머신러닝 - 차원 축소 (Dimension Reduction)

매우 많은 피처로 구성된 다차원 데이터 세트의 차원을 축소해 새로운 차원의 데이터 세트를 생성하는 것

단순히 피처의 개수를 줄이기보다 이를 통해 데이터를 잘 설명할 수 있는 잠재적인 요소를 추출하는 데 큰 의미가 있음

EX) 매우 많은 픽셀로 이루어진 이미지 데이터에서 잠재된 특성을 치러로 도출해 함축적 형태의 이미지 변환과 압축을 수행할 수 있는데, 이렇게 변환된 이미지는 원본 이미지보다 훨씬 적은 차원이기에 이미지 분류 시에 과적합 영향력이 작아져서 예측 성능을 올릴 수 있음

EX) 문서 내 단어들의 구성 속 시맨틱(Semantic)의미나 토픽(Topic)을 잠재 요이소로 간주해 찾아낼 수 있음 (SVD와 NMF가 이러한 Semactic Topic 모델링을 위한 기반 알고리즘으로 사용됨)

Feature Selection

- ㅇ 특정 피처에 종속성이 강한 불필요한 피처는 아예 제거하고, 데이터의 특징을 잘 나타내는 주요 피처만 선택하는 것
- Feature Extraction
 - o 기존 피처를 저 차원의 중요 피처로 압축해서 추출하는 것, 새롭게 추출된 중요 특성은 기존의 피처가 압축된 것으로 기존 피처와는 완전히 다른 값
 - ㅇ 단순 압축이 아닌, 함축적으로 더 잘 설명할 수 있는 또 다른 공간으로 매핑해 기존의 피처를 추출하는 것

PCA (Principal Component Analysis)

가장 대표적인 차원 축소 기법으로 여러 변수 간에 존재하는 상관관계를 이용해 이를 대표하는 주성분(Principal Component)을 추출해 차원을 축소하는 기법

Ex) 2차원 공간에 n개의 데이터들이 타원형으로 분포되어 있을 때, 이 데이터들의 분포 특성을 e1,e2 두 개의 벡터로 설명하는 것 -> e1, e2의 방향과 크기를 알아내어 데이터 분포의 형태를 설명

● 기존 데이터의 정보 유실이 최소화되기 위해서 PCA는 가장 높은 분산을 가지는 데이터의 축을 찾아 이 축으로 차원을 축소 - > 이것이 PCA의 주성분 (분산이 데이터의 특성을 가장 잘 나타내는 것으로 간주)

● 원본 데이터의 피처 개수에 비해 매우 작은 주성분들로 원본 데이터의 총 변동성을 대부분 설명하는 분석법

- 입력 데이터의 공분산 행렬(Covariance Matrix)을 고유값 분해하고, 이렇게 구한 고유벡터에 입력 데이터를 선형 변환하는 것, 이 고유벡터가 PCA의 주성분 벡터로서 입력 데이터의 분산이 큰 방향을 나타내고, 고윳값(eigenvalue)은 이 고유벡터의 크기를 나타내면서 입력 데이터의 분산을 나타냄
 - o 선형 변환 : 특정 벡터에 행렬 A를 곱해 새로운 벡터로 변환하는 것 = 특정 벡터를 하나의 공간에서 다른 공간으로 투영
 - o 고유 벡터 : 행렬 A를 곱하더라도 방향이 변하지 않고 그 크기만 변하는 벡터 X로 정방 행렬은 최대 차원 수만큼의 고유 벡터를 가질 수 있음
 - Ex) Ax=ax (a=스칼라값) 일 때, x는 고유벡터 고유벡터는 행렬이 작용하는 힘의 방향과 관계가 있어 행렬을 분해하는 데 사용됨
 - 공분산(Covariance): 두 변수 간의 변동을 의미
 Ex) X=사람키, Y=몸무게 -> Cov(X,Y) > 0은 X(키)가 증가할 때 Y(몸무게)도 증가한다는 의미
 - ㅇ 공분산 행렬: 여러 변수와 관련된 공분산을 포함하는 정방형 행렬
 - 공분산 행렬은 정방 행렬 (Diagonal Matrix)이며 대칭행렬 (Symmetric Matrix)임 (즉 A^T = A)
 - 이 대칭행렬은 항상 고유벡터를 직교행렬(orthogonal matrix)로, 고유값을 정방 행렬로 대각화할 수 있다는 고 유값 분해와 관련된 특성을 지니고 있음

Covariance Matrix

 Representing Covariance between dimensions as a matrix e.g. for 3 dimensions:

$$C = \begin{array}{c} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{array}$$
Variances

- Diagonal is the variances of x, y and z
- cov(x,y) = cov(y,x) hence matrix is symmetrical about the diagonal
- N-dimensional data will result in NxN covariance matrix
- PCA는 컴퓨터 비전(Computer Vision)분야에서 활발하게 적용되고 있으며 특히, 얼굴 인식에 경우에 Eigen-face라고 불리는 PCA 변환으로 원본 얼굴 이미지를 노이즈를 제거하도록 변환해 사용하는 경우가 많음

LDA (Linear Discriminant Analysis)

PCA와 유사하게 입력 데이터 세트를 저차원 공간에 투영해 차원을 축소하는 기법으로, 중요한 차이는 LDA는 지도학습의 분류(Classification)에서 사용하기 쉽도록 개별 클래스를 분별할 수 있는 기준을 최대한 유지하면서 차원을 축소 -> 입력 데이터의 결정 값 클래스를 최대한으로 분리할 수 있는 축을 찾음

- 특정 공간상에서 클래스 분리를 최대화하는 축을찾기 위해 클래스 간 분산(between-class scatter)와 클래스 내부 분산 (within-class scatter)의 비율을 최대화 하는 방식으로 차원 축소
 - ㅇ 클래스 간 분산은 최대한 크게, 클래스 내부의 분산은 최대한 작게 가져가는 방식
 - ㅇ 클래스 간 분산과 클래스 내부 분산 행렬을 생성한 뒤, 이 행렬에 기반해 고유벡터를 구하고 입력 데이터를 투영

SVD (Singular Value Decomposition)

PCA의 경우 정방행렬만을 고유벡터로 분해했지만, SVD는 행과 열의 크기가 다른 행렬에도 적용이 가능

- PCA가 SVD기반의 알고리즘으로 구현 됐으나 PCA는 밀집 행렬(Dense Matrix)에 대한 변환만 가능하며 SVD는 희소 행렬 (Sparse Matrix)에 대한 변환도 가능
- SVD는 컴퓨터 비전 영역에서 이미지 압축을 통한 패턴 인식과 신호 처리 분야에 사용되고, 텍스트의 토픽 모델링 기법인 LSA (Latent Semantic Analysis)의 기반 알고리즘임

NMF (Non-Negative Matrix Factorization)

Truncated SVD와 같이 낮은 랭크를 통한 행렬 근사(Low-Rank Approximation) 방식의 변형으로 원본 행렬 내의 모든 원소 값이 모두 양수(0 이상)라는 게 보장되면 좀 더 간단하게 두 개의 기반 양수 행렬로 분해될 수 있는 기법

- 이미지 압축을 통한 패턴 인식, 텍스트의 토픽 모델링 기법, 문서 유사도 및 클러스터링에 잘 사용됨
- 영화 추천과 같은 추천 영역에 활발하게 적용 됨