Vor lesung smitschrift

Experimentalphysik III (Wellen und Quanten)

im WS2015/16 bei Prof. Dr. Christian Back

gesetzt von Hedwig Werner

Stand: 25. Oktober 2015

Literatur

- [1] W. Demtröder. Experimentalphysik 2: Elektrizität und Optik. Springer-Lehrbuch. Springer Berlin Heidelberg, 2014. ISBN: 9783642299445. URL: https://books.google.de/books?id=HBoeBAAAQBAJ.
- [2] E. Hecht. *Optik*. de Gruyter Studium. Oldenbourg, 2009. ISBN: 9783486588613. URL: https://books.google.de/books?id=rb1RPgAACAAJ.
- [3] D. Meschede. *Gerthsen Physik*. Springer-Lehrbuch. Springer Berlin Heidelberg, 2015. ISBN: 9783662459775. URL: https://books.google.de/books?id=qW7dBgAAQBAJ.
- [4] H.M. Schey. Div, Grad, Curl, and All that: An Informal Text on Vector Calculus. W.W. Norton, 2005. ISBN: 9780393925166. URL: https://books.google.de/books? id=sembQgAACAAJ.
- [5] W. Zinth und U. Zinth. Optik: Lichtstrahlen Wellen Photonen. Oldenbourg Wissenschaftsverlag, 2013. ISBN: 9783486721362. URL: https://books.google.de/books?id=FDb179jp31QC.

Inhaltsverzeichnis

1	Einf	ührung	4
	1.1	Historischer Überblick	4
	1.2	Hierachie der Berschreibung optischer Phänomene	4
	1.3	Licht als elektromagnetische Welle	4
	1.4	Das elektromagnetische Spektrum	4
2	Elektromagnetische Wellen		
	2.1	Wiederholung	5
	2.2	Licht als elektromagnetische Welle	5
	2.3	Bestimmung der Lichtgeschwindigkeit	
	2.4	Lösung der Wellengleichung	9
	2.5	Energie von Licht, Poynting-Vektor	10
	2.6	Impuls von Licht	10
Symbolverzeichnis			11
Index			13

1 Einführung

1.1 Historischer Überblick

siehe Folien

Versuche: Messung der Lichtgeschwindigkeit

1.2 Hierachie der Berschreibung optischer Phänomene

- geometrische Optik
- Wellenoptik
- Elektromagnetismus
- Quantenoptik

1.3 Licht als elektromagnetische Welle

Eine wichtige Frage vorab ist: Was ist Licht? Teilchen oder Welle?

pro elektromagnetische Welle

- Licht transportiert Energie, auch im Vakuum
- Licht wechselwirkt mit Atomen/Materie (z.B. Absorption)
- Licht zeigt Brechungserscheinungen

Daraus folgt: Licht ist elektromagnetische Welle

pro Korpuskel

- \bullet Licht zeigt "Körnigkeit", es besteht aus Energiequanten (Photonen) mit $E=h\nu$
- Licht stößt wie ein Teilchen (Compton-Effekt)

1.4 Das elektromagnetische Spektrum

Die Vorlesung "Wellen und Quanten" beschäftigt sich mit den Eigenschaften elektromagnetischer (Hertzscher) Wellen über einem breiten Wellenlängenbereich von $10^{-15}\,\mathrm{m} \le \lambda \le 10^3\,\mathrm{m}$. Zum Vergleich: Sichtbares Licht hat Wellenlängen im Bereich 350 nm $\le \lambda \le 800\,\mathrm{nm}$.

2 Elektromagnetische Wellen

2.1 Wiederholung

Im Folgenden wird ein Überblick über die häufig gebrauchten Operatoren Gradient (grad), Rotation (rot), Divergenz (div), den Nabla-Operator ($\vec{\nabla}$) und den Laplace-Operator (Δ) gegeben.

Vektorableitungen: Für 3-dimensionale Vektoren verwendet man den Nabla-Operator

$$\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

Der Gradient einer skalaren Funktion f = f(x, y, z) zeigt in die Richtung des größten Anstiegs.

grad
$$f = \vec{\nabla} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Die Divergenz einer Vektorfunktion ist

$$\operatorname{div} \vec{f} = \vec{\nabla} \vec{f} = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$$

Die Divergenz ist ungleich null, wenn es Quellen oder Senken gibt (vgl. elektr. Ladung). Der Laplace-Operator einer skalaren Funktion ist die Divergenz des Gradienten.

$$\Delta f = \vec{\nabla}^2 f = \vec{\nabla} \vec{\nabla} f = \vec{\nabla} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Der Laplace einer Vektorfunktion wir komponentenweise gebildet.

$$\Delta \vec{f} = \vec{\nabla}^2 \vec{f} = \left(\frac{\partial^2 f_x}{\partial x^2} + \frac{\partial^2 f_x}{\partial y^2} + \frac{\partial^2 f_x}{\partial z^2} + \dots \right)$$

Die Rotation einer Vektorfunktion \vec{f} ist

rot
$$\vec{f} = \vec{\nabla} \times \vec{f} = \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}, \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}, \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}\right)$$

Funktionen, die sich stark "winden", haben eine starke Rotation.

2.2 Licht als elektromagnetische Welle

In dieser Vorlesung behandeln wir Lichtausbreitung in nicht-magnetischen Medien, d.h. man kann die magnetische Permeabilität $\mu=1$ setzen. Für nicht leitende Materialien ist zudem die Ladungsdichte $\rho_{\rm frei}$ und die Stromdichte $j_{\rm frei}$ gleich null. In Formeln also $\mu=1,\,\rho_{\rm frei}=0,\,j_{\rm frei}=0.$

Lichtausbreitung in Vakuum oder in einem Dielektrikum

Im Dielektrikum muss man die Maxwellgleichungen (kurz MWGl.) für ein Medium mit dielektrischer Verschiebung verwenden. Weitere Annahmen sind

- lineare Optik
- isotropes Medium (Gase, Flüssigkeit, kubische Kristalle)

Mit diesen Annahmen gilt

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E}$$

wobei $\varepsilon_0 = 8.854 \times 10^{-12} \, \mathrm{C^2 m^{-2} N^{-1}}$ die elektrische Feldkonstante ist und ε die relative Dielektrizitätskonstante des Mediums.

Achtung: in optisch anisotropen Medien wird ε durch einen Tensor ersetzt.

Elektrische und magnetische Felder sind wie folgt über die MWGl. verknüpft:

MWGI. für isolierendes nicht magnetisches Medium:

$$\vec{\nabla} \vec{D} = 0$$

$$\vec{\nabla} \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \frac{\partial \vec{D}}{\partial t}$$

mit magnetischer Feldkonstante $\mu_0 = 1.2566 \times 10^{-6} \, \mathrm{NA^{-2}}$

MWGI. im Vakuum:

$$\vec{\nabla} \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_o(\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t})$$

mit ε_0, μ_0 "Materialparameter" für Vakuum.

Effekte in Materie

In echter Materie können (mikroskopisch) Polarisationsladungen und Ampere'sche Kreisströme induziert werden, was

- mikroskopische elektrische Dipole
- mikroskopische Kreisströme

verursacht. Zur Vereinfachung betrachten wir makroskopische, örtlich gemittelte Größen.

Unterschiede zwischen freien und gebundenen Ladungen Es gilt allgemein für die Ladungsdichte ρ und die Stromdichte \vec{j}

$$\rho = \rho_{\rm frei} + \rho_{\rm gebunden}$$
 analog $\vec{j} = \vec{j}_{\rm frei} + \vec{j}_{\rm mag} + \vec{j}_{\rm Polarisation}$

wobei $\vec{j}_{\text{mag}} = \vec{\nabla} \times \vec{M}$ und $\vec{j}_{\text{Polarisation}} = \frac{\partial \vec{P}}{\partial t}$. Die gebundenen Ladungsträger führen zu einer makroskopischen Polarisation \vec{P} (bzw. zur makroskopischen Magnetisierung \vec{M} im Fall der Stromdichte), welche sich auf die elektrische Verschiebung \vec{D} und die magnetische Feldstärke \vec{B} auswirkt:

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

$$\vec{H} = \frac{1}{u_0} \vec{B} - \vec{M}$$

Für isotrope, lineare Materialien mit Dielektrizitätskonstante ε_r gilt

$$\vec{P} = \chi \varepsilon_0 \vec{E}$$

$$\vec{D} = (1 + \chi) \varepsilon_0 \vec{E} = \varepsilon_r \varepsilon_0 \vec{E}$$

$$\rho_{\text{frei}} = \rho - \rho_{\text{Pol}} = \rho + \text{div } \vec{P}$$

$$\implies \text{div } \vec{P} = -\rho + \rho_{\text{frei}} = -\rho_{\text{Pol}}$$

Damit ergeben sich

MWGI. in Materie mit Spezialfall (isotropes, ungeladenes, unmagnetisches Medium)

$$\vec{\nabla} \vec{D} = \varepsilon_0 \vec{\nabla} \vec{E} + \vec{\nabla} \vec{P} = \rho_{\text{frei}} = 0$$

$$\vec{\nabla} \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{H} = \vec{j}_{\text{frei}} + \frac{\partial \vec{D}}{\partial t} = \frac{\partial \vec{D}}{\partial t} = \frac{1}{\mu_0} (\vec{\nabla} \times \vec{B})$$

Von den MWGI. zur Wellengleichung für das \vec{E} -Feld Wir erhalten folgende Zusammenhänge

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\vec{\nabla} \times \frac{\partial \vec{B}}{\partial t} = -\varepsilon \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2}$$

$$-\vec{\nabla} \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{B}) = -\frac{\partial}{\partial t} \mu_0 \varepsilon_0 \varepsilon \frac{\partial E}{\partial t}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} (\vec{\nabla} \vec{E}) - (\vec{\nabla} \vec{\nabla}) \vec{E} = -\Delta \vec{E}$$

$$= 0 \text{ da } \rho = 0$$

Setzen wir diese zusammen, folgen die Wellengleichungen für elektromagnetische Wellen:

$$\Delta \vec{E} - \varepsilon \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\Delta \vec{B} - \varepsilon \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} = 0$$

Allgemein Die allgemeine Form der Wellengleichungen (u.a. für elektromagnetische Wellen) sind Differentialgleichungen, die eine 2. Ableitung einer Größe nach der Zeit mit der 2. Ableitung der Größe nach dem Ort verknüpft:

$$\frac{\partial^2 y}{\partial t^2} = \frac{\tau}{\rho} \frac{\partial^2 y}{\partial x^2}$$

wobei $v_{ph} = \sqrt{\frac{\tau}{\rho}}$ die Ausbreitungsgeschwindigkeit (*Phasengeschwindigkeit*)ist. Die Berechnungen oben liefern für ein Elektrische Feld, das sich in einem isolierenden, nicht magnetischen Material ausbreitet, die Wellengleichung

$$\frac{\partial^2 \vec{E}}{\partial t^2} = \frac{1}{\varepsilon \varepsilon_0 \mu_0} \Delta \vec{E} \tag{2.1}$$

Die Ausbreitungsgeschwindigkeit des elektrischen Feldes in einem solchen Medium ist also

$$v_{ph} = \frac{1}{\sqrt{\varepsilon \varepsilon_0 \mu_0}} = \frac{1}{\sqrt{\varepsilon}} \cdot c$$

wobei c die Lichtgeschwindigkeit im Vakuum ist mit $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2.9979 \times 10^8 \,\mathrm{m\,s^{-1}}$. Achtung: Nur im Vakuum (hier ist $\varepsilon = 1$) gilt $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = v_{ph}!$ In anderen Medien ist Einfluss eines Mediums ist durch $\frac{1}{\sqrt{\varepsilon}} = \frac{1}{n}$ gegeben. Der Brechungsindex

$$n=\sqrt{\varepsilon}$$

ist direkt mit der Wellenausbreitung verknüpft.

2.3 Bestimmung der Lichtgeschwindigkeit

(s. Folien)

- Planetenmethode
- Zahnradmethode
- Drehspiegel

2.4 Lösung der Wellengleichung des elektrischen Feldes im Spezialfall

Einfachste Lösung der Wellengleichung (2.1) von oben (Ausbreitung eines Elektrischen Feldes in einem isolierenden, nicht magnetischen Material) ist die ebene Welle

$$\vec{E}(\vec{r},t) = \vec{E}_0 \cos(\omega t - \vec{k}\vec{r} + \phi)$$
bzw.
$$\vec{E}(\vec{r},t) = \text{Re}[\vec{E}_0 e^{i(\omega t - \vec{k}\vec{r}) + \phi}]$$

Ebenfalls ist die Kugelwelle eine Lösung. Der Phasenterm ϕ legt den Nulldurchgang des Kosinus/Sinus fest. Die Lösung eingesetzt in die Wellengleichung führt zur linearen Dispersionsrelation:

$$\vec{k}^2 = k_x^2 + k_y^2 + k_z^2 = n^2 \frac{\omega^2}{c^2}$$

Allgemein nennt man eine Beziehung, die den Betrag des Wellenvektors \vec{k} mit der Kreisfrequenz verknüpft, Dispersionsrelation (z. B. bei Photonen $\omega \propto k$, bei freien e^- ist $\omega \propto k^2$). Es gelten die Beziehungen

$$k = \frac{2\pi n}{\lambda}$$
 (Allgemein für beliebige Welle)
$$\lambda = \frac{2\pi n}{k} = \frac{2\pi c}{\omega} = \frac{c}{\nu} \quad \text{mit } \nu = \frac{\omega}{2\pi}$$
 (Wellenlänge im Vakuum)
$$\lambda_m = \frac{\lambda}{n}$$
 (Wellenlänge im Medium)
$$\omega(k) = c \cdot k \cdot \frac{1}{n}$$

Weitere wichtige Beziehungen sind

$$\omega = 2\pi\nu = \frac{2\pi}{T}$$
$$c = \lambda\nu = \frac{\lambda\omega}{2n}$$

Des weiteren gilt für \vec{E} , \vec{D} , \vec{B} und \vec{k}

$$\vec{k} \perp \vec{D}$$
 (bzw. \vec{E}) $\vec{k} \perp \vec{B}$ $\vec{E} \perp \vec{B}$ $\vec{D} \perp \vec{B}$

In optisch isotropen Medien gilt $\vec{E} \perp \vec{k}$ und $|\vec{E}| = \frac{c}{n} |\vec{B}|$. $\vec{k}, \vec{D}, \vec{B}$ bilden ein rechtshändiges System. Elektromagnetische Wellen in isolierenden Medien sind transversale Wellen (Beweis siehe Folien) mit Ausbreitungsrichtung \vec{k} .

Wechselwirkungen zwischen Licht und Materie werden fast immer durch die elektrische Feldstärke dominiert. Meist werden also nur \vec{E} -Felder diskutiert. Begründung: Betrachte die Kraft auf geladenes Teilchen, die durch Wechselwirkung entsteht

$$\vec{F} = \vec{F}_{el} + \vec{F}_{mag} = q\vec{E} + q\vec{v} \times \vec{B}$$

$$\frac{F_{mag}}{F_{el}} = \frac{qvB}{qE} \stackrel{=}{\underset{(B = \frac{1}{c}E)}{= t}E} \frac{v}{c}$$

Daraus folgt: Für $v \ll c$ ist $F_{\text{mag}} \ll F_{\text{el}}$.

2.5 Energie von Licht, Poynting-Vektor

Licht kann Energie transportieren, z.B. von der Sonne zur Erde.

In der Elektrodynamik wird die Energiestromdichte einer elektromagnetischen Welle durch den $Poynting\text{-}Vektor\ \vec{S}$ beschrieben.

$$\vec{S}(\vec{r},t) = \frac{1}{\mu_0} (\vec{E} \times \vec{B}) = \varepsilon_0 c^2 \vec{E} \times \vec{B}$$

Die zeitliche Mittelung von \vec{S} über eine Schwingungsperiode T des Feldes gibt einem die Strahlungsflussdichte (mittlere Lichtenergie pro Zeit und Fläche) und die Lichtintensität I. Mit $|\vec{E}| = \frac{c}{n}$ folgt

$$I := \langle |\vec{S}| \rangle = \varepsilon_0 nc \langle |\vec{E}|^2 \rangle$$

Im Speziellen gilt für eine ebene Welle $\vec{E}(\vec{r},t) = \vec{E}_0 \cos(\omega t - \vec{k}\vec{r} + \phi)$ mit Bedingungen wie in (2.1) und Brechungsindex n

$$\langle |\vec{E}|^2 \rangle = \frac{1}{T} \int_o^T |E_0|^2 \cos^2(\omega t - \vec{k}\vec{r} + \phi) dt = \frac{1}{2} |E_0|^2$$

$$\implies I = \frac{1}{2} \varepsilon_0 nc |E_0|^2$$

2.6 Impuls von Licht

Licht besitzt eine Impulsdichte (wichtig bei Absorption und Reflexion), eine Art "Strahlungsdruck". Beschreibungen in den beiden Modellen:

Teilchenbild

Energie des Photons: $E_{Ph} = \hbar \omega = h \nu$ Impuls des Photons: $p = \frac{E_{Ph}}{c} = \hbar k$ Gesamtimpuls: $p_{\text{ges}} = \frac{NE_{Ph}}{c}$ Intensität: $I = \frac{NE_{Ph}}{\Delta tA} = \frac{\Phi h \nu}{A}$ mittlere Photonenflussdichte: $\frac{\Phi}{A} = \frac{I}{n \nu}$

Symbolverzeichnis

- χ elektrische Suszeptibilität
- ε relative Dielektrizitätskonstante eines Mediums
- ε_0 elektrische Feldkonstante
- \hbar normiertes Planksches Wirkungsquantum; Naturkonstante; $\hbar = \frac{h}{2\pi}$
- λ Wellenlänge; $\lambda = \frac{c}{\nu}$
- μ magnetische Permeabilität eines Mediums; hier immer $\mu = 1$
- μ_0 magnetische Feldkonstante; $\mu_0 = 1.2566 \times 10^{-6} \, \mathrm{NA}^{-2}$
- ν Frequenz; auch f; $\nu = \frac{v_{\rm ph}}{\lambda}$
- ω Kreisfrequenz; $\omega = 2\pi\nu = \frac{2\pi}{T}$
- Φ Photonenfluss
- ρ Ladungsdichte (Ladung pro Volumen)
- $\rho_{\rm frei}$ Ladungsdichte; in isolierenden Materialien $\rho_{\rm frei}=0$
- \vec{B} magnetische Flussdichte
- \vec{F} Kraft
- \vec{H} Magnetische Feldintensität; unabhängig davon, ob Materie im Magnetfeld ist
- \vec{j} Stromdichte (Ladung pro Zeit pro Fläche)
- \vec{M} Magnetisierung (magnetisches Dipolmoment pro Volumen)
- \vec{P} Polarisation (Dipolmoment pro Volumen)
- \vec{S} Poynting-Vektor, Energiestromdichte einer elektrom. Welle
- \vec{D} dielektrische Verschiebung
- \vec{E} elektrische Feldstärke
- A Fläche
- c Lichtgeschwindigkeit im Vakuum; $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2.9979 \times 10^8 \, \mathrm{m \, s^{-1}}$

 $E_{\rm ph}$ Energie eines Photons

 $F_{\rm el}$ elektrische Kraft

 $F_{\rm mag}$ magnetische Kraft, Lorentzkraft

 $I \qquad \text{Lichtintensit"at; } I = \langle |\vec{S}| \rangle$

 $j_{\rm frei}$ – Stromdichte; in isolierenden Materialien $j_{\rm frei}=0$

N Anzahl (einheitenlos)

n materials pezifischer Brechungsindex; $n = \sqrt{\varepsilon}$

T Periodendauer

t Zeit

 v_{ph} Phasengeschwindigkeit; Ausbreitungsgeschw. einer Welle; $\frac{\partial^2 y}{\partial t^2} = v_{ph}^2 \frac{\partial^2 y}{\partial x^2}$

Index

```
Dielektrizitätskonstante, 5
Dispersions relation, 8
    linear, 8
Divergenz, 4
ebene Welle, 8
elektrische Feldkonstante, 5
Gradient, 4
Kugelwelle, 8
Laplace-Operator, 4
Lichtintensität, 9
Mathematische Operatoren
    Divergenz, 4
    Gradient, 4
    Laplace-Operator, 4
    Nabla-Operator, 4
Maxwellgleichungen
    mit dielektrischer Versch., 5
Nabla-Operator, 4
Phasengeschwindigkeit, 7
Photonenenergie, 9
Photonenflussdichte, 9
Photonenimpuls, 9
Poynting-Vektor, 9
Strahlungsflussdichte, 9
Wellenfunktion
    ebene Welle, 8
    Kugelwelle, 8
Wellengleichung
    Elektromagnetische Wellen, 7
```