Machine Learning

Bias-Complexity Trade-off

Fabio Vandin

November 11th, 2022

Our Goal in Learning

Given:

- training set: $S = ((x_1, y_1), \dots, (x_m, y_m))$
- loss function: $\ell(h,(x,y))$

Want: a function \hat{h} such that $L_{\mathcal{D}}(\hat{h})$ is small

We can pick: the learning algorithm A, that given S will produce $\hat{h} = A(S)$

Our Goal in Learning

Given:

- training set: $S = ((x_1, y_1), \dots, (x_m, y_m))$
- loss function: $\ell(h,(x,y))$

Want: a function \hat{h} such that $L_{\mathcal{D}}(\hat{h})$ is small

We can pick: the learning algorithm A, that given S will produce $\hat{h} = A(S)$

Note: A comprises:

- the hypothesis set ${\cal H}$
- the procedure to pick $\hat{h} = A(S)$ from \mathcal{H}

Question: is there a *universal learner*, i.e., an (implementable) algorithm A that predicts the best \hat{h} for any distribution D?

The No Free Lunch Theorem

The following answers the previous question for some specific settings.

Theorem (No-Free Lunch)

Let A be any learning algorithm for the task of binary classification with respect to the 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, representing a training set size. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- there exists a function $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$
- with probability of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq 1/8$.

Note: there are similar results for other learning tasks.

No Free Lunch and Prior Knowledge

Corollary

Let \mathcal{X} be an infinite domain set and let \mathcal{H} be the set of all functions from \mathcal{X} to $\{0,1\}$. Then, \mathcal{H} is not PAC learnable.

What's the implication?

We need to use our prior knowledge about \mathcal{D} to pick a *good* hypothesis set.

How do we choose \mathcal{H} ?

- we would like \mathcal{H} to be *large*, so that it may contain a function h with small $L_{\mathcal{D}}(h)$
- no free lunch ⇒ H cannot be too large!

Error Decomposition

Let hs be an ERMA hypothesis.

Error Decomposition

Let h_S be an ERM_H hypothesis.

Then

$$L_{\mathcal{D}}(h_{\mathcal{S}}) = \epsilon_{\mathsf{app}} + \epsilon_{\mathsf{est}}$$

where

- $\epsilon_{\mathsf{app}} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ (approximation error)
- $\epsilon_{\mathsf{est}} = L_{\mathcal{D}}(h_{\mathsf{S}}) \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ (estimation error)

Approximation error: $\epsilon_{app} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$

- derives from our choice of H
- once we have chosen $\mathcal{H} \Rightarrow \epsilon_{\text{app}}$ is unavoidable!
- to decrease it, chose a "larger" ${\cal H}$

Estimation error. $\epsilon_{\mathsf{est}} = L_{\mathcal{D}}(h_{\mathsf{S}}) - \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$

- derives from our inability to choose (with ERM) the best hypothesis in \mathcal{H}
- could be avoided if had chosen the best hypothesis!
- to decrease, we need a low number of hypotheses in H so that training error is good estimate of generalization error for all of them ⇒ need a "small" H

Complexity of \mathcal{H} and Error Decomposition

Estimating $L_{\mathcal{D}}(h_{\mathcal{S}})$

How can we estimate the generalization error $L_{\mathcal{D}}(h)$ for a function h, for example $h_S \in \mathsf{ERM}_{\mathcal{H}}$?

We can use a **test set**: new set of samples not used for picking h_S (=the training set).

Notes:

- the test must not be looked at until we have picked our final hypothesis!
- in practice: we have 1 set of samples and we split it in *training set* and *test set*.

Bibliography

[UML] Chapter 5