

Instituto Politécnico Nacional Escuela Superior de Cómputo

Teoría computacional

Clase 02: Lenguajes

CONTENIDO

- Lenguaje
- Operaciones entre lenguajes
 - Unión o alternativa
 - Concatenación
 - Potencia de un lenguaje
 - Cierre o clausura positiva
 - Cierre u operación estrella (cerradura de Kleene)
 - Reflexión de lenguajes
- Ejercicios 02: Lenguajes

LENGUAJE

• Un lenguaje es un conjunto de palabras (cadenas) de un determinado alfabeto Σ .

$L \subset W(\Sigma)$

• Formalmente: Se llama lenguaje sobre un alfabeto a todo subconjunto del lenguaje universal de Σ .

• En particular, el conjunto vacío Φ es un subconjunto de $W(\Sigma)$ y se llama por ello lenguaje vacío. Este lenguaje no debe confundirse con el que tiene como único elemento la palabra vacía $\{\lambda\}$, que también es un subconjunto (diferente) de $W(\Sigma)$. Para distinguirlos, hay que fijarse en su carnalidad (número de símbolos).

$$C(\Phi)=0$$

 $C(\{\lambda\})=1$

• Obsérvese que tanto Φ como $\{\lambda\}$ son lenguajes sobre cualquier alfabeto. Por otra parte, un alfabeto puede considerarse también como uno de los lenguajes generados por él mismo: el que contiene todas las palabras de una sola letra.

OPERACIONES ENTRE LENGUAJES

1. Unión o alternativa: Sean dos lenguajes definidos sobre el mismo alfabeto, L1⊂W(Σ), L2⊂W(Σ) se denomina unión de los dos lenguajes L1 ∪ L2 al conjunto formado por las cadenas que pertenezcan indistintamente a uno u otro de los dos lenguajes.

$$L_1 \cup L_2 = \{x | x \in L_1 \vee x \in L_2\}$$

La unión de lenguajes tiene las siguientes propiedades:

- i. Operación cerrada: la unión de dos lenguajes sobre el mismo alfabeto es también un lenguaje sobre dicho alfabeto.
- ii. Propiedad asociativa: $(L_1 \cup L_2) \cup L_3 = L_1 \cup (L_2 \cup L_3)$.
- iii. Existencia de un elemento neutro: cualquiera que sea el lenguaje L, el lenguaje vacío Φ cumple que

$$\Phi U L = L U \Phi = L$$

- IV. Propiedad conmutativa: cualesquiera que sean L_1y L_2 , se verifica que L_1U $L_2 = L_2U$ L_1 .
- V. Propiedad idempotente: cualquiera que sea L, se verifica que LUL=L.

2. Concatenación: Sean dos lenguajes definidos sobre el mismo alfabeto $L_1 \subset W(\Sigma)$, $L_2 \subset W(\Sigma)$, se denomina concatenación de los dos lenguajes $L_1 \cap L_2$ (L_1L_2) al conjunto de todas las cadenas formadas concatenando una palabra del primer lenguaje con una del segundo.

$$L_1L_2 = \{x_1x_2 | x_1 \in L_1 \land x_2 \in L_2\}$$

 La definición anterior sólo es valida si L₁ y L₂ contienen al menos un elemento. Para la concatenación de L con el lenguaje vacío φ se tiene que: φL= LΦ= Φ

 La concatenación de lenguajes tiene las siguientes propiedades:

i. Operación cerrada: la concatenación de dos lenguajes sobre el mismo alfabeto es también un lenguaje sobre el mismo alfabeto.

ii. Propiedad asociativa: $(L_1 L_2)L_3 = L_1(L_2L_3)$.

iii. Existencia de un elemento neutro: cualquiera que sea el lenguaje L, el lenguaje de la palabra vacía cumple que: $\{\lambda\}L=L\{\lambda\}=L$

3. Potencia de un lenguaje: Desde el punto de vista estricto esta no es una nueva operación, sino un caso particular de la anterior, Se denomina potencia i-ésima de un lenguaje a la operación que consiste en concatenarlo consigo mismo i-veces.

- Definiremos también:
 - L¹=L
 - $L^{i+1}=L^iL=L^i$ (i > 0)
 - $L^{i}L^{j}=L^{i+j}(i, j > 0)$
 - $L^0 = \{\lambda\}$

4. Cierre o clausura positiva: La operación de cierre positivo de un lenguaje L es otro lenguaje L⁺ obtenido uniendo el lenguaje L con todas sus potencias posibles, excepto L⁰.

$$L^{+} = \{L\} \cup \{LL\} \cup \{LLL\} ... = \bigcup_{m=1}^{\infty} L^{m}$$

- Ninguna clausura positiva contiene la palabra vacía, a menos que dicha palabra este en L.
- Puesto que el alfabeto Σ es también un lenguaje sobre Σ , puede aplicársele esta operación.

$$\Sigma += W(\Sigma) - \{\lambda\}$$

5. Cierre u operación estrella (cerradura de Kleene): La operación cierre de un lenguaje L es otro L* obtenido uniendo el lenguaje L con todas sus potencias posibles, incluso L⁰.

$$L^* = \{ \boldsymbol{\lambda} \} \cup \{L\} \cup \{LL\} \cup \{LLL\} \dots = \bigcup\nolimits_{m=0}^{\infty} L^m$$

• Puesto que el alfabeto Σ es también un lenguaje sobre Σ , puede aplicársele esta operación.

$$\Sigma^*=W(\Sigma)$$

Son evidentes las siguientes identidades:

•
$$L^* = L^+ \cup \{\lambda\}$$

•
$$L^+ = L L^* = L^* L$$

6. Reflexión de lenguajes: Sea L un lenguaje cualquiera. Se llama lenguaje reflejo o inverso de L, y se representa con L^{-1} : $\{x^{-1} \mid x \in L\}$

 i.e. es el lenguaje que contiene todas las palabras inversas de L.

EJERCICIOS 02: LENGUAJES

1. Sea:

- $\Sigma_1 = \{a,b,c,d,...,z\}$
- L₁ = {anita, lava, la, tina}
- L₂ = {hola,como,estas,amigo}
- L₃={a,arca,amor,amigo,animo,teoria,grupo,salon,cara}
- Obtener:
 - $(L_1 \cup L_2) L_3$
 - (L₁ L₂) U L₃
 - L₁²
 - L₂⁺ (hasta la potencia 2)
 - L₂* (hasta la potencia 2)
 - L₂-1

2. Sea:

- $\Sigma_1 = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,F\}$
- $L_1 = \{001AF, 10FFAA, 109012, 667800\}$
- $L_2 = \{00, 10, 12, 45, 66, 77\}$
- $L_3 = \{1,0,3,5,6,F,A,B,C\}$
- Obtener:
 - (L₁U L₂) L₃
 - $(L_1 L_2) \cup L_3$
 - L₁²
 - L₂⁺ (hasta la potencia 2)
 - L₂⁻¹
 - L₂⁻¹ U (L₁U L₃)

