97-98 Individual	1	2	2	40	3	-12	4	3	5	$-\frac{1}{2}$
Individual	6	466	7	19	8	3	9	2	10	744

07.00	1	2	2	12	3	27	4	64	5	14
97-98 Group	6	14	7	$-\frac{1}{2}$	8	1	9	20	10	19

Individual Events

II Given that $x^3 - 5x^2 + 2x + 8$ is divisible by (x - a) and (x - 2a), where a is an integer, find the value of a.

Let
$$f(x) = x^3 - 5x^2 + 2x + 8$$

$$f(-1) = -1 - 5 - 2 + 8 = 0 \Rightarrow x + 1$$
 is a factor

$$f(2) = 8 - 20 + 4 + 8 = 0 \Rightarrow x - 2$$
 is a factor

$$f(x) = (x+1)(x-2)(x-4)$$

$$a = 2$$

I2 Given that 8, a, b form an A.P. and a, b, 36 form a G.P. If a and b are both positive numbers, find the sum of a and b.

$$a = \frac{8+b}{2}$$
... (1); $b^2 = 36a$... (2)

Sub. (1) into (2):
$$b^2 = 18(8 + b)$$

$$b^2 - 18b - 144 = 0$$

$$(b+6)(b-24) = 0$$

$$b = -6$$
 (rejected) or $b = 24$

$$a = \frac{8+24}{2} = 16$$

$$a + b = 40$$

I3 Find the smallest real root of the following equation: $\frac{x}{(x-4)(x+3)} = \frac{x}{(x+4)(x-6)}$.

Reference: 1995 FI2.1

$$x(x + 4)(x - 6) = x(x - 4)(x + 3)$$

$$x(x^2 - 2x - 24) = x(x^2 - x - 12)$$

$$0 = x(x + 12)$$

$$x = 0 \text{ or } -12$$

The smallest root = -12

In figure 1, ABCD is a square. E is a point on AB such that BE = 1 and A CE = 2. Find the area of the square ABCD.

$$BC^2 = 2^2 - 1^2$$
 (Pythagoras' theorem on ΔBCE)

Area of the square = $BC^2 = 3$

If
$$2x + 3 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}$$
, find the value of x .

$$(2x + 3)^2 = 2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}} = 2 + (2x + 3)$$

$$4x^2 + 12x + 9 = 2x + 5$$

$$4x^2 + 10x + 4 = 0$$

$$2x^2 + 5x + 2 = 0$$

$$(2x + 1)(x + 2) = 0$$

$$x = -\frac{1}{2} \text{ or } -2$$

$$\therefore 2x + 3 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}} > 0$$

$$\therefore x \neq -2, x = -\frac{1}{2} \text{ only}$$

I6 Given that n is a positive integer which is less than 1000. If n is divisible by 3 or 5, find the number of possible values of *n*. (**Reference: 1993 FG8.3-4, 1994 FG8.1-2, 2015 FI3.1**) Number of multiples of 3 = 333

Number of multiples of 5 = 199

Number of multiples of 15 = 66

Number of possible n = 333 + 199 - 66 = 466

I7 In figure 2, ABCD is a rectangle with CD = 12. E is a point on CDsuch that DE = 5. M is the mid-point of AE and P, Q are points on AD and BC respectively such that PMQ is a straight line. If PM: P MQ = 5 : k, find the value of k.

Draw a straight line *HMG* // *CD* (*H* lies on *AD*, *G* lies on *BC*)

Draw a straight line
$$HMG \parallel CD (H \text{ lies on } AD, G \text{ lies on } BC)$$
 $AH = HD$ (Intercept theorem)

 $\Delta PHM \sim \Delta QGM$ (equiangular)

 $\Delta AHM \sim \Delta ADE$ (equiangular)

 $PM : MQ = HM : MG$ (ratio of sides, $\sim \Delta$'s)

 $= \frac{1}{2}DE : (HG - HM)$ (ratio of sides, $\sim \Delta$'s)

 $= 2.5 : (12 - 2.5) = 5 : 19$ (opp. sides, rectangle)

E

Ď

В

 $\boldsymbol{\varrho}$

C

В

- Find the last digit of the value of $6^{20} 5^{12} 8$. **I8** $6^1 = 6$, $6^2 = 36$, ..., the last digit of 6^{20} is 6, the last digit of 5^{12} is 5. The last digit of the number is $6-5-8 \pmod{10} = -7 = 3 \pmod{10}$
- Let a be the positive root of the equation $\sqrt{\frac{x+2}{x-1}} + \sqrt{\frac{x-1}{x+2}} = \frac{5}{2}$, find the value of a. **I9**

Cross multiplying: $2(x + 2 + x - 1) = 5\sqrt{(x-1)(x+2)}$

$$4(4x^2 + 4x + 1) = 25(x^2 + x - 2)$$

$$\Rightarrow 9x^2 + 9x - 54 = 0$$

$$\Rightarrow 9(x-2)(x+3) = 0$$

$$\Rightarrow a = x = 2$$

k = 19

I10 Find the sum of all positive factors of 240.

Reference 1993 HI8, 1994 FI3.2, 1997 HI3, 1998 FI1.4, 2002 FG4.1, 2005 FI4.4 $240 = 2^4 \times 3 \times 5$

Positive factors are in the form $2^a 3^b 5^c$, $0 \le a \le 4$, $0 \le b$, $c \le 1$, a, b, c are integers.

Sum of positive factors = $(1 + 2 + 2^2 + 2^3 + 2^4)(1 + 3)(1 + 5) = 31 \times 4 \times 6 = 744$

Group Events

G1 If $x + \frac{1}{x} = 2$, find the value of $x^3 + \frac{1}{x^3}$.

Reference: 1984 FG10.2

$$x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2 = 2$$

$$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \frac{1}{x^{2}}\right) = 2 \times (2 - 1) = 2$$

G2 In Figure 1, ABC is a triangle. AD and BE are the bisectors of the exterior angles A and B respectively meeting CB and AC produced at D and E. Let AD = BE = AB and $\angle BAC = a^{\circ}$. Find the value of a. Reference: 1986 上海市初中數學競賽

$$\angle BAD = \frac{180^{\circ} - a^{\circ}}{2} = 90^{\circ} - \frac{a^{\circ}}{2}$$
 (adj. \angle s on st. line, \angle bisector)

$$\angle ABD = \frac{180^{\circ} - \angle BAD}{2} = 45^{\circ} + \frac{a^{\circ}}{4}$$
 (\(\angle \text{ sum of } \Delta ABD\), base \(\angle \text{s isos. } \Delta\)

$$\angle CBE = \frac{\angle ABD}{2} = 22.5^{\circ} + \frac{a^{\circ}}{8}$$
 (vert. opp. \angle s, bisector)

$$\angle ABE = \angle ABC + \angle CBE = 180^{\circ} - \angle ABD + \angle CBE$$

$$=135^{\circ} - \frac{a^{\circ}}{4} + 22.5^{\circ} + \frac{a^{\circ}}{8} = 157.5^{\circ} - \frac{a^{\circ}}{8}$$

$$\angle AEB = a^{\circ}$$
 (base \angle s isosceles Δ)

$$a^{\circ} + a^{\circ} + 157.5^{\circ} - \frac{a^{\circ}}{8} = 180^{\circ}$$
 (\angle sum of $\triangle ABE$)

$$a = 12$$

G3 If $-6 \le a \le 4$ and $3 \le b \le 6$, find the greatest value of $a^2 - b^2$. $0 \le a^2 \le 36$ and $9 \le b^2 \le 36$

$$-36 \le a^2 - b^2 \le 27$$

$$\Rightarrow$$
 The greatest value = 27.

G4 Let a, b, c be integers such that $a^2 = b^3 = c$. If c > 1, find the smallest value of c.

Let
$$a = k^3$$
, $b = k^2$, $c = k^6$

$$c > 1 \Rightarrow k > 1$$

The smallest k = 2

 \Rightarrow The smallest $c = 2^6 = 64$

Answers: (1997-98 HKMO Heat Events)

G5 In figure 2, the area of the parallelogram *ABCD* is 120. *M* and *N* are the mid-points of *AB* and *BC* respectively. *AN* intersects *MD* and *BD* at points *P* and *Q* respectively. Find the area of *BQPM*. (Reference: 2016HI14, 2019 HI11)

Produce *DM* and *CB* to meet at *R*.

Let BC = 2a. Then BN = NC = a (mid-point)

 $\Delta AQD \sim \Delta BQN$ (equiangular)

$$\frac{BQ}{QD} = \frac{BN}{AD}$$
 (ratio of sides, $\sim \Delta$'s)

$$=\frac{1}{2}$$
 (N = mid-point, opp. sides of //-gram)

Area of
$$\triangle ABD = \frac{1}{2} \times 120 = 60$$

Area of
$$\triangle AQD = \frac{2}{3} \times \triangle ABD = 40$$

$$\frac{\text{Area of } \Delta \text{BQN}}{\text{Area of } \Delta \text{AQD}} = \left(\frac{BN}{AD}\right)^2 = \frac{1}{4}$$

$$\therefore \text{Area of } \Delta BQN = \frac{1}{4} \times 40 = 10 \dots (1)$$

As M is the mid-point, $\triangle AMD \cong \triangle BMR$ (ASA)

$$\Rightarrow$$
 RM = MD (corr. sides $\cong \Delta$'s)(2)

Also $\triangle APD \sim \triangle NPR$ (equiangular)

$$\frac{DP}{PR} = \frac{AD}{NR} \text{ (ratio of sides, $\sim \Delta$'s)}$$

$$= \frac{2a}{3a} = \frac{2}{3} \text{ (opp. sides of $//$-gram, corr. sides } \cong \Delta$'s)(3)$$

Combine (2) and (3)

$$PD = \frac{2}{5}RD$$
; $MD = \frac{1}{2}RD$

$$MP = MD - PD = \frac{1}{2}RD - \frac{2}{5}RD = \frac{1}{10}RD$$

$$\Rightarrow \frac{MP}{PD} = \frac{\frac{1}{10}RD}{\frac{2}{5}RD} = \frac{1}{4}\dots(4)$$

Area of
$$\triangle AMD = \frac{1}{4} \times 120 = 30$$

By (4): Area of
$$\triangle AMP = \frac{1}{5} \times \text{Area of } \triangle AMD = \frac{1}{5} \times 30 = 6$$
(5)

Area of
$$\triangle ABN = \frac{1}{4} \times 120 = 30$$

:. Area of
$$BQPM$$
 = Area of $\triangle ABN$ - Area of $\triangle AMP$ - Area of $\triangle BQN$ = $30 - 6 - 10 = 14$ (by (1) and (5))

In figure 3, find the number of possible paths from point A to point A B following the direction of arrow heads.

Reference 1983 FI4.1, 2000 HI4, 2007 HG5

The numbers at each of the vertices of in the following figure show the number of possible

- Find the smallest real root of the equation (x-2)(2x-1) = 5.

$$2x^2 - 5x - 3 = 0$$

$$(2x+1)(x-3) = 0$$

$$x = -\frac{1}{2}$$
 or 3

The smallest real root is $-\frac{1}{2}$.

- In figure 4, four circles with radius 1 touch each other inside a square. Find the shaded area. (Correct your answer to the nearest integer.) The line segments joining the four centres form a square of sides = 2Shaded area = $2^2 - \pi \cdot 1^2 \approx 1$
- G9 In figure 5, ABCD is a square and points E, F, G, H are the mid-points Н of sides AB, BC, CD, DA respectively, find the number of right-angled A triangles in the figure. (Reference: 1995 HG9)

Let the shortest side of the smallest right-angled triangle be 1.
Then
$$AE = \sqrt{2}$$
, $EH = 2$, $AB = 2\sqrt{2}$, $AC = 4$

Then
$$AE = \sqrt{2}$$
, $EH = 2$, $AB = 2\sqrt{2}$, $AC = 4$

$$E$$
 G

D

C

We count the number of right-angled triangles with different hypotenuses.

Hypotenuse	Number of triangles
$\sqrt{2}$	8
2	4
$2\sqrt{2}$	4
4	4

Total number of triangles = 20

G10 A test is composed of 25 multiple-choice questions. 4 marks will be awarded for each correct answer and 1 mark will be deducted for each incorrect answer. A pupil answered all questions and got 70 marks. How many questions did the pupil answer correctly?

Reference: 1994 FI1.2

Suppose he answer x questions correctly and 25 - x question wrongly.

$$4 \cdot x - (25 - x) = 70$$

$$x = 19$$