Dr. William Howell, Professor

Homework #10- Combining SAS Data Sets; Creating and Maintaing Permanent Formats

Directions: Please submit one program file, one output file, and one log file for the entire assignment. Use comment statements to separate your answers. For questions that do not require a SAS program use comment statements. For example:

```
/*
Question #1d: my answer
Question #2a: my answer
*/
/*Question #4b: */
--SAS program—
/*Ouestion #5*/
```

Please make sure the log and output file contain only one run. For example, clear the screen for the log and output file and submit your program one last time before you upload your solutions to *Blackboard*. See lab 1 for the instructions on how to clear your output and log files.

Part I: Combining SAS Data Sets

1. Handling Same-Named Variables and Different Data Types for BY Variables

The data set **orion.web_products2** contains an observation for every product available for sale on Orion Star's wholesale website.

Partial **orion.web_products2** (20 Total Observations)

Product_ID	Price	Name
120400304333	114.36	Smasher Super Rq Ti 350 Tennis Racket
120400305288	53.26	Knife
120400305846	107.74	Big Guy Men's Air Deschutz Viii Shoes
120400308766	40.96	Big Guy Men's Packable Hiking Shorts
120400308849	12.23	Wood Box for 6 Balls

The data set **orion.web_orders2** contains a list of orders made in a single day from the website. Each observation contains the product ID, the quantity ordered, and the customer's name.

Partial orion.web_orders2 (43 Total Observations)

Product_ID	Quantity	Name
120400305288	16	Carglar Aydemir
120400305288	19	Sanelisiwe Collier
120400305846	13	Candy Kinsey
120400305846	13	Cynthia Martinez
120400305846	10	Rolf Robak

- The two data sets are sorted by **Product_ID**. **Product_ID** is a numeric variable in **orion.web_products2** and a character variable with a length of 12 in **orion.web orders2**.
- a. Create a new data set, web_converted, from the orion.web_products2 data set. Change the type of Product_ID to character. (Use the data set web_converted to merge with orion.web_orders2 in the next step.)

Hint: Use the RENAME= data set option to change **Product_ID** to some other name, such as **nProduct_ID**, the LENGTH statement to declare a new character variable named **Product_ID**, and an assignment statement

with a PUT function to explicitly convert the numeric value in **nProduct_ID** into a character value in **Product_ID**.

- **b.** Create *three* new data sets:
 - A data set named **revenue** contains the product code, the price, the quantity sold, the product name, the customer name and the revenue generated from each sale. **Revenue** is calculated as **Price*Quantity**.

The Name variable in web_converted refers to the product name and the Name variable in web_orders2 refers to the customer name. Give each variable an appropriate name in the revenue data set.

- A data set named **notsold** contains the product code, price, and product name for each product that was not sold
- A data set named **invalidcode** contains the product code, quantity, and customer name for each observation in the **web_orders2** data set that does not have a corresponding product code in the **web_products2** data set.
- **c.** Print the three data sets with appropriate titles. The data sets should contain 39, 7, and 4 observations, respectively. (The data sets you create might have different variable names than the ones shown here.)

Partial work.revenue (39 Observations)

					Revenue	from Ord	ders		
Product_ID	Price	Product_Name				Quantity	Customer	Revenue	
120400305288	53.26	Knife				16	Carglar Aydemir	852.16	
120400305288	53.26	Knife				19	Sanelisiwe Collier	1011.94	
120400305846	107.74	Big Guy Men's	Air Deschutz	Viii	Shoes	13	Candy Kinsey	1400.62	
120400305846	107.74	Big Guy Men's	Air Deschutz	Viii	Shoes	13	Cynthia Martinez	1400.62	
120400305846	107.74	Big Guy Men's	Air Deschutz	Viii	Shoes	10	Rolf Robak	1077.40	

Partial work.notsold (7 Observations)

	Pro	ducts Not Ordered
Product_ID	Price	Name
120400304333	114.36	Smasher Super Rq Ti 350 Tennis Racket
120400308849	12.23	Wood Box for 6 Balls
120400311211	69.16	Tipee Summer Sleeping Bag
120400317183	164.82	Smasher Rd Ti 70 Tennis Racket
120400329978	114.47	Tipee Twin Blue/Orange

Listing of **invalidcode** (4 Observations)

=	Invalid Order	`S
Product_ID	Quantity	Name
120400311465	13	Thomas Leitmann
120400312556	7	Robyn Klem
120400315078	23	Tonie Asmussen
120400326278	10	Theunis Brazier

Part II-Creating and Maintaining Permanent Formats

1. Creating Formats with Inclusive Ranges from a SAS Data Set

The data set **orion.ages** contains three variables: **First_Age**, **Last_Age**, and **Description**.

Partial orion.ages

	First_		
Obs	Age	Last_Age	Description
1	15	30	15-30 years
2	30	45	31-45 years
3	45	60	46-60 years
4	60	75	61-75 years

- **a.** Create a format from the **orion.ages** data set and store it permanently in the **orion.MyFmts** catalog. Use the appropriate option to view the values in the format.
- a. Write a DATA step to create a data set named sales that reads the Employee_ID and Birth_Date variables from the orion.sales data set. Create a new variable named Age that is the employee's age as of the current date, and another new variable named Age_Cat that is the value of the variable Age using the AGE format. The YRDIF function with the AGE basis calculates the exact age of the employee with decimal places.
- **b.** Print the first five observations of the **sales** data set to confirm that the new variables were created correctly. PROC PRINT Output (as of July 18, 2012)

	Sales Data Set								
Obs	Employee_ID	Birth_ Date	Age	Age_Cat					
1	120102	11AUG1973	38	31-45 years					
2	120103	22JAN1953	59	46-60 years					
3	120121	02AUG1948	63	61-75 years					
4	120122	27JUL1958	53	46-60 years					
5	120123	28SEP1968	43	31-45 years					

Part III- Supplemental exercises for STAT 625 and Honors credit

1. Creating Formats with Exclusive Ranges from a SAS Data Set

The data set orion.ages_mod contains three variables: First_Age, Last_Age, and Description.

Partial orion.ages_mod

!	First_		
0bs	Age	Last_Age	Description
1	15	30	15-29 years
2	30	45	30-44 years
3	45	60	45-59 years
4	60	75	60-75 years

a. Create a format named AGES_MOD from the **orion.ages_mod** data set and store it permanently in the **orion.MyFmts** catalog. Use the appropriate option to view the values in the format.

The value of the **Last_Age** variable is not to be included in the **Description** variable. Use SAS Help or SAS OnlineDoc to investigate the **EEXCL** variable that is required to get the correct results for this exercise.

- b. Write a DATA step to create a data set named sales that reads the Employee_ID and Birth_Date variables from the orion.sales data set. Create a new variable named Age that is the employee's age as of the current date, and another new variable named Age_Cat that is the value of the variable Age using the AGES_MOD format. One possible solution for calculating Age is to use the YRDIF function with the AGE basis.
- **c.** Print the first five observations of the **sales** data set to confirm that the new variables were created correctly. PROC PRINT Output (as of July 18, 2012)

			Sales	Data Se	et	
			Birth_			
Ob	s E	mployee_ID	Date	Age	Age_Cat	
	1	120102	11AUG1973	38	30-44 years	
	2	120103	22JAN1953	59	45-59 years	
	3	120121	02AUG1948	63	60-75 years	
	4	120122	27JUL1958	53	45-59 years	
	5	120123	28SEP1968	43	30-44 years	