	Resolution Levels / AMR differences We use this notebook to generate plots for the analysis of HD properties as the AMR changes. We first import necessary libraries import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter import matplotlib as mpl
	import matplotlib as mpl import astropy.constants as const We load in the HD properties at different AMR levels given by MCRaT, both at the beginning and end of the simulation.
In [2]:	<pre>plt.rcParams.update(plt.rcParamsDefault) res_lev=[1,2,3,4,5] r=[[8.907950e+09,8.847328e+09],[4.446371e+09,4.431216e+09],[2.225083e+09,2.213717e+09] [1.112067e+09,1.107331e+09],[5.561521e+08,5.535472e+08]] theta=[[9.817500e-03,9.817500e-03],[4.908750e-03,4.908750e-03],[2.454375e-03,2.454375e-03,2.454375e-03,1.227187e-03],[6.135937e-04,6.135937e-04]] temp=[[3.605174e+06,1.463763e+06],[1.412884e+06,1.169092e+06],[1.628582e+06,9.976432e-01.358494e+06,6.729956e+05],[1.434641e+06,6.291365e+05]] gamma=[[9.039360e+00,6.174512e+00],[7.841741e+00,6.449077e+00],[8.484358e+00,6.258624e-08,2.9275e+00,6.344830e+00],[8.404782e+00,6.295365e+00]] density=[[1.256534e-08,4.343332e-09],[8.260724e-09,4.465632e-09],[9.366805e-09,3.12990-08,2.735922e-09]] dr=[] dtheta=[] dtheta=[] dtheta=[] ddens=[] for i in range(len(r)): dr.append((r[i][0]+r[i][1])/2)</pre> for i in range(len(theta)):
	<pre>dtheta.append((theta[i][0]+theta[i][1])/2) for i in range(len(temp)): dtemp.append((temp[i][0]+temp[i][1])/2) for i in range(len(gamma)): dgamma.append((gamma[i][0]+gamma[i][1])/2) for i in range(len(density)): ddens.append((density[i][0]+density[i][1])/2) data=[dr,dtheta,dtemp,dgamma,ddens] names=['radius','theta','temperature','gamma','density']</pre>
In [3]:	<pre>rf=[[2.667530e+10,2.644858e+10],[1.333196e+10,1.322993e+10],[6.673096e+09,6.624855e+03] [3.334768e+09,3.317025e+09],[1.666940e+09,1.658247e+09]] thetaf=[[2.454375e-03,2.454375e-03],[1.227187e-03,1.227187e-03],[6.135937e-04,6.13593]</pre>
	<pre>for i in range(len(thetaf)): dthetaf.append((thetaf[i][0]+thetaf[i][1])/2) for i in range(len(tempf)): dtempf.append((tempf[i][0]+tempf[i][1])/2) for i in range(len(gammaf)): dgammaf.append((gammaf[i][0]+gammaf[i][1])/2) for i in range(len(densityf)): ddensf.append((densityf[i][0]+densityf[i][1])/2) dataf=[drf,dthetaf,dtempf,dgammaf,ddensf] names=['radius','theta','temperature','gamma','density']</pre>
In [4]:	<pre>We now plot initial and final HD properties. label_size = 20 mpl.rcParams['ytick.labelsize'] = label_size</pre>
	<pre>formatter = mpl.ticker.ScalarFormatter(useMathText=True) formatter.set_scientific(True) formatter.set_powerlimits((0, 1))</pre>
	<pre>fig = plt.figure() fig.set_figwidth(14) fig.set_figheight(15) gs = fig.add_gridspec(4, hspace=0.15) axs = gs.subplots(sharex=True) #fig.suptitle('HD properties at Different Refinement Levels',y=0.92) axs[0].scatter(res_lev,data[0],color = 'r', marker = '^', s = 80) #axs[0].scatter(res_lev,dataf[0],color = 'b') axs[0].set_ylabel('\$<\Delta r_{i}> (cm)\$', fontsize=20, color = 'r') axs[0].set_yscale('log') axs[0].plot(res_lev,data[0], color = 'r', linestyle = '') #axs[0].plot(res_lev,dataf[0], linestyle='dotted', color = 'b') #axs[0].tick_params(axis = 'y', labelcolor = 'r') plt.tick_params(axis='both', which='major', labelsize=16) #for tick in axs[0].yaxis.get_major_ticks(): # tick.label.set_fontsize(16)</pre>
	<pre>axs[1].scatter(res_lev,data[4],color = 'r', marker = '^', s = 80) #axs[1].scatter(res_lev,data[4],color = 'b') axs[1].plot(res_lev,data[4], linestyle='',color = 'r') #axs[1].plot(res_lev,dataf[4], linestyle='dotted',color = 'b') axs[1].set_ylabel(r'\$<\rho_{i} > (g\cdot cm^{-3})\$', fontsize = 20, color = 'r') #axs[1].tick_params(axis = 'y', labelcolor = 'r') axs[1].set_yscale('log') #for tick in axs[1].yaxis.get_major_ticks(): # tick.label.set_fontsize(16)</pre> axs[2].scatter(res_lev,data[2],color = 'r', marker = '^', s = 80)
	<pre>axs[2].plot(res_lev,data[2], linestyle='',color = 'r') #axs[2].scatter(res_lev,dataf[2],color = 'b') #axs[2].plot(res_lev,dataf[2], linestyle='dotted',color = 'b') axs[2].set_yscale('log') #axs[2].yaxis.set_ticks(logax) #axs[2].yaxis.set_major_formatter(formatter) axs[2].set_ylabel('\$<t_{i}>\$ (K)', fontsize = 20, color = 'r') #axs[2].tick_params(axis = 'y', labelcolor = 'r') #for tick in axs[2].yaxis.get_major_ticks(): # tick_labelcolor = 'r'</t_{i}></pre>
	<pre># tick.label.set_fontsize(16) axs[3].scatter(res_lev,data[3],color = 'r', marker = '^', s = 80) #axs[3].scatter(res_lev,dataf[3],color = 'b') axs[3].set_ylabel('\$< \Gamma_{i} >\$', fontsize = 20, color = 'r') axs[3].plot(res_lev,data[3], linestyle='',color = 'r') #axs[3].plot(res_lev,dataf[3], linestyle='dotted',color = 'b') plt.xlabel('Refinement Levels', fontsize = 20) #axs[3].tick_params(axis ='y', labelcolor = 'r') axs[0].annotate('(a)',xy=(0.9, 0.9), xycoords="axes fraction", fontsize = 20) axs[1].annotate('(b)',xy=(0.9, 0.9), xycoords="axes fraction", fontsize = 20)</pre>
	<pre>axs[2].annotate('(c)',xy=(0.9, 0.9), xycoords="axes fraction", fontsize = 20) axs[3].annotate('(d)',xy=(0.9, 0.9), xycoords="axes fraction", fontsize = 20) #axs[3].set_xticklabels(res_lev, fontsize=16) for tick in axs[3].yaxis.get_major_ticks():</pre>
	<pre>axs0.set_ylabel('\$<\Delta r_{f}> (cm)\$', fontsize=20, color = 'b') axs0.set_yscale('log') #axs[0].plot(res_lev,data[0], linestyle='dotted', color = 'k') axs0.plot(res_lev,dataf[0], linestyle='dotted', color = 'b') #axs0.tick_params(axis = 'y', labelcolor = 'blue') axs[0].get_shared_y_axes().join(axs[0], axs0) axs1 = axs[1].twinx() axs1.scatter(res_lev,dataf[4],color = 'b', s = 80) #axs[1].plot(res_lev,data[4], linestyle='dotted',color = 'k') axs1.plot(res_lev,dataf[4], linestyle='dotted',color = 'b')</pre>
	<pre>axs1.set_ylabel(r'\$<\rho_{f} > (g\cdot cm^{-3})\$', fontsize = 20, color = 'b') axs1.set_yscale('log') #axs1.tick_params(axis ='y', labelcolor = 'blue') axs2 = axs[2].twinx() axs2.scatter(res_lev,dataf[2],color = 'b', s = 80) axs2.plot(res_lev,dataf[2], linestyle='dotted',color = 'b') #axs[2].yaxis.set_major_formatter(formatter) #axs2.tick_params(axis ='y', labelcolor = 'blue') axs2.set_yscale('log') axs2.set_ylabel('\$<t_{f}>\$ (K)', fontsize = 20, color = 'b')</t_{f}></pre>
	<pre>axs3 = axs[3].twinx() axs3.scatter(res_lev,dataf[3],color = 'b', s = 80) axs3.set_ylabel('\$< \Gamma_{ff} >\$', fontsize = 20, color = 'b') #axs[3].plot(res_lev,data[3], linestyle='dotted',color = 'k') axs3.plot(res_lev,dataf[3], linestyle='dotted',color = 'b') #axs3.tick_params(axis ='y', labelcolor = 'blue') #plt.xlabel('Refinement Levels', fontsize = 20) #plt.rc('font', size=15) for i in range(len(axs[2].yaxis.get_minor_ticks())): if i%2==1: axs[2].yaxis.get_minor_ticks()[i].label1.set_visible(False)</pre>
	<pre># Hide x labels and tick labels for all but bottom plot. for ax in axs: ax.label_outer() fig.align_ylabels() #plt.savefig('hdprops.pdf',dpi=600,bbox_inches='tight') plt.show()</pre> (a)
	10 ⁹ 10 ⁹ 10 ⁹
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	106 7.6 7.4 7.2 Refinement Levels We now take a look at the size of cells compared to the angle opening.
In [5]:	<pre>r0 = 1.5e13 theta_1_over_gamma2 = [] theta_r_over_r0 = [] for i in range(len(dataf)): theta_1_over_gamma2.append((1/dataf[3][i])**2) theta_r_over_r0.append(dataf[0][i]/r0) theta_ratio = []</pre>
In [6]:	<pre>for i in range(5): theta_ratio.append((theta_1_over_gamma2[i]/theta_r_over_r0[i])) We now plot this quantity. #plt.scatter(res_lev, theta_1_over_gamma2, label = '1/Gamma^2') #plt.scatter(res_lev, theta_r_over_r0, label = 'delta_r / r')</pre>
	<pre>#formatter = mpl.ticker.ScalarFormatter(useMathText=True) plt.scatter(res_lev,theta_ratio, s = 40) #plt.title('theta_gamma and theta_r') plt.xticks(range(1,6), size = 20) plt.xlabel('Spatial Refinement Levels',size = 20) plt.ylabel(r'\$\frac{1}\Gamma^2}\{\Delta r /r\}', size = 25) plt.yscale('log') #plt.legend() plt.tight_layout() #plt.savefig('theta_ratio.pdf',dpi=600,bbox_inches='tight') plt.show()</pre>
	10 ¹
In [7]:	1 2 3 4 5 Spatial Refinement Levels We analyze the lightcrossing distance for different temporal/spatial resolutions. lightcrossing_array = [[0 for x in range(5)] for y in range(5)]
	<pre>deltari_array = [[0 for x in range(5)] for y in range(5)] deltarf_array = [[0 for x in range(5)] for y in range(5)] lightcrossing = 3e10 / np.array([0.3125,0.625,1.25,2.5,5]) for i in range(5): for j in range(5): lightcrossing_array[i][j] = lightcrossing[i] deltari_array[i][j] = data[0][j] deltarf_array[i][j] = dataf[0][j] light_over_radius_i = [[0 for x in range(5)] for y in range(5)] light_over_radius_f = [[0 for x in range(5)] for y in range(5)]</pre>
	<pre>for i in range(5): for j in range(5): light_over_radius_i[i][j] = lightcrossing_array[i][j]/deltari_array[i][j] light_over_radius_f[i][j] = lightcrossing_array[i][j]/deltarf_array[i][j]</pre> We now plot this quantity.
In [8]:	<pre>x_list = ['1','2','3','4','5'] x_ticks = [0,1,2,3,4] y_list = ['0.3125','0.625','1.25','2.5','5'] plt.rcParams.update({'font.size': 20}) mpl.rcParams.update(mpl.rcParamsDefault) from matplotlib import rc font_size = 12 # Adjust as appropriate.</pre>
	<pre>fig, ax = plt.subplots(1,2) fig.set_figwidth(7) fig.set_figheight(3) ax[0].imshow(light_over_radius_i) mapp0 = ax[0].imshow(light_over_radius_i, cmap = 'Blues') ax[0].tick_params(top=True, labeltop=True, bottom=False, labelbottom=False) ax[0].set_xticks(ticks = x_ticks, labels = x_list, fontsize = font_size) ax[0].set_yticks(ticks = x_ticks, labels = y_list, fontsize = font_size)</pre>
	<pre>#plt.ylabel('Temporal Levels (fps)', fontsize = 20) #plt.xlabel('Spatial Refinement Levels', fontsize = 20) ax[0].xaxis.set_label_position('top') cb0 = plt.colorbar(mappable = mapp0, ax = ax[0]) #plt.suptitle(r'EM properties at \$\theta_{obs}=1\$') cb0.ax.tick_params(labelsize=font_size) cb0.set_label(r'\$\frac{c}Delta t}{Delta r}\$', size = font_size)</pre>
	<pre>for i in range(len(x_list)): for j in range(len(y_list)): if round(float(light_over_radius_i[j][i]),2)>100:</pre>
	<pre>mapp1 = ax[1].imshow(light_over_radius_f, cmap = 'Blues') ax[1].tick_params(top=True, labeltop=True, bottom=False, labelbottom=False) ax[1].set_xticks(ticks = x_ticks, labels = x_list, fontsize = font_size) ax[1].set_yticks(ticks = x_ticks, labels = y_list, fontsize = font_size) #plt.ylabel('Temporal Levels (fps)', fontsize = 20) #plt.xlabel('Spatial Refinement Levels', fontsize = 20) ax[1].xaxis.set_label_position('top') cb1 = plt.colorbar(mappable = mapp1, ax = ax[1])</pre>
	<pre>#plt.suptitle(r'EM properties at \$\theta_{obs}=1\$') cb1.ax.tick_params(labelsize=font_size) cb1.set_label(r'\$\frac{c\Delta t}{\Delta r}\$', size = font_size) for i in range(len(x_list)): for j in range(len(y_list)): if round(float(light_over_radius_f[j][i]),2)>50:</pre>
	<pre>text = ax[1].text(i, j, round(float(light_over_radius_f[j][i]),2),</pre>
	Spatial Remient Levels Spatial Remient Lev