Assignment1

Yunhua Zhao

February 26, 2021

0.1 Write a "Data Summary" section. [10 pts]

• Describe the dataset and the variables. What is the target? What are you calculating it from?

Answer: The dataset is 4898*12, if drop the duplicate rows, it is 3961*12. "quality" is the target from these features ['fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar', 'chlorides', 'free_sulfur_dioxide', 'total_sulfur_dioxide', 'density', 'pH', 'sulphates', 'alcohol', 'quality'].

• Include a list of each variables' descriptive statistics (mean, standard deviation, quartiles).

Answer:

0]
)]
[0]
)]
)]
[00
[000]
[0]
[0]
)]
00]
)] ()(()(()(()(()(()(()(()(()((

- Describe whether or not you used feature scaling and why or why not.
 Answer: I used feature scaling, because the accuracy and F1 all improved, especially F1
- Describe whether or not you dropped any feature and why or why not.

 Answer: I droped two features, residual_sugar and alcohol, because these Pearson correlation coefficient with desity are very big, 0.82 and 0.76

0.2 Write a "Methods" section. [10 pts]

- Describe the runtime complexity of the KNN_Classifier model. **Answer:** $O(n^2)$: there is a for loop in the for loop
- Explain the effects of increasing k. When is and isn't it (increasing k) effective?

Answer: When k increases, the accuracy and F1 all increase, but 7 neighbors and 9 neighbors are similar result maybe a little grows but not significant, but from 3 to 7, accuracy and F1 are increasing.

• Describe whether or not you used inverse distance weighting in the features and why.

Answer: I will not use the distancing weighting, from my result(in the table) it is not as good as uniform, and uniform has less calculation.

0.3 Write a "Results" section. [10 pts]

• Describe the performance of the model with respect to the different levels of k and the different distance metrics. Include a table of performances, bolding the best.

Answer: Uniform works better and k = 7 is best; the worst is the distance and 3 folds; the result is becoming better when k grows and uniform works better than distance.

neighbor	distance	Euclid/Manhattan	accuracy	F1
3	uniform	Euclid	0.6363636363636364	0.7377049180327868
5	uniform	Euclid	0.6464646464646465	0.7445255474452555
7	uniform	Euclid	0.6603535353535354	0.757875787578758
9	uniform	Euclid	0.6603535353535354	0.758744394618834
3	distance	Euclid	0.5845959595959596	0.6857688634192932
5	distance	Euclid	0.6287878787878788	0.7277777777777777
7	distance	Euclid	0.6325757575757576	0.7308048103607769
9	distance	Euclid	0.6426767676767676	0.7396504139834407
3	uniform	Manhattan	0.638888888888888	0.7376146788990826
5	uniform	Manhattan	0.6502525252525253	0.7456382001836547
7	uniform	Manhattan	0.6691919191919192	0.7648114901256732
9	uniform	Manhattan	0.6616161616161617	0.7598566308243728
3	distance	Manhattan	0.5997474747474747	0.6983824928639392
5	distance	Manhattan	0.625	0.723720930232558
7	distance	Manhattan	0.6338383838383839	0.7309833024118739
9	distance	Manhattan	0.6439393939393939	0.7398523985239852

• Characterize the overall performance of your model.

Answer: I think my model works well, also I tried the model which uses "kwargs" for high parameters, I use 0.5 as the threshold to convert the probability to binary, (p(labelis1) > 0.5 then it is predicted as 1)

• Discuss which quality values led to good performance of your model and those that resulted in poor performance. Include a table of average error (e.g., F1 score) to support your claims.

Answer: Please Check the previous table, I summary everything there, Euclid and Manhattan work similar results, Manhattan is a little bit better, uniform works better, and the best is 7 folds.

• Give any final conclusions.

Answer: The hw is so helpful, in future I can add the feedback to my model to choose a better threshold.