

KRAJOWA OCENA TECHNICZNA 1

NATIONAL TECHNICAL ASSESSMENT

ITB-KOT-2021/1999 wydanie 1

Rury DREWPLAST PVC-U SN 2 o ściance strukturalnej do sieci kanalizacyjnych bezciśnieniowych

CZŁONEK EOTA i UEAtc

KRAJOWA OCENA TECHNICZNA ITB-KOT-2021/1999 wydanie 1

Niniejsza Krajowa Ocena Techniczna została wydana zgodnie z rozporządzeniem Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie krajowych ocen technicznych (Dz. U. z 2016 r., poz. 1968) przez Instytut Techniki Budowlanej w Warszawie, na wniosek:

DREWPLAST Zakład Tworzyw Sztucznych Marek Pękala Grabowno Wielkie 5E, 56-416 Twardogóra

Krajowa Ocena Techniczna ITB-KOT-2021/1999 wydanie 1 stanowi pozytywną ocenę właściwości użytkowych poniższych wyrobów budowlanych do zamierzonego zastosowania:

Rury DREWPLAST PVC-U SN 2 o ściance strukturalnej do sieci kanalizacyjnych bezciśnieniowych

Data ważności Krajowej Oceny Technicznej:

21 października 2026 r.

DYREKTOR Instytutu Techniki Budowlanej

dr inż. Robert Geryło

Warszawa, 21 października 2021 r.

Instytut Techniki Budowlanej

ul. Filtrowa 1, 00-611 Warszawa

tel.: 22 825 04 71; NIP: 525 000 93 58; KRS: 0000158785

1. OPIS TECHNICZNY WYROBU

Niniejsza Krajowa Ocena Techniczna obejmuje rury DREWPLAST PVC-U SN 2 o ściance strukturalnej, produkowane przez DREWPLAST Zakład Tworzyw Sztucznych Marek Pękala, Grabowno Wielkie 5E, 56-416 Twardogóra, w zakładzie produkcyjnym w Grabownie Wielkim.

Krajowa Ocena Techniczna obejmuje typy wyrobów określone przez producenta i wynikające z właściwości użytkowych podanych w p. 3.

Krajowa Ocena Techniczna obejmuje rury DREWPLAST PVC-U SN 2 o ściance strukturalnej, kielichowe, o nominalnych średnicach zewnętrznych 160 i 200 mm i sztywności obwodowej SN 2. Rury są produkowane w postaci odcinków prostych, o długości: 0,5; 1; 2; 3; 4; 5 i 6 m, barwy pomarańczowoceglanej lub innej, uzgodnionej między producentem i odbiorcą. Rury posiadają elastomerową lub gumową uszczelkę wargową, fabrycznie wmontowaną w kielich.

Ścianka rur DREWPLAST PVC-U SN 2 ma budowę warstwową, o następującym układzie:

- warstwa zewnętrzna i wewnętrzna (lita), z nieplastyfikowanego poli(chlorku winylu) PVC-U,
- warstwa środkowa (rdzeń), ze spienionego lub niespienionego nieplastyfikowanego poli(chlorku winylu) PVC-U.

Wymiary rur, wygląd zewnętrzny, barwę oraz znakowanie podano w Załączniku A. Właściwości surowców i elementów składowych stosowanych do produkcji rur podano w Załączniku B.

2. ZAMIERZONE ZASTOSOWANIE WYROBU

Rury DREWPLAST PVC-U SN 2 o ściance strukturalnej są przeznaczone do transportu ścieków o temperaturze nie wyższej niż +60°C, w sieciach kanalizacji bezciśnieniowej (grawitacyjnej), sanitarnej, deszczowej i ogólnospławnej, w obszarze stosowania "U" wg normy PN-EN 13476-1:2018 (poza konstrukcjami budowli) oraz poza terenami obciążonymi ruchem drogowym.

Szczelność kielichowych połączeń rur DREWPLAST PVC-U SN 2 powinna być zapewniona poprzez zastosowanie uszczelek z gumy lub elastomerów termoplastycznych, odpornych na substancje występujące w ściekach oraz agresywne działanie wód gruntowych.

Wyroby objęte niniejszą Krajową Oceną Techniczną powinny być stosowane zgodnie z:

- projektem technicznym, opracowanym dla określonego obiektu, uwzględniającym polskie normy i przepisy techniczno-budowlane, a w szczególności rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. z 2019 r., poz. 1065, z późniejszymi zmianami),
- wymaganiami niniejszej Krajowej Oceny Technicznej,
- instrukcją opracowaną przez producenta i dostarczaną odbiorcom.

3. WŁAŚCIWOŚCI UŻYTKOWE WYROBU I METODY ZASTOSOWANE DO ICH OCENY

Właściwości użytkowe rur DREWPLAST PVC-U SN 2 o ściance strukturalnej i metody zastosowane do ich oceny podano w tablicy 1.

Tablica 1

Poz.	Zasadnicze charaktrystyki	Właściwości użytkowe	Metody oceny		
1	2	3	4		
1	Tolerancje wymiarów	wg Załącznika A	PN-EN ISO 3126:2006		
2	Temperatura mięknienia wg Vicata, °C (dotyczy warstwy wewnętrznej i zewnętrznej)	≥ 79	PN-EN ISO 2507-1:2017 PN-EN ISO 306:2014		
3	Odporność na uderzenia zewnętrzne w temp. 0°C , %	TIR ≤ 10	PN-EN ISO 3127:2017 lub PN-EN 744:1997 parametry badania: masa ciężarka w przypadku: dn = 160 mm - 1,0 kg dn = 200 mm - 1,6 kg wysokość spadku ciężarka - 2,0 m		
4	Skurcz wzdłużny, %	≤ 5 brak pęcherzy, pęknięć i rozwarstwień	PN-EN ISO 2505:2006 parametry badania: (w powietrzu) (150 ± 2°C; e ≤ 8 mm; 30 min.) (150 ± 2°C; e > 8 mm; 60 min.)		
5	Sztywność obwodowa, kN/m²	SN 2 ≥ 2	PN-EN ISO 9969:2016		
6	Jednorodność struktury warstwy spienionej (rdzenia)				
7	Szczelność połączeń kielichowych	bez przecieków spadek podciśnienia ≤ -0,27 bar	PN-EN 1277:2005 PN-EN ISO 13259:2018 warunki B i C parametry badania wg PN-EN 1401-1:2009		
8	Elastyczność obwodowa	brak pęknięć i rozwarstwień w warunkach 30% ugięcia średnicy zewnętrznej	PN-EN ISO 13968:2009		

4. PAKOWANIE, TRANSPORT I SKŁADOWANIE ORAZ SPOSÓB ZNAKOWANIA WYROBU

Rury objęte niniejszą Krajową Oceną Techniczną, w odcinkach prostych, powinny być pakowane pojedynczo lub w równoległe wiązki bez skrzyżowania. Każda wiązka powinna być spięta taśmą uniemożliwiającą rozsypywanie. Pojedyncze rury mogą być również układane na paletach.

Sposób znakowania wyrobów znakiem budowlanym powinien być zgodny z rozporządzeniem Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2016 r., poz. 1966, z późniejszymi zmianami).

Oznakowaniu wyrobu znakiem budowlanym powinny towarzyszyć następujące informacje:

- dwie ostatnie cyfry roku, w którym znak budowlany został po raz pierwszy umieszczony na wyrobie budowlanym,
- nazwa i adres siedziby producenta lub znak identyfikacyjny pozwalający jednoznacznie określić nazwę i adres siedziby producenta,
- nazwa i oznaczenie typu wyrobu budowlanego,
- numer i rok wydania krajowej oceny technicznej, zgodnie z którą zostały zadeklarowane właściwości użytkowe (ITB-KOT-2021/1999 wydanie 1),
- numer krajowej deklaracji właściwości użytkowych,

- poziom lub klasa zadeklarowanych właściwości użytkowych,
- adres strony internetowej producenta, jeżeli krajowa deklaracja właściwości użytkowych jest na niej udostępniona.

Wraz z krajową deklaracją właściwości użytkowych powinna być dostarczana albo udostępniana w odpowiednich przypadkach karta charakterystyki i/lub informacje o substancjach niebezpiecznych zawartych w wyrobie budowlanym, o których mowa w art. 31 lub 33 rozporządzenia (WE) nr 1907/2006 Parlamentu Europejskiego i Rady w sprawie rejestracji, oceny, udzielania zezwoleń i stosowanych ograniczeń w zakresie chemikaliów (REACH) i utworzenia Europejskiej Agencji Chemikaliów.

Ponadto oznakowanie wyrobu budowlanego, stanowiącego mieszaninę niebezpieczną według rozporządzenia REACH, powinno być zgodne z wymaganiami rozporządzenia (WE) nr 1272/2008 Parlamentu Europejskiego i Rady w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin (CLP), zmieniającego i uchylającego dyrektywy 67/548/EWG i 1999/45/WE oraz zmieniającego rozporządzenie (WE) nr 1907/2006.

5. OCENA I WERYFIKACJA STAŁOŚCI WŁAŚCIWOŚCI UŻYTKOWYCH

5.1. Krajowy system oceny i weryfikacji stałości właściwości użytkowych

Zgodnie z rozporządzeniem Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2016 r., poz. 1966, z późniejszymi zmianami) ma zastosowanie system 4 oceny i weryfikacji stałości właściwości użytkowych.

5.2. Badanie typu

Właściwości użytkowe, ocenione w p. 3, stanowią badanie typu wyrobu, dopóki nie nastąpią zmiany surowców, składników, linii produkcyjnej lub zakładu produkcyjnego.

5.3. Zakładowa kontrola produkcji

Producent powinien mieć wdrożony system zakładowej kontroli produkcji w zakładzie produkcyjnym. Wszystkie elementy tego systemu, wymagania i postanowienia, przyjęte przez producenta, powinny być dokumentowane w sposób systematyczny, w formie zasad i procedur, włącznie z zapisami z prowadzonych badań. Zakładowa kontrola produkcji powinna być dostosowana do technologii produkcji i zapewniać utrzymanie w produkcji seryjnej deklarowanych właściwości użytkowych wyrobu.

Zakładowa kontrola produkcji obejmuje specyfikację i sprawdzanie surowców i składników, kontrolę i badania w procesie wytwarzania oraz badania kontrolne (według p. 5.4), prowadzone przez producenta zgodnie z ustalonym planem badań oraz według zasad i procedur określonych w dokumentacji zakładowej kontroli produkcji.

Wyniki kontroli produkcji powinny być systematycznie rejestrowane. Zapisy rejestru powinny potwierdzać, że wyroby spełniają kryteria oceny i weryfikacji stałości właściwości użytkowych. Poszczególne wyroby lub partie wyrobów i związane z nimi szczegóły produkcyjne muszą być w pełni możliwe do identyfikacji i odtworzenia.

5.4. Badania kontrolne

5.4.1. Program badań. Program badań obejmuje:

- a) badania bieżące,
- b) badania okresowe.

5.4.2. Badania bieżące. Badania bieżące obejmują sprawdzenie:

- a) wymiarów,
- b) wyglądu zewnętrznego i barwy,
- c) znakowania,
- d) odporności na uderzenia zewnętrzne w temp. 0°C,
- e) skurczu wzdłużnego,
- f) sztywności obwodowej.

5.4.3. Badania okresowe. Badania okresowe obejmują sprawdzenie:

- a) temperatury mięknienia wg Vicata,
- b) jednorodności struktury warstwy spienionej (rdzenia),
- c) szczelności połączeń kielichowych,
- d) elastyczności obwodowej,
- e) wytrzymałości na ciśnienie wewnętrzne, wg tablicy B1, Załącznik B.

5.5. Częstotliwość badań

Badania bieżące powinny być prowadzone zgodnie z ustalonym planem badań, ale nie rzadziej niż dla każdej partii wyrobów. Wielkość partii wyrobów powinna być określona w dokumentacji zakładowej kontroli produkcji.

Badania okresowe powinny być wykonywane nie rzadziej niż raz na 3 lata.

6. POUCZENIE

- **6.1.** Krajowa Ocena Techniczna ITB-KOT-2021/1999 wydanie 1 jest pozytywną oceną właściwości użytkowych tych zasadniczych charakterystyk rur DREWPLAST PVC-U SN 2 o ściance strukturalnej, które zgodnie z zamierzonym zastosowaniem, wynikającym z postanowień Oceny, mają wpływ na spełnienie wymagań podstawowych przez obiekty budowlane, w których wyrób będzie zastosowany.
- **6.2.** Krajowa Ocena Techniczna ITB-KOT-2021/1999 wydanie 1 nie jest dokumentem upoważniającym do oznakowania wyrobu budowlanego znakiem budowlanym.

Zgodnie z ustawą z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (Dz. U. z 2021 r., poz. 1213) wyroby, których dotyczy niniejsza Krajowa Ocena Techniczna, mogą być wprowadzone do obrotu lub udostępniane na rynku krajowym, jeżeli producent dokonał oceny i weryfikacji stałości właściwości użytkowych, sporządził krajową deklarację właściwości użytkowych zgodnie z Krajową Oceną Techniczną ITB-KOT-2021/1999 wydanie 1 i oznakował wyroby znakiem budowlanym, zgodnie z obowiązującymi przepisami

- **6.3.** Krajowa Ocena Techniczna ITB-KOT-2021/1999 wydanie 1 nie narusza uprawnień wynikających z przepisów o ochronie własności przemysłowej, a w szczególności ustawy z dnia 30 czerwca 2000 r. Prawo własności przemysłowej (Dz. U. z 2021 r., poz. 324). Zapewnienie tych uprawnień należy do obowiązków korzystających z niniejszej Krajowej Oceny Technicznej ITB.
- **6.4.** ITB wydając Krajową Ocenę Techniczną nie bierze odpowiedzialności za ewentualne naruszenie praw wyłącznych i nabytych.
- **6.5.** Krajowa Ocena Techniczna nie zwalnia producenta wyrobów od odpowiedzialności za ich prawidłową jakość, a wykonawców robót budowlanych od odpowiedzialności za ich właściwe zastosowanie.
- 6.6. Ważność Krajowej Oceny Technicznej może być przedłużana na kolejne okresy, nie dłuższe niż 5 lat.

7. WYKAZ DOKUMENTÓW WYKORZYSTANYCH W POSTĘPOWANIU

7.1. Raporty, sprawozdania z badań, oceny, klasyfikacje

- 01841/21/Z00NZE. Praca badawcza. Opinia naukowo-techniczna dotycząca rur DREWPLAST z PVC-U SN 2 o ściance strukturalnej i średnicy zewnętrznej 160 mm i 200 mm do stosowania w sieciach zewnętrznych kanalizacji bezciśnieniowej. Zakład Inżynierii Elementów Budowlanych ITB, Poznań 2021 r.
- Protokoły z badań rur DREWPLAST (DN 160 i DN 200 wg PN-EN 9969:2008). Laboratorium Zakładowe DREWPLAST Zakłady Tworzyw Sztucznych, 56-416 Twardogóra, Grabowno Wielkie 5E, 2019 r. i 2020 r.
- Raporty z badań okresowych rur DREWPLAST. Laboratorium Zakładowe DREWPLAST Zakłady Tworzyw Sztucznych, 56-416 Twardogóra, Grabowno Wielkie 5E, 2015 r. i 2016 r.
- Raporty z wstępnych badań typu rur o DN 160 i DN 200 DREWPLAST. Laboratorium Zakładowe DREWPLAST Zakłady Tworzyw Sztucznych, 56-416 Twardogóra, Grabowno Wielkie 5E, 2011 r.

7.2. Normy i dokumenty związane

PN-EN 306:2014	Tworzywa sztuczne. Tworzywa termoplastyczne. Oznaczenie
	temperatury metodą Vicata (VST)
PN-EN 681-1:2002	Uszczelnienia z elastomerów. Wymagania materiałowe dotyczące
PN-EN 681-1:2002/A3:2006	uszczelek złączy rur wodociągowych i odwadniających. Część 1:
	Guma
PN-EN 681-2:2003	Uszczelnienia z elastomerów. Wymagania materiałowe dotyczące
PN-EN 681-2:2003/A2:2006	uszczelek złączy rur wodociągowych i odwadniających. Część 2:
	Elastomery termoplastyczne

PN-EN ISO 1167-1 i 2:2007	Rury, kształtki i połączenia z termoplastycznych tworzyw sztucznych
	do przesyłania płynów. Oznaczanie wytrzymałości na ciśnienie
Was Sent Birth	wewnętrzne. Część.1: Metoda ogólna, Część.2: Przygotowanie
	próbek do badań w postaci rur
PN-EN 1277:2005	Systemy przewodów rurowych z tworzyw sztucznych. Systemy
	przewodów rurowych z tworzyw termoplastycznych do
	bezciśnieniowych sieci układanych pod ziemią. Metoda badania
	szczelności połączeń z elastomerowym pierścieniem
	uszczelniającym
PN-EN 1401-1:2019	Systemy przewodów rurowych z tworzyw sztucznych do
	podziemnego bezciśnieniowego odwadniania i kanalizacji.
	Nieplastyfikowany poli(chlorek winylu) (PVC-U). Część 1:
	Specyfikacje rur, kształtek i systemu
PN-EN ISO 2505:2006	Rury z tworzyw termoplastycznych. Skurcz wzdłużny. Metoda
	i warunki badania
PN-EN ISO 2507-1:2017	Systemy przewodowe z tworzyw sztucznych. Rury i kształtki
	z tworzyw termoplastycznych. Oznaczanie temperatury mięknienia
	według Vicata (VST)
PN-EN ISO 3126:2006	Systemy przewodów rurowych z tworzyw sztucznych. Elementy
	z tworzyw sztucznych. Sprawdzanie wymiarów
PN-EN ISO 3127:2017	Rury z tworzyw termoplastycznych. Badanie odporności na uderzenia
	zewnętrzne. Metoda spadającego ciężarka
PN-EN ISO 9969:2016	Rury z tworzyw termoplastycznych. Oznaczanie sztywności
	obwodowej
PN-EN ISO 13259:2018	Systemy przewodów rurowych z tworzyw termoplastycznych do
	bezciśnieniowych sieci układanych pod ziemią. Metoda badania
	szczelności połączeń z elastomerowym pierścieniem
	uszczelniającym
PN-EN 13476-2:2020	Systemy przewodów rurowych z tworzyw sztucznych do
	podziemnego bezciśnieniowego odwadniania i kanalizacji. Systemy
	przewodów rurowych o ściankach strukturalnych
	z nieplastyfikowanego poli(chlorku winylu) (PVC-U), polipropylenu
	(PP) i polietylenu (PE). Część 2: Specyfikacje rur i kształtek
	z gładką wewnętrzną i zewnętrzną powierzchnią oraz systemu, typ A
PN-EN ISO 13968:2009	Systemy przewodów rurowych i rur osłonowych z tworzyw
	sztucznych. Rury z tworzyw termoplastycznych. Oznaczanie
	elastyczności obwodowej
AT-15-8754/2016	Rury DREWPLAST PVC-U SN 2 o ściance strukturalnej do sieci
	kanalizacyjnych bezciśnieniowych

ZAŁĄCZNIKI

Załącznik A.	Kształt i wymiary, wygląd zewnętrzny, barwa i znakowanie	10
Załącznik B.	Opis surowców i elementów składowych	12

Załącznik A.

A.1. Wymiary

Wymiary rur DREWPLAST PVC-U SN 2 podano w tablicy A1, a wymiary kielichów rur w tablicy A2.

Tablica A1

Średnica nominalna DN	Średnica zewnętrzna i tolerancja D _n , mm	Minimalna grubość ścianki s1, mm	Minimalna grubość warstwy wewnętrznej i zewnętrznej (a1 / a2), mm
160	160,0+0,4/-0	3,2	0,5 / 0,4
200	200,0+0,5/-0	3,9	0,6 / 0,4

Tablica A2

Średnica	Średnia średnica wewnętrzna kielicha sr K, mm		Minimalna grubość ścianki gr, mm		Długość kielicha, mm	
nominalna DN	minimalna	maksymalna	rowek	kielich	całkowita dl C	za uszczelką dl U
160	160,5	161,0	2,4	2,9	75,0 ÷ 80,0	45
200	200,6	201,1	2,9	3,5	90,0 + 95,0	55

A.2. Wygląd zewnętrzny i barwa

Powierzchnie zewnętrzna i wewnętrzna rur powinny być gładkie bez niejednorodności. Barwa rur na zewnątrz i wewnątrz powinna być pomarańczowo-ceglasta, jednolita pod względem odcienia i intensywności (mogą wystąpić różnice odcienia poszczególnych warstw ścianki rury).

A.3. Znakowanie

Rury powinny być oznakowane w sposób trwały i czytelny. Znakowanie rur powinno zawierać co najmniej:

- nazwę producenta (logo),
- przeznaczenie,
- oznaczenie rury,
- symbol surowca,
- nominalną średnicę zewnętrzną,
- nominalną sztywność obwodową,
- symbol obszaru zastosowania,
- datę produkcji (rok, miesiąc, dzień).

Załącznik B.

Do produkcji warstwy wewnętrznej i zewnętrznej rur DREWPLAST PVC-U SN 2 powininna być stosowana mieszanka, składająca się z granulatu nieplastyfikowanego poli(chlorku winylu) PVC-U, o stałej k = 66 + 68, środka stabilizująco-smarnego, wypełniacza i pigmentu. Zawartość nieplastyfikowanego poli(chlorku winylu) PVC-U w mieszance powinna wynosić co najmniej 75% wagowo. Właściwości mechaniczne mieszanki stosowanej do wytłaczania warstwy wewnętrznej i zewnętrznej rury powinny być sprawdzane w badaniu wytrzymałości rury na ciśnienie wewnętrzne, wg tablicy B1.

Warstwa środkowa rur powinna być wykonana jako spieniona lub niespieniona, z materiału pierwotnego (jak warstwy wewnętrzna i zewnętrzna) lub z materiału wtórnego, pochodzącego z obcego lub własnego przemiału, wg normy PN-EN 13476-2:2018.

Tablica B1

Poz.	Właściwości	Wymagania	Metody badań
1	Wytrzymałość na ciśnienie wewnętrzne ¹⁾	brak uszkodzeń podczas badania	PN-EN ISO 1167-1 i 2:2007 parametry badania wg PN-EN 1401-1:2019

Uszczelki montowane w kielichach rur powinny być wykonane z gumy wg normy PN-EN 681-1:2002 i PN-EN 681-1:2002/A3:2006 lub z elastomerów termoplastycznych wg normy PN-EN 681-2:2003 i PN-EN 681-2:2003/A3:2006.