

This presentation

- Existing USB HID attacks / tools
- What's wrong with them?
- Available protections / mitigations
- My implant PoC
- Putting it into an attack scenario
- Demo-time...

Existing USB HID attacks / tools

What's wrong with it?

What's wrong with it?

Requires either:

- An unlocked and unattended computer
- Very good social engineering skills

- Many payloads require direct internet access Protection available

Niels van Dijkhuizen Keynterceptor

Available protection mechanisms

USG Robert Fisk

USBProxy Dominic Spill

USBGuard Daniel Kopeček

GoodDOG Tony DiCola

Beamgun Josh Lospinoso

USB keyboard guard G Data

Duckhunt Pedro M. Sosa

Linux patches GRSecurity

A new implant?

a HID attack that works with locked machines and bypasses known protection mechanisms

Design requirements

1. The implant should be in-line with the keyboard and the host.

2. The implant should have notion of real-time.

and spice it up a bit...

3. The implant could use an over the air communication channel.

NSA COTTONMOUTH-I, MOCCASIN

Hardware diagram

Keynterceptor PoC HW

Keynterceptor PoC HW

USB Standard Descriptor & USB HID Report Descriptors

```
xxxx.xxxxxx] usb 3-2: new low-speed USB device number 2 using xhci hcd
                                                                                                      xxxx.xxxxxx] usb 3-2: new full-speed USB device number 2 using xhci
xxxx.xxxxxx] usb 3-2: New USB device found, idVendor=03f0, idProduct=034a
                                                                                                      xxxx.xxxxxx] usb 3-2: New USB device found, idVendor=03f0, idProduct
xxxx.xxxxxx] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=0
                                                                                                      xxxx.xxxxxx] usb 3-2: New USB device strings: Mfr=1, Product=2, Seri
xxxx.xxxxxx] usb 3-2: Product: HP Elite USB Keyboard
                                                                                                      xxxx.xxxxxx] usb 3-2: Product: HP Elite USB Keyboard
xxxx.xxxxxx] usb 3-2: Manufacturer: Chicony
                                                                                                      xxxx.xxxxxx] usb 3-2: Manufacturer: Chicony
xxxx.xxxxxxl usb 3-2: ep 0x81 - rounding interval to 64 microframes, ep desc says 80 microframes
xxxx.xxxxxx] usb 3-2: ep 0x82 - rounding interval to 64 microframes, ep desc says 80 microframes
                                                                                                      xxxx.xxxxxx] usb 3-2: ep 0x82 - rounding interval to 64 microframes,
xxxx.xxxxxx] input: Chicony HP Elite USB Keyboard as /devices/pci0000:00/0000:00:14.0/usb3/3-2/3
                                                                                                      xxxx.xxxxxx] input: Chicony HP Elite USB Keyboard as /devices/pci000
xxxx.xxxxxx] hid-generic 0003:03F0:034A.0001: input,hidraw0: USB HID v1.10 Keyboard [Chicony HP
                                                                                                      xxxx.xxxxxx] hid-qeneric 0003:03F0:034A.0001: input,hidraw0: USB HID
xxxx.xxxxxx] input: Chicony HP Elite USB Keyboard as /devices/pci0000:00/0000:00:14.0/usb3/3-2/3
                                                                                                      xxxx.xxxxxx] input: Chicony HP Elite USB Keyboard as /devices/pci000
xxxx.xxxxxx] hid-generic 0003:03F0:034A.0002: input, hidrawl: USB HID v1.10 Device [Chicony HP El
                                                                                                      xxxx.xxxxxx] hid-generic 0003:03F0:034A.0002: input,hidraw1: USB HID
      bEndpointAddress
                           0x81 EP 1 IN
                                                                                                            bEndpointAddress
                                                                                                                                 0x81 EP 1 IN
      bmAttributes
                                                                                                            bmAttributes
        <u>Tra</u>nsfer Type
                                                                                                              Transfer Type
                                 Interrupt
                                                                                                                                       Interrupt
        Synch Type
                                 None
                                                                                                              Synch Type
                                                                                                                                       None
        Usage Type
                                 Data
                                                                                                              Usage Type
                                                                                                                                       Data
                                                                                                                               0x0008 1x 8 bytes
      wMaxPacketSize
                         0x0008 1x 8 bytes
                                                                                                            wMaxPacketSize
      bInterval
  Interface Descriptor:
                                                                                                        Interface Descriptor:
    bLength
                                                                                                          bLength
   bDescriptorType
                                                                                                          bDescriptorType
    bInterfaceNumber
                                                                                                          bInterfaceNumber
   bAlternateSetting
                                                                                                          bAlternateSetting
    bNumEndpoints
                                                                                                          bNumEndpoints
```

Keynterceptor

NebulaH 2018

Niels van Dijkhuizen

Bypassing protections: Human emulation

```
//Add random delays to avoid detection
int r = rand() % 111;
r += 8;
delay(r);
```


BOM / Costs

\$ 16,00 Teensy 2.0 433 MHz module 4,00 **USB** Host module \$ 8,00 **DS3231 RTC** 4,00 \$ 1,00 MCP1825S regulator Exp. print / LEDs / resistors 2,00 Total in US Dollars: \$ 35,00 Total in Euro's: € 30,00

Use-Cases

- a. Control keyboard remotely OTA
- b. Autologin with captured creds
- c. Inject keystrokes after inactivity with chosen time-frame
- d. Block user input with RF kill-switch (for a take-down)
- e. «insert scenario here»

Add-on for a full attack scenario

Keynterceptor-Companion:

- Nanopi Neo
- 433 MHz
- 4G dongle

DEMO-Time...

New mitigations?

- a. Multi-factor or challenge-response (like captcha's) with every unlocking action
- b. Profiling / monitoring power consumption per device (HW support is problematic)

Keynterceptor attack feasible?

- 430 lines of C code
- 85 lines of Python code
- 301 lines of Perl code
- some development euro's

```
} else if (RTC.alarm(ALARM_2)) {
   alarmIsrWasCalled = false;
   if ( captureState == CAPTURED ) {
     if ( mode == DEMO ) {
        tick_current = millis();
        tick_diff = tick_current - tick_start;
        if ( tick_diff >= SHORTDELAY ) {
            activatePayload();
        }
     } else {
        for ( int index = 0; index <= NUMSLOTS; index++ ) {</pre>
```

Future work?

- Fit it inside real hardware
- Have automatic descriptor cloning
- Encrypt covert OTA communication channel

