ΛΥΣΗ

α) Είναι:

$$f(1) - f(0) \ge f(0) - f(-1) \Leftrightarrow e^{\kappa} - 1 \ge 1 - e^{-\kappa} \Leftrightarrow e^{\kappa} - 1 \ge 1 - \frac{1}{e^{\kappa}} \Leftrightarrow e^{\kappa} - 1$$

$$e^{2\kappa}-e^{\kappa}\geq e^{\kappa}-1\Leftrightarrow e^{2\kappa}-2e^{\kappa}+1\geq 0\Leftrightarrow (e^{\kappa}-1)^2\geq 0$$
, η οποία ισχύει πάντα.

Η ισότητα ισχύει, όταν $e^{\kappa} - 1 = 0 \Leftrightarrow e^{\kappa} = 1 \Leftrightarrow \kappa = 0$.

β) Η συνάρτηση f έχει πεδίο ορισμού το \mathbb{R} .

$1^{o\varsigma}$ τρόπος:

Αφού $\kappa>0\stackrel{e^{\kappa \uparrow}}{\Longrightarrow}e^{\kappa}>1$ και η συνάρτηση γράφεται $f(x)=e^{\kappa x}=(e^{\kappa})^x$. Επομένως, η f είναι γνησίως αύξουσα στο $\mathbb R$.

2^{ος} τρόπος:

Έστω $\kappa > 0$ και $x_1, x_2 \in \mathbb{R}$ με $x_1 < x_2$.

Τότε $\kappa \cdot x_1 < \kappa \cdot x_2 \stackrel{e^{x \uparrow}}{\Longrightarrow} e^{\kappa \cdot x_1} < e^{\kappa \cdot x_2} \Rightarrow f(x_1) < f(x_2)$. Επομένως, η f είναι γνησίως αύξουσα στο \mathbb{R} .

γ)

i. Είναι:

$$e^{2x} > 2e^x \Leftrightarrow e^{2x} - 2e^x > 0 \Leftrightarrow e^x(e^x - 2) > 0 \stackrel{e^x > 0}{\Longleftrightarrow} e^x - 2 > 0 \Leftrightarrow$$

 $e^x > 2 \Leftrightarrow e^x > e^{\ln 2} \Leftrightarrow x > \ln 2.$

ii. Το σημείο τομής των δύο καμπυλών προκύπτει από την επίλυση της εξίσωσης

$$e^{2x} = 2e^x \Leftrightarrow e^{2x} - 2e^x = 0 \Leftrightarrow e^x(e^x - 2) = 0 \stackrel{e^x \neq 0}{\Longleftrightarrow} e^x - 2 = 0 \Leftrightarrow$$

$$e^x = 2 \Leftrightarrow e^x = e^{\ln 2} \Leftrightarrow x = \ln 2$$

$$και φ(ln2) = 2e^{ln2} = 2 \cdot 2 = 4$$

Επομένως, το σημείο τομής των δύο καμπυλών είναι το A(ln2,4).

Από την ισοδυναμία $e^{2x}>2e^x\Leftrightarrow x>ln2$, προκύπτει ότι η καμπύλη \mathcal{C}_1 είναι η γραφική παράσταση της συνάρτησης $k(x)=e^{2x}$, ενώ η \mathcal{C}_2 απεικονίζει γραφικά τη συνάρτηση $\varphi(x)=2e^x$.