

Capacitação em Inteligência Artificial e Aplicações

Deep Learning

- Prof. Gerson Vieira Albuquerque Neto
- Prof. Rodrigo Carvalho Souza Costa
- Prof. Yves Augusto Romero

Planejamento da Disciplina

D	S	Т	Q	Q	S	S
26	27 Introdução ao curso	28 Áreas e aplicações de IA	29 Tipos e definições de Inteligência artificial	30 Revisão de álgebra e probabilidade	31 Laboratório Python 1	1
2	Introdução aos classificadores supervisionados	4 Aula teórica Naive Bayes	5 Aula prática Naive Bayes	6 Feriado Semana Santa	7 Feriado Semana Santa	8
9	10 KNN + Métricas de Avaliaçã o	11 Regressão Linear e e Introdução à árvores de decisão	12 Prática Regressão Lienar + Árvores de Decisão	13 Feriado	14 Introdução à Clusterização + KMédias	15
16	Falta de Energia Campus Fortaleza	18 PCA / Hiperparâmetros	19 Introdução ao Perceptron Simples – Prática	20 MLP	21 Feriado Tiradentes	28
23	24 Introdução ao DeepLearning	25 Introdução ao TensorFlow / Keras	26 Introdução ao Pytorch	27 Tensorflow for android	28	29

Objetivos da Aula

- Após a conclusão deste módulo, você será capaz de:
 - Descrever a diferença entre as redes neurais tradicionais e o aprendizado profundo;
 - Compreender a arquitetura de redes neurais profundas como a CNN
 - Conhecer diferentes redes neurais de aprendizado profundo

Revisão: Algoritmos de Machine Learning

- Introdução ao Aprendizado Profundo
- Rede Neural Convolucional (CNN)
- Outras redes de aprendizado profundo

Estadual do Ceará

Introdução

 Como um modelo baseado no aprendizado de recursos não supervisionado e no aprendizado de hierarquia de recursos, o aprendizado profundo tem grandes vantagens em campos como visão computacional, reconhecimento de fala e processamento de linguagem natural.

Aprendizado de máquina tradicional	Deep Learning
Baixos requisitos de hardware no computador: Dada a quantidade limitada de computação, o computador não precisa de uma GPU para computação paralela em geral.	Requisitos de hardware mais altos no computador: Para executar operações matriciais em dados massivos, o computador precisa de uma GPU para executar computação paralela.
Aplicável a treinamentos com uma pequena quantidade de dados e cujo desempenho não pode ser melhorado continuamente à medida que a quantidade de dados aumenta.	O desempenho pode ser alto quando parâmetros de peso de alta dimensão e dados de treinamento maciços são fornecidos.
Detalhamento do problema nível a nível	Aprendizagem E2E
Seleção manual de recursos	Extração automática de recursos baseada em algoritmo
Recursos fáceis de explicar	Recursos difíceis de explicar

Aprendizado de máquina tradicional

Deep Learning

Geralmente, a arquitetura de aprendizagem profunda é uma rede neural profunda. "Profundo" em "aprendizagem profunda" refere-se ao número de camadas da rede neural.

Simple Neural Network **Deep Learning Neural Network Output Layer** Input Layer Hidden Layer

Exemplo de Aprendizado Profundo

- Introdução ao Aprendizado Profundo
- Rede Neural Convolucional (CNN)
- Outras redes de aprendizado profundo

Introdução

- Na década de 1960, Hubel e Wiesel estudaram os neurônios do córtex dos gatos usados para sensibilidade local e seleção de direção e descobriram que sua estrutura de rede única poderia simplificar as redes neurais de feedback. Eles então propuseram a CNN.
- Agora, a CNN tornou-se um dos principais assuntos de pesquisa em muitos campos científicos, especialmente no campo classificação de padrões.
- A rede é amplamente utilizada porque pode evitar o pré-processamento complexo de imagens e inserir diretamente imagens originais.

Rede Neural Convolucional

- Uma Rede Neural Convolucional (CNN) é uma rede neural feedforward. Seus neurônios artificiais podem responder a unidades circunvizinhas dentro de uma faixa de cobertura.
- A CNN se destaca no processamento de imagens. Ele inclui uma camada convolucional, uma camada de agrupamento e uma camada totalmente conectada.

camada de agrupamento (pooling)

Exemplo

Instituto Iracema

Operações comuns no CNN - Convolução

Definição: representação matemática de como um sistema linear opera sobre um sinal.

Demonstração do cálculo da convolução

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Agrupamento

- O agrupamento combina unidades próximas para reduzir o tamanho da entrada na próxima camada, reduzindo as dimensões.
- Tipos comuns:
 - agrupamento máximo: o valor máximo em uma pequena área quadrada é selecionado como o representante dessa área,
 - agrupamento médio: o valor médio é selecionado como o representante dessa área

A۱	erage	Pool	ing
31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
	,	1,000	x 2 Il size
	36	80	

Exemplo de Pooling

Camada Completamente Conectada

- A camada totalmente conectada é essencialmente um classificador.
- As características extraídas na camada convolucional e na camada de agrupamento são achatadas e colocadas na camada totalmente conectada para produzir e classificar os resultados.
- Geralmente, a função Softmax é usada como a função de ativação da camada de saída final totalmente conectada para combinar todos os recursos locais em recursos globais e calcular a pontuação de cada tipo.

$$\sigma(\mathbf{z})_j = \frac{e^{\mathbf{z}_j}}{\sum_{\mathbf{k}} e^{\mathbf{z}_k}}$$

Arquitetura de uma Rede Convolucional

Principais Conceitos da CNN

- Campo receptivo local: É geralmente considerado que a percepção humana do mundo exterior é do local para o global. As correlações espaciais entre pixels locais de uma imagem são mais próximas do que entre pixels distantes. Portanto, cada neurônio não precisa conhecer a imagem global. Ele só precisa conhecer a imagem local. As informações locais são combinadas em um nível mais alto para gerar informações globais.
- Compartilhamento de parâmetros: Um ou mais filtros/kernels podem ser usados para digitalizar imagens de entrada. Os parâmetros transportados pelos filtros são pesos. Em uma camada verificada por filtros, cada filtro usa os mesmos parâmetros durante a computação ponderada. O compartilhamento de peso significa que, quando cada filtro verifica uma imagem inteira, os parâmetros do filtro são fixos.

Camada Convolucional

A arquitetura básica de uma CNN é a convolução multicanal que consiste em múltiplas convoluções únicas. A saída da camada anterior (ou a imagem original da primeira camada) é usada como a entrada da camada atual. Ele é então envolvido com o filtro na camada e serve como a saída dessa camada. O núcleo de convolução de cada camada é o peso a ser aprendido. Semelhante ao FCN, após a conclusão da convolução, o resultado deve ser tendencioso e ativado por meio de funções de ativação antes de ser inserido na próxima

camada.

- Introdução ao Aprendizado Profundo
- Rede Neural Convolucional (CNN)
- Outras redes de aprendizado profundo

Redes Neurais Recorrentes

- A Rede Neural Recorrente (RNN *Recurrent Neural Network*) é uma rede neural que captura informações dinâmicas em dados sequenciais através de conexões periódicas de nós de camada oculta. Ele pode classificar dados sequenciais.
- Ao contrário de outras redes neurais avançadas, a RNN pode manter um estado de contexto e até mesmo armazenar, aprender e expressar informações relacionadas em janelas de contexto de qualquer comprimento.
- Diferente das redes neurais tradicionais, não se limita ao limite do espaço, mas também suporta sequências de tempo. Em outras palavras, há um lado entre a camada oculta do momento atual e a camada oculta do momento seguinte.
- O RNN é amplamente utilizado em cenários relacionados a sequências, como vídeos que consistem em quadros de imagens, áudio que consiste em clipes e frases que consistem em palavras.

Arquitetura de rede neural recorrente

- X_t é a entrada da sequência de entrada no tempo t.
- S_t é a unidade de memória da sequência no tempo t e armazena em cache as informações anteriores.

$$S_t = \tanh(UX_t + WS_{t-1}).$$

- O_t é a saída da camada oculta da sequência no tempo \mathbf{t} . $O_t = \mathrm{tanh}(VS_t)$
- O_t depois de através de várias camadas ocultas, ele pode obter a saída final da sequência no momento t.

- X_t é a entrada da sequência de entrada no tempo:
- S_t é a unidade de memória da sequência no tempo t armazena em cache as informações anteriores.

$$S_t = \tanh(\mathsf{UX}_t + \mathsf{WS}_{t-1}).$$

- O_t é a saída da camada oculta da sequência no tempo t $O_t = \tanh(VS_t)$
- O_t depois de através de várias camadas ocultas, ele obter a saída final da sequência no momento t.

Tipos de RNN

one to one

many to one

many to many

many to many

Redes Adversárias Generativas

 A Rede Adversária Generativa (GAN - Generative Adversarial Network) é uma estrutura que treina o gerador G e o discriminador D através do processo contraditório.

Exemplo

Redes Adversárias Generativas

- Através do processo contraditório, o discriminador pode dizer se a amostra do gerador é falsa ou real. O GAN adota um algoritmo BackPropagation maduro.
 - O Gerador G: A entrada é o ruído z, que está em conformidade com a distribuição de probabilidade prévia selecionada manualmente, como a distribuição par e a distribuição gaussiana. O gerador adota a estrutura de rede do perceptron multicamada (MLP), usa parâmetros de estimativa de máxima verossimilhança (MLE) para representar o mapeamento derivável G(z) e mapeia o espaço de entrada para o espaço amostral.
 - O Discriminador D: A entrada é a amostra real x e a amostra falsa G(z), que são marcadas como reais e falsas, respectivamente. A rede do discriminador pode usar os parâmetros de transporte MLP. A saída é a probabilidade D(G(z)) que determina se a amostra é uma amostra real ou falsa.
- O GAN pode ser aplicado a cenários como geração de imagem, geração de texto, aprimoramento de fala, super-resolução de imagem.

Modelo Generativo e Modelo Discriminativo

- Rede generativa
 - Gera dados de exemplo
 - Entrada: vetor de ruído branco Gaussiano z
 - Saída: vetor de dados de amostra x

$$x = G(z; \theta^G)$$

- Rede de discriminadores
 - Determina se os dados de exemplo são reais
 - Entrada: dados de amostra reais x_{real} e dados de amostra gerados x = G(z)
 - Saída: probabilidade que determina se a amostra é real

$$y = D(x; \theta^D)$$

Introdução às Redes Neurais: Perceptron Simples

. Instituto Iracema PESQUISA E INOVAÇÃO

Prática DeepLearning

Dúvidas?

Módulo de Inteligência Artificial

