CSE 465- COMPUTER ASSIGNMENT 1 (DUE DATE: MARCH 20'17)

1. Write a Matlab/Python function to calculate the discriminant function of the following form

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2} \ln \frac{\pi}{2} - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

for a given mean vector and a covariance matrix.

- 2. Write a function to calculate the Mahalanobis distance between an arbitrary point x and the mean, μ_i , of a Gaussian distribution with covariance matrix Σ_i .
- 3. Use the data set shown in the table below and assume each category has Gaussian distribution.

	ω_1			ω_2			ω_3		
sample	x_1	x_2	x_3	x_1	x_2	x_3	x_1	x_2	x_3
1	-5.01	-8.12	-3.68	-0.91	-0.18	-0.05	5.35	2.26	8.13
2	-5.43	-3.48	-3.54	1.30	-2.06	-3.53	5.12	3.22	-2.66
3	1.08	-5.52	1.66	-7.75	-4.54	-0.95	-1.34	-5.31	-9.87
4	0.86	-3.78	-4.11	-5.47	0.50	3.92	4.48	3.42	5.19
5	-2.67	0.63	7.39	6.14	5.72	-4.85	7.11	2.39	9.21
6	4.94	3.29	2.08	3.60	1.26	4.36	7.17	4.33	-0.98
7	-2.51	2.09	-2.59	5.37	-4.63	-3.65	5.75	3.97	6.65
8	-2.25	-2.13	-6.94	7.18	1.46	-6.66	0.77	0.27	2.41
9	5.56	2.86	-2.26	-7.39	1.17	6.30	0.90	-0.43	-8.71
10	1.03	-3.33	4.33	-7.50	-6.32	-0.31	3.52	-0.36	6.43

to compute the mean and covariance matrix for each category. Assume the prior probabilities are

$$P(\omega_1) = 0.8, P(\omega_2) = P(\omega_3) = 0.1.$$

Then use your procedures developed in the previous parts (1) and (2) and the minimal error classifier (MAP) to classify the following test data points: $p_1 = (1, 2, 1), p + 2(5, 3, 1), p_3 = (0, 0, 0),$ and $p_4 = (1, 0, 0).$

- 4. Draw the decision boundaries between the three classes.
- 5. Repeat parts (3) and (4) using Maximum Likelihood (ML) classifier.

```
Here is the table data in text format:

x1 = [[-5.01, -5.43, 1.08, 0.86, -2.67, 4.94, -2.51, -2.25, 5.56, 1.03],
[-8.12, -3.48, -5.52, -3.78, 0.63, 3.29, 2.09, -2.13, 2.86, -3.33],
[-3.68, -3.54, 1.66, -4.11, 7.39, 2.08, -2.59, -6.94, -2.26, 4.33]];

x2 = [[-0.91, 1.30, -7.75, -5.47, 6.14, 3.60, 5.37, 7.18, -7.39, -7.50],
[-0.18, -2.06, -4.54, 0.50, 5.72, 1.26, -4.63, 1.46, 1.17, -6.32],
[-0.05, -3.53, -0.95, 3.92, -4.85, 4.36, -3.65, -6.66, 6.30, -0.31]];

x3 = [[5.35, 5.12, -1.34, 4.48, 7.11, 7.17, 5.75, 0.77, 0.90, 3.52],
[2.26, 3.22, -5.31, 3.42, 2.39, 4.33, 3.97, 0.27, -0.43, -0.36],
[8.13, -2.66, -9.87, 5.19, 9.21, -0.98, 6.65, 2.41, -8.71, 6.43]]
```