OpenGL에서 조명을 계산하는 공식은 다음과 같으며, 4가지 부분으로 나눌 수 있다.

$$c = e_{cm} + a_{cm} \times a_{cs}$$

$$+\sum_{i=0}^{n-1}(att_i)(spot_i)[a_{cm}\times a_{cli}+(n\odot\overrightarrow{VP}_{pli})d_{cm}\times d_{cli}+(f_i)(n\odot\widehat{h}_i)^{s_{rm}}s_{cm}\times s_{cli}]$$

(n개의 광원이 존재한다고 가정 시)

물체 자체의 방사 색깔과 전역 앰비언트 반사를 더한 $e_{cm}+a_{cm} imes a_{cs}$,

각 광원에 대한 지역 앰비언트 반사인 $a_{cm} \times a_{cli}$

각 광원에 대한 난반사인 $(n \odot \overrightarrow{VP}_{nli})d_{cm} \times d_{cli}$

그리고 각 광원에 대한 정반사인 $(f_i)(n \odot \hat{h}_i)^{s_{rm}} s_{cm} \times s_{cli}$ 이 있다.

해당 조명 모델은 Blinn-Phong 모델을 기반으로 확장하여 구현이 되어있다.

1. 전역 앰비언트 반사와 물체의 자체 방사 색깔

물체의 자체 방사 색깔의 경우, 손전등과 같이 스스로 발광하는 물체에 대해 계산하기위해 추가하며, 전역 앰비언트 반사의 경우 세상 전체에 비춰지는 앰비언트 색 (a_{cs}) 에 물질 자체의 앰비언트 색깔 (a_{cm}) 을 곱하여 구해진다.

2. 각 광원에 대한 앰비언트 반사

OpenGL에서는 전역 앰비언트 반사와 별개로 각 광원에 대한 앰비언트 반사값을 별도로 계산한다. 이 역시 각 광원에 대한 앰비언트 반사값 수치 (a_{cli}) 에 물질 자체의 앰비언트 색깔 (a_{cm}) 을 곱하여 구한다.

3. 각 광원에 대한 난반사

각 vertex의 법선 벡터(n)에 vertex의 위치를 기준으로 상대적인 광원의 방향 벡터($\overrightarrow{VP}_{pli}$) 와의 외적을 구한 후, 확산광의 세기(d_{cli})와 확산광 계수(d_{cm})을 곱하면 난반사에 대한 계산이 완료된다. 해당 부분은 기존 Phong의 조명 모델과 동일하게 작동한다.

4. 각 광원에 대한 정반사

우선 OpenGL의 조명 모델 역시 Halfway vector를 사용하여 정반사를 계산한다. Halfway vector h_i 는 $\overrightarrow{VP}_{pli}$ + \overrightarrow{VP}_e , 즉 광원에 대한 방향과 눈 좌표계의 원점 방향이 된다. 해당 벡터와 vertex의 법선 벡터 n과의 외적값을 물질의 고유값인 광택 계수 (s_{rm}) 를 승수로 가한다. 이 값에 정반사되는 빛의 세기 (s_{cli}) 와 정반사 계수 (s_{cm}) 를 곱하고 계수로 f_i 를 곱해계산을 완성한다. 이때 계수 f_i 는 0 또는 1의 값을 가지며, 법선 벡터와 halfway 벡터의외적이 0보다 클 경우 1, 아니면 0을 가진다. 따라서 물체의 표면에 대해 앞쪽에서 빛을 비추는 경우에만 정반사 계산이 반영됨을 알 수 있다.

5. 기타 요소들 $(att_i, spot_i)$

빛의 감쇠 효과를 위한 att_i , 스폿 광원 처리를 위한 $spot_i$ 의 계산이 각 광원에 대해 추가적으로 계산된다.

우선 감쇠 효과의 경우, 광원과 vertex 사이의 거리 $\|VP_{pli}\|$ 의 이차식의 역수에 대하여 $\min\left(\frac{1}{k_{0i}+k_{1i}\|VP_{pli}\|+k_{2i}\|VP_{pli}\|^2},1.0\right)$ 으로 정해진다. 해당 값의 그래프는 아래와 같이 표현된다. 즉, 광원의 원래 밝기 값보다 작아지는 선에서 거리에 반비례하도록 계산이 된다.

스폿 광원 처리의 경우 광원의 중심축에서 멀어질수록 어두운 효과를 내기 위해 물체와 광원 사이의 각도 ψ 에 대해 $\cos\psi^{s_{rli}}$ 의 값을 계산하여 스폿 광원의 절단 각도 c_{rli} 내에 물체가 들어올 경우, 빛의 반사를 계산한다. 이때 $\cos\psi^{s_{rli}}$ 값은 $(\overrightarrow{VP}_{pli}\odot\hat{s}_{dli})^{s_{rli}}$ 와 같으 며, 절단 각도 외부의 물체의 경우 영향을 받지 않으므로 계산을 진행하지 않고 0.0의

값을 가지게 된다.

