ЗАДАНИЕ ПО ИНФОРМАТИКЕ ВАРИАНТ 73991 для 9 класса

<u>Для заданий 1-4 требуется разработать алгоритмы на языке блок-схем,</u> псевдокоде или естественном языке

1. Известно, что четырнадцатизначное число $A = \overline{20x1zyx2022xy4}$ делится нацело на число $\overline{y2x}$. Составьте алгоритм для нахождения всех возможных троек цифр (x, y, z).

Схема решения. Поскольку число A заканчивается цифрой 4, то x может быть только чётной цифрой кроме 0. y и z могут быть любыми. Поэтому организуем цикл для x от 2 до 8 с шагом 2, цикл по y от 0 до 9 с шагом 1 и цикл по z от 0 до 9 с шагом 1. Таким образом мы переберём все возможные комбинации цифр, и будем проверять, делится ли число A нацело на $\overline{y2x}$.

2. Разработайте алгоритм, который определяет (в порядке возрастания) номера разрядов, содержащих цифру 8 в десятичной записи числа 64^{256} . Нумерация разрядов начинается с нулевой степени десятичной записи. Например, для числа 1832_{10} первый подходящий разряд будет пронумерован номером 3.

Схема решения. Число 64256 слишком большое для того, чтобы его можно было точно представить в современном компьютере. Поэтому для решения задачи необходимо разработать способ хранения чисел нужной длины и алгоритм умножения чисел в новом представлении. Для представления чисел можно использовать массив, каждый элемент которого хранит одну цифру числа. После нахождения значения 64^{256} можно будет просмотреть этот массив и найти номера разрядов, содержащих цифру 2. Для умножения чисел реализуем школьный алгоритм умножения «в столбик». Первое число надо умножить на каждую цифру второго числа, начиная с последней, и сложить результаты, учитывая, что результат умножения на очередную цифру надо сдвигать влево на соответствующее количество позиций. Для этого берётся первый сомножитель, помещается в промежуточную переменную, и каждая цифра первого сомножителя умножается на текущую цифру второго сомножителя. После умножения очередной цифры надо прибавить перенос из предыдущего разряда и вычислить собственно новую цифру как остаток от деления на 10 и число для переноса в следующий разряд как результат от деления на 10. Для ускорения работы алгоритма желательно отдельно рассмотреть случаи умножения числа на цифру 0 и цифру 1. После умножения выполняем сдвиг на нужное количество позиций и прибавляем результат в общую сумму. Для сложения чисел будем последовательно складывать цифры, начиная с последней. Если сумма двух цифр и переноса из предыдущего разряда больше или равна 10, то оставляем значение (<цифра1> + <цифра2> + <перенос> - 10) и запоминаем наличие переноса в следующий разряд.

3. В волшебной стране Линии используется самобытная позиционная система счисления. В ней числа представляются следующим образом: цифра числа записывается в скобках (), а каждой цифре от 0_{10} до 9_{10} в привычной Вам десятичной с.с. соответствует число чёрточек «-», равное значению этой цифры. Разработайте алгоритм перевода натуральных чисел из шестнадцатеричной с.с. в с.с., принятую в Линии.

Схема решения. Пусть исходное число представлено в виде строки с шестнадцатеричными цифрами. Для формирования целочисленной переменной *пит*, содержащей представленное значение, будем умножать текущее значение этой переменной на 16 и прибавлять значение очередной цифры. Начальное значение переменной *пит* равно 0, цифры рассматриваются справа налево. Далее сформируем массив из цифр десятичного числа. Для этого будем последовательно запоминать остатки от деления переменной *пит* на 10, а саму переменную делить на 10, пока она не станет равной 0. При выводе необходимо для каждой цифры вывести открывающую скобку, нужное количество чёрточек и закрывающую скобку.

Олимпиада школьников «Надежда энергетики». Заключительный этап. Очная форма.

4. В археологических раскопках в Крыму при строительстве трассы «Таврида» археологи нашли табличку с таким текстом: $\sqrt{2} = 1 + \cfrac{1}{2 +$

Пожалуйста, проверьте записанное – разработайте алгоритм вычисления $\sqrt{2}\,$ по схеме выше с точностью до 0.0001.

Схема решения. Если отбросить конец дроби (обозначенный многоточием), то последняя часть будет равна 1/2. Положим переменную f_0 равной 0.5 и вычислим переменную f_1 по формуле $f_1 = 1/(2 + f_0)$. Если разность по модулю между переменными f_0 и f_1 окажется меньше 0.0001, можно прекращать вычисления. Иначе положим переменную f_0 равной f_1 и снова вычислим f_1 по той же формуле. Итоговый результат равен $1 + f_1$.

5. Утверждения $A \to C$, $A \& B \to D$, $\neg B \to E$ истинны. Чему равны A и B, если C, D и E ложны?

Схема решения. Таблица истинности для логической функции «импликация» представлена ниже.

X	Y	$X \rightarrow Y$
Ложь	ложь	истина
ложь	истина	истина
истина	ложь	ложь
истина	истина	истина

Из таблицы видно, что если следствие ложно, то для того, чтобы вся формула была истинной, необходимо, чтобы посылка также была ложна. Таким образом, утверждение A должно быть ложно, в этом случае A & B также будет ложно. Кроме того, ложно должно быть $\neg B$, т.е. утверждение B должно быть истинно.