LEARNING FROM BIG DATA

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

WHAT IS BIG DATA?

- ▶ Volume the scale of the data.
 - Financial transactions
 - Supermarket scanners
- Velocity continously streaming data.
 - Stock trades
 - News and social media
- Variety highly varying data structures.
 - Wall street journal articles
 - Network data
- Veracity varying data quality.
 - Tweets
 - Online surveys
- ► Volatility constantly changing patterns.
 - Trade data
 - Telecom data

CENTRAL BANKS CAN USE BIG DATA TO ...

- estimate fine grained economic models more accurately.
- estimate models for networks and flow in network.
- construct fast economic indicies:
 - Scanner data for inflation
 - ▶ Job adds and text from social media for fine grained unemployment
 - Streaming order data for economic activity
- improve quality and transparency in decision making. Summarizing news articles. Visualization.
- ▶ improve central banks' **communication**. Is the message getting through? Sentiments. Credibility. Expectations.

SOME RECENT BIG DATA PAPER IN ECONOMICS

- ▶ Varian (2014). *Big data: new tricks for econometrics.* Journal of Economic Perspectives.
- ▶ Heston and Sinha (2014). News versus Sentiment: Comparing Textual Processing Approaches for Predicting Stock Returns.
- ▶ Bholat et al. (2015). Handbook in text mining for central banks. Bank of England.
- ▶ Bajari et al. (2015). *Machine Learning Methods for Demand Estimation*. AER.

COMPUTATIONALLY BIG DATA

- ▶ Data are computationally big if they are used in a context where computations are a serious impediment to analysis.
- ► Even rather small data sets can be computationally demanding when the model is very complex and time-consuming.
- ► Computational dilemma: model complexity increases with large data:
 - ▶ large data have the potential to **reveal poor fit** of simple models
 - with large data one can estimate more complex and more detailed models.
 - with many observations we can estimate the effect from more (explanatory) variables.
- ► The big question in statistics and machine learning: how to estimate complex models on large data?

LARGE DATA REVEALS TOO SIMPLISTIC MODELS

Giordani, Jacobson, Villani and von Schedvin. Journal of Financial and Quantitative Analysis, 2014.

BAYESIAN LEARNING

- ▶ Bayesian methods combine data information with other sources
- ... avoid overfitting by imposing smoothness where data are sparse
- ... connect nicely to prediction and decision making
- ... natural handling of model uncertainty
- ▶ ... are beautiful
- ... are time-consuming. MCMC.

DISTRIBUTED LEARNING FOR BIG DATA

- ▶ Big data = data that does not fit on a single machine's RAM.
- Distributed computations:
 - Matlab: distributed arrays.
 - Python: distarray.
 - R: DistributedR.
- Parallel distributed MCMC algorithms
 - Distribute data across several machines.
 - ► Learn on each machine separately. MapReduce
 - ▶ Combine the inferences from each machine in a correct way.

DISTRIBUTED MCMC

Asymptotically Exact, Embarrassingly Parallel MCMC by Neiswanger, Wang, and Xing, 2014.

MULTI-CORE PARALLEL COMPUTING

- Multi-core parallel computing. Can be combined with distributed computing.
- ► Available in all high-level languages:
 - Matlab's parallel computing toolbox. parfor etc.
 - ▶ Python: multiprocessing module, joblib module etc
 - R: Parallel library.
- Communication overheads can easily overwhelm gains from parallelism.

TOPIC MODELS

- ▶ Probabilistic model for text. Popular for summarizing documents.
- ► Input: a collection of documents.
- Output: K topics probability distributions over the vocabulary.
 Topic proportions for each document.

Blei (2012). Probabilistic Topic Models. Communications of the ACM.

GPU PARALLEL COMPUTING

- ► **Graphics cards** (**GPU**) for parallel computing on thousands of cores.
- ▶ Neuroimaging: brain activity time series in one million 3D pixels.

Table 2 Processing times for three necessary steps in fMRI analysis, for three common software packages, a multicore CPU implementation, and a GPU implementation

Processing step/software	SPM	FSL	AFNI	Multicore CPU	GPU
Motion correction	52 s	36 s	5 s	37 s	1.2 s
Smoothing	31 s	10 s	0.4 s	0.4 s	0.022 s
Model estimation	25 s	4.8 s	0.5 s	0.011 s	0.0008 s

The three common coftware neckages use different elegations while the multicons CDII implementation and the GDII implementation perform

From Eklund, Dufort, Villani and LaConte (2014). Frontiers of Neuroinformatics.

- GPU-enabled functions in
 - Matlab's Parallel Computing Toolbox.
 - PyCUDA in Python.
 - gputools in R.
- ► Still lots of **nitty-gritty** low level things to get impressive performance: Low-level **CUDA** or **OpenCL** + putting the data in the right place.

TALL DATA

- ► Tall data = many observations, not many variables.
- Approximate Bayes: VB, EP, ABC, INLA ...
- Recent idea: efficient random subsampling of the data in algorithms that eventually give the full data inference.
- Especially useful when likelihood is costly (e.g. optimizing agents).

From Quiroz, Villani and Kohn (2014). Speeding up MCMC by efficient subsampling.

WIDE DATA

- ▶ Wide data = many variables, comparatively few observation.
- Variable selection. Stochastic Search Variable Selection (SSVS).
- ► Shrinkage (ridge regression, lasso, elastic net, horseshoe). Big VARs.

Model Uncertainty in Growth Regressions

Table I. Marginal evidence of importance

			BMA	Sala-i-Martin
		Regressors	Post.Prob.	CDF(0)
\Rightarrow	1	GDP level in 1960	1.000	1.000
\rightarrow	2	Fraction Confucian	0.995	1.000
\Rightarrow	3	Life expectancy	0.946	0.999
\rightarrow	4	Equipment investment	0.942	1.000
\rightarrow	5	Sub-Saharan dummy	0.757	0.997
\rightarrow	6	Fraction Muslim	0.656	1.000
\rightarrow	7	Rule of law	0.516	1.000
\rightarrow	8	Number of Years open economy	0.502	1.000
\rightarrow	9	Degree of Capitalism	0.471	0.987
\rightarrow	10	Fraction Protestant	0.461	0.966
\rightarrow	11	Fraction GDP in mining	0.441	0.994
\rightarrow	12	Non-Equipment Investment	0.431	0.982
\rightarrow	13	Latin American dummy	0.190	0.998
\Rightarrow	14	Primary School Enrollment, 1960	0.184	0.992
\rightarrow	15	Fraction Buddhist	0.167	0.964
	16	Black Market Premium	0.157	0.825
\rightarrow	17	Fraction Catholic	0.110	0.963
\rightarrow	18	Civil Liberties	0.100	0.007

WIDE DATA

▶ Many other models in the machine learning literature are of interest: trees, random forest, support vector machines etc.

Table 1-Model Comparison: Prediction Error

	Validation		Out-of-Sample		
	RMSE	Std. Err.	RMSE	Std. Err.	Weight
Linear	1.169	0.022	1.193	0.020	6.62%
Stepwise	0.983	0.012	1.004	0.011	12.13%
Forward Stagewise	0.988	0.013	1.003	0.012	0.00%
Lasso	1.178	0.017	1.222	0.012	0.00%
Random Forest	0.943	0.017	0.965	0.015	65.56%
SVM	1.046	0.024	1.068	0.018	15.69%
Bagging	1.355	0.030	1.321	0.025	0.00%
Logit	1.190	0.020	1.234	0.018	0.00%
Combined	0.924		0.946		100.00%

Bajari et al. (2015). Machine Learning Methods for Demand Estimation. AER.

ONLINE LEARNING

- Streaming data. Scanners, internet text, trading of financial assets etc
- ► How to learn as data come in sequentially? Fixed vs time-varying parameters.
- State space models:

$$y_t = f(x_t) + \epsilon_t$$

$$x_t = g(x_{t-1}) + h(z_t) + \nu_t$$

- Dynamic topic models.
- Kalman or particle filters.
- ► Dynamic variable selection.
- ▶ How to **detect changes** in the system online?

CONCLUDING REMARKS

- ▶ Big traditional data (e.g. micro panels) are clearly useful for central banks.
- Remains to be seen if more exotic data (text, networks, internet searches etc) can play an important role in analysis and communication.
- ▶ Big data will motivate more complex models. Big data + complex models = computational challenges.
- ► Economists do not have enough competence for dealing with big data. Computer scientists, statisticians, numerical mathematicians will be needed in central banks.
- ► Economics is not machine learning: not only predictions matter. How to fuse economic theory and big data?