Aufgabensammlung Teil 1

Thema: O-Notation

Aufgabe 1: Einige Aussagen in O-Notation

Seien f(n) und g(n) zwei Funktionen, so dass $f(n) = \mathcal{O}(g(n))$. Zeigen oder widerlegen Sie die folgenden Aussagen:

- a) $h(n) = \mathcal{O}(f(n)) + \mathcal{O}(g(n)) \Rightarrow h(n) = \mathcal{O}(f(n) + g(n)).$
- b) $f(n) + g(n) = \mathcal{O}(g(n))$.
- c) $f(n) \cdot g(n) = \mathcal{O}(g(n))$.
- d) Sei $f'(n) = \mathcal{O}(g(n))$. Dann ist $f(n) \cdot f'(n) = \mathcal{O}(g^2(n))$.
- e) $\exists h(n) = \mathcal{O}(q(n)) : f(n) = \mathcal{O}(h(n)).$
- f) $\forall h(n) = \mathcal{O}(g(n)) : f(n) = \mathcal{O}(h(n))$.
- g) $\forall h(n) = \Omega(g(n)) : f(n) = \mathcal{O}(h(n)).$
- h) $\exists h(n) = \Omega(g(n)) : f(n) = \mathcal{O}(h(n)).$

Aufgabe 2: Vergleich von Funktionen in O-Notation

Bestimmen Sie für die folgenden Beispiele jeweils, welcher der folgenden drei Fälle vorliegt: $f(n) \in o(g(n)), f(n) \in \omega(g(n))$ oder $f(n) \in \Theta(g(n))$.

	f(n)	g(n)
a)	n/2	4n + 250
b)	$10n^2 + 8n + 100$	n^3
c)	$10\log n$	$\log n^2$
d)	n	$n \log n$
e)	$n^{1.01}$	$n(\log n)^5$
f)	2^n	2^{n+1}
g)	n!	2^n
h)	$(\log n)^{\log n}$	$2^{(\log n)^2}$

Aufgabe 3: Asymptotisches Wachstum von Funktionen

Ordnen Sie die folgenden Funktionen nach ihrem asymptotischen Wachstum.

$$A(n) = \log(n)$$
 $B(n) = 2^{\sqrt{\log n}}$ $C(n) = (\log n)^{\log n}$ $D(n) = \log(n!)$
 $E(n) = (\log n)^{\sqrt{n}}$ $F(n) = (\log(\log n))^n$ $G(n) = 42n$

Ordnen Sie die Funktionen gemäß ihrem asymptotischen Wachstum. Beweisen Sie die Korrektheit jeweils für die sechs **benachbarten** Funktionenpaare!

Dies ist eine alte Klausur-aufgabe!

Lösungen:

- 1. a) Stimmt. Dies gilt auch, wenn $f(n) \neq \mathcal{O}(g(n))$.
 - b) Stimmt.
 - c) Stimmt nicht. Es gilt nur, dass $f(n) \cdot g(n) = \mathcal{O}(f(n) \cdot g(n))$.
 - d) Stimmt.
 - e) Stimmt.
 - f) Stimmt nicht. Betrachte zum Beispiel h(n) = 1.
 - g) Stimmt.
 - h) Stimmt.
- 2. a) $f(n) \in \Theta(g(n))$
 - b) $f(n) \in o(g(n))$
 - c) $f(n) \in \Theta(g(n))$
 - d) $f(n) \in o(g(n))$
 - e) $f(n) \in \omega(g(n))$
 - f) $f(n) \in \Theta(g(n))$
 - g) $f(n) \in \omega(g(n))$
 - h) $f(n) \in o(g(n))$
- 3. Sei $f(n) \prec g(n)$ genau dann, wenn $f(n) = \mathcal{O}(g(n))$. Es gilt:

$$A(n) \prec B(n) \prec G(n) \prec D(n) \prec C(n) \prec E(n) \prec F(n)$$
.