Assignment On Lifetime Data Analysis AST 405

Submitted By: Shafayet Khan Shafee FH-033-011 4th Year Submitted To:
Dr. Mahbub Latif
Professor
ISRT, DU

January 22, 2022

Contents

nswers to	Q	ue	st	ic	n	S																
Question	01																					
Question	02																					
Question	03																					
Question	04																					
Question	05																					
Question	06																					
Question	07																					
Question	08																					
Question	09																					

Answers to Questions

Question 01

Answer: For the continuous variables age and bmi, mean and standard deviation (SD) is obtained. And for categorical variable arcus, behpat, and chd69 frequency and proportion (in percentage) is obtained as descriptive statistics, which are shown in the following table:

Table 1: Descriptive Statistics

	level	Overall
n		3154
age (mean (SD))		46.35 (5.56)
bmi (mean (SD))		24.48 (2.55)
arcus (%)	0	2219 (70.4)
	1	934 (29.6)
behpat (%)	A1	275 (8.7)
	A2	1290 (40.9)
	В3	1236 (39.2)
	B4	353 (11.2)
$\mathrm{chd}69~(\%)$	No	2900 (91.9)
	Yes	254 (8.1)

Question 02

Answer:

Effect of age and bmi To check whether each of age and bmi has significant effect on chol, we need to do correlation test (pearson).

For each correlation test of age and bmi with chol, the hypotheses are,

$$H_o: \rho = 0$$

$$H_a: \rho \neq 0$$

where ρ is the population correlation coefficient.

The appropriate test statistic for testing the hypothesis is,

$$t_o = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

where r is the sample correlation coefficient and t_o follows t_{n-2} distribution under H_o .

Here we will reject H_o if the associated p.value is less then $\alpha = 0.05$, where α is the level of significance.

Now from Table: 2, we can see that both of the variables **age** and **bmi** is significantly associated with **chol** variable.

Table 2: Correlation Test (age, bmi) and T-test (arcus) with chol

term	estimate	statistic	p.value
age	0.081	4.550	<.001
bmi	0.060	3.385	<.001
arcus	-12.672	-7.604	<.001

Effect of arcus Now to check the effect of arcus (a categorical variable with level 0 and 1) on chol, we can do two sample t-test, where one sample is people with arcus 0 and other sample is people with arcus 1. Therefore, is μ_o and μ_1 are the population mean of arcus 0 and arcus 1 group respectively.

Then our hypotheses are:

$$H_o: \mu_o = \mu_1$$
$$H_a: \mu_o \neq \mu_1$$

and appropriate test statistic (assuming unequal variance),

$$t_o = \frac{\bar{x_o} - \bar{x_1}}{\sqrt{\frac{s_o^2}{n_o} + \frac{s_1^2}{n_1}}}$$

where \bar{x} and s^2 denotes sample mean and sample variance with subscript 0 and 1 for arcus group 0 and 1 respectively and n_o and n_1 are the corresponding sample sizes.

Here we will reject H_o if the associated p value is less then $\alpha = 0.05$, where α is the level of significance.

Then from Table: 2, since p.value is less than 0.001 we can conclude that mean chol differs significantly for 0 and 1 group of arcus, that is, arcus has significant effect on chol.

Effect of behpat To check the effect of behpat on chol, we can do oneway ANOVA. In this case the hypotheses are:

$$H_o: \mu_1 = \mu_2$$

$$H_a: \mu_i \neq \mu_j \qquad \qquad \text{for at least on i} \neq j$$

and test statistic is $F_o = \frac{MS_{reg}}{MS_E}$. We will reject H_o if associated p.value is less than 0.05.

Table 3: One Way Analysis of Variance for chol on behpat

term	df	sumsq	meansq	statistic	p.value
behpat	3	30741.67	10247.223	5.475	<.001
Residuals	3135	5867632.50	1871.653	NA	NA

Then from Table: 3, we conclude that mean chol differs significantly over the levels of behpat.

Question 03

Answer: To examine the association between behat and chd69, the hypotheses are:

 H_o : There's no association between behpat and chd69.

 H_a : There's association between behpat and chd69.

Here, the test statistics is:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Where, O_{ij} is observed frequency and E_{ij} is the expected frequency and r, c is the row and column number of contingency table 4

Here, we would reject H_o if associated p.value corresponding to test statistics is less the 0.05.

	CHD				
behpat	No	Yes			
A1	246	29			
A2	1158	132			
В3	1164	72			
B4	332	21			

statistic p.value
20.978 <.001

Table 5: chi-square test

Table 4: Contingency table

Now from the Table 5, since p.value is less than 0.001, we can conclude that there's an significant association between behat and chd69.

Question 04

Answer:

Table 6: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	196.971	6.483	30.381	<.001
age	0.632	0.139	4.550	<.001

The fitted regression line is:

$$\widehat{\text{chol}} = 196.97 + 0.63(\text{age})$$
 (1)

Then, the cholesterol level is expected to increase by 0.63 units for 1-year increase of age.

Question 05

Answer:

Table 7: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	228.352	1.097	208.102	<.001
${\bf dibpatType~B}$	-4.147	1.546	-2.682	0.007

The fitted regression line is:

$$\widehat{\text{chol}} = 228.35 - 4.15(\text{dibpat}_{\text{Type B}}) \tag{2}$$

So, we can say that, Mean cholesterol level of Type A dibpat subjects is 228.35. Also, mean cholesterol level of Type A dibpat subjects is 4.15 unit higher than Type B dibpat subjects.

Question 06

Answer:

Table 8: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	235.073	2.618	89.778	<.001
behpatA2	-8.150	2.883	-2.827	0.005
behpatB3	-10.226	2.894	-3.533	<.001
behpatB4	-13.122	3.491	-3.759	<.001

The fitted regression line is:

$$\widehat{\text{chol}} = 235.07 - 8.15(\text{behpat}_{A2}) - 10.23(\text{behpat}_{B3}) - 13.12(\text{behpat}_{B4})$$
 (3)

So, we can say, since Type A1 Behavior pattern subjects are reference group,

- Mean cholesterol level of Type A1 subjects is 235.07 unit.
- Mean cholesterol level of Type A2 subjects is -8.15 unit lower than that of Type A1 subjects.
- Mean cholesterol level of Type B3 subjects is -10.23 unit lower than that of Type A1 subjects.
- Mean cholesterol level of Type B4 subjects is -13.12 unit lower than that of Type A1 subjects.

Question 07

Answer:

Table 9: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	200.191	6.637	30.163	<.001
age	0.600	0.140	4.302	<.001
${\bf dibpatType~B}$	-3.469	1.550	-2.238	0.025

The fitted regression line is:

$$\widehat{\text{chol}} = 200.19 + 0.6(\text{age}) - 3.47(\text{dibpat}_{\text{Type B}})$$
 (4)

Since Type A1 subjects are reference group,

- Mean cholesterol level of subjects with age 0 and Type A pattern is 200.19 unit.
- Mean cholesterol level increases about 0.6 for 1-year increase of age, holding dibpat fixed.
- Mean cholesterol level of Type B2 subjects is -3.47 unit lower than that of Type A dibpat subjects, holding the subject's age fixed.

Here, Both the regression coefficients corresponding to age and dibpat (Eq 4) have changed from the case of simple linear regression in Eq 1 and Eq 2. And also the value of R_{adj}^2 increased.

Question 08

Answer:

Table 10: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	222.252	1.171	189.755	<.001
age40	0.632	0.139	4.550	<.001

The new fitted model after subtracting 40 from the variable age is:

$$\widehat{\text{chol}} = 222.25 + 0.63(\text{age}40)$$
 (5)

- Since the explanatory variable is age minus 40, we can say, the mean cholesterol level of a 40 year old subject is 222.25.
- Mean cholesterol level is expected to in increase by 0.63 for 1 year increase of age.

The main difference of this model (Eq 1) compared to model 5 is that, we can interpret the intercept term for this model logically.

Question 09

Answer:

Table 11: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	223.702	1.597	140.043	<.001
dibpatType B	-3.644	2.175	-1.675	0.094
smokeYes	8.728	2.189	3.988	<.001
dibpatType B:smokeYes	0.265	3.085	0.086	0.932

In this case, the fitted model is:

$$\widehat{\text{chol}} = 223.7 - 3.64(\text{dibpat}_{\text{Type B}}) + 8.73(\text{smoke}_{\text{Yes}}) + 0.27(\text{dibpat}_{\text{Type B}} \times \text{smoke}_{\text{Yes}})$$
(6)

Here the reference groups are Non-smoker and dibpat Type A subjects. So,

- The mean cholesterol level of Type A non smoker subject is 223.7 unit.
- Among the non-smokers, mean cholesterol level of dibpat Type B subjects is 3.64 unit lower compared to Type A subject.
- Among the Type A subjects, mean cholesterol level of smokers is 8.73 unit higher than that of non-smokers.
- Difference of mean cholesterol level between smokers and non-smokers is 0.27 unit higher in Type B dibpat subjects compared to that of Type A dibpat subjects.

R-code

```
knitr::opts chunk$set(
 echo = FALSE,
 message = FALSE,
 warning = FALSE
)
## ----- package setup -----
library(dplyr)
library(purrr)
library(knitr)
library(broom)
library(tableone)
library(kableExtra)
library(equatiomatic)
## ----- data setup -----
load(here::here("data", "wcgs.Rdata"))
sid <- 011
set.seed(sid)
mydat <- sample_n(wcgs, size = n(), replace = TRUE)</pre>
## ----- utility functions -----
kab_tab <- function(tab, ...) {</pre>
 knitr::kable(tab,
              format = "latex",
             booktabs = TRUE,
              digits = 3,
              ...)
}
```

```
p_format <- function(pval) {</pre>
  ifelse(pval < .001, "<.001", as.character(round(pval, 3)))</pre>
}
mod tab <- function(mod, ...) {</pre>
  mod %>%
    tidy() %>%
    mutate(p.value = p_format(p.value)) %>%
    kab_tab(align = "lrrrr",
            caption = "Estimate of Model Parameters", ...) %>%
    kable_styling(latex_options = "HOLD_position")
}
reg_eq <- function(mod, ref, ...) {</pre>
  extract_eq(mod,
             use coefs = TRUE,
             intercept = "beta",
             wrap = TRUE,
             label = paste0("eq",ref),
             ...)
}
params <- function(mod, param, dec = 2) {</pre>
  round(mod$coefficients[[param]], dec)
}
## ----- Code for Question-01 -----
tab <- CreateTableOne(</pre>
  data = mydat,
  vars = c("age", "bmi", "arcus", "behpat", "chd69"),
  factorVars = "arcus",
  addOverall = TRUE
)
```

```
tab_p <- print(tab, showAllLevels = TRUE, printToggle = FALSE)</pre>
kab tab(tab p, caption = "Descriptive Statistics") %>%
  kable styling(latex options = "HOLD position")
## ----- Code for Question-02 -----
arcus <- t.test(chol ~ arcus, data = mydat) %>%
  tidy() %>%
  mutate(term = "arcus") %>%
  select(term, estimate, statistic, p.value)
mydat %>%
  select(age, bmi) %>%
  map(\sim cor.test(x = .x, y = mydat\$chol)) \%
  map dfr(broom::tidy, .id = "term") %>%
  select(term:p.value) %>%
  bind_rows(arcus) %>%
  mutate(p.value = p_format(p.value)) %>%
  kab_tab(align = "lrrr",
          caption = "Correlation Test (age, bmi) and T-test (arcus) with chol") %>%
  kable_styling(latex_options = "HOLD_position")
anova(lm(chol ~ behpat, data = mydat)) %>%
  tidy() %>%
  mutate(p.value = p_format(p.value)) %>%
  kab tab(align = "lrrrrr",
          caption = "One Way Analysis of Variance for chol on behpat") %>%
  kable_styling(latex_options = "HOLD_position")
## ----- Code for Question-03 -----
```

```
df_cont <- mydat %>% janitor::tabyl(behpat, chd69)
tab cont <- df cont %>%
  kab tab() %>%
  add header above(header = c(" " = 1, "CHD" = 2))
tab_chi <- df_cont %>%
  janitor::chisq.test() %>%
  tidy() %>%
  select(statistic, p.value) %>%
 mutate(p.value = p_format(p.value)) %>%
  kab_tab()
tab side <- c(
    "\\begin{table}[H]
      \\begin{minipage}{.5\\linewidth}
      \\centering",
      tab_cont,
      "\\caption{Contingency table}
      \\label{Table-04}
    \\end{minipage}%
      \\begin{minipage}{.5\\linewidth}
        \\centering",
    tab_chi,
    "\\caption{chi-square test}
    \\label{Table-05}
    \\end{minipage}
      \\end{table}"
  )
## ----- Code for Question-04 -----
m1 <- lm(chol ~ age, data = mydat)</pre>
m1 %>% mod_tab()
reg_eq(m1, 1)
```

```
## ----- Code for Question-05 -----
m2 <- lm(chol ~ dibpat, data = mydat)</pre>
m2 %>% mod tab()
reg_eq(m2, 2)
## ----- Code for Question-05 -----
m3 <- lm(chol ~ behpat, data = mydat)
m3 %>% mod_tab()
reg eq(m3, 3)
## ----- Code for Question-08 -----
m4 <- lm(chol ~ age + dibpat, data = mydat)
m4 %>% mod_tab()
reg_eq(m4, 4)
## ----- Code for Question-08 -----
mydat %>%
 mutate(age40 = age - 40) \%>\%
 lm(chol \sim age40, data = .) \rightarrow m5
m5 %>% mod_tab()
reg eq(m5, 5)
## ----- Code for Question-08 -----
m6 <- lm(chol ~ dibpat * smoke, data = mydat)</pre>
m6 %>% mod_tab()
reg_eq(m6, 6)
```