CS154

Pumping Lemma, Minimizing DFAs

CS154

Homework 1 is due!
(11:59pm tonight...)
Homework 2 will appear
this afternoon

The Pumping Lemma: Structure in Regular Languages

Let L be a regular language

Then there is a positive integer P s.t.

for all strings $w \in L$ with $|w| \ge P$ there is a way to write w = xyz, where:

- 1. |y| > 0 (that is, $y \neq \varepsilon$)
- 2. $|xy| \leq P$
- 3. For all $i \ge 0$, $xy^iz \in L$

Why is it called the pumping lemma? The word w gets pumped into longer and longer strings...

Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where w ∈ L and |w| ≥ P

We show:
$$w = xyz$$

1.
$$|y| > 0$$

3. $xy^iz \in L$ for all $i \ge 0$

There must exist j and k such that $0 \le j < k \le P$, and $q_j = q_k$

Applying the Pumping Lemma

Let's prove that $B = \{0^n1^n \mid n \ge 0\}$ is not regular

By contradiction. Assume B is regular.

Let P be the number of states in a DFA for B.

Let $w = 0^P 1^P$

By the pumping lemma, there is a way to write w as w = xyz, |y| > 0, $|xy| \le P$, and for all $i \ge 0$, xy^iz is *also* in B

Claim: The string y must be all zeroes.

Why? Because $|xy| \le P$ and $w = xyz = 0^P1^P$

But then xyyz has more 0s than 1s Contradiction!

Applying the Pumping Lemma

By the pumping lemma, can write w = xyz, |y| > 0, $|xy| \le P$, where for any $i \ge 0$, xy^iz is *also* in C

Note that $|xy| \le P$, w = xyz, and $w = 0^P 1^P$ Therefore y must be all zeroes.

But then xyyz has more 0s than 1s

Contradiction!

Applying the Pumping Lemma

Theorem:

 $B = \{0^{n^2} \mid n \ge 0\}$ is not regular

Assume B is regular. Let $w = 0^{P^2}$

By the pumping lemma, we can write w = xyz, |y| > 0, $|xy| \le P$, and for any $i \ge 0$, xy^iz is *also* in B

So we have $xyyz \in B$. Note that $xyyz = 0^{p^2 + |y|}$

Observe that $0 < |y| \le P$

therefore
$$P^2 + |y| \le P^2 + P < P^2 + 2P + 1 = (P+1)^2$$

$$P^2 < P^2 + |y| < (P+1)^2$$

therefore $P^2 + |y|$ is not a perfect square!

Hence $0^{p^2+|y|} = xyyz \notin B$, so our assumption must be false.

That is, B is not regular!

Does this DFA have a minimal number of states?

NO

Is this minimal?

Theorem

For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M* such that L = L(M*).

Furthermore, there is an *efficient* algorithm which, given any DFA M, will output this unique M*.

There isn't a uniquely minimal NFA

Extending the transition function δ

Given DFA M = (Q, Σ , δ , q₀, F), we extend δ to a function $\Delta : \mathbb{Q} \times \Sigma^* \to \mathbb{Q}$ as follows:

$$\Delta(q, \varepsilon) = q$$

 $\Delta(q, \sigma) = \delta(q, \sigma)$

$$\Delta(q, \sigma_1 ... \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 ... \sigma_k), \sigma_{k+1})$$

 $\Delta(q, w)$ = the state of M reached after starting in state q and reading in w

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff

$$\Delta(q_1, w) \in F \iff \Delta(q_2, w) \notin F$$

Extending the transition function δ

Given DFA M = (Q, Σ , δ , q₀, F), we extend δ to a function $\Delta : \mathbb{Q} \times \Sigma^* \to \mathbb{Q}$ as follows:

$$\Delta(q, \epsilon) = q$$

$$\Delta(q, \sigma) = \delta(q, \sigma)$$

$$\Delta(q, \sigma_1 ... \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 ... \sigma_k), \sigma_{k+1})$$

 $\Delta(q, w)$ = the state of M reached after starting in state q and reading in w

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly *one* of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state

Distinguishing two states

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly *one* of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state

I'm in q₁ or q₂, but which? How can I tell?

Distinguishing two states

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly *one* of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state

Fix M = (Q, Σ , δ , q₀, F) and let p, q \in Q

Definition:

State p is *distinguishable* from state q iff some $w \in \Sigma^*$ distinguishes p and q iff there is a string $w \in \Sigma^*$ so that exactly *one* of $\Delta(p, w)$, $\Delta(q, w)$ is a final state

State p is *indistinguishable* from state q iff p is not distinguishable from q iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \Leftrightarrow \Delta(q, w) \in F$

Pairs of indistinguishable states are redundant... they lead to the same accept/reject behavior!

ε distinguishes accept states and non-accept states

The string 10 distinguishes q0 and q3

The string 0 distinguishes q1 and q2

Fix M = (Q, Σ, δ, q_0 , F) and let p, q, $r \in Q$

Define a binary relation ~ on the states of M:

p ~ q iff p is indistinguishable from qp ≁ q iff p is distinguishable from q

Proposition: ∼ is an equivalence relation

p ~ p (reflexive)

 $p \sim q \Rightarrow q \sim p$ (symmetric)

 $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Proof?

Fix M = (Q, Σ , δ , q₀, F) and let p, q, r \in Q

Therefore, the relation ~ partitions Q into disjoint equivalence classes

Proposition: ~ is an equivalence relation
[q] := { p | p ~ q }

Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

 $L(M) = L(M_{MIN})$

M_{MIN} has no *inaccessible* states

M_{MIN} is *irreducible*

For all states $p \neq q$ of M_{MIN} , p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M

Intuition: States of M_{MIN} will be the *equivalence classes* of states of M

We'll uncover these equivalent states with a *dynamic programming* algorithm

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1)
$$D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$$

(2)
$$EQUIV_M = \{ [q] | q \in Q \}$$

High-Level Idea:

- We know how to find those pairs of states that the string ε distinguishes...
- Use this and iteration to find those pairs distinguishable with longer strings
- The pairs of states left over will be indistinguishable

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$

(2) $EQUIV_{M} = \{ [q] | q \in Q \}$

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1)
$$D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not \sim q \}$$

(2)
$$EQUIV_M = \{ [q] | q \in Q \}$$

Base Case: For all (p, q) such that p accepts and q rejects $\Rightarrow p \not\sim q$

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

$$\delta (\mathbf{p}, \sigma) = \mathbf{p}'$$

$$\delta (\mathbf{q}, \sigma) = \mathbf{q}'$$

$$\delta (\mathbf{q}, \sigma) = \mathbf{q}'$$
Mark
$$\mathbf{p} \nsim \mathbf{q}$$

Repeat until no more D's can be added

Claim: If (p, q) is marked D by the Table-Filling algorithm, then p ≁ q

Proof: By induction on the length of the string distinguishing p and q.

If (p, q) is marked D at the start, then one's in F and one isn't, so ε distinguishes p and q

Suppose (p, q) is marked D at a later point.

Then there are states p', q' such that:

- 1. (p', q') are marked $D \Rightarrow p' \not\sim q'$ (by induction)
- \Rightarrow There is a string w s.t. $\Delta(p', w) \in F \Leftrightarrow \Delta(q', w) \notin F$
 - 2. $p' = \delta(p,\sigma)$ and $q' = \delta(q,\sigma)$, where $\sigma \in \Sigma$

The string ow distinguishes p and q!

Claim: If (p, q) is not marked D by the Table-Filling algorithm, then $p \sim q$

Proof (by contradiction):

Suppose the pair (p, q) is not marked D by the algorithm, yet p ≁ q (call this a "bad pair")

Then there is a string w such that |w| > 0 and:

 $\Delta(p, w) \in F$ and $\Delta(q, w) \notin F$ (Why is |w| > 0?)

Of all such bad pairs, let p, q be a pair with the shortest distinguishing string w

Claim: If (p, q) is not marked D by the Table-Filling algorithm, then $p \sim q$

Proof (by contradiction):

Suppose the pair (p, q) is not marked D by the algorithm, yet p ≁ q (call this a "bad pair")

Of all such bad pairs, let p, q be a pair with the shortest distinguishing string w

 $\Delta(p, w) \in F$ and $\Delta(q, w) \notin F$ (Why is |w| > 0?)

We have $w = \sigma w'$, for some string w' and some $\sigma \in \Sigma$

Let $p' = \delta(p,\sigma)$ and $q' = \delta(q,\sigma)$

Then (p', q') is also a bad pair, but with a SHORTER w'!