

Geodatenanalyse I: Grundlagen der Sensitivitätsanalyse

Kathrin Menberg

Stundenplan

	08:30 – 12:30 Uhr	13:30 – 17:30 Uhr
Montag	Tag 1 / Block 1	Tag 1 / Block 2
Dienstag	Tag 2 / Block 1	Tag 2 / Block 2
Mittwoch	Tag 3 / Block 1	Tag 3 / Block 2
Donnerstag	Tag 4 / Block 1	Tag 4 / Block 2
Freitag	Tag 5 / Block 1	Tag 5 / Block 2

- 2.7 Monte Carlo Methoden
- **▶ 2.8 Grundlagen der Sensitivitätsanalyse**
- ▶ 2.9 Fortgeschrittene Sensitivitätsanalyse

Lernziele Block 2.8

Am Ende der Stunde werden die Teilnehmer:

- mit den Grundlagen der lokalen und globalen Sensitivitätsanalyse vertraut sein.
- ... einfache Methoden zur qualitativen Sensitivitätsanalyse in Python anwenden und die Ergebnisse graphisch darstellen können.

The study of how uncertainty in the output of a model can be apportioned to different sources of uncertainty in the model input.

(Saltelli et al. 2004)

Was kann eine Sensitivitätsanalyse

- Identifizierung wichtiger Parameter und Faktoren
- Kritische Regionen im Input Parameterraum aufdecken
 - Schwerpunkte für weitere Forschung, Messungen usw. identifizieren
- ▶ Technische Fehler in einem Modell aufdecken
 - z.B. bei unerwarteten Zusammenhängen
- Möglichkeiten zur Vereinfachung von Modellen aufzeigen
 - Parameter oder Faktoren ohne Einfluss fixieren
- ► Erweiterung von System-, bzw. Modellverständnis
- Robustheit der Modellergebnisse unter Unsicherheit zeigen
- ... und vieles mehr.

Sensitivitäts- und Unsicherheitsanalyse

- Iterative (parametrische) Modellauswertungen z.B. mit Monte Carlo Simulationen
- Bewertung der Aussagekraft eines Modells, bzw. dessen Outputs
- "Alle Modelle sind falsch, aber manche sind nützlich" (George E.P. Box)

Workflow zur Sensitivitätsanalyse

- Model-Inputs (Parameter) und deren Stichprobenbereich festlegen
- Model-Inputs anhand einer Sampling-Strategie generieren
 - z.B. Zufallswerte, Latin-Hypercube, o.ä.
- Das Model für die generierten Parameterwerte auswerten
 - Iterative Modellläufe z B mit Monte Carlo Simulation
- Model-Inputs und Outputs in Bezug auf ihren Zusammenhang analysieren
 - Graphische Darstellung, Korrelationskoeffizienten, ...
 - Varianzbasierte Methoden, ...

Typen von Sensitivitätsanalyse

- Lokale und globale Sensitivitätsanalyse
 - ▶ **Lokal**: Einfluss von Variation <u>eines Inputs</u> in einem <u>beschränkten Bereich</u>
 - z.B. durch Analyse von Gradienten oder partielle Ableitungen
 - ► Global: Betrachtung der Unsicherheit in <u>allen Faktoren</u> über ihre <u>gesamten Wertebereiche</u>
 - z.B. mit Hilfe von Monte Carlo Simulationen
- Qualitative und quantitative Sensitivitätsanalyse
 - ▶ Qualitativ: relative Einordung der Parameter nach ihrem Einfluss
 - sog. Parameter Ranking Methoden
 - Quantitative: <u>absolute</u> Bestimmung des Einflusses aller Parameter
 - z.B. über die Analysen von Varianzen, lineare Regression, usw.

Mathematische Grundlagen

- Ableitungen vs. Scatterplots
 - ▶ $\frac{\partial Y_j}{\partial X_i}$ → Sensitivität Output Y_j gegenüber Input X_i
- Beispiel Modell:

$$Y = \sum_{i=1}^{r} \Omega_i Z_i$$

- ► Z_i normalverteilt mit $\mu_{Z_i} = 0$, und $\sigma_{Z_1} < \sigma_{Z_2} < ... < \sigma_{Z_n}$
- Kein Unterschied in Ableitungen
 <u>\partial Y</u>

Welcher Parameter hat den größten Einfluss?

One-at-a-time (OAT) Vorgehen

- Parameter nacheinander innerhalb ihrer Wertebereiche variieren
- Ergebnisse normieren und gegen den Output plotten

Ohmer et al. (2021)

Contribution to Variance (CoV)

- ▶ Methode aus der Risikoanalyse und der Ökonomie
- ▶ Beitrag der Unsicherheit (oder $\sigma_{x_i}^2$) eines Postens, zur Unsicherheit des Gesamtportfolios (σ_Y^2)
- ightharpoonup Bestimmung der Korrelation zwischen x_i und Y
- bzw. der Kovarianz
- ▶ Oft normiert in % von σ_Y^2 angegeben

Saltelli et al. (2008)

- Problematisch bei stark korrelierenden Input Parametern
- ... und komplexen, nicht-linearen Modellen

Contribution to Variance (CoV)

- Zwei Beispiele zur Visualisierung:
 - Tornadoplot

Figure 22: Statistics for sensitivity analysis of λ for G10m-G30u illustrated in tornado plots. SRC are given on the x-axis (MATLAB 2018b).

Menberg et al. (2013)

Würth, BSc. Thesis (2019)

Contribution to Variance (CoV)

- Unsicherheit in den bestimmten Korrelationskoeffizienten
- Resampling Verfahren basierend auf Monte Carlo Simulation
 - ▶ Bootstrap: Ersetzen eines Teils der Werte durch andere (Duplikate)
 - Jackknife: Eliminieren eines Teils der Werte
 - Effekt, den das
 Weglassen eines
 Teils der Werte hat
 - Einfluss vonExtremwertenbestimmen

Bootstrap

Jacknife

stats.stackexchange.com

Mögliche Fallstricke und Schwierigkeiten

- zu viele Inputparameter für genaue Analyse
 - Screening-Methoden (nächste Stunde)
- alle wichtigen Parameter, bzw. Faktoren berücksichtigt?
- zu wenig Information um Wahrscheinlichkeitsverteilung für Parameter aufzustellen
- (Un)abhängigkeit der betrachteten Parameter
 - Spezielle Methoden für gruppierte Parameter
- Modellläufe dauern zu lange
 - Emulatoren (vereinfachte statistische Modelle) benutzen

Übung 2.8: Sensitivitätsanalyse I

- Basierend auf MC Simulation aus Übung 2.7 grundlegende Methoden zur Sensitivitätsanalyse
 - Contribution-to-Variance
 - Visualisierung
 - Resampling

Aufgaben in Jupyter Notebook: geodatenanalyse_1-2-8

$$\lambda = \frac{\Delta \delta^{13} C \cdot k_f \cdot i}{\varepsilon \cdot s \cdot n_{\rho}}$$

Aufgabenbesprechung

Contribution-to-Variance

Aufgabenbesprechung

Resampling Korrelation

10.03.2021

Literatur

- Saltelli et al. (2008): Global Sensitivity Analysis. The Primer, John Wiley & Sons.
- Menberg et al. (2016): Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information, Energy and Buildings 133, 433-445.
- Würth et al. (2021): Quantifying biodegradation rate constants of o-xylene by combining compound-specific isotope analysis and groundwater dating. Journal of Contaminant Hydrology, 238, 103757

