2008年全国统一高考化学试卷(全国卷II)

— 、	选择题	(共8小题,	每小题5分,	满分 40 分)

1.	(5分) 2008年	北京奥运会的"祥之	云"火炬所用燃料的	的主要成分是丙烷,	下列有关丙烷的叙述中
	不正确的是()			

- A. 分子中碳原子不在一条直线上
- B. 光照下能够发生取代反应
- C. 比丁烷更易液化
- D. 是石油分馏的一种产品
- 2. (5分)实验室现有 3 种酸碱指示剂,其 pH 的变色范围如下:甲基橙: 3.1~4.4、石蕊: 5.0~8.0、酚酞: 8.2~10.0 用 0.1000mol•L□¹NaOH 溶液滴定未知浓度的 CH₃COOH 溶液,反应 恰好完全时,下列叙述正确的是()
 - A. 溶液呈中性,可选用甲基橙或酚酞作指示剂
 - B. 溶液呈中性, 只能选用石蕊作指示剂
 - C. 溶液呈碱性,可选用甲基橙或酚酞作指示剂
 - D. 溶液呈碱性,只能选用酚酞作指示剂
- 3. (5分)对于IVA族元素,下列叙述中不正确的是(
 - A. SiO₂和CO₂中,Si和O、C和O之间都是共价键
 - B. Si、C、Ge的最外层电子数都是4,次外层电子数都是8
 - C. SiO₂和 CO₂中都是酸性氧化物,在一定条件下都能和氧化钙反应
 - D. 该族元素的主要化合价是+4 和+2
- 4. (5分)物质的量浓度相同的 NaOH和 HCl 溶液以 3: 2体积比相混合,所得溶液的 pH=12. 则原溶液的物质的量浓度为()
 - A. $0.01 \text{ mol} \cdot L^{\Box 1}$

B. $0.017 \text{ mol} \cdot L^{\Box 1}$

C. $0.05 \text{ mol} \cdot L^{\Box 1}$

D. $0.50 \text{ mol} \cdot L^{\Box 1}$

5. (5分)如图为直流电源电解稀 Na_2SO_4 水溶液的装置.通电后在石墨电极 a 和 b 附近分别滴加几滴石蕊溶液.下列实验现象中正确的是()

- A. 逸出气体的体积, a 电极的小于 b 电极的
- B. 一电极逸出无味气体,另一电极逸出刺激性气味气体
- C. a 电极附近呈红色, b 电极附近呈蓝色
- D. a 电极附近呈蓝色, b 电极附近呈红色
- 6. (5分) (2008•全国理综II, 11) 某元素的一种同位素 X 的质量数为 A, 含 N 个中子,它与 $_{1}$ H 原子组成 $H_{m}X$ 分子. 在 a g $H_{m}X$ 中所含质子的物质的量是 ()

A. $\frac{a}{A+m}$ (A \square N+m) mol

B. $\frac{a}{A}$ (A \square N) mol

C. $\frac{a}{A+m}$ (A \square N) mol

D. $\frac{a}{A}$ (A \square N+m) mol

- 7. (5 分)(NH_4)₂ SO_4 在高温下分解,产物是 SO_2 、 H_2O 、 N_2 和 NH_3 . 在该反应的化学方程式中,化学计量数由小到大的产物分子依次是(
 - A. SO_2 , H_2O_3 , N_2 , NH_3

B. N_2 , SO_2 , H_2O_3 , NH_3

C. N_2 , SO_2 , NH_3 , H_2O

- D. H_2O_3 NH_3 SO_2 N_2
- 8. (5分) 在相同温度和压强下,对反应 $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ 进行甲、乙、丙、丁四组实验,实验起始时放入容器内各组分的物质的量见下表

物质	CO ₂	H ₂	со	H ₂ O
物质的量				
实验				
甲	a mol	a mol	0mol	0mol
乙	2a mol	a mol	0mol	0mol
丙	0mol	0mol	a mol	a mol
丁	a mol	0mol	a mol	a mol

上述四种情况达到平衡后, n (CO)的大小顺序是()

A. 乙=丁>丙=甲 B. 乙>丁>甲>丙

C. 丁>乙>丙=甲D. 丁>丙>乙>甲

二、非选择题

- 9. (15 分)红磷 P(s) 和 $Cl_2(g)$ 发生反应生成 $PCl_3(g)$ 和 $PCl_5(g)$.反应过程和能量关系 如图所示(图中的 \triangle H 表示生成 1mol 产物的数据).根据图回答下列问题:
- (1) P 和 Cl₂ 反应生成 PCl₃ 的热化学方程式是: _____;
- (2) PCl₅分解成 PCl₃和 Cl₂的热化学方程式是: _____;
- (3) 工业上制备 PCl_5 通常分两步进行,现将 P 和 Cl_2 反应生成中间产物 PCl_3 ,然后降温,再和 Cl_2 反应生成 PCl_5 . 原因是 ;
- (5) PCI₅与足量水充分反应,最终生成两种酸,其化学方程式是: . .

- 10. (15分)Q、R、X、Y、Z为前20号元素中的五种,Q的低价氧化物与X单质分子的电子总数相等,R与Q同族,X、Y与Z不同族,Y和Z的离子与Ar原子的电子结构相同且Y的原子序数小于Z.
- (1) Q的最高价氧化物,其固态属于______晶体,俗名叫_____;

- (2) R 的氢化物分子的空间构型是_____,属于____分子(填"极性"或"非极性");它与 X 形成的化合物可作为一种重要的陶瓷材料,其化学式是____;

- 11. (13 分) 某钠盐溶液可能含有阴离子 NO₃□、CO₃²□、SO₃²□、SO₄²□、Cl□、Br□、I□. 为了鉴别这些离子,分别取少量溶液进行以下实验:
- ①所得溶液呈碱性;
- ②加 HCl 后, 生成无色无味的气体. 该气体能使饱和石灰水变浑浊.
- ③加 CCl4,滴加少量氯水,振荡后,CCl4层未变色.
- ④加 BaCl。溶液产生白色沉淀,分离,在沉淀中加入足量的盐酸,沉淀不能完全溶解.
- ⑤加 HNO3 酸化后,再加过量的 AgNO3,溶液中析出白色沉淀.
- (1) 分析上述 5 个实验, 写出每一实验鉴定离子的结论与理由.

实验①_____.

实验② .

实验(3)

实验4 .

实验(5)

- (2) 上述 5 个实验不能确定是否的离子是 . . .
- 12. (17 分) A、B、C、D、E、F、G、H、I、J 均为有机化合物. 根据以下框图, 回答问题:

- (1) B和C均为有支链的有机化合物,B的结构简式为______; C在浓硫酸作用下加热反应只能生成一种烯烃D,D的结构简式为_____.
- (2) G 能发生银镜反应,也能使溴的四氯化碳溶液褪色,则 G 的结构简式 .
- (3) 写出:
- ⑤的化学方程式是_____. ⑨的化学方程式是_____.
- (4) ①的反应类型是_____, ④的反应类型是_____, ⑦的反应类型是_____.
- (5) 与 H 具有相同官能团的 H 的同分异构体的结构简式为_____.

2008 年全国统一高考化学试卷(全国卷II)

参考答案与试题解析

一、选择题(共8小题,每小题5分,满分40分)

- 1. (5分) 2008 年北京奥运会的"祥云"火炬所用燃料的主要成分是丙烷,下列有关丙烷的叙述中不正确的是()
 - A. 分子中碳原子不在一条直线上
 - B. 光照下能够发生取代反应
 - C. 比丁烷更易液化
 - D. 是石油分馏的一种产品

【考点】I3: 烷烃及其命名.

【专题】534: 有机物的化学性质及推断.

【分析】A、烷烃分子中有多个碳原子应呈锯齿形, 丙烷呈角形;

- B、丙烷等烷烃在光照的条件下可以和氯气发生取代反应;
- C、烷烃中碳个数越多沸点越高:
- D、属于石油分馏的产物,是液化石油气的成分之一.

【解答】解: A、烷烃分子中有多个碳原子应呈锯齿形, 丙烷呈角形, 碳原子不在一条直线上, 故 A 正确:

- B、丙烷等烷烃在光照的条件下可以和氯气发生取代反应, 故 B 正确:
- C、烷烃中碳个数越多沸点越高,丙烷分子中碳原子数小于丁烷,故丁烷沸点高,更易液化,故 C 错误:
- D、丙烷属于石油分馏的产物,是液化石油气的成分之一,故 D 正确。

故选: C。

【点评】本题主要考查烷的结构与性质等,难度较小,注意基础知识的积累掌握.

2. (5分)实验室现有3种酸碱指示剂,其pH的变色范围如下:甲基橙:3.1~4.4、石蕊:

5.0~8.0、酚酞: 8.2~10.0 用 0.1000mol•L□lNaOH 溶液滴定未知浓度的 CH_3COOH 溶液,反应 恰好完全时,下列叙述正确的是(

- A. 溶液呈中性,可选用甲基橙或酚酞作指示剂
- B. 溶液呈中性,只能选用石蕊作指示剂
- C. 溶液呈碱性,可选用甲基橙或酚酞作指示剂
- D. 溶液呈碱性,只能选用酚酞作指示剂

【考点】R3:中和滴定.

【专题】542: 化学实验基本操作.

【分析】根据盐类的水解考虑溶液的酸碱性,然后根据指示剂的变色范围与酸碱中和后的越接近越好,且变色明显(终点变为红色),溶液颜色的变化由浅到深容易观察,而由深变浅则不易观察.

【解答】解: A、NaOH 溶液滴和 CH₃COOH 溶液反应恰好完全时, 生成了 CH₃COONa, CH₃COONa 水解溶液呈碱性, 应选择碱性范围内变色的指示剂, 即酚酞, 故 A 错误;

- B、NaOH 溶液滴和 CH₃COOH 溶液反应恰好完全时,生成了 CH₃COONa, CH₃COONa 水解溶液 呈碱性,应选择碱性范围内变色的指示剂,即酚酞,故 B 错误;
- C、NaOH 溶液滴和 CH₃COOH 溶液反应恰好完全时,生成了 CH₃COONa, CH₃COONa 水解溶液 呈碱性,应选择碱性范围内变色的指示剂,即酚酞,故 C 错误;
- D、NaOH 溶液滴和 CH₃COOH 溶液反应恰好完全时,生成了 CH₃COONa, CH₃COONa 水解溶液 呈碱性,应选择碱性范围内变色的指示剂,即酚酞,故 D 正确;

故选: D。

【点评】本题主要考查了指示剂的选择方法,只要掌握方法即可完成本题,注意滴定终点与反应终点尽量接近.

- 3. (5分)对于IVA族元素,下列叙述中不正确的是()
 - A. SiO₂和CO₂中,Si和O、C和O之间都是共价键
 - B. Si、C、Ge 的最外层电子数都是 4,次外层电子数都是 8
 - $C. SiO_2$ 和 CO_2 中都是酸性氧化物,在一定条件下都能和氧化钙反应

D. 该族元素的主要化合价是+4 和+2

【考点】74: 同一主族内元素性质递变规律与原子结构的关系; FG: 碳族元素简介; FH: 硅和二氧化硅.

【专题】525: 碳族元素.

【分析】A、根据非金属元素间形成的是共价键;

- B、根据各原子的结构示意图可判断;
- C、根据酸性氧化物的通性,
- D、根据碳族元素的最外层电子数判断,

【解答】解: A、共价化合物中非金属元素之间以共价键结合, 故 A 正确;

- B、最外层都是 4 没错, 但是 C 次外层不是 8, 故 B 错误;
- C、酸性氧化物和碱性氧化物一定条件可以反应,故 C 正确;
- D、碳族元素的最外层电子数为 4,所以最高正价为+4 价,当然也能形成+2 价,故 D 正确;故选: B。

【点评】同一主族,从上到下,元素的最外层电子数相同,性质相似,具有递变性.

4. (5分)物质的量浓度相同的 NaOH和 HCl溶液以 3: 2体积比相混合,所得溶液的 pH=12. 则原溶液的物质的量浓度为()

A. $0.01 \text{ mol} \cdot L^{\Box 1}$

B. 0.017 mol•L□1

C. $0.05 \text{ mol} \cdot L^{\Box 1}$

D. $0.50 \text{ mol} \cdot L^{\Box 1}$

【考点】5C: 物质的量浓度的相关计算.

【专题】51G: 电离平衡与溶液的 pH 专题.

【分析】酸碱混合后,pH=12,则碱过量,剩余的 c (OH^{\square}) =0.01mol/L,以此来计算.

【解答】解:设 NaOH和 HCl的物质的量浓度均为x, NaOH和 HCl溶液以3:2 体积比相混合,体积分别为3V、2V,

酸碱混合后, pH=12, 则碱过量, 剩余的 c (OH□) =0.01mol/L,

则 $\frac{3V \times x - 2V \times x}{5V} = 0.01 \text{mol/L},$

解得 x=0.05mol/L,

故选: C。

【点评】本题考查酸碱混合的计算,明确混合后 pH=12 为碱过量是解答本题的关键,并注意 pH 与浓度的换算来解答,题目难度不大.

5. (5分)如图为直流电源电解稀 Na₂SO₄ 水溶液的装置. 通电后在石墨电极 a 和 b 附近分别滴加几滴石蕊溶液. 下列实验现象中正确的是()

- A. 逸出气体的体积, a 电极的小于 b 电极的
- B. 一电极逸出无味气体,另一电极逸出刺激性气味气体
- C. a 电极附近呈红色, b 电极附近呈蓝色
- D. a 电极附近呈蓝色, b 电极附近呈红色

【考点】BH: 原电池和电解池的工作原理; DI: 电解原理.

【专题】51I: 电化学专题.

【分析】A、电解水时,阳极产生的氧气体积是阴极产生氢气体积的一半;

- B、氢气和氧气均是无色无味的气体;
- C、酸遇石蕊显红色,碱遇石蕊显蓝色,酸遇酚酞不变色,碱遇酚酞显红色;
- D、酸遇石蕊显红色,碱遇石蕊显蓝色,酸遇酚酞不变色,碱遇酚酞显红色.

【解答】解: A、和电源的正极 b 相连的是阳极,和电源的负极 a 相连的是阴极,电解硫酸钠的实质是电解水,阳极 b 放氧气,阴极 a 放氢气,氧气体积是氢气体积的一半,故 A 错误;

- B、a 电极逸出氢气, b 电极逸出氧气, 均是无色无味的气体, 故 B 错误:
- C、a 电极氢离子放电,碱性增强,该极附近呈蓝色,b 电极氢氧根离子放电,酸性增强,该极附近呈红色,故 C 错误;

D、a 电极氢离子放电,碱性增强,该极附近呈蓝色, b 电极氢氧根离子放电,酸性增强,该极附近呈红色, 故 D 正确。

故选: D。

【点评】本题考查学生电解池的工作原理,要求学生熟记教材知识,并会灵活运用.

6. (5分) (2008•全国理综II, 11) 某元素的一种同位素 X 的质量数为 A, 含 N 个中子,它与 $_1$ ¹ H 原子组成 $H_m X$ 分子. 在 a g $H_m X$ 中所含质子的物质的量是 ()

A.
$$\frac{a}{A+m}$$
 (A \square N+m) mol

B.
$$\frac{a}{A}$$
 (A \square N) mol

C.
$$\frac{a}{A+m}$$
 (A \square N) mol

D.
$$\frac{a}{A}$$
 (A \square N+m) mol

【考点】33: 同位素及其应用;54: 物质的量的相关计算;85: 质量数与质子数、中子数之间的相互关系.

【专题】16: 压轴题; 51B: 原子组成与结构专题.

【分析】根据公式:分子中质子的物质的量=分子的物质的量×一个分子中含有的质子数= $\frac{m}{M}$ ×一个分子中含有的质子数来计算.

【解答】解:同位素 X 的质量数为 A,中子数为 N,因此其质子数为 $A \square N$. 故 $H_m X$ 分子中的质子数为 $m + A \square N$,又由于 $H_m X$ 中 H 为 $_1$ H,故 $ag H_m X$ 分子中所含质子的物质的量为:

 $\frac{a}{m+A} \times (A+m\square N) \text{ mol}_{\circ}$

故选: A。

【点评】本题考查学生教材中的基本公式和质量数、质子数、中子数之间的关系知识,可以根据 所学知识进行回答,较简单.

7. (5 分)(NH_4)₂ SO_4 在高温下分解,产物是 SO_2 、 H_2O 、 N_2 和 NH_3 . 在该反应的化学方程式中,化学计量数由小到大的产物分子依次是(

A. SO_2 , H_2O , N_2 , NH_3

B. N_2 , SO_2 , H_2O , NH_3

C. N₂, SO₂, NH₃, H₂O

D. H_2O , NH_3 , SO_2 , N_2

【考点】B1: 氧化还原反应.

【专题】515: 氧化还原反应专题.

【分析】方法一: $(NH_4)_2SO_4$ — $NH_3+N_2+SO_2+H_2O$,反应中: $N: \Box 3\to 0$,化合价变化总数为 6,S: $+6\to +4$,化合价变化数为 2,根据化合价升高和降低的总数相等,所以应在 SO_2 前配 3, N_2 前配 1,根据原子守恒(NH_4) $_2SO_4$ 前面配 3, NH_3 前面配 4, H_2O 前面配 6,最后计算反应前后的 O 原子个数相等.

方法二:利用待定系数法,令 $(NH_4)_2SO_4$ 系数为 1,根据原子守恒,依次配平 SO_2 前配 1, H_2O 前面配 2, NH_3 前面配 $\frac{4}{3}$, N_2 前配 $\frac{1}{3}$,然后各物质系数同时扩大 3 倍.

【解答】解: 方法一: 对于(NH₄) $_2$ SO₄→NH₃+N₂+SO₂+H₂O,反应中: N: \Box 3→0,化合价变化 总数为 6,S: +6→+4,化合价变化数为 2,根据化合价升高和降低的总数相等,最小公倍数为 6,所以应在 SO₂ 前配 3,N₂ 前配 1,根据硫原子守恒(NH₄) $_2$ SO₄ 前面配 3,根据氮原子守恒 NH₃ 前面配 4,根据氢原子守恒 H₂O 前面配 6,最后计算反应前后的 O 原子个数相等。配平后 的化学方程式为: 3(NH₄) $_2$ SO₄——4NH₃↑+N₂↑+3SO₂↑+6H₂O。

方法二:利用待定系数法,令(NH₄) $_2$ SO₄系数为 1,根据硫原子原子守恒 SO₂前配 1,根据氧原子守恒 H $_2$ O 前面配 2,根据氢原子守恒 NH $_3$ 前面配 $\frac{4}{3}$,根据氮原子守恒 N $_2$ 前配 $\frac{1}{3}$,然后各物质系数同时扩大 3 倍,3(NH₄) $_2$ SO₄ = 温 4NH $_3$ ↑+N $_2$ ↑+3SO $_2$ ↑+6H $_2$ O。

故选: C。

【点评】此题实际上是考查化学方程式的配平,难度中等,根据化合价升降、原子守恒配平方程式是关键,分解反应中利用待定系数法结合原子守恒配平比较简单.掌握常见的配平方法.

8. (5分) 在相同温度和压强下,对反应 $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ 进行甲、乙、丙、丁四组实验,实验起始时放入容器内各组分的物质的量见下表

物质	CO ₂	H ₂	со	H ₂ O
物质的量				
实验				
甲	a mol	a mol	0mol	0mol

乙	2a mol	a mol	0mol	0mol
丙	0mol	0mol	a mol	a mol
丁	a mol	0mol	a mol	a mol

上述四种情况达到平衡后, n(CO)的大小顺序是()

A. Z=T> 两= P B. Z>T> P> 两 C. T> Z> 两= PD. T> 两> Z> P

【考点】CB: 化学平衡的影响因素.

【专题】51E: 化学平衡专题.

【分析】在相同温度和压强下的可逆反应,反应后气体体积不变,按方程式的化学计量关系转化 为方程式同一边的物质进行分析.

【解答】解: 假设丙、丁中的CO、 H_2O (g)全部转化为 CO_2 、 H_2 ,再与甲、乙比较:

$$CO_2(g) +H_2(g) \rightleftharpoons CO(g) +H_2O(g)$$

丙开始时 0mo10mo1anol ano1 丙假设全转化 0mol 0mol anol anol 丁开始时 0mol amol amol amol 丁假设全转化 2amol 0mol 0mol amol

通过比较,甲、丙的数值一样,乙、丁的数值一样,且乙、丁的数值大于甲、丙的数值。

故选: A。

【点评】本题考查了化学平衡的分析应用,采用极端假设法是解决本题的关键,本题还涉及等效平衡,等效平衡是一种解决问题的模型,对复杂的对比问题若设置出等效平衡模型,然后改变条件平衡移动,问题就迎刃而解,题目难度中等.

二、非选择题

- 9. (15 分)红磷 P(s) 和 $Cl_2(g)$ 发生反应生成 $PCl_3(g)$ 和 $PCl_5(g)$. 反应过程和能量关系 如图所示(图中的 \triangle H 表示生成 1mol 产物的数据). 根据图回答下列问题:
- (1) P和 Cl_2 反应生成 PCl_3 的热化学方程式是: $P(s) + \frac{3}{2}Cl_2(g) = PCl_3(g)$; \triangle

 $H=\square 306kJ \cdot mol^{\square 1}$;

- (2) PCl₅分解成 PCl₃和 Cl₂的热化学方程式是: <u>PCl₅(g)=PCl₃(g)+Cl₂(g)</u>; △H=+93 kJ/mol ;
- 上述分解反应是一个可逆反应. 温度 T_1 时,在密闭容器中加入 0.80mol PCl_5 ,反应达平衡时 PCl_5 还剩 0.60mol,其分解率 α_1 等于 25% ; 若反应温度由 T_1 升高到 T_2 ,平衡时 PCl_5 的分解率 为 α_2 , α_2 大于 α_1 (填"大于"、"小于"或"等于");
- (3) 工业上制备 PCl_5 通常分两步进行,现将 P 和 Cl_2 反应生成中间产物 PCl_3 ,然后降温,再和 Cl_2 反应生成 PCl_5 . 原因是 两步反应均为放热反应,降低温度有利于提高产率,防止产物分解 ;
- (4) P和 Cl_2 分两步反应生成 $1 \text{mol } PCl_5$ 的 $\triangle H_3 = \underline{\quad \ \ } 399 \text{kJ-mol}\underline{\quad \ \ }$, P和 Cl_2 一步反应生成 1 mol PCl₅的 $\triangle H_4$ 等于 $\triangle H_3$ (填"大于"、"小于"或"等于").
- (5) PCl₅与足量水充分反应,最终生成两种酸,其化学方程式是: PCl₅+4H₂O=H₃PO₄+5HCl .

【考点】BE: 热化学方程式; CB: 化学平衡的影响因素.

【专题】517: 化学反应中的能量变化: 51E: 化学平衡专题.

【分析】(1)根据图象及反应热知识分析:依据书写热化学方程式的原则书写:

- (2) 根据热化学反应方程式的书写原则及化学平衡知识分析;
- (3) 根据化学平衡移动原理分析;
- (4)根据盖斯定律分析.根据反应物的总能量、中间产物的总能量以及最终产物的总能量,结合 化学方程式以及热化学方程式的书写方法解答,注意盖斯定律的应用.

【解答】解: (1) 热化学方程式书写要求: 注明各物质的聚集状态,判断放热反应还是吸热反应,反应物的物质的量与反应热成对应的比例关系,根据图示 P(s) +32 $Cl_2(g)$ $\rightarrow PCl_3$ (g) ,反应物的总能量大于生成物的总能量,该反应是放热反应,反应热为 $\triangle H=\square 306$ kJ/mol,热化学方程式为: P(s) + $\frac{3}{2}Cl_2(g)$ — $PCl_3(g)$; $\triangle H=\square 306$ kJ/mol,

故答案为: $P(s) + \frac{3}{2}Cl_2(g) = PCl_3(g)$; $\triangle H = \square 306kJ \cdot mol^{\square 1}$;

(2) △H=生成物总能量□反应物总能量, Cl₂ (g) +PCl₃ (g) =PCl₅ (g), 中间产物的总能量大于最终产物的总能量, 该反应是放热反应, 所以 PCl₅ (g) =PCl₃ (g) +Cl₂ (g) 是吸热反应;
热化学方程式: PCl₅ (g) =PCl₃ (g) +Cl₂ (g); △H=+93 kJ/mol;

 PCl_5 分解率 $\alpha_1 = \frac{0.8 mol - 0.6 mol}{0.8 mol} \times 100\% = 25\%$. PCl_5 (g) = PCl_3 (g) + Cl_2 (g) 是吸热反应;升高温度向吸热反应方向移动,正反应(分解反应是吸热反应)是吸热反应,升高温度向正反应方向移动,转化率增大, $\alpha_2 > \alpha_1$;

故答案为: PCl₅ (g) = PCl₃ (g) +Cl₂ (g); △H=+93kJ•mol□1; 25%; 大于;

(3) $Cl_2(g) + PCl_3(g) = PCl_5(g)$,是放热反应,降温平衡向放热反应方向移动,降温有利于 $PCl_5(g)$ 的生成,

故答案为: 两步反应均为放热反应, 降低温度有利于提高产率, 防止产物分解;

(4) 根据盖斯定律,P和 Cl_2 分两步反应和一步反应生成 PCl_5 的 \triangle H 应该是相等的,P和 Cl_2 分 两步反应生成 1 $molPCl_5$ 的热化学方程式:

P (s) +32Cl₂ (g) =PCl₃ (g); $\triangle H_1$ = $\square 306$ kJ/mol,

 $Cl_2(g) +PCl_3(g) =PCl_5(g)$; $\triangle H_2 = \square 93 \text{ kJ/mol}$;

P和 Cl₂一步反应生成 1molPCl₅的△H₃=□306 kJ/mol+(□93 kJ/mol)=□399 kJ/mol,

由图象可知,P和 Cl_2 分两步反应生成 $1 mol PCl_5$ 的 $\triangle H_3 = \square 306 k J/mol \square$ (+93k J/mol) =399k J/mol,根据盖斯定律可知,反应无论一步完成还是分多步完成,生成相同的产物,反应热相等,则 P和 Cl_2 一步反应生成 $1 mol PCl_5$ 的反应热等于 P和 Cl_2 分两步反应生成 $1 mol PCl_5$ 的反应热;

故答案为: □399kJ•mol□¹; 等于;

(5) PCl₅与足量水充分反应,最终生成两种酸磷酸和盐酸,依据原子守恒写出化学方程式为: PCl₅+4H₂O=H₃PO₄+5HCl;

故答案为: PCl₅+4H₂O=H₃PO₄+5HCl;

【点评】本题考查热化学方程式的书写、化学平衡计算、外界条件对化学平衡移动的影响及反应 热的计算等知识.解题中需注意: 热化学方程式中没有标注各物质的聚集状态,各物质的物质 的量与反应热没有呈现对应的比例关系,不能正确判断放热反应和吸热反应.

- 10. (15分)Q、R、X、Y、Z为前20号元素中的五种,Q的低价氧化物与X单质分子的电子总数相等,R与Q同族,X、Y与Z不同族,Y和Z的离子与Ar原子的电子结构相同且Y的原子序数小于Z.
- (1) Q 的最高价氧化物, 其固态属于 分子 晶体, 俗名叫 干冰 ;
- (2) R 的氢化物分子的空间构型是<u>正四面体</u>,属于<u>非极性</u>分子(填"极性"或"非极性");它与 X 形成的化合物可作为一种重要的陶瓷材料,其化学式是 Si₃N₄ ;
- (3) X 的常见氢化物的空间构型是<u>三角锥型</u>;它的另一氢化物 X_2H_4 是一种火箭燃料的成分,其电子式是<u>H:N:N:H</u>;
- (4) Q 分别与 Y、Z 形成的共价化合物的化学式是 CS_2 和 CCl_4 ; Q 与 Y 形成的分子的电子式是 $\underline{S:\&c\&:S}$,属于 <u>非极性</u> 分子(填"极性"或"非极性").

【考点】8J: 位置结构性质的相互关系应用; 98: 判断简单分子或离子的构型.

【专题】51C:元素周期律与元素周期表专题.

【分析】Q、R、X、Y、Z 为前 20 号元素中的五种,Y和 Z 的阴离子与 Ar 原子的电子结构相同,核外电子数为 18,且 Y 的原子序数小于 Z,故 Y 为 S 元素,Z 为 Cl 元素,X、Y 与 Z 不同族,Q 的低价氧化物与 X 单质分子的电子总数相等,Q 可能为 C (碳),X 为 N,R 与 Q 同族,由于这五种元素均是前 20 号元素,所以 R 为 Si,符合题意,据此解答.

- 【解答】解: Q、R、X、Y、Z 为前 20 号元素中的五种, Y 和 Z 的阴离子与 Ar 原子的电子结构相同, 核外电子数为 18, 且 Y 的原子序数小于 Z, 故 Y 为 S 元素, Z 为 Cl 元素, X、Y 与 Z 不同族, Q 的低价氧化物与 X 单质分子的电子总数相等, Q 可能为 C (碳), X 为 N, R 与 O 同族,由于这五种元素均是前 20 号元素,所以 R 为 Si,符合题意,
- (1) Q 是 C 元素,其最高化合价是+4 价,则其最高价氧化物是 CO_2 ,固体二氧化碳属于分子晶体,俗名是干冰,

故答案为:分子;干冰;

(2) R为Si元素,氢化物为SiH₄,空间结构与甲烷相同,为正四面体,为对称结构,属于非极性分子,Si与N元素形成的化合物可作为一种重要的陶瓷材料,其化学式是Si₃N₄,

故答案为: 正四面体; 非极性; Si₃N₄;

- (3) X 为氮元素,常见氢化物为 NH₃,空间结构为三角锥型,N₂H₄ 的电子式为 H: N: N: H, 故答案为: 三角锥型; H: N: N: H;
- (4) C分别与是 S、Cl 形成的化合物的化学式分别是 CS_2 、 CCl_4 ; CS_2 分子结构与二氧化碳类似,电子式为S:XCX:S,为直线型对称结构,属于非极性分子,

故答案为: CS₂; CCl₄; S∷¾CX∶S; 非极性.

- 【点评】本题考查元素推断、常用化学用语、分子结构与性质等,综合考查原子的结构性质位置 关系应用,属于常见题型,推断 Q 与 X 元素是解题的关键,可以利用猜测验证进行,难度中 等.
- 11. (13 分) 某钠盐溶液可能含有阴离子 NO₃□、CO₃²□、SO₃²□、SO₄²□、Cl□、Br□、I□. 为了鉴别这些离子,分别取少量溶液进行以下实验:
- ①所得溶液呈碱性:
- ②加 HCl 后,生成无色无味的气体. 该气体能使饱和石灰水变浑浊.
- ③加 CCl₄,滴加少量氯水,振荡后,CCl₄层未变色.
- ④加 BaCl₂溶液产生白色沉淀,分离,在沉淀中加入足量的盐酸,沉淀不能完全溶解.
- ⑤加 HNO3 酸化后,再加过量的 AgNO3,溶液中析出白色沉淀.
- (1) 分析上述 5 个实验, 写出每一实验鉴定离子的结论与理由.
- 实验① CO3² 和 SO3² 可能存在,因为它们水解呈碱性 .
- 实验② CO_3^2 肯定存在,因为产生的气体是 CO_2 ; SO_3^2 不存在,因为没有刺激性气味的气体产生。.
- 实验③ Br□、I□不存在,因为没有溴和碘的颜色出现 .
- 实验④ SO_4^2 存在,因为 $BaSO_4$ 不溶于盐酸 .
- 实验⑤ Cl□存在, 因与 Ag+形成白色沉淀 .

(2) 上述 5 个实验不能确定是否的离子是_NO $_3$ ___.

【考点】PH:常见阴离子的检验.

【专题】516: 离子反应专题.

【分析】①CO32□和 SO32□它们水解呈碱性;

- ②CO₃²和盐酸反应产生的气体是 CO₂; SO₃²和盐酸反应生成的是刺激性气味的气体二氧化硫;
- ③Br□、I□不存在,因为没有溴和碘的颜色出现. (2分)
- ④SO₄^{2□}存在,因为BaSO₄不溶于盐酸. (2分)
- ⑤Cl[□]存在,因与 Ag⁺形成白色沉淀
- 【解答】解: (1) ①在所给的各种离子中,只有 CO_3^2 和 SO_3^2 水解呈碱性,它们可能存在,故答案为: CO_3^2 和 SO_3^2 可能存在,因为它们水解呈碱性;
- ② CO_3^2 □可以和盐酸反应,产生的气体是 CO_2 ;但是 SO_3^2 □和盐酸反应生成的是有刺激性气味的气体二氧化硫,故答案为: CO_3^2 □肯定存在,因为产生的气体是 CO_2 ; SO_3^2 □不存在,因为没有刺激性气味的气体产生;
- ③Br□、I□能被氯气氧化为溴和碘的单质,它们均是易溶于四氯化碳的一种有颜色的物质,故答案为: Br□、I□不存在,因为没有溴和碘的颜色出现;
- ④SO₄^{2□}和 BaCl₂溶液反应生成 BaSO₄不溶于盐酸,故答案为: SO₄^{2□}存在,因为 BaSO₄不溶于盐酸;
- ⑤Cl□与 Ag⁺形成白色沉淀不溶于稀硝酸,所以加 HNO₃ 酸化后,再加过量的 AgNO₃,溶液中析出 白色沉淀一定是氯化银,而碘化银、溴化银都有颜色,则一定不存在 Br□、I□,

故答案为: Cl[□]存在,因与Ag⁺形成白色沉淀.

- (2) 根据实验的结果可以知道 NO₁□不能确定是否含有,故答案为: NO₁□.
- 【点评】本题考查学生常见离子的检验知识,可以根据所学知识进行回答,难度不大.
- 12. (17 分) A、B、C、D、E、F、G、H、I、J 均为有机化合物. 根据以下框图, 回答问题:

- (1) B和C均为有支链的有机化合物,B的结构简式为<u>(CH₃)₂CHCOOH</u>; C在浓硫酸作用下加热反应只能生成一种烯烃 D,D 的结构简式为 (CH₃)₂C—CH₂.
- (2) G 能发生银镜反应,也能使溴的四氯化碳溶液褪色,则 G 的结构简式 $CH_2=C$ (CH_3) \Box CHO .
- (3) 写出:

- (4)①的反应类型是<u>水解反应</u>,④的反应类型是<u>取代反应</u>,⑦的反应类型是<u>氧化反</u> <u>应</u>.
- (5)与H具有相同官能团的H的同分异构体的结构简式为 <u>CH₂=CHCH₂COOH和</u> CH₃CH=CHCOOH .

【考点】HB:有机物的推断.

【专题】534: 有机物的化学性质及推断.

【分析】根据 $A \rightarrow B + C$ (水解反应)可以判断 $A \times B \times C$ 分别是酯、羧酸和醇,且由(1)可以确定 B 和 C 的结构分别为(CH_3) $_2CHCOOH$ 和(CH_3) $_2CHCH_2OH$,则 D 为 (CH_3) $_2C=CH_2$,

由 D 到 E 是取代反应,E 为 $CH_2 = C - CH_3$,E 发生水解得到醇 F,G 为醛且含有双键,可以写出其结构为 $CH_2 = C$ (CH_3) $\square CHO$,发生反应⑦得到羧酸 H 为 $CH_2 = C$ (CH_3) $\square COOH$,H 与

 CH_3OH 得到酯 I 为 $CH_2=C$ (CH_3) $\square COOCH_3$,则 J 为加聚反应的产物,为结合有机物的结构和性质以及题目要求可解答该题.

【解答】解:根据 $A \rightarrow B + C$ (水解反应)可以判断 A、B、C 分别是酯、羧酸和醇,且由(1)可以确定 B和 C 的结构分别为(CH_3) ${}_2CHCOOH$ 和(CH_3) ${}_2CHCH_2OH$,则 D 为 (CH_3)

 $_2$ C=CH₂,由 D 到 E 是取代反应,E 为 $_2$ C-CH₃,E 发生水解得到醇 F,G 为醛且含有双键,可以写出其结构为 CH₂=C(CH₃) $_2$ CHO,发生反应⑦得到羧酸 H 为 CH₂=C(CH₃) $_2$ COOH,H 与 CH₃OH 得到酯 I 为 CH₂=C(CH₃) $_2$ COOCH₃,则 J 为加聚反应的产物,为

(1) 由以上分析可知 B 为 (CH₃)₂CHCOOH, D 为 (CH₃)₂C—CH₂,

故答案为: (CH₃)₂CHCOOH; (CH₃)₂C—CH₂;

(2) 由以上分析可知 G 为 CH₂=C (CH₃) □CHO, 故答案为: CH₂=C (CH₃) □CHO;

- (4) 由反应条件和官能团的变化可知反应①为水解反应,反应④为取代反应,⑦为氧化反应, 故答案为:水解反应;取代反应;氧化反应;
- (5) H为 CH₂=C(CH₃) □COOH, 与 H具有相同官能团的 H的同分异构体有 CH₂=CHCH₂COOH 和 CH₃CH=CHCOOH,

故答案为: CH₂=CHCH₂COOH 和 CH₃CH=CHCOOH.

【点评】本题考查有机物的推断,解答关键是找解题的突破口(或题眼),根据 A→B+C(水解反应)可以判断 A、B、C分别是酯、羧酸和醇,且由(1)可以确定 B 和 C 的结构,以此可推断其它物质,注意有机物官能团的结构和性质,为正确解答该类题目的关键,题目难度中等.