3 Fonctions croissantes et décroissantes

Définition 6. Soit f une fonction à valeurs réelles, et I un intervalle sur lequel f est définie.

- On dit que f est croissante sur I, si pour tout $x < y \in I$, on a $f(x) \le f(y)$.
- On dit que f est strictement croissante sur I, si pour tout $x < y \in I$, on a f(x) < f(y).
- On dit que f est décroissante sur I, si pour tout $x < y \in I$, on a $f(x) \ge f(y)$.
- On dit que f est strictement décroissante sur I, si pour tout $x < y \in I$, on a f(x) > f(y).
- On dit que f est constante sur I, si pour tout $x < y \in I$, on a f(x) = f(y)

Remarque.

- Si l'intervalle I est clair suivant le contexte, alors on peut dire qu'une fonction est croissante ou décroissante sans préciser l'intervalle I.
- On dit qu'une fonction croissante (ou strictement croissante) **conserve l'ordre**, tandis qu'une fonction décroissante (ou strictement décroissante) **inverse l'ordre**.

Définition 7. *Soit f une fonction à valeurs réelles, et I un intervalle sur lequel f est définie.*

- On dit que f est monotone sur I si f est croissante sur I ou si f est décroissante sur I.
- On dit que f est **strictement monotone sur** I si f est strictement croissante sur I ou si f est strictement décroissante sur I.

Remarque. Pour déterminer qu'une fonction n'est pas monotone sur un intervalle I, il suffit de trouver trois réels $x < y < z \in I$ tels que f(x), f(y) et f(z) ne soient pas dans le même ordre $(Ni f(x) \le f(y) \le f(z)$, ni $f(x) \ge f(y) \ge f(z)$).

Exemple. Soit une fonction f définie sur l'intervalle [-4; 6] dont la courbe représentative C_f est donnée ci-dessous.

- a) Comparer f(-2) et f(0). L'ordre entre -2 et 0 est-il conservé par f?
- b) La fonction f est-elle décroissante sur [-2; 0]?
- c) Donner un intervalle I tel que f est croissante sur I :
- d) Donner un intervalle J tel que la fonction n'est pas monotone sur J :

4 Tableaux

Soient f et g deux fonctions définies sur [-5; 5] dont les courbes représentatives sont données ci-contre.

4.1 Tableau de valeurs

Définition 8. Le tableau de valeurs associe plusieurs antécédents (ligne x) à leurs images (ligne f(x)).

Exemple.

x	-5	-3	2	4	5
f(x)	2	0	0	4	3

x	-5	-1	0	2	3
g(x)					

4.2 Tableau de variation

Définition 9. Le tableau de variation répertorie les plus grand intervalles sur lesquels les fonctions sont monotones.

Exemple.

x	-5	5
Variations de g		

4.3 Tableau de signe

Définition 10. Le tableau de signe d'une fonction f répertorie les intervalles solutions de $f(x) \ge 0$ (où la fonction est **positive**) et $f(x) \le 0$ (où la fonction est **négative**).

Exemple.

x	-5		-3		2		5
Signe de f		+	0	_	0	+	

x	-5	5
Signe de g		