Chapter 1

Analysis

1.1 Sequence

Definitions 1.1. Sequence x_n in a set X is a function $x : \mathbb{N} \to X$ where $x_n = x(n)$.

Definitions 1.2. Subsequence x_{n_k} of a sequence x_n is a function $x \circ n$ where $n : \mathbb{N} \to \mathbb{N}$, $n_k = n(k)$ is a strictly increasing sequence.

1.1.1 Convergence

Definitions 1.3 (metric). A sequence x_n converges to x if there exists $N \in \mathbb{N}$ such that $\forall n > N$, $d(x_n, x) < \varepsilon$.

Definitions 1.4 (norm). A sequence x_n converges to x if there exists $N \in \mathbb{N}$ such that $\forall n > N, ||x_n - x|| < \varepsilon$.

Definitions 1.5 (neighbourhood). A sequence x_n converges to x if any neighbourhood N of x contains all except finitely many x_n 's.

Remark (subsequence). A sequence x_n converges to x if and only if every subsequence has a convergent subsequence.

1.1.2 Limit Point

Definitions 1.6. x is a limit point of sequence x_n if x_n converges to x.

Definitions 1.7. x is a cluster point of sequence x_n , there exists a subsequence x_{n_k} converging to x.

1.1.3 Cauchy Criterion

Definitions 1.8 (metric). A sequence x_n is Cauchy if there exists $N \in \mathbb{N}$ such that $\forall n, m > N, \ d(x_n, x_m) < \varepsilon$.

Definitions 1.9 (norm). A sequence x_n is Cauchy if there exists $N \in \mathbb{N}$ such that $\forall n, m > N$, $||x_n - x_m|| < \varepsilon$.

Complete Space

Definitions 1.10 (complete). A space is complete if every Cauchy sequence in it converges.

Theorem 1.11 (Stolz-Cesaro).

$$\liminf_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\leq \liminf_{n\to\infty}\frac{a_n}{b_n}\leq \limsup_{n\to\infty}\frac{a_n}{b_n}\leq \limsup_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

Limit of a function 1.2

Definitions 1.12 (limit). If $f(x_n) \to L$ as $x_n \to a$, then $\lim_{x \to a} f(x) = L$.

Definitions 1.13 (continuity). A function $f: X \to Y$ is continuous at $a \in X$, $if \lim_{x \to a} f(x) = f(\lim_{x \to a} x) = f(a).$

Theorem 1.14. Limit is algebraic.

Suppose $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$ exists, then

$$\lim_{x \to c} cf(x) = c \lim_{x \to c} f(x) \tag{1.1}$$

$$\lim_{x \to \infty} f(x) \pm g(x) = \lim_{x \to \infty} f(x) \pm \lim_{x \to \infty} g(x) \tag{1.2}$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \quad \lim_{x \to a} g(x) \tag{1.3}$$

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$(1.2)$$

$$(1.3)$$

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} f(x)^{\lim_{x \to a} g(x)}$$
 (1.5)

Remark (exceptions).

$$\frac{0}{0}, \frac{\pm \infty}{\pm \infty}, \ 0 \pm \infty, \ \infty - \infty, \ 0^0, \ \infty^0, \ 1^{\pm \infty}$$

Theorem 1.15 (L'Hospital/Bernouli).

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Remark (application).

$$\lim_{x \to 0} (2+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{1}{x}\log(1+x)} = e^{\lim_{x \to 0}} \frac{\log(2+x)}{x} = e^{\lim_{x \to 0}} \frac{1}{2+x} = \sqrt{e}$$

Squeeze theorem Suppose $f(x) \leq g(x) \leq h(x)$ for each x in an open interval containing a (except a). If $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, then

$$\lim_{x \to a} g(x) = L \tag{1.6}$$

Theorem 1.16 (chain rule). Suppose $\lim_{x\to a} g(x) = b$ and f is continuous at b, then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b) = c \tag{1.7}$$

Remark. The existence of limit $\lim_{y\to b} f(y) = c$ does not imply f(b) = c. If g assumes value b in some neighbourhood of a, then

$$\lim_{x \to a} g(x) = b, \ \lim_{y \to b} f(x) = c \Longrightarrow \lim_{x \to a} f \circ g(x) = c$$