Notes on Statistics

Jacopo Tissino

December 8, 2016

0.1 Distribuzione gaussiana

È una distribuzione degli scarti $z_i = x_i - x_{\text{ref}}$, ricavata dalle seguenti premesse:

- 1. Se ci sono solo errori casuali, la densità di probabilità degli scarti deve essere simmetrica rispetto allo zero;
- 2. Gli scarti grandi sono poco probabili: $\lim_{z\to\infty} = 0$;
- 3. Gli scarti piccoli sono molto probabili: $\lim_{z\to 0} = \max f(z)$.
- $4. f(z) = \frac{\mathrm{d}p}{\mathrm{d}z}.$

Gauss ha dimostrato che deve avere l'espressione:

$$f(z) = ke^{-h^2z^2} (0.1.1)$$

dove k è una costante di normalizzazione e h è un parametro detto $modulo\ di$ precisione.

Per trovare il valore di k poniamo

$$k \int_{\mathbb{R}} e^{-h^2 z^2} \, \mathrm{d}z = 1 \tag{0.1.2}$$

che ci dà $k = h/\sqrt{\pi}$.

Contents

0.1	Distribuzione	goliggion o														-
0.1	Distribuzione	gaussiana.		•		•			•							