10/28/22, 9:26 PM Quiz: Quiz 4

Quiz 4

Started: Oct 28 at 9:20pm

Quiz Instructions

Question 1 1 pt	ts
Consider a multi-class classification problem with 10 classes and 14 features. We wi use linear models $m{w^Tx} + m{b}$ (e.g. logistic regression) as a binary classifier. What will be the total number of parameters for using one-vs-one strategies for classification?	
○ 250	
O 675	
O 1260	

Question 2	1 pts
Consider a multi-class classification problem with 10 classes and 14 feature use linear models ${\pmb w}^T{\pmb x}+{\pmb b}$ (e.g. logistic regression) as a binary classifier. \begin{array}{c} be the total number of parameters for using one-against-all strategies for classification?	
<u> </u>	
<u></u>	
○ 675	
○ 150	

10/28/22, 9:26 PM Quiz: Quiz 4

> **Question 3** 1 pts

Consider a multi-class classification problem with 3 classes. The distribution of the points is shown in the figure (Blue - Class 1, Orange - Class 2, Green - Class 3). We are using a 3-NN (KNN) algorithm as the binary classifier. Suppose we have a new test point (shown in Yellow). When there is no clear winner, we output "None" as the answer. What would be the predictions by one-vs-one and one-vs-all strategies for this point?

- One-vs-one: Blue and One-vs-all: None
- One-vs-one: None and One-vs-all: None
- One-vs-one: None and One-vs-all: Blue

10/28/22, 9:26 PM Quiz: Quiz 4

Question 4	1 p
Question 4	1 p

Which of the following statement(s) are true about the PAC-learnability of the monotone conjunction class?

- ☐ If we expect to get a function with lower error rate, we need more training samples.
- If we expect to get a good function with higher probability, we need more training samples.
- If the dimension of the inputs is higher (i.e., more variables), we need more training samples.
- ☐ If there are more test samples, to achieve the same error rate, we need more training samples.

Question 5 1 pts

In the lecture, we analyze monotone conjunction class. In the following, we consider learning a 5-variable *monotone disjunction* function (e.g.,

1

 $f=x_1 \lor x_2 \lor x_3, \quad f=x_3 \lor x_5$, etc) from the following data.

x_1	x_2	x_3		x_5	
1	0	0	0	1	0
0	1	1	1	0	0 1
0	1	0	1	0	1

The data is generated by the target monotone disjunction function f^* . Which of the following statement(s) are true:

There are in total 32 monotone disjunction functions in the 5-variable disjunction function class.

10/28/22, 9:26 PM Quiz: Quiz 4

☐ Based on the	data, x_2 may or may not be part of t	the target monotone disjunction fu	unction f*
☐ Based on the	data, x_2 must be part of the target n	nonotone disjunction function f*	
		•	