Graded Homework 1 Noah Wong Professor Kubik MATH 5347 September 5, 2018

1.) (20 points) In the following diagram, a piece of paper is first folded into thirds. By performing the origami "move" of folding two points onto two lines, we obtain the picture below. Prove that $X = \sqrt[3]{2}$.

We start by finding an equation that gets d in terms of X. Inspect $\triangle ABC$, since $\angle ABC$ is a right angle applying the Pythagorean theorem to the triangle's sides yields,

$$1^2 + d^2 = (X + 1 - d)^2.$$

Rearrange the terms to get d alone as follows,

$$\begin{aligned} 1 + d^2 &= X^2 + 2X + 1 - 2Xd + d^2 - 2d, \\ 2Xd + 2d &= X^2 + 2X, \\ d &= \frac{X^2 + 2X}{2X + 2}. \end{aligned}$$

From here we need a clever way to relate the terms X and d again, examine the triangles formed by the fold. Notice the angle $\angle EAC$ is a right angle, since BAD all lie on the same line and both $\triangle ADE$ and $\triangle ABC$ are right triangles

we can infer that $\angle DAE = \angle ACB$ and that $\angle DEA = \angle BAC$. This facts imply that $\triangle ABC$ is similar to $\triangle ADE$. There exists a ratio between sides of similar triangles so we can set up an equation relating the sides of these triangles such as,

$$\frac{BC}{AC} = \frac{AD}{AE}.$$

We have all the lengths in terms of X and d except for AD. Here we label the upper left hand corner of the sheet of paper L. Given that the segment AL = X and $DL = \frac{X+1}{3}$, since it is 1/3 of the total length of a side (BL), and that A, D, and L are all on a straight line, $AD = X - \frac{X+1}{3}$. This can be simplified to $AD = \frac{2X-1}{3}$. Next we plug in all the side lengths of our similar triangles and simplify,

$$\frac{d}{X+1-d} = \frac{\frac{2X-1}{3}}{\frac{3}{X+1}},$$
$$\frac{d}{X+1-d} = \frac{2X-1}{X+1}.$$

We now substitute the equation found for d above into this equation and solve for X,

$$\frac{\frac{X^2+2X}{2X+2}}{X+1-\frac{X^2+2X}{2X+2}} = \frac{2X-1}{X+1},$$

$$\frac{\frac{X^2+2X}{2X+2}}{\frac{(X+1)(2X+2)-X^2-2X}{2X+X}} = \frac{2X-1}{X+1},$$

$$\frac{X^2+2X}{(X+1)(2X+2)-X^2-2X} = \frac{2X-1}{X+1},$$

$$\frac{X^2+2X}{(X+1)(2X+2)-X^2-2X} = \frac{2X-1}{X+1},$$

$$\frac{X^2+2X}{X^2+2X+2} = \frac{2X-1}{X+1},$$

$$(X^2+2X)(X+1) = (X^2+2X+2)(2X-1),$$

$$X^3+3X^2+2X=2X^3+3X^2+2X-2,$$

$$2=X^3,$$

$$X=\sqrt[3]{2}.$$

This proves the conjecture that $X = \sqrt[3]{2}!$

2.) (20 points) Write a proof to solve the equation $ax^2 + bx + c = 0$ for x. Explain each step.

We now from experience that the solution to $ax^2 + bx + c$ is known as the

quadratic equation. We shall go step by step as to how you arrive at the quadratic equation. We start with $ax^2 + bx + c = 0$ and bring the c over to the right side resulting in

$$ax^2 + bx = -c$$
.

Then we multiply both sides by 4a,

$$4a^2x^2 + 4abx = -4ac.$$

The goal is to factor the left side so we add b^2 to both sides giving us,

$$4a^2 + 4abx + b^2 = b^2 - 4ac.$$

Then we can factor the left side into

$$(2ax + b)^2 = b^2 - 4ac.$$

Taking the squareroot of both sides results in,

$$2ax + b = \pm \sqrt{b^2 - 4ac}.$$

The last steps are getting x alone on the left side which will give us,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

which as we have seen before is the quadratic equation!

- 3.) (20 points) Show that the following complex numbers are algebraic over $\mathbb Q$ (a) $\sqrt{2}$
 - The polynomial $f(x) = x^2 2$ proves that $\sqrt{2}$ is algebraic since $f(\sqrt{2}) = 0$.

(b)
$$\sqrt{n}$$
 for $n \in \mathbb{Z}^+$

For any $n \in \mathbb{Z}^+$, we define the function $g(x) = x^2 - n$, so that \sqrt{n} is the root of g(x) since $g(\sqrt{n}) = \sqrt{n}^2 - n = 0$. Therefore \sqrt{n} is algebraic for any $n \in \mathbb{Z}^+$.

(c)
$$\sqrt{3} + \sqrt{5}$$

The polynomial $f(x) = (x^2 - 8)^2 - 60$ proves that $\sqrt{3} + \sqrt{5}$ is algebraic since,

$$f(\sqrt{3} + \sqrt{5}) = ((\sqrt{3} + \sqrt{5})^2 - 8)^2 - 60,$$

= $((\sqrt{60} + 8) - 8)^2 - 60,$
= $(\sqrt{60})^2 - 60,$
= $0.$

The method for finding the polynomial was simple. The term $\sqrt{3} + \sqrt{5}$ was squared and then whole number component of the resulting value was removed by subtraction, in this case it is 8. Since the value was still inside a radical it was squared again with the resulting value being a whole number, this in turn was also removed by subtraction (60). This worked because each time the value is squared it removed a radical from the term. This iterative method however fails to work for part (d) so we must invent a new way to approach the problem.

(d)
$$\sqrt[3]{2} + \sqrt{2}$$

We start this problem by setting $X = \sqrt{2} + \sqrt[3]{2}$ if we follow algebraically sound steps to derive a polynomial with integer coefficients from this equation, then the root of the polynomial will be $\sqrt{2} + \sqrt[3]{2}$. This polynomial we can derive has the sixth degree, the steps to find it are as follows,

$$X = \sqrt{2} + \sqrt[3]{2},$$

$$X - \sqrt{2} = \sqrt[3]{2},$$

$$(X - \sqrt{2})^3 = (\sqrt[3]{2})^3,$$

$$X^3 - 3\sqrt{2}X^2 + 6X - 2\sqrt{2} = 2,$$

$$X^3 + 6X - 2 = 3\sqrt{2}X^2 + 2\sqrt{2},$$

$$X^3 + 6X - 2 = \sqrt{2}(3X^2 + 2),$$

$$(X^3 + 6X - 2)^2 = (\sqrt{2}(3X^2 + 2))^2,$$

$$X^6 - 6x^4 - 4X^3 + 36X^2 - 24X + 4 = 18X^4 + 24X^2 + 8,$$

$$X^6 - 6X^4 - 4X^3 + 12X^2 - 24X - 4 = 0.$$

Setting $X = \sqrt{2} + \sqrt[3]{2}$ into the resulting polynomial returns the value of 0 therefore $\sqrt{2} + \sqrt[3]{2}$ is an algebraic number since its the root of the polynomial $X^6 - 6X^4 - 4X^3 + 12X^2 - 24X - 4$.