AVL

1962 - Adelson-Velskii y Landis árbol de búsqueda binario auto-balanceable

Problema con los ABBs

Data Structure	Time Complexity								Space Complexity
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Binary Search Tree	$\Theta(\log(n))$	$\theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	O(n)
AVL Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	O(log(n))	0(log(n))	0(log(n))	O(log(n))	0(n)

- Ver ejemplo: https://www.cs.usfca.edu/~galles/visualization/BST.html
- AVL: https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
- https://www.bigocheatsheet.com/

Definición

Un AVL es un ABB donde para cada nodo del árbol se cumple que la altura del subárbol izquierdo y la altura del subárbol derecho difieren en como máximo 1.

- Un árbol vacío es un árbol AVL
- ullet Si T es un árbol no vacío y T_i y T_d sus subárboles, entonces T es AVL si y solo si:
 - T; es AVL
 - T_d es AVL
 - $|H(T_i) H(T_d)| <= 1$

(ver ejemplos)

Desafío con los AVL: las rotaciones

Las rotaciones con las soluciones que hay que aplicar una vez que se nos "desequilibra" el AVL.

Momentos donde se puede generar desequilibrio ? => inserción y eliminación de elementos

Existen 4 tipos de rotaciones.

(ver ejemplos de equilibrio => desequilibrio)

Rotación derecha simple

Ejemplo: 5 - 3 - 1

Rotación izquierda simple

Ejemplo: 1 - 3 - 5

Rotación derecha doble - der-izq

Ejemplo: 10 - 5 - 15 - 4 - 6 - 20 - 16

Rotación izquierda doble ó izq-der

Ejemplo: 10 - 20 - 5 - 12 - 22 - 3 - 4

Pasos para la inserción

- 1) Insertar W como si fuese un ABB.
- 2) Empezando desde W y regresando por el camino de nodos, me encuentro (o no) con el primer nodo desbalanceado, llamémosle Z. También tenemos el nodo Y que es el hijo de Z por donde se encuentra W, y por ultimo esta el nodo X que es el nieto de Z en la ruta de Z->W.
- 3) Re-balancear el árbol según la rotación que le corresponda:
 - a) Y es el hijo izquierdo de Z y X es el hijo izquierdo de Y => rotación simple derecha
 - b) Y es el hijo izquierdo de Z y X es el hijo derecho de Y => rotación izquierda-derecha
 - c) Y es el hijo derecho de Z y X es el hijo derecho de Y => rotación simple izquierdo
 - d) Y es el hijo derecho de Z y X es el hijo izquierdo de Y => rotación derecha-izquierda

Encuesta

https://forms.office.com/Pages/ResponsePage.aspx?id=zSCX18DYDE2kBC3NAl8 B4zHaHUx7m7VBrn630x8c1m5UQ0FYT1JSU0JGRVZIMzBHRUZIVzIXWVFDTC 4u

Links de interés

- https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
- https://www.geeksforgeeks.org/avl-with-duplicate-keys/
- https://es.wikipedia.org/wiki/%C3%81rbol_AVL
- Cap 4.4, Estructuras de datos y algoritmos, Mark Allen Weiss