底空間の勝手な元 $(x,p) \in \Delta_e^m \times \mathbb{R}^n$ に対して

$$D_{(x,p)}f := Df|_{\Delta_e^m \times \mathbb{R}^n \times \{(x,p)\} \times \mathsf{C}(Z)} \in \mathrm{Hom}_{\mathcal{B}\mathbf{sc}}(U,U)_m \subset \mathrm{Hom}_{\mathbf{Snglr}}(\Delta_e^m \times U,\Delta_e^m \times U)$$

とおこう. 特に, $D_{(x,0)}f \in \operatorname{Hom}_{\mathcal{B}sc}{}^{0}(U,U)_{m}$ であることに注意する.

 $\forall x \in \Delta_e^m$ を 1 つ固定する. まずは $\forall f \in \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^0(U,U)_m$ に対して $D_{(x,0)}f \in \operatorname{GL}(U)_m$ であること、i.e. Kan 複体の射

$$D_0: \operatorname{Hom}_{\mathcal{B}_{SC}} {}^0(U, U) \longrightarrow \operatorname{GL}(U)$$

が定まることを示そう. 実際, $\forall (t, p) \in \operatorname{Sing}^{\operatorname{sm}}(\mathbb{R}_{>0} \times \mathbb{R}^n)_m$ に対して*13

$$D_{(x,0)}f \circ \gamma_{[m]t,p} = \left(\lim_{s \to +0} \gamma_{\frac{1}{s},0} \circ f \circ \gamma_{s,0}\right) \circ \gamma_{t,p}$$

$$= \lim_{s \to +0} \gamma_{\frac{1}{s},0} \circ f \circ \gamma_{ts,sp}$$

$$= \cdots$$

$$= \gamma_{[m]t,(D_{(x,0)}f(p))_{\mathbb{R}^n}} \circ D_{(x,0)}f$$

と計算できる.

さらに、 $\operatorname{GL}(U)$ の定義から $\forall T \in \operatorname{GL}(U)_m$ および $\forall t > 0$ に対して

$$\gamma_{[m]\frac{1}{t},\,0}\circ T\circ\gamma_{[m]t,\,0}=T$$

が成り立つので、微分の一意性より $D_0T=T$ だと分かる. i.e. $D_0\circ i_2=\mathrm{Id}_{\mathrm{GL}(U)}$ である. その上、

$$\operatorname{Sing}^{\operatorname{sm}}([0, 1]) \times \operatorname{Hom}_{\mathcal{B}\mathbf{sc}} {}^{0}(U, U) \longrightarrow \operatorname{Hom}_{\mathcal{B}\mathbf{sc}} {}^{0}(U, U),$$
$$(s, f) \longmapsto \gamma_{\frac{1}{s}, 0} \circ f \circ \gamma_{s, 0}$$

がちょうど $i_2\circ D_0$ と $\mathrm{Id}_{\mathrm{Hom}_{\mathcal{B}\mathrm{sc}}{}^0(U,U)}$ を繋ぐホモトピーになっており, i_2 のホモトピー逆が D_0 であることが示された.

i3 のホモトピー逆

ホモトピー逆は

$$r_{3[m]} \colon \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}(U, U)_m \longrightarrow \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}{}^0(U, U)_m,$$

$$f \longmapsto \gamma_{[m]1, -\operatorname{proj}_{\mathbb{R}^n} \circ f|_{\Delta_e^m \times \{0\}}} \circ f$$

である.

1.2.9 \mathcal{B}_{SC} の構造

 $^{^{*12}}$ $\Delta_e^m pprox \mathbb{R}^m$ である.

 $^{^{*13}}$ ややこしいので $\gamma_{[m]}$ を γ と略記している.

補題 1.7:

2 つの basic $U := \mathbb{R}^n \times \mathsf{C}(Z)$, $V := \mathbb{R}^m \times \mathsf{C}(W) \in \mathsf{Ob}(\mathbf{Bsc})$ であって, $\mathsf{Hom}_{\mathbf{Bsc}}(U,V) \neq \mathsf{を充た}$ すものをとる.このとき,以下の条件は全て同値である:

- (1) depth(U) = depth(V)
- (2) $f \in \operatorname{Hom}_{\mathbf{Bsc}}(U, V)$ であって、 $f(U) \cap (\mathbb{R}^m \times \{*\}) \neq \emptyset$ を充たすものが存在する.
- (3) Kan 複体 $\operatorname{Hom}_{\mathcal{B}\mathbf{sc}}(U,V)$ の部分 Kan 複体

$$\mathcal{I}so_{\mathcal{B}sc}(U, V) \hookrightarrow Hom_{\mathcal{B}sc}(U, V)$$

を次のように定義すると、その包含写像は Kan 複体の弱ホモトピー同値である:

$$\mathcal{I}\mathbf{so}_{\mathcal{B}\mathbf{sc}}(U, V)_{m} := \left\{ f \in \operatorname{Hom}_{\mathcal{B}\mathbf{sc}}(U, V)_{m} \mid \forall x \in \Delta_{e}^{m}, \exists (\operatorname{proj}_{V} \circ f|_{\{x\} \times U})^{-1} \in \operatorname{Hom}_{\mathbf{Snglr}}(V, U) \right\}$$

- (4) (1, 1)-圏 **Bsc** において U と V は同型である.
- (5) n = m かつ, (1, 1)-圏 **Strat** において Z と W は同型である.

証明 (5)⇒→(4)

明らか.

 $(4) \Longrightarrow (3)$

命題 1.2 と同様の議論により従う.

- $(3)\Longrightarrow(2)$
 - (1, 1)-圏 \mathbf{Bsc} における射の定義より明らか.
- $(2)\Longrightarrow(1)$

開埋め込み $\mathbb{R}^n \times \mathsf{C}(Z) \longrightarrow \mathbb{R}^m \times \mathsf{C}(W)$ の存在より $\dim(Z) = \dim(W)$ が言える.

 $(1)\Longrightarrow(5)$

 $f \in \operatorname{Hom}_{\mathbf{Bsc}}(U,V)$ を 1 つとる。すると,conically smoothness の定義より conically smooth な層状化開埋め込み $\tilde{f} \in \operatorname{Hom}_{\mathbf{Snglr}}(\mathbb{R}^n \times \mathbb{R}_{\geq 0} \times Z, \mathbb{R}^n \times \mathbb{R}_{\geq 0} \times W)$ が存在する。 \tilde{f} を制限することで,conically smooth な層状化開埋め込み $\bar{f} \in \operatorname{Hom}_{\mathbf{Snglr}}\left(\{0\} \times \{0\} \times Z, \{f(0)\} \times \{0\} \times W\right)$ を得る。このとき Z がコンパクトなので, $\bar{f}(Z) \subset W$ もまたコンパクトである。(1,1)-圏 \mathbf{StTop} の定義より W は Hausdorff 空間なので,W のコンパクト部分空間である $\bar{f}(Z)$ は閉部分集合である。一方 \bar{f} が開埋め込みであることから, $\bar{f}(Z)$ は W の開部分集合でもある。W の開かつ閉な部分集合は,W の連結成分の直和しかない*14.然るにもし $\bar{f}(Z) \subsetneq W$ だとすると,空でない部分集合 $\mathbf{C}\left(\bar{f}(Z)\right) \subsetneq \mathbf{C}(W)$ が開かつ閉となり, $\mathbf{C}(W)$ の連結性に矛盾する。よって背理法から $\bar{f}(Z) = W$ であること,i.e. $\bar{f} \colon Z \longrightarrow W$ が (1,1)-圏 \mathbf{Snglr} における同型射であることが示された.

(1,1)-圏 \mathbf{Bsc} における対象の同型類が成す集合を

$$Ob([\mathcal{B}sc]) := \{ [U] \mid U \in Ob(Bsc) \}$$

^{*14} 位相空間の連結性の定義より、各連結成分における開かつ閉な部分集合は空集合か自分自身のちょうど 2 つしかない.

と書く. この集合の上には二項関係

$$\leq := \left\{ \left([U], [V] \right) \in \mathrm{Ob}([\mathcal{B}\mathbf{sc}])^{\times 2} \mid \mathrm{Hom}_{\mathbf{Bsc}} \left(U, V \right) \neq \emptyset \right\} \tag{1.2.7}$$

が定まる.

定理 1.2: Basics are easy

(1) $\forall U = \mathbb{R}^n \times C(Z) \in Ob(\mathbf{Bsc})$ に対して、Kan 複体の包含

$$O(\mathbb{R}^n) \times Aut(Z) \hookrightarrow Hom_{\mathcal{B}sc}(U, U)$$

は Kan 複体のホモトピー同値である。

- (2) $\forall f \in \text{Hom}_{\mathbf{Bsc}}(U, V)$ に対して、以下のいずれかちょうど 1 つが真である:
 - (a) f は $(\infty, 1)$ -圏 \mathcal{B} sc における同型射である.
 - (b) depth(U) < depth(V)
- (3) 集合 $Ob([\mathcal{B}sc])$ 上の二項関係 (1.2.7) は半順序である。半順序集合 $(Ob([\mathcal{B}sc]), \leq)$ を (1, 1)- 圏と見做し、それを $[\mathcal{B}sc]$ と書く。
- (4) (∞, 1)-圏の関手

$$[-]: \mathcal{B}\mathbf{sc} \longrightarrow \mathrm{N}([\mathcal{B}\mathbf{sc}])$$

は conservative である. i.e. $(U \xrightarrow{f} V) \in \mathcal{B}\mathbf{sc}_1$ が $(\infty, 1)$ -圏 $\mathcal{B}\mathbf{sc}$ における同型射であるためには、U, V が (1, 1)-圏 $\mathbf{B}\mathbf{sc}$ において同型であることが必要十分である.

(5) 写像

depth:
$$Ob([\mathcal{B}sc]) \longrightarrow \mathbb{Z}_{\geq 0}$$

は順序を保つ.

証明 (1) 命題 1.2

- (2) 補題 1.7 の (1), (3), (4) の同値性より明らか.
- (3) 反射律と推移律は自明. 対称律は補題 1.7 の (3) (4) の同値性から従う.
- (4) 補題 1.7 より従う.
- (5) 補題 1.7 より従う.

1.2.10 tangent classifier の構造

層状化空間の局所的な特異性は<mark>局所的深さ</mark>によって特徴付けられる.これにより,局所的深さをとるという操作によって常に別の層状化を考えることができる.

集合

$$\mathbb{P} := \{ (k, n) \in \mathbb{Z} \times \mathbb{Z} \mid -1 \le k \le n \}$$

 $[^]a$ 左辺を $\mathrm{Sing^{sm}}ig(\mathrm{O}(n)ig) imes \mathrm{Aut}(Z)$ としても等価な主張である.

の上の半順序 $\leq \subset \mathbb{P} \times \mathbb{P}$ を次のように定義する:

$$(k, n) \le (k', n') \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad k \ge k' \quad \text{for } n \ge n'$$

補題 1.8: 局所的深さによる層状化

任意の C^0 級層状化空間 $(X \xrightarrow{s} P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ に対して、以下の写像は連続になり、位相空間 X の新しい \mathbb{P} -層状化を与える:

$$s_X : X \longrightarrow \mathbb{P}, \ x \longmapsto (\operatorname{depth}_x(X), \dim_x(X))$$

さらに, (1,1)-圏 **Top** における以下の図式を可換にするような, 順序を保つ写像 $\overline{s}: P \longrightarrow \mathbb{P}$ が一意的に存在する:

$$X \xrightarrow{s_X} \mathbb{P}$$

$$\downarrow s \downarrow \qquad \exists ! \bar{s}$$

$$P$$

証明 s_X の連続性

 s_X が連続であるような C^0 級層状化空間 $(X \to P)$ 全体が成す充満部分圏を $\mathcal{T} \subset \mathbf{Snglr}^{C^0}$ と書く. \mathcal{T} が条件 (Snglr-1)-(Snglr-5) を充たすことを示せば十分である*15.

(Snglr-1) $(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathcal{T})$ は自明である.

(Snglr-2)

(Snglr-3)

(Snglr-4)

(Snglr-5)

\bar{s} の一意存在

補題 1.2 より $s: X \longrightarrow P$ は全射なので明らか.

補題 1.7 より、局所的深さによる層状化はほとんど完全に点を含む最小の basic を指定する.

補題 1.9: 半順序集合 [\mathcal{B} sc] による層状化

任意の conically smooth な層状化空間 $(X \xrightarrow{s} P) \in Ob(\mathbf{Snglr})$ に対して、以下は well-defined な連続写像になり、位相空間 X の新しい [\mathcal{B} sc]-層状化を与える:

$$b_X \colon X \longrightarrow [\mathcal{B}\mathbf{sc}], \ x \longmapsto \left[\underset{U \in \mathcal{U}_x}{\operatorname{arg\,max}} \left(\operatorname{depth}_x \colon \mathcal{U}_x \longrightarrow \mathbb{Z}_{\geq -1} \right) \right]$$

ただし、 $\forall x \in X$ に対して集合 $\mathcal{U}_x \subset \mathrm{Ob}(\mathbf{Bsc})$ をで定義した.

$$\mathcal{U}_x := \{ U \in \mathrm{Ob}(\mathbf{Bsc}) \mid \exists \iota \in \mathrm{Hom}_{\mathbf{Snglr}}(U, X), \ x \in \iota(U) \}$$

^{*} 15 これらの条件を充たす最小の (1, 1)-圏のことを \mathbf{Snglr}^{C^0} と定義したため, $\mathcal{T} \supset \mathbf{Snglr}^{C^0}$ が言えるのである.

任意の射 $f \in \text{Hom}_{\mathbf{Snglr}}(X, Y)$ に対して、 $b_X = b_Y \circ f$ が成り立つ.

証明 well-definedness

 $\forall x \in X$ を 1 つ固定する. $\forall U \in \mathcal{U}_x$ に対して,深さの定義および定理 1.2-(2) より $\operatorname{depth}_x(U) \leq \operatorname{depth}(U) \leq \operatorname{depth}(X \stackrel{s}{\to} P) < \infty$ が成り立つので, $U_x \coloneqq \operatorname{arg\,max}_{U \in \mathcal{U}_x}(\operatorname{depth}_x) \in \mathbb{Z}_{\geq -1}$ は存在する.補題 1.7 から, $\operatorname{depth}_x(U_x) = \operatorname{depth}_x(U_x')$ ならば $[U_x] = [U_x']$ であり,写像 b_x が well-defined であることが示された.

連続性

 $\operatorname{depth}(X \to P)$ に関する数学的帰納法により示す。 $\operatorname{depth}(X) = -1$ のとき, $X = \emptyset$ であり自明である.

 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}_{\leq d, \leq \infty})$ についての証明が完了しているとする。まず、 $\forall (U \xrightarrow{s} P) = (\mathbb{R}^n \xrightarrow{0} [0]) \times \mathsf{C}\left(Z \xrightarrow{r} Q\right) \in \mathrm{Ob}(\mathbf{Bsc}_{d+1, \leq \infty})$ について写像 $b_U \colon U \longrightarrow [\mathcal{B}\mathbf{sc}]$ が連続であることを示そう。 $\forall x \in \mathbb{R}^n \times \{\mathrm{pt}\} \subset \mathbb{R}^n \times \mathsf{C}(Z)$ に対しては $U \in \mathcal{U}_x$ であり、さらに $U_{s(x)} = \left(0 \times \mathsf{C}(t)\right)^{-1} \left(\{(0, -\infty)\}\right) = \mathbb{R}^n \times \{\mathrm{pt}\}$ なので

$$\begin{aligned} \operatorname{depth}_x(U \xrightarrow{s} P) &= \dim_x \left((\mathbb{R}^n \xrightarrow{0} [0]) \times \mathsf{C} \left(Z \to Q \right) \right) - \dim_x (U_{s(x)}) \\ &= n + \dim_{\operatorname{pt}} \left(\mathsf{C} \left(Z \to Q \right) \right) - n \\ &= \operatorname{depth}_{\operatorname{pt}} \left(\mathsf{C} \left(Z \to Q \right) \right) \\ &= \operatorname{depth}(U) \end{aligned}$$

が成り立ち, $b_U(x) = [U]$ である. 一方, $\forall x = \left(u,\,(t,\,z)\right) \in (\mathbb{R}^n \times \mathsf{C}(Z)) \setminus (\mathbb{R}^n \times \{\mathrm{pt}\}) = \mathbb{R}^n \times (\mathbb{R}_{>0} \times Z)$ に対しては $\forall (V \xrightarrow{v} P_V) \in \mathcal{U}_x$ について

$$\operatorname{depth}_x(V \xrightarrow{v} P_V) = \dim_x(V) - \dim_x(V_{v(x)})$$

 $V \overset{\iota}{\longleftarrow} U$ ここで,層状化開埋め込み $\iota \in \operatorname{Hom}_{\mathbf{Snglr}}(V,U)$ とは $v \downarrow \qquad \qquad \downarrow s$ であって, $\forall p \in P_V$ に対して $P_V \xrightarrow{\overline{\iota}} P$

$$\iota|_{V_p}\colon V_p\longrightarrow U_{\bar{\iota}(p)}$$

が位相的開埋め込みになっているものであったことを思い出そう. したがって今回の場合

$$\iota|_{V_{v(x)}}:V_{v(x)}\longrightarrow U_{\bar{\iota}\circ v(x)}=U_{s(x)}$$

は開埋め込みである*16. 故に

$$\dim_x(V_{v(x)}) = \dim_x(U_{s(x)})$$

が成り立つ. いま $s(x)=\left(0,\,r(z)\right)$ であるから $U_{s(x)}=s^{-1}\big(\{s(x)\}\big)=\mathbb{R}^n imes\mathbb{R}_{>0} imes Z_{r(z)}$ であり $\dim_x(U_{s(x)})=n+1+\dim_z(Z_{r(z)})$

 $^{^{*16}}$ 正確には, $V_{v(x)}$ と書いたときは $V_{v \circ \iota^{-1}(x)}$ を意味している.図式の可換性から $U_{\bar{\iota} \circ v \circ \iota^{-1}(x)} = U_{s(x)}$ が分かる.

が言える. $\dim_x(V) \leq \dim_x(U) = n + \dim_{[t,z]}(\mathsf{C}(Z))$ を併せて

$$\operatorname{depth}_{x}(V \xrightarrow{v} P_{V}) < \dim_{[t, z]}(\mathsf{C}(Z)) - \dim_{z}(Z_{r(z)}) = \operatorname{depth}_{x}(U) \leq \operatorname{depth}(U)$$

が分かった. 故に $b_U(x) = [V_0]$ なる $V_0 \in \text{Ob}(\mathbf{Bsc})$ は $\operatorname{depth}(V_0) < \operatorname{depth}(U)$ を充たすことが分かった.

ここで,位相空間 [\mathcal{B} sc] の勝手な開集合 $\forall W \subset [\mathbf{B}$ sc] をとる.もし $[U] \notin W$ であるならば,半順序集合 [\mathcal{B} sc] の位相の定義と定理 1.2-(2) より $\forall [V] \in W$ に対して $\mathrm{depth}(U) < \mathrm{depth}(V)$ が成り立つ.よってこのとき $b_U^{-1}(W) = \emptyset$ となって U の開集合である. $[U] \in W$ とする.

定義 1.32: 制限された tangent classifier

 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr})$ および basic $\forall U = \mathbb{R}^n \times \mathsf{C}(Z) \in \mathrm{Ob}(\mathbf{Bsc})$ を与える。このとき、 $(\infty, 1)$ -圏 $\mathcal{B}\mathbf{sc}_{[U]}$ 、 $\mathcal{E}\mathbf{ntr}_{[U]}(X)$ および $(\infty, 1)$ -圏の関手 $(\tau_X)_{||} \in \mathrm{Hom}_{\mathbf{sSet}}\left(\mathcal{E}\mathbf{ntr}_{[U]}(X), \mathcal{E}\mathbf{ntr}(X)\right)$ を以下の $(\infty, 1)$ -圏の引き戻しによって定義する:

$$\begin{array}{ccc} \operatorname{\operatorname{\mathcal{E}ntr}}_{[U]}(X) & \longrightarrow \operatorname{\operatorname{\mathcal{E}ntr}}(X) \\ (\tau_X)_{|} \downarrow & & \downarrow^{\tau_X} \\ \operatorname{\operatorname{\mathcal{B}sc}}_{[U]} & \longrightarrow \operatorname{\operatorname{\mathcal{B}sc}} \\ \downarrow & & \downarrow^{[\cdot]} \\ \{[U]\} & \longleftarrow & [\operatorname{\mathcal{B}sc}] \end{array}$$

定義 1.33: [U]-層

 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr})$ および basic $\forall U = \mathbb{R}^n \times \mathsf{C}(Z) \in \mathrm{Ob}(\mathbf{Bsc})$ を与える. このとき位相空間 $X_{[U]} \in \mathrm{Ob}(\mathbf{Top})$ を, 以下の (1,1)-圏 \mathbf{Top} における引き戻しにより定義する:

$$X_{[U]} \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow b_X$$

$$\{[U]\} \longleftarrow [\mathcal{B}\mathbf{sc}]$$

補題 1.10: $X_{[U]}$ は C^{∞} 多様体

層状化空間 $(X_{[U]} \to \{[U]\}) \in \mathrm{Ob}(\mathbf{Snglr})$ は C^{∞} 多様体である.

証明 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr})$ および basic $\forall U = \mathbb{R}^n \times \mathsf{C}(Z) \in \mathrm{Ob}(\mathbf{Bsc})$ を与える.

定理 1.3: tangent classifier の局所的な構造

 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr})$ および basic $\forall U = \mathbb{R}^n \times \mathsf{C}(Z) \in \mathrm{Ob}(\mathbf{Bsc})$ を与える. このとき,

$$\left(\mathcal{E}\mathbf{ntr}_{[U]}\left(X\right)\xrightarrow{(\tau_X)_{|}}\mathcal{B}\mathbf{sc}_{[U]}\longrightarrow\mathcal{B}\mathbf{sc}_{[\mathbb{R}^n]}\right)\simeq\left(\mathrm{Sing}(X_{[U]})\xrightarrow{\tau_{X_{[U]}}}\mathbf{B}\mathrm{O}(n)\right)$$

が成り立つ. ただし、左辺では命題 1.2 を用いて得られる Kan 複体の a ホモトピー同値 $\mathcal{B}\mathbf{sc}_{[U]}\simeq \mathbf{B}\mathrm{Aut}(U)\simeq \mathbf{B}\mathrm{O}(U)$ から誘導される Kan 複体の謝 $\mathcal{B}\mathbf{sc}_{[U]}\longrightarrow \mathbf{B}\mathrm{O}(n)$ を用いた.

 a もしくは \mathbf{Kan} -豊穣圏の

証明

1.3 Disk algebras

1.3.1 $(\infty, 1)$ -オペラッド

本資料では、 $(\infty, 1)$ -圏を quasi-category として定義した。この小節では、quai-category における colored operad を定義する.

定義 1.34: (1, 1)-圏 Fin, Fin_{*}

(1, 1)-圏 Fin を以下で定義する:

- 有限集合および空集合を対象に持つ.
- $I, J \in Ob(\mathbf{Fin})$ の間の写像を射とする.

(1,1)-圏 \mathbf{Fin}_* を以下で定義する:

• 基点付き有限集合

$$\langle n \rangle \coloneqq \{*, 1, \dots, n\}$$

を対象に持つ. i.e.

$$\mathrm{Ob}(\mathbf{Fin}_*) := \{ \langle n \rangle \mid n \in \mathbb{Z}_{\geq 0} \}.$$

• $\forall \langle m \rangle, \langle n \rangle \in \mathrm{Ob}(\mathbf{Fin}_*)$ に対して、それらの間の基点を保つ写像を射とする. i.e.

$$\operatorname{Hom}_{\mathbf{Fin}_{*}}(\langle m \rangle, \langle n \rangle) := \{ f \in \operatorname{Hom}_{\mathbf{Sets}}(\langle m \rangle, \langle n \rangle) \mid f(*) = * \}.$$

定義 1.35: inert/active morphism

- 圏 \mathbf{Fin}_* における射 $f \in \mathrm{Hom}_{\mathbf{Fin}_*}$ $(\langle m \rangle, \langle n \rangle)$ が inert であるとは、 $\forall i \in \langle n \rangle \setminus \{*\}$ に対して $f^{-1}(\{i\}) \subset \langle m \rangle$ が 1 点集合であることを言う.
- 圏 \mathbf{Fin}_* における射 $f \in \mathrm{Hom}_{\mathbf{Fin}_*}$ $(\langle m \rangle \,,\, \langle n \rangle)$ が active であるとは, $f^{-1}ig(\{ * \} ig) = \{ * \} \subset \langle m \rangle$ であることを言う.

【例 1.3.1】inert な射 ho^i

 $1 \le \forall i \le \forall n$ を 1 つ固定する. このとき, 写像

$$\begin{split} \rho^i \colon \left\langle n \right\rangle &\longrightarrow \left\langle 1 \right\rangle, \\ j &\longmapsto \begin{cases} 1, & j=i \\ *, & j \neq i \end{cases} \end{split}$$

は圏 Fin* における inert な射である.

【例 1.3.2】 active な射 α_n

 $\forall n > 1$ を 1 つ固定する. このとき, 写像

$$\alpha_n \colon \langle n \rangle \longrightarrow \langle 1 \rangle \,,$$

$$j \longmapsto \begin{cases} 1, & j \neq * \\ *, & j = * \end{cases}$$

は圏 \mathbf{Fin}_* における active な射である. なお、 α_n は射の集合 $\mathrm{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle 1 \rangle\right)$ の元のうち、唯一の active な射である.

脈体の定義において $[n] \in \mathrm{Ob}(\Delta)$ を (1,1)-圏と見做した方法と同様にして、半順序集合 $\{n-1 \leq n\}$ を (1,1)-圏と見做す、このとき、

$$N(\{n-1 \le n\}) = \begin{pmatrix} \bullet & \bullet \\ n-1 & n \end{pmatrix} \cong \Delta^1$$

と図示できる. 同様に,

$$N(\{0 \le 1\}) = \begin{pmatrix} \bullet & & \bullet \\ 0 & & 1 \end{pmatrix} \cong \Delta^1$$

である.

定義 1.36: p-Cartesian morphism

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ を内的ファイブレーションとする.

• \mathcal{E} の 1-射 $(x \xrightarrow{f} y) \in \mathcal{E}_1$ が以下の条件を充たすとき,f は p-Cartesian であると言う: (Cartesian) $\forall n \geq 2$ に対して,以下の sSet の図式を可換にする \mathcal{E} の n-射 $\bar{\varphi}$ \in

 $\operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{E}) \cong \mathcal{E}_n$ が存在する:

ただし、sSet の射 $f: N(\{n-1 \le n\}) \longrightarrow \mathcal{E}$ とは

$$f_{[1]}\left(\begin{array}{c} \bullet \longrightarrow \bullet \\ n-1 & n \end{array}\right) = \begin{array}{c} \bullet \\ x & y \end{array}$$

を充たす唯一の自然変換である.

• \mathcal{E} の 1-射 $(x \xrightarrow{f} y) \in \mathcal{E}_1$ が以下の条件を充たすとき,f は p-coCartesian であると言う: (coCartesian) $\forall n \geq 2$ に対して,以下の sSet の図式を可換にする \mathcal{E} の n-射 $\bar{\varphi} \in \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n,\mathcal{E}) \cong \mathcal{E}_n$ が存在する:

$$N(\{0 \le 1\}) \cong \Delta^{1}$$

$$\Lambda_{0}^{n} \xrightarrow{\forall \varphi_{0}} \mathcal{E}$$

$$\Delta^{n} \xrightarrow{\forall \varphi_{0}} \mathcal{B}$$

ただし、sSet の射 $f: N(\{0 \le 1\}) \longrightarrow \mathcal{E}$ とは

$$f_{[1]}\left(\begin{array}{c} \bullet \longrightarrow \bullet \\ n-1 & n \end{array}\right) = \begin{array}{c} \bullet \longrightarrow f \\ x & y \end{array}$$

を充たす唯一の自然変換である.

n=2 の場合の (coCartesian) の可換図式の意味を,系 \ref{N} ?を用いて解読しよう.まず,包含 $Nig(0 \le 1\}ig) \hookrightarrow \Lambda_0^2$ というのは,系 \ref{N} ?による角 Λ_0^2 の図示

のうち辺 $\{0\} \longrightarrow \{1\}$ への埋め込みであるから、可換図式の

$$\mathrm{N}\big(\{0\leq 1\}\big) \cong \Delta^1$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow$$

$$\Lambda_0^2 \xrightarrow{\qquad \forall \varphi_0 \qquad } \mathcal{E}$$

の部分は勝手な角の図式 $\varphi_0=(ullet,f,arphi_{02})\in\mathcal{E}_1^{ imes2}$ を与えることに対応する. 図示すると

となる. 従って, (coCart-2) の主張は次のような意味を持つ:

 $(\infty, 1)$ -圏 \mathcal{B} において角の図式が 2-射 $\varphi \in \operatorname{Hom}_{\mathbf{sSet}}(\Delta^2, \mathcal{B}) \cong \mathcal{B}_2$ によって

と埋められているならば、 \mathcal{E} において角の図式 (1.3.1) を

のように埋める 2-射 $\bar{\varphi} \in \operatorname{Hom}_{\mathbf{sSet}}(\Delta^2, \mathcal{E}) \cong \mathcal{E}_2$ が存在する.

定義 1.37: デカルトファイブレーション

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ を内的ファイブレーションとする.

- p がデカルトファイブレーション (Cartesian fibration) であるとは、
 - $-\mathcal{B}$ の任意の 1 射 $(x \xrightarrow{f} y) \in \mathcal{B}_1$
 - $-p_{[0]}(\bar{y})=y$ を充たす \mathcal{E} の任意の対象 $\bar{y}\in\mathcal{E}_0$

に対して、以下の条件を充たす \mathcal{E} の 1-射 $(z \xrightarrow{\bar{f}} \bar{y}) \in \mathcal{E}_1$ が存在することを言う:

(Cart-1)

 \bar{f} は f の持ち上げである. i.e. $p_{[1]}(\bar{f}) = f$ が成り立つ.

(Cart-2)

 \bar{f} は p-Cartesian である.

- p が余デカルトファイブレーション (coCartesian fibration) であるとは、
 - $-\mathcal{B}$ の任意の 1 射 $(x \xrightarrow{f} y) \in \mathcal{B}_1$
 - $-p_{[0]}(\bar{x})=x$ を充たす \mathcal{E} の任意の対象 $\bar{x}\in\mathcal{E}_0$

に対して、以下の条件を充たす \mathcal{E} の 1-射 $(\bar{x} \xrightarrow{\bar{f}} z) \in \mathcal{E}_1$ が存在することを言う:

(coCart-1)

 \bar{f} は f の持ち上げである. i.e. $p_{[1]}(\bar{f}) = f$ が成り立つ.

(coCart-2)

 \bar{f} は p-coCartesian である.

定義 1.38: $(\infty, 1)$ -オペラッド

 $(\infty, 1)$ -オペラッド $((\infty, 1)$ -operad)^a とは、 $(\infty, 1)$ -圏の関手

$$p: \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$$

であって以下の条件を充たすもののこと [?, Definition 2.1.1.10.]:

(Op-1)

任意の inert な射 $f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $\forall c \in (\mathcal{O}_{\langle m \rangle}^{\otimes})_0$ に対して, \mathcal{O}^{\otimes} における p-coCartesian な 1-射 $\bar{f} \colon c \longrightarrow c'$ が存在して $p_{[1]}(\bar{f}) = f$ を充たす.

(Op-2)

 $\forall f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $\forall c \in (\mathcal{O}_{\langle m \rangle}^{\otimes})_0, \ \forall c' \in (\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ に対して、**【例 1.3.1】**の inert な射の族 $\left\{ \rho^i \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle 1 \rangle\right) \right\}_{1 \leq i \leq n}$ に **(Op-1)** を適用して得られる p-coCartesian な 1-射の族 $\left\{ c' \xrightarrow{\bar{\rho}^i} c'_i \in (\mathcal{O}^{\otimes})_1 \right\}_{1 \leq i \leq n}$ が誘導する Kan 複体の関手 b

$$\operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')_f \longrightarrow \prod_{i=1}^n \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c'_i)_{\rho^i \circ f}$$

は、 $(\infty, 1)$ -圏 \mathcal{S} paces における同型射である.

(Op-3)

 $\forall c_1, \ldots, c_n \in (\mathcal{O}_{\langle 1 \rangle}^{\otimes})_0$ に対して、ある $c \in (\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ および p-coCartesian な 1-射 $\widehat{\rho_i} \in (\operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c_i)_{\rho^i})_0$ が存在する.

ただし,以下の記法を採用した:

• 点 $\langle n \rangle \in \mathrm{N}(\mathbf{Fin}_*)_0$ における $(\infty, 1)$ -圏の関手 $p: \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$ のファイバー $\mathcal{O}_{\langle n \rangle}^{\otimes}$ を, $(\infty, 1)$ -圏の pullback

$$\begin{array}{ccc} \mathcal{O}_{\langle n \rangle}^{\otimes} & \longrightarrow & \Delta^{0} \\ \downarrow & & & \downarrow^{\langle n \rangle} \\ \mathcal{O}^{\otimes} & \xrightarrow{p} & \mathrm{N}(\mathbf{Fin}_{*}) \end{array}$$

と定義した^c.

• $f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $c \in (\mathcal{O}_{\langle m \rangle}^{\otimes})_0$, $c' \in (\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ に対して, $\bar{f} \in \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')_0$ であって $p_{[1]}(\bar{f}) = f$ を充たすもの全体から定まる, $\operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c') \in \mathcal{S}$ paces $_0$ の充満部分 Kan 複体を

$$\operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')_f \hookrightarrow \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')$$

と書いた.

補題 1.11: Segal 条件

(∞, 1)-圏の関手

$$p \colon \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$$

であって条件 (Op-1), (Op-2) を充たすものを与える. このとき, 条件 (Op-3) は以下と同値である a :

(Segal)

 $\forall n \geq 0$ に対して、【**例 1.3.1**】の inert な射の族 $\left\{
ho^i \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\left\langle n \right\rangle, \left\langle 1 \right\rangle\right) \right\}_{1 \leq i \leq n}$ が条件 **(Op-1)** により誘導する $(\infty, 1)$ -圏の関手の族 $\left\{
ho^i_! : \mathcal{O}^\otimes_{\langle n \rangle} \longrightarrow \mathcal{O}^\otimes_{\langle 1 \rangle} \right\}_{1 \leq i \leq n}$ は、 $(\infty, 1)$ -圏同値

$$(\rho_!^1, \ldots, \rho_!^n) \colon \mathcal{O}_{\langle n \rangle}^{\otimes} \xrightarrow{\simeq} (\mathcal{O}_{\langle 1 \rangle}^{\otimes})^{\times n}$$
 (1.3.2)

を与える.

証明 (OP-3) ⇒ (Segal)

(OP-3) を仮定する.命題**??**より, $(\infty, 1)$ -圏の関手 (1.3.2) が忠実充満かつ本質的全射であることを示せば良い.

 $\forall n \geq 0$ および $\forall c, c' \in (\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ を固定する. このとき $\mathrm{Id}_{\langle n \rangle} \in \mathrm{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle n \rangle\right)$ に対して **(OP-2)** を用いることで、ホモトピー同値

$$\operatorname{Map}_{\mathcal{O}_{\langle n \rangle}^{\otimes}}(c, c') \simeq \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c')_{\operatorname{Id}_{\langle n \rangle}} \longrightarrow \prod_{i=1}^{n} \operatorname{Map}_{\mathcal{O}^{\otimes}}(c, c'_{i})_{\rho^{i}}$$

が得られる. さらに、p-coCartesian な射の定義からホモトピー同値

$$\prod_{i=1}^{n} \operatorname{Map}_{\mathcal{O}_{\langle 1 \rangle}^{\otimes}} \left(\rho_{! [0]}^{i}(c), \, \rho_{! [0]}^{i}(c') \right) \simeq \prod_{i=1}^{n} \operatorname{Map}_{\mathcal{O}^{\otimes}} \left(c_{i}, \, c_{i}' \right)_{\operatorname{Id}_{\langle 1 \rangle}} \longrightarrow \prod_{i=1}^{n} \operatorname{Map}_{\mathcal{O}^{\otimes}} \left(c, \, c_{i}' \right)_{\rho^{i}}$$

が得られる *17 ため,(1.3.2) が忠実充満だと分かった.本質的全射であることは **(OP-3)** より従う.**(OP-3)** \iff **(Segal)** 明らか.

 $^{^{}a}$ ∞-operad とも呼ばれる.

 $[^]b$ 対象の対応としては $ar f \longmapsto (ar
ho^1 \circ ar f, \ldots, ar
ho^n \circ ar f)$ であるが,右辺の $(\infty,1)$ -圏 $\mathcal O^\otimes$ における 1-射の合成は up to homotopy でしか定まらないため,この関手は up to homotopy でしか決まらない.

 $[^]c$ これ自体が $(\infty, 1)$ -圏である. なお,ファイバーは $(\infty, 1)$ -圏の pullback なので一見すると非常に計算が難しいが,幸いにしてこの場合は (1, 1)-圏 **sSet** における pullback と一致する.

 $[^]a$ 一般に Segal 条件というと n-fold pullback のことだが、現在は $\mathcal{O}_{\langle 0 \rangle}^{\otimes}$ が contractible なので n-fold product になっている.

^{*17} **(OP-2)** における $c_i' \in (\mathcal{O}_{(1)}^{\otimes})_0$ とは、ちょうど $\rho_{![0]}^i(c')$ のことである.

定義 1.39: $(\infty, 1)$ -オペラッドの射

 $(\infty,1)$ -オペラッド $p: \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$ を与える. このとき, $(\infty,1)$ -圏 \mathcal{O}^{\otimes} の 1-射 $f \in (\mathcal{O}^{\otimes})_1$ が inert であるとは、以下の 2 条件を充たすことを言う:

(inert-1) $p_{[1]}(f)$ は (1, 1)-圏 \mathbf{Fin}_* における inner な射である.

(inert-2) f は p-coCartesian な 1-射である.

2 つの $(\infty, 1)$ -オペラッド $p: \mathcal{O}^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*), \ p': \mathcal{O}'^{\otimes} \longrightarrow \mathrm{N}(\mathbf{Fin}_*)$ を与える.このとき, $(\infty, 1)$ -圏の関手 $f: \mathcal{O}^{\otimes} \longrightarrow \mathcal{O}'^{\otimes}$ が $(\infty, 1)$ -オペラッドの射 $(\infty$ -operad map) であるとは,以下の 2 つの条件を充たすことを言う:

(Opmap-1) (1, 1)-圏 sSet の図式

は可換である.

(Opmap-2) 1-射の間の写像 $f_{[1]}: (\mathcal{O}^{\otimes})_1 \longrightarrow (\mathcal{O}'^{\otimes})_1$ により、inert な 1-射が保存される^a.

定義 1.38 がオペラッドと呼ぶにふさわしいことを示すために、次の小節では (1, 1)-圏の文脈で対応物を考えよう.

1.3.2 色付きオペラッドと (1, 1)-圏の coCartesian fibration

定義 1.40: colored operad

色付きオペラッド a (colored operad) \mathcal{O} は、以下の 4 つのデータから成る:

• 対象^b (object) の集まり

$$\mathrm{Ob}(\mathcal{O})$$

• $\forall I \in \mathrm{Ob}(\mathbf{Fin}), \ \forall \{x_i \in \mathrm{Ob}(\mathcal{O})\}_{i \in I}, \ \forall y \in \mathrm{Ob}(\mathcal{O}) \ \mathcal{O} \ 3 \ \mathcal{O}$ 知に対して定まっている, $\{x_i\}_{i \in I} \ \mathcal{O} \$

$$\mathbf{Mul}_{\mathcal{O}}(\{x_i\}_{i\in I}, y) \in \mathbf{Ob}(\mathbf{Sets})$$

• $\forall \alpha \in \operatorname{Hom}_{\mathbf{Fin}}(I,J), \ \forall \big\{ x_i \in \operatorname{Ob}(\mathcal{O}) \big\}_{i \in I}, \ \big\{ y_j \in \operatorname{Ob}(\mathcal{O}) \big\}_{j \in J}, \ \forall z \in \operatorname{Ob}(\mathcal{O}) \ \mathcal{O} \ 4 \ \mathcal{O}$ 知能に対して定まっている、多射の合成(composition map)と呼ばれる写像

$$o_{\alpha} \colon \mathrm{Mul}_{\mathcal{O}}\big(\{y_j\}_{j \in J}, \, z\big) \times \prod_{j \in J} \mathrm{Mul}_{\mathcal{O}}\big(\{x_i\}_{i \in \alpha^{-1}(\{j\})}, \, y_j\big) \longrightarrow \mathrm{Mul}_{\mathcal{O}}\big(\{x_i\}_{i \in I}, \, z\big),$$

$$(G, (F_j)_{j \in J}) \longmapsto G \circ_{\alpha} (F_j)_{j \in J}$$

 $[^]a$ 条件 (Opmap-1) より、inert な 1-射の $p_{[1]}$ による像が条件 (inert-1) を充たすことは明らかである.

• 恒等射 (identitiy) と呼ばれる多射の族 $\left\{\mathrm{Id}_x\in\mathrm{Mul}_\mathcal{O}\big(\{x\},\,x\big)\right\}_{x\in\mathrm{Ob}(\mathcal{O})}$

これらは以下の条件を充たさねばならない:

(cOp-1)

恒等射は合成に関して単位元として振る舞う.

(cOp-2)

多射の合成は結合則を充たす. i.e. $\forall \alpha \in \operatorname{Hom}_{\mathbf{Fin}}(I,J), \ \forall \beta \in \operatorname{Hom}_{\mathbf{Fin}}(J,K), \ \forall \{x_i \in \operatorname{Ob}(\mathcal{O})\}_{i \in I}, \ \forall \{y_j \in \operatorname{Ob}(\mathcal{O})\}_{j \in J}, \ \forall \{z_k \in \operatorname{Ob}(\mathcal{O})\}_{k \in K}, \ \forall w \in \operatorname{Ob}(\mathcal{O}) \$ に対して,(1,1)-圏 Sets の図式

$$\operatorname{Mul}_{\mathcal{O}}(\{z_{k}\}_{k\in K}, w) \times \prod_{k\in K} \operatorname{Mul}_{\mathcal{O}}(\{y_{j}\}_{j\in\beta^{-1}(\{k\})}, z_{k}) \times \prod_{j\in J} \operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in\alpha^{-1}(\{j\})}, y_{j})$$

$$\circ_{\beta} \times \operatorname{Id}$$

$$\operatorname{Mul}_{\mathcal{O}}(\{y_{j}\}_{j\in J}, w) \times \prod_{j\in J} \operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in\alpha^{-1}(\{j\})}, y_{j})$$

$$\operatorname{Mul}_{\mathcal{O}}(\{y_{j}\}_{j\in J}, w) \times \prod_{j\in J} \operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in\alpha^{-1}(\{j\})}, y_{j})$$

$$\operatorname{Mul}_{\mathcal{O}}(\{z_{k}\}_{k\in K}, w) \times \prod_{k\in K} \operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in(\beta\circ\alpha)^{-1}(\{k\})}, z_{k})$$

$$\operatorname{Mul}_{\mathcal{O}}(\{x_{i}\}_{i\in I}, z)$$

は可換である.

色付きオペラッドの定義において、写像 $\alpha \in \operatorname{Hom}_{\mathbf{Fin}}(I,J)$ が多射の合成の「型」を規定している.

定義 1.41: (1, 1)-圏における coCartesian fibration

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ を (1, 1)-圏の関手とする.

• \mathcal{E} の射 $\bar{f} \in \operatorname{Hom}_{\mathcal{E}}(\bar{x}, \bar{y})$ が以下の条件を充たすとき, \bar{f} は p-coCartesian であると言う: (coCart-ord) (1, 1)-圏 \mathcal{B} の図式

を可換にする勝手な 2 つの射 $\varphi_0 \in \operatorname{Hom}_{\mathcal{E}}(\bar{x}, \bar{z}), \ \varphi \in \operatorname{Hom}_{\mathcal{B}}\left(p(\bar{y}), p(\bar{z})\right)$ に対して、射 $\bar{\varphi} \in \operatorname{Hom}_{\mathcal{E}}(\bar{y}, \bar{z})$ が一意的に存在して (1, 1)-圏 \mathcal{E} の図式

^a いわゆる**対称色付きオペラッド** (symmetric colored operad) である.

 $^{^{}b}$ 色 (color) と呼ばれることもある.

を可換にする.

- p が coCartesian fibration であるとは,
 - -(1,1)-圏 \mathcal{B} の任意の射 $f \in \operatorname{Hom}_{\mathcal{B}}(x,y)$
 - $-p(\bar{x}) = x$ を充たす (1, 1)-圏 \mathcal{E} の対象 $\bar{x} \in Ob(\mathcal{E})$

に対して、以下の条件を充たす (1, 1)-圏 \mathcal{E} の射 $\bar{f} \in \operatorname{Hom}_{\mathcal{E}}(\bar{x}, z)$ が存在することを言う:

(coCart-ord-1)

 \bar{f} は f の持ち上げである. i.e. $p(\bar{f}) = f$ が成り立つ.

(coCart-ord-2)

 \bar{f} は p-coCartesian である.

定義 1.38 に合わせて、(1,1)-圏の関手

$$p \colon \mathcal{O}^{\otimes} \longrightarrow \mathbf{Fin}_{*}$$
 (1.3.3)

であって以下の3条件を充たすものを考えてみる:

(OP-ord-1)

任意の inert な射 $f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $\forall c \in \operatorname{Ob}(\mathcal{O}^{\otimes}_{\langle m \rangle})$ に対して, \mathcal{O}^{\otimes} における p-coCartesian な射 $\bar{f} \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}\left(c, c'\right)$ が存在して $p(\bar{f}) = f$ を充たす.

(OP-ord-2)

 $\forall f \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m \rangle, \langle n \rangle\right)$ および $\forall c \in \operatorname{Ob}(\mathcal{O}_{\langle m \rangle}^{\otimes}), \forall c' \in \operatorname{Ob}(\mathcal{O}_{\langle n \rangle}^{\otimes})$ に対して、inert な射 $\rho^i \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle 1 \rangle\right)$ に **(Op-ord-1)** を適用して得られる p-coCartesian な射の族 $\left\{ \bar{\rho}^i \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}\left(c', c_i'\right) \right\}_{1 \leq i \leq n}$ が誘導する写像

$$\operatorname{Hom}_{\mathcal{O}^{\otimes}}(c, c')_{f} \longrightarrow \prod_{i=1}^{n} \operatorname{Hom}_{\mathcal{O}^{\otimes}}(c, c'_{i})_{\rho^{i} \circ f},$$
$$\varphi \longmapsto (\bar{\rho}^{1} \circ \varphi, \dots, \bar{\rho}^{n} \circ \varphi)$$

は, (1, 1)-圏 **Sets** における同型射 (i.e. 全単射) である.

(OP-ord-3)

 $\forall c_1, \ldots, c_n \in \mathrm{Ob}(\mathcal{O}_{\langle 1 \rangle}^{\otimes})$ に対して、ある $c \in \mathrm{Ob}(\mathcal{O}_{\langle n \rangle}^{\otimes})_0$ および p-coCartesian な射 $\widehat{\rho_i} \in \mathrm{Hom}_{\mathcal{O}^{\otimes}}(c, c_i)_{\rho^i}$ が存在する.

ここで、Cat における引き戻し

$$\begin{array}{ccc}
\mathcal{O}_{\langle n \rangle}^{\otimes} & \longrightarrow * \\
\downarrow & & \downarrow^{\langle n \rangle} \\
\mathcal{O}^{\otimes} & \xrightarrow{n} & \mathbf{Fin}_{*}
\end{array}$$

により (1,1)-圏 \mathcal{O}^{\otimes} を定義している. 具体的には

$$\mathrm{Ob}(\mathcal{O}_{\langle n \rangle}^{\otimes}) = \left\{ c \in \mathrm{Ob}(\mathcal{O}^{\otimes}) \mid p(c) = \langle n \rangle \right\}$$

である. さらに、 $\forall f \in \text{Hom}_{\mathbf{Fin}_*}(\langle m \rangle, \langle n \rangle)$ に対して

$$\operatorname{Hom}_{\mathcal{O}^{\otimes}}(c, c')_{f} := \{ \varphi \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(c, c') \mid p(\varphi) = f \}$$

と定義した.

命題 1.3: 色付きオペラッドの再構成

条件 (Op-ord-1)-(Op-ord-3) を充たす (1, 1)-圏の関手 (1.3.3) から次のように構成されたデータの組み O は色付きオペラッドを成す:

- 対象の集まりを $\mathrm{Ob}(\mathcal{O})\coloneqq\mathrm{Ob}(\mathcal{O}_{\langle 1\rangle}^\otimes)$ と定義する.
- $\forall x_1, \ldots, x_n, y \in \mathrm{Ob}(\mathcal{O})$ に対して、以下の 3 つ組全体が成す集合を $\mathrm{Mul}_{\mathcal{O}}\big((x_1, \ldots, x_n), y\big)$ と定義する.
 - (1) x_1, \ldots, x_n に対して (Op-ord-3) を適用することにより定まる $X \in \mathrm{Ob}(\mathcal{O}_{(n)}^{\otimes})$
 - (2) x_1, \ldots, x_n に対して **(Op-ord-3)** を適用することにより定まる p-coCartesian な射の族 $\left\{\widehat{\rho_i} \in \operatorname{Hom}_{\mathcal{O}^\otimes}(X, x_i)_{\rho^i}\right\}_{1 \leq i \leq n}$
 - (3) 【例 1.3.2】の active な射 $\alpha_n \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle n \rangle, \langle 1 \rangle\right)$ およびその上の \mathcal{O}^{\otimes} の射 $F \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}\left(X, y\right)_{\alpha_n}$
- n 個の多射

$$(X^{1}, \{\widehat{\rho_{i}}^{1}\}_{1 \leq i \leq m_{1}}, F^{1}) \in \operatorname{Mul}_{\mathcal{O}}((x_{1}^{1}, \dots, x_{m_{1}}^{1}), y_{1}),$$

$$\vdots$$

$$(X^{n}, \{\widehat{\rho_{i}}^{n}\}_{1 \leq i \leq m_{n}}, F^{n}) \in \operatorname{Mul}_{\mathcal{O}}((x_{1}^{n}, \dots, x_{m_{n}}^{n}), y_{n})$$

と 1 つの多射 $(Y, \{\hat{\rho_j}\}_{1 < j < n}, G) \in \operatorname{Mul}_{\mathcal{O}}((y_1, \ldots, y_n), z)$ の合成

$$(X, \{\widehat{\rho_i}\}_{1 \le i \le m_1 + \dots + m_n}, G \circ (F^1; \dots; F^n)) \in \text{Mul}_{\mathcal{O}}((x_1^1, \dots, x_{m_1}^1; \dots; x_1^n, \dots, x_{m_n}^n), z)$$

を次のように定義する:

- (1) $X \in \mathrm{Ob}(\mathcal{O}_{\langle m_1+\cdots+m_n \rangle}^{\otimes})$ は、 $x_1^1, \ldots, x_{m_n}^n \in \mathrm{Ob}(\mathcal{O})$ に対して (Op-ord-3) を適用することにより定める.
- (2) p-coCartesian な射の族 $\{\widehat{\rho_i^j} \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(X, x_i^j)_{\rho^{i+m_1+\cdots+m_{j-1}}}\}_{\substack{1 \leq j \leq n \\ 1 \leq i \leq m_j}}$ は $x_1^1, \ldots, x_{m_n}^n \in \operatorname{Ob}(\mathcal{O})$ に対して (Op-ord-3) を適用することにより定める.
- (3) \mathcal{O}^{\otimes} の射 $G \circ (F^1; \ldots; F^n) \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(X, z)_{\alpha_{m_1+\cdots+m_n}}$ は以下の手順に従って構成する: (STEP-1)

まず、
$$1 \le \forall j \le n$$
 に対して inert な射 $\pi_j \in \operatorname{Hom}_{\mathbf{Fin}_*} (\langle m_1 + \dots + m_n \rangle, \langle m_j \rangle)$ を

$$k \longmapsto \begin{cases} k - (m_1 + \dots + m_{j-1}), & 1 \le k - (m_1 + \dots + m_{j-1}) \le m_j \\ *, & \text{otherwise} \end{cases}$$

で定義する.

 $\pi_i : \langle m_1 + \cdots + m_n \rangle \longrightarrow \langle m_i \rangle$,

(STEP-2)

inert な射 $\pi_j \in \operatorname{Hom}_{\mathbf{Fin}_*}\left(\left\langle m_1 + \dots + m_n \right\rangle, \left\langle m_j \right\rangle\right)$ に対して **(Op-ord-1)** を適用することにより、p-coCartesian な射 $\bar{\pi}_j \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(X, X^j)_{\pi_j}$ を取得する.

(STEP-3)

$$(F^1 \circ \bar{\pi}_1, \ldots, F^n \circ \bar{\pi}_n) \in \prod_{j=1}^n \operatorname{Hom}_{\mathcal{O}^{\otimes}} (X, y_j)_{\alpha_{m_j} \circ \pi_j}$$

に対して (Op-ord-2) を適用することで、対応する

$$F \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(X, Y)_{\pi}$$

が一意的に定まる. これに $G \in \operatorname{Hom}_{\mathcal{O}^{\otimes}}(Y,z)_{\alpha_n}$ を合成して

$$G \circ_{\pi} (F^1; \ldots; F^n) \coloneqq G \circ F \in \operatorname{Hom}_{\mathcal{O}^{\otimes}} (X, z)_{\alpha_{m_1 + \cdots + m_n}}$$

と定義する. ただし, $\pi \in \text{Hom}_{\mathbf{Fin}_*}\left(\langle m_1 + \cdots + m_n \rangle, \langle n \rangle\right)$ は

$$\pi(k) := \begin{cases} j, & m_{j-1} < k \le m_j \\ *, & k = * \end{cases}$$

と定義される active な射である^a.

 $a \ 1 \le \forall j \le n$ に対して $\rho^j \circ \pi = \alpha_{m_j} \circ \pi_j$ が成り立つ.

証明

逆の対応を作ることもできる.

定義 1.42: Category of operators

いま, colored operad $\mathcal O$ が与えられたとする. このとき category of operators と呼ばれる (1,1)- 圏 $\mathcal O^\otimes$ を次のように定義する:

- \mathcal{O} の対象の有限列 $x_1, \ldots, x_n \in \mathrm{Ob}(\mathcal{O})$ を対象に持つ.
- $\forall (x_1,\ldots,x_m),\,(y_1,\ldots,y_n)\in \mathrm{Ob}(\mathcal{O}^\otimes)$ に対して、以下の 2 つ組を全て集めて得られる集合を $\mathrm{Hom}_{\mathcal{O}^\otimes}\left(\{x_i\}_{1\leq i\leq m},\,\{y_j\}_{1\leq j\leq n}\right)$ とする.
 - (1) **Fin**_{*} の射

$$\alpha \in \operatorname{Hom}_{\mathbf{Fin}_*} (\langle m \rangle, \langle n \rangle)$$

(2) 多射の族

$$\left\{\phi_j \in \operatorname{Mul}_{\mathcal{O}}\left(\{x_i\}_{i \in \alpha^{-1}(\{j\})}, y_j\right)\right\}_{1 < j < n}$$

より具体的には,

$$\operatorname{Hom}_{\mathcal{O}^{\otimes}}\left(\{x_i\}_{1\leq i\leq m},\,\{y_j\}_{1\leq j\leq n}\right)\coloneqq \coprod_{\alpha\in\operatorname{Hom}_{\mathbf{Fin}_*}\left(\langle m\rangle,\,\langle n\rangle\right)}\prod_{j=1}^n\operatorname{Mul}_{\mathcal{O}}\left(\{x_i\}_{i\in\alpha^{-1}(\{j\})},\,y_j\right)$$

である.

• 射の合成は、 \mathbf{Fin}_* における射の合成および $\mathcal O$ における多射の合成によって定める.

 \mathcal{O}^{\otimes} から \mathbf{Fin}_* への忘却関手を

$$p \colon \mathcal{O}^{\otimes} \longrightarrow \mathbf{Fin}_{*},$$
$$\{x_{i}\}_{1 \leq i \leq n} \longmapsto \langle n \rangle,$$
$$(\alpha, \{\phi_{i}\}_{1 \leq i \leq n}) \longmapsto \alpha$$

と定義する.

命題 1.4: 色付きオペラッドと category of operators

(1, 1)-圏の関手

$$p \colon \mathcal{O}^{\otimes} \longrightarrow \mathbf{Fin}_*$$

において、 O^{\otimes} がある色付きオペラッド O の category of operators と圏同値になる必要十分条件は、p が条件 (Op-ord-1)-(Op-ord-3) を充たすことである.

証明 [?, Proposition 2.2.II.]

1.3.3 $(\infty, 1)$ -圏の構成

話を $(\infty, 1)$ -オペラッドに戻そう.