

XIII LO Szczecin

Wojownicze Żółwie Ninja

Tomasz Nowak, Michał Staniewski, Justyna Jaworska

MWPZ 2019

7. Grudnia

4 Matma	3
5 Struktury danych	4
6 Grafy	6
7 Geometria	9
8 Tekstówki	10
9 Optymalizacje	11
10 Randomowe rzeczy	11
$\underline{\text{Utils}}$ (1)	
headers Opis: Naglówki używane w każdym kodzie. Dziala na każdy ko Użycie: debug(a, b, c) << d << e; wypisze a, b, c: de	
	46f465, 33 lines
<pre>using namespace std; using LL = long long; #define FOR(i, l, r) for(int i = (1); i <= (r); ++i) #define REP(i, n) FOR(i, 0, (n) - 1) template<class t=""> int size(T &&x) { return int(x.size()); } template<class a,="" b="" class=""> ostream& operator<<(ostreaction const pair<a, b=""> &p) { return out << '(' << p.first << ", " << p.second << '} } template<class t=""> auto operator<<(ostreaction const pair<a); !="x.end();" ""="" ");="" ",="" '{';="" '};="" (it="=" *it="" ++it)="" :="" <<="" ?="" for(auto="" it="" out="" pre="" prev(x.end())="" return="" }<=""></a);></class></a,></class></class></pre>	<')';
<pre>void dump() {} template<class args="" class="" t,=""> void dump(T &&x, Arg</class></pre>	":""),
<pre>const int seed = chrono::system_clock::now().time_sin .count();</pre>	ce_epoch()

1 Utils

2 Podejścia

3 Wzorki

```
1  mt19937_64 rng(seed);
  int rd(int 1, int r) {
    return uniform_int_distribution<int>(1, r)(rng);
}
1  headers/bazshrc.sh
    c() {
    clang++ -03 -std=c++11 -Wall -Wextra -Wshadow \
    -Wconversion -Wno-sign-conversion -Wfloat-equal \
    -D_GLIBCXX_DEBUB -fsanitize=address, undefined -ggdb3 \
    -DDEBUG $1.cpp -o $1
}
6  nc() {
    clang++ -03 -std=c++11 -static $1.cpp -o $1 #-m32
}
    headers/vimrc
    3 lines
```

headers/sprawdzaczka.sh

filetype indent plugin on

svntax on

set nu rnu hls is nosol ts=4 sw=4 ch=2 sc

```
#!/bin/bash
for ((i=0; i<1000000; i++)); do
    ./gen < conf.txt > gen.txt
    ./main < gen.txt > main.txt
    ./brute < gen.txt > brute.txt

if diff -w main.txt brute.txt > /dev/null; then
    echo "OK $i"
else
    echo "WA"
    exit 0
fi
done
```

Podejścia (2)

- dynamik, zachłan
- sposób "liczba dobrych obiektów = liczba wszystkich obiektów - liczba złych obiektow"
- czy warunek konieczny = warunek wystarczający?
- odpowiednie przekształcenie równania
- zastanowić się nad łatwiejszym problemem, bez jakiegoś elementu z treści
- sprowadzić problem do innego, łatwiejszego/mniejszego problemu
- sprowadzić problem 2D do problemu 1D (zamiatanie; niezależność wyniku dla współrzędnych X od współrzędnych Y)
- konstrukcja grafu
- określenie struktury grafu
- optymalizacja bruta do wzorcówki
- czy można poprawić (może zachłannie) rozwiązanie nieoptymalne?

- czy są ciekawe fakty w rozwiązaniach optymalnych? (może się do tego przydać brute)
- sprawdzić czy w zadaniu czegoś jest "mało" (np. czy wynik jest mały, albo jakaś zmienna, może się do tego przydać brute)
- odpowiednio "wzbogacić" jakiś algorytm
- cokolwiek poniżej 10⁹ operacji ma szansę wejść
- co można wykonać offline? coś można posortować? coś można shuffle'ować?
- narysować dużo swoich własnych przykładów i coś z nich wywnioskować
- skupienie się na pozycji jakiegoś specjalnego elementu, np najmniejszego
- szacowanie wyniku czy wynik jest mały? czy umiem skonstruować algorytm który zawsze znajdzie upper bound na wynik?
- sklepać brute który sprawdza obserwacje, zawsze jeśli potrzebujemy zoptymalizować dp, wypisać wartości na małym przykładzie
- pierwiastki elementy > i < \sqrt{N} osobno, rebuild co \sqrt{N} operacji, jeśli suma wartości = N, jest \sqrt{N} różnych wartości
- rozwiązania randomizacyjne, paradoks urodzeń

Wzorki (3)

13 lines

3.1 Równości

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Wierzchołek paraboli = $\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$.

$$ax + by = e$$

$$cx + dy = f \Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

3.2 Pitagoras

Trójki (a, b, c), takie że $a^2 + b^2 = c^2$:

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

gdzie m > n > 0, k > 0, $m \perp n$, oraz albo m albo n jest parzyste.

3.3 Generowanie względnie pierwszych par

Dwa drzewa, zaczynając od (2,1) (parzysta-nieparzysta) oraz (3,1) (nieparzysta-nieparzysta), rozgałęzienia są do (2m-n,m), (2m+n,m) oraz (m+2n,n).

3.4 Liczby pierwsze

p=962592769to liczba na NTT, czyli $2^{21}\mid p-1,$ which may be useful. Do hashowania: 970592641 (31-bit), 31443539979727 (45-bit), 3006703054056749 (52-bit).

Jest 78498 pierwszych ≤ 1000000 .

Generatorów jest $\phi(\phi(p^a))$, czyli dla p>2 zawsze istnieje.

3.5 Dzielniki

 $\sum_{d|n} d = O(n \log \log n).$

Liczba dzielników n jest co najwyżej 100 dla n < 5e4, 500 dla n < 1e7, 2000 dla n < 1e10, 200 000 dla n < 1e19.

3.6 Lemat Burnside'a

Liczba takich samych obiektów z dokładnością do symetrii wynosi

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

Gdzie G to zbiór symetrii (ruchów) oraz X^g to punkty (obiekty) stałe symetrii g.

3.7 Silnia

							9	
n!	1 2 6	24 1	20 72	0 504	0 403	320 365	2880 30	628800
							16	
$\overline{n!}$	4.0e7	7 4.8e	8 6.26	9 8.7	e10 1	.3e12	2.1e13	3.6e14
n	20	25	30	40	50	100	150	171
n!	2e18	2e25	3e32	8e47	3e64	9e157	6e262	>DBL_MAX

3.8 Symbol Newtona

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n-1}{k-1} + \binom{n-2}{k-1} + \dots + \binom{k-1}{k-1}$$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

3.9 Wzorki na pewne ciagi

3.9.1 Nieporządek

Liczba takich permutacji, że $p_i \neq i$ (żadna liczba nie wraca na tą samą pozycję).

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

3.9.2 Liczba podziałów

Liczba sposobów zapisania n jako sumę posortowanych liczb dodatnich.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

3.9.3 Liczby Eulera pierwszego rzędu

Liczba permutacji $\pi \in S_n$ gdzie k elementów jest większych niż poprzedni: k razy $\pi(j) > \pi(j+1), k+1$ razy $\pi(j) \geq j$, k razy $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{i=0}^{k} (-1)^{i} \binom{n+1}{i} (k+1-j)^{n}$$

3.9.4 Stirling pierwszego rzędu

Liczba permutacji długości n mające k cykli.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

3.9.5 Stirling drugiego rzędu

Liczba permutacji długości \boldsymbol{n} mające \boldsymbol{k} spójnych.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^{n}$$

3.9.6 Liczby Catalana

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- ścieżki na planszy $n \times n$.
- nawiasowania po n ().
- liczba drzew binarnych z n+1 liściami (0 lub 2 syny).
- skierowanych drzew z n+1 wierzchołkami.
- triangulacje n + 2-kąta.
- $\bullet\,$ permutacji [n]bez 3-wyrazowego rosnącego podciągu?

3.9.7 Formula Cayley'a

Liczba różnych drzew (z dokładnością do numerowania wierzchołków) wynosi n^{n-2} . Liczba sposobów by zespójnić k spójnych o rozmiarach s_1, s_2, \ldots, s_k wynosi $s_1 \cdot s_2 \cdot \cdots \cdot s_k \cdot n^{k-2}$.

3.10 Funkcje multiplikatywne

- id(n) = n, $1 * \varphi = id$
- 1(n) = 1
- $\tau(n) = \text{liczba dzielników dodatnich}, 1 * 1 = \tau$
- $\sigma(n) = \text{suma dzielników dodatnich}, id * 1 = \sigma$
- $\varphi(n) =$ liczba liczb względnie pierwszych z n większych równych 1, $id * \mu = \varphi$
- $\mu(n) = 1$ dla n = 1, 0 gdy istnieje p, że $p^2|n$, oraz $(-1)^k$ jak n jest iloczynem k parami różnych liczb pierwszych
- $\epsilon(n)=1$ dla n=1 oraz 0 dla $n>1,\,f*\epsilon=f,\,\mathbbm{1}*\varphi=\epsilon$
- $(f * g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})$
- $\bullet \ f * g = g * f$
- f * (g * h) = (f * g) * h
- f * (g + h) = f * g + f * h
- jak dwie z trzech funkcji f * g = h są multiplikatywne, to trzecia też
- $f * g = \epsilon \Rightarrow g(n) = -\frac{\sum_{d|n,d>1} f(d)g(\frac{n}{d})}{f(1)}$
- równoważne: $-g(n) = \sum_{d|n} f(d)$ $-f(n) = \sum_{d|n} g(d) \mu(\frac{n}{d})$
- $-\sum_{k=1}^{n} g(k) = \sum_{d=1}^{n} \lfloor \frac{n}{d} \rfloor f(d)$ $\varphi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$
- $\varphi(n) = n \cdot (1 \frac{1}{p_1}) \cdot (1 \frac{1}{p_2}) \dots (1 \frac{1}{p_k})$

3.11 Zasada włączeń i wyłączeń

$$|\bigcup_{i=1}^{n} A_i| = \sum_{\emptyset \neq J \subseteq \{1, \dots, n\}} (-1)^{|J|+1} |\bigcap_{j \in J} A_j|$$

3.12 Fibonacci

$$F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$$

 $F_{n-1}F_{n+1} - F_n^2 = (-1)^n, F_{n+k} = F_k F_{n+1} + F_{k-1}F_n,$ $F_n|F_{nk}, NWD(F_m, F_n) = F_{NWD(m,n)}$

Matma (4)

```
extended-gcd
Opis: Dla danego (a, b) znajduje takie (gcd(a, b), x, y), że ax + by = gcd(a, b)
Czas: \mathcal{O}(\log(\max(a,b)))
Użycie: LL gcd, x, y; tie(gcd, x, y) = extended_gcd(a deaf46, 7 lines
tuple<LL, LL, LL> extended_gcd(LL a, LL b) {
  if(a == 0)
   return {b, 0, 1};
  LL x, y, gcd;
  tie(gcd, x, y) = extended_gcd(b % a, a);
  return {gcd, y - x * (b / a), x};
Opis: Chińskie Twierdzenie o Resztach
Czas: \mathcal{O}(\log n) Pamięć : \mathcal{O}(1)
Użycie: crt(a, m, b, n) zwraca takie x, że x mod m = a i x mod
m i n nie muszą być wzlędnie pierwsze, ale może nie być wtedy
uwali się wtedy assercik, można zmienić na return -1
"../extended-gcd/main.cpp"
                                                         269203, 9 lines
LL crt(LL a, LL m, LL b, LL n)
  if(n > m) swap(a, b), swap(m, n);
  LL d, x, y;
  tie(d, x, y) = extended_gcd(m, n);
  assert ((a - b) % d == 0);
  LL ret = (b - a) % n * x % n / d * m + a;
  return ret < 0 ? ret + m * n / d : ret;
```

mod-int

Opis: Struktura do dzialań modulo

```
template<int mod>
struct mi {
  int val;
  mi() { val = 0; }
  mi(const LL& v) {
    val = (-mod <= v && v <= mod) ? v : v % mod;
    if(val < 0) val += mod;
}
friend ostream& operator<<(ostream &os, const mi &a) {</pre>
```

```
return os << a.val;
 friend istream& operator>>(istream &is, mi &a) {
    return is >> a.val;
 friend bool operator == (const mi &a, const mi &b) {
    return a.val == b.val;
 friend bool operator!=(const mi &a, const mi &b) {
    return ! (a == b);
  friend bool operator<(const mi &a, const mi &b) {
    return a.val < b.val;</pre>
 friend bool operator <= (const mi &a, const mi &b) {
    return a.val <= b.val;</pre>
 mi operator-() const { return mi(-val); }
 mi& operator+=(const mi &m) {
   if ((val += m.val) >= mod) val -= mod;
    return *this;
 mi& operator -= (const mi &m) {
   if ((val -= m.val) < 0) val += mod;
    return *this:
 mi& operator *= (const mi &m) {
   val = (LL) val & m.val % mod;
    return *this;
 friend mi gpow(mi a, LL n) {
   if(n == 0) return 1;
   if (n % 2 == 1) return qpow(a, n - 1) * a;
    return gpow(a * a, n / 2);
 friend mi inv(const mi &a) {
    assert(a != 0); return qpow(a, mod - 2);
 mi& operator /= (const mi &m) {
   return (*this) *= inv(m);
  friend mi operator+(mi a, const mi &b) { return a += b; }
 friend mi operator-(mi a, const mi &b) { return a -= b;
 friend mi operator*(mi a, const mi &b) { return a *= b; }
 friend mi operator/(mi a, const mi &b) { return a /= b; }
using MI = mi < int(1e9 + 7) >;
newton
Opis: Dwumian Newtona
Czas: \mathcal{O}(n \log n + q)
Użycie: get(n, k) zwraca n po k
"../mod-int/main.cpp"
                                                      0767de, 13 lines
struct Newton {
 vector<MI> fac, rev;
 Newton(int n) {
   fac = rev = vector<MI>(n + 1, 1);
   FOR(i, 1, n) fac[i] = fac[i - 1] * i;
   rev[n] = 1 / fac[n];
   for (int i = n; i >= 1; i--)
     rev[i - 1] = rev[i] * i;
 MI get(int n, int k) {
   return fac[n] * rev[n - k] * rev[k];
```

```
berlekamp-massev
Opis: Zgadywanie rekurencji liniowej
Czas: \mathcal{O}\left(n^2 \log k\right) Pamięć : \mathcal{O}\left(n\right)
Użycie: Berlekamp_Massey<mod> bm(x) zgaduje rekurencję ciągu x
bm.get(k) zwraca k-ty wyraz ciągu x (index 0)
                                                      606849, 57 lines
template<int mod>
struct BerlekampMassey {
 int mul(int a, int b) {
    return (LL) a * b % mod;
 int add(int a, int b) {
    return a + b < mod ? a + b : a + b - mod;
 int qpow(int a, int n) {
   if (n == 0) return 1;
   if (n % 2 == 1) return mul(qpow(a, n - 1), a);
    return qpow(mul(a, a), n / 2);
 int n;
 vector<int> x, C;
 BerlekampMassey(vector<int> &x) : x(x) {
   vector<int> B; B = C = \{1\};
    int b = 1, m = 0;
    REP(i, size(x)) {
      m++; int d = x[i];
      FOR(j, 1, size(C) - 1)
       d = add(d, mul(C[j], x[i - j]));
      if (d == 0) continue;
      auto B = C;
      C.resize(max(size(C), m + size(B)));
      int coef = mul(d, gpow(b, mod - 2));
      FOR(j, m, m + size(B) - 1)
        C[j] = (C[j] - mul(coef, B[j - m]) + mod) % mod;
      if(size(B) < m + size(B)) \{ B = B; b = d; m = 0; \}
    C.erase(C.begin());
    for (int &t : C) t = add (mod, -t);
    n = size(C);
  vector<int> combine(vector<int> a, vector<int> b) {
    vector<int> ret(n * 2 + 1);
    REP(i, n + 1) REP(j, n + 1)
     ret[i + j] = add(ret[i + j], mul(a[i], b[j]));
    for (int i = 2 * n; i > n; i--) REP (j, n)
      ret[i - j - 1] = add(ret[i - j - 1], mul(ret[i], C[j]));
    return ret;
  int get(LL k) {
    vector<int> r(n + 1), pw(n + 1);
    r[0] = pw[1] = 1;
    for (k++; k; k /= 2) {
     if(k % 2) r= combine(r, pw);
      pw = combine(pw, pw);
    LL ret = 0;
    REP(i, n) ret = add(ret, mul(r[i + 1], x[i]));
    return ret;
};
```

```
miller-rabin
Opis: Test pierwszości Millera-Rabina
Czas: \mathcal{O}\left(\log_n^2\right) Pamięć : \mathcal{O}\left(1\right)
Użycie: miller_rabin(n) zwraca czy n jest pierwsze
dziala dla long longów
                                                          623bb2, 33 lines
LL mul(LL a, LL b, LL mod) {
  return (a * b - (LL) ((long double) a * b / mod) * mod + mod)
       % mod:
LL qpow(LL a, LL n, LL mod) {
  if(n == 0) return 1;
  if (n \% 2 == 1) return mul(qpow(a, n - 1, mod), a, mod);
  return qpow(mul(a, a, mod), n / 2, mod);
bool miller_rabin(LL n) {
  if(n < 2) return false;
  int r = 0:
  LL d = n - 1;
  while (d \% 2 == 0)
    d /= 2, r++;
  for(int a: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}) {
    if (n == a) return true;
    LL x = qpow(a, d, n);
    if(x == 1 | | x == n - 1)
      continue;
    bool composite = true;
    REP(i, r-1) {
      x = mul(x, x, n);
      if(x == n - 1) {
        composite = false;
        break;
    if (composite) return false;
  return true;
rho-pollard
Opis: Rozklad na czynniki Rho Pollarda
Czas: \mathcal{O}\left(n^{\frac{1}{4}}\right)
Użycie:
                 factor(n) zwraca vector dzielników pierwszych n,
niekoniecznie posortowany
factor(12) = \{2, 2, 3\}, factor(545423) = \{53, 41, 251\};
"../miller-rabin/main.cpp"
                                                          719c9e, 19 lines
LL rho pollard(LL n) {
  auto f = [\&] (LL x) \{ return (mul(x, x, n) + 1) % n; \};
  if(n % 2 == 0) return 2;
  for(LL i = 2;; i++) {
    LL x = i, y = f(x), p;
    while ((p = \underline{\underline{\phantom{a}}} gcd(n - x + y, n)) == 1)
     x = f(x), y = f(f(y));
    if (p != n) return p;
vector<LL> factor(LL n) {
  if (n == 1) return {};
  if (miller_rabin(n)) return {n};
  LL x = rho_pollard(n);
  auto l = factor(x), r = factor(n / x);
  l.insert(l.end(), r.begin(), r.end());
  return 1:
```

```
Opis: Mnożenie wielomianów
Czas: \mathcal{O}(n \log n)
Użycie: conv(a, b) zwraca iloczyn wielomianów a i b
conv_mod(a, b, M) zwraca iloczyn modulo, większa dokladność
using Complex = complex<double>;
void fft(vector<Complex> &a) {
 int n = size(a), L = 31 - _builtin_clz(n);
 static vector<complex<long double>> R(2, 1);
 static vector<Complex> rt(2, 1);
  for(static int k = 2; k < n; k \neq 2) {
   R.resize(n), rt.resize(n);
   auto x = polar(1.0L, M_PII / k);
   FOR(i, k, 2 * k - 1)
      rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2];
  vector<int> rev(n);
  REP(i, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 REP(i, n) if(i < rev[i]) swap(a[i], a[rev[i]]);
 for (int k = 1; k < n; k *= 2) {
    for (int i = 0; i < n; i += 2 * k) REP (j, k) {
      auto x = (double *) &rt[j + k], y = (double *) &a[i + j +
      Complex z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] *
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vector<double> conv(vector<double> &a, vector<double> &b) {
 if(a.empty() || b.empty()) return {};
 vector<double> res(size(a) + size(b) - 1);
 int L = 32 - \underline{\quad} builtin_clz(size(res)), n = (1 << L);
 vector<Complex> in(n), out(n);
  copy(a.begin(), a.end(), in.begin());
  REP(i, size(b)) in[i].imag(b[i]);
  for (auto &x : in) x *= x;
  REP(i, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  REP(i, size(res)) res[i] = imag(out[i]) / (4 * n);
  return res;
vector<LL> conv_mod(vector<LL> &a, vector<LL> &b, int M) {
 if(a.emptv() || b.emptv()) return {};
  vector<LL> res(size(a) + size(b) - 1);
  int B = 32 - __builtin_clz(size(res)), n = 1 << B;</pre>
  int cut = int(sqrt(M));
  vector<Complex> L(n), R(n), outl(n), outs(n);
  REP(i, size(a)) L[i] = Complex((int) a[i] / cut, (int) a[i] %
  REP(i, size(b)) R[i] = Complex((int) b[i] / cut, (int) b[i] %
       cut);
  fft(L), fft(R);
 REP(i, n) {
   int j = -i \& (n - 1);
   outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
   outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
 fft (outl), fft (outs);
 REP(i, size(res)) {
   LL av = LL(real(outl[i]) + 0.5), cv = LL(imag(outs[i]) +
    LL bv = LL(imag(outl[i]) + 0.5) + LL(real(outs[i]) + 0.5);
```

```
res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
  return res;
Opis: Wzór na calkę z zasady Simpsona - zwraca calkę na przedziale [a, b]
Czas: \mathcal{O}(n)
Użycie: intergral([](T x) { return 3 * x * x - 8 * x + 3; }, a,
Daj asserta na bląd, ewentualnie zwiększ n (im większe n, tym
mniejszy bląd)
                                                          6a3b16, 8 lines
using T = double;
T intergral (function<T(T)> f, T a, T b) {
  const int n = 1000;
  T \text{ delta} = (b - a) / n, \text{ sum} = f(a) + f(b);
  FOR(i, 1, 2 * n - 1)
    sum += f(a + i * delta) * (i & 1 ? 4 : 2);
  return sum * dif / 3;
primitive-root
\mathbf{O}pis: Dla pierwszego p znajduje generator modulo p
Czas: \mathcal{O}\left(\log^2(p)\right)
"../rho-pollard/main.cpp"
                                                         92b6e1, 20 lines
LL exp(LL a, LL b, int m) {
  if(b == 0) return 1;
  if (b & 1) return a * exp(a, b - 1, m) % m;
  return exp(a * a % m, b / 2);
int primitive_root(int p) {
  int q = p - 1;
  vector<LL> v = factor(q); vector<int> fact;
  REP(i, v.size())
    if(!i or v[i] != v[i - 1])
      fact.emplace_back(v[i]);
  while(1) {
    int g = rd(2, q); bool good = 1;
    for(auto &f : fact)
      if(exp(q, q / f, p) == 1) {
        good = 0; break;
    if (good) return g;
Struktury danych (5)
find-union
Opis: Find and union z mniejszy do wiekszego
Czas: \mathcal{O}(\alpha(n)) oraz \mathcal{O}(n) pamięciowo
                                                        c3dcbd, 19 lines
struct FindUnion {
  vector<int> rep;
  int size(int x) { return -rep[find(x)]; }
  int find(int x) {
```

```
return rep[x] < 0 ? x : rep[x] = find(rep[x]);
bool same_set(int a, int b) { return find(a) == find(b); }
bool join(int a, int b) {
  a = find(a), b = find(b);
  if(a == b)
    return false;
  if(-rep[a] < -rep[b])</pre>
    swap(a, b);
  rep[a] += rep[b];
```

```
rep[b] = a;
    return true;
 FindUnion(int n) : rep(n, -1) {}
fenwick-tree
Opis: Drzewo potegowe
Czas: \mathcal{O}(\log n)
Użvcie: wszystko indexowane od 0
update(pos, val) dodaje val do elementu pos
query(pos) zwraca sume na przedziale [0, pos)
lower_bound(val) zwraca pos, że suma [0, pos] <= val, n jeśli
nie istnieje, -1 jeśli puste
struct Fenwick {
  vector<LL> s;
 Fenwick(int n) : s(n) {}
  void update(int pos, LL val) {
    for(; pos < size(s); pos |= pos + 1)</pre>
     s[pos] += val;
  LL query(int pos) {
   LL ret = 0;
    for(; pos > 0; pos &= pos - 1)
     ret += s[pos - 1];
    return ret;
  int lower_bound(LL val) {
    if(val <= 0) return -1;
    int pos = 0:
    for (int pw = 1 << 25; pw; pw /= 2) {
     if(pos + pw \le size(s) \&\& s[pos + pw - 1] \le sum)
        pos += pw, sum -= s[pos - 1];
    return pos;
};
fenwick-tree-2d
Opis: Drzewo potęgowe 2d offline
Czas: \mathcal{O}(\log^2 n) Pamięć \mathcal{O}(n \log n)
Użycie: wywolujemy proprocess(x, y) na pozycjach, które chcemy
updateować, później init()
update(x, y, val) dodaje val do a[x, y], query(X, Y) zwraca
sume po a[x, y] \dot{z}e x < X i y < Y
"../fenwick-tree/main.cpp"
                                                       06b20f, 28 lines
struct Fenwick2d {
  vector<vector<int>> vs;
 vector<Fenwick> ft:
  FT2(int limx) : ys(limx) ()
  void preprocess(int x, int y) {
   for(; x < size(ys); x \mid = x + 1) ys[x].push_back(y);
  void init() {
    for(auto &v : ys) {
      sort(v.begin(), v.end());
      ft.emplace back(size(v));
  int ind(int x, int y) {
    auto it = lower_bound(ys[x].begin(), ys[x].end(), y);
    return distance(ys[x].begin(), it);
  void update(int x, int y, LL val) {
    for(; x < size(ys); x = x + 1)
      ft[x].update(ind(x, y), val);
```

```
LL query(int x, int y) {
   LL sum = 0;
    for(; x; x \&= x - 1)
     sum += ft[x - 1].query(ind(x - 1, y));
};
segment-tree
Opis: Drzewo punkt-przedzial
Czas: \mathcal{O}(\log n) Pamięć : \mathcal{O}(n)
Użvcie:
                  Tree(n, val = 0) tworzy drzewo o n liściach, o
wartościach val
update(pos, val) zmienia element pos na val
query(1, r) zwraca f na przedziale
edytujesz funkcję f, można T ustawić na long longa albo pare 300 lines
struct Tree {
 using T = int;
 T f(T a, T b) { return a + b; }
  vector<T> nodes;
  int size = 1;
  Tree (int n, T val = 0) {
   while(size < n) size *= 2;
   nodes.resize(size * 2, val);
 void update(int pos, T val) {
   nodes[pos += size] = val;
    while (pos /= 2)
      nodes[pos] = f(nodes[pos * 2], nodes[pos * 2 + 1]);
 T query(int 1, int r) {
   1 += size, r += size;
   T ret = (1 != r ? f(nodes[1], nodes[r]) : nodes[1]);
    while (1 + 1 < r) {
      if(1 % 2 == 0)
       ret = f(ret, nodes[1 + 1]);
      if(r % 2 == 1)
       ret = f(ret, nodes[r - 1]);
      1 /= 2, r /= 2;
    return ret:
};
lazy-segment-tree
Opis: Drzewo przedzial-przedzial
Czas: \mathcal{O}(\log n) Pamięć: \mathcal{O}(n)
Użycie: add(1, r, val) dodaje na przedziale
quert(1, r) bierze maxa z przedzialu
Zmieniając z maxa na co innego trzeba edytować
funkcje add val i f
                                                       c769ee, 60 lines
using T = int;
struct Node {
 T val, lazv;
 int size = 1;
};
struct Tree {
 vector<Node> nodes;
 int size = 1;
  void add_val(int v, T val) {
    nodes[v].val += val;
    nodes[v].lazy += val;
```

```
T f(T a, T b) { return max(a, b); }
 Tree(int n) {
    while(size < n) size *= 2:
    nodes.resize(size * 2);
    for(int i = size - 1; i >= 1; i--)
      nodes[i].size = nodes[i * 2].size * 2;
  void propagate(int v) {
    REP(i, 2)
      add_val(v * 2 + i, nodes[v].lazy);
    nodes[v].lazv = 0;
 T query(int 1, int r, int v = 1) {
    if(1 == 0 \&\& r == nodes[v].size - 1)
      return nodes[v].val;
    propagate(v);
    int m = nodes[v].size / 2;
    if(r < m)
     return query(1, r, v * 2);
    else if (m \le 1)
     return query (1 - m, r - m, v * 2 + 1);
      return f (query (1, m - 1, v * 2), query (0, r - m, v * 2 +
          1));
  void add(int 1, int r, T val, int v = 1) {
    if(1 == 0 \&\& r == nodes[v].size - 1) {
      add val(v, val);
      return:
    propagate(v);
    int m = nodes[v].size / 2;
    if(r < m)
     add(1, r, val, v * 2);
    else if(m <= 1)
     add(1 - m, r - m, val, v * 2 + 1);
      add(1, m - 1, val, v * 2), add(0, r - m, val, v * 2 + 1);
    nodes[v].val = f(nodes[v * 2].val, nodes[v * 2 + 1].val);
};
ordered-set
Opis: set z dodatkowymi funkciami
Użycie: insert(x) dodaje element x (nie ma emplace)
find_by_order(i) zwraca iterator do i-tego elementu
order_of_key(x) zwraca, ile jest mniejszych elementów,
x nie musi być w secie
Jeśli chcemy multiseta, to używamy par {val, id}.
Przed includem trzeba dać undef _GLIBCXX_DEBUG
<ext/pb_ds/assoc_container.hpp>, <ext/pb_ds/tree_policy.hpp>
                                                      0a779f, 9 lines
using namespace __gnu_pbds;
template<class T> using ordered_set = tree<</pre>
 null_type,
 less<T>,
 rb_tree_tag,
 tree_order_statistics_node_update
```

```
hash-map
Opis: szybsza mapa
Czas: \mathcal{O}(1)
Uzycie: np hash_map<int, int>
trzeba przed includem dać undef _GLIBCXX_DEBUG
<ext/pb_ds/assoc_container.hpp>
                                                       079dfd, 11 lines
using namespace __gnu_pbds;
struct chash {
  const uint64_t C = LL(2e18 * M_PI) + 69;
  const int RANDOM = rng();
  size t operator()(uint64 t x) const {
    return __builtin_bswap64((x^RANDOM) * C);
1:
template<class L, class R>
using hash map = gp hash table<L, R, chash>;
line-container
Opis: Set dla funkcji liniowych
Czas: \mathcal{O}(\log n)
Użycie: add(a, b) dodaje funkcję y = ax + b
query(x) zwraca największe y w punkcie x, x < inf 2d6727.32 lines
struct Line {
 mutable LL a, b, p;
  LL eval(LL x) { return a * x + b; }
  bool operator<(const Line & o) const { return a < o.a; }</pre>
  bool operator<(LL x) const { return p < x; }</pre>
constexpr LL inf = 1e18 + 7;
LL divide(LL a, LL b) { return a / b - ((a ^ b) < 0 \&\& a % b);
LL better(const Line &x, const Line &y) {
 if(x.a == y.a) return x.b >= y.b ? inf : -inf;
  return divide(y.b - x.b, x.a - y.a);
struct LineContainer : multiset<Line, less<>>> {
  bool intersect (iterator x, iterator y) {
    if(y == end()) { x->p = inf; return 0; }
    x->p = better(*x, *v);
    return x->p >= y->p;
  void add(LL a, LL b) {
    auto z = insert({a, b, 0}), y = z++, x = y;
    while (intersect (y, z)) z = erase(z);
    if(x != begin() \&\& intersect(--x, y)) intersect(x, y =
         erase(y));
    while ((y = x) != begin() \&\& (--x) -> p >= y -> p)
      intersect(x, erase(y));
  LL query(LL x) {
    assert(!emptv());
    return lower bound(x)->eval(x);
};
```

lichao-tree

Opis: Dla funkcji, których pary przecinaja sie co najwyżej raz, oblicza maximum w punkcie x. Podany kod jest dla funkcji liniowych $$^{\rm a7f64a},\,50$\ lines$

```
struct Function {
  int a, b;
  L operator()(int x) {
   return x * L(a) + b;
}
```

```
Function (int p = 0, int q = inf) : a(p), b(q) {}
};
ostream& operator << (ostream &os, Function f) {
 return os << make_pair(f.a, f.b);</pre>
struct LiChaoTree {
  int size = 1;
  vector<Function> tree;
  LiChaoTree(int n) {
    while(size < n)</pre>
      size *= 2;
    tree.resize(size << 1);
  L get_min(int x) {
    int v = x + size;
    L ans = inf;
    while(v) {
      ans = min(ans, tree[v](x));
      v >>= 1;
    return ans;
  void add_func(Function new_func, int v, int l, int r) {
    int m = (1 + r) / 2;
    bool domin l = tree[v](1) > new func(1),
       domin_m = tree[v](m) > new_func(m);
    if (domin m)
      swap(tree[v], new_func);
    if(1 == r)
      return:
    else if(domin_l == domin_m)
      add_func(new_func, v \ll 1 \mid 1, m + 1, r);
    else
      add_func(new_func, v \ll 1, 1, m);
  void add_func(Function new_func) {
    add_func(new_func, 1, 0, size - 1);
};
Grafy (6)
eulerian-path
Opis: Ścieżka eulera
Czas: \mathcal{O}(n)
Użycie:
                   krawedzie to pary (to, id) gdzie id dla grafu
nieskierowanego jest takie samo dla (u, v) i (v, u)
graf musi być spójny, get path() zwraca ścieżke eulera,
get cycle() zwraca cykl eulera
jeśli nie ma, obie funkcję zwrócą pusty vector
                                                      296836, 41 lines
using PII = pair<int, int>;
struct EulerianPath {
  vector<vector<PII>> graph;
  vector<bool> used;
  vector<int> in, out;
  vector<int> path, cycle
  void dfs(int v = 0) {
    in[v]++;
    while(!graph[v].empty()) {
```

auto edge = graph[v].back();

```
graph[v].pop_back();
     int u = edge.first;
      int id = edge.second;
     if (used[id]) continue;
     used[id] = true;
     out[v]++;
      dfs(u);
   path.emplace_back(v);
 EulerianPath(int m, vector<vector<PII>> &graph) : graph(graph
    int n = size(graph);
   used.resize(m);
   in.resize(n);
    out.resize(n);
   in[0]--:
    debug(path, in, out);
    cvcle = path;
    REP(i, n) if(in[i] != out[i]) cycle.clear();
   if (path.size() != 0) in[path.back()]++, out[path[0]]++;
    REP(i, n) if(in[i] != out[i]) path.clear();
    reverse(path.begin(), path.end());
 vector<int> get_path() { return path; }
 vector<int> get_cycle() { return cycle; }
jump-ptr
Opis: Jump Pointery
Czas: \mathcal{O}(n \log n + q \log n)
Użycie: konstruktor - JumpPtr(graph)
można ustawić roota
jump_up(v, k) zwraca wierzcholek o k wyższy niż v
jeśli nie istnieje, zwraca -1
lca(a, b) zwraca lca wierzcholków
                                                   d7a477, 44 lines
struct JumpPtr {
 int LOG = 20:
 vector<vector<int>> graph, jump;
 vector<int> par, dep;
 void par_dfs(int v) {
   for(int u : graph[v]) {
     if(u != par[v]) {
       par[u] = v;
       dep[u] = dep[v] + 1;
       par_dfs(u);
 JumpPtr(vector<vector<int>> &graph, int root = 0) : graph(
      graph) {
    int n = size(graph);
   par.resize(n, -1);
    dep.resize(n);
   par_dfs(root);
    jump.resize(LOG, vector<int>(n));
    jump[0] = par;
   FOR(i, 1, LOG - 1) REP(j, n)
     int jump_up(int v, int k) {
    for (int i = LOG - 1; i >= 0; i--)
     if(k & (1 << i))
```

```
v = jump[i][v];
return v;
}
int lca(int a, int b) {
   if(dep[a] < dep[b]) swap(a, b);
   int delta = dep[a] - dep[b];
   a = jump_up(a, delta);
   if(a == b) return a;

for(int i = LOG - 1; i >= 0; i--) {
   if(jump[i][a] != jump[i][b]) {
      a = jump[i][a];
      b = jump[i][b];
   }
} return par[a];
}
```

hld

Opis: Heavy-Light Decomposition **Czas:** $\mathcal{O}(\log n)$

Użycie: kontruktor - HLD(n, graph)

lca(v, u) zwraca lca
get_vertex(v) zwraca pozycję odpowiadającą wierzcholkowi
get_path(v, u) zwraca przedzialy do obsługiwania drzewem
przedzialowym

 $\begin{tabular}{ll} get_path(v,\ u) & jeśli robisz operacje na wierzcholkach \\ get_path(v,\ u, false) & jeśli na krawędziach (nie zawiera lca) \\ get_subtree(v) & zwraca przedział odpowiadający podrzewucyc, 58 lines \\ \end{tabular}$

```
vector<vector<int>> graph;
vector<int> size, pre, pos, nxt, par;
int t = 0:
void init(int v, int p = -1) {
 par[v] = p;
 size[v] = 1;
  for(int &u : graph[v]) if(u != par[v]) {
   init(u, v);
   size[v] += size[u];
   if(size[u] > size[graph[v][0]])
     swap(u, graph[v][0]);
void set_paths(int v) {
 pre[v] = t++;
  for(int &u : graph[v]) if(u != par[v]) {
   nxt[u] = (u == graph[v][0] ? nxt[v] : u);
   set_paths(u);
 pos[v] = t;
HLD(int n, vector<vector<int>> graph, int root = 0)
  : graph(graph), size(n), pre(n), pos(n), nxt(n), par(n) {
 init(root);
 set_paths(root);
int lca(int v, int u) {
  while(nxt[v] != nxt[u]) {
   if(pre[v] < pre[u])</pre>
     swap(v, u);
   v = par[nxt[v]];
  return (pre[v] < pre[u] ? v : u);</pre>
vector<pair<int, int>> path_up(int v, int u) {
  vector<pair<int, int>> ret;
  while(nxt[v] != nxt[u]) {
```

```
ret.emplace_back(pre[nxt[v]], pre[v]);
     v = par[nxt[v]];
   if(pre[u] != pre[v]) ret.emplace_back(pre[u] + 1, pre[v]);
    return ret;
 int get_vertex(int v) { return pre[v]; }
 vector<pair<int, int>> get_path(int v, int u, bool add_lca =
    int w = lca(v, u);
    auto ret = path_up(v, w);
    auto path_u = path_up(u, w);
   if(add_lca) ret.emplace_back(pre[w], pre[w]);
    while(!path_u.empty()) {
     ret.emplace back(path u.back());
     path_u.pop_back();
   return ret;
 pair<int, int> get_subtree(int v) { return {pre[v], pos[v] -
      1): }
scc
Opis: Silnie Spójnie Skladowe
Czas: \mathcal{O}(\log n)
Użvcie: kontruktor - SCC (graph)
group[v] to numer silnie spójnej wierzcholka v
get_compressed() zwraca graf siline spójnych
get_compressed(false) nie usuwa multikrawędzi
```

```
112027, 61 lines
struct SCC {
 int n:
 vector<vector<int>> graph;
 int group cnt = 0;
 vector<int> group;
 vector<vector<int>> rev_graph;
 vector<int> order;
 void order_dfs(int v) {
   group[v] = 1;
   for(int u : rev_graph[v])
     if(group[u] == 0)
       order dfs(u);
   order.emplace_back(v);
 void group_dfs(int v, int color) {
   group[v] = color;
   for(int u : graph[v])
     if(group[u] == -1)
       group_dfs(u, color);
 SCC(vector<vector<int>> &graph) : graph(graph) {
   n = size(graph);
   rev_graph.resize(n);
   REP(v, n)
     for(int u : graph[v])
       rev_graph[u].emplace_back(v);
    group.resize(n);
   REP(v, n)
     if(group[v] == 0)
       order_dfs(v);
    reverse(order.begin(), order.end());
   debug(order);
```

```
group.assign(n, -1);
    for(int v : order)
     if(group[v] == -1)
       group_dfs(v, group_cnt++);
 vector<vector<int>> get_compressed(bool delete_same = true) {
    vector<vector<int>> ans(group_cnt);
    REP(v, n)
      for(int u : graph[v])
       if(group[v] != group[u])
          ans[group[v]].emplace_back(group[u]);
    if(not delete_same)
     return ans;
    REP(v, group cnt) {
      sort(ans[v].begin(), ans[v].end());
      \verb"ans[v].erase(unique(ans[v].begin(), ans[v].end()), ans[v]"
           ].end());
    return ans;
};
```

biconnected

Opis: Dwuspójne skladowe

Czas: $\mathcal{O}\left(n\right)$

Użycie: add_edge(u, v) dodaje krawędź (u, v), u != v, bo get() nie dziala po wywolaniu init() w .bicon mamy dwuspójne(vector ideków

22177e, 45 lines

krawędzi na każdą), w .edges mamy krawędzie

struct BiconComps { using PII = pair<int, int>; vector<vector<int>> graph, bicon; vector<int> low, pre, s; vector<array<int, 2>> edges; BiconComps(int n): graph(n), low(n), pre(n, -1) {} void add_edge(int u, int v) { int q = size(edges); graph[u].emplace_back(g); graph[v].emplace_back(q); edges.push_back({u, v}); int get(int v, int id) { for(int r : edges[id]) if(r != v) return r; int t = 0: void dfs(int v, int p) { low[v] = pre[v] = t++; bool par = false; for(int e : graph[v]) { int u = get(v, e); if(u == p && !par) { par = true; continue; else if (pre[u] == -1) { s.emplace_back(e); dfs(u, v); low[v] = min(low[v], low[u]);if(low[u] >= pre[v]) { bicon.emplace_back(); bicon.back().emplace_back(s.back()); s.pop_back(); } while(bicon.back().back() != e);

```
else if(pre[v] > pre[u]) {
        low[v] = min(low[v], pre[u]);
        s.emplace_back(e);
  void init() { dfs(0, -1); }
2sat
Opis: Zwraca poprawne przyporządkowanie zmiennym logicznym dla prob-
lemu 2-SAT, albo mówi, że takie nie istnieje
Czas: \mathcal{O}(n+m), gdzie n to ilość zmiennych, i m to ilość przyporządkowań.
Użvcie: TwoSat ts(ilość zmiennych);
õznacza negacje
ts.either(0, \sim3); // var 0 is true or var 3 is false
ts.set_value(2); // var 2 is true
ts.at_most_one(\{0, \sim 1, 2\}); // co najwyżej jedna z var 0, \sim 1 i 2
to prawda
ts.solve(); // rozwiązuje i zwraca true jeśli rozwiązanie
istnieje
ts.values[0..N-1] // to wartości rozwiązania
                                                       841cb2, 59 lines
struct TwoSat {
  int n;
  vector<vector<int>> gr;
  vector<int> values;
  TwoSat(int n = 0) : n(n), gr(2*n) {}
  void either(int f, int j) {
   f = \max(2 * f, -1 - 2 * f);
    j = \max(2 * j, -1 - 2 * j);
   gr[f].emplace_back(j^1);
   gr[j].emplace_back(f^1);
  void set value(int x) { either(x, x); }
  int add var() {
    gr.emplace back();
   gr.emplace_back();
   return n++;
  void at most one(vector<int>& li) {
    if(size(li) <= 1) return;</pre>
    int cur = \simli[0];
   FOR(i, 2, size(li) - 1) {
     int next = add_var();
     either(cur, ~li[i]);
     either(cur, next);
      either(~li[i], next);
      cur = ~next;
    either(cur, ~li[1]);
  vector<int> val, comp, z;
  int t = 0;
  int dfs(int i)
    int low = val[i] = ++t, x;
    z.emplace_back(i);
    for(auto &e : qr[i]) if(!comp[e])
      low = min(low, val[e] ?: dfs(e));
    if(low == val[i]) do {
      x = z.back(); z.pop_back();
      comp[x] = low;
      if (values[x >> 1] == -1)
       values[x >> 1] = x & 1;
```

```
} while (x != i);
    return val[i] = low;
  bool solve() {
    values.assign(n, -1);
    val.assign(2 * n, 0);
    comp = val;
    REP(i, 2 * n) if(!comp[i]) dfs(i);
    REP(i, n) if(comp[2 * i] == comp[2 * i + 1]) return 0;
    return 1:
};
matching
Opis: Turbo Matching
Czas: Średnio okolo \bar{\mathcal{O}}(n \log n), najgorzej \mathcal{O}(n^2)
Użycie:
          wierzcholki grafu nie muszą być ladnie podzielone na
dwia przedzialy, musi być po prostu dwudzielny.
                                                       0290f0, 41 lines
vector<vector<int>> graph;
vector<int> match, vis;
int t = 0;
bool match dfs(int v) {
  vis[v] = t;
  for(int u : graph[v])
   if(match[u] == -1) {
      match[u] = v;
      match[v] = u;
      return true;
  for(int u : graph[v])
    if(vis[match[u]] != t && match_dfs(match[u])) {
      match[u] = v;
      match[v] = u;
      return true;
  return false;
int match() {
 int n = int(graph.size());
  match.resize(n, -1);
  vis.resize(n);
  int d = -1;
  while(d != 0) {
   d = 0;
    for (int v = 0; v < n; ++v)
      if(match[v] == -1)
        d += match dfs(v);
  int ans = 0;
  for (int v = 0; v < n; ++v)
   if(match[v] != -1)
      ++ans:
  return ans / 2;
Opis: Dinic bez skalowania
Czas: \mathcal{O}(V^2E)
```

```
Uzvcie: Dinic flow(2); flow.add_edge(0, 1, 5); cout << flow(0,
1); // 5
funkcja get_flowing() zwraca dla każdej oryginalnej krawędzi,
ile przez nia leci
                                                    fed904, 78 lines
struct Dinic {
 using T = int:
 struct Edge {
   int v, u;
   T flow, cap;
  };
  int n;
  vector<vector<int>> graph;
 vector<Edge> edges;
  Dinic(int N) : n(N), graph(n) {}
  void add_edge(int v, int u, T cap) {
    debug() << "adding edge " << make_pair(v, u) << " with cap</pre>
        " << cap;
    int e = size(edges);
    graph[v].emplace_back(e);
    graph[u].emplace_back(e + 1);
    edges.emplace_back(Edge{v, u, 0, cap});
    edges.emplace_back(Edge{u, v, 0, 0});
  vector<int> dist;
 bool bfs(int source, int sink) {
    dist.assign(n, 0);
    dist[source] = 1;
    deque<int> que = {source};
    while(size(que) and dist[sink] == 0) {
     int v = que.front();
      que.pop front();
      for(int e : graph[v])
       if(edges[e].flow != edges[e].cap and dist[edges[e].u]
            == 0) {
          dist[edges[e].u] = dist[v] + 1;
          que.emplace back(edges[e].u);
    return dist[sink] != 0;
  vector<int> ended_at;
 T dfs(int v, int sink, T flow = numeric_limits<T>::max()) {
   if(flow == 0 or v == sink)
      return flow;
    for(; ended at[v] != size(graph[v]); ++ended at[v]) {
      Edge &e = edges[graph[v][ended_at[v]]];
      if(dist[v] + 1 == dist[e.u])
        if(T pushed = dfs(e.u, sink, min(flow, e.cap - e.flow))
            ) {
          e.flow += pushed;
          edges[graph[v][ended_at[v]] ^ 1].flow -= pushed;
          return pushed:
    return 0:
 T operator()(int source, int sink) {
    T answer = 0;
    while(true) {
     if(not bfs(source, sink))
       break;
      ended_at.assign(n, 0);
      while(T pushed = dfs(source, sink))
```

```
answer += pushed;
    return answer;
  map<pair<int, int>, T> get_flowing() {
   map<pair<int, int>, T> ret;
   REP(v, n)
     for(int i : graph[v]) {
       if (i % 2) // considering only original edges
         continue:
       Edge &e = edges[i];
        ret[make pair(v, e.u)] = e.flow;
    return ret;
};
mcmf
Opis: Min-cost max-flow z SPFA
Czas: kto wie
              MCMF flow(2); flow.add_edge(0, 1, 5, 3); cout <<
Użycie:
flow(0, 1); // 15
można przepisać funkcję get_flowing() z Dinic'a
                                                    2baac2, 79 lines
struct MCMF {
  struct Edge {
   int v, u, flow, cap;
   LL cost;
   friend ostream& operator << (ostream &os, Edge &e) {
     return os << vector<LL>{e.v, e.u, e.flow, e.cap, e.cost};
  };
  const LL inf_LL = 1e18;
  const int inf int = 1e9;
  vector<vector<int>> graph;
  vector<Edge> edges;
  MCMF(int N) : n(N), graph(n) {}
  void add_edge(int v, int u, int cap, LL cost) {
   int e = size(edges);
   graph[v].emplace_back(e);
   graph[u].emplace_back(e + 1);
   edges.emplace_back(Edge{v, u, 0, cap, cost});
   edges.emplace_back(Edge{u, v, 0, 0, -cost});
  pair<int, LL> augment(int source, int sink) {
    vector<LL> dist(n, inf_LL);
   vector<int> from(n, -1);
   dist[source] = 0;
   deque<int> que = {source};
    vector<bool> inside(n);
    inside[source] = true;
    while(size(que)) {
     int v = que.front();
     inside[v] = false;
     que.pop_front();
      for(int i : graph[v]) {
       Edge &e = edges[i];
       if(e.flow != e.cap and dist[e.u] > dist[v] + e.cost) {
          dist[e.u] = dist[v] + e.cost;
          from[e.u] = i;
         if(not inside[e.u]) {
```

```
inside[e.u] = true;
            que.emplace_back(e.u);
    if(from[sink] == -1)
     return {0, 0};
    int flow = inf int, e = from[sink];
    while (e != -1) {
     flow = min(flow, edges[e].cap - edges[e].flow);
      e = from[edges[e].v];
    e = from[sink];
    while (e != -1) {
     edges[e].flow += flow;
     edges[e ^ 1].flow -= flow;
     e = from[edges[e].v];
    return {flow, flow * dist[sink]};
 pair<int, LL> operator()(int source, int sink) {
   int flow = 0;
   LL cost = 0;
   pair<int, LL> got;
     got = augment(source, sink);
     flow += got.first;
     cost += got.second;
    } while(got.first);
    return {flow, cost};
};
```

Geometria (7)

Opis: Double może być LL, ale nie int. p.x oraz p.y nie można zmieniać (to kopie). Nie tworzyć zmiennych o nazwie "x" lub "y".

Użycie: $P p = \{5, 6\}$; abs(p) = length; arg(p) = kat; polar(len, angle); exp(angle) fda436, 33 lines

```
using Double = long double;
using P = complex<Double>;
#define x real()
#define y imag()
constexpr Double eps = 1e-9;
bool equal(Double a, Double b) {
 return abs(a - b) <= eps;
int sign(Double a) {
 return equal(a, 0) ? 0 : a > 0 ? 1 : -1;
struct Sortx {
 bool operator()(const P &a, const P &b) const {
    return make_pair(a.x, a.y) < make_pair(b.x, b.y);</pre>
};
istream& operator>>(istream &is, P &p) {
 Double a, b;
 is >> a >> b;
 p = P(a, b);
 return is;
```

```
bool operator == (P a, P b) {
  return equal(a.x, b.x) && equal(a.y, b.y);
// cross(\{1, 0\}, \{0, 1\}) = 1
Double cross(P a, P b) { return a.x * b.y - a.y * b.x; }
Double dot(P a, P b) { return a.x * b.x + a.y * b.y; }
Double sq_dist(P a, P b) { return dot(a - b, a - b); }
Double dist(P a, P b) { return abs(a - b); }
```

advanced-complex

Opis: Randomowe przydatne wzorki, większość nie działa dla intów

```
// nachylenie k \rightarrow y = kx + m
Double slope (P a, P b) { return tan(arg(b - a)); }
// rzut p na ab
P project (P p, P a, P b) {
 return a + (b - a) * dot(p - a, b - a) / norm(a - b);
// odbicie p wzgledem ab
P reflect (P p, P a, P b) {
 return a + conj((p - a) / (b - a)) * (b - a);
// obrot a wzgledem p o theta radianow
P rotate (P a, P p, Double theta) {
 return (a - p) * polar(1.0L, theta) + p;
// kat ABC, w radianach, zawsze zwraca mniejszy kat
Double angle (P a, P b, P c) {
 return abs(remainder(arg(a - b) - arg(c - b), 2.0 * M_PI));
// szybkie przeciecie prostych, nie działa dla rownoleglych
P intersection (P a, P b, P p, P q) {
 Double c1 = cross(p - a, b - a), c2 = cross(q - a, b - a);
  return (c1 * q - c2 * p) / (c1 - c2);
// check czy sa rownolegle
bool is_parallel(P a, P b, P p, P g) {
 P c = (a - b) / (p - q); return c == conj(c);
// check czy sa prostopadle
bool is perpendicular (P a, P b, P p, P g) {
 P c = (a - b) / (p - q); return c == -conj(c);
// zwraca takie q, ze (p, q) jest rownolegle do (a, b)
P parallel(P a, P b, P p)
  return p + a - b;
// zwraca takie q, ze (p, q) jest prostopadle do (a, b)
P perpendicular (P a, P b, P p) {
  return reflect(p, a, b);
// przeciecie srodkowych trojkata
P centro(P a, P b, P c) {
  return (a + b + c) / 3.0L;
```

intersect-lines

Opis: Przecięcie prostych lub odcinków

```
Użycie: intersection(a, b, c, d) zwraca przecięcie prostych ab
v = intersect(a, b, c, d, s) zwraca przecięcie (s ? odcinków:
prostych) ab oraz cd
if size(v) == 0: nie ma przecięć
if size(v) == 1: v[0] jest przecięciem
if size(v) == 2 and s: (v[0], v[1]) to odcinek, w którym są
wszystkie inf rozwiązań
if size(v) == 2 and s == false: v to niezdefiniowane punkty
(inf rozwiazań)
"../point/main.cpp"
                                                     3a1213, 26 lines
P intersection (P a, P b, P c, P d) {
  Double c1 = cross(c - a, b - a), c2 = cross(d - a, b - a);
  assert (c1 != c2); // proste nie moga byc rownolegle
  return (c1 * d - c2 * c) / (c1 - c2);
bool on_segment(P a, P b, P p) {
  return equal(cross(a - p, b - p), 0) and dot(a - p, b - p) \le
vector<P> intersect(P a, P b, P c, P d, bool segments) {
  Double acd = cross(c - a, d - c), bcd = cross(c - b, d - c).
       cab = cross(a - c, b - a), dab = cross(a - d, b - a);
  if ((segments and sign(acd) * sign(bcd) < 0 and sign(cab) *
      sign(dab) < 0)
     or (not segments and not equal(bcd, acd)))
    return { (a * bcd - b * acd) / (bcd - acd) };
  if(not segments)
    return {a, a};
  // skip for not segments
  set<P, Sortx> s;
  if(on_segment(c, d, a)) s.emplace(a);
  if(on_segment(c, d, b)) s.emplace(b);
  if(on_segment(a, b, c)) s.emplace(c);
  if(on_segment(a, b, d)) s.emplace(d);
  return {s.begin(), s.end()};
Opis: Pole wielokata, niekoniecznie wypuklego
Użycie: w vectorze muszą być wierzcholki zgodnie z kierunkiem
ruchu zegara. Jeśli Double jest intem to może się psuć / 2.
area(a, b, c) zwraca pole trójkata o takich dlugościach boku
"../point/main.cpp"
Double area(vector<P> pts) {
  int n = size(pts);
  Double ans = 0;
  REP(i, n) ans += cross(pts[i], pts[(i + 1) % n]);
  return ans / 2;
Double area (Double a, Double b, Double c) {
  Double p = (a + b + c) / 2;
  return sqrt(p * (p - a) * (p - b) * (p - c));
convex-hull
Opis: Otoczka wypukla, osobno góra i dól
Czas: \mathcal{O}(n \log n)
Użycie: top_bot_hull zwraca osobno górę i dól po id
hull_id zwraca cala otoczkę po id
hull zwraca punkty na otoczce
"../point/main.cpp"
Double cross(P a, P b, P c) { return sign(cross(b - a, c - a));
pair<vector<int>, vector<int>> top_bot_hull(vector<P> &pts) {
```

```
int n = size(pts);
 vector<int> ord(n);
 REP(i, n) ord[i] = i;
 sort(ord.begin(), ord.end(), [&](int i, int j) {
   P \&a = pts[i], \&b = pts[j];
   return make_pair(a.x, a.y) < make_pair(b.x, b.y);</pre>
 vector<int> top, bot;
 REP(dir, 2) {
   vector<int> &hull = (dir ? bot : top);
   auto l = [&](int i) { return pts[hull[size(hull) - i]]; };
    for(int i : ord) {
     while (size (hull) > 1 && cross(1(2), 1(1), pts[i]) >= 0)
       hull.pop back();
     hull.emplace_back(i);
   reverse(ord.begin(), ord.end());
 return {top, bot};
vector<int> hull id(vector<P> &pts) {
 vector<int> top, bot;
 tie(top, bot) = top_bot_hull(pts);
 top.pop back(), bot.pop back();
 top.insert(top.end(), bot.begin(), bot.end());
 return top;
vector<P> hull(vector<P> &pts) {
 vector<P> ret:
 for(int i : hull_id(pts))
  ret.emplace_back(pts[i]);
 return ret;
```

Tekstówki (8)

mod;

hashing

Czas: $\mathcal{O}(1)$

```
można zmienić modulo i bazę
                                                     4767a1, 20 lines
struct Hashing {
 vector<LL> ha, pw;
 LL \mod = 1000696969;
  int base:
  Hashing(string &str) {
   base = rd(30, 50);
    int len = size(str);
   ha.resize(len + 1);
    pw.resize(len + 1, 1);
    REP(i, len) {
     ha[i + 1] = (ha[i] * base + str[i] - 'a' + 1) % mod;
     pw[i + 1] = (pw[i] * base) % mod;
  LL get_hash(int 1, int r) {
```

return ((ha[r + 1] - ha[1] * pw[r - 1 + 1]) % mod + mod) %

Użycie: get_hash(l, r) zwraca hasza [l, r] wlącznie

```
Opis: KMP(str) zwraca tablicę pi. [0, pi[i]) = (i - pi[i], i]
Czas: \mathcal{O}(n)
                                                         65f132, 11 lines
vector<int> KMP(string &str) {
  int len = size(str);
  vector<int> ret(len);
  for(int i = 1; i < len; i++)
    int pos = ret[i - 1];
    while(pos && str[i] != str[pos]) pos = ret[pos - 1];
    ret[i] = pos + (str[i] == str[pos]);
  return ret:
Opis: pref(str) zwraca tablicę prefixo prefixowa [0, pref[i]) = [i, i + pref[i])
Czas: \mathcal{O}(n)
vector<int> pref(string &str) {
 int len = size(str);
  vector<int> ret(len);
  ret[0] = len;
  int i = 1, m = 0;
  while(i < len) {</pre>
    while (m + i < len \&\& str[m + i] == str[m]) m++;
    ret[i++] = m;
    m = (m != 0 ? m - 1 : 0);
    for(int j = 1; ret[j] < m; m--) ret[i++] = ret[j++];
 return ret;
manacher
Opis: radius[p][i] = rad = największy promień palindromu parzystości p o
środku i. L = i - rad + !p, R = i + rad to palindrom. Dla [abaababaab] daje
[003000020], [0100141000].
Czas: \mathcal{O}(n)
                                                         be40a9, 18 lines
array<vector<int>, 2> manacher(vector<int> &in) {
  int n = size(in);
  array<vector<int>, 2> radius = {{vector<int>(n - 1), vector
       int > (n) }}:
  REP(parity, 2) {
    int z = parity ^ 1, L = 0, R = 0;
    REP(i, n - z) {
      int &rad = radius[parity][i];
      if(i \le R - z)
        rad = min(R - i, radius[parity][L + (R - i - z)]);
      int l = i - rad + z, r = i + rad;
      while (0 \le 1 - 1 \&\& r + 1 \le n \&\& in[1 - 1] == in[r + 1])
        ++rad, ++r, --1;
      if(r > R)
        L = 1, R = r;
  return radius;
trie
Opis: Trie
Czas: \mathcal{O}(n \log \alpha)
Uzycie: Trie trie; trie.add(str);
                                                         9aa8f1, 15 lines
struct Trie {
  vector<unordered_map<char, int>> child = {{}};
```

int get_child(int v, char a) {

if(child[v].find(a) == child[v].end()) {

10

```
child[v][a] = size(child);
    child.emplace_back();
}
return child[v][a];
}
void add(string word) {
    int v = 0;
    for(char c : word)
        v = get_child(v, c);
}
};
```

suffix-automaton

Opis: buduje suffix automaton. Wystąpienia wzorca, liczba różnych podslów, sumaryczna długość wszystkich podslów, leksykograficznie k-te podslowo, najmniejsze przesunięcie cykliczne, liczba wystąpień podslowa, pierwsze wystąpienie, najkrótsze niewystępujące podslowo, longest common substring dwóch słów, LCS wielu słów

Czas: $\mathcal{O}(n\alpha)$ (szybsze, ale więcej pamięci) albo $\mathcal{O}(n\log\alpha)$ (mapa o takies) (mapa) (mapa

```
struct SuffixAutomaton { int sigma = 26;
    using Node = array<int, sigma>; // map<int, int>
   Node new node;
   vector<Node> edges;
    vector<int> link = \{-1\}, length = \{0\};
    int last = 0;
    SuffixAutomaton() {
       new node.fill(-1);
                               //-1-stan nieistnieiacu
       edges = {new_node}; // dodajemy stan startowy, ktory
            reprezentuje puste slowo
   void add letter(int c) {
        edges.emplace_back(new_node);
       length.emplace_back(length[last] + 1);
       link.emplace_back(0);
       int r = size(edges) - 1, p = last;
        while (p != -1 \&\& edges[p][c] == -1) {
           edges[p][c] = r;
           p = link[p];
       if(p != -1) {
            int q = edges[p][c];
           if(length[p] + 1 == length[q])
               link[r] = q;
            else {
                edges.emplace_back(edges[q]);
                length.emplace_back(length[p] + 1);
               link.emplace_back(link[q]);
               int q_prim = size(edges) - 1;
               link[q] = link[r] = q_prim;
                while (p != -1 \&\& edges[p][c] == q) {
                    edges[p][c] = q_prim;
                    p = link[p];
        last = r;
   bool is_inside(vector<int> &s) {
       int q = 0;
        for(int c : s) {
            if(edges[q][c] == -1)
                return false;
```

```
q = edges[q][c];
        return true;
};
suffix-array
Opis: Tablica suffixowa
Czas: \mathcal{O}(n \log n)
Użycie: SuffixArray t(s, lim) - lim to rozmiar alfabetu
sa zawiera posortowane suffixy, zawiera pusty suffix
lcp[i] to lcp suffixu sa[i - 1] i sa[i]
Dla s = "aabaaab" sa = \{6, 3, 0, 4, 1, 5, 2\}, 1cp = \{0, 0, 3, 1, 2\}
1, 2, 0, 1}
struct SuffixArray {
  vector<int> sa, lcp;
  SuffixArray(string& s, int lim = 256) { // lub\ basic\ string<
    int n = size(s) + 1, k = 0, a, b;
    vector<int> x(s.begin(), s.end() + 1);
    vector<int> y(n), ws(max(n, lim)), rank(n);
    sa = lcp = y;
    iota(sa.begin(), sa.end(), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
      p = j;
      iota(y.begin(), y.end(), n - j);
      REP(i, n) if(sa[i] >= j)
       y[p++] = sa[i] - j;
      fill(ws.begin(), ws.end(), 0);
      REP(i, n) ws[x[i]]++;
      FOR(i, 1, lim - 1) ws[i] += ws[i - 1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y);
      p = 1, x[sa[0]] = 0;
      FOR(i, 1, n - 1) a = sa[i - 1], b = sa[i], x[b] =
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p++;
    FOR(i, 1, n - 1) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
      for (k \&\& k--, j = sa[rank[i] - 1];
        s[i + k] == s[j + k]; k++);
};
```

Optymalizacje (9)

pragmy

Opis: Pragmy do wypychania kolanem

61c4f7, 2 lines

```
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2")
```

Randomowe rzeczy (10)