Algorithmic Robotics

Question 1:

We will use inverse kinematics and the Jacobean to configurate the robot such that it makes a direct movement from current position A(0,0.567,0.418) to final position B(0.1,0.367,0.718):

We split the path into N = 10 interval for making a straight movement.

The script halted after 360 iterations with the next values which represent arm configuration:

θ_0	$ heta_1$	$ heta_2$	$ heta_3$	$ heta_4$
-15.2	18.1	14.2	0.2	5.4

The position of the EE as function of iterations:

Circular motion

For this part we wrote a script that make a circle on the YZ axis with r=0.1[m] under the position of the EE (the center of the circle is (0,0.456,0.418)). for making a smooth movement and make it appear as a perfect circle we split it into N=100 intervals

Question 2:

We used Newton-Raphson method as follow:

$$q_i = q_{i-1} + J^{-1}|_{i-1} \cdot (EE_t - EE_i)$$

q: The arm configuration of iteration i (vector of θ).

 $J^{-1}|_{i-1}$:The transverse jacobian in the last iteration (q_{i-1} vector)

EE_t: The target of the EE

EE_i:EE current position

We split the path into N = 10 interval for making a straight movement.

The script halted after 473 iterations with the next values which represent arm configuration:

$ heta_0$	$ heta_1$	$ heta_2$	$ heta_3$	$ heta_4$
-15.2	18.3	14.0	0.2	5.4

We got almost the same configuration as in part 1

The position of the EE as function of iterations:

In this part we can see that the EE run less in a straight line. We can split it into 30 intervals and get more linear movement.

The position of the EE as function of iterations (N = 30):

