Density surface models: spatial modelling of distance sampling data

David L Miller

Spatial models of distance sampling data

- Collect spatially referenced data
- Why not make spatially-explicit models?
- Go beyond stratified estimates
- Relate environmental covariates to counts

Motivating example

Rhode Island loons

- Wind development off RI/MA
- Map usage
- Estimate abundance
- Estimate uncertainty

Aerial surveys

- Small plane
- 2 observers (1 each side)
- Record on dictaphone
- Transcribe later
- Glare an issue (roughly N-S transects)

Non-uniform spatial distribution

What can we do?

- Stratification is not the solution
 - Arbitrary
 - Discard information

Aims

- Want to estimate abundance
- Distribution in space can be important
 - (Don't always have enough information to estimate this)
- What *correlates* with distribution?
 - Environmental covariates
- Still doing distance sampling!
 - Need to account for detectability

Putting together distance sampling and spatial modelling

Making our data spatial -- points

- Points
 - Know point location
 - Know number of animals seen per point

Making our data spatial -- lines

- Lines
 - Lines are too long
 - Can't use as sample units
 - Segment the lines

Including detectability

- Going back to *effective strip width*
 - think: *effective area*
- Effective areas are then:
 - $\circ \ _{2wl_{j}\hat{p}_{j}}$ for lines
 - $\circ \pi w^2 \hat{p}_j$ for points

How do we include this in our models?

Building spatial models

- Want to relate *counts* per *sample unit* to covariates
- Covariates like: space, also environmental covariates?
- Spatial modelling using Generalized Additive Models (GAMs)
- 2 stage approach
 - get the detection function right
 - then model spatial distribution

Spatially-referenced data

Spatial modelling

Generalised additive models

$$\mathbb{E}\left(n_{oldsymbol{j}}
ight) = rac{oldsymbol{A_{oldsymbol{j}}}{\hat{oldsymbol{p}}_{oldsymbol{j}}} \exp\left[eta_{0} + \sum_{k} s_{k}(z_{kj})
ight]$$

$n_j \sim {\sf some \ count \ distribution}$

- area of segment or circle
- probability of detection in segment
- (inverse) link function
- model terms

What are those s thingos?

- "Smooth" functions of (spatial?) covariates
- Could be univariate, could be multivariate

How do we build them?

- Functions made of other, simpler functions
- Basis functions b_k , estimate β_k

$$s(x) = \sum_{k=1}^K eta_k b_k(x)$$

Straight lines vs. interpolation

- Want a line that is "close" to all the data
- Don't want interpolation we know there is "error"
- Balance between interpolation and generality

Making wigglyness matter

- Fit needs to be penalised
- What should we penalize? How wiggly the function is!
- *Something* like:

$$\int_{\mathbb{R}} \left(rac{\partial^2 s(x)}{\partial x^2}
ight)^2 \mathrm{d}x$$

- Estimate the β_k terms but penalise objective
 - "closeness to data" + penalty (REML?)

Smoothing parameter

Count distributions

- Response is a count (not not always integer)
- Often, there are a lot of zeros
- Want response distribution that deals with that
- Flexible mean-variance relationship

Tweedie distribution

- $\operatorname{Var}\left(\operatorname{count}\right) = \phi \mathbb{E}(\operatorname{count})^q$
- Common distributions are sub-cases:

$$\circ q = 1 \Rightarrow Poisson$$

$$\circ q = 2 \Rightarrow Gamma$$

$$\circ q = 3 \Rightarrow Normal$$

• We are interested in

$$1 < q < 2$$

• (here $q = 1.2, 1.3, \dots, 1.9$)

Abundance estimation

 If we have covariates available over a grid evaluate equation

$$n_p = A_p \expigl[eta_0 + s_{x,y}(x_p,y_p) + \ s_{ ext{depth}}(ext{depth}_p)igr]$$

• Sum grid cells for total abundance estimate

Uncertainty estimation

- Point estimates (even spatial ones) are not the end of the story
- Want to know how certain we are about our map
- Mapping uncertainty can help

Potential pitfalls

Tobler's first law of geography

"Everything is related to everything else, but near things are more related than distant things"

Implications of Tobler's law

Selecting spatial covariates

- Complicated topic
 - What are covariates really *doing*? See later
- Several strategies
 - Stepwise AIC selection (path dependence)
 - "Shrinkage" type approaches
 - (Emprical Bayes)
- Often smooths of location are adequate
 - And keep you honest (extrapolation)

Detection-level covariates

- Confounding between e.g., sea state and space important
- Pattern the same but abundance can change a LOT

Visibility during POWER 2014

Covariates can make a big difference!

Spatial modelling won't solve all yr problems

- Design issues
 - Ludicrous extrapolation
 - Survey plan not robust to weather issues
 - Non-uniform distribution wrt sampler
 - Migration

Spatial models alone can't solve these issues

Resources

• Loon analysis:

- Distance Sampling chapter in Quantitative Analyses in Wildlife Science, Buckland, Miller & Rexstad
- Winiarski, Miller, Paton, and McWilliams (2013) Spatially explicit model of wintering common loons: conservation implications. Marine Ecology Progress Series.
- Miller, Burt, Rexstad and Thomas (2013) *Spatial models for distance sampling data: recent developments and future directions.* Methods in Ecology and Evolution.

I am going to stop talking very soon...

Summary

- We often collect spatially-explicit data
- There is information there to harness
- This won't solve all the problems you have
- Use 2 stage approach
 - First get your detection function right
 - Then do spatial modelling
- Spatial modelling is a multi-headed hydra
- Lots of things to think about