© Laurent Garcin MP Dumont d'Urville

DEVOIR À LA MAISON N°01

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I – Définition d'une application

Soit *n* un entier naturel non nul.

Soit T(X) un polynôme de $\mathbb{C}[X]$ de degré n.

Soit f l'application définie sur $\mathbb{C}[X]$ qui à tout P(X) de $\mathbb{C}[X]$ associe Q(X) + XR(X) où Q(X) et R(X) sont respectivement le quotient et le reste de la division euclidienne de $P(X^2)$ par T(X).

On a donc $P(X^2) = Q(X)T(X) + R(X)$ avec deg(R(X)) < deg(T(X)).

On notera f_n la restriction de f à $\mathbb{C}_n[X]$.

- 1. Montrer que f est une application linéaire.
- **2.** Montrer que f_n est un endomorphisme de l'espace vectoriel ($\mathbb{C}_n[X], +, .$).
- **3.** Dans cette question uniquement n = 2 et $T(X) = X^2$.
 - **a.** Donner la matrice A de f_2 sur la base canonique $(1, X, X^2)$.
 - **b.** Calculer A^2 . En déduire que f_2 est bijective et donner son application réciproque. En déduire la nature de f_2 .

Partie II - Etude d'un cas particulier

Soit a un complexe fixé. Dans cette partie uniquement, n = 3 et $T(X) = X^3 + X^2 + a$.

1. Montrer que f_3 a pour matrice sur la base canonique $(1, X, X^2, X^3)$ de $\mathbb{C}_3[X]$:

$$B = \begin{pmatrix} 0 & 0 & -1 & -a - 1 \\ 1 & 0 & a + 1 & 1 + a + a^2 \\ 0 & 0 & -a & -a - 1 \\ 0 & 1 & 1 & 2a + 2 \end{pmatrix}$$

- **2.** Calculer le déterminant de f_3 .
- **3.** Donner les valeurs de a pour lesquelles f_3 n'est pas bijective.
- **4.** Dans cette question a = -1.
 - **a.** Donner une base de Ker f_3 , le noyau de f_3 ainsi qu'une base de Im f_3 , l'image de f_3 .

© Laurent Garcin MP Dumont d'Urville

b. Le noyau et l'image de f_3 sont-ils supplémentaires?

Partie III – Etude du noyau

- 1. Soit P(X) un polynôme non nul de degré p tel que : 2p < n. Montrer que f(P(X)) est non nul.
- **2.** Soit P(X) un polynôme. Montrer qu'il appartient au noyau de f si et seulement si il existe un polynôme R(X) de degré strictement inférieur a n tel que : $P(X^2) = R(X)(1 XT(X))$.
- **3.** En déduire que si P(X) est un élément du noyau de f, alors il appartient à $\mathbb{C}_n[X]$.
- **4.** Déduire de la question **2** que pour tout élément P du noyau de f et que pour tout k de \mathbb{N} tel que deg(P(X)) + $k \le n$, le polynôme X^k P(X) appartient au noyau de f.
- 5. On suppose dans cette question que le noyau de f n'est pas réduit au polynôme nul. Soit I l'ensemble des entiers naturels k tels qu'il existe un polynôme du noyau de f qui a pour degré k.
 - **a.** Montrer que I possède un plus petit élément d.
 - **b.** Soit $P_0(X)$ un polynôme du noyau ayant pour degré d. Soit $P_1(X)$ un autre polynôme du noyau ayant pour degré d. Montrer qu'il existe un complexe c tel que $P_1(X) = cP_0(X)$.
 - **c.** Montrer qu'un polynôme P(X) appartient au noyau de f si et seulement s'il existe un polynôme S(X) de degré inférieur ou égal à n-d tel que $P(X) = S(X)P_0(X)$.
- **6.** On suppose dans cette question que $T(X) = X^3 + X^2 1$. Donner le noyau de f.

Partie IV – Etude d'un produit scalaire

Dans cette partie on prendra $T(X) = X^2$ et on considérera g la restriction de f_2 à $\mathbb{R}_2[X]$.

- 1. Montrer que g est bien un endomorphisme de l'espace vectoriel $r\acute{e}el$ ($\mathbb{R}_2[X], +, .$). Donner sa matrice A sur la base canonique de $\mathbb{R}_2[X]$.
- **2.** Soit $\langle ., . \rangle$ définie sur $\mathbb{R}_2[X]^2$ à valeurs dans \mathbb{R} par :

$$\forall (U(X), V(X)) \in \mathbb{R}_2[X]^2, \langle U(X), V(X) \rangle = U(1)V(1) + U'(1)V'(1) + U''(1)V''(1)$$

Montrer que $\langle ., . \rangle$ est un produit scalaire sur $(\mathbb{R}_2[X], +, .)$.

- **3.** Montrer que la matrice A de g sur la base canonique est une matrice orthogonale.
- **4. a.** La base canonique de $\mathbb{R}_2[X]$ est-elle orthonormale pour le produit scalaire $\langle ., . \rangle$?
 - **b.** L'application g est-elle une isométrie vectorielle pour le produit scalaire $\langle ., . \rangle$?