1.6 CC2530 Day-6 串口通信

```
1.6 CC2530 Day-6 串口通信
```

```
1.6.1 串口基础知识
1.6.2 串口相关寄存器

1-PERCFG 外设控制寄存器
2-USARTO 外设I/O 引脚映射
3-USART1 外设I/O 引脚映射
4-常用波特率
5-UxBAUD USARTx波特率控制寄存器
6-UxDBUF USARTx 接收/发送数据缓存寄存器
7-UxGCR USARTx 通用控制寄存器
8-UxCSR USARTx 控制和状态寄存器
9-UxUCR USARTx UART 控制寄存器
```

1.6.1 串口基础知识

CC2530有两个串口通信USART0和USART1,他们能够运行在异步UART模式或者同步SPI模式.

在UART模式中,有2个独立的中断向量:发送中断和接收完成中断。

```
1 //配置系统时钟为32Mhz
void Set_Clock_32M()
3 {
    CLKCONCMD &= ~0x40; //选择系统时钟为32MHz
    while(CLKCONSTA & 0x40); //等待系统时钟稳定
    CLKCONCMD &= ~0x07; //设置系统时钟为32MHz
6
7 }
   //串口初始化步骤
8
  void Init_Uart0()
10
      //配置外设
11
      PERCFG &= \sim 0 \times 01; //串口0 的引脚映射到位置1, 即PO_2 和PO_3
12
13
      P1SEL |= 0x0C; //将P0_2 和P0_3 端口设置成外设功能, 即0000 1100
      //设置串口传输波特率
      U0BAUD = 59; //32MHz 系统时钟9600 波特率的UxBAUD.BAUD_M
16
      U0GCR = 8; //32MHz 系统时钟9600 波特率的UxGCR.BAUD_E
17
18
      //串口属性相关的配置
19
      UOUCR = 0x80; //禁止流控,8位数据,清除缓冲器
      UOCSR = 0xC0; //选择UART模式,使能接收器
21
22
      //清除发送和接收中断标志位
23
24
      UTX0IF = 0;
25
      URT0IF = 0;
26
27
      //使能串口相关中断控制位
28
      URX0IE = 1:
      EA = 1:
```

```
30
   }
31
   //发送单字节函数
32
33
   void UR0_SendByte(unsigned char dat)
34
35
       if(UTX0IF == 0)
36
       {
           UTX0IF = 0;
37
38
           U0DBUF = dat;
39
       }
40
   }
41
   //发送字符串函数
42
43
   void UR0_SendString(unsigned char * str)
44
45
       if(*str \neq '\0')
46
       {
47
           UR0_SendByte(*str++);
48
      }
49 }
```

1.6.2 串口相关寄存器

1-PERCFG 外设控制寄存器

【49】PERCEC 外设控制客存器(结合串口外设 I/O 引脚映射)

49	PERCITE 外汉:	侄刑句任	奋 (给 个	5年口外设 1/0 51 脚映射丿				
位	位名称	复位值	操作	描述				
7		0	R/W	没有使用。				
6	T1CFG	0	R/W	定时器 1 的 I/O 位置。				
				0: 备用位置 1。				
5	T3CFG	0	R/W	定时器 3 的 I/O 位置。				
				0: 备用位置 1。				
4	T4CFG	0	R/W	定时器 4 的 I/O 位置。				
				0: 备用位置 1。				
3:2		00	R0	没有使用。				
1	U1CFG	0	R/W	USART1 的 I/O 位置。				
				0: 备用位置 1。				
0	UOCFG	0	R/W	USARTO 的 I/O 位置。				
				0: 备用位置 1。				
设计参	参考 初始化定时器 1 通道 0 的外			映射为备用位置1。				
	PERCFG &=	\sim 0x01;	//串	/串口 0 的引脚映射到位置 1, 即 P0_2 和 P0_3				
	POSEL =	0x0C;	//将	FP0_2 和 P0_3 端口设置成外设功能,即 0000 1100。				

2-USARTo 外设I/O 引脚映射

【USARTO 外设 I/O 引脚映射】

UARTO		PO 端口								P1 端口						
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
备用位置1					TX	RX										
备用位置2											TX	RX				

3-USART1 外设I/O 引脚映射

【USART1 外设 I/0 引脚映射】

	Economic N. M. T. C. A. M.															
UART1		P0 端口								P1 端口						
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
备用位置1			RX	TX												
备用位置2									RX	TX						

4-常用波特率

波特率(bit/s)	32MHz 的	系统时钟	16MHz 的系统时钟			
	UxBAUD. BAUD_M	UxGCR. BAUD_E	UxBAUD. BAUD_M	UxGCR. BAUD_E		
4800	59	7	59	8		
9600	59	8	59	9		
19200	59	9	59	10		
57600	216	10	216	11		
115200	216	11	216	12		

设计参考

在16MHz系统时钟下,将串口0的波特率设置为9600。

UOBAUD = 59; //16MHz 系统时钟 9600 波特率的 UxBAUD_M UOGCR = 9; //16MHz 系统时钟 9600 波特率的 UxGCR. BAUD_E

5-UxBAUD USARTx波特率控制寄存器

【52】UxBAUD USARTx 波特率控制寄存器

位	位名称	复位值	操作	描述
7:0	BAUD_M[7:0]	0x00	R/W	波特率小数部分的值。
				BAUD_E和 BAUD_M决定了 UART 波特率和 SPI 的主 SCK 时钟。
				UART 波特率的设置参数,参照本文【XX】串口波特率的设置。

6-UxDBUF USARTx 接收/发送数据缓存寄存器

【53】UxDBUF USARTx 接收/发送数据缓存寄存器

位	位名称	复位值	操作	描述
7:0	DATA[7:0]	0x00	R/W	UART 接收和发送数据。
				写入该寄存器的时候,数据被写入到内部数据传送寄存器。
				读取该寄存器的时候,数据来自内部的读取数据寄存器。

7-UxGCR USARTx 通用控制寄存器

【54】UxGCR USARTx 通用控制寄存器

位	位名称	复位值	操作	描述
7	CPOL	0	R0/W1	SPI 的时钟极性。
				0: 负时钟极性。 1: 正时钟极性。
6	СРНА	0	R/W	SPI 时钟相位。
				0: 当 SCK 从 0 到 1 时,数据输出到 MOSI; 当 SCK 从 1 到 0 时,
				MISO 数据输入。
				1: 当 SCK 从 1 到 0 时,数据输出到 MOSI; 当 SCK 从 0 到 1 时,
				MISO 数据输入。
5	ORDER	0	R/W	传送位顺序。
				0: LSB 先传送。
4:0	BAUD_E[4:0]	0	R/W	波特率指数值。
				BAUD_E 和 BAUD_M 决定了 UART 波特率和 SPI 的主 SCK 时钟。

8-UxCSR USARTx 控制和状态寄存器

【55】UxCSR USARTx 控制和状态寄存器

位	位名称	复位值	操作	描述
7	MODE	0	R/W	USART 模式选择。
				0: SPI 模式。
6	REN	0	R/W	UART 接收器使能。
				0:禁用接收器。 1:使能接收器。
				注意: 在 UART 完全配置之前不使能接收。
5	SLAVE	0	R/W	SPI 主或从模式选择。
				0: SPI 主模式。
4	FE	0	R/WO	UART 数据帧错误状态。
				0: 无数据帧错误。
				1: 字节收到不正确的停止位。
3	ERR	0	R/WO	UART 奇偶错误状态。
				0: 无奇偶错误检测。
				1: 字节收到奇偶错误。
2	RX_BYTE	0	R/WO	接收字节状态。UART 模式和 SPI 模式从模式。
				当读 UODBUF 寄存器,该位自动清除,通过写 0 有效丢弃 UODBUF
				中的数据。
				0: 没有接收到字节。
				1: 准备好接收字节。
1	TX_BYTE	0	R/WO	发送字节状态。UART 模式和 SPI 模式从模式。
				0: 字节没有被传送。
				1: 写到数据缓存寄存器的最后字节被传送。
0	UOCFG	0	R/W	USART 传送/接收主动状态。在 SPI 从模式下,该位等于从模
				式选择。
				0: USART 空闲。
				1: 在传送或者接收模式 USART 忙碌。

9-UxUCR USARTx UART 控制寄存器

【56】UxUCR USARTx UART 控制寄存器

位	位名称	复位值	操作	描述
7	FLUSH	0	R0/W1	清除单元。
				当设置1时,该事件将会立即停止当前操作并且返回单元的空
				闲状态。
6	FLOW	0	R/W	UART 硬件流使能。用 RTS 和 CTS 进行引脚流控制。
				0:禁止流控制。 1:使能流控制。
5	D9	0	R/W	UART 奇偶校验位。
				当使能奇偶校验,写入 D9 的值决定发送的第 9 位的值;若收
				到的第9位不匹配收到字节的奇偶校验,接收时报告 ERR。
				0: 奇校验。
4	BIT9	0	R/W	UART 9 位数据使能。
				0:8位传送。 1:9位传送。
3	PARITY	0	R/W	UART 奇偶校验使能。
				0:禁用奇偶校验。 1:使能奇偶校验。
2	SPB	0	R/W	UART 停止位的位数。
				0: 1 位停止位。
1	STOP	1	R/W	UART 停止位的电平。
				该电平必须不同于开始位的电平。
				0: 停止位低电平。 1: 停止位高电平。
0	START	0	R/W	UART 开始位的电平。
				闲置线的极性采用选择的起始位电平的相反电平。
				0: 起始位低电平。 1: 起始位高电平。