Package 'MG1StationaryProbability'

June 13, 2023

```
Type Package
Title Computes Stationary Distribution for M/G/1 Queuing System
URL https://github.com/MashroomMole/MG1StationaryProbability
Version 0.1.2
Description The idea of a computational algorithm described in the article by An-
     dronov M. et al. (2022) <a href="https:">https:</a>
     //link.springer.com/chapter/10.1007/978-3-030-92507-9_13>.
     The purpose of this package is to automate computations for a Markov-Modulated M/G/1 queu-
     ing system with alternating Poisson flow of arrivals. It offers a set of functions to calculate vari-
     ous mean indices of the system, including mean flow intensity, mean ser-
     vice busy and idle times, and the system's stationary probability.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
BugReports https://github.com/MashroomMole/MG1StationaryProbability/issues
Imports parallel, stats, doParallel(>= 1.0.17), foreach(>= 1.5.2),
     memoise(>= 2.0.1),
Depends R (>= 4.0.0)
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Olga Zoldaka [aut, cre]
Maintainer Olga Zoldaka <zoldaka@gmail.com>
Repository CRAN
Date/Publication 2023-06-13 07:00:12 UTC
```

2 b

R topics documented:

)	Service continuous density distribution	
lex		20
	stationaryProbabilities_cached	18
	stationaryProbabilitiesOfEmptyStates	
	stationaryProbabilities	
	serviceDistribution	17
	resultingMatrix	16
	PrTr	15
		15
	probabilityOfNArrival	
	probabilitiesMatrix	
	pi	
	1	12
	r	12
	not_i	
	MST	11
	MET	10
	1.3	10
	meanTimeOfBusyPeriodEW	9
	meanTimeOfBusyPeriodETW	9
	meanTimeEmptyFixed	8
	meanSoujournTime	8
	meanSojournTimeWithFSP	7
	loadCoefficient	6
	h	ϵ
	flowIntensityMean	5
	finalStateProbability	5
	ENU	4
	EN	3
	densityOfSojournTimeAtState_i	2
	b	- 2

Description

Service continuous density distribution

Usage

b(t)

Arguments

t time value

Value

density function value (double) given t

```
{\tt densityOfSojournTimeAtState\_i}
```

The density of the sojourn time in state i with probability that

Description

The density of the sojourn time in state i with probability that

Usage

```
densityOfSojournTimeAtState_i(i, j, t, dt, m = c(0.2, 0.3), mMax = 14)
```

Arguments

i	MC i-th state
j	MC j-th state
t	time value
dt	time increment
m	distribution parameters vector of sojourn times in alternating environment states
mMax	max number of addends in sums

Value

double

Examples

```
densityOfSojournTimeAtState\_i(1, \ 0, \ 10, \ 1, \ m=c(1, \ 2), \ mMax=5)
```

ΕN

Expectation of number of arriving claims depending on i and j

Description

Expectation of number of arriving claims depending on i and j

Usage

```
EN(i, j, t, m = c(0.2, 0.3), lambda = c(1, 2))
```

4 ENU

Arguments

i MC i-th statej MC j-th statet time value

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

Value

double

Examples

EN(1, 1, 2)

ENU

Expectation of number of arriving claims

Description

Expectation of number of arriving claims

Usage

ENU(i, t)

Arguments

i MC i-th state t time value

Value

double

Examples

ENU(1, 3)

finalStateProbability 5

finalStateProbability Probability of the final state

Description

Probability of the final state

Usage

```
finalStateProbability(i, j, t, m = c(0.2, 0.3))
```

Arguments

- i MC i-th statej MC j-th statet time value
- m distribution parameters vector of sojourn times in alternating environment states

Value

double

Examples

```
finalStateProbability(0, 1, 10)
```

flowIntensityMean

The mean intensity of the arrived flow

Description

The mean intensity of the arrived flow

Usage

```
flowIntensityMean(lambda = c(1, 2))
```

Arguments

lambda

Poisson flow intensity vector

Value

mean intensity value (double) of the arrived flow

6 loadCoefficient

h

Density of empty time for initial state i jointly with probability of final state j

Description

Density of empty time for initial state i jointly with probability of final state j

Usage

```
h(i, j, t, m = c(0.2, 0.3), lambda = c(1, 2))
```

Arguments

i MC i-th statej MC j-th statet time value

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

Value

double

Examples

```
h(1, 1, 2, m = c(2.5, 0.2))
```

 ${\tt loadCoefficient}$

Load coefficient

Description

Load coefficient

Usage

```
loadCoefficient(m, lambda)
```

Arguments

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

Value

load coefficient value (double) of the arriving flow

Examples

```
loadCoefficient(m = c(0.2, 0.3), lambda = c(1,2))
```

 ${\tt meanSojournTimeWithFSP}$

Mean sojourn time in the initial state i jointly with final probability of state j

Description

Mean sojourn time in the initial state i jointly with final probability of state j

Usage

```
meanSojournTimeWithFSP(i, j, t, m = c(0.2, 0.3))
```

Arguments

- i MC i-th state
- j MC j-th state
- t time value
- m distribution parameters vector of sojourn times in alternating environment states

Value

double

Examples

```
meanSojournTimeWithFSP(1, 0, 3)
```

 ${\tt meanSoujournTime}$

Mean sojourn time in the initial state i (without final probability of state j)

Description

Mean sojourn time in the initial state i (without final probability of state j)

Usage

```
meanSoujournTime(i, t)
```

Arguments

i MC i-th state

t time value

Value

double

Examples

```
meanSoujournTime(0, 10)
```

 ${\tt meanTimeEmptyFixed}$

Mean time of empty period in fixed state i

Description

Mean time of empty period in fixed state i

Usage

```
meanTimeEmptyFixed(i)
```

Arguments

i MC i-th state

Value

complex

meanTimeOfBusyPeriodETW

Mean time of busy period

Description

Mean time of busy period

Usage

```
meanTimeOfBusyPeriodETW(m = c(0.2, 0.3), lambda = c(1, 2))
```

Arguments

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector description

Value

complex

meanTimeOfBusyPeriodEW

Mean time of busy period multiplied by load coefficient

Description

Mean time of busy period multiplied by load coefficient

Usage

```
meanTimeOfBusyPeriodEW(m = c(0.2, 0.3), lambda = c(1, 2))
```

Arguments

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

Value

complex

10 MET

meanTimeOfEmptyPeriod Mean time of empty period given the stationary probability

Description

Mean time of empty period given the stationary probability

Usage

```
meanTimeOfEmptyPeriod()
```

Value

complex

MET

Mean idle time if initial state i

Description

Mean idle time if initial state i

Usage

```
MET(i, m = c(0.2, 0.3), lambda = c(1, 2), tmax = 12)
```

Arguments

i MC i-th state

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

tmax upper integration limit

Value

double

Examples

MET(1)

MST 11

MST

Mean empty time sojourn time in the initial state i during the empty period

Description

Mean empty time sojourn time in the initial state i during the empty period

Usage

```
MST(i, m = c(0.2, 0.3), lambda = c(1, 2), tmax = 12)
```

Arguments

i MC i-th state

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

tmax upper integration limit

Value

double

Examples

MST(1)

not_i

Helper "not i" function

Description

Helper "not i" function

Usage

$$not_i(i = 0)$$

Arguments

i MC i-th state

Value

```
2 if i = 0 and 1 if i = 1
```

12 p1

p0

The stationary probabilities of the environment state 0

Description

The stationary probabilities of the environment state 0

Usage

```
p0(m = c(0.2, 0.3))
```

Arguments

m

distribution parameters vector of sojourn times in alternating environment states

Value

stationary probability of the environment state 0 (double)

Examples

p0()

р1

The stationary probabilities of the environment state 1

Description

The stationary probabilities of the environment state 1

Usage

```
p1(m = c(0.2, 0.3))
```

Arguments

m

distribution parameters vector of sojourn times in alternating environment states

Value

stationary probability of the environment state 1 (double)

pi 13

рi

Stationary probabilities for continuous time environment's state

Description

Stationary probabilities for continuous time environment's state

Usage

```
pi(m = c(0.2, 0.3))
```

Arguments

m

distribution parameters vector of sojourn times in alternating environment states

Value

double

Examples

pi()

probabilitiesMatrix

Probability matrix calculation. Rows represent arriving probabilities at state i and columns represent the same for state j

Description

Probability matrix calculation. Rows represent arriving probabilities at state i and columns represent the same for state j

Usage

```
probabilitiesMatrix(
    i,
    j,
    m = c(0.2, 0.3),
    lambda = c(1, 2),
    tmax = 12,
    nmax = 5
)
```

Arguments

i	MC i-th state
i	MC j-th state

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

tmax upper integration limit

nmax limitation for number of arriving claims

Value

matrix with nmax rows and columns

Description

Probability of n arrival during time t jointly with final state j if initial state is i

Usage

```
probabilityOfNArrival(i, j, n, t, m = c(0.2, 0.3), lambda = c(1, 2))
```

Arguments

i	MC i-th state
j	MC j-th state
n	number of arrivals
t	upper integration limit

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

Value

double

Examples

```
probabilityOfNArrival(1, 0, 10, 3, m=c(0.5, 0.3), lambda=c(2, 1))
```

```
probabilityOfNArrivalW
```

Probability of n arrival during time t (without joint probability of j)

Description

Probability of n arrival during time t (without joint probability of j)

Usage

```
probabilityOfNArrivalW(i, n, t, m = c(0.2, 0.3), lambda = c(1, 2))
```

Arguments

i	MC i-th state

n number of arrivals

t time value

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

Value

double

Examples

```
probabilityOfNArrivalW(1, 2, 3)
```

PrTr

Probability to have state j in the ending of the idle period, if initially we have state i

Description

Probability to have state j in the ending of the idle period, if initially we have state i

Usage

```
PrTr(i, j, m = c(0.2, 0.3), lambda = c(1, 2), tmax = 12)
```

16 resultingMatrix

Arguments

i MC i-th statej MC j-th state

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

tmax upper integration limit

Value

double

Examples

PrTr(1, 0)

resulting Matrix

Resulting probabilities matrix calculation

Description

Resulting probabilities matrix calculation

Usage

```
resultingMatrix(m = c(0.2, 0.3), lambda = c(1, 2), tmax = 12, nmax = 5)
```

Arguments

distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

tmax upper integration limit

nmax limitation for number of arriving claims

Value

matrix with 2*nmax rows and columns

serviceDistribution 17

serviceDistribution Serv

Service distribution function

Description

Service distribution function

Usage

```
serviceDistribution(t)
```

Arguments

t time value

Value

service function value (double) given t

 ${\it stationary Probabilities}$

Stationary probability function

Description

Stationary probability function

Usage

```
stationaryProbabilities(m = c(0.2, 0.3), lambda = c(1, 2), tmax = 12, nmax = 5)
```

Arguments

m distribution parameters vector of sojourn times in alternating environment states

lambda Poisson flow intensity vector

tmax upper integration limit

nmax limitation for number of arriving claims

Value

MC stationary probability vector

```
stationary \verb|ProbabilitiesOfEmptyStates|
```

Stationary probabilities of the empty states in continuous time model

Description

Stationary probabilities of the empty states in continuous time model

Usage

```
stationaryProbabilitiesOfEmptyStates(i, m = c(0.2, 0.3), lambda = c(1, 2))
```

Arguments

i MC i-th state

distribution parameters vector of sojourn times in alternating environment states m

lambda Poisson flow intensity vector

Value

complex

```
stationaryProbabilities_cached
```

Stationary probability caching function

Description

Stationary probability caching function

Usage

```
stationaryProbabilities_cached(
 m = c(0.2, 0.3),
 lambda = c(1, 2),
  tmax = 12,
  nmax = 5
)
```

Arguments

tmax

distribution parameters vector of sojourn times in alternating environment states

Poisson flow intensity vector lambda upper integration limit

limitation for number of arriving claims nmax

Value

stationary probability vector cached

Index

```
b, 2
densityOfSojournTimeAtState_i, 3
EN, 3
ENU, 4
finalStateProbability, 5
{\tt flowIntensityMean}, {\tt 5}
h, 6
loadCoefficient, 6
{\it meanSojournTimeWithFSP}, 7
meanSoujournTime, 8
{\tt meanTimeEmptyFixed, 8}
meanTimeOfBusyPeriodETW, 9
meanTimeOfBusyPeriodEW, 9
{\tt meanTimeOfEmptyPeriod}, 10
MET, 10
MST, 11
not_i, 11
p0, 12
p1, 12
pi, 13
probabilitiesMatrix, 13
probabilityOfNArrival, 14
probabilityOfNArrivalW, 15
PrTr, 15
resultingMatrix, 16
serviceDistribution, 17
stationaryProbabilities, 17
stationaryProbabilities_cached, 18
stationary Probabilities Of Empty States,\\
         18
```