In [1]: %run Latex_macros.ipynb
%run beautify_plots.py

Wasserstein GAN: Motivation

paper (https://arxiv.org/pdf/1701.07875.pdf)

To summarize what we have learned about standard GANs:

- ullet Adversarial Training minimizes the Jensen Shannon Distance between $p_{
 m model}$ and $p_{
 m data}$
- They have the reputation for being difficult to train
 - A Discriminator that is too good, too soon inhibits the ability of the Generator to learn to generate
 - The Generator may "mode collapse" and not produce a variety of outputs

The Wasserstein GAN (WGAN) is a pair of Neural Networks NN:

- the Generator
- the Discriminator
 - technically, this is a "critic"
 - rather than producing a probability of "Real"
 - o it produces a "score" measuring how real the input is
 - larger negative: more real
 - larger positive: less real

The pair is trained to minimize an approximation of

$$\mathbb{W}(p_{ ext{data}}, p_{ ext{model}})$$

where \mathbb{W} is the Wasserstein Distance, also know as the Earth Move Distance (EMD) measure.

Earth Move Distance (EMD)

Aside

You need some knowledge of Measure Theory to understand the math.

In the absence, there are two good blogs I recommend in order to get a flavor

- Sorta Insightful (https://www.alexirpan.com/2017/02/22/wasserstein-gan.html)
- Wen (https://arxiv.org/pdf/1904.08994.pdf)

Like the KL and Jensen-Shannon Distances, the EMD is a measure of the difference between two distributions. $p_{\rm data}$ and $p_{\rm model}$.

It has an intuitive explanation

The minimum amount of "work" involved in moving probability mass between the two distributions in order to make them identical

"Work" means: the product of

- the quantity $\gamma(x,y)$ of the mass moved from x to y
- ullet and the distance $\|x-y\|$ it is moved

We can easily illustrate with two discrete distributions (example from <u>Wen (https://arxiv.org/pdf/1904.08994.pdf)</u>

Let P,Q be the two distributions, represented as vectors since there are discrete and measured over the same indices.

$$egin{array}{lll} P & = & [3,2,1,4] \ Q & = & [1,2,4,3] \end{array}$$

 P_i (resp., Q_i) is the probability as i in each of the distributions, for $1 \leq i \leq 4$.

For illustration, we will move

- ullet a quantity δ_i of probability in P between adjacent indices (i-1) and i
- ullet in order to make $P_i=Q_i$ (Q_i remains fixed)
- The distance is 1 (and hence work is equal to quantity moved).

We can define δ_i recursively:

$$egin{array}{lcl} \delta_0 &=& 0 \ \delta_{i+1} &=& \delta_i + P_i - Q_i \end{array}$$

That is, the amount δ_{i+1} moved from P_i in order to make $P_i=Q_i$ is

- ullet the difference (P_i-Q_i) between original value of P_i and Q_i
- ullet plus the additional quantity δ_i that was moved into P_i

Work is positive so taking absolute values

$$\mathbb{W}(P,Q) = \sum_{i=1}^4 1*|\delta_i| = 5$$

For continuous distributions

$$\mathbb{W}(p_{ ext{data}}, p_{ ext{model}}) = \inf_{\gamma \in \Pi(p_{ ext{data}}, p_{ ext{model}})} \mathbb{E}_{(x,y) \sim \gamma} \|x - y\|$$

where

- ullet $\Pi(p_{
 m data},p_{
 m model})$ are the set of possible joint distributions with marginal $p_{
 m data}$ and $p_{
 m model}$
- ullet γ is a quantity to move from x to y (for all x,y)
 - lacksquare distance between x and y is $\|x-y\|$
- inf is the infimum (Greatest Lower Bound)

Approximation of $\mathbb{W}(p_{ ext{data}}, p_{ ext{model}})$

Warning: the math is stated without much explanation

The infimum is intractable (or at least: not practical to compute).

Equation 2 in the paper states that for certain functions f, the distance is also equal to

$$\mathbb{W}(p_{ ext{data}}, p_{ ext{model}}) = \inf_{\|f\|_2 \leq 1} \mathbb{E}_{x \sim p_{ ext{data}}} f(x) \, - \, \mathbb{E}_{x \sim p_{ ext{model}}} f(x)$$

One can look at f as a "score" of x being "Real" (not fake) where

- a high negative score is a highly confident "Real"
- a high positive score is a highly confident "Fake"

The goal is

- ullet for function f to create a *large spread* between scores of Real and Fake.
- ullet for function f to be *approximated* by the Discriminator D_Θ with weights Θ_D

Under certain conditions on f, finding \mathbb{W} is equivalent to solving

$$\max_{\Theta_D \in \mathcal{W}} \mathbb{E}_{x \sim p_{ ext{data}}} D_{\Theta_D}(x) \, - \, \mathbb{E}_{x \sim p_{ ext{model}}} D_{\Theta_D}(x)$$

where ${\mathcal W}$ is a "compact" space of possible weights

Since the Discriminator no longer produces binary categorical values, it is more appropriate to call it a *Critic*.

That is: we solve for Critic weights such that the scores it produces have a large spread between Real and Fake.

But: what does this mean?

For those (like me) struggling with the math, here are the implications from a practical perspective

- Scores for true Real is negative, for Fake is positive
- \mathcal{L}_G will implement: minimize (make most negative) the score assigned to Fakes
- ullet \mathcal{L}_D will implement: "maximize the spread of scores between Real and Fake"
 - by minimizing the sum of
 - sum of scores for Real examples
 - minus sum of scores for Fake examples (i.e., Discriminator goal is for Fakes to have positive scores)
- "Compact" Θ_D will be achieved by clipping
 - lacktriangleright restricting elements of Θ_D to a small numerical range
 - lacktriangle by clipping the weights after a gradient update step for D

- ullet \mathcal{L}_D will dispense with the \log since the Discriminator produces scores rather than probabilities
 - lacksquare we see terms $D(\mathbf{x^{(i)}})$ and $1-D(\mathbf{x^{(i)}})$
 - lacktriangledown rather than $\log D(\mathbf{x^{(i)}})$ and $1 \log D(\mathbf{x^{(i)}})$

Did I really need to change to EMD?

The Wasserstein GAN avoids many of the problems associated with the plain GAN.

To some extent, this is due to replacing the Discriminator with a Critic

unbounded scores in the WGAN versus bounded probabilities in the plain GAN

- There are mathematical problems with Expectation Maximization (KL distance) and Jensen-Shannon (JS) distance
 - lacktriangledown the terms $\log(p_{ ext{model}}(\mathbf{x}))$ and $\log(p_{ ext{data}}(\mathbf{x}))$ appear
 - if $p_{
 m data}$ and $p_{
 m model}$ don't completely overlap (a possibility especially early in training)
 - \circ we take logs of 0, which is infinite (negative)
 - No such problem with EMD

- No vanishing gradients with EMD
 - with KL and JS distance the true derivative goes to 0
 - no such problem with EMD
 - The Critic's scores are not bounded, so can't saturate
 - Thus: we can train the Discriminator to convergence immediately
 - No danger of being too good too soon
 - When we see code we will observe
 - The number of steps of Discriminator update is a multiple of the number of steps of Generator update
- No mode collapse with EMD
 - with a fixed Discriminator (classifier), the Generator in a plain GAN will seek out examples with highest probability of being mis-classified as Real

Code