Graph Representations

Instructor: Dr. Ahmed Zekri

The slides are adapted from lectures of Prof. Charles Leiserson , MIT, CLRC textbook 2nd ed. & youtube lecture: Introduction to Graphs(mycodeschool)

Agenda

- Overview of Graphs
- Graph representation
 - adjacency list
 - adjacency matrix
 - Space complexity analysis

What is a graph?

- It is a non-linear data structure
- A tree is a graph with no cycle

tree graph

• •

• G=(V, E)

Graph components

Graph:

A graph G is an ordered pair of a set V of vertices and a set E of edges. G = (V, E)

Edges:

directed (u,v)

undirected { u, v}

$$E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_5\}, \{v_2, v_6\}, \{v_3, v_7\}, \{v_4, v_8\}, \{v_7, v_8\}, \{v_5, v_8\}, \{v_6, v_8\}\}$$

Types of graphs

Directed vs Undirected

Weighted graphs

Weight is a distance between two cities

The Facebook as a graph

Can you suggest some friends to Sam?

Graph representation

- Two explicit data structures can be used to represent a graph (directed or undirected)
 - Adjacency matrix
 - Adjacency list

The adjacency matrix

For the *adjacency-matrix representation* of a graph G = (V, E), we assume that the vertices are numbered 1, 2, ..., |V| in some arbitrary manner. Then the adjacency-matrix representation of a graph G consists of a $|V| \times |V|$ matrix $A = (a_{ij})$ such that

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

Adjacency matrix

- This is an undirected graph (matrix is symmetric)
- Similar matrix for directed graph but not symmetric.

Adjacency list

- The adjacency-list representation of a graph G = (V,E) consists of an array Adj of |V| lists, one for each vertex in V.
- For each u ∈ V , the adjacency list Adj[u] contains all the vertices such that there is an edge (u,v) ∈ E.
- That is, Adj[u] consists of all the vertices adjacent to u in G.
- Since the adjacency lists represent the edges of a graph, in pseudocode we treat the array Adj as an attribute of the graph, just as we treat the edge set E. In pseudocode, therefore, we will see notation such as G.Adj[u].

Adjacency List

Adjacency list example

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

Space complexity

- The adjacency matrix:
- requires $\theta(V^2)$ memory, independent of the number of edges in the graph.
- The adjacency list:
- If G is a directed graph, the sum of the lengths of all s is |E|.
- If G is an undirected graph, the sum of the lengths of all the adjacency lists is 2|E|
- For both directed and undirected graphs, the adjacency-list representation the amount of memory it requires is $\theta(V+E)$