河海大学常州校区 2002-2003 学年数学竞赛

一、填空题(12×3分)

1.
$$\lim_{x \to -\infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 - x} \right) = \underline{\hspace{1cm}}$$

- 2. 当 $x \to 0$ 时, $3x 4\sin x + \sin x \cos x$ 与 x^n 为同阶无穷小,则n =
- 4. $f(x) = \frac{1}{1-x^2}$, \emptyset $f^{(100)}(0) = \underline{\hspace{1cm}}$

$$\int \frac{\arctan e^x}{e^{2x}} dx = \underline{\hspace{1cm}}$$

6.
$$\int_{-1}^{1} x \left(1 + x^{2003}\right) \left(e^x - e^{-x}\right) dx = \underline{\qquad}$$

7.
$$f(x) = \int_{1}^{x} \frac{\ln t}{1+t} dt$$
, $\mathbb{I} f(x) + f\left(\frac{1}{x}\right) = \underline{\qquad}$

8. 设
$$f(x)$$
 连续, $F(t) = \iint_{x^2 + y^2 \le t^2} f(x^2 + y^2) dx dy (t > 0)$,则 $F'(t) =$ ________。

9. 已知平面过直线 $\begin{cases} x+y=0\\ x-y+z=2 \end{cases}$ 且平行另一直线 x=y=z,则该平面方程

为_____。

10. 函数
$$f(x) = \ln(1 + 3x + 2x^2)$$
关于 x 的幂级数展开式为

为_____。
11. 设
$$\Sigma$$
 为半球面 $z=-\sqrt{a^2-x^2-y^2}$ 的上侧,则 $\iint_{\Sigma} \frac{xdydz+zdxdy}{x^2+y^2+z^2}=$ ______。

- 12. 设有向曲线 C 为 $x^2 + y^2 + z^2 = a^2$ 与 x + z = a 的交线,从原点看去 C 的方向为顺时针,则 $\int_C y dx + z dy + x dz = \underline{\hspace{1cm}}$ 。
- 二、设一点先向正东移动a米,然后左拐弯垂直移动aq米(0<q<1),如此不断重复,使后一段移动距离为前一段的q倍,试问其极限位置与出发点相距多少米?(8分)

三、设 f(x) 在 [0,1] 上可微,且满足条件 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$, 试证: 存在 $\xi \in (0,1)$,使 $f(\xi) + \xi f'(\xi) = 0$ 。 (8分)

四、设f(x)满足对任意 $x_1, x_2 \in [a,b]$,恒有 $|f(x_1) - f(x_2)| \le |x_1 - x_2|$,证明:

$$\left| \int_{a}^{b} f(x) dx - f(a) (b-a) \right| \leq \frac{(b-a)^{2}}{2} \cdot (8 \%)$$

五、设 f(u,v) 具二阶连续偏导,且满足 $\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} = 0$,令 $z = f(x^2 - y^2, 2xy)$,试证: $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ 。 (8 分)

六、将长为a的线段分为三段,分别围成圆、正方形和等边三角形,问怎样分使它们的面积之和最小,并求出最小值。 $(8\, \%)$

七、一个高为h的雪堆,其侧面满足方程 $z = h - \frac{2(x^2 + y^2)}{h}$,求雪堆的体积与侧面积之比。(8分)

八、设f(x)具一阶连续导数,L是上半平面(y>0)内有向光滑曲线,起点为(a,b),终点为(c,d),

且
$$ab = cd$$
 , 求 $I = \int_{L} \frac{1}{y} \left[1 + y^{2} f(xy) \right] dx + \frac{x}{y^{2}} \left[y^{2} f(xy) - 1 \right] dy$ 。 (8 分)

九、求
$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$$
的和。(8分)

参考答案

一、

3.
$$x^3 - 6x^2 + 9x + 2$$

5.
$$-\frac{1}{2}e^{-2x}\arctan e^x - \frac{1}{2}e^{-x} - \frac{1}{2}\arctan e^x + C$$

6.
$$\frac{4}{e}$$
 提示: 换元或利用奇偶性化简

$$7. \quad \frac{1}{2} \ln^2 x$$

8.
$$2\pi t f(t^2)$$

9.
$$x-3y+2z-4=0$$

10.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (1+2^{n+1})}{n+1} x^{n+1}, -\frac{1}{2} < x \le \frac{1}{2}$$

11.
$$-\frac{4}{3}\pi a$$
 提示: 高斯公式

12.
$$-\frac{\sqrt{2}}{2}ma^2$$
 提示: 斯托克斯公式

二、设出发点为原点,则极限位置为
$$\left(\frac{a}{1+q^2},\frac{aq}{1+q^2}\right)$$
,与出发点相距 $\frac{a}{\sqrt{1+q^2}}$ 米。

注: 本题题目有歧义,也可解答极限位置为
$$\left(\frac{a}{1-q^2},\frac{aq}{1-q^2}\right)$$
,与出发点相距 $\frac{a\sqrt{1+q^2}}{1-q^2}$ 米。

六、圆、正方形、等边三角形的周长依次为:
$$\frac{\pi a}{\pi + 4 + 3\sqrt{3}}$$
 , $\frac{4a}{\pi + 4 + 3\sqrt{3}}$, $\frac{3\sqrt{3}a}{\pi + 4 + 3\sqrt{3}}$;

面积之和最小值为
$$\frac{a^2}{4(\pi+4+3\sqrt{3})}$$

七、体积
$$V = \frac{\pi}{4}h^3$$
,侧面积 $S = \frac{13}{12}\pi h^2$, $\frac{V}{S} = \frac{3h}{13}$

八、
$$\frac{c}{d} - \frac{a}{b}$$
 提示: 积分与路径无关

九、
$$\frac{\pi}{4}$$
 提示:考虑 $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$