From Reading to Compressing: Exploring the Multi-document Reader for Prompt Compression

Eunseong Choi, Sunkyung Lee, Minjin Choi, June Park, Jongwuk Lee

Sungkyunkwan University (SKKU), Republic of Korea

Takeaways

- ✓ Prompt compression connected with the Fusion-in-Decoder to capture the global context
- ✓ Aligning the question-answering task with prompt compression
- ✓ The cross-attention scores trained to answer the question provide the effective approximation that the target LLM needs to focus on.

Token pruning for prompt compression

- (vs. Soft prompt) easily adaptable to any black-box LLMs: no need to train an LLM
- (vs. Abstractive compression) more efficient than abstractive compression, where auto-regressive generation is required

Challenges in Token Pruning

Challenge 1 How to extract essential information based on the global context

Existing work processes chunk by chunk, neglecting the global context.

Challenge 2 How to train a compressor effectively

Incomplete pseudo-compressed prompts

Prompt Compression

Prompt compression aims to reduce the computational overhead in LLMs, while preserving the essential information in the prompt.

Our Solution: Multi-document Reader as a Compressor

Multi-document reader aggregates evidence across multiple documents. Addressing ①: global context by using the concatenated KV matrix Addressing ②: learning to capture by learning to answer the question

Avoiding the need for pseudo compressed prompts

Reading To Compressing (R2C)

Compression process

1) Encoding chunks

• Dividing long context into multiple chunks and put them into the FiD-encoder

2) Token-level importance

- Summing the cross-attention scores over all layers and heads in the FiD-decoder
- Token-level importance of j-th token in i-th chunk $t_{i,j} = \sum_{l=1}^{L} \sum_{h=1}^{H} \mathbf{A}_{i,j}^{(l,h)}$

3) Aggregating unit importance

- Token-level compression often neglects the semantic integrity of the text.
- **4) Hierarchical compression:** R2C compresses the prompt hierarchically, given the multi-granularity unit importance, *i.e.*, chunk and sentence.
 - Target number of tokens after compression T
 - Hierarchical ratio between two levels of compression ho
 - \rightarrow Number of tokens to compress $E_{\text{comp}} = |P_{\text{C}}| \dot{T}$, where $|P_{\text{C}}|$ is the original length.
 - ✓ Chunk-level compression: $E_{\text{chunk}} = \rho \cdot E_{\text{comp}}$
 - ✓ Sentence-level compression: $E_{\rm sent} = (1 \rho) \cdot E_{\rm comp}$

Experimental Results

In-domain Evaluation

- Learning to answer the question contributes to capture importance.
- A benefit of **using cross-attention scores**

Target LLM	Compression	NQ test (Span EM)	# tokens	
FiD	_	50.5	_	
GPT-3.5	Original	66.7	3,018	
	BM25	49.4	534	
	DPR	<u>63.0</u>	501	
	Selective-Context	44.4	501	
	LLMLingua-2	52.1	510	
	LongLLMLingua	55.6	489	
	RECOMP	<u>63.0</u>	500	
	R2C (ours)	66.5	482	
LLaMA2-7B	Original	52.8	3,018	
	BM25	41.8	534	
	DPR	<u>54.3</u>	501	
	Selective-Context	38.1	501	
	LLMLingua-2	42.5	510	
	LongLLMLingua	49.0	489	
	RECOMP	53.7	500	
	R2C (ours)	59.7	482	

Out-of-domain Evaluation

- QA task proves to be an effective alternative for training compressor.
- BM25 (Chunk-level) in FewShot task suggests the need to use varying granularity in compression.

	•			, ,		•		
Target LLM	Compression	SingleDoc	MultiDoc	Summ.	FewShot	Code	Avg.	# tokens
GPT-3.5	Original	43.2	46.1	25.2	69.2	64.4	49.6	9,881
	BM25	34.9	41.0	<u>23.3</u>	68.1	49.6	43.4	1,949
	Selective-Context	30.4	31.4	20.9	66.0	<u>55.0</u>	40.7	1,830
	LLMLingua	29.8	35.4	22.1	52.4	45.0	36.9	2,009
	LLMLingua-2	36.2	40.9	23.2	61.5	47.6	41.9	2,023
	LongLLMLingua	37.0	44.9	22.0	65.1	49.4	<u>43.7</u>	1,743
	RECOMP	<u>40.1</u>	<u>48.1</u>	_	-	-	_	_
	R2C (ours)	43.5	48.7	24.9	<u>66.9</u>	57.6	48.3	1,976

Compression Efficiency
R2C dramatically improves compression

efficiency, while enhancing the accuracy.

Model	Backbone				
LLMLingua	LLaMA2-7B				
LongLLMLingua	LLaMA2-7B				
LLMLingua-2	XLM-RoBERTa-large				
R2C	T5-base				

