# **Simple Regression Models**

Fitting and interpreting models

The following content is based on Mine Çetinkaya-Rundel's excellent book Data Science in a Box

# Models with numerical explanatory variables

# **Data: Paris Paintings**

```
pp <- read_csv("data/paris-paintings.csv", na = c("n/a", "", "NA"))</pre>
```

- Number of observations: 3393
- Number of variables: 61

# Goal: Predict height from width

$$\widehat{height}_i = eta_0 + eta_1 imes width_i$$

Height vs. width of paintings Paris auctions, 1764 - 1780





# Step 1: Specify model

```
linear_reg()
```

## Linear Regression Model Specification (regression)

# Step 2: Set model fitting engine

```
linear_reg() %>%
   set_engine("lm") # lm: linear model

## Linear Regression Model Specification (regression)
##
## Computational engine: lm
```

#### Step 3: Fit model & estimate parameters

... using formula syntax

```
linear reg() %>%
  set_engine("lm") %>%
  fit(Height in ~ Width in, data = pp)
## parsnip model object
##
## Fit time: 3ms
##
## Call:
## stats::lm(formula = Height_in ~ Width_in, data = data)
##
## Coefficients:
## (Intercept) Width_in
##
       3.6214
                    0.7808
```

#### A closer look at model output

```
## parsnip model object
##
## Fit time: 1ms
##
## Call:
## stats::lm(formula = Height_in ~ Width_in, data = data)
##
## Coefficients:
## (Intercept) Width_in
## 3.6214 0.7808
```

$$\widehat{height}_i = 3.6214 + 0.7808 imes width_i$$

# A tidy look at model output

```
linear_reg() %>%
  set_engine("lm") %>%
  fit(Height_in ~ Width_in, data = pp) %>%
  tidy()

## # A tibble: 2 x 5
```

$$\widehat{height}_i = 3.62 + 0.781 imes width_i$$

# Slope and intercept

$$\widehat{height}_i = 3.62 + 0.781 imes width_i$$

- Slope: For each additional inch the painting is wider, the height is expected to be higher, on average, by 0.781 inches.
- Intercept: Paintings that are 0 inches wide are expected to be 3.62 inches high, on average. (Does this make sense?)

# Correlation does not imply causation

Remember this when interpreting model coefficients





Source: XKCD, Cell phones

# Parameter estimation

# Linear model with a single predictor

• We're interested in  $\beta_0$  (population parameter for the intercept) and  $\beta_1$  (population parameter for the slope) in the following model:

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

- Tough luck, you can't have them...
- So we use sample statistics to estimate them:

$${\hat y}_i = b_0 + b_1 \; x_i$$

# Least squares regression

- The regression line minimizes the sum of squared residuals.
- If  $e_i = y_i \hat{y}_i$ , then, the regression line minimizes  $\sum_{i=1}^n e_i^2$ .

# Visualizing residuals

Height vs. width of paintings

Just the data



# Visualizing residuals (cont.)

Height vs. width of paintings

Data + least squares line



# Visualizing residuals (cont.)

Height vs. width of paintings

**Data + least squares line + residuals** 



# Properties of least squares regression

■ The regression line goes through the center of mass point, the coordinates corresponding to average x and average y,  $(\bar{x}, \bar{y})$ :

$$\bar{y} = b_0 + b_1 \bar{x} \rightarrow b_0 = \bar{y} - b_1 \bar{x}$$

- lacksquare The slope has the same sign as the correlation coefficient:  $b_1=rrac{s_y}{s_x}$
- lacksquare The sum of the residuals is zero:  $\sum_{i=1}^n e_i = 0$
- The residuals and x values are uncorrelated

# Models with categorical explanatory variables

#### Categorical predictor with 2 levels

| ## | # / | A tibble:   | 3,  | 393 x                                                                     | 3   |                                  |     |
|----|-----|-------------|-----|---------------------------------------------------------------------------|-----|----------------------------------|-----|
| ## |     | name        | H   | eight <sub>-</sub>                                                        | _in | lands/                           | ۱LL |
| ## |     | <chr></chr> |     | <dl< td=""><td>ol&gt;</td><td><db< td=""><td>&gt;lc</td></db<></td></dl<> | ol> | <db< td=""><td>&gt;lc</td></db<> | >lc |
| ## | 1   | L1764-2     |     |                                                                           | 37  |                                  | 0   |
| ## | 2   | L1764-3     |     |                                                                           | 18  |                                  | 0   |
| ## | 3   | L1764-4     |     |                                                                           | 13  |                                  | 1   |
| ## | 4   | L1764-5a    | a   |                                                                           | 14  |                                  | 1   |
| ## | 5   | L1764-5b    | )   |                                                                           | 14  |                                  | 1   |
| ## | 6   | L1764-6     |     |                                                                           | 7   |                                  | 0   |
| ## | 7   | L1764-7a    | a   |                                                                           | 6   |                                  | 0   |
| ## | 8   | L1764-7b    | )   |                                                                           | 6   |                                  | 0   |
| ## | 9   | L1764-8     |     |                                                                           | 15  |                                  | 0   |
| ## | 10  | L1764-9a    | a   |                                                                           | 9   |                                  | 0   |
| ## | 11  | L1764-9b    | )   |                                                                           | 9   |                                  | 0   |
| ## | 12  | L1764-10    | )a  |                                                                           | 16  |                                  | 1   |
| ## | 13  | L1764-10    | )b  |                                                                           | 16  |                                  | 1   |
| ## | 14  | L1764-10    | )c  |                                                                           | 16  |                                  | 1   |
| ## | 15  | L1764-11    | L   |                                                                           | 20  |                                  | 0   |
| ## | 16  | L1764-12    | 2a  |                                                                           | 14  |                                  | 1   |
| ## | 17  | L1764-12    | 2b  |                                                                           | 14  |                                  | 1   |
| ## | 18  | L1764-13    | 3a  |                                                                           | 15  |                                  | 1   |
| ## | 19  | L1764-13    | 3b  |                                                                           | 15  |                                  | 1   |
| ## | 20  | L1764-14    | ļ   |                                                                           | 37  |                                  | 0   |
| ## | #.  | with 3,     | 373 | more                                                                      | row | S                                |     |

- landsALL = 0: No landscape features
- landsALL = 1: Some landscape features

#### Height & landscape features

<dbl>

## 2 factor(landsALL)1 -5.65 0.532 -10.6 7.97e-26

22.7 0.328 69.1 0.

##

<chr> ## 1 (Intercept)

```
linear reg() %>%
   set engine("lm") %>%
  fit(Height in ~ factor(landsALL), data = pp) %>%
  tidy()
## # A tibble: 2 x 5
##
    term
                       estimate std.error statistic p.value
```

<dbl> <dbl> <dbl>

# Height & landscape features

$$\widehat{Height}_{in} = 22.7 - 5.645\ lands ALL$$

- Slope: Paintings with landscape features are expected, on average, to be 5.645 inches shorter than paintings that without landscape features
  - Compares baseline level (landsALL = 0) to the other level (landsALL = 1)
- Intercept: Paintings that don't have landscape features are expected, on average, to be 22.7 inches tall

#### Relationship between height and school

```
linear_reg() %>%
  set_engine("lm") %>%
  fit(Height_in ~ school_pntg, data = pp) %>%
  tidy()

## # A tibble: 7 x 5
```

```
##
    term
                  estimate std.error statistic p.value
                                      <dbl> <dbl>
##
    <chr>
                    <dbl>
                             <dbl>
## 1 (Intercept)
                    14.
                              10.0 1.40 0.162
                  2.33
## 2 school_pntgD/FL
                              10.0 0.232 0.816
## 3 school pntgF
                              10.0 1.02 0.309
                    10.2
## 4 school_pntgG
                    1.65
                              11.9 0.139 0.889
                              10.0
## 5 school pntqI
                    10.3
                                     1.02 0.306
## 6 school pntqS
                    30.4
                              11.4
                                      2.68 0.00744
## 7 school pntqX
                     2.87
                              10.3
                                      0.279 0.780
```

# **Dummy variables**

```
## # A tibble: 7 \times 5
                   estimate std.error statistic p.value
##
    term
##
    <chr>
                      <dbl>
                               <dbl>
                                         <dbl>
                                                <dbl>
## 1 (Intercept)
                                10.0
                                         1.40 0.162
                      14.
## 2 school pntgD/FL
                    2.33
                                10.0
                                        0.232 0.816
## 3 school pntqF
                      10.2
                                10.0 1.02 0.309
## 4 school_pntgG
                                11.9
                                        0.139 0.889
                       1.65
## 5 school_pntgI
                      10.3
                                10.0
                                         1.02 0.306
## 6 school pntqS
                                         2.68 0.00744
                      30.4
                                11.4
## 7 school pntqX
                       2.87
                                10.3
                                         0.279 0.780
```

- When the categorical explanatory variable has many levels, they're encoded to dummy variables
- Each coefficient describes the expected difference between heights in that particular school compared to the baseline level

# Categorical predictor with 3+ levels

| school_pntg | D_FL | F | G | 1 | S | X |
|-------------|------|---|---|---|---|---|
| Α           | 0    | 0 | 0 | 0 | 0 | 0 |
| D/FL        | 1    | 0 | 0 | 0 | 0 | 0 |
| F           | 0    | 1 | 0 | 0 | 0 | 0 |
| G           | 0    | 0 | 1 | 0 | 0 | 0 |
| 1           | 0    | 0 | 0 | 1 | 0 | 0 |
| S           | 0    | 0 | 0 | 0 | 1 | 0 |
| X           | 0    | 0 | 0 | 0 | 0 | 1 |

```
## # A tibble: 3,393 x 3
                Height in school pntg
      name
      <chr>
                    <dbl> <chr>
   1 L1764-2
                       37 F
    2 L1764-3
                       18 I
    3 L1764-4
                       13 D/FL
   4 L1764-5a
                       14 F
    5 L1764-5b
                       14 F
   6 L1764-6
                        7 I
   7 L1764-7a
                        6 F
                        6 F
    8 L1764-7b
   9 L1764-8
                       15 I
## 10 L1764-9a
                        9 D/FL
## 11 L1764-9b
                        9 D/FL
## 12 L1764-10a
                       16 X
                       16 X
## 13 L1764-10b
                       16 X
## 14 L1764-10c
## 15 L1764-11
                       20 D/FL
## 16 L1764-12a
                       14 D/FL
## 17 L1764-12b
                       14 D/FL
## 18 L1764-13a
                       15 D/FL
## 19 L1764-13b
                       15 D/FL
## 20 L1764-14
                       37 F
## # ... with 3,373 more rows
```

#### Relationship between height and school

```
## # A tibble: 7 x 5
                     estimate std.error statistic p.value
    term
    <chr>
                        <dbl>
                                            <dbl> <dbl>
                                  <dbl>
## 1 (Intercept)
                        14.
                                   10.0
                                            1.40 0.162
## 2 school pntqD/FL
                         2.33
                                            0.232 0.816
                                   10.0
## 3 school pntgF
                        10.2
                                   10.0
                                            1.02 0.309
                        1.65
## 4 school pntqG
                                   11.9
                                            0.139 0.889
## 5 school pntqI
                        10.3
                                   10.0
                                            1.02 0.306
## 6 school pntqS
                        30.4
                                   11.4
                                            2.68 0.00744
## 7 school pntqX
                        2.87
                                   10.3
                                            0.279 0.780
```

- Austrian school (A) paintings are expected, on average, to be 14 inches tall.
- Dutch/Flemish school (D/FL) paintings are expected, on average, to be 2.33 inches taller than Austrian school paintings.
- French school (F) paintings are expected, on average, to be 10.2 inches taller than Austrian school paintings.
- German school (G) paintings are expected, on average, to be 1.65 inches taller than Austrian school paintings.
- Italian school (I) paintings are expected, on average, to be 10.3 inches taller than Austrian school paintings.
- Spanish school (S) paintings are expected, on average, to be 30.4 inches taller than Austrian school paintings.
- Paintings whose school is **unknown (X)** are expected, on average, to be **2.87 inches taller** than *Austrian school* paintings.