Arbeitsunterlagen zu FOS ET (12.1 und 12.6)

Thomas Maul

Brühlwiesenschule, Hofheim

V 0.15 - im Aufbau Stand: 11. Oktober 2025

Für eigene Teile gilt:

Teil I

Themenfeld 12.1 - Gleichstromnetzanalyse

Zweipoltheorie (Pflicht)

Überlagerungsverfahren nach Helmholtz

(Pflicht)

Dreieck <-> Stern-Umwandlung (Pflicht)

Knoten- und Maschengleichungen (Pflicht)

Kreisstromverfahren (Pflicht)

Knotenspannungsverfahren (Pflicht)

Zweipole

In der Schaltung unten sollen die Widerstände R_3 bis R_5 als ein virtuelles Bauteil dargestellt werden.

Werte für Berechnung

$$egin{aligned} R_1 &= 10\Omega \ R_2 &= 20\Omega \ R_3 &= 30\Omega \ R_4 &= 40\Omega \ R_5 &= 50\Omega \ U_{q1} &= 5\,V, \ U_{q2} &= 12\,V \end{aligned}$$

Berechnung des Ersatzwiderstands

$$R_{45} = R4 + R5$$
 (1)
 $R_{45} = 40\Omega + 50\Omega$ (2)
 $R_{45} = 90\Omega$ (3)
 $\frac{1}{R_{3||45}} = \frac{1}{R_3} + \frac{1}{R_45}$ (4)
 $\frac{1}{R_{3||45}} = \frac{1}{30\Omega} + \frac{1}{90\Omega}$ (5)
 $R_{3||45} = 22,5\Omega$ (6)

Abbildung: Berechnung des Erstatwiderstands

Übungen zu Zweipole I

Berechnen Sie jeweils den Ersatzwiderstand zwischen den Klemmen C und D zur Schaltung unten.

a
$$R1 = R2 = 220\Omega R3 = R5 = 230\Omega R4 = 470\Omega$$

b
$$R1 = R2 = R3 = R5 = 230\Omega R4 = 470\Omega$$

c
$$R1 = R2 = R4 = R5 = 230\Omega R3 = 470\Omega$$

Abbildung: Schaltung zu Übung Ersatzzweipol - Teil 1

Übungen zu Zweipole II

Berechnen Sie jeweils den Ersatzwiderstand zwischen den Klemmen C und D zur Schaltung unten.

a
$$R1 = R2 = 220\Omega R3 = R5 = 230\Omega R4 = 470\Omega$$

b
$$R1 = R2 = R3 = R5 = 230\Omega R4 = 470\Omega$$

c
$$R1 = R2 = R4 = R5 = 230\Omega R3 = 470\Omega$$

Abbildung: Schaltung zu Übung Ersatzzweipol - Teil 2

Zweipoltheorie (Pflicht

Überlagerungsverfahren nach Helmholtz (Pflicht) Nur Quelle U1 aktiv Nur Quelle U2 aktiv

Dreieck <-> Stern-Umwandlung (Pflicht

Knoten- und Maschengleichungen (Pflicht

Kreisstromverfahren (Pflicht

Knotenspannungsverfahren (Pflicht)

Helmholtz

Zwei Spannungsquellen U1 und U2

Abbildung: Zwei Quellen aktiv

 $R1 = 10\Omega$, $R2 = 20\Omega$, $R3 = 30\Omega$, $R4 = 40\Omega$, $R5 = 50\Omega$

Nur Quelle U1 aktiv

Abbildung: Nur Quelle 1 aktiv

 $R1 = 10\Omega$, $R2 = 20\Omega$, $R3 = 30\Omega$, $R4 = 40\Omega$, $R5 = 50\Omega$

Berechnung Ersatzwiderstand I

$$U_{2'} = I_2 * R_2 ||R_3||R_4 + R_5 (7)$$

$$U_{2'} = I_2 * \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}$$
(8)

*l*₂ ist nicht bekannt.

$$U_{q1} = U_1 + U_2 (9)$$

$$U_{q1} = U_1 + U_2$$

$$U_2 = U_{q1} * \frac{R_2 ||R3||R45}{R! + R_2 ||R3||R45}$$
(10)

$$U_{2'} = U_{q1} * \frac{R_2||R3||R45}{R1 + R_2||R3||R45}$$
 (11)

$$U_{2'} = U_{q1} * \frac{\frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}}{R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_3 + R_5}}}$$
(12)

(13)

(14)

Einsetzen II

$$U_{2'} = U_{q1} * rac{R_2 ||R3||R45}{R1 + R_2 ||R3||R45}$$
 $U_{2'} = U_{q1} * rac{rac{1}{rac{1}{R_2} + rac{1}{R_3} + rac{1}{R_4 + R_5}}{R_1 + rac{1}{rac{1}{R_2} + rac{1}{R_3} + rac{1}{R_4 + R_5}}}$

$$U_{2'} = 5V * \frac{22,5\Omega}{10\Omega + 22,5\Omega}$$

$$U_{2'} = 5V * 0,69 ag{15}$$

$$U_{2'} = 3,46V ag{16}$$

Nur Quelle U2 aktiv

Abbildung: Nur Quelle zwei aktiv

 $R1 = 10\Omega$, $R2 = 20\Omega$, $R3 = 30\Omega$, $R4 = 40\Omega$, $R5 = 50\Omega$

Quelle 2, Einsetzen I

$$U_{2''} = U_{q2} * \frac{\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}{R_4 + R_5 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}$$

(18)

(17)

Quelle 2, Einsetzen II

$$U_{2''} = U_{q2} * \frac{\frac{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}}}{R_4 + R_5 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}}}$$
(19)

$$U_{2''} = 12 V * \frac{\frac{1}{10\Omega} + \frac{1}{20\Omega} + \frac{1}{30\Omega}}{40\Omega + 50\Omega + \frac{1}{10\Omega} + \frac{1}{10\Omega}}$$
(20)

$$U_{2''} = 0,24V (21)$$

Addition

Zum Abschluss werden die beiden Teilspannungen addiert.

$$U_2 = U_{2'} + U_{2''} \tag{22}$$

$$U_2 = 3,46V + 0,24V \tag{23}$$

$$U_2 = 3,7V$$
 (24)

Zweipoltheorie (Pflicht

Überlagerungsverfahren nach Helmholtz (Pflicht

Dreieck <-> Stern-Umwandlung (Pflicht)

Knoten- und Maschengleichungen (Pflicht

Kreisstromverfahren (Pflicht)

Knotenspannungsverfahren (Pflicht)

Messbrücke

Messbrücke

Messbrücke - Stern-Dreieck

 $R_{AC} = R3$ $R_{AB} = R6$ $R_{BC} = R5$

Umwandlung Dreieck -> Stern

Umwandlung Dreieck -> Stern

$$R_A = rac{R_{AC}R_{AB}}{R_{AC} + R_{AB} + R_{BC}}$$
 $R_B = rac{R_{AB}R_{BC}}{R_{AC} + R_{AB} + R_{BC}}$

$$R_C = \frac{R_{AC}R_{BC}}{R_{AC} + R_{AB} + R_{BC}}$$

Umwandlung - Stern- > Dreieck

Knotenspannung

Abbildung: Messbrücke

Umwandlung - Stern- > Dreieck

Abbildung: Messbrücke

$$R_{AB} = rac{R_A R_B}{R_C} + R_A + R_B$$
 $R_{AC} = rac{R_A R_C}{R_B} + R_A + R_C$ $R_{BC} = rac{R_B R_C}{R_A} + R_B + R_C$

Messbrücke

Abbildung: Messbrücke

$$egin{aligned} R_3 &= 330\Omega \ R_4 &= 330\Omega \ R_5 &= 560\Omega \ R_6 &= 390\Omega \ U_q &= 5 \ V \end{aligned}$$

 $R_4 = R_{Mess}$ gesucht: Strom und Spannung an R_6 , R_4 und R_5

 $R_1 = 220\Omega$ $R_2 = 470\Omega$

 $U_4 = 1.4 \text{ V}, \quad U_5 = 3.6 \text{ V}, \quad U_6 = 0.35 \text{ V}$

$$I_4 = 4,2 \text{ mA}, \quad I_5 = 3,3 \text{ mA}, \quad I_6 = 890 \mu A$$

 $R_1 = 220\Omega$ $R_2 = 470\Omega$

 $R_3 = 330\Omega$ $R_4 = 330\Omega$

 $R_5 = 560\Omega$

 $R_6 = 390\Omega$

 $U_{a} = 5 V$

Zweipoltheorie (Pflicht

Überlagerungsverfahren nach Helmholtz (Pflicht

Dreieck <-> Stern-Umwandlung (Pflicht)

Knoten- und Maschengleichungen (Pflicht)

Kreisstromverfahren (Pflicht

Knotenspannungsverfahren (Pflicht

Zweipoltheorie (Pflicht

Überlagerungsverfahren nach Helmholtz (Pflicht

Dreieck <-> Stern-Umwandlung (Pflicht)

Knoten- und Maschengleichungen (Pflicht)

Kreisstromverfahren (Pflicht)

Knotenspannungsverfahren (Pflicht

Zweipoltheorie (Pflicht

Überlagerungsverfahren nach Helmholtz (Pflicht

Dreieck <-> Stern-Umwandlung (Pflicht)

Knoten- und Maschengleichungen (Pflicht

Kreisstromverfahren (Pflicht)

Knotenspannungsverfahren (Pflicht)

00

Teil II

Themenfeld 12.6 - Elektrisches und magnetisches Feld

Teil II

Themenfeld 12.6 - Elektrisches und magnetisches Feld

Ladungen, Kräfte
Energieerhaltung und Einheit
Abmaße von Ladungen
Vektoren
Elektrische Feldstärke
Überlagerung von elektrischen Feldern

Kondensator (Pflicht)
Auf- und Entladung (Pflicht)
Induktion (Pflicht)
Magnetischer Fluss (Phi) (Pflicht)
Flussdichte (Pflicht)
Spule (Pflicht)
Ein- und Ausschaltvorgang (Pflicht)
Literatur

Elektronen und Atome

- Die Materie besteht aus Atomen.
- Kern: Protonen und Neutronen, Hülle: Elektronen
- Bei Leitern: Elektronen ,mobil', bei Nichtleitern fest(er)
- Reibung von 2 Nichtleitern (Stoff und Glasstab)⇒ Ladungstrennung

Abbildung: Katze mit Styroporflocken

¹Quelle: Von Original image: Sean McGrath from Saint John, NB, CanadaDerived image: Black Rainbow 999 - Diese Datei ist ein Ausschnitt aus einer anderen Datei, CC BY 2.0. https://commons.wikimedia.org/w/index.php?curid=60287175

Anziehung und Abstoßung von Ladungen

- gleichnamige Ladungen stoßen sich ab.
- ungleichnamige Ladungen ziehen sich an.
- bei Elektrostatik gibt es keine Bewegung, nur Kräfte

Energieerhaltung und Einheit
Abmaße von Ladungen
Vektoren
Elektrische Feldstärke
Überlagerung von elektrischen Feldern

Auf- und Entladung (Pflicht)
Auf- und Entladung (Pflicht)
Induktion (Pflicht)
Magnetischer Fluss (Phi) (Pflicht)
Flussdichte (Pflicht)
Spule (Pflicht)
Ein- und Ausschaltvorgang (Pflicht)
iteratur

Energieerhaltung und Einheit

- Energieerhaltung
- Elektrische Ladung Coulomb (C) gemessen
- 1C = 1As.
- Elementarladung $e = 1,602 * 10^{-19} C$
- Kräfte zwischen Ladungen
- Anziehung (+ -) und Abstoßung (+ +), (- -)

Energieerhaltung und Einheit
Abmaße von Ladungen
Vektoren
Elektrische Feldstärke
Überlagerung von elektrischen Feldern

Kondensator (Pflicht)
Auf- und Entladung (Pflicht)
Induktion (Pflicht)
Magnetischer Fluss (Phi) (Pflicht)
Flussdichte (Pflicht)
Spule (Pflicht)
Ein- und Ausschaltvorgang (Pflicht)

Abmaße von Ladungen

Linienladung dünne Linie, z.B. Draht Flächenladung gleichmäßig auf der Fläche Raumladung gleichmäßig im Raum

Punktlandung unendlich klein

Energieerhaltung und Einheit
Abmaße von Ladungen
Vektoren
Elektrische Feldstärke

Auf- und Entladung (Pflicht)
Auf- und Entladung (Pflicht)
Induktion (Pflicht)
Magnetischer Fluss (Phi) (Pflicht)
Flussdichte (Pflicht)
Spule (Pflicht)
Ein- und Ausschaltvorgang (Pflicht)

Vektoren

Abbildung: Zwei Vektoren in zweidimensionalen Raum

Addition von Vektoren

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ \vec{v'}_2 = \vec{v}_2 \ \text{und} \ \vec{v}_3 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

Abbildung: Zwei Vektoren in zweidimensionalen Raum

Kraft als Vektor, Spannung

- Kraft $\hat{=}$ Vektor
- Richtung, Betrag
- Addition
- Spannung $\widehat{=}$ Spannung zwischen 2 Punkten
- auch im Raum (E-Feld)

Energieerhaltung und Einheit
Abmaße von Ladungen
Vektoren
Elektrische Feldstärke

Auf- und Entladung (Pflicht)
nduktion (Pflicht)
Magnetischer Fluss (Phi) (Pflicht)
Flussdichte (Pflicht)
Spule (Pflicht)
Ein- und Ausschaltvorgang (Pflicht)

Ladungen, κταπε
Energieerhaltung und Einheit
Abmaße von Ladungen
Vektoren
Elektrische Feldstärke
Überlagerung von elektrischen Feldern

Kondensator (Pflicht)
Auf- und Entladung (Pflicht)
Induktion (Pflicht)
Magnetischer Fluss (Phi) (Pflicht)
Flussdichte (Pflicht)
Spule (Pflicht)
Ein- und Ausschaltvorgang (Pflicht)

Ladungen, Kraπe Energieerhaltung und Einheit Abmaße von Ladungen Vektoren Elektrische Feldstärke Überlagerung von elektrischen Feldern Kondensator (Pflicht)
Auf- und Entladung (Pflicht)

Induktion (Pflicht)

Magnetischer Fluss (Phi) (Pflicht)

Flussdichte (Pflicht)

Spule (Pflicht)

Ein- und Ausschaltvorgang (Pflicht)

Literatur

Ladungen, Kraffe Energieerhaltung und Einheit Abmaße von Ladungen Vektoren Elektrische Feldstärke Überlagerung von elektrischen Feldern Kondensator (Pflicht)
Auf- und Entladung (Pflicht)
Induktion (Pflicht)
Magnetischer Fluss (Phi) (Pflicht)
Flussdichte (Pflicht)
Spule (Pflicht)
Ein- und Ausschaltvorgang (Pflicht)

Ladungen, Krafte
Energieerhaltung und Einheit
Abmaße von Ladungen
Vektoren Elektrische Feldstärke Überlagerung von elektrischen Feldern Auf- und Entladung (Pflicht)
Induktion (Pflicht)
Magnetischer Fluss (Phi) (Pflicht)
Flussdichte (Pflicht)
Spule (Pflicht)
Ein- und Ausschaltvorgang (Pflicht)

Literatur

Wikibooks https://de.wikibooks.org/wiki/Elektrostatik

Marinescu, Marlene Elektrische und magnetische Felder, Eine praxisorientierte Einführung; A 3 (2012); Springer

Simulationsprogramm für Schaltungen:

Ngspice, GUI: KiCad https://www.kicad.org/