2/11/2025 Tuesday

Announcement

- Final project
 - Details out
 - Keep milestones in mind

Image transformation

Motivation

Panoramic scene

Field-of-view is smaller than sample

Example

Two images with overlapping regions

Naive plot: looks the same

plt.imshow(img2, cmap='gray');plt.axis('off')

Example

Goal: Register two images

Image transformation

Image representation: matrix → 2D points

Filtering (same position, different value)

Image

100 240

Transformation (different position, same value)

I. How to represent the deformation?

0, 0, 83

1, 0,100

2, 0, 240

0, 1, 222

1, 1, 239

2, 1, 159

$$(x_i, y_i, I_i = I[x_i, y_i])$$

2, 3, 83

3, 3,100

4, 3, 240

2, 4, 222

3, 4, 239

4, 4, 159

How to represent the deformation?

Method 1: dense deformation field

$$(x_i, y_i, I_i = I[x_i, y_i])$$

 $0, 0, 83$
 $1, 0, 100$
 $2, 0, 240$
 $0, 1, 222$
 $1, 1, 239$
 $2, 1, 159$

$$(x_i, y_i, \Delta x_i, \Delta y_i)$$

 $0, 0, 2, 3$
 $1, 0, 2, 3$
 $2, 0, 2, 3$
 $0, 1, 2, 3$
 $1, 1, 2, 3$
 $2, 1, 2, 3$

How to represent the deformation?

Method 2: linear transformation = matrix

Move to bottom-right by (2,3) pixel

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \rightarrow \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + a \\ y_1 + b \end{bmatrix} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

e.g.,
$$(0, 0, 83) \rightarrow (a, b, 83)$$

Example: image scale

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \rightarrow \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 \\ by_1 \end{bmatrix} = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

e.g., $(1, 2, 83) \rightarrow (a, 2b, 83)$

Example: image rotation

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \to \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

e.g.,
$$(1, 0, 83) \rightarrow (\cos(\alpha), -\sin(\alpha), 83)$$

Example: affine (combine all together)

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \rightarrow \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 + c \\ dx_1 + ey_1 + f \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

e.g.,
$$(1, 0, 83) \rightarrow (a+c, d+f, 83)$$

Starting from translation

Rigid = (translation, rotation)

• Similarity = (translation, rotation, **uniform** scaling)

Affine = (translation, rotation, scaling)

II. How to deal with non-integer output points?

Move to bottom-right by (0.8, 0.2) pixel

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \rightarrow \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + 0.8 \\ y_1 + 0.2 \end{bmatrix}$$

e.g., $(0, 0, 83) \rightarrow (0.8, 0.2, 83)$

Toy example: 1D case

A[0] = 0, A[1] = 100A[0.4] = ??

Solution: interpolation (discrete -> continuous function)

Step function: A[0.4] = 0

(Nearest neighbor)

(0,0), (1,100) => 100x

-100x(x-2)

Linear function: A[0.4] = 40 (Linear)

Quadratic function: A[0.4] = 64 (Quadratic)

Forward mapping

Interpolation on integer positions

Input image (x_i, y_i)

Translated image

Matrix rendering

Method 1: nearest neighbor

Input image

 (x_i, y_i)

Translated image

Problem: same as translating (1, 0)

Matrix rendering (Ignore the border for now)

Zoom to one pixel

Goal: interpolate pixel value at (1, 1)

What's the value in the middle?

(1.3, 0.2, 75): take the average

Goal: interpolate pixel value at (1, 1)

$$I_0 = 50 \qquad I_1 = 100$$

$$\alpha ? \qquad 1 - \alpha \qquad 0 \le \alpha \le 1$$

What's the value in any position?

$$I = I_1 * \alpha + I_0 * (1 - \alpha)$$

When
$$\alpha = 0$$
, $I = I_0$
When $\alpha = 1$, $I = I_1$

Goal: interpolate pixel value at (1, 1)

$$I = I_1 * \alpha + I_0 * (1 - \alpha)$$

$$60 * 0.2 + 160 * 0.8 = 140$$

$$100 * 0.2 + 50 * 0.8 = 60$$

Goal: interpolate pixel value at (1, 1)

$$200 * 0.2 + 150 * 0.8 = 160$$

Linear combination of four corner values

$$I = (1 - \alpha)(1 - \beta)I_0 + \alpha(1 - \beta)I_1 + (1 - \alpha)\beta I_2 + \alpha\beta I_3$$

What about arbitrary transformation?

Not a square region: how to do bilinear?

Input image (x_i, y_i)

Transformed image

Backward mapping

Back to a square region: easy to do bilinear

Input image (x_i, y_i)

Transformed image

Summary: image transformation

What: point cloud

$$(x_i, y_i, I_i = I[x_i, y_i])$$

• How: point transformation (*linear transformation*)

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \rightarrow \begin{bmatrix} ax_1 + by_1 + c \\ dx_1 + ey_1 + f \end{bmatrix}$$
$$= \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

How: Image rendering (interpolation)

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x' = f_0(x, y) \\ y' = f_1(x, y) \end{bmatrix}$$

Image registration

Goal: Register two images

Transformation estimation

- Method 1: intensity-based approach for translation
- $lm1 + lm2 \rightarrow T$

Template → matches (normalized cross-correlation)

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

Im₁

Im2 patch

For each im1 patch, normalized dot-product

Matches → transformation

Im2 patch

Im1: matched position (x_1, y_1)

Im2: cropped position (x_2, y_2)

First move to (0, 0), then (x_1, y_1)

Warp Im2

$$T \colon \begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} x - x_2 + x_1 \\ y - y_2 + y_1 \end{bmatrix}$$

Translation is not enough

Raw images are hard to match Different size, orientation, lighting, brightness, etc.

Method 2: feature-based approach

- 1. What to match
- 2. How to match (NCC)
- 3. Match → transformation

Intensity-based

Translation

$$T \colon \begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} x - x_2 + x_1 \\ y - y_2 + y_1 \end{bmatrix}$$

Feature-based

Find key points

Many matches

Find inliers and $\{(x,y),(x',y')\}_K \to T$