Контрольная работа 3 семестр

Задание 1

Вычислить поверхностный интеграл.

- 1. $\iint\limits_S (x+y+z) dS$, где S часть плоскости $x+2y+4z=4, \ x\geq 0, \ y\geq 0, \ z\geq 0.$
- 2. $\iint_S (x+y+z) dS$, где S часть сферы $x^2+y^2+z^2=1,\ z\geq 0.$
- 3. $\iint_S (x^2+y^2+z)dS$, где S часть сферы $x^2+y^2+z^2=a^2,\ z\geq 0.$
- 4. $\iint_{S} (x^2 + y^2) dS$, где S сфера $x^2 + y^2 + z^2 = R^2$.
- 5. $\iint_{S} (x^2 + y^2 + z^2) dS$, где S сфера $x^2 + y^2 + z^2 = R^2$.
- 6. $\iint\limits_{S}ydzdx$, где S внешняя сторона сферы $x^2+y^2+z^2=R^2$.
- 7. $\iint\limits_{S}x^{2}dydz$, где S внешняя сторона сферы $x^{2}+y^{2}+z^{2}=R^{2}.$
- 8. $\iint_S (x^5+z) dy dz$, где S внутренняя сторона полусферы $x^2+y^2+z^2=R^2,\ z\leq 0.$
- 9. $\iint_S x^2 y^2 z dx dy$, где S внутренняя сторона полусферы $x^2 + y^2 + z^2 = R^2$, z < 0.
- 10. $\iint_S (z^2-y^2) dy dz + (x^2-z^2) dz dx + (y^2-x^2) dx dy$, где S внешняя сторона полусферы $x^2+y^2+z^2=R^2,\ z\geq 0$.

Задание 2

Разложить в ряд Фурье функцию f(x) на указанном промежутке и нарисовать график суммы ряда.

1. f(x) = x на интервале $(-\pi, \pi)$.

- 2. f(x) = |x| на интервале $(-\pi, \pi)$.
- 3. Разложить в ряд Фурье функцию $f(x) = \pi 2x, \ 0 < x < \pi,$ продолжив ее на промежуток $(-\pi,0)$ четным образом, и нарисовать график суммы ряда.
- 4. Разложить в ряд Фурье функцию

$$f(x) = \begin{cases} x, \ 0 \le x \le \pi/2, \\ \pi/2, \ \pi/2 < x \le \pi, \end{cases}$$

продолжив ее на промежуток $(-\pi,0)$ четным образом, и нарисовать график суммы ряда.

5. Разложить в ряд Фурье функцию

$$f(x) = \begin{cases} x, \ 0 \le x \le \pi/2, \\ \pi/2, \ \pi/2 < x \le \pi, \end{cases}$$

продолжив ее на промежуток $(-\pi,0)$ нечетным образом, и нарисовать график суммы ряда.

- 6. Разложить в ряд Фурье функцию $f(x) = \pi 2x$, $0 < x < \pi$, продолжив ее на промежуток $(-\pi,0)$ четным образом, и нарисовать график суммы ряда.
- 7. Разложить функцию $f(x) = x, \ 0 \le x \le \pi$, в ряд Фурье по косинусам.
- 8. Разложить функцию $f(x) = \cos 2x, \ 0 \le x \le \pi,$ в ряд Фурье по синусам.
- 9. Разложить в ряд Фурье на $(0,\pi)$ по косинусам функцию

$$f(x) = \begin{cases} \pi/2 - x, & 0 \le x \le \pi/2, \\ 0, & \pi/2 < x \le \pi, \end{cases}$$

и нарисовать график суммы ряда.

10. Разложить в ряд Фурье по синусам функцию

$$f(x) = \begin{cases} 1, & 0 \le x \le \pi/2, \\ 0, & \pi/2 < x \le \pi, \end{cases}$$

и нарисовать график суммы ряда.

Задание 3

Найти сумму, произведение и частное комплексных чисел z_1 и z_2

- 1. $z_1 = 1 + i$, $z_2 = 3 + 2i$.
- 2. $z_1 = 2 i$, $z_2 = 3 i$.

Представить комплексное число в тригонометрической и показательной форме

- 3. $z = 1 + i\sqrt{3}$
- 4. $z = \sqrt{3} i$

Найти все значения корней и построить их:

5. $\sqrt[3]{i}$

- 7. $\sqrt[4]{-1}$ 9. $\sqrt{1-i}$

- 6. $\sqrt[3]{-8}$ 8. $\sqrt[6]{-1}$ 10. $\sqrt[3]{-1}$

Задание 4

Разложить в ряд Лорана

- 1. $f(z) = \frac{1}{z^2(z-3)}$ в кольце 0 < |z| < 3
- 2. $f(z) = \frac{1}{z^2(z-3)}$ в окрестности $z = \infty$;
- 3. $f(z) = \frac{z+1}{z^2(z-1)}$ в кольце 0 < |z| < 1
- 4. $f(z) = \frac{z+1}{z^2(z-1)}$ в окрестности $z = \infty$;
- 5. $f(z) = \frac{4z}{(z-1)^2(z+2)}$ в кольце 0 < |z-1| < 3
- 6. $f(z) = \frac{4z}{(z-1)^2(z+2)}$ в окрестности $z = \infty$;

7.
$$f(z) = \frac{2z}{(z-1)(z+2)}$$
 в кольце $1 < |z| < 2$

8.
$$f(z) = \frac{2z}{(z-1)(z+2)}$$
 в окрестности $z = \infty$;

9.
$$f(z) = \frac{1}{(z^2+1)^2} + \sin\frac{1}{z} + 6z^5$$
; в окрестности $z = \infty$;

10.
$$f(z) = \frac{1}{(z^2+1)^2} + \sin \frac{1}{z} + 6z^5$$
; в окрестности $z = 0$

Задание 5

Найти вычеты указанных функций во всех изолированных особых точках и в бесконечности (если она не является предельной для особых точек).

1.
$$\frac{1}{z^3 - z^5}$$

4.
$$\frac{z^2+z-1}{z^2(z-1)}$$

8.
$$\sin \frac{z}{z+1}$$

$$2. \ \frac{z^2}{(z^2+1)^2}$$

5.
$$\frac{\sin 2z}{(z+1)^3}$$
6. $\frac{e^z}{z^2(z^2+9)}$

9.
$$\frac{\cos z}{(z-1)^2}$$

3.
$$\frac{1}{z(1-z^2)}$$

7.
$$z^3 \cos \frac{1}{z-2}$$
 10. $\frac{1+z^8}{z^6(z+2)}$

10.
$$\frac{1+z^8}{z^6(z+2)}$$

Задание 6

Вычислить интеграл по границе области D с помощью вычетов

1.

$$\int_{\partial D} \frac{1}{z^2(z-3)} dz, \ D: |z| < 4;$$

2.

$$\int_{\partial D} \frac{\sin\frac{2}{z}}{1+z} dz, \quad D: |z| < 2;$$

3.

$$\int_{2D} \frac{z+1}{z^2(z-1)} dz, \ D: |z| < 2;$$

4.

$$\int_{\partial D} z \sin \frac{z+1}{z-1} dz, \quad D: |z| < 2;$$

5.
$$\int_{\partial D} \frac{4z}{(z-1)^2(z+2)} dz, \quad D: |z| < 3;$$

6.
$$\int_{\partial D} \frac{z^3}{z^4 - 1} dz, \ D: |z| < 2;$$

7.
$$\int_{\partial D} \frac{2z}{(z-1)(z+2)} dz, \ D: |z| < 3;$$

8.
$$\int_{\partial D} \frac{z}{(z-1)(z^2-2)} dz, \quad D: |z| < 2.$$

9.
$$\int_{\partial D} \frac{z}{(z^2+2)(z-2)} dz, \ D: |z| < 3.$$

10.
$$\int_{\partial D} \frac{z}{(z^2+1)(z+2)} dz, \ D: |z| < 3.$$