

HDSoCv1 Evaluation card rev2

High-Density Digitizer System on Chip Evaluation Board System Product Sheet

Features:

- 32 analog input channels
- 1.0 1.8 GSPS sampling rate
- 0.5-1.0 GSPS possible on request
- Input bandwidth > 500MHz
- Self and external triggering
- Individual channel configuration
- Trigger edge selectable (level and edge)
- 2.5V analog voltage input range
- 1.2V linear range with calibration
- Record length: 1,984 samples per channel

1. Description:

A variety of applications in modern particle imaging-based physics experiments utilize multiple imagers and high sampling rate data converters to digitize events lasting hundreds of nanoseconds in duration. The HDSoCv1 Eval Board System has 32 analog input channels and can digitize 410 nanoseconds at a sample rate of 1-1.8Gsa/sec. The eval board is paired with a Nexys Artix-7 FPGA FMC Board for control and communication to the ASIC.

1. Description: 1 2. Applications: 2 3. Connection Diagram: 2 3.1 Optional Adapter Cards 4 4. Communication Interfaces: 6 5. System Diagram and Internal Functions: 7 7 **5.1 System Level Block Diagram** 5.2 HDSoCv1 Eval Board Block Diagram 8 **5.3 HDSoCv1 ASIC Internal Functions** 8 6. General Specifications 8 Table 2: This table presents the general specifications for the software and HDSoCv1 EVBr2 10 **6.1 Digitization Rate** 10 7. Device Outline and Dimensions 10

2. Applications:

- SiPM array
- Photodiode array
- 3D imaging
- Streak camera
- LIDAR
- Medical Imaging
- Photosensor arrays
 - \circ PMT
 - o MA-PMT
 - o MCP-PMT
 - SiPM array

Order Code	Description	Cost (USD)		
HDSoCv1 FMC Eval Card	HDSoCv1 EVB r2	Quote		

3. Connection Diagram:

Figure 1: Connection Diagram for the HDSoCv1 EVBr2.

The Nexys Artix 7 Video Card is **required** to enable all functionality on the EVBr2. This includes using the board with NaluScope and optional functions such as external trigger setup and programming firmware. The Nexys board can receive power two ways. The power jack requires a coax center positive 2.1mm internal-diameter plug, and delivers $12VDC \pm 5\%$. The minimum current rating of the supply depends on the actual design implemented in the FPGA, but at least 3A of current (i.e. at least 36W of power) is recommended. If there is no wall supply available, the Nexys can also be powered by connecting the positive pin of J22 and the negative terminal to the negative pin. Incorrect polarity may cause permanent damage to the board. The voltage of this battery must be $12V \pm 5\%$ where 15V is the absolute maximum. Please refer to the Nexys Video FPGA Board Reference Manual for more information.

3.1 Optional Adapter Cards

Included with the HDSoCv1 EVBr2 are two optional adapter cards which allow 32 analog inputs to be connected via MMCX cables.

analog inputs to be connected via wiwiCX cables.							
West HDI		East HDI		West HDI		East HDI	
Pin#	Description	Pin#	Description	Pin#	Description	Pin#	Description
1	3.3V	1	3.3V	46-48	Ground	46-48	Ground
2-4	Ground	2-4	Ground	49	W04	49	E04
5	W15	5	E15	50-52	Ground	50-52	Ground
6-8	Ground	6-8	Ground	53	W03	53	E03
9	W14	9	E14	54-56	Ground	54-56	Ground
10-12	Ground	10-12	Ground	57	W02	57	E02
13	W13	13	E13	58-60	Ground	58-60	Ground
14-16	Ground	14-16	Ground	61	WO1	61	E01
17	W12	17	E12	62-64	Ground	62-64	Ground
18-20	Ground	18-20	Ground	65	W00	65	E00
21	W11	21	E11	66-68	Ground	66-68	Ground
22-24	Ground	22-24	Ground	69	GPIO	69	GPIO
25	W10	25	E10	70	GPIO	70	GPIO
26-28	Ground	26-28	Ground				
29	W09	29	E09				
30-32	Ground	30-32	Ground				
33	W08	33	E08				
34-36	Ground	34-36	Ground				
37	W07	37	E07				

38-40

41

42-44

45

Ground

W06

Ground

W05

38-40

41

42-44

45

Ground

E06

Ground

E05

Table 1: Pinout for HDI adapters.

Figure 2: The East and West HDI adapters have different orientations. It is important to note that while the West and East HDI connectors have the same pinout, they are oriented differently. The image above shows the difference in pin placements for the West and East respectively. The component used for the HDI adapter is the ERM8-035-05.0-L-DV-TR. Please visit the Samtec website for more information on this component.

4. Communication Interfaces:

The system requires the use of a Micro USB cable to the Nexys Artix 7 Video Card for connecting and communicating with the ASIC.

- UART over USB, using virtual comport, up to 2M baud
- JTAG over USB for firmware updates
- Gigabit Ethernet (GbE)

Figure 3: Top view of the HDSoCv1 with the optional adapter cards.

Figure 4: The back of the HDSoCv1 EVB where the FMC connector is attached.

This connector mates with the Nexys Artix
7 Video Card.

5. System Diagram and Internal Functions:

5.1 System Level Block Diagram

Below is a functional block diagram of the entire system. The Nexys Artix 7 Video Card is connected to a PC via micro USB to program, control, and monitor using the NaluScope application. The FPGA is connected to the HDSoCv1 Eval Board via FMC connector.

Figure 5: System level block diagram of what is included in the entire system.

5.2 HDSoCv1 Eval Board Block Diagram

The following functional diagram highlights the important components on the HDSoCv1 Eval Board. An additional feature on the eval board is that it has 32 analog inputs.

Figure 6: Block diagram for the HDSoCv1 EVBr2. Highlighted in purple is the HDSoCv1.

5.3 HDSoCv1 ASIC Internal Functions

The functional block diagram below focuses on important internal functions of the ASIC on the eval board.

Figure 7: The diagram above exhibits an in-depth view of the important internal functions of the ASIC.

If you have any questions or would like to request more information please contact us.

6. General Specifications

PC Connectivity	UART over USB using virtual comport up to 2 Mbaud 10/100/ 1000BASE-T	
PC Connector Type	microUSB to USB-A	
Power Requirement	12V DC 3A	
Dimensions (EVB)	Length: 128mm, Width: 85mm, Height: ZZ mm	
Weight (EVB)	49g	
Dimensions (System)		
Weight (System)	200g (49g + 151g)	
Temperature Range	tbd	
Humidity Range	Operating: 5% to 80% RH non-condensing Storage: 5% to 95% RH non-condensing	
Software	NaluScope (Naludaq: Python package available upon request)	
PC Requirement	Processor, memory and disk space: as required by the operating system	

Table 2: This table presents the general specifications for the software and HDSoCv1 EVBr2

6.1 Digitization Rate

Simple readout mechanism: (externally trigger and get data from 32 channels)	All channels digitize in parallel in at most ~4 us per set of 32 samples		
data from 32 charmers,	Parallel Interface: (can be 2X, 4X, 8X clock • By default it is set at 2X (32ns per period)		
Serial Interface	Maximum rate supported ~ 40kHz/channel (for all channels) at a 4X clock rate		
Trigger Mode	Limit of about 25 kHz/channel with current clocking		

Table 3: The digitization rate of the HDSoCv1 EVBr2 system

7. Device Outline and Dimensions

Figure 5: HDSoCV1 EVBr2 Dimensions. Step model available upon request.

Figure 6: HDSoCv1 EVBr2 HDI Adapter Card Dimensions. Step model available upon request.