Formal Language and Automata Theory/CS-3003/CSE, IT & CSCE/5th/2019

Mid-Semester Examination

School of Computer Engineering KIIT (DU), Bhubaneswar-24

Time: 1 hr 30 min

Full Mark: 20

(Answer Any Four Questions including Q1)

Q1. Answer all parts:

[1×5]

- a. Differentiate between NFA and DFA, explain with an example.
- b. Design an NFA with 4 states for the set {abc, abcd} *.
- c. Design a minimal DFA for $r = (b*a* + ab + \lambda)*$.
- d. Which language $(\phi^*)^*$ and $a.\phi$?
- e. Suppose $L_1 \cup L_2$ is regular and L_1 is finite. Can we conclude that L_2 is regular? True/False Justify your answer.

Q2. Design a DFA for the language over
$$\Sigma = \{a, b\}$$

[5]

- a. $L = \{w_1 abb w_2 | w_1 \ge 3 | w_2 \le 2\}.$
- b. $L = \{w: n_a(w) \mod 3 \le n_b(w) \mod 3\}.$
- Q3. Write Regular Expressions for the following languages over $\Sigma = \{a, b\}$.

[2+3]

2

- i. $L_1 = \{uwu | u, w \quad \sum^*, |u| \le 2\}$
- ii. $L_2 = \{u \mid u \text{ has at least one triplet letter (e.g. } aaa \text{ or } bbb)\}$
- iii. $L_3 = \{u \mid u \text{ has even number of } a\text{'s and odd number of } b\text{'s}\}$
- iv. $L_4 = \{u \mid |u| \text{ is at least 15 and at most 20}\}$
- b. Design a DFA for the set of all nonnegative integers divisible by 4 (string symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8 & 9).
- Q4.

[5]

- a. Let L_1 and L_2 be two languages over the same alphabet \sum . Given that L_1 and L_1L_2 both are regular. Prove or disprove L_2 must be regular.
- b. Construct a DFA that accepts the language $L = \{w | w \text{ does not contain a substring } abc\}$ over $\sum = \{a, b, c\}$. Convert this DFA to regular expression using state elimination method.

Q5.

Convert given NFA to equivalent DFA

[5]

Delta	0	1
\rightarrow A	B, D	В
B*	C	B, C
С	D	A
D*	-	A

Is it minimal or not? If not find equivalent minimal DFA for it.