

UNIVERSITÄT ULM 04.03.2021

Dr. Jan-Willem Liebezeit Raphael Wagner WiSe 20/21

89 Punkte

Klausur: Lineare Algebra für Informatik

- 1. Es seien $(\mathbb{K},+,\cdot)$ ein beliebiger Körper und $\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} \in \mathbb{K}^2$.
 - i) Begründen Sie kurz, warum \mathbb{K}^2 ein Vektorraum ist. (2)
 - ii) Zeigen Sie, dass $\begin{pmatrix} a \\ b \end{pmatrix}$ und $\begin{pmatrix} c \\ d \end{pmatrix}$ genau dann linear abhängig sind, wenn (4)

$$a \cdot d - b \cdot c = 0.$$

- 2. i) Es seien V ein \mathbb{K} -Vektorraum und $M \subset V$. Unter welchen Bedingungen heißt (2) M ein Unterraum von V?
 - ii) Zeigen Sie, dass für $n \in \mathbb{N}$ (5)

$$U = \left\{ A = (a_{ij}) \in M(n \times n, \mathbb{R}) \mid \sum_{k=1}^{n} a_{kk} = 0 \right\}$$

ein Unterraum von $M(n \times n, \mathbb{R})$ ist.

- iii) Bestimmen Sie eine Basis und die Dimension von U im Fall n=2. (5)
- 3. Überprüfen Sie, ob das folgende lineare Gleichungssystem lösbar, eindeutig lösbar (8) oder universell lösbar ist, und bestimmen Sie die Menge aller Lösungen.

$$2x_1 + x_2 + 3x_3 + 5x_4 = 1$$
$$x_1 + 2x_2 + x_3 + x_4 = 1$$
$$2x_1 + 2x_2 + 2x_3 = 1$$

4. Wir betrachten die Menge

$$G = \left\{ \left. \begin{pmatrix} z & -\overline{w} \\ w & \overline{z} \end{pmatrix} \in M(2 \times 2, \mathbb{C}) \; \middle| \; z, w \in \mathbb{C} \; \right\}$$

und o bezeichne die gewöhnliche Multiplikation von Matrizen.

- i) Wann heißt ein Paar (G, \circ) (im Allgemeinen) eine Gruppe? (4)
- ii) Begründen Sie: Welche Gruppenaxiome erfüllt (G, \circ) , welche ggf. nicht? (8)
- 5. Es seien V ein \mathbb{K} -Vektorraum mit dim V = n und $F : V \to V$ eine lineare Abbildung mit

$$F \cdot F = 0$$
.

Weiter sei $A \in M(n \times n, \mathbb{K})$ die Matrix von F bezüglich einer fest gewählten Basis. Zeigen Sie Bild $F \subset \operatorname{Ker} F$ und folgern Sie damit $\operatorname{rg}(A) \leq \frac{n}{2}$.

6. Es sei $V = \mathbb{P}_2(\mathbb{R})$ der Raum der reellen Polynome vom Grad höchstens 2 und $F: V \to V$ sei definiert durch

$$F(P)(x) = P(x) + P(x+1)$$

für alle $P \in V$ und alle $x \in \mathbb{R}$.

- i) Geben Sie F(P) für $P(x) = x^2 x + 1$ an. (1)
- ii) Zeigen Sie, dass F eine lineare Abbildung ist. (4)
- iii) Geben Sie die Matrix von F bezüglich der Basis $\mathcal{B} = \{1, x, x^2\}$ von V, mit (5) den Vektoren in der hier angegebenen Reihenfolge, an.
- iv) Bestimmen Sie ein Polynom $P \in V$, sodass $F(P)(x) = 2 4x + x^2$ für alle (5) $x \in \mathbb{R}$.
- 7. i) Es sei $S \in M(4 \times 4, \mathbb{R})$ invertierbar. Begründen Sie, welche der folgenden (9) Matrizen $A, B, C, D \in M(4 \times 4, \mathbb{R})$ diagonalisierbar über \mathbb{R} sind

$$- A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$

-
$$B = S^{-1}B_2S$$
, wobei $B_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \in M(4 \times 4, \mathbb{R}).$

$$-C = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$-D = A + C.$$

ii) Es sei (10)

$$E = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & -2 & 0 & -1 \\ 2 & -4 & 1 & 0 \end{pmatrix} \in M(4 \times 4, \mathbb{C}).$$

Bestimmen Sie eine invertierbare Matrix $S_1 \in M(4 \times 4, \mathbb{C})$, sodass $S_1^{-1}ES_1$ eine Diagonalmatrix ist. Geben Sie anschließend eine weitere invertierbare, von S_1 verschiedene Matrix $S_2 \in M(4 \times 4, \mathbb{C})$ an, sodass auch $S_2^{-1}ES_2$ eine Diagonalmatrix ist.

iii) Es seien $n, k \in \mathbb{N}$ und $G \in M(n \times n, \mathbb{R}), H \in M(k \times k, \mathbb{R})$ und $J \in M(n \times k, \mathbb{R})$. (8) Mit $O \in M(k \times n, \mathbb{R})$ bezeichnen wir die $(k \times n)$ -Nullmatrix und setzen

$$F = \begin{pmatrix} G & J \\ O & H \end{pmatrix} \in M((n+k) \times (n+k), \mathbb{R}).$$

Zeigen Sie: Ist $\lambda \in \mathbb{R}$ ein Eigenwert von G oder H, dann ist λ auch ein Eigenwert von F.