What is claimed is:

5

10

15

25

30

- 1. A method of treating a mammal having type 1 diabetes or at risk for type 1 diabetes, the method comprising administering to the mammal a pharmaceutical composition comprising an agent that inhibits a macrophage migration inhibitory factor (MIF) in the mammal, wherein the agent is a polypeptide or a polynucleotide.
- 2. The method of claim 1, wherein the agent comprises a binding site of an antibody that binds specifically to the MIF.
 - 3. The method of claim 2, wherein the agent is an antibody.
- 4. The method of claim 1, wherein the agent is an aptamer that binds specifically to the MIF.
- 5. The method of claim 1, wherein the agent inhibits expression of the MIF.
- 6. The method of claim 5, wherein the agent is an antisense nucleic acid or mimetic specific for MIF mRNA in the mammal.
- 7. The method of claim 5, wherein the agent is a ribozyme nucleic acid or mimetic specific for MIF mRNA in the mammal.
 - 8. The method of claim 5, wherein the agent is an inhibitory RNA or mimetic specific for MIF mRNA in the mammal.
 - 9. The method of claim 1, wherein the mammal has or is at risk for having diabetes, impaired glucose intolerance, stress hyperglycemia, metabolic syndrome, and/or insulin resistance.
 - 10. The method of claim 1, wherein the mammal is a rodent.
 - 11. The method of claim 1, wherein the mammal is a human.
- 12. A method of treating a mammal having type 1 diabetes or at risk for type 1
 35 diabetes, the method comprising administering to the mammal a pharmaceutical composition comprising an agent that inhibits a macrophage migration inhibitory factor (MIF) in the mammal, wherein the agent is an organic molecule comprising the following structure I or II

$$R_2$$
 R_3
 R_4
 R_4
 R_5
 R_7
 R_1

$$R_2$$
 R_3
 R_1
 R_1
 R_1
 R_1

5

13. The method of claim 12, wherein the organic molecule comprises structure II, wherein

$$X = O;$$

$$Z = C;$$

5

10

15

the ring comprising R_2 and R_3 =

 H_3C ; and

14. A method of evaluating whether a compound is useful for preventing or treating type 1 diabetes, the method comprising

(a) determining whether the compound inhibits a macrophage migration inhibitory factor (MIF) in a mammal, then, if the compound inhibits the MIF,

- (b) determining whether the compound inhibits development of type 1 diabetes.
- 15. The method of claim 14, wherein step (b) is performed by evaluating the effect of the compound on proliferation of splenic lymphocytes in the mammal.
- 20 16. The method of claim 14, wherein the compound is a protein.
 - 17. The method of claim 16, wherein the protein comprises an antibody binding site.
 - 18. The method of claim 14, wherein the compound is a nucleic acid or mimetic.

-43-

- 19. The method of claim 18, wherein the nucleic acid or mimetic is an antisense, a ribozyme, an aptamer, or an interfering RNA.
- 5 20. The method of claim 14, wherein the compound is an organic molecule less than 1000 Dalton.
 - 21. The method of claim 20, wherein the compound comprises the following structure I or II

10

15

$$R_2$$

I

$$R_2$$
 R_3
 R_1
 R_1
 R_1

WO 2005/094338 PCT/US2005/010521

- 22. A kit comprising
- (a) a pharmaceutical composition comprising the agent used to inhibit MIF in claim 1, and
 - (b) instructions for administering the composition to the mammal, wherein the mammal has type 1 diabetes or is at risk for type 1 diabetes.
 - 23. A kit comprising

5

10

15

- (a) a pharmaceutical composition comprising the agent used to inhibit MIF in claim 12, and
 - (b) instructions for administering the composition to the mammal, wherein the mammal has type 1 diabetes or is at risk for type 1 diabetes.
- 24. Use of the agent used to inhibit MIF in claim 1 for the manufacture of a medicament for the treatment of a mammal having type 1 diabetes or at risk for type 1 diabetes.
- 25. Use of the agent used to inhibit MIF in claim 12 for the manufacture of a medicament for the treatment of a mammal having type 1 diabetes or at risk for type 1 diabetes.