

Report No: CCIS15030019302

FCC REPORT

Applicant: GUANGDONG GUANTONG HOLDING CO., Ltd.

Address of Applicant: NO.2, BEIAO AVENUE, DAWENBA, AOTOU, DAYABAY,

HUIZHOU, GUANGDONG, CHINA

Equipment Under Test (EUT)

Product Name: 3G Smart phone

Model No.: M502

FCC ID: 2ADTY-M502

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 25 Mar., 2015

Date of Test: 26 Mar., to 08 Apr., 2015

Date of report issued: 09 Apr., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	09 Apr., 2015	Original

Prepared by: Date: 09 Apr., 2015

Report Clerk

Reviewed by: Date: 09 Apr., 2015

Project Engineer

3 Contents

			Page
1	COVE	R PAGE	1
2	VERS	ION	2
3	CONT	ENTS	3
4		SUMMARY	_
		RAL INFORMATION	
5			
		NT INFORMATION	
	_	IERAL DESCRIPTION OF E.U.T.	
		Г MODE	
		Oratory Facility	
		ORATORY LOCATION	
	5.6 TEST	r Instruments list	8
6	TEST	RESULTS AND MEASUREMENT DATA	9
	6.1 ANT	ENNA REQUIREMENT	9
	6.2 Con	IDUCTED EMISSIONS	10
		IDUCTED OUTPUT POWER	
	-	B Occupy Bandwidth	
		RIER FREQUENCIES SEPARATION	
		PING CHANNEL NUMBER	
		ELL TIME	
		UDORANDOM FREQUENCY HOPPING SEQUENCE	
		ID EDGE	
	6.9.1 6.9.2	Conducted Emission MethodRadiated Emission Method	
		Spurious Emission Metriod	
	6.10.1		
	6.10.1		
7		SETUP PHOTO	_
8	EUT (CONSTRUCTIONAL DETAILS	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Report No: CCIS15030019302

5 General Information

5.1 Client Information

Applicant:	GUANGDONG GUANTONG HOLDING CO., Ltd.
Address of Applicant:	NO.2, BEIAO AVENUE, DAWENBA, AOTOU, DAYABAY, HUIZHOU, GUANGDONG, CHINA
Manufacturer/Factory:	GUANGDONG GUANTONG HOLDING CO., Ltd.
Address of Manufacturer/Factory:	NO.2, BEIAO AVENUE, DAWENBA, AOTOU, DAYABAY, HUIZHOU, GUANGDONG, CHINA

5.2 General Description of E.U.T.

Product Name:	3G Smart phone			
Model No.:	M502			
Operation Frequency:	2402MHz~2480MHz			
Transfer rate:	1/2/3 Mbits/s			
Number of channel:	79			
Modulation type:	GFSK, π/4-DQPSK, 8DPSK			
Modulation technology:	FHSS			
Antenna Type:	Internal Antenna			
Antenna gain:	2.0 dBi			
Power supply:	Rechargeable Li-ion Battery DC3.7V-2600mAh			
AC adapter:	Input:100-240V AC,50/60Hz 200mA			
	Output:5V DC MAX 1A			

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCIS15030019302

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed on the table 0.8 meters for below 1GHz, 1.5 meters for above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:									
Item			Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	03-01-2015	02-28-2016			
6	Amplifier(1GHz- Compliance Direction 18GHz) Systems Inc.		PAP-1G18	CCIS0011	06-09-2014	06-05-2015			
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	03-01-2015	02-28-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-01-2015	02-28-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015			
12	EMI Test Receiver Rohde & Schwarz		ESPI	CCIS0022	03-01-2015	02-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	03-01-2015	02-28-2016			
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015			

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer Model No.		Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-01-2015	02-28-2016					
3	LISN CHASE		MN2050D	CCIS0074	03-01-2015	02-28-2016					
4	4 Coaxial Cable CCIS		N/A	CCIS0086	03-01-2015	02-28-2016					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emissions

 - Conductor Emissions							
Test Requirement:	FCC Part 15 C Section 15.207						
Test Method:	ANSI C63.4:2009						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto					
Limit:	Frequency range (MHz)	Limit (d	lBuV)				
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	* Decreases with the logarithm of the frequency. Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						
Test setup:							
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Bluetooth (Continuous transm	itting) mode					
Test results:	Pass	- ·					

Measurement Data

Line:

Trace: 25

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

Job No. : 193RF

: 3G Smart phone : M502 EUT

Model Test Mode : BT MODE
Power Rating : AC 120v/60Hz
Environment : Temp: 23 'C Huni:56% Atmos:101KPa

Test Engineer: MT Remark :

	Read	LISN	Cable		Limit	Over		
Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
MHz	dBu∜	dB	dB	dBu₹	dBu∀	dB		
0.178	33.16	0.28	10.77	44.21	64.59	-20.38	QP	
0.178	25.20	0.28	10.77	36.25	54.59	-18.34	Average	
0.289	26.37	0.26	10.74	37.37	50.54	-13.17	Average	
0.393	40.88	0.28	10.72	51.88	57.99	-6.11	QP	
0.415	30.00	0.28	10.73	41.01	47.55	-6.54	Average	
0.747	25.64	0.23	10.79	36.66	46.00	-9.34	Average	
0.751	37.78	0.23	10.79	48.80	56.00	-7.20	QP	
1.753	22.01	0.26	10.94	33.21	46.00	-12.79	Average	
1.762	36.16	0.26	10.94	47.36	56.00	-8.64	QP	
2.554	35.93	0.27	10.94	47.14	56.00	-8.86	QP	
2.594	20.26	0.27	10.93	31.46	46.00	-14.54	Average	
3.258	34.21	0.27	10.91	45.39	56.00	-10.61	QP	
	MHz 0.178 0.178 0.289 0.393 0.415 0.747 0.751 1.753 1.762 2.554 2.594	MHz dBuV 0.178 33.16 0.178 25.20 0.289 26.37 0.393 40.88 0.415 30.00 0.747 25.64 0.751 37.78 1.753 22.01 1.762 36.16 2.554 35.93 2.594 20.26	MHz dBuV dB 0.178 33.16 0.28 0.178 25.20 0.28 0.289 26.37 0.26 0.393 40.88 0.28 0.415 30.00 0.28 0.747 25.64 0.23 0.751 37.78 0.23 1.753 22.01 0.26 1.762 36.16 0.26 2.554 35.93 0.27 2.594 20.26 0.27	MHz dBuV dB dB 0.178 33.16 0.28 10.77 0.178 25.20 0.28 10.77 0.289 26.37 0.26 10.74 0.393 40.88 0.28 10.72 0.415 30.00 0.28 10.73 0.747 25.64 0.23 10.79 1.753 22.01 0.26 10.94 1.762 36.16 0.26 10.94 2.554 35.93 0.27 10.94 2.594 20.26 0.27 10.93	MHz dBuV dB dB dBuV 0.178 33.16 0.28 10.77 44.21 0.178 25.20 0.28 10.77 36.25 0.289 26.37 0.26 10.74 37.37 0.393 40.88 0.28 10.72 51.88 0.415 30.00 0.28 10.73 41.01 0.747 25.64 0.23 10.79 36.66 0.751 37.78 0.23 10.79 48.80 1.753 22.01 0.26 10.94 33.21 1.762 36.16 0.26 10.94 47.36 2.554 35.93 0.27 10.94 47.14 2.594 20.26 0.27 10.93 31.46	MHz dBuV dB dB dBuV dBuV 0.178 33.16 0.28 10.77 44.21 64.59 0.178 25.20 0.28 10.77 36.25 54.59 0.289 26.37 0.26 10.74 37.37 50.54 0.393 40.88 0.28 10.72 51.88 57.99 0.415 30.00 0.28 10.73 41.01 47.55 0.747 25.64 0.23 10.79 36.66 46.00 0.751 37.78 0.23 10.79 48.80 56.00 1.762 36.16 0.26 10.94 33.21 46.00 2.554 35.93 0.27 10.94 47.14 56.00 2.594 20.26 0.27 10.93 31.46 46.00	MHz dBuV dB dB dBuV dBuV dB 0.178 33.16 0.28 10.77 44.21 64.59 -20.38 0.178 25.20 0.28 10.77 36.25 54.59 -18.34 0.289 26.37 0.26 10.74 37.37 50.54 -13.17 0.393 40.88 0.28 10.72 51.88 57.99 -6.11 0.415 30.00 0.28 10.73 41.01 47.55 -6.54 0.747 25.64 0.23 10.79 36.66 46.00 -9.34 0.751 37.78 0.23 10.79 48.80 56.00 -7.20 1.762 36.16 0.26 10.94 33.21 46.00 -12.79 1.762 36.16 0.26 10.94 47.36 56.00 -8.64 2.554 35.93 0.27 10.94 47.14 56.00 -8.86 2.594 20.26 0.27	MHz dBuV dB dB dBuV dBuV dB 0.178 33.16 0.28 10.77 44.21 64.59 -20.38 QP 0.178 25.20 0.28 10.77 36.25 54.59 -18.34 Average 0.289 26.37 0.26 10.74 37.37 50.54 -13.17 Average 0.393 40.88 0.28 10.72 51.88 57.99 -6.11 QP 0.415 30.00 0.28 10.73 41.01 47.55 -6.54 Average 0.747 25.64 0.23 10.79 36.66 46.00 -9.34 Average 0.751 37.78 0.23 10.79 48.80 56.00 -7.20 QP 1.762 36.16 0.26 10.94 33.21 46.00 -12.79 Average 1.762 36.16 0.26 10.94 47.36 56.00 -8.64 QP 2.554 35.93

Neutral:

Trace: 27

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 193RF Job No.

EUT : 3G Smart phone

Model Test Mode : M502 : BT MODE Power Rating : AC 120v/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: MT

Remark

/emark								
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	dB	dB	dBu₹	dBu₹	dB	
1	0.277	10.46	0.26	10.74	21.46	50.90	-29.44	Average
2	0.299	12.10	0.26	10.74	23.10	50.28	-27.18	Average
3	0.318	20.46	0.26	10.74	31.46	59.75	-28.29	QP
4	0.727	18.69	0.18	10.78	29.65	56.00	-26.35	QP
4 5 6 7	0.739	10.23	0.19	10.79	21.21	46.00	-24.79	Average
6	1.054	14.75	0.22	10.88	25.85	56.00	-30.15	QP
7	1.100	5.70	0.23	10.88	16.81	46.00	-29.19	Average
8 9	3.276	0.05	0.29	10.91	11.25	46.00	-34.75	Average
9	3.310	14.15	0.29	10.91	25.35	56.00	-30.65	QP
10	6.153	15.31	0.27	10.82	26.40	60.00	-33.60	QP
11	22.298	3.12	0.36	10.90	14.38	50.00	-35.62	Average
12	23.140	16.56	0.42	10.89	27.87	60.00	-32.13	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2009 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	3.73	21.00	Pass		
Middle	4.77	21.00	Pass		
Highest	4.96	21.00	Pass		
	π/4-DQPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	2.73	21.00	Pass		
Middle	4.00	21.00	Pass		
Highest	4.26 21.00 Pass		Pass		
	8DPSK mode				
Test channel	Peak Output Power (dBm) Limit (dBm) Res		Result		
Lowest	2.86 21.00 Pass		Pass		
Middle	4.00 21.00 Pass		Pass		
Highest	4.26 21.00 Pass		Pass		

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.4:2009 and DA00-705
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak
Limit:	NA
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Measurement Data

Toot channel	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	845.69	1134.27	1174.35
Middle	845.69	1134.27	1182.36
Highest	841.68	1138.28	1178.36

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz) Res		Result
Lowest	1006	563.79	Pass
Middle	1002	563.79	Pass
Highest	1006	563.79	Pass
	π/4-DQPSK mo	de	
Test channel	Carrier Frequencies Separation (kHz) Limit (kHz) Res		Result
Lowest	1002 758.85		Pass
Middle	1002	758.85	Pass
Highest	1006 758.85 Pas		Pass
8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz) Limit (kHz) Resu		Result
Lowest	1006 788.24 Pass		Pass
Middle	1002 788.24 Pass		Pass
Highest	1002 788.24 Pass		Pass

Note: According to section 6.4

Note. According to section	0.7	
Mode	20dB bandwidth (kHz)	Limit (kHz)
Wode	(worse case)	(Carrier Frequencies Separation)
GFSK	845.69	563.79
π/4-DQPSK	1138.28	758.85
8DPSK	1182.36	788.24

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12448		
GFSK	DH3	0.26640	0.4	Pass
	DH5	0.31125		
	2-DH1	0.12576		
π/4-DQPSK	2-DH3	0.26928	0.4	Pass
	2-DH5	0.31125		
	3-DH1	0.12960		
8DPSK	3-DH3	0.26640	0.4	Pass
	3-DH5	0.31211		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.389*(1600/(2*79))*31.6=124.48ms DH3 time slot=1.665*(1600/(4*79))*31.6=266.40ms DH5 time slot=2.918*(1600/(6*79))*31.6=311.25ms

2-DH1 time slot=0.393*(1600/ (2*79))*31.6=125.76ms

2-DH3 time slot=1.683*(1600/ (4*79))*31.6=269.28ms

2-DH5 time slot=2.918*(1600/ (6*79))*31.6=311.25ms

3-DH1 time slot=0.405*(1600/ (2*79))*31.6=129.60ms

3-DH3 time slot=1.665*(1600/ (4*79))*31.6=266.40ms

3-DH5 time slot=2.926*(1600/ (6*79))*31.6=312.11ms

Test plot as follows:

Modulation mode: GFSK

DH1

DH3

DH5

Modulation mode: π/4-DQPSK

2-DH1

2-DH3

2-DH5

Modulation mode: 8DPSK

3-DH1

3-DH3

3-DH5

Report No: CCIS15030019302

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)	
Test Method:	ANSI C63.4:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

GFSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205						
Test Method:	ANSI C63.4: 20	09							
Test Frequency Range:	2.3GHz to 2.5G	Hz							
Test site:	Measurement D	istance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Frequency Limit (dBuV/m @3m) Rema								
Limit:	Freque	Frequency Limit (dBuV/m @3m) Re							
	Above 1								
Test setup:	Above 1GHz								
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement 4. For each sus and then the and the rotal maximum results of the emission limit specified Ba 10dB margin	B meter camble position of the	er. The table was set to Pea Maximum Hole Was set to Pea Maximum Hole Was set to Pea Maximum Hole EUT in peak In could be stop Was the each	was rotated diation. The interference of a variable of the field one antennal was arrange has from 1 regrees to 360 at Detect Fund Mode. The mode was apped and the missions the one using process to 360 at Detect Fund Mode.	and degrees to ance-receiving ale-height antenna ar meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and and alode lower than the depeak values of the mat did not have beak, quasi-peak or				
Test Instruments:	Refer to section	5.7 for detail	s						
Test mode:	Non-hopping m	ode							
Test results:	Passed								

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site

Condition

EUT

: M502

Iest mode : BT-DH1-L mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

	Freq		Antenna Factor						
	MHz	—dBuV	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000					55.48 49.21			

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G Smart phone Condition

EUT

: M502 Model

Test mode : M502
Test mode : BT-DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

1 2

М	cu :									
	_		Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark	
	MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	<u>dB</u>		-
	2390.000 2390.000						74.00 54.00			

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G Smart phone Condition

EUT

: m5U2
Test mode : BT-DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

is in the			Antenna Factor						Remark	
2	MHz	dBuV	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
	2483.500 2483.500					59.28 47.85				

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G Smart phone Condition

EUT

Model : M502

Test mode : BT-DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT

REMARK

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483.500 2483.500	22.45 12.77	27.52 27.52	5.70 5.70	0.00 0.00	55.67 45.99	74.00 54.00	-18.33 -8.01	Peak Average

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G Smart phone Condition

EUT

Model : M502
Test mode : BT-2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						
2	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	 -
	2390.000 2390.000					56.10 49.78			

Site

Condition

EUT

Model

: M5U2
Test mode : BT-2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK

REMARK

	Freq		Antenna Factor						Remark	
-	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
	2390.000 2390.000									

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G Smart phone Condition

EUT

: M502
Test mode : BT-2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Freq		Antenna Factor						
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G Smart phone : M502 Condition

EUT

: M502
Test mode : BT-2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	2000		Antenna Factor							
_	MHz	—dBu∇			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
1 2	2483,500 2483,500	22.81 12.77	27.52 27.52	5.70 5.70	0.00 0.00	56.03 45.99	74.00 54.00	-17.97 -8.01	Peak Average	

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G Smart phone Condition

EUT Model : M502

Test mode : BT-3DH1-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

Freq		ReadAnten req Level Fact								
_	MHz	dBu₹	$^{}\overline{dB}/\overline{m}$	d <u>B</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
	2390.000 2390.000				0.00 0.00					

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G Smart phone : M502 Condition

EUT

: mbU2

Test mode : BT-3DH1-L mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

	7		Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu₹	─dB/m	dB	dB	dBuV/m	dBu√/m	<u>dB</u>		
	2390.000									
2	2390.000	16.72	27.58	5.67	0.00	49.97	54.00	-4.03	Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G Smart phone Condition

EUT

: M502
Test mode : BT-3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Freq		Antenna Factor						
-	MHz	dBu₹	$\overline{-dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	 -
	2483.500 2483.500								

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G Smart phone : M50 Condition

EUT

: M502
Test mode : BT-3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

Eller			Antenna Factor					
	MHz	—dBu∇	— <u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	
1 2	2483.500 2483.500				0.00 0.00			

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2009 and DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Non-hopping mode							
Test results:	Pass							

GFSK

Lowest channel

Date: 27.MAR.2015 11:18:06

30MHz~25GHz

Middle channel

Date: 27.MAR.2015 11:18:57

30MHz~25GHz

Highest channel

Date: 27.MAR.2015 11:20:21

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 27.MAR.2015 11:24:02

30MHz~25GHz

Date: 27.MAR.2015 11:22:19

30MHz~25GHz

Highest channel

Date: 27.MAR.2015 11:21:22

30MHz~25GHz

8DPSK

Lowest channel

Date: 27.MAR.2015 11:25:23

30MHz~25GHz Middle channel

Date: 27.MAR.2015 11:26:34

30MHz~25GHz

Highest channel

Date: 27.MAR.2015 11:31:13

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Me	tillou							
Test Requirement:	FCC Part 15 C Section 15.209							
Test Method:	ANSI C63.4: 20	09						
Test Frequency Range:	9 kHz to 25 GH	Z						
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz- 1GHz	Quasi-peal	(120kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	Peak	1MHz	10Hz	Average Value			
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark			
	30MHz-8	8MHz	40.0)	Quasi-peak Value			
	88MHz-2	16MHz	43.5	5	Quasi-peak Value			
	216MHz-9	60MHz	46.0)	Quasi-peak Value			
	960MHz-	1GHz	54.0)	Quasi-peak Value			
	Abovo	CII-	54.0)	Average Value			
	Δρογο 1(÷Ητ							
Test setup:	Above 1GHz							

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters for below 1GHz, 1.5 meters for above 1GHz above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 3G Smart phone : M502 Condition

EUT

: M502
Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

Freq							Over Limit	Remark
MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
31.955	32.89	12.32	0.45	29.97	15.69	40.00	-24.31	QP
91.175	34.78	12.16	0.92	29.56	18.30	43.50	-25.20	QP
114.515	35.84	11.42	1.08	29.43	18.91	43.50	-24.59	QP
158.668	40.74	8.61	1.33	29.14	21.54	43.50	-21.96	QP
261.058	35.49	12.09	1.65	28.52	20.71	46.00	-25.29	QP
306.754	35.41	13.15	1.79	28.47	21.88	46.00	-24.12	QP
	MHz 31.955 91.175 114.515 158.668 261.058	Freq Level MHz dBuV 31.955 32.89 91.175 34.78 114.515 35.84 158.668 40.74 261.058 35.49	### Hz dBuV dB/m 31.955 32.89 12.32 91.175 34.78 12.16 114.515 35.84 11.42 158.668 40.74 8.61 261.058 35.49 12.09	Freq Level Factor Loss MHz dBuV dB/m dB 31.955 32.89 12.32 0.45 91.175 34.78 12.16 0.92 114.515 35.84 11.42 1.08 158.668 40.74 8.61 1.33 261.058 35.49 12.09 1.65	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 31.955 32.89 12.32 0.45 29.97 91.175 34.78 12.16 0.92 29.56 114.515 35.84 11.42 1.08 29.43 158.668 40.74 8.61 1.33 29.14 261.058 35.49 12.09 1.65 28.52	MHz dBuV dB/m dB dB dB dBuV/m 31.955 32.89 12.32 0.45 29.97 15.69 91.175 34.78 12.16 0.92 29.56 18.30 114.515 35.84 11.42 1.08 29.43 18.91 158.668 40.74 8.61 1.33 29.14 21.54 261.058 35.49 12.09 1.65 28.52 20.71	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 31.955 32.89 12.32 0.45 29.97 15.69 40.00 91.175 34.78 12.16 0.92 29.56 18.30 43.50 114.515 35.84 11.42 1.08 29.43 18.91 43.50 158.668 40.74 8.61 1.33 29.14 21.54 43.50 261.058 35.49 12.09 1.65 28.52 20.71 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 31.955 32.89 12.32 0.45 29.97 15.69 40.00 -24.31 91.175 34.78 12.16 0.92 29.56 18.30 43.50 -25.20 114.515 35.84 11.42 1.08 29.43 18.91 43.50 -24.59 158.668 40.74 8.61 1.33 29.14 21.54 43.50 -21.96 261.058 35.49 12.09 1.65 28.52 20.71 46.00 -25.29

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 3G Smart phone Site Condition

EUT

: 35 Smart phone

Model : M502
Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Humi:55%
Test Engineer: MT
RFMARK

REMARK

		Read.	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
<u> </u>	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	55.805	29.73	12.99	0.66	29.80	13.58	40.00	-26.42	QP
2	101.644	32.90	13.02	0.98	29.52	17.38	43.50	-26.12	QP
2 3 4 5 6	159.784	36.55	8.64	1.33	29.13	17.39	43.50	-26.11	QP
4	219.845	32.11	11.17	1.48	28.71	16.05	46.00	-29.95	QP
5	266.609	32.81	12.26	1.67	28.51	18.23	46.00	-27.77	QP
6	324.456	31.11	13.53	1.86	28.51	17.99	46.00	-28.01	QP

Above 1GHz:

Te	st channel:		Lowest		Lev	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.78	31.53	8.90	40.24	45.97	74.00	-28.03	Vertical
4804.00	45.62	31.53	8.90	40.24	45.81	74.00	-28.19	Horizontal
Te	st channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.57	31.53	8.90	40.24	36.76	54.00	-17.24	Vertical
4804.00	35.10	31.53	8.90	40.24	35.29	54.00	-18.71	Horizontal

Te	st channel:		Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	45.82	31.58	8.98	40.15	46.23	74.00	-27.77	Vertical
4882.00	46.14	31.58	8.98	40.15	46.55	74.00	-27.45	Horizontal
Te	st channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	36.64	31.58	8.98	40.15	37.05	54.00	-16.95	Vertical
4882.00	35.12	31.58	8.98	40.15	35.53	54.00	-18.47	Horizontal

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.02	31.69	9.08	40.03	45.76	74.00	-28.24	Vertical
4960.00	46.95	31.69	9.08	40.03	47.69	74.00	-26.31	Horizontal
Te	st channel:	•	Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.47	31.69	9.08	40.03	37.21	54.00	-16.79	Vertical
4960.00	34.85	31.69	9.08	40.03	35.59	54.00	-18.41	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.