Integer Linear Programming: Branch and Bound Method

Simplex Method for LP: https://www.youtube.com/watch?v=VsyFFhzQVZM
Branch & Bound Method for MILP: https://www.youtube.com/watch?v=g1Xtmd94zns
Additional resources: tinyurl.com/sksopti, tinyurl.com/sksopti, tinyurl.com/sksopti, <a href="mailto:tinyurl.com/sksopti,

Prakash Kotecha, Associate Professor

Debasis Maharana, Teaching Assistant & Remya Kommadath, Teaching Assistant Indian Institute of Technology Guwahati

Integer Linear Programming (ILP)

- Divide and conquer method.
- Relaxed linear programming model ILP model without integer constraints.
- LP relaxation is used to estimate the optimal solution of an ILP problem.
- Two general methods: Branch-and-Bound method and Cutting-plane method

Branch and Bound: Relaxation

Max
$$Z = -x_1 + 4x_2$$

 $st -10x_1 + 20x_2 \le 22$
 $5x_1 + 10x_2 \le 49$
 $x_1, x_2 \ge 0$
 x_1, x_2 are integers

Rules in Branch and Bound (Maximization)

Condition	Operation
LP _j is infeasible	Prune the node j
$Z_{LP, j} \leq Z_{I}$	Prune the node j
$Z_{LP,j} > Z_I$, optimal LP_j has integer solutions	Update Z_I , Prune the node j
$Z_{LP,j} > Z_I$, optimal LP_j does not have integer solutions	Branch node j into two candidate problems

Branch and Bound: Solution of Relaxed Problem

$$Max \quad Z = -x_1 + 4x_2$$

$$st \quad -10x_1 + 20x_2 \le 22$$

$$5x_1 + 10x_2 \le 49$$

$$x_1, x_2 \ge 0$$

LP1
$$Z = 8.2, x = (3.8, 3)$$

Optimal solution of LP1 is not integer, branch node into two candidate problems

Branch and Bound: Branching

$$\begin{aligned} Max \quad Z &= -x_1 + 4x_2 \\ st \quad -10x_1 + 20x_2 &\leq 22 \\ \text{LP 2} \quad 5x_1 + 10x_2 &\leq 49 \\ x_1 &\geq 4 \\ x_1, x_2 &\geq 0 \end{aligned}$$

LP1
$$Z = 8.2, x = (3.8, 3)$$

$$x_1 \ge 4$$

$$LP2$$

$$Z = 7.6, x = (4, 2.9)$$

Optimal solution of LP2 is not integer, branch node into two candidate problems

Branch and Bound: Infeasible Node

LP3

LP3 is infeasible, prune the node

Branch and Bound: Integer Feasible Solution

 $Z_{\rm I} = 4$

LP4

Z = 4, x = (4, 2)

Optimal solution of LP4 is integer, Accept solutions and prune the node.

Branch and Bound: Branching

Integer feasible solution

Optimal solution of LP5 is not integer and $Z_{LP5} > Z_I$, branch node into two candidate problems

Branch and Bound: Infeasible Node

Integer feasible solution

LP6 is infeasible, prune the node

Branch and Bound: Branching

Z = 6.2, x = (1.8, 2)

LP6

Infeasible

Optimal solution of LP7 is not integer and $Z_{LP7} > Z_{I}$, branch node into two candidate problems

Branch and Bound: Integer Feasible Solution

Z = 6.2, x = (1.8, 2)

Z = 6, x = (2, 2)

Integer feasible solution

Infeasible

Optimal solution of LP8 is integer, Accept solutions and prune the node.

Branch and Bound: Optimal Solution

Rules in Branch and Bound

Condition	Operation
LP _j is infeasible	Prune the node j
$Z_{LP, j} \leq Z_{I}$	Prune the node j
$Z_{LP, j} > Z_I$, optimal LP_j has integer solutions	Update Z_I , Prune the node j
$Z_{LP,j} > Z_I$, optimal LP_j does not have integer solutions	Branch node j into two candidate problems

Thank You!!!