Carlos A. Silva

PROCESSAMENTO DE IMAGEM

Fisiologia do olho, percepção e formação da imagem

Olho humano: Fotoreceptores

□ Bastonetes

- □ Comprido e fino
- Grande quantidade (~ 120 milhões, http://www.retinaportugal.org.pt/ dist_retina/como_fun_olho.htm)
- Provê a <u>visão escotópica</u> (i.e., ambientes com pouca luz)
- Apenas extrai informação e provê uma visão geral do ambiente

□ Cones

- Curtos e finos, povoam densamente a fóvea (centro da retina)
- Em menor número (~ 6.5 milhões) e menos sensíveis à luz do que as bastonetes
- Provê <u>visão fotópica</u> (i.e., visão em ambientes claros ou muito iluminados)
- Ajudam a resolver os detalhes, visto que cada cone está ligado ao seu próprio nervo
- Responsável pela visão das cores

Visão Mesópia

 Visão em ambientes de iluminação intermédia, sendo garantida tanto pelos cones como pelos bastonetes

Pl. Carlos A. Silve

Olho humano: Fotoreceptores

- Gama de adaptação de intensidades de luz do sistema visual humano é 10¹⁰.
- Brilho (percepção dos níveis de luz) é uma função logarítmica da intensidade
- Adaptação ao brilho: o sistema de visão não consegue operar em toda a gama simultaneamente.

Olho humano: Percepção da cor

- □ Três tipos de fotoreceptores (cones) na retina humana
 - \blacksquare A resposta de absorção $S_i(\lambda)$ tem picos a volta de 450nm (azul), 550nm (verde), 620nm (vermelho alanjado) \sim i.e. comprimentos de onda curto, médio e longo
 - A sensação de cor depende da resposta espectral $\{\alpha_1(C), \alpha_2(C), \alpha_3(C)\}$, em vez do espectro completo da luz $C(\lambda)$

 Uma cor pode ser reproduzida pela mistura de três cores primárias (Thomas Young, 1802)

PI, Carlos A. Silva

Olho humano: Percepção da cor

FIGURE 6.3 Absorption of light by the red, green, and blue cones in the human eye as a function of wavelength

Olho humano: Construção da imagem

Aberração cromática

PI, Carlos A. Silva

Olho humano: Construção da imagem

Fotografia: Construção da imagem

- Na imagem digital as intensidades são apenas definidas numa grelha de pixeis (grelha do sensor CCD).
- □ Discretização no domínio da imagem.
- Um ponto da grelha é chamado pixel (picture element).
- A grelha é geralmente composta por pontos rectagulares de dimensão regular.
- A dimensão do ponto da grelha, h, define o espaçamento do pixel.
- Geralmente temos o mesmo espaçamento em todas as direções.
- □ Quando não se desconhece o espaçamento real, usa-se h= 1.

PI, Carlos A. Silva

Fotografia: Construção da imagem

Conceitos Básicos

□ Vizinhança de um ponto.

- Um ponto p tem quatro vizinhos verticais e horizontais, sendo chamados $N_4(p)$:
 - (i+1, j), (i-1, j), (i, j+1) e (i, j-1)
- Quando incluímos as quatro diagonais, N_D(p):
 - (i-1, j-1), (i-1, j+1), (i+1, j-1) e (i+1, j+1)

Dizemos que temos uma vizinhança $N_8(p)$.

PI, Carlos A. Silva

Conceitos Básicos

- □ Definamos o conjunto V como contendo os valores de intensidade usados na definição de adjacência.
- □ Adjacência: Definimos os seguintes tipos de adjacência
 - Adjacência-4: Dois pontos p e q com valores em V têm adjacência-4 se q pertence ao conjunto $N_4(p)$.
 - Adjacência-8: Dois pontos p e q têm adjacência-8 se q pertence ao conjunto $N_8(p)$.
 - Adjacência-m (adjacência mista): Dois pontos p e q têm adjacência-m se
 - \blacksquare q pertence ao conjunto $N_{A}(p)$, ou
 - \blacksquare q pertence ao conjunto $N_D(p)$ e o conjunto $N_4(p) \cap N_4(q)$ é vazio em V.

Conceitos Básicos

- □ Caminho (ou curva):
 - Os pontos p e q são extremos numa sequência $p=(x_0, y_0), (x_1, y_1), ...$ $(x_{n-1}, y_{n-1}), q=(x_n, y_n).$
 - \Box Dizemos que temos um caminho entre ρ e q se os todos os pontos da sequência forem adjacentes.
 - □ Poderemos ter então um caminho-4, caminho-8 ou caminho-*m* conforme o tipo de adjacência.
- □ Componente ligado:
 - Seja S um sub-conjunto de pontos da imagem.
 - Dois pontos p e q são ligados se existir um caminho entre estes constituído apenas por pontos de S.
 - Para todo ponto p em S, o conjunto de pontos que estão ligados a p em S formam um componente ligado em S.

PI, Carlos A. Silva

Conceitos Básicos

- □ Se um sub-conjunto de pontos tiver apenas um componente ligado, então dizemos que o sub-conjunto de pontos é conjunto ligado.
- □ Região:
 - □ Seja R um subconjunto de pixeis numa imagem.
 - □ Dizemos que R é uma região da imagem se R é um conjunto ligado.
- Região Adjacente.
 - $\hfill\Box$ Duas regiões R_{i} e R_{j} são adjacentes se a sua união formar um conjunto ligado.
 - □ Regiões que não são adjacentes são chamadas disjuntas.

Conceitos Básicos

0 1 1

FIGURE 2.25 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is shown by dashed lines; note the ambiguity). (c) m-adjacency. (d) Two regions that are adjacent if 8-adjecency is used. (e) The circled point is part of the boundary of the 1-valued pixels only if 8-adjacency between the region and background is used. (f) The inner boundary of the 1-valued region does not form a closed path, but its outer boundary does.

PI, Carlos A. Silva

Operações sobre a imagem

- $\ \square$ Uma imagem $I_{i,i}$ pode ser transformada numa outra por:
 - □ Transformações pontuais: O resultado num pixel depende apenas do valor do pixel de entrada.
 - □ Transformações locais: O resultado num pixel depende dos valores da vizinhança do pixel de entrada.
 - □ Transformações globais: O resultado num pixel depende de todos os pixeis da imagem de entrada.

Pl. Carlos A. Silva