Knowledge Discovery & Data Mining

- Data Preprocessing I -

Instructor: Yong Zhuang

yong.zhuang@gvsu.edu

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration

Data Quality Matters

Source: https://www.researchgate.net/figure/Data-quality-and-standards-garbage-in-data-garbage-out-results_fig4_333491695

Examples of Data Quality Problems

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - Missing values: Attribute values are missing, some attributes of interest are missing, or only aggregate data is included
 - Noise and Outliers: Contains noise, errors, or outliers
 - Inconsistent: Contains differences in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Rated "1, 2, 3", now rated "A, B, C"
 - Differences between duplicate records
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday

Measures for Data Quality

- Accuracy: correct or wrong, accurate or not
- Completeness: not recorded, unavailable, ...
- Consistency: some modified but some not, ...
- Timeliness: timely update?
- Believability: how trustable the data are correct?
- Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data Cleaning

- Fill in missing values
- Smooth noisy data
- Identify or remove outliers
- Resolve inconsistencies

Data Integration

- Databases
- Data cubes
- Files

Data Reduction

- Dimensionality reduction
- Numerosity reduction
- DataCompression

Data Transformation

- Normalization
- Discretization

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration

Data Cleaning: Noise

Noise refers to the modification of original values, i.e., corrupted data

Data Cleaning: Noise

- How do data get corrupted?
 - Error in measurement due to faulty or low-resolution sensors
 - Error in data recording
 - External (environmental) factors that affect the measurement process
- Are noisy data useful or should they be discarded?
- Are there any reasons to intentionally add noise to data?

Data Cleaning: Denoising

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Low-pass filter
 - Allow the low-frequency components of an input signal to pass through while reducing high-frequency components.
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Denoising: Binning

- Binning: smooth a sorted data value by consulting its "neighborhood," the values around it.
 Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34
 - The data for price are first sorted and then partitioned into equal-frequency bins of size 3
 - Smooth by bin means: each value in a bin is replaced by the mean value of the bin
 - Smooth by bin medians: each bin value is replaced by the bin median
 - Smooth by bin boundaries: the minimum and maximum values in a given bin are identified as the bin boundaries. Each bin value is then replaced by the closest boundary value.

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15

Bin 2: 21, 21, 24

Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9

Bin 2: 22, 22, 22

Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15

Bin 2: 21, 21, 24

Bin 3: 25, 25, 34

Denoising: Regression

- Regression: smooth by fitting the data into regression functions
 - Linear regression involves finding the "best" line to fit two attributes (or variables) so that one attribute can be used to predict the other.
 - Multiple linear regression: more than two attributes are involved, and the data are fit to a multidimensional surface

Denoising: Low-pass filter

• Low-pass filter: Low-pass filters allow the low-frequency components of an input signal to pass through while attenuating (reducing) high-frequency components. Measurement noise falls into the high-frequency range of the signal spectrum, while the underlying process signal usually lies towards the low-frequency end.

Data Cleaning: Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

 Outlier analysis: Outliers may be detected by clustering: similar values are organized into groups or "clusters." Values that fall outside of the set of clusters may be considered as outliers

Outliers vs. Noise

Difference between noise and outliers?

Are outliers useful?

Data Cleaning: Missing Values

- Attribute values unavailable when collecting data
 - Usually encoded as null values in the database

index	Name	Age	Gender	Salary
0	John Doe	28.0	Male	50000.0
1	Jane Smith	NaN	Female	60000.0
2	Alice Johnson	35.0	NaN	NaN
3	NaN	22.0	Male	45000.0
4	Chris Ray	NaN	Male	70000.0

Examples:

- The equipment used to gather the data might not work properly.
- Some data might not match other data, so it's removed.
- Maybe someone didn't understand how to input the data.
- At times, people might not think some data is important, so they don't add it.
- The data's history or any changes might not be recorded.

How to Handle Missing Data?

- Ignore the tuple: Discard all data objects with missing values
 - not effective when the % of missing values per attribute varies greatly.
- Fill in the missing value manually:
 - is time consuming and may not be feasible given a large data set with many missing values.
- Fill in it automatically with
 - o a global constant : e.g., Replace all missing attribute values by "unknown".
 - the mining program may mistakenly think that they form an interesting concept.
 - the attribute mean, median, or mode
- Model-based approach
 - regression or inference-based methods such as Bayesian formula or decision tree

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration

Data integration

Data integration: Combines data from multiple data stores(sources) into a coherent store.

- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detect and resolve data value conflicts:
 - o For the same real world entity, attribute values from different sources are different
 - o Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality.