§ 5.1 \$ 5.2 - Eigenvalues, eigenvectors, eigenspaces

· Sometimes matrix multiplication is complicated; some times it's not.

Ex: Let
$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$$
, $\vec{u} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $\vec{V} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Find

AT. A7.

•
$$A\vec{u} = \begin{pmatrix} -5 \\ -1 \end{pmatrix}$$
 • $A\vec{v} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$

L) observe. Aû not a scalar multiple of û but

Av = 2v is a scalar multiple of v.

Def: A vector \overrightarrow{x} is said to be an eigenvector of an nxn matrix \overrightarrow{A} if $\overrightarrow{A}\overrightarrow{x}=\lambda\overrightarrow{x}$ for some constant λ .

The scalar λ is called an eigenvalue of \overrightarrow{A} .

L7. In above example, $\vec{v} = \begin{pmatrix} 3 \end{pmatrix}$ is an eigenvector of $A = \begin{pmatrix} 3 - 2 \\ 1 0 \end{pmatrix}$ w) corresponding eigenvalue $\lambda = 2$. (b/c $A\vec{v} = 2\vec{v}$)

Ex: 15 < 1,-2, 17 an eigen vector of (3 6 7)?

If so, what is its corresponding (5 6 5)?

eigenvalue?

Ans
$$\begin{pmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ -2 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. So it is an eigen-vector & its corresponding eigenvalue is $\lambda = -2$.

Note that culs are L.D. => (A-7I) = 0 has a nontrivial solution by invertible matrix theorem. So 7 is an eigenvalue!

To find eigenvectors: Put (A-7I) = 7 into RECED

$$(A-7110)=(-6600)$$
 $RREF(0000)$

Now, as equations: $X_1 - X_2 = 0 \Rightarrow \vec{X} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \vec{X}_2$. This is a whole family of

vectors, and each one $w/xz\neq 0$ is an eigenvec corresp. to $\lambda=7$!

Note: In previous example, collection of eigenvalues was a Subspace of IR? This is always the case! Def: The set of all solutions of the eq. $(A-\lambda I)\vec{x}=\vec{0}$ is a subspace of IRn called the eigenspace. Moreover: Eigen $(A) = \frac{1}{2} \text{ all solutions of } = nu \cdot (A - \lambda I)$ space $(A) = \frac{1}{2} (A - \lambda I) \cdot \vec{x} = \vec{0} \cdot \vec{J} = nu \cdot (A - \lambda I)$ (e.val)

Ex: $\lambda=2$ is an eigenvalue for $A=\begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}$. Find the corresponding eigenspace. Meaning Contell

Any WIMAN Vec 15 L7. $\lambda=2$ is an eval, so consider A-ZI: on eig. space won't satisfy Ab=2b: $A-ZI = \begin{pmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ はらこくいいか As equations, the augmenting w/\bar{o} yields possequal 95 (2-1)6(0) $\Rightarrow 2x_1 = x_2 - 6x_3$ (2-1)6(0) $\Rightarrow 2x_1 = x_2 - 6x_3$ $\Rightarrow x_2 = x_2 + 0x_3$ $\Rightarrow x_3 = x_4 + x_4 + x_4 = x_4 + x_4 + x_4 = x_4 +$ Does equal 95, • A basis is $\left\{ \begin{pmatrix} 1/2 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \end{pmatrix} \right\}$.

• Meaning: Pick any vec a in eigenspace. ex: a = <-2, 2, 17) Then Aa is me 2a:

(ex: $\vec{a} = \langle -2, 2, 1 \rangle$) Then $A\vec{a}$ is $= 2\vec{a}$: $A\begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -8 - 2 + 6 \\ -4 + 2 + 6 \\ -4 - 2 + 9r \end{pmatrix} = \begin{pmatrix} -4 \\ 4 \\ 2 \end{pmatrix} = 2\vec{a}$

· To compute eigenvals, we can:

Sfrom invertible &

o Consider
$$(A-\lambda I)\vec{x} = \vec{0}$$

Def: The equation det
$$(A-\lambda I)=0$$
 is called the Charac-

Ex: Find char eq. of
$$A = \begin{pmatrix} 5 & -2 & 6 & -1 \\ 0 & +3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & c & 1 \end{pmatrix}$$
.

Ans:
$$det (A-\lambda I) = \lambda det \begin{pmatrix} 5-\lambda & -2 & 6 & -1 \\ 0 & 3-\lambda & -8 & 0 \\ 0 & 0 & 5-\lambda & 4 \\ 0 & 0 & 1-\lambda \end{pmatrix} = 0$$

$$\angle = 7 (5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda) = 0$$

$$\angle = 7 (5-\lambda)^{2}(3-\lambda)(1-\lambda) = 0.$$
Charge eq.

"characleristic polynomial"

In this ex., eigenvals of A are
$$\lambda = 5$$
, $\lambda = 3$, $\lambda = 1$.

Ex: Find eigenvalues / vectors of (a) $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ $\stackrel{\text{row}}{\underset{\text{equiv}}{\text{equiv}}} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ det $(A - \lambda I) = det \begin{pmatrix} 1-\lambda & 0 \\ 2 & 1-\lambda \end{pmatrix}$ vals $det (A-\lambda I) = det \begin{pmatrix} 2-\lambda & 1 \\ 1 & -\lambda \end{pmatrix}$ eigenvals = (1- x)2 = $\lambda^2 - 2\lambda - 1$ => det (...) = 0 => \ \ \ = 1, \ \ \ = 1 => det (...)= 0 => \(\lambda^2 - 2\lambda - 1 = 0 \) multiplicity 2 =) >= 2+ 1944 => \= 1±\12. $(A-\lambda I : \vec{o}) = \begin{pmatrix} 1-\lambda & 0 & 0 \\ 2 & 1-\lambda & 0 \end{pmatrix}$ $(A-\lambda I : \vec{o}) = \begin{pmatrix} 2-\lambda & 1 & 0 \\ 1 & -\lambda & 0 \end{pmatrix}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\$ L> = 1+12 : (1-12 1 0 RREF (1 -1-12 0) = 0] All eigenvecs have forme $x_2 = fnee$] => X1= (1+12) X2 => All vecs have $x_2 \begin{pmatrix} 1+\sqrt{2} \\ 1 \end{pmatrix}$ · >= 1-1/2 : similarly, all vecs have $x_2 \begin{pmatrix} 1 & \sqrt{2} \\ 1 \end{pmatrix}$.

Ex;
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \iff \lambda^2 + 1 = 0$$

$$\Rightarrow \text{ eigenvals are } \lambda = i, \lambda = -i.$$

Eigenvecs:

$$\lambda = i : (A - \lambda I)^{0} = \begin{pmatrix} -i & -i & 0 \\ & -i & 0 \end{pmatrix}$$

$$R_{1} = i \times 2 \quad \Rightarrow \quad X = x_{1} \quad \Rightarrow \quad X = x_{2} \quad \Rightarrow \quad X = x_{1} \quad \Rightarrow \quad X = x_{2} \quad \Rightarrow \quad X = x_{2} \quad \Rightarrow \quad X = x_{2} \quad \Rightarrow \quad X = x_{3} \quad \Rightarrow \quad X = x_{4} \quad \Rightarrow \quad X = x_{$$

$$\lambda = -i : (A - \lambda I : \vec{0}) = (i - i : \vec{0}) = (i - i : \vec{0}) = (i - i : \vec{0})$$

$$R_1 \leftarrow R_2 \qquad (i - i : \vec{0})$$

So:
$$\chi = i \iff \overline{\chi} = \begin{pmatrix} i \\ i \end{pmatrix}$$

$$\chi = -i \iff \overline{\chi} = \begin{pmatrix} -i \\ i \end{pmatrix}$$

Recall: The conjugate of athi is a-bi. If [athi] is a vector, write as [a]+i[d] & its conjugate is [a]-i[d] Ex (contid) conjugates $\lambda = -i = 0 - i$ is an is an AND eigenval basis for eigenspace (1) for eigenspace (1) Conjugates. rnis is a general | | result Notation: atbi = a-bi (for conjugate) Thm: If A is an nxn matrix w/ real entries, then any complex eigenvalues occur in conjugate pairs and them eigenvector is an eigenvector is an eigenvector of the conjugate value: $\lambda = a+bi$ eigenval $\implies \lambda = a-bi$ eigenval w/ vect v W vect 3

77

Ex: Find eigenvals / basis for space (5 -2) · char eq is det (4-)I)=0 47 • eigenvals: $\lambda = \frac{8 \pm \sqrt{64 - 4(17)^2}}{2} = \frac{8 \pm \sqrt{-4^2}}{2} = \frac{8 \pm 2i}{2}$ eigenvec for $\lambda = 1 + 4i$: $\begin{pmatrix} 5 - \lambda & -2 & 0 \\ 1 & 3 - \lambda & 0 \end{pmatrix} \stackrel{=}{\underset{R_1 \leftrightarrow R_2}{\longleftarrow}} \begin{pmatrix} 1 & 3 - \lambda & 0 \\ 5 - \lambda & -2 & 0 \end{pmatrix}$ $R_{2} = R_{2} - (5-\lambda)R_{1}$ $\begin{pmatrix} 1 & 3-\lambda & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} x_{1} = -(3-\lambda)x_{2} \\ x_{2} = x_{2} \end{cases}$ $\begin{cases} x_{1} = -(3-\lambda)x_{2} \\ x_{2} = x_{2} \end{cases}$ Theorem: If A is an non matrix w/ real entries, then A has n eigenvalues (counting multiplicities) which may be complex. complex eigenvals come in Conjugate pairs.