

Ministerul Educației Universitatea "OVIDIUS" Constanța Facultatea de Matematică și Informatică Specializarea Informatică

Şiruri

Coordonator ştiinţific:

Student: Tănase Ramona Elena

Cuprins

Cuprins			1
1	Şiruri		2
	1.1	Teorie	2
2	Şiruri convergente de numere reale		3
	2.1	Teorie	3
	2.2	Exerciții	6
3	Şiruri mărginite		8
	3.1	Teorie	8
	3.2	Exerciții	9
4	Şiruri recurente şi asimtote oblice		13
	4.1	Teorie	13
	4.2	Exerciții	16
Re	Referințe bibliografice		

Şiruri

1.1 Teorie

Definiție 1. Fie X o mulțime. O funcție $f: \mathbb{N} \to X$ se numește șir de elemente din mulțimea X, sau sub o altă formulare: se numește șir de elemente din mulțimea X o funcție $f: \mathbb{N} \to X$. în mod uzual, se notează $f_1 = x_1 \in X$, $f_2 = x_2 \in X$,, $f_n = x_n \in X$,

Şiruri convergente de numere reale

2.1 **Teorie**

Definiție 2. Un şir $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$, se numește convergent dacă există $x\in\mathbb{R}$ astfel încât: $\forall_{\varepsilon} > 0, \in n_{\varepsilon} \in \mathbb{N}$ astfel încât este satisfacută inegalitatea: $|x_n - x| \leq \varepsilon$.

Propoziție 1. Unicitatea limitei unui șir de numere reale Fie $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Dacă $\begin{cases} x_n\to x\\ x_n\to y \end{cases}$ atunci x = y.

Demonstrație 1. Să presupunem, prin absurd, că $x \neq y$. Cum suntem pe \mathbb{R} înseamnă că avem una din situațiile x < y sau y < x. Pentru a face o alegere, fie x < y atunci y - x > 0și din definiție pentru $\varepsilon=rac{y-x}{2}>0$ rezultă că,

$$\begin{array}{l} \rhd \ \exists n_1 \in \mathbb{N} \ \text{astfel încât} \ |x_n - x| < \frac{y - x}{2}, \forall n \geq n_1 \\ \rhd \ \exists n_2 \in \mathbb{N} \ \text{astfel încât} \ |x_n - y| < \frac{y - x}{2}, \forall n \geq n_2 \end{array}$$

$$>\exists n_2\in\mathbb{N} \text{ astfel încât } |x_n-y|<rac{y-x}{2}, \forall n\geq n_2$$

Fie $n=\max(n_1,n_2)\geq n_1,n_2.$ Atunci $|x_n-x|<\frac{y-x}{2}$ și $|x_n-y|<\frac{y-x}{2}$ de unde

$$|y - x| = |y - x| = |(y - x_n) + (x_n - x)| \le |y - x_n| + |x_n - x| < \frac{y - x}{2} + \frac{y - x}{2} = y - x$$

Aşadar, y - x < y - x, contradicție!

Un rezultat foarte frecvent folosit este ceea ce se numește "teorema cleștelui".

Teorema cleştelui

Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}, (z_n)_{n\in\mathbb{N}}$ trei şiruri de numere reale. Dacă:

$$\begin{cases} x_n \le y_n \le z_n, \forall n \in \mathbb{N} \\ x_n \to x, z_n \to x \end{cases}$$

Atunci $y_n \to x$.

Demonstrație 2. Vom arăta pentru început următoarea inegalitate. Dacă $a \le x \le b$ atunci $|x| \le max(|a|,|b|)$. Vom folosi proprietățile de la modul. Avem:

$$|x| = \begin{cases} x, dacax \ge 0 \\ -x, dacax < 0 \end{cases} \le \begin{cases} b \le max(b, -b) = |b| \le max(|a|, |b|)dacax \ge 0 \\ -a \le max(a, -a) = |a| \le max(|a|, |b|)dacax < 0 \end{cases} \le max(|a|, |b|)$$

Din $x_n \leq y_n \leq z_n$, $\forall n \in \mathbb{N}$ rezultă că $x_n - x \leq y_n - x \leq z_n - x$, $\forall n \in \mathbb{N}$. De aici folosind inegalitatea demonstrată deducem că:

$$|y_n - x| \le \max(|x_n - x|, |z_n - x|), \forall n \in \mathbb{N}$$
(1.1)

Deoarece $x_n \to x, \forall \varepsilon > 0, \exists n_{\varepsilon'} \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_{\varepsilon'}$ este satisfacută inegalitatea

$$|x_n - x| < \varepsilon. \tag{1.2}$$

Similar din $z_n \to x, \forall \varepsilon > 0, \exists n_\varepsilon'' \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_\varepsilon''$ este satisfacută inegalitatea

$$|z_n - x| < \varepsilon. \tag{1.3}$$

Fie acum $\varepsilon>0$. Notăm $n_\varepsilon=max(n_\varepsilon',n_\varepsilon'')$. Fie acum $n\geq n_\varepsilon$. Deoarece $n_{\varepsilon\geq}n_\varepsilon'$ iar $n\geq n_\varepsilon$ rezultă că $n\geq n_\varepsilon'$ și din 1.2 rezultă că

$$|x_n - x| < \varepsilon \tag{1.4}$$

Deoarece $n_{\varepsilon} \geq n_{\varepsilon}''$ iar $n \geq n_{\varepsilon}$ și din 1.3 rezultă că

$$|z_n - x| < \varepsilon \tag{1.5}$$

Din 1.4 și 1.5 rezultă că

$$max(|x_n - x|, |z_n - x|) = \begin{cases} |x_n - xdaca| \\ |z_n - xdaca| \end{cases} < \varepsilon.$$
 (1.6)

Folosind inegalitatea 1.6 din inegalitatea 1.1 deducem că $|y_n - x| < \varepsilon$.

Aşadar am demonstrat : $\forall \varepsilon > 0, \exists n_{\varepsilon \in \mathbb{N}}$ astfel încât pentru $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $|y_n - x| < \varepsilon$.

Conform definiției această inegalitate înseamnă că $y_n \to y$.

Exemplu 1. Fie $c \in \mathbb{R}$, Considerăm şirul $x_n = c$. Atunci $\lim_{n \to \infty} x_n = c$ sau $\lim_{n \to \infty} c = c$, limita unei constante este acea constantă.

Demonstrație 3. $\forall n \in \mathbb{N}$ avem $x_n - c = c - c = 0, |x_n - c| = 0$. De aici deducem că $\forall \varepsilon > 0, \exists n_{\varepsilon} = 1 \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_{\varepsilon} = 1$ este satisfacută inegalitatea $|x_n - c| = 0 < \varepsilon$. Conform definiției $\lim_{n \to \infty} x_n = c$.

Propoziție 2. Dacă un șir de numere naturale este convergent atunci el este staționar. Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere naturale. Dacă există $x\in\mathbb{R}$ astfel încât $\lim_{n\to\infty}x_n=x$, atunci există $k\in\mathbb{N}$ astfel încât $x_n=x_k, \forall n\geq k$.

Astfel spus scris desfășurat șirul arată astfel:

$$x_1, x_2, x_3, x_4, \dots, x_{k-1}, x_k, x_k, x_k, x_k, \dots$$

Demonstrație 4. Deoarece $\lim_{n\to\infty} x_n = x$ pentru $\varepsilon = \frac{1}{2} > 0, \exists n_{\frac{1}{2}} \in \mathbb{N}$ astfel încât $\forall n \geq n_{\frac{1}{2}}$ este satisfacută inegalitatea $|x_n - x| < \frac{1}{2}$.

Să notăm $k=n_{\frac{1}{2}}\in\mathbb{N}$ și să reținem că știm că $\forall n\geq k$ este satisfacută inegalitatea

$$|x_n - x| < \frac{1}{2}. (2.1)$$

Fie $n \geq k$. Relația 2.1 fiind adevărată pentru orice număr $\geq k$ ea va fi adevărată în particular pentru k adică avem

$$|x_k - x| < \frac{1}{2}. (2.2)$$

Dar la noi $n \ge k$ deci din 2.1 avem şi

$$|x_n - x| < \frac{1}{2}. (2.3)$$

Avem

$$|x_n - x_k| = |(x_n - x) + (x - x_k)| \le |x_n - x| + |x - x_k| =$$

$$= |x_n - x| + |-(x - x_k)| = |x_n - x| + |x_k - x|.$$
(2.4)

Am folosit inegalitatea tringhiului şi |-a| = |a|. Folosind 2.2 şi 2.3 din 2.4 deducem că

$$|x_n - x_k| < \frac{1}{2} + \frac{1}{2} = 1. {(2.5)}$$

Dar x_n, x_k sunt numere naturale, și deci diferența lor este un număr întreg adică $x_n - x_k \in \mathbb{Z}$. Cum $|x_n - x_k| \ge 0$ iar din 2.5 $|x_n - x_k| < 1$ rezultă că $|x_n - x_k| \in [0,1]$ deci $|x_n - x_k| \in \mathbb{Z} \cap [0,1) = \{..., -n, ..., -2, -1, 0, 1, 2, 3, ..., n, ...\} \cap [0,1) = \{0\}$ de unde $|x_n - x_k| = 0$ adică $x_n - x_k = 0, x_n = x_k$.

Aşasar am demonstrat: $\forall n \geq kavemx_n = x_k$, ceea ce încheie demonstrația.

2.2 Exerciții

1. Calculați

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^4 + 1}} + \frac{2}{\sqrt{n^4 + 2}} + \frac{3}{\sqrt{n^4 + 3}} + \dots + \frac{n}{\sqrt{n^4 + n}} \right)$$

Rezolvare 1. Notăm $x_n = \frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+2}} + \frac{3}{\sqrt{n^4+3}} + \dots + \frac{n}{\sqrt{n^4+n}}$. Adică $x_n = \sum_{k=1}^n \frac{k}{n^4+k}$.

în continuare procedăm astfel. De numărător nu ne atingem. Vom lucra cu numitorul, ideea fiind de a se avea același numitor peste tot.

Avem

$$1 \le k \le n \Rightarrow$$

$$\Rightarrow n^4 + 1 \le n^4 + k \le n^4 + n \Rightarrow$$

$$\Rightarrow \sqrt{n^4 + 1} \le \sqrt{n^4 + k} \le \sqrt{n^4 + 1} \Rightarrow$$

$$\Rightarrow \frac{1}{\sqrt{n^4 + 1}} \ge \frac{1}{\sqrt{n^4 + k}} \ge \frac{1}{\sqrt{n^4 + n}}.$$

Acum înmulțind cu k obținem

$$\frac{k}{\sqrt{n^4 + 1}} \ge \frac{k}{\sqrt{n^4 + k}} \ge \frac{k}{\sqrt{n^4 + n}} \tag{3.1}$$

în continuare în relația 3.1 dam lui k valorile 1, 2,, n.

Pentru k = 1 rezultă:

$$\frac{1}{\sqrt{n^4 + 1}} \ge \frac{1}{\sqrt{n^4 + k}} \ge \frac{1}{\sqrt{n^4 + n}}$$

Pentru k=2 rezultă:

$$\frac{2}{\sqrt{n^4 + 1}} \ge \frac{2}{\sqrt{n^4 + 2}} \ge \frac{2}{\sqrt{n^4 + n}}$$

Adunând inegalitățile de mai sus obținem

$$\frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+1}} + \dots + \frac{n}{\sqrt{n^4+1}} \ge \frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+2}} + \dots + \frac{n}{\sqrt{n^4+n}} \ge \frac{1}{\sqrt{n^4+n}} + \frac{2}{\sqrt{n^4+n}} + \dots + \frac{n}{\sqrt{n^4+n}}$$

Sau

$$\frac{1+2+....+n}{\sqrt{n^4+1}} \ge x_n \ge \frac{1+2+.....+n}{\sqrt{n^4+n}}$$

Dar ştim că $1+2+\ldots+n=\frac{n(n+1)}{2},$ deci vom obține

$$\frac{n(n+1)}{2\sqrt{n^4+1}} \ge x_n \ge \frac{n(n+1)}{2\sqrt{n^4+n}} \tag{3.2}$$

Acum

$$\lim_{n \to \infty} \frac{n(n+1)}{2\sqrt{n^4 + 1}} = \frac{1}{2}$$

şi

$$\lim_{n \to \infty} \frac{n(n+1)}{2\sqrt{n^4 + n}} = \frac{1}{2} \tag{3.3}$$

Vom da la ambele factor comun forțat.

Din 3.2 și 3.3 și teorema cleștelui rezultă că:

$$\lim_{n \to \infty} x_n = \frac{1}{2}$$

Şiruri mărginite

3.1 Teorie

Definiție 3. Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. şirul $(x_n)_{n\in\mathbb{N}}$ se numeşte mărginit dacă şi numai dacă $\exists a,b\in\mathbb{R}, a< b$ astfel încât $\forall n\in\mathbb{N}$ este satisfacută inegalitatea $x_n\in[a,b]$, sau echivalent $\exists M>0$ astefle încât $\forall n\in\mathbb{N}$ este satisfacută inegalitatea $|x_n|\leq M$.

Definiție 4. Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Spunem că $\lim_{n\to\infty} x_n = \infty$ dacă, $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $x_n > \varepsilon$. Sau $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}$ astfel încât $x_n > \varepsilon, \forall n \geq n_{\varepsilon}$.

Propoziție 3. Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Dacă $\lim_{n\to\infty} x_n = \infty$ atunci $\lim_{n\to\infty} \frac{1}{x_n} = 0$.

Demonstrație 5. Fie $\varepsilon > 0$. Deoarece $\lim_{n \to \infty} x_n = \infty$ din definiție aplicată pentru $\frac{1}{\varepsilon} > 0$ rezultă că $\exists n_{\varepsilon} \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $x_n > \frac{1}{\varepsilon}$.

Din această inegalitate rezultă că $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $x_n > 0$, prin urmare are sens fracția $\frac{1}{x_n}, \forall n \geq n_{\varepsilon}$. Dar inegalitatea de mai sus este echivalentă cu $\exists n_{\varepsilon} \in \mathbb{N}$ astfel încât $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $\frac{1}{x_n} < \varepsilon$. Conform definiției aceasta înseamnă că $\lim_{n \to \infty} \frac{1}{x_n} = 0$.

Lema Stolz-Cesaro (Cazul $\frac{1}{\infty}$)

Fie $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ și $(\alpha_n)_{n\in\mathbb{N}}\subset(0,\infty)$ astfel încât $\alpha_n\uparrow\infty$. Dacă

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{\alpha_n - a_{n-1}} \in \mathbb{R}$$

atunci

$$\lim_{n \to \infty} \frac{x_n}{\alpha_n} \in \mathbb{R}$$

și în plus

$$\lim_{n \to \infty} \frac{x_n}{\alpha_n} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{\alpha_n - \alpha_{n-1}}.$$

Şiruri mărginite Exerciţii

Demonstrație 6. Fie $\alpha = \lim_{n\to\infty} \frac{x_n - x_{n-1}}{\alpha_n - \alpha_{n-1}}$.

Atunci $\forall \varepsilon>0, \exists n_{\varepsilon}\in\mathbb{N}$ astefl încât $\left|\frac{x_{n}-x_{n-1}}{\alpha_{n}-\alpha_{n-1}}-\alpha\right|<\frac{\varepsilon}{2} \forall n\geq n_{\varepsilon}$

Sau,

$$\alpha_n \uparrow, |x_n - x_{n-1} - \alpha (\alpha_n - \alpha_{n-1})| < \frac{\varepsilon}{2} (\alpha_n - \alpha_{n-1}), \forall n \ge n_{\varepsilon}$$
 (4.1)

Notăm cu $k=n_{\varepsilon}+1$. Pentru $n\geq k$ luând în 4.1 , n=k+1,k+2,....,n obţinem: $|x_{k+1}-x_k-\alpha\,(a_{k+1}-a_k)|<\frac{\varepsilon}{2}\,(\alpha_{k+1}-\alpha_k).$

$$|x_{k+2} - x_{k+1} - \alpha (a_{k+2} - a_{k+1})| < \frac{\varepsilon}{2} (\alpha_{k+2} - \alpha_{k+1}) \dots |x_n - x_{n-1} - \alpha (a_n - a_{n-1})| < \frac{\varepsilon}{2} (\alpha_n - \alpha_{n-1})$$

De unde obţinem, prin adunare:

$$|x_{n} - x_{k} - \alpha (\alpha_{n} - \alpha_{k})| =$$

$$|x_{n} - x_{n-1} - \alpha (\alpha_{n} - \alpha_{n-1}) + \dots + x_{k+2} - x_{k+1} - \alpha (\alpha_{k+2} - \alpha_{k+1}) + x_{k+1} - x_{k} - \alpha (\alpha_{k+1} - \alpha_{k})|$$

$$\leq |x_{n} - x_{n-1} - \alpha (\alpha_{n} - \alpha_{n-1})| + \dots + |x_{k+2} - x_{k+1} - \alpha (\alpha_{k+2} - \alpha_{k+1})| + |x_{k+1} - x_{k} - \alpha (\alpha_{k+1} - \alpha_{k})|$$

$$\leq \frac{\varepsilon}{2} (\alpha_{k+1} - \alpha_{k}) + \frac{\varepsilon}{2} (\alpha_{k+2} - \alpha_{k+1}) + \frac{\varepsilon}{2} (\alpha_{n} - \alpha_{n-1}) = \frac{\varepsilon}{2} (\alpha_{n} - \alpha_{k})$$

 $\leq \frac{\varepsilon}{2}\alpha_n$ deoarece $\alpha_k > 0$.

3.2 Exerciții

1. Calculați

Fie $\alpha > 0$ să se calculeze

Şiruri mărginite Exerciții

$$\lim_{n\to\infty}\frac{1^\alpha+2^\alpha+\ldots\ldots+n^\alpha}{n^{\alpha+1}}$$

Demonstrație 7. Fie $x_n = 1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}, a_n = n^{\alpha}$. Deoarece $\alpha > 0, \alpha \uparrow \infty$. Din lema Stolz-Cesaro, cazul

$$\left[\frac{1}{\infty}\right], \lim_{n \to \infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}} = \lim_{n \to \infty} \frac{x_n}{\alpha_n} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{\alpha_{n+1} - n} = \lim_{n \to \infty} \frac{(n+1)^{\alpha}}{(n+1)^{\alpha+1} - n^{\alpha+1}}$$

$$\lim_{n \to \infty} \frac{(n+1)^{\alpha+1} - n^{\alpha+1}}{(n+1)^{\alpha}}$$

Dăm factor comun forțat la numărător pe $n^{\alpha+1}$. Avem

$$\lim_{n \to \infty} \frac{(n+1)^{\alpha+1} - n^{\alpha+1}}{(n+1)^{\alpha}} = \lim_{n \to \infty} \frac{n^{\alpha+1} \left[\frac{(n+1)^{\alpha+1}}{n^{\alpha+1}} - 1\right]}{(n+1)^{\alpha}}$$

$$= \lim_{n \to \infty} \frac{n^{\alpha}}{(n+1)^{\alpha}} \cdot n \left[\left(\frac{n+1}{n}\right)^{\alpha+1} - 1 \right]$$

$$= \lim_{n \to \infty} \frac{n^{\alpha}}{(n+1)^{\alpha}} \cdot \lim_{n \to \infty} n \left[\left(\frac{n+1}{n}\right)^{\alpha+1} - 1 \right]$$

$$= \lim_{n \to \infty} n \left[\left(1 + \frac{1}{n}\right)^{\alpha+1} - 1 \right]$$

$$= \lim_{n \to \infty} \frac{(1+\frac{1}{n})^{\alpha+1} - 1}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{(1+n)^{\alpha+1} - 1}{n} = \alpha + 1$$

Am folosit limita fundamentală

$$\lim_{x \to \infty} \frac{(1+x)^{\gamma} - 1}{x} = \gamma, \gamma \in \mathbb{R}$$

întorcându-ne la problemă, obținem:

$$\lim_{n \to \infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha + 1}} = \frac{1}{\alpha + 1}$$

2. Calculați

$$\lim_{n \to \infty} \frac{e^{\sqrt{1}} + e^{\sqrt{2}} + \dots + e^{\sqrt{n}}}{\sqrt{n}e^{\sqrt{n}}}$$

Rezolvare 2. Fie $x_n = e^{\sqrt{1}} + e^{\sqrt{2}} + \dots + e^{\sqrt{n}}, a_n = \sqrt{n}e^{\sqrt{n}}$. Avem de calculat $\lim_{n\to\infty}\frac{x_n}{a_n}=\left[\frac{1}{\infty}\right]$

Din lema Stolz-Cesaro

Şiruri mărginite Exerciții

$$\lim_{n\to\infty}\frac{x_n}{a_n}=\lim_{n\to\infty}\frac{x_{n+1}-x_n}{\alpha_{n+1}-\alpha_n}=\lim_{n\to\infty}\frac{e^{\sqrt{n+1}}}{\sqrt{n+1}e^{\sqrt{n+1}}-\sqrt{n}e^{\sqrt{n}}}$$

Vom calcula acum

$$\lim_{n \to \infty} \frac{\sqrt{n+1}e^{\sqrt{n+1}} - \sqrt{n}e^{\sqrt{n}}}{e^{\sqrt{n+1}}}$$

Avem

$$\lim_{n \to \infty} \frac{\sqrt{n+1}e^{\sqrt{n+1}} - \sqrt{n}e^{\sqrt{n}}}{e^{\sqrt{n+1}}} = \lim_{n \to \infty} \frac{\left(\sqrt{n+1} - \sqrt{n}\right)e^{\sqrt{n+1}} + \sqrt{n}\left(e^{\sqrt{n+1}} - e^{\sqrt{n}}\right)}{e^{\sqrt{n+1}}}$$

$$= \lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right) + \lim_{n \to \infty} \frac{\sqrt{n} \left(e^{\sqrt{n+1}} - e^{\sqrt{n}} \right)}{e^{\sqrt{n+1}}}$$

Prima limită, înmulțind și împărțind cu conjugata ei ne da da 0, adică:

$$\lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right) = 0$$

Pentru cea de a doua limită procedăm astfel:

$$\lim_{n \to \infty} \frac{\sqrt{n} \left(e^{\sqrt{n+1}} - e^{\sqrt{n}} \right)}{e^{\sqrt{n+1}}} = \lim_{n \to \infty} \sqrt{n} \left(1 - \frac{e^{\sqrt{n}}}{e^{\sqrt{n+1}}} \right)$$

$$= \lim_{n \to \infty} \sqrt{n} \left(1 - e^{\sqrt{n} - \sqrt{n+1}} \right)$$

$$= -\lim_{n \to \infty} \frac{e^{\sqrt{n} - \sqrt{n+1}} - 1}{\sqrt{n} - \sqrt{n+1}} \cdot \sqrt{n} \left(\sqrt{n} - \sqrt{n+1} \right)$$

$$= -\lim_{n \to \infty} \frac{e^{\sqrt{n} - \sqrt{n+1}} - 1}{\sqrt{n} - \sqrt{n+1}} \cdot \lim_{n \to \infty} \sqrt{n} \left(\sqrt{n} - \sqrt{n+1} \right)$$

$$= -1 \cdot \left(-\frac{1}{2} \right) = \frac{1}{2}$$

Am înmulțit și am împărțit cu conjugata ei, iar la ultima factor comun forțat. Din acestea deducem că:

$$\lim_{n \to \infty} \frac{e^{\sqrt{n+1}}}{\sqrt{n+1}e^{\sqrt{n+1}} - \sqrt{n}e^{\sqrt{n}}} = 2$$

Deci ultima limită din enunț $\lim_{n\to\infty} \frac{x_n}{\alpha_n} = 2$

Propoziție 4. Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale strict pozitive. Dacă $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}\in\mathbb{R}$ atunci $\lim_{n\to\infty}\sqrt[n]{x_n}\in\mathbb{R}$. în plus $\lim_{n\to\infty}\sqrt[n]{x_n}=\lim_{n\to\infty}\frac{x_{n+1}}{x_n}$.

Şiruri mărginite Exerciții

Pe scurt

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$$

Definiție 5. Din definiția logaritmilor naturali avem

$$\ln x = \alpha \Leftrightarrow x = e^{\alpha}$$

De aici deducem că $x=e^{\alpha}=e^{\ln x}$ adică

$$x = e^{\ln x}, \forall x > 0$$

De aici dacă $x=u^v$ obținem $u^v=e^{\ln(u^v)}=u^{v\ln u}$. Să reținem această egalitate

$$u^v = u^{v \ln u}$$

Ea se folosește tot timpul când baza și puterea sunt variabile. La noi $\sqrt[n]{x_n} = x_n^{\frac{1}{n}}$ de unde folosind egalitatea de mai sus rezultă că

$$\sqrt[n]{x_n} = x_n^{\frac{1}{n}} = e^{\frac{1}{n} \cdot \ln x_n} = e^{\frac{\ln x_n}{n}}$$

Fie $A = \lim_{n \to \infty} \frac{x_n + 1}{x_n}$. Atunci ln fiind funcție continuă

$$\ln A = \ln \lim_{n \to \infty} \frac{x_n + 1}{x_n} = \lim_{n \to \infty} \ln \frac{x_n + 1}{x_n}.$$

Vom arăta că în ipotezele noastre

$$\lim_{n \to \infty} \frac{\ln x_n}{n} = \lim_{n \to \infty} \ln \frac{x_{n+1}}{x_n}$$

Din lema Stolz-Cesato cazul $\left[\frac{1}{\infty}\right]$, ipotezele sunt satisfacute, rezultă că

$$\lim_{n \to \infty} \frac{\ln x_n}{n} = \lim_{n \to \infty} \frac{\ln x_n}{n} = \lim_{n \to \infty} \frac{x_{n+1} - \ln x_n}{n + 1 - n} = \lim_{n \to \infty} (\ln x_{n+1} - \ln x_n) = \lim_{n \to \infty} \ln \frac{x_{n+1}}{x_n} = \ln A$$

De aici deducem că

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} e^{\frac{\ln x_n}{n}} = e^{\lim_{n \to \infty} \frac{\ln x_n}{n}} = e^{\ln A} = A = \lim_{n \to \infty} \frac{x_{n+1}}{n}.$$

Şiruri recurente şi asimtote oblice

4.1 Teorie

Teoremă 1. Fie $a \in \mathbb{R}$ și $f: (\alpha, \infty) \, n \to \mathbb{R}$ o funcție continuă cu proprietatea că $f_{(x)} > x, \forall x > a$. Definim șirul de numere reale $(x_n)_{n \geq 1}$ prin condiția inițială $x_1 > \alpha$ și relația de recurență $x_{n+1} = f_{(x_n)}$ pentru orice $n \geq 1$

Atunci

$$\lim_{x \to \infty} x_n = \infty$$

Dacă există $b_0 \in \mathbb{R}$ astfel încât $y = x + b_0$ este asimtotă oblică la graficul funcției f, atunci

$$\lim_{x \to \infty} \frac{x_n}{n} = b_0$$

Dacă există $b_0, b_1 \in \mathbb{R}, b_0 \neq 0$ astfel încât

$$\lim_{n \to \infty} x (f(x) - x - b_0) = b_1, \lim_{n \to \infty} \frac{n}{\ln n} \left(\frac{x_n}{n} - b_0 \right) = \frac{b_1}{b_0}$$

Demonstrație 8. Din condiția inițială avem $x_1 > \alpha$. Presupunem $x_n > \alpha$. Din ipoteza $f_{(x)} > x$, $\forall x > \alpha$ rezultă că $f_{(x_n)} > x_n$, adică $x_{n+1} > x_n$. Cum Presupunem $x_n > \alpha$ rezultă că $x_{n+1} > \alpha$. Conform inducției matematice rezultă că $x_n > \alpha$, $\forall n \geq 1$.

Fie $n \geq 1$. Din ipoteza $f_{(x)} > x, \forall x > \alpha$ și $x_n > \alpha$ rezultă că $f_{(x_n)} > x_n$ sau $x_{n+1} > x_n$. Așadar șirul este strict crescător. Dacă prin absurd ar fi majorat, atunci din teorema lui Weierstrass este convergent și fie $\lim_{n \to \infty} x_n = L \in \mathbb{R}$. Cum șirul este crescătpr avem $x_n \geq x_1, \forall n \geq 1$ de unde, trecând la limită rezultă ca $L \geq 1$. Cum $x_1 \geq \alpha$ rezultă că $L \geq \alpha$, iar din ipoteza $f_{(x)} \geq x, \forall x \geq \alpha$ rezultă, in particular, $f_{(L)} > L$. Deoarece $\lim_{n \to \infty} x_n = L$, iar f este contnuă, rezultă că $\lim_{n \to \infty} f_{(x_n)} = f_{(L)}$ sau $\lim_{n \to \infty} x_{n+1} = f_{(L)}$, adică $\lim_{n \to \infty} x_n = f_{(L)}$. Cum $\lim_{n \to \infty} x_n = f_{(L)}$, din unicitatea limitei unui șir de numere

reale rezultă că $f_{(L)}=L$, ceea ce este fals. Așsadar şirul $(x_n)_{n\geq 1}$ nu este majorat şi fiind crescător, după cum am demonstrat, $\lim_{n\to\infty}x_n=\infty$. Deoarece $y=x+b_0$ este asimtotă oblică la graficul funcției f, conform definiției $\lim_{x\to\infty}\left(f_{(x)}-x\right)=b_0$. Cum, din 1. , $\lim_{x\to\infty}x_n=\infty$, din caracterizarea limitei unei funcții într-un punct cu șiruri rezultă că $\lim_{x\to\infty}\left(f_{(x_n)}-x_n\right)=b_0$ sau ținând cont de relația de recurență $\lim_{x\to\infty}\left(x_{n+1}-x_n\right)=b_0$. Din lema Stolz-Cesaro, cazul $\left[\frac{1}{\infty}\right]$, rezultă că $\lim_{n\to\infty}\frac{x_n}{n}=\lim_{n\to\infty}\left(x_{n+1}-x_n\right)=b_0$.

Pentru orice $n \ge 1$ notăm $y_n = x_n - b_n n$ Avem

$$y_{n+1} - y_n = x_1 - x_n - b_0 = f_{(x_n)} - x_n - b_0, \forall n \ge 1.$$

Cum $\lim_{x\to\infty} x\left(f_{(x)}-x-b_0\right)=b_1$ iar din 1. $\lim_{x\to\infty} x_n=\infty$, din caracterizarea limitei unei funcții într-un punct cu șiruri rezultă că $\lim_{x\to\infty} x_n\left(y_{n+1}-y_n\right)=b_1$.

Din egalitatea $f_{(x)}-x-b_0=x\left(f_{(x)}-x-b_0\right)\cdot\frac{1}{x}, \forall x>\alpha, x\neq 0$ trecând la limită obținem

$$f_{(x)} - x - b_0 = \lim_{x \to \infty} x \left(f_{(x)} - x - b_0 \right) \cdot \lim_{x \to \infty} \frac{1}{x} = b_1 \cdot 0 = 0.$$

Adică $y=x+b_0$ este asimtotă oblică la graficul funcției f . Din 2. Rezultă că $\lim_{n\to\infty}\frac{x_n}{n}=b_0$, de unde ținând cont că $b_0\neq 0$ rezultă că $\lim_{n\to\infty}\frac{n}{x_n}=\frac{1}{b_0}$.

Din egalitatea

$$\frac{y_{n+1} - y_n}{\frac{1}{n}} = x_n (y_{n+1} - y_n) \cdot \frac{n}{x_n}, \ge 1$$

Trecând la lmită obținem

$$\lim_{n \to \infty} \frac{y_{n+1} - y_n}{\frac{1}{n}} = \frac{b_1}{b_0}$$

Iarăși din lema Stolz-Cesaro obținem

$$\lim_{n \to \infty} \frac{y_n}{1 + \frac{1}{2} + \dots + \frac{1}{n-1}} = \frac{b_1}{b_0}.$$

 $\text{Cum } \lim_{n\to\infty} \tfrac{1+\frac12+\ldots+\frac1{n-1}}{\ln n} = 1, \text{ rezultă că } \lim_{n\to\infty} \tfrac{y_n}{\ln n} = \tfrac{b_1}{b_0}, \text{ sau } \lim_{n\to\infty} \tfrac{x_n-b_0n}{\ln n} = \tfrac{b_1}{b_0}.$

O primă aplicație a tepremei o constituie:

Teoremă 2. Fie $\varphi:[0,\infty)\to\mathbb{R}$ o funcție continuă cu proprietatea că $\varphi_{(x)}>0, \forall x>0.$ Definim șirul de numere reale $(x_n)_{n\geq 1}$ prin condiția inițială $x_1>0$ și relația de recurență $x_{n+1}=x_n+\varphi\left(\frac{1}{x_n}\right)$ pentru $\forall n\geq 1.$

Atunci : $\lim_{x\to\infty}x_n=\infty$ şi $\lim_{x\to\infty}\frac{x_n}{n}=\varphi\left(0\right)$ iar dacă în plus , $\varphi\left(0\right)>0$ şi φ este derivabilă în 0,

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(\frac{x_n}{n} - \varphi(0) \right) = \frac{\varphi'(0)}{\varphi(0)}.$$

Demonstrație 9. Fie $f:(0,\infty)\to\mathbb{R}, f_{(x)}=x+\varphi\left(\frac{1}{x}\right)$. Evident f este continuă și deoarece $\varphi\left(x\right)>0$ rezultă că $f_{(x)}>x, \forall x>0$.

Deoarece φ este continuă în 0, $\lim_{x\to\infty}\left(f_{(x)}-x\right)=\lim_{x\to\infty}\varphi\left(\frac{1}{x}\right)=\lim_{t\to 0, t>0}\varphi\left(t\right)=\varphi\left(0\right)$. Așadar $y=x+\varphi\left(0\right)$ este asimtotă oblică la graficul funcției f. Din prima teoremă 1 și 2 rezultă că $\lim_{n\to\infty}x_n=\infty$ și $\lim_{n\to\infty}\frac{x_n}{n}=\varphi\left(0\right)$. Deoarece φ este derivabilă în 0, $\lim_{x\to\infty}x\left(f_{(x)}-x-\varphi\left(0\right)\right)=\lim_{x\to\infty}x\left(\varphi\left(\frac{1}{x}\right)-\varphi\left(0\right)\right)=\lim_{t\to 0, t>0}\frac{\varphi(t)-\varphi(0)}{t}=\varphi'\left(0\right)$. Cum $\varphi\left(0\right)>0$, din prima teoremă , 3. , rezultă că

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(\frac{x_n}{n} - \varphi(0) \right) = \frac{\varphi'(0)}{\varphi(0)}$$

A doua aplicație a teoremei o constituie

Teoremă 3. Fie $\varphi:[0,\infty)\to\mathbb{R}$ o funcție continuă, derivabilă în 0 cu proprietatea că $\varphi(x)>1, \forall x>0, \varphi(0)=1.$ Definim șirul de numere reale $(x_n)_{n\geq 1}$, prin condiția inițială $x_1>0$ și relația de recurență $x_{n+1}=x_n\varphi\left(\frac{1}{x_n}\right)$ pentru orice $n\geq 1$.

Atunci: $\lim_{n\to\infty}x_n=\infty$ și $\lim_{n\to\infty}\frac{x_n}{n}=\varphi'\left(0\right)$ iar dacă în plus $\varphi'\left(0\right)>0$ și φ este de două ori derivabilă în 0, $\lim_{n\to\infty}\frac{n}{\ln n}\left(\frac{x_n}{n}-\varphi'\left(0\right)\right)=\frac{\varphi''\left(0\right)}{2\varphi'\left(0\right)}$.

Demonstrație 10. Fie $f:(0,\infty)\to\mathbb{R}, f_{(x)}=x\varphi\left(\frac{1}{x}\right)$. Evident f este continuă şi deoarece $\varphi\left(x\right)>1, \forall x>0$ rezultă că $f_{(x)}>x, \forall x>0$. Deoarece φ este continuă în 0 şi $\varphi\left(0\right)=1$ rezultă că $\lim_{x\to\infty}\frac{f_{(x)}}{x}=\lim_{x\to\infty}\varphi\left(\frac{1}{x}\right)=\lim_{t\to 0, t>0}\varphi\left(t\right)=\varphi\left(0\right)=1$. Deoarece φ este derivabilă în 0,

$$\lim_{x \to \infty} \left(f_{(x)} - x \right) = \lim_{x \to \infty} x \left(\varphi \left(\frac{1}{x} \right) - 1 \right) \lim_{t \to 0, t > 0} \frac{\varphi(t) - \varphi(0)}{t} = \varphi'(0)$$

Aşadar $y = x + \varphi'(0)$.

este asimtotă oblică la graficul funcției f. Din teorema 1, 1 si 2, rezultă că $\lim_{n\to\infty} x_n = \infty$ și $\lim_{n\to\infty} \frac{x_n}{n} = \varphi'(0)$. Deoarece φ este de două ori derivabilă în 0,

$$\lim_{x \to \infty} x \left(f_{(x)} - x - \varphi'(0) \right) = \lim_{x \to \infty} x \left(x \varphi\left(\frac{1}{x}\right) - x - \varphi'(0) \right) =$$

$$\lim_{t \to 0, t > 0} \frac{\varphi(t) - \varphi(0) - \varphi'(0) t}{t^2} = \frac{\varphi''(0)}{2}$$

Din teorema 1, 3, rezultă că

$$\lim_{n\to\infty} \frac{n}{\ln n} \left(\frac{x_n}{n} - \varphi'(0) \right) = \frac{\varphi''(0)}{2\varphi'(0)}.$$

Corolar 1. Fie $\alpha \in \mathbb{R} \setminus \{0\}$. Definim şirul de numere reale $(x_n)_{n\geq 1}$ prin condişia iniţială $x_1>0$ şi relaţia de recurență $x_{n+1}=x_n+e^{\frac{\alpha}{x_n}}$ pentru orice $n\geq 1$.

Atunci
$$\lim_{n\to\infty} x_n = \infty, \lim_{n\to\infty} \frac{x_n}{n} = 1, \lim_{n\to\infty} \frac{n}{\ln n} \left(\frac{x_n}{n} - 1 \right) = \alpha.$$

Demonstrație 11. Fie $\varphi:[0,\infty)\to(0,\infty)$, $\varphi(x)=e^{\alpha x}$. Să observăm că $\varphi'(x)=\alpha e^{\alpha x}$. Aplicăm de două ori funcția φ .

Corolar 2. Fie $\alpha > 1, \beta > 0$. Definim șirul de numere reale $(x_n)_{n \geq 1}$ prin condiția $x_1 > 0$ și relația de recurență

$$x_{n+1} = x_n + \ln\left(\alpha + \frac{\beta}{x_n}\right), pentru \forall n \ge 1.$$

Atunci

$$\lim_{x \to \infty} = \infty, \lim_{n \to \infty} \frac{x_n}{n} = \ln \alpha, \lim_{n \to \infty} \frac{n}{\ln n} \left(\frac{x_n}{n} - \ln \alpha \right) = \frac{\beta}{\alpha \ln \alpha}.$$

Demonstrație 12. Fie $\varphi:[0,\infty)\to(0,\infty)$, $\varphi(x)=\ln{(\alpha+\beta x)}$. Să observăm că $\varphi'(x)=\frac{\beta}{\alpha+\beta x}$. Aplicăm teorema 2 pentru funcția φ .

Corolar 3. Fie $\alpha > 1, \beta > 0$. Definim șirul de numere reale $(x_n)_{n \geq 1}$ prin condiția inițială $x_1 > 0$ și relația de recurență

$$x_{n+1} = x_n + \sqrt{\alpha + \frac{\beta}{x_n}}, pentru \forall n \ge 1.$$

Atunci

$$\lim_{x \to \infty} x_n = \infty, \lim_{x \to \infty} \frac{x_n}{n} = \sqrt{\alpha}, \lim_{n \to \infty} \frac{n}{\ln n} \left(\frac{x_n}{n} - \sqrt{\alpha} \right) = \frac{\beta}{2\alpha}.$$

Demonstrație 13. Fie $\varphi:[0,\infty)\to(0,\infty)$, $\varphi(x)=\sqrt{\alpha+\beta x}$. Să observăm că $\varphi'(x)=\frac{\beta}{2}\left(\alpha+\beta x\right)^{-\frac{1}{2}}$. Aplicăm teorema 2 pentru funcția φ .

4.2 Exerciții

Calculați

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k \left(\sqrt[n]{n+k} - 1\right)}{n \ln n} = \frac{1}{2}$$

Demonstrație 14. Să notăm $x_n = \frac{1}{n} \sum_{k=1}^n k \ln (n+k)$, $n \ge 1$.

$$\sum_{k=1}^{n} k \left(\sqrt[n]{n+k} - 1 \right) \sim x_n. \tag{5.1}$$

Fie $n \ge 2$. Avem $\ln (n+1) \le \ln (n+k) \le \ln (n+n)$, $\forall 1 \le k \le n$, de unde

$$\sum_{k=1}^{n} k \ln (n+1) \le \sum_{k=1}^{n} k \ln (n+k) \le \sum_{k=1}^{n} k \ln (n+n), \frac{\ln (n+1)}{\ln n}$$

$$\frac{\sum_{k=1}^{n} k}{n^2} \le \frac{x_n}{n \ln n} \le \frac{\ln (n+n)}{\ln n}$$

 $\frac{\sum_{k=1}^{n} k}{n^2}$, sau încă,

$$\frac{\ln(n+1)}{\ln n} \cdot \frac{n+1}{2n} \le \frac{x_n}{n \ln n} \le \frac{\ln(n+n)}{\ln n} \cdot \frac{n+1}{2n} \tag{5.2}$$

Din 5.2 și teorema cleștelui rezultă că $\lim_{n\to\infty}\frac{x_n}{n\ln n}=\frac{1}{2}$. Astfel spus $x_{n\sim}\frac{n\ln n}{2}(3)$ Din 5.1 și ?? rezultă că $\sum_{k=1}^n k\left(\sqrt[n]{n+k}-1\right)\sim\frac{n\ln n}{2}$, adică egalitatea din enunț.

Calculați

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k \left(\sqrt[n]{n+k} - 1 \right)}}{\frac{\ln^2 n}{n}} = 1$$

Demonstrație 15. Să notăm $x_n=rac{1}{n}\sum_{k=1}^nrac{\ln(n+k)}{k}, n\geq 1$. ştim că

$$\sum_{k=1}^{n} \frac{1}{k} \left(\sqrt[n]{n+k} - 1 \right) \sim x_n. \tag{6.1}$$

Fie $n \ge 2$. Avem $\sum_{k=1}^{n} \frac{\ln(n+1)}{k} \le \sum_{k=1}^{n} \frac{\ln(n+k)}{k} \le \sum_{k=1}^{n} \frac{\ln(n+n)}{k}$, de unde

 $\frac{\ln(n+1)}{n}\sum_{k=1}^n\frac{1}{k}\leq x_n\leq \frac{\ln(n+n)}{n}\sum_{k=1}^n\frac{1}{k},$ sau încă,

$$\frac{\ln(n+1)}{\ln n} \cdot \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n} \le \frac{x_n}{\frac{\ln^2 n}{n}} \le \frac{\ln(n+n)}{\ln n} \cdot \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n}.$$
 (6.2)

Cum din lema Stolz- Cesaro, cazul $\left[\frac{1}{\infty}\right], \lim_{n \to \infty} \frac{\sum_{k=1}^n \frac{1}{k}}{\ln n} = 1$, din 6.2 și teorema cleștelui deducem că $\lim_{n \to \infty} \frac{x_n}{\frac{\ln^2 n}{n}} = 1$. Altfel spus

$$x_n \sim \frac{\ln^2 n}{n}.\tag{6.3}$$

Din 6.1 și 6.3 deducem că $\sum_{k=1}^n \frac{1}{k} \left(\sqrt[n]{n+k} - 1 \right) \sim \frac{\ln^2 n}{n}$, adică egalitatea din enunț.

Calculați

$$\lim_{n \to \infty} \frac{\sum_{k=2}^n \frac{1}{k \ln k} \left(\sqrt[n]{n+k}-1\right)}{\frac{(\ln n)[\ln(\ln n)]}{n}} = 1$$

Demonstrație 16. Notăm $x_n = \frac{1}{n} \sum_{k=2}^n \frac{\ln(n+k)}{k \ln k}, \geq 2$. știm că

$$\sum_{k=2}^{n} \frac{1}{k \ln k} \left(\sqrt[n]{n+k} - 1 \right) \sim x_n. \tag{7.1}$$

Fie $n \ge 2$. Avem $\sum_{k=2}^n \frac{\ln(n+1)}{k \ln k} \le \sum_{k=2}^n \frac{\ln(n+k)}{k \ln k} \le \sum_{k=2}^n \frac{\ln(n+1)}{k \ln k}$, de unde,

$$\frac{\ln(n+1)}{n}\left(\sum_{k=2}^n\frac{1}{k\ln k}\right)\leq x_n\leq \frac{\ln(n+n)}{n}\left(\sum_{k=2}^n\frac{1}{k\ln k}\right)$$
, sau încă,

$$frac\ln\left(n+1\right)n \cdot \frac{\sum_{k=2}^{n} \frac{1}{k \ln k}}{\ln\left(\ln n\right)} \le \frac{x_n}{\frac{(\ln n)[\ln(\ln n)]}{n}} \le \frac{\ln\left(n+n\right)}{n} \cdot \frac{\sum_{k=2}^{n} \frac{1}{k \ln k}}{\ln\left(\ln n\right)}.$$
 (7.2)

Din lema Stolz-Cesaro , cazul $\left[\frac{1}{\infty}\right]$, $\lim_{n \to \infty} \frac{\sum_{k=1}^n \frac{1}{k \ln k}}{\ln(\ln n)} = 1$, din 7.2 și teorema cleșteluui deducem că $\lim_{n \to \infty} \frac{x_n}{\frac{(\ln n)[\ln(\ln n)]}{n}} = 1$. Altfel spus

$$x_n \sim \frac{(\ln n) \left[\ln (\ln n)\right]}{n}.\tag{7.3}$$

Din 7.1 și 7.3 deducem că $\sum_{k=2}^n \frac{1}{k} \left(\sqrt[n]{n+k} - 1 \right) \sim \frac{(\ln n)[\ln(\ln n)]}{n}$, adică egalitatea din enunţ. [1]

Referinţe bibliografice

[1] Popa Dumitru. Curs matematică didactică. *Analiză - Capitole speciale de analiză matematică pentru pregătirea profesorilor*, 2020-2021.