Problem Set 5, Physics 104A

Due Saturday October 30 at 11:59 PM Late homework accepted until Saturday November 6

Primary topic: Eigenvectors, Operators and Gramm-Schmidt ortho-normalization

1. Let
$$A = \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 2 & 0 & 3 \\ 4 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{pmatrix}$$
.

- a) Find the eigenvalues of A.
- **b)** Find two eigenvectors of A which are independent.

Hint: This problem would be much easier if you can recognize that it is really two separate 2x2 problems.

- **2.** a) Let A, B be operators with [A, B] = I, where I is the identity operator. Find $[A^2, B]$.
 - b) Let $A = \partial/\partial x$, $B = x_{op}$. (Here B is an OPERATOR: B takes a function f(x) to another function g(x) = xf(x).) Calculate $[\partial^2/\partial x^2, x_{op}]$ by comparing $\partial^2/\partial x^2(xf(x))$ and $x\partial^2/\partial x^2f(x)$.
 - c) Verify that your answer from b) agrees with the general formula from part a).
- **3.** a) Find the eigenvalues and eigenfunctions of the operator $\frac{d}{dx}$. (i.e., the solutions of $\frac{df}{dx} = \lambda f$.)
 - **b)** Repeat for the operator $x_{op} \frac{d}{dx}$.
- **4. a)** Find an orthonormal basis by the Gram-Schmidt method, starting with the three vectors (1,1,0), (1,1,-1), and (3,0,4).
 - **b)** Construct orthonormal functions $g_1(x)$ and $g_2(x)$ on [0,1] from $F_1(x)=1$, and $F_2(x)=e^{-x}$. What is the "angle" between F_1 and F_2 ?
 - c) Write $h(x) = 3e^{-x} 2$ in terms of your orthonormal set from b).