Билет 4. Префиксные суммы

Определение

Префиксная сумма (prefix sum) массива $a[0\mathinner{.\,.} n-1]$ — это массив $p[0\mathinner{.\,.} n],$ где:

$$p[i] = \sum_{j=0}^{i-1} a[j] = a[0] + a[1] + \ldots + a[i-1]$$

Одномерные префиксные суммы

Формула

Сумма элементов на отрезке [l, r]:

$$sum(l,r) = p[r+1] - p[l]$$

Спожность

Временная сложность:

- Построение префиксного массива: $\Theta(n)$
- Запрос суммы на отрезке: $\Theta(1)$
- Память: $\Theta(n)$

Сравнение:

• Без префиксных сумм: запрос суммы за $\Theta(n)$

• C префиксными суммами: предобработка $\Theta(n)$ + запрос $\Theta(1)$

Выигрыш при множественных запросах!

Двумерные префиксные суммы

Определение

Для матрицы a[m][n] строится матрица p[m+1][n+1], где:

$$p[i][j] = \sum_{x=0}^{i-1} \sum_{y=0}^{j-1} a[x][y]$$

Формула

Сумма в прямоугольнике $[x_1, y_1]$ до $[x_2, y_2]$:

$$\operatorname{sum} = p[x_2+1][y_2+1] - p[x_1][y_2+1] - p[x_2+1][y_1] + p[x_1][y_1]$$

sum[3, 3] = p[4][4] - p[1][4] - p[4][1] + p[1][1]

Сложность

Для двумерного случая:

- Построение: $\Theta(m \cdot n)$
- Запрос суммы в прямоугольнике: $\Theta(1)$
- Память: $\Theta(m \cdot n)$