Sławomir Kulesza

Technika cyfrowa

Kombinacyjne bloki funkcjonalne

Wykład dla studentów III roku Informatyki

Bloki cyfrowe

Blok funkcjonalny to układ cyfrowy utworzony z pewnej liczby elementów logicznych (bramek, przerzutników), którego funkcja logiczna zależy od stanu wejść sterujących; przy określonym stanie wejść sterujących BC realizuje tylko jedną, określoną funkcję logiczną.

- D wejściowe sygnały informacyjne (do przetworzenia),
- S wejściowe sygnały sterujące,
- F wyjściowe sygnały informacyjne (przetworzone),
- R sygnały kontrolne (flagi).

Mikrooperacje

Mikrooperacją określamy pojedynczą czynność logiczną lub arytmetyczną wykonywaną przez blok funkcjonalny po podaniu określonego słowa sterującego S_u.

Mikrooperację μ wykonywaną przez blok kombinacyjny można zapisać podając funkcję kodującą $\mu: D {\to} Y$ i warunkujący jej realizację stan sterowania S_{μ} postaci:

$$LO10011001$$

 $S_{\mu}:Y=\mu(D)$

Powyższy zapis oznacza:

Konwertery kodów

Konwertery kodów (transkodery) to układy zamieniające słowa binarne w jednym kodzie na słowa binarne w innym kodzie. Spośród wszystkich konwerterów kodów dodatkowo wyróżnia się:

- kodery (enkodery) układy zamieniające kod '1-z-N' na dowolny inny kod binarny,
- dekodery układy zamieniające dowolny kod binarny na kod '1-z-N'.

Koder '1-z-10'/BCD 8421

	Wejścia		Wyjście
	Kod 1 z 10		Wyjścia
	9876543210		DCBA
	0000000001	0	0 0 0 0
	0000000010	1	0 0 0 1
	0000000100	2	0 0 1 0
	0000001000	3	0 0 1 1
	0000010000	4	0 1 0 0
£	0000100000	5	0 1 0 1
	000100000	6	0 1 1 0
	001000000	7	0 1 1 1
1	010000000	8	1 0 0 0
	1000000000	9	1 0 0 1

Koder '1-z-8'/NB

			Inp	uts				Οι	Outputs			
Ιο	I ₁	I 2	I 3	Ι 4	I 5	I 6	I 7		$\overline{y_1}$	$\overline{y_0}$		
1	0	0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0	0	1		
0	0	1	0	0	0	0	0	0	1	0		
0	0	0	1	0	0	0	0	0	1	1		
0	0	0	0	1	0	0	0	1	0	0		
0	0	0	0	0	1	0	0	1	0	1		
0	0	0	0	0	0	1	0	1	1	0		
0	0	0	0	0	0	0	1	1	1	1		

Koder priorytetowy

Przy jednoczesnej aktywacji kilku wejść, na wyjściu kodowany jest stan wejścia o najwyższym priorytecie (najwyższym numerze). Przy braku pobudzenia, uaktywnia się wyjście IDLE.

			Inp	uts			•	Ou	ıtpu	ıts	
Ιο	I 1	I ₂	I 3	Ι 4	I 5	Ι 6	I 7	y ₂	y ₁	$\overline{y_0}$	Idle
0	0.	0	0.	0	0.	0	0	X	X	X	1
1	0	0	0	0	0	0	0	0	0	0	0
X	1	0	0	0	0	0	0	0	0	1	0
X	X	1	0	0	0	0	0	0	1	0	0
X	X	X	1	0	0	0	0	0	1	1	0
X	X	X	X	1	0	0	0	1	0	0	0
X	X	X	X	X	1	0	0	1	0	1	0
X	X	X	X	X	X	1	0	1	1	0	0
X	X	X	X	X	X	X	1	1	1	1	0

Dekoder pełny NB/'1-z-4'

Dekoder nazywamy pełnym, jeśli ilość wyjść M = 2^N, gdzie N jest długością słowa wejściowego (ilością wejść).

Dekoder pełny NB/'1-z-8'

Dekoder pełny NB/'1-z-3' układ 74138 (Fairchild Semiconductor)

Г				DATA	OUTPU	πs		_
	v _{CC}	YO	Y1	Y2	Y3	Y4	Y5	Y6
	16	15	14	13	12	11	10	9
			ļ_					
				Î	Î			
	1	2	3	4	5	6	7	8
	Å	B	<u> </u>	G2A	G2B FNABLE		Y7 OUTPUT	GND
		SELECT			ENABLE		55.761	

	Inputs							Outr	outs			
	Enable	S	ele	ct			•	July	Juis			
G1	G2 (Note 1)	С	В	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	Х	Χ	Х	Н	Ι	Н	Н	Н	Н	Н	Н
L	X	Х	X	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Dekoder niepełny BCD/'1-z-10' układ 7442 (Fairchild Semiconductor)

No.		BCD	Input					D	ecima	l Outp	ut			
	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
1	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
2	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
3	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
4	L	Н	L	L	н	Н	Н	Н	L	Н	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
6	L	Н	Н	L	н	Н	Н	Н	Н	Н	L	Н	Н	Н
7	L	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	L	Н	Н
8	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
9	Н	L	L	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	L
П	Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
N	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
٧	Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Α	Н	Н	L	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
- 1	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
D														

Dekoder jako generator funkcji przełączającej

Dowolną N-wejściową funkcję przełączającą można zaimplementować przy użyciu dekodera NB/'1-z-2^N'. Wyjścia dekodera odpowiadające 1-mintermom funkcji przełączającej podłącza się wówczas do wejścia bramki OR.

Ex.: Pełny sumator.

Multiplekser

Multiplekser (selektor, wybierak, MUX) – umożliwia wybór i przesłanie na wyjście Y sygnału z jednego z N-wejść informacyjnych D = $\{d_0, d_1, ..., d_{N-1}\}$. Numer wybranego wejścia to adres podawany na wejścia sterujące S = $\{s_0, s_1, ..., s_{M-1}\}$; N = 2^M :

W multiplekserach może występować także dodatkowe, 1-bitowe wejście sterujące E, nazywane wejściem zezwalającym. Słowo sterujące jest wówczas złożeniem (konkatenacją):

$$S = A \circ E$$

Funkcja przełączająca

Funkcja przełączająca multipleksera ma postać:

$$y = \sum_{n=0}^{N} d_n \cdot S_n$$

gdzie: S, jest mintermem selekcyjnym (termem iloczynowym).

np. dla multipleksera 2-na-1:

d_0	d_1	S	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Multiplekser 4-na-1

Multiplekser scalony CD 74AC151 (Texas Instruments)

Multiplekser grupowy

Multiplekser grupowy umożliwia przełączenie K-bitowego słowa wejściowego do K-bitowego wyjścia układu.

Demultiplekser

Demultiplekser (rozdzielacz, DEMUX) – umożliwia wybór i przesłanie sygnału z wejścia D = $\{d_0\}$ na jedno z N-wyjść informacyjnych Y = $\{y_0, y_1, ..., y_{N-1}\}$. Numer wybranego wyjścia to adres podawany na wejścia sterujące S = $\{s_0, s_1, ..., s_{M-1}\}$.

100101

Funkcja przełączająca demultipleksera ma postać:

$$y = d \cdot S_n$$

Multiplekser jako układ kombinacyjny

Przy pomocy multipleksera można zrealizować dowolną funkcję przełączającą, traktując wejścia adresowe (sterujące) S jak mintermy postaci kanonicznej, zaś wejścia danych (D) podłączając na stałe do sygnałów 0 lub 1. Użycie na wejściu danych zmiennej logicznej redukuje rozmiar multipleksera.

Multiplekser a 4-wejściowa funkcja przełączająca

Α	В	С	D	F	
0	0	0	0	0	F = D
0	0	0	1	1	1 - 0
0	0	1	0	0	F = D
0	0	1	1	1	1 - 0
0	1	0	0	1	$F = \overline{D}$
0	1	0	1	0	1 - 0
0	1	1	0	0	F = 0
0	1	1	1	0	0
1	0	0	0	0	F = 0
1	0	0	1	0	0
1	0	1	0	0	F = D
1	0	1	1	1	1 - 0
1	1	0	0	1	F = 1
1	1	0	1	1	'
1	1	1	0	1	F = 1
1	1	1	1	1	

Multiplekser jako układ interfejsu

Demultiplekser scalony 74AC11138 (Texas Instruments) jako dekoder NB/1-z-8

FUNCTION TABLE

	1 3113 11311 11122												
ENA	BLE INF	PUTS	SEL	ECT INP	UTS	OUTPUTS							
G1	G2A	G2B	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	X	Χ	Χ	X	Н	Н	Н	Н	Н	Н	Н	Н
Х	X	Н	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	X	X	Χ	Χ	X	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Bramki 3-stanowe

Na wyjściach układów przełączających (w tym multiplekserów) mogą być umieszczone tzw. bramki 3-stanowe: stan L, stan H, stan Z (wysokiej impedancji). Bramka otwierana jest dodatkowym wejściem OE (Output Enable).

Jeśli wyjście bramki jest w stanie Z, zachowuje się ona jakby była fizycznie odłączona od układu (na wyjściu bramki nie ma żadnego napięcia) – pozwala to bezpośrednio łączyć wyjścia bramek (o ile nie są one uaktywniane jednocześnie).

Bramki 3-stanowe jako multiplekser

Komparator logiczny

Komparator logiczny porównuje słowa binarne poprzez porównanie ich bitów na tych samych pozycjach. Najprostszy komparator 1-bitowy – bramka XNOR.

Funkcja przełączająca komparatora dwóch słów n-bitowych P i Q ma postać:

$$y = \prod_{k=0}^{n-1} \overline{p_k * q_k}$$

Komparator arytmetyczny

Komparator arytmetyczny porównuje wartości liczb P oraz Q reprezentowanych w danym kodzie binarnym, generując trzy wyniki 1-bitowe:

(1)
$$L = (P < Q)$$
, (2) $E = (P = Q)$, (3) $G = (P > Q)$

Główna trudność projektowania polega na tym, że przy n-bitowych słowach funkcja przełączająca przyjmuje 2²ⁿ-stanów.

Algorytm porównania arytmetycznego

Niech dane są dwie liczby: $A = a_{n-1}...a_0$, $B = b_{n-1}...b_0$

- (1) Oznaczmy: $x_k = a_k b_k + a_k b_k'$
- (2) Jeśli EQ = $x_0 \cdot x_1 \cdot ... \cdot x_{n-1} = 1$, to A = B.
- (3) Poczynając od MSB sprawdź wartość wyrażeń:

Jeśli GT =
$$a_{n-1}b_{n-1}' + x_{n-1}a_{n-2}b_{n-2}' + ... x_{n-1}x_{n-2}...x_1a_0b_0' = 1$$
, to A > B
Jeśli LT = $a_{n-1}'b_{n-1} + x_{n-1}a_{n-2}'b_{n-2} + ... x_{n-1}x_{n-2}...x_1a_0'b_0 = 1$, to A < B

Komparator 4-bitowy układ 7485 (National Semiconductor)

Functio	Function Table									
		paring outs			Cascading Inputs		Outputs			
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B	
A3 > B3	X	X	X	Х	X	Х	Н	L	L	
A3 < B3	X	X	X	X	X	X	L	Н	L	
A3 = B3	A2 > B2	X	X	X	X	X	Н	L	L	
A3 = B3	A2 < B2	X	X	X	X	X	L	Н	L	
A3 = B3	A2 = B2	A1 > B1	X	X	X	X	Н	L	L	
A3 = B3	A2 = B2	A1 < B1	X	X	X	X	L	Н	L	
A3 = B3	A2 = B2	A1 = B1	A0 > B0	X	X	X	Н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 < B0	X	X	X	L	Н	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L	Н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L	L	Н	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	X	X	Н	L	L	H	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	Н	L	L	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	н	Н	L	
H = High Level	L = Low Level,	X = Don't Care								

Zastosowanie komparatora

Tester parzystości

Tester (generator) (nie-)parzystości to układ cyfrowy wykrywający (nie-)parzystą liczbę 1 na wejściach.

Tester nieparzystości może mieć strukturę łańcuchową lub drzewiastą. Tester parzystości powstaje po zanegowaniu wyjścia testera nieparzystości.

9-bitowy tester parzystości układ 74280 (Philips Semiconductors)

FUNCTION TABLE

INPUTS	ОUТ	PUTS
number of HIGH data inputs (I ₀ to I ₈)	ΣΕ	Σο
even odd	Н	L
000	L	

Note

H = HIGH voltage level
L = LOW voltage level