

KTU STUDY MATERIALS | SYLLABUS | LIVE NOTIFICATIONS | SOLVED QUESTION PAPERS

Website: www.ktunotes.in

MODULE 5

- Ring counter is a typical application of Shift register
- Output of last flip-flop is connected to input of first flip-flop in case of ring counter but in case of shift resister it is taken as output
- Except this all other things are same
- No. of states in Ring counter = No. of flip-flop used

Ring Counter

- In this diagram, clock pulse (CLK) is applied to all flipflop simultaneously
- Therefore, it is a Synchronous Counter
- Also, here we use Overriding input (ORI) to each flipflop
- Preset (PR) and Clear (CLR) are used as ORI
- When PR is 0, then output is 1 and when CLR is 0, then output is 0
- Both PR and CLR are active low signal that is always works in value 0

PRESETED 1

- PR = 0, Q = 1
- CLR = 0, Q = 0

	TRESETED 1					
ORI	CLK	Q0	Q1	Q2	Q3	
low	Х	1	0	0	0	
high	low	0	<mark>1</mark>	0	0	
high	low	0	0	1	0	
high	low	0	0	0	<u>1</u>	
high	low	1	0	0	0	

Johnson Counter

- A Johnson counter is a modified ring counter, where inverted output from last flip flop is connected to input to first
- Number of used states Johnson counter is 2n if n flipflops are used
- Main advantage of Johnson counter counter is that it only needs half number of flip-flops compared to standard ring counter for same number of states

Johnson Counter

Johnson counter (note the \overline{Q}_D to D_A feedback connection)