# An introduction to the *p*-adics

Siddharth Bhat

IIIT Theory group Seminar Saturday

October 10th, 2019

Analogy between:

■ Z,

#### Analogy between:

 $\blacksquare$   $\mathbb{Z}$ , where 3, 5, 7, ... are the "primes"

#### Analogy between:

- $\blacksquare$   $\mathbb{Z}$ , where 3, 5, 7, ... are the "primes"
- $\mathbf{C}[X]$ ,

#### Analogy between:

- $\blacksquare$   $\mathbb{Z}$ , where 3, 5, 7, ... are the "primes"
- $\blacksquare$   $\mathbb{C}[X]$ , where (x-a) are the "primes"

Remainder when dividing  $p(x) = x^3 + x^2 + x + 1$  by q(x) = x - 1?

Remainder when dividing 
$$p(x) = x^3 + x^2 + x + 1$$
 by  $q(x) = x - 1$ ? 
$$X - 1) \overline{ \begin{array}{c} X^2 + 2X + 3 \\ X^3 + X^2 + X + 1 \\ \underline{-X^3 + X^2} \\ 2X^2 + X \\ \underline{-2X^2 + 2X} \\ 3X + 1 \\ \underline{-3X + 3} \end{array} }$$

Remainder when dividing 
$$p(x) = x^3 + x^2 + x + 1$$
 by  $q(x) = x - 1$ ? 
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

$$p(1) = 1^3 + 1^2 + 1 + 1 = 4$$
. Coincidence?

Remainder when dividing 
$$p(x) = x^3 + x^2 + x + 1$$
 by  $q(x) = x - 1$ ?

$$(X-1) \overline{ (X^3 + X^2 + X + 1) \over -X^3 + X^2}$$

$$- X^3 + X^2 + X$$

$$- 2X^2 + 2X$$

$$- 2X^2 + 2X$$

$$- 3X + 1$$

$$- 3X + 3$$

$$4$$

$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$ . Coincidence?
- Factoring out q(x) = (x-1)

Remainder when dividing 
$$p(x) = x^3 + x^2 + x + 1$$
 by  $q(x) = x - 1$ ?
$$\frac{X^2 + 2X + 3}{2X^2 + 2X + 3}$$

$$\begin{array}{r}
X^{3} + X^{2} + X + 1 \\
-X^{3} + X^{2} \\
2X^{2} + X \\
-2X^{2} + 2X \\
3X + 1 \\
-3X + 3 \\
4
\end{array}$$

$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$ . Coincidence?
- Factoring out  $q(x) = (x-1) \simeq \text{setting } q(x) = 0$

Remainder when dividing 
$$p(x) = x^3 + x^2 + x + 1$$
 by  $q(x) = x - 1$ ?  
 $X^2 + 2X + 3$ 

$$\begin{array}{r}
X^{2} + 2X + 3 \\
X - 1) \overline{X^{3} + X^{2} + X + 1} \\
\underline{-X^{3} + X^{2}} \\
2X^{2} + X \\
\underline{-2X^{2} + 2X} \\
3X + 1 \\
\underline{-3X + 3} \\
4
\end{array}$$

$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$ . Coincidence?
- Factoring out  $q(x) = (x-1) \simeq \text{setting } q(x) = 0$ : remove q(x).

Remainder when dividing 
$$p(x) = x^3 + x^2 + x + 1$$
 by  $q(x) = x - 1$ ?  
 $X^2 + 2X + 3$ 

$$\begin{array}{r}
X^{2} + 2X + 3 \\
X - 1) \overline{\begin{array}{ccc}
X^{3} + X^{2} + X + 1 \\
- X^{3} + X^{2} \\
\hline
2X^{2} + X \\
- 2X^{2} + 2X \\
\hline
3X + 1 \\
- 3X + 3 \\
\hline
4
\end{array}$$

$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$ . Coincidence?
- Factoring out  $q(x) = (x-1) \simeq \text{setting } q(x) = 0$ : remove q(x).
- setting x-1=0, or setting x=1

Remainder when dividing  $p(x) = x^3 + x^2 + x + 1$  by q(x) = x - 1?

$$\begin{array}{r}
X^{2} + 2X + 3 \\
X - 1) \overline{) \begin{array}{cccc}
X^{3} & + X^{2} & + X + 1 \\
- X^{3} & + X^{2} & & \\
\hline
& 2X^{2} & + X \\
& - 2X^{2} + 2X \\
\hline
& 3X + 1 \\
& - 3X + 3 \\
\hline
& 4
\end{array}$$

$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$ . Coincidence?
- Factoring out  $q(x) = (x-1) \simeq \text{setting } q(x) = 0$ : remove q(x).
- setting x 1 = 0, or setting x = 1
- Substituting x = 1:  $p(1) = 1^3 + 1^2 + 1 + 1 = 4$

Remainder when dividing  $p(x) = x^3 + x^2 + x + 1$  by q(x) = x - 1?

$$\frac{X^{2} + 2X + 3}{X - 1}$$

$$\frac{X^{3} + X^{2} + 2X + 3}{X + 1}$$

$$\frac{-X^{3} + X^{2}}{2X^{2} + X}$$

$$\frac{-2X^{2} + 2X}{3X + 1}$$

$$\frac{-3X + 3}{4}$$

$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$ . Coincidence?
- Factoring out  $q(x) = (x-1) \simeq \text{setting } q(x) = 0$ : remove q(x).
- setting x 1 = 0, or setting x = 1
- Substituting x = 1:  $p(1) = 1^3 + 1^2 + 1 + 1 = 4$

remainder of p(x) on factoring  $(x-a) \simeq$  evaluation of  $p(x_0)$  at  $x_0 = a$ 

remainder of p(x) on factoring  $(x-a) \simeq$  evaluation of  $p(x_0)$  at  $x_0 = a$ 

remainder of p(x) on factoring  $(x-a)\simeq$  evaluation of  $p(x_0)$  at  $x_0=a$  evaluation of  $p(x_0)$  at  $x_0=a\simeq$  remainder of p(x) on factoring (x-a)

**10**(2)

remainder of p(x) on factoring  $(x-a)\simeq$  evaluation of  $p(x_0)$  at  $x_0=a$  evaluation of  $p(x_0)$  at  $x_0=a\simeq$  remainder of p(x) on factoring (x-a)

 $\blacksquare$  10(2) = remainder of 10 when factored by 2;

remainder of 
$$p(x)$$
 on factoring  $(x-a)\simeq$  evaluation of  $p(x_0)$  at  $x_0=a$  evaluation of  $p(x_0)$  at  $x_0=a\simeq$  remainder of  $p(x)$  on factoring  $(x-a)$ 

■ 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ 

remainder of 
$$p(x)$$
 on factoring  $(x-a)\simeq$  evaluation of  $p(x_0)$  at  $x_0=a$  evaluation of  $p(x_0)$  at  $x_0=a\simeq$  remainder of  $p(x)$  on factoring  $(x-a)$ 

■ 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- **10**(3)

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- $\blacksquare$  10(3) = remainder of 10 when factored by 3;

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- 10(3) = remainder of 10 when factored by 3;  $10 = 3 \cdot 3 + 1$

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- 10(3) = remainder of 10 when factored by 3;  $10 = 3 \cdot 3 + 1$ ; 10(3) = 1

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- $\blacksquare$  10(3) = remainder of 10 when factored by 3;  $10 = 3 \cdot 3 + 1$  ; 10(3) = 1
- **10**(5)

- $10(2) = \text{remainder of } 10 \text{ when factored by } 2; \ 10 = 2 \cdot 5 + 0; \ 10(2) = 0$
- $\blacksquare$  10(3) = remainder of 10 when factored by 3; 10 =  $3 \cdot 3 + 1$  ; 10(3) = 1
- $\blacksquare$  10(5) = remainder of 10 when factored by 5;

remainder of 
$$p(x)$$
 on factoring  $(x-a)\simeq$  evaluation of  $p(x_0)$  at  $x_0=a$  evaluation of  $p(x_0)$  at  $x_0=a\simeq$  remainder of  $p(x)$  on factoring  $(x-a)$ 

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- $\blacksquare$  10(3) = remainder of 10 when factored by 3; 10 =  $3 \cdot 3 + 1$  ; 10(3) = 1
- 10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- $\blacksquare$  10(3) = remainder of 10 when factored by 3; 10 =  $3 \cdot 3 + 1$  ; 10(3) = 1
- $\blacksquare$  10(5) = remainder of 10 when factored by 5; 10 = 5  $\cdot$  2 + 0 ; 10(5) = 0

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- $\blacksquare$  10(3) = remainder of 10 when factored by 3; 10 =  $3 \cdot 3 + 1$  ; 10(3) = 1
- $\blacksquare$  10(5) = remainder of 10 when factored by 5; 10 = 5  $\cdot$  2 + 0 ; 10(5) = 0
- **10**(7)

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- 10(3) = remainder of 10 when factored by 3;  $10 = 3 \cdot 3 + 1$  ; 10(3) = 1
- $\blacksquare$  10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- $\blacksquare$  10(7) = remainder of 10 when factored by 7;

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- 10(3) = remainder of 10 when factored by 3;  $10 = 3 \cdot 3 + 1$  ; 10(3) = 1
- $\blacksquare$  10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- $\blacksquare$  10(3) = remainder of 10 when factored by 3; 10 =  $3 \cdot 3 + 1$  ; 10(3) = 1
- $\blacksquare$  10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- $\blacksquare$  10(7) = remainder of 10 when factored by 7; 10 = 7  $\cdot$  1 + 3 ; 10(7) = 3

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- $\blacksquare$  10(3) = remainder of 10 when factored by 3; 10 =  $3 \cdot 3 + 1$  ; 10(3) = 1
- $\blacksquare$  10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- $\blacksquare$  10(7) = remainder of 10 when factored by 7; 10 = 7  $\cdot$  1 + 3 ; 10(7) = 3

- 10(2) = remainder of 10 when factored by 2;  $10 = 2 \cdot 5 + 0$ ; 10(2) = 0
- $\blacksquare$  10(3) = remainder of 10 when factored by 3; 10 =  $3 \cdot 3 + 1$  ; 10(3) = 1
- $\blacksquare$  10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- $\blacksquare$  10(7) = remainder of 10 when factored by 7; 10 = 7  $\cdot$  1 + 3 ; 10(7) = 3



# Why n(p): only primes?

- $\blacksquare$  10(5) = remainder of 10 when factored by 5; 10 = 5  $\cdot$  2 + 0 ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$

- $\blacksquare$  10(5) = remainder of 10 when factored by 5; 10 =  $5 \cdot 2 + 0$  ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) =

- $\blacksquare$  10(5) = remainder of 10 when factored by 5; 10 =  $5 \cdot 2 + 0$  ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);

- $\blacksquare$  10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0;

- $\blacksquare$  10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0

- $\blacksquare$  10(5) = remainder of 10 when factored by 5; 10 = 5  $\cdot$  2 + 0 ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- p(1) =

- 10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$ ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- lacksquare p(1) = remainder of p(x) when factored by (x-1);

- $10(5) = \text{remainder of } 10 \text{ when factored by } 5; \ 10 = 5 \cdot 2 + 0 \ ; \ 10(5) = 0$
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- p(1) = remainder of p(x) when factored by (x-1);
- p(x) = (x-1)(x-14) + 36;

- 10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- p(1) = remainder of p(x) when factored by (x-1);
- p(x) = (x-1)(x-14) + 36; p(1) = 36

- 10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$  ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- p(1) = remainder of p(x) when factored by (x-1);
- p(x) = (x-1)(x-14) + 36; p(1) = 36

- $\blacksquare$  10(5) = remainder of 10 when factored by 5; 10 = 5  $\cdot$  2 + 0 ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- p(1) = remainder of p(x) when factored by (x-1);
- p(x) = (x-1)(x-14) + 36; p(1) = 36

### Theorem (Fundamental theorem of algebra)

Every nonconstant polynomial  $p(x) \in \mathbb{C}[X]$  can be written uniquely (upto reordering) as a product of monic irreducibles of the form  $(x - z_i)$  for  $z_i \in C[X]$ .

$$p(x) = \pm 1 \prod_{i} (x - z_i)$$

- 10(5) = remainder of 10 when factored by 5;  $10 = 5 \cdot 2 + 0$ ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;  $10 = 7 \cdot 1 + 3$ ; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- p(1) = remainder of p(x) when factored by (x-1);
- p(x) = (x-1)(x-14) + 36; p(1) = 36

#### Theorem (Fundamental theorem of algebra)

Every nonconstant polynomial  $p(x) \in \mathbb{C}[X]$  can be written uniquely (upto reordering) as a product of monic irreducibles of the form  $(x - z_i)$  for  $z_i \in C[X]$ .

$$p(x) = \pm 1 \prod_{i} (x - z_i)$$

### Theorem (Fundamental theorem of arithmetic)

Every non-zero integer can be written uniquely (upto reordering) as a product of primes

$$n=\pm 1\prod_i p_i$$

■ What are the complex numbers?

- What are the complex numbers?
- $\blacksquare$   $\mathbb{R}$  with i:  $i^2 = -1$ .

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- **Equivalently:**  $\mathbb{R}[X]$

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- lacksquare Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- lacksquare Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .
- Left with only linear polynomials.

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .
- Left with only linear polynomials.
- All higher power polynomials h(x) are  $h(x) = p(x) \cdot q(x) + r(x)$

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .
- Left with only linear polynomials.
- All higher power polynomials h(x) are  $h(x) = p(x) \cdot q(x) + r(x)$  degree $(r) \leq 1$ .

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .
- Left with only linear polynomials.
- All higher power polynomials h(x) are  $h(x) = p(x) \cdot q(x) + r(x)$  degree $(r) \leq 1$ .
- **Example:**  $7x^2 + 5 = 7(x^2 + 1) 2$

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .
- Left with only linear polynomials.
- All higher power polynomials h(x) are  $h(x) = p(x) \cdot q(x) + r(x)$  degree $(r) \leq 1$ .
- **Example:**  $7x^2 + 5 = 7(x^2 + 1) 2$
- Sum of linear polynomials: (a+xb)+(c+xd)=(a+c)+x(b+d)

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .
- Left with only linear polynomials.
- All higher power polynomials h(x) are  $h(x) = p(x) \cdot q(x) + r(x)$  degree $(r) \leq 1$ .
- **Example:**  $7x^2 + 5 = 7(x^2 + 1) 2$
- Sum of linear polynomials: (a+xb)+(c+xd)=(a+c)+x(b+d)
- Product of linear polynomials:  $(a + xb) \cdot (c + xd) = ac + x(ad + bc) + bdx^2$

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .
- Left with only linear polynomials.
- All higher power polynomials h(x) are  $h(x) = p(x) \cdot q(x) + r(x)$  degree $(r) \leq 1$ .
- **Example:**  $7x^2 + 5 = 7(x^2 + 1) 2$
- Sum of linear polynomials: (a+xb)+(c+xd)=(a+c)+x(b+d)
- Product of linear polynomials:  $(a+xb)\cdot(c+xd) = ac + x(ad+bc) + bdx^2$
- dividing product by  $q(x) = x^2 + 1$ :

$$\frac{bd}{x^{2}+1} \underbrace{\frac{bdx^{2}+(1ad+1bc)x}{bdx^{2}+(ad+1bc)x} + ac}_{-bdd}$$

$$\underbrace{\frac{-bdx^{2}-bdx^{2}}{(1ad+1bc)x+(-1bd+1ac)}}_{-bdd}$$

- What are the complex numbers?
- $\mathbb{R}$  with i:  $i^2 = -1$ . That is,  $i^2 + 1 = 0$ .
- Equivalently:  $\mathbb{R}[X]$  divided by  $q(x) = x^2 + 1$ .
- Left with only linear polynomials.
- All higher power polynomials h(x) are  $h(x) = p(x) \cdot q(x) + r(x)$  degree $(r) \leq 1$ .
- **Example:**  $7x^2 + 5 = 7(x^2 + 1) 2$
- Sum of linear polynomials: (a+xb)+(c+xd)=(a+c)+x(b+d)
- Product of linear polynomials:  $(a+xb)\cdot(c+xd) = ac + x(ad+bc) + bdx^2$
- dividing product by  $q(x) = x^2 + 1$ :

$$\frac{bd}{x^{2}+1)} \underbrace{\frac{bdx^{2}+(1ad+1bc)x}{-bdx^{2}} + ac}_{-bd}$$
 
$$\underbrace{\frac{-bd}{(1ad+1bc)x+(-1bd+1ac)}}_{}$$

### This is what we expect: Complex multiplication

$$(a+bi)(c+di) = (ad+bc)i + (ac-bd)$$

■ Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x - x_0)^i$ 

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- $\blacksquare$  Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

The *p*-adic expansion of a natural number *n* is the unique decomposition  $n = \sum_i b_i p^i$  for  $0 \le b_i < p$ .

■ Taylor series of  $q(x) = x^3 - 7x^2 + 15x - 9$ 

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

The *p*-adic expansion of a natural number *n* is the unique decomposition  $n = \sum_i b_i p^i$  for  $0 \le b_i < p$ .

■ Taylor series of  $q(x) = x^3 - 7x^2 + 15x - 9$  at x = 3:

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

The *p*-adic expansion of a natural number *n* is the unique decomposition  $n = \sum_i b_i p^i$  for  $0 \le b_i < p$ .

■ Taylor series of  $q(x) = x^3 - 7x^2 + 15x - 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$ 

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

- Taylor series of  $q(x) = x^3 7x^2 + 15x 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3))$

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

- Taylor series of  $q(x) = x^3 7x^2 + 15x 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

- Taylor series of  $q(x) = x^3 7x^2 + 15x 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$  has a root at 3 of order 2

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

- Taylor series of  $q(x) = x^3 7x^2 + 15x 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$  has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3:

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

- Taylor series of  $q(x) = x^3 7x^2 + 15x 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$  has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3:  $72 = 0 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3$

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

- Taylor series of  $q(x) = x^3 7x^2 + 15x 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$  has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3:  $72 = 0 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3$
- $72 = 3^2 * (2 + 2 \cdot 3) = 3^2 * 2^3$

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

### Definition

- Taylor series of  $q(x) = x^3 7x^2 + 15x 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$  has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3:  $72 = 0 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3$
- $72 = 3^2 * (2 + 2 \cdot 3) = 3^2 * 2^3$
- 72 has a root at p = 3 of order 2

#### Taylor series

- Taylor series of  $q(x) \in \mathbb{C}[X]$  at  $x = x_0$ :  $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of  $n \in \mathbb{Z}$  at p prime:  $n = \sum_i b_i p^i$ .

#### Definition

The p-adic expansion of a natural number n is the unique decomposition  $n = \sum_i b_i p^i$  for  $0 \le b_i < p$ .

- Taylor series of  $q(x) = x^3 7x^2 + 15x 9$  at x = 3:  $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$  has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3:  $72 = 0 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3$
- $72 = 3^2 * (2 + 2 \cdot 3) = 3^2 * 2^3$
- 72 has a root at p = 3 of order 2

 $\blacksquare$  Consider -1.

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$
- $-1 \equiv 2 + 6 9 + 27 27$

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$
- $-1 \equiv 2 + 6 9 + 27 27$
- $-1 \equiv 2 + 6 + (27 9) 125$

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$
- $-1 \equiv 2 + 6 9 + 27 27$
- $-1 \equiv 2 + 6 + (27 9) 125$
- $-1 \equiv 2 + 6 + 100 125$

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$
- $-1 \equiv 2 + 6 9 + 27 27$
- $-1 \equiv 2 + 6 + (27 9) 125$
- $-1 \equiv 2 + 6 + 100 125$
- $-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + \cdots$

- $\blacksquare$  Consider -1.
- Goal: write  $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$ .
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$
- $-1 \equiv 2 + 6 9 + 27 27$
- $-1 \equiv 2 + 6 + (27 9) 125$
- $-1 \equiv 2 + 6 + 100 125$
- $-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + \cdots$

$$-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots .$$

$$-1 \equiv 2 \cdot 3^{0} + 2 \cdot 3^{1} + 2 \cdot 3^{2} + 2 \cdot 3^{3} + \cdots$$

$$-1 + 1 = 1 + 2 \cdot 3^{0} + 2 \cdot 3^{1} + 2 \cdot 3^{2} + 2 \cdot 3^{3} + \cdots$$

■ 
$$-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$$
  
■  $-1 + 1 = 1 + 2 \cdot 3^0 + +2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^1 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$ 

$$\begin{array}{l} \bullet \quad -1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots \\ \bullet \quad -1 + 1 = \mathbf{1} + \mathbf{2} \cdot \mathbf{3}^0 + + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots \\ \bullet \quad -1 + 1 = \mathbf{1} \cdot \mathbf{3}^1 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots \\ \bullet \quad -1 + 1 = \mathbf{1} \cdot \mathbf{3}^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots \\ \end{array}$$

■ 
$$-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$$
  
■  $-1 + 1 = 1 + 2 \cdot 3^0 + +2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^1 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^3 + 2 \cdot 3^3 + \cdots$ 

■ 
$$-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$$
  
■  $-1 + 1 = 1 + 2 \cdot 3^0 + +2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^1 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^3 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = \cdots$ 

■ 
$$-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$$
  
■  $-1 + 1 = 1 + 2 \cdot 3^0 + +2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^1 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = 1 \cdot 3^3 + 2 \cdot 3^3 + \cdots$   
■  $-1 + 1 = \cdots$   
■  $-1 + 1 = 0$ .

```
...22222
...00001 +
```

| 22222   | 1       |
|---------|---------|
|         | 22222   |
| 00001 + | 00001 + |
| ?????   |         |
|         | 0       |
|         |         |

| 22222   | 1       | 1       |
|---------|---------|---------|
|         | 22222   | 22222   |
| 00001 + | 00001 + | 00001 + |
|         |         |         |
| ?????   | 0       | 00      |
|         |         |         |

| 22222 | 1<br>22222<br>00001 + | 1<br>22222<br>00001 + | 22222 |
|-------|-----------------------|-----------------------|-------|
| ????? | 0                     | 00                    | 00000 |
|       |                       |                       |       |

|       | ŭ     |       |                  |
|-------|-------|-------|------------------|
| ????? | 0     | 00    | 00000            |
| 22222 | 22222 | 22222 | 22222<br>00001 + |

■ What is -1 is 2 - adically?

| 22222 | 22222 | 22222 | 22222 |
|-------|-------|-------|-------|
| ????? | 0     | 00    | 00000 |
|       |       |       |       |

- What is -1 is 2 adically?
- $-1 = \dots 11111$ .

- What is -1 is 2 adically?
- $-1 = \dots 11111$ .
- Same as 2's complement!

■ Evaluate 1/4 in the 3-adic system.

- Evaluate 1/4 in the 3-adic system.
- **1/4**

- Evaluate 1/4 in the 3-adic system.
- 1/4 = 1/(1+3)

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + 2 \cdot 3^5 + 2 \cdot 3^7 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + 2 \cdot 3^5 + 2 \cdot 3^7 + \cdots$
- $\blacksquare$  Similar cleverness produces 1/p for any rational.

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + 2 \cdot 3^5 + 2 \cdot 3^7 + \cdots$
- $\blacksquare$  Similar cleverness produces 1/p for any rational.

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

- Let  $x = a_0 + a_1 p + a_2 p^2 + \dots$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

Let 
$$-1 = \sum_i a_i 3^i$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x-a_0-a_1p\equiv a_2p^2 \ (\bmod \ p^3)$$

■ Let 
$$-1 = \sum_i a_i 3^i$$

■ Let 
$$-1 = a_0 \pmod{3}$$

Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let 
$$-1 = \sum_i a_i 3^i$$

■ Let  $-1 = a_0 \pmod{3}$ ;  $a_0 = 2 \pmod{3}$ 

Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$x \equiv a_0 + a_1 p \pmod{p^2}$$

Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

Let 
$$-1 = \sum_i a_i 3^i$$

■ Let 
$$-1 = a_0 \pmod{3}$$
;  $a_0 = 2 \pmod{3}$ 

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

- Let  $-1 = \sum_i a_i 3^i$
- Let  $-1 = a_0 \pmod{3}$ ;  $a_0 = 2 \pmod{3}$
- Let  $-1 = 2 + a_1 \cdot 3 \pmod{9}$ ;  $-3 = a_1 \cdot 3 \pmod{9}$ ;

Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

Let 
$$-1 = \sum_i a_i 3^i$$

■ Let 
$$-1 = a_0 \pmod{3}$$
;  $a_0 = 2 \pmod{3}$ 

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

Let 
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.5cm} \mathsf{Let} \hspace{0.1cm} -1 = a_{\mathbf{0}} \hspace{0.2cm} (\bmod \hspace{0.1cm} 3); \hspace{0.1cm} a_{\mathbf{0}} = 2 \hspace{0.2cm} (\bmod \hspace{0.1cm} 3)$$

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let 
$$1/4 = \sum_{i} a_{i} 3^{i}$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

Let 
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.5cm} \mathsf{Let} \hspace{0.1cm} -1 = a_{\mathbf{0}} \hspace{0.2cm} (\bmod \hspace{0.1cm} 3); \hspace{0.1cm} a_{\mathbf{0}} = 2 \hspace{0.2cm} (\bmod \hspace{0.1cm} 3)$$

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

Let 
$$1/4 = \sum_i a_i 3^i$$

■ What defines 1/4?

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

Let 
$$-1 = \sum_i a_i 3^i$$

■ Let 
$$-1 = a_0 \pmod{3}$$
;  $a_0 = 2 \pmod{3}$ 

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let 
$$1/4 = \sum_{i} a_{i} 3^{i}$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

Let 
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.1in} \mathsf{Let} \hspace{0.1in} -1 = a_{\boldsymbol{0}} \hspace{0.1in} (\bmod \hspace{0.1in} 3); \hspace{0.1in} a_{\boldsymbol{0}} = 2 \hspace{0.1in} (\bmod \hspace{0.1in} 3)$$

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let 
$$1/4 = \sum_{i} a_{i} 3^{i}$$

$$\qquad \qquad \bullet \quad (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

Let 
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.5cm} \mathsf{Let} \hspace{0.1cm} -1 = a_{\mathbf{0}} \hspace{0.2cm} (\bmod \hspace{0.1cm} 3); \hspace{0.1cm} a_{\mathbf{0}} = 2 \hspace{0.2cm} (\bmod \hspace{0.1cm} 3)$$

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let 
$$1/4 = \sum_{i} a_i 3^i$$

$$\qquad \qquad (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

$$a_0 \cdot 1 \equiv 1 \pmod{3}$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

Let 
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.5cm} \mathsf{Let} \hspace{0.1cm} -1 = a_{\mathbf{0}} \hspace{0.2cm} (\bmod \hspace{0.1cm} 3); \hspace{0.1cm} a_{\mathbf{0}} = 2 \hspace{0.2cm} (\bmod \hspace{0.1cm} 3)$$

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let 
$$1/4 = \sum_{i} a_i 3^i$$

$$\qquad \qquad (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

$$a_0 \cdot 1 \equiv 1 \pmod{3} a_0 = 1.$$

Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

Let 
$$-1 = \sum_i a_i 3^i$$

■ Let 
$$-1 = a_0 \pmod{3}$$
;  $a_0 = 2 \pmod{3}$ 

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let 
$$1/4 = \sum_{i} a_i 3^i$$

$$\qquad \qquad (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

$$(1+3a_1)(1+3) \equiv 1 \pmod{9}$$

Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

Let 
$$-1 = \sum_i a_i 3^i$$

■ Let 
$$-1 = a_0 \pmod{3}$$
;  $a_0 = 2 \pmod{3}$ 

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let 
$$1/4 = \sum_{i} a_i 3^i$$

$$\qquad \qquad \bullet \quad (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

Let 
$$-1 = \sum_i a_i 3^i$$

■ Let 
$$-1 = a_0 \pmod{3}$$
;  $a_0 = 2 \pmod{3}$ 

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let 
$$1/4 = \sum_{i} a_{i} 3^{i}$$

$$\qquad \qquad \bullet \quad (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

$$3a_1 \equiv -3 \equiv 6 \pmod{9}$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

Let 
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.5cm} \mathsf{Let} \hspace{0.1cm} -1 = a_{\mathbf{0}} \hspace{0.2cm} (\bmod \hspace{0.1cm} 3); \hspace{0.1cm} a_{\mathbf{0}} = 2 \hspace{0.2cm} (\bmod \hspace{0.1cm} 3)$$

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

Let 
$$1/4 = \sum_i a_i 3^i$$

■ What defines 
$$1/4$$
? The equation  $1/4 \cdot 4 = 1$ .

$$3a_1 \equiv -3 \equiv 6 \pmod{9}$$

$$a_1 \equiv 2 \pmod{9}$$

• Let 
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

Let 
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.1in} \mathsf{Let} \hspace{0.1in} -1 = a_{\boldsymbol{0}} \hspace{0.1in} (\bmod \hspace{0.1in} 3); \hspace{0.1in} a_{\boldsymbol{0}} = 2 \hspace{0.1in} (\bmod \hspace{0.1in} 3)$$

■ Let 
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;  
 $-3 = a_1 \cdot 3 \pmod{9}$ ;  $6 = a_1 \cdot 3 \pmod{9}$ ;  
 $a_1 = 2$ 

■ Let 
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

Let 
$$1/4 = \sum_i a_i 3^i$$

■ What defines 
$$1/4$$
? The equation  $1/4 \cdot 4 = 1$ .

$$a_1 \equiv 2 \pmod{9}$$

$$1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \dots$$

#### **Irrationals**

Let's solve  $X^2 = 2$  in the 7—adics.

#### **Irrationals**

- Let's solve  $X^2 = 2$  in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.

#### **Irrationals**

- Let's solve  $X^2 = 2$  in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.
- Start with  $X \equiv 3 \pmod{7}$ ,  $X \equiv 4 \equiv -3 \pmod{7}$ .

■ Intuition: higher powers of *p* should become "smaller" for convergence!

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $|a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$

- Intuition: higher powers of p should become "smaller" for convergence!
- $|a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$

- Intuition: higher powers of p should become "smaller" for convergence!
- $|a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

$$|10|_3 = 3^{-0} = 1$$

$$|3|_3 = 3^{-1} = 1/3$$

$$|9|_3 = 3^{-2} = 1/9$$

- Intuition: higher powers of p should become "smaller" for convergence!
- $|a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

$$|10|_3 = 3^{-0} = 1$$

$$|3|_3 = 3^{-1} = 1/3$$

$$|9|_3 = 3^{-2} = 1/9$$

$$|90|_3 = 3^{-2} = 1/9$$

#### Convergence

- Intuition: higher powers of p should become "smaller" for convergence!
- $|a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

$$|10|_3 = 3^{-0} = 1$$

$$|3|_3 = 3^{-1} = 1/3$$

$$|9|_3 = 3^{-2} = 1/9$$

$$|90|_3 = 3^{-2} = 1/9$$

$$|27|_3 = 3^{-3} = 1/27$$

#### Convergence

- Intuition: higher powers of p should become "smaller" for convergence!
- $|a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

$$|10|_3 = 3^{-0} = 1$$

$$|3|_3 = 3^{-1} = 1/3$$

$$|9|_3 = 3^{-2} = 1/9$$

$$|90|_3 = 3^{-2} = 1/9$$

$$|27|_3 = 3^{-3} = 1/27$$

$$|a+b|_p \leq |a|_p + |b|_p$$
?

#### Convergence

- Intuition: higher powers of p should become "smaller" for convergence!
- $|a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

$$|10|_3 = 3^{-0} = 1$$

$$|3|_3 = 3^{-1} = 1/3$$

$$|9|_3 = 3^{-2} = 1/9$$

$$|90|_3 = 3^{-2} = 1/9$$

$$|27|_3 = 3^{-3} = 1/27$$

$$|a+b|_p \leq |a|_p + |b|_p$$
?

■ Solve 
$$x = 1 + 3x$$

- Solve x = 1 + 3x
- Non scam:-2x = 1

- Solve x = 1 + 3x
- Non scam:-2x = 1; x = -1/2
- $x_0 = 1$

■ Solve 
$$x = 1 + 3x$$

■ Non scam:
$$-2x = 1$$
;  $x = -1/2$ 

$$x_0 = 1$$

$$x_1 = 1 + 3$$

$$x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$$

■ Solve 
$$x = 1 + 3x$$

■ Non scam:
$$-2x = 1$$
;  $x = -1/2$ 

$$x_0 = 1$$

$$x_1 = 1 + 3$$

$$x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$$

$$x_i = 1 + 3 + 3^2 + \cdots + 3^i$$

■ Solve 
$$x = 1 + 3x$$

■ Non scam:
$$-2x = 1$$
;  $x = -1/2$ 

$$x_0 = 1$$

$$x_1 = 1 + 3$$

$$x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$$

$$x_i = 1 + 3 + 3^2 + \cdots + 3^i$$

$$x_{\infty} = 1/(1-3) = -1/2$$

 $\blacksquare$  Converges? We need |3|<1

■ Solve 
$$x = 1 + 3x$$

■ Non scam:
$$-2x = 1$$
;  $x = -1/2$ 

$$x_0 = 1$$

$$x_1 = 1 + 3$$

$$x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$$

$$x_i = 1 + 3 + 3^2 + \cdots + 3^i$$

$$x_{\infty} = 1/(1-3) = -1/2$$

$$\blacksquare$$
 Converges? We need  $|3|<1$ 

$$\blacksquare$$
 But it is!  $|3|_3<1$ 

■ Solve 
$$x = 1 + 3x$$

■ Non scam:
$$-2x = 1$$
;  $x = -1/2$ 

$$x_0 = 1$$

$$x_1 = 1 + 3$$

$$x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$$

$$x_i = 1 + 3 + 3^2 + \cdots + 3^i$$

$$x_{\infty} = 1/(1-3) = -1/2$$

$$\blacksquare$$
 Converges? We need  $|3|<1$ 

$$\blacksquare$$
 But it is!  $|3|_3<1$ 





• f(x): continuous, non-zero at  $x = x_0$ .



- f(x): continuous, non-zero at  $x = x_0$ .
- f(x): locally invertible at  $x = x_0$ .



- f(x): continuous, non-zero at  $x = x_0$ .
- f(x): locally invertible at  $x = x_0$ .



consider 4.



- consider 4.
- nonzero at  $a_0 = 6$ :  $4 \simeq 4 \pmod{6}$



- consider 4.
- nonzero at  $a_0 = 6$ :  $4 \simeq 4 \pmod{6}$
- not invertible modulo 6:  $[0,1,2,3,4,5]\times 4 \equiv [0,4,8,12,16,20] \equiv [0,4,2,0,4,2] \; (\text{mod } 6)$



- consider 4
- nonzero at  $a_0 = 6$ :  $4 \simeq 4 \pmod{6}$
- not invertible modulo 6:  $[0,1,2,3,4,5] \times 4 \equiv [0,4,8,12,16,20] \equiv [0,4,2,0,4,2] \pmod{6}$
- If we want 4 to be a continuous function



- consider 4
- nonzero at  $a_0 = 6$ :  $4 \simeq 4 \pmod{6}$
- not invertible modulo 6:  $[0, 1, 2, 3, 4, 5] \times 4 \equiv [0, 4, 8, 12, 16, 20] \equiv [0, 4, 2, 0, 4, 2] \pmod{6}$
- If we want 4 to be a *continuous* function
- then 6 should not be a point!

