Cryptography – Homework 2

冯诗伟 161220039

3.14

3.19

 \mathfrak{a}

The encryption scheme is not EAV-secure. Because G is deterministic and publicly known, the adversary can get the plaintext just by compute $G(c_1) \oplus c_2 = G(r) \oplus G(r) \oplus m = m$ when obtaining the ciphertext $c = < c_1, c_2 >$.

The encryption scheme is not CPA-secure for the reason mentioned above.

b

The encryption scheme is EAV-secure. Even if the input of F is fixed, the key k is uniform. So it is equivalent to OTP.

The encryption scheme is not CPA-secure. After the adversary produces m_0 and m_1 , he gets $m_b \oplus F_k(0^n)$. Then the adversary can sent m_0 to the oracle and get $m_0 \oplus F_k(0^n)$ from the oracle. Since k is the same, the adversary now gets the value of $F_k(0^n)$. Thus he can directly compute the m_b and succeeds with the probability of 1.

c

The encryption scheme is both EAV-secure and CPA-secure.

Because m_0 and m_1 are independent and $F_k(r)$ and $F_k(r+1)$ are independent, this is actually the same as Construction 3.30. Therefore, it is CPA-secure and we get that it is EAV-secure for free. (Actually, this scheme is CTR-mode.)

3.29

Construct the CPA-secure encryption scheme $\Pi^* = (Enc, Dec)$:

Enc: on input a message $m \in \{0,1\}^n$, choose a uniform $r \in \{0,1\}^n$ and output the ciphertext

$$c := \langle Enc_1(r), Enc_2(r \oplus m) \rangle$$

Dec: on input a ciphertext $c = \langle c_1, c_2 \rangle$, output the plaintext message

$$m := Dec_1(c_1) \oplus Dec_2(c_2)$$

Next I will show that Π^* is CPA-secure as long as at least one of Π_1 or Π_2 is CPA-secure.

- 1. If both Enc_1 and Enc_2 are CPA-secure, the adversary can get nothing about r or $r \oplus m$. So he cannot get any information about the plaintext.
- 2. If Enc_1 is CPA-secure while Enc_2 is not CPA-secure, the adversary can distinguish $r \oplus m_0$ from $r \oplus m_1$ with a probability significantly better than $\frac{1}{2}$. But r is uniform, the adversary cannot tell m_0 from m_1 .
- 3. If Enc_2 is CPA-secure while Enc_1 is not CPA-secure, the adversary can get some information about r. That is no help because the adversary can get nothing about $r \oplus m$.

In conclusion, Π^* is CPA-secure as long as at least one of Π_1 or Π_2 is CPA-secure.

Additional 3.26

α

If F is pseudorandom, we have

$$|Pr[D^{F_k(\cdot)}(1^n) = 1] - Pr[D^{f(\cdot)}(1^n) = 1]| \le negl(n)$$

Since $f(\cdot)$ is originally uniform, $f^{\$}(\cdot)$ is just the same as $f(\cdot)$.

$$Pr[D^{f(\cdot)}(1^n) = 1] = Pr[D^{f^{\$}(\cdot)}(1^n) = 1]$$

Since F is pseudorandom, F with uniform k actually produces random strings. Thus F_k with uniform input produces random strings as well.

$$Pr[D^{F_k(\cdot)}(1^n) = 1] = Pr[D^{F_k^{\$}(\cdot)}(1^n) = 1]$$

Therefore, we have

$$|Pr[D^{F_k^{\$}(\cdot)}(1^n) = 1] - Pr[D^{f^{\$}(\cdot)}(1^n) = 1]| \le negl(n)$$

which means *F* is weakly pseudorandom.

b

Notice that whether the distinguisher D for F'_k can succeed is independent from the parity of x.

$$\begin{split} Pr\big[D^{F_k^{\$}(\,\cdot\,\,)}(1^n) = 1\big] &= Pr\big[D^{F_k'^{\$}(\,\cdot\,\,)}(1^n) = 1 \cap x \, is \, even\big] + Pr\big[D^{F_k'^{\$}(\,\cdot\,\,)}(1^n) = 1 \cap x \, is \, odd\big] \\ &= \frac{1}{2} Pr\big[D^{F_k'^{\$}(\,\cdot\,\,)}(1^n) = 1\big] + \frac{1}{2} Pr\big[D^{F_k'^{\$}(\,\cdot\,\,)}(1^n) = 1\big] \\ &= Pr\big[D^{F_k'^{\$}(\,\cdot\,\,)}(1^n) = 1\big] \end{split}$$

Because F' is pseudorandom, F' is weakly pseudorandom.

$$|Pr[D^{F_k'^{(s)}(\cdot)}(1^n) = 1] - Pr[D^{f(\cdot)}(1^n) = 1]| \le negl(n)$$

Notice that

$$Pr\big[D^{f(\,\cdot\,\,)}(1^n)=1\big]=Pr\big[D^{f^\$(\,\cdot\,\,)}(1^n)=1\big],\,Pr\big[D^{F_k'^\$(\,\cdot\,\,)}(1^n)=1\big]=Pr\big[D^{F_k^\$(\,\cdot\,\,)}(1^n)=1\big]$$

$$|Pr[D^{F_k^{\$}(\cdot)}(1^n) = 1] - Pr[D^{f^{\$}(\cdot)}(1^n) = 1]| \le negl(n)$$

which means F is weakly pseudorandom.

Next I will prove that F is not pseudorandom.

Construct the distinguisher D^* : D^* query the oracle with m_0 and m_1 where m_0 is even, m_1 is odd and $m_0 = m_1 + 1$.

 D^* obtains $y_0 = \mathcal{O}(m_0)$ and $y_1 = \mathcal{O}(m_1)$ and outputs 1 if and only if $y_0 = y_1$.

If $\mathcal{O} = F_k$, D^* outputs 1 with probability of 1. If $\mathcal{O} = f$, D^* outputs 1 with probability of 2^{-n} .

$$\therefore |Pr[D^{F_k(\cdot)}(1^n) = 1] - Pr[D^{f(\cdot)}(1^n) = 1]| = 1 - 2^{-n}$$

So F_k is not pseudorandom.

c

CTR-mode encryption using a weak pseudorandom function is not necessarily CPA-secure.

Consider the weak pseudorandom function F_k in (b).

Construct the adversary A. A produces m_0 and m_1 where m_0 and m_1 are as long as three blocks.

 $m0 = m_{00} ||m_{01}||m_{02}$, where $m_{00} = m_{01} = m_{02}$.

 $m1 = m_{10} ||m_{11}|| m_{12}$, where any two of m_{10}, m_{11}, m_{12} are different.

 \mathcal{A} obtains the ciphertext $c=c_{b1}||c_{b2}||c_{b3}$ and can get the parity of ctr.

If ctr is odd, A output 0 if and only if $c_{b1} = c_{b2}$.

If ctr is even, A output 0 if and only if $c_{b1} = c_{b2}$.

Notice that when ctr is odd $c_{01} = m_{01} \oplus F_k(ctr+3), c_{02} = m_{02} \oplus F_k(ctr+3), c_{11} \neq c_{12}$, and when ctr is even $c_{00} = m_{00} \oplus F_k(ctr+2), c_{01} = m_{01} \oplus F_k(ctr+2), c_{00} \neq c_{01}$.

 \mathcal{A} succeeds with a probability of 1.

In this case, CTR-mode encryption using a weak pseudorandom function is not CPA-secure.

CTR-mode encryption using a weak pseudorandom function is not necessarily EAV-secure.

Consider the weak pseudorandom function F_k in (b).

Construct the adversary A. A produces m_0 and m_1 where m_0 and m_1 are as long as three blocks.

 $m0 = m_{00} ||m_{01}|| m_{02}$, where $m_{00} = m_{01} = m_{02}$.

 $m1 = m_{10} ||m_{11}|| m_{12}$, where any two of m_{10}, m_{11}, m_{12} are different.

 \mathcal{A} obtains the ciphertext $c=c_{b1}||c_{b2}||c_{b3}$ and can get the parity of ctr.

If ctr is odd, A outputs 0 if and only if $c_{01} = c_{02}$.

If ctr is even, \mathcal{A} outputs 0 if and only if $c_{00} = c_{01}$.

Notice that when ctr is odd $c_{01} = c_{02}, c_{11} \neq c_{12}$, and when ctr is even $c_{00} = c_{01}, c_{00} \neq c_{01}$.

 \mathcal{A} succeeds with a probability of 1.

In this case, CTR-mode encryption using a weak pseudorandom function is not EAV-secure.

d

If F_k is weakly pseudorandom, we have

$$|Pr[D^{F_k^{\$}(\cdot\,)}(1^n) = 1] - Pr[D^{f^{\$}(\cdot\,)}(1^n) = 1]| \le negl(n)$$

Let $\widetilde{\Pi} = (\widetilde{Gen}, \widetilde{Enc}, \widetilde{Dec})$ be an encryption scheme that is exactly the same as $\Pi = (Gen, Enc, Dec)$ from Construction 3.30, except that a truly random function is used in the place of F_k .

Let $\Pi^{\$} = (Gen^{\$}, Enc^{\$}, Dec^{\$})$ be an encryption scheme that is exactly the same as $\Pi = (Gen, Enc, Dec)$ from Construction 3.30, except that a weakly pseudorandom function is used in the place of F_k .

Construct the distinguisher \mathcal{D} :

 \mathcal{D} is given input 1^n and access to an oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$.

- 1. Run $\mathcal{A}(1^n)$. Whenever \mathcal{A} queries its encryption oracle on a message $m \in \{0,1\}^n$, answer this query in the following way:
 - (a) Choose uniform $r \in \{0, 1\}^n$.
 - (b) Return the ciphertext $< r, \mathcal{O}(r) \oplus m > \text{to } \mathcal{A}$.
- 2. When \mathcal{A} outputs messages $m_0, m_1 \in \{0,1\}^n$, choose a uniform bit $b \in \{0,1\}$ and then:
 - (a) Choose uniform $r \in \{0, 1\}^n$.
 - (b) Return the ciphertext $< r, \mathcal{O}(r) \oplus m > \text{to } \mathcal{A}$.
- 3. Continue answering the encryption-oracle queries of A as before until A outputs a bit b'. Output 1 if b = b' and 0 otherwise.

If \mathcal{D} 's oracle is a random function,

$$Pr_{f \leftarrow Func_n} \left[D^{f(\cdot)}(1^n) = 1 \right] = Pr \left[Privk_{\mathcal{A},\widetilde{\Pi}}^{cpa}(n) = 1 \right]$$

If \mathcal{D} 's oracle is a weakly pseudorandom function,

$$\begin{split} Pr_{k\leftarrow\{0,1\}^n}\big[D^{F_k^{\$}(\,\cdot\,\,)}(1^n) &= 1\big] = Pr\big[Privk_{\mathcal{A},\Pi^{\$}}^{cpa}(n) = 1\big] \\ & \because |Pr\big[D^{F_k^{\$}(\,\cdot\,\,)}(1^n) = 1\big] - Pr\big[D^{f^{\$}(\,\cdot\,\,)}(1^n) = 1\big]| \leq negl(n), \ Pr\big[D^{f^{\$}(\,\cdot\,\,)}(1^n) = 1\big] = Pr\big[D^{f(\,\cdot\,\,)}(1^n) = 1\big] \\ & \therefore |Pr\big[Privk_{\mathcal{A},\Pi^{\$}}^{cpa}(n) = 1\big] - Pr\big[Privk_{\mathcal{A},\tilde{\Pi}}^{cpa}(n) = 1\big]| \leq negl(n) \end{split}$$

Recall the inequation(3.11) in the textbook:

$$Pr[Privk_{\mathcal{A},\widetilde{\Pi}}^{cpa}(n) = 1] \le \frac{1}{2} + \frac{q(n)}{2^n}$$

We now have

$$Pr\big[Privk_{\mathcal{A},\Pi^\$}^{cpa}(n)=1\big] \leq \frac{1}{2} + \frac{q(n)}{2^n} + negl(n)$$

Since q(n) is polynomial, $\frac{q(n)}{2^n}$ is negligible, which means Construction 3.30 is CPA-secure if F is a weak pseudorandom function.