Table 5-3-2
 Ranges of parameters in previous studies. (unit : mm)

Table 5-5-2 Ranges of parameters in previous studies. (umt : mm)								
Para- meters	Sugawara	Kim, H. Y. and Park, S. W.	Hong, C. S.		MOCT and KOWACO (1997)		MOCT et	This study
			Recom- mended	Result	Recom- mended	Result	al. (1999)	This study
S_{II}	0.1~0.5	0.1~0.25	0.1~0.3	0.25	0.1~0.5	0.1~0.3	0.248 ~0.727	0.05~0.75
S_{12}	0.1~0.5	0.05~0.25	0.1~0.2	0.14	0.1~0.5	0.11~0.23	0.118 ~0.295	0.04~0.5
S_{13}	0.1~0.5	0.1						
B_{II}	0.1~0.5	0.2~0.35	0.05~0.15	0.2	0.1~0.5	0.05~0.34	0.063 ~0.347	0.04~0.5
S_{21}	0.03~0.1	0.05~0.1	0.02~0.1	0.08	0.03~0.1	0.017~0.09	0.016~0.3	0.016 ~0.316
B_{21}	0.01~0.1	0.25~0.4	0.02~0.1	0.08	0.03~0.1	0.05~0.38	0.0338 ~0.0972	0.01~0.41
S_{31}	0.005 ~0.01	0.01~0.05	0.001 ~0.01	0.02	0.005 ~0.05	0~0.04	0.0004 ~0.0249	0.0004 ~0.0504
B_{31}	0.005 ~0.01	0.05~0.1	0.005 ~0.02	0.02	0.005 ~0.05	0.0001 ~0.09	0.0036 ~0.0479	0.0001 ~0.1001
S_{41}	0.0005 ~0.005	0.00075 ~0.0015			0.0005 ~0.005	0.0005 ~0.002	0.0003 ~0.0012	0.0003 ~0.0063
B_{41}	0~0.005	0.001 ~0.007			0~0.005			
H_{II}	30~60	30~60	30~50	40	30~50	20~50	20~82.16	10~83
H_{12}	10~30	10~30	10~20	9	10~20	10~30	5.52 ~42.51	5~43
H_{13}	5~10	5~12						
H_{21}	0~50	5	10~20	7	0~50	5~15	10~14.54	0~50
H_{31}	0~30	2~5	10~20	22	0~30	2~15	10~14.54	0~43
H_{41}	0~10	0			0~10			
IST_1								0~50
IST_2								0~50
IST ₃	10~100	0				10~30	11~53.2	0~100
IST ₄	100~500	500~1000				70~300	11~453.3	0~1000