

数据手册

Datasheet

APM32E103xCxE

基于 Arm® Cortex®-M3 内核的 32 位微控制器

版本: V1.0

1 产品特性

■ 内核

- 32 位 Arm® Cortex®-M3 内核
- 最高 120MHz 工作频率

■ 存储器及接口

- Flash: 容量最高为 512KB
- SRAM: 容量最高为 128KB
- EMMC: 支持 CF 卡、SRAM、PSRAM、 SDRAM、NOR 和 NAND 存储器

■ 时钟

- HSECLK: 支持 4~16MHz 外部晶体/ 陶瓷振荡器
- LSECLK: 支持 32.768KHz 晶体/陶瓷 振荡器
- HSICLK: 出厂校准的 8MHz RC 振荡器
- LSICLK: 支持 40KHz RC 振荡器
- PLL: 锁相环,支持 2~16 倍频

■ 电源与电源管理

- V_{DD} 范围: 2.0~3.6V
- V_{DDA}范围: 2.0~3.6V
- 备份域电源 VBAT 范围: 1.8V~3.6V
- 支持上电/掉电复位(POR/PDR)
- 支持可编程电源电压检测器 (PVD)

■ 低功耗模式

- 支持睡眠、停机、待机三种模式

DMA

 两个 DMA, DMA1 有 7 个通道,DMA2 有 5 个通道

■ 调试接口

- JTAG
- SWD

I/O

- 最多有 112 个 I/O
- 所有 I/O 都可以映射到外部中断向量
- 最多有87个容忍5V输入的I/O

■ 通信外设

- 2 个 I2C 接口(1Mbit/s),支持 SMBus/PMBus。
- 3 个 USART, 2 个 UART, 支持 ISO7816、LIN 和 IrDA 等功能
- 3 个 SPI (2 个可复用 I2S),最大传输 速度 18Mbps
- 2 个 CAN,支持 USBD 和 CAN 同时 独立工作
- 1个USBD
- 1个 SDIO 接口

■ 模拟外设

- 3 个 12 位的 ADC
- 2 个 12 位的 DAC

■ 定时器

- 2 个可以提供 7 通道 PWM 输出的 16 位高级定时器 TMR1/8,支持死区生成和刹车输入等功能
- 4个16位通用定时器 TMR2/3/4/5,每个定时器有4个独立通道可以用来输入捕获、输出比较、PWM与脉冲计数等功能
- 2 个 16 位基本定时器 TMR6/7
- 2 个看门狗定时器:一个独立看门狗 IWDT 和一个窗口看门狗 WWDT
- 1 个 24 位自减型系统定时器 Sys Tick Timer

RTC

- 支持日历功能
- 84Bytes 备份寄存器
- FPU 浮点运算单元
- CRC 计算单元
- 96 位唯一设备 ID
- 芯片封装
- QFN48/LQFP48/LQFP64/LQFP100/ LQFP144

目录

1	产品特性	1
2	产品信息	6
3	引脚信息	7
3.1	引脚分布	7
3.2	引脚功能描述	10
4	功能描述	20
4.1	系统架构	21
4.1.1	系统框图	21
4.1.2	地址映射	22
4.1.3	启动配置	22
4.2	内核	23
4.3	中断控制器	23
4.3.1	嵌套的向量式中断控制器(NVIC)	23
4.3.2	外部中断/事件控制器 (EINT)	23
4.4	存储器	23
4.5	时钟	23
4.5.1	时钟树	24
4.5.2	时钟源	25
4.5.3	系统时钟	25
4.5.4	总线时钟	25
4.6	电源与电源管理	25
4.6.1	电源方案	25
4.6.2	调压器	25
4.6.3	电源电压监控器	25
4.7	低功耗模式	26
4.8	DMA	
4.9	GPIO	
4.10	通信外设	26

4.10.1	USART/UART	26
4.10.2	2 I2C	27
4.10.3	3 SPI/I2S	27
4.10.4	CAN	27
4.10.5	5 USBD	27
4.10.6	6 USBD 接口与 CAN 接口的同时使用	28
4.11	模拟外设	28
4.11.1	ADC	28
4.11.2	P. DAC	28
4.12	定时器	28
4.13	RTC	30
	备份寄存器	
	CRC	
4.15	浮点运算单元(FPU)	30
5	电气特性	31
5.1	电气特性测试条件	31
5.1.1	最大值和最小值	31
5.1.2	典型值	31
5.1.3	典型曲线	31
5.1.4	电源方案	31
5.1.5	负载电容	32
5.2	通用工作条件下的测试	33
5.3	绝对最大额定值	33
5.3.1	最大温度特性	33
5.3.2	最大额定电压特性	33
5.3.3	最大额定电流特性	34
5.3.4	静电放电(ESD)	34
5.3.5	静态栓锁(LU)	34
	存储器	
5.4.1	Flash 特性	35

5.5	时钟	35
5.5.1	外部时钟源特性	35
5.5.2	内部时钟源特性	36
5.5.3	PLL 特性	36
5.6	电源与电源管理	37
5.6.1	内嵌复位和电源控制模块特性测试	
5.7		
5.7.1	功耗测试环境	38
5.7.2	运行模式功耗	38
5.7.3	睡眠模式功耗	40
5.7.4	停机、待机模式功耗	43
5.7.5	备份域功耗	43
5.7.6	外设功耗	43
5.8	低功耗模式唤醒时间	45
5.9	引脚特性	45
5.9.1	I/O 引脚特性	45
5.9.2	NRST 引脚特性	47
5.10	通信外设	47
5.10.1	I2C 外设特性	47
5.10.2	? SPI 外设特性	48
5.11	模拟外设	50
5.11.1	ADC	50
5.11.2	DAC	51
6	封装信息	53
6.1	LQFP144 封装图	53
6.2	LQFP100 封装图	55
6.3	LQFP64 封装图	58
6.4	LQFP48 封装图	60
6.5	QFN48 封装图	63
7	包装信息	65

G	e	el	71	V
SEMIC	OND	исто	R 🕶	,

7.1	带状包装	65
7.2	托盘包装	66
8	订货信息	68
9	常用功能模块命名	69
10	修订历史	70

2 产品信息

APM32E103xCxE产品功能和外设配置请参阅下表。

表格 1 APM32E103xCxE 系列芯片功能和外设

产品							103xCx				
	CC	CE	CC	CE	RC	RE	VC	VE	ZC	ZE	
	QFN48 LQFP48			LQF	P64	LQFI	P100	LQFP144			
内核及	最大工作频率	Arm [®] 32-bit Cortex [®] -M3@120MHz									
_	工作电压					2.0	~3.6V				
F	lash(KB)	256	512	256	512	256	512	256	512	256	512
SI	RAM(KB)	64	128	64	128	64	128	64	128	64	128
存储控制	削器(EMMC)				无			有(⁷ SDR	下支持 AM)	有(SDR/	
	GPIOs		3	37		5	1	8	0	11	2
	USART/UART			3				3/	2		
	SPI/I2S					3	3/2				
通信接口	I2C						2				
	I2C3				1						
	USBD			1							
	CAN			2							
	SDIO			0 1							
	16 位高级			1 2							
	16 位通用					4					
定时器	16 位基本						2				
	系统滴答定时器				1						
	看门狗		2								
5	实时时钟						1				
12 位	单元			2				3	3		
ADC	外部通道		•	10			16			2	1
7.50	内部通道						2				
12位	单元						2				
DAC	通道						2				
-	工作温度						85°C/-40 05°C/-40				

3 引脚信息

3.1 引脚分布

图 1 APM32E103xCxE 系列 LQFP144 引脚分布图

图 2 APM32E103xCxE 系列 LQFP100 引脚分布图

图 3 APM32E103xCxE 系列 LQFP64 引脚分布图

图 4 APM32E103xCxE 系列 LQFP48 引脚分布图

图 5 APM32E103xCxE 系列 QFN48 引脚分布图

3.2 引脚功能描述

表格 2 输出引脚表中使用的图例/缩写

	名称	缩写	定义					
	脚名称		即名称下方的括号中另有规定,否则复位期间和复位后的引脚功能与实际引脚名称相同					
		Р	电源引脚					
引脚类型	脚类型	Ι	仅输入引脚					
		I/O	I/O 引脚					
		5T	5V 容忍 I/O					
		5Tf	5Tf 5V 容忍 I/O,FM+功能					
1.0	O 6++47	STDA	STDA 3.3V 标准、直接连接到 ADC 的 I/O					
1/1	O结构	STD	3.3V 标准 I/O					
		В	专用 Boot0 引脚					
		RST	内置弱上拉电阻的双向复位引脚					
	注意		除非注释另有规定,否则复位期间和复位后,所有 I/O 都设置为浮空输入					
引脚功	默认复用功能		通过外设寄存器直接选择/启用此功能					
能	重定义功能		通过 AFIO 的重映射寄存器选择此功能					

表格 3 APM32E103xCxE 引脚功能描述

名称	类	/	MAN 有田中州	金色以水色	QFN48/L	LQFP6	LQFP10	LQFP14
(复位后的功能)	型	结构	默认复用功能	重定义功能	QFP48	4	0	4
PE2	I/O	5T	TRACECK, SMC_A23	-	-	-	1	1
PE3	I/O	5T	TRACED0, SMC_A19, DMC_DQ4	-	-	-	2	2
PE4	I/O	5T	TRACED1, SMC_A20	-	-	-	3	3
PE5	I/O	5T	TRACED2, SMC_A21, DMC_DQ5	-	-	-	4	4
PE6	I/O	5T	TRACED3, SMC_A22, DMC_DQ6	-	-	-	5	5
V_{BAT}	Р	-	-	-	1	1	6	6
PC13-TAMPER- RTC (PC13)	I/O	STD	TAMPER_RTC	-	2	2	7	7
PC14- OSC32_IN (PC14)	I/O	STD	OSC32_IN	-	3	3	8	8
PC15- OSC32_OUT (PC15)	I/O	STD	OSC32_OUT	-	4	4	9	9
PF0	I/O	5T	SMC_A0, DMC_DQ7	-	-	-	-	10
PF1	I/O	5T	SMC_A1	-	-	-	-	11
PF2	I/O	5T	SMC_A2, DMC_CS	-	-	-	-	12
PF3	I/O	5T	SMC_A3	-	-	-	-	13
PF4	I/O	5T	SMC_A4, DMC_RAS	-	-	-	-	14
PF5	I/O	5T	SMC_A5, DMC_CAS	-	-	-	-	15
Vss_5	Р	-	-	-	-	-	10	16
V _{DD_5}	Р	-	-	-	-	-	11	17
PF6	I/O	-	ADC3_IN4, SMC_NIORD, DMC_WE	-	-	-	-	18

	1	1					SEN	ICONDUCTOR	
名称	类	结构	默认复用功能	重定义功能	QFN48/L	LQFP6	LQFP10	LQFP14	
(复位后的功能)	型				QFP48	4	0	4	
PF7	I/O	-	ADC3_IN5,	-	-	-	-	19	
			SMC_NREG						
PF8	I/O	-	ADC3_IN6,	-	-	-	-	20	
			SMC_NIOWR						
PF9	I/O	-	ADC3_IN7,	-	-	-	-	21	
			SMC_CD ADC3_IN8,						
PF10	I/O	_	SMC_INTR,	_	_	_	_	22	
1110	1/0		DMC_LDQM	_		-	_	22	
OSC_IN	ı	STD	- -	PD0	5	5	12	23	
	-		-						
OSC_OUT	0	STD	-	PD1	6	6	13	24	
NRST	I/O	RST	-	-	7	7	14	25	
PC0	I/O	STDA	ADC123_IN10	-	-	8	15	26	
PC1	I/O	STDA	ADC123_IN11	-	-	9	16	27	
PC2	I/O	STDA	ADC123_IN12	-	-	10	17	28	
PC3	I/O	STDA	ADC123_IN13	-	-	11	18	29	
V _{SSA}	Р	-	-	-	8	12	19	30	
V _{REF} -	Р	-	-	-	-	•	20	31	
V _{REF+}	Р	-	-	-	-	-	21	32	
V_{DDA}	Р	-	-	-	9	13	22	33	
			WKUP,						
				USART2_CTS,					
PA0-WKUP	I/O	STDA	ADC123_IN0,		10	14	22	34	
(PA0)	1/0	STDA TMR2_CH1_ETR,	-	10	14	23	34		
			TMR5_CH1,						
			TMR8_ETR						
			USART2_RTS,						
PA1	I/O	STDA	ADC123_IN1,	-	11	15	24	35	
			TMR5_CH2,						
			TMR2_CH2						
			USART2_TX,						
PA2	I/O	STDA	TMR5_CH3,	-	12	16	25	36	
			ADC123_IN2,						
			TMR2_CH3						
		0==-	USART2_RX,						
PA3	I/O	STDA	TMR5_CH4,	-	13	17	26	37	
			ADC123_IN3,						

名称	类				QFN48/L	LQFP6	LQFP10	LQFP14
(复位后的功能)	型型	结构	默认复用功能	重定义功能	QFP48	4	0	4
			TMR2_CH4					
Vss_4	Р	-	-	-	-	18	27	38
V _{DD_4}	Р	-	-	-	-	19	28	39
_			SPI1_NSS,					
			USART2_CK,					
PA4	I/O	STDA	DAC_OUT1,	-	14	20	29	40
			ADC12_IN4					
			SPI1_SCK,					
PA5	I/O	STDA	DAC_OUT2,	-	15	21	30	41
			ADC12_IN5					
			SPI1_MISO,					
DAG	1/0	STDA	TMR8_BKIN,	TMD4 DKINI	16	22	31	42
PA6	I/O	SIDA	ADC12_IN6	C12_IN6 TMR1_BKIN 16	22	31	42	
			TMR3_CH1					
			SPI1_MOSI,					
PA7	I/O	STDA	TMR8_CH1N,	TMR1_CH1N	17	23	32	43
FA7	1/0	SIDA	ADC12_IN7,	TWIKT_CHTIN	17	25	02	43
			TMR3_CH2					
PC4	I/O	STDA	ADC12_IN14	-	-	24	33	44
PC5	I/O	STDA	ADC12_IN15	-	-	25	34	45
			ADC12_IN8,					
PB0	I/O	STDA	TMR3_CH3,	TMR1_CH2N	18	26	35	46
			TMR8_CH2N					
			ADC12_IN9,					
PB1	I/O	STDA	TMR3_CH4,	TMR1_CH3N	19	27	36	47
			TMR8_CH3N					
PB2	I/O	5T	_	-	20	28	37	48
(PB2,BOOT1)	1/0	01			20	20	01	10
PF11	I/O	5T	SMC_NIOS16,	_	_	_	_	49
	1/0	01	DMC_BA					10
PF12	I/O	5T	SMC_A6,	_	_	_	_	50
2	., 0	0.	DMC_A10					
V _{SS_6}	Р	-	-	-	-	-	-	51
V _{DD_6}	Р	-	-	-	-	-	-	52
PF13	I/O	5T	SMC_A7,					53
FFIS	1/0	31	DMC_A0	-	-	-	-	55
PF14	I/O	5T	SMC_A8,					54
111-7	","	01	DMC_A1					0-

	•	,				,	SEI	MICONDUCTOR
名称	类	结构	料工有田井松	新 台 \(\) 叶 &\	QFN48/L	LQFP6	LQFP10	LQFP14
(复位后的功能)	型	细胞	默认复用功能	重定义功能	QFP48	4	0	4
PF15	I/O	5T	SMC_A9, DMC_A2	-	-	-	-	55
PG0	I/O	5T	SMC_A10, DMC_A3	-	-	-	-	56
PG1	I/O	5T	SMC_A11	-	-	-	-	57
PE7	I/O	5T	SMC_D4	TMR1_ETR	-	-	38	58
PE8	I/O	5T	SMC_D5, DMC_A4	TMR1_CH1N	-	-	39	59
PE9	I/O	5T	SMC_D6, DMC_A5	TMR1_CH1	-	-	40	60
V _{SS_7}	Р	-	-	-	-	-	-	61
$V_{DD_{2}7}$	Р	-	-	-	-	-	-	62
PE10	I/O	5T	SMC_D7, DMC_A6	TMR1_CH2N	-	-	41	63
PE11	I/O	5T	SMC_D8, DMC_A7	TMR1_CH2	-	-	42	64
PE12	I/O	5T	SMC_D9, DMC_A8	TMR1_CH3N	-	-	43	65
PE13	I/O	5T	SMC_D10, DMC_A9	TMR1_CH3	-	-	44	66
PE14	I/O	5T	SMC_D11	TMR1_CH4	-	-	45	67
PE15	I/O	5T	SMC_D12, DMC_CK	TMR1_BKIN	-	-	46	68
PB10	I/O	5T	I2C2_SCL, USART3_TX, DMC_UDQM	TMR2_CH3	21	29	47	69
PB11	I/O	5T	I2C2_SDA, USART3_RX, CKE	TMR2_CH4	22	30	48	70
Vss_1	Р	-	-	-	23	31	49	71
V_{DD_1}	Р	-	-	-	24	32	50	72
PB12	I/O	5T	SPI2_NSS, I2S2_WS, I2C2_SMBAI, USART3_CK, TMR1_BKIN, CAN2_RX	-	25	33	51	73
PB13	I/O	5T	SPI2_SCK,	-	26	34	52	74

		1		1	T			ICONDUCTOR
名称 (复位后的功能)	类型	结构	默认复用功能	重定义功能	QFN48/L QFP48	LQFP6 4	LQFP10 0	LQFP14 4
(2 2)			I2S2_CK,					
			USART3_CTS,					
			TMR1_CH1N,					
			CAN2_TX					
			SPI2_MISO,					
PB14	I/O	5T	TMR1_CH2N,	-	27	35	53	75
			USART3_RTS					
			SPI2_MOSI,					
PB15	I/O	5T	I2S2_SD,	-	28	36	54	76
			TMR1_CH3N					
PD8	I/O	5T	SMC_D13	USART3_TX	-	-	55	77
PD9	I/O	5T	SMC_D14	USART3_RX	-	-	56	78
PD10	I/O	5T	SMC_D15	USART3_CK	-	-	57	79
PD11	I/O	5T	SMC_A16	USART3_CTS	-	-	58	80
PD12	I/O	5T	SMC_A17	TMR4_CH1, USART3_RTS	-	-	59	81
PD13	I/O	5T	SMC_A18	TMR4_CH2	-	-	60	82
V _{SS_8}	Р	-	-	-	-	-	-	83
V _{DD_8}	Р	-	-	-	-	-	-	84
PD14	I/O	5T	SMC_D0	TMR4_CH3	-	-	61	85
PD15	I/O	5T	SMC_D1	TMR4_CH4	-	-	62	86
PG2	I/O	5T	SMC_A12	-	-	-	-	87
PG3	I/O	5T	SMC_A13	-	-	-	-	88
PG4	I/O	5T	SMC_A14	-	-	-	-	89
PG5	I/O	5T	SMC_A15	-	-	-	-	90
PG6	I/O	5T	SMC_INT2	-	-	-	-	91
PG7	I/O	5T	SMC_INT3	-	-	-	-	92
PG8	I/O	5T	DMC_CLK	-	-	-	-	93
Vss_9	Р	-	-	-	-	-	-	94
V _{DD_9}	Р	-	-	-	-	-	-	95
			I2S2_MCK,					
PC6	I/O	5T	TMR8_CH1,	TMR3_CH1	-	37	63	96
			SDIO_D6					
			I2S3_MCK,					
PC7	I/O	5T	TMR8_CH2,	TMR3_CH2	-	38	64	97
			SDIO_D7					

SEMICONDUCTOR									
名称 (复位后的功能)	类型	结构	默认复用功能	重定义功能	QFN48/L QFP48	LQFP6 4	LQFP10 0	LQFP14 4	
PC8	I/O	5T	TMR8_CH3, SDIO_D0	TMR3_CH3	-	39	65	98	
PC9	I/O	5T	TMR8_CH4, SDIO_D1	TMR3_CH4	-	40	66	99	
PA8	I/O	5T	USART1_CK, TMR1_CH1, MCO	-	29	41	67	100	
PA9	I/O	5T	USART1_TX, TMR1_CH2	-	30	42	68	101	
PA10	I/O	5T	USART1_RX, TMR1_CH3	-	31	43	69	102	
PA11	I/O	5T	USART1_CTS, USBDDM, USBD2DM, CAN1_RX, TMR1_CH4	-	32	44	70	103	
PA12	I/O	5T	USART1_RTS, USBDDP USBD2DP, CAN1_TX, TMR1_ETR	-	33	45	71	104	
PA13 (JTMS,SWDIO)	I/O	5T	-	PA13	34	46	72	105	
NC	-	-	未连接	-	-	-	73	106	
Vss_2	Р	-	-	-	35	47	74	107	
V _{DD_2}	Р	-	-	-	36	48	75	108	
PA14 (JTCK,SWCLK)	I/O	5T	-	PA14	37	49	76	109	
PA15 (JTDI)	I/O	5T	SPI3_NSS, I2S3_WS	TMR2_CH1_E TR,PA15, SPI1_NSS	38	50	77	110	
PC10	I/O	5T	UART4_TX, SDIO_D2, DMC_DQ8	USART3_TX	-	51	78	111	
PC11	I/O	5T	UART4_RX, SDIO_D3, DMC_DQ9	USART3_RX	-	52	79	112	
PC12	I/O	5T	UART5_TX, SDIO_CK	USART3_CK	-	53	80	113	

	SEMICONDUCTOR									
名称 (复位后的功能)	类 型	结构	默认复用功能	重定义功能	QFN48/L QFP48	LQFP6 4	LQFP10 0	LQFP14 4		
PD0 (OSC_IN)	I/O	5T	SMC_D2	CAN_RX	-	-	81	114		
PD1 (OSC_OUT)	I/O	5T	SMC_D3	CAN_TX	-	-	82	115		
PD2	I/O	5T	TMR3_ETR, UART5_RX, SDIO_CMD, DMC_DQ10	-	-	54	83	116		
PD3	I/O	5T	SMC_CLK, DMC_DQ11	USART2_CTS	-	-	84	117		
PD4	I/O	5T	SMC_NOE, DMC_DQ12	USART2_RTS	-	-	85	118		
PD5	I/O	5T	SMC_NWE, DMC_DQ13	USART2_TX	-	-	86	119		
Vss_10	Р	-	-	-	-	-	-	120		
V _{DD_10}	Р	-	-	-	-	-	-	121		
PD6	I/O	5T	SMC_NWAIT, DMC_DQ14	USART2_RX	-	-	87	122		
PD7	I/O	5T	SMC_NE1, SMC_NCE2	USART2_CK	-	-	88	123		
PG9	I/O	5T	SMC_NE2, SMC_NCE3, DMC_DQ15	-	-	-	-	124		
PG10	I/O	5T	SMC_NCE4_1, SMC_NE3	-	-	-	-	125		
PG11	I/O	5T	SMC_NCE4_2	-	-	-	-	126		
PG12	I/O	5T	SMC_NE4, DMC_DQ0	-	-	-	-	127		
PG13	I/O	5T	SMC_A24, DMC_DQ1	-	-	-	-	128		
PG14	I/O	5T	SMC_A25, DMC_DQ2	-	-	-	-	129		
Vss_11	Р	-	-	-	-	-	-	130		
V _{DD_11}	Р	-	-	-	-	-	-	131		
PG15	I/O	5T	DMC_DQ3	-	-	-	-	132		
PB3 (JTDO)	I/O	5T	SPI3_SCK, I2S3_CK	PB3, TRACESWO, TMR2_CH2,	39	55	89	133		

	1	1			T	I		IICONDUCTOR -
名称	类	结构	默认复用功能	重定义功能	QFN48/L	LQFP6	LQFP10	LQFP14
(复位后的功能)	型	2014	秋	里足 人切能	QFP48	4	0	4
				SPI1_SCK				
PB4 (NJTRST)	I/O	5T	SPI3_MISO	PB4, TMR3_CH1, SPI1_MISO	40	56	90	134
PB5	I/O	STD	I2C1_SMBAI, SPI3_MOSI, I2S3_SD	TMR3_CH2, SPI1_MOSI, CAN2_RX	41	57	91	135
PB6	I/O	5T	I2C1_SCL, I2C3_SCL, TMR4_CH1	USART1_TX, CAN2_TX	42	58	92	136
PB7	I/O	5T	I2C1_SDA, I2C3_SDA, SMC_NADV, TMR4_CH2	USART1_RX	43	59	93	137
воото	I	В	-	-	44	60	94	138
PB8	I/O	5T	TMR4_CH3, SDIO_D4	I2C1_SCL, I2C3_SCL, CAN1_RX	45	61	95	139
PB9	I/O	5T	TMR4_CH4, SDIO_D5	I2C1_SDA, I2C3_SDA, CAN1_TX	46	62	96	140
PE0	I/O	5T	TMR4_ETR, SMC_NBL0	-	-	-	97	141
PE1	I/O	5T	SMC_NBL1	-	-	-	98	142
Vss_3	Р	-	-	-	47	63	99	143
V_{DD_3}	Р	-	-	-	48	64	100	144

注意:

- (1) 可以使用的功能依选定的型号而定。对于具有较少外设模块的型号,始终是包含较小编号的功能模块。例如,某个型号只有 1 个 SPI 和 2 个 USART 时,它们即是 SPI1 和 USART1 及 USART2。
- (2) PC13, PC14 和 PC15 引脚通过电源开关进行供电,而这个电源开关只能够吸收有限的电流 (3mA)。因此这三个引脚作为输出引脚时有以下限制:在同一时间只有一个引脚能作为输出,作为 输出脚时只能工作在 2MHz 模式下,最大驱动负载为 30pF,并且不能作为电流源(如驱动 LED)。
- (3) 这些引脚在备份区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态由备份区域寄存器控制(这些寄存器不会被主复位系统所复位)。关于如何控制这些 IO 口的具体信息,请参考用户手册的电池备份区域和 BAKPR 寄存器的相关章节。
- (4) 此类复用功能能够由软件配置到其他引脚上(如果相应的封装型号有此引脚),详细信息请参考用户 手册的复用功能 I/O 章节和调试设置章节。
- (5) LQFP64 封装的引脚 5 和引脚 6,在芯片复位后默认配置为 OSC_IN 和 OSC_OUT 功能脚。软件可以 重新设置这两个引脚为 PD0 和 PD1 功能。但对于 LQFP100 封装,由于 PD0 和 PD1 为固有的功能

引脚,因此没有必要再由软件进行重映像设置。更多详细信息请参考参考手册的复用功能 I/O 章节和调试设置章节。在输出模式下,PD0 和 PD1 只能配置为 50MHz 输出模式。

4 功能描述

本章主要介绍 APM32E103xCxE 系列产品系统架构、中断、片上存储器、时钟、电源、外设特点,有关 Arm® Cortex®-M3 内核的相关信息,请参考 Arm® Cortex®-M3 技术参考手册,该手册可以在 ARM 公司的网站下载。

4.1 系统架构

4.1.1 系统框图

图 6 APM32E103xCxE 系统框图

4.1.2 地址映射

图 7 APM32E103xCxE 系列地址映射图

4.1.3 启动配置

启动时,用户可设置 Boot 引脚的高低电平选择以下三种启动模式中的一种:

- 从主存储器启动
- 从 BootLoader 启动
- 从内置 SRAM 启动

若从 BootLoader 启动,用户可使用 USART 接口重新编程用户 Flash。

4.2 内核

APM32E103xCxE 的内核是 Arm® Cortex®-M3,基于该平台开发成本低、功耗低,可提供优良的计算性能和先进的系统中断响应,兼容所有 ARM 工具和软件。

4.3 中断控制器

4.3.1 嵌套的向量式中断控制器(NVIC)

内置 1 个嵌套向量中断控制器(NVIC),NVIC 能够处理多达 65 个可屏蔽中断通道(不包括 16 个 Cortex®-M3 的中断线)和 16 个优先级;可直接向内核传递中断向量入口地址,从而达到低延迟的中断响应处理,能优先处理晚到的较高优先级中断。

4.3.2 外部中断/事件控制器(EINT)

外部中断/事件控制器有 19 个边沿检测器,每个检测器包含边沿检测电路、中断/事件请求产生电路;每个检测器可配置为上升沿触发、下降沿、双边沿触发,也能够单独屏蔽;最多 112 个 GPIO 可连接到 16 个外部中断线。

4.4 存储器

片上存储器包括主存储区、SRAM、信息块,其中信息块包括系统存储区、选项字节,系统存储区存放 BootLoader、96 位唯一设备 ID、主存储区容量信息;系统存储区出厂时已写入程序,不可擦写。

存储器	最大容量	功能
主存储区	512 KB	存放用户程序和数据
SRAM	128 KB	CPU 能以 0 等待周期访问(读/写)
系统存储区	2KB	存放 BootLoader、96 位唯一设备 ID、主存储区容量信息
选项字节	16Bytes	配置主存储区读写保护、MCU工作方式

表格 4 片上存储区

4.4.1 可配置的外部存储控制器(EMMC)

APM32E103xCxE 增强型系列集成了 EMMC 模块,由 SMC (静态存储控制器)、DMC (动态存储控制器) 组成,支持 PC 卡/CF 卡、SRAM、SDRAM、PSRAM、NOR 和 NAND。

功能介绍:

- 三个 EMMC 中断源,经过逻辑或连到 NVIC 单元
- 写 FIFO
- 代码可以在除 NAND 闪存和 PC 卡外的片外存储器运行
- 与 LCD 连接

4.4.2 液晶显示器并行接口(LCD)

EMMC 可以配置成与多数图形 LCD 控制器的无缝连接,它支持 Intel 8080 和 Motorola 6800 的模式,并能够灵活地与特定的 LCD 接口。使用这个 LCD 并行接口可以很方便地构建简易的图形应用环境,或使用专用加速控制器的高性能方案。

4.5 时钟

4.5.1 时钟树

APM32E103xCxE 的时钟树见下图:

图 8 APM32E103xCxE 时钟树

4.5.2 时钟源

时钟源按速度分为高速时钟、低速时钟,高速时钟有、HSICLK、HSECLK,低速时钟分有 LSECLK、LSICLK;按片内/外分为内部时钟、外部时钟,内部时钟有 HSICLK、LSICLK,外部 时钟有 HSECLK、LSECLK,其中 HSICLK 在出厂时会校准精度至±1%。

4.5.3 系统时钟

可选择 HSICLK、PLLCLK、HSECLK 作为系统时钟,PLLCLK 的时钟源可选择 HSICLK、HSECLK 中的一种,配置 PLL 的倍频系数、分频系数可获得所需系统时钟。

产品复位启动时,默认选择 HSICLK 作为系统时钟,之后用户可自行选择上述时钟源中的一种作为系统时钟。当检测到 HSECLK 失效时,系统将自动地切换回 HSICLK,如果使能了中断,软件可以接收到相应的中断。

4.5.4 总线时钟

内置 AHB、APB1、ABP2 总线,AHB 的时钟源是 SYSCLK,APB1、APB2 的时钟源是 HCLK; 配置分频系数可获得所需的时钟,AHB 和高速 APB2 的最高频率为 120MHz,APB1 的最高频率是 60MHz。

4.6 电源与电源管理

4.6.1 电源方案

表格 5 电源方案

名称	电压范围	说明
V_{DD}	2.0∼3.6V	通过 V _{DD} 引脚给 I/O(具体 IO 见引脚分布图)、内部调压器供电。
V _{DDA} /V _{SSA}	2.0~3.6V	为 ADC、DAC、复位模块、RC 振荡器和 PLL 的模拟部分供电;使用 ADC 或 DAC 时,V _{DDA} 不得小于 2.4V,V _{DDA} 和 V _{SSA} 必须分别连接到 V _{DD} 和 V _{SS} 。
Vват	1.8∼3.6V	当关闭 V _{DD} 时,通过内部电源切换器,为 RTC、外部 32KHz 振荡器和后备寄存器供电。

4.6.2 调压器

表格 6 调压器工作模式

名称	说明
主模式 (MR)	用于运行模式
低功耗模式 (LPR)	用于停机模式
掉电模式	用于待机模式,此时调压器高阻输出,内核电路掉电,调压器功耗为零,寄存器和 SRAM
评电铁八	的数据会全部丢失。

注:调压器在复位后始终处于工作状态,在掉电模式下高阻输出。

4.6.3 电源电压监控器

产品内部集成了上电复位(POR)和掉电复位(PDR)电路。这两种电路始终处于工作状态。当

掉电复位电路监测到电源电压低于规定的阈值(VPOR/PDR)时,即使外部复位电路,系统保持复位状态。

该产品内置能够监测 V_{DD} 并将其与 V_{PVD} 阈值比较的可编程电源电压监控器(PVD),当 V_{DD} 在 V_{PVD} 阈值范围外且中断使能时会产生中断,可通过中断服务程序将 MCU 设置成安全状态。

4.7 低功耗模式

APM32E103xCxE 支持睡眠、停机、待机三种低功耗模式,这三种模式在功耗、唤醒时间长短、唤醒方式存在差异,可依据实际应用需求选择低功耗模式。

模式 说明

睡眠模式 内核停止工作,所有外设处于工作状态,可通过中断/事件唤醒

在 SRAM 和寄存器数据不丢失的情况下,停机模式可达到最低的功耗;
内部 1.3V 供电模块的时钟都会停止,HSECLK 晶体谐振器、HSICLK、PLL 被禁止,调压器可配置普通模式或低功耗模式;
任何外部中断线可唤醒 MCU,外部中断线包括 16 个外部中断线之一、PVD 输出、RTC、USBD。该模式功耗最低;
内部调压器被关闭,所有 1.3V 供电模块掉电,HSECLK 晶体谐振器、HSICLK、PLL 时钟关闭,

等机模式 SRAM 和寄存器的数据消失,RTC 区域、后备寄存器内容仍然保留,待机电路仍工作;
NRST 上的外部复位信号、IWDT 复位、WKUP 引脚上的上升边沿或 RTC 的事件都会唤醒 MCU 退出 待机模式。

表格 7 低功耗模式

4.8 **DMA**

内置 2 个 DMA,DMA1 支持 7 路通道,DMA2 支持 5 路通道。每个通道支持多个 DMA 请求,但同一时刻只允许 1 个 DMA 请求进入 DMA 通道。支持 DMA 请求的外设有:ADC、SPI、USART、I2C、TMRx。可配置 4 级 DMA 通道优先级。支持"存储器→存储器、存储器→外设、外设→存储器"数据传输(存储器包括 Flash、SRAM、SDRAM)。

4.9 **GPIO**

GPIO 可以配置为通用输入、通用输出、复用功能、模拟输入输出。通用输入可以配置成浮空输入、上拉输入、下拉输入,通用输出可以配置成推挽输出、开漏输出,复用功能可以用于数字外设,模拟输入输出可以用于模拟外设以及低功耗模式;可以配置使能/禁止上拉/下拉电阻;可以配置 2MHz、10MHz、50MHz 的速度,速度越大,功耗、噪声也会越大。

4.10 通信外设

4.10.1 USART/UART

该芯片内置多达 5 个通用同步/异步收发器,USART1 接口通信速率可达 4.5Mbit/s,其它 USART/UART 的通信速率可达 2.25Mbit/s,所有 USART/UART 可配置波特率、奇偶校验位、停止位、数据位长度,除了 UART5 外所有其它 USART/UART 都可以支持 DMA。各个

USART/UART 功能差异如下表:

USART 模式/功能 **USART1** USART2 **USART3 UART4 UART5** 调制解调器的硬件流控制 同步模式 \checkmark \checkmark $\sqrt{}$ \checkmark 智能卡模式 \checkmark $\sqrt{}$ IrDASIR 编码解码器功能 \checkmark \checkmark $\sqrt{}$ LIN 模式 单线半双工模式 \checkmark \checkmark \checkmark 支持 DMA 功能 1 \checkmark \checkmark $\sqrt{}$

表格 8 USART/UART 功能差异

注: √=支持。

4.10.2 I2C

内置 I2C1/2、I2C3 总线接口,I2C1 与 I2C3 共用硬件接口、寄存器基地址,因此 I2C1 与 I2C3 不能同时使用。

I2C1/2 均可工作于多主模式或从模式,支持 7 位或 10 位寻址,7 位从模式时支持双从地址寻址,通信速率支持标准模式(最高 100kbit/s)、快速模式(最高 400kbit/s);内置了硬件 CRC 发生器/校验器:它们可以使用 DMA 操作并支持 SMBus 总线 2.0 版/PMBus 总线。

I2C3 总线,可以在标准模式、快速模式、高速模式下运行,高速模式和快速模式设备是向下兼容的。

4.10.3 SPI/I2S

内置 3 个 SPI, 在主模式、从模式下均支持全双工、半双工通信,可使用 DMA 控制器,可配置 每帧 4~16 位,通信速率最高 18Mbit/s。

内置 2 个 I2S(分别与 SPI2、SPI3 复用),支持主模式、从模式半双工通信,支持同步传输,可配置 16 位或 32 位分辨率的 16 位、24 位、32 位数据传输,音频采样率可配置的范围是 8kHz~48kHz; 当一个或者两个 I2S 接口配置为主模式,其主时钟可以以 256 倍采样频率输出给外部的 DAC 或解码器(CODEC)。

4.10.4 CAN

内置 2 个 CAN (CAN1 与 CAN2 可同时使用),兼容 2.0A 和 2.0B(主动)规范,通信速率最高可达 1Mbit/s。它可以接收和发送 11 位标识符的标准帧,也可以接收和发送 29 位标识符的扩展帧。具有 3 个发送邮箱和 2 个接收 FIFO, 3 级 14 个可调节的滤波器。

4.10.5 USBD

产品内嵌兼容全速 USBD 设备的模块 USBD, 遵循全速 USBD 设备(12 兆位/秒)标准,端点可由软件配置,具有待机/唤醒功能。USBD 专用的 48MHz 时钟由内部 PLL 直接产生,使用 USBD 功能时,系统时钟只能是 48MHz、72MHz、96MHz、120MHz 中的一个,可分别经过 1 分频、

1.5 分频、2 分频、2.5 分频获得 USBD 所需的 48MHz。

4.10.6 USBD 接口与 CAN 接口的同时使用

本产品 USBD1(2)与 CAN1(2)共用同一个专用的 512 字节的 SRAM 存储器用于数据的发送和接收,因此所以 USBD 和 CAN 可同时使用。具体情况如下:

- USBD1 与 CAN2 可以同时使用
- USBD2 与 CAN1 可以同时使用
- USBD1 与 USBD2 不可以同时使用
- CAN1与CAN2可以同时使用

注意: 虽然实际上有 2 个一模一样的 USBD (引脚也相同),但是它们不能同时使用,所以相当于只有 1 个。用户可以通过重映射(引脚的复用功能)实现"同时使用"。

4.11 模拟外设

4.11.1 ADC

内置 3 个 ADC, 精度为 12 位,每个 ADC 最多有 21 个外部通道和 2 个内部通道,内部通道分别测量温度传感器电压和参考电压。其中 ADC1 和 ADC2 都有 16 个外部通道,ADC3 一般有 8 个外部通道,各通道 A/D 转换模式有单次、连续、扫描或间断,ADC 转换结果可以左对齐或右对齐存储在 16 位数据寄存器中;支持模拟看门狗,支持 DMA。

4.11.1.1 温度传感器

内置 1 个温度传感器(TSensor),内部连接 ADC_IN16 通道,传感器产生的电压随着温度线性变化,可通过 ADC 获取转换的电压值换算成温度。

4.11.1.2 内部参考电压

内置参考电压 VREFINT,内部连接 ADC_IN17 通道,可通过 ADC 获取该 VREFINT; VREFINT 为 ADC 提供稳定的电压输出。

4.11.2 DAC

内置 2 个 12 位 DAC,每个 DAC 对应一个输出通道,可配置为 8 位、12 位模式,支持 DMA 功能,波形产生支持噪声波、三角波,转换方式支持单独或同时转换,触发方式支持外部信号触发、内部定时器更新触发。

4.12 定时器

内置 2 个 16 位高级定时器(TMR1/8)、4 个通用定时器(TMR2/3/4/5)、两个基本定时器(TMR6/7)、1 个独立看门狗定时器、一个窗口看门狗定时器和 1 个系统滴答定时器。

看门狗定时器可以用来检测程序是否正常运行。

系统滴答定时器时内核的外设,具有自动重装载功能,当计数器为 0 时能产生一个可屏蔽系统中断,可以用于实时操作系统和普通延时。

表格 9 高级/通用/基本和系统滴答定时器功能比较

定时器类型系统滴答定时器			基本定时器		通用兒	と时器		高级	定时器
定时器名称	Sys Tick Timer	TMR6	TMR7	TMR2	TMR3	TMR4	TMR5	TMR1	TMR8
计数器分辨率	24 位	16	6位		16	位		16	6位
计数器类型	向下	ŕ	1上	向	上,向下	、向上/	下	向上,向	下,向上/下
预分频系数	-		5 之间的任 整数	1~6	5536 之间	可的任意 [§]	整数	1~65536 之	间的任意整数
产生 DMA 请 求	-	Ī.	以		可	以		П	以
捕获/比较通道	-		-		4	1			4
互补输出	-	沿	と有		没	有		;	有
引脚特性	-		-		共 5 根 中部触发信 通道(非互	言号输入员		共9标 1路外部触发作 1路刹车输。 3对互补注 1路通道(非	言号输入引脚, 入信号引脚,
功能 说明	专用于实时操作系统 具有自动重加载功能 当计数器为0时能 产生一个可屏蔽系统中断 可编程时钟源	信可以作为	DAC 触发 号。 16 位通用 计数器。	在调试 -可 每个定	共同步或 模式下, 结 用于产生 时器都有 求机 处理增量	计数器可。 E PWM 箱 独立的 C 制。	以被冻 ì出 DMA 请	箱配置为 16 位标它与 TMRx 定功的配置为 16 位时,它具有(0~10在调试模式下,冻结,同时 F	时器具有相同的能。 EPWM 发生器可全调制能力的%)。 计数器可以被PWM 输出被禁

表格 10 独立看门狗和窗口看门狗定时器

名称	计数器分辨率	计数器类型	预分频系数	功能说明
				由一个内部独立的 40KHz 的 RC 振荡器提供时钟;因为
				这个 RC 振荡器独立于主时钟,所以它可运行于停机和待
			4 056 之间	机模式。
独立看门狗	12 位	向下	1~256 之间 的任意整数	在发生问题时可复位整个系统。
				可以作为一个自由定时器为应用程序提供超时管理。
				通过选项字节可以配置成是软件或硬件启动看门狗。
				在调试模式下,计数器可以被冻结。
				可以设置成自由运行。
窗口看门狗	7位	向下	-	在发生问题时可复位整个系统。
				由主时钟驱动,具有早期预警中断功能;

名称	计数器分辨率	计数器类型	预分频系数	功能说明		
				在调试模式下,计数器可以被冻结。		

4.13 **RTC**

内置 1 个 RTC,引脚有 LSECLK 信号输入引脚(OSC32_IN、OSC32_OUT)、1 个 TAMP 输入信号检测引脚(TAMP);时钟源可选择外部 32.768kHz 的外部晶振、谐振器或振荡器、LSICLK、HSECLK/128;默认由 V_{DD} 供电,当 V_{DD} 断电时,可自动切换至 V_{BAT} 供电,RTC 配置及时间数据不丢失;产生系统复位、软件复位、电源复位时,RTC 配置及时间数据不丢失;支持闹钟、日历功能。

4.13.1 备份寄存器

内置 84Bytes 备份寄存器,默认由 V_{DD} 供电,当 V_{DD} 断电时,可自动切换至 V_{BAT} 供电,备份寄存器数据不丢失;产生系统复位、软件复位、电源复位时,备份寄存器数据不丢失。

4.14 CRC

内置 1 个 CRC (循环冗余校验) 计算单元,可产生 CRC 码,可操作 8 位、16 位、32 位数据。

4.15 浮点运算单元 (FPU)

产品内置独立的 FPU 浮点运算处理单元,支持 IEEE754 标准,支持单精度浮点运算,支持的算法有: CMP、SUM、SUB、PRDCT、MAC、DIV、INVRGSQT、RGSQT、SUMSQ、DOT、浮点到整数转换和整数到浮点转换。

5 电气特性

5.1 电气特性测试条件

5.1.1 最大值和最小值

除非特别说明,所有产品是在 T_A=25℃下在生产线上进行测试的。其最大和最小值可支持所定最恶劣的环境温度、供电电压和时钟频率。

在每个表格下方的注解中说明是通过综合评估、设计仿真或工艺特性得到的数据,没有在生产线上进行测试;在综合评估的基础上,通过样本测试,取其平均值再加减三倍的标准差(平均 $\pm 3\Sigma$)得到最大和最小数值。

5.1.2 典型值

除非特别说明,典型数据是基于 T_A=25℃、V_{DD}=V_{DDA}=3.3V 测量,这些数据仅用于设计指导。

5.1.3 典型曲线

除非特别说明,典型曲线仅用于设计指导而未经测试。

5.1.4 电源方案

图 9 电源方案 MCU V_{BAT} LSE, RTC, 电源开关 备份寄存器 V_{SS} 输入施密特 触发器、 输出缓冲器 V_{DD} 内核、 Flash、 调压器 SRAM、 I/0逻辑、 输入施密特 触发器、 输出缓冲器 数字外设 V_{DDA} RC振荡器、 模拟外设 V_{SSA} ADC \ DAC V_{REF-}

5.1.5 负载电容

图 10 测量引脚参数时的负载条件

图 11 引脚输入电压测量方案

图 12 功耗测量方案

5.2 通用工作条件下的测试

表格 11 通用工作条件

符号	参数	条件	最小值	最大值	单位
f _{HCLK}	内部 AHB 时钟频率	-	-	120	
f _{PCLK1}	内部 APB1 时钟频率	-	-	60	MHz
f _{PCLK2}	内部 APB2 时钟频率	-	-	120	
V_{DD}	主电源电压	-	2	3.6	V
Von	模拟电源电压 (都未使用 ADC、DAC 时)	必须与 V _{DD} 相	VDD	3.6	V
VDDA	模拟电源电压 (使用 ADC、DAC 时)	司	2.4	3.6	V
V _{BAT}	备份域电源电压	-	1.8	3.6	V
т.	环境温度(温度标号6)	最大功率耗散	-40	85	$^{\circ}$ C
TA	环境温度(温度标号7)	最大功率耗散	-40	105	$^{\circ}$

5.3 绝对最大额定值

器件上的载荷如果超过绝对最大额定值,可能会导致器件永久性的损坏。这里只是给出能承受的最大载荷,不保证在此条件下器件的功能运行正常。

5.3.1 最大温度特性

表格 12 温度特性

符号	描述	数值	单位
Tstg	储存温度范围	-55 ~ +150	$^{\circ}$ C
TJ	最大结温度	150	$^{\circ}\mathbb{C}$

5.3.2 最大额定电压特性

所有的电源(VDD, VDDA)和地(Vss, VssA)引脚必须始终连接到外部限定范围内的供电电源上。

表格 13 最大额定电压特性

符号	描述	最小值	最大值	单位
V _{DD} - V _{SS}	外部主供电电压	-0.3	4.0	
V _{DDA} -V _{SSA}	外部模拟电源电压	-0.3	4.0	
V _{BAT} -V _{SS}	外部备份域电源电压	-0.3	4.0	V
V _{DD} -V _{DDA}	VDD>VDDA 允许的电压差	-	0.3	
VIN	在 5V 容忍的引脚上的输入电压	Vss-0.3	5.5	

符号	描述	最小值	最大值	单位
	在其它引脚上的输入电压	V _{SS} -0.3	V _{DD} + 0.3	
ΔV_{DDx}	不同供电引脚之间的电压差	-	50	mV
V _{SSx} -V _{SS}	不同接地引脚之间的电压差	-	50	IIIV

5.3.3 最大额定电流特性

表格 14 电流特性

符号	描述		单位
I _{VDD}	经过 VDD/VDDA 电源线的总电流(供应电流)(1)		
Ivss	经过 Vss 地线的总电流(流出电流) (1)	150	
I _{IO}	任意 I/O 和控制引脚上的灌电流	25	
	任意 I/O 和控制引脚上的拉电流	-25	mA
linj(Pin) (2)	5T 引脚的注入电流 ⁽³⁾	-5/+0	
	其他引脚的注入电流(4)	±5	
$\Sigma I_{\text{INJ(PIN)}}^{(2)}$	所有 I/O 和控制引脚上的总注入电流 ⁽⁵⁾	±25	

- 1. 所有的电源(VDD, VDDA)和地(Vss, Vssa)必须始终在允许范围内。
- 2. 流出电流会干扰器件的模拟性能。
- 3. I/O 不能进行正注入; VIN<Vss 时, IINJ(PIN)不能超过最大允许输入电压值。
- 4. 如果 Vin 超过最大值,必须在外部限制 IinJ(PiN)不超过其最大值。当 Vin> Vod 时,电流流入引脚;当 Vin<Vss 时,电流流出引脚。
- 5. 当几个 I/O 口同时有注入电流时, Σ In $_{\rm IN}$ (PIN)的最大值为流入电流与流出电流的即时绝对值之和。

5.3.4 静电放电(ESD)

表格 15 ESD 绝对最大额定值

符号	参数	条件	值	单位
VESD(HBM)	静电放电电压(人体模型)	T _A = +25 °C	±5000	\/
VESD(MM)	静电放电电压 (机器模型)	T _A = +25 ℃	±250	V

注: 由第三方测试机构测试,不在生产中测试。

5.3.5 静态栓锁(LU)

表格 16 静态栓锁

符号	参数	条件	类型
LU	静态栓锁类	T _A = +25 ℃/105℃,符合 EIA/JESD78E	Ⅱ 类 A

注: 由第三方测试机构测试,不在生产中测试。

5.4 存储器

5.4.1 Flash 特性

表格 17 Flash 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
torog	16 位编程时间	T _A = -40~105℃	40	46.08 70	70	μs
tprog	10 元/何7王#11#3	V _{DD} =2.4~3.6V	40		μЗ	
terase	页(2KBytes)擦除时间	T _A = -40~105℃	10	_	30	ms
	火(ZNDytes) 综际时间	V _{DD} =2.4~3.6V	10	-	30	1113
tME	整片擦除时间	T _A = -40~105℃	10	_	30	ms
	並 月 1家	V _{DD} =2.4~3.6V	10	'	30	1115
V _{prog}	编程电压	T _A = -40~105°C	2	-	3.6	V

注: 由综合评估得出,不在生产中测试。

5.5 时钟

5.5.1 外部时钟源特性

晶体谐振器产生的高速外部时钟

有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

表格 18 HSECLK4~16MHz 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
fosc_in	振荡器频率	-	4	8	16	MHz
R _F	反馈电阻	-	-	200	-	kΩ
IDD(HSECLK)	HSECLK 电流消耗	V_{DD} =3.3 V , C_L =10pF@8MHz	-	-	0.56	mA
tsu(HSECLK)	启动时间	V _{DD} 是稳定的	-	0.85	-	ms

注: 由综合评估得出,不在生产中测试。

晶体谐振器产生的低速外部时钟

有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

表格 19 LSECLK 振荡器特性(fLSECLK=32.768KHz)

符号	参数	条件	最小值	典型值	最大值	单位
fosc_in	振荡器频率	-	-	32.768	-	KHz
I _{DD(LSECLK)}	LSECLK 电流消耗	-	-	-	0.8	μΑ
tsu(LSECLK)(1)	启动时间	V _{DDIOx} 稳定	-	0.93	-	S

注: 由综合评估得出,不在生产中测试。

(1) t_{SU(LSECLK)}是启动时间,是从软件使能 LSECLK 开始测量,直至得到稳定的 32.768KHz 振荡这段时间;这个数值是使用一个标准的晶体谐振器测量得到的,它可能因晶体制造商的不同而不同。

5.5.2 内部时钟源特性

高速内部(HSICLK) RC 振荡器

表格 20 HSICLK 振荡器特性

	7-1H							
符号	参数	条件		最小值	典型值	最大值	单位	
f _{HSICLK}	频率	-		-	8	-	MHz	
A 11010117 H	HSICLK 振荡器的精度	工厂	V_{DD} =3.3 V , T_A =25 $^{\circ}$ C $^{(1)}$	-0.36	1	0.29	%	
Acc(hsiclk)	nSIGLK 派汤	校准	V _{DD} =2-3.6V,T _A =-40~105℃	-1.40	-	1.15	%	
IDDA(HSICLK)	HSICLK 振荡器功耗	-		-	-	76	μA	
tsu(HSICLK)	HSICLK 振荡器启动时间	V	V _{DD} =3.3V, T _A =-40~105°C		-	3.4	μs	

注: 由综合评估得出,不在生产中测试。

低速内部(LSICLK) RC 振荡器

表格 21 LSICLK 振荡器特性

符号	参数		典型值	最大值	单位
fLSICLK	频率(V _{DD} =2-3.6V,T _A =-40~105℃)		-		KHz
I _{DD(LSICLK)}	LSICLK 振荡器功耗		-	0.56	μΑ
tsu(LSICLK)	LSICLK 振荡器启动时间,(V _{DD} =3.3V,T _A =-40~105℃)	-	-	74.8	μs

注:由综合评估得出,不在生产中测试。

5.5.3 PLL 特性

表格 22 PLL 特性

符号	☆₩			- 単位		
10.4	参数	最小值	典型值	最大值	平位	
4	PLL 输入时钟	1	8	25	MHz	
f _{PLL_IN}	PLL 输入时钟占空比	40	-	60	%	
f _{PLL_OUT}	PLL 倍频输出时钟,(V _{DD} =3.3V,T _A =-40~105℃)	16	-	120	MHz	
tLOCK	PLL 锁相时间	-	-	200	μs	

注: 由综合评估得出,不在生产中测试。

5.6 电源与电源管理

5.6.1 内嵌复位和电源控制模块特性测试

表格 23 内嵌复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单位
V	上电/掉电复位阈值	下降沿	1.84	1.86	1.88	V
Vpor/pdr	工电/挥电发位阈值	上升沿	1.90	1.92	1.93	V
VPDRhyst	PDR 迟滞	-	50.00	54.00	60.00	mV
Trsttempo	复位持续时间	-	0.90	1.39	4.90	ms

注: 由综合评估得出,不在生产中测试。

表格 24 可编程电源电压检测器特性

符号	参数	条件	最小值	典型值	最大值	单 位
		PLS[2:0]=000 (上升沿)	2.17	-	2.20	V
		PLS[2:0]=000 (下降沿)	2.06	-	2.10	V
		PLS[2:0]=000(PVD 迟滞)	100	-	110	mV
		PLS[2:0]=001 (上升沿)	2.27	-	2.30	V
		PLS[2:0]=001 (下降沿)	2.16	-	2.19	V
		PLS[2:0]=001(PVD 迟滞)	110	-	120	mV
		PLS[2:0]=010 (上升沿)	2.37	-	2.40	V
		PLS[2:0]=010 (下降沿)	2.26	-	2.29	V
		PLS[2:0]=010(PVD 迟滞)	100	-	110	mV
		PLS[2:0]=011 (上升沿)	2.46	-	2.50	V
V_{PVD}	可编程电源电压 检测器电平选择	PLS[2:0]=011 (下降沿)	2.36	-	2.39	V
	JE 10.111.17.17.17.17.17.17.17.17.17.17.17.17	PLS[2:0]=011(PVD 迟滞)	100	-	110	mV
		PLS[2:0]=100 (上升沿)	2.57	-	2.60	V
		PLS[2:0]=100 (下降沿)	2.45	-	2.49	V
		PLS[2:0]=100(PVD 迟滞)	110	-	120	mV
		PLS[2:0]=101 (上升沿)	2.66	-	2.70	V
		PLS[2:0]=101 (下降沿)	2.56	-	2.59	V
		PLS[2:0]=101(PVD 迟滞)	100	-	110	mV
		PLS[2:0]=110 (上升沿)	2.76	-	2.80	V
		PLS[2:0]=110 (下降沿)	2.65	-	2.69	V
		PLS[2:0]=110(PVD 迟滞)	110	-	110	mV

符号	参数	条件	最小值	典型值	最大值	单 位
		PLS[2:0]=111 (上升沿)	2.87	-	2.91	V
		PLS[2:0]=111 (下降沿)	2.75	-	2.79	V
		PLS[2:0]=111(PVD 迟滞)	110	-	120	mV

注: 由综合评估得出,不在生产中测试。

5.7 功耗

5.7.1 功耗测试环境

- (1) 执行 Dhrystone2.1,编译环境为 Keil.V5,编译优化等级为 L0 条件下测得的。
- (2) 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上 VDD 或 Vss (无负载)
- (3) 除非特别说明,所有的外设都关闭
- (4) Flash 等待周期的设置与 fhclk 的关系:

0~24MHz: 0 个等待周期 24~48MHz: 1 个等待周期 48~72MHz: 2 个等待周期 72~96MHz: 3 个等待周期 96~120MHz: 4 个等待周期

- (5) 指令预取功能使能(提示:这些的设置必须在时钟设置和总线分频之前进行)
- (6) 当外设开启时: fpclk1=fhclk/2, fpclk2=fhclk

5.7.2 运行模式功耗

表格 25 程序在 Flash 执行,运行模式的功耗

	条件		典型	型值 ⁽¹⁾	最大值 ⁽¹⁾	
参数		fHCLK	T _A =25℃, V _{DD} =3.3V		T _A =105℃, V _{DD} =3.6V	
			Idda(µA)	I _{DD} (mA)	IDDA(µA)	IDD(mA)
		96MHz	218.17	20.90	257.25	22.75
		72MHz	152.43	15.01	183.55	16.77
	HSECLK bypass ⁽²⁾ ,使能所有外设	48MHz	121.33	12.42	148.55	14.07
		36MHz	98.50	9.43	120.42	11.23
		24MHz	121.30	6.93	144.77	8.34
运行模式功耗		16MHz	91.31	4.83	111.79	6.37
		8MHz	17.84	2.78	27.24	4.31
		96MHz	217.99	11.61	253.19	12.85
	UCFCL // hyroco(2)	72MHz	152.30	8.93	179.31	10.31
	HSECLK bypass ⁽²⁾ ,关闭所有外设	48MHz	121.29	7.70	144.81	9.00
		36MHz	98.48	5.94	119.48	7.32

			典型	型值 ⁽¹⁾	最大	值 ⁽¹⁾
参数	条件	fHCLK	T _A =25℃,	V _{DD} =3.3V	TA=105℃, VDD=3.6V	
			Idda(µA)	IDD(mA)	Idda(µA)	IDD(mA)
		24MHz	121.24	4.53	144.81	5.85
		16MHz	91.24	3.26	111.79	4.56
		8MHz	17.84	1.98	26.08	3.30
		64MHz	237.41	15.13	274.23	16.00
	HSICLK ⁽²⁾ ,使能所有外设	48MHz	206.64	11.06	241.56	12.85
		32MHz	184.46	8.96	218.40	10.49
	TSICENT,使配例有外以	24MHz	163.22	6.47	197.36	7.99
		16MHz	177.22	4.53	210.87	6.22
		8MHz	102.67	2.43	131.44	3.98
		64MHz	237.26	8.30	272.66	9.93
		48MHz	206.69	6.48	240.48	8.09
	HSICLK ⁽²⁾ ,关闭所有外设	32MHz	184.47	5.51	217.58	6.78
	HSICLK ¹¹ ,大闭所有外设	24MHz	163.15	4.10	196.21	5.33
		16MHz	177.19	2.91	210.01	4.56
		8MHz	102.67	1.61	131.14	3.46

- (1) 由综合评估得出,不在生产中测试。
- (2) 外部时钟为 8MHz, 当 fhclk>8MHz 时, 开启 PLL; 否则关闭 PLL。

表格 26 程序在 RAM 中执行,运行模式的功耗

			典型值 ⁽¹⁾		最大值 ⁽¹⁾	
参数	条件	fHCLK	T _A =25°C, V _{DD} =3.3V		$T_{A}=105^{\circ}C$, $V_{DD}=3.6V$	
			I _{DDA} (µA)	(MA)	IDDA(µA)	IDD(mA)
		96MHz	218.11	18.82	254.07	19.78
	HSECLK bypass ⁽²⁾ ,使能所有外设	72MHz	168.27	14.51	198.01	15.31
		48MHz	121.38	10.23	145.28	11.22
		36MHz	98.49	7.91	119.64	8.85
运行模式功耗		24MHz	121.37	5.75	145.12	6.69
		16MHz	91.32	4.23	111.49	5.54
HSECLK bypass ⁽²⁾ ,关闭所有外设		8MHz	17.85	2.22	26.07	3.37
	96MHz	218.15	12.98	253.06	13.84	
	HSEULK bypass ⁽⁻⁾ ,天闭所有外设	72MHz	168.21	10.19	197.29	10.91

			典型	型值 ⁽¹⁾	最大	值 ⁽¹⁾
参数	条件	fHCLK	T A =25℃,	VDD=3.3V	Ta=105°C, VDD=3.6°	
			Idda(µA)	IDD(mA)	IDDA(µA)	IDD(mA)
		48MHz	121.37	7.19	144.47	8.23
		36MHz	98.45	5.76	119.07	6.70
		24MHz	121.38	4.27	144.40	5.33
		16MHz	91.31	3.28	111.54	4.37
		8MHz	17.84	2.23	25.98	3.37
		64MHz	237.31	13.98	272.39	15.31
		48MHz	206.81	10.51	239.84	12.06
	HSICLK ⁽²⁾ ,使能所有外设	32MHz	184.48	8.14	216.88	9.59
	HSICLK中,便能所有外页	24MHz	163.22	5.41	195.99	6.97
		16MHz	177.24	3.61	209.78	5.25
		8MHz	102.72	1.89	130.84	3.45
		64MHz	237.31	7.79	272.15	9.41
		48MHz	206.70	5.97	239.51	7.38
	1101011/(2) 子语形专用25	32MHz	184.51	4.29	216.97	6.33
	HSICLK ⁽²⁾ ,关闭所有外设	24MHz	163.17	2.96	196.29	4.53
		16MHz	177.19	2.06	209.49	3.79
		8MHz	102.68	1.10	130.88	2.92

- (1) 由综合评估得出,不在生产中测试。
- (2) 外部时钟为 8MHz, 当 fHCLK>8MHz 时, 开启 PLL; 否则关闭 PLL。

5.7.3 睡眠模式功耗

表格 27 程序在 Flash 中执行,睡眠模式下的功耗

	条件		典型值 ⁽¹⁾		最大值 ⁽¹⁾	
参数		fHCLK	T _A =25°C, V _{DD} =3.3V		$T_{A}=105^{\circ}C$, $V_{DD}=3.6V$	
			Idda(µA)	(MA)	Idda(µA)	IDD(mA)
	96 MHz	218.32	14.26	254.68	15.10	
	HSECLK bypass ⁽²⁾ ,使能所有外设,	72MHz	152.47	9.76	180.70	10.58
睡眠模式功耗		48MHz	121.43	7.47	145.37	8.33
睡眠快八切杙		36MHz	98.48	5.80	119.78	6.79
		24MHz	121.32	4.11	145.35	5.03
		16MHz	91.28	2.94	112.16	3.97

			典型	型值 ⁽¹⁾	最大	值 ⁽¹⁾
参数	条件	fHCLK	T A =25℃,	VDD=3.3V	T a =105℃,	VDD=3.6V
			IDDA(µA)	IDD(mA)	IDDA(µA)	IDD(mA)
		8MHz	17.84	1.70	25.92	2.69
		96 MHz	217.98	3.23	254.24	4.08
		72MHz	152.21	2.35	180.39	3.29
		48MHz	121.22	1.92	146.02	2.87
	HSECLK bypass ⁽²⁾ ,关闭所有外设	36MHz	98.38	1.59	119.88	2.58
		24MHz	121.23	1.27	145.50	2.28
		16MHz	91.20	1.05	112.22	2.04
		8MHz	17.81	0.78	25.89	1.75
		64MHz	237.16	9.60	265.57	9.76
		48MHz	206.68	6.92	232.79	7.61
	HSICLK ⁽²⁾ ,使能所有外设	32MHz	184.45	5.30	209.44	5.83
	HSICLK中,便能別有外以	24MHz	163.15	3.65	187.49	4.21
		16MHz	177.10	2.53	201.95	3.10
		8MHz	102.66	1.32	122.81	1.93
		64MHz	237.18	1.90	266.22	2.52
		48MHz	206.62	1.48	233.01	2.10
	UCICL V(2) - 子田庇左周 25	32MHz	184.34	1.17	209.43	1.79
	HSICLK ⁽²⁾ ,关闭所有外设	24MHz	163.05	0.84	187.62	1.50
		16MHz	177.13	0.62	202.01	1.27
		8MHz	102.67	0.35	122.81	1.02

- (1) 由综合评估得出,不在生产中测试。
- (2) 外部时钟为 8MHz, 当 f_{HCLK}>8MHz 时, 开启 PLL; 否则关闭 PLL

表格 28 程序在 RAM 中执行,睡眠模式下的功耗

			典型	d值 ⁽¹⁾	最大值(1)		
参数	条件	fHCLK	Ta=25°C, VDD=3.3V		Ta=105°C, Vdd=3.6V		
			Idda(µA)	(MA)	Idda(µA)	IDD(mA)	
		96MHz	215.97	14.06	250.92	15.59	
睡吧福子 中转	HSECLK bypass ⁽²⁾ ,使能所有外设	72MHz	165.85	10.84	196.02	10.74	
睡眠模式功耗	HSECLK bypass → 、便能別有外収	48MHz	119.17	7.44	142.13	7.71	
		36MHz	96.50	5.77	117.08	5.84	

			典型	型值 ⁽¹⁾	最大	值 ⁽¹⁾
参数	条件	fHCLK	T A =25℃,	VDD=3.3V	T a =105℃,	VDD=3.6V
			Idda(µA)	IDD(mA)	IDDA(µA)	IDD(mA)
		24MHz	119.21	3.93	136.05	4.35
		16MHz	89.36	2.77	109.38	3.14
		8MHz	17.73	1.6	23.65	2.01
		96MHz	215.53	3.12	248.57	3.64
		72MHz	165.75	2.44	192.92	3.14
		48MHz	118.99	1.80	141.57	2.24
	HSECLK bypass ⁽²⁾ ,关闭所有外设	36MHz	96.46	1.44	117.39	1.94
		24MHz	119.11	1.15	142.46	1.63
		16MHz	89.21	0.94	109.67	1.36
		8MHz	17.71	0.66	23.00	1.14
		64MHz	237.15	9.31	265.75	9.74
		48MHz	206.68	7.13	232.94	7.56
	HSICLK ⁽²⁾ ,使能所有外设	36MHz	184.39	5.44	209.27	5.87
	TSIOLK 7,使能例有外以	24MHz	163.18	3.51	187.51	4.27
		16MHz	177.19	2.45	201.95	3.12
		8MHz	102.68	1.28	122.82	1.91
		64MHz	237.19	1.93	266.13	2.54
		48MHz	206.65	1.47	233.12	2.10
	HSICLK ⁽²⁾ ,关闭所有外设	36MHz	184.36	1.13	209.35	1.80
	「OIOLK、、,大利別有外収	24MHz	163.10	0.82	187.67	1.50
		16MHz	177.13	0.62	202.00	1.29
		8MHz	102.60	0.36	122.86	1.03

⁽¹⁾ 由综合评估得出,不在生产中测试。

⁽²⁾ 外部时钟为 8MHz, 当 fhcLk>8MHz 时, 开启 PLL; 否则关闭 PLL

5.7.4 停机、待机模式功耗

表格 29 停机、待机模式功耗

4			典型值 ⁽¹⁾ ,(Ta=25℃)						最大值 ⁽¹⁾ , (V _{DD} =3.6V)	
参数	条件	V _{DD} =2.4V		VDD=3.3V		VDD=3.6V		T _A =105°C		位
		IDDA	ldd	ldda	ldd	IDDA	ldd	IDDA	lDD	
	调压器处于运行模式,低速和高速内									
停机	部 RC 振荡器和高速振荡器处于关闭	3.658	43.12	4.308	42.15	4.719	43.18	7.421	614.478	
模式	状态(没有独立看门狗)									
功耗	调压器处于低功耗模式,低速和高速									
	内部 RC 振荡器和高速振荡器处于关	3.667	36.77	4.324	36.69	4.695	37.13	7.039	552.132	
	闭状态(没有独立看门狗)									
	低速内部 RC 振荡器和独立看门狗处	2.911	0.47	3.85	1.01	4.342	1.31	5.937	5.468	μΑ
	于开启状态	2.311	0.47	3.03	1.01	4.542	1.51	3.331	3.400	
待机	低速内部 RC 振荡器处于开启状态,独	2.919	0.27	3.846	0.75	4.336	1.15	5.918	4.587	
模式	立看门狗处于关闭状态	2.313	0.27	3.040	0.73	4.550	1.15	5.910	4.507	
功耗	低速内部 RC 振荡器和独立看门狗处									
	于关闭状态,低速振荡器和 RTC 处于	2.346	0.05	2.964	0.17	3.343	0.40	4.985	4.172	
	关闭状态									

注:(1)由综合评估得出,不在生产中测试。

5.7.5 备份域功耗

表格 30 备份域功耗

符号	条件	典型值 ⁽¹⁾ ,TA =25℃			最大值 ⁽¹⁾ , V BAT =3.6V			单
10 2	付号 条件 ————————————————————————————————————		VBAT=2.4V	VBAT=3.3V	T _A =25°C	T _A =85℃	T _A =105℃	位
IDD_VB	低速振荡器和 RTC 处于	1.106	1.268	1.704	1.956	2.568	3.256	μA
AT	开启状态	1.100	1.200	1.704	1.550	2.500	3.230	μΛ

注:(1)由综合评估得出,不在生产中测试。

5.7.6 外设功耗

采用 HSECLK Bypass 1M 作为时钟源,fpcLκ=fhcLκ=1M。

外设功耗=使能该外设时钟的电流-禁止该外设的时钟的电流。

表格 31 外设功耗

参数	外设	典型值 ⁽¹⁾ TA=25℃,VDD=3.3V	単位
АНВ	DMA1	0.3	
	DMA2	0.34	mΛ
	EMMC	0.31	mA
	CRC	0.14	

	_		SEMICONDUCTOR
参数	外设	典型值 ⁽¹⁾ Ta=25℃,Vdd=3.3V	单位
	SDIO	0.52	
	TMR2	0.25	
	TMR3	0.24	
	TMR4	0.4	
	TMR5	0.36	
	TMR6	0.06	
	TMR7	0.08	
	WWDT	0.04	
	IWDT	0.07	
	SPI2/I2S2	0.2	
	SPI3/I2S3	0.29	
	USART2	0.36	
APB1	USART3	0.33	
	UART4	0.16	
	UART5	0.2	
	I2C1	0.22	
	12C2	0.18	
	USBD	0.42	
	CAN1	0.25	
	CAN2	0.25	
	BAKPR	0.02	
	PMU	0.02	
	DAC	0.16	
	GPIOA	0.13	
	GPIOB	0.13	
	GPIOC	0.07	
	GPIOD	0.05	
	GPIOE	0.06	
APB2	GPIOF	0.16	
	GPIOG	0.16	
	ADC1	0.39	
	ADC2	0.28	
	ADC3	0.28	

参数	外设	典型值 ⁽¹⁾ TA=25℃,VDD=3.3V	单位
	TMR1	0.4	
	TMR8	0.4	
	SPI1	0.13	
	USART1	0.2	

注:由综合评估得出,不在生产中测试。

5.8 低功耗模式唤醒时间

低功耗唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令的时间,其中 VDD=VDDA。

表格 32 低功耗唤醒时间

符号	参数	条件	最小值	典型		5℃)	最大值	单位
付亏	罗奴	宋件	取小但	2V	3.3V	3.6V	取八直	半世
twusleep	从睡眠模式唤醒	-	0.52	0.61	0.60	0.57	0.65	
twustop	从停机模式唤醒	调压器处于运行模式	1.83	2.24	1.91	1.86	2.26	
		调压器处于低功耗模式	2.66	4.18	2.95	2.82	4.61	μs
twustdby	从待机模式唤醒	-	59.56	76.40	63.74	61.29	84.56	

注: 由综合评估得出,不在生产中测试。

5.9 引脚特性

5.9.1 I/O 引脚特性

表格 33 直流特性(测试条件 VDD=2.7~3.6V,TA=-40~105℃)

符号	参数	条件	最小值	典型值	最大值	单位	
VIL	输入低电平电压	CMOS 港口	-0.5	-	0.35V _{DD}		
VIH	输入高电平电压	CMOS 端口	0.65V _{DD}	-	V _{DD} +0.5		
VIL	输入低电平电压		-0.5	-	0.8	V	
\/	标准 I/O 引脚,输入高电平电压	TTL 端口	2	-	V _{DD} +0.5		
VIH	5V 容忍 I/O 引脚,输入高电平电压		2		5.5		
1/	标准 I/O 脚施密特触发器电压迟滞		200	-	-	mV	
V _{hys}	5V 容忍 I/O 脚施密特触发器电压迟滞	-	5%V _{DD}	-	-	mV	
I.	输入漏电流	V _{SS} ≤V _{IN} ≤V _{DD} 标准 I/O 端口	-	-	±1		
l _{lkg}	湘八 旃电流	V _{IN} =5V, 5V 容忍端口	-	-	3	μА	
R _{PU}	弱上拉等效电阻	V _{IN} =V _{SS}	30	40	50	kΩ	

符号	参数	条件	最小值	典型值	最大值	单位
R _{PD}	弱下拉等效电阻	V _{IN} =V _{DD}	30	40	50	kΩ

注: 由综合评估得出,不在生产中测试。

表格 34 交流特性

MODEy[1:0] 的配置	符号	参数	条件	最小值	最大值	単位
10	fmax(IO)out	最大频率	C _L =50 pF, V _{DD} =2~3.6V	-	2	MHz
(2MHz)	t _{f(IO)out}	输出高至低电平的下降时间	C _L =50 pF,	-	125	
	tr(IO)out	输出低至高电平的上升时间	V _{DD} =2~3.6V	-	125	ns
01	fmax(IO)out	最大频率	C _L =50 pF, V _{DD} =2~3.6V	-	10	MHz
(10MHz)	tf(IO)out	输出高至低电平的下降时间	C _L =50 pF,	-	25	20
	t _{r(IO)out}	输出低至高电平的上升时间	V _{DD} =2~3.6V	-	25	ns
11 (50MHz)	fmax(IO)out	最大频率	C _L =30 pF, V _{DD} =2.7~3.6V	-	50	MHz
	tf(IO)out	输出高至低电平的下降时间	C _L =30 pF,	-	5	20
	t _{r(IO)out}	输出低至高电平的上升时间	V _{DD} =2.7~3.6V	-	5	ns

- 注: (1) I/O 端口的速度可以通过 MODEy 配置。
 - (2) 由综合评估得出,不在生产中测试。

图 13 输入输出交流特性定义

注: 由综合评估得出,不在生产中测试。

表格 35 输出驱动电流特性 (测试条件 VDD=2.7~3.6V, TA=-40~105℃)

符号	参数	条件	最小值	最大值	单位
Vol	输出低电平,当8个引脚同时吸收电流	lio = +8mA	-	0.49	\/
Vон	输出高电平,当8个引脚同时输出电流	2.7V <vdd<3.6v< td=""><td>V_{DD}-0.4</td><td>-</td><td>V</td></vdd<3.6v<>	V _{DD} -0.4	-	V
Vol	输出低电平,当8个引脚同时吸收电流	lio = +20mA	-	1.50	V

符号	参数	条件	最小值	最大值	单位
Vон	输出高电平,当8个引脚同时输出电流	2.7V <vdd<3.6v< th=""><th>V_{DD}-1.2</th><th>-</th><th></th></vdd<3.6v<>	V _{DD} -1.2	-	

5.9.2 NRST 引脚特性

NRST 引脚输入驱动采用 CMOS 工艺,它连接了一个永久性上拉电阻 Rpu。

表格 36 NRST 引脚特性(测试条件 VDD=3.3V, TA=-40~105℃)

符号	参数	条件	最小值	典型值	最大值	单位
VIL(NRST)	NRST 输入低电平电压	-	-0.5	-	0.8	V
VIH(NRST)	NRST 输入高电平电压	-	2	-	V _{DD} +0.5	V
Vhys(NRST)	NRST 施密特触发器电压迟滞	-	-	200	-	mV
Rpu	弱上拉等效电阻	VIN = VSS	30	40	50	kΩ

注:由综合评估得出,不在生产中测试。

5.10 通信外设

5.10.1 I2C 外设特性

为达到标准模式 I2C 的最大频率, f_{PCLK1} 必须大于 2MHz。为达到快速模式 I2C 的最大频率, f_{PCLK1} 必须大于 4MHz。

表格 37 I2C 接口特性(TA=25℃, VDD=3.3V)

符号	↔ ₩-	标准	12C	快速	12C	单位
付き	参数	最小值	最大值	最小值	最大值	1 平位
tw(SCLL)	SCL 时钟低时间	4.7	-	1.3	-	
tw(SCLH)	SCL 时钟高时间	4.0	-	0.6	-	μs
tsu(SDA)	SDA 建立时间	250	-	100	-	
th(SDA)	SDA 数据保持时间	-	3450	-	900	no
tr(SDA)/tr(SCL)	SDA 和 SCL 上升时间	-	1000	-	300	ns
tf(SDA)/tf(SCL)	SDA 和 SCL 下降时间	-	300	-	300	
th(STA)	开始条件保持时间	4.0	-	0.6	-	
t _{su(STA)}	重复的开始条件建立时间	4.7	-	0.6	-	
tsu(STO)	停止条件建立时间	4.0	-	0.6	-	μs
tw(STO:STA)	停止条件至开始条件的时间(总线空闲)	4.7	-	1.3	-	

注: 由综合评估得出,不在生产中测试。

图 14 总线交流波形和测量电路

注:测量点设置于 CMOS 电平: 0.3Vpp 和 0.7Vpp。

5.10.2 SPI 外设特性

表格 38 SPI 特性(T_A=25℃,V_{DD}=3.3V)

符号	参数	条件	最小值	最大值	单位
fsck	SPI 时钟频率	主模式	-	18	MHz
1/tc(SCK)	SFI 的 种频率	从模式	-	18	IVIITZ
tr(SCK)	SPI 时钟上升和下降时间	负载电容: C = 30pF	-	8	ns
tsu(NSS)	NSS 建立时间	从模式	107.31	-	ns
th(NSS)	NSS 保持时间	从模式	82.88	-	ns
tw(SCKH)	SCK 高和低的时间	主模式,f _{PCLK} = 36MHz, 预分频系数=4	50	60	ns
t _{su(MI)}	数据输入建立时间	主模式	15.05	-	ns
tsu(SI)	数¼M/从建立时间	从模式	22.20	-	115
th(MI)	数据输入保持时间	主模式	35.03	-	20
t _{h(SI)}	数¼M// 体持时间	从模式	27.41	-	ns
ta(SO)	数据输出访问时间	从模式,f _{PCLK} = 20MHz	5.30	8.43	ns
t _{dis(SO)}	数据输出禁止时间	从模式	11.41	14.07	ns
tv(SO)	数据输出有效时间	从模式(使能边沿之后)	-	25	ns
t _v (MO)	数据输出有效时间	主模式 (使能边沿之后)	-	5	ns
th(SO)	数据输出保持时间	从模式 (使能边沿之后)	15	-	ns

符号	参数	条件	最小值	最大值	单位
t _{h(MO)}		主模式 (使能边沿之后)	2	-	

注:由综合评估得出,不在生产中测试。

图 15 SPI 时序图—从模式和 CPHA=0

图 16 SPI 时序图—从模式和 CPHA=1

注: 测量点设置于 CMOS 电平: 0.3VDD 和 0.7VDD。

图 17 SPI 时序图—主模式

注:测量点设置于 CMOS 电平: 0.3VDD 和 0.7VDD。

5.11 模拟外设

5.11.1 ADC

测试参数说明:

- 采样率: ADC 每秒进行的模拟量转数字量的次数,
- 采样率=ADC 时钟 / (采样周期数 + 转换周期数)

5.11.1.1 12 位 ADC 特性

表格 39 12 位 ADC 特性

符号	参数	条件	最小值	典型值	最大值	単位
V_{DDA}	供电电压	-	2.4	-	3.6	V
I _{DDA}	ADC 功耗	V _{DDA} =3.3V,f _{ADC} =14MHz, 采样时间=1.5 个 f _{ADC}	-	1	-	mA
fadc	ADC 频率	-	0.6	-	14	MHz
C _{ADC}	内部采样和保持电容	-	-	8	-	pF
R _{ADC}	采样电阻	-	-	-	1000	Ω
ts	采样时间	f _{ADC} =14MHz	0.107	-	17.1	μs
T _{CONV}	采样和转换时间	fadc=14MHz,12-bit 转换	1	-	18	μs

表格 40 12 位 ADC 精度

符号	参数	条件	典型值	最大值	单位
	ADC1 综合误差		-	-2.10	
ET	ADC2 综合误差		-	2.54	
	ADC3 综合误差		-	-2.26	
	ADC1 偏移误差		-	1.24	
EO	ADC2 偏移误差		-	1.07	
	ADC3 偏移误差	f COMUL-	-	1.00	
	ADC1 增益误差	f _{PCLK} =56MHz,	-	-0.15	
EG	ADC2 增益误差	f _{ADC} =14MHz,	-	0.37	LSB
	ADC3 增益误差	V _{DDA} =2.4V-3.6V T _A =-40°C~105°C	-	-0.78	
	ADC1 微分线性误差	TA=-40 C~103 C	-	2.03	
ED	ADC2 微分线性误差		-	1.74	
	ADC3 微分线性误差		-	1.63	
	ADC1 积分线性误差		-	1.51	
EL	ADC2 积分线性误差		-	1.52	
	ADC3 积分线性误差		-	1.75	

注: 由综合评估得出,不在生产中测试。

5.11.1.2 内置参考电压特性测试

表格 41 内置参考电压特性

符号	参数	条件	最小值	典型值	最大值	单位
VREFINT	内置参照电压	-40°C < TA < +105°C V _{DD} = 2-3.6 V	1.1882	1.1947	1.2002	V
T _{S_vrefint}	当读出内部参照电压时,ADC 的 采样时间	-	-	5.1	17.1	μs
V _{RERINT}	内置参考电压扩展到温度范围	V _{DD} =3V ±10mV	-	-	18	mV
T _{coeff}	温度系数	-	-	-	104	ppm/°C

注: 由综合评估得出,不在生产中测试。

5.11.2 DAC

测试参数说明:

- DNL 微分非线性误差:两个连续代码之间的偏差-1LSB
- INL 积分非线性误差:代码 i 处测得的值与代码 0 及最后一个代码 4095 之间连线上代码 i 处的值之间的差

表格 42 DAC 特性

		- 171				
符号	参数	条件	最小值	典型值	最大值	単位
V_{DDA}	模拟电源电压	-	2.4	-	3.6	V
RLOAD	阻性负载	缓冲器打开,负载与 Vssa 连接	5	-	-	kΩ

					SEMICONDUCTO	··
符号	参数	条件	最小值	典型值	最大值	单位
Ro	输出阻抗	缓冲器关闭,DAC_OUT 和 Vss 之间的 阻性负载是 1.5MΩ	-	-	15	kΩ
CLOAD 容性负载		缓冲器打开,在 DAC_OUT 引脚处的最大容性负载	-	-	50	pF
DAC_OUT min	带缓冲器低 DAC_OUT 电压			-	1.94	V
DAC_OUT max	更高的带缓冲器的输 出电压	(0xF1B)和 V _{REF+} = 2.4 V 处的 (0x154)和(0xEAC)	-10.84	-	4.66	V
DNL	微分非线性误差	配置 12 位 DAC	-1.03	-	0.79	LSB
INL	积分非线性误差	配置 12 位 DAC	-3.86	-	2.46	LSB
Offset 偏移误差		V _{REF+} =3.6V,配置 12 位 DAC	-2.57	-	9.49	LSB
Gain error 增益误差 配置 12 位		配置 12 位 DAC	-0.0013	-	0.0045	%

注: 由综合评估得出,不在生产中测试。

6 封装信息

6.1 **LQFP144** 封装图

图 18 LQFP144 封装图

- (1) 图不是按照比例绘制。
- (2) 所有的引脚都应该焊接在 PCB 上。

表格 43 LQFP144 封装数据

		DIMENSION LIS	ST (FOOTPRINT: 2.00)
S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX. 1.600	OVERALL HEIGHT
2	A2	1.400±0.050	PKG THICKNESS
3	D	22.000±0.200	LEAD TIP TO TIP
4	D1	20.000±0.100	PKG LENGTH
5	Е	22.000±0.200	LEAD TIP TO TIP
6	E1	20.000±0.100	PKG WDTH
7	L	0.600±0.150	FOOT LENGTH
8	L1	1.000 REF	LEAD LENGTH
9	е	0.500 BASE	LEAD PITCH
10	H (REF)	(17.50)	CUM LEAD PITCH
11	b	0.22±0.050	LEAD WIDTH

(1) 尺寸以毫米表示。

图 19 LQFP144-144 引脚, 20 x 20 mm 焊接 Layout 建议

1. 尺寸以毫米表示。

图 20 LQFP144 -144 引脚, 20 x20 mm 标识图

6.2 LQFP100 封装图

图 21 LQFP100 封装图

- (1) 图不是按照比例绘制。
- (2) 所有的引脚都应该焊接在 PCB 上。

表格 44 LQFP100 封装数据

	DIMENSION LIST (FOOTPRINT: 2.00)						
S/N	SYM	DIMENDIONS	REMARKS				
1	А	MAX. 1.600	OVERALL HEIGHT				
2	A2	1.400±0.050	PKG THICKNESS				
3	D	16.000±0.200	LEAD TIP TO TIP				
4	D1	14.000±0.100	PKG LENGTH				
5	Е	16.000±0.200	LEAD TIP TO TIP				
6	E1	14.000±0.100	PKG WDTH				
7	L	0.600±0.150	FOOT LENGTH				
8	L1	1.000 REF	LEAD LENGTH				
9	е	0.500 BASE	LEAD PITCH				
10	H (REF)	(12.00)	CUM LEAD PITCH				
11	b	0.22±0.050	LEAD WIDTH				

(1) 尺寸以毫米表示。

图 22 LQFP100 - 100 引脚, 14 x 14mm 焊接 Layout 建议

(1) 尺寸以毫米表示。

6.3 **LQFP64** 封装图

图 24 LQFP64 封装图

- (1) 图不是按照比例绘制。
- (2) 所有的引脚都应该焊接在 PCB 上。

表格 45 LQFP64 封装数据

	DIMENSION LIST (FOOTPRINT: 2.00)					
S/N	SYM	DIMENDIONS	REMARKS			
1	А	MAX. 1.600	OVERALL HEIGHT			
2	A2	1.400±0.050	PKG THICKNESS			
3	D	12.000±0.200	LEAD TIP TO TIP			
4	D1	10.000±0.100	PKG LENGTH			
5	E	12.000±0.200	LEAD TIP TO TIP			
6	E1	10.000±0.100	PKG WDTH			
7	L	0.600±0.150	FOOT LENGTH			
8	L1	1.000 REF	LEAD LENGTH			
9	е	0.500 BASE	LEAD PITCH			
10	H (REF)	(7.500)	CUM LEAD PITCH			
11	b	0.22±0.050	LEAD WIDTH			

(1) 尺寸以毫米表示。

图 25 LQFP64 - 64 引脚, 10 x 10mm 焊接 Layout 建议

(1) 尺寸以毫米表示。

图 26 LQFP64 - 64 引脚, 10 x 10mm 封装标识

6.4 **LQFP48** 封装图

图 27 LQFP48 封装图

- (1) 图不是按照比例绘制
- (2) 所有的引脚都应该焊接在 PCB 上

表格 46 LQFP48 封装数据

	DIMENSION LIST(FOOTPRINT: 2.00)						
S/N	SYM	DIMENDIONS	REMARKS				
1	А	MAX. 1.60	OVERALL HEIGHT				
2	A1	0.1±0.05	STANDOFF				
3	A2	1.40±0.05	PKG THICKNESS				
4	D	9.00±0.20	LEAD TIP TO TIP				
5	D1	7.00±0.10	PKG LENGTH				
6	Е	9.00±0.20	LEAD TIP TO TIP				
7	E1	7.00±0.10	PKG WDTH				
8	L	0.60±0.15	FOOT LENGTH				
9	L1	1.00 REF	LEAD LENGTH				
10	Т	0.15	LEAD THICKNESS				
11	T1	0.127±0.03	LEAD BASE METAL THICKNESS				
12	а	0°~7°	FOOT ANGLE				
13	b	0.22±0.02	LEAD WIDTH				
14	b1	0.20±0.03	LEAD BASE METAL WIDTH				
15	е	0.50 BASE	LEAD PITCH				
16	H(REF.)	(5.50)	CUM. LEAD PITCH				
17	aaa	0.2	PROFILE OF LEAD TIPS				
18	bbb	0.2	PROFILE OF MOLD SURFACE				
19	ccc	0.08	FOOT COPLANARITY				
20	ddd	0.08	FOOT POSITION				

(3) 尺寸以毫米表示

图 28 LQFP48, 7×7mm 焊接 Layout 建议

(1) 尺寸以毫米表示

图 29 LQFP48-48 引脚, 7×7mm 标识图

6.5 **QFN48** 封装图

图 30 QFN48 封装图

注:图不是按比例绘制。

表格 47 QFN48 封装数据

KIII II GI III GI II GI						
SYMBOL	MILLIMETER					
STWBOL	MIN	NOM	MAX			
A	0.70	0.75	0.80			
A1	0	0.02	0.05			
b	0.20	0.25	0.30			
С		0.203REF				
е		0.50BSC				
D	6.90	7.00	7.10			
D2	5.50	5.60	5.70			
Е	6.90	7.00	7.10			
E2	5.50	5.60	5.70			
L	0.35	0.40	0.45			

注:尺寸单位为毫米。

图 31 QFN48 焊接 Layout 建议

注:尺寸单位为毫米。

图 32 QFN48-48 引脚 7×7mm 标识图

7 包装信息

7.1 带状包装

图 33 带状包装规格图

Quadrant Assignments for PIN1 Orientation in Tape

Reel Dimensions

所有照片仅供参考,外观以产品为准。

表格 48 带状包装参数规格表

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	Pin1 Quadrant
APM32E103RET6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32E103RCT6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32E103CET6	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32E103CCT6	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32E103CEU6	QFN	48	2500	330	7.4	7.4	1.4	16	Q1
APM32E103CCU6	QFN	48	2500	330	7.4	7.4	1.4	16	Q1

7.2 托盘包装

图 34 托盘包装示意图

Tray Dimensions

所有照片仅供参考, 外观以产品为准

表格 49 托盘包装参数规格表

Device	Package Type	Pins	SPQ	X-Dimension (mm)	Y-Dimension (mm)	X-Pitch (mm)	Y-Pitch (mm)	Tray Length (mm)	Tray Width (mm)
APM32E103ZET6	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32E103ZCT6	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32E103VET6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32E103VCT6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32E103RET6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32E103RCT6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32E103CET6	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32E103CCT6	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32E103CEU6	QFN	48	2600	7.25	7.25	11.8	12.8	322.6	135.9
APM32E103CCU6	QFN	48	2600	7.25	7.25	11.8	12.8	322.6	135.9

8 订货信息

表格 50 订货信息列表

订货编码	FLASH (KB)	SRAM (KB)	封装	SPQ	温度范围
APM32E103CEU6	512	128	QFN48	2600	工业级 -40℃~85℃
APM32E103CEU6-R	512	128	QFN48	2500	工业级 -40℃~85℃
APM32E103CET6	512	128	LQFP48	2500	工业级 -40℃~85℃
APM32E103CET6-R	512	128	LQFP48	2000	工业级 -40℃~85℃
APM32E103CCU6	256	64	QFN48	2600	工业级 -40℃~85℃
APM32E103CCU6-R	256	64	QFN48	2500	工业级 -40℃~85℃
APM32E103CCT6	256	64	LQFP48	2500	工业级 -40℃~85℃
APM32E103CCT6-R	256	64	LQFP48	2000	工业级 -40℃~85℃
APM32E103RET6	512	128	LQFP64	1600	工业级 -40℃~85℃
APM32E103RET6-R	512	128	LQFP64	1000	工业级 -40℃~85℃
APM32E103RCT6	256	64	LQFP64	1600	工业级 -40℃~85℃
APM32E103RCT6-R	256	64	LQFP64	1000	工业级 -40℃~85℃
APM32E103VET6	512	128	LQFP100	900	工业级 -40℃~105℃
APM32E103VET6S	512	128	LQFP100	900	工业级 -40℃~85℃
APM32E103VCT6	256	64	LQFP100	900	工业级 -40℃~85℃
APM32E103ZET6	512	128	LQFP144	600	工业级 -40℃~85℃
APM32E103ZCT6	256	64	LQFP144	600	工业级 -40℃~85℃

9 常用功能模块命名

表格 51 常用功能模块命名

中文描述	简称
复位管理单元	RMU
时钟管理单元	CMU
复位和时钟管理	RCM
外部中断	EINT
通用 IO	GPIO
复用 IO	AFIO
唤醒控制器	WUPT
蜂鸣器	BUZZER
独立看门狗定时器	IWDT
窗口看门狗定时器	WWDT
定时器	TMR
CRC 控制器	CRC
电源管理单元	PMU
DMA 控制器	DMA
模拟数字转换器	ADC
实时时钟	RTC
外部存储控制器	EMMC
控制器局域网络	CAN
I2C 接口	I2C
串行外设接口	SPI
通用异步收发器	UART
通用异步同步收发器	USART
闪存接口控制单元	FMC

10 修订历史

表格 52 文件修订历史

日期	修订	变化
2021.8	1.0	新建

