Zceb

RV32	RV64	RV12 8	Mnemonic	Instruction
✓	✓	✓	c.lbu rd', uimm(rs1')	Load unsigned byte, 16-bit encoding
✓	✓	✓	c.lb rd', uimm(rs1')	Load signed byte, 16-bit encoding
✓	✓	✓	c.lhu rd', uimm(rs1')	Load unsigned half, 16-bit encoding
✓	✓	✓	c.lh rd', uimm(rs1')	Load signed half, 16-bit encoding
✓	✓	✓	c.sb rs2', uimm(rs1')	Store byte, 16-bit encoding
✓	✓	✓	c.sh rs2', uimm(rs1')	Store byte, 16-bit encoding

c.lb

Synopsis

Load signed byte, 16-bit encoding

Mnemonic

c.lb rd', uimm(rs1')

Encoding (RV32, RV64, RV128)

Description

This instruction loads a byte from the memory address formed by adding rs1' to the zero extended immediate uimm. The resulting byte is sign extended to XLEN bits and is written to rd'.

NOTE *rd'* and *rs1'* are from the standard 8-register set x8-x15.

Prerequisites

The C-extension. This encoding conflicts with the D-extension, but there is no conflict with Zdinx if double-precision arithmetic is required.

Operation

```
//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

rd = 8+encoding[9:7];
rs1 = 8+encoding[4:2];
X(rd) = sext(mem[X(rs1)+zext(imm)][7:0]);
```

Extension	Minimum version	Lifecycle state
Zceb ([zceb])	0.52	Plan

c.lbu

Synopsis

Load unsigned byte, 16-bit encoding

Mnemonic

c.lbu rd', uimm(rs1')

Encoding (RV32, RV64, RV128)

Description

This instruction loads a byte from the memory address formed by adding rs1' to the zero extended immediate uimm. The resulting byte is zero extended to XLEN bits and is written to rd'.

NOTE *rd'* and *rs1'* are from the standard 8-register set x8-x15.

Prerequisites

The C-extension. This encoding conflicts with the D-extension, but there is no conflict with Zdinx if double-precision arithmetic is required.

Operation

```
//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

rd = 8+encoding[9:7];
rs1 = 8+encoding[4:2];
X(rd) = zext(mem[X(rs1)+zext(imm)][7:0]);
```

Extension	Minimum version	Lifecycle state
Zceb ([zceb])	0.52	Plan

c.lh

Synopsis

Load signed half, 16-bit encoding

Mnemonic

c.lh rd', uimm(rs1')

Encoding (RV32, RV64, RV128)

Description

This instruction loads a half from the memory address formed by adding rs1' to the zero extended immediate uimm. The resulting half is sign extended to XLEN bits and is written to rd'.

NOTE *rd'* and *rs1'* are from the standard 8-register set x8-x15.

Prerequisites

The C-extension. This encoding conflicts with the D-extension, but there is no conflict with Zdinx if double-precision arithmetic is required.

Operation

```
//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

rd = 8+encoding[9:7];
rs1 = 8+encoding[4:2];
X(rd) = sext(load_mem[X(rs1)+zext(imm)][15:0]);
```

Extension	Minimum version	Lifecycle state
Zceb ([zceb])	0.52	Plan

c.lhu

Synopsis

Load unsigned half, 16-bit encoding

Mnemonic

c.lhu rd', uimm(rs1')

Encoding (RV32, RV64, RV128)

Description

This instruction loads a half from the memory address formed by adding rs1' to the zero extended immediate uimm. The resulting half is zero extended to XLEN bits and is written to rd'.

NOTE *rd'* and *rs1'* are from the standard 8-register set x8-x15.

Prerequisites

The C-extension. This encoding conflicts with the D-extension, but there is no conflict with Zdinx if double-precision arithmetic is required.

Operation

```
//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

rd = 8+encoding[9:7];
rs1 = 8+encoding[4:2];
X(rd) = zext(mem[X(rs1)+zext(imm)][15:0]);
```

Extension	Minimum version	Lifecycle state
Zceb ([zceb])	0.52	Plan

c.sb

Synopsis

Store byte, 16-bit encoding

Mnemonic

```
c.sb r2', uimm(rs1')
```

Encoding (RV32, RV64, RV128)

Description

This instruction stores the least significant half of rs2' to the memory address formed by adding rs1' to the zero extended immediate uimm.

NOTE *rd'* and *rs1'* are from the standard 8-register set x8-x15.

Prerequisites

The C-extension. This encoding conflicts with the D-extension, but there is no conflict with Zdinx if double-precision arithmetic is required.

Operation

```
//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

rs2 = 8+encoding[9:7];
rs1 = 8+encoding[4:2];
mem[X(rs1)+zext(uimm)][7:0] = X(rs2)
```

Extension	Minimum version	Lifecycle state
Zceb ([zceb])	0.52	Plan

c.sh

Synopsis

Store byte, 16-bit encoding

Mnemonic

```
c.sh r2', uimm(rs1')
```

Encoding (RV32, RV64, RV128)

Description

This instruction stores the least significant byte of rs2' to the memory address formed by adding rs1' to the zero extended immediate uimm.

NOTE *rd'* and *rs1'* are from the standard 8-register set x8-x15.

Prerequisites

The C-extension. This encoding conflicts with the D-extension, but there is no conflict with Zdinx if double-precision arithmetic is required.

Operation

```
//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

rs2 = 8+encoding[9:7];
rs1 = 8+encoding[4:2];
mem[X(rs1)+zext(uimm)][15:0] = X(rs2)
```

Extension	Minimum version	Lifecycle state
Zceb ([zceb])	0.52	Plan