

AD-A226 432

TECHNICAL REPORT BRL-TR-3134

BRL

DTIC FILE COPY

FLOW VISUALIZATION IN A PARTICLE LADEN JET FLOW

CSABA K. ZOLTANI
ALI F. BICEN
MONTE W. COLEMAN

AUGUST 1990

DTIC
ELECTED
SEP 11 1990
S E D

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE			<i>Form Approved OMB No. 0704-0188</i>
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	August 1990	Final	Jan 90 - May 90
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Flow Visualization in a Particle Laden Jet Flow		1L161102AH43	
6. AUTHOR(S)			
Csaba K. Zoltani, Ali F. Bicen and Monte W. Coleman			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
USA Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066		BRL-TR-3134	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution unlimited			

13. ABSTRACT (Maximum 200 words)

The results of a flow visualization study of the behavior of an unconfined, steady, fully turbulent, two-phase jet of diameter 12.7 mm at the exit with velocities up to 25 m/s and containing particles with a mass density of loading up to 5% are described. The significant result is the demonstration of "fan spreading", whereby some of the particulates carried by the jet take paths outside of the expected envelope of an equivalent single-phase jet. Measurements of the path angles and a new theory to explain the reason for "fan spreading" is reported.

14. SECURITY CLASSIFICATION

UNCLASSIFIED

15. SECURITY CLASSIFICATION
OF THIS ABSTRACT

UNCLASSIFIED

UNCLASSIFIED

25

16. NUMBER OF PAGES

Laser Doppler Anemometry, Two Phase Flow, Flow Visualization

SAR

UNCLASSIFIED

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

Table of Contents.....	iii
List of Illustrations.....	v
1. Introduction	1
2. The Experimental System.....	1
3. Results and Discussion.....	2
4. Conclusions.....	4
5. References.....	5
Figures.....	6
Distribution List.....	15

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or
	Special

A-1

WORLD WAR II
ARMED FORCES
1941-1945

INTENTIONALLY LEFT BLANK.

LIST OF ILLUSTRATIONS

Figure	Page
1. Visualization of high velocity ($U_p = 25 \text{ m/s}$) particle flow	
(a) Original image.....	6
(b) Filtered image.....	7
2. Visualization of low velocity ($U_p = 7 \text{ m/s}$) particle flow	
(a) Original image.....	8
(b) Filtered image.....	9
3. Visualization of ($U_p = 20 \text{ m/s}$) particle flow. Mass density of loading is 5%	
(a) Original image.....	10
(b) Filtered image.....	11
4. Visualization of ($U_p = 40 \text{ m/s}$) particle flow. Mass density of loading of 2 %	
(a) Original image.....	12
(b) Filtered image.....	13

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

Proper primer functioning is a prerequisite for uneventful gun operation. Unfortunately, until recently, due to the lack of proper instrumentation some aspects of primer behavior were not known in detail. Lately some excellent progress in our understanding has been made, see for example Chang and Rocchio (1988), but some questions still remain. Overall primers perform satisfactorily, but some facets of the spreading of two-phase jets, which make up many primers, have never been satisfactorily explained. This is of some interest, since the ignition event is considerably enhanced at sites where particles impinge onto the propellant. Thus, particle trajectories are important in the prediction of the ignition process. An interesting aspect of two phase jets is the spreading of particles beyond the expected jet envelope. Accumulating evidence, such as those of Hardalupas et al. (1989), Zoltani and Bicen (1990a) suggests that the observed levels of high fluctuations of the particulate velocity in the streamwise direction in the near field of particle laden two-phase jets are due to "fan-spreading". This is a phenomenon whereby some particles at the exit of a jet take trajectories at angles greater than the expected extent of the carrier jet. Thus particulates can be observed at locations outside of the envelope predicted by single-phase theory. Hardalupas et al. (1989) suggested that this is due to the mechanism that the particles leaving the jet near the edge of the tube are retarded by the tube boundary layer and in addition experience changes in path angle due to turbulent fluctuations inherent in the particulate flow.

Here, we present further evidence, based on flow visualization studies, that indeed the "fan-spreading" takes place in particulate jets. It is also shown that the particles exit the jet with greater angles than those suggested by Hardalupas et al. (1989).

2. THE EXPERIMENTAL SYSTEM

The experimental setup is described in detail in Zoltani and Bicen (1990b). In short, it comprised a jet issuing vertically downward from a pipe of 12.7 mm and laden with 80 μm glass particles at a mass loading of around 5%. The particles showed little response to both the mean flow and turbulence, and exhibit a slip between the two phases of about 25% at the jet exit. Two particle velocities of 25 m/s and 7 m/s at the jet exit were considered. The corresponding velocities of the carrier phase were 32 m/s and 9 m/s respectively.

Flow visualizations were made by means of a CCD camera and a laser sheet having a thickness of around 3 mm at $1/e^2$ intensity level and obtained by a system of lenses from a 20 W copper vapor laser pulsed at a rate of 6 kHz. The CCD camera had a sensitive area of 1024 x 1024 pixels and was triggered by a microcomputer and had an exposure time of about 30 msec. The camera was interfaced with the microcomputer which stored the digital images and performed various filter algorithms to enhance the stored images.

3. RESULTS AND DISCUSSION

The flow visualization images obtained with the higher velocity particle flow are shown in Fig. 1. The mean particle velocity measured by laser Doppler anemometry at the jet axis and near the exit was 25 m/s. The original image, Fig. 1 (a), hardly shows the detailed nature of the particle flow and was therefore enhanced using a high-pass and Sobel filters, see e.g. Gonzales et al. (1987), with the result shown in Fig. 1 (b). It

clearly indicates the individual particles and their tracks. Since the laser was pulsed at 6 kHz, it was also possible to deduce the velocities of individual particles from their signature on the image during the time that the camera shutter was open. The image indicates that the particles exit the jet at various angles and follow straight trajectories with almost constant velocities. There is no evidence of any response of the particles to the turbulent flow field. The exit angles lie within a sector of $\pm 30^\circ$ from the jet axis and the velocities associated with particles of large path angles are constantly lower (up to 50%) than the mean particle velocity of 25 m/s. The observed angles are considerably higher than those calculated by Hardalupas et al. (1989) based on the premise that the particles exit the jet at an angle expressed as $\tan^{-1}(v_p / U_p)$ where v_p is the rms of particle velocity fluctuations in the radial direction and U_p is their mean streamwise velocity. Typically, $v_p \approx 0.1 U_p$.

A plausible explanation for the large angles is the following. Some particles enter the jet tube from the plenum chamber at an angle and bounce off the wall during their transit inside the tube, experiencing different velocities as they do so across the tube. By the time these particles reach the exit they will resume different exit angles and velocities in a random fashion. Their velocities can thus be expected to be lower than those traveling straight through the tube or those experiencing fewer bounces during their transit. It can, therefore, be anticipated that lower jet velocities and lower levels of turbulence will lead to reduced entry angles to the jet tube and consequently to lowered jet exit angles of particles. This is evident in Figs. 2a and 2b which shows a smaller angle of spread and deviation in velocities (up to 15 %) from the measured mean particle velocity of 7 m/s.

A study of the far field of the jet is shown in Figs. 3 and 4. The camera was located

at 1.8 m from the observed plane of the flow. At 5% loading and with a mean exit velocity of 20 m/s, as shown in Figs. 3a and 3b, the integrity and the extent of the jet spreading is clearly discernible. The tracks of the particles participating in "fan spreading" can be followed back to the jet exit.

With the jet exit velocity increased to 25 m/s, the effect of the enclosure on the flow development becomes pronounced. At 40 m/s and 2% loading, as shown in Fig. 4a and b, induced vortex motion in the enclosure is evident. Particles participating in this motion move slower, hence the longer tracks visible to either side of the jet.

4. CONCLUSIONS

Flow visualizations obtained in a two-phase jet flow with 80 μm particles at a mass loading of 5% revealed the following.

1. Particles exited the jet tube in straight trajectories with "fan-spreading" angles of up to $\pm 30^\circ$. The velocities of those particles having large path angles were considerably lower (40 % or more) than the mean velocity of the particle bulk flow.
2. Reducing the mean particle velocity at the exit from 25 m/s to 7 m/s reduced the "fan-spreading" effect with a maximum angle of around 10° .
3. "Fan spreading" may be of significance for the modeling of primer functioning. As we have shown, some of the particles take paths outside of the expected extent of the jet, thus leading to dispersed ignition sites covering an area considerably larger than previously thought possible.

REFERENCES

Chang, L.M., Rocchio, J.J. 1988: Simulator diagnostics of the early phase ignition phenomena in a 105-mm tank gun chamber. BRL-TR-2890

Gonzalez, R.C.; Wintz, P. 1987: Digital image processing. 2nd. Ed. Reading, MA: Addison-Wesley

Hardalupas, Y.; Taylor, A.M.K.P.; Whitelaw, J.H. 1989: Velocity and particle-flux characteristics of particle-laden jets. Proc. R. Soc. Lond. A426, 31-78

Zoltani, C.K., Bicen, A.F. 1990a : Effect of initial conditions on the development of two-phase jets. BRL-TR-3100

Zoltani, C.K.; Bicen, A.F. 1990b : Velocity measurements in a turbulent, dilute, two-phase jet. Experiments in Fluids (in press)

Figure 1. Visualization of high velocity ($U_p = 25$ m/s) particle flow

(a) Original image

Figure 1. Visualization of high-velocity ($t_p = 10\mu s$) particle flow

(b) Filtered image

Figure 2. Visualization of low velocity ($U_p = 7 \text{ m/s}$) particle flow
(a) Original image

Figure 2. Visualization of low-velocity ($v_p < 1.5$ km/s) regions.

(b) Filtered image

Figure 3. Visualization of ($U_p = 20$ m/s) particle flow. Mass density of loading is 5%

(a) Original image

Figure 3. Visualization of ($U_p = 20 \text{ m/s}$) particle flow. Mass density of loading is 5%
(b) Filtered image

Figure 4. Visualization of ($U_p = 40$ m/s) particle flow. Mass density of loading of 2 %

(a) Original image

Figure 4. Visualization of ($U_p = 40$ m/s) particle flow. Mass density of loading of 2 %
(b) Filtered image

INTENTIONALLY LEFT BLANK.

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Office of the Secretary of Defense OUSD(A) Director, Live Fire Testing ATTN: James F. O'Bryon Washington, DC 20301-3110	1	Director US Army Aviation Research and Technology Activity ATTN: SAVRT-R (Library) M/S 219-3 Ames Research Center Moffett Field, CA 94035-1099
2	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander US Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
1	HQDA (SARD-TR) WASH DC 20310-0001	1	Commander US Army Tank-Automotive Command ATTN: AMSTA-TSL (Technical Library) Warren, MI 48397-5000
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Director US Army TRADOC Analysis Command ATTN: ATAA-SL White Sands Missile Range, NM 88002-5502
1	Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145	(Class. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000	(Unclass. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000	1	Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000
1	Director Benet Weapons Laboratory US Army, ARDEC ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050	2	<u>Aberdeen Proving Ground</u> Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-5000	1	Cdr, USATECOM ATTN: AMSTE-TD
		3	Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-SI
1	Commander US Army Aviation Systems Command ATTN: AMSAV-DACL 4300 Goodfellow Blvd. St. Louis, MO 63120-1798	1	Dir, VLAMO ATTN: AMSLC-VL-D

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander USA Concepts Analysis Agency ATTN: D. Hardison 8120 Woodmont Avenue Bethesda, MD 20014-2797	3	PEO-Armaments Project Manager Tank Main Armament Systems ATTN: AMCPM-TMA, K. Russell AMCPM-TMA-105 AMCPM-TMA-120 Picatinny Arsenal, NJ 07806-5000
1	C.I.A. 01R/DB/Standard Washington, DC 20505	1	Commander US Army, ARDEC ATTN: SMCAR-AEE Picatinny Arsenal, NJ 07806-5000
1	US Army Ballistic Missile Defense Systems Command Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807-3801	8	Commander US Army, ARDEC ATTN: SMCAR-AEE-B, A. Beardell B. Brodman D. Downs S. Einstein S. Westley S. Bernstein C. Roller J. Rutkowski Picatinny Arsenal, NJ 07806-5000
1	Chairman DoD Explosives Safety Board Room 856-C Hoffman Bldg. 1 2461 Eisenhower Avenue Alexandria, VA 22331-0600	2	Commander US Army, ARDEC ATTN: SMCAR-AES, S. Kaplowitz D. Spring Picatinny Arsenal, NJ 07806-5000
1	Commander US Army Materiel Command ATTN: AMCPM-GCM-WF 5001 Eisenhower Avenue Alexandria, VA 22333-5001	2	Commander US Army, ARDEC ATTN: SMCAR-HFM, E. Barrieres SMCAR-CCH-V, C. Mandala Picatinny Arsenal, NJ 07806-5000
1	Commander US Army Materiel Command ATTN: AMCDE-DW 5001 Eisenhower Avenue Alexandria, VA 22333-5001	1	Commander US Army, ARDEC ATTN: SMCAR-FSA-T, M. Salsbury Picatinny Arsenal, NJ 07806-5000
4	Project Manager Autonomous Precision-Guided Munition (APGM) US Army, ARDEC ATTN: AMCPM-CW AMCPM-CWW AMCPM-CWS, M. Fisette AMCPM-CWA-S, R. DeKleine Picatinny Arsenal, NJ 07806-5000	1	Commander, USACECOM R&D Technical Library ATTN: ASQNC-ELC-I-T, Myer Center Fort Monmouth, NJ 07703-5301
2	Project Manager Production Base Modernization Agency ATTN: AMSMC-PBM, A. Siklosi AMSMC-PBM-E, L. Laibson Picatinny Arsenal, NJ 07806-5000		

No. of Copies	Organization	No. of Copies	Organization
1	Commander US Army Harry Diamond Laboratories ATTN: SLCHD-TA-L 2800 Powder Mill Rd Adelphi, MD 20783-1145	1	Commander US Army Research Office ATTN: Technical Library P. O. Box 12211 Research Triangle Park, NC 27709-2211
1	Commandant US Army Aviation School ATTN: Aviation Agency Fort Rucker, AL 36360	1	Commander US Army Belvoir Research and Development Center ATTN: STRBE-WC Fort Belvoir, VA 22060-5006
1	Project Manager US Army Tank-Automotive Command Improved TOW Vehicle ATTN: AMCPM-ITV Warren, MI 48397-5000	1	Director US Army TRAC-Ft Lee ATTN: ATRC-L (Mr. Cameron) Fort Lee, VA 23801-6140
2	Program Manager US Army Tank-Automotive Command ATTN: AMCPM-ABMS, T. Dean Warren, MI 48092-2498	1	Commandant US Army Command and General Staff College Fort Leavenworth, KS 66027
1	Project Manager US Army Tank-Automotive Command Fighting Vehicle Systems ATTN: AMCPM-BFVS Warren, MI 48092-2498	1	Commandant US Army Special Warfare School ATTN: Rev and Tng Lit Div Fort Bragg, NC 28307
1	President US Army Armor and Engineer Board ATTN: ATZK-AD-S Fort Knox, KY 40121-5200	3	Commander Radford Army Ammunition Plant ATTN: SMCAR-QA/HI LIB Radford, VA 24141-0298
1	Project Manager US Army Tank-Automotive Command M-60 Tank Development ATTN: AMCPM-ABMS Warren, MI 48092-2498	1	Commander US Army Foreign Science and Technology Center ATTN: AMXST-MC-3 220 Seventh Street, NE Charlottesville, VA 22901-5396
1	Commander US Army Training and Doctrine Command ATTN: ATCD-MA Fort Monroe, VA 23651	2	Commander Naval Sea Systems Command ATTN: SEA 62R SEA 64 Washington, DC 20362-5101
2	Director US Army Materials Technology Laboratory ATTN: SLCMT-ATL Watertown, MA 02172-0001	1	Commander Naval Air Systems Command ATTN: AIR-954-Technical Library Washington, DC 20360

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Assistant Secretary of the Navy (R, E, and S) ATTN: R. Reichenbach Room 5E787 Pentagon Bldg Washington, DC 20375	5	Commander Naval Surface Warfare Center ATTN: Code G33, J. L. East W. Burrell J. Johndrow Code G23, D. McClure Code DX-21 Technical Library Dahlgren, VA 22448-5000
1	Naval Research Laboratory Technical Library Washington, DC 20375	3	Commander Naval Weapons Center ATTN: Code 388, C. F. Price Code 3895, T. Parr Information Science Division China Lake, CA 93555-6001
1	Commandant US Army Command and General Staff College Fort Leavenworth, KS 66027	1	Program Manager AFOSR Directorate of Aerospace Sciences ATTN: L. H. Caveny Bolling AFB Washington, DC 20332-0001
2	Commandant US Army Field Artillery Center and School ATTN: ATSF-CO-MW, B. Willis Ft. Sill, OK 73503-5600	5	Commander Naval Ordnance Station ATTN: L. Torreyson T. C. Smith D. Brooks W. Vienna Technical Library Indian Head, MD 20640-5000
1	Office of Naval Research ATTN: Code 473, R. S. Miller 800 N. Quincy Street Arlington, VA 22217-9999	1	AL/TSTL (Technical Library) ATTN: J. Lamb Edwards AFB, CA 93523-5000
3	Commandant US Army Armor School ATTN: ATZK-CD-MS, M. Falkovitch Armor Agency Fort Knox, KY 40121-5215	1	AFATL/DLYV Eglin AFB, FL 32542-5000
2	Commander US Naval Surface Warfare Center ATTN: J. P. Consaga C. Gotzmer Indian Head, MD 20640-5000	1	AFATL/DLXP Eglin AFB, FL 32542-5000
4	Commander Naval Surface Warfare Center ATTN: Code 240, S. Jacobs Code 730 Code R-13, K. Kim R. Bernecker Silver Spring, MD 20903-5000	1	AFATL/DLJE Eglin AFB, FL 32542-5000
2	Commanding Officer Naval Underwater Systems Center ATTN: Code 5B331, R. S. Lazar Technical Library Newport, RI 02840	1	NASA/Lyndon B. Johnson Space Center ATTN: NHS-22 Library Section Houston, TX 77054
		1	AFELM, The Rand Corporation ATTN: Library D 1700 Main Street Santa Monica, CA 90401-3297

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
3	AAI Corporation ATTN: J. Herbert J. Frankle D. Cleveland P. O. Box 126 Hunt Valley, MD 21030-0126	1	Hercules, Inc. Radford Army Ammunition Plant ATTN: J. Pierce Radford, VA 24141-0299
1	Aerojet Ordnance Company ATTN: D. Thatcher P.O. Box 296 Azusa, CA 91702	3	Lawrence Livermore National Laboratory ATTN: L-355, A. Buckingham M. Finger L-324, M. Constantino P. O. Box 808 Livermore, CA 94550-0622
1	Aerojet Solid Propulsion Company ATTN: P. Micheli Sacramento, CA 96813	1	Olin Corporation Badger Army Ammunition Plant ATTN: F. E. Wolf Baraboo, WI 53913
1	Atlantic Research Corporation ATTN: M. King 5390 Cherokee Avenue Alexandria, VA 22312-2302	1	Olin Corporation Smokeless Powder Operation ATTN: D. C. Mann P. O. Box 222 St. Marks, FL 32355-0222
3	AL/LSCF ATTN: J. Levine L. Quinn T. Edwards Edwards AFB, CA 93523-5000	1	Paul Gough Associates, Inc. ATTN: Dr. Paul S. Gough 1048 South Street Portsmouth, NH 03801-5423
1	AVCO Everett Research Laboratory ATTN: D. Stickler 2385 Revere Beach Parkway Everett, MA 02149-5936	1	Physics International Company ATTN: Library, H. Wayne Wampler 2700 Merced Street San Leandro, CA 98457-5602
2	Calspan Corporation ATTN: C. Murphy P. O. Box 400 Buffalo, NY 14225-0400	1	Princeton Combustion Research Laboratory, Inc. ATTN: M. Summerfield 475 US Highway One Monmouth Junction, NJ 08852-9650
1	General Electric Company Armament Systems Department ATTN: M. J. Bulman 128 Lakeside Avenue Burlington, VT 05401-4985	2	Rockwell International Rocketdyne Division ATTN: BA08, J.E. Flanagan J. Gray 6633 Canoga Avenue Canoga Park, CA 91303-2703
1	ITT RI ATTN: M. J. Klein 10 W. 35th Street Chicago, IL 60616-3799	3	Thiokol Corporation Huntsville Division ATTN: D. Flanigan Dr. John Deur Technical Library Huntsville, AL 35807
1	Hercules, Inc. Allegheny Ballistics Laboratory ATTN: William B. Walkup P. O. Box 210 Rocket Center, WV 26726		

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
2	Thiokol Corporation Elkton Division ATTN: R. Biddle Technical Library P. O. Box 241 Elkton, MD 21921-0241	1	University of Minnesota Department of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55414-3368
1	Veritay Technology, Inc. ATTN: E. Fisher 4845 Millersport Highway East Amherst, NY 14501-0305	1	Case Western Reserve University Division of Aerospace Sciences ATTN: J. Tien Cleveland, OH 44135
1	Universal Propulsion Company ATTN: H. J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 84029	3	Georgia Institute of Technology School of Aerospace Engineering ATTN: B.T. Zim E. Price W.C. Strahle Atlanta, GA 30332
1	Battelle Memorial Institute ATTN: Technical Library 505 King Avenue Columbus, OH 43201-2693	1	Institute of Gas Technology ATTN: D. Gidaspow 3424 S. State Street Chicago, IL 60616-3896
1	Brigham Young University Department of Chemical Engineering ATTN: M. Beckstead Provo, UT 84601	1	Johns Hopkins University Applied Physics Laboratory Chemical Propulsion Information Agency ATTN: T. Christian Johns Hopkins Road Laurel, MD 20707-0690
1	California Institute of Technology 204 Karman Laboratory Main Stop 301-46 ATTN: F.E.C. Culick 1201 E. California Street Pasadena, CA 91109	1	Massachusetts Institute of Technology Department of Mechanical Engineering ATTN: T. Toong 77 Massachusetts Avenue Cambridge, MA 02139-4307
1	California Institute of Technology Jet Propulsion Laboratory ATTN: L. D. Strand, MS 512/102 4800 Oak Grove Drive Pasadena, CA 91109-8099	1	Pennsylvania State University Applied Research Laboratory ATTN: G.M. Faeth University Park, PA 16802-7501
1	University of Illinois Department of Mechanical/Industrial Engineering ATTN: H. Krier 144 MEB; 1206 N. Green Street Urbana, IL 61801-2978	1	Pennsylvania State University Department of Mechanical Engineering ATTN: K. Kuo University Park, PA 16802-7501
1	University of Massachusetts Department of Mechanical Engineering ATTN: K. Jakus Amherst, MA 01002-0014	1	Purdue University School of Mechanical Engineering ATTN: J. R. Osborn TSPC Chaffee Hall West Lafayette, IN 47907-1199

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	SRI International Propulsion Sciences Division ATTN: Technical Library 333 Ravenwood Avenue Menlo Park, CA 94025-3493	1	Washington State University Department of Mechanical Engineering ATTN: C. T. Crowe Pullman, WA 99163-5201
1	Rensselaer Polytechnic Institute Department of Mathematics Troy, NY 12181	1	Honeywell, Inc. ATTN: R. E. Tompkins MN38-3300 10400 Yellow Circle Drive Minnetonka, MN 55343
2	Director Los Alamos Scientific Laboratory ATTN: T3, D. Butler M. Division, B. Craig P. O. Box 1663 Los Alamos, NM 87544	1	Science Applications, Inc. ATTN: R. B. Edelman 23146 Cumorah Crest Drive Woodland Hills, CA 91364-3710
1	General Applied Sciences Laboratory ATTN: J. Erdos 77 Raynor Avenue Ronkonkoma, NY 11779-6649		<u>Aberdeen Proving Ground</u>
1	Battelle PNL ATTN: Mr. Mark Garnich P. O. Box 999 Richland, WA 99352		Cdr, CSTA ATTN: STECS-LI, R. Hendrickson
1	Stevens Institute of Technology Davidson Laboratory ATTN: R. McAlevy, III Castle Point Station Hoboken, NJ 07030-5907		
1	Rutgers University Department of Mechanical and Aerospace Engineering ATTN: S. Temkin University Heights Campus New Brunswick, NJ 08903		
1	University of Southern California Mechanical Engineering Department ATTN: OHE200, M. Gerstein Los Angeles, CA 90089-5199		
2	University of Utah Department of Chemical Engineering ATTN: A. Baer G. Flandro Salt Lake City, UT 84112-1194		

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number BRL-TR-3134 Date of Report AUGUST 1990

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

CURRENT ADDRESS

Name _____
Organization _____
Address _____
City, State, Zip Code _____

If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

OLD ADDRESS

Name _____
Organization _____
Address _____
City, State, Zip Code _____

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)