# CATCHSYNC: CATCHING SYNCHRONIZED BEHAVIOR IN LARGE DIRECTED GRAPHS

Meng Jiang, Tsinghua University, Beijing, China

Joint work with Peng Cui, Alex Beutel, Christos Faloutsos and Shiqiang Yang August 26, 2014 – NYC, USA





#### Fraud Detection: Graph Analysis Problem



[www.buyfollowz.org]





VISA





[buymorelikes.com]

25,000 Facebook Likes

265

Lifetime Replacement Warranty
Dedicated 24/7 Customer Service
100% Risk Free, Try Us Today
Order starts within 24 - 48 hours
Order completed within 22 days

50,000 Facebook Likes

525

Lifetime Replacement Warranty
Dedicated 24/7 Customer Service
100% Risk Free, Try Us Today
Order starts within 24 - 48 hours
Order completed within 35 days

100,000 Facebook Likes

\$1,000

Lifetime Replacement Warranty
Dedicated 24/7 Customer Service
100% Risk Free, Try Us Today
Order starts within 24 -48 hours
Order completed within 35 days

200,000 Facebook Likes

1,750

Lifetime Replacement Warranty
Dedicated 24/7 Customer Service
100% Risk Free, Try Us Today
Order starts within 24 -48 hours
Order completed within 35 days



## Fraud Detection: Graph Analysis Problem



[buycheaplikes.com]











[reviewsteria.com]

It's easy to buy Amazon reviews. Just choose the number of reviews you would like to receive.

High quality reviews that customers love. 100% unique content by native speaking professional writers.

Choose the number of reviews and click Buy Now button to ramp up your Amazon business NOW.

Choose the number of reviews:

20

\*\*Buy Now\*\*

\*\*Bu



#### **Our Goals**

- Given: A graph (large-scale, directed, etc.)
- Find: Frauds = Anomalous edges

#### Goals:

- G1. Find patterns that distinguish fraudsters from normal users
- G2. Design algorithms that catch fraudsters

# OUTLINE

# 1. Background

2. Fraudulent Pattern

3. The Algorithm

4. Experiments

# Anomalies in Degree Distributions

Power-law distribution



[konect.uni-koblenz.de/networks/]

# Anomalies in Degree Distributions





# Linear Classifier with "Degree": Fail





# Graph Structure Distorted





#### Traditional Fraud Detection



# **Empty Profile?**



all things real estate and living...

#### Few Followers?



the Soulwoman Sanctuary.

# Many Followings?



#### Content: Unavailable? Look Normal?



# Behavior is the Key





# OUTLINE

1. Background

2. Fraudulent Pattern

3. The Algorithm

4. Experiments

#### Behavior-based Features



Follower behavior















#### Out-degree

1<sup>st</sup> left singular vector (Hubness)

2<sup>nd</sup> left singular vector

. . .

#### In-degree

1<sup>st</sup> right singular vector (Authoritativeness)
2<sup>nd</sup> right singular vector

. .

3E+6

2E+4

141

0.2

# Behavior-based Feature Space











FOLLOWING





- Synchronized
- Abnormal



# OUTLINE

- 1. Background
- 2. Fraudulent Pattern
- 3. The Algorithm
- 4. Experiments

# Synchronicity and Normality

Synchronicity



# Synchronicity and Normality

Normality



# Synchronicity-Normality Plot



#### **Theorem**

 For any distribution, there is a parabolic lower limit in the synchronicity-normality plot.

$$s_{min} = (-Mn^2 + 2n - s_b)/(1 - Ms_b)$$
 synchronicity \_\_\_\_\_ normality

• Proof. See our paper ©



# CatchSync Algorithm

- Distance-based anomaly detection
- Fraudsters
  - Big synchronicity
  - Small normality
  - Away from the densest



# OUTLINE

- 1. Background
- 2. Fraudulent Pattern Mining
- 3. The Algorithm
- 4. Experiments

# Experiments

- Q1: Does CatchSync remove anomalies?
  - Degree distribution
  - Feature space

 Q2: Is CatchSync catching actually fraudulent users?

Q3: Is CatchSync robust?

#### Q1: Does CatchSync Remove Anomalies?







#### Q1: Does CatchSync Remove Anomalies?





# Before CatchSync









# After CatchSync

















237/1,000











| Recall = 80% | Precision in Twitter | Precision in Tencent Weibo |
|--------------|----------------------|----------------------------|
|              | 83.5%                | 79.4%                      |



**Target** 

Popular camouflage

Random camouflage















#### Conclusion

- Goals
  - G1. Find patterns that distinguish fraudulent user behavior from normal behavior
  - A1: Synchronized & Abnormal!
  - G2. Design algorithms that catch fraudsters
  - A2: CatchSync!
    - Remove spikes
    - Content free
    - Robust to camouflage

# Questions?

Meng Jiang mjiang89@gmail.com http://www.meng-jiang.com







