

实验1: 排序算法性能分析

报告人: 郑杨 陈敏涵

SECTION 1 Performance Analysis

1, Insertion sort

sorted

unsorted

Insert

Time complexity:

$INSERTION_SORT(A, n)$	cost	$time \mathrel{\mathrel{\leftarrow}}$
for i = 2 to n	c_1	n $\!\!\!\leftarrow$
key = A[i]	c_2	$n-1$ \leftarrow
j = i - 1	c_3	$n-1$ \leftarrow
while $j \ge 1$ and $key < A[j]$	C_4	$\sum_{i=2}^n t_i \leftarrow$
A[j+1] = A[j]	<i>c</i> ₅	$\sum_{i=2}^n (t_i-1) \leftarrow$
j	<i>c</i> ₆	$\sum_{i=2}^{n}(t_i-1)$
A[j+1] = key	<i>C</i> ₇	$n-1$ \leftarrow

Then:←

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{i=2}^{n} t_i + c_5 \sum_{i=2}^{n} (t_i - 1) + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 (n-1) + c_7 (n-$$

Time complexity:

Space complexity: O(1)

$$O(n^2) \bullet Worst case$$

$$t_i = i$$

$$\sum_{i=2}^n t_i = \frac{n(n+1)}{2} - 1, \sum_{i=2}^n (t_i - 1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + c_5 \frac{n(n-1)}{2} + c_6 \frac{n(n-1)}{2} + c_7 (n-1)$$

$$= \frac{1}{2}(c_4 + c_5 + c_6)n^2 + (c_1 + c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2} + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

$$o(n) \bullet Best case t_i = 1$$

$$O(n^2)$$
 • Average case $E(t_i) = \frac{1}{i}(1 + 2 + \dots + i) = \frac{i+1}{2} \approx \frac{i}{2}$

Testing:

Data Scales [←]	10000↩	20000↩	30000€	40000↩	50000↩	60000	70000↩	≥00008	90000←
Theoretical time/s [←]	0.053↩	0.212↩	0.477↩	0.848↩	1.325↩	1.908↩	2.597←	3.392←	4.293←
Experimental time/s [△]	0.053↩	0.2←	0.452←	0.791←	1.234←	1.777←	2.418←	3.172←	3.986↩
Error rate←	0.00%←	-5.66%	-5.24%	-6.72‰	-6.87‰	-6.87%	-6.89%	-6.49%	-7.15%

2. Bubble sort

After the 1st sort:

After the 2nd sort:

After the 3rd sort:

sorted

unsorted

Time complexity:

$BUBBLE_SORT(A, n)$	cost	$time \!\!\leftarrow\!\!\!\!-$
for i = n to 2	c_1	n^{\leftarrow}
for j = 2 to i	c_2	$\sum_{i=2}^n i \leftarrow$
If A[j] < A[j-1]	c_3	$(\sum_{i=2}^n i) - 1$
Swap(A[j], A[j-1])	c_4	$\sum_{i=2}^n t_i \leftarrow$

Then: ←

$$T(n) = c_1 n + c_2 \sum_{i=2}^{n} i + c_3 \left(\left(\sum_{i=2}^{n} i \right) - 1 \right) + c_4 \sum_{i=2}^{n} t_i \in C_1$$

Time complexity:

Space complexity: O(1)

 $O(n^2) \bullet Worst case$

$$\sum_{i=2}^{n} t_i = \left(\sum_{i=2}^{n} i\right) - 1 = \frac{n(n+1)}{2} - 2$$

$$T(n) = c_1 n + c_2 \left(\frac{n(n+1)}{2} - 1\right) + \left(c_3 + c_4\right) \left(\frac{n(n+1)}{2} - 2\right)$$

$$= \frac{1}{2} \left(c_2 + c_3 + c_4\right) n^2 + \left(c_1 + \frac{c_2}{2} + \frac{c_3}{2} + \frac{c_4}{2}\right) n - \left(c_2 + 2c_3 + 2c_4\right)$$

$$\begin{array}{ccc} O(n^2) & 2 & 3 & 3 \\ O(n^2) & & & & \\ Or O(n) & Best case & \sum_{i=2}^n t_i = 0 \end{array}$$

 $O(n^2)$ • Average case $E(t_i) = \frac{1}{i}(0+1+\cdots+i-1) = \frac{i-1}{2} \approx \frac{i}{2}$

Testing:

Data Scales [←]	10000←	20000←	30000€	40000←	50000←	60000←	70000↩
Theoretical time/s [←]	0.300↩	1.199↩	2.698↩	4.796←	7.494↩	10.791←	14.688↩
Experimental time/s [←]	0.300↩	1.318↩	3.093←	5.582←	8.811↩	12.854↩	17.874↩
Error rate [←]	0.00%←	9.93%←	14.65₩	16.38%	17.57%↩	19.11%	21.69%

3, Selection sort

Time complexity:

$SELECTION_SORT(A, n)$	cost	time←
for i = 1 to n - 1	c_1	n^{\leftarrow}
minval = A[i]	c_2	$n-1$ \leftarrow
for j = i to n	c_3	$\sum_{i=1}^{n-1} n - i + 2 \leftarrow$
if A[j] < minval	c_4	$\sum_{i=1}^{n-1} n - i + 1 \leftarrow$
minval = A[j]	<i>c</i> ₅	$\sum_{i=1}^{n-1} t_i \leftarrow$
k = j	c_6	$\sum_{i=1}^{n-1} t_i \leftarrow$
A[k] = A[i]	<i>C</i> ₇	$n-1$ \leftarrow
A[i] = minval	c_8	$n-1$ \leftarrow

 \leftarrow

Then: ←

$$T(n) = c_1 n + c_2 (n-1) + c_3 (\sum_{i=1}^{n-1} n - i + 2) + c_4 (\sum_{i=1}^{n-1} n - i + 1) + c_5 (\sum_{i=1}^{n-1} t_i) + c_6 (\sum_{i=1}^{n-1} t_i) + c_7 (n-1) + c_8 ($$

Time complexity:

Space complexity: O(1)

$$O(n^{2}) \bullet Worst case \qquad \sum_{i=1}^{n-1} t_{i} = \sum_{i=1}^{n-1} n - i + 1 = \frac{(n+2)(n-1)}{2}$$

$$T(n) = c_{1}n + c_{2}(n-1) + c_{3} \frac{(n+4)(n-1)}{2} + c_{4} \frac{(n+2)(n-1)}{2}$$

$$+c_{5} \frac{(n+2)(n-1)}{2} + c_{6} \frac{(n+2)(n-1)}{2} + c_{7}(n-1) + c_{8}(n-1)$$

$$= \frac{1}{2}(c_{3} + c_{4} + c_{5} + c_{6})n^{2} + (c_{1} + c_{2} + \frac{3}{2}c_{3} + \frac{1}{2}c_{4} + \frac{1}{2}c_{5} + \frac{1}{2}c_{6})n - (c_{2} + 2c_{3} + c_{4} + c_{5} + c_{6} + c_{7} + c_{8})$$

$$O(n^2) \bullet Best case \sum_{i=2}^n t_i = 0$$

$$O(n^2)$$
 • Average case $E(t_i) = \frac{1}{i}(0+1+\dots+i-1) = \frac{i-1}{2} \approx \frac{i}{2}$

Testing:

Data Scales [←]	10000↩	20000↩	30000€	40000↩	50000↩	60000↩	70000↩	≥00008	90000€
Theoretical time/s⁴	0.139↩	0.556↩	1.251↩	2.224↩	3.475↩	5.004↩	6.811←	8.896↩	11.259↩
Experimental time/s [△]	0.139↩	0.553↩	1.247←	2.235↩	3.485↩	4.987↩	6.78←	8.871←	11.2←
Error rate [←]	0.00%←	-0.54%←	-0.32%←	0.49%↩	0.29%←	-0.34₩	-0.46₩	-0.28%←	-0.52%←

Running time of Select Sort

4. Merge sort

Time complexity:

$$T(n) = \begin{cases} \Theta(1), n = 1\\ 2T(n/2) + \Theta(n), n > 1 \end{cases}$$

$$T(n) = \begin{cases} c, n = 1 \\ 2T(n/2) + cn, n > 1 \end{cases}$$

$$T(n) = cn(\log n + 1) = cn\log n + cn$$

Testing:

Data Scales ←	10000↩	20000↩	30000€	40000↩	50000↩	60000↩	70000↩	80000₽	90000↩
Theoretical time/ms.←	1.652←	3.55₽	5.55←	7.6₽	9.7←	11.84←	14.01←	16.2←	18.41←
Experimental time/ms [←]	1.652←	3.901←	5.749↩	7.569←	9.586←	11.617↩	13.802←	15.649←	17.876↩
Error rate [←]	0.00%←	9.81%	3.64%₽	-0.44%←	-1.21%	-1.89%←	-1.46%←	-3.40%←	-2.93₩

Testing: n = 10000000 run 100 times

StopDepth	13	14	15	16	17	18	19	20	21
Running Time/s	0.21204	0.16498	0.14504	0.13945	0.14247	0.14592	0.15107	0.15672	0.15904

5. Quick sort

Time complexity:

$$T(n) = O(n+X)$$

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

$$E(X) = E \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} EX_{ij} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr_{ij}$$

$\overline{PARTITION(A, l, r)} \leftarrow$

 $return \ l \leftarrow$

$$key = A[l] \leftarrow$$
 $while(l < r) \leftarrow$

$$\begin{aligned} \textit{while}(l < r \ \textit{and} \ A[r] \ge \textit{key}) \ r = r - 1 \\ & \textit{if}(l < r) \ A[l] = A[r] \ l = l + 1 \\ & \textit{while}(l < r \ \textit{and} \ A[l] \le \textit{key}) \ l = l + 1 \\ & \textit{if}(l < r) \ A[r] = A[l] \ r = r - 1 \\ & \textit{A}[l] = \textit{key} \\ \end{aligned}$$

Time complexity:

 Z_i the *i*-th smallest number

$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$

$$Pr_{ij} = \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1}$$

$$E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr_{ij} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} = \sum_{i=1}^{n-1} O(\lg n) = O(n \lg n)$$

0	6	4	7	5	8	9
= 6, j = 8	1				1	
4, j = 8	6	4	7	5	8	9
j = 0		1			1	
	6	4	7	5	8	9
			Î		1	
	6	4	7	5	8	9
				ノ		
	6	4	5	7	8	9
				1		
	6	4	5	7	8	9
			1	1		
	5	4	6	7	8	9

Testing:

Data Scales	10000	20000	30000	40000	50000	70000	100000
Theoretical time/ms	0.64522	1.38756	2.16655	2.96934	3.78984	5.47077	8.06525
Experimental time/ms	0.64522	1.37764	2.12376	2.93745	3.65455	5.23880	7.59374
Error rate	0.000%	-0.715%	-1.975%	-1.074%	-3.570%	-4.240%	-5.846%

SECTION 2 The first m biggest number

Solutions

- Bubble sort
- heap sort

• Quick sort

process

complexity

Select(a, l, r, k)

• Divide the sequence into $\lceil n/5 \rceil$ groups, each group has 5 elements (the last group may have fewer than five elements)

• Find the median of each group using insertion sort then we have $\lceil n/5 \rceil$ medians

• Find the median of $\lceil n/5 \rceil$ medians using **Select** $(a, l, l + num - 1, \frac{num}{2})$

• Take the median we found as the pivot, using PATITION to divide

- if k == num return l + num 1
- if k < num return Select(a, l, l + num 1, k)
- if k > num return Select(a, l + num, r, k num)


```
T(n)
```


- O(n)• Divide the sequence into $\lfloor n/5 \rfloor$ groups, each group has 5 elements (the last group may have fewer than five elements)
- O(n) Find the median of each group using insertion sort then we have [n/5] medians
- T(|n/5|) Find the median of [n/5] medians using $Select(a, l, l + num 1, \frac{num}{2})$
 - O(n) Take the median we found as the pivot, using PATITION to divide
 - $if k == num \quad return \ l + num 1$??
 - if k < num return Select(a, l, l + num 1, k)
 - if k > num return Select(a, l + num, r, k num)

?? • if
$$k == num$$
 return $l + num - 1$

$$if \ k < num \quad return \ Select(a, l, l + num - 1, k)$$

if
$$k > num$$
 return $Select(a, l + num, r, k - num)$ $[n/5]$

$$big \ge 3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil - 2\right) \ge \frac{3n}{10} - 6$$

$$small \le n - big = \frac{7n}{10} + 6$$

$$T\left(\frac{7n}{10}+6\right)$$

- o(n) Divide the sequence into [n/5] groups, each group has 5 elements (the last group may have fewer than five elements)
- O(n) Find the median of each group using insertion sort then we have [n/5] medians
- T([n/5]) Find the median of [n/5] medians using **Select** $(a, l, l + num 1, \frac{num}{2})$
 - O(n) Take the median we found as the pivot, using PATITION to divide

$$T\left(\frac{7n}{10} + 6\right) \quad if \ k == num \quad return \ l + num - 1$$

$$if \ k < num \quad return \ Select(a, l, l + num - 1, k)$$

$$if \ k > num \quad return \ Select(a, l + num, r, k - num)$$

$$T(n) \le O(n) + O(n) + T\left(\left\lceil\frac{n}{5}\right\rceil\right) + O(n) + T\left(\frac{7n}{10} + 6\right)$$
$$= O(n) + T\left(\left\lceil\frac{n}{5}\right\rceil\right) + T\left(\frac{7n}{10} + 6\right)$$

$$T(n) \leq cn$$

$$T(n) \le an + c \left[\frac{n}{5} \right] + c \left(\frac{7n}{10} + 6 \right) \le an + \frac{cn}{5} + c + c \frac{7n}{10} + 6c$$

$$= c \frac{9n}{10} + 7c + an = cn + \left(-\frac{cn}{10} + 7c + an \right)$$

$$\left(-\frac{cn}{10} + 7c + an\right) \le 0$$
 $c(n-70) \ge 10an$ $n > 70$ $c \ge \frac{10an}{n-70}$
 $n \le 70$ $T(n) = O(1) \le cn$

Thank You! Questions?

深圳大学计算机与软件学院

报告人: 郑杨 陈敏涵

指导老师: 李炎然

2022年3月14日