## Quiz 12



| Il numero di automobili che passa            | al casello autostradale è descritta da un Processo di   |
|----------------------------------------------|---------------------------------------------------------|
| Poisson di intensità 870.6 all' <b>ora</b> . | Qual è la probabilità che, ad un dato istante, la prima |
| automobile passi dopo 0.05 minu              | ti?                                                     |
|                                              |                                                         |

Answer:

X = process. di Poisson di parametro d  $X_t = \# \text{ di maultine ele suno passate gino all'istante <math>t > 0$  $P(t \ge 0.05)$ ?

SOL. SE PASSAND 1 = 870.6 MACCHINE ALL'ORA, AL MINUTO PASSAND 1 = 870.6 MACCHINE

#### RICORDA CHE:

- IL PROCESSO DI POISSON CONTA IL NUMERO DI EVENTI IN UN DATO INTERVALLO DI TEMPO
- LA V.A. ESPONENZIALE CONTA IL TEMPO NECESSARIO AFFINCHE SI VERIFICHI IL PRIMO FENOMENO IN UN PROCESSO DI POISSON

## V.A. CONTINUA ESPONENZIALE

SIA:

(Xt) : Processo or Poisson DI PARAMETRO 1

XL: # DI FENOMENI VERIFICATESI FIND AU'ISTANTE t>0

T: ISTANTE IN CUI SI VERIFICA IL 1º FENDMENO

 $\forall x \in XP(\lambda)$  dove  $P(T>t) = P(X_{t=0}) = e^{-\lambda t}$ 

$$P(T \le t) = \begin{cases} 0 & \text{se } t \ge 0 \\ 1 - P(T \ge t) = 1 - P(X_k = 0) & \text{se } t \ge 0 \end{cases}$$

$$= 1 - P(X_k = 0) & \text{se } t \ge 0$$

## => TNEXP()

$$P(T70.05) = 1 - P(T<0.05)$$

$$= 1 - (1 - e^{-\lambda t})$$

$$= e^{\frac{870.6}{60} \cdot 0.05} = 0.4840$$

## FORMULA GENERALE ESERCIZIO 1 (per civere solo il risultato)

$$\lambda = \#$$
 of marking the Passand in Un'ora  $t = TemPo$  oopo il Quare Deve Passane (a Prima automobile (in minuti)

Not complete

Flag
 question

Sia X variabile uniforme sull'intervallo [0,3]. Calcolare il valore atteso della variabile  $\exp{(3X-3)}$ .

Answer:

NB: 
$$E \times b(x) = 6x$$
  
 $E \times b(3x-3) = 63x-3$ 

FORMULA DEL VALORE ATTESO DI UNA V.A. COMPOSTA

$$E[g(x)] = \int_{-\infty}^{+\infty} g(x) \, g_x(x) \, dx$$

SOSTITUISCO È OTTENGO:

$$E[e_{XP}(3x-3)] = \int_{-\infty}^{+\infty} e^{3x-3} S_{X}(x) dx$$
Guesta e' (A DENSITA DI X, CHE E' UNIFORME

DISTRIBUZIONE DI VNA V.A. UNIFORME

$$F_{x}(X) = F_{x}'(x) = \begin{cases} 0 & \text{if } x < \alpha \\ \frac{1}{b-\alpha} & \text{if } x \in [a_{1}b) \end{cases}$$

$$\begin{cases} x \in [a_{1}b] & \text{if } x \in [a_{1}b] \end{cases}$$

$$\begin{cases} x \in [a_{1}b] & \text{if } x \in [a_{1}b] \end{cases}$$

$$\frac{1}{3} \int_{-\infty}^{+\infty} e^{3x-3} \cdot \frac{1}{3-0} \, dx = \int_{0}^{3} e^{3x-3} \cdot \frac{1}{3} \, dx = \frac{1}{3} \int_{0}^{3} e^{3x-3} \, dx = \frac{e^{-3}}{3} \int_{0}^{3} e^{3x} \, dx$$

$$= \frac{e^{-3}}{3} \cdot \frac{1}{3} \int_{0}^{3} 3e^{3x} dx = \frac{e^{-3}}{9} \left[ e^{3x} \right]_{0}^{3} = \frac{e^{-3}}{9} \left[ e^{9} - e^{0} \right] = \frac{e^{-3}}{9} \left[ e^{9} - 1 \right] = 44.8198$$

FORMULA GENERALE ESERCIZIO Z

SOL = 
$$\frac{1}{b-a} \int_{a}^{b} e^{cx+d} dx$$
 [9,16]: INTERVALO
$$e^{cx+d} : VARIABILE$$

(IN PRATICA, APPLICO IL TEOREMA DEWA MEDIA INTEGRALE ALLA VARIABILE)

Question **3**Not complete

▼ Flag
question

| Sia $X$ variabile esponenziale di <b>media</b> (non parametro!) 3. Determinare il <b>valore atteso</b> di $\exp\left(-8X+7\right)$ . (Notazione: $\exp(x)=e^x$ ) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Answer:                                                                                                                                                          |

VALORE ATTESO DI UNA V.A. ESPO NENZIALE

$$E[x] = \frac{1}{\lambda} = 3 \qquad \Rightarrow \lambda = \frac{1}{3}$$

FORMULA DEL VALORE ATTESO DI UNA V.A. COMPOSTA

$$E[g(x)] = \int_{-\infty}^{\infty} g(x) \, g_x(x) \, dx$$

SOSTITUISCO:

$$E\left[g(x)\right] = \int_{-\infty}^{+\infty} e^{-8x+7} \cdot S_{x}(x) dx$$

$$\int_{-\infty}^{+\infty} e^{-8x+7} \cdot S_{x}(x) dx$$

$$\int_{-\infty}^{+\infty} e^{-8x+7} \cdot S_{x}(x) dx$$

$$\int_{-\infty}^{+\infty} e^{-8x+7} \cdot S_{x}(x) dx$$

DENSITÀ ESPONENZIALE

$$S_{\tau}(t) = F_{\tau}'(t) = \begin{cases} 0 & \text{se } t < 0 \\ \lambda e^{-\lambda t} & \text{se } t \ge 0 \end{cases}$$

$$=\frac{1}{3}\int_{0}^{400}e^{-\frac{25}{3}x+7}dx=-\frac{3}{25}\cdot\frac{1}{3}\int_{0}^{400}\frac{25}{3}e^{-\frac{25}{3}x+7}dx=-\frac{1}{25}\left[e^{-\frac{25}{3}x+7}\right]_{0}^{400}=-\frac{1}{25}\left[e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^{-\frac{1}{25}}e^$$

Sol = 
$$\frac{1}{\lambda} \int_{0}^{+00} e^{(x+d)}$$

ecx+q = 6x6 OI on BIZO CNA CATO MATE IT ATTERSO

Question 4

Not complete

 Il periodo di quarantena per una certa malattia varia tra 4 e 14 giorni dal contagio. Il tempo che intercorre tra il contagio e l'apparizione dei sintomi è descritto da una variabile aleatoria continua X la cui densità su quell'intervallo è data da (t è espresso in giorni)

$$f(t) = \left\{ egin{aligned} k(t-4)(14-t), & t \in [4,14] \ 0 ext{ altrimenti.} \end{aligned} 
ight.$$

per qualche  $k\in\mathbb{R}$  . Determinare la probabilità che i sintomi appaiano entro 9 giorni dal contagio.

X = tempo appunitione dei sintomi (in giorni), X € [4,14]

$$S(t) = \begin{cases} N(t-4)(14-t) & \text{if } \epsilon \left[4,14\right) \\ 0 & \text{altriment:} \end{cases}$$

NB: 
$$P(\alpha \in X \leq b) = 1$$
 se  $x \in [\alpha, b)$   
So the  $P(4 \leq x \leq 14) = 1$   $\Rightarrow F(14) - F(4) = 1$ 

HO RISOLTO L'INTEDIANE IN FUNTO ME DI K CON WOLFRAM (MANCANZA DI VOLVA)

$$P(x \le 9) = P(4 \le t \le 9) \stackrel{\text{1FCI}}{=} F(9) - F(4) = \int_{4}^{9} g(t) dt$$

$$7 K \int_{4}^{9} (t-4)(14-t) dt = \frac{3}{500} \int_{4}^{9} (t-4)(14-t) dt = \frac{3}{500} \cdot \frac{250}{3} = \frac{750}{1500} = 0.5$$

$$= \frac{250}{3} \text{ (MOLFRAM)}$$

## FORMULA GENERALE ESERCIZIO 4

SOL = 
$$\frac{1}{\int_{a}^{b} (t-a)(b-t)dt} \cdot \int_{a}^{c} (t-a)(b-t)dt$$

#### DOVE:

- [a,b) E<sup>-</sup>['INTERVALLO OI TEMPO IN CUI POSSONO CAMPANIRE I SINTOMI
  - C E IL GORNO DI CUI (ALCOU AMO LA PROBABILITÀ CHE I SINTOMI APPAIAND ENTRO TALE CLORNO

Not complete

Flag question

La durata, in chilometri, di uno pneumatico, è una variabile aleatoria espressa in **migliaia** di chilometri, la cui densità continua è data da

$$f(x) = \left\{ egin{aligned} ke^{-x/42}, x > 0, \ 0 ext{ altrimenti.} \end{aligned} 
ight.$$

per qualche  $k \in \mathbb{R}$ . Determinare la probabilità che il pneumatico resista almeno 30 mila chilometri.

| Answer: |  |
|---------|--|
| Check   |  |

X = dwruta in miglicio di Km di uno precumatico

$$3(x) = \begin{cases} x e^{-\frac{x}{42}} & x > 0 \\ 0 & \text{altineuti} \end{cases}$$

DENSITÀ DELL'ESPONENZIALE

$$NB: \int_{0}^{\infty} S_{x}(x) dx = 1$$

$$\rightarrow K \int_{0}^{+\infty} e^{-\frac{x}{42}} dx = 1 \rightarrow K.42 = 1 \rightarrow K = \frac{1}{42}$$

$$P(X \ge 30) = \int_{30}^{600} \frac{1}{4z} e^{-\frac{1}{42}x} dx = -\int_{30}^{600} \frac{1}{4z} e^{-\frac{1}{4z}x} dx = -\left[e^{-\frac{1}{4z}x}\right]_{30}^{600} = -\left[e^{-\frac{30}{4z}}\right]_{30}^{600} =$$

FORMULA GENERALE ESERCIZIO 5:

- a: É 12 DEMO MINATORE DEW'ESPONENTE DEUX FUNTIONE

es. 
$$3(x) = Ke^{-\frac{x}{42}}, 0 = 42$$

- b: QUANTO LO PNEUMATICO DEVE DURARE (in miglicia di Km)

(NB: si potera sure ande con la formula di probabilità dell'esponentiale...)

## Question **6**Not complete

Flag question

I risultati di un test universitario sono distribuiti con una variabile normale di media 66 e deviazione standard 17. Qual è la soglia di punteggio da assegnare affinché la probabilità di fallire al test sia la più vicina al 10.03%?

#### Funzione di distribuzione della normale standard

| _   |        |        |        |        |        |        |        |        |        |        |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0,7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
|     |        |        |        |        |        |        |        |        |        |        |

Answer:

$$X = \text{Nisultato}$$
  
 $X \sim N(66, 17^2)$ 

$$\begin{cases} N = 66 \\ \sigma^2 = 17 \end{cases}$$

$$\Rightarrow Z = N + \sigma X, \text{ Nowe } X \sim N(0,1)$$

SOL. SIA C LA SOULA DI PUNTECCIO INCOGNITA. SOSTITUENDO 2 = H+ 0x = 66+17x

$$P(G+17x < C) = 10.03\% \rightarrow P(x < \frac{C-66}{17}) = 10.03\% = 0.1003$$

PROBLEMA: O, LOO3 NON C'E SULLA TABELLA. PASSO AL COMPLEMENTARE:  $\varphi(x) = 1 - \varphi(-x)$ 

$$\neg 1 - \varphi\left(\frac{-c+66}{17}\right) = 0.1003 \quad \neg 2 - \varphi\left(\frac{-c+66}{17}\right) = 0.1003 - 1 \quad \neg 2 - \varphi\left(\frac{-c+66}{17}\right) = -0.1003 + 1$$

## FORMULA GENERALE ESERCIZIO 6

N: MEDIA

σ2: DEVIAZIONE STANDARD

P . PERCENTUALE

Not complete

 Sia X variabile normale di media 18 e deviazione standard  $\ 7.3.$  Calcolare la probabilità che  $X \in [16.5, 18.7].$ 

#### Funzione di distribuzione della normale standard

| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |

Answer:

## VARIABILE NORMALE

$$P\left(\frac{16.5 - 18}{7.3} \angle \ge \angle \frac{18.7 - 18}{7.3}\right) = \Psi\left(\frac{18.7 - 18}{7.3}\right) - \Psi\left(\frac{16.5 - 18}{7.3}\right) = \Psi(0.1) - \left[1 - \Psi(0.21)\right]$$

$$\Rightarrow \Psi(-x) = 1 - \Psi(x)$$

## FORMULA GENERALE ESERCIZIO 7

### Dove:

# Question **8**Not complete Flag question

Un autovelox misura la velocità delle auto in tangenziale di Padova dove il limite è di 89 km/ora: chi supera i 89.3 km/ora prende la multa. Le velocità delle auto sono distribuite normalmente con media di 89 km/ora e deviazione standard di 13 km/ora. Qual è la probabilità che un'automobilista che passa davanti all'autovelox prenda la contravvenzione?

#### Funzione di distribuzione della normale standard

|     | <u></u> |        |        |        |        |        |        |        |        |        |
|-----|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Z   | 0.00    | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
| 0.0 | 0.5000  | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398  | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793  | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179  | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554  | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915  | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257  | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580  | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881  | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159  | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413  | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643  | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849  | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032  | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192  | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332  | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452  | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554  | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641  | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |

| Answer: |  |  |  |
|---------|--|--|--|
|         |  |  |  |

$$P(X > 89.3) = P(89 + |32 > 89.3) = P(2 > \frac{89.3 - 89}{43}) = P(2 > \frac{0.3}{43})$$

10 SO CHE 
$$Y(x) = \int_{-\infty}^{x} f_{2}(t) dt$$
, MA TO VOCILO  $\int_{x}^{+\infty} f_{2}(t) dt$ 

PROBABILITÀ CHE UN

ANTOMOBILISTA NON PRENDA LA MULTA

## FORMULA GENERALE ESERCIZIO 8

$$1 - \Psi\left(\frac{V-\nu}{\sigma^{-2}}\right)$$

DOVE :

- V: VELOCITÁ OCTAL LA QUALE SI PAENDE LA MULTA

- N: MEDIA

- 52: DEVIAZIONE STANDA RD

Not complete

Flag question

La durata di una pila per orologi è una variabile aleatoria continua di media 109 ore e deviazione standard  $\sigma$  ore. Usando il Teorema Centrale del Limite calcolare, approssimativamente, il minimo valore di  $\sigma$  affinché utilizzando 223 pile si possa garantire il funzionamento dell'orologio per almeno 24324 ore con una probabilità superiore a 0.0778. Non usare la correzione di continuità.

#### Funzione di distribuzione della normale standard

|     |        |        |        |        |        |        |        | U      | <i>-</i> |        |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|
| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08     | 0.09   |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319   | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714   | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103   | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480   | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844   | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190   | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517   | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823   | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106   | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365   | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599   | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810   | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997   | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162   | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306   | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429   | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535   | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625   | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699   | 0.9706 |

APPROSSIMAZIONE IN DISTRIBUZIONE DI 
$$X_1, ... X_m$$
  
 $P(X_1 + ... + X_m \le a) \approx P(mN + \sqrt{m\sigma^2} \ne \le a) \qquad m > +\infty$   
 $\ne NN(0,1)$ 

"PROBABILITA" CHE USANDO IN PILE SI POSSA UTILIZZANE L'OROLOGIO PER ALMENO a ORE" > 0.0778

PROBABILITA INVERSA: P(X > X) = 1 - P(X < K)

$$1 - \rho \left( \frac{7}{2} \leq \frac{24324 - 223.409}{\sqrt{2^{23} \sigma^2}} \right) \approx 0.0778$$

two K tale de 9(K) = 0.9222

$$- \varphi \left( \frac{24324 - 223 \cdot 109}{\sqrt{223 \cdot \sigma^2}} \right) \leq 1 - 0.0778 = 0.9222 \stackrel{\uparrow}{=} \varphi (1.42)$$

$$\neg \left(\frac{24324 - 223 \cdot 409}{\sqrt{223 \sigma^2}}\right) \leq \left(\frac{1.42}{1.42}\right) - \sqrt{\frac{24324 - 223 \cdot 409}{\sqrt{223 \sigma^2}}}\right) \leq \sqrt{\frac{1}{1.42}}$$

$$\frac{24324 - 223 \cdot 409}{\sqrt{223\sigma^2}} \leq 1.42 \quad \vec{\sqrt{23}\sigma^2} \leq 1.42 \quad \vec{\sqrt{23}\sigma^2} \leq 1.42 \quad \vec{\sqrt{23}\sigma^2}$$

$$\sqrt{\sigma} = \frac{12}{1.42 \cdot \sqrt{223}} = 0.7424$$

## FORMULA GENERACE ESERCIZIO 9

DOVE:

$$\sigma = \frac{\alpha - M \cdot D}{9^{-1}(1-P) \cdot \sqrt{M}}$$
M; HUMERS DI PILE

P: PARRABILITA 1 - - - - )

Question 10

Not complete

Flag
question

In un esperimento di telepatia, una persona scelta a caso da un computer tra quattro individui effettua una telefonata ad uno sperimentatore. Qual è la probabilità che lo sperimentatore indovini correttamente chi lo sta chiamando per almeno 1492 volte su 6107 esperimenti effettuati scegliendo a caso uno dei quattro interlocutori? Non serve utilizzare la correzione di continuità.

#### Funzione di distribuzione della normale standard

| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |

| Answer: |  |
|---------|--|
|         |  |

X; = SLEUTA DI 1 PENSONA ALL'I-ESIMA PROVA

$$X_{i} \wedge B_{e}\left(\frac{1}{4}\right) \rightarrow E\left[X_{i}\right] = \frac{1}{4} \rightarrow V_{ox}\left[X_{i}\right] = E\left[X_{i}^{2}\right] - E^{2}\left[X_{i}\right] = \frac{1}{4} - \frac{1}{16} = \frac{3}{16}$$

DEMARIONE STANDARD: 
$$\sigma = \sqrt{Van(x_i)} = \frac{\sqrt{3}}{4}$$

USO L'APPROSSIMECONE DI DISTRIBUZIONE X4,... XM

YaER:

n = 6107

$$= 1 - P \left( 6107 \cdot \frac{1}{4} + \sqrt{6107 \cdot \frac{3}{16}} \right) = 1 - P \left( \frac{1492 - 6107 \cdot \frac{1}{4}}{\sqrt{6107 \cdot \frac{3}{16}}} \right) = 1 - P \left( -1.03 \right) = 1 - \left[ 1 - P \left( 1.03 \right) \right]$$

#### FORMULA GENERALE ESERCIZIO LO

$$\varphi\left(\frac{\kappa-\frac{m}{4}}{\sqrt{m\cdot\frac{3}{46}}}\right)$$

DOVE:

M: # ESPERIMENT)

K: SUCCESSI (SPENIMENTATORE INDOVINA)

Not complete

Flag question

Un gioco elettronico fa uscire 3 valori:

- 1 con probabilità 1/2
- 2 con probabilità 1/4
- 3 con probabilità 1/4

Si effettuano un certo numero n di giocate indipendenti e si sommano i punteggi ottenuti. Determinare il minimo n naturale affinché la somma dei punti ottenuti sia maggiore o uguale a  $n \times 1.72$  con probabilità maggiore o uguale a 0.8105. Non usare la correzione di continuità.

Rispondere con un numero intero (es. 198); tolleranza di  $\pm 10$ .

#### Funzione di distribuzione della normale standard

|     |        |        |        |        |        |        |        |        | Ų.     |        |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0,6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
|     |        |        |        |        |        |        |        |        |        |        |

| Answer: |  |
|---------|--|
|         |  |

SIA XI LA I-ESIMA GIOCATA. CALLOLO VALUNE ATTESO E DEVIAZIONE STANDARD

$$-E[X_i] = E[X] = \sum_{i=1}^{m} X_i P_X(X_i) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{4} = \frac{7}{4}$$

- 
$$V_{av}[X_i] = E[X^2] - [E^2[X] = 1 \cdot \frac{1}{2} + 4 \cdot \frac{1}{4} + 9 \cdot \frac{1}{4} - \frac{49}{16} = 0.6875$$

ORA USO LA FORMULA DI APPROSSIMAZIONE DI UNA DISTRIBUZIONE X1... X2

P(X1+X2+...+ Xm > 1.72 m) > 0.8105

A GRANUA OI AMPRISSIMAZIONE FUNZIONA CON " = ".

→ P(= m+Vm·√0.6875 Z 2 1.72 m) ≥ 0.8405

$$\neg 1 - \Psi \left( \frac{\sqrt{m} \left( 1.72 - \frac{7}{4} \right)}{\sqrt{0.6805}} \right) \ge 0.8105 \quad \neg 1 - \Psi \left( \frac{-0.03 \sqrt{m}}{\sqrt{0.6875}} \right) \ge 0.8105$$

$$\Rightarrow \varphi\left(\frac{0.03\sqrt{m}}{\sqrt{0.6875}}\right) \ge 0.8405 \Rightarrow \varphi^{-1}\left(\varphi\left(\frac{0.03\sqrt{m}}{\sqrt{0.6875}}\right)\right) \ge \varphi^{-1}\left(0.8105\right)$$

$$\frac{0.03\sqrt{n}}{\sqrt{0.6875}} \ge 0.88 \quad \Rightarrow \quad M = \left(\frac{0.88\sqrt{0.6875}}{0.03}\right)^2 = 592$$

## FORMULA GENERALE ESERCIZIO 11

$$\eta = \left[ \frac{\varphi^{-1}(P) \cdot \sqrt{0.6875}}{\left(B - \frac{7}{4}\right)} \right]^{2}$$

DOVE:

P: PADBABILITÀ MAGGIONE O UCUALE DI CUI VOCLIAMO CHE M SIA MCGORE

B: VOCLAMO CHE LA SOMMA DEL PUUTI SIA > A MXB

[ PER TADVARE 4° (P) USO LA TABELLA: NON E' NECESSARIO TADVARE IL VALORE ESARTO, BASTA TADVARE UN VALORE VICINO PERCHE- LA RISOSSA HA UNO SCARTO DI ±10]