Optimal Macro-Financial Stabilization in a New Keynesian Preferred Habitat Model

Rupal Kamdar Walker Ray Indiana University

LSF

Toulouse, October 2023

Motivation

Motivation

Bernanke: "QE works in practice but not in theory"

- By now the gap between practice and theory is small
- But what do we mean by QE works?
 - Obvious: reduce long-term yields
 - · Less obvious: stimulate the economy
 - · Even less obvious: improve social welfare
 - · Reis: "QE's original sin"
- Especially relevant today now that central banks are implementing QT while increasing short rates
- Question: what is the optimal QE policy, and how does this interact with short rate policy?

Our Model

- This paper: develops a tractable general equilibrium model with market segmentation, nominal frictions, and household heterogeneity
- · Arbitrageurs must absorb supply and demand shocks in bond markets
- · Clientele investors introduce a degree of market segmentation
 - Bond markets populated by different investor clienteles (pension funds, mutual funds)
 - · Arbitrageurs (hedge funds, broker-dealers) partly overcome segmentation
- · Households have differentiated access to bond markets
 - Introduces imperfect risk-sharing and consumption dispersion across households
- Formally: embed a Vayanos-Vila model in a New Keynesian model, where households are heterogeneous in their savings vehicles

Findings: Policy Transmission

- Key mechanisms of conventional monetary policy:
 - · Policy rate changes are transmitted to households via segmented bond markets
 - · Interaction of arbitrageurs and investor clienteles implies portfolio rebalancing
 - · Hence, short rate changes lead to variation in risk premia
- Key mechanisms of balance sheet policy:
 - · Central bank asset purchases induce portfolio rebalancing and hence reduce risk premia
 - Vice versa for central bank asset sales (QT)
- Thus, short rate and balance sheet policies are substitutes when targeting aggregate borrowing rates
 - · A fall in aggregate borrowing rates is stimulative for the usual NK reasons
- · However, both policies imply variation in risk premia
 - Excess fluctuations in risk premia implies dispersion in borrowing rates and therefore consumption across households

Findings: Optimal Policy

- · Hence, when policy is unconstrained we derive an optimal separation result:
 - Conventional policy targets macroeconomic stability
 - Unconventional policy targets financial stability
- · However, when policy constraints bind, policy must balance trade-offs:
 - Balance sheet constraints: short rate must be less reactive in order to minimize financial disruptions (at the cost of macroeconomic stability)
 - Short rate constraints: QE must be used to offset macroeconomic shocks (at the cost of financial stability)
- · General message: implementation matters for welfare

Related Literature

- · Preferred habitat models
 - Vayanos & Vila (2021), Ray, Droste, & Gorodnichenko (2023), Greenwood & Vayanos (2014), Greenwood et al (2016), King (2019, 2021), ...
- · Empirical evidence: QE and preferred habitat
 - Krishnamurthy & Vissing-Jorgensen (2012), D'Amico & King (2013), Li & Wei (2013), Cahill et al. (2013),
 King (2019), Fieldhouse et al (2018), Di Maggio et al (2020), Gali, Debortoli, & Gambetti (2020), ...
- · Macroeconomic QE models
 - Andres, Lopez-Salido, & Nelson (2004), Gertler & Karadi (2011), Curdia & Woodford (2011), Chen et al (2012), Gertler & Karadi (2013), Sims & Wu (2020), Karadi & Nakov (2020), Iovino and Sergeyev (2023), Carlstrom et al (2017), Ippolito et al (2018), ...
- Market segmentation, macro-prudential monetary policy
 - · Cui & Sterk (2021), Auclert (2016), Collard et al (2017), Kaplan et al (2017), Debortoli & Gali (2017), ...
- International
 - · Itskhoki & Mukhin (2022), Greenwood et al (2023), Gourinchas, Ray, & Vayanos (2022) , ...

Set-Up

Model Set-Up

· Continuous time New Keynesian model with embedded Vayanos-Vila bond markets

· Agents:

- · Households: supply labor, consume, save via differentiated habitat bond funds
- Firms: monopolistic competitors produce using labor, face nominal pricing frictions
- Habitat funds: buys and sell bonds of a specific maturity
- · Arbitrageurs: imperfect risk-bearing capacity, conduct bond carry trades
- · Central bank: conducts short rate and balance sheet (QE) policy
- Government: optimal production subsidy, otherwise passive

· Bond markets:

- Continuum of zero coupon bonds with maturity $0 \le \tau \le T \le \infty$
- Bond price $P_t^{(au)}$ with yield to maturity $y_t^{(au)} = -\log P_t^{(au)}/ au$
- · Nominal short rate $i_t = \lim_{\tau \to 0} y_t^{(\tau)}$

7

Households

- \cdot Continuum of HHs, differentiated by access to bond markets au
- There is a mass $\eta(\tau)$ of each τ HH where $\int_0^T \eta(\tau) d\tau = 1$ (but otherwise identical)
- A τ -HH chooses consumption and labor $C_t^{(\tau)}$, $N_t^{(\tau)}$ in order to solve

$$V_0^{(\tau)} \equiv \max \mathsf{E}_0 \int_0^\infty e^{-\rho t} \left(\frac{\left[C_t^{(\tau)} \right]^{1-\varsigma}}{1-\varsigma} - \frac{\left[N_t^{(\tau)} \right]^{1+\phi}}{1+\phi} \right) \mathrm{d}t$$
s.t.
$$\mathrm{d}A_t^{(\tau)} = \left[\mathcal{W}_t N_t^{(\tau)} - P_t C_t^{(\tau)} \right] \mathrm{d}t + A_t^{(\tau)} \frac{\mathrm{d}P_t^{(\tau)}}{P_t^{(\tau)}} + \mathrm{d}F_t^{(\tau)}$$

- $A^{(\tau)}$ is nominal wealth earning $\frac{\mathrm{d}P_t^{(\tau)}}{P_t^{(\tau)}}$ and $\mathrm{d}F_t^{(\tau)}$ are (flow) nominal transfers
- \cdot \mathcal{W}_t is the nominal wage and P_t is the price index (same for all HHs)

Key takeaway: differentiated consumption and labor choices when bond returns not equalized

Firms

- Continuum of intermediate goods $j \in [0, 1]$ (and CES final good)
- Linear production in labor $Y_{t,j} = Z_t N_{t,j}$ where $Z_t = \bar{Z}e^{Z_t}$ is aggregate technology:

$$dz_t = -\kappa_z z_t dt + \sigma_z dB_{t,z}$$

- Face Rotemberg costs $\Theta(\pi_{t,j}) = \frac{\theta}{2} \pi_{t,j}^2 P_t Y_t$ when setting prices $\frac{\mathrm{d} P_{t,j}}{P_{t,j}} = \pi_{t,j} \, \mathrm{d} t$
- Nominal profits are given by

$$\mathcal{F}_{t}(P_{t,j}, Y_{t,j}, \pi_{t,j}) = (1 + \tau^{*})P_{t,j}Y_{t,j} - W_{t}N_{t,j} - \Theta(\pi_{t,j}) - \mathcal{T}_{t}$$

- \cdot τ^* is the (optimal) production subsidy funded by lump-sum taxes \mathcal{T}_t
- Firms choose $\pi_{t,i}$ in order to solve

$$U_0 \equiv \max \mathsf{E}_0 \int_0^\infty e^{-\rho t} Q_t \frac{\mathcal{F}_t}{P_t} \, \mathrm{d}t$$

· Since HHs own firms, profits are discounted by weighted real SDF $Q_t \equiv \int_0^T \eta(\tau) Q_t^{(\tau)} \, \mathrm{d}\tau$

Key takeaway: pricing frictions create deadweight loss

Arbitrageurs

Mean-variance optimization

$$\begin{aligned} \max \mathbf{E}_t \, \mathrm{d}W_t &- \frac{\gamma}{2} \, \mathsf{Var}_t \, \mathrm{d}W_t \\ \text{s.t. } \mathrm{d}W_t &= W_t i_t \, \mathrm{d}t + \int_0^\tau X_t^{(\tau)} \left(\frac{\mathrm{d}P_t^{(\tau)}}{P_t^{(\tau)}} - i_t \, \mathrm{d}t \right) \mathrm{d}\tau \end{aligned}$$

- · Arbitrageurs invest $X_t^{(au)}$ in bond carry trade of maturity au
- \cdot Remainder of wealth W_t invested at the short rate
- \cdot Risk-return tradeoff governed by γ

Key takeaway: risk averse arbitrageurs' holdings increase with expected return

Preferred Habitat Funds

• Habitat bond demand for maturity τ :

$$Z_t^{(\tau)} = -\alpha(\tau) \log P_t^{(\tau)} - \theta(\tau) \beta_t$$

- $\alpha(\tau)$: demand elasticity for τ fund
- β_t : additional time-varying ("noise") demand factor

$$\mathrm{d}\beta_t = -\kappa_\beta \left(\beta_t - \bar{\beta}\right) \mathrm{d}t + \sigma_\beta \, \mathrm{d}B_{\beta,t}$$

 \cdot $\theta(au)$: mapping from demand factor to au-habitat demand

Key takeaway: price movements require portfolio rebalancing

Government

- Central bank chooses the policy rate i_t and bond holdings $S_t^{(\tau)}$
- · Optimal policy: maximize social welfare

$$\max \mathsf{E}_0 \int_0^\infty e^{-\rho t} \left(\int_0^\mathsf{T} \eta(\tau) u\left(\mathsf{C}_t^{(\tau)}, \mathsf{N}_t^{(\tau)} \right) \right) \mathrm{d}t$$

 \cdot In the background: fiscal authority chooses production subsidy au^*

Key takeaway: policy attempts to undo frictions:

- 1. Monopolistic competition \implies inefficient production
- 2. Nominal pricing frictions \implies deadweight loss
- 3. Market segmentation \implies consumption dispersion

Equilibrium

Simplifying Assumptions

- Tractability assumption: a "head of HH" equalizes wealth: across τ HH groups, $A_t^{(\tau)} \equiv A_t$
 - Pros: clear focus on the role market segmentation plays on consumption dispersion
 - · Cons: ignores the impact of market segmentation on wealth inequality
- Approximation: around a limiting case: risk $\sigma_z, \sigma_\beta \to 0$ but arbitrageur risk aversion $\gamma \to \infty$
 - · Pros: clear focus on the idea of "imperfect arbitrage"
 - · Cons: quantitatively less realistic risk premia
- Allows us to derive simple first-order approximations of dynamics and second-order approximations for welfare and focus on analytical results

Bond Market Equilibrium

· Bond price dynamics:

$$\frac{\mathrm{d}P_t^{(\tau)}}{P_t^{(\tau)}} \equiv \mu_t^{(\tau)} \, \mathrm{d}t + \boldsymbol{\sigma}_t^{(\tau)} \, \mathrm{d}\mathsf{B}_t$$

- B_t collects innovations to risk factors (technology, noise demand, ...)
- · Arbitrageur optimality conditions:

$$\mu_t^{(\tau)} - i_t = \sigma_t^{(\tau)} \mathbf{\Lambda}_t$$
$$\mathbf{\Lambda}_t = \gamma \int_0^T X_t^{(\tau)} \left[\sigma_t^{(\tau)} \right]^\top d\tau$$

- Term premia depend on risk aversion γ and equilibrium holdings $X_t^{(\tau)}$
 - · In our limiting case, $\sigma_t^{(au)} \mathbf{\Lambda}_t
 eq 0$

Aggregation

• Symmetric equilibrium: $Y_{t,j} = Y_t, P_{t,j} = P_t, \pi_{t,j} = \pi_t, \frac{dP_t}{P_t} = \pi_t dt$ and we have

$$Y_t = Z_t N_t \equiv Z_t \int_0^T \eta(\tau) N_t^{(\tau)} d\tau$$

$$C_t \equiv \int_0^T \eta(\tau) C_t^{(\tau)} d\tau = Y_t \left(1 - \frac{\theta}{2} \pi_t^2 \right)$$

· Firms, arbitrageurs, and funds transfer profits to HHs. Bond market clearing implies

$$X_t^{(\tau)} + Z_t^{(\tau)} + S_t^{(\tau)} = 0$$

• Natural benchmark: heta o 0 and $\gamma o 0$ along with optimal au^* implies first-best

$$Y_{t}^{n} = C_{t}^{n} = Z_{t}^{\frac{1+\phi}{s+\phi}}, \quad N_{t}^{n} = Z_{t}^{\frac{1-\varsigma}{s+\phi}}, \quad \frac{W_{t}^{n}}{P_{t}^{n}} = Z_{t}$$

• Output gap $X_t \equiv \frac{Y_t}{Y_t^n}$

Household and Firm Optimality Conditions

• Bond price dynamics and household (log-linearized) optimality conditions give:

$$dc_t^{(\tau)} = \varsigma^{-1} \left(\mu_t^{(\tau)} - \pi_t - \rho \right) dt$$

· Also gives us a modified dynamic IS curve:

$$dx_t = \varsigma^{-1} \left(\tilde{\mu}_t - \pi_t - r_t^* \right) dt$$

 $r_t^* \equiv -\kappa_z z_t$ is the usual natural rate and $\tilde{\mu}_t$ is the effective borrowing rate:

$$ilde{\mu}_{\mathsf{t}} = \int_0^{\mathsf{T}} \eta(au) \mu_{\mathsf{t}}^{(au)} \, \mathrm{d} au$$

• Firm (log-linearized) optimality conditions give a standard NKPC:

$$d\pi_t = (\rho \pi_t - \delta x_t) dt$$

• \implies to a first-order, our model is essentially the same as Ray, Droste, & Gorodnichenko (2023)

Social Welfare

· A second-order expansion of social welfare relative to the first best gives

$$L_0 \equiv -\frac{1}{2} \, \mathsf{E}_0 \int_0^\infty e^{-\rho t} \left((\varsigma + \phi) x_t^2 + \theta \pi_t^2 + \frac{\varsigma}{\phi} \left(\varsigma + \phi \right) \mathsf{Var}_\tau \, c_t^{(\tau)} \right) \mathrm{d}t$$

 \cdot Compared to a standard RANK model, there is the addition of the term $\mathsf{Var}_{ au}\,c_t^{(au)}$

$$\mathsf{Var}_{\tau} \, \mathsf{C}_{\mathsf{t}}^{(\tau)} \equiv \int \eta(\tau) \left(\mathsf{C}_{\mathsf{t}}^{(\tau)} \right)^2 \mathrm{d}\tau - \left[\int \eta(\tau) \mathsf{C}_{\mathsf{t}}^{(\tau)} \, \mathrm{d}\tau \right]^2$$

Increased consumption dispersion across HHs implies welfare losses

Ad-hoc Policy Rule

- In order to better understand the model, simplify to a version of the model which only includes natural rate shocks r_t^*
- Consider a policy rule which implements

$$i_t = r_t^*$$

· Also consider an ad-hoc QE shock:

$$S_t^{(\tau)} \equiv \zeta(\tau)\beta_t^{(QE)}$$
$$d\beta_t^{(QE)} = -\kappa_{QE}\beta_t^{(QE)} dt$$

 \cdot We will examine the outcome of these policies in different versions of the model

Risk Neutral Arbitrageur

Benchmark: Risk Neutral Arbitrageur ("Standard Model")

- Consider the benchmark case of a risk neutral arbitrageur: $\gamma = 0$
- The expectations hypothesis holds:

$$\mu_t^{(\tau)} = i_t = r_t^*$$

 $\cdot \implies$ model collapses to a standard RANK model and so

$$\mathsf{Var}_{\tau}\,c_t^{(\tau)}=0$$

- Recover the standard QE neutrality result: balance sheet policies do not affect bond prices (and therefore have no aggregate effects)
- Divine coincidence holds: conventional policy can achieve first-best $x_t = \pi_t = 0$
 - · With the addition of cost-push shocks, instead face an output-inflation trade-off
- 'Woodford-ian' equivalence: the role of policy on aggregate dynamics and welfare is fully summarized by policy rate i_t

Imperfect Arbitrage

Imperfect Arbitrage

 \cdot Now assume $\gamma > 0$ and the central bank continues to implement $i_t = r_t^*$

Proposition (Imperfect Arbitrage and Ad-hoc Policy)

Assume risk aversion $\gamma>0$ and price elasticities lpha(au)>0

Bond markets: bond carry trade return $\mu_t^{(au)} - i_t$

- Decreases with the short rate i_t
- Decreases with QE shocks $\beta_{\rm t}^{\rm (QE)}$

Aggregate dynamics: output gaps x_t and inflation π_t

- Not identically zero: $Var x_t \neq 0$ and inflation $Var \pi_t \neq 0$;
- · QE increases the output gap and inflation

Dispersion: consumption dispersion $Var_{\tau} c_{t}^{(\tau)} \neq 0$

Imperfect Arbitrage Intuition: Policy Pass-Through

- · Consider a fall in the natural rate inducing a cut in the policy rate:
 - When $\downarrow i_t$, bond arbitrageurs want to invest more in the BCT
 - $\cdot \implies$ bond prices increase $\uparrow P_t^{(\tau)}$
 - · As $\uparrow P_t^{(\tau)}$, price-elastic habitat bond investors ($\alpha(\tau) > 0$) reduce their holdings: $\downarrow Z_t^{(\tau)}$
 - · Bond arbitrageurs increase their holdings $\uparrow X_t^{(au)}$, which requires a larger BCT return

- · Now consider a QE shock
 - QE purchases: $\uparrow S_t^{(\tau)}$
 - \cdot Bond arbitrageurs reduce holdings $\downarrow \chi_{\rm t}^{(au)}$, reducing risk exposure and pushing down yields

Imperfect Arbitrage Intuition: Aggregate Effects

- Therefore, a shock to the natural rate does not fully pass through to the effective borrowing rate $\tilde{\mu}_t \neq i_t$
 - Thus aggregate borrowing demand changes, and hence $x_t \neq 0$
 - Through the NKPC, $\pi_t \neq 0$
- On the other hand, a QE shock stimulates the economy
 - \cdot QE reduces borrowing rates $\downarrow ilde{\mu}_t$ and therefore stimulates aggregate consumption $\uparrow x_t$
 - Through the NKPC, inflation $\uparrow \pi_t$
- · Additionally, in general $\mu_t^{(au)}
 eq \mu_t^{(au')}$
 - · Hence individual Euler equations differ
 - $\cdot \implies c_t^{(\tau)} \neq c_t^{(\tau')}$ and therefore $\mathsf{Var}_\tau \, c_t^{(\tau)} \neq 0$

Optimal Policy

Imperfect Arbitrage and Macroeconomic Stabilization

- · Can conventional policy alone close the output gap?
- Yes but the short rate must react more than one-for-one with the natural rate:

$$i_t = \chi_i r_t^*, \quad \chi_i > 1$$

• The parameter χ_i can be chosen so that

$$\tilde{\mu}_t = r_t^*$$

- However, this does not achieve first-best since $\operatorname{Var}_{\tau} c_t^{(\tau)} \neq 0$
- In fact, relative to the policy $i_t = r_t^*$, in general we have $\uparrow \mathsf{Var}_\tau \, c_t^{(\tau)}$
 - Short rate is more volatile, hence ↑ term premia volatility
 - This implies higher dispersion across borrowing rates $\mu_t^{(\tau)}$ and therefore an increase in consumption dispersion

Imperfect Arbitrage and Macro-Financial Stabilization

· If the central bank also utilizes balance sheet policies, we obtain the following

Proposition (Optimal Policy Separation Principle)

Assume risk aversion $\gamma > 0$ and price elasticities $\alpha(\tau) > 0$

Suppose the central bank implements short rate and balance sheet policy according to

$$i_t = r_t^*$$

$$S_t^{(\tau)} = \alpha(\tau) \log P_t^{(\tau)} + \theta(\tau) \bar{\beta}$$

Then first-best is achieved:

- Macroeconomic stabilization: $x_t = \pi_t = 0 \ \forall t$
- Financial stabilization: $\mu_t^{(\tau)} = \tilde{\mu}_t \ \forall \tau$
- · Consumption equalization: $c_t^{(\tau)} = c_t^{(\tau')} \ \forall \tau, \tau'$ and hence $\mathsf{Var}_\tau \ c_t^{(\tau)} = 0 \ \forall t$

Optimal Policy Separation Principle: Intuition

- The results follow naturally from our findings regarding ad-hoc policy
- QE policy stabilizes shocks to bond markets by offsetting all habitat portfolio rebalancing shocks:

$$S_t^{(\tau)} = -Z_t^{(\tau)} \implies \boldsymbol{\sigma}_t^{(\tau)} \boldsymbol{\Lambda}_t = 0$$

- · This equalizes borrowing rates across HHs: $\mu_t^{(au)} = ilde{\mu}_t$
- Hence the model collapses to a standard RANK model, in which case divine coincidence implies $i_t = r_t^*$ is optimal

Separation principle for optimal policy:

- Optimal balance sheet policy stabilizes financial markets
- Optimal short rate policy stabilizes macroeconomic aggregates

Constrained Optimal Policy

Financial Stabilization Policy with Short Rate Constraints

- Suppose that short rate policy is constrained and so cannot implement the policy derived above
 - Note: we do not model an explicit ZLB as the non-linearities make solving for equilibrium in bond markets much more tedious
 - · Instead, assume that the short rate in equilibrium evolves according to

$$i_t = \chi_i r_t^*, \quad 0 < \chi_i < 1$$

- If the central bank continues to implement the balance sheet policy derived above, then borrowing rates are still equalized $\mu_t^{(\tau)} = \tilde{\mu}_t$
- · However, $\tilde{\mu}_t \neq r_t^*$ and hence this policy does not achieve macroeconomic stabilization

$$X_t \neq 0, \pi_t \neq 0$$

Macroeconomic Stabilization with Short Rate Constraints

- · Can balance sheet policy alone close the output gap?
- · Yes but must sacrifice equalizing borrowing rates:

$$\mu_t^{(\tau)} = i_t + \sigma_t^{(\tau)} \lambda_t$$

$$\lambda_t \equiv \gamma \int_0^T \left[\alpha(\tau) \log P_t^{(\tau)} + \theta(\tau) \bar{\beta} - S_t^{(\tau)} \right] \sigma_t^{(\tau)} d\tau$$

· Hence, can always choose $\left\{S_t^{(au)}
ight\}$ such that

$$\lambda_t^* = \frac{r_t^* - i_t}{\int_0^T \eta(\tau) \sigma_t^{(\tau)} d\tau} \implies \tilde{\mu}_t = r_t^*$$

However, this necessitates

$$\mu_t^{(\tau)} = i_t + \sigma_t^{(\tau)} \left(\frac{r_t^* - i_t}{\int_0^T \eta(\tau) \sigma_t^{(\tau)} d\tau} \right) \neq r_t^* \quad \text{(unless } i_t \neq r_t^*\text{)}$$

Stabilization with Short Rate Constraints: Intuition

- Balance sheet policy works by affecting term premia through changes in the market price of risk
- Although arbitrage is imperfect in this model, arbitrageurs still enforce tight restrictions between between market price of risk and term premia across maturities
- Hence, while in principle the central bank has a continuum of policy tools $\{S_t^{(\tau)}\}$, in practice it can only manipulate λ_t
- Related to localization results in Vayanos & Vila (2021) and Ray, Droste, & Gorodnichenko (2023)
 - In the one-factor model considered here, the effects of QE are fully global
 - Even with more complicated risk structure, localization is not strong enough to allow balance sheet policy alone to achieve first-best

Extensions

Extensions: "Noise" Demand Shocks

- · We obtain identical results when allowing for shocks to habitat demand $eta_t^{(au)}$
- Optimal separation principle still holds, but optimal QE must be more reactive:

$$S_t^{(\tau)} = \alpha(\tau) \log P_t^{(\tau)} + \beta_t^{(\tau)}$$

- · Optimal short rate policy still implements $i_t = r_t^*$
- Additional result: if noise demand dynamics are such that $\uparrow \uparrow \beta_t^{(\tau)}$ in response to $\uparrow r_t^*$, then it is optimal to expand the balance sheet $\uparrow S_t^{(\tau)}$ while hiking rates $\uparrow i_t$
- · Intuition:
 - Suppose during a hiking cycle and in the absence of QE we have an increase in term premia
 - Then the optimal balance sheet policy is to conduct additional QE purchases in order to offset spike in term premia
 - $\cdot \implies$ conventional and unconventional policy seem to be at odds with one another
 - · Otherwise, short rate policy and balance sheet policy tend to be reinforcing

Extensions: Cost-Push Shocks

What if divine coincidence does not hold? Cost-push shocks:

$$\mathrm{d}\pi_t = (\rho \pi_t - \delta \mathsf{x}_t - \mathsf{v}_t) \, \mathrm{d}t$$

- · Unfortunately, our separation principle still holds:
 - · Optimal QE stabilizes term premia
 - · Short rate policy must contend with the output gap/inflation trade-offs
- Intuition: despite multiple policy instruments, (un)conventional policy only affects aggregate outcomes through changes in effective borrowing rate $\tilde{\mu}_t$
 - Take any feasible path $\{x_t, \pi_t, \tilde{\mu}_t\}_t$ from an implementation implying policies $\left\{\tilde{i}_t, \tilde{S}_t^{(\tau)}\right\}_t$
 - · Can also be achieved with $i_t = \tilde{\mu}_t, S_t^{(\tau)} = \alpha(\tau) \log P_t^{(\tau)} + \beta_t^{(\tau)}$
 - This guarantees ${
 m Var}_{ au}\,c_{
 m t}^{(au)}=0$ and hence strictly dominates

Extensions: Non-Zero First-Best Term Premia

- · Our approximation approach implies that in the first-best, term premia are zero
- This simplifies our analytical results but of course is an extreme assumption
- · Suppose instead that first-best term premia are $u^{(\tau)} \neq 0$
- Our separation principle still holds when $\nu^{(\tau)}$ is achievable but optimal short rate policy is a function of first-best term premia
- Intuition: combination of previous results
 - Aggregate outcomes through changes in effective borrowing rate $ilde{\mu}_t$ (as before)
 - · Optimal QE policy guarantees $\mu_t^{(\tau)} i_t \equiv \nu^{(\tau)}$ and hence $\tilde{\mu}_t = i_t + \int_0^{\tau} \eta(\tau) \nu^{(\tau)} d\tau \equiv i_t + \tilde{\nu}$
 - \cdot Thus, optimal short rate policy implements $i_t = r_t^* ilde{
 u}$
 - · Note: if first-best term premia are not achievable, optimal policy is more complicated

Measuring Balance Sheet Objectives: Return Predictability

• Fama-Bliss regression:

$$\frac{1}{\Delta \tau} \log \left(\frac{P_{t+\Delta \tau}^{(\tau-\Delta \tau)}}{P_t^{(\tau)}} \right) - y_t^{(\Delta \tau)} = a_{FB}^{(\tau)} + b_{FB}^{(\tau)} \left(f_t^{(\tau-\Delta \tau, \tau)} - y_t^{(\Delta \tau)} \right) + \varepsilon_{t+\Delta \tau}$$

- · Measures how the slope of the term structure predicts excess returns
- In our model, when the central bank does not use balance sheet policies:

$$\bar{b}_{FB}^{(\tau)} > 0$$

• If balance sheet policy is pursuing financial stabilization:

$$\bar{b}_{FB}^{(\tau)} > b_{FB}^{(\tau)} \rightarrow 0$$

• Instead, if balance sheet policy is pursuing macroeconomic stabilization:

$$b_{FB}^{(au)} > \bar{b}_{FB}^{(au)}$$

Fama-Bliss Coefficients: Treasuries, Full Sample

FB coefficients are non-zero (and increasing across maturities)

Fama-Bliss Coefficients: 10-year Treasuries, Rolling Sample

FB coefficients increase during initial QE regime, but have fallen and even become negative in recent years

Concluding Remarks

- This paper develops a tractable general equilibrium model with market segmentation, nominal frictions, and household heterogeneity
- We find that optimal short rate and balance sheet policy is characterized by a sharp optimal separation result:
 - Conventional policy targets macroeconomic stability
 - Unconventional policy targets financial stability
- Optimal policy removes excess volatility of risk premia and hence improves risk-sharing across households, while reducing excess macroeconomic volatility
 - Policy constraints on either the short rate or balance sheets imply trade-offs between these two policy objectives
- When considering social welfare, cannot abstract from the policy tools used to conduct monetary policy

Thank You!

Aggregation Details I

Aggregating across HH members:

$$C = \int \eta(\tau) C^{(\tau)} d\tau \,, \quad N = \int \eta(\tau) N^{(\tau)} d\tau \,, \quad A = \int \eta(\tau) A^{(\tau)} d\tau \,, \quad a = \int \eta(\tau) a^{(\tau)} d\tau$$

· Hence, aggregate HH real wealth evolves:

$$da = [wN - C] dt + a \left(\int \eta(\tau) \frac{dP^{(\tau)}}{P^{(\tau)}} d\tau - \pi dt \right) + \frac{1}{P} dF$$

 \cdot Formally, au HHs borrow through the relevent au-habitat fund \implies budget constraint

$$dW^{(\tau)} = Z^{(\tau)} \frac{dP^{(\tau)}}{P^{(\tau)}} + \left[W^{(\tau)} - Z^{(\tau)} + \eta(\tau) A^{(\tau)} \right] i dt - \eta(\tau) A^{(\tau)} \frac{dP^{(\tau)}}{P^{(\tau)}}$$

Flow budget constraint for the central bank:

$$dW^{(CB)} = W^{CB}i dt + \int S^{(\tau)} \left(\frac{dP^{(\tau)}}{P^{(\tau)}} - i dt \right) d\tau$$

Aggregation Details II

• Total transfers from arbitrageurs, central bank, and habitat funds to HHs:

$$dW + \int dW^{(\tau)} d\tau + dW^{(CB)} = \left[W + W^{(CB)} + \int W^{(\tau)} d\tau + A \right] i dt - A \int \eta(\tau) \frac{dP^{(\tau)}}{P^{(\tau)}} d\tau$$

- Follows from market clearing $\int X^{(\tau)} + Z^{(\tau)} + S^{(\tau)} d\tau = 0$
- Term in brackets is aggregate demand for short-term bonds (reserves): B=0 in equilibrium
- Output and goods market clearing gives nominal firm profits transferred to HHs:

$$\int_0^1 \mathcal{F}_j \, \mathrm{d}j = PY \left(1 - \frac{w}{Z} - \frac{\theta}{2} \pi^2 \right) = PC - \mathcal{W} \frac{Y}{Z} = PC - \mathcal{W} N$$

· Hence, aggregate nominal transfers to the HH sector are given by

$$dF = [PC - WN] dt - A \int \eta(\tau) \frac{dP^{(\tau)}}{P^{(\tau)}} d\tau$$

$$\implies dA = 0, \quad da = -a\pi dt = 0 \quad \text{(if } A = 0\text{)}$$

Aggregation Details III

- \cdot Finally, the "head of HH" ensures that each member has identical wealth $A^{(au)} \equiv A$
- · With $A^{(\tau)} = A = 0$, we have that aggregate HH transfers are given by

$$dF = [PC - WN] dt$$

• Wealth of a au member in equilibrium is given by

$$dA^{(\tau)} = \left[WN^{(\tau)} - PC^{(\tau)} \right] + dF^{(\tau)}$$

· Hence, the head of HH redistributes wealth according to

$$dF^{(\tau)} = \left[PC^{(\tau)} - WN^{(\tau)} \right] dt$$

$$\implies dF = \int \eta(\tau) dF^{(\tau)} d\tau$$

• Note: recall that there is a mass $\eta(\tau)$ of each τ -HH type; while transfers depend on τ , each τ member takes these as given

Equilibrium General Characterization I

- · Collect all state variables \mathbf{y}_t and jump variables \mathbf{x}_t into a vector \mathbf{Y}_t
- · Assume the central bank implements policy which in equilibrium satisfies

$$i_t = \boldsymbol{\chi}_i^{\top} \mathbf{y}_t$$

 $S_t^{(\tau)} = \boldsymbol{\zeta}(\tau)^{\top} \mathbf{y}_t$

 Then (assuming determinacy conditions hold), the first-order approximation described above implies the unique REE

$$\begin{split} \mathrm{d} Y_t &= - \Upsilon \left(Y_t - \bar{Y} \right) \mathrm{d} t + S \, \mathrm{d} B_t \\ \Longrightarrow \, \mathrm{d} y_t &= - \Gamma \left(y_t - \bar{y} \right) \mathrm{d} t + \sigma \, \mathrm{d} B_t \\ x_t - \bar{x} &= \Omega \left(y_t - \bar{y} \right) \end{split}$$

• Γ,Ω are functions of the eigen-decomposition of Υ , which depends endogenously on sensitivity of bond prices to state

Equilibrium General Characterization II

· Bond prices are (log) affine functions of the state

$$-\log P_t^{(\tau)} = \mathsf{A}(\tau)^\top \left(\mathsf{y}_t - \bar{\mathsf{y}} \right) + \mathsf{C}(\tau)$$

Affine coefficients solve the following fixed point

$$\mathbf{A}(\tau) = \int_0^{\tau} e^{-\mathbf{M}\mathbf{s}} \, \mathrm{d}\mathbf{s} \, \boldsymbol{\chi}_i$$

$$\mathbf{M} = \mathbf{\Gamma}^{\top} - \int_0^{\tau} \left[-\alpha(\tau)\mathbf{A}(\tau) + \mathbf{\Theta}(\tau) - \boldsymbol{\zeta}(\tau) \right] \mathbf{A}(\tau)^{\top} \, \mathrm{d}\tau \, \overline{\gamma} \mathbf{\Sigma}$$

- Note: $\overline{\gamma \Sigma} \neq 0$ in the limiting case described above
- Bond returns are given by

$$\mu_t^{(\tau)} = \hat{A}(\tau)^{\top} (y_t - \bar{y}) + C'(\tau)$$
$$\hat{A}(\tau) = A'(\tau) + \Gamma^{\top} A(\tau)$$
$$= \chi_i + (\Gamma^{\top} - M) A(\tau)$$

Equilibrium General Characterization III

· In general, welfare loss can be written

$$L_0 \equiv -\frac{1}{2} \mathsf{E}_0 \int_0^{\mathsf{T}} \eta(\tau) \mathsf{B}(\tau)^{\mathsf{T}} \left[\int_0^{\infty} e^{-\rho t} \left(\mathsf{y}_t - \bar{\mathsf{y}} \right) \left(\mathsf{y}_t - \bar{\mathsf{y}} \right)^{\mathsf{T}} dt \right] \mathsf{B}(\tau) d\tau$$
$$= -\frac{1}{2} \int_0^{\mathsf{T}} \eta(\tau) \mathsf{B}(\tau)^{\mathsf{T}} \tilde{\boldsymbol{\Sigma}}^{\infty} \mathsf{B}(\tau) d\tau$$

- Both the vector functions $\mathbf{B}(\tau)$ and the long-run discounted variance $\tilde{\mathbf{\Sigma}}^{\infty}$ terms may depend on policy choices

