

Intelligent Hospital Logistics

Master Team Project FSS 2024 Institute for Enterprise Systems (InES)

Introduction to MediCar 4.0

The **Next Generation** of **Hospital Logistics**

Multiple vehicles transporting intelligent boxes between stations

Many Different Goods

Unexpected Incidents (robot failures, collapsed patients, ...)

(from clothes to blood samples)

Different Transportation Requirements (vibration, temperature, ...)

Research Questions

- Can Large Language Models **simulate** the **impact** of **incidents** on routing graphs?
- Can Large Language Models be used for **solving routing problems** across heterogeneous goods?

General Steps

- Simulation Environment
- 2 Routing Optimization

 A*-Baseline

 Large Language Models
- 3 Evaluation
- 4 Next Steps ...

Simulation Environment

The University Hospital in Freiburg

Required Simulation Environments

Replication of the University Hospital

Synthetic Examples (e.g. Deadlock)

Discuss your own ideas

2 Routing Optimization

Can we combine the A*-Algorithm and Large Language Models?

Example Approach: Approximate Heuristic of the A*-Algorithm with Large Language Models

Example Scenario Emergency due to traffic accident

- Chaos surrounding ambulance and transfusion blood that may be needed soon
- Adjust costs to keep the path between the ambulance and blood storage clean

Test Methods to Improve the Approach

Instruction Finetuning, Memory, ReAct, ...

Can we combine the A*-Algorithm and Large Language Models?

Expand The Framework

Contact Details

Dr. Christian Bartelt

University of Mannheim | Institute for Enterprise Systems (InES) L 15, 1-6 | 4th floor | 68131 Mannheim | Germany

christian.bartelt@uni-mannheim.de https://www.uni-mannheim.de/ines/

University of Mannheim | Institute for Enterprise Systems (InES) L 15, 1-6 | 4th floor | 68131 Mannheim | Germany

<u>Tim.nico.grams@uni-mannheim.de</u> <u>https://www.uni-mannheim.de/ines/</u>

About Your First Steps ...

- Setup Technical Infrastructure
- 2 Plan Software Architecture
- 3 Extract Coordinates From OpenStreetMap
- 4 Implement Functionality
- 5 Setup Custom MQTT-Broker

About Your First Steps ...

- 1 Setup Technical Infrastructure
- 2 Plan Software Architecture
- 3 Extract Coordinates From OpenStreetMap
- 4 Implement Functionality
- 5 Setup Custom MQTT-Broker

Technical Infrastructure

Tasks for the first week

- Decide on Project Management Tool (e.g. Trello)
- Communication Infrastructure (WhatsApp, Slack, ...)
- Frequency and Structure of Internal Meetings (GoogleDocs)
- Code Storage (GitHub Invite your supervisor (timg339)!)
- Make yourself comfortable with the frameworks

Tool Suggestions

About Your First Steps ...

- Setup Technical Infrastructure
- 2 Plan Software Architecture
- 3 Extract Coordinates From OpenStreetMap
- 4 Implement Functionality
- 5 Setup Custom MQTT-Broker

Software Architecture

Any Questions?