Math 55b, Assignment #4, March 3, 2006 (due March 9, 2006)

Problem 1 (First Half of the Fundamental Theorem of Calculus in Lebesgue's Integration Theory). Let $-\infty < a < b < \infty$ and f(x) be a Lebesgue integrable function on [a, b].

- (a) If $\int_a^x f(t) dt = 0$ for $a \le x \le b$, show that f(x) = 0 almost everywhere. (*Hint*: if the outer measure of the set of points where f(x) is nonzero is positive, construct appropriate simple functions to derive a contradiction.)
- (b) Show that $\frac{d}{dt} \int_a^x f(t) dt$ exists and is equal to f(x) almost everywhere. Hint: By writing f(x) as the difference of two nonnegative integrable functions, we can assume without loss of generality that f(x) is nonnegative. By writing f(x) as the limit of $\max(f(x), n)$ as $n \to \infty$, we can assume without loss of generality that f(x) is bounded. Let $F(x) = \int_a^x f(t) dt$ and use the fact that the derivative of a nondecreasing function exists almost everywhere. For a decreasing sequence h_n of positive numbers approaching zero, apply Lebesgue's bounded convergence theorem to the integral over $[a, \xi]$ of the sequence of functions

$$\frac{F(x+h_n)-F(x)}{h_n}$$

as $n \to \infty$ and write

$$\int_{a}^{\xi} \frac{F(x+h_n) - F(x)}{h_n} dx = \frac{1}{h_n} \int_{\xi}^{\xi+h_n} F(x) dx - \frac{1}{h_n} \int_{a}^{a+h_n} F(x) dx$$

which approaches $F(\xi) - F(a)$ by the continuity of F(x) and yields

$$\int_{a}^{\xi} F'(x) dx = F(\xi) - F(a)$$

from the earlier application of Lebesgue's bounded convergence theorem. Finally apply Part (a) to the identity

$$\int_{a}^{\xi} \left(F'(x) - f(x) \right) dx = 0$$

for $a \leq \xi \leq b$.

Problem 2 (Second Half of the Fundamental Theorem of Calculus in Lebesgue's Integration Theory).

Definition of Absolute Continuity. A function f(x) on a finite interval I in \mathbb{R} (which may be open, closed or half-open) is absolutely continuous if it is continuous at the end-points of I and if for every $\varepsilon > 0$ there exists some $\delta > 0$ such that for any open subset G of \mathbb{R} contained in I with $\mu(G)$ less than δ the inequality

$$\sum_{j=1}^{N} |f(\beta_j) - f(\alpha_j)| < \varepsilon$$

holds when G is written as a disjoint union $\bigcup_{j=1}^{N} (\alpha_j, \beta_j)$ of open intervals with $N \leq \infty$. Let $-\infty < a < b < \infty$.

(a) If f(x) is absolutely continuous on (a, b) and f'(x) = 0 almost everywhere, show that f(x) is constant on (a, b).

Hint: Take any $a < \xi < b$. For any positive number ε and for any point x of (a,ξ) where f'(x)=0, there exists some $\eta_x>0$ such that $|f(x+\eta_x)-f(x)|<\varepsilon\,\eta_x$. Apply Vitali's covering argument in Problem 5(a) of Homework #3 to construct $\bigcup_{j=1}^N \left(x_j,x_j+\eta_{x_j}\right)$ and apply the definition of absolute continuity of f(x) to the open subset $(a,\xi)-\bigcup_{j=1}^N \left[x_j,x_j+\eta_{x_j}\right]$ to show that $|f(\xi)-f(a)|<\varepsilon(\xi-a)$.

- (b) Show that any absolutely continuous function on [a, b] can be written as the difference of two continuous nondecreasing functions on [a, b].
- (c) Let f(x) be a function on [a, b]. Then f(x) is absolutely continuous if and only if f'(x) exists almost everywhere and is Lebesgue integrable on [a, b] and $f(x) = \int_a^x f'(t) dt$ for $a \le x \le b$.

Hint: For the "only if" part, by Problem 5(c) of Homework #3 and Part (b) of this problem f'(x) exists almost everywhere and is Lebesgue integrable on [a, b]. Apply Problem 1 (b) and Part (a) of this problem.

Problem 3 (A non-absolutely-continuous yet nondecreasing continuous function). For any point $0 \le x \le 1$, write

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$$

with each $a_k = 0, 1$, or 2. If no a_k is equal to 1, define

$$f(x) = \sum_{k=1}^{\infty} \frac{a_k}{2^{k+1}}.$$

If k_0 is the smallest integer with the property that $a_{k_0} = 1$, define

$$f(x) = \frac{1}{2^{k_0}} + \sum_{k=1}^{k_0 - 1} \frac{a_k}{2^{k+1}}.$$

Show that f(x) is continuous and nondecreasing on [0,1] and that f'(x) = 0 almost anywhere on [0,1] but $\int_0^1 f'(x) dx$ is not equal to f(1) - f(0) and, as a consequence, f(x) cannot be absolutely continuous on [0,1]. Show directly that f(x) cannot be absolutely continuous by exhibiting a countable union of disjoint open intervals which violates the definition of absolute continuity for f(x) on [0,1].

Problem 4 (Lebesgue Set).

(a) Let $-\infty < a < b < \infty$ and Y be a metric space with metric $d_Y(\cdot, \cdot)$. Let Y' be a countable dense subset of Y. Let f(x, y) be an \mathbb{R} -valued function on $[a, b] \times Y$. Assume that for any $y_0 \in Y$ any $\varepsilon > 0$ there exists $\delta > 0$ (which may depend on y_0) such that $|f(x, y) - f(x, y_0)| < \varepsilon$ for all $y \in Y$ with $d_Y(y, y_0) < \delta$ and for all $a \le x \le b$. Assume that for every fixed $y_0 \in Y$ the function $f(x, y_0)$ is a Lebesgue integrable function of x on [a, b]. Show that there exists a set E of measure zero in [a, b] such that

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t, y) \, dt = f(x, y)$$

for all $x \in [a, b] - E$ and $y \in Y$.

(b) Let $-\infty < a < b < \infty$ and g(x) be a Lebesgue integrable function on [a,b]. Show that

$$\lim_{h \to 0} \frac{1}{h} \int_0^h |g(x+t) - g(x)| \ dt = 0$$

for almost all $x \in [a, b]$. (The set of all points x where the above limit is equal to zero is known as the *Lebesgue set* of the function g(x) on [a, b].)

Hint: Apply Part (a) to the case f(x,y) = |g(x) - y|.

Problem 5 (A Characterization of An Almost-Everywhere Constant Function.) Let $-\infty < a < b < \infty$ and f(x) be a Lebesgue integrable function on [a, b]. Assume that

$$\lim_{h \to 0} \frac{1}{h} \int_{a}^{b} |f(x+h) - f(x)| \, dx = 0$$

(where inside the integral f(x) is interpreted as 0 when x is not in [a, b]). Show that there exists a constant c such that f(x) = c almost everywhere on [a, b].

Problem 6 (Almost-Everywhere Convergence, Strong Convergence in Measure, and Almost Uniform Convergence.) Let $-\infty < a < b < \infty$. Let f_n $(n \in \mathbb{N})$ and f be measurable functions on [a, b].

Definition. The sequence of functions f_n is said to converge almost everywhere to f if there exists a subset Z of measure zero in [a,b] such that $\lim_{n\to\infty} f_n(x) = f(x)$ for $x \in [a,b] - Z$.

Definition. The sequence of functions f_n is said to converge almost uniformly to f if for every $\delta > 0$ there exists a subset Z_{δ} of measure $< \delta$ in [a, b] such that $f_n(x)$ converges uniformly to f(x) on $[a, b] - Z_{\delta}$.

Definition. The sequence of functions f_n is said to converge in measure to f if for every $\epsilon > 0$ the measure of

$$\left\{ x \in [a, b] \mid |f_n(x) - f(x)| \ge \epsilon \right\}$$

goes to zero as $n \to \infty$.

Definition. The sequence of functions f_n is said to converge strongly in measure to f if for every $\epsilon > 0$ the measure of

$$\bigcup_{k=n}^{\infty} \left\{ x \in [a, b] \mid |f_k(x) - f(x)| \ge \epsilon \right\}$$

goes to zero as $n \to \infty$.

- (a) Show that the following three statements are equivalent.
 - (i) f_n converges almost everywhere to f.

- (ii) f_n converges strongly in measure to f.
- (iii) f_n converges almost uniformly to f.

Remark. The implication (i) \Rightarrow (iii) is known as Egoroff's Theorem. *Hint:* The set $A_{n,\epsilon}$ defined by

$$A_{n,\epsilon} = \bigcup_{k=n}^{\infty} \left\{ x \in [a,b] \mid |f_k(x) - f(x)| \ge \epsilon \right\}$$

is precisely the set of points $x \in [a, b]$ such that the statement

$$|f_k(x) - f(x)| < \epsilon$$
 for all $k \ge n$

fails to hold. Use the fact that, for subsets $E_m \subset [a,b]$ with $E_{m+1} \subset E_m$, the limit of the measure of E_m as $m \to \infty$ equals to the measure of $\bigcap_{m=1}^{\infty} E_m$. For (i) \Rightarrow (ii), use $\bigcap_{n=1}^{\infty} A_{n,\varepsilon} \subset Z$. Let ε_{ν} be a decreasing sequence of positive numbers approaching 0 as $\nu \to \infty$. For (ii) \Rightarrow (iii), choose Z_{δ} to be $\bigcup_{\nu=1}^{\infty} A_{n_{\nu},\varepsilon_{\nu}}$ for some suitable $n_{\nu} \in \mathbb{N}$. For (iii) \Rightarrow (i), use $Z \subset \bigcap_{\delta>0} Z_{\delta}$.

- (b) If f_n converges in measure to f, then there exists a subsequence f_{n_ℓ} of f_n such that f_{n_ℓ} ($\ell \in \mathbb{N}$) converges strongly in measure to f as $\ell \to \infty$.
- (c) Counter-Example. For $1 \leq j \leq n$ and $n \in \mathbb{N}$ let $k = \frac{1}{2}n(n-1) + j$ and let $g_k(x)$ be the characteristic function of $\left[\frac{j-1}{n}, \frac{j}{n}\right)$. Show that the sequence of functions g_k $(k \in \mathbb{N})$ on [0,1] converges in measure to 0, but does not converge to 0 almost everywhere.