Chapter 12: Chemical analysis

Knowledge organiser

Pure and impure

In chemistry, a **pure** substance contains a single element or compound that is not mixed with any other substance.

Pure substances melt and boil at specific temperatures.

An **impure** substance contains more than one type of element of compound in a **mixture**.

Impure substances melt and boil at a range of temperatures.

Formulations

Formulations are examples of mixtures. They have many different components (substances that make them up) in very specific proportions (amounts compared to each other).

Scientists spend a lot of time trying to get the right components in the right proportions to make the most useful product.

Formulations include fuels, cleaning agents, paints, alloys, fertilisers, and foods.

Chromatography

Chromatography is a method to separate different components in a mixture. It is set up as shown here, with a piece of paper in a beaker containing a small amount of solvent.

The $R_{\rm f}$ value is a ratio of how far up the paper a certain spot moves compared to how far the **solvent** has travelled.

 $R_{\rm f} = \frac{\text{distance moved by substance}}{\text{distance moved by solvent}}$

It will always be a number between 0 and 1.

The $R_{\rm f}$ value depends on the solvent and the temperature, and different substances will have different $R_{\rm f}$ values. The $R_{\rm f}$ values for particular solvents can be used to identify a substance.

Testing gases

Common gases can be identified using the follow tests:

Gas	What you do	What you observe if gas is present	
hydrogen	hold a lighted splint near the gas	hear a squeaky pop	
oxygen	hold a glowing splint near the gas	splint re-lights	
carbon dioxide	bubble the gas through limewater	the limewater turns milky (cloudy white)	
chlorine	hold a piece of damp litmus near the gas	bleaches the litmus white	

Flame tests

Substances containing metals can produce a coloured light in a flame. This can be used to identify the metal. However, if there is more than one metal in the substance then this method will not work, as the colours mix and intense colours mask more subtle colours.

Metal	Flame colour			
lithium	crimson			
sodium	yellow			
potassium	lilac			
calcium	orange-red			
copper	green			

Testing for cations

Metal ions always have a positive charge (i.e., they are cations). Sodium hydroxide solution can be used to identify some metal ions.

Cation	Positive result	
aluminium ions, Al³+	on slow addition of excess sodium hydroxide solution, white precipitate forms that eventually dissolves again with excess sodium hydroxide	
calcium ions, Ca ²⁺	on addition of excess sodium hydroxide solution, white precipitate that does not dissolve	
magnesium ions, Mg ²⁺	on addition of excess sodium hydroxide solution, white precipitate that does not dissolve	
copper(II) ions, Cu ²⁺	forms a blue precipitate	
iron(II) ions, Fe ²⁺	forms a green precipitate	
iron(III) ions, Fe ³⁺	forms a brown precipitate	

will dissolve away from the paper.

Instrumental methods

Instrumental analysis involves using complex scientific equipment to test substances.

Instrumental methods are rapid and accurate. They are also sensitive, which means they can give results even with very small amounts of substance.

Flame emission spectroscopy

Flame emission spectroscopy is a type of instrumental analysis similar to a **flame test**.

The sample solution is put into a flame and the light given off is passed through a spectroscope. Instead of a human observing a colour, the instrument tells you exactly which wavelength of light is being given off as a line spectrum. You can then compare the spectrum to a reference to establish the identity of your sample. You can also measure the concentration of the substance in your sample solution.

Testing for anions

Anion	Test	Positive result
carbonate, CO ₃ ²⁻	add dilute acid	carbon dioxide gas formed which can be test for with limewater
chloride, Cl⁻	add silver nitrate solution in the presence of nitric acid	white precipitate formed
bromide, Br-	add silver nitrate solution in the presence of nitric acid	cream precipitate formed
iodide, I ⁻	add silver nitrate solution in the presence of nitric acid	yellow precipitate formed
sulfate, SO ₄ ²⁻	add barium chloride solution in the presence of hydrochloric acid	white precipitate formed

Make sure you can write a definition for these key terms.

chromatography flame emission spectroscopy flame test formulation impure instrumental analysis mobile phase precipitate pure $R_{\rm f}$ value solvent solvent front stationary phase