BUNDESREPUBLIK DEUTSCHLAND

Deutsche Kl.:

22 g, 5/04

(II)	Offenlegi	ungsschrift 1805 693
2 1		Aktenzeichen: P 18 05 693.4
2		Anmeldetag: 28. Oktober 1968
43		Offenlegungstag: 26. Februar 1970
	Ausstellungspriorität:	_
3	Unionspriorität	
3 2	Datum:	3. November 1967
3 3	Land:	V. St. v. Amerika
3)	Aktenzeichen:	680335
(54)	Bezeichnung:	Thixotrope Uberzugsmassen
61)	Zusatz zu:	_
@	Ausscheidung aus:	_
10	Anmelder:	Armour Industrial Chemical Company, Chicago, Jll. (V. St. A.)
	Vertreter:	Bahr, DiplIng. Hermann; Betzler, DiplPhys. Eduard; Herrmann-Trentepohl, DiplIng. Werner; Patentanwälte, 4690 Herne und 8000 München
7 2	Als Erfinder benannt:	Marsh, Frederick Stanley, Marblehead, Mass.:

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960): Prüfungsantrag gemäß § 28 b PatG ist gestellt

Kinney, Layton Frederick, Villa Park;

Betty jun., Roy Joseph, Chicago, Jll. (V. St. A.)

DT 1805693

ARMOUR INDUSTRIAL CHEMICAL COMPANY 401 North Wabash Avenue, Chicago, Ill.-606i1, USA

Thixotrope Merzugemassen

Es ist seit langem bekannt, daß starke thixotrope Therzugs- . massen, insbesondere Lacke, Anstrichfarben, Anstrichläcke oder synthetische Überzüge, sehr geeignet sind. Die Thixotropie ist eine Erscheinung, deren Wirkungsmechanismus noch nicht in befriedigender Weise erklärt werden kann. Sie hat zur Folge, daß bestimmte Massen weniger viskos werden, wenn sie hohen Scherkräften ausgesetzt werden, worauf sie beim Stehenlassen in ihren normalen Zustand wieder zurückkehren. Derartige Eigenschaften sind bei Überzugsmassen erwünscht, die beim Aufpinseln oder Aufsprühen gleichmäßig fließen sollen, jedoch dann schnell eine höhere Viskosität besitzen sollen. Diese erwünschten Eigenschaften erleichtern das Aufpinseln, vermeiden ein Einsacken und beseitigen ein Absitzen und Ausfließen des Pigmentes, wobei die Masse gegen Verschütten gesichert ist und nur ein geringes Eindringen in porose Materialien, auf welche ein Überzug aufgebracht wird, erfolgt.

Die bisher bekannten Methoden zur Ersielung einer Verdickung von Anstrichfarben sehen die Verwendung von Seifen, eingedickten Ölen und sehr feiner oder chemisch modifizierter Pigmente vor. Diese Methoden ermöglichen jedoch nicht den Thixotropiegrad, welcher die gewünschte Leichtigkeit der Aufbringung zur Folge hat. Eine andere allgemeln angewendete Methode zur Eindickung einer Anstrichfarbe besteht in dem Zusatz eines mit einem Amin amgesetzten Bentonittons als Eindickungsmittel.

Eine verbesserte Methode zur Herstellung von thixotropen Massen unter Verwendung von Mineralteilchen wird in der US-Patentschrift 2 975 071 beschrieben. Dabei werden Isocyanate in Anstrichmassen, welche kieselsäurehaltige Mineralien enthalten, zugesetzt, wobei die Mineralteilchen zu filmbildenden, esterenthaltenden Materialien vernetzt werden.

Die Erfindung betrifft thixotrope Überzugsmassen und Verfahren zu ihrer Herstellung. Durch diese Überzugsmassen werden viele der den bisher bekannten Materialien anhaftenden Nachteile beseitigt. Durch die Erfindung werden thixotrope Lacke, Anstrichfarben, Anstrichlacke sowie ähnliche Überzugsmassen geschaffen, die unter Verwendung einer pneumatischen Vorrichtung aufgesprüht werden können und nur in minimaler Weise oder überhaupt nicht ablaufen, wenn sie auf vertikale Oberflächen aufgebracht werden. Die Überzugsmassen sind dann besonders zufriedenstellend, wenn sie mittels eines Pinsels aufgebracht werden, da sie sich in ausgezeichneter Weise aufpinseln lassen.

Die erfindungsgemäßen thixotropen Überzugsmassen bestehen zu einem größeren Teil aus einem aus einem Lack oder aus einer Anstrichfarbe bestehenden Grundüberzug und einer kleinen Menge Harnstoff, welcher durch die in situ-Reaktion eines aliphatischen Amins mit einem Isocyanat hergestellt worden ist. Die Struktur mit einer Aminendgruppe wird bevorzugt.

Aliphatische Monoamine sind bevorzugte Aminreaktanten, insbesondere Amine, welche eine aliphatische Gruppe mit ungefähr 6 bis 22 Kohlenstoffatomen enthalten, die mit einem Aminostickstoff verknüpft ist. Derartige aliphatische Gruppen können verzweigte oder geradkettige Kohlenwasserstoffe, und

zwar gesättigt oder nicht gesättigt, sein. Primäre, aus N-n-Alkyl-, N-n-Alkenyl- oder N-sel. Alkylaminen bestehende Monoamine mit 6 bis 22 Kohlenstoffatomen werden bevorzugt. Mischungen aus Aminen können ebenfalls eingesetzt werden.

Ļ

N-sec.-Alkylamine sind besonders geeignet, und zwar wegen ihrer niedrigen Schmelzpunkte, wodurch langkettige primäre Amine erhalten werden, die bei Zimmertemperatur sowie unter den Bedingungen im Freien fluid sind. Derartige Amine können aus Olefinen nach der in der US-Patentschrift 3 338 967 beschriebenen Methode hergestellt werden. Eine bevorzugte Unterklasse sind die N-sec.-Alkylamine mit ungefähr 7 bis 18 Kohlenstoffatomen. Die aliphatische Gruppe kann eine cyclische Gruppe oder eine Arylalkylgruppe sein; beispielsweise kann es sich um 9(10)-Phenylstearylamin, das sich von Ölsäure ableitet, handeln.

Erfindungsgemäß geeignete Isocyanate sind derartige Isocyanate, die mit einem Amin unter Bildung eines Harnstoffs reagieren. Geeignete Isocyanate bestehen aus aromatischen oder aliphatischen Mono- und Polyisocyanaten. Langkettige aliphatische Polyisocyanate, deren aliphatische Gruppe ungefähr 6 bis 22 Kohlenstoffatome enthält, werden bevorzugt. Vorzugsweise werden bifunktionelle Isocyanate cder deren Prepolymere eingesetzt, beispielsweise aromatische Diisocyanate, wie beispielsweise Toluoldiisocyanat, oder aliphatische Diisocyanate, wie beispielsweise Hexamethylendiisocyanat, sowie die langkettigen aliphatischen Diisocyanate, die sich beispielsweise von Aminostearylamin und Aminomethylstearylamin ableiten. Toluoldiisocyanat wird zur Formulierung der erfindungsgemäßen Massen besonders bevorzugt. Im Handel erhältliche Toluoldiisocyanate, welche Mischungen aus Toly1-2,4-diisocyanat und Toly1-2,6-diisocyanat darstellen, liefern besonders befriedigende Ergebnisse. Im allgemeinen liegt das Toly1-2,4-Isomere in einem erheblichen Überschuß vor.

Erfindungsgemäß geeignete Massen können dadurch formuliert werden, daß in situ ungefähr 0,05 bis 10 Gew. % Harnstoff, bezogen auf die gesamte Masse, gebildet werden. Bevorzugte Massen enthalten ungefähr 0,1 bis 5 Gew. - Harnstoff. Die optimale Harnstoffkonzentration schwankt je nach dem Typ des verwendeten Lösungsmittels sowie je nach den gewünschten Eindickungseigenschaften. Es können thixotrope Konzentrate hergestellt werden, die bis zu 20 % oder mehr Harnstoff in einem Lack- oder Anstrichfarbenlösungsmittel enthalten. Derartige Konzentrate können Lacken und Anstrichfarben unter Bildung thixotroper Uberzugsmassen zugesetzt werden. Es wurde gefunden, daß primäre arylaliphatische Amine, wie beispielsweise 9(10)-Phenylstearylamin, besonders geeignet zur Bildung von Konzentraten sind, und zwar insbesondere dann, wenn das Phenylstearylamin in Kombination mit einem N-sec.-alkylprimären Amin, wie beispielsweise N-sec.-alkyl(C11-14)-primären Amin, eingesetzt wird.

Bekannte Grundüberzüge können erfindungsgemäß thixotrop gemacht werden. Unter dem Begriff "Überzugsmassen" sollen Lacke,
Anstrichfarben (einschließlich Emaille, Halbglanz- und Mattfarben) sowie Anstrichlacke verstanden werden. Diese Massen
können aus natürlichen oder synthetischen Quellen formuliert
werden. Die Überzugsmassen können nicht-reaktive Füllstoffe,
Pigmente, Schutzmittel oder dergleichen enthalten.

Die Grundüberzüge können natürlich Lackkomponenten, wie beispielsweise Leinsamenöl, Tungöl, Sojabohnenöl, Fischöl, Oktizikaöl, Sonnenblumenöl, Olivenöl, Nierenbaumöl oder dergleichen, sowie nichttrocknende Öle, beispielsweise Rizinusöl oder dergleichen, natürliche Harze, wie beispielsweise Kolophonium, Schellack, Kopal oder dergleichen, sowie synthetische Harzlackkomponenten, wie beispielsweise synthetische Harze, z.B. Alkyd-, Vinyl- und Acrylharze, Urethanöle oder dergleichen, enthalten. Daraus ist zu ersehen, daß unter die Definition der Begriffe "Lacke" und "Anstrichfarben", wie sie

erfindungsgemäß verwendet werden, natürliche und synthetische Überzüge fallen, und zwar alle im Handel erhältlichen klaren und pigmentierten Überzüge.

Die Lösungsmittelkomponente des Grundüberzugs macht im allgemeinen einen erheblichen Anteil der Masse aus. Geeignete Lösungsmittel sind Kohlenwasserstoffe, und zwar gesättigte oder nicht gesättigte aromatische oder aliphatische Kohlenwasserstoffe, sowie Alkohole, Ketone, Ester, Äther oder dergleichen. In Frage kommen Lackbenzine, Terpentin, Xylol, Toluol, Benzol, Äthylacetat, Butylacetat, Amylacetat, Methyläthylketon, Methylisobutylketon, Furfurylalkohol oder dergleichen.

Die erfindungsgemäßen Massen lassen sich in einfacher Weise nach einem Verfahren herstellen, welches darin besteht, daß ein aliphatisches Amin und ein Isocyanat einem aus einem Lack oder aus einer Anstrichfarbe bestehenden Grundüberzug unter Bildung von 0,05 bis 10 Gew.-%, bezogen auf die gesamte Masse, an Harnstoff in situ sugesetzt werden, worauf so lange vermischt wird, bis die in situ-Bildung von Harnstoff erfolgt. Ein bevorzugtes Verfahren besteht in der Formulierung von 0,1 bis 5 Gew.-% Harnstoff in situ. Zur Bildung der Harnstoffe ist es zweckmäßig, das Amin und das Isocyanat in Mengen zu verwenden, die zwischen einem Unterschuß zu der stöchiometrischen Menge und einem etwa 40%igen Überschuß an Amin schwanken. Vorzugsweise wird das Amin in einem Molverhältnis von Amin zu Isocyanat von ungefähr 1:1 bis 2,8:1 zugesetzt. Es hat sich als besonders günstig erwiesen, das Molverhältnis Amin: Isocyanat zwischen 2:1 und 2,8:1 zu halten. Ferner ist es vorzuziehen, das Amin dem Lösungsmittel eines Grundüberzugs zuerst zuzusetzen und dann das Isocyanat unter Rühren zuzugehen.

Der Harnstoff kann in situ in der gesamten Grundüberzugsmasse gebildet werden oder in einer flüssigen Komponente des Grundüberzugs während der Formulierung der Grundüberzugsmasse erzeugt werden. Wie vorstehend beschrieben, können die Konzentrate, welche den Harnstoff enthalten, in situ mit einem Teil des Lösungsmittels gebildet und anschließend der Überzugsmasse zugesetzt werden.

Die erfindungsgemäß erzielte thixotrope Eindickung ist auf die Umsetzung des Diisocyanats mit dem Amin zurückzuführen. 0.7% Toluoldiisocyanat werden einem Alkydgrundieranstrich der im Beispiel 7 beschriebenen Formulierung zugesetzt. Dabei wird keine Thixotropie erzielt. Werden 1.3% N-sec.-alkyl- (C_{11-14}) -primäres Amin zugesetzt, dann zeigt die Anstrichfarbe eine Eindickung, die aus der Tabelle XII zu ersehen ist.

Die erfindungsgemäßen Massen können chargenweise durch einfaches Vermischen in Tanks formuliert und bis zur Verwendung
gegebenenfalls gelagert werden. Derartige Massen sind innerhalb
breiter Temperaturbereiche sowie während langer Zeitspannen
stabil.

Die erfindungsgemäßen thixotropen Überzugsmassen können für eine Verwendung in wäßrigen Systemen unter Verwendung üblicher Emulgiermittel sowie unter Einhaltung bekannter Emulgiermethoden emulgiert werden.

Die folgenden Beispiele erläutern die Erfindung.

Beispiel 1

Lackbenzin wird durch die in situ-Reaktion von N-sec.-alkylprimären Amine mit Toluoldiisocyanat eingedickt. Das Lackbenzin wird in einen Becher gegeben, worauf ein Amin direkt
dem Lackbenzin nach einem Rühren in einer solchen Menge zugesetzt wird, daß die in den Tabellen I und II angegebenen
Konzentrationen erhalten werden. Anschließend wird Toluoldiisocyanat zur Einstellung der in den Tabellen angegebenen

Konzentration zugesetzt, wobei ein Molverhältnis von 2 Mol Amin zu 1 Mol Toluoldiisocyanat eingehalten wird. Das Rühren wird so lange fortgeführt, bis eine maximale Eindickung erhalten worden ist. Dies dauert gewöhnlich einige Sekunden, jedoch in keinem Falle länger als 5 Minuten. Das Aussehen der Produkte ist in der Tabelle I angegeben. Das Aussehen der Produkte verändert sich auch nicht nach einem Stehen während einer Zeitspanne von einem Monat in ruhendem Zustand. Die Viskositäten werden mittels eines Brookfield Viscosimeters bei 24°C (75°F) bestimmt. Die Umdrehungen pro Minute sind in den Tabellen I und II angegeben, und zwar nach einem Stehen unter statischen Bedingungen während einer Zeitspanne von 1 Stunde, 1 Woche, 2 Wochen und 1 Monat. Die Ergebnisse sind in den Tabellen I und II zusammengefaßt.

Beispiel 2

Die im Beispiel 1 beschriebene Arbeitsweise wird wiederholt, wobei Xylol verwendet wird und ein Molverhältnis Amin: Toluoldiisocyanat von 2:1 eingehalten wird. Die Viskosität wird in der gleichen Weise wie im Beispiel 1 bestimmt. Die Ergebnisse sind in den Tabellen III und IV zusammengefaßt.

Tabelle I

Brookfleld Viskosität in Centipoise

					Zu Beginn			•	Woche	
Additiv* Amin	Konzen- tration	Aus- sehen**	Upm: 2	4	10	20	8	4	10	20
Vergleich (kein Additiv	- (A:	P4	20	0	6,5	7	25	15	7,0	7,0
N-secalkyl- (C ₇₋₉)-primäres Amin	.kes 000000000000000000000000000000000000	VF SVF SVF SVF SFG	150 250 120 110 700 Fest	100 150 100 70 390 tes G	55 80 36 180	45 25 40 40 40	150 200 120 100 600 Fes	130 130 130 330 tes	50 72,5 90 30 165 6 1	644 96 96 96
N-secelkyl- (C ₁₁₋₁₄)-pri- märes Amin	000-00 	SVE SVE TVG TVG	20 30 50 20 4500	15 15 25 2200 tea G	2 1250 1 9	5 11 840	22 22 20 20 00 00 10 10 10	20 30 30 4800 tes	2.44 e	6 12 1440

009809/1464

** Schlüssel:

VF = Viskoses Fluid SVF = Leicht viskoses Fluid SFG = Weiches festes Gel

F = Fluid TVG = Dickes viskoses Gel FSG = Festes hartes Gel

Amin + Toluoldiisocyanat (65 % Toly1-2,4- und 35 % Toly1-2,6-)

Tabelle II

Brookfield Viskosität in Centipoise

				2 Wochen	_			1 Monat	
Additiv* Konse Amin	Konsentration %	Մ րա։ 2	4	10	20	C)	4	10	20
Vergleich (kein Additiv)	t	20	10	7	9	20	15	ω	. 2
$K-8ecalkyl-(C_{7-9})$ primëres	000 - V	180 180 190 190 190 190	0000 0000 0000 0000	4000 2000 2000	28 42 10 10 10	150 175 100 160	95 130 100 70 80	07C 07C 07C 07C 07C	60000000000000000000000000000000000000
M-secalkyl- (C ₁₁₋₁₄)-pri- märes Amin	000-40 00 - WW000	1 00000 H	tes 38 tes	. ← <i>-\bar{\bar{\bar{\bar{\bar{\bar{\bar{</i>	2001 1001 1180	9200 9200 9200 9300 9300 9300 9300 9300	estes G 15 15 20 20 4200 estes G	6 1 9 8 8 6 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4470011

009809/1464

* Amin + Toluoldiisocyanat

Tabelle III

1 Woche	2 4 10 20	20 15 7 5	25 20 10 9 1300 1150 725 450 4900 3500 1150 760 1100 900 550 400 Festes G e 1 Festes G e 1	0 10 0 10 0 12,5 0 0 2100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
in Centipois	20	5	7 480 1040 680	10 20 10 10 1280 64
ookfield Viskosität in Centipoise Zu Beginn	4 10	10 6,5	0 1100 15 0 1100 750 0 2400 1500 0 1500 950 Festes G e 1 Festes G e 1	.0 25 12,5 30 58 32,5 .0 25 10 0 3850 2000 Festes Gel
Brookfiel	. Upn: n** 2	50	120 100 100 100	· 48,40
	en- Aus- ion, % sehen*	ţ.	0000 0000 0000 0000 0000 0000 0000 00	000 000 000 000 000 000 000 000 000 00
	Additiv* Konzen- Amin tration,	Vergleich (kein Additiv)	N-secalkyl- (C_7-9) -primu- C_7 -	6 W-88calkyl- (C ₁₁₋₁₄)-pri- 9 märes Amin

Amin + Toluoldiisocyanat

F = Fluid VF = Viskoses Fluid VVF = Sehr viskoses Fluid HVF = Schwer viskoses Fluid

FSG = Hartes festes Gel TVG = Dickes viskoses Gel SFG = Weiches festes Gel

^{**} Schlüssel:

Tabelle IV

		Brook	Brookfield Viskosität in Centipoise	skositä	t in Ce	ntipota	9		
				2 Wochen	ŭ			1 Monat	at
Amin Konzent	Konzentration, %	Душ: 2	4	10	20	2	4	10	20
Vergleich (kein Additiv)	ı	20	10	7,2	Ŋ	20	15	ω	4
N-secalkyl- (c_{7-9}) -primë-res Amin	000-4nv -ww000	20 1000 1000 1000 1000 Feat	12,5 800 3200 700 1tes Ge	00011	7 320 680 260	25 1120 14890 170 170 170	13 980 3600 850 estes (estes	670 1150 410 4 e 1	360 690 270
N~8ecalkyl- (C ₁₁₋₁₄)-pri- märes Amin	000-0N -WNJ00	35 100 50 5900 Feat	20 75 35 3450 estes Ge	10 1850 11 1850	10 20 10 1180	35 100 6600 6600	25 80 40 3920 eetes (estes	15 20 1980 G e 1	10 10 1400

· Amin + Toluoldiisocyanat

Beispiel 3

Eingedickte Lackbenzinmassen werden nach der im Beispiel 1 beschriebenen Methode unter Verwendung von Toluoldiisocyanat und den in den Tabellen V und VI angegebenen Aminen formuliert. Kerosin und Wasser werden den eingedickten Produkten in Mengen von 10 Gew.-%, bezogen auf die eingedickten Produkte, zugesetzt. Das Aussehen geht aus der Tabelle V hervor. Die Viskosität wird mittels eines Brockfield Viscosimeters bestimmt. Die Ergebnisse sind in der Tabelle VI bei den dort angegebenen Temperaturen und den Umdrehungen pro Minute zusammengefaßt.

Beispiel 4

Eingedickte Xylolmassen werden formuliert und nach der im Beispiel 3 beschriebenen Methode getestet. Die Frgebnisse sind in den Tabellen VII und VIII zusammengefaßt.

Beispiel 5

Lackbenzin wird durch die in situ-Reaktion von 9(10)-Phenylstearylamin mit Toluoldiisocyanat eingedickt. Die im Beispiel 1 beschriebene Arbeitsweise wird eingehalten, wobei
2 Mol des Amins pro Mol Toluoldiisocyanat eingesetzt wird.
Dabei wird thixotropes klares Gel erhalten. Die Viskosität
wird bei Zimmertemperatur gemessen, und zwar 5 Minuten nachdem die Eindickung erzielt worden war. Die Ergebnisse sind
in der Tabelle IX zusammengefaßt.

Tabelle V

Lackbenzin

A	đ	ď	i	t	1	V	¥
---	---	---	---	---	---	---	---

Amin	Konzentra- tion ∜	Verdünnung mi 10 % Öl	t Verdünnung mit 10 % Wasser
N-secAlkyl(C ₇₋₉)-amin ¹	- 0,5 2,0 10,0	Flüssig Flüssig Festes Gel	Flüssig, 2 Schichten Flüssig, 2 Schichten Festes Gel
N-secAlkyl (C ₉₋₁₀)-amin	0,5 2,0 Vi 10,0	Flüssig skoses wei- ches Gel Hartes Gel	Flüssig, 2 Schichten Flüssiges weiches Gel Hartes Gel
N-secAlkyl- (C ₁₁₋₁₄)-amin	0,5 1 2,0 10,0	Bleibt flüssi Flüssig Festes Gel	g Flüssig, 2 Schichten Flüssig, 2 Schichten Festes Gel, H ₂ O-Suspen- sion
N-secAlkyl- (C ₁₅₋₂₀)-amin	0,5 1 2,0 10,0	Flüssig Flüssig Hart	Flüssig, 2 Schichten Flüssig, 2 Schichten Hart, H ₂ 0-Suspension
N-secAlkyl- (C ₇₋₉)-amin ²	- 0,5 2,0 10,0	Flüssig Weiches Gel Festes Gel	Flüssig, 2 Schichten Weiches Gel, H ₂ O-Sus- pension Hartes Gel, H ₂ O-Sus-
	10,0	199199 491	pension
N-secAlkyl- (C_{9-10}) -amin	0,5 2,0 10,0	Weiches Gel Weiches Gel Hartes Gel	Weiches Gel, 2 Schichten Weiches Gel, 2 Schichten Hartes Gel, H ₂ O-Suspen- sion
N-secAlkyl- (C ₁₁₋₁₄)-amir	0,5 2,0 10,0	Flüssig Flüssig Festes Gel	Flüssig, 2 Schichten Flüssig 2 Schichten Hartes Gel, H ₂ 0-Suspen- sion
N-sec-Alkyl- (C ₁₅₋₂₀)-amir	0,5 2,0 10,0	Flüssig Flüssig Hartes Gel	Flüssig, 2 Schichten Flüssig, 2 Schichten Hartes Gel, H ₂ O-Suspen- sion

^{*} Amin + Toluoldiisocyanat

Molverhältnis des vorstehend angegebenen Amins: Diisocyanat = 2:1

² Molverhältnis des vorstehend angegebenen Amins:Diisocyanata= 2,4:1

Tabelle VI

Brookfield Viskosität in Centipoise

				1	Lack 180c	Lackbenzin o _C	ជា	~ ·	24°C				100°C	
Additiv* K Amin t	Konzen- tration	Ver- hält- nis	Upm:	4	10	50	8	4	. 01	20	2 "	4	10	50
N-secalkyl- (C ₇₋₉)-primä- rea Amin	000	2:1 2:1 2,4:1	490 1760 16100	315 1880 9850	167 1788 4870	110 1774 2860	930 165 17700	470 85 12750	204 48 6630	128 33 3830	130 80 660	75 45 310	35 133	13 13
N-secalkyl- (C ₉₋₁₀)-pri- mares Amin	000 700	2,4,5 1,4,1 1,13	1920 2040 13300	1120 1620 9350	540 1168 5790	324 934 3870	1390 750 4020	745 498 2020	342 237 988	198 155 586	120 350	10 175	45 78	30 4 9 9
N-secalkyl- (C ₁₁₋₁₄)-pri- märes Amin	000.	2,4:1	4920 14900 610	3180 9400 370	1644 5070 191	982 3290 125	5760 12200 390	3330 7550 235	1616 3940 123	916 2420 83	100	782	4 www	488
N-secalkyl- (C ₁₅₋₂₀)-pri- märes Amin	0000	00 0044 11111	450 6360 160 4860	250 3820 105 3320	126 2032 58 1768	79 1132 38 1058	890 10 1240	15 570 15 785	303 13 103	14 188 11 244	280 10 4 90	220 220 365 5	5 2 2 5 5 2 9 5 5 5 5 5 5 5 5 5 5 5 5 5	27 27 21 118

* Amin + Toluoldiisocyanat

Tabelle VII

Xylol

Add1tiv*			
Amin	Konzentra- tion %	Verdünnung mit 10 % Öl	Verdünnung mit 10 % Wasser
N-secAl (C ₇₋₉)-am	kyl- 0,5 in 2,0 10,0	Weiches Gel Festes Gel Festes Gel	Weiches Gel Festes Gel, H ₂ O-Suspension Festes Gel, H ₂ O-Suspension
N-secAl (C ₉₋₁₀)-a	kyl- 0,5 min ¹ 2,0 10,0	Weiches Gel Weiches Gel Hartes Gel	Weiches Gel, 2 Schichten Weiches Gel, 2 Schichten Hartes Gel, H ₂ O-Suspension
N-secAl	kyl- 0,5 amin ¹ 2,0 10,0	Flüssig Weiches Gel Festes Gel	Flüssig, 2 Schichten Weiches Gel, H ₂ O-Suspension Festes Gel, H ₂ O-Suspension
N-secAll (C ₁₅₋₂₀)-	kyl- 0,5 amin ¹ 2,0 10,0	Flüssig Weiches Gel Hartes Gel	Flüssig, 2 Schichten Weiches Gel, 2 Schichten Hartes Gel, H ₂ 0-Suspension
N-secAll (C ₇₋₉)-am	kyl- 0,5 in ² 2,0 10,0	Weiches Gel Weiches Gel Hartes Gel	Weiches Gel, H ₂ 0-Suspension Weiches Gel, H ₂ 0-Suspension Hartes Gel, H ₂ 0-Suspension
N-secAll (C ₉₋₁₀)-ar	kyl- 0,5 min ² 2,0 10,0	Weiches Gel Weiches Gel Weiches Gel	Weiches Gel, 2 Schichten Weiches Gel, 2 Schichten Hartes Gel, H ₂ 0-Suspension
N-secA1 (C ₁₁₋₁₄)-	kyl- 0,5 amin ² 2,0 10,0	Flüssig Flüssig Festes Gel	Flüssig, 2 Schichten Flüssig, 2 Schichten Festes Gel, H ₂ 0-Suspension
N-secA1 (C ₁₅₋₂₀)-	kyl- 0,5 amin ² 2,0 10,0	Flüssig Dickes Gel Hartes Gel	Flüssig, 2 Schichten Dickes Gel, H ₂ U-Suspension Hartes Gel, H ₂ O-Suspension

^{*} Amin + Toluoldiisocyanat

¹ Molverhältnis des vorstehend angegebenen Amins:Diisocyanat = 2:1

² Molverhältnis des vorstehend angegebenen Amins: Diisooyanat = 2,4:1

Tabelle VIII
Brookfield Viskosität in Centipoise

XXJO1

					.18°C			24	၁၀				100°C	၁၀
Additiv* Kor Amin	Konsentra- tion, %	Aus- sehen	Մ րա։ 2	. 4	10	20	2	4	10	20	2	4	10	50
$N-secslkyl-(C_{7-9})-primerres Amin$	OO W WWO	2,4:1	8100 7040 65300	4740 4120 33750	2208 2012 15340	1208 1134 9000	8140 6360 53700	4480 3480 31850	2300 1616 13520	1424 872 6960	2020	10 28	04 <u>r</u>	uw5
N-secelkyl- (C ₉₋₁₀)-pri- mires Amin	NONO	2.	6880 56700 7940 49600	4060 30450 4600 28100	1928 13460 12460 1252	1074 1230 1196 6840	4560 47300 6840 12509	25350 25350 4040 7900	1520 1936 4255	884 6430 1074 2610	00,40	พยดหั พื	000 <u>0</u>	のちしだ
M-secalkyl- (C ₁₁₋₁₄)-pri- märes Amin	000	2:1	270 19000 1150	185 11250 705	119 5850 388	93 3820 253	130 11200 510	100 5500 295	2400 158	37 2000 91	့ တ် က	n Risi rt	0 % c	4 20
M-secalkyl- (C ₁₅₋₂₀)-pri- märes Amin	onon onon	0000 1144	320 12500 1500 1500	205 6700 9100	98 53900 4960	60 2600 7 2950	200 9460 10900	125 5920 6800	68 3060 3 4000	37 1900 5 2510	#0-D	W₩-W	9 m 4	04r6

* Amin + Toluoldiisocyanat

Tabelle IX

Brookfield Viskosität in Centipoise

Konzentration, %	Upm: 2	4	10	20
2	4460	2520	1152	674
4	11140	5970	2668	1410
10	Fe	etes G e	1	

Beispiel 6

Lackbenzin wird unter Verwendung einer Mischung aus 9(10)-Phenylstearylamin und N-sec.-alkyl(C₁₁₋₁₄)-primärem Amin in einem Gewichtsverhältnis von 7 Teilen Phenylstearylamin zu 1 Teil N-sec.-alkyl(C₁₁₋₁₄)-primärem Amin und 2 Teilen Toluoldiisocyanat eingedickt. Es wird die im Beispiel 1 beschriebene Methode zur Herstellung des Gels eingehalten, wobei 20 Gew.-% des Amin-Diisocyanats verwendet werden. Eine vorgelierte Masse wird auf diese Weise formuliert. Es wird ein thixotropes Gel erhalten, das bei Zimmertemperatur 1 Stunde nach der Gelierung die in der Tabelle X angegebenen Viskositäten besitzt.

Tabelle X

Brookfield Viskosität in Centipoise

Konzentration, %	Upm: 2	4	10	20
20	21400	14800	8940	6090

Beispiel 7

Ein Alkydgrundanstrich wird formuliert. Das Amin-Diisocyanatin situ-Reaktionsprodukt wird zur Bildung einer thixotropen Alkydanstrichfarbe verwendet. Der Grundanstrich wird derart formuliert, daß von Hand die folgenden Bestandteile zur Herstellung des Malanteils vermischt werden:

Titandioxyd (Ti-Pure R-902, Dupont)	600 g
Eingerührter Talk (Nytal 300)	380 g
Ölreiches Alkydharz (Xac-C 129)	388 g
73 % Soja 10 % Phthalsäureanhydrid 70 % N.V.	
Bleinaphthenat (24 % Blei)	10 g
Lackbenzin	78 g

Der Malanteil wird gründlich von Hand vermischt und zweimal durch eine Dreiwalzenmühle (Walzenabstand 0,05 mm) geschickt. Der Ablegeteil (let down portion) wird unter Verwendung der folgenden Chemikalien formuliert:

Ölreiches Alkydharz (Xac-C 129)	502 g
Bleinaphthenat (24 % Blei)	10 g
Mangannaphthenat (6 % Mangan)	4 g
Phenylquecksilber(II)oleat	29,6 g

Der "let down"-Anteil wird dem Malanteil zugesetzt und kräftig während einer Zeitspanne von einer halben Stunde unter Verwendung eines propellerartigen Rührers vermischt.

250 g der vorstehend formulierten Anstrichfarbe werden mit 23,9 g eines Lackbenzingels, erhalten durch die in situ-Reaktion von 2 Mol N-sec.-alkyl(C₁₁₋₁₄)-primärem Amin pro Mol Toluoldiisocyanat, in einer Menge von 2 Gew.-%, bezogen auf die erhaltene Anstrichfarbenformulierung, in Lackbenzin vermischt. Die Mischung wird von Hand vermischt und anschließend durch eine Dreiwalzenmühle (Walzenabstand 0,05 mm) geschickt. Die Brookfield Viskosität des Grundfarbenanstrichs in dem in situ-Gelsystem, dem das Lösungsmittel zugesetzt worden ist, wird bei Zimmertemperatur kurz nach der Formulierung gemessen. Die Viskositäten sind in der Tabelle XI zusammengefaßt.

Tabelle XI

Brookfield Viskosität in Centipoise

Konzentration, %	Upm:	4	10	20
2	2600	1700	1100	760

Beispiel VIII

Der im Beispiel VII formulierte Grundanstrich wird mit N-sec.-alkyl(C₁₁₋₁₄)-primärem Amin in einer solchen Menge vermischt, daß ein 2:1-Verhältnis von Amin zu Diisooyanat (2 Gew.-#.der fertigen Anstrichfarbenformulierung) erzielt wird, und durch eine Dreiwalsenmühle (Walzenabstand 0,05 mm) geschickt. Das Lackbensin wird mit dem Toluoldiisocyanat vermischt und der Grundanstrichfarbe, welche das Amin enthält, zugesetzt und gründlich eingemischt. Die Viskosität des fertigen Produkts wird bei Zimmertemperatur in dem in der nachfolgenden Tabelle XII angegebenen Interval en unter statischen Bedingungen gemessen.

Tabelle XII

Zeitintervalle	Upm: 2	4	10	20
1 Tag	9800	10200	5450	3400
2 Tage	12600	7800	4450	2960
1 Woche	13400	8200	5300	3240

Die in diesem Beispiel mit dem Amin-Diiscoyanst-in situ-Reaktionsprodukt eingedickte formulierte Alkydanstrichfarbe besitzt ungefähr die gleiche Deckkraft wie die Grundfarbe. Die eingedickte Farbe bemitzt gute Fließeigenschaften und erscheint als dicke viskose Anstrichfarbe, welche eine 24-stündige Trocknungsseit erfordert.

Beispiel 9

Bine eingedickte Anstrichfarbe wird unter Anwendung der gleichen Arbeitsweise, wie sie im Beispiel 8 angegeben wird, formuliert, wobei N-seo.—alkyl(C₁₁₋₁₄)—primäres Amin und Toluoldiisocyanat in einem Molverhältnis von 2:1 in einer Menge von 1 Gew.—%, bezogen auf die gesamte Anstrichfarbenformulierung, verwendet werden. Die Viskositäten werden in der gleichen Weise wie im Beispiel 8 gemessen. Die Ergebnisse sind in der Tabelle XIII zusammengefaßt.

Tabelle XIII				
Zeitintervalle	Upm:	4	10	20
1 Tag	10400	5850	2940	1820
2 Tage	13975	7600	3685	2280
1 Woche	14600	8000	4100	2510

Die in der vorstehend beschriebenen Weise formulierte Anstrichfarbe besitzt das gleiche Deckvermögen wie die Grundanstrichfarbe und weist gute Fließeigenschaften auf. Der Anstrich ist innerhalb von 24 Stunden trocken.

Beispiel 10

Eine eingedickte Anstrichfarbe wird unter Einhaltung der gleichen Arbeitsweise, wie sie im Beispiel 8 beschrieben wird, hergestellt, wobei N-sec.-alkyl(C₁₁₋₁₄)-primäres Amin und Toluoldiisocyanat in einem Molverhältnis von 2,4:1 in einer Menge von 1 Gew.-%, bezogen auf die gesamte Anstrichfarben-formulierung, verwendet werden. Die Viskositäten werden in der gleichen Weise wie im Beispiel 8 gemessen. Die Ergebnisse sind in der Tabelle XIV susammengefaßt.

Tab	elle	XIV

Zeitintervalle	Upm: 2	4	10	20
1 Tag	3700	2400	1400	950
2 Tage	10000	5800	3250	2140
1 Woche	11000	6600	3700	2440

Beispiel 11

Eine eingedickte Anstrichfarbe wird unter Einhaltung der gleichen Arbeitsweise, wie sie im Beispiel 10 beschrieben wird, formuliert, wobei Oleylamin und Toluoldiisocyanat in einem Molverhältnis von 2:1 in einer Menge von 1 Gew.-%, bezogen auf das Gesamtgewicht der Anstrichfarbenformulierung, verwendet werden. Die Viskositäten werden in der gleichen Weise wie im Beispiel 10 gemessen. Die Ergebnisse sind in der Tabelle XV zusammengefaßt.

	<u>Tabelle</u>	XV		
Zeitinterval	Upm: 2	4 _	10	20
1 Tag	11700	7100	3620	2700

Beispiel 12

Eine Alkydgrundieranstrichfarben-Formulierung wird durch Zugabe der folgenden Bestandteile zu dem Malmaterial zur Herstellung des nachstehend angegebenen Malanteils hergestellt:

Titandioxyd (Ti-Pure R-902; Dupont)	272	kg
Eingerührter Talk (Nytal 300)	172	kg
Ölreiches Alkydhars (Xac-C 129)	440	kg

73 🕊 Soie

10 % Phthalsaureanhydrid

70 4 N.V.

Bleinaphthenat (24 % Blei)	9,1	kg
Lackbenzin	35,4	kg
Mangannaphthenat (6 % Mangan)	1,8	kg
Phenylquecksilber(II)-oleat	13,4	kg
N-sec-alkyl(C ₁₁₋₁₄)-primäres Amin	6,5	kg

Die Bestandteile des Malanteils werden vorvermischt und zweimal durch eine Dreiwalzenmühle (Walzenabstand 0,05 mm) geschickt. Der "let down"-Anteil wird durch Zugabe von 2,9 kg (6,5 pounds) Toluoldiisocyanat zu 90,7 kg (200 pounds) Lackbenzin vorvermischt und dem Malanteil zugesetzt. Die gesamte Formulierung wird 30 Minuten lang gerührt. Dabei werden folgende Viskositäten erhalten (vergleiche Tabelle XVI).

Tabelle XVI

Upm:	4	10	20
10500	6000	2930	1800

Patentansprüche

- 1. Thixotrope Überzugsmasse, gekennzeichnet durch eine größere Menge eines Grundüberzugs aus Lack oder einer Anstrichfarbe und einer kleineren Menge Harnstoff, welcher durch die in situ-Reaktion eines aliphatischen Amins mit einem Isocyanat erzeugt worden ist.
- 2. Masse nach Anspruch 1, dadurch gekennzeichnet, daß das Amin ein aus N-n-Alkyl-, N-n-Alkenyl- oder N-sec.-Alkylamin bestehendes Monoamin mit 6 bis 22 Kohlenstoffatomen ist.
- 3. Masse nach Anspruch 1, dadurch gekennzeichnet, daß das Amin ein N-sec.-Alkylamin mit ungefähr 7 bis 18 Kohlenstoff-atomen ist.
- 4. Masse nach Anspruch 1, dadurch gekennzeichnet, daß das Isocyanat ein aromatisches Diisocyanat ist.
- 5. Masse nach Anspruch 4, dadurch gekennseichnet, daß das aromatische Diisocyanat Toluoldiisocyanat ist.
- 6. Masse nach Anspruch 1, dadurch gekennzeichnet, daß der Harnstoff in einer Menge von ungefähr 0,05 bis 10 Gew. %, bezogen auf die gesamte Masse, vorliegt.
- 7. Masse nach Anspruch 1, dadurch gekennseichnet, daß der Harnstoff in einer Menge von umgefähr 0,1 bis 5 Gew.-%, bezogen auf die Gesamtmasse, vorliegt.
- 8. Masse nach Anspruch 1, dadurch gekennzeichnet, daß das Amin ein aus N-n-Alkyl-, N-n-Alkenyl- oder N-sec.-Alkylamin bestehendes Monoamin mit 6 bis 22 Kohlenstoffatomen ist, das Isocyanat aus Toluoldiisocyanat besteht und die Masse ungefähr 0,05 bis 10 Gew.- Harnstoff, bezogen auf die gesamte Masse, enthält.

 009809/1464

- 9. Masse nach Anspruch 8, dadurch gekennzeichnet, daß der Grundüberzug aus einem Alkydharz besteht.
- 10. Masse nach Anspruch 8, dadurch gekennzeichnet, daß der Grundübersug ein aus Lackbenzin oder Xylol bestehendes Lö-sungsmittel enthält.
- nasse, dadurch gekennzeichnet, daß ein aliphatisches Amin und ein Isocyanat einem aus Lack oder einer Anstrichfarbe bestehenden Grundüberzug zur Bildung von ungefähr 0,05 bis 10 Gew.— bezogen auf die gesamte Überzugsmasse, Harnstoff in situ zugesetzt wird, wobei das Amin in einem Molverhältnis von Amin: Isocyanat von weniger als der stöchiometrisch erforderlichen Menge bis 2,8:1 zugesetzt wird und so lange gemischt wird, bis die in situ-Bildung von Harnstoff erfolgt ist.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Amin zuerst und anschließend das Isocyanat zugesetzt wird.
- 13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß als Amin ein aus N-n-Alkyl-, N-n-Alkenyl oder N-sec.-Alkylamin bestehendes Monoamin mit 6 bis 22 Kohlenstoffatomen und als Isocyanat Toluoldiisocyanat verwendet wird.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der Harnstoff in einer Menge von ungefähr 0,1 bis 5 Gew.-%, besogen auf die gesamte Masse, gebildet wird.
- 15. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß der Grundüberzug aus einem Alkydharz besteht.
- 16. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß der Übersug ein aus Lackbenzin oder Xylol bestehendes Lösungs-mittel enthält.
- 17. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Amin dem Malanteil zugesetzt wird, während das Isocyanat dem "let down"-Anteil zugegeben wird.

17. Verfahren nach Anspruch 11, dadurch gekennseichnet, daß das Amin dem Malanteil sugesetst wird, während das Isocyanat dem "let down"-Anteil sugegeben wird.

No title available.

Patent Number: ___ US3547848

Publication date: 1970-12-15

Inventor(s): MARSH FREDERICK S; KINNEY LAYTON F; BETTY ROY J JR

Applicant(s):: ARMOUR IND CHEM CO

Requested Patent: ___ DE1805693

Application Number: USD3547848 19671103

Priority Number(s): US19670680335 19671103

IPC Classification: C09D3/64; C09D5/04

EC Classification: C09D5/04

Equivalents: __| FR1591172, __| GB1214556

Abstract

Data supplied from the **esp@cenet** database - I2