Régularité en optimisation de forme sous contrainte de convexité

R. Prunier, J. LAMBOLEY
IMJ-PRG Sorbonne Université, IMJ-PRG Sorbonne Université

Email: raphael.prunier@imj-prg.fr

Mots Clés: Calcul des variations, optimisation de forme, problème isopérimétrique, convexité.

Biographie – Après une Licence et un Master de préparation à l'agrégation de mathématiques à Sorbonne Université, j'ai suivi un Master 2 de mathématiques de la modélisation au sein de la même université. J'ai entamé en octobre 2020 une thèse à l'IMJ-PRG sous la direction de Jimmy Lamboley, co-dirigée par Dorin Bucur, intitulée "Régularité et stabilité en optimisation de forme sous contrainte géométrique". Elle est financée par l'école doctorale de Paris-Centre (ED 386).

Resumé: Cet exposé présente les résultats obtenus avec J. Lamboley dans [4]. Ils s'inscrivent dans le domaine de l'optimisation de forme, dont l'objet d'étude est le problème de minimisation

$$\inf\{J(\Omega), \ \Omega \in \mathcal{F}_{ad}\},$$
 (1)

où l'ensemble des formes admissibles \mathcal{F}_{ad} est une famille de sous-ensembles de \mathbb{R}^d et $J:\mathcal{F}_{ad}\to\mathbb{R}$. Les questions naturellement associées à ce type de problème sont d'abord celles du calcul de variations et de l'optimisation : en premier lieu, existe-t-il une forme optimale pour le problème (1) ? Une deuxième question, qui est celle qui nous occupe dans cet exposé, concerne la régularité des formes optimales : une solution Ω^* de (1) est-elle régulière ? Dans le meilleur des cas il s'agit de montrer que le bord de Ω^* peut être localement paramétré par une fonction d'une certaine régularité (par exemple de régularité hölderienne $C^{k,\alpha}$).

Nous nous intéressons plus particulièrement à des problèmes soumis à une contrainte de convexité, c'est-à-dire pour lesquels $\mathcal{F}_{\mathrm{ad}} \subset \mathcal{K}^d$, où \mathcal{K}^d désigne l'ensemble des ouverts convexes non vides de \mathbb{R}^d . Dans ce contexte, une solution Ω^* de (1) est a priori au moins lipschitzienne, puisque Ω^* s'écrit localement comme le graphe d'une fonction convexe. Malgré cette régularité initiale, la rigidité de la contrainte de convexité rend l'écriture d'une condition d'optimalité et son exploitation délicates ([3]). La difficulté pour monter en régularité réside alors dans la construction de perturbations admissibles de Ω^* - de formes Ω convexes "proches" de Ω^* en un certain sens - qui soient appropriées. Une technique souvent efficace consiste à "couper" Ω^* ([1], [2]), c'est-à-dire à tester l'optimalité de Ω^* contre le compétiteur $\Omega^* \cap H^+$ où H^+ est un demi-espace bien choisi.

Nous étudions dans [4] le problème

$$\inf\{P(\Omega) + R(\Omega), \ \Omega \in \mathcal{K}^d\}$$
 (2)

où P désigne le périmètre et R est une fonctionnelle générale satisfaisant certaines hypothèses. R est à penser comme un "reste", en le sens où l'on s'attend à ce qu'elle ne perturbe pas l'effet régularisant du périmètre souvent observé en optimisation de forme (voir par exemple [5]). Un tel problème est dit de type isopérimétrique, en référence au problème isopérimétrique usuel

$$\inf\{P(\Omega), \Omega \subset \mathbb{R}^d \text{ mesurable}, |\Omega| = 1\}$$

dont l'unique solution est la boule de volume 1 (on a noté $|\cdot|$ la fonctionnelle volume). Le premier résultat obtenu est le suivant.

Théorème 1 Soit $d \geq 2$. Supposons que R soit lipschitzienne pour le volume, i.e.

$$\exists C > 0, \, \forall (\Omega, \Omega' \in \mathcal{K}^d), \, |R(\Omega) - R(\Omega')| \le C|\Omega \Delta \Omega'|, \tag{3}$$

Alors toute solution de (2) est $C^{1,1}$.

Une des ambitions de ce résultat est de donner une condition assez générale sur R pour obtenir la régularité d'un problème isopérimétrique en toute dimension (la régularité ayant été souvent obtenue en dimension 2:[2],[3]). Sa preuve repose sur une méthode qui a été développée dans [1] pour démontrer un résultat de régularité en calcul des variations : si ω est un ouvert convexe borné de \mathbb{R}^{d-1} , une solution u^* de

$$\inf\left\{\int_{\omega}|\nabla u|^2+2fu,\ u:\omega\to\mathbb{R}\ \text{convexe},\ u\in H^1(\omega)\right\},\ \text{où }f\in L^{\infty}(\omega)\ \text{avec}\ \int_{\omega}f=0$$

est $C^{1,1}_{\mathrm{loc}}(\omega)$. La stratégie de [1] repose sur une méthode de coupure. Dans notre problème (2), $P(\Omega)$ joue le rôle de $\int_{\omega} |\nabla u|^2$ et $R(\Omega)$ celui de $\int_{\omega} 2fu$. Cette idée est fondée sur la formule

$$\mathcal{H}^{d-1}(G_u) = \int_{\mathcal{U}} \sqrt{1 + |\nabla u|^2}, \text{ où } G_u := \{(x, u(x)), x \in \omega\}$$

avec $\sqrt{1+|\nabla u|^2}$ (localement) fortement convexe en ∇u , où on a noté \mathcal{H}^{d-1} la mesure de Hausdorff (d-1)-dimensionnelle. Deux difficultés se présentent pour passer de [1] au Théorème 1 :

- "Remplacer" $\int_{\Omega} |\nabla u|^2 \operatorname{par} \int_{\Omega} \sqrt{1+|\nabla u|^2}$, où $u:\omega\to\mathbb{R}$ paramètre $\partial\Omega$ près de $x\in\partial\Omega$.
- Comprendre pourquoi $P(\Omega)$ se comporte comme $\int_{\omega} \sqrt{1+|\nabla u|^2}$. Ce deuxième point est plus délicat et demande de gérer en particulier le fait que $G_u \subsetneq \Omega$.

Nous déduisons du Théorème 1 des exemples et applications variés, selon la fonctionnelle R. Nous nous concentrons plus particulièrement sur des termes d'énergie issus de la théorie des EDP : les valeurs propres respectives λ_k et μ_k du problème des laplaciens Dirichlet et Neumann. Une partie importante du travail consiste à montrer que ces deux types de fonctionnelles vérifient (3). Nous obtenons également un résultat analogue au Théorème 1 avec l'ajout d'une contrainte de volume (pour éviter l'aplatissement des suites minimisantes) et d'une contrainte de boîte extérieure (pour éviter la perte de masse à l'infini des suites minimisantes), sans lesquelles l'existence n'est pas assurée en général. L'un des principaux énoncés est le suivant.

Théorème 2 Soient $F : \mathbb{R}^{2n} \to \mathbb{R}$ lipschitzienne, $D \subset \mathbb{R}^d$ un ouvert borné et $0 < v_0 < |D|$. Toute solution du problème

$$\inf \left\{ P(\Omega) + F(\lambda_1(\Omega), ..., \lambda_n(\Omega), \mu_1(\Omega), ..., \mu_n(\Omega)), \ \Omega \in \mathcal{K}^d, \ |\Omega| = v_0, \ \Omega \subset D \right\}$$
 est $C^{1,1}$.

Références

- [1] L. A. Caffarelli, G. Carlier, and P.L. Lions. $C^{1,\alpha}$ -regularity for variational problems with a convexity constraint and related issues. *En préparation*.
- [2] M. Goldman, M. Novaga, and B. Ruffini. On minimizers of an isoperimetric problem with long-range interactions under a convexity constraint. *Analysis & PDE*, 11(5):1113–1142, 2018.
- [3] J. Lamboley, A. Novruzi, and M. Pierre. Regularity and singularities of optimal convex shapes in the plane. *Archive for Rational Mechanics and Analysis*, 205(1):311–343, 2012.
- [4] J. Lamboley and R. Prunier. Regularity in calculus of variations and shape optimization under convexity constraint. *En préparation*.
- [5] F. Maggi. Sets of Finite Perimeter and Geometric Variational Problems. Cambridge University Press, 2012.