

ARAR

XR829 Datasheet

Single-Chip IEEE 802.11 b/g/n WLAN, Bluetooth 2.1/4.0/4.2

Revision 1.5

Sep 3, 2021

Declaration

THIS DOCUMENTATION IS THE ORIGINAL WORK AND COPYRIGHTED PROPERTY OF XRADIO TECHNOLOGY ("XRADIO"). REPRODUCTION IN WHOLE OR IN PART MUST OBTAIN THE WRITTEN APPROVAL OF XRADIO AND GIVE CLEAR ACKNOWLEDGEMENT TO THE COPYRIGHT OWNER.

THE PURCHASED PRODUCTS, SERVICES AND FEATURES ARE STIPULATED BY THE CONTRACT MADE BETWEEN XRADIO AND THE CUSTOMER. PLEASE READ THE TERMS AND CONDITIONS OF THE CONTRACT AND RELEVANT INSTRUCTIONS CAREFULLY BEFORE USING, AND FOLLOW THE INSTRUCTIONS IN THIS DOCUMENTATION STRICTLY. XRADIO ASSUMES NO RESPONSIBILITY FOR THE CONSEQUENCES OF IMPROPER USE(INCLUDING BUT NOT LIMITED TO OVERVOLTAGE, OVERCLOCK, OR EXCESSIVE TEMPERATURE).

THE INFORMATION FURNISHED BY XRADIO IS PROVIDED JUST AS A REFERENCE OR TYPICAL APPLICATIONS, ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENT DO NOT CONSTITUTE A WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. XRADIO RESERVES THE RIGHT TO MAKE CHANGES IN CIRCUIT DESIGN AND/OR SPECIFICATIONS AT ANY TIME WITHOUT NOTICE.

NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THE THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF XRADIO.THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT. CUSTOMERS SHALL BE SOLELY RESPONSIBLE TO OBTAIN ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES. XRADIO SHALL NOT BE LIABLE FOR ANY LICENCE FEE OR ROYALTY DUE IN RESPECT OF ANY REQUIRED THIRD PARTY LICENCE. XRADIO SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS COVERED UNDER ANY REQUIRED THIRD PARTY LICENCE.

Revision History

Version	Data	Summary of Changes			
1.0	2018-5-5	Initial Version			
1.1	2018-11-30	Add Package Thermal Characteristics			
1.2	2019-7-11	odate silkscreen			
1.3	2019-8-2	Update declaration			
1.4	2020-3-9	Update XR829 marking information			
1.5	2021-9-3	Update VESD Data			

Contents

De	claration		2
Re	vision H	istory	3
Со	ntents		4
Ta	bles		5
Fig	gures		<i>6</i>
1	Systen	n Overview	7
	1.1	General Description	7
	1.2	Features	
	1.3	Applications	8
	1.4	Block Diagram	8
2	Pin De	escription	10
	2.1	Pin Assignment.	10
	2.2	Pin List	10
3	Power	Supply	13
	3.1	Power Up and Power Down	13
	3.2	Analog Power Supply	
	3.3	Digital Power Supply	15
	3.4	Power Consumption	15
4	Clocks		17
	4.1	Reference Clock	17
	4.2	Low Power Clock	19
5	Electri	cal Characteristics	20
	5.1	Absolute Maximum Rating	20
	5.2	Digital IO Pin DC Characteristics	20
6	Transc	eiver/Receiver Performance	22
	6.1	WLAN Performance	22
	6.2	Bluetooth Performance	23
7	Packag	ge Outline & PCB Layout Design	25
8	Packag	ge Thermal Characteristics	28
9	Carrie	Information	29
	9.1	Tray Carrier	29
	9.2	Tape Reel Carrier	32

Tables

Table 2- 1 Pin List	11
Table 3-1 Analog Power Supply	14
Table 3-2 Digital Power Supply	15
Table 3-3 Power Consumption	15
Table 4-1 External Reference Clock Specifications	17
Table 4-2 External Clock Requirements	18
Table 4-3 External Crystal Characteristics Requirements	18
Table 4-4 Low Power Clock Specifications	19
Table 5-1 Absolute Maximum Rating	20
Table 5-2 IO DC Characteristics (VDD_IO=3.3V)	20
Table 5-3 IO DC Characteristics (VDD_IO=1.8V)	20
Table 6-1 WLAN Transceiver/Receiver Performance	22
Table 6-2 Bluetooth Transceiver/Receiver Performance	23
Table 7-1 Package Dimensions	25
Table 7-2. XR829 Marking Definitions	27
Table 8-1 Thermal Resistance Characteristics	28

Figures

Figure 1-1 XR829 Block Diagram.	8
Figure 2-1 Pin Assignment.	10
Figure 3-1 WLAN Subsystem Power Up and Power Down	13
Figure 3-2 Bluetooth Subsystem Power Up and Power Down	14
Figure 7-1 Package Dimensions	25
Figure 7-2 Example for PCB Layout Design	26
Figure 7-3 XR829 Marking (Top View)	27

1 System Overview

1.1General Description

This scope of document is to provide a specification of XR829 Wireless LAN SoC, it will be used by the system/design/development teams to detail the design requirements.

XR829 is a fully integrated SoC to support 2.4G WLAN 802.11 b/g/n and Bluetooth 2.1+EDR/4.2. It is optimized for mobile applications such as PDAs and portable media players. High sensitivity and transmitting power ensure long distance and robust connection. Highest level of integration allows very compact and cost effective reference designs delivering fast time-to-market for new WLAN and Bluetooth enabled products. And small 5mmx5mm QFN package is RECH suitable for very compact design.

1.2Features

WLAN Features

- Compatible with IEEE 802.11 b/g/n standard
- 802.11n supports for 20/40MHz bandwidth
- Supports for Short Guard Interval
- Supports for 802.11n MCS0~MCS7
- 6M~54M data rate for 802.11g
- DSSS, CCK modulation with long and short preamble
- Supports frame aggregation using A-MSDU, A-MPDU
- Supports MAC enhancements including
 - 802.11d Regulatory domain operation
 - 802.11e QoS including WMM
 - 802.11h Transmit power control dynamic and frequency selection
 - 802.11i Security including WPA2 and WAPI compliance
 - -802.11r Roaming
 - 802.11w Management frame protection
- Supports for Station, SoftAP and P2P mode
- Supports for Wi-Fi Direct

Bluetooth Features

- Bluetooth Dual Mode support with 2.1/4.0/4.2
- Class 1, Class 2 and Class 3 transmitter operation
- Host Controller Interface using a high-speed UART, maximum baud rate of 4 Mbps

RECH

- Adaptive Frequency Hopping
- SCO and eSCO support
- 1, 3 and 5 slots all packet types support
- Audio interfaces: PCM, I2S
- Transcoders for A-law, µ-law and CVSD voice over air
- Piconet and scatternet support
- Secure simple pairing
- Sniff/Sniff Subrating low power mode support

1.3Applications

Tablet PC

Smart internet TV box

Portable media player (PMP)

Portable gaming device (PGD)

Internet of Thing (IOT)

1.4Block Diagram

Top level block diagram of XR829 is shown in Figure 1-1.

Figure 1-1 XR829 Block Diagram

The XR829 includes a single-band 2.4G RF transceiver (integration with PA, LNA and TR switch), PMU, WLAN modem, WLAN MAC, Bluetooth modem and Bluetooth protocol stack. The WLAN subsystem keeps data communications with the host using SDIO 2.0, while the Bluetooth subsystem uses HCI UART and PCM for audio data. The XR829 core provides an industry leading price competitive solution with a high level of system integration. In turn

this reduces the overall BOM cost while also shortening the mass production cycle.

2 Pin Description

2.1Pin Assignment

Figure 2-1 Pin Assignment

2.2Pin List

The following signal type codes are used in the table:

- I: Input
- O: Output
- I/O: Input/Output
- P: Power pin

Table 2-1 Pin List

Name	Pin	Type	Description
Analog	1	I	
XTAL1	4	I	Reference clock input or XTAL inputs
XTAL2	3	I	
ANT	40	I/O	2.4 GHz RF input/output
Power		1	
VDD14_TX	36	P	Supply for RF TX
VDD14_RX	1	P	Supply for RF RX
VDD14_DIG	22	P	Supply for digital LDO
VDD12_CLK	2	P	Supply for Clock
VDD12_DIG	21	P	Supply for digital LDO
VDD_IO	11	P	Supply for IO
VDD_SENSE	28	P	DCDC feedback
VDD_VLX	29	P	DCDC output
VDD_RTC	26	P	Supply for RTC
VDD25_EF	27	P	Supply for EFUSE
VDD33_PA	38	P	Supply for PA
VBAT	30,37	P	Supply for on-chip-PMU
Digital			
LDO_SEL	25	I	DCDC/LDO select
			0: Internal switching regulator select
			1: Internal LDO select
LPCLK	20	I	Low power clock input, 32kHz or 32.768 kHz
BT_WKUP_HOST	6	О	Bluetooth subsystem wakes up host
BT_HOST_WKUP	5	I	Host wakes up Bluetooth subsystem
PCM_CLK	31	I/O	Bluetooth PCM clock
PCM_IN	33	I	Bluetooth PCM data input
PCM_OUT	32	О	Bluetooth PCM data output
PCM_SYNC	34	I/O	Bluetooth PCM synchronization control
UART_TX	10	О	Bluetooth UART transmit
UART_RX	9	I	Bluetooth UART receive
UART_CTS	8	Ι	Bluetooth UART CTS
UART_RTS	7	О	Bluetooth UART RTS
BT_RSTN	23	I	Bluetooth reset, active low
WL_RSTN	24	I	WLAN reset, active low

CLKREQO	18	0	Clock request
WIRQ	35	О	WLAN interrupt request
SDIO_CMD	12	I/O	SDIO command
SDIO_D0	13	I/O	SDIO data
SDIO_D1	14	I/O	SDIO data
SDIO_D2	17	I/O	SDIO data
SDIO_D3	15	I/O	SDIO data
SDIO_CLK	16	I	SDIO clock
TEN	19	I	Test enable select, active high

3 Power Supply

3.1 Power Up and Power Down

Figure 3-1 WLAN Subsystem Power Up and Power Down

There is no constraint on the WLAN subsystem power supplies (VBAT and VDD_IO) activation sequence. The WLAN subsystem can start up without the reference clock being present. The platform is then expected to provide a stable clock within T_{stable}ms (see reference value in chapter 4) unless the built-in XTAL oscillator is used. A typical startup for the WLAN subsystem is as follows:

- (1) VBAT, VDD IO is applied.
- (2) Release WL RSTN pin from low to high.
- (3) The host should wait 30ms after the WL_RSTN release for the on-chip PMU to stabilize.
- (4)WLAN subsystem is now in the Sleep state.
- (5) The host wake up the WLAN subsystem by writing WUP bit through the SDIO interface.
- (6) Within T_{stable}ms, the reference clock should be stable and the system can start using it.
- (7) The host can download the firmware and release the CPU reset by further SDIO write.
- (8) WLAN subsystem will begin to initialize.
- (9)Once initialized, which includes a series of messages passing between the host and the WLAN subsystem, the WLAN subsystem may not have anything further to do and will enter the sleep state if Host set WLAN RDY to 0.

To power down the WLAN subsystem, WL_RSTN has to be set to 0. There are no constraints on other input pins. VDD_IO is allowed to go down 20ms after all input signals have been set to 0 (avoid the influent current).

Figure 3-2 Bluetooth Subsystem Power Up and Power Down

The Bluetooth subsystem power up and power down is similar to the WLAN subsystem. A typical startup for the Bluetooth subsystem is as follows:

- (1)VBAT, VDD_IO is applied.
- (2)Release BT_RSTN pin from low to high.
- (3) The host should wait 30ms after the BT_RSTN release for the on-chip PMU to stabilize.
- (4)Bluetooth subsystem is now in the Sleep state.
- (5) The host should now wake the Bluetooth subsystem by pull up BT_HOST_WKUP pin.
- (6) Within T_{stable}ms, the reference clock should be stable and the system can start using it.
- (7) The host and Bluetooth subsystem will synchronous baud rate through the UART interface.
- (8)The host can download firmware by further UART write.
- (9)Bluetooth subsystem will begin to initialize.
- (10)Once initialized, which includes a series of messages passing between the host and the Bluetooth subsystem, the Bluetooth subsystem may not have anything further to do and will enter the sleep state if Host pull down BT HOST WKUP pin.

To power down the Bluetooth subsystem, BT_RSTN has to be set to 0. There are no constraints on other input pins. VDD_IO is allowed to go down 20ms after all input signals have been set to 0 (avoid the influent current).

3.2Analog Power Supply

Table 3-1 Analog Power Supply

Symbol	Parameter	Min	Тур	Max	Unit
VBAT	Power supply	3.0	3.6	5.5	V

VDD33_PA	TX PA 3.3V power supply	3.0	3.3	3.6	V
VDD14_RX	RX LDO power supply	1.4	1.5	2	V
VDD14_TX	TX LDO power supply	1.4	1.5	2	V
VDD_SENSE	DCDC feedback	1.4	1.5	2	V
VDD12_CLK	Clock LDO power supply	1.14	1.2	1.26	V

3.3Digital Power Supply

Table 3-2 Digital Power Supply

Symbol	Parameter	Min	Тур	Max	Unit
VDD_IO	IO power supply	1.62	3.3	3.6	V
VDD25_EF	EFUSE power supply	2.3	2.5	2.7	V
VDD14_DIG	Digital LDO power supply	1.4	1.5	2	V
VDD12_DIG	Digital power supply	1	1.1	1.2	V
VDD_RTC	RTC power supply	1	1.1	1.2	V

3.4Power Consumption

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25°C

Table 3-3 Power Consumption

WLAN State	Bluetooth State	DCDC Mode (mA)	LDO Mode (mA)
Standby	Standby	0.00078	0.00078
Sleep	Sleep	0.12	0.21
20M Mode RX DSSS/CCK 1M	Standby	29	62
20M Mode RX OFDM MCS7	Standby	35	75
40M Mode RX OFDM MCS7	Standby	41	88
20M Mode TX @16dBm,	Standby	145	192
DSSS/CCK 11M			
20M Mode TX @14dBm,	Standby	128	179
OFDM MCS7			
40M Mode TX @15dBm,	Standby	137	190
OFDM MCS0			
40M Mode TX @14dBm,	Standby	126	180
OFDM MCS7			
Standby	RX active DH1/2DH3/3DH5	19	41
Standby	TX active @5dbm	42	90

DH1/2DH3/3DH5	

4 Clocks

XR829 uses a reference clock and a low power clock.

For the reference clock, XR829 can either use an external reference clock source or generate its own reference using a XTAL and a built-in oscillator.

For the low power clock, XR829 can use an external 32KHz or 32.768 KHz clock. The low power clock is used during power save modes and used only for power controller module.

4.1Reference Clock

Table 4-1 External Reference Clock Specifications

Symbol	Parameter	Min	Тур	Max	Unit
	Clock input frequency list using an external clock source	13	24	52	MHz
F _{IN}	Clock input frequency list using a XTAL and the built-in oscillator	19.2	24	52	MHz
F _{INTOL}	Tolerance on input frequency without trimming	-20	-	+20	ppm
T _{stable}	Clock stabilization time	-	-	10	ms
I _{LEAK}	Input leakage current, both for analog and digital	-	-	1	uA

Clock frequency detection

An integrated automatic detection algorithm detects the reference clock frequency using the low power clock after a hardware reset.

Clock source detection

An integrated automatic detection mechanism detects the clock source from the connections of the XTAL1 and XTAL2 pins:

- When an external reference clock source is used, the clock input pin is XTAL2. The XR829 supports both an analog and digital source. An analog source shall be AC coupled to XTAL2 while a digital source shall be DC coupled to XTAL2. In both cases, XTAL1 shall be DC grounded.
- When a XTAL and the built-in oscillator are used, the XTAL shall be DC coupled to XTAL1 and XTAL2.

External Clock Source

• Requirements

Table 4-2 External Clock Requirements

Symbol	Parameter	Min	Тур	Max	Unit
AC coupled	l signal				
F _{IN}	Frequency	13	24	52	MHz
$ m V_{APP}$	Peak-to-peak voltage range of the AC coupled analog input	0.4	0.5	1.2	Vpp
N _H	Total harmonic content of the input signal	-	-	-25	dBc
DC coupled	l signal				
$V_{\rm IL}$	input low voltage on XTAL2	0	-	0.3*V18	V
V_{IH}	input high voltage on XTAL2	0.7*V18	-	V18	V
T _r /T _f	10%-90% rise and fall time	-	-	5	ns
Duty cycle	Cycle-to-cycle	40	50	60	%
Both analog	g and digital signals				
Z _{INRE}	Real part of parallel AC input impedance at the pin	30		-	kΩ
Z _{INIM}	Imaginary part of parallel AC input impedance at the pin	-	3.5	5	pF
Z_{DC}	DC input impedance	1	-	-	ΜΩ
Phase	Ref clock @ 24 MHz, 2.4 GHz 802.11b/g/n operation				
noise	@1 kHz			-123	
	@10 kHz	-	-	-133	dBc/Hz
	@100 kHz			-138	
	@1 MHz			-138	

External XTAL and Built-in Oscillator

Table 4-3 External Crystal Characteristics Requirements

Parameter	Conditions	Min	Тур	Max	Unit
Frequency range		13	24	52	MHz
ESR		-	-	60	Ω
C _{in_xtal} ⁽¹⁾	Single-ended	0	3	15	pF
C _{shunt} (1)		-	2	-	pF
Load capacitance ⁽¹⁾		0	16	27	pF
Crystal frequency accuracy at nominal temperature	25 °C	-10	-	+10	ppm
Crystal drift due to temperature	-20 °C to +85 °C	-10	-	+10	ppm
Crystal pull ability		10	-	150	ppm/pF

(1) The load capacitance value (C_{load}) and shunt capacitance (C_{shunt}) depends on XTAL model, XTAL1 and XTAL2 pin

have inside capacitance (C_{in_xtal}), so external added load capacitance value(PCB Welding Capacitance) $C_{load_ext} = C_{load}$ * 2 - C_{in_xtal} - C_{pcb} - C_{shunt} * 2, C_{pcb} is PCB parasitic capacitance(Single ended). C_{in_xtal} has tuning range about 15pF, which is controlled by software, for details please go to software user manual.

4.2Low Power Clock

Table 4-4 Low Power Clock Specifications

Symbol	Parameter	Min	Тур	Max	Unit
F_{IN}	Frequency	-	32/32.768	-	kHz
F/F _{IN}	Frequency accuracy	-250	-	+250	ppm
Duty cycle		30	-	70	%
Jitter	Cycle-to-cycle	-40	-	+40	ns
R _{in}	Input resistance	1	-	-4	ΜΩ
Cin	Input capacitance	-	-	5	pF
V _{IL}	Input low voltage on LPCLK	0	- 4	0.4	V
$ m V_{IH}$	Input high voltage on LPCLK	VDD_IO- 0.4	- 1	VDD_IO	V

ARAR

5 Electrical Characteristics

5.1Absolute Maximum Rating

The Absolute Maximum Rating (AMR) corresponds to the maximum value that can be applied without leading to instantaneous or very short-term unrecoverable hard failure (destructive breakdown).

Table 5-1 Absolute Maximum Rating

Symbol	Parameter	Min	Max	Unit
VBAT	3.0~5.5V power supply	-0.3	5.8	V
VDD_IO	IO power supply	-0.3	4.0	V
Vin	Input voltage on any digital pin	-0.3	3.6	V
T _{stg}	Storage temperature	-40	150	°C
Ta	Ambient operating temperature	-40	85	°C
IIidite	Storage	5	95	%
Humidity	Operation	10	93	%
VESD	НВМ	-4000	+4000	V
VESD	CDM	-800	+800	V

5.2Digital IO Pin DC Characteristics

Table 5- 2 IO DC Characteristics (VDD_IO=3.3V)

Symbol	Parameter	Min	Тур	Max	Unit
V_{IH}	Input high voltage	2.06	-	3.6	V
V _{IL}	Input low voltage	-0.3	-	1.32	V
V _{OH}	Output high voltage	2.4	-	3.6	V
VoL	Output low voltage	-0.3	-	0.4	V
R _{PU}	Input pull-up resistance	40	66	110	kΩ
R _{PD}	Input pull-down resistance	40	66	110	kΩ

Table 5-3 IO DC Characteristics (VDD_IO=1.8V)

Symbol	Parameter	Min	Тур	Max	Unit
V_{IH}	Input high voltage	1.18	-	2	V
V _{IL}	Input low voltage	-0.3	-	0.65	V
V _{OH}	Output high voltage	1.44	-	2	V

Vol	Output low voltage	-0.3	-	0.4	V
R_{PU}	Input pull-up resistance	80	135	210	$\mathrm{k}\Omega$
R _{PD}	Input pull-down resistance	80	135	210	kΩ

6 Transceiver/Receiver Performance

6.1WLAN Performance

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25 °C

Table 6-1 WLAN Transceiver/Receiver Performance

D	D	Perform	Performance		
Parameter	Description	Min	Тур	Max	— Unit
Frequency range	Center channel frequency	2412	-	2484	MHz
RX Sensitivity (802.11b)	1Mbps DSSS	-	-97	-	dBm
	2Mbps DSSS	-	-95	-	dBm
	5.5Mbps CCK	-	-93	-	dBm
	11Mbps CCK	-	-90	-	dBm
RX Sensitivity (802.11g)	6Mbps OFDM	-	-92	-	dBm
	9Mbps OFDM	-	-92	-	dBm
	12Mbps OFDM	-	-91	-	dBm
	18Mbps OFDM	-	-88	-	dBm
	24Mbps OFDM	-	-86	-	dBm
	36Mbps OFDM	-	-82	-	dBm
	48Mbps OFDM	-	-78	-	dBm
	54Mbps OFDM	-	-76	-	dBm
RX Sensitivity (802.11n,	MCS0	-	-91	-	dBm
20MHz)	MCS1	-	-87	-	dBm
	MCS2	-	-85	-	dBm
	MCS3	-	-83	-	dBm
	MCS4	-	-79	-	dBm
	MCS5	-	-75	-	dBm
	MCS6	-	-74	-	dBm
	MCS7	-	-72	-	dBm
RX Sensitivity (802.11n,	MCS0	-	-89	-	dBm
40MHz)	MCS1	-	-87.5	-	dBm
	MCS2	-	-84.5	-	dBm

	MCS3	-	-81.5	-	dBm
	MCS4	-	-78	-	dBm
	MCS5	-	-74	-	dBm
	MCS6	-	-72	-	dBm
	MCS7	-	-71	-	dBm
Maximum Input Level	11b@11Mbps CCK	-	-10	-	dBm
	11g@54Mbps OFDM	-	-20	-	dBm
	11n@ HT20, MCS 7	-	-20	-	dBm
	11n@ HT40, MCS 7	-	-20	-	dBm
TX Power	1Mbps DSSS	-	20	-	dBm
	11Mbps CCK	-	20	-	dBm
	6Mbps OFDM	-	20	-	dBm
	54Mbps OFDM	-	19	-	dBm
	HT20, MCS 0	-	17.5	-	dBm
	HT20, MCS 7	-	17.5	-	dBm
	HT40, MCS 0	-	16	-	dBm
	HT40, MCS 7	-	17	-	dBm

6.2Bluetooth Performance

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25 °C

Table 6-2 Bluetooth Transceiver/Receiver Performance

D. A.	D	Perform	Performance		
Parameter	Description	Description		Max	— Unit
Frequency range	Center channel frequency	2402	-	2480	MHz
RX Sensitivity (BR)	1Mbps GFSK	-	-91	-	dBm
RX Sensitivity (EDR)	2Mbps π/4-DQPSK	-	-93	-	dBm
	3Mbps 8DPSK	-	-85	-	dBm
RX Sensitivity (BLE)	1Mbps GFSK	-	-93	-	dBm
Maximum Input Level	1Mbps GFSK	-	-20	-	dBm
	2Mbps π/4-DQPSK	-	-20	-	dBm
	3Mbps 8DPSK	-	-10	-	dBm

TX Out Power	Class1, Class2, Class3	-17	7	-	dBm
	@BR, EDR				
	BLE	-	7	-	dBm

7 Package Outline & PCB Layout Design

Table 7-1 Package Dimensions

Symbol	Min	Тур	Max	Unit
A	0.70	0.75	0.80	mm
A1	0	0.02	0.05	mm
A3	0.20REF			mm
ь	0.15	0.20	0.25	mm
D	4.90	5.00	5.10	mm
Е	4.90	5.00	5.10	mm
D2	3.15	3.30	3.45	mm
E2	3.15	3.30	3.45	mm
e	0.30	0.40	0.50	mm

K	0.20	-	-	mm
L	0.30	0.40	0.50	mm
R	0.09	-	-	mm
La	0.12	0.15	0.18	mm
Lb	0.23	0.26	0.29	mm
Lc	0.30	0.39	0.50	mm

XR829

LILLLEA XXX2

Figure 7-3 XR829 Marking (Top View)

Table 7-2. XR829 Marking Definitions

No.	Marking	Description	Fixed/Dynamic
1	XRAD TECH	Xradio logo or name	Fixed
2	XR829	Product name	Fixed
3	LLLLLEA	Lot number	Dynamic
4	XXX2	Date code	Dynamic
5		Package pin 1 identifier (the white dot in the bottom left corner)	Fixed

8 Package Thermal Characteristics

Table 8-1 Thermal Resistance Characteristics

Symbol	Parameter	Conditions	Type	Unit
Θ_{JA}	Junction-to-Ambient	JESD51	28	°C /W
		76.2 x 114.3mm, 4-layer(2s2p) PCB		
		No air flow		
$\Theta_{ m JB}$	Junction-to-Board	JESD51	8.5	°C /W
		76.2 x 114.3mm, 4-layer(2s2p) PCB		
		No air flow		
$\Theta_{ m JC}$	Junction-to-Case	JESD51	9.2	°C /W
		76.2 x 114.3mm, 4-layer(2s2p) PCB		
		No air flow		

9 Carrier Information

XR829 use two kinds of carriers for customer delivery and production, which are tray carrier and tape reel carrier. Each tray has 490ps of chips, while each tape reel provides 4900ps samples.

9.1Tray Carrier

NOTE:

1. HEAT RESISTANCE UP TO 24 HOURS 150°C.

2. SURFACE ELECTRIC RESISTIVITY LESS THAN $10^{12}\Omega$ /sq.

3. WARPAGE IS WITHIN 0.76mm.

4. TOLERANCE : X=±0.5mm

 $X.X=\pm0.25mm$ $X.XX=\pm0.13mm$

5. Material : PPE+Carbon Fiber.

9.2Tape Reel Carrier

SCALE: 1 : 1

SECTION A-A

- ★ 技术要求:
 1. 颜色: 蓝色。
 2. 未注公差为±0.20mm;
 3. 盘面光洁, 无翘曲变形、杂质等缺陷;
 4. 外包装良好, 无破损;
 5. 表面电阻率: 10⁵~10¹⁰ Ω/□。
 6. 卷盘表面除指定的标识外, 其余依供应商而定。

圆盘基本尺寸 (mm)					
载带宽度	A	В	С	D	t
12	Ø329±1	12.8±1	Ø100±1	Ø13.3±0.3	2.0±0.3