	1 second	1 minute	1 hour	1 day	1 month	1 year	1 century
lgn	2^{10^6}	$2^{6\times 10^7}$	$2^{3.6\times10^9}$	$2^{8.64 imes 10^{10}}$	$2^{2.592\times 10^{12}}$	$2^{9.4608\times10^{14}}$	$2^{9.4608\times10^{16}}$
\sqrt{n}	10^{12}	$3.6 imes 10^{15}$	$1.3 imes 10^{19}$	$7.5 imes10^{21}$	$6.7 imes10^{24}$	$9.0 imes 10^{29}$	9.0×10^{33}
n	10^{6}	$6 imes 10^7$	$3.6 imes 10^9$	$8.6 imes 10^{10}$	2.6×10^{12}	$9.5 imes 10^{14}$	9.5×10^{16}
nlogn	62746	$2.8 imes 10^6$	$1.3 imes 10^8$	$2.8 imes10^9$	$7.2 imes 10^{10}$	$8.7 imes 10^{10}$	7.9×10^{12}
n^2	1000	7746	$6 imes 10^4$	$2.9 imes 10^5$	$1.6 imes 10^6$	$5.6 imes10^6$	$5.6 imes 10^7$
n^3	100	391	1532	4421	13737	31594	146646
2^n	20	26	32	36	41	45	51
n!	9	11	12	13	15	16	17

2. (1) c为任意正常量,定义 $a_0=1, a_i=2(i>1)$, $b_0=rac{1}{c}, b_i=i(i>1)$

原问题等价于证明对于任意的整数c, 存在 n_0 ,当 $n>n_0$ 时, $\prod_{i=0}^n a_i < \prod_{i=0}^n b_i$

对于任意的整数c, 设 $n_0 = max(4, c)$, 设k = ceil(c), 则 $b_0 * b_k \ge 1$

当k=1 时, $a_0*a_1*a_4=4$, $b_0*b_1*b_4\geq 4$,而 $a_i\leq b_i$ (当i>1时) 恒成立,且等号当且仅当n=2 成立,则当 $n>n_0$ 时, $\prod_{i=0}^n a_i<\prod_{i=0}^n b_i$ 成立

当k=8 时, $a_0*a_1*a_8*a_{16}=8$, $b_0*b_1*b_8*b_{16}\geq 16$,而 $a_i\leq b_i$ (当i > 1时) 恒成立,且等号当且仅当n=2 成立,则当 $n>n_0$ 时, $\prod_{i=0}^n a_i<\prod_{i=0}^n b_i$ 成立

综上,原命题得证, 则 $n! = \omega(2^n)$

- (2) 原命题等价于对于任意的正常数c, 存在 n_0 , 当 $n>n_0$ 时, $c*n^n>n!$ 令 $n_0=max(2,ceil(\frac{1}{c}))$, 则当 $n>n_0$ 时, $c*n\geq 1$ 而 $n>2,\ n>3, n>4......n\geq n$ 对任意 $n>n_0$ 恒成立,与 $c*n\geq$ 连乘,得到 $c*n^n>n!$ 原命题得证,则 $n!=o(n^n)$
 - 3. 从上往下阶数从大到小排序,阶数一样的放在一行: $2^{2^{n+1}}$

$$2^{2^n} \ (n+1)! \ n!$$

$$e^{n}$$

$$n * 2^{n}$$

$$2^{n}$$

$$(\frac{2}{3})^{n}$$

$$(lgn)^{lgn}, \ n^{lglgn}$$

(lgn)!

 n^3

$$n^2, 4^{lgn}$$

$$nlgn, \ lg(n!)$$

$$n, \,\, 2^{lgn}$$

$$(\sqrt{2})^{lgn}, \ \sqrt{n}$$

$$2^{\sqrt{2lgn}}$$

$$lg^2n$$

lnn

$$\sqrt{lgn}$$

lnlnn

$$2^{lg^*n}$$

$$lg^*n,\ lg^*(lgn)$$

$$lg(lg^*n)$$

$$n^{1/lgn}, \ 1$$

由题意,f(n)无界且没有极限,一直在震荡,震荡最低值小于最小阶 1,震荡最大值大于最大阶 $2^{2^{n+1}}$ 则可以构造函数:

$$f(x) = egin{cases} 0 & ext{x为奇数} \ 2^{2^{n+2}} & ext{x为偶数} \end{cases}$$