Study of Human Olfaction Using fMRI

A. Afsharrad, H. Hojjati, M. Kiani, B. Moniri

Ambient Intelligence Research Lab (AIR Lab)

Sharif University of Technology

August 18, 2018

Overview

- Introduction
- 2 Literature Review
- 3 Applications
- Materials and Methods

Objectives

Introduction

The Main Objective: a study of human olfaction and olfactory dysfunction detection (judical use)

Side Objectives:

- decoding surprise in an olfactory oddball task
- studying the effect of stimulus length on brain signals

Above methods are used to classify normal and dysfunctional olfaction

Literature Review - Stimulus Duration

- Activation and Habituation in Olfaction Poellinger et al. (2001), Neurolmage.
 - a study of olfactory stimulus duration effect on human BOLD response
- Olfactory fMRI: Implications of Stimulation Length and Repetition Time Georgiopoulos et al. (2018), Chemical Senses.
 - Two stimulation lengths and two repititon times.
 - plotting the event related time course of brain activation in the four olfactory regions of interest.

Literature Review - Oddball Paradigm

- Neural Correlates of Olfactory Change Detection Merav Sabri et al. (2004), Neurolmage.
 - a study of both passive and active detection of olfactory change
 - fMRI and the common oddball paradigm
- Obtection of Olfactory Dysfunction Using Olfactory Event Related Potentials in Young Patients with Multiple Sclerosis
 Eabrica Compiting at al. (2014) PLOS ONE
 - Fabrizia Caminiti et al. (2014), PLOS ONE.
 - detection of olfactory dysfunction
 - Olfactory Event Related Potentials (OERP signals) used (no fMRI)

Literature Review - Olfactometer

- A Computer-Controlled Olfactometer for fMRI and Electrophysiological Studies of Olfaction Tyler S.Lorig et al. (1999), Behavior Research Methods, Instruments, & Computers.
 - design for an inexpensive and reliable olfactometer
 - computer-controlled odor administration
 - no ferrous material near the subject (for fMRI use)
- Methods for Building an Inexpensive Computer-Controlled Olfactometer for Temporary-Precise Experiments Johan N. Lundström et al. (2010), International Journal of Psychophysiology.
 - a complete guide for building an olfactometer suitable for behavioral experiments

Significance and Application of Olfaction Study

- Diagnosis of Olfactory Dysfunction
 - Judical use of malingering Detection
 - Early Diagnosis of Various Disorders
- Getting to know how the brain functions to perceive olfactory stimuli (Olfaction is the least understood sense among all senses)
 - Do common sensory tasks work the same for olfaction?
 - Olfactory oddball paradigm and surprise decoding

Methods for Stimulus Presentation

- Presenting Odor via Vial
 - advantages: cheap and easy to conduct
 - disadvantages: low time resolution / can lead to subject's bias toward stimuli
- Olfactometer
 - advantages: computer-controlled / high time resolution
 - disadvantages: expensive to buy / demanding technical ability to build

Stimulus Presentation - Olfactomerter

- An inexpensive but efficient olfactometer
- Completely designed and built by our researchers
- Computer-controlled stimulus time and sequence pattern
- presenting up to three different odors
- using oil-free air compressor due to health concerns

Experimental Protocols

- Task 1: The Oddball Paradigm
 - two odors and one no-odor control (for resting)
 - one rare and one frequent stimuli
 - rest time: 6s / stimulus time: 4s
 - number of stimuli per trial: 40 / number of trials: 10
 - synchronized respiration (using an auditory or visual stimulus)
- Task 2: Variable-Length Stimuli
 - one odor, different durations, and one no-odor control (for resting)
 - rest time: 10s / stimulus time: from 5s to 1min
 - number of stimuli per trial: 10 / number of trials: 10
 - synchronized respiration (using an auditory or visual stimulus)

fMRI Data Analysis with SPM

Stages of Data Analysis

Project Roadmap

- Developing a setup for presenting olfactory stimulus (ALREADY DONE)
- finding subjects with olfaction dysfunction
- 6 fMRI data acquisition
- data analysis and conclusion (Estimated Time: 4 months)