Problem Set 7

Bayard Walsh

February 2024

1

$\mathbf{METRIC\text{-}TSP} \in NP$

Witness

To show METRIC-TSP $\in NP$, we have the witness a, which is a permutation for a given $\langle d, k \rangle$ such that $\cot(a, d) \leq k$. Given a, we can verify that the overall $\cot(a, d) \leq k$ by summing all the $d(a_i, a_{i+1})$ values and checking if every city appears exactly once, which will run in polynomial time for the input. If $\cot(a, d) \leq k$ and a is a valid permutation (it contains every city exactly once), we have that some permutation exists for $\langle d, k \rangle$ such that $\cot(a, d) \leq k$, which shows that $\langle d, k \rangle \in \text{METRIC-TSP}$. Therefore if we have this witness a we can verify if $\langle d, k \rangle \in \text{METRIC-TSP}$ in polynomial time, meaning METRIC-TSP $\in NP$.

METRIC-TSP $\in NP - HARD$

We will do a reduction from HAMILTONIAN cycle problem. Given some undirected graph G:

```
f(\langle G = (V, E) \rangle)k = |V|
```

for every $v \in V$ add point $x \in \mathcal{X}$ to our set of points / cities in $1, 2, \dots, m$ for every $e = (u, v) \in E$ let d(u, v) = 1

label every other distance function d(u,v) = |V| + 1 the distance between any two nodes without an edge in G is |V| + 1

return our constructed $\langle d, k \rangle$

YES to YES

Given a Hamiltonian cycle x for G, we can find a permutation y for $\langle d, k \rangle$ where $\cot(a, d) \leq k$. Given a list of edges for our Hamiltonian cycle x as $(a_1, a_2), \cdots (a_m, a_1)$, transform these edges into the permutation $y = d(a_1, a_2) \cdots d(a_m, a_1)$, which will be a sequence of distance functions following the same order as our edge sequence. Note that by definition a Hamiltonian cycle will

Figure 1: Drawing of reduction. Note that not all metrics $\in G$ are drawn

visit every node once and then return to the first node, so transforming the cycle into a permutation with respect to our reduction will be a witness for METRIC-TSP, as each node is transformed into a city in our reduction. Also, a Hamiltonian cycle will have |V| total edges, and as each edge $\in G$ is set to d(u,v)=1 in our construction of $\langle d,k\rangle$, then our overall cost function following the permutation y will be |V|. This means that following the same order as the Hamiltonian path, every node will appear exactly once in our permutation and we will have $\cos(a,d)=|V|$, meaning $\cot(a,d)\leq k$ as |V|=k. Therefore given a Hamiltonian path x for G, we can find a permutation y for $\langle d,k\rangle$ where $\cot(a,d)\leq k$.

NO to NO

We will solve the contra positive; given a permutation y for $\langle d, k \rangle$ where $\cos(a, d) \leq k$, we can find a Hamiltonian path x for G. First note that our permutation can only step between nodes that correspond to edges in G; this is because if there was any $d(a_i, a_{i+1}) \in y$ that is not an edge in G then our permutation would have a cost greater than k, each of these distance functions without an edge in G have $\cos |V| + 1$, and k = |V|, so a single distance function outside an edge in G means the overall $\cos(a, d) \not\leq k$. Next, as our permutation a must have every $x \in m$ exactly once among $a_1, a_2 \cdots a_m$, then our a will visit each city exactly once. Additionally, because $\cot(a, d) \leq k$, k = |V| and each d(u, v) = 1 for every edge in G, then the sequence of our permutation can be transformed into a Hamiltonian cycle for G consisting of exactly |V| edges $\in G$. This is because each city / point in x represents a vertex in V, and our permutation will visit every city exactly once along a distance function based on the

edges in G. Therefore we can transform our permutation into a Hamiltonian cycle by taking $d(a_1, a_2) \cdots d(a_m, a_1)$ to be a list of edges $(a_1, a_2), \cdots (a_m, a_1)$ in a Hamiltonian cycle for G. Note that because of the nature of the traveling salesperson problem, we have a cycle as we must return to a_1 in our permutation and we can visit each city exactly once. Therefore given a permutation y for $\langle d, k \rangle$ where $\cot(a, d) \leq k$, we can find a Hamiltonian path x for G.

Computable

The reduction from HAMILTONIAN to METRIC-TSP involves creating a point x for every $V \in G$ and querying through every edge $(u,v) \in G$ and to assign a distance function between the points (u,v), and then assigning another distance function to every remaining possible edge $\in G$, so we have $\frac{|V|(|V|-1)}{2}$ total distance function assignments, which is polynomial. k is computed through taking count of nodes which is also polynomial. Therefore our construction of $\langle d, k \rangle$ is polynomial relative to the size of G, so our problem is computable.

$\mathbf{2}$

```
Algorithm:
Given N
ASSERT N \ge 2
p = \{ \}
(LOOP1)
if N == 1 return p
L_b = 2, U_b = N, k = L_b + floor(\frac{U_b - L_b}{2})
(LOOP2)
     check if FACTOR \langle N, k \rangle
          if yes:
              if k == L_b:
concat k to p
N = \frac{N}{k}
step to (LOOP1)
               else:
                    U_b = k
                    k = L_b + \text{floor}(\frac{U_b - L_b}{2})
step to (LOOP2)
          if no:
               if k == L_b:
                   concat U_b to p
N = \frac{N}{U_b}
step to (LOOP1)
               else:
                    L_b = k
```

$$k = L_b + \text{floor}(\frac{U_b - L_b}{2})$$

step to $(LOOP2)$

Correctness:

The algorithm will generate p by repeatedly dividing N by a prime factor k present in N and then updating N to be the N/k. This is done through binary searching for a viable prime factor while using the assumption that we can compute FACTOR $\langle N, k \rangle$ in polynomial time, and updating N by dividing it by a prime whenever we find one. We will repeat this until N=1, meaning that when we stop iterating we have fully deconstructed N into a list of primes. We update the bounds when we accepts or reject a field of numbers as non viable primes, and use either the upper bound to divide N or the lower bound to divide N when $k=L_b$ based on if FACTOR $\langle N,k \rangle$; based on our binary search algorithm this will enable us to find a valid prime with each evaluation, meaning that each $p_i \in p$ will divide N, so the list of p will be factors that multiply up to N. We add the assertion that $N \geq 2$ as some N where N < 2 cannot be decomposed into prime factors.

Runtime

In our algorithm we search for viable primes using a modified version of the binary search algorithm which enables us to find a viable prime in $\log N$ loop iterations, because we halve the amount of viable numbers at each iteration. We know that there can only be at most $\log N$ prime factors for a given N, therefore we will query at most $\log N$ times to find the prime factors of N. Also as we have that integer division and FACTOR are $\in P$ by assumption, we can use these operations to find a prime in our algorithm and it will still be in polynomial time. Therefore we will check overall $O(\log N)^2$ numbers, doing polynomial work for each query, which is polynomial relative to the size of the binary encoding of N. Therefore our algorithm is polynomial.

3

As $L \in NP$, then there exists some language $R_1 \in P$, such that if $w \in L$, there exists a string x such that $|x| \leq |w|^{k_1}$ and $\langle w, x \rangle \in R_1$

As $L \in coNP$, then there exists some language $R_2 \in P$, such that if $w \notin L$, there exists a string x such that $|x| \leq |w|^{k_2}$ and $\langle w, x \rangle \in R_2$

let Γ be some alphabet that contains an encoding of $\langle w, x \rangle$ for every $w \in \Sigma^*$ and every $x \in R_1$ and $x \in R_2$. Let k be the max of k_1, k_2 , with respect to $|x| \leq |w|^{k_1}$ or $|x| \leq |w|^{k_2}$. Therefore both $|x| \leq |w|^{k_1}$ or $|x| \leq |w|^{k_2}$ are bounded within k, so both are polynomial with respect to the input w.

$$f:\Gamma^* \to \{0,1,\perp\}$$

```
f(\langle w, x \rangle)

if \langle w, x \rangle \in R_1 \to \text{return } 1

if \langle w, x \rangle \in R_2 \to \text{return } 0

else return \perp
```

We can check for membership $\in R_1$ or $\in R_2$ in polynomial time as each verification language is $\in P$ so f is a polynomial-time-computable function.

Correctness

```
w \in L \Rightarrow |x| \leq |w|^{k_1} and f(\langle w, x \rangle) = 1
By definition of NP, if w \in L, some x exists such that |x| \leq |w|^{k_1} and \langle w, x \rangle \in R_1. If \langle w, x \rangle \in R_1 then f(\langle w, x \rangle) = 1
```

```
w \in L \Leftarrow |x| \leq |w|^{k_1} and f(\langle w, x \rangle) = 1
If |x| \leq |w|^{k_1} and f(\langle w, x \rangle) = 1 then \langle w, x \rangle \in R_1. By definition of NP, for every w \notin L, for every x such that |x| \leq |w|^{k_1}, we have \langle w, x \rangle \notin R_1. We take the contra positive, so if x exists such that |x| \leq |w|^{k_1} and \langle w, x \rangle \in R_1 then w \in L. As we have \langle w, x \rangle \in R_1, we have w \in L.
```

Therefore $w \in L \Leftrightarrow |x| \leq |w|^{k_1}$ and $f(\langle w, x \rangle) = 1$

```
w \notin L \Rightarrow |x| \leq |w|^{k_2} and f(\langle w, x \rangle) = 0
By definition of coNP, if w \notin L, then some x exists such that |x| \leq |w|^{k_2} and \langle w, x \rangle \in R_2. If \langle w, x \rangle \in R_2 then f(\langle w, x \rangle) = 0
```

```
w \notin L \Leftarrow |x| \le |w|^{k_2} and f(\langle w, x \rangle) = 0
If f(\langle w, x \rangle) = 0 then \langle w, x \rangle \in R_2. By definition of coNP, for every w \in L, for every x such that |x| \le |w|^{k_2}, we have \langle w, x \rangle \notin R_2. We take the contra positive, so if some x exists such that |x| \le |w|^{k_2} and \langle w, x \rangle \in R_2 then w \notin L. As we have \langle w, x \rangle \in R_2, we have w \notin L.
```

Therefore $w \notin L \Leftrightarrow |x| \leq |w|^{k_2}$ and $f(\langle w, x \rangle) = 0$

4

4.1

Given M_* and considering some arbitrary w#x pair, simulate M_* on w and x. In this way we can simulate M_* in polynomial-time because M_* is a polynomial-time random Turing machine, however by loading inputs w on tape 1 and x on tape 2, and accepting if M_* accepts and rejecting if M_* rejects, M_* is decidable because it either correctly accepts or rejects w#x or it incorrectly accepts or rejects w#x; however either way it decides w#x for $R \in P$. As we have $P \subseteq PSIZE$, we can simulate R through a polynomial sized circuit, meaning

4.2

 $w \in L \Rightarrow w \# x_* \in R$

We want to show that there exists some string $x_* \in \{0,1\}^{T(n)}$ such that $w\#x_* \in R$. Given $w \in L$ for some arbitrary $w \in \{0,1\}^n$, we have that $Pr[M_* \text{ accepts } w] > 1 - 2^{-n}$. As we have that M_* accepts correctly $> 1 - 2^{-n}$, there is a 2^{-n} probability of error given any x_* for an arbitrary $w \in L$. We will consider $2^{-n} > \frac{|BAD_w|}{|ALL_w|}$ as our error rate for some $w \in L$, or the ratio of the size of the set of x that cause w to mistakenly not accept divided by the size of set of all possible x strings for w. As $1 > 2^{-n}$ for all n > 0, and $2^{-n} > \frac{|BAD_w|}{|ALL_w|}$ then $|BAD_w| < |ALL_w|$. Furthermore $BAD_w \subseteq ALL_w$, as all x that cause w to mistakenly not accept must be contained within the set of all possible x. Therefore there must exist some $x_* \in ALL_w$ and $x_* \notin BAD_w$, meaning that some x_* exists such that $Pr[M_*$ accepts w correctly when $w \in L$, so $w\#x_* \in R$.

 $w \# x_* \in R \Rightarrow w \in L$

We want to show that $w \in L$. As we have $w \notin L \Rightarrow Pr[M_* \text{ rejects } w] > 1 - 2^{-n}$, we also have the contrapositive, that $Pr[M_* \text{ rejects } w] \not > 1 - 2^{-n} \Rightarrow w \in L$, or $Pr[M_* \text{ rejects } w] \le 1 - 2^{-n} \Rightarrow w \in L$. Therefore we also have that $Pr[M_* \text{ accepts } w] \le 2^{-n} \Rightarrow w \in L$, which represents a bound for the probability that M_* mistakenly accepts w when it should reject.

Consider if M_* could mistakenly accept w for at least 2 strings $\in x_*$. Therefore we could have T(n) = n, meaning that the size of overall strings for $x^* \in \{0,1\}^n$ is 2^n . Therefore we have error rate $\frac{2}{2^n}$ for this case. As we have that $\frac{2}{2^n} > \frac{1}{2^n}$, then we have a contradiction against the bound that $w \notin L \Rightarrow Pr[M_* \text{ rejects } w] > 1 - 2^{-n}$ for M_* , because M_* mistakenly accepts at rate $\frac{2}{2^n}$, meaning it can't reject at rate $1 - 2^{-n}$. Therefore for a given $w \notin L$, M_* cannot mistakenly accept more than one x_* .

As we have $w\#x_*\in R$, we have at least one instance where M_* accepts. Therefore considering the probability of mistakenly accepting we have $\frac{1}{2^{T(n)}}$ which is $\frac{1}{2^{T(n)}}\leq \frac{1}{2^n}$ as T(n) is from naturals to naturals, meaning that $Pr[M_*$ accepts $w]\leq 2^{-n}\Rightarrow w\in L$

Therefore we have that $w \in L \Leftrightarrow w \# x_* \in R$

4.3

 $L \in PSIZE$ if we can decide L with some circuit family $C = (C_0, C_1, C_2, \cdots)$ where C_n has polynomial size

Let $C = (C_0, C_1, C_2, \cdots)$ be a uniform family of poly-size circuits that decides R. For a given w we have that $f\langle w \rangle = \langle C \rangle$, where $C(x) = C_m(w \# x)$. We will show that $w \in L$ if and only if there exists x such that $C_m(w \# x) = 1$

By 4a we have that $R \in PSIZE$, so we can construct C. Given w, we can construct C_m in polynomial time, where m is the length of $w \# x_*$ in bits (w and x_* are both of polynomial length). Then we hard code w # into the circuit which takes $n^{O(1)}$ time. Therefore any $C_m \in C$ is poly computable, meaning $C \in PSIZE$.

By 4b, we have that $w \in L \Leftrightarrow w \# x_* \in R$

If $w \in L$, by 4b we have that some x_* must exist such that $w \# x_* \in R$. Since $w \# x_* \in R$ and C decides R, we have that $C_m(w \# x_*) = 1$. Therefore given $w \in L$, C decides w correctly.

If $w \notin L$, we consider the contra positive. Suppose that there exists some $C_m(w\#x_*)=1$ for some arbitrary w. As C decides R, if $C_m(w\#x_*)=1$ for an arbitrary w, there must exists some x_* such that $w\#x_* \in R$. By 4b if there exists some x_* such that $w\#x_* \in R$, then $w \in L$. Therefore we have the contrapositive.