Contents

1	intr	oduccio	on	3			
	1.1	hardwa	re	3			
	1.2	sofware	e de red	3			
		1.2.1	jerarquia de protocolos	3			
		1.2.2	aspectos de diseño para cada capa	3			
		1.2.3	tipos de servicios	4			
		1.2.4	relacion entre servicios y protocolos	4			
	1.3	modelo	s de referencia	4			
		1.3.1	modelo osi	4			
		1.3.2	modelo tcp/ip	5			
		1.3.3	comparación tcp/ip osi	6			
		1.3.4	defectos de osi	6			
				6			
			1 / 1				
2	cap	a fisica		7			
	2.1	concept	tos	7			
	2.2	medios	de transmision guiados	7			
		2.2.1	medios magneticos	7			
		2.2.2	par trenzado	7			
		2.2.3	cable coaxial	7			
		2.2.4	lineas electricas	7			
		2.2.5	fibra optica	8			
	2.3	transm	ision inalambrica	8			
		2.3.1	espectro electromagnetico	8			
		2.3.2	radiotransmision	8			
		2.3.3	transmision por microondas	9			
				9			
				9			
	2.4		•	9			
				9			
				9			
	2.5		cion digital y multiplexacion	0			
			transmision en banda base				
			transmision pasa-banda				
			multiplexacion por division de frecuencia				
			multiplexacion por division de tiempo				
			multiplexacion por division de codigo				
		2.0.0	interpression por division de codigo	_			
3	cap	pa de enlace					
	3.1		nes de diseño				
			servicios dados a la capa de red				
			entramado				
			control de errores				
			control de flujo				

3.2 deteccion y correccion de errores		detecci	ion y correccion de errores	. 13
	3.3	protoc	colos de enlace de datos	. 14
		3.3.1	paquetes sobre sonet	. 14
		3.3.2	ppp	. 14
4		-	ontrol acceso al medio	14
	4.1	-	ma de asignacion de canal	
		4.1.1	asignacion estatica	
		4.1.2	supuestos para la asignacion dinamica	
	4.2	_	colos de acceso multiple	
		4.2.1	aloha	
		4.2.2	protocolos de acceso multiple con deteccion de portadora	
		4.2.3	protocolos libres de colisiones	. 16
		4.2.4	protocolos de contencion limitada	. 16
		4.2.5	protocolos de lan inalambrica	. 17
	4.3	ethern	et	. 17
		4.3.1	capa fisica de ethernet clasica	. 17
		4.3.2	protocolo de subcapa mac para ethernet clasica	. 17
		4.3.3	ethernet conmutada	. 18
		4.3.4	fast ethernet	. 18
		4.3.5	gigabit ethernet	. 18
		4.3.6	10 gigabit ethernet	
	4.4	redes l	lan inalambricas	
		4.4.1	wi-fi o wlan	
		4.4.2	wpan	
		4.4.3	sistema de telefonia y comunicaciones moviles	
	4.5		itacion de la capa de enlace de datos	
		4.5.1	usos de puentes	
		4.5.2	puentes de aprendizaje	
		4.5.3	puentes con arbol de expansion	
		4.5.4	redes lan virtuales	
		1.0.1	Todos fail vilvadios	. 21
5	capa	a de re	${ m ed}$	24
	5.1	aspect	o de diseño	. 24
		5.1.1	conmutacion de paquetes de almacenamiento y reenvio	
		5.1.2	servicios proporcionados a la capa de transporte	. 24
		5.1.3	implementacion del servicio sin conexion	. 24
		5.1.4	implementacion del servicio orientado a la conexion	
	5.2	algorit	emos de enrutamiento	
		5.2.1	principio de optimizacion	
		5.2.2	algoritmo de la ruta mas corta	
		5.2.3	inundacion	
		5.2.4	enrutamiento por vector de distancia	
		5.2.5	enrutamiento por estados de enlace	
	5.3	ipv4 .		
	0.0	5.3.1	objetivos	. 26

	5.3.2	clases de direcciones	26
	5.3.3	packet switching	26
	5.3.4	ruteo	27
	5.3.5	direcciones privadas	27
	5.3.6	subredes ip	27
5.4	icmp:	internet control message protocol	27
	5.4.1	funciones	27
	5.4.2	tipos	28
5.5	arp: a	ddress resolution protocol	28

1 introduccion

1.1 hardware

1.2 sofware de red

1.2.1 jerarquia de protocolos

- organización por capas, cada capa tiene una función diferenciada e independiente
- intercambio de mensajes segun el protocolo de cada capa
- en realidad los mensajes bajan hasta la capa inferior (medio fisico), donde se realiza la comunicación
- interfaz bien definida para comunicacion entre capas
- arquitectura de red: conjunto de capas y protocolos
- pila de protocolos: lista de protocolos usados por una arquitectura

1.2.2 aspectos de diseño para cada capa

- codigos de detección (y posible corrección) de errores
- enrutamiento: eleccion de una ruta para enviar informacion
- distribucion de protocolos en capas
- mecanismos para embalar, desembalar y transmitir
- escalabilidad
- asignacion eficiente de recursos
- uso del ancho de banda (multiplexado estadistico, fraccion fija)
- control de flujo
- confidencialidad, autenticacion e integridad

1.2.3 tipos de servicios

- 1. orientados a la conexion
 - se establece la conexion, se usa y se libera
 - en la mayoria de los casos se preserva el orden
 - como una linea telefonica
- 2. no orientados a la conexion
 - cada mensaje lleva la dirección de destino completa
 - cada mensaje es enrutado en forma independiente
 - como el sistema postal
- 3. confiables
 - nunca pierden datos
 - acuse de recibo
 - introduccion de sobrecarga y retardos
- 4. no confiables

	confiable	no confiable
conexion	secuencia de mensajes	voz sobre ip
	flujo de bytes	
no conexion	mensajes de texto	mails

1.2.4 relacion entre servicios y protocolos

- un servicio se define como un conjunto de primitivas que una capa proporciona a la que esta encima de ella
- el servicio define el que pero no el como
- protocolo son las reglas de formato y significado de los paquetes o mensajes que se intercambian en la misma capa
- servicio se relaciona con las interfaces entre capas
- protocolo se relaciona con los paquetes que se envian entre distintas maquinas

1.3 modelos de referencia

1.3.1 modelo osi

- 1. capa fisica
 - transmision de bits puros a traves de un canal de transmision
 - busca que lleguen los mismos bits que salieron

- señales electricas para representar un bit
- como se establece y se termina una comunicación

2. capa de enlace de datos

- transforma los bits puros en una linea que este libre de errores para la capa de red
- divide los datos en tramos
- control de transmision para emisores rapidos y receptores lentos

3. capa de red

- como se encaminan los paquetes del origen al destino
- las rutas se basan en tablas estaticas o dinamicas
- manejo de congestion
- solucionar problemas para conectar redes heterogeneas

4. capa de transporte

- aceptar datos de la capa superior, dividirlos en unidades mas pequeñas, pasar los datos a la capa de red y asegurar que las piezas lleguen al otro extremo
- es una verdadera capa de extremo a extremo, a diferencia de las mas bajas

5. capa de sesion

- control de dialogo
- manejo de tokens
- sincronizacion

6. capa de presentacion

- se enfoca en la sintaxis y la semantica de la información transmitida
- maneja estructuras abstractas para intercambiar datos entre computadoras con diferentes representaciones de datos

7. capa de aplicación

• protocolos que los usuarios necesitan

1.3.2 modelo tcp/ip

1. capa de enlace

- capa sin conexion que opera a traves de distintas redes
- describe que enlaces se deben llevar a cabo para cumplir con las necesidades de esta capa

2. capa de interred

• permite que los host inyecten paquetes en cualquier red y que viajen independientemente a su destino

- analogo al sistema de correo
- define un formato de paquete y un protocolo oficial llamado ip y uno complementario llamado icmp
- el ruteo de paquetes es el principal aspecto, y la congestion

3. capa de transporte

- permite que entidades en la misma capa mantengan una conversacion
- tcp, udp

4. capa de aplicacion

- reemplaza las capas de presentacion, sesion y aplicacion del modelo osi
- telnet, ftp, smtp, dns, http

1.3.3 comparacion tcp/ip osi

- osi fue inventado antes que los protocolos, por eso es mas general. pero los diseñadores no sabian que funcionalidades colocar en cada capa
- con tcp/ip paso al reves. los protocolos encajaron perfectamente, pero no era util para describir redes que no fueran tcp/ip
- osi tiene 7 capas, tcp/ip tiene 4

1.3.4 defectos de osi

- mala sicronizacion: para cuando se desarrollaron los protocolos osi, tcp/ip ya se estaba usando lo suficiente como para que los distribuidores no quisieran apoyar otra pila
- mala tecnologia: el modelo es muy complejo. las capas de sesion y presentacion estan casi vacias, las de red y enlace llenas. son dificiles de implementar e ineficientes.
- malas implementaciones: por su complejidad las primeras implementaciones eran lentas y pesadas. despues mejoraron pero la imagen quedo
- malas politicas: osi se asocio con el gobierno estadounidense y tcp/ip con unix

1.3.5 defectos de tcp/ip

- no se diferencian bien los conceptos de servicio, interfaz y protocolo
- el modelo no es para nada general
- la capa de enlace no es una capa sino una interfaz
- no distingue la capa de enlace y la fisica

2 capa fisica

2.1 conceptos

- serie de fourier
- ancho de banda
- banda base, pasa-banda
- teorema de nyquist, teorema de shannon
- relacion señal ruido S/N

2.2 medios de transmision guiados

2.2.1 medios magneticos

- guardar la informacion en una cinta o medio removible y mandarlo fisicamente
- nunca subestime el ancho de banda de una camioneta repleta de cintas que viaje a toda velocidad por la carretera

2.2.2 par trenzado

- dos cables de cobre aislados
- trenzados porque en paralelo forman una antena
- la señal se transmite como la diferencia de voltaje entre los dos cables
- el ruido afecta a los dos cables por igual, el diferencial se mantiene
- sistema telefonico
- informacion analogica o digital
- el ancho de banda depende del grosor de los cables y la distancia. hasta varios mbps
- ethernet usa cuatro, uno para cada direccion
- hasta cat 6: utp (unshielded twisted pair). cat 7: stp

2.2.3 cable coaxial

• mejor blindaje y mayor ancho de banda que los tp, pero mas caro

2.2.4 lineas electricas

- las compañias las han utilizado para comunicacion de baja velocidad
- uso en el hogar para controlar dispositivos
- dificil porque el cableado de las casas no esta hecho para enviar señales a alta frecuencia

2.2.5 fibra optica

- lan, internet y ftth
- un pulso de luz indica 1, la ausencia 0
- cuando la luz pasa de un medio a otro (silice a aire) se refracta. el grado depende de los indices de refraccion de los medios. y para cualquier angulo mayor a un angulo critico la luz rebota completamente en el silice
- fibra multimodal: varios rayos de luz en una fibra
- fibra monomodo: un solo rayo de luz por fibra que es mucho mas angosta
- tres bandas: 0.85 1.3 y 1.55 micras. anchos de banda de 25000 a 30000 ghz. la primera tiene mas atenuacion
- fuentes: led y laser

2.3 transmision inalambrica

2.3.1 espectro electromagnetico

- los electrones se mueven y crean ondas electromagneticas
- las ondas viajan siempre a la velocidad de la luz
- $\lambda f = c$
- espectro directo con salto de frecuencia: transmision dificil de detectar y bloquear. militares, bluetooth, versiones anteriores de 802.11
- espectro directo de secuencia directa: multiples señales comparten ancho de banda. cdma, gps, 802.11b
- uwb

2.3.2 radiotransmision

- las ondas de radio son faciles de generar, recorren largas distancias y penetran edificios
- son omnidireccionales
- las propiedades dependen de la frecuencia. baja frecuencia: cruzan obstaculos pero se reduce la potencia rapidamente. alta frecuencia: viajan en linea recta y rebotan en obstaculos
- ondas de alta frecuencia son absorbidas por la lluvia y otros obstaculos
- como recorren grandes distancia la interferencia es un problema
- estan reguladas por los gobiernos
- vlf, lf y mf siguen la curvatura de la tierra. hf van en linea recta y rebotan en la ionosfera, tambien son absorbidas por la tierra

2.3.3 transmision por microondas

- relacion S/N alta, pero las antenas deben estar alineadas
- microondas no atraviesan bien los edificios
- comunicación telefonica, celulares, television. lo que provoco escasez de espectro

2.3.4 transmision infrarroja

- comunicación de corto alcance
- no atraviesan objetos

2.3.5 tranmision por ondas de luz

- señalizacion optica mediante laser
- gran ancho de banda a bajo costo y seguro. pero muy dificil de apuntar

2.4 satelites de comunicación

- un satelite es un enorme repetidor de microondas con varios transpondedores. transmite en modo **tublo doblado**
- posicion de los satelites limitadas por el cinturon de van allen

2.4.1 satelites geoestacionarios

- satelites que orbitan a la misma velocidad de la que rota la tierra. parecen inmoviles desde el suelo
- los primeros tenian un solo haz de luz que iluminaba la tierra, lo que se conoce como huella
- actualmente tienen multiples haces que se enfocan en una pequeña area geografica. estos son los haces puntuales
- vsat: terminales muy pequeñas que se utilizan para la transmision de tv
- los vsat no se pueden comunicar entre ellos por su baja potencia. para ello usan de intermediario potentes estaciones en la tierra
- aunque las señales viajen a la velocidad de la luz, dada las distancias tienen mas retardo que las comunicaciones terrestres
- los satelites son medios de difusion por naturaleza

2.4.2 ventajas de los satelites sobre la fibra optica

- cuando se requiere un despliegue rapido, ganan los satelites
- los satelites pueden enviar a cualquier parte del mundo
- un mensaje que envia un satelite lo pueden recibir miles de estaciones al mismo tiempo

2.5 modulacion digital y multiplexacion

- modulacion digital: proceso de convertir bits en la señal que los representan
- transmision en banda base: la señal ocupa una frecuencia desde 0 hasta un valor maximo que depende de la tasa de señalizacion. comun en cables
- transmision pasa-banda: la señal ocupa una banda de frecuencias alrededor de la frecuencia de la señal portadora, comun en inalambrico y optico
- multiplexacion: a compartir varias señales por un mismo canal

2.5.1 transmision en banda base

- NRZ(non-return-to-zero): voltaje positivo para el 1 y uno nulo para el 0
- el receptor muestrea a intervalos regulares y convierte de nuevo a bits. la señal no se vera igual a la que se envio por el ruido y el canal
- eficiencia del ancho de banda
 - -con n
rz la señal puede alternar entre positivo y negativo hasta cada 2 bits.
 necesita un ancho de banda $\rm B/2hz$ pasa tasa de B b
ps
 - una estategia es usar mas de 2 niveles de señalizacion. por ejemplo 4 voltajes para representar 2 bits a la vez como un simbolo
 - tasa de bits=tasa de simbolo*bits por simbolo
 - requiere una potencia mayor en el receptor para diferenciar los niveles

• recuperación del reloj

- el receptor debe saber cuando termina un simbolo y empieza otro
- existe un limite en la precision de un reloj para muestrear señales
- se podria enviar una señal del reloj por otra linea separada, pero seria mejor que si hubiera otra linea se usara para enviar datos
- un truco seria usar xor entre las dos lineas para enviarlas en una sola. esta es la codificación manchester y se usaba en ethernet clasico. lo malo es que requiere el doble de ancho de banda
- -una estrategia distinta es codificar los datos para que haya suficientes transiciones en la señal. ya que los problemas suceden en largas suceciones de 0 o 1 $\,$
- nrzi: 1 como una transicion y 0 como no hay transicion. usb usa este metodo. largas sucesiones de 1 no tienen problemas, pero de 0 si
- 4b/5b: se asocian grupos de 4 bits a 5 bits segun una tabla fija, de manera que nunca haya tres 0 seguidos. agrega 25% de sobrecarga. sobran 16 numeros de 5 bits, algunos se usan para control
- para asegurar transiciones se puede hacer xor con una secuencia pseudoaleatoria. el receptor decodifica con la misma secuencia. esta debe ser facil de generar

- pero la aleatorización no garantiza transiciones
- señales balanceadas
 - señales que tienen misma cantidad de voltajes positivos como negativos
 - ayuda a proveer transiciones para la recuperación del reloj
 - -codificacion bipolar: se alterna +1y -1 voltios para el 1 y 0 voltios para el 0. en redes telefonicas ami
 - 8b/10b tambien para codigo balanceado

2.5.2 transmision pasa-banda

- en canales inalambricos no es practico usar rango de frecuencias que empiecen en 0
- $\bullet\,$ se puede tomar una señal en banda base que ocupe de 0 a b hz y desplazarla a otra pasa-banda que ocupe de s a s+b hz
- se puede modular la amplitud (ask), la frecuencia (fsk) o la fase (psk)
- psk puede ser bpsk (binaria) o qpsk (cuadratura)
- se pueden combinar y usar mas niveles, comunmente amplitud y fase
- diagrama de constelacion: forma de visualizar la modulacion combinada ask y psk. qpsk, qam-16, qam-64
- simbolos adyacentes no deben diferir en muchos bits, porque serian mas suceptibles al ruido. para eso se usa codigo gray

2.5.3 multiplexacion por division de frecuencia

- fdm: divide el espectro en bandas. cada usuario tiene posesion exclusiva de la banda
- banda de guarda: exceso de banda que mantiene a los canales separados
- ofdm: el ancho de banda del canal se divide en muchas subportadoras que envian de manera independiente. cada subportadora esta diseñada para ser 0 en el centro de las adyacentes. 802.11

2.5.4 multiplexacion por division de tiempo

- tdm: los usuarios toman turnos y usan todo el ancho de banda, se toman los datos y se agregan al flujo agregado
- para que funcione debe haber sincronizacion. se puede agregar tiempo de guarda

2.5.5 multiplexacion por division de codigo

- cdm: forma de comunicacion de espectro diverso. una señal de banda estrecha se dispersa en una mas amplia. cdma
- hace la señal mas tolerante a interferencias y permite que señales compartan la misma banda de frecuencia
- cdma es extraer la señal deseada mientras lo demas se rechaza como ruido
- cada tiempo de bit de divide en m intervalos llamados chips. en general 64 o 128 chips cada bit. a cada estacion se le asigna una secuencia de chip, un codigo de m bits. para transmitir un 1 envia la secuencia de chip, para el 0 la negacion
- todas las secuencias de chip son ortogonales por pares
- si varias estaciones envian al mismo tiempo se suman

3 capa de enlace

3.1 cuestiones de diseño

- funciones: dar a la capa de red una interfaz de servicios bien definida. manejar errores. controlar flujo
- toma los datos que obtiene de la capa de red y los encapsula en tramas

3.1.1 servicios dados a la capa de red

- transferir datos de la maquina de origen a la de destino
- 3 servicios razonables
 - sin conexion ni confirmacion de recepcion: tasa de error baja. trafico en tiempo real. ethernet
 - sin conexion con confirmacion: canales no confiables. 802.11 (wifi)
 - con conexion y confirmacion: cada trama esta enumerada. se garantiza que lleguen solo una vez y en orden. canales largos y no confiables. satelites y red telefonia larga

3.1.2 entramado

- la capa fisica no garantiza que el flujo de bits este libre de errores
- un metodo es dividir el flujo en tramas discretas y agregarles una suma de verificacion
- division de tramas
 - conteo de bytes: agrega en el encabezado la cantidad de bytes en la trama. si se altera este valor se pierde la sincronia. rara vez se usa solo

- bytes bandera con relleno de bytes: cada trama inicia y termina con bytes especiales. si aparece la bandera en los datos se antecede un escape. y si aparece un escape se pone otro escape adelante. simplificacion de ppp
- bits bandera con relleno de bits: igual a bytes pero sin la restriccion de 1 byte=8 bits.
 hdlc. usb. se usan 6 bits en 1 para delimitar. cada vez que se ven 5 bits en 1 se agrega un 0
- violaciones de codificacion de la capa fisica: si se usa por ejemplo 4b/5b en la capa fisica se pueden usar los codigos no utilizados para el inicio y fin de trama

3.1.3 control de errores

- asegurar la entrega de datos confiable: retroalimentacion al emisor de lo que esta ocurriendo del otro lado. positiva y negativa
- puede desaparecer la trama por completo, o la de retroalimentacion. para eso tambien se usan temporizadores para enviar nuevamente
- ahora puede que se reciba la misma trama dos veces, para eso se usan numeros de secuencia

3.1.4 control de flujo

- que hacer cuando un emisor envia mas tramas de las que el receptor puede aceptar. ejemplo telefono y sitio web
- control de flujo basado en retroalimentacion: el receptor envia cuando puede aceptar mas datos
- control de flujo basado en tasa: el protocolo tiene un mecanismo integrado que limita la tasa de envio

3.2 deteccion y correccion de errores

- estategia: incluir redundancia en los datos.
- codigo de correccion de errores: para que el receptor pueda deducir que datos se quisieron enviar, fec
- codigo de deteccion de errores: para que sepa que hubo un error pero nada mas y solicite retransmision
- en fibra optica conviene la detección porque es rapido reenviar. en canales inalambricos es mejor corrección
- los bits de redundancia tambien pueden llegar mal. así que nunca se podran manejar todos los errores
- los errores en rafaga tienen sus ventajas y desventajas

3.3 protocolos de enlace de datos

3.3.1 paquetes sobre sonet

- sonet se utiliza sobre canales de fibra optica de area amplia
- ppp se usa para diferenciar paquetes ocasionales del flujo continuo en el que se transportan

3.3.2 ppp

- ppp orientado a bytes, hdlc a bits
- metodo de entramado sin ambiguedades, tambien maneja deteccion de errores
- protocolo para activar lineas, probarlas, negociar y desactivarlas. lcp
- mecanismo para negociar opciones de capa de red independientemente del protocolo de red usado
- uso de banderas como delimitación y bytes de escape
- la carga util se mezcla aleatoriamente antes de insertarla en sonet para garantizar mas transiciones que necesita sonet
- configuración enlace ppp
 - muerto
 - establecer (cuando hay conexion en la capa fisica): intercambio de paquetes lcp
 - autentificar (si lo anterior fue exitoso): se verifican identidades
 - red: paquetes ncp para configurar la capa de red
 - abrir: intercambio de datos
 - terminar

4 subcapa control acceso al medio

- los enlaces de red pueden ser punto a punto o difusion
- subcapa mac es la parte inferior de la de enlace de datos

4.1 problema de asignacion de canal

• asignar un solo canal de difusion entre varios usuarios competidores

4.1.1 asignacion estatica

- dividir la capacidad mediante el uso de multiplexacion. cuando hay una pequeña cantidad de usuarios constantes
- si varia el numero de emisores y ese numero es grande se vuelve ineficiente
- lo mismo sucede con otras formas estaticas de dividir un canal

4.1.2 supuestos para la asignación dinamica

- trafico independiente: las estaciones son independientes
- canal unico: hay un solo canal para todas las comunicaciones
- colisiones observables: todas las estaciones pueden detectar colisiones. que seran enviadas luego
- tiempo continuo o ranurado: se puede considerar de las dos maneras
- detección de portadora o sin detección: si hay detección las estaciones pueden saber si el canal esta en uso, sino mandan y despues determinan si tuvo exito

4.2 protocolos de acceso multiple

4.2.1 aloha

- aloha puro
 - despues de enviar su trama a la computadora central, esta difunde la trama a todas las estaciones. asi el emisor sabe si llego su trama
 - si la trama fue destruida espera un tiempo aleatorio y manda de nuevo
 - cada vez que dos tramas intenten ocupar el canal al mismo tiempo habra colision, por mas que sea un solapamiento pequeño
- aloha ranurado
 - como el metodo puro pero el tiempo se divide en ranuras discretas
 - sincronizacion por medio de una estacion que emita una señal al comienzo de cada intervalo

4.2.2 protocolos de acceso multiple con detección de portadora

- csma persistente-1
 - la estacion escucha el canal para ver si alguien esta enviando, sino envia. si ocurre una colision espera y manda de nuevo
 - el retardo de propagacion tiene un efecto importante en las colisiones. esta posibilidad depende del numero de tramas que quepan, o producto de ancho de banda-retardo
 - en lan como el retardo es pequeño, no habra muchas colisiones
- csma no persistente
 - a diferencia del persistente-1 si el canal esta en uso espera un tiempo y repite el proceso.
 no se queda escuchando constantemente
 - mejor uso del canal pero mayor retardo
- csma persistente-p

- para canales ranurados
- si el canal esta inactivo, envia con probabilidad p y espera a la siguiente ranura con probabilidad 1-p
- csma con detección de colisiones (csma/cd)
 - base de la clasica ethernet
 - el hardware escucha a la vez que envia. si la señal que recibe es distinta a la que envia, esta ocurriendo una colision
 - periodos alternantes de contencion y transmision con periodos de inactividad que ocurriran cuando todas las estaciones esten en reposo

4.2.3 protocolos libres de colisiones

- protocolo de mapa de bits
 - cada periodo de contencion consiste en n ranuras
 - las estaciones envian 1 si tienen tramas para enviar en ese periodo pero solo en su ranura correspondiente
 - luego cuando ya hay conocimiento de quien va a mandar mandan las tramas en orden
 - protocolos de revervacion
- paso de token
 - pasa un pequeño mensaje llamado token de una estacion a otra en un orden determinado.
 token ring
 - solo puede enviar la que tenga el token
 - cuando la estacion que envio recibe su misma trama la elimina para terminar el ciclo
 - no hace falta que sea un anillo. token bus
- conteo descendente binario
 - anteriores no escalan a redes con miles de estaciones
 - las estaciones que quieren usar el canal envian su direccion binaria y hacen or de todo lo que reciben
 - tan pronto como una estacion ve que una posicion de bit de orden alto, cuya direccion es 0, ha sido sobreescrita por un 1, se da por vencida

4.2.4 protocolos de contencion limitada

- en condicion de carga ligera es preferible contencion
- al reves para libres de colision
- protocolos de contencion limitada combinan los dos anteriores
- protocolo de recorrido de arbol adaptable

- en la ranura 0 todas las estaciones intentan adquirir el canal. si una lo logra bien y sino se dividen en dos grupos y se va formando un arbol de decision
- a mayor carga la busqueda debe iniciar mas abajo en el arbol

4.2.5 protocolos de lan inalambrica

- problema de la terminal oculta
- problema de la terminal expuesta
- maca (acceso multiple con prevencion de colisiones)
 - el emisor estimula al receptor para que envie una trama corta. las estaciones cercanas tambien escuchan y evitan enviar a la vez
 - rts/cts
 - en caso de colision un transmisor espera un tiempo y vuelve a intentar de nuevo

4.3 ethernet

- 802.3
- ethernet clasica (visto hasta ahora) y conmutada (switches)

4.3.1 capa fisica de ethernet clasica

- un solo cable de donde se conectaban todas las maquinas
- ethernet gruesa 500m y 100 maquinas
- ethernet delgada 185m y 30 maquinas
- longitud maxima por segmento conectada con repetidores

4.3.2 protocolo de subcapa mac para ethernet clasica

- multidifusion (a un grupo de estaciones) y difusion (a todas)
- direcciones globalmente unicas
- el tipo especifica a que proceso darle la trama
- campos tipo y longitud en conflicto. despues se usaron los dos: se interpreta segun si es mayor a la maxima longitud
- tamaño de trama maximo y minimo. se puede rellenar
- csma/cd
 - tras una colision el tiempo se divide en ranuras discretas de longitud igual a la ida y vuelta para el peor caso del cable
 - -retroceso exponencial binario: despues de la colision n
 cada estacion espera de 0 a $2^{\rm n}\text{-}1$ ranuras para enviar de nuevo

4.3.3 ethernet conmutada

- se empezaron a usar hubs en vez de un solo cable
- las redes se podian saturar porque los hubs no incrementan la capacidad. de ahi se empezaron a usar los switch
- los switches envian tramas solo a los puertos para los que estan destinadas
- en un switch cada puerto es su dominio de colision independiente
- si el cable es full duplex (comun) no hay colisiones. si es half duplex se usa csma/cd
- en un hub las tramas se envian a todos, aumentando la probabilidad de intrusos
- un switch puede tener conectado un hub, asi actua como un concentrador

4.3.4 fast ethernet

- se mantuvo la ethernet anterior pero mas rapida
- se permiten tres medios: par trenzado categoria 3 y 5, fibra optica
- casi todos los switches pueden manejar 10mbps (anterior) o 100mbps (fast)

4.3.5 gigabit ethernet

- en half duplex se usa csma/cd, en full duplex no
- con 1gbps una trama minima que es enviada no llegaria a recorrer el cable antes que termine de enviar, por eso de limito la longitud a 200m
- extension de portadora: el hardware agrega datos para hacer la trama de 512 bytes. no hay que hacer cambios de software
- rafaga de tramas: el emisor envia una secuencia de tramas concatenadas en una sola transmision. si hay suficientes tramas, es preferible a la extension de portadora
- en la actualidad la mayoria de las interfaces ethernet soportan los 3 tipos

4.3.6 10 gigabit ethernet

4.4 redes lan inalambricas

- medio de comunicación ondas electromagneticas
- tres tipos de redes: wpan, wlan, wwan
- modelos basados en pila: osi, tcp/ip, otros

4.4.1 wi-fi o wlan

- capa fisica y enlace de osi
- 802.11
- arquitectura celular: el sistema se subdivide en celdas. cada celda (bss) se controla por una estación (ap)
- la capa fisica
 - funciones
 - * codificacion/decodificacion de las señales
 - * generacion/remocion de cabeceras
 - * transmision/recepcion de bits
 - * especificaciones del medio de transmision
 - fhss(espectro disperso con salto de frecuencia): transmision en intervalos de tiempo a frecuencias distintas que el emisor y el receptor conocen. resistente al ruido y mas seguro
 - dsss(espectro disperso con secuencia directa): transmitir con una secuencia de bits de alta velocidad llamados chips. secuencia de barker
 - mimo(multiple entrada/multiple salida): aparatos con varias antenas para generar subcanales de transmision
- capa de enlace
 - funciones
 - * capa control acceso al medio
 - transmision: ensamblado de datos en tramas con campos de direccionamiento y deteccion de errores
 - · recepcion: desensamblado de tramas, reconocimiento de direcciones y deteccione de errores
 - · administra acceso al medio de transmision
 - * capa control de enlace logico
 - · interface a las capas superiores, control de errores y flujo
 - a diferencia de ethernet para wifi debe haber acuse de recibo
 - puede darle el problema de que una estacion no llegue a escuchar cuando otra en la misma red este mandando y se produzcan colisiones. estacion oculta
 - rts/cts
 - dcf: mecanismo basico de csma/ca. primero se verifica que nadie use el canal. las estaciones retardan aleatoriamente las tramas y luego escuchan para evitar colisiones. a veces usan rts/cts
 - pcf: tecnica de interrogacion circular desde el ap. servicios de tipo sincrono
- funciones de deteccion de portadoras

- para deetrminar si el medio se encuentra disponible
- dos tipos: de la capa fisica y detección de portadoras virtuales(nav)
- espaciamiento intertrama: cuatro diferentes espaciamientos para diferentes prioridades
- tres tipos de trama: datos, control y gestion
- control de enlace logico
 - direccionamiento de estaciones conectadas al medio y control de flujo
 - basado en el protocolo hdlc
 - 3 tipos de servicios: sin conexion y sin reconocimiento, con y sin, sin y con

4.4.2 wpan

- dispositivos perifericos
- bluetooth, homerf, zigbee, infrarrojo
- bluetooth
 - clase 1, 2 y 3 segun la potencia
 - piconet
 - * un nodo maestro y hasta 7 nodos esclavos activos. hasta 255 en total
 - * puede haber varias piconets conectadas de un nodo esclavo puente(scatternet)
 - * capa fisica
 - · sistema de baja potencia. pocos metros
 - · 79 canales de 1mhz. modulación desplazamiento de frecuencia
 - \cdot misma banda que 802.11 pero es mas problable que blueto
oth interfiera con 802.11 que al reves
 - * capa banda base
 - · perecido a la capa mac
 - · multiplexion por division de tiempo: el maestro transmite en ranuras pares y los esclavos en impares
 - · enlace acl: capa l2cap. mejor esfuerzo
 - · enlace sco: datos en tiempo real. se asigna una ranura fija a cada direccion. no se retransmiten datos
 - * administrador de enlace
 - * capa adaptación y control de enlace logico(l2cap)
 - · acepta paquetes de capa superior y los divide en tramas
 - · maneja la multiplexion
 - · se encarga de la calidad de los requerimientos de servicio. establece enlaces, negocia el tamaño de carga util
- bluetooth smart(ble)

- 40 canales de 2mhz
- no es directamente compatible con el anterior. si en modo dual(smart ready)
- topologia broadcasting
 - * enviar datos a cualquier dispositivo que este escuchando el medio
 - * envia periodicamente paquetes de anuncio por canales especificos
- topologia conexiones
 - * conexion permanente y periodicamente se intercambian datos entre maestro y esclavo
- un dispositivo puede ser maestro y esclavo. un maestro puede ser conectado a multiples esclavos. un esclavo a multiples maestros
- perfiles genericos: perfil de acceso generico(gap), perfil de atributo generico(gatt)
- capa de enlace
 - * varios estados
 - · espera: no transmite ni recibe. modo ahorro
 - · anuncio: un esclavo envia paquetes en canales de anuncio. recibe tambien desde un maestro
 - · exploracion: escucha los paquetes de anuncio que envian los dispositivos
 - · inicializacion: usado por el maestro antes de iniciar una conexion. escucha hasta que recibe el anuncio de un esclavo deseado y se conecta

4.4.3 sistema de telefonia y comunicaciones moviles

- division celular: dividir en zonas pequeñas donde se reutilizan canales disponibles
- reutilizacion de frecuencias
 - se asigna a cada celda un grupo de frecuencias, de modo que no se compartan con celdas vecinas
 - el grupo de celdas que no comparten canales se llama cluster
- modo de funcionamiento
 - simplex: no se puede transmitir y recibir simultaneamente por enlaces de subida y bajada
 - duplex: los dos enlaces usan portadoras distintas y se pueden usar a la vez
- desde 1g hasta 4g+. 5g sin estandarizar
- arquitectura
 - equipo de usuario: contiene una tarjeta que le permita usar el servicio. se conecta a traves de una interfaz de radio
 - red de acceso: sustenta la transmision de radio con los usuarios para conectarlos con la red troncal
 - red troncal: control de acceso, gestion de movilidad, gestion de sesiones de datos, etc
- tipos de redes de acceso: gerand/utran(3g) y e-utran(lte)

• la red troncal se divide en tres

- dominio de circuitos: todas las entidades que dan servicios basados en conmutacion de circuitos. accesible a traves de geran y utran, e-utran no usa
- dominio de paquetes: basado en conmutacion de paquetes. dos implementaciones: gprs y epc. gprs fue la primera en contexto de las redes anteriores. epc es la nueva de lte
- subsistema ims: provision de servicios ip basados en el protocolo sip. asociada a lo multimedia y utiliza servicios del dominio de paquetes

• arquitectura de lte

- eps(evolved packet system), enteramente basada en paquetes ip, tanto servicios en tiempo real como transmision de datos
- los componentes son: la red e-utran, el dominio de paquetes epc y el sistema ims
- contempla el acceso al servicio de redes utran y geran, y otras redes que no pertenecen a la misma familia
- la red de acceso se compone de una unica entidad enb, que proporciona conectividad entre usuarios y la red troncal
- enb usa tres interfaces: e-utran uu(usuarios-enb), s1(enb-troncal) y x2(enb-enb)

• capa fisica

- ofdma para enlace descendente y sc-fdma para ascendente
- qpsk, 16qam y 64qam descendente, qpsk, 64qam ascendente

• interfaz de radio

 tres tipos de transferencia: difusion de señalizacion de control, envio de paquetes ip y transferencia de señalizacion de control

• ofdma

- diversidad multiusuario: la asignacion de subportadoras se realizan dinamicamente
- diversidad frecuencial: es posible asignar al usuario subportadoras no contiguas, suficientemente separadas
- robustez en la propagacion multicamino: fuerte a la interferencia intersimbolica por la propagacion por multiples caminos
- flexibilidad de banda asignada: permite acomodar las velocidades a usuarios segun lo que requieran
- granularidad en recursos asignables: para acomodar servicios con diferente calidad
- elevada relacion entre potencia media e instantanea
- suceptibilidad a errores de frecuencia: cuando hay desplazamientos de frecuencia hay interferencias, se requieren mecanismos de sincronizacion

• sc-fdma

- variaciones reducidas entre potencia media e instantanea
- posibilidad de llevar a cabo de forma sencilla mecanismos de ecualizacion en el dominio de la frecuencia
- capacidad de proporcionar asignacion de banda flexible

4.5 conmutación de la capa de enlace de datos

• lan de lanes con puentes

4.5.1 usos de puentes

- universidades y departamentos tienen sus propias redes lan separadas, pero tambien requieren comunicarse entre ellas
- la organización puede estar separada geograficamente
- dividir una sola red lan en varias para alivianar la carga
- dos algoritmos para que los puentes sean transparentes

4.5.2 puentes de aprendizaje

- cada puerto del switch define un dominio de colision
- si una estacion se quiere comunicar con otra dentro del mismo segmento el switch debe descartar las tramas porque no es necesario reenviarlas
- mediante una tabla hash los switches saben a que segmento pertenecen las estaciones
- cuando llega una trama al puente se fija la hora y actualiza el puerto si cambio. por si se modificaran las topologias
- si no conoce por cual puerto enviar una trama, se envia a todos excepto por el que vino
- conmutacion al vuelo: es posible empezar a reenviar ni bien se lea la cabezera de una trama, que contiene la direccion

4.5.3 puentes con arbol de expansion

- enlaces redundantes. si se corta uno la red no se dividira en dos. pero crea ciclos en la topologia
- los puentes ejecutan un algoritmo distribuido para construir el arbol
- incluyen la distancia desde la raiz para recordar la ruta mas corta. desactivan los puertos que no formen parte de esa ruta

4.5.4 redes lan virtuales

- agrupar a los usuarios en diferentes lan para reflejar la estructura de la organizacion
- seguridad: por ejemplo separar servidores de computadoras de uso publico
- carga: algunas lan se usan mucho mas que otras
- trafico de difusion
- las redes vlan se basan en switches diseñados para este proposito. el administrador decide cuantas vlan habra y como se llamaran
- tablas de configuración en los puentes, que vlan se puede acceder por un puerto
- estandar 802.1q
 - se cambio el encabezado de ethernet. tiene una nueva etiqueta vlan
 - los campos de vlan no los deben ver los usuarios, solo puntes y conmutadores
 - cuando una trama llega al primer switch con soporte para vlan agrega los campos y el ultimo los elimina

5 capa de red

5.1 aspecto de diseño

5.1.1 conmutacion de paquetes de almacenamiento y reenvio

5.1.2 servicios proporcionados a la capa de transporte

- independientes de la tecnologia del enrutador
- la capa de transporte debe estar aislada del tipo, cantidad y topologia de enrutadores
- plan de numeracion uniforme para las direcciones disponibles

5.1.3 implementacion del servicio sin conexion

- los paquetes se transmiten por separado y se enrutan de manera independiente
- datagramas
- ip

5.1.4 implementacion del servicio orientado a la conexion

- evitar la necesidad de elegir una nueva ruta para cada paquete enviado. cuando se establece una conexion se guarda la ruta
- mpls: usa vez que se establece el circuito virtual los enrutadores intermedios asignan identificadores diferentes para origenes diferentes para diferenciarlos en una misma ruta

5.2 algoritmos de enrutamiento

- un enrutador tiene dos procesos internos: uno maneja cada paquete conforme llega y busca en la tabla de ruteo la linea de salida. el otro es llenar y actualizar las tablas de ruteo, y ahi es donde entra el algoritmo de ruteo
- muchas redes intentan reducir el numero de saltos que debe dar un paquete
- no adaptativos: no basan sus decisiones en mediciones de trafico y topologia actuales. las rutas se elijen de antemano. enrutamiento estatico
- adaptativos: no no adaptativos. enrutamiento dinamico

5.2.1 principio de optimizacion

- si una ruta es optima para i->j->k, tambien es optima para j->k
- arbol sumidero: el conjunto de rutas optimas

5.2.2 algoritmo de la ruta mas corta

- ver la red como un grafo y buscar el camino mas corto
- corto puede ser el numero de saltos, distancia geografica, u otras metricas

5.2.3 inundacion

- tecnica local. el enrutador envia por todas las lineas excepto por la que vino el paquete
- gran cantidad de duplicados
- numero maximo de saltos en la cabecera
- numero de secuencia en paquetes para no enviarlos dos veces
- no es practico para la mayoria de envios. pero tienen usos importantes como la difusion, porque asegura que todas las estaciones reciban el paquete
- es en extremo robusta
- requiere poca configuracion
- siempre encuentra la ruta mas corta, sin contar el congestionamiento que provoca el algoritmo

5.2.4 enrutamiento por vector de distancia

- cada enrutador mantiene un vector (una tabla) con la mejor ruta para cada destino. esta tabla se va actualizando
- cada T ms cada enrutador manda a sus vecinos su tabla
- problema del conteo al infinito: la convergencia llega a la respuesta correcta, pero lo hace lentamente

5.2.5 enrutamiento por estados de enlace

- las variantes is-is y ospf son usadas en la actualidad en internet
- descrubrir a sus vecinos
 - cuando un enrutador se pone en funcionamiento envia paquetes por todas las lineas que son respondidos con informacion de los vecinos

5.3 ipv4

- conmutacion de paquetes
- servicio sin conexion

5.3.1 objetivos

- funcion de ruteo
- transparencia en la red de redes
- reglas de entrega de paquetes no confiable
- unidad basica: datagrama

5.3.2 clases de direcciones

- a: r.h.h.h. 1.0.0.0 a 126.0.0.0
- b: r.r.h.h. 128.0.0.0 a 191.255.0.0
- c: r.r.r.h. 192.0.0.0 a 223.255.255.0
- d: multicast address. 224.0.0.0 a 239.255.255.255
- e: reservado. 240.0.0.0 a 255.255.255.255
- el primer octeto se da por el corrimiento del ultimo 1 de izquierda a derecha (0, 10, 110, 1110, 11110)

5.3.3 packet switching

- el paquete se divide en el origen en unidades manejables: datagramas
- los datagramas viajan al destino
- se ensamblan en el destino para lograr el mensaje original
- los paquetes se dividen segun los requisitos de cada punto intermedio (cada router)

5.3.4 ruteo

- proceso de seleccion del camino de un paquete
- entrega directa: transmision entre hosts de una misma red ip. no necesita del router. se encapsula el datagrama en una trama y se envia directamente
- entrega indirecta: los hosts se encuentran en redes separadas, se envia el datagrama a un ruteador de su red ip encapsulandolo en una trama
- se compara el netid del transmisor con el de destino, si son iguales es entrega directa
- sino usan las tablas de ruteo que indican por cada posible ip el siguiente salto que debe tomar en la ruta hasta el destino
- las tablas tambien se usan para entrega directa

5.3.5 direcciones privadas

- las ipv4 no alcanzan para todos los dispositivos del mundo
- cada red interna usa un conjunto de ip privadas que se repiten en cada red que no sale a internet
- por dentro la red se maneja con esas ip privadas, y desde afuera se ve una sola ip

5.3.6 subredes ip

• cuando se usan bits de la parte de host para crear subredes

5.4 icmp: internet control message protocol

- ip falla cuando el destino se desconecta de la red, cuando pasa el timeout para la respuesta o cuando router intermediarios estan muy congestionados
- icmp es requerido por ip y debe ser incluido en una implementacion del protocolo
- reporta errores, no corrige. aunque sugiere accioner a tomar

5.4.1 funciones

- error: un nodo que reconoce un error de transmision genera un paquete icmp. este se reporta a la fuente original, que es la que esta en la cabecera del paquete. no puede avisar a los routers intermedios. ni el origen saber que router tuvo el problema
- control: herramientas de diagnostico de la red (ping, traceroute)
- trama { ip { icmp {} } }

5.4.2 tipos

- 8/0 ping: solicitud eco/respuesta
- 3 destination unreachable: cuando no puede entregar/direccionar un datagrama
- 4 source quench: congestionamiento
- 5 route change request: usado por el router directamente conectado host fuente para cambio de ruta
- 11 time exceeded
- 13/14: timestamp para sincronizacion, calculo de viaje redondo, etc
- 17/18: solicitud/respuesta de mascara

5.5 arp: address resolution protocol

- se usa para obtener direcciones mac, tanto para el ultimo paso (host destino) como para intermedios (routers)
- el pedido es broadcast, la respuesta es unicast
- el transmisor incluye su mac e ip para que los host actualicen
- trama { arp {} }
- dos partes: transforma direcciones ip en direcciones fisicas, responde pedidos de otras maquinas
- se mantiene una tabla con direcciones guardadas, que se actualizan cada cierto tiempo
- por que se usa un broadcast que alcanza al destino para despues enviar un mensaje al mismo destino?: los mensajes broadcast son mas costosos porque cada maquina debe procesar el mensaje