Was versteht man unter einer Zielfunktion?		Die Funtktion $f:G \to \mathbb{R}$, die minimiert wird.	
aufgabenstellung KOMOT::Optimierungsprobleme	UUID	aufgabenstellung KOMOT::Optimierungsprobleme	UUID
Was ist der zulässiger Bereich G ?		Definitionsbereich der Zielfunktion. $G\subseteq \mathbb{R}^n$.	
aufgabenstellung KOMOT::Optimierungsprobleme	UUID		
Was verstehen wir unter einer (globalen) Lösung ein Aufgabe.		Ein $x^* \in G$ das die Zielfunktion minimiert.	UUID
aufgabenstellung KOMOT::Optimierungsprobleme	UUID	aufgabenstellung KOMOT::Optimierungsprobleme	UUID
Was ist eine $lokale\ L\ddot{o}sung\ x^*$ einer OA Aufgabe?		$f(x^*) \leq f(x) \forall x \in G \cap U(x^*),$ und es existiert so eine Umgebung von x^* .	
aufgabenstellung KOMOT::Optimierungsprobleme	UUID	aufgabenstellung KOMOT::Optimierungsprobleme	UUID

Was ist eine isolierte Lösung?	Es existiert eine Umgebung $U(x*)$, so dass $f(x^*) < f(x)$. Bzw. es gibt keine witeren lokalen Loßungen in der Umgebung.
aufgabenstellung KOMOT::Optimierungsprobleme UUID	aufgabenstellung KOMOT::Optimierungsprobleme UUID
Wie heißt $f_{\min}\coloneqq f(x^*)$?	Optimalwert oder Minimalwert
aufgabenstellung KOMOT::Optimierungsprobleme UUID	aufgabenstellung KOMOT::Optimierungsprobleme UUID
Eine Menge $G\subseteq\mathbb{R}^n$ heißt $konvex$, wenn	$\forall_{x,y\in G}$ die Verebindungstrecke zwischen den Punkten auch in G liegt. Formel: $\lambda x + (1-\lambda)y \in G, \forall (x,y,\lambda) \in (G\times G\times (0,1))$
konvexitaet KOMOT::Optimierungsprobleme UUID	konvexitaet KOMOT::Optimierungsprobleme UUID
Sei G konvex. Eine Funktion $f:G\to\mathbb{R}$ heißt konvex auf G , wenn	$\forall (x, y, \lambda) \in (G \times G \times (0, 1)):$ $f(\lambda x + (1 - \lambda)y \le \lambda f(x) + (1 - \lambda)f(y).$
konvexitaet KOMOT::Optimierungsprobleme UUID	konvexitaet KOMOT::Optimierungsprobleme UUID

Wann ist eine Funktion $streng\ konvex$ auf einer kompakten Menge G ?	Wie bei normalen konvexität, aber mit < statt ≤.
konvexitaet KOMOT::Optimierungsprobleme UUID	konvexitaet KOMOT::Optimierungsprobleme UUID
Sei G konvex. Eine Funktion $f:G\to\mathbb{R}$ heißt $gleichmä\beta ig$ konvex auf G , wenn	$\exists \gamma > 0, \text{ so dass } \forall (x, y, \lambda) \in (G \times G \times (0, 1)):$ $f(\lambda x + (1 - \lambda)y \le \lambda f(x) + (1 - \lambda)f(y) - \gamma \lambda (1 - \lambda) \ x - y\ ^2$
konvexitaet KOMOT::Optimierungsprobleme UUID	konvexitaet KOMOT::Optimierungsprobleme UUID
B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f $konvex$ g.d.w	$\forall_{x,y \in G}:$ $f(y) - f(x) \ge \nabla f(x)^{T} (y - x).$
$B \ \text{offen} \ G \ \text{konvex und} \ G \subseteq B \subseteq \mathbb{R}^n, \ f:B \to \mathbb{R} \ \text{diff'bar.} \ f$ $streng \ konvex \ \text{g.d.w.} \dots$	KOMOT::Optimierungsprobleme UUID $\forall_{x,y\in G}, x\neq y \text{:}$ $f(y)-f(x)>\nabla f(x)^T(y-x).$
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID

B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f gleichmäßig konvex g.d.w	$\exists \gamma > 0, \text{ so dass } \forall_{x,y \in G}:$ $f(y) - f(x) \ge \nabla f(x)^{T} (y - x) + \gamma x - y ^2.$
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
Wann ist eine quadratische Matrix $M \in \mathbb{R}^{n \times n}$ positiv semi-definit?	wenn $s^{T}Ms \geq 0 \forall s \in \mathbb{R}^n$. (\Leftrightarrow : Alle Eigenwerte ≥ 0 .)
definitheit KOMOT::Optimierungsprobleme UUID	definitheit KOMOT::Optimierungsprobleme UUID
Wann ist eine quadratische Matrix $M \in \mathbb{R}^{n \times n}$ positiv definit?	wenn $s^{T}Ms > 0$, $\forall s \in \mathbb{R}^n / \{0\}$. (\Leftrightarrow : Alle Eigenwerte > 0 .)
definitheit KOMOT::Optimierungsprobleme UUID	definitheit KOMOT::Optimierungsprobleme UUID
$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is $konvex$ auf G , genau dann wenn	$\forall x \in G : \nabla^2 f(x)$ positiv semidefinit.
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID

$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is $streng\ konvex$ auf G , genau dann wenn	$\forall x \in G : \nabla^2 f(x)$ positiv definit.
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is $streng\ konvex$ auf $G,$ genau dann wenn	$\exists \gamma > 0, \text{ so dass } \forall s, x \in G:$ $s^T \nabla^2 f(x) s \ge \gamma \ s\ ^2$
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
Die Zielfunktion sei konvex, was gibt uns das (bezogen auf Lösugnen)?	Jede lokale Lösung ist auch eine globale Lösung
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
Die Zielfunktion sei streng konvex, was gibt uns das (bezogen auf Lösugnen)?	Es gibt höchstens eine globale Lösung.
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID

Die Zielfunktion sei gleichmäßig konvex, was gibt uns da bezogen auf Lösugnen)?	, co	Falls G nicht nur konvex aber auch abgeschlossen und nicht leer, dann besitzt die OA $genau\ eine$ Lösung.	5-
KOMOT::Optimierungsprobleme	UUID	KOMOT::Optimierungsprobleme UU	ID
Was ist die Definition der quasikonvexität?		$G\subseteq \mathbb{R}^n$ konvex. $f:G\to \mathbb{R}$ heißt $quasikonvex$ auf G , wenn $f(\lambda x+(1-\lambda)y)\leq \max\big\{f(x),f(y)\big\}$	
KOMOT::Optimierungsprobleme	UUID	KOMOT::Optimierungsprobleme UU	ID
Was bedeutet, dass eine Funktion pseudokonvex ist?		Sei G konvex, B offen mit $G \subseteq B \subseteq \mathbb{R}^n$. Sei $f: B \to \mathbb{R}^n$ diff'bar. f ist pseudokonvex auf G , wenn $\forall x,y \in G$: $ (y-x)^T \nabla f(x) \geq 0 \Rightarrow f(y) \geq f(x). $	\mathbb{R}
KOMOT::Optimierungsprobleme	UUID	KOMOT::Optimierungsprobleme UU	ID
Was ist stärker, pseudokonvexität oder quasikonvexität?		pseudokonvexität	
KOMOT::Optimierungsprobleme	UUID	KOMOT::Optimierungsprobleme UU	ID

Definiere den Kegel der zulässigen Richtungen in $x \in G$.	$Z(x)\coloneqq \mathrm{cone}\left\{d\in\mathbb{R}^n\mid x+\alpha d\in G,\ \forall \alpha\in[0,1]\right\}$, wobei $\mathrm{cone}(S)\coloneqq\left\{\lambda s\mid s\in S,\ \lambda\in[0,\infty)\right\}.$
KOMOT::Optimalitaetsbedinugngen UUID	KOMOT::Optimalitaetsbedinugngen UUID
Sei G konvex, die Zielfunktion f [(1)], x^* [(2)], und es gilt [(3)], dann ist x^* eine globale Lösung der OA.	1. pseudokonvex 2. eine lokale Lösung 3. $\nabla f(x^*)^T(x-x^*) \geq 0, \ \forall x \in G$
KOMOT::Optimalitaetsbedinugngen UUID	KOMOT::Optimalitaetsbedinugngen UUID
Definiere den Tangentialkegel	$T(x) := \left\{ d = \lim_{v \to \infty} \frac{x^v - x}{t_v} \mid \{x^v\} \subset G, \{t_v\} \subset (0, \infty), \right.$ $\lim_{v \to \infty} x^v = x, \lim_{v \to \infty} t_v = 0 \right\}$
tangentialkegel KOMOT::Optimalitaetsbedinugngen UUID	tangentialkegel KOMOT::Optimalitaetsbedinugngen UUID
Wann ist $T(x)$ Tangentialkegel gleich \mathbb{R}^n ?	Falls x im inneren von G ist.
tangentialkegel KOMOT::Optimalitaetsbedinugngen UUID	tangentialkegel KOMOT::Optimalitaetsbedinugngen UUID

Definiere den <i>Linearisierungskegel</i> .		$L(x) := \left\{ d \mid \nabla g_i(x)^T d \le 0 \text{ für } i \in I_0(x), \nabla h(x)^T d = 0 \right\}.$ mit $I_0(x) := \left\{ i \in I \mid g <_i (x) = 0 \right\}.$	= 0}
${\tt linearisierungskegel\ KOMOT::} \\ {\tt Optimalitaetsbedinugngen}$	UUID	linearisierungskegel KOMOT::Optimalitaetsbedinugngen	UUID
Wie nennt man die Bedingung, dass $T(x) = L(x)$?		Abadie Constraint Qualification (ACG)	
KOMOT::Optimalitaetsbedinugngen	UUID	KOMOT::Optimalitaetsbedinugngen	UUID
Wie nennt man die Bedingung, dass conv $(\bar{T}(x))$?		Guignard Constraint Qualification ($m{GCQ}$)	
KOMOT::Optimalitaetsbedinugngen	UUID	KOMOT::Optimalitaetsbedinugngen	UUID
Wann ist ACG erfüllt?		Falls $T(x) = L(x)$	
${\tt KOMOT::Optimalitaets bedinugngen}$	UUID	KOMOT::Optimalitaetsbedinugngen	UUID

Wann ist GCQ erfüllt?		Falls $L(x)$ gleich der abgeschlossener konvexen Hülle	
KOMOT::Optimalitaetsbedinugngen	UUID	KOMOT::Optimalitaetsbedinugngen	UUID
Wie heißt eine Bedingung die ACQ impliziert?		Regularitätsbedingung	
Nenne fünf Regularitätsbedingungen.	UUID	EBCQ Error Bound Constraint Qualification MFCQ Mangasarian—Fromori Constraint Qualification LICQ Linear Independence Constraint Qualification Slater Bedinugng Affinität $g_i, i \in I_0(x)$ und h sind affin.	
Wann gilt EBCQ?	UUID	$\exists \delta>0, C>0, \text{sodass} \ \forall z\in B(x,\delta)$ $\mathrm{dist}[z,G]\leq C\bigg(\Big\ \max\big\{0,g(z)\big\}\Big\ +\big\ h(z)\big\ \bigg)$	UUID

Wann gilt $MFCQ$?		Die Vektoren $\nabla h_1(x), \dots, \nabla h_p(x)$ sind linear unab und es gibt ein $s \in \mathbb{R}^n$, so dass $\nabla g_i(x)^T s > 0, \ \forall i \in I_0(x)$ und $\nabla h(x)^T s = 0.$	hängig
KOMOT::Optimalitaetsbedinugngen	UUID	KOMOT::Optimalitaetsbedinugngen	UUID
Wann gilt $LICQ$?		Die Vektoren in der Familie $\left\{\nabla g_i(x)\ I\ i\in I_0(x)\right\}\cup \left\{\nabla h_j(x)\ \ j\in J\right\}$ sind linear unabhängig.	
KOMOT::Optimalitaetsbedinugngen	UUID	KOMOT::Optimalitaetsbedinugngen	UUID
Wann gilt die Slater Bedingung?		Die Funktionen g_1, \ldots, g_m sind konvex und $J = \emptyset$. dem $\exists \bar{x} \in \mathbb{R}^n$, so dass $g_i(\bar{x}) < 0 \ \forall i \in I$.	Außer-
KOMOT::Optimalitaetsbedinugngen	UUID	KOMOT::Optimalitaetsbedinugngen	UUID
Wie Lautet die KKT Bedingung (kurz)?		$\nabla f(x^*)^T d \ge 0 \forall d \in L(x^*)$	
KKT KOMOT::Optimalitaetsbedinugngen	UUID	KKT KOMOT::Optimalitaetsbedinugngen	UUID

Was besagt das Lemma von Farkas?		Seien $A\in\mathbb{R}^{n\times m},\ B\in\mathbb{R}^{n\times p},\ c\in\mathbb{R}^n.$ Dann ist v folgenden zwei Systemen $A^Tz\le 0,\ B^Tz=0,\ c^Tz>0$ $Au+Bv=c,\ u\ge 0$ nur ein lösbar.	(1) (2)
KKT KOMOT::Optimalitaetsbedinugngen	UUID	KKT KOMOT::Optimalitaetsbedinugngen	UUID
Wann gielten die KKK-Bedingungen ?		GCQ muss erfüllt werden. Man sucht nach einer Retätsbedingung.	egulari-
KKT KOMOT::Optimalitaetsbedinugngen	UUID	KKT KOMOT::Optimalitaetsbedinugngen	UUID
Schreibe das KKT System auf		$\nabla_x \mathcal{L}(x,u,v) = 0$ $h(x) = 0$ $g(x) \le 0$ $u \ge 0$ $u^T g(x) = 0$ $\text{und } u \in \mathbb{R}^m, v \in \mathbb{R}^p$	
KKT KOMOT::Optimalitaetsbedinugngen	UUID	KKT KOMOT::Optimalitaetsbedinugngen	UUID
Wie ist die Lagrangefunktion definiert?		$\mathcal{L}(x, u, v) = f(x) + u^{T} g(x) + v^{T} h(x)$ $\forall (x, u, v) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$	
KKT KOMOT::Optimalitaetsbedinugngen	UUID	KKT KOMOT::Optimalitaetsbedinugngen	UUID

Sei (x^*, u^*, v^*) ein KKT–Punkt, wann ist x^* eine globale Lösung?		Falls f pseudokonvex, alle g_i quasikonvex und h_j affin line	ar.
KKT KOMOT::Optimalitaetsbedinugngen	UUID	KKT KOMOT::Optimalitaetsbedinugngen	UUID
Definiere einen $Sattelpunkt$ einer Lagrangefuntion.		Ein Punkt $(x^*, u^*, v^*) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p$ heißt Sattelpunkt e Langrange Funtion \mathcal{L} , wenn $\mathcal{L}(x^*, u, v) \leq \mathcal{L}(x^*, u^*, v^*) \leq \mathcal{L}(x, u^*, v^*)$ $\forall (x, u, v) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p$.	der
Sattelpunkte KOMOT::Optimalitaetsbedinugngen	UUID	Sattelpunkte KOMOT::Optimalitaetsbedinugngen	UUID
Sei (x^*, u^*, v^*) ein Sattelpunkt von \mathcal{L} , dann		$\dots x^*$ eine globale Lösung der OA.	
Sattelpunkte KOMOT::Optimalitaetsbedinugngen	UUID	Sattelpunkte KOMOT::Optimalitaetsbedinugngen	UUID

ı