Cataract Classification

a CNN-based approach

TEAM 07

We all worked together as a group, but in particular:

Lorenzo Benatti:

- Exploratory data analysis
- CNN architecture

Davide de Crescenzo:

- CNN architecture
- Preprocessing
- Dataset splitting

Matilde Farci:

- Data augmentation
- Dataset splitting
- Presentation

Federico Muraro:

- Preprocessing
- CNN architecture

Davide Sabbadin:

- Data augmentation
- CNN architecture

Synthetic overview of data & original task

Two datasets

- Source: Shandong medical technologies Co.
- 7000 images from 3500 patients (both eyes)
- Text diagnosis

Cataract
classification
from eye
fundus
images

Eye anatomy & Cataract physiopathology

- Crystalline cells do not regenerate
- Cataract is caused by protein clumping between crystalline cells; this may happen in different regions
- Cataract may develop in different crystalline regions

- Aging population → cataract diagnoses are rising
- 1/3 of worldwide blindness is due to cataract
- Limited access to care in developing countries

Eye fundus images

Different morphology according to diagnosis: cataract images are typically more homogenous

In general:

- Heterogenous illumination, size, sharpness...
- Round-shaped + black/white border

Code outline DATASETS CREATION

Labels

Array:

256 x 192 px

images

Code outline 1° MODEL

CUSTOM CNN

Optimizer: ADAM

LOSS: Categorical CrossEntropy

Metric: accuracy

- Conv2D (16, 3, same, mish)
- Conv2D (16, 3, same, mish)
- BatchNormalization
- MaxPool2D(3)
- **Dropout**(0.3)
- Flatten
- Dense (2, Softmax)

EFFNET-BASED MODEL

keras.fit

- Real time data augmentation
 (ImageDataGenerator, shift + flip)
- Early stopping
- Reduce LR on plateau
- Epochs = 100
- Batch size = 32
- Use of validation set

Code outline 2° MODEL

CUSTOM CNN

Labels

Array: **256 x 192** px images

EFFNET-BASED MODEL

Optimizer: ADAM (LR=0.000003)

Loss: Categorical CrossEntropy

Metric: accuracy

- EfficientNetB0
- GlobalAveragePooling2D
- Dense (2, Softmax)

keras.fit

- Real time data augmentation (ImageDataGenerator, shift + flip)
- Early stopping
- Reduce LR on plateau
- Epochs = 100
- Batch size = 32
- Use of validation set

Limitations

Images from the datasets were pooled but classified with different criteria → Classification is binary but ambiguous:
 cataract vs non-cataract or cataract vs normal?

Dataset 1: eyes are considered to have only one disease (uncommon)

- No preprocessing was performed other than resizing
- Models were lengthy to train(>7 seconds/epoch)
- Class imbalance → heavy downsampling → only a subset is used
- Use of deprecated functions (data augmentation with ImageDataGenerator)
- Use of images from the same person in both the training and test set
 → Information Leakage
- CNN problems Models not optimized for binary classification

 No freezing of EfficientNet's weights and wrong input size

Non-cataract = normal

Non-cataract = normal + other diagnoses

Key strengths

- 2 datasets
- Good performance overall
- Readable and accessible to non-experts

Custom model
that achieves comparable accuracy
while having a significantly fewer parameters

• 2 models:

Transfer learning-based model as baseline

GROUP

Objective

• A more general model: since we decided to perform binary classification,

we choose to classify cataract vs. non-cataract images, rather than cataract vs. normal, considering ML techniques perform better in the latter (logistic regression \rightarrow 95% accuracy)

 Making the most of our datasets: less downsampling & data augmentation • Speed up the training process: removal of deprecated routines

- Scientific literature (e.g on fundus images classification, binary classification through CNNs...) Python documentation (Keras especially)
 - Laboratory projects & lectures

METHODS **Overview**

- Data leakage correction
- Exploratory Data Analysis
- Pre-processing
 - Resizing → Grayscale → CLAHE → Median
- Models training and tuning
- Models evaluation
 - Additional metrics
 - o Threshold adjustment

METHODS

Literature Review

Custom CNN architecture focused on cataract classification & grading

Junayed et al., CataractNet: An Automated Cataract Detection System Using Deep Learning for Fundus Images.

DOI 10.1109/ACCESS.2021.3112938

Elloumi, Cataract grading method based on deep convolutional neural networks and stacking ensemble learning.

DOI 10.1002/ima.22722

Use of grayscale images

Mitra et al., Enhancement and restoration of non-uniform illuminated Fundus Image of Retina obtained through thin layer of cataract. DOI 10.1016/j.cmpb.2018.01.001

Use of green channel-only images

Mitra et al., Enhancement and restoration of non-uniform illuminated Fundus Image of Retina obtained through thin layer of cataract. DOI 10.1016/j.cmpb.2018.01.001

CLAHE & filtering

Al-Fahdawi et al., Fundus-DeepNet: Multi-label deep learning classification system for enhanced detection of multiple ocular diseases through data fusion of fundus images DOI 10.1016/j.inffus.2023.102059

EFFICIENTNET

https://keras.io/api/applications/efficientnet/

METHODS

Preprocessing

METHODS Preprocessing

Resizing → Grayscale → CLAHE → Median

METHODS CNN arch

CNN architecture

CUSTOM CNN

Optimizer: ADAM, Metric: accuracy

Loss: Binary CrossEntropy

- RandomFlip + RandomZoom
 - + RandomContrast
- Conv2d(16,7,same,relu)
- **MaxPool2D**(3)
- Conv2d(16,5,same,relu)
- **MaxPool2D**(3)
- Conv2d(32,4,same,relu)
- MaxPool2D(3)
- Conv2d(32,3,same,relu)
- MaxPool2D(3)
- <u>Dropout(0.3)</u> → Flatten
- Dense (128, relu)
- **Dropout**(0.5)
- Dense(1, sigmoid)

keras.fit

- Class weights to mitigate class imbalance
- Early stopping
- Reduce LR on plateau
- Epochs = 100
- Batch size = 32
- Use of validation set

Array: **256 x 256** px images

METHODS,

CNN architecture

CUSTOM CNN

Labels

Array: **224 x 224** px images

EFFNET-BASED MODEL

Optimizer: ADAM (LR=0.000003)

Loss: Binary CrossEntropy
Metric: accuracy

- RandomContrast
- RandomFlip
- RandomZoom
- EfficientNetB0 (freezed)
- GlobalAveragePooling2D
- **Dense** (256, relu)
- **Dropout** (0.5)
- Dense (1, sigmoid)

keras.fit

- Class weights
- Early stopping
- Reduce LR on plateau
- Epochs = 100
- Batch size = 32
- Use of validation set

Results

Discarded approaches

• Data augmentation (on RGB and grayscale images) with Albumentations

Several pre-processing routines

Several other CNN architectures

Possible improvements

• Multiclassification (cataract, glaucoma, retinopathy...)

- Further data augmentation on cataract class only → more cataract images
- A more focused data selection

