Logic, Computability and Incompleteness

Completeness, Compactness and Löwenheim-Skolem

Soundness and Completeness

Soundness and Completeness are two basic metalogical properties of logical systems, intimately relating the semantical notion of validity and the syntactical notion of provability.

Validity: $\Phi_1, ..., \Phi_n \models \Psi$ iff for all interpretations \mathcal{I} , if \mathcal{I} satisfies each of $\Phi_1, ..., \Phi_n$ then \mathcal{I} satisfies Ψ , iff $\models ((\Phi_1 \land ... \land \Phi_n) \rightarrow \Psi)$

Provability: $\Phi_1, ..., \Phi_n \vdash \Psi$ iff there is a proof or formal, rule governed derivation of Ψ from sentences $\Phi_1, ..., \Phi_n$ iff $\vdash ((\Phi_1 \land ... \land \Phi_n) \rightarrow \Psi)$

Soundness and Completeness

- **Soundness** is a <u>correctness</u> property of formal proof systems and establishes that **only** valid arguments (or sentences) are provable: if $\Phi_1, \ldots, \Phi_n \vdash \Psi$ then $\Phi_1, \ldots, \Phi_n \models \Psi$
- **Completeness** is an <u>adequacy</u> property of formal proof systems and establishes that <u>all</u> valid arguments (or sentences) are provable: if $\Phi_1, ..., \Phi_n \models \Psi$ then $\Phi_1, ..., \Phi_n \models \Psi$

If a system of Logic is both <u>sound</u> and <u>complete</u>, then the semantical and proof-theoretic concepts coincide exactly and

$$\Phi_1, \dots, \Phi_n \vdash \Psi \text{ if and only if } \Phi_1, \dots, \Phi_n \models \Psi$$

In which case we can treat them as more or less interchangeable.

- We will now examine a method of <u>formal proof</u> which will constitute a <u>mechanical positive</u> test for FOL validity, where this method is provably both sound and complete.
- The mechanical test for validity is designed as a positive test for unsatisfiability of sets of sentences Δ .
- The test will take the form of a systematic search for a refutation of Δ , such that if there is a refutation of Δ , then Δ is unstatisfiable.
 - This will correspond to the **soundness** of the method.
- Conversely, if Δ is unstatisfiable then there is a refutation of Δ . This will correspond to the <u>completeness</u> of the method.

- Let Δ be a set of sentences in prenex normal form, from which all vacuous quantifiers have been removed.
- A **refutation** of Δ is a <u>derivation</u> \mathcal{D} from Δ in which some **finite set** of **quantifier-free sentences** in the derivation is **unsatisfiable**.
- In turn, a <u>derivation</u> \mathfrak{D} from Δ is a list of sentences (finite or denumerable), in which every entry is either a <u>member</u> of Δ or is obtainable from a previous entry in the list by one of the following two <u>inference rules</u>:

```
(m) \forall \mathbf{v}\Phi
                 (n) \Phi \mathbf{v}/t (m) annotation
                                 where t may be any (closed) term
EI
                (m) \exists \mathbf{v} \Phi
                 (n) \Phi \mathbf{v}/\mathbf{t} (m) annotation
                                 where t is a <u>name</u> which doesn't occur in \Delta
                                 or in any other line earlier than n.
```

The basic idea is that if \mathcal{D} is a derivation from Δ in which a finite set of quantifier-free sentences in \mathcal{D} has no model (i.e. Δ is a refutation), then Δ has no model.

In other words...

Soundness

- Soundness Theorem: if there is a refutation of Δ , then Δ is unsatisfiable (where Δ is a set of sentences in prenex normal form, from which all vacuous quantifiers have been removed).
- Strong Soundness Theorem: if \mathcal{J} is a model of Δ and \mathcal{D} is a derivation from Δ , then the set of all sentences in \mathcal{D} has a model \mathcal{L} , in which \mathcal{L} differs from \mathcal{J} (at most) in what it assigns to names and function symbols which occur in sentences of \mathcal{D} but not in Δ .
- Strong Soundness Theorem implies the (normal) Soundness Theorem, since if Δ were satisfiable it would have a model \mathcal{I} , and therefore so would all sentences in \mathcal{D} , in which case there could be no refutation.

Proof of Strong Soundness Theorem

• Proof of Strong Soundness Theorem: by recursive construction of a model \mathcal{L} of \mathcal{D} on the basis of \mathcal{J} .

Let
$$\Delta_0 = \Delta$$
 $\mathcal{J}_0 = \mathcal{J}$ $\Delta_n = \Delta \cup \{S_1, ..., S_n\}$, where $S_1, ..., S_n$ are the first n sentences in $\mathbf{\mathcal{D}}$.

Define a model \mathcal{J}_{n+1} of Δ_{n+1} , where induction step is based on the annotation A_{n+1} used in the derivation to get S_{n+1} .

Four cases:

- i) A_{n+1} is ' Δ ', in which case $\mathcal{J}_{n+1} = \mathcal{J}_n$.
- ii) A_{n+1} is 'UI' and the instantial term t_{n+1} contains only names and function terms already occurring in Δ_n . Then $\mathcal{J}_{n+1} = \mathcal{J}_n$.

Proof of Strong Soundness Theorem

iii) A_{n+1} is 'UI' and the instantial term t_{n+1} contains names or function terms *not* occurring in Δ_n . Take some $d \in D$ of \mathcal{J} , and in every case let \mathcal{J}_{n+1} assign d as the denotation of new names, and all new functions are constant functions with d as value. \mathcal{J}_{n+1} is a model of Δ_n by continuity, and a model of Δ_{n+1} since UI is truth preserving.

iv) A_{n+1} is 'EI', in which case the instantial term t_{n+1} is new. Since the premise of this rule is in Δ_n , the premise must be true in \mathcal{J}_n . So there must be at least one element $e \in D$ such that \mathcal{J}_e^{tn+1} is a model of S_{n+1} and also of Δ_n . So let $\mathcal{J}_{n+1} = \mathcal{J}_e^{tn+1}$ for some such e.

Proof of Strong Soundness Theorem

- Now define the model \mathcal{L} to be just like \mathcal{J} , except that for each function symbol or name appearing in \mathcal{D} but not in Δ , \mathcal{L} assigns whatever \mathcal{J}_n assigns it, where S_n is the first entry in \mathcal{D} in which the new term occurs.
- Hence if Δ had a model \mathcal{I} , then all the sentences in \mathcal{D} would have a model \mathcal{L} , in which case \mathcal{D} could not contain a refutation (Strong Soundness Theorem) \square
- Therefore if some derivation \mathcal{D} from Δ is a refutation, then Δ has no model \mathcal{I} and is unsatisfiable (Soundness Theorem) \square

Completeness Theorem

- Completeness of FOL will be the culmination of our positive metatheoretical results. First proved by Kurt Gödel in 1930.
- Completeness Theorem: if a set of sentences Δ is unsatisfiable, then it has a refutation.

Completeness Proof: Canonical Derivation

- Proof: first need to define a <u>canonical</u> <u>derivation</u> from Δ , such that, if Δ is <u>unsatisfiable</u>, then any <u>canonical</u> <u>derivation</u> from Δ will be a refutation.
- <u>Definition</u>: \mathcal{D} is a <u>canonical</u> <u>derivation</u> from Δ iff it satisfies the following 5 conditions:
 - i) every sentence $\Phi \in \Delta$ occurs in $\boldsymbol{\mathcal{D}}$.
 - ii) if $\exists \mathbf{v} \Phi \in \mathcal{D}$, then for some term t, $\Phi \mathbf{v}/t \in \mathcal{D}$.
 - iii) if $\forall \mathbf{v} \Phi \in \mathcal{D}$, then for some term t, $\Phi \mathbf{v}/t \in \mathcal{D}$.
 - iv) if $\forall \mathbf{v} \Phi \in \mathcal{D}$, then for every term t that can be constructed from names and function symbols occurring in \mathcal{D} , $\Phi \mathbf{v}/t \in \mathcal{D}$.
 - v) all function symbols occurring in \mathcal{D} appear in Δ .

Completeness Proof: Canonical Derivation

Program for constructing a canonical derivation from Δ :

Let S_1 , S_2 , S_3 , ... be an enumeration of the sentences in Δ .

Stage 1(a): enter S_1 as the first line in \mathcal{D} .

1(b): add as many entries to \mathcal{D} as possible using EI with restrictions (to be stated momentarily)

- 1(c): add as many entries to **2** as possible using UI
- restrictions: no sentence is the premise of more than one application of EI, no sentence occurs twice, and each instantial term has fewer than N (= current stage number) occurrences of function symbols, and is formed from names and function symbols already in **2**.

Stage 2(a): enter S_2 as the n^{th} line in \mathcal{D} and repeat...

Completeness Proof: Lemma II and Matching

- <u>Definition</u> of <u>Matching</u>: suppose Γ is a set of quantifier-free sentences.
 - An interpretation \mathcal{J} matches Γ iff $\mathcal{J} \models \Gamma$ and there are no elements in the domain of \mathcal{J} not named by terms in Γ .
- Lemma II. Suppose \mathcal{D} is a canonical derivation from Δ , Γ is the set of all quantifier-free sentences in \mathcal{D} , and \mathcal{J} matches Γ . Then \mathcal{J} is a model of \mathcal{D} and hence of Δ .
- **Proof** by reductio (see B&J p. 134-5)

Completeness Proof: an OK set of sentences

Now all that remains to be proved is that if every finite subset of Γ is satisfiable, then some interpretation \mathcal{I} matches Γ .

- This will show that if Δ is unsatisfiable, then a canonical derivation \mathcal{D} is a refutation, since it must possess a finite subset of quantifier-free sentences which is unsatisfiable.
- So this is really the <u>contraposition</u> of <u>completeness</u> if \mathcal{D} is <u>not</u> a refutation then Δ <u>is</u> satisfiable.
- Will prove this by constructing an \mathcal{I} which must be a model of Δ if every finite subset of Γ is satisfiable.
- To do this, first need to introduce the concept of an OK set of sentences: a set of sentences Σ is OK iff

every finite subset of Σ is satisfiable.

Completeness Proof: Lemma III

- So to prove completeness, only need to prove
- Lemma III: if Γ is an enumerable, OK set of quantifier-free sentences, then there is an \mathcal{I} which matches Γ .
- **Proof**: must define such an \mathcal{I} using the given information: General procedure:
 - First enumerate all <u>atomic</u> <u>sentences</u> A_1 , A_2 ,... which are either
 - (i) sentence letters (propositional) occurring in Γ , or
 - (ii) first-order sentences formed by filling in the argument places of the '=' sign, and predicate letters occurring in Γ , using terms appearing in Γ .

Completeness Proof: Construct an \mathcal{J} which matches Γ

Now define the sequence Γ_1 , Γ_2 , ... and verify that all members in the sequence are OK:

Let $\Gamma_1 = \Gamma$ OK by hypothesis.

Now suppose Γ_n has been defined and is OK.

Then at least one of the sets $\Gamma_n \cup \{A_n\}$ or $\Gamma_n \cup \{\neg A_n\}$ is OK.

Define Γ_{n+1} as the OK one if just one is,

and $\Gamma_n \cup \{A_n\}$ if both are OK.

Let \mathbf{B}_i be whichever of \mathbf{A}_i , $\neg \mathbf{A}_i$ is in the expansion $\mathbf{\Gamma}_{i+1}$.

Completeness Proof: Construct an $\mathcal I$ which matches Γ

Now, if \mathbf{r} , \mathbf{s} are terms in Γ , exactly one of $\mathbf{r} = \mathbf{s}$, $\neg(\mathbf{r} = \mathbf{s})$ is in the sequence of \mathbf{B} 's.

Definition: $\mathbf{r} \sim \mathbf{s}$ iff $\mathbf{r} = \mathbf{s}$ is one of the **B**'s.

~ is an equivalence relation on the set of terms in Γ .

Now to define \mathcal{I} which matches Γ : want \mathcal{I} to assign each term t its own equivalence class [t] as denotation (!)

and want $\mathcal{J}(\mathbf{B}_i) = 1$ for each i. So...

- A) let the domain D of \mathcal{I} be the set of all equivalence classes of terms in Γ .
- B) let $\mathcal{J}(t) = [t]$ for each individual constant t.

Completeness Proof: Construct an \mathcal{J} which matches Γ

- C) for each *n*-place function symbol fⁿ, let J(fⁿ) be the function gⁿ such that for all [t₁], ..., [t_n], in D, gⁿ([t₁], ..., [t_n]) = [fⁿ(s₁,...,s_n)] if there are terms s₁,...,s_n in [t₁], ..., [t_n] such that fⁿ(s₁,...,s_n) is a term appearing in Γ. Otherwise gⁿ([t₁], ..., [t_n]) = [t], for any term t in Γ.
 D) a sentence letter is true in J iff it is one of the B's.
 E) for each n-place predicate letter Pⁿ occurring in Γ
 < [t₁], ..., [t_n] > ∈ J(Pⁿ) iff Pⁿ(t₁,...,t_n) is one of the B's.
- It follows by induction (using B, C) that each complex term t occurring in Γ denotes its own equivalence class [t].

Completeness Proof: Construct an $\mathcal J$ which matches Γ

Also, it follows that each of the **B**'s is true in \mathcal{J} , since by cases (three), \mathbf{A}_i is true in \mathcal{J} iff $\mathbf{A}_i = \mathbf{B}_i$.

To see that \mathcal{I} matches Γ , first, it's clear that every object in D is named by a term of Γ .

So just need to show that \mathcal{J} is a model of Γ :

Suppose sentence $S \in \Gamma$.

S is a truth-functional combination of some finite set $\{A_1, ..., A_k\}$ of the A's.

In any interpretation \mathcal{J} in which all of $\mathbf{B}_1, \ldots, \mathbf{B}_k$ are true, each $\mathbf{A}_1, \ldots, \mathbf{A}_k$ has the same truth value as in \mathcal{J} , and hence \mathbf{S} has the same value as in \mathcal{J} .

Completeness Proof: Construct an \mathcal{J} which matches Γ

All of $\mathbf{B}_1, \ldots, \mathbf{B}_k$ are in Γ_{k+1} , as is \mathbf{S} , which is in Γ_1 . Thus $\{\mathbf{B}_1, \ldots, \mathbf{B}_k, \mathbf{S}\} \subseteq \Gamma_{k+1}$. Since Γ_{k+1} is OK, this finite subset must be satisfiable, and hence all its members true in some interpretation \mathcal{J} . And since all of $\mathbf{B}_1, \ldots, \mathbf{B}_k$ and \mathbf{S} are true in \mathcal{J} , \mathbf{S} is true in \mathcal{J} .

- So, if Γ is the set of quantifier-free sentences in a canonical derivation \mathcal{D} from Δ , then if \mathcal{D} is not a refutation (i.e. Γ is OK) then \mathcal{J} is a model of Δ (Completeness Theorem)
- Immediate consequences of Soundness and Completeness:

Compactness Theorem

- Compactness Theorem: A set of sentences Σ is unsatisfiable iff some <u>finite</u> subset $\Sigma_0 \subseteq \Sigma$ is unsatisfiable.
- **Proof**: if Σ is unsatisfiable, then by Completeness a canonical derivation \mathcal{D} from Σ is a refutation. Let $\{A_1, \ldots, A_m\}$ be the finite set of quantifier-free sentences in \mathcal{D} that is unsatisfiable. Truncate \mathcal{D} at A_m to obtain \mathcal{D}_0 , which is finite.

Let $\{S_1,...,S_n\}$ be the members of Σ occurring in \mathcal{D}_0 , and let $\Sigma_0 = \{S_1,...,S_n\}$. Σ_0 is unsatisfiable (by Soundness) \square

• Direct result: finite entailment:

if $\Delta \vDash \Psi$, then a finite subset $\Delta_0 \subseteq \Delta$ is such that $\Delta_0 \vDash \Psi$

Löwenheim-Skolem Theorem

- Löwenheim-Skolem Theorem: If a set of sentences Δ has a model, then it has a model with an enumerable domain.
- **Proof**: if Δ is satisfiable, then the canonical derivation \mathcal{D} from Δ is <u>not</u> a refutation (by Soundness). Hence <u>every</u> finite subset of Γ (the set of quantifier-free sentences in \mathcal{D}) is satisfiable (by Compactness). By Lemma III there is a model \mathcal{I} that matches Γ , and by Lemma II \mathcal{I} is a model of Δ .

Since \mathcal{I} matches Γ , every object in the domain of \mathcal{I} is named by some term in Γ . Since Γ is enumerable, there are only enumerably many such terms.

Therefore \mathcal{I} has an enumerable domain \square

Cardinality

- The Löwenheim-Skolem Theorem reveals a fundamental fact about the expressive power of sentences in FOL with respect to the cardinality of their models.
- This version is the 'downward' Löwenheim-Skolem Theorem and shows that you can't force there to be only models with a domain of cardinality greater than \aleph_0 .
- Hence any (consistent) set of sentences (e.g. a formal theory of numbers) will be satisfied by an interpretation with a countable domain.

Cardinality

- We've seen the 'downward' Löwenheim-Skolem Theorem, showing that you can't force there to be only models with a domain of cardinality greater than \aleph_0 .
- There is also an 'upward' version of the theorem: if a set Δ has an infinite model, then it has a model with uncountably many elements.
- This shows we also can't force only less than uncountable models.
- In other words, FOL cannot distinguish between different levels of infinity.

What is First-Order Logic?

- It turns out that compactness plus upward and downward Löwenheim-Skolem (L-S) metalogically capture FOL...
- Lindströms Theorem (1969):

Let \mathcal{L} be any 'extension' of FOL with the two properties:

i) downward L-S

and

ii) either upward L-S or compactness.

Then \mathcal{L} is no 'stronger' than FOL, in the sense that <u>every</u> sentence of \mathcal{L} has exactly the same models as some sentence of FOL.