

FCC PART 15.247 MEASUREMENT AND TEST REPORT

For

ShenZhen Gospell Smarthome Electronic Co., Ltd.

5Floor/Block 2, Vision (SZ) Park, Hi-Tech, Industrial Park, Shenzhen, China

FCC ID: TW5GD8713

Report Type: Product Type:

Original Report WIFI INSPECTION CAMERA

Test Engineer: Candy Li

Report Number: RSZ130320005-00

Report Date: 2013-04-10

Sula Huang

Reviewed By: RF Engineer

Test Laboratory: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building,

Sola Huay

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Related Submittal(s)/Grant(s) Test Methodology	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	7
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
Applicable Standard	8
Antenna Connector Construction	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	9
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	11
TEST RESULTS SUMMARY	
Test Data	
FCC §15.247(a) (2) – 6 dB BANDWIDTH TESTING	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE TEST AND DETAILS.	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS.	
Test Procedure	
Trot Data	42

Report No.: RSZ130320005-00

FCC §15,247(e) - POWER SPECTRAL DENSITY	47
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	47

FCC Part 15.247 Page 3 of 54

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The ShenZhen Gospell Smarthome Electronic Co., Ltd.'s product, model number: GD8713 (FCC ID: TW5GD8713) or the "EUT" as referred to in this report was a WIFI INSPECTION CAMERA, which was measured approximately: 23.35 cm (L) x 12.0 cm (W) x 4.25 cm (H), rated with input voltage: 4×AA batteries.

Report No.: RSZ130320005-00

* All measurement and test data in this report was gathered from production sample serial number: 1303064 (Assigned by BACL, Shenzhen). The EUT was received on 2013-03-20.

Objective

This Type approval report is prepared on behalf of *ShenZhen Gospell Smarthome Electronic Co., Ltd. in* accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, Shihua Road, Futian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 4 of 54

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g mode, 802.11n-HT20 and 802.11n-HT40 mode, 11 channels are provided to testing:

Report No.: RSZ130320005-00

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

EUT for 802.11b, 802.11g and 802.11n-HT20 modes were tested with Channel 1, 6 and 11. 802.11n-HT40 modes were tested with Channel 3, 6 and 9.

EUT Exercise Software

Run CMD.exe and input relative command which provided by applicant.

The test was performed under: 802.11b: Data rate: 1 Mbps. 802.11g: Data rate: 6 Mbps.

802.11n-HT20: Data rate: 6.5 Mbps. 802.11n-HT40: Data rate: 13.5 Mbps.

Equipment Modifications

No modification was made to the unit tested.

Block Diagram of Test Setup

FCC Part 15.247 Page 5 of 54

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b)(1), §2.1091	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a),	Conducted Emissions	N/A
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RSZ130320005-00

Note: The EUT was powered by battery.

FCC Part 15.247 Page 6 of 54

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE **EXPOSURE (MPE)**

Applicable Standard

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RSZ130320005-00

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)			Power Density (mW/cm²)	Averaging Time (minutes)						
0.3-1.34	614	1.63	*(100)	30						
1.34–30	824/f	2.19/f	*(180/f²)	30						
30–300	27.5	0.073	0.2	30						
300–1500	/	/	f/1500	30						
1500-100,000	/	/	1.0	30						

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2) P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Calculated Data:

Mode	Frequency	Antenna Gain		Condu	icted Power	Evaluation	Power	MPE Limit
Mode	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
802.11b	2462	0	1.0	13.17	20.75	20	0.00413	1.0
802.11g	2462	0	1.0	12.36	17.22	20	0.00343	1.0
802.11n-HT20	2412	0	1.0	11.61	14.49	20	0.00288	1.0
802.11n-HT40	2437	0	1.0	10.64	11.59	20	0.00231	1.0

Result: Compliance

FCC Part 15.247 Page 7 of 54

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ130320005-00

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has an integrated antenna arrangement, which was permanently attached and the gain was 0 dBi, fulfill the requirement of this section. Please refer to the internal photos.

Result: Compliance.

FCC Part 15.247 Page 8 of 54

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RSZ130320005-00

Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is 4.0 dB(k=2, 95% level of confidence), and the uncertainty will not be taken into consideration for all the test data recorded in the report.

EUT Setup

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

FCC Part 15.247 Page 9 of 54

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RSZ130320005-00

Frequency Range	RBW	Video B/W	IF B/W	Detector	
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP	
Al 1 CH	1MHz	3 MHz	/	PK	
Above 1 GHz	1MHz	10 Hz	/	Ave.	

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
НР	Amplifier	8447E	1937A01046	2012-11-24	2013-11-23
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2012-08-08	2013-08-07
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
Mini-Circuits	Amplifier	ZVA-213+	N/A	2012-11-24	2013-11-23
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2014-11-30
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2010-10-14	2013-10-13

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz and peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 10 of 54

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RSZ130320005-00

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

4.92 dB at **9848 MHz** in the **Vertical** polarization for mode 802.11n-HT20

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	100.0kPa

The testing was performed by Candy Li on 2013-04-02.

Test Mode: Transmitting

FCC Part 15.247 Page 11 of 54

30 MHz-25 GHz 802.11b mode:

Frequency	Re	eceiver	Turntable	Rx An	itenna	Corrected	Corrected	FCC Par	t 15.247	
(MHz)	Reading	Detector	Degree	Height	Polar	Factor	Amplitude	Limit	Margin	
,	(dBµV)	(PK/QP/Ave.)	Ü	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	Low Channel (2412 MHz)									
2412	99.67	PK	147	1.0	Н	6.13	105.80	/	/	
2412	95.51	Ave.	147	1.0	Н	6.13	101.64	/	/	
2412	96.88	PK	360	1.1	V	6.13	103.01	/	/	
2412	93.23	Ave.	360	1.1	V	6.13	99.36	/	/	
2388.4	61.76	PK	193	1.3	Н	6.13	67.89	74	6.11	
364.51	51.89	QP	37	1.1	Н	-13.1	38.79	46	7.21	
2386.5	59.57	PK	240	1.2	Н	6.13	65.70	74	8.30	
9648	26.15	Ave.	0	1.3	V	19.29	45.44	54	8.56	
4824	52.51	PK	85	1.3	Н	12.40	64.91	74	9.09	
7236	27.28	Ave.	203	1.3	V	16.62	43.90	54	10.10	
7236	46.78	PK	203	1.3	V	16.62	63.40	74	10.60	
4824	29.36	Ave.	85	1.3	Н	12.40	41.76	54	12.24	
9648	39.83	PK	0	1.3	V	19.29	59.12	74	14.88	
2388.4	29.63	Ave.	193	1.3	Н	6.13	35.76	54	18.24	
2386.5	28.75	Ave.	240	1.2	Н	6.13	34.88	54	19.12	
2487.1	26.37	Ave.	94	1.1	V	7.21	33.58	54	20.42	
2487.1	42.63	PK	94	1.1	V	7.21	49.84	74	24.16	
			Middle (Channel	(2437 N	MHz)				
2437	98.58	PK	260	1.2	Н	6.13	104.71	/	/	
2437	95.96	Ave.	260	1.2	Н	6.13	102.09	/	/	
2437	97.65	PK	67	1.1	V	6.13	103.78	/	/	
2437	93.90	Ave.	67	1.1	V	6.13	100.03	/	/	
364.51	51.91	QP	163	1.1	Н	-13.1	38.81	46	7.19	
9748	26.63	Ave.	257	1.1	V	19.40	46.03	54	7.97	
4874	52.35	PK	0	1.2	V	12.46	64.81	74	9.19	
7311	27.92	Ave.	96	1.1	Н	16.49	44.41	54	9.59	
7311	47.17	PK	96	1.1	Н	16.49	63.66	74	10.34	
4874	29.14	Ave.	0	1.2	V	12.46	41.60	54	12.40	
9748	40.23	PK	257	1.1	V	19.40	59.63	74	14.37	
2379.4	30.88	Ave.	360	1.1	V	7.21	38.09	54	15.91	
2353.2	28.52	Ave.	0	1.2	V	7.21	35.73	54	18.27	
2379.4	47.22	PK	360	1.1	V	7.21	54.43	74	19.57	
2484.8	26.92	Ave.	280	1.0	V	7.21	34.13	54	19.87	
2353.2	44.83	PK	0	1.2	V	7.21	52.04	74	21.96	
2484.8	43.12	PK	280	1.0	V	7.21	50.33	74	23.67	

FCC Part 15.247 Page 12 of 54

Frequency	Frequency Receiver		Turntable	Rx An	tenna	Corrected	Corrected	FCC Part 15.247			
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	High Channel(2462 MHz)										
2462	98.45	PK	197	1.0	Н	7.21	105.66	/	/		
2462	94.42	Ave.	197	1.0	Н	7.21	101.63	/	/		
2462	98.68	PK	232	1.0	V	7.21	105.89	/	/		
2462	94.36	Ave.	232	1.0	V	7.21	101.57	/	/		
9848	27.90	Ave.	360	1.0	V	19.39	47.29	54	6.71		
364.51	52.18	QP	216	1.2	Н	-13.1	39.08	46	6.92		
7386	29.28	Ave.	0	1.1	V	15.91	45.19	54	8.81		
4924	52.33	PK	360	1.3	Н	12.50	64.83	74	9.17		
2489.6	57.43	PK	0	1.1	Н	7.21	64.64	74	9.36		
7386	47.76	PK	0	1.1	V	15.91	63.67	74	10.33		
4924	29.92	Ave.	360	1.3	Н	12.50	42.42	54	11.58		
2491.3	54.99	PK	181	1.1	Н	7.21	62.20	74	11.80		
9848	40.62	PK	360	1.0	V	19.39	60.01	74	13.99		
2489.6	30.86	Ave.	0	1.1	Н	7.21	38.07	54	15.93		
2491.3	29.99	Ave.	181	1.1	Н	7.21	37.20	54	16.80		
2383.6	27.02	Ave.	274	1.3	V	6.13	33.15	54	20.85		
2383.6	43.67	PK	274	1.3	V	6.13	49.80	74	24.20		

FCC Part 15.247 Page 13 of 54

802.11g mode:

	Receiver			Rx An	tenna	Corrected	Corrected	FCC Par	+ 15 247	
Frequency (MHz)	Reading	Detector	Turntable Degree	Height		Factor	Amplitude	Limit	Margin	
(MITIZ)		(PK/QP/Ave.)	Degree	(m)	(H/V)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	
Low Channel (2412 MHz)										
2412	94.29	PK	252	1.2	Н	6.13	100.42	/	/	
2412	85.67	Ave.	252	1.2	Н	6.13	91.80	/	/	
2412	92.67	PK	184	1.3	V	6.13	98.80	/	/	
2412	83.08	Ave.	184	1.3	V	6.13	89.21	/	/	
364.51	51.75	QP	99	1.2	Н	-13.1	38.65	46	7.35	
9648	26.35	Ave.	235	1.2	Н	19.29	45.64	54	8.36	
4824	47.03	PK	310	1.1	V	12.40	59.43	74	14.57	
4824	27.31	Ave.	310	1.1	V	12.40	39.71	54	14.29	
7236	43.14	PK	0	1.1	Н	16.62	59.76	74	14.24	
7236	27.82	Ave.	0	1.1	Н	16.62	44.44	54	9.56	
2362.7	57.91	PK	152	1.2	Н	6.13	64.04	74	9.96	
2341.2	55.05	PK	0	1.0	Н	5.48	60.53	74	13.47	
9648	39.82	PK	235	1.2	Н	19.29	59.11	74	14.89	
2362.7	29.40	Ave.	152	1.2	Н	6.13	35.53	54	18.47	
2341.2	29.12	Ave.	0	1.0	Н	5.48	34.60	54	19.40	
2484.1	26.76	Ave.	95	1.0	V	7.21	33.97	54	20.03	
2484.1	42.55	PK	95	1.0	V	7.21	49.76	74	24.24	
	•		Middle (Channel	(2437 N	MHz)	•			
2437	93.79	PK	103	1.2	Н	6.13	99.92	/	/	
2437	84.77	Ave.	103	1.2	Н	6.13	90.90	/	/	
2437	92.61	PK	360	1.1	V	6.13	98.74	/	/	
2437	83.15	Ave.	360	1.1	V	6.13	89.28	/	/	
364.51	51.87	QP	136	1.1	Н	-13.1	38.77	46	7.23	
9748	26.30	Ave.	89	1.2	V	19.40	45.70	54	8.30	
4874	47.12	PK	168	1.1	Н	12.46	59.58	74	14.42	
4874	27.38	Ave.	168	1.1	Н	12.46	39.84	54	14.16	
7311	43.49	PK	0	1.0	V	16.49	59.98	74	14.02	
7311	28.64	Ave.	0	1.0	V	16.49	45.13	54	8.87	
9748	41.17	PK	89	1.2	V	19.40	60.57	74	13.43	
2355.2	31.16	Ave.	291	1.1	Н	5.48	36.64	54	17.36	
2483.9	29.01	Ave.	259	1.0	V	7.21	36.22	54	17.78	
2491.7	27.68	Ave.	360	1.3	V	7.21	34.89	54	19.11	
2355.2	48.36	PK	291	1.1	Н	5.48	53.84	74	20.16	
2483.9	44.88	PK	259	1.0	V	7.21	52.09	74	21.91	
2491.7	43.73	PK	360	1.3	V	7.21	50.94	74	23.06	

FCC Part 15.247 Page 14 of 54

Frequency	R	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	FCC Par	rt 15.247
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
			High C	hannel(2	2462 M	Hz)			
2462	92.88	PK	325	1.1	Н	7.21	100.09	/	/
2462	81.86	Ave.	325	1.1	Н	7.21	89.07	/	/
2462	94.29	PK	38	1.0	V	7.21	101.5	/	/
2462	83.84	Ave.	38	1.0	V	7.21	91.05	/	/
9848	28.94	Ave.	0	1.0	Н	19.39	48.33	54	5.67
364.51	52.03	QP	330	1.1	Н	-13.1	38.93	46	7.07
2492.6	58.05	PK	88	1.1	Н	7.21	65.26	74	8.74
4924	47.68	PK	0	1.1	Н	12.50	60.18	74	13.82
4924	27.59	Ave.	0	1.1	Н	12.50	40.09	54	13.91
7386	43.69	PK	360	1.1	V	15.91	59.6	74	14.4
7386	27.76	Ave.	360	1.1	V	15.91	43.67	54	10.33
2493.9	55.66	PK	38	1.3	Н	7.21	62.87	74	11.13
9848	41.17	PK	0	1.0	Н	19.39	60.56	74	13.44
2492.6	30.74	Ave.	88	1.1	Н	7.21	37.95	54	16.05
2493.9	30.69	Ave.	38	1.3	Н	7.21	37.90	54	16.10
2334.6	26.78	Ave.	290	1.2	V	5.48	32.26	54	21.74
2334.6	43.83	PK	290	1.2	V	5.48	49.31	74	24.69

FCC Part 15.247 Page 15 of 54

802.11n-HT20 mode:

Frequency	R	eceiver	Turntable	Rx An	itenna	Corrected	Corrected	FCC Par	t 15.247
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
	• •		Low C	hannel (2	2412 M	Hz)			
2412	93.57	PK	251	1.0	Н	6.13	99.70	/	/
2412	82.80	Ave.	251	1.0	Н	6.13	88.93	/	/
2412	92.44	PK	37	1.3	V	6.13	98.57	/	/
2412	81.90	Ave.	37	1.3	V	6.13	88.03	/	/
364.51	51.91	QP	135	1.1	Н	-13.1	38.81	46	7.19
9648	27.37	Ave.	83	1.2	Н	19.29	46.66	54	7.34
4824	46.59	PK	336	1.1	V	12.40	58.99	74	15.01
4824	26.06	Ave.	336	1.1	V	12.40	38.46	54	15.54
7236	43.68	PK	0	1.1	V	16.62	60.3	74	13.70
7236	26.87	Ave.	0	1.1	V	16.62	43.49	54	10.51
2384.2	58.46	PK	360	1.3	V	6.13	64.59	74	9.41
2359.1	54.74	PK	6	1.2	Н	5.48	60.22	74	13.78
9648	39.61	PK	83	1.2	Н	19.29	58.90	74	15.10
2384.2	30.53	Ave.	360	1.3	V	6.13	36.66	54	17.34
2359.1	29.35	Ave.	6	1.2	Н	5.48	34.83	54	19.17
2496.6	26.38	Ave.	176	1.3	Н	7.21	33.59	54	20.41
2496.6	43.29	PK	176	1.3	Н	7.21	50.50	74	23.50
			Middle (Channel	(2437 N	MHz)			
2437	93.63	PK	77	1.1	Н	6.13	99.76	/	/
2437	81.72	Ave.	77	1.1	Н	6.13	87.85	/	/
2437	91.18	PK	65	1.2	V	6.13	97.31	/	/
2437	80.83	Ave.	65	1.2	V	6.13	86.96	/	/
364.51	51.86	QP	102	1.1	Н	-13.1	38.76	46	7.24
9748	26.17	Ave.	360	1.2	V	19.40	45.57	54	8.43
4874	46.44	PK	221	1.1	V	12.46	58.9	74	15.10
4874	26.46	Ave.	221	1.1	V	12.46	38.92	54	15.08
7311	42.56	PK	0	1.2	V	16.49	59.05	74	14.95
7311	26.74	Ave.	0	1.2	V	16.49	43.23	54	10.77
9748	41.70	PK	360	1.2	V	19.40	61.10	74	12.90
2318.3	31.78	Ave.	168	1.1	Н	5.48	37.26	54	16.74
2339.1	30.25	Ave.	32	1.2	Н	5.48	35.73	54	18.27
2487.5	28.17	Ave.	216	1.2	V	7.21	35.38	54	18.62
2318.3	48.75	PK	168	1.1	Н	5.48	54.23	74	19.77
2487.5	44.72	PK	216	1.2	V	7.21	51.93	74	22.07
2339.1	45.65	PK	32	1.2	Н	5.48	51.13	74	22.87

FCC Part 15.247 Page 16 of 54

Frequency	R	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	FCC Par	rt 15.247
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			High C	hannel(2	2462 M	Hz)			
2462	93.32	PK	272	1.2	Н	7.21	100.53	/	/
2462	81.39	Ave.	272	1.2	Н	7.21	88.6	/	/
2462	93.79	PK	10	1.0	V	7.21	101	/	/
2462	81.23	Ave.	10	1.0	V	7.21	88.44	/	/
9848	29.69	Ave.	360	1.3	V	19.39	49.08	54	4.92
2484.6	59.33	PK	265	1.2	V	7.21	66.54	74	7.46
364.51	51.53	QP	182	1.1	Н	-13.1	38.43	46	7.57
4924	46.51	PK	0	1.3	Н	12.50	59.01	74	14.99
4924	26.40	Ave.	0	1.3	Н	12.50	38.90	54	15.10
7386	43.02	PK	163	1.2	V	15.91	58.93	74	15.07
7386	26.91	Ave.	163	1.2	V	15.91	42.82	54	11.18
2492.5	56.21	PK	206	1.2	Н	7.21	63.42	74	10.58
9848	42.24	PK	360	1.3	V	19.39	61.63	74	12.37
2484.6	31.46	Ave.	265	1.2	V	7.21	38.67	54	15.33
2492.5	30.78	Ave.	206	1.2	Н	7.21	37.99	54	16.01
2320.8	26.16	Ave.	136	1.0	Н	5.48	31.64	54	22.36
2320.8	44.46	PK	136	1.0	Н	5.48	49.94	74	24.06

FCC Part 15.247 Page 17 of 54

802.11n-HT40 mode:

Frequency	Re	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	FCC Par	rt 15.247
(MHz)	Reading	Detector	Degree	Height		Factor (dB)	Amplitude (dBµV/m)	Limit	Margin
	(aBhr)	(PK/QP/Ave.)		(m)	(H/V)	()	(αΒμ ۱/ΙΙΙ)	(dBµV/m)	(dB)
2.422	00.21	DIZ		hannel (2			05.24	,	1
2422	89.21	PK	113	1.0	Н	6.13	95.34	/	/
2422	76.83	Ave.	113	1.0	H	6.13	82.96	/	/
2422	88.01	PK	52	1.2	V	6.13	94.14	/	/
2422	74.77	Ave.	52	1.2	V	6.13	80.9	7	/
9688	27.95	Ave.	255	1.1	Н	19.29	47.24	54	6.76
364.51	51.78	QP	96	1.2	Н	-13.1	38.68	46	7.32
2387.8	58.23	PK	360	1.1	Н	6.13	64.36	74	9.64
4844	42.55	PK	0	1.0	V	12.40	54.95	74	19.05
4844	27.31	Ave.	0	1.0	V	12.40	39.71	54	14.29
7266	40.30	PK	74	1.2	V	16.62	56.92	74	17.08
7266	26.44	Ave.	74	1.2	V	16.62	43.06	54	10.94
2323.6	55.02	PK	194	1.2	V	5.48	60.50	74	13.50
9688	39.71	PK	255	1.1	Н	19.29	59.00	74	15.00
2387.8	32.01	Ave.	360	1.1	Н	6.13	38.14	54	15.86
2323.6	29.91	Ave.	194	1.2	V	5.48	35.39	54	18.61
2485.4	27.13	Ave.	63	1.2	V	7.21	34.34	54	19.66
2485.4	43.23	PK	63	1.2	V	7.21	50.44	74	23.56
			Middle (Channel	(2437 N	MHz)			
2437	89.05	PK	59	1.2	Н	6.13	95.18	/	/
2437	75.38	Ave.	59	1.2	Н	6.13	81.51	/	/
2437	87.97	PK	360	1.0	V	6.13	94.1	/	/
2437	73.25	Ave.	360	1.0	V	6.13	79.38	/	/
364.51	51.88	QP	251	1.1	Н	-13.1	38.78	46	7.22
4874	42.26	PK	71	1.1	Н	12.46	54.72	74	19.28
4874	26.60	Ave.	71	1.1	Н	12.46	39.06	54	14.94
7311	40.44	PK	193	1.2	V	16.49	56.93	74	17.07
7311	26.42	Ave.	193	1.2	V	16.49	42.91	54	11.09
9748	42.52	PK	360	1.2	Н	19.40	61.92	74	12.08
9748	25.72	Ave.	360	1.2	Н	19.40	45.12	54	8.88
2315.4	32.26	Ave.	0	1.0	Н	5.48	37.74	54	16.26
2327.4	31.13	Ave.	297	1.2	V	5.48	36.61	54	17.39
2489.2	27.98	Ave.	295	1.0	V	7.21	35.19	54	18.81
2315.4	48.75	PK	0	1.0	Н	5.48	54.23	74	19.77
2489.2	44.74	PK	295	1.0	V	7.21	51.95	74	22.05
2327.4	46.22	PK	297	1.2	V	5.48	51.70	74	22.30

FCC Part 15.247 Page 18 of 54

Frequency	Re	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	FCC Par	rt 15.247
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
			High C	hannel(2	2452 M	Hz)			
2452	88.98	PK	194	1.1	Н	7.21	96.19	/	/
2452	74.13	Ave.	194	1.1	Н	7.21	81.34	/	/
2452	89.92	PK	75	1.2	V	7.21	97.13	/	/
2452	75.18	Ave.	75	1.2	V	7.21	82.39	/	/
9808	28.35	Ave.	360	1.2	V	19.29	47.64	54	6.36
2484.9	59.76	PK	240	1.1	Н	7.21	66.97	74	7.03
364.51	51.46	QP	117	1.0	Н	-13.1	38.36	46	7.64
4904	41.83	PK	183	1.0	V	12.46	54.29	74	19.71
4904	26.60	Ave.	183	1.0	V	12.46	39.06	54	14.94
7356	40.60	PK	68	1.1	V	15.91	56.51	74	17.49
7356	26.38	Ave.	68	1.1	V	15.91	42.29	54	11.71
2493.6	56.76	PK	0	1.0	Н	7.21	63.97	74	10.03
9808	42.79	PK	360	1.2	V	19.29	62.08	74	11.92
2484.9	31.41	Ave.	240	1.1	Н	7.21	38.62	54	15.38
2493.6	31.15	Ave.	0	1.0	Н	7.21	38.36	54	15.64
2317.4	26.75	Ave.	357	1.1	V	5.48	32.23	54	21.77
2317.4	44.24	PK	357	1.1	V	5.48	49.72	74	24.28

FCC Part 15.247 Page 19 of 54

Antenna Port Conducted Spurious Emissions:

802.11b Low Channel

Report No.: RSZ130320005-00

802.11b Middle Channel

FCC Part 15.247 Page 20 of 54

802.11b High Channel

Report No.: RSZ130320005-00

802.11g Low Channel

FCC Part 15.247 Page 21 of 54

802.11g Middle Channel

Report No.: RSZ130320005-00

802.11g High Channel

FCC Part 15.247 Page 22 of 54

802.11n-HT20 Low Channel

Report No.: RSZ130320005-00

802.11n-HT20 Middle Channel

FCC Part 15.247 Page 23 of 54

802.11n-HT20 High Channel

Report No.: RSZ130320005-00

802.11n-HT40 Low Channel

FCC Part 15.247 Page 24 of 54

802.11n-HT40 Middle Channel

Report No.: RSZ130320005-00

802.11n-HT40 High Channel

FCC Part 15.247 Page 25 of 54

FCC §15.247(a) (2) – 6 dB BANDWIDTH TESTING

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSZ130320005-00

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v02

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	100.0kPa

The testing was performed by Candy Li on 2013-04-02.

Test Mode: Transmitting

FCC Part 15.247 Page 26 of 54

Test Result: Pass.

Please refer to the following tables and plots.

Channel	Frequency (MHz)	Data Rate (Mbps)	6 dB Emission Bandwidth (MHz)	Limit (kHz)	Result					
	802.11b mode									
Low	2412	1	9.06	≥500	Pass					
Middle	2437	1	9.06	≥500	Pass					
High	2462	1	9.06	≥500	Pass					
	802.11g mode									
Low	2412	6	16.43	≥500	Pass					
Middle	2437	6	16.43	≥500	Pass					
High	2462	6	16.43	≥500	Pass					
		802.11n	-HT20 mode							
Low	2412	6.5	17.64	≥500	Pass					
Middle	2437	6.5	17.64	≥500	Pass					
High	2462	6.5	17.64	≥500	Pass					
		802.11n	-HT40 mode							
Low	2422	13.5	35.91	≥500	Pass					
Middle	2437	13.5	35.91	≥500	Pass					
High	2452	13.5	35.91	≥500	Pass					

Report No.: RSZ130320005-00

FCC Part 15.247 Page 27 of 54

802.11b Low Channel

Report No.: RSZ130320005-00

802.11b Middle Channel

FCC Part 15.247 Page 28 of 54

802.11b High Channel

Report No.: RSZ130320005-00

802.11g Low Channel

FCC Part 15.247 Page 29 of 54

802.11g Middle Channel

Report No.: RSZ130320005-00

802.11g High Channel

FCC Part 15.247 Page 30 of 54

802.11n-HT20 Low Channel

Report No.: RSZ130320005-00

802.11n-HT20 Middle Channel

FCC Part 15.247 Page 31 of 54

802.11n-HT20 High Channel

Report No.: RSZ130320005-00

802.11n-HT40 Low Channel

FCC Part 15.247 Page 32 of 54

802.11n-HT40 Middle Channel

Report No.: RSZ130320005-00

802.11n-HT40 High Channel

FCC Part 15.247 Page 33 of 54

FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER

Applicable Standard

According to §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSZ130320005-00

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v02

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI Test Receiver.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	100.0kPa

The testing was performed by Candy Li on 2013-04-02.

Test Mode: Transmitting

FCC Part 15.247 Page 34 of 54

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Output Power (dBm)	Limit (dBm)	Result					
	802.11b mode									
Low	2412	1	13.00	30	Pass					
Middle	2437	1	13.03	30	Pass					
High	2462	1	13.17	30	Pass					
	802.11g mode									
Low	2412	6	12.10	30	Pass					
Middle	2437	6	11.95	30	Pass					
High	2462	6	12.36	30	Pass					
		802.11n	-HT20 mode							
Low	2412	6.5	11.61	30	Pass					
Middle	2437	6.5	11.59	30	Pass					
High	2462	6.5	11.35	30	Pass					
		802.11n	-HT40 mode							
Low	2422	13.5	10.25	30	Pass					
Middle	2437	13.5	10.64	30	Pass					
High	2452	13.5	10.43	30	Pass					

FCC Part 15.247 Page 35 of 54

802.11b RF Output Power, Low Channel

Report No.: RSZ130320005-00

802.11b RF Output Power, Middle Channel

FCC Part 15.247 Page 36 of 54

802.11b RF Output Power, High Channel

Report No.: RSZ130320005-00

802.11g RF Output Power, Low Channel

FCC Part 15.247 Page 37 of 54

802.11g RF Output Power, Middle Channel

Report No.: RSZ130320005-00

802.11g RF Output Power, High Channel

FCC Part 15.247 Page 38 of 54

802.11n-HT20 RF Output Power, Low Channel

Report No.: RSZ130320005-00

802.11n-HT20 RF Output Power, Middle Channel

FCC Part 15.247 Page 39 of 54

802.11n-HT20 RF Output Power, High Channel

Report No.: RSZ130320005-00

802.11n-HT40 RF Output Power, Low Channel

FCC Part 15.247 Page 40 of 54

802.11n-HT20 RF Output Power, Middle Channel

Report No.: RSZ130320005-00

802.11n-HT40 RF Output Power, High Channel

FCC Part 15.247 Page 41 of 54

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSZ130320005-00

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v02

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	100.0kPa

The testing was performed by Candy Li on 2013-04-02.

Test Mode: Transmitting

FCC Part 15.247 Page 42 of 54

Test Result: Compliance. Please refer to following plots.

802.11b Band Edge, Left Side

Report No.: RSZ130320005-00

802.11b Band Edge, Right Side

FCC Part 15.247 Page 43 of 54

802.11g Band Edge, Left Side

Report No.: RSZ130320005-00

802.11g Band Edge, Right Side

FCC Part 15.247 Page 44 of 54

802.11n-HT20 Band Edge, Left Side

Report No.: RSZ130320005-00

802.11n-HT20 Band Edge, Right Side

FCC Part 15.247 Page 45 of 54

802.11n-HT40 Band Edge, Left Side

Report No.: RSZ130320005-00

802.11n-HT40 Band Edge, Right Side

FCC Part 15.247 Page 46 of 54

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSZ130320005-00

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v02 Clause 9.1 Option 1

- 1. Set analy center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the $\overrightarrow{RBW} > 3 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measurement value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24 °C	
Relative Humidity:	55 %	
ATM Pressure:	100.0kPa	

The testing was performed by Candy Li on 2013-04-02.

Test Mode: Transmitting

FCC Part 15.247 Page 47 of 54

Test Result: Pass

Channel	Frequency (MHz)	Data Rate (Mbps)	Power spectral density (dBm/3 kHz)	Limit (dBm/3 kHz)		
	802.11b mode					
Low	2412	1	-13.72	8		
Middle	2437	1	-12.80	8		
High	2462	1	-11.95	8		
802.11g mode						
Low	2412	6	-20.52	8		
Middle	2437	6	-20.19	8		
High	2462	6	-20.24	8		
	802.11n-HT20 mode					
Low	2412	6.5	-23.94	8		
Middle	2437	6.5	-23.46	8		
High	2462	6.5	-22.46	8		
802.11n-HT40 mode						
Low	2422	13.5	-27.03	8		
Middle	2437	13.5	-26.77	8		
High	2452	13.5	-25.63	8		

Report No.: RSZ130320005-00

FCC Part 15.247 Page 48 of 54

Power Spectral Density, 802.11b Low Channel

Report No.: RSZ130320005-00

Power Spectral Density, 802.11b Middle Channel

FCC Part 15.247 Page 49 of 54

Power Spectral Density, 802.11b High Channel

Report No.: RSZ130320005-00

Power Spectral Density, 802.11g Low Channel

FCC Part 15.247 Page 50 of 54

Power Spectral Density, 802.11g Middle Channel

Report No.: RSZ130320005-00

Power Spectral Density, 802.11g High Channel

FCC Part 15.247 Page 51 of 54

Power Spectral Density, 802.11n-HT20 Low Channel

Report No.: RSZ130320005-00

Power Spectral Density, 802.11n-HT20 Middle Channel

FCC Part 15.247 Page 52 of 54

Power Spectral Density, 802.11n-HT20 High Channel

Report No.: RSZ130320005-00

Power Spectral Density, 802.11n-HT40 Low Channel

FCC Part 15.247 Page 53 of 54

Power Spectral Density, 802.11n-HT40 Middle Channel

Report No.: RSZ130320005-00

Power Spectral Density, 802.11n-HT40 High Channel

FCC Part 15.247 Page 54 of 54