

ÜBUNGSBLATT 3. Matrizen und Determinanten. Lösung von Lineargleichungssystemen.

Matrizen, Determinanten

- 1. Gegeben seien die Matrizen gleichen Typs A, B mit B = diag(1/3, 1/3) und C = $\frac{2}{3}A - 2B$. Vereinfachen Sie den Ausdruck 2A - 3B - 3C.
- 2. Zeigen Sie die Gültigkeit der Rechenregel: $(AB)^T = B^T A^T$.
- Gegeben seien die Matrizen

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 0 & -3 \\ -1 & -2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -3 & 0 & 1 \\ 5 & -1 & -4 & 2 \\ -1 & 0 & 0 & 3 \end{pmatrix}$$

und $D = \begin{pmatrix} 2 & -1 & 3 \end{pmatrix}^T$. Man berechne, falls möglich, folgende Ausdrücke: a) 3A - 4B, b) A + C, c) AB, d) AC, e) AD, f) BC, g) BD, h) CD, i) A^T , j) A^TC , k) $D^T A^T$, l) $B^T A$, m) $D^T D$, n) DD^T , o) B^2 .

4. Berechnen Sie det(A) für $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 7 & t \end{pmatrix}$. Für welche t ist die Matrix regulär?

Lineare Gleichungssysteme, Rangbegriff, Inverse

Ermitteln Sie die Lösung des folgenden Gleichungssystems mittels Gauß-Verfahren:

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 2$$

$$x_1 + 2x_2 + 3x_3 + 5x_4 = 2$$

$$x_1 + 3x_2 + 4x_3 + 5x_4 = 5$$

$$3x_1 + 7x_2 + 10x_3 + 13x_4 = 9$$

- Beschaffen Sie sich die Pivotelemente $\neq 0$, falls nötig, durch Zeilentausch!

 2. Gegeben sei die Matrix $A = \begin{pmatrix} 5 & -6 & 1 \\ 0 & -1 & 1 \\ 6 & -6 & 1 \end{pmatrix}$. Bestimmen Sie die Lösung des homogenen Systems $A\vec{x} = \vec{0}$. Wie lautet die Lösung, wenn man das Element $a_{33} = 1$ auf $a_{33} = 0$ ändert?
- 3. Gegeben sei die Matrix aus Aufgabe 4 unter "Matrizen, Determinanten" mit t=9 $(\det(A) = 0)$. Ermitteln Sie ohne Benutzung des Gauß-Verfahrens nur durch Rangbetrachtungen die Lösungsstruktur des Gleichungssystems $A\vec{x} = \vec{b}$ für die rechten Seiten: a) $\vec{b}^T = (1, 2, 3)$, b) $\vec{b}^T = (1, 2, 0)$ und c) $\vec{b} = \vec{0}$.
- 4. Zeigen Sie, dass es zur singulären Matrix $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ keine Matrix X geben kann mit
- 5. Bestimmen Sie die Inverse der Matrix $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$.

ISD SoSe 2022