

এসএসসি ও দাখিল (ভোকেশনাল)

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড কর্তৃক প্রকাশিত

উইভিং-১ Weaving-1

প্রথম ও দিতীয় পত্র নবম ও দশম শ্রেণি

লেখক

ইঞ্জিনিয়ার মোঃ মহিবুল ইসলাম এমএসসি-ইন-টেক্সটাইল ইঞ্জিনিয়ারিং

অধ্যক্ষ

টেক্সটাইল ইঞ্জিনিয়ারিং কলেজ, চট্টগ্রাম।

সম্পাদক

মোঃ হাবিবুর রহমান এমএসসি-ইন-টেক্সটাইল সায়েঙ্গ অ্যাভ ইঞ্জিনিয়ারিং

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

৬৯–৭০, মতিঝিল বাণিজ্যিক এলাকা, ঢাকা–১০০০ কর্তৃক প্রকাশিত।

[প্রকাশক কর্তৃক সর্বস্বত্ব সংরক্ষিত]

পরীক্ষামূলক সংস্করণ

প্রথম প্রকাশ : নভেম্বর,২০১৬ পুনর্মুদ্রণ : আগস্ট, ২০১৭

ডিজাইন জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য

প্ৰসঙ্গ-কথা

শিক্ষা জাতীয় জীবনের সর্বতোমুখী উন্নয়নের পূর্বশর্ত। দ্রুত পরিবর্তনশীল বিশ্বের চ্যালেঞ্জ মোকাবেলা করে বাংলাদেশকে উন্নয়ন ও সমৃদ্ধির দিকে নিয়ে যাওয়ার জন্য প্রয়োজন সৃশিক্ষিত-দক্ষ মানব সম্পদ। কারিগারি ও বৃত্তিমূলক শিক্ষা দক্ষ মানব সম্পদ উন্নয়ন, দারিদ্র্য বিমোচন, কর্মসংস্থান এবং আত্মনির্ভরশীল হয়ে বেকার সমস্যা সমাধানে গুরুত্বপূর্ণ অবদান রাখছে। বাংলাদেশের মতো উন্নয়নশীল দেশে কারিগরি ও বৃত্তিমূলক শিক্ষার ব্যাপক প্রসারের কোনো বিকল্প নেই। তাই ক্রমপরিবর্তনশীল অর্থনীতির সঙ্গে দেশে ও বিদেশে কারিগরি শিক্ষায় শিক্ষিত দক্ষ জনশক্তির চাহিদা দিন দিন বৃদ্ধি পাচেছ। এ কারণে বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক এসএসসি (ভোকেশনাল) ও দাখিল (ভোকেশনাল) স্তরের শিক্ষাক্রম ইতোমধ্যে পরিমার্জন করে যুগোপযোগী করা হয়েছে।

শিক্ষাক্রম উন্নয়ন একটি ধারাবাহিক প্রক্রিয়া। পরিমার্জিত শিক্ষাক্রমের আলোকে প্রণীত পাঠ্যপুস্তকসমূহ পরিবর্তনশীল চাহিদার পরিপ্রেক্ষিতে এসএসসি (ভোকেশনাল) ও দাখিল (ভোকেশনাল) পর্যায়ে অধ্যয়নরত শিক্ষার্থীদের যথাযথভাবে কারিগরি শিক্ষায় দক্ষ করে গড়ে তুলতে সক্ষম হবে। অভ্যন্তরীণ ও বহির্বিশ্বে কর্মসংস্থানের সুযোগ সৃষ্টি এবং আত্মকর্মসংস্থানে উদ্যোগী হওয়াসহ উচ্চশিক্ষার পথ সুগম হবে। ফলে রূপকল্প-২০২১ অনুযায়ী জাতিকে বিজ্ঞানমনক্ষ ও প্রশিক্ষিত করে ডিজিটাল বাংলাদেশ নির্মাণে আমরা উজ্জীবিত।

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার ২০০৯ শিক্ষাবর্ষ হতে সকলস্তরের পাঠ্যপুস্তক বিনামূল্যে শিক্ষার্থীদের মধ্যে বিতরণ করার যুগান্তকারী সিদ্ধান্ত গ্রহণ করেছে। কোমলমতি শিক্ষার্থীদের আরও আগ্রহী, কৌতৃহলী ও মনোযোগী করার জন্য মাননীয় প্রধানমন্ত্রী শেখ হাসিনার নেতৃত্বে আওয়ামী লীগ সরকার প্রাক-প্রাথমিক, প্রাথমিক, মাধ্যমিকস্তর থেকে শুরু করে ইবতেদায়ি, দাখিল, দাখিল ভোকেশনাল ও এসএসসি ভোকেশনালস্তরের পাঠ্যপুস্তকসমূহ চার রঙে উন্নীত করে আকর্ষণীয়, টেকসই ও বিনামূল্যে বিতরণ করার মহৎ উদ্যোগ গ্রহণ করেছে; যা একটি ব্যতিক্রমী প্রয়াস। বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক রচিত ভোকেশনালস্তরের ট্রেড পাঠ্যপুস্তকসমূহ সরকারি সিদ্ধান্তের প্রেক্ষিতে জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড ২০১৭ শিক্ষাবর্ষ থেকে সংশোধন ও পরিমার্জন করে মুদ্রণের দায়িত্ব গ্রহণ করে। এ বছর উন্নতমানের কাগজ ও চার রঙের প্রচ্ছদ ব্যবহার করে অতি অল্প সময়ে পাঠ্যপুস্তকটি মুদ্রণ করে প্রকাশ করা হলো।

বানানের ক্ষেত্রে সমতা বিধানের জন্য অনুসৃত হয়েছে বাংলা একাডেমি কর্তৃক প্রণীত বানান রীতি। পাঠ্যপুস্তকটির আরও উন্নয়নের জন্য যে কোনো গঠনমূলক ও যুক্তিসংগত পরামর্শ গুরুত্বের সাথে বিবেচিত হবে। শিক্ষার্থীদের হাতে সময়মত বই পৌছে দেওয়ার জন্য মুদ্রণের কাজ দ্রুত করতে গিয়ে কিছু ক্রটি-বিচ্যুতি থেকে যেতে পারে। পরবর্তী সংস্করণে বইটি আরও সুন্দর, প্রাঞ্জল ও ক্রটিমুক্ত করার চেষ্টা করা হবে। যাঁরা বইটি রচনা, সম্পাদনা, প্রকাশনার কাজে আন্তরিকভাবে মেধা ও শ্রম দিয়ে সহযোগিতা করেছেন তাঁদের জানাই আন্তরিক ধন্যবাদ। পাঠ্যপুস্তকটি শিক্ষার্থীরা আনন্দের সঙ্গে পাঠ করবে এবং তাদের মেধা ও দক্ষতা বৃদ্ধি পাবে বলে আশা করি।

প্রফেসর নারায়ণ চন্দ্র সাহা চেয়ারম্যান জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড, বাংলাদেশ

সূচিপত্ৰ-

		•
ক্রমিক নং	বিবরণ	পৃষ্ঠা নং
নবম শ্রে	ণ, তাত্ত্বিক অংশ	
٥	প্রথম অধ্যায়, টেক্সটাইল ফাইবার	2
২	দ্বিতীয় অধ্যায়, প্রাকৃতিক ফাইবার	٩
9	ভৃতীয় অধ্যায়, কটন ফাইবার	20
8	চতুর্থ অধ্যায়, জুট ফাইবার	২৩
œ	পঞ্চম অধ্যায়, সিল্ক ফাইবার	২৯
৬	ষষ্ঠ অধ্যায়, বস্ত্রে ব্যবহৃত সুতা	৩৫
٩	সপ্তম অধ্যায়, সুতার কাউন্ট	8&
ъ	অষ্টম অধ্যায়, কাপড় প্রস্তুতের বিভিন্ন ধাপ	¢¢
৯	নবম অধ্যায়, ওয়াইভিং	৬৩
20	দশম অধ্যায়, টানা প্রকরণ	୧୯
77	একাদশ অধ্যায়, মাড় প্রকরণ	৭৯
নবম শ্রে	ণ, ব্যবহারিক অংশ	
ડર	রক্ষণাবেক্ষণে ব্যবহৃত বিভিন্ন যন্ত্রপাতির সাথে পরিচিতি	b -8
20	নির্দিষ্ট কাজের জন্য নির্দিষ্ট যন্ত্রের পরিচিতি	\$2
78	রক্ষণাবেক্ষণে ব্যবস্থত যন্ত্রপাতি ব্যবহারের সতর্কতা	৯২
26	কটন ফাইবারের পরিচিতি ও শনাক্তকরণ	৯২
১৬	সিল্ক ফাইবারের পরিচিতি ও শনাক্তকরণ	৯৪
۵۹	বিভিন্ন প্রকার সুতার কাউন্ট নির্ণয়	গ
72	ব্যালেন্সের সাহায্যে সুতার কাউন্ট নির্ণয়	৯৭
<i>አ</i> አ	হাতে চরকা ও চরকি প্রস্তুত করা	200
২০	আম্বর চরকার ব্যবহার	202
২১	সুতা রিলিং করা সম্পর্কে দক্ষতা অর্জন	202
ર ર	বিভিন্ন প্রকার নলীর সাথে পরিচিতি	১০২
২৩	হ্যাংক থেকে নলী প্রস্তুতকরণ	५०७
২৪	কাপড়ের ডিজাইন অনুবায়ী সূভার হিসাব নির্ণয়করণ ও ক্রিলে কোন/চিজ স্থাপন করণ	८०८
২৫	ক্রিলে সুতা সাজানো	208
২৬	ক্রিল থেকে ড্রামে সুতা স্থানান্তর	306
২৭	মেশিন থেকে বিম নামানো	১০৬
২৮	বিভিন্ন প্রকার সাইজিং ম্যাটারিয়ালস সমন্ধে পরিচিতি	১০৬
২৯	সাইজিং এর রেসিপি নির্বাচন	20p
೨೦	হ্যাংক সুতায় মাড় করার প্রস্তুতপ্রণালি	४०४
৩১	কয়েকটি যন্ত্রপাতির চিত্র	770
	নবম শ্রেণি, প্রশ্নমালা	225

ক্ৰমিক নং	বিবরণ	পৃষ্ঠা নং
দশম শ্রে	ণি, তাত্ত্বিক অংশ	
2	প্রথম অধ্যায়, কৃত্রিম ফাইবার	779
N	দ্বিতীয় অধ্যায়, নাইলন	757
9	তৃতীয় অধ্যায়, পলিয়েস্টার	707
8	চতুর্থ অধ্যায়, অ্যাকরাইলিক	১৩৫
¢	পঞ্চম অধ্যায়, সুতার কাউন্ট	১৩৯
ھ	ষষ্ঠ অধ্যায়, সেকশনাল ওয়ার্পিং	3 89
٩	সপ্তম অধ্যায়, মাড় প্রকরণ	767
ъ	অষ্টম অধ্যায়, কাপড়ের বিভিন্ন ক্রটি	ሪዕሪ
જ	নবম অধ্যায়, গ্রে কাপড় ইঙ্গপেকশন	<i>৫৬</i> ८
দশম শ্রেণি, ব্যবহারিক অংশ		
70	রক্ষণাবেক্ষণে ব্যবহৃত বিভিন্ন যন্ত্রপাতির সাথে পরিচিতি	১৭২
77	নির্দিষ্ট নামের যন্ত্রটি শানাক্তকরণ	১৭৩
ડ ર	যন্ত্রটি নির্দিষ্ট কাজে ব্যবহার করা	299
20	ব্যবহারের পর যন্ত্রপাতি পরিষ্কারকরণ	299
78	যন্ত্রপাতি ব্যবহারের সময় সতর্কতামূলক ব্যবস্থা	ንባ৮
১ ৫	কৃত্রিম আঁশ সম্পর্কে অবগত হওয়া	১৭৯
১৬	কৃত্রিম আঁশ শনাক্তকরণ	১৭৯
٥٤	কৃত্রিম আঁশ-এর প্রকারভেদ ও শনাক্তকরণ	242
74	বিভিন্ন প্রকার ব্যালেন্স পরিচিতি	244
79	নির্দিষ্ট কাজের জন্য নির্দিষ্ট ব্যালেন্স শনাক্তকরণ	720
২০	র্যাপরিলের সাহায্যে সুতার লি নির্ণয়	ን ዶ8
২১	বিভিন্ন পদ্ধতিতে সুতার কাউন্ট নির্ণয়	728
રર	সুতা পাক/টুইস্ট সম্বন্ধে পরিচিতি	ን ኦ৮
২৩	টিপিআই সম্পর্কে আলোচনা	722
ર 8	সুতার পাক পরিমাপের যন্ত্রের পরিচিতি	ঠ৮৯
২৫	টুইস্ট টেস্টারের সাহায্যে সুতার পাক পরিমাপ	አዮ৯
<i>ম</i> ঙ	বিভিন্ন ধরনের ওয়াইন্ডিং প্রক্রিয়ার পরিচিতি	०४८
২৭	টানা প্রকরণের প্রকারভেদ ও পরিচিতি	১৯২
২৮	সেকশনাল ওয়ার্পিং আরে ক্রিল সাজানো	১৯২
২৯	মাড়ের উপাদানগুলো সম্পর্কে পরিচিতি	०४८
೨೦	একটি আদর্শ মাড়ের রেসিপির পরিচিতি	328
৩১	কয়েকটি যন্ত্রপাতির চিত্র	১৯৬
৩২	দশম শ্ৰেণি, প্ৰশ্নমালা	১৯৭

প্রথম অধ্যায় টেক্সটাইল ফাইবার (Textile Fibre)

ভূমিকা (Introduction)-

আমাদের দেশের আর্থসামাজিক উনুয়নে টেক্সটাইল পণ্য অত্যন্ত তাৎপর্যপূর্ণ ভূমিকা রাখছে। পোশাকশিল্প, পাটপণ্য, কাপড় ও কাঁচামাল পাট ইত্যাদিই আমাদের বৈদেশিক মুদ্রা অর্জনে প্রধান খাত। অনু, বস্ত্র, আশ্রয় মানুষের এই তিনটি মৌলিক চাহিদার মধ্যে বস্ত্রের স্থান দ্বিতীয়। বস্ত্র ছাড়া সভ্য মানুষ এক মুহর্তও চলতে পারে না। কাজেই মানবজীবনে বস্ত্রের গুরুত্ব অপরিসীম। আর এই বস্ত্র তৈরির জন্য বিভিন্ন ধাপ অতিক্রম করে ফাইবার হতে পরিধান উপযোগী কাপড় ও পোশাক তৈরি করা হয়। টেক্সটাইল শিক্ষায় বস্ত্র তৈরির ধাপসমূহকে চারটি ভাগে ভাগ করা হয়েছে। ইয়ার্ন ম্যানুফ্যাকচারিং, ফেব্রিক ম্যানুফ্যাকচারিং, ওয়েট প্রসেসিং এবং গার্মেন্ট্স প্রোডাকশন।

ইয়ার্ন ম্যানুফ্যাকচারে টেক্সটাইল ফাইবার থেকে সুতা প্রস্তুত, ফেব্রিক ম্যানুফ্যাকচারে সুতা থেকে কাপড় প্রস্তুত, ওয়েট প্রসেসিং-এ গ্রে কাপড়কে ব্যবহার উপযোগী ফিনিসড কাপড়ে পরিণত এবং গার্মেন্টস প্রোডাকশনে ফিনিসড কাপড় থেকে পোশাক প্রস্তুতকরণ বিষয়ে আলোচনা করা হয়েছে। উইভিং ট্রেড নলেজ বিষয়ে ফাইবার হতে সুতা প্রস্তুতসহ ব্যবহার উপযোগী ফিনিসড কাপড় প্রস্তুতের ধারণা প্রদান করা হয়েছে। শিক্ষার্থীরা এই বই অধ্যয়ন করে টেক্সটাইল শিক্ষা সম্পর্কে প্রাথমিক ধারণা পাবে সে উদ্দেশ্যেই এই পাঠ সূচি তৈরি করা হয়েছে। কাপড় তৈরি করার কাঁচামাল হিসেবে সুতার প্রয়োজন এবং সুতা তৈরির কাঁচামাল হিসেবে টেক্সটাইল গুণাগুণসম্পন্ন আঁশ বা ফাইবারের প্রয়োজন। কাজেই শিক্ষার্থীর সুতা বা কাপড় তৈরির পূর্বে টেক্সটাইল ফাইবার সম্পর্কে প্রাথমিক ধারণা থাকা প্রয়োজন।

সাধারণত আঁশ বা ফাইবারের প্রস্থ এর চেয়ে দৈর্ঘ্য অনেক বেশি। পৃথিবীতে অনেক ধরনের আঁশ পাওয়া সম্ভব। কিন্তু টেক্সটাইল সুতা বা বস্ত্র তৈরির গুণাগুণ রয়েছে এ রকম ফাইবার মাত্র কিছু সংখ্যক ফাইবারের মধ্যে রয়েছে। আঁশের মধ্যে সর্বপ্রথম যে সমস্ত গুণাগুণ থাকা প্রয়োজন তার মধ্যে প্রধান গুণাগুণ হলো আঁশের দৈর্ঘ্য ও শক্তি। দৈর্ঘ্য ও শক্তি ছাড়া কোনো টেক্সটাইল পণ্য উৎপাদন করা সম্ভব নয়। তবে ম্যানমেড ফাইবারের ক্ষেত্রে দৈর্ঘ্য কোনো গুরুত্বপূর্ণ বিষয় নয়। কারণ সুতা তৈরি করার সময় প্রয়োজনীয় দৈর্ঘ্য অনুযায়ী কেটে নিলেই হয়। বর্তমান বিশ্বে প্রাকৃতিক ও কৃত্রিম উভয় প্রকার ফাইবারই বাণিজ্যিক ভিত্তিতে প্রচুর পরিমাণ ব্যবহৃত হচ্ছে। এ ক্ষেত্রে কটন ফাইবারের তৈরি সুতা, কাপড় ও পোশাক-এর একটা উল্লেখযোগ্য ভূমিকা রয়েছে। তবে আমাদের দেশে কটন ফাইবার অর্থাৎ তুলা প্রচুর পরিমাণে জন্মে না। তাছাড়া যা জন্মে তাও কোয়ালিটির দিক থেকে উন্নতমানের নয়। আঁশের দৈর্ঘ্য কম, শক্তিও তেমন ভালো নয়। কাজেই ভালো তুলার জন্য আমাদের বিদেশের উপর নির্ভর করতে হয়। ফলে বৈদেশিক মুদ্রার অপচয় হয়। পাশাপাশি অধিকমূল্যের কাঁচামাল ক্রয় করার জন্য উৎপাদন খরচও বেড়ে যায়। ফলে পার্শ্ববর্ত্তী দেশসমূহের সাথে প্রতিযোগিতায় টিকে থাকা কঠিন হয়ে পড়ে। বর্তমানে মুক্তবাজার অর্থনীতির কারণে ও সরকারি উচ্চপর্যায়ের সিদ্ধান্তের জন্য

পার্শ্ববর্তী দেশ থেকে স্থলপথে কটন সুতা আমদাণি হচ্ছে। দেশি স্পিনিং মিলসমূহ প্রতিযোগিতায় টিকতে না পেরে স্বল্পমূল্যে কটন সুতা বাজারজাত করছে। ফলে স্পিনিং মিলসমূহ একে একে বন্ধ হয়ে যাচছে। এ অবস্থার পরিত্রাণের জন্য এখনই সরকরি সিদ্ধান্ত পরিবর্তন করা প্রয়োজন। নতুবা টেক্সটাইল শিল্পের ভবিষ্যৎ মারাত্মক হুমকির মুখে পড়বে।

এক সময়ের বাংলাদেশের গোল্ডেন ফাইবার পাটও বাংলাদেশ থেকে আস্তে আস্তে হ্রাস পেতে শুরু করছে। পাটের আঁশ মোটা হলেও এ আঁশ দ্বারা যে কাপড় তৈরি হয় তার ব্যবহার বছবিধ এবং মূল্যও অনেক কম। এছাড়া জুট ফাইবার দ্বারা তোয়ালে, সুতা, বস্তা, ব্যাগ, হেসিয়ান ও স্যাকিং কাপড় ইত্যাদি তৈরি হচ্ছে। এই প্রাকৃতিক আঁশ পরিবেশের সাথে সামঞ্জস্যপূর্ণ হওয়ায় এবং পরিবেশের শক্র পলিথিনের ব্যবহার নিষিদ্ধ হওয়ায় সাধারণ মানুষ জুট ফাইবারের তৈরি সামগ্রী ব্যবহারের দিকে কিছুটা দৃষ্টি দিয়েছে। ফলে পাটপণ্য ও পাটশিল্প বিলুপ্ত হওয়া থেকে রক্ষা পেয়েছে। এ ছাড়া বর্তমান সরকার পাটশিল্প রক্ষার জন্য ২০১০ সালে 'পণ্যে পাটজাত মোড়কের বাধ্যতামূলক ব্যবহার আইন ২০১০' প্রবর্তন করেছে। যার ফলে, পাটশিল্প রক্ষা পাবে, পাশাপাশি পাটের বহুমুখী ব্যবহার বৃদ্ধি পাবে এবং যেহেতু পাট পরিবেশবান্ধব, কাজেই পরিবেশের সাথে ক্ষতিকারক কৃত্রিম আঁশ পরিহার করে পণ্যে পাটজাত মোড়কের বাধ্যতামূলক ব্যবহারের কারণে পাটশিল্পও ধ্বংসের হাত থেকে রক্ষা পাবে। বর্তমান বিশ্বে বাংলাদেশ পাট রপ্তানিতে প্রথম ও উৎপাদনে দ্বিতীয় স্থানে।

টেক্সটাইল ফাইবার (Textile Fibre)-

আমাদের দৈনন্দিন জীবনের সাথে টেক্সটাইল শব্দটি ওতপ্রতোভাবে জড়িত। কাজেই খুব সামান্য হলেও টেক্সটাইল সম্বন্ধে প্রত্যেকের কিছু না কিছু জানা দরকার। তাতে ব্যবহারকারীগণ অর্থাৎ আমরা কিছুটা লাভবান হব।

কাপড় তৈরির জন্য সুতা প্রয়োজন। আর সুতা তৈরিতে কাঁচামাল হিসেবে ফাইবার ব্যবহার করা হয়। আমরা প্রাকৃতিকভাবে অনেক আঁশ দেখতে পাই। কিন্তু সমস্ত আঁশই টেক্সটাইল ফাইবার নয়। টেক্সটাইল ফাইবার হতে হলে ফাইবার বা আঁশে কিছু গুণাবলি থাকা প্রয়োজন।

যেসব ফাইবারে ন্যূনতম দৈর্ঘ্য, শক্তি, সূক্ষ্মতা, নমনীয়তা, সমতা ও আর্দ্রতা ধারণক্ষমতা আছে, সর্বোপরি সুতা পাকানোর গুণাবলি বিদ্যমান তাকেই টেক্সটাইল ফাইবার বলে।

আধুনিককালে প্রযুক্তির বিকাশের সাথে সাথে টেক্সটাইল ফাইবারের ও টেক্সটাইল সামগ্রীর প্রভূত উন্নতি এবং ব্যবহারকারীদের কাছে টেক্সটাইল সামগ্রী সহজলভ্য হচ্ছে।

টেক্সটাইল ফাইবারের শ্রেণি বিভাগ (Classification of Textile Fibre)-

মানুষের চাহিদার সাথে টেক্সটাইল ফাইবারের উৎপাদনও পরিবর্তন হচ্ছে। সাধারণত প্রাকৃতিকভাবে যে সমস্ত টেক্সটাইল ফাইবার পাওয়া যায় তার চাহিদা বেশি আবার ইহা অনেকটা স্বাস্থ্যসম্মত, কিন্তু মূল্যের দিক থেকে কৃত্রিম আঁশ অনেক কম ও সহজলভ্য। শনাক্তকরণ ও বোঝার সুবিধার্থে টেক্সটাইল ফাইবারের শ্রেণিবিভাগ দুইভাবে ছক আকারে দেখানো হলো:

টেবিল-৩

উৎসসহ টেক্সটাইল ফাইবারের শ্রেণি বিভাগ

		T
ফাইবারের ধরন	ফাইবারের নাম	উৎস
প্রাকৃতিক ফাইবার	কটন	কটন বল (সেলুলোজ)
	লিনেন	ফ্লাক্স স্টক (সেলুলোজ)
	পাট	পাটের স্টক (সেলুলোজ)
উদ্ভিজ ফাইবার	হেম্প	হেম্প অথবা অ্যাবাকা স্টক (সেলুলোজ)
	সিসাল	অ্যাগোভ পাতা (সেলুলোজ)
	কয়ার	নারিকেলের খোসা (সেলুলোজ)
প্রানিজ	উল	ভেড়ার পশম (প্রোটিন)
	সিল্ক	পলু পোকার লালা (প্রোটিন)
কৃত্রিম ফাইবার :		
সেলুলোজিক	রেয়ন	কটন লিন্টার অথবা কাঠ
	এসিটেড	এ
	ট্রাই এসিটেড	দ্র
নন সেলুলোজিক পলিমার	নাইলন	অ্যালিফ্যাটিক পলিঅ্যামাইড
	পলিয়েস্টার	ডাইহাইদ্রিক অ্যালকোহল ও টেরিপথালিক অ্যাসিড
	অ্যাকরাইলিক	অ্যাকরাইলোনাইট্রাইল (কমপক্ষে ৮৫%)
	পলিপ্রোপাইলিন	প্রোপাইলিন গ্যাস
	স্পানডেক্স	পলিইউরেথেন (কমপক্ষে ৮৫%)
	পলিকার্বনেট	কার্বনিক অ্যাসিড, (পলিয়েস্টার ডেরিভেটিভস)
মিনারেল	গ্যাস	সিলিকা স্যান্ড, লাইম স্টোন ও অন্যান্য মিনারেল

দ্বিতীয় অধ্যায় প্রাকৃতিক ফাইবার (Natural Fibre)

প্রাকৃতিক ফাইবারের সংজ্ঞা

বিভিন্ন উৎস থেকে ফাইবার পাওয়া যায়। এদের মধ্যে গাছ, ফল, পোকা, জন্তু ইত্যাদি উৎস থেকেও ফাইবার পাওয়া যায়। কাজেই প্রকৃতি থেকে অথবা প্রকৃতিতে জন্মে এসব গাছ, পাতা, ফুল, ফল, ছাল, প্রাণী, খনি ইত্যাদি থেকে টেক্সটাইল পণ্য উৎপাদনের উপযোগী যে ফাইবার পাওয়া যায় তাকে প্রাকৃতিক ফাইবার বলে।

প্রাকৃতিক ফাইবারের বৈশিষ্ট্য

যদি কোনো ফাইবার কোনো সম্ভাব্য টেক্সটাইল সামগ্রী হিসেবে তৈরির জন্য ব্যবহার করা হয় তবে উক্ত ফাইবারের নির্দিষ্ট কতগুলো ভৌত ও রাসায়নিক গুণাবলি থাকা প্রয়োজন। এটি ব্যবহারকারীর চাহিদার উপর টেক্সটাইল সামগ্রীর সফলতা নির্ভর করে। ব্যবহারকারীর চাহিদা তখনই বৃদ্ধি পাবে যখন এটি বিভিন্ন পরীক্ষা-নিরীক্ষা, বিভিন্ন রাসায়নিক বিক্রিয়া ইত্যাদি অর্থাৎ সংকোচন, প্রসারণ, টুইস্ট দেওয়া, অ্যাসিড, অ্যালকালি বা বিভিন্ন অক্সিডাইজিং রিডিউসিং এজেন্ট, উচ্চ তাপ, উচ্চ চাপ ইত্যাদি সহ্য করে ফিনিশ কাপড় হিসেবে আত্মপ্রকাশ করে। কাজেই প্রতিটি টেক্সটাইল ফাইবারেরই নির্দিষ্ট কিছু গুণাবলি থাকা প্রয়োজন। একটি প্রাকৃতিক টেক্সটাইল ফাইবারের সম্পূর্ণ গুণাবলি জানতে হলে এর দৈর্ঘ্য, আর্দ্রতা ধারণক্ষমতা, শক্তি, ছিঁড়ে যাওয়ার পূর্বে প্রসারণ, ঘনত্ব, অ্যাসিডে বিক্রিয়া, অ্যালকালিতে বিক্রিয়া ইত্যাদি জানতে হবে। নিচে প্রাকৃতিক ফাইবারের একটি সংক্ষিপ্ত বৈশিষ্ট্য প্রদত্ত হলো।

প্রাকৃতিক ফাইবারের দৈর্ঘ্য

ফাইবারের দৈর্ঘ্যের উপর আঁশের গুণাগুণ অনেকাংশে নির্ভর করে। সাধারণত দৈর্ঘ্যে বড় আঁশ অপেক্ষাকৃত মসৃণ ও শক্ত হয়ে থাকে। আবার ছোট দৈর্ঘ্যের সুতা তৈরির ক্ষমতা কম থাকে। দৈর্ঘ্য অবশ্যই তার ব্যাস থেকে কয়েক হাজার গুণ বেশি হতে হবে। সৃক্ষ সুতা অর্থাৎ চিকন কাউন্টের সুতা তৈরির জন্য আঁশের দৈর্ঘ্য অবশ্যই ভালো হতে হবে। আবার মোটা সুতা তৈরির ক্ষেত্রে আঁশের দৈর্ঘ্য মোটামুটি হলেও চলবে।

ফাইবারের শক্তি

ফাইবারের শক্তি হচ্ছে ফাইবার কতটুকু টান প্রতিরোধ করে। দুর্বল ফাইবার দ্বারা কখনও শক্ত সুতা প্রস্তুত করা সম্ভব হয় না। ফাইবার দ্বারা সুতা তৈরির জন্য প্রতিটি আলাদা আলাদা ফাইবারের নির্দিষ্ট শক্তি থাকা প্রয়োজন। ফাইবারের শক্তিকে টেনজাইল স্ট্রেন্থ বলে। যার একক হচ্ছে পাউন্ডস/বর্গইঞ্চি। সংক্ষেপে পিএসআই। ফাইবারের শক্তি মাত্রাতিরিক্ত কম হলে উক্ত ফাইবার দ্বারা সুতা তৈরি করা সম্ভব নয়। বিভিন্ন প্রক্রিয়ায় ছেঁড়ার হার বৃদ্ধি পাবে এবং উৎপাদন কম হবে। কাজেই সুতা তৈরির ক্ষেত্রেও ফাইবারের শক্তি একটা বিশেষ ভূমিকা রাখে। এক কথায় বলা যায় শক্তিবিহীন ফাইবারের জন্য সর্বগুণই অর্থহীন।

ফাইবারের সৃক্ষতা

কোনো বস্তুর সৃক্ষতা তার ব্যাস বা প্রস্থচ্ছেদের সাথে সম্পর্কযুক্ত, আঁশের ক্রস সেকশনের দৈর্ঘ্য ও

প্রস্থের অনুপাতকেই সৃক্ষতা বলা হয়। মোটা আঁশের ক্ষেত্রে দৈর্ঘ্য এটির ব্যাসের চেয়ে ৭০০ গুণ বেশি হয়। কিন্তু ভালো বা সৃক্ষ্ম আঁশের ক্ষেত্রে এটি ৫০০০ গুণ বেশি হয়। একমাত্র ভালো সৃক্ষ্ম আঁশই ভালো সূতা তৈরি করতে পারে। প্রাকৃতিক আঁশের ক্ষেত্রে সৃক্ষ্মতা, ব্যাস ও আঁশে উপস্থিত সেলুলোজ দ্বারা নিয়ন্ত্রিত হয়। তবে বলা যায়, ছোট দৈর্ঘ্যের আঁশ মোটা এবং লম্বা আঁশ সৃক্ষ্ম অর্থাৎ চিকন হয়। চিকন আঁশ হতে উচ্চ কাউন্টের ও গুণগত দিক থেকে উনুতমানের সুতা তৈরি করা সম্ভব।

সুষমতা

সুষমতা বলতে প্রতিটি আলাদা আলাদা ফাইবার তার দৈর্ঘ্য ও ব্যাসের দিক থেকে সুষম হয়। আঁশ যত সুষম হবে, শক্তি তত বেশি হবে। তাছাড়া সুষম সুতা প্রস্তুতের ক্ষেত্রে উপরোক্ত বৈশিষ্ট্য একটা ভালো ভূমিকা রাখে।

ক্রিম্প

ফাইবারের ঢেউ খেলানো অবস্থাকে ক্রিম্প বলে। এটি মেরিনো উলের একটি প্রাকৃতিক গুণ। ভালো গুণের সৃক্ষ উলে এই গুণাবলি বেশি। মোটা উলের ক্রিম্পের চেয়ে কুঁচকানো ভাব বেশি থাকে। স্ট্রেচবিহীন আঁশের দৈর্ঘ্যের সাথে সাথে এটি শতকরা হারে প্রকাশ করা হয়। উপরোক্ত গুণাবলির জন্য প্রাকৃতিক আঁশ একটির সাথে অন্যটি জড়িয়ে থাকে। ফলে উৎপাদিত সুতার শক্তি বেশি হয়। তাছাড়া সুতা তৈরির সময় এ গুণাবলি খুব সাহায্য করে। টুইস্টবিহীন স্লাইবার উপরোক্ত গুণের কারণে খুলে আলাদা হয়ে যায় না।

স্থিতিস্থাপকতা

ফাইবারের উপর শক্তি প্রয়োগ করলে ফাইবার প্রসারিত হয় এবং শক্তিমুক্ত করলে আবার ফাইবার পূর্বের অবস্থানে ফিরে আসে। প্রাকৃতিক ফাইবারের এই প্রসারিত হওয়া এবং ফিরে যাওয়ার ক্ষমতাকে স্থিতিস্থাপকতা বলে। ফাইবারের এই গুণাগুণের কারণে কাপড় পরিধান আরামদায়ক ও সহজ মনে হয়।

সংশক্তি প্রবণতা

একটি ফাইবারের সাথে অন্য ফাইবারের জড়িয়ে বা লেগে থাকার প্রবণতাকে সংশক্তি প্রবণতা বলে। স্পিনিং প্রসেসের জন্য ফাইবারের এ গুণটি থাকা খুবই গুরুত্বপূর্ণ। এ গুণ থাকার কারণে কাডিং ও ড্রইং মেশিনে কোনো পাঁক ছাড়া স্লাইভারসমূহ পরবর্তী প্রসেসের জন্য প্রক্রিয়াজাত থাকে। ফাইবারসমূহ নিচে পড়ে যায় না। তবে ফিলামেন্ট ফাইবারের ক্ষেত্রে এ গুণ তেমন গুরুত্বপূর্ণ নয়।

ঘনত্ব

একক আয়তনের ওজনকে ঘনত্ব বলে। এটি সাধারণত গ্রাম/সিসি হিসেবে প্রকাশ করা হয়। অলিফিন বাদে সমস্ত টেক্সটাইল ফাইবারই পানির চেয়ে ভারী। অলিফিন পানির উপরে ভাসে। গ্লাস ও অগাসবেস্টস ফাইবারের ঘনত্ব বেশি, নাইলন ও সিল্কের ঘনত্ব অত্যন্ত কম। হালকা ওজনের ফাইবার সাধারণত কিছুটা উষ্ণ হয় এবং ভারী ওজনের ফাইবার সাধারণত ঠাভা প্রকৃতির হয়। প্রাকৃতিক ফাইবার উল যেহেতু উল সেহেতু হালকা, কজেই উল ফাইবার দ্বারা গরম কম্বল ও সোয়েটার তৈরি হয়।

প্লাস্টিসিটি

তাপে সে সমস্ত ফাইবার নমনীয় হয় সে সমস্ত ফাইবারকে থার্মোপ্লাস্টিক ফাইবার বলে। তাপ প্রক্রিয়াকরণের মাধ্যমে ফাইবারকে স্থায়ী আকার দেওয়া সম্ভব। প্লাটিসিটি গুণাবলি কাপড়ের সৌন্দর্য রক্ষা, যত্ন উইভিং-১

নেওয়া এবং স্থায়িত্বতার ক্ষেত্রে গুরুত্বপূর্ণ। সব থার্মোপ্লাস্টিক ফাইবারই তাপ স্পর্শকাতর। এ ধরনের ফাইবারের তৈরি কাপড় কম তাপমাত্রায় ইন্ত্রি করা যায় এবং ঈষৎ উষ্ণ পানিতে ধৌত করা যায়।

বিশ্লেষণ

বেশির ভাগ প্রাকৃতিক টেক্সটাইল ফাইবার বাতাস হতে আর্দ্রতা গ্রহণ করে। ফাইবারের আর্দ্রতা গ্রহণ করার ক্ষমতাকে বিশ্লেষণ বলে। বাতাসে আর্দ্রতার পরিমাণ বেশি হলে বা আঁশ বাতাস হতে আর্দ্রতা গ্রহণ করে ওজনে ভারী হয়। এক্ষেত্রে ক্রেতা ফাইবার কিনতে গেলে ঠকে যাবে। কাজেই এ অবস্থা দূরীকরণের জন্য ক্রয়-বিক্রয়ের ক্ষেত্রে ওভেন ড্রাই ওয়েট করে উক্ত ওজনের সাথে আর্দ্রতার শতকরা হার যোগ করে ফাইবার ক্রয়-বিক্রয় করা হয়ে থাকে। এতে ক্রেতা-বিক্রেতা কেউ ঠকবে না। উলের ময়েশ্চার ধারণক্ষমতা সবচেয়ে বেশি। আবার কৃত্রিম ফাইবার পলিয়েস্টারের ময়েশ্চার ধারণক্ষমতা সবচেয়ে কম। যেসব ফাইবারের বিশ্লেষণ ক্ষমতা বেশি সেসব ফাইবারের তৈরি পোশাক পরিধানের জন্য খুবই আরামদায়ক। কারণ উক্ত পোশাক সহজেই ঘাম শোষণ করেতে পারে এবং স্থির বিদ্যুৎ তৈরি হওয়া রোধ করতে পারে।

রেসিপিয়েন্সি

ফাইবার বা কাপড় বিভিন্ন সময়ে ব্যবহারের কারণে বিকৃত হওয়ার আশঙ্কা থাকা, কাপড় ভাঁজ করা, টান খাওয়া ইত্যাদির কারণে কাপড় বিকৃত না হয়ে আবার পূর্বের অবস্থায় ফিরে যায়। কাপড় বা ফাইবারের এ ধরনের গুণাবলিকে রেসিলিয়েন্সি বলে। কাপড়ের কুঁচকানো স্বভাব দূর করা এবং কাপড়ের স্থায়িত্ব, যত্ন ও সৌন্দর্য রক্ষার জন্য রেসিলিয়েন্সি গুরুত্বপূর্ণ বৈশিষ্ট্য।

রং

বিভিন্ন প্রাকৃতিক ফাইবারের কিছু না কিছু রং থাকে। উদাহরণ স্বরূপ- সিল্কের হলুদ ও তামাটে, উলের রং সাদা ও ধূসর, কটন ফাইবারের রং ক্রিম সাদা ও হালকা বাদামি। বেশির ভাগ কৃত্রিম আঁশ হালকা ক্রিম অথবা হলুদাভ রঙের হয়। কাজেই সাদা ফাইবার পাওয়ার জন্য বেশির ভাগ প্রাকৃতিক ফাইবারকেই ব্লিচিং করা হয়। বিভিন্ন এলাকা ও বিভিন্ন দেশের আঁশের রং স্থানভেদে বিভিন্ন হয়ে থাকে।

চাকচিক্য

ফাইবার থেকে কী পরিমাণ আলোর প্রতিফলন হয় তার উপর নির্ভর করে ফাইবারের চাকচিক্য নির্ণয় করা হয়। এ গুণাগুণ ফাইবারের পৃষ্ঠদেশীর অবস্থানের উপর নির্ভর করে। মসৃন পৃষ্ঠ অমসৃণ পৃষ্ঠের চেয়ে বেশি আলো প্রতিফলিত করে, ফলে মসৃণ পৃষ্ঠ বেশি উজ্জ্বল দেখায়। আবার গোলাকার ফাইবার চেপ্টা ফাইবার থেকে বেশি আলো প্রতিফলিত করে। সাধারণ কটনের চেয়ে মার্সেরাইজড কটন বেশি চাকচিক্য সম্পন্ন হয়। সিল্কের অপেক্ষাকৃত সুষম পৃষ্ঠীয় গঠনের জন্য আলোর সুষম প্রতিফলন হয়। ফলে কটন ও উল থেকে সিল্ক বেশি উজ্জ্বল।

প্রাকৃতিক ফাইবারের শ্রেণিবিভাগ

প্রকৃতিতে পাওয়া যায় বা প্রকৃতিতে জন্মে এসব গাছ, পাতা, ছাল, ফুল, প্রাণী, খনি ইত্যাদি থেকে যে ফাইবার সংগ্রহ করা হয় তা প্রাকৃতিক ফাইবার। উৎপত্তির উপর ভিত্তি করে এ ফাইবারকে আবার তিন ভাগে ভাগ করা হয়।

- ১। উদ্ভিজ ফাইবার (Vegetable Fibre)
- ২। প্রাণিজ ফাইবার (Animal Fibre)
- ৩। খনিজ ফাইবার (Mineral Fibre)

১। উদ্ভিজ ফাইবার (Vegetable Fibre)

গাছের ছাল, গাছের পাতা, বীজ ইত্যাদি হতে যে ফাইবার পাওয়া যায় তা উদ্ভিজ ফাইবার। পৃথিবীতে যে ফাইবার সবচেয়ে জনপ্রিয় ও বেশি ব্যবহৃত হয় অর্থাৎ কটন ফাইবার হলো উদ্ভিজ ফাইবার। এটি উদ্ভিজ্জ বীজ হতে সংগ্রহ করা হয়।

পুনরায় উৎপত্তির উপর ভিত্তি করে তিন ভাগে ভাগ করা হয়েছে।

- ক) বীজ ফাইবার (Seed Fibre)
- খ) বাস্ট ফাইবার (Bast Fibre)
- গ) লিফ ফাইবার (Leaf Fibre)

বীজ ফাইবার (Seed Fibre)

আঁশসমূহ বীজের চারপাশে থাকে বলে এ আঁশকে বীজ ফাইবার বলা হয়। কটন অর্থাৎ তুলা হলো বীজ ফাইবারের উৎকৃষ্ট উদাহরণ। এ ছাড়া শিমুল ক্যাপক ও বীজ ফাইবার।

বাস্ট ফাইবার (Bast Fibre)

এ জাতীয় ফাইবার উদ্ভিদের ফল অথবা বাকল হতে পাওয়া যায়। পাঁই হলো বাস্ট ফাইবারের অন্যতম উদাহরণ। এ ছাডা লিনেন, শন (Hemp) র্যামিও বাস্ট ফাইবার।

লিফ ফাইবার (Leaf Fibre)

গাছের পাতা মূল বা ডাঁটা হতে যে ফাইবার পাওয়া যায় তা লিফ ফাইবার। উদাহরণ সিসাল, পাইন আপেল ইত্যাদি।

প্রাণিজ ফাইবার (Animal Fibre)

প্রাণী হতে সরাসরি যে ফাইবার পাওয়া যায় তা প্রাণিজ ফাইবার। বিভিন্ন প্রজাতির ভেড়া বা ভেড়া জাতীয় প্রাণীর পশম হতে উল ফাইবার পাওয়া যায়। আবার পলু পোকা নামক এক প্রকার পোকার তৈরি শুটি থেকে ফিলামেন্টের আকারে যে ফাইবার পাওয়া যায় তা রেশম বা সিঙ্ক।

খনিজ ফাইবার (Mineral Fibre)

খনি থেকে যে সমস্ত ফাইবারের উৎপত্তি তা খনিজ ফাইবার। উদাহরণস্বরূপ, গ্যাস, অ্যাসবেস্টস, ইত্যাদি। কঠিন শিলা মাটির তলদেশে স্তরে স্তরে জমা হয়ে এক প্রকার আঁশ উৎপন্ন করে। গ্যাস ও সিরামিক ফাইবার, খনিজ ফাইবার— এগুলোকে কৃত্রিমভাবে সংগ্রহ করা হয় বলে এগুলোকে কৃত্রিম ফাইবার হিসেবেও আখ্যায়িত করা হয়।

প্রাকৃতিক ফাইবার ও মানুষের তৈরি ফাইবারের মধ্যে পার্থক্য

Catholica Services	The second of th
প্রাকৃতিক ফাইবার	মানুষের তৈরি ফাইবার।
প্রাকৃতিক সমস্ত ফাইবারই প্রকৃতি হতে প্রাপ্ত	ইহা মূলত: মানুষের তৈরি ফাইবার
আঁশের দৈর্ঘ্য প্রকৃতি প্রদত্ত অর্থাৎ নির্দিষ্ট	আঁশের দৈর্ঘ্য মানুষ দারা নিয়ন্ত্রিত
আঁশ স্ট্যাপল আকারে ও কিছু ফিলামেন্ট আকারে	আঁশ সাধারণত ফিলামেন্ট আকারে পাওয়া যায়, তবে
পাওয়া যায়।	চাহিদা মোতাবেক ইহাকে কাঁলেংথ এ স্ট্যাপলে রূপ
	দেওয়া যায়।
লম্বা স্ট্যাপল আঁশের মধ্যে কিছু খাঁ আঁশ রয়েছে।	খাটো আঁশ বা ছোট আঁশের কোনো প্রশ্নই নেই।
কোনো স্পিনারেটের প্রশ্নই আসে না।	ফিলামেন্ট তৈরির জন্য স্পিনারেটের প্রয়োজন।
ফিলামেন্ট তৈরির জন্য কোনো স্পিনিং পদ্ধতির প্রয়োজন	বিভিন্ন স্পিনিং পদ্ধতিতে ফিলামেন্ট সংগ্রহ করা হয়।
নেই।	(মেল্ট, ওয়েট, ড্রাই স্পিনিং)
সুতা বা আঁশের জন্য কোনো রাসায়নিক মিশ্রণের	ফিলামেন্ট তৈরির জন্য রাসায়নিক মিশ্রণের প্রয়োজন
প্রয়োজন নেই।	রয়েছে।
প্রাকৃতিক আঁশের তৈরি পোশাক খুবই আরামদায়ক।	কৃত্রিম আঁশের তৈরি পোশাক তুলনামূলক কম
	আরামদায়ক।
আঁশের মধ্যে ময়লা ও অপদ্রব্য বিদ্যমান।	ময়লা, অপদ্রব্যের কোনো প্রশুই আসে না।
গাঠনিক দিক থেকে পরিবর্তন করা সম্ভব নয়।	গাঠনিক দিক থেকে পরিবর্তন করা সম্ভব।
প্রাকৃতিক রং নিয়ে জন্মায়।	ফিলামেন্ট তৈরি করার সময় সুবিধাজনক রং করা সম্ভব।
প্রাকৃতিক ক্রিম্প (Crimp) থাকে।	ফিলামেন্ট তৈরি করার পর পরই ক্রিম্প দিতে হয়।
সাধারণত ফাইবার সমূহ পানি আকর্ষী ।	বেশির ভাগ ক্ষেত্রে পানি বিকর্ষী
(Hydrophylic)	(Hydrophobic)
অধিকাংশ ক্ষেত্রেই স্কাওয়ারিং ব্লিচিং করতে হয়।	স্কাওয়ারিং ও ব্লিচিং হয় না বললেই চলে।
সহজে রং করা সম্ভব হয়। অর্থাৎ রং এর প্রতি আকর্ষণ	রং করণ প্রণালি সহজ নয়
রয়েছে ৷	
আগুনে পুড়লে বেশির ভাগ ক্ষেত্রেই ছাই হয়।	আগুনে পুড়লে বেশির ভাগ ক্ষেত্রেই পুতির দানার মতো
	গুটির আকার ধারণ করে।
আগুনে পুড়লে পোড়া কাগজের মতো বা চুল পোড়া গন্ধ হয়।	বেশির ভাগ ক্ষেত্রেই আগুনে পুড়লে রাসায়নিক গন্ধ
	পাওয়া যায়।
তুলনামূলকভাবে প্রাকৃতিক ফাইবারের মূল্য অনেক	কৃত্রিম ফাইবারের মূল্য অনেক কম।
বেশি।	, , , , , , , , , , , , , , , , , , ,
প্রাকৃতিক আঁশকে প্রকৃতির বন্ধু বলা হয়।	কিছু কিছু কৃত্রিম আঁশ পরিবেশের জন্য মারাত্মক
	ক্ষতিকর [।] যেমন- পলিপ্রোপাইলিন, পলি
	ইথিলিন।
পোশাক হিসেবে ব্যবহারের জন্য প্রাকৃতিক	পোশাক বাদে অন্যান্য কাজে কৃত্রিম আঁশের
আঁশের চাহিদা বেশি।	চাহিদা অত্যন্ত বেশি।
তুলনামূলক কম টেকসই।	তুলনামূলক বেশি টেকসই।
তুলনামূলক প্রকৃতিক আঁশের ব্যবহার সীমাবদ্ধ।	কৃত্রিম আঁশের ব্যবহার বহুবিধ।

প্রাকৃতিক বিভিন্ন শ্রেণির ফাইবারের উদাহরণ

১) উদ্ভিজ ফাইবার

- ক) বীজ ফাইবার- তুলা, ক্যাপক, নারিকেলের ছোবড়া ইত্যাদি
- খ) বাস্ট ফাইবার- জুট, লিনেন, হেস্প, রেমি, কেনাফ ইত্যাদি।
- গ) লিফ ফাইবার- অ্যাবাকা, সিসাল, মেনিলা হেস্প, পিনা, পাইন আপেল ইত্যাদি।

২) প্রাণীজ ফাইবার

উল, রেশম, মোহেয়ার, রেবিট হেয়ার, ভিকুনা, আলপাকা ইত্যাদি।

৩) খনিজ ফাইবার

গ্যাস, অ্যাসবেস্টস ইত্যাদি।

প্রাকৃতিক ফাইবারের ব্যবহার

প্রাকৃতিক ফাইবারের ব্যবহার বহুবিধ। যেহেতু প্রকৃতিতে পাওয়া যায় এবং আর্দ্রতা ধারণ ক্ষমতাো প্রাকৃতিক ফাইবারের অনেক বেশি। কাজেই জনপ্রিয়তাও প্রাকৃতিক ফাইবারের বেশি এবং ব্যবহারের দিক থেকে আরামদায়ক ও স্বাস্থ্যসম্মত।

- * সব ধরনের কাপড় তৈরিতে প্রাকৃতিক ফাইবার ব্যবহৃত হয়।
- * পুরুষ ও মহিলা উভয়ের জন্যই গ্রীষ্মকালীন পোশাক তৈরিতে ব্যবহৃত হয়।
- * বাড়িতে ফার্নিশিং ক্লথ হিসেবে ব্যবহারের জন্য, যেমন-বিছানার চাদর, টাওয়েল, ছোঁ গালিচা ও কার্পেট তৈরিতে ব্যবহৃত হয়।
- * ব্যাগ, থলে, মাাঁ, কমল, দড়ি, সুতলি, কর্ডেজ ইত্যাদি তৈরিতে ব্যবহৃত হয়।
- * নিটেড অ্যাপারেল, শার্টিং, সুটিং, ওভারকোঁ, সোয়েটার ইত্যাদি গরম পোশাক তৈরিতে ব্যবহৃত হয়।
- * চাকচিক্যময় ড্রেস তৈরিতে ব্যবহৃত হয়।
- * শাড়ি যেমন- জর্জেট, শিপন ইত্যাদি তৈরিতে ব্যবহৃত হয়।
- * খেলাধুলার পোশাক তৈরিতে ব্যবহৃত হয়।
- * ইভাস্ট্রিয়াল ফেব্রিক তৈরিতে ব্যবহৃত হয়।

ভৃতীয় অধ্যায় কটন ফাইবার (Cotton Fibre)

আরবি ভাষায় কুতুম শব্দ থেকে কটন শব্দের আবির্জাব। ইংরেঞ্জিতে যাকে বলে কটন, বাংলার আমরা তাকে তুলা বলি। আরবগণই সর্বপ্রথম বাণিচ্ছ্যিকভাবে তুলা চাষ শুরু করেন এবং বাণিচ্ছ্যিক দ্রুব্য হিসেবে বাজারে তুলা ব্যবসার প্রচলন করেন। কয়েক শতাব্দী থেকে আরবগণই ছিল আন্তর্জাতিক তুলা ব্যবসায়ী জাতি। স্পিনিং অর্থাৎ সূতা প্রস্তুতকরণ মিলসমূহে কাঁচামাল হিসেবে তুলা ব্যবহৃত হচ্ছে।

বর্তমানে প্রাকৃতিক আঁশসমূহের মধ্যে তুলার স্থান প্রথম। অর্থাৎ এক নম্বর আঁশ হিসেবে তুলাকে ধরা হয়। তুলার দ্বারা তৈরি বস্তু ও পোশাক সামগ্রীর চাহিদা বর্তমান বিশ্বে প্রায় ৬৫ শতাংশ কারণ তুলা দ্বারা তৈরি বস্তু ও পোশাক খুবই আরামদায়ক ও স্বাস্থ্যসম্মত। ইহা তুকে কোনো ক্ষতি করে না।

বাংলাদেশে প্রাচীনকাল থেকেই তুলার চাষ হয়ে আসছে। তবে আঁশের মানের কারণে বাণিচ্চ্যিকভাবে সূতা প্রস্তুত করা সম্ভব হয়নি। আমাদের দেশের তৈরি তুলা আঁশের দৈর্ঘ্য ও শক্তি কম থাকার কারণে উৎপাদিত তুলা দ্বারা ভালো মানের সূতা প্রস্তুত করা সম্ভব হয় না। তবে বর্তমানে তুলা উন্নয়ন বোর্ড আমেরিকা থেকে তুলা বীচ্ছ এনে তা দ্বারা সংকর বীচ্ছ তৈরি করে বাংলাদেশে বাণিচ্ছ্যিকভাবে তুলা চাষ ওরু করেছে। যা শ্লিপনিং মিলসমূহে নিমুমানের সূতা তৈরির ক্ষেত্রে ব্যবহৃত হচ্ছে।

চিত্ৰ: কটন বল

তুলার বোঁানিক্যাল নাম (Botanical Name of Cotton)

উদ্ভিদ শ্রেণি হিসেবে তুলা গোসিপিয়াম (Gossypium) শ্রেণিভূক্ত। গোসিপিয়াম শ্রেণির মধ্যে নিম্নোক্ত প্রজাতির তুলা বাণিচ্ছ্যিকভাবে ব্যবহৃত হচ্ছে।

- (১) গোসিপিয়াম হারব্যাকাম (Gossypium Herbaceum)
- (২) গোসিপিয়াম আরবোরিয়াম (Gossypium Arboreum)
- (৩) গোসিপিয়াম হিরস্টাম (Gossypium Hirsutum)
- (৪) গোসিপিয়াম বারবাডেন্স (Gossypium Barbedense)

গোসিপিরাম হারব্যাকাম (Gossypium Herbaceum)

এ প্রজাতির গাছ ভারত, পাকিস্তান, চীন ও বাংলাদেশে জন্মে। আঁশের দৈর্ঘ্য ২০ থেকে ২৬ মি মি

গোসিপিয়াম আরবোরিয়াম (Gossypium Arboreum)

ভারত, পাক্স্তান, চীন ও রাশিয়ায় এ প্রজাতির গাছ চাষ হয়। তবে আমেরিকায় ইহার চাষ সর্বাধিক। আঁশের দৈর্ঘ্য ১৫ থেকে ৩০ মি মি

গোসিপিরাম হিরসূটাম (Gossypium Hirsutum)

এ প্রজাতির গাছ চাষের জন্য দক্ষিণ আমেরিকা অন্যতম। তবে ভারত, পাকিস্তান ও রাশিয়ায় এ প্রজাতির তুলার চাষ হয়ে থাকে। তবে আমেরিকায় ইহার চাষ সর্বাধিক। আঁশের দৈর্ঘ্য ১৫ থেকে ৩০ মি মি

গোসিপিয়াম বারবাডেন্স (Gossypium Barbedense)

মিসরীয় সি আইল্যান্ড (Sea Island) তুলা এ প্রজাতির অন্তর্গত। আঁশের দৈর্ঘ্য ৩০ থেকে ৬০ মি মি

কটন ফাইবারের শ্রেণিবিভাগ (Classification of cotton fiber)

উৎপত্তি ও স্টাপল লেস্থ-এর উপর নির্ভর করে বাণিজ্যিক ভাবে কটন ফাইবারের শ্রেণিবিভাগ করা হয়। সাধারণত ৬ প্রকারের কটন পাওয়া যায়।

- ১. সি-আইল্যান্ড কটন (Sea Isaland cotton)
- ২. ইজিপশিয়ান কটন (Egyptian cotton)
- ৩. ব্রাজিলিয়ান কটন (Brazilian cotton)
- 8. আমেরিকান কটন (American cotton)
- ৫. ইন্ডিয়ান কটন (Indian cotton)
- ৬. চায়না কটন (China cotton)

সি-আইশ্যান্ড কটন (Sea Isaland cotton)

মূলত সি-আইল্যান্ড কটন বারবাডোস থেকে এসেছে। কাজেই এ ধরনের কটনের নাম হয়েছে গোসিপিয়াম বারবাডেস। এটি খুবই শুরুত্বপূর্ণ কটন। আমেরিকা, কানাডা, ক্যারোলিনা, জর্জিয়া ও ফ্লোরিডায় এ ধরনের কটন জন্মে। এটি খুবই লম্বা, সৃক্ষ্ম, নরম, সিঙ্কি সর্বোপরি ভালো শক্তিসম্পন্ন ফাইবার। এটি খুবই সুষম ও লেছ্ এবং টুইস্ট ভেরিয়েশন খুবই কম। রং হালকা ক্রিম সাদা। স্টাপল লেংথ ৩.০ সে মি বা তদূর্ধ্ব।

ইঞ্জিপশিয়ান কটন (Egyptian cotton)

মিসর ও মিডল ইস্ট-এর দেশসমূহে এ ধরনের কটন পাওয়া যায়। এ ফাইবারও সি- আইল্যান্ড কটনের মতো লম্বা, সৃক্ষ, নরম সিদ্ধি। কিন্তু সামান্য নিমুমানের। এ ফাইবারের স্টাপল লেছ ৩৭ হতে ৪.৫ সে মি।

ব্রাঞ্জিপিয়ান কটন (Brazilian cotton)

এ কটনকে পেরুলিয়ান কটনও বলা হয়। এ ধরনের কটন মূলত পেরুতে জন্মে। পরে ব্রাজিলেও প্রচুর পরিমাণে এ ধরনের কটন জন্মানোর কারণে এ ভ্যারাইটি কটন ব্রাজিলিয়ান কটন হিসেবে পরিচিত। রং সাধারণত হালকা উইভিং-১

সাদা থেকে ক্রিম। কিছু কিছু ক্ষেত্রে হালকা সোনালি। ফাইবার কিছুটা কর্কশ কিন্তু স্থিতিস্থাপক গুণসম্পন্ন। স্টাপল লেন্তু ৩ থেকে ৪ সে মি।

আমেরিকান কটন (American cotton)

আমেরিকা অথবা উত্তর আমেরিকায় এ ধরনের কটন জন্মে। এ কোয়ালিটির কটনের স্টাপল লেস্থ ২.৫ হতে ৩.৫ সে মি।

ইন্ডিয়ান কটন (Indian cotton)

এ কটন ভারতবর্ষে পাওয়া যায়। সাধারণত নিমুমানের। স্টাপল লেস্থ কম ও ব্যাস বেশি অর্থাৎ মোঁ। রং সাধারণত সাদা। স্টাপল লেম্ভ ২ থেকে ৩ সে মি।

চায়না কটন (China cotton)

শুধু চীনে এ কটন পাওয়া যায়। খুবই নিমুমানের। ভালো মানের সুতা ও কাপড় তৈরি করতে ব্যবহৃত হয় না। স্টাপল লেস্থ ১.৫ থেকে ২ সে মি।

কটন উৎপাদনকারী দেশসমূহের নাম

পৃথিবীর বহু দেশে কটন জন্মে। তবে কটন ফাইবারের দৈর্ঘ্য বিভিন্ন দেশে বিভিন্ন হয়ে থাকে। নিচে কটন উৎপাদনকারী দেশসমূহের নাম দেওয়া হলো।

- মিসর, আমেরিকা, ক্যারোলিনা, জর্জিয়া, ফ্লোরিডা।
- ভারত, পাকিস্তান, রাশিয়া।
- চाয়ना, ব্রাজিল, মেক্সিকো, সুদান।
- তুরস্ক, আর্জেন্টিনা, স্পেন, সিরিয়া, পেরু, গ্রিস, কলমিয়া।
- বাংলাদেশ।

তুলার প্রেডিং (Grading of Cotton)

তুলা আঁশের প্রেডিং মূলত তুলার ট্রাসের পরিমাণের উপর নির্ভর করে। ট্রাস বলতে সাধারণত তুলার মধ্যে তুলা ছাড়া অন্যান্য প্রয়োজনীয় দ্রব্য যেমন- ভাঙা পাতা, মরা পাতা, কুঁড়ি, ধুলাবালি, ময়লা, বীজের ভাঙা টুকরা ইত্যাদিকে বোঝায়। তুলা থেকে উন্নতমানের সূতা প্রস্তুত করতে হলে ট্রাস ও ক্ষুদ্র আঁশের পরিমাণ কমাতে হবে। তেমনি তুলাকে গ্রেডিং করতে হবে, ট্রাসের পরিমাণ জানতে হবে। তুলার কতটুকু ট্রাস উপস্থিত তা জানার জন্য মেশিনের সাহায্য নিতে হবে। সাধারণত যে যন্ত্রের সাহায্যে ট্রাসের পরিমাপ করা হয় তার নাম শার্লি এনালাইজার। কয়েকটি দেশের তুলার গ্রেডিং নিম্নে দেওয়া হলো।

(১) ইজিপশিয়ান তুলা-

এক্সট্রা ফাইন (Extra Fine) ফাইন (Fine) গুড (Good) ফুললি গুড ফেয়ার (Fully Good Fair) গুড ফেয়ার (Good Fair) ফেয়ার (Fair) ১৬

(২) ভারতীয় তুলা-

সুপার চয়েস (Supper Choice)
চয়েস (Choice)
সুপার ফাইন (Supper Fine)
ফাইন (Fine)
ফুললি গুড (Fully Good)
গুড (Good)
ফুললি গুড ফেয়ার (Fully Good Fair)

(৩) আমেরিকান তুলা

তুলার গ্রেড	ট্রাসের পরিমাণ
মিডল ফেয়ার (Middle Fair)	۵.0%
স্ট্রিক্ট গুড মিডলিং (StrictGood Middling)	১.৩%
শুড মিডলিং (Good Middling)	۵.৮%
স্ট্রিক্ট মিডলিং (StrictMiddling)	૨.8%
মিডলিং (Middling)	৩.১%
স্ট্রিক্ট লো মিডলিং (Strict Low Middling)	8.২%
লো মিডলিং (Low Middling)	¢.¢%
স্ট্রিক্ট গুড অরডিনারি (Strict Good Ordinary)	9.8%
গুড অরডিনারি (Good Ordinary)	৯.৮%

উপরোক্ত গ্রেডিং বা শ্রেণি বিভাগ সাধারণতঃ তুলার অপদ্রব্য এবং রং-এর উপর নির্ভর করে করা হয় । এই গ্রেড তুলা আঁশের দৈর্ঘ্যর উপর ভিত্তি করে করা হয় না । উদাহরণস্বরূপ মিডলিং গ্রেডের আঁশের দৈর্ঘ্য ২৫ মি মি (১") ৩২ মি মি (১ $\frac{5}{8}$ ") এবং ৩৫ মি মি (১ $\frac{5}{5}$ ") হতে পারে । অবশ্য এটাও ঠিক যে, লম্বা আঁশের তুলার সাথে অপদ্রব্যের পরিমাণ কম থাকে । উপরে উল্লেখিত গ্রেডিং-এ পাকিস্তানি ও বাংলাদেশি তুলার গ্রেডিং করা হয়নি । তবে, পাকিস্তানি ও বাংলাদেশি তুলার নিজস্ব কোনো গ্রেডিং করা হয় না । আমেরিকান তুলার গ্রেডিংকেই পাকিস্তানি ও বাংলাদেশি গ্রেডিং হিসেবে ধরা হয় ।

তুলার চাষ (Cultivation of Cotton)

তুলা চাষ পদ্ধতি বিভিন্ন দেশে বিভিন্ন রকমের ও বিভিন্ন সময়ে হয়ে থাকে। এক এক দেশ ও অঞ্চল ভেদে চাষ পদ্ধতি আলাদা আলাদা হয়ে থাকে। তবে সাধারণ শর্তসমূহ হলো তুলা বীজ বপন থেকে শুরু করে ফসল উঠতে ৫ থেকে ৭ মাস সময় লাগে। বিভিন্ন দেশের আবহাওয়া বিভিন্ন ও জমির উর্বরতাও বিভিন্ন হয়ে থাকে। কাজেই, চাষ পদ্ধতি ও সময়ও বিভিন্ন হয়ে থাকে।

প্রায় সব রকমের মাটিতে তুলা জন্মে। তবে বেশি হালকা বেলে মাটি তুলা চাষের উপযোগী নয়। তুলা চাষের জন্য সবচেয়ে উৎকৃষ্ট মাটি হলো বেলে দো-আঁশ মাটি ও দো-আঁশ মাটি। এছাড়া এঁটেল দো-আঁশ ও

পলিযুক্ত এঁটেল বা দো-আঁশ মাটিতেও তুলা চাষ করা যায়। যেসব উঁচু জমিতে বন্যার পানি উঠে না বা বৃষ্টির পানি জমে থাকে না এরূপ জমি তুলা চাষের জন্য উপযুক্ত। যে জমি ছায়াযুক্ত স্যাঁতসেঁতে অথবা বৃষ্টির পানি ২-৬ ঘণ্টার মধ্যে নেমে যায় না এরূপ জমি কখনও তুলা চাষের জন্য নির্বাচন করা উচিত নয়। তুলা চাষের আদর্শ মাত্রা হলো- ৬.০-৭.৫। p^H -৬ এর নিচে নেমে এলে অম্লত্ব কমানোর জন্য চুন ব্যবহার করার প্রয়োজন হয়।

তুলার জমি তৈরির সময় হচ্ছে বর্ষাকাল। তখন প্রায়ই বৃষ্টি লেগে থাকে। বৃষ্টির ফাঁক বুঝে জো (চাষের জন্য উপযোগী সময়) অবস্থায় ৩-৪টি চাষ ও মই দিয়ে মাটি ঝুরে ও সমতল করে তৈরি করতে হবে। সে সাথে আগাছা ও আবর্জনা থাকলে তা বেছে পরিষ্কার করে নিতে হবে। উল্লেখ্য তুলার বীজ বপনের সময় খুবই সীমিত। তাই যদি হাতে সময় না থাকে তাহলে চাষ না দিয়ে নিড়ানির সাহায্যে মাটি আলগা করে এবং আগাছা থাকলে তা পরিষ্কার করে বীজ বপন করা যায়।

তুলার জমিতে জৈব সার ব্যবহার করা উত্তম। সম্ভব হলে একরপ্রতি প্রায় ৫৫.৬৫ মণ পচা গোবর বা আবর্জনা পচা সার ব্যবহার করা যেতে পারে। এতে মাটির উর্বরতা বৃদ্ধি পেয়ে যেমন ফলন বাড়ে, তেমনি আনুপাতিক হারে রাসায়নিক সারও কম ব্যবহার করা চলে। এছাড়া জৈব সার ব্যবহার করলে দস্তা, বোরন, অ্যাসনেসিয়াম এসব আনুপাদ্য উপাদানের ঘাঁতি কমিয়ে দেয়। অম্লুফু লাল মাটিতে তুলার ভালো ফলন পাওয়ার জন্য একরপ্রতি প্রায় ২২ মণ চুন ব্যবহার করা হয়। জৈব সার জমি তৈরির প্রথম দিকে প্রয়োগ করে মাটির সাথে ভালোভাবে মিশিয়ে দিতে হবে।

এ পর্যন্ত তুলা চাষের যত উন্নত প্রযুক্তি বের হয়েছে তন্মধ্যে সময়মতো বীজ বপন অন্যতম। সময়মতো বীজ বুনলে আশানুরূপ ফসল পাওয়া যায়।

আগাম শীত এলাকায় বিশেষ করে রংপুর, দিনাজপুর এলাকায় শ্রাবণ মাস হতে ভাদ্রের প্রথম সপ্তাহের মধ্যে অবশ্যই বীজ বোনার কাজ শেষ করতে হবে। অন্যান্য এলাকায় শ্রাবণের মাঝামাঝি হতে ভাদ্রের মাঝামাঝি পর্যন্তবীজ বোনার উপযুক্ত সময়। তবে মধ্য শ্রাবণের দিকে বীজ বোনা ভালো।

বপনের সুবিধার জন্য বীজ ৩/৪ ঘণ্টা পানিতে ভিজিয়ে নিয়ে তা ঝুরঝুরে মাটি বা শুকনো গোবর অথবা ছাই দিয়ে এমনভাবে ঘষে নিতে হবে যাতে আঁশগুলো বীজের গায়ে লেগে না যায় এবং বীজ একটা থেকে অন্যটা আলাদা হয়ে যায়। এছাড়া সালফিউরিক অ্যাসিড দিয়ে বীজ আঁশমুক্ত করেও বোনা যায়। এতে বীজের গায়ে লেগে থাকা রোগজীবানু পোকার ডিমও বিনষ্ট হয়ে থাকে।

সাভাবিক অবস্থায় তুলা বীজ সারিতে বপন করতে হয়। হাত লাঙল দিয়ে হালকাভাবে সারি টেনে অনুমোদিত সার প্রতি সারিতে ভাগ করে নিয়ে তা প্রয়োগ করে মাটির সাথে মিশিয়ে দিতে হবে। এরপর নির্ধারিত দূরত্বে (১.২৪ সে মি অথবা ১২ থেকে ১") গভীরে ৩/৪টি বীজ মাটি দিয়ে ঢেকে দিতে হবে। প্রতিকূল আবহাওয়া জমি চাষ করা সম্ভব না হলে পলিব্যাগে চারা উৎপন্ন করে ২০-৩০ দিন বয়সের চারা রোপণ করা যায়।

সাধারণত: সারি থেকে সারির দূরত্ব ১০০ সে মি (৩.৩ ফুট) ও গাছ থেকে গাছের দূরত্ব ৫০-৬০ সে মি (প্রায় ২ ফুট) রাখতে হবে।

১৮

চারা গজানোর দশ দিনের মধ্যে প্রথমবার চারা পাতলা করা প্রয়োজন। ঐ সময় দুটি ভালো চারা রেখে অবশিষ্ট চারাগুলো তুলে ফেলতে হবে। চারার বয়স ২০-২৫ দিন হলে শেষবার চারা পাতলা করতে হবে। এ সময় একটি ভালো ও সবল চারা রেখে অবশিষ্ট চারা তুলে ফেলতে হবে। চারা পাতলা করার সময় প্রয়োজন হলে আগাছা সাফ করতে হবে।

জমি ভালোভাবে তৈরি করে নিলে শেষ চারা পাতলা করার সময় প্রথমবার নিড়ানি দিলেই চলবে। অবস্থা ভেদে ও আগাছার পরিমাণ লক্ষ্য করে ২/৩ বার তুলা ক্ষেতে নিড়ানি দেওয়ার প্রয়োজন হতে পারে।

তুলা ফসলে বিভিন্ন প্রকার পোকামাকড়ের আক্রমণ হয়ে থাকে। এসবের মধ্যে জ্যাসিড, বোল-ওয়ার্ম ও জাব পোকা উল্লেখ্যযোগ্য।

ক্ষেতের বোল ভালোভাবে কেটে বের হলে পরিষ্কার শুকনো দিনে বীজ তুলা ওঠাতে হয়। সাধারণত ৩ বারে তুলা ওঠাতে হয়। প্রথমবার এমন সময় ওঠাতে হবে যেন মোট ফসলের অর্থেক (শতকরা ৫০ ভাগ) তুলা ওঠানো যায়। দ্বিতীয় ও তৃতীয় বারে ৩০ ভাগ ও ২০ ভাগ তুলা ওঠাতে হবে। তবে তুলা ওঠানোর সময় খেয়াল রাখতে হবে ময়লা, মরা পাতা ও পোকায় আক্রান্ত খারাপ অপুষ্ট তুলা যেন না আসে। ভালো তুলা আলাদাভাবে উঠিয়ে তা আলাদাভাবে ৩/৪ বার ভালো করে রোদে শুকিয়ে শুদামজাত করতে হবে। খারাপ ও নষ্ট বীজ তুলা আলাদা ওঠানো দরকার। কোনো সময়ই ভালো ও খারাপ তুলা একত্রে মেশানো ঠিক নয়।

স্বাভাবিক অবস্থায় হেক্টরপ্রতি ১২০০-১৫০০ কেজি বীজ তুলা পাওয়া যায়।

তুলার দোষক্রটি (Faults of Cotton)

সাধারণত কাঁচা তুলায় নিমুলিখিত দোষক্রটি দেখতে পাওয়া যায়-

- ১) ড্যাম্প কটন (Damp Cotton)
- ২) অপরিপক্ব আঁশ (Immatured Fibre)
- ৩) ডেড ফাইবার বা মৃত আঁশ (Dead Fibre)
- 8) কেক ফরমেশন (Cake Formation)
- ৫) পেস্ট ফরমেশন (Paste Formation)
- ৬) ফলস মিলডিউ বা গ্রে মিলডিউ (Flase mildew/Grey mildew)
- ৭) কটন রাস্ট বা তুলায় মরিচার দাগ (Cotton rust)
- ৮) পাউডারি বা গুঁড়া মিলডিউ (Powdery mildew)
- ৯) রিন্ট রট (Lin: rot)
- ১০) সেলুলোজ ডিগ্রিডেশন (Cellulose degredation)

ড্যাম্প কটন (Damp Cotton)-

ভিজা ও ঠান্ডা আবহাওয়ায় গাছ থেকে বীজ তুলা তুলে আনলে অথবা মাটির কারণে কিছু কিছু বীজতুলা খুব আন্তে আন্তে পরিপক্ হয়, যা ভালো আঁশের সাথে মিশে যায়। বীজ তুলা তোলার সময় সাবধানতার সাথে সংগ্রহ করে পরবর্তীতে বেছে অপরিপক্ পট বা বল আলাদা করে এবং রোদে শুকিয়ে এ ধরনের ক্রটি দূর করা সম্ভব।

অপরিপত্ব আঁশ (Immatured Fibre)-

অনুর্বর মাটি বা একই মাঠে দু-একটি গাছ পোকায় আক্রমণ বা ব্যাকটেরিয়াল আক্রমণে ভালোভাবে বৃদ্ধি ঘটে না। গাছের সাথে সাথে আঁশ ও আশপাশের গাছের তুলনায় অপরিপক্ব থাকে। এছাড়া ও একই পট বা বলেও কিছু কিছু অপরিপক্ব ফাইবার পাওয়া যায়।

তুলা গাছের রোগাক্রান্ত হওয়ার সাথে সাথে উক্ত গাছ তুলে ফেলা বা পুড়িয়ে ফেলতে হবে। অথবা বীজ তুলা সংগ্রহ করার সময় সাবধানতা অবলম্বন করলে এ ধরনের ক্রটি কিছুটা দূর করা সম্ভব।

ডেড ফাইবার বা মৃত আঁশ (Dead Fibre)-

কিছু কিছু গাছ যেমন অপরিপক্ব থাকে, তেমনি আবার কিছু কিছু গাছ বেশি পরিপক্ব হয়ে যায়। উক্ত গাছ বা বেশি পরিপক্ব পট থেকে যে আঁশ সংগ্রহ করা হয় তা বেশির ভাগ মৃত বা ডেড ফাইবার। ভালো আঁশের মধ্যেও কিছু পরিমাণ মৃত আঁশ পাওয়া যায়। মৃত আঁশের পরিমাণ বেশি থাকলে তাকে হোয়াইট ফ্লাইও (White fly) বলা হয়।

কেক ফরমেশন (Cake Formation)-

আঁশ বল থেকে আলাদা করার পর কিছু কিছু আঁশ শক্ত হয়ে গুচ্ছ তৈরি করে। ইহা সাধারণত গাছে থাকাকালীন পোকামাকড়ের দংশনের কারণে হয়ে থাকে।

গাছ থেকে বল সংগ্রহ করাকালীন ত্রুটিমুক্ত বল সংগ্রহ করলে এ ধরনের ত্রুটি থেকে মুক্তি পাওয়া যায়।

পেস্ট ফরমেশন (Paste Formation)-

তুলা আঁশের মধ্যে কিছুটা সাদা অংশ পেস্ট-এর মতো পাওয়া যায়। গাছে থাকা অবস্থায় বিভিন্ন পোকামাকড়ের আক্রমণের কারণে এ ধরনের ক্রটি পরিলক্ষিত হয়। গাছ থেকে বীজ তুলা সংগ্রহ করার পর বাছাই করে আলাদা করতে হবে।

ফলস মিলডিউ বা গ্রে মিলডিউ (Flase mildew/Grey mildew)-

ইহা সাধারণত ফাংগাস আক্রমণের কারণে হয়ে থাকে। খারাপ আবহাওয়ার কারণেও এ ধরনের ক্রটি অর্থাৎ সৃক্ষ সৃক্ষ কালো অথবা বাদামি দাগ দেখা যায়।

কটন রাস্ট বা তুলায় মরিচার দাগ (Cotton rust)-

অত্যধিক শুকনো আবহাওয়া অথবা বৃষ্টির পরে চাষ করা হলে এ ক্রটি দেখা যায়। তুলায় কখনও পাতার বা ঘাসের দাগ দেখতে পাওয়া যায় ইহাই মরিচা বা রাস্ট।

পাউডারি বা শুঁড়া মিলডিউ (Powdery mildew)-

নির্দিষ্ট সময়ের পরে অথবা অত্যধিক শুকনো আবহাওয়ায় তুলা চাষ করলে এ ধরনের ক্রটি পরিলক্ষিত হয়। আঁশের পৃষ্ঠে কালো বা বাদামি রং-এর শুঁড়োই এ ধরনের ক্রটি।

লিন্ট রট (Lint rot)

আঁশ হলুদ বা বাদামি হলুদ ধারণ করাকে লিন্ট রট বলে। খারাপ আবহাওয়া অথবা বীজ তুলা গাছ হতে তোলার পর ভিজা আবহাওয়ায় রেখে দিলে এ ধরনের ক্রটি পরিলক্ষিত হয়। ২০ উইভিং-১

স্টিকি কটন (Sticky Cotton)-

এ ধরনের তুলা প্রথমে সাদা ও পরে আন্তে আন্তে কালো রং ধারণ করে। ভাঙা বীজ থেকে তৈলাক্ত ও গ্রিজি পদার্থ এসে আঁশকে স্টিকি করে দেয়, এছাড়া ফাংগাস আক্রমণে এ ধরনের ক্রটি হতে পারে।

সেপুলোজ ডিখ্রিডেশন (Cellulose degredation)-

পোকামাকড়ের দংশনে অথবা পোকামাকড় নিধনের জন্য ব্যবহৃত ওষুধের মাত্রা বেশি হলে এবং তুলায় লেগে গেলে আঁশের সেলুলোজ নষ্ট হয়ে যায়।

তুলার আঁশের উপাদান (Ingradien: of Cotton fibre)

সেলুলোজ (Cellulose)	৯৪.০%
প্রোটিন (Protein)	১.৩%
পেকটিন (Pectin)	১.২%
অ্যাস (Ash)	১.২%
ওয়াক্স (Wax)	০.৬%
মোট সুগার (Total sugar)	0.9%
পিগমেন্ট (Pigment)	সামান্য
অন্যান্য (Others)	۵.8%
ে	गाँउ ३००%

তুলার ভৌত গুণাবলি (Physical Properties of Jute fibre)

১. দৈর্ঘ্য : $\frac{5}{2}$ "থেকে ২ $\frac{5}{2}$ "

২. শক্তি টেনাসিটি (গ্রাম/ডেনিয়ার) : ৩ থেকে ৫

৩. ঘনত্ব (গ্রাম/সিসি) : সিল্ক ও উলের চেয়ে কম

8. স্থিতিস্থাপকতা : ১.৫০ থেকে ১.৫৮

৫. আর্দ্রতা ধারণক্ষমতা : ৭ থেকে ১০%

৬. রেসিলিয়েন্সি : কম

৭. ঘর্ষণ প্রতিরোধ ক্ষমতা : মোটামুটি ভালো

৮. রং : হলুদাভ অথবা ক্রিম, কিছুটা পরিষ্কার সাদা

৯. তাপ প্রতিরোধক : মোটামুটি ভালো, চলনসই।

রাসায়নিক শুণাবলি (Chemical properties of Cotton fibre)-

১) অ্যাসিডে ক্রিয়া : শক্তিশালী অ্যাসিড ফাইবারকে নষ্ট করে। ঘন সালফিউরিক অ্যাসিড (H₂SO₄) ও উইভিং-১

হাইডোক্রোরিক

অ্যাসিড (HCI) ফাইবারকে বিনষ্ট করে। দুর্বল অ্যাসিডে

(অ্যাসিটিক অ্যাসিড) কোনো ক্ষতি করে না।

২) অ্যালকালিতে ক্রিয়া : প্রতিরোধক্ষমতা খুব ভালো। ফাইবারের কোনো ক্ষতি করে না।

ত) ব্লিচিং এ ক্রিয়া
 রিচিং এ কোনো ক্ষতি হয় না। শক্তিশালী অক্সিডাইজিং

ব্লিচিং-এ কটন অক্সিসেলুলোজে রূপান্তরিত হয়।

8) আলোর প্রতিরোধক ক্ষমতা : সূর্যের আল্ট্রাভায়োলেট রশ্মি কটনকে অক্সিসেলুলোজ-এ

রূপান্তরিত করে।

৫) দ্রাবক : সব জৈবিক দ্রাবকেই প্রতিরোধ ক্ষমতা আছে।

৯) মিলডিউ এ প্রতিরোধ ক্ষমতা : আক্রান্ত হওয়ার আশঙ্কা রয়েছে।

৭) পোকামাকড়ে প্রতিরোধ ক্ষমতা : মথ দ্বারা আক্রান্ত হয় না। কটন-উলকে ইহা আক্রান্ত ও ক্ষতি

করে।

ব্যবহার করা যায়।

তুলার ব্যবহার (Uses of Cotton)

* কটনের ব্যবহার বহুবিধ এবং চাহিদাও প্রচুর। নমনীয়, আর্দ্রতা ধারণক্ষমতা,

* বেশি আরামদায়ক বলে প্রায় সব ধরনের কাপড তৈরিতে কটন আঁশ ব্যবহৃত হয়।

* পুরুষ ও মহিলা উভয়ের জন্যই গ্রীষ্মকালীন পোশাক তৈরিতে কটন আঁশ ব্যবহৃত হয়।

* বাড়িতে ব্যবহৃত বিভিন্ন কাপড় যেমন- বিছানার চাদর, টাওয়েল, ছোট গালিচা ও কার্পেট তৈরিতে ব্যবহৃত হয়।

* ইন্ডাস্ট্রিয়াল বিভিন্ন কাজে যেমন- টায়ার কর্ড, ব্যাগ, স্যু, কনভেয়র এবং মেডিক্যাল বিভিন্ন কাপড় যেমন ব্যান্ডেজ ইত্যাদিতে ব্যবহৃত হয়।

চতুর্থ অধ্যায় জুট ফাইবার (Jute Fibre)

প্রাকৃতিক ফাইবারের মধ্যে জুট ফাইবার একটি সেলুলোজিক ফাইবার। তবে কটনের তুলনায় জুট ফাইবারে সেলুলোজের পরিমাণ অনেক কম। এই ফাইবারে সেলুলোজের পর হেমি সেলুলোজ ও লিগনিন বিদ্যমান। জুট ফাইবারে লিগনোসলুলোজ থাকার কারণে জুট ফাইবার কিছুটা শক্ত ও খসখসে। জুট ফাইবার অর্থাৎ পাট আঁশ এই শক্ত ও খসখসে থাকার কারণে সুতা তৈরির ক্ষেত্রে প্রতিবন্ধকতার সম্মুখীন হতে হয়। সুতা তৈরির জন্য পাক দেওয়ার সাথে সাথে আঁশ ভেঙে যেতে পারে। কাজেই এ ভঙ্গুরতা দূর করার জন্য সুতা তৈরির পূর্বে ইমালশন প্রয়োগ করতে হয়। ইমালশন তৈল ও পানির মিশ্রণ। ইমালশন প্রয়োগের কারণে আঁশ নরম হয়ে সুতা তৈরির উপযোগী হয়।

কৃষিভিত্তিক বাংলাদেশে পাট আঁশ এককালে প্রধান অর্থকরি ফসল ছিল। পাট থেকে প্রচুর পরিমানে বৈদেশিক মুদ্রা আয় হতো বলে এই আঁশকে গোল্ডেন ফাইবার অব বাংলাদেশ বলা হতো। কিন্তু বর্তমানে পাট ও পাটজাত পণ্যের পূর্বের মতো রপ্তানি চাহিদা নেই। সিনথেটিক পণ্যের উৎপাদন ও বাজারজাতকরণে পাট ও পাটজাত দ্রব্যের রপ্তানি আয় নিমুমুখী।

পাট ও পাটজাত দ্রব্য পরিবেশের সহায়ক। কার্বন, হাইড্রোজেন, অক্সিজেন পাটের মূল রাসায়নিক উপাদান। পরিবেশগত কোনো দোষণীয় পদার্থ পাট ও পাটজাত দ্রব্যে নেই। তাই পাটজাত দ্রব্য ব্যবহারে পরিবেশ দৃষিত হয় না। অন্য দিকে পাটজাত দ্রব্য অতি সহজেই পচনশীল, মাত্র ৩ থেকে ৫ মাসের মধ্যেই এটি মাটির সাথে মিশে যায়। পরিবেশের কোনো ক্ষতিকর প্রভাব ফেলে না। অন্যদিকে পাটের মধ্যে সেলুলোজ, হেমিসেলুলোজ এবং লিগনিন থাকে এবং এই লিগনিন পচে জমিতে উর্বরতা বৃদ্ধি করে। উপরোক্ত কারণে পাট দ্বারা পরিবেশের কোনো ক্ষতি হয় না।

পাটের বোটানিক্যাল নাম (Botanical name of jute)-

উদ্ভিদবিদ্যা মতে পাট করকোরাস (Corcorus) প্রজাতির । এই প্রজাতির ২টি ভাগ

- ১) করকোরাস কেপসুলারিস (Corcorus Capsularis)
- ২) করকোরাস ওলিটোরিয়াস (Corcorus Olitorius)

ইহা ছাড়াও বাংলাদেশে পাটসদৃশ্য একটি অ্যালাইড ফাইবার দেখতে পাওয়া যায়, যা মেস্তা নামে পরিচিত। যার বৈজ্ঞানিক নাম হিবিস্কাস ক্যানাবিনাস (Hibiscus Canabinus)।

পাট/এর শ্রেডিং (Grading of jute)

তোষা পাট (Tossa Jute)-

পাট-এর গোড়া কেটে পৃথক করার পর উক্ত পাটের পাক্কা গ্রেডে যাচাইতে নামকরণ করার জন্য বাংলা কথাটি যুক্ত থাকে

পাক্কা গ্ৰেড	কাচ্চা গ্রেড
বাংলা তোষা স্পেশাল (B.W.Special)	টপ (Top)
বাংলা তোষা- এ (B.T.A)	মিডল (Middle)
বাংলা তোষা- বি (B.T.B)	বি.বটম (B.Bottom)
বাংলা তোষা- সি (B.T.C)	সি.বটম (C.Bottom)
বাংলা তোষা- ডি (B.T.D)	ক্রস বটম (Cross Bottom)
বাংলা তোষা-ই (B.T.E)	এস এম আর (S.M.R.)

সাদা পাট (White jute)-

পাকা গ্ৰেড	কাচ্চা গ্ৰেড
বাংলা হোয়াইট স্পেশাল (B.W.Special)	টপ (Top)
বাংলা হোয়াইট - এ (B.W A)	মিডল (Middle)
বাংলা হোয়াইট - বি (B.W.B)	বি.বটম (B.Bottom)
বাংলা হোয়াইট - সি (B.W.C)	সি.বটম (C.Bottom)
বাংলা হোয়াইট - ডি (B.W.D)	ক্রস বটম (Cross Bottom)

কাটিংস (Cuttings) এর গ্রেডিং-

	পাক্কা গ্রেড	কাচ্চা গ্ৰেড
সাদা পাট	বাংলা হোয়াইট সি.এ. (B.W.C.A.)	এস.এন.সি. (S.N.C)
	বাংলা হোয়াইট সি.বি. (B.W.C.B.)	এন.সি. (N.C.)
তোষা পাট	বাংলা.তোষা সিএ. (B.T.C.A.)	টি.এস.এন.পি (T.S.N.P.)
	বাংলা তোষা সি.বি. (B.T.C.B.)	টি.এন.সি. (T.N.C.)

পাটের শ্রেণি বিভাগ (Classification of Jute)-

পাট প্রধানত দুই প্রকার

- ১) দেশি বা সাদা পাট (White jute)
- ২) বগী বা তোষা পাট (Tossa jute)

তবে পাট ছাড়াও বাংলাদেশে পাট সদৃশ এক প্রকার অ্যালাইড ফাইবার পাওয়া যায়, ইহা মেস্তা সাদা পাটের আঁশ অপেক্ষাকৃত মোটা ও ওজনে হালকা এবং ইহার রং সাদা ও ঘিয়া, কিন্তু তোষা পাট সিল্কি, আঁশ চিকন এবং ওজনে অপেক্ষাকৃত ভারী, তোষা পাটের রং ঘিয়া ও লালচে সোনালি। মেস্তার আঁশ অপেক্ষাকৃত মোটা কম তৈলযুক্ত, কিছুটা ভঙ্গুর ও

কম শক্তিসম্পন্ন। পাটের আঁশ জালের মতো একটার সাথে অপরটি যুক্ত কিন্তু মেস্তার আঁশ তেমন জালের মতো থাকে না।

বাংলাদেশে এলাকাভিত্তিক ও স্পিনিং-এর উপযুক্ততা বিবেচনা করে পাটকে তিন ভাগে ভাগ করা হয়েছে। যেমন-

- ১. জাত পাট (Ja: jute)
- ২. ডিস্ট্রিক্ট পাট (Distric: jute)
- ৩. নৰ্দাৰ্ন পাট (Northern jute)

১) জাত পাট-

বৃহত্তর জেলা ঢাকা, কুমিল্লা, ময়মনসিংহ, জামালপুর ও টাঙ্গাইল এলাকায় জাত পাট জন্মে। সাদা ও তোষা উভয় প্রকার জাত পাটের আঁশ খুবই শক্ত ও শুষ্ক তারের মতো হয়। এই পাটের তৈলাক্ততা ও উজ্জ্বলতা অধিক থাকে। এই পাটের আঁশ খুব ঘন জালবিশিষ্ট, সূক্ষ্মতা ও দৈর্ঘতা বেশি থাকে। কোয়ালিটি বা মানের দিক থেকে এই পাটকে সর্বশেষ্ঠ পাট বলে মনে হয়। বি-বাড়িয়ার মাধবপুর হরিণ বে এলাকার পাট পৃথিবীর শ্রেষ্ঠ পাট। পাক্কা প্যাকিং-এর জন্য আরও উজ্জ্বল হয় এবং আঁশের শক্তি বেশি থাকে।

২) ডিব্টিষ্ট পাট-

ডিস্ট্রিক্ট পাটকে সাধারণত তিন ভাগে ভাগ করা যায়।

- ক) হার্ড ডিস্ট্রিক্ট (Hard district)
- খ) ডিস্ট্রিক্ট (District)
- গ) সফট ডিস্ট্রিক্ট (Sof: district)

ক) হার্ড ডিস্ট্রিষ্ট (Hard district)-

এই পাট বৃহত্তর ফরিদপুর জেলায় জন্মে, ইহার মধ্যে তালমা, কানাইপুর, খলিলপুর, চরমুগুরিয়া, টেকেরহাট ইত্যাদি এলাকায় ভালো জাতের হার্ড ডিস্ট্রিক্ট পাট জন্মে। জাত পাটের পরই এই পাটের স্থান। হার্ড ডিস্ট্রিক্ট পাটের আঁশ জাত পাটের আঁশ থেকে সামান্য কম সৃক্ষ। কিন্তু অধিক শক্তিসম্পন্ন তৈলাক্ত এবং আঁশ ঘনজাল বিশিষ্ট হার্ড ডিস্ট্রিক্ট পাট রং-এর উজ্জ্বলতার জন্য বিখ্যাত। বিশেষত তোষা পাটের রং অত্যন্ত উজ্জ্বল কাঁচা স্বর্ণ বর্ণ হয়ে থাকে। এই পাট অনেক লম্বা হয় এবং কাটিং খুবই সামান্য পরিমাণ হয়। রং, আঁশের গুণ ও কম কাটিং-এর জন্য হার্ড ডিস্ট্রিক্ট পাট খুবই সমাদৃত। এই কারণে এই শ্রেণির পাটের চাহিদা ও মূল্য অন্যান্য অঞ্চলের পাটের তুলনায় অধিক থাকে। মূলত হার্ড ডিস্ট্রিক্ট এলাকায় তোষা পাটের উৎপাদন অনেক বেশি হয়। পাক্কা প্যাকিং-এ ইহার রং ও উজ্জ্বলতা বৃদ্ধি পায়।

খ) ডিন্টিষ্ট (District)-

ডিস্ট্রিক্ট পাট সাধারণত ব্রহ্মপুত্র নদীর পশ্চিম পারের নিমুভূমিতে জন্মে। মূলত বৃহত্তর পাবনা জেলায় উৎপাদিত সাদা ও তোষা পাট ডিস্ট্রিক্ট পাট। এছাড়া বৃহত্তর সিলেট, নোয়াখালী ও পার্বত্য চট্টগ্রাম অঞ্চলের পাটকে ডিস্ট্রিক্ট পাট বলা হয়ে থাকে। ডিস্ট্রিক্ট পাটের আঁশ জাত পাটের আঁশ থেকে কিছুটা মোটা ও ওজনে হালকা, উজ্জ্বলতা ও তৈলাক্ততা কিছুটা কম। আঁশের শক্তি ও জাল সাদৃশ্য ঘনত্ব ও জাত পাটের তুলনায় কম। সাদা পাটের রং সাধারণত সাদাটে এবং তোষা পাটের রং বাদামি বা ফ্যাকাসে লাল হয়ে থাকে।

গ) সফট ডিন্ট্রিষ্ট (Soft district)-

বৃহত্তর জেলা কৃষ্টিয়া, যশোর, খুলনা ও বরিশাল ইত্যাদি এলাকায় উৎপন্ন পাটকে সফট ডিস্ট্রিক্ট পাট বলে। সফট ডিস্ট্রিক্ট পাটের আঁশ তুলনমূলকভাবে কিছুটা নরম হয়। তৈলাক্ততা ও রং-এর উজ্জ্বলতা অপেক্ষাকৃত কম থাকে।

৩) নর্দান পাট (Northern jute)-

বৃহত্তর জেলা রংপুর, দিনাজপুর, বগুড়া ও রাজশাহী এলাকায় উৎপন্ন পাটকে নর্দান ডিস্ট্রিক্ট পাট বলে। নর্দান পাটের আঁশের শক্তি কম। কিছুটা ফাঁপা ও মোটা জালের ঘনত্ব কম ও অধিক কাটিং যুক্ত, তৈলাক্ততা কম, পাক্কা প্যাকিং -এর পর সাধারণত নর্দান পাটের উজ্জ্বলতা বৃদ্ধি পায় না। সাদা পাটের রং সাধারণত মেটে ও তোষা পাটের মেটে তামাটে ও মেটে শ্যামলা হয়ে থাকে।

জুট উৎপাদনকারী দেশসমূহ-

নিম্নে জুট উৎপাদনকারী দেশসমূহের নাম দেওয়া হলো-

- * বাংলাদেশ, ভারত
- * বার্মা, চায়না, ব্রাজিল এবং নেপাল
- পৃথিবীর প্রায় শতকরা ৮৫ ভাগ জুট ভারত ও বাংলাদেশে জন্মে।

পাটের দোষ-ক্রটি (Defects of jute)

গোড়াময় পাট (Rooty fibres)-

গোড়ার দিককার অংশ, পচনের স্বল্পতার কারণে, বাকল ও আঠালো পদার্থ সম্পূর্ণ দূরীভূত না হওয়ায় এই প্রকার ক্রটি দেখা দেয়। এর গোড়ার অংশ কেটে নিমুমানের পাটের সাথে নিমুমানের সূতা তৈরির কাজে ব্যবহার করা চলে।

দাগী পাট (Specky fibres)-

পচন ও ধোয়া যথোপযুক্ত না হলে আঁশের সঙ্গে বাকলের ক্ষুদ্র ক্ষুদ্র অংশ লেগে থাকতে দেখা যায়। এবং রং -এর অসমতা সৃষ্টি করে। ইমালশন প্রয়োগের পর অধিক সময় পাইলিং এবং উপযুক্ত কার্ডিং করলে ভালো ফল পাওয়া যায়।

আগান্তদ্ধ পাট (Croppy fibres)-

এই ধরনের পাট আঁশের প্রান্ত আঠালো খসখসে, পাট গাছ ভিজানোর অর্থাৎ পচনের সময় পাট -এর মাথা পানির ওপরে থাকলে এবং আঁশ ছাড়িয়ে নেওয়ার সময় বিশেষ সতর্ক না হলে এই ধরনের ক্রটির কারণ ঘটায়। এই ক্রটিযুক্ত অগ্রভাগ কেটে নিয়ে নিমুমানের সুতার জন্য ব্যবহার করা হয়।

কাস্টময় পাট (Sticky fibres)-

কোনো কারণে পূর্ণতা প্রাপ্তির পূর্বেই পাট কেটে নিলে এ থেকে পাট ছাড়িয়ে নেওয়া সুবিধাজনক। পাট আঁশ পাটকাঠি থেকে ছাড়িয়ে নেওয়ার সময় কিছু কিছু ক্ষুদ্র পাটকাঠির অংশ লেগে থাকে। উপযুক্ত কার্ডিং করে ইহা দূর করা হয়। উইভিং-১

গেরোময় পাট (Knotty fibres)-

পাট গাছ ছোট অবস্থায় পোকার দংশনে এই ধরনের ক্রটির সৃষ্টি হয়। আঁশগুলি গোছা গোছা এক সঙ্গে থাকে, পাট আঁশ আলাদা করার ক্ষেত্রে অসুবিধা ঘটায় এবং কার্ডিং-এ ক্ষুদ্র ক্ষুদ্র আঁশে পরিণত হয়। প্রয়োজনবোধে কেটে নিমুমানের সুতা তৈরির ক্ষেত্রে ব্যবহার করা হয়।

এরা পাট (Dead fibre)-

পচনের পরিমাণ বেশি হলে অথবা পাট ভিজা অবস্থায় অনেক দিন ধরে গুদামজাত করে রাখলে আঁশের রং ফ্যাকাসে হয় এবং শক্তি লোপ পায়। এই রূপ পাট নিমুমানের সুতা তৈরির ক্ষেত্রে ব্যবহার করা হয়।

হ্বা পাট (Hunka fibres)-

শক্ত শুষ্ক বাকলযুক্ত পাট এই ক্রটির কারণ। শুষ্ক অংশ কেটে পুনরায় ইমালশন যোগে পাইলিং করে নিমুমানের সূতা প্রস্তুত করা সম্ভব।

কমজোর পাট (Weak fibres)-

অতিরিক্ত পচন অথবা ভিজা অবস্থায় গাঁইট বাঁধা ইত্যাদি বিভিন্ন কারণে পাটের শক্তি কমে যেতে পারে। বেশি শক্তিসম্পন্ন পাটের সাথে মিশিয়ে ব্যবহার করা যেতে পারে।

শেওলাযুক্ত পাট (Mossy fibres)-

আবদ্ধ জলে উৎপাদিত পাট গাছে শেওলা থাকতে পারে। পাটের শেওলাযুক্ত আঁশ কেটে আলাদা করে নিমুমানের পাটের সাথে ব্যবহার করা প্রয়োজন।

লোমশ পাট (Runners fibres)-

অসম পচন ও অসতর্কভাবে ধোয়া এবং আঁশ ছড়ানোর জন্য এই প্রকার ক্রটি হতে পারে। এই প্রকার পাট পৃথক অর্থাৎ আলাদা আলাদা আঁশ সৃষ্টিতে বাধা প্রদান করে।

আন্ত:বিনষ্ট (Heart damage fibres)-

গাঁইট বাঁধার সময় অতিরিক্ত জলীয় বাষ্প থাকলে কিছুদিনের মধ্যেই গাঁইটের ভিতরের কিছু অংশ নরম হয়ে পড়ে, কোনো কোনো ক্ষেত্রে ভিতরের পাট গুঁড়ো গুঁড়ো হয়ে যায়। এ ধরনের পাটকে আন্তঃবিনষ্ট পাট বলে।

বহিঃবিনষ্ট (Exterior damage)-

স্থানান্তর করার সময় পাটের গাঁইটগুলি জাহাজের পার্শ্বের দিকে রাখলে অতিরিক্ত জলীয় বাষ্প ও উত্তাপের প্রভাবে বাইরের দিকের পাট বিনষ্ট হয়ে যায়। উপযুক্ত বাছাইয়ের পর বিনষ্ট পাট নিমুমানের পাটের সাথে ব্যবহার করা যেতে পারে।

পাটের ভৌত শুণাবলি (Physical properties of Jute fibre)-

দৈর্ঘ্য : ০.২ থেকে ৩০ ইঞ্চি পর্যন্ত

২. শক্তি টেনাসিটি (গ্রাম/ ডেনিয়ার) : ৫ থেকে ৮

৩. ঘনতু (গ্রাম/সিসি) : ১.৪৮ থেকে ১.৫০

কম স্থিতিস্থাপক সম্পন্ন স্থিতিস্থাপক**তা** 8.

ছিঁড়ে যাবার পূর্বে প্রসারণ Œ. ২%

আর্দ্রতা ধারণ ক্ষমতা ১৩.9৫% ৬.

ঘর্ষণ প্রতিরোধ ক্ষমতা মোটামুটি, খুব ভালো নয়। ٩.

হলুদাভ, হলুদ, বাদামি, সোনালি ъ. রং তাপ প্রতিরোধক প্রতিরোধ ক্ষমতা ভালো নয়।

পাটের রাসায়নিক শুণাবলি (Chemical properties of jute)-

১) অ্যাসিডে ক্রিয়া : শক্তিশালী অ্যাসিডে উত্তপ্ত করলে হাইড্রো সেলুলোজ

গঠন করে। কিন্তু হালকা অ্যাসিডে কোনো ক্ষতি হয় না।

: শক্তিশালী অ্যালকালিতে আঁশের শক্তি ক্ষতিগ্রস্ত ২) অ্যালকালিতে ক্রিয়া

করে কস্টিক সোডা দ্রবনে উত্তপ্ত করলে ওজন কমে

অর্থাৎ হাইড্রোসেলুলোজ দুর হয়।

৩) ব্লিচিং-এ ক্রিয়া : অক্সিডাইজিং এজেন্ট কোনো ক্ষতি করে না।

৪) আলোর প্রতিরোধক : সূর্যের আলোতে কিছুটা রং -এর পরিবর্তন হয়।

ক্ষমতা এ পরিবর্তন লিগনিন -এর কারণে হয়।

: সব জৈবিক দ্রাবকেই প্রতিরোধ ক্ষমতা আছে। ৫) জৈবিক দ্রাবক

: কটন ও লিনেনের চেয়ে পাট -এর প্রতিরোধ ক্ষমতা ভালো। ৬) মিলডিউ এ প্রতিরোধ ক্ষমতা

৭) পোকামাকড়ে প্রতিরোধ ক্ষমতা : ভালো।

৮) রং করার ক্ষমতা : সহজেই রং করা যায় । সাধারণত বেসিক রং ব্যবহার

করা হয়।

পাট -এর ব্যবহার (Uses of jute)-

ක.

- পাট আঁশ সন্তা, শক্তিশালী, মোটামুটি টেকসই -এর কারণে ব্যাগ, থলে ও কম্বল -এর জন্য খুবই সুবিধাজনক।
- পাট ফাইবার/সুতা বুনন কার্পেট, টানা ও পড়েন পাইল এবং টাফটেট কার্পেটের জন্য ব্যবহৃত হয়। ইহা ছাড়া সি বি সি -এর জন্যও ব্যবহৃত হয়।
- গৃহস্থালি কাজের জন্য দড়ি, কর্ডেজ, সুতলি এবং টোয়াইন সুতার জন্য ব্যবহৃত হয়।
- পাটের অপচয় ক্যাডিস, গাড়ির সিটের নিচে ফো ে-এর বিকল্প হিসেবে ব্যবহৃত হয়।
- ভালো কাপড় দ্বারা পর্দা, ওয়াল ম্যাট, ফার্নিশিং কাপড় তৈরির জন্য ব্যবহার করা হয়।
- বিভিন্ন পোশাকে ব্যবহারের জন্য লাইনিং -এর জন্য ব্যবহৃত হয়।
- ভালো পাট ও অ্যালকালীর সাথে প্রক্রিয়াজাত করে উলের সাথে মিশ্রিত করা হয়। বিছানা ও বালিশের লাইনিং এবং ব্যান্ডেল কাপড় তৈরিতে ব্যবহৃত হয়।
- জুটেক্স (জুট+কটন) তৈরিতে ব্যবহৃত হয়।
- কাগজ তৈরির মণ্ড হিসেবে সবুজ পাট ব্যবহৃত হয়।

পঞ্চম অধ্যায়

সিক্ক ফাইবার (Silk fibre)

সিল্ক একটি প্রাকৃতিক ফিলামেন্ট ফাইবার। সিল্ককে রেশ -এর বলা হয়ে থাকে। রেশন ফিলামেন্টের স্থিতিস্থাপকতা গুণ অনেক বেশি। ইহা বেশ নমনীয় এবং আর্দ্রতা ধারণ ক্ষমতা বেশ ভালো অর্থাৎ শতকরা ১১ ভাগ। এক জাতীয় পোকার লালা থেকে সিল্ক ফাইবারের উৎপত্তি। রেশম পোকা বা পলু পোকা তার নিজের মুখ থেকে নিঃসৃত রেজিন সাদৃশ্য লালা দিয়ে শরীরের চারপাশে একটি বেস্টনী তৈরি করে ছোট গুটি তৈরি করে। এ ছোট গুটিকে কোকুন (Cocoon) বলা হয়। এ কোকুন থেকেই পরবর্তী প্রক্রিয়ায় রেশম সুতা/ফিলামেন্ট আকারে সংগ্রহ করা হয়।

রেশম সর্বপ্রথম চীন দেশে আবিষ্কার হয়। পরবর্তীতে আস্তে আস্তে পৃথিবীর অনেক দেশে ছড়িয়ে পড়ে। বর্তমানে বাংলাদেশেও রেশম চাষ হচ্ছে। রেশম চাষ দুটি ভাগে বিভক্ত। তুঁত গাছ চাষ ও পলু পোকা পালন। পলু পোকার খাদ্য হিসেবে তুঁত গাছের পাতা ব্যবহার করে বলে রেশম চাষে পলু পালনের পাশাপাশি তুঁত গাছ চাষও খুবই প্রয়োজনীয়।

বিভিন্ন প্রকার সিচ্ক (Classification of silk)-

সিক্ক ইন্ডাম্ট্রিতে সমগ্র সিক্ককে দুই ভাগে ভাগ করা হয়।

- ১) মালবেরি (Mulberry silk)
- ২) নন-মালবেরি (Non Mulberry silk)।

নন-মালবেরি সিক্ষসমূহকে আবার তিন ভাগে ভাগ করা হয়।

- ক) তসর সিল্ক (Tassor silk)
- খ) ইরি (Eri) সিল্ক
- গ) মুগা (Muga silk) সিল্ক।

উপরোক্ত চারটি ভ্যারাইটির মধ্যে মোট উৎপাদনের ৮০% মালবেরি সিক্ক ইন্ডাস্ট্রিতে উৎপাদনের জন্য ব্যবহৃত। হয়।

১) মালবেরি সিচ্ক (Mulberry silk)-

মালবেরি পাতা খেয়ে পলু পোকা যে সিল্ক ফাইবার উৎপন্ন করে তাই মালবেরি সিল্ক। এ ভ্যারাইটির সিল্ক মানের দিক থেকে খুবই উন্নত এবং বৈচিত্র্য পূর্ণ কাপড় তৈরিতে ব্যবহৃত হয়। বিভিন্ন ধরনের শাড়ি যেমন- কাঞ্চিপুরম, কাশ্মীরি, বানারস ও মাইশরি শাড়ি তৈরিতে ব্যবহৃত হয়।

তসর সিল্ক (Tassor silk)-

মালবেরি সিক্ষ

সাই, অর্জুন নামে বন্য গাছে এ ভ্যারাইটির সিল্ক পাওয়া যায়। ইহা মানের দিক থেকে কিছুটা নিমুমানের কিন্তু চাকচিক্যতা বেশি।

ইরি (Eri silk) সিল্ক-

দক্ষিণ-পূর্ব এশিয়া, চীন ও পূর্ব ভারতে এ ধরনের সিল্ক পাওয়া যায়। সাধারণত পাহাড়ি অঞ্চলে যেখানে শীতের সময় ১২০ সে. তাপমাত্রা সীমাবদ্ধ থাকে সে অঞ্চলে এ ধরনের সিল্ক উৎপন্ন হয়। আর্দ্রতা ৮০-১০০% -এর মধ্যে হবে। এ ধরনের সিল্ক সাধারণত বাড়িতে উৎপন্ন করা হয় না।

গ) মুগা (Muga silk) সিৰু-

ভারতের উত্তর-পূর্ব অঞ্চলে এ ধরনের সিল্ক পাওয়া যায়। মুগা পোকা দ্বারা সোনালি হলুদ সিল্ক উৎপাদন করা হয়। এ মুগা পোকা সম (Som) এবং সোলু (Solu) পাতা খেয়ে সোনালি হলুদ সিল্ক উৎপাদন করে।

সিল্ক উৎপাদনকারী দেশসমূহ-

এশিয়ার দেশসমূহের মধ্যে যখন ব্যাপকভাবে রেশম চাষ শুরু হয়। তখন রেশম পোকার বিভিন্ন ধরনের রোগের আবির্ভাব ঘটে। ফলে ক্রটিযুক্ত কোকুন উৎপাদন হয়। যা ফিলামেন্ট সংগ্রহের জন্য সুবিধাজনক নয়।

জাপানই সর্বপ্রথম বিজ্ঞানসম্মতভাবে রেশম পোকার চাষ ও ক্রটিমুক্ত কোকুন সংগ্রহের মাধ্যমে ভালো রেশম উৎপাদনের মাধ্যমে সর্বোচ্চ উৎপাদনের দেশ হিসেবে পরিচিতি লাভ করে। পরবর্তীতে নিমুলিখিত দেশ সমুহেও বিজ্ঞানসম্মতভাবে রেশম পোকার চাষ শুরু করে এবং পরিচিতি লাভ করে।

চীন, ভারত, ইতালি, স্পেন, ফ্রান্স, অস্ট্রেলিয়া, ইরান, তুরস্ক, গ্রিস, সোভিয়েত রাশিয়া, সাউথ কোরিয়া, ব্রাজিল, সিসিলি, সিরিয়া, বুলগেরিয়া ইত্যাদি। রেশম চাষ ও পলু পালনের জন্য খুব ভালো দেখা শোনার প্রয়োজন এবং ফিলামেন্ট সংগ্রহের ক্ষেত্রে দক্ষ শ্রমিকের প্রয়োজন রয়েছে।

সিক্ষের উপাদান-

ফাইব্রয়িন (Fibroin) : ৭৬% সেরিছিন (Sericin) : ২২% চর্বি ও মোম (Fat and Wax) : ১.৫% মিনারেল সল্ট (Mineral salts) : ০.৫%

কাঁচা সিৰু (Raw silk)-

কোকুনের কাঁচা সিল্ক সাধারণত সিল্ক ওয়ার্মের দুইটি ফিলামেন্ট দ্বারা গঠিত। এ ফিলামেন্ট দুটি সিল্ক ওয়ার্মের ২ পার্শ্বের দুটি গ্লান্ড (Gland) দ্বারা নিঃসৃত। এ ফিলামেন্ট দুটি ফাইবরয়িন দ্বারা তৈরি। ইহা ছাড়াও ফিলামেন্টসমূহ এক প্রকার আঠালো পদার্থ দ্বারা সিমেন্টেড থাকে যা সেরিছিন। কাঁচা সিল্ক ফাইবরয়িন, সেরিছিন –এর সঙ্গে কিছু মিনারেল সল্ট, সামান্য চর্বি ও মোম এবং কিছু রঙিন দ্রব্যও থাকে।

সেরিছিন পানিতে দ্রবণীয় এবং পাতলা অ্যালকালি অথবা গরম সাবান দ্রবণেও সেরিছিন দূর হয়। সিল্ক ডিগামিং অথবা স্কাওয়ারিং করলে টুইন ফিলামেন্ট আলাদা হয় ও কিছুটা নরম ও চাকচিক্যময় হয়।

সি**ৰু** ডিগামিং (Silk degumming)-

কাঁচা সিল্ক যা গামসহ থাকে সে সিল্ককে হার্ড সিল্ক এবং ডিগামিং করার পর সিল্ককে সফট সিল্ক বলে।

কাঁচা সিল্ক ফাইবারে গাম বা সেরিছিন নামক প্রাকৃতিক অপদ্রব্য থাকে, যা সিল্ক -এর অন্যতম প্রাকৃতিক অপদ্রব্য । এ সেরিছিনের পরিমাণ প্রায় সমগ্র সিল্কের ওজনের ২০%। উপরোক্ত অপদ্রব্য ছাড়াও কিছু প্রাকৃতিক সম, চর্বি ও কালার পিগমেন্ট থাকে। সিল্কের সেরিছিন ও অন্যান্য অপদ্রব্য স্কাওয়ারিং -এর প্রক্রিয়ার মাধ্যমে দূর করা হয়। এ প্রক্রিয়াকে সিল্ক ডিগামিং বলে।

সিল্ক ডিগামিং বা স্কাওয়ারিং এজেন্ট হিসেবে সাধারণত ১) সাবান ২) সোডিয়াম কার্বনেট ও বাই কার্বনেটের মিশ্রণ ৩) সিনথেটিক ডিটারজেন্ট ব্যবহৃত হয়।

সেরিকালচার -এর সংজ্ঞা-

সিল্ক কোকুন ও সিল্ক ওয়ার্ম চাষ পদ্ধতিসমূহকেই সেরিকালচার বলা হয়েছে। রেশম পোকাকে আমাদের দেশের পলু পোকা বলে। এই পলু পোকা পালনপূর্বক শুটি উৎপাদনকেই ইংরেজিতে সেরিকালচার বলে।

বাংলাদেশে রেশম চাষ পদ্ধতি-

রেশম পোকা বা পলু পোকা পালনের জন্য চারটি অবস্থা রয়েছে, ডিম্ব থেকে শুরু করে পুনরায় ডিম্ব এ চলে আসাকে নিয়ে একটি জীবন চক্র তৈরি করা হয়েছে। পলু পোকার জীবন চক্র নিচে প্রদত্ত হলো।

ডিম্ব (Egg)-

ডিমগুলো বেছে বেছে ভালোগুলো নির্ধারণ করে ডিম পাড়ার পর কমপক্ষে ছয় সপ্তাহ কোন্ড স্টোরে রেখে দিতে হবে। অতঃপর ডিমগুলো ১২ থেকে ১৫ দিন ইনকিউবেটরে রেখে দিতে হবে। ইনকিউবেটরে তাপে ডিমগুলো থেকে সিল্ক কীট বের হয়ে আসে। সাধারণত ১ আউন্স ডিম থেকে প্রায় ৩৬০০০ সিল্ক কীট বের হয়। কীট বের হওয়ার পর একটি ছিদ্রযুক্ত কাগজ দ্বারা কীটগুলো ঢেকে দিতে হবে। কীটগুলো তখন থেকে সরবরাহকৃত তুঁত পাতা খেতে শুক্ত করে এবং আস্তে আস্তে ছিদ্র থেকে ছিদ্রযুক্ত কাগজের উপর বের হয়ে আসে নিচে তলার উপর অপদ্রব্য ও ডিমের খোসাসমূহ থেকে যায়।

পলু পোকা (Caterpiller)-

ডিম থেকে পলু পোকা বের হওয়ার পর এটি ২০ থেকে ৩০ দিন দৈনিক ৫ বার তুঁত (Mullberry) পাতা খেতে থাকে। এ সময় পলু পোকা খুব ক্ষুধার্ত থাকে, তখন-এরা প্রায় ১/৪ ইঞ্চি লম্বা থাকে। এ সময় পলু পোকার ভালো পরিচর্যার প্রয়োজন। এ অবস্থায় তাপমাত্রা ও আর্দ্রতা নিয়ন্ত্রিত অবস্থায় রাখা প্রয়োজন। সঠিক তাপমাত্রায় ২৫০ সে. এবং আর্দ্রতা ৭৫ থেকে ৮০% এ সময়ে পলু পোকা বা রেশম পোকার একমাত্র কাজ তুঁত পাতা খাওয়া এবং এটি চারবার তার খোলস বা ক্ষিন (Skin) পরিবর্তন করে। পোকা খোলস বদলানোর

সময় পাতা খাওয়া বন্ধ করে নিস্তেজ হয়ে পড়ে এবং পাতা থেকে মুখ তুলে চুপচাপ থাকে। পরপর চারবার খোলস পরিবর্তন করার পর পশম অবস্থায় পলু পোকা প্রায় ১০ দিন এক নাগাড়ে শুধু পাতা খায়। এ সময় পোকার দৈর্ঘ্য প্রায় ৩ ইঞ্চি লম্বা ও ৫ গ্রাম ওজনের হয়। পঞ্চম অবস্থায় শেষ দিকে পলু পোকা শুটি তৈরির জন্য প্রস্তুত হয়। এ সময় পোকার শরীর স্বচ্ছ থাকে। আন্তে আন্তে ফিলাপমেন্ট তৈরি করতে থাকে। সিল্ক ওয়াম -এর মাথায় একটি টিউবের (স্পিনারেটের মতো) মধ্য দিয়ে দুটি ফিলামেন্ট বের হয় এবং পলু পোকার শরীরের চারদিকে জড়ানো থাকে। প্রতিটি ফিলামেন্ট পরস্পর গায়ে লেগে থাকার জন্য একটি আলাদা পদার্থ (যা সেরিসিন নামে পরিচিত) ব্যবহৃত হয়। আন্তে আন্তে সিল্ক ওয়ার্ম নিজের চারদিকে একটি শক্ত আবরণে আবৃত করে ফেলে এবং কোকুন গঠন করে। এ প্রক্রিয়া সাধারণত ২ থেকে ৩ দিন ধরে চলে।

পিউপা (Pupa)-

কোকুন তৈরি সমাপ্ত হওয়ার পর ৮-১০ দিনের মধ্যে ফিলামেন্টসমূহ সংগ্রহ করা না হলে সিল্ক ওয়ার্ম প্রজাপতি (Moth) হয়ে কোকুন কেটে বের হয়ে আসে। তখন কোকুন অর্থাৎ শুটিতে একটা গর্ত তৈরি হয় ফলে উক্ত শুটি দ্বারা ফিলামেন্ট সংগ্রহ করা সম্ভব হয় না। কারণ শুটি কাটার ফলে ফিলাসেন্টসমূহ হাজার টুকরা হয়ে যায়। কোকুন উৎপাদনের পর কারখানায় নিয়ে কোকুন থেকে রেশম ফিলামেন্ট উত্তোলন করা হয়। কোকুন থেকে কিছু ভালো কোকুন বেছে রেখে দেওয়া হয়, যা পরবর্তীতে প্রজাপতি আকারে বংশ বিস্তার করে।

মথ (Moth)-

পরিপূর্ণ কোকুন থেকে যে পোকা বেরিয়ে আসে তাকে মথ বলে। মথগুলোর মধ্যে স্ত্রী ও পুরুষ উভয়ই থাকে। মথ অবস্থায় -এরা তখনও চোখে দেখে না। এ অবস্থায়ই একে অপরের সাথে মিলন ঘটায় এবং স্ত্রী মথগুলো ডিম পাড়ে এবং পরবর্তী জীবনচক্র আবার শুরু হয়। স্ত্রী মথ একাধারে ৩৫০-৪০০ ডিম পাড়ে। ডিম পাড়ার পর মথ মারা যায়।

সিঙ্ক বাছাই পদ্ধতি-

অন্য সমস্ত প্রাকৃতিক ফাইবার থেকে সিল্ক ফাইবার সম্পূর্ণ আলাদা। অন্য সমস্ত প্রাকৃতিক ফাইবার ছোট দৈর্ঘ্যের থাকে কিন্তু সিল্ক ওয়ার্ম -এর কোকুন থেকে টুইন ফিলামেন্ট সংগ্রহ করা হয়। যার দৈর্ঘ্য প্রায় এক মাইলের মতো হয়ে থাকে। কোকুন থেকে অবিচ্ছিন্ন দৈর্ঘ্যের ফিলামেন্ট সংগ্রহ করার পর এটি পাকানো হয় এবং একটি নির্দিষ্ট ব্যাসের বা কাউন্টের সুতা তৈরি করা হয়। কোকুন থেকে ফিলামেন্ট সংগ্রহ কয়েকটি ধাপে সংঘটিত হয়।

স্টিফলিং (Stifling)-

প্রথমেই কোকুনের অভ্যন্তরে জীবিত মথকে স্টিম অথবা গরম পানি দ্বারা মেরে ফেলা হয়। তাতে ফিলামেন্ট সংগ্রহ করতে সুবিধা হয়।

সর্টিং অথবা গ্রেডিং (Sorting or grading)-

সুষম ও ভালো মানের সিল্ক সুতা পাওয়ার জন্য সিল্ককে গ্রেডিং করা হয়। কোকুন বিভিন্ন আকারের হয়। একই আকারের বা গ্রেডিংয়ের রঙের কোকুন আলাদা আলাদা গ্রুপ করা হয়। নষ্ট হওয়া বা ভালোভাবে পরিপক্ব না হওয়ায় কোকুন বাদ দেওয়া হয়, যা ওয়েস্ট ইন্ডাস্ট্রিতে ব্যবহৃত হয়।

কুকিং (Cooking)-

ফিলামেন্টের সাথে প্রকৃতিগতভাবেই আঠালো পদার্থ লেগে থাকে যা সেরিসিন (Sericin) বা সিল্ক গাম নামে পরিচিত। এ সেরিসিন নরম না করলে ফিলামেন্ট সংগ্রহ করা সম্ভব হয় না। একটি পাত্রে ১% সাবানের দ্রবণ ৯০০ সে. তাপমাত্রায় তাপ দেওয়া হয়। তাতে সেরিসিন নরম হয় এবং এ প্রক্রিয়া মাত্র কয়েক মিনিটের জন্য করা হয়।

ব্রাশিং (Brushing)-

কুকিং-এর পর রিলিং-এর পূর্বে ফ্রোস (Floss), ব্রাশের মাধ্যমে দূর করা হয়, যতক্ষণ না পর্যন্ত পিলামেন্ট -এর প্রান্ত না পাওয়া যায়। কোকুনের উপরের এলোমেলো বা টুকরা ফাইবারসমূহকে ফ্লোস বলে। এ ফ্রোস রেশম ওয়েস্ট ইন্ডাস্ট্রিতে ব্যবহৃত হয়।

त्रिणिং Reeling-

٥٥.

কোকুনকে ব্রাশিং -এর পর একটি বেসিনে নেওয়া হয়। যাতে ৬০০ সে. তাপমাত্রায় পানি থাকে। রিলিং-এ কর্মরত শ্রমিকের অভিজ্ঞতা ও দক্ষতার প্রয়োজন রয়েছে। সুন্দর ও সুশৃঙ্ক্ষলভাবে ফিলামেন্ট সংগ্রহের জন্য অতি যত্নসহকারে প্রতিটি কোকুনের প্রান্ত নিয়ে রিলিং -এর মাধ্যমে রেশম সংগ্রহ করা হয়।

যে প্রক্রিয়ায় কোকুন থেকে ফিলামেন্ট উত্তোলন করা হয় তাকে রিলিং বলা হয়। কোকুনের ফিলামেন্ট- -এর ব্যাস কোকুন থেকে কোকুনের আলাদা হয়। কাজেই ফিলামেন্ট সংগ্রহ করার সময় ও সুতা তৈরির সুবিধার্থে একসঙ্গে ১৫ থেকে ১৮টি ফিলামেন্ট রিলিং করা হয়। যাতে ২৮ থেকে ৩০ ডেনিয়ার সুতা প্রস্তুত হয়। রিলিং প্রক্রিয়ায় প্রান্ত পিলামেন্ট বান্ডেলে রূপান্তরিত করা হয়। বান্ডেলের ওজন ৫ থেকে ১০ কেজি এবং বেইল- -এর ওজন সাধারণত ৬০ কেজি হয়।

সিক্ষ -এর ভৌত শুণাবলি (Physical properties of Silk)-

শক্তি, টেনাসিটি (গ্রাম/ডেনিয়ার) ২.৫ থেকে ৫ ١.

ঘনতু (গ্রাম/সিসি ٩. ১.২৫ থেকে ১.৩৪

স্থিতিস্থাপকতা অত্যন্ত ভালো **O**.

ছিঁড়ে যাবার পূর্বে প্রসারণ **১৫%** 8. আর্দ্রতা ধারণ ক্ষমতা 33% œ. রেসিলিয়েন্সি মোটামুটি ৬.

ঘর্ষণ প্রতিরোধ ক্ষমতা ٩. ভালো

রং হলুদাভ ъ.

তাপ প্রতিরোধক ভালো নয় **ත**. চাকচিক্যতা উজ্জ্বল

সিব্দের রাসায়নিক গুণাবলি (Chemical properties of Silk)-

: উলের মতো। ঘন শক্তিশালী অ্যাসিড সিল্ক ধ্বংস করে। কিন্তু হালকা অ্যাসিডে ১) অ্যাসিডে ক্রিয়া কোনো ক্ষতি হয় না।

: উলের চেয়ে অ্যালকালিতে প্রতিরোধ ক্ষমতা ভালো। গরম সোডিয়াম ২) অ্যালকালিতে ক্রিয়া

হাইড্রক্সাইড (NaOH) সিল্ক দ্রবীভূত করে।

৩৪

৩) ব্লিচ এ ক্রিয়া : অক্সিডাইজিং ব্লিচ কোনো ক্ষতি করে না। কিন্তু অক্সিডাইজিং এজেন্ট, ক্রোরিন সল্ট ক্ষতি করে।

৪) আলোর প্রতিরোধক ক্ষমতা : ভালো নয়।

৫) জৈবিক দ্রাবক : প্রতিরোধ ক্ষমতা ভালো।
 ৬) মিলডিউ-এ প্রতিরোধ ক্ষমতা : কিছুটা আক্রান্ত হয়।

৭) পোকামাকড়ে প্রতিরোধ ক্ষমতা : ভালো, পোকামাকড় কোনো আক্রমণ করে না।

৮) রং করার ক্ষমতা : অত্যন্ত ভালো। সাধারণত অ্যাসিড ডাই

দ্বারা রং করা হয়।

সিক্ষের ব্যবহার-

 যেহেতু বাইরের আবহাওয়া থেকে শরীরকে রক্ষা করে, কাজেই ইহা শীতকালীন অ্যাপারেল হিসেবে ব্যবহৃত হয়।

হার্ড সিল্ক দ্বারা জর্জেট, শীপন, ক্রেপ ফেব্রিক্স তৈরি হয়।

- মালবেরি সিল্ক থেকে ইহার নমনীয়তার জন্য খুব উন্নতমানের এবং বৈচিত্র্যপূর্ণ কাপড়, শাড়ি
 যেমন- কাঞ্চিপুরম, কাশ্মীরি, বানারস, মাইশরি সিল্ক তৈরি হয়।
- তসর সিল্ক (Tossor) দিয়ে বিভিন্ন ধরনের শৌখিন পোশাক, সজ্জামূলক কাপড় ইত্যাদি
 তৈরি হয়। স্পান সিল্ক থেকে পাইল ফেব্রিক, ড্রেস ম্যাটারিয়াল, লাইনিং, ভেলভেট,
 ইনসুলেটিভ ম্যাটারিয়াল ইত্যাদি তৈরি হয়।
- বন্য সিল্ক (Wild silk) খুবই টেকসই ও মোটা থাকার কারণে বিভিন্ন ধরনের সাধারণ কাপড় তৈরি হয়।
- সিল্ক নয়েল দ্বারা খেলাধুলার পোশাক, পর্দার কাপড়, ঝালর ইত্যাদি তৈরি হয়।

ষষ্ঠ অধ্যায় বস্ত্রে ব্যবহৃত সুতা (Yarn used in fabrics)

কাপড় তৈরির জন্য যে কাঁচামাল ব্যবহার করা হয় তাই সুতা (Yarn)। যে সুতা দ্বারা কাপড় তৈরি করা হয় উক্ত কাপড়ের গুণাবলি কিছুটা সুতার গুণাবলির উপর নির্ভরগীল অর্থাৎ সুতা কাপড়ের গুণাবলিকে নিয়ন্ত্রিত ও প্রভাবিত করে। একটি সুতার গুণাবলির আদর্শ মান বজায় থাকলেই কেবল তা দ্বারা কাজ্ক্ষিত মানসম্পন্ন কাপড় তৈরি করা যায়। বর্তামানে প্রতিযোগিতামূলক বাজারে সুতার ভালো গুণের উপরই উৎপাদিত কাপড়ের চাহিদা বৃদ্ধি করবে।

ওভেন কাপড় তৈরির জন্য সাধারণত ২ সিরিজ সুতার প্রয়োজন। এক সিরিজ টানা সুতা ও অপর সিরিজ পড়েন সুতা। এই দুই সিরিজ টানা ও পড়েন সুতা পরস্পর সমকোণে বন্ধনীর মাধ্যমে ওভেন কাপড় তৈরি করে। পাশাপাশি লুপ গঠনের মাধ্যমে নিটেড কাপড়ও জমাট বাঁধিয়ে ফেলটেড কাপড় প্রস্তুত করা হয়। ওভেন কাপড় তৈরির জন্য ব্যবহৃত টানা ও পড়েন সুতার গুণাগুণ ভিন্ন থাকে। সাধারণত টানা সুতার শক্তি বেশি ও পড়েন সুতার শক্তি কম থাকে। স্পিনিং, ওয়াভিং বিভাগ হতে প্রাপ্ত সুতা বিভিন্ন প্যাকেজ আকারে পাওয়া যায়। যেমন কোনো (Cone), স্পুল (Spool), চিজ (Cheese), হ্যাংক (Hank) ইত্যাদি। যা বস্ত্র তৈরির কাজে ব্যবহৃত হয়।

সুতার সংজ্ঞা (Definition of yarn)-

নির্দিষ্ট নিয়মে টেক্সটাইল ফাইবারকে টুইস্ট দিয়ে যথেষ্ট দৈর্ঘ্যবিশিষ্ট দ্রব্য তৈরি করা হয়। যার দৈর্ঘ্যের তুলনায় ব্যাস খুবই নগণ্য এবং পর্যাপ্ত শক্তিসম্পন্ন এইরূপ দ্রব্যকে সুতা বা ইয়ার্ন বলা হয়।

সুতার বৈশিষ্ট্য (Characteristics of Yarn)-

ওভেন ও নিটেড কাপড় প্রস্তুতের জন্য ব্যবহৃত সুতার নিমুলিখিত গুণাগুণ থাকা প্রয়োজন।

কাউন্ট (Count)-

কাপড় তৈরির জন্য ব্যবহৃত সুতা চাহিদা মোতাবেক সঠিক কাউন্টের হতে হবে।

সুসমতা (Uniformity)-

সুতা অবশ্যই সুসম হতে হবে নতুবা উৎপাদিত কাপড় সুসম অর্থাৎ ভালো মানের হবে না।

শক্তি (Strength)-

সুতার প্রয়োজনীয় শক্তি এবং পাশাপাশি শক্তির সমতা থাকতে হবে।

সুতার মোটা ও চিকন জায়গা (thick and thin place)-

সুতার মোটা ও চিকন জায়গা ও স্লাব কম থাকতে হবে।

হেয়ারিনেস (Hairiness)-

সুতায় হেয়ারিনেস কম থাকতে হবে। অতিরিক্ত হেয়ারিনেস কাপড়ের মান খারাপ করে।

৩৬

সুতার গিঁট (Knot)-

সুতার গিঁটট আদর্শ ধরন ও আকারের হতে হবে। যাতে উক্ত সুতা দ্বারা কাপড় বয়নের সময় সুনা ও সাটেলের মধ্য দিয়ে সহজেই অতিক্রম করতে পারে।

পরিষ্কার (Clean)-

কাপড় তৈরির জন্য ব্যবহৃত সুতা অবশ্যই পরিষ্কার হতে হবে।

সুতার প্রয়োজনীয় আর্দ্রতা (Relative humidity)-

সুতায় প্রয়োজনীয় পরিমাণ আর্দ্রতা থাকতে হবে। নতুবা কাপড় বয়নের সময় সুতা ছেঁড়ার হার বৃদ্ধি পাবে

সুতার শ্রেণি বিভাগ (Classification of yarn)-

সুতাকে সাধারণত দুইভাগে ভাগ করা যায়।

- ১) স্ট্যাপল সুতা (S :aple yarn)
- ২) ফিলামেন্ট সুতা (Fillamen : yarn)

স্ট্যাপল সুতা (Staple yarn)-

এক্ষেত্রে সুতা তৈরির জন্য এবং তৈরি সুতা পাকানোর জন্য ফাইবারের দৈর্ঘ্য একটা গুরুত্বপূর্ণ ভূমিকা পালন করে। সাধারণত প্রকৃতি থেকে প্রাপ্ত যে সমস্ত ফাইবার পাওয়া যায়, তা স্ট্যাপল আকারে পাওয়া যায় (শুধু রেশম ব্যতীত)। তবে কৃত্রিম ফিলামেন্ট হিসেবে পাওয়া ফাইবারকে প্রয়োজনমতো কেটে ছোট ছোট টুকরো অর্থাৎ স্ট্যাপল আকারে নিয়ে স্ট্যাপল সুতা তৈরি করা হয়। টেক্সটাইল ফাইবারের স্ট্যাপল লেংথ ১ সেন্টিমিটারের কম হয় না। স্ট্যাপল ফাইবার সাধারণত প্রাকৃতিক, কৃত্রিম ও ফিলামেন্ট টো হিসেবে পাওয়া যায়। স্ট্যাপল ফাইবারের তৈরি সুতাকেই স্পান ইয়ার্ন বলা হয়।

ফিলামেন্ট সুতা (Fillament yarn)-

দীর্ঘ অবিচ্ছিন্ন ফাইবারকে ফিলামেন্ট সুতা বলা হয়। ফিলামেন্ট দুইভাবে ব্যবহার হয়। মনো ফিলামেন্ট ও মাল্টি ফিলামেন্ট। যদি এককভাবে একটি ফিলামেন্টকে সুতা হিসেবে ব্যবহার করা হয় তা মনো ফিলামেন্ট। আবার একাধিক ফিলামেন্টকে একত্রিতভাবে বা পাক দিয়ে সুতা তৈরির ক্ষেত্রে ব্যবহার করা হয় তখন একে মাল্টি ফিলামেন্ট বলে।

প্রাকৃতিকভাবে প্রাপ্ত শুধু রেশম ফাইবারকেই ফিলামেন্ট আকারে পাওয়া যায়। কিন্তু কৃত্রিম উপায়ে তৈরি সকল প্রকার ফাইবার রাসায়নিক পদার্থ থেকে উৎপত্তি। প্রতিটি ফাইবার স্পিনারেট এর ছিদ্র দ্বারা লম্বা ও অবিচ্ছিন্নভাবে তৈরি হয় অর্থাৎ কৃত্রিমভাবে তৈরি স্পিনারেট থেকে টেনে বের করা হয়। এ ফাইবারগুলোকে ফিলামেন্ট বলা হয়।

উইভিং -এ ব্যবহৃত সুতার গুণাগুণ-

- সুতাকে অবশ্যই সুষম হতে হবে।
- সুতাকে অবশ্যই পরিষ্কার হতে হবে।
- কাপড় বয়নের সময় এবং ঘর্ষণ এ যাতে অতিরিক্ত সুতা ছিড়ে না যায় সে রকম মজবুত অবশ্যই হতে হবে।

সুতার গিঁট আদর্শ ধরন ও আকারের হতে হবে। যাতে শানা ও মাকুর মধ্য দিয়ে সহজেই অতিক্রম
করতে পারে।

- টানা সুতায় মাড় দিতে হবে এবং মাড়ের পরিমাণ এমন হতে হবে যাতে বয়নের সময় শানা ও ঝাপের

 ঘর্ষণ হতে টানা সুতাকে রক্ষা করতে পারে ।
- 🔹 টানা সুতা লুমের বিমে সমান্তরাল আকারে জড়াতে হবে যাতে প্রতিটি সুতায় সমান টান থাকে।
- প্রতিটি টানা সুতা সঠিক দৈর্ঘ্যের হতে হবে এবং সেখানে কোনো ছেঁড়া সুতা থাকা চলবে না।
- সুতা অবশ্যই স্থিতিস্থাপক গুণসম্পন্ন হতে হবে।
- পড়েন সুতাকে অবশ্যই যথাসম্ভব গিঁট মুক্ত হতে হবে।
- সুতাকে অবশ্যই কম হেয়ারিনেস হতে হবে ।

সুতার ক্রটি (Yarn faults)-

সুতায় সাধারণত নিমুলিখিত ক্রটি দেখতে পাওয়া যায়।

- স্লাব (Slub)
- স্নার্ল (Snarl)
- সফট ইয়ার্ন (Soft Yarn)
- ওয়েল স্টেইন ইয়ার্ন (Oil stain yarn)
- ক্র্যাকার্স (Crackers)
- ব্যাড পিসিং (Bad Piecing)
- হেয়ারিনেস (Hairiness)
- কিটি ইয়ার্ন (Kitty yarn)
- ফরেইন ম্যাটারস (Foreign matters)
- থিক অ্যান্ড থিন প্লেস (Thick and thin place)
- নেপি ইয়ার্ন (Neppy yarn)
- স্পান ইন ফ্লাই (Spun in fly)
- ওয়েলি স্লাব (Oily slub)
- কর্ক ফ্র্ (Cork screw yarn)

শ্লাব (Slub)-

সাধারণের চেয়ে অনেক মোটা গুচ্ছ ফাইবারযুক্ত সুতা যাতে পাক কম থাকে।

পরিণতি-

- পরবর্তী প্রসেসে সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- কাপড়ের পৃষ্ঠদেশ খারাপ দেখায় কোথাও কোথাও গর্ত দৃষ্টিগোচর হয়া
- রংকৃত কাপিড়ে শেডের তারতম্য লক্ষ্য করা যায়।

কারণ-

- মেশিনের অংশে একত্রে ফ্লাই জমা হয়ে সুতার সাথে জড়িয়ে যায়।
- কার্ডিং যথাযথ না হলে ।

- খারাপ পিসিং হলে।
- টপ রোলার ক্লিয়ারার ঠিকমতো কাজ না করলে।
 প্রতিকার -
- মেশিনের পৃষ্ঠদেশ সব সময় পরিয়ার রাখতে হবে।
- কার্ডিং মেশিনে যাতে যথাযথ কার্ডিং হয়় তার প্রতি দৃষ্টি দিতে
 হবে।
- সঠিক পিছিং করতে হবে।
- টপ রোলার ক্লিয়ারার যাতে সঠিকভাবে কাজ করে তার প্রতি দৃষ্টি দিতে হবে।

স্নার্ল (Snarl)-

সুতায় টুইস্ট দেওয়ার পর পরিমিত টেনসনে না রাখার ফলে এরূপ স্লার্ল -এর সৃষ্টি হয়।

চিত্র : স্লাব

পরিণতি-

- পার্শ্ববর্তী সুতার সাথে জড়িয়ে সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- কাপড়ের পৃষ্ঠদেশে ক্ষতি সাধন করে।
- রঙিন কাপড়ের শেডের তারতম্যের সৃষ্টি করে।

কারণ-

- প্রয়োজনীয় পাকের চেয়ে বেশি পাক প্রদান করলে।
- যদি খুব বড় লম্বা চিকন সুতা থাকে।

প্রতিকার-

- সুতায় প্রয়োজনীয় পরিমাণ পাক প্রদান করতে হবে।
- চিকন সুতা কমানোর লক্ষ্যে ড্রাফটিং জোন ঠিক রাখতে হবে।
- সুতা তৈরির পর কন্ডিশনিং করতে হবে।
- সুতা যথাযথ টেনশনে রাখতে হবে।

সফট ইয়ার্ন (Soft Yarn)-

সুতায় কম পাকের কারণে দুর্বল দৃষ্টিগোচর হয়।

পরিণতি-

- সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- ডাইং -এর পর শেডের তারতম্য দেখা দেয়।

কারণ -

- টেপ ঢিলা ও জকি পুলি ময়লাযুক্ত থাকলে
- স্পিন্ডেলে ববিন বসানো সঠিক না হলে।
- সুতায় পাক কম দিলে

চিত্ৰ: স্নাৰ্ল

প্রতিকার -

- টেপ সঠিকভাবে লাগোনো ও পুলি পরিষ্কার রাখতে হবে।
- স্পিভেলে ববিন সঠিকভাবে বসাতে হবে।
- সুতায় পাক যথাযথভাবে প্রদান করতে হবে ।

ওয়েল স্টেইন ইয়ার্ন (Oil s tain yarn)-

সুতায় তৈলের দাগ থাকা।

পরিণতি-

- কাপড়ের পৃষ্ঠদেশ খারাপ হওয়া।
- কাপড়ের উপর কালো দাগ পড়া।

চিত্র: সফট ইয়ার্ণ

কারণ-

- বিভিন্ন মুভিং পার্টস ওভারহেড পুলি ইত্যাদিতে ওয়েলিং -এর সময় সতর্ক না থাকলে।
- ময়লা ও তৈলাক্তযুক্ত হাত দ্বারা পিছিং করলে।
- সুতা ও সুতার প্যাকেজ হ্যান্ডলিং -এ সতর্ক না হলে।

প্রতিকার-

- সুতা ও সুতার প্যাকেজ হ্যান্ডলিং -এ সতর্ক হতে হবে।
- ওয়েলিং করার সময় সতর্ক হতে হবে।

চিত্র : ওয়েল স্টেইন ইয়ার্ন

ক্যাকারস (Crackers)-

খুব ছোট ছোট স্নার্ল -এর মতো এবং স্পিং-এর মতো দেখতে সুতাকে ক্র্যাকারস বলে।

পরিণতি-

- ওয়াইভিং -এ সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- পলিয়েস্টার ও কটন ব্লেন্ডেড সুতায় বেশি দেখা যায়।

কারণ-

- যদি মাত্রাতিরিক্ত বড় ও ছোট দৈর্ঘ্যের আঁশের মিক্সিং করা হয়।
- রোলার সেটিং খুব কাছাকাছি হলে ।
- কটন সুতায় বেশি পাক দিলে।

প্রতিকার -

- কাছাকাছি দৈর্ঘ্যের আঁশের সাথে মিক্সিং করতে হবে।
- রোলার সেটিং সঠিকভাবে করতে হবে।
- সুতার পাক যথাযথ হতে হবে।

চিত্র : ক্র্যাকারস

ব্যাড পিসিং (Bad Piecing)-

খারাপভাবে পিছিং করার কারণে সুতায় মোটা অংশ বৃদ্ধি পায়।

পরিণতি-

- পরবর্তী প্রক্রিয়ায় সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- হার্ড ওয়েস্ট বৃদ্ধি পায়।

কারণ-

- স্পিনারের অবিভক্ততার অভাবের কারণে পিছিং -এ ডাবল সুতার কারণে সুতায় মোটা অংশ বৃদ্ধি পায়।
- সুতায় গিড়া দেওয়ার পরিবর্তে পাক দিয়ে ছিঁড়ে দিলে।

প্রতিকার-

- সঠিকভাবে পিছিং করতে হবে।
- স্পিনিং ফ্রেমে সেপারেটর রাখতে হবে।

হেয়ারিনেস (Hairiness)-

মূল সুতার স্ট্রাচারের আলগা আঁশের পরিমাণ বৃদ্ধি পেলে।

চিত্র : ব্যাড পিসিং

পরিণতি-

- ওয়াইন্ডিং -এ সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- কাপড়ের পৃষ্ঠদেশ অসম হয়।
- পলিয়েস্টার কটন ব্লেন্ডেড কাপড়ে গুটি গুটি বিড -এর সৃষ্টি হয়।

কারণ-

- কাছাকাছি গুণাগুণসম্পন্ন আঁশের মিশ্রণ না হলে।
- স্পিনিং ফ্রেমে ভাঙা রিং ও হালকা ট্রাভেলার ব্যবহার করলে।
- আর্দ্রতা কম, রোলার সেটিং কাছাকাছি এবং স্পিন্ডেলের গতি বেশি হলে।

প্রতিকার-

- মিক্সিং -এ সতর্ক থাকতে হবে।
- স্পিনিং -এ রিং ট্রাভেলার ইত্যাদি যথাযথ থাকতে হবে।
- আপেক্ষিক আর্দ্রতা যথাযথ রাখতে হবে।
- রোলার সেটিং, স্পিন্ডেলের গতি নিয়ন্ত্রিত রাখতে হবে।

কিটি ইয়ার্ন (Ki : :y yarn)-

ট্রাস, পাতার টুকরা, ভাঙা বীজ, কালো দাগ ইত্যাদি সুতার মধ্যে থেকে যাওয়া।

পরিণতি-

- কাপড় খারাপ হবে
- ডাইং -এর সময় কাপড়ের ক্ষতি হতে পারে।
- নিটিং -এ নিডেল ভেঙে যেতে পারে।
- ওয়াইভিং -এ খারাপ ফলাফল আসতে পারে।

কারণ-

- ব্লো-রুম ও কার্ডিং -এ ক্লিনিং যথাযথ না হলে।
- খুব বেশি ট্রাস যুক্ত তুলা ব্যবহার করলে।

প্রতিকার-

- ব্লো-রুম ও কার্ডিং -এ ক্লিনিং দক্ষতা বৃদ্ধি করতে হবে।
- আর্দ্রতা যথাযথ রাখা নিশ্চিত করতে হবে।

চিত্র : কিটি ইয়ার্ন

ফরেইন ম্যাটারস (Foreign matters)-

ধাতুর টুকরো, পাটের আঁশ ও অন্যান্য দ্রব্যাদি সুতায় পাওয়া যায়।

পরিণতি-

- ওয়াইভিং -এ সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- কাপড়ের পৃষ্ঠে গর্ত ও দাগ তৈরি হয়।
- কাপড়ের পৃষ্ঠদেশ ক্ষতিগ্রস্ত হয়।

কারণ-

- ট্রাভেলারের হ্যান্ডলিং যথাযথ না হলে।
- মিক্সিং -এ প্রস্তুতি যথাযথ না হলে।

প্রতিকার-

- মিক্সিং-এর প্রস্তুতিতে ফরেন ম্যাটার দূর করতে হবে।
- ব্লো-রুমে ম্যাগনেটিক ব্যবস্থার মাধ্যমে ধাতুর টুকরা দূর করতে হবে।

চিত্র : ফরেইন ম্যাটারস

থিক এন্ড থিন প্লেস (:hick and :hin place)-

সুতার মধ্যে মোটা ও চিকন থাকা

পরিণতি-

- ওয়াইভিং -এ সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- কাপড়ের পৃষ্ঠদেশ খারাপ দেখায় ।
- নিটিং -এ কাপড় ভালো হয় না।

কারণ-

- টপ ও বটম রোলার এক্সসেনট্রিক হলে।
- টপ রোলারের প্রেসার সঠিক না হলে।
- অ্যাপ্রোন খারাপ হলে ।
- গিয়ার হুইলের দাঁত ভাঙা থাকলে।

প্রতিকার-

- টপ ও বটম রোলারের এক্সসেনট্রিক দূর করতে হবে।
- টপ রোলারের প্রেসার সঠিক রাখতে হবে।
- অ্যাপ্রোন ও গিয়ার পরিবর্তন করে নতুন লাগাতে হবে

সুতার সাথে ছোট গুটি আকারে নেপ জড়িয়ে থাকে।

পরিণতি-

কাপড়ের পৃষ্ঠদেশ খারাপ দেখায়।

কারণ-

- ব্লো-রুমে যথাযথ ওপেনিং না হলে।
- সেটিং সঠিক না থাকার কারণে কার্ডিং যথাযথ না হলে।
- কম মাইক্রোনিয়ার যুক্ত কটন ব্যবহার করলে ।
- ব্লো-রুমে বাইপাসে খুব বেশি ইউ (U) টার্ন থাকলে।

প্রতিকার-

- * ব্লো-রুমের ওপেনিং সঠিক করতে হবে।
- * সেটিং সঠিক করে যথাযথ কার্ডিং করতে হবে।
- * ম্যাচিউর কটন ব্যবহার করতে হবে।
- * ব্লো-রুমের বেশি ইউ টার্ন কমাতে হবে।

স্পান ইন ফ্লাই (Spun in fly)-

সুতা টুইস্ট দেওয়ার সময় ফ্লাই উড়ে এসে সুতার পৃষ্ঠে লেগে যায়।

চিত্র : নেপি ইয়ার্ন

পরিণতি-

* ওয়াইভিং বিভাগে সুতা ছেঁড়ার হার বৃদ্ধি পায়।

কারণ-

- * মেশিনের বিভিন্ন অংশের ফ্লাই জমা থাকলে।
- * যথাযথ ক্লিনিং না হলে।
- * হিউমিডিফিকেশন প্লান সঠিক কাজ না করলে।

চিত্র : থিক অ্যান্ড থিন প্লেস

প্রতিকার-

- মেশিনারি সর্বক্ষণ পরিষ্কার রাখতে হবে ।
- ওভারহেড ক্লিনিং সঠিক রাখতে হবে।
- হিউমিডিফিকেশন যথাযথ করতে হবে।

ওয়েলি স্লাব (Oily slub)-

সুতার পৃষ্ঠে ওয়েল যুক্ত স্লাব থাকলে ।

পরিণতি-

- পরবর্তী প্রসেসে সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- কাপড খারাপ হয়।
- রংকরণে শেডের তারতম্য হয়।

কারণ-

- মেশিনের পৃষ্ঠে তৈলযুক্ত ফ্লাই সুতার গায়ে লেগে গেলে।
- ওয়েলিং ও লুব্রিকেটিং সিস্টেম খারাপ হলে।

প্রতিকার-

- সুতা উৎপাদন চলাকালীন সময়ে যাতে ফ্লাই সুতার পৃষ্ঠে লেগে না যায় তার বিষয়ে সতর্ক থাকতে হবে।
- ওয়েলিং ও লুব্রিকেটিং যথাযথভাবে করতে হবে।

কৰ্ক স্কু ইয়াৰ্ন (Cork screw yarn)-

ডাবল সুতা অর্থাৎ একটি সুতা সোজা ও অপরটি পেঁচানো থাকে।

পরিণতি-

- ওয়াইন্ডিং -এ সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- উৎপাদিত কাপড় খারাপ দেখায়।

কারণ-

- রিং -এ একটি রোভিং -এর স্থলে দুটি রোভিং ফিড করলে।
- রিং ফ্রেমে সুতা উৎপাদনের সময় পার্শ্ববর্তী সুতা জড়িয়ে গেলো

প্রতিকার-

- রোভিং ফিডিং যথাযথ করতে হবে।
- নিউমোফিল সংগ্রহ ও বাতাসের প্রবাহ সঠিক কিনা তা পরীক্ষা করে যথাযথ রাখতে হবে।

চিত্র : কর্ক স্কু ইয়ার্ণ

সুতার ক্রটির উপর নির্ভর করে গ্রেডিং-

উপরে উল্লিখিত সুতার বিভিন্ন প্রকার ক্রাটিসমূহ বিশ্লেষণ করে একটি নির্দিষ্ট লটের উপর সুতার প্রেডিং করা হয়। এই প্রেডিং সাধারণত মিল থেকে মিল কিছুটা আলাদা করে হিসাব করা হয়। ইহা ছাড়াও ক্রেতার চাহিদার প্রতি দৃষ্টি রেখে সুতার প্রেডিং করা হয়। তবে, সাধারণ নিয়মে সুতার লক্ষণীয় ক্রটি বিশ্লেষণ করে সুতাকে নিম্নলিখিত গ্রেডিং -এ ভাগ করা হয়েছে।

চিত্ৰ : স্পান ইন ফ্লাই

চিত্র : ওয়েলি স্লাব

- প্রোড -এ (Grade -A)
 কোনো বড় নেপ থাকতে পারবে না । তবে সুতা অতিরিক্ত হেয়ারি নয় এরকম সুষম সুতা ।
- থেড -বি (Grade -B)
 কোনো বড় নেপ থাকতে পারবে না তবে ছোট নেপ কিছুটা গ্রহনযোগ্য।
- ৹প্রেড -সি (Grade -C)

 কিছুটা অনিয়মিত সূতা, কিছু কিছু বড় ও ছোট নেপ থাকতে পারে। অন্যান্য অপদ্রব্যও সূতার

 মধ্যে কিছুটা থাকতে পারে।
- প্রেড -ডি (Grade -D)
 কিছু স্লাব, অনেক নেপ, অনেক মোটা চিকন থাকতে পারে। সর্বোপরি সূতার বহিরাবরণ সুন্দর
 নয়। এমন সূতা গ্রহণযোগ্য।

সূতার লট নম্বর-

যে কোনো স্পিনিং ইন্ডাস্ট্রিতে সুতার উৎপাদন একটি নির্দিষ্ট ব্যাচ বা লট হিসেবে উৎপাদিত হয়। এক একটি লটে এক এক ধরনের কাউন্ট বা পরিমাণ থাকে। সাধারণত ক্রেতার চাহিদার প্রতি দৃষ্টি রেখে বা ব্যাচ নির্ধারণ করা হয়। স্পিনিং বিভাগে রিং দ্রেম থেকে উক্ত নির্দিষ্ট লটের সুতা উৎপাদন হওয়ার সাথে সাথে আলাদাভাবে ওয়াইন্ডিং বা রিলিং বিভাগে পাঠানো হয়। ওয়াভিং বা রিলিং বিভাগের কর্মকর্তাগণ উক্ত লটের সুতা দ্বারা আলাদা কোনো বা হ্যাংক তৈরি করে। সাধারণত রঙিন সুতা বা মার্ক দ্বারা সুতার লট আলাদাভাবে শনাক্ত করা সম্ভব হয়। উৎপাদিত কোনো বা হ্যাংককে পরে বান্ডিল বা বেইল তৈরি করা হয়। বান্ডিল বা বেইল তৈরি করার পর উক্ত বান্ডিল বা বেইল -এর পৃষ্ঠে বেইল মার্ক প্রদান করা হয়। বেইল মার্কের নির্মাতা প্রতিষ্ঠানের মার্কিং ও বিভিন্ন সতর্কতার কথা উল্লেখ থাকে। যার কিছু প্রতীক (Symbol) দ্বারা উল্লেখ করা থাকে। এভাবে বান্ডিল বা বেইলকে লট আকারে আলাদা আলাদাভাবে রপ্তানি অথবা ক্রেতার কাছে পাঠানো হয়। নিচে একটি বান্ডিলের নমুনা দেওয়া হলো।

ক্রমিক নং-: ***

কাউন্ট : ৮০/১ং কম্বড কটন

মোট ওজন : ৫০.৩৭ কেজি (১১১ পা.) নিট ওজন : ৪৫.৩৬ কেজি (১০০ পা.) উৎপাদনের তারিখ : **/**/*** কোন/হ্যাংক সংখ্যা : ৪০টি কোণ।

বিভিন্ন লটে সুতা মিশে যাওয়ার অসুবিধাসমূহ-

- মিশ্রিত সুতা দ্বারা কাপড় প্রস্তুত করলে উক্ত কাপড়ের মান খারাপ হবে যা ব্যবহার বা রপ্তানি করার উপযোগী হবে না।
- নিমুমানের সুতার লটের মধ্যে উচ্চমানের সুতা মিশে লটের মান খারাপ হবে। পাশাপাশি মিল
 আর্থিকভাবে ক্ষতিগ্রস্ত হবে।
- মিশ্রিত সুতা দ্বারা কাপড় তৈরি করলে উক্ত কাপড়ে নিমুমানের বা উচ্চমানের সুতার বারের সৃষ্টি হবে
- যা কাপড়ের মানের জন্য হুমকিস্বরূপ।
- মিশে যাওয়ার পর মিক্সিং সুতা শনাক্ত করা গেলেও তা পুনরায় আলাদা করা কয়্টসাধ্য। কাজেই উক্ত উৎপাদিত সুতা অপচয় মাত্রা বৃদ্ধি করে।

সপ্তম অধ্যায় সুতার কাউন্ট (Count of Yarn)

সুতার কাউন্টকে লিনিয়ার ডেনসিটিও বলা হয়ে থাকে। সুতার কাউন্ট বলতে সুতার সৃক্ষতাকে বোঝানো হয়। কোনো বস্তুর সৃক্ষতা ঐ বস্তুর ব্যাস ও প্রস্থাচ্ছেদের অনুপাতকে বোঝায়। সুতার সৃক্ষতা বোঝাতে সুতার ব্যাস ও দৈর্ঘ্যের অনুপাতকে বোঝানো হয়েছে। আবার কাউন্ট দ্বারা সুতার ওজন অথবা চিকন বা সৃক্ষ মোটা ইত্যাদি সহজেই অনুধাবন করা যায়। একজন টেক্সটাইল প্রযুক্তিবিদের কাউন্ট সম্বন্ধে ভালো ধারণা থাকা প্রয়োজন।

কাউন্টের সংজ্ঞা (Definition of Count)-

কাউন্টের সংজ্ঞা সরাসরি বলতে হলে একক দৈর্ঘ্যের ভর অথবা একক ভরের দৈর্ঘ্যকে বোঝায়। ইংরেজিতে যাকে `Length per unit weight or weight per unit length' বলে।

উপরোক্ত সংজ্ঞা বাদেও বিভিন্ন সুতার জন্য বিভিন্ন ধরনের কাউন্ট রয়েছে। যেমন- কটন কাউন্ট, জুট কাউন্ট, ডাইরেক্ট সিস্টেমে কাউন্ট ও ইনডাইরেক্ট সিস্টেমে কাউন্ট ইত্যাদি যা পরবর্তীতে আলোচনা করা হয়েছে।

সুতার কাউন্টের শ্রেণিবিভাগ (Classification of Yarn count)-

সুতার কাউন্ট নির্ণয়ে প্রধানত দুইটি পদ্ধতি। যথা-

- ১। পরোক্ষ পদ্ধতি (Indirect system)
- ২। প্রত্যক্ষ পদ্ধতি (Direct System)

পরোক্ষ পদ্ধতি (Indirect system)-

পরোক্ষ পদ্ধতিতে সূতার একক ভরের দৈর্ঘ্যকে কাউন্ট বলে। সূতার কাউন্ট যত বেশি হবে সূতা তত চিকন বা সৃষ্ণ হবে। আর কাউন্ট যত কম হবে সূতা তত মোটা হবে। পরোক্ষ পদ্ধতিতে প্রতিটি সূতার ক্ষেত্রেই একটি নির্দিষ্ট দৈর্ঘ্য আছে আবার ওজনেরও একক আছে যা দ্বারা সহজেই সূতার কাউন্ট বের করা সম্ভব। উদাহরণস্বরূপ ১০০ কটন কাউন্টের সূতার চেয়ে ১০ কটন কাউন্টের সূতা অনেক মোটা। কটন, উল, উরস্টেড, লিনেন ইত্যাদি আঁশের তৈরি সূতার জন্য এই পদ্ধতি ব্যবহৃত হয়। নিম্নের সূত্রের সাহায্যে সহজেই সূতার কাউন্ট নির্ণয় করা সম্ভব।

দৈর্ঘ্যের একক

প্রত্যক্ষ পদ্ধতি (Direct System)-

প্রত্যক্ষ পদ্ধতিতে সুতার একক দৈর্ঘ্যের ভরকে কাউন্ট বলে। সুতার কাউন্ট যত বেশি হবে সুতা তত মোটা হবে এবং কাউন্ট যত কম হবে তত সূক্ষ্ম অর্থাৎ চিকন হবে। এই পদ্ধতিতেও একটি নির্দিষ্ট দৈর্ঘ্যের একক ও ওজনের একক আছে যা দ্বারা সহজেই সুতার কাউন্ট বের করা যায়।

উদাহরণস্বরূপ- ২৪ পাউণ্ডস/স্পাইন্ডেল সুতার চেয়ে ৮ পাউন্ডস/স্পাইন্ডেলের সুতা অনেক চিকন। সাধারণত জুট, সিল্ক, উল, হেম্প, পলিয়েস্টার, নাইলন ইত্যাদির জন্য ব্যবহৃত হয়।

অর্থাৎ সূতার কাউন্ট = <u>নমুনা সুতার দৈর্ঘ্য ×দৈর্ঘ্যের একক</u> ওজনের একক ×নমুনা সুতার ওজন

প্রত্যক্ষ ও পরোক্ষ পদ্ধতির জন্য বিভিন্ন আঁশের সুতার ক্ষেত্রে দৈর্ঘ্যের ও ওজনের এককের জন্য নিমুলিখিত টেবিলের সাহায্য নেওয়া যেতে পারে।

পরোক্ষ পদ্ধতি (Direct System)-

ক্র: নং	পদ্ধতি	দৈর্ঘ্যের একক	ওজনের একক
٥.	ইংলিশ কটন	৮৪০ গজ	পাউন্ড
ર.	ফ্রেঞ্চ কটন	১০০০ মিটার	০.৫ কিলোগ্ৰাম
	বাম্প কটন	১ গজ	আউন্স
8.	স্পান কটন	৮৪০ গজ	পাউভ
Œ.	ওয়েট স্পান লিনেন	৩০০ গজ	পাউভ
৬.	উরস্টেড	৫৬০ গজ	পাউন্ড
٩.	উলেন (অ্যালোয়া)	১১৫২০ গজ	পাউন্ড
৮.	আমেরিকান কাট উলেন	৩০০ গজ	আউন্স
৯.	আমেরিকান রান উলেন	১০০ গজ	আউন্স
٥٥.	ইয়ার্কশায়ার উলেন	১৫৬ গজ	পাউন্ড

প্রত্যক্ষ পদ্ধতি (Indirect system)-

ক্রঃ নং	পদ্ধতি	দৈর্ঘ্যের একক	ওজনের একক
٥.	টেক্স	গ্রাম	১০০০ মিটার
ર.	ডেনিয়ার	গ্রাম	৯০০০ মিটার
	দ্রাইস্পান লিনেন	পাউন্ড	১৪৪০০ গজ
8.	জুট	পাউভ	১৪৪০০ গজ
¢.	হেম্প	পাউভ	১৪৪০০ গজ
৬.	সিক্ষ	ডাম	১০০০ গজ
٩.	অ্যাবারডিন উলেন	পাউন্ড	১৪৪০০ গজ
ъ.	আমেরিকান গ্রেইন উলেন	গ্ৰেইন	২০ গজ

ইংলিশ কটন কাউন্ট (English cotton count)-

ইংলিশ কটন কাউন্ট নির্ণয় করার ক্ষেত্রে ৮৪০ গজ -এর যতগুলো হ্যাংকের ওজন ১ পাউন্ড হবে সুতার কাউন্ট তত।

অর্থাৎ এখানে

ওজনের একক = ১ পাউন্ড দৈর্ঘ্যের একক = ১৮০ গজ

কাজেই, অন্যভাবে বলা যায়, ১ পাউন্ড ওজনের সুতার ৮৪০ গজের হ্যাংকের সংখ্যাই কাউন্ট।

উদাহরণস্বরূপ-

১ পাউভ সুতায় যদি ৮৪০ গজের ৩২টি হ্যাংক তৈরি করা সম্ভব হয় তবে উক্ত সুতার কাউন্ট কত?

যা এভাবে লেখা হয়- ৩২s

এই পদ্ধতিটি আমাদের দেশে বহুল প্রচলিত ও জনপ্রিয়। সংক্ষেপে ইহা Ne' অর্থাৎ ইংলিশ কটন কাউন্ট এভাবে প্রকাশ করা হয়।

Ne = 32's

উলেন কাউন্ট (Wollen count)-

উলেন কাউন্ট বিভিন্নভাবে নির্ণয় করা যায়। তবে আমেরিকান পদ্ধতির মধ্যে বেশি প্রচলিত। উলেন কাউন্ট নির্ণয় করার ক্ষেত্রে–

২০ গজ সুতার ওজন যত গ্রেইন তত কাউন্ট

এখানে ওজনের একক = গ্রেইন দৈর্ঘ্যের একক = ২০ গজ

উদাহরণস্বরূপ-

২০ গজ সুতার ওজন ২৫ গ্রেইন হলে সুতার কাউন্ট ২৫।

উরস্টেড কাউন্ট (Worsted count)-

উরস্টেড কাউন্ট নির্পয়ের ক্ষেত্রে

'৮ে৬০ গজের যতগুলো হ্যাংকের ওজন ১ পাউন্ড হবে সুতার উরস্টেড কাউন্ট তত'

এখানে ওজনের একক = ১ পাউন্ড

দৈর্ঘ্যের একক = ৫৬০ গজ

কাজেই অন্যভাবে বলা যায়, ১ পাউন্ট ওজনের সুতার ৫৬০ গজের হ্যাংকের সংখ্যাই উরস্টেড কাউন্ট।

উদাহরণস্বরূপ-

১ পাউন্ড সুতার যদি ৫৬০ গজের ৩০টি হ্যাংক তৈরি করা সম্ভব হয় তবে উক্ত সুতার কাউন্ট ৩০

একটি পদ্ধতির কাউন্টের মধ্যে অন্য পদ্ধতির কাউন্টের সম্পর্ক -

১) কটন কাউন্ট ও টেক্স-এর মধ্যে সম্পর্ক:

কটন কাউন্ট = <u>৫৯০.৫</u> অথবা টেক্স = <u>৫৯০.৫</u> কটন কাউন্ট

২) কটন কাউন্ট ও ডেনিয়ারের মধ্যে সম্পর্ক :

ডেনিয়ার = <u>৫৩১৫</u> অথবা কটন কাউন্ট

কটন কাউন্ট = <u>৫৩১৫</u> ডেনিয়ার

৩) ডেনিয়ার ও টেক্সট-এর মধ্যে সম্পর্ক

কটন কাউন্ট ও টেক্স-এর মধ্যে সম্পর্ক:

ডেনিয়ার = ৯×টেক্স

অথবা

টেক্স = 0.১১১ × ডেনিয়ার

8) উরস্টেড কাউন্ট ও কটন কাউন্টের মধ্যে সম্পর্ক:

উরস্টেড কাউন্ট = ০.৬৬৬ ×কটন কাউন্ট

অথবা

কটন কাউন্ট = ১.৫× উরস্টেড কাউন্ট

বিভিন্ন ধরণের সুতার কাউন্ট নির্ণয়ের সূত্রাবলি-

সুতার কাউন্ট সম্পর্কীয় সমস্যাবলি-

১. ৮৪০ গজ সুতার ওজন ১ পাউন্ড হলে সুতার ইংলিশ কটন কাউন্ট কত ?

২। ১লি সুতার ওজন ২৫ গ্রেইন হলে উক্ত সুতার ইংলিশ কাউন্ট কত? সমাধান

কাউন্ট = ?

৩। ১২ গজ সুতার ওজন ৫ গ্রাম হলে সুতার কাউন্ট কত? সমাধান

আমরা জানি,

এখানে দেওয়া আছে

(৪৫৩.৬ গ্রাম =১ পাউড)

৪। যদি ৮০০০ গজ পাট সুতার ওজন ৫ পাউন্ড হয় তবে উক্ত সুতার কাউন্ট (পাউন্ডস পাইন্ডেল) কত? সমাধান

আমরা জানি,

এখানে দেওয়া আছে

পাট সুতার দৈর্ঘ্য = ৮০০০ গজ সুতার ওজন = ৫ পাউন্ড কাউন্ট = ?

= ৯ (পাউন্ডস/পাইন্ডেল)

ে। যদি ১২০ গজ অর্থাৎ ১ লি সুতার ওজন ২৬ গ্রেইন হয় তাহলে সুতার ইংলিশ কাউন্ট বের কর এবং উক্ত সুতার কাউন্ট টেক্স-এ বের কর।

সমাধান

আমরা জানি,

এখানে দেওয়া আছে

(৭০০০ গ্ৰেইন =১ পাউন্ড)

ইংলিশ কটন কাউন্ট = ?

টেক্স কাউন্ট = ?

<u> ۷ × ۵۷ ک</u>

ইংলিশ কটন কাউন্ট ৮৪০× <u>২৬</u> ৭০০০

৬। ১২০ গজ সুতার ওজন ০.১০ আউন্স হলে ইংলিশ কটন কাউন্ট কত ? সমাধান আমরা জানি.

৭। ৪০^{'s} কাউন্ট কটন সুতার ১০০০ গজ এর ওজন কত? সমাধান আমরা জানি.

= \frac{20000 \times \text{t.6}}{28800}

অষ্ট্রম অধ্যায় কাপড় প্রস্তুতের বিভিন্ন ধাপ (Steps of Fabric Production)

উইভিং বিভাগে বিভিন্ন ধাপে সুতার প্যাকেজসমূহে টানা ও পড়েনে প্রস্তুত করা হয়। তাঁত নামক যন্ত্রের সাহায্যে কাপড়ে রূপান্তরিত করা হয়। তাঁত ছাড়াও অন্য উপায়েও কাপড় প্রস্তুত করা যায়। শিক্ষার্থীদের এ সম্বন্ধেও ধারণা থাকা প্রয়োজন। নিম্নলিখিত পদ্ধতিতে কাপড় প্রস্তুত করা যায়।

- উইভিং (Weaving)
- নিটিং (Knitting)
- ফেলটিং (Felting)

উইভিং (Weaving)

টানা ও পড়েন ২ সারি সুতা দ্বারা তাঁত নামক যন্ত্র বা মেশিনের সাহায্যে পরস্পর সমকোণে বন্ধনীর মাধ্যমে কাপড় তৈরির প্রক্রিয়াকে উইভিং (Weaving) বলে।

নিটিং (Knitting)

যে প্রক্রিয়ায় নিটিং মেশিন বা নিডলের সাহায্যে এক বা একাধিক সুতার মাধ্যমে লুপ তৈরি করে এবং উৎপাদিত লুপগুলোকে পরস্পর লম্বালম্বি বা সমান্তরালভাবে সংযোজিত করে কাপড় তৈরির প্রক্রিয়াকে নিটিং (Knitting) বলে।

পফলটিং (Felting)

টেক্সটাইল ফাইবার দ্বারা শিট প্রস্তুত করে উক্ত শিটকে জমাট বাঁধিয়ে বা আঠালো পদার্থ দ্বারা সন্নিবেশিত করে এবং স্টিচিং করে পরস্পর আটকিয়ে যে কাপড় তৈরি করা হয় তাকে ফেলটিং (Felting) বলে।

কাপড় ফেলটেড নিমুলিখিতভাবে হয়ে থাকে-

- ১) আঠালো পদার্থের সাহায্যে
- ২) তাপের সাহায্যে।
- স্টিচিং -এর সাহায্যে।

ওভেন কাপড়ের বৈশিষ্ট্য (Characteristics of woven fabric)

- বস্ত্রের অভ্যন্তরে দুই সিরিজ সূতা থাকতে হবে। এক সিরিজ টানা ও অপর সিরিজ পড়েন।
- প্রতিটি ওভেন কাপড়ে একটি নির্দিষ্ট ডিজাইন থাকতে হবে।
- সাধারণত ওভেন কাপড়ে ভাঁজ পড়ে।
- সাধারণত ওভেনের পূর্বে টানা সুতায় মাড় দিতে হয়।
- দুই সারি সুতা সমকোণে বন্ধনীর মাধ্যমে ওভেন কাপড় তৈরি হয়।
- কাপড়ের টানা ও পড়েন সুতার কাউন্ট, শক্তি, প্রতি ইঞ্চিতে পাক ইত্যাদি গুণ একই অথবা ভিন্ন হতে পারে।

- ওভেন কাপড়ের সদর এবং পিছনের অংশ একই অথবা ভিন্ন হতে পারে।
- এই কপাড়ের প্রান্ত গুটিয়ে যায় না ।
- তাঁতের সাহায্যে বুননের সময় বিভিন্ন প্রকার রঙিন সুতার সাহায়্যে স্ট্রাইপ, চেক, ক্রসওভার এবং বিভিন্ন প্রকার ইফেক্ট তৈরি করা যায়।
- ওভেন কাপড়ের একদিকে বা উভয় দিকে কাট অথবা আনকাট পাইল থাকতে পারে।
- ওভেন কাপড়ের একদিকে বা উভয় দিকে ল্যামিনেটেড করা থাকতে পারে ।
- ওভেন কাপড় সিঙ্গল, ডাবল বা ট্রিপল ইত্যাদি প্লাই বিশিষ্ট হতে পারে।
- ওভেন ফেব্রিক -এর একদিকে বা উভয় দিকে আঁশ রেইজিং করা থাকতে পারে।
 যেমন-ফ্লানেল কাপড়।

কতিপয় প্রয়োজনীয় সংজ্ঞা

কাপড় (Fabric)

টানা ও পড়েন ২ সিরিজ সুতা পরস্পর সমকোণে বন্ধনীর মাধ্যমে অথবা নিডেলের সাহায্যে লুপ তৈরি করে অথবা ফাইবারের শিটকে জমাট বাঁধিয়ে বা আঠালো পদার্থ দ্বারা সন্নিবেশিত করে যে পাতলা শিট প্রস্তুত করা হয় তাকে কাপড় বলে।

তাঁত (Loom)

টানা ও পড়েন সুতা পরস্পর সমকোণে বন্ধনীর মাধ্যমে কাপড় তৈরি করার জন্য যে মিশিন বা যন্ত্র ব্যবহার করা হয় তাকে তাঁত বলে।

পাওয়ার পুম (Power loom)

যে সমস্ত তাঁত কোনো যান্ত্রিক অথবা বৈদ্যুতিক শক্তি দ্বারা চালিত হয় তাকে শক্তিচালিত তাঁত বা পাওয়ার লুম বলে।

হ্যান্ড লুম (Hand loom)

মানব শক্তি দ্বারা অর্থাৎ হাত দ্বারা যে তাঁত চালানো হয় তাকে হস্তচালিত তাঁত বা হ্যাভ লুম বলে।

কনভেনশনাল লুম (Conventional loom)

যে সমস্ত কাপড় প্রস্তুতিতে পড়েন প্রবেশের জন্য মাকু (Shuttle) ব্যবহার করা হয় সে সমস্ত তাঁতকে কনভেনশনাল লুম বলা হয়।

আধুনিক লুম (Modern loom)

যে সমস্ত তাঁতে কাপড় প্রস্তুতিতে পড়েন প্রবেশের জন্য মাকু ব্যবহার না করে অন্য কোনো মধ্যম ব্যবহার করা হয় সে সমস্ত তাঁতকে আধুনিক তাঁত বলে।

অরডিনারি শুম (Ordinary loom)

যে সমস্ত কনভেনশনাল লুমের গতি কম, মাকু বা পার্ন পরিবর্তনের কোনো ব্যবস্থা নেই অর্থাৎ খুবই সাধারণ মানের তাঁত সে সমস্ত লুমকে অরডিনারি লুম বলে।

অটোমেটিক পুম (Automatic loom)

যে সমস্ত তাঁতে স্বয়ংক্রিয়ভাবে পড়েন পরিবর্তনের ব্যবস্থা আছে, সে সমস্ত তাঁতকে অটোমেটিক লুম বলে। শাটল পরিবর্তনের মাধ্যমে ও পার্ন পরিবর্তনের মাধ্যমে পড়েন পরিবর্তন করা সম্ভব।

তাঁতের গতি (Motion of loom)

তাঁতকে সচল রাখা ও পর্যায়ক্রমিকভাবে কাপড় তৈরির জন্য আলাদা আলাদাভাবে ও বিভিন্নভাবে বিভিন্ন অংশ নাড়াচাড়া করানো হয়। এই অংশসমূহকে একত্রে তাঁতের গতি বলা হয়।

অক্সিলারি মোশন (Auxiliary motion)

পাওয়ার লুমকে ক্রুটিমুক্ত কাপড় তৈরির উপযোগী করার জন্য কিছু কিছু আলাদা মোশন ব্যবহার করা হয়, যা তাঁতকে স্বয়ংক্রিয় করে এবং তাঁতও কাপড়কে ক্ষতির হাত থেকে রক্ষা করে। উপরোক্ত কাজগুলো সম্পন্ন করার জন্য যে অতিরিক্ত মোশনসমূহ ব্যবহার করা হয়, তাকে টারসিয়ারি মোশন বলে।

উইভিং/বুননের বিভিন্ন ধাপ (Step of weaving) স্পিনিং বিভাগ হতে প্রাপ্ত সূতা ডাবলিং ও টুইস্টিং ওয়াইডিং ববিন / স্পুল / কোনো ওয়াইভিং/পার্ন ওয়াইভিং ক্রিলিং ওয়ার্পিং সাইজিং ড্ৰইং ইন ডেন্টিং উইভিং ফেব্রিক চেকিং ক্যালেন্ডারিং / ফোল্ডিং

সুতা তৈরির সময় পাক (twist) দেওয়া একটি গুরুত্বপূর্ণ বিষয়। একমাত্র ছোট ছোট আঁশগুলোকে একত্রে ধরে রাখার জন্য টুইস্ট দেওয়া হয়। যখন অধিক মোটা শক্তিশালী সুতার প্রয়োজন হয় তখন একাধিক সুতাকে একত্রে টুইস্ট করে নেওয়া হয়।

ওয়াইভিং (Winding)

কাপড় বয়নের সুবিধার্থে বাজারে প্রাপ্ত হ্যাংক আকারের সুতাকে পড়েন সুতার জন্য নলি বা কপ এবং টানা সুতার জন্য স্পুল, কোনো, চিজ, ববিন ইত্যাদি প্যাকেজে জড়ানো হয়। বিভিন্ন প্যাকেজে সুতা জড়ানোর পদ্ধতিতে ওয়াল্ডিং বলে।

किनिং (Creeling)

টানা বিম তৈরি করার জন্য ওয়াইল্ডিং প্যাকেজগুলো যে প্রক্রিয়ায় ক্রিলের হোল্ডারের মধ্যে রাখা হয় তাকে ক্রিলিং বলে।

ওয়াপিং (Warpin)

যে কাপড় তৈরি করতে হবে তার বহরে যতগুলো টানা সুতার প্রয়োজন হয় ততগুলো সুতা কাপড়ের দৈর্ঘ্য অনুযায়ী মেপে লম্বারম্বি সাজিয়ে নিয়ে বিমে জড়ানোর প্রক্রিয়াই ওয়াপিং।

বিমিং (Beaming)

স্পিনিং ফ্রেমে সুতা তৈরি হওয়ার পর টানা সুতাগুলোকে স্পুল বা কোনো ওয়াইন্ডিং মেশিনের সাহায্যে স্পুল বা কোণের আকারে জড়ানো হয়। এ ওয়ার্প সুতার প্যাকেজ হাতে কাপড় তৈরি করার উদ্দেশ্যে বিম তৈরি করা হয়। ওয়ার্পের সূতাকে এভাবে বিমে জড়ানোর প্রক্রিয়াকে বিমিং বলে।

সাইজিং (Sizing)

যান্ত্রিক বা কায়িক উপায়ে টানা সুতাকে বিভিন্ন প্রকারের মাড়ের উপকরণ যুক্ত করে সুতার উপর বিদ্যমান বাড়তি আঁশগুলোকে সুতার পৃষ্ঠে মিশিয়ে দিয়ে সুতাকে চকচকে ওজন বৃদ্ধি ও শক্তিশালী করার প্রক্রিয়াকে সাইজিং বা মাড় প্রকরণ বলে।

ড্ৰইং-ইন (Drawing-in)

ওয়ার্পের সুতাগুলোকে উইভার্স বিমে জড়ানোর পর এটার অপর প্রান্ত ডিজাইন অনুসারে পরপর কতগুলো ঝাঁপের বা চক্ষুর মধ্য দিয়ে ড্রইং হুকের সাহায্যে টেনে নেওয়া হয়। এই প্রক্রিয়াকে ড্রইং-ইন বা ড্রাফটিং বলে।

ডেন্টিং (Denting)

যে পদ্ধতিতে রিডের প্রতিটি ডেন্টের মধ্য দিয়ে টানা সুতাকে ডিজাইন অনুযায়ী ড্রইং হুকের সাহায্যে টেনে নেওয়া হয়। এ পদ্ধতিকেই ডেন্টিং বলা হয়। সাধারণত প্রতিটি ডেন্টের মধ্য দিয়ে দুই বা ততোধিক সুতা প্রবেশ করানো হয়।

লুমিং (Looming)

উইভিং -এর প্রস্তুতির জন্য সর্বশেষ প্রক্রিয়াই হলো লুমিং। দ্রইং-ইন এবং ডেন্টিং -এর পর ওয়ার্প বিমকে লুমের নির্দিষ্ট স্থানে অর্থাৎ পিছনের ব্রাকেটে বসানো হয়। তারপর ঝাঁপ ও শানা বসানো হয়। অতঃপর শানার সামনের আলগা সুতাগুলো ক্লথ বিমের সাথে বাঁধা হয়। যে প্রক্রিয়ার মাধ্যমে বিমকে আনুষঙ্গিক উপকরণসহ লুমে স্থাপন করা হয় তাকে লুমিং বলে।

উইভিং (Weaving)

কাপড় বয়নের সময় কতগুলো টানা সুতাকে ঝাঁপের সাহায্যে উপরে ওঠানো হয় এবং কতকগুলো নিচে নামানো হয়। এর ফলে যে কোণাকৃতি ফাঁকের সৃষ্টি হয় তাকে শেড বলে। এ শেডের মধ্য দিয়ে মাকু হতে একটি পড়েন সুতাকে ফেলে রাখার পর শানা অর্থাৎ দক্তি দ্বারা ঠেলে দেওয়া হয়। এরূপ একটির পর একটি সুতা প্রবেশ করিয়ে কাপড় প্রস্তুত করা হয়। উপরোক্ত প্রক্রিয়াকেই উইভিং বলে।

ফেব্ৰিক চেকিং (Inspection of fabric)

কাপড় তৈরির পর কাপড়ে কমবেশি দোষক্রটি থাকে। টেবিলের উপর কাপড় রেখে হাত দ্বারা বা মেশিনের সাহায্যে এক প্রান্ত হতে টেনে কাপড়ের দোষক্রটি যাচাই-বাছাই করে মানসম্পন্ন কাপড় পরবর্তী প্রক্রিয়ার জন্য প্রস্তুত করার নামই ফেব্রিক চেকিং।

ক্যালেভারিং অ্যাভ ফোন্ডিং (Calendering and folding)

কাপড়ের চাকচিক্যতার বৃদ্ধি ও কাপড়কে আকর্ষণীয় করে তোলার জন্য কাপড়কে চাপে ও তাপে মসৃণ করা হয় ও পরবর্তীতে মেশিনের মাধ্যমে ভাঁজ করাকে ক্যালেন্ডারিং অ্যান্ড ফোল্ডিং বলে।

বেইশিং (Bailing)

ইহা সর্বশেষ প্রক্রিয়া। ফোল্ডিং করার পর কাপড়কে স্তরে স্তরে সাজিয়ে প্রেসের সাহায্যে চাপ দিয়ে আয়তন কমিয়ে বেইল তৈরি করার নাম বেইলিং। কাপড় বাজারজাত ও গুদামজাত করার সুবিধার্থে বেইল তৈরি করা হয়।

চেক/স্ট্রাইপ কাপড় তৈরিতে উইভিং-এর অতিরিক্ত ধাপ

চেক বা স্ট্রাইপ কাপড় তৈরির জন্য উইভার্স বিমে রঙিন সুতা স্তরে স্তরে সাজাতে হবে এবং পড়েন সুতা ডিজাইন অনুযায়ী রং পরিবর্তন করে কাপড় বুনতে হবে।

প্রথমত ক্রিলে বিভিন্ন রঙের ফ্লাঞ্জ ববিন ডিজাইনের টানা সুতার সংখ্যা অনুযায়ী সাজাতে হবে। তবে রঙিন টানা সুতার সংখ্যা হিসাব করে পূর্বেই ফ্লাঞ্জ ববিন প্রস্তুত করে নিতে হবে। রঙিন সুতা দ্বারা চেক ও স্ট্রাইপ কাপড় তৈরির জন্য নিম্নলিখিত অতিরিক্ত ধাপ অনুসরণ করতে হবে।

- রঙিন ফ্রাঞ্জ ববিন প্রস্তুতকরণ।
- ডিজাইনের সংখ্যা অনুযায়ী ক্রিলে রঙিন সুতাপূর্ন ববিন সাজানো।
- রঙিন ফ্রাঞ্জ ববিন প্রস্তুতকরণ।
- ডিজাইনের সংখ্যা অনুযায়ী ক্রিলে রঙিন সুতাপূর্ই ববিন সাজানো।
- ডিজাইনের সংখ্যা অনুযায়ী দ্রামে টানা সুতার স্তর সৃষ্টি করা।
- দ্রাম থেকে রঙিন ও সাদা সুতার স্তর বিমে জড়ানো ।

স্ট্রাইপ কাপড় তৈরি করার পদ্ধতি

স্ট্রাইপ কাপড়ের জন্য টানা করা-

৪০" নম্বর গানা ব্যবহার করে ৩৬" বহরের ১টি কাপড় যদি বিভিন্ন রঙের সুতা টানিয়ে নিমুবর্হিত নিয়মে ব্যবহার করা হয় তবে টানা করার নিয়ম নিমুরূপ হবে। ৮ সুতা-সাদা। ৮ সুতা-সবুজ। ৮ সুতা-সাদা। ১৬ সুতা-কমলা।

এখানে দেখা যায় সাদা ও রং করা সুতা মিলিতভাবে ৪০টি সুতা পর্যাক্রমে কাপড়ে থাকবে। শানার নম্বর ৪০। কাজেই ৪০টি সুতায় ১ ইঞ্চি। উপরে বর্হিত সুতা যে নিয়মে আছে ঐ নিয়মে সুতা রেখে টানা করলে বিম করার সময় কোনো প্রকার অসুবিধার কারণ থাকবে না। আর যদি প্রত্যেক রং -এর সুতা দ্বারা পৃথক পৃথক টানা করা হয় তবে বিম করার পূর্বে টানা করার জন্য শানা গাঁথার সময় ঐ নিয়মে সুতা শানার মধ্যে পরপর গাঁথা হলে তবু কাজ চলবে। আর যদি সম্ভব হয় তবে বুক ক্রিলে নিয়ম অনুসারে সুতার ববিন সাজিয়ে টানা করতে পারলে ভালো হয়।

কাপড়ে যে নিয়মে বিভিন্ন রঙের সুতা থাকবে বুক ক্রিলে সেই নিয়মে প্রথমে পরপর সাদা সুতার ববিন ৮িট, এরপর সবুজ সুতার ববিন ৮িট, তারপর সাদা সুতার ববিন ৮িট এবং পরে কমলা সুতার ববিন ১৬িট সাজাতে হবে। প্রথমে সুতার ববিন থেকে সুতার মাথাগুলো নিয়ে সেলেটে একটি চোখ ও ১িট ফাঁকে এই নিয়মে ধারাবাহিকভাবে গেঁথে নিতে হবে। সাদার পর সবুজ আবার সাদার পরে কমলা সুতা গাঁথার পর সকল সুতার মাথা একত্রে গিঁট দিয়ে পাথালি ড্রামের তারকাটায় আটকাতে হবে এবং উপরোক্ত নিয়মে টানা করে শানা গাঁথার পর বিম করার কাজ সম্পন্ন করতে হবে। এই নিয়মে টানা করে যদি পড়েনে এক রং -এর বা শুধু সাদা সুতা ব্যবহার করে কাপড় বুনা হয় তবে এটাকে স্ট্রাইপ কাপড় বলা হয়। এ কাপড় বিভিন্ন কাজে যথা লুঙ্গি, শাড়ি, শার্টি, বিছানার চাদর ইত্যাদি নানাবিধ কাজে ব্যবহৃত হয়।

চেক কাপড় তৈরির বিভিন্ন পদ্ধতি-

টানা ও পড়েন বিভিন্ন রঙিন সুতা নিয়মিত সাজিয়ে একই রঙের সুতায় চৌকোনাকার ঘর সৃষ্টি করে বুনা

কাপড়ে এক প্রকার আকর্ষণীয় নকশা ফুটে ওঠে।
এই প্রকার কাপড় তৈরির জন্য টানা করার সময়
যদি ৮ সুতা সাদা, ৮ সুতা সবুজ, ৮ সুতা সাদা
ও ১৬ সুতা কমলা এই রুপ সাজানো হয় এবং
এই নিয়মে টানা করার পর কাপড় বুনার সময়
যদি টানার নিয়মে পড়েন সাদা ও রঙিন সুতা
ব্যবহার করে বুনা হয় তবে এটি চেক কাপড়ে
পরিণত হবে। অর্থাৎ পড়েনের দিকেও ৮ সুতা
সাদা, ৮ সুতা সবুজ, ৮ সুতা সাদা ও ১৬ সুতা
কমলা এই নিয়মে সুতা ব্যবহার করে কাপড় বুনা
হলে তবে ঐ কাপড়কে খাঁটি চেক কাপড় বলা
হবে। চেক কাপড় স্ট্রাইপ কাপড়ের মত বিভিন্ন
কাজে ব্যবহার হয়। তবে লুঙ্গি ও শাটিং এ
সমধিক প্রচলন দেখা যায়। বর্তমানে বিভিন্ন
কাজে চেক কাপড় ব্যবহার করা হয়ে থাকে।

সাটিন-সাটিন স্ট্রাইপ

X	•	X	X	X					X
X	X	X		X			X	•	•
•	X	X	X	X		•	•		X
X	X		X	X			X	•	•
X	X	X	X	•	X	•	•		
			X		X	•	X	X	X
	X	•	•		X	X	X	•	X
•	•			X	•	X	X	X	X
		X	•	•	X	X	•	X	X
X	•	•		X	X	X	X	X	•

নবম অধ্যায় ওয়াইভিং (Winding)

স্পিনিং বিভাগের রিং স্পিনিং ফ্রেম থেকে প্রাপ্ত রিং ববিনের সুতা দ্বারা সরাসরি কাপড় প্রস্তুত করা সম্ভব নয়। অর্থাৎ তাঁতে ব্যবহার করা যায় না। তাঁতে কাপড় প্রস্তুতের জন্য ব্যবহারের পূর্বে কতগুলি ধাপ অতিক্রম করতে হয়। এই ধাপসমূহের প্রথমটি হচ্ছে ওয়াইন্ডিং।

রিং ববিনের সুতাসমূহ থেকে কিছু কিছু ক্রটি ওয়ান্ডিং বিভাগে দূর করা হয়। ক্রটিসমূহ হলো- স্লাব, নিবস্ মোটা চিকন ইত্যাদি। ওয়াইন্ডিং বিভাগ উপরোক্ত ক্রটিসমূহ দূর করে। পরবর্তীতে ব্যবহারের সুবিধার্থে সুতাকে কোনো, স্পুল, পার্ন, চিজ ইত্যাদি প্যাকেজে রূপান্তর করা হয়। ওয়াইন্ডিং শব্দের অর্থ জড়ানো। বিভিন্ন প্যাকেজে সুতা জড়ানোর পদ্ধতিকে ওয়াইন্ডিং বলে।

ওয়াইন্ডিং -এর সংজ্ঞা

যে পদ্ধতিতে সুতার ছোট প্যাকেজ (রিং ববিন) থেকে বিভিন্ন উদ্দেশ্যে ব্যবহারের জন্য বড় প্যাকেজে রূপান্তরিত করা হয় তাকে ওয়াইভিং বলে।

উপরোক্ত সংজ্ঞায় ছোট প্যাকেজ বলতে রিং ববিন ও বড় প্যাকেজ বলতে কোনো, চিজ, পার্ন, স্পুল ইত্যাদিকে বোঝানো হয়েছে।

ওয়াইভিং -এর উদ্দেশ্য (Objects of Winding)

- ১। স্পিনিং থেকে প্রাপ্ত সূতাকে সূবিধাজনক আকার ও সুবিধাজনক অবস্থায় বিভিন্ন প্যাকেজ যেমন- কোনো, চিজ, স্পুল, পার্নে রূপান্তরিত করা।
- ২। স্পিনিং বিভাগ হতে প্রাপ্ত স্বল্প দৈর্ঘ্যের সুতা হতে এক সাথে অনেক লম্বা দৈর্ঘ্যের সুতা পাওয়ার জন্য।
- ৩। স্পিনিং সুতার বিভিন্ন স্থানে যে ক্রটি থাকে যেমন- স্লাবস নেপস, ফ্লাই ফাইবার ইত্যাদি ওয়াইন্ডিং -এর ক্লিনিং ডিভাইসের মাধ্যমে দূর করে সুতাকে রেণ্ডলার করা।
- 8। স্পিনিং বিভাগ হতে প্রাপ্ত সুতার ময়লা-ধুলাবালি ইত্যাদি দূর করা।
- ৫। সুতার প্যাকেজে যথাযথ ঘনত্ব (Proper density) প্রদান করা এবং প্যাকেজের ওজন বৃদ্ধি করা
- ৬। পরবর্তী প্রসেসের দক্ষতা বৃদ্ধিতে সহায়তা করা।

ওয়াইন্ডিং -এর শ্রেণিবিভাগ (Classification of Winding)

প্যাকেজের গঠন ও প্রকৃতির উপর নির্ভর করে ওয়াইভিং প্রক্রিয়াকে তিন ভাগে ভাগ করা যায়।

- ১। প্যারালাল ওয়াইন্ডিং প্যাকেজ (Parallel Winding package)
- ২। নিয়ার প্যারালাল ওয়াইভিং প্যাকেজ (Near Parallel Winding package)
- ৩। ক্রস ওয়াইভিং প্যাকেজ (Cross Winding package)

১। প্যারালাল ওয়াইন্ডিং প্যাকেজ (Parallel Winding package)

এ ধরনের প্যাকেজ সাধারণত একটার পর আর একটা সুতা পরস্পর সমান্তরালভাবে পাশাপাশি অবস্থানে থাকে।

২। নিয়ার প্যারালাল ওয়াইন্ডিং প্যাকেজ (Near Parallel Winding package)

এ ধরনের প্যাকেজের সুতাগুলো পরষ্পারের সাথে প্রায় সমান্তরালভাবে অবস্থান করে এবং সুতার স্তরগুলো ক্রমান্বয়ে প্যাকেজের দিকে অবস্থান করে।

৩। ক্রস ওয়াইভিং প্যাকেজ (Cross Winding package)

আড়াআড়িভাবে সুতাটি একটি নির্দিষ্ট কোণে একের পর এক অবস্থান করে প্যাকেজের উপর স্তর সৃষ্টি করে। এ ধরনের প্যাকেজের ঘনত্ব কম হয়, ফলে তুলনামূলক ওজনও কম হয়।

ব্যবহারের উপর ভিত্তি করে ওয়াইভিং প্রক্রিয়ায় বিভিন্ন ধরনের প্যাকেজ প্রস্তুত করা হয়।

প্যাকেজ প্রস্তুতের উপর ভিত্তি করে ওয়ান্ডিং প্রক্রিয়াকে ৫ ভাগে ভাগ করা যায়।

- ১। কোনো ওয়াইভিং মেশিন (Cone Winding Machine)
- ২। স্পুল ওয়াইন্ডিং মেশিন (Spool Winding Machine)
- ৩। চিজ ওয়াইভিং মেশিন (Cheese Winding Machine)
- ৪। পার্ন ওয়াইভিং মেশিন (Pirn Winding Machine)
- ৫। কপ ওয়াইভিং মেশিন (Cop Winding Machine)

কোনো ওয়াইন্ডিং

যে পদ্ধতিতে সূতার ছোট প্যাকেজ (রিং ববিন) থেকে পরবর্তী বিভিন্ন উদ্দেশ্য সাধনের জন্য সূতার বড় প্যাকেজ অর্থাৎ কোনো আকারে সূতায় জড়ানো হয় তাকে কোনো ওয়াইন্ডিং বলে। কোনো ওয়াইন্ডিং পদ্ধতিতে যে ইয়ার্ণ প্যাকেজ প্রস্তুত হয় তাকে কোনো বলে। কোনো সাধারণত টানা সূতা হিসেবে ব্যবহৃত হয়।

পার্ন ওয়াইভিং

যে পদ্ধতিতে পড়েন সুতা মাকুতে প্রবেশের উদ্দেশ্যে খালি নলি/পার্ন -এ সুতা জড়ানো হয় তাকে পার্ন ওয়াইন্ডিং বলে। সাধারণত পড়েন সুতা হিসেবে ব্যবহৃত হয় এবং পার্ন মাকুতে প্রবেশ করানো হয়।

চিজ ওয়াইডিং

যে পদ্ধতিতে সূতার ছোট প্যাকেজ থেকে পরবর্তী সুবিধাজনক কাজে ব্যবহারের উদ্দেশ্যে সূতার বড় প্যাকেজ অর্থাৎ চিজ আকারে সূতা জড়ানো হয় তাকে চিজ ওয়াইন্ডিং বলে। সূতা বহন করার সুবিধার্থে চিজ তৈরি করা হয়।

স্পুল ওয়াইভিং

যে পদ্ধতিতে সুতার ছোট প্যাকেজ থেকে পরবর্তী সুবিধাজনক কাজে ব্যবহারের উদ্দেশ্যে সুতার বড় প্যাকেজ অর্থাৎ স্পুল তৈরি করা হয় তাকে স্পুল ওয়াইন্ডিং বলে। স্পুল সাধারণত জুট ইন্ডাস্ট্রিতে তৈরি করা হয়। বিম তৈরির উদ্দেশ্যে টানা সুতা হিসেবে স্পুল ব্যবহৃত হয়।

বিভিন্ন প্রকারের ইয়ার্ন প্যাকেজের তালিকা নিচে দেওয়া হলো-

পাৰ্ন

কপ চিত্র: বিভিন্ন ধরনের ইয়ার্ন প্যাকেজ

চিত্র: বিভিন্ন ধরনের ইয়ার্ন প্যাকেজ

চিত্র: কোনো ওয়াইন্ডিং মেশিন

- ক- মোটর
- খ- মোটর পুলি
- গ- মেশিন পুলি
- ঘ- গ্রুভ রোলার
- ঙ– কোনো
- চ- গাইড
- ছ- টেনশনার
- জ- ববিন

কোনো ওয়াইন্ডিং মেশিনের বর্ইনা

কোনো ওয়াইন্ডিং মেশিনে সাধারণত সুতা ভর্তি রিং ববিন হতে কোনে জড়ানো হয় প্রথমে সুতাকে রিং ববিন হতে নির্দিষ্ট টেনশনে কোনো সুতা জড়ানোর জন্য টেনশন ডিভাইসের মধ্যে দিয়ে আনা হয় এবং টেনশন অ্যাডজাস্ট করা হয়। এতে সুতার দুর্বল স্থানগুলো ছিঁড়ে যায়। সুতার ক্রেটিসমূহ যেমন নেপথ, স্লাবস এবং মোটা জায়গা দূর করার জন্য এক স্লাব ক্যাচারের মধ্যে দিয়ে আনা হয় যার ফলে সুতার মধ্যের উল্লিখিত ক্রেটিসমূহ দূর করা যায়। স্লাব ক্যাচিং বা অন্য কোনো কারণে সুতা ছিঁড়ে গেলে হাত দ্বারা বা স্বয়ংক্রিয়ভাবে সুতার গিরা দেওয়া হয়।

চিত্র: পার্ন ওয়াইন্ডিং মেশিন

- ক- সুতাপূর্ই কোনো
- খ- গাইড
- গ- টেনশনার
- ঘ- স্টপ মেকানিজম
- ঙ– গাইড
- চ- ট্রাভার্স মেকানিজম
- ছ- পাৰ্ন

কোনো ওয়াইন্ডিং -এ সাধারণত কোনোকে খাঁজকাটা ড্রামের সঙ্গে গাইডের মাধমে সেট করা যায়। এটা ড্রামের ফিকশ-নাল কন্টাক্টে ঘূর্ণন গতিতে ঘুরে এবং কোনো সুতা জড়ায়। সুতার গায়ে লেগে

থাকা ধুলাবালি ময়লা দূর করার জন্য এক ড্রামের মধ্যে দিয়ে পাস করানো হয়। সুতার সাপ্লাই ববিনের (রি ববিন) সুতা শেষ হয়ে গেলে পুনরায় নতুন ববিন লাগানো হয়। আবার নির্দিষ্ট দৈর্ঘ্য বা ওজনের সুতা কোনো জড়ানো শেষ হলে অটোমেটিকভাবে বা হাত দ্বারা ভর্তি কোনো অপসারণ করে সুতা খালি কোনো মেশিনে লাগানো হয়। কোনো সাধারণত কাঠের বা পেপারের তৈরি হয়। এভাবে কোনো ওয়াইভিং প্রক্রিয়ায় সুতা জড়ানো হয়।

পার্ন ওয়াইন্ডিং মেশিনের বর্ণনা

কাপড়ের পড়েন সুতা সরবরাহের জন্য পার্নের প্রয়োজন হয়। এই পড়েন সুতাকে সাটেলে প্রবেশ করানোর জন্য একটি সুবিধাজনক প্যাকেজ তৈরি করতে হয় যা হতে কোনো বাধা ছাড়াই বুননের সময় নির্দিষ্ট টেনশনে সুতা অপসারিত হয়ে আসতে পারে। এই প্যাকেজকেই পার্ন বলে এবং যে প্রক্রিয়ায় এ পার্নে সুতা জড়ানো হয় তাকে পার্ন ওয়াইন্ডিং বলা হয়।

একটি বড় প্যাকেজ যেমন- কোন বা চিজ হতে সুতাকে নির্দিষ্ট টেনশনে পার্ন ববিনে নির্দিষ্ট সাইজ অনুযায়ী জড়ানো হয়ে থাকে। পার্ন ববিন স্পিডলের সাহায্যে বা গ্রিফের সাহায্যে ঘূর্ণন গতি প্রাপ্ত হয়। সুতাকে বড় প্যাকেজ হতে গাইড টেনশনিং ডিভাইসের মধ্য দিয়ে গ্রিফারের সাহায্যে পার্ন ববিনে জড়ানো হয়। এই গ্রিফার ক্যামের সাহায্যে টু অ্যান্ড ফ্রো মোশন প্রাপ্ত হয় এবং ধীরে ধীরে পার্নের এক প্রান্ত হতে অন্য পান্ত পর্যন্ত ক্রমান্বয়ে সুতা জড়াতে সাহায্য করে। ববিনে সুতার ডায়ামিটার বৃদ্ধি পেলে টেনশন যাতে বেড়ে না যায় সে জন্য আ্যডজাস্ট্যাবল টেনশন ডিভাইস ব্যবহৃত হয়। পার্ন ববিনে নির্দিষ্ট ডায়ামিটার পর্যন্ত সুতা ভর্তি হয়ে গেলে এটা একটি ফিলারের সংস্পর্শে এসে তাকে ধাক্কা দিয়ে থাকে। ফলে মেশিন অটোমেটিক্যালি বন্ধ হয়ে যায় এবং ভরা পার্ন অপসারিত হয়ে খালি পার্ন অটোমেটিকভাবে সেট হয় এবং মেশিন চলতে শুরু করে। এভাবে পার্ন ওয়াইন্ডিং মেশিন কাজ করে।

ইয়ার্ন প্যাকেজের ত্রুটিসমূহ-

স্পিনিং ও ওয়াইন্ডিং বিভাগে প্রস্তুতকৃত বিভিন্ন ইয়ার্ন প্যাকেজে নিমুলিখিত ক্রটিসমূহ পাওয়া যায়।

- স্লাও অফ (Slough off)
- রিং কাট (Ring cut)
- লো কপ কন্টেন্ট (Low cop content)
- ইমপ্রপার বিল্ড (Improper build)
- স্টিচিং অব কোন (Stitching of cone)
- রিবন ওউন্ড কোন (Ribbon wound cone)
- সফট বিল্ড অন কোন (Soft build on cone)
- বেল সেইফ কোন (Bell safe cone)
- নোজ বালজিং (Nose bulging)
- কলাপস কোন (Collapsed cone)
- রিং সেইফ কোন (Ring safe cone)
- ইমপ্রপার লিজিং (Improper leasing)
- লেস থ্রেডস ইন হ্যাংকস (Less threads in hanks)
- লুজ অ্যান্ড ইন হ্যাংকস (Loose ends in hanks)
- লং/শর্ট টাই ইয়ার্ন (Long/short tie yarns)
- মোর খ্রেড ইন হ্যাংক (More threads in hanks)
- এনন্টাংগেল প্রেড (Entangle threads)
- লেজার হ্যাংক ইন নট (Lesser hanks in knots)
- লেজার লেন্থ ইন ইয়ার্ন (Lesser length of yarn)

শ্লাও অফ (Slough off)

রিং ববিনে সুতা ওয়াইভিং করার সময় কিছু সুতা ববিন থেকে বের হয়ে যায়।

পরিণতি

- পরবর্তী প্রক্রিয়ায় সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- সুতার অপচয় বৃদ্ধি পায়।

কারণ

- রিং স্পিনিং ফ্রেমের রিং রেইল উপরে-নিচে ওঠানামা সঠিক না হলে।
- বিল্ডার ক্যাম ভাঙা থাকলে।
- ববিন সঠিকভাবে বসানো না হলে ।
- টেপ ঢিলা থাকলে।

প্রতিকার

- সঠিকভাবে রিং রেইল বসাতে হবে।
- ওয়াইভিং-এর হার সঠিক রাখতে হবে।
- খালি বসানোয় সতর্ক থাকতে হবে ।

রিং কাট (Ring cut)

রিং ববিনের পৃষ্ঠে সুতার স্তর ড্যামেডজ হয়।

পরিণতি

- ওয়াইভিং বিভাগে সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- ওয়াইভিং বিভাগে হার্ড ওয়েস্টেজ বৃদ্ধি পায়।

কারণ

- রাচেট হুইল সঠিক না হলে।
- স্পিভেলের ঘূর্ণন এক্সসেনট্রিক হলে।

প্রতিকার

- ট্রাভেলার ব্যবহার সঠিক হতে হবে।
- র্যাচেট হুইল সঠিক আছে কিনা তা পরীক্ষা করে ব্যবস্থা নিতে হবে।
- স্পিন্ডেলের ঘূর্ণন সঠিক রাখতে হবে।

লো কপ কন্টেন্ট (Low cop content)

রিং ববিনে অল্প পরিমাণ সুতা জড়ানো থাকলে।

পরিণতি

- রিং ফ্রেমের দক্ষতা কমে যায়।
- ওয়াইভিং দক্ষতা কমে যায়।
- নির্দিষ্ট দৈর্ঘ্যে নট-এর সংখ্যা বেশি হয়।

কারণ

- একই ফ্রেমে ববিনের উচ্চতা একই না হলে।
- কয়েল/ইঞ্চি এর সংখ্যা কম হলে।
- ববিন/কপ বটম ব্রাকেট যথাযথ সেট না হলে।
- র্যাচেট/পল মুভমেন্ট-এর নির্বাচন সঠিক না হলে ।

প্রতিকার

- একই আকারের ববিন লাগাতে হবে।
- র্যাচেট পল মুভমেন্ট সঠিকভাবে নির্বাচন করতে হবে।
- ব্রাকেট যথাযথভাবে সেট করতে হবে ।

ইমপ্রপার বিল্ড (Improper build)

ববিন/কপে সুতা ধাপে ধাপে জড়ানো আকারে দেখায়।

পরিণতি

- ওয়াইভিং-এ সুতা ছেঁড়ার হার বৃদ্ধি পায়।
- ওয়াইভিং বিভাগে হার্ড ওয়েস্টের পরিমাণ বৃদ্ধি পায়।

কারণ

- র্যাচেট ও পলের কম্বিনেশন সঠিক না হলে।
- রিং রেইল কাঁপতে থাকলে।

প্রতিকার

- পোকার রড-এর ওয়েলিং বা গ্রিজিং যথাযথ করতে হবে ।
- র্যাচেট ও র্যাচেট পলের কম্বিনেশন যথাযথ করতে হবে।

স্টিচিং অব কোন (Stitching of cone)

কোন -এর উপর সুতা জড়ানোর সময় যখন সুতার গতিপথ পরিবর্তন করে তখন সুতা যথাযথ ওয়াইভিং না হয়ে কোন -এর পার্শ্ব থেকে বের হয়ে যায়।

পরিণতি

- পরবর্তী প্রক্রিয়ায় সুতা ছেঁড়ার হার বেড়ে য়য়য়।
- সুতার ওয়েস্টেজের সংখ্যা বৃদ্ধি পায়।

কারণ

- কোন হোল্ডার যথাযথ সেট না করলে ।
- ভুল স্থানে সুতার ট্রাভার্স ঠিক করলে।
- টেনশন ব্রাকেট-এর পজিশন ড্রামের সাথে সামঞ্জস্য না করলে।

প্রতিকার

- কোন হোল্ডার যথাযথভাবে সেট করতে হবে।
- টেনশন ব্রাকেটের পঞ্জিশন দ্রামের সাথে সামঞ্জস্য রাখতে হবে।
- সুতার ট্রাভার্স সঠিক স্থানে দিতে হবে ।

রিবন ওউড কোন (Ribbon wound cone)

কোন -এর পরিধিব্যাপী রিবন আকারে জড়ানো থাকে।

পরিপত্তি

- আন ওয়াইডিং করতে অসুবিধার সৃষ্টি হয়।
- ইয়ার্নের অপচয় বৃদ্ধি পায় ।
- প্যাকেজ ডাইং করার সময় সৃষম ডাইং হয় না ।

কারণ

- ওয়াইভিং স্পিভেল মৃক্তভাবে না ঘুরলে ।
- কোন হোল্ডার যথাযথভাবে সেট না হলে।
- ক্যাম সুইচ ক্রুটিযুক্ত হলে ।

প্রতিকার

- মেশিনকে ওভারহোলিং করে ক্রিটিমৃক্ত করতে হবে।
- কোন হোন্ডার যথাযথভাবে সেট করতে হবে।

সফট বিল্ড অন কোন (Soft build on cone)

নরম স্ট্রাকচারে কোন তৈরি হওয়া।

পরিণত্তি

- প্যাকেজের ঘনত্ব কমে যায়।
- প্যাকেজের ওজন কম সূতার পরিমাণ কম থাকে।

কারণ

- কোন দ্রামের সাথে ওয়াইভিং স্পিভেল ঠিকমতো স্পর্শ না করলে ।
- ওয়াইভিং টেনশন কম হলে।

প্রতিকার

- ওয়াইভিং টেনশন বাড়াতে হবে।
- কোন ড্রামের সাথে ওয়াইভিং স্পিভেল যাতে ঠিকমতো সেট হয় তার ব্যবস্থা করতে হবে।

বেশ সেইফ কোন (Bell safe cone)

ঘটার মতো আকারের কোন তৈরি হয়।

পরিপত্তি

পরবর্তী প্রসেসে সৃতা ছেঁড়ার হার বৃদ্ধি পায়।

कांवर्ग

- ওয়াইঙিং -এ ইয়ার্ন টেনশন বেশি হলে ।
- কোন হোন্ডার যথাযথ সেট না হলে।
- পেপার কোন কেন্দ্রে ড্যামেজড থাকলে

বতিকার

- পেপার কোন ক্রয় করার সময় যখায়খ মানের আছে কি না ভা দেখে নিতে হবে।
- ওয়াইঙিং টেনশন যথাযথ করতে হবে ।

নোজ বালজিং (Nose bulging)

কোনের নাকের দিকে উঁচু হয়ে উঠে থাকা।

পরিপত্তি

- ওরাপিং-এর সময় ওয়েস্টেজ্ব বৃদ্ধি পায়।

 কারণ-
- ধরাইভিং হোন্ডারের সাথে কোন হোন্ডারের সেটিং ঠিকমতো না হলে।
- পেপার কোনের নোজ ড্যানেজড থাকলে

প্রক্রিকার

- ওয়াইন্ডিং ছ্রামের সাথে কোন হোল্ডারের সেটিং বধাবধ করতে হবে।
- পেপার কোন সঠিকভাবে লাগাতে হবে ।

ক্লাপ্স কোন (Collapsed cone)-

কোন কোণা অথবা স্ট্রাকচারের কোন অংশ ড্যামেচ্ছড বা ভাঙা থাকলে।

পরিশতি

- ওরাপিং-এর সময় সুতা হেঁড়ার হার বেড়ে যায়।
- 🔹 হার্ড ওয়েস্ট বৃদ্ধি পায়।

কারণ

- পেপার কোন ভাঙা বা খারাপ থাকলে ।
- সাবধানে হ্যান্ডলিং না করলে।

প্রতিকার

- পেপার কোনের সঠিক ব্যবহার করতে হবে।
- সাবধানে হ্যান্ডশিং করতে হবে।

রিং সেইফ কোন (Ring safe cone)

কোনের মাঝামাঝি অবস্থানে পরিধিব্যাপী রিং এক আকারে এক স্থানে অনেক সূতা চ্চড়ানো থাকে। পরিণত্তি

- পরবর্তী প্রসেসে সৃতা ছেঁড়ার হার বৃদ্ধি পায়।
- আন ওয়াইভিং করতে অসুবিধার সৃষ্টি হয়।

কারণ

- কোন হোল্ডার সঠিকভাবে সেটিং করা না হলে ।
- টেনশনার সঠিক অবস্থানে না থাকলে ।
- দ্রামের গ্রুভ ভাঙা থাকলে।

প্রতিকার

- কোন হোন্ডার সঠিকভাবে সেটিং করতে হবে ।
- টেনশনার সঠিক অবস্থানে রাখতে হবে ।
- দ্রামের ক্রন্ড ভাগ্রা থাকলে তা পরিবর্তন বা মেরামত করতে হবে।

ইম্থপার শিজিং (Improper leasing)

এক অথবা একের অধিক হ্যাংক শিক্তিং-এর বাইরে থেকে যায়।

পরিণতি

 রিং লিজিং-এর পর স্তা ব্যবহারের সময় ওয়েস্টেজের বৃদ্ধির সম্ভাবনা থাকে।

কারণ

- রিশিং-এর পর শ্রমিকের অবহেলার কারণে ।
- দক্ষতার অভাবে শুরুর অথবা শেষের হ্যাংককে লিজিং থেকে বাদ দেওয়া।

প্রতিকার

দক্ষ শ্রমিক দ্বারা লিজিং করালে এ ধরনের সমস্যা কম হয় ।

লেস শ্রেডস ইন হ্যাকেস (Less threads in hanks)

হ্যাকে সূতার সংখ্যা কম থাকা।

পরিণতি

পরবর্তী প্রক্রিয়ায় হার্ড ওয়েস্টেজ সংখ্যা বৃদ্ধি পায়।

কারণ

- ব্যাক ও ইনডেক্স হুইলের সেটিং যথাযথ না হলে ।
- ইনডেক্স হুইল ভাঙা হলে।

প্রতিকার

র্যাক ও ইনডেক্স হুইল যথাযথভাবে সেটিং করতে হবে ।

লুজ অ্যান্ড ইন হ্যাংকস (Loose ends in hanks)

ছেঁড়া সুতা অথবা হ্যাংকের মধ্যে বাঁধা না থাকা

পরিণতি

- প্রান্ত জোড়া দেওয়া কট্টসাধ্য ।
- পরবর্তী প্রসেসে হার্ড ওয়েস্ট বৃদ্ধি পায়।

কারণ

- সুইফট ড্যামেজড থাকলে ।
- ববিন অথবা কাপ পরিবর্তন করার সময় সঠিক প্রান্ত জোড়া না দেওয়া।

প্রতিকার

- সুইফট ভাঙা থাকলে তা মেরামত বা পরিবর্তন করা।
- লিজিং -এ কপ সাবধানে জোড়া দিতে হবে ৷

লং/শর্ট টাই ইয়ার্ন (Long/short tie yarns)

লিজিং -এর পর খুব লম্বা বা খুব খাটো সুতা ছিঁড়ে দেওয়া।

পরিণতি

- পার্শ্ববর্তী সুতার সাথে লম্বা বাঁধা সুতা জড়িয়ে যায়।
- সুতা খোলার জন্য অনেক বেশি সময়ের প্রয়োজন হয়।

কারণ

সঠিকভাবে হ্যাংক বাঁধার কারণে ।

প্রতিকার

 শ্রমিক দক্ষতা বাড়ানোর জন্য বারবার বাঁধার অনুশীলন করতে হবে।

মোর প্রেড ইন হ্যাংক (More threads in hanks)-

একটি অথবা বেশি লিতে বেশি সুতা জড়ানো

পরিণতি

- পরবর্তী প্রক্রিয়ায় হার্ড ওয়েস্টের সংখ্যা বৃদ্ধি পায়।
 কারণ
 - ফুল ডফ স্টপ মোশন সঠিকভাবে কাজ না করলে ।
 - ওয়ার্ম অথবা ওয়ার্ম হুইল রিলে ভাঙা দাঁত থাকলে।

প্রতিকার

- ৬ফিং সঠিক করতে হবে।
- ওয়ার্ম ভাঙা থাকলে তা পরিবর্তন করতে হবে ।

এনন্টাংগেল থ্রেড (Entangle threads)

লি এর ভিতর অথবা পার্শ্বে ক্রেস অবস্থায় সুতা থাকলে।
 পরিণতি

- আন ওয়াইভিং-এ সময় বেশি লাগে।
- হার্ড ওয়েস্টের পরিমাণ বৃদ্ধি পায়।

কারণ

- থ্রেড গাইড খারাপ থাকলে ।
- ববিন সরানোর পর পরবর্তী ববিনের সুতার গিঁট না দিলে।

প্রতিকার

- থ্রেড গাইড ইত্যাদি খারাপ থাকলে তা মেরামত বা পরিবর্তন করতে হবে।
- ববিন থেকে ববিনের প্রান্ত সুতায় গিঁট (knot) দিতে হবে।

বাভেলিং-এ কম হ্যাংক একসঙ্গে বাঁধা থাকা।

পরিণতি

গড় কাউন্টের হিসাব সঠিক হয় না ।

কারণ

হ্যাংক গ্রুপিং করে বাঁধার ক্ষেত্রে ক্রটি হলে ।

প্রতিকার

হ্যাংক কাউটিং-এর ক্ষেত্রে মনোযোগী হতে হবে।

লেজার লেছ ইন ইয়ার্ন (Lesser length of yarn)

রিলিং-এ হ্যাংকের দৈর্ঘ্য কম থাকে।

পরিণতি

পরবর্তী প্রক্রিয়ায় হার্ড ওয়েস্ট বেড়ে য়য়।

কারণ

- সুইফটের বিভিন্ন অংশের পরিধির মাপ সঠিক না হলে।
- ব্ৰেক ও ডফ স্টপ সঠিক না হলে।

প্রতিকার

- সুইফটের ব্যাস পরীক্ষা করে পরিবর্তন করতে হবে।
- ব্রেক ও ফুল ডফ স্টপ মোশন যাতে সঠিকভাবে কাজ করে তা নিশ্চিত করতে হবে।

দশম অধ্যায় টানা প্রকরণ (Warping)

যে পদ্ধতিতে অনেকগুলো সূতার প্যাকেজ যেমন- কোনো, স্পুল, চিজ ইত্যাদি হতে সূতাগুলো নির্দিষ্ট বহরে ও নির্দিষ্ট দৈর্ঘ্যে সমান্তরালভাবে সাজিয়ে অবিচ্ছিন্ন সূতায় শিট তৈরি করা হয়, যা একটি খালি বিমে জডানো হয় তাকে ওয়ার্পিং বলে।

ওয়ার্পিং-এর উদ্দেশ্য (Object of warping)

- ১। নির্দিষ্ট দৈর্ঘ্য ও প্রস্থের অবিচ্ছিন্ন সূতার শিট তৈরি করা ।
- ২। শিটের প্রতিটি সুতা পূর্ণ প্রস্থের সমদূরত্বে রাখা
- ৩। শিটের সমস্ত সুতা সমটানে জড়ানো নিশ্চিত করা।
- ৫। বিমের পূর্ণ প্রস্থে ও সূতা জড়ানোর প্রথম থেকে শেষ পর্যন্ত সূতার ঘনত্ব সমভাবে রক্ষা করা।
- ৬। পরবর্তী প্রক্রিয়া অর্থাৎ উইভিং -এর জন্য একটি টানা বিম তৈরি করে প্রক্রিয়া তুরাম্বিত করা।

ওয়ার্পিং -এর শ্রেণিবিভাগ (Classification of warping)

হস্তচালিত নিয়মে ওয়ার্পিং ৫ প্রকার। যথা

- ১। এক খেই টানা।
- ২। ক্রিলের টানা।
- ৩। পেগ টানা।
- ৪। পাথালি ড্রামে টানা।
- ৫। খাড়া ড্রামে টানা বা বল ওয়ার্পিং।

এক খেই টানা

এ ধরনের ওয়ার্পিং হ্যান্ড লুমের জন্য ব্যবহৃত হয়ে থাকে এবং সাধারণত গ্রামের স্ত্রী লোকেরাই হেঁটে হেঁটে এ টানা প্রস্তুত করে থাকে। দৈর্ঘ্য ১০ থেকে ২৫ গজের বেশি হয় না বা করা যায় না।

টানার দুই প্রান্ত ২ ফুট লম্বা মজবুত খুঁটি মাটিতে শক্ত করে আটকানো থাকে, এক বা দুই গজ পরপর মধ্যবর্তী স্থানে এক জোড়া করে লিজ (Lease) রাখা হয়। খুঁটির এক প্রান্তে একটি শক্ত ছোট হুক শক্ত করে বাঁধা থাকে।

মিল ওয়ার্পিং

সাধারণত অধিক সংখ্যক ওয়ার্প ইয়ার্নের দ্বারা ওয়ার্পিং করার ক্ষেত্রে মিল ওয়ার্পিং-এর প্রয়োজন হয়। এ পদ্ধতি খুবই দ্রুত গতিসম্পন্ন। এক সাথে বিমিং ও সাইজিং করা হয়। কাপড় তৈরির উদ্দেশ্যে যে পদ্ধতিতে ক্রিলে স্থাপিত সুতার প্যাকেজ হতে সমান্তরালভাবে কারি বিমে নির্দিষ্ট সংখ্যক ওয়ার্প সুতাকে জড়ানো হয় এবং পরবর্তীতে অধিক সংখ্যক ওয়ার্প সুতার জন্য কয়েকটি ওয়ার্প বিমের সুতাকে একত্রে সাইজিং করে নির্দিষ্ট বহরে ও নির্দিষ্ট দৈর্ঘ্যে সমান্তরালভাবে সাজিয়ে অবিচ্ছিন্ন সুতার শিট তৈরি করা হয় তাকে মিল ওয়ার্পিং বলে।

সেকশনাল ওয়ার্পিং ও মিল ওয়ার্পিং-এর মধ্যে পার্থক্য

ক্র: নং	সেকশনাল ওয়ার্পিং	মিল ওয়ার্পিং
٥	সাধারণত রঙিন সুতার ক্ষেত্রে ব্যবহৃত	গ্রে কাপড় উৎপাদন এবং ১৫% এর কম
	হয। অর্থাৎ ১৫% এর অধিক সুতা	রঙিন সুতা দ্বারা ওয়ার্পিং-এর ক্ষেত্রে
	ব্যবহারের ক্ষেত্রে	ব্যবহৃত হয়।
২	এ পদ্ধতি খুব বেশি ব্যবহৃত হয় না।	এ পদ্ধতি খুব বেশি ব্যবহৃত হয় ।
9	এ পদ্ধতিতে প্রথমে একটি ড্রামে ও	এ পদ্ধতিতে প্রথমে প্রি বিম বা Warper
	সেকশন আকারে সুতা জড়ানো হয় এবং	Beam তৈরি করে পরে চূড়ান্ত বিমে
	পরে চূড়ান্ত বিমে জড়ানো হয়।	জড়ানো হয়।
8	সাধারণত কম সংখ্যক টানার ক্ষেত্রে এ	সাধারণত অধিক টানার ক্ষেত্রে এ পদ্ধতি
	পদ্ধতি ব্যবহার করা হয়।	ব্যবহার করা হয়
ď	এ পদ্ধতিতে সুতার সেকশন	সুতায় সমটেনশন বিরাজ করে।
	তুলনামূলকভাবে অসম হয়।	
৬	সাধারণত রেশম ও কৃত্রিম সুতার ক্ষেত্রে	সাধারণত কটন ও লিনেন সুতার ক্ষেত্রে এ
	এ পদ্ধতি ব্যবহৃত হয়।	পদ্ধতি ব্যবহৃত হয়।
٩	এটা ধীর গতিসম্পন্ন।	এটা দ্রুত গতিসম্পন্ন পদ্ধতি।
b	এ পদ্ধতিতে সুতাগুলোকে হ্যাংক অবস্থায়	পদ্ধতি চলাকালীন অবস্থায় মাড় দেওয়া
	মাড় দেওয়া হয়।	रुग्न ।
৯	এটা অধিক ব্যয়সাপেক্ষ	এটা কম ব্যয়সাপেক্ষ

টানা প্রকরণের ত্রুটি ও তার প্রতিকার (Faults of warping and their remedies)

১. বিমে টানা সূতা অফ সেন্টার হওয়া (Warp of centre of the beam)

অসতর্কতার কারণে এ ধরনের ক্রটি দেখা দিতে পারে। সতর্কতার সাথে সুতা গণনা করে এবং উত্তমরূপে প্রক্রিয়া সম্পন্ন করলে ক্রটি দূর করা যায়।

২. টানা সুতা বাদ যাওয়া (Missing ends)

ওয়ার্পিং-এর সময় মাঝে মাঝে দু-একটি টানা সুতা Missing হতে পারে। সঠিক গণনার মাধ্যমে তা খুঁজে বের করে ক্রেটিমুক্ত করা যায়।

৩. ঢিলা এবং শব্দ টানা (Loose and tight warp beam)

অসম টেনশনের কারণে এ ধরনের ক্রটি দেখা যায়। টেনশন ডিভাইসের ক্রটিপূর্ণ সেটিং-এ ক্রটির জন্য দায়ী। ভালো টেনশন ডিভাইস ব্যবহার করে এবং সঠিক টেনশনিং-এর সাহায্যে এ ক্রটি দূর করা যায়।

8. অসম ও মোটা গিট (Unevent and coarse knot)-

অনেক সময় ওয়ার্পিং-এ অসম এবং মোটা গিঁট দেখা যায়। এদেরকে স্লাব ক্যাচার ব্যবহার করে বা হাতের সাহায্যে এ ক্রটি দূর করা যায়।

৫. টানা সুতার অধিস্থাপন (Lapped ends)

অনেক সময় ওয়ার্পিং-এর সময় এক সূতা অন্য সূতার সাথে জড়িয়ে যায়, এদেরকে ল্যাপড এন্ডস (Lapped ends) বলে। এদেরকে খুঁজে বের করে যথাস্থানে এনে এ ক্রটি দূর করা যায়।

- ৬. বিমে কোণাকৃতিভাবে সূতা জড়ানো (Conical winding on the beam)
- সুতার লাইন এবং ঘূর্ণন সোজা না থাকলে এ ক্রটি দেখা দিতে পারে। সুতার লাইন এবং বিমের অবস্থান ঠিক রেখে এ ক্রটি দূর করা যায়।
- ৭. ওরার্পিং -এ অপর্যাপ্ত সূতার দৈর্ঘ্য (Improper length of warping yarn) ওরার্পিং-এ অনেক সময় অপর্যাপ্ত সূতা পাওয়া যায় না। সঠিক দৈর্ঘ্যের সূতা পছন্দ করে ওয়ার্পিং করলে এ অসুবিধা দূর করা যায়।
- ৮. **লখা এবং বড় স্থাব এবং অন্যান্য আবর্জনা (Long and large slub and other impurities)** এগুলো হাতের সাহায্যে দূর করা যায়।

একাদশ অধ্যায় মাড় প্রকরণ (Sizing)

স্পিনিং ও ওয়াইভিং বিভাগ হতে প্রাপ্ত সুতা দ্বারা তৈরি ওয়ার্পাস বিম দ্বারা সরাসরি উইভিং করা যায় না। সুতার ক্ষুদ্র ক্ষুদ্র আঁশ বাইরের দিকে বের হয়ে থাকে। এছাড়া ঝাঁপ ও চক্ষু দ্বারা শেড গঠনের জন্য টানা সুতা বারবার ঘষা খায়। ফলে এর হেয়ারিনেস বৃদ্ধি পায় ও সুতার শক্তি কমে যায়। অনেক সময় সুতার পাঁক কম থাকে, সুতা দুর্বল থাকে যার কারণে তাঁতের বিভিন্ন মোশন, ঝাঁপের ওঠানামা মাকু -এর ঘর্ষণ সহ্য করতে পারে না। ইত্যাদি কারণে উইভিং করার সময় টানা সুতা ছিঁড়ে যায়, উৎপাদন ব্যাহত হয়। উৎপাদন খরচ বেড়ে যায়, কাপড়ও ক্রটিপূর্ণ হয়। উপরোক্ত অসুবিধাসমূহ দূর করার জন্য ওয়ার্পাস বিমের টানা সুতায় মাড় দেওয়া হয়। মাড় প্রকরণে প্রাথমিক উদ্দেশ্য হলো টানা সুতার ন্যূনতম কোনো ক্ষতি সাধন না করে কাপড় বয়ন অর্থাৎ উইভিং করা। মাড় প্রকরণ সুতা ও কাপড়ের বৈশিষ্ট্য পরিবর্তন করে কাপড়ের দৃঢ়তা ও ওজন বৃদ্ধি করে। সর্বোপরি সুতার শক্তি ও মসৃণতা বৃদ্ধি করে টানা সুতা ছেঁড়ার হার কমিয়ে দেয়।

মাড়ের সংজ্ঞা

টানা সুতার শক্তি বৃদ্ধি ও অন্যান্য গুণাগুণ বৃদ্ধির উদ্দেশ্যে বিমিং করা টানা সুতায় মসৃণ করার উদ্দেশ্যে ও আঠালো পদার্থ দ্বারা মসৃণ করা হয় উক্ত আঠালো পদার্থসমূহকে মাড় বলে।

মাড়প্রকরণের সংজ্ঞা

টানা সুতার শক্তি বৃদ্ধি ও ঘর্ষণজনিত কারণে সুতা ছেঁড়ার হাত থেকে রক্ষা করার জন্য বিমিং করা টানা সুতার পৃষ্ঠব্যাপী আঠালো পদার্থ দ্বারা মসৃণ করার প্রণালিকে মাড় প্রকরণ বা সাইজিং বলে।

সাইজিং -এর উদ্দেশ্য

- টানা সুতার ঘর্ষণজনিত প্রতিরোধ ক্ষমতা বৃদ্ধি করা।
- টানা সুতাকে কোমল মসৃণ ও উজ্জ্বল করা।
- ৩. টানা সুতার বাইরের দিকে বেরিয়ে থাকা ভাসমান আঁশগুলো সুতার পৃষ্ঠে লাগিয়ে দিয়ে সুতাকে মসৃণ করা ও শক্তি বৃদ্ধি করা।
- দুর্বল ও কম শক্তিসম্পন্ন সুতাকে ব্যবহার উপযোগী করা।
- পুতার উপর প্রতিরোধকারী পাতলা আবরণ দেওয়া।
- ৬. সুতার শক্তি বৃদ্ধি করা।
- পুতার ওজন বৃদ্ধি করা।
- পলিয়েস্টার মিশ্রিত সুতায় যে স্থির বিদ্যুৎ উৎপন্ন হয় তা
 হাস করা।

মাড়ের উপাদানসমূহ

মাড় বা সাইজ তৈরির জন্য বিভিন্ন উপাদানের প্রয়োজন। প্রতিটি উপাদানেরই আলাদা আলাদা গুণাগুণ রয়েছে। সুতার গুণাগত মান ও প্রকারের উপর নির্ভর করে বিভিন্ন প্রকার মাড়ের উপাদান প্রয়োগ করা হয়। নিম্নে মাড়ের উপদানসমূহ উল্লেখ করা হলো।

- ১) শ্বেতসারযুক্ত উপাদান (Adhesive substance)
- ২) সফেনিং এজেন্টস (Softening Agents)
- ৩) হাইগ্রোসকোপিক এজেন্টস (Hygroscopic Agents)
- 8) অ্যান্টিসেপটিক এজেন্টস (Anticeptics)
- ৫) নিউট্রালাইজিং এজেন্টস (Neutralizing Agents)
- ৬) অ্যান্টিফোমিং এজেন্টস (Antifoaming Agents)
- ৭) টিনটিং বা রঞ্জক উপাদান (Tinting of Colouring Agents)
- ৮) ওয়েটিং এজেন্টস (Weighting Agents)

উপাদানসমূহের বিবরণ

শ্বেতসারযুক্ত উপাদান (Adhesive substance)

একে মাড়/সাইজের মূল উপাদানও বলা হয়। এ উপাদানের জন্য মাড় আঠালো হয়। এ শ্বেতসারযুক্ত উপাদানের সাথে পানি মিশ্রিত করে তাপ প্রয়োগ করলে আঠালো পদার্থের পেস্ট (Pest) এ পরিণত হয়। উদাহরণ: মেইজ স্টার্চ (Maise starch), তেঁতুলের বিচির পাউডার (Tamarind seed powder), টপিওকা স্টার্চ (Topioca starch), ময়দা (Flour), সাগু স্টার্চ (Sagoo starch), আলুর প্যালো (Potato starch), রাইচ স্টার্চ (Rice starch) ইত্যাদি প্রাকৃতিক স্টার্চ।

আবার সিএমসি (Carboxy Methyl Cellulose), পিভিএ (Polyvenyle Alcohol), পলিঅ্যাক্রাইলিক অ্যাসিড ইত্যাদি কৃত্রিম স্টার্চ বা অ্যাডহেসিভ।

সফেনিং এজেন্টস (Softening Agents)

সফেনিং এজেন্টকে কোমল রাখার উপাদানও বলা হয়। টানা সুতা কখনও কখনও শক্ত, অমসৃণ ও ভঙ্গুর হয়। এছাড়া সুতার খসখসে ভাব ও নমনীয়তা দূর করার জন্য সফেনিং এজেন্ট ব্যবহার করা হয়।

উদাহরণ: মাটন ট্যালো (Mutton tallow), টেলটেক্স (Teltex), নারিকেল তেল (Coconut oil), ক্যাস্টর অয়েল, তিলের তেল, তালের তেল, তুলার বীজের তেল, জলপাই -এর তেল, রেড়ির তেল, প্যারাফিন ওয়াক্স (Parafin wax), চায়না মোম (China wax), সুগার ক্যান ওয়াক্স (Sugarcane wax), ওয়াক্স (Wax), সফট সোপ (Soft soap) ইত্যাদি।

হাইগ্রোসকোপিক এক্ষেন্টস (Hygroscopic Agents)

সুতাকে আর্দ্র রাখার জন্য হাইগ্রোসকোপিক এজেন্ট ব্যবহার করা হয়। আর্দ্র রাখার উপাদানসমূহ বাতাস হতে জলীয় বাষ্প গ্রহণ করে থাকে। এ এজেন্টস ব্যবহার করার ফলে টানা সুতা অপেক্ষাকৃত বেশি পরিমাণ আর্দ্রতা শোষণ করে সুতাকে নমনীয় রাখতে সাহায্য করে।

উদাহরণ: ম্যাগনেসিয়াম ক্লোরাইড ($MgCl_2$), ক্যালসিয়াম ক্লোরাইড ($CaCl_2$), গ্লিসারিন, জিন্ধ ক্লোরাইড ($ZnCl_2$), ডাই ইথিলিন গ্লাইকল, সরবিটল ইত্যাদি।

অ্যান্টিসেপটিক এক্ষেন্টস (Anticeptics)

একে বাংলায় প্রতিষেধক উপাদান বল হয়। মিলডিউ অর্থাৎ ছত্রাক আক্রমণ থেকে রক্ষার জন্য প্রতিষেধক উপাদান ব্যবহার করা হয়। সাধারণত সমস্ত স্টার্চই ছত্রাক দ্বারা আক্রান্ত হওয়ার আশঙ্কা থাকে। কাজেই কার্বন সূতা সাইজিং করার প্রয়োজনে স্টার্চ -এর পাশাপাশি অ্যান্টিসেপটিকস প্রয়োগ করার প্রয়োজন হয়।

উদাহরণ: জিঙ্ক ক্লোরাইড ($ZnCl_2$), কপার সালফেট ($CuSO_4$), সেলিসাইটিক অ্যাসিড ($C_6H_4(OH)COOH$), সোডিয়াম সিলকো ক্লোরাইড, বিটা নেপথলস, কার্বোলিক অ্যাসিড ইত্যাদি।

নিউট্রালাইজিং এজেন্টস (Neutralizing Agents)

মাড় দ্রবণ প্রস্তুত করার সময় দ্রবণের (PH) মাত্রা পরিবর্তিত হওয়ার সম্ভাবনা থাকে। কাজেই দ্রবণকে নিউট্রাল করার জন্য নিউট্রালাইজিং এজেন্টস যোগ করা হয়। যতক্ষণ না পর্যন্ত দ্রবণের (PH) মাত্রা ৬.৮ না হয় ততক্ষণ পর্যন্ত অল্প অল্প করে এ এজেন্টস ব্যবহার করা হয়।

উদাহরণ: সোডা অ্যাশ।

অ্যান্টিফোমিং এজেন্টস (Antifoaming Agents)

মাড় দ্রবণ অথবা মাড় পেস্ট প্রস্তুত করার সময় দ্রবণে ফেনা হবার সম্ভাবনা দেখা যায়। যার ফলে উক্ত দ্রবণ টানা সুতায় প্রয়োগ করতে অসুবিধার সৃষ্টি হয়। এ জন্য মাড় দ্রবণে অ্যান্টিফোমিং এজেন্টস ব্যবহার করা হয়। যা মাড়, পেস্ট বা দ্রবণে ফেনা উৎপন্ন হতে বাধা প্রদান করে।

উদাহরণ: অ্যাসিটিক অ্যাসিড (CH₃COOH), কেরোসিন, টার্পেন্টাইন, পাইন অয়েল, অ্যামাইল, অ্যালকোহল, ট্রাইউ বিউটাইল ফসফেট, সিলিকন ডিফোমার ইত্যাদি।

টিনটিং বা র**ঞ্জ**ক উপাদান (Tinting of Colouring Agents)

টানা সুতা ও উৎপাদিত কাপড়ের প্রাকৃতিক রংকে নিউট্রালাইজড করার জন্য এ এজেন্ট ব্যবহৃত হয়। সাধারণত যে সমস্ত কাপড় গ্রে অবস্থায় বিক্রি হবে উক্ত কাপড় প্রস্তুত করতে টানা সুতায় মাড় দেওয়ার সময় টিনটিং এজেন্ট প্রয়োগ করা হয়ে থাকে।

উদাহরণ : টিনাপল (Tinapol) আল্ট্রা মেরিন ব্লু, অ্যাসিড ডাই ও অপটিক্যাল ব্রাইটেনিং এজেন্ট ইত্যাদি।

ওয়েটিং এচ্ছেন্টস (Weighting Agents)

সুতা ও উৎপাদিত কাপড়ের ওজন বৃদ্ধি করার জন্য যে পদার্থ ব্যবহার করা হয় সেগুলোই ওয়েটিং এজেন্ট। শুধু গ্রে অবস্থায় বিক্রি করার জন্যই এ ধরনের এজেন্ট ব্যবহার করা হয়ে থাকে।

উদাহরণ: চায়না ক্লে (China clay), চক বা খড়িমাটি (CaCO $_3$), ফ্রেঞ্চ চক (French Chalk), ম্যাগনেসিয়াম সালকেট (MgSO $_4$), সোডিয়াম সালফেট (Na $_2$ SO $_4$), ম্যানেশিয়াম ক্লোরাইড (MgCl $_2$) ইত্যাদি।

সাইজিং পদ্ধতির শ্রেনিবিভাগ-

সাইজ -এর প্রয়োগ পদ্ধতি ও ড্রাই পদ্ধতির ওপর ভিত্তি করে সাইজিং মেশিনকে শ্রেণিবিভাগ করা হয়। সাইজিং পদ্ধতির উপর ভিত্তি করে সাইজিং মেশিনসমূহকে চার ভাগে ভাগ করা যায়। যথা-

১) সিলিন্ডার ডাইং (Cylinder dyeing)

ক) দুই সিলিভার বিশিষ্ট (Two cylinder type)

৮২

- খ) বহু সিলিন্ডার বিশিষ্ট (Multi cylinder type)
 - ২) হট এয়ার ডাইং (Hot air dyeing)
 - ৩) ইনফ্রারেড ডাইং (Infrared dyeing)
 - 8) কম্বাইন্ড পদ্ধতি (Combind system)

প্রয়োগ পদ্ধতির উপর ভিত্তি করে মাড়করণ বা সাইজিং পদ্ধতিতে নিম্নলিখিত পদ্ধতি ব্যবহৃত হয়। যথা-

- ১) টেপ অথবা স্লেশার সাইজিং (Tape or Slasher sizing)
- ২) হট মেল্ট সাইজিং (Hot melt sizing)
- ৩) হাই প্রেসার সাইজিং (High pressure sizing)
- 8) ফোম সাইজিং (Foam sizing)
- ৫) সলভেন্ট সাইজিং (Solvent sizing)
- ৬) ইলেকট্রোস্ট্যাটিক সাইজিং (Electrostatic sizing)
- ৭) পলিমার ইমালশন সাইজিং (Polymer emulsion sizing)
- ৮) কম্বাইন্ড সাইজিং (Combind sizing)

সাইজিং-এর সময় গৃহীত সতর্কতাসমূহ

সাইজিং-এর সময় নিমুলিখিত সতর্কতা অবলম্বন করতে হবে।

- সাইজিং চলাকালীন সময়ে সাইজ দ্রবণের ঘনত যেন কমে না যায়।
- যে নির্দিষ্ট তাপমাত্রায় সাইজিং করতে হবে তা যেন কম না হয়।
- মাড়ের দ্রবণের তাপমাত্রা ৬০০ সে. এ রাখতে হবে।
- সাইজ বক্সের সাইজিং রোলারের প্রেসার যাতে কম অথবা বেশি না হয়় তার দিকে দৃষ্টি রাখতে হবে।
- মাড় ওকানোর জন্য ড্রাইং সিলিন্ডারের যেন অতিরিক্ত তাপ না দেওয়া হয় যাতে কড়া সাইজিং না হয়।
- ভেজা অবস্থায় যেন উইভার্স বিম তৈরি না হয়।
- টানা সুতা একটার সঙ্গে অন্যটা না জড়িয়ে থাকে, সে বিষয়ে লক্ষ রাখতে হবে ।

উইভিং-১ প্রথম পত্র (নবম শ্রেণি) ব্যবহারিক অংশ

১. পরীক্ষার নাম : রক্ষণাবেক্ষণে ব্যবহৃত বিভিন্ন যন্ত্রপাতির সাথে পরিচিতি।

সংজ্ঞা রক্ষণাবেক্ষণ:

কোনো যন্ত্র বা মেশিনপত্রকে নিয়মতান্ত্রিকভাবে পরিষ্কার-পরিচ্ছন্ন করে প্রয়োজনীয় অংশে তেল, গ্রিজ ইত্যাদি প্রয়োগসহ সার্বিক যত্ন নেওয়া অর্থাৎ শিল্পকারখানা বা প্লান্টের মেশিনপত্র, সরঞ্জামাদি, কাঁচামাল ও উৎপাদিত পণ্যের প্রস্তুতকারকের নির্দেশ মোতাবেক পরিষ্কার-পরিচ্ছন্ন রাখা, তৈল প্রয়োগসহ সার্বিক যত্ন নেওয়ার যথোপযুক্ত প্রক্রিয়াই হচ্ছে রক্ষণাবেক্ষণ।

রক্ষণাবেক্ষণে প্রয়োজনীয় যন্ত্রপাতি

মেশিনের পরিচর্যা বা রক্ষণাবেক্ষণের জন্য প্রচুর যন্ত্রপাতি পাওয়া যায়। তার একটি সংক্ষিপ্ত তালিকা নিম্নে দেওয়া হলো।

- ক) হ্যান্ড টুলস-
- * হ্যামার
- * ফাইল
- * চিজেল
- * রেঞ্চ
- * ডিভাইডার
- * অ্যাজাস্টেবল রেঞ্চ
- * পাইপ রেঞ্চ
- * স্প্যানার
- * বক্স রেঞ্চ

হ্যামারের বিভিন্ন সংশ

ইঞ্জিনিয়ার্স হ্যামার

বিভিন্ন প্রকার ফাইল

অ্যাডজাস্টেবল রেঞ্চ

वस तिक्ष

কম্বিনেশন রেঞ্জ

ডবল এন্ডেড স্পেনার রেঞ্চ

পাইপ্রেঞ্চ

ডায়াগোনাল প্রায়ার্স

সাইড কাটিং প্লায়ার্স

কম্বিনেশন বা শ্লিপ জয়েন্ট প্লায়ার্স

রাউন্ড নোজ প্রায়ার্স

স্টেইট নিডল নোজ প্লায়ার্স

২. পরীক্ষার নাম : নির্দিষ্ট কাজের জন্য নির্দিষ্ট যন্ত্রের পরিচিতি।

সংজ্ঞা

- ক) মেরামত : কোনো মেশিন/যন্ত্রপাতি কোনো কারণে যদি পূর্বের ন্যায় কাজ করতে অক্ষম হয়, তবে তাকে পূর্বের ন্যায় কাজ করা সক্ষম করে তোলার জন্য যে কাজটি করা হয় তাই মেরামত।
- খ) পরিষ্কারকরণ : উৎপাদনমুখী কর্মকাণ্ডে ব্যবহৃত মেশিন/যন্ত্রপাতি ইত্যাদির সর্বোচ্চ ব্যবহার নিশ্চিত করতে কাজের পূর্বে ও পরে ধুলা, ময়লা, আবর্জনা দূর করার প্রক্রিয়াই হচ্ছে পরিষ্কারকরণ।
- গ) অয়েলিং ও **গ্রিজিং** : ইঞ্জিনের বিভিন্ন যন্ত্রাংশকে সচল ও ভালো রাখা, ঘর্ষণজনিত ক্ষয় হ্রাস ও বিশেষ উদ্দেশ্য সাধনের জন্য অয়েল/লুব্রিক্যান্ট ও গ্রিজ প্রদান করার পদ্ধতিকে অয়েলিং ও গ্রিজিং বলে।

ওয়েলিং, গ্রিঞ্জিং-এ যন্ত্রপাতির তালিকা:

- া অয়েল পাম্প
- া গ্রিজ গান
- ా অয়েল ক্যান্ট
- 🗢 হ্যান্ড পাম্প।

সতৰ্কতা

- স্টিলের হ্যামার পরিহার করে কাঠের অথবা প্লাস্টিকের হ্যামার ব্যবহার করা উচিত।
- সাবধানতার সঙ্গে সরঞ্জাম নাড়াচাড়া করা উচিত।

মম্ভব্য/উপসংহার

৩. পরীক্ষার নাম : ব্যবহৃত যদ্রপাতি ব্যবহারের পর পরিষ্কারকরণ।

সংজ্ঞা :

ক) পরিষ্কারকরণ: উৎপাদনমুখী কর্মকাণ্ডে ব্যবহৃত মেশিনসমূহ ভালো রাখার তাগিদে ও এর সর্বোচ্চ ব্যবহার নিশ্চিত করতে কাজের পূর্বে ও পরে এবং নির্দিষ্ট সময় অন্তর অন্তর পরিষ্কার রাখার প্রক্রিয়াকেই পরিষ্কারকরণ বলা হয়।

ব্যবহারের পর ব্যবহৃত যন্ত্রপাতি সংরক্ষণ

রক্ষণাবেক্ষণ কাজের শেষে ব্যবহৃত যন্ত্রপাতিসমূহ এখানে -সেখানে না রেখে প্রতিটি টুলস বা যন্ত্রকে যত্ন সহকারে পরিষ্কার করে নির্দিষ্ট স্থানে সাজিয়ে রাখতে হবে। প্রয়োজন অনুযায়ী যাতে সহজেই উক্ত টুলস বা যন্ত্রপাতি হাতের কাছে পাওয়া যায়।

সতৰ্কতা

- * যে কোনো যন্ত্রপাতি বা টুলস ব্যবহারের পর এখানে -সেখানে ফেলে রাখা উচিত নয়।
- * টুলস বা যন্ত্রপাতি পরিষ্কার না করলে যন্ত্রপাতি মরিচা ধরে বা নষ্ট হয়ে যেতে পারে।

* সাবধানতার সঙ্গে প্রতিটি টুলস নির্দিষ্ট স্থানে যত্ন সহকারে রেখে দেওয়া উচিত।

মম্ভব্য

৪. পরীক্ষার নাম : রক্ষণাবেক্ষণে ব্যবহৃত যদ্রপাতি ব্যবহারে সতর্কতা

সংজ্ঞা

- ক) দুর্ঘটনা : যে ঘটনাপ্রবাহ দ্বারা কর্মের স্বাভাবিক প্রক্রিয়া ও ধারাবাহিকতা ব্যাহত হয় তাকে দুর্ঘটনা বলে। দুর্ঘটনা হলো একটি অপরিকল্পিত, অনিয়ন্ত্রিত, অপ্রত্যাশিত হঠাৎ ঘটে যাওয়া ঘটনা, যার দ্বারা জান ও মালের ক্ষয়ক্ষতি হয়।
- খ) নিরাপন্তা : কোনো শিল্প প্রতিষ্ঠান চলমান সকল কাজকর্ম যাতে কোনো প্রকার অনাকাজ্ঞ্মিত বা অবাঞ্ছিত ঘটনার উদ্ভব না হতে পারে তার জন্য পরিকল্পিতভাবে কর্মী, যন্ত্রপাতি, মেশিন ও কর্মশালায় বিভিন্ন স্বীকৃত বিধিব্যবস্থা গ্রহণ করা হয় এবং এর যথাযথ প্রয়োগের মাধ্যমে কর্মস্থলে সম্ভাব্য দুর্ঘটনা প্রতিহত করাকে নিরাপত্তা বলে।

নির্দিষ্ট যদ্রপাতির জন্য নির্দিষ্ট সতর্কতা

- 💠 প্রথমেই কাজের ধরন অনুযায়ী উপযুক্ত মানের বা উপযুক্ত মাপের যন্ত্রপাতি নির্বাচন করতে হবে।
- 💠 যেখানে ব্যবহার করবে তার সম্বন্ধে ভালো জ্ঞান বা অভিজ্ঞতা থাকতে হবে।
- ♦ আঘাত করা বা যন্ত্র দ্বারা চাপ দেওয়ার পূর্বে নির্দিষ্ট করতে হবে যে কতটুকু আঘাত বা চাপ প্রয়োগ
 করতে হবে।
- 💠 ঠিক কোনো স্থানে যন্ত্রপাতি বা টুলস ফিট করবে তা নিশ্চিত করতে হবে।
- 💠 সব কিছু ঠিকঠাক থাকলে তবে যন্ত্রপাতি ব্যবহার করা সহজ হবে।

মন্তব্য:

৫. পরীক্ষার নাম : কটন ফাইবারের পরিচিতি ও শনাক্তকরণ।

সংজ্ঞা

ক) শনাক্তকরণ : বিভিন্ন পরীক্ষার মাধ্যমে ফাইবার চেনার জন্য যে পদ্ধতি ব্যবহার করা হয় তাকে বলা হয় শনাক্তকরণ।

কটন ফাইবারের প্রাথমিক পরিচিতি

কটন ফাইবার প্রাকৃতিক ফাইবারের মধ্যে সর্বশ্রেষ্ঠ ফাইবার। ব্যবহারের দিক থেকেও সবচেয়ে জনপ্রিয়। পানি শোষণ ক্ষমতা বেশি বলে এই ফাইবারের তৈরি পোশাক খুবই স্বাস্থ্যসম্মত। এ ফাইবার কোমল ও নমনীয় গুণের অধিকারী। ইহা দ্বারা আকর্ষণীয় ও আরামদায়ক পোশাক তৈরি করা সম্ভব। কটন ফাইবারের রং সাদা বা সাদার কাছাকাছি। ফাইবারের দৈঘ্য ১০ মিমি থেকে ৬৫ মিমি পর্যন্ত হয়।

ফাইবার শনাক্তকরণের উপকরণ

ক) কাউন্টিং গ্লাস

খ) অণুবীক্ষণ যন্ত্র।

গ) মোমবাতি ও ম্যাচ

ঘ) সালফিউরিক অ্যাসিড

ঙ) হাইড্রোক্লোরিক অ্যাসিড

চ) ফেনল

ছ) টেস্ট টিউব

জ) পিপেট

শনাক্তকরণের ধাপ

- ক) ভৌত পরীক্ষা
- খ) রাসায়নিক পরীক্ষা
- গ) আনুবীক্ষণিক পরীক্ষা।

সতৰ্কতা

- নমুনা সংগ্রহ করার সময় সাবধানতা অবলম্বন করা উচিত। নমুনা সঠিক না হলে পরীক্ষার ফলাফলও সঠিক হবে না।
- অ্যাসিড জাতীয় রাসায়নিক পদার্থ ব্যবহারে অতিমাত্রায় সতর্ক থাকা উচিত। নতুবা যে কোনো রকম দুর্ঘটনা ঘটতে পারে।

মন্তব্য/উপসংহার

৬. পরীক্ষার নাম : জুট ফাইবারের পরিচিতি ও শনাক্তকরণ।

জুট ফাইবারের পরিচিতি

জুট সেলুলোজিক ফাইবার। তবে তুলার তুলনায় জুটে সেলুলোজের পরিমাণ কম। জুট ফাইবার কিছুটা শক্ত ও খসখসে। জুট ফাইবার ছালজাতীয় ফাইবার। জুট ও জুটের তৈরি দ্রব্য সহজেই পচনশীল। মাত্র পাঁচ থেকে সাত মাসের মধ্যেই ইহা মাটির সাথে মিশে যায়। ফলে পরিবেশের কোনো ক্ষতি করে না। এ জন্য জুটকে পরিবেশবন্ধু বলা হয়। জুট দেখতে সোনালি ও সাদা। কম স্থিতিস্থাপকসম্পন্ন। সহজেই রং করা যায়। কাগজ তৈরির মণ্ড হিসেবে সবুজ পাট ব্যবহার করা হয়।

ফাইবার শনাক্তকরণের উপকরণ

ক) অণুবীক্ষণ যন্ত্র।

খ) মোমবাতি ও ম্যাচ

গ) সালফিউরিক অ্যাসিড

ঘ) হাইড্রোক্লোরিক অ্যাসিড

ঙ) টেস্ট টিউব

চ) জ) পিপেট

শনাক্তকরণের ধাপ

- ক) ভৌত পরীক্ষা
- খ) রাসায়নিক পরীক্ষা
- গ) আণুবীক্ষণিক পরীক্ষা।
- **ক) ভৌত পরীক্ষা :** ভৌত পরীক্ষায় কোনো সরঞ্জামের প্রয়োজন হয় না। আর এই ভৌত পরীক্ষা নিমুলিখিতভাবে ভাগ করা যায়।
 - ১) স্পর্শ পরীক্ষা
 - ২) আগুনে পুড়ে পরীক্ষা।

১) স্পর্শ পরীক্ষা: স্পর্শ পরীক্ষা সাধারণত অভিজ্ঞতা ও দক্ষতার উপর নির্ভর করে। জুট- গরম, শ্বিতিস্থাপক ও কর্কশ।

২) আগুনে পুড়ে পরীক্ষা:

বিভিন্ন টেক্সটাইল ফাইবারের গঠনগত উপাদানের কারণে আগুনে পোড়ার পর ফাইবারের আচরণও ভিন্ন ভিন্ন পরিলক্ষিত হয়। ফলে উক্ত আচরণ শনাক্ত করে ফাইবারকে চেনা যায়।

জুট- আগুনে সহজেই পুড়ে যায়। হলুদ শিখাসহ তাড়াতাড়ি পুড়ে যায়। হালকা ধূসর ছাই পাওয়া যায়।

খ) রাসায়নিক পরীক্ষা:

সাধারণত দুইটি রাসায়নিক পরীক্ষার মাধ্যমে ফাইবার শনাক্তকরণ করা হয়।

- ১) স্টোইন টেস্ট
- ২) সলভেন্ট টেস্ট

গ) আণুবীক্ষণিক পরীক্ষা:

অণুবীক্ষণের নিচে জুট আঁশ ধরে নিম্নলিখিত অবস্থা দৃষ্টিগোচর হয়।

क्लांक्ल:

মম্বব্য :

৭. পরীক্ষার নাম : সিচ্ক ফাইবারের পরিচিতি ও শনাক্ত করণ।

সিচ্ক ফাইবারের পরিচিতি

সিল্ক প্রানিজ ফাইবার এবং একমাত্র প্রাকৃতিক ফিলামেন্ট ফাইবার। সিল্ক ফাইবার তার আকর্ষণীয় সৌন্দর্য ও আভিজাত্যের জন্য কুইন অব ফাইবার বলে পরিচিত। সিল্ক ফাইবারের স্থিতিস্থাপকতা গুণ অনেক বেশি। ইহা বেশ নমনীয়, আর্দ্রতা ধারণ ক্ষমতাও বেশ ভালো। ইহা শতকরা ১১ ভাগ আর্দ্রতা ধারণ করতে পারে। সিল্ক ফাইবারের তৈরি বস্ত্র খুব আরামদায়ক। গ্রীষ্মকালীন পোশাক হিসেবে সিল্কের বস্ত্র ব্যবহৃত হয়।

ফাইবার শনাক্তকরণের উপকরণ

ক) অণুবীক্ষণ যন্ত্র।

খ) মোমবাতি ও ম্যাচ

গ) সালফিউরিক অ্যাসিড

ঘ) হাইড্রোক্লোরিক অ্যাসিড

ঙ) ফেনল

চ) সোডিয়াম হাইড্ৰক্সাইড

ছ) টেস্ট টিউব

জ) পিপেট ইত্যাদি

শনাক্তকরণের ধাপ

- ক) ভৌত পরীক্ষা
- খ) রাসায়নিক পরীক্ষা
- গ) আণুবীক্ষণিক পরীক্ষা।

ক) ভৌত পরীক্ষা :

- ১) স্পর্শ পরীক্ষা : গরম, মসৃণ ও স্থিতিস্থাপক → সিল্ক ফাইবার
- ২) আগুনে পুড়ে পরীক্ষা : ধীরে ধীরে পুড়ে, আগুন থেকে সরালে জ্বলে না । পালক বা চুল পোড়ার হালকা গন্ধ । কালো গুটি বা দানা আকারের ছাই হয় । \rightarrow সিন্ধ ফাইবার
- ১) স্পর্শ পরীক্ষা : স্পর্শ পরীক্ষা সাধারণত অভিজ্ঞতা ও দক্ষতার উপর নির্ভর করে।

২) আগুনে পুড়ে পরীক্ষাঃ

বিভিন্ন টেক্সটাইল ফাইবারের গঠনগত উপাদানের কারণে আগুনে পোড়ার পর ফাইবারের আচরণও ভিন্ন ভিন্ন পরিলক্ষিত হয়। ফলে উক্ত আচরণ শনাক্ত করে ফাইবারকে চেনা যায়।

খ) রাসায়নিক পরীক্ষা :

সলভেন্ট টেস্ট:

- গাঢ় ও উষ্ণ হাইড্রোক্রোরিক অ্যাসিডের HCl সাথে বিক্রিয়া করলে কোনো পরিবর্তন হয় না।
- \circ ঠান্ডা ও ঘন $m H_2SO_4$ এর সাথে বিক্রিয়া করলে কোনো পরিবর্তন হয় না।
- \circ ফেনল এর সাথে বিক্রিয়া করলে কোনো পরিবর্তন হয় নাightarrow উল বা সিল্ক হতে পারে।
- \circ ৫০% NaOH এর দ্রবণে উত্তপ্ত করলে দ্রবীভূত হয়ightarrow সিল্ক ফাইবার হতে পারে।
- ঘন ঠান্ডা NaOH অ্যাসিডে বিক্রিয়া করলে সিল্ক ফাইবার দ্রবীভূত হয়।

ফলাফল: সিল্ক ফাইবার নিশ্চিত।

আনুবিক্ষণিক পরীক্ষা:

অনুবীক্ষণের নিচে সিল্ক ফাইবার পরীক্ষা করলে নিম্নের চিত্র দেখাবে।

ফলাফল : সিল্ক ফাইবার।

মম্বব্য :

৮. পরীক্ষার নাম :বিভিন্ন প্রকার সূতার কাউন্ট নির্ণয়।

সংকা:

ক) কাউন্ট : কাউন্ট হচ্ছে এমন একটি সংখ্যা যা একক দৈর্ঘ্যের ভর অথবা একক ভরের দৈর্ঘ্যকে বোঝায়।

প্রত্যক্ষ পদ্ধতি (Direct system) :

প্রত্যক্ষ পদ্ধতিতে সুতার একক দৈঘ্যের ভরকে কাউন্ট বলে। এ পদ্ধতিতে জুট, উল, সিল্ক ইত্যাদি সুতার কাউন্ট নির্ণয় করা যায়। নিম্নের সূত্রের সাহায্যে প্রত্যক্ষ পদ্ধতিতে সুতার কাউন্ট নির্ণয় করা যায়।

সুতার কাউন্ট
$$N=rac{L imes\omega}{l imes W}$$
 এখানে $N=$ সুতার কাউন্ট
$$L=$$
 নমুনা সুতার দৈঘ্য
$$\omega=$$
 ওজনের একক
$$W=$$
 নমুনা সুতার ওজন
$$I=$$
 দৈর্ঘ্যের একক

খ) পরোক্ষ পদ্ধতি (Indirect System) :

পরোক্ষ পদ্ধতিতে সুতার একক ভরের দৈঘ্যকে কাউন্ট বলে। এ পদ্ধতিতে কটন, উল, উরস্টেড, লিনেন ইত্যাদির কাউন্ট নির্ণয় করা সম্ভব।

সুতার কাউন্ট
$$N=rac{L imes\omega}{l imes W}$$
 এখানে N $=$ সুতার কাউন্ট L $=$ নমুনা সুতার দৈঘ্য ω $=$ ওজনের একক W $=$ নমুনা সুতার ওজন L $=$ দৈর্ঘ্যের একক

ক্যালকুলেশন

ক) কটন সুতার জন্য-

সুতার দৈঘ্য ১২০ গজ, সুতার ওজন ২ গ্রাম $= \frac{2}{800.9}$ পাউভ

(১ পাউভ=৪৫৩.৬ গ্রাম)

সুতরাং কাউভ
$$=N=rac{L imes\omega}{l imes W}=$$

$$N = \frac{320 \text{ গজ} \times 3 \text{ পাউড}}{880 \times 80 \times 900}$$

খ) জুট সুতার জন্য-

$$N = \frac{L \times \omega}{l \times W}$$

= ৬ পাউন্ড / স্পইন্ডেল

মন্তব্য :

৯। পরীক্ষার নাম : ব্যালেন্সের সাহায্যে সুতার কাউন্ট নির্ণয় । সুতার কাউন্ট নির্ণয়ের জন্য ব্যালেন্স :

সুতার কাউন্ট নির্ণয়ের জন্য বিভিন্ন ধরনের ব্যালেন্স রয়েছে। তবে সরাসরি নির্ণয়ের জন্য খুব অল্প সংখ্যক ব্যালেন্স রয়েছে। যেমন- নোয়েল্স ব্যালেন্স, কোয়ার্ডেন্ট ব্যালেন্স, বিজলিস ইয়ার্ন ব্যালেন্স ইত্যাদি।

নোয়েলস ব্যালেল:

নোয়েলস ব্যালেন্স হলো একটি বিশেষ ধরনের ব্যালেন্স যা দ্বারা সরাসরি সুতার কাউন্ট পাওয়া যায়। অ্যানালাইটিক্যাল ব্যালেন্স দ্বারা ওজন নিয়ে সুতার কাউন্ট বের করার জন্য গাণিতিক হিসাব-নিকাশ করতে হয়। যা অত্যন্ত ঝামেলাপূর্ণ। এ পদ্ধতিতে সুতার কাউন্ট বের করার জন্য কোনো গাণিতিক হিসাবের প্রয়োজন হয় না। সরাসরি ক্ষেল থেকে সুতার কাউন্ট জানা যায়। যা চিত্রে দেখানো হলো।

চিত্র: নোয়েলস ইয়ার্ন ব্যালেন্স

A = মেটালিক বিম E = বান্ডেল

B = মুভব্যাবল রড F = পিলার

C =ব্যালেন্স প্যান G =পয়েন্টার

D = ওভেন ফ্রেম H = ইন্ডিকেটর ক্ষেল

এ ধরনের ব্যালেন্সে একটি বিম ব্যালেন্স থাকে যার পিছনে এমন একটি আলাদা রড থাকে যার আকৃতি এ ধরনের যে এতে ৫টি দিক রয়েছে। এতে বিভিন্ন কাউন্ট রেঞ্জের জন্য কাউন্ট স্কেল খোদাই করে দাগান্ধিত থাকে। এ ক্ষেলের দুটি প্যান থাকে যার বাম দিকের প্যানে চিহ্নিত ওজন দেওয়া হয় ও বিমে নির্দিষ্ট রাইডার রাখা হয় এবং ডান দিকের প্যানে সুতার লি রাখা হয়।

ধরা যাক, একটি কটন সুতার কাউন্ট নির্ণয় করতে হবে এবং উক্ত সুতার কাউন্ট আনুমানিক ৩২ বিবেচনা করা হয়। তাহলে ক্ষেলের চিহ্নিত দিক সামনে ঘুরিয়ে আনতে হবে এবং বাম প্যানে নির্দিষ্ট ওজন স্থাপন করে বিমে রাইডার রাখতে হবে। এ অবস্থায় বিমকে ব্যালেশ্যড করার জন্য রাইডারকে বিমের উপর সামনে-পিছনে সরিয়ে অ্যাডজাস্ট করা হয়। এ অবস্থায় সরাসরি ক্ষেল হতে সুতার কাউন্টের পাঠ নেওয়া হয়। এ ধরনের কয়েকটি পাঠ নিয়ে সুতার গড় কাউন্ট বের করা হয়।

কোয়ার্ডেন্ট ব্যালেন্স

কোয়ার্ডেন্ট ব্যালেন্স এক-চতুর্থাংশ। এ যন্ত্রটিতে যে ব্যালেন্স ব্যবহৃত হয় তা বৃত্তের এক-চতুর্থাংশের ন্যায় বলে এর নাম কোয়ার্ডেন্ট ব্যালেন্স। একটি ধাতুর বা কাঠের নির্মিত পায়া এর উপর আটকানো দণ্ড -এর উপর ক্ষেল বসানো থাকে। তাতে সুতা ঝুলানোর জন্য একটি হুক এবং কাউন্ট নির্দেশের জন্য একটি পয়েন্টার ক্ষেলের সাথে বিন্দুতে এমনভাবে আটকানো থাকে যে, হুকের উপর সুতা ঝুলালে তা হুকের সাথে সাথে ক্ষেলের দিকে সরে যায়।

যে সুতার কাউন্ট নির্ণয় করতে হবে তার নির্দিষ্ট দৈঘ্য র্য়াপিরিলের সাহায্যে কেটে হুকে স্থাপন করলেই নির্দেশকটি স্কেলের মধ্যে একটি বিন্দু নির্দেশ করবে যা সরাসরি উক্ত সুতার কাউন্ট নির্দেশ করে। এভাবে কয়েকটি পাঠ নিয়ে গড় করলেই সুতার কাউন্ট পাওয়া যায়।

এ যন্ত্রটিতে সাধারণত তিনটি ক্ষেল থাকে যার সাহায্যে ৪ গজ স্লাইভার নমুনা ঝুলিয়ে এর হ্যাংক বের করা যায় যা সাধারণত ০.১ থেকে ১.০ হ্যাং পর্যন্ত পাঠ দান করে। দ্বিতীয়টি ২০ গজ রেভিং নমুনা ঝুলিয়ে এর হ্যাংক বের করা যায় যা ০.১ থেকে ৬.০ পর্যন্ত পাঠ দেয়। তৃতীয় ক্ষেলটি সুতার জন্য ব্যবহৃত হয়, যেখানে ৮৪০ গজ সুতা ঝুলিয়ে এর কাউন্ট নির্ণয় করা যায়। এ ক্ষেলে সাধারণত ৪' কাউন্ট থেকে ৮০' কাউন্ট পর্যন্ত সুতার কাউন্ট নির্ণয় করা যায়।

বিজ্ঞলিস ইয়ার্ন ব্যালেন্স

সুতার ছোট ছোট টুকরা বা কাপড় হতে সংগৃহীত সুতার কাউন্ট বের করার জন্য এ যন্ত্রটি ব্যবহার করা হয়।

একটি ধাতব বা কাঠ নির্মিত স্ট্যান্ডের উপর এক পার্শ্বে দা আকৃতির একটি স্কেলে (Scale) খাড়াভাবে এবং অন্য পাশে একটি দণ্ড বসানো থাকে। দণ্ডের C বিন্দুতে একটি বিম বসানো থাকে যার এক মাথায় সুতা ঝুলানোর হুক (Hook) এবং অন্য পার্শ্ব নির্দেশক (Side indica:or) থাকে। বিমটি দণ্ডের সাথে এমনভাবে বসানো থাকে যাতে তা এদিকে-ওদিকে দুলতে পারে।

চিত্র: বিজ্ঞালিস ইয়ার্ন ব্যালেস

পরীক্ষার শুরুতে নির্দেশকটি স্কেলের গায়ে ডেটাম লাইনের সাথে লেভেল করা হয়। এরপর যে সুতার কাউন্ট নির্ণয় করতে হবে সে ধরনের সুতার একটি আদর্শ ওজন বিমের খাঁজে খাঁজে বসিয়ে দেওয়া হয়। এতে নির্দেশকটি ডেটাম লাইনের নিচে পড়ে যায়।

যে ধরনের সুতার কাউন্ট নির্ণয় করতে হবে তা টেমপ্লেটের চিহ্নিত দিক হতে কয়েক টুকরো মেপে কেটে হুকে ঝুলিয়ে দেওয়া হয়। এভাবে যন্ত্রটির নির্দেশককে ডেটাম লাইনে আনতে যতগুলো সুতার প্রয়োজন পড়ে পরীক্ষিত সুতার কাউন্ট তত।

সতৰ্কতা

- 🕨 সুতার দৈঘ্য ও ওজন নিতে সাবধানতা অবলম্বন করতে হবে।
- 🕨 ব্যালেন্স সঠিকভাবে স্থাপন করতে হবে।
- মনোযোগের সঙ্গে পরীক্ষা করতে হবে।

১০। পরীক্ষার নাম : টুইস্ট টেস্টারের সাহায্যে সুতা টিপিআই (টুইস্ট/ইঞ্চি) নির্ণয়করণ।

সংকা

ক) টুইস্ট : সুতা তৈরির উদ্দেশ্যে প্রয়োজনীয় সংখ্যক কতগুলো ফাইবারকে একসাথে তাদের অগ্রভাগে যে মোচড় দেওয়া হয় তাকেই পাঁক পা টুইস্ট বলে।

ফাইবারগুলো সূতার অক্ষের চারপাশে ঘুরে ঘুরে অবস্থান নেয় বলে সূতা পাক বা টুইস্ট হয়। সূতার পাঁক ডান দিকে অথবা বাম দিকে হতে পারে। ডানদিকের পাঁক অর্থাৎ ঘড়ির কাঁটা যে দিকে ঘোরে সে দিকের টুইস্টকে জেড টুইস্ট ও বামদিকে পাঁক অর্থাৎ ঘড়ির কাঁটার বিপরীত দিকে টুইস্টকে এস টুইস্ট বলে।

টুইস্ট পরিমাপের যন্ত্র:

ক) অর্ডিনারি টুইস্ট টেস্টার

সুতার পাক নির্ণয় করার জন্য অর্ডিনারি টুইস্ট টেস্টার সবচেয়ে বেশি প্রচলিত। এই যন্ত্রের সাহায্যে সিঙ্গেল ও প্লাই সুতার পাক নির্ণয় করা যায়।

পরীক্ষণীয় দৈর্ঘ্য অনুযায়ী প্রথমে চলনশীল বাঁটকে নির্ধারিত স্থানে আটকাতে হবে। তারপর পরীক্ষণীয় সুতাকে ক্লাম্পে আটকানো হয়। সুতার পাক যে দিকে ঘুরবে ক্লাম্পের হাতল ও হুইলের সাহায্যে তার উল্টা দিকে ঘুরানো হয়। এই পদ্ধতি প্লাই সুতার ক্ষেত্রে দের্ঘ্য ১০ ইঞ্চি এবং সিঙ্গেল সুতার ক্ষেত্রে দৈর্ঘ্য ১ ইঞ্চি হয়। সুতার সম্পূর্ণ পাক খুলেছে কি না তা দেখার জন্য পরীক্ষণীয় সুতার মধ্য দিয়ে একটি নিডেল টেনে দিতে হয় পাক খোলার জন্য। ক্লাম্প কতবার ঘুরবে তা ডায়ালের উপর পয়েন্টারের অবস্থান থেকে জানা যায় এবং সুতার পরীক্ষণীয় দৈর্ঘ্য দিয়ে ভাগ করলে ইঞ্চি প্রতি পাক সংখ্যা পাওয়া যায়। এভাবে ১০ থেকে ২০টি নমুনা পরীক্ষা করে পাক বের করা সম্ভব।

A= ডায়াল, B= পয়েন্টার, C= হাতল, D= স্থির বাট, E= চলনশীল বাট, F ও G= ক্লাম্প, H= সুতা, J= ক্যারেজ, K= কেল, L= রেইল, M= রেজ বোর্ড, N= হুইল

চিত্র : অর্ডিনারি টুইস্ট টেস্টার

ৰ) টেনশন টুইস্ট টেস্টার

এ পদ্ধতিতে সূতার পাক খোলা এবং পুনরায় পাক দেওয়া পদ্ধতিও বলা হয়। এ ধরনের টেনশন টাইপ টুইস্ট টেস্টার পাক সংকোচন নীতিতে কাচ্চ করে। এ জাতীয় যয় কটন বা ফিলামেন্ট সূতার পাক নির্বরের জন্য ব্যবহৃত হয়। যখন কোনো ফাইবার শুচ্ছকে পাক প্রদান করা হয় তখন তা দৈর্ঘ্যে সংকৃচিত হয়ে পড়ে। ডান পাকের সূতাকে বাম দিকে ঘুরালে পাক খুলে যাবে এবং দৈর্ঘ্যে প্রসারিত হবে, যা পাক প্রদানের জন্য যতটুক্ সংকৃচিত হয়েছিল তার সমান। এখন যদি সূতাটিকে বাম দিকে ঘুরানো অব্যাহত রাখা হয় তবে সূতাটি পূর্বের তুলনায় বিপরীত দিকে পাক নিবে এবং পুনরায় সংকৃচিত হয়ে পড়বে। যতটি পাক খোলার পরে এটি প্রসারিত হয়েছিল ঠিক ততটি পাক প্রদান করলে পূর্বের মূল দৈর্ঘ্য পাওয়া যাবে। শুরু হতে শেষ পর্যন্ত যারা ঘারে। ঘুরানোর ফলে সূতার মূল দৈর্ঘ্য পাওয়া যাবে।

সভৰ্কতা :

- সুতার প্রান্ত মেশিনে ভালোভাবে আটকাতে হবে।
- সুতার পাক নিউট্রাল হয়ে থাকে আবার উল্টো দিকে থাকে যাতে পাক না হয়ে যায়, তা খেয়াল
 রাখতে হবে।

मख्याः

১১। পরীক্ষার নাম : হাতে চরকা ও চরকি প্রস্তুত করা।

ভূমিকা

হ্যান্ডল্ম অধ্যুষিত অঞ্চলে সাধারণত কাঠ, পেরেক ও স্পিন্ডেলের জন্য লোহার রড দ্বারা কাঠমিস্তিরা চরকা ও চরকি প্রস্তুত করে থাকেন। হাতের তৈরি চরকা ও চরকি বর্তমানে ব্যবহৃত হচ্ছে।

উপকরণ

- ক) কাঠ
- খ) লোহার রড
- গ) পেরেক
- ঘ) সাইকেল/রিকশার অব্যবহৃত চাকা
- ঙ) কাঠমিস্ত্রির টুলস এবং সরঞ্জামসমূহ
- চ) বাঁশ

চিত্র : চরকা

প্রস্তুতপ্রণালি

চিত্রানুষায়ী চরকা ও চরকির যাবতীয় অংশ কাঠ দ্বারা প্রস্তুত করে জ্যোড়া লাগানো হয়। শিক্ষার্থীরা বারবার অনুশীলন করে অভিজ্ঞতা অর্জন করে চরকা-চরকি প্রস্তুত করতে পারে।

সভৰ্কতা

সতর্কতার সঙ্গে কাজ করতে হবে যাতে কাঠের জোড়া লাগানো সঠিক হয়। মন্তব্য/উপসংহার

১২। পরীক্ষার নাম : আমর চরকার ব্যবহার। ভূমিকা

আম্বর চরকা সাধারণ চরকার অনুরূপ তবে আম্বর চরকা তুলনামূলক বড়। চরকার এক প্রান্তে ঝুলন মশ স্পিন্ডেল ঘুরিয়ে ঘুরিয়ে দড়ি পাকানো হয়।

পদ্ধতি

সাধারণত কয়েক ফাইবার দড়ি (কাতা) পাকানোর ক্ষেত্রে ব্যবহার করা হয়। কয়েক ফাইবার অর্থাৎ নারিকেলের ছোবড়া দ্বারা স্পিন্ডেলের সাথে ঝুলিয়ে, স্পিন্ডেলকে ঘুরিয়ে ঘুরিয়ে ছোবড়ার দড়ি (কাতা) পাকানো হয়।

ব্যবহার

কয়ের ফাইবার (নারিকেলের ছোবড়া) দ্বারা দড়ি (কাতা) পাকানো হয়, যা গ্রামাঞ্চলে প্রচুর কাজে ব্যবহৃত হয়। ফুনাদিত দড়ি দ্বারা পাপোস তৈরি করা হয়।

১৩। পরীক্ষার নাম : সুতা রিলিং করা সম্পর্কে দক্ষতা অর্জন। সংক্রা

ক) রিলিং :

নির্দিষ্ট পরিধির অর্থাৎ জানা পরিধির ঘূর্ণায়মান সুইফট -এর চারদিকে নির্দিষ্ট দৈর্ঘ্য পর্যন্ত সুতা জড়ানোর প্রক্রিয়াকে রিলিং বলে।

রিলিং -এর পদ্ধতি :

সাধারণত তিনটি পদ্ধতিতে রিলিং ব্যাপকভাবে ব্যবহৃত হয়।

- ক) সেভেন লি অথবা স্টেইট রিলিং (Seven Lea or straight reeling)।
- খ) ক্রস রিলিং (Cross reeling)।
- গ) ডায়মন্ড অথবা ক্ষেইন রিলিং (Diamond or skein reeling)।

ক) সেভেন লি অথবা স্ট্রেইট রিলিং (Seven Lea or straight reeling)

এ পদ্ধতিতে প্রতিটি ১২০ গজের ৭টি সেট দ্বারা এক সঙ্গে লি করা হয় বলে এ ধরনের রিলিং মেশিনকে সেভেন লি অথবা স্ট্রেইট রিলিং বলা হয়। এখানে প্রতিটি লি সুইফট –এর ওপর সমদূরত্বে জড়াতে হয়, যার জন্য গাইড ওয়ার প্রতিটি লি থেকে একটু একটু দূরত্ব রেখে মুভ করে থাকে। প্রতি ৮০ বার ঘূর্ণনের পর গাইড ওয়ার –এর মুভমেন্ট স্বয়ংক্রিয় বন্ধ হয়ে যায়। এ লি গুলোকে আলাদা আলাদা রাখার জন্য একটির পর অন্যটি রঙিন সুতা দ্বারা বাঁধা হয় যাতে সহজেই শনাক্ত, বিক্রি ও রঙানি করা যায়।

খ) ক্রস রিশিং (Cross Reeling)।

এ পদ্ধতিতে র্যাক আলাদা রাখা হয়। টি রোলার শ্যাফট -এর উপর একটি রিভার থাকে যা বেভেল -এর মাধ্যমে রিলিং মেশিনকে চালনা করে থাকে। যখন সুইফট ঘুরতে থাকে তখন ২" হতে ৩" এর মধ্যে একটি দ্রুত তির্যক গতি পেয়ে থাকে, যা প্রয়োজনীয় পূর্ণ প্রস্থ জুড়ে স্তর গঠন করতে থাকে। এই প্রকার রিলিং মেশিনে যে কোনো দৈর্ঘ্যর সুতা জড়ানো হয়।

গ) ডায়মন্ড অথবা ক্ষেইন রিলিং (Diamond or skein reeling)।

এটি ক্রস রিলিং -এর অনুরূপ, তবে পার্থক্য এই যে, সুতা যাতে আড়াআড়ি না হয় তার জন্য

বিশেষভাবে ক্রসিং করা হয়। এই পদ্ধতির সুবিধা হলো এই প্রকার বান্ডেলকে বাইরে অথবা ভেতরে বাঁধা হয়। ওয়েট প্রসেসিং -এর জন্য এই পদ্ধতির বান্ডেল খুবই সুবিধাজনক। এটি সাধারণত মূল্যবান সুতার জন্য ব্যবহৃত হয়।

রিলিং প্রসেসের বর্ণনা

সুতাকে রিলিং করার পর হ্যাংক সুতাকে ভাঁজ করা এবং বহন করা সহজ হয়। স্পিনিং মিলসমূহে শেষ ব্যবহারের উপর নির্ভর করে রিং ববিন থেকে কোনো অথবা রিলিং মেশিনে হ্যাংক উৎপাদন করা হয়।

রিলিং মেশিনের সুইফট মেশিনের উভয় পার্শ্বে বা এক পার্শ্বে থাকে। রিল করার সময় সুতার কোনো বা ববিনকে মেশিনের উপর অবস্থিত স্পিভরের উপর বসানো হয়। ববিনের থেকে সুতার প্রান্ত বের করে ইয়ার্ন গাইডের মধ্য দিয়ে সুইফট বা রিলের উপর জড়ানো হয়। এভাবে পাশাপাশি যতগুলো ইয়ার্ন গাইড রয়েছে প্রতিটি ইয়ার্ন গাইডের মধ্য দিয়ে সুতা এনে সুইফটে লাগানো হয়। নির্দিষ্ট পরিমাণে সুতা রিলের পৃষ্ঠে জড়ানোর পর রিলিং মেশিন চালু করা হয়। রিলিং মেশিনে প্রতি গোছায় ২ হ্যাংক পরিমাণ অর্থাৎ (৮৪০ x ২)=১৬৮০ গজ সুতা জড়ানোর পর মেশিনটি স্বয়ংক্রিয়ভাবে বন্ধ হয়ে যায়। এ ধরনের নির্দিষ্ট দৈর্ঘ্যর সুতাকে লি বা লাছা বা কাট বলে। প্রতিটি কাট বা লাছাকে মোটা সুতা দ্বারা আলাদা আলাদাভাবে বেঁধে রাখা হয় যাতে রিলের সুতাগুলো এলামেলো হয়ে না যায়। কটন স্পিনিং মিলসমূহে প্রতিটি রিলিং মেশিনে ৪০টি করে কোনো অথবা রিং ববিন স্পিন্ডেলে বসানো থাকে। প্রতিটি কোনো থেকে ১৬৮০ গজ এর লাছা তৈরি করা হয়।

জুট স্পিনিং মিলসমূহে প্রতিটি রিলিং মেশিনে ২৪টি কোনো অথবা স্পিনিং ববিন রিলিং মেশিনের স্পিন্ডেলে বসানো হয়। প্রতিটি ববিন থেকে ৩০০ গজ -এর এক একটি কাট তৈরি করা হয়। উপরোক্ত মোড়াসমূহ পরবর্তীতে একত্র করে বান্ডেলিং প্রেস মেশিনের সাহায্যে বান্ডেলে পরিণত করা হয়।

সতৰ্কতা :

- লক্ষ রাখতে হবে সুতার নট ঠিকভাবে দেওয়া ও নট ছোট হওয়া।
- সুতার নট না দিয়ে বাভেল বা নলী এর সুতা পেঁচিয়ে দেওয়া উচিত নয়।
- রিং ববিনের অল্প সূতা কেটে ফেলে দেওয়া উচিত নয়।

মম্ভব্য :

১৪। পরীক্ষার নাম: বিভিন্ন প্রকার নলীর সাথে পরিচিতি

সংজ्ঞा :

(ক) নলী (Pirn)

কাপড় তৈরির জন্য টানা ও পড়েন সুতা ব্যবহৃত হয়। পড়েন সুতা প্যাকেজ আকারে জড়িয়ে মাকুতে স্থাপন করে শেডের মধ্যে চালনা করা হয়। মাকুতে স্থাপন করার জন্য চরকা বা পার্ন ওয়াইন্ডিং মেশিনের মাধ্যমে পড়েন সুতার যে প্যাকেজ তৈরি করা হয় তাই নলী বা পার্ন।

(খ) কপ (Cop)

জুট ইন্ডাস্ট্রিতে সাটেল এর মধ্যে যে প্যাকেজ স্থাপন করা হয় তাকে কপ বলে । তবে কটন নলীর মতো জুটের নলীতে কোনো কাঠের খালি নলী অর্থাৎ খালি পার্নের ব্যবহার প্রয়োজন নেই। কপ এমনভাবে তৈরি করা হয় যাতে কোনো কাঠের দণ্ডের প্রয়োজন হয় না।

চিত্র: ববিন ও নলী

সতৰ্কতা

- ০ নলীতে যাতে সুতা ধারাবাহিকভাবে পেঁচানো হয় তার দিকে লক্ষ রাখতে হয়।
- ০ যে কাঠিতে পার্ন তৈরি করা হবে তা যেন ক্রটিমুক্ত হয়।

মন্তব্য:

১৫। পরীক্ষার নাম : হ্যাংক থেকে নলী প্রস্তুতকরণ।

সংক্ৰা

হ্যাংক

রিলিং মেশিনের সুইফট এর পরিধির সমান অর্থাৎ ১.৫ গজ দৈর্ঘ্যের পরিধির ৫৬০ বার ঘূর্ণনের ফলে ৮৪০ গজ দৈর্ঘ্যের এক একটি হ্যাংক তৈরি হয়ে থাকে। হ্যাংক থেকে চরকা-চরকির মাধ্যমে হাতের সাহায্যে নলী বা পার্ন তৈরি করা হয়।

হ্যাংক থেকে নলী প্ৰস্তুত

সাধারণত হ্যান্ডলুম ইন্ডাস্ট্রিতে চরকার সাহায্যে হ্যাংক থেকে নলী প্রস্তুত করা হয়। চরকার বড় পরিধির খাঁচায় হ্যাংক লাগানো হয় এবং স্পিন্ডেলে খালি নলী লাগানো হয়। অতঃপর হ্যাংক থেকে সুতা বের করে নলীতে হালকাভাবে এক অথবা দুই পাঁচাচ প্যাঁচিয়ে হ্যান্ডেল ঘুরিয়ে আন্তে আন্তে নলীর এক প্রান্ত থেকে অন্য প্রান্ত পর্যন্ত জড়ানো হয়।

সতৰ্কতা

- ০ চরকিতে যাতে সুতা পাঁ্যাচ না লাগে সে দিকে খেয়াল রাখতে হবে
- ০ প্যাচানোর গতি সমান রাখতে হবে।
- ০ নলীতে যাতে ধারাবাহিকভাবে সূতা প্যাঁচানো হয় তার দিকে লক্ষ রাখতে হবে।

মম্ভব্য–

১৬। পরীক্ষার নাম : কাপড়ের ডিজাইন অনুযায়ী সুতার হিসাব নির্ণয়করণ ও ক্রিলে কোনো/চিজ স্থাপনকরণ।

সংক্রা

টেক্সটাইল ডিজাইন

টেক্সটাইল সংক্রান্ত বুনন যা কাগজে অথবা কাপড়ে প্রতিফলিত করণকেই টেক্সটাইল ডিজাইন বলা হয়।

সুতার হিসাব নির্ণয় -

মনে করা যাক ২২" বহরের ১০০ গজ টানা প্রস্তুত করতে হবে। যদি ইঞ্চি প্রতি টানা সুতার সংখ্যা ৪০ ধরা হয়। তবে নিম্নের সূত্রের সাহায্যে মোট কত হ্যাংক সুতার প্রয়োজন হবে তা বের করা সম্ভব। রিড কাউন্ট/ শানা নম্বর ৪০ প্রয়োজনীয় হ্যাংক = টানার দৈর্ঘ্য imes বহরimesশানা নম্বর

500

[৮৪০ গজ = ১ হ্যাংক। কিন্তু ৪০ গজ সুতা অপচয় হিসেবে ধরা হয়েছে]

= \$00×22×80

500

= **১১**০ হ্যাংক।

মোট সুতার প্রয়োজন হবে = ১১০ হ্যাংক।

১৭। পরীক্ষার নাম: তাঁতে বিম তোলা।

সংকা

(ক) তাঁত

যে যন্ত্রে দুই বা ততোধিক সারির কতগুলো সূতা লম্বালম্বি ও আড়াআড়িভাবে স্থাপন করে বুনন কার্য সম্পন্ন করা হয় তাকে তাঁত বা লুম বলে।

(খ) বিম

কাপড় তৈরি করার প্রয়োজনে কাপড়ের বহর অনুযায়ী লম্খালম্বিভাবে টানা সুতা সাজানোর প্রয়োজনে যে বস্তু ব্যবহার করা হয় সেটাই বিম।

তাঁতে বিম তোলার পদ্ধতি

উইভার্স বিমকে ড্রইং ইন ও ডেন্টিং -এর পর লুম -এর পিছনে নির্দিষ্ট ব্রাকেটের উপর বসানো হয়। বিম তাঁতে তোলার জন্য ক্যারিয়ার অথবা লিফটার ব্যবহার করা হয়। তবে হ্যান্ড লুমে বিম তোলার জন্য দুইজন শ্রমিক হাত দ্বারা তুলে তাঁতের পিছনে ব্রাকেটের উপরে বসিয়ে দেয়। হ্যান্ড লুমের জন্য যে বিম তৈরি করা হয় তা ওজনে হালকা করে তাঁতে টানা সুতার দৈর্ঘ্য কম থাকে।

মম্ভব্য

১৮। পরীক্ষার নাম: ক্রিলে সুতা সাজানো।

সংঙ্গা

(ক) ত্রিল

ওয়ার্পিং-এ বিমে সুতা জড়ানোর জন্য একসঙ্গে অনেক সুতার প্রয়োজন হয়। এই সুতা ড্রামে সাজানোর

পূর্বে খাঁচার মতো করে তৈরি করে ফ্রেমে শলা বা কাঠির সাহায্যে অনেকগুলো সুতাপূর্ণ ফ্লাঞ্জ ববিন একসঙ্গে সাজানো থাকে। এই ফ্রেমটিকে ক্রিল বলে।

(খ) ক্রিল

ববিনগুলো আড়াআড়ি ও লম্বালম্বি স্তরে স্তরে ফ্রেমে সাজানো হয়। ক্রিলে সুতা বা ববিন সাজানোর জন্য একটি নির্দিষ্ট নিয়ম বা পদ্ধতি মেনে চলা হয়। এই পদ্ধতিকেই ক্রিল বলে।

(গ) ফ্লাঞ্জ ববিন

পাথলি ড্রামে টানা সাজানোর পূর্বে টানা সুতাকে ক্রিলে সাজানোর সুবিধার্থে কাঠের তৈরি যে দণ্ডে সুতা জড়ানো হয় উক্ত দণ্ডটিকে ববিন বলে।

পদ্ধতি

উইভার্স বিম তৈরির জন্য টানা সুতার হিসাব অনুযায়ী টানা সুতার দৈর্ঘ্যের সাথে সামঞ্জস্য রেখে ফ্লাঞ্জ ববিনে সুতা জড়ানো হয়। ক্রিলে ববিন সাজানোর পূর্বে টানা সংখ্যা হিসাব করে সে অনুযায়ী অর্থাৎ টানায় মোট সুতা ৩০০টি হলে ১৫টি ববিন ৬ বার বাঁধন ঠিক করে ড্রামে সুতা স্থানান্তর করতে হবে। কাজেই ক্রিলে সুতা পূর্ব ববিন ফ্রেমের খাঁচায় শলা বা কাঠিতে উপর- নিচ পাশাপাশি সাজাতে হবে।

১৯। পরীক্ষার নাম : ক্রিল থেকে ড্রামে সূতা স্থানান্তর।

চিত্র : ক্রিল থেকে ড্রামে সুতা স্থানান্তর

ড্রামে সুতা নেওয়া

দ্রামের পিছনে একটি ক্রিলের মধ্যে সুতাপূর্ণ ববিনগুলো সাজানো থাকে। শানার ইঞ্চিপ্রতি কতটুকু সুতার প্রয়োজন ততটি ববিন নিয়ে কাজ করতে হবে। ববিন থেকে প্রতিটি সুতা প্রান্ত সেলেটের কাঠির চোখে ১টি ও ২টি কাঠির ফাঁকে ১টি এই নিয়মে টেনে একত্রে গিঁট দিয়ে পেরেকের সাথে আটকিয়ে ড্রামটি ঘূর্ণন গুনে গুনে ঘরাতে হবে। লক্ষ রাখতে হবে যেন প্রতি ২টি পেরেকের মধ্যস্থলে ইঞ্চিপ্রতি টানার দৈর্ঘ্যের সমতা ঠিক থাকে। পরিমিত পরিমাণ টানা নেওয়ার পর সেলেটের সাহায্যে সুতায় জো তুলতে হবে।

সর্তকতা

- ০ লক্ষ রাখতে হবে যাতে প্রতি সেকশনে সুতার সংখ্যা সঠিক।
- ০ ড্রামে ঘুরানোর সময় ঘূর্ণনের সংখ্যা সঠিক রাখতে হবে। নতুবা অপচয়ের হার বেড়ে যাবে।

১০৬

২০। পরীক্ষার নাম : মেশিন থেকে বিম নামানো। ভূমিকা

ওয়ার্পিং মেশিনে উইভার্স বিম তৈরি হওয়ার পর সতর্কতার সঙ্গে বিম ক্যারিয়ার অথবা দুইজন শ্রমিক দুই পার্শ্ব থেকে হাত দ্বারা তুলে বিম নামিয়ে আনেন। তবে উচ্চ গতিসম্পন্ন ওয়ার্পিং মেশিনের বিম প্রস্তুত হওয়ার পর বিমের দুই পার্শ্বের সাপোর্ট ব্রাকেট খুলে বিম ক্যারিয়ার অথবা লিফটার ওপরে সুতাপূর্ণ উঠানো হয় এবং বিম ক্যারিয়ারের মাধ্যমে উইভার্স বিমকে বিমের নির্দিষ্ট স্থানে সাজিয়ে রাখা হয়। কখনও কখনও ওভারহেড ক্রেনের সাহায্যে ভারী উইভার্স বিম স্থানান্তর করা হয়। ওয়ার্পিং মেশিন হতে বিম নামানোর পদ্ধতি

উচ্চগতি সম্পন্ন সাইজিং মেশিনে বিম তৈরি হওয়ার পর উক্ত সুতাপূর্ণ উইভার্স বিমের গঠন ও ওজন অনুসারে ১৭২ কেজি থেকে ১ টন বা তদাপেক্ষা বেশি ওজনের হয়ে থাকে। এ ক্ষেত্রে স্বয়ংক্রিয়ভাবে ৪টি সুইচের মাধ্যমে বিম নামানো ও খালি বিম ওঠানোর কার্য সমাধা করা হয়ে থাকে। এ ক্ষেত্রে মাত্র ২ মিনিট সময়ের প্রয়োজন হয়।

সতৰ্কতা

- ০ বিম তৈরির সময় সতর্ক থাকতে হবে যাতে বিমের ব্যাস ফ্লাঞ্জের ব্যাসের তুলনায় বেশি না হয়।
- ০ বিম তৈরির সময় ফ্লাঞ্জের দূরত্ব সঠিক রাখতে হবে।
- ০ বিম নামানোর সময় সাবধানতা অবলম্বন করতে হবে নতুবা দুর্ঘটনা ঘটার আশঙ্কা থাকে।

২১। পরীক্ষার নাম : বিভিন্ন প্রকার সাইজিং অ্যাটারিয়ালস সমঙ্কে পরিচিতি।

সংসা

যে পদ্ধতিতে টানা সুতাকে বিভিন্ন প্রকার মাড়ের উপকরণ যুক্ত করে সুতার উপর বিদ্যমান বাড়তি আঁশগুলোকে সুতার পৃষ্ঠে মিশিয়ে দিয়ে সুতাকে চকচকে, ওজন বৃদ্ধি, মসৃণ ও শক্তিশালী করা হয় সে পদ্ধতিকে সাইজিং বলে।

বিভিন্ন প্রকার সাইজিং অ্যাটারিয়ালস

শেতসারযুক্ত উপাদান (Adhesive substance)

একে মাড়/সাইজের মূল উপাদানও বলা হয়। এ উপাদানের জন্য মাড় আঠালো হয়। এ শ্বেতসারযুক্ত উপাদানের সাথে পানি মিশ্রিত করে তাপ প্রয়োগ করলে আঠালো পদার্থের পেস্ট (Pest) এ পরিণত হয়।

উদাহরণ- মেইজ স্টার্চ (Maise starch) তেঁতুলের বিচির পাউডার (Tamarind seed powder), টপিওকা স্টার্চ (Topioca starch), ময়দা (Flour), সাঞ্চ স্টার্চ (Sagoo starch), আলুর প্যালো (Potato starch), রাইচ স্টার্চ (Rice starch) ইত্যাদি প্রাকৃতিক স্টার্চ।

আবার সিএমসি (Carboxy Methyl Cellulose), পিভিএ (Polyvenyle Alcohol), পলিঅ্যাক্রাইলিক অ্যাসিড ইত্যাদি কৃত্রিম স্টার্চ বা অ্যাডহেসিভ। উইভিং-১

সফেনিং এজেন্টস (Softening Agents)

সফেনিং এজেন্টকে কোমল রাখার উপাদানও বলা হয়। টানা সুতা কখনও কখনও শক্ত, অমসৃণ ও ভঙ্গুর হয়। এছাড়া ও সুতার খসখসে ভাব ও নমনীয়তা দূর করার জন্য সফেনিং এজেন্ট ব্যবহার করা হয়।

উদাহরণ- মাটন ট্যালো (Mutton tallow), টেলটেক্স (Teltex), নারিকেল তেল (Coconut oil), ক্যাস্টর অয়েল, তিলের তেল, তালের তেল, তুলার বীজের তেল, জলপাই এর তেল, রেড়ির তেল, প্যারাফিন ওয়াক্স (Parafin wax), চায়না মোম (China wax), সুগার ক্যান ওয়াক্স (Sugarcane wax), ওয়াক্স (Wax), সফট সোপ (Soft soap) ইত্যাদি।

হাইগ্রোসকোপিক এজেন্টস (Hygroscopic Agents)

সুতাকে আর্দ্র রাখার জন্য হাইগ্রোসকোপিক এজেন্ট ব্যবহার করা হয়। আর্দ্র রাখার উপাদানসমূহ বাতাস হতে জলীয় বাষ্প গ্রহণ করে থাকে। এ এজেন্টস ব্যবহার করার ফলে টানা সুতা অপেক্ষাকৃত বেশি পরিমাণ আর্দ্রতা শোষণ করে সুতাকে নমনীয় রাখতে সাহায্য করে।

উদাহরণ- ম্যাগনেসিয়াম ক্লোরাইড ($MgCl_2$), ক্যালসিয়াম ক্লোরাইড ($CaCl_2$), গ্লিসারিন, জিঙ্ক ক্লোরাইড ($ZnCl_2$), ডাই ইথিলিন গ্লাইকল, সরবিটল ইত্যাদি।

অ্যান্টিসেপটিক এক্ষেন্টস (Anticeptics)

একে বাংলায় প্রতিষেধক উপাদান বলা হয়। মিলডিউ অর্থাৎ ছত্রাকের আক্রমণ থেকে রক্ষার জন্য প্রতিষেধক উপাদান ব্যবহার করা হয়। সাধারণত সমস্ত স্টার্চই ছত্রাক দ্বারা আক্রান্ত হওয়ার আশঙ্ক্ষা থাকে। কাজেই কার্বন সুতা সাইজিং করার প্রয়োজনে স্টার্চ -এর পাশাপাশি অ্যান্টিসেপটিকস প্রয়োগ করার প্রয়োজন হয়।

উদাহরণ- জিঙ্ক ক্লোরাইড ($ZnCl_2$), কপার সালফেট ($CuSO_4$), সেলিসাইটিক অ্যাসিড ($C_6H_4(OH)COOH$), সোডিয়াম সিলকো ক্লোরাইড, বিটা নেপথলস, কার্বোলিক অ্যাসিড ইত্যাদি।

নিউট্রালাইজিং এজেন্টস (Neutralizing Agents)

মাড় দ্রবণ প্রস্তুত করার সময় দ্রবণের (P^H) মাত্রা পরিবর্তিত হওয়ার সম্ভাবনা থাকে। কাজেই দ্রবণকে নিউট্রাল করার জন্য নিউট্রালাইজিং এজেন্টস যোগ করা হয়। যতক্ষণ পর্যন্ত দ্রবনের (P^H) মাত্রা ৬.৮ না হয় ততক্ষণ পর্যন্ত অল্প অল্প করে এ এজেন্টস ব্যবহার করা হয়।

উদাহরণ- সোডা অ্যাশ।

অ্যান্টিকোমিং এজেন্টস (Antifoaming Agents)

মাড় দ্রবণ অথবা মাড় পেস্ট প্রস্তুত করার সময় দ্রবণে ফেনা হবার সম্ভাবনা দেখা যায়। যার ফলে উক্ত দ্রবণ টানা সুতায় প্রয়োগ করতে অসুবিধার সৃষ্টি হয়। এ জন্য মাড় দ্রবণে অ্যান্টিফোমিং এজেন্টস ব্যবহার করা হয়। যা মাড়, পেস্ট বা দ্রবণে ফেনা উৎপন্ন হতে বাধা প্রদান করে। উদাহরণ-অ্যাসিটিক অ্যাসিড (CH_3COOH), কেরোসিন, টার্পেন্টাইন, পাইন অয়েল, অ্যামাইল, অ্যালকোহল, ট্রাইউ বিউটাইল ফসফেট, সিলিকন ডিফোমার ইত্যাদি।

টিনটিং বা র**ঞ্জ**ক উপাদান (Tinting of Colouring Agents)

টানা সুতা ও উৎপাদিত কাপড়ের প্রাকৃতিক রংকে নিউট্রালাইজড করার জন্য এ এজেন্ট ব্যবহৃত হয়। সাধারণত যে সমস্ত কাপড় গ্রে অবস্থায় বিক্রি হবে উক্ত কাপড় প্রস্তুত করতে টানা সুতায় মাড় দেওয়ার সময় বু এজেন্ট প্রয়োগ করা হয়ে থাকে।

উদাহরণ- টিনাপল (Tinapol) আলট্রা মেরিন রু, অ্যাসিড ডাই ও অপটিক্যাল ব্রাইটেনিং এজেন্ট ইত্যাদি।

ওয়েটিং এজেন্টস (Weighting Agents)

সুতা ও উৎপাদিত কাপড়ের ওজন বৃদ্ধি করার জন্য যে পদার্থ ব্যবহার করা হয় সেগুলোই ওয়েটিং এজেন্ট। শুধু গ্রে অবস্থায় বিক্রি করার জন্যই এ ধরনের এজেন্ট ব্যবহার করা হয়ে থাকে।

উদাহরণ- চায়না ক্লে (China clay), চক বা খড়িমাটি (CaCO $_3$), ফ্রেঞ্চ চক (French Chalk), ম্যাগনেশিয়াম সালফেট (MgSO $_4$), সোডিয়াম সালফেট (Na $_2$ SO $_4$), ম্যানেশিয়াম ক্লোরাইড (MgCl $_2$) ইত্যাদি।

সতর্কতা

- ০ সাইজিং -এর প্রতিটি উপাদানের গুণাগুণ ভালোভাবে জানতে হবে।
- ০ কোনো উপাদান কী কাজ করে সে বিষয়ে জ্ঞান থাকা ভালো।
- ০। পরবর্তী সাইজ নির্বাচনের সময় সতর্ক থাকতে হবে।

মম্বব্য

২২। পরীক্ষার নাম: সাইজিং -এর রেসিপি নির্বাচন।

সংসা

রেসিপি

সাইজিং করার জন্য সাইজের কোনো উপাদান নেওয়া হবে এবং উপাদানের কোনোটি কভটুকু পরিমাণ নেওয়া হবে এটাই সাইজিং -এর রেসিপি।

সাইজিং -এর রেসিপি নির্বাচনের বিবেচ্য বিষয়সমূহ

- ০ যে সুতাকে সাইজিং করা হবে তার ধরন
- ০ উপকরণের মূল্য
- ০ ভিসকোসিটি অর্থাৎ আঠালোভাবে স্থায়িত্ব
- ০ আঠালো জাতীয় পদার্থ
- ০ ডিসাইজিং -এর সময় সহজেই অপসারণের যোগ্যতা

উইভিং-১

একটি আদর্শ মাডের রেসিপি

মোট ১০০ গ্যালন পানির মধ্যে নিমুলিখিত পরিমাণ সাইজিং উপাদান মিশ্রিত করা হয়।

ক্রমিক নং	উপাদান	পরিমাণ	শতকরা হার
٥	মেইজ স্টার্চ	১২০ পাঃ	১২%
২	মাটন ট্যালো	৬ পাঃ	০.৬%
9	কপার সালফেট	০.৫ পাঃ	0.06%
8	গ্লিসারিন	১ পাঃ	0.5%
œ	সোডা অ্যাশ লিকারের (P ^H -6.8) পর্যন্ত রাখার জন্য যতটুকু প্রয়োজন		
৬	পানি ১০০ গ্যালন দ্রবণ প্রস্তুতের জন্য যতটুকু প্রয়োজন		

উপরোক্ত মাড় দ্রবণ বা পেস্ট সাধারণত ১০০ ভাগ কটন সুতার জন্য প্রয়োগ করা হয়ে থাকে। সতর্কতা

- ০ সাইজের নির্বাচনে সঠিক উপাদান বাছাই করা।
- ০ আঠালো উপাদান ও প্রতিষেধক উপাদান যেন সঠিক হয়।

উপসংহার/মন্তব্য

২৩। পরীক্ষার নাম : হ্যাংক সুতায় মাড় করার প্রস্তুতপ্রণালি। ভূমিকা

হ্যান্ডলুম ফ্যাক্টরি বা কুটির শিল্পের তাঁতিদের মধ্যে হ্যান্ড সাইজিং প্রচলিত। এ ক্ষেত্রে মাড়ের শ্বেতসার হিসেবে খৈ, চালের গুঁড়া এবং ময়দাই সাধারণত ব্যবহৃত হয়ে থাকে। তবে খুব অল্প সুতার ক্ষেত্রে ভাতের মাড়ও ব্যবহার করা হয়।

উপাদান

মিহি সুতার জন্য খৈ -এর মাড়ই উৎকৃষ্ট।

মোটা বা মাঝারি সুতার জন্য চালের মাড় উৎকৃষ্ট।

সিদ্ধ চালের চেয়ে আতপ চাল হলে ভালো হয়। কখনও কখনও তাঁতিরা মাড়ের সাথে একটু চুন, তুঁতে এক/আধ ফোঁটা কার্বলিক অ্যাসিড, ফরমালডিহাইড অথবা জিংক ফ্লোরাইড ব্যবহার করে।

উপরোক্ত সাইঞ্জিং উপাদানের কাজ

খৈ বা চালের গুঁড়া আঠালো পদার্থের জন্য চুন ব্যবহার করার ফলে মাড় আরও একটু আঠালো হয় এবং ফাঁকে নষ্ট করে না। তুঁতে ব্যবহার করার কারণে টানা সুতা পোকায় কাটে না। কার্বলিক অ্যাসিড ও জিংক ক্লোরাইড ব্যবহার করায় ইঁদুরে কাটে না ও টানায় মিলডিউ ধরে না।

প্রস্তুতপ্রণালি

পরিমিত পরিমাণ খৈ একটি পাত্রে ৫ মিনিট ভিজিয়ে রাখবে। পরে ঐ পাত্র থেকে খৈ উঠিয়ে অন্য পাত্রে ভালো করে চটকাতে হবে। চটকানো শেষ হলে কাপড় দিয়ে ছেঁকে নিয়ে মণ্ড বের করবে। মণ্ডের সাথে অন্য কেমিক্যাল মিশিয়ে যখন বেশ আঠালো বোধ হবে তখন টানা সুতায় প্রয়োগ করতে হবে।

সম্ভৰ্কতা

- ০ মাড় প্রস্তুত করায় সতর্ক থাকতে হবে
- ০ মাড় বাতে খন আঠালো হয় ভার শ্রন্তি বত্নবাদ হতে হবে।
- ০ প্ৰস্তুত্ত মাড় বেশিদিন ফেলে রাখা যাবে না।

ক্ষেক্টি বৰুপাতিৰ চিত্ৰ

আশানাইটিক্যান ব্যালেন

स्रिक्यायिणित

হাইলোমিটার

মুক্তা কেবল

ফ্লাজড ৰবিন

विम

মাকু বা সাটেল

নবম শ্রেণি প্রশ্নমালা

অতি সংক্ষিপ্ত প্রশ্ন

- ১. টেক্সটাইল ফাইবার বলতে কী বোঝায় ?
- ২. প্রাকৃতিক ফাইবারের সংঙ্গা দাও।
- ৩. ফাইবারের শক্তির একক কী?
- 8. 'শক্তি প্রয়োগ করলে ফাইবার প্রসারিত হয় এবং শক্তিমুক্ত করলে ফাইবার আবার পূর্বের অবস্থানে ফিরে আসে' ফাইবারের কোনো গুণাগুণের ফলে এরূপ অবস্থার সৃষ্টি হয়?
- ৫. ঘনত্বের একক কী?
- ৬. উদ্ভিজ্জ প্রাকৃতিক ফাইবারের কয়েকটি উদাহরণ দাও।
- ৭. গ্লাস ও অ্যাসবেস্টস কোনো ধরনের ফাইবার?
- ৮. ১০০ ভাগ কৃত্রিম ফাইবারের ৩টি উদাহরণ দাও।
- ৯. পৃথিবীতে প্রচুর পরিমাণে ব্যবহৃত হচ্ছে এ রকম ১টি বীজ ফাইবারের নাম লেখ।
- ১০. কোনো ফাইবারের প্রাকৃতিক ফিলামেন্ট থাকে।
- ১১. ফাইবারের উৎস কী?
- ১২. কটন ফাইবারের আর্দ্রতা ধারণ ক্ষমতা কত?
- ১৩. তুলা আঁশের গ্রেডিং কিসের উপর নির্ভর করে।
- ১৪. ট্রাসের পরিমাণ নির্ণয়ের জন্য কোনো যন্ত্রের সাহায্য নেওয়া হয়।
- ১৫. কটন উৎপাদনকারী কয়েকটি দেশের নাম লেখ।
- ১৬. যে কোনো ৫টি তুলার দোষক্রটির নাম লেখ।
- ১৭. কটন ফাইবারের দৈর্ঘ্য কত?
- ১৮, পাটের রাসায়নিক সংকেত লেখ?
- ১৯. পাটের বোটানিক্যাল নাম লেখ?
- ২০. পাটের আর্দ্রতা ধারণ ক্ষমতা কত?
- ২২. সিল্ক ফাইবারের সেরিছিনের পরিমাণ কত?
- ২৩. সফট সিল্ক কী?
- ২৪. সিঙ্কের আর্দ্রতা ধারণ ক্ষমতা কত?
- ২৫. কোকুন কী?
- ২৬. সেরিকালচার বলতে কী বোঝায়?
- ২৭. সিল্ক উৎপাদনকারী কয়েকটি দেশের নাম লেখ।
- ২৮. সুতার সংঙ্গা দাও।
- ২৯. সূতার কাউন্ট নির্ণয়ের কয়টি পদ্ধতি ও কী কী?
- ৩০. পরোক্ষ পদ্ধতিতে কোনো মান স্থির থাকে।
- প্রত্যক্ষ পদ্ধতিতে সুতার কাউন্ট নির্ণয়ের সূত্রটি লেখ।
- ৩২. কটন সুতার প্রতিটি হ্যাংক দৈর্ঘ্য কত?
- ৩৩. ফিলামেন্ট সুতা বলতে কী বোঝায়?

উইভিং-১

- ৩৪. মাল্টি ফিলামেন্ট ইয়ার্ন কী?
- ৩৫. স্পার্ন ইয়ার্ন কাকে বলে?
- ৩৬. ইংলিশ কটন কাউন্ট-এর সংঙ্গা দাও।
- ৩৭. 'Ne' -এর ব্যাখ্যা দাও।
- ৩৮. যে কোনো ৫টি সুতার ক্রটির নাম লেখ।
- ৩৯. ওয়াইন্ডিং বলতে কী বোঝায়?
- ৪০. কোনো ওয়াইন্ডিং -এর সজ্ঞা দাও।
- ৪১. পার্ন কোথায় ব্যবহার করা হয় এবং কেন?
- ৪২. কয়েকটি ইয়ার্ন প্যাকেজের নাম লেখ।
- ৪৩. ইয়ার্ন প্যাকেজের যে কোনো ৫টি ত্রুটির নাম লেখ।
- 88, ঢালা প্রকরণের সজ্ঞা দাও।
- ৪৫. ক্রিলের সজ্ঞা দাও।
- ৪৬. মিল ওয়াশিং কী?
- ৪৭. সাইজ ও সাইজিং-এর সজ্ঞা দাও।
- ৪৮. কটন ইন্ডাস্ট্রিতে সাধারণত কোনো ধরনের অ্যাডহেসিভ ব্যবহার করা হয় নাম লেখ।
- ৪৯. কয়েকটি সকেনিং এজেন্টের উদাহরণ দাও।
- ৫০. জুট ইন্ডাস্ট্রিতে আঠালো জাতীয় পদার্থ হিসেবে কী ব্যবহার করা হয় লেখ।
- ৫১. মাড় দ্রবণের PH কত রাখা হয়।
- ৫২. মাড়ে ব্যবহৃত প্রতিষেধক উপাদানগুলোর নাম লেখ।

সংক্ৰিপ্ত প্ৰশ্ন

- ১. প্রাকৃতিকভাবে প্রাপ্ত সকল ফাইবারই টেক্সটাইল ফাইবার নয় কেন?
- ২. ক্রিম ফাইবারের একটি প্রাকৃতিক গুণ। এই ক্রিম থাকার কারণে টেক্সটাইল ফাইবার কী কী ভূমিকা রাখতে পারে।
- ৩. প্রাকৃতিক ফাইবারের গুরুত্বপূর্ণ ৫টি গুণাবলির নাম লেখ।
- ৪. কৃত্রিম ফাইবার বলতে কী বোঝায়? -এর শ্রেণিবিভাগ কর?
- ৫. প্রাকৃতিক ফাইবার ও মানুষের তৈরি ফাইবারের পার্থক্য লেখ।
- ৬. প্রাকৃতিক ফাইবারের ব্যবহার লেখ।
- ৭. তুলার বোটানিক্যাল নামসহ শ্রেণিবিভাগ কর।
- ৮. আমেরিকান তুলার গ্রেডিং দেখাও।
- **৯. কটনের ভৌত গুণাবলি লেখ**।
- ১০. তুলা আঁশের রাসায়নিক গুণাবলি লেখ।
- ১১. তুলার ব্যবহার লেখ।
- ১২. পাটকে কেন পরিবেশের বন্ধু বলা হয়।
- ১৩. তোষা পাটের গ্রেডিং কর।
- ১৪, পাটের উপাদান লেখ।
- ১৫. পাটের ব্যবহার লেখ।
- ১৬. সিল্ক-এর উপাদানসমূহের নাম শতকরা হারসহ লেখ।
- ১৭. সিল্ক-এর ভৌত গুণাবলি লেখ।

১**১**৪

- ১৮. সিল্ক-এর রাসায়নিক গুণাবলি লেখ।
- ১৯. সিল্ক-এর ব্যবহার লেখ।
- ২০. প্রত্যক্ষ পদ্ধতিতে কাউন্টের সজ্ঞা সূত্রসহ লেখ।
- ২১. পরোক্ষ পদ্ধতিতে কাউন্টের সজ্ঞা সূত্রসহ লেখ।
- ২২. যে কোনো ৩টি সুতার ক্রটি, কারণ ও প্রতিকারসহ লেখ।
- ২৩. কাপড় বুননের ফ্লো চার্ট লেখ।
- ২৪. ওয়াইন্ডিং -এর শ্রেণিবিভাগ দেখাও।
- ২৫. কোনো ও চিজ ওয়াইল্ডিং -এর মধ্যে পার্থক্য লেখ।
- ২৬. টানা প্রকরণের উদ্দেশ্য **লে**খ।
- ২৭. ওয়ার্পিং -এর শ্রেণি বিভাগ কর।
- ২৮. সেকশনাল ওয়ার্পিং ও মিল ওয়ার্পিং -এর মধ্যে পার্থক্য লেখ।
- ২৯. সাইজিং -এর উদ্দেশ্যাবলি কী?
- ৩০. সাইজিং -এর উপাদানসমূহ কী কী?
- ৩১. সাইজিং -এর সময় কী কী ধরনের সতর্কতামূলক ব্যবস্থা নেওয়া হয় লেখ।
- ৩২. যে কোনো একটি আদর্শ মাড়ের রেসিপি লেখ।
- ৩৩, সাইজিং -এর উপাদান নির্বাচন কী কী বিষয়ের উপর নির্ভর করে।

রচনামূলক প্রশ্ন

- ১. টেক্সটাইল ফাইবারের গুণাবলি বিস্তারিত লেখ।
- ২. প্রাকৃতিক ফাইবারের গুণাবলি বিস্তারিত লেখ।
- ৩. টেক্সটাইল ফাইবারের বৈশিষ্ট্যসমূহ বিস্তারিত লেখ।
- 8. উৎস হিসেবে টেক্সটাইল ফাইবারের শ্রেণিবিভাগ দেখাও।
- প্রাকৃতিক ফাইবার ও কৃত্রিম ফাইবারের পার্থক্য লেখ।
- ৬. কটন ফাইবারের গ্রেডিং বিস্তারিত বর্ণনা কর।
- ৭. তুলার দোষক্রটি বিস্তারিত লেখ।
- ৮. পাটের গ্রেডিং-এর বর্ণনা দাও।
- ৯. জুট ফাইবারের কী কী দোষক্রটি পাওয়া যায় আলোচনা কর।
- ১০. রেশম পোকা পালন বিস্তারিত লেখ।
- ১১. বাংলাদেশে রেশম চাষ পদ্ধতির বর্ণনা দাও।
- ১২. সিব্ধ বাছাই পদ্ধতির বিস্তারিত আলোচনা কর।
- ১৩. উইভিং-এ ব্যবহৃত সুতার গুণাগুণ বর্ণনা কর।
- ১৪. সুতার কাউন্ট নির্ণয়ের পদ্ধতিসমূহের বর্ণনা দাও।
- ১৫. কাপড়ের বৈশিষ্ট্যের উপর সুতার ভূমিকা কী লেখ।
- ১৬. বিভিন্ন পদ্ধতিতে সুতার কাউন্টের সজ্ঞা দাও এবং এদের সূত্রসমূহ লেখ।
- ১৭. বিভিন্ন কাউন্ট পদ্ধতির মধ্যে সম্পর্ক দেখাও।
- ১৮. কাপড় বুননের বিভিন্ন ধাপসমূহ ব্যাখ্যা কর।
- ১৯. চিত্রসহ স্পুল ওয়াইন্ডিং -এর বর্ণনা দাও।
- ২০. যে কোনো ৫টি ইয়ার্ন প্যাকেজের নামকরণ ও প্রতিকারসহ লেখ।
- ২১. সাইজিং উপাদানসমূহ উদাহরণসহ লেখ।

উইভিং-১ প্রথম পত্র (দশম শ্রেণি) তাত্ত্বিক অংশ

প্রথম অধ্যায় কৃত্রিম ফাইবার (Synthetic fibre)

যেসব ফাইবার প্রাকৃতিকভাবে জন্মায়নি কিন্তু বিভিন্ন রাসায়নিক পদার্থের সংমিশ্রণ ঘটিয়ে কৃত্রিমভাবে তৈরি করা হয় বলে এ সমস্ত ফাইবারকে কৃত্রিম ফাইবার বলে। ঘন থকথকে জেলির মতো রাসায়নিক পদার্থ দ্বারা অত্যধিক চাপে খুব সৃক্ষ্ম অসংখ্য ছিদ্রবিশিষ্ট নজেলের মধ্য দিয়ে বের করে ড্রাই, ওয়েট অথবা মেল্ট পদ্ধতিতে কৃত্রিম ফাইবারের ফিলামেন্ট সংগ্রহ করা হয়।

কৃত্রিম আঁশের উৎসসমূহ

কৃত্রিম বা সিনথেটিক ফাইবারের মূল উৎসই পেট্রোলিয়াম, গ্যাস ও কয়লা। পেট্রোলিয়াম থেকে বায়বীয়, তরল ও কঠিন হাইড্রো কার্বন পাওয়া যায় যা দ্বারা কৃত্রিম আঁশ তৈরি করা সম্ভব। তবে কোলটার থেকে বৃহৎ পরিমাণে অ্যারোমেটিক কম্পাউন্ড পাওয়া যায়।

কৃত্রিম আঁশের বৈশিষ্ট্য

প্রাকৃতিক আঁশের মতো কৃত্রিম আঁশও প্রায় একই গুণাগুণসম্পন্ন হয়ে থাকে। তবে নিমুলিখিত বৈশিষ্ট্যসমূহ কৃত্রিম আঁশে প্রাকৃতিক আঁশের থেকে সামান্য আলাদা।

- * যে কোনো রাসায়নিক পদার্থের সাথে প্রতিরোধ ক্ষমতাসম্পন্ন।
- * মাইক্রো অর্গানিজম অর্থাৎ পোকামাকড়ের প্রতি প্রতিরোধক্ষমতা ভালো।
- * দাহ্যতা কম।
- * উচ্চ ইলাস্টিক গুণসম্পন্ন।
- * ক্রিজিং-এ প্রতিরোধ ক্ষমতাসম্পন্ন।
- * ঘর্ষণ প্রতিরোধ ক্ষমতা ভালো।

কৃত্রিম ফাইবারের শ্রেণিবিভাগ (Classification of synthetic fibre)

সম্পূর্ণ কৃত্রিম ফাইবারকে এর কাঁচামালের উপর ভিত্তি করে দুই ভাগে ভাগ করা হয়েছে।

- ১) আংশিক কৃত্রিম ও
- ২) পূর্ণ কৃত্রিম।

আংশিক কৃত্রিম (Partial synthetic fibre)

প্রাকৃতিক বিভিন্ন সেলুলোজিক পদার্থকে অবস্থা ও গুণাগুণের পরিবর্তন ঘটিয়ে যে নতুন ফাইবার তৈরি করা হয় তাকে আংশিক কৃত্রিম ফাইবার বলে। উদাহরণ- ভিসকোস রেয়ন, কিউপ্রোমোনিয়াম রেয়ন, অ্যাসিটেড রেয়ন, ট্রাই অ্যাসিটেড রেয়ন ইত্যাদি।

পূর্ণ কৃত্রিম (Fully synthetic fibre)

সম্পূর্ণ কৃত্রিম অর্থাৎ বিভিন্ন রাসায়নিক পদার্থকে পলিমারাইজেশন করে ১০০ ভাগ কৃত্রিম ফাইবার তৈরি করা হয়। উদাহরণ- নাইলন, পলিয়েস্টার, একরাইলিক, স্পানডেক্স। ১১৮

কৃত্রিম ফাইবারের শ্রেণিবিভাগ (Classification of synthetic fibre)-

কৃত্রিম ফাইবারের শ্রেণিবিভাগ নিম্নের ছক আকারে দেওয়া হলো

ফিলামেন্ট তৈরির স্পিনিং পদ্ধতি (Spinning system of making filament)

ফিলামেন্ট তৈরির জন্য ফিলামেন্টের কাঁচামাল রাসায়নিক পদার্থকে প্রথমে গলিত ঘন থকথকে জেলির মতো পদার্থে রূপান্তর করা হয় এবং পরবর্তীতে অত্যধিক চাপে স্পিনারেট নামক ডিভাইসের মধ্য দিয়ে চালনা করা হয়। যেমন- ওয়েট, ড্রাই ও মেল্টেড পদ্ধতিতে সংগ্রহ করা হয়। যে ডিভাইসের মাধ্যমে অত্যধিক চাপে গলিত পদার্থকে ফিলামেন্ট রূপে রূপান্তরিত করা হয় তাকে স্পিনারেট বলে। যে পদ্ধতিতে এই কৃত্রিম ফিলামেন্ট তৈরি ও সংগ্রহ করা হয় তাকে বলা হয় স্পিনিং পদ্ধতি। এটা সাধারণ পদ্ধতি। শর্ট স্ট্যাপল অথবা লং স্ট্যাপল স্পিনিং পদ্ধতির মতো নয়। প্রাকৃতিক ফাইবার থেকে সুতা পাকানোর পদ্ধতিকে সাধারণ স্পিনিং বলা হয় এবং কৃত্রিম ফাইবার বা আঁশ তৈরি পদ্ধতি অর্থাৎ স্পিনিং সে অর্থে ভিনুধর্মী। কখনো কখনো ফিলামেন্ট স্পিনিংকে কেমিক্যাল স্পিনিংও বলা হয়। যেহেতু বিভিন্ন কেমিক্যাল থেকে ফিলামেন্ট তৈরি করা হয় সেহেতু এ ধরনের স্পিনিংকে কেমিক্যাল স্পিনিং বলা হয়।

স্পিনারেট (Spinnerate)

ফিলামেন্ট তৈরির জন্য স্পিনারেট স্পিনিং মেশিনারির অন্যতম একটি গুরুত্বপূর্ণ অংশ। স্পিনারেটের মধ্যে যে ছিদ্র থাকে তা এতই সৃক্ষ যে তার ব্যাসার্ধ মানুষের চুলের ব্যাসার্ধের থেকেও কম। সৃক্ষ ছিদ্রগুলো প্লাটিনাম বা এ জাতীয় ধাতব পদার্থ দ্বারা তৈরি হয়। যাতে উক্ত ছিদ্রগুলো ফিলামেন্টের ঘর্ষণের ফলে কম ক্ষয়প্রাপ্ত হয় এবং ব্যবহৃত রাসায়নিক পদার্থ দ্বারা ক্ষতিগ্রস্ত না হয়। স্পিনারেটগুলো অত্যন্ত ব্যয়বহুল। একটি স্পিনারেটে ৩০০ -এর মতো ছিদ্র থাকে। আবার যেসব স্পিনারেট স্ট্যাপল ফাইবার তৈরির জন্য ব্যবহার করা হয়, তাতে প্রায় ৩০০০ -এর মতো ছিদ্র থাকে। কারণ, স্ট্যাপল ফাইবার তৈরির জন্য যত বেশি ফিলামেন্ট একসংক্ষে স্পিনারেট থেকে বের হবে তত বেশি স্ট্যাপল ফাইবার একসংক্ষে পাওয়া যাবে। স্পিনারেট থেকে ফিলামেন্ট বের হওয়ার সাথে সাথে প্রয়োজনমতো দৈর্ঘ্যের স্ট্যাপল ফাইবার কেটে নেওয়া যায়। মনোফিলামেন্টের জন্য স্পিনারেটে একটি মাত্র ছিদ্র থাকে এবং মাল্টিফিলামেন্টের জন্য স্পিনারেটে অসংখ্য সূক্ষ্ম ছিদ্র থাকে।

ফিলামেন্ট তৈরির জন্য স্পিনিং পদ্ধতির প্রকারভেদ

ফিলামেন্ট তৈরির জন্য স্পিনিং পদ্ধতি ৩ প্রকার। যথা-

- ১) ওয়েট স্পিনিং (Wet spinning)
- ২) ড্রাই স্পিনিং (Dry spinning)

৩) মেল্ট স্পিনিং (Melt spinning) ওয়েট স্পিনিং (Wet spinning)-

মানুষের তৈরি আঁশ অর্থাৎ কৃত্রিম আঁশ তৈরির ক্ষেত্রে সর্বপ্রথম যে পদ্ধতি সাফল্যজনকভাবে ব্যবহৃত হয়েছে, তাই ওয়েট স্পিনিং (Wet spinning)। এ পদ্ধতি সর্বপ্রথম রেয়ন ফাইবারের ক্ষেত্রে ব্যবহৃত হয়। এ পদ্ধতি বর্তমানেও ব্যবহার হচ্ছে।

প্রথমে কৃত্রিম ফাইবার তৈরির পলিমারকে গলিয়ে ঘন ভিসকোস আকারে নেওয়া হয় এবং পাম্পের সাহায্যে উচ্চ চাপে স্পিনারেটের মধ্য দিয়ে প্রবাহিত করা হয়। স্পিনারেটের অসংখ্য ছিদ্রের মধ্য দিয়ে উক্ত পলিমারকে ফিলামেন্ট আকারে বের করার সাথে সাথে একটি কেমিক্যাল বাথে ফেলা হয় এবং ফিলামেন্টগুলো উক্ত কেমিক্যাল বাথে কেমিক্যালের সংস্পর্শে আসার সাথে সাথে শক্ত হয়ে সুতার আকারে রূপ নেয়। কেমিক্যাল বাথকে কোগুলেটেড বাথও (Coulugated bath) বলা হয়। কোগুলেটিং বাথে বিভিন্ন রাসায়নিক পদার্থের মিশ্রণ থাকে যার সংস্পর্শে নরম ফিলামেন্ট আসার সাথে সাথে শক্ত হয়ে যায়। পরবর্তীতে ধোয়া ও শুকানোর পর স্পুলে জড়ানো হয়।

ড্রাই স্পিনিং (Dry spinning)

এ পদ্ধতিতে প্রয়োজনীয় তরল পলিমার/দ্রবণ স্পিনারেটের ছিদ্র দিয়ে অত্যধিক জোরে পাস্প করে বের করার পর ওয়েট স্পিনিং -এর মতো কেমিক্যাল বাথের পরিবর্তে গরম এয়ার চেম্বারের মধ্য দিয়ে টানা হয়। ফলে স্পিনারেট থেকে বের হওয়া নরম ফিলামেন্টগুলো গরম বাতাসের সংস্পর্শে আসার সাথে সাথে জলীয় বাষ্প বের করে দিয়ে শক্ত হয়ে যায়। পরে উক্ত ফিলামেন্টগুলো টুইস্টিং ও ওয়াইন্ডিং করে সংগ্রহ করা হয়। স্ট্যাপল ফাইবারের ক্ষেত্রে প্রয়োজনীয় দৈর্ঘ্য অনুযায়ী কেটে টুকরো টুকরো করে সংগ্রহ করা হয়।

মেল্ট স্পিনিং (Melt Spinning)

সর্বশেষ ও তৃতীয় যে পদ্ধতিতে কৃত্রিম ফাইবার প্রস্তুত করা হয় তাই মেল্ট স্পিনিং। এ পদ্ধতিতে চিপস অথবা পলিমারকে গলিয়ে স্পিনারেটের ছিদ্র দিয়ে পাস্প করে বের করা হয়। এবং এয়ার চেমারের মধ্য দিয়ে ঠান্ডা জমাট বাঁধিয়ে শক্ত করে ফিলামেন্টগুলো পূর্বের মতো সংগ্রহ করা হয়। এ পদ্ধতি সরাসরি প্রক্রিয়া এবং সবচেয়ে কম খরচ। একে বাথ, কোনো দ্রাবক বা ধোয়ার কোনো প্রয়োজন পড়ে না।

উপরোক্ত স্পিনিং পদ্ধতি ছাড়াও আর কিছু স্পিনিং পদ্ধতি আধুনিকভাবে ব্যবহৃত হচ্ছে। যেমন-বাইকম্পোনেন্ট স্পিনিং, বাইকনস্টিটিয়েন্ট স্পিনিং, ফ্লিম স্পিনিং পদ্ধতি ইত্যাদি।

মেল্ট স্পিনিং

দ্বিতীয় অধ্যায় নাইলন (Nylon)

নাইলন পলি অ্যামাইড ফাইবার। অ্যামাইড নামক রাসায়নিক পদার্থের পলিমারাইজেশন করে পলিঅ্যামাইড ফাইবার গঠন করা হয়।

- CO - NH

পলিঅ্যামাইড ফাইবারের প্রকারভেদ (Classification of Polyamaide fibre)

সাধারণত আমরা দুই ধরনের পলিঅ্যামাইড ফাইবার দেখতে পাই।

- ১) নাইলন ৬.৬ ও
- ২) নাইলন ৬

উপরোক্ত দুই ধরনের পলিঅ্যামাইড ফাইবার ছাড়াও বাণিজ্যিকভাবে নিমুলিখিত ফাইবার উৎপাদিত হচ্ছে।

- নাইলন ১১
- ২) নাইলন ৬.১০.

নিম্নে নাইলন ৬.৬ ও নাইলন ৬ পলিঅ্যামাইড ফাইবারের বর্ণনা দেওয়া হলো। নাইলন ৬.৬ (ONylon 6.6) :

নাইলন ৬.৬ কে পলিঅ্যামাইড ৬.৬ও বলা হয়। নাইলন ৬.৬ -এর রাসায়নিক নাম পলিহেক্সামিথিলিন অ্যাডোপ্যামাইড(OPolyhexamethylene-Adopamide)।

- $CONH(CH_2)_6NHCO(CH_2)_4 - CONH(CH_2)_6NHCO - (CH_2)CO$

পলিহেক্সামিথিলিন অ্যাডোপ্যামাইড

উপরোক্ত ফাইবার দুইটি রাসায়নিক পদার্থের মিশ্রণে তৈরি হয়। যেমন- হেক্সামিথিলিন ডায়ামিন ও অ্যাডিপিক অ্যাসিড।

নাইলনকে পৃথিবীর সর্বপ্রথম কৃত্রিম ফাইবার বলা হয়। নাইলন ফাইবার উচ্চশক্তিসম্পন্ন। ইহা ছাড়াও ঘর্ষণজনিত শক্তি নষ্ট হয় না বললেই চলে। ফাইবারের স্থিতিস্থাপকতা গুণও খুব ভালো। ইহা ছাড়া সকস ও হুজ তৈরিতে বহুল ব্যবহৃত হয়।

চিত্র : নাইলন ফাইবারের ক্রস সেকশন

নাইলন ৬.৬ এর নামকরণ :

নাইলন ৬.৬ তৈরিতে কাঁচামাল হিসেবে হেক্সামিথিলিন ডায়ামিন ও অ্যাডিপিক অ্যাসিড ব্যবহার হয়। হেক্সামিথিলিন ডায়ামিন যার রাসায়নিক সংকেত নিমুরূপ।

$$NH_2 - (CH_2)_6 - NH_2$$

হেক্সামিথিলিন ডায়ামিন ৬টি কার্বন পরমাণু বহন করে। আবার অন্য রাসায়নিক পদার্থ অ্যাডিপিক অ্যাসিড যার রাসায়নিক সংকেত $HOOC - (CH_2)_4 - COOH$ ইহাও ৬টি কার্বন পরমাণু বহন করে এবং উপরোক্ত দুটি রাসায়নিক পদার্থ একত্রে পলিহেক্সামিথিলিন অ্যাডোপ্যামাইড গঠন করে। যার বিক্রিয়া নিমুরূপ।

$$NH_2(CH_2)_6NH_2 + HOOC(CH_2)_4 COOH$$

— CONH(CH₂)₆NHCO(CH₂)₄ — CONH(CH₂)₆NHCO(CH₂)CO উপরের বিক্রিয়ার সাহায্যে তৈরিকৃত নাইলনের ৬.৬ এ হেক্সামিথিলিন ডায়ামিনের ৬টি কার্বন পরমাণু ও অ্যাডিপিক অ্যাসিডের ৬টি কার্বন পরমাণু দ্বারা গঠিত বলে নাইলনের নাম নাইলন ৬.৬ বলা হয় নাইলন ৬.৬ উৎপাদন (Production of Nylon 6.6)

নাইলন ৬.৬ পলিমার দুটি রাসায়নিক পদার্থের মিশ্রণে গঠিত হয়ে থাকে।

১) অ্যাডিপিক অ্যাসিড ও ২) হেক্সামিথিলিন ডায়ামিন। হেক্সামিথিলিন ডায়ামিন ও অ্যাডিপিক অ্যাসিড উৎপাদন কতগুলো ধাপে সম্পন্ন হয় যা নিম্নে দেখানো হলো।

ধাপ ১। মূলত: সাইক্রোহেক্সানল ফেনল থেকে তৈরি হয়, যা কোলটার থেকে সংগ্রহ করা হয়। ফেনল দ্বারা ক্যাটালিস্ট -এর উপস্থিতিতে হাইড্রজেনাইশন করে সাইক্রোহেক্সানল প্রস্তুত করা হয়।

ধাপ ২। বর্তমানে প্রথম পর্যায়ে বেনজিন রিডিউজড হয়ে সাইক্লোহেক্সেন গঠন করে।

ধাপ ৩। পরে আবার অক্সিডাইজড হয়ে সাইক্লোহেক্সানল গঠন করে।

ধাপ ৪। সাইক্লোহেক্সানল ও সাইক্লোহেক্সানন মিশ্রণ অক্সিডাইজড হয়ে অ্যাডিপিক অ্যাসিড গঠন করে।

ধাপ ৫। অ্যাডিপিক অ্যাসিড পরবর্তী ধাপে অ্যামোনিয়ার সাথে বিক্রিয়া করে অ্যাডপ্যামাইড গঠন করে।

ধাপ ৬। অ্যাডপ্যামাইড ডিহাইড্রেড হয়ে অ্যাডিপোনাইট্রাইল গঠন করে।

$$NH_2-CO (CH_2)_4-CONH_2$$
 \longrightarrow $CN(CH_2)_4-CN$

ধাপ ৭। ক্যাটালিস্ট-এর উপস্থিতিতে অ্যাডিপোনাইট্রাইল রিডিউজড হয়ে হেক্সামিথিলিন ডায়ামিন গঠন করে।

$$CN(CH_2)_4$$
 - CN $NH_2 - CH_2 (CH_2)_4$ - CH_2NH_2 নাইলন ৬.৬ প্রস্তুত প্রণালি :

নাইলন ৬.৬ প্রস্তুতপ্রণালি কতগুলো ধাপে সম্পন্ন হয়। নিম্নে ধাপগুলো দেওয়া হলো।

কাঁচামাল: কাঁচামাল হিসেবে হেক্সামিথিলিন ডায়ামিন ও অ্যাডিপিক অ্যাসিড ব্যবহার করা হয়।

এডিপিক অ্যাসিড প্রস্তুত প্রণালি

কোলটার (Coalter) অর্থাৎ পেট্রোলিয়াম হতে প্রথমে ফেনল (phenol) সংগ্রহ করা হয়। এই ফেনলকে হাইড্রোজেনেশন করে সাইক্রোহেক্সানল ও পরে অক্সিডেশন করে অ্যাডিপিক অ্যাসিড প্রস্তুত করা হয়।

হেক্সামিথিলিন ডায়ামিন প্রস্তুত প্রণালি

উপরোক্ত অ্যাডিপিক অ্যাসিডের সাহায্যে হেক্সামিথিলিন ডায়ামিন প্রস্তুত করা হয়। অ্যাডিপিক অ্যাসিড ক্যাটালিস্ট (ফসফরিক অ্যাসিড ও বোরন সালফেট) এর উপস্থিতিতে অ্যামোনিয়ার সাথে ডিহাইড্রেট হয়ে অ্যাডিপোনাইট্রাইল তৈরি করে। পরে এই অ্যাডিপোনাইট্রাইল নিকেলের উপস্থিতিতে রিডিউজড হয়ে হেক্সামিথিলিন ডায়ামিন গঠন করে।

১২৪

পলিমারাইজেশন ও উৎপাদন

হেক্সামিথিলিন ডায়ামিন ও অ্যাডিপিক অ্যাসিড বিক্রয়া করে মিথাইল অ্যালকোহলের উপস্থিতিতে নাইলন সল্টকে একটি বন্ধ পাত্রে তাপ দেওয়া হয়। ফলে নাইলন সল্ট পানি বের করে দেয় ও হেক্সামিথিলিন অ্যাডিপ্যামাইড গঠন করে যা পরবর্তীতে পলিমারাইজেশন হয়ে আরও পানি বের করে দেয় ও নাইলন পলিমার গঠন করে। পরে এই পলিমারকে ২৮০ সে. তাপমাত্রায় ৮ ঘণ্টা যাবৎ তাপ দেওয়া হয় ফলে এটা একবার গলে ও জমাট বেঁধে সম্পূর্ণ পলিমারাইজেশন শেষ করে। এই পলিমারগুলিকে প্রথমে রিবন আকারে ও পরে ব্যবহারের উদ্দেশ্যে চিপস -এ টুকরো টুকরো হয় এবং স্পিনিং সেকশনে প্রেরণ করা হয়।

চিত্ৰ: নাইলন ৬.৬ প্ৰস্তুতপ্ৰণালি

চিত্র: নাইলন ৬.৬ প্রস্তুতপ্রণালি

নাইলন ৬.৬ স্পিনিং:

নাইলন গলানোর পর স্পিনিং করা হয় বলে একে মেল্ট স্পিনিং বলা হয়। প্রথমে একটি হপারে নাইলন চিসগুলিকে রাখা হয় ও পরে একটি পাত্রে নেওয়া হয়। যার মধ্যে একটি ছিদ্রযুক্ত প্লেট আছে। যাকে বৈদ্যুতিক তাপ দেওয়া হয়। তাপে নাইলন চিসগুলি গলে ছিদ্র দ্বারা ভ্যাসেলের মধ্যে অর্থাৎ নিচে আসে। লক্ষ্য রাখতে হবে এ অবস্থায় যাতে সলভেন্টসমূহ অক্সিজেন অথবা বাতাসের সংস্পর্শে না আসে। উক্ত গলিত নাইলনকে ২৮০ সে. তাপমাত্রায় পাম্পের সাহায্যে ফিল্টার পেট হয়ে স্পিনারেটে আসে। (স্পিনারেটি ০.২৫" মোটা ২-৩" ব্যাস এবং ০.০১ ব্যাস বিশিষ্ট ২৪টি ছিদ্রযুক্ত) এবং চাপের কারণে স্পিনারেট থেকে বের হয়ে যত

শিগগির সম্ভব এটা কুলিং জোন -এর মধ্য দিয়ে আসার সময় শক্ত হয়ে ফিলামেন্টে রূপ নেয়। ফিলামেন্ট সংগ্রহের গতি ১২০০ মিটার/মিনিট।

দ্রইং এবং ওয়াইডিং

দ্রইং ও ওয়াইভিং -এ ফিলামেন্টগুলিকে একটি ৭০° সে. তাপমাত্রায় স্টিম চেম্বারের মধ্য দিয়ে আনা হয় এবং বিভিন্ন গাইডের মাধ্যমে ববিনে জড়ানো হয়।

নাইলন ৬.৬ -এর ভৌত শুণাবলি (Physical Properties of Nylon 6.6) :

১) শক্তি টেনাসিটি(গ্রাম/ডেনিয়ার) : ৪.৫ থেকে ৮.৫

২) ঘনতু (গ্রাম/সিসি) : ১.১৪

৩) স্থিতিস্থাপকতা : অত্যন্ত ভালো।৪) ছিঁড়ে যাবার পূর্বে প্রসারণ : অত্যন্ত ভালো।

৫) আর্দ্রতা ধারণক্ষমতা : ৪%
 ৬) রেসিলিয়েন্স : ভালো

৭) ঘর্ষণ প্রতিরোধক্ষমতা : অত্যন্ত ভালো৮) রং : ক্রিম / সাদা

৯) তাপ প্রতিরোধক : ১৫০° সে. পর্যন্ত প্রতিরোধ ক্ষমতাসম্পন্ন।

১০) গলনাঙ্ক : ২৫০° সে.

১১) চাকচিক্যতা : উজ্জ্বল থেকে হালকা।

নাইলন ৬.৬ এর বাসায়নিক শুণাবলি (Chemical properties of Nylon 6.6)

আ্যাসিডে প্রতিরোধ ক্ষমতা নাই বললেই চলে।

২) অ্যালকালিতে ক্রিয়া : অ্যালকালিতেও প্রতিরোধ ক্ষমতা খুব ভালো।
 ৩) ব্লিচ-এ ক্রিয়া : শক্তিশালী অক্সিডাইজিং নাইলনকে ক্ষতি করে।

8) আলোর প্রতিরোধক ক্ষমতা : অধিক সূর্যের আলোতে শক্তি হারায়।

৫) দ্রাবক : ফরমিক অ্যাসিড, সালফিউরিক অ্যাসিড, ফেনল ইত্যাদি।

৬) মিলডিউ -এ প্রতিরোধ ক্ষমতা : আক্রান্ত হয় না।
৭) পোকামাকড়ে প্রতিরোধ ক্ষমতা : আক্রান্ত হয়।

৮) রং করার ক্ষমতা : ভালো। ডাইরেক্ট, অ্যাসিড, ভ্যাট ইত্যাদি ব্যবহার করা যায়।

নাইলন ৬.৬ এর ব্যবহার

- ১) প্যারাসুট কাপড়, কর্ড, হারনেস কর্ড, সেলাই সুতা ইত্যাদিতে ব্যবহৃত হয়।
- ২) ল্যাডিজ হুজ (Hose) তৈরিতে ব্যবহৃত হয়।
- ৩) দড়ি, মটর ও অ্যারোপ্লেনের টায়ার কর্ড হিসেবে ব্যবহৃত হয়।

- 8) পিভিসি -এর উপর নাইলনের প্রলেপ দিয়ে তারপুলিন তৈরি হয়।
- ৫) লিঙ্ক বেল্ট ও জয়েন্ট ডিস্ক ইত্যাদি
- ৬) টাইপ রাইটারের রিবন।
- ৭) ছোট ফিশিং বোট (Boat)
- **৮) ফিল্টার কাপড**।
- **৯) কার্পেট, অ্যাপারেল**।

নাইলন ৬ (Nylon 6)

পলিঅ্যামাইড, যা ছয়টি কার্বন পরমাণু বহন করে, তা দ্বারা বারবার অর্থাৎ রিপিটিং ইউনিট গঠন করে পলিমারাইজেশন -এর মাধ্যমে ক্যাপরোল্যাকটাম

পলিমারাইজড পদার্থ যা নাইলন ৬ হিসেবে দেখা দেয়। তার সংক্ষিপ্ত ফর্মুলা।

$$[-NH - (CH_2) - CO -]_n$$

নাইলন ৬ উৎপাদন :

ক্যাপরোল্যাকটাম প্রস্তুতকরণ

ফেনল, বেনজিন ও অ্যানিলিনকে ক্যাপরোল্যাকটাম প্রস্তুতের কাঁচামাল হিসেবে ব্যবহার করা হয়। উপরোক্ত কাঁচামাল দ্বারা প্রথমে সাইক্লোহেক্সানল প্রস্তুত করা হয়। নিকেল ফ্যাস্টালিস্ট -এর উপস্থিতিতে ১৫০° থেকে ২২০° সে. তাপমাত্রায় ২৫ অ্যায়াটমোসফেয়ারিক চাপে বেনজিনকে হাইড্রোজেনেটেড করে সাইক্লোহেক্সানল গঠন করে।

এ সাইক্রোহেক্সানল বিক্রিয়াটি নাইট্রোসিল -এর সঙ্গে পারদের ল্যাম্পের শক্তি ও আলোর উপস্থিতিতে সংঘটিত হয়। সাইক্রোহেক্সানন অক্সিম ও পরে সালফিউরিক অ্যাসিডের সাথে বিক্রিয়া করে ক্যাপরোল্যাকটাম গঠন করে।

নাইশন -৬ (Nylon 6) ক্যাপারোল্যাকটাম

নাইলন ৬ প্রস্তুতপ্রণালি চিত্র: নাইলন ৬ প্রস্তুতপ্রণালি

উইভিং-১

পশিমারাইজেশন

ল্যাকটামকে তরল অবস্থায় ছেঁকে তাপে ও অত্যাধিক চাপে একটি অটোকেভ-এ নেওয়া হয়। যাতে প্রায় ২০০ -এর মতো মনোমারিক ইউনিট থেকে একটি বড় পলিমারিক ইউনিট দেয়, যার নাম পারলন (Parlon)। এ পলিমার পারলনকে নাইলন ৬ বলা হয়। কারণ এটা ৬টি কার্বন অ্যাটমের পলিমার।

न्थिनि१ (Spinning)

পারলন পলিমারকে ধৌত ও শুকানোর পর গলানো হয়। নাইলন ৬ এ গলনাক্ষ খুবই কম। অতঃপর ইহাকে উচ্চ চাপে স্পিনারেটের মধ্য দিয়ে প্রবাহিত করা হয়। স্পিনিং গতি ১০০০ মি. মিনিট। পলিমারকে মেল্ট স্পিনিং –এর মাধ্যমে ফিলামেন্টগুলো সংগ্রহ করা হয়। অর্থাৎ যত শিগগির সম্ভব ফিলামেন্টসমূহকে কুলিং (Cooling) জোন –এর মধ্য দিয়ে নিয়ে আসার সময় শক্ত হয়ে যায় এবং গাইড রোলারের মাধ্যমে ববিনে জড়ানো হয়।

নাইলন ৬ -এর ভৌত গুণাবলি (Physical Properties of Nylon 6)-

১. শক্তি টেনাসিটি(গ্রাম/ডেনিয়ার) : ৬.০ থেকে ৮.৫

২. ঘনত্ব (গ্রাম/সিসি) : ১.১৪

গ্রহিতিস্থাপকতা : অত্যন্ত ভালো।

৪. ছিঁড়ে যাবার পূর্বে প্রসারণ : ১৫-৪৫%।

৫. আর্দ্রতা ধারণক্ষমতা : ৩.৫-৫%

৬. রেসিলিয়েন্সি : অত্যন্ত ভালো

৭. ঘর্ষণ প্রতিরোধ ক্ষমতা : অত্যন্ত ভালো

৮. রং : সাদা

৯. তাপ প্রতিরোধক : ১৫০° সে. পর্যন্ত প্রতিরোধ ক্ষমতাসম্পন্ন।

১০. গলনাঙ্ক : ২১৫° সে.

১১. চাকচিক্যতা : উজ্জুল থেকে হালকা।

নাইলন ৬ এর রাসায়নিক শুণাবলি (Chemical properties of Nylon 6)

আ্যাসিডে ক্রিয়া : অ্যাসিডে প্রতিরোধ ক্ষমতা নাই বললেই চলে।

আ্যালকালিতে ক্রিয়া : প্রতিরোধ ক্ষমতা ভালো।

৩) ব্লিচ-এ ক্রিয়া : শক্তিশালী অক্সিডাইজিং নাইলনকে ক্ষতি করে।

8) আলোর প্রতিরোধক ক্ষমতা : ভালো নয়।

৫) দ্রাবক : যে কোনো গাঢ় অ্যাসিড, ফেনল ইত্যাদি।

৬) মিলডিউ -এ প্রতিরোধ ক্ষমতা : আক্রান্ত হয় না।

৭) পোকামাকড়ে প্রতিরোধ ক্ষমতা : আক্রান্ত হয়।

৮) রং করার ক্ষমতা : ভালো। ডাইরেক্ট, অ্যাসিড, ভ্যাট ইত্যাদি ব্যবহার করা যায়।

১৩০

নাইলন ৬ এর ব্যবহার

১. সাফল্যজনকভাবে নাইলন-৬ কে টায়ার কর্ড প্রস্তুতের জন্য ব্যবহৃত হচ্ছে। নাইলন ৬ এর তাপ প্রতিরোধক ও রাবারের প্রতি সংযুক্তের কারণে টায়ার কর্ড প্রস্তুত হচ্ছে।

- ২. নাইলন ৬ দ্বারা ফিশিং লাইন অর্থাৎ মাছ ধরার জাল, সুতা ও দড়ি হিসেবে ব্যবহৃত হচ্ছে।
- ৩. বৈচিত্র্যপূর্ণ কাজের জন্য নাইলনের দড়ি ব্যবহৃত হয়।
- 8. হোজ (Hose) ও মোজা তৈরিতে ব্যবহৃত হয়।
- ৫. জর্জেট, কার্পেট, সাঁতারের পোশাক, ইউনিফরম, ফ্লাগ, বর্ণাঢ্য বস্ত্র, ফিল্টার ক্লথ, নিটেড ব্লাউজ, শার্টিং ইত্যাদিতে ব্যবহৃত হয়।
- ৬. টাইপ রাইটারের রিবন।
- ৭. ছোট ফিশিং বোট
- ৮. ফিল্টার কাপড়।
- ৯. কার্পেট, অ্যাপারেল।

তৃতীয় অধ্যায় পলিয়েস্টার (Polyester)

পলিয়েস্টার ফাইবার পলিমারিক এস্টার ফাইবারের একটি উদাহরণ। আমেরিকাতে যে পলিয়েস্টার ফাইবার উৎপাদন হয় তাকে বাণিজ্যিকভাবে ড্যাকরন, যুক্তরাষ্ট্রে টেরিলিন, ইন্ডিয়াতে টেরিন বলে।

অ্যাসিড ও অ্যালকোহল বিক্রিয়া করে অ্যাস্টার গঠন করা হয়। পলিয়েস্টার ফাইবার তৈরির বেলায় অ্যাসিড হিসেবে ইথিলিন গ্লাইকল ব্যবহার করা হয়। পলিয়েস্টার ফাইবার যথেষ্ট শক্তিশালী ফাইবার কিন্তু আর্দ্রতা ধারণ ক্ষমতা (মাত্র ০.৪%) বলে ইহা ব্যবহারের দিক থেকে স্বাস্থ্যসম্মত নয়। ফলে পলিয়েস্টার ফাইবার দ্বারা পোশাক তৈরি করা হয় না বললেই চলে। তবে ফার্নিশিং ক্লথ, ইন্ডাস্ট্রিয়াল ক্লথ ইত্যাদি কাজে বহুল পরিমাণে ব্যবহৃত হয়। কটন পলিয়েস্টার বেন্ডেড করে যে কাপড হচ্ছে তা পোশাক হিসেবে ব্যবহৃত হচ্ছে।

রাসায়নিক প্রকৃতি

এটি একটি উচ্চ পলিমার বিশিষ্ট কৃত্রিম ফাইবার যা এস্টারিকেশন -এর মাধ্যমে তৈরি হয়। সাধারণত ইথিলিন গ্লাইকল ও টেরিপথেলিক অ্যাসিডের সাথে বিক্রিয়া করে পলিইথিলিন ট্যারিপথ্যালেট গঠন করে। এ পলিইথিলিন ট্যারিপথ্যালেটের পর্যায়ক্রমিক ইউনিটকেই পলিয়েস্টার পলিমার বলে।

পেট্রোলিয়াম থেকে প্রাপ্ত তেল ক্র্যাক (Crack) করে ইথিলিন ও অক্সিডাইজড করে প্রথমে ইথিলিন অক্সাইড ও পরে হাইড্রেটেড করে ইথিলিন গ্লাইকল পাওয়া যায়।

পুনরায় পেট্রোলিয়াম থেকে ন্যাপথা ডিস্টিলড করে প্যারাজাইলিন সংগ্রহ করা হয় এবং প্যারাজাইলিন বাতাসে ক্যাটালিস্ট-এর উপস্থিতিতে অক্সিডাইজড হয়ে প্রথমে টেরিপথ্যালিক অ্যাসিড ও পরে ডাইমিথাইল ট্যারিপথ্যালেট উৎপন্ন করে। এ ডাইমিথাইল ট্যারিপথ্যালেট দ্বারা টেরিলিন অথবা ড্যাকরণ উৎপন্ন করা হয়।

$$CH_3$$
 $COOH$ $COOCH_3$
 CH_2OH CH_3
 CH_3 $COOH_2$ $COOCH_3$

প্যারাজাইলিন ট্যাপিথ্যালিন অ্যাসিড ভাইমিথাইল ট্যারিপথ্যালেট

ট্যারিপথ্যালিক এস্টার ও ইথিলিন গ্লাইকল পলিমারাইজড হয়ে পলিয়েস্টার উৎপন্ন করে। পলিয়েস্টার ১০০ ভাগ কৃত্রিম ফাইবার। এটা পলিইথিলিন ট্যারিপথ্যালেট-এর একটি পলিমার।

পলিয়েস্টার ফাইবার প্রস্তুতপ্রণালি

পলিয়েস্টার তৈরির কাঁচামাল হিসেবে সাধারণত প্যারাজাইলিন, ইথিলিন গ্লাইকল ও মিথানল ব্যবহার করা হয়। প্যারাজাইলিন পেট্রোলিয়াম থেকে পাওয়া যায়। প্যারাজাইলিন বাতাস ও নাইট্রিক অ্যাসিডের সাথে বিক্রিয়া করে ট্যারিপথ্যালিক অ্যাসিড গঠন করে। এই ট্যারিপথ্যালিক অ্যাসিড মিথাইল অ্যালকোহলের সাথে ডাই মিথাইল ট্যারিপথ্যালেট তৈরি করে যা পরবর্তীতে ইথিলিন গ্লাইকলের সাথে পলিইথিলিন ট্যারিপথ্যালেট-এর পলিমার গঠন করে যা রিবনের আকৃতিতে পাওয়া যায়।

অতঃপর এই রিবনের মতো পলিমারকে চিপস আকারে কেটে টুকরো টুকরো করা হয়। এ ভিজা চিপসগুলো

প্রথমে শুকানো হয়, পরে এই
শুকানো চিপসগুলো একটি
ডেলিভারি হপারে নিয়ে লাগানো হয়
এবং গলিত পলিমারকে উচ্চ চাপে
স্পিনারেটের মধ্যে পাঠানো হয়।
স্পিনারেটে ২৪টি ছিদ্র যা ০.০৫-০১
মিমি ব্যাস যুক্ত থাকে।

প্রতিটি ছিদ্র (Hole) থেকে এক একটি ফিলামেন্ট বের হয়। যা পরবর্তীতে ফিলামেন্টরূপে গাইড রোলারের মাধ্যমে ববিনে জড়ানো হয় অথবা ক্রিমপিং ও হিট সেটিং (Heat setting) ও সর্বশেষ কেটে ছোট ছোট ফাইবারের আকারে নেওয়া হয়।

নিচে পলিয়েস্টার ফাইবার প্রস্তুতপ্রণালির ফ্লো শিট দেখানো হলো।

চিত্র: পলিয়েস্টার ফাইবারের প্রস্তুতপ্রণালি

উইভিং-১

পদিয়েস্টার ফাইবার-এর ভৌত গুণাবদি (Physical Properties of polyester)

 ১. শক্তি টেনাসিটি (গ্রাম/ভেনিয়ার)
 : ৩ থেকে ৯

 ২. ঘনত্ব (গ্রাম/সিসি)
 : ১.৩৮

 ৩. স্থিতিস্থাপকতা
 : মোটামুটি

8. ছিড়ে যাওয়ার পূর্বে প্রসারণ : ২০ থেকে ৩০%

৫. আর্দ্রতা ধারণক্ষমতা : ০.৪%
 ৬. রেসিলিয়েন্দি : চমৎকার

৭. ঘর্ষণ প্রতিরোধ ক্ষমতা : অত্যন্ত চমৎকার

৮. রং : সাদা
৯. তাপ প্রতিরোধক : ভালো
১০. গলনাঙ্ক : ২৫০° সে.

১১। চাকচিক্যতা : উজ্জুল থেকে হালকা।

পলিয়েস্টার -এর রাসায়নিক গুণাবলি (Chemical Properties of polyester)

আ্যাসিডে ক্রিয়া : প্রায় সব ধরনের অ্যাসিডে প্রতিরোধ ক্ষমতা আছে।

ঘন সালফিউরিক অ্যাসিড ফাইবারকে ক্ষতি করে।

২. অ্যালকালিতে ক্রিয়া : দুর্বল অ্যালকালিতে প্রতিরোধ ক্ষমতা ভালো। তাপ প্রয়োগে

দূর্বল প্রতিরোধ।

৩. ব্লিচ ক্রিয়া : ভালো প্রতিরোধ ক্ষমতা আছে। অক্সিডাইজিং ও রিডিউসিং

ব্লিচ কোনো ক্ষতি হবে না।

আলোর প্রতিরোধক ক্ষমতা : প্রতিরোধ ক্ষমতা ভালো।

৫. জৈবিক দ্রাবক : কোনো ক্ষতি হয় না।

৬. মিলডিউ এ প্রতিরোধ ক্ষমতা : প্রতিরোধ ক্ষমতা ভালো।

৭. পোকামাকড়ে প্রতিরোধ ক্ষমতা : আক্রান্ত হয় না।

৮. রং করার ক্ষমতা : ডিসপার্স, রিঅ্যাকটিভ, এজোইক ও কিছু কিছু পিগমেন্ট রং

ব্যবহার করা হয়।

পলিয়েস্টার ফাইবারের ব্যবহার

১. বিভিন্ন অ্যাপারেল ফার্নিশিং, বাড়িতে সজ্জামূলক কাপড় এবং ইন্ডাস্ট্রিয়াল কাপড় তৈরিতে ব্যবহৃত হয়।

- ২. ওভেন ও নিটেড তৈরিতে এবং ক্রিজ প্রুফ কাপড় ও ফার্নিশিং কাপড় তৈরিতে ব্যবহৃত হয়।
- ৩. কটন, উল ও ভিসকোসের সাথে ব্লেন্ডেড করে বিভিন্ন অ্যাপারেলস পর্দায় ব্যবহৃত হয়।
- 8. স্টাপল পলিয়েস্টার ও কটন-এর সাথে মিশ্রিত করে বিভিন্ন ধরনের পোশাক তৈরিতে ব্যবহৃত হয়।
- ৫. ইন্ডাস্ট্রিতে ব্যবহারের জন্য টায়ার কর্ড, কনভেয়র বেল্ট, ব্রিন কাপড়, ফিল্টার ক্লথ, মাছ ধরার জাল ইত্যাদি তৈরি হয়।
- ৬. অ্যাসিড হ্যান্ডলিং প্লান্টে প্রোটেকটিভ ক্লথ তৈরিতে ব্যবহৃত হয়।
- ৭. গলিত পলিয়েস্টার দ্বারা কাগজ তৈরির মেশিন, ইনসুলেটিং টেপ ও উচ্চ হর্স পাওয়ার যুক্ত মোটর তৈরিতে ব্যবহৃত হয়।
- ৮. ফায়ার এক্সটিংগুইশার (Extinguisher) এর পিভিসি পাইপের সাথে পলিয়েস্টার হোজ তৈরিতে ব্যবহৃত হয়।
- ৯. দড়ি, মাছ ধরার জাল, পালের কাপড় ইত্যাদি তৈরি হয়।

চতুর্থ অধ্যায় অ্যাকরাইলিক (Acrylic)

অ্যাকরাইলিক ফাইবারের মূল কাঁচামাল হাইড্রোজেন সায়ানাইড (HCN) ও অ্যাসিটাইলিন (CH CH), অন্য পদ্ধতিতে ইথিলিন (CH₂=CH₂) ও হাইড্রোজেন সায়ানাইড (HCN) অ্যাকরাইলিক ফাইবার আ্যাকরাইলো নাইট্রাইলের একটি পলিমার, কমপক্ষে ৮৫% অ্যাক্রাইলো নাইট্রাইল দ্বারা অ্যাকরাইলিক ফাইবার তৈরি করা হয়। ভিনাইল সায়ানাইডকেই অ্যাকরাইলো নাইট্রাইল বলা হয়।

উলের মতো গুণাগুণের কারণে অ্যাকরাইলিক ফাইবারকে উলের বিকল্প হিসেবে ব্যবহার করা হয়। নিটেড ফেব্রিক, টি শার্ট, সোয়েটার ও কমল তৈরিতে অ্যাকরাইলিক ফাইবার বর্তমানে প্রচুর পরিমাণে ব্যবহৃত হচ্ছে। বাণিজ্যিকভাবে অনেক ধরনের অ্যাকরাইলিক ফাইবার রয়েছে যেমন-অরলন, অ্যাকরিল্যান, করটেলি, ক্রেসল্যান ইত্যাদি।

চিত্র: অ্যাকরাইলিক ফাইবার

রাসায়নিক প্রকৃতি

হাইড্রোজেন সায়ানাইড, অ্যাসিটাইলিনের সাথে বিক্রিয়া করে অ্যাক্রাইলো নাইট্রাইল গঠন করে।

অ্যাসিটাইলিন

অ্যাকরাইলো নাইট্রাইল

এ বিক্রিয়াটি Ca_2Cl_2 (কিউপ্রাস ক্লোরাইড), ক্যাটালিস্ট-এর উপস্থিতিতে ৮০ $^\circ$ C তাপমাত্রায় একটি নির্দিষ্ট অ্যাটমোসফিয়ারিক তাপে সংঘটিত হয়।

অন্য বিক্রিয়ায় ইথিলিন বাতাসের উপস্থিতিতে অক্সিডাইডস হয়ে ইথিলিন অক্সাইড উৎপন্ন হয়।

ইথিলিন অক্সাইড পুনরায় হাইড্রোজেন সায়ানাইডের সঙ্গে বিক্রিয়া করে ইথিলিন সায়ানহাইড্রিন গঠন করে ও পরে ক্যাটালিস্ট-এর উপস্থিতিতে ৩০০°c তাপমাত্রায় ডিহাইড্রেশন হয়ে অ্যাকরাইলো নাইট্রাইল উৎপন্ন করে।

অ্যাকরাইলিক ফাইবার ১০০ ভাগ কৃত্রিম ফাইবার। এটা অ্যাকরাইলো নাইট্রাইল-এর পলিমার।

কাঁচামাল

অ্যাকরাইলিক ফাইবারের প্রস্তুতপ্রণালি

অ্যালুমিনিয়াম পারসালফেট ও সোডিয়াম বাই সালফাইড প্রথমে পানিতে ৪০° তাপমাত্রায় দ্রবীভূত করা হয়। এরপর অ্যাকরাইলো নাইট্রাইল ও কিছু ভিনাইল সনোমার একটি পাত্রে ২ ঘটা যাবৎ নাড়া হয়। এতে পলিমারের দানা পড়ে তা ধৌত ও ফিল্টার করে শুকানো হয়। এই অ্যাকরাইলো নাইট্রাইলের মনোমার পানিতে দ্রবণীয় কিন্তু পলিমার পানিতে অদ্রবণীয়। এ ছাড়া পলিমারাইজেশন পাত্র বাতাস মুক্ত রাখতে হবে এবং দ্রবণের p^H 2.5 রাখা প্রয়োজন।

চিত্ৰ: আকরাইলিক ফাইবারের প্রত্তপ্রণালি।

অভঃপর উক্ত পশিমারকে সন্ট্রপন জ্ঞাসেলে সলভেও দ্বারা দ্রবীভূত করে শিশনারেটে শ্রেরণ করা এবং দ্রাই শিশনিং –এর মাধ্যমে বিলামেন্ট সংগ্রহ করা হয়। বা বিভিন্ন গাইত রোলারের মাধ্যমে নিয়ন্ত্রণ হরে ববিদে জড়ানো হয় অথবা ক্রিমশিং হিট সেটিং ও সবশেষে কেটে হোট হোট স্ট্যাপল ফাইবারে রূপান্তরিত করা হয়। ১৩৮

অ্যাকরাইশিক ফাইবারের ভৌত গুণাবশি

১. শক্তি টেনাসিটি (গ্রাম/ডেনিয়ার) : ২ থেকে ৪.২

২. ঘনত্ব (গ্রাম/সিসি) : ১.১৬

গ্রন্থিতিস্থাপকতা : মোটামুটি।

ছিঁড়ে যাবার পূর্বে প্রসারণ : ২০ থেকে ৫৫%

৫. আর্দ্রতা ধারণক্ষমতা : ১-২.৫%

৬. রেসিলিয়েন্স : ভালো

৭. ঘর্ষণ প্রতিরোধ ক্ষমতা : ভালো

৮. রং : সাদা অথবা ধূসর

৯. তাপ প্রতিরোধক : ১৫০° সে. C পর্যন্ত প্রতিরোধ ক্ষমতাসম্পন্ন।

১০. গলনাঙ্ক : ২৩° C সে.

১১. চাকচিক্যতা : উজ্জ্বল থেকে হালকা।

রাসায়নিক গুণাবলী-

অ্যসিডে ক্রিয়া : প্রতিরোধক্ষমতা ভালো।

২) অ্যালকালিতে ক্রিয়া : শক্তিশালী অ্যালকালি ফাইবারকে ক্ষতি করে

ত) ব্লিচ-এ ক্রিয়া : ব্লিচ প্রক্রিয়া নিরাপদ।

৪) আলোর প্রতিরোধক ক্ষমতা : চমৎকার।

৫) জৈবিক দ্রাবক : প্রতিরোধক্ষমতা ভালো ।

৬) মিলডিউ -এ প্রতিরোধ ক্ষমতা : চমৎকার।

৭) পোকামাকড়ে প্রতিরোধ ক্ষমতা : আক্রান্ত করে না।

৮) রং করার ক্ষমতা : অ্যাসিড ডাই ও বেসিক ডাই দ্বারা রং করা যায়।

রং -এর প্রতি আসক্তি ভালো।

অ্যাকরাইলিক -এর ব্যবহার

 উলের মতো অনুভব ও গুণাগুণের কারণে অ্যাকরাইলিক ফাইবার নিটেড ফেব্রিক, সোয়েটার ও কম্বল তৈরিতে ব্যবহার হয়।

- ২. এটি পলিয়েস্টার ফাইবারের সাথে ব্লেভেড করে বিভিন্ন ধরনের কাপড় তৈরিতে ব্যবহৃত হয়।
- এটি কটনের সাথে ব্লেন্ডেড করে স্পোর্টস শার্ট তৈরিতে ব্যবহৃত হয়।
- 8. ভালো রেসিলিয়েন্সি ও উজ্জ্বলতার কারণে এটি পাইল ফেব্রিক তৈরিতে ব্যবহৃত হয়।
- ৫. কার্পেট ও ছোট গালিচা তৈরিতে ব্যবহৃত হয়।

পঞ্চম অধ্যায় সুতার কাউন্ট (Count of Yarn)

কাউন্ট হলো এমন একটি সংখ্যা যা সুতার একক দৈর্ঘ্যের ভর বা একক ভরের দৈর্ঘ্যকে নির্দেশ করে। সুতার কাউন্ট বা নম্বর হচ্ছে একটি সংখ্যাবাচক শব্দ, যা দ্বারা সৃক্ষতা বা স্থুলতা প্রকাশ পায়। কোনো বস্তুর সৃক্ষতা ও স্থুলতা ঐ বস্তুর ব্যাস ও প্রস্থচ্ছেদ অনুপাতকে বোঝায়। সৃক্ষতা বলতে চিকন ও স্থূলতা বলতে মোটা সুতাকে বুঝানো হয়েছে। সুতার লিনিয়ার ডেনসিটি বোঝাতে দৈর্ঘ্য ও ব্যাসের সাথে সম্পর্ককে বোঝায়। সুতা বা আঁশের একক দৈর্ঘ্যের ওজনকে লিনিয়ার ডেনসিটি বলে।

সুতার কাউন্ট নির্ণয়ের বিভিন্ন পদ্ধতি রয়েছে। বিভিন্ন আঁশের উপর নির্ভর করে কাউন্ট নির্ণয়ও বিভিন্ন হয়ে থাকে। কটন, জুট, পলিয়েস্টার ইত্যাদি ভিন্ন ভিন্ন ফাইবারের ক্ষেত্রে ভিন্ন ভিন্ন পদ্ধতি ব্যবহৃত হচ্ছে। নবম শ্রেণিতে কিছু কিছু বিষয় আলোচনা করা হয়েছে। দশম শ্রেণিতে টেক্স, ডেনিয়ার, মেট্রিক ও ওরস্টেড কাউন্ট সম্পর্কে আলোচনা করা হলো।

কাউন্টের সংজ্ঞা (Definition of Count)

কাউন্টের সংজ্ঞা সরাসরি বলতে হলে একক দৈর্ঘ্যের ভর অথবা একক ভরের দৈর্ঘ্য কে বুঝায়। ইংরেজিতে যাকে `Length per unit weight or weight per unit length' বলে।

উপরোক্ত সংজ্ঞা বাদেও বিভিন্ন সুতার জন্য বিভিন্ন ধরনের কাউন্ট রয়েছে। যেমন- কটন কাউন্ট, জুট কাউন্ট, ডাইরেক্ট সিস্টেমে কাউন্ট ও ইনডাইরেক্ট সিস্টেমে কাউন্ট ইত্যাদি যা পরবর্তীতে আলোচনা করা হয়েছে।

সুতার কাউন্টের শ্রেণিবিভাগ (Classification of Yarn count)

সুতার কাউন্ট নির্ণয়ে প্রধানত: দুইটি পদ্ধতি। যথা-

- ১। পরোক্ষ পদ্ধতি (Indirect system)
- ২। প্রত্যক্ষ পদ্ধতি (Direct System)

পরোক্ষ পদ্ধতি (Indirect system)-

পরোক্ষ পদ্ধতিতে সুতার একক ভরের দৈর্ঘ্যকে কাউন্ট বলে। সুতার কাউন্ট যত বেশি হবে সুতা তত চিকন বা সৃক্ষ হবে। আর কাউন্ট যত কম হবে সুতা তত মোটা হবে। পরোক্ষ পদ্ধতিতে প্রতিটি সুতার ক্ষেত্রেই একটি নির্দিষ্ট দৈর্ঘ্য আছে আবার ওজনেরও একক আছে যা দ্বারা সহজেই সুতার কাউন্ট বের করা সম্ভব।

উদাহরণস্বরূপ ১০০ কটন কাউন্টের সুতার চেয়ে ১০ কটন কাউন্টের সুতা অনেক মোটা। কটন, উল, উরস্টেড, লিনেন ইত্যাদি আঁশের তৈরি সুতার জন্য এই পদ্ধতি ব্যবহৃত হয়। নিম্নের সূত্রের সাহায্যে সহজেই সূতার কাউন্ট নির্ণয় করা সম্ভব।

সুতার কাউন্ট
$$N=rac{L imes\omega}{l imes W}$$
 এখানে N $=$ সুতার কাউন্ট L $=$ নমুনা সুতার দৈর্ঘ্য

ω = ওজনের একক

W = নমুনা সুতার ওজন

l = দৈর্ঘ্যের একক

অর্থাৎ সুতার কাউন্ট = <u>নমুনা সুতার দৈর্ঘ্য x ওজনের একক</u> দৈর্ঘ্যের একক x নমুনা সুতার ওজন

প্রত্যক্ষ পদ্ধতি (Direct System)

প্রত্যক্ষ পদ্ধতিতে সুতার একক দৈর্ঘ্যের ভরকে কাউন্ট বলে। সুতার কাউন্ট যত বেশি হবে সুতা তত মোটা হবে এবং কাউন্ট যত কম হবে সৃক্ষ অর্থাৎ চিকন হবে। এই পদ্ধতিতেও একটি নির্দিষ্ট দৈর্ঘ্যের একক ও ওজনের একক আছে যা দ্বারা সহজেই সুতার কাউন্ট বের করা যায়।

উদাহরণস্বরূপ - ২৪ পাউন্ডস/স্পাইন্ডেল সুতার চেয়ে ৮ পাউন্ডস / স্পাইন্ডেলের সুতা অনেক চিকন। সাধারণত জুট, সিব্ধ, উল, হেস্প, পলিয়েস্টার, নাইলন ইত্যাদির জন্য ব্যবহৃত হয়।

সুতার কাউন্ট
$$N = rac{L imes \omega}{l imes W}$$

এখানে N = সুতার কাউন্ট

L = নমুনা সুতার দৈর্ঘ্য

ω = ওজনের একক

W = নমুনা সুতার ওজন

l = দৈর্ঘ্যের একক

অর্থাৎ সুতার কাউন্ট =

নমুনা সুতার দৈর্ঘ্য × দৈর্ঘ্যের একক ওজনের একক × নমুনা সুতার ওজন

টে**র** (Tex)-

টেক্স পদ্ধতিকে ইউনিভার্সেল সিস্টেমও (Universal system) বলা হয়। ISO (International Standarization Organization) সূতার কাউন্ট নির্ণয়ের ক্ষেত্রে টেক্স পদ্ধতির প্রবর্তন করেন। সকল ধরনের সূতা, প্রাকৃতিক ও কৃত্রিম যে ধরনেরই হোক না কেন এ পদ্ধতিতে কাউন্ট বের করা সম্ভব। আঁশ থেকে সূতা প্রতিটি স্তরেই এ পদ্ধতিতে কাউন্ট বের করা সম্ভব।

১০০০ মিটার সুতার ওজন যত গ্রাম তত টেক্স। সুতা যত সৃক্ষ হবে টেক্স তত কম হবে।

উদাহরণস্বরূপ-এক কিলোমিটার অর্থাৎ ১০০০ মিটার সুতার ওজন ১ গ্রাম হলে সুতার টেক্স ১। এখানে দৈর্ঘ্যের একক ১০০০ মিটার ও ওজনের একক গ্রাম।

অতি সৃক্ষ আঁশ থেকে শুরু করে অতি মোটা স্লাইভারের কাউন্ট পর্যন্ত এ পদ্ধতিতে বের করা সম্ভব। অতি সৃক্ষ আঁশ ও সুতার ক্ষেত্রে মিলিটেক্স (Militex) এবং মোটা ও ছুল স্লাইভারের ক্ষেত্রে কিলোটেক্স ব্যবহার করা হয়। মিলিটেক্স (Militex) ১ কিলোমিটার সুতার ওজন যত মিলিগ্রাম তত মিলিটেক্স।

কিলোটেক্স (Kilotex) ১ কিলোমিটার সুতার ওজন যত কিলোগ্রাম তত কিলোটেক্স। কিলোটেক্সকে সংক্ষেপে K-tex টেক্স বলা হয়।

টেক্স কাউন্ট =
<u>নমুনা সুতার ওজন (গ্রাম) × ১০০০ মিটার</u> **ডেনিয়ার (Denier)-**

ডেনিয়ার পদ্ধতি সাধারণত কৃত্রিম ফিলামেন্টের ক্ষেত্রে বেশি ব্যবহৃত হয়। ডেনিয়ার পদ্ধতিতে কাউন্ট নির্ণয়ের ক্ষেত্রে–

৯০০০ হাজার মিটার যত গ্রাম তত ডেনিয়ার। এখানে ওজনের একক গ্রাম। দৈর্ঘ্যের একক ৯০০০ মিটার।

উদাহরণস্বরূপ- ৯০০০ মিটার সুতার ওজন ১০০ গ্রাম হলে সুতার কাউন্ট ১০০ ডেনিয়ার। যা সংক্ষেপে ৮০D হিসেবে প্রকাশ করা হয়।

মেট্রিক কাউন্ট (Metric count)

মেট্রিক কাউন্ট নির্ণয়ের ক্ষেত্রে

১০০ মিটারে যতগুলো স্কেইন এর ওজন ১ কেজি হবে সূতার কাউন্ট তত।

এখানে ওজনের একক ১ কেজি।

দৈর্ঘ্যের একক ১০০০ মিটার।

অন্যভাবে বলা যায়, ১ কেজি সুতার ১০০০ মিটারের ক্ষেইনের সংখ্যাই কাউন্ট।

উদাহরণস্বরূপ- ১ কেজি সুতায় যদি ১০০০ মিটারে ৫০টি স্কেইন তৈরি করা সম্ভব হয় তবে উক্ত সুতার কাউন্ট ৫০। সংক্ষেপে ইহা Nm অর্থাৎ মেট্রিক কাউন্ট এভাবে প্রকাশ করা হয়।

মেট্রিক কাউন্ট (Nm) = $\frac{- \lambda \lambda - \lambda \lambda}{- \lambda \lambda - \lambda} = \frac{- \lambda \lambda - \lambda \lambda}{- \lambda \lambda - \lambda \lambda} = \frac{- \lambda \lambda \lambda - \lambda \lambda \lambda}{- \lambda \lambda \lambda - \lambda \lambda \lambda}$

উরস্টেড কাউন্ট (Worsted count)

উরস্টেড কাউন্ট নির্ণয়ের ক্ষেত্রে

'৫৬০ গজের যতগুলো হ্যাংকের ওজন ১ পাউন্ড হবে সূতার উরস্টেড কাউন্ট তত'

এখানে ওজনের একক = ১ পাউন্ড

দৈর্ঘ্যের একক = ৫৬০ গজ

কাজেই অন্যভাবে বলা যায়, ১ পাউন্ড ওজনের সুতার ৫৬০ গজের হ্যাংকের সংখ্যাই উরস্টেড কাউন্ট। উদাহরণস্বরূপ- ১ পাউন্ড সুতার যদি ৫৬০ গজের ৩০টি হ্যাংক তৈরি করা সম্ভব হয় তবে উক্ত সুতার কাউন্ট ৩০।

উরস্টেড কাউন্ট =
$$\frac{-\lambda \ln |\nabla|}{-\lambda \ln |\nabla|} \times |\nabla| \nabla| \times |\nabla|$$
 তার ওজন (পাউন্ড) \times ৫৬০ গজ

টেক্স, ডেনিয়ার, মেট্রিক ও ওরস্টেড কাউন্টের মধ্যে সম্পর্ক

১। কটন কাউন্ট ও টেক্স এর মধ্যে সম্পর্ক

২। কটন কাউন্ট ও ডেনিয়ারের মধ্যে সম্পর্ক

৩। ডেনিয়ার ও টেক্স এর মধ্যে সম্পর্ক

কটন কাউন্ট ও টেক্স এর মধ্যে সম্পর্ক ডেনিয়ার = $8 \times$ টেক্স অথবা টেক্স = $0.555 \times$ ডেনিয়ার

৪। উরস্টেড কাউন্ট ও কটন কাউন্টের মধ্যে সম্পর্ক

উরস্টেড কাউন্ট = ০.৬৬৬
$$\times$$
 কটন কাউন্ট অথবা = 5.6×5 উরস্টেড কাউন্ট

বিভিন্ন ধরনের সুতার কাউন্ট নির্ণয়ের সূত্রাবলি :

ইয়ার্ন কাউন্ট সম্পর্কীয় সমস্যাবলি:

১। ৯৬০ মিটার সুতার ওজন ২৫ গ্রাম হলে উক্ত সুতার টেক্স কত? সমাধান আমরা জানি.

কাউন্ট =
$$\frac{$$
 ওজন (গ্রাম) \times ১০০০ মিটার ১ গ্রাম \times দৈঘ্য (মিটার)

এখানে

ওজন = ২৫ গ্রাম দৈর্ঘ্য = ৯৬০ মিটার টেক্স = ? কাজেই টেক্স = <u>ওজন (গ্রাম) × ১০০০ মিটার</u> ১ গ্রাম × দৈর্ঘ্য (মিটার)

২। ২৪ টেক্স ফিলামেন্ট- এর ১০০ মিটার সুতার ওজন কত গ্রাম হবে। সমাধান আমরা জানি.

টেক্স = <u>ওজন (গ্রাম) × ১০০০ মিটার</u> ১ গ্রাম × দৈর্ঘ্য (মিটার) এখানে

৩। ১৩৫০ মিটার সুতার ওজন ১০ গ্রাম হলে ডেনিয়ার কত? সমাধান

আমরা জানি.

এখানে

ওজন = ১০ গ্রাম দৈর্ঘ্য = ১৩৫০ মিটার ডেনিয়ার = ?

কাজেই ডেনিয়ার =
$$\frac{$$
ওজন (গ্রাম) \times ৯০০০ মিটার $}{$ ১ গ্রাম \times দৈঘ্য (মিটার)

৪। ৪০০ মিটার সুতার ওজন ৪০ গ্রাম হলে উক্ত সুতার মেট্রিক কাউন্ট বের কর । সমাধান

আমরা জানি,

এখানে

কাজেই, মেট্রিক কাউন্ট =
$$\frac{80 \times 5}{5000 \times 80}$$

$$= \frac{800 \times 5000}{5000 \times 80}$$

$$= 50 's$$

সুতার টুইস্ট বা পাক (Twist of yarn)-

একটি সুতার প্রস্থচ্ছেদ করলে তার মধ্যে অনেকগুলো আঁশ দৃষ্টিগোচর হবে। আঁশগুলো আলাদা আলাদা থাকলে একসঙ্গে এটাকে আমরা সুতা বলব না। কিন্তু এই আলাদা আঁশসমূহ একত্রে মোচড় দেওয়া অবস্থায় থাকলে তখন আমরা তাকে সুতা বলব। কাজেই আঁশ যখন আলাদা আলাদা পাশাপাশি থাকে তাকে সুতায় রূপান্তরিত করার জন্য প্রয়োজনীয় পরিমাণ প্যাঁচ বা মোচড় দেওয়া হয়় তখন তাকে আমরা পাক বা টুইস্ট বলতে পারি। স্পিনিং মেশিনে সুতা উৎপাদনকালীন সময়ে যান্ত্রিক পদ্ধতিতে টুইস্ট প্রদান করা হয়়। টুইস্ট প্রদানের ফলে সুতায় শক্তি বৃদ্ধি ও প্যাকেজে জড়ানো এবং বহনে সুবিধা হয়়।

স্পিনিং ফ্রেমে প্রথমে সুতা উৎপাদন করে পরে টুইস্ট প্রদান করে সুতায় শক্তি বৃদ্ধি করে ও পুরোপুরি সুতায় রূপ দেয়। এই সুতা জড়ানো অর্থাৎ কোনো প্যাকেজে জড়ানো না হলে স্পিনিং ফ্রেম থেকে সুতা সংগ্রহ করা সম্ভব হবে না। সুতা সংগ্রহ করার জন্য স্পিনিং মেশিনেই ছোট-বড় প্যাকেজে রূপান্তরিত করতে হবে। এই প্যাকেজে রূপান্তরের জন্য স্পিনিং ফ্রেমে প্যাকেজ বিল্ডিং -এর প্রয়োজন রয়েছে। প্যাকেজ বিল্ডিং-এর জন্য স্পিনিং ফ্রেমে যে মোশন কাজ করে তাই বিল্ডিং মোশন।

টুইস্ট

সুতার মধ্যে অবস্থিত আঁশসমূহকে তার অক্ষের চারপাশে একটি নির্দিষ্ট নিয়মে ডান থেকে বাম দিকে অথবা বাম থেকে ডান দিকে যে প্যাঁচ বা মোচড় দেওয়া হয় তাকে প্যাঁচ বা টুইস্ট বলে। টুইস্ট প্রদানের মূল উদ্দেশ্য-

- ০ সুতার শক্তি বৃদ্ধি করা।
- ০ সুতার মধ্যে অবস্থিত আঁশসমূহকে ধরে রাখা।
- ০ সুতার চাকচিক্যতা বৃদ্ধি করা।
- ০ সুতা দৃঢ় করা।
- ০ সুতাকে গোলাকৃতি আকার ধারণ করা।
- ০ সুতার মধ্যে আঁশ দ্বারা ডান থেকে বামে বা বাম থেকে ডানে একটি কোণের সৃষ্টি করা।
- ০ পরবর্তী প্রক্রিয়া অর্থাৎ কাপড় তৈরিতে সহায়তা করা।

টুইস্ট -এর গুরুত্ব

সুতার টুইস্ট -এর গুরুত্ব নিচে আলোচনা করা হলো। ১। টুইস্ট প্রদানে সুতার শক্তি বৃদ্ধি পায়।

- ২। পাশাপাশি অবস্থিত সমান্তরাল আঁশসমূহে টুইস্ট প্রদানের কারণে আঁশের মধ্যে আন্তঃসংযোগ প্রবণতা বৃদ্ধি পায়।
- ৩। স্পিনিং থেকে উৎপাদিত সুতা দৃঢ় হয় ফলে স্পিভেল জড়াতে সহজ হয়।
- ৪। টুইস্ট প্রদানের ফলে সুতা গোলাকৃতি আকার ধারণ করে এবং সুতার চাকচিক্যতা বৃদ্ধি পায়।
- ৫। টুইস্ট প্রদান নির্দিষ্ট সীমার মধ্যে থাকলে সুতা যথেষ্ট মজবুত হয়।
- ৬। টুইস্ট প্রদানের কারণেই পরবর্তী প্রক্রিয়া অর্থাৎ কাপড় তৈরিতে সহজ হয়।

সুতায় টুইস্ট প্রদান করার পর নিমুলিখিত পরিবর্তনগুলো লক্ষ্য করা যায়

- সুতায় টুইস্ট প্রদানের ফলে সুতার কাউন্ট নির্ণয় করতে সহজ হয়।
- সুতায় টুইস্ট প্রদানের কারণে সহজেই বহনযোগ্য হয়, কারণ টুইস্টবিহীন আঁশ বহনযোগ্য নয়।
- সুতায় আঁশসমূহ পাশাপাশি থাকলেও শক্তিতে কোনো সহায়তা করে না যতক্ষণ পর্যন্ত না সুতায় টুইস্ট প্রদান করা হয়।
- সুতার নির্দিষ্ট আকার অর্থাৎ সুতা মাত্রই গোলাকার, তা একমাত্র টুইস্ট প্রদান করার জন্যই সম্ভব।
- সুতার চাকচিক্যতা বৃদ্ধির জন্য টুইস্ট প্রদান করা অপরিহার্য।
- সুতা দ্বারা কাপড় প্রস্তুত করা হয়। সুতায় পাক প্রদান করার কারণেই কাপড় তৈরি সম্ভব হয়েছে।
- সুতায় পাক প্রদান বের করার জন্য ইঞ্চিতে কয়টি মোচড় আছে তা বের করে টিপিআই (TPI) নির্ণয়
 করা হয়।

টুইস্ট -এর প্রকারভেদ

টুইস্ট -এর দিকের উপর নির্ভর করে টুইস্ট -এর প্রকারভেদ করা হয়। অর্থাৎ আঁশসমূহ সুতার অক্ষের সাথে কোনো দিকে আবর্তিত হচ্ছে তার উপর ভিত্তি করে টুইস্টের প্রকারভেদ করা হয়। তাই টুইস্ট -এর দিকের উপর নির্ভর করে এক দুই ভাগে ভাগ করা হয়।

১। এস টুইস্ট (S-twist)

২। জেড টুইস্ট (Z-twist)

এস টুইস্ট (S-twist)-

এক্ষেত্রে আঁশসমূহ সূতার অক্ষের সাথে বাম দিকে ঘুরে ঘুরে ঘড়ির কাঁটা যে দিকে ঘুরে তার বিপরীত দিকে ঘুরে যে টুইস্ট গঠন করে তাকে এস টুইস্ট (S-twist) বলে।

ইংরেজি এস (S) অক্ষরের পেটের অংশ যেভাবে বাঁক খায়, আঁশসমূহও সুতার অক্ষের সাথে সেভাবে পাক খায় বলে এরূপ নামকরণ করা হয়েছে।

জেড টুইস্ট (Z-twist)-

এক্ষেত্রে আঁশসমূহ সুতার অক্ষের সাথে ডান দিকে ঘুরে ঘুরে ঘড়ির কাঁটা যে দিকে ঘুরে তার দিকে ঘুরে যে টুইস্ট গঠন করে তাকে এস টুইস্ট (S-twist) বলে।

ইংরেজি এস (Z) অক্ষরের পেটের অংশ যেভাবে বাঁক খায়, আঁশসমূহও সূতার অক্ষের সাথে সেভাবে পাক খায় বলে এরূপ নামকরণ করা হয়েছে।

চিত্র: এস টুইস্ট ও জেট টুইস্ট এর ছবি

ষষ্ঠ অধ্যায় সেকশনাল ওয়ার্পিং (Sectional Warping)

সাধারণত বহু সংখ্যক টানা সুতা বিশিষ্ট গ্রে এবং চেক ফেব্রিক তৈরির ক্ষেত্রে সেকশনাল ওয়ার্পিং ব্যবহার করা হয়। এটা ছাড়াও মোটা সুতার সংখ্যা ১৫% এর বেশি রঙিন সুতা ব্যবহার করে বিমিং করার প্রয়োজন হলে সেকশনাল ওয়ার্পিং-এর মাধ্যমে বিমিং করা হয়। হ্যান্ড লুমের ওয়ার্পিং-এর ক্ষেত্রেও সেকশনাল ওয়ার্পিং করা হয়। টানা সুতাগুলোকে হ্যাংক অবস্থায় সাইজিং করা সুতাগুলোকে ববিনে জড়িয়ে ক্রিলে সাজানো হয়। ক্রিল হতে নির্দিষ্ট প্রস্থের সুতাকে সারিবদ্ধভাবে ড্রামে জড়ানো হয়। এভাবে কয়েক সারি সুতা পরপর ড্রামে সাজিয়ে প্রয়োজনীয় প্রস্থের সুতার সারি প্রথমে ড্রামে ও পরে ড্রাম থেকে উইভার্স বিমে জড়িয়ে ওয়ার্পিং করা হয়। উপরোক্ত পদ্ধতিই সেকশনাল ওয়ার্পিং। সেকশনাল ওয়ার্পিং-এ সময় বেশি লাগে।

বিভিন্ন ধরনের ক্রিল

বিমিং করার পূর্বে যে ফ্রেমে ওয়াইভিং প্যাকেজ অর্থাৎ কোনো সাজিয়ে রাখা হয় সে ফ্রেমকে ক্রিল বলে। ক্রিল প্রধানত তিন প্রকার-

- ১. সিঙ্গেল এন্ড ক্রিল (Single end creel)
 - (ক) ডুপ্লিকেটেড ক্রিল
 - (খ) ট্রাক ক্রিল।
- ২. ম্যাগাজিন ক্রিল
- ৩. ট্রাভেলিং ক্রিল

১. সিঙ্গেল এন্ড ক্রিল

যে ক্রিলের মধ্যে একটি ইয়ার্ন প্যাকেজে একটি টানা সুতা জড়ানোর জন্য সুতা নির্দিষ্ট থাকে তাকে সিঙ্গেল এন্ড ক্রিল বলে। এ জন্য ক্রিলগুলোর প্যাকেজের আকার অনেক বড় হয়। সিঙ্গেল এন্ড ক্রিল ২ প্রকার।

ডুপ্লিকেটেড ক্রিল

এই ক্রিলের ক্রিল ফ্রেম ফিল্ড ও হেড স্টক মুভেবল। কাজেই এক্ষেত্রে দুইটি ক্রিলের সুতা ব্যবহৃত হয়। ট্রাক ক্রিল: এখানে হেড স্টক ফিক্রাড কিন্তু ক্রিল মুভেবল।একটি ক্রিলের সুতা শেষ হয়ে গেলে তাকে সরিয়ে রিজার্ভ ক্রিল ব্যবহার করা হয়।

২. ম্যাগজিন ক্রিল:

একটি বহুমুখী প্যকেজ ক্রিল। এখানে একটি টানা সুতার জন্য ২টি প্যাকেজ ব্যবহৃত হয়। যার প্রথম প্যাকেজ এর শেষ প্রান্ত ২য় প্যাকেজের ১ম প্রান্তের সাথে গিঁট দ্বারা যুক্ত থাকে। একটি প্যাকেজের সুতা শেষ হয়ে গেলে ২য় প্যাকেজের সুতা বিমিং হতে থাকে।

৩. ট্রাভেলিং ক্রিল বা মুভেবল প্যাকেজ ক্রিল

এখানে প্যাকেজ ক্যারিয়ার লুপ আকারে ঘুরতে থাকে। বাইরের ক্রিলের প্যাকেজের সুতা শেষ হয়ে গেলে উক্ত প্যাকেজে ঘুরে ভেতরে চলে যায় এবং বাইরের পরবর্তী প্যাকেজ থেকে সুতা বিমিং হতে থাকে এবং ভেতরের খালি প্যাকেজ সরিয়ে পুনরায় পূর্ণ প্যাকেজ রাখা হয়।

উপরোক্ত ক্রিলসমূহ ছাড়াও হ্যান্ডলুমে ব্যবহারের জন্য কেজ ক্রিল ও বুক ক্রিল ব্যবহৃত হয়।

সেকশনাল ওয়ার্পিং-এর সংজ্ঞা

যে ওয়ার্পিং প্রক্রিয়ায় টানা সুতাকে প্রস্থ বরাবর ভাগ করে ভাগ ভাগ অবস্থায় দ্রামে পাশাপাশি জড়ানোর পরে সবগুলো সূতাকে উইভার্স বিমে একসাথে বিমিং করা হয় তাকে সেকশনাল ওয়ার্পিং বলে।

চিত্র : ওয়ার্পিং

সেকশনাল ওয়ার্পিং-এর ধাপ

নিমুলিখিত ধাপে সেকশনাল ওয়ার্পিং করা হয়

স্পিনারস ববিন (Spinner's bobbin)

স্পিনিং বিভাগ হতে প্রাপ্ত রিং ববিনকে সাধারণত স্পিনারস ববিন বলা হয়।

হ্যাংক (Hank)

রিং ববিন হতে ওয়াইন্ডিং বিভাগ রিলিং এর মাধ্যমে সুতাসমূহকে হ্যাংক আকারে নেওয়া হয়।

সাইজিং (Sizing)

টানা সুতা শক্তি বৃদ্ধি করা ও তাঁতে টানা সুতা ছেঁড়ার হাত থেকে রক্ষা করার জন্য হ্যাংক আকারে টানা সুতাসমূহকে সাইজিং করা হয়।

ববিন ওয়াইন্ডিং (Bobbin winding)

সাইজিং করা হ্যাংক সুতাকে সেকশনাল ওয়ার্পিং করার জন্য ফ্লাঞ্জ (Flange) ববিনে জড়ানো হয়।

ক্রিলিং (Creeling)

সুতাসহ ফ্লাঞ্জ ববিনকে ক্রিলে সাজাতে হবে যাতে পরবর্তীতে দ্রামে প্রয়োজনীয় সংখ্যক সুতা জড়ানো যায়।

দ্রামে ওয়াইভিং (Drum winding)

ক্রিলে সাজানো ববিন থেকে সুতার প্রান্ত নিয়ে ড্রামে সেকশন সাজানো হয়।

উইভার্স বিম (Weaver's beam)

দ্রাম থেকে সুতার সংখ্যা অনুযায়ী সম্পূর্ণ সুতার সারিকে একটি বিমে জড়ানো হয় যা পরবর্তীতে উইভিং করার জন্য তাঁতে উঠানো হয়।

সেকশনাল ওয়ার্পিং-এর জন্য ক্রিল সাজানো

টানা করার জন্য কাপড়ের দৈর্ঘ্য-প্রস্থ ও ইঞ্চি প্রতি সুতার সংখ্যা এবং সুতার পরিমাণ নির্ণয় করার পর ঐ সুতাগুলোকে ফ্লাঞ্জ ববিনে জড়িয়ে নিতে হয়। সুতা জড়ানো ববিনসমূহ ক্রিলের ফাঁকে শলা বা কাঠি পরিয়ে ক্রিলে সাজিয়ে নিতে হয়। কাঠ দিয়ে তৈরি ক্রিলের গঠনপ্রণালি কয়েক প্রকার হয়ে থাকে। ক্রিলের কাজ শুধু টানা প্রস্তুতের জন্য সুতা জড়ানো ববিনসমূহ এমনভাবে সাজিয়ে নির্ধারিত নিয়মে সেকশনাল ওয়ার্পিং সমাপ্ত করা। ক্রিলের মধ্যে পরিমাণমতো ববিনসমূহ এমনভাবে সাজাতে হয় যেন সুতা খুলে আসার সময় সব ববিন একই দিকে ঘুরতে থাকে এবং সুতার প্রান্ত সকল একই নিয়মে একই দিক থেকে বের হতে থাকে। পাশাপাশি দুইটি সুতা একটি অপরটির বিপরীত দিক থেকে বের হয়। তবে উভয়টি একত্রে জড়িয়ে কাজের ধারাবাহিকতা ব্যাহত করবে। কাজেই এ ব্যাপারে বিশেষ সতর্কতা অবলম্বন করা উচিত। কাপড় ইঞ্চি প্রতি টানা সুতার সংখ্যা সাজায়ে নিলে কাজের সুবিধা হয়। তারপর ববিন থেকে সুতার প্রান্ত কেটে দিয়ে সেলেটের চোখ ও ফাঁকে ধারাবাহিকভাবে গেঁথে নিয়ে সকল সুতার মাথা একত্র করে গিঁট দিয়ে টানা সেকশন করে ড্রামে জড়ানো হয়।

সপ্তম অধ্যায় মাড় প্রকরণ (Sizing)

স্পিনিং ও ওয়াইভিং বিভাগ হতে প্রাপ্ত সুতা দ্বারা তৈরি ওয়ার্পাস বিম দ্বারা সরাসরি উইভিং করা যায় না। সুতার ক্ষুদ্র ক্ষুদ্র আঁশ বাইরের দিকে বের হয়ে থাকে। এছাড়াও ঝাঁপ ও চক্ষু দ্বারা শেড গঠনের জন্য টানা সুতা বারবার ঘষা খায়। ফলে এর হেয়ারিনেস বৃদ্ধি পায় ও সুতার শক্তি কমে যায়। অনেক সময় সুতার পাক কম থাকে, সুতা দুর্বল থাকে যার কারণে তাঁতের বিভিন্ন মোশন, ঝাঁপের ওঠানামা মাকু -এর ঘর্ষণ সহ্য করতে পারে না। ইত্যাদি কারণে উইভিং করার সময় টানা সুতা ছিঁড়ে যায়, উৎপাদন ব্যাহত হয়। উৎপাদন খরচ বেড়ে যায়, কাপড়ও ক্রটিপূর্ণ হয়। উপরোক্ত অসুবিধাসমূহ দূর করার জন্য ওয়ার্পাস বিমের টানা সুতায় মাড় দেওয়া হয়। মাড় প্রকরণে প্রাথমিক উদ্দেশ্য হলো টানা সুতার ন্যূনতম কোনো ক্ষতি সাধন না করে কাপড় বয়ন অর্থাৎ উইভিং করা। মাড় প্রকরণ সুতা ও কাপড়ের বৈশিষ্ট্য পরিবর্তন করে কাপড়ের দৃঢ়তা ও ওজন বৃদ্ধি করে। সর্বেপিরি সুতার শক্তি ও মসুণতা বৃদ্ধি করে টানা সুতা ছেঁড়ার হার কমিয়ে দেয়।

মাড় প্রকরণের সংজ্ঞা (Definition of sizing)

টানা সুতার শক্তি বৃদ্ধি ও ঘর্ষণজনিত কারণে সুতা ছেঁড়ার হাত থেকে রক্ষা করার জন্য বিমিং করা টানা সুতার পৃষ্ঠব্যাপী আঠালো পদার্থ দ্বারা মসৃণ করার প্রণালিকে মাড় প্রকরণ বা সাইজিং (Sizing) বলে।

সাইজিং -এর উদ্দেশ্য

- ১. টানা সুতার ঘর্ষণজনিত প্রতিরোধ ক্ষমতা বৃদ্ধি করা।
- ২. টানা সুতাকে কোমল মসৃণ ও উজ্জ্বল করা।
- ৩. টানা সুতার বাইরের দিকে বেরিয়ে থাকা ভাসমান আঁশগুলো সুতার পৃষ্ঠে লাগিয়ে দিয়ে সুতাকে মসুণ করা ও শক্তি বৃদ্ধি করা।
- দুর্বল ও কম শক্তিসম্পন্ন সুতাকে ব্যবহার উপযোগী করা।
- কুতার উপর প্রতিরোধকারী পাতলা আবরণ দেওয়া।
- ৬. সুতার শক্তি বৃদ্ধি করা।
- পুতার ওজন বৃদ্ধি করা।
- পলিয়েস্টার মিশ্রিত সুতায় যে স্থির বিদ্যুৎ উৎপন্ন হয় তা য়াস করা।

মাড়ের উপাদানসমূহ

মাড় বা সাইজ তৈরির জন্য বিভিন্ন উপাদানের প্রয়োজন। প্রতিটি উপাদানেরই আলাদা আলাদা গুণাগুণ রয়েছে। সুতার গুণগত মান ও প্রকারের উপর নির্ভর করে বিভিন্ন প্রকার মাড়ের উপাদান প্রয়োগ করা হয়। নিম্নে মাড়ের উপাদানসমূহ উল্লেখ করা হলো।

- ১. শ্বেতসারযুক্ত উপাদান (Adhesive substance)
- ২. সফেনিং এজেন্টস (Softening Agents)
- ৩. হাইগ্রোসকোপিক এজেন্টস (Hygroscopic Agents)
- 8. অ্যান্টিসেপটিক এজেন্টস (Anticeptics Agents)
- ৫. নিউট্রালাইজিং এজেন্টস (Neutralizing Agents)

- ৬. অ্যান্টিফোমিং এজেন্টস (Antifoaming Agents)
- ৭. টিনটিং বা রঞ্জক উপাদান (Tinting of Colouring Agents)
- ৮. ওয়েটিং এজেন্টস (Weighting Agents)

উপাদানসমূহের বিবরণ

শেতসারযুক্ত উপাদান (Adhesive substance)

একে মাড়/সাইজের মূল উপাদনও বলা হয়। এ উপাদানের জন্য মাড় আঠালো হয়। এ শ্বেতসারযুক্ত উপাদানের সাথে পানি মিশ্রিত করে তাপ প্রয়োগ করলে আঠালো পদার্থের পেস্ট (Pest) -এ পরিণত হয়।

উদাহরণ- মেইজ স্টার্চ (Maise starch) তেঁতুলের বিচির পাউডার (Tamarind seed powder), টপিওকা স্টার্চ (Topioca starch), ময়দা (Flour), সাগু স্টার্চ (Sagoo starch), আলুর প্যালো (Potato starch), রাইচ স্টার্চ (Rice starch) ইত্যাদি প্রাকৃতিক স্টার্চ।

আবার সিএমসি (Carboxy Methyl Cellulose), পিভিএ (Polyvenyle Alcohol), পলিঅ্যাক্রাইলিক অ্যাসিড ইত্যাদি কৃত্রিম স্টার্চ বা অ্যাডহেসিভ।

সফেনিং এজেন্টস (Softening Agents)

সফেনিং এজেন্টকে কোমল রাখার উপাদানও বলা হয়। টানা সুতা কখনও কখনও শক্ত, অমসৃণ ও ভঙ্গুর হয়। এছাড়া সুতার খসখসে ভাব ও নমনীয়তা দূর করার জন্য সফেনিং এজেন্ট ব্যবহার করা হয়।

উদাহরণ- মাটন ট্যালো (Mutton tallow), টেলটেক্স (Teltex), নারিকেল তেল (Coconut oil), ক্যাস্টর অয়েল, তিলের তেল, তালের তেল, তুলার বীজের তেল, জলপাই এর তেল, রেড়ির তেল, প্যারাফিন ওয়াক্স (Parafin wax), চায়না মোম (China wax), সুগার ক্যান ওয়াক্স (Sugarcane wax), ওয়াক্স (Wax), সফট সোপ (Soft soap) ইত্যাদি।

হাইশ্রোসকোপিক এজেন্টস (Hygroscopic Agents)

সুতাকে আর্দ্র রাখার জন্য হাইগ্রোসকোপিক এজেন্ট ব্যাবহার করা হয়। আর্দ্র রাখার উপাদানসমূহ বাতাস হতে জলীয় বাষ্প গ্রহন করে থাকে। এ এজেন্টস ব্যবহার করার ফলে টানা সুতা অপেক্ষাকৃত বেশি পরিমান আর্দ্রতা শোষণ করে সুতাকে নমনীয় রাখতে সাহায্য করে।

উদাহরণ- ম্যাগনেসিয়াম ক্লোরাইড (MgCl2), ক্যালসিয়াম ক্লোরাইড (CaCl2), গ্লিসারিন, জিঙ্ক ক্লোরাইড (ZnCl2), ডাই ইথিলিন গ্লাইকল, সরবিটল ইত্যাদি।

অ্যান্টিসেপটিক এক্ষেন্টস (Anticeptics)

একে বাংলায় প্রতিষেধক উপাদান বলা হয়। মিলডিউ অর্থাৎ ছত্রাক আক্রমণ থেকে রক্ষার জন্য প্রতিষেধক উপাদান ব্যবহার করা হয়। সাধারণত সমস্ত স্টার্চই ছত্রাক দ্বারা আক্রান্ত হওয়ার আশঙ্কা থাকে। কাজেই কার্বন সুতা সাইজিং করার প্রয়োজনে স্টার্চ -এর পাশাপাশি অ্যান্টিসেপটিকস প্রয়োগ করার প্রয়োজন হয়।

উদাহরণ- জিঙ্ক ক্লোরাইড ($ZnCl_2$), কপার সালফেট ($CuSO_4$), সেলিসাইটিক অ্যাসিড ($C_6H_4(OH)COOH$), সোডিয়াম সিলকো ক্লোরাইড, বিটা নেপথলস, কার্বোলিক অ্যাসিড ইত্যাদি।

নিউট্রালাইজিং এজেন্টস (Neutralizing Agents)

মাড় দ্রবণ প্রস্তুত করার সময় দ্রবনের (P^H) মাত্রা পরিবর্তিত হওয়ার সম্ভাবনা থাকে। কাজেই দ্রবণকে

নিউট্রাল করার জন্য নিউট্রালাইজিং এজেন্টস যোগ করা হয়। যতক্ষণ পর্যন্ত দ্রবণের (P^H) মাত্রা ৬.৮ না হয় ততক্ষণ পর্যন্ত অল্প অল্প করে এ এজেন্টস ব্যবহার করা হয়।

উদাহরণ- সোডা অ্যাশ।

অ্যান্টিফোমিং এজেন্টস (Antifoaming Agents)

মাড় দ্রবণ অথবা মাড় পেস্ট প্রস্তুত করার সময় দ্রবণে ফেনা হবার সম্ভাবনা দেখা যায়। যার ফলে উক্ত দ্রবণ টানা সুতায় প্রয়োগ করতে অসুবিধার সৃষ্টি হয়। এ জন্য মাড় দ্রবণে অ্যান্টিফোমিং এজেন্টস ব্যবহার করা হয়। যা মাড়, পেস্ট বা দ্রবণে ফেনার উৎপন্ন হতে বাধা প্রদান করে।

উদাহরণ- অ্যাসিটিক অ্যাসিড (CH_3COOH), কেরোসিন, টার্পেন্টাইন, পাইন অয়েল, অ্যামাইল, অ্যালকোহল, ট্রাইউ বিউটাইল ফসফেট, সিলিকন ডিফোমার ইত্যাদি।

টিনটিং বা র**ঞ্জ**ক উপাদান (Tinting of Colouring Agents)

টানা সূতা ও উৎপাদিত কাপড়ের প্রাকৃতিক রংকে নিউট্রালাইজড করার জন্য এ এজেন্ট ব্যবহৃত হয়। সাধারণত যে সমস্ত কাপড় গ্রে অবস্থায় বিক্রি হবে উক্ত কাপড় প্রস্তুত করতে টানা সূতায় মাড় দেওয়ার সময় ব্রু এজেন্ট প্রয়োগ করা হয়ে থাকে।

উদাহরণ- টিনাপল (Tinapol) আলট্রা মেরিন ব্রু, অ্যাসিড ডাই ও অপটিক্যাল ব্রাইটেনিং এজেন্ট ইত্যাদি।

ওয়েটিং এচ্ছেন্টস (Weighting Agents)

সুতা ও উৎপাদিত কাপড়ের ওজন বৃদ্ধি করার জন্য যে পদার্থ ব্যবহার করা হয় সেগুলোই ওয়েটিং এজেন্ট। শুধু গ্রে অবস্থায় বিক্রি করার জন্যই এ ধরনের এজেন্ট ব্যবহার করা হয়ে থাকে।

উদাহরণ- চায়না ক্লে (China clay), চক বা খড়িমাটি (CaCO $_3$), ফ্রেঞ্চ চক (French Chalk), ম্যাগনেশিয়াম সালফেট (MgSO $_4$), সোডিয়াম সালফেট (Na $_2$ SO $_4$), ম্যাগনেশিয়াম ক্লোরাইড (MgCl $_2$) ইত্যাদি।

একটি আদর্শ মাড়ের রেসিপি

মোট ১০০ গ্যালন পানির মধ্যে নিমুলিখিত পরিমাণ সাইজিং উপাদান মিশ্রিত করা হয়।

ক্রমিক নং	উপাদান	পরিমাণ	শতকরা হার		
٥	মেইজ স্টার্চ	১২০ পাঃ	১২%		
২	মাটন ট্যালো	৬ পাঃ	০.৬%		
9	কপার সালফেট	০.৫ পাঃ	0.06%		
8	গ্নিসারিন	১ পাঃ	0.5%		
œ	সোডা অ্যাশ লিকারের (P ^H -6.8) পর্যন্ত রাখার জন্য যতটুকু প্রয়োজন				
৬	পানি ১০০ গ্যালন দ্রবণ প্রস্তুতের জন্য যতটুকু প্রয়োজন				

উপরোক্ত মাড় দ্রবণ বা পেস্ট সাধারণত ১০০ ভাগ কটন সুতার জন্য প্রয়োগ করা হয়ে থাকে।

সাইজিং পদ্ধতির শ্রেণিবিভাগ

সাইজ-এর প্রয়োগ পদ্ধতি ও ড্রাই পদ্ধতির ওপর ভিত্তি করে সাইজিং মেশিনকে শ্রেণিবিভাগ করা হয়। সাইজিং পদ্ধতির উপর ভিত্তি করে সাইজিং মেশিনসমূহকে চার ভাগে ভাগ করা যায়। যথা-

- ১) সিলিন্ডার ডাইং (Cylinder dyeing)
- ক) দুই সিলিন্ডার বিশিষ্ট (Two cylinder type)
- খ) বহু সিলিন্ডার বিশিষ্ট (Multi cylinder type)
- ২) হট এয়ার ডাইং (Hot air dyeing)
- ৩) ইনফ্রারেড ডাইং (Infrared dyeing)
- 8) কম্বাইন্ড পদ্ধতি (Combind system)

প্রয়োগ পদ্ধতির উপর ভিত্তি করে মাড়করণ বা সাইজিং পদ্ধতিতে নিমুলিখিত পদ্ধতি ব্যবহৃত হয়। যথা-

- ১. টেপ অথবা স্লেশার সাইজিং (Tape or Slasher sizing)
- ২. হট মেল্ট সাইজিং (Hot melt sizing)
- ৩. হাই প্রেসার সাইজিং (High pressure sizing)
- 8. ফোম সাইজিং (Foam sizing)
- ৫. সলভেন্ট সাইজিং (Solvent sizing)
- ৬. ইলেকট্রোস্ট্যাটিক সাইজিং (Electrostatic sizing)
- ৭. পলিমার ইমালশন সাইজিং (Polymer emulsion sizing)
- ৮. কম্বাইন্ড সাইজিং (Combind sizing)

মাড় প্রস্তুতপ্রণালি

সাধারণ খোলা ট্যাংক

কাঠ, সিমেন্ট ও মেটালের তৈরি আয়তাকার ট্যাংক যার ভেতরের দিকে কপার অথবা স্টেইনলেস স্টিলের প্রলেপ দেওয়া থাকে। এই আয়তকার ট্যাংকের ঠিক মাঝখানে একটি নাড়নি থাকে। এক্ষেত্রে সরাসরি স্টিম প্রবেশ করে মাড় মিক্সিং ও কুকিং করা হয়।

ট্যাংক এর আকার

ট্যাংক এর দৈর্ঘ্য = ৪ ফুট

ট্যাংক এর প্রস্থ = ৩ ফুট

ট্যাংক এর উচ্চতা = ৪ ফুট

ট্যাংক এর দৈর্ঘ্য = 8 x ৩ x 8 ঘনফুট

অর্থাৎ ১ ইঞ্চি পরিমাণ মাড়ের দ্রবণের পরিমাণ ১ ঘনফুট, সাধারণত একটি কাঠের কাঠি দ্বারা মাড়ের পরিমাণ মাপা যায়। এই মাপন কাঠিতে ১ ইঞ্চি পরপর দাগ কাটা থাকে যাতে সহজেই প্রতি দাগে ১ ঘনফুট মাড়ের পরিমাণ বোঝা যায়। এখন যদি ট্যাংকের পানির উচ্চতা ১৬ হয় তবে পানির আয়তন হবে ১৬ ঘনফুট। ব্যবহারের সুবধার্থে ট্যাংকের উপরোক্ত আকার করা হয়েছে।

মনে করা যাক, এক ঘনফুট পানির ওজন ৬২.৫ পাউন্ড। ফলে ১৬ ঘনফুট পানির ওজন ১৬ x ৬২.৫= ১০০০ পাউন্ড বা ১০০ গ্যালন।

ফুটানোর সময় স্টিমের কারণে পানির পরিমাণ সামান্য বেড়ে যায়। কাজেই মিক্সিং এর সময় সামান্য পরিমাণ পানি কম যোগ করতে হয়।

ইভাস্ট্রিতে মাড় প্রস্তুতপ্রণাশি

সাধারণ খোলা ট্যাংক

- প্রথমে প্রয়োজনীয় পরিমাণ পানি ট্যাংকে যোগ করি।
- ২. পানি দেওয়ার পরপরই নাড়ানো শুরু করতে হবে এবং মাড় প্রস্তুত হওয়া পর্যন্ত চালু রাখতে হবে। এখন অ্যাডহেসিভ দ্রবাদি যোগ করি।
- ৩. এবার প্রতিষেধক যোগ করি এবং ৩০ থেকে ৪৫ মিনিট পর্যন্ত নাড়তে থাকি।
- ৪. অতঃপর স্টিম যোগ করি এবং মিক্সারকে বয়েলিং তাপমাত্রায় নিয়ে যাই।
- ৫. এরপর সফেনিং এজেন্ট যোগ করি।
- ৬. স্টিম ক্রমাগত যোগ করতে থাকি যতক্ষণ পর্যন্ত না লিকারের ঘনতু উপযুক্ত না হয়।
- ৭. স্টিম চালনা বন্ধ রাখি।
- ৮. এখন P^H পেপার দ্বারা P^H পরীক্ষা করি এবং সোডা অ্যাশ যোগ করতে থাকি যতক্ষণ P^H ৬.৮ না হয়।
- ৯. P^H ৬.৮ এ আসলেই লিকার তৈরি হলো। অর্থাৎ ব্যবহারের উপযোগী হলো। তাপমাত্রা ৬০ $^\circ$ সে. ঠিক রাখি।

টেপ অথবা স্লেশার সাইজিং মেশিন

এই সাইজিং মেশিনটিকে কনভেনশনাল সাইজিং মেশিনও বলা হয়। ওয়ার্পার মেশিন হতে ওয়ার্পারস বিম তৈরি করে স্রেশার সাইজিং মেশিনের ক্রিলে সেট করা হয়। মনে করা যাক ক্রিলের প্রতিটি বিমে ৫০০টি সূতা থাকে। কাজেই ২৫০০ অথবা ৩০০০ সূতার টানা বিম প্রস্তুত করার জন্য ৫টি অথবা ৬টি ওয়ার্পারস বিমের প্রয়োজন হয়। যা স্রেশার সাইজিং মেশিনের ক্রিলে স্থাপন করা হয়। চিত্র অনুযায়ী টানা সূতার শিট গাইড রোলার উপর দিয়ে মাড়ের বক্স এ আনা হয়। সাইজ বক্সে কপারের তৈরি একটি ছোট ইমালশন রোলার আছে যার নিচ দিয়ে টানা সুতার শিট টেনে আনা হয়। এরপর উক্ত সূতা এক জোড়া স্কুইজিং রোলার এর মধ্যদিয়ে সামনের দিকে চলতে থাকে। এর ফলে টানা সুতার গায়ে লেগে থাকা অতিরিক্ত মাড় সাইজ বক্সে পড়ে যায়। পূর্বে থেকে প্রস্তুত্তকৃত সাইজ পাইপের মাধ্যমে সাইজ বক্সে আনা হয় এবং প্রয়োজন অনুযায়ী সাইজ বক্সে তাপমাত্রা সঠিক রাখার জন্য বক্সের মাড়ের মধ্যে স্টিম চালনা করা হয়। মাড় প্রয়োগের পর সূতার পূর্চের মাড় শুকানোর জন্য দুটি ড্রাইং সিলিন্ডারের পৃষ্ঠ দিয়ে টানা হয়। প্রথমে বড় ড্রাইং সিলিন্ডার ও পরে ছোট ড্রাইং সিলিন্ডার থাকে। অতঃপর সুতার শিট ফ্যান- এর উপর দিয়ে গাইড রোলারের মাধ্যম্যে লিজিং রড টানা সুতাগুলো আলাদা করে এক্সপেন্ডিং কম্ব এর সাহায্যে শুকানো টানা সুতার শিট একক সুতার পরিণত হয়। অর্থাৎ প্রতিটি টানা সুতা একটি থেকে অপরটি আলাদা থাকে। এরপর টানা সুতা গাইড রোলার অতিক্রম করে মেজরিং রোলার এর উপর দিয়ে যায়। সবশেষে মাড়কৃত টানা সুতা শিট ড্রইং রোলার ও এর মধ্য দিয়ে উইভার্স বিমে জড়ানো হয়।

স্লেশার সাইজিং মেশিনের সাইজ বক্সের ইমালশন রোলার যত নিচে থাকবে মাড় পিক আপাতত বেশি হবে। মেশিন বন্ধ থাকাকালীন সময়ে ইমারশন রোলার সাইজ বক্স থেকে উপরে অবস্থান করে যাতে রোলারটিতে মাড় স্পর্শ না করে। ড্রাইং সিলিন্ডার দুটির মধ্যে পাইপের মাধ্যমে বয়লার থেকে স্টিম সরবরাহ করা হয় এবং তাপমাত্রা এমন রাখা হয় যাতে সাইজকৃত টানা সুতা ময়েশ্চার রিগেইন ৭% থেকে ৭.৫% এর মধ্যে থাকে।

বড় ড্রাই সিলিভারটি ৬ থেকে ৭ ফুট ব্যাসের ও ছোট ড্রাইং সিলিভারটি ৪ ফুট ব্যাসের হয়ে থাকে। উইভার্স বিমের টানা জড়ানোর গতি প্রতি মিনিটে ২৫ থেকে ৩৬ গজ এবং টানা সুতাকে উপযুক্ত টেনশনে ফাইনাল বিম অর্থাৎ উইভার্স বিমে জড়ানো হয়। নতুবা পরবর্তী প্রক্রিয়ায় মারাত্মক অসুবিধার সম্মুখীন হতে হয়।

একটা টানা বিমে প্রয়োজন অনুযায়ী দৈর্ঘ্যের টানা জড়ানো হয়, কিন্তু তাঁতে কাপড় রোলারে জড়ানোর সুবিধার্থে একটি নির্দিষ্ট দৈর্ঘ্য পরপর কাপড় কেটে ইন্সপেকশন বিভাগে পাঠানো হয়। এ নির্দিষ্ট দৈর্ঘ্যেকে শনাক্ত করার জন্য স্লেশার সাইজিং মেশিনে উইভার্স বিম তৈরি করাকালীন রং দ্বারা নির্দিষ্ট দৈর্ঘ্য পরপর একটি কিল মার্ক দেওয়া হয়।

- অ টানা সুতা
- ই ক্যারিয়ার রোলার
- ঈ ইমালশন রোলার
- উ কপার রোলার
- উ- স্টুইজ রোলার
- ঋ- বড় ড্রাইং সিলিন্ডার
- এ ছোট ড্রাইং সিলিন্ডার
- ঐ -ক্যারিয়ার রোলার
- খ লিজিং রড
- গ লিজিং রড
- ঘ কম্ব
- ঙ -মেজারিং রোলার
- চ রোলার
- জ- উইভার্স বিম
- ঝ- কুলিং ফ্যান
- ছ গাইড রোলার

চিত্র : টেপ অথবা স্লেশার সাইজিং মেশিন

সাইঞ্জিং-এর সময় গৃহীত সতর্কতাসমূহ সাইঞ্জিং-এর সময় নিমুদিখিত সতর্কতা অবলম্বন করতে হবে।

- সাইজিং চলাকালীন সময়ে সাইজ দ্রবণের ঘনত্ব যেন কমে না যায়।
- যে নির্দিষ্ট তাপমাত্রায় সাইজিং করতে হবে তা যেন কম না হয়।
- মাড়ের দ্রবণের তাপমাত্র ৬০° সে. এ রাখতে হবে।
- সাইজ বক্সের সাইজিং রোলারের প্রেসার যাতে কম অথবা বেশি না হয় তার দিকে দৃষ্টি রাখতে
 হবে ।
- মাড় শুকানোর জন্য দ্রাইং সিলিভারের যেন অতিরিক্ত তাপ না দেওয়া হয় যাতে কড়া সাইজিং না
 হয়।
- ভেজা অবস্থায় যেন উইভার্স বিম তৈরি না হয়।
- টানা সুতা একটার সঙ্গে অন্যটা না জড়িয়ে থাকে। সে বিষয়ে লক্ষ রাখতে হবে।
- সাইজিং করা সুতা বিমে জড়ানোর পূর্বে ক্র্যাসিং না হয় সেদিকে লক্ষ রাখতে হবে ।
- উইভার্স বিমে শুরু ও শেষ যাতে সুতার সংখ্যা একই থাকে তার প্রতি দৃষ্টি রাখতে হবে।

অষ্টম অধ্যায় কাপড়ের বিভিন্ন ক্রটি (Faults of Fabrics)

কাপড়ের বিভিন্ন ক্রটি তাঁতে কাপড় বুননকালে সৃষ্টি হয়। ক্রটিসমূহকে সাধারণত তিনটি ভাগে ভাগ করা হয়েছে।

- ১। ওয়ার্পে ক্রটি (Warp faults)
- ২। ওয়েফটে ক্রটি (Weft faults)
- ৩। কাপড়ে ক্রুটি (Faults of fabrics)

কাপড়ের বিভিন্ন ক্রটির নাম নিচে দেওয়া হলো

- ক) টানা বরাবর ক্রটি (Warp way defects)
 - ১. ওয়ার্প স্টিচিং (Warp stitching)
 - ২. লং ফ্লট (Long float)
 - ৩. টানা বাদ পড়া (Missing warp)
 - 8. দৈত টানা (Double warp)
 - ৫. রিড মার্ক (Reed mark)
 - ৬. টানা সুতার গিঁট (Knot in the warp)
 - ৭. টাইট ওয়ার্প (Tight warp)
 - ৮. ঢিলা ওয়ার্প (Slack warp)
 - ৯. ওয়াপ স্ট্রিক (Warp streak)
 - ১০. পাড় প্রভাব (Selvedge effect)
 - i. ঢেউ খেলানো পাড় (Curly or wavy selvedge)
 - ii. কর্ডেড পাড় (Corded selvedge)
 - iii. পাড়ে ভাঙা পড়েন (Weft breaks)
 - iv. লুপ বিশিষ্ট পাড় (Loop in the selvedge)
 - v. টেম্পলের দাগ (Temple marks)

(খ) পড়েন বরাবর ক্রটি (Weft way defects)-

- ১. মিস পিক ব্রোকেন পিক (Miss pick or broken pick)
- ২. ব্রোকেন প্যাটার্ন (Broken pattern)
- ৩. থিক অ্যান্ড থিন পেস (Thick and thin place)
- 8. শাটেল মার্ক (Shuttle mark)
- ৫. ওয়েফট কার্লস (Weft curls)
- ৬. তির্যক পড়েন (Weft stew)
- ৭. টাইট পড়েন (Tight weft)

- ৮. ব্যাক ল্যাশিং বা ল্যাশিং ইন (Back lashing or lashing in)
- ৯. স্টার্টিং মার্ক (Starting mark)
- ১০. ত্র্যাকস (Cracks)
- ১১. টিয়ার ড্রপ (Tear drops)
- ১২. গোট (Goat)
- ১৩. ব্লাক পিকস (Black picks)
- ১৪. ফিঙ্গার মার্কস (Finger marks)
- ১৫. বো ইফেক্ট (Bow effects)
- ১৬. নট-ইন দ্যা ওয়েফট (Knot in the weft)
- ১৭. ক্যাচ নট (Catch knot)

(গ) টানা ও পড়েন উভয় বরাবর ক্রটি-

- ১. ক্লাউডি বা অসমান কাপড় (Cloudy uneven cloth)
- ২.তেলের দাগ (Oil or grease spot)
- ৩. হোলস ইন দ্যা ক্লথ (Holes in the cloths)
- 8. ওয়েভি ক্লথ (Wavy cloth)
- ৫. রাস্ট ইন ফেব্রিক (Rust in cloth)
- ৬. ডার্টি ক্লথ (Dirty cloth)
- ৭. হেয়ারি ফেব্রিক (Hairy fabric)
- ৮. অমসূণ কাপড় (Rough surface)

(ঘ) নিটিং-এর ত্রুটিসমূহ-

- ১. ব্রোকেন এন্ড হোলস (Broken ends or holes)
- ২. ড্ৰপ স্টিচ (Drop stitch)
- ৩. ক্লথ ফল আউট (Cloth fall out)
- 8. স্লাগিং (Slagging)
- ৫. টাক বা ডাবল স্টিচ (Tuck or double stitch)
- ৬. বাঞ্চিং আপ (Bunching up)
- ৭. ভার্টিক্যাল স্ট্রাইপ (Vertical stripes)
- ৮. অনুভূমিক স্ট্রাইপ (Horizontal stripes)
- ৯. কালার ফ্লাই (Color fly)
- ১০. ডিসটরটেট স্টিচ (Distortet stitch)

ক্রটিসমূহের কারণ ও প্রতিকার

১. ওয়ার্প স্টিচিং (Warp stitching) টানা ও পড়েন সুতার মধ্যে বন্ধনী না থাকা

কারণসমূহ

০ এক শেডের সুতা অন্য শেডে চলে যাওয়া।

<u>উইভিং-১</u>

- ০ ডবির ক্ষেত্রে পেগ ভাঙা থাকলে।
- ০ টানা সুতা ঢিলা থাকলে।
- ০ জ্যাকার্ডের ক্ষেত্রে হার্নেস কর্ডের দৈর্ঘ্য অসমান হলে।

প্রতিকারসমূহ

- ০ ড্রাফটিং বা ড্রইং ইন করার সময় সাবধানে করতে হবে যাতে এক শেডের সুতা অন্য শেডে চলে না যায়।
- ০ ভাঙা পেগ পরিবর্তন করে নতুন পেগ লাগাতে হবে।
- ০ টানা সুতা ঢিলা থাকলে তা টাইট করতে হবে।
- ০ জ্যাকার্ডের ক্ষেত্রে হার্নেস কর্ডের দৈর্ঘ্য সমান রাখতে হবে।

২. লং ফ্লট (Long float)

টানা সুতা পড়েন সুতার সাথে বন্ধনীতে অংশগ্রহণ না করে কাপড়ের উপর বা নিচের পৃষ্ঠদেশে লম্বালম্বি ভেসে থাকে।

কারণসমূহ

- ০ লুমে ট্যাপেট ঠিকমতো বাঁধা না হলে।
- ০ ডবির পেগ পান সঠিক না থাকলে অথবা পেগ ভাঙা থাকলে।
- ০ জ্যাকার্ডের ক্ষেত্রে কার্ড কাটিং -এ ক্রটি থাকলে।

প্রতকািরসমূহ

- ০ লুমে ট্যাপেট সঠিকভাবে বাঁধতে হবে।
- ০ ডবির লুমের পেগ পান সঠিক করতে হবে এবং ভাঙা পেগ পরিবর্তন করতে হবে।
- ০ কার্ড কাটিং এ কোনো ভুল করা চলবে না। ভুল কার্ডটি পরিবর্তন করে সঠিক ছিদ্রযুক্ত কার্ড লাগাতে হবে।

৩. টানা বাদ পড়া (Missing warp)

কাপড় তৈরিতে কোনো একটি টানা সুতা বাদ পড়া

কারণসমূহ

- ০ ডেন্টিং-এ ভুল হলে।
- ০ টানা বিমে টানা সুতা ছেঁড়া থাকলে।
- ০ ওয়ার্প স্টপ মোশন সঠিকভাবে কাজ না করলে।

প্রতিকারসমূহ

- ০ ডেন্টিং সঠিক করতে হবে।
- ০ টানা বিমে সুতা ছেঁড়া থাকলে তা জোড়া দিয়ে উৎপাদন করতে হবে।
- ০ ওয়ার্প স্টপ ম্রেশন সঠিকভাবে কাজ করছে কিনা তা পরীক্ষা করে সঠিক রাখতে হবে।

8. বৈত টানা (Double warp)

কাপড়ের একই স্থানে একটির স্থলে ২টি টানা সুতা থাকা।

কারণসমূহ

০ একটি মেইল আই এর ভেতর দিয়ে ২টি টানা সুতা অতিক্রম করলে।

১৬২

প্রতিকারসমূহ

০ ড্রইং ইন সাবধানতার সাথে করতে হবে। একটি মেইল আই এর মধ্যে দিয়ে ১টি টানা সুতা অতিক্রম করাতে হবে।

৫. রিড মার্ক (Reed mark) কাপড়ের টানা বরাবরে দৃশ্যমান কোনো দাগের সৃষ্টি হওয়াকে রিড মার্ক বলে। কারণসমূহ

- ০ চিকন সুতা দ্বারা কাপড় তৈরির সময় পাতলা রিড ব্যবহার করলে।
- ০ রিডের ফাঁকার মধ্যে খুব বেশি অথবা কম সংখ্যক সুতা থাকলে।

প্রতিকারসমূহ

- ০ সঠিক রিড ব্যবহার করতে হবে।
- ০ রিডের ফাঁকার মধ্যে প্রয়োজনানুযায়ী সুতা ব্যবহার করতে হবে।

৬. টানা সুতার গিঁট (Knot in the warp)

টানা সূতায় লম্বা গিঁট থাকলে এ ধরনের ক্রটি দেখা যায়।

কারণসমূহ

০ ওয়ার্পিং এর সময় শ্রমিকদের অবহেলার কারণে টানা সুতায় লম্বা গিঁট দেওয়া হয়।

প্রতিকারসমূহ

০ টানা সুতায় গিঁট প্রদান করার সময় সতর্ক থাকতে হবে।

৭. টাইট ওয়ার্প (Tight warp)

বিমে দু -একটি টানা সূতা ঢিলা বা লুজ অবস্থায় থাকলে এ ধরনের ক্রটি দেখা যায়।

কারণসমূহ

০ ক্রটিযুক্ত ওয়ার্পিং এর সময় সতর্ক থাকতে হবে যাতে কোনো টানা সুতায় অতিরিক্ত টেনশন প্রদান করা না হয়।

প্রতিকারসমূহ

০ ওয়ার্পিং এর সময় সতর্ক থাকতে হবে যাতে কোনো টানা সুতায় অতিরিক্ত টেনশন প্রদান করা না হয়।

৮. ঢিলা ওয়ার্প (Slack warp)

বিমে দু -একটি টানা সুতা ঢিল বা লুজ অবস্থায় থাকলে এ ধরনের ক্রটি দেখা যায়।

কারণসমূহ

- ০ ওয়ার্পিং এর ক্রটির কারণে দু -একটি টানা সুতা ঢিল থাকে।
- ০ ড্রপার পিনে টানা সুতা ক্রস হলে।

প্রতিকারসমূহ

- ০ ওয়ার্পিং করার সময় সতর্ক থাকতে হবে।
- ০ ড্রপার পিনে টানা সুতা ক্রস করা যাবে না।

৯. ওয়াপ স্ট্রিক (Warp streak)

এ ধরনের ক্রটির জন্য কাপড় ডোরা কাটা দেখা যায়।

কারণসমূহ

০ অসম সুতা ও ওয়ার্প এর প্রস্তুতি ভুল হলে।

প্রতিকারসমূহ

০ সুষম সুতা ব্যবহার করতে হবে এবং ওয়ার্প প্রিপারেশনে সতর্ক থাকতে হবে।

১০. পাড় প্রভাব (Selvedge effect)

i. ঢেউ খেলানো পাড় (Curly or wavy selvedge)-কাপড়ের পাড় সোজা না হলে ঢেউ খেলানো হয়।

কারণসমূহ

- ০ কাপড়ের জমিন ও পাড়ের সুতায় টান অসমান হলে।
- ০ খুব বেশি রিড স্পেসের লুমে কম বহরের কাপড় তৈরি করলে।
- ০ টেম্পল খুব শক্ত হলে।

প্রতিকারসমূহ

- ০ কাপড়ের জমিন ও পাড়ের সুতায় টান বা টেনশন সমান রাখতে হবে।
- ০ বেশি রিড স্পেসের লুমে কম বহরের কাপড় তৈরি করা যাবে না।
- ০ টেম্পল লুজ রাখতে হবে।
 - ii. কর্ডেড পাড় (Corded selvedge)

কারণসমূহ

- o কাপড়ের পাড়ে ডেন্টিং অসমান হলে।
- ০ বেশি চওড়া লুমে কম প্রস্থের কাপড় বুনন করলে।

প্রতিকারসমূহ

- ০ পাড়ে ডেন্টিং সুষম করতে হবে।
- ০ বেশি চওড়া লুমে কম প্রস্থের কাপড় প্রস্তুত করা উচিত নয়।
- iii. পাড়ে ভাঙা পড়েন (Weft breaks) কাপড়ের পাড়ের মধ্যে পড়েন সুতা কাটা থাকে।

কারণসমূহ

- ০ টেম্পল ক্রটিযুক্ত হলে এবং টেম্পলের সেটিং সঠিক না হলে।
- ০ পড়েন সুতার ঘনত্ব অত্যধিক হওয়ায় সঠিক পিনিং না হলে।

প্রতিকারসমূহ

- ০ টেম্পল ক্রটিযুক্ত করতে হবে এবং সঠিক সেটিং করতে হবে।
- ০ পড়েন সুতার ঘনত্ব কমাতে হবে।

iv. লুপ বিশিষ্ট পাড় (Loop in the selvedge)

উৎপাদিত কাপড়ের পাড়ে লুপ তৈরি হওয়াকে লুপ বিশিষ্ট পাড় বলে।

১৬৪

কারণসমূহ

- ০ পার্নে সুতা জড়ানোর সময় সঠিক টেম্পল না হলে।
- ০ শাটেল বক্সে শাটেল প্রতিক্ষেপণের কারণে।

প্রতিকারসমূহ

- ০ পার্নে সুতা জড়ানোর সময় সঠিক টেম্পল রাখতে হবে।
- ০ শাটেল বক্সে শাটেল প্রতিক্ষেপণ না করে তার ব্যবস্থা করতে হবে।

v. টেম্পলের দাগ (Temple marks)

কাপড়ের পাড়ে ছোট ছোট ছিদ্র ধারাবাহিকভাবে দেখা যায়।

কারণসমূহ

- o পাতলা কাপড়ের ক্ষেত্রে মোটা টেম্পল ব্যবহার কর**লে**।
- ০ টেম্পলের মধ্যে জ্যাম থাকলে।

প্রতিকারসমূহ

- ০ সঠিক কাপড়ের জন্য সঠিক টেম্পল ব্যবহার করবে হবে।
- ০ টেম্পলের মধ্যে জ্যাম ঢিলা করতে হবে।

খ) পড়েন বরাবর ক্রটি (Weft way defects)

১. মিস পিক ব্রোকেন পিক (Miss pick or broken pick)

কাপড়ের প্রস্থ বরাবর পড়েন সুতা অনুপস্থিত থাকলে।

কারণসমূহ

- ০ পড়েন সুতা ছিড়ে গেলে বা পার্ণের সুতা শেষ হয়ে গেলে ওয়েফট স্টপ মোশন যদি কাজ না করে।
- ০ মাঝপথে শাটেলের সুতা শেষ হয়ে গেলে।

প্রতিকারসমূহ

- ০ ওয়েফট স্টপ মোশন যাতে সঠিকভাবে কাজ করে তার ব্যবস্থা করতে হবে।
- ০ শাটলের সুতা শেষ হয়ে যাওয়ার পূর্বেই সুতাযুক্ত পার্ণ বদলিয়ে দিতে হবে।

২. ব্রোকেন প্যাটর্ন (Broken pattern)

কাপড়ের মধ্যে তৈরিকৃত প্যাটার্ন সম্পূর্ণ না হলে।

কারণ

০ লিফটিং যদি ক্রটিমুক্ত হয়।

প্রতিকার

০ সঠিক লিফটিং -এর ব্যবস্থা করতে হবে।

৩. থিক অ্যান্ড থিন পেস (Thick and thin place)

কাপড়ের কোথাও ঘন আবার কোথাও পাতলা হওয়া। এ ক্রটিকে বার ইফেক্টও বলে। কারণ-

০ লেট অফ ও টেক আপ এর কোনো সমন্বয় না থাকলে।

প্রতিকার-

০ লেট অফ ও টেক আপ এর কোন সমন্বয় করতে হবে।

8. শাটেল মার্ক (Shuttle mark)

কাপড়ের মাঝে মাঝে টানা সুতার উপর পড়েন সুতার সমান্তরালে কিছু কিছু দাগ পাওয়া যায় যাকে শাটল মার্ক বলে।

কারণ

০ শাটেল যাওয়ার সময় টানা সুতার উপর ঘর্ষণের ফলে এ দাগ সৃষ্টি হয়।

প্রতিকারসমূহ

- ০ শাটেল বক্সের সেটিং সঠিক করতে হবে।
- ০ টানা সুতার উপর টান সঠিক রাখতে হবে।

৫. ওয়েষ্ট কার্লস (Weft curls)

কাপড়ের মধ্যে পড়েন সুতা কোকড়ানো থাকা।

কারণসমূহ

- ০ শাটেল বক্স এবং কাপড়ের মধ্যে দূরত্ব বেশি হলে।
- ০ পড়েন সুতায় অতিরিক্ত পাক থাকলে।

প্রতিকারসমূহ

- ০ শাটেল বক্স এবং কাপড়ের মধ্যে দূরত কমাতে হবে।
- ০ পড়েন সুতায় অতিরিক্ত পাক প্রদান থেকে বিরক্ত থাকতে হবে।

৬. তির্যক পড়েন (Weft stew)

টুইল কাপড়ে পড়েন সুতা স্বভাবিক অবস্থায় না থেকে তির্যক অবস্থায় থাকলে।

কারণসমূহ

- ০ টানা সুতার টান বেশি হলে।
- ০ পড়েন সুতায় অতিরিক্ত পাক থাকলে।

প্রতিকারসমূহ

- ০ টানা সুতার টান কমাতে হবে।
- ০ পড়েন সুতায় অতিরিক্ত পাক কমাতে হবে।

৭. টাইট পড়েন (Tight weft)

কাপড়ের মধ্যে পড়েন সুতা অতিরিক্ত সোজা থাকলে।

কারণ

পার্ন অথবা কপ যদি শক্ত হয়।

প্রতিকার

পার্ন অথবা কপ স্বাভাবিক টেনশনে জড়াতে হবে।

১৬৬

৮. ব্যাক ল্যাশিং বা ল্যাশিং ইন (Back lashing or lashing in)

কাপড়ের পাড় থেকে পড়েন সুতা বের হয়ে থাকা।

কারণ

০ পার্ণ পরিবর্তন মেকানিজমের ক্ষেত্রে এ রকম হতে পারে।

প্রতিকার

০ ইন্সপেকশনের সময় উৎপাদিত কাপড় থেকে বের হয়ে থাকা পড়েন সুতা কেটে দিতে হবে।

৯. স্টার্টিং মার্ক (Starting mark)

তাঁত বা লুমে উৎপাদিত করার সাথে সাথে উৎপাদিত কাপড়ের স্থানে পিকস এর ঘনত্ব বেশি থাকা। এই অংশকে স্টার্টিং মার্ক বলে।

১০. ত্যাক্স (Cracks)

উৎপাদিত কাপড়ের ফাঁকা স্থানকে ক্রাক বলে।

কারণ

০ লেট অফ ও টেক আপ মেকানিজমে ত্রুটি থাকলে।

প্রতিকার

০ লেট অফ ও টেক আপ মেকানিজমে ক্রটি মেরামত থাকলে।

১১. টিয়ার ড্রপ (Tear drops)

টানা সুতা একটি আর একটির উপর উঠে গেলে টিয়ার ড্রপের সৃষ্টি হয়।

কারণ

০ ক্রটিপূর্ণ সাইজিং -এর জন্য।

প্রতিকার

০ যথাযথভাবে সাইজিং করতে হবে।

১২. গোট (Goat)

বাইরের কোন ময়লা আবর্জনা উইভিং -এর সময় সুতার শেডের মধ্যে ঢুকে গেলে এ ধরনের ক্রটি দেখা যায়।

১৩. ব্লাক পিকস (Black picks)-

পার্নের সুতায় তেল বা কালির দাগ থাকলে এ ধরনের ক্রটি দেখা যায়।

(গ) টানা ও পড়েন উভয় বরাবর ক্রটি

১. ক্লাউডি বা অসমান কাপড় (Cloudy uneven cloth)

কাপড়ের মধ্যে বিভিন্ন প্রকার ক্রটিযুক্ত পানা ও পড়েন সুতা ব্যবহার করার কারণে এ ধরনের ক্রটি হয়। কারণসমূহ

- ০ ক্রটিযুক্ত টানা ও পড়েন সুতা ব্যবহার করলে।
- ০ টেক আপ ও লেট অফ অসমভাবে হলে।

প্রতিকার

- ০ ক্রটিমুক্ত টানা ও পড়েন সুতা ব্যবহার করতে হবে।
- ০ টেক আপ ও লেট অফ সুষমভাবে হতে হবে।

২. তেশের দাগ (Oil or grease spot)

তাঁতির ও শ্রমিকদের অসতর্কতার কারণে কাপড়ের মধ্যে তৈল বা গ্রিজ বা অন্যান্য ময়লার দাগ পড়ে।

৩. হোলস ইন দ্য ক্লৰ্থ (Holes in the cloths)

মাঝে মাঝে কাপড়ের মধ্যে ছোট ছোট ছিদ্র বা কাটা দাগ দেখা যায়। এটি স্পেলের জন্যও হতে পারে। অথবা কোনো যন্ত্রাংশের সাথে লেগে ছিদ্র হতে পারে।

8. ওয়েভি ক্লথ (Wavy cloth)

টানা সুতার টান অসমান হলে এ ধরনের ক্রটি দেখা যায়।

৫. রাস্ট ইন ফ্যাব্রিক (Rust in cloth)

ব্যবহৃত কাপড় বা সুতা যদি দীর্ঘ সময় ধরে ধাতব পদার্থের সংস্পর্শে থাকে, তাহলে এতে মরিচা পড়ে যায় যা কাপড় তৈরি করার পর পরিলক্ষিত হয়।

৬. ডার্টি ক্লথ (Dirty cloth)

অপারেটরের অসর্তকতার কারণে বা লুমের রক্ষণাবেক্ষণ ঠিকমতো না হলে কাপড়ের পৃষ্ঠে বিভিন্ন ধরনের ময়লা জমে কাপড় নোংরা হয়।

৭. হেয়ারি ফেব্রিক (Hairy fabric)

কাপড় উইভিং করার সময় ব্যবহৃত সুতাগুলোতে যদি খুব দ্রুত ঘর্ষণ হয় তবে এগুলো আঁশযুক্ত হয়ে থাকে। ডেপথ অব শেড কম হওয়ার কারণে এ ধরনের ক্রটি দেখা যায়।

৮. অমসৃণ কাপড় (Rough surface)

কতগুলো কাপড় আছে যাদের বৈশিষ্ট্য অমসুণ। এগুলো ইচ্ছাকৃতভাবে তৈরি করা হয়। যেমন- হানিকম্ব, হুকাব্যাক ইত্যাদি। কাপড় তৈরি করার সময় টানা সুতার টান অসমান বা কমবেশি হয় তাহলে এ ধরনের ক্রটি দেখা যায়।

ক্রেটিমুক্ত কাপড় তৈরির সতর্কতাসমূহ

নিচে ক্রটিমুক্ত কাপড় তৈরির জন্য সর্তকতাসমূহ আলোচনা করা হলো।

- ১. তাঁত বা লুমে যান্ত্রিক কারণে বিভিন্ন ক্রটি পরিলক্ষিত হয়, কাজেই কাপড় যথাযথ ক্রটিমুক্ত করে তৈরি করতে হলে তাঁতের সমস্ত যান্ত্রিক ক্রটি দূর করতে হয়।
- ২. কাঁচামাল হিসেবে তাঁতে উইভারস বিম অর্থাৎ ওয়ার্প সূতা এবং পার্ন অর্থাৎ ওয়েফট সূতা হিসেবে ব্যবহার করা হয়। কাজেই ক্রটিমুক্ত উইভারস বিম এবং ক্রটিমুক্ত পার্ন ব্যবহার করলে সূতার কারণে যে সব ক্রটি হওয়ার আশংস্কা থাকে তা দূর হবে।
- ৩. তাঁত চালনার জন্য অপারেটর অর্থাৎ তাঁতি সতর্ক হলে অনেক ক্রুটি দূর করা সম্ভব। তাঁত চালনার সময় যথাসম্ভব কাপড় ও মেশিনের প্রতি তীক্ষ্ণ দৃষ্টি রাখতে হবে।

নবম অধ্যায় গ্রে কাপড় ইন্সপেকশন (Inspection of grey cloth)

তাঁত থেকে কাপড় নামানোর পর ইন্সপেকশন টেবিল কাপড়ের এক প্রান্ত উঠানো হয় এবং একজন অভিজ্ঞ প্রযুক্তিবিদ কাপড়ের প্রতিটি অংশ ইন্সপেকশন টেবিলের উপর খুব সৃক্ষভাবে আস্তে আস্তে পরীক্ষা ও ক্রিটসমূহ শনাক্ত করে নোট করেন।

তাঁত থেকে কাপড় নামনোর পর কাপড়িট ইন্সপেকশনের জন্য সেকশনে আনা হয়। অতঃপর উক্ত কাপড়ের এক প্রান্ত ইন্সপেকশন টেবিলের উপরে উঠানো হয়। ক্রটি শনাক্তকরণের সুবিধার্থে ইন্সপেকশন টেবিলের একটি অংশ কাচের তৈরি বলে নিচের আলো কাপড়ের উপর পড়ে কাপড়ের ক্রটি শনাক্তকরণ সহজ করে দেয়। বিজ্ঞ টেকনিশিয়ান ক্রটি শনাক্তকরণের পর যদি সম্ভব হয় উক্ত ক্রটি তৎক্ষণাৎ মেরামত করেন এবং ইঞ্চি ইঞ্চি করে টেবিলের এক প্রান্ত থেকে অপর প্রান্তে কাপড় নিয়ে নেন। ইন্সপেকশন টেবিল বিশেষভাবে তৈরি এক প্রান্ত নিচু ও অপর প্রান্ত উচু থাকে। ফলে টেকনিশিয়ান সহজেই টেবিলের ঢালু প্রান্তে কাপড় টেনে এন অথবা যান্ত্রিক উপায়ে কাপড় আন্তে আন্তে টেবিলের অন্য প্রান্তে চলে যায়। এভাবে আন্তে আন্তে সম্পূর্ণ কাপড়কে পরীক্ষা-নিরীক্ষা করা হয় এবং শনাক্তকরণ ক্রটিসমূহ রেজিস্টারে লিপিবদ্ধ করা হয়।

ক্রটির উপর ভিত্তি করে কাপড় গ্রেডিং

সাধারণত ইন্সপেকশন কাপড় ইন্সপেকশন করার পর পূর্বের অধ্যায়ে বর্ণিত ক্রটিসমূহ শনাক্ত করা হয়। এর মধ্যে কিছু কিছু ক্রটি সঙ্গে সঙ্গে মেরামত করা হয়। মেরামত করার পর কাপড়ের ক্রটিসমূহ অনেক কমে যায়। কাজেই উক্ত কাপড় পরবর্তী কাজে ব্যবহারের উপযোগী হয়। সাধারণত মিল লাভজনক করার জন্য তাঁতে তৈরিকৃত কাপড় যাতে বাতিল না হয় তার জন্য কর্তৃপক্ষ যথেষ্ট সতর্ক থাকেন। এরই ফলে ম্যানুফ্যাকচারগণ তৈরিকৃত কাপড়কে গ্রেডিং করা থেকে বিরত থাকেন। তবে ক্রটির উপর ভিত্তি করে কাপড়কে ২টি গ্রেডে ভাগ করা হয়। যথা-

- ১. গ্রেড-এ
- ২. গ্রেড-বি

১. গ্রেড-এ

যে সমস্ত কাপড় ক্রটিমুক্ত থাকে বা খুবই সামান্য ক্রটিযুক্ত থাকে যা পূর্বে মেরামত করা হয়েছে ঐ সমস্ত কাপড়কে গ্রেড এ এর অন্তর্ভুক্ত করা হয়েছে। গ্রেড এ কাপড় রপ্তানির উপযোগী। যা পরবর্তীতে রপ্তানিমুখী গার্মেন্টস ইন্ডাস্ট্রিতে পোশাক তৈরির জন্য পাঠানো হয়।

২. গ্ৰেড-বি

যে সমস্ত কাপড় ক্রটিযুক্ত অর্থাৎ শনাক্তকারীর ক্রটি মেরামত করা সম্ভব হয় না উক্ত কাপড়কে বাতিল বা গ্রেড বি এর অন্তর্ভুক্ত করা হয়েছে। কাপড়কে ক্রটিযুক্ত অংশে কখনও কখনও কেটে ফেলা হয়। ফলে কাপড় ক্রটিমুক্ত হয় তবে এ ক্ষেত্রে কাপড়ের ছোট ছোট টুকরা অর্থাৎ কাটপিছ হিসেবে বাজারজাত করা সম্ভব হয়। নতুবা ব্যবহারের অনুপযোগী কাপড়কে বাতিল করা হয়। তবে বাতিলযোগ্য কাপড় ইন্ডাস্ট্রিতে উৎপাদন হয় না বললেই চলে।

উইভিং-১ দ্বিতীয় পত্র (দশম শ্রেণি) ব্যবহারিক অংশ

ব্যবহারিক অংশ

১। পরীক্ষার নাম : রক্ষণাবেক্ষণে ব্যবহৃত বিভিন্ন যন্ত্রপাতির সাথে পরিচিতি।

ভূমিকা

রক্ষণাবেক্ষণ এমন একটি কর্তব্য যার অবহেলা নিজ পায়ে কুড়াল মারার শামিল। যন্ত্রপাতি মালামাল ও সরঞ্জামাদির সঠিক রক্ষণাবেক্ষণের উপর যে কোনো মেশিনের কাজ বা লক্ষ বহুলাংশে নির্ভরশীল। যে কোনো যন্ত্রপাতি, মালামাল ও সাজ সরঞ্জামাদি থেকে শতভাগ সেবা পেতে হলে এদেরকে সর্বদাই কার্যোপযোগী রাখতে হয়। সে জন্য দরকার এদের যথোপযুক্ত পরিচর্চা ও রক্ষণাবেক্ষণ।

রক্ষণাবেক্ষণে ব্যবহৃত যন্ত্রপাতি

মেশিনের পরিচর্যা বা রক্ষণাবেক্ষণের জন্য প্রচুর যন্ত্রপাতি পাওয়া যায়। তার একটি সংক্ষিপ্ত তালিকা নিচে দেওয়া হলো।

ক) হ্যান্ড টুলস

- * হ্যামার
- * ফাইল
- * চিজেল
- * রেঞ্জ
- * ডিভাইডার
- * অ্যাডজাস্টটেবল রেঞ্জ
- * পাইপ রেঞ্জ
- * স্প্যানার
- * বক্স রেঞ্জ
- * টর্ক রেঞ্জ

সতৰ্কতা

- (ক) মেশিন যন্ত্রপাতি ইত্যাদির ক্ষয় হয়ে যাওয়া বা নষ্ট হয়ে যাওয়া থেকে পরিত্রাণ পাওয়ার লক্ষ্যে রক্ষণাবেক্ষণ করা উচিত।
- (খ) যে কোনো যন্ত্রপাতি নিয়মতান্ত্রিকভাবে রক্ষণাবেক্ষণ করা উচিত।
- (গ) রক্ষণাবেক্ষণে ব্যবহৃত মেশিনারি ব্যবহারে সতর্ক হওয়া উচিত।

উপসংহার/মন্তব্য

২। পরীক্ষার নাম: নির্দিষ্ট নামের যন্ত্রটি শনাক্তকরণ

ভূমিকা

উৎপাদন কাজে কিছু যন্ত্রপাতি সরাসরি অংশগ্রহণ করে না অর্থাৎ পরোক্ষভাবে সাহায্যকারী হিসেবে কাজ করে তাদেরকে সরঞ্জাম বলে এবং কিছু যন্ত্রপাতি আছে যেগুলো উৎপাদন কাজে সরাসরি নিয়োজিত হয় অর্থাৎ কাজে সরাসরি ব্যবহার করা হয় তাদেরকে টুলস বলে। এ সরঞ্জাম ও টুলস এক একজন প্রযুক্তিবিদকে সহজেই শনাক্ত করা বা চেনা উচিত। টুলসের নাম না জানলে মেশিন রক্ষণাবেক্ষণ করা কঠিন হয়ে পড়ে। নিচে কিছু টুলসের তালিকা দেওয়া হলো।

টুলস ও সরস্কামের তালিকা

- লেদ মেশিন
- ড্রিল মেশিন
- থ্যাক'স
- চিজেল
- ফাইল
- ডাই
- ট্যাপ
- রিমার
- হ্যামার
- ক্সু ড্রাইভার
- ভাইস
- অ্যানভিল ইত্যাদি।

সেটিং ডাউন হ্যামার

ফ্লাট ক্লু ডাইভার

ড্ৰিলিং পদ্ধতি

দ্ৰিলিং পদ্ধতি

চিত্র ৪ বিভিন্ন প্রকার টুলস্

ট্যাপিৎ পদ্ধতি

৩. পরীক্ষা নাম : যন্ত্রটি নিদিস্ট কাব্ধে ব্যবহার করা। ভূমিকা

রক্ষণাবেক্ষণ কাজে ব্যবহৃত যন্ত্রপাতিসমূহের মধ্যে কোনো যন্ত্রটি কোনো কাজে ব্যবহৃত হবে তা পূর্বেই জেনে নিতে হবে বা নিশ্চিত হতে হবে। নতুবা ব্যবহারের সময় উক্ত যন্ত্রটি ব্যবহার না করে অন্য একটি যন্ত্র ব্যবহার করলে উৎপাদনের কাজে নিয়োজিত মেশিনটি পুরোপরি অকেজো হয়ে যেতে পারে। কাজেই মেশিন সুষ্ঠু রক্ষণাবেক্ষণ ও অর্থের অপচয় কমানোর লক্ষ্যে প্রতিটি মেশিন অপারেটর অথবা ফিটারের উপযুক্ত টুলসের বা সরঞ্জামের ব্যবহারে সম্বন্ধে অবগত থাকতে হবে।

যন্ত্রের তালিকা ও যন্ত্রের ব্যবহার

- ০ ফাইল, চিজেল, ট্যাপডাই, স্লেপ ইত্যাদি-হাত দ্বারা ব্যবহৃত হয়।
- ০ ড্রিল মেশিন, লেদ মেশিন, গ্রাইন্ডিং মেশিন-মেশিন টুলস।
- ০ স্টিল রুল, ভার্নিয়ার ক্যালিপার্স, মাইক্রোমিটার- মাপার কাজে ব্যবহৃত হয়।
- ০ ফাইল, চিজেল, হ্যাক'স কাটিং -এর জন্য ব্যবহৃত হয়।
- ০ টেস্টার, রিং প্রুফ, ওয়ার গেজ, সিলিন্ডার রোর গেজ-টেস্টিং টুলস হিসেবে ব্যবহৃত হয়।

সতৰ্কতা

- ০ যন্ত্রটি চেনা থাকলে দুর্ঘটনা হ্রাস পায়।
- ০ অর্থের অপচয় হ্রাস করার জন্য যন্ত্রটির ব্যবহার জানতে হবে।
- ০ যন্ত্রের সঠিক ব্যবহার নিশ্চিত করতে হবে।

মম্ভব্য/উপসংহার

পরীক্ষা নাম : ব্যবহারের পর যন্ত্রপাতি পরিষ্কারকরণ। ভূমিকা

রক্ষণাবেক্ষণ কাজের শেষে ব্যবহৃত যন্ত্রপাতিসমূহ এখানে সেখানে ফেলে না রেখে প্রতিটি টুলস বা যন্ত্রকে যত্ন সহকারে পরিষ্কার করে নির্দিষ্ট স্থানে সাজিয়ে রাখতে হবে যেন পরবর্তী কাজের সময় টুলস বা সরঞ্জামকে খুঁজতে না হয়। সহজেই হাতের কাছে পাওয়া যায়। উৎপাদনমুখী কর্মকাণ্ডে যন্ত্রপাতি মেশিনসমূহ ভালো রাখার তাগিদে ও এর সর্বোচ্চ ব্যবহার নিশ্চিত করতে কাজের পূর্বে ও পরে এবং নির্দিষ্ট সময় অন্তর অন্তর পরিষ্কার রাখার প্রক্রিয়াকেই পরিষ্কারকরণ বলা হয়।

পরিষ্কারকরণ কাজে ব্যবহৃত উপকরণ

- ০ তেল
- ০ গ্রিজ
- ০ কেরোসিন তেল
- ০ পানি
- ০ সাবান
- ০ নেকড়া
- ০ পরিষ্কার কাপড় ইত্যাদি

সতৰ্কতা

- ০ ব্যবহারের পর সরঞ্জামসমূহ এখানে সেখানে ফেলে রাখা উচিত নয়।
- ০ টুলস বা যন্ত্রপাতি পরিষ্কার না করলে যন্ত্রপাতি মরিচা ধরে নষ্ট হয়ে যেতে পারে।
- ০ নির্দিষ্ট স্থানে টুলসসমূহ সাজিয়ে রাখা উচিত।

মন্তব্য/উপসংহার

ডাই দিয়ে থ্রেড় কাটিং

৫. পরীক্ষার নাম : যন্ত্রপাতি ব্যবহারের সময় সতর্কতামূলক ব্যবস্থা। ভূমিকা

দুর্ঘটনা নিয়ন্ত্রণযোগ্য অথচ দুর্ঘটনা সংঘটিত হচ্ছে এবং ভবিষ্যতেও দুর্ঘটনা ঘটবে। তাই নিরাপত্তা বিধিগুলোর যথাযথ অনুশীলন পূর্ণাঙ্গ বাস্তবায়নই কেবল দুর্ঘটনা কমিয়ে আনতে পারে। সুতরাং যে কোনো মেশিন বা কারখানার নিরাপদ পদ্ধতিগুলোর যথাযথ প্রয়োগ ও অনুশীলনের গুরুত্ব এবং প্রয়োজনীয়তা অপরিহার্য। যে ঘটনাপ্রবাহ দ্বারা কর্মে সাধারণ প্রক্রিয়া ও ধারাবাহিকতার ব্যাহত হয় তাকে দুর্ঘটনা বলে।

নির্দিষ্ট যন্ত্রপাতির জন্য নির্দিষ্ট সতর্কতা

- ০ কাজের ধরন অনুযায়ী উপযুক্ত মানের বা মাপের যন্ত্রপাতি নির্বাচন করতে হবে।
- ০ যেখানে বা মেশিনের যে অংশে ব্যবহার করবে তার সম্বন্ধে পূর্ব অভিজ্ঞতা থাকতে হবে। নতুবা মেশিন ভেঙ্কে যাওয়া বা ক্ষতিগ্রস্ত হতে পারে।
- ০ ঠিক কোন স্থানে টুলস বা সরঞ্জাম ব্যবহার করবে তা নিশ্চিত হতে হবে।
- ০ আঘাত করা বা যন্ত্র দ্বারা চাপ দেওয়ার পূর্বে নির্দিষ্ট মাপে বা নির্দিষ্ট ওজনে আঘাত বা চাপ প্রয়োগ করতে হবে।
- ০ স্টিলের তৈরি মেশিন বা যন্ত্রাংশে আঘাত করতে হলে কাঠের বা প্লাস্টিকের তৈরি হ্যামার ব্যবহার করতে হবে।

মম্ভব্য/উপসংহার

৬. পরীক্ষার নাম : কৃত্রিম আঁশ সম্পর্কে অবগত হওয়া। সংজ্ঞা

(ক) কৃত্রিম আঁশ:

যে সমস্ত ফাইবার প্রাকৃতিকভাবে জন্মায়নি কিন্তু বিভিন্ন রাসায়নিক পদার্থের সংমিশ্রণ ঘটিয়ে কৃত্রিমভাবে তৈরি করা হয়েছে। এগুলোকে কৃত্রিম আঁশ বলে।

(খ) আংশিক কৃত্রিম:

প্রাকৃতিক বিভিন্ন সেলুলোজিক পদার্থকে অবস্থা ও গুণাগুণের পরিবর্তন ঘটিয়ে নতুন ফাইবার তৈরি করা হয় তাকে আংশিক কৃত্রিম ফাইবার বলে।

উদাহরণ- ভিসকোস রেয়ন, কিউপ্রামোনিয়াম রেয়ন, অ্যাসিটেড রেয়ন ইত্যাদি।

(গ) পূর্ণ কৃত্রিম

সম্পূর্ণ কৃত্রিম অর্থাৎ রাসায়নিক পদার্থকে পলিমারাইজেশন করে ১০০ ভাগ কৃত্রিম ফাইবার তৈরি করা হয়।

উদাহরণ- নাইলন, পলিয়েস্টার, অ্যাকরাইলিক, স্পানডেক্স ইত্যাদি।

কৃত্রিম আঁশ তৈরি কাঁচামালের পরিচিতি

কৃত্রিম আঁশের মূল উৎস পেট্রোলিয়াম, প্রাকৃতিক গ্যাস ও কয়লা। সাধারণত সিনথেটিক বিভিন্ন মানোমার থেকে পলিমারাইজেশনের মাধ্যমে সিনথেটিক ফাইবার উৎপন্ন হয়।

মিথেল থেকে ভিনাইল ক্লোরাইড, ভিনাইল অ্যাসিটেড ইত্যাদি মনোমার পাওয়া যায়।

আবার প্রোপাইলিন থেকে পলিপ্রোপাইলিন, অ্যাকরাইলো নাইট্রাইল, বেনজিন থেকে অ্যাডিপিক অ্যাসিড, মেক্সামিথিলিন ডায়ামিন ইত্যাদি পাওয়া যায়। যার দ্বারা ফাইবার প্রস্তুত করা করা হয়।

সতৰ্কতা

বিভিন্ন স্পিনিং পদ্ধতিতে কৃত্রিম আঁশ তৈরি করা সম্ভব। নির্দিষ্ট আঁশ নির্দিষ্ট স্পিনিং পদ্ধতিতে সংগ্রহ করতে হবে।

উপসংহার/মন্তব্য

৭। পরীক্ষার নাম: কৃত্রিম আঁশ শনাক্তকরণ

* স্পর্শ বা অনুভব পরীক্ষা (Feeling :es:)

স্পর্শ পরীক্ষা সাধারণত অভিজ্ঞতা ও দক্ষতার উপর নির্ভর করে। যে সমস্ত প্রযুক্তিবিদ ফাইবার নিয়ে কাজ করে, শুধু তাঁরাই আঁশ দেখে এবং অনুভব করে আঁশের নাম এবং কোয়ালিটি সমন্ধে ধারণা করতে পারেন।

- थूव प्रमूण, ७५८ रालका ७ श्रिण्शिक
 नारेलन।
- কিছুটা কর্কশ, কটন ও উলের চেয়ে বেশি মসূণ → পলিয়েস্টার।
- উলের মতো মনে হলেও ওজনে হালকা, ঠান্ডা, মসৃণ, কিছুটা পিচ্ছিল উলের চেয়ে
 সামান্য বেশি ঠান্ডা অ্যাকরাইলিক।

আগুনে পুড়ে পরীক্ষা (Burningtes)

টেক্সটাইল বিভিন্ন ফাইবারের গঠনগত উপাদানের কারণে আগুনে পোড়ার পর আঁশের আচরণ-এ ভিন্ন

ভিনু পরিলক্ষিত হয়। ফলে উক্ত আচরণ শনাক্ত করে আঁশকে চিহ্নিত করা হয়।

সাধারণত আঁশের গুচ্ছ থেকে কয়েকটি আঁশ অথবা কাপড়ে থেকে নমুনা টুকরো সংগ্রহ করে তার থেকে একটা বা দুইটা করে সুতা আগুনের শিখার উপর ধরা হয় এবং আনুমানিক ১০ সেকেন্ড জ্বলতে দেওয়া হয়।

নাইনল

- ধীরে ধীরে পুড়ে ও গলে যায়।
- আগুন হতে সরালে শিখা আন্তে আন্তে নিভে যায়।
- পিরিডন-এর হালকা গন্ধ পাওয়া যায়।
- চকচকে বা বাদামি শক্ত গোলাকার পুঁতির দানার মতো অবশিষ্ট থাকে।

পশিয়েস্টার

- পুড়ে ধীরে ধীরে গলে যায়।
- শিখা আন্তে আন্তে নিভে যায়, সহজে দাহ্য থাকে না।
- মৃদু মিষ্টি অ্যারোমেটিকের গন্ধ পাওয়া যায়।
- চকচকে বা বাদামি শক্ত গোলাকার ভঙ্গুর পুঁতির দানার মতো ছাই পাওয়া যায়।

অ্যাকরাইলিক

- দ্রুত জ্বলে ও মিটমিট করে।
- আগুন হতে সরালে অবিরাম গলে ও পুড়তে থাকে।
- মৃদু মাংস পোড়া গন্ধ।
- ভঙ্গুর শক্ত অসমান পুঁতির দানার মতো ছাই পাওয়া যায়।

অণুবীক্ষণ যন্ত্রের সাহায্যে পরীক্ষা

বিভিন্ন আঁশের প্রকৃতি নির্ধারণে অণুবীক্ষণিক পরীক্ষাই সর্বাপেক্ষা উত্তম, নির্ভরযোগ্য ও নির্ভূল। অণুবীক্ষণ যন্ত্রের নিচে রাখলে বিভিন্ন আকৃতির আঁশ বিভিন্ন দেখায়।

নাইলন

ফিলামেন্টগুলোর ব্যাস সমান উপরিভাগ কাচের দণ্ডের মতো মনে হয়। খুবই চকচকে গোলাকার, মস্ণ। মাঝে মাঝে কিছু নাইলন হালকা চকচকে ও কাল চকচকে হয়।

নাইলন (Nylon)

নাইলনের ক্রস সেকশব

চিত্ৰ : নাইলন

হয়।

পশিয়েস্টার

মসৃণ এবং সোজা, ক্রস সেকশন গোলাকার সাধারণত চকচকে তবে কখনও কখনও কম চকচকে করা

চিত্র: পলিয়েস্টার

রাসায়নিক পরীক্ষা (Chemical :es:)

এই পদ্ধতিতে ফাইবার শনাক্ত করা খুবই কষ্টসাধ্য, যখন একই কাপড়ে বা সুতায় বিভিন্ন ধরনের ফাইবার ব্লেন্ডেড অবস্থায় মিশ্রিত থাকে।

নাইনল

- ▶ গাঢ় উষ্ণ HCI এর সাথে বিক্রিয়া করলে ——> দ্রবীভূত।
- lacktriangle ঠান্ডা ও ঘন $\mathrm{H}_2\mathrm{SO}_4$ এর সাথে বিক্রিয়া \longrightarrow দ্রবীভূত।
- ▶ নাইলন নিশ্চিত হওয়ার জন্য অ্যাসিটোন দ্রবণে বিক্রিয়া→ দ্রবীভূত।

পলিয়েস্টার

ঠান্ডা ও ঘন হাইড্রোক্লোরিক অ্যাসিডের সাথে বিক্রিয়া অপরিবর্তিত।

ঠান্ডা ও ঘন সালফিউরিক অ্যাসিডের সাথে বিক্রিয়া দ্রবীভূত।

▶ ঠান্ডা ও ঘন নাইট্রিক অ্যাসিডের সাথে বিক্রিয়া ------ দ্রবীভূত।

পলিয়েস্টার নিশ্চিত করার জন্য

(ক) মেটাক্রেসল দ্রবণে গরম করলে দ্রবীভূত।

(খ) অ্যাসিটোন এ বিক্রিয়া করলে
→ দ্রবীভূত।

অ্যাকরাইলিক

শাঢ় উষ্ণ HCI এর সাথে বিক্রিয়া

 অপরিবর্তিত।

lacktriangle ঠান্ডা ও ঘন $m H_2SO_4$ এর সাথে বিক্রিয়া $\buildrel \longrightarrow$ দ্রবীভূত।

▶ ফেনল -এর সাথে বিক্রিয়া ----- অপরিবর্তিত।

■ অ্যাকরাইলিক নিশ্চিত করার জন্য-৭০% অ্যামোনিয়া থায়োসায়ানাইট ৬০% C-এ উত্তপ্ত করলে
দ্রবীভূত।

৮। পরীক্ষার নাম: কৃত্রিম আঁশ -এর প্রকারভেদ ও শনাক্তকরণ। ভূমিকা

সুতা বা কাপড় তৈরির গুণাবলি বিদ্যমান এ রকম ফাইবারকেই টেক্সটাইল ফাইবার বলা হয়। সমস্ত টেক্সটাইল ফাইবার সাধারণত দুটি ভাগে ভাগ করা হয়েছে। একটি প্রাকৃতিক ফাইবার এবং অন্যটি মানুষের তৈরি ফাইবার। মানুষের তৈরি ফাইবারকেই কৃত্রিম ফাইবার নামে অভিহিত করা হয়েছে। যা তার উৎসের উপর নির্ভর করে দুই ভাগে ভাগ করা হয়েছে। একটি পূর্ণ কৃত্রিম অন্যটি আংশিক কৃত্রিম।

উৎসসহ কৃত্রিম ফাইবারের শ্রেণিবিভাগ

৯। পরীক্ষার নাম: বিভিন্ন প্রকার ব্যালেন্স পরিচিতি।

বিভিন্ন প্রকার ব্যালেন

টেক্সটাইল ফাইবার, সুতা কাপড় পরীক্ষা করার জন্য বিভিন্ন প্রকার ব্যালেন্স ব্যবহার করা হয়। বর্তমানে অনেক আধুনিক ব্যালেন্সও পাওয়া যায়। যা দ্বারা সরাসরি টেক্সটাইল পণ্যের ওজন মাপা হয়। বিভিন্ন প্রকারের ব্যালেন্সের তালিকা

- ০ নোয়েলস ব্যালেস
- ০ কোয়ার্ডেন্ট ব্যালেন্স
- ০ বজলিস ইয়ার্ন ব্যালেন্স

- ০ এনালাইটিক্যাল ব্যালেন্স
- ০ ইলেক্ট্রনিক ব্যালেন্স ইত্যাদি

সতৰ্কতা

ব্যালেন্স ব্যবহারে সাবধানতা অবলম্বন করতে হবে। যাতে খুব সূচ্চ্ম ওজন নেওয়ার সময় বাতাস ব্যালেন্সে স্পর্শ করতে না পারে।

উপসংহার/মন্তব্য

১০। পরীক্ষার নাম : নির্দিষ্ট কাজের জন্য নির্দিষ্ট ব্যা**লেন্স শ**নাক্তকরণ। ভূমিকা

বিভিন্ন মিলকারখানায় ফাইবার, সুতা ও কাপড় পরীক্ষা করার জন্য বিভিন্ন ধরনের ব্যালেন্স রয়েছে। একটি নির্দিষ্ট কাজের জন্য একটি নির্দিষ্ট ব্যালেন্স ব্যবহার করা হয়ে থাকে।

নির্দিষ্ট কাজের জন্য নির্দিষ্ট ব্যালেল

(ক) অ্যানালাইটিক্যাল ব্যালেন

এই ব্যালেন্সের সাহায্যে সুতার কাউন্ট নির্ণয় করা সহজ এবং শিল্প কারখানায় রুটিন টেস্টের জন্য খুবই উপযোগী। র্যাপরিল দ্বারা সুতার লি প্রস্তুত করে অ্যানালাইটিক্যাল ব্যালেন্স ওজন করে সহজেই সুতার কাউন্ট বের করা সম্ভব। তবে এ ব্যালেন্স অন্যান্য অনেক কাজে ব্যবহৃত হয়।

(খ) কোয়ার্ডেন্ট ব্যালেন্স

এই ব্যালেন্সের সাহায্যে সুতার কাউন্ট নির্ণয় করা অত্যন্ত সহজ। এতে কোনো ক্যালকুলেটর ছাড়াই স্কেল থেকে সুতার কাউন্ট জানা যায়। যে সুতার কাউন্ট নির্ণয় করতে হবে তার নির্দিষ্ট দৈর্ঘ্য র্যাপিলের সাহায্যে বের করে কেটে হুকে স্থাপন করলেই নির্দেশকটি স্কেলের মধ্যে যে বিন্দু নির্দেশ করবে তা সরাসরি উক্ত কাউন্ট নির্দেশ করে।

(গ) নোয়েলস ব্যারেল

এটি একটি বিশেষ ধরনের ব্যালেন্স। যা দ্বারা সরাসরি সুতার কাউন্ট পাওয়া যায়। এ পদ্ধতি সুতার কাউন্ট বের করার জন্য কোনো গাণিতিক হিসাবের প্রয়োজন নেই। ক্ষেল থেকে সরাসরি সুতার কাউন্ট জানা যাবে।

(घ) विष्मिम रेग्नार्न

এ ব্যালেন্সে কাপড় হতে সুতার ছোট ছোট টুকরো সংগ্রহ করে আদর্শ ওজনের জন্য নির্দিষ্ট সংখ্যক সুতার টুকরো রেখে ডেটাম লাইন বরাবর নির্দেশকটি এলেই টুকরা সুতার সংখ্যাই সুতার কাউন্ট। এ পদ্ধতি অত্যম্ভ সহজ ও কম সময়ে বের করা সম্ভব।

(ঙ) ইলেকট্রনিক ব্যালেল

এ ব্যালেন্স বিভিন্ন ওজন নেওয়ার জন্য ফাইবার, সুতা, কাপড় ইত্যাদির জন্য প্রথম থেকেই আলাদা প্রোগ্রাম করা থাকে। যে বস্তুটি ওজন করতে হবে তা সরাসরি ওজনের জন্য সেই নির্দেশিত মান ব্যালেন্সের বোতাম বা সুইচের মাধ্যমে মনিটরে ওজন করলেই সরাসরি সুতা বা কাপড়ের ওজন পাওয়া যাবে। বর্তমানে কাপড়ের জিএসএম (GSM) বের করার ক্ষেত্রে ইলেকট্রনিক ব্যালেন্স প্রচুর পরিমাণে ব্যবহৃত হচ্ছে।

সতৰ্কতা

প্রতিটি ব্যারেন্স ব্যবহারের সময় সতর্ক থাকতে হবে। ভূলভাবে নাড়াচাড়া ব্যালেন্সকে নষ্ট করে দিতে পারে।

উপসংহার/মন্তব্য

১১। পরীক্ষার নাম : র্যাপরিলের সাহায্যে সূতার লি নির্ণয়। ভূমিকা

র্যাপরিলে পরিধি সাধারণত ১.৫ গজ। কাজেই একটি লি তৈরি করার জন্য র্যাপরিলকে ৮০ বার ঘূর্ণন দেওয়া প্রয়োজন। র্যাপরিলে ৮টি ববিন স্ট্যান্ড থাকে। ববিন স্ট্যান্ড -এর পাশাপাশি গাইডও ৮টি থাকে যার মাধ্যমে আটটি লি তৈরি করা সম্ভব।

পদ্ধতি

সাধারণত দুই প্রকার র্যাপরিল পাওয়া যায়, একটি ম্যানুয়াল ও অপরটি বৈদ্যুতিক। ম্যানুয়াল র্যাপরিল হ্যান্ডেল থাকে যার মাধ্যমে ৮০ বার ঘূর্ণন দ্বারা ১২০ গজের সুতার লি তৈরি করা যায়। এটি ছাড়াও বৈদ্যুতিক র্যাপরিল স্বয়ংক্রিয়ভাবে ৮০ বার ঘূর্ণনের পর (৮০ x ১.৫) ১২০ গজের একটি লি প্রস্তুত করার পর থেমে যায়। র্যাপরিলে একবারে ৮টি লি তৈরি করা সম্ভব।

চিত্র: ব্যাপরিল

১২। পরীক্ষার নাম : বিভিন্ন পদ্ধতিতে সুতার কাউন্ট নির্ণয়। সংজ্ঞা

(ক) কটন কাউন্ট

এক পাউন্ড ওজনের সূতার মধ্যে ৮৪০ গজের যতটা হ্যাংক থাকে উক্ত সূতার কাউন্ট তত।

(খ) মেট্রিক কাউন্ট

১০০০ মিটারের যতগুলো স্টেইনের ওজন ১ কেজি সুতার কাউন্ট তত হবে।

(গ) টেক্স কাউন্ট

১০০০ মিটার বা ১ কিলোমিটার সুতার ওজন যত গ্রাম হবে সুতার কাউন্ট তত হবে।

(ঘ) ডেনিয়ার

৯০০০ মিটার সুতার ওজন যত গ্রাম হবে উক্ত সুতার ডেনিয়ার তত।

(%) উরস্টেড কাউন্ট

৫৬০ গজের যতগুলো হ্যাংকের ওজন এক পাউন্ড হবে উক্ত সুতার উরস্টেড কাউন্ট তত।

(চ) স্পাইন্ডেল

১৪৪০০ সুতার ওজন যত পাউন্ড হবে সুতার কাউন্ট তত পাউন্ডস/স্পাইন্ডেল

নমুনা সুতার দৈর্ঘ্য × দৈর্ঘ্যের একক

मृद्ध :

কটন কাউন্ট

সুতার কাউন্ট =

কটন সুতার জন্য ইংলিশ কটন কাউন্ট

মনে করা যাক নমুনা সুতার দৈর্ঘ্য = ৮৪০০ গজ নমুনা সুতার ওজন = ১০ পাউন্ড

আমরা জানি

ওজনের একক = ১ পাউভ

দৈর্ঘ্যের একক = ১৮০ গজ

কাজেই কটন কাউন্ট = $\frac{b800\times 3}{b80\times 30}$

Ne= ১' ^S কাউন্ট

কটন সুতার জন্য মেট্রিক কাউন্ট

মনে করা যাক নমুনা সুতার দৈর্ঘ্য = ১০০০০ মিটার

নমুনা সুতার ওজন = ১০ কেজি।

আমরা জানি

ওজনের একক = ১ কেজি

দৈর্ঘ্যের একক = ১০০০ মিটার

কাজেই সূত্রানুসারে মেট্রিক কাউন্ট = <u>১০০০০×১</u> ১০০০×১০ কেজি

=**১**'S কাউন্ট ৷

পলিয়েস্টার সুতার জন্য টেক্স কাউন্ট

মনে করা যাক নমুনা সুতার দৈর্ঘ্য = ২০০০০ মিটার

নমুনা সুতার ওজন = ২০ গ্রাম।

আমরা জানি

ওজনের একক = ১ গ্রাম

দৈর্ঘ্যের একক = ১০০০ মিটার

কাজেই সূত্রানুসারে টেক্স কাউন্ট = <u>২০×১০০০</u> ২০০০×১

=১ টেক্স

নাইলন ফিলামেন্টের জ্বন্য ডেনিয়ার কাউন্ট

মনে করা যাক নমুনা সুতার দৈর্ঘ্য = ৯০০০০০ মিটার

নমুনা সুতার ওজন = ১০০ গ্রাম।

আমরা জানি

ওজনের একক = ১ গ্রাম

দৈর্ঘ্যের একক = ৯০০০ মিটার

কাজেই সূত্রানুসারে ডেনিয়ার = $\frac{$00\times$000}{$00000\times$}$

= 2 D

উল সুতার জন্য উরস্টেড কাউন্ট

মনে করা যাক নমুনা সুতার দৈর্ঘ্য = ৫৬০০ মিটার

নমুনা সুতার ওজন = ১০ পাউন্ড।

আমরা জানি

ওজনের একক = ১ পাউভ

দৈর্ঘ্যের একক = ৫৬০ গজ

কাজেই সূত্রানুসারে উরস্টেড কাউন্ট = $\frac{\text{৫৬০০} \times \text{১}}{\text{৫৬০} \times \text{১০}}$

= ১^{'S} কাউন্ট।

জুট সুতার জন্য পাউন্ডস/স্পাইন্ডেল বেরকরণ

মনে করা যাক নমুনা সুতার দৈর্ঘ্য = ১৪৪০০ মিটার

নমুনা সুতার ওজন = ১০ পাউন্ড।

আমরা জানি

ওজনের একক = ১ পাউন্ড

দৈর্ঘ্যের একক = ১৪৪০০ গজ

= ১ পাউভস/স্পাইভেল ।

क्रमाक्रम

০ ইংলিশ কটন কাউন্ট = Ne = 5'S

০ মেট্রিক কাউন্ট = Nm = 5'S

০ টেক্স কাউন্ট = Nt = 5'S

০ ডেনিয়ার = Nd = 5'S

০ উরস্টেড = Nw = 5'S

উপসংহার/মন্তব্য

১৩। পরীক্ষার নাম : সুতা পাক/টুইস্ট সম্বন্ধে পরিচিতি। ভূমিকা

একটি সুতার প্রস্থচ্ছেদ করলে তার মধ্যে অনেকগুলো আঁশ দৃষ্টিগোচর হবে। আঁশসমূহ আলাদা আলাদা থাকলে একসঙ্গে একে আমরা সুতা বলব না। কিন্তু এই আলাদা আঁশসমূহ একত্রে মোচড় দেওয়া অবস্থায় থাকলে তখন তাকে আমরা সুতা বলব। কাজেই আঁশ যখন আলাদা আলাদা পাশাপাশি থাকে তাকে সুতায় রূপান্তরিত করার জন্য যে প্রয়োজনীয় পরিমাণ পঁয়াচ বা মোচড় দেওয়া হয় তাকে আমরা পাক বা টুইস্ট বলে থাকি।

সংজ্ঞা

টুইস্ট: সুতার মধ্যে অবস্থিত আঁশসমূহকে তার অক্ষের চারপাশে একটি নির্দিষ্ট নিয়মে ডান থেকে বামে অথবা বাম থেকে ডানে যে প্যাঁচ বা মোচড় দেওয়া হয় তাকে পাক বা টুইস্ট বলে।

টুইস্ট এর প্রকারভেদ

টুইস্ট -এর দিকের উপর নির্ভর করে টুইস্ট -এর প্রকারভেদ করা হয়। অর্থাৎ আঁশসমূহ সুতার অক্ষের সাথে কোন দিকে আবর্তিত হচ্ছে তার উপর ভিত্তি করে টুইস্টের প্রকারভেদ করা হয়। তাই টুইস্ট -এর দিকের উপর নির্ভর করে এক দুই ভাগে ভাগ করা হয়।

- ১। এস টুইস্ট (S-twist)
- ২। জেড টুইস্ট (Z-twist)

এস টুইস্ট (S-twist)

এক্ষেত্রে আঁশসমূহ সুতার অক্ষের সাথে বামদিকে ঘুরে ঘুরে ঘড়ির কাঁটা যে দিকে ঘুরে তার বিপরীত দিকে ঘুরে যে টুইস্ট গঠন করে তাকে এস টুইস্ট (S-twist) বলে।

জেড টুইস্ট (Z-twist)

এক্ষেত্রে আঁশসমূহ সূতার অক্ষের সাথে ডান দিকে ঘুরে ঘুরে ঘড়ির কাঁটা যে দিকে ঘুরে তার দিকে ঘুরে যে টুইস্ট গঠন করে তাকে এস টুইস্ট (S-twist) বলে।

১৪। পরীক্ষার নাম : টিপিআই সম্পর্কে আঙ্গোচনা সংজ্ঞা

সুতার মধ্যে অবস্থিত আঁশসমূহকে টুইস্ট প্রদান করে সুতায় রূপান্তরিত করা হয়। সুতায় প্রতি ইঞ্চিতে যতগুলো টুইস্ট থাকে তাকে টিপিআই বা টুইস্ট/ইঞ্চি বলে।

সুতায় টুইস্ট প্রদানে গুরুত্ব

সুতায় টুইস্ট প্রদানের গুরুত্ব নিচে আলোচনা করা হলো।

- 🕽 । টুইস্ট প্রদানে সুতার শক্তি বৃদ্ধি পায়।
- ২। পাশাপাশি অবস্থিত সমান্তরাল আঁশসমূহে টুইস্ট প্রদানের কারণে আঁশের মধ্যে আন্তঃসংযোগ প্রবণতা বৃদ্ধি পায়।

- ৩। স্পিনিং থেকে উৎপাদিত সুতা দৃঢ় হয় ফলে স্পিন্ডেলে জড়াতে সহজ হয়।
- 8। টুইস্ট প্রদানের ফলে সুতা গোলাকৃতি আকার ধারণ করে এবং সুতার চাকচিক্যতা বৃদ্ধি পায়।
- ৫। টুইস্ট প্রদান নির্দিষ্ট সীমার মধ্যে থাকলে সুতা যথেষ্ট মজবুত হয়।
- ৬। টুইস্ট প্রদানের কারণেই পরবর্তী প্রক্রিয়া অর্থাৎ কাপড় তৈরিতে সহজ হয়।

১৫। পরীক্ষার নাম : সূতার পাক পরিমাপের যন্ত্রের পরিচিতি। ভূমিকা

সুতার সমান্তরাল ফাইবারগুলোকে একসাথে ধরে রাখার জন্য সুতার অক্ষের সাথে ফাইবারগুলো পাক বা টুইস্ট দেওয়া হয় টুইস্ট বা পাক পরিমাপের জন্য বিভিন্ন পদ্ধতি রয়েছে। তবে কোনটি কখন ব্যবহার করা হয় তা নিমুলিখিত বিষয়ের উপর নির্ভর করে।

- ০ পরীক্ষণীয় বস্তু
- ০ পরীক্ষণীয় বস্তুর আকৃতি
- ০ পরীক্ষণীয় বস্তুর পরিমাণ
- ০ ফলাফলের নির্ভরযোগ্যতা

সুতার পাক পরিমাপের যন্ত্রের তালিকা

- ১. অর্ডিনারি টুইস্ট টেস্টার
- ২. কন্টিনিউয়ার টুইস্ট টেস্টার
- ৩. টুইস্ট কন্ট্রাকশন
- 8. টেল আপ টুইস্ট টেস্টার
- ৫. টুইস্ট মেজারমেন্ট বাই মাইক্রোস্কোপ

পাক পরিমাপের যন্ত্রের পরিচিতি অর্ডিনারি টুইস্ট টেস্টার

অর্ডিনারি টুইস্ট টেস্টার মাধ্যমে সিঙ্গেল অথবা প্লাই সুতার টুইস্ট পরিমাপ করা হয়। এ যন্ত্রে দুটি বাঁট থাকে। একটি স্থির অন্যটি চলমান। স্থির বাঁটটি বেসের সাথে দৃঢ়ভাবে আটকানো থাকে। অন্য বাঁটটি চলমশীল একটি রেইলের উপর বসানো খাঁকে যাতে এ বাঁটটি পরীক্ষণীয় বস্তুর দৈর্ঘ্য অনুযায়ী একটি ক্যারেজ -এর মাধ্যমে সরানো যায়। একটি স্থির বাঁট এবং চলনশীল বাঁটের মধ্যে আটকানো সুতার দৈর্ঘ্য নির্দেশ করে। একটি হুইলের সাথে যুক্ত হাতল উভয় দিকে ঘুরানো যায়। ফলে স্থির বাঁটের ক্লাম্প ঘরে এবং একই সাথে ক্লাম্পটি কতবার ঘুরবে তা ডায়ালের পয়েন্টার দ্বারা নির্দেশ করে।

উপসংহার/মন্তব্য

১৬। পরীক্ষার নাম : টুইস্ট টেস্টারের সাহায্যে সুতার পাক পরিমাপ। ভূমিকা

সুতার পাক পরিমাপের পূর্বে সুতার নমুনায়ন সঠিকভাবে করতে হবে। পাকের পরিমাণ সুতার সব জায়গায় সমান থাকে না। সাধারণত সুতার চিকন জায়গায় পাক বেশি থাকে এবং মোটা জায়গায় পাক কম থাকে। তাই নিজের ইচ্ছা মতো সুতা নিয়ে পাক পরীক্ষা করলে সঠিক ফলাফল পাওয়া যাবে না। তাই একটি লম্বা সুতা

থেকে পাক পরিমাপ করার জন্য যে নমুনা নেওয়া হবে তা কমপক্ষে ১ গজ অন্তর অন্তর নিতে হবে। এটা ছাড়া একটি ইয়ার্ন প্যাকেজ থেকেও সুতা সংগ্রহ না করে অন্তত ১০টি প্যাকেজ থেকে ২০টি পরীক্ষা করতে হবে। অর্ডিনারি টুইস্ট টেস্টারের সাহায্যে পাক পরিমাপ

অর্ডিনারি টুইস্ট টেস্টার মাধ্যমে সিঙ্গেল অথবা প্লাই সুতার টুইস্ট পরিমাপ করা হয়। এ যন্ত্রে দুটি বাঁট থাকে। একটি স্থির অন্যটি চলমান। স্থির বাঁটটি বেসের সাথে দৃঢ়ভাবে আটকানো থাকে। অন্য বাঁটটি চলনশীল একটি রেইলের উপর বসানো খাঁকে যাতে এ বাঁটটি পরীক্ষণীয় বস্তুর দৈর্ঘ্য অনুযায়ী একটি ক্যারেজ এর মাধ্যমে সরানো যায়। একটি স্থির বাঁট এবং চলনশীল চিমটার/ক্লাম্পের মধ্যে আটকানো সুতার দৈর্ঘ্য নির্দেশ করে। একটি হুইলের সাথে যুক্ত হাতল উভয় দিকে ঘুরানো যায়। ফলে স্থির বাঁটের ক্লাম্প ঘুরে এবং একই সাথে ক্লাম্পটি কতবার ঘুরবে তা ডায়ালের পয়েন্টার দ্বারা নির্দেশ করে।

ক্যা**লকুলেশ**ন

টেবিল-১

পরীক্ষা নং	টুইস্ট/ইঞ্চি (টিপিআই)	পরীক্ষা নং	টুইস্ট/ইঞ্চি (টিপিআই)

ফলাফল উপসংহার/মন্তব্য

১৭। পরীক্ষার নাম : বিভিন্ন ধরনের ওয়াইভিং প্রক্রিয়ার পরিচিতি। ভূমিকা

ইয়ার্ন ম্যানুফ্যাকচার বিভাগের সর্বশেষ মেশিন রিং ফ্রেম থেকে প্রাপ্ত রিং ববিনের সূতাসমূহ দ্বারা সরাসরি কাপড় প্রস্তুত করা সম্ভব হয় না। অর্থাৎ তাঁতে ব্যবহার করা যায় না। তাঁতে ব্যবহারের পূর্বে কতগুলো ধাপ অতিক্রম করতে হয়। এ ধাপগুলোর প্রথমটিই হচ্ছে ওয়াইন্ডিং।

ওয়াইন্ডিং -এর প্রকারভেদ ওয়াইন্ডিং প্রক্রিয়া তিন প্রকার

- ক) সমান্তরাল ওয়াইন্ডিং
- খ) প্রায় সমান্তরাল ওয়াইডিং
- গ) আড়াআড়ি ওয়াইভিং

ক) সমান্তরাল ওয়াইভিং

ইয়ার্ন প্যাকেজকে এ ধরনের ওয়াইন্ডিং -এ সুতাসমূহ সমান্তরালভাবে জড়ানো থাকে।

খ) প্রায় সমান্তরাল ওয়াইন্ডিং

ইয়ার্ন প্যাকেজকে এ ধরনের ওয়াইভিং -এ সুতাসমূহ প্রায় সমান্তরালভাবে জড়ানো থাকে।

গ) আড়াআড়ি ওয়াইডিং

এ ধরনের প্যাকেজে সুতাগুলো কোনাকুনি অবস্থানে জড়ানো থাকে।

বিভিন্ন প্রকার ওয়াইভিং প্যাকেজের নাম

- ০ কোন
- ০ চিজ
- ০ স্পুল
- ০ পার্ন
- ০ কপ ইত্যাদি।

উপসংহার/মন্তব্য

১৮। বিভিন্ন প্রকার ওয়াইন্ডিং প্যাকেজ।

সংজ্ঞা

(ক) কোন ওয়াইভিং

যে পদ্ধতিতে সুতার ছোট প্যাকেজ (রিং ববিন) থেকে পরবর্তী বিভিন্ন উদ্দেশ্য সাধনের জন্য সুতার বড় প্যাকেজ অর্থাৎ কোন আকারে সুতায় জড়ানো হয় তাকে ওয়াইন্ডিং বলে। কোন ওয়াইন্ডিং পদ্ধতিতে যে ইয়ার্ন প্যাকেজ প্রস্তুত হয় তাকে কোন বলে। কোন সাধারণত টানা সুতা হিসেবে ব্যবহৃত হয়।

(খ) পার্ন ওয়াইভিং

যে পদ্ধতিতে পড়েন সুতা মাকুতে প্রবেশের উদ্দেশ্যে খালি নলি/পার্ন এ সুতা জড়ানো হয় তাকে পার্ন ওয়াইন্ডিং বলে। সাধারণত পড়েন সুতা হিসেবে ব্যবহৃত হয় এবং পার্ন মাকুতে প্রবেশ করানো হয়।

(গ) চিজ্ঞ ওয়াইন্ডিং

যে পদ্ধতিতে সূতার ছোট প্যাকেজ থেকে পরবর্তী সুবিধাজনক কাজে ব্যবহারের উদ্দেশ্যে সূতার বড় প্যাকেজ অর্থাৎ চিজ আকারে সূতা জড়ানো হয় তাকে চিজ ওয়াইন্ডিং বলে। সূতা বহন করার সুবিধার্থে চিজ তৈরি করা হয়।

(ঘ) স্পুল ওয়াইডিং

যে পদ্ধতিতে সুতার ছোট প্যাকেজ থেকে পরবর্তী সুবিধাজনক কাজে ব্যবহারের উদ্দেশ্যে সুতার বড় প্যাকেজ অর্থাৎ স্পুল তৈরি করা হয় তাকে স্পুল ওয়াইন্ডিং বলে। স্পুল সাধারণত জুট ইন্ডাস্ট্রিতে তৈরি করা হয়। বিম তৈরির উদ্দেশ্যে টানা সুতা হিসেবে স্পুল ব্যবহৃত হয়।

বিভিন্ন প্রকার ওয়াইন্ডিং প্যাকেজের নাম

- ০ কোন
- ০ চিজ
- ০ স্পুল
- ০ পার্ন
- ০ কপ ইত্যাদি।

উপসংহার/মন্তব্য

১৯। পরীক্ষার নাম: টানা প্রকরণের প্রকারভেদ ও পরিচিতি। সংক্রা

যে পদ্ধতিতে অনেকগুলো ছোট ছোট সুতার প্যাকেজ যেমন- কোন, স্পুল, চিজ প্রভৃতি হতে টানা সুতাগুলোকে নির্দিষ্ট বহরে ও নির্দিষ্ট দৈর্ঘ্যে সমান্তরালভাবে সাজিয়ে ধারাবাহিক স্তরের আকারে একটি খালি বিমে জড়ানো হয় তাকে টানা প্রকরণ বলে। যে বিমে সুতাগুলোকে জড়ানো হয় তাকে ওয়ার্পার বিম বলে।

টানা প্রকরণের প্রকারভেদ

টানা প্রকরণ প্রধানত ২ প্রকার। যথা:

- (ক) সেকশনাল বা বিম ওয়ার্পিং
- (খ) ড্রাম ওয়ার্পিং

এটি ছাড়া আরও এক প্রকার ওয়ার্পিং রয়েছে যা বল ওয়ার্পিং নামে পরিচিত। টানা প্রকরণ বা ওয়ার্পিংকে নিমুলিখিতভাবে শ্রেণিবিন্যাস করা যায়।

উপসংহার/মন্তব্য

২০। পরীক্ষার নাম : সেকশনাঙ্গ ওয়ার্পিং ক্রিন্স সাজানো। সংজ্ঞা

সাধারণত বস্তু সংখ্যক টানা সুতা বিশিষ্ট চেক ফেব্রিক্স এর ক্ষেত্রে যেখানে রঙিন সুতার সংখ্যা মোট সুতার ১৫% বেশি সে সব ক্ষেত্রে এ পদ্ধতি ব্যবহৃত হয়। এ পদ্ধতিতে ওয়ার্পিং -এর পূর্বে হ্যাংক অবস্থায় সাইজিং করে নিতে হয়। পরে সাইজিং সুতাকে ববিনে জগানো হয়। অতঃপর ববিনগুলোকে ক্রিলে সাজানো হয়।

সেকশনাল ওয়ার্পিং এর ক্ষেত্রে আজকাল যথেষ্ট উন্নতি লক্ষ করা যায় তেমন ওয়ার্পিং -এর বিমিং -এর গতি উচ্চ হতে উচ্চতর হয়ে থাকে। বিমের ফ্লাঞ্ছ বৃহৎ রাখা হয় এবং ড্রামে সবগুলো সেকশনের গঠন প্রকৃতি সিলিন্দ্রিক্যাল রাখা হয়।

ক্রিন্স সাজানো

প্রথমে সূতা ফ্লাঞ্জ ববিনে জড়ানো হয় এরপর রঙিন সূতার সংখ্যা অনুযায়ী ক্রিলে ববিনসমূহ সাজানো হয়। মনে করা যাক, সাদা সূতার সংখ্যা = ২৪টি লাল সূতার সংখ্যা = ২৪টি

ক্রিলে সাধারণত ৫ খোপ থাকে

যে নিয়মে রঙিন সুতা টানা বিমে রাখতে হবে সে নিয়মে টানা সুতার ফ্লাঞ্জ ববিন ততটি করতে হবে। অর্থাৎ ক্রিলে প্রথমে ২৪টি সাদা সুতার ববিন ও পরে ২৪টি লাল সুতার ববিন এভাবে নিতে হবে। প্রথমে ক্রিলের বাম দিক থেকে উপরের ছিদ্রপথে প্রথম ও দ্বিতীয় খোপে সাদা সুতার ববিন এবং তৃতীয় ও চতুর্থ খোপে লাল সুতার ববিন এই নিয়মে প্রথম কাঠি বা শলা পরিয়ে ববিনগুলো স্থাপন করতে হবে।

এভাবে ধারাবাহিকভাবে প্রতিটি ক্রিলের খোপে ববিন সাজানো হয়।

উপসংহার/মন্তব্য

২১। পরীক্ষার নাম : মাড়ের উপাদানগুলো সম্পর্কে পরিচিতি। ভূমিকা

সাইজিং -এর প্রাথমিক উদ্দেশ্য হলো টানা সুতার ন্যূনতম ক্ষতি না করে কাপড় উইভিং করা। সাইজিং -এ এই উদ্দেশ্য সাধিত হয় সুতার মধ্যকার আঁশসমূহ পারস্পরিক লেগে থেকে এর শক্তি ও ক্ষমতা ও মসৃণতা বৃদ্ধির মাধ্যমে। উইভিং বিভাগে সুতায় সাইজিং করা ব্যয়সাপেক্ষ বিষয়। তবু সুতায় সাইজিং করা হয়। কেন না সাইজিং করার কারণে উইভিং -এর দক্ষতা বৃদ্ধি পায়।

মাড়ের উপাদান ও উদাহরণ

শেতসারযুক্ত উপাদান (Adhesive substance)

উদাহরণ- মেইজ স্টার্চ (Maise starch) তেঁতুলের বিচির পাউডার (Tamarind seed powder), টপিওকা স্টার্চ (Topioca starch), ময়দা (Flour), সাগু স্টার্চ (Sagoo starch), আলুর প্যালো (Potato starch), রাইচ স্টার্চ (Rice starch) ইত্যাদি প্রাকৃতিক স্টার্চ।

আবার সিএমসি (Carboxy Methyl Cellulose), পিভিএ (Polyvenyle Alcohol), পলিঅ্যাক্রাইলিক অ্যাসিড ইত্যাদি কৃত্রিম স্টার্চ বা অ্যাডহেসিভ।

সফেনিং এচ্ছেন্টস (Softening Agents)

উদাহরণ- মাটন ট্যালো (Mutton tallow), টেলটেক্স (Teltex), নারিকেল তেল (Coconut oil), ক্যাস্টর ওয়েল, তিলের তেল, তালের তেল, তুলার বীজের তেল, জলপাই এর তেল, রেড়ির তেল, প্যারাফিন ওয়াক্স (Parafin wax), চায়না মোম (China wax), সুগার ক্যান ওয়াক্স (Sugarcane wax), ওয়াক্স (Wax), সফট সোপ (Soft soap) ইত্যাদি।

হাইগ্রোসকোপিক এজেন্টস (Hygroscopic Agents)

উদাহরণ- ম্যাগনেসিয়াম ক্লোরাইড ($MgCl_2$), ক্যালসিয়াম ক্লোরাইড ($CaCl_2$), গ্লিসারিন, জিঙ্ক ক্লোরাইড ($ZnCl_2$), ডাই ইথিলিন গ্লাইকল, সরবিটল ইত্যাদি।

অ্যান্টিসেপটিক এজেন্টস (Anticeptics)

উদাহরণ- জিঞ্চ ক্লোরাইড ($ZnCl_2$), কপার সালফেট ($CuSO_4$), সেলিসাইটিক অ্যাসিড ($C_6H_4(OH)COOH$), সোডিয়াম সিলকো ক্লোরাইড, বিটা নেপথলস, কার্বোলিক অ্যাসিড ইত্যাদি।

নিউট্রালাইজিং এজেন্টস (Neutralizing Agents)

উদাহরণ- সোডা অ্যাশ।

অ্যান্টিফোমিং এজেন্টস (Antifoaming Agents)

উদাহরণ- অ্যাসিটিক অ্যাসিড (CH₃COOH), কেরোসিন, টার্পেন্টাইন, পাইন অয়েল, অ্যামাইল, অ্যালকোহল, ট্রাইউ বিউটাইল ফসফেট, সিলিকন ডিফোমার ইত্যাদি।

টিনটিং বা রঞ্জক উপাদান (Tinting of Colouring Agents)

উদাহরণ- টিনাপল (Tinapol) আলট্রা মেরিন ব্লু, অ্যাসিড ডাই ও অপটিক্যাল ব্রাইটেনিং এজেন্ট ইত্যাদি।

ওয়েটিং এজেন্টস (Weighting Agents)

উদাহরণ- চায়না ক্লে (China clay), চক বা খড়িমাটি (CaCO $_3$), ফ্রেঞ্চ চক (French Chalk), ম্যাগনেসিয়াম সালফেট (MgSO $_4$), সোডিয়াম সালফেট (Na $_2$ SO $_4$), ম্যানেশিয়াম ক্লোরাইড (MgCl $_2$) ইত্যাদি।

মাড়ের উপাদান নির্ধারণ করার বিবেচ্য বিষয়সমূহ

- ০ টানা সুতার ধরন
- ০ মাড়ের উপাদান/উপকরণের মূল্য
- ০ মাড়ের ভিসকোসিটির স্থায়িত্ব
- ০ আঠালো জাতীয় পদার্থ
- ০ ডিসাইজিং-এর সময় সহজেই অপসারণের যোগ্যতা
- ০ মেশিনের সাথে সামঞ্জস্যপূর্ণ।

সতৰ্কতা

- ০ উপকরণ যাতে স্বাস্থ্যসম্মত হয়।
- ০ কাপড়ের কোনো ক্ষতি না হয়।
- ০ পানিতে সহজেই দ্রবণীয় হতে হবে।
- ০ নির্দিষ্ট সময় পর্যন্ত সুতায় থাকতে হবে।
- ০ অপসারণের পর্যায়ে খরচ যাতে কম হয়।

উপসংহার/মন্তব্য

২২। পরীক্ষার নাম : একটি আদর্শ মাড়ের রেসিপির পরিচিতি। সংজ্ঞা

সাইজ : টানা সুতার শক্তি বৃদ্ধি ও ঘর্ষণজনিত কারণে সুতা ছেঁড়ার হাত থেকে রক্ষা করার জন্য বিমিং করা টানা সুতার পৃষ্ঠব্যাপী আঠালো পদার্থ ও অন্যান্য উপাদান দ্বারা মসৃণ করা হয়। এই আঠালো পদার্থসমূহকে একত্রে সাইজ বলা হয়। এবং প্রণনালিকে মাড় প্রকরণ বা সাইজিং (Sizing) বলে।

সাইজিং: টানা সুতার শক্তি বৃদ্ধি ও ঘর্ষণজনিত কারণে সুতা ছেঁড়ার হাত থেকে টানা সুতাকে রক্ষা করার টানা সুতার শিটের পৃষ্ঠে আঠালো পদার্থ ও অন্যান্য সাইজিং উপাদান-এর সাহায্যে টানা সুতাকে মসৃণ করার প্রণালিকে সাইজিং (Sizing) বলে।

একটি আদর্শ মাড়ের রেসিপি

ক্রমিক নং	উপাদান	পরিমাণ	শতকরা হার	
٥	মেইজ স্টার্চ	১২০ পাঃ	১২%	
২	মাটন ট্যালো	৬ পাঃ	০.৬%	
9	কপার সালফেট	০.৫ পাঃ	0.06%	
8	গ্নিসারিন	১ পাঃ	0.5%	
œ	সোডা অ্যাশ লিকারের (P ^H -6.8) পর্যন্ত রাখার জন্য যতটুকু প্রয়োজন			
৬	পানি ১০০ গ্যালন দ্রবণ প্রস্তুতের জন্য যতটুকু প্রয়োজন			

সতৰ্কতা

- ০ রেসিপি কমবেশি হলে মাড়ের দ্রবণ ঘন ও পাতলা হতে পারে যা মাড় প্রকরণ সুতার জন্য ক্ষতিকর।
- ০ মাড়ের উপাদান নির্বাচন করার সময় উপাদানের প্রতি দৃষ্টি রাখতে হবে নতুন মাড় প্রকরণের খরচ বেড়ে যাবে। উপসংহার/মন্তব্য

উইভিং-১ **ઇ**

কয়েকটি বদ্রপাতির চিত্র

পাওয়ার শুম

র্যাপিয়ার সুম

এয়ার - জেট লুম

সেকশনাল ওয়ার্পিং

ম্লেশার সাইজিং মেশিন

ওয়াটার - জেট পুম

দশম শ্রেণি প্রশ্নমালা

অতি সংক্ষিপ্ত প্রশ্ন

- ১. কৃত্রিম আঁশ বলতে কী বোঝায়?
- ২. ফিলামেন্ট ফাইবারের সংজ্ঞা দাও।
- ৩. স্পিনারেট কী?
- ওয়েট স্পিনিং বলতে কী বোঝায়?
- ৫. কোন কোন ফাইবার ড্রাই স্পিনিং পদ্ধতিতে সংগ্রহ করা হয়?
- ৬. বাণিজ্যিকভাবে উৎপাদিত কয়েকটি পলিক্র্যামাইড ফাইবারের নাম লেখ।
- ৭. নাইলন ৬.৬ এর কাঁচামাল কী?
- ৮. নাইলন ৬.৬ এর আর্দ্রতা ধারণক্ষমতা কত?
- ৯. পলিয়েস্টার-এর বাণিজ্যিক নাম লেখ।
- ১০. পলিয়েস্টার ফাইবার তৈরির কাঁচামাল কী?
- ১১. পৃথিবীর সর্বপ্রথম কৃত্রিম ফাইবার কাকে বলা হয়?
- ১২. পলিয়েস্টার ফাইবার এর আর্দ্রতা ধারণক্ষমতা কত?
- ১৩. কয়েকটি অ্যাকরাইলিক ফাইবারের বাণিজ্যিক নাম লেখ?
- ১৪. অ্যাকরাইলিক ফাইবারের কাঁচামাল কী? লেখ।
- ১৫. অ্যাকরাইলিক ফাইবারের ফিলামেন্ট কোন ধরনের স্পিনিং-এর মাধ্যমে সংগ্রহ করা হয়?
- ১৬. মেট্রিক কাউন্ট বলতে কী বোঝায়?
- ১৭. টেক্স-এর সংজ্ঞা দাও।
- ১৮. ডেনিয়েল কাউন্টের দৈর্ঘ্যর একক কত?
- ১৯. উরস্টেড কাউন্ট-এর সূত্রটি লেখ।
- ২০. সুতার টুইস্ট বলতে কী বোঝায়?
- ২১ ক্রিলের সংজ্ঞা দাও।
- ২২. সেকশনাল ওয়ার্পিং এর সংজ্ঞা দাও।
- ২৩. সাইজিং-এর সংজ্ঞা দাও।
- ২৪. কাপডের যে কোনো ৫টি ক্রটির নাম লেখ।
- ২৫. ক্লথ ইন্সপেকশন বলতে কী বোঝায়?
- ২৬. কাপড়ের গ্রেডিং কাকে বলে।

সংক্ৰিপ্ত প্ৰশ্ন

- ১. কৃত্রিম আঁশের শ্রেণিবিভাগ কর।
- ২. ড্রাই স্পিনিং পদ্ধতির বর্ণনা দাও।
- এ. মেল্ট স্পিনিং পদ্ধতির সংক্ষিপ্ত বর্ণনা দাও।
- ৪. নাইলন ৬.৬ কে কেন নাইলন ৬.৬ বলা হয়?
- ৫. নাইলন ৬.৬ এর ভৌত গুণাবলি লেখ।

- ৬. নাইলন ৬.৬ এর রাসায়নিক গুণাবলি লেখ।
- ৭. নাইলন ৬.৬ এর ব্যবহার লেখ।
- ৮, ক্যাপারোল্যাকটাম-এর উৎপাদন সংক্ষেপে বর্ণনা কর।
- ৯. পলিয়েস্টার ফাইবারের ভৌত গুণাবলি লেখ।
- পলিয়েস্টার ফাইবারের ব্যবহার লেখ।
- ১১. ভিনাইল সায়ানাইড-এর সংকেত লেখ।
- ১২. অ্যাকরাইলিক ফাইবারের ভৌত গুণাবলি লেখ।
- ১৩. অ্যাকরাইলিক ফাইবারের রাসায়নিক গুণাবলি লেখ।
- আকরাইলিক ফাইবারের ব্যবহার লেখ।
- ১৫. টেক্স থেকে কটন কাউন্ট-এ রূপান্তর-এর সূত্রটি লেখ।
- ১৬. ডেনিয়ার থেকে টেক্স পদ্ধতিতে রূপান্তর-এর সূত্রটি লেখ।
- ১৭. কটন কাউন্ট থেকে মেট্রিক কাউন্টে রূপান্তর-এর সূত্রটি লেখ।
- ১৮. কটন কাউন্টে ওরস্টেড কাউন্টে রূপান্তর কর।
- **১৯**. কাউন্ট ও টুইস্ট/ইঞ্চি-এর সূত্রটি **লে**খ।
- ২০. সেকশনাল ওয়ার্পিং-এর উদ্দেশ্য লেখ।
- ২১. সেকশনাল ওয়ার্পিং ও মিল ওয়ার্পিং-এর মধ্যে পার্থক্য লেখ।
- ২২. সাইজিং-এর উদ্দেশ্য লেখ।
- ২৩. সাইজিং-এর উপাদানসমূহের নাম লেখ।
- ২৪. কটন সুতার জন্য আদর্শ মাড়ের রেসিপি দেখাও।
- ২৫. কয়েকটি অ্যাডহেসিভ ম্যাটারিয়ালের নাম লেখ।
- ২৬. যে কোনো ৩টি সফেনিং এজেন্ট-এর নাম লেখ।
- ২৭. প্রতিষেধক উপাদানের কাজ কী?
- ২৮. কাপড়ের ২টি ক্রটির কারণ ও প্রতিকার লেখ।

রচনামূলক প্রশ্ন

- ১. কৃত্রিম আঁশের বৈশিষ্ট্যসমূহ আলোচনা করা।
- ২. নাইলন ৬.৬ এর প্রস্তুতপ্রণালির বর্ণনা দাও।
- ৩. কৃত্রিম স্পিনিং পদ্ধতির বর্ণনা দাও।
- 8. পলিয়েস্টার ফাইবারের প্রস্তুতপ্রণালির বর্ণনা দাও।
- শু. অ্যাকরাইলক ফাইবারের প্রস্তুতপ্রণালির বর্ণনা দাও।
- ৬. টেক্স, ডেনিয়ার, মেট্রিক ও ওরস্টেড কাউন্টের মধ্যে সম্পর্কসমূহ আলোচনা করা।
- ৭. সাইজিং-এর উপাদানসমূহ উদাহরণসহ বর্ণনা কর।
- ৮. স্লেশার সাইজিং মেশিন চিত্রসহ বর্ণনা কর।
- ৯. সাইজিং-এর উপাদানসমূহ গুণাগুণসহ বর্ণনা কর।
- ১০. ক্লথ গ্রেডিং-এর বর্ণনা দাও।
- ১১. কাপড়ের ক্রটিসমূহ কারণ ও প্রতিকারসহ বর্ণনা কর।

শিক্ষা নিয়ে গড়ব দেশ শেখ হাসিনার বাংলাদেশ

কারিগরি শিক্ষা আত্মনির্ভরশীলতার চাবিকাঠি

নারী ও শিশু নির্যাতনের ঘটনা ঘটলে প্রতিকার ও প্রতিরোধের জন্য ন্যাশনাল হেল্পলাইন সেন্টারে ১০৯ নম্বর-এ (টোল ফ্রি, ২৪ ঘন্টা সার্ভিস) ফোন করুন

২০১০ শিক্ষাবর্ষ থেকে গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য