AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

1. (Currently Amended) A compound of formula (I)

wherein the bond between carbon atoms 22 and 23 may be a single or a double bond;

R₁ is C₁-C₁₂alkyl, C₃-C₈cycloalkyl, or C₂-C₁₂alkenyl;

 R_2 and R_3 are independently of each other hydrogen, C_4 - C_{42} alkyl, C_2 - C_{42} eyeloalkyl, C_2 - C_{42} alkenyl, C_2 - C_{42} alkynyl, aryl or heteroaryl; wherein the C_4 - C_{42} alkyl, C_2 - C_{42} alkynyl, aryl and heteroaryl radicals may be unsubstituted or mono- to pentasubstituted; $-C_4$ - $-C_4$ --

R₂ and R₃ together are a three <u>four</u> to seven membered alkylene bridge or a four to sevenmembered alkenylene bridge wherein one or two CH₂ groups in the alkylene or alkenylene may have been replaced by O, S or NR₃; or are a group =N⁺=N⁻, wherein the substituents of the alkyl, alkenyl, alkynyl, alkylene, alkenylene, eyeloalkyl, aryl and heteroaryl radicals defined under R₂ and R₃ are selected from the group consisting of OH; =O; SH; =S; -NH₂; CN; NO₂; halogen; C₁-C₁₂alkyl; halo-C₁-C₂alkyl; C₁-C₁₂alkenyl; C₂-C₆alkynyl; C₃-C₈cycloalkyl which is unsubstituted or substituted by from one to three methyl groups; norbornenyl; C₃-C₈cycloalkenyl that is

unsubstituted or substituted by from one to three methyl groups; C₃-C₈halocycloalkyl; C₁-C12alkoxy: C1-C6alkoxy- C1-C6al C6alkyl; C2-C12alkenyloxy; C2-C12alkenyloxy- C1-C6alkoxy; C3-C8cycloalkoxy; C1-C12haloalkoxy; C1-C12alkylthio; C3-C8cycloalkylthio; C1-C12haloalkylthio; C1-C12alkylsulfinyl; C3-C8cycloalkylsulfinyl; C1-C12haloalkylsulfinyl; C3-C8halocycloalkylsulfinyl; C1-C₁₂alkylsulfonyl; C₃-C₈cycloalkylsulfonyl; C₁-C₁₂haloalkylsulfonyl; C₃-C₈halocycloalkylsulfonyl; C₂-C₈alkenyl; C₂-C₈alkynyl; -NH(C₁-C₆alkyl); -N(C₁-C₆alkyl); - $C(=0)R_6$; $C(=0)R_4$; $-NHC(=0)R_7$; $-NHC(=0)R_5$; $-P(=0)(OC_1-C_6alkyl)_2$; aryl; heterocyclyl; aryloxy; and heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, monoto penta-substituted by substituents selected from the group consisting of OH; halogen; CN; NO_2 ; C_1 - C_{12} alkyl; C_3 - C_8 cycloalkyl; C_1 - C_{12} haloalkyl; C_1 - C_{12} alkoxy; C_1 - C_{12} haloalkoxy; C_1 -C₁₂alkylthio; C₁-C₁₂haloalkylthio; C₁-C₁₂alkylsulfinyl; C₁-C₁₂alkylsulfonyl; C₁-C₆alkoxy-C₁-Calkyl; dimethylamino- C1-Calkoxy; C2-C8alkenyl; C2-C8alkynyl; phenyl- C1-C6alkyl; phenoxy that is unsubstituted or substituted by from one to three substituents selected independently of one another from halogen, methoxy, trifluoromethyl and trifluoromethoxy; phenyl-C₁-C₆alkoxy that is unsubstituted or substituted in the aromatic ring by from one to three substituents selected independently of one another from halogen, methoxy, trifluoromethyl and trifluoromethoxy; phenyl- C2-C6alkenyl; phenyl- C2-C6alkynyl; methylenedioxy; - C(=O)R6; $C(=O)R_4$; $-O - C(=O)R_5$; $-O - C(=O)R_5$; $-NHC(=O)R_5$; -NH-N(C₁-C₁₂alkyl)₂; C₁-C₆alkylthio; C₁-C₆alkylsulfinyl; C₃-C₈cycloalkylsulfinyl; C₁-C6haloalkylsulfinyl; C3-C8halocycloalkylsulfinyl; C1-C6alkylsulfonyl; C3-C8cycloalkylsulfonyl; C1-C6haloalkylsulfonyl; and C3-C8halocycloalkylsulfonyl;

R₊ is H; C₊-C_salkyl; C₊-C_salkyl that is mono—to hepta substituted by substituents selected from the group consisting of halogen, nitro, C₊-C_salkoxy, aryloxy, OH, SH, NH₂-NH(C₊-C₊₂alkyl) and N(C₊-C₊₂alkyl)₂; C₊-C_salkoxy; halo-C₊-C_salkoxy; C₂-C_seyeloalkyl; C₃-C_seyeloalkoxy; C₂-C_salkenyl; halo-C₂-C_salkenyl; halo-C₂-C_salkenyl; C₂-C_salkenyl; C₃-C_salkynyloxy; NH₂: NH(C₊-C₊₂alkyl)₂; N(C₊-C₊₂alkyl)₂; aryl; aryloxy; benzyl; benzyloxy; heterocyclyl; heterocyclyl; heterocyclyl; neterocyclyl; neterocyclyl;

aryloxy, benzyl, benzyloxy, heterocyclyl, heterocyclyloxy, heterocyclylmethyl, heterocyclylmethoxy, NH aryl, NH heterocyclyl, $N(C_4 \cdot C_6 alkyl)$ aryl and $N(C_4 \cdot C_6 alkyl)$ heterocyclyl are unsubstituted or, depending upon the possibilities of substitution at the ring, are in the ring substituted by from one to three substituents selected independently of one another from halogen, $C_4 \cdot C_4 2 alkyl$, $C_4 \cdot C_4 2 alkoxy$, $C_4 \cdot C_4 2 alkoxy$, $C_4 \cdot C_4 2 alkoxy$, $C_4 \cdot C_5 2 alky$, $C_5 \cdot C_5 2 alky$, C_5

 $R_{\hat{a}}\text{-is }C_{\hat{a}}\text{-}C_{\hat{a}}\text{-}lkyl, C_{\hat{a}}\text{-}C_{\hat{a}}\text{-}eyeloalkyl, }C_{\hat{a}}\text{-}C_{\hat{a}}\text{-}alkenyl, }C_{\hat{a}}\text{-}C_{\hat{a}}\text{-}alkynyl, benzyl, }-C(=0) - R_{\hat{a}}\text{-}or-C(=S) - R_{\hat{a}}\text{-}eyeloalkyl, }C_{\hat{a}}\text{-}C_{\hat{a}}\text{-}alkynyl, benzyl, }-C(=0) - R_{\hat{a}}\text{-}or-C(=S) - R_{\hat{a}}\text{-}or-C(=S)$

R₆ R₂ is H; OH; SH; C₁-C₈alkyl; C₁-C₈alkyl which is mono- to hepta-substituted by substituents selected from the group consisting of halogen, nitro, C₁-C₈alkoxy, aryloxy, OH, SH, -NH₂, -NH(C₁-C₁₂alkyl) and -N(C₁-C₁₂alkyl)₂; C₁-C₈alkoxy; halo- C₁-C₈alkoxy; C₃-C₈cycloalkyl; C₃-C₈cycloalkoxy; C₂-C₈alkenyl; C₂-C₈alkenyloxy; -NH₂; -NH(C₁-C₁₂alkyl); -N(C₁-C₁₂alkyl)₂; aryl; aryloxy; benzyl; benzyloxy; heterocyclyl; heterocyclyloxy; heterocyclylmethyl; or heterocyclylmethoxy; wherein the radicals aryl, aryloxy, benzyl, benzyloxy, heterocyclylnethoxy are unsubstituted or, depending upon the possibilities of substitution at the ring, are substituted by from one to three substituents selected independently of one another from halogen, C₁-C₁₂alkyl, C₁-C₁₂alkoxy, C₁-C₁₂alkoxy, C₁-C₁₂alkylklhio, C₁-C₁₂alkylklhio, C₁-C₁₂alkylsulfinyl, C₁-C₁₂alkylsulfinyl, C₁-C₁₂alkylsulfinyl, C₂-C₈alkenyloxy, C₂-C₈alkenyloxy, C₃-C₈alkenyloxy, nitro. -N₃, and evano:

 $R_2 R_2$ is H, C_1 - C_{12} alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_{12} haloalkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkenyl, aryl, heterocyclyl, benzyl, -NH $_2$, -NH(C_1 - C_1 2alkyl), -N(C_1 - C_1 2alkyl) $_2$, -NH-phenyl or -N(C_1 - C_1 2alkyl)-phenyl;

R_{s. is} H, OH, SH, NH₂, NH(C₄-C₁₂alkyl), N(C₄-C₁₂alkyl)₂, C₄-C₁₂alkyl, C₄-C₄haloalkyl, C₄-C₄ C₁₂alkoxy, C₄-C₄₂haloalkoxy, C₄-C₆alkoxy -C₄-C₆alkyl, C₄-C₆alkoxy -C₄-C₆alkoxy, C₄-C₆alkyl, C phenyl, phenoxy, benzyloxy, NH-phenyl, $N(C_4-C_6alkyl)$ phenyl, $NH-C_4-C_6-alkyl-C(=O)-R_{97}$ or phenyl, phenoxy, benzyloxy, NH phenyl or $N(C_4-C_6alkyl)$ phenyl, each of which is substituted in the aromatic ring by from one to three substituents selected independently of one another from halogen, $C_4-C_6alkoxy$, $C_4-C_6alkoxy$, and

R₂ is H, OH, C₄-C₄₂alkyl, C₄-C₄₂alkoxy, C₂-C₆alkoxy-C₄-C₆alkoxy, C₂-C₅alkenyloxy, phenyl, phenoxy, benzyloxy, NH₂, NH(C₄-C₁₂alkyl), N(C₄-C₁₂alkyl)₂, NH phenyl or N(C₄-C₄₂alkyl) phenyl; and, where applicable, to E/Z isomers, mixtures of E/Z isomers, diastereomers and/or tautomers. in each case in free form or in salt form.

- 2. (Original) A pesticidal composition comprising as active ingredient at least one compound of formula (I) as defined in claim 1, and at least one adjuvant.
- (Original) A method of controlling pests, which comprises applying a composition as defined in claim 2 to the pests or to their habitat.
- 4. (Original) A process for the preparation of a composition comprising at least one adjuvant, as defined in claim 2, which comprises intimately mixing and/or grinding the active ingredient with the adjuvant(s).
- 5. (Canceled)
- 6. (Canceled)
- 7. (Original) A method for the protection of plant propagation material, which comprises treating the propagation material or the planting site of the propagation material with a pesticidal composition as defined in claim 2.
- (Original) Plant propagation material treated in accordance with the method defined in claim

9. (Original) A tank mix composition comprising a pesticidal composition defined in claim 2.