# BigML Ensembles – Modelos múltiplos

2023



#### Programa

- Problemas com árvores de decisão
- O que são ensembles
- Tipos
- Criação
- Visualização
- Configuração





#### O que são ensembles?

- Em vez de criar um modelo unitário
  - Combinar a saída de vários modelos tipicamente "fracos" em um conjunto com mais capacidade
- Questões
  - Porque isso é necessário?
  - Como criamos modelos com menor abrangência?
  - Como combinar esses modelos?



#### Não existem modelos perfeitos

- Um dado algoritmo de ML pode simplesmente não ser capaz de modelar exatamente uma "solução real" para um dataset em particular
  - Tentativa de aproximar uma linha a uma curva
- Mesmo se o modelo é bastante capaz, a "solução real" pode ser elusiva
  - DT/NN podem modelar qualquer fronteira de decisão com dados suficientes
    - Mas a solução é NP-hard (Não-determinístico, tempo Polinomial)
  - Algoritmos práticos envolvem processos randômicos
    - Podem chegar a soluções diferentes, dependendo de vários fatores
       Em teoria "igualmente boas" soluções
- E pode piorar...



#### Não existem dados perfeitos

- Sem dados suficientes
  - Sempre trabalhando com dados de treinamento finitos
  - Então, cada "modelo" é uma aproximação da "solução real" e podem existir várias boas aproximações
- Anomalias / outliers
  - O modelo tenta generalizar a partir de dados de treinamento discretos
  - Outliers podem "desviar" o modelo, por overfitting
- Erros em dados
  - O modelo não deve fazer tudo por você
  - E sempre existem erros nos seus dados
    - · Sério, sempre existe, eu queria estar só exagerando...



#### Técnicas de ensemble

- · Ideia principal:
  - Pela combinação de vários "bons modelos", o resultado pode ser mais próximo do "melhor modelo possível"
  - É necessário garantir diversidade
    - Um ensemble de 1000 modelos muito semelhantes não é útil
- Estratégias para dados de treinamento
  - Construir vários modelos, cada um com somente parte dos dados
    - Tanto em linhas quanto em colunas
  - Introduzir aleatoriedade diretamente no algoritmo
  - Adicionar pesos no treinamento para "focar" em modelos adicionais onde erros são elevados
- Estratégias para predição
  - Modelar os erros
  - Modelar a saída de vários algoritmos diferentes











<lapti>

# Exemplo UTIFPR UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA



lapti

#### Exemplo

Particionar os dados... então modelar cada partição...





#### **Decision Forest**







#### Tipos de ensembles

- BigML provê 3 tipos
  - Bagging
    - Divide dataset em porções aleatórias
      - Somente linhas
      - Simples, mas com um desempenho muito bom
    - Random Decision Forests
      - Divide dataset em porções aleatórias
        - Linhas e também features
  - **Boosted Trees** 
    - Gradient Boosted Trees
    - Várias iterações de "weak learners" com resultado combinado
    - Em toda "boosting iteration", cada modelo tenta corrigir os erros da iteração anterior
      - Otimizando uma função de perda





## Decision Forest - bagging





#### Random Decision Forest







Model1: qual é a predição para o preço de venda desta casa?

Model2: quanto de erro Model1 teve?







































#### Configurações

- Parâmetros individuais de árvores ainda estão disponíveis
  - Balanceamento de objetivo, missing splits, profundidade de nós, etc
- Número de modelos
  - Quantas árvores criar
- Opções de sampling
  - Determinístico / Randômico
  - Reposição
  - Features consideradas a cada split (bagging / random forest)
- Em tempo de predição
  - Combiner



## Configuração Boosting

- Número de iterações
  - Parecido com número de modelos para DF/RDF
- Iterações podem ser limitadas por Early Stopping
  - Early out of bag: testa com amostras out-of-bag
  - Early holdout: testa com uma parte do dataset
  - None: faz todas as iterações
    - Geralmente é melhor usar um alto número de iterações e deixar o Early Stopping trabalhar
- Learning rate
  - Controla quão agressivamente o boosting vai tentar se adequar aos dados (fit)
    - · Valores maiores deixam o modelo mais rápido (converge mais rápido), mas pode gerar overfitting
- Sampling e Replacement
- Parâmetros individuais de árvores



## Configurações

| Sources Datasets Supe           | rvised ▼ Unsupervised ▼ Predictions ▼ Tasks                                 | WhizzML ▼                       |
|---------------------------------|-----------------------------------------------------------------------------|---------------------------------|
| a 4. 6                          | Sentiment %                                                                 | <b>3-</b> (=) <sup>€</sup> - () |
| ENSEMBLE CONFIGURATION          |                                                                             | FOI                             |
| Objective field:  retweet_count | Automatic optimization  Max. training time:  00:30:00  Ensemble candidates: | •                               |
| Type:  Decision Forest ▼        | Number of models: Number of iterations: 64                                  |                                 |
| Advanced configuration          |                                                                             | •                               |
| Ensemble name:                  |                                                                             |                                 |
| Sentiment                       | Reset Fri Cre                                                               | ate ensemble                    |







#### Configurações









#### Agregação de resultados

#### Decision Forests

- Predições de cada árvore são agregadas em uma média para a predição final
- Medidas de qualidade também
  - Confidence, probabilidades, erro esperado (regressões)
- Em classificação, as medidas por classe são calculadas separadamente
  - · Classe com maior probabilidade ou confidência é retornada
  - Pode ser calculada por "votação", baseada no número de árvores decidindo por cada classe

#### Boosted Trees

- Modelo é baseado em adição, não em média
- Probabilidade é resultado de classificação
  - Sem confidence
- Peso de cada boosting é utilizado
  - E gerado para cada caso
- Vetor de somas com peso é transformada em probabilidade de classes por uma função softmax

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} ext{ for } i=1,\ldots,K ext{ and } \mathbf{z} = (z_1,\ldots,z_K) \in \mathbb{R}^K$$



#### Combiner



| VERDADERO | FALSO |
|-----------|-------|
| 80 %      | 20 %  |



| /ERDADERO | FALSO |
|-----------|-------|
| 40 %      | 60 %  |



| VERDADERO | FALSO |
|-----------|-------|
| 60 %      | 40 %  |



| VERDADERO | FALSO |
|-----------|-------|
| 60 %      | 40 %  |

TRUE: (80 + 40 + 60) / 3 = 60 FALSE: (20 + 60 + 40) / 3 = 40







| SALES  | ERROR  |
|--------|--------|
| 250 \$ | 2,10\$ |



| SALES  | ERROF   |
|--------|---------|
| 180 \$ | 1,45 \$ |



| SALES  | ERROF   |
|--------|---------|
| 210 \$ | 1.98 \$ |

(200 + 250 + 180) / 3 = **\$210** 

(2.4 + 2.1 + 1.45) / 3 =**\$1.98** 



#### O que usar?

- Avaliação é importante
- Para datasets grandes / complexos
  - DF/RDF com node threshold mais profundo
  - Ou boosting com mais iterações
- Para dados com ruído
  - Boosting pode gerar overfitting
  - RDF são preferíveis
- Para dados "largos"
  - RDF será mais rápido e provavelmente tão eficiente quanto

- Para dados simples
  - Modelo único pode ser adequado, com a vantagem de interpretabilidade
- Classificação com número grande de classes
  - Boosting pode ser lento, DF/RDF mais adequado
- Dados gerais/genéricos
  - DF/RDF provavelmente melhores que modelo único ou boosting
  - Boosting pode ser lento porque modelos são processados serialmente





#### Visualização





#### Obrigado

leandro@utfpr.edu.br
http://lapti.ct.utfpr.edu.br

