Classifying Cancer

Computational Research Project Using Machine Learning Methods to Correlate Genes with Lung & Prostate Cancer

Ria Doshi

Data

Leukemia	Lung Cancer	Prostate Cancer
Acute myeloid leukemia (AML) (25 samples)	Adenocarcinoma (AD): 139 samples Normal lung (NL): 17 samples Small Cell Lung Cancer: 6 samples	Normal tissue: 50 samples
Acute Lymphoblastic Leukemia (47 samples)	Squamous cell carcinoma (SQ): 21 samples Pulmonary carcinoid (COID): 20 samples	Prostate tumor: 52 samples

Methods

Random Hyperplane Projection

1) Training Data is plotted.

2) Choose a new input value, let's say "c" and plot it onto the graph, ignore labels.

3) Set an integer value "k" and find the k number of closest points to the new input value.

4) Look at the "k" number of nearest points to "c" and choose whichever classification is in majority.

-When we set the value of "k" from between 4 to 9, we got an accuracy score of 96%

- Method for regression and classification
- Finding distances between points
- Implemented with K = 5 or 7
- 96% accuracy

K means

K means

K means

Cross Validation

Validation
Test
Train

Noise & Normalization

2D:
$$|\mathbf{v}| = \sqrt{x^2 + y^2}$$

3D: $|\mathbf{v}| = \sqrt{x^2 + y^2 + z^2}$

Statistics

$$t = \frac{X - \mu}{\frac{S}{\sqrt{N}}}$$

ONE SAMPLE T-TEST

TWO SAMPLE T-TEST

$$t = rac{\overline{X}_1 - \overline{X}_2}{\sqrt{rac{s_1^2}{N_1} + rac{s_2^2}{N_2}}}$$

Results

Accuracies

Accuracy vs. Method

Accuracies

1317
Informative Genes

4-9

Neighbors

3

Folds

Classifying Cancer

Computational Research Project Using Machine Learning Methods to Correlate Genes with Lung & Prostate Cancer

Ria Doshi