Assignment-4

SECTION-1

NAME: NAGA MANOHAR ROLL.NO: 2021101128

Question1:

Number vs. Dice value

Value of Dice

FREQUENCY OF 1: 166394	PROBABILITY OF 1: 1.66394
FREQUENCY OF 2: 167077	PROBABILITY OF 2: 1.67077
FREQUENCY OF 3: 166397	PROBABILITY OF 3: 1.66397
FREQUENCY OF 4: 166110	PROBABILITY OF 4: 1.66110
FREQUENCY OF 5: 167021	PROBABILITY OF 5: 1.67021
FREQUENCY OF 6: 167001	PROBABILITY OF 6: 1.67001

So from the Above Statistics when the Dice is Thrown for Very Large Number of Times(N=1 Million times) the PROBABILITY of getting any value on the Dice is **EQUALLY LIKELY** and it is

Question2:

VALUE ON DICE	FREQUENCY	PROBABILITY	Expected PROBABILITY
2	27696	0.027696	1/36 = 0.027
3	55517	0.055517	2/36 = 0.055
4	83086	0.083086	3/36 = 0.083
5	111044	0.111044	4/36 = 0.111
6	138894	0.138894	5/36 = 0.138
7	166901	0.166901	6/36 = 0.166
8	139126	0.139126	5/36 = 0.138
9	111164	0.111164	4/36 = 0.111
10	83246	0.083246	3/36 = 0.083
11	55644	0.055644	2/36 = 0.055
12	27682	0.027682	1/36 = 0.027

So from the Above Statistics for 2-DICE Thrown for N=1 Million Times the PROBABILITY of getting a value as sum as the SUM VALUE moves from 2_to_7 SUM=7; HAS MAXIMUM PROBABILITY

Then again the PROBABILITY decreases as SUM VALUE moves from **8_to_12** We can Get the Expected PROBABILITY by taking all combination of SUM VALUES. Thus the **Experimental Values Match with Expected values**; As shown in the Below HIstogram:

FREQUENCY vs. VALUE ON DICE

Question3:

No. of Sample Points	Value of PI
100	2.72000000
1000	3.088000000
10000	3.119200000
100000	3.143120000

From the Above data We can Say that the Approximate PI value gets Closer to the Actual PI Value As we increase the Number of Sample Points.

Actual PI VALUE =

3.14159265358979323846264338327950288419716939937510...

No. of Sample Points = 100

No. of Sample Points = 1000

No. of Sample Points = 10000

(HERE THERE ARE SO MANY POINTS THAT THE CIRCLE IS NOT VISIBLE)

I HAVE USED THE FOLLOWING COMMANDS TO PLOT QUESTION3 GNUPLOT

```
gnuplot
set size ratio -1
set parametric
set xrange [-1:1]
set yrange [-1:1]
plot "points.dat" linetype 7 lc 7 w p
set arrow 1 from 1,1 to -1,1 nohead lw 5 linetype rgb "black"
replot
set arrow 2 from 1,1 to 1,-1 nohead lw 5 linetype rgb "black"
replot
```

set arrow 3 from -1,-1 to -1,1 nohead lw 5 linetype rgb "black" replot set arrow 4 from -1,-1 to 1,-1 nohead lw 5 linetype rgb "black" set size ratio -1 set object 5 circle at 0,0 size 1 fc rgb "black" lw 5 replot

"points.dat" file contains the sample points to be plotted as x<space>y => it is generated during run time by the **3.c** program itself I am attaching it also as a sample for N=10000