Expectation Maximization

Chicken and egg problem

- Need Gaussian parameters to estimate sources
- Need sources to estimate Gaussian parameters

EM algorithm

- 1. Start with 2 randomly placed Gaussians parameters θ
- 2. Until convergence repeat:
 - a) For each point compute $p(t = c \mid x_i, \theta)$: does x_i look like it came from cluster c?
 - b) Update Gaussian parameters θ to fit points assigned to them

Summary

- Gaussian Mixture Model is a flexible probabilistic approach to clustering problem
- Expectation Maximization algorithm can train GMM faster than Stochastic Gradient Descent and also handles complicated constraint
- Expectation Maximization suffers from local maxima (the exact solution is NP-hard)