Tutorial 4

Rolling Dynamics, Angular momentum

20 August 2024

P1.

A solid disc of mass M and radius R is pushed on a surface with coefficient of friction μ . Determine the limits on \overrightarrow{F} for the disc to

- (a) roll without slipping,
- (b) roll and slip

P2. A disc of mass M and radius R is set spinning with angular velocity ω and them gently placed on a horizontal surface with coefficient of friction μ . Describe the motion of the disc.

In particular find the time range in which it rolls and slips, and that in which it rolls without slipping.

P3.

A particle of mass m moves with uniform velocity $\vec{\boldsymbol{v}} = v_0 \hat{\boldsymbol{i}}$. Consider the three Cartesian reference frames shown and calculate its angular momentum

- (a) About the point O_1 in the x_1 -y frame
- (b) about the point O_2 in the x_2 -y frame
- (c) About the point O_2 in the rotated x'-y' frame.

P4.

A disc of mass M and radius R is suspended by a rope at its center. When the disc is rotated about he vertical axis, the rope gets twisted. It resists this twisting by supplying a restoring torque proportional to the angle of the twist: $\tau = -k\theta$, where k is a constant.

Suppose the disc is rotated by an angle θ_0 and released from rest at t = 0. It will perform twisting (torsional) oscillations about the initial $\theta = 0$ position. Find the angular frequency and time period of these oscillations.