VL01, Lösung 1

- a) Informationen in Form von Text, Bildern, Tönen, Programmen oder Zahlen werden durch eine Folge von 0 und 1 codiert. Das Ergebnis dieser Umformung sind die Daten.
- b) Ein Bit ist die kleinste Informationseinheit und kann die zwei Werte 0 und 1 annehmen. Ein Byte sind 8 Bit.
- c) Programme und Daten liegen gemeinsam im Hauptspeicher.

VL01, Lösung 2

a) 9 Stellen, denn 2⁸ = 256 < 423 < 512 = 2⁹. (Bei n Stellen können Zahlen im Bereich 0 bis 2ⁿ-1 dargestellt werden.)

b) Binär: Hexadezimal:

 $1101_{10} = 10001001101_2$ $0100 0100 1101_2 = 44D_{16}$

Rechenschema:

VL01, Lösung 3

```
Rechenschema für 0,1:
```

```
0,1 \cdot 2 = 0,2
```

 $0.2 \cdot 2 = 0.4$

 $0.4 \cdot 2 = 0.8$ $0.8 \cdot 2 = 1.6$

0,0.2 - 1,0

 $0.6 \cdot 2 = 1.2$ $0.2 \cdot 2 = 0.4$

...

Die Binärdarstellung ist periodisch und lautet $0.0\overline{0011}$.

Damit ist auch klar, das 0,2,0,4,0,6 und 0,8 keine endliche Darstellung besitzen können, da sie Teil der Periode sind. Für 0,3 ergibt sich nach der ersten Multiplikation mit 2 die Zahl 0,6. Für 0,7 ergibt sich 1,4 und anschließend 0,4. Für 0,9 ergibt sich 1,8 und anschließend 0,8. Diese können somit auch keine endliche Binärdarstellung besitzen. Nur $0,5_{10}$ besitzt die endliche Binärdarstellung $0,1_2$.

VL01, Lösung 4

- a) Der Compiler dient zur Übersetzung von Programmen einer Quellsprache in eine Zielsprache, wobei hingegen der Interpreter ein Programm einer anderen Programmiersprache analysiert und unmittelbar ausführt.
- b) Der Just-in-time-Compiler dient zur beschleunigten Ausführung des Byte-Codes, da dieser Byte-Code-Sequenzen bereits während der Laufzeit in Maschinencode übersetzt. Dabei ist jedoch zu beachten, dass auch dieser Compiler plattformabhängig ist und für jede Plattform ein eigener Just-in-time-Compiler benötigt wird.

VL01, Lösung 5

C++-Quellcode benötigt einen Compiler z.B. für die Plattform Intel/Windows und einen zweiten Compiler für die Plattform Intel/Linux. Erzeugt werden also zwei Maschinenprogramme für die jeweilige Plattform.

Das Quellprogramm in Java muss nur mit einem Compiler übersetzt werden und man erhält plattformunabhängigen Byte-Code. Für jede Plattform benötigt man nun jeweils einen Interpreter, der den Byte-Code auf der jeweiligen Plattform ausführt.

VL01, Lösung 6

```
class Hello
{
   public static void main(String[] args)
   {
      System.out.println("Max Mustermann 7090000");
   }
}
```