Arralysis - is used to heduce

dimensions

$$f(\chi) = \chi^2 \qquad \frac{\chi - 2 - 1012}{41014}$$

(Dimensionality	Reduction)
-----------------	------------

$$300) = 23 - 23$$

$$2 - 2 - 1 0 1 2 - 2 2$$

$$y = -1 - 20 = 20 = 0$$

weight	Age	diabetes	
80	30	1	
6D	30	0	
53-	30		
65	30	0	
70	30)	
68	30)	
7)2	30	0	
66	30	0	
79	30	0	

 $d_1^2 + d_2^2 + d_3^2 + \dots + d_n = ss(distance)$ $(3+40)^{2}=(5)^{2}$ (sum of square distance) $(3)^2 = 25$ (Eigen Value)

 $d_i = distance of x_i from mean (x) = (x_i - x)^2$ $= (\chi_2 - \overline{\chi})^2$ $= \left(\chi_{n} - \overline{\chi}\right)^{2}$ dn = " $\leq \frac{(2C_1-\overline{Z})^2}{d.0.f.} = variance = \frac{ss(distance)}{d.0.f.} = \frac{ss(distance)}{(n-1)}$

250, the phoceduse is: (1) Standardize the data (as above) In general, x-4

(2) Finding a line (\overline) s.t. vasiunce dong that distection is

Converting into mathematical form:
$$x_i = x_i \cdot \hat{\omega}$$

variance $= \frac{1}{(n-1)} \le (x_i - u)^2$
 $x_i = x_i \cdot \hat{\omega}$
 $||\hat{\omega}||$

and $||\hat{\omega}|| \le (x_i - u)^2$
 $||\hat{\omega}|| = x_i \cdot \hat{\omega}$

Here, It will become a as we have standardize the data. hence, if we take $||\bar{w}|| = 1$ then our calculation will become simple

$$\frac{1}{1} = 0$$

Converting it into an uncontrained problem using Lagrange's multiplier:

$$aggmax_{\overline{W}} \frac{1}{(N-1)} \leq (x_i \overline{w})^2 + \lambda (||\overline{w}||-1)$$

* We can also white our constraint $\|\bar{\omega}\| = 1$ as $\|\bar{\omega}\|^2 = 1$

.. The formula will become:

$$\overline{\omega} = \frac{\alpha \log \max}{\overline{\omega}} \frac{1}{(n-1)} \ge (\overline{x}_i \cdot \overline{\omega})^2 + \lambda (\|\overline{\omega}\|^2 - 1)$$
 objective of P.C.A.

* Explanation of the previous formula:

* Finding "best w" using gradient descent: As we know (from the last pdf): $p^2 = P^T \cdot P$ As well as usually n-1 as no of destapoints will be large $\left[\frac{1}{n}\sum_{i}(\chi_{i}\cdot\omega)^{T}\cdot(\chi_{i}\cdot\omega)\right]+\lambda(\omega^{T}\cdot\omega-1)$ Now, differenting w. n.t. Wo (Also taking I as X) $\frac{1}{n} \leq \frac{\partial}{\partial \omega} \left[\omega^{T} \cdot \chi^{T} \cdot \chi \cdot \omega \right] + \lambda \frac{\partial}{\partial \omega} \left(\omega^{T} \cdot \omega - 1 \right)$ A fact: (a.b) = b.aT

$$\frac{A}{2} \frac{2^{rd}}{fact}: f(\omega) = \omega^{T}. \leq .\omega \Rightarrow \partial f(\omega) = (s+s^{T}). \omega$$

$$x^{T} \cdot x \cdot \omega = \lambda' \cdot \omega$$
 where $\lambda' = -\eta \lambda$ Eigen vectors

Eigen where