

AMENDMENT(S) TO THE CLAIMS

- 1 1. (Currently amended) A method of classifying an image, the method comprising:
- 2 obtaining an image;
- 3 determining one or more classification thresholds;
- 4 determining [[the]] a concentration ratio for the image that indicates a relative level of
5 smoothness of a distribution of a population of elements in the image;
- 6 comparing the concentration ratio to at least one of the one or more classification
7 thresholds; and
- 8 classifying the image based on the comparison of the concentration ratio to at least one of
9 the one or more classification thresholds.
- 1 2. (Original) A method as claimed in claim 1 wherein determining the concentration ratio for the
2 image includes determining the luminance components of pixels in the image.
- 1 3. (Original) A method as claimed in claim 1 wherein determining the concentration ratio for the
2 image includes determining the grayscale components of the image.
- 1 4. (Original) A method as claimed in claim 1 wherein determining the concentration ratio for the
2 image includes generating a histogram for the image.
- 1 5. (Original) A method as claimed in claim 1 wherein determining one or more classification
2 thresholds includes a training process.
- 1 6. (Previously presented) A method as claimed in claim 5 wherein the training process includes
2 analyzing a set of images having known classifications.

1 7. (Previously presented) A method as claimed in claim 6 wherein analyzing a set of images
2 having known classifications includes determining a concentration ratio for each image in the set
3 of images.

1 8. (Previously presented) A method as claimed in claim 7 wherein determining the concentration
2 ratio for each image in the set of images includes generating a histogram for each image.

1 9. (Previously presented) A method as claimed in claim 5 wherein determining one or more
2 classification thresholds includes determining a threshold for text images and a threshold for
3 photographic images.

1 10. (Previously presented) A method as claimed in claim 5 wherein classifying the image based
2 on the comparison of the concentration ratio to at least one of the one or more classification
3 thresholds is performed according to the following

4 If ($CR < T$) then image type = text

5 If ($T \leq CR < P$) then image type = graphic

6 If ($P \leq CR$) then image type = photographic

7 where CR is a concentration ratio of the image, T is a threshold for text images and P is a
8 threshold for photographic images.

1 11. (Currently amended) A method as claimed in claim 1 A method of classifying an image, the
2 method comprising:

3 obtaining an image;

4 determining one or more classification thresholds;

5 determining a concentration ratio for the image;

6 comparing the concentration ratio to at least one of the one or more classification
7 thresholds; and
8 classifying the image based on the comparison of the concentration ratio to at least one of
9 the one or more classification thresholds, wherein determining the concentration ratio for the
10 image includes determining the concentration ratio according to the following

$$11 \quad CR = \left(\sum_L P_L \right)^n / \left(\sum_L P_L^n \right)$$

12 where CR is a concentration ratio, n is greater than 1, and P_L is a population at a level L .

1 12. (Previously presented) A method as claimed in claim 11 wherein n is an even integer.

1 13. (Currently amended) An image classifying processor, the processor configured to obtain an
2 image, obtain one or more classification thresholds, determine a concentration ratio for the image
3 that indicates a relative level of smoothness of a distribution of a population of elements in the
4 image, compare the concentration ratio to at least one of the one or more classification thresholds,
5 and classify the image based on the comparison of the concentration ratio to at least one of the
6 one or more classification thresholds.

1 14. (Previously presented) An image classifying processor as claimed in claim 13 wherein the
2 processor is configured to determine the luminance components of pixels in the image.

1 15. (Previously presented) An image classifying processor as claimed in claim 13 wherein the
2 processor is configured to determine the grayscale components of the image.

1 16. (Previously presented) An image classifying processor as claimed in claim 13 wherein the
2 processor is configured to generate a histogram for the image.

- 1 17. (Previously presented) An image classifying processor as claimed in claim 13 wherein the
2 processor includes a memory and the memory includes a threshold for text images, and a
3 threshold for photographic images.
- 1 18. (Previously presented) An image classifying processor as claimed in claim 13 wherein the
2 processor is configured to classify the image based on the comparison of the concentration ratio to
3 at least one of the one or more classification thresholds according to the following
- 4 If ($CR < T$) then image type = text
5 If ($T \leq CR < P$) then image type = graphic
6 If ($P \leq CR$) then image type = photographic
7 where CR is a concentration ratio of the image, T is a threshold for text images, and P is a
8 threshold for photographic images.
- 1 19. (Currently amended) An image classifying processor as claimed in claim 13 An image
2 classifying processor, the processor configured to obtain an image, obtain one or more
3 classification thresholds, determine a concentration ratio for the image, compare the concentration
4 ratio to at least one of the one or more classification thresholds, and classify the image based on
5 the comparison of the concentration ratio to at least one of the one or more classification
6 thresholds, wherein the processor is configured to determine the concentration ratio for the image
7 according to the following:
- 8
$$CR = \left(\sum_L P_L \right)^n / \left(\sum_L P_L^n \right)$$
- 9 where CR is a concentration ratio, n is greater than 1, and P_L is a population at a level L .

- 1 20. (Currently amended) A method of processing an image, the method comprising:
- 2 capturing an image of an object;
- 3 classifying the image in a class using a concentration ratio;
- 4 using the class to modify the operation of an image capturing device; and
- 5 applying controlled, equalization to an image generated by the image capture device,
- 6 where the controlled, histogram equalization uses a concentration ratio that indicates a relative
- 7 level of smoothness of a distribution of a population of elements in the image.
- 1 21. (Currently amended) An image processing system comprising:
- 2 an image capture device;
- 3 an image classifier coupled to the image capture device in a feedback loop; and
- 4 a controlled, equalization processor coupled to the image capture device, that uses a
- 5 concentration ratio that indicates a relative level of smoothness of a distribution of a population of
- 6 elements in the image.
- 1 22. (Currently amended) An image processing system comprising:
- 2 an image capture device configured to capture an image; and
- 3 an image classifier coupled to the image capture device in a feedback loop, the image
- 4 classifier configured to determine a concentration ratio for the image that indicates a relative level
- 5 of smoothness of a distribution of a population of elements in the image, compare the
- 6 concentration ratio to at least one or more classification thresholds, and classify the image based
- 7 on the comparison of the concentration ratio to at least one of the one or more classification
- 8 thresholds.
- 1 23. (Currently amended) A computer-readable medium containing instructions for processing an
- 2 image by:
- 3 obtaining an image;

4 determining one or more classification thresholds;
5 determining [[the]] a concentration ratio for the image that indicates a relative level of
6 smoothness of a distribution of a population of elements in the image;
7 comparing the concentration ratio to at least one of the one or more classification
8 thresholds; and
9 classifying the image based on the comparison of the concentration ratio to at least one of
10 the one or more classification thresholds.

1 24. (New) The method as claimed in claim 20, wherein the concentration ratio is determined
2 according to the following:

$$3 CR = \left(\sum_L P_L \right)^n / \left(\sum_L P_L^n \right)$$

4 where CR is the concentration ratio, n is greater than 1, and P_L is a population at a level L .

1 25. (New) The image processing system as claimed in claim 21, wherein the processor is
2 configured to determine the concentration ratio for the image according to the following:

$$3 CR = \left(\sum_L P_L \right)^n / \left(\sum_L P_L^n \right)$$

4 where CR is the concentration ratio, n is greater than 1, and P_L is a population at a level L .

1 26. (New) The image processing system as claimed in claim 22, wherein the image classifier is
2 configured to determine the concentration ratio for the image according to the following:

$$3 CR = \left(\sum_L P_L \right)^n / \left(\sum_L P_L^n \right)$$

4 where CR is the concentration ratio, n is greater than 1, and P_L is a population at a level L .