Advanced Calculus Summary

Mathematical Notes

October 19, 2025

Contents

1	Multivariable Functions				
	1.1	Limits and Continuity			
	1.2	Partial Derivatives			
	1.3	Clairaut's Theorem			
	1.4	Chain Rule for Multivariable Functions			
	1.5	Implicit Differentiation			
2	Dir	ectional Derivatives and Gradients			
	2.1	Directional Derivative			
	2.2	Gradient			
	2.3	Relationship			
	2.4	Properties of Gradient			
3	Tan	agent Planes and Linear Approximation			
	3.1	Tangent Plane			
	3.2	Linear Approximation			
	3.3	Total Differential			
4	Ma	ximum and Minimum Values			
	4.1	Critical Points			
	4.2	Second Derivative Test			
	4.3	Lagrange Multipliers			
5	Mu	ltiple Integrals			
	5.1	Double Integrals			
	5.2	Properties of Double Integrals			
	5.3	Polar Coordinates			
	5.4	Triple Integrals			
	5.5	Cylindrical Coordinates			
	5.6	Spherical Coordinates			
6	Vec	etor Fields			
	6.1	Definition			
	6.2	Gradient Fields			
	6.3	Divergence			
	C 1	Com			

7	Line Integrals 7						
	7.1	Line Integral of Scalar Function	7				
	7.2	Line Integral of Vector Field	7				
	7.3	Fundamental Theorem for Line Integrals	7				
	7.4	Independence of Path	7				
8	Gre	en's Theorem	7				
	8.1		7				
	8.2		7				
•	C .	S T	0				
9		0	8				
	9.1		8				
	9.2		8				
	9.3	Surface Integral of Scalar Function					
	9.4	Surface Integral of Vector Field	8				
10			8				
	10.1	Divergence Theorem (Gauss's Theorem)	8				
11	Stol	xes' Theorem	8				
			8				
10	a		_				
12			8				
		0	8				
		9	9				
	12.3	Weierstrass M-Test	9				
13	Pow	rer Series	9				
	13.1	Radius of Convergence	9				
		9	9				
11	Four	rier Series	9				
14			9				
		Fourier Series					
			9 9				
		Complex Form					
	14.4	Parseval's Theorem	U				
15	Part	ial Differential Equations 1	0				
		Heat Equation	0				
		Wave Equation	0				
		Laplace's Equation	0				
		Method of Separation of Variables					
10	C.	amlar. Amaluaia	^				
τρ		nplex Analysis 1					
		Complex Functions					
		Cauchy-Riemann Equations					
		Cauchy's Integral Theorem					
		Cauchy's Integral Formula					
	111111	DESIGNE THEOREM					

17	Important Theorems	11
	17.1 Mean Value Theorem for Integrals	11
	17.2 Fubini's Theorem	11
	17.3 Change of Variables	11
	17.4 Implicit Function Theorem	11
	Applications	11
	18.1 Optimization Problems	
	18.1 Optimization Problems	
		11

1 Multivariable Functions

1.1 Limits and Continuity

Definition 1.1. A function $f: \mathbb{R}^n \to \mathbb{R}$ has limit L at point \mathbf{a} if for every $\epsilon > 0$, there exists $\delta > 0$ such that:

$$0 < \|\mathbf{x} - \mathbf{a}\| < \delta \Rightarrow |f(\mathbf{x}) - L| < \epsilon$$

1.2 Partial Derivatives

Definition 1.2. The partial derivative of f(x,y) with respect to x is:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

1.3 Clairaut's Theorem

Theorem 1.1. If f has continuous second partial derivatives, then:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

1.4 Chain Rule for Multivariable Functions

Theorem 1.2. If z = f(x, y) where x = g(t) and y = h(t), then:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

1.5 Implicit Differentiation

For F(x, y, z) = 0:

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

2 Directional Derivatives and Gradients

2.1 Directional Derivative

Definition 2.1. The directional derivative of f at \mathbf{a} in direction \mathbf{u} is:

$$D_{\mathbf{u}}f(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{u}) - f(\mathbf{a})}{h}$$

2.2 Gradient

Definition 2.2. The gradient of f(x, y, z) is:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

2.3 Relationship

Theorem 2.1.

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$$

where \mathbf{u} is a unit vector.

2.4 Properties of Gradient

- ∇f points in the direction of maximum increase
- $|\nabla f|$ is the maximum rate of change
- ∇f is perpendicular to level curves/surfaces

3 Tangent Planes and Linear Approximation

3.1 Tangent Plane

For surface z = f(x, y) at point (a, b, f(a, b)):

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

3.2 Linear Approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

3.3 Total Differential

$$dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

4 Maximum and Minimum Values

4.1 Critical Points

Definition 4.1. A **critical point** of f(x,y) is a point (a,b) where either:

- $f_x(a,b) = 0$ and $f_y(a,b) = 0$, or
- $f_x(a,b)$ or $f_y(a,b)$ doesn't exist

4.2 Second Derivative Test

Theorem 4.1. Let $D = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$ at critical point (a,b):

- If D > 0 and $f_{xx}(a, b) > 0$, then (a, b) is a local minimum
- If D > 0 and $f_{xx}(a, b) < 0$, then (a, b) is a local maximum
- If D < 0, then (a, b) is a saddle point
- If D=0, the test is inconclusive

4.3 Lagrange Multipliers

Theorem 4.2. To find extrema of f(x, y, z) subject to constraint g(x, y, z) = k:

$$\nabla f = \lambda \nabla g$$

for some scalar λ .

5 Multiple Integrals

5.1 Double Integrals

Definition 5.1.

$$\iint_{R} f(x,y) \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$$

5.2 Properties of Double Integrals

- $\iint_R [f(x,y) + g(x,y)] dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA$
- $\iint_{R} cf(x,y) dA = c \iint_{R} f(x,y) dA$
- If $f(x,y) \ge g(x,y)$ on R, then $\iint_R f(x,y) dA \ge \iint_R g(x,y) dA$

5.3 Polar Coordinates

$$\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$

5.4 Triple Integrals

$$\iiint_E f(x, y, z) dV = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) dz dy dx$$

5.5 Cylindrical Coordinates

$$x = r \cos \theta, \quad y = r \sin \theta, \quad z = z$$

$$dV = r dz dr d\theta$$

5.6 Spherical Coordinates

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$
$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

6 Vector Fields

6.1 Definition

Definition 6.1. A vector field on \mathbb{R}^n is a function \mathbf{F} that assigns to each point \mathbf{x} a vector $\mathbf{F}(\mathbf{x})$.

6.2 Gradient Fields

Definition 6.2. A vector field **F** is **conservative** if $\mathbf{F} = \nabla f$ for some scalar function f.

6.3 Divergence

Definition 6.3.

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

6.4 Curl

Definition 6.4.

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

7 Line Integrals

7.1 Line Integral of Scalar Function

$$\int_C f(x, y, z) ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

7.2 Line Integral of Vector Field

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

7.3 Fundamental Theorem for Line Integrals

Theorem 7.1. If $\mathbf{F} = \nabla f$ and C is any curve from A to B, then:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A)$$

7.4 Independence of Path

Theorem 7.2. $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path if and only if \mathbf{F} is conservative.

8 Green's Theorem

8.1 Green's Theorem

Theorem 8.1.

$$\oint_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

where C is the positively oriented boundary of region D.

8.2 Area Using Green's Theorem

$$A = \frac{1}{2} \oint_C x \, dy - y \, dx$$

9 Surface Integrals

9.1 Parametric Surfaces

A surface S can be parametrized as:

$$\mathbf{r}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$$

9.2 Surface Area

$$A = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| \, dA$$

9.3 Surface Integral of Scalar Function

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

9.4 Surface Integral of Vector Field

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

10 Divergence Theorem

10.1 Divergence Theorem (Gauss's Theorem)

Theorem 10.1.

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{F} \nabla \cdot \mathbf{F} \, dV$$

where S is the boundary of solid region E.

11 Stokes' Theorem

11.1 Stokes' Theorem

Theorem 11.1.

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

where C is the boundary of surface S.

12 Sequences and Series of Functions

12.1 Pointwise Convergence

Definition 12.1. Sequence $\{f_n\}$ converges pointwise to f if:

$$\lim_{n\to\infty} f_n(x) = f(x) \text{ for each } x \in D$$

12.2 Uniform Convergence

Definition 12.2. Sequence $\{f_n\}$ converges uniformly to f if:

$$\lim_{n \to \infty} \sup_{x \in D} |f_n(x) - f(x)| = 0$$

12.3 Weierstrass M-Test

Theorem 12.1. If $|f_n(x)| \leq M_n$ for all $x \in D$ and $\sum M_n$ converges, then $\sum f_n(x)$ converges uniformly.

13 Power Series

13.1 Radius of Convergence

Theorem 13.1. For power series $\sum_{n=0}^{\infty} a_n (x-c)^n$:

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$$

13.2 Operations on Power Series

- Addition: $\sum a_n x^n + \sum b_n x^n = \sum (a_n + b_n) x^n$
- Multiplication: $(\sum a_n x^n)(\sum b_n x^n) = \sum c_n x^n$ where $c_n = \sum_{k=0}^n a_k b_{n-k}$
- Differentiation: $\frac{d}{dx}[\sum a_n x^n] = \sum na_n x^{n-1}$
- Integration: $\int [\sum a_n x^n] dx = \sum \frac{a_n}{n+1} x^{n+1} + C$

14 Fourier Series

14.1 Fourier Coefficients

For function f with period 2π :

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

14.2 Fourier Series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$$

14.3 Complex Form

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

9

where $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$

14.4 Parseval's Theorem

$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2)$$

15 Partial Differential Equations

15.1 Heat Equation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

15.2 Wave Equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

15.3 Laplace's Equation

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

15.4 Method of Separation of Variables

Assume solution of form u(x,t) = X(x)T(t) and substitute into PDE.

16 Complex Analysis

16.1 Complex Functions

Definition 16.1. A complex function is a function $f: \mathbb{C} \to \mathbb{C}$.

16.2 Cauchy-Riemann Equations

For f(z) = u(x, y) + iv(x, y) to be differentiable:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

16.3 Cauchy's Integral Theorem

Theorem 16.1. If f is analytic in simply connected domain D and C is a closed curve in D, then:

$$\oint_C f(z) \, dz = 0$$

16.4 Cauchy's Integral Formula

Theorem 16.2. If f is analytic inside and on simple closed curve C, then for any point a inside C:

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} \, dz$$

16.5 Residue Theorem

Theorem 16.3.

$$\oint_C f(z) dz = 2\pi i \sum \text{Res}(f, a_k)$$

where the sum is over all isolated singularities inside C.

17 Important Theorems

17.1 Mean Value Theorem for Integrals

Theorem 17.1. If f is continuous on [a, b], then there exists $c \in [a, b]$ such that:

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

17.2 Fubini's Theorem

Theorem 17.2. If f is continuous on rectangle $R = [a, b] \times [c, d]$, then:

$$\iint_{R} f(x,y) \, dA = \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx = \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy$$

17.3 Change of Variables

Theorem 17.3.

$$\iint_{R} f(x,y) dA = \iint_{S} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

17.4 Implicit Function Theorem

Theorem 17.4. If F(x,y) = 0 and $\frac{\partial F}{\partial y} \neq 0$ at (a,b), then there exists a function y = f(x) such that F(x,f(x)) = 0 near (a,b).

18 Applications

18.1 Optimization Problems

- Find extrema of functions of several variables
- Constrained optimization using Lagrange multipliers
- Applications in economics, physics, engineering

18.2 Volume and Surface Area

- Triple integrals for volume calculations
- Surface integrals for surface area
- Applications in geometry and physics

18.3 Flux and Circulation

- Line integrals for work and circulation
- Surface integrals for flux
- Applications in fluid dynamics and electromagnetism

18.4 Heat and Wave Propagation

- Fourier series for periodic phenomena
- PDEs for modeling physical processes
- Applications in physics and engineering