Package 'sinar'

October 14, 2022
Title Conditional Least Squared (CLS) Method for the Model SINAR(1,1)
Version 0.1.0
Description Implementation of the Conditional Least Square (CLS) estimates and its covariance matrix for the first-order spatial integer-valued autoregressive model (SINAR(1,1)) proposed by Ghodsi (2012) <doi:10.1080 03610926.2011.560739="">.</doi:10.1080>
License MIT + file LICENSE
Imports MASS, stats, numDeriv
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
<pre>BugReports https://github.com/gilberto-sassi/sinar/issues</pre>
NeedsCompilation no
Author Gilberto P. Sassi [aut, cre], Carolina C. M. Paraíba [aut]
Maintainer Gilberto P. Sassi <sassi.pereira.gilberto@gmail.com></sassi.pereira.gilberto@gmail.com>
Depends R (>= $3.5.0$)
Repository CRAN
Date/Publication 2020-11-06 17:00:06 UTC
R topics documented:
carabidae
cls
emp_cov
emp_V
emp_W
sinar_pois
teo_V
var_hat_sigma
ver siner

2 cls

Index 9

carabidae

Counts of arthropods in a grid-sampled wheat field

Description

A matrix with the counts of arthropods (carabidae) in a grid-sampled wheat field

Usage

data("carabidae")

Format

A matrix where each row and column is a count of carabidae species at the first cell.

Source

Kevin Wright (2020). agridat: Agricultural Datasets. R package version 1.17. https://CRAN.R-project.org/package=agridat

cls

Conditional least square estimates for a SINAR(1,1) process.

Description

cls computes the conditional least square for a process described by

$$X_{i,j} = a_{10}X_{i-1,j} + a_{01}X_{i,j-1} + a_{11}X_{i-1,j-1} + \epsilon_{i,j}$$

where $\epsilon_{i,j}$ is an iid process with poison distribution. Note the a_{10}, a_{01}, a_{11} must belong to the interval [0,1]. We obtain estimates for a_{10}, a_{01}, a_{11} and μ_{ϵ} . We do not make any assumption about the distribution of the innovation in the process.

Usage

cls(X)

Arguments

Χ

A integer matrix where each cell is the observed value in the regular lattice.

Value

a vector with the estimates of $a_{10}, a_{01}, a_{11}, \mu$.

emp_cov 3

Examples

```
data("nematodes")
cls(nematodes)
```

emp_cov

Empirical estimate for the Covariance matrix in the Klimko-Nelson.

Description

 Σ is the covariance matrix in the Klimko-Nelson seminal paper. Basically, we know

$$\sqrt{n}(\hat{a}_{10} - a_{10}, \hat{a}_{01} - a_{01}, \hat{a}_{11} - a_{11}, \hat{\mu}_{\epsilon} - \mu_{\epsilon})^{\top} \sim MNV(0, \Sigma)$$

where

$$\Sigma = V^{-1}WV^{-1}.$$

For more details, check Klimko and Nelson (1978).

Usage

emp_cov(X)

Arguments

Χ

A integer matrix where each cell is the observed value in the regular lattice.

Value

The covariance matrix estimated empirically.

Examples

```
data("nematodes")
emp_cov(nematodes)
```

4 emp_W

emp_V

Empirical estimate for the matrix V in the Klimko-Nelson.

Description

emp_V is the matrix in the Klimko-Nelson seminal paper. Basically, we know

$$\sqrt{n}(\hat{a}_{10} - a_{10}, \hat{a}_{01} - a_{01}, \hat{a}_{11} - a_{11}, \hat{\mu}_{\epsilon} - \mu_{\epsilon})^{\top} \sim MNV(0, \Sigma)$$

where

$$\Sigma = V^{-1}WV^{-1}.$$

For more details, check Klimko and Nelson (1978).

Usage

 $emp_V(X)$

Arguments

Χ

A integer matrix where each cell is the observed value in the regular lattice.

Value

The matrix V estimated empirically.

Examples

```
data("nematodes")
emp_V(nematodes)
```

emp_W

Empirical estimate for the matrix W in the Klimko-Nelson.

Description

emp_W is the matrix in the Klimko-Nelson seminal paper. Basically, we know

$$\sqrt{n}(\hat{a}_{10} - a_{10}, \hat{a}_{01} - a_{01}, \hat{a}_{11} - a_{11}, \hat{\mu}_{\epsilon} - \mu_{\epsilon})^{\top} \sim MNV(0, \Sigma)$$

where

$$\Sigma = V^{-1}WV^{-1}.$$

For more details, check Klimko and Nelson (1978).

Usage

 $emp_W(X)$

nematodes 5

Arguments

Χ

A integer matrix where each cell is the observed value in the regular lattice.

Value

The matrix W estimated empirically.

Examples

```
data("nematodes")
emp_V(nematodes)
```

nematodes

A matrix of counting data with 15 rows and 15 columns.

Description

A matrix of counting data with 15 rows and 15 columns.

Usage

```
data("nematodes")
```

Format

Dataset of 15×15 regular grid on counts of cereal cyst-nematode (Heterodera avenae collected in soil core).

Source

PERRY, J. N. et al. SADIE: software to measure and model spatial pattern. Aspects of applied biology, v. 46, p. 95-102, 1996.

sinar_pois

Simulating SINAR(1,1) process with innovations from a poison distribution.

Description

 $sinar_pois$ returns a matrix representing a simulated regular lattice from a SINAR(1,1) process with innovations from a poison distribution.

Usage

```
sinar_pois(n_row, n_col, a10, a01, a11, 1)
```

6 teo_V

Arguments

n_row	Number of rows in the simulated lattice.
n_col	Number of columns in the simulated lattice.
a10	Coefficient from the element $X_{i-1,j}$.
a01	Coefficient from the element $X_{i,j-1}$.
a11	Coefficient from the element $X_{i-1,j-1}$.
1	Mean of the poison distribution used as innovations.

Details

This function simulates a regular lattice from the model

$$X_{i,j} = a_{10}X_{i-1,j} + a_{01}X_{i,j-1} + a_{11}X_{i-1,j-1} + \epsilon_{i,j}$$

where $\epsilon_{i,j}$ is an iid process with poison distribution. Note the a_{10}, a_{01}, a_{11} must belong to the interval [0,1].

Value

A integer matrix.

Examples

```
n_row <- 20
n_col <- 50
a10 <- 0.2
a01 <- 0.2
a11 <- 0.5
l <- 1
sinar_pois(n_row, n_col, a10, a01, a11, l)</pre>
```

teo_V

Compute the value of matrix V using the coefficients.

Description

V is the theoretical matrix from Klimko-Nelson for the SINAR(1,1) model. Basically, we know

$$\sqrt{n}(\hat{a}_{10} - a_{10}, \hat{a}_{01} - a_{01}, \hat{a}_{11} - a_{11}, \hat{\mu}_{\epsilon} - \mu_{\epsilon})^{\top} \sim MNV(0, \Sigma)$$

where

$$\Sigma = V^{-1}WV^{-1}.$$

For more details, check Klimko and Nelson (1978).

Usage

```
teo_V(a10, a01, a11, mu_e, s2_e)
```

var_hat_sigma 7

Arguments

a10	is the parameter in the equation $X[i,j]a_{10}X[i-1,j]+a_{01}X[i,j-1]+a_{11}X[i-1,j-1]+\epsilon_{i,j}$
a01	is the parameter in the equation $X[i,j]a_{10}X[i-1,j]+a_{01}X[i,j-1]+a_{11}X[i-1,j-1]+\epsilon_{i,j}$
a11	is the parameter in the equation $X[i,j]a_{10}X[i-1,j]+a_{01}X[i,j-1]+a_{11}X[i-1,j-1]+\epsilon_{i,j}$
mu_e	is the mean of the innovations $\epsilon_{i,j}$
s2_e	is the standar deviation of the innovations $\epsilon_{i,j}$

Value

The matrix V estimated empirically.

Examples

```
\begin{array}{l} n\_{row} <- \ 20 \\ n\_{col} <- \ 50 \\ a10 <- \ 0.2 \\ a01 <- \ 0.2 \\ a11 <- \ 0.5 \\ 1 <- \ 1 \ \# \ mean \ and \ variance \ for \ poison \ innovations \\ \\ teo\_V(a10, \ a01, \ a11, \ 1, \ sqrt(l)) \end{array}
```

var_hat_sigma

Variance of standard deviation of epsilon.

Description

 $\hat{\sigma}_{\epsilon}$ is the standard deviation of SINAR(1,1) model.

Usage

```
var_hat_sigma(X)
```

Arguments

Χ

A integer matrix where each cell is the observed value in the regular lattice.

Value

The variance of standard deviation of the estimate of σ_{ϵ} .

8 var_sinar

Examples

```
data("nematodes")
var_hat_sigma(nematodes)
```

var_sinar

Empirical estimate for the variance of innovations.

Description

 σ^2_ϵ is the variance the innovations for the SINAR(1,1) model.

Usage

```
var_sinar(X)
```

Arguments

Χ

A integer matrix where each cell is the observed value in the regular lattice.

Value

The estimated standard deviation in the SINAR(1,1).

Examples

```
data("nematodes")
var_sinar(nematodes)
```

Index