## **ELETTRONICA DIGITALE**

Corso di Laurea in Ingegneria Informatica

Prova scritta del 09 giugno 2016

## Esercizio A



 $Q_1$  è un transistore BJT BC109B resistivo con  $h_{re} = h_{oe} = 0$ ;  $Q_2$  è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da  $I_D = k(V_{GS} - V_T)^2$  con k = 0.25 mA/V<sup>2</sup> e  $V_T = 1$  V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza  $R_2$  in modo che, in condizioni di riposo, la tensione sul drain di  $Q_2$  sia 8 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di  $Q_2$ . (R:  $R_2 = 132240 \Omega$ )
- 2) Determinare l'espressione e il valore di  $V_U/V_i$  alle frequenze per le quali  $C_1$ ,  $C_2$ , e  $C_3$  possono essere considerati dei corto circuiti. (R:  $V_U/V_i = -3.76$ )
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento  $V_U/V_i$  e tracciarne il diagramma di Bode quotato asintotico del modulo. (R:  $f_{z1}$ =0 Hz;  $f_{p1}$ =8427 Hz;  $f_{z2}$ =245 Hz;  $f_{p2}$ =934 Hz;  $f_{z3}$ =0 Hz;  $f_{p3}$ =79 Hz)

## Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{\overline{A} D} \left( \overline{B} \overline{C} + C \overline{E} \right) + C \left( \overline{A} \overline{E} + A \overline{B} \right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

## Esercizio C

| $R_1 = 500 \Omega$        | $R_6 = 9 \text{ k}\Omega$ |
|---------------------------|---------------------------|
| $R_2 = 3 \text{ k}\Omega$ | $R_7 = 1 \text{ k}\Omega$ |
| $R_3 = 3 \text{ k}\Omega$ | C = 33 nF                 |
| $R_4 = 3 \text{ k}\Omega$ | $V_{CC} = 6 V$            |
| $R_5 = 1 \text{ k}\Omega$ |                           |



Il circuito IC<sub>1</sub> è un NE555 alimentato a  $V_{CC} = 6V$ ,  $Q_1$  ha una  $R_{on} = 0$   $\Omega$  e  $V_T = 1V$ ;  $Q_2$  ha una  $R_{on} = 0$   $\Omega$  e  $V_T = -1V$ . Gli inveter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 31978 Hz)