Transformers and LLMs

Alex Olson

Language Models

- Estimates the likelihood of a sequence of words occurring
- To generate text, select the word most likely to appear next
- How do we estimate likelihood?
 By looking at lots of text
- Simple approach: look up the number of times a sequence occurs
- More sophisticated: Neural Networks

P(The, dog, and, the, cat) > P(The, dog, and, the, ostrich)

Large Language Models

- Latest models are capable of learning from much more data
- Both thanks to technological improvements, and a willingness to spend more money

Defining GPT

- 2018: Generative Pre-Trained Transformer
 - Key innovation in GPT was the training, not the model itself
- GPT-2 and GPT-3: Almost the same model, but with (way) more data
- GPT-4: Even larger, with an optional computer vision component
- Now: 40, 40-mini, 40-turbo, 01...

Deep Learning at a high level

 Now that we have a method to extract features from our symbols, we can use those representations to predict

- In many cases, feature extraction is the hard part, and prediction is comparatively easy (e.g. many vision problems)
- This is not really true for language, however

The Transformer, and Attention

- The current revolution in large language models is driven by a key innovation in deep learning first published in 2017: the transformer
- Transformers introduce a new concept in deep learning called attention
- Understanding these two concepts is critical to understanding why these models work so much better today

Encoder-Decoder Networks

Encoder-Decoder Networks


```
the die
word wortanzahl
count ist
is unterschiedlich
different
```

- Attention mechanism predicts how much each word depends on the words in the input
- By understanding this relationship, prediction power for text is greatly improved

	le	chien	blue
the	1		
blue		0.2	1
dog		1	0.2

 This dependency matrix can then be multiplied against the word embeddings to create new, contextual word embeddings

	wortanzahl	variiert
word	0.5	
count	0.5	
differs		1

Self-Attention

In models like ChatGPT, we
use self-attention — simply put,
the relationship is now
between the phrase and itself

Building GPT

Building GPT: The Transfomer

Building GPT

Building GPT: Attention

Building GPT: Attention

Building GPT: Attention

Building GPT

Building GPT: Top-P

Building GPT: Top-P

Top 10 documentaries about artificial intelligence:

1. AlphaGo (2017)

```
2017 = 96.15%

2016 = 2.79%

2018 = 0.88%

2015 = 0.07%

2019 = 0.03%
```

Building GPT

GPT's Training Data

- 1 token ≈ 3/4 word
- Some datasets are sampled more times than others
- Common Crawl: billions of webpages collected over 7 years
- Webtext2: Dataset of webpages that have been shared on Reddit
- Books1: Free ebooks (?)
- Books2: Secret!
- English Wikipedia

	Quantity	Weight in
Dataset	(tokens)	training mix

The training innovation of ChatGPT

Human annotators write answers to questions

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

The generalist GPT model is taught from these Q&A pairs

Human annotators write more answers, and someone else ranks them

A <u>separate</u> model learns to rate the quality of an answer

GPT writes answers to sampled questions

The reward model rates each answer, allowing GPT to keep learning

The training innovation of ChatGPT

Human annotators write answers to questions

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

The generalist GPT model is taught from these Q&A pairs

Human annotators write more answers, and someone else ranks them

A <u>separate</u> model learns to rate the quality of an answer

No more humans involved!

GPT writes answers to sampled questions

The reward model rates each answer, allowing GPT to keep learning