1 Sard's Theorem

Example 1.1

Consider $T: P \to S^1$, take $p \in S^1$, by Sard's Theorem and rank theorem, $T^{-1}(q)$ is finite points.

Lemma 1.2 (Fubini for measure zero)

Let $A \subseteq \mathbb{R}^n$, closed, $\mathbb{R}^n = \mathbb{R} \times \mathbb{R}^{n-1}$, $S_x := \{x\} \times \mathbb{R}^{n-1}$, $x \in \mathbb{R}$. If $\mu(A \cap S_x) = 0 \ \forall \ x \in \mathbb{R}$, then $\mu(A) = 0$.

Proof. We may assume A is compact (by countable). If $A \cap S_x$ lies in an open set $U \subseteq S_x$, denote $S_{(x-\varepsilon,x+\varepsilon)} := \bigcup_{x'\in(x-\varepsilon,x+\varepsilon)S_{x'}}^n$ (thickened slice), then $A \cap S_{x-\varepsilon,x+\varepsilon} \subseteq U \times (x-\varepsilon,x+\varepsilon)$. Then

$$A \subseteq \bigcup_{i=1}^{n} U_i \times (x_i - \varepsilon_i, x_i + \varepsilon_i) =: N.$$

We may also assume that $\sum_{i=1}^{n} 2\varepsilon_i \leq 2(b-a)$. Then by subadditivity,

$$\mu(N) \le \sum_{i=1}^{n} \mu(U_i \times (x_i - \varepsilon_i, x_i + \varepsilon_i))$$
$$\le \sum_{i=1}^{n} \mu(U_i) \times 2 \max\{\varepsilon_i\}$$

Proof. Baby case: $f: M \to N$, dim $M \le \dim N$. The case when dim $M = \dim N$ is implicitly shown in Lecture 8 (lemma 4). The rest is shown in Lemma 7.

May assume that $M = \mathbb{R}^n$ and $N = \mathbb{R}^p$ because we are proving a local property and countable union of measure zero sets is measure zero. When n = 0, it has measure zero. Assume theorem holds for n - 1. $f : \mathbb{R}^n \to \mathbb{R}^p$. Let C be the set of critical points in \mathbb{R}^n . Define $C_i := \{x \in U : \text{ all partial derivatives up to order } k = 0\}$. Then $C \supseteq C_1 \supseteq C_2 \supseteq \ldots$. Then it suffices to show that

- (1) $\mu(f(C-C_1))=0$
- (2) $\mu(f(C_k C_{k+1})) = 0$
- (3) $\mu(f(C_k)) = 0$ for some large k.

For 1, it suffices to show that there exists an open neighborhood V of $x \in \mathbb{R}^n$ s.t. $\mu(f(V \cap C)) = 0$ by countable basis of \mathbb{R}^n . Suppose $x \notin C_1$, then WLOG assume $\frac{\partial f^1}{\partial x_1} \neq 0$. Define $h: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ by $h(x) = (f^1(x), x_2, \dots, x_n)$ so rank $dh_x = n$ since the Jacobian is

$$dh_x = \begin{pmatrix} \frac{\partial f^1}{\partial x_1} & 0\\ 0 & I \end{pmatrix}$$

So h is a local diffeomorphism by IFT. Let $g:=f\circ h^{-1}$. I claim that locally g and f share the same critical points. Moreover, g fixes the first coordinate of any point by definition of h and g. Thus $t\times\mathbb{R}^{n-1}\xrightarrow{g} t\times\mathbb{R}^{p-1}$. Define $g^t=g|_{t\times\mathbb{R}^{n-1}}$. Then

$$dg = \begin{pmatrix} 1 & 0 \\ 0 & dg^t \end{pmatrix}$$

Then critical points of g^t are also critical points of g since the matrix has 0 determinant iff $\det dg^t = 0$. Now we've reduced the dimension and can apply induction hypothesis. So the critical points of g has measure zero and thus same goes for f.

2 is very similar.

Example 1.3

Application: S^n is simply connected for $n \geq 2$. Any curve will miss a point by Sard's.

Example 1.4

Let M be a smooth closed (compact, connected, without boundary) hypersurface in \mathbb{R}^n so dim M = n - 1. Then we have the Gauss map $\nu : MtoS^{n-1}$, where we map each point to its outward unit normal vector. Then $\#\nu^{-1}(u) < \infty$ for almost every $u \in S^{n-1}$. Since regular point would have codimension 0 and surface is compact. This implies that for almost every $u \in S^{n-1}$, there exists finitely many tangent hyperplanes H of

M that are orthogonal to u. Any hyperplane $H \subseteq \mathbb{R}^n$ will be transversal to M, after a perturbation. The set of transversal hyperplanes to M is open and dense. This is a metric space with distance of unit normal vectors and the offset from origin as the metric. It is diffeomorphic to $S^{n-1} \times [0, \infty)$.