MaxCut and Statistical Physics

Youfu Qian

University of Illinois Urbana Champaign

September 9th 2022

Ising Model

The Ising model is used to model the spin configuration in regular crystals, which gives rise to the magnetic properties of a material.

Figure 1: Ising Model Illustraction [1]

Ising Model [2]

The Ising model is used to model the spin configuration in regular crystals, which gives rise to the magnetic properties of a material. The spin configuration of n particles can be defined as:

$$\{\sigma\} = \{\sigma_1, ..., \sigma_n\}$$

Where $\sigma \in \{-1,1\}$. The energy of the configuration can be defined as follows, where J_{ij} is the coupling constant between spin i and j. H is the constant for the interaction between the spin and magnetic field, and h_i is that with local fields.

$$\mathcal{H}(\{\sigma_i\}) = -\sum_{ij} J_{ij}\sigma_i\sigma_j - \sum_i H\sigma_i - \sum_i h_i\sigma_i$$

Ising Model Implementation [2]

Abstract the problem with a mathematical graph, $R = (V \cup \{s, t\}, E \cup F)$ where:

- ► V: each spin is mapped to a vertex of the graph, $V = \{1, 2, ..., n\}$
- ► E: to each two spins i and j that interact, associate an edge ij in E of weight $w(ij) = J_{ij}$
- ► F: to each spin i that $H + h_i > 0$, associate an edge si in F of weight $w(ij) = H + h_i > 0$
- ► F: to each spin i that $H + h_i < 0$, associate an edge si in F of weight $w(ij) = H + h_i < 0$

Minimize the following Hamiltonian:

$$\mathcal{H}(\{\sigma_i\}) = -\sum_{ij \in E} w(ij)\sigma_i\sigma_j - \sum_{si \in F} w(si)\sigma_i - \sum_{si \in F} -w(it)\sigma_i$$

Ising Model Applications

- ► The Spin Glass
 - ▶ a magnetic state in which the spins are aligned to a single direction at "freezing temperature." [3]
 - ► Ferromagnetic [2]
 - ► Antiferromagnetic [4]

Reference

- [1] The ising model, [Online]. Available: https://stanford.edu/~jeffjar/statmech/intro4.html.
- [2] J. A. d'Auriac, M. Preissmann, and A. Sebö, "Optimal cuts in graphs and statistical mechanics," Mathematical and Computer Modelling, vol. 26, no. 8-10, pp. 1–11, 1997.
- [3] J. A. Mydosh, Spin glasses: an experimental introduction. CRC Press, 1993.
- [4] A. Coja-Oghlan, P. Loick, B. F. Mezei, and G. B. Sorkin, "The ising antiferromagnet and max cut on random regular graphs," SIAM Journal on Discrete Mathematics, vol. 36, no. 2, pp. 1306–1342, 2022.