FONDAMENTI DI ELETTRONICA – INGEGNERIA BIOMEDICA

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) Il valore della resistenza R₄ e il punto di lavoro dei transistor M₁, M₂, M₃, M₄, M₅ e M₆ sapendo che $V_0=V_{DD}/2$ (considerare $\lambda_n=0$)
- 2) il guadagno di tensione differenziale ai piccoli segnali ac A_{vd}=v_o/v_{id};
- 3) il rapporto di reiezione del modo comune (CMRR) supponendo, solo in questo caso, che i M_4 e M_6 abbiano un parametro di modulazione della lunghezza di canale $\lambda_{n4,6}=0.002$ V⁻¹.

Dati: $V_{DD}=15 \text{ V}$, $V_{11}=V_{12}=6.5 \text{ V}$, $R_1=R_2=2 \text{ k}\Omega$, $R_3=2.045 \text{ k}\Omega$,

 $M_{1,2}$: k_{n1} =4 mA/V², V_{tn1} =1 V, λ_{n1} =0 V⁻¹,

 M_5 : $k_{p5}=2$ mA/ V^2 , $V_{tp5}=-1$ V, $\lambda_{p5}=0$ V^{-1}

 $M_{3,4,6}$: k_{n3} =4 mA/V², V_{tn3} =1 V, λ_{n3} =0.002 V⁻¹,

PROBLEMA P2

Dato il circuito riportato nella pagina seguente, che usa amplificatori operazionali e componenti passivi ideali:

- 1) ricavare l'espressione della funzione di trasferimento $H(s)=V_{out}(s)/V_{s}(s)$;
- tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di H(jω), usando, nel caso della fase, l'approssimazione senza discontinuità;
- 3) utilizzando il diagramma di Bode, determinare $v_{out}(t)$ quando $v_{in}(t)=V_{in}\cdot\cos(\omega_{in}\cdot t)$, con $V_{in}=0.25V$ e $\omega_{in}=10^3$ rad/s.

PROBLEMA Q1

Dato il circuito riportato nella figura sottostante, supponendo che l'amplificatore operazionale sia ideale, determinare lo stato dei diodi, le tensioni V_O e V_A e la corrente I_A erogata dal morsetto di uscita dell'operazionale quando $V_{IN} = -2 \ V$.

PROBLEMA Q2

Data la seguente mappa di Karnaugh;

- 1) Trovare una F minimizzata
- 2) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

	CD				
AB		00	01	11	10
·	00	1	0	0	1
	01	1	0	0	1
	11	1	1	1	0
	10	1	1	0	0