近世代数课后习题作业5参考解答

1.

证明: 设 $H = A \cap B$,则由定理知H仍为群G的子群,则由拉格朗日定理得:

$$|B| = H | \cdot \{B: H\}$$
 , 记 $j = [B: H] = \frac{|B|}{|H|}$, 则 $B = Hb_1 \cup Hb_2 \cup \cdots \cup Hb_j$, $b_i \in B(i = 1, \cdots, j)$ 其 中 $Hb_i (i = 1, \cdots, j)$ 为 互 不 相 同 的 右 陪 集 。 则 $AB = AHb_1 \cup AHb_2 \cup \cdots \cup AHb_j$, 又 $AH = A$, 所以 $AB = Ab_1 \cup Ab_2 \cup \cdots \cup Ab_j$, 又 $Ab_i \cap Ab_l = \phi$, 否则, 若 $Ab_i \cap Ab_l \neq \phi$,则由陪集的性质得: $Ab_i = Ab_l$, 从 而 $b_i b_l^{-1} \in A$,又 $b_i b_l^{-1} \in B$,所以 $b_i b_l^{-1} \in A \cap B$,即 $b_i b_l^{-1} \in H$,所以 $Hb_i = Hb_l$, 矛盾。 因此根据容斥原理有: $|AB| = |Ab_1| + |Ab_2| + \cdots + |Ab_j| = j \cdot |A|$

$$\exists \mathbb{U} \mid AB \mid = \frac{\mid B \mid}{\mid H \mid} \cdot \mid A \mid = \frac{\mid A \parallel B \mid}{\mid A \cap B \mid}$$

2.

证明:假设不成立,则 $\exists a \in G$,使得 $a^{-1}Ha \cap H = \{e\}$,记 $P = a^{-1}Ha$,由 H 为 G 的子群易知 P 也为 G 的子群,且 $|P| \exists H \models n$ (由映射 $\varphi(h) = a^{-1}ha$ 为单射),则由 1 题的结论: $|PH| = \frac{|P||H|}{|P \cap H|} = \frac{n \cdot n}{1} = n^2$,又 $PH \subseteq G$, $|G = n^2$,所以 PH = G,

则由教材中的例题结论知 $P \cap H = H \neq \{e\}$,矛盾。

3.

证明:由前面的习题结论知六阶群中一定有三阶子群,假设不唯一,设 A,B 为六 阶群 G 两个不同的三阶子群。不妨设 $A = \{e,a,b\}$, $B = \{e,c,d\}$,则 $A \cap B = \{e\}$ 。从而 $|AB| = \frac{|A||B|}{|A \cap B|} = 9 > 6$ 矛盾。

4.

证明:设 H 为群 G 的子群,且有 [G:H]=2,则其左陪集构成的划分为: H,aH $(a \notin H)$,其右陪集构成的划分为: $H,Ha(a \notin H)$,从而 $aH=G \setminus H$

 $Ha = G \setminus H$, 所以 aH = Ha。 5.

证明:设 H_1, H_2 为群 G 的两个正规子群,记 $H = H_1 \cap H_2$ 。则对 $\forall a \in G, h \in H$,由 H_1, H_2 为 群 G 的 两 个 正 规 子 群 得: $aha^{-1} \in H_1$, $aha^{-1} \in H_2$, 所 以 $aha^{-1} \in H_1 \cap H_2$,即 $aha^{-1} \in H$,故 $H \not\in G$ 的正规子群。

6.

证 明: 对 $\forall a,b \in NH$, 则 $\exists n_1,n_2,h_1,h_2 \in NH$,使 得 $a=n_1h_1,b=n_2h_2$, 则 $ab^{-1}=n_1h_1h_2^{-1}n_2^{-1}$ 。又由 N 是 G 的正规子群,则对 $\forall x \in G$, xN=Nx 。故 $\exists n_3 \in N$ 使得 $h_2^{-1}n_2^{-1}=n_3h_2^{-1}$,则 $ab^{-1}=n_1h_1n_3h_2^{-1}$,同理 $\exists n_4 \in N$,使得 $h_1n_3=n_4h_1$,从 而 $ab^{-1}=n_1n_4h_1h_2^{-1}=(n_1n_4)(h_1h_2^{-1})\in NH$,则由子群的判定定理知 NH 是 G 的子群。

7.

证明: 设G为群且 |G|=2n,则由前面习题作业结论知偶数阶群G中一定存在一个阶为 2 元素,即 $\exists a \in G$, $a^2=e$,从而 $H=(a)=\{e,a\}$ 。由G为交换群,则对 $\forall x \in G$, $xH=Hx=\{x,ax\}=\{x,xa\}$,故 H为群G的一个 2 阶正规子群,根据拉格朗日定理以及正规子群和商群的关系知G必有一个n阶商群。

证明:

必要性 \Rightarrow : 对 $\forall a,b \in G$,由 H 为 G 的正规子群可得: $aH \cdot bH = a(Hb)H = a(bH)H = abHH = abH$,仍为 H 的左陪集。

充分性 \Leftarrow : 由已知可得: 对 $\forall a \in G$, $aH \cdot a^{-1}H = cH$, 因为 $e \in aH \cdot a^{-1}H$, 从 而 $e \in cH$, ; 又 $e \in H$,即 $e \in cH \cap H$,则由左陪集的性质得: cH = H ,所以 $aH \cdot a^{-1}H = H$,则 对 $\forall h \in H$, $\exists h_1, h_2 \in H$, 使 得 $aha^{-1}h_1 = h_2$ ⇒ $aha^{-1} = h_2h_1^{-1} \in H$

9.

证明:由 H 是群G 的 2 阶正规子群可设 $H = \{e,a\}$,且对 $\forall x \in G$, xH = Hx,即 $\{x,xa\} = \{x,ax\}$,所以 xa = ax,故 $a \in C$,从而 $H \subseteq C$

1.

证明:设 $H = A \cap B$,则由定理知H仍为群G的子群,则由拉格朗日定理得:

$$|B|=|H|\cdot [B:H]$$
 , 记 $j=[B:H]=\frac{|B|}{|H|}$, 则 $B=Hb_1\cup Hb_2\cup \cdots \cup Hb_j$, $b_i\in B(i=1,\cdots,j)$ 其 中 $Hb_i(i=1,\cdots,j)$ 为 互 不 相 同 的 右 陪 集 。 则 $AB=AHb_1\cup AHb_2\cup \cdots \cup AHb_j$,又 $AH=A$,所以 $AB=Ab_1\cup Ab_2\cup \cdots \cup Ab_j$, 又 $Ab_i\cap Ab_l=\phi$,否则,若 $Ab_i\cap Ab_l\neq\phi$,则由陪集的性质得: $Ab_i=Ab_l$,从 而 $b_ib_l^{-1}\in A$,又 $b_ib_l^{-1}\in B$,所以 $b_ib_l^{-1}\in A\cap B$,即 $b_ib_l^{-1}\in H$,所以 $Hb_i=Hb_l$, 矛盾。因此根据容斥原理有: $|AB|=|Ab_1|+|Ab_2|+\cdots +|Ab_j|=j\cdot |A|$

2.

证明:假设不成立,则 $\exists a \in G$,使得 $a^{-1}Ha \cap H = \{e\}$,记 $P = a^{-1}Ha$,由 H 为 G 的子群易知 P 也为 G 的子群,且 |P| = H = n (由映射 $\varphi(h) = a^{-1}ha$ 为单射),则由 1 题的结论: $|PH| = \frac{|P||H|}{|P \cap H|} = \frac{n \cdot n}{1} = n^2$,又 $PH \subseteq G$, $|G = n^2$,所以 PH = G,

则由教材中的例题结论知 $P \cap H = H \neq \{e\}$,矛盾。

3.

证明:由前面的习题结论知六阶群中一定有三阶子群,假设不唯一,设 A,B 为六 阶群 G 两个不同的三阶子群。不妨设 $A = \{e,a,b\}$, $B = \{e,c,d\}$,则 $A \cap B = \{e\}$ 。 从而 $|AB| = \frac{|A||B|}{|A \cap B|} = 9 > 6$ 矛盾。

4.

证明:设 H 为群 G 的子群,且有 [G:H]=2,则其左陪集构成的划分为: H,aH $(a \not\in H)$,其右陪集构成的划分为: H, $Ha(a \not\in H)$,从而 $aH=G \setminus H$ $Ha=G \setminus H$,所以 aH=Ha。

5

证明:设 H_1, H_2 为群G的两个正规子群,记 $H = H_1 \cap H_2$ 。则对 $\forall a \in G, h \in H$,由 H_1, H_2 为群G的两个正规子群得: $aha^{-1} \in H_1$, $aha^{-1} \in H_2$,所以 $aha^{-1} \in H_1 \cap H_2$,即 $aha^{-1} \in H$,故 $H \not = G$ 的正规子群。

证 明: 对 $\forall a,b \in NH$, 则 $\exists n_1,n_2,h_1,h_2 \in NH$,使 得 $a=n_1h_1,b=n_2h_2$, 则 $ab^{-1}=n_1h_1h_2^{-1}n_2^{-1}$ 。又由 N 是 G 的正规子群,则对 $\forall x \in G$, xN=Nx 。故 $\exists n_3 \in N$ 使得 $h_2^{-1}n_2^{-1}=n_3h_2^{-1}$,则 $ab^{-1}=n_1h_1n_3h_2^{-1}$,同理 $\exists n_4 \in N$,使得 $h_1n_3=n_4h_1$,从 而 $ab^{-1}=n_1n_4h_1h_2^{-1}=(n_1n_4)(h_1h_2^{-1})\in NH$,则由子群的判定定理知 NH 是 G 的子群。

7.

6.

证明: 设G为群且 |G|=2n,则由前面习题作业结论知偶数阶群G中一定存在一个阶为 2 元素,即 $\exists a \in G$, $a^2=e$,从而 $H=(a)=\{e,a\}$ 。由G为交换群,则对 $\forall x \in G$, $xH=Hx=\{x,ax\}=\{x,xa\}$,故 H 为群G的一个 2 阶正规子群,根据拉格朗日定理以及正规子群和商群的关系知G必有一个n阶商群。8.

证明:

必要性 \Rightarrow : 对 $\forall a,b \in G$, 由 H 为 G 的 正规 子 群 可 得: $aH \cdot bH = a(Hb)H = a(bH)H = abHH = abH$,仍为 H 的左陪集。

充分性 \Leftarrow : 由已知可得: 对 $\forall a \in G$, $aH \cdot a^{-1}H = cH$, 因为 $e \in aH \cdot a^{-1}H$, 从 而 $e \in cH$,; 又 $e \in H$, 即 $e \in cH \cap H$, 则由左陪集的性质得: cH = H, 所以 $aH \cdot a^{-1}H = H$, 则 对 $\forall h \in H$, $\exists h_1, h_2 \in H$, 使 得 $aha^{-1}h_1 = h_2$ ⇒ $aha^{-1} = h_2h_1^{-1} \in H$

9.

证明:由 H 是群G 的 2 阶正规子群可设 $H = \{e,a\}$,且对 $\forall x \in G$, xH = Hx,即 $\{x,xa\} = \{x,ax\}$,所以 xa = ax,故 $a \in C$,从而 $H \subseteq C$