T	ota	1	P	a	σ	es		2
-	O et		-	**	5	CO	•	

Reg No.: Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER MCA DEGREE EXAMINATION, DECEMBER 2017

Course Code: RLMCA103

		Course Court. Italia Criston	
		Course Name: DISCRETE MATHEMATICS	
Max	. Ma	arks: 60 Duration: 3	Hours
		PART A	
		Answer all questions, each carries 3 marks.	Marks
1		Show that $(AUB)' = A' \cap B'$	(3)
2		Find GCD(12378,3054)	(3)
3		Find the number of arrangements of letters of the word MISSISSIPPI in which the 4 I's come together	(3)
4		Find a_{12} when $a_{n+1}^2 = 5a_n^2$ with $a_0 = 2$	(3)
5		Define Regular graph and Connected graph with example	(3)
6		A connected planar graph has 9 vertices having degrees 2,2,2,3,3,3,4,4,5. Find the number of edges and faces	(3)
7		Define Tautology and show that $(p \land q) \rightarrow p$ is a tautology	(3)
8		Show that p→q and ~pvq are logically equivalent	(3)
		PART B	
		Answer six questions, one full question from each module and carries6 marks.	
		Module I	
9		Define equivalence relation	(1)
	b)	Prove that for x, $y \in Z$ the relation defined by $R = \{(x, y): 5 \text{ divides } x - y\}$ is an equivalence relation	(5)
		OR	
10	a)	Let f: R \rightarrow R defined by f(x)=x+2 and g(x)= x^2 . Find gof and fog	(2)
		Let f: R-{3} \rightarrow R-{1} defined by $f(x) = \frac{x-2}{x-3}$. Check whether f is bijective	(4)
		Module II	
11		Solve the linear Diophantine equation 172x+20y=1000	(6)
		OR	
12		Solve the set of simultaneous congruences $x\equiv 2 \pmod{3}$, $x\equiv 3 \pmod{5}$, $x\equiv 2 \pmod{7}$	(6)
		Module III	
13	a)	Determine all integer solutions to the equation $x_1+x_2+x_3+x_4=7$	(2)
	b)	A committee of 10 people is to be formed from 12 men and 8 women. In how	(4)
		many ways can the committee be formed if	
		i) There should be an even number of men	
		ii) There should be at least 8 men	
14	a)	OR Find the coefficient of $x^2y^3z^4$ in the expansion of $(x + y + z)^9$	(2)
17	a)		

Define Pigeonhole principle. Show that in a group of 6 people, where any two (4) people are either friends or Strangers, there are either 3 mutual friends or 3 mutual strangers

Module IV

Solve $a_r + a_{r-1} = 3r(2)^r$

(6)

OR

Solve a_{n+2} - $4a_{n+1}$ + $3a_n$ = -200, $n \ge 0$; given that a_0 =3000, a_1 =3300 16

Module V

Let G= (V, E) be an undirected graph or multi graph with no isolated vertices. Show that G has an Euler circuit if and only if G is connected and every vertex in G has even degree

OR

Use Fleury's algorithm to find an Euler circuit for the following graph 18

(6)

Module VI

Translate the sentence into a logical expression: "You cannot access the internet from campus only if you are a computer science major or you are not a freshman"

Show that the following argument is valid:"If today is Monday, I have a test in (4) Physics or Mathematics. If my Physics professor is sick, I will not have a test in Physics. Today is Monday and my Physics professor is sick. Therefore I have a test in Mathematics"

OR

Negate the statement in logical form "There is an honest student".

Use rules of inference to show that $\exists xM(x)$ follows logically from the premises $(x)(H(x) \rightarrow M(x))$ and $\exists x H(x)$

(4)
