Egzamin JFTT

7.02.2016

- 1. $L_1 = \{\omega \in \{a, b, c\}^* : |\omega|_a = |\omega|_b \vee |\omega|_b = |\omega|_c\}$
- 2. $L_2 = \{xyx \in \{a,b\}^* : x \neq \varepsilon \land |x|_a \equiv |x|_b \pmod{5}\}$
- 3. $L_3 = (\{A, B, C\}, \{i, \diamond, \circ, \langle, \rangle\}, A, \{A \to i \diamond A | B, B \to B \circ C | C, C \to i | \langle A \rangle\})$

-SLR (FIRST, FOLLOW, zbiory sytuacji, tablica analizatora)

-operatorowy (tablica priorytetów wraz z jego uzasadnieniem)

1 Ad1

1.1 PDA

 $PDA = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{A, B, C, Z\}, \sigma, q_0, Z, \emptyset)$

σ	(a,A)	(a,B)	(a,C)	(a,Z)	(b,A)	(b,B)	(b,C)	(b,Z)	(c,A)	(c,B)	(c,C)	(c,Z)	$(\varepsilon, \mathbf{Z})$
q_0													(q_1,Z)
													(q_2,Z)
q_1	(q_1,AA)	(q_1, ε)		(q_1,A)	$(q_1,arepsilon)$	(q_1, BB)		(q_1,B)	(q_1,A)	(q_1, B)		$(q_1,arepsilon)$	(q_1, ε)
$\overline{q_2}$		(q_2,B)	(q_2,C)	(q_2, ε)		(q_2, BB)	$(q_2,arepsilon)$	(q_2, B)		$(q_2,arepsilon)$	(q_2,CC)	(q_2,C)	(q_2, ε)

Dla takiego automatu ze stosem, każde słowo którego $|\omega|_a = |\omega|_b$ zostanie zaakceptowane w stanie q_1 poprzez pusty stos. Analogicznie przypadek $|\omega|_b = |\omega|_c$ dla stanu q_2 . Każde inne słowo nie spełniające warunków języka L_1 w niedeterministycznym automacie na końcu będzie miało symbol z Σ na stosie.

1.2 Gramatyka

- $S \, \to S_1 \mid S_2$
- $S_1 \ \rightarrow CS_1aS_1bS_1C|CS_1bS_1aS_1C|C$
- $C \rightarrow Cc|\varepsilon$
- $\mathsf{S}_2 \ \to \mathsf{A} S_2 \mathsf{c} S_2 \mathsf{b} S_2 \mathsf{A} | \mathsf{A} S_2 \mathsf{b} \mathsf{S}_2 \mathsf{c} S_2 \mathsf{A} | \mathsf{A}$
- $A \rightarrow Aa|\varepsilon$

2 Ad2

2.1 LOP

Niech n z LOP. Wybieramy słowo $z=a^{2n}b^{2n}a^{2n}b^{2n}$ (2n a nie n, ponieważ dla pompowania podsłowa o długości n składajacego się ze znaków sufixu/prefixu zachowana by była struktura xyx). Rozpatrzy wszystkie możliwe podziały z=uvwxy takie, że $|uvx|\leqslant n$ oraz $|vx|\geqslant 1$.

- 1. Pompujemy tylko pierwszą grupę b lub drugą grupę a, dla i=0 słowo z' nie jest postaci z'=xyx , ponieważ nie nie możemy uzyskać prefixu równego sufixowi. Zatem $z' \notin L_2$.
- 2. Pompując pompując jednocześnie: pierwszą grupę a oraz b, pierwszą grupę b oraz drugą grupę a, drugą grupę a oraz b, również dla i=0 tracimy postać z'=xyx słowa z takiego samego powodu co poprzednio.Zatem $z'\notin L_2$.
- 3. Pompując tylko pierwszą grupę a lub drugą grupę b, dla i=2 słowo znowu traci postać z'=xyx ponieważ nie można doprodukować w sufiksie wystarczającej ilości jedynek odpowiadającej jej ilości w prefiksie. Więc $x' \notin L_2$.
- 4. Nie ma możliwości aby pompować jednocześnie pierwszy i drugi blok a bądź b, ponieważ rozdzielone są one między sobą podsłowami o długości > n.

Zatem dla każdego możliwego podziału słowo $z=uvwxy\in L_2$ $\exists i:z'=uv^iwx^iy\notin L_2$. Zatem język ten nie jest bezkontekstowy.

3 Ad3

3.1 FIRST

- $FIRST(i) = \{ i \}$
- $FIRST(\diamond) = \{\diamond\}$
- $FIRST(\circ) = \{\circ\}$
- $FIRST(\langle) = \{\langle\}\}$
- $FIRST(\rangle) = \{\rangle\}$
- $FIRST(A) = \{i, \langle\}$
- $FIRST(B) = \{i, \langle\}$
- $FIRST(C) = \{i, \langle\}$

3.2 FOLLOW

- $FOLLOW(A) = \{\$, \langle\}\}$
- $FOLLOW(B) = \{\$, \langle, \circ\}$
- $FOLLOW(C) = \{\$, \langle, \circ\}$

3.3 LL(1)

	i	\$	0	($ \rangle$	\$
A	$A \to i \diamond A$			$A \rightarrow B$		
	$A \to B$					
В	$B \to B \circ C$			$B \to B \circ C$		
	$B \to C$			$B \to C$		
С	$C \rightarrow i$			$C \to \langle A \rangle$		
	'				'	'

3.4 LEADING

- $LEADING(A) = \{i, \circ, \langle\}$
- $LEADING(B) = \{i, \circ, \langle\}$
- $LEADING(C) = \{i, \langle\}$

3.5 TRAILING

- $LEADING(A) = \{\diamond, \circ, i, \rangle\}$
- $LEADING(B) = \{\circ, i, \rangle\}$
- $LEADING(C) = \{i, \rangle\}$

3.6 Tabela priorytetów

i	$\mid i \mid$	\$	0	(\rangle	\$
i		$\dot{=}$	>		>	>
\Diamond	<		<	<	>	>
0	<		>	<	>	>
<	<		<	<	÷	>
\rangle			>		>	>
\$	<	<	<	<	<	

3.7 Zbiory sytuacji SLR

Wzbogacona gramatyka

- 0) $A' \rightarrow A$
- 1) $A \rightarrow i \diamond A$
- 2) $A \rightarrow B$
- 3) $B \rightarrow i \circ C$
- 4) $B \rightarrow C$

5)
$$C \rightarrow i$$

6)
$$C \rightarrow \langle A \rangle$$

 $I_0 = domkniecie(\{[A' \rightarrow A]\})$

$$A' \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} A$$

$$A \to {\bf .}i \diamond A$$

$$A \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} B$$

$$B \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} B \circ C$$

$$B \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} C$$

$$C \to {\bf I}i$$

$$C \to {\bf .}\langle A \rangle$$

 $I_1 = \text{przejście}(I_0, A)$

$$A' \to A_{\scriptscriptstyle{\bullet}}$$

 $I_2 = przejście(I_0,i)$

$$A \to i \: {\bf .} \: \diamond A$$

$$C \to i_{\bullet}$$

 $I_3 = \text{przejście}(I_0, B)$

$$A o B$$
 .

$$B \to B \ {\bf .} \circ C$$

 $I_4 = przejście(I_0,C)$

$$B \to C_{ullet}$$

 $I_5 = przejście(I_0, \langle)$

$$C \to \langle {}_{ullet}A \rangle$$

$$A \to {\bf .}i \diamond A$$

$$A \rightarrow {}_{ullet} B$$

$$B \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} B \circ C$$

$$B \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} C$$

$$C \to {\bf I}i$$

$$C \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \langle A \rangle$$

 $I_6 = przejście(I_2, \diamond)$

$$A \to i \diamond {}_{\bullet}A$$

$$A \to {\bf .}i \diamond A$$

$$A
ightarrow {ullet} B$$

$$B \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} B \circ C$$

$$B \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} C$$

$$C \to {\bf .}i$$

$$C \to {\bf .}\langle A \rangle$$

 $I_7 = \text{przejście}(I_3, \circ)$

$$B o B \circ {}_{ullet}C$$

$$C \rightarrow {\bf .}i$$

$$C \to {\bf .}\langle A \rangle$$

 $I_8 = \text{przejście}(I_5, A)$

$$C \to \langle A_{\scriptscriptstyle{\bullet}} \rangle$$

 $przejście(I_5,B) = I_3$

 $przejście(I_5,C) = I_4$

 $przejście(I_5,i) = I_2$

 $przejście(I_5, \langle) = I_5$

 $I_9 = \text{przejście}(I_6, A)$

$$A \to i \diamond A_{\bullet}$$

 $przejście(I_6,B) = I_3$

$$\begin{split} \operatorname{przej\acute{s}cie}(\operatorname{I}_6, C) &= \operatorname{I}_4 \\ \operatorname{przej\acute{s}cie}(\operatorname{I}_6, i) &= \operatorname{I}_2 \\ \operatorname{przej\acute{s}cie}(\operatorname{I}_6, \zeta) &= \operatorname{I}_5 \\ \operatorname{I}_{10} &= \operatorname{przej\acute{s}cie}(\operatorname{I}_7, C) \\ B &\rightarrow B \circ C \text{.} \\ \operatorname{I}_{11} &= \operatorname{przej\acute{s}cie}(\operatorname{I}_7, i) \\ C &\rightarrow i \text{.} \\ \operatorname{przej\acute{s}cie}(\operatorname{I}_7, \zeta) &= \operatorname{I}_5 \\ \operatorname{I}_{12} &= \operatorname{przej\acute{s}cie}(\operatorname{I}_8, \zeta) \\ C &\rightarrow \langle A \rangle \text{.} \end{split}$$

3.8 Tablica analizatora SLR

	i	♦	0	<	\rangle	\$	A	B	C
0	s_2			\mathbf{s}_5			1	3	4
1						acc			
2		s_6	\mathbf{r}_5		\mathbf{r}_5	\mathbf{r}_5			
3			s_7		\mathbf{r}_2	\mathbf{r}_2			
4			\mathbf{r}_4		\mathbf{r}_4	\mathbf{r}_4			
5	\mathbf{s}_2			\mathbf{s}_5			8	3	4
6	\mathbf{s}_2			\mathbf{r}_5			9	3	4
7	s_{11}		\mathbf{s}_5						10
8					s_{12}				
9					\mathbf{r}_1	\mathbf{r}_1			
10			\mathbf{r}_3		\mathbf{r}_3	\mathbf{r}_3			
11			\mathbf{r}_5		\mathbf{r}_5	\mathbf{r}_5			
12			\mathbf{r}_6		\mathbf{r}_6	\mathbf{r}_6			