Question Number	Scheme	Marks
10(a)	$(V=)50=\pi r^2 h$	B1
	$A = 2\pi r^2 + 2\pi rh = 2\pi r^2 + 2\pi r \times \frac{50}{\pi r^2}$	M1
	$A = 2\pi r^2 + \frac{100}{r} $	A1 (3)
(b)	$\frac{\mathrm{d}A}{\mathrm{d}r} = 4\pi r - \frac{100}{r^2}$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 0 \implies 4\pi r = \frac{100}{r^2}$	M1
	$r = \sqrt[3]{\frac{100}{4\pi}} = \sqrt[3]{7.9577} = 1.996$	A1 (3)
(c)	$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = 4\pi + \frac{200}{r^3}$	M1
	$r = 1.996 \Rightarrow \frac{d^2 A}{dr^2} > 0$: min	M1A1 cso (3)
(d)	$A_{\min} = 2\pi \times 1.996^2 + \frac{100}{1.996}$	M1
	$A_{\min} = 75$	A1cso (2) [11]

Notes

(a)

- B1 for equating the formula for the volume of a cylinder to the given volume of 50
- M1 for substituting their $50 = \pi r^2 h$ into the formula for the surface area of a cylinder $S = 2\pi r^2 + 2\pi r h$
- A1 for the answer as shown (this is a show question; beware of 'fudging' answers)

(b)

- M1 for an attempt to differentiate the **GIVEN** expression only for S
- M1 for setting their $\frac{dA}{dr} = 0$

Accept
$$4\pi r = \frac{100}{r} \Rightarrow r = \dots$$

A1 for the answer as shown r = 1.996

(c)

- M1 for attempting to find the second derivative of their $\frac{dA}{dr}$ (see General Guidance)
- M1 for substituting their value of r into their $\frac{d^2A}{dr^2}$, but r must be positive.
- A1 for $\frac{d^2 A}{dr^2} > 0$ hence minimum cso Their value for $\frac{d^2 A}{dr^2}$ must be correct (37.716.. when r = 1.9966.)

Also accept a conclusion by inspection. ie., 4π and $\frac{100}{r^3}$ are both positive hence $\frac{d^2A}{dr^2} > 0$

ALT

M1 for substituting a value for r < 1.996 or r > 1.996 to test gradient $\frac{dA}{dr}$ around r = 1.996.

When
$$r < 1.996 \frac{dA}{dr} < 0$$
, when $r > 1.996$, $\frac{dA}{dr} > 0$.

- M1 for substituting a value for r < '1.996' and r > '1.996' to test $\frac{dA}{dr}$.
- A1 for conclusion; that as r increases the gradient goes from negative to positive hence, minimum.

(d)

- M1 for substituting their r into the **GIVEN** expression for A and evaluating, but their r must be a positive value.
- A1 for $A_{\min} = 75$ cso