Tarea 0 Informatica Teorica

Matias peñaloza 202373037-8

2024-2

Concepto	Tiempo [min]
Revisión	30
Desarrollo	120
Informe	60

Objetivo

Sobre el alfabeto $\Sigma = \{a,b\}$ definimos el lenguaje L mediante la definición recursiva:

- 1. $b \in L$
- 2. Si $\sigma \in L$, entonces $\sigma b \in L$, $\sigma ab \in L$ y $b\sigma a \in L$.

Demueste formalmente que las palabras en L tienen más b que a.

Demostracion

- Definiciones:
 - Utilizando las definiciones del lenguaje L, podemos ver que L es infinito:

$$L = \{b, bb, bab, bba, bbb, bbab, bbba, \dots\}$$

Podemos descomponer L y ver que esta definido de la forma:

$$\begin{array}{l} L_0=\{b\}\\ L_i=L_{i-1}\cup U_i, \text{ donde } U_i=\bigcup_{\sigma\in L_{i-1}}\{\sigma b,\sigma ab,b\sigma a\} \text{ y } i>0\\ L=L_{\infty} \end{array}$$

— Denotaremos $|\boldsymbol{x}|_y$ como la cantidad de \boldsymbol{y} 's hay en la palabra \boldsymbol{x}

• Hipotesis:

Todas las palabras que pertenecen al lenguaje L tienen mayor cantidad de b's que de a's:

$$\forall \sigma \in L : |\sigma|_b > |\sigma|_a$$

• Proposicion:

Para comprobar nuestra hipotesis utilizaremos la siguiente proposicion: $P(L_n): \forall \sigma \in L_n/|\sigma|_b > |\sigma|_a$

Veremos si se cumple $P(L_n)$ para n = 0 y n = 1 $L_0 = \{b\}$ $L_1 = \{b, bb, bab, bba\}$ - Para $P(L_0)$: $|b|_b = 1 > |b|_a = 0$ - Para $P(L_1)$: $|b|_b = 1 > |b|_a = 0$ $|bb|_b = 2 > |bb|_a = 0$ $|bab|_b = 2 > |bab|_a = 1$ $|bba|_b = 2 > |bba|_a = 1$

Como podemos ver que $P(L_n)$ se cumple para n=0 y n=1 entonces los usaremos como casos base

• Analisis inductivo:

Para poder analizar el comportamiento de nuestra proposicion a lo largo de nuestro camino hacia $L=L_{\infty}$, tendremos que analizar como se comportan las palabras en U_i , ya que U_i a lo largo de $i \to \infty$ contendra todas las palabras que nos quedan por revisar hasta L_{∞} . Por lo tanto comprobaremos $P(U_i), \forall i \in \mathbb{N}$.

Como podemos ver $U_i = \bigcup_{\sigma \in L_{i-1}} \{\sigma b, \sigma ab, b\sigma a\}$, siendo σ cada una de las palabras en L_{i-1} podemos escribir:

$$U_i = L_{i-1} \cdot b \cup L_{i-1} \cdot ab \cup b \cdot L_{i-1} \cdot a$$

Ahora podemos ver que para comprobar $P(U_i)$ simplemente tenemos que comprobar que $P(L_{i-1} \cdot b)$, $P(L_{i-1} \cdot ab)$ y $P(b \cdot L_{i-1} \cdot a)$ se cumplan.

- Para $P(L_{i-1} \cdot b)$:
partiendo de nuestros casos base podemos suponer que todas las palabras en L_{i-1} cumplen la condicion, ssi U_{i-1} tambien la cumple. Por
lo que supondremos $P(L_{i-1})$ verdadero.

Ahora si $\sigma \in L_{i-1}$, este cumple $|\sigma|_b > |\sigma|_a$, entonces:

$$|\sigma b|_b = |\sigma|_b + 1$$

$$|\sigma b|_a = |\sigma|_a + 0$$

$$|\sigma b|_b > |\sigma b|_a$$

Por lo tanto $P(L_{i-1} \cdot b)$ verdadero.

- Para $P(L_{i-1} \cdot ab)$:

Utilizando la misma suposicion anterior tenemos que:

$$|\sigma ab|_b = |\sigma|_b + 1$$

$$|\sigma ab|_a = |\sigma|_a + 1$$

$$|\sigma ab|_b > |\sigma ab|_a$$

Por lo tanto $P(L_{i-1} \cdot ab)$ verdadero.

- Para $P(b \cdot L_{i-1} \cdot a)$:

Utilizando la misma suposicion tenemos que:

$$|b\sigma a|_b = |\sigma|_b + 1$$

$$|b\sigma a|_a = |\sigma|_a + 1$$

$$|b\sigma a|_b > |b\sigma a|_a$$

Por lo tanto $P(b \cdot L_{i-1} \cdot a)$ verdadero.

Finalmente podemos decir que $P(U_i)$ es verdadero ssi $P(U_{i-1})$ tambien.

• Conclusion:

Comprobamos que $P(L_0)$ y $P(L_1)$ son verdaderos, y que $P(U_i)$ es verdadero ssi $P(U_{i-1})$ tambien.

Utilizando la definicion de L_i con i = 1 podemos ver que:

$$P(L_1) = P(L_0 \cup U_1)$$

Lo que nos dice que $P(L_1) \iff [P(L_0) \land P(U_1)]$. Al ser $P(L_0)$ y $P(L_1)$ verdadero, no existe otra posibilidad mas que $P(U_1)$ verdadero.

Al ser $P(U_1)$ verdadero y con la condicion de que $P(U_i)$ es verdadero ssi $P(U_{i-1})$ es verdadero, significa que $P(U_2)$ es verdadero, lo que implica que tambien $P(U_3)$, $P(U_4)$, $P(U_5)$...

Finalmente podemos comprobar que $P(U_i)$, $\forall i \in \mathbb{N}$ es verdadero, lo que sumado a $P(L_0)$ verdadero, podemos decir que nuestra hipotesis:

 $\forall \sigma \in L : |\sigma|_b > |\sigma|_a$ se comprueba.

Las palabras de L tienen mas b's que a's