浙江大学2018-19春夏《高级数据结构与算法分析》期中模拟练习-陈越

开始时(考生	间 1/1/ 王子	2016, 08:00:00 腾	结束时间 得分	1/18/2038, 08:00:00 71	答题时长 总分	45分钟 100				
判断是	页						总分:	35	得分:	: 31
ha		acking, if different solution spac etter chance to reduce the time F		ifferent sizes, start testing from the pa	artial soluti	ion with th	e largest :	space	size wo	ould
		定正确 (3分)								
	amort	ized analysis, a good potential fi	unction sh	ould always assume its maximum at t	he start of	f the seque	nce. (3分)			
评测结果	果: 答案	定正确 (3分)								
	T	● F	to 2^k-1	are inserted in order into an initally e	mpty leftis	st heap. (43))			
评测结果	果:答豬	錯误 (0分)								
	inding t	he minimum key from a splay tr	ee will res	ult in a tree with its root having no le	ft subtree.	(4分)				
评测结果	果: 答案	建正确 (4分)								
de •	ocumei T	easuring the relevancy of the an nts are missing, but most of the F 正确(4分)		f the precision is high but the recall is documents are relevant. (4分)	low, it me	eans that m	ost of the	e relev	ant	
	T	ecurrence equation $T(N)=aT$ $lue{r}$ F	$\Gamma(N/b)$ +	f(N), if $af(N/b)=f(N)$, then $T(N)$	$N) = \Theta(N)$	$(\log_b N)$. (4	1分)			
•	T	L tree, it is possible to have this F 正确(4分)	situation t	hat the balance factors of a node and	both of it	s children a	are all -1.	(4分)		
	T	V insertions into an initally emp	ty binomi	al queue takes $\Theta(NlogN)$ time in the	e worst cas	se. (3分)				
(T	black tree, the number of rotatio F 正确(3 分)	ons in the	DELETE operation is O(1). (3分)						
	● T	e bound of the FIND operation F 正确(3 分)	in a B+ tre	ee containing N numbers is $O(lonN)$, no matte	er what the	degree o	f the t	ree is.	(3分)

单选题 总分: 40 得分: 25

- 2-1 A queue can be implemented by using two stacks S_A and S_B as follows:
 - To enqueue x, we push x onto S_A .
 - To dequeue from the queue, we pop and return the top item from S_B . However, if S_B is empty, we first fill it (and empty S_A) by popping the top item from S_A , pushing this item onto S_B , and repeat until S_A is empty.

Assuming that push and pop operations take O(1) worst-case time, please select a potential function ϕ which can help us prove that enqueue and dequeue operations take O(1) amortized time (when starting from an empty queue). (5%)

 \bigcirc A. $\phi = |S_B|$

 \bigcirc B. $\phi=2|S_B|$

 \bigcirc C. $\phi = |S_A|$

ullet D. $\phi=2|S_A|$

2-2 There are 8000 documents in the database. The statistic data for one query are shown in the following table. The recall is: __(5分)

	Relevant	Irrelevant
Retrieved	1000	1000
Not Retrieved	2000	4000

OA. 12.5%

○ B. 20%

● C. 33%

OD. 50%

2-3 Given the following game tree, which node is the first one to be pruned with α - β pruning algorithm? (5%)

○A. a

○ B. b

◎D. d

■ 评测结果: 答案正确 (5分)

- 2-4 Insert { 5, 1, 7, 8, 21, 2, 12, 19, 13, 0 } into an initially empty 2-3 tree (with splitting). Which one of the following statements is FALSE? (5
 - OA. 13 and 19 are in the same node
 - B. the parent of the node containing 8 has 3 children
 - OC. the first key stored in the root is 12
 - OD. there are 5 leaf nodes

ⅰ 评测结果: 未作答 (0分)

2-5 For the result of accessing 5 in the splay tree in the following figure, besides saying that 5 must be the root, which one of the following statements is also TRUE? (5分)

- A. 2 and 10 are siblings
- OB. 4 and 10 are siblings
- © C. 6 and 10 are siblings
- OD. 6 is a leaf node

评测结果: 答案正确 (5分)

- 2-6 Delete a node v from an AVL tree T_1 , we can obtain another AVL tree T_2 . Then insert v into T_2 , we can obtain another AVL tree T_3 . Which one(s) of the following statements about T_1 and T_3 is(are) true? (5 $\frac{1}{2}$)
 - I、If v is a leaf node in T_1 , then T_1 and T_3 might be different.
 - II、If v is not a leaf node in T_1 , then T_1 and T_3 must be different.
 - III、If v is not a leaf node in T_1 , then T_1 and T_3 must be the same.
 - A. I only
 - B. II only
 - C. I and II only
 - OD. I and III only

评测结果: 答案错误 (0分)

- 2-7 3-way-mergesort: Suppose instead of dividing in two halves at each step of the mergesort, we divide into three one thirds, sort each part, and finally combine all of them using a three-way-merge. What is the overall time complexity of this algorithm? (5分)
 - \bigcirc A. $O(n(\log^2 n))$
 - \bigcirc B. $O(n^2 \log n)$
 - \odot C. $O(n \log n)$
 - \bigcirc D. O(n)

| | 评测结果: 答案正确 (5 分)

2-8 Merge the two skew heaps in the following figure. Which one of the following statements is FALSE? (5分)

- \bigcirc A. the null path length of 6 is the same as that of 2
- \bigcirc B. 1 is the root with 3 being its right child
- $\ \bigcirc$ C. Along the left most path from top down, we have 1, 2, 6, and 8
- OD. 5 is the right child of 4

评测结果: 未作答 (0分)

程序填空题 总分: 25 得分: 15

5-1 The functions IsrBT is to check if a given binary search tree T is a red-black tree. Return true if T is, or false if not.

The red-black tree structure is defined as the following:

```
typedef enum { red, black } colors;
typedef struct RBNode *PtrToRBNode;
struct RBNode{
  int Data;
  PtrToRBNode Left, Right, Parent;
  int BlackHeight;
  colors Color;
};
typedef PtrToRBNode RBTree;
```

Please fill in the blanks.

```
bool IsRBT( RBTree T )
   int LeftBH, RightBH;
   if ( !T ) return true;
   if ( T->Color == black ) T->BlackHeight = 1;
   else {
      if ( T->Left && (T->Left->Color==red) (5分)) return false;
       if ( T->Right && (T->Right->Color == red) ) return false;
   if ( !T->Left && !T->Right ) return true;
   if ( IsRBT(T->Left)&&IsRBT(T->Right)
                                           (5分)) {
     if ( T->Left ) LeftBH = T->Left->BlackHeight;
      else LeftBH = 0;
     if ( T->Right ) RightBH = T->Right->BlackHeight;
     else RightBH = 0;
     if ( LeftBH == RightBH ) {
                                (5分);
       T->BlackHeight+=LeftBH
        return true;
     else return false;
   else return false;
```

评测结果: **答案正确** (15 分)

序号	结果	得分
0	答案正确	5
1	答案正确	5
2	答案正确	5

5-2 The functions BinQueue_Find and Recur_Find are to find x in a binomial queue H. Return the node pointer if found, otherwise return NULL.

```
BinTree BinQueue Find( BinQueue H, ElementType X )
{
   BinTree T, result = NULL;
   int i, j;
   for( i=0, j=1; j<=H->CurrentSize; i++, j*=2) { /* for each tree in H */
      T= H->TheTrees[i];
                                    (5分) ){ /* if need to search inside this tree */
      if (X
         result = Recur_Find(T, X);
         if ( result != NULL ) return result;
      }
   return result;
}
BinTree Recur_Find( BinTree T, ElementType X )
{
   BinTree result = NULL;
   if ( X==T->Element ) return T;
   if ( T->LeftChild!=NULL ){
      result = Recur_Find(T->LeftChild, X);
      if ( result!=NULL ) return result;
   if ( (5分))
     result = Recur_Find(T->NextSibling, X);
   return result;
```

}

评测结果: 未作答 (0分)

序号	结果	得分
0	未作答	0
1	未作答	0