Optimization and Computational Linear Algebra – Brett Bernstein

Recitation 4

It may be helpful if after recitation you try to re-solve these problems by yourself, and use them as additional study problems for the class.

1. Let $A, B \in \mathbb{R}^{n \times n}$. Prove that AB is invertible iff A and B are invertible. Solution.

Proof. First suppose A and B are invertible. We claim that $(AB)^{-1} = B^{-1}A^{-1}$. To see this note that

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I.$$

Conversely, suppose that AB is invertible. Since Bx = 0 implies ABx = 0 we must have $\ker(B) = \{0\}$ (which is equivalent to $\operatorname{rank}(B) = n$ by the fundamental theorem). Furthermore, since $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$ (from homework 3) we must have $\operatorname{rank}(A) = n$. But an $n \times n$ matrix is invertible iff it has $\operatorname{rank}(n)$, thus the proof is complete. \square

2. Let $A \in \mathbb{R}^{m \times n}$. Under what conditions is there a matrix B such that AB = I where I is the $m \times m$ identity matrix?

Solution. The condition is $\operatorname{rank}(A) = m$. To see this note that the *i*th column of AB is equal to Ab_i where b_i is the *i*th column of b. Thus the question can be reformulated as: "When can the equation $Ax = e_i$ be solved for each i?" This is the same as saying $e_i \in \operatorname{im}(A)$ for $i = 1, \ldots, m$, which is the same as saying $\operatorname{im}(A) = \mathbb{R}^m$.

3. Let $A \in \mathbb{R}^{m \times n}$. Under what conditions is there a matrix B such that BA = I where I is the $n \times n$ identity matrix?

Solution. When $\operatorname{rank}(A) = n$, or equivalently, when $\ker(A) = \{0\}$. To see note that BA = I iff $A^T B^T = I$, and apply the previous exercise.

- 4. Determine which of the following statements are equivalent. Below $A \in \mathbb{R}^{m \times n}$.
 - (a) The columns of A are linearly independent.
 - (b) The rows of A are linearly independent.
 - (c) rank(A) = n.
 - (d) rank(A) = m.
 - (e) The equation Ax = 0 has exactly one solution $x \in \mathbb{R}^n$.
 - (f) Ax = b has at least one solution $x \in \mathbb{R}^n$ for every $b \in \mathbb{R}^m$.

- (g) $ker(A) = \{0\}.$
- (h) The span of the columns of A is \mathbb{R}^m .
- (i) $im(A) = \mathbb{R}^m$.
- (j) $\operatorname{im}(A^T) = \mathbb{R}^n$.
- (k) The linear transformation corresponding to A is one-to-one.
- (1) The linear transformation corresponding to A is onto.

Solution. The following groups of statements are equivalent.

- a, c, e, g, j, k
- b, d, f, h, i, l
- 5. Explain why each of the following functions $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ is not an inner product.
 - (a) $f(x,y) = x_1y_2 + x_2y_3 + x_3y_1$
 - (b) $f(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2$
 - (c) $f(x,y) = x_1y_1 + x_2y_2$

Solution.

- (a) $f(e_1, e_1) = 0$ (must be > 0)
- (b) $f(2e_1, e_1) = 2^2 f(e_1, e_1)$ (instead of $2f(e_1, e_1)$)
- (c) $f(e_3, e_3) = 0$ (must be > 0)
- 6. Let $x = (\cos \theta_1, \sin \theta_1) \in \mathbb{R}^2$ and $y = (\cos \theta_2, \sin \theta_2) \in \mathbb{R}^2$ be two vectors on the unit circle (i.e., ||x|| = 1 = ||y||). Explain the phrase " $x^T y$ gives a measure of the angle between x and y."

Solution. Note that

$$x^T y = \cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2) = \cos(\theta_1 - \theta_2),$$

so for vectors on the unit circle, the Euclidean inner product gives the cosine of the angle between them.

In general we have $x^T y = ||x|| ||y|| \cos(\theta)$ where θ is the angle between x and y measured in the plane $\operatorname{Span}(x,y)$.

7. Let $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$ and $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. For $A \in \mathbb{R}^{m \times n}$ compute $x^T A y$ in terms of the entries of x, y, and A.

Solution.

$$x^{T}Ay = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}x_{i}y_{j}$$

8. Suppose you have the equation LUx = b where $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix, $U \in \mathbb{R}^{n \times n}$ is an upper triangular matrix, and $b \in \mathbb{R}^n$ is a fixed vector. Give a procedure for how you could solve for x using only "substitution" as described in class.

Solution. First solve Ly = b for y. Then solve Ux = y for x.

9. Fix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ and suppose the set

$$S = \{ x \in \mathbb{R}^n : Ax = b \}$$

is non-empty.

- (a) Under what conditions is S a subspace of \mathbb{R}^n ?
- (b) Suppose S is not a subspace of \mathbb{R}^n . Show there is a $v \in \mathbb{R}^n$ such that

$$S - v := \{x - v : x \in S\}$$

is a subspace. What does this say geometrically?

Solution.

- (a) S is a subspace iff b = 0 (so that $S = \ker(A)$). Otherwise $0 \notin S$.
- (b) Let v be any element of S. Then we claim that $S v = \ker(A)$. To see this note that for any $x \in S$ we have

$$A(x-v) = Ax - Av = b - b = 0.$$

Geometrically, this says that the solution set to a linear system, if it is non-empty, has the form ker(A) + v where v is any solution.

10. Prove or disprove: Let n > 1. Every $A \in \mathbb{R}^{n \times n}$ can be written as A = LU where L is lower triangular and U is upper triangular.

Solution. False. Let $M \in \mathbb{R}^{2 \times 2}$ be defined by

$$M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Suppose M = LU. Since rank(M) = 2 it must be that

$$L = \begin{bmatrix} L_{1,1} & 0 \\ L_{2,1} & L_{2,2} \end{bmatrix}$$

with $L_{1,1} \neq 0$. But since $M_{1,1} = 0$ we must have

$$U = \begin{bmatrix} U_{1,1} & U_{1,2} \\ 0 & U_{2,2} \end{bmatrix}$$

with $U_{1,1}=0$. But then $\mathrm{rank}(U)<2$ a contradiction (since then $\ker(U)\neq\{0\}$ so $\ker(LU)\neq\{0\}$).

11. Suppose you are given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. How do you solve the equation Ax = b using Python?

Solution. Use

numpy.linalg.lstsq

and check if the returned vector x has small residual: ||Ax - b||.