P9185 - Project 3: Protocol of a Cluster-randomized trial for Asthma-PASS

Amy Pitts, Yuqi Miao

2022-04-25

Background

Our interest is in persistent asthma in minority children.

- Comprehensive school-based interventions in collaboration with communities to reduce asthma morbidity and promote physical activity in urban areas.
- A pilot cluster RCT was conducted exploring this intervention in Bronx elementary schools
 - **Goal:** whether Children in schools receiving Asthma-PASS intervention may experience a greater improvement in the number of SFD at 6 **or** 12 months follow up than the children in the comparison group.
 - 4 Bronx elementary schools were recruited into the pilot study.
 - A total of 108 children recruited including ages 4-11 years with physician-diagnosed persistent or uncontrolled asthma attending kindergarten to 5th grades

Overview

- Data Overview
- Exploration into Pilot Study data
 - Model Specifications
 - Results
- Opening Proposal
 Opening Proposal
 - Model Specifications
 - Sample Size Suggestions

Data Overview

Variable	Definition
ID	Participant's ID
Time	Follow up time (Baseline, 6 months, 12 months)
Group	Intervention group (control or Intervention)
SFD	Symptom free days in the past two weeks
School	School recruited for the study
•	

Table 1: Data Descriptions

Data Exploration

Data Exploration

Data Exploration

Current outcome: SFD (Count data)

- Due to the skewed distribution towards higher values a poisson model will not fit our data well
- Outcome does not seem linear over the time observations.

Interested in the change from baseline to observation times.

New outcome: Change in SFD (Continuous Data)

- Transform the SFD by calculated:
 - 6 month observation baseline
 - 12 month observation baseline
- Baseline with become covariate

New Continous Outcome

Exploring variation between school and within school

Missing Data

Model Specifications

To model change in SFD let school $i \in (1,2,3,4)$, individual j, time interval $k \in (1,2)$.

We will used mixed effect model.

$$\begin{split} Y_{ijk} &= \beta_0 + \beta_1 Baseline_{ij} \\ &+ \beta_2 Group_{ij} + \beta_3 Compare_{ijk} \\ &+ \beta_4 Group_{ij} \times Compare_{ijk} \\ &+ \alpha_{0i} + \alpha_{0j} + \epsilon_{ijk} \end{split}$$

where $\alpha_{0i} \sim N(0,\sigma_w^2)$, $\alpha_{0j} \sim N(0,\sigma_b^2)$, and $\epsilon_{ijk} \sim N(0,\sigma^2)$.

Missing Data Assumptions

We will be assuming data is missing at random $(MAR)^{[1]}$.

- MAR assumption: $R \perp \!\!\! \perp Y_{mis} | X, Y_{obs}$
- Separable parameter assumption
- Ignorability condition

$$\begin{split} L_i^{\text{O}}(\theta, \psi) &\propto f_{\theta, \psi} \left(Y_{\text{obs}, i}, R_i, X_i \right) \\ &= f_{\psi} \left(R_i \mid Y_{\text{obs}, i}, X_i \right) f_{\theta} \left(Y_{\text{obs}, i} \mid X_i \right) \end{split}$$

Model Result

Fixed Effects Estimates:

Characteristic	Beta	95% CI ¹	p-value		
baseline	-0.82	-1.0, -0.69	<0.001		
group					
0	_	_			
1	1.1	-0.46, 2.6	0.2		
compare					
m6_m0	_	_			
m12_m0	-0.05	-1.4, 1.3	>0.9		
group * compare					
1 * m12_m0	-0.27	-2.2, 1.6	0.8		
¹ CI = Confidence	Interval				

Note: This model is singular

Random Effects Estimates:

group	Std.Dev	Variance
id	2.055	4.221
school	0.000	0.000
Residual	3.250	10.560

Model Interpretations:

- interpretations
- interpretations
- interpretations

Analysis for the pilot study

- Paired proportion test (binomial) / Paired T test (continuous, normal)
- For 6 months v.s. baseline, compair pass v.s. control
- For 12 months v.s. baseline, compair pass v.s. control
- Multiple adjustment
- Describe and comment on the effect sizes.
- Estimate intra class variation

Cluster RCT design

- The investigators wish to propose a cluster-randomized clinical trial (RCT) in 30 Bronx schools to evaluate the effectiveness of their intervention program.
- Primary hypothesis: compared to the control group, children in schools randomized to intervention group will experience a greater improvement in the number of SFD at any of the 3, 6, 9, and 12 months assessment.
- The investigators would like to have at 80% probability to declare the trial is successful if the true effect size in improvement of SFD over time is at least 1/3 standard deviation.

Study design proposal:

3 level structure:[1]

$$y_{ijk} = \beta_0 + \delta_{(3)} X_{ijk} + \mu_i + \mu_{j_i} + e_{ijk}$$

- i for school, j for subjects, k for measures
- $\mu_i \sim N(0, \sigma_3^2)$ random intercept for school
- $\mu_{j_i} \sim N(0,\sigma_2^2)$ random intercept for school random intercept for subject
- \bullet randomize on school level, $X_{ijk}=X_i=0/1$ indicating the control/intervention
- \bullet Hypothesis: $H_0:\delta_{(3)}=0, H_1:\delta_{(3)}\neq 0$
 - **Q**: $H_1: \delta_{(3)} > 0$?
- calculate N based on normal distribution, with multiple adjustment: $\alpha * = \alpha/4 = 0.025/4$ for the 4 comparison;
 - Q: Need multiple adjustment or not?
- $\beta = 0.2$

Resources

[1] Hogan, J. W., Roy, J., & Korkontzelou, C. (2004). Handling drop-out in longitudinal studies. Statistics in Medicine, 23(9), 1455-1497. https://doi.org/10.1002/sim.1728