0.1 Построение Жорданова базиса

Для характеристического многочлена справедливо разложение:

$$\frac{1}{P_n(\lambda)} = \frac{1}{(\lambda - \lambda_1)^{k_1} ... (\lambda - \lambda_m)^{k_m}} = \sum_{i=1}^m \sum_{l=1}^{k_1} \frac{A_l^i}{(\lambda - \lambda_i)^l}, A_l^i \in \mathbb{R}$$

После сложения по внутренней сумме:

$$\frac{1}{P_n(\lambda)} = \frac{1}{(\lambda - \lambda_1)^{k_1} \cdot \ldots \cdot (\lambda - \lambda_m)^{k_m}} = \frac{f_1(\lambda)}{(\lambda - \lambda_1)^{k_1}} + \ldots + \frac{f_s(\lambda)}{(\lambda - \lambda_s)^{k_s}} + \ldots + \frac{f_m(\lambda)}{(\lambda - \lambda_m)^{k_m}}$$

где $f_s(\lambda)$ — многочлен степени не выше $k_{s-1}, s=\overline{1,m}$. Умножим на $P_n(\lambda)$:

$$1 = Q_1(\lambda) + \dots + Q_m(\lambda)$$

$$Q_s(\lambda) = f_s(\lambda) \cdot \frac{P_n(\lambda)}{(\lambda - \lambda_s)^{k_s}} = f_s(\lambda) \cdot (\lambda - \lambda_1)^{k_1} \cdot \dots \cdot (\lambda - \lambda_{s-1})^{k_{s-1}} \cdot (\lambda - \lambda_{s+1})^{k_{s+1}} \cdot \dots \cdot (\lambda - \lambda_m)^{k_m}$$
(1)

Рассмотрим множество квадратных матриц одного порядка. Это множество является ассоциативным кольцом с единицей, поэтому

$$A^n \cdot A^m = A^{n+m} = A^m \cdot A^n$$
: $A^0 \stackrel{def}{=} E$

Определено коммутативное и ассоциативное сложение матриц. Нулевую матрицу примем за ноль. Согласно свойствам умножения матриц на числа:

$$A^k \cdot \alpha = \alpha A^k, \ \alpha A^k + \beta A^k = (\alpha + \beta) A^k$$

Таким образом правила приведения подобных членов аналогично правилу для многочленов.

$$A^k + (-1 \cdot A^k) = A^k + (-A^k) = 0$$

В качестве символа x в определении многочлена можно взять квадратную матрицу A и получить множество матричных многочленов $\{P_n(A)\}$

$$P_n(A) = a_0 E + a_1 A + \dots + a_n A^n$$

На множестве $\{P_n(A)\}$ сложение и умножение определяются как обычные матричные действия, поэтому $\{P_n(A)\}$ является кольцом.

1.
$$P_n(A) + P_m(A) = P_m(A) + P_n(A)$$

2.
$$(P_n(A) + P_m(A)) + P_s(A) = P_n(A) + (P_m(A) + P_s(A))$$

3.
$$P_n(A) \cdot P_m(A) = P_m(A) \cdot P_n(A)$$

4.
$$(P_n(A) \cdot P_m(A)) \cdot P_s(A) = P_n(A) \cdot (P_m(A) \cdot P_s(A))$$

5.
$$P_n(A) \cdot (P_m(A) + P_s(A)) = P_n(A) \cdot P_m(A) + P_n(A) \cdot P_s(A)$$

За ноль в этом множестве принимается нулевая матрица.

Определение 0.1. Отображение φ кольца K на кольцо K' называется гомоморфизмом, если $\forall a \in K, \forall b \in K$:

$$\varphi(a+b) = \varphi(a) + \varphi(b); \ \varphi(ab) = \varphi(a) \cdot \varphi(b)$$

В отличие от изоморфизма гомоморфизм не обязательно является взаимно однозначным отображением, т.е. не предполагается, что образы K заполняют все кольцо K', и различным элементам из K соответствуют разные элементы из K'.

В силу определения множеств $\{P_n(A)\}$ и $\{P_n(\lambda)\}$, кольца $\{P_n(A)\}$ и $\{P_n(\lambda)\}$ гомоморфны:

$$\varphi: \varphi(P_n(\lambda)) \longrightarrow P_n(A)$$

Неоднозначность отображения φ возникает в силу того, что существуют такие квадратные матрицы $A \neq 0$: $\exists n \in \mathbb{N} : A^m = 0 \ \forall m \geq n$.

Теорема 0.1 (Гамильтона-Кэли). Пусть $P_n(\lambda)$ — характерестический многочлен матрицы A, тогда $P_n(A) = 0$.

В силу построения гомоморфизма между $\{P_n(A)\}$ и $\{P_n(\lambda)\}$ имеет место разложение:

$$P_n(A) = A^n + a_1 \cdot A^{n-1} + \dots + a_n \cdot E = (A - \lambda_1 E)^{k_1} \cdot \dots \cdot (A - \lambda_m E)^{k_m}$$

где $\lambda_1,...,\lambda_m$ — корни $P_n(A)$.

Подействуем гомоморфизмом φ на (1):

$$E = Q_1(A) + \dots + Q_m(A)$$

$$Q_s(A) = f_s(A) \cdot (A - \lambda_1 E)^{k_1} \cdot \dots \cdot (A - \lambda_{s-1})^{k_{s-1}} \cdot (A - \lambda_{s+1})^{k_{s+1}} \cdot \dots \cdot (A - \lambda_m)^{k_m} \qquad (2)$$

$$Q_s(A) - \text{линейные преобразования}$$

Порядок сомножетелей в (2) не важен, т.к. матрицы $(A - \lambda_s E)$ такого вида перестоновочны между собой.

Рассмотрим $Q_i(A)$. Покажем, что $\forall i, j = \overline{1,m} \longmapsto$

$$Q_{i}(A) \cdot Q_{j}(A) = \begin{cases} 0, i \neq j \\ Q_{i}^{2}, i = j \end{cases} \quad \text{if } Q_{i}(A) = Q_{i}^{2}(A)$$
 (3)

Доказательство. $Q_i(A) \cdot Q_j(A) = f_i(A) \cdot f_j(A) \cdot (A - \lambda_1 E)^{k_1} \cdot \dots \cdot (A - \lambda_{i-1} E)^{k_{i-1}} \cdot (A - \lambda_{i+1} E)^{k_{i+1}} \cdot \dots \cdot (A - \lambda_m E)^{k_m} \cdot (A - \lambda_1 E)^{k_1} \cdot \dots \cdot (A - \lambda_{j-1} E)^{k_{j-1}} \cdot (A - \lambda_{j+1} E)^{k_{j+1}} \cdot \dots \cdot (A - \lambda_m E)^{k_m} = M(A) \cdot P_n(A) = ($ Теорема Гамильтона-Кэли) = 0

В силу (2):

$$\vec{x} = E\vec{x} = Q_1(\vec{x}) + \dots + Q_i(\vec{x}) + \dots + Q_m(\vec{x})$$

$$\Rightarrow Q_i(\vec{x}) = (Q_iQ_1)(\vec{x}) + \dots + (Q_i^2)(\vec{x}) + \dots + (Q_iQ_n)(\vec{x}) = Q_i^2(\vec{x})$$

Пусть $R_i = ImQ_i(A)$, $i = \overline{1,m}$ — образ $Q_i(A)$. Из (3) следует, что R_i — инвариантное подпространство A. Тогда, если $\vec{x} \in R_i \to \exists \vec{y} \in A$, $Q_i(\vec{y}) = \vec{x}$, то $A(\vec{x}) = A(Q_i(\vec{y})) = (A \cdot Q_i)(\vec{y}) = (Q_iA)(\vec{y}) = Q_i(A(\vec{y})) \in R_i$ — инвариантное подпространство.

При доказательстве (3) было получено, что:

$$\vec{x} = E\vec{x} = Q_1(\vec{x}) + \dots + Q_i(\vec{x}) + \dots + Q_m(\vec{x}) = \vec{x_1} + \dots + \vec{x_i} + \dots + \vec{x_m}$$
(4)

где $\vec{x_i} = Q_i(\vec{x}) \in R_i, i = \overline{1,m}.$

(3) означает, что $\vec{R^n}$ является суммой подпространств R_i . Покажем, что такое разложение единственно:

 \mathcal{A} оказательство. Предположим, что хотя бы для одного $k=\overline{1,m}$ $\exists \vec{y_k}=Q_k(z_k)\neq \vec{x_k}:$ $\vec{x}=\sum\limits_{k=1}^mQ_k(\vec{z_k})=\vec{y_1}+...+\vec{y_i}+...+\vec{y_m}.$ Тогда $Q_i(\vec{x})=\vec{x_i}=Q_i\left(\sum\limits_{k=1}^mQ_k(\vec{z_k})\right)^{Th}\stackrel{\Gamma.K.}{=}Q_i^2(\vec{z_i})=Q_i(\vec{z_i})=\vec{y_i}\Rightarrow \vec{x_i}=\vec{y_i}$

Т.к. единственное разложение эквивалентно тому, что сумма подпространств прямая, то:

$$\vec{R^n} = R_1 \oplus R_2 \oplus \dots \oplus R_m$$

Тогда A в таком базисе будет иметь вид:

$$\begin{vmatrix} A_1 & & & 0 \\ & A_2 & & \\ & & \ddots & \\ 0 & & & A_m \end{vmatrix}$$

Подпространства R_i называются корневыми подпространствами $\vec{R^n}$.

Теорема 0.2.
$$\forall s = \overline{1,m} : R_s = ker(A - \lambda_s E)^{k_s} \ \forall \vec{x} \in R_i \longmapsto (A - \lambda_i E)^{k_i} \vec{x} = 0$$

Доказательство. Пусть $\vec{x} \in R_s \Rightarrow \exists \vec{y} \in R_s : \vec{x} = Q_i(\vec{y})$ в силу инвариантности R_s . Тогда $(A - \lambda_s E)^{k_s} \vec{x} = (A - \lambda_s E)^{k_s} \cdot f_s(A) \cdot (A - \lambda_1 E)^{k_1} \cdot \ldots \cdot (A - \lambda_{s-1} E)^{k_{s-1}} \cdot (A - \lambda_{s+1} E)^{k_{s+1}} \cdot \ldots \cdot (A - \lambda_m E)^{k_m} \vec{y} = f_s(A) \cdot P_n(A) \vec{y} = 0 \Rightarrow R_s \subseteq \ker(A - \lambda_s E)^{k_s}$.

Пусть $\vec{x} \in ker(A - \lambda_s E)^{k_s}$. Тогда $\forall j \neq s : Q_j(\vec{x}) = 0$, поскольку множитель $(A - \lambda_s E)^{k_s}$ как множитель входит в представление Q_j . Поэтому из (4) в этом случае: $\vec{x} = 0 + ... + Q_s(\vec{x}) + ... + 0 \Rightarrow \vec{x} \in R_s \Rightarrow ker(A - \lambda_s E)^{k_s} \subseteq R_s$

Рассмотрим структуру корневого подпространства. Покажем, что

$$dim(R_s = ker(A - \lambda_s E)^{k_s}) = k_s$$

Лемма 0.1. Пусть B является линейным преобразованием $\vec{R^n}$ и $R = ker(B^l)$, n < l. Тогда, если $\exists \vec{x} \in R : B^{l-1} \vec{x} \neq 0$, то $dim R \geq l$.

$$a_0\vec{x} + a_1(B\vec{x}) + \dots + a_{n-1}(B^{l-1}\vec{x}) = 0$$
 (5)

Подействуем последовательно l-1 раз преобразованием B на (5):

$$\begin{cases} a_0(B\vec{x}) + a_1(B^2\vec{x}) + \dots + a_{n-2}(B^{l-1}\vec{x}) = 0\\ \dots\\ a_0(B^{l-2}\vec{x}) + a_1(B^{l-1}\vec{x}) + 0 + \dots + 0 = 0\\ a_0(B^{l-1}\vec{x}) = 0 \end{cases}$$

$$(B^{l-1}\vec{x}) \neq 0$$
 по условию $\Rightarrow a_0 = a_1 = \dots = a_{l-1} = 0 \Rightarrow$ Вектора ЛНЗ

Таким образом в R лежит как минимум l ЛНЗ векторов, а значит базис в R не может содержать меньше, чем l векторов $\Rightarrow dim R \geq l$.

Было доказано, что пространства R_i , $i=\overline{1,s}$ образуют прямую сумму, равную $\vec{R^n}$, поэтому размерность $\vec{R^n}$ является суммой размерностей подпространств, которые составляют эту прямую сумму. Т.к. $k_1+k_2+...+k_s=n$, то $\forall i\longmapsto dim R_i=k_i$, поскольку если $\exists j: dim R_j>k_j$, то тогда должно существовать R_i , у которого размерность меньше, чем k_i , что в силу леммы невозможно.

Пусть $\{\vec{e}_1^{\{\lambda_l\}},...,\vec{e}_{k_l}^{\{\lambda_l\}}\}$, $l=\overline{1,m}$ является базисом в корневом подпространстве $R_l=Ker(A-\lambda_l E)^{k_l}$. Тогда в базисеб образованном из объединения базисов корневых подпространств систем $\vec{x}=A\vec{x}$ имеет вид:

$$\frac{d\overline{x}^5}{dt} = \sum_{j=1}^{k_l} \gamma_j^5 \overline{x}^j, \ l = \overline{1, m},\tag{6}$$

где
$$A\vec{e}_j^{(\lambda_l)} = \sum_{s=1}^{kl} \gamma_j^s \vec{e}_s^{(\lambda_l)}$$
.

Дальнейшее рассмотрение будет связано с выбором базиса (Жорданова) в корневом подпространстве R_i так, чтобы упростить (6).

Рассмотрим сужение преобразования A на подространство R_i . Обозначим $k_l = l$, $\lambda_i = \overline{\lambda}$, а $A - \overline{\lambda}E = B$, тогда $\forall \vec{x} \in R_i : B^l(\vec{x}) = 0$ по определению R_i .

Выполним вложение:

$$0 \subseteq KerB \subseteq KerB^2 \subseteq ... \subseteq KerB^{i-1} \subseteq KerB^i \subseteq ... \subseteq KerB^l.$$

Действительно, $\forall \vec{x}: B^{i-1}(\vec{x}) = 0 \mapsto B^i(\vec{x}) = B(B^{i-1}(\vec{x})) = B(\vec{0}) = 0$ Обозначим $T_i = KerB^i, i = \overline{1,l}$ и определим:

$$\nu^{i}: \nu^{i} = \{\vec{x}: B^{i}\vec{x} = 0, B^{i-1}\vec{x} \neq 0\}, \ i = \overline{1,m} \leq l$$

По построению получаем, что $\nu^i=T_i\ T_{i-1},\ i=2,3,...,m.$

Теорема 0.3. Пусть $j \ll i \leq m$, тогда:

$$\forall \vec{h}_i \in \nu^i \exists \vec{h}_j \in \nu^j : \vec{h}_j = B^{i-j} \vec{h}_i \tag{7}$$

Доказательство. Построим такой \vec{h}_i и покажем, что он лежит в ν_i .

$$B^{j}\vec{h}_{j} = B^{j}(B_{i-j}(\vec{h}_{j})) = (B^{i-j} \cdot B^{j})(\vec{h}_{i}) = B^{i}\vec{h}_{i} = 0;$$

$$B^{j-1}\vec{h}_j = B^{j-1}(B^{j-1}(\vec{h}_i)) = (B^{i-j} \cdot B^{j-1})(\vec{h}_i) = B^{i-1}\vec{h}_i neq0,$$

Таким образом $\vec{h}_j \in \nu^j$ по определению ν^j .

Определение 0.2. Система векторов $\{\vec{h}_i^{\alpha}\} \in \nu^i$, $\alpha = 1,...,r$ называется линейно независимой относительно T_{i-1} , если $\alpha_1\vec{h}_i^1 + ... + \alpha_r\vec{h}_i^r \in T_{i-1}$ тогда и только тогда, когда $\alpha_1 = ... = \alpha_r = 0$

Доказательство. Из теоремы 10 следует, что если система векторов $\{\vec{h}_i^{\alpha}\} \in \nu^i, \ \alpha = \overline{1,r}$ линейно независима относительно T_{i-1} , то система векторов $\{\vec{h}_j^{\alpha} = B^{i-j}(\vec{h}_i^{\alpha})\} \in \nu^j, \ \alpha = \overline{1,r}$ будет линейно независимой относительно T_{j-1} .

Действительно, пусть вектор $\alpha_1 \vec{h}_i^1 + ... + \alpha_r \vec{h}_i^r \in T_{i-1}$. Тогда

$$B^{j-1}(\alpha_1 \vec{h}_j^1 + \dots + \alpha_r \vec{h}_j^r) = 0 = B^{j-1}(B^{i-j}(\alpha_1 \vec{h}_i^1 + \dots + \alpha_r \vec{h}_i^r)) = B^{i-1}(\alpha_1 \vec{h}_i^1 + \dots + \alpha_r \vec{h}_i^r)$$

$$\Rightarrow \alpha_1 \vec{h}_j^1 + \dots + \alpha_r \vec{h}_j^r \in T_{j-1} \Leftrightarrow \alpha_1 = \dots = \alpha_r = 0$$

Перейдем к построению Жорданова базиса. Пусть в (7) i=1, j=0. $B\overline{h}_1=0$. Тогда $\nu=KerB=T_1$ является собственным подпространством преобразования A и векторы $h_1, \alpha=\overline{1,r}$ являются ЛНЗ собственными векторами A, соответсвующими числу $\overline{\lambda}$. Если ранг B (сужение $A-\overline{\lambda}E$ на $Ker(A-\overline{\lambda}E)^l$) равен $m\ leq l-1$, тогда $r=l-m\geq 1$, и векторы $\overline{h}_1^1,...,\overline{h}_1^r$ образуют базис в T_1 .

Допустим rangB=l-1. Тогда существует только один собственный вектор \vec{h}_1^1 и T_1 , является одномернам собственным подпространством. Дальнейшее построение будем вести по индукции. При i=1 базис в $\nu^1=T_1$ состоит из одногособственного вектора \vec{h}_1^1 . Предположим, что при k=i-1 < l базис в ν^{i-1} также состоит из одного вектора \vec{h}_{i-1}^1 . В силу Теоремы 0.3 уравнение $B\vec{h}_i^1=\vec{h}_{i-1}^1, c^1\in\Re$.

Утверждение 0.1. ν^{i} может быть представлено в виде:

$$\nu^{i} = \left\{ \vec{h}_{i} : \vec{h}_{i} = \alpha_{1} \vec{h}_{i}^{1} + C^{1} \vec{h}^{1}, \alpha_{1} \in \Re, \alpha_{1} \neq 0 \right\}$$
(8)

Доказательство. Запишем:

$$\begin{cases} B^{i}(\alpha_{1}\vec{h}_{i}^{1}+c^{1}\vec{h}_{1}^{1})=B^{i-1}(B(\alpha_{1}\vec{h}_{i}^{1}))=B^{i-1}(\alpha_{1}\vec{h}_{i-1}^{1})=0\\ B^{i-1}(\alpha_{1}\vec{h}_{i}^{1}+c^{1}\vec{h}_{1}^{1})=B^{i-2}(B(\alpha_{1}\vec{h}_{i}^{1}))=B^{i-2}(\alpha_{1}\vec{h}_{i-1}^{1})\neq0 \end{cases}$$

Из этого следует, что $\vec{h}_i \in \nu^i$. В силу равенства:

$$B\vec{h}_i^1 = \vec{h}_{i-1}^1 \mapsto \forall \vec{y} \in \nu^i \; \exists \alpha_1 \in \Re : B\vec{y} = \alpha_1 \vec{h}_{i-1}^1 \Rightarrow \vec{y},$$

имеет представление в (8).

Система ЛНЗ векторов в ν^i относительно T_{i-1} будет состоять из одного вектора \vec{h}_i^1 , т.к. $\vec{h}_i \in T_1 \subseteq T_{i-1} \Leftrightarrow \alpha_1 = 0$.

Продолжим описанный выше процесс, построим веторы $\vec{h}_1^1,...,\vec{h}_i^1,...,\vec{h}_l^1$. Эти векторы ЛНЗ (Лемма (0.1)) и образуют базис в T_i , т.к. $R_i = \nu^1 \bigoplus ... \bigoplus \nu^i \bigoplus ... \bigoplus \nu^l$ в силу линейной независимости ν^i от T_{i-1} .

Все эти векторы удовлетворяют системе:

$$(A - \overline{\lambda}\vec{h}_1) = 0, (A - \overline{\lambda}\vec{h}_i^1) = \vec{h}_{i-1}^1, \ i = 2, ..., l$$
(9)

Вектор \vec{h}_2^1 называется первым присоединенным к \vec{h}_1^1 , соответственно \vec{h}_i^1 - i-1 присоединенный к \vec{h}_1^1 .

Из (9): $A\vec{h}_1^1 = \overline{\lambda}\vec{h}_1^1$, $A\vec{h}_i = \overline{\lambda}\vec{h}_i^1 + \vec{h}_{i-1}^1$, $i = \overline{2,l}$. Тогда матрица сужения A на R_i в построенном базисе называется Жордановой клеткой и имеет вид:

$$\begin{vmatrix} \overline{\lambda} & 1 & & 0 \\ 0 & \overline{\lambda} & 1 & 0 \\ & \ddots & \\ 0 & 0 & \overline{\lambda} & 1 \\ 0 & & 0 & \overline{\lambda} \end{vmatrix}$$

В случае, если ранг B равен m < l-1, то существует r=l-m>1 ЛНЗ собственных вектора, которые образуют базис в $\nu^1=T_1:\vec{h}_1^1,...,\vec{h}_1^r.$

Пусть при i-1 < l имеется $\vec{h}_{i-1}^1,...,\vec{h}_{i-1}^p,\ p \le r$ векторов образующих базис в $\nu^{i-1},$ т.е. максимальная, линейно независимая относительно $T_{i-2},$ система векторов из $\nu^{i-1}.$ Из теоремы (0.3) следует, что системы уравнений $B\vec{h}_i = \gamma_1\vec{h}_{i-1}^1 + ... + \gamma_p\vec{h}_{i-1}^p$ должна иметь

решение, поэтому согласно теореме Кронекера-Капелли, ранг B должен равняться рангу расширенной матрицы системы. При помощи элементарных преобразований сделаем нулевыми последние r=l-m строк матрицы B. Чтобы ранги совпали, числа $\gamma_1,...,\gamma_p$ должны удовлетворять системе из r однородных линейных уравнений, которая получается из требования обращения в ноль всех последних r элементов дополнительного столбца B. Из теоремы (0.3) следует, что эта система уравнений оносительно $\gamma_1,...,\gamma_p$ будет иметь хотя бы одно ненулевое решение. Тогда ранг этой системы $q \leq p-1$ и будет существовать p-q наборов:

$$\vec{\gamma}^{\,1} = \begin{vmatrix} \gamma_1^1 \\ \dots \\ \gamma_n^1 \end{vmatrix}, \dots, \vec{\gamma}^{\,p-q} = \begin{vmatrix} \gamma_1^{p-q} \\ \dots \\ \gamma_n^{p-q} \end{vmatrix},$$

при которых уравненя $B\vec{h}_i=\vec{h}_{i-1}^k\equiv\gamma_1^k\vec{h}_{i-1}^1+...+\gamma_p^k\vec{h}_{i-1}^p,\;k=\overline{1,p-q}$ будут иметь решения.

Каждый из наборов $\vec{\gamma}^i$ определени с точностью до константы и столбцы представляющие соответствующие наборы, линейно независимы, как Φ CP системы.

Множетсво ν^i в этом случае представимо в виде:

$$\nu^{i} = \left\{ \vec{h}_{i} : \vec{h}_{i} = \sum_{k=1}^{p-q} \alpha_{k} \vec{h}_{i}^{k} + \sum_{k=1}^{r} c_{k} h_{1}^{k} \right\}, \tag{10}$$

где $\alpha_k \in \Re$, $B\vec{h}_i^k = \vec{h}_{i-1}^k$, $c_k \in \Re$; $k = \overline{1, p-q}$ и все α_k одновременно не равны нулю. Аналогично (7), проверяем корректность (10), то есть ν^i записано в виде из (10). Если $\vec{y} \in \nu^i$, то существуют такие $\alpha_k, k = \overline{1, p-q}$, что:

$$B\vec{y} = \sum_{k=1}^{p-q} \alpha_k \vec{h}_{i-1}^k.$$

Тогда \vec{y} как решение этого уравнения имеет представление (10).

Покажем, что так полученные векторы $\vec{h}_i^1,...,\vec{h}_i^{p-1}$ ЛНЗ относительно T_{i-1} . Рассмотрим $\alpha_1\vec{h}_i^1+...+\alpha_{p-q}\vec{h}_i^{p-q}=0$. По предположению индукции $\vec{h}_{i-1}^1,...,\vec{h}_{i-1}^{p-q}$ ЛНЗ относительно T_{i-2} . Имеем:

$$B(\alpha_1 \vec{h}_i^1 + \ldots + \alpha_{p-q} \vec{h}_i^{p-q}) = 0 = \alpha_1 \vec{h}_{i-1}^1 + \ldots + \alpha_{p-q} \vec{h}_{i-1}^{p-q}.$$

Откуда, в силу ЛНЗ векторов $\vec{h}_{i-1}^1,...,\vec{h}_{i-1}^{p-q}$ относительно T_{i-2} , имеем $\alpha_1=...=\alpha_{p-q}=0$, что доказывает ЛНЗ векторов $\vec{h}_i^1,...,\vec{h}_i^{p-q}$ относительно T_{i-1} . Из (10) следует, что векторы $\vec{h}_i^1,...,\vec{h}_i^{p-q}$ образуют базис в ν^i т.к. $\vec{y}\in T_1\subseteq T_{i-1}\Leftrightarrow \alpha_1=...=\alpha_k=0$.

Таким образом, построим базис в ν^i . Из доказательства следует, что $dim\nu^i < dim\nu^{i-1}, \forall i$. Полагая i=2,...,m< l, строим $R_l=\nu_1 \bigoplus ... \bigoplus \nu^i \bigoplus ... \bigoplus \nu^m$, что возмонжно, поскольку ν^i ЛНЗ относительно $T_{i-1}, \ i=\overline{2,m}$.