

■ 도수분포표(Frequency table)

- 범주형 자료 또는 범주화된 자료를 정리
- 각 범주에 몇 개의 관측개체가 있는지를 정리한 표
 - 도수
 - 상대도수
 - ⇒ 표본을 계속 뽑으면
 - ⇒ 해당범주가 모집단에서 차지하는 비율(확률)로 수렴
 - ↳ 통계학에서의 관심사

■ 다항분포(Multinomial Distribution)

● 각 시행에서 발생 가능한 결과는 *k*가지

ullet 각 시행에서 i 번째 결과의 확률은 p_i 로 고정, $\sum\limits_{i=1}^{\kappa}p_i=1$

● 각 시행은 독립적으로 수행

 \bullet $(X_1, X_2, ..., X_k)$: n 번 시행했을 때, 각 결과의 횟수

시행	결과 1	결과 2	***	결과 k	합
1	X_{11}	X_{12}		X_{1k}	1
2	X_{21}	X_{22}		X_{2k}	1
•	:	i		:	÷
n	X_{n1}	X_{n2}		X_{nk}	1
합	X_1	X_2	•••	X_k	n

 $\circ X_{ij}$: i 번째 시행에서 결과 j가 나오면 1 아니면 0

•
$$X_{ij} = 1$$
이면 $X_{il} = 0$, $l \neq j$

 \circ $i_1 \neq i_2$ 인 경우 $X_{i_1j_1}$ 와 $X_{i_2j_2}$ 는 서로 독립

● 이항분포: $X_1 \sim B(n, p_1)$

$$f(x_1) = \frac{n!}{x_1! (n - x_1)!} p_1^{x_1} (1 - p_1)^{n - x_1}$$

$$X_2 = n - X_1$$
, $p_2 = 1 - p_1$

$$f(x_1, x_2) = \frac{n!}{x_1! x_2!} p_1^{x_1} p_2^{x_2}, \qquad x_1 + x_2 = n$$

● 다항분포의 확률질량함수

$$f(x_1, x_2, ..., x_k) = \frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k},$$

•
$$\sum_{i=1}^{k} x_i = n$$
 , $\sum_{i=1}^{k} p_i = 1$

●멘델의 유전법칙

- ○독립의 법칙: 완두의 껍질 모양(R,r), 색깔(Y,y)
 - · RRYY, rryy인 완두 교배 1대를 자기수분시킨 2대의 발현비율 RY:Ry:rY:ry = 9:3:3:1
- \circ 독립적으로 n개의 2대를 얻었을 때, (RY,Ry,rY,ry)에 속한 완두의 수를 (X_1,X_2,X_3,X_4) 라고 하면

$$f(x_1, x_2, x_3, x_4) = \frac{n!}{x_1! x_2! x_3! x_4} \left(\frac{9}{16}\right)^{x_1} \left(\frac{3}{16}\right)^{x_2} \left(\frac{3}{16}\right)^{x_3} \left(\frac{1}{16}\right)^{x_4}$$

- ●특정 결과에만 관심이 있는 경우,
 - \circ 예】 i-번째 결과 (R_i) 에만 관심 \Rightarrow 나머지 결과를 묶음 (R_i^c)

$$X_i \sim B(n, p_i)$$

- $E(X_i) = np_i$
- $Var(X_i) = np_i(1-p_i)$
- \circ 예]i-번째 또는 j-번째 결과 $(R_i \cup R_j)$ 관심

$$Y = X_i + X_j \sim B(n, p_i + p_j)$$

- $E(Y) = E(X_i + X_j) = n(p_i + p_j)$
- $Var(Y) = Var(X_1 + X_2) = n(p_i + p_j)(1 (p_i + p_j))$

ullet X_i 와 관계

$$\circ$$
 $Cov(X_{11} + X_{21}, X_{12} + X_{22})$

$$= Cov(X_{11}, X_{12}) + Cov(X_{11}, X_{22}) + Cov(X_{21}, X_{12}) + Cov(X_{21}, X_{22})$$

$$Cov(X_1, X_2) = \sum_{i=1}^{n} Cov(X_{i1}, X_{i2})$$

$$\quad \quad Cov\left(X_{i1}, X_{i2}\right) = E(X_{i1}X_{i2}) - E(X_{i1})E(X_{i2})$$

$$E(X_{ij}) = p_j, \quad E(X_{i1}X_{i2}) = 0$$

$$\Rightarrow Cov(X_{i1}, X_{i2}) = -p_1p_2$$

$$Cov(X_i, X_j) = -n p_i p_j$$

$$\begin{aligned} Cor(X_i, X_j) &= \frac{-n \, p_i \, p_j}{\sqrt{n p_i \, (1 - p_i)} \, \sqrt{n p_i \, (1 - p_i)}} \\ &= -\sqrt{\frac{p_i p_j}{(1 - p_i) \, (1 - p_j)}} \end{aligned}$$

.
$$p_i/(1-p_i)$$
: 오즈(odd)

$$\begin{aligned} & \circ \quad Var(X_i + X_j) = Var(X_i) + Var(X_j) + 2 \operatorname{Cov}(X_i, X_j) \\ & = np_i(1 - p_i) + np_j(1 - p_j) - 2np_ip_j = n \left(p_i + p_j - (p_i + p_j)^2 \right) \\ & = n \left(p_i + p_j \right) \left(1 - (p_i + p_j) \right) \end{aligned}$$

●멘델의 유전법칙

- ○모양(R, r)에만 관심이 있는 경우, R:r = 12:4 = 3:1
 - · R의 개수: $Y = X_1 + X_2 \sim B(n, 0.75)$
- ○100개의 완두에 대해 우성인자만 있는 경우와 열성인자만 있는 완두 수의 상관계수는?
 - $p_1 = 9/16$, $p_4 = 1/16$
 - $Cov(X_1, X_4) = -160 \times (9/16) \times (1/16) = -5.625$
 - $Cor(X_1, X_4) = -\sqrt{\frac{(9/16)(1/16)}{(7/16)(15/16)}} = -0.2928$

• cf.
$$Cor(X_1, X_2) = -\sqrt{\frac{(9/16)(3/16)}{(7/16)(13/16)}} = -0.5447$$

●요약

- \circ 각 시행에서 발생 가능한 결과는 k가지
- \circ 각 시행에서 i 번째 결과의 확률은 p_i 로 고정,
- ㅇ각 시행은 독립적으로 수행
- \circ n 번 시행했을 때 각 결과의 횟수 분포
- ○특정 결과의 횟수의 분포 ⇒ 이항분포

$$Cor(X_{i},X_{j}) = -\sqrt{\frac{p_{i}p_{j}}{(1-p_{i})(1-p_{j})}}$$