Lecture 4 Visual Encoding: Marks and Channels

DTS204TC Data Visualisation

Outline

- General Introduction
- Marks
- Channels
- Channels Effectiveness
- Visual Encoding (for marks and channels)

General Introduction

how to systematically analyse idiom structure?

General Introduction

how to systematically analyse idiom structure?

General Introduction

how to systematically analyse idiom structure?

- marks & channels
 - marks: represent items or links
 - o channels: change appearance of marks based on attributes

Marks

- Marks for items
 - basic geometric elements

Marks

Marks for links

Connection

vialab.science.uoit.ca/portfolio/bubblesets

https://observablehq.com/@d3/force-directed-graph

Marks

- Marks of links
 - containment can be nested

[Untangling Euler Diagrams, Riche and Dwyer, 2010]

- control appearance of marks
 - proportional to or based on attributes
- Visual channels
 - visual variables
 - o retinal channels
 - visual dimensions

• expressiveness

- expressiveness
 - Magnitude Channels
 - Ordered Attributes
 - Identity Channels
 - Categorical Attributes

Types

Vertical Position Length

Vertical Position Horizontal Position

Vertical Position
Horizontal Position
Color

Vertical Position
Horizontal Position
Color
Size (area)

Types

Vertical Position (identity) Length (magnitude)

Vertical Position (magnitude) Horizontal Position (magnitude)

Vertical Position (magnitude) Color (identity)

Vertical Position (magnitude) Horizontal Position(magnitude) Horizontal Position(magnitude) Color (identity) Size (magnitude)

Rankings

Rankings

Expressiveness

- Visual encoding should express all of—and only—the information in the dataset
- Ordered data should be shown in a way we perceive as ordered
- match channel and data characteristics

Effectiveness

- channels differ in accuracy of perception
- spatial position ranks high for both

Rankings

- Where does the ranking come from?
 - accuracy: how precisely can we tell the difference between encoded items?
 - o discriminability: how many unique steps can we perceive?
 - o **separability**: is our ability to use this channel affected by another one?
 - o popout: can things jump out using this channel?

Steven's Psychophysical Power Law: S= I^N

- accuracy:
 - Length is accurate: Linear

https://woodgears.ca/eyeball/index.html

- Accuracy:
 - Factors: alignment; distractors; distance; common scale

- Relative vs. absolute judgement
 - perceptual system mostly operates with relative judgements, not absolute judgement
 - > that's why accuracy increases with common frame/scale and alignment

- Relative vs. absolute judgement
 - perceptual system mostly operates with relative judgements, not absolute judgement
 - > that's why accuracy increases with common frame/scale and alignment
 - > Weber's Law: ratio of increment to background is constant

- Relative vs. absolute judgement
 - perceptual system mostly operates with relative judgements, not absolute judgement
 - > that's why accuracy increases with common frame/scale and alignment
 - > Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

- Relative Luminance Judgement
 - perception of luminance is contextual based on contrast with surroundings

Accuracy:

- Relative Luminance Judgement
 - perception of luminance is contextual based on contrast with surroundings

24

• Accuracy:

- o Relative Color Judgement
 - color constancy across broad range of illumination condition

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203–212.]

- Discriminability: How many usable steps?
 - must be sufficient for number of attribute levels to show
 - example: linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability

Position

+ Hue (Color)

Fully separable

2 groups each

- Separability Position
 - + Hue (Color)

Fully separable

Size

+ Hue (Color)

Some interference

2 groups each

2 groups each

Separability

Position

+ Hue (Color)

Fully separable

2 groups each

Size + Hue (Color)

Some interference

2 groups each

Width + Height

Some/significant interference

2 groups total: area

Separability

Position

+ Hue (Color)

Fully separable

2 groups each

Size

+ Hue (Color)

Some interference

2 groups each

Width

+ Height

Some/significant interference

3 groups total: area

Red

+ Green

Major interference

4 groups total: integral hue

- Popout
 - Find the red bot
 - how long does it take

- Popout
 - Find the red bot
 - how long does it take

- Find the red bot
 - how long does it take

- Find the red bot
 - how long does it take

- Find the red bot
 - how long does it take

- Find the red bot
 - how long does it take

- Find the red bot
 - how long does it take
- Individual channel
 - speed independent of distractor count
 - speed depends on channel and amount of difference from distractors
- combination
 - speed depends on number of distractors

- Popout
- Many channels
 - tilt, size, shape, proximity, shadow direction, ...

- Popout
- Many channels
 - tilt, size, shape, proximity, shadow direction, ...
- but not all!
 - parallel line pairs do not pop out from tilted pairs

Visual Encoding

analyze idiom structure as combination of marks and channels

Visual Encoding

analyze idiom structure as combination of marks and channels

Vertical Position (identity) Length (magnitude)

Vertical Position (magnitude) Horizontal Position (magnitude)

Vertical Position (magnitude) Color (identity)

Vertical Position (magnitude) Horizontal Position(magnitude) Horizontal Position(magnitude) Color (identity) Size (magnitude)

Marks: line

Marks: point

Marks: point

Marks: point

Visual Encoding

- Redundant encoding
 - o multiple channels
 - sends stronger message
 - but uses up channels
 - > eg length and luminance

Summary

- General Introduction
- Marks
 - o items
 - links
- Channels
 - expressiveness
 - effectiveness
- Channels Effective
 - accuracy; discriminability; separability; popup
 - factors
- Visual Encoding