

CMPT 413: Computational Linguistics

HMM2: N-grams versus HMMs

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

N-grams versus HMMs

- Bigram model: "British Left Waffles on Falkland Islands"
 - P(British) P(Left | British) P(Waffles | Left)
 P(on | Waffles) P(Falkland | on) P(Islands | Falkland)
- HMM: "British Left Waffles on Falkland Islands"
 - HMM for state sequence: (N, N, V, P, N, N)
 - P(N) P(British | N) P(N | N) P(Left | N) P(V | N) P(Waffles | V) P(P | V) P(on | P) P(N | P)
 P(Falkland | N) P(N | N) P(Islands | N)

N-grams versus HMMs

- An n-gram model is called a Markov model or Markov chain
- Hidden Markov Models add the notion of a "Hidden" state
- N-grams directly model the probability of a sequence of observations: P(w_i | w_i)
- HMMs use a more abstract state representation: $P(X_j | X_i) P(w_j | X_j)$

- For observation sequence babaa i.e: o_1 =b, o_2 =a, ..., o_5 =a
- Compute P(babaa) using a bigram model P(b)*P(a|b)*P(b|a)*P(a|b)*P(a|a)
- Equivalent Markov chain:

• For observation sequence babaa i.e: $o_1 = b$, $o_2 = a$, ..., $o_5 = a$

- Compute P(babaa) using a trigram model P(ba)*P(b|ba)*P(a|ab)*P(a|ba)
- Equivalent Markov chain:

• For observation sequence babaa i.e: o_1 =b, o_2 =a, ..., o_5 =a

- Compute P(babaa) using a trigram model P(ba)*P(b|ba)*P(a|ab)*P(a|ba)
- Equivalent Markov chain:

• Given an observation sequence

$$\mathbf{O} = (o_1, ..., o_t, ..., o_T)$$

• An *n*th order Markov Chain or *n*-gram model computes the probability

$$P(o_1, ..., o_T)$$

• An HMM computes the probability $P(X_1, ..., X_T, o_1, ..., o_T)$ where the state sequence is *hidden*

Properties of HMMs

Markov assumption

$$P(X_t = s_i \mid \ldots, X_{t-1} = s_j)$$

Stationary distribution

$$P(X_t = s_i \mid X_{t-1} = s_j) = P(X_{t+l} = s_i \mid X_{t+l-1} = s_j)$$

CMPT 413: Computational Linguistics

HMM2: N-grams versus HMMs

Anoop Sarkar

http://www.cs.sfu.ca/~anoop