

Session 1: Introduction

Module BUSN9690

Business Statistics with Python

Professor Shaomin Wu

House keeping: Learning and teaching

- What will happen
 - Lecture time: I introduce a topic
 - Lab time: You read questions, solve them, and then check the solutions
- In addition to listening, you learn by practicing
- Help is always available!
 - Exercise time: you may ask for help
 - Office hours
- If more than two students have the same question, I will show the whole class how to do it
- If you have any questions, do ask: s.m.wu@kent.ac.uk

Teaching materials & Assessment

- Teaching materials: Available on <u>moodle.kent.ac.uk</u>
 - Use your Kent username and password to log in
 - Choose module BUSN9690, "Business Statistics with Python"
- Read the module guide
- Your attendance will be registered
- Lecture is recorded
- Assessment

Assessment	Time/Due date	Weighting
In-course test (VLN) 1	45 minutes	20%
In-course test 2	45 minutes	20%
Individual Assignment (up to 2500	Submission due time: the first week in the spring	60%
words)	term	

Readings and useful websites

- Readings:
 - Python
 - Heinold, B, 2012. <u>A practical introduction to Python programming</u>.
 - Verzani, J., 2016. <u>An Introduction to Statistics with Python -- With Applications in the Life Sciences</u>. Springer press.
 - Statistics
 - Weiss, N.A., 2012. Introductory statistics. Boston: Addison-Wesley.

- Useful websites
 - Python: https://www.w3schools.com/python/default.asp
 - Machine learning: https://www.kdnuggets.com
 - Datasets: https://archive.ics.uci.edu/ml/index.php

Two modules on statistical data analysis

- BUSN9690(CB969): Business Statistics with Python
- BUSN9040(CB9040): Machine Learning and Forecasting

- Why do we need to learn BUSN9690?
 - Need to know and be able to use a computing language
 - BUSN9690 paves the way for BUSN9040
 - Model checking
 - Coefficient interpretation

Indicative module content

- 1. Session 1. Introduction to the module
- 2. Session 2. Data Type and Basic Operators
- 3. Session 3. Python library: NumPy
- 4. Session 4. Python library: Pandas & SciPy
- 5. Session 5. Control statements
- 6. Session 6. Introduction to Statistics
- 7. Session 7. Reading Week
- 8. Session 8. Probability and Bayes Theorem
- 9. Session 9. Discrete probability distributions
- 10. Session 10. Continuous probability distributions
- 11. Session 11. Point estimates and confidence intervals
- 12. Session 12. Tests of Hypotheses

Some concepts

Philosophy of the module

- Statistical theory
 - can be very mathematical
- Practical statistics
 - from sample to population
 - help us understand the real world
- Choose the right modél/method
 - then interpret the results
- Useful results must
 - be reported clearly
 - be helpful in decision making for business managers

Model: the relationship between variables. Typically, it is a mathematical formula

A data analysis process

Example: coronavirus strategy in the UK

Basic terminology

- <u>Data</u> are the facts or measurements that are collected, analyzed, presented, and interpreted
- A <u>variable</u> is an attribute of an element that may assume different values; its synonyms: feature
- An <u>observation</u> is the set of values on the variables for a single element; its synonyms: instance
- <u>Dataset</u> refers to all the data, across all the observations and all variables, collected for any given study

Example: adult dataset

age workclass	education	marital_status	occupation	gender	hours_per_week	income
39 State-gov	Bachelors	Never-married	Adm-clerical	Male	40	<=50K
50 Self-emp-not-in	ac Bachelors	Married-civ-spouse	Exec-managerial	Male	13	<=50K
38 Private	HS-grad	Divorced	Handlers-cleaners	Male	40	<=50K
53 Private	11th	Married-civ-spouse	Handlers-cleaners	Male	40	<=50K
28 Private	Bachelors	Married-civ-spouse	Prof-specialty	Female	40	<=50K
37 Private	Masters	Married-civ-spouse	Exec-managerial	Female	40	<=50K
49 Private	9th	Married-spouse-absent	Other-service	Female	16	<=50K
52 Self-emp-not-in	nc HS-grad	Married-civ-spouse	Exec-managerial	Male	45	>50K
31 Private	Masters	Never-married	Prof-specialty	Female	50	>50K
42 Private	Bachelors	Married-civ-spouse	Exec-managerial	Male	40	>50K
37 Private	Some-college	Married-civ-spouse	Exec-managerial	Male	80	>50K
30 State-gov	Bachelors	Married-civ-spouse	Prof-specialty	Male	40	>50K
23 Private	Bachelors	Never-married	Adm-clerical	Female	30	<=50K
32 Private	Assoc-acdm	Never-married	Sales	Male	50	<=50K
40 Private	Assoc-voc	Married-civ-spouse	Craft-repair	Male	40	>50K
34 Private	7th-8th	Married-civ-spouse	Transport-moving	Male	45	<=50K
25 Self-emp-not-in	nc HS-grad	Never-married	Farming-fishing	Male	35	<=50K
32 Private	HS-grad	Never-married	Machine-op-inspct	Male	40	<=50K
38 Private	11th	Married-civ-spouse	Sales	Male	50	<=50K

Variable: Age, workclass, education, marital_status, Instance/Observation

Vector

John, Anna, and Emma obtained their marks on four modules as shown below

	Business statistics	Simulation	Machine Learning	Big Data
John	65	60	70	80
Anna	72	65	55	65
Emma	56	64	67	53

Let

$$-V_{J} = (65 60 70 80),$$

$$-V_A = (72 65 55 65)$$
, and

$$-V_{E} = (56 \quad 64 \quad 67 \quad 53),$$

Then V_I is called a vector, so is V_A (or V_E)

Matrix

	Business statistics	Simulation	Machine Learning	Big Data
John	65	60	70	80
Anna	72	65	55	65
Emma	56	64	67	53

M=
$$\begin{pmatrix} 65 & 60 & 70 & 80 \\ 72 & 65 & 55 & 65 \\ 56 & 64 & 67 & 53 \end{pmatrix}$$
 \leftarrow 2nd row \rightarrow 3rd row \rightarrow 1st column \rightarrow 2nd col

- M is called a matrix with 3 rows and 4 columns
- The order of a matrix is rows × columns
- Terms: entry/element, dimension, n by m, row, column

Questions

•
$$M_1 = \begin{pmatrix} 65 & 60 & 70 & 80 \\ 72 & 65 & 55 & 65 \end{pmatrix}$$
 is a matrix with __ rows and __ columns

•
$$M_2 = \begin{pmatrix} 65 \\ 72 \\ 56 \end{pmatrix}$$
 is a matrix with __ rows and __ columns

•
$$M_3 = (65 \quad 60 \quad 70 \quad 80)$$
 is a matrix with __ rows and __ columns

• M_2 and M_3 are also vectors

Matrix

Let

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

then A is an n by m matrix, or an $n \times m$ matrix.

If

$$B = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \cdots & \cdots & \ddots & \cdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

Then B is an $m \times n$ matrix, or the transpose of the above matrix A, or $B = A^T$, of course, $A = B^T$

Simply put: put the k-th row of A to the k-th column of B

Matrix

Denote

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

where n = m, then A is a square matrix of order n

Let

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Then I_n is an $n \times n$ identity matrix. That is, the identity matrix I_n of size n is the $n \times n$ matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0,

- Example
- Let $A = \begin{pmatrix} 65 & 60 & 70 & 80 \\ 72 & 65 & 55 & 65 \end{pmatrix}$ and $B = \begin{pmatrix} 65 & 72 \\ 60 & 65 \\ 70 & 55 \\ 80 & 65 \end{pmatrix}$, then $A = B^T$, or $B = A^T$
 - $M_6 = \begin{pmatrix} 65 & 60 \\ 72 & 65 \end{pmatrix}$ is a square matrix of order 2
 - $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is called a 3 x 3 identity matrix, or an identity matrix of order 3

Matrix addition/subtraction/multiplication/division

If A is an n x m matrix and B is an n x m matrix,

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}, \qquad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \cdots & \cdots & \ddots & \cdots \\ b_{n1} & b_{n2} & \cdots & b_{nm} \end{pmatrix}$$

then matrix addition
$$\mathbf{C} = \mathbf{A} + \mathbf{B}$$
: $\mathbf{C} = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1m} \\ c_{21} & c_{22} & \cdots & c_{2m} \\ \cdots & \cdots & \ddots & \cdots \\ c_{n1} & c_{n2} & \cdots & c_{nm} \end{pmatrix}$ is an $\mathbf{n} \times \mathbf{m}$ matrix, where $c_{ij} = a_{ij} + b_{ij}$

Example

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 7 & 6 \\ 4 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 5 & 2 & 1.2 \\ 2 & 0 & 9 \\ 2 & 5 & 12 \end{pmatrix} = \begin{pmatrix} 1+5 & 2+2 & 0+1.2 \\ 0+2 & 7+0 & 6+9 \\ 4+2 & 0+5 & 1+12 \end{pmatrix} = \begin{pmatrix} 6 & 4 & 1.2 \\ 2 & 7 & 15 \\ 6 & 5 & 13 \end{pmatrix}$$

■ Similarly, subtraction (A - B), multiplication $(A \circ B)$, and division $(A \oslash B)$ can be done, all of them are element-wise operators. That is, each element of A is subtracted/multiplied/divided by the corresponding element of B

Scalar Multiplication

If A is an n x m matrix,

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix},$$

The product αA of a number α (also called a scalar) and a matrix A is computed by

multiplying every entry of A by
$$\alpha$$
: $\mathbf{C} = \alpha \mathbf{A}$: $\mathbf{C} = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1m} \\ c_{21} & c_{22} & \cdots & c_{2m} \\ \cdots & \cdots & \ddots & \cdots \\ c_{n1} & c_{n2} & \cdots & c_{nm} \end{pmatrix}$ is an $\mathbf{n} \times \mathbf{m}$ matrix,

where $c_{ij} = \alpha a_{ij}$

An example

$$3 \times \begin{pmatrix} 1 & 2 & 0 \\ 0 & 7 & 6 \\ 4 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 0 \\ 0 & 21 & 18 \\ 12 & 0 & 3 \end{pmatrix}$$

Dot product between two matrices

If A is an n x m matrix and B is an m x p matrix,

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}_{n \times m}, \qquad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \cdots & \cdots & \ddots & \cdots \\ b_{m1} & b_{m2} & \cdots & b_{mp} \end{pmatrix}_{m \times p}$$

• then matrix product $C = A \cdot B$ (denoted $C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \cdots & \cdots & \ddots & \cdots \\ c_{n1} & c_{n2} & \cdots & c_{np} \end{pmatrix}$) is defined to be the $n \times p$ matrix

$$c_{ij} = a_{i1}b_{1j} + \dots + a_{im}b_{mj} = \sum_{k=1}^{m} a_{ik}b_{kj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

- Distinguish $A \cdot B$ from $A \circ B$. $A \cdot B$ is normally denoted by AB (without multiplication sign or dot sign in-between)
- Rules:
 - $-c_{ij}$ is the sum of the elements in the *i*-th row in A multiplying the elements in the *j*-th column in B
 - The dimensions of the resulting matrix are $n \times p$

Dot product between two matrices---Example

• Let
$$A = \begin{pmatrix} 65 & 60 & 70 & 80 \\ 72 & 65 & 55 & 65 \end{pmatrix}$$
 and $B = \begin{pmatrix} 65 & 72 \\ 60 & 65 \\ 70 & 55 \\ 80 & 65 \end{pmatrix}$, then

$$C = AB = \begin{pmatrix} 65 & 60 & 70 & 80 \\ 72 & 65 & 55 & 65 \end{pmatrix}_{2\times4} \begin{pmatrix} 65 & 72 \\ 60 & 65 \\ 70 & 55 \\ 80 & 65 \end{pmatrix}_{4\times2} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$c_{11} = 65 \times 65 + 60 \times 60 + 70 \times 70 + 80 \times 80 = 19125$$

 $c_{12} = 65 \times 72 + 60 \times 65 + 70 \times 55 + 80 \times 65 = 17630$
 $c_{21} = 72 \times 65 + 65 \times 60 + 55 \times 70 + 65 \times 80 = 17630$
 $c_{22} = 72 \times 72 + 65 \times 65 + 55 \times 55 + 65 \times 65 = 16659$

Properties, Inverse of a Matrix

Let

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \ddots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

If

$$AB = BA = I_n$$

Then B is the inverse matrix of A

Level of measurement: Nominal & Ordinal

Nominal Data: Numbers are used to represent an item or characteristic. For example, red=1, green=2, ... Note that such data should not be treated as numerical, since relative size has no meaning.

What is your gender?

M - Male
A - North of the equator
B - South of the equator
C - Neither: In the international space station

Ordinal: Numbers are used to rank. For example, the size of a cup of coffee can be small, median, and large. The difference between ordinal data and nominal data is that ordinal data contain both an equality (=) and a greater-than (>) relationship, whereas the nominal data contain only an equality (=) relationship.

How do you feel today?

I - Very Unhappy

1 - Very Unsatisfied

2 - Unhappy

3 - OK

4 - Happy

5 - Very Happy

How satisfied are you with our service?

1 - Very Unsatisfied

2 - Somewhat Unsatisfied

3 - Neutral

4 - Somewhat Satisfied

5 - Very Satisfied

Level of measurement: Interval & Ratio

- *Interval Data:* If we have data with ordinal properties (> & =) and can also measure the distance between two data items, we have an interval measurement. For example
 - temperature with the Celsius scale.

Remarks: Ratios between numbers on the scale are not meaningful, so operations such as multiplication and division cannot be carried out directly.

• Ratio Data: Is the highest level of measurement and allows for all basic arithmetic operations, including division and multiplication. Data measured on a ratio scale have a fixed or nonarbitrary zero point. For example, cost, revenue and profit.

Remarks: In computer programming, both *nominal data* and *ordinal data* are treated as **string**

Introduction to Python

Why Python?

R is a language dedicated to statistics.

Python is a general-purpose language with statistics modules.

R has more statistical analysis features than Python, and specialized syntaxes.

 Python can build complex analysis pipelines that mix statistics with e.g. image analysis, text mining, or control of a physical experiment

An introduction to Python: Installation

- Python is a programming language for professional data analysis and graphical display
- Python can be downloaded free of charge from https://www.python.org/
- https://www.anaconda.com/: a distribution of the Python and R programming languages
- CPython, Jython, IronPython, PyPy, and Cython
- Python libraries

https://medium.com/data-scienceeverywhere/ml-series-day-6-pandasfor-beginners-part-1-4aacad767d1c

Install Anaconda

- You are encouraged to
 - install an individual edition of Anaconda;
 - then have a look at <u>Getting started with Anaconda</u>;
- You may check whether a library has been installed in anaconda

Anaconda

Anaconda Navigator

File Help

ANACONDA.NAVIGATOR

Spyder

Basic operations

- > 2+5
- > 2 +
- > 5-2
- > 5*2
- > 5/2
- **>** 4+3*2
- **>** (4+3)*2
- > 2*2*2
- > 2**3

Built functions

```
• int(1.12)
                             #keep the integer part of 1.12, resulting in 1
float(1)
                             #convert the integer to a float number, resulting in 1.0
pow(4,2)
                            \#power(4,2)=4^2
print("Hello World")
                             #print out "Hello World" in the Prompt window
help("numpy")
                            #asking what numpy is.
- max(3,4,2,5)
                             #what is the maximum value among the four numbers
min(3,4,2,5)
                             #what is the minimum value among the four numbers
help
                             #enter the help environment
q
                             #quit from the help environment
https://docs.python.org/3/library/functions.html for details
```

<u>https://www.w3schools.com/python/default.asp</u> : a good website on Python Tutorial