Branch & Bound

Job seq. with dead lines. Problem statement: to understand how to when calculate c^(x) + upper. > let these be n jobs with different processing times. with only one processor the jobs are executed on or before deadlines. Each job i is given by a tuple (Pi, diti where ti is the processing time required by jobi.
If processing of job 1 is not completed by deadline di then penality Pi will The objective of this problem is to select a subset I such that penalty will be minimum among all possible subsets. such a I should be optimal subset.

ex let n=4				1
job index	Pi	di	ti \	
	5	1	1	
2	10	3	2	
3	6	2	1	
4	3	1		0

find optimal subset I? I what will be the penalty?

sol" state space tree can be drawn for proper scleet" g job i for creating J.

Two ways -> fixed tuple size variable tuple size.

1) Variable tuple size: -

 $c^{1}(z) = S fi$ i < m, $i \notin Sz$ where $m = maz_{i}$ | $i \in Sz_{i}$ for J at node z.

opper bound 4(x) = & Pi i & Sz.

At node 3 5 Pi tuture i<2 = 5 as Pi=SHAL c^ = 5 u = 14 24-10=14 ie. gama Pi without 2 = 2 At node 4 as $x_1=3$ $\leq Pi$, i<3.

not consider P_3 $\leq Pi=24-6=18$ c1 = 15 u = 18 At node 5 & Pi, i<4 = P1+P2+P3 & Pi without P4 ic. 24-3=21 01 = 21 4=21 At node 6 ¿Pi & not containing 2,=1 ie c1 = 0 ¿ Pi such that i + 2 i + 1 : 6+3=9 u=9 At node 7 ξPi where $i \neq 1 \neq i \neq 3 :: P_2 = 10$ ξPi $i \neq 1 \neq i \neq 3 :: P_2 + P_4 = 13$ i = 1c1=10 u=13 At node 8 0.1 = 16 $\frac{5}{5}$ $\frac{1}{1}$ $\frac{1$

At node 10.

u=11

At node 11:

H node 11:

$$C^{1}=15$$
 $\leq P_{i}$, $i \neq 3$ $= P_{1} + P_{2} = S + 10 = 15$
 $i < 4$
 $u = 15$ $\leq P_{i}$ $i \neq 3$, $i \neq 4$ $= P_{1} + P_{2} = 15$.
 $i = 1$

MIT WORLD PEACE FIFO Branch & Bound we will consider the variable tuple size formulation. > The state space like can be drawn as for job sequencing problem as u = 24 c1= 21 22=4 75=3 10) c1=16 c=10 e1=11 4=13 4=16 4=8 4=11 4=15 X For node 1 4=24 : upper = 24 at node 2, 3, 4 + 5 are generated. u(2)=19 u(3)=14 u(4)=18 u(5)=21.for node 4, $c^{1}(4) = 15 > 14$: Kill node 4 for node 5, c1(5)=21 > 14 : kill node 5

Node 2 + 3 become lire nodes.

so, now we will consider node 2 43.

node 2 - E - node. u(6) = 9 u(7) = 13 u(8) = 16.

minimum of u(x) = upper = 9.

At node 7 4(7) = 10 > 9 : Hence kill node 7

At mode 8 4(8) > Upper 16 > 9 : Kill node 8.

The live node = 3. = E-node. children 9 + 10 are generated.

u(9) = 8 u(10) = 11.

-. min q u(x) = upper = 8.

at nocle 10, c1(10) = 11>8: Kill nocle 10.

Navo, Node 6 becomes Enode But as children of node 6 are infeasible, we will not consider node 6. only remaining live node = 9.

The only child of 9 is intensible.

the minimum cost answer node is node?

Lhas a cost of 8.

:. This method is sefessed as f1F0 based branch + bound.

IC Branch & Bound.

In LC BB method, for node 1 upper = 24.

Now node 1 = Enode. then node 2, 3, 4 & 5. are generated.

now, upper = min u(x) = 14.

As u'(4) > upper and u'(5) > upper. Hence node 4 + 5 are killed.

For node 2 & 3 \rightarrow the cost $(^{1}(2)=0.$ node 2 becomes as E-node.

Hence children 6,7 & 8 are generated.

-> The upper = 9 ie u(6) = 9

> The node of is selected as it has minimum cost.

But both the children of mode 6 are infasible. so kill node 6.

> Noto node 3 belomes Enode.

node 9 + 10 are generated.

upper = 8. (2°(18) > upper, kill node 10.

only node 9 ils lemain live.

inode 9 ils E-node.

ets only child ils infeasible.

As there are no live node remaining, we will terminate reserve with node 9 as an answer node.

The principle idea is LC search is choosing of min. cost node each time.

This method of LC based BB with appropriate (10) & u() is called as LCBB (LIFOBB).

TSP BB

Problem statement:If there are n cities of cost of the drawling from any city to any city is given. There we have to obtain the cheapest sound trip such that each city is visited exactly once of them returning to starting city to complete the town.

Typically, TSP is represented by weighted graph.

en consider an instance for TSP is given by 9 as

000	20	30	10	tl	
15	00	16	4	2	
3	5	000	2	4	
19	6	18	00	3	1
16	4	7	16	00	1
	15 3 19 16	15 00 15 00 3 5 19 6 16 4	15 00 16 15 00 16 3 5 00 19 6 18 16 4 7	15 00 16 4 3 5 00 2 19 6 18 00	15 00 16 4 2 3 5 00 2 4 19 6 18 00 3

sof There are n=5 nodes. we can draw a state space tree with 5 nodes.

Row minimization

To understand solving of TSP using BB approach, we will reduce the cost of matrix m by using the following formula

Red_Row(m) = [Mij - min { Mij | 1 < j < n }]

ex. m -	(
m =	00	20	30	10	1)	1
	15	00	16	4	2_	
	3	5	00	2	4	1
	19	6	18	40	3	1
	L-16	4	7	16	00	

find minimum of each sono -Se, = 10 82= 2

23 = 2

24 = 3 25 = 4

substract the row_min value from corresponding soo.

00 10 20 : Hence Red_Row(m)= 13 00 14 2 0 3 00 16 3 15 00 0 12 0 3

Maharashtra Academy of I

ASSIGNMENT ASSIGNMENT	ing & Educational Research's
ASSIGNMENT / TEST	POOR TECHNOLOGY, PUNE

Student's	Nam		AS	SIGNN	IENT	TUTE	OF	TECHNOLOGY, PUN	E OUV
Class	- i wairin			Marine Marine		IES	BOC	DKLET	
				Division					700
Subject				Division		minnes P	oli No	Academic Year 20 -2	THE
				765	ment / 1	est No.		Date	1011
nor giver	y amin	m that I he others for	coping 1 kr	his Assignme low that this	PLE ent/Test basis to be sut	Sed on momitted a	y own prep s a part of	paration. I have neither copied it from or my submission at the end of the term.	thors
). No.	1	2 3	TI		1 1			Signature of the stur	- 1 900
arks/Grade				5 6 7	8 1	9 10	Total		-
								Nama 2 size of G	1
-	-			(Please start	writing as	signmen	t/ test from	Name & sign of the faculty Me n here)	mber
	Co	lun	n	minia	mina	tion	21-		_
-				1 4 7 1 4	uza	reos	2;-		
	5.0								
- 1	Von	0 0	ve	well	200	luco	. +	re matrix by	
10	·h	nosi	2000 -			C	- 17	a mairie by	
	C .	20011	7	minur	nun) 12	om	each column.	The
-	103	my	la t	or c	olur	m	real	uction of mal	
- 1							0	of man	rize is:
			1	100	LI .	100	_	D	
K	eal	_\alpha	olem	")=	mji	-)	nin	{ mji 1 < j < n	}
								where mic < 00	
1	. 1	0 0		tion				7,	
T	u	LA	edu	uon		4			
1000		m	1 2 1	1	0 01		7.	ix for TSP 8 called redu consists q eit 2 contain a	
see	,	11)	be 1	he	COST	n	oll	121 204 721	problem
+fre	2	2 .	100 F	icas	H- a	,	n i	& called sodii	and is
100		-	· · ·	us,	ine	1	10	cause secur	un y
each	2	8000	0 4	earl	r c	olu	mm	consiste a est	ber "
- +		1				_	010	1 1	11.
ent	ure	les	00	entsi	el	or	else	contain a	t least
-		_ /_							
nne		2811)						
71.0	1		20	duct	im	(1	m /	on 4 column	120
ne	1	all	12		2010		1.	1	~
hal	100	na	hall	20	w	redu	Mile	on 4 column	n sede
441	ye	19	DULV	0 ,-0					

Dynamic Reduction

That means all tours in the original groups have a length at least 25.

using dynamic seduction, we can make the choice of edge i -> j' with optimum

steps in dynamic reduction technique

- Draw a state space tree with optimum cost at soot node.
- 2) obtain the cost of matrix for path i to j by making ith rab & jth col entires as

Also set mij[j] = 00

- 3) cost of corresponding node & with path i -si is optimum cost of reduced cost + millij
- 4) set node with minimum wet as E-node f

Repeat step 1 to 4 for completing town with

cost g node 4 = 25 + 0 + m[1][4] old val = 25 + 0 + 0 = 25

-s consider path
$$1-4-2$$
 for node 6.

set 1st row = 4th row = ∞

set 2^{rd} col = 4th col = ∞
 $m[4][1] = m[2][1] = \infty$

costy node
$$6 = opt \cdot cost + reduced + m[4][2] old value
$$= 25 + 0 + 3$$
$$= 28$$$$

$$\rightarrow$$
 consider path $1-4-3$ for node 7.
set 1st low = 4th row = ∞
4th col = 3^{rd} col = ∞
set $m[47[1] = m[3][1] = \infty$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 12 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 2 & 32 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 11 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

cost of node 7 = opt. cost + reduced cost + m[4][3]-of value

Maharashtra Academy of Engineering & Educational Research's MAHARASHTRA INSTITUTE OF TECHNOLOGY, PUNE

ASSIGNMENT / T

Subject								Pol	f. No.	Academic Vear 20 - 20
						Assignment		III No.		Florin
1 schemni por giver	y affirm	that i	have of	written t	No Asso	priment/Ter	PLEI of busine			paration, I have neither copied it from cates my submission at the end of the term.
Q No.	1	2	3	. T	5 6	T.T.				Signature of the studer
Marks/Grade						8	9	10	Total	
					Please	start writin	1g ass	gnment/	test from	Name & sign of the faculty Mem
-	con	sid	les	1 -	-4		10	NAME OF TAXABLE PARTY.	1	
	set		st	YI	0 -	= 4+	201	no	de 8	5.
		,	th	100		- H		row	= 0	>>
	0		- 1	75.	7	5 H	4	=	00	- Mary Mr. 1
-	-	m	14	121	1 =	= m	15	ILI] =	∞
1	-								Ina	
	00	j	00		00	0	0	0	07	FINA ME
11	2		00		1)	6	0	04	0	-> 11
11,	2		3		00		-			- 11
11			3			0	2	C	~	
110	~		00	and the	00	0	0	(∞	
10	90		0		0	0	×		000	
16										
- 01	1			1		estac				00 75 7
cost	9	n	ed	2 8	3 =	- 25	> -	11	TY	0[4][5]
	V					= 3				
						=	3	6	- 2	

cost of mode 11 = opt cost + reduced cost + old val m [5]
= 28 + 0 + 0
= 28

To complete the tour, we return to 1. Hence, the state space true is -

