深度學習HW4

AI二 B1228005 胡樂麒

1.模型與超參數設定

我使用的是MODEL_TYPE =HF, 分別使用MODEL_NAME = "google/vit-base-patch16-224" 和"google/vit-base-patch16-224-in21k"模型來訓練。使用colab環境。

*	數	ᆕᇨ	_
疹	罢乂	ĒΖ	ᄺ

BATCH SIZE = 32

EPOCHS = 3

LEARNING RATE = 1e-4

IMAGE_SIZE = 128

PATCH SIZE = 16

MODEL_NAME = "google/vit-base-patch16-224" 和 "google/vit-base-patch16-224-in21k"

MODEL_TYPE = "HF"

optimizer=Adam

loss_fn=CrossEntropyLoss()

2. 有無使用LoRA 的影響

從結果可以看出來這兩個模型的F1 score與Accuracy在沒有使用LoRA的情況下皆高於有使用LoRA。

在 vit-base-patch16-224 中:

不使用 LoRA: Accuracy = 90.87%, F1 = 89.81% 使用 LoRA: Accuracy = 87.5%, F1 = 85.76%

在vit-base-patch16-224-in21k中:

不使用 LoRA 時: Accuracy = 91.99%, F1 = 91.09% 使用 LoRA 時: Accuracy = 87.5%, F1 = 87.69%

出現此結果的原因可能是因為,在LoRA 設定中 r=8、lora_alpha=16, 參數較少, 可能沒辦法有效地調整模型。所以在之後的修改會分別將參數改成r=24,lora_alpha=48來比較結果。

model_name	是否使用LoRA	Accuracy	F1 score
google/vit-base-patc h16-224	有	0.875	0.8576
google/vit-base-patc h16-224	無	0.9087	0.8981
"google/vit-base-pat ch16-224-in21k"	有	0.875	0.8769
"google/vit-base-pat ch16-224-in21k"	無	0.9199	0.9109

3.加入LoRA參數對模型的影響

LoRA:不直接更新大型預訓練模型的權重,而是在某些權重矩陣旁邊插入一個「低秩的調整矩陣」來學習任務特定資訊。大幅減少需要訓練的參數量。

以下為參數調整前後的可訓練參數量

可訓練參數數量: 443906 (0.51%)

可訓練參數數量: 1328642 (1.52%)

由以下比較可知, 在這次的作業中提高可訓練參數量, 反而能提高模型的accuracy和F1 score


```
\gamma_{750} # 10. test the trained model
       do_test(test_loader, model, MODEL_TYPE, loss_fn, device, EPOCHS, epoch,
   test epoch [3/3]: 100% 20/20 [00:07<00:00, 2.60it/s] Accuracy: 0.9183
       F1 Score: 0.9104
       0. 23416302390396596
           MODEL_NAME = "google/vit-base-patch16-224-in21k"
                                    LoRA修改前
 \gamma_{750} # 10. test the trained model
        do_test(test_loader, model, MODEL_TYPE, loss_fn, device, EPOCHS, epoch,
                                                                         "test")
    test epoch [3/3]: 100% 20/20 [00:07<00:00, 2.60it/s] Accuracy: 0.8750
        F1 Score: 0.8569
        0.3384483218193054
                                    LoRA修改後
[103] # 10. test the trained model
      do_test(test_loader, model, MODEL_TYPE, loss_fn, device, EPOCHS, epoch,
  test epoch [3/3]: 100% 20/20 [00:07<00:00, 2.60it/s] Accuracy: 0.8942
      F1 Score: 0.8816
      0. 297581921890378
```

4.LoRA參數說明

LoRA參數說明		
r=8	矩陣的秩(rank), 控制 LoRA 矩陣的維度(越小訓練成本越低)	
lora_alpha=16	Scaling factor, 調整 LoRA 輸出的大小	
lora_dropout=0.1	在 LoRA 上使用 dropout, 防止過擬合	
target_modules	指定哪些模組插入 LoRA, 這裡是 "query", "key", "value" → Transformer	
bias="none"	不調整原本模型的 bias(偏置項)	
modules_to_save=["classifier"]	指定除了 LoRA 模組外, 還要保留哪些模組 參與訓練, 這裡是保留 classifier 層	

#調整r=24	擴大秩以增加可訓練參數量
#調整lora_alpha=48	<u>提高縮放強度</u>

5. Anything that can strengthen your report.

0. 2789418102242053