Updating Data to be used in SRA

Julia Levine

07 October, 2022

Contents

Load in old data	2
Update	2
Define functions	2
Country age	
VDEM	3
Polity	6
WDI	6
UCDP battle-related deaths	9
Coup Attempts	10
Mass Killing Variables	12
Append new data	12
Mass Killing Onsets	13
Leads and Lags	13
MK lead variables	13
Coup in the last 5 years	
Data Preparation	15
Remake some variables	
Missingness	16
Fix missingness	
Check that all is filled in	
Checking the append	24

Load in old data

The following code reads in the old data. It then takes the most recent data for each country and replicates it for the years that we are updating – this let's us easily keep the time-invariant values, like region. I then set aside the old data, and update the data that will be appended.

```
# read in data from the previous years , called dat

dat <- fread(base_data)

# carry forward all data from the most recent year

carry_from <- max(dat$year)

# this only applies if updating multiple years simultaneously
# it carries forward the most recent data for each of the years to be updated
dat_new <- rbindlist(rep(list(dat[year == carry_from]), times = length(update_years)))

# relabel the years

dat_new$year <- rep(update_years, each = nrow(dat_new))

# rename old data and leave it alone until you've updated all
# variables except for the lag/leads

dat_old <- dat
rm(dat)</pre>
```

Update

Define functions

carry_forward

The following is a function to carry forward recent values of a variable for countries where it's NA

}

$merge_dat$

The following is a function that removes the variables that were carried forward from the base data, and then merges in the updated variables from the appropriate year.

Country age

This chunk updates country age by adding the difference between the updated years and the year the data was carried from to the country age variable.

```
# update country age

diff <- update_years - carry_from

for(i in 1:length(update_years)){
   dat_new$countryage[dat_new$year == update_years[i]] <-
   dat_new$countryage[dat_new$year == update_years[i]] + diff[i]
}

# update logged country age variable

dat_new$countryage.ln <- log(dat_new$countryage + 1)</pre>
```

VDEM

The following code reads in the most recent V-DEM data, selecting the relevant variables and renaming them.

```
"v2pepwrsoc_ord",
                  "v2elrstrct",
                  "v2psparban_ord",
                  "v2psoppaut_ord",
                  "v2jureform_ord",
                  "v2clrelig_ord",
                  "v2xcl_disc",
                 "v2pepwrses_ord",
                  "v2pepwrses",
                  "e_migdpgro",
                  "e_mipopula",
                  "e_cow_exports",
                  "e_cow_imports",
                  "e_migdppc",
                  "v2csgender_ord",
                  "v2pepwrgen_ord")
 keep <- c("COWcode", "country_name", "year", vdem_vars)</pre>
# function that renames and formats variables,
# takes dataset and vector of variables to keep as inputs
  source("helper scripts/format_vdem.R")
# function that maps COW codes onto PITF country codes,
# contained in format_vdem
  source("helper scripts/cowtopitf2018.R")
# format and save vdem
  vdem <- format_vdem(dat = vdem, keep = keep)</pre>
  save(vdem, file = "input/temp/vdem.Rdata")
# read in formatted VDEM variables for the update years
 load("input/temp/vdem.Rdata")
# limit to the update years
  vdem <- vdem[year %in% update_years]</pre>
# count missing values
# check which variables are missing values
  missing <- apply(vdem[country_name %in% dat_new$country_name], 2,</pre>
                    function(x) sum(is.na(x)))
 kable(missing, col.names = "NA count")
```

	NA count
COWcode	0

	NA count
country_name	0
year	0
v2cldmovem_ord	0
$v2cldmovew_ord$	0
v2clkill_ord	0
$v2clsocgrp_ord$	0
v2clrgunev_ord	0
v2csreprss_ord	0
v2pepwrsoc_ord	0
candidaterestriction	1
partyban	0
barrierstoparties	5
judicialreform	0
religiousfreedom	0
freediscussion	0
v2pepwrses_ord	0
ses_power_dist	0
e_mipopula	159
e_cow_exports	159
e_cow_imports	159
v2csgender_ord	0
v2pepwrgen_ord	0
e_migdpgro	159
e_migdppc	159
sftgcode	0
gdppcgrowth	159
popsize	159
popsize.ln	159
tradeshare	159
pol_killing_approved	0
freemove_men4	0
freemove_women4	0
social_inequality	0
even_civilrights	0
repress_civilsoc	0
social_power_dist	0
minorityrule	0

```
# update V-DEM data
dat_new <- merge_dat(new_data = vdem)</pre>
```

Polity

According to the Center for Systemic Peace website, 2019 is the last year with updated polity variables. We've decided to drop the polity variables, but I'm just updating the durable variable here the same way I updated country age, by adding one year.

```
# update durable the same way we update country age
# Note: pol.durable and durable are the same thing

diff <- update_years - carry_from

for(i in 1:length(update_years)){
   dat_new$durable[dat_new$year == update_years[i]] <-
   dat_new$durable[dat_new$year == update_years[i]] + diff[i]
}

# update the logged variables

dat_new$durable.ln <- log(dat_new$durable + 1)</pre>
```

WDI

This chunk pulls select variables from the WDI API.

```
# In June 2020 WDI decommissioned V1 of the API
# so you may need to re-install the WDI package.
# install.packages("devtools")
  # devtools::install_github("vincentarelbundock/WDI")
 library(WDI)
# list indicators we want to pull
                                   # Trade (% of GDP)
  wdilist <- c("NE.TRD.GNFS.ZS",
               "NY.GDP.PCAP.KD",
                                   # GDP per capita (constant 2000 US$)
               "NY.GDP.MKTP.KD.ZG", # GDP growth (annual %)
                                 # Population, total
               "SP.POP.TOTL",
               "SP.DYN.IMRT.IN"
                                   # Infant mortality rate
      )
  # confirm that all of the old indicator names are in use
    (check.names <- rbindlist(lapply(wdilist, function(x) {</pre>
      # search the indicator list for each of the variables in wdilist
      res <- WDIsearch(x, field = "indicator")</pre>
       # take the first match (drops those with extra letters on the end)
      if(length(res) > 2){
         res <- res[1, ]
      }
```

```
data.table("indicator" = res[1], "name" = res[2])})))
# Extract latest version of desired variables from WDI
# also pull 5 years from before so that we can carry forward
# more recent values for variables like infant mortality that are slow to update
 wdi <- WDI(country="all", indicator=wdilist, extra=FALSE,</pre>
             start=(min(update years) - 5))
# Add PITF country codes for merging
  source("helper scripts/f.pitfcodeit.R")
  wdi <- pitfcodeit(wdi, "country")</pre>
  wdi$country <- as.character(wdi$country)</pre>
# Subset to drop cases with missing PITF codes, cut extra id vars
  wdi <- subset(wdi, !is.na(sftgcode), select=-c(1, 2))</pre>
# Reorder for easier review
  wdi <- wdi[order(wdi$sftgcode, wdi$year),]</pre>
# Rename variables -- add a "new" to indicate these are newly brought in from wdi
# to avoid reusing names already in the old EWP data
  setDT(wdi)
  wdi cols <- c("wdi.trade.new",
             "wdi.gdppc.new",
             "wdi.gdppcgrow.new",
             "wdi.popsize.new",
             "wdi.imrate.new")
  setnames(wdi,
           c("NE.TRD.GNFS.ZS",
             "NY.GDP.PCAP.KD",
             "NY.GDP.MKTP.KD.ZG",
             "SP.POP.TOTL",
             "SP.DYN.IMRT.IN"),
           wdi_cols)
# save to the input folder
  if(first.pass == T){dir.create("input/temp/wdi")}
 fwrite(wdi, paste0("input/temp/wdi/pulled-", Sys.Date(), ".csv"))
```

This chunk reads in the latest pull from the WDI API, counts the missing values, and merges it into the main dataset.

Variable	NA count
wdi.trade.new	50
wdi.gdppc.new	12
wdi.gdppcgrow.new	12
wdi.popsize.new	1
wdi.imrate.new	169

```
# check which variables are missing for all countries, indicating that they
# have not been updated yet, but potentially will be in the future
  all.missing <- missing[value == length(unique(wdi$sftgcode))]$variable
 cat(paste("\n", all.missing, "not updated as of", Sys.Date()))
## wdi.imrate.new not updated as of 2022-10-07
# Carry forward the last non-missing value of infant mortality rate
  # do the same thing for missing values of tradeshare and gdp as they were
  # mostly updated in 2018 and the earliest values from CIA factbook are 2017
 carry_forward(variable = "wdi.imrate.new", carry_from = update_years - 1, data = wdi)
## Missing values for 169 countries.
## Filling in values for 168 countries.
 carry_forward(variable = "wdi.imrate.new", carry_from = update_years - 2, data = wdi)
## Missing values for 1 countries.
## Filling in values for 0 countries.
 carry_forward(variable = "wdi.imrate.new", carry_from = update_years - 3, data = wdi)
## Missing values for 1 countries.
## Filling in values for 0 countries.
 carry_forward(variable = "wdi.trade.new", carry_from = update_years - 1, data = wdi)
## Missing values for 50 countries.
## Filling in values for 30 countries.
 carry_forward(variable = "wdi.trade.new", carry_from = update_years - 2, data = wdi)
```

Missing values for 20 countries.

```
## Filling in values for 5 countries.
    carry_forward(variable = "wdi.trade.new", carry_from = update_years - 3, data = wdi)

## Missing values for 15 countries.
## Filling in values for 2 countries.
    carry_forward(variable = "wdi.gdppc.new", carry_from = update_years - 1, data = wdi)

## Missing values for 12 countries.
## Filling in values for 7 countries.
    carry_forward(variable = "wdi.gdppc.new", carry_from = update_years - 2, data = wdi)

## Missing values for 5 countries.
## Filling in values for 1 countries.
carry_forward(variable = "wdi.gdppc.new", carry_from = update_years - 3, data = wdi)

## Missing values for 4 countries.
## Filling in values for 1 countries.
## Filling in values for 1 countries.
## Filling in values for 1 countries.
missing = melt(wdi[, lapply(.SD, function(x) sum(is.na(x))), .SDcols = wdi_cols])
kable(missing, col.names = c("Variable", "NA count"))
```

Variable	NA count
wdi.trade.new	87
wdi.gdppc.new	21
wdi.gdppcgrow.new	30
wdi.popsize.new	6
wdi.imrate.new	6

```
# Merge it in to main data

dat_new <- merge_dat(new_data = wdi[year %in% update_years])
dat_new[, imr.sqrt := sqrt(wdi.imrate.new)]
dat_new[, wdi.trade.ln.new := log(wdi.trade.new)]</pre>
```

UCDP battle-related deaths

The following code reads in the UCDP data and changes country names to match. Below, I sum the number of battledeaths for each country in the update years, and merge this onto dat_new.

```
# read in UCDP data

ucdp <- fread("input/ucdp-brd-dyadic-221.csv")

# making sure we have the same variables as in 18.1 version.
# colnames for 18.1 are uppercase, use tolower when checking

colnames(ucdp) <- gsub("_", "", colnames(ucdp))

# limit to the update years and conflict type >= 3

ucdp <- ucdp[year %in% update_years & typeofconflict >= 3]
```

```
# change country names to match
  diff loc <- setdiff(unique(ucdp$locationinc), unique(dat new$country name))</pre>
  # drops the locations that involve multiple countries
   diff_loc <- diff_loc[grepl(", ", diff_loc) == F]</pre>
  # change names
   ucdp$locationinc[ucdp$locationinc=="Russia (Soviet Union)"] = "Russia"
    ucdp$locationinc[ucdp$locationinc=="Myanmar (Burma)"] = "Burma/Myanmar"
   ucdp$locationinc[ucdp$locationinc=="Yemen (North Yemen)"] = "Yemen"
    ucdp$locationinc[ucdp$locationinc=="DR Congo (Zaire)"] = "Democratic Republic of Congo"
    if(length(setdiff(unique(ucdp$locationinc),
                      unique(dat_new$country_name)))>0){
      stop("Different country names")}
# group by year/country and sum battledeaths
  bd <- ucdp[, .("battledeaths" = sum(bdbest)), by = c("locationinc", "year")]
# save battledeath data
  fwrite(bd, "input/temp/battledeaths.csv")
```

I then read in the battledeaths for each country and merge it into the new data, replacing missing values with zeroes and updating the logged version of this variable.

Coup Attempts

This code reads in the most updated version of the Powell and Thyne data which is posted on their website. It selects coups in the years to be updated

```
# pull coup data from powell and thyne websit
coup_dat <- as.data.table(read.delim("http://www.uky.edu/~clthyn2/coup_data/powell_thyne_coups_final.")</pre>
```

```
# keep coups in the update years

new_coup <- coup_dat[year %in% update_years]

# where coup == 2 it was a successful coup

# where coup == 1 it was a failed coup

new_coup[, cou.s.d := ifelse(coup == 2, 1, 0)]
new_coup[, cou.f.d := ifelse(coup == 1, 1, 0)]

# save coup data

fwrite(new_coup, paste0("input/temp/", "coups-pulled-", Sys.Date(), ".csv"))</pre>
```

This updates the coup variables in dat new.

country	year	cou.s.d	cou.f.d
Mali	2021	1	0
Niger	2021	0	1
Guinea	2021	1	0
Chad	2021	1	0
Sudan	2021	1	1
Myanmar	2021	1	0

```
coup_country countries_in_sra exact_match has_exact_match
## 1:
                                       FALSE
                                                     FALSE
          Myanmar
                    Burma/Myanmar
new_coup[country == "Myanmar", country := "Burma/Myanmar"]
# merge coup data into dat_new
 dat_new <- merge_dat(new_data = new_coup,</pre>
                     merge_new_by = c("country", "year"),
                     merge_base_by = c("country_name", "year"))
# fill in missing values with zeroes
 coup_cols <- c("cou.s.d", "cou.f.d")</pre>
 dat_new[, (coup_cols) := lapply(.SD, function(x)
   ifelse(is.na(x), 0, x)), .SD = coup_cols]
# update cou.any variable (1 if there was either a failed or successful coup)
 dat_new[, cou.any := ifelse(cou.s.d>0 | cou.f.d>0, 1, 0)]
```

Mass Killing Variables

- state-led onset, Burma/Myanmar (began in 2021)
- state-led onset, Ethiopia (began in 2020)
- non-state-led mk ended, Afghanistan

Append new data

This appends dat_new to dat_old, creating the full data-set

```
# check to make sure you can append the new data
if(length(setdiff(colnames(dat_old), colnames(dat_new)))>0){
```

```
stop("different colnames")}

# append new data

setcolorder(dat_new, colnames(dat_old))
dat <- rbind(dat_old, dat_new, fill = T)</pre>
```

Mass Killing Onsets

I now make changes to the mass killing variables in years prior to the update years.

There are no changes to be made.

```
# change old data
 # dat[country_name == "Ethiopia", .(year, mkl.start, mkl.ongoing)]
 dat[country_name == "Ethiopia" & year == 2020, mkl.start := 1]
# combined onset variables
 dat[, anymk.start := ifelse((!is.na(mkl.start) & mkl.start == 1)|
                                nonstatemk.start == 1, 1, 0)]
 dat[, anymk.ongoing := ifelse((!is.na(mkl.ongoing) & mkl.ongoing == 1)|
                                nonstatemk.ongoing == 1, 1, 0)]
 dat[, anymk.ever := ifelse((!is.na(mkl.ever) & mkl.ever == 1)|
                                nonstatemk.ever == 1, 1, 0)
# save mass killing variables
 mkl_dat <- subset(dat, select = c("country_name", "sftgcode", "year",</pre>
                                    "mkl.start", "mkl.end", "mkl.ongoing",
                                    "mkl.ever", "nonstatemk.start",
                                    "nonstatemk.end", "nonstatemk.ongoing",
                                    "nonstatemk.ever"))
 setkey(mkl_dat, country_name, year)
 fwrite(mkl_dat, file = "output/mkl_data.csv", row.names = F)
```

Leads and Lags

In this section, I update the variables that involve leads and lags

MK lead variables

```
# read in list of the first time Sftgcodes are used in PITF data

map <- fread("../../EWP (1)/2019SRA/Make data/sftg_name_map.csv")
setnames(map, "V1", "min_ewp_year")

# aggregate over different country names and drop duplicates</pre>
```

```
map <- map[country != ""]</pre>
   map[, min_ewp_year := min(min_ewp_year), by = "sftgcode"]
   map[, ':=' (country = NULL, country_name = NULL)]
   map <- map[!duplicated(map)]</pre>
# merge in first year a sftgcode was used in the PITF data
 dat[, min_ewp_year := NULL]
 dat <- merge(dat, map, by = "sftgcode", all.x = T)</pre>
# order by year, country name, and sftgcode
  setkey(dat, year, country_name, sftgcode)
# create anymk lead variable, shifting by sftqcode
  dat[, anymk.start.1 := shift(anymk.start, 1, type = "lead"), by = "sftgcode"]
  # For new states we don't attribute mass killings to their origin country.
  # if the year is the year before the PITF starts first used an sftqcode,
  # then reset to 0
   dat[, anymk.start.1 := ifelse(year == min_ewp_year - 1, 0, anymk.start.1)]
# create the rest of the lead variables based off of the one-year lead
  dat[, anymk.start.2 := shift(anymk.start.1, type = "lead"), by = "sftgcode"]
  dat[, anymk.start.3 := shift(anymk.start.1, n= 2, type = "lead"), by = "sftgcode"]
  dat[, anymk.start.2window := as.double((anymk.start.1 + anymk.start.2) > 0) ]
  dat[, anymk.start.3window := as.double((anymk.start.2window + anymk.start.3) > 0)]
```

Coup in the last 5 years

Create dataframe of sftgcodes that are created as a result of a coup. We then turn the coup.try.5yr indicator to 1 for the first four years of that sftgcode's existence.

Data Preparation

Remake some variables

This section fills in some V-DEM variables by creating an adjusted version of the relevant WDI variable. This significantly cuts down on missingness.

```
make.combined <- function(vdem.var, wdi.proxy){</pre>
  # Make an adjusted version of the wdi one to fit the tradeshare (VDEM) one:
    # drop update year as we've carried forward some values to this year
    lm.adjust <- lm(as.formula(pasteO(vdem.var, "~", wdi.proxy)),</pre>
                    data = dat[year < update years])</pre>
  # fill in update years with fitted values from regression on all years
    dat[year %in% update_years, lm.adjust := coef(lm.adjust)[1] +
          coef(lm.adjust)[2]*get(wdi.proxy)]
  # Where vdem var is missing, replace with the adjusted wdi proxy
    combined.var <- pasteO(vdem.var, ".combined")</pre>
    dat[year %in% update_years,
        (combined.var) :=
          ifelse(!is.na(get(vdem.var)), get(vdem.var), lm.adjust)]
  # summarize differnce in missingness
    na.old <- sum(is.na(subset(dat[year %in% update_years], select = vdem.var)))</pre>
    na.new <- sum(is.na(subset(dat[year %in% update_years], select = combined.var)))</pre>
    cat(paste0("In the update years we were missing ", na.old,
           " observations for ", vdem.var))
    cat(paste0("\nUsing the WD indicator, ", wdi.proxy,
               ", as a proxy we are missing ", na.new, " observations"))
    dat[, lm.adjust := NULL]
}
# create combined variable for tradeshare
 make.combined(vdem.var = "tradeshare.ln", wdi.proxy = "wdi.trade.ln.new")
```

```
## In the update years we were missing 163 observations for tradeshare.ln
## Using the WD indicator, wdi.trade.ln.new, as a proxy we are missing 15 observations
    cat("\n")

# create combined variable for popsize

make.combined(vdem.var = "popsize", wdi.proxy = "wdi.popsize.new")

## In the update years we were missing 163 observations for popsize
## Using the WD indicator, wdi.popsize.new, as a proxy we are missing 5 observations
    cat("\n")

# update logged version

dat[year %in% update_years, popsize.ln.combined := log(popsize.combined)]

# create combined variable for GDP per capita growth

make.combined(vdem.var = "gdppcgrowth", wdi.proxy = "wdi.gdppcgrow.new")

## In the update years we were missing 163 observations for gdppcgrowth
```

Using the WD indicator, wdi.gdppcgrow.new, as a proxy we are missing 16 observations

Missingness

This section looks at remaining missingness and attempts to fill in values.

```
# select variables we would like to check missingness for
 predictornames <- c("anymk.ongoing", "anymk.ever",</pre>
                      "reg.afr", "reg.eap", "reg.eur", "reg.mna", "reg.sca",
                      "countryage.ln", "popsize.ln.combined", "imr.sqrt",
                      "gdppcgrowth.combined", "ios.iccpr1", "includesnonstate",
                      "durable.ln", "minorityrule", "elf.ethnic",
                      "battledeaths.ln", "candidaterestriction", "partyban",
                      "judicialreform", "religiousfreedom",
                      "pol_killing_approved", "freemove_men4",
                      "freemove_women4", "freediscussion",
                      "social_inequality", "even_civilrights", "repress_civilsoc",
                      "social_power_dist", "ses_power_dist",
                      "tradeshare.ln.combined",
                      "coup.try.5yr", "polity2.fl.2", "polity2.fl.3")
# look for missingness in the update years for select variables
 dat.check <- subset(dat, year %in% update_years,</pre>
                      select = c("country_name", "year", predictornames))
# for each of the update years, count the number of NAs for each variable
# select variables with positive NA counts
 comp <- lapply(update_years,</pre>
                 function(y) apply(dat.check[year == y],
                                    2, function(x) sum(is.na(x))))
```

Number of Countries with Missing Values Before Fixing

Fix missingness

This chunk defines functions to look at patterns in NAs and carry forward values.

```
look <- "No missing values"</pre>
   }else{
      look <-lapply(1:length(countries), function(x){</pre>
        out <- subset(data, country name == countries[x],</pre>
                       select = c("year", variable))
        colnames(out) <- c("year", countries[x])</pre>
        out})
      # merge all data.tables in the list by year
        look <- Reduce(function(...) merge(..., all = T, by = "year"), look)</pre>
        colnames(look) <- c("year", as.character(countries))</pre>
        look <- look[order(look$year, decreasing = TRUE), ]</pre>
   look
 }
# create blank spreadsheets to fill out
 fill.tab <- function(var){</pre>
   out <- subset(dat[is.na(get(var)) & year %in% update_years],</pre>
                  select = c("country name", var))
   out[, cia.factbook.est := NA]
   out[, est.year := NA]
   fwrite(out, file = paste0("input/temp/missing/", var, ".csv"))
 }
# look at last present value for countries missing data in update years
 last.present <- function(var){</pre>
   look.na.long <- melt(look.na.vars[[var]], id.vars = "year",</pre>
                          variable.name = "country name")
    setorder(look.na.long, country_name, year)
    look.na.long[, value_last := shift(value), by = country_name]
   look.na.long[, same_as_last := value == value_last]
   look.na.long[!is.na(value) & is.na(value_last), same_as_last := F]
   look.na.long[!is.na(same_as_last) & same_as_last == F,
                  .("carried value" = value[which.max(year)],
                    "carry_from" = max(year)), by = .(country_name)]
 }
# for each of the variables that we have countries with missing values
# look at the values in the last few years for that country
 look.na.vars <- lapply(c(check$var, "wdi.gdppc.new"), look_na)</pre>
 names(look.na.vars) <- c(check$var, "wdi.gdppc.new")</pre>
 if(first.pass == T){
   dir.create("input/temp/missing")
   lapply(check$var, fill.tab)
   fill.tab("wdi.gdppc.new")
```

Candidate Restriction

```
## Missing values for 1 countries.
## Filling in values for 1 countries.
```

For the variables addressed below, I read in values from the CIA Factbook, and carry those values forward if they're more recent than the last updated version of the variable.

In the tables presented for each variable, I show the value that is filled in for that country in column 2. This is either the "carried_value", carried from the year listed under "carry_from", or it is the "cia.factbook.est".

Infant Mortality

We have been using CIA Factbook values for these countries since 2019:

- Macedonia
- North Korea

head(look.na.vars\$imr.sqrt)

```
year Macedonia North Korea Taiwan
                                          Turkey
##
## 1: 2021
                              NA
                                     NA
                  NΑ
                                               NA
## 2: 2020 2.736786
                        4.734976
                                     NA 2.932576
## 3: 2019 2.720294
                        4.472136
                                     NA 3.016621
## 4: 2018 2.792848
                                     NA 3.016621
                        4.690416
## 5: 2017 2.792848
                        4.690416
                                     NA 3.162278
## 6: 2016 2.792848
                        4.690416
                                     NA 3.286335
# read in CIA Factbook estimates
  cia.factbook <- fread("input/temp/missing/imr.sqrt.csv")</pre>
  cia.factbook[, cia.factbook.est := sqrt(cia.factbook.est)]
  # subtract one from the carry_from value because there is a lag
  # in updating the infant mortality rate
  comp <- merge(cia.factbook, last.present("imr.sqrt"),</pre>
                by = "country_name")
  comp[, imr.sqrt := ifelse(carry_from >= est.year,
                                        carried_value, cia.factbook.est)]
  kable(comp)
```

country_name	imr.sqrt	cia.factbook.est	est.year	carried_value	carry_from
Macedonia North Korea	2.705550 4.712749	2.705550 4.712749	2022 2022	2.736786 4.734976	2020 2020
Turkey	4.398864	4.398864	2022	2.932576	2020

```
# replace missing

for(i in 1:nrow(comp)){
   country.fill <- comp[i, ]
   dat[country_name == country.fill$country_name & year == update_years,
        imr.sqrt := country.fill$imr.sqrt]
}</pre>
```

Population size

We have been using CIA factbook values for these countries since 2019:

- Eritrea
- Macedonia
- North Korea

head(look.na.vars\$popsize.ln.combined)

```
year Eritrea Macedonia North Korea Taiwan
                                                  Turkey
## 1: 2021
                NA
                         NA
                                      NA
## 2: 2020 15.63154 14.57082 17.06710
                                             NA 18.24325
## 3: 2019 15.62071 14.56974 17.05980
                                             NA 18.23244
## 4: 2018 15.60237 14.64728 17.04908
                                             NA 18.21909
## 5: 2017 15.59385 14.64728
                                             NA 18.19969
                                17.04908
## 6: 2016 15.59385 14.64644
                                17.04908
                                             NA 18.18436
# read in CIA Factbook estimates
 cia.factbook <- fread("input/temp/missing/popsize.ln.combined.csv")</pre>
 comp <- merge(cia.factbook, last.present("popsize.ln.combined"),</pre>
               by = "country_name")
 comp[, popsize.ln.combined := ifelse(carry_from >= est.year,
                                       carried_value, log(cia.factbook.est))]
 comp[, popsize.combined := ifelse(carry_from >= est.year,
                                       carried_value, cia.factbook.est)]
 kable(comp)
```

country_name	epopsize.ln.combined	${\it cia. fact book. est}$	est.year	${\rm carried_value}$	carry_from	popsize.combined
Eritrea	15.64155	6209262	2022	15.63154	2020	6209262
Macedonia	14.57207	2130936	2022	14.57082	2020	2130936
North	17.07188	25955138	2022	17.06710	2020	25955138
Korea						
Turkey	18.23493	83047706	2022	18.24325	2020	83047706

```
# replace missing
```

```
for(i in 1:nrow(comp)){
   country.fill <- comp[i, ]
   dat[country_name == country.fill$country_name & year == update_years,
        popsize.ln.combined := country.fill$popsize.ln.combined]
}

for(i in 1:nrow(comp)){
   country.fill <- comp[i, ]
   dat[country_name == country.fill$country_name & year == update_years,
        popsize.combined := country.fill$popsize.combined]
}</pre>
```

GDP Per capita growth

In 2021, this variable is missing for the following countries:

Cuba, Eritrea, Japan, Kuwait, Macedonia, Oman, North Korea, South Sudan, Syria, Taiwan, Turkmenistan The following countries are newly missing, and have more recent estimates from the WDI than the CIA factbook, so we carry old WDI values forward.

```
missing_22 = colnames(look.na.vars$gdppcgrowth.combined)[-1]
cat(paste(paste(setdiff(missing_22, missing_21), collapse = ", "), "\n"))
```

```
## Afghanistan, Bhutan, Iran, Turkey
```

country_name	gdppcgrowth.combin ed a.	factbook.est	est.year	carried_value ca	arry_fron	source
Afghanistan	-0.023	0.027	2017	-0.023	2020	carry_WDI
Bhutan	-0.062	0.074	2017	-0.062	2020	carry_WDI
Iran	0.007	0.037	2017	0.007	2020	carry_WDI
Kuwait	-0.003	-0.033	2017	-0.003	2019	carry_WDI
North Korea	-0.017	-0.011	2015	-0.017	2015	carry_WDI
Oman	-0.003	-0.009	2017	-0.003	2019	carry_WDI
Syria	-0.138	-0.365	2014	-0.138	2016	carry_WDI
Taiwan	0.029	0.027	2019	0.029	2019	carry_WDI
Turkey	0.008	0.010	2019	0.008	2020	carry_WDI
United Arab	0.007	0.008	2017	0.007	2019	carry_WDI
Emirates						
Venezuela	-0.140	-0.197	2018	-0.140	2019	carry_WDI
Cuba	0.016	0.016	2017	0.016	2019	CIA_Factboo

country_name	gdppcgrowth.combin@da.fa	actbook.est	est.year	carried_value o	arry_fron	n source
Eritrea	0.050	0.050	2017	0.050	2019	CIA_Factbook
Macedonia	0.000	0.000	2017	0.000	2019	$CIA_Factbook$
South Sudan	-0.052	-0.052	2017	-0.052	2019	$CIA_Factbook$
Turkmenistan	0.065	0.065	2017	0.065	2019	$CIA_Factbook$

```
# replace missing

for(i in 1:nrow(comp)){
   country.fill <- comp[i, ]
   dat[country_name == country.fill$country_name & year == update_years,
        gdppcgrowth.combined := country.fill$gdppcgrowth.combined]
}</pre>
```

tradeshare.ln.combined

First fill in GDP per capita

country_name	wdi.gdppc.new	cia.factbook.est	est.year	carried_value	carry_from	source
Eritrea	1600	1600	2017	1600.00	2019	CIA_Factbool
Macedonia	15800	15800	2020	16479.00	2020	CIA_Factbool
North Korea	1700	1700	2015	1700.00	2019	CIA_Factbool
South Sudan	1600	1600	2017	1600.00	2019	CIA_Factbool
Taiwan	24502	24502	2018	24502.00	2020	CIA_Factbool
Turkey	28400	28400	2020	15225.61	2020	CIA_Factbool
Venezuela	7704	7704	2018	7704.00	2020	CIA_Factbool

```
# replace missing

for(i in 1:nrow(comp)){
   country.fill <- comp[i, ]
   dat[country_name == country.fill$country_name & year == update_years,
        wdi.gdppc.new := country.fill$wdi.gdppc.new]
}</pre>
```

Calculate Tradeshare In the 2020 update, we took CIA Factbook estimates if they were made no earlier than 2016 for the following countries:

Eritrea, Fiji, Macedonia, North Korea, Papua New Guinea, Solomon Islands, Somalia, South Sudan, Syri Many of these countries still have missing values during the 2021 update, so we continue to use CIA Factbook values for them. The following countries are newly missing tradeshare data in 2021:

comp[, source := factor(carry_from >= est.year & as.character(round(carried_value, 4)) != as.charac

"carried_value", "carry_from", "source")))

country_name	$tradeshare. In. combin \textbf{\emph{e}i} a. factbook. est~est. year$			carried_value	carry_fro	msource
Democratic Republic of	-0.8888857	0.5012140	2019	-0.8888857	2020	carry_WDI
Vietnam						
Guyana	-1.9638614	-0.6745026	2019	-1.9638614	2019	$\operatorname{carry}_{-}\operatorname{WDI}$
Laos	-2.0210334	-0.2958945	2019	-2.0210334	2019	$\operatorname{carry}_{-}\operatorname{WDI}$
Liberia	-1.4747539	1.4619059	2019	-1.4747539	2020	$\operatorname{carry}_{-}\operatorname{WDI}$
Malawi	-2.1534896	-0.5771616	2019	-2.1534896	2019	$\operatorname{carry}_{-}\operatorname{WDI}$
Turkey	-2.2524742	-1.6897689	2020	-2.2524742	2020	$\operatorname{carry}_{-}\operatorname{WDI}$
Afghanistan	-0.9102506	-0.9102506	2020	-2.5713766	2019	CIA_Factboo
Eritrea	-1.7148466	-1.7356873	2017	-1.7148466	2019	CIA_Factboo
Macedonia	-0.7477396	-0.7477396	2020	-1.0369120	2019	CIA_Factboo
North Korea	-2.8419659	-2.8540467	2018	-2.8419659	2019	CIA_Factboo
Papua New Guinea	-0.7669202	-0.4670185	2018	-0.7669202	2019	CIA_Factboo
South Sudan	-1.2915939	-1.1087424	2019	-1.2915939	2019	CIA_Factboo
Trinidad and Tobago	-0.4289219	-0.3312453	2019	-0.4289219	2019	CIA_Factboo
Venezuela	-2.1122894	-0.7741132	2018	-2.1122894	2019	CIA_Factboo

```
# replace missing

for(i in 1:nrow(comp)){
   country.fill <- comp[i, ]
   dat[country_name == country.fill$country_name & year == update_years,
        tradeshare.ln.combined := country.fill$tradeshare.ln.combined]
}</pre>
```

```
# carry_forward("tradeshare.ln.combined")
```

Check that all is filled in

```
# repeat to make sure there are no more missing
 look.na.vars <- lapply(check$var, function(x)</pre>
    look_na(x, dat = dat[country_name!="Taiwan"]))
  names(look.na.vars) <- check$var</pre>
 look.na.vars
## $popsize.ln.combined
## [1] "No missing values"
## $imr.sqrt
## [1] "No missing values"
## $gdppcgrowth.combined
## [1] "No missing values"
## $candidaterestriction
## [1] "No missing values"
## $tradeshare.ln.combined
## [1] "No missing values"
fwrite(dat, file = paste0("output/prepared", update_years, "predictors-", Sys.Date(), ".csv"))
```

Checking the append

```
# read in newly updated data and just focus on the last year in old
  dat.files <- list.files("output/")[grepl("prepared", list.files("output/"))]</pre>
  latest.pull <- which.max(lapply(dat.files,</pre>
                                      as.Date(gsub(paste0(paste0("prepared", update_years, "predictors-")
  dat <- fread(paste0("output/", dat.files[latest.pull]))</pre>
 new_dat <- dat[year <= (update_years-1)]</pre>
# read in original base data
  dat <- fread(base_data)</pre>
  old_dat <- dat
  old_dat[, c("pol.durable.ln", "pol.durable") := NULL]
# check row count
  if(nrow(old_dat) != nrow(new_dat)){stop("Different observation count")}
# merge new and old data to compare
  compare <- merge(new_dat, old_dat, by = c("sftgcode", "year"))</pre>
# make sure they match on all variables in the old data
  check.vars <- colnames(old_dat)[!colnames(old_dat) %in% c("sftgcode", "year")]</pre>
  comp <- data.table("all.equal" = sapply(check.vars, compare_var),</pre>
                      "var" = check.vars)
# look into the differences where all.equal == F
# and where the issue isn't an NA value mismatch -- come back to this later
  differences <- comp[all.equal!="TRUE"][!grep("is.NA", all.equal)]
  diff.look <- lapply(differences$var, check_diffs)</pre>
  names(diff.look) <- differences$var</pre>
  cat(paste0("There are ", length(diff.look),
             " variables where the two datasets disagree on non-missing values."))
## There are 2 variables where the two datasets disagree on non-missing values.
  if(length(diff.look) > 0){
      for(i in 1:length(diff.look)){
    print(diff.look[[i]])
  }
 }
##
      year sftgcode mkl.start.x mkl.start.y
## 1: 2020
                ETI
      year sftgcode anymk.start.x anymk.start.y
##
```

```
##
      year
                              var
## 1: 2020 163
                     anymk.start.1
## 2: 2019
                     anymk.start.1
## 3: 2019 163 anymk.start.2window
## 4: 2018
            1 anymk.start.2window
## 5: 2018 163 anymk.start.3window
## 6: 2017 1 anymk.start.3window
## 7: 2019 163
                     anymk.start.2
## 8: 2018 1
                     anymk.start.2
## 9: 2018 163
                     anymk.start.3
## 10: 2017 1
                     anymk.start.3
```