Intro to Quantum Computing

Kathrin Spendier (Quantum Evangelist) → <u>kathrin.spendier@quantinuum.com</u> (<u>mailto:kathrin.spendier@quantinuum.com</u>),

Contents

We will cover the following:

- 1. Introduction to Quantum Computing
- 2. Introduction to Quantinuum and TKET

1) Introduction to Quantum Computing

Euler's formula and polar coordinates ==> Bloch sphere

INTERFERENCE

- Enables the quantum system to transform from one quantum state to another via the impact of individual particles interfering with one another.
- Analogy: noise-canceling headphones.
 - destructive and constructive
 - amplify the signals we care about and destroy all other signals

ENTANGLEMENT

- Ability of quantum systems to exhibit correlations between states.
- When qubits are entangled, a change in one qubit impacts the state of another qubit.
- Deduce the property of other qubits without "looking" (measuring) those qubits.

- Used to describe a series of operations on a quantum computer
- Each row (wire) represents a bit (either classical or quantum)
- The operations in the circuit performed in order on each qubit from left to right
- Shoes dependency of operation with no implicit timing information

Here we can see some quantum gates on qubit 0 and qubit 1 and then we have two measurement operations which measure the state of the qubit which collapses it to a 0 or 1 and writes those out to a classical bit which is C0 and C1.

Quantum Circuits

Circuit diagrams for quantum information

Quantum circuits are instructions for a series of unitary evolutions (quantum gates) to be executed on quantum Information.

In bra-ket notation for fully entangled Bell state:

$$CX(H \otimes I) |00\rangle = CX \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) |0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

where:

$$CX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Quantum Gates

- Quantum gates are the operations perforemd on qubits
- · Gates are reversible
- · Each gate is represented as a unitary matrix

Some Quantum Gates

Gate	Symbol	Unitary	Gate	Symbol	Unitary
Pauli X	_X_	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	U1	$ U1(\lambda)$ $-$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\lambda} \end{bmatrix}$
Pauli Y	<u> </u>	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	U2	$ U2(\phi,\lambda)$ $-$	$\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -e^{i\lambda} \\ e^{i\phi} & e^{i(\phi+\lambda)} \end{bmatrix}$
Pauli Z	- Z $-$	$egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$	U3	$ \left[Rz(\phi) ight] -$	$U(heta,\phi,\lambda)$
Hadamard	-H	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	Z Rotation	$ Rz(\phi)$ $-$	$\begin{bmatrix} e^{-\frac{i\phi}{2}} & 0 \\ 0 & e^{\frac{i\phi}{2}} \end{bmatrix}$
CNOT	_	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	SWAP	*	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- This example here is a block sphere and it's very useful to think about operations on single qubits as rotations on the sphere. The Bloch sphere is a geometric representation for a quantum state you can think of it as that vector that red vector and you apply a quantum gate to a qubit and that vector rotates around. You can think of the operations on a single qubit as just rotating that vector around in 3d space. It's a very helpful model to conceptualize what's going on it gets a
- 2 little bit more complicated when you involve multiple qubits.

Example

HZH operated on the |0> state looks as follows on the Bloch sphere:

2) Introduction to Quantinuum and TKET

QUANTUM COMPUTERS

Trapped Ions

Quantinuum, IonQ, AQT,

Superconducting

IBM, Google, Rigetti, OQC,

Neutral atoms

Cold Quanta, Pasqal, Atom Computing,....

Photonic

Psi Quantum, ORCA, Xanadu, Quandela,

Silicon Spin / Quantum Dots

Intel, Quantum Motion, Diraq,

Quantinuum

ETH Zürich

