Hypothesis Testing of Regression Parameters

Tadao Hoshino (星野匡郎)

ver. 2018 Fall Semester

Review of the Previous Lecture

Review of the Previous Lecture

Consider a linear regression model

$$Y_i = \beta_{00} + X_i \beta_{01} + \varepsilon_i, i = 1, ..., n$$

where (β_{00}, β_{01}) are the "true" regression coefficients such that

$$E(Y|X) = \beta_{00} + X\beta_{01} \ (\iff E(\varepsilon|X) = 0).$$

• The OLS estimator of (β_{00}, β_{01}) :

$$\hat{\beta}_{n0} = \bar{Y}_n - \bar{X}_n \hat{\beta}_{n1}$$

$$\hat{\beta}_{n1} = \frac{\frac{1}{n} \sum_{i=1}^n X_i Y_i - \bar{X}_n \bar{Y}_n}{\frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}_n^2}$$

Review of the Previous Lecture

Under certain conditions, we can show that

• the OLS estimator is unbiased:

$$E(\hat{\beta}_{n0}) = \beta_{00}, \ E(\hat{\beta}_{n1}) = \beta_{01}$$

• the OLS estimator is consistent:

$$\hat{\beta}_{n0} \xrightarrow{P} \beta_{00}, \ \hat{\beta}_{n1} \xrightarrow{P} \beta_{01}$$

and

• as n increases to infinity, $\sqrt{n}(\hat{\beta}_{n1} - \beta_{01})$ is distributed as normal with mean 0 and variance $V(X)^{-1}\sigma^2$:

$$\sqrt{n}(\hat{\beta}_{n1}-\beta_{01}) \stackrel{d}{\to} N\left(0,\frac{\sigma^2}{V(X)}\right).$$

Hypothesis Testing: When the Variance Is Known

• We continue to consider the case of a simple linear regression:

$$Y_i = \beta_{00} + X_i \beta_{01} + \varepsilon_i, i = 1, ..., n$$

- We would like to know whether the explanatory variable X is actually a determinant of Y.
- Note that the estimate $\hat{\beta}_{n1}$ inevitably contains some estimation error under finite sample size.

We need to show that the true regression coefficient β_{01} (i.e., the marginal effect of X on Y) is not equal to zero.

• We first consider the case where the value of the variance $V(X)^{-1}\sigma^2$ is assumed to be known.

First, note that

$$\sqrt{n}(\hat{\beta}_{n1} - \beta_{01}) \xrightarrow{d} N(0, v)$$
 is equivalent to $\frac{\hat{\beta}_{n1} - \beta_{01}}{\sqrt{v/n}} \xrightarrow{d} N(0, 1)$

where $v = V(X)^{-1}\sigma^2$.

- The above result implies that, as n increases, the variance of $\frac{\hat{\beta}_{n1} \beta_{01}}{\sqrt{v/n}}$ converges to one.
- Recall that for any random variable X, the variance of $\frac{X-E(X)}{\sqrt{V(X)}}$ equals to one, where $\sqrt{V(X)}$ is the standard deviation of X.
- Thus, we can interpret $\sqrt{v/n}$ as the standard deviation of $\hat{\beta}_{n1}$.
- The standard deviation of an estimator is called the standard error.

ullet For simplicity, we write the standard error of \hat{eta}_{n1} as

$$se = \sqrt{v/n}$$
.

- The standard error se is a measure of the expected dispersion of the OLS slope estimator $\hat{\beta}_{n1}$ around the true β_{01} . The smaller the standard error, the more efficient the estimator.
- Note that the standard error is proportional to $n^{-1/2}$.
- Hence, if we want to double the accuracy of the estimator (i.e., halve the standard error), the sample size needs to be (not doubled but) quadrupled.¹

¹This would be intuitively understandable. Increasing the sample size from 100 to 1000 may produce a drastic improvement in accuracy of the estimate, but increasing from 10000 to 11000 will only lead to a small perturbation in the estimate.

We define the following statistic:

$$Z_n = \frac{\hat{\beta}_{n1} - \beta_{01}}{se}$$

Since we have assumed that se is known, the only unknown parameter is β_{01} .

• If β_{01} were known, Z_n is computable, and because $Z_n \stackrel{d}{\to} N(0,1)$, we have

$$\Pr(-1.9599 \le Z_n \le 1.9599) \approx 0.95$$

for sufficiently large n.

• In other words, the probability of occurring an event $\{|Z_n| > c\}$ for some $c \ge 1.9599$ is at most only 5%.

• However, since β_{01} is unknown in reality, we hypothesize that

$$\beta_{01} = 0$$

The hypothesis states that the explanatory variable X is not a determinant of the dependent variable Y.

- This hypothesis is called the <u>null hypothesis</u> and is often referred to as H_0 . The null hypothesis is usually expected to be false.
- The negation of the null hypothesis is called the alternative hypothesis, which is often referred to as H_1 .

$$H_0: \beta_{01} = 0, \ H_1: \beta_{01} \neq 0$$

• If H_0 is true, the statistic Z_n can be simplified as

$$Z_n = \frac{\hat{\beta}_{n1} - \beta_{01}}{se} = \frac{\hat{\beta}_{n1}}{se}$$

• Thus, under H_0 , we must have

$$\Pr\left(-1.9599 \le \frac{\hat{\beta}_{n1}}{se} \le 1.9599\right) \approx 0.95$$

That is, the probability of occurring an event $\{|\hat{\beta}_{n1}/se| > 1.9599\}$ must be about 5% under H_0 .

• In general, let T_n be a test statistic:

$$T_n = T_n((Y_1, \mathbf{X}_1), ..., (Y_n, \mathbf{X}_n))$$

The hypothesis testing consists of the decision rule

Reject the null hypothesis H_0 if $T_n > c$.

- The threshold value *c* is called the **critical value**, which is pre-specified by researcher.
- In the above example, $T_n = |\hat{\beta}_{n1}/se|$, and c = 1.9599.

Framework of Hypothesis Testing

ullet Suppose that for a number $lpha \in (0,1)$ we have

$$Pr(T_n > c_{\alpha}) = \alpha$$

under the null hypothesis H_0 .²

- Thus, if the computed value of T_n is larger than c_{α} , assuming that H_0 is true, such event occurs with probability at most α .
 - => If we observe $\{T_n > c_\alpha\}$ for small enough α , we can conclude the H_0 is unacceptable (unrealistic).
- This threshold probability α is referred to as the significance level, and then we say the null hypothesis H_0 is rejected at α level of significance.

²Once α is given, the value of c_{α} is automatically determined. (e.g., $\alpha=0.05\Rightarrow c_{\alpha}=1.9599$.)

Framework of Hypothesis Testing

- In econometrics, researchers often use either the 0.05 level (5% level) or the 0.01 level (1% level) of significance.
- Are 5% and 1% probability small enough to conclude as unrealistic?
 The choice of significance level is quite subjective, and depends on the researcher's judgment.
- In our example, if $|\hat{\beta}_{n1}/se|$ is larger than 1.9599, we can reject the null hypothesis $H_0:\beta_{01}=0$ at the 5% significance level:

If
$$\underbrace{|\hat{\beta}_{n1}/se|}_{T_n} > \underbrace{1.9599}_{c_{0.05}} \Rightarrow$$
 At the 5% significance level, X affects Y .

Similarly,

If
$$\underbrace{|\hat{\beta}_{n1}/se|}_{T_n} > \underbrace{2.5758}_{c_{0.01}} \Rightarrow$$
 At the 1% significance level, X affects Y .

Framework of Hypothesis Testing

Procedure of hypothesis testing

- STEP 1. Decide the significance level α . (usually either 5% or 1%)
- STEP 2. Develop a null hypothesis H_0 , and compute the test statistic T_n under H_0 .
- STEP 3. Assuming that H_0 is true, compute the critical value c_{α} .
- STEP 4. If $\{T_n > c_\alpha\}$ is observed, reject H_0 at α level of significance, otherwise accept H_0 .

Hypothesis Testing as a "Proof by Contraposition"

Proof by contraposition

Suppose we want to prove the statement $A\Rightarrow B$.^a Assume $\neg B$, which is the logical negation of B, and show that $\neg B$ leads to the negation $\neg A$ of the original assumption A. Then, $A\Rightarrow B$ is true. In short, the statement $A\Rightarrow B$ is logically equivalent to the statement $\neg B\Rightarrow \neg A$.

 $^{{}^{}a}A \Rightarrow B$ is read as "A implies B", which means "if A is true then B is true".

Hypothesis Testing as a "Proof by Contraposition"

Example

Let $A: \{x^2 + y^2 \le 1\}$ and $B: \{x \le 1\}$. Prove $A \Rightarrow B$.

- It suffices to show $\neg B \Rightarrow \neg A$.
- Assume $\neg B: \{x > 1\}$. Then, since $x^2 > 1$ and $y^2 \ge 0$, we must have

$$x^2 + y^2 > 1$$
,

which is the negation of A. Thus, $A \Rightarrow B$.

Hypothesis Testing as a "Proof by Contraposition"

Hypothesis testing of the regression parameter

Let

$$A:\{eta_{01}=0\}$$
 $B:\{\hat{eta}_{n1}/se ext{ is close to zero.}\}$

Note: $A = H_0$ and $\neg A = H_1$.

- We know that $A \Rightarrow B$ is true by the central limit theorem. Thus, $\neg B \Rightarrow \neg A$ is also true.
- If the computed value of $\hat{\beta}_{n1}/se$ is sufficiently away from zero such that $|\hat{\beta}_{n1}/se| > c$ for some c > 0, it is very unlikely that B is true, and thus $\neg B$ is more credible.
- Because $\neg B$ implies that A is not true, we can reject A.

Type I Error

A false rejection of the null hypothesis H_0 (rejecting H_0 although H_0 is true) is called a Type I error.

• The probability of a Type I error is

$$Pr(Reject H_0|H_0 \text{ is true}) = Pr(T_n > c_\alpha|H_0 \text{ is true})$$

Note that this probability is exactly the significance level α , i.e., α is the maximum tolerable probability of Type I error.

Type II Error

A false acceptance of the null hypothesis H_0 (accepting H_0 although H_0 is false) is called a Type II error.

• The probability of a Type II error is

$$\Pr(\mathsf{Accept}\ H_0|H_1\ \mathsf{is}\ \mathsf{true}) = \Pr(T_n \le c_\alpha|H_1\ \mathsf{is}\ \mathsf{true}) = 1 - \Pr(T_n > c_\alpha|H_1\ \mathsf{is}\ \mathsf{true})$$

• Given the two possible states of the world $(H_0 \text{ or } H_1)$ and the two possible decisions (Accept H_0 or Reject H_0), there are four possible pairs of states and decisions as summarized below:

	Accept H_0	Reject H_0	
H_0 true	correct decision	Type I error	
H_1 true	Type II error	correct decision	

• It is important to note that the probability of Type I error is decreasing in c_{α} , but that of Type II error is increasing in c_{α} : there is always a trade-off between Type I error and Type II error.

* Decreasing the probability of Type I error will increase the probability of Type II error, and vice versa.

Setup of the experiment

• Data generating process (DGP):

$$Y_i = \beta_{00} + X_i \beta_{01} + \varepsilon_i, i = 1, ..., 500$$

where $\beta_{00}=1$, $X\sim N(0,1)$, $\varepsilon\sim N(0,1)$, and β_{01} is selected from

$$\beta_{01} \in \{0, 0.1, 0.2, 0.3\}.$$

When $\beta_{01} = 0$, H_0 is true; otherwise H_1 is true.

• The standard error of the OLS slope estimator $\hat{\beta}_{n1}$ is equal to $1/\sqrt{n}$. Thus, the test statistic is $T_n = |\hat{\beta}_{n1}|/\sqrt{n}$.

Procedure of the experiment

- STEP 1. Draw X_i and ε_i from N(0,1), and compute Y_i for a given β_{01} .
- STEP 2. Calculate the OLS slope estimate $\hat{\beta}_{n1}$, and compute T_n .
- STEP 3. Check whether $T_n > c_\alpha$ (rejection of H_0) or not, in which α is chosen from $\alpha \in \{0.05, 0.01\}$.
- STEP 4. Repeat STEPs 1 3 many times, say 10,000 times, and compute the proportion of rejection of H_0 :
- For $\beta_{01}=0$, [prop. of rejection of $H_0]\approx \Pr(\mathsf{Type}\;\mathsf{I}\;\mathsf{error})$
- For $\beta_{01} \neq 0$, $[1 \text{prop. of rejection of } H_0] \approx \Pr(\text{Type II error})$

R code used in the experiment

```
N <- 500 # sample size
nrep <- 10000 # number of repetitions
exper <- function(beta, c alpha) {
     rec <- numeric(nrep)</pre>
     for(i in 1:nrep){
            X < - rnorm(N)
            Y < -1 + X*beta + rnorm(N)
            betahat \leftarrow lm(Y \sim X)$coef[2]
            se <- sgrt (1/N)
            rec[i] <- (abs(betahat/se) > c alpha)
     mean (rec)
exper(0, 1.9599)  # Type I error
1 - exper(0.1, 1.9599) # Type II error
```

Results of the experiment

	Type I error	Type II error				
	$\beta_{01} = 0$	$\beta_{01} = 0.1$	0.2	0.3		
$\alpha = 0.05 \ (c_{\alpha} = 1.9599)$	0.0501	0.3888	0.0063	0		
$\alpha = 0.01 \ (c_{\alpha} = 2.5758)$	0.0115	0.6400	0.0271	0		

- As the theory suggests, the proportion of Type I error is almost equal to the significance level α .
- When β_{01} is not zero, but is close to zero, the proportion of Type II error is large. As β_{01} gets away from zero, the proportion of Type II error decreases to zero.
- We can observe the trade-off between Type I and Type II errors.

7/2

Hypothesis Testing:

When the Variance Is Unknown

/3	37

- In order to implement the testing procedure described above, we must know the variance v or the standard error se of $\hat{\beta}_{n1}$.
- In reality, both se and v are unknown because V(X) and σ^2 are unknown. (recall: $v = V(X)^{-1}\sigma^2$, and $se = \sqrt{v/n}$).
- \bullet Fortunately, we can estimate V(X) and σ^2 easily using the sample data.

Estimation of V(X)

 \bullet The estimation of V(X) is straightforward. One can estimate it either by

sample variance:
$$V_n(X) = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

or by

unbiased variance:
$$V_n(X) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

• Both are consistent estimators of V(X).

Estimation of σ^2

Recall that we have assumed

$$Y = \beta_{00} + X\beta_{01} + \varepsilon$$
, $E(\varepsilon^2) = \sigma^2$

• Letting $(\hat{\beta}_{n0}, \hat{\beta}_{n1})$ be the OLS estimator of (β_{00}, β_{01}) , compute the residual as follows:

$$\hat{\varepsilon}_i = Y_i - \hat{\beta}_{n0} - X_i \hat{\beta}_{n1}, i = 1, ..., n$$

ullet Then, similarly to the estimation of V(X), σ^2 can be estimated either by

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \hat{\varepsilon}_i^2$$
 or by $\hat{\sigma}_n^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\varepsilon}_i^2$

The estimator in the right-hand side is an unbiased estimator of σ^2 .

ullet Consequently, v can be estimated by

$$\hat{v}_n = V_n(X)^{-1} \hat{\sigma}_n^2,$$

and let $\widehat{se}_n = \sqrt{\widehat{v}_n/n}$.

• Slutsky's theorem: Suppose that $\widehat{se}_n \stackrel{P}{\rightarrow} se$ and

$$\frac{\hat{\beta}_{n1}-\beta_{01}}{se}\stackrel{d}{\to} N(0,1).$$

Then, we have

$$\frac{\hat{\beta}_{n1} - \beta_{01}}{\widehat{se}_n} \xrightarrow{d} N(0,1).$$

Let

$$t_n = \frac{\hat{\beta}_{n1} - \beta_{01}}{\widehat{se}_n}.$$

As the size of sample increases, the distribution of t_n can be approximated by the standard normal N(0,1).

- This statistic t_n is called the t-value (or t-statistic).
- Under the null hypothesis $H_0: \beta_{01} = 0$, the t-value is given by

$$t_n = \frac{\hat{\beta}_{n1}}{\widehat{se}_n}.$$

Thus, for sufficiently large n, if the t_n is larger than 1.9599 in absolute value, we can reject H_0 at the 5% significance level.

t-Test

- The above testing procedure based on the t-statistic is called the t-test.
- Note that the null-hypothesis does not need to be $H_0: \beta_{01}=0$. For example, if we want to test $H_0: \beta_{01}=1$, the corresponding t-statistic becomes

$$t_n = \frac{\hat{\beta}_{n1} - 1}{\widehat{se}_n}.$$

Then, if this value is larger than 1.9599 in absolute value, we can reject $\beta_{01} = 1$ at the 5% significance level.

• The default null hypothesis in most statistical softwares is $H_0: \beta_{01} = 0$.

34 / 37

t-value and p-value

p-value

p-value

Let Z be a standard normal random variable, and t_n be a t-statistic computed under a null hypothesis H_0 . Then the probability

$$p = \Pr(|Z| \ge |t_n|)$$

is called the p-value. When the p-value p is smaller than α , the null hypothesis H_0 can be rejected at α level of significance.

t-value and p-value

* For example, if $t_n \approx 1.9599$, $p \approx 0.05$.

Glossary I

```
alternative hypothesis, 10
critical value. 12
null hypothesis, 10
p-value, 35
residual, 30
significance level, 13
standard error, 7
t-test, 33
t-value, 32
test statistic, 12
Type I error, 19
Type II error, 20
```