Comman Bus System

Bus System for 4 Registers:

S_1	S ₀	Register selected
0	0	A
0	1	В
1	0	С
1	1	D

Tri state Buffer

Figure 4-4 Graphic symbols for three-state buffer.

Bus with Tri state Buffer

Figure 4-5 Bus line with three state-buffers.

Binary Adder

Figure 4-6 4-bit binary adder.

Binary Substractor

Figure 4-7 4-bit adder-subtractor.

Binary Incrementer

Figure 4-8 4-bit binary incrementer.

Arithmetic Circuit

Figure 4-9 4-bit arithmetic circuit.

TABLE 4-4 Arithmetic Circuit Function Table

Select		T	0		
$\overline{S_1}$	So	C_{in}	Input Y	Output $D = A + Y + C_{in}$	Microoperation
0	0	0	В	D = A + B	Add
0	0	1	В	D=A+B+1	Add with carry
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow
0	1	1	\overline{B}	$D = A + \overline{B} + 1$	Subtract
1	0	0	0	D = A	Transfer A
1	0	1	0	D=A+1	Increment A
1	1	0	1	D = A - 1	Decrement A
1	1	1	1	D = A	Transfer A

List of 16 logic operation

 TABLE 4-6
 Sixteen Logic Microoperations

Boolean function	Microoperation	Name
$F_0 = 0$	<i>F</i> ←0	Clear
$F_1 = xy$	$F \leftarrow A \wedge B$	AND
$F_2 = xy'$ $F_3 = x$	$F \leftarrow A \wedge \overline{B}$ $F \leftarrow A$	Transfer A
$F_4 = x'y$	$F \leftarrow \overline{A} \wedge B$	Transfer A
$F_5 = y$	$F \leftarrow B$	Transfer B
$F_6 = x \oplus y$	$F \leftarrow A \oplus B$	Exclusive-OR
$F_7 = x + y$	$F \leftarrow A \vee B$	OR
$F_8 = (x + y)'$	$F \leftarrow \overline{A \vee B}$	NOR
$F_9 = (x \oplus y)'$	$F \leftarrow \overline{A \oplus B}$	Exclusive-NOR
$F_{10}=y'$	$F \leftarrow \overline{B}$	Complement B
$F_{11}=x+y'$	$F \leftarrow A \vee \overline{B}$	_
$F_{12}=x'$	$F \leftarrow \overline{A}$	Complement A
$F_{13}=x'+y$	$F \leftarrow \overline{A} \vee B$	-
$F_{14}=(xy)'$	$F \leftarrow \overline{A \wedge B}$	NAND
$F_{15}=1$	$F \leftarrow \text{all 1's}$	Set to all 1's

Logic Circuit

Figure 4-10 One stage of logic circuit.

Shifter Circuit

Figure 4-12 4-bit combinational circuit shifter.

Figure 4-13 One stage of arithmetic logic shift unit.

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select						
S_3	S ₂	Sı	So	C_{in}	Operation	Function
0	0	0	0	0	F = A	Transfer A
0	0	0	0	1	F = A + 1	Increment A
0	0	0	1	0	F = A + B	Addition
0	0	0	1	1	F = A + B + 1	Add with carry
0	0	1	0	0	$F = A + \overline{B}$	Subtract with borrow
0	0	1	0	1	$F = A + \overline{B} + 1$	Subtraction
0	0	1	1	0	F = A - 1	Decrement A
0	0	1	1	1	F = A	Transfer A
0	1	0	0	×	$F = A \wedge B$	AND
0	1	0	1	×	$F = A \vee B$	OR
0	1	1	0	×	$F = A \oplus B$	XOR
0	1	1	1	×	$F = \overline{A}$	Complement A
1	0	×	×	×	$F = \operatorname{shr} A$	Shift right A into F
1	1	×	×	×	$F = \operatorname{shl} A$	Shift left A into F