

Outline

- Introduction
- System Model
- Proposed Scheme
- Security Analysis

Introduction

CP-ABE

CP-ABE with Attribute Revocation

2006

each attribute with expiration date

2007

secret key with expiration date

2010

re-encrypt ciphertext

System Model

System Model

- Authority
 - Setup
 - KeyGen
 - ReKeyGen
- Proxy server
 - ReEnc
- Data Owner
 - Enc
- Data User
 - Dec
 - Rekey

Proposed Scheme

Proposed Scheme

- Setup
- KeyGen
- Enc
- ReKeyGen
- ReEnc
- Rekey
- Dec

Setup

$$(p, G_0, G_1, g, e)$$
 $e: G_0 \times G_0 \to G_1$

Attribute universe $U = \{1, 2, ..., n\}$

• Setup(1^{λ}) -> {MK, PK, ver=1}

Random: $y, t_1, ..., t_{3n} \in Z_p$

Public key: $PK = \{e, g, Y = e(g, g)^y, T_1 = g^{t_1}, ..., T_{3n} = g^{t_{3n}}\}$

Master key: $MK = \{y, t_1, ..., t_{3n}\}$

$i \in U$	i=1	<i>i</i> =2		<i>i</i> =n	
positive part	t_1	t_2	:	t_n	
negative part	t_{n+1}	t_{n+2}		t_{2n}	
don't cared part	t_{2n+1}	t_{2n+2}	::	t_{3n}	

KeyGen

• KeyGen $(MK, S) \rightarrow SK$

Random:
$$r_i \in Z_p$$
 , $i \in U$
$$r = \Sigma_{i=1}^n r_i$$
 Secret key: $SK = \left\{ ver, S, D = g^{y-r}, \overline{D} = \left\{ D_i, F_i = g^{\frac{r_i}{t_{2n+1}}} \right\}_{i \in U} \right\}$
$$D_i = g^{\frac{r_i}{t_i}} \text{, if } i \in S$$

$$D_i = g^{\frac{r_i}{t_{n+i}}} \text{, otherwise}$$

Encrypt

• $Enc(M, AS, PK) \rightarrow CT$

Single AND gate $AS = \wedge_{\tilde{i} \in I} \tilde{i}$ $M \in G_1$

Random: $s \in Z_p$ $CT = \{ver, AS, \tilde{C} = MY^S, \hat{C} = g^S, \{C_i\}_{i \in U}\}$ $C_i = T_i^S = g^{t_i S} \text{, if } i \in I \text{ and } \tilde{i} = +i \text{ positive part } C_i = T_{n+i}^S = g^{t_{n+i} S}, \text{ if } i \in I \text{ and } \tilde{i} = -i \text{ negative part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S}, \text{ if } i \notin I \text{ don't cared part } C_i = T_{2n+i}^S = g^{t_{2n+i} S$

Update

• ReKeyGen(γ , MK) -> re-key,ver+1

Random: $t_i' \in Z_p$, $i \in U, \gamma \subseteq \{1, ..., 2n\}$

$$\begin{cases} rk_i = \frac{t_i'}{t_i} \text{ ,if } i \in \gamma \\ rk_i = 1 \text{ ,if } i \in \{1, \dots, 2n\} \text{ and } i \notin \gamma \end{cases}$$

Proxy re-key $rk = \{ver, \{rk_i\}_{1 \le i \le 2n}\}$

Update

- ReEnc(CT_{ver} , rk_{ver} , β) -> CT'
 - If $ver_{CT} \neq ver_{rk}$ ->not change
 - Else -> $i \in U, \beta \subseteq \{1, ..., 2n\}$

$$C_i' = C_i^{rk_i}, \text{ if } i \in \beta \text{ and } 1 \leq i \leq n \qquad \text{positive part}$$

$$C_{i-n}' = (C_{i-n})^{rk_i}, \text{ if } i \in \beta \text{ and } n < i \leq 2n \qquad \text{negative part}$$

$$C_i' = C_i \text{ , if } (i \notin \beta \text{ and } i + n \notin \beta) \text{ or } (i \notin I) \qquad \text{don't cared part}$$

$$CT' = \{ver + 1, AS, \tilde{C}, \hat{C}, \{C'_i\}_{i \in U}\}$$

Update

• ReKey(SK, rk_{ver} , θ) -> SK' $i \in U, \theta \subseteq \{1, ..., 2n\}$

$$SK' = \{ver + 1, S, D = g^{y-r}, \overline{D}' = \{D'_i, F_i\}_{i \in U}\}$$

positive part
negative part
don't cared part

Decrypt

- Dec(CT,PK,Sk) -> M
 - If $ver_{CT} \neq ver_{PK}$ or $ver_{CT} \neq ver_{Sk} \rightarrow \mathsf{failed}$
 - Else $->i\in U$ $AS=\wedge_{\tilde{i}\in I}\tilde{i}$

$$\begin{cases} e(C_i,D_i) = e\left(g^{t_is},g^{\frac{r_i}{t_i}}\right) = e(g,g)^{r_is}, \text{ if } \tilde{i} \in I\& \tilde{i} = +i\& i \in S \\ e(C_i,D_i) = e\left(g^{t_{n+i}s},g^{\frac{r_i}{t_{n+i}}}\right) = e(g,g)^{r_is}, \text{ if } \tilde{i} \in I\& \tilde{i} = -i\& i \notin S \\ e(C_i,F_i) = e\left(g^{t_{2n+i}s},g^{\frac{r_i}{t_{2n+i}}}\right) = e(g,g)^{r_is}, \text{ if } \tilde{i} \notin I \end{cases}$$
 negative part don't cared part

$$\frac{\tilde{c}}{e(\hat{c},D)\prod_{i=1}^{n}e(c_{i},D_{i})} = \frac{Me(g,g)^{ys}}{e(g,g)^{s(y-r)}\prod_{i=1}^{n}e(g,g)^{r_{i}s}} =$$

$$\frac{Me(g,g)^{ys}}{e(g,g)^{(ys-rs)}\prod_{i=1}^{n}e(g,g)^{ris}} = \frac{Me(g,g)^{ys}}{e(g,g)^{(ys-rs)}e(g,g)^{rs}} = M$$

Security Model

- CPA Security Game
- Theorem 1.

If a PPT algorithm (the adversary A) wins our CPA security game with non-negligible advantage ADV_{CPA} , we can use this algorithm to construct another PPT algorithm B to solve the DBDH problem with advantage $\frac{1}{2}ADV_{CPA}$.

• Proof: $a, b, c \in \mathbb{Z}_p$ $\mu \in \{0,1\}$

$$\begin{cases}
z = abc & if \ \mu = 0 \\
z \in Z_p & if \ \mu = 1
\end{cases}$$

• Init by A

 $A \text{ selects } \{AS^* = \land_{\tilde{\iota} \in I} \tilde{\iota}, ver^*, attribute \ sets: \{\gamma^{(1)}, \gamma^{(2)}, \dots, \gamma^{(ver^*-1)}\}\} \rightarrow B$

Setup by B

Random: $\delta_i, \zeta_i, \eta_i \in Z_p$, $i \in U$

$$1 \le k \le ver^* - 1 \qquad 1 \le j \le 2n$$

$$rk^{(k)} = \{k, rk_1^{(k)}, rk_2^{(k)}, ..., rk_{2n}^{(k)}\} \rightarrow A$$

 $SK = \{ver, S, \mathbf{D}, \overline{D} = \{D_i, F_i\}_{i \in U}\}$

• Phase 1

$$\{S, k, \mid S \subseteq U, S \text{ not satisfy } AS^*, 1 \leq k \leq ver^*\} \rightarrow B$$

Random: $r_j{'} \in Z_p$, $j \in U$

A witness attribute $i \in I$, $i \notin S$, $\tilde{i} = +i$

$$r = \Sigma_{j \in U} r_j = ab + \Sigma_{j \in U} r_j'.b$$

$$D = \prod_{j=1}^{n} B^{-r_{j}'} = g^{-\sum_{j=1}^{n} r_{j}' \cdot b} = g^{ab-r}$$

$$T_{j}^{(k)} = (T_{j}^{(1)})^{rk_{j}^{(2)}.rk_{j}^{(3)}....rk_{j}^{(k)}} = (T_{j}^{(1)})^{\prod_{i=2}^{k} rk_{j}^{(i)}}$$

$$T_{n+j}^{(k)} = (T_{n+j}^{(1)})^{rk_{n+j}^{(2)}.rk_{n+j}^{(3)}....rk_{n+j}^{(k)}} = (T_{n+j}^{(1)})^{\prod_{i=2}^{k} rk_{n+j}^{(i)}}$$

$$R_{j}^{(k)} = \prod_{i=2}^{k} r k_{j}^{(i)}$$

$$R_{n+j}^{(k)} = \prod_{i=2}^{k} r k_{n+j}^{(i)}$$

Phase 1

For each $j \in U$ and $j \neq i$

$$D_{j} = B^{\frac{r_{j}'}{\delta_{j}.R_{j}^{(k)}}} = g^{\frac{r_{j}}{\delta_{j}.R_{j}^{(k)}}}, \text{If } j \in S, j \in I, \tilde{j} = +j$$

$$D_{j} = B^{\frac{r_{j}'}{\delta_{j}.R_{j}^{(k)}}} = g^{\frac{r_{j}}{\delta_{j}.R_{j}^{(k)}.b}}, \text{If } j \in S, (j \in I, \tilde{j} = -j) \text{ or } j \notin I$$

$$D_{j} = g^{\frac{r_{j}'}{\zeta_{j}.R_{n+j}^{(k)}}} = g^{\frac{r_{j}}{\zeta_{j}.R_{n+j}^{(k)}.b}}, \text{If } j \notin S, (j \in I, \tilde{j} = +j) \text{ or } j \notin I$$

$$D_{j} = B^{\frac{r_{j}'}{\zeta_{j}.R_{n+j}^{(k)}}} = g^{\frac{r_{j}}{\zeta_{j}.R_{n+j}^{(k)}.b}}, \text{If } j \notin S, j \in I, \tilde{j} = -j$$

$$D_{i} = A^{\frac{1}{\zeta_{i}.R_{i}^{(k)}}}, g^{\frac{r_{i}'}{\zeta_{i}.R_{i}^{(k)}}} = g^{\frac{ab+r_{i}'.b}{\zeta_{i}.R_{i}^{(k)}.b}} = g^{\frac{r_{i}}{\zeta_{i}.R_{i}^{(k)}.b}}$$

• Phase 1

For each $j \in U$ and $j \neq i$

$$\int F_{j} = g^{\frac{r_{j}'}{\eta_{j}}} = g^{\frac{r_{j}}{\eta_{j}.b}}, \text{ if } j \in I$$

$$F_{j} = B^{\frac{r_{j}'}{\eta_{j}}} = g^{\frac{r_{j}}{\eta_{j}}}, \text{ if } j \notin I$$

$$F_{i} = A^{\frac{1}{\eta_{i}}} g^{\frac{r_{i}'}{\eta_{i}}} = g^{\frac{ab+r_{i}'.b}{\eta_{i}.b}} = g^{\frac{r_{i}}{\eta_{i}.b}}$$

 $SK \rightarrow A$

Security Analysis

$$SK = \{ver, S, D, \overline{D} = \{D_i, \frac{F_i}{I}\}_{i \in U}\}$$

Challenge

$$\{M_0, M_1\} \rightarrow B$$

$$b \in \{0,1\}$$

$$\tilde{C} = M_b.Z$$

$$\begin{cases} C_i = C^{\delta_i.R_i^{(ver^*)}}, \text{ if } i \in I \& \tilde{i} = +i \\ C_i = C^{\zeta_i.R_{n+i}^{(ver^*)}}, \text{ if } i \in I \& \tilde{i} = -i \\ C_i = C^{\eta_i}, \text{ if } i \notin I \end{cases}$$

$$CT^* \rightarrow A$$

- Phase 2
 - phase 1 is repeated

$$CT^* = \{ver^*, AS^*, \tilde{C}, C, \{C_i\}_{i \in U}\}$$

Guess

$$b_0 = \{0,1\} \rightarrow B$$

 $\mu' = 0$, if $b_0 = b$
 $\mu' = 1$, if $b_0 \neq b$

$$\Pr[b_0 \neq b | \mu = 1] = \frac{1}{2} \rightarrow \Pr[\mu' = \mu | \mu = 1] = \frac{1}{2}$$

$$\Pr[b_0 = b | \mu = 0] = \frac{1}{2} + ADV_{CPA} \rightarrow \Pr[\mu' = \mu | \mu = 0] = \frac{1}{2} + ADV_{CPA}$$

The advantage of B in the DBDH game:

$$\frac{1}{2}\Pr[\mu' = \mu \ | \mu \ = 1] + \frac{1}{2}\Pr[\mu' = \mu | \mu \ = 0] - \frac{1}{2} = \frac{1}{2}ADV_{CPA}$$

Thank You