Tips and tricks Classification metrics Confusion matrix Accuracy Precision, recall F1 score ROC

Regression metrics R squared Mallow's CP AIC, BIC

Model selection Cross-validation

Error/ablative analysis

Regularization

Diagnostics Bias/variance tradeoff

Afshine Amidi

About

☆ Star 17,275

Machine Learning tips and tricks cheatsheet

By Afshine Amidi and Shervine Amidi

Classification metrics

In a context of a binary classification, here are the main metrics that are important to track in order to assess the performance of the model.

□ Confusion matrix — The confusion matrix is used to have a more complete picture when assessing the performance of a model. It is defined as follows:

Interpretation Metric Formula

Ad	ccuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model
Pı	recision	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$	How accurate the positive predictions are
	Recall ensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample
Sp	ecificity	$rac{ ext{TN}}{ ext{TN} + ext{FP}}$	Coverage of actual negative sample
F	1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP}+\mathrm{FP}+\mathrm{FN}}$	Hybrid metric useful for unbalanced classes

Matria Farmania Farrinalant

□ ROC — The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by varying the threshold. These

Metric	Formula	Equivalent
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Recall, sensitivity
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}}$	1-specificity

□ **AUC** — The area under the receiving operating curve, also noted AUC or AUROC, is the area below the ROC as shown in the following figure:

\Box Basic metrics — Given a regression model f, the following metrics are commonly used to assess the performance of

Regression metrics

metrics are are summed up in the table below:

the model:

the observed outcomes are replicated by the model and is defined as follows: $R^2 = 1 - rac{ ext{SS}_{ ext{res}}}{ ext{SS}_{ ext{tot}}}$

 \Box Coefficient of determination — The coefficient of determination, often noted R^2 or r^2 , provides a measure of how well

$$SS_{
m tot}$$

Adjusted R^2 Mallow's Cp **AIC BIC**

□ Main metrics — The following metrics are commonly used to assess the performance of regression models, by taking

$rac{\mathrm{SS}_{\mathrm{res}} + 2(n+1)\widehat{\sigma}^2}{m}$	$2\Big[(n+2)-\log(L)\Big]$	$\frac{\log(m)(n+2) -}{2\log(L)}$	$1 - \frac{(1-R^2)(m-1)}{m-n-1}$				
where L is the likelihood and $\widehat{\sigma}^2$ is an estimate of the variance associated with each response.							

Dataset

much on the initial training set. The different types are summed up in the table below:

Dataset

Train

k-fold

k folds and is named cross-validation error.

Fold

into account the number of variables n that they take into consideration:

□ **Vocabulary** — When selecting a model, we distinguish 3 different parts of the data that we have as follows:

Model selection

Testing set Training set Validation set Model is assessed

Model is trainedUsually 80% of the dataset	Usually 20% of the datasetAlso called hold-out or development set	Model gives predictionsUnseen data					
Once the model has been chosen, it is trained on the entire dataset and tested on the unseen test set. These are represented in the figure below:							

Unseen data

Leave-p-out

Cross-validation error

 $egin{aligned} ... + \lambda \Big[(1-lpha) || heta||_1 + lpha || heta||_2^2 \Big] \ \lambda \in \mathbb{R}, lpha \in [0,1] \end{aligned}$

Overfitting

Very low training error

than test error

High variance

• Training error much lower

Training

Epochs

Perform regularization

Get more data

Validation Train Test

□ Cross-validation — Cross-validation, also noted CV, is a method that is used to select a model that does not rely too

ullet Training on $k-1$ folds and assessment on the	ullet Training on $n-p$ observations and assessment on the				
remaining one	p remaining ones				
ullet Generally $k=5$ or 10	ullet Case $p=1$ is called leave-one-out				
The most commonly used method is called k -fold cross-validation and splits the training data into k folds to validate the model on one fold while training the model on the $k-1$ other folds, all of this k times. The error is then averaged over the					

 ϵ_1 ϵ_2

Validation

Validation error

 ϵ_k

□ **Variance** — The variance of a model is the variability of the model prediction for given data points.

Symptoms

Possible remedies

and the baseline models.

perfect models.

 $... + \lambda ||\theta||_1$

Diagnostics

predict for given data points.

 $\lambda\in\mathbb{R}$

□ Bias/variance tradeoff — The simpler the model, the higher the bias, and the more complex the model, the higher the variance.

than test error

Just right

Training error slightly lower

□ Bias — The bias of a model is the difference between the expected prediction and the correct model that we try to

 $... + \lambda || heta||_2^2$

 $\lambda \in \mathbb{R}$

Underfitting

• Training error close to test

High training error

error

High bias

Deep learning Training Validation illustration

Epochs

Training

Epochs

□ **Ablative analysis** — Ablative analysis is analyzing the root cause of the difference in performance between the current

□ Error analysis — Error analysis is analyzing the root cause of the difference in performance between the current and the

Complexify model

Add more features

Train longer

