BUNDESREPUBLIK DEUTSCHLAND

②

12 p. 9 Deutsche Kl.: 30 h, 2/36

Offenlegungsschrift

@

(I) (II)

Aktenzeichen:

P 19 29 950:4

2

Anmeldetag:

12. Juni 1969

(3)

Offenlegungstag: 5. März 1970

Ausstellungspriorität:

3

Unionspriorität

② 3

3

Datum:

Land:

Aktenzeichen:

Österreich A 5988-68

21. Juni 1968

(3) Bezeichnung: Neue trisubstituierte 2-Arylaminoimidazoline und Verfahren

zu deren Herstellung

(i)

Zusatz zu:

@

Ausscheidung aus:

0

Anmelder:

C. H. Boehringer Sohn, 6507 Ingelheim

Vertreter:

@

Als Erfinder benannt:

Stähle, Dr. Helmut; Köppe, Dr. Herbert; Kummer, Dr. Werner;

Zeile, Dr. Karl, 6507 Ingelheim

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960):

© 2.70 009 810 1811

8 120

Dr. F. Zumstein sen. - Dr. E. Assmann Dr. R. Koenigsberger - Dipl. Phys. R. Holzbauer -Dr. F. Zumstein jun. Patentanwälte 8 München 2, Bräuhausstraße 4/ili

C.H. BOEHRINGER SOHN, Ingelheim am Rhein

Neue trisubstituierte 2-Arylaminoimidazoline und Verfahren zu deren Herstellung

Die Erfindung betrifft neue trisubstituierte 2-Arylaminoimidazoline mit mindestens 2 Halogenatomen der allgemeinen Formel

und deren physiologisch verträgliche Säureadditionssalze mit wertvollen therapeutischen, insbesondere blutdrucksenkenden und magensekretionshemmenden Eigenschaften, sowie eine neues Verfahren zur Herstellung derselben.

In dieser Formel bedeuten R Fluor, Chlor, die Trifluormethyl-, die Cyanogruppe oder Alkyl- oder Alkoxyreste mit 1 bis 4 Kohlenstoffatomen und X Fluor, Chlor, Brom. Die Herstellung der neuen Verbindungen der Formel I erfolgt nach folgendem Verfahren:

Bromierung von Verbindungen der allgemeinen Formel

in der R und X die oben angegebene Bedeutung besitzen.

Die Umsetzung kann unter Bedingungen erfolgen, wie sie für die Halogenierung von Phenolen gebräuchlich sind. Die Ausgangsverbindungen der Formel II müssen in Form der Basen vorliegen. Säureadditionssalze lassen sich nach diesem Verfahren nicht halogenieren. Bei dieser Umsetzung fallen die Endprodukte in Form der Hydrobromide an, die gewünschtenfalls mittels Alkalibehandlung in die freien Basen überführt werden können. Aus den Basen können dann gegebenenfalls andere Säureadditionssalze erhalten werden.

Kernbromierungen an in 2-Stellung über eine stickstoffhaltige Brücke arylsubstituierten Imidazolinen sind bisher in der Literatur nicht bekannt geworden. Die als Ausgangsverbindungen eingesetzten 2-Phenylaminoimidazoline der Formel II reagieren stark basisch und besitzen außerdem freie NH-Gruppen. Bei der Umsetzung dieser Verbindungen mit Brom war daher zumindest zu erwarten, da3 sich wie bei anderen

/3

009810/1811

BAD ORIGINAL

in 2-Stellung substituierten Impazolinen die Refronvertigeungen bilden wirden, wenn meht begar unter den ener sommt Bedingungen einer Halogenierung eine Aufspaltung des Imidazolinringes zu befürchten war. Es ist daher durchaus überraschend, daß Verbindungen der allgemeinen Formel I auf diesem Wege in guten Ausbeuten darstellbar sind. Sportles gelingt es nach dem anmeldungsgemäben Verlahren, auch solche Verbindungen in guter Ausbeute herzustellen, die nach dem aus der belgischen Patentschrift 623 350 bekannten Isothiuroniumsalzverfahren gar nicht oder nur schlecht zugängtlich sind.

Die Ausgangsverbindungen der allgemeinen Formel II konnen nach dem Verfahren der belgischen Patentschrift 623 350 durch Erhitzen von Arylisotniuroniumsalzen mit Äthylendiamin hergestellt werden.

Die gemäß der Erfindung herstellbaren 2-Arŷlaminoimidazoline der allgemeinen Formel I können auf übliche Weise
in ihre physiologisch verträglichen Säureadditionssalze
überführt werden. Zur Salztildung geeignete Säuren sinc
beispielsweise Salzsäure, Salpetersäure, Essigsäure, txalsäure, Maleinsäure, Weinsäure und Zitronensäure.

Die erfindungsgemäßen Verbirdungen der allgemeihen Bornel I haben wertvolle blutdrucksenkende Eigenschaften und honnen daher beispielsweise bei der Benanclung der verschiedenen Erscheinungsformen der Hypertonie Verwendung finden. Als besonders wertvoll haben sich dabei belohe Verbindungen

der allgemeinen Formel I herausgestellt bei denen der Phenylkern durch 3 Halogenatome substituiert ist. Bevorzugte Verbindungen sind: 2-(2,6-Dichlor-4-brom-phenylamino)-imidazolin-(2), 2-(2-Chlor-4-methyl-5-brom-phenylamino)-imidazolin-(2), 2-(2,4-Dichlor-6-brom-phenylamino)-imidazolin-(2), 2-(2-Athyl-4-chlor-6-brom-phenylamino)-imidazolin-(2), 2-(2-chlor-4-brom-6-methyl-phenylamino)-imidazolin-(2), 2-(2-Chlor-4-tertiärbutyl-6-brom-phenylamino)-imidazolin-(2), 2-(2,4-Difluor-6hrom-phenylamino)-imidazolin-(2), 2-(2-Fluor-4-chlor-6-bromphenylamino)-imidazolin-'2), 2-(2-Trifluormethyl-4,6-dibromphenylamino)-imidazolin-(2), 2-(2-Pluor-4,6-dibrom-phenylamino)-imidazolin-(2), 2-(2,6-Dibrom-4-methyl-phenylamino)imidazolin-(2), 2-(2-Methyl-4-chlor-6-brom-phenylamino)imidazolin-(2), 2-(2,5-lichlor-4-brom-phenylamino)-imidazolin-(2), 2-(2,6-librom-4-cyanophenylamino)-imidazolin-(2), 2-(2-Chlor-4,6-dibrom-phenylamino)-imidazolin-(2), 2-(2,6-Di+ brom-4-chlor-phenylamino)-imidazolin-(2) und 2-(2-Methoxy-4-chlor-6-brom-phenylamino)-imidazolin-(2), 2-(2-Brom-4-fluor-6-methyl-phenylamino)-imidazolin-(2), 2-(2,4-Dibrom-6-methylrhenylamino)-imidazolin-(2).

Verbindungen der allgemeinen Formel I sowie deren Caureadditionssalze können oral oder auch parenteral angewendet
werden. Die erfindungsgemaßen Verbindungen können in einer
Losierung von 0,65 bis 100, vorzugsweise 0,5 bis 20 mg Verwendung finden. Die Verbindungen der Formel I bzw. ihre
Caureadditionssalze können auch mit anderen blutdrucksenkenden Mitteln, beispielsweise Benzothiadiazinen, oder auch

009810/1811

्रक्रमाञ्चल केल

mit andersartigen Wirkstoffen, z. B. Spasmolytika, zum Finsatz gelangen.

Die Verbindungen der allgemeinen Formel I können in üblicher Weise unter Verwendung der gebräuchlichen galenischen Hilfs-stoffe in verschiedene Zubereitungsformen für orale und parenterale Anwendung überführt werden.

Für die orale Anwendung kommen insbesondere Tabletten, Pillen, Granulate, Emulsionen, Lösungen, Suspensionen oder Kapseln in Frage. Die Herstellung von Tabletten, Fillen und Granulaten erfolgt vorzugsweise durch Vermischen einer oder mehrerer Verbindungen der Formel I mit mindestens einem inerten Trägerstoff, z. B. Calciumcarbonat, Starke, Alginsäure oder Milchzucker. Außerdem können diese Mischungen zusätzliche Schmier-, Binde-, Gleit- und/oder Sprengmittel sowie Mittel zur Erzielung eines Depoteffektes enthalten.

Flüssige Zubereitungen für orale Anwendung enthalten vorzugsweise inerte Verdünnungsmittel z.B. Wasser; ferner können außerdem Netz- und Suspendiermittel sowie Geschmackskorrigentien zugesetzt werden.

Als Kapseln werden bevorzugt Gelatinekapseln verwendet, die eine oder mehrere aktive Substanzen, gegebenenfalls unter Zusatz eines geeigneten Verdünnungsmittels, enthalten.

iur die parenterale Anwendung werden die erfindungsgemaßen derbindungen in aterilem Wasser oder underen geeigneten sterilen Flüssigkeiten, wie Blykolen oder pflanzlichen blen, gelöst, emulgiert oder suspendiert.

Solche Zubereitungen können gegebenenfalls weitere Netz-, Emulgier- oder Dispergiermittel enthalten. Für die parenterale Anwendung sind außerdem sterile Zubereitungen in fester form möglich, die unmittelbar vor der Anwendung in einer geeigneten sterilen Flüssigkeit gelöst werden.

Lie folgenden Beispiele erläutern die Erfindung ohne sie zu beschränken.

Perspred 1

2-(2,6-Lichlor-4-brom-phenylamino)-imidazolin-(2)

y,2 g (0,04 Mol) 2-(2,6-Lichlorphenylamino)-imidazolim-(2) werden in 50 ml Chloroform pelöst und der Lösung bei 10°C langsam unter Eiskühlung 4,1 ml Brom zugetropft. Die sich bildende dicke Suspension lust man über Nacht bei Haumtemperatur stehen, versetzt anschließend mit Ather und saugt vom gebildeten Niederschlag ab. Zur Entfarbung des noch leicht gefärbten Hydrocomics wird in einem Aceton-Bethanol-Gemisch gelöst und mit Ather wieder gefällt.

009810/1811

BAD ORIGINAL

Man erhält nach dem Absaugen und Trocknen 8,5 g Hydrobromid des 2-(2,6-Dichlor-4-brom-phenylamino)-imidazolin-(2) vom Fp. 251 - 253°C. Ausbeute 54,5 % der Theorie.

Analog der in Beispiel 1 beschriebenen Arbeitsweise wurden noch folgende Verbindungen hergestellt:

🛶 👝 🐧 🗈 🕮 🐧 🖟 🕒 😽

/8

009810/1811

CAPTER & SAS

Beispiel Aryl	НХ	Fp.°C	Ausbeute, %
2 H ₃ C 2	HC1	302	42
Br C1			
3 01 -	HBr	224-227	64
Br C2 ^{II} 5			
4 C1 — Br	il3r	242-244	79
C1			· ·
5 Br	liBr	234-236	70
.cn ³			
6 t-C ₄ ii _y -	НВг	278-280	75
Br F			
7 F	HBr	214-215	71
Br			· ·
g cr L	HBr	218–219	82
Br		٠.	

009810/1811

BAD ORIGINAL

Beispiel	Aryl	нж	rp.°C	Ausbeute, 🐔
y	Br—(CF ₃	HBr	273	82
10	Br—	HBr	238-239	73
11	H ₃ C—(Br	HBr	258–260	73
12	CI—(Ser	HBr	228–229	36
13	Br—C1	li3r	- 250–253	94
1.4	NC — Br	-	227–229	11
15	cl-(Br	HBr	267–263	45
16	C1Br	нио3	176	20 .

009810/1811

Beispiel Aryl HY Fp. °C Ausbeute

17 F HBr. 296-298 90

Beispiel 18

Nach der in Beispiel 1 beschriebenen Arbeitsweise wurde ausgehend von 2-(4-Fluor-6-methyl-phenylamino)-imidazolin-(2) durch Bromierung das 2-(2-Brom-4-fluor-6-methyl-phenylamino)-imidazolin-(2)-hydrobromid vom Fp = 257°C, in einer Ausbeute von 45,5 / der Theorie, hergestellt.

Beispiel 19

Analog dem Beispiel 1 wirde ausgehend vom 2-(4-Brom-6-methyl-phenylamino)-imidazolin-(2) durch Bromierung das 2-(2,4-Dibrom-6-methyl-phenylamino)-imidazolin-(2)-hydrobromid vom Fp = 251 - 252°C, in einer Ausbeute von 88 % der Theorie, hergestellt.

/11

009810/1811

BAD ORIGINAL

这种种种。在1.2

Beispiel a	
Tabletten:	
2-(2-Brom-4-fluor-6-chlor-phenylamino)- imidazolin-(2)-hydrochlorid	0,1 mg
Milchzucker	54,9 mg
Maisstärke	30,0 mg
lösliche Stärke	4,0 mg
Magnesiumstearat	1,C mg
insgesa	mt 90,0 mg
•	•
Beispiel b	
Tabletten:	
2-(2,6-Dibrom-4-chlor-phenylamino)- imidazolin-(2)-hydrobromid	0,5 mg
Milchzucker	54,5 mg
Maisstärke	'30,0 mg
lösliche Stärke	4,C mg
Magnesiumstearat	1,0 mg
insgesa	amt 90,0 mg
Reispiel c	
Tropfen:	
2-(2-Fluor-4-chlor-6-brom-phenylamino)- imidazolin-(2)-hydrobromid	0,02 g
p-Hydroxybenzoesäure-methylester	° 0,07 g
p-Hydroxybenzoesäure-propylester	0,03 g
entmineralisiertes Wasser ad	100 ml

Beispiel d

Ampullen:

2-(2,4-Dichlor-6-brom-phenylamino)- imidazolin-(2)-hydrobromid		0,050	mg
Natriumchlorid		18,0	mg
destilliertes Wasser	ad	2	ml

Patentansprüche

l. Verfahren zur Herstellung von trisubstituierten 2-Arylamino-imidazolinen-(2) der allgemeinen Formel

in der R Fluor, Chlor, die Trifluormethyl- oder Cyanogruppe, Alkyl- oder Alkoxyreste mit 1 bis 4 Kohlenstoffatomen und X Fluor, Chlor, Brom bedeuten, und deren
physiologisch verträglichen Säureadditionssalzen, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel

in der R und X die obige Bedeutung besitzen, bromiert und gegebenenfalls aus dem entstandenen Hydrobromid die Base freisetzt und diese in ein anderes Säureadditionssalz überführt.

2. Verbindungen der allgemeinen Formel I, nach Anspruch 1, worin R und X die obige Bedeutung haben, sowie deren Säureadditionssalze.

/14

- 3. Verbindungen nach Anspruch 2, in der R und X Halogenatome bedeuten.
- 4. Pharmazeutische Zubereitungen, enthaltend als Wirkstoffe Verbindungen der allgemeinen Formel I, in der R und X die oben angegebenen Bedeutungen besitzen, oder deren physiologisch verträgliche Säureadditionssalze.
- 5. Methode zur Bekämpfung der Hypertonie mittels Verbindungen der allgemeinen Formel I, in der R und X die oben angegebenen Bedeutungen besitzen, oder deren physiologisch verträglichen Säureadditionssalzen.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.