Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Miha Hribar

Razvoj medplatformne knjižnice za uporabo v mobilnih in spletnih aplikacijah

DIPLOMSKO DELO UNIVERZITETNI ŠTUDIJSKI PROGRAM PRVE STOPNJE RAČUNALNIŠTVO IN INFORMATIKA

> Dejan Lavbič MENTOR

Ljubljana, 2014

© 2014, Univerza v Ljubljani, Fakulteta za računalništvo in informatiko

Rezultati diplomskega dela so intelektualna lastnina Fakultete za računalništvo in informatiko Univerze v Ljubljani. Za objavljanje ali izkoriščanje rezultatov diplomskega dela je potrebno pisno soglasje Fakultete za računalništvo in informatiko ter mentorja.

 $^{^{1}}$ V dogovorju z mentorjem lahko kandidat diplomsko delo s pripadajočo izvorno kodo izda tudi pod katero izmed alternativnih licenc, ki ponuja določen del pravic vsem: npr. Creative Commons, GNU GPL.

te strani se vstavi ori in dekana ter žigom f preden odda izdelek v	akultete, ki ga diplo	

IZJAVA O AVTORSTVU DIPLOMSKEGA DELA

Spodaj podpisani izjavljam, da sem avtor dela, da slednje ne vsebuje materiala, ki bi ga kdorkoli predhodno že objavil ali oddal v obravnavo za pridobitev naziva na univerzi ali drugem visokošolskem zavodu, razen v primerih kjer so navedeni viri.

S svojim podpisom zagotavljam, da:

- sem delo izdelal samostojno pod mentorstvom Dejana Lavbiča,
- so elektronska oblika dela, naslov (slov., angl.), povzetek (slov., angl.) ter ključne besede (slov., angl.) identični s tiskano obliko in
- soglašam z javno objavo elektronske oblike dela v zbirki "Dela FRI".

— Miha Hribar, Ljubljana, junij 2014.

Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Miha Hribar

Razvoj medplatformne knjižnice za uporabo v mobilnih in spletnih aplikacijah

POVZETEK

Razvoj aplikacij za več različnih platform je težaven. Odpira veliko možnosti za napake, oteži testiranje in odpravljanje napak, ter skoraj onemogoči sočasno nadgrajevanje aplikacij. Rezultat so dolgotrajni razvojni cikli in počasno dodajanje funkcionalnosti, kar v današnjem svetu zagonskih podjetij ni zaželjeno.

Kljub različnosti med posameznimi platformami je ponavadi veliko kode z identično funkcionalnostjo, ki jo je potrebno razviti za vsako platformo posebej. Velikokrat je v podjetju za vsako od platform zadolžen drug razvijalec, še bolj pogosto pa razvoj na različnih platformah ne poteka sočasno. Rešitev iz te zagate je razvoj medplatformne knjižnice.

Cilj diplomske naloge je razvoj knjižnice za specifikacijo RFC 5545, ki omogoča generiranje ponavljajočih koledarskih dogodkov in jo je možno uporabiti v spletni, iOS, Android in Windows Phone aplikaciji. Pregledali bomo različne možne pristope, navedli prednosti in slabosti, ter na koncu izbrali najbolj primerno rešitev za implementacijo knjižnice.

Kljucne besede: medplatformna knjižnica, iOS, Android, Windows Phone, JavaScript, Emscripten, LLVM

i

University of Ljubljana Faculty of Computer and Information Science

Miha Hribar

Developing a cross platform library for use in mobile and web applications

ABSTRACT

Developing applications for different platforms is complicated. It opens a lot of avenues for mistakes, complicates testing and bugfixing, while almost completely destroys any chance of simultaneous application upgrade. The result of this are prolonged development cycles and slow feature creep, which in todays "startup" world is not an option.

Despite the differences between different plafforms, they most likely share a lot of functionality which has to be developed for each platform. Most of the time each platform is handled by a different developer and usually not simultaneously with other applications. The solution to this problem is to develop a cross-platform library.

The goal of the thesis is to develop a library for the RRULE RFC5545 specification, which enables applications to schedule and display recurring events. The library will then be used in an web, iOS, Android and Windows Phone application. We will outline different approaches to writing the shared library, list the pros and cons and in the end decide on the best approach.

Key words: cross platform library, iOS, Android, Windows Phone, JavaScript, Emscripten, LLVM

ZAHVALA

Rad bi se zahvalil mentorju doc. dr. Dejanu Lavbiču za strokovno svetovanje in predvsem za potrpežjivost pri nastanku diplomskega dela. Hvala družini za vso podporo in finančno pomoč pri študiju. Hvala vsem ostalim, ki ste mi stali ob strani.

In seveda hvala Petri, ker mi pustiš da sem to kar sem.

— Miha Hribar, Ljubljana, junij 2014.

v

KAZALO

	Pov	zetek		i
	Abs	stract		iii
	Zah	vala		\mathbf{v}
1	Uvo	od		1
2	Pre	gled m	etod medplaformnega razvoja	3
	2.1	Celovi	te metode	3
		2.1.1	Qt	3
		2.1.2	Xamarin	4
		2.1.3	Adobe Air	5
	2.2	Hibrid	ne metode	5
		2.2.1	Apache Cordova / PhoneGap	5
		2.2.2	Appcelerator Titanium	6
	2.3	Deljen	e metode	7
		2.3.1	Lua	7
		2.3.2	Haxe	8
		2.3.3	XMLVM	8
		2.3.4	C++ in emscripten	8
		2.3.5	JavaScript	9
3	Raz	voj kn	jižnice	13
	3.1	Predst	avitev specifikacije RFC 5545	13
	3.2	Omeji	tve	16
	3 3	Izbor	primerne metode	17

•	viii		Kazalo

	3.4	C++	18
4	Vkl	jučitev knjižnice v različne platforme	21
	4.1	iOS	21
	4.2	Android	23
	4.3	Windows Phone	27
	4.4	Spletna aplikacija	29
5	Ugo	otovitve	31

SEZNAM UPORABLJENIH KRATIC

- **ARC** angl. Automatic Reference Counting; avtomatično štetje referenc za sproščanje pomnilnika, ki v jezikih Objective-C in Swift olajša razvoj aplikacij.
- **ARM** angl. Acorn RISC Machine, Advanced RISC Machine; 32 in 64-bitna procesorska arhitektura RISC, največkrat uporabljena v vgrajenih sistemih zaradi nizke električne porabe.
- **ART** angl. *Android Runtime*; android pogon, ki bo sčasoma zamenjal trenutni pogon Dalvik; nudi veliko izboljšav v hitrosti in stabilnosti aplikacij.
- CI angl. Continuous integration; zvezna integracija.
- **CLI** angl. *Common Language Infrastructure*; specifikacija, ki omogoča prevod različnih jezikov v enotno vmesno kodo; uporabljeno v ogrodjih .NET, Mono in Portable.NET.
- **CSS** angl. *Cascading Style Sheets*; stilna predloga, v kateri so zapisana pravila za obliko spletne strani.
- **GPL** angl. *GNU General Public License*; ena izmed najbolj razširjenih licenc odprtokodnih projektov, ki omogoča komercialno uporabo, redistribucijo in spremembe odprtokodnih projektov, pod pogojem, da izpeljano delo (angl. *derived work*) uporablja isto licenco [1].
- **HTML5** angl. $HyperText\ Markup\ Language;$ 5. revizija označevalnega jezika(angl. $markup\ language$) namenjenega stukturiranju in opisovanju vsebine na svetovnem spletu.
- **IDE** angl. Integrated Development Environment; integrirano razvojno orodje za lažje in hitrejše razvijanje programov.

- JNI angl. Java Native Interface; programsko ogrodje, ki omogoča kodi, napisani v jeziku Java, klicanje domorodnih aplikacij in knjižnic.
- JVM angl. Java virtual machine; virtualen pogon, ki je zmožen poganjati Java zlogovno kodo.
- **LLVM** angl. Low Level Virtual Machine; skupek prevajalniških infrastrukturnih knjižnic, ki omogočajo optimizacijo programov napisanih v različnih programskih jezikih.
- **NDK** angl. *Native Development Kit*; ogrodje, ki na platformi Android omogoča pripravo knjižnic za vključitev v domorodne aplikacije.
- PHP angl. PHP: Hypertext Preprocessor; strežniški skriptni jezik.
- **QML** angl. *Qt Meta Language ali Qt Modeling Language*; označevalni jezik namenjen gradnji uporabniških vmesnikov v ogrodju Qt.
- **RFC** angl. Request For Comment; publikacija IEFT (Internet Engineering Task Force) v kateri so predstavljeni standardi.
- **STL** angl. *Standard Template Library*; C++ knjižnica, ki vsebuje razne programske konstrukte in algoritme.
- $\mathbf{TDD}\,$ angl. $\mathit{Test-driven}\,\,\mathit{development};$ testno usmerjeni razvoj.
- YARV angl. Yet another Ruby VM; eden izmed virtualnih pogonov za jezik Ruby.

1 | Uvod

Dandanes uporabljamo več različnih naprav sočasno. V lasti imamo najverjetneje prenosni računalnik, pametni telefon in po možnosti še tablični računalnik. Ko najdemo aplikacijo, ki nam je všeč, od te pričakujemo brezhibno delovanje na vseh naših napravah.

To je seveda zelo težko doseči, sploh z majhno ekipo. Dodatno se stvari zakomplicirajo, če so vse te naprave na različnih operacijskih sistemih. Tako imam lahko Windows prenosnik, Android¹ telefon in Apple tablico. Kot razvajen uporabnik pričakujem, da je izbrana aplikacija na voljo na vse naštetih platformah in da na vseh platformah deluje identično.

Za razvijalca smo ravnokar opisali nočno moro. Da zadovolji potrebe uporabnikov, je primoran razviti isto aplikacijo za vsako od platform. Četudi omejimo razvoj na najbolj razširjene platforme iOS², Android in Windows Phone³ (s čimer pokrijemo več kot 98% vseh mobilnih naprav, kot je razvidno iz tabele 1.1), smo ravnokar našteli tri povsem

¹Operacijski sistem, razvit pri podjetju Google, namenjen uporabi na mobilnih napravah.

 $^{^2}$ Mobilni opracijski sistem razvit pri podjetju Apple. Najdemo ga na napravah iPhone, iPad in iPod.

 $^{^3{\}rm Mobilni}$ operacijski sistem razvit pri podjetju Microsoft.

2 1 Uvod

Operacijski sistem	2013 število	2013 delež (%)	2012 število	2012 delež (%)
Android	758.719,9	78,4	451.621,0	66,4
iOS	150.785,9	15,6	130.133,2	19,1
Microsoft	30.842,9	3,2	16.940,7	2,5
BlackBerry	18.605,9	1,9	34.210,3	5,0
Ostali	8.821,2	0,9	47.203,0	6,9
Skupaj	967.775,8	100	680.108,2	100

Tabela 1.1 Razpredelnica svetovne prodaje pametnih telefonov v letih 2013 in 2012 glede na mobilni operacijski sistem (v tisočih). Opazimo lahko hud padec prodaje BlackBerry naprav. [2].

različne tehnologije, tri različne jezike in s tem tri priložnosti za povsem različne težave pri implementaciji naše aplikacije. Veliko truda in energije je potrebno, da so te aplikacije poenotene in da skladno sledijo razvoju novih funckionalnosti.

Izkušen razvijalec bo pri predstavitvi problema takoj pomislil na medplatformni razvoj, ki si ga bomo ogledali v drugem poglavju. Omenili bomo tako imenovane "celotive" metode, kot so Qt[3] in Xamarin[4], "hibridne" kot sta recimo PhoneGap[5] in Appcelerator Titanium[6], ter "deljene" metode npr. Lua[7], Haxe[8] in C++[9]. Vsaka od omenjenih metod ima svoje prednosti in slabosti, izbor primerne pa je povsem odvisen od problema, ki ga želimo rešiti.

Tretje poglavje bomo začeli s pregledom standarda RFC 5545[39], zakaj ga sploh potrebujemo in katere probleme nam pomaga reševati. Nato bomo pregledali predhodno opisane metode, si ogledali zakaj smo se odločili za razvoj knjižnice s pomočjo jezika C++, ter jo tudi zgradili. Predstavili bomo glavne razrede in metode naše knjižnice, ter predstavili nekaj primerov uporabe.

V četrtem poglavju bomo pokazali, kako lahko knjižnjico s pomočjo jezikovnih ovojev (angl. *wrapper*) uspešno uporabimo v jezikih Objective-C (iOS), Java (Android) in C# (Windows Phone). Predstavili bomo tudi način, kako lahko C++ knjižnico prevedemo v jezik JavaScript s pomočjo orodja Emscripten[10], in knjižnico uporabili tudi v spletni aplikaciji.

V zaključku bomo pretehtali, kako primeren je razvoj medplatformne knjižnice na predstavljen način, in če se morda obetajo novi načini, ki bi razvijalce rešili iz podobnih zagat.

Pa začnimo.

Pregled metod medplaformnega razvoja

Predno postavimo omejitve razvoja naše aplikacije, si poglejmo različne metode medplatformnega razvoja in v katerih primerih jih je pametno uporabiti. Kot je pričakovati, jih je kar nekaj. Razdelili jih bomo v skupine celovitih, hibridnih in deljenih metod.

2.1 Celovite metode

Celovita metoda za razvoj uporablja ogrodje, s pomočjo katerega aplikacijo pripravimo za različne platforme. Velika večina tako napisane izvorne kode je uporabljena na vseh destinacijskih platformah, za kar poskrbi ogrodje. Rezultat te metode je domorodna aplikacija (angl. *native application*), ki jo je možno objaviti v trgovinah posameznih platform in pri tem ne kršijo (ponavadi) strogih pravil.

2.1.1 Qt

Qt[3] je ogrodje za grafično programiranje za več platform s pomočjo jezika C++ in QML. Omogoča nam sočasni razvoj za platforme Mac OSX, Linux, Windows, Android in iOS. Podpira tudi uporabo HTML5 namesto QML, kar pomeni, da spletni razvijalci

lahko uporabijo že obstoječe znanje in učenje novega jezika ni potrebno.

Qt projekt je povsem odprtokoden in dovoljuje uporabo v skladu z licencama GPL v3[11] in LGPL v2.1[12], a če želite orodje uporabiti za razvoj mobilne aplikacije, boste morali za to odšteti 149\$ mesečno.

Projekt so vrsto let uspešno razvijali v podjetju Nokia, kjer so ga uporabili kot glavno orodje za razvoj aplikacij na platformi Symbian. Ko je pred časom Microsoft kupil podjetje Nokia, je projekt prevzela novonastala organizacija Qt Project, ki projekt vodi še danes.

Qt je še posebej privlačen zaradi podpore namiznih platform kot so Windows, Mac OSX in Linux. Odlikuje ga tudi zagreta skupnost razvijalcev.

Ogrodje Qt je primerno za izdelavo aplikacij, ki vključujejo kompleksne algoritme, za katere bi porabili preveč časa pri prepisovanju na različne platforme. Lep primer tega sta aplikaciji Mathematica[13] in multimedijski predvajalnik VLC[14].

Glavne slabosti Qt so neskladnost z izgledom ostalih aplikacij na mobilnih platformah, plačljiva licenca za razvoj mobilnih aplikacij ter končna velikost samih programov. Manjka tudi napovedana podpora za platformo Windows Phone.

2.1.2 Xamarin

Xamarin^[4] je ogrodje za sočasen razvoj aplikacij za platforme iOS, Android, Mac in Windows v jeziku C#. Izjaha iz projekta Mono^[15], ki omogoča uporabo ogrodja .NET^[16] na različnih platformah. Ogrodje omogoča razvoj aplikacij, katerih izgled je skladen z ostalimi domorodnimi aplikacijami.

Ogrodje odlikuje integrirano razvojno okolje (IDE), ki razvoj aplikacij znatno olajša. Omogoča testiranje tako v emulatorju/simulatorju, kot na samih napravah.

```
// TODO Licenca // TODO Slika
```

Xamarin je primeren za izdelavo aplikacij za več različnih platform, kjer je ključnega pomena končna grafična skladnost z ostalimi domorodnimi aplikacijami. Kot primer si lahko ogledamo aplikacijo za poslušanje glasbe Rdio[17], ki je na voljo za iOS, Android in Windows Phone.

Glavna slabost ogrodja Xamarin je cena, saj se paketi začnejo šele pri 299\$/mesec za vsakega razvijalca in vsako platformo posebej. Za majhno ekipo je lahko taka začetna cena enostavno previsoka. Vprašljiva je tudi hitrost dodajanja funckionalnosti posameznih platform, ko se te nadgradijo, določen riziko predstavlja tudi muhavost posameznih

platform pri omejitvah uporabe tega ogrodja, sploh če nadgradnja povzroči nedelovanje takih aplikacij.

2.1.3 Adobe Air

Adobe Air[18] je brezplačno ogrodje, ki omogoča zagon iste aplikacije na platformah iOS, Android, Mac, Windows in Linux, zagon aplikacije pa je možen tudi iz spletnega brskalnika. Čeprav za razvoj namiznih aplikacij omogoča uporabo HTML in Javascript, je za razvoj mobilnih aplikacij omejen na uporabo jezika ActionScript. V času pisanja diplomske naloge ogrodje ne omogoča zagon na platformi Windows Phone, vendar so razvijalci podporo že napovedali.

Izbor orodja je še posebej uporaben za aplikacije v katerih uporabniški vmesnik ni potrebno prilagajati posamezni platformi. Ravno zaradi tega je orodje priljubljeno med razvijalci iger, ko je naprimer Angry Birds[19].

Kot glavno slabost ogrodja Adobe Air bi navedel upadanje zanimanja za orodje Flash. Špekuliramo lahko tudi o planih podjetja Adobe, saj so pred kratkim kupili podjetje Nitobi, ki je avtor ogrodja PhoneGap (katerega si ga bomo ogledali v nadaljevanju). Uporaba tudi ni primerna za razvoj klasičnih mobilinih aplikacij, saj je prilagajanje domorodnim aplikacijam precej zahtevno, še posebej kadar na platformi pride do posodobitve izgleda.

2.2 Hibridne metode

Hibridna metoda za razvoj aplikacij uporablja spletne tehnologije v sožitju z domorodno kodo za posamezno platformo (t.i. premostitvena tehnika), ki omogoča dostop do glavnih funkcij naprav (kot so kamera, pospeškomer in podobno). Tako kot pri celovitih metodah, je tudi tu rezultat domorodna aplikacija, ki jo je možno objaviti v trgovinah posameznih platform.

2.2.1 Apache Cordova / PhoneGap

Ogrodje Apache Cordova [20] je odprtokodni projekt, ki omogoča objavo spletnih aplikacij kot domorodne. V času pisanja diplomske naloge ogrodje podpira iOS, Android, Windows Phone, Blackberry, Palm WebOS, Bada in Symbian. Na vseh omenjenih platformah nam ogrodje Apache Cordova omogoča dostop do funkcij naprave, ko so naprimer kamera in

pospeškomer. Isto aplikacijo je možno zagnati tudi v spletnem brskalniku, a je za to potrebno nekaj dodatnega dela.

Projekt PhoneGap[5] je dejansko samo ena od distribucij projekta Apache Cordova, ki poleg vseh obstoječih funkcionalnosti ponuja tudi razne storitve na katerih delajo v podjetju Adobe.

```
// TODO Licenca // TODO Slika
```

Za razvoj aplikacij razvijalci lahko uporabljajo spletne tehnologije HTML, CSS in JavaScript. S pomočjo ogrodij jQuery Mobile[21] in Sencha Touch[22] je možno izdelati aplikacije, katerih izgled je zelo lep približek ostalim aplikacijam na izbrani platformi. Če naletimo na funkcijo naprave, do katere nimamo dostopa, ali ugotovimo da je JavaScript za določene naloge premalo učinkovit, lahko preprosto spišemo lasten vtičnik (angl. plugin), ki služi kot most med kodo napisano v jeziku JavaScript in domorodno kodo.

Glavna prednost ogrodja Apache Cordova in predvsem distribucije PhoneGap, je izredno nezahtevnost ogrodja. Priporoča se predvsem za izdelavo prototipnih aplikacij, saj nam omogoča hiter razvoj in iteracijo.

Glavna slabost tega pristopa tiči v performanci in odzivnosti aplikacije, saj ta za prikazovanje izkorišča vgrajeno spletno okno. Trenutno je težko izdelati aplikacije, ki so grafično zahtevnejše, kar pomeni še toliko bolj pereč problem na napravah s slabšimi karakteristikami. Da se aplikacija po izgledu nebi ločila od domorodnih aplikacij je potrebno vložiti kar nekaj dela, na koncu pa bo izurjen uporabnik najbrž vseeno opazil, da je aplikacija malce drugačna. Problem predstavlja tudi zamik podpore novim stilom grafičnih elementov, tako kot se je to zgodilo pri prehodu iz iOS6 na iOS7.

2.2.2 Appcelerator Titanium

Ogrodje Titanium[6] nam omogoča izdelavo aplikacij za več platform hkrati s pomočjo JavaScript okolja, ki služi kot abstrakcijska plast med našo aplikacijo in domorodno kodo. Aplikacijo gradimo s pomočjo jezika JavaScript, ki se med uporabo aplikacije izvaja s pomočjo pogona V8[23] (Android), JavaScriptCore (iOS)[42] ali vgrajenega JavaScript okolja (če aplikacijo poganjamo v brskalniku). Za pravilen vizualen izgled skrbijo namestniški elementi, ki uporabljajo domorodne grafične elemente, kar pomeni da vizualno aplikacije ne ločimo od ostalih domorodnih aplikacij. V času pisanja diplomske naloge ogrodje podpira iOS, Android, Blackberry, Tizen in spletne aplikacije.

Glavna prednost ogrodja Titanium ni t.i. način "piši enkrat, uporabljaj povosd", njegova prednost je da lahko celotno aplikacijo izdelamo v enem jeziku - JavaScript-u. Le redko se bomo srečali z domorodno kodo, saj ogrodje nudi široko paleto knjižnic.

```
// TODO Licenca // TODO Slika
```

Prav tako kot PhoneGap, je Titanium še posebej uporaben pri razvoju prototipov aplikacij, kjer je cilj hiter razvoj in predstavitev aplikacije čim večjemu krogu uporabnikov.

Glavna slabost ogrodja je počasno dodajanje novih platform zaradi obsežnosti dela, ki ga tak podvig zahteva. Določene knjižnice za delo z domorodnimi elementi tudi niso najbolj performančne, manjka pa tudi napovedana podpora platformi Windows Phone.

2.3 Deljene metode

Deljena metoda za razvoj aplikacij omogoča uporabo dela aplikacijske kode na vseh platformah za katere razvijamo. To lahko naredimo s pomočjo vgradnega skriptnega jezika (Lua), s pomočjo prevajanja iz izbranega programskega jezika v domorodnega (Haxe, XMLVM, emscripten) ali pa z uporabo programskih jezikov C++ ali JavaScript in jezikovnih ovojev, s katerimi pripravimo knjižnico za vgradnjo v druge platforme.

2.3.1 Lua

Lua[7] je preprost vgradni skriptni jezik, ki ga odlikuje hitrost izvajanja in procesorska nezahtevnost. Vgradimo ga lahko v platforme Android, iOS, Symbian in Windows Phone, z nekaj potrpljenja pa lahko isto kodo zaženemo tudi v spletni aplikaciji.

```
// TODO Licenca
```

Ker gre za skriptni jezik, se znajdemo v zanimiv situaciji kjer združujemo prevajane jezike z interpretiranimi jeziki. Velika prednost tega je hitro odzivanje na napake pri razvoju, saj razvijalcu ni potrebno čakati na prevod kode. Odpira tudi možnost posodobitve vgrajene knjižnice brez posodobitve celotne aplikacije.

Čeprav je jezik Lua preprost za uporabo, se izkaže da za kompleksnejše knjižnice ni primeren. Manjka Unicode¹ podpora, boljša podpora rokovanju z napakami, boljša podpora starejšim verzijam in vgrajen razhroščevalnik (angl. debuqqer).

¹Standard za poenoteno textovno enkodiranje.

2.3.2 Haxe

Haxe[8] zase pravi, da je večplatformski programski jezik. Razvijalec lahko svojo aplikacijo napiše v jeziku Haxe, nato pa jo s pomočjo prevajalnika prevede v izvorno kodo jezikov PHP, ActionScript, Neko, JavaScript, C++, C# ali Javo. Nudi tudi dodatne vmesnike za dostop do specifičnih metod ciljnega jezika.

Jezik se je prijel predvsem za razvoj iger, kjer naj bi dolgoročno zamenjal jezik ActionScript, ki ga uporablja orodje Flash.

```
// TODO Licenca
```

Glavna slabost uporaba rešitve Haxe je majhna razvijalska skupnost. V primerjavi z ostalimi rešitvami, je ta kar v manjšini. V zadnjem času sicer pridobiva nekaj zagona, a je trenutno vse premalo knjižnic, ki bi bile razvite za to platformo.

2.3.3 XMLVM

XMLVM[24] spada v isti razred kot Haxe - tako imenovanih prevajalcev iz enega jezika v drugega (ang. cross-compilers), a se XMLVM tega loti na drugačen način. Medtem ko Haxe prevaja na nivoju izvorne kode, XMLVM to počne na nivoju zlogovne kode (ang. byte code). Izvorna koda je lahko napisana za navidezne stroje (ang. virtual machine) JVM, .NET CLI ali Ruby YARV, medtem ko je rezultat delujoč program za JVM, .NET CLI, Javascript, Python, Objective-C in C++.

```
// TODO Licenca, Slika
```

Projekt izgleda zelo ambiciozen, a vse kaže da je šlo le za akademsko raziskavo, saj je v času pisanja diplome minilo že več ko leto dni odkar se je izvorna koda posodobila. Kljub temu se mi je projekt zdel zanimiv in ga je bilo vredno izpostaviti.

2.3.4 C++ in emscripten

V kolikor nobena od naštetih možnosti ne zadošča našim potrebam, želeli pa bi vseeno imeti deljeno knjižnico, obstaja še ena možnost: uporaba jezika C++[9] in projekta emscripten[10].

C++ je eden izmed najbolj razširjenih programksih jezikov. V času pisanja diplomske naloge zaseda četrto mesto na lestvici najbolj popularnih jezikov 2.1, pred njim so samo jeziki C, Java in Objecitve-C. Uporablja se ga v raznolikih projektih, od prevajalnikov, strežnikov, do video igric.

Slika 2.1 Tiobe programming comunity index [25].

Emscripten je projekt Mozilinih laboratorijev, ki omogoča prevajanje iz LLVM zlogovne kode v skriptni jezik JavaScript. LLVM si lahko predstavljamo kot vmesni sloj med izvorno (C, C++, Objective-C, Java, C#) in strojno kodo, ki skrbi poskrbi za visoko optimizacijo vmesne kode, to pa lahko potem prevedemo v ustrezen nabor ukazov za posamezne procesorje (ARM, x86 itd.). Emscripten tako predstavlja zadnjo fazo prevajalnika, le da vmesne kode iz LLVM ne prevede v ukaze specifičnega procesorja, ampak nazaj v jezik JavaScript. To pomeni, da lahko prevedemo skoraj vsak program (z določenimi omejitvami) v JavaScript in ga zaženemo v brskalniku. Celo grafično zahtevne aplikacije² niso problematične, saj emscripten za prevod v JavaScript uporablja asm.js[27], kar je podmnožica jezika JavaScript, ki jo JavaScript pogoni znajo izredno dobro optimizirati³.

2.3.5 JavaScript

Namesto prevajanja v jezik JavaScript s pomočjo ogrodja Emscripten, bi lahko celotno knjižnico napisali kar v jeziku JavaScript. V zadnjih nekaj letih je jezik JavaScript doživel

²Skupina Mozilinih inžinirjev je grafično ogrodje Unreal v štirih dneh posodobilo do te mere, da je lahko s pomočjo orodja emscripten grafično zahtevna aplikacija brezhibno delovala v brskalniku[26].

³S pomočjo asm.js so v podjetju Mozilla uspeli doseči le enkrat počasnejše izvajanje od domorodne kode, kar je izjemen dosežek.[28]

New GitHub repositories

Slika 2.2 Jeziki novih projektov na spletni strani github.com.

izredno hitro rast, tako v popularnosti, kot v zmogljivosti in funkcionalnostih, kar je tudi razvidno iz slike 2.2.

Pri vključitvi v svojo aplikacijo moramo biti malce bolj iznajdljivi. iOS je z verzijo 7 dodal knjižnico JavaScriptCore, ki omogoča mešanje domorodne in JavaScript kode.

Android je malce bolj problematičen, saj SDK v času pisanja diplomske naloge ne nudi direktne implementacije. Zaradi tega smo primorani vključiti JavaScript pogon, kot je Rhino, V8 in podobni. V kolikor je pogon napisan v jeziku Java, je integracija preprosta, če pa izberemo pogon v drugem jeziku, mora za Android obstajati paket za uvoz.

Windows Phone prav tako kot Android ne nudi JavaScript implementacije, ki bi jo lahko uporabljali skupaj z domorodno kodo. Uporabimo lahko pogon V8 in knjižnico

 ${\bf Java Script Net [29]}.$

Ker je knjižnica napisana v jeziku JavaScript, jo je možno preprosto vgraditi v spletno aplikacijo. Pri tem se moramo držati le delov JavaScripta, ki so enotni na vseh platformah (ECMAScript specifikacija).

Težji del je vgraditev pogona JavaScript na vsako od platform. Dokler ne bo na voljo domorodnih integracij, se bomo težko zanesli na brezhibno delovanje pri nadgradnji operacijskega sistema. Navkljub temu, je ideja zelo zanimiva in vredna nadaljne raziskave.

3 Razvoj knjižnice

3.1 Predstavitev specifikacije RFC 5545

Specifikacija RFC 5545[39] opisuje format iCalendar, ki se uporablja za dogovarjanje o urnikih sestankov in umeščanju na koledar. Gre za tekstovni format, katerega prepoznavna končnica datotek je .ics, in je dandanes v uporabi v vseh večjih koledarskih aplikacijah, kot so Google Calendar, Apple Calendar in ostali. Omogoča vse kar potrebujemo za opisovanje dogodkov, med drugim:

- Datum začetka in konca dogodka
- $\hfill\blacksquare$ Nastavitve opozoril
- Opis in priponke
- Seznam povabljenih ljudi
- Pravila za ponavaljanje dogodka

Zaradi obsežnosti specifikacije, se bomo v diplomski nalogi osredotočili zgolj na pravila za ponavljanje dogodkov [40]. Za predstavo si najprej poglejmo primer 3.1. Če primer

prevedemo v človeku prijazno obliko, bi to pomenilo "vsako nedeljo v januarju, ob 8:30 zjutraj in 9:30 zjutraj, vsako drugo leto".

Primer 3.1 Primer uporabe pravila RRULE spefikiacije RFC 5545.

FREQ=YEARLY; INTERVAL=2; BYMONTH=1; BYDAY=SU; BYHOUR=8, 9; BYMINUTE=30

Vsak del pravila sestavlja par, sestavljen iz imena pravila in vrednosti. Vsak par je med seboj ločen z podpičjem (;), vsako pravilo pa je lahko določeno le enkrat. Vrstni red načeloma ni pomemben, a zaradi združljivosti s starejšimi specifikacijami, mora biti pravilo FREQ vedno na prvem mestu.

Pravilo FREQ predstavlja frekvenco ponavaljanja dogodka. Možne vrednosti so:

- SECONDLY, za ponavljanje vsako sekudo
- MINUTELY, za ponavljanje vsako minuto
- HOURLY, za ponavljanje vsako uro
- DAILY, za dnevno ponavljanje
- WEEKLY, za tedensko ponavljanje
- MONTHLY, za mesečno ponavljanje
- YEARLY, za letno ponavljanje

Pravilo INTERVAL vsebuje pozitivno celo število, ki predstavlja interval ponavljanja frekvence. Če je frekvenca nastavljenan na dnevno, interval pa na 8, pomeni da se dogodek ponovi vsak 8. dan.

Pravilo UNTIL definira končni datum ponavljanja dogodka (vključno z končnim datumom). Definiramo ga lahko samo z datumom, ali pa z datumom in uro.

Pravilo COUNT vsebuje pozitivno celo število, ki predstavlja število ponovitev dogodka. V kolikor ima pravilo nastavljeno tako UNTIL kot COUNT, obvelja tisto pravilo, ki ponavljanje dogodka prej konča.

Pravila BYSECOND, BYMINUTE in BYHOUR vsebujejo z vejico ločene sezname pozitivnih celih števil. Možne vrednosti BYSECOND so od 0 do 60, BYMINUTE od 0 do 59 in BYHOUR od 0 do 23. Če nastavimo pravilo BYHOUR na vrednost 8,20, se bo dogodek ponovil ob 8 zjutraj in 8 zvečer.

Pravilo BYDAY vsebuje z vejico ločen seznam dnevov v tednu, kjer je MO ponedeljek, TU torek, WE sreda, TH četrtek, FR petek, SA sobota in SU nedelja. Pred oznako za posamezen dan lahko postavimo pozivitno ali negativno celo število, ki predstavlja N-to ponovitev v mesečnem ali letnem ponavljanju dogodka. Za mesečno ponavljanje dogodka, vrednost +1MO pomeni vsak prvi ponedeljek v mesecu, -1MO vsak zadnji ponedeljek v mesecu, MO pa preprosto vsak ponedeljek v mesecu.

Pravilo BYMONTHDAY vsebuje z vejico ločen seznam celih števil z možnimi vrednostmi od -31 do -1 in 1 do 31, ki prestavljajo dneve v mesecu. Vrednost -10 predstavlja 10 dan od konca meseca. Pravilo BYMONTHDAY ne sme biti nastavljeno, če je frekvenca ponavaljanja nastavljena na tedensko.

Pravilo BYYEARDAY vsebuje z vejico ločen seznam celih števil z možnimi vrednostmi od -366 do -1 in 1 do 366, ki predstavljajo dneve v letu. Vrednost -1 predstavlja zadnji dan v letu (31. december), -306 pa 306. dan od konca leta (1. marec). Pravilo BYYEARDAY ne sme biti uporabljeno, če je v uporabi dnevna, tedenska ali mesečna frekvenca ponavljanja dogodka.

Pravilo BYWEEKNO vsebuje z vejico ločen seznam celih števil z možnimi vrednostmi od -53 do -1 in 1 do 53, ki predstavljajo tedne v letu. Prvi teden v letu je tisti, ki ima vsaj 4 dni v koledarskem letu. Vrednost 3 predstavlja tretji teden v letu. Pravilo BYWEEKNO je lahko definirano le, če imamo opravka z letno frekvenco dogodka.

Pravilo BYMONTH vsebuje z vejico ločen seznam pozitivnih celih števil, z možnimi vrednostmi od 1 do 12, ki predstavljajo mesece v letu. Vrednost 2 predstavlja 2. mesec v letu.

S pravilom WKST definiramo dan začetka tedna. Možne vrednosti so iste kot pri pravilu BYDAY. Vrednost SU pomeni, da se delovni teden za nas začne v nedeljo. Če pravilo ni posebej nastavljeno, obvelja vrednost MO.

Pravilo BYSETPOS vsebuje z vejico ločen seznam celih števil, z možnimi vrednostmi od -366 do -1 in 1 do 366. Predstavljajo N-to ponovitev znotraj pravil BYSECOND, BYMINUTE, BYHOUR, BYDAY, BYMONTHDAY, BYYEARDAY in BYWEEKNO. Primer 3.2 predstavlja zadnji delovni dan v mesecu.

Primer 3.2 Primer uporabe pravila za zadnji delovni dan v mesecu.

	SECONDLY	MINUTELY	HOURLY	DAILY	WEEKLY	MONTHLY	YEARLY
BYMONTH	omeji	omeji	omeji	omeji	omeji	omeji	razširi
BYWEEKNO	-	-	-	-	-	-	razširi
BYYEARDAY	omeji	omeji	omeji	-	-	-	razširi
BYMONTHDAY	omeji	omeji	omeji	omeji	-	razširi	razširi
BYDAY	omeji	omeji	omeji	omeji	razširi	izjema 1	izjema 2
BYHOUR	omeji	omeji	omeji	razširi	razširi	razširi	razširi
BYMINUTE	omeji	omeji	razširi	razširi	razširi	razširi	razširi
BYSECOND	omeji	razširi	razširi	razširi	razširi	razširi	razširi
BYSETPOS	omeji	omeji	omeji	omeji	omeji	omeji	omeji

Tabela 3.1 Razpredelnica izjem pri uporabi pravil za ponavljanje dogodkov. Izjema 1: omeji če je prisotno pravilo BYMONTHDAY, drugače razširi. Izjema 2: omeji za pravili BYYEARDAY in BYMONTHDAY, drugače razširi.

Pravila lahko v nekaterih situacijah povzročijo ponovitev dogodka na neobstoječ datum, kot je naprimer 30. februar. V takih primerih se ponovitev dogodka preskoči brez opozorila.

Začetni datum ponavljanja dogodka je definiran izven omenjenih pravil, in sicer v delu DTSTART. Datum prve ponovitve dogodka je vedno isti začetnemu datumu, ne glede na to, če je ta dan smiselen glede na opisana pravila ponavljanja.

Opisana pravila z predpono BY, vedno na nek način spremenijo ponavljanje dogodka. Število dni lahko ta pravila omejijo, kot v primeru FREQ=DAILY; BYMONTH=1, kjer je dnevno ponavljanje omeji samo na mesec januar. Lahko pa jih tudi razširijo, kot v primeru FREQ=YEARLY; BYMONTH=1, 2, kjer je enkratno letno ponavljanje razširjeno na ponovitev vsak januar in februar, vsako leto.

Če je v pravilu ponavljanja uporabljenih več pravil z predpono BY, se ta obravnavajo v vrstnem redu FREQ, INTERVAL, BYMONTH, BYWEEKNO, BYYEARDAY, BYMONTHDAY, BYDAY, BYHOUR, BYMINUTE, BYSECOND, BYSETPOS, COUNT in UNTIL.

Tabela 3.1 opisuje vse izjeme, ki jih lahko povzročijo pravila z predpono BY.

3.2 Omejitve

Predno se lotimo izbora primerne metode postavimo nekaj omejitev:

- 1. Delovati mora na platformah iOS, Android, Windows Phone in spletu.
- 2. Zagotavljati grafično skladnost z ostalimi domorodnimi aplikacijami.
- 3. Imeti dovolj razgibano razvijalsko skupnost, da bomo lahko našli odgovore na nastale probleme.

Slika 3.1 Prikaz trendov za nekaj od predlaganih rešitev na spletni strani Stackoverflow, kjer razvijalci iščejo rešitve problemov na katere so naleteli.

- 4. Mora biti odporna na spremembe pri nadgradnjah platforme.
- 5. Biti cenovno ugodna.

Izbrano rešitev želimo prikazati na primeru aplikacije, ki prikazuje ponavaljajoče dogodke s pomočjo standarda iCalendar [39]. Kot omenjeno, se bomo zaradi poenostavitve osredotočili zgolj na del RRULE, ki definira pravila za ponavljanje dogodka.

Ponavljajoče dogodke bo aplikacija prikazala v preprostem seznamu, ki bo prilagojen za vsako od izbranih platform.

// TODO slika iOS seznama z vsemi podatki ki bodo prikazani

3.3 Izbor primerne metode

Izbor primerne metode lahko začnemo s pregledom popularnih vprašanj na spletni strani Stackoverflow (slika 3.1). Vidimo lahko izjemno popularnost ogrodij Qt in Phonegap. Kot opombo lahko omenim, da Xamarin na tem grafu ni prikazan zaradi premajhnega števila vprašanj. Prav tako nebi bilo ravno smiselno vključiti jezik C++ ali JavaScript, saj ti podatki nebi bili reprezentativni.

Vse omejitve omenjene v prejšnjem poglavju so predstavljene v tabeli 3.2. Prazne vrstice pri "grafični skladnosti" za Lua, Haxe, C++ in JavaScript so posledica nezmožnosti zadoščanja te omejitve, niso pa ovira, saj mora v tem primeru za grafično skladnost poskrbeti domorodna koda, ki ni napisana v omenjenih jezikih.

Iz tabele 3.2 je lepo razvidno, da le rešitev C++ zadošča vsem naštetim omejitvam. Poglejmo si torej kako lahko izbrano rešitev pripravimo s pomočjo jezika C++, ter kako

	Qt	Xamarin	Air	Cordova	Titanium	Lua	Haxe	C++	JavaScript
Android	1	1	1	1	1	1	1	1	1
iOS	1	1	1	1	1	1	1	1	1
Windows Phone	×	1	Х	1	×	1	1	1	/
Spletna aplikacija	×	×	1	1	×	/	1	/	1
Grafična skladnost	×	1	х	×	/				
Skupnost	1	1	Х	1	/	1	×	1	1
Odpornost na nadgradnje	×	×	Х	×	×	×	х	1	×
Cena (mesečno)	149\$	299\$	-	-	-	-	-	-	-

Tabela 3.2 Pregled funkcionalnosti predstavljenih metod.

lahko nato isto rešitev uporabimo tudi v aplikaciji, ki teče spletnem brskalniku, s pomočjo ogrodja Emscripten.

3.4 C++

Namesto razvoja lastne knjižnice, bi lahko na tem mestu v naš projekt vključili odprtokodno knjižnico libical [30], a bomo za potrebe diplomske naloge rajši izbrali samostojno rešitev, saj bomo s tem lahko podrobneje raziskali kaj vse je potrebno za razvoj podobne knjižnice.

Izbrani del RRULE specifikacije RFC 5545 je na srečo dovolj preprost, da za razvoj potrebujemo le STL knjižnico. V kolikor bi naša rešitev zahtevala vključitev dodatne knjižnice, recimo vzpostavitev internetne povezave, bi lahko ta problem rešili na dva načina:

- V našo rešitev bi vključili dodatno knjižnico libcurl. To bi povzorčilo kar nekaj problemov pri vključevanju knjižnice na različne platforme, saj bi morali knjižnico libcurl pripraviti za vsak platformo posebej.
- Nalogo vzpostavitve in prenosa podatkov iz oddaljene lokacije bi lahko delegirali v domorodno kodo, ki bi po prenosu rezultat prenesla nazaj v našo knjižnico.

Če izberemo prvi način, bo naša knjižnica podvajala funckionalnost, ki že obstaja v domorodni kodi. Veliko lepša rešitev je uporaba delegiranja v domorodno kodo, saj lahko ta boljše izkorišča vse sposobnosti naprave. To sicer pomeni nekaj več kode v ovojih naše knjižnice (kar si bomo ogledali v poglavju 4), a omogoča boljšo odpornost na nadgradnje operacijskega sistema destinacijske platforme.

Razvito knjižnico lahko v platformske aplikacije vključimo na več različnih načinov:

3.4 C++ 19

- 1. Z izvorno kodo C++, ki jo ciljni program vključi v svoj paket.
- 2. Statično knjižnico (angl. static library), ki jo ciljni program vključi v svoj paket.
- 3. Deljeno knjižnico (angl. *shared library*), ki jo ciljni program samo referencira, a jo ne vključi direktno v svoj paket.

Pri vseh naštetih načinih je potrebna dodatna ovojna koda (angl. *wrapper*), ki je različna za vsako destinacijsko platformo. Detajle teh ovojev si bomo ogledali v poglavju 4.

Celotna izvorna koda knjižnice (skupaj z jezikovnimi oviji) je na voljo na spletni strani github.com/mihahribar/thesis. Zaradi zagotavljanja kakovosti (angl. quality assurance) sem se pri razvoju knjižnice držal praks testno usmerjenega razvoja TDD [41]. Za implementacijo testov sem uporabil izvrstni knjižnici googletest[31] in googlemock[32], s testi pa mi je uspelo pokriti več kot 90% vse kode (angl. code coverage), kar sem preveril s pomočjo programa gcov.

Za potrebe zvezne integracije (angl. continuous integration) sem uporabil Travis CI [33], ki je za odprtokodne projekte na voljo brezplačno. Vse kar je bilo potrebno storiti, da je Travis CI lahko uspešno testiral izvorno kodo naše knjižnice, je bilo dodati datoteko .travis.yml z vsebino script: make tests. To na strežniku za zvezno integracijo sproži prenos in pripravo knjižnic googletest in googlemock, prevede vse potrebne datoteke, ki vsebujejo izvorno kodo, ter zgradi tests program, ki zažene vse naše testne primere.

```
// TODO slika zagona testov (69 passed tests)
```

Primer uporabe knjižnjice RRULE RFC 5545 lahko vidimo v primeru 3.3. Razred Date vsebuje vso potrebno logiko za delo z datumi, kot so naprimer prištevanje, odštevanje ter primerjanje datumov. Razred Recurrence vsebuje logiko za ponavljanje dogodkov. Tip dogodka, ki se ponavlja, je poljuben in ni del knjižnjice.

Primer 3.3 Primer uporabe C++ knjižnjice RRULE standarda RFC 5545. Izbrani dogodek bi se s tem pravilom ponavljal tedensko, vsak ponedeljek, od 1. januarja 2014 naprej.

```
1 Recurrence rec = Recurrence(Weekly, Date(2014, 1, 1));
2 rec.setByDay("MO");
3 map<int, Date> days = rec.daysInRange(Date(2014, 2, 1), Date(2014, 2, 28));
4 // spremenljivka days bo vsebovala
5 // result[5] = Date(2014, 2, 3);
6 // result[6] = Date(2014, 2, 10);
```

```
7 // result[7] = Date(2014, 2, 17);
```

^{8 //} result[8] = Date(2014, 2, 24);

4

Vključitev knjižnice v različne platforme

4.1 iOS

Platforma iOS primarno uporablja jezik Objective-C, ki je, kot ime namiguje, objektna razširitev jezika C. Na srečo obstaja tudi variacija Objective-C++, ki nam omogoča souporabo jezikov Objective-C in C++ v istem projektu. Datoteki, v kateri želimo uporabljati C++, namesto končnice .m pripnemo končnico .mm.

iOS ne podpira uporabe deljene knjižnice (angl. *shared library*), omogoča pa uporabo statične knjižnice (angl. *static library*) ali izvorne kode. Za prvi primer izberimo uvoz izvorne kode.

iOS v svojem arsenalu ne vključuje orodje za avtomatično sproščanje pomnilnika (angl. garbage collection). Od razvijalca se pričakuje, da za seboj počisti pomnilnik z uravnoteženimi ukazi retain in release, ko je koda opravila svoje delo. V ta namen je v integriranem razvijalskem okolju (angl. Integrated Development Environment) XCode na voljo kar nekaj orodij, ki nam omogočajo lažjo detekcijo puščanja pomnilnika (angl. memory leak). Kar rado se zgodi, da se pri štetju referenc razvijalec zmoti. Na srečo je v iOS5 Apple predstavil ARC (avtomatično štetje referenc - angl. Automatic

Reference Counting) s čimer so razvijalcem znatno olajšali delo, saj prevajalnik sedaj zna sam vnesti ukaze za sproščanje pomnilnika.

Implementacija iOS ovoja je dokaj preprosta (glej primer 4.1). Za vsakega C++ od razredov naredimo zrcalne Objective-C++ ovojne razrede, ki v inicializacijski metodi init poskrbijo za pravilno dodeljevanje in hranjenje C++ objekta (vrstica 14). Ko na določen objekt ne kaže več noben kazalec, se pred sprostitvijo pomnilnika pokliče metoda dealloc, v kateri poskribmo za ustrezno sprostitev C++ objekta predno pride do puščanja pomnilnika (vrstica 21). Klic v ovoj nato preprosto posreduje klic v C++ objekt (vrstica 25) in poskrbi za transformacije med C++ in Objective-C podatkovnimi tipi.

Primer 4.1 Primer Objective-C++ ovoja C++ razreda Date.

```
#import "ThesisDate.h"
    #import "Date.hpp"
   @interface ThesisDate() {
       Thesis::Date* wrapped;
   @end
   @implementation ThesisDate
9
10
   - (ThesisDate *)initWithYear:(NSInteger)year month:(NSInteger)month andDay:(
11
       NSInteger)day {
      self = [super init];
12
      if (self) {
13
          wrapped = new Thesis::Date(year, month, day);
14
          if (!wrapped) self = nil;
16
17
       return self;
   }
18
19
      (void) dealloc {
20
       delete wrapped;
21
   }
22
23
   - (void) addDays: (NSInteger) days {
24
      wrapped->addDays(days);
25
   }
26
```

4.2 Android 23

Slika 4.1 Zaslonska slika zagona testov iOS ovoja C++ knjižnice v razvojnem okolju XCode.

Razvojno okolje XCode vsebuje testno ogrodje XCTest, ki nam omogoča zagotavljanje kakovosti. Testi iOS ovoja testirajo samo klice v in povratne vrednosti, ne testirajo pa dejanske funkcionalnosti knjižnice, saj bi to pomenilo podvajanje že obstoječih testov C++ knjižnice. Teste zaženemo iz menija Product -; Test.

4.2 Android

Java, ki jo srečamo na platformi Android, se od odprtokodne Jave kar precej razlikuje. Android ne uporablja Java virtualnega pogona (angl. *Java Virtual Machine*) ampak svoj pogon Dalvik, ki je prilagojen za uporabo na mobilnih napravh. Pred kratkim je Google napovedal nov virtualen pogon, Android Runtime (ART), ki bo v prihodnosti zamenjal

Dalvik in vsebuje veliko izboljšav v hitrosti in stabilnosti aplikacij.

Za izdelavo ovoja C++ kode moramo uporabiti dve ogrodji:

- JNI (angl. Java Native Interface), ki poskrbi za komunikacijo med jezikoma Java in C++
- 2. NDK (angl. *Native Development Kit*), ki poskrbi za pravilno prevajanje C++ kode za vsako od ciljnih arhitektur Android platforme (armeabi, armeabi-v7a, x86 in mips).

Uporaba orodja JNI je za razvijalca kar časovno potratna. Ovoj je potrebno napisati v dveh delih:

- Java ovoj, ki izpostavi C++ razrede in metode s pomočjo direktive native (glej primer 4.2).
- 2. C++ ovoj, ki služi kot most med jezikoma Java in C++, ter poskrbi za transformacije med podatkovnimi tipi (glej primer 4.3).

Referenco na C++ objekt hranimo v Java delu JNI ovoja, C++ ovoj pa do reference dostopa preko metode getHandle (glej 4.3), ki spremenljivko nativeHandle poišče v Java delu JNI ovoja.

Java ovoje shranimo v direktorij src, medtem ko C++ JNI ovoje shranimo v jni. Poglejmo si kako poteka komunikacija med Javo in C++ v primeru klica isBefore (glej primer 4.3):

- 1. Java preko JNI najde pravo metodo v C++ ovoju s pomočjo dogovorjene poimenovalne sheme (vrstica 12)
- 2. C++ ovoj pretvori Java argumente v C++ argumente (vrstica 14).
- 3. C++ ovoj najde predhodno shranjen objekt (vrstice 40 44).
- 4. Pokliče prailno metodo na najdenem objektu z C++ argumenti (vrstice 21 29).
- 5. Če metoda vrne kak rezultat, C++ ovoj poskbi za pretvorbo nazaj v Java podatkovne tipe (vrstica 13).

4.2 Android 25

Bralca morda zanima čemu služi metoda dispose (vrstice 16-19). Java nam nudi avtomatično sproščanje pomnilnika (angl. garbage collection), medtem ko C++ od razvijalca zahteva samostojno čiščenje pomnilniških naslovov, ki niso več v uporabi. Ko v Javi pride do sproščanja pomnilnika, se pokliče metoda finalize, a kot lahko preberemo v dokumentaciji[34] do klica ne prihaja prav pogosto in se za tako uporabo ne priporoča. Poleg tega je vsak razred, ki implementira metodo finalize, deležen malce večje obdelave iz strani operacijskega sistema, kar botruje počasnejšemu izvajanju. Ker želimo biti malce bolj prijazni do platforme na kateri gostujemo, se držimo pravila: ko objekta ne potrebuje več, ga sprostimo s pomočjo klica dispose (naprimer v finally try catch finally konstruktu).

Primer 4.2 Primer Java ovoja C++ razreda Date.

```
public class Date

private long nativeHandle = 0;

public native void init(int year, int month, int day);

public native boolean isBefore(Date date);

public native void dispose();

public Date(int year, int month, int day) {
    init(year, month, day);

}

static {
    System.loadLibrary("thesis");
}
```

Primer 4.3 Primer mosta med jezikoma Java in C++ razreda Date.

```
#include "info_hribar_thesis_Date.h"
#include "Date.cpp"

using namespace Thesis;

JNIEXPORT void JNICALL Java_info_hribar_thesis_Date_init(JNIEnv *env, jobject obj, jint year, jint month, jint day) {
    Date *date = new Date(year, month, day);
    setHandle(env, obj, date);
}
```

```
10
   JNIEXPORT jboolean JNICALL Java_info_hribar_thesis_Date_isBefore(JNIEnv *env,
        jobject obj, jobject compare) {
         Date *date = getHandle<Date>(env, obj);
12
13
         return date->isBefore(getDate(env, compare));
14
15
   JNIEXPORT void JNICALL Java_info_hribar_thesis_Date_dispose(JNIEnv *env, jobject
        obj) {
         Date *date = getHandle < Date > (env, obj);
17
         delete date;
18
   }
19
20
   Date getDate(JNIEnv *env, jobject date) {
21
         jclass dateCls = env->GetObjectClass(date);
22
         jmethodID mGetYear = env->GetMethodID(dateCls, "getYear", "()I");
23
         jmethodID mGetMonth = env->GetMethodID(dateCls, "getMonth", "()I");
24
         jmethodID mGetDay = env->GetMethodID(dateCls, "getDay", "()I");
25
         jint year = env->CallIntMethod(date, mGetYear);
         jint month = env->CallIntMethod(date, mGetMonth);
         jint day = env->CallIntMethod(date, mGetDay);
28
         return Date(year, month, day);
29
30
   jfieldID getHandleField(JNIEnv *env, jobject obj)
32
33
      jclass c = env->GetObjectClass(obj);
34
      // J is the type signature for long:
35
      return env->GetFieldID(c, "nativeHandle", "J");
36
37
38
   template <typename T>
39
   T *getHandle(JNIEnv *env, jobject obj)
40
41
      jlong handle = env->GetLongField(obj, getHandleField(env, obj));
      return reinterpret_cast<T *>(handle);
43
44
45
46 template <typename T>
void setHandle(JNIEnv *env, jobject obj, T *t)
48
```

```
jlong handle = reinterpret_cast<jlong>(t);
env->SetLongField(obj, getHandleField(env, obj), handle);
}
```

Za testiranje Java ovoja smo uporabili ogrodji JUnit[35] in Maven[36]. Tako kot v primeru iOS ovoja, se na tem mestu ne testira dejanske knjižnice, ampak zgolj povezavo iz C++ knjižnice v Java kodo. Teste lahko zaženemo z ukazom mvn test, ki s pomočjo orodja Maven poskrbi za prenos vseh potrebnih knjižnic in za zagon testov Java ovoja.

4.3 Windows Phone

Primarni jezik vseh Windows platform je C#, in isto velja tudi za Windows Phone. Z 8. verzijo mobilnega operacijskega sistema je Microsoft odprl možnost souporabe C++ in domorodne kode. To storimo z uporabo Windows Phone Runtime komponente (WinPRT), ki jo spišemo v jeziku C++, to pa nato uvozimo v naš Windows Phone projekt kot zunanjo referenco.

Našo knjižnico lahko uvozimo kot statično knjižnico (angl. *static library*), ali direktno kot C++ izvorno kodo (če imamo do nje dostop). Če se odločimo za uporabo statične knjižnice, moramo paziti, da ta uporablja le standardno knjižnjico (STL) in Win32 klice, ki so dovoljeni za Windows Phone aplikacije[37].

Funkcionalnost, ki jo rabimo v naši Windows Phone 8 aplikaciji, izvozimo v WinPRT C++ komponenti (glej primer 4.4).

Primer 4.4 C++ koda za izvoz funckionalnosti knjižnice v JavaScript razreda Date.

```
namespace ThesisWINRT {
    using namespace Windows::Foundation;
    using Platform::String;

public ref class Date sealed {
    public:
    unsigned int GetLength(String^ strToParse);
};
}
```

```
thesis. x thesis
```

Slika 4.2 Zaslonska slika, ki prikazuje teste razreda Date Java ovoja.

4.4 Spletna aplikacija

C++ knjižnico moramo za uporabo v spletni aplikaciji prevesti v JavaScript. To lahko storimo s pomočjo orodja emscripten, ki vzame LLVM zlogovno kodo in namesto prevoda v nabor ukazov za podprte procesorje, prevede to kodo v JavaScript. Rezultat je knjižnjica, ki jo lahko brez težav uvozimo v obstoječo spletno aplikacijo.

Primarno emscripten prevaja celotne programe, ki imajo jasno definirane vhode in izhode. Te lahko v JavaScriptu sprožimo kot bi jih v uporabniški vrstici (angl. terminal). V našem primeru gre vendarle za prevod C++ knjižnjice, za kar emscripten potrebuje dodatna navodila za izvoz funkcionalnosti (glej primer 4.5). Za te namene projekt emscripten vsebuje embind[38], s pomočjo katerega lahko izvozimo dostop do razredov, podatkovnih tipov, pomnilniškim upravljanje in podobne jezikovne konstrukte.

Primer 4.5 C++ koda za izvoz funckionalnosti knjižnice v JavaScript razreda Date.

```
#include "emscripten/bind.h"
   #include "src/Date.hpp"
   using namespace emscripten;
   using namespace Thesis;
   EMSCRIPTEN_BINDINGS(date) {
      class_<Date>("Date")
         .constructor<int, int, int>()
         .property("year", &Date::getYear, &Date::setYear)
         .property("month", &Date::getMonth, &Date::setMonth)
         .property("day", &Date::getDay, &Date::setDay)
12
          .function("setDate", &Date::setDate)
         .function("addDays", &Date::addDays)
         .function("addMonths", &Date::addMonths)
15
         .function("addYears", &Date::addYears)
16
         .function("toString", &Date::toString)
17
         .function("isBefore", &Date::isBefore)
18
         .function("isAfter", &Date::isAfter)
19
         .function("isEqual", &Date::isEqual)
20
         .function("getWeekday", &Date::getWeekday)
21
         .function("isLastDay", &Date::isLastDay);
22
23
```

Končni rezultat izvoza knjižnice v JavaScript lahko vidimo v primeru 4.6.

Primer 4.6 Primer uporabe izvoženega razreda Date v JavaScript.

```
var date = new Thesis.Date(2014, 10, 10);
```

- date.addMonths(1);
- 3 console.log(date.toString());

5 Ugotovitve

V diplomski nalogi smo pokazali, kako je možno poenostaviti sočasni razvoj aplikacij za več različnih platform. S pomočjo projekta emscripten in destinacijskih ovojev smo uspešno uporabili isto C++ knjižnico v iOS, Android, Windows Phone in spletni aplikaciji. Naloga se ni izkazala za prav preprosto, kar je bilo tudi pričakovano, predvsem zaradi razlik med izbranimi platformami. Diplomska naloga mi je ponudila priložnost osvežiti svoje znanje jezikov C++, Java, Objective-C, C# in JavaScript, ki jih v svojem delu ne uporabljam ravno vsakodnevno.

V bližnji prihodnosti pričakujem, da opisana rešitev ne bo več edini način vključitve knjižnjice na različne platforme. Apple je že začel prvi korak z ogrodjem JavaScriptCore, ki omogoča boljše mešanje JavaScript in domorodne kode. Podobne rešitve pričakujem tudi od ostalih izbranih platform, kar bi znatno olajšalo razvoj medplatformnih knjižnjic. Ko pride do tega, bom za svoje lastne projekte rajši izbral razvoj z jezikom JavaScript, ki smo ga predstavili v poglavju 2.3.5.

Bralec, ki bi opisane primere rad preizkusil, lahko izvorno kodo najde na spletni strani github.com/mihahribar/thesis.

LITERATURA

```
[1] Choose a licence.
    url: http://choosealicense.com/licenses/
 [2] Gartner says annual smartphone sales surpassed sales of feature phones for the first
    time in 2013 (Feb. 2014).
    url: http://www.gartner.com/newsroom/id/2665715
 [3] Qt projekt.
    url: http://qt-project.org
 [4] Xamarin.
    url: https://xamarin.com
 [5] Phonegap.
    url: http://phonegap.com
 [6] Appellerator titanium.
    url: http://www.appcelerator.com/titanium/
 [7] Lua.
    url: http://www.lua.org
 [8] Haxe.
    url: http://haxe.org
 [9] C++.
    url: http://www.cplusplus.com
[10] emscripten.
    url: https://github.com/kripken/emscripten
```

```
[11] Gpl v3 licenca.
    url: http://www.gnu.org/copyleft/gpl.html
[12] Lgpl v2.1 licenca.
    url: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
[13] Mathematica.
    url: http://www.wolfram.com/mathematica/
[14] Vlc.
    url: http://www.videolan.org/vlc/index.html
[15] Mono.
    url: http://www.mono-project.com
[16] .net.
    url: http://www.microsoft.com/net
[17] Rdio.
    url: https://www.rdio.com
[18] Adobe air.
    url: http://get.adobe.com/air/
[19] Angry birds.
    url: https://www.angrybirds.com
[20] Apache cordova.
    url: http://cordova.apache.org
[21] jquerymobile.
    url: http://jquerymobile.com
[22] Sencha touch.
    url: http://www.sencha.com/products/touch/
[23] V8.
    url: https://code.google.com/p/v8/
[24] Xmlvm.
    url: http://xmlvm.org
```

```
[25] Tiobe index for june 2014 (Jun. 2014).
    url: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
[26] 'epic citadel' demo shows the power of the web as a platform for gaming (May 2013).
    url: https://blog.mozilla.org/futurereleases/2013/05/02/epic-citadel-demo-shows-
    the-power-of-the-web-as-a-platform-for-gaming/
[27] asm.js.
    url: http://asmjs.org
[28] Mozilla's asm.js gets another step closer to native performance (Dec. 2013).
          http://techcrunch.com/2013/12/21/mozillas-asm-js-gets-another-step-closer-
    to-native-performance/
[29] Javascript.net.
    url: https://github.com/JavascriptNet/Javascript.Net
[30] libical.
    url: http://www.citadel.org/doku.php/documentation:featured_projects:libical
[31] googletest.
    url: https://code.google.com/p/googletest/
[32] googlemock.
    url: https://code.google.com/p/googlemock/
[33] Travis ci - free hosted continuous integration platform for the open source commu-
    nity.
    url: https://travis-ci.org
[34] Android object documentation.
    url: http://developer.android.com/reference/java/lang/Object.html
[35] Junit - a programmer-oriented testing framework for java.
    url: http://junit.org
[36] Apache maven.
```

url: http://maven.apache.org

- [37] Static libraries (c++/cx).
 url: http://msdn.microsoft.com/en-us/library/windows/apps/hh771041.aspx
- [38] Embind documentation.
 url: https://github.com/kripken/emscripten/wiki/embind
- [39] B. Desruisseaux, Internet calendaring and scheduling core object specification (Sep. 2009).

url: http://tools.ietf.org/html/rfc5545

- [40] B. Desruisseaux, Recurrence rule, rfc 5545 (Sep. 2009). url: http://tools.ietf.org/html/rfc5545#section-3.3.10
- [41] J. Langr, Modern C++ Programming with Test-Driven Development: Code Better, Sleep Better, Pragmatic Bookshelf, 2013.

 $\label{lem:url:matter} {\bf url:} \qquad {\rm http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development}$

[42] O. Mathews, Javascriptcore and ios 7 (Sep. 2013). url: http://www.bignerdranch.com/blog/javascriptcore-and-ios-7/