

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-340129

(43)公開日 平成11年(1999)12月10日

(51)Int.Cl.⁶
H 01 L 21/027
B 41 J 2/01
// G 03 F 7/16

識別記号
5 0 1

F I
H 01 L 21/30 5 6 4 Z
G 03 F 7/16 5 0 1
B 41 J 3/04 1 0 1 Z

審査請求 未請求 請求項の数23 O.L (全 10 頁)

(21)出願番号 特願平10-148019

(22)出願日 平成10年(1998)5月28日

(71)出願人 000002369
セイコーエプソン株式会社
東京都新宿区西新宿2丁目4番1号
(72)発明者 関 俊一
長野県諏訪市大和3丁目3番5号 セイコ
ーエプソン株式会社内
(72)発明者 宮下 哲
長野県諏訪市大和3丁目3番5号 セイコ
ーエプソン株式会社内
(72)発明者 湯田坂 一夫
長野県諏訪市大和3丁目3番5号 セイコ
ーエプソン株式会社内
(74)代理人 弁理士 鈴木 喜三郎 (外2名)

(54)【発明の名称】 パターン製造方法およびパターン製造装置

(57)【要約】

【課題】 リソグラフィ法におけるレジストパターン形成工程の欠点を排除する。

【解決手段】 溶質であるレジスト材料を溶媒に溶解させて流動体(11-1n)を製造する。この流動体をインクジェット式ヘッド(21-2n)からパターン形成面(100)に吐出させる。

【特許請求の範囲】

【請求項1】 パターン形成面にレジストパターンを形成するためのパターン製造方法であって、溶質であるレジスト材料を溶媒に溶解させた流動体の液滴を前記パターン形成面に付着させる工程を備えていることを特徴とするパターン製造方法。

【請求項2】 前記工程は、前記流動体の液滴をインクジェット式ヘッドから吐出させることにより前記パターン形成面に付着させる請求項1に記載のパターン製造方法。

【請求項3】 前記工程は、前記レジストに必要とされる条件に応じて前記流動体におけるレジスト材料の濃度を変更する請求項1に記載のパターン製造方法。

【請求項4】 前記工程は、前記レジストに必要とされる条件に応じて前記パターン形成面の単位面積当たりにおける前記液滴の付着量を変更する請求項1に記載のパターン製造方法。

【請求項5】 前記液滴の付着量は、前記パターン形成面の単位面積当たりにおける前記液滴の付着回数により制御される請求項4に記載のパターン製造方法。

【請求項6】 前記液滴の付着量は、前記パターン形成面に付着させる前記液滴間のピッチにより制御される請求項4に記載のパターン製造方法。

【請求項7】 前記液滴の付着量は、一回に付着させる前記液滴の量により制御される請求項4に記載のパターン製造方法。

【請求項8】 前記流動体は、溶質濃度、溶媒の種類または溶媒量を調整することにより粘度が1 c p以上で20 c p以下に調整されている請求項1に記載のパターン製造方法。

【請求項9】 前記流動体は、溶質濃度、溶媒の種類または溶媒量を調整することにより粘度が2 c p以上で4 c p以下に調整されている請求項1に記載のパターン製造方法。

【請求項10】 前記流動体は、溶質濃度、溶媒の種類または溶媒量を調整することによりその表面エネルギーが20 mN/m以上で70 mN/m以下に調整されている請求項1に記載のパターン製造方法。

【請求項11】 前記流動体は、その表面エネルギーが30 mN/m以上で60 mN/m以下に調整されている請求項1に記載のパターン製造方法。

【請求項12】 前記流動体は、溶質濃度、溶媒の種類または溶媒量を調整することにより前記ヘッドノズル面を構成する材料に対する接触角が30度以上で170度以下になるように調整されている請求項2に記載のパターン製造方法。

【請求項13】 前記流動体は、溶質濃度、溶媒の種類または溶媒量を調整することにより前記ヘッドノズル面を構成する材料に対する接触角が35度以上で65度以下になるよう調整されている請求項2に記載のパターン

製造方法。

【請求項14】 前記流動体における溶質濃度は0.01 wt %以上で10 wt %以下に調整されている請求項8乃至請求項13に記載のパターン製造方法。

【請求項15】 前記流動体における溶媒は、グリセリン、ジェチレングリコール、メタノール、エタノール、水、1,3-ジメチル-2-イミダゾリジノン(DM1)、エトキシエタノール、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)またはエチレングリコール系エーテルのうち1以上の溶媒により構成されている請求項1に記載のパターン製造方法。

【請求項16】 前記レジスト材料は、ケイ皮酸ビニル、ノボラック系樹脂、ポリイミドまたはエポキシ系のうちいずれかである請求項1に記載のパターン製造方法。

【請求項17】 前記流動体の液滴を付着させる工程の後に、付着した液滴を固化させレジストパターンを形成する工程と、

20 前記レジストパターンが形成された前記パターン形成面をエッキングする工程と、をさらに備える請求項1に記載のパターン製造方法。

【請求項18】 パターン形成面にレジストパターンを形成するためのパターン製造装置であって、溶質であるレジスト材料を溶媒に溶解させた流動体の液滴を前記パターン形成面に付着可能に構成されたインクジェット式ヘッドと、

前記インクジェット式ヘッドと前記パターン形成面との相対位置を変更可能に構成される搬送装置と、

30 前記インクジェット式ヘッドからの前記流動体の吐出および前記駆動装置による駆動を制御する制御装置と、を備え、

前記制御装置は、前記搬送装置により前記インクジェット式ヘッドを任意のパターン形成領域に沿って移動させながら当該インクジェット式ヘッドから前記流動体の液滴を前記パターン形成面に付着させることによりレジストパターンを形成可能に構成されていることを特徴とするパターン製造装置。

【請求項19】 前記インクジェット式ヘッドは、レジスト材料の濃度が異なる前記流動体を選択的に吐出可能に構成され、前記制御装置は、前記レジストに必要とされる条件に応じて前記インクジェット式ヘッドに吐出させる流動体の濃度を変更可能に構成される請求項18に記載のパターン製造装置。

【請求項20】 前記制御装置は、前記レジストに必要とされる条件に応じて前記パターン形成面に付着させる前記流動体の付着量を変更可能に構成される請求項18に記載のパターン製造装置。

【請求項21】 前記制御装置は、前記パターン形成面の単位面積当たりに吐出させる前記液滴の吐出回数を制

御することにより前記パターン形成面に付着させる前記流動体の付着量を変更する請求項20に記載のパターン製造装置。

【請求項22】前記制御装置は、前記インクジェット式ヘッドの前記液滴の吐出タイミングと前記搬送装置の搬送速度を制御することにより前記パターン形成面に付着する液滴間のピッチを変えて前記パターン形成面に付着させることにより前記流動体の付着量を変更する請求項20に記載のパターン製造装置。

【請求項23】前記インクジェット式ヘッドは、一回当たりに吐出される前記流動体の液滴量を変更可能に構成され、前記制御装置は、前記インクジェット式ヘッドに吐出させる前記流動体の液滴量を制御することにより前記パターン形成面に付着させる前記流動体の付着量を変更する請求項20に記載のパターン製造装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は基板に対するパターン形成に係り、特にインクジェット方式等を利用することによってリソグラフィ法のデメリットを解消するパターン製造技術に関する。

【0002】

【従来の技術】従来、微小な回路、例えば集積回路を製造するにはリソグラフィー法等が使用されてきた。例えば「薄膜ハンドブック」、日本学術振興会編、pp283-293にはリソグラフィ法の基本的な処理工程が開示されている。この文献によれば、例えばシリコンウェハ上にレジストと呼ばれる感光材料を薄く塗布し、レジストの上に写真製版で作成した回路パターンに応じたホトマスクをする。次いで露光してホトマスクで光が遮断されていない領域のレジストを感光し、現像処理を行って回路パターンに応じたレジストパターンをシリコンウェハ上に設ける。そしてレジストパターン上からエッチングを行ってシリコンを除去しパターン通りにシリコンを成形するものであった。レジストの塗布は、上記文献によればスピナーフ法、スプレー法、ロールコーティング法、浸漬法が使用してきた。例えばスピナーフ法によれば、回転台上に基板を載せ、基板を高速で回転させながらレジスト材料を塗布していくものである。

【0003】

【発明が解決しようとする課題】しかしリソグラフィ法で通常用いられてきたレジスト形成工程では、レジスト材料が無駄になる、工程が多くなる、レジスト材料に制限が課せられる等の不都合があった。

【0004】すなわち従来のレジスト塗布方法では、エッチングのレジストパターンとなる領域が極僅かであってもパターンを形成する面の全面にレジスト材料を塗布せざるを得なく、またレジストの膜厚制御も困難であった。特に、スピナーフによる塗布法においては、材料の95%以上が無駄になるだけでなく塗布の際に漏れたレジ

スト材料が基板の裏側などにも回り込むという問題もあった。

【0005】また従来のレジストパターン形成方法では、レジスト塗布、マスク、露光、現像、不要なレジスト除去というように、レジストパターンを得るまでに多くの工程管理が必要であり工数がかかっていた。しかもホトマスク材量はネガフィルムを要するなどレジスト以外の材料も必要とされていた。スクリーン印刷やブレード法を使用すればある程度の材料浪費を防げるが、レジストの厚みが制御困難であることに変化がないため、レジスト材料の無駄を根本的に解決することはできなかつた。これらのことから判るように、従来の方法では材料の無駄と工数の増加を余儀なくされ、製造原価の高騰の原因になっていた。

【0006】さらに従来はレジストを露光する必要があったので、感光性を有する素材にレジストが限られ材料の選択が制限されていた。

【0007】上記不都合に鑑み、本出願人はインクジェット方式等を使用することにより上記不都合を悉く解決可能であることに気づき、パターン製造技術に新たな選択肢を与えることに想到した。

【0008】

【課題を解決するための手段】すなわち本発明の第1の課題は、レジストを局所的に設ける製造方法により、レジスト材料の無駄と工数の削減を図り、製造原価を下げる事である。本発明の第2の課題は、レジストの厚みを調整する具体的な選択肢を提供することにより、レジスト材料の無駄と工数の削減を図り、製造原価を下げる事である。本発明の第3の課題は、レジストを局所的に設けるための条件を提示することにより、レジストは感光性を有しなければならないという制約を取り払い、レジストの選択性を向上させることである。本発明の第4の課題は、レジストを局所的に設けるための組成を提示することにより、レジストは感光性を有しなければならないという制約を取り払い、レジストの選択性を向上させることである。本発明の第5の課題は、レジストを局所的に設けることできる製造装置を提供することにより、レジスト材料の無駄と工数の削減を図り、製造原価を下げる事である。

【0009】上記第1の課題を解決する発明は、パターン形成面にレジストパターンを形成するためのパターン製造方法であって、溶質であるレジスト材料を溶媒に溶解させた流動体の液滴を前記パターン形成面に付着させて固化させる工程を備えている。なお、レジストが所定の位置にパターニングされ、レジスト材料に耐エッチング性があれば、露光・現像という工程を省くことができる。

【0010】ここで「流動体」とは、インクジェット式ヘッドのノズルから吐出可能な粘度を備えた液体をいう。「流動体」の溶媒は水性であると油性であると問

わないので、ノズル等から吐出可能な流動性（粘度）を備えていれば十分で、レジスト材料として固体物質である微粒子が分散していても全体として流動体であればよい。また「パターン形成面」とは、平面、曲面、凹凸状のいずれであるかを問わずパターンを付着させる面であり、基板等の硬い面であっても可撓性のあるフィルム上の面であってもよい。

【0011】ここで上記工程は、流動体の液滴をインクジェット式ヘッドから吐出させることによりパターン形成面に付着させることができが好ましい。すなわち、流動体を付着させる方法としては各種印刷法等各種の方法を適用できるが、インクジェット方式によれば、安価な設備でパターン形成面の任意の場所に任意の厚さで流動体を付着させることができるのである。インクジェット方式としては、圧電体素子の体積変化により流動体を吐出させるピエゾジェット方式であっても、熱の印加により急激に蒸気が発生することにより流動体を吐出させる方法であってもよい。

【0012】また上記第3の課題を解決する発明では、流動体に要求される条件として、溶質濃度、溶媒の種類または溶媒量を調整することにより粘度が1cp以上で20cp以下に調整されている必要がある。粘度が1cpより低いと固形分含有量が過少となり成膜性が悪くなるからであり、粘度が20cpより高いと円滑な吐出ができずノズル穴の目詰まり頻度が高くなるからである。さらに粘度が2cp以上で4cp以下に調整されていることがより好ましい。この範囲の粘度であれば成膜性がよくノズル穴の目詰まり頻度が低いからである。

【0013】また流動体の液滴は、溶質濃度、溶媒の種類または溶媒量を調整することによりその表面エネルギーが20mN/m以上で70mN/m以下に調整されていることが必要である。20mN/mより表面エネルギーが低いとノズル穴周辺での濡れ性が増大し、液滴の飛行曲がりが生ずるからであり、70mN/mより表面エネルギーが高いとノズル先端でのメニスカス形状が安定しないため、吐出量や吐出タイミングの制御が困難になるからである。表面エネルギーが30mN/m以上で60mN/m以下に調整されていることが好ましい。

【0014】また流動体とパターン形成面との密着性は接触角により測定できる。流動体は、溶質濃度、溶媒の種類または溶媒量を調整することにより前記ヘッドノズル面を構成する材料に対する接触角が30度以上で170度以下になるように調整されている必要がある。接触角が30度より小さいとノズル穴周辺での濡れ性が増大し、液滴の飛行曲がりが発生するからであり、接触角が170度より大きいとノズル先端でのメニスカス形状が安定しないため、吐出量や吐出タイミングの制御が困難になるからである。特に前記ヘッドノズル面を構成する材料に対する接触角が35度以上で65度以下になるよう調整されていることが好ましい。

【0015】また流動体における溶質濃度は0.01wt%以上で10wt%以下に調整されていることが好ましい。溶質濃度が0.01wt%より低いと多量の流動体を吐出しなければ十分な厚みのレジスト層を形成できないので効率が悪く、溶質濃度が10wt%より大きいと、流動体の吐出を困難にするくらいに粘度を高めてしまうからである。

【0016】例えば上記第4の課題を解決する発明において、流動体における溶媒は、グリセリン、ジェチレングリコール、メタノール、エタノール、水または1,3-ジメチル-2-イミダゾリジノン(DM1)、エトキシエタノール、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)またはエチレングリコール系エーテルのうち1以上の溶媒により構成されている。これらの溶剤を混ぜることにより上記条件を満足させることができるのである。また溶媒であるレジスト材料は、ケイ皮酸ビニル、ノボラック系樹脂、ポリイミドまたはエポキシ系樹脂のうちいずれかである。もちろん上記条件を充たしエッティング時におけるエッチャントに対する耐性を充たす限り、これら以外の材料を用いてもよい。

【0017】上記第2の課題を解決する発明では、レジストに必要とされる条件に応じて流動体におけるレジスト材料の濃度を変更するように構成されている。また、パターン形成面の単位面積当たりにおける液滴の付着量を変更してもよい。液滴の付着量の変える方法としては、パターン形成面の単位面積当たりにおける液滴の付着回数により制御したり、パターン形成面に付着させる液滴間のピッチにより制御したり、一回に付着させる液滴の量により制御したりする。

【0018】また本発明では、流動体の液滴を付着させる工程の後に、付着した液滴を固化させレジストパターンを形成する工程と、レジストパターンが形成されたパターン形成面をエッティングする工程と、をさらに備える。本発明のレジスト塗布と併せてこれら工程を処理すれば基板のバーニングが行える。

【0019】上記第5の課題を解決する発明は、パターン形成面にレジストパターンを形成するためのパターン製造装置であって、以下の構成を備える。

【0020】a) 溶質であるレジスト材料を溶媒に溶解させた流動体の液滴をパターン形成面に付着可能に構成されたインクジェット式ヘッド（ピエゾジェット式でも気泡による噴射方式でもよい）。

【0021】b) インクジェット式ヘッドとパターン形成面との相対位置を変更可能に構成される搬送装置（ステップモータと回転運動-水平運動変換機構など）。

【0022】c) インクジェット式ヘッドからの流動体の吐出および駆動装置による駆動を制御する制御装置（コンピュータやシーケンサなど）。この制御装置は、搬送装置によりインクジェット式ヘッドを任意のパター

ン形成領域に沿って移動させながら当該インクジェット式ヘッドから流動体の液滴をパターン形成面に付着させることによりレジストパターンを形成可能に構成されている。

【0023】

【発明の実施の形態】以下、本発明を実施の形態を、図面を参照して説明する。

(構成の説明) 図1に、本実施形態で使用するパターン製造装置の構成図を示す。本パターン形成装置は、図1に示すように、インクジェット式ヘッド21～2n (nは任意の自然数)、タンク31～3n、搬送装置4および制御回路5を備えている。

【0024】流動体11～1nはそれぞれがレジスト材料である溶質を溶媒に溶解させて製造されている。各流動体11～1nはそれぞれタンク31～3nに貯蔵されており、インクジェット式ヘッド21～2nの加圧室の圧力が下がると各流動体がタンクからインクジェット式ヘッドの加圧室へと供給されるようになっている。

【0025】各流動体に要求される条件として、溶質濃度、溶媒の種類または溶媒量を調整することにより粘度が1 c p以上で20 c p以下に調整されている必要がある。粘度が1 c pより低いと固形分含有量が過少となり、成膜性が悪くなるからであり、粘度が20 c pより高いと円滑な吐出ができずノズル穴の目詰まり頻度が高くなるからである。さらに粘度が2 c p以上で4 c p以下に調整されていることがより好ましい。この範囲の粘度であれば成膜性がよく、ノズル穴の目詰まり頻度も低いからである。

【0026】また流動体の液滴は、溶質濃度、溶媒の種類または溶媒量を調整することによりその表面エネルギー³⁰

*一が20 mN/m以上で70 mN/m以下に調整されていることが必要である。20 mN/mより表面エネルギーが低いとノズル穴周辺での濡れ性が増大し、液滴の飛行曲がりが生じ、70 mN/mより表面エネルギーが高いとノズル先端でのメニスカス形状が安定しないため、吐出量や吐出タイミングの制御が困難になるからである。表面エネルギーが30 mN/m以上で60 mN/m以下に調整されていることが好ましい。

【0027】また流動体とパターン形成面との密着性は接触角により測定できる。流動体は、溶質濃度、溶媒の種類または溶媒量を調整することによりパターン形成面に対する接触角が30度以上で170度以下になるように調整されている必要がある。接触角が30度より小さいとノズル穴周辺での濡れ性が増大し液滴の飛行曲がりが生ずるからであり、接触角が170度より大きいとノズル先端でのメニスカス形状が安定しないため、吐出量や吐出タイミングの制御が困難である。特にパターン形成面に対する接触角が35度以上で65度以下になるよう調整されていることが好ましい。

【0028】また流動体における溶質濃度は0.01 wt %以上で10 wt %以下に調整されていることが好ましい。溶質濃度が0.01 wt %より低いと多量の流動体を吐出しなければ十分な厚みのレジスト層を形成できないので効率が悪く、溶質濃度が10 wt %より大きいと、流動体の吐出を困難にするくらいに粘度を高めてしまうからである。

【0029】表1に、レジスト材料(溶質)と溶媒の組成例を示す。

【0030】

【表1】

溶質(レジスト材料)	溶媒
ケイ皮酸ビニル、ノボラック系樹脂、ポリイミドまたはエポキシ系樹脂等のうちいずれか	グリセリン、ジエチレングリコール、メタノール、エタノール、水または1,3-ジメチル-2-イミダゾリジノン(DMI)、エトキシエタノール、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)またはエチレングリコール系エーテルのうち1以上

【0031】表1において、例えば非感光性ポリイミドは、耐エッティング性があれば感光性が不要であることから使用可能であり、DMFに可能性であるため流動化し易いという利点がある。また、ノボラック系樹脂は、感光基がなくてもよいため、合成コストが低くなるだけでなく、溶媒選択の幅が広がるというメリットがある。同様の理由で、ケイ皮酸ビニルやエポキシ系樹脂も有効である。

【0032】また、潤滑材としては、グリセリンやジエ

チレングリコールを使用できる。上記溶質と溶媒、潤滑材、さらに水、メタノール、セルソルブ系溶媒、シクロヘキサンを添加して、上記流動体としての物理条件に適合するように、物性値を調整する。なお、上記条件を充たしエッティング時におけるエッチャントに対する耐性を充たす限り溶質や溶媒、潤滑材として上記以外の材料を用いてもよい。

【0033】インクジェット式ヘッド21～2nはそれぞれ同一の構造を備える。いずれのヘッドも、インクジ

エット方式により流動体を吐出可能に構成されていれば十分である。タンク $3x$ (x は 1 ~ n の任意の数) からの流動体 $1x$ がインクジェット式ヘッド $2x$ に一対一の関係で供給されている。インクジェット式ヘッドは、例えばオンデマンド型のピエゾジェット方式であれば、複数の加圧室を備えた圧力室基板の一方の面に振動板を備え、その振動板の加圧室に対応する位置に圧電性セラミック結晶が電極膜で挟持された圧電体素子を備えている。圧力室基板の他方の面にはノズル穴を設けたノズル板が貼り付けられている。加圧室にはタンクより導電性を向上させる流動体が供給されるようになっている。そして制御回路 5 からの吐出信号 S_h が圧電体素子の電極膜間に供給されることにより圧電体素子に体積変化が生ずると、加圧室内に圧力変化を生ずるようになっている。加圧室に圧力変化を生ずるとノズル穴から流動体の液滴が吐出されるようになっている。

【0034】なお上記インクジェット式ヘッド $2x$ としては、上記構成の他に発熱体により流動体に熱を加えその膨張によって液滴を吐出させるような気泡方式によるヘッド構成であってもよい。ただし流動体 $1x$ が熱などにより変質しないことが条件となる。

【0035】タンク $31 \sim 3n$ は上記流動体 $11 \sim 1n$ をそれぞれ貯蔵し、パイプを通してそれぞれの流動体 $11 \sim 1n$ をインクジェット式ヘッド $21 \sim 2n$ に供給可能な構成されている。もちろんレジスト材料を一種類に限定するなら、タンク、インクジェット式ヘッド、流動体とも複数の用意する必要はない。

【0036】搬送装置 4 は、モータ 41、モータ 42 および図示しない回転運動一水平運動変換機構を備えている。モータ 41 は駆動信号 S_x に応じてインクジェット式ヘッド $2x$ を X 軸方向 (図 1 の横方向) に搬送可能に構成されている。モータ M2 は駆動信号 S_y に応じてインクジェット式ヘッド $2x$ を Y 軸方向 (図 1 の奥行き方向) に搬送可能に構成されている。ヘッドを上下方向、すなわち Z 軸方向に搬送するモータと機構を備えていてもよい。なお搬送装置 4 は基板 1 に対するインクジェット式ヘッド $2x$ の位置を相対的に変化可能な構成を備えていれば十分である。このため上記構成の他に、基板 1 がインクジェット式ヘッド $2x$ に対して動くように基板の載置台を動かす構成を設けても、インクジェット式ヘッド $2x$ 基板 1 とをともに動かす構成を設けてもよい。

【0037】制御回路 5 は、例えばコンピュータ装置であり図示しない CPU、メモリ、インターフェース回路等を備える。制御回路 5 は所定のプログラムを実行することにより当該装置に本発明のパターン製造方法を実施させることができ構成されている。すなわち流動体の液滴 10 を吐出させる場合にはインクジェット式ヘッド $21 \sim 2n$ のいずれかに吐出信号 $S_h 1 \sim S_h n$ を供給し、当該ヘッドを移動させるときにはモータ 41 または 42 に駆動信号 S_x または S_y を供給可能に構成されて

いる。また制御回路 5 にはメモリにパターン形成を指定するためのデータであるパターン位置情報が記憶されている。この情報はユーザによって入力されたりパターン図をスキャナ等で読み込むことによって解析され生成されたりするものである。

【0038】なおインクジェット式ヘッド $2x$ から流動体の液滴 10 に対し固化処理を流動体塗布と並行して行わせる場合にはさらに固化装置 6 を備えていてもよい。固化装置 6 は制御回路 5 から供給される制御信号 S_p に対応して物理的、物理化学的、化学的処理を液滴 10 またはパターン形成面 100 に施すことが可能に構成されている。例えば熱風の吹き付け、レーザ照射、ランプ照射による加熱、乾燥処理、化学物質の投与による化学変化処理を行わせることが可能に構成されている。

【0039】(製造方法) 次に、図 3 乃至図 7 に基づいて本実施形態のパターン製造方法を説明する。各図において (a) はパターンを形成する基板の製造工程断面図を示し、(b) はパターン形成面上から見た基板の平面図を示す。以下の説明では、ガラス基板に透明電極膜を形成する場合を例示する。このような基板は例えば表示パネルで多用されるものである。図 3 乃至図 7 に示すように本実施形態におけるパターン製造方法は、被エッチング層形成工程、流動体塗布工程、固化工程、エッチング工程および除去工程により構成されている。

【0040】被エッチング層形成工程 (図 3) : 被エッチング層形成工程は、被エッチング層となる透明電極層 101 等を基板 1 上に形成する工程である。基板 1 は機械的強度があって光透過性があり、物理的にかつ化学的に安定なもの、例えばガラスや石英を所定の形状に切削したものである。透明電極膜 101 は液晶等に電場を供給するための電極になるものである。透明電極の材料としては、導電性があり光透過性があるもの、例えばITOやメサを使用する。透明電極層 101 の形成方法は、スピナーフ法、スプレー法、ロールコーティング法、ダイコート法等各種のコーティング法を使用する。この工程は本発明のパターン製造装置とは異なるコーティング装置で処理される。

【0041】流動体塗布工程 (図 4) : 流動体塗布工程は本発明に係り、インクジェット方式によってレジスト材料を溶媒に溶かした流動体 $11 \sim 1n$ を透明電極膜 101 のパターン形成面 100 上に塗布する工程である。具体的な処理を図 2 のフローチャートに示す。

【0042】まずユーザは入力装置を用いて制御回路 5 に条件を入力する (S1)。制御回路 5 は入力された条件に適合している流動体 (10 とする) を選択し、この流動体 10 が供給されているインクジェット式ヘッド 2 を特定する。もちろんユーザが手動で流動体 $11 \sim 1n$ のうちいずれかを選択してもよい。エッチング工程 (図 6) で使用するエッチャントやエッティング条件下でレジストパターンが壊されないように、レジスト材料を選択

しておくことも重要である。

【0043】次いでユーザは入力装置を用いて制御回路5に流動体の付着量を指定する(S2)。例えば形成したいレジスト層の厚みで指定する。制御回路5はこの付着量の指定にしたがってインクジェット式ヘッド2に供給する吐出信号Shや搬送装置4に供給する駆動信号Sx、Syを決める。すなわちユーザによって指定された付着量で流動体が付着されるように、インクジェット式ヘッド2から一回当たりに吐出される流動体10の液滴量、単位面積当たりに液滴が吐出される回数、パターン形成面上における流動体の液滴間のピッチを定める。一回当たりに吐出される流動体の液滴量は、例えば圧電体素子が体積変化に電圧依存性がある場合にはインクジェット式記録2ヘッドに加える吐出信号Shの電圧で制御できる。単位面積当たりに液滴が吐出される回数はインクジェット式ヘッド2の搬送速度とインクジェット式ヘッド2からの流動体吐出頻度との相関関係で決まる。パターン形成面上における流動体の液滴間のピッチも同様の関係で決まる。

【0044】次いで制御回路5はパターン位置情報を参照してパターン形状に流動体を指定された付着量で付着させていく(S3～S10)。パターン位置情報は、図8に示すように、パターンの始点や目標点、終点がパターンごとに座標値の集合として設定されたものである。図8(a)に示す第1のパターンP1は線分の連続となっており、線分の頂点に目標点P10～P15が設定されている。パターン形成時、制御回路5はある目標点と次の目標点との線分に沿ってインクジェット式ヘッド2を搬送しながら流動体を線分に沿って吐出していく。また曲線パターンについては、パターン位置情報として、曲線を短い線分の集合に分割してその頂点に目標点が設定してある。例えば図8(b)に示す曲線パターンP2では、ほぼ曲線に沿ってパターンが形成されるように目標点P20～P27が設定してある。さらに図8(c)に示す面積パターンP3では、ヘッドを往復されることにより面全体に流動体を塗布可能のように目標点P30～P43が設定してある。

【0045】上記パターン位置情報に基づいて、制御回路5は始点位置情報を読み取り始点位置上へインクジェット式ヘッド2を搬送する(S3)。次いで一つ先の目標点を読み取り(S4)、設定されたり判定されたりした液滴10の吐出頻度で流動体の吐出を開始する(S5)。そしてインクジェット式ヘッド2の搬送を開始する(S6)。目標座標に達しない限り(S7: NO)、インクジェット式ヘッド2の搬送を継続し(S6)、目標座標に達したら(S7: YES)、さらに次の目標点が設定されているか、すなわちパターンが終了か否かが判定される(S9)。パターンが継続している限り(S9: NO)、流動体10の吐出とヘッドの搬送を継続する(S4～S7)。パターンが終了したら、他に流動体

を付着させるべきパターンがあるか否かが検査される(S10)。他のパターンがある場合には(S10: YES)、そのパターンの形成が行われる(S3～S9)。

【0046】以上の処理により、パターン形成面100上に流動体10が適量付着したレジストパターン102が形成される。図4(b)では合計4パターンが形成されている。線状でないパターンや幅の広いパターンの場合にはインクジェット式ヘッド2の往復を繰り返して所望の幅になるようにパターン形成される。

【0047】固化工程(図5)：固化工程は、パターン形成面100上に形成されたレジストパターン102を固化させる工程である。制御回路5は例えば固化装置6に制御信号Spを供給してレジストパターン102を加熱する。固化処理は、溶媒成分を蒸発させ、パターン形成面との密着性を向上させることを目的とする。通常は加熱処理が一般的である。従来のようにプリベーク(前乾燥)とポストベークに分けて処理する必要がなく、一気に溶媒成分を蒸発させ密着性を向上させることができる。加熱処理を実施するには、エキシマレーザ等の高エネルギー光を照射したりエキシマランプ等を照射したりする。また赤外線やマイクロ波等の電磁波を供給して加熱してもよい。またこのパターン製造装置から基板を取り出し、電気炉等で直接的に加熱してもよい。固化処理としては加熱処理の他に化学的処理を適用できる。すなわちレジスト材料と化学反応を引き起こすような化合物をインクジェット方式でパターンに重ねて塗布することで、固形の化合物を析出させてパターンとする方法である。なお流動体の付着作業と並行して付着作業が済んだレジストパターンに順次レーザ光を照射する等して固化処理を行ってもよい。以上の固化処理により、レジスト材料が固化したレジストパターン102が形成される。この処理が終われば基板1を傾けたりしてもパターンが崩れることはない。

【0048】エッティング処理(図6)：エッティング工程は、レジストパターン102上からエッティングを行ってレジストパターンの形状に被エッティング層101をエッティングする工程である。エッティング方法には、被エッティング層の材料に応じてウェットエッティングやドライエッティング等の公知のエッティング法を適用する。例えば透明電極をエッティングするなら、エッチャントにフッ酸などを使用する。このエッティング工程によりレジストパターン102の通りに透明電極膜101が除去される。

【0049】除去工程(図7)：除去工程はエッティングが終了した基板から不要になったレジストパターンを除去する工程である。エッティングが終わったらレジストパターン102は不要なので、レジスト材料を溶かすような溶剤でレジストパターンを除去する。例えば120℃から130℃に加熱したフェノールとハロゲン系の有機溶剤を主成分とする剥離剤や熱濃硫酸、発煙硝酸、硫

酸一過酸化水素等の強酸に浸漬して剥離する。

【0050】上述したように本実施形態によれば、インクジェット方式により局所的にレジスト材料を設けることができるので、レジスト材料の浪費が少ない。またレジスト材料の付着量を液滴単位で制御できるので、過剰にレジスト材料を使用することもない。さらにレジスト材料が感光性である必要がないので、従来用いることができなかつた材料をレジスト材料として使用することも可能である。

【0051】(その他の変形例) 本発明は上記実施形態によらず種々に変形して適用することが可能である。例えば上記した工程ではガラス等の基板に対し透明電極膜をパターニングするものであったが、これに拘ることなく従来リソグラフィで形成されてきたあらゆるパターン形成に本発明を適用することができる。例えばディスクリート部品を載置する基板や半導体回路のパターニングに適用することにより、アッセンブリ基板やICやLSI等の半導体を、小型の設備により低い製造コストで複雑な工程管理を要することなく形成可能である。さらにパターン形成面に形成されるパターンは電気回路に限らず、機械的なまたは意匠的な目的でパターン形成面に形成されるものでもよい。安価な設備で容易に微細パターンを形成できるというインクジェット方式の利点をそのまま享受させることができるからである。例えば従来印刷装置によって行っていた特殊な材料を用いた文字形成にも適用可能である。

【0052】また、上記インクジェット方式による流動体の吐出前にパターン形成面に対し表面改質処理を前もって行ってもよい。表面処理により流動体の密着性が向上する。例えばパターン形成面が親和性を備えるように表面改質する処理としては、流動体の極性分子の有無に応じて、シランカップリング剤を塗布する方法、アルゴン等で逆スパッタをかける方法、コロナ放電処理、プラズマ処理、紫外線照射処理、オゾン処理、脱脂処理等、公知の種々の方法を適用する。流動体が極性分子を含まない場合には、シランカップリング剤を塗布する方法、酸化アルミニウムやシリカ等の多孔質膜を形成する方法、アルゴン等で逆スパッタをかける方法、コロナ放電処理、プラズマ処理、紫外線照射処理、オゾン処理、脱脂処理等、公知の種々の方法を適用可能である。

【0053】

【発明の効果】本発明によれば、レジストを局所的に設ける工程を備えたので、レジスト材料の無駄を無くしリソグラフィ法で行う場合と比べ大幅に工数を削減し、これにより製造原価を下げることができる。

【0054】本発明によれば、レジストの厚みを調整す

る具体的な選択肢を提示したので、これらの方針の中から最も適する方法を思料することにより、レジスト材料の無駄と工数の削減を図り、製造原価を下げることができる。

【0055】本発明によれば、レジストを局所的に設けるための流動体の条件を提示したので、この条件を充たす範囲であればレジストとして使用可能となり、レジスト選択の制限を拡大することができる。

【0056】本発明によれば、レジストを局所的に設けるための組成を具体的に提示することにより、利用者におけるレジスト選択の余地を拡大することができる。

【0057】本発明によれば、レジストを局所的に設けることできる製造装置を提供したので、この装置を用いてレジスト形成を行えばレジスト材料の無駄と工数の削減を図り、製造原価を下げることができる。

【図面の簡単な説明】

【図1】本発明の実施形態におけるパターン製造装置の構成図である。

【図2】実施形態におけるパターン製造方法を説明するフローチャートである。

【図3】被エッチング層形成工程の説明図であり、(a)は基板断面図、(b)は基板平面図である。

【図4】流動体付着工程の説明図であり、(a)は基板断面図、(b)は基板平面図である。

【図5】固化工程の説明図であり、(a)は基板断面図、(b)は基板平面図である。微粒子を含んだ流動体を用いた場合の吐出工程である。

【図6】エッチング工程の説明図であり、(a)は基板断面図、(b)は基板平面図である。微粒子を含んだ流動体を用いた場合の加熱工程である。

【図7】除去工程の説明図であり、(a)は基板断面図、(b)は基板平面図である。接着剤を用いた場合の接着膜形成工程である。

【図8】パターン位置情報の説明図である。

【符号の説明】

1…基板

2、2x、21～2n…インクジェット式ヘッド

3、3x、31～3n…処理装置

4…搬送装置

5…制御回路

6…固化装置

1x、11～1n…流動体(パターン形成材料)

100…パターン形成面

101…透明電極膜

102…レジストパターン

【図1】

【図3】

【図4】

【図2】

【図5】

【図7】

【図6】

【図8】

Japanese Patent Laid-Open Number: Hei 11-340129

Laid-Open Date: 1999-12-10

Application Number: Hei 10-148019

Filing Date: 1998-05-28

Int. Cl.⁶: H01L 21/027; B41J 2/01; G03F 7/16

Inventor: Seki Shunichi, Miyashita Satoru, and Yudasaka Kazuo

Applicant: Seiko Epson Corporation

Specification

Title of Invention: PATTERN MANUFACTURING METHOD AND PATTERN MANUFACTURING APPARATUS

Abstract

[Objective]

A pattern manufacturing method is disclosed with eliminating defects of a resist pattern forming process in a lithography method.

[Aspect]

Fluid (11-1n) is manufactured by dissolving a resist material used as a solute in a solvent. This fluid is discharged from an ink jet system head (21-2n) over a pattern forming face (100).

[Scope of Claims]

[Claim 1] A pattern manufacturing method for forming a resist pattern over a pattern forming face, comprising the step of:

depositing droplets of fluid in which a resist material used as a solute is

dissolved in a solvent over the pattern forming face.

[Claim 2] The pattern manufacturing method according to claim 1, wherein the droplets of the fluid are deposited over the pattern forming face by being discharged from an ink jet system head.

[Claim 3] The pattern manufacturing method according to claim 1, wherein a concentration of the resist material in the fluid is varied corresponding to a required condition for the resist.

[Claim 4] The pattern manufacturing method according to claim 1, wherein a deposited quantity of the droplet per unit area over the pattern forming face is varied corresponding to a required condition for the resist.

[Claim 5] The pattern manufacturing method according to claim 4, wherein the deposited quantity of the droplet is controlled by a number of times of depositing over the droplets per unit area over the pattern forming face.

[Claim 6] The pattern manufacturing method according to claim 4, wherein the deposited quantity of the droplet is controlled by a pitch between droplets to be deposited over the pattern forming face.

[Claim 7] The pattern manufacturing method according to claim 4, wherein the deposited quantity of the droplet is controlled by a quantity of the droplet for one time depositing.

[Claim 8] The pattern manufacturing method according to claim 1, wherein viscosity of the fluid is adjusted to from 1 cp to 20 cp by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent.

[Claim 9] The pattern manufacturing method according to claim 1, wherein

viscosity of the fluid is adjusted to from 2 cp to 4 cp by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent.

[Claim 10] The pattern manufacturing method according to claim 1, wherein surface energy of the fluid is adjusted to from 20 mN/m to 70 mN/m by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent.

[Claim 11] The pattern manufacturing method according to claim 1, wherein surface energy of the fluid is adjusted to from 30 mN/m to 60 mN/m.

[Claim 12] The pattern manufacturing method according to claim 2, wherein a contact angle between the fluid and a material which constitutes the head nozzle face is adjusted to from 30° to 170° by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent.

[Claim 13] The pattern manufacturing method according to claim 2, wherein a contact angle between the fluid and a material which constitutes the head nozzle face is adjusted to from 35° to 65° by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent.

[Claim 14] The pattern manufacturing method according to any one of claims 8 to 13, wherein a concentration of a solute in the fluid is adjusted to from 0.01 wt% to 10 wt%.

[Claim 15] The pattern manufacturing method according to claim 1, wherein the solvent in the fluid is constituted by one or more solvent among glycerin, diethylene glycol, methanol, ethanol, water, 1, 3-dimethyl-2-imidazolidinone (DMI), ethoxyethanol, N,N-dimethylformamide (DMF), N-methylpyrrolidone

(NMP), and ethylene glycol series ether.

[Claim 16] The pattern manufacturing method according to claim 1, wherein the resist material is any one of cinnamic acid vinyl, novolak series resin, polyimide, and epoxy series.

[Claim 17] The pattern manufacturing method according to claim 1, wherein a process for forming a resist pattern by solidifying the droplets which is deposited; and a process for etching the pattern forming face over which the resist pattern is formed; are further provided after a process for depositing droplets of the fluid.

[Claim 18] A pattern manufacturing apparatus for forming a resist pattern over a pattern forming face; comprising:

an ink jet system head which is constituted to be able to deposit droplets of fluid in which a resist material used as a solute is dissolved in a solvent over a pattern forming face;

a transferring device which is constituted to be able to vary a relative position of the ink jet system head and the pattern forming face; and

a control device for controlling discharge of the fluid from the ink jet system head and drive by the driving device;

wherein the control device is constituted to be able to form the resist pattern by making the ink jet system head move along an arbitrary pattern forming region by the transferring device while making the droplets of the fluid deposit over the pattern forming face from the ink jet system head.

[Claim 19] The pattern manufacturing apparatus according to claim 18,

wherein the ink jet system head is constituted to be able to discharge selectively the fluid having a resist material with different concentration, and the control device is constituted to be able to vary concentration of the fluid which is discharged by the ink jet system head corresponding to required conditions for resist.

[Claim 20] The pattern manufacturing apparatus according to claim 18, wherein the control device is constituted to be able to vary deposited quantity of fluid which is deposited over the pattern forming face corresponding to required conditions for resist.

[Claim 21] The pattern manufacturing apparatus according to claim 20, wherein the control device varies the deposited quantity of the fluid which is deposited over the pattern forming face by controlling a number of times of discharge of the droplets per unit area over the pattern forming face.

[Claim 22] The pattern manufacturing apparatus according to claim 20, wherein droplet discharging timing from the ink jet system head and transferring speed of the transferring device are controlled, so that the pitch between droplets deposited over the pattern forming face is varied and the droplets are deposited over the pattern forming face, and consequently the deposited quantity of the fluid is varied.

[Claim 23] The pattern manufacturing apparatus according to claim 20, wherein the ink jet system head is constituted to be able to vary the deposited quantity of the fluid discharged per one time, and the control device varies the deposited quantity of the fluid which is deposited over the pattern forming

face by controlling droplet quantity of the fluid discharged by the ink jet system head.

[Detailed Description of the Invention]

[Industrial Field of Application]

The present invention relates to pattern formation over a substrate, and more particularly to a pattern manufacturing technology for resolving demerits of a lithography method by using an ink jet system and the like.

[Related Art]

A lithography method and the like are conventionally used for manufacturing a minute circuit, for example an integrated circuit. For example, a basic treatment process of the lithography method is disclosed in pp283-293 of "Thin Film Handbook" edited by Japan Society for the Promotion of Science. According to this reference, for example, a photosensitive material called resist is coated thinly over a silicon wafer, and a photo mask corresponding to a circuit pattern which is formed by photoengraving is provided over the resist. Subsequently, the resist in the region over which is not shielded from light with the photo mask is exposed, and a developing treatment is carried out to provide the resist pattern corresponding to the circuit pattern over the silicon wafer. Then, the silicon is removed by etching via the resist pattern to form the silicon in accordance

with the pattern. According to the reference, a spinner method, a spray method, a roll coater method, and an immersion method have been used to coat the resist. For example, according to the spinner method, a substrate is set on a rotating carriage and is coated with a resist material while the substrate is being rotated at high speed.

[Problems that the Invention is to Solve]

However, there were some inconveniences such as waste of resist material, increase of the number of processes, or limitation of the resist material in the resist forming processes which are generally used in a lithography method.

Namely in the conventional resist coating method, the resist material requires being coated over an entire surface over which a pattern is formed even if a region to be a resist pattern for etching is very small, further, it is difficult to control a film thickness of the resist. Particularly, in the coating method by spinner, there is a problem that the resist material which is leak out at coating goes round to the back side of a substrate as well as that 95 % of the material or more is wasted.

Further in the conventional resist pattern forming method, a good deal of process control and many processes are required until the resist pattern is obtained such as resist coating, masking, exposing, developing, or removal of needless resist. Moreover, a material besides the resist is required, for example, a negative film is required for a photo mask material. If the screen

print or a blade method is used, the waste of material is prevented to some extent, however, since it is unchanged that a thickness of resist is difficult to control, it is impossible to resolve the waste of a resist material fundamentally. Judging from these, it is unavoidable to waste a material and increase processes, which causes a steep rise in the manufacturing cost in the conventional method.

Furthermore, the resist conventionally requires being exposed, so that the resist is limited to a material having photosensitivity, and so the selection of the material is limited.

In view of the foregoing, the present applicant noticed that the inconveniences can be resolved entirely by using an ink jet system and the like, which turns the present applicant's thought to provide a new option for a pattern technology.

[Means for Solving the Problems]

Namely, a first object of the present invention is that it is designed to reduce the waste of resist material and the number of processes by a manufacturing method of providing resists locally, so that the manufacturing cost is reduced. A second object of the present invention is that it is designed to reduce the waste of resist material and the number of processes by providing a concrete selection option of adjusting a thickness of a resist, so that the manufacturing cost is reduced. A third object of the present invention is that the limitation that the resist should have photosensitivity is

removed by presenting conditions for providing resists locally, so that the selectivity of resist is improved. A fourth object of the present invention is that limitation that the resist should have photosensitivity is removed by presenting composition for providing resist locally, so that the selectivity of resist is improved. A fifth object of the present invention is that it is designed to reduce the waste of a resist material and the number of processes by offering a manufacturing apparatus for providing resist locally, so that the manufacturing cost is reduced.

The invention to achieve the first object is a pattern manufacturing method for forming a resist pattern over a pattern forming face, wherein a process for making droplets of fluid in which a resist material used as a solute is dissolved in a solvent deposit and solidification over the pattern forming face. In addition, when a resist is patterned to the predetermined position and the resist material has the etching-resistant, processes for exposure and development can be omitted.

“Fluid” means here a liquid having the viscosity which can be discharged from a nozzle of an ink jet system head. The solvent of “fluid” is irrespective of aqueous or oleaginous. Since it is enough that the fluid has the flowability (viscosity) to the extent that makes the fluid be able to be discharged from a nozzle and the like, it is allowed that microparticles of solid substances are dispersed as a resist material in the fluid. Also “pattern forming face” means a surface over which a pattern is deposited irrespective of being a plane surface, a curved one, or an uneven one, and a hard surface

like a substrate or a surface of a film having the flexibility.

It is preferable that droplets of fluid are deposited over the pattern forming face by being discharged from an ink jet system head in the above process. Namely, various methods such as various printing methods can be applied as a method for depositing the fluid, however the fluid can be made to deposit over an arbitrary place of the pattern forming face with an arbitrary thickness by low cost equipment due to the ink jet system. As the ink jet system, a piezojet system which discharges the fluid by volume change of a piezoelectric element, or a system which discharges the fluid by generating vapor immediately by thermal application can be used.

In the invention of resolving the third problem, as the conditions required for the fluid, the viscosity is required adjusting from 1 cp to 20 cp by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent. If the viscosity is lower than 1 cp, a quantity of solid content is too little, so that film formability becomes worse, and consequently the clogging frequency of a nozzle hole is increased in the case that the viscosity is higher than 20 cp since it is difficult to discharge smoothly. Furthermore, it is preferable that the viscosity is adjusted to from 2 cp to 4 cp, since the film formability is good and the clogging frequency of the nozzle hole is low within this range of the viscosity.

Surface energy of the droplets of the fluid is required adjusting from 20m N/m to 70 mN/m by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent. If the surface energy is lower than 20

mN/m, wettability on the periphery of the nozzle hole is increased, and deflection of a droplet is caused. If the surface energy is higher than 70 mN/m, a meniscus shape on the tip of the nozzle remains unstable, so that it is difficult to control the quantity and the timing of discharge. It is preferable that the surface energy is adjusted to from 30 mN/m to 60 mN/m.

The adhesion between the fluid and the pattern forming face are measured by a contact angle. The contact angle between the fluid and a material which constitutes the head nozzle face is required adjusting from 30° to 170° by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent. If the contact angle is smaller than 30°, wettability on the periphery of the nozzle hole is increased, and deflection of a droplet is caused. If the contact angle is wider than 170°, the meniscus shape on the tip of the nozzle remains unstable, so that it is difficult to control the quantity and the timing of discharge. Particularly, it is preferable that the contact angle between the fluid and a material which constitutes the head nozzle face is adjusted to from 35° to 65°.

It is preferable that a concentration of a solute in the fluid is adjusted to from 0.01 wt% to 10 wt%. The efficiency is low in the case that the concentration of the solute is lower than 0.01wt%, since a good deal of quantity of fluid is made to be discharged to form a resist layer with an enough thickness. If the concentration of the solute is higher than 10 wt%, viscosity of the fluid is so increased that it is difficult to discharge the fluid.

For example, in the invention of achieving the fourth object, a solvent

in the fluid is constituted by one or more solvents among glycerin, diethylene glycol, methanol, ethanol, water, 1,3-dimethyl-2-imidazolidinone (DMI), ethoxyethanol, N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), and ethylene glycol series ether. Mixture of these solvents can meet the conditions. Further, the resist material used as a solvent is any one of cinnamic acid vinyl, novolak series resin, polyimide, and epoxy series resin. Of course, as far as the conditions are met and the resistance to etchant at etching is satisfied, materials besides these ones can be used.

In the invention of achieving the second object, it is constituted to vary a concentration of the resist material in the fluid corresponding to the conditions required for the resist. Further, the deposit quantity of the droplet per unit area of the pattern forming face can be varied. Methods for varying the deposit quantity of the droplet are by controlling the number of times of deposit of the droplets per unit area over the pattern forming face, by controlling the pitch between the droplets to be discharged over the pattern forming face, or by controlling a quantity of a droplet deposited per one time.

In addition, after a process for depositing droplets of the fluid in the present invention, a process for forming a resist pattern by solidifying the deposited droplets and a process for etching the pattern forming face over which the resist pattern is formed are further provided. A substrate is patterned by performing these processes in conjunction with the resist coating of the present invention.

The invention of achieving the fifth object is a pattern manufacturing

apparatus for forming a resist pattern over a pattern forming face, and comprises the followings.

- a) An ink jet system head which is constituted to be able to deposit droplets of the fluid in which a resist material used as a solute is dissolved in a solvent (irrespective of a piezoelectric system or an injecting system by cell).
- b) A transferring device which is constituted to be able to vary the relative position of the ink jet system head and a pattern forming face (a step motor, a rotary motion-horizontal motion conversion mechanism, and the like).
- c) A control device which controls discharge of the fluid from the ink jet system head and driving by a driving device (a computer, a sequencer and the like). This control device is constituted to be able to form a resist pattern by depositing droplets of the fluid from the ink jet system head over the pattern forming face, while shifting the ink jet system head along an arbitrary pattern forming region by the transferring device.

[Embodiment Mode]

Hereinafter, an embodiment mode of the present invention is explained with reference to the drawings.

(Explanation of Constitution) Fig. 1 shows a block diagram of a pattern manufacturing apparatus which is used in the present embodiment. The present pattern forming apparatus comprises ink jet system heads 21 to 2n (n is an arbitrary natural number), tanks 31 to 3n, a transferring device 4, and a control circuit 5.

Each fluid 11 to 1n is manufactured by dissolving a solute of a resist material in a solvent. The fluid 11 to 1n each is stored in the tanks 31 to 3n, and is supplied from the tanks to pressurizing chambers of the ink jet system heads when pressure in the pressurizing chambers of the ink jet system heads 21 to 2n are reduced.

As the conditions required for the fluid, viscosity is required adjusting from 1 cp to 20 cp by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent. If the viscosity is lower than 1 cp, a quantity of solid content of the fluid is too little, so that the film formability becomes worse, and consequently the frequency of clogging of a nozzle hole is increased in the case that the viscosity is higher than 20 cp since it is difficult to discharge smoothly. Furthermore, it is preferable that the viscosity is adjusted from 2 cp to 4 cp, since the film formability becomes good and the frequency of clogging of a nozzle hole is low within this range of the viscosity.

The droplets of the fluid of which surface energy is required adjusting from 20m N/m to 70 mN/m by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent. If the surface energy is lower than 20 mN/m, the wettability on the periphery of the nozzle hole is increased, and deflection of a droplet is caused. If the surface energy is higher than 70 mN/m, a meniscus shape on the tip of the nozzle is not stable, so that it is difficult to control the quantity and the timing of discharge. It is preferable that the surface energy is adjusted from 30 mN/m to 60 mN/m.

The adhesive properties of the fluid and a pattern forming face is measured by a contact angle. The contact angle for a pattern forming face is required adjusting from 30° to 170° by adjusting a concentration of a solute, a kind of a solvent, or a quantity of a solvent. If the contact angle is smaller than 30°, the wettability on the periphery of the nozzle hole is increased, and deflection of a droplet is caused. If the contact angle is wider than 170°, a meniscus shape on the tip of the nozzle is not stable, so that it is difficult to control the quantity and the timing of discharge. Particularly, it is preferable that the contact angle for the pattern forming face is adjusted from 35° to 65°.

It is preferable that a concentration of a solute in the fluid is adjusted from 0.01 wt% to 10 wt%. The efficiency is low in the case that the concentration of the solute is lower than 0.01wt%, since a large number of quantities of fluid is made to be discharged for forming a resist layer with an enough thickness. If the concentration of the solute is higher than 10 wt%, the viscosity is so increased that it is difficult to discharge the fluid.

Composition examples of resist materials (solutes) and solvents are shown in Table 1.

[Table 1]

Solute (resist material)	Solvent
any one of cinnamic acid vinyl, novolak resin, polyimide, and epoxy series resin	one or more solvents among glycerin, diethylene glycol, methanol, ethanol, water, 1,3-dimethyl-2-imidazolidinone (DMI), ethoxyethanol, N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), and ethylene glycol series ether

In Table 1, for example if the solute has etching-resistance, non-photosensitive polyimide is not required to have photosensitivity, therefore the non-photosensitive polyimide is possible to use, and has advantage of being fluid easily due to being possible to DMF. Further, the novolac series resin does not require a photosensitive group, so that it has advantages that solvents are selected widely as well as the composition cost is reduced. Due to the same reason, the cinnamic acid vinyl and the epoxy series resin are also effective.

Moreover, glycerin and diethylene glycol can be used for a lubricant. The physical properties value of the lubricant is adjusted by adding the solute, the solvent, the lubricant, water, methanol, a cellosolve series solvent, and cyclohexanone so that the lubricant fits the physical condition as the fluid. In addition, as far as meeting the above conditions and the resistance to etchant at etching, materials besides the above ones can be used as a solute, a solvent and a lubricant.

The ink jet system heads 21 to 2n respectively have the same constitutions. Any of the head is needed only to be constituted to be able to discharge the fluid by an ink jet system. Fluid 1x from a tank 3x (x is an arbitrary number of 1 to n) is supplied to an ink jet system head 2x one-on-one. The ink jet system head comprises, for example a piezojet system of on-demand type, a vibrating plate which is provided over one face of a substrate in a pressure chamber in which a plurality of pressurizing chambers are provided, and a piezoelectric element in which a piezoelectric

ceramic crystal is interposed between electrode films in the position corresponding to the pressurizing chamber of the vibrating plate. A nozzle plate over which a nozzle hole is provided is pasted to another face of the substrate in the pressure chamber. The fluid for improving the conductivity is supplied to the pressurizing chamber from the tank. Furthermore, when the volume change is caused to the piezoelectric element by supplying a discharging signal Sh from a control circuit 5 between the electrode films of the piezoelectric element, the pressure change is caused in the pressurizing chamber. When the pressure change is caused in the pressurizing chamber, the droplets of the fluid are discharged from the nozzle hole.

Besides the above constitution, the ink jet system head 2x is possible to have a head constitution by a cell system such that the droplets are discharged by heating a fluid by a heating element and expanding the fluid. However, the constitution is contingent on no deterioration of the fluid 1x due to heat or the like.

Tanks 31 to 3n are constituted to store respectively the fluid 11 to 1n, and to be able to supply respective fluid 11 to 1n to the ink jet system heads 21 to 2n through pipes. Of course, if the resist material is limited to one kind, a plurality of tanks, ink jet system heads, and fluid are not required.

A transferring device 4 comprises motors 41 and 42, and a rotating motion-to-horizontal motion conversion mechanism which is not shown in the drawing. The motor 41 is constituted to be able to transfer the ink jet system head 2x in an X axis direction (the horizontal direction of Fig. 1)

corresponding to a driving signal S_x . The motor M_2 is constituted to be able to transfer the ink jet system head $2x$ in a Y axis direction (the perspective direction of Fig. 1) corresponding to a driving signal S_y . It is possible to provide a motor and a mechanism for transferring the head in up and down directions, namely in a Z axis direction. In addition, the transferring device 4 is needed only to have a constitution to be able to vary relatively the position of the ink jet system head $2x$ to the substrate 1. Accordingly, besides the above constitution, it is possible to provide a constitution for shifting a setting stand for a substrate so that relative movement of the substrate 1 to the ink jet system head $2x$ is caused, or a constitution for shifting the ink jet system head $2x$ and the substrate 1 together.

The control circuit 5, for example, comprises a CPU which is a computer device, a memory, an interface circuit, and the like which are not shown in the drawing. The control circuit 5 is constituted to allow the pattern manufacturing apparatus performs a pattern manufacturing method of the present invention by running the predetermined program. Namely, it is constituted to be able to supply discharging signals S_{h1} to S_{hn} to any one of the ink jet system heads 21 to $2n$ in the case of discharging the droplet 10 of the fluid, and to supply driving signals S_x or S_y to the motors 41 or 42 in the case of shifting the head. Furthermore, pattern position information which is data for designating to form a pattern is stored in the memory of the control circuit 5. This information is input by users or analyzed and generated by reading a pattern diagram with a scanner or the like.

In addition, in the case that a solidification process is performed to the droplet 10 of the fluid from the ink jet system head 2x simultaneously with the fluid coating, a solidification device 6 can be further provided. The solidification device 6 is constituted to be able to perform a physical, physical chemical, or chemical treatment to the droplet 10 or a pattern forming face 100 corresponding to a control signal S_p which is supplied from the control circuit 5. For example, it is constituted to be able to perform a heating or drying process by spray of hot air, the laser irradiation or the lamp irradiation, and a chemical change treatment by adding the chemical substance.

(Manufacturing Method) Next, a pattern manufacturing method of the present embodiment mode is explained with reference to Fig. 3 to Fig. 7. In each figure, (a) is a cross sectional view of a manufacturing process of a substrate over which a pattern is formed, and (b) is a plane view of a substrate which is seen from the top of a pattern forming face. An example of the case that a transparent electrode film is formed over a glass substrate is shown in the following explanation. Such the substrate is used frequently in a display panel for instance. As shown in Fig. 3 to Fig. 7, the pattern manufacturing method of the present embodiment mode is constituted by a layer-to-be-etched forming process, a fluid coating process, a solidification process, an etching process, and a removing process.

The layer-to-be-etched forming process (Fig. 3): The layer-to-be-etched forming process is a process for forming a transparent electrode layer 101 to be a layer-to-be-etched layer and the like over the substrate 1. The substrate

1 has a mechanical strength and a light transmission property, and is stable physically and chemically, for example, is made by cutting glass or quartz into a predetermined shape. The transparent electrode film 101 is to be an electrode for supplying an electric field to a liquid crystal and the like. Materials having conductivity and a light transmission property are used for a transparent electrode such as ITO or MESA. Various kinds of coating methods are used for forming the transparent electrode layer 101 such as a spinner method, a spray method, a roll coater method, or a dye coat method. This process is treated with a coating apparatus which is different from the pattern manufacturing apparatus of the present invention.

The fluid coating process (Fig. 4): The fluid coating process is relating to the present invention, and is a process for coating the fluid 11 to 1n in which a resist material is dissolved in a solvent over the pattern forming face 100 of the transparent electrode film 101 by an ink jet system. The concrete treating is shown in a flow chart of Fig. 2.

First, a user inputs conditions to the control circuit 5 with the input device (S1). The control circuit 5 selects the fluid (10) which is fitted to the input conditions, and specifies the ink jet system head 2 to which this fluid 10 is supplied. Of course, the user can select any one of the fluid 11 to 1n by manual operation. It is important that the resist material is selected so that the resist pattern is not destroyed under the etching conditions or by the etchant which is used in the etching process (Fig. 6).

Next, the user designates deposited quantity of the fluid to the control

circuit 5 with the input device (S2). For example, it is designated by a thickness of the resist layer to be formed. The control circuit 5 decides the discharging signal S_h to supply to the ink jet system head 2 or the driving signals S_x and S_y to supply to the transferring device 4 in accordance with the designation of the deposited quantity. Namely, a quantity of the droplet of the fluid 10 which is discharged per one time from the ink jet system head 2, the number of times of discharge of the droplet per unit area, and a pitch between the droplets of the fluid over the pattern forming face are decided so that the fluid is deposited with the deposited quantity which is designated by the user. The quantity of droplet of the fluid which is discharged per one time can be controlled by a voltage of the discharging signal S_h added to the ink jet system memory 2 head in the case that a piezoelectric element has voltage dependence on voltage change for instance. The number of times of discharge of the droplets per unit area is decided by a correlation between the transferring speed of the ink jet system head 2 and the fluid discharging frequency from the ink jet system head 2. The pitch between the droplets of the fluid over the pattern forming face is decided by the same relation.

Subsequently, the control circuit 5 makes the fluid deposit into a pattern shape with the designated quantity with reference to pattern position information (S3 to S10). The pattern position information is that a start point, a target point and an end point of the pattern are set as a set of coordinate values per pattern as shown in Fig. 8. A first pattern P_1 shown in Fig. 8 (a) is a series of line segments, and targets P_{10} to P_{15} are set at tops of

the segments. When the pattern is formed, the control circuit 5 makes the ink jet system head 2 transfer along the line segment from one target point to the next target point, while it makes the fluid discharge along the segment. Furthermore, in reference to a curve pattern, as pattern position information, the curve is divided into a set of short line segments, so that target points are set at the tops of them. For example, in a curve pattern P2 shown in Fig. 8 (b), target points P20 to P27 are set so as to form a pattern almost along the curve. Moreover, target points P30 to P43 are set so that the fluid is coated over the entire face of an area pattern P3 shown in Fig. 8 (c) by making the head reciprocate in the area pattern P3.

The control circuit 5 reads start point position information based on the above pattern position information, and makes the ink jet system head 2 transfer over the start point position (S3). Subsequently, the next target point is read (S4), and the fluid is started to discharge with the discharging frequency of the droplet 10 which is set or decided (S5). And then, the ink jet system head 2 is started to transfer (S6). The ink jet system head 2 is continued to transfer (S6) unless it reaches the target coordinate (S7: NO). When it reaches the target coordinate (S7: YES), it is decided whether the next target point is further set, namely the pattern ends or not (S9). As far as the pattern continues (S9: NO), the fluid 10 is continued to discharge and the head is continued to transfer (S4 to S7). When the pattern ends, it is checked whether there is any pattern or not over which the fluid should be deposited (S10). If there is another pattern (S10: YES), the pattern is formed (S3 to

S9).

A resist pattern 102 over which a proper quantity of the fluid 10 is deposited is formed over the pattern forming face 100 by the above treatments. Four patterns in all are formed in Fig. 4 (b). In the case of a nonlinear pattern or a wide pattern, the pattern is formed to have the desired width by reciprocating the ink jet system head 2 repeatedly.

The solidification process (Fig. 5): The solidification process is a process for solidifying the resist pattern 102 which is formed over the pattern forming face 100. The resist pattern 102 is heated by supplying the control signal S_p to the solidification device 6 from the control circuit 5 for instance. The object of the solidification treatment is to improve adhesion to the pattern forming face by evaporating the solvent component. Usually the heating treatment is general. It is not required that the treatment is separated to the pre-baking (pre-drying) and the post-baking conventionally, and the adhesive properties can be improved by evaporating the solvent components at once. When the heating treatment is performed, a laser beam with high energy such as an excimer laser or an excimer lamp is emitted. Furthermore, it is possible to heat by supplying infrared rays or an electromagnetic wave such as a microwave. Moreover, the substrate is taken out from this pattern manufacturing apparatus, and it can be heated directly in the electric furnace and the like. A chemical treatment can be applied to the solidification treatment besides the heating treatment, namely, the treatment that a compound causing a chemical reaction with a resist material is deposited to be

stacked in a pattern by an ink jet system and a solid compound is separated out to form a pattern. In addition, the solidification treatment can be performed by emitting a laser beam in order over the resist pattern which had been already deposited simultaneously with depositing the fluid. Due to the above solidification treatment, the resist pattern 102 over which the resist material is solidified is formed. The pattern is not collapsed after this treatment, even if the substrate 1 is inclined.

The etching treatment (Fig. 6): An etching process is a process for etching a layer-to-be-etched 101 to be a resist pattern shape by etching via a resist pattern 102. The etching method known publicly such as a wet etching or a dry etching is applied corresponding to a material of the layer-to-be etched. For example, when a transparent electrode is etched, the etchant such as hydrogen fluoride is used. The transparent electrode film 101 is removed according to the resist pattern 102 by this etching process.

The removing process (Fig. 7): A removing process is a process for removing a resist pattern which becomes needless from a substrate after etching. Since the resist pattern 102 becomes needless after etching, the resist pattern is removed by the solvent which dissolves the resist material. For example the resist pattern is released by being dipped in a release agent heated to from 120°C to 130°C containing mainly phenol and an organic solvent of halogen system, or the strong acid such as hot concentrated sulfuric acid, fuming nitric acid, or sulfuric acid-hydrogen peroxide.

According to the present embodiment mode mentioned above, since the

resist material can be provided locally by the ink jet system, the resist material is hardly wasted. Furthermore, since the deposited quantity of the resist material can be controlled per droplet, the resist material is not used in surplus. Moreover, since the resist material is not required having photosensitivity, it is possible to use the material which can not be used as the resist material conventionally.

(Other examples of Variation) The present invention can be applied not only to the above embodiment mode, but also to the variations. For example, the transparent electrode film is patterned over the substrate such as glass in the above process. However, without sticking this, the present invention can be applied to every pattern formation which is formed conventionally by lithography. For instance, a semiconductor such as an assembly substrate, IC or LSI can be formed with small equipment at low manufacturing cost and without the complicated process control by applying the present invention to patterning of a semiconductor circuit or a substrate for setting a discrete part. Furthermore, a pattern which is formed over a pattern forming face is not limited to an electric circuit, but it can be formed over a pattern forming face with mechanical or designed object. This is why the advantage of the ink jet system that the microscopic pattern can be formed easily with low-priced equipment can be obtained as it is. For example, it can be applied to letter formation with a particular material which is performed by a printing apparatus conventionally.

Furthermore, a surface modified treatment can be performed over a

pattern forming face in advance before the fluid is discharged by the ink jet system. The adhesive properties of the fluid are improved by the surface treatment. For example, as the surface modified treatment for giving affinity to a pattern forming face, the various methods known publicly are applied corresponding to the existence of a polar molecular of the fluid such as a method of coating silane coupling agent, a method of reverse sputtering with argon and the like, a corona discharging treatment, a plasma treatment, an ultraviolet rays irradiating treatment, an ozone treatment, or a degreasing treatment. In the case that the fluid does not contain the polar molecular, the various methods known publicly can be applied such as the method of coating silane coupling agent, a method of forming a porous film such as aluminum oxide or silica, a method of reverse sputtering with argon and the like, a corona discharging treatment, a plasma treatment, an ultraviolet rays irradiating treatment, an ozone treatment, or a degreasing treatment.

[Advantageous effects of the invention]

According to the present invention, since a process for providing resist locally is prepared, a resist material is not wasted and the number of processes is reduced sharply compared with the case using a lithography method, and consequently the manufacturing cost can be reduced.

According to the present invention, since a selection for adjusting a thickness of resist is presented, it can be designed to reduce the waste of the resist material and the number of processes due to thinking the most suitable

method among these methods, and consequently the manufacturing cost can be reduced.

According to the present invention, since the conditions of the fluid for providing resist locally are presented, it is possible to use resist as the resist as long as it satisfies these conditions, and consequently the limitation of resist selection can be enlarged.

According to the present invention, the scope for selecting resist in users can be enlarged by presenting concretely the constituent for providing a resist locally.

According to the present invention, since a manufacturing apparatus for providing resist locally is presented, when the resist is formed by using this apparatus, it can be designed to reduce the waste of the resist material and the number of processes, and consequently the manufacturing cost can be reduced.

[Brief Description of the Drawings]

Fig. 1 is a block diagram of a pattern manufacturing apparatus in an embodiment mode of the present invention.

Fig. 2 is a flow chart explaining a pattern manufacturing method in an embodiment.

Fig. 3 is an explanatory view of a process for forming a layer-to-be-etched in which (a) is a cross sectional view of a substrate, (b) is a plane view of a substrate.

Fig. 4 is an explanatory view of a process for depositing a fluid in which (a) is a cross sectional view of a substrate, (b) is a plane view of a substrate.

Fig. 5 is an explanatory view of a process for solidifying in which (a) is a cross sectional view of a substrate, (b) is a plane view of a substrate. A discharging process in the case of using a fluid containing microparticles.

Fig. 6 is an explanatory view of a process for etching in which (a) is a cross sectional view of a substrate, (b) is a plane view of a substrate. A heating process in the case of using a fluid containing microparticles.

Fig. 7 is an explanatory view of a process for removing in which (a) is a cross sectional view of a substrate, (b) is a plane view of a substrate. An adhesive film forming process in the case of using an adhesive agent.

Fig. 8 is an explanatory view of pattern position information.

[Description of the Reference Numerals and Signs]

1 ... substrate

2, 2x, 21 to 2n ... ink jet system head

3, 3x, 31 to 3n ... treating device

4 ... transferring device

5 ... control circuit

6 ... solidification apparatus

1, 1x, 11 to 1n ... fluid (pattern forming material)

100 ... pattern forming face

101 ... transparent electrode film

102 ... resist pattern