

Post-operatory complication detection for kidney stones patients

Presented by:

- Mouad NID ABDELLAH
- Ali IKKEN

Supervised by:

Hamid HRIMECH

Outline

Problem descrption & Objective

Objective

Our objective is to compare different Machine learning algorithms and different feature selection methods in order to predict the possible post-operatory complication of kidney stones patients.

Data source

Data source

Data description

Our dataset contains records of epidemiological characteristics, characteristics of the stones and surgical treatment

Target classes

- A No-complication
- B Class 1 complication
- **C** Class 2 complication

Data size

Our dataset contains:

- 669 row.
- 136 column.

A 90.8%

3 4,7%

C 4.5%

Class distribution

For no-complication we have 387 patient (90,8%) which is the majority of the dataset, for Class 1 complication we have 20 patient (4,7%), and 19 patient for class 2 complication (4,5%).

Global workflow

Workflow

Class balancing

One approach to address imbalanced datasets is to oversample the minority class. The simplest approach involves duplicating examples in the minority class.

We used SMOTE technique to synthesized new records from the existing examples.

Oversampling

Feature selection

Mutual information

Between two random variables is a non-negative value, which measures the dependency between the variables

Embedded RF

Embedded methods are highly accurate. Generalize better, and they are interpretable

Wrapper SFS

SFS are a family of greedy search algorithms that are used to reduce the initial dimensional feature space.

Feature selection method comparison

Model training

XGBoost

SVM

Random Forest

kNN

Results

Results

After choosing the optimal parameter for each model we trained it using the variables given by the feature selection method that is most suited for the model.

The result is summarized in this figure :

Results

	SVM	kNN	RF	XGB
Accuracy	0.8114	0.8457	0.96	0.9657
Precision	0.8166	0.8463	0.9627	0.9677
Recall	0.8113	0.8463	0.9598	0.9655

Conclusion

000

To improve the accuracy of the classification of post-operatory complications for kidney stones patients, we could use a voting mechanism that uses two or more algorithms in order to give us an accurate result.

Thanks!

Do you have any questions?

