Supplementary material

	Table 8: Parameters for the concave instances											
ID	1			2	3							
n	η	ζ	η	ζ	η	ζ						
50	0.04000	0.01000	0.15000	0.01000	0.12500	0.02000						
100	0.04000	0.00700	0.09000	0.00850	0.07000	0.01000						
200	0.01250	0.00100	0.01300	0.00500	0.07000	0.00500						
300	0.00100	0.00090	0.01500	0.00200	0.01000	0.00300						
400	0.00850	0.00010	0.01000	0.00150	0.01700	0.00250						
500	0.09000	0.00100	0.05000	0.00200	0.09000	0.00500						
600	0.05000	0.00070	0.10000	0.00160	0.02000	0.00200						
700	0.02000	0.00075	0.00800	0.00100	0.03000	0.00140						
800	0.01000	0.00090	0.03500	0.00125	0.03000	0.00150						
900	0.00500	0.00060	0.00900	0.00110	0.01000	0.00200						
1000	0.10000	0.00030	0.15000	0.00060	0.20000	0.00100						
ID		1		5								
n	η	ζ	η	ζ								
50	0.15000	0.00350	0.20000	0.00490								
100	0.10000	0.02000	0.20000	0.03000								
200	0.05600	0.00850	0.12000	0.01000								
300	0.01500	0.00470	0.02000	0.00650								
400	0.05000	0.00400	0.09000	0.00600								
500	0.06000	0.00700	0.10000	0.01000								
600	0.15000	0.00270	0.07000	0.00350								
700	0.10000	0.00270	0.01000	0.00340								
800	0.04500	0.00200	0.07000	0.00400								
900	0.04500	0.00300	0.03000	0.00350								
1000	0.25000	0.00300	0.30000	0.00700								

Table 9: One-tailed p-values regarding Kruskal-Wallis pairwise test between TMA and the other algorithms for the ID=1 KNW instances

c <u>es</u>	n		TLP		N	ISGA-l	II	(GRASI)		CHEN	
	n	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD
-	50	0.000	0.050	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	0.000	0.100	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	200	0.001	0.004	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
75	300	0.000	0.001	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ıte	400	0.270	0.049	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Correlated	500	0.000	0.006	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	600	0.941	0.077	0.000	0.000	0.811	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ö	700	0.570	0.879	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	800	0.000	0.588	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	900	1.000	1.000	0.000	0.000	0.123	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.004	0.921	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	50	0.129	0.972	0.003	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	1.000	0.147	0.001	0.000	1.000	0.927	0.000	0.000	0.000	0.000	0.000	0.000
_	200	1.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Anti-correlated	300	0.988	0.000	0.000	0.000	0.989	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	400	0.528	0.000	0.000	0.000	1.000	0.040	0.000	0.000	0.000	0.000	0.000	0.000
orr	500	0.228	0.000	0.000	0.000	1.000	0.256	0.000	0.000	0.000	0.000	0.000	0.000
j-c	600	1.000	0.184	0.002	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000
\n	700	0.031	0.000	0.000	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000
4	800	0.407	0.000	0.000	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000
	900	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.000	0.000	0.000	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000
	50	0.258	0.959	0.251	0.000	0.944	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	0.000	0.867	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	300	0.000	0.000	0.000	0.500	0.500	0.500	0.000	0.000	0.000	0.000	0.000	0.000
Concave	400	0.500	0.500	0.500	0.179	0.179	0.179	0.000	0.000	0.000	0.000	0.000	0.000
nc	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ಬ	600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	800	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000
	900	0.500	0.500	0.500	0.500	0.500	0.500	0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 10: One-tailed p-values regarding Kruskal-Wallis pairwise test between TMA and the other algorithms for the ID=2 KNW instances

C <u>CS</u>			TLP		N	ISGA-l	I	(GRASI)		CHEN		
	n	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD	
	50	0.000	0.944	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	100	0.000	0.985	0.000	0.000			0.000		0.000	0.000	0.000	0.000	
	200	0.000	0.006		0.000			0.000	0.000	0.000	0.000	0.000	0.000	
p	300	0.000	0.406	0.000	0.000			0.000	0.000	0.000	0.000	0.000	0.000	
Correlated	400	0.000	0.000	0.000	0.000			0.000		0.000	0.000	0.000	0.000	
rel	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
ò	600	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	800	0.000	0.104	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	900	0.000	0.054	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
_	1000	0.000	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	50	0.000	0.029	0.000	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	
	100	0.014	0.000	0.000	0.000	1.000	0.000		0.000	0.000	0.000	0.000	0.000	
75	200	0.000	0.000	0.000	0.000			0.000	0.000	0.000	0.000	0.000	0.000	
ate	300	0.000	0.000	0.000	0.000				0.000	0.000	0.000	0.000	0.000	
rel	400	0.000	0.000	0.000	0.000	0.406		0.000		0.000	0.000		0.000	
Anti-correlated	500	0.000	0.000	0.000	0.000	0.432		0.000	0.000	0.000	0.000	0.000	0.000	
ti-c	600	0.000	0.000	0.000	0.000	0.014		0.000	0.000	0.000	0.000	0.000	0.000	
An	700	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
,	800	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	
	900	1.000	0.348	0.999		1.000		0.000	0.000	0.000	0.000	0.000	0.000	
	1000	0.000	0.000				0.000		0.000	0.000	0.000	0.000	0.000	
	50	0.000	0.426		0.000			0.000	0.000	0.000	0.000	0.000	0.000	
	100	0.013					0.000			0.000	0.000	0.000	0.000	
	200	0.186		0.131						0.000	0.000	0.000	0.000	
4)	300	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
ave	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Concave	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
$\ddot{\mathbf{c}}$	600	0.000	0.000	0.001	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	700	0.000	0.000	0.000	0.500		0.500	0.000	0.000	0.000	0.000	0.000	0.000	
	800	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	900	0.000	0.000	0.000			0.500	0.000	0.000	0.000	0.000	0.000	0.000	
	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Table 11: One-tailed p-values regarding Kruskal-Wallis pairwise test between TMA and the other algorithms for the ID = 3 KNW instances

<u>ses</u>			TLP		N	ISGA-l	I	(GRASI)		CHEN	
	n	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD
•	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	0.000	0.957	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	200	0.000	0.939	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7	300	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ate	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
rel	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Correlated	600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
\circ	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
•	50	0.000	0.000	0.000	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
_	200	0.000	0.000	0.000	0.000	0.177	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ted	300	0.000	0.000	0.000	0.000	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ela	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
orr	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Anti-correlated	600	0.000	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Int	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	900	0.211	0.184	0.065	0.000	0.488	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
•	50	0.000	0.835	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	300	0.009	0.009	0.005	0.500	0.500	0.500	0.000	0.000	0.000	0.000	0.000	0.000
Concave	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
nca	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
S	600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	900	0.000	0.000	0.000	0.834	0.834	0.834	0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.000	0.000	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 12: One-tailed p-values regarding Kruskal-Wallis pairwise test between TMA and the other algorithms for the ID = 4 KNW instances

	n	TLP			N	ISGA-l	I	(GRASI)		CHEN		
	n	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD	
-	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
p	300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Correlated	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
rel	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
or,	600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
\cup	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
_	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	50	0.000	0.007	0.000	0.000	1.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	
	100	0.000	0.000	0.000			0.000	0.000	0.000	0.000	0.000	0.000	0.000	
~	200	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
ıte	300	0.000	0.048	0.000	0.000	0.065		0.000	0.000	0.000	0.000	0.000	0.000	
els	400	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Anti-correlated	600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Ani	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7	800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	900	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
_	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	50	0.000	0.335		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	100	0.000	0.000	0.000	0.000			0.000	0.000	0.000	0.000	0.000	0.000	
	200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
4	300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Concave	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
nc	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
స	600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Table 13: One-tailed p-values regarding Kruskal-Wallis pairwise test between TMA and the other algorithms for the ID = 5 KNW instances

	n		TLP			ISGA-l	I	(GRASI	•	CHEN		
	n	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD
	50	0.500	0.500	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
p	300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Correlated	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
rel	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
, Or	600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
_	200	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
tec	300	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
ela	400	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
OLI	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ij-c	600	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Anti-correlated	700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7	800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
	50	0.000	0.035	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
	100	0.000	0.000	0.000	0.000			0.000	0.000	0.000	0.000	0.000	0.000
	200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
•	300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Concave	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
nc	500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ပ	600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	700	0.005	0.005	0.005	0.246	0.246	0.246	0.000	0.000	0.000	0.000	0.000	0.000
	800	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
	900	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
	1000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 14: One-tailed p-values regarding Kruskal-Wallis pairwise test between TMA and the other algorithms for the AVV instances

n.ID		TLP		N	ISGA-l	I		GRASI)	HV	CHEN	•
แ.1D	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD	HV	Eps	IGD
20.1	0.000									0.000		
20.2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20.3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20.4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
30.1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
30.2	0.000	0.665	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
30.3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
30.4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.399	0.000	0.000	0.000
30.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
50.1	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000
50.2	0.000	0.174	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000
50.3	0.000	0.964	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000
50.4	0.000	0.281	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000
50.5	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000

Table 15: Average processing times (in seconds) required by the TMA, TLP, NSGA-II, GRASP and CHEN for the KNW instances.

	n	TMA	TLP	NSGA-II	GRASP	CHEN
-	50	10.55	5.27	30.09	33.32	28.52
	100	17.82	12.04	44.52	89.11	46.39
	200	27.63	34.87	91.97	331.42	80.65
7	300	40.07	68.02	165.60	694.43	119.87
ate	400	51.68	114.27	251.32	1261.56	164.20
Correlated	500	77.32	142.59	377.37	1941.59	218.19
or	600	81.47	199.24	519.95	2800.89	280.55
\cup	700	135.62	263.50	666.55	3788.09	373.49
	800	160.11	339.51	837.48	5208.49	575.43
	900	179.86	433.15	1065.10	6130.62	701.35
_	1000	187.71	526.39	1300.28	7479.20	606.20
	50	11.19	12.09	24.75	36.16	55.55
	100	14.87	18.33	41.96	88.89	90.17
~	200	22.89	40.57	98.45	332.04	135.64
ıte	300	32.37	74.69	187.71	692.07	176.29
ela	400	39.53	122.72	293.13	1262.31	215.73
0	500	47.38	153.70	443.93	1907.23	273.19
ij-c	600	51.88	210.50	620.66	2783.03	328.86
Anti-correlated	700	59.12	278.54	806.59	3795.18	396.51
7	800	63.38	355.16	1020.55	5126.65	465.69
	900	62.29	445.63	1304.23	6069.62	559.93
_	1000	78.91	542.03	1556.93	7550.10	656.47
	50	15.32	8.47	30.28	31.71	32.69
	100	16.06	13.29	45.93	90.20	55.45
	200	18.89	31.29	92.24	332.98	145.45
4)	300	24.89	56.71	177.00	721.37	354.27
Concave	400	36.66	106.30	267.77	1246.11	340.00
nc	500	64.81	142.96	405.77	1943.82	440.02
$\ddot{\mathbf{c}}$	600	63.91	195.62	566.77	2743.07	551.05
	700	80.33	226.38	752.40	3610.20	688.85
	800	126.67	337.19	926.21	5172.95	592.98
	900	94.55	336.14	1227.51	6015.22	521.47
	1000	123.44	528.25	1703.86	7517.86	611.93

Table 16: Average processing times (in seconds) required by the TMA, TLP, NSGA-II, GRASP and CHEN for the AVV instances.

			NSGA-II		
20.1	3.05	1.46	10.89	14.13	24.48
20.2	3.15	1.51	10.95	11.67	26.26
20.3	2.90	1.32	11.59	9.87	28.73
20.4	3.10	1.45	11.04	10.92	25.59
20.5	3.01	1.31	11.43	11.68	24.21
30.1	4.39	2.23	13.40	22.62	23.38
30.2	7.30	3.51	13.80	20.79	23.88
30.3	4.11	2.25	13.89	23.01	23.83
30.4	4.18	2.32	13.73	23.20	24.14
30.5	4.93	2.39	13.69	10.22	23.80
<i>50.1</i>	10.39	7.35	19.00	55.09	29.41
<i>50.2</i>	12.31	7.31	19.24	50.12	29.74
<i>50.3</i>	12.22	7.41	19.18	52.18	29.55
<i>50.4</i>	11.55	7.54	19.01	26.32	29.40
<i>50.5</i>	10.71	8.25	19.06	23.22	29.62