

HIDROSPICE: CÁLCULO DE CIRCUITOS HIDRÁULICOS MEDIANTE SIMULADORES ELÉCTRICOS

Miguel A. Calafat, Débora Coll, Rodrigo Picos, Miguel Roca

Escola Politècnica Superior. Universitat Illes Balears.

Descripción del problema:

Dada la descripción de un circuito hidráulico a nivel de tramos de tubería, fuentes, llaves de paso, etc., queremos calcular las presiones en cada unión y los caudales a través de cada tramo.

Solución habitual: Método de Hardy-Cross

- Método iterativo: dado un circuito cualquiera, hacemos una suposición inicial sobre su estado, y vamos calculando correcciones en cada repetición.

Malia	Ham	р	Q	2-lb@	рQ	ΔQ
1	B 2-3	β_B	Q ₁ /2	2β _B Q ₁ /2	$\beta_B \cdot (Q_1/2)^2$	
1	F 3-0*	β_{F}	Q ₁ /4	$2\beta_FQ_1/4$	$\beta_{F} \cdot (Q_1/4)^2$	
1	E 0-2	β_{E}	-Q ₁ /2	$2\beta_EQ_1/2$	$-\beta_E \cdot (Q_1/2)^2$	
2	C 3-0	βc	Q ₁ /4	2β _C Q ₁ /4	$\beta_{C'}(Q_1/4)^2$	
2	F 0-3*	β_{F}	-Q ₁ /4	$2\beta_F Q_1/4$	$-\beta_F \cdot (Q_1/4)^2$	

1ª Iteración on corrección

Correcciones del

 $2\beta_F((Q_1/4)+\Delta Q_1-\Delta Q_2)$

 $2\beta_{E}((-Q_{1}/2)+\Delta Q_{1}$

 $\beta_{F} \cdot ((Q_1/4) + \Delta Q_1 - \Delta Q_2)^2$

 $\beta_{C^*}((Q_1/4) + \Delta Q_2)$

- Solución: automatizar el proceso.

manualmente.

- Problema: La descripción del circuito y el cálculo

Podemos usar simuladores eléctricos, que incorporan métodos sofisticados de resolución de sistemas de 2 ecuaciones

de las correcciones pueden ser propensos a errores si se hace

> on correcciór PERO: hay que usar modelos eléctricos de los diferentes elementos hidráulicos:

 $(Q_1/4)+\Delta Q_1-\Delta Q_2$

Interface con el Simulador Eléctrico

- Permite al usuario describir el circuito como un conjunto de tuberías y fuentes, y realiza la conversión al modelo eléctrico de manera transparente.

Descripción:

8	element.	Model	Nom	Node 1	Node 2	((fi)	Pressio (Inca)	(nin)	Rugostat (nm)	Longitud (III)	Long. sec.	/tancament	Res. hidraulica (s2/h6)	Lanboa
	0	ForeQ	font1	0	1	40.00	0.00		nese:	-	-		to be	-
	1	Tub	tub1_2	1	2	0.00	0.00	300.0	1.100000	400.00	0.00	****	377.0	0.0277
	2	Tub	hub2_3	2	3	0.00	0.00	200.0	1.100000	125.00	0.00	****	1009.5	0.0312
	3	Tub	bub3_4	3	4	0.00	0.00	150.0	1.100000	125.00	0.00	****	4656.4	0.0342
	4	Tub	bub4_5	4	5	0.00	0.00	250.0	1.100000	200.00	0.00	****	494.8	0.0292
	5	Tub	tub5_6	5	6	0.00	0.00	250.0	1.100000	200.00	0.00	****	191.8	0.0292
	6	Tub	tub6_7	6	7	0.00	0.00	250.0	1.100000	125.00	0.00	****	309.2	0.0292
	7	Tub	1,67_0	7	0	0.00	0.00	200.0	1.100000	200.00	0.00		1605.2	5200.0
	0	FontQ	font2	6	0	10.00	0.00		-	-	-	****	-	-
	9	ForeQ	fonk3	4	0	20.00	0.00							
	10	ForeQ	fort4	8	0	20.00	0.00	-		enter .	aw .	anne .	_	-

- Lanza el simulador eléctrico, realizando las iteraciones necesarias para lograr la precisión deseada.
- Deshace la analogía eléctrica y devuelve los resultados (eléctricos) en formato de unidades hidráulicas.

Resultados:

3	No element	Model	Nom	Node 1	Node Z	Cibil (III)	Pressió (mca)	Diánetre (nm)	Rugoshat (mn)	Longitud (m)	Long. sec.	Potencia(KW) (tancament	Res. hidráulos (si2(m5)	Limbda	Nº Reynolds
	0	FontQ	ForEt	0	1	40.00	0.27	-	-	-	-	-	met .	-	-
	1	Tub	0.64,2	1	2	13.25	0.07	300.0	1.100000	400.00	0.00		411.2	0.0302	42928-3
	2	Tub	0.62.3	2	3	13.25	0.18	200.6	1.100000	125.00	0.00		1053.4	0.8326	64392.4
	3	Tub	b.63_4	3	4	4.80	0.11	150.0	1.100000	125.00	0.00		4962.5	0.0364	31090.8
	4	Tub	0.64_5	4	5	-5.20	0.02	250.0	1.100000	200.00	0.00		568.6	0.0336	20226.0
	5	Tub	0.65_6	5	6	-7.35	0.03	250.0	1.100000	200.00	0.00		549.8	0.0325	29575.6
	6	Tub	0.66_7	6	7	-17.35	0.10	250.0	1.100000	125.00	0.00		325.1	0.0307	67456.1
	8	Tub :	0.67,8	7	8	9.40	0.15	200.0	1.100000	200.00	0.00		1711.9	0.0001	45689.9
	8	FoltQ	York2	6	.0	10.00	0.06	-	-	900	-	-	-	-	-
	p.	FuntQ	(trit)	4	0	10.00	9.10				mer.			-	1841
	10	FortQ.	York4	8	0	20.00	0.11	-		-	nee:	=	and .		med.

- Ventajas: Descripción sencilla e intuitiva de los circuitos
 - Interface sencillo de usar
 - Resultados exactos

Modelos Eléctricos de Elementos Hidráulicos

