

Experiência 3

Portas Lógicas

1 Objetivos

- \bullet Comprovar, experimentalmente, as operações das portas lógicas AND, NAND,~OR~e~NOR.
- Conhecer as características físicas e elétricas dos Circuitos Integrados 7400, 7402, 7408 e 7432.

2 Conceitos

A tabela 1 ilustra as portas lógicas utilizadas no experimento e suas respectivas funções digitais.

3 Metodologia

Para a análise funcional das portas lógicas AND (E), NAND (NE), OR (OU) e NOR (NOU) serão realizados ensaios lógicos a cada uma delas. Os ensaios consistirão na obtenção de suas Tabelas Verdade, testes de algumas equivalências entre portas e análise com entrada flutuante.

Função	Símbolo	Expressão				
Lógica	Funcional	Booleana	Tabela Verdade		ade	
Logica	1 dileional	onai Booleana	Entrada		Saída	
			В	A	Y	
AND	A——		0	0	Ö	
/ (112	B—————————————————————————————————————	A . B = Y	0	1	0	
			1	0	0	
			1	1	1	
	 		Entr	ada	Saída	
			В	А	Y	
OR	В — У А +	A + B = Y	0	0	0	
			0	1	1	
			1	0	1	
			1	1	1	
	A			Entrada		Saída
		A . B = Y	В	Α	Y	
NAND			0	0	1	
			0	1	1	
			1	0	1	
			1	1	0	
			Entrada		Saída	
			В	Α	Y	
NOR	*—————————————————————————————————————	A + B = Y	0	0	1	
	B —	A + D - 1	0	1	0	
	" 		1	0	0	
			1	1	0	

Tabela 1: Portas lógicas com respectivas expressões booleanas e Tabelas Verdade.

4 Parte Experimental

4.1 Operações Lógicas do CI 7408 (AND)

1. Fixe o Circuito Integrado (CI) 7408 (AND) adequadamente na matriz de contatos (proto-board) do Painel Digital de estudo. O circuito lógico interno deste CI está ilustrado na figura 1.

Figura 1: CI 7408.

- 2. Alimente o circuito integrado: +5V no terminal 14 e 0V (GND ground terra) no terminal 7. ATENÇÃO! NÃO utilize, para essa finalidade, as tensões de +12V ou -12V disponibilizadas no painel de estudos, pois, nessas condições, o circuito integrado será danificado (QUEIMADO)!
- 3. Escolha uma das 4 portas AND do CI 7408 para iniciar o estudo; por exemplo, a porta acessível pelos terminais 1 e 2 como entrada e 3 como saída.
- 4. Acople uma chave reversora em cada uma das duas entradas da porta escolhida, de modo a gerar níveis lógicos (θ ou 1) independentes nesses terminais.
- 5. Na saída da porta, acople um dos LEDs sinalizadores, de modo que possa ser visualizado o nível resultante: 0 corresponde a apagado e 1, a aceso. Nota: para este procedimento, também poderia ser utilizado o voltímetro CC, o qual apresentaria o valor da tensão analógica do nível lógico correspondente.

6. Efetue todas as combinações das entradas (00, 01, 10 e 11) e verifique as respostas binárias na saída, anotando-as na tabela 2.

Função AND		
Entr	adas	Saída
A	В	S
0	0	
0	1	
1	0	
1	1	

Tabela 2: Função AND.

4.2~ Operações Lógicas do CI 7400 (NAND)

Repita todos os procedimentos realizados anteriormente, agora com o CI 7400. Observe que, neste caso, torna-se possível a simples substituição do CI, visto que o posicionamento dos terminais das entradas e saídas das portas é o mesmo. O circuito lógico interno deste CI está ilustrado na figura 2. Anote os resultados na tabela 3.

Figura 2: CI 7400.

Função NAND		
Entr	Entradas	
A	В	S
0	0	
0	1	
1	0	
1	1	

Tabela 3: Função NAND.

4.3 Operações Lógicas do CI 7432 (OR)

Seguindo o mesmo padrão experimental anterior, efetue o ensaio para o CI 7432. O circuito lógico interno deste CI está ilustrado na figura 3. Anote os resultados na tabela 4.

Figura 3: CI 7432.

Função OR		
Entr	adas	Saída
A	В	S
0	0	
0	1	
1	0	
1	1	

Tabela 4: Função OR.

4.4 Operações Lógicas do CI 7402 (NOR)

Repita o item anterior para o CI 7402. ATENÇÃO! Observe que agora há alteração nos posicionamentos dos terminais: logo deverá ser montado um novo circuito. O circuito lógico interno deste CI está ilustrado na figura 4. Anote os resultados na tabela 5.

Figura 4: CI 7402.

Função NOR		
Entr	Entradas	
A	В	S
0	0	
0	1	
1	0	
1	1	

Tabela 5: Função NOR.

4.5 Equivalência entre Portas Lógicas – Obtenção de Porta Lógica Inversora

1. Desconecte as chaves das entradas da porta NOR e interligue os dois terminais de entrada, como ilustrado na figura 5. Com essa ligação, obtém-se o equivalente a uma porta inversora (NOT).

Figura 5: Porta NOT a partir de uma porta NOR.

2. Conecte uma chave na entrada A e obtenha a respectiva resposta na saída S, anotando os resultados na tabela 6.

Função NOT		
Entradas Saída		
A = B	S	
0		
1		

Tabela 6: Função NOT a partir de NOR.

4.6 Análise de Porta Lógica TTL com Entrada Flutuante

Verifique o estado lógico da saída de uma porta NOR nas seguintes condições, anotando os resultados na tabela 7:

- 1. as duas entradas flutuantes (em aberto, sem qualquer tipo de conexão)
- 2. com apenas uma das entradas ligadas ao GND e a outra flutuante
- 3. com apenas uma das entradas ligadas ao Vcc e a outra flutuante.

Função NOR		
Entradas		Saída
A	В	S
Aberta	Aberta	
Aberta	0	
Aberta	1	
0	0	

Tabela 7: Função NOR, em CI da família TTL, com entrada flutuante.

O que se conclui, pela tabela acima, em relação à função NOR, ao se
deixar alguma das entradas em aberto?

4.7 Desafios

- 1. Quais os valores analógicos dos dois níveis lógicos (nível lógico alto e nível lógico baixo) gerados pelas chaves reversoras? E os obtidos nas saídas dos CIs? Dica: utilizar o multímetro na função de voltímetro CC.
- 2. É também possível obter uma função NOT a partir de uma porta NAND?
- 3. Elaborar um comparador de igualdade de 4 bits que quando as entradas forem iguais (A=B) a saída será 1 (Y=1).

Lista de Materiais

- Painel Digital Novo didático para desenvolvimento
- CIs: 1x 7400, 1x 7402, 1x 7408 e 1x 7432
- Alicate de bico
- Alicate de corte
- Espátula para remoção de CI

$\mathrm{ETE}102$ - Fundamentos de Circuitos Digitais

- Multímetro digital
- $\bullet\,$ Fios rígidos para proto-board

