

Cycle Préparatoire Intégré

 \mathcal{P} remière année

Examen $N^o 1$ 22 Novembre 2018

2heures

Commencer par les questions et les exercices qui vous paraissent simples.

Tous les documents sont interdits ainsi que les calculatrices et téléphones.

Exercice 1 (5pts). Etant données \mathcal{P} , \mathcal{Q} et \mathcal{R} trois propositions logiques, montrer que les propositions logiques $\left[(\overline{\mathcal{P}}\Longrightarrow\mathcal{P})\Longrightarrow\mathcal{P}\right]$, $\left[\left((\overline{\mathcal{P}}\Longrightarrow\mathcal{Q})\wedge(\overline{\mathcal{P}}\Longrightarrow\overline{\mathcal{Q}})\right)\Longrightarrow\mathcal{P}\right]$ et $\left[\left((\mathcal{P}\Longrightarrow\mathcal{Q})\wedge(\mathcal{Q}\Longrightarrow\mathcal{R})\right)\Longrightarrow(\mathcal{P}\Longrightarrow\mathcal{R})\right]$ sont vraies.

Exercice 2 (3pts). Etant donnés deux ensembles E et F,

- 1. En utilisant les quantificateurs \exists et \forall , écrire les assertions suivantes : $(E = \emptyset)$ et $(E \cap F \neq \emptyset)$
 - 2. Montrer que $(E \cap F = E \cup F) \iff (E = F)$

Exercice 3 (5pts). Etant donnée $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ telle que :

$$\forall (x_1, x_2) \in \mathbb{R}^2, \ f(x_1, x_2) = (x_1 + x_2, (x_1)^2 - (x_2)^2)$$

f est-elle injective, surjective?

2. Si on considère l'application $g:]-\infty,0]\longrightarrow F\subset\mathbb{R},$ telle que :

$$\forall x \in]-\infty, 0[, \ g(x) = \frac{1}{3x^2 + 1}.$$

Déterminer F pour que g soit bijective. Donner dans ce cas l'application réciproque g^{-1} .

Exercice 4 (3pts). Etant donnée une relation binaire \mathcal{R} reflexive sur un ensemble non vide E et telle que :

$$\forall x, y, z \in E, \quad ((x\mathcal{R}y) \land (y\mathcal{R}z)) \Longrightarrow (z\mathcal{R}x)$$

Montrer que R est une relation d'équivalence sur E.

Exercice 5 (3pts). *I.* On considère sur \mathbb{R} la relation binaire $\mathcal{R} \setminus \{-2, +2\}$ définie par :

$$\forall x, y \in \mathbb{R} \setminus \{-2, +2\}, \quad (x\mathcal{R}y) \iff \left(\frac{4-x^2}{y^2-4} = -1\right).$$

Montrer que \mathcal{R} est une relation d'équivalence sur $\mathbb{R} \setminus \{-2, +2\}$. Déterminer l'ensemble quotient $\mathbb{R} \setminus \{-2, +2\}/\mathcal{R}$.

 \mathcal{M} odule : \mathcal{A} lgebre1

Cycle Préparatoire Intégré

 \mathcal{P} remière année

 \mathcal{M} odule : \mathcal{A} lgebre1

Correction Examen N°1

22 Novembre 2018 (2heures)

Commencer par les questions et les exercices qui vous paraissent simples.

Tous les documents sont interdits ainsi que les calculatrices et téléphones.

Exercice 1 (5pts). Etant données \mathcal{P} , \mathcal{Q} et \mathcal{R} trois propositions logiques, montrer que les propositions logiques $\left[(\overline{P}\Longrightarrow\mathcal{P})\Longrightarrow\mathcal{P}\right], \quad \left[\left((\overline{\mathcal{P}}\Longrightarrow\mathcal{Q})\wedge(\overline{\mathcal{P}}\Longrightarrow\overline{\mathcal{Q}})\right)\Longrightarrow\mathcal{P}\right] \quad \text{et} \quad \left[\left((\mathcal{P}\Longrightarrow\mathcal{Q})\wedge(\mathcal{Q}\Longrightarrow\mathcal{R})\right)\Longrightarrow(\mathcal{P}\Longrightarrow\mathcal{R})\right] \text{ sont vraies.}$

Correction.

Méthode 1. En utilisant des tables de vérités, on a :

I. (1pt.)

\mathcal{P}	0	1
$\overline{\mathcal{P}}$	1	0
$(\overline{\mathcal{P}} \Longrightarrow \mathcal{P})$	0	1
$\left((\overline{\mathcal{P}}\Longrightarrow\mathcal{P})\Longrightarrow\mathcal{P}\right)$	1	1

ce qui montre que $\left((\overline{\mathcal{P}} \Longrightarrow \mathcal{P}) \Longrightarrow \mathcal{P}\right)$ est vraie.

II. (2pts.) Pour \mathcal{P} et \mathcal{Q} deux propositions logiques, on a :

${\cal P}$	0	0	1	1
$\mathcal Q$	0	1	0	1
$\overline{\mathcal{P}}$	1	1	0	0
$\overline{\mathcal{Q}}$	1	0	1	0
$(\overline{\mathcal{P}} \Longrightarrow \mathcal{Q})$	0	1	1	1
$(\overline{\mathcal{P}} \Longrightarrow \overline{\mathcal{Q}})$	1	0	1	1
$(\overline{\mathcal{P}} \Longrightarrow \mathcal{Q}) \wedge (\overline{\mathcal{P}} \Longrightarrow \overline{\mathcal{Q}})$	0	0	1	1
$\left((\overline{\mathcal{P}}\Longrightarrow\mathcal{Q})\wedge(\overline{\mathcal{P}}\Longrightarrow\overline{\mathcal{Q}})\right)\Longrightarrow\mathcal{P}$	1	1	1	1

ce qui montre que $\left((\overline{\mathcal{P}} \Longrightarrow \mathcal{Q}) \wedge (\overline{\mathcal{P}} \Longrightarrow \overline{\mathcal{Q}})\right) \Longrightarrow \mathcal{P}$ est vraie.

III. (2pts.) Pour \mathcal{P} , \mathcal{Q} et \mathcal{R} trois propositions logiques, on a :

\mathcal{P}	0	0	0	0	1	1	1	1
Q	0	0	1	1	0	0	1	1
\mathcal{R}	0	1	0	1	0	1	0	1
$(\mathcal{P} \Longrightarrow \mathcal{Q})$	1	1	1	1	0	0	1	1
$(\mathcal{Q} \Longrightarrow \mathcal{R})$	1	1	0	1	1	1	0	1
$(\mathcal{P} \Longrightarrow \mathcal{R})$	1	1	1	1	0	1	0	1
$(\mathcal{P} \Longrightarrow \mathcal{Q}) \land (\mathcal{Q} \Longrightarrow \mathcal{R}))$	1	1	0	1	0	0	0	1
$\left((\mathcal{P} \Longrightarrow \mathcal{Q}) \land (\mathcal{Q} \Longrightarrow \mathcal{R}) \right) \Longrightarrow (\mathcal{P} \Longrightarrow \mathcal{R})$	1	1	1	1	1	1	1	1

ce qui montre que $\left[\left((\mathcal{P}\Longrightarrow\mathcal{Q})\wedge(\mathcal{Q}\Longrightarrow\mathcal{R})\right)\Longrightarrow(\mathcal{P}\Longrightarrow\mathcal{R})\right]$ est vraie.

Méthode 2. On peut aussi utiliser le fait que : $(\mathcal{P} \Longrightarrow \mathcal{Q}) \Longleftrightarrow (\mathcal{Q} \lor \overline{\mathcal{P}})$. On a : **Ib.**

$$\left((\overline{\mathcal{P}}\Longrightarrow\mathcal{P})\Longrightarrow\mathcal{P}\right)\Longleftrightarrow\left((\mathcal{P}\vee\overline{\overline{\mathcal{P}}})\Longrightarrow\mathcal{P}\right)\Longleftrightarrow\left(\mathcal{P}\Longrightarrow\mathcal{P}\right)$$

et comme $(\mathcal{P} \Longrightarrow \mathcal{P})$ est une proposition vraie, on déduit que $\left((\overline{\mathcal{P}} \Longrightarrow \mathcal{P}) \Longrightarrow \mathcal{P}\right)$ est aussi vraie. **IIb.** On a :

$$\begin{split} \left((\overline{\mathcal{P}} \Longrightarrow \mathcal{Q}) \wedge (\overline{\mathcal{P}} \Longrightarrow \overline{\mathcal{Q}}) \right) &\iff \left((\mathcal{Q} \vee \overline{\mathcal{P}}) \wedge (\overline{\mathcal{Q}} \vee \overline{\mathcal{P}}) \right) \\ &\iff \left((\mathcal{Q} \vee \mathcal{P}) \wedge (\overline{\mathcal{Q}} \vee \mathcal{P}) \right) \\ &\iff \left[(\mathcal{Q} \vee \mathcal{P}) \wedge \overline{\mathcal{Q}} \right] \vee \left[(\mathcal{Q} \vee \mathcal{P}) \wedge \mathcal{P} \right] \\ &\iff \left[(\mathcal{Q} \wedge \overline{\mathcal{Q}}) \vee (\mathcal{P} \wedge \overline{\mathcal{Q}}) \right] \vee \left[(\mathcal{Q} \wedge \mathcal{P}) \vee (\mathcal{P} \wedge \mathcal{P}) \right] \\ &\iff \left(\mathcal{P} \wedge \overline{\mathcal{Q}} \right) \vee (\mathcal{Q} \wedge \mathcal{P}) \vee \mathcal{P} \qquad \text{car } (\mathcal{Q} \wedge \overline{\mathcal{Q}}) \text{ est fausse} \\ &\iff \left[\mathcal{P} \wedge (\overline{\mathcal{Q}} \vee \mathcal{Q}) \right] \vee \mathcal{P} \\ &\iff \mathcal{P} \qquad \qquad \text{car } (\mathcal{Q} \vee \overline{\mathcal{Q}}) \text{ est vraie} \end{split}$$

d'où on déduit que $\left[\left((\overline{\mathcal{P}}\Longrightarrow\mathcal{Q})\wedge(\overline{\mathcal{P}}\Longrightarrow\overline{\mathcal{Q}})\right)\Longrightarrow\mathcal{P}\ \right]$ est vraie.

IIIb. Pour montrer que la proposition $\mathcal{S}: \left[\left((\mathcal{P} \Longrightarrow \mathcal{Q}) \land (\mathcal{Q} \Longrightarrow \mathcal{R})\right) \Longrightarrow (\mathcal{P} \Longrightarrow \mathcal{R})\right]$ est vraie, on montre que sa négation est fausse. On a :

$$\overline{\mathcal{S}} \iff \left((\mathcal{P} \Longrightarrow \mathcal{Q}) \land (\mathcal{Q} \Longrightarrow \mathcal{R}) \right) \land \overline{(\mathcal{P} \Longrightarrow \mathcal{R})}$$

$$\iff \left((\mathcal{Q} \lor \overline{\mathcal{P}}) \land (\mathcal{R} \lor \overline{\mathcal{Q}}) \right) \land (\mathcal{P} \land \overline{\mathcal{R}})$$

$$\iff \left(\left[\mathcal{Q} \land (\mathcal{R} \lor \overline{\mathcal{Q}}) \right] \lor \left[\overline{\mathcal{P}} \land (\mathcal{R} \lor \overline{\mathcal{Q}}) \right] \right) \land (\mathcal{P} \land \overline{\mathcal{R}})$$

$$\iff \left(\left[(\mathcal{Q} \land \mathcal{R}) \lor (\mathcal{Q} \land \overline{\mathcal{Q}}) \right] \lor \left[(\overline{\mathcal{P}} \land \mathcal{R}) \lor (\overline{\mathcal{P}} \land \overline{\mathcal{Q}}) \right] \right) \land (\mathcal{P} \land \overline{\mathcal{R}})$$

$$\iff \left((\mathcal{Q} \land \mathcal{R}) \lor (\overline{\mathcal{P}} \land \mathcal{R}) \lor (\overline{\mathcal{P}} \land \overline{\mathcal{Q}}) \right) \land (\mathcal{P} \land \overline{\mathcal{R}}) \quad \text{car} \ (\mathcal{Q} \land \overline{\mathcal{Q}}) \text{ est fausse}$$

$$\iff \left[(\mathcal{Q} \land \mathcal{R}) \land (\mathcal{P} \land \overline{\mathcal{R}}) \right] \lor \left[(\overline{\mathcal{P}} \land \mathcal{R}) \land (\mathcal{P} \land \overline{\mathcal{R}}) \right] \lor \left[(\overline{\mathcal{P}} \land \overline{\mathcal{Q}}) \land (\mathcal{P} \land \overline{\mathcal{R}}) \right]$$

$$\iff \left[(\mathcal{Q} \land \mathcal{P}) \land (\mathcal{R} \land \overline{\mathcal{R}}) \right] \lor \left[(\overline{\mathcal{P}} \land \mathcal{P}) \land (\mathcal{R} \land \overline{\mathcal{R}}) \right] \lor \left[(\overline{\mathcal{P}} \land \mathcal{P}) \land (\overline{\mathcal{Q}} \land \overline{\mathcal{R}}) \right]$$

comme les propositions $(\overline{\mathcal{P}} \wedge \mathcal{P})$ et $(\mathcal{R} \wedge \overline{\mathcal{R}})$ sont fausses, on déduit que

$$\left[(\mathcal{Q} \wedge \mathcal{P}) \wedge (\mathcal{R} \wedge \overline{\mathcal{R}}) \right] \vee \left[(\overline{\mathcal{P}} \wedge \mathcal{P}) \wedge (\mathcal{R} \wedge \overline{\mathcal{R}}) \right] \vee \left[(\overline{\mathcal{P}} \wedge \mathcal{P}) \wedge (\overline{\mathcal{Q}} \wedge \overline{\mathcal{R}}) \right] \quad \text{est fausse}$$

donc $\overline{\mathcal{S}}$ est fausse, ce qui montre que

$$\left[\left((\mathcal{P}\Longrightarrow\mathcal{Q})\land(\mathcal{Q}\Longrightarrow\mathcal{R})\right)\Longrightarrow(\mathcal{P}\Longrightarrow\mathcal{R})\right]\qquad\mathrm{est}\;\mathbf{VRAIE}.$$

Exercice 2 (3pts). Etant donnés deux ensembles E et F,

1. En utilisant les quantificateurs \exists et \forall , écrire les assertions suivantes : $(E = \emptyset)$ et $(E \cap F \neq \emptyset)$

2. Montrer que $(E \cap F = E \cup F) \iff (E = F)$

Correction.

1. Utilisation des quantificateurs \exists et \forall . (1.5 pts.)

1a.
$$(E = \emptyset) \iff (\forall x, (x \notin E)).$$

1b.
$$(E \cap F \neq \emptyset) \iff (\exists x; (x \in E) \land (x \in F)).$$

2. (1.5 pts.) Montrer que $(E \cap F = E \cup F) \iff (E = F)$.

 $2a. \implies$

Supposons que $(E \cap F = E \cup F)$ et montrons que (E = F). On a :

$$\Big(E \subset E \cup F = E \cap F \subset F\Big) \land \Big(F \subset E \cup F = E \cap F \subset E\Big)$$

ce qui montre que E = F.

2b. ⇐=.

Inversement, si E = F alors

$$E \cup F = E \cap F = E = F$$

De 2a. et 2b. on déduit que

$$(E \cap F = E \cup F) \iff (E = F).$$

Exercice 3 (5pts). Etant donnée $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ telle que :

$$\forall (x_1, x_2) \in \mathbb{R}^2, \ f(x_1, x_2) = (x_1 + x_2, (x_1)^2 - (x_2)^2)$$

f est-elle injective, surjective?

2. Si on considère l'application $g:]-\infty,0]\longrightarrow F\subset\mathbb{R}$, telle que :

$$\forall x \in]-\infty, 0], \ g(x) = \frac{1}{3x^2 + 1}.$$

Déterminer F pour que g soit bijective. Donner dans ce cas l'application réciproque g^{-1} .

Correction.

1a. (1pts.) f n'est pas injective, car pour $x_0 \neq 0$,

$$\left(f(x_0, -x_0) = f(-x_0, x_0) = (0, 0)\right) \wedge \left((x_0, -x_0) \neq (-x_0, x_0)\right)$$

1b. (1pts.) f n'est pas surjective, car pour $y = (0, 1) \in \mathbb{R}^2$,

$$\forall (x_1, x_2) \in \mathbb{R}^2, \quad f(x_1, x_2) = (0, 1) \iff (x_1 + x_2, (x_1)^2 - (x_2)^2) = (0, 1)$$

$$\iff (x_1 + x_2 = 0) \land ((x_1)^2 - (x_2)^2 = 1)$$

$$\iff (x_1 = -x_2) \land (0 = 1) \quad \text{absurde}$$

donc

$$\exists y = (0,1) \in \mathbb{R}^2, \ \forall (x_1, x_2) \in \mathbb{R}^2, \ \left(f(x_1, x_2) \neq (0, 1) \right)$$

ce qui montre que f n'est pas surjective.

2. (2pts + 1pt.) Pour que g soit bijective il faut que : $\forall y \in F, \exists ! x \in]-\infty, 0]; y = g(x)$. Soit $y \in F$, on résout l'équation y = g(x). On a :

$$y = g(x) \iff y = \frac{1}{3x^2 + 1}$$

$$\iff 3yx^2 + y = 1$$

$$\iff 3yx^2 = 1 - y$$

$$\iff x^2 = \frac{1 - y}{3y} \quad \text{si } y \neq 0$$

$$\iff x = \pm \sqrt{\frac{1 - y}{3y}} \quad \text{si } \frac{1 - y}{3y} \geq 0$$

En étudiant le signe de $\frac{1-y}{3y}$ on trouve que

$$\frac{1-y}{3y} \ge 0 \Longleftrightarrow y \in]0,1]$$

par suite, pour F =]0, 1] on a :

$$\forall y \in F, \ \exists ! x = -\sqrt{\frac{1-y}{3y}} \in]-\infty, 0]; \ y = g(x)$$

d'où on déduit que g est bijective si F =]0,1] et on a :

$$g^{-1}: \quad]0,1] \quad \longrightarrow \quad]-\infty,0]$$
 $y \quad \longrightarrow \quad -\sqrt{\frac{1-y}{3y}}$

Exercice 4 (3pts). Etant donnée une relation binaire \mathcal{R} reflexive sur un ensemble non vide E et telle que :

$$\forall x, y, z \in E, \quad ((x\mathcal{R}y) \land (y\mathcal{R}z)) \Longrightarrow (z\mathcal{R}x)$$

Montrer que \mathcal{R} est une relation d'équivalence sur E.

5

Correction. \mathcal{R} étant supposée reflexive, pour montrer qu'elle est d'équivalence on montre qu'elle est symétrique et transitive.

a. (1.5pts.) \mathcal{R} est Symétrique, car : $\forall x, y \in E$,

$$(x\mathcal{R}y) \iff (x\mathcal{R}y) \land (y\mathcal{R}y) \quad \text{car } \mathcal{R} \text{ est Reflexive}$$

 $\iff y\mathcal{R}x \quad \text{d'après la deuxième propriété de } \mathcal{R}$

ce qui montre que \mathcal{R} est **Symétrique**.

b. (1.5pts.) \mathcal{R} est Transitive, car : $\forall x, y, z \in E$,

$$\begin{array}{ccc} \Big((x\mathcal{R}y) \wedge (y\mathcal{R}z) \Big) & \Longrightarrow & (z\mathcal{R}x) & \quad \text{d'après la deuxième propriété de } \mathcal{R} \\ & \Longrightarrow & (x\mathcal{R}z) & \quad \text{car } \mathcal{R} \text{ est symétrique} \\ \end{array}$$

ce qui montre que \mathcal{R} est transitive.

 \mathcal{R} étant reflexive, symétrique et transitive, on déduit qu'elle est une relation d'équivalence sur E.

Exercice 5 (3pts). On considère sur $\mathbb{R} \setminus \{-2, +2\}$ la relation binaire \mathcal{R} définie par :

$$\forall x, y \in \mathbb{R} \setminus \{-2, +2\}, \quad (x\mathcal{R}y) \Longleftrightarrow \left(\frac{4-x^2}{y^2-4} = -1\right).$$

- **I.** Montrer que \mathcal{R} est une relation d'équivalence sur $\mathbb{R} \setminus \{-2, +2\}$.
- I. Déterminer l'ensemble quotient $\mathbb{R} \setminus \{-2, +2\}_{/\mathcal{R}}$.

Correction.

I. (2pts) On remarque que :

$$\forall x, y \in \mathbb{R} \setminus \{-2, +2\}, \quad (x\mathcal{R}y) \Longleftrightarrow \left(\frac{4-x^2}{y^2-4} = -1\right) \Longleftrightarrow x^2 = y^2$$

donc, si on considère l'application $f: \mathbb{R} \setminus \{-2, +2\} \longrightarrow \mathbb{R}$ telle que $(\forall x \in \mathbb{R} \setminus \{-2, +2\}, f(x) = x^2)$, on voit que

$$\forall x, y \in \mathbb{R} \setminus \{-2, +2\}, \quad (x\mathcal{R}y) \iff f(x) = f(x)$$

ce qui montre que \mathcal{R} est une relation d'équivalence sur $\mathbb{R} \setminus \{-2, +2\}$.

II. (1pt) Pour déterminer l'ensemble quotient, on détermine les classes d'équivalence. Soit $a \in \mathbb{R} \setminus \{-2, +2\}$, alors $\dot{a} = \{x \in \mathbb{R} \setminus \{-2, +2\}; x\mathcal{R}a\}$. Or :

$$x\mathcal{R}a \Longleftrightarrow x^2 = a^2 \Longleftrightarrow x = \pm a$$

et comme $a\mathcal{R}(-a)$, on déduit :

$$\mathbb{R} \setminus \{-2, +2\}_{/\mathcal{R}} = \left\{ \{a, -a\}; \ a \in \mathbb{R} \setminus \{-2, +2\} \right\} = \left\{ \{a, -a\}; \ a \in [0, +\infty[\setminus \{2\}]\} \right\}$$

Bonne Continuation.