Math 557 Sep 3

Validities

Key Concepts

• Validity: An \mathcal{L} -formula ψ that is valid in any \mathcal{L} -structure under any assignment α , i.e.

$$\mathcal{M} \models \psi[\alpha]$$
 for any \mathcal{M}, α .

- Sources of validities:
 - Propositional tautologies e.g. formulas of the form $\psi \to \psi$ or $\psi \lor \neg \psi$
 - Equality the way = is interpreted implies formulas like $\forall x \ x = x$ are validities.
 - $\ \mathit{Quantifiers}$
- Fundamental questions:
 - Can we characterize the set of validities *syntactically*?
 - In particular, is there an algorithm that, on input φ , determines whether φ is a validity or not?

Problems

Exercise 0.1 (Warmup).

Determine whether the following formulas are validitites.

- $\begin{array}{ll} \bullet & ((\varphi_1 \rightarrow (\varphi_2 \rightarrow \varphi_3)) \rightarrow ((\varphi_1 \rightarrow \varphi_2) \rightarrow (\varphi_1 \rightarrow \varphi_3))) \\ \bullet & \exists x (\varphi \land \psi) \ \leftrightarrow \ (\exists x \varphi \land \exists x \psi) \end{array}$

Exercise 0.2.

Let $g:\{0,1\}^n \to \{0,1\}$ be a Boolean function. Show that there exists a propositional formula $F(p_1,\ldots,p_n)$ such that, for any assignment δ to the variables p_1, \dots, p_n ,

$$\delta^*(F) = g(\delta(p_1), \dots, \delta(p_n)).$$

Exercise 0.3.

Formally verify that every propositional tautology is a validity.

Exercise 0.4.

Verify, using the definition of the satisfaction relation \, that

$$\forall x, y(x = y \rightarrow f(x) = f(y))$$
 (f unary function symbol)

and

$$\forall x(\varphi \to \psi) \to (\varphi \to \forall x\psi) \quad (x \text{ not free in } \varphi)$$

are validities.