

2023-2024

MÉTODOS ESTATÍSTICOS

Testes de Hipóteses Não Paramétricos - Parte 2

Teste de Independência

Licenciatura em Engenharia Informática

Departamento de Matemática Escola Superior de Tecnologia de Setúbal Instituto Politécnico de Setúbal 2023-2024

Testes de Hipóteses Não Paramétricos:

Teste de Independência do Qui-Quadrado

- Pretende-se verificar se existe ou n\u00e3o independ\u00e9ncia entre duas vari\u00e1veis, ou seja, este teste é usado para descobrir se existe associação entre duas variáveis qualitativas que se apresentem agrupadas numa tabela de contingência.
- Apenas vamos considerar tabelas de contingência bidimensionais (mas é possível analisar a independência de variáveis em tabelas de dimensão superior a 2 não será abordado).

Dados Bivariados

- Por vezes a população que se pretende estudar, aparece sob a forma de pares de valores, isto é, cada indivíduo ou resultado experimental, contribui com um conjunto de dois valores.
- É o que acontece quando se pretende estudar dois atributos da mesma população visando investigar em que medida eles se relacionam, isto é, de que modo a variação de um deles exerce influencia na variação do outro.
- Quando os atributos s\(\tilde{a}\)o ambos quantitativos, como iremos ver, podemos recorrer \(\tilde{a}\) Regress\(\tilde{a}\)o Linear Simples.
- Quando os atributos são ambos qualitativos vamos recorrer ao Teste de Independência do Qui-Quadrado.

Observação:

Uma variável originalmente quantitativa pode ser recolhida ou transformada em qualitativa.

Por exemplo, a variável idade, medida em anos é quantitativa (contínua), mas, se for obtida ou transformada em níveis etários (0 a 5 anos, 6 a 10 anos,...), é qualitativa (ordinal).

Objetivo

Estudar a relação entre duas variáveis qualitativas.

Para atingir este objetivo vamos investigar a presença ou ausência de **associação** entre as duas variáveis. Essa investigação será feita em duas etapas:

- \bullet etapa 1 \rightarrow resumir os dados
 - tabelas de dupla entrada: tabelas de contingência também chamadas de tabelas de informação cruzada;
- etapa 2 → testar, estatisticamente, se existe associação entre as variáveis: teste de independência do Qui-Quadrado.

Tabelas de Contingência

É uma tabela de dupla entrada:

- as r categorias de uma das variáveis definem as linhas,
- as c categorias da outra variável definem as colunas,
- a tabela tem $r \times c$ células.

	Variável B				
Variável A	B ₁	$_{ m B_2}$		B_c	TOTAL
A ₁	o_{11}	o_{12}		O_{1c}	n_1 .
A_2	o_{21}	O_{22}		O_{2c}	n_2 .
	:	:	1.		
A_r	o_{r1}	O_{r2}		O_{rc}	n_r .
TOTAL	$n_{\cdot 1}$	$n_{\cdot 2}$		$n \cdot c$	n

5/38

 $O_{ij},\ i=1,\dots,r$ e $j=1,\dots,c$ o representa o número de elementos observados na amostra que foram classificados simultaneamente nas categorias A_i da variável A e B_j da variável B.

 $n_i = \sum_{j=1}^c O_{ij} \to \text{representa o número de elementos da amostra classificados na categoria } A_i$ da variável A, ou seja, representa o total marginal de linha.

 $n_{\cdot j} = \sum_{i=1}^{r} O_{ij} \rightarrow$ representa o número de elementos da amostra classificados na categoria B_j da variável B_j , ou seja, representa o total marginal de coluna.

 $n=\sum\limits_{i=1}^r\sum\limits_{j=1}^cO_{ij}=\sum\limits_{i=1}^rn_{i\cdot}=\sum\limits_{j=1}^cn_{\cdot j} o$ representa o total da tabela, o número total de elementos da amostra

Exemplo 1

Foi efetuado um estudo onde se procurou analisar a relação existente entre a prática desportiva dos filhos quando os pais praticam ou não desporto. A amostra do presente estudo é constituída por 82 alunos do sexo masculino que frequentavam o 10^o ano de escolaridade de uma dada escola e pelos respetivos pais (ficheiro dados1.txt). Neste caso as variáveis em análise são:

- Pai com as categorias:
 - Não não pratica desporto regularmente.
 - Sim pratica desporto regularmente

- Filho com as categorias:
 - Não não pratica desporto regularmente.
 - Sim pratica desporto regularmente.

Dados:

Pai	Filho
Sim	Não
Sim	Não
Não	Não
Não	Sim
Sim	Sim
:	:

2 variáveis qualitativas nominais.

Tabela de contingência:

- r=2 linhas, correspondem às 2 categorias da variável "Pai".
- ullet c=2 colunas, correspondem às 2 categorias da variável "Filho".
- $r \times c = 2 \times 2 = 4$ células.

	Fil	ho	
Pai	Não	Sim	TOTAL
Não	24	41	65
Sim	6	11	17
TOTAL	30	52	82

Objetivo

Avaliar a existência de associação entre atributos de uma população, estudando a independência entre as variáveis qualitativas que representam esses atributos.

Princípios Básicos na Realização do Teste de Independência do Qui-Quadrado

- São definidas duas hipóteses:
 - **Hipótese Nula** = H_0 é a hipótese que indica que as duas variáveis são independentes.
 - **Hipótese Alternativa** = H_1 é a hipótese que se contrapõe à hipótese nula, ou seja, que indica que o que foi colocado na hipótese nula não se verifica.
- é definida uma Estatística Teste, que é a base da realização do teste e consiste em comparar o observado com o previsto caso as variáveis sejam independentes.

- São construídas duas regiões:
 - ightharpoonup Região de Aceitação =RA conjunto de valores para os quais H_0 é admissível.
 - **Região de Rejeição ou Região Crítica** =RC conjunto de valores para os quais H_0 não é admissível.

Princípios Básicos na Realização do Teste de Independência do Qui-Quadrado

- A regra de decisão define as condições de rejeição ou não rejeição da hipótese nula:
 - Se o Valor Observado da Estatística de Teste sob a hipótese H_0 pertencer à Região de Aceitação, então Não se Rejeita H_0
 - Se o Valor Observado da Estatística de Teste sob a hipótese H_0 pertencer à Região Crítica, então Rejeita-se H_0
- **3** Erros de decisão um teste de hipóteses nem sempre conduz a decisões corretas, a análise de uma amostra pode falsear as conclusões quanto à população. Como já vimos, um dos erros é o chamado Erro de 1^a espécie ou Nível de significância do teste:

$$\alpha = P$$
 [rejeitar $H_0 \mid H_0$ verdadeira]

para minimizar este erro fixa-se o seu valor.

• As regiões de aceitação e de rejeição $(RA \ e \ RC)$ são definidas à custa do valor fixado para o nível de significância (α) .

Na prática, em vez de calcular a região crítica (RC) e a região de aceitação (RA), é usual calcular-se o **Valor-p** (ou **p-value**).

Valor-p (ou p-value)

 $\acute{\rm E}$ a probabilidade associada ao valor da estatística de teste, considerando H_0 verdadeira.

• Se o valor-p for pequeno significa que, no caso de H_0 ser verdadeira, estamos perante um evento muito raro, pouco provável de ocorrer, então deve optar-se por rejeitar H_0 .

Portanto, o valor-p também permite tomar decisões:

- se valor-p $\leq \alpha$, então rejeita-se H_0
- ightharpoonup se valor-p $> \alpha$, então não se rejeita H_0

11/38

Engenharia Informática Métodos Estatísticos 2023-2024

Objetivo

Avaliar a existência de associação entre atributos de uma população, estudando a independência entre as variáveis qualitativas que representam esses atributos.

Formulação das Hipóteses a Testar:

 H_0- Não há relação entre as variáveis

vs

 H_1- Há relação entre as variáveis

ou de forma equivalente

 H_0 – As variáveis são independentes

vs

 H_1 – As variáveis não são independentes

Estatística de Teste

A estatística de teste tem por base os desvios entre as frequências observadas (O_{ij}) e esperadas (E_{ij}) :

$$Q = \sum_{i=1}^{r} \sum_{i=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2_{(r-1)\times(c-1)}$$

onde r é o número de linhas da tabela de contingência e c é o número de colunas da tabela de contingência.

Engenharia Informática

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese H_0

$$Q_{obs} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- r corresponde ao número de linhas da tabela de contingência
- c corresponde ao número de colunas da tabela de contingência
- frequências observadas = $O_{ij} \rightarrow$ corresponde às frequências absolutas observadas (amostra) da tabela de contingência;
- frequências esperadas $=E_{ij}=rac{n_i. imes n_{\cdot j}}{n} o$ frequências absolutas esperadas se as variáveis são independentes
 - n é a dimensão da amostra
 - n_i. totais das linhas
 - $ightharpoonup n_{\cdot j}$ totais das colunas

Observação 1: os acontecimentos A e B dizem-se independentes sse $P(A \cap B) = P(A) \times P(B)$

Observação 2: Tem-se
$$\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{c}O_{ij}=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{c}E_{ij}=n$$

Engenharia Informática Métodos Estatísticos 2023-2024

14/38

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese H_0

O teste de independência do Qui-Quadrado compara as frequências observadas, O_{ij} :

		Variável B				
Variável A	B_1	B_2		$\mathbf{B_c}$	TOTAL	
$\mathbf{A_1}$	O_{11}	O_{12}		O_{1c}	n_1 .	
$\mathbf{A_2}$	O_{21}	O_{22}		O_{2c}	n_2 .	
:	:	:	'·	:	:	
A_r	O_{r1}	O_{r2}		O_{rc}	n_r .	
TOTAL	$n_{\cdot 1}$	$n_{\cdot 2}$		$n_{\cdot c}$	n	

com as frequências esperadas, caso as variáveis fossem independentes, $E_{ij} = \frac{n_i \cdot \times n_{\cdot j}}{n}$:

		Variável B				
Variável A	B_1	B_2		$\mathrm{B_{c}}$	TOTAL	
$\mathbf{A_1}$	$E_{11} = \frac{n_{1.} \times n_{.1}}{n}$	$E_{12} = \frac{n_1 \times n_{2}}{n}$	• • •	$E_{1c} = \frac{n_1 \times n_{\cdot c}}{n}$	n_1 .	
$\mathbf{A_2}$	$E_{21} = \frac{n_2 \cdot \times n_{\cdot 1}}{n}$	$E_{22} = \frac{n_2 \times n_{2}}{n}$		$E_{2c} = \frac{n_2 \cdot \times n_{\cdot c}}{n}$	n_2 .	
:	:	:	٠.	:	:	
A_r	$E_{r1} = \frac{n_{r.} \times n_{.1}}{n}$	$E_{r2} = \frac{n_r \times n_{\cdot 2}}{n}$		$E_{rc} = \frac{n_{r.} \times n_{.c}}{n}$	n_r .	
TOTAL	$n_{\cdot 1}$	$n_{\cdot 2}$		$n_{\cdot c}$	n	

Definição da Região de Aceitação e de Região Crítica

Um valor da estatística de teste elevado indica discrepância entre os valores observados e os respetivos valores esperados indicando associação entre as variáveis, ou seja, as variáveis não podem ser consideradas independentes:

- a Região de Aceitação é $RA = \left[0, x_{1-\alpha;(r-1)\times(c-1)}^2\right]$
- a Região Crítica é $RC = \left[x_{1-\alpha;(r-1)\times(c-1)}^2, +\infty \right]$

Regra de Decisão com base na Região Crítica

• Se o valor observado da estatística de teste não pertencer à Região Crítica,

$$Q_{obs} \notin RC$$

então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que as variáveis são independentes.

Se o valor observado da estatística de teste pertencer à Região Crítica,

$$Q_{obs} \in RC$$

então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra não há evidências estatísticas que as variáveis são independentes.

◆ロト ◆部ト ◆注ト ◆注 ト 注 ・ 夕 ♀

17/38

Cálculo do valor-p

Considerando que ${\cal H}_0$ é verdadeira, o valor-p indica a probabilidade do valor observado da estatística de teste ocorrer:

$$\mathsf{valor-p} = P\left(Q \geq Q_{\mathsf{obs}}\right)$$

O valor-p pode ser visto como o menor valor de α (nível de significância) para o qual os dados observados indicam que H_0 deve ser rejeitada.

Regra de Decisão com base no valor-p

Se

valor-p
$$> \alpha$$

então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que as variáveis são independentes.

Se

valor-p
$$\leq \alpha$$

então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra não há evidências estatísticas que as variáveis são independentes.

Condições de aplicação do teste

- Não há mais de 20% das frequências esperadas inferiores a 5, isto é, $E_{ij} < 5$ no máximo em 20% das células dos E_{ij} .
- Todas as frequências esperadas devem ser maiores ou iguais a 1, isto é, $E_{ij} \geq 1$ para todo $i=1,\ldots,r$ e $j=1,\ldots,c$.

Observaçção:

• As condições de aplicação do teste devem ser, tanto quanto possível verificadas, sob pena do teste não ser rigoroso. Ou seja, o teste não tem qualquer pressuposto obrigatório, a infração das condições de aplicação apenas leva à perda de rigor.

Teste de Independência do Qui-Quadrado no R

chisq.test()

Observações

- Vamos utilizar a função chisq.test() com o campo "correct=FALSE".
- Quando as condições de aplicação do teste são violadas há a possibilidade de fazer correções nos resultados ou recorrer a outros testes. Por exemplo, a correção de Yates para tabelas de bidimensionais 2×2 (basta colocar "correct=TRUE" na função chisq.test()), o Teste Exato de Fisher (o R tem a função fisher.test()) que pode ser utlizado em tabelas bidimensionais (muito usado em tabelas bidimensionais 2×2) e não exige que as frequências esperadas sejam grandes.

21/38

Engenharia Informática Métodos Estatísticos 2023-2024

Exemplo 1

Foi efetuado um estudo onde se procurou analisar a relação existente entre a prática desportiva dos filhos quando os pais praticam ou não desporto. A amostra do presente estudo é constituída por 82 alunos do sexo masculino que frequentavam o 10^o ano de escolaridade de uma dada escola e pelos respetivos pais (ficheiro dados1.txt). As variáveis em análise e a respetiva tabela de contingência são:

Pai - com as categorias:

- Não não pratica desporto regularmente,
- Sim pratica desporto regularmente.

Filho - com as categorias:

- Não não pratica desporto regularmente,
- Sim pratica desporto regularmente.

	Filho		
Pai	Não	Sim	
Não	24	41	
Sim	6	11	

Será que o facto dos pais praticarem ou não desporto regularmente influencia o facto dos filhos praticarem ou não desporto regularmente? Ou seja, para um nível de significância de 5%, será que as variáveis são independentes?

Hipótese a ser testada

 H_0 : os pais praticarem ou não desporto regularmente **não influencia** o facto dos filhos praticarem ou não desporto regularmente vs

 H_1 : os pais praticarem ou não desporto regularmente **influencia** o facto dos filhos praticarem ou não desporto regularmente

Dados

- Variáveis: 2 variáveis qualitativas nominais
- Tabela de contingência: r=2 linhas e c=2 colunas
- nível de significância $= \alpha = 0.05$

Tabela de contingência das frequências Observadas:

	Fil		
Pai	Não	Sim	TOTAL
Não	24	41	65
Sim	6	11	17
TOTAL	30	52	82

Tabela de contingência das frequências Esperadas:

	Fil		
Pai	Não	Sim	TOTAL
Não	$23.7805 = \frac{30 \times 65}{82}$	$41.2195 = \frac{52 \times 65}{82}$	65
Sim	$6.2195 = \frac{30 \times 17}{82}$	$10.7805 = \frac{52 \times 17}{82}$	17
TOTAL	30	52	82

Estatística de teste:

$$\begin{split} Q_{obs} &= \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \\ &= \frac{\left(24 - 23.7805\right)^{2}}{23.7805} + \frac{\left(41 - 41.2195\right)^{2}}{41.2195} + \frac{\left(6 - 6.2195\right)^{2}}{6.2195} + \frac{\left(11 - 10.7805\right)^{2}}{10.7805} = 0.0154 \end{split}$$

A estatística de teste, sob a hipótese H_0 , tem distribuição Qui-Quadrado com

$$(r-1)\times(c-1)=(2-1)\times(2-1)=1~$$
 graus de liberdade
$$Q\sim\chi^2_{(1)}$$

Regra de Decisão através da Região Crítica

$$RC = \left[x_{1-\alpha;(r-1)\times(c-1)}^2, +\infty \right[= \left[x_{0.95;(1)}^2, +\infty \right[= [3.84, +\infty[$$

Como $Q_{obs} = 0.0154 \notin RC$ então não se rejeita a hipótese H_0

Regra de Decisão através do valor-p

$$\text{valor-}p = P(Q \geq Q_{obs}) = P(Q \geq 0.0154) \\ = 1 \\ -F(0.0154) = 0.9012$$

Como valor- $p>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e para um nível de significância de 5%, existem evidências estatísticas, que o facto dos pais praticarem ou não desporto habitualmente não influencia o facto dos filhos praticarem ou não desporto habitualmente (ou seja, são independentes).

25 / 38

usar a função chisq.test(...,correct = FALSE)

e obtém-se

- $Q_{obs} = 0.015412$
- graus de liberdade = 1
- valor-p = 0.9012

Como valor- $p=0.9012>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e para um nível de significância de 5%, existem evidências estatísticas, que o facto dos pais praticarem ou não desporto habitualmente não influencia o facto dos filhos praticarem ou não desporto habitualmente (ou seja, são independentes).

Exemplo 2

Com o objetivo de tentar "explicar as causas" do insucesso escolar foram inquiridos vários alunos do ensino básico. Aos alunos foram colocadas diversas questões, entre as quais uma sobre o número de reprovações e outra sobre o número de faltas (ficheiro dados2.txt). As variáveis em análise e a respetiva tabela de contingência são:

Número de reprovações - com as categorias:

Número de faltas - com as categorias:

- Nenhuma
- Uma
- Duas ou mais

- Nenhuma
- Algumas
- Muitas

	Número de faltas				
Número de reprovações	Nenhuma Algumas Muitas				
Nenhuma	132	57	13		
Uma	28	15	15		
Duas ou mais	20	17	17		

Será que existe relação entre as variáveis "Número de faltas" e "Número de reprovações"? Ou seja, para um nível de significância de 1%, será que as variáveis são independentes?

Hipótese a ser testada

 H_0 : as variáveis "Número de faltas" e "Número de reprovações" **não estão** relacionadas

contra

 H_1 : as variáveis "Número de faltas" e "Número de reprovações" **estão** relacionadas

Dados

- Variáveis: 2 variáveis qualitativas ordinais
- Tabela de contingência: r = 3 linhas e c = 3 colunas
- nível de significância = $\alpha = 0.01$

• Tabela de contingência das frequências Observadas:

	Nú					
Número de reprovações	Nenhuma	Nenhuma Algumas Muitas				
Nenhuma	132	57	13	202		
Uma	28	15	15	58		
Duas ou mais	20	17	17	54		
TOTAL	180	89	45	314		

• Tabela de contingência das frequências Esperadas:

	Número de faltas				
Número de reprovações	Nenhuma	Algumas	Muitas	TOTAL	
Nenhuma	$115.7962 = \frac{180 \times 202}{314}$	$57.2548 = \frac{89 \times 202}{314}$	$28.9490 = \frac{45 \times 202}{314}$	202	
Uma	$33.2484 = \frac{180 \times 58}{314}$	$16.4395 = \frac{89 \times 58}{314}$	$8.3121 = \frac{45 \times 58}{314}$	58	
Duas ou mais	$30.9554 = \frac{180 \times 54}{314}$	$15.3057 = \frac{89 \times 54}{314}$	$7.7389 = \frac{45 \times 54}{314}$	54	
TOTAL	180	89	45	314	

• Estatística de teste:

$$Q_{obs} = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} =$$

$$= \frac{(132 - 115.7962)^{2}}{115.7962} + \frac{(57 - 57.2548)^{2}}{57.2548} + \dots + \frac{(17 - 15.3057)^{2}}{15.3057} + \frac{(17 - 7.7389)^{2}}{7.7389} = 32.539$$

29 / 38

A estatística de teste, sob a hipótese H_0 , tem distribuição Qui-Quadrado com

$$(r-1)\times(c-1)=(3-1)\times(3-1)=4$$
 $\,$ graus de liberdade
$$\label{eq:Q} Q\sim\chi^2_{(4)}$$

Regra de Decisão através da Região Crítica

$$RC = \left[x_{1-\alpha;(r-1)\times(c-1)}^2, +\infty\right[= \left[x_{0.99;(4)}^2, +\infty\right[= [13.3, +\infty[$$

Como $Q_{obs}=32.539\in RC$ então rejeita-se a hipótese H_0

Regra de Decisão através do valor-p

$${\rm valor-}p = P(Q \geq Q_{obs}) = P(Q \geq 32.539) = 1 - F(32.539) = 1 - 1 = 0$$

Como valor- $p=0 \leq 0.01=\alpha$ então rejeita-se a hipótese H_0

Conclusão: Com base na amostra e para um nível de significância de 1%, existem evidências estatísticas, que o número de reprovações e o número de faltas estão relacionados (ou seja, não são independentes).

30 / 38

usar a função chisq.test()

e obtém-se

- $Q_{obs} = 32.539$
- graus de liberdade = 4
- valor-p = 1.484e 06 = 0.000001484

Como valor- $p=0.000001484 \leq 0.01=\alpha$ então rejeita-se a hipótese H_0

Conclusão: Com base na amostra e para um nível de significância de 1%, existem evidências estatísticas, que o número de reprovações e o número de faltas estão relacionados (ou seja, não são independentes).

Medidas de Associação

Depois de tomada a decisão e nos casos em que se rejeita a hipótese nula, tem interesse em saber se a associação existente entre as variáveis é forte ou fraca.

Medidas de Associação

- coeficiente de contingência: assume valores entre 0 e 1, mas nunca atinge o valor 1. O valor 0 corresponde a ausência de associação entre as variáveis, valores próximos de zero correspondem a fraca associação e valores elevados correspondem a associação mais forte.
- coeficiente V de Crámer: assume valores entre 0 e 1. O valor 0 corresponde à ausência de associação entre as variáveis, valores próximos de zero correspondem a fraca associação e valores próximos de 1 correspondem a associação forte.

Estas medidas são muito usadas quando pelo menos 1 das variáveis é qualitativa nominal.

マロシスランス Engenharia Informática Métodos Estatísticos 2023-2024

32 / 38

Uma possível interpretação dos coeficientes pode ser a apresentada na tabela seguinte, mas estes limites não são rígidos, são apenas linhas de orientação:

	Associação			
	fraca	moderada	elevada	
coeficiente de contingência	[0.10, 0.30[[0.30, 0.50[≥ 0.50	
V de Crámer $(k=2^{(*)})$	[0.10, 0.30[[0.30, 0.50[≥ 0.50	
V de Crámer $(k=3^{(*)})$	[0.07, 0.20[[0.20, 0.35[≥ 0.35	
V de Crámer $(k=4^{(*)})$	[0.06, 0.17[[0.17, 0.29[≥ 0.29	

 $^{(st)}k$ representa o número mínimo de categorais nas linhas ou nas colunas

Engenharia Informática Métodos Estatísticos 2023-2024

イロト イ御ト イラト イラト

33 / 38

Medidas de Associação

Medidas de Associação \mapsto as 2 das variáveis são qualitativas ordinais

• coeficiente τ_b de Kendall: assume valores entre -1 e 1, mas os valores -1 e 1 só são atingidos em tabelas em que o número de linhas é igual ao número de colunas. Valores próximos de -1 ou de 1 indicam forte associação. Valores próximos de zero indicam fraca associação.

Sinal do coeficiente:

- sinal positivo indica que o "aumento" de uma das variáveis é acompanhado pelo "aumento" da outra variável;
- sinal negativo indica que o "aumento" de uma das variáveis é acompanhado pela "diminuição" da outra variável.

◆ロト ◆部ト ◆差ト ◆差ト を めんぐ

Medidas de Associação no R

library(DescTools)

- coeficiente de contingência: ContCoef()
- coeficiente V de Crámer: CramerV()
- coeficiente τ_b de Kendall: KendallTauB()

Engenharia Informática

Exemplo 2

Com o objetivo de tentar "explicar as causas" do insucesso escolar foram inquiridos vários alunos do ensino básico. Aos alunos foram colocadas diversas questões, entre as quais uma sobre o número de reprovações e outra sobre o número de faltas (ficheiro dados2.txt). As variáveis em análise e a respetiva tabela de contingência são:

Número de reprovações - com as categorias:

Número de faltas - com as categorias:

- Nenhuma
- Nenhuma

Uma

AlgumasMuitas

- Duas ou mais
 - N.C. and the fall of

	ivumero de faitas		
Número de reprovações	Nenhuma	Algumas	Muitas
Nenhuma	132	57	13
Uma	28	15	15
Duas ou mais	20	17	17

Como rejeitámos a hipótese das variáveis "Número de faltas" e "Número de reprovações" serem independentes, então interessa saber como é a associação.

Engenharia Informática Métodos Estatísticos 2023-2024 36/38

da library(DescTools) usar as funções:

- ContCoef()
- CramerV()
- KendallTauB()

Observ: se não funcionar, converter a tabela numa matriz: as.matrix()

e obtém-se

- coeficiente de contingência = 0.3064
- coeficiente V de Crámer = 0.2276
- coeficiente τ_b de Kendall= 0.2544

Engenharia Informática

- A associação existente pode ser considerada moderada mas perto de fraca: o coeficiente de contingência $=0.3064 \in [0.30, 0.50[$ e V de Crámer $=0.2276 \in [0.20, 0.35[$.
- A associação existente é positiva, pois o valor do tau-b de Kendall é positivo, $\tau_b=0.2544>0$, mas não parece ser forte pois está afastado de 1.
- A associação ser positiva significa que quando aumenta o número de faltas parece aumentar o número de reprovações.

Engenharia Informática