문혜지

201804202

이혜규

201804236

함도윤

201804255

함양훈

202104397

Introduction 🖑

- 뇌파 분류 경진대회
- emotiv사의 EPOC 장비 이용하여 14개 채널로 각 뇌파를 받음
- 10초동안 '정지(0)', '왼쪽으로 이동(1)', '오른쪽으로 이동(2) ' 의 뇌파를 받음
- 뇌파를 받은 사람은 subjectA, subjectB, subjectC, subjectD, 총 4명

DATA

결측치 확인

```
a = df_train.isnull().sum()
a[a > 0]

Series([], dtype: int64)
```

종속변수(Y) 확인

```
subject[target].value_counts()

8 888
2 888
1 888
Name: Class, dtype: int64
```


• 데이터 확인

3560.D

2064.0

0.961914

	Class	AF3 delta std		AF3 theta std	AF3 theta m	AF3 alpha std	AF3 alpha m	AF3 beta std	AF3 beta m	F7 delta std
ö	1	3574.0	2068.0	1.334961	2.294922	0.742188	2.052734	3.605469	4.855469	3576.0
1		3570.0	2064.0	1.639648	2.572266	1.096680	2.677734	2.314453	4.726562	3574.0
2	1	3570.0	2064.0	0.706543	2.613281	1.086914	2.222656	2.410156	4.937500	3574.0
		E15-10-11	10000	2004		E CONTRACTO	100000000000000000000000000000000000000			

2.373047

1.046875

1.783203

2.62	F8 beta std	F8 beta m	AF4 delta std	AF4 delta m	AF4 theta std	AF4 theta m	AF4 alpha std	AF4 alpha m	AF4 beta std	AF4 beta m
٦	1.625000	8.859375	3522.0	2045.0	0.750488	2.169922	1.372070	2.099609	2.417969	3.884766
	1.917969	7,472656	3526.0	2048.0	0.799005	2.408203	1.110352	2.154297	2.048828	4.238281
ı	1355469	8320312	3532.0	2050.0	1.411133	2.642578	1.518555	1.738281	1.457031	3.861328
1	1.683594	5.964844	3530.0	2050.0	1.221680	3.437500	1.272461	2.111328	1.679688	1505859
	1.498047	6.464375	3520.0	2044.0	1.796875	3.386719	0.770996	3.505859	1.477539	3.687500

DATA

· 정규화(normalization)

각 데이터의 스케일을 맞추기 위해 진행

$$x_i_new = rac{x_i - mean(x)}{std(x)}$$

• TRAIN TEST 분리

TRAIN 7: TEST 3로 지정

Algorithm & Result

순환 신경망

- LSTM 은 Long Short Term Memory의 약자
- 주로 시계열 처리나 자연어 처리를 사용하는 데 사용
- X가 Input으로 들어가 여러 번의 순환을 거쳐 output인 y가 나오는 구조. 이때 h(hidden state)는 그 중간다리 역할을 함.
- 최종적으로 y값이 나오는 데는 hidden state와 연속적인 x의 입력에 의해

Epoch 00007: early stopping

RNN

LSTM

Subject_A Subject A 정확도: 63.0%

```
LSTM train
[[571 0 0]
[223 337 0]
[ 1 353 188]]

LSTM test
[[227 2 0]
[ 88 142 0]
[ 2 175 81]]
```

Subject_C Subject A 정확도 : 66.0%

```
LSTM train
[[556 0 0]
[205 348 0]
[ 0 200 364]]

LSTM test
[[239 5 0]
[ 90 147 0]
[ 0 133 103]]
```

Subject_B Subject B 정확도: 67.0%

```
LSTM train
[[555 0 0]
[271 292 0]
[ 0 363 192]]

LSTM test
[[245 0 0]
[110 127 0]
[ 1 151 83]]
```

Subject_D Subject D 정확도: 65.0%

```
LSTM train
[[545 0 0]
[412 164 0]
[ 0 389 163]]

LSTM test
[[254 1 0]
[152 62 0]
[ 0 186 62]]
```


- 서포트 벡터 머신(support vector machine)의 약자
- SVM은 기계 학습의 분야 중 하나로 패턴 인식, 자료 분석을 위한 지도 학습 모델이며, 주로 분류와 회귀 분석을 위해 사용됨.
- 분류된 두 범주 사이에서 해당 범주에 속하는 데이터의 분류 오차를 줄이면 서 여백(margin)을 최대화하는 결정 경계(decision boundary)를 찾는 방법
- 두 범주 사이에 여러 경계가 존재할 수 있지만, 여백을 최대화하는 경계를 최대 마진 분류기라 함

SVM

Subject_A Subject A 정확도: 87.6%

```
A SVM train
[[496 37 23]
[ 32 478 45]
[ 23 48 586]]

A SVM test
[[285 17 22]
[ 28 191 42]
[ 21 21 181]]
```

Subject_C Subject C 정확도: 82.1%

```
C SVM train
[[469 38 51]
[ 45 459 45]
[ 44 78 451]]

C SVM test
[[153 38 51]
[ 48 168 43]
[ 51 58 118]]
```

Subject_B Subject B 정확도: 94.9%

```
B SVM train

[[534 14 17]

[ 6 531 12]

[ 7 29 538]]

B SVM test

[[198 17 28]

[ 11 238 18]

[ 15 27 192]]
```

Subject_D Subject D 정확도: 90.7%

```
D SVM train
[[515 22 33]
[ 21 519 23]
[ 28 30 489]]

D SVM test
[[176 24 38]
[ 21 192 24]
[ 28 36 189]]
```

KNN

- k-Nearest Neighbor 모델의 약자
- 새로운 데이터가 어느 그룹에 속해있는지를 판단하기 위해서, 인접한 학습데이터의 개수를 기준으로 판단
- 이때 인접한 학습데이터의 개수가 바로 kNN의 'k' 가 됨

빨간색과 녹색은 학습된 데이터이고 파란색은 새로운 데이터

KNN

Subject_A Subject A 정확도 : 96.6%

```
KNN train
[[535 7 9]
[ 8 550 8]
[ 12 13 538]]

KNN test
[[215 17 17]
[ 15 208 11]
[ 14 23 200]]
```

Subject_C Subject A 정확도 : 89.7%

```
D KNN train
[[539 3 1]
[ 2 568 5]
[ 6 2 562]]

D KNN test
[[241 6 18]
[ 11 214 8]
[ 13 18 287]]
```

Subject_B Subject B 정확도: 98.6%

```
B KNN train
[[571 1 3]
[ 4 533 6]
[ 5 5 552]]

B KNN test
[[212 7 6]
[ 19 220 18]
[ 15 4 219]]
```

Subject_D Subject D 정확도: 98.9%

```
C KNN train
[[509 19 22]
[ 30 508 25]
[ 49 28 490]]

C KNN test
[[190 33 27]
[ 41 172 24]
[ 50 24 159]]
```


Conclusion

Conclusion

Algorithm	LSTM	SVM	KNN
Subject A의 정확도	63.0%	87.6%	96.0%
Subject B의 정확도	67.0%	94.9%	98.6%
Subject C의 정확도	66.0%	82.1%	89.7%
Subject D의 정확도	65.0%	90.7%	98.9%

LSTM

Subject_A, B, C, D 예측값 error

```
model.predict(x_test)
       outputs = call_fn(inputs, *args, **kwargs)
333
>>>
     File "C:\Users\yhg31\Anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 92, in error_handler
333
       return fn(*args, **kwargs)
>>>
333
     File "C:\Users\yhg31\Anaconda3\lib\site-packages\keras\layers\recurrent_v2.py", line 1254, in call
>>>
       runtime) = lstm_with_backend_selection(**normal_lstm_kwargs)
>>>
333
     File "C:\Users\yhg31\Anaconda3\lib\site-packages\keras\layers\recurrent_v2.py", line 1649, in lstm_with_backend_selection
>>>
       last_output, outputs, new_b, new_c, runtime = defun_standard_lstm(**params)
>>>
333
     File "C:\Users\yhg31\Anaconda3\lib\site-packages\keras\layers\recurrent_v2.py", line 1380, in standard_lstm
333
       last_output, outputs, new_states = backend.rnn(
>>>
355
     File "C:\Users\yhg31\Anaconda3\lib\site-packages\keras\backend.py", line 4654, in rnn
333
       final_outputs = tf.compat.v1.while_loop(
>>>
333
     File "C:\Users\yhg31\Anaconda3\lib\site-packages\keras\backend.py", line 4638, in _step
333
       current_input = tuple(ta.read(time) for ta in input_ta)
333
>>>
     File "C:\Users\yhg31\Anaconda3\lib\site-packages\keras\backend.py", line 4638, in <genexpr>
>>>
       current_input = tuple(ta.read(time) for ta in input_ta)
333
```

SVM

Subject_A

Class	0	1	2
예측값	195	160	125

Subject_C

Class	0	1	2	
예측값	243	139	98	

Subject_B

Class	0	1	2
예측값	228	168	84

Subject_D

Class	0	1	2
예측값	223	151	106

KNN

Subject_A

Class	0	1	2
예측값	209	146	125

Subject_C

Class	0	1	2	
예측값	226	132	122	

Subject_B

Class	0	1	2
예측값	192	172	116

Subject_D

Class	0	1	2
예측값	195	149	136

Thanks!

