CS 731: Blockchain Technology And Applications

Sandeep K. Shukla
IIT Kanpur

C3I Center

Acknowledgements

- Bennet Breier, TUM
- IOTA Foundation
- Alon Gal

IOTA

Transactions, Confirmation And Consensus

Blockchain and IoT

<u>IoT – Internet of Things</u>

Examples

- Smart City
- Smart Home
- Smart Grid
- Smart Transportation
- What is enabling information technology?
 - IoT components must talk to each other M2M to share information
 - Visibility of the State of the system or subsystem as a whole for autonomous decision making
 - Cloud based IoT ecosystem proposed by many companies
 - All IoT devices communicate to the cloud and get global state info from the cloud
 - Often communicate via cloud

Cloud + IoT

Single Shared Truth for Everyone

What's the problem with Cloud + IoT

- Single point of failure
- Data Integrity and confidentiality at stake
- Cyber attack on the cloud
- Cloud infrastructure provider gets enormous power and data
- Can we decentralized this?
 - Blockchain anyone?

<u>IoT + Blockchain</u>

- Existing Blockchain (Bitcoin, Ethereum etc)
 - Scalability issues
 - PoW computational requirement
 - Centralization by powerful miners
 - Cost of transactions
 - All guarantees of integrity is probabilistic
 - Privacy requires a bit more thought
- IoTA foundation claims to have a solution
 - Replace Blockchain by Tangle
 - It borrows a lot of ideas from Blockchain
 - But not exactly a blockchain

Requirements of IoT

- Low Resource Consumption
- Widespread Interoperability
- Billions of Nano-transactions
- Data Integrity

The Tangle

A Blockchain without the Blocks and the Chain

<u>Tangle</u>

- No block individual transactions are tangled together
- What is Tangling
 - Construct Directed Acyclic Graphs (DAGs) connecting transactions
- Self Regulating
- Very Scalable
- Still use PoW but a long overhead PoW
 - Prevent spamming

What we get out of Tangle in place of Blockchain?

- CAP
 - Consistency
 - Availability
 - Partition-Tolerance
- No Fees
- Scalable
- Modular
- Lightweight
- Offline allowed
- Quantum Proof

Envisioned Use cases

- Complete M2M communication
 - Anything which has computational resource (Chip) can be leased by another machine autonomously
 - Devices can share resources by coordinating bandwidth sharing for example
 - Supply Chain
 - Smart Grid to coordinate production of energy without human dispatching
 - On-demand API access
 - Sensor Data Selling and Data Market Place
 -

Towards Smart Decentralization

Dumb Decentralization

- "Dumb" devices
- No connectivity / sharing of data
- Human mediators

Smart Centralization

- Smart devices, dumb network
- Cloud as decision maker

Smart Decentralization

- Data Sharing
- Local Real-time Decision Making
- Smart adaptive and intelligent network

Tangle Initialization & Transaction Issuance

Cumulative Weight = 5

Issuing a Transaction

- 1. Bundling & Signing
- 2. Tip Selection
- 3. Validation
- 4. Proof-of-Work
 (PoW)
- 5. Publishing

Simulations

- Simulation by varying λ (transaction arrival rate Poisson process)
 - https://public-rdsdavdrpd.now.sh/
- Simulation of unweighted random walk based tip selection
 - https://public-xnmzdqumwy.now.sh/
- Simulation of weighted random walk based tip selection
 - https://public-qnbiiqwyqj.now.sh/
- Simulation of Confirmation Confidence Computation
 - https://public-krwdbaytsx.now.sh/

•

Initial Tangle State

Adding A Transaction

Another Transaction

New Tangle State

Confirmation Levels

Propagation Delay

Double Spend

Double Spend Resolution

Slide 26

Offline Tangle

22.10.2017 v1.0 Slide 27