PAT-NO:

JP405234954A

DOCUMENT-IDENTIFIER: JP 05234954 A

TITLE:

METHOD AND DEVICE FOR PERFORMING

MAGNETRON PLASMA

ETCHING

PUBN-DATE:

September 10, 1993

INVENTOR-INFORMATION:

NAME

ISHIDA, TAKESHIGE KOMATSU, HIDEO ABE, MASATOSHI OKUDAIRA, SADAYUKI KIMURA, YASUKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

KOKUSAI ELECTRIC CO LTD

N/A

OKI ELECTRIC IND CO LTD

N/A

APPL-NO: JP04073407

APPL-DATE: February 24, 1992

INT-CL (IPC): H01L021/302, C23F004/00

US-CL-CURRENT: 315/111.41

ABSTRACT:

PURPOSE: To extremely improve etching rate uniformity on the surface of a wafer.

CONSTITUTION: By setting the interval 9 between the wafer placing surface of a wafer placing electrode 2 and the facing electrode 3 of the electrode 2 at an arbitrary distance longer than 10mm and shorter than 150mm and the position 8 of a permanent magnet 6 above the electrode 2 at an arbitrary distance longer than 100mm and shorter than 500mm from the wafer placing surface of the electrode 2, AC currents of the same frequency are independently supplied to the electrodes 2 and 3 by adjusting the phase different between the AC currents.

COPYRIGHT: (C) 1993, JPO&Japio

DERWENT-ACC-NO: 1993-323996

DERWENT-WEEK: 199341

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Magntron plasma etching and

apparatus - comprises

mounting wafer on electrode, setting

permanent magnet

distance and supplying AC power

PATENT-ASSIGNEE: KOKUSAI ELECTRIC CO LTD[KOKZ] , OKI

ELECTRIC IND CO LTD[OKID]

PRIORITY-DATA: 1992JP-0073407 (February 24, 1992)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE PAGES

MAIN-IPC

JP 05234954 A Septer 007 H01L 021/302

September 10, 1993

N/A

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR APPL-NO

APPL-DATE

JP 05234954A

N/A

1992JP-0073407 February 24, 1992

INT-CL (IPC): C23F004/00, H01L021/302

ABSTRACTED-PUB-NO: JP 05234954A

BASIC-ABSTRACT:

Process comprises mounting a wafer on an electrode and placing it at a distance

of 10-150 mm from the facing electrode, setting a permanent magnet at a

distance of 100-500 mm from the wafer mounted surface, and supplying an AC

power of the same frequency independently from each other by controlling the

phase difference between the two electrodes.

USE - Allows etching at a uniform rate within the wafer.

CHOSEN-DRAWING: Dwg.1/6

TITLE-TERMS: PLASMA ETCH APPARATUS COMPRISE MOUNT WAFER

ELECTRODE SET PERMANENT

MAGNET DISTANCE SUPPLY AC POWER

DERWENT-CLASS: L03 M14 U11 V05 X14

CPI-CODES: L04-C07D; L04-D04; M14-A02;

EPI-CODES: U11-C07A1; U11-C09C; V05-F04C1A; V05-F05C3A;

V05-F05E3; V05-F05E5;

V05-F08E1; X14-F02;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1993-143951 Non-CPI Secondary Accession Numbers: N1993-249909

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-234954

(43)公開日 平成5年(1993)9月10日

				•	· · · · · · · · · · · · · · · · · · ·
(51)Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
H01L	21/302	С	7353-4M		
C 2 3 F	4/00	G	8414-4K		
		D	8414-4K		
H01L	21/302	Н	7353-4M		

審査請求 未請求 請求項の数10(全 7 頁)

(21)出願番号	特顯平4-73407	(71)出願人 000001122
		国際電気株式会社
(22)出願日	平成 4年(1992) 2月24日	東京都港区虎ノ門 2丁目 3番13号
		(71)出願人 000000295
		沖電気工業株式会社
		東京都港区虎ノ門1丁目7番12号
		(72)発明者 石田 丈繁
		東京都港区虎ノ門二丁目3番13号 国際電
		気株式会社内
		(72)発明者 小松 英雄
		東京都港区虎ノ門二丁目3番13号 国際電
		気株式会社内
		(74)代理人 弁理士 石戸 元
		最終頁に続く
		1

(54) 【発明の名称】 マグネトロンプラズマエッチング方法及び装置

(57)【要約】

【目的】 ウェーハ面内のエッチング速度均一性を著し く向上する。

【構成】 ウェーハ載置電極2のウェーハ載置面から対 向電極3までの間隔9を10mm以上150mm以下の 任意の距離に設定し、かつウェーハ載置面から上方に1 00mm以上500mm以下の任意の位置に設定し永久 磁石6の位置8を設定し、両電極2,3にそれぞれ位相 差を調整して同一周波数の交流電力を独立に供給する。

【特許請求の範囲】

【請求項1】 ウェーハ(7)を載置したウェーハ載置 電極(2)とこれに対向する対向電極(3)にそれぞれ 同一周波数の交流電力を供給し、同時に相対峙してN極 とS極とを有する永久磁石(6)で形成される磁界を両 電極(2,3)間に供給すると共にエッチングガスを供 給して放電せしめ、ウェーハ(7)をプラズマエッチン グするマグネトロンプラズマエッチング方法において、 ウェーハ載置電極(2)のウェーハ載置面から対向電極 (3)までの間隔(9)を10mm以上150mm以下 10 の任意の距離に設定し、かつウェーハ載置面から上方に 100mm以上500mm以下の任意の位置に永久磁石 (6)の位置(8)を設定し、両電極(2,3)にそれ ぞれ位相差を調整して同一周波数の交流電力を独立に供 給することを特徴とするマグネトロンプラズマエッチン グ方法。

【請求項2】 対向電極(3)表面の全部若しくは1部 をカーボン、グラファイト及び含炭素原子ポリマーのい ずれか1種で構成し、エッチングガスとして酸素原子を 含む単独ガスもしくは該ガスと2種類以上の他のガスと 20 の混合体を供給して放電せしめ、酸化ケイ素、シリコン およびシリコン変性フォトレジストの3種のうちいずれ か1種をエッチングマスク層に用いて有機膜をドライエ ッチング加工する請求項1のマグネトロンプラズマエッ チング方法。

【請求項3】 フォトレジスト層加工により半導体素子 を製造することを特徴とする請求項1のプラズマエッチ ング方法。

【請求項4】 ウェーハ(7)を載置したウェーハ載置 電極(2)とこれに対向する対向電極(3)にそれぞれ 30 同一周波数の交流電力を供給し、同時に相対峙してN極 とS極とを有する永久磁石(6)で形成される磁界を両 電極(2,3)間に供給すると共にエッチングガスを供 給して放電せしめ、ウェーハ (7)をプラズマエッチン グするマグネトロンプラズマエッチング装置において、 ウェーハ載置電極(2)のウェーハ載置面から対向電極 (3)までの間隔(9)を10mm以上150mm以下 の任意の距離に設定する間隔設定手段(13)と、ウェ ーハ載置面から上方に100mm以上500mm以下の 任意の位置に永久磁石(6)の位置(8)を設定する磁 40 石位置設定手段(11)と、両電極(2,3)にそれぞ れ同一周波数の交流電力を独立に供給する交流電源

(4,5)と、該両交流電力の位相差を調整する位相調 整手段(10)とを具備してなるマグネトロンプラズマ エッチング装置。

【請求項5】 対向電極(3)表面の全部もしくは一部 をカーボン、グラファイトおよび含炭素原子ポリマーの いずれか一種で構成したことを特徴とする請求項3のマ グネトロンプラズマエッチング装置。

した状態で使用し、被エッチング膜のウェーハ面内のエ ッチング速度のばらつきが±4%以下になるようにした ことを特徴とする請求項3のマグネトロンプラズマエッ チング装置。

【請求項7】 磁石(6)をウェーハ(7)に対し静止 した状態で使用し、被エッチング有機膜のエッチング速 度が400 n m/分以上であることを特徴とする請求項 3のマグネトロンプラズマエッチング装置。

【請求項8】 磁石(6)をウェーハ(7)に対し静止 した状態で使用し、被エッチング有機膜のエッチング速 度の選択比が対マスク層:30以上かつ、対酸化膜:6 〇以上であるか、もしくはそのいずれかを満たすことを 特徴とする請求項3のマグネトロンプラズマエッチング

【請求項9】 ウェーハ(7)の表面と平行な面内で磁 石(6)を回転させる機構(12)を具備することを特 徴とする請求項3のマグネトロンプラズマエッチング装

【請求項10】 交流電力の周波数が13.56MHz で、かつウェーハ載置電極(2)に供給する電力の位相 が対向電極(3)に対して120。以上260。以下の 範囲で遅れた位相であることを特徴とする請求項3のマ グネトロンプラズマエッチング装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体素子製造工程の一 つであるウェーハドライエッチングにおける配線加工工 ッチング、特にフォトレジスト膜のマグネトロンプラズ マエッチング方法および装置に関する。

[0002]

【従来の技術】従来の半導体素子の配線加工におけるド ライエッチング工程では主に平行平板電極方式によるリ アクティブイオンエッチング装置が用いられており、特 に微細寸法の配線パターンの加工に適したエッチング装 置のひとつとして電極近傍に配置した磁石の磁界を利用 するマグネトロンプラズマエッチング装置が使用されて

【0003】図4は従来方法及び装置の1例の構成説明 図、図5は従来におけるエッチング速度のウェーハ面内 分布を示す説明図である。この従来装置は、ウェーハ7 を載置したウェーハ載置電極2とこれに対向する対向電 極3にそれぞれ交流電源4.5により交流電力を供給 し、同時に相対峙してN極とS極とを有する永久磁石6 で形成される磁界を両電極2,3間に供給すると共にエ ッチングガスを供給して放電せしめ、ウェーハ7をプラ ズマエッチングするものである。

【0004】従来、永久磁石6は被処理ウェーハ7表面 に出来るだけ平行な磁界を発生させるためウェーハ載置 電極2の表面と同じかもしくはそれより下位置に配置さ 【請求項6】 磁石(6)をウェーハ(7)に対し静止 50 れる。また両電極2,3のプラズマ放電領域の間隔9は 両電極 2, 3間を電子無衝突で往復できる程度の距離と し、通常使用する1Pa付近のガス圧力においては10 mm前後である。一方両電極2,3に印加する電力はウ ェーハ載置電極2より対向電極3に多く供給する。これ は両電極2,3に対称なマグネトロンプラズマを形成さ せる目的で、磁石位置に遠い対向電極3の電力を大きく するものである。

[0005]

【発明が解決しようとする課題】しかしながら、この従 来装置にあってはエッチングした場合、ウェーハ面内で 10 均一なエッチング速度を得ることが困難である。すなわ ち磁石6をウェーハ表面と平行な面内で回転させずに固 定磁界を供給した場合はエッチング速度のウェーハ面内 分布は図5の如くX方向およびY方向ともばらつきが著 しく均一性はウェーハ全体で±35%以上にも達し、半 導体デバイスの製造プロセスに適用することが困難にな る。X方向の均一性は両電極2,3に印加する電力を適 切に選ぶなどプロセス条件の選択により、ある範囲内で 均一性を改善することは可能であるが、その場合でもY 方向とのエッチング速度の差を半導体デバイスのプロセ 20 スに適用可能なレベルまで小さくすることは困難であ る。尚、磁石6の大きさを電極径より十分大きくするこ とで均一性の改善は可能と予想されるが、その場合、装 置がきわめて大型化し半導体素子製造プロセスに適さな い装置となる。また別の問題点としてウェーハへの対向 電極材料によるスパッタリング汚染があげられる。上下 の両電極に高周波電力を印加する方式では対向電極の表 面材料にエッチングプラズマに不活性な金属あるいは石 英が使用されるが、対向電極のスパッタリング作用によ るウェーハ表面の汚染が発生する。このためレジストエ 30 ッチング形状が精度よく加工できない、また汚染をさけ るため印加電力を下げると極めてエッチング速度が低下 し半導体素子製造上、実用に支障をきたす問題があっ た。

【0006】本発明の目的は、エッチングが高速度、か つ高選択比で行われ、しかもウェーハ面内のエッチング 速度のばらつきが小さく、かつ高精度の加工が可能なマ グネトロンプラズマエッチング方法および装置を提供す ることにある。

[0007]

【課題を解決するための手段】本発明方法は上記の課題 を解決し上記の目的を達成するため、図1に示すように ウェーハ7を載置したウェーハ載置電極2とこれに対向 する対向電極3にそれぞれ同一周波数の交流電力を供給 し、同時に相対峙してN極とS極とを有する永久磁石6 で形成される磁界を両電極2,3間に供給すると共にエ ッチングガスを供給して放電せしめ、ウェーハフをプラ ズマエッチングするマグネトロンプラズマエッチング方 法において、ウェーハ載置電極2のウェーハ載置面から 対向電極3までの間隔9を10mm以上150mm以下 50 ウェーハ載置電極、3はこれに対向する対向電極、4,

の任意の距離に設定し、かつウェーハ載置面から上方に 100mm以上500mm以下の任意の位置に永久磁石 6の位置8を設定し、両電極2,3にそれぞれ位相差を 調整して同一周波数の交流電力を独立に供給することを 特徴とする

4

【0008】本発明装置は同じ課題を解決し同じ目的を 達成するため、図1に示すようにウェーハ7を載置した ウェーハ載置電極2とこれに対向する対向電極3にそれ ぞれ同一周波数の交流電力を供給し、同時に相対峙して N極とS極とを有する永久磁石6で形成される磁界を両 電極2,3間に供給すると共にエッチングガスを供給し て放電せしめ、ウェーハ7をプラズマエッチングするマ グネトロンプラズマエッチング装置において、ウェーハ 載置電極2のウェーハ載置面から対向電極3までの間隔 9を10mm以上150mm以下の任意の距離に設定す る間隔設定手段13と、ウェーハ載置面から上方に10 0mm以上500mm以下の任意の位置に永久磁石6の 位置8を設定する磁石位置設定手段11と、両電極2, 3にそれぞれ同一周波数の交流電力を独立に供給する交 流電源4,5と、該両交流電力の位相差を調整する位相 調整手段10とを具備してなる。

[0009]

【作 用】本発明では相対峙してN極とS極とを有する 永久磁石6を、ウェーハ7載置電極2の載置面から上方 に配置してあり、かつウェーハ載置面から100mm以 上500mm以下の任意の位置に磁石位置設定手段11 により設定することにより従来磁石近傍の電極上に形成 されていた不均一なプラズマ分布の影響をウェーハ7が 直接被ることが解消されエッチング速度の均一性の向上 が容易になる。

【0010】ウェーハ載置電極2と対向電極3のプラズ マ放電領域の間隔9を10mm以上150mm以下の任 意の距離に間隔設定手段13により設定することにより あらかじめエッチングに最適な磁力線分布を得る条件で 磁石位置8を定めた時、その磁界分布をくずさずに独立 して電極間隔9のみを変化させることが可能である。 【0011】又、両電極2,3にそれぞれ交流電源4, 5により同一周波数の交流電力を供給し、かつ両交流電 力の位相差を位相調整手段10により種々に変化させる と、ウェーハ面内のエッチング速度均一性が変化し位相

差を調整することで均一性を著しく向上することができ

[0012]

る。

【実施例】図1は本発明方法及び装置の1実施例の構成 説明図、図2は本実施例におけるエッチング速度のウェ ーハ面内分布を示す説明図、図3は本実施例における両 電極に印加する電力の位相差とエッチング速度の均一性 を示す図である。図1において1は真空チャンバ、2は この真空チャンバ1内に設けられウェーハ7を載置した

5は両電極2,3にそれぞれ同一周波数の交流電力を供 給する交流電源である。

【0013】本発明の第1の特徴は相対峙してN極とS 極とを有する永久磁石6を、ウェーハ載置電極2のウェ 一八載置面から上方に配置してあり、かつウェーハ載置 面から100mm以上500mm以下の範囲で手動もし くはプログラム制御による設定手段11により任意の位 置に自動的に設定可能にしてあることである。さらに磁 石6はウェーハ載置面と平行な面内を任意の速度でウェ ーハ外周円の中心を軸として回転できる機構12を有す 10

【0014】この場合、両電極2、3間に形成される磁 力線分布は平行、傾斜状もしくは曲線状となるが、エッ チング特性に適する分布形状を磁石6の特性、位置およ び電極間隔9の調整によって適切に選ぶことが可能であ る。このように磁石位置をウェーハ載置電極2の上方と することで従来磁石近傍の電極上に形成されていた不均 一なプラズマ分布の影響をウェーハ7が直接被ることが 解消されエッチング速度の均一性の向上が容易になる。

【0015】第2の特徴はウェーハ載置電極2と対向電 20 極3のプラズマ放電領域の間隔9を少なくとも10mm 以上150mm以下の範囲で手動もしくはプログラム制 御による設定手段13により任意に設定可能であり、か つ他の機構とは完全に独立して制御可能なことである。 この機構により本発明による装置ではあらかじめエッチ ングに最適な磁力線分布を得る条件で磁石位置8を定め た時、その磁界分布をくずさずに独立して電極間隔9の みを変化させることが可能である。

【0016】本発明で対象とするフォトレジストのドラ イエッチング加工においては、酸素原子を含有するガス 30 によるラジカルエッチングとプラズマイオンによる異方 性エッチングが進行する。ラジカルエッチングではエッ チング速度がガス供給量によるので電極間隔により影響 を受ける。またイオンアシストによる異方性エッチング 速度はマグネトロンプラズマ条件で定まる加速バイアス 電圧によって定まる。 したがってウェーハ載置電極 2 と 対向電極3の間隔9と磁石位置8は上記の2種類のエッ チングのバランスをとって高速度かつ高精度のエッチン グ特性を得るために独立に設定できることが必要であ り、本発明によるエッチング装置ではこれが可能であ る。

【0017】これに対し図4に示す従来装置ではウェー ハ載置電極2を上下可動構造とすれば電極間隔9の可変 が可能になるので、電極間隔の調整は実施できる。しか し電極間隔9を変えると磁石位置8も同時に変化し両者 は独立に調整できない。したがって例えば異方性にすぐ れたエッチング特性を得るために電極間隔に調整しても エッチング速度均一性がよくなる磁界分布が得られる磁 石位置8が得られない場合が生じる。とくにウェーハ載 化のウェーハに与える影響が大きくエッチング特性を満 足する電極間隔9と磁石位置8を両立させることは極め て困難である。また別の方法としてウェーハ載置電極2 と磁石を同時に上下駆動して電極間隔9を可変とする場 合はウェーハと磁石の相対位置は保持されるが、重量物 である永久磁石を精度よくウェーハ載置電極と同時に移 動させる必要があり、駆動機構が極めて大型、かつ高価 となり半導体製造装置として実用的でない。

【0018】第3の特徴は同一周波数の交流電力をウェ ーハ載置電極2と対向電極3とにフェーズシフタ10を 用いて位相を変えて供給できることである。ウェーハ載 置電極2と対向電極3に印加する電力の位相差を種々に 変化させると、ウェーハ面内のエッチング速度均一性が 変化し位相差を調整することで均一性を著しく向上でき る。また両電極2,3への印加電力はとくに磁石近傍に 位置する対向電極3よりもウェーハ載置電極2に大きい 電力を供給するとエッチング均一性が向上するので望ま LW.

【0019】第4の特徴は対向電極3の表面の全部もし くは一部がカーボン、グラファイトおよび含炭素原子ポ リマーのいずれか一種で構成されていることである。従 来装置では前述のように対向電極3におけるスパッタリ ング作用による上電極材料物質の付着によるウェーハ汚 染が発生し残渣等による妨害でレジストのエッチング加 工精度をそこねる問題があった。本発明による対向電極 3の構成をとると、この問題が解消できるものである。 つまり対向電極3が上記の材料で被覆されている場合 は、エッチングに用いる酸素原子含有ガスプラズマによ ってスパッタリングで発生する炭素系物質あるいは電極 表面自体が酸化反応により気化、除去される。またウェ ーハに到達、付着した場合でもプラズマとの反応性が高 く同様に酸化、除去される。したがってウェーハの汚染 によるエッチング特性の悪化が防止される。

【0020】またこの電極構成による別の利点としてフ ォトレジストのラジカルエッチング作用の制御があげら れる。対向電極材料とエッチングガスプラズマとの反応 量を変えることでフォトレジストと同プラズマとのエッ チング反応速度を制御することができる。フォトレジス トを精度よくエッチング加工するにはイオンアシストに よる異方性加工速度とラジカル反応によるエッチング速 度を必要な比率に均衡させる必要があるが、このため に、対向電極材料によるエッチング反応制御がきわめて 容易かつ有効な手段である。

【0021】又、本発明の装置によるエッチング方法と してとくに半導体素子内配線用フォトレジスト膜のエッ チングを対象とする場合、以下の構造および方法がとく に望ましい。まず本発明の対象となるフォトレジスト膜 は、そのマスクとして、酸化ケイ素、シリコンおよびシ リコン変性レジストのうちから任意に選んで、エッチン 置電極側に磁石を設置した場合は磁石近傍の磁束分布変 50 グ処理が可能である。また電極の構成としては、磁石位 置8は100mm以上500mm以下の値がエッチング 速度の均一性が優れており、電極間隔9については、1 0mm以上150mm以下の範囲が高速度かつ高精度の フォトレジストエッチングに最適である。

【0022】つぎに、具体例について詳述する。図1に示した本発明装置を用い、中空円筒状で周方向に相対時してN極とS極を有し、その円筒状中心部での磁束密度が約150ガウスの永久磁石6を図1に示す如く磁石6をウェーハ載置電極2から200mmの位置に設定した。ただしこの場合放電中は磁石6に周方向の回転など 10を与えない静止した状態での固定磁界を供給した。電極間隔9は50mmに設定した。

【0023】ついで6インチ径のあらかじめ膜上に酸化ケイ素膜層のマスクを形成したフォトレジスト膜付きシリコンウェーハ7をウェーハ載置電極2上に載置し、真空チャンバ1内を排気ポンプにより1X10-5Paまで減圧した。さらに真空チャンバ1へ02ガス50ccを導入し、排気孔に設けた可変開度バルブによって圧力を1Paに保った。対向電極3は、高周波電力を供給する金属電極の表面に厚さ5mmのカーボン板14を取りつ20けて電極板とした。

【0024】次に交流電源4、5により13.56MH zの高周波電力をウェーハ載置電極2に300W,一方対向電極3に200Wで、あらかじめフェーズシフタ10で所定の位相差条件を与えて印加し、マグネトロンプラズマを発生させエッチングを開始した。エッチング開始後、プラズマ分光スペクトルの終点検出を用いて所定の時間のエッチング処理を終了した。

【0025】その結果、試料膜のエッチング速度は平均400nm/分が得られ、そのウェーハ面内均一性は図302に示すように±4.0%であった。エッチング速度の選択比は対酸化膜:60であった。尚、この均一性を得るため位相差の調整をおこなったが、本実施例では図3に示すようにウェーハ載置電極2を対向電極3に対し180°遅れた位相とすることで:同位相時の約4分の1にあたる±4.0%に向上することが認められた。

【0026】半導体素子の製造においては実用的にはエッチング速度の均一性は少なくとも±8%以下であることが必要と考えられ、この場合、本発明における位相差調整による均一性可変手段についてはウェーハ載置電極 402を対向電極3に対しその供給高周波電力を120°以上260°以下の範囲で遅れ位相とすることが適していることがわかった。

【0027】次に、従来技術による比較として図4に示す装置を用いてエッチングを行った。実施例と同等の円筒形状の永久磁石6をウェーハ載置電極2の下方40mmのの位置に配置し、アルミニウム製対向電極3を電極間隔9が50mmになるように配置した真空チャンバ1に、6インチ径のあらかじめ膜上に酸化ケイ素膜層のマスクを形成したフォトレジスト膜付きシリコンウェーハ50

7をウェーハ載置電極2上に載置した。実施例と同様に 真空チャンバ1を排気後、O2 ガスによる1Paのエッ チングガス雰囲気とし、交流電源4、5によりウーハ載 置電極2へ300W,対向極3へ300Wの高周波電力 を印加し、マグネトロンプラズマエッチングを行った。 【0028】その結果、試料膜のエッチング速度は平均 190 nm/分が得られ、そのウェーハ面内均一性は図 5に示すよう±35%であった。エッチング速度の選択 比は対酸化膜:30であった。なお本比較例によると、 対向電極3でのスパッタリング作用によるウェーハ表面 の金属汚染に起因するエッチング残渣が発生し、また被 エッチング膜の側面形状はマスク寸法より細く負のテー パー形状となった。それに対して本発明による実施例で はエッチング残渣差の発生はみられず、また側面形状は 垂直となり良好なエッチング特性を得ることができた。 【0029】上述のように本実施例によれば、相対峙し てN極とS極を有する永久磁石6をウェーハ載置電極2 のウェーハ載置面から上方に配置し、かつウェーハ載置 面から100mm以上500mm以下の任意の位置に設 定することで従来磁石近傍の電極上に形成されていた不 均一なプラズマ分布の影響をウェーハ7が直接被ること がなく、エッチング速度の均一性を容易に向上すること ができる。

【0030】又、ウェーハ載置電極2と対向電極3間の間隔9を10mm以上150mm以下の任意の値に設定することと磁石6の位置設定を完全に独立に行うことができるので、酸素原子を含有するガスによるラジカルエッチングとプラズマイオンによる異方性エッチングの2種類のエッチングのバランスをとって高速度かつ高精度のエッチング特性を得ることができる。

【0031】ウェーハ載置電極2と対向電極3にそれぞれ同一周波数の交流電力を位相を変えて供給できるので、ウェーハ面内のエッチング速度均一性が変化し位相差を調整することで均一性を著しく向上できる。又磁石近傍に位置する対向電極3よりもウェーハ載置電極2に大きい電力を供給することによりエッチング均一性を向上できる。

【0032】さらに本発明では対向電極3の表面の全部もしくは一部をカーボン、グラファイトおよび含炭素原子ポリマーのいずれか一種で構成することによって対向電極材料によるスパッタッリング作用による汚染をさけることができ残渣がなく異方性加工にすぐれたエッチング特性を得ることが可能となる。

[0033]

【発明の効果】上述の説明より明らかなように本発明によれば、対向電極3の上方に永久磁石6を配置し、かつウェーハ載置面から100mm以上500mm以下の任意の位置に設定することと、ウェーハ載置電極2と対向電極3にそれぞれ印加する同一周波数の交流電力の位相差を調整することで、ウェーハ面内のエッチング速度均

一性を著しく向上することができる。

【0034】又、ウェーハ載置電極2と対向電極3間の間隔9を10mm以上150mm以下の任意の値に設定することと、磁石6の位置設定を完全に独立に行うことができるので、ラジカルエッチングと異方性エッチングの2種類のエッチングのバランスをとって高速度かつ高精度のエッチング特性を得ることができる。

【0035】以上の改善により本発明では従来技術に比べ、各エッチング特性が高水準であり、しかもバランスの良い、総合的に優れたエッチング処理を行うマグネト 10 ロンプラズマエッチング方法および装置を提供することができる。

【図面の簡単な説明】

【図1】本発明方法及び装置の1実施例の構成説明図である。

【図2】本実施例におけるエッチング速度のウェーハ面 内分布を示す説明図である。

【図3】本実施例における両電極に印加する電力の位相 差とエッチング速度の均一性を示す図である。 10

【図4】従来方法及び装置の1例の構成説明図である。

【図5】従来におけるエッチング速度のウェーハ面内分布を示す説明図である。

【符号の説明】

- 1 真空チャンバ
- 2 ウェーハ載置電極
- 3 対向電極
- 4 交流電源
- 5 交流電源
- 10 6 永久磁石
 - 7 ウェーハ
 - 8 磁石位置
 - 9 電極間隔
 - 10 位相調整手段(フェーズシフタ)
 - 11 磁石位置設定手段
 - 12 磁石回転機構
 - 13 間隔設定手段
 - 14 カーボン板

【図1】

【図2】

フロントページの続き

(72)発明者 阿部 雅敏 東京都港区虎ノ門二丁目 3 番13号 国際電 気株式会社内 (72)発明者 奥平 定之 東京都青梅市千ヶ瀬町2-164-15

(72)発明者 木村 泰樹 東京都港区虎ノ門一丁目7番12号 沖電気 工業株式会社内