#### РЕШЕНИЕ ИГРОВЫХ ЗАДАЧ ДЛЯ БИРЖЕВЫХ ТОРГОВ С ОБОБЩЕННЫМ МЕХАНИЗМОМ ФОРМИРОВАНИЯ СДЕЛКИ

Выступающий: А.И. Пьяных Руководитель: к.ф.-м.н., доц. В.В. Морозов

Московский государственный университет имени М.В.Ломоносова

Москва, 2016

## Описание модели

- Между двумя игроками в течение  $n \leqslant \infty$  шагов происходят торги за однотипные акции.
- Цена акции s определяется ходом случая в соответствии с распределением  $\bar{p}$ .
- Первый игрок (инсайдер) знает цену s, второй знает только вероятностное распределение  $\bar{p}$ .
- На каждом шаге торгов игроки делают ставки i, j. Игрок, предложивший большую ставку, покупает у другого акцию по цене Tr(i,j). При равных ставках сделка не состоится.

## Непрерывная и дискретная постановки

|              | Непрерывная модель            | Дискретная модель                 |
|--------------|-------------------------------|-----------------------------------|
| Ставки       | вещественные из [0,1]         | вида $i/m$ , $i = \overline{0,m}$ |
| Цена акции   | $s \in \{0,1\}; \ P(s=1) = p$ |                                   |
| Цена сделки  | $Tr(i,j) = \max(i,j)$         |                                   |
| $\{V_n(p)\}$ | растет как $\sqrt{n}$         | ограничена                        |
|              |                               |                                   |

**Цель:** показать возможность стратегического происхождения броуновского движения (случайного блуждания) в динамике цен активов.

### Мотивация

Рассмотрение более общего симметричного механизма торгов Tr(i,j) обозначено в работе [De Meyer, Saley, 2002] как одно из актуальных направлений дальнейших исследований. В качестве такого механизма был выбран

$$Tr(i,j) = \beta \max(i,j) + (1-\beta) \min(i,j), \ \beta \in [0,1],$$

предложенный в [Chatterjee, Samuelson, 1983].

Параметр  $\beta$  можно интерпретировать как переговорную силу продавца.

## Глава 1. Теоретико-игровая модель биржевых торгов с дискретными ставками

- Множество состояний  $S = \{L, H\}$ .
- ullet В состоянии L цена s=0, в состоянии H цена s=m.
- Игроки могут делать ставки из множества  $\{0,1,\ldots,m\}$ . Обозначим множества действий первого и второго игроков через I и J соответственно.

Модель отвечает повторяющейся игре  $G_n^{m,\beta}(p)$  с платежными матрицами

$$A^{L,\beta}(i,j) = \begin{cases} \overline{\beta}i + \beta j, & i < j, \\ 0, & i = j, \\ -\beta i - \overline{\beta}j, & i > j, \end{cases} A^{H,\beta}(i,j) = \begin{cases} \overline{\beta}i + \beta j - m, & i < j, \\ 0, & i = j, \\ m - \beta i - \overline{\beta}j, & i > j. \end{cases}$$

Стратегией первого игрока является последовательность ходов

$$\sigma = (\sigma_1, \sigma_2, \dots, \sigma_t, \dots), \ \sigma_t : S \times I^{t-1} \to \Delta(I).$$

Стратегией второго игрока — последовательность ходов

$$\tau = (\tau_1, \tau_2, \ldots, \tau_t, \ldots), \ \tau_t : I^{t-1} \to \Delta(J).$$

Выигрыш задается как

$$\mathcal{K}_n^{m,\beta}(p,\sigma,\tau) = \mathbb{E}_{\Pi[\sigma,\tau]} \sum_{t=0}^n \left( p A^{H,\beta}(i_t^H,j_t) + (1-p) A^{L,\beta}(i_t^L,j_t) \right).$$

### Оптимальная стратегия второго игрока

Следующая чистая стратегия  $au^k$  предложена В. К. Доманским в [Domansky, 2007]:

$$\tau_1^k = k, \quad \tau_t^k(i_{t-1}, j_{t-1}) = \begin{cases} j_{t-1} - 1, & i_{t-1} < j_{t-1}, \\ j_{t-1}, & i_{t-1} = j_{t-1}, \\ j_{t-1} + 1, & i_{t-1} > j_{t-1}. \end{cases}$$

В работе показано, что при  $p \in (k-1+\beta, k+\beta], \ k = \overline{0, m}$  использование  $\tau^k$  оптимально для второго игрока в игре  $G^{m,\beta}_{\infty}(p)$ .

## Рекурсивная структура игры $G_n^{m,eta}(p)$

Представим  $\sigma$  как  $(\sigma_1, \sigma(i), i \in I)$ , а  $\tau$  как  $(\tau_1, \tau(i), i \in I)$ . Параметризуем ход  $\sigma_1$  инсайдера с помощью

- ullet полной вероятности q(i) сделать ставку i
- апостериорной вероятности p(H|i) состояния H при использовании ставки i.

По формуле Байеса вероятность сделать ставку  $i \in I$  в состоянии  $s \in S$  выражается как

$$\sigma_{1,i}^s = \frac{p(s|i)q_i}{p(s)}.$$

Формулу выигрыша можно переписать в виде

$$K_n^m(p,\sigma,\tau)=K_1^m(p,\sigma_1,\tau_1)+\sum_{i,j}q(i)K_{n-1}^m(p(H|i),\sigma(i),\tau(i)).$$

## Оптимальная стратегия первого игрока

При  $p=k/m,\; k=\overline{1,m-1}$  первый игрок рандомизирует выбор ставок  $k,\; k+1$  с параметрами

$$q_k = \beta, \quad p(H|k) = (k-1+\beta)/m,$$
  
 $q_{k+1} = \overline{\beta}, \quad p(H|k+1) = (k+\beta)/m.$ 

При 
$$p=(k+eta)/m,\; k=\overline{0,m-1}$$
 — с параметрами

$$q_k = \overline{\beta}, \quad p(H|k) = k/m,$$
  
 $q_{k+1} = \beta, \quad p(H|k+1) = (k+1)/m.$ 

Для остальных значений p используется стратегия, дающая линейную комбинацию соответствующих выигрышей.

Графически оптимальную стратегию первого игрока можно представить следующим образом:



Для сравнения, ниже представлена стратегия из базовой работы [Domansky, 2007], которая отвечает значению  $\beta=1$ 



## Значение игры

#### Теорема

Игра  $G_{\infty}^m(p)$  имеет значение  $V_{\infty}^m p$ . Данная функция является кусочно-линейной, состоит из m+1 линейных сегментов, и полностью определяется своими значениями в следующих точках:

$$V_{\infty}^{m}((k+\beta)/m) = \frac{1}{2}\left((m-(k+\beta))(k+\beta) + \overline{\beta}\beta\right), \quad k = \overline{0, m-1},$$
$$V_{\infty}^{m}0 = V_{\infty}^{m}1 = 0.$$



График функции  $V_{\infty}^{m,\beta}(p)$ 

#### Утверждение

При любом значении  $p \in [0,1]$ ,  $\beta \in (0,1)$  и  $m \geq 3$  справедливо неравенство

$$V_{\infty}^{m,\beta}(p) \geq V_{\infty}^{m,1}(p) = V_{\infty}^{m,0}(p),$$

причем равенство достигается только при  $p=k/m, k=\overline{0,m}.$ 

Таким образом, из всех рассматриваемых механизмов торгов, те механизмы, которые предписывают продавать акцию по наибольшей или наименьшей предложенной цене, гарантируют инсайдеру наименьший возможный выигрыш.



Графики функции  $V_{\infty}^{m,eta}(p)$  при значениях eta=1/2 и eta=1

## Продолжительность игры

#### **Утверждение**

Игра  $G_{\infty}^{m,\beta}(p)$  в среднем заканчивается за конечное количество шагов. При  $p \in \{k/m, (k+\beta)/m\}$  ее ожидаемая продолжительность выражается формулами

$$\tau((k+\beta)/m) = \frac{(m-k-\beta)(k+\beta)}{\beta\overline{\beta}}, \quad \tau(k/m) = \frac{k(m-k)}{\beta\overline{\beta}}.$$



## Глава 2. Теоретико-игровая модель биржевых торгов с непрерывными ставками

- Множество состояний  $S = \{L, H\}$ .
- ullet В состоянии L цена s=0, в состоянии H цена s=1.
- ullet Игроки могут делать вещественные ставки из отрезка [0,1].

## Прямая игра

- Обозначим  $y_t = (y_t^R, y_t^N)$  портфель инсайдера на t-м шаге торгов, где  $y_t^R$  и  $y_t^N$  количество единиц рискового актива и денег соответственно.
- Если на t-м шаге игроки делают ставки  $i_t, j_t \in [0,1]$ , то портфель  $y_t = y_{t-1} + t(i_t, j_t)$ , где при  $\overline{\beta} = 1 \beta$

$$t(i,j) = \mathbb{1}_{i>j}(1, -(\beta i + \overline{\beta} j) + \mathbb{1}_{i< j}(-1, \overline{\beta} i + \beta j).$$

• Стоимость портфеля равна

$$V(y_t) = \mathbb{1}_{s=H} y_t^R + y_t^N.$$

Цель игроков — максимизировать стоимость итогового портфеля  $y_n$ .

#### Выигрыш первого игрока равен

$$g_n(p, \sigma, \tau) = \mathbb{E}_{p,\sigma,\tau} V(y_n).$$

Обозначим данную игру  $G_n(p)$ . Ее верхнее и нижнее значения даются формулами

$$V_{1,n}(p) = \sup_{\sigma} \inf_{\tau} g_n(p,\sigma,\tau), \ V_{2,n}(p) = \inf_{\tau} \sup_{\sigma} g_n(p,\sigma,\tau).$$

Если 
$$V_{1,n}(p) = V_{2,n}(p) = V_n(p)$$
, то игра имеет значение  $V_n(p)$ .

## Двойственная игра

Двойственная игра  $G_n^*(x)$  определяется следующим образом:

- Перед началом торгов игрок 1 выбирает  $s \in \mathcal{S}$ .
- В том случае, если он выбрал H, то по окончании игры он платит игроку 2 штраф размера x.
- Игрок 1 также контролирует значение р.
- В остальном правила двойственной игры аналогичны правилам прямой игры.

Игрок 2 стремиться максимизировать ее значение.

Функция выигрыша двойственной игры задается формулой

$$g_n^*(x,(p,\sigma),\tau) = xp - g_n(p,\sigma,\tau).$$

Верхнее и нижнее значение игры  $G_n^*(x)$  даются формулами

$$W_{1,n}(x) = \inf_{(\rho,\sigma)} \sup_{\tau} g_n^*(x,(\rho,\sigma),\tau), W_{2,n}(x) = \sup_{\tau} \inf_{(\rho,\sigma)} g_n^*(x,(\rho,\sigma),\tau).$$

Если 
$$W_{1,n}(x) = W_{2,n}(x) = W_n(x)$$
, то игра имеет значение  $W_n(x)$ .

## Параметризация стратегии первого игрока в прямой игре

Для стратегии первого игрока имеет место декомпозиция

$$\sigma = (\sigma_1, \sigma(i), i \in I).$$

Ход  $\sigma_1$  параметризуем при помощи функций

$$f(u) = F_{\sigma_1^M}^{-1}(u) := \inf\{x \mid F_{\sigma_1^M}(x) \geqslant u\},\$$
$$Q(u) = P(s = H | i = f(u)),\$$

где  $\sigma_1^M$  — маргинальное распределение ставки i.

Восстановить  $\sigma_1$  можно из следующего равенства:

$$P(i \in B \mid s = H) = \frac{P(i \in B, \ s = H)}{P(s = H)} = \int_0^1 \mathbb{1}_{f(u) \in B} \frac{Q(u)}{p} du,$$

## Параметризация стратегии второго игрока в двойственной игре

Для стратегии второго игрока имеет место декомпозиция

$$\tau = (\tau_1, \tau(i), i \in I).$$

Ход  $au_1$  параметризуем при помощи функции

$$h(u) = F_{\tau_1^M}^{-1}(u) := \inf\{x \mid F_{\tau_1^M}(x) \geqslant u\},\$$

где  $au_1^M$  — маргинальное распределение ставки j.

## Анализ прямой и двойственной игры

Следуя схеме, приведенной в [De Meyer, Saley, 2002],

- найдены функции f, Q, выравнивающие выигрыш первого игрока при  $p_2 \in [f(0), f(1)]$  в прямой игре;
- найдена функция h, выравнивающая выигрыш второго игрока при  $p_1 \in [h(0), h(1)]$  в двойственной игре;
- из соотношений двойственности между верхними и нижними значениями прямой и двойственной игр показано, что данные стратегии оптимальны.

### Результаты

Значение двойственной игры  $G_n^*(x)$  дается формулой:

$$W_{n+1}(x) = \int_0^1 W_n(x-2u+1), \ W_0(x) = \min(x,0).$$



Значение прямой игры  $G_n(P)$  дается формулой:

$$V_n(P)=W_n^*(P),$$

где  $W^*(P) = \inf_x \{xP - W_n(x)\}$  — сопряженная в смысле Фенхеля функция.



Функция Q(u) определяется как

$$Q(n,p)(u) = W'_n(x+1-2u),$$

где параметр двойственной игры x удовлетворяет уравнению

$$W_n'(x)=p.$$



#### Функция f(u) определяется как

$$f(n, p, \beta)(u) = 2(u - \overline{\beta})^{-2} \int_{\overline{\beta}}^{u} (x - \overline{\beta}) Q(n, p)(x) dx.$$

При этом h(u) = f(u).



#### Сравнивая полученные результаты с существующими, получаем:

- Введение механизма заключения сделки с параметром  $\beta$  влияет на оптимальные стратегии инсайдера и неосведомленного игрока.
- При этом значение игры не зависит от значения  $\beta$  и совпадает с таковым в [De Meyer, Saley, 2002]. В этом смысле непрерывная модель отличается от дискретной, в которой и стратегии и значение игры зависят от значения  $\beta$ .
- В силу того, что функции значения прямой и двойственной игр совпадают с [De Meyer, Saley, 2002], справедливы все утверждения об асимптотике значений прямой игры и динамике апостериорных вероятностей.

# Глава 3. Дальнейшие обобщения модели биржевых торгов с дискретными ставками

- Множество состояний  $S = \mathbb{Z}_+$ . Рассматриваются только такие распределения  $\bar{p}$ , что дисперсия цены  $\mathbb{D}\bar{p}$  конечна.
- Каждое состояние из S отождествляется с соответствующей ценой акции.
- Игроки могут делать произвольные целочисленные ставки.
  Выплата первому игроку в состоянии s равна

$$a^{s}(i,j) = \begin{cases} \overline{\beta}i + \beta j - s, & i < j, \\ 0, & i = j, \\ s - \beta i - \overline{\beta}j, & i > j. \end{cases}$$

Базовая модель с  $Tr(i,j) = \max(i,j)$  была рассмотрена в [Доманский, Крепс, 2011].

### Оптимальная стратегия второго игрока

Введем обозначения для множества распределений на S с заданным математическим ожиданием:

$$\Theta(x) = \{ \bar{p}' \in \Delta(S) : \mathbb{E}\bar{p}' = x \},$$
  
$$\Lambda(x, y) = \{ \bar{p}' \in \Delta(S) : x < \mathbb{E}\bar{p}' \leqslant y \}.$$

Стратегия  $\overline{ au}^*$ , заключающаяся в применении  $\overline{ au}^k$ 

$$\tau_1^k = k, \quad t_t^k = \begin{cases} j_{t-1}, & i_{t-1} < j_{t-1}, \\ j_t, & i_{t-1} = j_{t-1}, \\ j_{t+1}, & i_{t-1} > j_{t-1}. \end{cases}$$

при  $\bar{p} \in \Lambda(k-1+\beta,k+\beta)$ , является оптимальной.

#### Теорема

При использовании игроком 2 стратегии  $\bar{\tau}^*$ , выигрыш игрока 1 в игре  $G_{\infty}(\bar{p})$  ограничен сверху функцией  $H_{\infty}(\bar{p})$ . Функция  $H_{\infty}(\bar{p})$  является кусочно-линейной с областями линейности  $\Lambda(k-1+\beta,k+\beta)$  и областями недифференцируемости  $\Theta(k+\beta)$  при  $k\in S$ . Для распределений  $\bar{p}$  таких, что  $\mathbb{E}\bar{p}=k-1+\beta+\xi,\ \xi\in(0,1]$ , ее значение равно

$$H_{\infty}(\bar{p}) = \frac{1}{2} \left( \mathbb{D}\bar{p} + \beta(1-\beta) - \xi(1-\xi) \right). \tag{1}$$

#### Лемма

Пусть  $\bar{p}_k \in \Delta(S)$ ,  $\bar{\sigma}_k$  — стратегия игрока 1, которая гарантирует ему выигрыш  $L_n(\bar{p}_k)$  в  $G_n(\bar{p}_k)$ , и

 $ar{q}_k = (q_k^1, \ldots, q_k^n), \ ar{p}_k^i = (p_k^{1|i}, p_k^{2|i}, \ldots)$  — параметры первого хода стратегии  $ar{\sigma}_k, \ k=1,2.$ 

Тогда для  $\bar{p}=\lambda \bar{p}_1+(1-\lambda)\bar{p}_2,\ \lambda\in[0,1],$  стратегия  $\bar{\sigma}_c$ , первый ход которой задается параметрами

$$q^{i} = \lambda q_{1}^{i} + (1 - \lambda)q_{2}^{i}, \quad p^{s|i} = \left(\lambda q_{1}^{i} p_{1}^{s|i} + (1 - \lambda)q_{2}^{i} p_{2}^{s|i}\right)/q^{i},$$

гарантирует игроку 1 выигрыш  $\lambda L_n(\bar{p}_1) + (1-\lambda)L_n(\bar{p}_2)$ .

$$\bar{p}_1, \bar{\sigma}_1, L_n(\bar{p}_1)$$
  $\lambda \bar{p}_1 + (1 - \lambda)\bar{p}_2, \bar{\sigma}_c$   $\bar{p}_2, \bar{\sigma}_2, L_n(\bar{p}_2)$ 

## Оптимальная стратегия первого игрока

- В [Доманский, Крепс, 2011] показано, что любое распределение  $\bar{p}$  может быть представлено в виде выпуклой комбинации распределений с одноточечным и двухточечным носителем.
- Обозначим  $\bar{p}^{x}(I,r) \in \Theta(x)$  распределение с математическим ожиданием x и носителем  $\{I,r\}$ . Достаточно найти стратегию первого игрока, гарантирующую ему  $H_{\infty}(\bar{p})$  для  $\bar{p} = \bar{p}^{k+\beta}(I,r), \ k \in S$ .
- Перенося результаты главы 1 на распределения  $\bar{p}^{k+\beta}(I,r)$ , получим стратегию, которая гарантирует первому игроку

$$\frac{1}{2}((r-k-\beta)(k+\beta-l)+\beta(1-\beta))=H_{\infty}(p^{k+\beta}(l,r)).$$

## Результаты, выносимые на защиту

- Решение бесконечной повторяющейся игры биржевых торгов с дискретными ставками и более общим механизмом торгов.
- Решение конечношаговой повторяющейся игры биржевых торгов с непрерывными ставками и более общим механизмом торгов.
- Обобщение результатов, полученных для модели с дискретными ставками, на случай рынка со счетным множеством возможных цен рискового актива.

Спасибо за внимание!