Nositelji	Ured: ZESOI	E-mail	Konzultacije
Prof. dr. Neven Mijat	D-117 Tel: 6129966	neven.mijat@fer.hr	
Prof. dr. Dražen Jurišić	D-109 Tel:6129949	drazen.jurisic@fer.hr	
Prof. dr. Igor Lacković	D-129 Tel:6129808	igor.lackovic@fer.hr	
Predavači			
Dr. Zvonko Kostanjčar	D-107 Tel:6129970	zvonko.kostanjcar@fer.hr	

Sve informacije o predmetu i predavačima mogu se dobiti na ZAVODU ZA ELEKTRONIČKE SUSTAVE I OBRADBU INFORMACIJA (ZESOI)

Prof. Neven Mijat Električni krugovi 2012/13 2/35

Satnica: 5 sati predavanja i vježbi + 1 sat laboratorija

Raspored:

Grupa	Predavači	Termini		
E1	Kostanjčar	Pon. 10,00-12,00	Sri. 10,00-13,00	A-301
E2	Mijat	Pon. 17,00-19,00	Sri. 16,00-19,00	A-301
E3	Jurišić	Pon. 08,00-10,00	Sri. 08,00-11,00	D-152
E4	Lacković	Pon. 14,00-16,00	Sri. 14,00-17,00	D-152

- Električni krugovi
 - temeljni predmet studija Elektrotehnika i informacijska tehnologija
 - upoznaje studente s osnovnim principima električnih krugova, njihovim svojstvima i postupcima rješavanja problema
- Sadržaj:
 - Osnovne definicije, pojmovi i svojstva električnih krugova; elementi;
 - modeliranje elemenata; postupci analize električnih krugova
 - mrežne transformacije; teoremi mreža;
 - električni signali; definicija i podjela; Laplaceova transformacija;
 - jednadžbe mreža; grafovi;
 - prijenosne funkcije; frekvencijske karakteristike; funkcije imitancije;
 - četveropoli; osnovni filtarski krugovi;
 - električne linije; vremenska i prostorna raspodjela signala na liniji; refleksije

Provjere znanja:

Predavanja	2%	
 Domaće zadaće 	8%	10 domaćih zadaća
Laboratorij	15%	6 laboratorijskih vježbi
Međuispit	35%	11.2012.
Završni ispit	40%	01.2013.
 Ponovljene provjere 		02.2013.

Na međuispitima i završnome ispitu dopušteno je koristiti skripte, bilješke i ostalu literaturu.

•Uvjeti za prolaz:

- uspješno obavljene laboratorijske vježbe
- postignuto najmanje 50% od ukupnog doprinosa na provjerama znanja.

Literatura:

- V. Naglić, Osnovi teorije mreža, 1982.
- M. Plohl, Teorija četveropolnih sistema, 1987.
- M. Plohl, Osnovi teorije linija, 1982.
- V. Čosić, N. Mijat, N. Stojković, Teorija mreža i linija-zbirka zadataka, 1992.
- Dodatna literatura:
- J. Vlach: Basic Network Theory with Computer Applic., Van Nostrand, 1992.
- A. M. Davis: Linear Circuit Analysis, Brooks/Cole, Pacific Grove, CA, 1998.
- A. B. Carlson: Circuits, Brooks/Cole, Pacific Grove, CA, USA,2000.
- PPT materijali će biti objavljeni na WEBu Zavoda prije svakog predavanja.

Električni krugovi -Kratki pregled kolegija Laboratorij

- Laboratorijske vježbe su obavezne.
- Za pristup vježbi nužno je proučiti i razumjeti pripremni materijal.
- Tjedni u kojima se održavaju laboratorijske vježbe:

Grupa	Termini
Lab. 1	15-19. 10. 2012
Lab. 2	22-26. 10. 2012
Lab. 3	05-09. 11. 2012
Lab. 4	10-14. 12. 2012
Lab. 5	14-18. 01. 2013
Lab. 6	21-25. 01. 2013

Pravila ponašanja u predavaoni:

- Molimo ne kasnite na predavanja
- Isključite mobitele, radio, CD i DVD playere
- Ne ometajte ostale studente u slušanju predavanja

Osnovni pojmovi i definicije

Grana elektrotehnike čiji objekti proučavanja su ELEKTRIČNI KRUGOVI (Electrical circuits)

odnosno

ELEKTRIČNE MREŽE (Electrical networks)

ELEKTRIČNA MREŽA je skup smisleno povezanih **električnih naprava**, koje međusobno djelujući obavljaju određenu funkciju.

- Osnovna funkcija električne mreže
 - Oblikovanje ili prijenos signala
 - Oblikovanje ili prijenos energije
- Svaka električna naprava ima najmanje dvije priključnice.

Primjer: mreža kućanskih aparata

Primjer: računalna mreža

Primjer: električna mreža

- ELEKTRIČNI KRUG- (Electrical circuit)
- Električna mreža sastavljena od električnih naprava, koje su povezane tako da čine zatvorenu cjelinu.

primjer: RLC krug

O

Za potrebe analize električne mreže nužno je definirati njen matematički model.

Realna električna mreža

Matematički model

Električne naprave (komponente)

Idealizirani elementi

Fizikalne zakonitosti u električnim napravama

Matematička svojstva elemenata

Primjer: Otpornik – komponenta realne mreže

U nadomjesnoj mreži - modelu

Primjer: Kondenzator - komponenta realne mreže

U nadomjesnoj mreži - modelu

Primjer: Zavojnica ili svitak - komponenta realne mreže

U nadomjesnoj mreži - modelu ->

induktivitet - element idealizirane mreže

primjer:

Automobil-stvarni fizički položaj električnog kruga

Električki model

električna mreža kao model

- Komponente realnih električnih krugova karakterizirane su:
 - fizičkim dimenzijama
 - fizikalnim svojstvima
- •U nadomjesnoj mreži ili modelu:
 - koncentrirani elementi bez fizičkih dimenzija

Svaka komponenta el. kruga ima dvije ili više priključnica preko kojih je povezana s ostalim komponentama.

U nadomjesnoj mreži priključnice nazivamo

polovima.

Teorija električnih krugova obuhvaća postupke

- analize i
- projektiranja

električnih krugova.

Objekti proučavanja su **matematički modeli realnih krugova**, odnosno njihove nadomjesne ili ekvivalentne mreže.

ELEKTRIČNA MREŽA

SISTEM

 Sistem obično simbolički predočavamo kao zatvorenu kutiju koja ima svoje ulaze i izlaze

- Sistem → skup povezanih komponenti koje međusobno djelujući obavljaju propisanu funkciju.
- Svaki sistem ima jedan ili više ulaza i jedan ili više izlaza, koje nazivamo signalima.
- Ulaz = pobuda ili poticaj sistema
- Izlaz = odziv sistema

SIGNALI

SISTEMI mogu biti vrlo raznolikoga karaktera

- Električni
- Mehanički
- Hidraulički
- -Kemijski
- Ekonomski
- Biološki

...

Karakter sistema određuju signali na ulazima i izlazima

Ako su signali električne veličine ELEKTRIČNI SISTEM

ELEKTRIČNI SISTEM sastavljen od električnih komponenti

Električna mreža

Temeljne električne veličine

- Napon u
- Struja i
- Energija E
- Snaga
- Nabojq
- Magn. tok φ

U teoriji električnih krugova

Struja i Napon
[A] [V]

- Mnoge je neelektrične sisteme moguće prikazati modelom električnoga sistema ili električnom mrežom.
- Uvjet → analogija odnosa među veličinama tih sistema s odnosima među veličinama električnih sistema.
- Npr. → analogija među veličinama mehaničkih i električnih sistema.

Električne veličine	Mehaničke veličine
Napon u [V]	Sila F [N]
Struja i [A]	Brzina v [m/s]
Naboj q [C]	Pomak d [m]
Induktivitet L [H]	Masa m [kg]
Kapacitet C [F]	Elastičnost <i>K</i> [N/m]
Otpor R [W]	otpor trenja B

■ Za mehanički sustav na slici a), → vrijedi jednadžba

$$\underbrace{M\frac{dv(t)}{dt}}_{\text{sila inercije}} + \underbrace{Bv(t)}_{\text{sila trenja}} + \underbrace{K\int v(t) \cdot dt}_{\text{sila opruge}} = \underbrace{f(t)}_{\text{vanjska sila}}$$

■ → Formalno jednaka jedn. električnoga kruga na slici b).

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C}\int i(t) \cdot dt = u(t)$$

■ Električni krug → model mehaničkoga sustava.

Postupak ekvivalentne mreže

 Analizu sistema moguće je provesti primjenom ekvivalentne mreže u sljedećim koracima:

- 1. Izvesti odgovarajuću ekvivalentnu mrežu
- 2. Napisati jednadžbe mreže
- 3. Riješiti jednadžbe mreže
- 4. Primijeniti rješenje na stvarni sistem

TEORIJA ELEKTRIČNIH KRUGOVA

Određivanje matematičkih funkcija koje definiraju odnos odziva i pobude ako je zadan oblik mreže Određivanje komponenti i oblika mreže za zadan odnos matematičkih veličina mreže

ANALIZA → jednoznačan postupak

Analizom mreže dobiva se jednoznačan matematički izraz.

SINTEZA → višeznačan postupak

Za zadani matematički izraz moguće je ostvariti više različitih mreža koje će ga zadovoljavati.

Zaključak

- Teorija električnih krugova je područje elektrotehnike, koje obuhvaća postupke analize i projektiranja električnih krugova, korištenjem njihovih matematičkih modela odnosno nadomjesnih ili ekvivalentnih krugova.
- •Matematička svojstva tih elemenata odgovaraju fizikalnim zakonitostima koje karakteriziraju odgovarajuće električne naprave.
- Najčešće je to postignuto samo u ograničenom pojasu frekvencija i veličina primijenjenih signala, pa se, ovisno o tome koliko su vjerno njena svojstva prikazana nadomjesnom mrežom, realna mreža u većoj ili manjoj mjeri ponaša u skladu s rezultatima analize.

- U analizi električnoga kruga služimo se njegovim grafičkim prikazom.
- Elementi → grafički simboli s matematičkim svojstvima.

Definicija: ELEKTRIČNA MREŽA JE GEOMETRIJSKA STRUKTURA MEĐUSOBNO POVEZANIH IDEALIZIRANIH ELEMENATA, OD KOJIH SVAKI IMA DEFINIRAN ODNOS IZMEĐU DVIJE OVISNE VARIJABLE.

35/35