MC4010- Discrete Mathematics Set Theory

February 2023

Miss.S.Thawsika
Department of Inter Disciplinary Studies,
Faculty of Engineering,
University of Jaffna

Lecture slides prepared by Dr.P.Kathirgamanathan

1 Sets and Membership

A set is often described by a list of its elements between braces. For example,

$$S = \{1, 2, 3, 4, 5\}$$

is the set whose elements are the first 5 positive integers. The order in which the elements are listed is not important. For example, {1, 2, 3} and {2, 1, 3} represent the same set.

Sometimes it may be impossible to list the elements of a set. For example, one cannot list the set \mathbb{R} of all real numbers. Sometimes a partial list is given, when there are infinitely many elements in a set. For example,

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

represents the set of natural numbers (positive integers). The notation \mathbb{Z}^+ is also used to denote this set in some literature. The set of integers is denoted by

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}.$$

Notation

We shall generally use upper-case letters to denote sets and lower-case letters to denote elements. (This convention will sometimes be violated, for example when the elements of a particular set are themselves sets.) The symbol \in denotes 'belongs to' or 'is an element of'. Thus

 $a \in A$ means (the element) a belongs to (the set) A

and

 $a \notin A$ means $\neg (a \in A)$ or a does not belong to A.

 $D = \{ \}$, the **empty set** (or **null set**), which contains no elements. This set is usually denoted \emptyset .

 $\mathbb{N} = \{1, 2, 3, \ldots\}$ $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}.$

The set $\mathbb{Q} = \left\{ \frac{n}{m} \middle| m, n \in \mathbb{Z}, m \neq 0 \right\}$ is the set of all rational numbers. The set $\mathbb{C} = \left\{ x + yi \middle| x, y \in \mathbb{R} \right\}$ is the set of all complex numbers $(i^2 = -1)$.

Examples

1. The set B above could be defined as $B = \{n : n \text{ is an even, positive integer}\}$, or $B = \{n : n = 2m, \text{ where } m > 0 \text{ and } m \text{ is an integer}\}$, or, with a slight change of notation, $B = \{2m : m > 0 \text{ and } m \text{ is an integer}\}$.

Note that although the propositional functions used are different, the same elements are generated in each case.

- 2. The set C_n above could be defined as $C_n = \{p : p \text{ is an integer and } 1 \leq p \leq n\}$.
- 3. The set $\{1,2\}$ could alternatively be defined as $\{x: x^2 3x + 2 = 0\}$. We say that $\{1,2\}$ is the **solution set** of the equation $x^2 3x + 2 = 0$.
- 4. The empty set \varnothing can be defined in this way using any propositional function P(x) which is true for no objects x. For instance, rather frivolously,

$$\emptyset = \{x : x \text{ is a green rabbit with long purple ears}\}.$$

Equality of Sets

Two sets are defined to be **equal** if and only if they contain the same elements; that is, A = B if $\forall x [x \in A \leftrightarrow x \in B]$ is a true proposition, and conversely. The order in which elements are listed is immaterial. Also, it is the standard convention to disregard repeats of elements in a listing. Thus the following all define the same set:

$$\begin{aligned} &\{1,-\frac{1}{2},1066,\pi\} \\ &\{-\frac{1}{2},\pi,1066,1\} \\ &\{1,-\frac{1}{2},-\frac{1}{2},\pi,1066,-\frac{1}{2},1\}. \end{aligned}$$

Exercise

True or false:

(a) True,

(a) $-1 \in \mathbb{Q}$.

(b) False,

(b) 0 ∉ Q.

(c) True,

(c) $1 \in \mathbb{C}$.

(d) False,

(d) $\emptyset \in \emptyset$.

(e) True.

(e) $\{0,1\} = \{1,0\}.$

2. Describe the set $A = \{x \in \mathbb{Z} \mid |x| \leq 2\}$ by listing its elements.

 $A = \{-2, -1, 0, 1, 2\}$

3. Let $\mathbb{Z}_3 = \{0, 1, 2\}$. Describe the set

 $x \in B$ if and only if 2x = 0, 1, or 2.

$$B = \{ x \in \mathbb{Q} \mid 2x \in \mathbb{Z}_3 \}$$

Hence $x = 0, \frac{1}{2}$, or 1.

Thus $B = \{0, \frac{1}{2}, 1\}.$

by listing its elements.

4. Let $\mathbb{Z}_2 = \{0, 1\}$. Describe the set

$$X = \{ z \in \mathbb{C} \mid z = x + yi \text{ and } x, y \in \mathbb{Z}_2 \}$$

by listing its elements.

$$X = \{0, i, 1, 1+i\}$$

Describe the set

$$Y = \{x \in \mathbb{C} \mid x^2 + 1 = 0\}$$

by listing its elements if it is not empty.

$$Y = \{i, -i\}$$

6. Describe the set

$$Z = \{ z \in \mathbb{C} \mid z^3 = -1 \}$$

by listing its elements.

$$z^3 = -1$$
 if and only if
 $z^3 + 1 = 0$

Hence either
$$z = -1$$
 or

$$z = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm 3}{2}$$

Definition

If A is a finite set its **cardinality**, |A|, is the number of (distinct) elements which it contains.

If A has an infinite number of elements, we say it has **infinite cardinality** \dagger , and write $|A| = \infty$.

Other notations commonly used for the cardinality of A are n(A), #(A) and \bar{A} .

Examples

- 1. $|\varnothing| = 0$ since \varnothing contains no elements.
- 2. $|\{\pi, 2, \text{Attila the Hun}\}| = 3.$
- 3. If $X = \{0, 1, \dots, n\}$ then |X| = n + 1.
- 4. $|\{2,4,6,8,\ldots\}| = \infty$.

For example, let $X = \{\{1,2\}\}$. Then X contains only a single element, namely the set $\{1,2\}$, so |X| = 1. It is clearly important to distinguish between the set $\{1,2\}$ (which has cardinality 2) and X, the set which has $\{1,2\}$ as its only element. Similarly, the sets \varnothing and $\{\varnothing\}$ are different. The latter is non-empty since it contains a single element—namely \varnothing . Thus $|\{\varnothing\}| = 1$.

Examples

- 1. Let $A = \{1, \{1, 2\}\}$. Note that A has two elements, the number 1 and the set $\{1, 2\}$. Therefore, |A| = 2.
- 2. Similarly, $\begin{aligned} |\{1,2,\{1,2\}\}| &= 3,\\ |\{\varnothing,\{1,2\}\}| &= 2,\\ |\{\varnothing,\{\varnothing\}\}| &= 2,\\ |\{\varnothing,\{\varnothing\},\{1,2\}\}| &= 3,\\ |\{\varnothing,\{\varnothing,\{\varnothing\}\}\}| &= 2, \text{ etc.} \end{aligned}$

Exercises

- List the elements of each of the following sets, using the '...' notation where necessary:
 - (i) $\{x : x \text{ is a positive (integer) multiple of three}\}$
 - (ii) $\{x: (3x-1)(x+2)=0\}$
 - (iii) $\{x : x \text{ is an integer and } (3x-1)(x+2) = 0\}$
 - (iv) $\{x: 2x \text{ is a positive integer}\}.$
 - (i) $\{3, 6, 9, 12, \ldots\}$
 - (ii) $\{1/3, -2\}$
 - (iii) $\{-2\}$
 - (iv) $\{1/2, 1, 3/2, 2, 5/2, 3, \ldots\}$.

Let $X = \{0, 1, 2\}$. List the elements of each of the following sets:

$$\{z: z=x+y \text{ where } x\in X \text{ and } y\in X\}$$

- (i)
- $\{z:z\in X \text{ or } -z\in X\}$ (ii)
- (iii) $\{z:z \text{ is an integer and } z^2 \in X\}.$

Solutions

- (i) $\{0, 1, 2, 3, 4\}$ (ii) $\{-2, -1, 0, 1, 2\}$ (iii) $\{-1, 0, 1\}$.

3. Determine the cardinality of each of the following sets:

- (i) $\{x : \sqrt{x} \text{ is an integer}\}$
- (ii) $\{a, b, c, \{a, b, c\}\}$
- $\begin{array}{ll} \text{(iii)} & \{\{a,b,c\},\{a,b,c\}\} \\ \text{(iv)} & \{\varnothing,\{\varnothing\},\{\{\varnothing\}\}\}. \end{array}$

Solutions

- (i) ∞
- (ii)
- (iii)
- (iv)

- Use the notation $\{x : P(x)\}$, where P(x) is a propositional function, to describe each of the following sets.
 - (i) $\{3, 6, 9, 12, 15, \dots, 27, 30\}.$
 - (ii) $\{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}$.
 - (iii) The set of integers which can be written as the sum of the squares

Solutions

- $\text{(i)}\quad \{x:x\text{ is an integer multiple of 3 and }3\leqslant x\leqslant 30\}$
- (ii) $\{x : x \text{ is a prime number}\}$
- (iii) $\{x: x = n^2 + m^2 \text{ for some integers } n \text{ and } m\}$

Subsets

Definition

The set A is a **subset** of the set B, denoted $A \subseteq B$, if every element of A is also an element of B. Symbolically, $A \subseteq B$ if $\forall x[x \in A \rightarrow x \in B]$ is true, and conversely.

If A is a subset of B, we say that B is a **superset** of A, and write $B \supseteq A$.

Clearly every set B is a subset of itself, $B \subseteq B$. (This is because, for any given $x, x \in B \to x \in B$ is 'automatically' true.) Any other subset of B is called a **proper subset** of B. The notation $A \subset B$ is used to denote 'A is a proper subset of B'. Thus $A \subset B$ if and only if $A \subseteq B$ and $A \neq B$.

It should also be noted that $\varnothing \subseteq A$ for every set A.

Examples

- 1. $\{2,4,6,\ldots\}\subseteq\{1,2,3,\ldots\}\subseteq\{0,1,2,\ldots\}$. Of course, we could have used the proper subset symbol \subset to link these three sets instead.
- Similarly: $\{\text{women}\} \subseteq \{\text{people}\} \subseteq \{\text{mammals}\} \subseteq \{\text{creatures}\};$ $\{\text{War and Peace}\} \subseteq \{\text{novels}\} \subseteq \{\text{works of fiction}\};$ $\{\text{Mona Lisa}\} \subseteq \{\text{paintings}\} \subseteq \{\text{works of art}\}; \text{ etc.}$

Again, in each of these we could have used \subset instead.

Theorem

Two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$.

Examples

1. Show that
$$\{x: 2x^2 + 5x - 3 = 0\} \subseteq \{x: 2x^2 + 7x + 2 = 3/x\}$$
.

2. Let $A = \{\{1\}, \{2\}, \{1, 2\}\}$ and let B be the set of all non-empty subsets of $\{1, 2\}$. Show that A = B.

3. Prove that if $A \subseteq B$ and $C = \{x : x \in A \lor x \in B\}$, then C = B.

Some special sets of numbers which are frequently used as universal sets are the following.

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ the set of **natural numbers**.

 $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ the set of **integers**†.

 $\mathbb{Q} = \{p/q : p, q \in \mathbb{Z} \text{ and } q \neq 0\}$ the set of fractions or **rational numbers**.

 \mathbb{R} = the set of **real numbers**; real numbers can be thought of as corresponding to points on a number line or as numbers written as (possibly infinite) decimals.

 $\mathbb{C} = \{x + iy : x, y \in \mathbb{R} \text{ and } i^2 = -1\}$ the set of **complex numbers**.

Clearly the following subset relations hold amongst these sets:

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$
.

Exercise

- True or false (Justify your answers):
 - (a) $\mathbb{Z} \subseteq \mathbb{Q}$.
 - (b) $\mathbb{R} \subseteq \mathbb{C}$.
 - (c) $\emptyset \subseteq \emptyset$.
 - $(d) \{\emptyset\} \subseteq \mathbb{Z}.$
- 2. Find all subsets of $A = \{z \in \mathbb{C} \mid z^2 = -1\}$.

3. Find all subsets of $\{\emptyset\}$.

Equality

If X and Y are sets such that $X \subseteq Y$ and $Y \subseteq X$, then we say that sets X and Y are equal (to each other). Otherwise X and Y are said to be distinct (from each other). Thus sets X and Y are equal if and only if they contain the same elements. In this case we write X = Y; otherwise we write $X \neq Y$. The proposition X = Y is called an equation. Note that X = X, and that if X = Y then Y = X.

Note that since \emptyset is a subset of any set, \emptyset is unique.

$$X = Y \text{ if}$$

$$(1) \quad (x \in X) \Rightarrow (x \in Y),$$

$$(2) \quad (x \in Y) \Rightarrow (x \in X)$$

Example

Let

$$A = \{x \in \mathbb{Z} \mid x = 3 + 5p, \text{ for some } p \in \mathbb{Z}\},$$

$$B = \{x \in \mathbb{Z} \mid x = -7 + 5p, \text{ for some } p \in \mathbb{Z}\}.$$

We show that A = B.

Theorem Let X, Y, Z be sets.

- (a) X = X.
- (b) If X = Y then Y = X.
- (c) If X = Y and Y = Z then X = Z.

Exercise

1. Show that the following two sets are equal:

$$A = \{x \in \mathbb{Z} \mid x = 1 + 3q, \text{ for some } q \in \mathbb{Z}\},$$

$$B = \{x \in \mathbb{Z} \mid x = -2 + 3q, \text{ for some } q \in \mathbb{Z}\}.$$

2. Let p be any odd number. Show that

$$\{x \mid x = p + 2m, \text{ for some } m \in \mathbb{Z}\}$$

is equal to the set of all odd numbers.

3. Show that the set

$$\{x \in \mathbb{Z} \mid x = 2n, \text{ and } x = 2m + 1 \text{ for some } m, n \in \mathbb{Z}\}$$

is empty.

Proper Subsets

Let X and Y be sets. If $X \subseteq Y$ and $X \neq Y$, then we say that X is a **proper** subset of Y. In this case we write $X \subsetneq Y$, or sometimes just $X \subset Y$. The proposition $X \subsetneq Y$ is called a **proper** inclusion. Note that $X \subseteq Y$ if and only if $X \subsetneq Y$ or X = Y.

Theorem Let X, Y, Z be sets. If $X \subsetneq Y$ and $Y \subsetneq Z$, then $X \subsetneq Z$.

The Power Set of a Set

If X is a set, the **power set** $\mathcal{P}(X)$ of X is the set of all subsets of X.

if x and y are distinct objects then

$$\mathcal{P}(\{x,y\}) = \{\emptyset, \{x\}, \{y\}, \{x,y\}\}.$$

The number of elements in a finite set X is the cardinality of X, and is denoted by |X|

Let X be a set with $n \ge 1$ elements. Then for each $x \in X$, there are two possibilities: either x is an element of a given subset or it is not. Hence there are 2^n ways of constructing subsets of X. Thus

$$|\mathcal{P}(X)| = 2^{|X|}.$$

Exercise

- Find the power set of each of the following sets.
 - (a) $X = \{0\}.$
 - (b) $\mathbb{Z}_2 = \{0, 1\}.$

2. Find the power set of $A = \{\pm 1, \pm i\}$. Arrange the subsets of A in chains of inclusions.

3. Prove that if |A| = |B|, then P(A) and P(B) have the same number of elements.

4. Let A be a non-empty set, and $a \in A$. Prove that A has twice as many subsets as $A - \{a\} = \{x \in A \mid x \neq a\}$.

Unions of Sets

The union, $X \cup Y$, of sets X and Y is defined as the set of all objects that are in either X or Y. Of course some such objects might be in both. As an example, $\{x,y\} \cup \{x,z\} = \{x,y,z\}$. In a Venn diagram, $X \cup Y$ is represented by the shaded region in Figure

$$x \in X \cup Y$$
 if and only if
$$x \in X \text{ or } x \in Y$$

 $X \cup Y$ shaded

Example

The set of integers is the union of the set of even numbers and the set of odd numbers. That is

$$\mathbb{Z} = \{x \in \mathbb{Z} | x = 2n, \ n \in \mathbb{Z}\} \cup \{x \in \mathbb{Z} | x = 2n+1, \ n \in \mathbb{Z}\}.$$

If a and b are integers with $a \leq b$ and $X_a, X_{a+1}, \ldots, X_b$ are sets then we write

$$\bigcup_{i=a}^b X_i = X_a \cup X_{a+1} \cup \ldots \cup X_b.$$

If X and Y are sets then clearly

$$X \subseteq X \cup Y$$

and

$$Y \subseteq X \cup Y$$
.

The commutativity of the disjunction of propositions immediately implies the commutative law for unions of sets:

$$X \cup Y = Y \cup X$$
.

Similar considerations show that

$$X \cup \emptyset = X$$

and

$$X \cup X = X$$
,

and that

$$X \cup Y = Y$$

if $X \subseteq Y$. In particular,

$$X \cup U = U$$
,

where U is the universal set.

Exercise

1. Show that $X \cup Y = X$ if and only if $Y \subseteq X$.

2. True or false: For any sets X, Y, $\mathcal{P}(X \cup Y) = \mathcal{P}(X) \cup \mathcal{P}(Y)$.

3. True or false: If $X \subseteq Y$, then $\mathcal{P}(X \cup Y) = \mathcal{P}(X) \cup \mathcal{P}(Y)$.

Intersections of Sets

Let X and Y be sets. Then the set $\{x \in X | x \in Y\}$ is called the **intersection** of X and Y, and is denoted by $X \cap Y$. Its elements are the objects contained in both X and Y.

 $x \in A \cap B$ if and only if $x \in A$ and $x \in B$

The region representing $X \cap Y$ in a Venn diagram is the overlap between the region representing X and that representing Y. It is indicated by the shaded area in Figure

Exercise

1. Show that $X \cap Y = X$ if and only if $X \subseteq Y$.

2. Show by using Venn diagrams that $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$.

The Complement of a Set with respect to Another

Let X be a set. Then the set of all elements (in a universal set U) that are not in X is called the complement of X, denoted by \overline{X}

$$\overline{X} = \{ x \in \mathbb{U} \mid x \notin X \}.$$

Example

Let $U = \mathbb{Z}^+$ and $X = \{2n \mid n \in \mathbb{Z}^+\}$, the set of even positive integers. Then

$$\overline{X} = \{2n - 1 \mid n \in \mathbb{Z}^+\},\$$

the set of odd positive integers.

Theorem Let X be any set. Then

(1)
$$X \cap \overline{X} = \emptyset$$
.

(2)
$$X \cup \overline{X} = U$$
.

(3)
$$\overline{\overline{X}} = X$$
.

$$(4) \quad \overline{\emptyset} = U.$$

Theorem For any sets X and Y,

(1)
$$X - Y = X \cap \overline{Y}$$
.

(2)
$$X - Y = X - (X \cap Y)$$
.

Example

Let

$$X = \{1, 2, 3, 4, 5\},\$$

 $Y = \{-1, 2, 4, 6\}.$

Then

$$X - Y = \{1, 3, 5\},\$$

and

$$Y - X = \{-1, 6\}.$$

The following theorem is the analogue of de Morgan's laws, and is an immediate consequence of them. Try drawing a Venn diagram.

Theorem Let X and Y be sets. Then

(a)
$$\overline{X \cup Y} = \overline{X} \cap \overline{Y}$$
 and

(b)
$$\overline{X \cap Y} = \overline{X} \cup \overline{Y}$$
.

1. Prove that for any sets X and Y, $X - Y = X \cap \overline{Y}$.

3. True or false

$$A - (B - C) = (A - B) - C.$$

4. Generalise de Morgan's law to

$$(\overline{A_1 \cup \ldots \cup A_n}) = \overline{A_1} \cap \ldots \cap \overline{A_n}.$$

Prove it by induction.

5. True or false:

$$X - (Y \cup Z) = (X - Y) \cap (X - Z)$$

for any sets X, Y and Z.

Let X, Y be sets. We define the symmetric difference of X and Y to be

$$X \oplus Y = (X - Y) \cup (Y - X).$$

Prove by induction that the elements of

 $A_1 \oplus \ldots \oplus A_n$ are exactly those that are members of an odd number of A_1, A_2, \ldots, A_n .

Fundamental Properties of Sets

Theorem Let X, Y, Z be subsets of U. Then

(b)
$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$
 and $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$.

- (c) Moreover X ∪ ∅ = X, and X ∩ U = X.
- (d) Finally $X \cap \overline{X} = \emptyset$, and $X \cup \overline{X} = U$.

Theorem Let X, Y, Z be sets. Then

(a)
$$X \cup (X \cap Y) = X \cap (X \cup Y) = X$$
; and

(b)
$$X \cup (Y \cup Z) = (X \cup Y) \cup Z$$
 and $X \cap (Y \cap Z) = (X \cap Y) \cap Z$.

Exercises

- List the elements of each of the following sets, using the '...' notation where necessary:
 - (i) $\{x : x \text{ is an integer and } -3 < x < 4\}$
 - (ii) $\{x : x \text{ is a positive (integer) multiple of three}\}$
 - (iii) $\{x : x = y^2 \text{ and } y \text{ is an integer}\}$
 - (iv) $\{x: (3x-1)(x+2)=0\}$
 - (v) $\{x: x \ge 0 \text{ and } (3x-1)(x+2) = 0\}$
 - (vi $\{x : x \text{ is an integer and } (3x-1)(x+2) = 0\}$
 - (vii) $\{x : x \text{ is a positive integer and } (3x-1)(x+2) = 0\}$
 - (viii) $\{x: 2x \text{ is a positive integer}\}.$

- 4. Use the notation $\{x : P(x)\}$, where P(x) is a propositional function, to describe each of the following sets.
 - (i) $\{1, 2, 3, 4, 5\}$.
 - (ii) $\{3, 6, 9, 12, 15, \dots, 27, 30\}.$
 - (iii) $\{1, 3, 5, 7, 9, 11, \ldots\}$.
 - (iv) $\{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}$.
 - $(v) \{a, e, i, o, u\}.$
 - (vi) The set of integers which can be written as the sum of the squares of two integers.
 - (vii) The set of all integers less than 1000 which are perfect squares.
 - (viii) The set of all numbers that are an integer multiple of 13.
 - (ix) {Afghanistan, Albania, Algeria, ..., Zambia, Zimbabwe}.
 - (x) {Love's Labour's Lost, The Comedy of Errors, The Two Gentlemen of Verona,..., The Tempest, The Winter's Tale, The Famous History of the Life of King Henry VIII}.

Show that $\{x: 2x^2 + 5x - 3 = 0\} \subseteq \{x: 2x^2 + 7x + 2 = 3/x\}.$

Let $A = \{\{1\}, \{2\}, \{1, 2\}\}$ and let B be the set of all non-empty subsets of $\{1, 2\}$. Show that A = B.

Prove that if $A \subseteq B$ and $C = \{x : x \in A \lor x \in B\}$, then C = B.

For each of the following, draw a Venn-Euler diagram and shade the region corresponding to the indicated set.

(a)
$$A - (B \cap C)$$

(a)
$$A-(B\cap C)$$
 (b) $(A-B)\cup (A-C)$.

Show that $A - (B \cap C) = (A - B) \cup (A - C)$ for all sets A, B and C.

