Homework 2 Due September 29, Friday

- **1.**Consider a model with $S = \{s_1, s_2, s_3\}$, $A_{s_1} = \{a_{1,1}, a_{1,2}\}$ and $A_{s_2} = \{a_{2,1}, a_{2,2}\}$, and $A_{s_3} = \{a_{3,1}\}$; $r(s_1, a_{1,1}) = r(s_1, a_{1,2}) = 0$, $r(s_2, a_{2,1}) = 3$, $r(s_2, a_{2,2}) = 4$ and $r_1(s_3, a_{3,1}) = 4$ and $p(s_1|s_1, a_{1,1}) = p(s_2|s_1, a_{1,1}) = 1/2$, $p(s_1|s_1, a_{1,2}) = 2/3$, $p(s_3|s_1, a_{1,2}) = 1/3$, $p(s_1|s_2, a_{2,1}) = 1$, $p(s_3|s_2, a_{2,2}) = 1$ and $p(s_1|s_3, a_{3,1}) = 1$. Suppose that the objective is to maximize the infinite horizon discounted reward with discount factor $\alpha = 0.8$. Use value iteration to solve the problem. Please submit all the outputs.
- **2.** Show that \mathcal{L} is a contraction mapping.
- **3.** Suppose you have solved a discounted Markov decision process (with finite state space and finite action set) under maximization and have computed v_{λ}^{*} and an optimal policy d^{∞} for which $v_{\lambda}^{d^{\infty}} = v_{\lambda}^{*}$. Suppose a new action a' becomes available in state s'. How can you determine whether d^{∞} is still optimal without resolving the problem?