Formatowanie spamu Data Mining

Michał Maj i Anna Mieszkalska album 256556 i 255699

$6~\mathrm{maja}~2023$

Spis treści

1	Ana	aliza opisowa i wizualizacja	2
	1.1	Wstęp	2
	1.2	Opis danych	2
	1.3	Przygotowanie danych do analizy	4
	1.4	Analiza poszczególnych zmiennych	5
	1.5	Analiza zależności (korelacji) między zmiennymi	
2	Kla	syfikac j a	15
	2.1	Klasyfikacja oparta na regresji liniowej	15
	2.2	Klasyfikacja oparta na metodzie LDA (liniowa analiza dyskryminacyjna)	16
	2.3	Klasyfikacja z wykorzystaniem algorytmu kNN (Classification And Regression	
		Training)	17
	2.4	Inne (zaawansowane) sposoby oceny jakości klasyfikacji	18

1 Analiza opisowa i wizualizacja

1.1 Wstęp

W naszym projekcie będziemy analizować dane o nazwie *Spambase* z biblioteki *kernlab*. Zestaw danych *spambase* jest zbiorem wiadomości e-mail, które zostały przeanalizowane i sklasyfikwane jako spam lub non-spam. Celem tego zbioru danych jest dostarczenie użytecznych materiałów potrzebnych do analiz i eksploracji w tym zakresie. W tym projekcie użyjemy różnych metod i technik pozyskiwania wiedzy, aby przeanalizować dane *spambase* w celu opracowania modelu klasyfikującego wiadomości e-mail jako spam lub non-spam. Modele opracowane w tym projekcie mogą być przydatne w rzeczywistych serwisach poczt e-mailowych, gdzie problem dostarczania niechcianych wiadomości jest nam powszechnie znany.

1.2 Opis danych

Zbiór danych spambase wyodrębnia 58 cech, które oznaczają częstość występowania danego znaku bądź słowa w jednym e-mailu. Pierwsze 48 zmiennych dotyczy występowania konkretnych słów, następne 6 występowania znaków, a kolumny 55-57 dotyczą średniej, najdłuższej i całkowitej długości wielkich liter. Ostatnia zmienna type odpowiada za określenie typu e-maila jako spam lub non-spam, zatem będziemy rozważać dwie klasy. Zbiór ten składa się z 4601 obserwacji (wiadomości e-mail). Z powodu dużej obszerności danych przedstawiamy tylko część zmiennych (tabela 1), następnie pokazujemy rozkład klas wykorzystując różne metody wizualizacji (2, 1 i 3).

	make	address	all	num3d	our	over	remove	internet	order	mail	,,("	type
1	0.000	0.640	0.640	0.000	0.320	0.000	0.000	0.000	0.000	0.000	0.000	spam
2	0.210	0.280	0.500	0.000	0.140	0.280	0.210	0.070	0.000	0.940	0.132	spam
3	0.060	0.000	0.710	0.000	1.230	0.190	0.190	0.120	0.640	0.250	0.143	spam
4	0.000	0.000	0.000	0.000	0.630	0.000	0.310	0.630	0.310	0.630	0.137	spam
5	0.000	0.000	0.000	0.000	0.630	0.000	0.310	0.630	0.310	0.630	0.135	spam
6	0.000	0.000	0.000	0.000	1.850	0.000	0.000	1.850	0.000	0.000	0.223	spam
7	0.000	0.000	0.000	0.000	1.920	0.000	0.000	0.000	0.000	0.640	0.054	spam
8	0.000	0.000	0.000	0.000	1.880	0.000	0.000	1.880	0.000	0.000	0.206	spam
9	0.150	0.000	0.460	0.000	0.610	0.000	0.300	0.000	0.920	0.760	0.271	spam
10	0.060	0.120	0.770	0.000	0.190	0.320	0.380	0.000	0.060	0.000	0.030	spam
11	0.000	0.000	0.000	0.000	0.000	0.000	0.960	0.000	0.000	1.920	0.000	spam
12	0.000	0.000	0.250	0.000	0.380	0.250	0.250	0.000	0.000	0.000	0.044	spam
13	0.000	0.690	0.340	0.000	0.340	0.000	0.000	0.000	0.000	0.000	0.056	spam
_14	0.000	0.000	0.000	0.000	0.900	0.000	0.900	0.000	0.000	0.900	0.000	spam

Tabela 1: Spambase - pierwsze 14 rekordów dla wybranych zmiennych.

Tabela 2: Rozkład klas.

type	ilość
nonspam	2788
spam	1813

Rysunek 1: Wykres rozkładu klas.

Tabela 3: Rozkład klas (procentowo).

type	procent
nonspam	60.6
spam	39.4

Ilość e-maili, które zostały sklasyfikowane jako spam wynosi 1813 (tabela 2), a ilość tych, które nie są spamem wynosi 2733, zatem klasa spam stanowi prawie 40% całości (tabela 3), więc dane są dość zbalansowane co potwierdza rysunek 1. Za pomocą funkcji str mamy pokazane, że wszystkie zmienne są typu numeric, oczywiście oprócz zmiennej type, która jest typu factor. Możemy również sprawdzić typ zmiennych za pomocą funkcji sapply i zliczyć ich ilość. Otrzymamy wynik 57 bez zmiennej type.

```
sum(sapply(spam,is.numeric))
## [1] 57
```

Patrząc do tabeli 1 widzimy, że wszystkie typy zmiennych zostały określone prawidłowo. Funkcja is.na() mówi nam, że nasze dane nie posiadają żadnych wartości NA, należy jednak sprawdzić, czy w tym przypadku nie są one kodowane inaczej. Możemy użyć funkcji complete.cases, żeby usunąć wszelkie brakujące wartości.

```
sum(!complete.cases(spam))
## [1] 0
```

Wynik wyszedł 0, zatem nasze dane nie mają żadnych brakujących wartości oraz niestandardowego kodowania.

Podsumowując, mamy:

```
• n = 4601 (liczba przypadków),
```

- p = 58 (liczba cech),
- K = 2 (licza klas, "spam" i "nonspam"),
- 0 wartości brakujących.

1.3 Przygotowanie danych do analizy

Przed analizą poszczególnych zmiennych należy znormalizować dane, ponieważ są nierównomiernie rozłożone. Zostały one znormalizowane przy użyciu własnoręcznie zaimplementowanej funkcji normalize, tak aby wszystkie wartości liczbowe mieściły się w przedziale od 0 do 1.

```
normalize <- function(x) {
        return( (x - min(x)) / (max(x) - min(x)))
}
NormalizeSpam <- as.data.frame(lapply(spam[1:57], normalize))

#Cleaning Data - dodanie kolumny type (naszej klasy)
CleanSpam <- cbind(spam[, 58], NormalizeSpam)
names(CleanSpam)[names(CleanSpam) == "spam[, 58]"] <- "class"
CleanSpam$class <- as.character(CleanSpam$class)

#usytuowanie zmiennej class na sam koniec
CleanSpam <- CleanSpam %>% relocate(class, .after=capitalTotal)
```

W poprzedniej sekcji pokazaliśmy, że nie ma żadnych brakujących wartości. Musimy również usunąć obserwacje zduplikowane, za pomocą funkcji distinct z pakietu dplyr.

```
## Liczba usuniętych wierszy: 391
```

Ilość obserwacji zmniejszyła się i wynosi aktualnie 4210.

Obliczając jeden ze wskaźników sumarycznych otrzymujemy, że większość zmiennych cechuję się bardzo niską wariancją (tabela 4), co świadczy o bardzo małej zmienności, zatem ciężko będzie nam wybrać zmienne, które powinny zostać usunięte (biorąc pod uwagę tylko ten aspekt).

	make	address	all	num3d	our	over	remove	internet	order	mail	"("
make	0.00437	0.00007	0.00042	0.00001	0.00010	0.00017	0.00004	-0.00001	0.00037	0.00010	-0.00004
address	0.00007	0.00101	0.00009	-0.00001	0.00008	0.00001	0.00013	0.00002	0.00009	0.00021	-0.00003
all	0.00042	0.00009	0.01023	-0.00006	0.00046	0.00032	0.00016	0.00003	0.00042	0.00009	-0.00007
num3d	0.00001	-0.00001	-0.00006	0.00100	0.00000	-0.00001	0.00002	0.00000	-0.00000	-0.00000	-0.00001
our	0.00010	0.00008	0.00046	0.00000	0.00473	0.00013	0.00051	0.00006	0.00005	0.00007	-0.00011
over	0.00017	0.00001	0.00032	-0.00001	0.00013	0.00220	0.00012	0.00014	0.00024	0.00002	-0.00002
remove	0.00004	0.00013	0.00016	0.00002	0.00051	0.00012	0.00299	0.00007	0.00014	0.00011	-0.00009
internet	-0.00001	0.00002	0.00003	0.00000	0.00006	0.00014	0.00007	0.00136	0.00021	0.00011	-0.00004
order	0.00037	0.00009	0.00042	-0.00000	0.00005	0.00024	0.00014	0.00021	0.00288	0.00024	-0.00006
$_{ m mail}$	0.00010	0.00021	0.00009	-0.00000	0.00007	0.00002	0.00011	0.00011	0.00024	0.00130	-0.00001
"("	-0.00004	-0.00003	-0.00007	-0.00001	-0.00011	-0.00002	-0.00009	-0.00004	-0.00006	-0.00001	0.00079

Tabela 4: Wariancja poszczególnych zmiennych.

1.4 Analiza poszczególnych zmiennych

W tej sekcji zajmiemy się pozostałymi wskaźnikami sumarycznymi czyli między innymi miarami położenia i rozrzutu, wyznaczonymi dla wszystkich danych.

Wiemy, że wszystkie zmienne oprócz type są ilościowe zatem możemy użyć funkcji describe z pakietu dlookr, żeby zobaczyć statystyki opisowe.

Tabela 5: Wskaźniki sumaryczne dla wszystkich zmiennych.

described_variables	n	na	mean	sd	se_mean	IQR	skewness	kurtosis	p25	p50	p75
make	4210	0	0.0230	0.0661	0.0010	0.0000	5.8699	54.3514	0.0000	0.0000	0.0000
address	4210	0	0.0079	0.0318	0.0005	0.0000	13.4647	306.6860	0.0000	0.0000	0.0000
all	4210	0	0.0572	0.1011	0.0016	0.0863	2.9806	12.9414	0.0000	0.0000	0.0863
num3d	4210	0	0.0015	0.0316	0.0005	0.0000	27.2095	788.3701	0.0000	0.0000	0.0000
our	4210	0	0.0325	0.0688	0.0003	0.0410	4.6969	37.0648	0.0000	0.0000	0.0410
over	4210	0	0.0164	0.0469	0.0007	0.0000	6.1227	71.6033	0.0000	0.0000	0.0000
remove	4210	0	0.0162	0.0546	0.0007	0.0000	6.8087	76.3816	0.0000	0.0000	0.0000
internet	4210	0	0.0102	0.0340	0.0006	0.0000	9.7342	167.5502	0.0000	0.0000	0.0000
order	4210	0	0.0037	0.0536	0.0008	0.0000	5.2843	48.0114	0.0000	0.0000	0.0000
mail	4210	0	0.0173	0.0361	0.0006	0.0105	8.5686	162.5390	0.0000	0.0000	0.0105
receive	4210	0	0.0137	0.0706	0.0000	0.0000	5.0783	34.6561	0.0000	0.0000	0.0000
will	4210	0	0.0584	0.0913	0.0011	0.0858	2.8280	12.0961	0.0000	0.0196	0.0858
people	4210	0	0.0176	0.0557	0.0009	0.0000	6.8900	82.5963	0.0000	0.0000	0.0000
report	4210	0	0.0061	0.0346	0.0005	0.0000	11.5641	219.6452	0.0000	0.0000	0.0000
addresses	4210	0	0.0102	0.0549	0.0008	0.0000	7.5134	69.4938	0.0000	0.0000	0.0000
free	4210	0	0.0102	0.0349	0.0008	0.0064	9.3877	157.6917	0.0000	0.0000	0.0064
business	4210	0	0.0127	0.0333	0.0000	0.0004	5.5677	43.5142	0.0000	0.0000	0.0004
email	4210	0	0.0209	0.0595	0.0010	0.0000	5.4539	48.1575	0.0000	0.0000	0.0000
	4210	0	0.0208	0.0393	0.0009	0.0000	1.5243	48.1373	0.0000	0.0000	0.1451
you credit	4210	0	0.0910	0.0943	0.0013	0.0000	15.4302	424.6858	0.0000	0.0000	0.0000
	4210	0	0.0047	0.0278	0.0004	0.0000	2.2457	8.0942	0.0000	0.0000	0.0000
your font		0	0.0729	0.1035		0.0000	9.5415	99.6661			
	4210 4210	0	0.0077		0.0010		5.8595		0.0000	0.0000	0.0000
num000	4210	0	0.0183	0.0645	0.0010 0.0005	0.0000	15.5567	49.1199 340.1758	0.0000	0.0000	0.0000
money		-				0.0000				0.0000	
hp	4210	0	0.0276	0.0805	0.0012	0.0047	5.6388	43.1824	0.0000	0.0000	0.0047
hpl	4210	0	0.0168	0.0544	0.0008	0.0000	6.2975	63.0729	0.0000	0.0000	0.0000
george	4210	0	0.0111	0.0533	0.0008	0.0000	9.4816	111.0998	0.0000	0.0000	0.0000
num650	4210	0	0.0141	0.0589	0.0009	0.0000	6.5180	58.6692	0.0000	0.0000	0.0000
lab	4210	0	0.0069	0.0404	0.0006	0.0000	11.6836	189.4087	0.0000	0.0000	0.0000
labs	4210	0	0.0176	0.0748	0.0012	0.0000	6.3808	49.1053	0.0000	0.0000	0.0000
telnet	4210	0	0.0051	0.0310	0.0005	0.0000	13.5149	302.3699	0.0000	0.0000	0.0000
num857	4210	0	0.0094	0.0632	0.0010	0.0000	10.4325	128.2958	0.0000	0.0000	0.0000
data	4210	0	0.0056	0.0313	0.0005	0.0000	13.0694	290.7362	0.0000	0.0000	0.0000
num415	4210	0	0.0096	0.0634	0.0010	0.0000	10.3398	126.4371	0.0000	0.0000	0.0000
num85	4210	0	0.0054	0.0265	0.0004	0.0000	16.0018	491.5416	0.0000	0.0000	0.0000
technology	4210	0	0.0129	0.0503	0.0008	0.0000	7.3588	79.9880	0.0000	0.0000	0.0000
num1999	4210	0	0.0208	0.0616	0.0009	0.0000	5.1266	40.8880	0.0000	0.0000	0.0000
parts	4210	0	0.0017	0.0277	0.0004	0.0000	27.0787	836.2293	0.0000	0.0000	0.0000
pm	4210	0	0.0076	0.0403	0.0006	0.0000	11.7623	205.9592	0.0000	0.0000	0.0000
direct	4210	0	0.0129	0.0671	0.0010	0.0000	9.1018	101.1202	0.0000	0.0000	0.0000
CS	4210	0	0.0058	0.0446	0.0007	0.0000	11.4688	166.2617	0.0000	0.0000	0.0000
meeting	4210	0	0.0099	0.0556	0.0009	0.0000	9.1852	108.9947	0.0000	0.0000	0.0000
original	4210	0	0.0137	0.0649	0.0010	0.0000	7.4082	73.7954	0.0000	0.0000	0.0000
project	4210	0	0.0043	0.0323	0.0005	0.0000	18.1968	449.0177	0.0000	0.0000	0.0000
re	4210	0	0.0149	0.0488	0.0008	0.0079	8.9179	122.0675	0.0000	0.0000	0.0079
edu	4210	0	0.0086	0.0421	0.0006	0.0000	10.0770	150.1195	0.0000	0.0000	0.0000
table	4210	0	0.0027	0.0365	0.0006	0.0000	19.2985	431.3092	0.0000	0.0000	0.0000
conference	4210	0	0.0035	0.0299	0.0005	0.0000	18.8718	492.1469	0.0000	0.0000	0.0000
,"	4210	0	0.0092	0.0576	0.0009	0.0000	13.3559	200.4498	0.0000	0.0000	0.0000
"("	4210	0	0.0148	0.0281	0.0004	0.0199	14.0027	404.3701	0.0000	0.0075	0.0199
,,["	4210	0	0.0043	0.0259	0.0004	0.0000	21.2720	664.6204	0.0000	0.0000	0.0000
"!"	4210	0	0.0087	0.0260	0.0004	0.0102	18.3373	579.4385	0.0000	0.0005	0.0102
"\$"	4210	0	0.0127	0.0399	0.0006	0.0088	10.6090	188.4627	0.0000	0.0000	0.0088
"#"	4210	0	0.0023	0.0220	0.0003	0.0000	31.5002	1238.3210	0.0000	0.0000	0.0000
capitalAve	4210	0	0.0040	0.0301	0.0005	0.0019	22.7607	614.3999	0.0006	0.0012	0.0025
capitalLong	4210	0	0.0051	0.0200	0.0003	0.0037	31.2055	1471.2156	0.0006	0.0014	0.0043
capitalTotal	4210	0	0.0183	0.0391	0.0006	0.0148	8.8016	146.1084	0.0025	0.0063	0.0172

W naszych danych występuje 4210 obserwacji oraz 0 wartości brakujących (tabela 5). Jeżeli chodzi o średnią, odchylenie standardowe, błąd standardowy średniej czy rozstęp międzykwartylowy (IQR) to osiągane są dość niskie wyniki dla każdej zmiennej. Podobnie możemy powiedzieć o wartościach osiąganych przez kwartyl pierwszy, drugi i trzeci. Inaczej to się ma jeśli chodzi o skośność gdzie osiągane są wysokie wyniki powyżej zera, co świadczy o prawostronnej asymetrii rozkładu zmiennych. Jeżeli chodzi o wartości kurtozy to są one największe spośród wszystkich wskaźników sumarycznych wymienionych w tabeli 5 i mówią o tym, że rozkład zmiennych jest bardziej wysmukły niż normalny (rozkład leptokurtyczny), czyli mają większe skupienie wartości wokół średniej.

1.5 Analiza zależności (korelacji) między zmiennymi

W tej sekcji zajmiemy się rysowaniem podstawowych wykresów takich jak histogramy, wykresy rozrzutu, wykresy pudełkowe, macierze korelacji czy estymatory jądrowe gęstości. Na początek tworzymy macierz korelacji, żeby zobaczyć jak prezentują się zależności między zmiennymi.

Rysunek 2: Macierz korelacji zmiennych.

Zmienne w znacznej większości nie są ze sobą powiązane (tabela 2), jednak wyodrębnimy te, dla których zależność jest wysoka. Wybierzemy wartości korelacji zmiennych, dla których wartość bezwzględna współczynnika korelacji jest wyższa niż 0.55. Wtedy otrzymamy lepszy i wyrazistszy wgląd na zmienne oraz będziemy mogli przejść do dalszej analizy.

Rysunek 3: Macierz korelacji poszczególnych zmiennych.

Dla lepszego zobrazowania na rysunku 4 przedstawione są dokładne wartości współczynnika korelacji, które są osiągane na rysunku 3.

	labs	telnet	num857	num415	technology	direct	1
labs	1.00	0.56	0.61	0.61	0.58	0.56	0.8
telnet	0.56	1.00	0.68	0.68	0.62	0.64	0.6 0.4
num857	0.61	0.68	1.00	0.99	0.67	0.82	0.2
num415	0.61	0.68	0.99	1.00	0.67	0.82	0.2
technology	0.58	0.62	0.67	0.67	1.00	0.62	0.4
direct	0.56	0.64	0.82	0.82	0.62	1.00	0.8

Rysunek 4: Macierz korelacji poszczególnych zmiennych z widocznymi wartościami współczynnika korelacji.

Największe powiązanie występuje między zmiennymi num857 i num415 gdzie współczynnik korelacji wynosi prawie 1. Może to być związane z numerem telefonu, który składa się z takich cyfr, wtedy numery te tworzyłyby całość co jest równoznaczne z tym, że będą występowały razem w danym mailu lub nie. Zauważalna jest również jedynie korelacja dodatnia oznaczająca, że wraz ze wzrostem wartości jednej cechy następuje wzrost wartości drugiej.

Zobaczmy jak zmienne prezentują się na skategoryzowanych wykresach rozrzutu.

Rysunek 5: Skategoryzowane wykresy rozrzutu poszczególnych zmiennych.

Widzimy na wykresach 5, że wraz ze wzrostem jednej obserwacji równomiernie rośnie druga obserwacja, co świadczy o dużej zależności, ale punkty też układają się pionowo, kiedy wartości obserwacji na osi x osiągają 0 lub poziomo, kiedy wartości obserwacji na osi y osiągają 0.

Następnie tworzymy histogramy wraz z estymatorami jądrowych gęstości dla zmiennych z najwyższym współczynnikiem korelacji, gdzie zmienną grupującą jest cecha *class*.

Rysunek 6: Histogramy dla poszczególnych zmiennych.

Widzimy, na histogramach 6, że głównie osiągane są wartości równe 0 oraz większą liczbę stanowi klasa nonspam.

Przechodzimy do tworzenia estymatorów jądrowych gęstości.

Rysunek 7: Estymatory jądrowe gęstości dla poszczególnych zmiennych.

Wnioski podobne jak w przypadku histogramów, dlatego też wyniki na wykresach 6, 7 nie są zróżnicowane (kolejny raz wartości 0 stanowią większość).

Stworzymy tabelę obrazującą jak często pojawia się wartość 0 dla każdej zmiennej w zbiorze danych CleanSpam.

Tabela 6: Ilość występowania wartości 0 dla każdej zmiennej.

	0
make	3228
address	3399
all	2426
num3d	4164
our	2551
over	3277
remove	3448
internet	3443
order	3488
mail	2981
receive	3559
will	2009
people	3404
report	3874
addresses	3905
free	3054
business	3304
email	3238
you	1146
credit	3821
vour	1925
font	4098
num000	3591
money	3551
hp	3146
hpl	3421
george	3543
num650	3758
lab	3851
labs	3754
telnet	3931
num857	4014
data	3813
num415	4004
num85	3740
technology	3628
num1999	3401
parts	4132
pm	3832
direct	3788
cs	4067
meeting	3875
original	3857
project	3893
re	2962
edu	3710
table	4150
conference	4009
," ,"	3460
,,("	1628
"["	3705
,,!"	2068
"\$"	2912
"#"	3508
capitalAve	216
capitalLong	216
capitalTotal	7
capital 10tal	

Najmniej razy wartość 0 występuje dla zmiennych you=1146, capitalAve=216, capitalLong=216 i capitalTotal=7 (tabela 6). Wykonamy dla tych zmiennych histogramy wraz z dopasowaną gęstością normalną.

Rysunek 8: Histogramy wraz z dopasowaną gęstością normalną.

Widzimy, że wartości wciąż są bliskie zeru i są prawoskośnie asymetryczne. Zobaczymy jeszcze czy występują jakiekolwiek wartości odstające stosując wykresy pudełkowe dla zmiennych z najmniejszą liczbą zer, między innymi will, ", "our, you, all i our,"

Rysunek 9: Wykresy pudełkowe dla poszczególnych zmiennych.

Na rysunku 9 widać, że istnieje dużo wartości odstających i występują one głównie dla klasy nonspam. Tylko dla powyższych zmiennych wykresy pudełkowe są "widoczne", a dla pozostałych kontury pudełek wysmuklają się (mniej więcej tak jak w przypadku wykresu pudełkowego dla zmiennej "(", tylko oczywiście w mniejszym stopniu) na poziomie równym 0 i nie są widoczne.

Na sam koniec przejdziemy do usunięcia z naszych danych zmiennych które są ze sobą najbardziej skorelowane, czyli labs, telnet, num857, num415, technology i direct.

```
CleanSpam <- CleanSpam[,-c(30:32,34,36,40)]
colnames(CleanSpam)
##
    [1] "make"
                        "address"
                                        "all"
                                                        "num3d"
                                                                        "our"
    [6] "over"
                        "remove"
                                        "internet"
                                                        "order"
                                                                        "mail"
                        "will"
                                        "people"
                                                        "report"
                                                                        "addresses"
## [11] "receive"
                                                        "you"
## [16] "free"
                        "business"
                                        "email"
                                                                        "credit"
                        "font"
                                        "num000"
                                                                        "hp"
## [21] "your"
                                                        "money"
## [26] "hpl"
                        "george"
                                        "num650"
                                                        "lab"
                                                                        "data"
## [31] "num85"
                        "num1999"
                                        "parts"
                                                        "mq"
                                                                        "cs"
## [36] "meeting"
                        "original"
                                        "project"
                                                        "re"
                                                                        "edu"
                                                                        ",,[,,"
                                        11 , , , ) 11
                                                        ",,(')"
## [41] "table"
                        "conference"
                                        ",,#')"
## [46] ",,!''"
                        ",,$',"
                                                        "capitalAve"
                                                                        "capitalLong"
## [51] "capitalTotal" "class"
```

2 Klasyfikacja

Klasyfikacja to proces przypisywania obiektów do jednej z klas na podstawie ich cech. W naszym przypadku klasyfikacja będzie polegać na przewidywaniu, czy dany e-mail jest spamem czy nie. Do tego celu wykorzystamy parę metod klasyfikacji takich jak regresja liniowa, analiza dyskryminacyjna czy algorytm kNN. Naszym celem będzie wybranie metody, która radzi sobie najlepiej z ocenianiem prawdopodobieństwa przynależności do danej klasy. Aby to ocenić użyjemy różnych miar jakości takich jak dokładność, czy krzywa ROC. Pierwszym krokiem będzie podział danych na zbiór uczący i testowy w proporcji 70:30, ponieważ będzie nam to potrzebne do metod klasyfikacji.

```
set.seed(123456)
classify_data <- CleanSpam

train_indices <- sample(nrow(classify_data), 0.7 * nrow(classify_data))
train_data <- classify_data[train_indices, ]
test_data <- classify_data[-train_indices, ]</pre>
```

2.1 Klasyfikacja oparta na regresji liniowej

$$Y = r(x) + \varepsilon = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \varepsilon, \tag{1}$$

W naszym przypadku użyjemy modelu regresji liniowej 1, aby wyznaczyć klasyfikator postaci

$$\hat{G} = \begin{cases} \text{SPAM} & \text{jeżeli} \quad \hat{Y} > 0.5, \\ \text{NONSPAM} & \text{jeżeli} \quad \hat{Y} \leqslant 0.5, \end{cases}$$

gdzie $\hat{Y} = r(X) = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j$ oznacza prognozę zmiennej zależnej Y, która jest wektorem zawierającym etykietki klas. Dla uproszczenia obliczeń użyjemy wbudowanej funkcji lm() z pakietu stats. W tym celu zmienimy etykietki naszych klas na 0 oraz 1, ponieważ mamy do czynienia z klasyfikacją binarną (K=2).

```
train_data_lm$class <- ifelse(train_data$class == "spam", 1, 0)
test_data_lm$class <- ifelse(test_data$class == "spam", 1, 0)
model <- lm(class ~ ., data = train_data_lm)
predictions <- predict(model, newdata = test_data_lm)
threshold <- 0.5
predicted_labels <- ifelse(predictions > threshold, 1, 0)
```

Tabela 7: Macierz kotyngencji dla regresji liniowej.

	nonspam	spam
nonspam	722	124
spam	34	383

2.2 Klasyfikacja oparta na metodzie LDA (liniowa analiza dyskry-minacyjna)

Do przeprowadzenia liniowej analizy dyskryminacyjnej użyjemy funkcji lda() z pakietu MASS. Biorąc pod uwagę model składający się ze wszystkich zmiennych oczekujemy, że dostaniemy równoważny wynik jak dla regresji liniowej, ponieważ mamy klasyfikację binarną.

```
lda.model <- lda(class ~ ., data = classify_data, subset=train_indices)
lda.pred <- predict(lda.model, newdata = test_data)</pre>
```

Tabela 8: Macierz kontyngencji dla metody lda.

	nonspam	spam
nonspam	722	123
spam	34	384

Accuracy: 0.8756928

Z uwagi na to, że rozkład klas nie jest idealnie równomierny (tabela 3) możemy narysować wykres krzywej ROC umożliwiający ocenę jakości klasyfikacji.

Rysunek 10: Wykres krzywej ROC dla metody lda

Zastosowana klasyfikacja z użyciem metody lda radzi sobie dość dobrze, ponieważ powierzchnia pod krzywą ROC 10 zajmuje duży obszar, co świadczy o wysokiej jakości klasyfikacji.

2.3 Klasyfikacja z wykorzystaniem algorytmu kNN (Classification And Regression Training)

Na początek zajmiemy się klasyfikacją z wykorzystaniem algorytmu k najbliższych sąsiadów za pomocą funkcji knn wbudowanej w bibliotece class. W klasyfikacji wykorzystamy parametr liczby sąsiadów k=1.

Tabela 9: Macierz kontyngencji dla metody knn.

	nonspam	spam
nonspam	678	82
spam	78	425

```
## Accuracy: 0.8733175
```

Widzimy w macierzy kontyngencji 9, że zmienne zostały przyzwoicie sklasyfikowane o czym świadczy wysoka, prawie 90% dokładność. W tabeli 10 zobaczymy jak przedstawiają się wartości prawdziwie negatywne, pozytywne oraz dokładność jeżeli zwiększymy wartości parametru k.

Tabela 10: Wartości prawdziwie negatywne i prawdziwie pozytywne oraz dokładność, dla różnych k.

k	True Negatives	True Positives	Accuracy
5	703	416	0.8860
10	713	400	0.8812
15	708	388	0.8678
20	708	380	0.8614
25	709	376	0.8591

Widzimy, że wartości prawdziwie negatywne początkowo wzrastają, a póżniej się stabilizują, natomiast wartości prawdziwie pozytywne i dokładność maleją. Oznacza to, że im większa wartość parametru liczby sąsiadów k tym mniejsza dokładność klasyfikacji.

Przechodzimy do klasyfikacji z wykorzystaniem funkcji i**predknn** z pakietu ipred dla parametru liczby sąsiadów k=1.

```
# budujemy model
model.knn.1 <- ipredknn(class ~ ., data=train_data, k=1)

#jakość modelu
etykietki.prog.ipred <- predict(model.knn.1,test_data,type="class")</pre>
```

Tabela 11: Macierz kontyngencji dla metody knn.

	nonspam	spam
nonspam	678	82
spam	78	425

```
## Accuracy: 0.8733175
```

Po macierzy kontyngencji 11 można zobaczyć że wyniki są bardzo podobne jak w macierzy 9, gdzie wykorzystywaliśmy funkcję knn z pakietu *class*. W przypadku dokładności wyniki również są do siebie zbliżone.

2.4 Inne (zaawansowane) sposoby oceny jakości klasyfikacji

Często stosuje sie metodę cross-validation polegającą na wielokrotnym losowaniu zbioru uczącego i testowego, budowie klasyfikatora na zbiorze uczącym, sprawdzenia go na testowym oraz uśrednieniu wyników. Można to zrobić oczywiście używając pętli i uśrednić, ale jest jeszcze prostszy sposób.

Można skorzystać z gotowych funkcji ponownie z pakietu *ipred*, ale należy przygotować sobie "wrapper" dostosowujący funkcję **predict** dla naszego modelu do standardu wymaganego przez errorest.

```
my.predict <- function(model, newdata)
  predict(model, newdata=newdata, type="class")
my.ipredknn <- function(formula1, data1, ile.sasiadow)
  ipredknn(formula=formula1,data=data1,k=ile.sasiadow)</pre>
```

Przejdziemy do porównania błędów klasyfikacji następujących metod oceny dokładności klasyfikacji:

- CV (Cross-validation)
- boot (bootstrap)
- 632plus

```
# porownanie błędów klasyfikacji: cv, boot, .632plus
errorest(type ~., spam, model=my.ipredknn, predict=my.predict, estimator="cv",
         est.para=control.errorest(k = 10), ile.sasiadow=5)
##
## Call:
## errorest.data.frame(formula = type ~ ., data = spam, model = my.ipredknn,
       predict = my.predict, estimator = "cv", est.para = control.errorest(k = 10),
       ile.sasiadow = 5)
##
##
     10-fold cross-validation estimator of misclassification error
##
## Misclassification error: 0.1937
errorest(type ~., spam, model=my.ipredknn, predict=my.predict, estimator="boot",
         est.para=control.errorest(nboot = 50), ile.sasiadow=5)
##
## Call:
## errorest.data.frame(formula = type ~ ., data = spam, model = my.ipredknn,
       predict = my.predict, estimator = "boot", est.para = control.errorest(nboot = 50)
##
       ile.sasiadow = 5)
##
    Bootstrap estimator of misclassification error
    with 50 bootstrap replications
##
## Misclassification error: 0.219
## Standard deviation: 0.0012
errorest(type ~., spam, model=my.ipredknn, predict=my.predict, estimator="632plus",
         est.para=control.errorest(nboot = 50), ile.sasiadow=5)
##
## Call:
## errorest.data.frame(formula = type ~ ., data = spam, model = my.ipredknn,
       predict = my.predict, estimator = "632plus", est.para = control.errorest(nboot =
##
       ile.sasiadow = 5)
##
##
    .632+ Bootstrap estimator of misclassification error
    with 50 bootstrap replications
##
## Misclassification error: 0.1906
```

W tabeli 12 pokazane są wartości wskaźnika accuracy dla każdej z trzech metod oceny dokładności klasyfikacji.

Tabela 12: Wartości wskaźnika accuracy dla różnych metod oceny dokłądności klasyfikacji.

Cross-validation	Bootstrap	632plus
0.806	0.781	0.8094

Zważywszy na dość niskie wyniki wartości wskaźnika accuracy, powyższe sposoby oceny dokładności nie będą brane pod uwagę w końcowym porównaniu wszystkich metod klasyfikacji.

Podsumowanie

W tym rozdziale przeprowadzono klasyfikację na zbiorze danych przy użyciu różnych metod, takich jak regresja liniowa, LDA i kNN. Wszystkie metody zostały ocenione na podstawie ich skuteczności, mierzonej za pomocą wskaźnika accuracy. Najwyższe wyniki (tabela 13) uzyskano dla metody kNN dla liczby sąsiadów równej 5, osiągając skuteczność na poziomie prawie 90%, co wskazuje na jej wysoką zdolność do poprawnej klasyfikacji obiektów. Tak jak podejrzewaliśmy metody LDA oraz regresji liniowej osiągneły taki sam poziom accuracy, który był również wysoki.

Tabela 13: Wartości wskaźnika accuracy dla różnych metod klasyfikacji.

Reg. liniowa	Metoda LDA	Algorytm kNN (k=1)	Algorytm kNN (k=5)	Algorytm kNN (funk. ipredknn)
0.8749	0.8757	0.8733	0.886	0.8733

Wskaźnik accuracy (tabela 13) dla wszystkich metod jest do siebie zbliżony, dlatego możemy wnioskować, że wszystkie metody klasyfikacji są w stanie skutecznie ocenić klasę danej obserwacji dla danych *Spambase*.