

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Secure Pseudo Random Generators

Τσοτουλίδης Γεώργιος, Α.Ε.Μ.: 166

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Νοέμβριος 2023

TOC

- Introduction
- True vs pseudo-random numbers
- Linear Congruential Generator LCG
- Secure Pseudo Random Generator
- Cryptographic PRNGs
- VeraCrypt Encryption program
- Bibliography
- QA

Random numbers or symbols

Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted.

Random numbers or symbols

Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted.

Random numbers or symbols

Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted.

Types of practical random data

Roll dice

Random numbers or symbols

Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted.

- Roll dice
- Flip coin

Random numbers or symbols

Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted.

- Roll dice
- Flip coin
- Shuffle playing cards

Random numbers or symbols

Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted.

- Roll dice
- Flip coin
- Shuffle playing cards
- etc

Random numbers or symbols

Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted.

Types of practical random data

- Roll dice
- Flip coin
- Shuffle playing cards
- etc

Work and time consuming

True random number generator

Measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process.

True random number generator

Measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process.

True random number generator

Measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process.

Example sources include measuring

atmospheric noise

True random number generator

Measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process.

- atmospheric noise
- thermal noise

True random number generator

Measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process.

- atmospheric noise
- thermal noise
- external electromagnetic phenomena

True random number generator

Measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process.

- atmospheric noise
- thermal noise
- external electromagnetic phenomena
- quantum phenomena

True random number generator

Measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process.

- atmospheric noise
- thermal noise
- external electromagnetic phenomena
- quantum phenomena
- cosmic background radiation

True random number generator

Measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process.

- atmospheric noise
- thermal noise
- external electromagnetic phenomena
- quantum phenomena
- cosmic background radiation
- radioactive decay (ex. https://www.fourmilab.ch/hotbits/)

What is a PRNG

What is a PRNG

Characteristic	Pseudo	True

What is a PRNG

Characteristic	Pseudo	True
Mechanism		

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
		Mathematical

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
		Mathematical
Uniform		

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical & Mathematical
Uniform		

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
IVIECHAIIISIII	Mathematical	Mathematical
Uniform		

What is a PRNG

A pseudorandom number generator (PRNG), is an *algorithm* for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers.

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
iviechanism	Mathematical	Mathematical
Uniform		

Independence

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
iviechanism	Mathematical	Mathematical
Uniform		
Independence	X	

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
Mechanism	Mathematical	Mathematical
Uniform		
Indonandanca	X	
Independence	periodic, deterministic	

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
iviechanism	Mathematical	Mathematical
Uniform		
Independence	Х	/
independence	periodic, deterministic	V

What is a PRNG

A pseudorandom number generator (PRNG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers.

Characteristic	Pseudo	True
NA Is	Mathamatical	Physical &
Mechanism	Mathematical	Mathematical
Uniform	V	
Independence	X	/
	periodic, deterministic	V
Efficiency		

Efficiency

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
		Mathematical
Uniform	V	
Independence	X	/
	periodic, deterministic	V
Efficiency		

What is a PRNG

Characteristic	Pseudo	True
Mechanism	Mathematical	Physical &
		Mathematical
Uniform		
Independence	X	/
	periodic, deterministic	V
Efficiency		X

Linear Congruential Generator - LCG

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$
$$X_0, a, c < m$$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5 \Rightarrow X_1 = 5 \mod 5 = 0$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5 \Rightarrow X_1 = 5 \mod 5 = 0$
 $X_2 = (2 \cdot 0 + 3) \mod 5$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5 \Rightarrow X_1 = 5 \mod 5 = 0$
 $X_2 = (2 \cdot 0 + 3) \mod 5 \Rightarrow X_2 = 3 \mod 5 = 3$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5 \Rightarrow X_1 = 5 \mod 5 = 0$
 $X_2 = (2 \cdot 0 + 3) \mod 5 \Rightarrow X_2 = 3 \mod 5 = 3$
 $X_3 = (2 \cdot 3 + 3) \mod 5$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5 \Rightarrow X_1 = 5 \mod 5 = 0$
 $X_2 = (2 \cdot 0 + 3) \mod 5 \Rightarrow X_2 = 3 \mod 5 = 3$
 $X_3 = (2 \cdot 3 + 3) \mod 5 \Rightarrow X_3 = 9 \mod 5 = 4$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5 \Rightarrow X_1 = 5 \mod 5 = 0$
 $X_2 = (2 \cdot 0 + 3) \mod 5 \Rightarrow X_2 = 3 \mod 5 = 3$
 $X_3 = (2 \cdot 3 + 3) \mod 5 \Rightarrow X_3 = 9 \mod 5 = 4$
 $X_4 = (2 \cdot 4 + 3) \mod 5$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5 \Rightarrow X_1 = 5 \mod 5 = 0$
 $X_2 = (2 \cdot 0 + 3) \mod 5 \Rightarrow X_2 = 3 \mod 5 = 3$
 $X_3 = (2 \cdot 3 + 3) \mod 5 \Rightarrow X_3 = 9 \mod 5 = 4$
 $X_4 = (2 \cdot 4 + 3) \mod 5 \Rightarrow X_4 = 11 \mod 5 = 1$

$$X_n + 1 = (a \cdot X_n + c) \mod m$$

 $X_0, a, c < m$
 $values \in \mathbb{Z}^+$

$$X_0 = 1, a = 2, c = 3, m = 5$$

 $X_1 = (2 \cdot 1 + 3) \mod 5 \Rightarrow X_1 = 5 \mod 5 = 0$
 $X_2 = (2 \cdot 0 + 3) \mod 5 \Rightarrow X_2 = 3 \mod 5 = 3$
 $X_3 = (2 \cdot 3 + 3) \mod 5 \Rightarrow X_3 = 9 \mod 5 = 4$
 $X_4 = (2 \cdot 4 + 3) \mod 5 \Rightarrow X_4 = 11 \mod 5 = 1 \equiv X_0$

Source	modulus m	multiplier a	increment c	output bits of seed in rand() or Random(L)
ZX81	2 ¹⁶ + 1	75	74	
Numerical Recipes from the "quick and dirty generators" list, Chapter 7.1, Eq. 7.1.6 parameters from Knuth and H. W. Lewis	2 ³²	1664525	1013904223	
Borland C/C++	232	22695477	1	bits 3016 in rand(), 300 in /rand()
glibc (used by GCC) ^[17]	231	1103515245	12345	bits 300
ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++ ^[18] C90, C99, C11: Suggestion in the ISO/IEC 9899, ^[19] C17	2 ³¹	1103515245	12345	bits 3016
Borland Delphi, Virtual Pascal	232	134775813	1	bits 6332 of (seed × L)
Turbo Pascal	2 ³²	134775813 (8088405 ₁₆)	1	
Microsoft Visual/Quick C/C++	232	214013 (343FD ₁₆)	2531011 (269EC3 ₁₆)	bits 3016
Microsoft Visual Basic (6 and earlier)[20]	224	1140671485 (43FD43FD ₁₆)	12820163 (C39EC3 ₁₆)	
RtlUniform from Native API ^[21]	2 ³¹ - 1	2147483629 (7FFFFFED ₁₆)	2147483587 (7FFFFFC3 ₁₆)	
Apple CarbonLib, C++11's minstd_rand0 , [22] MATLAB's v4 legacy generator mcg16807[23]	2 ³¹ - 1	16807	0	see MINSTD
C++11's minstd_rand [22]	2 ³¹ - 1	48271	0	see MINSTD
MMIX by Donald Knuth	2 ⁶⁴	6364136223846793005	1442695040888963407	
Newlib	2 ⁶⁴	6364136223846793005	1	bits 6232 (4632 for 16-bit int)
Musl	2 ⁶⁴	6364136223846793005	1	bits 6333
VMS's MTH\$RANDOM, [24] old versions of glibc	232	69069 (10DCD ₁₆)	1	

Figure: Parameters of LCGs in common use. Source: Wikipedia

$$X_0 = 1, a = 16807, c = 0, m = 2^{31} - 1$$

$$X_0 = 1, a = 16807, c = 0, m = 2^{31} - 1$$

What is a SPRNG

A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography.

What is a SPRNG

A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography.

Requirements to be Cryptographically Secure:

What is a SPRNG

A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography.

Requirements to be Cryptographically Secure:

Satisfy the next-bit test

What is a SPRNG

A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography.

Requirements to be Cryptographically Secure:

- Satisfy the next-bit test
- Withstand state compromise extension attacks

Satisfy the next-bit test

That is, given the first k bits of a random sequence, there is no polynomial-time algorithm that can predict the (k+1)th bit with probability of success non-negligibly better than 50%.

Satisfy the next-bit test

That is, given the first k bits of a random sequence, there is no polynomial-time algorithm that can predict the (k+1)th bit with probability of success non-negligibly better than 50%.

Withstand state compromise extension attacks

In the event that part or all of its state has been revealed (or guessed correctly), it should be impossible to reconstruct the stream of random numbers prior to the revelation. Additionally, if there is an entropy input while running, it should be infeasible to use knowledge of the input's state to predict future conditions of the CSPRNG state.

Differences

Differences

• PRNG is only required to pass certain statistical test

Differences

- PRNG is only required to pass certain statistical test
- CSPRNG must pass all statistical tests that are restricted to polynomial time in the size of the seed

CSPRNG designs are divided into three classes

CSPRNG designs are divided into three classes

 those based on cryptographic primitives such as ciphers and cryptographic hashes

CSPRNG designs are divided into three classes

 those based on cryptographic primitives such as ciphers and cryptographic hashes

Figure: Hash encryption. Source: Wikipedia

CSPRNG designs are divided into three classes

 those based on cryptographic primitives such as ciphers and cryptographic hashes

Figure: Hash encryption. Source: Wikipedia

• those based upon mathematical problems thought to be hard

CSPRNG designs are divided into three classes

 those based on cryptographic primitives such as ciphers and cryptographic hashes

Figure: Hash encryption. Source: Wikipedia

- those based upon mathematical problems thought to be hard
- special-purpose designs

● FIPS 186 - 4

- FIPS 186 4
- NIST SP 800 − 90A

- FIPS 186 − 4
- NIST SP 800 90A
 - Hash_DRBG

- FIPS 186 − 4
- NIST SP 800 90A
 - Hash_DRBG
 - HMAC_DRBG

- FIPS 186 − 4
- NIST SP 800 90A
 - Hash_DRBG
 - HMAC_DRBG
 - CTR_DRBG

- FIPS 186 − 4
- NIST SP 800 − 90A
 - Hash_DRBG
 - HMAC_DRBG
 - CTR_DRBG
 - Dual_EC_DRBG

- FIPS 186 − 4
- NIST SP 800 90A
 - Hash_DRBG
 - HMAC_DRBG
 - CTR_DRBG
 - Dual_EC_DRBG
- NIST SP 800 − 90A Rev.1

- FIPS 186 − 4
- NIST SP 800 90A
 - Hash_DRBG
 - HMAC_DRBG
 - CTR_DRBG
 - Dual_EC_DRBG
- NIST SP 800 90A Rev.1
- ANSI X9.17 1985 Appendix C

- FIPS 186 − 4
- NIST SP 800 90A
 - Hash_DRBG
 - HMAC_DRBG
 - CTR_DRBG
 - Dual_EC_DRBG
- NIST SP 800 90A Rev.1
- ANSI X9.17 1985 Appendix C
- ANSI X9.31 1998 Appendix A.2.4

- FIPS 186 − 4
- NIST SP 800 90A
 - Hash_DRBG
 - HMAC_DRBG
 - CTR_DRBG
 - Dual_EC_DRBG
- NIST SP 800 90A Rev.1
- ANSI X9.17 1985 Appendix C
- ANSI X9.31 1998 Appendix A.2.4
- ANSI X9.62 1998 Annex A.4, obsoleted by ANSI X9.62 2005, Annex D (HMAC_DRBG)

Some classes of CSPRNGs include

• stream ciphers

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs
- special designs based on mathematical hardness

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs
- special designs based on mathematical hardness

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs
- special designs based on mathematical hardness

Entropy collection

keyboard clicks

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs
- special designs based on mathematical hardness

- keyboard clicks
- mouse moves

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs
- special designs based on mathematical hardness

- keyboard clicks
- mouse moves
- network activity

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs
- special designs based on mathematical hardness

- keyboard clicks
- mouse moves
- network activity
- system I/O interruptions

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs
- special designs based on mathematical hardness

- keyboard clicks
- mouse moves
- network activity
- system I/O interruptions
- hard disk activity

Some classes of CSPRNGs include

- stream ciphers
- block ciphers running in counter or output feedback mode
- combination PRNGs
- special designs based on mathematical hardness

- keyboard clicks
- mouse moves
- network activity
- system I/O interruptions
- hard disk activity
- etc

Secure Random Generators (CSPRNG)

Secure Random Generators (CSPRNG)

Usually a CSPRNG should start from an unpredictable random seed from the operating system, from a specialized hardware or from external source. Random numbers after the seed initialization are typically produces by a pseudo-random computation, but this does not compromise the security. Most algorithms often "reseed" the CSPRNG random generator when a new entropy comes, to make their work even more unpredictable.

Secure Random Generators (CSPRNG)

Usually a CSPRNG should start from an unpredictable random seed from the operating system, from a specialized hardware or from external source. Random numbers after the seed initialization are typically produces by a pseudo-random computation, but this does not compromise the security. Most algorithms often "reseed" the CSPRNG random generator when a new entropy comes, to make their work even more unpredictable.

Typically modern OS CSPRNG APIs combine the constantly collected entropy from the environment with the internal state of their built-in pseudo-random algorithm with continuous reseeding to guarantee maximal unpredictability of the generated randomness with high speed and non-blocking behavior in the same time.

Veracrypt encryption program

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

Veracrypt encryption program

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

Main features:

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

Main features:

 Creates a virtual encrypted disk within a file and mounts it as a real disk.

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

- Creates a virtual encrypted disk within a file and mounts it as a real disk.
- Encrypts an entire partition or storage device such as USB flash drive or hard drive.

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

- Creates a virtual encrypted disk within a file and mounts it as a real disk.
- Encrypts an entire partition or storage device such as USB flash drive or hard drive.
- Encrypts a partition or drive where Windows is installed (pre-boot authentication).

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

- Creates a virtual encrypted disk within a file and mounts it as a real disk.
- Encrypts an entire partition or storage device such as USB flash drive or hard drive.
- Encrypts a partition or drive where Windows is installed (pre-boot authentication).
- Encryption is automatic, real-time(on-the-fly) and transparent.

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

- Creates a virtual encrypted disk within a file and mounts it as a real disk.
- Encrypts an entire partition or storage device such as USB flash drive or hard drive.
- Encrypts a partition or drive where Windows is installed (pre-boot authentication).
- Encryption is automatic, real-time(on-the-fly) and transparent.
- Parallelization and pipelining allow data to be read and written as fast as if the drive was not encrypted.

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

- Creates a virtual encrypted disk within a file and mounts it as a real disk.
- Encrypts an entire partition or storage device such as USB flash drive or hard drive.
- Encrypts a partition or drive where Windows is installed (pre-boot authentication).
- Encryption is automatic, real-time(on-the-fly) and transparent.
- Parallelization and pipelining allow data to be read and written as fast as if the drive was not encrypted.
- Encryption can be hardware-accelerated on modern processors.

VeraCrypt is a free open source disk encryption software for Windows, Mac OSX and Linux based on TrueCrypt 7.1a.

- Creates a virtual encrypted disk within a file and mounts it as a real disk.
- Encrypts an entire partition or storage device such as USB flash drive or hard drive.
- Encrypts a partition or drive where Windows is installed (pre-boot authentication).
- Encryption is automatic, real-time(on-the-fly) and transparent.
- Parallelization and pipelining allow data to be read and written as fast as if the drive was not encrypted.
- Encryption can be hardware-accelerated on modern processors.
- Provides plausible deniability, in case an adversary forces you to reveal the password: Hidden volume (steganography) and hidden operating system.

Veracrypt encryption random number generation

Figure: Benchmark algorithms

Veracrypt encryption random number generation

Figure: Random pool

Bibliography

- https://www.random.org/randomness/
- https://cryptobook.nakov.com/secure-random-generators/secure-random-generators-csprng
- https://textbook.cs161.org/crypto/prng.html
- https://veracrypt.fr/en/Random Number Generator.html
- https://www.youtube.com/watch?v=PtEivGPxwAI
- Wikipedia
 - Cryptographically secure pseudorandom number generator
 - Pseudorandom number generator
 - Linear congruential generator

Thank you - QA

Σας ευχαριστώ για την προσοχή και τον χρόνο σας. Μην διστάσετε να κάνετε οποιαδήποτε ερώτηση.

Thank you - QA

Σας ευχαριστώ για την προσοχή και τον χρόνο σας. Μην διστάσετε να κάνετε οποιαδήποτε ερώτηση.

