Algorithm & Data Structure Analysis

Lecture 1: Growth of Function

Appetizer

Sorting: Why should I care?

Which one do you prefer?

Measuring efficiency

- ullet Let n be the input size
- Runtime
- Memory usage
- ullet (usually interested in large n)

Logarithmic runtime

Linear runtime

Quadratic runtime

Cubic runtime

Exponential runtime

Growth of function

$$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \ge n_0, f(n) \le c \cdot g(n) \}$$

$$O(g(n)) = \{f(n) : \exists c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \ge n_0, f(n) \le c \cdot g(n)\}$$

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \ge n_0, f(n) \ge c \cdot g(n) \}$$

$$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \ge n_0, f(n) \le c \cdot g(n) \}$$

$$\Omega(g(n)) = \{f(n): \exists c>0, \exists n_0 \in \mathbb{N}_+, \forall n \geq n_0, f(n) \geq c \cdot g(n)\}$$

$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

$$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \ge n_0, f(n) \le c \cdot g(n) \}$$

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \ge n_0, f(n) \ge c \cdot g(n) \}$$

$$f(n) = \Theta(g(n)) \text{ if and only if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$$

$$o(g(n)) = \{ f(n) : \forall c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \ge n_0, f(n) < c \cdot g(n) \}$$

$$\begin{split} &O(g(n)) = \{f(n): \exists c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \geq n_0, f(n) \leq c \cdot g(n)\} \\ &\Omega(g(n)) = \{f(n): \exists c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \geq n_0, f(n) \geq c \cdot g(n)\} \\ &f(n) = \Theta(g(n)) \text{ if and only if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \\ &o(g(n)) = \{f(n): \forall c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \geq n_0, f(n) < c \cdot g(n)\} \\ &\omega(g(n)) = \{f(n): \forall c > 0, \exists n_0 \in \mathbb{N}_+, \forall n \geq n_0, f(n) > c \cdot g(n)\} \end{split}$$

5n

5n :
$$O(n), \Omega(n), \Theta(n), o(n \log n), \omega(\sqrt{n})$$

5n :
$$O(n), \Omega(n), \Theta(n), o(n \log n), \omega(\sqrt{n})$$

$$n^2 - n \log n$$

5n :
$$O(n), \Omega(n), \Theta(n), o(n \log n), \omega(\sqrt{n})$$

$$n^2 - n \log n$$
: $O(n^2), \Omega(n^2), \Theta(n^2), o(n^3), \omega(n \log n)$

5n :
$$O(n), \Omega(n), \Theta(n), o(n \log n), \omega(\sqrt{n})$$

$$n^2 - n \log n$$
: $O(n^2), \Omega(n^2), \Theta(n^2), o(n^3), \omega(n \log n)$

100n

5n :
$$O(n), \Omega(n), \Theta(n), o(n \log n), \omega(\sqrt{n})$$

$$n^2 - n\log n \colon O(n^2), \Omega(n^2), \Theta(n^2), o(n^3), \omega(n\log n)$$

100n :
$$O(n^2), \Omega(\sqrt{n}), \Theta(n), o(n \log n), \omega(\sqrt{n})$$

 $5n\log n \in O(n\log n)$

$$5n\log n \in O(n\log n)$$

True

$$5n\log n \in O(n\log n)$$

True

$$5n\log n \in O(n^2)$$

$$5n \log n \in O(n \log n)$$
 True

$$5n\log n \in O(n^2)$$
 True

$$5n\log n \in O(n\log n)$$

True

$$5n\log n \in O(n^2)$$

True

$$5n\log n \in \Omega(n^2)$$

$$5n \log n \in O(n \log n)$$
 True

$$5n\log n \in O(n^2)$$
 True

$$5n\log n \in \Omega(n^2)$$
 False

$$5n\log n \in O(n\log n)$$

True

$$5n\log n \in O(n^2)$$

True

$$5n\log n \in \Omega(n^2)$$

False

$$5n\log n \in o(n^2)$$

$5n\log n \in O(n\log n)$	rue
---------------------------	-----

$$5n\log n \in O(n^2)$$
 True

$$5n\log n \in \Omega(n^2)$$
 False

$$5n\log n \in o(n^2)$$
 True

$$5n\log n \in O(n\log n)$$

True

$$5n\log n \in O(n^2)$$

True

$$5n\log n \in \Omega(n^2)$$

False

$$5n\log n \in o(n^2)$$

True

$$5n\log n + n^2 \in O(n\log n)$$

$5n\log n \in O(n\log n)$	True
$5n\log n \in O(n^2)$	True
$5n\log n\in\Omega(n^2)$	False
$5n\log n \in o(n^2)$	True
$5n\log n + n^2 \in O(n\log n)$	False

$$5n \log n \in O(n \log n)$$
 True $5n \log n \in O(n^2)$ True $5n \log n \in O(n^2)$ False $5n \log n \in o(n^2)$ True $5n \log n \in o(n^2)$ True $5n \log n + n^2 \in O(n \log n)$ False $5n \log n + n^2 \in O(n^2)$

$$5n\log n \in O(n\log n)$$
 True $5n\log n \in O(n^2)$ True $5n\log n \in O(n^2)$ False $5n\log n \in o(n^2)$ True $5n\log n \in o(n^2)$ True $5n\log n + n^2 \in O(n\log n)$ False $5n\log n + n^2 \in O(n^2)$ True

Summary

Efficiency of data structures and algorithms

• Growth function given input size

Asymptotic behavior and complexity classes

- Reading: Introduction to Algorithms
 - Chapter 3.1: Growth of Functions

Next lecture

Integer arithmetics

- Reading: Algorithms and Data Structures
 - Chapter 1.1: Addition
 - Chapter 1.2: Multiplication: The School Method