2007年2月

1

n 次元実ベクトル空間 \mathbf{R}^n 内のベクトル \mathbf{x}, \mathbf{y} に対して , (\mathbf{x}, \mathbf{y}) はベクトルの内積を表し , $|\mathbf{x}|$ はベクトル \mathbf{x} の長さを表すとする . \mathbf{a} を \mathbf{R}^n の長さ \mathbf{a} のベクトルとし ,

$$H = \{ \boldsymbol{x} \in \boldsymbol{R}^n \mid (\boldsymbol{a}, \boldsymbol{x}) = 0 \}$$

とおく. また,ベクトル $x \in \mathbb{R}^n$ に対して

$$f(\boldsymbol{x}) = \boldsymbol{x} - (\boldsymbol{a}, \boldsymbol{x})\boldsymbol{a}$$

と定める.このとき,以下の問に答えよ.

- (1) H は部分空間であることを示せ.
- (2) f は線形写像であることを示せ.
- (3) すべての $x \in \mathbb{R}^n$ について |f(x)| < |x| を示せ.
- (4) f の核 $\operatorname{Ker} f = \{x \mid f(x) = o\}$ と f の像 $\operatorname{Im} f = \{f(x) \mid x \in \mathbf{R}^n\}$ を求めよ.ここで,o は零ベクトルとする.

For two vectors \boldsymbol{x} , \boldsymbol{y} in the *n*-dimensional real vector space \boldsymbol{R}^n , $(\boldsymbol{x}, \boldsymbol{y})$ denotes the inner product and $|\boldsymbol{x}|$ denotes the length of the vector \boldsymbol{x} . Let \boldsymbol{a} be a vector in \boldsymbol{R}^n of unit length, and put

$$H = \{ \boldsymbol{x} \in \boldsymbol{R}^n \mid (\boldsymbol{a}, \boldsymbol{x}) = 0 \}$$

Define, for $\boldsymbol{x} \in \boldsymbol{R}^n$,

$$f(\boldsymbol{x}) = \boldsymbol{x} - (\boldsymbol{a}, \boldsymbol{x})\boldsymbol{a}.$$

- (1) Show that H is a subspace.
- (2) Show that f is a linear mapping.
- (3) Show that $|f(x)| \leq |x|$ holds for all $x \in \mathbb{R}^n$.
- (4) Determine the kernel $\operatorname{Ker} f = \{ \boldsymbol{x} \mid f(\boldsymbol{x}) = \boldsymbol{o} \}$ and the image $\operatorname{Im} f = \{ f(\boldsymbol{x}) \mid \boldsymbol{x} \in \boldsymbol{R}^n \}$ of f, where \boldsymbol{o} denotes the zero vector.

R を乗法の単位元1 をもつ可換環, R の極大イデアル全体の共通部分を

$$J = \bigcap m$$
 $(m$ は R の極大イデアル全体を動く)

とおく、以下の問に答えよ、

- (1) J は R のイデアルであることを示せ .
- (2) $\alpha \in R$ が $\alpha = 1 + x$ $(x \in J)$ と表せるとき, R に α の逆元が存在することを示せ .
- (3) $J = \{x |$ すべての $r \in R$ に対して 1 + rx は R に逆元をもつ $\}$ を示せ .
- (4) $\beta \in R$ が,ある $x \in J$ に対し $\beta = x\beta$ をみたせば, $\beta = 0$ であることを示せ.
- (5) $\beta_1,\beta_2 \in R$ が、ある $x_{ij} \in J$ (i,j=1,2) に対し

$$\begin{cases} \beta_1 = x_{11}\beta_1 + x_{12}\beta_2 \\ \beta_2 = x_{21}\beta_1 + x_{22}\beta_2 \end{cases}$$

をみたせば、 $\beta_1 = \beta_2 = 0$ であることを示せ .

Let R be a commutative ring with identity. Let J be the intersection of all the maximal ideals of R:

 $J = \bigcap m$ (m runs over the set of all maximal ideals of R).

- (1) Show that J is an ideal of R.
- (2) Suppose that $\alpha \in R$ satisfies $\alpha = 1 + x$ for some $x \in J$. Show that α has an inverse in R.
- (3) Show $J = \{x \mid 1 + rx \text{ has an inverse in } R \text{ for all } r \in R\}.$
- (4) Suppose that $\beta \in R$ satisfies $\beta = x\beta$ for some $x \in J$. Show $\beta = 0$.
- (5) Suppose that $\beta_1, \beta_2 \in R$ satisfy

$$\begin{cases} \beta_1 = x_{11}\beta_1 + x_{12}\beta_2 \\ \beta_2 = x_{21}\beta_1 + x_{22}\beta_2 \end{cases}$$

for some $x_{ij} \in J$ (i, j = 1, 2). Show $\beta_1 = \beta_2 = 0$.

修士論文等で研究した数学のテーマを述べなさい.また,その中で特に興味を持った理論・定理等を述べ,その概略を説明しなさい.

Describe the research you have done for your masters thesis. Explain a theorem or a theory in which you were particularly interested among those in your thesis.