Netflix Insights and Metrics

Week 1&2: Cleaning and Normalisation

1. Dataset Overview

The dataset was loaded from netflix_titles.csv into a Pandas DataFrame. The initial shape of the dataset is (8807 rows, 12 columns). It includes 8,807 titles with 12 attributes:

- title
- type (Movie / TV Show)
- director
- cast
- country
- date added
- release_year
- rating
- duration
- listed in (genres)
- description

2. Data Cleaning Steps (Pandas)

2.1 Duplicate Removal

- Checked duplicates using df_read.duplicated().sum().
- Found **0 duplicates** and dropped them using:

 $df_read = df_read.drop_duplicates()$

• The shape of the dataset remained (8807, 12).

2.2 Missing Value Handling

- Identified missing values using *df_read.isnull().sum()*.
- Filled missing values in key fields with default indicators using the *fillna()* function:
- Filled missing values in key fields:
 - o director $\rightarrow Unknown$
 - o cast $\rightarrow Not Available$

- o country $\rightarrow Unknown$
- o date added $\rightarrow Not Available$
- o rating $\rightarrow Not Rated$
- o duration $\rightarrow Unknown$
- Dropped rows missing critical fields: title, type.

2.3 Standardization

- Trimmed whitespaces and normalized formatting:
 - o duration cleaned (stripped, converted to Title Case).

```
df read['duration'] = df read['duration'].str.strip().str.title()
```

o cast standardized by stripping whitespace.

2.4 DataFrame Consolidation

- Saved the cleaned dataset as df_clean.
- The final shape of the cleaned dataset (df_clean) is (8807 rows, 12 columns).
- Exported to CSV as netflix cleaned.csv for downstream use with:

```
df_clean.to_csv("netflix_cleaned.csv", index=False)
```

3. Key Insights

All key insights were generated using the .value_counts() method in Pandas.

Content Distribution (Movies vs. TV Shows)

• Counted how many entries were **Movies** vs. **TV Shows**, showing Netflix's balance of formats using

```
type_distribution = df_clean['type'].value_counts()
```

• The analysis found: **6,131 Movies** (69.6%) and **2,676 TV Shows** (30.4%).

Top Directors

• Extracted the Top 10 directors using:

```
top\_directors = df\_clean['director'].value\_counts().head(10)
```

• Top directors included Rajiv Chilaka (19 titles), Raúl Campos, Jan Suter (18 titles), and Marcus Raboy (16 titles).

Geographical Spread

• Extracted the Top 10 countries with most content using:

```
top countries = df clean['country'].value counts().head(10)
```

• The top countries are the United States (2,818 titles), India (972 titles), and the United Kingdom (419 titles).

Ratings

• Listed the **Top 10 most common ratings**, highlighting Netflix's most frequent audience classifications using:

```
top\_ratings = df\_clean['rating'].value\_counts().head(10)
```

• The most frequent audience classifications are TV-MA (3,207 titles), TV-14 (2,160 titles), and TV-PG (863 titles).

4. Potential Applications

- Content Strategy → Use director and country-level insights to plan future acquisitions.
- Genre & Rating Focus → Explore dominant categories for personalized recommendations.
- **Regional Growth** → Understand high-content countries to strengthen global strategy.
- **Recommendation Systems** → Combine attributes like type, country, and rating to build content filters.

5. Data Normalization and Feature Engineering

To prepare the dataset for machine learning, categorical data was encoded into numerical formats, and key features were normalized. This process was performed on a copy of the cleaned DataFrame (df clean).

5.1 Label Encoding for 'rating'

- Converted the categorical rating column into numerical labels using LabelEncoder.
- This assigns a unique integer to each rating category (e.g., TV-MA, TV-14), creating the new rating_label column.

```
label_encoder = LabelEncoder()

df_normalised['rating_label'] = label_encoder.fit_transform(df_normalised['rating'].astype(str))
```

5.2 One-Hot Encoding for 'type'

- Applied OneHotEncoder to the type column to create binary features for 'Movie' and 'TV Show'.
- This avoids implying an incorrect ordinal relationship between the two categories.
- The resulting columns were merged back into the main DataFrame.

```
onehot_encoder = OneHotEncoder(sparse_output=False, drop=None)

type_encoded = onehot_encoder.fit_transform(df_normalised[['type']])

df_type_onehot = pd.DataFrame(type_encoded,

columns=onehot_encoder.get_feature_names_out(['type'])) df_normalised = pd.concat([df_normalised, df_type_onehot], axis=1)
```

5.3 Ordinal Encoding for 'country'

• Transformed the country column into ranked numerical values using OrdinalEncoder.

- The encoding order was based on the frequency of content from each country (value counts()).
- A new country_ordinal column was added to the DataFrame. country_order = df_normalised['country'].value_counts().index.tolist()

```
ordinal encoder = OrdinalEncoder(categories=[country order])
```

```
df_normalised['country_ordinal']=ordinal_encoder.fit_transform(df_normal
    ised[['country']])
```

5.4 Normalization (Min-Max Scaling)

- Applied MinMaxScaler to scale numerical features to a standard range between 0 and 1.
- This step is important for machine learning algorithms sensitive to the scale of input features.
- The following newly created columns were normalized:
 - o rating_label
 - country_ordinal

```
scaler = MinMaxScaler() cols_to_normalize = ['rating_label',
    'country ordinal']
```

```
df_normalised[cols_to_normalize] =
    scaler.fit transform(df normalised[cols to normalize])
```