Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження арифметичних циклічних алгоритмів» Варіант 7

Виконав студент ІП-15, Гуменюк Олександр Володимирович

(шифр, прізвище, ім'я, по батькові)

Перевірив _____

(прізвище, ім'я, по батькові)

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 7

7. Для заданого натурального числа n отримати послідовність $x_1, x_2, ..., x_n$, що утворена по закону $x_1 = 1$; $x_2 = 0.3$; $x_i = (i + 1) x_{i-2}, i = 3, 4, ...$

Постановка задачі

Вводимо число n та задаємо значення x1 та x2. Використовуючи арифметичний цикл, в якому лічильник починається з 3 і збільшується до n, знаходимо та виводимо кожен з перших n членів заданої послідовності (починаючи з 3 члена). Після знаходження значення кожного нового члена, записуємо його значення в змінну x2, а минуле значення x2 в x1.

Результатом розв'язку ϵ обчислення та виведення перших и членів заданої послідовності.

Побудова математичної моделі

Таблиця імен змінних

Змінна	Tun	Ім'я	Призначення
Задане число п	Натуральне	n	Початкові дані

Перший член,	Дійсне	x1	Початкові дані/
який ми			Проміжні дані
розглядаємо			
Другий член,	Дійсне	x2	Початкові дані/
який ми			Проміжні дані
розглядаємо			
Третій член, який	Дійсне	x3	Проміжні дані/
ми розглядаємо			Результат

Перед початком арифметичного циклу вводимо значення n та задаємо і виводимо значення першого члена послідовності x1 = 1 та другого члена x2 = 0.3. Далі йде арифметичний цикл з лічильником і, який набуває значень від 3 до n і збільшується на 1 після кожного повторення циклу. При кожному повторенні циклу знаходимо значення наступного члена послідовності за формулою x3 = (i+1) * x1. Виводимо значення x3. Після цього записуємо значення x2 в x1, а x3 в x2. Повторюємо цикл поки значення і не перевищить значення x3.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Ініціалізація та вивід x1, x2.
- Крок 3. Визначення арифметичного циклу
- Крок 4. Усередині циклу обчислення та вивід наступного х3
- Крок 5. Усередині циклу задаємо нові значення х1 та х2

Псевдокод

Крок 1	Крок 2
початок	початок
ввід п	ввід п
<u>ініціалізація та вивід x1, x2</u>	x1:=1
визначення арифметичного	x2: = 0.3
циклу	виведення х1, х2
кінець	визначення арифметичного
	ЦИКЛУ

кінець

```
Крок 3
                                           Крок 4
початок
                                           початок
      ввід п
                                                 ввід п
      x1:=1
                                                 x1:=1
      x2 := 0.3
                                                 x2 := 0.3
      виведення х1, х2
                                                 виведення х1, х2
      повторити
                                                 повторити
        для і від 3 до п
                                                   для і від 3 до п
                                                       x3 := (i + 1) * x1
            обчислення та вивід х3
            задання нових значень
                                                       виведення х3
            х1 та х2
                                                       задання нових значень
      все повторити
                                                       х1 та х2
кінець
                                                 все повторити
                                           кінець
Крок 5
початок
      ввід п
      x1:=1
      x2 = 0.3
      виведення х1, х2
      повторити
        для і від 3 до п
            x3 := (i + 1) * x1
            виведення х3
            x1: = x2
            x2: = x3
      все повторити
кінець
```

Блок-схема

Крок 1.

Крок 2

Крок 3

Крок 4

Крок 5

Тестування

Блок	Дія	
	Початок	
1	Ввід $n = 6$, $x1 = 1$, $x2 = 0.3$	
2	Виведення 1, 0.3	
3	$i = 3 \le 6 \rightarrow true$	
4	x3 = (3+1) * 1 = 4 * 1 = 4	
5	Виведення 4	
6	x1 = x2 = 0.3	
7	x2 = x3 = 4	
8	$i = 4 \le 6 \rightarrow true$	
9	x3 = (4+1) * 0.3 = 5 * 0.3 = 1.5	
10	Виведення 1.5	
11	x1 = x2 = 4	
12	x2 = x3 = 1.5	
13	$i = 5 \le 6 \rightarrow true$	
14	x3 = (5+1) * 4 = 6 * 4 = 24	
15	Виведення 24	
16	x1 = x2 = 1.5	
17	x2 = x3 = 24	
18	$i = 6 \le 6 \rightarrow true$	
19	x3 = (6+1) * 1.5 = 7 * 1.5 = 10.5	
20	Виведення 10.5	
21	x1 = x2 = 24	

22	x2 = x3 = 10.5
23	$i = 7 \le 6 \rightarrow false$
	Кінець

Висновки

Протягом четвертої лабораторної роботи я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. В результаті я отримав алгоритм обчислення та виведення перших п членів заданої послідовності.