## Дело последнего императора

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт



Во времена Древнего Рима, когда императором был Марк Аврелий — последний из пяти хороших императоров, — империя сталкивалась с множеством внутренних и внешних вызовов. Под его правлением Римская империя достигла больших высот, но также переживала непростые времена, включая войны на границах.

Однажды, сидя в своей резиденции на границе Дуная, Марк Аврелий получил тревожные вести: объединённые племена варваров готовились к масштабному наступлению на северные территории империи. Понимая угрозу, император решил действовать немедленно. Для успешной обороны требовалось быстро перебросить легионы к наиболее уязвимым участкам границы.

Однако существовала проблема: сеть римских дорог, хоть и была наиболее развитой в мире, представляла собой сложную систему, соединяющую многочисленные города, форты и аванпосты. Некоторые дороги были повреждены недавними наводнениями, другие могли быть блокированы врагом. Чтобы запутать врага и не дать ему войти вглубь страны, римские полководцы решили определить для некоторых городов  $v_i$ , сколько существует различных путей из города  $v_i$  длины  $k_i$ . В такие времена доверия нет ни к кому, поэтому Марк Аврелий поручил это дело вам.

Более формально: северная часть империи представляет собой n городов, соединённых m двусторонними дорогами. Вам необходимо ответить на q запросов вида:

Сколько существует различных необязательно простых путей, начинающихся в городе  $v_i$  длины  $k_i$ ? Так как ответ может быть довольно большим, выведите его по модулю  $10^9 + 7$ .

Необязательно простым путем длины k называется последовательность вершин  $a_1, a_2, ..., a_{k+1}$ , где вершина  $a_i$  смежна с вершиной  $a_{i+1}$  для всех  $1 \le i \le k$ . Два пути a и b считаются различными, если они имеют разную длину или существует такое j, что  $a_j \ne b_j$ .

## Формат входных данных

Первая строка ввода содержит три целых числа  $n,\ m,\ q\ (2\leqslant n\leqslant 200,\ 1\leqslant m\leqslant \frac{n\cdot (n-1)}{2},\ 1\leqslant q\leqslant 500).$ 

В следующих m строках описываются дороги. В i-й из них задано два целых числа  $u_i$  и  $v_i$   $(1 \le u_i, v_i \le n, u_i \ne v_i)$  — концы i-й дороги.

В следующих q строках описываются запросы. В i-й из них задано два целых числа  $v_i$  и  $k_i$   $(1 \le v_i \le n, 1 \le k_i \le 10^7)$  — параметры i-го запроса.

## Формат выходных данных

Выведите q строк, где i-я строка содержит одно целое число — ответ на i-й запрос.

## Пример

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 3 3 3            | 8                 |
| 1 2              | 16                |
| 2 3              | 32                |
| 1 3              |                   |
| 1 3              |                   |
| 2 4              |                   |
| 3 5              |                   |