FIRST Mid Term Examination, 2016 – 2017 B. Tech. I Year I Semester AHC – 1001: ENGINEERING CHEMISTRY

Time: - 1 1/2 Hrs.

Max. Marks:- 20

Section - A

Note: Attempts all Questions

1 X 5 = 5 Marks

- Arrange N₂, F₂ and O₂ in increasing order of their bond length.
- II. What is necessary condition for showing a molecule to form diastereomer? Write any one structure of diastereomer.
- III. Write Dulong Pettit formula for calculating HCV of fuel.
- IV. Why methanol is soluble in water while carbon tetra chloride is insoluble in water?
- V. Write two examples of insulating lubricating oil .

Section - B

Note: Attempt any Three Questions

2 X 3 = 6 Marks

- How calorific value of a fuel is determined by bomb calorimeter? Expain with diagram.
- II. How synthetic petrol is prepared by Fischer Tropsch method?
- III. What is metallic bond? Write electron sea model theory of metallic bond.
- IV. What is geometrical isomerism? Explain with E-Z configuration of geometrical isomers.

Section - C

Note: Attempt any Three Questions

3 X 3 = 9 Marks

- What are conformers? With the help of Newmann projection explain the conformers of a molecule in which Gauche (or Skew) conformer exist.
- Explain Molecular orbital Theory .With the help of M.O.Theory draw M.O.Diagram of CO molecule.
- III. A fuel sample has following composition:-Ethane 10 %, Isobutane = 30 %, Propene = 20 %, Carbon Monoxide = 5%, Nitrogen = 5% and oxygen = 30%. Calculate the volume of air required of 100 m³ of fuel sample if 40 % excess air is required.
- IV. What are ceramics? How are they classified? What are the main constituents of ceramics?

Printed Pages: 01

University Roll No.....

Second Mid Term Examination, 2016-2017

B.Tech. I Year I Semester

AHC-1101: ENGINEERING CHEMISTRY

Time: 1 1/2 Hrs.

Max. Marks: 20

Section-A

Note: Attempt all Questions

1X5= 5Marks

- I. What are the boiler problems?
- II. Mention two examples of industrially important smart materials.
- III. Write the name of monomer of nylon 6, 6.
- IV. CaCO₃ is accepted as a standard to represent hardness of water, why?
- V. Discuss role of annealing in manufacturing of glass.

Section-B

Note: Attempt any three Questions

2X3=6Marks

- 1. Discuss briefly about Potash glass and Jenna glass.
- II. Distinguish thermoplastic and thermosetting polymer.
- Explain calgon conditioning for treatment of water to be used in boiler.
- IV. Why are the functional materials so important for industries?
 Mention at least four reasons.

Section -C

Note: Attempt any three Questions

3X3=9Marks

- Reverse Osmosis process is the best water purification process, justify. Discuss different technical aspects of Reverse Osmosis for water treatment with diagram.
- II. Write the preparation and industrial applications of the following.
 - a) Teflon
- b) Buna-N
- c) PLA
- III. The hardness of 100 Lts of a water sample is completely removed by passing through zeolite softener which required 10 Lts brine solution containing 1 g/l of NaCl for regeneration. Calculate hardness of water in ppm.
- Discuss the mechanism of preparation of polypropylene using Ziegler-Natta catalyst.

Univ. Roll No. :

First Mid Term (Even Sem.) Theory Examination-2016-17
Sub: - Engineering Chemistry Paper Code:-AHC1101
Time: - 90 Min. Max. Marks:-20

Section- A

Note: Attempt All Five Questions.

 $1 \times 5 = 5 \text{ marks}$

- (I) How does bond order relate dissociation energy?
- (II) Name the highest ranking coal. Give its approximate calorific value.
- (III) Lubricants are essential in automobile industries, Justify.
- (IV) Name the ceramic material used in manufacturing of bullet proof vest.
- (V) Assign E-Z nomenclature to the following compounds.(Any two)

Section-B

Note: Attempt Any Three Questions. $2 \times 3 = 6$ marks

- (I) What is hydrogen bond? Explain different types of hydrogen bonds with suitable examples
- (II) Discuss the industrial significance of any one pair of the following.
 - (a) Flash point and fire point
 - (b) Cloud and Pour point

(III) 0.98 gram of a liquid fuel containin .1% C, 8% H have the following result in bomb calorimeter experiment

Amount of water taken in calorimeter = 1450 gram

Water equivalent of calorimeter = 450 gram

Rise in Temp. $= 1.8^{\circ}$ C

If latent heat of steam is 587cal/gram, calculate gross and net calorific value of fuel.

(IV) What is ceramic? Discuss the applications of ceramics in the field of engineering and technology.

Section- C

Note: Attempt Any Three Questions. $3 \times 3 = 9$ marks

- (I) What are conformers? Explain conformation in n- butane with suitable diagrams. Discuss their stability order byusing Energy Level diagram.
- (II) With the help of Molecular Orbital Theory, draw the MO diagrams of NO and also calculate their bond order & assign their magnetic behavior.
- (III) Calculate the weight and volume of air needed for complete combustion of 3 Kg. coal having following composition C=70%, H=20%, O=5% and N=5%. (Molar mass of air = 28.94gm/mol).
- (IV) Explain Bergius method for manufacturing of synthetic petrol with diagram.

I-Mid-Term Examination Odd-Semester, 2017-18

Program: B.Tech.

Year:-I

Time: 1 Hour

Branch: Computer Science & Engineering, Subject with Code: Engg.Chemistry, AHC1101

Maximum Marks: 15

Section-A

Three questions of 02 marks each (with no internal choice). $3 \times 2 = 6 \text{ Marks}$

- Differentiate Gross and Net Calorific value of a fuel.
- Draw the potential energy diagram for the various conformations of n-butane.
- III. What are ceramics? How are they classified?

Section-B

Three questions of 03 marks each (with no internal choice). $3 \times 3 = 9$ Marks

- Explain the following properties of lubricants and discuss their significance:
 - a) Flash point and Fire Point b) Cloud and Pour point
- II. A petroleum gas has the following composition. Ethane 10%, Propane 15%, Butane 75%. If 35% excess air is used, find the volume of air required for complete combustion per m³ of the gas.
- Draw the molecular orbital diagram of O₂ molecule. Calculate bond order and predict magnetic behavior.

First Term Examination, Odd Semester 2018-19

Program: B.Tech

Year: First

Univ. No. -----

Subject: Engineering Chemistry

Subject Code: BCHS-0101

Time: 1 Hour

Max. Marks: 15

Section-A

Note: Attempt All Questions

 $3 \times 2 = 6$ Marks

1. Explain the Cloud and Pour point of lubricants

2. Differentiate Higher Calorific and Lower calorific value of a fuel.

What is hydrogen bond? Explain different types of hydrogen bonds with suitable examples

Section-B

Note: Attempt All Questions

 $3 \times 3 = 9 \text{ Marks}$

- With the help of Molecular Orbital Theory, draw the MO diagram of F₂.
 Calculate bond order & magnetic behavior also.
- A gaseous fuel has the following composition by volume: H₂=32%, CH₄=14%, N₂=40% and O₂=14%. If 25% excess air is used, find the weight of air actually supplied per m³ of this gas.
- What are conformers? Explain conformation in n- butane with suitable diagrams. Discuss their stability order by giving Energy Level diagram.

First Term Examination Even Semester, 2018-19

Course: B.Tech.

Title of Paper: Engineering Chemistry

Time: 1 Hour

Section-A

Univ. No. -----

Paper Code: BCHS0101

Max. Marks: 15

Note: Attempt All Ouestions $3 \times 2 = 6$ Marks

Draw MO diagram of O₂ molecule and calculate its bond order.

(II) (a) What do you mean by lubrication?

(b) Write important applications of ceramics.

(III) Assign E or Z configuration for (a) & (b) and R or S configuration for (c) & (d) molecules with proper leveling in their order of priority.

Section-B

Note: Attempt All Questions

 $3 \times 3 = 9$ Marks

- (I) What do you understand by hydrogen bond? Discuss its types with example. How does it affect the properties of the compound?
- (II) Explain the Bergius process for preparation of synthetic petrol with neat diagram.
- (III) (a) Differentiate HCV and LCV.
 - (b) A gas has following composition by volume: $H_2 = 32\%$, $CH_4 = 14\%$, $C_2H_4 = 10\%$ $N_2 = 30\%$ and $O_2 = 14\%$. If 30% excess air is used, find the weight of air actually needed for combustion of gas.

Printed Pages:02

University Roll No.....

Mid-Term Theory Examination, 2019-20 Engineering Chemistry (BCHS 0101)

Course: B.Tech.

Time: 2 Hr

Branch: CSE

Year/Semester: I/I

Max. Marks: 30

Section- A.

Note: Attempt all questions.

 $2 \times 3 = 6$ marks

- 1. Differentiate HCV and NCV.
- 2. With the help of reaction, explain how vulcanization of rubber is done? What are the advantages of vulcanized rubber over raw rubber?
- 3. Write the significance of the following in lubrication process:
 - i) Flash point and fire point
 - ii) Cloud point and pour point

Section-B

Note: Attempt all questions

 $3 \times 3 = 9$ marks

- 1. What do you understand by conformational isomers? Draw all possible conformers of n-butane. State which one is most stable and which one is least stable?
- 2. What are ceramics? How they can be classified?
- Calculate the weight of air required for complete combustion of 1 m³
 of a gaseous fuel having following composition:

 $CH_4 = 45\%$, $C_2H_6 = 15\%$, CO = 16%, $N_2 = 10\%$, $H_2 = 10\%$, $O_2 = 10\%$.

Section- C

Note: Attempt any three questions

 $5 \times 3 = 15$ marks

 Using the concept of Molecular orbital theory, draw molecular orbital diagram of Oxygen molecule. Also, write its molecular orbital electronic configuration, bond order and magnetic character.

- i) Explain with help of well labeled diagram, how petrol can be synthesized using "Fisher Tropsch Method". Also, write reactions involved in this method.
 - ii) Assign R/S configuration in the following compounds:

- 3. i) Differentiate Thermosetting and thermoplastic polymers. (2)
 - ii) Design the method of synthesis and write the applications of following polymers (any two):

 (3)
 - a. Buna-S
 - b. Polystyrene
 - c. Polylactic acid
- 4. i) Write the composition and uses of any two type of glasses: (3)
 - a. Borosilicate glass
 - b. Lead glass
 - c. Soda glass
 - ii) Draw a well labeled diagram of bomb calorimeter for determination of HCV. Also, write the formula involved in it. (2)

非常非常非常

Printed Pages: 2

University Roll No......

Mid-Term Theory Examination, 2021-22 Engineering Chemistry (BCHS 0101)

Course: B.Tech.

Year/ Semester: I/I

Time: 2 Hours

Maximum Marks: 30

Section A

Note: Attempt all questions

 $2 \times 3 = 6$ marks

- 1. What is optical activity? Give the stereoisomers of Tartaric acid.
- Suggest the role of flux used in ceramic industry. Discuss important industrial applications of ceramics.
- What is metallic Bond? Explain conductor, semiconductor and insulator on the basis of molecular orbital theory.

Section B

Note: Attempt all questions

 $3 \times 3 = 9$ marks

- Define is lubricant? Discuss the SEN and Flash & Fire point of lubricants.
- (a) Design preparation process and industrial application of any one polymer. (2.0)
 - I. Nylon6,6
 - II. Vulcanized rubber
 - (b) Find weight average molecular weight for polypropene, given its degree of polymerization as 10,000. (1.0)
- 3. Assign R/S and E/Z to the following.

Section C

Note: Attempt any three questions

 $5 \times 3 = 15 \text{ marks}$

- (a) Differentiate Gross and Net Calorific value of a fuel. (1.5)
 - (b) Discuss the importance of proximate analysis of Coal. (1.5)
 - (c) A Coal has the following composition by weight C=90%, O=3%, S=0.5, N=0.5 and ash=2.5%.Net Calorific value of the coal was found to be 8490.5kcal/kg. Calculate the percentage of Hydrogen and Higher calorific value of a coal. (2.0)
- Using the concept of Molecular orbital theory, draw the molecular orbital diagram of N₂ molecule, find out bond order and also assign magnetic behavior.
- 3. (i) List composition and uses of any two of the glasses. (3.0)
 - (a) Flint
 - (b) Pyrex
 - (c) Potash glass
 - (ii) A gaseous fuel has the following composition by volume: H₂=34%, CH₄=16%, N₂=38% and O₂=12%. If 22% excess air is used, find the weight of air actually supplied per m³ of this gas.

(2.0)

- (i) What are conformers? Explain conformation in n- butane with suitable diagrams. Discuss their stability order by giving Energy Level diagram. (3.0)
 - (ii) Discuss heterochain and homochain polymer with examples.

(2.0)

Course Name: B.Tech.

- CO1- Understanding, fundamental concepts of chemistry and its applications in the various branches of engineering sciences. Course Outcome:
 - CO2- Applying the knowledge of chemistry in solving socio-economic and environmental issues.
 - CO3- Identify and analyze engineering problems to achieve practical solutions
 - CO4- Knowledge of chemical science for better appreciation of applications in engancering chemistry.
 - CO5- Student ability to perform, analyze and interpret the experimental data for better understanding

Printed Pages: 2

University Roll No.

Mid Term Examination, Odd Semester 2022-23 B.Tech. Year-Ist, Semester-Ist Subject Code: (BCHS-0101) Subject Name: Engineering Chemistry

Time: 2 Hours

Maximum Marks: 30

Instruction for students:

- All questions are compulsory to attend.
- You are advised to read the question paper carefully and write relevant answers accordingly.
- Appropriate diagrams (if any) in support of the answer is desirable.

Section - A

Attempt All Questions

3 X 5 = 15 Marks

	Detail of Question	Marks	CO	BL	KL
1	Explain briefly how HCV of the fuel can be derived experimentally by Bomb calorimeter, with the help of a suitable diagram?	3	1	U, A	С
2	Create various conformers of n-butane and highlight them on the energy diagram with their stability order.		4	С	F
3	Assign R&S, OR E&Z to the following stereoisomer with proper numbering: (i) (ii) (iii) (iii) (iii) (iii) (iii) (43 (43 (43 (44	3	3,5	An,A	м
	Give the chemical composition and uses of any two types of glasses. (i) Flint glass (ii) Borosilicate glass (iii) Hard glass	3	1,	An,J	R

Applying the concept of combustion technique, evaluate the weight of air needed for the combustion 60 kg of a coal sample, containing 50% carbon, 10% hydrogen, 10% oxygen, 10% Sulphur, 5% nitrogen and remaining ash.	3	5	A, E	М
---	---	---	------	---

Section - B

Attempt All Questions

5 X 3 = 15 Marks

		Marks	CO	BL	KL
	Detail of Question Elucidate the preparation, properties and uses of the following polymers (Any Two) (i) Buna-S (ii) PHB (iii) Nylon66	5	1,4	U, R	F
7	(i) Buna-8 (ii) PFIB (iii) regions The magnetic behavior of any chemical molecule depends upon the number of electrons present in its last orbital. Applying the same concept, create a molecular orbital diagram of Fluorine molecule, justifying its magnetic behavior and bond order.	,	5	A, C	F
8 A	Analyze the Lubricants for its following properties. (i) Flash Point and Fire point (ii) SEN (iii) Specific Heat	3	4	An	N
8 B	Draw the schematic labelled diagram to show synthesis of synthetic petrol by Fischer-Tropsch method.	f 2	2	U, R	1

.... XXXXXXXXX.....

Course Name: Engineering Chemistry

Course Outcome

After studying this course students will be able to:

- CO1. Compute the calorific value of fuel by Bomb calorimeter and Dulong's formula.
- CO2. Identified the use of polymer, glass, ceramic, and lubricants in various Engineering applications.
- CO3. Apply various methods for the removal of hardness of water for both industrial and domestic applications.
- CO4. Interpret molecular structure based on spectroscopic analysis.
- CO5. Conceptual understanding of nanomaterials and their applications in the field of Engineering and medical sciences.

Printed pages: 02

Univ. Roll No.

Mid Term Examination, Even Semester 2022-23 B. Tech. I Year (All Branches), Semester II BCHS 0101: Engineering Chemistry

Time: 1 Hours

Max. Marks: 30

 $3 \times 5 = 15 Marks$

Section - A

Note: All questions are compulsory BL KL CO Marks Detail of Question No. Draw conformational isomers of n-butane. Also C 3 A CO5 1 compare their stability. What are ceramic materials? Enlist important applications of ceramic materials. OR Name and draw the structure of monomers of C 3 CO2 (Any three): 2 Nylon 66 Teflon iii. Polystyrene Buna-S iv. Describe the working principle of 'Bergius method' for synthesis of petrol with a well C U CO2 3 3 labelled diagram. Define lubricants? How they are classified? M CO4 A 3 4 Enlist applications(at least three of each) of CO5 C M 3 5 borosilicate and optical glass.

Section - B

 $5 \times 3 = 15$ marks Note: All questions are compulsory 0. CO BL KL Marks Detail of question No. Draw MO diagram of O2 molecule. Also, calculate bond order and assign magnetic M 5 CO2 1 character. Write a short note on: Proximate analysis of coal Neutralization number of lubricants CO4 2 iii. Cloud point iv. Calorific value Flash point of lubricants Describe how the calorific value can be determined using the Bomb calorimeter? Mention the formula involved with all descriptors. In a bomb calorimeter experiment, following data was obtained: amount of coal = 0.85gm, W = 2.5kg, w = CO4 C 0.5kg, observed rise in temperature = 2.25 °C, CA = 38.6 calories, CF = 6.8 calories, and T_C = 0.05 °C. Calculate net calorific value if the coal contains 10 % hydrogen?

End of Question paper