Análise léxica Especificação dos *tokens*

Prof. Edson Alves

Faculdade UnB Gama

Alfabetos

Definicão de alfabeto

Um alfabeto, ou classe de caracteres, é um conjunto finito de símbolos.

Exemplos de alfabetos: ASCII, EBCDIC, a alfabeto binário $\{0,1\}$, os dígitos decimais, etc.

Cadeias

Definição de cadeia

Uma cadeia sobre um alfabeto $\mathcal A$ é uma sequência finita de elementos de $\mathcal A$. Os termos sentença, palavra e string são geralmente usados como sinônimos de cadeia.

Conceitos associados à cadeias

- lacktriangle O comprimento (número de caracteres) de uma cadeia s é denotado por |s|
- ▶ A cadeia vazia ∈ tem comprimento igual a zero
- Um prefixo de s é uma cadeia obtida pela remoção de zero ou mais caracteres do fim de s
- lackbox Um sufixo de s é uma cadeia obtida pela remoção de zero ou mais caracteres do início de s
- \blacktriangleright Uma subcadeia de s é uma cadeia obtida pela remoção de um prefixo e de um sufixo de s
- lacktriangle Um prefixo, sufixo ou subcadeia de s são ditos próprios se diferem de ϵ e de s
- ► Um subsequência de s é uma cadeia obtida pela remoção de zero ou mais símbolos de s, não necessariamente contíguos

Linguagens

Definição de linguagem

Uma linguagem é um conjunto de cadeias sobre algum alfabeto ${\mathcal A}$ fixo.

Esta definição contempla também linguagens abstratas como \emptyset (o conjunto vazio), ou $\{\ \epsilon\ \}$, o conjunto contendo apenas a cadeia vazia.

Operações em cadeias

- \triangleright Se x e y são duas cadeias, então a concatenação de x e y, denotada xy, é a cadeia formada pelo acréscimo, ao final de x, de todos os caracteres de y, na mesma ordem
- Por exemplo, se x = "rodo" e y = "via", então xy = "rodovia"
- ▶ A cadeia vazia ∈ é o elemento neutro da concatenação
- Se a concatenação for visualizada como um produto, é possível definir uma "exponenciação" de cadeias
- ightharpoonup Seia s uma cadeia e n um natural. Então
 - 1. $s^0 = \epsilon$
 - $2. s^n = ss^{n-1}$

Análise léxica

Operações em linguagens

Sejam L e M duas linguagens. São definidas as seguintes operações sobre linguagens:

Operação	Notação	Definição
união	$L \cup M$	$L \cup M = \{ \ s \mid s \in L \ \lor \ s \in M \ \}$
concatenação	LM	$LM = \{ st \mid s \in L \land t \in M \}$
fechamento de Kleene	L^*	$L^* = \bigcup_{i=0}^{\infty} L^i$
fechamento positivo	L^+	$L^+ = \bigcup_{i=1}^{\infty} L^i$

Exemplos de operações em linguagens

Seja
$$L=\{$$
 A, B, C, ... Z, a, b, c, ... z $\}$ e $M=\{$ O, 1, 2, ... 9 $\}$. Então:

- **1.** $L \cup M$ é o conjunto de letras e dígitos
- 2. LM é o conjunto de cadeias formadas por uma letra, seguida de um dígito
- 3. L^4 é o conjunto de todas as cadeias formadas por exatamente quatro letras
- 4. L^* é o conjunto de todas as cadeias formadas por letras, incluíndo a cadeia ϵ
- 5. $L(L \cup M)^*$ é o conjunto de cadeias de letras e dígitos, que iniciam com uma letra
- **6.** M^+ é o conjunto de cadejas formadas por um ou mais dígitos

Expressões regulares

Definição de expressão regular

Sejam Σ um alfabeto. As expressões regulares sobre Σ são definidas pelas seguintes regras, onde cada expressão regular define uma linguagem:

- 1. ϵ é uma expressão regular que denota a linguagem $\{ \epsilon \}$
- 2. Se $a \in \Sigma$, então a é uma expressão regular que denota a linguagem $\{a\}$
- 3. Se r e s são duas expressões regulares que denotam as linguagens L(r) e L(s), então
 - (a) (r) é uma expressão regular que denota L(r)
 - (b) (r)|(s) é uma expressão regular que denota $L(r) \cup L(s)$
 - (c) (r)(s) é uma expressão regular que denota L(r)L(s)
 - (d) $(r)^*$ é uma expressão regular que denota $(L(r))^*$

Expressões regulares e parêntesis

O uso de parêntesis em expressões regulares pode ser reduzido se forem adotadas as seguintes convenções:

- 1. o operador unário * possui a maior precedência e é associativo à esquerda
- 2. a concatenação tem a segunda maior precedência e é associativa à esquerda
- 3. o operador | tem a menor precedência e é associativo à esquerda

Neste cenário, a expressão regular $(a) \mid ((b)^* (c))$ equivale a $a \mid b^* c$.

Exemplos de expressões regulares

Seja
$$\Sigma = \{ a, b \}$$
. Então

- $\triangleright a \mid b$ denota a linguagem $\{a, b\}$
- \triangleright $(a \mid b)(a \mid b)$ denota $\{aa, ab, ba, bb\}$
- \triangleright a^* denota $\{ \epsilon, a, aa, aaa, \dots \}$
- $(a \mid b)^*$ denota todas as cadeias formas por zero ou mais instâncias de a ou de b
- \triangleright $a \mid a^* b$ denota a cadeia a e todas as cadeias iniciadas por zero ou mais a's, seguidos de um b

Propriedades das expressões regulares

Sejam r, s, t expressões regulares. Valem as seguintes propriedades:

Axioma	Descrição
r s=s r	é comutativo
r (s t) = (r s) t	é associativo
r(st) = (rs)t	a concatenação é associativa
r(s t) = rs rt $(r s)t = rt st$	a concatenação é distributiva em relação a
$\epsilon r = r$ $r \epsilon = r$	€ é o elemento neutro da concatenação
$r^* = (r \epsilon)^*$	relação entre ∈ e *
$r^{**} = r^*$	* é idempotente

Definições regulares

Definição

Seja Σ um alfabeto. Uma definição regular sobre Σ é uma sequência de definições da forma

$$d_1 \to r_1$$

$$d_2 \to r_2$$

$$\dots$$

$$d_n \to r_n$$

onde cada d_i é um nome distinto e r_i uma expressão regular sobre o alfabeto $\Sigma \cup \{ d_1, d_2, \dots, d_{i-1} \}.$

Exemplo de definição regular

Os identificadores de Pascal, e em muitas outras linguagens, são formados por cadeias de caracteres e dígitos, começando com uma letra.

Abaixo segue a definição regular para o conjunto de todos os identificadores válidos em Pascal:

Simplificações notacionais

As seguintes notações podem simplificar as expressões regulares:

- 1. Uma ou mais ocorrências. Se r é uma expressão regular, então $(r)^+$ denota $(L(r))^+$. O operador + tem a mesma associatividade e precedência do operator *. Vale que $r^* = r^+ | \epsilon$ e que $r^+ = rr^*$.
- **2.** Zero ou uma. Se r é uma expressão regular, então r? denota $L(r) \cup \epsilon$. O operador ? é posfixo e unário, e r? = r | ϵ .
- 3. Classes de caracteres. A notação [abc], onde a, b, c são símbolos do alfabeto, denota a expressão regular $a \mid b \mid c$. A notação [a-z] abrevia a expressão regular $a \mid b \mid \ldots \mid z$.

Análise léxica

Limitações das expressões regulares

- Existem linguagens que não podem ser descritas por meio de expressões regulares
- Por exemplo, não é possível descrever o conjunto $\mathcal P$ de todas as cadeias de parêntesis balanceados por meio de expressões regulares
- ightharpoonup Contudo, o conjunto $\mathcal P$ pode ser descrito por meio de uma gramática livre de contexto
- Existem linguagens que n\u00e3o podem ser descritas nem mesmo por meio de uma gram\u00e1tica livre de contexto
- Por exemplo, o conjunto

$$C = \{wcw \mid w \text{ \'e uma cadeia de } a \text{'s e } b \text{'s}\}$$

não pode ser descrito nem por expressões regulares e nem por meio de uma gramática livre de contexto

Referências

- 1. AHO, Alfred V, SETHI, Ravi, ULLMAN, Jeffrey D. Compiladores: Princípios, Técnicas e Ferramentas, LTC Editora, 1995.
- 2. GeeksForGeeks. Flex (Fast Lexical Analyzer Generator), acesso em 04/06/2022.