Algoritmo Genético em Verilog/HLS

Equipe: Alef Carneiro de Sousa

Luca Israel de Moura Cruz

O que é um Algoritmo Genético?

- Otimização
- Teoria evolutiva de Darwin
 - Mais fortes
 - Mutação*
- Função de custo

Como foi desenvolvido?

- Vivado HLS
 - Algoritmo Genético
 - Função de Custo
 - Ordenação
- System Verilog
 - Top module
 - Serial
 - Instância do AG

Topologia de Hardware

Parâmetros

- Fixo:
 - Tamanho da população: 200
 - Taxa de mutação: 0.03
 - N° de gerações: 20

Características do Algoritmos

- Otimização de operações com uso de aritmética de ponto fixo
- Cobertura do espaço de solução com pseudo-aleatório LSFR
- Uso de algoritmos de ordenação não recursivo
- Modularização voltada para paralelização (otimização de desempenho em contrabalanço com área)

Floating-Point vs Fixed-Point

	BRAM_18K	DSP48E	FF	LUT
Floating Point	12	92	10744	20030
Fixed Point	12	77	3811	5446

Sem unrolling vs Com unrolling (8)

	BRAM_18K	DSP48E	FF	LUT
Sem unrolling	12	77	3811	5446
Com unrolling	12	245	9164	11587

Simulação

					21,646,215,002	ps			
Name	Value		21,646,215,000	ps	21,646,215,002	ps	21,646,215,004	ps	21,646,
¼ clk_i	1								
lo en	1				li .				
🌡 finished_o	1								
> V x_o[27:0]	0061219				0061219				
> V y_o[27:0]	003f1ef	003fc0a	k			003flef			
> [®] z_o[27:0]	0001479	0155b67				0001479			
¼ middle_en	1								

Resultado

- Ponto de mínimo
 - \circ x = 0, y = 0
 - Valor de mínimo = 0

Source number 0.0A3C8	Input base 16	Target base 10 Target numeral system base		
	Input numeral system base			
Calculation precision Digits after the decimal point: 8				
		CALCULATE		
Target number 0.03998566	Conversion details undefined	Source number (decimal) 0.03998566		
Target number (decimal) 0.03998566	Conversion error (decimal) 0.0000000	Maximum conversion error possible (decimal) 0.0000001		

Melhorias

- Funções de custo variadas
- Serial
- Otimizar em recursos

Obrigado