titanic-survival-prediction

December 10, 2023

Titanic Survival Prediction

Objective:

The aim of the project is to build a prediction model that predicts whether a passenger on the Titanic survived or not.

Importing the libraries and dataset

```
[]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv('/content/tested.csv')
df
```

[]:		PassengerId	Survived	Pclass	\
	0	892	0	3	
	1	893	1	3	
	2	894	0	2	
	3	895	0	3	
	4	896	1	3	
		•••	•••		
	413	1305	0	3	
	414	1306	1	1	
	415	1307	0	3	
	416	1308	0	3	
	417	1309	0	3	

	Name	Sex	Age	SibSp	Parch	\
0	Kelly, Mr. James	male	34.5	0	0	
1	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	
2	Myles, Mr. Thomas Francis	male	62.0	0	0	
3	Wirz, Mr. Albert	male	27.0	0	0	
4	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	
			•••	•••		
413	Spector, Mr. Woolf	male	NaN	0	0	
414	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	
415	Saether, Mr. Simon Sivertsen	male	38.5	0	0	

```
416
                                       Ware, Mr. Frederick
                                                                male
                                                                        {\tt NaN}
                                                                                  0
                                                                                          0
     417
                                 Peter, Master. Michael J
                                                                        {\tt NaN}
                                                                                   1
                                                                                          1
                                                                male
                        Ticket
                                     Fare Cabin Embarked
     0
                        330911
                                   7.8292
                                             NaN
                                                          Q
     1
                        363272
                                   7.0000
                                             {\tt NaN}
                                                          S
     2
                                   9.6875
                        240276
                                             NaN
                                                          Q
     3
                        315154
                                   8.6625
                                                          S
                                             {\tt NaN}
                                                          S
     4
                       3101298
                                  12.2875
                                             {\tt NaN}
                                    ... ...
                     A.5. 3236
                                                          S
     413
                                   8.0500
                                             {\tt NaN}
     414
                      PC 17758
                                 108.9000
                                            C105
                                                          C
     415 SOTON/O.Q. 3101262
                                   7.2500
                                             NaN
                                                          S
     416
                        359309
                                   8.0500
                                                          S
                                              NaN
     417
                          2668
                                  22.3583
                                              NaN
                                                          С
     [418 rows x 12 columns]
    Datapreprocessing
[]: df.head()
        PassengerId Survived Pclass \
[]:
     0
                 892
                               0
                                        3
```

•	,	JJ 2	U	O						
1	8	393	1	3						
2	8	394	0	2						
3	8	395	0	3						
4	8	396	1	3						
					Name	Sex	Age	SibSp	Parch	\
0				Kelly	, Mr. James	${\tt male}$	34.5	0	0	
1		Wilk	es, Mrs.	James (E	Cllen Needs)	female	47.0	1	0	
2			Myles	, Mr. Tho	mas Francis	male	62.0	0	0	
3				Wirz,	Mr. Albert	male	27.0	0	0	
4	Hirvonen	, Mrs. A	lexander	(Helga E	E Lindqvist)	female	22.0	1	1	
	Ticket	Fare	Cabin E	mbarked						
0	330911	7.8292	NaN	Q						
1	363272	7.0000	NaN	S						
2	240276	9.6875	NaN	Q						
3	315154	8.6625	NaN	S						
4	3101298	12.2875	NaN	S						

[]: df.tail()

[]: PassengerId Survived Pclass Name Sex \ 413 1305 0 3 Spector, Mr. Woolf male

414		1306		1	1	Oliva y	Ocana, Dor	na. Fei	rmina female
415		1307		0	3	Saether,	Mr. Simor	ı Siveı	rtsen male
416		1308		0	3		Ware, Mr	Frede	erick male
417		1309		0	3	Pete	r, Master	. Micha	ael J male
	Age	SibSp	Parch			Ticket	Fare	${\tt Cabin}$	Embarked
413	${\tt NaN}$	0	0		Α	.5. 3236	8.0500	NaN	S
414	39.0	0	0			PC 17758	108.9000	C105	C
415	38.5	0	0	SOTON/O	.Q.	3101262	7.2500	NaN	S
416	${\tt NaN}$	0	0			359309	8.0500	NaN	S
417	NaN	1	1			2668	22.3583	NaN	C

[]: df.dtypes

[]: PassengerId int64 Survived int64 Pclass int64 Name object Sex object Age float64 SibSp int64 Parch int64 Ticket object Fare float64 Cabin object object Embarked

dtype: object

[]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Survived	418 non-null	int64
2	Pclass	418 non-null	int64
3	Name	418 non-null	object
4	Sex	418 non-null	object
5	Age	332 non-null	float64
6	SibSp	418 non-null	int64
7	Parch	418 non-null	int64
8	Ticket	418 non-null	object
9	Fare	417 non-null	float64
10	Cabin	91 non-null	object
11	Embarked	418 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 39.3+ KB

```
[]: df.columns
```

[]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype='object')

[]: df.describe()

[]:		PassengerId	Survived	Pclass	Age	SibSp	١
	count	418.000000	418.000000	418.000000	332.000000	418.000000	
	mean	1100.500000	0.363636	2.265550	30.272590	0.447368	
	std	120.810458	0.481622	0.841838	14.181209	0.896760	
	min	892.000000	0.000000	1.000000	0.170000	0.000000	
	25%	996.250000	0.000000	1.000000	21.000000	0.000000	
	50%	1100.500000	0.000000	3.000000	27.000000	0.000000	
	75%	1204.750000	1.000000	3.000000	39.000000	1.000000	
	max	1309.000000	1.000000	3.000000	76.000000	8.000000	

	Parch	Fare
count	418.000000	417.000000
mean	0.392344	35.627188
std	0.981429	55.907576
min	0.000000	0.000000
25%	0.000000	7.895800
50%	0.000000	14.454200
75%	0.000000	31.500000
max	9.000000	512.329200

Data Cleaning

[]: df.duplicated().sum()

[]: 0

```
[]: df1=df.drop(['PassengerId','Name','Ticket','Cabin'],axis=1)
df1
```

[]:	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	34.5	0	0	7.8292	Q
1	1	3	female	47.0	1	0	7.0000	S
2	0	2	male	62.0	0	0	9.6875	Q
3	0	3	male	27.0	0	0	8.6625	S
4	1	3	female	22.0	1	1	12.2875	S
	•••	•••		•••	•••	•••		
413	0	3	male	NaN	0	0	8.0500	S

414	1	1	female	39.0	0	0	108.9000	C
415	0	3	${\tt male}$	38.5	0	0	7.2500	S
416	0	3	${\tt male}$	NaN	0	0	8.0500	S
417	0	3	${\tt male}$	NaN	1	1	22.3583	С

[418 rows x 8 columns]

```
[]: df1.isna().sum()
```

```
[]: Survived
                   0
     Pclass
                   0
     Sex
                   0
     Age
                  86
     SibSp
                   0
     Parch
                   0
     Fare
                   1
     Embarked
                   0
     dtype: int64
```

```
[]: sns.distplot(df1['Age'],color='slategray')
```

<ipython-input-11-d8f1a3847997>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(df1['Age'],color='slategray')
```

[]: <Axes: xlabel='Age', ylabel='Density'>


```
[]: x=df1['Age'].mean()
print(x)
df1['Age'].fillna(x,inplace=True)
print(df1)
```

30.272590361445783

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	34.50000	0	0	7.8292	Q
1	1	3	female	47.00000	1	0	7.0000	S
2	0	2	male	62.00000	0	0	9.6875	Q
3	0	3	male	27.00000	0	0	8.6625	S
4	1	3	female	22.00000	1	1	12.2875	S
	•••	•••	•••		•••	•••		
413	0	3	male	30.27259	0	0	8.0500	S
414	1	1	female	39.00000	0	0	108.9000	C
415	0	3	male	38.50000	0	0	7.2500	S
416	0	3	male	30.27259	0	0	8.0500	S
417	0	3	male	30.27259	1	1	22.3583	C

[418 rows x 8 columns]

```
[]: sns.distplot(df1['Fare'],color='slategray')
```

<ipython-input-13-3d4b70d6366b>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df1['Fare'],color='slategray')

[]: <Axes: xlabel='Fare', ylabel='Density'>


```
[]: x=df1['Fare'].mean()
print(x)
df1['Fare'].fillna(x,inplace=True)
print(df1)
```

35.627188489208635

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	34.50000	0	0	7.8292	Q
1	1	3	female	47.00000	1	0	7.0000	S
2	0	2	male	62.00000	0	0	9.6875	Q
3	0	3	male	27.00000	0	0	8.6625	S
4	1	3	female	22.00000	1	1	12.2875	S
	•••	•••	•••					
413	0	3	male	30.27259	0	0	8.0500	S
414	1	1	female	39.00000	0	0	108.9000	C
415	0	3	male	38.50000	0	0	7.2500	S
416	0	3	male	30.27259	0	0	8.0500	S
417	0	3	male	30.27259	1	1	22.3583	C

[418 rows x 8 columns]

Data Visualization

```
[]: for column in ['Pclass','Sex','SibSp','Parch','Embarked']:
    plt.figure(figsize=(12,5))
    plt.subplot(1,2,1)
    sns.countplot(data=df1,x=column)

    plt.subplot(1,2,2)
    sns.countplot(data=df1,x=column,hue='Survived')
    plt.show()
```



```
[]: sns.displot(df1['Age'],kde=True,color='Blue')
```

[]: <seaborn.axisgrid.FacetGrid at 0x7e31e9cac340>


```
[]: plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
sns.boxplot(df1['Age'])

plt.subplot(1,2,2)
sns.boxplot(df1['Fare'])
plt.show()
```


[]: sns.scatterplot(data=df1,x='Age',y='Fare',hue='Pclass')

[]: <Axes: xlabel='Age', ylabel='Fare'>


```
[]: sns.heatmap(df.corr(),annot=True)
plt.show()
```

<ipython-input-19-f6412ee67fb3>:1: FutureWarning: The default value of
numeric_only in DataFrame.corr is deprecated. In a future version, it will
default to False. Select only valid columns or specify the value of numeric_only
to silence this warning.

sns.heatmap(df.corr(),annot=True)

Encoding using LabelEncoder

```
[]: from sklearn.preprocessing import LabelEncoder
label=LabelEncoder()
df1['Sex']=label.fit_transform(df1['Sex'])
df1['Embarked']=label.fit_transform(df1['Embarked'])
df1
```

```
[]: Survived Pclass Sex Age SibSp Parch Fare Embarked 0 0 3 1 34.50000 0 0 7.8292 1
```

```
1
                       3
                                 47.00000
                                                                7.0000
                                                                                  2
              1
                                                  1
2
              0
                       2
                                 62.00000
                                                  0
                                                          0
                                                                9.6875
                                                                                  1
3
              0
                       3
                                 27.00000
                                                  0
                                                                8.6625
                                                                                  2
                       3
                                                                                  2
4
              1
                                 22.00000
                                                  1
                                                          1
                                                               12.2875
                                                                                  2
413
              0
                       3
                                 30.27259
                                                  0
                                                          0
                                                                8.0500
                             1
414
                             0
                                 39.00000
                                                              108.9000
                                                                                  0
                       1
                                                  0
                                                          0
              1
                                                                                  2
415
              0
                       3
                             1
                                 38.50000
                                                  0
                                                          0
                                                                7.2500
                                                                                  2
416
              0
                       3
                                                          0
                                 30.27259
                                                  0
                                                                8.0500
              0
                       3
                                 30.27259
                                                          1
417
                                                  1
                                                               22.3583
                                                                                  0
```

[418 rows x 8 columns]

Input and Output Separation

```
[]: x=df1.iloc[:,:-1].values x
```

```
[]: array([[ 0.
                                                                           7.8292],
                           3.
                                      1.
                                                     0.
                                                                0.
                           3.
                                                                0.
                                                                          7.
              [ 1.
                                      0.
                                                     1.
                                                                                  ],
              [ 0.
                                                                0.
                           2.
                                      1.
                                                                           9.6875],
                                              , ...,
              ...,
              [ 0.
                           3.
                                                                0.
                                                                           7.25],
                                      1.
                                                     0.
              [ 0.
                                                                0.
                                                                           8.05],
                           3.
                                      1.
                                                     0.
              [ 0.
                           3.
                                      1.
                                                     1.
                                                                1.
                                                                         22.3583]])
```

```
[]: y=df1.iloc[:,-1].values
y
```

```
2, 2, 2, 2, 2, 1, 2, 2, 0, 2, 2, 0, 2, 0, 2, 0, 0, 2, 0, 2, 2,
            2, 0, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2,
            1, 0, 2, 1, 2, 2, 0, 2, 0, 0, 2, 0, 1, 2, 1, 1, 2, 2, 0, 2, 2, 0])
[]: from sklearn.model_selection import train_test_split
     x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.
      →30,random_state=42)
[]: x_train
[]: array([[ 0.
                                                                   75.2417],
                         1.
                                   1.
                                                0.
                                                          0.
                                                                    7.75],
            0.
                         3.
                                   1.
                                                0.
                                                          0.
                                                                , 221.7792],
            1.
                         1.
                                   0.
                                                          0.
                                                1.
            0.
                         1.
                                   1.
                                                0.
                                                          0.
                                                                   75.2417],
            2.
                                                                   13.5
              0.
                                   1.
                                                0.
                                                          0.
                                                                          ],
                                         . ... ,
                                                                    7.75 ]])
            [ 0.
                         3.
                                   1.
                                                0.
                                                          0.
[]: x_test
[]: array([[0.0000000e+00, 3.00000000e+00, 1.00000000e+00, 2.50000000e+01,
            0.0000000e+00, 0.0000000e+00, 7.22920000e+00],
            [1.00000000e+00, 1.00000000e+00, 0.0000000e+00, 3.90000000e+01,
            0.0000000e+00, 0.00000000e+00, 2.11337500e+02],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.10000000e+01,
            0.00000000e+00, 0.00000000e+00, 7.75000000e+00],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.50000000e+01,
            0.00000000e+00, 0.00000000e+00, 7.89580000e+00],
            [1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 3.60000000e+01,
            0.00000000e+00, 2.00000000e+00, 1.21833000e+01],
            [0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 5.00000000e+01,
            1.00000000e+00, 0.00000000e+00, 2.60000000e+01],
            [1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 2.90000000e+01,
            0.00000000e+00, 0.00000000e+00, 7.92500000e+00].
            [0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 4.90000000e+01,
            0.00000000e+00, 0.00000000e+00, 2.60000000e+01],
            [1.00000000e+00, 2.00000000e+00, 0.00000000e+00, 1.90000000e+01,
            0.00000000e+00, 0.00000000e+00, 1.30000000e+01],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
            0.0000000e+00, 0.0000000e+00, 8.05000000e+00],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.10000000e+01,
            2.00000000e+00, 0.00000000e+00, 2.41500000e+01],
            [1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 5.10000000e+01,
            0.0000000e+00, 1.0000000e+00, 3.9400000e+01],
            [1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 1.60000000e+01,
             1.00000000e+00, 1.00000000e+00, 8.51670000e+00],
```

2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0, 2,

```
[1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 3.90000000e+01,
0.00000000e+00, 0.00000000e+00, 1.08900000e+02],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.00000000e+00, 0.00000000e+00, 8.05000000e+00],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.00000000e+00, 0.00000000e+00, 5.64958000e+01],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 2.80000000e+01,
0.00000000e+00, 0.00000000e+00, 7.77500000e+00],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 5.50000000e+01,
0.00000000e+00, 0.00000000e+00, 5.00000000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 1.00000000e+01,
4.00000000e+00, 1.00000000e+00, 2.91250000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.30000000e+01,
1.00000000e+00, 0.00000000e+00, 1.05000000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 5.70000000e+01,
0.0000000e+00, 0.00000000e+00, 1.3000000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 4.10000000e+01,
1.00000000e+00, 0.00000000e+00, 5.18625000e+01],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 3.00000000e+00,
1.00000000e+00, 1.00000000e+00, 1.37750000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 3.00000000e+01,
0.0000000e+00, 0.00000000e+00, 1.30000000e+01],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 3.02725904e+01,
0.00000000e+00, 2.00000000e+00, 1.52458000e+01],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 1.85000000e+01,
0.00000000e+00. 0.00000000e+00. 7.28330000e+00].
[1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 2.50000000e+01,
1.00000000e+00, 0.00000000e+00, 5.54417000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.00000000e+00, 0.00000000e+00, 2.65500000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.90000000e+01,
0.00000000e+00, 2.00000000e+00, 7.22920000e+00],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 3.00000000e+01,
0.00000000e+00, 0.00000000e+00, 1.30000000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.20000000e+01,
0.00000000e+00, 0.00000000e+00, 2.25250000e+01],
[1.00000000e+00, 3.00000000e+00, 0.0000000e+00, 2.20000000e+01,
0.00000000e+00, 0.00000000e+00, 3.96875000e+01],
[1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 3.30000000e+01,
0.00000000e+00, 0.00000000e+00, 1.51550000e+02],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.00000000e+00, 0.00000000e+00, 8.05000000e+00],
[1.00000000e+00, 2.00000000e+00, 0.0000000e+00, 2.20000000e+01,
0.00000000e+00, 0.00000000e+00, 1.05000000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.50000000e+01,
0.00000000e+00, 0.00000000e+00, 1.05000000e+01],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 2.40000000e+01,
```

```
0.0000000e+00, 0.0000000e+00, 7.75000000e+00],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.00000000e+00, 0.00000000e+00, 1.50458000e+01],
[1.00000000e+00, 2.00000000e+00, 0.00000000e+00, 2.90000000e+01,
1.00000000e+00, 0.00000000e+00, 2.60000000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 3.25000000e+01,
0.0000000e+00, 0.00000000e+00, 2.11500000e+02],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 2.40000000e+01,
0.00000000e+00, 0.00000000e+00, 7.75000000e+00],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 3.02725904e+01,
1.00000000e+00, 2.00000000e+00, 2.34500000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 4.10000000e+01,
0.00000000e+00, 0.00000000e+00, 1.50458000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.0000000e+00, 0.00000000e+00, 3.96000000e+01],
[0.0000000e+00, 1.0000000e+00, 1.0000000e+00, 2.8500000e+01,
0.00000000e+00, 0.00000000e+00, 2.77208000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.10000000e+01,
0.00000000e+00, 0.00000000e+00, 7.85420000e+00],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 3.02725904e+01,
1.00000000e+00, 9.00000000e+00, 6.95500000e+01],
[1.00000000e+00, 2.00000000e+00, 0.0000000e+00, 2.40000000e+01,
1.00000000e+00, 0.00000000e+00, 2.77208000e+01],
[1.00000000e+00, 1.00000000e+00, 0.0000000e+00, 5.50000000e+01,
2.00000000e+00, 0.00000000e+00, 2.57000000e+01],
[0.00000000e+00.3.0000000e+00.1.0000000e+00.3.6000000e+01.
0.0000000e+00, 0.0000000e+00, 7.25000000e+00],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.45000000e+01,
0.0000000e+00, 0.0000000e+00, 7.82920000e+00],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 4.50000000e+01,
0.00000000e+00, 0.00000000e+00, 7.22500000e+00],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 3.02725904e+01,
0.00000000e+00, 0.00000000e+00, 8.05000000e+00],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 4.70000000e+01,
0.00000000e+00, 0.00000000e+00, 1.05000000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.90000000e+01,
0.00000000e+00, 0.00000000e+00, 1.38583000e+01],
[1.00000000e+00, 2.00000000e+00, 0.00000000e+00, 2.00000000e+01,
1.00000000e+00, 0.00000000e+00, 2.60000000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.0000000e+00, 0.00000000e+00, 8.05000000e+00],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.60000000e+01,
0.0000000e+00, 0.00000000e+00, 1.30000000e+01],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 1.70000000e-01,
1.00000000e+00, 2.00000000e+00, 2.05750000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.40000000e+01,
0.00000000e+00, 0.00000000e+00, 7.25000000e+00],
```

```
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 5.00000000e+01,
1.00000000e+00, 0.00000000e+00, 1.45000000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.10000000e+01,
0.00000000e+00, 0.00000000e+00, 1.15000000e+01],
[1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 3.02725904e+01,
0.00000000e+00, 0.00000000e+00, 2.77208000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 4.00000000e+01,
1.00000000e+00, 0.00000000e+00, 2.60000000e+01],
[1.00000000e+00, 2.00000000e+00, 0.00000000e+00, 1.50000000e+01,
0.00000000e+00, 2.00000000e+00, 3.90000000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.50000000e+01,
0.00000000e+00, 0.00000000e+00, 1.05000000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 4.10000000e+01,
0.0000000e+00, 0.0000000e+00, 7.85000000e+00],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.40000000e+01,
0.00000000e+00, 0.00000000e+00, 7.55000000e+00],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 3.90000000e+01,
0.0000000e+00, 0.00000000e+00, 2.97000000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 4.30000000e+01,
1.00000000e+00, 0.00000000e+00, 2.77208000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 5.70000000e+01,
1.00000000e+00, 0.00000000e+00, 1.46520800e+02],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 3.00000000e+01,
1.00000000e+00, 0.00000000e+00, 2.10000000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.20000000e+01,
0.00000000e+00. 0.00000000e+00. 7.57920000e+00].
[1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 3.02725904e+01,
0.0000000e+00, 0.00000000e+00, 3.16833000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 4.50000000e+01,
0.0000000e+00, 0.00000000e+00, 2.97000000e+01],
[1.00000000e+00, 3.0000000e+00, 0.0000000e+00, 2.20000000e+01,
2.00000000e+00, 0.00000000e+00, 8.66250000e+00],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 3.00000000e+01,
0.00000000e+00, 0.00000000e+00, 2.60000000e+01],
[1.00000000e+00, 3.0000000e+00, 0.0000000e+00, 2.20000000e+01,
1.00000000e+00, 0.00000000e+00, 1.39000000e+01],
[1.00000000e+00, 3.00000000e+00, 0.0000000e+00, 2.60000000e+01,
1.00000000e+00, 1.00000000e+00, 2.20250000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.50000000e+01,
0.00000000e+00, 0.00000000e+00, 7.65000000e+00],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.20000000e+01,
0.00000000e+00, 0.00000000e+00, 7.79580000e+00],
[1.00000000e+00, 1.00000000e+00, 0.0000000e+00, 4.80000000e+01,
1.00000000e+00, 3.00000000e+00, 2.62375000e+02],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.10000000e+01,
0.00000000e+00, 0.00000000e+00, 7.22500000e+00],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 1.80000000e+01,
```

```
0.0000000e+00, 0.0000000e+00, 7.87920000e+00],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 3.20000000e+01,
0.00000000e+00, 0.00000000e+00, 1.30000000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.40000000e+01,
2.00000000e+00, 0.00000000e+00, 3.15000000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.0000000e+00, 0.00000000e+00, 1.07083000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 2.40000000e+01,
1.00000000e+00, 0.00000000e+00, 8.22667000e+01],
[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 1.90000000e+01,
0.0000000e+00, 0.0000000e+00, 1.05000000e+01].
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.0000000e+00, 0.00000000e+00, 7.05000000e+00],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 2.50000000e+01,
0.0000000e+00, 0.00000000e+00, 2.60000000e+01],
[0.0000000e+00, 3.0000000e+00, 1.0000000e+00, 6.0000000e+00,
3.00000000e+00, 1.00000000e+00, 2.10750000e+01],
[0.00000000e+00, 1.00000000e+00, 1.0000000e+00, 4.60000000e+01,
0.00000000e+00, 0.00000000e+00, 7.92000000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 1.40000000e+01,
0.0000000e+00, 0.00000000e+00, 9.22500000e+00],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.50000000e+01,
0.00000000e+00, 0.00000000e+00, 7.92500000e+00],
[1.00000000e+00, 3.00000000e+00, 0.0000000e+00, 1.00000000e+01,
5.00000000e+00, 2.00000000e+00, 4.69000000e+01],
[0.00000000e+00.3.0000000e+00.1.0000000e+00.3.10000000e+01.
3.00000000e+00, 0.00000000e+00, 1.80000000e+01],
[0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.70000000e+01,
0.0000000e+00, 0.0000000e+00, 4.71000000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.0000000e+00, 0.0000000e+00, 7.75000000e+00],
[0.0000000e+00, 2.0000000e+00, 1.0000000e+00, 3.50000000e+01,
0.00000000e+00, 0.00000000e+00, 1.23500000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.40000000e+01,
0.00000000e+00, 0.00000000e+00, 7.77500000e+00],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
0.00000000e+00, 0.00000000e+00, 7.75000000e+00],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.30000000e+01,
0.00000000e+00, 0.00000000e+00, 7.05000000e+00],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 2.70000000e+01,
0.0000000e+00, 0.00000000e+00, 8.66250000e+00],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 2.70000000e+01,
1.00000000e+00, 0.00000000e+00, 7.92500000e+00],
[1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 3.02725904e+01,
0.00000000e+00, 4.00000000e+00, 2.54667000e+01],
[0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 1.70000000e+01,
0.00000000e+00, 0.00000000e+00, 7.89580000e+00],
```

```
0.00000000e+00, 0.00000000e+00, 1.05000000e+01],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
            0.00000000e+00, 0.00000000e+00, 7.22500000e+00],
            [1.00000000e+00, 3.00000000e+00, 0.00000000e+00, 2.20000000e+01,
            0.00000000e+00, 0.00000000e+00, 7.72500000e+00],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
            0.00000000e+00, 0.00000000e+00, 7.89580000e+00],
            [0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 6.10000000e+01,
            0.00000000e+00, 0.00000000e+00, 1.23500000e+01],
            [0.0000000e+00, 3.0000000e+00, 1.0000000e+00, 1.15000000e+01,
            1.00000000e+00, 1.00000000e+00, 1.45000000e+01],
            [0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 3.02725904e+01,
            0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
            [0.0000000e+00, 1.0000000e+00, 1.0000000e+00, 6.0000000e+00,
            0.00000000e+00, 2.00000000e+00, 1.34500000e+02],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
            0.0000000e+00, 0.00000000e+00, 6.43750000e+00],
            [1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 2.20000000e+01,
            0.0000000e+00, 1.00000000e+00, 6.19792000e+01],
            [0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.60000000e+01,
            1.00000000e+00, 1.00000000e+00, 2.90000000e+01],
            [1.00000000e+00, 2.00000000e+00, 0.00000000e+00, 9.20000000e-01,
            1.00000000e+00, 2.00000000e+00, 2.77500000e+01],
            [1.00000000e+00, 2.00000000e+00, 0.0000000e+00, 2.20000000e+01,
            0.00000000e+00. 0.00000000e+00. 2.10000000e+01].
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
            0.0000000e+00, 0.00000000e+00, 8.71250000e+00],
            [0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.70000000e+01,
            1.00000000e+00, 0.00000000e+00, 2.60000000e+01],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 1.80000000e+01,
            0.00000000e+00, 0.00000000e+00, 8.66250000e+00],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.02725904e+01,
            2.00000000e+00, 0.00000000e+00, 2.16792000e+01],
            [0.00000000e+00, 3.00000000e+00, 1.00000000e+00, 3.30000000e+01,
            0.00000000e+00, 0.00000000e+00, 7.85420000e+00],
            [0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 2.30000000e+01,
            0.0000000e+00, 0.0000000e+00, 9.35000000e+01]])
[]: y_train
[]: array([0, 1, 2, 0, 0, 2, 2, 0, 1, 0, 2, 1, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0,
            2, 2, 0, 1, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 1, 2, 2, 1, 2, 2, 2,
            0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1,
            2, 2, 2, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 2, 2, 2, 2, 2, 0, 2, 0, 0, 2,
            2, 2, 1, 2, 2, 2, 2, 0, 2, 1, 2, 2, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0,
            0, 2, 0, 0, 2, 2, 1, 0, 2, 1, 2, 0, 2, 2, 0, 2, 2, 2, 1, 1, 2, 0,
```

[0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 2.30000000e+01,

```
2, 0, 2, 2, 1, 2, 1, 2, 0, 2, 2, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 0,
           2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 1, 1, 2, 0, 2, 1, 2, 0, 2, 2, 2,
           0, 2, 0, 2, 2, 1, 2, 2, 1, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 0,
           0, 2, 2, 2, 0, 2, 2, 1, 2, 0, 0, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 0,
           2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 1, 1,
           1, 0, 2, 1, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 0,
           2, 1, 1, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 1, 0, 0,
           2, 2, 1, 0, 2, 1])
[]: y_test
[]: array([0, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 1, 2, 2, 2,
           2, 2, 0, 1, 0, 2, 0, 2, 2, 2, 2, 2, 2, 1, 0, 2, 0, 1, 2, 0, 2,
           0, 2, 2, 0, 2, 2, 1, 0, 2, 2, 0, 2, 2, 2, 2, 1, 2, 2, 0, 2, 2, 2,
           2, 2, 0, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, 0, 1, 2, 2, 1, 2,
           2, 2, 0, 2, 0, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 0, 1,
           2, 1, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 2, 2])
    Scaling/Normalization
[]: from sklearn.preprocessing import StandardScaler
    scaler=StandardScaler()
    scaler.fit(x_train)
    x train=scaler.transform(x_train)
    x_test=scaler.transform(x_test)
[]: x_train
[]: array([[-0.78310898, -1.47596812, 0.78310898, ..., -0.50269793,
            -0.43509701, 0.60029624],
            [-0.78310898, 0.8727114, 0.78310898, ..., -0.50269793,
            -0.43509701, -0.51006323],
            [1.27696148, -1.47596812, -1.27696148, ..., 0.5766241,
            -0.43509701, 3.01110083],
            [-0.78310898, -1.47596812, 0.78310898, ..., -0.50269793,
            -0.43509701, 0.60029624],
            [-0.78310898, -0.30162836, 0.78310898, ..., -0.50269793,
            -0.43509701, -0.41546542],
            [-0.78310898, 0.8727114, 0.78310898, ..., -0.50269793,
            -0.43509701, -0.51006323]])
[]: x_test
[]: array([[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
            -4.46969232e-01, -5.02697935e-01, -4.35097005e-01,
            -5.18631327e-01],
```

```
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
 6.18125338e-01, -5.02697935e-01, -4.35097005e-01,
 2.83931615e+00],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-7.51281967e-01, -5.02697935e-01, -4.35097005e-01,
-5.10063233e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 3.13812604e-01, -5.02697935e-01, -4.35097005e-01,
-5.07664561e-01].
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
 3.89890787e-01, -5.02697935e-01, 1.66487532e+00,
-4.37127500e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
 1.45498536e+00, 5.76624102e-01, -4.35097005e-01,
-2.09818013e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-1.42656498e-01, -5.02697935e-01, -4.35097005e-01,
-5.07184169e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 1.37890717e+00, -5.02697935e-01, -4.35097005e-01,
-2.09818013e-01],
[1.27696148e+00, -3.01628363e-01, -1.27696148e+00,
-9.03438334e-01, -5.02697935e-01, -4.35097005e-01,
-4.23691320e-01].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.05127695e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-7.51281967e-01, 1.65594614e+00, -4.35097005e-01,
-2.40253830e-01],
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
 1.53106354e+00, -5.02697935e-01, 6.14889156e-01,
 1.06360115e-02],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-1.13167288e+00, 5.76624102e-01, 6.14889156e-01,
-4.97449643e-01],
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
 6.18125338e-01, -5.02697935e-01, -4.35097005e-01,
 1.15403562e+00].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.05127695e-01].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
 2.91892572e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-2.18734682e-01, -5.02697935e-01, -4.35097005e-01,
```

```
-5.09651938e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 1.83537628e+00, -5.02697935e-01, -4.35097005e-01,
 1.85025016e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-1.58814199e+00, 3.81459021e+00, 6.14889156e-01,
-1.58406160e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-5.99125599e-01, 5.76624102e-01, -4.35097005e-01,
-4.64820802e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
 1.98753264e+00, -5.02697935e-01, -4.35097005e-01,
-4.23691320e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 7.70281705e-01, 5.76624102e-01, -4.35097005e-01,
 2.15666480e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-2.12068927e+00, 5.76624102e-01, 6.14889156e-01,
-4.10941181e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-6.65783144e-02, -5.02697935e-01, -4.35097005e-01,
-4.23691320e-01].
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-4.58401348e-02, -5.02697935e-01, 1.66487532e+00,
-3.86743884e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-9.41477425e-01, -5.02697935e-01, -4.35097005e-01,
-5.17741285e-01],
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
-4.46969232e-01, 5.76624102e-01, -4.35097005e-01,
 2.74550737e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-2.00769527e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 6.18125338e-01, -5.02697935e-01, 1.66487532e+00,
-5.18631327e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-6.65783144e-02, -5.02697935e-01, -4.35097005e-01,
-4.23691320e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 8.55780528e-02, -5.02697935e-01, -4.35097005e-01,
-2.66987993e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-6.75203783e-01, -5.02697935e-01, -4.35097005e-01,
 1.53659019e-02],
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
```

```
1.61656236e-01, -5.02697935e-01, -4.35097005e-01,
 1.85570458e+00],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.05127695e-01],
[ 1.27696148e+00, -3.01628363e-01, -1.27696148e+00,
-6.75203783e-01, -5.02697935e-01, -4.35097005e-01,
-4.64820802e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-4.46969232e-01, -5.02697935e-01, -4.35097005e-01,
-4.64820802e-011.
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-5.23047416e-01, -5.02697935e-01, -4.35097005e-01,
-5.10063233e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-3.90034242e-01,
[ 1.27696148e+00, -3.01628363e-01, -1.27696148e+00,
-1.42656498e-01, 5.76624102e-01, -4.35097005e-01,
-2.09818013e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 1.23617145e-01, -5.02697935e-01, -4.35097005e-01,
 2.84198956e+00],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-5.23047416e-01, -5.02697935e-01, -4.35097005e-01,
-5.10063233e-01].
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-4.58401348e-02, 5.76624102e-01, 1.66487532e+00,
-2.51770085e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
 7.70281705e-01, -5.02697935e-01, -4.35097005e-01,
-3.90034242e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
 1.39263701e-02],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-1.80695590e-01, -5.02697935e-01, -4.35097005e-01,
-1.81507768e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-7.51281967e-01, -5.02697935e-01, -4.35097005e-01,
-5.08348956e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-4.58401348e-02, 5.76624102e-01, 9.01477845e+00,
 5.06657567e-01],
[ 1.27696148e+00, -3.01628363e-01, -1.27696148e+00,
-5.23047416e-01, 5.76624102e-01, -4.35097005e-01,
-1.81507768e-01],
```

```
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
 1.83537628e+00, 1.65594614e+00, -4.35097005e-01,
-2.14753551e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 3.89890787e-01, -5.02697935e-01, -4.35097005e-01,
-5.18289129e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 2.75773512e-01, -5.02697935e-01, -4.35097005e-01,
-5.08760251e-01].
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
 1.07459444e+00, -5.02697935e-01, -4.35097005e-01,
-5.18700424e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.05127695e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
 1.22675081e+00, -5.02697935e-01, -4.35097005e-01,
-4.64820802e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-1.42656498e-01, -5.02697935e-01, -4.35097005e-01,
-4.09570746e-01],
[1.27696148e+00, -3.01628363e-01, -1.27696148e+00,
-8.27360150e-01, 5.76624102e-01, -4.35097005e-01,
-2.09818013e-01].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.05127695e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-3.70891049e-01, -5.02697935e-01, -4.35097005e-01,
-4.23691320e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-2.33599053e+00, 5.76624102e-01, 1.66487532e+00,
-2.99068989e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-5.23047416e-01, -5.02697935e-01, -4.35097005e-01,
-5.18289129e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 1.45498536e+00, 5.76624102e-01, -4.35097005e-01,
-3.99013631e-01].
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-7.51281967e-01, -5.02697935e-01, -4.35097005e-01,
-4.48369010e-01].
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-1.81507768e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
 6.94203521e-01, 5.76624102e-01, -4.35097005e-01,
```

```
-2.09818013e-01],
[ 1.27696148e+00, -3.01628363e-01, -1.27696148e+00,
-1.20775107e+00, -5.02697935e-01, 1.66487532e+00,
 4.05529435e-03],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-4.46969232e-01, -5.02697935e-01, -4.35097005e-01,
-4.64820802e-01].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 7.70281705e-01, -5.02697935e-01, -4.35097005e-01,
-5.08418054e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-5.23047416e-01, -5.02697935e-01, -4.35097005e-01,
-5.13353591e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 6.18125338e-01, -5.02697935e-01, -4.35097005e-01,
-1.48946379e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 9.22438072e-01, 5.76624102e-01, -4.35097005e-01,
-1.81507768e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 1.98753264e+00, 5.76624102e-01, -4.35097005e-01,
 1.77296523e+001.
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-6.65783144e-02, 5.76624102e-01, -4.35097005e-01,
-2.92076977e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 8.55780528e-02, -5.02697935e-01, -4.35097005e-01,
-5.12873199e-01],
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-1.16317539e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 1.07459444e+00, -5.02697935e-01, -4.35097005e-01,
-1.48946379e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-6.75203783e-01, 1.65594614e+00, -4.35097005e-01,
-4.95050972e-01].
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-6.65783144e-02, -5.02697935e-01, -4.35097005e-01,
-2.09818013e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-6.75203783e-01, 5.76624102e-01, -4.35097005e-01,
-4.08884707e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-3.70891049e-01, 5.76624102e-01, 6.14889156e-01,
-2.75213890e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
```

```
-4.46969232e-01, -5.02697935e-01, -4.35097005e-01,
-5.11708412e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-6.75203783e-01, -5.02697935e-01, -4.35097005e-01,
-5.09309741e-01],
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
 1.30282899e+00, 5.76624102e-01, 2.71486148e+00,
 3.67897453e+00],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-7.51281967e-01, -5.02697935e-01, -4.35097005e-01,
-5.18700424e-01].
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-9.79516517e-01, -5.02697935e-01, -4.35097005e-01,
-5.07937661e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
 8.55780528e-02, -5.02697935e-01, -4.35097005e-01,
-4.23691320e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-5.23047416e-01, 1.65594614e+00, -4.35097005e-01,
-1.19333152e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-4.61393894e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-5.23047416e-01, 5.76624102e-01, -4.35097005e-01,
 7.15870081e-01].
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-9.03438334e-01, -5.02697935e-01, -4.35097005e-01,
-4.64820802e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.21579488e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-4.46969232e-01, -5.02697935e-01, -4.35097005e-01,
-2.09818013e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-1.89245472e+00, 2.73526817e+00, 6.14889156e-01,
-2.90843093e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
 1.15067262e+00, -5.02697935e-01, -4.35097005e-01,
 6.65417368e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-1.28382925e+00, -5.02697935e-01, -4.35097005e-01,
-4.85796838e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.46969232e-01, -5.02697935e-01, -4.35097005e-01,
-5.07184169e-01],
```

```
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-1.58814199e+00, 4.89391225e+00, 1.66487532e+00,
 1.34024458e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 9.49986922e-03, 2.73526817e+00, -4.35097005e-01,
-3.41432356e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-1.05559470e+00, -5.02697935e-01, -4.35097005e-01,
 1.37314817e-01].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.10063233e-01].
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
 3.13812604e-01, -5.02697935e-01, -4.35097005e-01,
-4.34384986e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-5.23047416e-01, -5.02697935e-01, -4.35097005e-01,
-5.09651938e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.10063233e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-5.99125599e-01, -5.02697935e-01, -4.35097005e-01,
-5.21579488e-01].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-2.94812865e-01, -5.02697935e-01, -4.35097005e-01,
-4.95050972e-01].
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-2.94812865e-01, 5.76624102e-01, -4.35097005e-01,
-5.07184169e-01],
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-4.58401348e-02, -5.02697935e-01, 3.76484764e+00,
-2.18591754e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-1.05559470e+00, -5.02697935e-01, -4.35097005e-01,
-5.07664561e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-5.99125599e-01, -5.02697935e-01, -4.35097005e-01,
-4.64820802e-01].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.18700424e-01].
[ 1.27696148e+00, 8.72711396e-01, -1.27696148e+00,
-6.75203783e-01, -5.02697935e-01, -4.35097005e-01,
-5.10474528e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
```

```
-5.07664561e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
 2.29184538e+00, -5.02697935e-01, -4.35097005e-01,
-4.34384986e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-1.47402471e+00, 5.76624102e-01, 6.14889156e-01,
-3.99013631e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-6.37564628e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-1.89245472e+00, -5.02697935e-01, 1.66487532e+00,
 1.57520151e+00].
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-5.31656211e-01],
[ 1.27696148e+00, -1.47596812e+00, -1.27696148e+00,
-6.75203783e-01, -5.02697935e-01, 6.14889156e-01,
 3.82104333e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-3.70891049e-01, 5.76624102e-01, 6.14889156e-01,
-1.60462634e-01].
[ 1.27696148e+00, -3.01628363e-01, -1.27696148e+00,
-2.27893189e+00, 5.76624102e-01, 1.66487532e+00,
-1.81027375e-01],
[ 1.27696148e+00, -3.01628363e-01, -1.27696148e+00,
-6.75203783e-01, -5.02697935e-01, -4.35097005e-01,
-2.92076977e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, -5.02697935e-01, -4.35097005e-01,
-4.94228382e-01],
[-7.83108976e-01, -3.01628363e-01, 7.83108976e-01,
-2.94812865e-01, 5.76624102e-01, -4.35097005e-01,
-2.09818013e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-9.79516517e-01, -5.02697935e-01, -4.35097005e-01,
-4.95050972e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
-4.58401348e-02, 1.65594614e+00, -4.35097005e-01,
-2.80902920e-01],
[-7.83108976e-01, 8.72711396e-01, 7.83108976e-01,
 1.61656236e-01, -5.02697935e-01, -4.35097005e-01,
-5.08348956e-01],
[-7.83108976e-01, -1.47596812e+00, 7.83108976e-01,
-5.99125599e-01, -5.02697935e-01, -4.35097005e-01,
 9.00678006e-01]])
```

Model Creation

1.Logistic Regression

```
[]: from sklearn.linear_model import LogisticRegression
   lr=LogisticRegression()
   lr.fit(x_train,y_train)
   lr_pred = lr.predict(x_test)
   lr_pred
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2,
        2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2,
        []: from sklearn.metrics import
    →confusion_matrix,accuracy_score,classification_report,ConfusionMatrixDisplay
   result=confusion_matrix(y_test,lr_pred)
   print(result)
   print(accuracy_score(y_test,lr_pred))
   print(classification_report(y_test,lr_pred))
   labels=[0,1,2]
   cmd=ConfusionMatrixDisplay(result,display_labels=labels)
   cmd.plot()
   [[ 4 1 22]
   [ 0 0 14]
   [ 3 3 79]]
   0.6587301587301587
```

	precision	recall	f1-score	support
0	0.57	0.15	0.24	27
1				14
_	0.00	0.00	0.00	
2	0.69	0.93	0.79	85
accuracy			0.66	126
macro avg	0.42	0.36	0.34	126
weighted avg	0.59	0.66	0.58	126

[]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7e31e53949a0>

2.Decision Tree Classifier

3.Random Forest Classifier

```
[]: from sklearn.tree import DecisionTreeClassifier
  from sklearn.ensemble import RandomForestClassifier
  dec=DecisionTreeClassifier(criterion='entropy')
  rf=RandomForestClassifier(n_estimators=10,criterion='entropy')
  lst_model=[dec,rf]
```

```
print("*************")
result=confusion_matrix(y_test,y_pred)
labels=[0,1,2]
cmd=ConfusionMatrixDisplay(result,display_labels=labels)
cmd.plot()
```

DecisionTreeClassifier(criterion='entropy')
0.7619047619047619

	precision	recall	f1-score	support
0	0.67	0.67	0.67	27
1	0.56	0.36	0.43	14
2	0.81	0.86	0.83	85
accuracy			0.76	126
macro avg	0.68	0.63	0.65	126
weighted avg	0.75	0.76	0.75	126

[[18 1 8]

[059]

[9 3 73]]

 $\label{lem:normalization} RandomForestClassifier(criterion='entropy', n_estimators=10) \\ 0.7142857142857143$

	precision	recall	f1-score	support
0	0.51	0.67	0.58	27
1	0.62	0.36	0.45	14
2	0.81	0.79	0.80	85
accuracy			0.71	126
macro avg	0.65	0.60	0.61	126
weighted avg	0.72	0.71	0.71	126

[[18 0 9]

[2 5 7]

[15 3 67]]

Model Prediction

```
[]: pclass Sex Age SibSp Parch Fare Embarked 0 1 1 31.0 2 1 8.2051 0
```

```
[]: predi=dec.predict(new_df2)
   if predi==1:
      print("This Person is Survived")
   else:
      print("This Person is not Survived")
```

This Person is not Survived

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:432: UserWarning: X has feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(