Antennas

Antenna types

Antennas

End Fires

Loops

Dipoles

Monopole

Apertures

Slots

Patches

Antenna parameters

- Radiation pattern
 - Horizontal plane $f(\phi)$ (approximation for SLS \leq 25 dB)...

$$\phi_{-3dB} = 65 \cdot \frac{\lambda}{D}$$

- Vertical plane $f(\theta)$ (approximation for SLS \leq 25 dB)...
- 3D $f(\phi, \theta)$
- Gain(approximation for good illumination)...

$$\theta_{-3dB} = 65 \cdot \frac{\lambda}{D}$$

$$G = \frac{26000}{\theta_{-3}dB \cdot \phi_{-3}dB}$$

- HPBW Half Power BeamWidth
- FBR Front to Back Ratio
- SLS Side Lobe Suppression
- Input impedance
- Bandwidth

Reflector antennas - feeds

$$G = \frac{4\pi A_{ef}}{\lambda^2} = \eta A \frac{4\pi}{\lambda^2} \cong \left(\frac{\pi D}{\lambda}\right)^2$$

Reflector antennas - feeds

Reflector antennas - feeds

Antenna spillover and aperture blocking

Spillover Spillover Diffracted Region Region Feed **Spillover Feed Antenna** Mainlobe **Sidelobe** Reflector

Aperture blocking

Types of radar beams

Cosecant-Squared antenna pattern

- Slant range $R = \frac{H}{\sin \theta}$
- For monostatic radar...(for directional pattern Dt=Dr)

$$\bullet \quad \frac{P_r}{P_t} = \frac{D^2 \lambda^2 \sigma}{(4\pi)^3 R^4} = \frac{D^2 \lambda^2 \sigma}{(4\pi)^3} \cdot \frac{\sin^4 \theta}{H^4}$$

• $D^2 \cdot \sin^4 \theta = \text{const.}$

Cosecant-Squared antenna pattern

- Deformation of a parabolic reflector
- Stacked beam by more horns feeding a parabolic reflector

Antenna Arrays

Antenna Arrays

- Geometrical configuration
- Number of elements N
- Separation D
- Excitation phase shifts φ
- Excitation amplitudes a

Antenna Arrays — Array Factor

• The "Array Factor" AF, is the normalized radiation pattern of an array of isotropic point-source elements

$$\mathbf{AF}(\theta,\phi) = \sum_{n=1}^{N} a_n e^{j\phi_n} e^{jk \, \vec{r}_n \cdot \hat{r}}$$

Array radiation = element radiation X array factor

Phase shifters / time delay

Constrained feeding

Antenna Arrays

1-D beamforming

2-D beamforming

Space feeding

Reflectarray Configuration

Lens Array Configuration

Monopulse antenna

