"Speech and Language Processing" Dan Jurafsky and James H. Martin

(3rd ed. draft)

https://web.stanford.edu/~jurafsky/slp3/

Precision, Recall, and F measure

Evaluation

Let's consider just binary text classification tasks Imagine you're the CEO of Delicious Pie Company You want to know what people are saying about your pies

So you build a "Delicious Pie" tweet detector

- Positive class: tweets about Delicious Pie Co
- Negative class: all other tweets

The 2-by-2 confusion matrix

relevant elements

gold positive gold negative

system positive system negative

system

output

labels

recall

$$\frac{\text{retrieved elements}}{\text{precision}} = \frac{tp}{tp+fp}$$

false negative | true negative

$$\frac{precision = \frac{1}{tp+f}}{accuracy = \frac{tp}{tp+f}}$$

Evaluation: Accuracy

Why don't we use accuracy as our metric?

Imagine we saw 1 million tweets

- 100 of them talked about Delicious Pie Co.
- 999,900 talked about something else

We could build a dumb classifier that just labels every tweet "not about pie"

- It would get 99.99% accuracy!!! Wow!!!!
- But useless! Doesn't return the comments we are looking for!
- That's why we use precision and recall instead

Evaluation: Precision

% of items the system detected (i.e., items the system labeled as positive) that are in fact positive (according to the human gold labels)

$$\frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$

How many retrieved items are relevant?

How many relevant items are retrieved?

Precision =

Recall =

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

Evaluation: Recall

% of items actually present in the input that were correctly identified by the system.

$$\mathbf{Recall} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$$

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

Why Precision and recall

Our dumb pie-classifier

Just label nothing as "about pie"

Recall = 0

(it doesn't get any of the 100 Pie tweets)

Precision and recall, unlike accuracy, emphasize true positives:

• finding the things that we are supposed to be looking for.

A combined measure: F

F measure: a single number that combines P and R:

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

We almost always use balanced F_1 (i.e., $\beta = 1$)

$$F_1 = \frac{2PR}{P+R}$$

Development Test Sets ("Devsets") and Cross-validation

Training set

Development Test Set

Test Set

Train on training set, tune on devset, report on testset

- This avoids overfitting ('tuning to the test set')
- More conservative estimate of performance
- But paradox: want as much data as possible for training, and as much for dev; how to split?

Cross-validation: multiple splits

Pool results over splits, Compute pooled dev performance

Evaluation with more than two classes

Confusion Matrix for 3-class classification

		g	gold labels	\mathbf{S}	
		urgent	normal	spam	
	urgent	8	10	1	$\mathbf{precisionu} = \frac{8}{8+10+1}$
system output	normal	5	60	50	$\mathbf{precision} = \frac{60}{5+60+50}$
	spam	3	30	200	precision s= $\frac{200}{3+30+200}$
		recallu =	recalln =	recalls =	
		8	60	200	
		8+5+3	10+60+30	1+50+200 [±]	

How to combine P/R from 3 classes to get one metric

Macroaveraging:

 compute the performance for each class, and then average over classes

Microaveraging:

- collect decisions for all classes into one confusion matrix
- compute precision and recall from that table.

Macroaveraging and Microaveraging ...

	urgent	normal	spam
urgent	8	10	1
normal	5	60	50
spam	3	30	200

Class	1:	Urgent
-------	----	---------------

	uuc	uue
	urgent	not
system urgent	8	11
system	8	340

true

precision =
$$\frac{8}{9+11}$$
 = .42

Class 2: Normal

	true	true
	normal	not
system normal	60	55
system not	40	212

precision =
$$\frac{60}{60+55}$$
 = .52

Class 3: Spam

	true spam	true not
system spam	200	33
system not	51	83

precision =
$$\frac{200}{200+33}$$
 = .86

precision =
$$\frac{8}{8+11}$$
 = .42 precision = $\frac{60}{60+55}$ = .52 precision = $\frac{200}{200+33}$ = .86 microaverage precision = $\frac{268}{268+99}$ = .73

$$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$$