

Topics we cover

Introduction to systems modeling

Modeling System of Systems (SoS)

Modeling communications

Modeling UI systems

Modeling data access

Formalizing TS as a modeling language

Recap/continuation from the last class

System modifications for various types of problems

Richness of UI

- There may be multiple data sources that compose a page
- Multiple MVC systems at play, web page view is composed of multiple of these Views.
- A page component may include data from multiple sources
- A new data model is created to map to the required view, MVC using this model is used.

Quality of client-server connection

- Low bandwidth
- Reduce functionality (impacts U), reduce user elements (impacts Y)
- High latency
- Take local decisions on client – impacts transition functions. Requires sync with server for decisions, other issues
- Frequent connection drops
- Reduce connection setup time, apply high latency solution

Quality of client device

- Low processing power (lowend android phone)
 - Lite version (functionally)
- Low display capabilities (watch)
 - Lite version (visually)

Patterns of application access

- The user may use multiple devices to access the system simultaneously
- As long as observer is in place and in use, this should work. Concurrent access needs to be available.
- A large number of users access the system simultaneously
- Gateway to route the traffic - split into batches which can be handled by existing system
- Refine the solution to have better scale characteristics

System modifications for various types of problems

There may be multiple data sources that compose a page

 Multiple MVC systems at play, web page view is composed of multiple of these Views.

A page component may include data from multiple sources

 A new data model is created to map to the required view, MVC using this model is used.

Low bandwidth

 Reduce functionality (impacts U), reduce user elements (impacts Y)

High latency

- •Take local decisions on client (impacts F). Requires sync with server for decisions made locally
- •Reduce message chatter with server

Frequent connection drops

•Reduce connection setup time, apply high latency solution

Low processing power (lowend android phone)

Lite version (functionally)

Low display capabilities (watch)

Lite version (visually)

The user may use multiple devices to access the system simultaneously

As long as observer is in place and in use, this should work. Concurrent access needs to be available.

A large number of users access the system simultaneously

- Gateway to route the traffic split into batches which can be handled by existing system
- Refine the solution to have better scale characteristics

Modeling Data Access

Unit 3 – TiSF S'23

Session 6 (2023-04-17)

Two categories of data

Transactional

- State data for a system (and SoS)
 - Appointments booked by this user this year
 - Money collected in every transaction in a salon since beginning of time
- Action (U) and Observable (Y) may have data associated with them
 - Booking required for a specific user for a particular date and time
 - All empty calendar slots in response to a query about availability

Analytical

- Record for later use (Archive)
 - Log every system communication message
 - Audit trails of all payment collection
- Analysis and insights
 - Data warehouse for business performance reporting
 - Demand forecast system using transaction data

Transaction and analytical data

Various ways data can be held by the system

Data Access System			
Internal Service API	External Service API	Querying language API	File API
Internal data service	External data service	Database system	File System
Operating System Services (Network, Storage)			

Typical data access system model

Data access system

UI System (discussed in last class)

Data scenarios that will require model tweaks

A large amount of data in every read response

Too many data access requests to render a UI

Many more reads compared to writes

Database server going down

Too much data for a single database server

To be continued in next class..