Занятие 3. Доверительные интервалы и границы.

Домашнее задание:

Глава 19, задачи: 157, 158, 173, 174, 183, 184, 187, 188, 192.

Задача 3.1.

Задана выборка $(\xi_1,...,\xi_n)$ из нормального распределения $N(m,\sigma^2)$, в котором m-1 неизвестный параметр и σ^2-1 известное числовое значение. Построить доверительный интервал для m-1 с уровнем доверия P_{α} .

Решение:

Рассмотрим выборочное среднее $\hat{m}_{1}(\xi_{1},...,\xi_{n})$:

$$\hat{m}_1(\xi_1,...,\xi_n) = \frac{1}{n} \sum_{i=1}^n \xi_i.$$

Поскольку $(\xi_1,...,\xi_n)$ является выборкой, то все величины ξ_i совместно независимы и имеют нормальное распределение $N(m,\sigma^2)$, отсюда следует, что сумма $\sum_{i=1}^n \xi_i$ также имеет нормальное распределение, тогда и выборочное среднее $\hat{m}_1(\xi_1,...,\xi_n)$ имеет нормальное распределение:

$$\hat{m}_1(\xi_1,...,\xi_n) \sim N\left(m,\frac{\sigma^2}{n}\right).$$

Функция распределения выборочного среднего $F_{\hat{m}_1}(x)$ может быть выражена через функцию Лапласа $\Phi(x)$ (функцию распределения стандартного нормального распределения N(0,1)):

$$F_{\hat{m}_1}(x) = \Phi\left(\frac{x-m}{\frac{\sigma}{\sqrt{n}}}\right).$$

Образуем новую величину $\varphi(\xi_1,...,\xi_n;m)$:

$$\varphi(\xi_1,...,\xi_n;m) = F_{\hat{m}}(\hat{m}_1(\xi_1,...,\xi_n)).$$

Поскольку выборочное среднее $\hat{m}_1(\xi_1,...,\xi_n)$ подставляется в свою функцию распределения $F_{\hat{m}_1}(x)$, то, как известно из курса теории вероятностей, полученная подстановкой случайная величина $F_{\hat{m}_1}(\hat{m}_1(\xi_1,...,\xi_n))$ будет иметь равномерное распределение R[0,1], тогда такое же распределение будет иметь и величина $\varphi(\xi_1,...,\xi_n;m)$:

$$\varphi(\xi_{1},...,\xi_{n};m) = F_{\hat{m}_{1}}(\hat{m}_{1}(\xi_{1},...,\xi_{n})) = \Phi \left[\frac{\hat{m}_{1}(\xi_{1},...,\xi_{n}) - m}{\frac{\sigma}{\sqrt{n}}}\right] \sim R[0,1].$$

Легко видеть, что величина $\varphi(\xi_1,...,\xi_n;m)$ является центральной статистикой для m, действительно, распределение $\varphi(\xi_1,...,\xi_n;m)$ полностью известно (и не зависит от неизвестного m), величина $\varphi(\xi_1,...,\xi_n;m)$ как функция m является непрерывной (поскольку непрерывной является функция $\Phi(x)$) и при всех реализациях выборки величина $\varphi(\xi_1,...,\xi_n;m)$ является убывающей по m функцией (поскольку функция $\Phi(x)$ является возрастающей).

Таким образом, величина $\varphi(\xi_1,...,\xi_n;m)$ может быть использована при построении доверительного интервала для m . Выберем число $\alpha=\frac{1-P_o}{2}$, тогда:

$$P\{\alpha < \varphi(\xi_1,..., \xi_n; m) < 1 - \alpha\} = 1 - \alpha - \alpha = 1 - 2\alpha = P_{\delta}$$

поскольку величина $\varphi(\xi_1,...,\xi_n;m)$ имеет равномерное распределение R[0,1] . Преобразовывая полученное равенство получим следующую цепочку равенств:

$$P\{\alpha < \varphi(\xi_1, ..., \xi_n; m) < 1 - \alpha\} = P_{_{\partial}},$$

$$\begin{split} P\left\{\alpha < \Phi\left[\frac{\hat{m}_1(\xi_1, \dots, \xi_n) - m}{\frac{\sigma}{\sqrt{n}}}\right] < 1 - \alpha\right\} &= P_{\delta}, \\ P\left\{\Phi^{-1}(\alpha) < \frac{\hat{m}_1(\xi_1, \dots, \xi_n) - m}{\frac{\sigma}{\sqrt{n}}} < \Phi^{-1}(1 - \alpha)\right\} &= P_{\delta}, \\ P\left\{\hat{m}_1(\xi_1, \dots, \xi_n) - \Phi^{-1}(1 - \alpha)\frac{\sigma}{\sqrt{n}} < m < \hat{m}_1(\xi_1, \dots, \xi_n) - \Phi^{-1}(\alpha)\frac{\sigma}{\sqrt{n}}\right\} &= P_{\delta}, \end{split}$$

$$P\left\{\hat{m}_{1}(\xi_{1},...,\xi_{n}) - \Phi^{-1}(1-\alpha)\frac{\sigma}{\sqrt{n}} < m < \hat{m}_{1}(\xi_{1},...,\xi_{n}) - \Phi^{-1}(\alpha)\frac{\sigma}{\sqrt{n}}\right\} = P_{\delta}$$

$$P\left\{\frac{1}{n}\sum_{i=1}^{n}\xi_{i} - \Phi^{-1}(1-\alpha)\frac{\sigma}{\sqrt{n}} < m < \frac{1}{n}\sum_{i=1}^{n}\xi_{i} - \Phi^{-1}(\alpha)\frac{\sigma}{\sqrt{n}}\right\} = P_{\delta}.$$

Поскольку последнее равенство справедливо при любом значении неизвестного параметра m, тогда и точная нижняя грань:

$$\inf_{m} P\left\{\frac{1}{n}\sum_{i=1}^{n} \xi_{i} - \Phi^{-1}(1-\alpha)\frac{\sigma}{\sqrt{n}} < m < \frac{1}{n}\sum_{i=1}^{n} \xi_{i} - \Phi^{-1}(\alpha)\frac{\sigma}{\sqrt{n}}\right\} = P_{\delta}.$$

Отсюда следует, что интервал:

$$\left(\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\Phi^{-1}(1-\alpha)\frac{\sigma}{\sqrt{n}};\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\Phi^{-1}(\alpha)\frac{\sigma}{\sqrt{n}}\right)$$

является доверительным интервалом для m с уровнем доверия P_{ϕ} .

Заметим, что полученный доверительный интервал совпадает с известным наикратчайшим доверительным интервалом для m, действительно, величина

$$\Phi^{-1}(1-\alpha) = \Phi^{-1}\left(1-\frac{1-P_{\delta}}{2}\right) = \Phi^{-1}\left(\frac{1+P_{\delta}}{2}\right)$$

является квантилью стандартного нормального распределения уровня $\frac{1+P_{\delta}}{2}$, с другой стороны, в силу известного свойства $\Phi(x) = 1 - \Phi(-x)$:

$$\Phi(\Phi^{-1}(\alpha)) = 1 - \Phi(-\Phi^{-1}(\alpha)),$$

$$\alpha = 1 - \Phi(-\Phi^{-1}(\alpha)),$$

$$\Phi(-\Phi^{-1}(\alpha)) = 1 - \alpha,$$

$$-\Phi^{-1}(\alpha) = \Phi^{-1}(1 - \alpha),$$

то есть – $\Phi^{-1}(\alpha)$ является квантилью уровня $1 - \alpha = \frac{1 + P_{\delta}}{2}$.

Ответ:

$$\left(\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\Phi^{-1}(1-\alpha)\frac{\sigma}{\sqrt{n}};\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\Phi^{-1}(\alpha)\frac{\sigma}{\sqrt{n}}\right).$$

Задача 3.2.

Задана выборка $(\xi_1,...,\xi_n)$ из равномерного распределения R[0,a], где a>0 неизвестный параметр. Построить нижнюю и верхнюю доверительные границы для a с уровнем доверия P_{δ} .

Решение:

Рассмотрим порядковую статистику $\xi_{(n)} = \max_{1 \le i \le n} \xi_{(i)}$, функция распределения $F_{(n)}(x)$ которой, как известно, имеет вид:

$$F_{(n)}(x) = F_{\xi}^{n}(x),$$

где $F_{\xi}(x)$ — функция распределения случайных величин выборки ξ_i . Поскольку все величины ξ_i имеют равномерно распределение R[0,a], то:

$$F_{\xi}(x) = \begin{cases} 0 & , x < 0 \\ \frac{x}{a} & , 0 \le x \le a \\ 1 & , a < x \end{cases}$$

Тогда для функции $F_{(n)}(x)$ получим выражение:

$$F_{(n)}(x) = \begin{cases} 0, & x < 0 \\ \left(\frac{x}{a}\right)^n, & 0 \le x \le a \\ 1, & a < x \end{cases}$$

Определим величину $\varphi(\xi_1,...,\xi_n;a)$ следующим образом:

$$\varphi(\xi_1,...,\xi_n;a) = F_{(n)}(\xi_{(n)}).$$

Поскольку все величины выборки ξ_i имеют равномерно распределение R[0,a], то с вероятностью 1 величины $\xi_i \in [0,a]$, тогда и $\xi_{(n)} = \max \ \xi_{(i)} \in [0,a]$ и следовательно:

$$\varphi(\xi_1,...,\xi_n;a) = F_{(n)}(\xi_{(n)}) = \left(\frac{\xi_{(n)}}{a}\right)^n.$$

Поскольку случайная величина $\xi_{(n)}$ подставляется в свою функцию распределения $F_{(n)}(x)$, то получаемая в результате величина $F_{(n)}(\xi_{(n)})$, как известно, имеет равномерное распределение R[0,1]. Таким образом:

$$\varphi(\xi_1,...,\xi_n;a) = \left(\frac{\xi_{(n)}}{a}\right)^n \sim R[0,1].$$

Легко видеть, что величина $\varphi(\xi_1,...,\xi_n;a)$ является центральной статистикой для a, действительно, распределение величины $\varphi(\xi_1,...,\xi_n;a)$ полностью известно и не зависит от a, при всех a>0 величина $\varphi(\xi_1,...,\xi_n;a)$ является непрерывной по a функцией, и при всех реализациях выборки $(\xi_1,...,\xi_n)$ величина $\varphi(\xi_1,...,\xi_n;a)$ является убывающей по a.

Поскольку $\varphi(\xi_1,...,\xi_n;a)$ имеет равномерное распределение R[0,1], то:

$$P\{\varphi(\xi_1,...,\ \xi_n;a) < P_{_{\partial}}\} = P_{_{\partial}}\,,$$

тогда для любого a > 0:

$$P\left\{\left(\frac{\xi_{(n)}}{a}\right)^{n} < P_{\partial}\right\} = P_{\partial},$$

$$P\left\{\frac{\xi_{(n)}}{\sqrt[m]{P_{\partial}}} < a\right\} = P_{\partial}.$$

Поскольку последнее равенство справедливо при всех a > 0, то:

$$\inf_{a>0} P\left\{\frac{\xi_{(n)}}{\sqrt[m]{P_{\delta}}} < a\right\} = P_{\delta}.$$

Откуда следует, что статистика $\frac{\xi_{(n)}}{\sqrt[m]{P_{\delta}}}$ является нижней доверительной границей для a с

уровнем доверия $P_{\scriptscriptstyle \partial}$.

Аналогично,

$$P\{1-P_{o} < \varphi(\xi_{1},..., \xi_{n}; a)\} = 1-(1-P_{o}) = P_{o},$$

тогда для любого a > 0:

$$\begin{split} P\left\{1-P_{\delta} < \left(\frac{\xi_{(n)}}{a}\right)^{n}\right\} &= P_{\delta}, \\ P\left\{a < \frac{\xi_{(n)}}{\sqrt[n]{1-P_{\delta}}}\right\} &= P_{\delta}. \end{split}$$

Откуда,

$$\inf_{a>0} P\left\{a<\frac{\xi_{(n)}}{\sqrt[n]{1-P_{\delta}}}\right\}=P_{\delta},$$

И по определению статистика $\frac{\xi_{(n)}}{\sqrt[n]{1-P_o}}$ является верхней доверительной границей для a

с уровнем доверия P_{∂} .

Ответ:

$$\max_{\frac{1 \le i \le n}{\sqrt[m]{P_a}}} \xi_{(i)}$$
 — нижняя доверительная граница;

$$\max_{1 \le i \le n} \frac{\xi_{(i)}}{\sqrt[n]{1-P_o}}$$
 — верхняя доверительная граница.

Задача 3.3.

Задана выборка $(\xi_1,...,\xi_n)$ из нормального распределения $N(m,\sigma^2)$, где m и σ — неизвестные параметры. Построить доверительные интервалы для σ^2 с уровнем доверия P_{δ} при:

- 1) n = 10 , $P_{a} = 0.98$;
- 2) n = 10, $P_0 = 0.9$;
- 3) n = 5, $P_a = 0.98$;

Решение:

Пусть статистика $\tilde{\mu}_{_{2}}(\xi_{_{1}},...,\ \xi_{_{n}})$ обозначает исправленную выборочную дисперсию:

$$\widetilde{\mu}_{2}(\xi_{1},...,\xi_{n}) = \frac{1}{n-1} \sum_{i=1}^{n} \left(\xi_{i} - \frac{1}{n} \sum_{i=1}^{n} \xi_{i} \right)^{2}.$$

Согласно теореме Фишера статистика $\frac{n-1}{\sigma^2} \tilde{\mu}_2(\xi_1,...,\xi_n)$ имеет распределение хиквадрат с числом степеней свободы n-1:

$$\frac{n-1}{\sigma^2} \widetilde{\mu}_2(\xi_1, ..., \xi_n) \sim \chi^2(n-1).$$

Пусть y_1 и y_2 являются квантилями распределения $\chi^2(n-1)$ уровней $\frac{1-P_o}{2}$ и $\frac{1+P_o}{2}$ соответственно, тогда:

$$\begin{split} P\left\{y_{1} < \frac{n-1}{\sigma^{2}} \widetilde{\mu}_{2}(\xi_{1},...,\xi_{n}) < y_{2}\right\} &= P_{\delta}, \\ P\left\{\frac{(n-1)}{y_{2}} \widetilde{\mu}_{2}(\xi_{1},...,\xi_{n}) < \sigma^{2} < \frac{(n-1)}{y_{1}} \widetilde{\mu}_{2}(\xi_{1},...,\xi_{n})\right\} &= P_{\delta}. \end{split}$$

Поскольку полученное равенство справедливо при всех $\sigma > 0$, то интервал:

$$\left(\frac{(n-1)}{y_{2}}\tilde{\mu}_{2}(\xi_{1},...,\xi_{n});\frac{(n-1)}{y_{1}}\tilde{\mu}_{2}(\xi_{1},...,\xi_{n})\right)$$

является доверительным интервалом для σ^2 с уровнем доверия P_{δ} .

В следующей далее таблице приведены интервалы для случаев 1)-3).

n	$P_{_{\partial}}$	$\frac{1-P_{\delta}}{2}$	$\frac{1+P_{\delta}}{2}$	<i>y</i> ₁	У 2	$\left(\frac{(n-1)}{y_2}\tilde{\mu}_2;\frac{(n-1)}{y_1}\tilde{\mu}_2\right)$
10	0.98	0.01	0.99	2.09	21.66	$(0.42\tilde{\mu}_{_2};4.31\tilde{\mu}_{_2})$
10	0.9	0.05	0.95	3.33	16.92	$(0.55\widetilde{\mu}_{\scriptscriptstyle 2};2.7\widetilde{\mu}_{\scriptscriptstyle 2})$
5	0.98	0.01	0.99	0.55	15.09	$(0.27 \widetilde{\mu}_{_2}; 7.27 \widetilde{\mu}_{_2})$

Ответ:

- 1) $(0.42 \,\tilde{\mu}_{2}; 4.31 \,\tilde{\mu}_{2}),$
- 2) $(0.55 \, \widetilde{\mu}_2; 2.7 \, \widetilde{\mu}_2)$,
- 3) $(0.27 \, \widetilde{\mu}_2; 7.27 \, \widetilde{\mu}_2)$,

где
$$\widetilde{\mu}_2 = \widetilde{\mu}_2(\xi_1, ..., \xi_n) = \frac{1}{n-1} \sum_{i=1}^n \left(\xi_i - \frac{1}{n} \sum_{i=1}^n \xi_i \right)^2.$$

Задача 3.4.

Задана выборка $(\xi_1,...,\xi_n)$ из показательного распределения E(a) , где a>0 неизвестный параметр. Построить:

- 1) доверительный интервал для a с уровнем доверия P_a ,
- 2) нижнюю доверительную границу для a с уровнем доверия P_{o} ,
- 3) верхнюю доверительную границу для a с уровнем доверия $P_{\scriptscriptstyle o}$.

Решение:

1) Рассмотрим величину $\varphi(\xi_1,...,\xi_n;a)$:

$$\varphi(\xi_1,...,\xi_n;a) = \sum_{i=1}^n 2a\xi_i$$

и определим распределение этой величины. Поскольку $\varphi(\xi_1,...,\xi_n;a)$ является суммой независимых случайных величин, то наиболее просто установить распределение с помощью характеристической функции $\varphi(\xi_1,...,\xi_n;a)$.

Поскольку случайные величины выборки ξ_i независимы и имеют показательное распределение E(a) , то совместная плотность вероятности $p_{\xi}(x_1,...,x_n;a)$ случайных величин выборки имеет вид:

$$p_{\xi}(x_1,...,x_n;a) = \prod_{i=1}^n ae^{-ax_i}.$$

Пусть случайные величины $\eta_i = 2a\xi_i$ или иначе $\eta_i = f_i(\xi_i)$, где $f_i(x) = 2ax$:

$$\begin{cases} \eta_{1} = f_{1}(\xi_{1}) = 2a\xi_{1} \\ \eta_{2} = f_{2}(\xi_{2}) = 2a\xi_{2} \\ \dots \\ \eta_{n} = f_{n}(\xi_{n}) = 2a\xi_{n} \end{cases} \leftrightarrow \begin{cases} \xi_{1} = f_{1}^{-1}(\eta_{1}) = \frac{\xi_{1}}{2a} \\ \xi_{2} = f_{2}^{-1}(\eta_{2}) = \frac{\xi_{2}}{2a} \\ \dots \\ \xi_{n} = f_{n}^{-1}(\eta_{n}) = \frac{\xi_{n}}{2a} \end{cases}$$

где
$$f_i^{-1}(y) = \frac{y}{2a}$$
.

Совместная плотность вероятности $p_{\eta}(y_1,...,y_n;a)$ величин η_i в соответствии с правилом преобразования плотностей вероятностей выражается через плотность вероятности $p_{\xi}(x_1,...,x_n;a)$ случайных величин выборки ξ_i следующим образом:

$$p_{\eta}(y_1,...,y_n;a) = p_{\xi}(f_1^{-1}(y_1),...,f_n^{-1}(y_n);a) \frac{\partial(f_1^{-1},f_2^{-1},...,f_n^{-1})}{\partial(y_1,y_2,...,y_n)},$$

где якобиан преобразования:

$$\frac{\partial (f_1^{-1}, f_2^{-1}, \dots, f_n^{-1})}{\partial (y_1, y_2, \dots, y_n)} = \begin{vmatrix} \frac{\partial f_1^{-1}}{\partial y_1} & \frac{\partial f_2^{-1}}{\partial y_2} & \dots & \frac{\partial f_n^{-1}}{\partial y_n} \\ \frac{\partial f_2^{-1}}{\partial y_1} & \frac{\partial f_2^{-1}}{\partial y_2} & \dots & \frac{\partial f_2^{-1}}{\partial y_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_n^{-1}}{\partial y_1} & \frac{\partial f_n^{-1}}{\partial y_2} & \dots & \frac{\partial f_n^{-1}}{\partial y_n} \end{vmatrix} = \begin{vmatrix} \frac{1}{2a} & 0 & \dots & 0 \\ 0 & \frac{1}{2a} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \frac{1}{2a} \end{vmatrix} = \begin{pmatrix} \frac{1}{2a} \end{pmatrix}^n.$$

Таким образом,

$$p_{\eta}(y_1,...,y_n;a) = \prod_{i=1}^n ae^{-a\frac{y_i}{2a}} \left(\frac{1}{2a}\right)^n = \left(\frac{1}{2a}\right)^n a^n \prod_{i=1}^n e^{-\frac{y_i}{2}} = \left(\frac{1}{2}\right)^n \prod_{i=1}^n e^{-\frac{y_i}{2}} = \prod_{i=1}^n \frac{1}{2}e^{-\frac{y_i}{2}}.$$

Исходя из вида плотности вероятности $p_\eta(y_1,...,y_n;a)$, легко видеть, что случайные величины η_i независимы в совокупности и имеют показательное распределение $E\bigg(\frac{1}{2}\bigg)$. Вернемся к рассмотрению величины $\varphi(\xi_1,...,\xi_n;a)$:

$$\varphi(\xi_1,...,\xi_n;a) = \sum_{i=1}^n 2a\xi_i = \sum_{i=1}^n \eta_i.$$

Поскольку случайные величины η_i независимы в совокупности, то характеристическая функция $\chi_{\varphi}(t)$ суммы $\sum_{i=1}^n \eta_i$ равна произведению характеристических функций $\chi_{\eta_i}(t)$ случайных величин η_i :

$$\chi_{\varphi}(t) = \prod_{i=1}^{n} \chi_{\eta_{i}}(t)$$

Все случайные величины η_i имеют одинаковое распределение $E\left(\frac{1}{2}\right)$, характеристическая функция которого известна:

$$\chi_{\eta_i}(t) = \frac{1}{(1-2it)}.$$

Таким образом,

$$\chi_{\varphi}(t) = \prod_{i=1}^{n} \frac{1}{(1-2it)} = (1-2it)^{-n} = (1-2it)^{-\frac{2n}{2}}.$$

Известно что распределение хи-квадрат с k степенями свободы имеет характеристическую функцию $(1-2it)^{-\frac{k}{2}}$, откуда следует, что величина $\varphi(\xi_1,...,\xi_n;a)$ имеет распределение хи-квадрат с 2n степенями свободы $\chi^2(2n)$:

$$\varphi(\xi_1,...,\xi_n;a) = \sum_{i=1}^n 2a\xi_i = \sum_{i=1}^n \eta_i \sim \chi^2(2n)$$

Легко видеть, что величина $\varphi(\xi_1,...,\xi_n;a)$ является центральной статистикой для a: распределение величины $\varphi(\xi_1,...,\xi_n;a)$ полностью известно и не зависит от a, при всех a>0 величина $\varphi(\xi_1,...,\xi_n;a)$ является непрерывной по a функцией, и при всех реализациях выборки $(\xi_1,...,\xi_n)$ величина $\varphi(\xi_1,...,\xi_n;a)$ является возрастающей по a.

2) Пусть теперь z_1 и z_2 являются квантилями распределения хи-квадрат с 2n степенями свободы $\chi^2(2n)$ уровней $\frac{1-P_{\theta}}{2}$ и $\frac{1+P_{\theta}}{2}$ соответственно, тогда очевидно:

$$P\{z_1 < \varphi(\xi_1,..., \xi_n; a) < z_2\} = F_{x_{2n}^2}(z_2) - F_{x_{2n}^2}(z_1) = \frac{1 + P_{\delta}}{2} - \frac{1 - P_{\delta}}{2} = P_{\delta},$$

где $F_{x_{2n}^2}(z)$ — функция распределения $\chi^2(2n)$. Преобразовывая неравенство слева, получим следующее равенство вероятностей:

$$P\left\{ z_{1} < \sum_{i=1}^{n} 2a\xi_{i} < z_{2} \right\} = P_{o},$$

$$P\left\{ \frac{z_{1}}{2\sum_{i=1}^{n} \xi_{i}} < a < \frac{z_{2}}{2\sum_{i=1}^{n} \xi_{i}} \right\} = P_{o}.$$

Поскольку последнее равенство справедливо для любого произвольного a>0 , то по определению интервал:

$$\begin{bmatrix}
\frac{z_1}{n}; \frac{z_2}{n} \\
2\sum_{i=1}^n \xi_i; 2\sum_{i=1}^n \xi_i
\end{bmatrix}$$

является доверительным интервалом для a с уровнем доверия P_a .

3) Поскольку центральная статистика $\varphi(\xi_1,...,\xi_n;a)$:

$$\varphi(\xi_1,...,\xi_n;a) = 2a\sum_{i=1}^n \xi_i$$

является функцией возрастающей по a, то для построения нижней доверительной границы необходимо ограничить центральную статистику снизу:

$$P\{z_{l} < \varphi(\xi_{1},..., \xi_{n};a)\} = P_{o}$$
.

Откуда:

$$\begin{split} &1 - P\{\varphi(\xi_1, ..., \xi_n; a) \le z_l\} = P_{\partial}, \\ &P\{\varphi(\xi_1, ..., \xi_n; a) \le z_l\} = 1 - P_{\partial}, \end{split}$$

и величина z_l должна быть равна квантили уровня $1-P_{\delta}$ распределения центральной статистики $\chi^2(2n)$.

Для получения нижней доверительной границы остается лишь преобразовать неравенство:

$$\begin{split} P\{z_{l} < \varphi(\xi_{1}, \dots, \xi_{n}; a)\} &= P_{\delta}, \\ P\left\{z_{l} < 2a\sum_{i=1}^{n} \xi_{i}\right\} &= P_{\delta}, \\ P\left\{\frac{z_{l}}{\sum_{i=1}^{n} \zeta_{i}} < a\right\} &= P_{\delta}. \end{split}$$

Таким образом, статистика $\frac{z_l}{n}$ является нижней доверительной границей для a с $2\sum_{i=1}^n \xi_i$

уровнем доверия P_{δ} .

4) Аналогично для построения верхней доверительной границы необходимо ограничить центральную статистику сверху:

$$P\{\varphi(\xi_1,..., \xi_n; a) < z_u\} = P_{\partial}$$

откуда непосредственно следует, что z_u является квантилью уровня P_{δ} распределения центральной статистики $\chi^2(2n)$.

Далее преобразование неравенства, стоящего под знаком вероятности приводит к верхней доверительной границе:

$$P\{\varphi(\xi_1,..., \xi_n; a) < z_u\} = P_{\partial},$$

$$P\left\{2a\sum_{i=1}^n \xi_i < z_u\right\} = P_{\partial},$$

$$P\left\{a < \frac{z_u}{2\sum_{i=1}^n \xi_i}\right\} = P_{\partial}.$$

Таким образом, статистика $\frac{z_u}{n}$ является верхней доверительной границей для a с $2\sum_{i=1}^n \xi_i$

уровнем доверия P_{a} .

Ответ:

1) доверительный интервал:

$$\left(\frac{z_1}{\sum_{i=1}^n \xi_i}; \frac{z_2}{\sum_{i=1}^n \xi_i}\right),$$

где z_1 и z_2 являются квантилями распределения хи-квадрат с 2n степенями свободы уровней $\frac{1-P_o}{2}$ и $\frac{1+P_o}{2}$ соответственно;

2) нижняя доверительная граница:

$$\frac{z_l}{2\sum_{i=1}^n \xi_i},$$

где z_l — квантиль уровня 1 — P_{ϑ} распределения $\chi^{\,2}(2n)$;

3) верхняя доверительная граница:

$$\frac{z_u}{2\sum_{i=1}^n \xi_i},$$

 z_u — квантиль уровня P_{δ} распределения $\chi^2(2n)$.

Задача 3.5.

Задана выборка $(\xi_1,...,\xi_n)$ из распределения Коши Co(a,1) с неизвестным параметром a . Построить приближенный доверительный интервал для a с уровнем доверия P_a .

Решение:

Построим оценку параметра a по методу порядковых статистик. Известно, что распределение Коши Co(a,b) имеет плотность вероятности:

$$p_{\xi}(x;a) = \frac{1}{\pi} \frac{b}{(x-a)^2 + b^2}.$$

Легко видеть, что функция плотности вероятности симметрична относительно прямой x = a, откуда следует, что медиана (квантиль уровня 0.5) $x_{0.5}$ совпадает с параметром a:

$$a = x_{0.5}$$
.

Взяв в качестве оценки медианы $x_{0.5}$ порядковую статистику с номером $\left[\frac{n}{2}\right]+1$, получим оценку параметра a :

$$\hat{a}(\xi_1,...,\ \xi_n)=\xi_{\left(\left[\frac{n}{2}\right]+1\right)}.$$

В соответствии с теоремой Крамера распределение порядковой статистики $\xi_{\left(\left[\frac{n}{2}\right]^{+1}\right)}$ с

ростом объема выборки n стремится к нормальному распределению $N\left(x_{0.5}, \frac{\frac{1}{2}\left(1-\frac{1}{2}\right)}{n\frac{1}{\pi^2}}\right)$ или

иначе $N\left(a,\frac{\pi^2}{4n}\right)$, поскольку $a=x_{0.5}$. Откуда следует, что распределение оценки $\hat{a}(\xi_1,...,\xi_n)$ при больших n можно считать приближенно нормальным:

$$\hat{a}(\xi_1,...,\xi_n) \sim N\left(a,\frac{\pi^2}{4n}\right).$$

Рассмотрим величину $\varphi(\xi_1,...,\xi_n;a)$, которая представляет собой нормированную оценку $\hat{a}(\xi_1,...,\xi_n)$:

$$\varphi(\xi_1,...,\xi_n;a) = \frac{\hat{a}(\xi_1,...,\xi_n) - a}{\sqrt{\frac{\pi^2}{4n}}} = \frac{\xi_{\left(\left[\frac{n}{2}\right]+1\right)} - a}{\sqrt{\frac{\pi^2}{4n}}}.$$

Легко видеть, что при больших n величина $\varphi(\xi_1,...,\xi_n;a)$ имеет приближенно стандартное нормальное распределение N(0,1):

$$\varphi(\xi_{1},...,\xi_{n};a) = \frac{\xi_{\left(\left[\frac{n}{2}\right]+1\right)} - a}{\sqrt{\frac{\pi^{2}}{4n}}} \sim N(0,1)$$

Откуда следует, что величина $\varphi(\xi_1,...,\xi_n;a)$ является центральной статистикой для параметра a, поскольку распределение $\varphi(\xi_1,...,\xi_n;a)$ полностью известно, функция $\varphi(\xi_1,...,\xi_n;a)$ как функция параметра a является непрерывной и одновременно при всех реализациях выборки величина $\varphi(\xi_1,...,\xi_n;a)$ является убывающей по a функцией.

Пусть y является квантилью стандартного нормального распределения $N\left(0,1\right)$ уровня $\frac{1+P_{\delta}}{2}$, тогда:

$$\begin{split} P\left\{-y < \varphi(\xi_1, ..., \, \xi_n; a) < y\right\} &\approx P_o, \\ P\left\{-y < \frac{\xi\left(\left[\frac{n}{2}\right]+1\right) - a}{\sqrt{\frac{\pi^2}{4n}}} < y\right\} &\approx P_o, \\ P\left\{\xi\left(\left[\frac{n}{2}\right]+1\right) - y\sqrt{\frac{\pi^2}{4n}} < a < \xi\left(\left[\frac{n}{2}\right]+1\right) + y\sqrt{\frac{\pi^2}{4n}}\right\} &\approx P_o. \end{split}$$

Поскольку последнее приближенное равенство справедливо при всех возможных конечных значениях a , то интервал:

$$\left(\xi_{\left(\left[\frac{n}{2}\right]+1\right)}-y\sqrt{\frac{\pi^{2}}{4n}};\xi_{\left(\left[\frac{n}{2}\right]+1\right)}+y\sqrt{\frac{\pi^{2}}{4n}}\right)$$

можно считать приближенным доверительным для параметра a с уровнем доверия P_a .

Ответ:

$$\left(\xi_{\left(\left[\frac{n}{2}\right]+1\right)}-y\sqrt{\frac{\pi^{\,2}}{4\,n}};\xi_{\left(\left[\frac{n}{2}\right]+1\right)}+y\sqrt{\frac{\pi^{\,2}}{4\,n}}\right)\;,\quad \text{где}\quad y\quad -\quad \text{квантиль}\quad \text{стандартного}\quad \text{нормального}$$

распределения N(0,1) уровня $\frac{1+P_{\delta}}{2}$.

Задача 3.6.

Задана выборка $(\xi_1,...,\xi_n)$ из распределения Пуассона $Po(\lambda)$ с неизвестным параметром λ . Построить приближенный доверительный интервал для λ с уровнем доверия P_{δ} .

Решение:

Построим по заданной выборке оценку $\hat{\lambda}(\xi_1,...,\xi_n)$ параметра λ (например, методом моментов):

$$\hat{\lambda}(\xi_1,...,\xi_n) = \frac{1}{n} \sum_{i=1}^n \xi_i$$
.

К величинам выборки ξ_i применима центральная предельная теорема, поэтому с ростом n распределение суммы (и оценки) будет стремиться к нормальному распределению $N\left(\lambda,\frac{\lambda}{n}\right)$. Нормируя оценку $\hat{\lambda}(\xi_1,...,\xi_n)$, получим величину $\varphi(\xi_1,...,\xi_n;\lambda)$:

$$\varphi(\xi_1,...,\xi_n;\lambda) = \frac{\hat{\lambda}(\xi_1,...,\xi_n) - \lambda}{\sqrt{\frac{\lambda}{n}}} \sim N(0,1),$$

распределение которой при больших n приближенно совпадает со стандартным нормальным распределением.

Заметим, что величина $\varphi(\xi_1,...,\xi_n;\lambda)$ является центральной статистикой для параметра λ , поскольку распределение величины $\varphi(\xi_1,...,\xi_n;\lambda)$ известно (приближенно), и сама величина $\varphi(\xi_1,...,\xi_n;\lambda)$ как функция λ является непрерывной и убывающей одновременно при всех реализациях выборки $(\xi_1,...,\xi_n)$.

Пусть y является квантилью стандартного нормального распределения N(0,1) уровня $\frac{1+P_o}{2}$, тогда выполняется приближенное равенство:

$$P\left\{-y < \varphi(\xi_1, ..., \xi_n; \lambda) < y\right\} \approx P_o,$$

$$P\left\{-y < \frac{\hat{\lambda} - \lambda}{\sqrt{\frac{\lambda}{n}}} < y\right\} \approx P_o,$$

$$P\left\{\left|\frac{\hat{\lambda}-\lambda}{\sqrt{\frac{\lambda}{n}}}\right| < y\right\} \approx P_o,$$

$$P\left\{(\hat{\lambda}-\lambda)^2 < y^2 \frac{\lambda}{n}\right\} \approx P_o,$$

$$P\left\{\lambda^2 - \left(2\hat{\lambda} + \frac{y^2}{n}\right)\lambda + \hat{\lambda}^2 < 0\right\} \approx P_o,$$

$$P\left\{\frac{2\hat{\lambda} + \frac{y^2}{n} - \sqrt{\left(2\hat{\lambda} + \frac{y^2}{n}\right)^2 - 4\hat{\lambda}^2}}{2} < \lambda < \frac{2\hat{\lambda} + \frac{y^2}{n} + \sqrt{\left(2\hat{\lambda} + \frac{y^2}{n}\right)^2 - 4\hat{\lambda}^2}}{2}\right\} \approx P_o,$$

$$P\left\{\frac{2\hat{\lambda} + \frac{y^2}{n} - \sqrt{4\hat{\lambda}\frac{y^2}{n} + \frac{y^4}{n^2}}}{2} < \lambda < \frac{2\hat{\lambda} + \frac{y^2}{n} + \sqrt{4\hat{\lambda}\frac{y^2}{n} + \frac{y^4}{n^2}}}{2}\right\} \approx P_o,$$

Пренебрегая слагаемыми порядка $\frac{1}{n}$ вне корня и слагаемыми порядка $\frac{1}{n^2}$ под корнем, получим приближенное равенство:

$$P\left\{\frac{2\hat{\lambda} - \sqrt{4\hat{\lambda}\frac{y^{2}}{n}}}{2} < \lambda < \frac{2\hat{\lambda} + \sqrt{4\hat{\lambda}\frac{y^{2}}{n}}}{2}\right\} \approx P_{\delta}$$

$$P\left\{\hat{\lambda} - \sqrt{\hat{\lambda}\frac{y^{2}}{n}} < \lambda < \hat{\lambda} + \sqrt{\hat{\lambda}\frac{y^{2}}{n}}\right\} \approx P_{\delta}.$$

Поскольку последнее приближенное равенство справедливо при всех допустимых значениях параметра λ , то интервал:

$$\left(\hat{\lambda} - \sqrt{\hat{\lambda}} \frac{y^{2}}{n}; \hat{\lambda} - \sqrt{\hat{\lambda}} \frac{y^{2}}{n}\right),$$

$$\left(\frac{1}{n} \sum_{i=1}^{n} \xi_{i} - \sqrt{\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \frac{y^{2}}{n}}; \frac{1}{n} \sum_{i=1}^{n} \xi_{i} - \sqrt{\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \frac{y^{2}}{n}}\right)$$

можно считать приближенным доверительным интервалом для параметра λ с уровнем доверия P_{δ} .

Ответ:

$$\left(\frac{1}{n}\sum_{i=1}^{n}\,\xi_{i}-\sqrt{\frac{1}{n}\sum_{i=1}^{n}\,\xi_{i}\,\frac{y^{2}}{n}};\frac{1}{n}\sum_{i=1}^{n}\,\xi_{i}-\sqrt{\frac{1}{n}\sum_{i=1}^{n}\,\xi_{i}\,\frac{y^{2}}{n}}\right)\quad,\quad\text{где}\qquad y\qquad -\quad\text{квантиль}\quad\text{стандартного}$$

нормального распределения N(0,1) уровня $\frac{1+P_{\theta}}{2}$.

Задача 3.7.

Задана выборка (ξ_1 ,..., ξ_n) из распределения с плотность вероятности $p_{\xi}(x;q)$:

$$p_{\xi}(x;q) = q \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + (1-q) \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^2}{2}},$$

где q — неизвестный параметр (0 < q < 1). Построить приближенный доверительный интервал для q с уровнем доверия P_a .

Решение:

Построим оценку параметра q по методу моментов. Заметим, что если величина ξ имеет плотность вероятности $p_{\xi}(x;q)$, тогда математическое ожидание $M_q[\xi]$:

$$M_{q}[\xi] = \int_{-\infty}^{\infty} x p_{\xi}(x;q) dx = \int_{-\infty}^{\infty} x \left(q \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} + (1-q) \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^{2}}{2}} \right) dx =$$

$$= q \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx + (1-q) \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^{2}}{2}} dx = q \cdot 0 + (1-q) \cdot 1 = 1-q.$$

Откуда,

$$q = 1 - M_a[\xi]$$

и оценка по методу моментов $\hat{q}(\xi_{\scriptscriptstyle 1},\!...,\;\xi_{\scriptscriptstyle n})$ для параметра q :

$$\hat{q}(\xi_1,...,\xi_n) = 1 - \frac{1}{n} \sum_{i=1}^n \xi_i$$
.

К величинам выборки ξ_i применима центральная предельная теорема, поэтому с ростом n распределение суммы $\sum_{i=1}^n \xi_i$ будет стремиться к нормальному распределению, поэтому распределение оценки $\hat{q}(\xi_1,...,\xi_n)$ будет также стремиться к нормальному распределению с параметрами $N\left(M_q[\hat{q}],D_q[\hat{q}]\right)$:

$$M_{q}[\hat{q}] = 1 - M_{q} \left[\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \right] = 1 - \frac{1}{n} \sum_{i=1}^{n} M_{q}[\xi_{i}] = 1 - \frac{1}{n} n(1 - q) = q,$$

$$D_{q}[\hat{q}] = D_{q} \left[\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \right] = \frac{1}{n^{2}} D_{q} \left[\sum_{i=1}^{n} \xi_{i} \right] = \frac{1}{n^{2}} \sum_{i=1}^{n} D_{q}[\xi_{i}].$$

Дисперсию $D_q[\xi_i]$ удобно вычислить с помощью второго начального момента $M_q[\xi_i^2]$:

$$\begin{split} M_{\ q}[\xi_i^{\ 2}] &= \int\limits_{-\infty}^{\infty} x^2 \, p_{\,\xi}(x;q) dx = \int\limits_{-\infty}^{\infty} x^2 \Bigg(q \, \frac{1}{\sqrt{2\pi}} \, e^{-\frac{x^2}{2}} + (1-q) \, \frac{1}{\sqrt{2\pi}} \, e^{-\frac{(x-1)^2}{2}} \Bigg) dx = \\ &= q \int\limits_{-\infty}^{\infty} x^2 \, \frac{1}{\sqrt{2\pi}} \, e^{-\frac{x^2}{2}} dx + (1-q) \int\limits_{-\infty}^{\infty} x^2 \, \frac{1}{\sqrt{2\pi}} \, e^{-\frac{(x-1)^2}{2}} dx = q \cdot (1+0^2) + (1-q) \cdot (1+1^1) = q + (1-q) \cdot 2 \, . \\ &\text{Тогда,} \end{split}$$

$$\begin{split} D_q[\xi_i] &= M_q[\xi_i^2] - \left(M_q[\xi_i]\right)^2 = q + (1-q) \cdot 2 - (1-q)^2 = 1 + q - q^2 \,, \\ D_q[\hat{q}] &= \frac{1}{n^2} n (1 + q - q^2) = \frac{1 + q - q^2}{n} \end{split}$$

Таким образом, при больших n распределение оценки $\hat{q}(\xi_1,...,\xi_n)$ приближенно совпадает с нормальным распределением:

$$\hat{q}(\xi_1,...,\xi_n) \sim N\left(q,\frac{1+q-q^2}{n}\right),$$

при
$$n \to \infty$$
 .

Нормируя оценку $\hat{q}(\xi_1,...,\xi_n)$, получим величину $\varphi(\xi_1,...,\xi_n;q)$:

$$\varphi(\xi_{1},...,\xi_{n};q) = \frac{\hat{q}(\xi_{1},...,\xi_{n}) - q}{\sqrt{\frac{1 + q - q^{2}}{n}}} \sim N(0,1),$$

$$\Pi D M n \to \infty.$$

Заметим, что величина $\varphi(\xi_1,...,\xi_n;\lambda)$ является центральной статистикой для параметра q, поскольку распределение величины $\varphi(\xi_1,...,\xi_n;q)$ известно (приближенно), и сама величина $\varphi(\xi_1,...,\xi_n;q)$ как функция q является непрерывной и убывающей одновременно при всех реализациях выборки $(\xi_1,...,\xi_n)$.

Пусть y является квантилью стандартного нормального распределения N(0,1) уровня $\frac{1+P_o}{2}$, тогда выполняется приближенное равенство:

$$P\left\{-y < \varphi(\xi_{1},..., \xi_{n};q) < y\right\} \approx P_{o},$$

$$P\left\{-y < \frac{\hat{q}-q}{\sqrt{\frac{1+q-q^{2}}{n}}} < y\right\} \approx P_{o},$$

$$P\left\{\left|\frac{\hat{q}-q}{\sqrt{\frac{1+q-q^{2}}{n}}}\right| < y\right\} \approx P_{o},$$

$$P\left\{\left|\hat{q}-q\right| < y\sqrt{\frac{1+q-q^{2}}{n}}\right\} \approx P_{o},$$

Заметим, что дальнейшее преобразование неравенства потребует возведения в квадрат и вызовет необходимость решения громоздкого квадратного уравнения. Этого можно избежать, если исключить параметр q в выражении, стоящем справа от знака больше, например, заменив всю правую часть оценкой сверху. Прежде всего, заметим что:

$$\sqrt{\frac{1+q-q^2}{n}} \le \max_{0 \le q < 1} \sqrt{\frac{1+q-q^2}{n}},$$

и если справедливо неравенство:

$$\left|\hat{q}-q\right| < y\sqrt{\frac{1+q-q^2}{n}}$$
,

тогда выполняется и неравенство:

$$\left|\hat{q}-q\right| < \max_{0 < q < 1} \sqrt{\frac{1+q-q^2}{n}},$$

то есть из выполнения первого неравенства следует выполнение второго неравенства:

$$|\hat{q} - q| < y \sqrt{\frac{1 + q - q^2}{n}} \Rightarrow |\hat{q} - q| < \max_{0 < q < 1} \sqrt{\frac{1 + q - q^2}{n}}.$$

Отсюда следует, что и вероятность выполнения второго неравенства не меньше вероятности выполнения второго неравенства:

$$\begin{split} P\bigg\{ \Big| \hat{q} - q \Big| < y \max_{0 < q < 1} \ \sqrt{\frac{1 + q - q^2}{n}} \bigg\} \ge P\bigg\{ \Big| \hat{q} - q \Big| < y \sqrt{\frac{1 + q - q^2}{n}} \bigg\} \approx P_{\delta} \,. \end{split}$$
 Поскольку $\max_{0 < q < 1} \ \sqrt{\frac{1 + q - q^2}{n}} = \frac{5}{4} \,,$ то:
$$P\bigg\{ \Big| \hat{q} - q \Big| < y \frac{5}{4} \bigg\} \ge P_{\delta} \,,$$

$$P\bigg\{ \hat{q} - y \frac{5}{4} < q < \hat{q} + y \frac{5}{4} \bigg\} \ge P_{\delta} \,. \end{split}$$

Поскольку полученное неравенство справедливо при всех допустимых значениях параметра q , то интервал:

$$\left(\hat{q} - y \frac{5}{4}; \hat{q} - y \frac{5}{4}\right),$$

$$\left(1 - \frac{1}{n} \sum_{i=1}^{n} \xi_{i} - y \frac{5}{4}; 1 - \frac{1}{n} \sum_{i=1}^{n} \xi_{i} + y \frac{5}{4}\right),$$

является приближенным доверительным интервалом для параметра q с уровнем доверия не меньше P_a .

Ответ:

$$\left(1-\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-y\frac{5}{4};1-\frac{1}{n}\sum_{i=1}^{n}\xi_{i}+y\frac{5}{4}\right)\ ,\ \ \text{где}\quad y\ -\ \text{квантиль}\quad \text{стандартного}\quad \text{нормального}$$
 распределения $N\left(0,1\right)$ уровня $\frac{1+P_{\delta}}{2}$.

Задача 3.8.

Задана случайная величина ξ , имеющая нормальное распределение $N(m,\sigma^2)$, где m и σ^2 — неизвестные параметры. Построить приближенную верхнюю границу для σ с уровнем доверия не меньше P_{δ} .

Решение:

Рассмотрим величину $\frac{|\xi|}{\sigma}$ и неравенство $y < \frac{|\xi|}{\sigma}$: если бы величина y была выбрана таким образом, что вероятность:

$$P\left\{y<\frac{\left|\xi\right|}{\sigma}\right\}\geq P_{\delta},$$

то отсюда следовало бы что:

$$P\left\{\sigma<\frac{\left|\xi\right|}{y}\right\}\geq P_{\delta},$$

то есть статистика $\frac{|\xi|}{y}$ являлась бы верхней доверительной границей с уровнем доверия не меньше P_{δ} . Остается лишь определить значение величины y .

Для определения величины у рассмотрим исходную вероятность:

$$P\left\{y < \frac{\left|\xi\right|}{\sigma}\right\} = 1 - P\left\{\frac{\left|\xi\right|}{\sigma} < y\right\} = 1 - P\left\{-y < \frac{\xi}{\sigma} < y\right\}.$$

По условию величина ξ имеет нормальное распределение $N\left(m,\sigma^2\right)$, поэтому величина $\frac{\xi}{\sigma}$ имеет нормальное распределение $N\left(\frac{m}{\sigma},1\right)$, тогда:

$$P\left\{y < \frac{\left|\xi\right|}{\sigma}\right\} = 1 - P\left\{-y < \frac{\xi}{\sigma} < y\right\} = 1 - \int_{-y}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(x - \frac{m}{\sigma}\right)^{2}}{2}} dx \ge 1 - \max_{m, \sigma} \int_{-y}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(x - \frac{m}{\sigma}\right)^{2}}{2}} dx.$$

Легко видеть, что наибольшего значения величина интеграла принимает при $\frac{m}{\sigma}=0$, тогда:

$$P\left\{y < \frac{\left|\xi\right|}{\sigma}\right\} \ge 1 - \int_{-y}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx = 1 - (\Phi(y) - \Phi(-y)) = 1 - \Phi(y) + \Phi(-y) = \Phi(-y) + \Phi(-y) = 2\Phi(-y),$$

где $\Phi(x)$ — функция распределения стандартного нормального распределения N(0,1).

Пусть
$$\Phi(-y) = \frac{P_{\theta}}{2}$$
, тогда:

$$P\left\{y < \frac{\left|\xi\right|}{\sigma}\right\} \ge 2\Phi(-y) = 2\frac{P_{\delta}}{2} = P_{\delta},$$

что и требовалось для построения приближенной верхней границы.

Ответ:

 $\frac{\left|\xi\right|}{y}$, где y — квантиль уровня $\frac{P_{\delta}}{2}$ стандартного нормального распределения $N\left(0,1\right)$.