

Objetivo de la sesión

 Aprender las características de las redes densas, estudiar a profundidad la propagación hacia adelante y el cálculo de los gradientes, así como analizar técnicas para evitar la explosión y desvanecimiento de gradiente.

Contenido

- 2.1. De neuronas individuales a redes de neuronas
- 2.2. Cálculo de los gradientes en redes neuronales con múltiples capas
- 2.3. Algoritmo de retropropagación de errores
- 2.4. Sobreajuste y regularización
- 2.5. El problema de la explosión y desvanecimiento del gradiente
- 2.6. Capas de normalización
- 2.7. Variantes del descenso por gradiente: RMSProp y ADAM.

Contexto

Generating musical compositions

Transfer style

Gatys, Ecker, and Bethge, A Neural Algorithm of Artistic Style, 2015. Imagen tomada de Bertens, 2019.

Smart compose

Creating video from text

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

Evolución de la IA

Fuente: elaboración propia

Red neuronal densa

Imagen tomada de Fuentes, 2023.

Características de las redes densas

- Son aproximadores universales^{1,2,3} (con 1 sola capa oculta con un número finito de neuronas).
 - Pueden modelar cualquier función.
- Frecuentemente sobreparametrizados⁴
- Usualmente empleados como bloques de clasificación (no tan profundos) en conjunto con otros tipos de capas

⁴ Allen-Zhu et al. Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers, 2020.

¹ Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning, 2020.

² Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals and Systems*, 2(4), 303–314.

³ Hornik et al. Multilayer Feedforward Networks are Universal Approximators, 1989.

Cada neurona lleva a cabo dos operaciones:

- 1. Realiza una suma pesada
- 2. Proceso la suma a través de una función de activación

En inglés, se conoce como: forward Pass

Propagación hacia adelante (red densa)

Considera una red densa con 1 capa de entrada, 1 capa oculta con 2 neuronas con función de activación sigmoide y 2 neuronas de salida con función de activación lineal.

Calculando n₁

$$sum_{n_1} = (x_1 * w^1) + (x_2 * w^3) + B_1$$

$$sum_{n_1} = (0.1 * 0.1) + (0.5 * 0.3) + 0.25 = 0.41$$

Ahora pasamos la suma pesada a la función logística:

$$output_{n_1} = rac{1}{1 + e^{-sum_{n_1}}}$$
 $output_{n_1} = rac{1}{1 + e^{-0.41}}$
 $output_{n_1} = 0.60108$

Calculando n_2

Capa de salida

$$sum_{n_2} =$$

$$sum_{n_2} =$$

Ahora pasamos la suma pesada a la función logística:

$$output_{n_2} = \frac{1}{1 + e^{-sum_{n_2}}}$$

$$output_{n_2} =$$

$$output_{n_2} =$$

Calculando \hat{y}_1

$$sum_{\hat{y_1}} = (n_1 * w^5) + (n_2 * w^6) + B_2$$

 $sum_{\hat{y_1}} = (0.60108 * 0.5) + (0.61538 * 0.6) + 0.35 = 1.01$

Ahora pasamos la suma pesada a la función logística:

$$\hat{y_1} = \frac{1}{1 + e^{-sum_{\hat{y_1}}}}$$

$$\hat{y_1} = \frac{1}{1 + e^{-1.01977}}$$

$$\hat{y_1} = 0.73492$$

Calculando \hat{y}_2

$$sum_{\hat{y_2}} =$$

 $sum_{\hat{y_2}} =$

Ahora pasamos la suma pesada a la función logística:

$$\hat{y}_2 = \frac{1}{1 + e^{-sum_{\hat{y}_2}}}$$

$$\hat{y_2} = \hat{v_2} =$$

Cálcular el error

$$E_{total} = \sum \frac{1}{2} (ytrue - ypred)^2$$

Para calcular el error total, primero se calcula en $\hat{y_1}$:

$$E_1 = \frac{1}{2}(ytrue_1 - \hat{y_1})^2$$

$$E_1 = \frac{1}{2}(0.05 - 0.73492)^2$$

$$E_1 = 0.23456$$

Cálcular el error

$$E_{total} = \sum \frac{1}{2} (ytrue - ypred)^2$$

Ahora se calcula en $\hat{y_2}$:

$$E_2 = \frac{1}{2}(ytrue_2 - \hat{y_2})^2$$

$$\Xi_2 =$$

$$E_2 =$$

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.5$ $w^1 = 0.1$ 0.05 n_{1} 0.60108 0.73492 $E_1 = 0.23456$ $w^8 = 0./8$ $\chi_2 = 0.5$ 0.95 0.61538 0.77955 E₂ = 0.24908 $\left(B_{2}=0.35\right)$ $\mathcal{B} = 0.25$

Cálcular el error total

$$E_{total} = \sum E_1 + E_2$$

$$E_{total} = 0.23456 + 0.24908$$

 $E_{total} = 0.24908$

Retropropagación de errores

El objetivo de la retropropagación es **distribuir** el error total a la red para actualizar los pesos y minimizar la función de costo (pérdida).

- Los pesos se actualizan de tal manera que, cuando la siguiente propagación hacia adelante suceda, utilice los pesos actualizados.
- De esta forma, el error total se reducirá en un cierto margen (hasta que se alcance el mínimo).
- En inglés, se conoce como: backward Pass

Calcular cuánto contribuye w⁵ en la E₁

Observemos:

- 1. El error E_1 está siendo afectado por $\hat{y_1}$.
- 2. Ahora, $\hat{y_1}$ se ve afectado por $sum_{\hat{y_1}}$.
- 3. Finalmente, $sum_{\hat{y_1}}$ se ve afectada por w_5 .

A esto se le conoce como la regla de la cadena.

Calcular cuánto contribuye w⁵ en la E₁

Observemos:

- 1. El error E_1 está siendo afectado por $\hat{y_1}$.
- 2. Ahora, $\hat{y_1}$ se ve afectado por $sum_{\hat{y_1}}$.
- 3. Finalmente, $sum_{\hat{y_1}}$ se ve afectada por w_5 .

A esto se le conoce como la regla de la cadena.

Si tenemos y = f(u) y u = g(x), entonces podemos escribir la derivada de y como:

$$\frac{dy}{dx} = \frac{dy}{du} * \frac{du}{dx}$$

Calcular cuánto contribuye w⁵ en la E₁

Observemos:

- 1. El error E_1 está siendo afectado por $\hat{y_1}$.
- 2. Ahora, $\hat{y_1}$ se ve afectado por $sum_{\hat{y_1}}$.
- 3. Finalmente, $sum_{\hat{y_1}}$ se ve afectada por w_5 .

Usando la regla de la cadena, esto queda así:

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial w_5}$$

Calcular el 1er componente

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial w_5}$$

Recordemos:

$$E_{total} = \sum \frac{1}{2} (ytrue - ypred)^2$$

$$E_{total} = \sum \frac{1}{2} (ytrue_1 - \hat{y}_1)^2 + \frac{1}{2} (ytrue_2 - \hat{y}_2)^2$$

Por lo tanto:

$$\frac{\partial E_{total}}{\partial \hat{y_1}} = 2 * \frac{1}{2} * (ytrue_1 - \hat{y}_1) * -1$$
$$\frac{\partial E_{total}}{\partial \hat{y_1}} = \hat{y_1} - ytrue_1$$

Calcular el 2do componente

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial w_5}$$

Recordemos: La salida de $\hat{y_1}$ usa una función de activación sigmoide de salida. Entonces, calculamos la derivada de la función.

$$\sigma(x) = \frac{1}{1 + e^{-sum_{n_1}}}$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

Por lo tanto, la derivada de la función sigmoide es:

$$\frac{\partial \hat{y_1}}{\partial \textit{sum}_{\hat{y_1}}} = \hat{y_1}(1 - \hat{y_1})$$

Calcular el 3er componente

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial w_5}$$

Recordemos:

$$sum_{\hat{y_1}} = (n_1 * w^5) + (n_2 * w^6) + B_2$$

Por lo tanto,

$$\frac{\partial \mathsf{sum}_{\hat{y_1}}}{\partial w_5} = n_1$$

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.5$ $w^1 = 0.1$ 0.05 0.60108 0.73492 $E_{*} = 0.23456$ $w^8 = 0./8$ $w^4 = 0.4$ $\chi_2 = 0.5$ 0.95 0.61538 0.77955 E, = 0.24908 $(B_2 = 0.35)$

Pongamos todo junto

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial w_5}$$

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial w_5}$$

$$\frac{\partial E_{total}}{\partial w_5} = [\hat{y_1} - ytrue_1] * [\hat{y_1}(1 - \hat{y_1})] * [n_1]$$

$$\frac{\partial E_{total}}{\partial w_5} = [0.73492 - 0.05] * [0.73492(1 - 0.73492)] * [0.60108]$$

$$\frac{\partial E_{total}}{\partial w_5} = 0.68492 * 0.19480 * 0.60108$$

$$\frac{\partial E_{total}}{\partial w_5} = 0.0802$$

Capa de entrada Capa de salida Capa oculta Salida esperada (Ground truth) $w^{5}=0.5$ $w^1 = 0.1$ 0.05 0.60108 0.73492 $E_1 = 0.23456$ $w^8 = 0.8$ 0.95 0.61538 0.77955 E₂ = 0.24908 $(B_1 = 0.35)$

Pongamos todo junto

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial w_5}$$

El nuevo_w5 es:

$$nuevo_w5 = actual_w5 - n * \frac{\partial E_{total}}{\partial w_5}$$

Donde n es la tasa de aprendizaje:

$$nuevo_{-}w5 = 0.5 - 0.6 * 0.0802$$

$$nuevo_w5 = 0.0188$$

Añadiendo el nuevo peso (w⁵)

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ 0.05 n 42 0.2 0.60108 0.73492 $E_{*} = 0.23456$ $\sqrt{w^8} = 0./8$ 0.95 0.61538 0.77955 E₂ = 0.24908 =0.35=0.25

Calculando el nuevo peso de w₆

$$\frac{\partial E_{total}}{\partial w_6} = \frac{\partial E_{total}}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial w_6}$$

Los dos primeros componentes ya se calcularon previamente. Para el 3er componente, queda de la siguiente manera:

$$\frac{\partial sum_{\hat{y_1}}}{\partial w_6} = n_2$$

Por lo tanto,

$$\frac{\partial E_{total}}{\partial w_6} = 0.68492 * 0.19480 * 0.61538$$

$$\frac{\partial E_{total}}{\partial w_6} = 0.08211$$

Calculando el nuevo peso de w₆

El nuevo_w6 es:

$$nuevo_w6 = actual_w6 - n * \frac{\partial E_{total}}{\partial w_6}$$

Donde n es la tasa de aprendizaje:

$$nuevo_{-}w6 = 0.6 - 0.6 * 0.082$$

$$nuevo_{-}w6 = 0.55073$$

Añadiendo el nuevo peso (w⁶)

Calculando el nuevo peso de w,

Calculando el nuevo peso de w,

$$\frac{\partial E_{total}}{\partial w_7} = \frac{\partial E_{total}}{\partial \hat{y_2}} * \frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} * \frac{\partial sum_{\hat{y_2}}}{\partial w_7}$$

1er componente:

$$\frac{\partial E_{total}}{\partial \hat{y_2}} = \hat{y_2} - ytrue_2$$

2do componente:

$$\frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} = \hat{y_2}(1 - \hat{y_2})$$

3er componente:

$$\frac{\partial sum_{\hat{y_2}}}{\partial w_7} = n_1$$

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ $x_1 = 0.7$ 0.05 n 0.60108 0.73492 $E_1 = 0.23456$ $w^4 = 0.4$ $w^8 = 0.8$ $\hat{y}_{_2}$ 0.95 $\chi_2 = 0.5$ 0.77955 0.61538 $E_a = 0.24908$ =0.35

Calculando el nuevo peso de w₇

Poniendo todo junto:

$$\frac{\partial E_{total}}{\partial w_7} = [\hat{y_2} - ytrue_2] * [\hat{y_2}(1 - \hat{y_2})] * [n_1]$$

$$\frac{\partial E_{total}}{\partial w_7} = -0.17044 * 0.17184 * 0.60108$$

$$\frac{\partial E_{total}}{\partial w_7} = -0.01760$$

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ 0.05 $\chi_1=0.1$ n 0.60108 0.73492 $E_1 = 0.23456$ $w^4 = 0.4$ $w^8 = 0.8$ $\hat{y}_{_2}$ $\chi_2 = 0.5$ 0.95 0.77955 0.61538 E₂ = 0.24908 (B = 0.35)

Calculando el nuevo peso de w,

El nuevo_w7 es:

$$nuevo_w6 = actual_w7 - n * \frac{\partial E_{total}}{\partial w_7}$$

Donde n es la tasa de aprendizaje:

$$nuevo_{-}w6 = 0.7 - 0.6 * -0.01760$$

 $nuevo_{-}w6 = 0.71056$

Añadiendo el nuevo peso (w⁷)

Calculando el nuevo peso de w_g

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ 0.05 42 D.2/ 0.60108 0.73492 $E_1 = 0.23456$ w8=0/8 $w^4 = 0.4$ 0.95 0.61538 0.77955 E, = 0.24908 $B_{2} = 0.35$ =0.25

Calculando el nuevo peso de w₈

$$\frac{\partial E_{total}}{\partial w_8} = -0.01802$$

$$nuevo_w8 = 0.81081$$

Añadiendo el nuevo peso (w8)

¿Cómo calcular los nuevos pesos de W¹, W², W³ y W⁴?

- Siempre buscamos encontrar la derivada parcial del error con respecto a un peso particular.
- Los pasos son similares a los realizados previamente.
- Aunque la cadena, llega a ser un poco larga en el número de componentes.

Recuerda:

No importa qué tan profunda sea la red neuronal, todo lo que necesitamos saber es cuánto error se propaga (contribuye) por un peso particular al error total de la red.

Calcular cuánto contribuye w¹ en la E₄

Por simplicidad, vamos a calcular de forma separada $\frac{\partial E_1}{\partial w_1}$ y $\frac{\partial E_2}{\partial w_1}$. Una vez calculados, obtendremos: $\frac{\partial E_{total}}{\partial w_1}$.

$$\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

Calcular cuánto contribuye w¹ en la E₄

Por simplicidad, vamos a calcular de forma separada $\frac{\partial E_1}{\partial w_1}$ y $\frac{\partial E_2}{\partial w_1}$. Una vez calculados, obtendremos: $\frac{\partial E_{total}}{\partial w_1}$.

$$\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

Calcular el 1er componente

$$\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

1er componente:

$$\frac{\partial E_1}{\partial \hat{y_1}} = \hat{y_1} - target_1$$

$$\frac{\partial E_1}{\partial \hat{y_1}} = 0.73492 - 0.05$$

$$\frac{\partial E_1}{\partial \hat{y_1}} = 0.68492$$

Calcular el 2do componente

$$\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

2do componente: ¡previamente ya se había calculado!

$$\frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} = 0.19480$$

Uno de los beneficios de la regla de la cadena, es que podemos reusar cálculos previos.

Capa oculta Capa de entrada Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ 0.05 0.60108 0.73492 E, = 0.23456 $w^4 = 0.4$ $\chi_2 = 0.5$ 0.95 $w^8 = 0.81081$ 0.77955 0.61538 E₂ = 0.24908 (B = 0.25)(B = 0.3)

Calcular el 3er componente

$$\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

3er componente:

$$sum_{\hat{y_1}} = \hat{y_1} * w5 + \hat{y_2} * w_6 + B_2$$

$$\frac{\partial sum_{\hat{y_1}}}{\partial n_1} = w!$$

Calcular el 4to componente

$$\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

4to componente:

$$\frac{\partial n_1}{\partial sum_{n_1}} = n_1 * (1 - n_1)$$

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ 0.05 0.60108 0.73492 $E_1 = 0.23456$ $w^4 = 0.4$ $\chi_2 = 0.5$ 0.95 $w^8 = 0.81081$ 0.77955 0.61538 E₂ = 0.24908 (B = 0.3)

Calcular el 5to componente

$$\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

5to componente:

$$sum_{n_1} = (x_1 * w_1) + (x_2 * w_3) + B1$$

$$\frac{\partial sum_{n_1}}{\partial w_1} = x$$

Escribiendo todo junto

$$\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial \hat{y_1}} * \frac{\partial \hat{y_1}}{\partial sum_{\hat{y_1}}} * \frac{\partial sum_{\hat{y_1}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

$$\frac{\partial E_1}{\partial w_1} = 0.68492 * 0.19480 * 0.5 * 0.23978 * 0.1$$

$$\frac{\partial E_1}{\partial w_1} = 0.00159$$

Calcular cuánto contribuye w¹ en la E₂

Similar a W_1 con respecto a E_1 , ahora lo calculamos para E_2

$$\frac{\partial E_2}{\partial w_1} = \frac{\partial E_2}{\partial \hat{y_2}} * \frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} * \frac{\partial sum_{\hat{y_2}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

Calcular el 1er componente

$$\frac{\partial E_2}{\partial w_1} = \frac{\partial E_2}{\partial \hat{y}_2} * \frac{\partial \hat{y}_2}{\partial sum_{\hat{y}_2}} * \frac{\partial sum_{\hat{y}_2}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

$$\frac{\partial E_2}{\partial \hat{y}_2} = \hat{y}_2 - target_2$$

$$\frac{\partial E_2}{\partial \hat{y}_2} = 0.77955 - 0.95$$

$$\frac{\partial E_2}{\partial \hat{y}_2} = -0.17044$$

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ 0.05 0.60108 0.73492 E, = 0.23456 $w^4 = 0.4$ $\chi_2 = 0.5$ 0.95 $w^8 = 0.81081$ 0.77955 0.61538 E₂ = 0.24908 (B = 0.3)

Calcular el 2do componente

$$\frac{\partial E_2}{\partial w_1} = \frac{\partial E_2}{\partial \hat{y_2}} * \frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} * \frac{\partial sum_{\hat{y_2}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

Previamente, ya lo habíamos calculado:

$$\frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} = \hat{y_2}(1 - \hat{y_2})$$
$$\frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} = 0.17184$$

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ 0.05 0.60108 0.73492 E, = 0.23456 $/w^4 = 0.4$ $\chi_2 = 0.5$ 0.95 $w^8 = 0.81081$ 0.61538 0.77955 E₂ = 0.24908 $\mathcal{B} = 0.25$ (B = 0.3)

Calcular el 3er componente

$$\frac{\partial E_2}{\partial w_1} = \frac{\partial E_2}{\partial \hat{y_2}} * \frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} * \frac{\partial sum_{\hat{y_2}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

Recordemos

$$sum_{\hat{y_2}} = \hat{y_2} * w7 + \hat{y_2} * w_8 + B_2$$

Entonces:

$$\frac{\partial sum_{\hat{y_2}}}{\partial n_1} = w7$$

Calcular el 4to componente

$$\frac{\partial E_2}{\partial w_1} = \frac{\partial E_2}{\partial \hat{y}_2} * \frac{\partial \hat{y}_2}{\partial sum_{\hat{y}_2}} * \frac{\partial sum_{\hat{y}_2}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

$$\frac{\partial n_1}{\partial sum_{n_1}} = n_1 * (1 - n_1)$$

Calcular el 5to componente

$$\frac{\partial E_2}{\partial w_1} = \frac{\partial E_2}{\partial \hat{y_2}} * \frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} * \frac{\partial sum_{\hat{y_2}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

$$sum_{n_1} = (x_1 * w_1) + (x_2 * w_3) + B1$$

$$\frac{\partial sum_{n_1}}{\partial w_1} = x_1$$

Escribiendo todo junto

$$\frac{\partial E_2}{\partial w_1} = \frac{\partial E_2}{\partial \hat{y_2}} * \frac{\partial \hat{y_2}}{\partial sum_{\hat{y_2}}} * \frac{\partial sum_{\hat{y_2}}}{\partial n_1} * \frac{\partial n_1}{\partial sum_{n_1}} * \frac{\partial sum_{n_1}}{\partial w_1}$$

$$\frac{\partial E_2}{\partial w_1} = -0.17044 * 0.17184 * 0.7 * 0.23978 * 0.1$$

$$\frac{\partial E_2}{\partial w_1} = -0.00049$$

Capa de entrada Capa oculta Capa de salida Salida esperada (Ground truth) $w^5 = 0.0188$ $w^1 = 0.1$ 0.05 0.60108 0.73492 $E_1 = 0.23456$ $w^4 = 0.4$ $\chi_2 = 0.5$ 0.95 $w^8 = 0.81081$ 0.77955 0.61538 E₂ = 0.24908 $\mathcal{B}=0.2$ (B = 0.3)

Calculando el error

Ahora calculamos:

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_1}{\partial w_1} + \frac{\partial E_2}{\partial w_2}$$

$$\frac{\partial E_{total}}{\partial w_1} = 0.00159 + (-0.00049)$$

$$\frac{\partial E_{total}}{\partial w_1} = 0.0011$$

Entonces, el nuevo w_1 se obtiene:

$$nuevo_{-}w1 = w_1 - n * \frac{\partial E_{total}}{\partial w_1}$$

$$nuevo_w1 = 0.1 - 0.6 * 0.0011$$

$$nuevo_{-}w1 = 0.09934$$

Añadiendo el nuevo peso (w¹)

Calculado pesos w², w³, y w⁴.

Propagación hacia atrás: iteración 1 finalizada

Recuerda:

- Al concluir la propagación hacia atrás, todos los viejos pesos se sustituyen por los nuevos pesos.
- A continuación, inicia nuevamente la propagación hacia adelante y se calcula el nuevo error total.
- A partir de este nuevo error, inicia nuevamente la propagación hacia atrás, y se actualizan los pesos.
- Esto continúa hasta que el valor de la pérdida converge al mínimo.

Esquema de la propagación hacia adelante y hacia atrás

Imagen tomada de Baydin et. al. Automatic Differentiation in Machine Learning: a Survey, 2018.

Time to Code

Retropropagacion.ipynb

Time to Code

playground.tensorflow

Sobreajuste y regularización

Imagen tomada de Fuentes, 2023.

Ajuste normal

Imagen tomada de Fuentes, 2023.

Sobreajuste: estrategias de regularización

- Penalización de la función de error
- Paro temprano
- Dropout
- Adición de ruido.
- Aumentado de datos (data augmentation)
- Normalización por lotes
- Versiones estocásticas del descenso del gradiente y variantes.

Sobreajuste: penalización por norma

Esta regularización agrega un término de penalización en la función de costo del modelo, desalentando los modelos demasiado complejos

• Norma ℓ_1 (Regresión Lasso)

$$\tilde{E}(\theta) = -\sum_{i=1}^{n} \{y_i \log \hat{y}_i + (1-y_i) \log(1-\hat{y}_i)\} + \frac{\lambda}{2} \|\theta\|_1$$

La norma L1 se calcula simplemente como la suma del valor absoluto de los elementos del vector.

Norma ℓ₂ (Regresión Ridge)

$$\tilde{E}(\theta) = -\sum_{i=1}^{n} \{y_i \log \hat{y}_i + (1-y_i) \log(1-\hat{y}_i)\} + \frac{\lambda}{2} \|\theta\|_2^2$$

La norma L2 se calcula como raíz cuadrada de la suma de los cuadrados de los elementos del vector y también se conoce como norma euclidiana.

Sobreajuste: paro temprano

Esta regularización detiene el entrenamiento cuando se cumple un determinado criterio. Por ejemplo: que la pérdida de la validación deje de disminuir, o que la precisión deje de aumentar.

Imagen tomada de https://deepai.org/

Sobreajuste: dropout

El objetivo de esta estrategia de regularización es desactivar neuronas de forma aleatoria para evitar co-adaptación.

Imagen tomada de Fuentes, 2023.

Sobreajuste: dropout como ensamble

Consiste en entrenar simultáneamente múltiples redes eliminando neuronas de una red base

Ensemble of subnetworks

Imagen tomada de Ian Goodfellow and Yoshua Bengio and Aaron Courville, 2016.

Sobreajuste: suavizado de etiquetas

- El objetivo de esta estrategia es agregar ruido a la representación 1 de *k* de las etiquetas.
 - De tal forma que, se reemplazan los ceros con

$$\frac{\epsilon}{k-1}$$
 y los unos con $1-\epsilon$

 Por ejemplo, para K = 5, la representación de la etiqueta para la clase 3 sería:

• La etiqueta suavizada con $\epsilon = 0.01$ es

[0.0025, 0.0025, 0.99, 0.0025, 0.0025]

Time to Code

Dropout

Explosión y desvanecimiento del gradiente

Imagen tomada de Bhoomkar, 2023.

Desvanecimiento del gradiente

- Durante el entrenamiento de una red ocurre: la propagación hacia adelante y la propagación hacia atrás.
- Durante la propagación hacia atrás, se calcula el gradiente (derivada del error).
- Este error se propaga de la última capa hasta la primera.
- En redes muy profundas, el gradiente se desvanece (se vuelve 0).
- En inglés a este problema se le conoce como: the vanishing gradient problem.

Graficando el problema del desvanecimiento del gradiente

Tasa de error en el conjunto de entrenamiento (izquierda) y en el conjunto de prueba (derecha) en el conjunto de CIFAR-10.

Imagen tomada de Kaiming, 2015.

Conexiones residuales (residual conexions)

Es una estrategia para mitigar el problema del desvanecimiento del gradiente. Surgen de la analogía de que las células piramidales del cerebro se comunican con áreas profundas del encéfalo.

Un bloque residual se expresa como:

$$H(x) = F(x) + x$$

Se compone de i) una ruta residual F(x) (izquierda) y ii) una conexión atajo x (derecha).

Bloque identidad

Durante el entrenamiento, aprendemos 2 funciones: F(x) y la función identidad I(x) = x y a través de una suma se combinan ambos resultados.

Dónde x y F(x) son de la misma dimensión.

Bloque convolucional

Son bloques donde las dimensiones de F(x) no es el mismo que x.

Se añade una convolucional con el objetivo de reducir la dimensión de x

Conexiones residuales (residual conexions)

- ResNet: Fue la red ganadora en el concurso ImageNet Large Scale Visual Recognition Challenge 2015 (ILSVRC2015)'.
- Por primera vez se permitió entrenar arquitecturas profundas (más de 100 capas)

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Resultados en el reto del 2015: ResNet

- 1er lugar en tarea de clasificación.
- 1er lugar en detección (ImageNet)
- 1er lugar en localización (ImageNet)
- 1er lugar en detección (COCO)
- 1er lugar en segmentación (COCO)

Red	Año	Capas	Error %
AlexNet	2013	8	11.7
VGG	2014	19	7.3
Inception	2014	22	6.7
ResNet	2015	152	3.6

Comparativa de rendimiento sobre ImageNet

Red convolucional (izquierda) y ResNet (derecha). Se observa la tasa de error durante el entrenamiento (color verde) y de validación (color rojo).

Consiste en normalizar la entrada de cada capa restando la media del minilote y dividiéndola por la desviación estándar del minilote.

Una matriz de datos A, con media $\mu_A=111.86$ y desviación típica $\delta_A=79.18$ puede ser convertida en una nueva distribución Z con media $\mu_Z=0$ y desviación $\delta_Z=1$, es decir, una distribución normal. Para ello solo es necesario aplicar la fórmula a cada valor a de la primera distribución.

Imagen tomada de Rodríguez Abril, 2021.

La normalización por lotes (BN) consta de dos algoritmos.

- El algoritmo 1 es la transformación de la entrada original de una capa x al valor desplazado y normalizado y.
- El algoritmo 2 es el entrenamiento general de una red normalizada por lotes.

En ambos algoritmos, el valor ε se inserta para evitar dividir por 0 y se selecciona a propósito para que sea insignificantemente pequeño (por ejemplo, ~10(-8)).

Algoritmo 1:

- Las características escalares se normalizan de forma independiente, haciendo que sus medias sean 0 y la varianza 1.
- Cada minilote produce estimaciones de la media y la varianza de cada activación. Esto garantiza que una red normalizada por lotes conserve su capacidad de utilizar plenamente la retropropagación.

Entrada: Valores de x sobre un minilote: $B = x_1, ..., m$;

Parámetros: σ , β

Media y varianza del lote:

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{\{i\}}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (\mathbf{x}^{\{i\}} - \boldsymbol{\mu}_{\mathcal{B}}))^2$$

Normalización:

$$\hat{\mathbf{x}}^{\{i\}} \leftarrow \frac{\mathbf{x}^{\{i\}} - \boldsymbol{\mu}_{\mathcal{B}}}{\sqrt{\boldsymbol{\sigma}_{\mathcal{B}}^2 + \epsilon}}$$

Escalado y desplazamiento:

$$\mathbf{y}^{\{i\}} \leftarrow \boldsymbol{\gamma} \odot \hat{\mathbf{x}}^{\{i\}} + \boldsymbol{\beta}$$

donde \odot es el producto de Hadamard (elemento a elemento), ϵ es un valor pequeño y m es el tamaño del lote.

Algoritmo 2:

- 1. Normaliza la red por minilotes
- Entrena la red con propagación hacia atrás.
- Transforma estadísticos del lote a estadísticos de población

Imagen tomada de https://collab.dvb.bayern/display/TUMlfdv/Batch+Normalization

Capas de normalización: normalización por lotes Beneficios

- Acelera el entrenamiento
- Permite tasas de aprendizaje más grandes
- Actúa como un tipo de regularizador
- Facilita la creación de redes profundas

Problemas con el descenso del gradiente

- Desvanecimiento del gradiente
- Explosión del gradiente
- Mínimos locales y puntos de silla

Mínimos locales y puntos de silla

- Los mínimos locales imitan un mínimo global.
- La pendiente de la función de costos aumenta a ambos lados del punto actual.

Imagen tomada de Venugopal, 2020.

Variantes del descenso del gradiente Descenso del gradiente estocástico (SGD)

Versión optimizada que realiza menos comparaciones por iteración.

Se escoge de manera aleatoria los puntos con los que se calculan las derivadas. De tal forma que se selecciona un **subconjunto** de datos (mini-lote) para calcular la función de costo.

Ventaja: reduce la elevada carga computacional.

Imagen tomada de Asha Ponraj, 2020.

Variantes del descenso del gradiente Momento

- Es una extensión del algoritmo del descenso de gradiente, a menudo denominado descenso de gradiente con momento.
- Está diseñado para acelerar el proceso de optimización, es decir, busca disminuir el número de evaluaciones de funciones necesarias para alcanzar el óptimo.
- Se basa en la metáfora del impulso de la física donde la aceleración en una dirección se puede acumular a partir de actualizaciones pasadas.

El algoritmo de impulso acumula una media móvil que decae exponencialmente de gradientes pasados y continúa moviéndose en su dirección.

Imagen tomada de Asha Ponraj, 2020.

Variantes del descenso del gradiente RMSProp

- RMSprop significa Root Mean Square Propagation y fue propuesto por Geoffrey Hinton.
- Actualiza los parámetros a partir de los promedios móviles ponderados de los gradientes al cuadrado (2do momento de los gradientes)

Variantes del descenso del gradiente Algoritmo RMSProp

- 1. Inicializa los parámetros θ y la variable ν a cero.
- 2. Por cada iteración, calcula los gradientes g con respecto a los parámetros θ utilizando el minilote de datos actual.
- 3. Actualiza v aplicando una caída exponencial: $v = \beta v + (1 \beta)g^2$, donde β es un hiperparámetro que controla la tasa de caída y g^2 es el cuadrado de los gradientes por elementos.
- 4. Calcula la raíz cuadrada de los elementos de v y agrega una pequeña constante ϵ para evitar la división por cero: $v = \sqrt{v} + \epsilon$.
- 5. Actualiza los parámetros θ aplicando una tasa de aprendizaje escalada: $\theta = \theta \alpha \frac{g}{v}$, donde α es la tasa de aprendizaje inicial y $\frac{g}{v}$ es la división por elementos de los gradientes y la variable v.
- 6. Se repiten los pasos del 2 al 5 hasta alcanzar la convergencia o un número máximo de iteraciones.

Variantes del descenso del gradiente Adam

- Adam, o Adaptive Moment Estimation, es un algoritmo de optimización que combina las ventajas de los algoritmos RMSprop y Momentum para mejorar el proceso de aprendizaje de un modelo.
- Al igual que Momentum, Adam utiliza una estimación del momento y de la magnitud de los gradientes anteriores para actualizar los parámetros del modelo en cada iteración.
- Sin embargo, en lugar de utilizar una tasa de aprendizaje constante para todos los parámetros, Adam adapta la tasa de aprendizaje de cada parámetro individualmente en función de su estimación del momento y de la magnitud del gradiente.

Variantes del descenso del gradiente Adam A Se estima el primer (la media) y segundo (la varianza)

 Se estima el primer (la media) y segundo (la varianza no centrada) momentos de los gradientes

$$\begin{aligned} \mathbf{m}^{[t+1]} &= \beta_1 \cdot \mathbf{m}^{[t]} + (1 - \beta_1) \cdot \nabla \mathcal{L}(\boldsymbol{\theta}^{[t]}) \\ \mathbf{v}^{[t+1]} &= \beta_2 \cdot \mathbf{v}^{[t]} + (1 - \beta_2) \cdot \left[\nabla \mathcal{L}(\boldsymbol{\theta}^{[t]}) \right]^2 \end{aligned}$$

 Debido a que estas estimaciones están sesgadas hacia 0, se realiza una corrección

$$\hat{\mathbf{m}}^{[t+1]} = rac{\mathbf{m}^{[t+1]}}{1 - eta_1^{t+1}}$$
 $\hat{\mathbf{v}}^{[t+1]} = rac{\mathbf{v}^{[t+1]}}{1 - eta_2^{t+1}}$

donde β_1^{t+1} y β_2^{t+1} son los factores de ponderación $\beta_1,\beta_2\in[0,1)$ elevados a la potencia t+1

 Para actualizar los parámetros se usan las estimaciones de los momentos de los gradientes en el tiempo t

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \frac{\alpha}{\sqrt{\hat{\mathbf{y}}^{[t+1]} + \epsilon}} \cdot \hat{\mathbf{m}}^{[t+1]}$$

Time to Code

losslandscape

Repaso

- Aprendimos las diferencias entre la propagación hacia adelante y la propagación hacia atrás.
- Analizamos a detalle el algoritmo del cálculo de los gradientes en las redes neuronales.
- Estudiamos estrategias para evitar problemas de la explosión y desvanecimiento del gradiente
- Analizamos variantes del algoritmo del algoritmo del descenso del gradiente

Referencias

- Zhang A, Lipton Z, Li M, and Smola J. Dive into Deep Learning. 2020. Disponible en https://d2l.ai/
- Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. MIT Press. Capítulo 8, 10 y
 11. Disponible en https://probml.github.io/pml-book/book1.html
- Nielsen, M. (2019). Neural Networks and Deep Learning. Capítulo 1. Disponible en http://neuralnetworksanddeeplearning.com/index.html
- Rafael C. Gonzalez, Richard Eugene Woods (2018). Digital Image Processing. Capítulo 12.
 Disponible en https://dl.icdst.org/pdfs/files4/01c56e081202b62bd7d3b4f8545775fb.pdf

Contacto

Dra. Blanca Vázquez

Investigadora Postdoctoral

Unidad Académica del IIMAS

en el estado de Yucatán, UNAM.

Correo: <u>blanca.vazquez@iimas.unam.mx</u>

Github: https://github.com/blancavazquez

Artificial Intelligence in Biomedicine Group (ArBio)

https://iimas.unam.mx/arbio

