Contents

1	Clas	sses	
	1.1	lattice	- Lattice
		1.1.1	Lattice – lattice
			1.1.1.1 createElement – create element
			1.1.1.2 bilinearForm – bilinear form
			1.1.1.3 isCyclic – Check whether cyclic lattice or not
			1.1.1.4 isIdeal – Check whether ideal lattice or not
		1.1.2	LatticeElement – Lattice Element
			1.1.2.1 getLattice – FInd lattice belongs to
		1.1.3	LLL(function) - LLL reduction

Chapter 1

Classes

1.1 lattice – Lattice

- Classes
 - Lattice
 - LatticeElement
- Functions
 - LLL

1.1.1 Lattice – lattice

Initialize (Constructor)

```
 \begin{array}{l} \textbf{Lattice( basis: Matrix, quadraticForm: Matrix)} \\ \rightarrow \textbf{\textit{Lattice}} \end{array}
```

Create Lattice object.

Attribute

basis: The basis of self lattice.

 $\mathbf{quadraticForm}\,:\,\mathbf{The}\,\,\mathbf{quadratic}\,\,\mathbf{form}\,\,\mathbf{of}\,\,$

Methods

${\bf 1.1.1.1} \quad create Element-create\ element$

 $createElement(self, compo: list) \rightarrow LatticeElement$

Create the element which has coefficients with given compo.

1.1.1.2 bilinear Form – bilinear form

 $bilinearForm(\texttt{self}, \texttt{ v_1}, \texttt{ v_2}) \rightarrow \textit{integer}$

Return the (polynomial) discriminant of the self.polynomial.

†The output is not discriminant of the number field itself.

1.1.1.3 isCyclic - Check whether cyclic lattice or not

 $isCyclic(self) \rightarrow \mathit{bool}$

Check whether self lattice is a cyclic lattice or not.

1.1.1.4 isIdeal - Check whether ideal lattice or not

 $\operatorname{signature}(\operatorname{ exttt{self}}) o bool$

Check whether self lattice is a ideal lattice or not.

${\bf 1.1.2}\quad {\bf Lattice Element-Lattice\ Element}$

Initialize (Constructor)

 $\textbf{Lattice(lattice: } \textit{list}, \texttt{compo: } \textit{list}, \texttt{)} \rightarrow \textit{LatticeElement}$

Attribute

lattice:

row:

 ${\bf column}$:

compo:

Methods

1.1.2.1 getLattice – FInd lattice belongs to

 $\mathtt{getLattice}(\mathtt{self}) o \mathbf{Lattice}$

1.1.3 LLL(function) – LLL reduction

 $\operatorname{LLL}(\mathtt{M:}\ \mathbf{Matrix}) o \mathit{Matrix}, \ \mathit{Matrix}$

Return

Examples

```
>>> M=mat.Matrix(3,3,[1,0,12,0,1,26,0,0,13]);
>>> lat.LLL(M);
([1, 0, 0]+[0, 1, 0]+[0, 0, 13], [1L, 0L, -12L]+[0L, 1L, -26L]+[0L, 0L, 1L])
>>>
```