Programming classes N° 4

Upwind scheme for the transport equation at constant velocity

Let the final time be T>0) and $a\in\mathbb{R}$. We are looking for an approximation of $\bar{u}:\mathbb{R}\times(0,T)\to\mathbb{R}$, solution of the following problem:

$$\begin{cases} \partial_t \bar{u}(x,t) + a \, \partial_x \bar{u}(x,t) = 0, & \forall (x,t) \in \mathbb{R} \times (0,T) ,\\ \bar{u}(x,0) = u_{\text{ini}}(x), & \forall x \in \mathbb{R} . \end{cases}$$
 (1)

We recall that the solution of Eq.(1) is given by $\bar{u}(x,t) = u_{\text{ini}}(x-at), \forall (x,t) \in \mathbb{R} \times (0,T).$

We define the numerical solution as a sequence of values u_j^n , which are an approximation of $u_j^n \approx \bar{u}(x_j, t_n)$. Here we take $x_j = j\Delta x$ and $t_n = n\Delta t$ for $j \in \mathbb{Z}$ and $n \in \mathbb{N}$. We denote Δx the space step and Δt the time step.

We study the **upwind** scheme, a > 0:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \frac{u_j^n - u_{j-1}^n}{\Delta x} = 0. (2)$$

This scheme is stable for the 2 and ∞ norms, under the CFL condition $a\Delta t \leq \Delta x$. Its consistency error is or order $\mathcal{O}(\Delta t + \Delta x)$. Let us set $\lambda = a\frac{\Delta t}{\Delta x}$.

In order to work on a space domain of finite measure, we will take an initial condition u_{ini} a 1- periodic function.

Scheme implementation, taking into account the periodicity.

- 1. Show, first, that u_{ini} being 1-periodic implies that the solution is 1-periodic: $\bar{u}(x+1,t) = \bar{u}(x,t), \forall (x,t) \in \mathbb{R} \times (0,T)$.
- 2. Let us take the initial condition: $u_{\text{ini}}(x) = \sin(2\pi x)$, $\forall x \in \mathbb{R}$. Cerify that it is a 1-periodic function and code a function whose input is x and whose output is the value $u_{\text{ini}}(x)$.
- 3. We have to implement the scheme in such a way that the 1-periodicity of the solution is respected. The space domain has to be of the form [L, 1 + L[. A natural choice is L = 0, which implies [0, 1[.
 - (a) Let us set $J \in \mathbb{N}^*$, $\Delta x = \frac{1}{J}$. Define a sequence of points $x_j = j\Delta x$.
 - (b) Determine α and β such that the scheme (2) can be written as,

$$u_j^{n+1} = \alpha u_j^n + \beta u_{j-1}^n .$$

Think about the scheme discretisation in order to properly take the periodicity into account.

(c) Code a function:

Input : $a, T, u_{\text{ini}}, J, \lambda$

Output : $(x_j)_j, t_M, (u_j^M)_j, (\bar{u}_j^M)_j$

where $t_M \leq T$ is the final time and $\bar{u}_j^M = \bar{u}(x_j, t_M), \forall j$.

Validation of the scheme.

- 4. Show that if $\lambda = 1$ and the scheme is well initialised, it is exact in the points (x_j, t_n) , i.e. $u_j^n = \bar{u}(x_j, t_n)$, $\forall j$ and $n \geq 0$.
- 5. Verify that the implementation satisfy this result, for a > 0 and different values of J, T.

Convergence study in the case of a regular initial datum.

6. Modify the function coded in 3.(c) to compute and output the following errors:

$$\varepsilon_{\Delta t, \Delta x}^{(2)} = \max_{n \ge 0} \left(\| U_{\Delta x}^n - \bar{U}_{\Delta x}^n \|_{2, \Delta} \right) , \qquad (3)$$

$$\varepsilon_{\Delta t, \Delta x}^{(\infty)} = \max_{n \ge 0} \left(\| U_{\Delta x}^n - \bar{U}_{\Delta x}^n \|_{\infty, \Delta} \right) , \qquad (4)$$

where $U_{\Delta x}^n = (u_j^n)_j$ and $\bar{U}_{\Delta x}^n = (\bar{u}(x_j, t_n))_j$.

7. Fix the CFL value, such that $\lambda \neq 1$. Study graphically the behaviour of the errors given by (3)-(4) as functions of Δx . We can take T=0.75 and a=1. Verify that our numerical observations agree with the theoretical results.

Bonus

Code a 2D animation to graphically compare the analytic solution and its numerical approximation in time.