EECS E6690: Statistical Learning for Biological and Information Systems Lecture 2: Multiple Linear Regression

Prof. Predrag R. Jelenković Time: Tuesday 4:10-6:40pm 1127 Seeley W. Mudd Building

Dept. of Electrical Engineering
Columbia University , NY 10027, USA
Office: 812 Schapiro Research Bldg.
Phone: (212) 854-8174
Email: predrag@ee.columbia.edu
URL: http://www.ee.columbia.edu/~predrag

Last lecture: Intro to stat learning Supervised vs. Unsupervised learning

Supervised:

Let Y be the output variable, and X the input vector $X=(X_1,X_2,\ldots,X_p).$ Then

$$Y = f(X) + \epsilon$$

- ▶ Want to estimate f
- $m{\epsilon}$ is unavoidable/irreducible noise that is independent of X, zero mean
- ▶ How to estimate *f* from the data? How to evaluate the estimate?
- Errors: irreducible, reducible, bias
- Overfitting and testing John von Neumann on overfitting: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

Unsupervised: No $f(\cdot)/Y$, just X

Last lecture: Estimation and Testing

Estimation:

- ▶ Select a class of function for f: Hypothesis class \mathcal{H} say, \mathcal{H} are linear functions, i.e., linear regression
- ▶ Select as distance metric, i.e., **loss function**, which measures the error between $f \in \mathcal{H}$ and data
- lackbox Optimization: find $\hat{f} \in \mathcal{H}$ which minimizes the error/loss function

Testing: How good is \hat{f} on unseen data? Two approaches:

- ► Analytical (first 3 lectures)
 - ▶ Make some analytical assumptions, e.g. Gaussian
 - Compute distributions for the parameters of interest
 - lacktriangle Develop statistical tests to characterize \hat{f} : t-test, F-test, etc
 - Numerical (rest of the class)
 - Split data into training and testing
 - Use training data to find \hat{f}
 - Use testing data to evaluate how good is \hat{f}

Last lecture

Install and get familiar with R (attend the recitation session)

Brief stat review:

- $ightharpoonup X_1, X_2, \ldots, X_n$ i.i.d. with mean μ and variance σ^2
- Estimators of mean and variance
 - Sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• \bar{X} and S^2 are **unbiased** estimators, i.e.

$$\mathbb{E}\bar{X} = \mu,$$
 and $\mathbb{E}S^2 = \sigma^2$

▶ Variability of \bar{X} : SE(\bar{X}) =Standard Error of the mean

$$\operatorname{Var}(\bar{X}) = \sigma^2/n \approx (\operatorname{SE}(\bar{X}))^2 = S^2/n$$

Last lecture: Variability

- ▶ If $X_1, ..., X_n$ are i.i.d. and **normal/Gaussian**, then
 - $ightharpoonup \bar{X}$ is normal
 - $ightharpoonup S^2$ has Chi square distribution:

$$\frac{n-1}{\sigma^2}S^2 \sim \chi_{n-1}^2,$$

 $\chi^2_{n-1} = \text{sum of } (n-1) \text{ squares of independent standard normal variables}$

- ullet $ar{X}$ and S^2 are independent
- t-value and Student's t-distribution:

$$\frac{\bar{X} - \mu}{\sqrt{S^2/n}} \sim \frac{\mathcal{N}(0,1)}{\sqrt{\chi_{n-1}^2/(n-1)}} = t_{n-1},$$

William Gosset, 1908, under pen name Student

... if X is not normal/Gaussian, then use the CLT

Last lecture: Hypothesis testing - t-test

 t_n has a known symmetric and bell shaped density (use $\Gamma(k+1/2) \approx \sqrt{k}\Gamma(k)$ for large k)

$$f_n(t) = \frac{\Gamma((n+1)/2)}{\sqrt{\pi n} \Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \approx \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \quad (\text{large } n)$$

t-test:

- ▶ Null hypothesis $\mathcal{H}_0: \mu = \mu_0$
- ▶ Under \mathcal{H}_0 , compute t-value and p-value:

$$t = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}}, \qquad p = \mathbb{P}[|t_{n-1}| \ge |t|]$$

- ▶ Since large values of t unlikely under \mathcal{H}_0 , typically
 - pick a significance value, say $\alpha = 0.05$
 - reject \mathcal{H}_0 if $p < \alpha$, say p < 0.05
 - ▶ accept \mathcal{H}_0 if $p \ge \alpha$, say $p \ge 0.05$

Last lecture: Linear regression

- Simple approach to supervised learning
- Assumes linear dependence of Y on X_1, X_2, \dots, X_p Almost never true in reality.
- Extremely useful both conceptually and practically
- Linear model

$$Y = \beta_0 + \beta_1 X + \epsilon$$

• Estimate β_0 and β_1 by **minimizing residuals**

$$y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

- Norm selection (distance measure) is important e.g., l_2 vs. l_1
- ▶ l_2 regression: Least squares (r_{xy} correlation coefficient)

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r_{xy} \frac{S_y}{S_x}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Last lecture: Statistics of $\hat{\beta}_0$ and $\hat{\beta}_1$

- Repeated sampling
- $ightharpoonup \hat{eta}_0$ and \hat{eta}_1 vary
- Unbiased estimators:

$$\mathbb{E}\hat{eta}_0 = eta_0 \quad \text{and} \quad \mathbb{E}\hat{eta}_1 = eta_1$$

▶ Variances: (model $Y = f(X) + \epsilon$, ϵ -Gaussian)

$$\begin{split} \operatorname{Var}(\hat{\beta}_1) &= \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \\ \operatorname{Var}(\hat{\beta}_0) &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right), \end{split}$$

where $\sigma^2 = \text{Var}(\epsilon)$

▶ An estimate of σ^2 :

$$RSE^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n-2} RSS,$$

where RSE is the Residual Standard Error

Last lecture: Hypothesis testing and confidence intervals

- ▶ Normality assumption: $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- ► *t*-statistic:

$$\frac{\hat{\beta}_1 - \beta_1}{\mathsf{SE}(\hat{\beta}_1)} \sim t_{n-2},$$

where

$$SE(\hat{\beta}_1)^2 = \frac{1}{n-2} \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- Hypothesis testing using t statistics
- ▶ (1γ) confidence interval (say $\gamma = 5\%, 1 \gamma = 95\%$):

$$[\hat{\beta}_1 - \mathsf{SE}(\hat{\beta}_1) \cdot t_{\gamma/2,n-2}, \hat{\beta}_1 + \mathsf{SE}(\hat{\beta}_1) \cdot t_{\gamma/2,n-2}]$$

where $t_{\gamma/2,n-2}$ is the $(1-\gamma/2)$ -th quantile of the t_{n-2} distribution $\mathbb{P}[-t_{\gamma/2,n-2} \leq t_{n-2} \leq t_{\gamma/2,n-2}] = 1-\gamma$, i.e,

$$\mathbb{P}[\hat{\beta}_1 - \mathsf{SE}(\hat{\beta}_1) \cdot t_{\gamma/2,n-2} \leq \beta_1 \leq \hat{\beta}_1 + \mathsf{SE}(\hat{\beta}_1) \cdot t_{\gamma/2,n-2}] = 1 - \gamma$$

Multiple linear regression

Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Example

$$\mathsf{Sales} = \beta_0 + \beta_1 \times \mathsf{TV} + \beta_2 \times \mathsf{Radio} + \beta_3 \times \mathsf{Newspaper} + \epsilon$$

- ▶ Interpretation: β_i is the average effect on Y of a one unit increase in X_i , holding all other predictors fixed
- Notes
 - Ideally the predictors are uncorrelated
 - Correlations amongst predictors cause problems
 - increased variance of coefficients
 - tricky interpretations (example: $X_1 = X_2^2$)
 - Claims of causality should be avoided for observational data

l_2 regression

- ightharpoonup n observations: $(y_i, x_{i,1}, x_{i,2}, \ldots, x_{i,p})$
- ▶ Given estimates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$, the prediction is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p,$$

or in matrix form

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \hat{\boldsymbol{y}} = \boldsymbol{X} \hat{\boldsymbol{\beta}} = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{1,p} \\ 1 & x_{2,1} & \cdots & x_{2,p} \\ \vdots & & & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,p} \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_p \end{bmatrix}$$

▶ Minimize (over β_1, \ldots, β_p) the residual sum of squares

$$\mathsf{RSS}(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

l_2 regression: Solution

▶ Minimize RSS: Differentiating RSS(β), we get

$$\frac{\partial RSS(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2\boldsymbol{X}^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) = \boldsymbol{0}$$

▶ Solution $\beta = (\hat{\beta}_1, \dots, \hat{\beta}_p)$: assuming $X^\top X$ is full rank

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}, \qquad \hat{\boldsymbol{y}} = \boldsymbol{X} \hat{\boldsymbol{\beta}}$$

Geometry

Example: Advertising data

```
> lm2<-lm(adv$Sales~adv$TV+adv$Radio+adv$Newspaper)</pre>
> summary(1m2)
Call:
lm(formula = adv$Sales ~ adv$TV + adv$Radio + adv$Newspaper)
Residuals:
   Min
            10 Median
                           30
                                   Max
-8.8277 -0.8908 0.2418 1.1893 2.8292
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              2.938889 0.311908 9.422 <2e-16 ***
adv$TV
           0.045765 0.001395 32.809 <2e-16 ***
adv$Radio 0.188530 0.008611 21.893 <2e-16 ***
adv$Newspaper -0.001037 0.005871 -0.177 0.86
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
> cor(adv[,2:5])
                 TV
                         Radio Newspaper
                                             Sales
TV
         1.00000000 0.05480866 0.05664787 0.7822244
Radio
         0.05480866 1.00000000 0.35410375 0.5762226
Newspaper 0.05664787 0.35410375 1.00000000 0.2282990
Sales
         0.78222442 0.57622257 0.22829903 1.0000000
```

Solution: Algebraic/geometric interpretations

- Ideally $y = X\hat{\beta}$ (RSS = 0), but this equation has no solution (except in trivial cases), since $y \notin C(X)$ C(X) = column space, i.e., hyperplane formed by columns of X.
- Instead, we solve $Py=X\hat{m{\beta}}$, where $P=X(X^{\top}X)^{-1}X^{\top}$ is the l_2 -projection matrix onto C(X)
 - ▶ P is sometimes called "hat" matrix, denoted as H, since it puts a hat on y, i.e. $\hat{y} = Py \equiv Hy$
- Equivalently, $\hat{\beta}$ satisfies

$$X^{\top}y = X^{\top}X\hat{\beta}$$

- A unique solution exists when the columns of X are linearly independent in that case, $X^{T}X$ is full-rank and positive definite
- Consequences:
 - $(y \hat{y}) = (y X\hat{\beta})$ is perpendicular to C(X)
 - $\mathbf{b} \ \mathbf{0} = (y \hat{y})^{\top} X = (y Py)^{\top} X = y^{\top} (X PX)$
 - $\sum_{i=1}^{n} (y_i \hat{y}_i) = (y \hat{y})\mathbf{1} = 0$
 - $\| \boldsymbol{y} \boldsymbol{X}\boldsymbol{\beta} \|_2^2 = \| \boldsymbol{y} \boldsymbol{X}\hat{\boldsymbol{\beta}} \|_2^2 + (\hat{\boldsymbol{\beta}} \boldsymbol{\beta})^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} (\hat{\boldsymbol{\beta}} \boldsymbol{\beta})$

How good is the model fit?

- ▶ Total sum of squares: TSS = $(y \bar{y}\mathbf{1})^{\top}(y \bar{y}\mathbf{1})$
- ▶ Explained sum of squares: ESS = $(\hat{\boldsymbol{y}} \bar{y}\mathbf{1})^{\top}(\hat{\boldsymbol{y}} \bar{y}\mathbf{1})$
- ► Then

$$\begin{split} \mathsf{TSS} &= (\boldsymbol{y} - \hat{\boldsymbol{y}} + \hat{\boldsymbol{y}} - \bar{\boldsymbol{y}} \boldsymbol{1})^\top (\boldsymbol{y} - \hat{\boldsymbol{y}} + \hat{\boldsymbol{y}} - \bar{\boldsymbol{y}} \boldsymbol{1}) \\ &= \mathsf{RSS} + \mathsf{ESS} + 2 (\boldsymbol{y} - \hat{\boldsymbol{y}})^\top (\hat{\boldsymbol{y}} - \bar{\boldsymbol{y}} \boldsymbol{1}) \\ &= \mathsf{RSS} + \mathsf{ESS} + 2 (\boldsymbol{y} - \hat{\boldsymbol{y}})^\top (\boldsymbol{X} \hat{\boldsymbol{\beta}} - \boldsymbol{1} \bar{\boldsymbol{y}}) \\ &= \mathsf{RSS} + \mathsf{ESS} \end{split}$$

A measure of quality of the model

$$R^2 = \frac{\mathsf{ESS}}{\mathsf{TSS}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}}$$

▶ $R^2 \uparrow$ as more explanatory variables are added to the model – need to consider the number of variables

Example: Advertising data

> summary(lm(adv\$Sales~adv\$TV+adv\$Radio))

```
Call:
lm(formula = adv$Sales ~ adv$TV + adv$Radio)
Residuals:
   Min
           1Q Median 3Q
                                 Max
-8.7977 -0.8752 0.2422 1.1708 2.8328
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.92110 0.29449 9.919 <2e-16 ***
adv$TV 0.04575 0.00139 32.909 <2e-16 ***
adv$Radio 0.18799 0.00804 23.382 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.681 on 197 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
```

- $ightharpoonup R^2$
- ► Are all predictors useful? Which are?

Distribution of $\hat{oldsymbol{eta}}$

- ▶ Normality assumption: i.i.d. $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- $y = X\beta + \epsilon$ is also normally distributed, with mean $\mu = X\beta$, covariance matrix $\Sigma = \sigma^2 I$ and density

$$f_{\boldsymbol{y}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}$$

 $oldsymbol{\hat{eta}} = (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y}$ is also normal with

$$\mathbb{E}\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{\beta} + (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\mathbb{E}\boldsymbol{\epsilon} = \boldsymbol{\beta}$$

and

$$\begin{aligned} \mathsf{Cov}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^\top \\ &= (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{\epsilon} \, ((\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{\epsilon})^\top = \sigma^2 (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \end{aligned}$$

▶ Hence $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1})$

Residuals

lacksquare Residuals $oldsymbol{y} - oldsymbol{X} \hat{oldsymbol{eta}}$ are also normal with

$$\mathbb{E}[oldsymbol{y} - oldsymbol{X} \hat{oldsymbol{eta}}] = \mathbb{E}[oldsymbol{X} oldsymbol{eta} + oldsymbol{\epsilon} - oldsymbol{X} \hat{oldsymbol{eta}}] = oldsymbol{0}$$

and

$$\mathbb{E}(\boldsymbol{y} - \hat{\boldsymbol{y}})(\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top} = \mathbb{E}(\boldsymbol{y} - \boldsymbol{P}\boldsymbol{y})(\boldsymbol{y} - \boldsymbol{P}\boldsymbol{y})^{\top}$$
$$= \mathbb{E}(\boldsymbol{I} - \boldsymbol{P})\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}(\boldsymbol{I} - \boldsymbol{P})^{\top} = \sigma^{2}(\boldsymbol{I} - \boldsymbol{P})$$

since

$$y - \hat{y} = (I - P)y = (I - P)(X\beta + \epsilon) = (I - P)\epsilon$$

Estimating σ

$$\begin{array}{l} \blacktriangleright \ \mathsf{RSS} = (\boldsymbol{y} - \hat{\boldsymbol{y}})^\top (\boldsymbol{y} - \hat{\boldsymbol{y}}) = \boldsymbol{\epsilon}^\top (\boldsymbol{I} - \boldsymbol{P}) \boldsymbol{\epsilon}, \ \mathsf{where} \\ \\ \mathsf{tr}(\boldsymbol{I} - \boldsymbol{P}) = \mathsf{tr}(\boldsymbol{I} - \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top) \\ \\ = n - \mathsf{tr}(\boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X})^{-1}) = n - p - 1 \end{array}$$

Then it can be shown

$$\frac{\mathsf{RSS}}{\sigma^2} \sim \chi^2_{n-p-1}$$

Estimator:

$$\hat{\sigma} = \sqrt{\frac{\mathsf{RSS}}{n-p-1}}$$

Back to testing

- $\mathcal{H}_0: \, \beta_j = 0$
- ▶ Intuition: reject \mathcal{H}_0 if $\hat{\beta}_j$ is "large"
- ► How large?
- ▶ Under \mathcal{H}_0 , $\hat{\beta}_j$ is $\mathcal{N}(0, \sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})_{j,j}^{-1})$
- Consider t-statistic

$$\frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{(\boldsymbol{X}^{\top}\boldsymbol{X})_{j,j}^{-1}}} = \frac{\frac{\hat{\beta}_j}{\sigma\sqrt{(\boldsymbol{X}^{\top}\boldsymbol{X})_{j,j}^{-1}}}}{\sqrt{\frac{\mathrm{RSS}}{\sigma^2(n-p-1)}}} \sim t_{n-p-1}$$

F-test

- ▶ Better idea: use RSS to test instead of $\hat{\beta}$
- $\mathcal{H}_0: \, \beta_1 = \beta_2 = \dots = \beta_p = 0$
- \mathcal{H}_1 : exists j such that $\beta_j \neq 0$
- ▶ Under \mathcal{H}_0 , we have a null model: $Y = \beta_0 + \epsilon$
- lacksquare Let RSS $_0$ be the residual sum of squares under \mathcal{H}_0
- ▶ Under \mathcal{H}_0 :

$$\frac{\mathrm{RSS}_0 - \mathrm{RSS}}{\sigma^2} = \frac{\mathrm{TSS} - \mathrm{RSS}}{\sigma^2} \sim \chi_p^2$$

and

$$\frac{\frac{\text{TSS-RSS}}{p}}{\frac{\text{RSS}}{n-p-1}} \sim F_{p,n-p-1}$$

▶ Back to the example:

Residual standard error: 1.686 on 196 degrees of freedom Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956 F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16

F-distribution

 $lacksquare F_{k,m}$: independent $V\sim \chi_k^2$ and $W\sim \chi_m^2$ $rac{V/k}{W/m}\sim F_{k,m}$

• Mean
$$(m > 2)$$
: $m/(m-2)$

▶ Variance (m > 4): $\frac{2m^2(k+m-2)}{k(m-2)^2(m-4)}$

PDFs of F distributions

F-test

- $\mathcal{H}_0: \beta_j = 0$
- ▶ Under \mathcal{H}_0 , we have a reduced model:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{j-1} X_{j-1} + \beta_{j+1} X_{j+1} + \dots + \beta_p X_p + \epsilon$$

- ▶ Refer to the reduced model by index -j
- ▶ Intuition: while RSS \leq RSS $_{-j}$...
 - if RSS \ll RSS $_{-j}$, then reject \mathcal{H}_0
 - if RSS pprox RSS $_{-j}$, then accept \mathcal{H}_0
- ▶ Under \mathcal{H}_0 :

$$\frac{\mathsf{RSS}_{-j} - \mathsf{RSS}}{\sigma^2} \sim \chi_1^2$$

and

$$\frac{\mathsf{RSS}_{-j} - \mathsf{RSS}}{\frac{\mathsf{RSS}}{n-p-1}} \sim F_{1,n-p-1}$$

F-test

- ightharpoonup (m) denotes a sub-model obtained by a linear constraint on $oldsymbol{eta}$
- Examples
 - $\beta_1 = \beta_2 = \ldots = \beta_p : Y = \beta_0 + \epsilon$
 - $\beta_1 = \beta_2 : Y = \beta_0 + \beta_1 (X_1 + X_2) + \beta_3 X_3 + \ldots + \beta_p X_p + \epsilon$
- ▶ Testing: \mathcal{H}_0 (reduced model) vs. \mathcal{H}_1 (complete model)
- lack q < p is the number of explanatory variables in the reduced model
- ▶ Under \mathcal{H}_0 :

$$\frac{\mathsf{RSS}_{(m)} - \mathsf{RSS}}{\sigma^2} \sim \chi^2_{p-q}$$

Qualitative predictors

- Credit.csv data set
- 400 observations:

```
"", "Income", "Limit", "Rating", "Cards", "Age", "Education", "Gender", "Student", "Married", "Ethnicity", "Balance"
"1",14.891,3606,283,2,34,11," Male", "No", "Yes", "Caucasian",333
"2",106.025,6645,483,3,82,15, "Female", "Yes", "Yes", "Asian",903
"3",104.593,7075,514,4,71,11," Male", "No", "No", "Asian",580
"4",148.924,9504,681,3,36,11, "Female", "No", "No", "Asian",964
"5",55.882,4897,357,2,68,16," Male", "No", "Yes", "Caucasian",331
.
.
"398",57.872,4171,321,5,67,12, "Female", "No", "Yes", "Caucasian",138
"399",37.728,2525,192,1,44,13," Male", "No", "Yes", "Caucasian",0
"400",18.701,5524,415,5.64,7."Female", "No", "Yes", "Caucasian",0
"400",18.701,5524,415,5.64,7."Female", "No", "No", "Asian",966
```

- Quantitative predictors: Income (in thousands), Limit (credit), Rating, Cards (number of), Age, Education (years of), Balance
- Qualitative predictors (factors): Gender, Student, Married, Ethnicity

Qualitative predictors

- Dependency of Balance on Gender
- Ignore all other variables
- Gender has two levels:

$$X_i = \begin{cases} 1, & \text{if } i \text{th individual is female} \\ 0, & \text{if } i \text{th individual is male} \end{cases}$$

- ▶ Model: $Y = \beta_0 + \beta_1 X + \epsilon$
- Interpretation
 - β_0 : average Balance among males
 - $\beta_0 + \beta_1$: average Balance among females
 - \triangleright β_1 : average difference in Balance between females and males
- ► The 1/0 encoding is arbitrary. Can use another scheme only the interpretation changes

```
> credit <- read.csv("credit.csv",header=TRUE,sep=",")</pre>
> lm3<-lm(Balance~Gender.data=credit)</pre>
> summary(1m3)
Call:
lm(formula = Balance ~ Gender, data = credit)
Residuals:
   Min
            1Q Median 3Q
                                  Max
-529.54 -455.35 -60.17 334.71 1489.20
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 509.80 33.13 15.389 <2e-16 ***
GenderFemale 19.73 46.05 0.429 0.669
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 460.2 on 398 degrees of freedom
Multiple R-squared: 0.0004611, Adjusted R-squared: -0.00205
F-statistic: 0.1836 on 1 and 398 DF, p-value: 0.6685
```

Qualitative predictors

- When a factor has more than two levels, a single dummy variable can not represent all possible values
- In that case, create additional dummy variables
- Example: Ethnicity

$$X_{i,1} = \begin{cases} 1, & \text{if ith individual is Asian} \\ 0, & \text{if ith individual is not Asian} \end{cases}$$

$$X_{i,2} = \begin{cases} 1, & \text{if ith individual is Caucasian} \\ 0, & \text{if ith individual is not Caucasian} \end{cases}$$

Model:

$$Y = \begin{cases} \beta_0 + \beta_1 + \epsilon, & \text{if ith individual is Asian} \\ \beta_0 + \beta_2 + \epsilon, & \text{if ith individual is Caucasian} \\ \beta_0 + \epsilon, & \text{otherwise} \end{cases}$$

```
> lm4<-lm(Balance~Ethnicity,data=credit)
> summary(1m4)
Call:
lm(formula = Balance ~ Ethnicity, data = credit)
Residuals:
   Min
           10 Median 30 Max
-531.00 -457.08 -63.25 339.25 1480.50
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  531.00 46.32 11.464 <2e-16 ***
EthnicityAsian
              -18.69 65.02 -0.287 0.774
EthnicityCaucasian -12.50 56.68 -0.221 0.826
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 460.9 on 397 degrees of freedom
Multiple R-squared: 0.0002188, Adjusted R-squared: -0.004818
```

F-statistic: 0.04344 on 2 and 397 DF, p-value: 0.9575

Extensions: Interactions

- Relax additivity
- ▶ Back to Advertising data set
- Suppose spending money on radio advertising increases the effectiveness of TV advertising
- New model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

- X_1X_2 just multiply observations
- ► Hierarchical principle: if interaction is in the model, main effects are in the model, even if main effects are not significant

```
> lm5<-lm(Sales~TV+Radio+TV*Radio.data=adv)</pre>
> summary(1m5)
Call:
lm(formula = Sales ~ TV + Radio + TV * Radio, data = adv)
Residuals:
   Min
          10 Median 30
                                 Max
-6.3366 -0.4028 0.1831 0.5948 1.5246
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.750e+00 2.479e-01 27.233 <2e-16 ***
     1.910e-02 1.504e-03 12.699 <2e-16 ***
TV
Radio 2.886e-02 8.905e-03 3.241 0.0014 **
TV:Radio 1.086e-03 5.242e-05 20.727 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.9435 on 196 degrees of freedom
Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673
F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16
```

• $\hat{\beta}_3$: the increase in the effectiveness of TV advertising for a one unit increase in radio advertising (or vice-versa)

- Credit data set
- ▶ $Y = \mathsf{Balance}, \ X_1 = \mathsf{Income}, \ X_2 = \mathsf{Student} \in \{0, 1\}$
- ► Two models:

$$\mathsf{M}_1: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

$$\mathsf{M}_2: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

Changes in income affect students and non-students differently

150

M2

100

Extensions: Nonlinearities - Basis expansion

Auto data set: mpg vs. horsepower

- Polynomial regression
- ▶ Model: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$
- ▶ The model is still linear in β : treat X^2 as a variable

- ► Increasing the degree can cause overfitting
- Alternative transformations

Colinearity

► Credit data set:

- ▶ Rating and Limit are co-linear
- ▶ Difficult to asses individual impact on Balance
- $lackbr{L} oldsymbol{X}^ op oldsymbol{y} = oldsymbol{X}^ op oldsymbol{X} \hat{oldsymbol{eta}}$ can be numerically unstable


```
> lm8a<-lm(Balance ~ Limit + Age,data=credit)

> summary(lm8a)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -173.410901 43.828387048 -3.956589 9.005366e-05

Limit 0.173365 0.005025662 34.495944 1.627198e-121

Age -2.291486 0.672484540 -3.407492 7.226468e-04
```

```
> lm8b<-lm(Balance ~ Limit + Rating,data=credit)
```

> summary(lm8b)\$coefficients

Estimate Std. Error t value Pr(>|t|) (Intercept) -377.53679536 45.25417619 -8.3425846 1.213656s-15 Limit 0.02451438 0.06383456 0.3840298 7.011619e-01 Rating 2.20167217 0.95229387 2.3119672 2.129053e-02

RSE: Balance ~ Limit+Age

0.15 0.16 0.17 0.18 0.19 0.20 betaLimit

Prediction considerations

- Assumptions
- Uncertainties/Errors
 - Regression coefficients are noisy
 - ► The true function might not be linear (bias)
 - ▶ Measurements are noisy even when the function in known

K-NN regression: Non-parametric approach

- Linear regression is not the only approach
- K-NN: K-nearest neighbors
- Intuition: "similar" argument values should lead to "similar" function values
 - distances
 - data normalization
 - high dimensionality case
- Let $\mathcal{N}_{m{x}}^K$ be the K-nearest neighbors set of observations for $m{x}$:

$$\hat{f}(\boldsymbol{x}) = \frac{1}{K} \sum_{i \in \mathcal{N}_{\boldsymbol{x}}^K} y_i$$

- K is a parameter of the algorithm
 - ► Small *K* flexible fit, high variance
 - ▶ Large K smooth, high bias
 - ▶ How to select *K*?

► Linear model:

Reading:

ISL: Finish reading Chapter 3

ESL: Chapter 3

Homework: to be emailed separately.