

- 1. Generalized Measurements and POD modes
- 2. Space-Time POD
- 3. Space-Time-Parameter POD
- 4. Conclusion

The Model Problem

We consider a parameter μ -dependent PDE

$$\dot{v}(t,x) = \mathcal{F}(v(t,x); \mu), \quad \text{on } (0,T) \times \Omega, \quad v(0,\cdot) = v_0 \in \mathcal{Y},$$

and a finite element discretization with the FEM space

$$Y = \mathsf{span}\{\nu_1, \dots, \nu_q\}$$

given as

$$M_Y \dot{y}(t) = f(y(t); \mu)$$
 on $(0, T)$, $y(0) = y_0 \in \mathbb{R}^q$,

where M_Y is the mass matrix of Y.

- Fix a $\mu = \mu_0$.
- Let $S = \operatorname{span}\{\psi_1, \dots, \psi_s\} \subset L^2(0, T)$ and
- consider the generalized measurement matrix:

$$X_{\text{gmPOD}} := \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix},$$

cf.
$$X_{POD} := \begin{bmatrix} y_1(t_1) & \dots & y_1(t_s) \\ \vdots & \ddots & \vdots \\ y_q(t_1) & \dots & y_q(t_s) \end{bmatrix}$$

- the snapshot matrix known from POD.

Some observations

$$X_{\text{gmPOD}} := \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}$$

Observation 1

The L^2 -projection y_S of the solution trajectory $y \in L^2(0, T) \cdot Y$ onto the space of measurements $S \cdot Y$ is given as

$$y_S = X_{\text{gmPOD}} M_S^{-1} \begin{bmatrix} \psi_1 \\ \vdots \\ \psi_s \end{bmatrix},$$

where M_S is the mass matrix in S.

$$X_{\text{gmPOD}} := \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}$$

Observation 2

The projector $P_{\hat{k}}$ that minimizes

$$\int_0^T \|y_S(t) - P_{\hat{k}} y_S(t)\|_Y^2 \, \mathrm{d}s$$

over all rank- \hat{k} projectors is given as $P_{\hat{k}}=V_{\hat{k}}V_{\hat{k}}^\mathsf{T}$, where $V_{\hat{k}}\in\mathbb{R}^{q,\hat{k}}$ is the matrix of the \hat{k} leading left singular vectors of

$$M_Y^{\frac{1}{2}} X_{gmPOD} M_S^{-\frac{1}{2}}.$$

$$X_{\text{gmPOD}} := \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}$$

Observation 3

The generalized orthogonal POD basis $\{\hat{\nu}_1, \dots, \hat{\nu}_{\hat{k}}\} \subset Y$ for the spatial discretization is obtained as

$$\begin{bmatrix} \hat{\nu}_1 \\ \vdots \\ \hat{\nu}_{\hat{k}} \end{bmatrix} = V_{\hat{k}}^\mathsf{T} M_Y^{-\frac{1}{2}} \begin{bmatrix} \nu_1 \\ \vdots \\ \nu_q \end{bmatrix}.$$

Numerical Example

This works reasonably well - for the test examples a spatial discretization of the nonlinear Burgers' equation,

$$\partial_t z(t,x) + \partial_x (\frac{1}{2}z(t,x)^2 - \mu \partial_x z(t,x)) = 0,$$

with the spatial coordinate $x \in (0,1)$, the time variable $t \in (0,1]$, the viscosity parameter $\mu = 0.01$ completed by zero Dirichlet boundary conditions and a step function as initial condition.

POD vs gmPOD

Also, we observe that

POD is literally...

... use measurements/snapshots over time to compress the spatial component of the evolution.

This can be turned around into ...

... use measurements in the space to compress the temporal component of the evolution.

Space-Time POD

$$S = \mathsf{span}\{\psi_1, \dots, \psi_s\} \subset L^2(0, T), \quad X_{\mathsf{gmPOD}} = \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}$$

Lemma ([Baumann et al. 2015])

An POD optimal reduced basis $\{\hat{\psi}_1, \cdots, \hat{\psi}_{\hat{s}}\} \subset S$ for the time discretization can be obtained via an SVD of

$$M_S^{-\frac{1}{2}} X_{\mathsf{gmPOD}}^{\mathsf{T}} M_Y^{\frac{1}{2}}$$

and setting

$$\begin{bmatrix} \hat{\psi}_1 \\ \vdots \\ \hat{\psi}_{\hat{\mathbf{s}}} \end{bmatrix} = U_{\hat{\mathbf{s}}}^\mathsf{T} M_S^{-\frac{1}{2}} \begin{bmatrix} \psi_1 \\ \vdots \\ \psi_s \end{bmatrix},$$

where $U_{\hat{s}}$ is the matrix of the \hat{s} leading left singular vectors.

For parametrized problems or problems with an input. . .

... use measurements over time and over a parameter domain to compress the spatial component of the evolution

A discretization of the parameter domain with p degrees of freedom adds another dimension to the generalized measurement matrix turning it into a tensor $\mathbf{X} \in \mathbb{R}^{q \times s \times p}$.

$$\begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \ddots & \vdots \\ \langle y_n, \psi_1 \rangle_{\mathcal{S}} & \vdots & \dots & \langle y_n, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_0}$$

$$\begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_n, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_1}$$

$$\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle y_n, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_n, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_2}$$

Truncated Higher Order SVD [DE LATHAUWER ET AL. 2000]

There is a HOSVD:

$$\mathbf{X} = \mathbf{C} \times_1 U^{(\psi)} \times_2 U^{(\nu)} \times_3 U^{(\mu)},$$

- with the core tensor $\mathbf{C} \in \mathbb{R}^{q \times s \times p}$.
- with unitary matrices $U^{(\psi)} \in \mathbb{R}^{s \times s}$, $U^{(\nu)} \in \mathbb{R}^{q \times q}$, and $U^{(\mu)} \in \mathbb{R}^{p \times p}$.
- \blacksquare and with \times_1 , \times_2 , and \times_3 denoting tensor-matrix multiplications.
- To compute the HOSVD:
 - define a matrix unfolding $\tilde{\mathbf{X}}^{(\psi)} \in \mathbb{R}^{s \times qp}$ of the tensor $\tilde{\mathbf{X}}$ via putting all elements belonging to $\psi_1, \psi_2 \dots \psi_s$ into one respective row.
 - Similarly, define the unfoldings $\mathbf{Y}^{(\nu)} \in \mathbb{R}^{q \times ps}$ and $\mathbf{Y}^{(\mu)} \in \mathbb{R}^{p \times sq}$.

Truncated Higher Order SVD [DE LATHAUWER ET AL. 2000]

- From the unfoldings, compute $U^{(\psi)}$, $U^{(\nu)}$ and $U^{(\mu)}$
 - by means of three SVDs like $\mathbf{Y}^{(\psi)} = U^{(\psi)} \Sigma^{(\psi)} (W^{(\psi)})^{\mathsf{T}}$
 - with $\Sigma^{(\psi)}$ diagonal with entries $\sigma_1^{(\psi)} > \sigma_2^{(\psi)} > \dots = \sigma_s^{(\psi)} > 0$
- From these SVDs, derive an approximation $\hat{\mathbf{X}} \in \mathbb{R}^{q \times s \times p}$ of **X** by discarding the smallest *n*-mode singular values.

Then, it holds that

$$\|\mathbf{X} - \hat{\mathbf{X}}\|_F^2 \leq \sum_{i=\hat{\mathbf{s}}+1}^s \sigma_i^{(\psi)} + \sum_{k=\hat{\mathbf{q}}+1}^q \sigma_k^{(\nu)} + \sum_{l=\hat{\mathbf{p}}+1}^p \sigma_l^{(\mu)}.$$

Thus, optimal bases are obtained via a *higher-order SVD*, i.e. via SVDs of tensor unfoldings with respect to the space dimension

$$\boldsymbol{\mathsf{X}}^{\left(\nu\right)} := \begin{bmatrix} \left[\begin{smallmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix} \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix} \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix} \end{bmatrix},$$

and with respect to the time dimension

$$\mathbf{X}^{(\psi)} := \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \cdots & \langle y_q, \psi_1 \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_1, \psi_s \rangle_{\mathcal{S}} & \cdots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix} \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \cdot & \langle y_q, \psi_1 \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_1, \psi_s \rangle_{\mathcal{S}} & \cdot & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix} \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \cdot & \langle y_q, \psi_1 \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_1, \psi_s \rangle_{\mathcal{S}} & \cdot & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix} \end{bmatrix},$$

which, as above, lead to optimized bases $\{\hat{\nu}_1,\ldots,\hat{\nu}_{\hat{k}}\}\subset Y$ and $\{\hat{\psi}_1,\cdots,\hat{\psi}_{\hat{s}}\}\subset S$ in space and time and which are also optimal for the considered parameter samplings [De Lathauwer et al. 2000].

Numerical Example

Consider again

$$\partial_t z(t,x) + \partial_x (\frac{1}{2}z(t,x)^2 - \mu \partial_x z(t,x)) = 0,$$

- spatial coordinate $x \in (0,1)$, time variable $t \in (0,1]$,
- completed by zero Dirichlet boundary conditions, a step function as initial condition,
- choose the discrete spaces S and Y,
- simulate and compute **X** for training parameters

$$\mu = \{10^{-2}, 3 \cdot 10^{-3}, 10^{-3}\},\$$

 use optimized space and time bases for a space-time Galerkin discretization.

Full order and reduced system

The discrete spaces

- Y piecewise linear finite elements on an equidistant grid of q=130 nodes.
- $S \subset L^2(0,1)$ span of s = 65 equidistantly distributed linear hat functions.

Figure : Burger setup for $\mu=3\cdot 10^{-3}$: The full solution, the reduced solution, and the space-time L^2 approximation error.

Space vs. Time Resolution

- Set the overall number of POD modes to $K := \hat{q} + \hat{s}$ and
- consider varying ratios of space and time resolutions

$$\hat{q} = f \cdot K$$
 and $\hat{s} = (1 - f) \cdot K$, for $f \in [0.2, 0.8]$

lacksquare and the approximation error over varying parameter μ

Figure : (a) the error for various numbers of f. (b): the error in the reduced model over the parameter range for various K.

- POD on the base of generalized measurements
 - more flexibility in the data assimilation
 - outperforms standard POD in some cases
 - ? special measurement functions for special problems
 - ? inherent averaging is beneficial for noisy data
 - ? analytical framework to be exploited for error estimates
- Space-time-parameter Galerkin POD
 - well backed by theory
 - it works reasonably well
 - more tensor directions can be added
 - not competitive in forward problems
 - however...

Application in Optimal Control

Consider a finite time optimal control problem

$$\mathcal{J}(z,u) := \int_0^T \mathcal{K}(z,u) \; \mathrm{d}t o \min_u \quad ext{subject to} \quad \dot{z} = \mathcal{F}(z,u), \quad z(0) = z_0.$$

The first order optimality conditions contain the adjoint equation

$$-\dot{\lambda} = \mathcal{F}_{;z}(z,u)'\lambda - \mathcal{K}_{;z}(z,u), \quad \lambda(T) = 0,$$

so that the optimality system is global in time.

For the solution, space-time-parameter may be a good choice

- sample the input space as tensor direction
- sample both primal and dual variables
- apply space-time Galerkin with the optimized bases

Thank you for your attention!

I am always open for discussion

heiland@mpi-magdeburg.mpg.de www.janheiland.de github.com/highlando

M. Baumann, P. Benner, and J. Heiland.

A generalized POD space-time Galerkin scheme for parameter dependent dynamical systems.

Poster at the MoRePaS III - Workshop on "Model Reduction for Parametrized Systems", published in ScienceOpen Posters, 2015.

M. Baumann, J. Heiland, and M. Schmidt.

Discrete input/output maps and their relation to proper orthogonal decomposition.

In P. Benner, M. Bollhöfer, D. Kressner, C. Mehl, and T. Stykel, editors, *Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory*, pages 585–608. Springer International Publishing, 2015.

csc References II

L. De Lathauwer, B. De Moor, and J. Vandewalle.

A multilinear singular value decomposition.

SIAM J. Matrix Anal. Appl., 21(4):1253-1278, 2000.

J. Heiland.

spacetime-genpod-burgers - Python module for space-time-parameter generalized POD for Burgers equation.

https://gitlab.mpi-magdeburg.mpg.de/heiland/ spacetime-genpod-burgers, 2015.

S. Volkwein and S. Weiland.

An algorithm for Galerkin projections in both time and spatial coordinates.

Proc. 17th MTNS, 2006.