

INTRODUCTION TO PROBABILITY

Matt Brems DSI+

DATA SCIENCE PROCESS

- 1. Define problem.
- 2. Gather data.
- 3. Explore data.
- 4. Model with data.
- 5. Evaluate model.
- 6. Answer problem.

DEFINITIONS

• **Experiment**: A procedure that can be repeated infinitely many times and has a well-defined set of outcomes.

Event: Any collection of outcomes of an experiment.

• **Sample Space**: The set of all possible outcomes of an experiment, denoted S.

EXAMPLES

• Experiment: Flip a coin twice.

• Experiment: Rolling a single die.

• Sample Space S:

• Sample Space S:

• Event:

• Event:

DEFINITIONS

- **Set**: An unordered collection of distinct objects.
 - { $Derek\ Jeter, \pi, \odot$ }

- **Element**: An object that is a member of a set.
 - Derek Jeter
 - $\rightarrow \pi$
 - **▶** ⊙

SET OPERATIONS

- **Union**: $A \cup B =$ the set of elements in A or B
- **Intersection**: $A \cap B =$ the set of elements in A and B
- Example:
 - $A = \text{even numbers between 1 and 10} = \{2,4,6,8\}$
 - $B = \text{prime numbers between 1 and 10} = \{2,3,5,7\}$
 - $A \cup B =$
 - $A \cap B =$

PROBABILITY - PRACTICE

- A = "a U.S. birth results in twin females"
- B = "a U.S. birth results in identical twins"
- C = "a U.S. birth results in twins"
- In words, what does $P(A \cap C)$ mean?

• In words, what does $P(A \cap B \cap C)$ mean?

PROBABILITY BASICS

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - Venn diagrams can help to illustrate this but remember that Venn diagrams are not proofs!
 - If A and B are disjoint, then $P(A \cap B) = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$.

- $P(A|B) = \frac{P(A \cap B)}{P(B)}$
 - Note: A|B means "A given B" or "A conditional on the fact that B happens."

- $P(A \cap B) = P(A|B)P(B)$
 - We just took the last rule and multiplied both sides by P(B).

• We can rearrange these, as well! $P(B \cap A) = P(B|A)P(A)$

► This isn't limited to two events: $P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C)$

• $P(B) = \sum_{i=1}^{n} P(B \cap A_i)$

• "Law of Total Probability"

PROBABILITY RULES – SUMMARY

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P(B) = \sum_{i=1}^{n} P(B \cap A_i)$$

PRACTICE: INTERVIEW QUESTION

- There are 24 balls in a bucket: 12 red and 12 black.
- If you draw one ball, then draw a second ball, what is the probability of drawing two balls of the same color?

WHEN BY HAND IS TOUGH...

- Oftentimes, we won't evaluate probabilities by hand.
 - It's still very important to understand the ideas behind probability
 - as we move forward, it's critical to:
 - a) know probability's relationship with statistics and machine learning.
 - b) identify potentially bad assumptions.
- We often think of probability as how frequently an event occurs.
 - We can use simulations to give us a good approximation of the true probability of some event.

SUPPLEMENTAL SECTION

BAYES' THEOREM

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

WHAT IS P(A)?

- We've talked a lot about probabilities of certain events, but what does this <u>actually</u> mean?
- There are two broad classes of probabilistic interpretations.

TWO INTERPRETATIONS OF P(A)

 In the long run, how many times will A occur relative to how many times we conduct our experiment?

$$P(A) = \lim_{\# \ of \ exp's \to \infty} \frac{\# \ of \ times \ A \ occurs}{\# \ of \ experiments}$$

$$P(heads) = \lim_{\# of \ coin \ tosses \to \infty} \frac{\# \ of \ heads}{\# \ of \ coin \ tosses}$$

This is called the <u>frequentist</u> interpretation of probability.

TWO INTERPRETATIONS OF P(A)

• What is one's degree of belief in the statement *A*, possibly given evidence?

P(A) = "How likely is it that A is true?"

P(heads) = ``How likely is it that I flip a heads?''

This is called the <u>Bayesian</u> interpretation of probability.

TWO INTERPRETATIONS OF P(A)

- Neither interpretation of P(A) is more or less correct.
- However, these different interpretations can give rise to different ways of analyzing our data, as we'll see later!