Tutorial 2

Due: Tue 17 Sep, 2024 at 23:59 on Canvas Submit your work as a PDF file, labeled by indexnumber_name_Tutorial2.pdf

1. Rotation operator for a spin-1/2 system

In this tutorial, we will explicitly derive the rotation operator for a spin-1/2 system and apply the operator to derive some familiar results.

(a) Prove the following relations, also given in lecture:

$$(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B}) = \vec{A} \cdot \vec{B} \, \mathbb{1} + i \vec{\sigma} \cdot (\vec{A} \times \vec{B}) \tag{1}$$

where the components of $\vec{\sigma}$ are the three Pauli matrices, and \vec{A} , \vec{B} are two arbitrary vectors.

[Hint: Use the commutator and anti-commutator relations between the Pauli matrices to get an expression for $\sigma_i \sigma_j$. Also note that the *i*-th component of $\vec{A} \times \vec{B}$ is given by $(\vec{A} \times \vec{B})_i = \epsilon_{ijk} A_j B_k$ where ϵ_{ijk} is the Levi-Cevita symbol and Einstein's summation convention has been used.]

- (b) Set $\vec{A} = \vec{B} = \hat{u}$, where \hat{u} is a unit vector. What is $(\vec{\sigma} \cdot \hat{u})^n$ when n is even? How about when n is odd?
- (c) Use your result from (b) to prove that the operator for rotating a spin-1/2 system by angle α about the axis \hat{u} can be written as

$$U(\alpha, \hat{u}) = \cos \frac{\alpha}{2} \mathbb{1} - i\sigma \cdot \hat{u} \sin \frac{\alpha}{2}.$$
 (2)

Write out the rotation operator $U(\alpha, \hat{u})$ as a 2 × 2 matrix.

(d) Use your result from (c) to obtain the eigenstate $|+x\rangle$ of σ_x by rotating the eigenstate $|+z\rangle$ of σ_z through a suitable angle α about the axis \hat{y} . Compare this to the eigenstate $|+x\rangle$ of σ_x obtained in class from the diagonalization of the matrix for σ_x in the basis $\{|+z\rangle, |-z\rangle\}$.

2. Matrix representations of angular momentum

A quantum particle is known to have total angular momentum $j = \frac{3}{2}$.

(a) Use the eigenstates of J_z (denote them as $|j,m\rangle = |3/2,m\rangle$) as a basis and find the matrix representation of the three operators, J_x , J_y and J_z in this four-dimensional

subspace.

[Hint: You know the action of the operators J_z and J_\pm on the states $|3/2, m\rangle$, and you know the relation between J_\pm and J_x and J_y].

(b) Verify that the matrices you found in (a) satisfy the commutation relation $[J_x, J_y] = i\hbar J_z$.