Matemática Discreta

Relação de equipotência e teoremas de Cantor, Dedekind-Cantor e Schröder-Bernstein

Universidade de Aveiro 2020/2021

Moodle http://elearning.ua.pt

MS Teams http://bit.ly/30oFHIB

Conjuntos equipotentes

Definição (de conjuntos equipotentes)

Dois conjuntos A e B dizem-se equipotentes (ou numericamente equivalentes) se existe uma bijecção $f: A \rightarrow B$.

Conjuntos equipotentes

Definição (de conjuntos equipotentes)

Dois conjuntos A e B dizem-se equipotentes (ou numericamente equivalentes) se existe uma bijecção $f: A \rightarrow B$.

 Quando A e B são equipotentes, dizemos que têm a mesma cardinalidade ou o mesmo número cardinal.
(Notação: |A| denota a cardinalidade de A).

Conjuntos equipotentes

Definição (de conjuntos equipotentes)

Dois conjuntos A e B dizem-se equipotentes (ou numericamente equivalentes) se existe uma bijecção $f: A \rightarrow B$.

 Quando A e B são equipotentes, dizemos que têm a mesma cardinalidade ou o mesmo número cardinal.
(Notação: |A| denota a cardinalidade de A).

Exemplos de conjuntos

equipotentes:

- 1) \mathbb{N} e \mathbb{N}_0 , onde $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$;
- 2) N e Z;

não equipotentes

- 3) $\{1,2,3\}$ e $\{a,b\}$;
- 4) Ne R

Cardinalidade finita e infinita

Um conjunto finito diz-se que tem cardinalidade finita. Um conjunto infinito diz-se que tem cardinalidade infinita.

Cardinalidade finita e infinita

Um conjunto finito diz-se que tem cardinalidade finita. Um conjunto infinito diz-se que tem cardinalidade infinita.

Se o conjunto A é finito e $f:[n] \to A$ é uma bijecção, então |A| = n e a cardinalidade de A é o número de elementos de A.

Cardinalidade finita e infinita

Um conjunto finito diz-se que tem cardinalidade finita. Um conjunto infinito diz-se que tem cardinalidade infinita.

Se o conjunto A é finito e $f:[n] \to A$ é uma bijecção, então |A| = n e a cardinalidade de A é o número de elementos de A. Nota: $|\emptyset| = 0$.

Cardinalidade finita e infinita

Um conjunto finito diz-se que tem cardinalidade finita. Um conjunto infinito diz-se que tem cardinalidade infinita.

Se o conjunto A é finito e $f:[n] \to A$ é uma bijecção, então |A| = n e a cardinalidade de A é o número de elementos de A. Nota: $|\emptyset| = 0$.

N tem cardinaldade infinita.

Observação: ℵ₀ denota a cardinalidade de №

e, consequentemente, também a de \mathbb{Z} e \mathbb{N}_0 ,

ou seja, $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{N}_0| = \aleph_0$.

• Dados dois conjuntos A e B, diz-se que a cardinalidade de A é não superior à cardinalidade de B (e escreve-se $|A| \le |B|$) se existe uma função injectiva $f: A \to B$.

- Dados dois conjuntos A e B, diz-se que a cardinalidade de A é não superior à cardinalidade de B (e escreve-se $|A| \le |B|$) se existe uma função injectiva $f: A \to B$.
- Se $|A| \le |B|$ e os conjuntos não são equipotentes, então diz-se que a cardinalidade de A é menor que a cardinalidade de B e escreve-se |A| < |B|.

- Dados dois conjuntos A e B, diz-se que a cardinalidade de A é não superior à cardinalidade de B (e escreve-se $|A| \le |B|$) se existe uma função injectiva $f: A \to B$.
- Se $|A| \le |B|$ e os conjuntos não são equipotentes, então diz-se que a cardinalidade de A é menor que a cardinalidade de B e escreve-se |A| < |B|.

Teorema (de Cantor)

Dado um conjunto X, verifica-se a desigualdade $|X| < |\mathcal{P}(X)|$.

- Dados dois conjuntos A e B, diz-se que a cardinalidade de A é não superior à cardinalidade de B (e escreve-se $|A| \le |B|$) se existe uma função injectiva $f: A \to B$.
- Se $|A| \le |B|$ e os conjuntos não são equipotentes, então diz-se que a cardinalidade de A é menor que a cardinalidade de B e escreve-se |A| < |B|.

Teorema (de Cantor)

Dado um conjunto X, verifica-se a desigualdade $|X| < |\mathcal{P}(X)|$.

Logo,

$$|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \cdots$$

e, consequentemente, existe uma infinidade de números cardinais infinitos.

Conjuntos numeráveis

Definição (de conjunto numerável)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} . Caso contrário, diz-se que A é não numerável.

Conjuntos numeráveis

Definição (de conjunto numerável)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} . Caso contrário, diz-se que A é não numerável.

Sendo *A* um conjunto não vazio, prova-se que as proposições a seguir indicadas são equivalentes:

- (a) A é numerável;
- (b) existe uma função sobrejetiva $f: \mathbb{N} \to A$;
- (c) existe uma função injetiva $g: A \to \mathbb{N}$.

Conjuntos numeráveis

Definição (de conjunto numerável)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} . Caso contrário, diz-se que A é não numerável.

Sendo *A* um conjunto não vazio, prova-se que as proposições a seguir indicadas são equivalentes:

- (a) A é numerável;
- (b) existe uma função sobrejetiva $f: \mathbb{N} \to A$;
- (c) existe uma função injetiva $g: A \to \mathbb{N}$.

Qualquer conjunto infinito A contém um subconjunto infinito numerável, ou seja, existe uma função injectiva $f: \mathbb{N} \to A$

Exemplos

Exemplos

de conjuntos numeráveis:

- 1) $\{a, b, c, d\}$;
- 2) N;
- 3) **Z**;
- 4) \mathbb{N}_0 ;

de conjunto não numerável:

5) ℝ.

Teoremas de Dedekind-Cantor e de Schröder-Bernstein

Teorema (de Dedekind-Cantor)

Um conjunto é infinito se e só se é equipotente a um subconjunto próprio.

Teoremas de Dedekind-Cantor e de Schröder-Bernstein

Teorema (de Dedekind-Cantor)

Um conjunto é infinito se e só se é equipotente a um subconjunto próprio.

Teorema (de Schröder-Bernstein)

Sejam X e Y dois conjuntos. Se $f: X \to Y$ e $g: Y \to X$ são funções injectivas, então existe uma bijecção $h: X \to Y$.

Referências bibliográficas

Referência bibliográfica:

D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2008.