Statistical Modeling: A Fresh Approach

 $Daniel\ T\ Kaplan$

 $\textit{E-book version of Second Edition} \ @2017$

Contents

Pı	reface to this electronic version	9
1	Introduction	11
	Example: Applying to Law School	11
	Example: Nitrogen Fixing	11
	Example: Sex Discrimination	11
	1.1 Models and their Purposes	11
	1.2 Observation and Knowledge	11
	1.3 The Main Points of this Book	11
	Reading Questions	11
2	Data: Cases, Variables, Samples	13
	2.1 Kinds of Variables	13
	2.2 Data Frames and the Unit of Analysis	13
	2.3 Populations and Samples	13
	2.4 Longitudinal and Cross-Sectional Samples	13
3	Describing Variation	15
	3.1 Coverage Intervals	15
	Aside: What's Normal?	15
	3.2 The Variance and Standard Deviation	15
	3.3 Displaying Variation	15
	3.4 Shapes of Distributions	15
4	Groupwise Models	17
	4.1 Grand and Group-wise Models	17
	4.2 Accounting for Variation	17
	Aside: The geometry of partitioning	17
	4.3 Group-wise Proportions	17
	4.4 What's the Precision?	17
	4.5 Misleading Group-wise Models	17
5	Confidence Intervals	19
	5.1 The Sampling Distribution	19

	Aside: Precision and Sample Size	19
	5.2 The Resampling Distribution & Bootstrapping	19
	5.3 Re-sampling	
	5.4 The Re-Sampling Distribution	
	Example: The Precision of Grades	
	5.5 The Confidence Level	
	5.6 Interpreting Confidence Intervals	19
	5.7 Confidence Intervals from Census Data	19
6	Language of Models	2 1
	6.1 Models as Functions	22
	6.2 Model Functions with Multiple Explanatory Variables	22
	6.3 Reading a Model	
	6.4 Choices in Model Design	
	The Data	
	The Response Variable	
	Explanatory Variables	
	6.5 Model Terms	
	The Intercept Term (and no other terms)	
	Intercept and Main Terms	
	Interaction Terms	
	Transformation Terms	
	Aside: Are swimmers slowing down?	
	Main Effects without the Intercept	
	6.6 Notation for Describing Model Design	22
7	Model Formulas and Coefficients	23
	7.1 The Linear Model Formula	
	7.2 Linear Models with Multiple Terms	
	Aside: Interpreting Interaction Terms	
	7.3 Formulas with Categorical Variables	
	7.4 Coefficients and Relationships	
	7.5 Model Values and Residuals	
	7.6 Coefficients of Basic Model Designs	
	7.7 Coefficients have Units	
	Aside: Comparing Coefficients	
	7.8 Untangling Explanatory Variables	
	Aside: Interaction terms and partial derivatives	
	7.9 Why Linear Models?	
8	Fitting Models to Data	25
	8.1 The Least Squares Criterion	25
	Aside: Why Square Residuals?	25
	8.2 Partitioning Variation	25
	Aside: Partitioning and the Sum of Squares	25
	8.3 The Geometry of Least Squares Fitting	

	8.4 Redundancy	25
	Example: Almost redundant	
	Aside: Redundancy – (Almost) Anything Goes	
9	Correlation and Partitioning of Variance	27
ð	9.1 Properties of R ²	28
	Example: Quantifying the capture of variation	28
	9.2 Simple Correlation	28
	Example: Relationships without Correlation	28
	Example: R versus R^2	28
	9.3 The Geometry of Correlation	28
	9.4 Nested Models	28
	Example: \mathbb{R}^2 Out of the Headlines	28
	9.5 The Geometry of R^2	28
10	Total and Partial Change	29
	10.1 Total and Partial Relationships	30
	10.2 Example: Covariates and Death	30
	Example: Used Car Prices	30
	10.3 Models and Partial Relationships	30
	Aside: Partial change and partial derivatives	30
	10.4 Adjustment	30
	10.5 Simpson's Paradox	30
	Example: Cancer Rates Increasing?	30
	10.6 Explicitly Holding Covariates Constant	30
	Example: SAT Scores and School Spending	30
	Aside: Divide and Be Conquered!	30
	10.7 Adjustment and Truth	30
	10.8 The Geometry of Covariates and Adjustment	30
	Aside: Interaction terms and partial derivatives	30
11	Modeling Randomness	31
	11.1 Describing Pure Randomness	
	Example: Rolling a Die	33
	Example: The Chance of Rain	
	Example: Flipping two coins	
	11.2 Settings for Probability Models	
	11.3 Models of Counts	33
	Example: Multiple Coin Flips	33
	Example: Houses for Sale	33
	The Poisson Model	33
	Example: The Rate of Highway Accidents	33
	11.4 Common Probability Calculations	33
	Example: A Political Poll	
	Example: A Pontical Pon	33
	Example: A Normal Year!	33
	1 + 2 + 20000000000000000000000000000000	

	The Uniform Model	33
	Example: Equally Likely	33
	The Normal Model	33
	Example: IQ Test Scores	33
	The Log-normal Model	33
	Example: High Income	33
	The Exponential Model	33
	Example: Times between Earthquakes	33
	The Normal Distribution	33
	Example: IQ Percentiles from Scores.	33
	Example: IQ Scores from Percentiles	33
	Example: Bad Luck at Roulette?	33
	Example. Dad Edek at Houlette:	96
12	Confidence in Models	35
	12.1 The Sampling Distribution & Model Coefficients	36
	12.2 Standard Errors and the Regression Report	36
	12.3 Confidence Intervals	36
	Example: Wage discrimination in trucking?	36
	Example: SAT Scores and Spending, revisited	36
	12.4 Confidence in Predictions	36
	Example: Catastrophe in Grand Forks	36
	12.5 A Formula for the Standard Error	36
	12.6 Confidence and Collinearity	36
	Aside: Redundancy and Multi-collinearity	36
	12.7 Confidence and Bias	36
	12.7 Confidence and Dias	30
13	The Logic of Hypothesis Testing	37
	13.1 Example: Ups and downs in the stock market	38
	13.2 An Example of a Hypothesis Test	38
	13.3 Inductive and Deductive Reasoning	38
	Deductive Reasoning	38
	Inductive Reasoning	38
	13.4 The Null Hypothesis	38
	13.5 The p-value	38
	13.6 Rejecting by Mistake	38
	13.7 Failing to Reject	38
	Aside: Calculating a Power	38
	13.8 A Glossary of Hypothesis Testing	38
	13.9 Update on Stock Prices	38
	20.0 opasso on stoom 111000	<i>J</i> (
14	Hypothesis Testing on Whole Models	39
	14.1 The Permutation Test	40
	14.2 R^2 and the F Statistic	40
	Example: Marriage and Astrology	40
	14.3 The ANOVA Report	40
	Aside: F and \mathbb{R}^2	40

CONTENTS	,
CONTENTS	

	Example: Is height genetically determined?	40
	Aside: The shape of F \hdots	40
	Example: F and Astrology	40
	14.4 Interpreting the p-value	40
	Multiple Comparisons	40
	Example: Multiple Jeopardy	40
	Significance vs Substance	40
	Example: The Significance of Finger Lengths	40
15	Hypothesis Testing on Parts of Models	41
	15.1 The Term-by-Term ANOVA Table	42
	15.2 Covariates Soak Up Variance	42
	Example: Wages and Race	42
	15.3 Measuring the Sum of Squares	42
	15.4 ANOVA, Collinearity, and Multi-Collinearity	42
	Example: Height and Siblings	42
	15.5 Choosing the Order of Terms in ANOVA	42
	Example: Wages and Race: Part 2	42
	Example: Wages and Race: Part 3	42
	Example: Testing Universities	42
	15.6 Non-Parametric Statistics	42
16	Models of Yes/No Variables	43
	16.1 The 0-1 Encoding	43
	16.2 Inference on Logistic Models	43
	16.3 Model Probabilities	43
	Example: Log-odds ratios of Prostate Cancer	43
17	Causation	45
	17.1 Interpreting Models Causally	46
	Example: Greenhouse Gases and Global Warming	46
	17.2 Causation and Correlation	46
	17.3 Hypothetical Causal Networks	46
	17.4 Networks and Covariates	46
	17.5 Pathways	46
	17.6 Pathways and the Choice of Covariates	46
	Example: Learning about Learning	_
		46
	17.7 Sampling Variables	46
	17.8 Disagreements about Networks	46
	Example: Sex Discrimination in Salary	46
	Update on Global Warming	46
18	Experiment	47
	18.1 Experiments	49
	18.2 Experimental Variables and Experimental Units	49
	Example: Virtues of Doing Surgery while Blind	49

Example: Oops! An accidental correlation!
18.3 Choosing levels for the experimental variables 49
18.4 Replication
18.5 Experiments vs Observations
18.6 Creating Orthogonality
Blocking in Experimental Assignment
18.7 When Experiments are Impossible 49
18.8 Intent to Treat
18.9 Destroying Associations
Instrumental Variables
Matched Sampling
Example: Returning to Campaign Spending 49
18.10Conclusion 49

Preface to this electronic version

Placeholder

Introduction

Placeholder

Example: Applying to Law School

Example: Nitrogen Fixing

Example: Sex Discrimination

- 1.1 Models and their Purposes
- 1.2 Observation and Knowledge
- 1.3 The Main Points of this Book

Reading Questions

Data: Cases, Variables, Samples

Placeholder

- 2.1 Kinds of Variables
- 2.2 Data Frames and the Unit of Analysis
- 2.3 Populations and Samples
- 2.4 Longitudinal and Cross-Sectional Samples

Describing Variation

Placeholder

3.1 Coverage Intervals

Aside: What's Normal?

- 3.2 The Variance and Standard Deviation
- 3.3 Displaying Variation
- 3.4 Shapes of Distributions
- 3.4.1 Categorical Variables
- 3.4.2 Quantifying Categorical Variation

Groupwise Models

Placeholder

- 4.1 Grand and Group-wise Models
- 4.2 Accounting for Variation

Aside: The geometry of partitioning

- 4.3 Group-wise Proportions
- 4.4 What's the Precision?
- 4.5 Misleading Group-wise Models

Confidence Intervals

Placeholder

5.1 The Sampling Distribution

Aside: Precision and Sample Size

- 5.2 The Resampling Distribution & Bootstrapping
- 5.3 Re-sampling
- 5.4 The Re-Sampling Distribution

Example: The Precision of Grades

- 5.5 The Confidence Level
- 5.6 Interpreting Confidence Intervals
- 5.7 Confidence Intervals from Census Data

Language of Models

- 6.1 Models as Functions
- 6.2 Model Functions with Multiple Explanatory Variables
- 6.3 Reading a Model
- 6.4 Choices in Model Design

The Data

The Response Variable

Explanatory Variables

6.5 Model Terms

The Intercept Term (and no other terms)

Intercept and Main Terms

Interaction Terms

Transformation Terms

Aside: Are swimmers slowing down?

Main Effects without the Intercept

6.6 Notation for Describing Model Design

Model Formulas and Coefficients

- 7.1 The Linear Model Formula
- 7.2 Linear Models with Multiple Terms

Aside: Interpreting Interaction Terms

- 7.3 Formulas with Categorical Variables
- 7.4 Coefficients and Relationships
- 7.5 Model Values and Residuals
- 7.6 Coefficients of Basic Model Designs
- 7.7 Coefficients have Units

Aside: Comparing Coefficients

7.8 Untangling Explanatory Variables

Aside: Interaction terms and partial derivatives

7.9 Why Linear Models?

Fitting Models to Data

Placeholder

8.1 The Least Squares Criterion

Aside: Why Square Residuals?

8.2 Partitioning Variation

Aside: Partitioning and the Sum of Squares

8.3 The Geometry of Least Squares Fitting

8.4 Redundancy

Example: Almost redundant

Aside: Redundancy – (Almost) Anything Goes

Correlation and Partitioning of Variance 9.1 Properties of R^2

Example: Quantifying the capture of variation

9.2 Simple Correlation

Example: Relationships without Correlation

Example: R versus R²

9.3 The Geometry of Correlation

9.4 Nested Models

Example: R² Out of the Headlines

9.5 The Geometry of R^2

Total and Partial Change

10.1 Total and Partial Relationships

10.2 Example: Covariates and Death

Example: Used Car Prices

10.3 Models and Partial Relationships

Aside: Partial change and partial derivatives

10.4 Adjustment

10.5 Simpson's Paradox

Example: Cancer Rates Increasing?

10.6 Explicitly Holding Covariates Constant

Example: SAT Scores and School Spending

Aside: Divide and Be Conquered!

10.7 Adjustment and Truth

10.8 The Geometry of Covariates and Adjustment

Aside: Interaction terms and partial derivatives

Modeling Randomness

11.1 Describing Pure Randomness

Example: Rolling a Die

Example: The Chance of Rain

Example: Flipping two coins.

11.2 Settings for Probability Models

11.3 Models of Counts

The Binomial Model

Example: Multiple Coin Flips

Example: Houses for Sale

The Poisson Model

Example: The Rate of Highway Accidents

11.4 Common Probability Calculations

Example: A Political Poll

Example: A Normal Year?

11.5 Models of Continuous Outcomes

The Uniform Model

Example: Equally Likely

The Normal Model

Example: IQ Test Scores

The Log-normal Model

Confidence in Models

- 12.1 The Sampling Distribution & Model Coefficients
- 12.2 Standard Errors and the Regression Report
- 12.3 Confidence Intervals

Example: Wage discrimination in trucking?

Example: SAT Scores and Spending, revisited

12.4 Confidence in Predictions

Example: Catastrophe in Grand Forks

- 12.5 A Formula for the Standard Error
- 12.6 Confidence and Collinearity

Aside: Redundancy and Multi-collinearity

12.7 Confidence and Bias

The Logic of Hypothesis Testing

- 13.1 Example: Ups and downs in the stock market
- 13.2 An Example of a Hypothesis Test
- 13.3 Inductive and Deductive Reasoning

Deductive Reasoning

Inductive Reasoning

- 13.4 The Null Hypothesis
- 13.5 The p-value
- 13.6 Rejecting by Mistake
- 13.7 Failing to Reject

Aside: Calculating a Power

- 13.8 A Glossary of Hypothesis Testing
- 13.9 Update on Stock Prices

Hypothesis Testing on Whole Models 14.1 The Permutation Test

14.2 R² and the F Statistic

Example: Marriage and Astrology

14.3 The ANOVA Report

Aside: F and R^2

Example: Is height genetically determined?

Aside: The shape of F

Example: F and Astrology

14.4 Interpreting the p-value

Multiple Comparisons

Example: Multiple Jeopardy

Significance vs Substance

Example: The Significance of Finger Lengths

Hypothesis Testing on Parts of Models

- 15.1 The Term-by-Term ANOVA Table
- 15.2 Covariates Soak Up Variance

Example: Wages and Race

- 15.3 Measuring the Sum of Squares
- 15.4 ANOVA, Collinearity, and Multi-Collinearity

Example: Height and Siblings

15.5 Choosing the Order of Terms in ANOVA

Example: Wages and Race: Part 2

Example: Wages and Race: Part 3

Example: Testing Universities

15.6 Non-Parametric Statistics

Models of Yes/No Variables

Placeholder

- 16.1 The 0-1 Encoding
- 16.2 Inference on Logistic Models
- 16.3 Model Probabilities

Example: Log-odds ratios of Prostate Cancer

Causation

Placeholder

17.1 Interpreting Models Causally

Example: Greenhouse Gases and Global Warming

- 17.2 Causation and Correlation
- 17.3 Hypothetical Causal Networks
- 17.4 Networks and Covariates
- 17.5 Pathways
- 17.6 Pathways and the Choice of Covariates

Example: Learning about Learning

- 17.7 Sampling Variables
- 17.8 Disagreements about Networks

Example: Sex Discrimination in Salary

Update on Global Warming

Experiment

Placeholder

- 18.1 Experiments
- 18.2 Experimental Variables and Experimental Units

Example: Virtues of Doing Surgery while Blind

Example: Oops! An accidental correlation!

- 18.3 Choosing levels for the experimental variables
- 18.4 Replication
- 18.5 Experiments vs Observations
- 18.6 Creating Orthogonality
- 18.6.1 Random Assignment

Blocking in Experimental Assignment

- 18.7 When Experiments are Impossible
- 18.8 Intent to Treat
- 18.9 Destroying Associations

Instrumental Variables

Matched Sampling

Example: Returning to Campaign Spending ...

18.10 Conclusion