

Explicación de la Convención Denavit-Hartenberg

Eduardo Robles Vázquez

Universidad Politécnica de la Zona Metropolitana de Guadalajara

Profesor: Carlos Enrique Morán Garabito

24 de septiembre del 2019

Índice general

1	Introducción	3
2	Asignación de Sistemas de Referencia	4
	2.1. Zi y $Z(i-1)$ no son paralelos	5
	2.2. Zi y Z(i-1) son paralelos	5
3	Transformación de Coordenadas	7
4	Consideraciones Finales	8
Ri	hliografía	9

Introducción

Se trata de un procedimieto sistemático para describir la estructura cinemática de una cadena articulada constituida por articulaciones con un solo grado de libertad. Para ello, a cada articulación se le asigna un Sistema de Referencia Local con origen en un punto Q_i y ejes ortonormales X_i, Y_i, Z_i , comenzando con un primer sistema de referencia fijo e inmóvil dado por los ejes X_0, Y_0, Z_0 , anclado a un punto fijo Q_0 de la base sobre la que está montada toda la estructura de la cadena. Este sistema de referencia no tiene por qué ser el universal con el origen en (0,0,0) y la base canónica.

Asignación de Sistemas de Referencia

Las articulaciones se numeran desde 1 hasta n. A la articulación i-ésima se le asocia su propio eje de rotación como Eje Z_{i-1} , de forma que el eje de giro de la 1ª articulación es Z_0 y el de la n-ésima articulación, Z_{n-1} . En la figura 2.1 se muestra la estructura del Robot PUMA junto con sus articulaciones y ejes de rotación.

Figura 2.1: Robot Puma

Para la articulación i-ésima, la elección del origen de coordenadas Q_i y del Eje X_i sigue reglas muy precisas en función de la geometría de los brazos articulados, el Eje Y_i por su parte, se escoge para que el sistema X_i, Y_i, Z_i sea dextrógiro. La especificación de cada Eje X_i depende de la relación espacial entre Z_i y Z_{i-1} , distinguiéndose 2 casos:

2.1. Zi y Z(i-1) no son paralelos

Entonces existe una única recta perpendicular a ambos, cuya intersección con los ejes proporciona su mínima distancia. Esta distancia, a_i , medida desde el eje Z_{i-1} hacia el eje Z_i , es uno de los parámetros asociados a la articulación i -ésima. La distancia di desde Q_{i-1} a la intersección de la perpendicular común entre Z_{i-1} y Z_i con Z_{i-1} es el segundo de los parámetros. En este caso, el eje X_i es esta recta, siendo el sentido positivo el que va desde el eje Z_{i-1} al Z_i si a_i es menor que 0. El origen de coordenadas Q_i es la intersección de dicha recta con el eje Z_i .

Figura 2.2: Movimiento articulaciones

2.2. Zi y Z(i-1) son paralelos

En esta situación el eje X_i se toma en el plano conteniendo a Z_{i-1} y Z_i y perpendicular a ambos. El origen Q_i es cualquier punto conveniente del eje Z_i . El parámetro a_i es, como antes, la distancia perpendicular entre los ejes Z_{i-1} y Z_i , y d_i es la distancia desde Q_{i-1} .

Una vez determinado el Eje X_i , a la articulación i -ésima se le asocia un tercer parámetro fijo ai que es el ángulo que forman los ejes Z_{i-1} y Z_i en relación al eje X_i . Nótese que cuando el brazo i -ésimo (que une rígidamente las articulaciones i e i+1) gira en torno al eje Z_{i-1} , los parámetros a_i , d_i , y α_i permanecen constantes, pues dependen exclusivamente de las posiciones/orientaciones relativas entre los ejes Z_{i-1} y Z_i , que son invariables. Por tanto, a_i , d_i , y α_i pueden calcularse a partir de cualquier configuración de la estructura articulada, en particular a partir de una configuración inicial estándar. Precisamente el ángulo θ_i de giro que forman los ejes X_{i-1} y X_i con respecto al eje Z_{i-1} es el cuarto parámetro asociado a la articulación i y el único de ellos que varía cuando el brazo i gira. Es importante observar que el conjunto de los 4 parámetros a_i , d_i , α_i y θ_i determina totalmente el Sistema de Referencia de la articulación i.

Figura 2.3: Movimiento articulaciones 2

Transformación de Coordenadas

De los 4 parámetros asociados a una articulación, los 3 primeros son constantes y dependen exclusivamente de la relación geométrica entre las articulaciones i e i+1, mientras que el cuarto parámetro θ_i es la única variable de la articulación, siendo el ángulo de giro del eje X_{i-1} alrededor del eje Z_{i-1} para llevarlo hasta X_i . Sabemos que dados 2 Sistemas de Referencia:

$$\mathbf{R}_1 = \{ Q_1, [u_1, u_2, u_3] \} \ y \ \mathbf{R}_2 = \{ Q_2, [v_1, v_2, v_3] \}$$

Con bases ortonormales asociadas, el cambio de coordenadas del segundo Sistema de Referencia al primero viene dado por:

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 1 \end{bmatrix} = \begin{bmatrix} R & \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ 1 \end{bmatrix}$$

donde β_1 , β_2 , β_3 son las coordenadas de un punto en el Sistema de Referencia R_2 , R es la matriz del Cambio de Base tal que:

$$\begin{bmatrix} v_1 | v_2 | v_3 \end{bmatrix} = \begin{bmatrix} u_1 | u_2 | u_3 \end{bmatrix}$$

R y λ_1 , λ_2 , λ_3 son las coordenadas del origen del segundo Sistema de Referencia, Q_2 respecto al primero. La expresión permite entonces obtener las coordenadas α_1 , α_2 , α_3 del punto en cuestión con respecto al primero de los Sistema de Referencia. En nuestro caso, para pasar de la (i+1)-ésima articulación a la i-ésima, los Sistemas de Referencia son:

$$\mathbf{R}_{1} = \left\{ Q_{i-1}, \left[X_{i-1}, Y_{i-1}, Z_{i-1} \right] \right\} \quad \forall \quad \mathbf{R}_{2} = \left\{ Q_{i}, \left[X_{i}, Y_{i}, Z_{i} \right] \right\}$$

Consideraciones Finales

La representación Denavit-Hartenberg presupone que cuando se realiza una rotación alrededor de uno de los ejes, digamos Z_{i-1} , la orientación del eje Z_i varía debido a la acción del brazo que los une (exceptuando el caso en el que Z_{i-1} y Z_i son paralelos), aunque naturalmente el ángulo α_i entre ambos ejes permanece constante. Esta observación implica que es imposible que el eje Z_i tenga una orientación constante e independiente de la rotación que se efectúe alrededor de Z_{i-1} , lo cual implica que la transformación de un sistema a otro no puede en ningún caso expresarse como una rotación de ángulos de Euler de EjesFijos, como la RPY.

Bibliografía

[1] Antonio Barrientos. Fundamentos de robótica. Technical report, e-libro, Corp., 2007.