

Présentation générale

Validation des performances de l'asservissement d'effort

Modèle de connaissance de l'asservissement

Objectif

Modéliser l'asservissement en effort.

Question 1 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

Correction

$$H_1(p) = \frac{1}{Jp}, H_2(p) = \frac{1}{p} \text{ et } H_3(p) = K_{C\theta}.$$

Question 2 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

Correction

$$\begin{aligned} & \text{Calculons } F(p) = \frac{C_e(p)}{C_m(p)} = \frac{H_1(p)H_2(p)H_3(p)}{1 + H_1(p)H_2(p)H_3(p)} = \frac{K_{C\theta}\frac{1}{Jp}\frac{1}{p}}{1 + K_{C\theta}\frac{1}{Jp}\frac{1}{p}} = \frac{K_{C\theta}}{Jp^2 + K_{C\theta}}. \\ & \text{Par suite } H_{\text{BF}}(p) = \frac{F(p)H_{\text{cor}}(p)}{1 + F(p)H_{\text{cor}}(p)} \text{ soit } H_{\text{BF}}(p) = \frac{\frac{K_{C\theta}}{Jp^2 + K_{C\theta}}}{1 + \frac{K_{C\theta}}{Jp^2 + K_{C\theta}}} = \frac{K_{C\theta}}{Jp^2 + K_{C\theta} + K_{C\theta}}. \\ & = \frac{1/2}{\frac{J}{2K_{C\theta}}p^2 + 1}. \end{aligned}$$

Question 3 Quel sera le comportement de cet asservissement en réponse à un échelon d'amplitude C_0 ? Conclure.

Mines Ponts 2016.

B2-04

Le coefficient d'amortissement étant nul, il s'agit d'un oscillateur harmonique d'amplitude $C_0/2$. Le système vibre ce qui est incompatible avec le mouvement d'un robot chirurgical.

Pour remédier au problème ainsi mis en évidence, le concepteur a choisi de mettre en place une boucle interne numérique, dite tachymétrique, de gain *B*. On s'intéresse ici à la définition analytique de *B*. Le schéma-blocs modifié est donné figure suivante.

FIGURE 1 – Régulation avec retour tachymétrique.

2

On règle B de telle façon que, pour $H_{\rm cor}(p)=1$, la fonction de transfert en boucle ouverte, notée $H_{\rm BO}(p)$, puisse être mise sous la forme suivante : $H_{\rm BO}(p)=\frac{1}{(1+\tau p)^2}$.

Question 4 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

D'une part,
$$F_1(p) = \frac{\frac{1}{Jp}}{1 + \frac{B}{Jp}} = \frac{1}{Jp + B}$$
. Par suite $FTBO(p) = \frac{F_1(p)H_2(p)H_3(p)}{1 + F_1(p)H_2(p)H_3(p)}$

$$= \frac{\frac{1}{Jp + B} \frac{K_{C\theta}}{p}}{1 + \frac{1}{Jp + B} \frac{K_{C\theta}}{p}} = \frac{K_{C\theta}}{p (Jp + B) + K_{C\theta}} = \frac{K_{C\theta}}{Jp^2 + Bp + K_{C\theta}} = \frac{1}{\frac{J}{K_{C\theta}} p^2 + \frac{B}{K_{C\theta}} p + 1}.$$
Par ailleurs, $H_{BO}(p) = \frac{1}{(1 + \tau p)^2} = \frac{1}{1 + 2\tau p + \tau^2 p^2}.$
On a donc $\frac{B}{K_{C\theta}} = 2\tau \Rightarrow \frac{B}{2K_{C\theta}} = \tau$. D'autre part, $\tau^2 = \frac{J}{K_{C\theta}} \Rightarrow \frac{B}{2K_{C\theta}} = \sqrt{\frac{J}{K_{C\theta}}}.$
Au final, $B = 2\sqrt{JK_{C\theta}}$ et $\tau = \frac{B}{2K_{C\theta}} = \frac{2\sqrt{JK_{C\theta}}}{2K_{C\theta}} = \sqrt{\frac{J}{K_{C\theta}}}.$

Les exigences du cahier des charges sont données plus haut (exigences 1.2.2.1, 1.2.2.3 et 1.2.2.4).

Afin de répondre à ces exigences, on choisit un correcteur proportionnel-intégral de gain K_i et de constante de temps T_i . Le schéma-blocs de la régulation se met sous la forme de la figure 2.

Question 5 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

FIGURE 2 - Régulation avec correcteur PI.

Correction

- ▶ Méthode 1 : la FTBO est de classe 1. L'écart statique est donc nul.
- ▶ Méthode 2 (à savoir faire absolument, mais à éviter car trop long).

On a
$$\varepsilon(p) = \frac{C_c(p)}{1 + \text{FTBO}(p)} = \frac{C_0}{p} \frac{1}{1 + \frac{K_i(1 + T_i p)}{T_i p (1 + \tau p^2)}} = C_0 \frac{1}{p + \frac{K_i(1 + T_i p)}{T_i (1 + \tau p)^2}}.$$

Par suite, $\lim_{t\to+\infty} \varepsilon(t) = \lim_{t\to 0} p \varepsilon(t) = 0$.

On souhaite régler le correcteur pour que le système asservi ait une fonction de $\frac{K_{\rm BF}}{1 + \frac{2\xi_{\rm BF}}{\omega_{\rm 0BF}}p + \frac{p^2}{\omega_{\rm 0BF}^2}}.$ transfert en boucle fermée d'ordre 2 de la forme : -

Question 6 Proposer une expression simple pour la constante de temps T_i .

Correction

Pour que la FTBF soit d'ordre 2, la FTBO doit être d'ordre 2.

En choisissant $T_i = \tau$ (compensation du pôle double du système), on a alors FTBO(p) =

$$\frac{K_i(1+\tau p)}{\tau p(1+\tau p)^2} = \frac{K_i}{\tau p(1+\tau p)}.$$

En choisissant
$$T_i = \tau$$
 (compensation du pôle double du service $\frac{K_i(1+\tau p)}{\tau p(1+\tau p)^2} = \frac{K_i}{\tau p(1+\tau p)}.$

On a alors FTBF(p) = $\frac{\frac{K_i}{\tau p(1+\tau p)}}{1+\frac{K_i}{\tau p(1+\tau p)}} = \frac{K_i}{\tau p(1+\tau p)+K_i}.$

Question 7 À partir des courbes ci-contre, proposer une valeur de coefficient d'amortissement et de pulsation propre.

On donne $K_i = 1$.

Question 8 Les critères de performance du cahier des chartes sont-ils respectés? Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Diagrammes de Bode

On prend $K_i = 0, 4, T_i = 0.01 \text{ s et } \tau = 0.5 \text{ s.}$

Question 9 Tracer le diagrame de Bode de la fonction de transfert $G(p) = \frac{K_i (1 + T_i p)}{T_i p (1 + \tau p)^2}$.

Question 2.

D'après l'équation de mouvement, $Jp\Omega_m(p) = C_m(p) - C_e(p)$. On a donc $H_1(p) = \frac{1}{Jp}$. On a $p\theta_m(p) = \Omega_m(p)$; donc $H_2(p) = \frac{1}{p}$. Enfin, $C_e(p) = K_{C\theta}\theta_m(p)$ et donc $H_3(p) = K_{C\theta}$.

Question 3.

On a dans un premier temps $\frac{C_{\theta}(p)}{C_{m}(p)} = F(p) = \frac{H_{1}(p)H_{2}(p)H_{3}(p)}{1+H_{1}(p)H_{2}(p)H_{3}(p)} = \frac{\frac{1}{1-p}K_{C}\theta}{1+\frac{1}{1-p}K_{C}\theta} = \frac{K_{C}\theta}{Jp^{2}+K_{C}\theta}$

Ouestion 4.

On peut mettre la fonction précédente sous forme canonique. On a : $H_{BF}(p) = \frac{\frac{2}{2}}{\frac{1p^2}{2K_{CB}} + 1}$. Il s'agit d'un système du second

ordre avec un coefficient d'amortissement nul. On a alors un oscillateur harmonique et la réponse du système à un échelon d'amplitude C_0 et de moyenne $\frac{c_0}{2}$).

Un mouvement sinusoïdal est surement incompatible avec l'asservissement d'un axe sur un robot chirurgical

On a
$$H_{BO}(p) = \frac{H_{COP}(p)\frac{H_1(p)}{1+H_1(p)B}H_2(p)H_3(p)}{1+\frac{H_1(p)}{1+H_1(p)B}H_2(p)H_3(p)} = \frac{H_1(p)H_2(p)H_3(p)}{1+H_1(p)B+H_1(p)H_2(p)H_3(p)} = \frac{\frac{K_{C\theta}}{Jp^2}}{1+\frac{B}{Jp}+\frac{K_{C\theta}}{Jp^2}} = \frac{K_{C\theta}}{Jp^2+pB+K_{C\theta}} = \frac{1}{\frac{J^2+pB}{K_{C\theta}+K_{C\theta$$

Par ailleurs,
$$(1 + \tau p)^2 = 1 + \tau^2 p^2 + 2\tau p$$
.
En identifiant, $\tau^2 = \frac{J}{\kappa_{C\theta}}$ et $2\tau = \frac{B}{\kappa_{C\theta}}$. On a donc $B = 2\tau K_{C\theta} = 2K_{C\theta} \sqrt{\frac{J}{\kappa_{C\theta}}} = 2\sqrt{JK_{C\theta}}$ et $\tau = \sqrt{\frac{J}{\kappa_{C\theta}}}$.

$$\begin{aligned} & \text{Question 6.} \\ & \text{On a: } \varepsilon(p) = \frac{c_c(p)}{1+FTBO(p)} = \frac{c_0}{p} \cdot \frac{1}{1+\frac{K_l(1+T_lp)}{T_lp(1+\tau p)^2}}. \text{ En conséquences, } \varepsilon_S = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{c_0}{p} \cdot \frac{1}{1+\frac{K_l(1+T_lp)}{T_lp(1+\tau p)^2}} = \lim_{p \to 0} \frac{1}{p} \cdot \frac{1}{1+\frac{K_l(1+T_lp)}{T_lp(1+\tau p)^2}} = \lim_{p \to 0} \frac{1}{p} \cdot \frac{1}{1+\frac{K_l(1+T_lp)}{T_lp(1+\tau p)^2}} = 0 \text{ Nm.} \end{aligned}$$

$$\lim_{p\to 0} C_0 \cdot \frac{1}{1 + \frac{K_1(1+T_1p)}{T_1p(1+\tau p)^2}} = 0 \text{ Nm.}$$
3
L'exigence 1.2.2.1 est vérifiée.

Question 7. $\frac{\frac{K_i(1+T_ip)}{T_ip(1+\tau p)^2+K_i(1+T_ip)}. \text{ Avec } T_i=\tau, \text{ on a } \frac{K_i}{\tau p(1+\tau p)+K_i}. \text{ La FTBF est bien d'ordre 2.}$ $\frac{\kappa_i(1+T_ip)}{T_ip(1+\tau p)^2}$

Cependant, on trouve sur ce diagramme qu'il faut avoir $\xi \ge 0.8$ pour avoir une marge de phase de 70°.

Si on souhaite obtenir le temps de réponse à 5% le plus rapide, comme $\,\xi\!\geq\!0,\!8\!>\!0,\!7$, il faut prendre ξ le plus faible

possible. Cela impose $\xi = 0.8$ et comme $\xi = \frac{1}{2\sqrt{K}}$ on a

Pour $\xi=0.8$, la lecture de l'abaque donne donc $t_{R5\%}.\omega_0 \ge 3.5$ et avec $t_{R5\%} \le 0.5s$ on a $|\omega_0 \ge 7rad/s|$

Question 9.

Critère	Valeur
Dépassement	2%
Tr5%	<0,5 s (1)
Erreur statique en réponse à un échelon	0 1

