Differential Equations Computational Practicum Assignment

Variant 13

Given equation: $y' = sin^2(x) + y \cdot cot(x)$

Solution

First order linear Ordinary Differential Equation.

$$y' - \cot(x)y = \sin^2(x)$$

Find the integrating factor: $\mu(x) = \frac{1}{\sin(x)}$

$$\frac{1}{\sin(x)}y' - \frac{1}{\sin(x)}\cot(x)y = \frac{1}{\sin(x)}\sin^2(x)$$

$$\frac{1}{\sin(x)}y' - \frac{1}{\sin(x)}\cot(x)y = \sin(x)$$

$$\left(\frac{1}{\sin(x)}y\right)' = \sin(x)$$

$$\frac{1}{\sin(x)}y = \int \sin(x) \, dx$$

$$\frac{1}{\sin(x)}y = -\cos(x) + c_1$$

$$y = -\cos(x)\sin(x) + c_1\sin(x)$$
 - general solution

$$c = \frac{y}{\sin(x)} + \cos(x)$$
 With initial values x0 = 1 and y0 = 1, c = 1.73

Total approximation analysis

1. Exact Solution

2. Euler's Method approximation (10/100 steps)

3. Euler's Method local errors (10/100 steps)

4. Euler's Method global errors (<500 steps)

5. Improved Euler's Method approximation (10/100 steps)

6. Improved Euler's Method local errors (10/100 steps)

7. Improved Euler's Method global errors (<500 steps)

8. Runge-Kutta's Method approximation (10/100 steps)

9. Runge-Kutta's Method local errors (10/100 steps)

10. Runge-Kutta's Method global errors (<500 steps)

UML class diagram

- Web application requires class urls for managing all html pages and function which are calling by redirection.
- Starting page contains the form. In the class **views** we save values from the form to the database.
- Class forms is a template for form for adding values to the database.
- In class get_solution there are parsing of values from the database, constructions for creating web page with approximate solutions using different methods and local errors and calling to the 2 functions to make a graphs and analyse global errors.
- Class **graph_maker** creates graphs of solutions and local errors using matplotlib python library and takes data from classes of different methods.
- In class exact_solution we use solution which have been calculated by hands. There are filling the arrays of function values according to the different x-es using exact solution.
- In classes euler method, improved_euler_method and runge_kutta_method we use special formulas (different for each method) and class of given function to fill arrays with y-es according to different x-es, like in the exact solution but not as precisely as in exact solution.

- Class **error_analysis** is for analysing maximum global errors of approximate solutions with different methods according to the different amount of steps.
- In class **clean** we delete all of data in database.

GUI

1. Starting page.

Form with entering data for approximate solution

Get approximate solution to equation $v' = sin^2(x) + v * ctg(x)$ with

Enter your data:	
X0: 1	
Y0: 1	
X: 3	
N: 50	
Submit	
Get solution	

2. Solution page.

Graph with approximate solutions using Euler's method, Improved Euler's Method, Runge-Kutta Method and Exact solution (on the left). Graph with modulus of local errors of these three methods (on the right).

3. Error Analysis page.

Graph with decreasing number of maximum global errors of approximate solutions using Euler's method, Improved Euler's Method, Runge-Kutta Method

Interesting parts of code

Given function

```
def function_for_computation(x, y):
    return sin(x) * sin(x) + (y * (cos(x) / sin(x)))
```

Exact Solution

```
def computations(x0, y0, x, n):
    ys_exact = []
    xs_exact = []
    n = int(n)
    h = (x - x0) / n
    xs_exact.append(x0)
    ys_exact.append(y0)
    c = y0/(sin(x0)) + cos(x0)
    for i in range(n - 1):
        x = xs_exact[-1]
        y = c * sin(x) - (sin(x) * cos(x))
        x += h
        xs_exact.append(x)
        ys_exact.append(y)
    return xs_exact, ys_exact
```

Euler's Method Solution

```
def computations(x0, y0, x, n):
   xs = []
   ys = []
   xs.append(x0)
   ys.append(y0)
   n = int(n)
   h = (x - x0) / n
    for i in range(n - 1):
       x = xs[-1]
       y = ys[-1]
        x_next = x + h
        f = given function.function for computation(x, y)
        y_next = y + h * f
        xs.append(x_next)
        ys.append(y next)
    return xs, vs
```

Improved Euler's Method Solution

```
def computations(x0, y0, x, n):
    xs = []
   ys = []
   xs.append(x0)
   ys.append(y0)
    n = int(n)
    h = (x - x0) / n
    for i in range(n - 1):
       x = xs[-1]
       y = ys[-1]
        x next = x + h
        f1 = given function.function for computation(x, y)
        f2 = given_function_for_computation(x + h, y + h
* given_function.function_for_computation(x, y))
       y next = y + h * ((f1 + f2) / 2)
       xs.append(x next)
        ys.append(y_next)
    return xs, ys
```

Runge-Kutta's Method Solution

```
def computations(x0, y0, x, n):
    xs = []
    ys = []
   xs.append(x0)
    ys.append(y0)
    n = int(n)
    h = (x - x0) / n
    for i in range(n - 1):
        x = xs[-1]
        y = ys[-1]
        k1 = h * given_function.function_for_computation(x, y)
        k2 = h * given function.function for computation(x + h/2,
y + k1/2
        k3 = h * given_function.function_for_computation(x + h/2,
v + k2/2
        k4 = h * given function.function for computation(x + h, y)
+ k3)
        x next = x + h
        y_next = y + k1/6 + k2/3 + k3/3 + k4/6
        xs.append(x next)
        ys.append(y_next)
    return xs, ys
```