1. Let A_1 denote the matrix

$$A_1 = \left[\begin{array}{rrr} 4 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 4 \end{array} \right]$$

- (a) Find the eigenvalues and corresponding eigenvectors for A_1 .
- (b) Find a matrix C_1 such that $C_1^{-1}AC_1 = \Lambda$, where Λ is a diagonal matrix. Calculate explicitly C_1^{-1} .

Suppose now we want to solve the 3×3 system of first order differential equations

$$\frac{d}{dt}u(t) = A_1u(t)$$
, with initial condition $u(0) = (1\ 0\ 0)^T$.

- (c) Write the corresponding system of differential equations for $v(t) = C_1^{-1}u(t)$. What is the initial condition for v(0).
 - (d) Find the solution to the problem in (c), i.e., find the explicit formula for v(t).
 - (e) Use the formula for v(t) to derive a formula for u(t)
- **2.** Let A_2 denote the matrix

$$A_2 = \left[\begin{array}{rrr} 4 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 4 \end{array} \right]$$

- (a) Find the eigenvalues of A_2 . Can you find a basis of eigenvectors?
- (b) Show that

$$N((A_2 - 4)^2) = \text{span}\{(1 \ 0 \ 1)^T, (4 \ 1 \ 0)^T\} \text{ and } N(A_2) = \text{span}\{(1 \ -4 \ 1)^T\} .$$

- (c) Show that $\{(1\ 0\ 1)^T, (4\ 1\ 0)^T, (1\ -4\ 1)^T\}$ forms a basis of \mathbb{R}^3 . Find the representation of A_2 in this basis.
- (d) Can you briefly describe how this representation would help you solve $\frac{d}{dt}u(t) = A_2u(t)$ with $u(0) = (1\ 0\ 0)^T$. What is the main difference when compared to the solution in Problem 1 (d)-(e)?