# Point Estimates and Sampling Variability

Colby Community College

A **point estimate** is a single value used to estimate a parameter.

A **point estimate** is a single value used to estimate a parameter.

### Note

The sample proportion,  $\hat{p}$ , the best point estimate of the population proportion p. But, is it a *good* estimate?

A **point estimate** is a single value used to estimate a parameter.

### Note

The sample proportion,  $\hat{p}$ , the best point estimate of the population proportion p. But, is it a *good* estimate?

### Definition

The difference between a point estimate and the true parameter is called the **error** in the estimate.

A **point estimate** is a single value used to estimate a parameter.

### Note

The sample proportion,  $\hat{p}$ , the best point estimate of the population proportion p. But, is it a *good* estimate?

### **Definition**

The difference between a point estimate and the true parameter is called the **error** in the estimate.

#### Note

In general, there are two sources of error: sampling error and bias.

**Sampling error** describes how much an estimate will tend to vary from one sample to the next.

**Sampling error** describes how much an estimate will tend to vary from one sample to the next.

## Example 1

One sample may have  $\hat{p}=1\%$  and another sample may have  $\hat{p}=3\%$ .

**Sampling error** describes how much an estimate will tend to vary from one sample to the next.

## Example 1

One sample may have  $\hat{p}=1\%$  and another sample may have  $\hat{p}=3\%$ .

#### Note

Much of statistics is focused on understanding and quantifying sampling error.

**Bias** describes a systematic tendency to over-estimate or under-estimate the true population value.

**Bias** describes a systematic tendency to over-estimate or under-estimate the true population value.

## Example 2

If a university took a student poll asking about support for a new stadium, they'd get a biased response if they asked:

"Do you support your school by supporting funding for the new stadium?"

**Bias** describes a systematic tendency to over-estimate or under-estimate the true population value.

## Example 2

If a university took a student poll asking about support for a new stadium, they'd get a biased response if they asked:

"Do you support your school by supporting funding for the new stadium?"

#### Note

We try to minimize bias by using thoughtful data collection procedures.

Suppose the proportion of American adults who support the expansion of solar energy is p = 0.88.

Suppose the proportion of American adults who support the expansion of solar energy is p = 0.88.

If we take a poll of 1000 American adults on this topic, the estimate would not be perfect. But, how close can we expect  $\hat{p}$  to be to p?

Suppose the proportion of American adults who support the expansion of solar energy is p = 0.88.

If we take a poll of 1000 American adults on this topic, the estimate would not be perfect. But, how close can we expect  $\hat{p}$  to be to p? We can simulate such a sample:

As of 2021, there are about 258 million adults in America. Let us get 258 million slips of paper and write "support" on 88% of them and "not" on the remaining 12%.

Suppose the proportion of American adults who support the expansion of solar energy is p = 0.88.

If we take a poll of 1000 American adults on this topic, the estimate would not be perfect. But, how close can we expect  $\hat{p}$  to be to p? We can simulate such a sample:

- As of 2021, there are about 258 million adults in America. Let us get 258 million slips of paper and write "support" on 88% of them and "not" on the remaining 12%.
- 2 Mix up the slips and pull out 1000, to represent our sample.

Suppose the proportion of American adults who support the expansion of solar energy is p = 0.88.

If we take a poll of 1000 American adults on this topic, the estimate would not be perfect. But, how close can we expect  $\hat{p}$  to be to p? We can simulate such a sample:

- As of 2021, there are about 258 million adults in America. Let us get 258 million slips of paper and write "support" on 88% of them and "not" on the remaining 12%.
- 2 Mix up the slips and pull out 1000, to represent our sample.
- 3 Compute the fraction of the sample that says "support".

Suppose the proportion of American adults who support the expansion of solar energy is p = 0.88.

If we take a poll of 1000 American adults on this topic, the estimate would not be perfect. But, how close can we expect  $\hat{p}$  to be to p? We can simulate such a sample:

- 1 As of 2021, there are about 258 million adults in America. Let us get 258 million slips of paper and write "support" on 88% of them and "not" on the remaining 12%.
- 2 Mix up the slips and pull out 1000, to represent our sample.
- 3 Compute the fraction of the sample that says "support".

#### Note

While this method seems silly, a compute can do these steps in a short amount of time.

I wrote a short program to run this simulation, but one simulation isn't enough to get a sense of the distribution of the point estimates.

I wrote a short program to run this simulation, but one simulation isn't enough to get a sense of the distribution of the point estimates.

So, I ran nine simulations:

| •     |        | •     | Error  | •     |        |
|-------|--------|-------|--------|-------|--------|
| 0.867 | -0.013 | 0.876 | -0.004 | 0.883 | 0.003  |
| 0.889 | 0.009  | 0.887 | 0.007  | 0.874 | -0.006 |
| 0.896 | 0.016  | 0.898 | 0.018  | 0.874 | -0.006 |

Notice that they are all kinda close to p = 0.88, but there is variation.

I wrote a short program to run this simulation, but one simulation isn't enough to get a sense of the distribution of the point estimates.

So, I ran nine simulations:

| •     | Error  | •     |        |       |        |
|-------|--------|-------|--------|-------|--------|
| 0.867 | -0.013 | 0.876 | -0.004 | 0.883 | 0.003  |
| 0.889 | 0.009  | 0.887 | 0.007  | 0.874 | -0.006 |
| 0.896 | 0.016  | 0.898 | 0.018  | 0.874 | -0.006 |

Notice that they are all kinda close to p = 0.88, but there is variation. The mean of all these  $\hat{p}$  values is 0.8827, which is pretty close to p.

I wrote a short program to run this simulation, but one simulation isn't enough to get a sense of the distribution of the point estimates.

So. I ran nine simulations:

| ρ̂    |        | •     | Error  |       |        |
|-------|--------|-------|--------|-------|--------|
| 0.867 | -0.013 | 0.876 | -0.004 | 0.883 | 0.003  |
| 0.889 | 0.009  | 0.887 | 0.007  | 0.874 | -0.006 |
| 0.896 | 0.016  | 0.898 | 0.018  | 0.874 | -0.006 |

Notice that they are all kinda close to p = 0.88, but there is variation. The mean of all these  $\hat{p}$  values is 0.8827, which is pretty close to p.

#### Definition

The **sampling distribution** is the distribution of sample proportions.









Center: The center of this distribution is  $\bar{x}_{\hat{p}} = 0.8799$ , which is very close to p = 0.88.





Center: The center of this distribution is  $\bar{x}_{\hat{p}} = 0.8799$ , which is very close to p = 0.88.

Spread : The standard deviation of this distribution is  $s_{\hat{o}} = 0.0102$ .

Running the simulation 10,000 times gives the histogram:



Center: The center of this distribution is  $\bar{x}_{\hat{p}} = 0.8799$ , which is very close to p = 0.88.

Spread: The standard deviation of this distribution is  $s_{\hat{p}} = 0.0102$ . This is often called the **standard error**.





Center: The center of this distribution is  $\bar{x}_{\hat{p}} = 0.8799$ , which is very close to p = 0.88.

Spread : The standard deviation of this distribution is  $s_{\hat{p}} = 0.0102$ . This is often called the **standard error**.

Shape: This distribution is approximately normal.

What if we used a much smaller sample size of n = 50?

What if we used a much smaller sample size of n = 50?

Center: The center of this distribution is  $\bar{x}_{\hat{p}} = 0.8791$ , which is still very close to p = 0.88.

What if we used a much smaller sample size of n = 50?

Center: The center of this distribution is  $\bar{x}_{\hat{p}} = 0.8791$ , which is still very close to p = 0.88.

Spread : The standard deviation of this distribution is  $s_{\hat{p}}=0.0462$ , which is much bigger.

What if we used a much smaller sample size of n = 50?

Center: The center of this distribution is  $\bar{x}_{\hat{p}} = 0.8791$ , which is still very close to p = 0.88.

Spread: The standard deviation of this distribution is  $s_{\hat{n}} = 0.0462$ , which is much bigger.

### Note

This highlights an important property: a bigger sample tends to provide a more precise point estimate than a smaller sample.

What if we used a much smaller sample size of n = 50?

Center: The center of this distribution is  $\bar{x}_{\hat{p}} = 0.8791$ , which is still very close to p = 0.88.

Spread: The standard deviation of this distribution is

 $s_{\hat{p}} = 0.0462$ , which is much bigger.

### Note

This highlights an important property: a bigger sample tends to provide a more precise point estimate than a smaller sample.

### Note

In real-world applications, we never actually observe the sampling distribution, yet it is useful to always think of a point estimate as coming from a hypothetical distribution.

#### Central Limit Theorem

When observations are independent and the sample size, n, is sufficiently large, the sample proportions  $\hat{p}$  will tend to follow a normal distribution with the following mean and standard deviation:

$$\mu_{\hat{p}} = p$$
 and  $\sigma_{\hat{p}} = SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$ 

#### Central Limit Theorem

When observations are independent and the sample size, n, is sufficiently large, the sample proportions  $\hat{p}$  will tend to follow a normal distribution with the following mean and standard deviation:

$$\mu_{\hat{p}} = p$$
 and  $\sigma_{\hat{p}} = SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$ 

In order for the Central Limit Theorem to hold, the sample size is typically considered sufficiently large when

$$np \ge 10$$
 and  $n(1-p) \ge 10$ 

which is called the success-failure conditions.

#### Central Limit Theorem

When observations are independent and the sample size, n, is sufficiently large, the sample proportions  $\hat{p}$  will tend to follow a normal distribution with the following mean and standard deviation:

$$\mu_{\hat{p}} = p$$
 and  $\sigma_{\hat{p}} = SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$ 

In order for the Central Limit Theorem to hold, the sample size is typically considered sufficiently large when

$$np \ge 10$$
 and  $n(1-p) \ge 10$ 

which is called the success-failure conditions.

### Note

The Central Limit Theorem is incredibly important, and provides a foundation for much of statistics.

In Example 3, we had a sample size of n = 1000 and p = 0.88.

In Example 3, we had a sample size of n = 1000 and p = 0.88.

Before we can apply the Central Limit Theorem, we need to check the success-failure conditions:

np =

In Example 3, we had a sample size of n = 1000 and p = 0.88.

$$np = 1000 \cdot 0.88$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

$$np = 1000 \cdot 0.88 = 880$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) =$ 

In Example 3, we had a sample size of n = 1000 and p = 0.88.

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88)$ 

In Example 3, we had a sample size of n = 1000 and p = 0.88.

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12$ 

In Example 3, we had a sample size of n = 1000 and p = 0.88.

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120$ 

In Example 3, we had a sample size of n = 1000 and p = 0.88.

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120 \ge \checkmark$ 

In Example 3, we had a sample size of n = 1000 and p = 0.88.

Before we can apply the Central Limit Theorem, we need to check the success-failure conditions:

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120 \ge \checkmark$ 

$$\mu_{\hat{p}} =$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

Before we can apply the Central Limit Theorem, we need to check the success-failure conditions:

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120 \ge \checkmark$ 

$$\mu_{\hat{p}} = p = 0.88$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

Before we can apply the Central Limit Theorem, we need to check the success-failure conditions:

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120 \ge \checkmark$ 

$$\mu_{\hat{p}}=p=0.88$$

$$SE_{\hat{p}} =$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

Before we can apply the Central Limit Theorem, we need to check the success-failure conditions:

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120 \ge \checkmark$ 

$$\mu_{\hat{p}} = p = 0.88$$

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

Before we can apply the Central Limit Theorem, we need to check the success-failure conditions:

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120 \ge \checkmark$ 

$$\mu_{\hat{p}} = p = 0.88$$

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.12)}{1000}}$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

Before we can apply the Central Limit Theorem, we need to check the success-failure conditions:

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120 \ge \checkmark$ 

$$\mu_{\hat{p}} = p = 0.88$$

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.12)}{1000}} = 0.0103$$

In Example 3, we had a sample size of n = 1000 and p = 0.88.

Before we can apply the Central Limit Theorem, we need to check the success-failure conditions:

$$np = 1000 \cdot 0.88 = 880 \ge 10 \checkmark$$
  
 $n(1-p) = 1000(1-0.88) = 1000 \cdot 0.12 = 120 \ge \checkmark$ 

Applying the Central Limit Theorem gives:

$$\mu_{\hat{p}} = p = 0.88$$

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.12)}{1000}} = 0.0103$$

This is very close to the observed standard error, 0.0102.

 Subjects in an experiment are considered independent if they undergo random assignment to the treatment groups.

- Subjects in an experiment are considered independent if they undergo random assignment to the treatment groups.
- If the observations are from a simple random sample, then they are independent.

- Subjects in an experiment are considered independent if they undergo random assignment to the treatment groups.
- If the observations are from a simple random sample, then they are independent.
- If a sample is from a seemingly random process, e.g. an occasional error on an assembly line, checking independence is more difficult. In this case, use your best judgment.

- Subjects in an experiment are considered independent if they undergo random assignment to the treatment groups.
- If the observations are from a simple random sample, then they are independent.
- If a sample is from a seemingly random process, e.g. an occasional error on an assembly line, checking independence is more difficult. In this case, use your best judgment.

#### Note

If a sample is larger than 10% of the population, the methods we discuss tend to overestimate the sampling error slightly. In these cases more advanced methods are needed.

Using n = 1000 and p = 0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p = 0.88.

Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat{p}}=$  0.88 and  $SE_{\hat{p}}=$  0.0103.

Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat{p}}=$  0.88 and  $SE_{\hat{p}}=$  0.0103.

$$z_{0.86} =$$

Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat{p}}=$  0.88 and  $SE_{\hat{p}}=$  0.0103.

$$z_{0.86} = \frac{0.86 - 0.88}{0.0103}$$

Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat{p}}=$  0.88 and  $SE_{\hat{p}}=$  0.0103.

$$z_{0.86} = \frac{0.86 - 0.88}{0.0103} = -1.942$$

Using n = 1000 and p = 0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p = 0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat{p}}=$  0.88 and  $SE_{\hat{p}}=$  0.0103.

$$z_{0.86} = \frac{0.86 - 0.88}{0.0103} = -1.942$$
 and  $z_{0.90} =$ 

Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat{p}}=$  0.88 and  $SE_{\hat{p}}=$  0.0103.

$$z_{0.86} = \frac{0.86 - 0.88}{0.0103} = -1.942$$
 and  $z_{0.90} = \frac{0.90 - 0.88}{0.0103}$ 

Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat{p}}=$  0.88 and  $SE_{\hat{p}}=$  0.0103.

$$z_{0.86} = \frac{0.86 - 0.88}{0.0103} = -1.942$$
 and  $z_{0.90} = \frac{0.90 - 0.88}{0.0103} = 1.942$ 

Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat p}=$  0.88 and  $SE_{\hat p}=$  0.0103.

$$z_{0.86} = \frac{0.86 - 0.88}{0.0103} = -1.942$$
 and  $z_{0.90} = \frac{0.90 - 0.88}{0.0103} = 1.942$ 



Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat{p}}=$  0.88 and  $SE_{\hat{p}}=$  0.0103.

We start by calculating the *z*-values:

$$z_{0.86} = \frac{0.86 - 0.88}{0.0103} = -1.942$$
 and  $z_{0.90} = \frac{0.90 - 0.88}{0.0103} = 1.942$ 



Using technology gives:

$$P(-1.94175 \le z \le 1.94175) = 0.947833$$

Using n=1000 and p=0.88 from Example 3, let us find out how often  $\hat{p}$  is within 0.02 (2%) of the population value p=0.88.

In Example 7, we applied the Central Limit Theorem, getting  $\mu_{\hat p}=$  0.88 and  ${\it SE}_{\hat p}=$  0.0103.

We start by calculating the *z*-values:

$$z_{0.86} = \frac{0.86 - 0.88}{0.0103} = -1.942$$
 and  $z_{0.90} = \frac{0.90 - 0.88}{0.0103} = 1.942$ 



Using technology gives:

$$P(-1.94175 \le z \le 1.94175) = 0.947833$$

We expect  $\hat{p}$  to be within 0.02 of 0.88 about 94.78% of the time.

We do not actually know the population proportion unless we conduct a full census of the entire population.

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

Success-Failure Conditions Since we don't actually know p, the next best thing we have is  $\hat{p}$ .

$$n\hat{p} =$$

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

Success-Failure Conditions Since we don't actually know p, the next best thing we have is  $\hat{p}$ .

 $n\hat{p} = 1000 \cdot 0.887$ 

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

$$n\hat{p} = 1000 \cdot 0.887 = 887$$

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

$$n\hat{p} = 1000 \cdot 0.887 = 887 \ge 10 \checkmark$$

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

$$n\hat{p} = 1000 \cdot 0.887 = 887 \ge 10 \checkmark$$
  
 $n(1 - \hat{p}) =$ 

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

$$n\hat{p} = 1000 \cdot 0.887 = 887 \ge 10 \checkmark$$
  
 $n(1 - \hat{p}) = 1000(1 - 0.887)$ 

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

$$n\hat{p} = 1000 \cdot 0.887 = 887 \ge 10 \ \sqrt{}$$
  
 $n(1 - \hat{p}) = 1000(1 - 0.887) = 1000 \cdot 0.113$ 

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

$$n\hat{p} = 1000 \cdot 0.887 = 887 \ge 10 \ \checkmark$$
  
 $n(1 - \hat{p}) = 1000(1 - 0.887) = 1000 \cdot 0.113 = 113$ 

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

$$n\hat{p} = 1000 \cdot 0.887 = 887 \ge 10 \checkmark$$
  
 $n(1 - \hat{p}) = 1000(1 - 0.887) = 1000 \cdot 0.113 = 113 \ge 10 \checkmark$ 

We do not actually know the population proportion unless we conduct a full census of the entire population.

The value p=0.88 was based on a Pew Research poll of 1000 adults that found  $\hat{p}=0.887$  of them favored expanding solar energy.

A question the researchers might have asked is:

"Does the sample proportion from the poll approximately follow a normal distribution?"

Independence Pew Research is a well known non-profit think tank, so we can believe that the poll is a simple random sample, and hence the observations are independent.

Success-Failure Conditions Since we don't actually know p, the next best thing we have is  $\hat{p}$ .

$$n\hat{p} = 1000 \cdot 0.887 = 887 \ge 10 \checkmark$$
 $n(1 - \hat{p}) = 1000(1 - 0.887) = 1000 \cdot 0.113 = 113 \ge 10 \checkmark$ 

Because  $n\hat{p}$  and  $n(1-\hat{p})$  are both well above 10, we can conclude that  $\hat{p}$  is a reasonable substitute for p.

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
 $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
 $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

# Example 10

$$SE_{\hat{p}} =$$

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
 $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

### Example 10

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
 $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

### Example 10

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.88)}{1000}}$$

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
 $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

### Example 10

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.88)}{1000}} = 0.010276$$

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
  $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

# Example 10

For 
$$n = 1000$$
,  $p - 0.88$ ,  $\hat{p} = 0.887$ :

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.88)}{1000}} = 0.010276$$

$$SE_{\hat{p}} pprox$$

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
 $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

# Example 10

For 
$$n = 1000$$
,  $p - 0.88$ ,  $\hat{p} = 0.887$ :

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.88)}{1000}} = 0.010276$$
 $SE_{\hat{p}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
 $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

# Example 10

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.88)}{1000}} = 0.010276$$

$$SE_{\hat{p}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.887(1-0.887)}{1000}}$$

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
  $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

# Example 10

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.88)}{1000}} = 0.010276$$

$$SE_{\hat{p}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.887(1-0.887)}{1000}} = 0.010012$$

When np and n(1-p) are much larger than 10, we can use  $\hat{p}$  in place of p and the Centeral Limit Theorem becomes:

$$\mu_{\hat{p}} = p \approx \hat{p}$$
  $SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

### Example 10

For n = 1000, p - 0.88,  $\hat{p} = 0.887$ :

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.88(1-0.88)}{1000}} = 0.010276$$

$$SE_{\hat{p}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.887(1-0.887)}{1000}} = 0.010012$$

These values are the same to three decimal places, so using the substitution approximation won't make a major difference.

• The smaller either np or n(1-p) is, the more discrete the sampling distribution is.

- The smaller either np or n(1-p) is, the more discrete the sampling distribution is.
- When np or n(1-p) is smaller than 10, the distribution is skewed.

- The smaller either np or n(1-p) is, the more discrete the sampling distribution is.
- When np or n(1-p) is smaller than 10, the distribution is skewed.
- The larger both np and n(1-p) are, the more normal the sampling distribution is.

- The smaller either np or n(1-p) is, the more discrete the sampling distribution is.
- When np or n(1-p) is smaller than 10, the distribution is skewed.
- The larger both np and n(1-p) are, the more normal the sampling distribution is.
  - This may be harder to see for larger sample sizes, as the variability also becomes smaller.

- The smaller either np or n(1-p) is, the more discrete the sampling distribution is.
- When np or n(1-p) is smaller than 10, the distribution is skewed.
- The larger both np and n(1-p) are, the more normal the sampling distribution is.
  - This may be harder to see for larger sample sizes, as the variability also becomes smaller.
- When np and n(1-p) are both very large, the distributions discreteness is hardly evident, and the distribution looks much more like a normal distribution.