Digital Logic Design CPCS-211

By

Aman Ullah

Lecture No 34

Design Of Synchronous Counters

Today's Topics

In this lecture we will cover the following

Design of Synchronous Counters

Design of Synchronous Counters

- Synchronous counters are sequential circuits that need clock input to count some sequence of numbers.
- Most counters are devices with no data input that go through a fixed
- sequence of states on successive clocks.
- For example, a 4-bit binary counter cycles through the sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 . . .

 It needs four flip flops because the largest number in this sequence is 15 whose binary is 1111.

Example (4-Bit Binary Counter)

- We want to design a 4-bit binary counter that goes from 0 to 1, 1 to 2, and so on 14 to 15 and then 15 to 0.
- The state table and the truth table for this counter are the same; they have 16 rows (for numbers 0 to 15), 4 input columns (for current number), and 4 output columns (for next number), as shown in the following Table.
- As can be seen, the next state for state 0 (0000) is 1 (0001), for 1 is 2, and so forth, until the next state for 15 (1111) is 0 (0000).
- We shall construct this counter using D-flip flop.
- We know that for D-flip flop, the characteristic equation is
 D = Q(t+1) = Q*

	Inp	out		I			
Α	В	C	D	A *	Outp B*	C*	D *
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0

Now we shall draw K-maps for next state functions A*,
 B*, C* and D* as.

$$A^* = AB' + AC' + AD' + A'BCD$$

$$B^* = BC' + BD' + B'CD$$

$$C^* = C'D + CD'$$

$$D^* = D'$$

So, the inputs for all four D-flip flops are:

$$D_A = A^* = AB' + AC' + AD' + A'BCD$$

 $D_B = B^* = BC' + BD' + B'CD$
 $D_C = C^* = C'D + CD'$
 $D_D = D^* = D'$

- This solution would require 12 gates (9 AND gates and 3 OR gates) with 30 gate inputs.
- If we have Exclusive-OR gates available, we could simplify the expressions to

$$D_A = A^* = A(B' + C' + D') + A'BCD = A(BCD)' + A'(BCD)$$

$$= A \bigoplus BCD$$

$$D_B = B^* = B(C' + D') + B'CD = B(CD)' + B'(CD) = B \bigoplus CD$$

$$D_C = C^* = C'D + CD' = C \bigoplus D$$

$$D_D = D^* = D'$$

This would only require 2 AND gates and 3 Exclusive-OR gates.

Example (4-Bit Binary Counter)

- We want to design the same 4-bit binary counter that goes from 0 to 1, 1 to 2, and so on 14 to 15 and then 15 to 0.
- As can be seen, the next state for state 0 (0000) is 1 (0001), for 1 is 2, and so forth, until the next state for 15 (1111) is 0 (0000).
- We shall construct this counter using JK-flip flops.
- We know that for JK-flip flop, the excitation table is

Q	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

• Using this excitation table, we construct the following input table (or state table) for the required counter as:

Current States	Next St	ates_	1	Fl <u>ip</u> F	lop Inputs	
A B C D	A* B*	C* D*	JA KA	$J_B K_B$	$J_C K_C$	$J_D K_D$
0 0 0 0	0 0	0 1	0 X	0 X	0 X	1 X
0 0 0 1	0 0	1 0	0 X	0 X	1 X	X 1
0 0 1 0	0 0	1 1	0 X	0 X	X 0	1 X
0 0 1 1	0 1	0 0	0 X	1 X	X 1	X 1
0 1 0 0	0 1	0 1	0 X	X 0	0 X	1 X
0 1 0 1	0 1	1 0	0 X	X 0	1 X	X 1
0 1 1 0	0 1	1 1	0 X	X 0	X 0	1 X
0 1 1 1	1 0	0 0	1 X	X 1	X 1	X 1
1 0 0 0	1 0	0 1	X 0	0 X	0 X	1 X
1 0 0 1	1 0	1 0	X 0	0 X	1 X	X 1
1 0 1 0	1 0	1 1	X 0	0 X	X 0	1 X
1 0 1 1	1 1	0 0	X 0	1 X	X 1	X 1
1 1 0 0	1 1	0 1	X 0	X 0	0 X	1 X
1 1 0 1	1 1	1 0	X 0	X 0	1 X	X 1
1 1 1 0	1 1	1 1	X 0	X 0	X 0	1 X
1 1 1 1	0 0	0 0	X 1	X 1	X 1	X 1

Table 7.6

q	q^{igstar}	
0	0	
0	1	
1	0	
1	1	

- Next step is to draw K-maps for J_A , K_A , J_B , K_B , J_C , K_C , J_D and K_D
- In order to save time, we can compare all the columns with one another and conclude that

$$J_A = K_A = BCD$$

$$J_B = K_B = CD$$

$$J_C = K_C = D$$

$$J_D = K_D = 1$$

 Thus the circuit for the given 4-bit counter, using four JK-flip flops is as follows:

Figure 7.6 A 4-bit counter.*

- The first AND gate is not necessary if this is a stand-alone counter; the output of the "D" flip flop would be connected directly to J_C and K_C.
- The OV output is 1 when the counter is in state 15 (1111). OV could be connected to the JK inputs of another flip flop or, if we built two 4 flip flop circuits like the one above, we could connect the OV output of one to the input where a 1 is now connected to construct an 8-bit counter.

Example (An Up/Down Counter)

- An up/down counter is a one that can count in either direction, depending upon a control input.
- We will label that control input x, such that the counter counts up when x = 0 and counts down when x = 1.
- We shall design this counter by using JK-flip flops.
- The state table for such a counter is shown below:

Current State Next State					е	Flip Flop Inputs							
X	A	В	C	A*	B*	C*	J_A	K_A	J_{B}	K_{B}	J_{C}	K _C	
0	0	0	0	0	0	1	0	X	0	X	1	X	
0	0	0	1	0	1	0	0	X	1	X	X	1	
0	0	1	0	0	1	1	0	X	X	0	1	X	
0	0	1	1	1	0	0	1	X	X	1	X	1	
0	1	0	0	1	0	1	X	0	0	X	1	X	
0	1	0	1	1	1	0	X	0	1	X	X	1	
0	1	1	0	1	1	1	X	0	Χ	0	1	X	
0	1	1	1	0	0	0	X	1	Χ	1	Χ	1	
1	0	0	0	1	1	1	1	X	1	X	1	X	
1	0	0	1	0	0	0	0	X	0	X	X	1	
1	0	1	0	0	0	1	0	X	X	1	1	X	
1	0	1	1	0	1	0	0	X	X	0	Χ	1	
1	1	0	0	0	1	1	X	1	1	X	1	X	
1	1	0	1	1	0	0	X	0	0	X	Χ	1	
1	1	1	0	1	0	1	X	0	X	1	1	X	
1	1	1	1	1	1	0	X	0	X	0	Χ	1	

Tabl

q

)) [

• The K-maps for J_A , K_A , J_B , K_B , J_C and K_C are as follows:

$$J_A = X'BC + XB'C'$$

$$K_A = X'BC + XB'C'$$

$$J_{B} = XC' + X'C$$

$$K_B = XC' + X'C$$

$$J_C = 1$$

$$K_C = 1$$

A block diagram for up/down counter is shown in Figure 7.7.

Figure 7.7 An up/down counter.

Example (Decimal Counter)

- We will look next at a decimal or decade counter, one that goes through the sequence
 - 0 1 2 3 4 5 6 7 8 9 0 1...
- We shall design this counter using JK-flip flops.
- The state (truth) table is similar to that for the binary counter, as seen below:

Current States	Next States	Flip Flop Inputs					
A B C D	A* B* C* D	$J_A K_A J_B K_B J_C K_C J_D K_D$					
0 0 0 0	0 0 0 1	0 X 0 X 0 X 1 X					
0 0 0 1	0 0 1 0	0 X 0 X 1 X X 1					
0 0 1 0	0 0 1 1	0 X 0 X X 0 1 X					
0 0 1 1	0 1 0 0	0 X 1 X X 1 X 1					
0 1 0 0	0 1 0 1	0 X X 0 0 X 1 X					
0 1 0 1	0 1 1 0	0 X X 0 1 X X 1					
0 1 1 0	0 1 1 1	0 X X 0 X 0 1 X					
0 1 1 1	1 0 0 0	1 X X 1 X 1 X 1					
1 0 0 0	1 0 0 1	X 0 0 X 0 X 1 X					
1 0 0 1	0 0 0 0	X 0 0 X 0 X X 1					
1 0 1 0	Don't Care	X X X X X X X					
1 0 1 1	Don't Care	X X X X X X X					
1 1 0 0	Don't Care	X X X X X X X					
1 1 0 1	Don't Care	X X X X X X X					
1 1 1 0	Don't Care	X X X X X X X					
1 1 1 1	Don't Care	X X X X X X X					

Table 7.6

q	q^{igstar}	
0	0	
0	1	
1	0	
1	1	

- Next step is to draw K-maps for J_A , K_A , J_B , K_B , J_C , K_C , J_D and K_D
- It is left as an exercise for the students.
- We shall get the following input equations for all four flip flops.

$$J_A = BCD$$
, $K_A = D$
 $J_B = K_B = CD$
 $J_C = A'D$, $K_C = D$
 $J_D = K_D = 1$

 Thus the circuit for the required decimal counter, using four JKflip flops is as follows:

 Circuit for the required decimal counter is left as an exercise for the students.

Example

- We will next design a counter that goes through some sequence of states that are not in numeric order
 0 3 2 4 1 5 7 and repeat
- We shall design this counter by using D, SR, T and JKflip flops.
- Note that the cycle is 7 states; it never goes through state
 6 (which will be treated as don't care).
- We can now draw the state table (in any order) or go directly to the truth table, including a row for the unused state.
- The combined state table for SR and T-flip flop inputs for such a counter is shown below:

q_1	q_2	q_3	q_1^{\star}	q_2^{\star}	q_3^{\star}	S ₁	R_1	S_2	R_2	S_3	R_3	T ₁	T_2	T ₃
0	0	0	0	1	1	0	Χ	1	0	1	0	0	1	1
0	0	1	1		1	1	0	0	X	X	0	1	0	0
0	1	0	1	0	0	1	0	0	1	0	X	1	1	0
0	1	1	0	1	0	0	X	X	0	0	1	0	0	1
1	0	0	0	0	1	0	1	0	X	1	0	1	0	1
1	0	1	1	1	1	Χ	0	1	0	X	0	0	1	0
1	1	0	Χ	X	X	Χ	X	X	X	X	X	Χ	X	X
1	1	1	0	0	0	0	1	0	1	0	1	1	1	1

We shall now first construct K-maps for S_1 , R_1 , S_2 , R_2 , S_3 and R_3

$$S_1 = q'_2 q_3 + q_2 q'_3$$

$$R_1 = q_2' q_3' + q_2 q_3$$

$$S_2 = q'_1 q'_2 q'_3 + q_1 q'_2 q_3$$

$$R_2 = q_1 q_2 + q_2 q_3'$$

$$S_3 = q'_2$$

$$R_3 = q_2$$

 The circuit for the required counter using SR-flip flops is as follows:

Left as an exercise for the students:

Now K-maps for T₁, T₂ and T₃ are as follows:

$$T_1 = q'_1 q'_2 q_3 + q_1 q_2 + q_1 q'_3 + q_2 q'_3$$

$$T_2 = q_1 q_3 + q'_1 q'_3$$

$$T_3 = q_2 q_3 + q'_2 q'_3$$

- The circuit of required counter using T-flip flops is as follows:
- Left as an exercise for the students

- Now finally we shall construct the circuit for the required counter using JK-flip flops.
- For this, the following table gives the JK-flip flop inputs.

Current State Next State Flip Flop Inputs

q_1	q_2	q_3	q_1^{\star}	q_2^{\star}	q_3^{\star}	$\frac{J_1}{}$	K ₁	J ₂	K ₂	J ₃	K ₃
0	0	0	0	1	1	0	X	1	X	1	X
0	0	1	1	0	1	1	X	0	X	X	0
0	1	0	1	0	0	1	X	Χ	1	0	X
0	1	1	0	1	0	0	X	Χ	0	X	1
1	0	0	0	0	1	X	1	0	X	1	X
1	0	1	1	1	1	X	0	1	X	X	0
1	1	0	Χ	Χ	Χ	X	X	Χ	X	X	X
1	1	1	Ω	Ο	Ο		1	V	1	V	1

• The K-maps for J_1 , K_1 , J_2 , K_2 , J_3 and K_3 are as follows:

Tab

q0
0

$$J_1 = q'_2 q_3 + q_2 q'_3$$

$$K_1 = q_2 + q'_3$$

$$J_2 = q_1 q_3 + q'_1 q'_3$$

$$K_2 = q_1 + q'_3$$

 The circuit for the required counter using JK-flip flops is as follows:

Left as an exercise for the students

Dealing with Don't Care States

- We can determine what would happen by assuming we are in state 110.
- Thus, we would put $q_1 = 1$, $q_2 = 1$, and $q_3 = 0$ in the equations of flip flop inputs.
- For example, For D-flip flops, we would get

$$D_1 = q_2'q_3 + q_2q_3' = 00 + 11 = 1$$

$$D_2 = q_1'q_2'q_3' + q_1'q_2q_3 + q_1q_2'q_3 = 001 + 011 + 100 = 0$$

$$D_3 = q_2' = 0$$

• It means that, the system would go to state 4 (100) on the first clock and continue through the sequence from there.

Note:

 With SR-flip flops, it also goes to state 4, to state 2 with T-flip flops and to state 0 with JK-flip flops.

Dealing with Don't Care States (Contd...)

 A state diagram, showing the behavior of the system designed with D or SR flip flops, including what happens if the system starts in the unused state, is shown next.

Thanks

