Assignment-1

by MANOJ PAUDEL.

Submission date: 29-Jan-2024 12:33AM (UTC+0800)

Submission ID: 2280154346

File name: 220172_MANOJ_PAUDEL_._Assignment-1_491589_1310862720.pdf (891.86K)

Word count: 658 Character count: 3880

Case Study:

Predictive
Modelling for Heart
Disease

Table of contents

- **01** Introduction
- 02 Importance of Predictive Modelling
- 03 Dataset Overview
- O4 Literature Review
- 05 Model Selection
- 06 Conclusion

Introduction:

- Heart disease is major problem worldwide. According to WHO report, around 20.5 million people were dead in 2021 from cardiovascular disease which is ⅓ of all global death.
- Heart disease often considered silent killers, by the time its symptoms manifest, person is already in advance stage of this disease.
- Predicting disease early is super important, where data mining comes, help to predict the likelihood of getting heart disease beforehand.

Importance of Predictive Modeling:

Early Detection

Resource Efficiency:

- Prevent progression of the disease which result to minimize damage to heart.
- Early treatment can reduce risk such as heart attacks, strokes, sudden heart failure.
- Reduce healthcare cost

- More focus on high-risk individuals.
- Reduce efficiency and cost

Dataset Overview:

- Dataset contain 1025 rows and 14 column
- Key Features:

Age	Age of the patient [29-70]		
Sex	Male [M] Female [F]		
Ср	Chest Pain type		
Trestbp s	Resting blood pressure in mmHg.		
chol	Cholesterol level		

restecg	Resting electrocardiographic result		
fbs	Fasting blood sugar [1: > 120 mg/dl, 0: otherwise]		
thalach	Attained maximum heart rate		
exang	Exercise Angina		
Oldpeak	ST depression compare to rest		
Slope	ST curve of the peak activity		
са	Fluoroscopy coloration of major vessel (0-3)		
thal	Normal, fixed, reversible defect.		
target	1: heart disease, 0: Normal		

Literature Review:

Title and Author	Findings	Accuracy	
Heart Disease Prediction Using Machine Learning Chaimaa Boukhatem, H. Youssef	This paper demonstrated four classification SVM, Naive Bayes, Multilayer Perceptron, Random Forest to build prediction model.	Best performed model is SVM with 91.67%.	
An Analysis of Heart Disease	The study compares six	Best performed model is	
Prediction using Machine Learning	machine learning algorithms, including KNN, Decision Tree, Random Forest, Support Vector Machines, Logistic Regression, and Neural Network.	Random Forest with 80.16%	

Title and Author	Findings	Accuracy
Heart Disease Prediction based on Machine learning Technique Abdul Hafiz, Narinder Kaur	Used machine learning models, Logistic Regression, Decision Tree, Random Forest, and XGBoost Classifier models.	Best performed model is Random Forest and XGBoost with 92.20% and 95.61%.
Prediction of heart disease using machine learning algorithms. 2019 Santhana Krishnan J. and Geetha S.	Used two supervised classifier Naive Bayes and Decision Tree classifier.	Decision Tree model with 91 % and Naive Bayes with 87 %.

Model Selection:

Random Forest

- I proposed a Random Forest as the prediction model, as it provide one of the highest accuracies in multiple studies, with accuracy up to 92%.
- As, random forest construct multiple decision trees during training and take the prediction from each trees and based on the majority votes of prediction it predict the output.

Conclusion:

- Heart disease is a life-threatening disease, hence early prediction of heart disease is crucial for improving patient outcome and reducing cost on healthcare.
- We review several techniques like SVM, Naive Bayes,
 Decision Tree among them we choose Random Forest to build predictive machine learning model.

•

References

Abdar, M., Kalhori, S.R., Sutikno, T., Subroto, I., & Arji, G. (2015). Comparing Performance of Data Mining Algorithms in Prediction Heart Diseases. International Journal of Electrical and Computer Engineering, 5, 1569-1576.

Chaimaa, Boukhatem., H., Youssef., Ali, Bou, Nassif. (2023). Heart Disease Prediction Using Machine Learning. International Journal For Science Technology And Engineering, doi: 10.22214/ijraset.2023.53601

K., -. (2023). An Analysis of Heart Disease Prediction using Machine Learning. International Journal For Multidisciplinary Research, 5(3) doi: 10.36948/ijfmr.2023.v05i03.3411
D., Sreelakshmi., P., Prudvi, Teja. (2023). Cardiovascular Disease Prediction Using Machine Learning. 1-6. doi: 10.1109/ISCON57294.2023.10112052

Safiyatul, Hoque., MJ, Peal., K., M., A., Salam. (2022). Prediction of Heart Disease Using Machine Learning. 471-476. doi: 10.1109/ICMACC54824.2022.10093246

Abdar, M., Kalhori, S.R., Sutikno, T., Subroto, I., & Arji, G. (2015). Comparing Performance of Data Mining Algorithms in Prediction Heart Diseases. International Journal of Electrical and Computer Engineering, 5, 1569-1576.

Thank You

Do you have any questions?

ORIGINALITY REPORT				
13%	8%	5%	8%	
SIMILARITY INDEX	INTERNET SOURCES	PUBLICATIONS	STUDENT PAPERS	
PRIMARY SOURCES				
Submitted Student Paper	to Taylor's Education Group			3%
Submitted Student Paper	to University of Oklahoma			2%
theses.hal. Internet Source	science			2%
4 www.mdpi Internet Source	.com			2%
	ango, Mustafa Habibu Mohs hniques to Predict Obstetric	_		2%

6 www.slideshare.net
Internet Source 29

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	On		