SET THEORY

Homepage: https://sites.google.com/site/doc4code/

Email: goldpotion@outlook.com

2014/08/18

집합론 관련 증명 모음.

Theorem 5.24. For every $\kappa \ge \omega$, κ^+ is regular. That is, $\aleph_{\alpha+1}$ is regular for all α .

Remark. To help provide some intuition for the relationship of this theorem to Lemma 5.20, we can show the following special case, namely, that $\omega^+ = \aleph_1$ is regular.

Suppose otherwise, namely, that $cf(\aleph_1) = \omega$ (note, by Lemma 5.23, that this is the only choice for $cf(\aleph_1)$ if \aleph_1 is not regular). That is, for some $f : \omega \to \aleph_1$, rng(f) is cofinal in \aleph_1 , *i.e.*, $\bigcup rng(f) = \aleph_1$. Now, we note the following facts:

- |rng(f)| = ω. This is clear since dom(f) = ω.
- For every α ∈ rng(f), |α| ≤ ω. This follows since α ∈ ℵ₁, so the biggest its cardinality could possibly be is ℵ₀ = ω.

Hence $\bigcup \operatorname{rng}(f)$ is a countable union of countable sets—but we know this is countable, so it cannot be equal to \aleph_1 .

Proof. We now give a general proof of Theorem 5.24; it follows much the same shape as the preceding remark.

For purposes of contradiction, suppose that $\aleph_{\alpha+1}$ is not regular, that is, there is some cofinal map $f : \aleph_{\beta} \to \aleph_{\alpha+1}$ where $\beta \leq \alpha$. Then $\bigcup \operatorname{rng}(f) = \aleph_{\alpha+1}$. If $\gamma \in \operatorname{rng}(f)$, then $|\gamma| < \aleph_{\alpha+1}$. Therefore, $|\operatorname{rng}(f)| = \aleph_{\beta}$ and $\sup(\operatorname{rng}(f)) = \aleph_{\alpha}$, so by Lemma 5.20, the cardinality of $\bigcup \operatorname{rng}(f)$ is $\alpha \times \beta = \max(\alpha, \beta) < \alpha + 1$, contradicting the cofinality of f.

Lemma 4.5. Let κ be a singular cardinal and suppose the continuum function below κ is eventually constant, that is, there is a $\gamma < \kappa$ such that $2^{<\kappa} = 2^{\gamma}$. Then $2^{\kappa} = 2^{\gamma}$

Proof. An argument similar to lemma 4.4 shows that for any κ we have $2^{\kappa} \leq (2^{<\kappa})^{\operatorname{cof}(\kappa)}$, and hence easily $2^{\kappa} = (2^{<\kappa})^{\operatorname{cof}(\kappa)}$. Thus, $2^{\kappa} = (2^{<\kappa})^{\operatorname{cof}(\kappa)} = (2^{\gamma})^{\operatorname{cof}(\kappa)} = (2^{\gamma})^{\operatorname{cof}(\kappa)} = (2^{\delta})^{\operatorname{cof}(\kappa)} = 2^{\delta} = 2^{\gamma}$, where $\gamma < \delta < \kappa$ and $\delta \geq \operatorname{cof}(\kappa)$.

Theorem 4.6. For any cardinal κ :

- If κ is a successor cardinal, then 2^κ = J(κ).
- (2) If κ is a limit cardinal and the continuum below κ is eventually constant, then 2^κ = 2^{<κ} · ¬(κ).
- (3) If κ is a limit cardinal and the continuum below κ is not eventually constant, then 2^κ = I(2^{<κ}).

Proof. The first part is clear as successor cardinals are regular. Suppose that κ is a limit cardinal, and the continuum function is eventually constant below κ , say $2^{<\kappa}=2^{\gamma}$. If κ is singular, then $2^{\kappa}=2^{\gamma}$ by the previous lemma. If κ is regular, then $2^{\kappa}=\kappa^{\kappa}=\kappa^{\mathrm{cof}(\kappa)}=\mathbb{I}(\kappa)$. In the singular case, note that $2^{\gamma}=2^{<\kappa}\geq\kappa$. Thus, $\mathbb{I}(\kappa)=\kappa^{\mathrm{cof}(\kappa)}\leq (2^{\gamma})^{\mathrm{cof}(\kappa)}=(2^{\delta})^{\mathrm{cof}(\kappa)}=2^{\delta}=2^{\gamma}$ (where $\mathrm{cof}(\kappa)<\delta<\kappa$). Thus, $2^{<\kappa}\cdot\mathbb{I}(\kappa)=2^{<\kappa}$. If κ is regular, then $2^{<\kappa}\leq 2^{\kappa}=\kappa^{\kappa}=\mathbb{I}(\kappa)$. So, $2^{<\kappa}\cdot\mathbb{I}(\kappa)=\mathbb{I}(\kappa)$. In either case, $2^{\kappa}=2^{<\kappa}\cdot\mathbb{I}(\kappa)$. Finally, suppose κ is a limit cardinal and the continuum function below κ is not eventually constant. Then $\mathrm{cof}(2^{<\kappa})=\mathrm{cof}(\kappa)$. Then $2^{\kappa}=(2^{<\kappa})^{\mathrm{cof}(\kappa)}=\mathbb{I}(2^{<\kappa})$.

(5.22) HAUSDORFF FORMULA

Theorem 18 Let κ and λ be infinite cardinals. Let $\tau = \sup_{\rho < \kappa} |\rho|^{\lambda}$. Then

$$\kappa^{\lambda} = \begin{cases} 2^{\lambda} & \text{if } \kappa \leq 2^{\lambda}, \\ \kappa \cdot \tau & \text{if } \lambda < \operatorname{cf}(\kappa), \\ \tau & \text{if } \operatorname{cf}(\kappa) \leq \lambda, 2^{\lambda} < \kappa, \text{ and } \\ \rho \mapsto |\rho|^{\lambda} & \text{is eventually constant below } \kappa, \\ \kappa^{\operatorname{cf}(\kappa)} & \text{otherwise.} \end{cases}$$

Proof: 1. If $\kappa \le 2^{\lambda}$, then $2^{\lambda} \le \kappa^{\lambda} \le (2^{\lambda})^{\lambda} = 2^{\lambda}$.

- If λ < cf(κ) then any function f : λ → κ is bounded, so λκ = ∪_{α<κ} λα, and κλ ≤ ∑_α |α|^λ = κ · ρ ≤ κλ.
- Suppose that cf(κ) ≤ λ, 2^λ < κ, and ρ → |ρ|^λ is eventually constant (and equal to τ) as ρ approaches κ.

7

Since $\kappa > \operatorname{cf}(\kappa)$, κ is a singular cardinal and we can choose a strictly increasing sequence of cardinals $(\kappa_{\alpha} : \alpha < \operatorname{cf}(\kappa))$ cofinal in κ such that $\kappa_{\alpha}^{\lambda} = \tau$ for all $\alpha < \operatorname{cf}(\kappa)$. In particular, $\tau^{\lambda} = \tau$.

Note that for each $\alpha < \operatorname{cf}(\kappa)$, $\kappa_{\alpha} < \prod_{i \in \operatorname{cf}(\kappa)} \kappa_i$, so also $\kappa = \sup_{\alpha} \kappa_{\alpha} \le \prod_{\alpha} \kappa_{\alpha}$. [Of course, it follows from König's lemma that in fact we have a strict inequality, but we only need this weaker estimate.]

We now have $\kappa^{\lambda} \leq (\prod_{\alpha} \kappa_{\alpha})^{\lambda} = \prod_{\alpha} \kappa_{\alpha}^{\lambda} = \prod_{\alpha} \tau = \tau^{\text{cf}(\kappa)} = \tau$. The other inequality is clear.

4. Finally, suppose that $cf(\kappa) \leq \lambda$, $2^{\lambda} < \kappa$, and $\rho \mapsto |\rho|^{\lambda}$ is not eventually constant as ρ approaches κ .

Notice that if $\rho < \kappa$ then $|\rho|^{\lambda} < \kappa$. Otherwise, $\mu^{\lambda} = (\mu^{\lambda})^{\lambda} \ge \kappa^{\lambda} \ge \mu^{\lambda}$ for any $\rho \le \mu < \kappa$, and the map $\rho \mapsto |\rho|^{\lambda}$ would be eventually constant below κ after all. Hence, $\tau = \kappa$.

Choose an increasing sequence of cardinals $(\kappa_{\alpha} : \alpha < cf(\kappa))$ cofinal in κ . Then

$$\kappa^{\lambda} \leq (\prod_{\alpha} \kappa_{\alpha})^{\lambda} = \prod_{\alpha} \kappa_{\alpha}^{\lambda} \leq \prod_{\alpha} \kappa = \kappa^{\mathrm{cf}(\kappa)}.$$

The other inequality is clear. \square

8

PROOF: The result is immediate from Theorem 18 if $\lambda < \kappa^+ = cf(\kappa^+)$. If, on the other hand, $\lambda \ge \kappa^+$ then certainly $\kappa^+ \le 2^{\lambda}$, and it is easy to see that both sides of the equation we want to prove equal 2^{λ} . \square

THEOREM 5.20

(i)
$$\kappa \le 2^{\lambda} \to \kappa^{\lambda} = 2^{\lambda}$$

(ii)
$$\mu < \kappa \wedge \mu^{\lambda} \ge \kappa \rightarrow \kappa^{\lambda} = \mu^{\lambda}$$

(iii)
$$\forall \mu \left(\mu < \kappa \rightarrow \mu^{\lambda} < \kappa \right) \rightarrow \lambda < \kappa$$

(iii) (a)
$$\lambda < cf \kappa \wedge \forall \mu (\mu < \kappa \rightarrow \mu^{\lambda} < \kappa) \rightarrow \kappa^{\lambda} = \kappa$$

(iii) (b)
$$cf \kappa \leq \lambda \wedge \forall \mu (\mu < \kappa \rightarrow \mu^{\lambda} < \kappa) \rightarrow \kappa^{\lambda} = \kappa^{cf \kappa}$$

(5.23) SINGULAR STRONG LIMIT CARDINAL

Let λ be a singular strong limit cardinal.

Prove that $2^{\lambda}=\lambda^{ ext{C}f\lambda}$

It has been a while since I had to prove anything relating to cardinals, and I am not sure where to start. A little push in the right direction would be very appreciated.

(Not homework)

(set-theory) (cardinals)

share improve this question

asked Feb 20 at 7:38

add a comment

ver

active oldest VO

Let $\langle \lambda_{\xi} \rangle_{\xi < \mathrm{cf} \, \lambda}$ be a cofinal sequence of λ . Since $\sum_{\xi < \mathrm{cf} \, \lambda} \lambda_{\xi} = \lambda$, we get

$$2^{\lambda} = 2^{\sum \lambda_{\xi}} = \prod_{\xi < \operatorname{cf} \lambda} 2^{\lambda_{\xi}} \leq \prod_{\xi < \operatorname{cf} \lambda} \lambda = \lambda^{\operatorname{cf} \lambda}$$

since $2^{\lambda_\xi} < \lambda$ for all $\xi < \mathrm{cf}\,\lambda$. (Check that λ is a strong limit.) In other direction, by König's lemm we get

$$\lambda^{\operatorname{cf}\lambda} = \left(\sum_{\xi < \operatorname{cf}\lambda} \lambda_{\xi}
ight)^{\operatorname{cf}\lambda} \leq \left(\prod_{\xi < \operatorname{cf}\lambda} 2^{\lambda}
ight)^{\operatorname{cf}\lambda} = 2^{\lambda \cdot \operatorname{cf}\lambda}.$$

It is easy to check that $\lambda_{\xi} < 2^{\lambda}$ for all $\xi < \operatorname{cf} \lambda$ and $2^{\lambda \cdot \operatorname{cf} \lambda} = 2^{\lambda}$.

THEOREM 5.22 (II)

 κ 가 limit cardinal 일 때, $2^{\lambda} < \kappa \land \nu < \kappa \rightarrow \nu^{\lambda} < \kappa$ 를 증명한다.

$$\nu \le 2^{\lambda}$$
인 경우는 간단하다. $\nu^{\lambda} \le \left(2^{\lambda}\right)^{\lambda} = 2^{\lambda} < \kappa$

 $2^{\lambda} < \nu$ 의 경우, 재귀적 귀납법에 의해 $\nu^{\lambda} \leq \max(\nu, \nu^+) = \nu^+ < \kappa$