

Network Security Mathematics of Crypto

Amir Rezapour
Institute of Information Security,
National Tsing Hua University

Set of Integers

- The set of integers, denoted by Z, contains all integral numbers.
- +, -, \times applies to Z

Integer Division

- In integer arithmetic, if we divide a by n, we can get q and r.
- $-255 = (-23 \times 11) + (-2) \leftrightarrow -255 = (-24 \times 11) + 9$

Divisibility

- If a is not zero and in the division relation, $a = q \times n + r$
 - If the remainder is zero, n|a
 - $32 = 8 \times 4, 8 | 32$
 - If the remainder is *not* zero, $n \nmid a$
 - $42 = 5 \times 8 + 2, 8 \nmid 42$
- Fact 1: The integer 1 has only one divisor, itself.
- Fact 2: Any positive integer has at least two divisors, 1 and itself (but it can have more).

Common divisors of two integers

 The greatest common divisor of two positive integers gcd(a, b) is the largest integer that can divide both integers.

Modulo Operator

 The modulo operator is shown as mod (n). The second input (n) is called the modulus. The output r is called the residue.

$$-27 = 2 \mod 5$$
, $-18 = 10 \mod 14$

Set of Residues

The modulo operation creates a set, which in modular arithmetic is referred to as the set of least residues modulo n, or \mathbb{Z}_n .

$$\mathbf{Z}_2 = \{ 0, 1 \}$$

$$\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$| \mathbf{Z}_6 = \{ 0, 1, 2, 3, 4, 5 \} | \mathbf{Z}_{11} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$$

Operation in Z_n

- +, -,× for the set Z can also be defined for the set Z_n . The result may need to be mapped to Z_n using the mod operator.
 - $-14 + 7 = 6 \mod 15$
 - $-7-11 = 11 \mod 15$
 - $-7 \times 11 = 2 \mod 15$

Inverses

- In Z_n , two numbers a and b are additive inverses of each other if $a + b = 0 \mod n$
 - $Z_{10} = \{0,1,2,3,4,5,6,7,8,9\}.$
 - The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5).
- In Z_n , two numbers a and b are multiplicative inverses of each other if $a \times b = 1 \mod n$
 - There are only three pairs: (1, 1), (3, 7) and (9, 9).
 - The numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative inverse. Because $gcd(8,10) \neq 1$.
 - In Z_{11} , we have seven pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (9, 5), and (10, 10).

Addition and Multiplication Tables

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

Addition Table in \mathbf{Z}_{10}

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	0	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Multiplication Table in \mathbf{Z}_{10}

Addition and Multiplication sets

• Cryptography often uses two more sets: Z_p and Z_p^* . The modulus in these two sets is a prime number.

$$Z_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

 $Z_{13} * = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

$$\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbf{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\mathbf{Z}_6^* = \{1, 5\}$$

$$\mathbf{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10}^{*} = \{1, 3, 7, 9\}$$

Fast Computation for $x^d \pmod{n}$

Let t be the number of bits for integer d,

```
- e.g., If d = 5 = 101_2, then t = 3
```

Let d be the binary representation

```
y=1;

while (d != 0) \{

if ((d\%2) == 1) \{ y=(y*x)\%n; \}

d>>1;

x=(x*x)\%n; /* x^{2k} */
```