

6.6.2 Radiated Emission Method

0.0.2	7.2 Italiated Lillission Method									
	Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	5					
	Test Method:	ANSI C63.10: 2	2009 and KD	B 558074v03r	03 section	12.1				
	Test Frequency Range:	2.3GHz to 2.50	SHz							
	Test site:	Measurement I	Distance: 3m							
	Receiver setup:	Frequency	Peak 1MHz 3MHz							
		Above 1GHz	Above 1GHz RMS 1MHz 3MHz A Frequency Limit (dBuV/m @3m) 54.00 A							
	Limit	Frogue								
	Limit:									
		Above 1	Above 1GHz 74.00							
	Test Procedure:	the ground to determing to determing to determing the second seco	d at a 3 meter ne the position was set 3 met which was more managed and very measurement on tal and very measurement of the rota tab maximum reaseceiver system and width with sisten level of the collection, then would be reason margin would set to be collected.	camber. The n of the higher rers away from unted on the taried from one the maximun tical polarization. It is ission, the EU na was turned ading. In was set to Path Maximum Here EUT in peatesting could I ported. Otherwid be re-tested.	e table was a st radiation. In the interfector of a variation of a variation of the analysis of the emit one by one	rotated 360 degrees				
	Test setup:	Ground Reheave Plans Test Receiver								
	Test Instruments:	Refer to section	n 5.6 for detai	İls						
	Test mode:	Refer to section	n 5.3 for detai	İls						
	Test results:	Passed								

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 2.4G WiFi video transmitter module Condition

EUT

: LW6304 Model

Test mode : WIFI-B-L Mode

Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

CHEAL	v :								
	Freq		Antenna Factor				Limit Line		
6	MHz	—dBu₹	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	dB	
1	2390.000	22.32	27.58	6.63	0.00	56.53	74.00	-17.47	Peak
2	2390.000	11.08	27.58	6.63	0.00	45.29	54.00	-8.71	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 2.4G WiFi video transmitter module

: LW6304 Model

: WIFI-B-L Mode Test mode

Power Rating : DC 3.7V

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

Freq		Antenna Factor				Limit Line	CONTRACTOR OF THE PROPERTY.	
MHz	dBu₹	$-\overline{dB/m}$	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390, 000 2390, 000				0.00				

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 2.4G WiFi video transmitter module

EUT

Model : LW6304

: WIFI-B-H Mode Test mode

Power Rating : DC 3.7V Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

CK:								
	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu₹	-dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500					58.86 45.17			Peak Average

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 2.4G WiFi video transmitter module : LW6304 EUT

Model

Test mode : WIFI-B-H Mode

Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
12	MHz	dBu∀	$\overline{dB/m}$	dB	dB	$\overline{dBuV/m}$	$\overline{dB} \overline{uV}/\overline{m}$	dB	
1	2483.500								
2	2483.500	10.87	27.52	6.85	0.00	45.24	54.00	-8.76	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 2.4G WiFi video transmitter module EUT

: LW6304 Model

: WIFI-G-L Mode Test mode

Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

:	Read	Antenna	Cable	Preamn		Limit	Over	
Freq								Remark
MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
2390.000	26.11	(T07-4-0-2-7-11) (T02-7-1-7)		0.00	60.32	74.00	-13.68	Peak
	MHz	Read. Freq Level MHz dBuV 2390.000 26.11	ReadAntenna Freq Level Factor MHz dBuV dB/m 2390.000 26.11 27.58	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 2390.000 26.11 27.58 6.63	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB dB 2390.000 26.11 27.58 6.63 0.00	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m	ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 2390.000 26.11 27.58 6.63 0.00 60.32 74.00	ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 2390.000 26.11 27.58 6.63 0.00 60.32 74.00 -13.68

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 2.4G WiFi video transmitter module Condition

EUT

: LW6304 Model

Test mode : WIFI-G-L Mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey
REMARK :

in .	Road	Antenna	Cable	Draamn		Limit	Over	
Freq		Factor					2000	
MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
2390.000 2390.000			157/5/7 5/470		61.45			Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 2.4G WiFi video transmitter module Condition

EUT

: LW6304 Model

Test mode : WIFI-G-H Mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

		Antenna						
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∜	-dB/m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500					57.34 45.49			Peak Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 2.4G WiFi video transmitter module Condition

EUT

: LW6304 Model

Test mode : WIFI-G-H Mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

K	:	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				0.0000000000000000000000000000000000000	ET 1871 T. T.	
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
			27.52	- F. T. (17)	75.000.000	58.32			Peak Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : 2.4G WiFi video transmitter module

: LW6304 Model

: WIFI-N20-L Mode Test mode

Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

	Read	Antenna	Cable	Preamp		Limit	Over		
Freq		Factor						Remark	
MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
2390.000	28.51	27.58	6.63	0.00	62.72	74.00	-11.28	Peak	
2390.000	12.28	27.58	6.63	0.00	46.49	54.00	-7.51	Average	

Remark:

2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 2.4G WiFi video transmitter module

: LW6304 Model

: WIFI-N20-L Mode Test mode

Power Rating: DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

71	M.	•	Read	Antenna	Cable	Preamp		Limit	Over	
	Fr	eq		Factor						Remark
	<u>M</u>	Hz	dBu₹	dB/m	dB	dB	dBuV/m	dBu√/m	dB	
				27.58 27.58						Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: 2.4G WiFi video transmitter module : LW6304 EUT

Model

Test mode : WIFI-N20-H Mode

Power Rating : DC 3.7V

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

Freq		Antenna Factor						
MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
2483.500								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 2.4G WiFi video transmitter module : LW6304 EUT

Model

Test mode : WIFI-N20-H Mode

Power Rating: DC 3.7V Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

шш	M 357	Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜	$\overline{dB/m}$	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		-
	2483.500				0.00					
	2483.500	11.47	27.52	6.85	0.00	45.84	54.00	-8.16	Average	

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : 2.4G WiFi video transmitter module

: LW6304 Model

: WIFI-N40-L Mode Test mode

Power Rating : DC 3.7V

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

ITT.	- ·								
	Freq		Antenna Factor				Limit Line		
	MHz	dBu₹	<u>dB/m</u>		<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000 2390.000			TOTAL TIMES CHIEF	353771257950			-10.97 -7.49	Peak Average

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 2.4G WiFi video transmitter module

: LW6304 Model

Test mode : WIFI-N40-L Mode

Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey

REM

EMARI	:	Read.	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
1	2390.000	31.59	27.58	6.63	0.00	65.80	74.00	-8.20	Peak
2	2300 000	12 64	27 58	6 63	0 00	46 85	54 00	-715	Amerage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 2.4G WiFi video transmitter module Condition

EUT

: LW6304 Model

Test mode : WIFI-N40-H Mode

Power Rating: DC 3.7V Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

л	m.									
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>		-
	2483.500	25.18	27.52	6.85	0.00	59.55	74.00	-14.45	Peak	
	2483 500	11 30	27 52	6 85	0.00	45 67	54 00	-8 33	Amerage	

Remark:

1

Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 2.4G WiFi video transmitter module

: LW6304 Model

Test mode : WIFI-N40-H Mode

Power Rating: DC 3.7V Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

100	Read	Antenna	Cable	Preamp		Limit	Over	
Freq		Factor						
MHz	dBu∜	—dB/m	₫B	dB	dBuV/m	dBu√/m	dB	
2483.500 2483.500								

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2009 and KDB558074 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Test mode: 802.11b Lowest channel

Date: 28.AUG.2015 20:32:18

30MHz~25GHz

Middle channel

Date: 28.AUG.2015 20:32:57

30MHz~25GHz

Highest channel

Date: 28.AUG.2015 20:35:23

30MHz~25GHz

Test mode: 802.11g

Date: 28.AUG.2015 20:36:22

30MHz~25GHz

Middle channel

Date: 28.AUG.2015 20:37:14

30MHz~25GHz

Highest channel

Date: 28.AUG.2015 20:37:42

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 28.AUG.2015 20:38:44

30MHz~25GHz

Middle channel

Date: 28.AUG.2015 20:39:12

30MHz~25GHz

Highest channel

Date: 28.AUG.2015 20:39:43

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 28.AUG.2015 20:40:31

30MHz~25GHz

Middle channel

Date: 28.AUG.2015 20:41:02

30MHz~25GHz

Highest channel

Date: 28.AUG.2015 20:42:32

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:2	009						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement [Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGIIZ	RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Remark			
	30MHz-8)	Quasi-peak Value					
	88MHz-216MHz 43.5 Quasi-peak							
	216MHz-960MHz 46.0 Quasi-peak Valu							
	960MHz-1GHz 54.0 Quasi-peak Valu							
	Above 1GHz 54.0 Average							
			74.0		Peak Value			
Test Procedure:	the ground degrees to degrees to antenna, we tower. 3. The antennathe ground Both horize make the reaches case and to find the specified I for the emister of the EUT have 10dE	I at a 3 meter determine the vas set 3 meter which was more managed and vermeasurement auspected emaximum respectiver system and vermeasurement auspected emaximum respectiver system and vermeasurement auspected the rota tab maximum respectiver system and version level of the rotal tab maximum respectiver system and version level of the respective system and version l	r chamber. The position of the position of the position of the position of the position of the position of the maximum that the position of th	e table was he highest in the interference of a varie meter to fund a value of the constant of the angle of the constant of th				

Below 1GHz

Horizontal:

3m chamber Site

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 2.4G WiFi video transmitter module Condition

EUT

Model : LW6304 : WIFI Mode Test mode Power Rating : DC 3.7V

Environment : Temp:25.5°C Huni:55% Test Engineer: Carey REMARK :

THATA										
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
3	MHz	dBu₹	-dB/m	d₿	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	404.667	50.61	15.18	2.13	28.79	39.13	46.00	-6.87	QP	
2	568.613	50.77	17.93	2.57	29.04	42.23	46.00	-3.77	QP	
3	661.151	47.83	18.67	2.82	28.75	40.57	46.00	-543	QP	
1 2 3 4	675.208	50.03	18.72	2.85	28.72	42.88	46.00	-3.12	QP	
5 6	729.358	46.11	19.19	2.99	28.56	39.73	46.00	-6.27	QP	
6	785.093	45.38	19.87	3.13	28.28	40.10	46.00	-5.90	QP	

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

EUT : 2.4G WiFi video transmitter module Model : LW6304

Model : LW6304 Test mode : WIFI Mode Power Rating : DC 3.7V

Power Rating: DC 3.7V Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

v_{monto}									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /m	dB	₫B	dBuV/m	dBuV/m	dB	
1	119.436	37.89	10.58	1.12	29.39	20.20	43.50	-23.30	QP
1 2 3 4	404.667	41.77	15.18	2.13	28.79	30.29	46.00	-15.71	QP
3	568.613	40.40	17.93	2.57	29.04	31.86	46.00	-14.14	QP
4	675.208	41.09	18.72	2.85	28.72	33.94	46.00	-12.06	QP
5	785.093	38.98	19.87	3.13	28.28	33.70	46.00	-12.30	QP
6	948.761	37.83	21.40	3.45	27.73	34.95	46.00	-11.05	QP

Above 1GHz

Test mode: 80	02.11b		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.51	31.54	10.58	40.22	52.41	74.00	-21.59	Vertical
4824.00	51.71	31.54	10.58	40.22	53.61	74.00	-20.39	Horizontal
Test mode: 80	02.11b		Test channel: Lowest		Remark: Ave	erage		
			_					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
	Level	Factor	Loss	Factor			Limit	Polar.

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	54.80	31.57	10.64	40.15	56.86	74.00	-17.14	Vertical
4874.00	55.15	31.57	10.64	40.15	57.21	74.00	-16.79	Horizontal
Test mode: 80	02.11b		Test channel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.51	31.57	10.64	40.15	47.57	54.00	-6.43	Vertical
4874.00	45.07	31.57	10.64	40.15	47.13	54.00	-6.87	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	55.83	31.61	10.70	40.08	58.06	74.00	-15.94	Vertical	
4924.00	54.54	31.61	10.70	40.08	56.77	74.00	-17.23	Horizontal	
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.32	31.61	10.70	40.08	47.55	54.00	-6.45	Vertical	
4924.00	44.21	31.61	10.70	40.08	46.44	54.00	-7.56	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test chan	nel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	54.51	31.54	10.58	40.22	56.41	74.00	-17.59	Vertical
4824.00	50.49	31.54	10.58	40.22	52.39	74.00	-21.61	Horizontal
Test mode: 80	02.11g		Test chan	nel: Lowest		Remark: Ave	rage	
	Read	Antenna	Cabla	D			(
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
	Level	Factor	Loss	Factor			Limit	Polar.

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	55.66	31.57	10.64	40.15	57.72	74.00	-16.28	Vertical
4874.00	47.64	31.57	10.64	40.15	49.70	74.00	-24.30	Horizontal
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.60	31.57	10.64	40.15	47.66	54.00	-6.34	Vertical
4874.00	37.82	31.57	10.64	40.15	39.88	54.00	-14.12	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	55.42	31.61	10.70	40.08	57.65	74.00	-16.35	Vertical
4924.00	50.36	31.61	10.70	40.08	52.59	74.00	-21.41	Horizontal
Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.46	31.61	10.70	40.08	47.69	54.00	-6.31	Vertical
4924.00	40.03	31.61	10.70	40.08	42.26	54.00	-11.74	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	54.36	31.54	10.58	40.22	56.26	74.00	-17.74	Vertical
4824.00	52.83	31.54	10.58	40.22	54.73	74.00	-19.27	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	44.51	31.54	10.58	40.22	46.41	54.00	-7.59	Vertical
4824.00	42.66	31.54	10.58	40.22	44.56	54.00	-9.44	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	56.74	31.57	10.64	40.15	58.80	74.00	-15.20	Vertical
4874.00	49.22	31.57	10.64	40.15	51.28	74.00	-22.72	Horizontal
Test mode: 80	02 11n(H20)	1	Toot obor	nnel: Middle		Remark: Average		
	02.1111(1120)		Test chai	mei. Middle		Remark. Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	54.68	31.61	10.70	40.08	56.91	74.00	-17.09	Vertical
4924.00	51.00	31.61	10.70	40.08	53.23	74.00	-20.77	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.72	31.61	10.70	40.08	46.95	54.00	-7.05	Vertical
4924.00	40.95	31.61	10.70	40.08	43.18	54.00	-10.82	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	53.04	31.55	10.61	40.19	55.01	74.00	-18.99	Vertical
4844.00	45.95	31.55	10.61	40.19	47.92	74.00	-26.08	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	43.73	31.55	10.61	40.19	45.70	54.00	-8.30	Vertical
4844.00	35.16	31.55	10.61	40.19	37.13	54.00	-16.87	Horizontal

Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	51.62	31.57	10.64	40.15	53.68	74.00	-20.32	Vertical
4874.00	48.81	31.57	10.64	40.15	50.87	74.00	-23.13	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	i olai.
(MHz) 4874.00					(dBuV/m) 43.83	(dBuV/m) 54.00		Vertical

Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	55.21	31.59	10.67	40.10	57.37	74.00	-16.63	Vertical
4904.00	48.39	31.59	10.67	40.10	50.55	74.00	-23.45	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	45.45	31.59	10.67	40.10	47.61	54.00	-6.39	Vertical
4904.00	38.78	31.59	10.67	40.10	40.94	54.00	-13.06	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.