DE MT1006- SOLUTION MID-II

Date: 31-03-2023

Q1(a)

$$x^2y'' - xy' + 2y = 0;$$
 $y_1(x) = x\sin(\ln x)$

Dividing by x^2 we have

Identifying P(x) = -1/x we have

$$y_2 = x \sin(\ln x) \int \frac{e^{-\int -dx/x}}{x^2 \sin^2(\ln x)} dx = x \sin(\ln x) \int \frac{x}{x^2 \sin^2(\ln x)} dx$$
$$= x \sin(\ln x) \int \frac{\csc^2(\ln x)}{x} dx = [x \sin(\ln x)] [-\cot(\ln x)] = -x \cos(\ln x).$$

A second solution is $y_2 = x \cos(\ln x)$.

Q1(b)

I.
$$6x^2y'' + 5xy' - y = 0$$

The auxiliary equation is $6m^2 - m - 1 = 0$ so that

$$y = c_1 x^{1/2} + c_2 x^{-1/3}.$$

II.
$$y''' + 3y'' + 3y' + y = 0$$

The auxiliary equation is

$$m^3 + 3m^2 + 3m + 1 = 0$$
 we obtain $m_1 = -1$, $m_2 = -1$, and $m_3 = -1$

$$y = c_1 e^{-x} + c_2 x e^{-x} + c_3 x^2 e^{-x}$$
.

III.
$$\frac{d^3x}{dt^3} - \frac{d^2x}{dt^2} - 4x = 0$$

The auxiliary equation is

$$m^3 - m^2 - 4 = 0$$
 we obtain $m_1 = 2$ and $m_2 = -1/2 \pm \sqrt{7}i/2$ so that

$$x = c_1 e^{2t} + e^{-t/2} [c_2 \cos(\sqrt{7}t/2) + c_3 \sin(\sqrt{7}t/2)].$$

Q2(a)

$$y'' + 2y' + 5y = 6\sin 2x + 7\cos 2x$$

The auxiliary Eqn

$$m^2 + 2m + 5 = 0$$

 $m = -1 \pm 2i$
 $y_c = e^{-x}[C_1 \sin 2x + C_2 \cos 2x]$
Now $y_p = A\cos 2x + B\sin 2x$
 $y'_p = -2A\sin 2x + 2B\cos 2x$
 $y''_p = -4A\cos 2x - 4B\sin 2x$
 $-4A\cos 2x - 4B\sin 2x + 2(-2A\sin 2x + 2B\cos 2x) + 5(A\cos 2x + B\sin 2x) = 6\sin 2x + 7\cos 2x$
 $-4A\cos 2x + 4B\cos 2x + 5A\cos 2x - 4B\sin 2x - 4A\sin 2x$
 $+5B\sin 2x = 6\sin 2x + 7\cos 2x$
 $\cos 2x[-4A + 4B + 5A] = 7\cos 2x$
 $\cos 2x[-4A + 4B + 5A] = 7\cos 2x$
 $compare A + 4B = 7 - - (1)$
 $\sin 2x[-4B - 4A + 5B] = 6\sin 2x$
 $compare B - 4A = 6 - - (2)$
solving equation (1) and (2) $using calculator$
 $B = 2$
 $A = -1$

 $y = y_c + y_p = e^{-x}[c_1 \sin 2x + c_2 \cos 2x] - \cos 2x + 2\sin 2x$

Q2(b)

$$y'' + y = tanx secx$$

The auxiliary equation is $m^2 + 1 = 0$, so $y_c = c_1 \cos x + c_2 \sin x$ and

$$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1$$

Identifying $f(x) = \sec x \tan x$ we obtain

$$u_1' = -\sin x(\sec x \tan x) = -\tan^2 x = 1 - \sec^2 x$$

$$u_2' = \cos x(\sec x \tan x) = \tan x.$$

Then
$$u_1 = x - \tan x$$
, $u_2 = -\ln|\cos x|$, and
$$y = c_1 \cos x + c_2 \sin x + x \cos x - \sin x - \sin x \ln|\cos x|$$
$$= c_1 \cos x + c_3 \sin x + x \cos x - \sin x \ln|\cos x|.$$

$$w = xy + yz$$
, $y = sinx$, $z = e^x$

$$\frac{dw}{dx} = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} \frac{dy}{dx} + \frac{\partial w}{\partial z} \frac{dz}{dx}$$

$$\frac{dw}{dx} = y + (x + z)\cos x + ye^{x}$$
$$= \sin x + (x + e^{x})\cos x + e^{x}\sin x$$

Q3(b)

$$g(x,y) = \frac{1}{3}x^3 + y^2 + 2xy - 6x - 3y + 4$$

Solution

step 1, we first calculate $g_x(x,y)$ and $g_y(x,y)$, then set each of them equal to zero:

$$g_x(x, y) = x^2 + 2y - 6$$

 $g_y(x, y) = 2y + 2x - 3$.

Setting them equal to zero yields the system of equations

$$x^2 + 2y - 6 = 0$$
$$2y + 2x - 3 = 0$$

To solve this system, first solve the second equation for y. This gives $y = \frac{3-2x}{2}$. Substituting this into the first equation gives

$$x^{2} + 3 - 2x - 6 = 0$$

$$x^{2} - 2x - 3 = 0$$

$$(x - 3)(x + 1) = 0$$

Therefore, x=-1 or x=3. Substituting these values into the equation $y=\frac{3-2x}{2}$

the critical points are $\left(-1, \frac{5}{2}\right)$ and $\left(3, -\frac{3}{2}\right)$.

Step 2 involves calculating the second partial derivatives of g:

$$g_{xx}(x, y) = 2x$$

$$g_{xy}(x, y) = 2$$

$$g_{yy}(x, y) = 2.$$

Then, we find a general formula for D:

$$D = g_{xx}(x_0, y_0)g_{yy}(x_0, y_0) - (g_{xy}(x_0, y_0))^2$$

= $(2x_0)(2) - 2^2$
= $4x_0 - 4$.

Next, we substitute each critical point in D

$$D\left(-1, \frac{5}{2}\right) = (2(-1))(2) - (2)^2 = -4 - 4 = -8$$
$$D\left(3, -\frac{3}{2}\right) = (2(3))(2) - (2)^2 = 12 - 4 = 8.$$

step 3, we note that, applying the Second Derivative Test for Functions of Two Variables, $\left(-1,\frac{5}{2}\right)$ is a saddle point. point $\left(3,-\frac{3}{2}\right)$ corresponds to a local minimum

ALL THE BEST