

Logika Predikat

Contoh

Misalkan diberikan sebuah formula logika predikat dengan x, y bilangan riil.

$$\forall x \exists y (x + y = 0)$$

Formula di atas menggunakan **kuantor bersarang** / nested quantifiers, dan dibaca "Untuk setiap bilangan riil x, terdapat suatu bilangan riil y sehingga berlaku x + y = 0".

Formula di atas dapat dianggap sebagai bentuk $\forall x (Q(x))$

dengan
$$\mathbf{Q}(\mathbf{x})$$
: $\exists y (\mathbf{P}(\mathbf{x}, \mathbf{y}))$

dan
$$P(x, y) : "x + y = 0"$$

- $\forall x \forall y P(x, y)$
 - Untuk setiap x, untuk setiap y berlaku P(x,y)

- Contoh: Semua mahasiswa menyukai semua makanan
 - Kapan bernilai BENAR?
 - Kapan bernilai SALAH?

- $\forall x \exists y P(x, y)$
 - Untuk setiap x, ada y sehingga berlaku P(x,y)

- Contoh: Semua mahasiswa menyukai suatu makanan
 - Kapan bernilai BENAR?
 - Kapan bernilai SALAH?

- $\exists x \forall y P(x, y)$
 - Ada x untuk setiap y sehingga berlaku P(x,y)

- Contoh: Ada mahasiswa yang menyukai semua makanan
 - Kapan bernilai BENAR?
 - Kapan bernilai SALAH?

- $\exists x \exists y P(x, y)$
 - Ada x ada y sehingga berlaku P(x,y)

- Contoh: Ada mahasiswa yang menyukai suatu makanan
 - Kapan bernilai BENAR?
 - Kapan bernilai SALAH?

Catatan pada Kuantor Bersarang

- Perhatikan urutan kuantor, perhatikan pula "letak" variabel yang diikat oleh kuantor yang bersesuaian.
 - Kuantor dengan jenis yang sama dapat dibolak-balik urutannya, sementara kuantor dengan jenis berbeda perlu hati-hati.

$$\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y)$$
$$\exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)$$

Catatan pada Kuantor Bersarang

- Kuantor mengikat variabel pada domain tertentu
 - Contoh: Diberikan predikat P(x,y): "mahasiswa x menyukai makanan y" $\exists y \forall x P(x,y)$ merepresentasikan pernyataan "Ada makanan yang disukai oleh semua mahasiswa"

 $\exists y \forall x P(y, x)$ merepresentasikan pernyataan "Ada mahasiswa yang menyukai semua makanan" (sama dengan formula $\exists x \forall y P(x, y)$)

Contoh

- Misalkan P(x, y, z): "x + y = z" dengan domain untuk x, y, z adalah bilangan riil. Tentukan nilai kebenaran dari formula-formula berikut.
 - 1. $\forall x \forall y \exists z P(x, y, z)$
 - Formula ini dibaca ...
 - Nilai kebenarannya ...
 - 2. $\exists z \forall x \forall y P(x, y, z)$
 - Formula ini dibaca ...
 - Nilai kebenarannya ...
 - 3. $\forall z \exists x \exists y P(x, y, z)$
 - Formula ini dibaca ...
 - Nilai kebenarannya ...

Nilai Kebenaran Kuantor Bersarang

Statement	When True?	When False?
$\forall x \forall y P(x, y) \\ \forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

Latihan

 Translasikan formula predikat berikut ke dalam bahasa natural kemudian tentukan nilai kebenarannya. Diberikan domain berupa bilangan riil.

1.
$$\forall x \exists y (x^2 = y)$$

2.
$$\forall x \forall y ((x \ge 0) \land (y < 0) \rightarrow (x - y > 0))$$

3.
$$\forall x \forall y \exists z (z = (x + y)/2)$$

4.
$$\exists x \exists y (x + y \neq y + x)$$

Apa yang sudah dipelajari?

- Penggunaan kuantor bersarang
- Variasi kuantor bersarang dengan dua variable
- Menentukan nilai kebenaran kuantor bersarang

Materi selanjutnya: Translasi lanjutan