(b) Prove that there exist infinitely many pairs of integers x and y such that x+y=87 and (x,y)=3.

Scratch Work. Note that 87= _______. To ensure that (x,y)=3, not just $3\mid x$ and $3\mid y$, let x=3n where ______ $\nmid n$.

Proof Let $x\in\mathbb{Z}$ with ______.

Let y= ______. Then $3\mid y$ by ______. Then (x,y)=3 since ______. Thus, there are infinitely many $x,y\in\mathbb{Z}$

Problem 2 Let a and b be relatively prime integers. Prove that (a + b, a - b) is either 1 or 2.

Hint: From the back of Strayer: Let (a+b,a-b)=d and note that $d\mid (a+b)+(a-b)$ and $d\mid (a+b)-(a-b)$.

Hint: Use Homework 3, Problem 2 which states (ca, cb) = |c|(a, b) for all $a, b \in \mathbb{Z}$, not both 0.