

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1 - 9. (Canceled)

- 10. (Previously Presented)** A coextrusion binder comprising:
- 5 to 30 parts of a polymer (A) comprising a blend of a polyethylene (A1) of relative density between 0.910 and 0.940 and of a polymer (A2) selected from the group consisting of elastomers, very low-density polyethylenes having a relative density of 0.860 to 0.880 and metallocene polyethylenes, wherein both (A1) and (A2) are grafted with an unsaturated carboxylic acid;
 - 95 to 70 parts of an ungrafted polyethylene (B) of relative density between 0.910 and 0.930;
 - the blend of (A) and (B) having:
 - a relative density of between 0.910 and 0.930,
 - a content of grafted unsaturated carboxylic acid between 30 and 10,000 ppm, and
 - an MFI (ASTM D 1238; 190°C/2.16 kg) between 0.1 and 3 g/10 min., MFI standing for the melt flow index.

11. (Previously Presented) A binder according to Claim 10, having a relative density of between 0.915 and 0.920.

12. (Previously Presented) A binder according to Claim 10, in which the comonomer of (A1), before grafting, is the same as that of (B).

13. (Previously Presented) A binder according to Claim 10, wherein:

- (A1) comprises at least 75 mol% of ethylene in the polyethylene and has an $MFI_2/[\eta]^{-8.77}$ ratio greater than 15 in absolute value;
- (A2) comprises at least 50 mol% of ethylene in the elastomer, very low-density polyethylene or metallocene polyethylene;
- (A2) has an $MFI_2/[\eta]^{-8.77}$ ratio greater than 15 in absolute value;

- (A) has an ethylene content not less than 70 mol%;
- the MFI₁₀/MFI₂ ratio is between 5 and 20, where MFI₂ is the melt flow index at 190°C under a load of 2.16 kg, measured according to ASTM D 1238, and MFI₁₀ is the melt flow index at 190°C under a load of 10 kg according to ASTM D 1238, the intrinsic viscosity [η] denoting the viscosity index in dl/g of a polymer measured in a decalin solution at 135°C.

14. (Previously Presented) A multilayer structure comprising a layer comprising the binder of Claim 10 and, directly attached to the latter, a layer (E) which is a layer of a nitrogen-containing or oxygen-containing polar resin or a metal layer.

15. (Currently Amended) A structure according to Claim 14, in which either a polyolefin layer (F) or the layer (E) or a metal layer is directly attached on the binder side.

16. (Previously Presented) A structure according to Claim 15, respectively comprising an HDPE layer, a first layer of said binder, a layer of EVOH or of an EVOH alloy, a second layer of said binder and an HDPE layer.

17. (Previously Presented) A rigid hollow body made of a structure according to Claim 14.

18. (Previously Presented) A gasoline tank comprising a structure according to Claim 16.

19. (Currently Amended) A multilayer structure of Claim 14, wherein layer (E) is a layer of a nitrogen-containing or oxygen-containing polar resin which is a polyamide, an aliphatic polyketone, a saponified ethylene-vinyl acetate copolymer or a polyester resin or a metal layer.

20. (Canceled)

21. (Previously Presented) A binder according to claim 10, wherein (A2) is a very low density polyethylene having a relative density selected in a manner whereby the blend of (A) and (B) has a relative density of 0.910 to 0.930.

22. (Previously Presented) A binder according to claim 10, wherein (A2) is a very low density polyethylene having a relative density selected in a manner whereby the blend of (A) and (B) has a relative density of 0.915 to 0.920.

23. (Previously Presented) A coextrusion binder comprising:

- 5 to 30 parts of a polymer (A) comprising a blend of a polyethylene (A1) of relative density between 0.910 and 0.940 and of a polymer (A2) selected from the group consisting of elastomers, very low-density polyethylenes having a relative density of 0.860 to 0.880 and metallocene polyethylenes, wherein both (A1) and (A2) are grafted with an unsaturated carboxylic acid or with a functional derivative of an unsaturated carboxylic acid;
- 95 to 70 parts of an ungrafted polyethylene (B) of relative density between 0.910 and 0.930;
- the blend of (A) and (B) having:
 - a relative density of between 0.910 and 0.930,
 - a content of grafted unsaturated carboxylic acid between 30 and 10,000 ppm, and
 - an MFI (ASTM D 1238; 190°C/2.16 kg) between 0.1 and 3 g/10 min., MFI standing for the melt flow index.

24. (Previously Presented) A binder according to claim 23, wherein the functional derivative of an unsaturated carboxylic acid is an anhydride, ester, amide, imide or a metal salt of an unsaturated carboxylic acid.

25. (Previously Presented) A binder according to claim 23, wherein the functional derivative of an unsaturated carboxylic acid is an anhydride of a dicarboxylic acid.

26. (Previously Presented) A binder according to claim 23, wherein the functional derivative of an unsaturated carboxylic acid is a C₁-C₈ alkyl ester or a glycidyl ester of an unsaturated carboxylic acid.

27. (Previously Presented) A binder according to claim 23, wherein the functional derivative of an unsaturated carboxylic acid is maleic anhydride.

28. (Previously Presented) A binder according to claim 23, wherein:

- (A1) comprises at least 75 mol% of ethylene in the polyethylene and has an MFI₂/[η]^{-8.77} ratio greater than 15 in absolute value;
- (A2) comprises at least 50 mol% of ethylene in the elastomer, very low-density polyethylene or metallocene polyethylene;
- (A2) has an MFI₂/[η]^{-8.77} ratio greater than 15 in absolute value;
- (A) has an ethylene content not less than 70 mol%;
- the MFI₁₀/MFI₂ ratio is between 5 and 20, where MFI₂ is the melt flow index at 190°C under a load of 2.16 kg, measured according to ASTM D 1238, and MFI₁₀ is the melt flow index at 190°C under a load of 10 kg according to ASTM D 1238, the intrinsic viscosity [η] denoting the viscosity index in dl/g of a polymer measured in a decalin solution at 135°C.

29. (Previously Presented) A multilayer structure comprising a layer comprising the binder of Claim 23 and, directly attached to the latter, a layer (E) which is a layer of a nitrogen-containing or oxygen-containing polar resin or a metal layer.

30. (Previously Presented) A rigid hollow body made of a structure according to Claim 29.

31. (New) A binder according to Claim 10, wherein (B) is a linear low-density polyethylene.

32. (New) A binder according to Claim 10, wherein
(A1) has an MFI (ASTM D 1238; 190°C/2.16 kg) between 0.1 and 8 g/10 min.,
(A2) has an MFI (ASTM D 1238; 190°C/2.16 kg) between 0.1 and 20 g/10 min., and

(B) has an MFI (ASTM D 1238; 190°C/2.16 kg) between 0.1 and 3 g/10 min., MFI standing for the melt flow index.

33. (New) A binder according to Claim 10, wherein (A2) is selected from the group consisting of elastomers and metallocene polyethylenes.

34. (New) A binder according to Claim 23, wherein (B) is a linear low-density polyethylene.

35. (New) A binder according to Claim 23, wherein
(A1) has an MFI (ASTM D 1238; 190°C/2.16 kg) between 0.1 and 8 g/10 min.,
(A2) has an MFI (ASTM D 1238; 190°C/2.16 kg) between 0.1 and 20 g/10 min., and
(B) has an MFI (ASTM D 1238; 190°C/2.16 kg) between 0.1 and 3 g/10 min., MFI standing for the melt flow index.

36. (New) A binder according to Claim 23, wherein (A2) is selected from the group consisting of elastomers and metallocene polyethylenes.