Fractales

Se tienen los rectángulos con los vértices indicados:

También se consideran las siguientes transformaciones afines:

$$R(\vec{\mathbf{x}}) = \begin{bmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \vec{\mathbf{x}}$$

$$T(\vec{\mathbf{x}}) = \begin{bmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \vec{\mathbf{x}} + \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \end{bmatrix}$$

Sean $A_1^R = R(A)$, la imagen del rectángulo A bajo R,

$$A_2^R = R(A_1^R), A_3^R = R(A_2^R), A_4^R = R(A_3^R).$$

En forma parecida sean A_1^T , A_2^T , A_3^T , A_4^T las imágenes correspondientes bajo T. también se tienen las imágenes consecutivas para B y C bajo R y T, las cuales se definen de la misma forma que en A.

Problema 1

- 1. Traza A, A_1^R , A_2^R , A_3^R y A_4^R en una gráfica y A, A_1^T , A_2^T , A_3^T y A_4^T en otra.
- 2. Traza B, B_1^R , B_2^R , B_3^R y B_4^R en una gráfica y B, B_1^T , B_2^T , B_3^T y B_4^T en otra.
- 3. Traza C, C_1^R , C_2^R , C_3^R y C_4^R en una gráfica y C, C_1^T , C_2^T , C_3^T y C_4^T en otra.

Problema 2

Sea P(0,0). Determina las dos imágenes de P, P_1 , P_2 , bajo R y T. A continuación determina las imágenes P_3 , P_4 de P_1 bajo R y T, y las imágenes P_5 , P_6 bajo T. Continúa este proceso 12 veces. Después grafica todos los puntos que determinaste.

Problema 3

Resuelve el problema 2 comenzando con el punto Q(0.5,0.5).