请扫码登记

无线网名称: BUAA_SME3, 无线网密码: sme41sme

扫码登记

课程微信群

微电子器件实验

彭守仲

北京航空航天大学 微电子学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年10月28日

电子元器件: 三极管

■ 三极管的功能:放大和开关

- 三极管是一种控制电流的半导体器件,其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
- ▶ 将"交流小信号"放大

双极型晶体管的直流特性测量与分析

■ 输出特性曲线

口 基本测试原理电路如右图所示,测试时用逐点测试的方法把一条条曲线

描绘出来。

双极型晶体管的直流特性测量与分析

C9018

- 输出特性曲线
- 1.调节*E_B*使

 $I_B = 20/40/60/80/100 \mu A$

2.调节*E*c使

E_C=0.1-1V以及1-10V

 $3.测量 V_{CE} 和 I_C 并画图$

电压源 产生电压*E_B和E_C*

手持式万用表1测量电压 V_{CE}

手持式万用表2 测量电流 I_c

台式万用表 测量电流/₈

步骤1:确保工作在放大区

- 直流输出特性测量
- 1.调节*E_B*使*I_B*=60µA
- 2.调节*E*c使

E_C=0.1-1V以及1-20V

- $3.测量 V_{CE} 和 I_C 并画图$
- 4.思考: 频率特性测量时

 E_{C} 应设置为多少伏?

电压源 产生电压*E_B和E_C*

C9018

手持式万用表1 测量电压 V_{CF}

手持式万用表2 测量电流 I_c

台式万用表 测量电流/₈

步骤2: 放大特性测量

■ 放大特性测量

- 1.使 I_B =60 μ A, E_C =15V
- 2.任意波形发生器输出

1KHz、1V(2.5V,5V,

7.5V,10V,15V)信号V_b

3.用示波器分别测量

R1和R2的电压波形

4.计算电流放大系数i_/i_b

任意波形发生器 产生交流信号 v_n

数字示波器 测量R1和R2电压波形

电子元器件: 三极管

■ 三极管的功能:放大和开关

步骤3:频率特性测量

C9018

■ 频率特性测量

- 1.使 I_B =60 μ A, E_C =15V, V_b 峰峰值10V
- 2.改变v_b的频率(1KHz,

10KHz,100KHz,250KHz,

1MHz,2MHz,3MHz等)

测量R2的电压波形和RMS

- 3.计算电流放大系数 $h_{fe}=i_c/i_b$
- 4. h_{fe}下降为0.7为截止频率f_β
- 6.特征频率 $f_T = h_{fe} \times f_{\beta}$

任意波形发生器 产生交流信号*v_b*

数字示波器 测量R1和R2电压波形

课后思考

■ 课后思考

- 1. 电阻Rc的直流分压如何随 E_c 变化?
- 2. 当交流输入信号 ٧, 过大时会出现什么现象? 为什么?

步骤1:确保工作在放大区

- 直流输出特性测量
- 1.调节*E_B*使*I_B*=60µA
- 2.调节*E*c使

E_C=0.1-1V以及1-20V

 $3.测量 V_{CE} 和 I_C 并画图$

4.思考: 频率特性测量时

 E_{C} 应设置为多少伏?

电压源 产生电压*E_B和E_C*

C9018

手持式万用表1 测量电压*V_{CF}*

手持式万用表2 测量电流 I_c

台式万用表 测量电流/₈

步骤2: 放大特性测量

■ 放大特性测量

- 1.使 I_B =60 μ A, E_C =15V
- 2.任意波形发生器输出

1KHz、1V(2.5V,5V,

7.5V,10V,15V)信号V_b

3.用示波器分别测量

R1和R2的电压波形

4.计算电流放大系数 i_c/i_b

任意波形发生器 产生交流信号 v_n

数字示波器 测量R1和R2电压波形

步骤3:频率特性测量

C9018

■ 频率特性测量

- 1.使 I_B =60 μ A, E_C =15V, V_b 峰峰值10V
- 2.改变v_b的频率(1KHz,

10KHz,100KHz,250KHz,

1MHz,2MHz,3MHz等)

测量R2的电压波形和RMS

- 3.计算电流放大系数 $h_{fe}=i_c/i_b$
- 4. h_{fe}下降为0.7为截止频率f_β
- 6.特征频率 $f_T = h_{fe} \times f_{\beta}$

任意波形发生器 产生交流信号 v_n

数字示波器 测量R1和R2电压波形