Question5

Solution:

If the chemicals are produced in order $C_1, C_2, ..., C_n$, then the total evaporation loss is $W_1(1-(1-p)^n)+W_2(1-(1-p)^{n-1})+\cdots+W_n(1-(1-p)^0)$.

Because $(1-(1-p)^n)$ will increase when n is increased, we should arrange the production schedule according to the quality of the chemicals. The smaller the kilogram demand (W_i) is, the earlier the production is, and the larger the kilogram demand (W_i) is, the later the production.

So, we should produce these chemicals in increasing order of kilograms of chemicals.

Proof:

If we swap two chemicals C_{k+i} and C_k .

The total evaporation loss is $L' = W'_1(1 - (1-p)^n) + W'_2(1 - (1-p)^{n-1}) + \dots + W'_{k+i}(1 - (1-p)^{n-k}) + \dots + W'_k(1 - (1-p)^{n-k-i}) + \dots + W'_n(1 - (1-p)^0)$ and $W'_{k+i} > W'_k$.

The total evaporation loss before swaping is $L = W'_1(1 - (1 - p)^n) + W'_2(1 - (1 - p)^{n-1}) + \dots + W'_k(1 - (1 - p)^{n-k}) + \dots + W'_{k+i}(1 - (1 - p)^{n-k-i}) + \dots + W'_n(1 - (1 - p)^0)$ Thus, $L' - L = (W'_{k+i} - W'_k)(1 - (1 - p)^{n-k}) + (W'_k - W'_{k+i})(1 - (1 - p)^{n-k-i})$ $= (W'_{k+i} - W'_k)((1 - (1 - p)^{n-k}) - (1 - (1 - p)^{n-k-i}))$

Because
$$W'_{k+i} > W'_k$$
 and $(1 - (1-p)^{n-k}) > (1 - (1-p)^{n-k-i})$

So, $L^{\prime}-L>0$. Any swap in this schedule will increase the total evaporation loss.

Thus, this schedule is optimal.