Garments Worker Productivity Analysis

Group 4

Aditya Chowdhuri

KPV Abhishek

Ankit

Khyati

Introduction to the Analysis

"OBJECTIVE: TO ANALYZE PRODUCTIVITY LEVELS IN THE GARMENT INDUSTRY." "IMPORTANCE: UNDERSTANDING FACTORS INFLUENCING WORKER EFFICIENCY."

"IMPACT: INSIGHTS TO IMPROVE PRODUCTIVITY AND OPERATIONAL EFFICIENCY."

Project Workflow

Overview of the Dataset

Dataset Scope: "Data spans from January 1, 2015, to March 11, 2015, focusing on garment worker productivity."

Size and Structure: "Contains 1197 entries across 15 features, including date, department, team, and productivity metrics."

Key Variables Highlight:

"Targeted vs. Actual Productivity: Central to analyzing performance efficiency."

"Over Time and Incentive: Insights into workload and motivational factors."

"WIP (Work In Progress): Indicates operational workflow and capacity."

Data Integrity: "Most features are complete; however, 'wip' (work in progress) has 506 missing entries, handled in preprocessing."

Analytical Focus: "Emphasis on understanding factors that impact actual productivity, team performance, and departmental efficiency."

Data Cleaning and Preprocessing

Data Consistency:

Ensured uniform data types and formats across all features for accurate analysis.

Handling Missing Data:

Focused on features like 'wip' (work in progress) with missing values.

Encoding Categorical Data:

Transformed categorical variables into a format that could be easily analyzed.

Normalization:

- Mean Normalization: Adjusted features to have a mean of 0 and a standard deviation of 1.
- Min-Max Normalization: Scaled features to a range between 0 and 1.

Exploratory Data Analysis: Trends and Relationships

 Graph 1: "Productivity Trends Over Time by Department"

Insight: "Examined daily productivity variations across departments."

 Graph 2: "Impact of Incentives on Productivity"

Insight: "A clear upward trend indicates that departments generally experience increased productivity with higher incentives."

Exploratory Data Analysis: Temporal Factors

Graph 3: Productivity by Day of the Week

Insight: "Productivity remains relatively consistent across all days, with no significant variations observed."

Graph 4: Worker Count and Departmental Impact

Insight: "Productivity generally increases with the number of workers up to a certain threshold, after which it plateaus."

Visualization of Data Correlations

- Worker Numbers and Overtime: There is a significant positive correlation between no_of_workers and over_time. This suggests that as the workforce size increases, the amount of overtime tends to increase as well.
- **Productivity Influencers:** actual_productivity is positively correlated with incentive and no_of_workers, indicating that higher incentives and more workers generally lead to better productivity.
- Conversely, there's a negative correlation with idle_time and idle_men, highlighting that increased idle times are detrimental to productivity.
- Target vs. Actual Productivity: A positive but moderate correlation between targeted_productivity and actual_productivity suggests that while targets provide a guideline, achieving <u>actual productivity is influenced by multiple other factors.</u>

- 1.0

0.8

0.6

0.4

0.2

0.0

Multi Collinearity Checks

- Variance inflation factor was used to check
- Columns with Multi Collinearity are:
 - Targeted Productivity
 - SMV
 - Number of workers
 - Department Sweing

VIF	
team	4.741576
targeted_productivity	15.592947
smv	18.059788
over_time	7.379474
incentive	1.131791
idle_time	1.504608
idle_men	1.570623
no_of_style_change	1.579334
no_of_workers	48.667939
quarter_Quarter2	1.949833
quarter_Quarter3	1.617029
quarter_Quarter4	1.800280
quarter_Quarter5	1.240162
department_finishing	2.083363
department_sweing	23.614834
day_Saturday	2.025713
day_Sunday	2.003934
day_Thursday	2.042090
day_Tuesday	1.966888
day_Wednesday	2.006785

Model Building and Analysis

Decision Tree

Random Forest

Linear Regression

Ridge Regression

K-Nearest Neighbors

Support Vector Regression

XGBoost

Choosing Evaluation Metrics

MAE was chosen as the metric of choice for the following reasons

- **Simple and Intuitive:** MAE provides a straightforward measure of average error in the same units as productivity, making it easy for stakeholders to understand.
- **Robust to Outliers:** Unlike squared error metrics, MAE is less sensitive to rare but extreme productivity deviations, ensuring a more balanced model evaluation.
- **Directly Relevant:** MAE's direct error averaging aligns well with the dataset's continuous productivity values, offering a clear perspective on model accuracy.
- **Consistent Scale:** MAE matches the scale of the target variable, allowing for a clear, direct interpretation of the prediction error magnitude.

Decision Tree Regression

Train Size (%)	Test Size (%)	Mean Absolute Error
90	10	0.08844
85	15	0.07699
80	20	0.09396
75	25	0.10454
70	30	0.09589
65	35	0.10331
60	40	0.10293
55	45	0.09753
50	50	0.09710

Random Forest Regression

Train Size (%)	Test Size (%)	Mean Absolute Error
90	10	0.065430075
85	15	0.070192716
80	20	0.073252402
75	25	0.079894848
70	30	0.078871584
65	35	0.082222543
60	40	0.08213174
55	45	0.07741973
50	50	0.079720101

Linear Regression

Train Size (%)	Test Size (%)	Mean Absolute Error
90	10	0.105937861
85	15	0.106423333
80	20	0.108614417
75	25	0.111214394
70	30	0.110823908
65	35	0.128172574
60	40	0.127065411
55	45	0.126445408
50	50	0.127547967

Support Vector Regression

Train Size (%)	Test Size (%)	Mean Absolute Error
90	10	0.116384593
85	15	0.117117239
80	20	0.122901735
75	25	0.123751111
70	30	0.127805978
65	35	0.131143129
60	40	0.128962518
55	45	0.128996364
50	50	0.12866834

XGBoost Regression

Train Size (%)	Test Size (%)	Mean Absolute Error
90	10	0.072753529
85	15	0.074613518
80	20	0.078751224
7!	25	0.087170226
70	30	0.081963369
65	35	0.082820627
60	40	0.083250973
55	5 45	0.08313448
50	50	0.085131545

KNN Regression

Train Size (%)	Test Size (%)	Mean Absolute Error
90	10	0.105660144
85	15	0.107386416
80	20	0.108698153
75	25	0.111652415
70	30	0.112255811
65	35	0.116633859
60	40	0.114772785
55	45	0.112367598
50	50	0.112973774

Ridge Regression

Train Size (%)	Test Size (%)	Mean Absolute Error
90	10	0.106521157
8!	5 15	0.107147829
80	20	0.109317151
7!	5 25	0.112086198
70	30	0.111510312
6.5	35	0.128768105
60	40	0.127660796
5!	5 45	0.126813299
50	50	0.127837744

Comparative Analysis of Model Performance

Model	Mean Absolute Error (MAE)	Train-Test Split
Decision Tree	0.076991	85:15
Random Forest	0.065430	90:10
Linear Regression	0.105660	90:10
Support Vector Regression	0.116385	90:10
Gradient Boosting (XGBoost)	0.072754	90:10
KNN Regression	0.105660	90:10
Ridge Regression	0.106521	90:10

Hyperparameter tuning and Grid Search

What is Hyperparameter Tuning?

Optimizing the parameters of a machine learning model that are not learned from the data but set before the training process.

It's crucial for enhancing model performance by finding the most effective combination of parameters.

Focus on Efficient Models:

Applied to Random Forest and XGBoost, the two models that showed promising performance in initial evaluations.

Aim to further refine these models to achieve the best possible predictive accuracy.

Grid Search Explained:

Involves defining a 'grid' of various hyperparameter values and exhaustively searching through them.

The best combination is selected based on performance metrics, ensuring optimal model settings.

Outcome Expectation:

Anticipate improved accuracy and robustness in the selected models.

Hyperparameter tuning allows for a more tailored and precise modeling approach

Hyperparameter Tuning of Random Forest

Purpose:

• Enhance Random Forest model performance by optimizing its parameters.

Tuning Parameters:

- Focused on 'n_estimators', 'max_depth', 'min_samples_split', 'min_samples_leaf'.
- Explored combinations to find the best fit for the dataset.

Method:

- Employed Grid Search with cross-validation.
- Ensured thorough exploration and robust validation of parameter sets.

Results:

- Determined the optimal configuration for Random Forest.
- Noted performance improvement over default settings.

Hyperparameter Tuning of XGBoost

Objective:

• Optimize XGBoost parameters for superior predictive accuracy.

Tuning Focus:

- Tuned n_estimators, learning_rate, max_depth, colsample_bytree.
- Sought the best balance of speed and accuracy.

Approach:

- Utilized Grid Search with cross-validation strategy.
- Comprehensive parameter exploration for model refinement.

Outcomes:

- Identified the most effective parameter combination for XGBoost.
- Enhanced model's predictive performance post-tuning.

Results of Hyperparameter tuning The best-fit results for Random Forest and XGBoost are:

Model	Mean Absolute Error (MAE)
Random Forest	0.0796
Gradient Boosting (XGBoost)	0.0788

Neural Network Regression

- A deep neural network was trained over 120 epochs to predict Productivity
- Parameters
 - Optimizer: Stochastic Gradient Descent
 - Loss function: Binary Mean Absolute Error
 - Trainable Parameters: 19329
- · Loss: 0.1243
- MSE: 0.0292

Model Architecture

Key Findings

Productivity Insights:

Key factors impacting productivity identified: incentives, number of workers, and idle time.

Overtime and worker count are closely related, affecting overall productivity.

Model Performance:

Random Forest model showed promising initial results.

Hyperparameter tuning yielded marginal improvements due to the already high efficiency of the base models.

Data-Driven Decision Making:

The analysis provides actionable insights for optimizing workforce management and setting realistic productivity targets.

Future Recommendations and Limitations

Recommendations for Improvement

Invest in enhancing computational resources for more nuanced model tuning and potentially better predictive accuracy.

Explore additional data points or features that might further elucidate productivity dynamics.

Project Limitations

Computational constraints limited the extent of hyperparameter tuning.

The current analysis focuses on existing features; additional data could reveal more insights.

Next Steps

Implement findings in workforce management strategies.

Consider a longitudinal study to track the effectiveness of implemented changes over time.

Thank you

Appendix

Outcomes and Computational Constraints

Tuning Results:

Random Forest and XGBoost tuning yielded MAE close to the base models, indicating initial efficiency.

Efficiency vs. Resources:

The base models' low MAE suggests high initial optimization.

Project Scope:

Further tuning is constrained by the project's computational limits.

Link to Collab Notebook