仿真实验报告

Jinwei Han, jinwei.han93@gmail.com, han550@purdue.edu

1. 模拟空间数据的 $\overrightarrow{\mu}$ 和 V

使用一张图片(代表我们希望去模拟的空间数据)生成我们想要的 $\overrightarrow{\mu}$ 和 V.

首先,为了得到 $\overrightarrow{\mu}$,我们需要做灰度化和采样(M=20)处理,(实际是20维的向量,下图是平面表示,符合直观)。

上图中,每个格子的灰度是 $\mu(s_i)$, $\overrightarrow{\mu}$ 的维度等于M*M=N=400, $\overrightarrow{\mu} \in R^N$ 。

然后,我们会基于空间关系生成 $V,V=(\sigma^2\exp\frac{-||s_i-s_j||_2}{\phi}),V$ 矩阵的宽高是

N*N=400*400。这里我们将空间控制在0-1的grid上(不要被图片的刻度迷惑,那只是直接 print的矩阵,坐标是index)。

最后,我们有了 $\overrightarrow{\mu}$ 和 V,就可以生成模拟数据:

$$Y \sim N(\overrightarrow{\mu}, V)$$

上图就是我们重新按照模型生成的仿真数据,和平面化的 $\overrightarrow{\mu}$ 非常相似,但由于随机生成,还是有略微的差异。

2. 模型参数

现在我们有了基于模型仿真出来的数据。

我们会将数据点分成两部分,一部分用做训练集,一部分用作测试集。在整体上进行k折验证,得到最终的模型fitness(使用一个类似 R^2 的概念,去衡量模型的预测能力)。

我们会分别将两个模型(传统的和近似的)分别去施加在上述数据集上。

涉及到的模型参数:

参数	取值	参数意义	备注
M	20	0-1方格横竖分割出的数量	规模可调
N	M*M	总的小格子数量,400	
phi	0.16	covariance function $\mathrm{cov}(s_i,s_j) = e^{-\frac{d_{ij}}{\phi}}$	可调整,似乎有比0.16更好的值
sigma2	1	covariance function中使用	
k_fold_splits	10	将整体数据分成10份去进行k-fold验证,具体是用10%的数据去预测90%的剩余数据,还是用90%的数据去预测10%的剩余数据取决于k_fold_train_by_small参数	
k_fold_train_by _small	TRUE	用10%的数据去预测90%的剩余数据	
neighbor_relati ve_ratio	0.2	生成近似V^-1y矩阵时,用测试集中最近(欧式距离)的20%的测试集	可调整

关于K-fold验证,在这里我用了用10%的数据去预测90%的剩余数据(如果反过来,我们的近似算法性能相比会很差)

3. 算法分析(每fold)

定义1/k_fold_splits (训练集的占比)为 $\alpha=0.1$ 定义neighbor_relative_ratio (参与到近似计算的点占训练集的比例)为 $\beta=0.2$

全体数据规模: N 预测集规模: αN

	传统算法(1)	近似算法(2)
V矩阵规模	$(\alpha N)^2$	$(\alpha\beta N)^2$
V矩阵取逆次数	1	αN

所以,我们的算法性能是用提升V矩阵求逆次数的代价换来的V矩阵的规模减少。 如果 α 接近1的话,我们的矩阵规模的降低带来的优势,会引入N倍的取逆次数的增加,所以不划算。

(比如我们用90%的数据去预测10%的数据, $\alpha=0.9$,M=20时,这时耗时是12s跟133s。此时近似算法不占优势)

4. 实验

基于上述实验数据和参数,我们对不同M进行测试,对预测能力和性能做评估。

4.1 实验1 (参数设定M=20)

- 模型1: 使用全体预测集中的点

 $R^2 = 0.6650$

V矩阵的Conditional number=23.1 (40维)

- 模型2: 使用近邻的点去近似(近邻策略是固定比例的近邻预测集)

 $R^2 = 0.6653$

40次V矩阵的计算, 平均Conditional number=12.2 (8维)

在这组参数设定下,预测能力差不太多。由于低维数据,运算时长基本一致(都小于1s)。我们 用更高维数据来验证性能问题。

4.2 实验2 (参数设定M=60)

- 模型1: 使用全体预测集中的点

 $R^2 = 0.9681$

V矩阵的Conditional number大约700(360维)

耗时: 252s

- 模型2: 使用近邻的点去近似(近邻策略是固定比例的近邻预测集)

 $R^2 = 0.9678$

360次V矩阵的计算,平均Conditional number大约350(72维)

耗时: 198s

 R^2 反映的预测能力差不多,但是新算法耗时确实是有一定幅度的减少(如果减少beta,减少alpha,这个耗时还能大幅度降低)

5. 代码仓库

https://github.com/jeyhan/spatial_stat.git