

AENG 31200 Structures & Materials 3

Lecture: Creep

Supratik Mukhopadhyay

Copywright: @Prof. I.P.Bond

The student will be able to;

- Understand the basic phenomenon of creep in metals and polymers and their behaviour under sustained loads or displacements and temperature.
- Undertake a general analysis approach and be able to identify important design considerations.

- WD Callister; "Materials Science & Engineering", Wiley. TA403
- Penny & Marriot; "Design for Creep" TA418.22
- Bernasconi & Piatti; "Creep of engineering materials and structures" TA418.22
- DWA Rees; "Mechanics of solids and structures" TA4048
- Boresi et al. "Advanced mechanics of materials" TA405

Definitions

 Creep: the permanent elongation of a component under static load maintained for a period of time

 Stress Relaxation: the decrease in stress in a component under a constant strain over a period of time

• • Occurrence

- Phenomenon of metals and some non-metallic materials e.g. thermoplastics & rubbers
- Under load / time / temperature
- Creep deformation can occur at any temperature but is usually only significant at elevated temperatures for engineering materials:

Metals: Above approximately 40% of T_m (in deg K)

High σ, High T

Plastics: Above glass transition temperature, T_q (glassy ↔ rubbery)

Low σ, Low T

Lead pipes bend due to creep.

- Metal creep is especially important in applications subjected to high σ at elevated T:
 - Gas-turbine blades and similar components in jet engines and rocket motors
 - Supersonic airframes (e.g. Concorde)
 - High temperature steam lines, nuclear-fuel elements
 - Tools, dies during hot working operations such as forging and extrusion
 - Rivets and bolts

- For creep at elevated temperature;
 - Metals: Grain boundary sliding.
 - Plastics: Slip of polymer chains and alignment parallel to applied stress

- Primary and tertiary stages often referred to as transient creep
- Secondary creep also referred to as 'steady state creep'

Behaviour

Creep Deformation in <u>metals</u> (general trends, 3 stages)

Creep Failure

- By excessive deformation, exceeding design allowable
- By excessive deformation, leading to instability
- By rupture i.e. creep fracture

Behaviour

- Stress Relaxation
 - Relaxation of stress through creep at constant strain
- Viscoelasticity (polymers!)
 - Combined elastic (immediate)
 - + viscous response (time dependent)
- Reverse Creep
 - The reversal of creep strain on unloading Note: creep in metals is usually unrecoverable
- Recovery
 - The loss of strain hardening through thermal softening

Creep strain functions

$$\varepsilon_{c} = f(\sigma, T, t)$$

Note: these parameters are usually interdependent with non-linear relationships

- Empirical functions to describe one or all 3 creep stages w.r.t. σ, T & t.
 - e.g. considering time dependence only;
 - 1. Low T (i.e. $<0.5T_m$) primary creep dominates
 - With low σ , $\varepsilon_c = \alpha \ln t$ i.e. logarithmic trend
 - With high σ , $\varepsilon_c = \alpha t^m$ *i.e. power law trend*
 - 2. High T (i.e. $>0.5T_m$) secondary creep becomes significant

•
$$\epsilon_{\rm c} = \alpha \, {\rm t^m} + \beta \, {\rm t}$$
(1ary) (2ary - linear) where $\alpha \, \& \, \beta = f(\sigma, \, T)$, empirically derived

Useful generalised form;

$$\mathcal{E}_{c} \equiv \alpha t^{1/3} + \beta t + \gamma t^{3}$$
 - good agreement with high temp alloys over wide range

Analysis

- Secondary creep is usual <u>design range</u>. 0
 - Designs nominally restricted to this region
 - Importance of secondary creep <u>rate</u> dε_s/dt modelling
- e.g. considering time dependence only;

At low σ , $d\epsilon_s/dt = A \sigma$

Const temp

2. At medium σ , $d\epsilon_s/dt = A \sigma^n$ (where $3 \le n \le 8$)

3. At high σ , $d\epsilon_s/dt = A e^{B\sigma}$

- e.g. considering temperature dependence only; 0
 - Arrhenius equn. (where D is constant,

 $d\epsilon_s/dt = D e^{-Qc/RT}$

R is characteristic gas constant,

Qc is creep activation energy)

T,> T27 T3> T4

Creep strain rate functions

- Assuming that for a given creep time or creep strain; the creep rate is a function of the current σ and T only.
 (i.e. implying previous strain history does not influence creep rate)
- Two state equations:
 - "Time hardening" $dε_c/dt = έ_c$ (σ, T, t) i.e. creep rate for σ & T @ particular accumulated creep **time**, t
 - "Strain hardening" $d\epsilon_c/dt = \dot{\epsilon}_c \ (\sigma, \ T, \ \epsilon_c)$ i.e. creep rate for $\sigma \& T @$ particular accumulated creep **strain**, ϵ_c

- o Viscoelasticity (polymers!)
 - Describes typical behaviour of <u>non-metallic materials</u>
 e.g. thermoplastics
 - Viscoelastic response is usually described by rheological
 (← relationship between σ and έ) models:
 - For ideal elastic solid;
 - Hookean spring σ = E ε⇒ ε = σ / Ε

- For perfectly viscous fluid;
 - Newtonian dashpot σ = μ dε/dt
 ⇒ ε = ∫σ/μ . dt
 μ = coefficient of viscosity

load applied at to

Analysis

- For viscoelastic behaviour;
 - Combined spring & dashpot models
 - 1. Series "Maxwell" model

$$\sigma = \sigma_s = \sigma_d$$

$$\varepsilon_m = \varepsilon_s + \varepsilon_d$$

Parallel "Voigt/Kelvin" model

$$\sigma = \sigma_s + \sigma_d$$

$$\epsilon_v = \sigma/E [1 - \exp(-Et/\mu)]$$

3. Standard Linear Solid model

$$\sigma = E_1 \ \epsilon_1 = E_2 \ \epsilon_v + \mu \ d\epsilon_v / dt$$
$$\epsilon = \epsilon_1 + \epsilon_v$$

- Note "SLS" model = simplest model providing good representation of observed creep + recovery in polymers
 - Combined spring & dashpot models
 - SLS <u>creep</u> $\Rightarrow \varepsilon = \sigma_0/E_1 + \sigma_0/E_2 [1 \exp(-E_2t_2/\mu)]$ instantaneous ε time dependent creep strain $\rightarrow \sigma_0/E_2$ as t $\rightarrow \infty$
 - SLS <u>recovery</u> after removal of σ_0 at time t_1 , elastic strain σ_0/E_1 is immediately recovered and

$$\varepsilon = \sigma_0/E_2 \exp(-E_2t_2/\mu) [\exp(-E_2t_2/\mu) - 1]$$

SLS relaxation

Analysis

$$\sigma = \varepsilon_0 \mathsf{E}_1 \left[\mathsf{E}_1 \exp \left(-\{ \mathsf{E}_1 + \mathsf{E}_2 \} \ \mathsf{t} \ / \ \mathsf{\mu} \right) + \mathsf{E}_2 \right] \ / \ (\mathsf{E}_1 + \mathsf{E}_2)$$

$$\sigma \rightarrow \left(\mathsf{E}_1 \ \mathsf{E}_2 \ \varepsilon_0 \right) \ / \ (\mathsf{E}_1 + \mathsf{E}_2) \ \mathsf{as} \ \mathsf{t} \rightarrow \infty \ \mathit{i.e.} \ \mathit{asymptote}$$

Note: there are numerous other combinations of springs and dashpots of increasing complexity for modelling creep and relaxation with any required degree of accuracy

- Criteria design to avoid creep
 - Exceeding allowable deformation
 - Instability due to excessive deformation
 - Creep fracture "rupture"
- Typical design calcs:
 - σ for given life (t) and T
 - Life (time) for given σ and T

For allowable strain

- σ relaxation time i.e. time for σ to reduce to certain value for given T
- Relaxed σ for a given t

e.g. bolt relaxation / retightening / creep life

Note: analysis procedures for real problems require computer based numerical techniques because the majority of important parameters have non-linear relationships with each other

- Data usually based on uniaxial load tests
 - Constant T creep curves for different σ
 - Constant σ creep curves for different T

Secondary creep ε rates
 i.e. ε per unit σ per hour at given T
 e.g. 10⁻⁹ / Nmm⁻² / hr @ 150°C etc.

Cross-plotted data

(Often used for **thermoplastic** creep design)

- Obtained from basic constant T creep data
- Isometric σ / t plots
 i.e. σ relaxation at given ε
- 3. Isochronous σ / ϵ plots i.e. σ / ϵ behaviour at given times
- 4. Tensile creep E / t plotsi.e. creep modulus reduction at given ε

- Isothermal creep data for polymers is often presented in "Isochronous" form
 - i.e. σ / ϵ curves associated with a particular creep time obtained from a family of creep curves
- For viscoelastic materials, a <u>single modulus</u> for each time may be identified with the slope of the σ / ε curve (from Fig. 3 above)

Design of Structures

- Creep is a shear deformation
- Apply Von Mises shear (distortion) strain energy theory to obtain equivalent stress for comparison with uniaxial data
 - e.g. σ_{vm} = f (σ_x , σ_v , τ_{xy}) as a scalar quantity

- e.g. members in bending
- Relaxation → redistribution of elastic stress [My/I] to a more uniform condition

Similarly for members in torsion, discontinuities,.etc...

Creep strain rate functions

- Assuming that for a given creep time or creep strain; the creep rate is a function of the current σ and T only.
 (i.e. implying previous strain history does not influence creep rate)
- Two state equations:
 - "Time hardening" $dε_c/dt = έ_c (σ, T, t)$ i.e. creep rate for σ & T @ particular accumulated creep **time**, t
 - "Strain hardening" $d\epsilon_c/dt = \dot{\epsilon}_c \ (\sigma, \ T, \ \epsilon_c)$ i.e. creep rate for $\sigma \& T @$ particular accumulated creep **strain**, ϵ_c

- Changing stress states;
- "Time hardening"

$$d\epsilon_c/dt = f(\sigma, T, t)$$

'Creep-time fraction rule' – defining creep w.r.t. accumulated creep time

i.e. creep rupture when $\sum_{i} (t_{ci}/t_{cfi}) = 1$

"Strain hardening"

$$d\epsilon_c/dt = f(\sigma, T, \epsilon_c)$$

'Creep-strain fraction rule' – defining creep w.r.t. accumulated creep strain

i.e. creep rupture when $\sum_{i} (\epsilon_{ci} / \epsilon_{cfi}) = 1$

Note: for most practical applications, predictive methods must be capable of accounting for complex loadings which vary with time

Design of Structures

F.A. Leckie, D.R. Hayhurst Constitutive equations for creep rupture. Acta Metallurgica, 25(9), 1977, pp.1059-1070.

Note: for most practical applications, predictive methods must be capable of accounting for complex loadings which vary with time

Ti alloys

- Generally, creep resistance increases with T_m (metals) or T_q (polymers)
 - Use stainless steels, superalloys, refractory metals for creep resistance under high σ, T
 - "Creep onset temperatures"

Metals		Polymers
Al alloys	>200°C	(thermoplastics)

>315°C

Low alloy steels >370°C

Stainless steels >650°C

Super alloys >1000°C

Refractories >1500°C

 Ambient or slightly above, typically >50°C

(thermosets)

- >50% Tg (Glass Transition Temperature)

Design Examples

- o Aero gas turbine blades:
 - elongation + twist <<0.1% total creep
- Airframe subject to kinetic heating
 - Design for < 0.1% total creep in a/c life
 - e.g. W.M. Doyle, "The Development of Hiduminium-RR.58 Aluminium Alloy: The background to the choice of the main structural material for Concorde", Aircraft Engineering & Aerospace Technology, 41(11),1969, (pp. 11-14)]
- Moving parts generally e.g. steam turbines
 - Design for < 1% total creep component life
 [10,000 hrs ~ 1 year, 100,000 hrs ~ 10 years]
- Avoid creep by:
 - Correct material selection
 - Lowering operational T and / or σ

• • Case Study

