

Unina – Data Mining 20/21 – Mini Contest N°3

Fabio d'Andrea - M63000989

Business understanding

Business understanding

Business Understanding

Determine whether a parasite egg appears in a certain image

Data Mining Tools

Software tools used to face the problem

Data understanding

Data Understanding

Each training image is characterized by different attributes

Directions

5 images are extracted from the same egg sample by cropping the image from different directions

Data Understanding

Extract some useful information from the path of the images

label
empty
e

Build a **dataframe** containg the information extracted

	path	acquisition	name	direction	label
count	1722	1722	1722	1722	1722
unique	1722	7	373	5	2
top	$/content/dataset/train/empty/Acquisizione 7_mic$	Acquisizione3	micro_00_03_1	central	empty
freq	1	484	15	1038	867

Compute some basic descriptive statistics about data

Data Understanding

Data Understanding

Data preparation

Data Preparation

Apply **stratified holdout**, ensuring that each subset is balanced in term of class

Data Preparation

To be as independent as possible, the three subsets are made up of different acquisitions

Training set (60%)

- Acquisizione1
- Acquisizione3
- Acquisizione7

Validation set (20%)

- Acquisizione5
- KFM_FLOTAC
- Qualita2

Test set (20%)

• Acquisizione6

Data for Hyperparameters Tuning

Data for Evaluation and Model Selection

Modeling

Modeling

Consider three different pretrained Convolutional Neural Networks (CNNs), provided by PyTorch

AlexNet

- 5 convolutional layers
- Dropout
- 3 dense layers

VGG11_bn

- 8 convolutional layers
- Batch normalization
- Dropout
- 3 dense layers

GoogLeNet

- 21 convolutional layers
- Inception
- Batch normalization
- Dropout
- 1 dense layer

Modeling

Repeat the whole process for each neural network

Hyperparameters Tuning

Tune the hyperparameters evaluating model's performance on validation set

Hyperparameter	Description
Trained layers	Layers whose parameters are learned
Batch size	Size of mini batches
Number of epochs	Number of training epochs
Loss function	Function to minimize during training
Optimizer	Optimization algorithm used for training
Learning rate	Learning rate used by the optimization algorithm
Data augmentation	Transformation applied to training images

Ex: Tuning the Learning Rate (VGG11_bn)

Ex: Tuning the Epochs (GoogLeNet)

Final Hyperparameters

AlexNet			
Hyperparam	Value		
Trained layers	Fully-connected		
Batch size	32		
Number of epochs	30		
Loss function	Cross entropy		
Optimizer	Adam		
Learning rate	1e-5		
Data augmentation	Flip and rotation		

VGG11_bn			
Hyperparam	Value		
Trained layers	Fully-connected + last convolutional		
Batch size	32		
Number of epochs	30		
Loss function	Cross entropy		
Optimizer	Adam		
Learning rate	1e-5		
Data augmentation	Flip		

GoogLeNet			
Hyperparam	Value		
Trained layers	All		
Batch size	32		
Number of epochs	30		
Loss function	Cross entropy		
Optimizer	Adam		
Learning rate	1e-5		
Data augmentation	Flip		

Evaluation

Evaluation

Evaluate models' performance on an independent test set

Model Selection

Choose the model that gains the best performance on the test set

	AlexNet	VGG11_bn	GoogLeNet
Accuracy (test set)	0.79139	0.95364	0.97019
Accuracy (public leaderboard)	-	-	-
Accuracy (private leaderboard)	-	-	-

Submission

Submission

Retrain the model using the whole training set and predict the labels for the instances of the original test set

Final Score

The model with better performance on the test gets also the best score on Kaggle

	AlexNet	VGG11_bn	GoogLeNet
Accuracy (test set)	0.79139	0.95364	0.97019
Accuracy (public leaderboard)	_	0.98058	0.98058
Accuracy (private leaderboard)	-	0.95748	0.98897

Thanks for your attention!