Advanced Engineering Mathematics Systems of Differential Equations by Dennis G. Zill Problems

Chris Doble

June 2023

Contents

10	Syst	ems of	Lin	ıe	ar	· I)ii	ffε	ere	en	ıti	ia	1	E	qυ	ıa	ti	O)	ns	3							1
	10.1	Theory	of I	iı	ne	ar	S	ys	te	m	\mathbf{s}				•												1
		10.1.1																									1
		10.1.3																									1
		10.1.5																									2
		10.1.7																									2
		10.1.9																									2
		10.1.11																									2
		10.1.13																									2
		10.1.17																									3
		10.1.19																									_
		10.1.21																									_
		10 1 23																									3

10 Systems of Linear Differential Equations

10.1 Theory of Linear Systems

10.1.1

$$\mathbf{X}' = \begin{pmatrix} 3 & -5 \\ 4 & 8 \end{pmatrix} \mathbf{X}$$

10.1.3

$$\mathbf{X}' = \begin{pmatrix} -3 & 4 & -9\\ 6 & -1 & 0\\ 10 & 4 & 3 \end{pmatrix} \mathbf{X}$$

10.1.5

$$\mathbf{X}' = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} t - 1 \\ -3t^2 \\ t^2 - t + 2 \end{pmatrix}$$

10.1.7

$$\frac{dx}{dt} = 4x + 2y + e^t$$
$$\frac{dy}{dt} = -x + 3y - e^t$$

10.1.9

$$\frac{dx}{dt} = x - y + 2z + e^{-t} - 3t$$

$$\frac{dy}{dt} = 3x - 4y + z + 2e^{-t} + t$$

$$\frac{dz}{dt} = -2x + 5y + 6z + 2e^{-t} - t$$

10.1.11

$$3(e^{-5t}) - 4(2e^{-5t}) = -5e^{-5t}$$

$$= \frac{dx}{dt}$$

$$4(e^{-5t}) - 7(2e^{-5t}) = -10e^{-5t}$$

$$= \frac{dy}{dt}$$

10.1.13

$$-(-e^{-3t/2}) + \frac{1}{4}(2e^{-3t/2}) = \frac{3}{2}e^{-3t/2}$$
$$= \frac{dx}{dt}$$
$$(-e^{-3t/2}) - (2e^{-3t/2}) = -3e^{-3t/2}$$
$$= \frac{dy}{dt}$$

10.1.17

$$W(\mathbf{X}_1, \mathbf{X}_2) = \begin{vmatrix} e^{-2t} & e^{-6t} \\ e^{-2t} & -e^{-6t} \end{vmatrix}$$
$$= -e^{-8t} - e^{-8t}$$
$$= -2e^{-8t}$$
$$\neq 0 \text{ for } t \in (-\infty, \infty)$$

Yes, they form a fundamental set.

10.1.19

$$W(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3) = \begin{vmatrix} 1+t & 1 & 3+2t \\ -2+2t & -2 & -6+4t \\ 4+2t & 4 & 12+4t \end{vmatrix}$$
$$= 0$$

No, they don't form a fundamental set.

10.1.21

$$x = 2t + 5$$

$$y = -t + 1$$

$$\frac{dx}{dt} = (2t + 5) + 4(-t + 1) + 2t - 7$$

$$= 2$$

$$\frac{dy}{dt} = 3(2t + 5) + 2(-t + 1) - 4t - 18$$

10.1.23

$$x = e^{t} + te^{t}$$

$$x' = 2e^{t} + te^{t}$$

$$y = e^{t} - te^{t}$$

$$y' = -te^{t}$$

$$\frac{dx}{dt} = 2(e^{t} + te^{t}) + (e^{t} - te^{t}) - e^{t}$$

$$= 2e^{t} + te^{t}$$

$$\frac{dy}{dt} = 3(e^{t} + te^{t}) + 4(e^{t} - te^{t}) - 7e^{t}$$

$$= -te^{t}$$