Linear algebra for data science

Sridherakumer Narasimhan UT Madras,

Contents

1	Geometry of linear equations
	Row picture
	Column picture
	Matrix form
2	Types of solutions
	For 2-dimensional and 3-dimensional case
3	Vector spaces
	Vector
	Vector addition
	Vector space
	Linear combination
	Subspaces – row space, column space, null space
	Independence and dependence of equations
	Basis and dimension
	Matrix multiplication
	Symmetric matrix

Contents

4	Solving a system of linear equations - Gaussian elimination
	Augmented matrix and pivots
	Manipulating rules
	Step by step process of elimination
	Forward elimination and back substitution
	Reduced row echelon form (rref)
	When could the process breakdown?
	Finding inverses by Gauss-Jordan method
5	Orthogonality
	Length of a vector
	Test for orthogonality
	Orthonormal vectors
	Projection
	Gram-Schmidt orthogonalization

Contents

6	Eigenvalues and eigenvectors
	Finding eigenvectors for distinct eigenvalues
	Finding eigenvectors for repeated eigenvalues
	Diagonalization of a symmetric matrix - Eigenvalue decomposition

Outcome

Module learning outcomes:

- Participants will be able to identify relationships between variables in large datasets
- 2. Participants will be able to identify information sufficiency in terms of both equations and variables
- 3. Participants will be able to understand basic linear algebra concepts that underlie the complicated data analytics algorithms

Linear Algebra

•
$$Q_{in} = Q_1$$

•
$$Q_1 + Q_{32} = Q_2$$

•
$$Q_{in} = Q_1$$

• $Q_1 + Q_{32} = Q_2$
• $Q_2 + Q_{43} = Q_{32} + Q_3$
• $Q_3 = Q_{out} + Q_{43}$

$$Q_3 = Q_{out} + Q_{43}$$

Can we solve the equations when –

$$Q_{in} = 10, Q_{32} = 5 \text{ and } Q_{43} = 3.$$

$$Q_{in} = 10, Q_{out} = 10 \text{ and } Q_3 = 7$$

$$Q_{in} = 10, Q_{out} = 11 \text{ and } Q_3 = 7$$

$$\begin{array}{c} \cdot Q_{in} = Q_1 = 10 \\ \text{lo.} \ Q_1 + Q_{32} = Q_2 = 15 \\ \cdot Q_2 + Q_{43} = Q_{32} + Q_3 \\ \cdot Q_3 = Q_{out} + Q_{43} \\ \cdot Q_3 = Q_{out} + Q_{a3} \\ \cdot Q_3 = Q_{out} + Q_{out} + Q_{out} + Q_{out} + Q_{out} + Q_$$

• Can we solve the equations when $Q_{in} = 10$, $Q_{32} = 5$ and $Q_{43} = 3$?

Unique solution

•
$$Q_{in} = Q_1$$

• $Q_1 + Q_{32} = Q_2$
• $Q_2 + Q_{43} = Q_{32} + Q_3$
• $Q_3 = Q_{out} + Q_{43}$

- Can we solve the equations when $Q_{in} = 10$, $Q_{out} = 10$ and $Q_3 = 17$?

- In 2: 10 + 032 = Infinite number of solutions
- Loop involving Q_2 and Q_{32} ? both are unmeasured
- Loop involving Q_2 and Q_{32} . From the Given measurements consistent with equations = 10 hours $Q_2 = 0$

•
$$Q_{in} = Q_1$$

$$\bullet Q_1 + Q_{32} = Q_2$$

•
$$Q_2 + Q_{43} = Q_{32} + Q_3$$

$$\bullet Q_3 = Q_{out} + Q_{43}$$

• Can we solve the equations when $Q_{in} = 10$, $Q_{out} = 11$ and $Q_3 = 7$?

 $N \propto \frac{1}{6^2} \quad 6^2 \quad N \quad \sqrt{\frac{1}{2}} \quad 6^2 \quad \sqrt{\frac{1}{2}} \quad \sqrt{\frac{1}{2}}$

No solution

WI QINT WZ QONT

• Given information not consistent with equations what is a resonable fix of 10.5 ?

10+11

System of Equations: Key Concept

Understanding when do we have:

- 7 unknowns 4 ym.
- Unique solution
- No solution
- Infinite number of solutions

Solving Simultaneous Linear Equations

Solve the two linear equations:

Solving Simultaneous Linear Equations

Elimination (High—school method)

$$4x - 2y = 0$$

$$2(-2x + 4y = 6)$$

$$6y = 12$$

$$y = 2$$

$$\Rightarrow x = 1$$

$$(1,2) \text{ is the solution}$$

Graphical method

(1,2) is the solution

- We may view a system of linear equations in three different ways
 - Matrix form $-\mathbf{A}x = \mathbf{b}$ where \mathbf{A} forms a matrix with the coefficients of the unknowns and \mathbf{x} forms a matrix with the unknowns and \mathbf{b} , a matrix with the values in the R.H.S
 - Row picture viewing one equation at a time
 - Column picture two separate equations as one vector equation

Geometry for a system of 2 equations:

Matrix form

Consider two linear equations:

$$4x - 2y = 0$$
$$-2x + 4y = 6$$

- A matrix is a rectangular arrangement of numbers in rows and columns
- Rows run horizontally and columns run vertically
- Order of a matrix: $m \times n$ where m is the # of rows and n is the # of columns

$$4x - 2y = 0$$
 $-2x + 4y = 6$

Matrix form $\begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$

- This is of the form $\mathbf{A} = \mathbf{b}$ where
 - \circ **A** matrix with coefficients of the unknowns
 - x unknowns
 - $\mathbf{b} \text{R.H.S}$ of the equations
- n equations and n unknowns $\Rightarrow n \times n$ matrix (square matrix)
- m equations and n unknowns $\Rightarrow m \times n$ matrix (rectangular matrix)

Row picture

$$4x - 2y = 0 ; -2x + 4y = 6$$

• Taking one row at a time and plotting it in the *x*–*y* plane

Few points that satisfy 4x - 2y = 0 are (0,0), (1,2) and (1/2, 1)

Few points that satisfy -2x + 4y = 6 are (-3,0), (-1,1)

and (1,2)

So the solution of the system is (1,2)

Geometry for a system of 3 equations

Consider a system of 3 equations:

$$x + 2y + z = 6$$

$$6x - 2y = 4$$

$$-3x - y + 4z = 8$$

Matrix form

$$\begin{bmatrix} 1 & 2 & 1 \\ 6 & -2 & 0 \\ -3 & -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 8 \end{bmatrix}$$

Row picture

$$x + 2y + z = 6$$
; $6x - 2y = 4$; $-3x - y + 4z = 8$

- Each equation describes a plane in 3 dimensions. The intersection of the first plane with the second plane is a line
- The 3rd plane (not shown in the figure) intersects the line of intersection of the other two planes at a point (1,1,3)
- Solution for the system of equation is (1,1,3)

2 dimensional case

Unique solution

• This is the nice case where the system will have a point of intersection and hence a unique solution. 4x - 2y = 0 and -2x + 4y = 6 has a unique solution (1,2)

One solution (x, y) = (1,2)

No solution

• A system has no solution if the equations are inconsistent. For example, -2x + 4y = 6 and -6x + 12y = 6 has no solution

$$-6x + 12y = 6 \implies -2x + 4y = 2$$

which contradicts with the first equation and hence the system has no solution

Parallel: No solution

Infinite number of solutions

The other case is when one equation is just some multiple of the other.

Then we will get infinite number of solutions

$$-2x + 4y = 6$$
; $-4x + 8y = 12$

$$y = \frac{b + 2(0.1)}{4}$$

$$-2x + 4y = 4$$
.
 $x=0$ $y = 312$.
 $x=0$ $y = 6+2$
 $y=0$ $y=-3$.

$$= \frac{6-2}{4} = 1$$

Singular case for three dimensions

Two planes may be parallel

Two parallel planes: No solution

• One plane is parallel to the line of intersection of the other two planes

No intersection: No solution

Singular case for three dimensions

Three parallel planes

All planes parallel: No solution or a whole plane of solutions

One equation is just the sum of the other two equations, the three planes have a whole line in common

Line of intersection: Infinite # of solutions

<u>Vector</u>

- A vector is defined as an ordered collection of numbers $\begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$
- Elements of a vector arranged as a column \rightarrow column vector

- Elements of a vector arranged as a row \rightarrow row vector
- If a vector v contains three real numbers say, $v = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, then v belongs to the vector space \mathbf{R}^3 (rul numbers)
- The vectors $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} b \\ a \end{bmatrix}$ are not the same

Vector Addition

Addition of a vector $\begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix}$ is done component by component and can be

Column picture

$$4x - 2y = 0 : 2x + 4y = 6$$

• Column picture: Linear combination of columns

$$\begin{bmatrix} x \\ -2 \end{bmatrix} + y \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

We know that the solution for the two equations is (1,2)

Substitute them

$$1 \begin{bmatrix} 4 \\ -2 \end{bmatrix} + 2 \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

Vector: ordered Set J vial numbers

Vector adoltron v.

Scalar: (Real number).C:
$$4 C = 1$$

$$C = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

$$C = 1 \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \\ -6 \end{bmatrix}$$

$$C = -6$$

Column picture

$$x + 2y + z \neq 6$$
; $6x - 2y = 4$; $-3x - y + 4z = 8$

Solution for the system of equation is

• Let V be a set of all vectors that lie in the first quadrant of R^2 and F be R

• Consider two vectors
$$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
 and $\begin{bmatrix} 6 \\ 2 \end{bmatrix} \in V$

• It can easily be noted that both these vectors lie in the first quadrant of R^2

• Addition:
$$\begin{bmatrix} 2 \\ 4 \end{bmatrix} + \begin{bmatrix} 6 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix} \in V$$

• The resulting vector also lies in the first quadrant of \mathbb{R}^2

• Scalar multiplication: $a \in F$ where F is a field R.

Consider a = -2

Then,
$$-2 \times \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$$

- It is clear that the resulting vector is outside V and hence it is not a vector space
- So, the first quadrant of R² is not a vector space whereas,
 R² is a vector space

• Let V be a set of vectors and F be a field. Then V is called a vector space over a field F if the following requirements are met

$$\forall x, y \in V, (x+y) \in V$$

$$\forall x \in V \text{ and } \forall a \in F, a \times x \in V$$

• In other words, a set of vectors is called a vector space if the set is closed under vector addition and scalar multiplication of a vector

Linear Combination

• The vector $\begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix}$ can be expressed as a linear combination of vectors

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ as below }$$

$$\begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix} \begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix}$$

Linear Combination

• A vector v can be written as a **linear** combination of vectors $u_1, u_2, u_3, ..., u_n$ such that

$$v = c_1 u_1 + c_2 u_2 + ... + c_n u_n$$

where $c_1, c_2, ..., c_n$ are all scalars

Linear Combination

• Geometrically, we may see the linear combination as –

• We have the vector \vec{w} which is expressed as a linear combination of the other two vectors \vec{u} and \vec{v}

All possible linear combinations gues me the plane

いこしょ V= (1) $d\left(\frac{1}{2}\right) + b\left(\frac{1}{4}\right)$ - (2 + 2 B) = 2 + d= All possible combinations give me a line only. (atab)

Subspace

- R^2 satisfies the conditions for a vector space vector addition and scalar multiplication
- What about the line 2x y = 0? Does it satisfy the conditions?

Answer: Yes

Any line which passes through the origin in R^2 is a subspace of R^2

Subspace

- A subspace of a vector space is a nonempty subset that satisfies the requirements for a vector space
 - Vector addition: For any vectors x, y in the subspace, x + y is in the subspace
 - Scalar multiplication: For any scalar c, cx is in the subspace
- Column space: Contains all linear combinations of the columns of A
- Row space: Contains all linear combinations of the rows of A

Subspace

<u>Is column space a subspace?</u>

• Column space contains all linear combinations of the columns of A

•
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 4 \\ 0 & 1 \end{bmatrix}$$
; Column space of A contains all linear combinations of

$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
 and
$$\begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix}$$

• If we take all the linear combinations of the columns in A, it will fill a plane in $R^3 \Rightarrow$ it is a subspace of R^3

Linear Dependence & Independence

• Linearly independent:

• Linearly dependent:

25 u=2v, h,v are hmany dependent.

u, v, w.

u= dv+ B(w), u,v, ware hoursby
dependent.

Linear Independence

• A set of vectors $\{v_1, v_2, v_3, ..., v_n\}$ is said to be **linearly independent** if $c_1 = c_2 = c_3 = ... = c_n = 0$ is the only solution to the following equation

$$c_{1}v_{1}+c_{2}v_{2}+c_{3}v_{3}+\ldots+c_{n}v_{n}=0$$

where so is $c_{1}=c_{2}=c_{3}=c_{4}$

- Any one vector in the set cannot be expressed as a linear combinations of the rest of the vectors in the set
- If any other combination gives zero, they are **linearly dependent** and at least one of them is a linear combination of the others

u, v, ware limerly adipendent og. u= v+ m. (Gren) c'n+ c5n+ c8m=0 ()u + (-i)v + (-i)w = 0one son ci= c2= c3 = 0 $\begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix} \begin{pmatrix} x \\ -x \\ -d \end{pmatrix}$ Cz = 1 (3 = -1. dis a suder you get non zero solt. '
denarly dependent!

$$V = -2u - w$$

$$V' = -\frac{v - w}{2}$$

$$v' = -2u - v$$

w, v, w (, W+ C2V+ (3W=0 only solt is (1=12=13=0 c, u = - c2 v - c3 w. (0) u= (0) v + () w. Cannot dived by o 9 unnit write unit write U an a combination of v. w w, w MY V " w, V

Linear Independence

Example:

• Consider the set $V = \{ [1,0,0]^T, [0,1,0]^T, [0,0,1]^T \}$. Now we represent the zero vector as

$$c_{I} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_{2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The only values c_1 , c_2 and c_3 can take in the above equation is zero. So, the set V is linearly independent

Linear Dependence & Independence

Example:

Here, in addition to the solution $c_1 = c_2 = c_3 = 0$, there exists other solutions such as $c_1 = c_2 = -1$ and $c_3 = 1$. So they are linearly dependent on each other. Hence one can be expressed in terms of the rest. For instance,

ere,
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Hence the vectors are linearly dependent on each other

And
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ lit?

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

And $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Linear Dependence & Independence

- So the vectors $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ are linearly dependent
- The vectors $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ are linearly dependent or independent?
- Answer: Linearly independent
- Zero is the only value that c_1 and c_2 could take in

$$c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- Basis: A basis for a vector space is a set of vectors having two properties at once: bufficent to generale every other vector!
 - (It is linearly independent
 - It spans the space, i.e. a linear combination of the basis vectors can generate any other vector in the vector space
- In more general terms, a basis is a linearly independent spanning set
- Standard basis:

2D:

• **Span:** Span of a vector set *V* refers to the vector space generated by all possible linear combinations of vectors present in *V*

Example: Consider the vector set $V = \{[1,0,0]^T, [0,1,0]^T, [0,0,1]^T\}$. The span of V is R^3 . This means that the possible linear combinations of the vectors of V fill the complete R^3 space

• **Dimension:** The maximum number of linearly independent vectors that can be obtained from a vector space is called the **dimension** of that vector space

• $V = \{(1,0,0), (0,1,0), (-2,0,0)\}$ • Spans a plane (the x-y plane) in R^3 informator

• The vector (-2,0,0) and (1,0,0) are linearly dependent

• Hence, the vector set V doesn't form a basis in \mathbb{R}^3

• Dimension = 2

- $V = \{(1,0,0), (-2,0,0)\}$ (3,0,0) Spans only a line (1 dimensional)
- Linearly dependent

-y

- Hence *V* doesn't form a basis in R^3
- Dimension

(-2,0,0)

- $V = \{(1,0,0), (0,1,0)\}$
- Spans a plane (the x–y plane) in R^3
- Linearly independent
- Hence, *V* is a basis for the *x*–*y* plane
- Dimension = 2

- $V = \{(1,0,0), (0,1,0), (0,0,1)\}$
- Spans the whole space R^3
- Linearly independent
- So, V is a basis for the space R^3
- Dimension = 3

Rank of a Matrix

- Rank of a matrix refers to the number of linearly independent rows or columns of the matrix: Dimension of column space= Dimension of row space
- It can also be viewed as the number of pivots in Gaussian elimination process

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 4 & 4 \\ 3 & 4 & 8 & 0 \end{bmatrix}$$

Number of linearly independent rows = 2

 \Rightarrow Rank of the matrix = 2

A: men m wws, n whomas. Row rank: It independent nows Column rank: H unde pendent columns Row rank = column nank!] - rank of matrix (2 (3) (2) (4) row rank = 1 (8) when rank also = 1 A: mxn 2 rd row = 2 (1st row) m: 2 n=4

Lach in a 2D victor

Nex pissible vectors w2)=2. row rank: 2 (as rows are independent) column rank: (Le columno) mex possible column ranks Mex possible now rank = 2

1: too 2 x100. Mox rank 2 matrix (2). Why? mox rowrant = 2 mex colt rank = 2 rank (A) ≤ 2 $A: 75 \times (25:)$ 50 8100 rank (A) < 25 rank (A) = 50 row rock > 78 Wh rat 525 A: mxn vane (A) < min (min)

A: 15 1 2 33 94 P2-5 2 4 6 8 Data collected. rank(A)= 1 < mm (2, 4) Even though there are 4 depots & 2 products, sales 9 produit are defendant. Relationship between P1 & P2. rank =1 tells you the sales are "my cells" related to each other

When does solution exist?

b count be written as combinator of alumn of A No solution

b not in plane

Library Jacob

At least one solution exists

b in plane

M=2, N=2.

$$\begin{cases}
1 & 3 \\
2 & 4
\end{cases}$$

$$\begin{cases}
1 & 2 \\
3 & 4
\end{cases}$$

$$\begin{cases}
1 & 2 \\
2 & 4
\end{cases}$$

$$\begin{cases}
1 & 2 \\
3 & 4
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 & 6
\end{cases}$$

$$\begin{cases}
1 & 2 \\
4 &$$

• Uniqueness?

- The null space of a matrix **A** consists of all vectors x such that Ax = 0
- The set of solutions (x's) in Ax = 0 is itself a vector space which is called as a null space of A

$$N(\mathbf{A}) = \{ x \in \mathbb{R}^n / \mathbf{A}x = \mathbf{0} \}$$

- If the column vectors are linearly independent, the null space contains only the zero vector
- The null space of an invertible matrix contains only zero vector

To find null space for the matrix $A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 2 & 3 \end{bmatrix}$

• Null space: $N(A) = \{x \in R^n / Ax = 0 \}$

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & 2 & 2 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \\ 1 & 2 & 2 & 3 & | & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} R_3 = R_3 - R_1 \\ R_3 = R_3 - R_1 \end{bmatrix}} \begin{bmatrix} 1 & 1 & 2 & 2 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \end{bmatrix}$$

We have the equations:

$$x_1 + 2x_3 + x_4 = 0 \Rightarrow x_1 = -2x_3 - x_4$$

 $x_2 + x_4 = 0 \Rightarrow x_2 = -x_4$

$$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

• N(A) = scalar multiples of the vectors $\begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$

- If the vectors are linearly independent, the null space contains only the zero vector
- The vectors $\begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix}$ and $\begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}$ are linearly independent
- What is the null space of $\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$?

•
$$\mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
. What are the values of x_1 and x_2 ?

• We have –

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- $x_1 = 0$ and $x_2 = 0$ is the only solution that the system of equations could take
- ⇒ If the vectors are linearly independent, the null space contains only the zero vector

- If the vectors are linearly independent, the null space contains only the zero vector. What about the dependent vectors?
- Consider two dependent vectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$
- What is the null space of $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$?
- $\mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- $x_1 = ?$ and $x_2 = ?$

• We have –

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We have the equations –

$$x_1 + 2x_2 = 0 \Rightarrow x_1 = -2x_2$$

$$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

- We have $N(A) = \text{scalar multiples of the vector} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$
- If the vectors are linearly dependent, the null space also contains non-zero vector(s)

Null Space: Cause of Non-Uniqueness

- Solutions of Ax = b with A having n columns.
- Solution does not exist if **b** does not belong to the column space of **A**
- At least one solution exists if b belongs to the column space of A
 - Solution unique if null space of A has only the zero vector
 - Infinite solutions if null space of **A** has non-zero vectors

(): mxn.

- Ax = b has no solution or is inconsistent iff rank(A) < rank(augmented matrix [A b])
 [b does not belong to column space of A]
- Ax = b has a unique solution iff
 rank(A) = rank(augmented matrix [A b]) = n
 [b belongs to column space of A and null space of A has only the zero vector]
- Ax = b has infinitely many solutions iff rank(A) = rank(augmented matrix [A b]) < n
 [b belongs to column space of A and null space of A has non-zero vectors as well]

$$| rank(\lambda) = 2 = n$$

$$| rank(\Lambda ay) = 2 = n$$

$$| rank(\Lambda ay) = 2 = n$$

$$| rank(\Lambda ay) = 2 = 1$$

$$| rank(\Lambda ay) = 2 = 1$$

$$| rank(\Lambda ay) = 2 = 2$$

$$| rank(\Lambda ay) = 2$$

$$| rank(\Lambda ay) = 2 = 2$$

A: mxn:
$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$

Anymented matrix
$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 \end{bmatrix} = rank = rank (A)$$

RHS is contained in A!

$$A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$rank = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 1 \end{bmatrix} = 2 + rank (A)$$

$$rank = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 1 \end{bmatrix} = 2 + rank (A)$$

No solution

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$$
 $b = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$

rank $(A) = 2$ rank $(Ang) = 2$

ungue solution exists:

Consider the system,

$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \\ 3 \end{bmatrix}$$

• We will include the right hand side as an extra column to **A**. That matrix is called as an 'Augmented matrix' –

$$\begin{bmatrix} 2 & 1 & 1 & 8 \\ 3 & 1 & 2 & 12 \\ 1 & 0 & 1 & 3 \end{bmatrix}$$

• The system is inconsistent as the rank(A) < rank(augmented matrix)

Consider the system,

$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 11 \\ 6 \end{bmatrix}$$

• The system has a unique solution as the rank(\mathbf{A}) = rank(augmented matrix) = n

Consider the system,

$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 11 \\ 3 \end{bmatrix}$$

• The system has infinitely many solutions as the rank(\mathbf{A}) = rank(augmented matrix) < n