

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO

Departamento de Ciéncias de Computação

http://www.icmc.usp.br

SCC-201 - Capítulo 1 Análise de Algoritmos - Parte 1

João Luís Garcia Rosa¹

¹Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis

2009

- Algoritmo [2]
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

- Algoritmo [2]
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

Algoritmo: noção geral

- Algoritmo¹ é um conjunto de instruções que devem ser seguidas para solucionar um determinado problema.
- Cormen et al. [1]:
 - Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores de entrada e produz algum valor ou conjunto de valores de saída;
 - Ferramenta para resolver um problema computacional bem especificado;
 - Assim como o hardware de um computador, constitui uma tecnologia, pois o desempenho total do sistema depende da escolha de um algoritmo eficiente tanto quanto da escolha de um hardware rápido.

A palavra "algoritmo" vem do nome de um matemático persa (825 d.C.), Abu Ja'far Mohammed ibn Musa al Khowarizmi.

Algoritmo: noção geral

- Cormen et al. [1]:
 - Deseja-se que um algoritmo termine e seja correto.
- Perguntas:
 - Mas um algoritmo correto vai terminar, não vai?
 - A afirmação está redundante?

Eficiência e Problemas Difíceis

- Além de um algoritmo correto, busca-se também um algoritmo eficiente para resolver um determinado problema
- Pergunta: como 'medir' eficiência de um algoritmo?

 Obs. Existem problemas para os quais não se conhece nenhum algoritmo eficiente para obter a solução: NP-completos.

Recursos de um algoritmo

- Uma vez que um algoritmo está pronto/disponível, é importante determinar os recursos necessários para sua execução:
 - Tempo
 - Memória
- Qual o principal quesito? Por que?

- Algoritmo [2]
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

Análise de algoritmos

- Um algoritmo que soluciona um determinado problema, mas requer o processamento de um ano, não deve ser usado.
- O que dizer de uma afirmação como a abaixo? "Desenvolvi um novo algoritmo chamado TripleX que leva 14,2 segundos para processar 1.000 números, enquanto o método SimpleX leva 42,1 segundos."
- Você trocaria o SimpleX que roda em sua empresa pelo TripleX?

Análise de algoritmos

- A afirmação tem que ser examinada, pois há diversos fatores envolvidos:
 - Características da máquina em que o algoritmo foi testado:
 - Quantidade de memória.
 - Linguagem de programação:
 - · Compilada vs. interpretada,
 - Alto vs. baixo nível.
 - Implementação pouco cuidadosa do algoritmo SimpleX vs. "super" implementação do algoritmo TripleX.
 - Quantidade de dados processados:
 - Se o TripleX é mais rápido para processar 1.000 números, ele também é mais rápido para processar quantidades maiores de números, certo?

Análise de algoritmos

- A comunidade de computação começou a pesquisar formas de comparar algoritmos de forma independente de
 - Hardware,
 - Linguagem de programação,
 - Habilidade do programador.
- Portanto, quer-se comparar algoritmos e n\u00e3o programas:
 - Área conhecida como "análise/complexidade de algoritmos".

- Algoritmo [2]
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

Eficiência de algoritmos

- Sabe-se que:
 - Processar 10.000 números leva mais tempo do que 1.000 números,
 - Cadastrar 10 pessoas em um sistema leva mais tempo do que cadastrar 5,
 - Etc.
- Então, pode ser uma boa idéia estimar a eficiência de um algoritmo em função do tamanho do problema:
 - Em geral, assume-se que n é o tamanho do problema, ou número de elementos que serão processados,
 - E calcula-se o número de operações que serão realizadas sobre os n elementos.

Eficiência de algoritmos

- O melhor algoritmo é aquele que requer menos operações sobre a entrada, pois é o mais rápido:
 - O tempo de execução do algoritmo pode variar em diferentes máquinas, mas o número de operações é uma boa medida de desempenho de um algoritmo.
- De que operações estamos falando?
- Toda operação leva o mesmo tempo?

Exemplo: TripleX vs. SimpleX

- TripleX: para uma entrada de tamanho n, o algoritmo realiza n² + n operações:
 - Pensando em termos de função: $f(n) = n^2 + n$.
- SimpleX: para uma entrada de tamanho n, o algoritmo realiza 1.000n operações:
 - g(n) = 1.000n.

Exemplo: TripleX vs. SimpleX

 Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada:

tamanho da					
entrada <i>n</i>	1	10	100	1.000	10.000
$f(n)=n^2+n$					
g(n)=1.000n					

Exemplo: TripleX vs. SimpleX

 Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada:

tamanho da					
entrada <i>n</i>	1	10	100	1.000	10.000
$f(n)=n^2+n$	2	110	10.100	1.001.000	100.010.000
g(n)=1.000n	1.000	10.000	100.000	1.000.000	10.000.000

- A partir de n = 1.000, f(n) mantém-se maior e cada vez mais distante de g(n):
 - Diz-se que f(n) cresce mais rápido do que g(n).

- Algoritmo [2
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

Análise assintótica

- Devemos nos preocupar com a eficiência de algoritmos quando o tamanho de n for grande.
- Definição: a eficiência assintótica de um algoritmo descreve a sua eficiência relativa quando n torna-se grande.
- Portanto, para comparar 2 algoritmos, determinam-se as taxas de crescimento de cada um: o algoritmo com menor taxa de crescimento rodará mais rápido quando o tamanho do problema for grande.

Análise assintótica

Atenção:

- Algumas funções podem não crescer com o valor de n:
 - Quais?
- Também se pode aplicar os conceitos de análise assintótica para a quantidade de memória usada por um algoritmo:
 - Mas não é tão útil, pois é difícil estimar os detalhes exatos do uso de memória e o impacto disso.

- Algoritmo [2]
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

Relembrando um pouco de matemática...

Expoentes:

•
$$x^a x^b = x^{a+b}$$

•
$$x^a/x^b = x^{a-b}$$

•
$$(x^a)^b = x^{ab}$$

•
$$x^n + x^n = 2x^n$$
 (differente de x^{2n})

•
$$2^n + 2^n = 2^{n+1}$$

 Logaritmos (usaremos a base 2, a menos que seja dito o contrário):

•
$$x^a = b \Rightarrow log_x b = a$$

•
$$log_ab = log_cb/log_ca$$
, se $c > 0$

•
$$log ab = log a + log b$$

•
$$log \ a/b = log \ a - log \ b$$

•
$$log(a^b) = b log a$$

- E o mais importante:
 - log x < x para todo x > 0.

Função exponencial vs. logarítmica

Figure: Exemplos de logaritmos para várias bases.

Figure: Na palma da mão direita.

Relembrando um pouco de matemática...

Séries:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \approx \frac{n^{2}}{2}$$

- Algoritmo [2
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

- Dadas duas funções, f(n) e g(n),
 - diz-se que f(n) é da ordem de (big-oh) g(n) ou que f(n) é $\mathcal{O}(g(n))$, se existirem constantes c e n_0 tais que $f(n) \leq c * g(n)$ para todo $n \geq n_0$.
 - A taxa de crescimento de f(n) é menor ou igual à taxa de g(n).
 - diz-se que f(n) é **ômega** g(n) ou que $f(n) = \Omega(g(n))$, se existirem constantes c e n_0 tais que $f(n) \ge c * g(n)$ para todo $n \ge n_0$.
 - A taxa de crescimento de f(n) é maior ou igual à taxa de g(n).
 - diz-se que f(n) é **theta** g(n) ou que $f(n) = \Theta(g(n))$, se e somente se $f(n) = \mathcal{O}(g(n))$ e $f(n) = \Omega(g(n))$.
 - A taxa de crescimento de f(n) é igual à taxa de g(n).
 - diz-se que f(n) é **little-oh** g(n) ou que f(n) = o(g(n)), se e somente se $f(n) = \mathcal{O}(g(n))$ e $f(n) \neq \Theta(g(n))$.
 - A taxa de crescimento de f(n) é menor do que a taxa de g(n).

Algumas considerações

- O uso das notações permite comparar a taxa de crescimento das funções correspondentes aos algoritmos:
 - Não faz sentido comparar pontos isolados das funções, já que podem não corresponder ao comportamento assintótico.
- Ao dizer que $g(n) = \mathcal{O}(f(n))$, garante-se que g(n) cresce numa taxa não maior do que f(n), ou seja, f(n) é seu limite superior.
- Ao dizer que $f(n) = \Omega(g(n))$, tem-se que g(n) é o limite inferior de f(n).

Exemplo

- Para 2 algoritmos quaisquer, considere as funções de eficiência correspondentes 1.000n e n²:
 - A primeira é maior do que a segunda para valores pequenos de n,
 - A segunda cresce mais rapidamente e finalmente será uma função maior, sendo que o ponto de mudança é n = 1.000,
 - Segundo as notações anteriores, se existe um ponto n_0 a partir do qual c*f(n) é sempre pelo menos tão grande quanto g(n), então, ignorados os fatores constantes f(n) é pelo menos tão grande quanto g(n):
 - No nosso caso, g(n) = 1.000n, $f(n) = n^2$, $n_0 = 1.000$ e c = 1 (ou, ainda, $n_0 = 10$ e c = 100): Dizemos que $1.000n = \mathcal{O}(n^2)$.

Outros exemplos

- A função n^3 cresce mais rapidamente que n^2 :
 - $n^2 = \mathcal{O}(n^3)$
 - $n^3 = \Omega(n^2)$
- Se $f(n) = n^2$ e $g(n) = 2n^2$, então essas duas funções têm taxas de crescimento iguais:
 - Portanto, $f(n) = \mathcal{O}(g(n))$ e $f(n) = \Omega(g(n))$.

- Algoritmo
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

Taxas de crescimento

- Algumas regras:
 - Se $T_1(n) = \mathcal{O}(f(n))$ e $T_2(n) = \mathcal{O}(g(n))$, então:
 - $T_1(n) + T_2(n) = max(\mathcal{O}(f(n)), \mathcal{O}(g(n))).$
 - $T_1(n) * T_2(n) = \mathcal{O}(f(n) * g(n)).$
 - Se T(x) é um polinômio de grau n, então:
 - $T(x) = \Theta(x^n)$.
 - Relembrando: um polinômio de grau n é uma função que possui a forma abaixo:

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + ... + a_1 \cdot x + a_0$$

seguindo a seguinte classificação em função do grau:

- Grau 0: polinômio constante
- Grau 1: função afim (polinômio linear, caso $a_0 = 0$)
- Grau 2: polinômio quadrático
- Grau 3: polinômio cúbico
- $log^k n = \mathcal{O}(n)$ para qualquer constante k, pois logaritmos crescem muito vagarosamente.

Funções e taxas de crescimento

As mais comuns:

С	constante
log n	logarítmica
log ² n	logarítmica ao quadrado
n	linear
n log n	
n ²	quadrática
n ³	cúbica
2 ⁿ	
a ⁿ	exponencial

Funções e taxas de crescimento

Figure: Crescimentos de algumas funções.

Taxas de crescimento

- Apesar de às vezes ser importante, não é comum incluir constantes ou termos de menor ordem em taxas de crescimento:
 - Queremos medir a taxa de crescimento da função, o que torna os "termos menores" irrelevantes,
 - As constantes também dependem do tempo exato de cada operação; como ignoramos os custos reais das operações, ignoramos também as constantes.
- Não se diz que $T(n) = \mathcal{O}(2n^2)$ ou que $T(n) = \mathcal{O}(n^2 + n)$:
 - Diz-se apenas $T(n) = \mathcal{O}(n^2)$.

Exercício

- Um algoritmo tradicional e muito utilizado é da ordem de n^{1,5}, enquanto um algoritmo novo proposto recentemente é da ordem de n log n:
 - $f(n) = n^{1,5}$,
 - $g(n) = n \log n$.
- Qual algoritmo você adotaria na empresa que está fundando?
 - Lembre-se que a eficiência desse algoritmo pode determinar o sucesso ou o fracasso de sua empresa!

Exercício

• Uma possível solução:

$$f(n) = n^{1,5}$$
 \Rightarrow $\frac{n^{1,5}}{n} = n^{0,5}$ \Rightarrow $(n^{0,5})^2 = n$
 $g(n) = n \log n$ \Rightarrow $\frac{(n \log n)}{n} = \log n$ \Rightarrow $(\log n)^2 = \log^2 n$

 Como n cresce mais rapidamente do que qualquer potência de log, temos que o algoritmo novo é mais eficiente e, portanto, deve ser o adotado pela empresa no momento.

Sumário

- Algoritmo [2]
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

- Para proceder a uma análise de algoritmos e determinar as taxas de crescimento, necessitamos de um modelo de computador e das operações que executa.
- Assume-se o uso de um computador tradicional, em que as instruções de um programa são executadas sequencialmente,
 - com memória infinita, por simplicidade.

- Repertório de instruções simples: soma, multiplicação, comparação, atribuição, etc.
 - Por simplicidade e viabilidade da análise, assume-se que cada instrução demora exatamente uma unidade de tempo para ser executada,
 - Obviamente, em situações reais, isso pode não ser verdade: a leitura de um dado em disco pode demorar mais do que uma soma.
 - Operações complexas, como inversão de matrizes e ordenação de valores, não são realizadas em uma única unidade de tempo, obviamente: devem ser analisadas em partes.

- Considera-se somente o algoritmo e suas entradas (de tamanho n).
- Para uma entrada de tamanho n, pode-se calcular
 ^Tmelhor(n), Tmedia(n) e Tpior(n), ou seja, o melhor tempo de
 execução, o tempo médio e o pior, respectivamente:
 - Obviamente, $T_{melhor}(n) \leq T_{media}(n) \leq T_{pior}(n)$.
- Atenção: para mais de uma entrada, essas funções teriam mais de um argumento.

- Geralmente, utiliza-se somente a análise do pior caso T_{pior}(n), pois ela fornece os **limites** para todas as entradas, incluindo particularmente as entradas ruins:
 - Logicamente, muitas vezes, o tempo médio pode ser útil, principalmente em sistemas executados rotineiramente:
 - Por exemplo: em um sistema de cadastro de alunos como usuários de uma biblioteca, o trabalho difícil de cadastrar uma quantidade enorme de pessoas é feito somente uma vez; depois, cadastros são feitos de vez em quando apenas.
 - Dá mais trabalho calcular o tempo médio,
 - O melhor tempo n\u00e3o tem muita utilidade.

- Idealmente, para um algoritmo qualquer de ordenação de vetores com n elementos:
 - Qual a configuração do vetor que você imagina que provavelmente resultaria no melhor tempo de execução?
 - E qual resultaria no pior tempo?
- Exemplo:
 - Soma da subsequência máxima:
 - Dada uma sequência de inteiros (possivelmente negativos)

 a₁, a₂, ..., a_n, encontre o valor da máxima soma de quaisquer números de elementos consecutivos; se todos os inteiros forem negativos, o algoritmo deve retornar 0 como resultado da maior soma.
 - Por exemplo, para a entrada -2, 11, -4, 13, -5 e -2, a resposta é 20 (soma de a_2 a a_4).

Soma da subsequência máxima

- Há muitos algoritmos propostos para resolver esse problema:
 - Alguns são mostrados abaixo juntamente com seus tempos de execução (n é o tamanho da entrada):

algoritmo	1	2	3	4
tempo	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n)$
<i>n</i> = 10	0,00103	0,00045	0,00066	0,00034
<i>n</i> = 100	0,47015	0,01112	0,00486	0,00063
<i>n</i> = 1.000	448,77	1,1233	0,05843	0,00333
n = 10.000	ND ²	111,13	0,68631	0,03042
n = 100.000	ND	ND	8,0113	0,29832

²Não Disponível.

Soma da subsequência máxima

- Deve-se notar que:
 - Para entradas pequenas, todas as implementações rodam num piscar de olhos:
 - Portanto, se somente entradas pequenas são esperadas, não devemos gastar nosso tempo para projetar melhores algoritmos.
 - Para entradas grandes, o melhor algoritmo é o 4.
 - Os tempos n\u00e3o incluem o tempo requerido para leitura dos dados de entrada:
 - Para o algoritmo 4, o tempo de leitura é provavelmente maior do que o tempo para resolver o problema: característica típica de algoritmos eficientes.

Taxas de crescimento

Figure: Gráfico (*n* vs. milisegundos) das taxas de crescimentos dos quatro algoritmos com entradas entre 10 e 100.

Taxas de crescimento

Figure: Gráfico (*n* vs. segundos) das taxas de crescimentos dos quatro algoritmos para entradas maiores.

Sumário

- Algoritmo [2]
 - Algoritmo
 - Análise de Algoritmos
 - Eficiência de algoritmos
- Análise assintótica
 - Análise assintótica
 - Conceitos de matemática
 - Notações
- Taxas de crescimento
 - Taxas de crescimento
 - Análise de Algoritmos
 - Cálculo do tempo de execução

- Existem basicamente 2 formas de estimar o tempo de execução de programas e decidir quais são os melhores:
 - empiricamente,
 - teoricamente.
- É desejável e possível estimar qual o melhor algoritmo sem ter que executá-los:
 - Função da análise de algoritmos.

Calculando o tempo de execução

 Supondo que as operações simples demoram uma unidade de tempo para executar, considere o programa abaixo para calcular o resultado de

$$\sum_{i=1}^{n} i^3$$

```
1 Início
2 declare soma_parcial numérico;
3 soma_parcial ← 0;
4 para i ← 1 até n faça
5 soma_parcial ← soma_parcial+i*i*i;
6 escreva(soma_parcial);
7 Fim
```

Calculando o tempo de execução

$$\sum_{i=1}^{n} i^3$$

- 3 1 unidade de tempo
- 4 1 unidade para iniciação de i, n+1 unidades para testar se i=n e n unidades para incrementar i=2n+2
- 5 4 unidades (1 da soma, 2 das multiplicações e 1 da atribuição) executada n vezes (pelo comando "para") = 4n unidades
- 6 1 unidade para escrita
 - Custo total: somando tudo, tem-se 6n + 4 unidades de tempo, ou seja, a função é $\mathcal{O}(n)!$

Calculando o tempo de execução

- Ter que realizar todos esses passos para cada algoritmo (principalmente algoritmos grandes) pode se tornar uma tarefa cansativa
- Em geral, como se dá a resposta em termos do big-oh, costuma-se desconsiderar as constantes e elementos menores dos cálculos:
 - No exemplo anterior:
 - A linha 3 soma_parcial ← 0 é insignificante em termos de tempo,
 - É desnecessário ficar contando 2, 3 ou 4 unidades de tempo na linha 5 soma_parcial ← soma_parcial+i*i*i,
 - O que realmente dá a grandeza de tempo desejada é a repetição na linha 4 "para i ← 1 até n faça".

Repetições:

- O tempo de execução de uma repetição é pelo menos o tempo dos comandos dentro da repetição (incluindo testes) vezes o número de vezes que é executada.
- Repetições aninhadas:
 - A análise é feita de dentro para fora,
 - O tempo total de comandos dentro de um grupo de repetições aninhadas é o tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições.
 - O exemplo abaixo é $\mathcal{O}(n^2)$: para $i \leftarrow 0$ até n faça para $j \leftarrow 0$ até n faça faça $k \leftarrow k+1$;

- Comandos consecutivos:
 - É a soma dos tempos de cada um, o que pode significar o máximo entre eles,
 - O exemplo abaixo é $\mathcal{O}(n^2)$, apesar da primeira repetição ser $\mathcal{O}(n)$:

```
para i \leftarrow 0 até n faça k \leftarrow 0;
para i \leftarrow 0 até n faça para j \leftarrow 0 até n faça faça k \leftarrow k+1;
```

- Se... então... senão:
 - Para uma cláusula condicional, o tempo de execução nunca é maior do que o tempo do teste mais o tempo do maior entre os comandos relativos ao então e os comandos relativos ao senão,
 - O exemplo abaixo é $\mathcal{O}(n)$:

```
se i < j
então i \leftarrow i + 1
senão para k \leftarrow 1 até n faça i \leftarrow i * k;
```

- Chamadas a sub-rotinas:
 - Uma sub-rotina deve ser analisada primeiro e depois ter suas unidades de tempo incorporadas ao programa/sub-rotina que a chamou.

 Exercício: Estime quantas unidades de tempo são necessárias para rodar o algoritmo abaixo:

```
1 Início
2 declare i e j numéricos;
3 declare A vetor numérico de n posições;
4 i \leftarrow 1;
5 enquanto i = n faça
6 A[i] \leftarrow 0;
7 i \leftarrow i + 1;
8 para i \leftarrow 1 até n faça
9 para j \leftarrow 1 até n faça
10 A[i] \leftarrow A[i] + i + j;
11 Fim
```

Referências I

Ed. Campus, Rio de Janeiro, Segunda Edição, 2002.

Pardo, T. A. S.

Análise de Algoritmos. SCE-181 Introdução à Ciência da Computação II.

Slides. Ciência de Computação. ICMC/USP, 2008.