Probalibility

0.1 The language of probability

Kolmogorov definitions:

- We define ω as the set of all possible elementary events. ω is called the sample space of the experiment
- We define Σ as a set of subsets of ω , Σ is a set of random events (combination of elementary events) with the following properties:

if
$$A, B \in \Sigma$$
 then $A \cap B$ and $A \cup B \in \Sigma$ $\omega \in \Sigma$ $\emptyset \in \Sigma$

• Let $A \in \Sigma$, we define the Probability of A as a non negative real number, that can be assigned for all $A \in \Sigma$. $\exists P(A) \ge 0$ with the following properties:

$$P(\omega) = 1$$

let $A, B \in \Sigma$, if $A \cap B = \emptyset \implies P(A \cup B) = P(A) + P(B)$

Alternative definitions:

- ullet We define ω as the set of all possible elementary events
- We define Σ as a σ -algebra of random events (combination of elementary events) with the following properties:

$$\Sigma$$
 contains at least one subset of ω if $A \in \Sigma \implies \omega/A \in \Sigma$ if $A_1, A_2 \dots A_n \in \Sigma \implies \bigcup_{i=1}^n A_i \in \Sigma$

- An arbitrary element of Σ is called a random event
- Let $A \in \Sigma$, we define the Probability of A as a non negative real number, that can be assigned for all $A \in \Sigma$. $\exists P(A) \ge 0$ with the following properties:

$$P(\omega)=1$$

let $A, B \in \Sigma$, if $A \cap B = \emptyset \Longrightarrow P(A \cup B) = P(A) + P(B)$