FORMULARI/FORMULARIO

TEMA 1: EFECTOS ELÉCTRICOS DE CARGAS PUNTUALES

- Fuerza eléctrica sobre carga q_0 por cargas puntuales q_i : $\vec{F} = \sum_{i=1}^n \vec{F}_i = K \cdot q_0 \cdot \sum_{i=1}^n \frac{q_i}{r_i^2} \cdot \vec{u}_i$
- Campo eléctrico creado por varias cargas puntuales: $\vec{E} = \sum_{i=1}^{n} \vec{E}_i = K \cdot \sum_{i=1}^{n} \frac{q_i}{r_i^2} \cdot \vec{u}_i$
- Potencial eléctrico creado por varias cargas puntuales: $V = K \cdot \sum_{i=1}^{n} \frac{q_i}{r_i}$
- Relación entre vector campo eléctrico y potencial: $\vec{E} = -\nabla V$; $V_b V_a = -\int_a^b \vec{E} \cdot d\vec{l}$

Trabajo para llevar q_0 desde punto 1 hasta 2 y relación con potencial y energía potencial:

$$W = \int_{1}^{2} \vec{F} \cdot d\vec{r} = q_{0}(V_{2} - V_{1}) = -\Delta U$$

- Momento dipolar de un dipolo eléctrico: $\ \vec{p} = q \cdot \vec{d}$
- Momento (par de fuerzas) sobre un dipolo $\, \vec{p} \,$ inmerso en un campo eléctrico: $\, \vec{\tau} = \vec{p} \times \vec{E} \,$
- Energía potencial de un dipolo $\, \vec{p} \,$ inmerso en un campo eléctrico: $U = \vec{p} \cdot \vec{E} \,$
- Aceleración de una partícula cargada en un campo eléctrico: $\vec{a}=q\cdot\vec{E}\,/\,m$
- Energía de una partícula cargada moviéndose en campo eléctrico $E=E_C+U=\frac{1}{2}\cdot m\cdot v^2+q\cdot V$

TEMA 2: DISTRIBUCIONES DE CARGA. CAPACIDAD Y ENERGÍA ELECTROSTÁTICA

- Densidad lineal, superficial y volumétrica de carga: $\lambda = \frac{dq}{dl}$; $\sigma = \frac{dq}{dS}$; $\rho = \frac{dq}{dV}$
- Flujo eléctrico a través de una superficie abierta: $\phi_E = \int_S \vec{E} \cdot d\vec{S}$
- Ley de Gauss (flujo eléctrico a través de una superficie cerrada): $\int_{SC} \vec{E} \cdot d\vec{S} = \frac{Q_{encerrada}}{\mathcal{E}_0}$
- Campo eléctrico creado por una línea cargada con λ : $E = \frac{\lambda}{2\pi\varepsilon_0 r}$
- Campo eléctrico en proximidades de plano indefinido $E=rac{\sigma}{2arepsilon_0}$;
- Campo eléctrico en proximidades de superficie conductor $E=rac{\sigma}{arepsilon_0}$
- Capacidad de un condensador : $C = \frac{Q}{V}$ Condensador plano-paralelo: $C = \frac{\varepsilon_0 \cdot S}{d}$
- Condensador cilíndrico($R_b > R_a$): $C = \frac{2\pi \, \varepsilon_0 \cdot L}{\ln(R_b / R_a)}$ Diferencia potencial: $V = E \cdot d$
- Asociación de condensadores: en serie: $\frac{1}{C_T} = \sum_i \frac{1}{C_i}$; y paralelo: $C_T = \sum_i C_i$;

Fundamentos Físicos de la Informática Fonaments Físics de la Informàtica

FORMULARIO FORMULARI

$$\text{Condensador con dieléctrico:} \quad C = k \cdot C_0 \, ; \quad V = \frac{V_0}{k} ; \quad E = \frac{E_0}{k} ; \quad \varepsilon_r = \frac{\varepsilon}{\varepsilon_0} = k$$

Energía almacenada en un condensador:
$$U = \frac{1}{2}Q\cdot V = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}C\cdot V^2$$

Densidad de energía y energía total del campo eléctrico:
$$u_E = \frac{1}{2} \cdot \varepsilon_0 \cdot E^2$$
 ; $U = \int_V u_E \cdot dV$

TEMA 3: CORRIENTES ELÉCTRICAS

Intensidad de corriente:
$$I = \frac{dQ}{dt}$$
 $I = n q S v_a$

Intensidad de corriente:
$$I = \frac{dQ}{dt}$$
 $I = n \ q \ S \ v_a$ Densidad de corriente: $\vec{j} = \frac{dI}{dS_N} \vec{u}$ \Rightarrow $I = \int_S \vec{j} \cdot d\vec{S}$ j uniforme: $j = \frac{I}{S_N} = n \ q \ v_a$

Ley de Ohm:
$$V = R \cdot I$$
 ;

Resistencia:
$$R = \rho \cdot \frac{L}{S}$$
;

Conductividad:
$$\sigma = \frac{1}{\rho}$$

Asociación de resistencias en serie:
$$R_e = \sum_i R_i$$
; y en paralelo: $\frac{1}{R_e} = \sum_i \frac{1}{R_i}$

Ley de Ohm vectorial:
$$\vec{j} = \sigma \cdot \vec{E}$$
 ;

Potencia aportada a un tramo de circuito recorrido por
$$I$$
: $P = I \cdot V$

Potencia disipada en resistencia:
$$P = I^2 R = \frac{V^2}{R}$$
;

Corriente en un diodo en relación con la tensión V aplicada:
$$I = I_0 \Bigg[\exp igg(V_{V_T} igg) - 1 \Bigg]$$

Siendo
$$V_T \cong 25.85 \text{ mV}$$
 a 300 K, e $I_0 \cong 10^{-12} \text{ A}$

TEMA 4: FUNDAMENTOS DE MAGNETISMO

Fuerza magnética carga q con velocidad
$$ec{v}$$
 en $ec{B}$: $ec{F}_{_m} = q \cdot \left(ec{v} imes ec{B} \,
ight)$

Fuerza de Lorentz:
$$\vec{F} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$$

Partícula cargada en interior de campo magnético uniforme, siendo $ec{v}~$ perpendicular a $ec{B}$:

Movimiento circular uniforme de radio:
$$r = \frac{m \cdot v}{q \cdot B}$$
 $w = \frac{v}{r} = \frac{q}{m} \cdot B$ $w = 2\pi f$ $f = \frac{1}{T}$

Fuerza sobre un tramo recto de corriente:
$$\vec{F} = I \cdot \vec{l} \times \vec{B}$$

Fuerza sobre un tramo cualquiera de corriente:
$$\ \vec{F} = I \cdot \int_L \ d\vec{l} \times \vec{B}$$

Fuerza por unidad de longitud entre corrientes rectilíneas:
$$f = \frac{F}{I} = \frac{\mu_0 I_1 \cdot I_2}{2 \pi d}$$

Momento dipolar magnético:
$$\vec{m} = I \cdot \vec{S}$$
 ;

Espira de momento dipolar
$$\vec{m}$$
 inmersa en un campo magnético :

Momento:
$$\vec{ au} = \vec{m} \times \vec{B}$$
 y energía potencial: $U = -\vec{m} \cdot \vec{B}$;

Fundamentos Físicos de la Informática Fonaments Físics de la Informàtica

Ley de Biot-Savart:
$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I \, d\vec{l} \times \vec{u}_r}{r^2}$$

Campo magnético en el centro de una espira circular de radio
$$R$$
:
$$B = \frac{\mu_0 \cdot I}{2R}$$

Flujo de campo magnético :
$$\phi_B = \int_S \vec{B} \cdot d\vec{S}$$
; Ley de Gauss para campo magnético : $\phi_B = \oint_{SC} \vec{B} \cdot d\vec{S} = 0$

Ley de Ampère:
$$\oint_L \vec{B} \cdot d\vec{l} = \mu_0 \cdot I_e$$

Campo magnético corriente rectilínea:
$$B = \frac{\mu_0 \cdot I}{2\pi r}$$
 y en el interior de solenoide: $B = \mu_0 \cdot n \cdot I$

TEMA 5: INDUCCIÓN ELECTROMAGNÉTICA

F.e.m. inducida:
$$\varepsilon = -\frac{d\phi}{dt}$$
 $\varepsilon = \oint_{l} \vec{E} \cdot d\vec{l} \implies \oint_{l} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \left(\int_{s} \vec{B} \cdot d\vec{s} \right)$

Flujo magnético de N espiras que giran con w constante en B uniforme:

$$\phi = NBS \cos wt$$
 Siendo: $w = \frac{2\pi}{T}$; $T = \frac{1}{f}$; $w = 2\pi f$

Ejemplo: expresiones del campo eléctrico y magnético

Autoinducción
$$L=rac{\phi_{\scriptscriptstyle B}}{I} \;\;\Rightarrow\;\;\;\;\; arepsilon=-L\,rac{dI}{dt}$$

Autoinducción en un solenoide:
$$L = \frac{\phi_B}{I} = \mu_0 \frac{N^2 S}{l} = \mu_0 n^2 S l$$

Asociación de autoinducciones: en serie:
$$L_e = \sum_i L_i$$
 y en paralelo: $\frac{1}{L_e} = \sum_i \frac{1}{L_i}$

Energía almacenada en autoinducción :
$$U = \frac{1}{2}L \cdot I^2$$

Densidad de energía y energía magnética:
$$u_B = \frac{1}{2} \cdot \frac{B^2}{\mu_0}$$
 $U_B = \int_V u_B dV$

Campo en un material:
$$\vec{B}=\mu_0(\vec{H}+\vec{M}\,)=\mu H=\mu_r \vec{B}_{_{ext}}$$

TEMA 6: ONDAS ELECTROMAGNÉTICAS

$$\begin{split} \oint \vec{E} \bullet d\vec{S} &= \frac{q_i}{\varepsilon_0} \\ \oint \vec{B} \bullet d\vec{S} &= 0 \\ \oint \vec{E} \bullet d\vec{l} &= -\frac{d}{dt} \int \vec{B} \bullet d\vec{S} \end{split} \qquad \text{si la propagación se realiza en sentido positivo del ejector } \\ E_Z(y,t) &= E_0 \sin(\omega t - ky) \\ B_X(y,t) &= B_0 \sin(\omega t - ky) \\ \oint \vec{E} \bullet d\vec{l} &= \mu_0 I + \mu_0 \varepsilon_0 \frac{d}{dt} \int \vec{E} \bullet d\vec{S} \end{split}$$

Velocidad de la onda:
$$v = \frac{1}{\sqrt{\mu \varepsilon}}$$
; $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.995 \cdot 10^8 m/s$

Fundamentos Físicos de la Informática Fonaments Físics de la Informàtica

FORMULARIO FORMULARI

Vector de Poynting:
$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0} \, [\text{W/m}^2]$$

Intensidad media:
$$I_m = S_m = \frac{1}{2\mu_0} E_0 B_0 = \frac{1}{2} \varepsilon_0 E_0^2 c = \frac{cB_0^2}{2\mu_0}$$
 [W/m²]

Densidad de energía electromagnética:
$$u=u_E+u_B=rac{1}{2}arepsilon_0 E^2+rac{B^2}{2\mu_0}=arepsilon_0 E^2=B^2/\mu_0$$

Índice de refracción:
$$n = \sqrt{\varepsilon_r \mu_r} = \frac{c}{v}$$

TEMA 7: CIRCUITOS DE CORRIENTE CONTINUA

Generador real:
$$V_{+} - V_{-} = \varepsilon - I \cdot r$$
; Motor real: $V_{+} - V_{-} = \varepsilon' + I \cdot r'$

Intensidad para una sola malla:
$$I = \frac{\sum\limits_{i} \mathcal{E}_{i}}{R_{-}}$$
; Más de una malla: métodos de resolución de circuitos

Diferencia de potencial:
$$V_{_A} - V_{_B} = \sum_i I_{_i} \cdot R_{_i} - \sum_i \varepsilon_{_j}$$

Generador real, potencia aportada:
$$P_{_{\!AP}}=arepsilon\!\!I-I^2\cdot r$$

Receptor real, potencia consumida:
$$P_{\scriptscriptstyle C} = arepsilon \! I + I^2 \cdot r$$

TEMA 8: CORRIENTE ALTERNA

Corriente y voltaje alternos:
$$I = I_0 \cdot sen\left(wt + \alpha\right)$$
; $\varepsilon = \varepsilon_0 \cdot sen\left(wt + \theta\right)$; $\varepsilon_0 = NBSw$

Representación fasorial:
$$\overline{\varepsilon}=arepsilon_{e}$$
 $\boxed{\underline{\theta}}$ $\overline{I}=I_{e}$ $\underline{\underline{\alpha}}$

Valores eficaces:
$$I_e = \frac{I_0}{\sqrt{2}}$$
 $\varepsilon_e = \frac{\varepsilon_0}{\sqrt{2}}$

Resistencia:
$$\overline{R} = \frac{\overline{V}}{\overline{I}} = \frac{V_e}{I_e} \frac{|\varphi|}{|\varphi|} = R \frac{|0^{\circ}|}{|\varphi|} = R$$

Reactancia capacitiva:
$$\overline{X}_C = \frac{\overline{V}}{\overline{I}} = \frac{V_e | \varphi}{I_e | \varphi + 90^\circ} = X_L | \underline{-90^\circ} = -j X_C$$
 siendo: $X_C = I/Cw$

Impedancia:
$$\overline{Z} = \frac{\overline{V}}{\overline{I}} = \frac{V | \theta}{I | \alpha} = Z | \underline{\varphi}$$

Asociación de impedancias: Serie:
$$\overline{Z}_T = \sum_i \overline{Z}_i$$
; Paralelo: $\frac{1}{\overline{Z}_T} = \sum_i \frac{1}{\overline{Z}_i}$

Potencia compleja:
$$\overline{S} = S \left| \underline{\varphi} = \overline{V} \cdot \overline{I}^* = V_e \ I_e \ \right| \underline{\varphi} = P + jQ$$

Siendo:
$$P_{aparente} = I_e V_e$$
; $P_{activa} = I_e V_e \cdot \cos \varphi$ y $P_{reactiva} = I_e V_e \cdot sen \varphi$