"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위 주체인 본인에게 있습니다."

알고리즘

4. Graph

상명대학교 컴퓨터과학과

민경하

Contents

- 1. STL
- 2. Prologue
- 3. Divide & conquer
- 4. Graph
- 5. Greedy algorithm
- 6. Dynamic programming

4. Graph

- 4.0 Introduction
- 4.1 Why graph?
- 4.2 Depth-first search in undirected graph
- 4.3 Depth-first search in directed graphs
- 4.4 Strongly connected components
- 4.5 Biconnected component
- 4.6 Distances
- 4.7 Breadth-first search
- 4.8 Single source shortest path
- 4.9 All pairs shortest path

Graph

- An abstract representation of a set of objects where some pairs of the objects are connected by links
 - The interconnected objects are called vertices
 - The links that connect some pairs of vertices are called edges

$$G = (V, E)$$

- Konigsberg bridge problem
 - To find a walk through the city that would cross each bridge once and only once
 - Euler was invited to attack!!

Konigsberg bridge problem

• Konigsberg bridge problem

• Konigsberg bridge problem

- Euler's solution doesn't matter
- Euler introduced "graph" to explain his solution
 - Abstraction
 - Land & island → node (vertex)
 - Bridge → edge (link)

(1) Definition of a graph

- specified by a set of vertices (also called nodes)
 V and by edges E between select pairs of vertices.
- -G = (V, E)
- Ex: G in the previous page

$$\bullet$$
 V = {1, 2, ..., 13}

•
$$E = \{ \{1, 2\}, \{1, 3\}, \dots \}$$

(2) The type of a graph

- An undirected graph
 - $\{v, w\} = \{w, v\}$
- A directed graph
 - $(V, W) \neq (W, V)$

(2) The type of a graph

개체: 철이, 영이, 돌이, 순이

관계: 철이, 영이는 페친임.

철이, 순이는 페친임.

돌이, 순이는 페친임.

(2) The type of a graph

개체: 철이, 영이, 돌이, 순이

관계: 철이는 영이를 follow함.

철이는 순이를 follow함. 돌이는 순이를 follow함.

(2) The type of a graph

개체: 철이, 영이, 돌이, 순이

관계: 철이, 영이는 심각한 페친임.

철이, 순이는 썰렁한 페친임. 돌이, 순이는 평범한 페친임.

(2) The type of a graph

개체: 철이, 영이, 돌이, 순이

관계: 철이는 영이를 많이 follow함.

철이는 순이를 조금 follow함. 돌이는 순이를 보통 follow함

(2) The type of a graph

(Undirected) Graph: (u, v) = (v, u)

Directed graph: $(u, v) \neq (v, u)$

(2) The type of a graph

		Weighted or not		
		Non-weighted	Weighted	
Directed or not	Undirected	1 2	2 0 3 1 2 1	
	Directed	1 2	1 2 2 1	

- (3) Representation of a graph
 - (3.1) Edge list
 - A list of edges
 - Available on many coding problems

4, 6 0, 1 0, 2 0, 3 1, 2 1, 3 2, 3

(3) Representation of a graph

(3.2) Adjacency matrix of G = (V, E)

- A two-dimensional n X n array: a[n][n]
- a[i][j] = 1, if $(v_i, v_i) \in E$
- a[i][j] = 0, if $(v_i, v_j) ! \in E$

(3) Representation of a graph

(3.2) Adjacency matrix of G = (V, E)

- A two-dimensional n X n array: a[n][n]
- a[i][j] = 1, if $\langle v_i, v_j \rangle \in E$
- a[i][j] = 0, if $\langle v_i, v_j \rangle ! \in E$

- (3) Representation of a graph
 - (3.3) Adjacency list of G = (V, E)
 - adjLists[n]
 - adjLists[i] is a pointer to the first node in the adjacency list for vertex i

- (3) Representation of a graph
 - (3.3) Adjacency list of G = (V, E)
 - adjLists[n]
 - adjLists[i] is a pointer to the first node in the adjacency list for vertex i

(4) Performance analysis(4.1) Sparse VS dense (complete) graph

Sparse graph: |V| = n |E| = O(n)

Complete graph:

$$|V| = n$$

 $|E| = O(n^2)$

(4) Performance analysis(4.2) Performance analysis

Space complexity	Sparse graph	Complete graph
Adjacency list	O(n)	O(n²)
Adjacency matrix	O(n ²)	O(n²)

Time complexity	Sparse graph	Complete graph
Adjacency list	O(n)	O(n²)
Adjacency matrix	O(n²)	O(n²)

(5) Classification of graph algorithms

다음은 그래프에 대한 설명이다. 잘못된 것을 모두 고르시오.

- (a) 그래프는 3개 이상의 개체들 사이의 관계를 동시에 나타 낼 수 있다.
- (b) 그래프를 adjacency matrix로 표현하면 sparse graph나 dense graph나 같은 기억 공간을 요구한다.
- (c) 그래프는 개체, 관계, 속성의 3 개의 요소를 갖는다.
- (d) 그래프의 vertex는 개체를 나타내고 edge는 속성을 나타낸다.