3_最优化卷子.pdf

文件预览

及正茂二次函数 $f(x) = \frac{1}{2} X^T G x + g^T x + C$, 证明:

-维搜索问题 $min \ \mu(x) = f(x^k + \alpha d^k)$ 的最优步表为 $\alpha_k = -\frac{\nabla^T f(x^k) d^k}{(d^k)^T G d^k}$ 证: 泰勒尼升得 $f(x^k + \alpha d^k) = f(x^k) + \nabla^T f(x^k) \cdot \alpha d^k + \frac{1}{2} \alpha^2 (d^k)^T \nabla^2 f(x^k) d^k$ $\psi(\alpha) = \frac{\partial^T f(x^k) + \alpha d^k}{\partial \alpha} = \nabla^T f(x^k) \cdot d^k + \alpha d^{kT} \nabla^2 f(x^k) d^k = 0$ $\chi_{k} = \alpha = -\frac{\nabla^T f(x^k) \cdot d^k}{(d^k)^T \nabla^2 f(x^k) \cdot d^k}$ χG χG

h —	-
	4

西北大学 2020 ----2021 学年第一学期期末考试出题纸

遺 调整

				121	いハナ	2020	-2021 -	1 >14	1,30	297/1-1	, MILLIAN				ᅃᅹ		
	为试科目		揖	优化理论与	方法		总 分		*	10分)写			并用该方法求解 x,x ₂ + x ₂ + x, - x ₂ ,				
	一、填空	空題 (每空 5 分,共 20 分)								这里给定初始点 $x^{(0)} = (0,0)^{T}$, $\varepsilon = 10^{-6}$ 。							
	设设	设 $f: R^n \to R^1$ 是连续可微的凸函数,则 x^* 是该函数全局极小点的充要条件									4/(10 分) 用牛顿法求解: min $f(x) = 2x_1^2 + (x_2 - 1)^2$, 取初值 $x^{(0)} = (1,0)^T$, $\varepsilon = 0.2$						
	是	大原教(公) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											. 剛 v * 是 唯一				
	若函数 $f(x) = x_1^2 + 4x_2^2 + 3x_1x_2 + 2x_1 + 4x_2$,则其梯度 $\nabla f(x) = $,黑塞								的帝局量优级。								
	矩阵 H(x) =。								V	(15 A)	证明、单体形	だ注中、 曲寸	《的系数与最大判别数	悬笔价的	なんシン		
$3.$ 股函数 $f(x)$ 连续可微,且 $\nabla f(x) \neq 0$,若向量 p 满足,则其为 $f(x)$										0	0127, 72		, C = 10 To = 3.	10000000000000000000000000000000000000			
)一个下降方向		toke Danish it se	1A FH 5	es mar.	n.t. x	4 .16 AN EST	三、简	述题(15	** 17518				धान		
	行解为最		当时非	甚变量对应的原	折有价值 :	系数	时,当	美脚的 的	请:	写出求解	无约束优化问题	i					
		二、计算证明题(共 65 分)								$\min f(x)$							
	1 (10 分) 用单纯型法求解线性规划问题								的最速下降法,牛顿法和共轭梯度法的迭代格式								
			(1)	$\max z = 2x$	$x_1 - x_2 + x_3$												
				(3x ₃ -	+ x ₂ + x ₃ ≤	60											
				x, -	$2x_2 + 2x_3$	≤10											
-				s.t $\begin{cases} x_1 + x_2 \end{cases}$	$x_2 - x_3 \le 2$	20											
		/		x_1, x	$x_2, x_3 \ge 0$												
	2	(10分) 用二	分法解														
				min $x^2 +$	-2x												
s.t3≤x≤0																	
	取最后区	区间长度为 δ≕	0.2 .														
						22											
$\chi^{*} = -\frac{32}{21}$																	
7 32																	
	本卷为	闭 卷	本卷为	A 卷	印数	44 85	出題院系	数学	芦院	出題人	刘蓓	出題日期	2020年12月15日	审批人	附上		

学年第 二 学期本科考试出题专用纸 西北大学 2020----2021

运筹学

Ä

分

用共轭方向法求解二次函数的极小点

$$f(X) = \frac{1}{2}X^T AX$$

填空题 (5 小题 共 10 分)

1. 线性规划问题的可行解是指满足_ 的解。

对偶问题的对偶问题是

用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值

4. 在单纯形迭代中,可以根据最终表中_____判断线性规划问题无解。

5. 在大 M 法中, M 表示____。

二、计算题 (5 小题, 每小题 10 分, 共 50 分)

1,在区间[-1,1]上用黄金分割法求函数

 $f(x) = 2x^2 - x - 1$ 的极小点,给定区间精度为 $\delta = 0.06$ 。

2. 用单纯形法求解下列线性规划问题:

$$\max Z = 20x_1 + 15x_2$$

$$S \cdot t \cdot \begin{cases} 2x_1 + 3x_2 \le 600 \\ 2x_1 + x_2 \le 400 \\ x_1 \ge 0 \ x_2 \ge 0 \end{cases}$$

用分支定界法求解下列整数规划问题:

$$\max Z = 2x_1 + 3x_2$$

St
$$\begin{cases} 5x_1 + 7x_2 \le 35 \\ 4x_1 + 9x_2 \le 36 \end{cases} x_1, x_2, y_3 \stackrel{\text{NEW}}{\times} x_1 \ge 0, x_2 \ge 0,$$

4 用最速下降法求解

min
$$f(x_1, x_2) = x_1^2 + x_2^2 + x_1x_2 + 4x_1 - x_2 + 1$$

用 Di jkstra 算法求下图从 vl 到各顶点的最短路。(10 分)

四. 己知线性规划问题(15分)

$$\max Z = 2x_1 + 4x_2 + x_3 + x_4$$

$$S \cdot t \cdot \begin{cases} x_1 + 3x_2 + x_4 \le 8 \\ 2x_1 + x_2 \le 6 \\ x_2 + x_3 + x_4 \le 6 \\ x_1 + x_2 + x_3 \le 9 \\ x_j \ge 0 \ (j = 1, 2, 3, 4) \end{cases}$$

(1) 简述弱对偶定理, (2) 已知原问题最优解为 (2,2,4,0), 应用对偶理论求出对偶问

五. 证明: 单纯形方法中, 典式的系数与最大判别数是等价的。(15分)

本卷为

闭 卷

本卷为

印数

56

出題院系

B` 卷

西北大学 2020 ----2021 学年第 二 学期末本科考试出题专用纸

总分 考试科目 运筹学 100 $Z = -x_1 - 5x_2$ min 一、填空题 (5 小题 共 10 分) $x_1 - x_2 \ge -2$ 1. 在线性规划问题中,凡满足 __的解称为线性规划问题可行解. $5 x_1 + 6 x_2 \le 30$ 2. 线性规划问题有可行解,则必有 3. 若原问题可行,但目标函数无界,则对偶问题 $x_1 \le 4$ 4. 若 X、Y 分别是线性规划的原问题和对偶问题的可行解,则有 CX__Yb. $x_1, x_2 \geq 0$ 5. 在约束方程中引入人工变量的目的是___ 用标号法求最大流(10分) 二、计算题 (5 小题, 每小题 10 分, 共 50 分) (4,3) 1. 用二分法解 (3,3) $\min x^2 + 2x$ (Vs) s.t. $-3 \le x \le 0$ 取最后区间长度为 δ =0.2 (2,2) 2. 用对偶单纯形法求解下列线性规划问题 $\min Z = 4x_1 + 12x_2 + 18x_3$ 四. 证明题: 已知线性规划问题 $x_1 + 3x_3 \ge 3$ $\max Z = 4x_1 + 7x_2 + 2x_3$ st $2x_2 + 2x_3 \ge 5$ $x_1 + 2x_2 + x_3 \le 10$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$ s. $t < 2x_1 + 3x_2 + 3x_3 \le 10$ 写出共轭梯度法的迭代公式,并用该方法求解 $[x_1, x_2, x_3 \ge 0]$ min $f(x) = 2x_1^2 + 2x_1x_2 + x_2^2 + x_1 - x_2$. (1) 简述弱对偶定理,(2) 应用对偶理论证明该问题最优解的目标函数值不大于25(15 这里给定初始点 $x^{(0)} = (0,0)^T$, $\varepsilon = 10^{-6}$ 。 用牛顿法求解: min $f(x) = 2x_1^2 + (x_2 - 1)^2$. 取初值 $x^{(0)} = (1,0)^T$, $\varepsilon = 0.2$ ullet设正定二次函数 $f(x) = \frac{1}{2} x^{\mathsf{T}} G x + g^{\mathsf{T}} x + c$,证明:一唯搜索问题 用分支定界求解 $\min \varphi(\alpha) = f(x^k + \alpha d^k)$ 的最优步长为 $\alpha_k = -\frac{\nabla^T f(x^k) d^k}{(d^k)^T G d^k} \quad (15 \, \%)$

数学学院

出題人

刘蓓

出題日期 2021 年 6月 20日

审批人