

Analysis of Continuous-Time Signals Using the Laplace Transform

9 The Laplace Transform

9.1 The Laplace Transform

- When we replace the $j\omega$ complex exponential variable with a general variable s, we have the Laplace transform

$$X(s) = \int_{-\infty}^{+\infty} x(t) e^{-st} \ dt$$

- ullet THe range of values of s for which the Laplace integral converges is called the region of convergence
- If we express X(s) as a rational function with numerator N(s) and denominator D(s), then we say:
 - the roots of the numerator are called the zeroes of the function
 - the roots of the denominator are called the poles of the function

9.2 The Region of Convergence for Laplace Transforms

- There are some specific constraints on the ROC for various classes of signals
- Property 1: the ROC of X(s) consists of strips parallel to the $j\omega$ -axis of the s-plane.
- Property 2: for rational Laplace transforms, the ROC does not contain any poles.
- Property 3: if x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane
- Property 4: if x(t) is right-sided, and if the line $Re\{s\}=\sigma_0$ is in the ROC, then all values of s for which $Re\{s\}>\sigma_0$ will also be in the ROC.
- Property 5: if x(t) is left-sided, and if the line $Re\{s\}=\sigma_0$ is in the ROC, then all values of s for which $Re\{s\}<\sigma_0$ will also be in the ROC.

- Property 6: If x(t) is two-sided, and if the line $Re\{s\}=\sigma_0$ is in the ROC, then the ROC will consist of the strip in the s-place that includes the line $Re\{s\}=\sigma_0$
- Property 7: If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC.

9.3 The Inverse Laplace Transform

$$x(t)=rac{1}{2\pi}\int_{-\infty}^{+\infty}X(\sigma+j\omega)e^{(\sigma+j\omega)t}\ d\omega=rac{1}{2\pi}\int_{-\infty}^{+\infty}X(s)e^{st}\ d\omega$$

9.5 Properties of the Laplace Transform

9.5.1 Linearity of the Laplace Transform

$$ax_1(t) + bx_2(t) \longleftrightarrow aX_1(s) + bX_2(s)$$

9.5.2 Time Shifting

$$x(t-t_0) \longleftrightarrow e^{-st_0}X(s)$$

9.5.3 Shifting in the s-Domain

$$e^{s_0t}x(t) \longleftrightarrow X(s-s_0)$$

9.5.4 Time Scaling

$$x(at) \longleftrightarrow rac{1}{|a|} X(s/a)$$

9.5.5 Conjugation

$$x^*(t) \longleftrightarrow X^*(s^*)$$

9.5.6 Convolution Property

$$x_1(t)*x_s(t)\longleftrightarrow X_1(s)X_2(s)$$

9.5.7 Differentiation in the Time Domain

$$rac{dx(t)}{dt} \longleftrightarrow sX(s)$$

9.5.8 Differentiation in the s-Domain

$$-tx(t)\longleftrightarrow rac{dX(s)}{ds}$$

9.9 The Unilateral Laplace Transform

• We now introduce the unilateral Laplace transform

$$X(s) = \int_0^\infty x(t) e^{-st} \ dt$$