Feedback — Quiz 4: Data Science Technology **Please Note: No Grace Period** Help Center

Authentication is not required for this guiz.

You submitted this quiz on Wed 5 Aug 2015 9:24 PM PDT. You got a score of 10.00 out of 10.00.

Question 1

Which of the following are required for sharing a data set?

Your Answer		Score	Explanation
All of these options	~	1.00	
An explicit and exact recipe to go from the raw to the tidy data			
A code book describing each variable and its values			
The raw data			
Total		1.00 /	
		1.00	

Question 2

Which of the following should be included in data tidying recipes?

Your Answer		Score	Explanation
Parameter values for all functions	~	1.00	
Units of variables			

Preprocessed data	
Sample size formulae	
Total	1.00 / 1.00

Question 3

What is the central dogma of statistics?

Your Answer		Score	Explanation
 Using measurements on a probabilistically selected sample to infer knowledge about a population 	~	1.00	
Using Bayes rule to calculate probabilities we care about			
That increased power comes with increased sample sizes			
Using measurements on a population to infer knowledge about a sample			
Total		1.00 /	
		1.00	

Question 4

Which of the following are types of variability in all genomic data?

Your Answer		Score	Explanation
Genetic drift			
Geographic variability			
Natural biological variability	~	1.00	
Variation from changing technology			

Total 1.00 / 1.00

Question 5		
Which of the following will increase power in	a statistical analysis?	
Your Answer	Score	Explanation
Using a new technology		
Adjusting for confounders		
 Increasing measurement variation 		

1.00

1.00 / 1.00

Question 6

Decreasing variance

Total

If 100 p-values are calculated on a data set with no signal, how many p-values would we expect to be less than 0.05 on average?

Your Answer		Score	Explanation
<u>20</u>			
○ 50			
O			
o 5	~	1.00	
Total		1.00 / 1.00	

Question 7

If we report 500 results as significant out of 10,000 tests while controlling the family-wise error rate at 5%, about how many false positives do we expect?

Your Answer		Score	Explanation
0	~	1.00	
200			
<u>)</u> 10			
20			
Total		1.00 / 1.00	

Question 8

What is the most common confounder in genomics?

Your Answer		Score	Explanation
Genetic background			
○ Sex			
O Population stratification			
Batch effects	~	1.00	
Total		1.00 / 1.00	

Question 9

Which of the following can be used to address potential confounders at the experimental design stage?

Your Answer		Score	Explanation
 Increasing sample size 			
Multiple testing correction			
Blocking	~	1.00	
Measuring DNA instead of RNA			
Total		1.00 / 1.00	

Question 10

Which of the following are benefits of making big data as small as possible as soon as possible?

Your Answer		Score	Explanation
Reduced data will increase the power of statistical tests			
Smaller data sets are easier to share	~	1.00	
Smaller data sets will decrease false discovery rates			
Reducing the data will reduce the number of hypothesis tests			
Total		1.00 /	
		1.00	