数字逻辑设计

王鸿鹏

计算机科学与技术学院

wanghp@hit.edu.cn

利用中规模集成电路设计时序逻辑电路

- 计数器芯片
 - 计数器芯片简单应用
 - 计数器芯片的级联
 - 计数器芯片的综合应用
- 寄存器芯片
- 综合应用——序列信号发生器的设计

逻辑电路和集成门电路

(a) AND Gate与门

(b) OR Gate 或门

- (c) NOT Gate/Inverter 非门/反相器

双列直插式封装DIP

(Dual Inline-pin Package)

集成电路的规模

- 小规模集成电路: 1-20门 (Small-Scale Integration)
- 中规模集成电路:20-200门 (Medium-Scale Integration)
- 大规模集成电路: 200-1,000,000门 (Large-Scale Integration)
- 超大规模集成电路(VLSI):100万门以上 (Very Large-Scale Integration)

常用中规模计数器芯片

- □ 同步十进制加法计数器: 74LS160(异步清零),74LS162(同步清零)
- □ 同步4位二进制加法计数器: 74LS161 (异步清零),74LS163 (同步清零)
- □ 异步二-五-十进制加法计数器: 74LS90 (异步清零),74LS290 (异步清零)
- □ 同步十进制加/减计数器: 74LS192 (双时钟), 74LS190 (单时钟)
- 、□ 同步4位二进制加/减计数器: 74LS193 (双时钟), 74LS191(单时钟)

置数功能

时钟边沿到来时 ,且置数使能信 号有效,向计数 器装入用户指定 的初始值

芯片型号	计数进制	输出特点	置数方式	清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

清零只需要1个条件: 清零端给有效信号立 即清零

│清零需要2个条件同时 │具备:清零端给有效 ﹐信号+时钟边沿到来

5

芯片手册 datasheet

引脚图

datasheet.p

Timing Diagram

LS161A, LS163A Synchronous Binary Counters Typical Clear, Preset, Count and Inhibit Sequences

Sequence:

- (1) Clear outputs to zero
- (2) Preset to binary twelve
- (3) Count to thirteen, fourteen, fifteen, zero, one, and two

用计数器芯片74160设计模10计数器

不加多余状态的波形图

•如果不多加一个状态1010,那么1001状态只持续<mark>很短</mark>的时间就被清零了。

利用74LS163 设计模10计数器

① 清零法

同步清零需2个条件:

- 清零端给有效信号
- •时钟有效沿到来

设计M进制计数器: 需要M个状态

74LS163/162功能表

	输入						前出	
СР	CLRN	LDN	ENT	ENP	Q_D	Qc	Q _B	Q_A
1	0	Х	Х	X	0	0	0	0
†	1	0	X	X	D	С	В	Α
X	1	1	0	X		仔	禄持	
X	1	1	X	0		仔	禄持	
1	1	1	1	1	计	数, 计清		O=1

同步清零 vs 异步清零的波形图

用置数法设计模10计数器

74LS161/160功能表

74LS163/162功能表

输入						辅	出	
P)	CLRN	LDN	ENT	ENP	Q_D	Q _c	Q_B	Q_A
X	0	Χ	X	Х	0	0	0	0
†	1	0	1	0	D	С	В	Α
Χ	1	1	0	X		仴	持	
Χ	1	1	X	0		伢	持	
†	1	1	1	1	计数	t, 计清	制 RC	CO=1
	X † X	X 0 ↑ 1 X 1	CP CLRN LDN X	CP CLRN LDN ENT X	CP CLRN LDN ENT ENP X	CP CLRN LDN ENT ENP Q _D X	CP CLRN LDN ENT ENP QD QC X 0 X X X 0 0 † 1 0 1 0 D C X 1 1 0 X 场 X 1 1 X 0 场	CP CLRN LDN ENT ENP Q _D Q _C Q _B X 0 X X X 0 0 0 † 1 0 1 0 D C B X 1 1 0 X K持

				·	7 10			
	输入						出	
СР	CLRN	LDN	ENT	ENP	Q_D	Q _c	Q_B	Q_A
1	0	Χ	Х	Х	0	0	0	0
†	1	0	1	0	D	С	В	Α
Х	1	1	0	X		伢	耕	
Х	1	1	X	0		伢	耕	
†	1	1	1	1	计数	t, 计清	睛时 R(CO=1

芯片型号	计数进制	输出特点	置数方式	清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

例: 利用74LS161或74163设计模10 计数器

② 置数法

设计M进制计数器:需要M个状态

模10计数器波形图

利用中规模芯片设计时序逻辑电路

- 计数器芯片
 - 计数器芯片简单应用
 - 计数器芯片的级联
 - 计数器芯片的应用
- 寄存器芯片
- 综合应用——序列信号发生器的设计

计数器芯片的级联——利用进位信号

例:利用74LS161设计模256加法计数器

计数器芯片的级联——2

利用74LS160采用置数法设计模60 计数器

计数到59回零:高位 计到5,低位计满。

芯片型号 计数进制	输出特点 置数方式	清零方式		
74LS160 十进制	8421BCD码 同步	异步		
74LS161 十六进制	4位二进制码 同步	异步	74LS160	74LS160
74LS162 十进制	8421BCD码 同步	同步	-Q LDN	-GLDN
74LS163 十六进制	4位二进制码 同步	同步	"0" A 低 "0" B 低	"0"一点 "0"一点 位
	用前一级的进位指后一级的计数使能		"0" — C QB — QC — QC — ENT QD — ENP RCO	"0" C QB QC QC QC QC ENT QD ENP RCO CLRN

计数器芯片的应用——节拍发生器

利用74LS163设计实现一个8节拍发生器

利用中规模计数器芯片设计时序逻辑电路

计数器芯片

- □ 同步十进制加法计数器:74LS160(异步清零), 74LS162(同步清零)
- □ 同步4位二进制加法计数器: 74LS161 (异步清零),74LS163 (同步清零)
- □ 异步二-五-十进制加法计数器: 74LS90 (异步清零),74LS290 (异步清零)
- □ 同步十进制加/减计数器: 74LS192 (双时钟), 74LS190 (单时钟)
- □ 同步4位二进制加/减计数器: 74LS193 (双时钟), 74LS191(单时钟)

计数器芯片的综合应用—模N计数器

利用一片4位数码比较器74LS85及一片模16 计数器芯片74LS193设计一个模N计数器(N<16)。

设计思路

■ 比较器:

 $A_3 \sim A_0$: 输入计数器模值N (例如N=10)

B₃~B₀: 连接计数器当前计数输出值

■ 如果计数器当前输出值Q_DQ_CQ_BQ_A = 模值N

比较器输出端 Y_{Δ=R}=1, 该信号使计数器清零

计数器芯片的综合应用

利用中规模计数器芯片设计时序逻辑电路

- □ 同步十进制加法计数器: 74LS160(异步清零),74LS162(同步清零)
- □ 同步4位二进制加法计数器: 74LS161 (异步清零),74LS163 (同步清零)
- □ 异步二-五-十进制加法计数器: 74LS90 (异步清零),74LS290 (异步清零)
- □ 同步十进制加/减计数器: 74LS192 (双时钟), 74LS190 (单时钟)
- □ 同步4位二进制加/减计数器: 74LS193 (双时钟), 74LS191(单时钟)

将输出 Q_A 与 CP_B 相接,构成8421BCD码计数器将输出 Q_D 与 CP_A 相接,构成5421BCD码计数器

74LS90/290功能表

	1	输入				输	出	
СР	R ₀ (1)	R ₀ (2)	S ₉ (1)	S ₉ (2)	Q_D	Qc	Q _B	Q_A
X	1	1	0	X	0	0	0	0
X	1	1	X	0	0	0	0	0
X	X	X	1	1	1	0	0	1
↓	X	0	Х	0		ᆟ	数	
↓	0	X	0	X		버	数	
↓	0	X	X	0		计	数	
. ↓	Χ	0	0	Χ		ᆟ	数	

20

计数器芯片应用—8421BCD码模10计数器

计数器芯片应用——模45 计数器

计数器芯片应用——5421BCD码模10计数器

计数器芯片的应用——节拍发生器

1)设计模7计数器

2) 以模7计数器为输入,设计译码器

1	输入		译码输出						
Q_{C}	\mathbf{Q}_{B}	Q_A	Y_1	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y ₇
0	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0
0	1	1	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	0	0
1	0	1	0	0	0	0	0	1	0
1	1	0	0	0	0	0	0	0	1

利用中规模芯片设计时序逻辑电路

- 计数器芯片
 - 计数器芯片的级联
 - 计数器芯片的应用
- 寄存器芯片
- 综合应用——序列信号发生器的设计

4-bit 双向移位寄存器芯片74194

74194 (Serial /Parallel input, Parallel out)

74LS194功能表

	输	输出					
CP	CR	S ₁	S ₀	Q_A	Q_{B}	Q _C	Q_D
X	0	X	X	0	0	0	0
0	1	X	X		保	持	
X	1	0	0		保	持	
1	1	0	1	D _{SR}	Q_A	\mathbf{Q}_{B}	Q_{c}
1	1	1	0	Q_{B}	Q_{C}	\mathbf{Q}_{D}	D_{SL}
1	1	1	1	Α	В	C	D

S ₁ S ₀	工作方式
0 0	保持
0 1	右移
1 0	左移
1 1	并入

双向移位寄存器芯片74194的应用

寄存器芯片的应用-3

寄存器芯片的应用——串/并行转换器

利用中规模芯片设计时序逻辑电路

- 计数器芯片
 - 计数器芯片的级联
 - 计数器芯片的应用
- 寄存器芯片
- 综合应用——序列信号发生器的设计

- ◎序列信号发生器:能循环产生一组特定的串行数字序列信号的电路。
- ◎序列的长度:序列信号的位数。如:序列为00011,则序列长度为5。

任意序列信号发生器的设计

- 大体思路:实现序列信号一个周期的波形,将此波形循环再现
- 使用D触发器设计
- 使用计数器+数据选择器设计
- 用移位寄存器+反馈电路设计(逻辑门/译码器/数据选择器)
- 用计数器 + PROM设计

例:用D触发器设计一个 110100 序列信号发生器

方法1: 利用D触发器

- □ 序列信号长度为 L,则取 L个不同的状态
- □ 每个状态下时序电路的输出就是 、序列信号中的一位。

1. 画状态转换图

时序电路的不同

状态对应输出序

列中的各位。

任意序列信号发生器的设计-状态编码和化简

2. 状态编码

$S_0 - 000$,	$S_3 - 01$	1
$S_1 001$,	S ₄ —— 100	0
$S_2 - 010$	S ₅ —— 10	1

3. 状态转换真值表

$Q_2Q_1Q_0$	$Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$	1 Y
0 0 0	0 0 1	1
0 0 1	0 1 0	1
0 1 0	0 1 1	0
0 1 1	1 0 0	1
1 0 0	1 0 1	0
1 0 1	0 0 0	0

4.卡诺图化简

$$D_0 = Q_0'$$

$$D_1 = Q_2'Q_1'Q_0 + Q_1Q_0'$$

$$D_2 = Q_2 Q_0' + Q_1 Q_0$$

$$Y=Q_2'Q_1'+Q_1Q_0$$

- 5. 电路实现(略)
- 6. 检查无关项

方法1: 利用D触发器

- □ 序列信号长度为 L,则取 L个不同的状态
- □ 每个状态下时序电路的输 出就是序列信号中的一位。

$$Q_2^{n+1} = D_2 = Q_2 Q_0' + Q_1 Q_0$$

 $Q_1^{n+1} = D_1 = Q_2' Q_1' Q_0 + Q_1 Q_0'$
 $Q_0^{n+1} = D_0 = Q_0'$

例:设计一个 110100 序列信号发生器

方法2: 利用计数器+数据选择器 □ 数据选择器74151的输入 D₀-D₅接成110100。 □ 74163接成模6加法计数器 □ 计数器输出连到数据选择 器的选择控制端CBA,经 过循环选择产生所需序列。

例:设计一个 00010111 序列信号发生器

方法3: 移位寄存器+反馈电路设计(逻辑门/译码器/数据选择器)

例:设计一个 00010111 序列信号发生器

方法3: 移位寄存器+反馈电路设计(逻辑门/译码器/数据选择器)

具体方法

□ 确定移位寄存器的位数。

序列信号长度为L,则移位寄存器的位数n应满足:

 $2^n \ge L$

试探法: n 为满足条件的最小值 , 将序列数据循环左移 , 画状态图。检查状态图中所有 L个状态是否两两不同 , 是 , 则 n 值可用 ; 否则取 n+1 , 重复上述操作 。

- □ 画状态转换表,确定左移时最低位输入的卡诺图,求出表达 式。如果有无关项,检查电路的自启动能力
- □ 实现最低位反馈输入(逻辑门 or 译码器 or 数据选择器)
- □ 取移位寄存器的某位输出即为所要求的序列信号。

1. 确定移位寄存器位数

序列长度L=8,则*n*=3

2. 状态转换图

用74194的低3位Q_BQ_CQ_D输出

方法3.1:移位寄存器+逻辑门电路

3. 状态转换真值表

Q₁Q₀ 4.卡诺图化简

例2: 设计一个 00010111序列信号发生器 _{1~4}. 同上

方法3. 3: 移位寄存器+译码器 $L_{IN} = Q_B Q_C' Q_D + Q_B' Q_C + Q_B' Q_D'$ $= \sum_{b \in B} (0, 2, 3, 5)$

转换为最小 项表达式 Q_BQ_CQ_D分别接74138的地 址输入端CBA,则:

Y₀, Y₂, Y₃, Y₅分别被译中时, 反馈回1,否则反馈回0

序列信号发生器设计方法总结

特殊类型

- □ 使用环形计数器设计
- □ 使用扭环计数器设计

任意类型

- □使用D触发器设计
- □使用计数器 + 数据选择器设计;
- □用移位寄存器+反馈电路设计(逻辑门/译码器/数据选择器)
- □用计数器 + PROM设计