5/29/2019 StackEdit

IndProp: Inductively Defined Propositions (IndProp.v)

Keywords

Inductive Inductive declaration, where each constructor corresponds to an inference rule

Tactics

- inversion E as [| n' E'].
- inversion
 - applied to equalities: discriminate and injection (also does necessary intros + rewrite)
 - applied to analyze evidence for inductively defined propositions
- induction E as [|n' E' IH]. induction on E which is an inductively defined proposition

Defintions and Theorems

Inductively Defined Propositions

- Inductive even : nat -> Prop := | ev_0 : even 0 | ev_SS (n : nat) (H : even n) : even (S (S n)).
- Theorem even_4: even 4. Use apply with the rule names
- Theorem even_4': even 4. Use function application syntax
- Theorem ev_plus4 : forall n, even n -> even (4 + n).
- Theorem ev_double : forall n, even (double n).

Using Evidence in Proofs

https://stackedit.io/app# 1/3

5/29/2019 StackEdit

Theorem ev_inversion : forall (n : nat), even n -> (n = 0) \/ (exists n', n = S (S n') /\ even n').

- Theorem ev_minus2 : forall n, even n -> even (pred (pred n)).
- Theorem evSS_ev : forall n, even (S (S n)) -> even n.
- Theorem evSS_ev' : forall n, even (S (S n)) -> even n.
- Theorem one_not_even : ~ even 1.
- Theorem one_not_even' : ~ even 1.
- Theorem SSSSev_even : forall n, even (S (S (S n)))) -> even n.
- Theorem even5_nonsense : even $5 \rightarrow 2 + 2 = 9$.

Induction on Evidence

- Lemma ev_even : forall n, even n -> exists k, n = double k.
- Theorem ev_even_iff : forall n, even n <-> exists k, n = double k.
- Theorem ev_sum : forall n m, even n -> even m -> even (n + m).
- Inductive even' : nat -> Prop :=
- Theorem even'_ev : forall n, even' n <-> even n.
- Theorem ev_ev__ev : forall n m, even (n + m) -> even n -> even m.
- Theorem ev_plus_plus : forall n m p, even (n + m) -> even (n + p) -> even (m + p).

Inductive Relations

- Module Playground.
- Inductive le : nat -> nat -> Prop := | le_n n : le n n | le_S n m (H: le n m) : le n (S m).
- Notation "m <= n" := (le m n).
- End Playground.
- Definition lt (n m:nat) := le (S n) m.
- Notation "m < n" := (lt m n).
- Inductive square_of : nat -> nat -> Prop := | sq n : square_of n (n * n).
- Inductive next_nat : nat -> nat -> Prop := | nn n : next_nat n (S n).
- Inductive next_even : nat -> nat -> Prop := | ne_1 n : even (S n) -> next_even n (S n) | ne_2 n (H : even (S (S n))) : next_even n (S (S n)).
- Lemma le_trans : forall m n o, m <= n -> n <= o -> m <= o.

https://stackedit.io/app# 2/3

5/29/2019 StackEdit

- Theorem O_le_n : forall n, 0 <= n.
- Theorem n_le_m_Sn_le_Sm : forall n m, n <= m -> S n <= S m.
- Theorem Sn_le_Sm__n_le_m : forall n m, S n <= S m -> n <= m.
- Theorem le_plus_1 : forall a b, a <= a + b.
- Theorem plus_lt : forall n1 n2 m, n1 + n2 < m -> n1 < m $/\$ n2 < m.
- Theorem lt_S : forall n m, n < m -> n < S m.
- Theorem leb_complete : forall n m, n <=? m = true -> n <= m.
- Theorme leb_correct : forall n m, n <= m -> n <=? m = true.
- Theorem leb_true_trans : forall n m o, n <=? m = true -> m <=? o = true -> n <=? o = true.
- Theorem leb_iff : forall n m, n <=? m = true <-> n <= m.
- Module R.
- Inductive R : nat -> nat -> Prop
- Theorem R_equiv_fR : forall m n o, R m n o <-> fR m n = o.
- End R.

Problems

- Theorem ev_ev_ev : forall n m, $even(n + m) \rightarrow even n \rightarrow even m$. induction En as [| n' Hn' IHn'] Why is IHn' : $even(n' + m) \rightarrow even m$?
- Theorem plus_lt: forall n1 n2 m, n1 + n2 < m -> n1 < m /\ n2 < m. How to prove it?
- Theorem leb_complete : forall n m, n <=? m = true -> n <= m. Explain it.

Written with **StackEdit**.

https://stackedit.io/app# 3/3