FUNÇÕES DE RECORRÊNCIA E O TEOREMA MESTRE DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 9 de março de 2025

Departamento de Ciência da Computação

ALGORITMOS RECURSIVOS

Diversos algoritmos em computação são recursivos

- Sequência de fibonacci
- Algoritmos de programação dinâmica
- Fatorial
- $\circ \dots$

Como podemos calcular a complexidade computacional destes algoritmos?

EQUAÇÕES DE RECORRÊNCIA

Quando um algoritmo contém uma chamadas recursivas, seu tempo de execução pode freqüentemente ser descrito por uma equação de recorrência

Complexidade de um loop (for)

$$\sum_{i=0}^{n} f(n)$$

Complexidade de um algoritmo recursivo

$$T(n) = T(n-1) + 1$$

3

EQUAÇÕES DE RECORRÊNCIA

Uma recorrência é uma equação ou desigualdade que descreve uma função em termos de seu valor em entradas menores

$$T(n) = T(n-1) + 1$$

Para cada procedimento recursivo é associada uma função de complexidade T(n) desconhecida, onde n mede o tamanho dos argumentos do procedimento

Vamos considerar o pior caso deste algoritmo. Ou seja, o número sempre é inserido na última posição verificada

- 1. Faz uma comparação
- 2. Faz duas comparações
- 3. Faz três comparações
- 4. ...

Na inserção do n-ésimo número, ele poder fazer um total de n comparações

$$T(n) = T(n-1)+1$$

$$T(n-1) = T(n-2)+2$$

$$T(n-2) = T(n-3)+3$$

$$T(n-3) = T(n-4)+4$$
...
$$T(2) = T(1)+n-2$$

$$T(1) = n-1$$

7

$$T(n) = 1 + 2 + 3 + 4 + \dots + (n-2) + (n-1)$$

$$T(n) = \sum_{i=1}^{n-1} i = \left(\sum_{i=1}^{n} i\right) - n = \left(\frac{n(n+1)}{2}\right) - n$$

$$T(n) = \frac{n^2 + n}{2} - n = \frac{n^2 + n - 2n}{2}$$

$$T(n) = \frac{n^2 - n}{2}$$

$$T(n) = \frac{n^2 - n}{2} \in \Theta(n^2)$$

8

Considere o pseudo-código abaixo

 \bigcirc O algoritmo inspeciona n elementos de um conjunto qualquer

De alguma forma, isso permite descartar $\frac{2}{3}$ dos elementos e fazer uma chamada recursiva sobre um terço do conjunto original

```
1 algoritmo Pesquisa (vetor)
2   if vetor.size() <= 1 then
3    inspecione elemento;
4   else
5    inspecione cada elemento recebido (vetor);
6   Pesquisa(vetor.subLista(1, (vetor.size() / 3));
7   end if
8 end.</pre>
```

```
1 algoritmo Pesquisa (vetor)

O(1) 2 if vetor.size() <= 1 then
O(1) 3 inspecione elemento;
4 else
O(n) 5 inspecione cada elemento recebido (vetor);
Chamada recursiva 6 Pesquisa(vetor.subLista(1, (vetor.size() / 3));
7 end if
8 end.
```

Chamada recursiva =
$$T(\frac{n}{3}) + n$$

$$T(n) = \begin{cases} 1, & \text{se } n \leq 1 \\ t(\frac{n}{3}) + n, & \text{caso contrario} \end{cases}$$

```
T(n) = n + T(n/3)
T(n/3) = n/3 + T(n/3/3)
T(n/3/3) = n/3/3 + T(n/3/3/3)
T(n/3/3/3) = n/3/3/3 + T(n/3/3/3/3)
\vdots
T(n/3/3/3/3.../3) = n/3/3/3/.../3 + T(n/3/3/3/.../3/3)
T(1) = 1
```

$$T(n) = n + T(n/3)$$

$$T(n/3) = n/3 + T(n/3/3)$$

$$T(n/3/3) = n/3/3 + T(n/3/3/3)$$

$$T(n/3/3/3/3) = n/3/3/3 + T(n/3/3/3/3)$$
...
$$T(n/3/3/3/3.../3) = n/3/3/3/.../3 + T(n/3/3/3/3.../3/3)$$

$$T(1) = 1$$

$$T(n) = n + n/3 + n/3/3 + n/3/3/3 + \dots + n/3/3/3/\dots/3 + 1$$

$$T(n) = \left\{ egin{array}{ll} 1, & ext{se } n \leq 1 \\ T\left(rac{n}{3}
ight) + n, & ext{caso contrario} \end{array}
ight.$$

$$T(n) = n + n/3 + n/3/3 + n/3/3/3 + \ldots + n/3/3/3/\ldots/3 + 1$$

$$T(n) = n \sum_{i=1}^{n-1} \left(\frac{1}{3}\right)^i + 1$$

Levando em consideração que

$$\sum_{i=1}^{n-1} x^i = \frac{1}{1-x},$$

temos que

$$T(n) = n \sum_{i=1}^{n-1} \left(\frac{1}{3}\right)^i + 1 = n \left(\frac{1}{1 - \frac{1}{3}}\right) + 1 = \frac{3n}{2} + 1 = \Theta(n)$$

TEOREMA MESTRE

O teorema mestre é um conjunto de regras para resolvermos equações de recorrência

Ele resolve equações de recorrência no formato

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

onde

- \bigcirc $a \ge 1$ e b > 1 são constantes
- \cap f(n) é uma função assintoticamente positiva

TEOREMA MESTRE

O teorema mestre possui 3 regras, a depender do formato da função f(n)

Caso 1:
$$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$
, com $\epsilon > 0$

Caso 2:
$$f(n) = \mathcal{O}(n^{\log_b a})$$

Caso 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$, com $\epsilon > 0$, desde que $af\left(\frac{n}{b}\right) \leq cf(n)$ para alguma constante c < 1 e n suficientemente grande

TEOREMA MESTRE

Caso 1:
$$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$
, então $T(n) = \Theta\left(n^{\log_b a}\right)$

Caso 2:
$$f(n) = \mathcal{O}(n^{\log_b a})$$
, então $T(n) = \Theta(n^{\log_b a} \log n)$

Caso 3:
$$f(n) = \Omega(n^{log_b a + \epsilon})$$
, então $T(n) = \Theta(f(n))$

$$T(n) = 9T\left(\frac{n}{3}\right) + n$$

Neste caso, temos que a = 9, b = 3 e f(n) = n

Podemos aplicar o caso 1 do teorema mestre:

$$\bigcirc f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$
, então $T(n) = \Theta(n^{\log_b a})$

$$\circ$$
 $\epsilon = 1$

Temos que $T(n) = \Theta(n^{log_b a}) = \Theta(n^2)$

$$T(n) = T\left(\frac{2n}{3}\right) + 1$$

Neste caso, temos que $a=1, b=\frac{3}{2}$ e f(n)=1

Podemos aplicar o caso 2 do teorema mestre:

- $\cap f(n) = \mathcal{O}(n^{\log_b a \epsilon})$, então $T(n) = \Theta(n^{\log_b a} \log n)$
- $\bigcirc \log_{3/2} 1 = 0$

Temos que $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(\log n)$

$$T(n) = 3T\left(\frac{n}{4}\right) + n\log_2 n$$

Neste caso, temos que a = 3, b = 4 e $f(n) = n \log_2 n$

Podemos aplicar o caso 3 do teorema mestre:

- \cap $f(n) = \Omega(n^{\log_b a + \epsilon})$, então $T(n) = \Theta(f(n))$
- $\bigcirc \ \epsilon = 1 \log_4 3 = 1 0,7924812504... = 0,2075187496...$

Agora precisamos verificar se a condição de regularidade af $\left(\frac{n}{b}\right) \leq cf(n)$ é satisfeita

$$af\left(\frac{n}{b}\right) \le cf(n), \quad a = 3, b = 4$$

$$af(n/b) \le cf(n)$$

$$3 \times \frac{n}{4}\log_2 \frac{n}{4} \le cn\log_2 n$$

$$\frac{3}{4}n(\log_2 n - \log_2 4) \le cn\log_2 n$$

$$\frac{3}{4}n(\log_2 n - 2) \le cn\log_2 n$$

$$\frac{3}{4}n\log_2 n - 2 \times \frac{3}{4}n \le cn\log_2 n$$

$$\frac{3}{4}n\log_2 n - \frac{3}{2}n \le cn\log_2 n$$

Considerando
$$c=rac{3}{4}$$

$$rac{3}{4}n\log_2 n - rac{3}{2}n \leq rac{3}{4}n\log_2 n \\ -rac{3}{2}n \leq 0 \\ rac{3}{2}n \geq 0 \\ n>0$$

Confirmada a condição de regularidade, temos então que

$$T(n) = \Theta(f(n))) = \Theta(n \log_2 n)$$