0.1 Fourier 级数及基本性质

我们首先需要熟悉傅立叶级数的现代形式:

定义 0.1

设f是周期1的的可积函数,则定义f的傅立叶系数为

$$\hat{f}(m) = \int_0^1 f(x)e^{-2\pi i mx} dx, m \in \mathbb{Z}.$$

f的傅立叶级数为

$$f(x) \sim \sum_{m=-\infty}^{\infty} \hat{f}(m)e^{2\pi i mx}$$
.

注 定义 0.1中的傅立叶级数(??)不意味着收敛到 f 或者收敛.

定义 0.2

对每个 $N \in \mathbb{N}_0$,

1. 我们称

$$D_N(x) = \sum_{|m| \leqslant N} e^{2\pi i m x} = \frac{\sin((2N+1)\pi x)}{\sin(\pi x)}.$$

为 Dirichlet 核.

2. 我们称

$$F_N(x) = \frac{1}{N+1} [D_0(x) + D_1(x) + \dots + D_N(x)]$$

$$= \sum_{j=-N}^{N} \left(1 - \frac{|j|}{N+1}\right) e^{2\pi i j x}$$

$$= \frac{1}{N+1} \left(\frac{\sin(\pi(N+1)x)}{\sin(\pi x)}\right)^2$$

为 Fejr 核.

注 定义 0.2中的等式关系都是等比数列求和和欧拉公式, 二重求和换序的应用. 我们略去证明下面我们在高数框架下给出 Dirichlet 核和 Fejér 核, 为了形式上的统一, 我们定义

定义 0.3

对每个 $n \in \mathbb{N}_0$,

1. 我们称

$$D_0(x) = 1, D_n(x) = 1 + 2\sum_{k=1}^n \cos kx = \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\left(\frac{x}{2}\right)}, n = 1, 2, \cdots.$$
 (1)

为 Dirichlet 核.

2. 我们称

$$F_n(x) = \frac{1}{n+1} \sum_{i=0}^n D_j(x) = 1 + \frac{2}{n+1} \sum_{k=1}^n (n-k+1) \cos kx = \frac{1}{n+1} \left[\frac{\sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}} \right]^2$$
 (2)

为 Fejr 核.

证明 证明的关键是如下结论

结论 [三角函数复合等差数列时, 部分和计算方法] 三角函数复合等差数列时, 部分和计算方法可以通过欧拉公式之后用等比数列求和公式或者乘 $\frac{\sin\frac{nx}{2}}{\sin\frac{x}{2}}$ 之后对分子和差化积得到.

1. 我们有

$$1 + 2\sum_{k=1}^{n} \cos kx = 1 + 2\sum_{k=1}^{n} \frac{\sin \frac{x}{2} \cos kx}{2 \sin \frac{x}{2}} = 1 + \frac{1}{\sin \frac{x}{2}} \sum_{k=1}^{n} [\sin \left(k + \frac{1}{2}\right) x - \sin \left(k - \frac{1}{2}\right) x]$$
$$= 1 + \frac{\sin \left(n + \frac{1}{2}\right) x - \sin \frac{x}{2}}{\sin \frac{x}{2}} = \frac{\sin \left(n + \frac{1}{2}\right) x}{\sin \frac{x}{2}}.$$

我们证明了式(1)式.

2. 我们有

$$F_n(x) = \frac{1}{n+1} \sum_{j=0}^n D_j(x) = \frac{1}{n+1} \left(1 + \sum_{j=1}^n \left(1 + 2 \sum_{k=1}^j \cos kx \right) \right)$$

$$= \frac{1}{n+1} \left(n+1 + 2 \sum_{j=1}^n \sum_{k=1}^j \cos kx \right) = \frac{1}{n+1} \left(n+1 + 2 \sum_{k=1}^n \sum_{j=k}^n \cos kx \right)$$

$$= \frac{1}{n+1} \left(n+1 + 2 \sum_{k=1}^n (n-k+1) \cos kx \right) = 1 + \frac{2}{n+1} \sum_{k=1}^n (n-k+1) \cos kx,$$

以及

$$F_n(x) = \frac{1}{n+1} \sum_{j=0}^n D_j(x) = \frac{1}{n+1} \sum_{j=0}^n \frac{\sin\left(j + \frac{1}{2}\right) x}{\sin\frac{x}{2}}$$

$$= \frac{1}{n+1} \cdot \frac{\sin\frac{x}{2}}{\sin^2\frac{x}{2}} \sum_{j=0}^n \sin\left(j + \frac{1}{2}\right) x = -\frac{1}{2(n+1)\sin^2\frac{x}{2}} \sum_{j=0}^n [\cos(j+1)x - \cos jx]$$

$$= -\frac{\cos(n+1)x - 1}{2(n+1)\sin^2\frac{x}{2}} = \frac{\sin^2\frac{n+1}{2}x}{(n+1)\sin^2\frac{x}{2}}.$$

这就证明了(2)式.

定理 0.1 (傅立叶部分和积分表达式)

设 f 是周期 2π 的可积函数, 其傳立叶系数为 a_n, b_n . 记 $S_0(x) = \sigma_0(x) = \frac{a_0}{2}$ 以及

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx), \sigma_n(x) = \frac{1}{n+1} \sum_{k=0}^n S_k(x), n = 1, 2, \cdots.$$

则我们有

Dirichlet:

$$S_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) D_n(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) \frac{\sin\left(n + \frac{1}{2}\right) t}{\sin\frac{t}{2}} dt, n = 0, 1, \cdots.$$

Fejr:

$$\sigma_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) F_n(t) dt = \frac{1}{2(n+1)\pi} \int_{-\pi}^{\pi} f(x+t) \frac{\sin^2 \frac{n+1}{2} t}{\sin^2 \frac{t}{2}} dt, n = 0, 1, \cdots$$

笔记 根据经验,取平均性质会更好一些,因此 Fejér 是一个好核而 Dirichlet 核性质就相当糟糕,在后面的证明中我们将充分感受到这一点。

证明 当 n=0, 这个定理显然成立. 当 n>0, 一方面, 我们有

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)dy + \frac{1}{\pi} \sum_{k=1}^n \left(\int_{-\pi}^{\pi} f(y) \cos ky \cos kx dy + \int_{-\pi}^{\pi} f(y) \sin ky \sin kx dy \right)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)dy + \frac{1}{\pi} \sum_{k=1}^{n} \left(\int_{-\pi}^{\pi} f(y) \cos k(y - x) dy \right)$$

$$\frac{\frac{1}{2\pi} \frac{\pi}{2\pi}}{2\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + y) dy + \frac{1}{2\pi} \sum_{k=1}^{n} \left(\int_{-\pi}^{\pi} f(x + y) 2 \cos ky dy \right)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + y) \left(1 + 2 \sum_{k=1}^{n} \cos ky \right) dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + y) D_{n}(y) dy.$$

另外一方面, 我们有

$$\sigma_n(x) = \frac{1}{n+1} \sum_{j=0}^n S_j(x) = \frac{1}{n+1} \sum_{j=0}^n \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+y) D_j(y) dy$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+y) \frac{1}{n+1} \sum_{j=0}^n D_j(y) dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+y) F_n(y) dy.$$

这就证明了这个定理.

定理 0.2 (Fourier 级数的逐项积分定理)

设 f(x) 在 $[-\pi, \pi]$ 上可积或绝对可积,

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

则 f(x) 的 Fourier 级数可以逐项积分, 即对于任意 $c, x \in [-\pi, \pi]$,

$$\int_{c}^{x} f(t)dt = \int_{c}^{x} \frac{a_0}{2}dt + \sum_{n=1}^{\infty} \int_{c}^{x} (a_n \cos nt + b_n \sin nt)dt.$$

定理 0.3 (Fourier 级数的逐项微分定理)

设 f(x) 在 $[-\pi,\pi]$ 上连续,

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

 $f(-\pi) = f(\pi)$, 且除了有限个点外 f(x) 可导. 进一步假设 f'(x) 在 $[-\pi, \pi]$ 上可积或绝对可积 (注意: f'(x) 在 有限个点可能无定义, 但这并不影响其可积性). 则 f'(x) 的 Fourier 级数可由 f(x) 的 Fourier 级数逐项微分得到, 即

$$f'(x) \sim \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{a_0}{2} \right) + \sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} (a_n \cos nx + b_n \sin nx) = \sum_{n=1}^{\infty} (-a_n n \sin nx + b_n n \cos nx).$$

推论 0.1

 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 是某个在 $[-\pi, \pi]$ 上可积或绝对可积函数的 Fourier 级数的必要条件是 $\sum_{n=1}^{\infty} \frac{b_n}{n}$ 收敛.

定理 0.4 (Bessel 不等式)

设 f(x) 在 $[-\pi,\pi]$ 上可积或平方可积,则 f(x) 的 Fourier 系数满足不等式

$$\frac{a_0^2}{2} + \sum_{k=0}^{\infty} (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx.$$

 \sim

🔶 笔记 这表示 Fourier 系数的平方组成了一个收敛的级数.

定理 0.5 (Parseval 恒等式)

设 f(x) 在 $[-\pi,\pi]$ 上可积或平方可积,则 f(x) 的 Fourier 系数满足恒等式

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx.$$

引理 0.1

设 f 为 $[-\pi,\pi]$ 上的连续可微函数, 且 $f(-\pi) = f(\pi)$. a_n,b_n 为 f 的 Fourier 系数, a'_n,b'_n 为 f 的导函数 f' 的 Fourier 系数, 证明

$$a'_0 = 0, a'_n = nb_n, b'_n = -na'_n(n = 1, 2, \cdots).$$

 $\dot{\mathbf{L}}$ 分部积分的条件, 需要 f 的导函数 f' 在积分区域上连续.

证明 由于 f 为 $[-\pi,\pi]$ 上的连续可微函数, 因此 $f' \in C([-\pi,\pi])$. 又 $f(\pi) = f(-\pi)$, 故

$$a'_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) dx = \frac{1}{\pi} f(x) \Big|_{-\pi}^{\pi} = 0,$$

$$a'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \cos nx dx = \frac{1}{\pi} f(x) \cos nx \Big|_{-\pi}^{\pi} + \frac{n}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = nb_{n}(n = 1, 2, \dots),$$

$$b'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \sin nx dx = \frac{1}{\pi} f(x) \sin nx \Big|_{-\pi}^{\pi} - \frac{n}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = -na_{n}(n = 1, 2, \dots),$$

因此结论得证.

例题 0.1 设 f 以 2π 为周期且具有二阶连续的导函数, 证明 f 的 Fourier 级数在 $(-\infty, +\infty)$ 上一致收敛于 f. 证明 因为 f(x) 是以 2π 为周期的具有二阶连续导数的函数, 故 f(x), f'(x) 可展开成傅里叶级数, 不妨设

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \quad f'(x) = \frac{a'_0}{2} + \sum_{n=1}^{\infty} (a'_n \cos nx + b'_n \sin nx).$$

先证 $\frac{|a_0|}{2} + \sum_{n=1}^{\infty} (|a_n| + |b_n|)$ 收敛. 由引理 0.1可知

$$a'_0 = 0, a'_n = nb_n, b'_n = -nb_n (n = 1, 2, \cdots),$$

从而

$$|a_n| + |b_n| = \frac{|b'_n|}{n} + \frac{|a'_n|}{n} \leqslant \frac{1}{2} \left[(b'_n)^2 + \frac{1}{n^2} \right] + \frac{1}{2} \left[(a'_n)^2 + \frac{1}{n^2} \right] = \frac{1}{n^2} + \frac{1}{2} \left[(a'_n)^2 + (b'_n)^2 \right]. \tag{3}$$

又由Bessel 不等式可知

$$\frac{a_0'}{2} + \sum_{n=1}^{\infty} \left[(a_n')^2 + (b_n')^2 \right] \le \frac{1}{\pi} \int_{-\pi}^{\pi} [f'(x)]^2 \mathrm{d}x < +\infty.$$

故 $\sum_{n=1}^{\infty} \left[(a'_n)^2 + (b'_n)^2 \right]$ 收敛。 再结合 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛及(3)式可知 $\sum_{n=1}^{\infty} (|a_n| + |b_n|)$ 收敛,进而 $\frac{|a_0|}{2} + \sum_{n=1}^{\infty} (|a_n| + |b_n|)$ 收敛.注意到

$$\left| \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \right| \leqslant \frac{|a_0|}{2} + \sum_{n=1}^{\infty} (|a_n| + |b_n|), \forall x \in (-\infty, +\infty).$$

因此由 Weierstrass 判别法可知, $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 在 $(-\infty, +\infty)$ 上一致收敛,即 f 的 Fourier 级数在 $(-\infty, +\infty)$ 上一致收敛于 f.