Statistical Foundations of Data Science

Jianqing Fan

Princeton University

https://fan.princeton.edu

ZOOM ID Lectures: **970 4936 8998** Office Hours: **996 4030 7631**

Annotated Lecture Notes: web view

990

ORF 525, S21: Statistical Foundations of Data

4. Feature Screening and Selection

- 4.1. Independence Screening (§8.1)
- 4.2. Iteratively Independent Learning (§8.3)

4.1 Sure Independence Screening

Available in R package: SIS

Independence Screening

Regression: Feature ranking by marginal corr $\{|\widehat{corr}(X_j, Y)|\}$.

★Easily to implement

★Scalable to Big Data

<u>Classification</u>($Y = \pm 1$): Feature ranking by two-sample t-tests or other tests.

(Applications: Sentiment analysis — selecting a bag of words related to financial returns (Ke, Kelly, Xiu, 2019))

Sure Screening: Selected $\widehat{\mathcal{S}}$ contains all important variables \mathcal{S} .

Sure Independent Screening (SIS): Correlation learning has sure screening property (Fan and Lv, 2008, JRSS-B): $P(S \subset \widehat{S}) \to 1$.

An illustration

4 □ > 4 □ P → 4 □ P → 4 □ P → 2 P →

A Framework for Independence Screening

Marginal utility: Letting $\widehat{L}_0 = \min_{\beta_0} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0)$, define

$$\widehat{L}_j = \widehat{L}_0 - \min_{\beta_0, \beta_j} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0 + X_{ij}\beta_j) \quad \text{Wilks.}$$

or marginal minimizer (QMLE) $\widehat{\beta}_{j}^{M}$ (Wald), assuming $EX_{j}^{2}=1$.

Feature ranking: Select features w/ largest marginal utilities:

$$\widehat{\mathcal{M}}_{v_n} = \{j: \widehat{L}_j \geq v_n\}, \qquad \widehat{\mathcal{M}}_{\gamma_n}^w = \{j: \left|\widehat{\beta}_j^M\right| \geq \gamma_n\}$$

Dim. reduction: From high to moderate dimensions

200 100

◆ロト ◆問 > ◆注 > ◆注 > 注 のQで

Square-loss

When
$$L(Y, \mathbf{X}^T \beta) = (Y - \mathbf{X}^T \beta)^2$$
, we have

(homework)

$$\widehat{L}_j = \widehat{r}_j^2 \widehat{L}_0, \qquad \widehat{\beta}_j = \widehat{r}_j \widehat{L}_0^{1/2}$$

Both reduce to the correlation ranking (Fan and Lv, 2008).

<u>Generalized correlation</u>: Use multiple R^2 based on univariate polynomial regression (Hall and Miller, 09).

Nonparametric screening: Use multiple R^2 based on univariate spline regression (NIS, Fan, Feng, Song, 10).

Extensions and Questions

- ★ Marginal LR (Fan, Samworth & Wu, 09);
- ★ MMLE (Fan and Song, 10); ★MPLE (Zhao & Li, 12); ★D-corr (Li, Zhong, Zhu, 12); ★Rank-corr (Li, et. al, 12);
- ★ Nonparametric learning (Fan, Feng, Song, 10)

- Can we have model selection consistency?
- Can we have sure screening property? In what capacity?
- How to choose a thresholding parameter?

Choice of thresholding parameter

<u>Threshold parameter</u>: maximum marginal utility under <u>null model</u>, estimated by random decoupling, called Principled SIS (*Zhao and Li, 12*).

- Obtain the decoupled synthetic data $\{(\mathbf{X}_{\pi(i)}, Y_i)\}_{i=1}^n$ —Marginal distributions are untouched;
- Compute $a_n^* = \max_j \widehat{L}_j^*$ based on decoupled data. For correlation learning, this becomes $\operatorname{corr}^2(\{(X_{\pi(i)j}, Y_i)\})$.
- **Choose the top α-quantile of** a_n^* **as** v_n **.**

Remark: We can take a_n^* based on one permutation.

Theoretical Basis

Marginal utility: $L_j^{\star} = EL(Y, \beta_0^M) - \min EL(Y, \beta_0 + \beta_j X_j)$. Likelihood-ratio (Fan and Song, 10)

True model: $\mathcal{M}_{\star} = \{j : \beta_j^{\star} \neq 0\}$.

Theorem 4.1: If $|\operatorname{cov}(Y, X_j)| \ge c_1 n^{-\kappa}$ for $j \in \mathcal{M}_{\star}$, then

$$\min_{j\in\mathcal{M}_\star}|\beta_j^{\boldsymbol{M}}|\geq c_1 n^{-\kappa}, \qquad \min_{j\in\mathcal{M}_\star}|L_j^\star|\geq c_2 n^{-2\kappa}.$$

- If active $\mathbf{X}_{\mathcal{M}_{\star}}$ indep of inactive $\mathbf{X}_{\mathcal{M}_{\star}^c}$, then $L_j^{\star}=0, j \notin \mathcal{M}_{\star}$
- ⇒ model sel consistency, if gap is wide enough.

Sure independence screening

Thm 4.2: If
$$v_n = cn^{-2\kappa}$$
 for $\kappa < 1/2$, and $\log s_n = o(n^{1-2\kappa})$, then

$$P\Big(\mathcal{M}_{\star}\subset\widehat{\mathcal{M}}_{\nu_n}\Big) o 1$$
 exponentially fast.

No conditions on covariance matrix!

Screening using Wald stat $\widehat{\beta}_j^M$ has also SS property.

Controlling number of features

Theorem 4.3: If
$$\log p_n = o(n^{1-2\kappa})$$

$$P[|\widehat{\mathcal{M}}_{v_n}| \leq O\{n^{2\kappa}\lambda_{\text{max}}(\Sigma)\}] \to 1.$$

When $\lambda_{\max}(\mathbf{\Sigma}) = O(n^{\tau})$, model size $= O(n^{2\kappa+\tau})$ (Fan and Lv, 08).

Performance of Independence Screening

Compare minimum model size for sure screening w/ LASSO.

■Consistent cond for Lasso is stringent: $\|(\mathbf{X}_1^T\mathbf{X}_1)^{-1}\mathbf{X}_1^T\mathbf{X}_{2,j}\|_1 < 1$.

Design 1:
$$\{X_j = \frac{\varepsilon_j + a_j \varepsilon}{\sqrt{1 + a_j^2}}\}_{j=1}^q$$
, w/ correlation $\frac{a_j^2}{1 + a_j^2}$, rest indep.

 a_j generated from N(a,1) with $\rho = \frac{a^2}{1+a^2}$

Logistic regression, p = 5,000, q = 15

ρ	n	SIS-MLR	SIS-MMLE	LASSO	SCAD				
	$s = 6, \beta^* = (1, 1.3, 1, 1.3, 1, 1.3)^T$								
0.4	200	51(77)	64.5(76)	20(10)	16.5(6)				
0.6	300	77.5(139)	77.5(132)	20(13)	19(9)				
0.8	400	306.5(347)	313(336)	86(40)	70.5(35)				
	$s=$ 12, $\beta^{\star}=(1,1.3,\ldots)^{T}$								
0.4	300	14(1)	14(1)	14(1861)	13(1865)				
0.6	300	14(1)	14(1)	2552(85)	12(3721)				
0.8	300	14(1)	14(1)	2556(10)	12(3722)				
	s = 15, β^{\star} = $(3,4,\ldots)^{\mathcal{T}}$								
0.4	300	15(0)	15(0)	38(3719)	15(3720)				
0.6	300	15(0)	15(0)	2555(87)	15(1472)				
0.8	300	15(0)	15(0)	2552(8)	15(1322)				

Linear regression, p = 2000, n = 600

Design 2: $\{X_k\}_{k=1}^{p-50} \sim_{i.i.d.} N(0,1)$.

$$X_k = \sum_{j=1}^s X_j (-1)^{j+1} / 5 + \sqrt{25 - s} / 5\varepsilon_k, \qquad k \ge p - 49$$

Regression Coefs: $\beta^* = (1, -1, 1, -1, \cdots)^T$ (RSD = $\frac{IOR}{1.35}$)

s	$\text{M-}\lambda_{\text{max}}(\text{RSD})$	SIS-MLR	SIS-MMLE	LASSO	SCAD
3	8.47(0.17)	3(0)	3(0)	3(0)	3(0)
6	10.36(0.26)	56(0)	56(0)	47(4)	45(3)
12	14.69(0.39)	62(0)	62(0)	1610(10)	1304(2)
24	23.70(0.14)	81(19)	81(23)	1637(14)	1303(1)

4.2 Iteratively SIS Method

a two-scale framework

(Fan, Samworth, Wu, 2009, JMLR)

Large scale-screening

Indep Screening: Feature ranking by Marginal correlation (Fan & Lv, 08) or generalized correlation (Hall & Miller, 09);

Potential Drawbacks

◆ False Negative: What if X₁ marginally uncorrelated with Y, but jointly correlated with Y?

$$Y = \beta_1 X_1 + X_2 + X_3 + X_4 + X_5 + \epsilon$$
 s.t. $cov(Y, X_1) = 0$.

★e.g. $corr(X_i, X_j) = 0.8$ for all i, j < p. $cov(Y, X_1) = \beta_1 + 4 * .8$. With $\beta = -3.2$, X_1 can not survive screening.

♦ False Positive: What if variables highly correlated with important ones, but weakly correlated with Y conditionally? e.g. X_{100} indep of X_i for i < 99

$$Y = X_1 + 0.2X_{100} + \varepsilon$$

 $cov(X_j, Y) = 0.8, 2 \le j \le 99$ whereas $cov(X_j, Y) = 0.2$.

Moderate scale selection

Penalized likelihood estimation on survived variables after screening

$$Q(\beta) = n^{-1} \sum_{i=1}^{n} L(Y_i, \mathbf{x}_{i,d}^T \beta) + \sum_{i=1}^{p} p_{\lambda}(|\beta_i|)$$

Simultaneously estimate coefs and choose variables.

Iterations

Iterative application of

large-scale conditional screening and

moderate-scale **selection**.

■Iter-SIS (Fan & Lv, 08; Fan, Samworth & Wu, 09), available in R.

Iterative feature selection

■(Large-scale screening): Apply SIS to pick a set A₁;
 ■(Moderate-scale selection): Employ a penalized likelihood to select a subset M₁ of these indices.

(Large-scale screening): Rank features according to the additional (conditional) contribution:

$$L_{j}^{(2)} = \min_{\beta_{0}, \beta_{\mathcal{M}_{1}}, \beta_{j}} n^{-1} \sum_{i=1}^{n} L(Y_{i}, \beta_{0} + \mathbf{x}_{i, \mathcal{M}_{1}}^{\mathsf{T}} \beta_{\mathcal{M}_{1}} + X_{ij} \beta_{j}),$$

resulting in \mathcal{A}_2 .

Illustration of Iter-SIS

Iterative feature selection (II)

 $\textbf{ (Moderate-scale selection):} \ \, \text{Minimize wrt } \beta_{\mathcal{M}_1}, \, \beta_{\mathcal{A}_2}$

$$\sum_{i=1}^{n} L(Y_i, \beta_0 + \mathbf{x}_{i,\mathcal{M}_1}^T \beta_{\mathcal{M}_1} + \mathbf{x}_{i,\mathcal{A}_2}^T \beta_{\mathcal{A}_2}) + \sum_{j \in \mathcal{M}_1 \cup \mathcal{A}_2} p_{\lambda}(|\beta_j|),$$

resulting in \mathcal{M}_2 —Allow deletion.

1 Repeat Steps 1–3 until $|\mathcal{M}_L| = d$ (prescribed) or $\mathcal{M}_L = \mathcal{M}_{L-1}$.

Applicability of Iter-SIS idea

The idea of Iter-SIS is widely applicable. It can be applied to

- Classification (Fan, Samworth, & Wu, 09).
- Survival analysis (Fan, Feng, & Wu, 10; Zhao & Li, 12).
- Nonparametric learning (Fan, Feng, & Song, 10).
- Robust and quantile regression (Bradic, Fan, & Wang, 11)

Logistic, a difficult case

$$\bigstar X_i \sim N(0,1)$$
, $cov(X_i, X_j) = 1/\sqrt{2}, i \neq j < p$, indep of X_p .

$$\bigstar \beta_1 = 4, \ \beta_2 = 4, \ \beta_3 = 4, \ \beta_4 = -6\sqrt{2}, \ \beta_\rho = 4/3, \ \mathsf{cov}(X_4, \mathbf{X}^T \boldsymbol{\beta}^*) = 0.$$

$$n = 400, p = 1000, N_{\mathit{sim}} = 100$$

	Van-SIS	Iter-SIS	Iter-SIS2	LASSO	NSC
$\operatorname{med}(\ \beta - \widehat{\beta}\ _1)$	20.6	2.69	3.24	23.2	N/A
$med(\ eta - \widehat{eta}\ _2^2)$	9.46	1.36	1.59	9.11	N/A
True Positive	0.00	0.90	0.98	0.00	0.17
Med. model size	16	5	5	102	10
$2Q(\widehat{eta}_0,\widehat{eta})$ (training)	269	188	188	109	N/A
AIC	289	198	199	311	N/A
BIC	337	218	219	714	N/A
$2Q(\widehat{eta}_0,\widehat{eta})$ (test)	361	225	226	276	N/A
0-1 test error	.193	.112	.112	.146	.387

