JEGALKIN KOʻPHADI. MONOTON BUL FUNKSIYALARI

MOSINI TOPING

1.
$$f(x_1,...,x_n) = x_1 \cdot f(1,x_2,...,x_n) \vee \overline{x_1} \cdot f(0,x_2,...,x_n)$$
,

2.
$$f(x_1,...,x_n) = x_1 \cdot f(1,x_2,...,x_n) \oplus \overline{x}_1 \cdot f(0,x_2,...,x_n)$$

3.
$$f(x_1,...,x_n) = (x_1 \lor f(0,x_2,...,x_n)) & (\bar{x}_1 \lor f(1,x_2,...,x_n))$$
.

K TA O'ZGARUVCHI BO'YICHA YOYILMASI

1.
$$f(x_1,...,x_n) = V x_1^{\sigma_1} \& ... \& x_k^{\sigma_k} \& f(\sigma_1,...,\sigma_k,x_{k+1},...x_n),$$

$$2. f(x_1,...,x_n) = \sum_{(\sigma_1,...,\sigma_k)} x_1^{\sigma_1} \& ... \& x_k^{\sigma_k} \& f(\sigma_1,...,\sigma_k,x_{k+1},...x_n),$$

3.
$$f(x_1,...,x_n) = \& (x_1^{\overline{\sigma_1}} \vee ... \vee x_k^{\overline{\sigma_k}} \vee f(\sigma_1,...,\sigma_k,x_{k+1},...x_n)).$$

MUKAMMAL NORMAL SHAKLLAR

$$f(x_1,...,x_n) = V x_1^{\sigma_1} \& ... \& x_n^{\sigma_n}$$

$$f(\sigma_1,...,\sigma_n) = 1$$

$$f(x_1,...,x_n) = \sum_{\substack{(\sigma_1,...,\sigma_n) \\ f(\sigma_1,...,\sigma_n) = 1}} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n}$$

BIR O'ZGARUVCHI BO'YICHA YOYILMASI

MOSINI TOPING

1.
$$f(x_1,...,x_n) = x_1 \cdot f(1,x_2,...,x_n) \vee \overline{x_1} \cdot f(0,x_2,...,x_n)$$
,

2.
$$f(x_1,...,x_n) = x_1 \cdot f(1,x_2,...,x_n) \oplus \overline{x}_1 \cdot f(0,x_2,...,x_n)$$
,

3.
$$f(x_1,...,x_n) = (x_1 \lor f(0,x_2,...,x_n)) & (\bar{x}_1 \lor f(1,x_2,...,x_n))$$
.

BIR O'ZGARUVCHI BO'YICHA YOYILMASI

1.
$$f(x_1,...,x_n) = V x_1^{\sigma_1} \& ... \& x_k^{\sigma_k} \& f(\sigma_1,...,\sigma_k,x_{k+1},...x_n),$$

$$2. f(x_1,...,x_n) = \sum_{(\sigma_1,...,\sigma_k)} x_1^{\sigma_1} \& ... \& x_k^{\sigma_k} \& f(\sigma_1,...,\sigma_k,x_{k+1},...x_n),$$

$$3. f(x_1, \dots, x_n) = \underset{(\sigma_1, \dots, \sigma_k)}{\&} (x_1^{\overline{\sigma_1}} \vee \dots \vee x_k^{\overline{\sigma_k}} \vee f(\sigma_1, \dots, \sigma_k, x_{k+1}, \dots x_n)).$$

K TA O'ZGARUVCHI BO'YICHA YOYILMASI

$$f(x_1,...,x_n) = V x_1^{\sigma_1} \& ... \& x_n^{\sigma_n}$$

$$f(\sigma_1,...,\sigma_n) = 1$$

$$f(x_1,...,x_n) = \sum_{\substack{(\sigma_1,...,\sigma_n) \\ f(\sigma_1,...,\sigma_n) = 1}} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n}$$

MUKAMMAL
NORMAL SHAKLLAR
BIR O'ZGARUVCHI
BO'YICHA
YOYILMASI

JEGALKIN KO'PHADI. MONOTON BUL FUNKSIYALARI

REJA:

- Jegalkin koʻphadi
- •Chiziqli funksiya
- •Mantiq algebrasidagi monoton funksiyalar

n ta $x_1, ..., x_n$ oʻzgaruvchi yordamida inkor amali qatnashmagan elementar kon'yuksiyalar sonini topish talab qilinsin. Shunday elementar kon'yunksiyalar 2^n ta boʻladi.

Masalan:

1)
$$n = 2$$
 bo'lsa, x_1, x_2 : 2) $n = 3$ bo'lsa, x_1, x_2, x_3 :

Shunday qilib, n ta $x_1,...,x_n$ oʻzgaruvchilar yordamida inkor amali qatnashmagan barcha 2^n ta elementar kon'yuksiyalarni $k_1,...,k_{2^n}$ deb belgilash kiritamiz.

Ta'rif-1:
$$\sum_{i=1}^{2^n} a_i k_i$$
, bu yerda $a_i \in E_2$

koʻrinishidagi koʻphadga Jegalkin koʻphadi deyiladi.

Teorema-1. Ixtiyoriy $f(x_1,...,x_n) \in E_2$ bul funksiyasini Jegalkin ko'phadi ko'rinishida ifodalash mumkin va u yagonadir.

Isbot:

$$f(x_1, ..., x_n) = \sum_{(\sigma_1, ..., \sigma_n)} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n} \& f(\sigma_1, ..., \sigma_n)$$
 (1)

(1) formuladagi barcha inkor amallaridan $x^{\sigma} = x + \overline{\sigma}$ tenglik yordamida

yoʻqotib yuboramiz. Bu yerda
$$x^{\sigma} = \begin{cases} x, \ agar \ \sigma = 1; \\ \overline{x}, \ agar \ \sigma = 0. \end{cases}$$

Haqiqatdan ham:

$$\sigma = 1$$
 bo'lsa, $x = x \oplus \overline{1} = x$, agar $\sigma = 0$, bo'lsa, $\overline{x} = x \oplus \overline{0} = x + 1 = \overline{x}$.

(1) formula quyidagi koʻrinishga keladi:

$$f(x_1,...,x_n) = \sum_{(\sigma_1,...,\sigma_n)} (x_1 + \overline{\sigma}_1)(x_2 + \overline{\sigma}_2)...(x_n + \overline{\sigma}_n)f(\sigma_1,...,\sigma_n).$$

Hosil boʻlgan yigʻindidagi oʻzgaruvchilarning birortasida ham inkor amali mavjud emas. Endi qavslarni ochib chiqamiz:

$$f(x_1,...,x_n) = \sum_{i=1}^{2^n} a_i k_i, \ a_i \in E_2, \ k_i - x_1,...,x_n \text{ o'zgaruvchilar}$$

yordamida tuzilgan turli elementar kon'yunksiyalar. Shunday qilib, ixtiyoriy bul funksiyasini Jegalkin koʻphadi yordamida ifodalash mumkinligi isbotlandi.

Yagonaligini isboti. Buning uchun n oʻzgaruvchili bul funksiyalari sonini,
 n oʻzgaruvchili Jegalkin koʻphadlar soni bilan taqqoslaylik.

Teng kuchli boʻlmagan n oʻzgaruvchili bul funksiyalari soni 2^{2^n} ta ekanligini bilamiz. Endi biz barcha elementar kon'yunktsiyalarni yozamiz $\{k_1, k_2, ..., k_{2^n}\}$, har bir konyunksiya koʻphadga yo kiradi yoki kirmaydi, shuning uchun bunday koʻphadlar soni 2^{2^n} bo'ladi.

Xulosa:

- n oʻzgaruvchili bul funksiyalari soni bilan Jegalkin koʻphadlari soni teng ekanligi aniqlandi.
- Ixtiyoriy funksiyani Jegalkin koʻphadi koʻrinishiga ifodash mumkinligini isbotladik.
 - 3) Har bir Jegalkin koʻphadiga mos keluvchi funksiya mavjud.

Demak, funksiyani koʻphad yordamida ifodalash mumkin va u yagonadir.

Funksiyalarni Jegalkin koʻphadi koʻrinishiga keltirishning bir necha usullari mavjud

I. Chinlik jadvali yordamida funksiyani Jegalkin koʻphadi koʻrinishiga keltirish

(1) formulada $f(\sigma_1, ..., \sigma_n) = 1$ deb, quyidagi formulani xosil qilamiz:

$$f(x_1, ..., x_n) = \sum_{\substack{(\sigma_1, ..., \sigma_n) \\ f(\sigma_1, ..., \sigma_n) = 1}} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n}$$
(2)

 $x^{\sigma} = x + \overline{\sigma}$ formuladan foydalanib, (2) yigʻindidagi barcha inkor amallaridan qutulishimiz mumkin va natijada Jegalkin koʻphadini hosil qilamiz.

II. Noaniq koeffitsientlar usuli

teoremaga asosan,

$$f(x_1,...,x_n) = \sum_{i=1}^{2^n} a_i k_i$$
, bu yerda $a_i \in E_2$. (3)

(3) formulada noaniq koeffitsientlar a_i bo'lib, ular jami a_i ta-*Misol.* Ushbi funksiyani Jegalkin ko'phadi ko'rinishida ifodalang:

$$f(x_1, x_2, x_3) = (x_1/x_2) + (x_1 \wedge x_3)$$

Yechish: Berilgan funksiya uchun noma'lum koeffisientli ko'phad ko'rinishidagi ifodasini izlaymiz:

$$(x_1/x_2) + (x_1 \land x_3) = ax_1x_2x_3 + bx_1x_2 + cx_1x_3 + dx_2x_3 + ex_1 + fx_2 + gx_3 + h$$

Funksiyaning qiymatlar jadvalida noma'lum koeffisientlarni aniqlaymiz:

x_1	<i>x</i> ₂	x_3	$(x_1/x_2) + (x_1 \wedge x_3)$	$ax_1x_2x_3 + bx_1x_2 + cx_1x_3 + dx_2x_3 +$
				$+ex_1+fx_2+gx_3+h$
0	0	0		h
0	0	1		g+h
0	1	0		f+h
0	1	1		d+f+g+h
1	0	0		e+h
1	0	1		c+e+g+h
1	1	0		b+e+f+h
1	1	1		a+b+c+d+e+f+g+h

x_1	x_2	x_3	$(x_1/x_2) + (x_1 \wedge x_3)$	$ax_1x_2x_3 + bx_1x_2 + cx_1x_3 + dx_2x_3 +$	
				$+ex_1 + fx_2 + gx_3 + h$	
0	0	0	1	h	h=1
0	0	1	1	g+h	g=0
0	1	0	1	f+h	f=0
0	1	1	1	d+f+g+h	d=0
1	0	0	1	e+h	e=0
1	0	1	0	c+e+g+h	c=I
1	1	0	0	b+e+f+h	b=I
1	1	1	1	a+b+c+d+e+f+g+h	a=0

$$f(x_1,x_2,x_3) = (x_1/x_2) + (x_1 \wedge x_3) = x_1 \cdot x_2 + x_1 \cdot x_3 + 1$$

III. Superpozitsiyalar metodi.

Asosiy mantiqiy amallarni algebraik amallar (kon'yunksiya, Jegalkin yigʻindi) yordamida ifodalay olishimizni inobatga olib, ixtiyoriy funksiyani kerakli almashtirishlar bajarib Jegalkin yigʻindisi koʻrinishda ifodalashimiz mumkin.

Masalan. $x \lor y = xy + x + y$ va x = x + 1 formulalardan:

1)
$$x \vee \overline{y} = x\overline{y} + x + \overline{y} = x(y+1) + x + y + 1 = xy + x + x + y + 1 = xy + y + 1$$
;

2)
$$\bar{x} \vee y = \bar{x}y + \bar{x} + y = (x+1)y + x + 1 + y = xy + y + x + 1 + y = xy + x + 1$$
;

3)
$$\overline{x} \vee \overline{y} = \overline{x} \ \overline{y} + \overline{x} + \overline{y} =$$

$$= (x+1)(y+1) + x+1+y+1 = xy+y+x+x+y+1 = xy+1$$
.

KARNO KARTASI USULI.

		BC				
A	00	01	11	10		
0	1	0	0	1		
1	1	0	1	0		

	BC				
A	00	01	11	10	
0	0	1	1	0	
1	0	1	0	1	

	BC				
A	00	01	11	10	
0	0	1	1	0	
1	0	1	0	1	

	BC				
A	00	01	11	10	
0	0	1	1	0	
1	0	1	0	1	

	BC				
A	00	01	11	10	
0	0	0	0	0	
1	0	0	1	1	

	BC				
A	00	01	11	10	
0	0	0	0	0	
1	0	0	0	0	

	BC				
A	00	01	11	10	
0	0	0	0	0	
1	0	0	0	0	

	BC				
A	00	01	11	10	
0	0	0	0	0	
1	0	0	0	0	

$$P = 1 \oplus C \oplus AB$$

PASKAL USULI

 $f(a,b,c) = 1 \oplus a \oplus c \oplus ab \oplus ac \oplus bc$

побитная операция «Исключающее ИЛИ»

YIG'INDI USULI.

Ta'rif-2. $X_{i_1} + X_{i_2} + \dots + X_{i_k} + a$ ko'rinishidagi funksiya chiziqli funksiya deb aytiladi. Bu yerda $a \in E_2 = \{0,1\}$.

Chiziqli funksiyaning ifodasidan koʻrinib turibdiki, n argumentli chiziqli funksiyalar soni 2^{n+1} ga teng va bir argumentli funksiyalar doimo chiziqli funksiya boʻladi.

Jegalkin koʻphadi koʻrinishidagi har bir funksiyaning argumentlari soxta emas argumentlar boʻladi. Haqiqatan ham, x_1 shunday argument boʻlsin. U vaqtda ixtiyoriy $f(x_1,...,x_n)$ funksiyani quyidagi koʻrinishda yozish mumkin:

$$f(x_1,...,x_n) = x_1 \varphi(x_2,...,x_n) + \psi(x_2,...,x_n).$$

Bu yerda φ funksiyasi aynan 0 ga teng emas, aks holda \mathcal{X}_1 argument f funksiyaning (koʻphadning) argumentlari safiga qoʻshilmasdi.

Endi $x_2,...,x_n$ argumentlarning shunday qiymatlarini olamizki, $\varphi=1$ boʻlsin. U vaqtda f funksiyaning qiymati x_1 argumentning qiymatiga bogʻliq boʻladi. Demak, x_1 soxta argument emas.

Mantiq algebrasidagi hamma n argumentli chiziqli funksiyalar toʻplamini L harfi bilan belgilaymiz. Uning elementlarining soni 2^{n-1} ga teng boʻladi.

Teorema. Agar $f(x_1,...,x_n) \notin L$ bo 'lsa, u holda undan argumentlari o 'rniga 0 va 1 konstantalarni hamda x va \bar{x} funksiyalarni, ayrim holda f ustiga "-" inkor amalini qo 'yish usuli bilan $x_1 x_2$ funksiyani hosil etish mumkin.

Monoton funksiyalar. 0<1 munosabati orqali {0,1} toʻplamini tartiblashtiramiz.

1-ta'rif. $\alpha = (\alpha_1,...,\alpha_n)$ va $\beta = (\beta_1,...,\beta_n)$ qiymatlar satri bo'lsin. α qiymatlar satri β qiymatlar satridan shunda va faqat shundagina oldin keladi deb aytamiz, qachon $\alpha \prec \beta$ yoki α va β qiymatlar satri ustma-ust tushsa, u holda $\alpha \prec \beta$ shaklida yozamiz.

2-ta'rif. $\alpha = (\alpha_1,...,\alpha_n)$ va $\beta = (\beta_1,...,\beta_n)$ ixtiyoriy qiymatlar satri bo'lsin. $\alpha \prec \beta$ dan $f(\alpha_1,...,\alpha_n) \leq f(\beta_1,...,\beta_n)$ bajarilishi kelib chiqsa, u holda $f(x_1,...,x_n)$ funksiya monoton funksiya deb aytiladi.

3-ta'rif. $\alpha \prec \beta$ dan $f(\alpha_1,...,\alpha_n) > f(\beta_1,...,\beta_n)$ munosabat kelib chiqsa, u holda $f(x_1,...,x_n)$ nomonoton funksiya deb aytiladi.

Asosiy elementar mantiqiy funksiyalardan 0, 1, x, xy, $x \lor y$ funksiyalar monoton funksiyalar boʻlib, \bar{x} , $x \to y$, $x \leftrightarrow y$, x + y funksiyalar nomonoton funksiyalardir.

MISOL. $(x \lor y \lor z)(x' \lor y \lor z)(x \lor y' \lor z)$. Avval qiymatlar jadvalini tuzamiz:

Х	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Endi har bir qiymatlar satrini va natijasini taqqoslaymiz:
- ■000 < 001, 000 < 101, 000 < 010, 000 <110, 000 < 011,
- 000 < 100, 000 < 111, 001 < 011, 001 < 101, 001 < 111,
- ■010 < 110, 010 < 111, 010 < 011, 011 < 111, 100 < 101, 011 < 101,
- ■100 < 110, 100 < 111, 101 < 111, 110 < 111, 011 < 111.
- Demak, berilgan funksiyamiz monoton funksiya.

RAHMAT