A minimal reaction-diffusion neural model generates C. elegans undulation

Anshul Singhvi Bard College at Simon's Rock

(Dated: March 21, 2020)

Abstract

The small (1 mm) nematode $Caenorhabditis\ elegans$ has become widely used as a model organism; in particular the $C.\ elegans$ connectome has been completely mapped, and $C.\ elegans$ locomotion has been widely studied (c.f. http://www.wormbook.org). We describe a minimal reaction-diffusion model for the $C.\ elegans$ central pattern generator (CPG) (c.f. Xu et al. 2018, Wen et al. 2012). We use simulation methods to show that a small network of FitzHugh (1961)-Nagumo (et al. 1962) neurons (one of the simplest neuronal models) can generate key features of $C.\ elegans$ undulation (c.f. Magnes et al. 2017) and thus locomotion. Compare the neuromechanical model of Izquierdo and Beer (2015). We also investigate dynamics and stability of the model.

I. INTRODUCTION

hello world

II. CORRESPONDENCE

Please direct all correspondence to hhastings@simons-rock.edu, jemagnes@vassar.edu, or asinghvi17@simons-rock.edu.

III. REFERENCES

- [1] J. J. Collins and S. A. Richmond, Hard-wired central pattern generators for quadrupedal locomotion, 71, 375.
- [2] R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, 17, 257.
- [3] E. J. Izquierdo and R. D. Beer, From head to tail: A neuromechanical model of forward locomotion in *Caenorhabditis elegans*, **373**, 20170374.
- [4] J. P. Keener, Analog circuitry for the van der Pol and FitzHugh-Nagumo equations, SMC-13, 1010.
- [5] J. Magnes, K. Susman, and R. Eells, Quantitative Locomotion Study of Freely Swimming Micro-organisms Using Laser Diffraction, , 4412.
- [6] J. Nagumo, S. Arimoto, and S. Yoshizawa, An Active Pulse Transmission Line Simulating Nerve Axon, **50**, 2061.
- [7] J. T. Pierce-Shimomura, B. L. Chen, J. J. Mun, R. Ho, R. Sarkis, and S. L. McIntire, Genetic analysis of crawling and swimming locomotory patterns in C. elegans, 105, 20982.
- [8] Q. Wen, M. D. Po, E. Hulme, S. Chen, X. Liu, S. W. Kwok, M. Gershow, A. M. Leifer, V. Butler, C. Fang-Yen, T. Kawano, W. R. Schafer, G. Whitesides, M. Wyart, D. B. Chklovskii, M. Zhen, and A. D. Samuel, Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion, 76, 750.
- [9] T. Xu, J. Huo, S. Shao, M. Po, T. Kawano, Y. Lu, M. Wu, M. Zhen, and Q. Wen, Descending pathway facilitates undulatory wave propagation in *Caenorhabditis elegans* through gap junctions, **115**, E4493.