Contents

Miscellaneous Useful Material Interaction of Particles and Matter Charged Particles in Matter Photons in Matter Charged Particles in Matter Charged Particles in Matter Semiconducting Detectors Scintillating Detectors

Particle Detectors

Miscellaneous Useful Material

Constants

 $N_{\rm A} = 6.022 \cdot 10^{23} \, {\rm mol}^{-1}$ $\alpha \approx 1/137$ $m_{\rm e}c^2 \approx 511 \, {\rm keV}$ $m_{\rm p}c^2 \approx 938 \, {\rm keV}$ $m_{\rm n}c^2 \approx 940 \, {\rm MeV}$ $m_{\rm K} \approx 140 \, {\rm MeV}$ $m_{\rm K} \approx 500 \, {\rm MeV}$ $K_{\rm BB} \approx 0.3 \, {\rm MeV} \, {\rm g}^{-1} \, {\rm cm}^2$ $(\beta \gamma)_{\rm MIP} \approx 3.5, \qquad \beta_{\rm MIP} \approx 0.96$ $1 \, {\rm torr} = 1 \, {\rm mmHg} \approx 133 \, {\rm Pa}$ $k_B T \big|_{T=300 \, {\rm K}} \approx 0.025 \, {\rm eV}$

Some Relationships from Special Relativity

$$\beta \equiv v/c \qquad \gamma \equiv 1/\sqrt{1-\beta^2}$$

$$E^2 = m^2c^4 + p^2c^2 \qquad E = \gamma mc^2 \qquad E = T + mc^2$$

$$\gamma\beta = \frac{pc}{mc^2} \quad \gamma^2 = 1 + (\beta\gamma)^2 \quad \beta^2 = 1 - 1/\gamma^2$$

$$\beta^2 = \frac{p^2c^2}{m^2c^4 + p^2c^2}$$

$$mc^2 = \frac{p^2c^2 - T^2}{2T}$$

Some Relationships from Chemistry

The number density $n_{\rm a}$ ($n_{\rm e}$) of atoms (electrons) in material with density ρ , molar mass $M_{\rm m}$ and atomic number Z is... $n_{\rm a} = \frac{\rho N_{\rm A}}{M_{\rm m}}$ and $n_{\rm e} = Z n_{\rm a}$

Molar mass $M_{\rm m}$ and relative atomic mass $A_{\rm r}$ are related by... $M_{\rm m}=A_{\rm r}M_{\rm u}$, where $M_{\rm u}\equiv 1\,{\rm g\,mol^{-1}}$ (if $A_{\rm r}\approx A$)

Ideal Gas

 $\begin{array}{ll} V_{\rm m}\approx 22.4\,{\rm L\,mol^{-1}} & ({\rm molar\ volume\ of\ ideal\ gas\ at\ STP}) \\ p_0=1\,{\rm atm}\approx 101\,{\rm kPa} & ({\rm atmospheric\ pressure}) \\ n=\frac{N_{\rm A}}{V_{\rm m}}\,\frac{p}{p_0} & ({\rm number\ density\ of\ ideal\ gas\ molecules}) \end{array}$

Statistics

Binomial distribution: the probability of n events occurring over the course of N trials, where the probability of an event occurring in a single trial is p, is given by

$$P(n|N,p) = {N \choose n} p^n (1-p)^{N-n} = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

Poisson distribution: the probability of n independent random events occurring in the time interval T, where the probability for an event per unit time is λ , is

$$\begin{split} &P(n|\lambda,T) = \frac{(\lambda T)^n}{n!} e^{-\lambda T}, \; \text{ or...} \\ &P(n|\mu) = \frac{\mu^n e^{-\mu}}{n!}, \quad \text{where } \mu \equiv \lambda T \\ &\langle X \rangle = \sigma_X^2 = \lambda \qquad \text{(if X is Poisson distributed with mean μ)} \end{split}$$

Error function and standard normal distribution CDF $\Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x}{\sqrt{2}} \right) \right]$

 $Statistical\ significance\ \text{in\ signal/background\ classification}$ $n = \frac{N_{\text{sig}}}{\sigma_{\text{bg}}}$ $N_{\text{sig}}\ \text{is\ number\ of\ counted\ signal\ events}$

 $\sigma_{\rm b}$ is fluctuatio in background events $\overline{N}_{\rm sig} = st$ $\overline{N}_{\rm bg} = bt$ (if rates $s,\,b$ are known)

Interaction of Particles and Matter

Scattering Cross Section

Beam with flux F of incident particles on target; $\frac{dN_s}{d\Omega}$ is number of particles scattered into solid angle $d\Omega$ per unit time.

$$\begin{array}{l} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{F} \frac{\mathrm{d}N_\mathrm{s}}{\mathrm{d}\Omega} \qquad \sigma_\mathrm{tot}(E) = \iint_{\Omega} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \, \mathrm{d}\Omega \\ N_\mathrm{s}(\Omega) = F S n_\mathrm{t} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \delta x \qquad N_\mathrm{s} = F S n_\mathrm{t} \sigma_\mathrm{tot} \delta x \end{array}$$

 $\begin{aligned} \mathrm{d}P_{\mathrm{scat}} &= n_{\mathrm{t}}\sigma_{\mathrm{tot}}\,\mathrm{d}x & \text{(probability for scattering in region d}x) \\ P(x+\mathrm{d}x) &= P(x)\cdot(1-\mathrm{d}P_{\mathrm{scat}}) = P(x)(1-n_{\mathrm{t}}\sigma_{\mathrm{tot}}\,\mathrm{d}x) \\ P(x) &= e^{-n_{\mathrm{t}}\sigma_{\mathrm{tot}}x} & \text{(probability for not scattering up to }x) \\ 1\,\mathrm{b} &= 10^{-24}\,\mathrm{cm}^2 = 10^{-28}\,\mathrm{m}^2 \end{aligned}$

Charged Particles in Matter

Charged ionizing particle (IP) of mass m and valence $Z_{\rm p}$ travels through material with atomic number $Z_{\rm m}$ and density ρ . Assume IP is heavy $(m\gg m_{\rm e})$

Energy loss occurs primarily because of inelastic collisions of IP with electrons in the material.

Bethe-Bloch Formula

Valid for $\beta \gamma \sim (0.5, 10^3)$

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{4\pi}{m_{\mathrm{e}}c^{2}} \cdot \frac{n_{\mathrm{e}}Z_{\mathrm{p}}^{2}}{\beta^{2}} \cdot \left(\frac{e_{0}^{2}}{4\pi\epsilon_{0}}\right)^{2} \ln\left[\left(\frac{2m_{\mathrm{e}}c^{2}\gamma^{2}\beta^{2}}{Z_{\mathrm{m}}I_{0}}\right) - \beta^{2}\right]$$
$$= K \cdot \frac{\rho Z_{\mathrm{m}}}{A} \cdot \frac{Z_{\mathrm{p}}^{2}}{\beta^{2}} \left[\ln\left(\frac{2m_{\mathrm{e}}c^{2}\beta^{2}\gamma^{2}}{Z_{\mathrm{m}}I_{0}}\right) - \beta^{2}\right]$$

$$K \approx 0.3 \, {\rm MeV \, g^{-1} \, cm^2}$$
 $I_0 \sim 10 \, {\rm eV}$

Small β approximation (e.g. for $\beta\gamma\lesssim1)$ produces...

$$-\frac{\mathrm{d}E}{\mathrm{d}x} \sim \beta^{-2} \sim T^{-1} \implies \frac{\mathrm{d}T}{\mathrm{d}x} = -\frac{k}{T}, \qquad k = -T_0 \frac{\mathrm{d}T}{\mathrm{d}x} \Big|_{T=T_0}$$

In Polyatomic Substances

Example: for H_2O_4 , $i \in \{H, O\}$, e.g. $a_H = 2$, $a_O = 4$ $Z \to Z_{\text{eff}} = \sum_i a_i Z_i$ $A \to A_{\text{eff}} = \sum_i a_i A_i$ $\ln I \to \ln I_{\text{eff}} = \sum_i \frac{a_i Z_i \ln I_i}{Z_{\text{eff}}}$ $\left(-\frac{dE}{dx}\right)_{\text{tot}} = \sum_i w_i \frac{dE}{dx}\Big|_i$, $w_i = \frac{a_i A_i}{\sum_j a_j A_j}$ $\left(-\frac{dE}{dx}\right)_{\text{tot}} = K \cdot \frac{\rho_{\text{tot}} Z_{\text{eff}}}{A_{\text{eff}}} \cdot \frac{Z_p^2}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I_{\text{eff}}}\right) - \beta^2\right]$

Photons in Matter

Three processes: photoelectric effect, Compton scattering, and pair production

$$\begin{split} &\sigma_{\gamma} = \sigma_{\mathrm{pe}} + Z \cdot \sigma_{\mathrm{C}} + \sigma_{\mathrm{pair}} \\ &\sigma_{\mathrm{pe}} \sim \frac{Z^{n}}{E_{\gamma}^{7/2}}, \ n \lesssim [4, 5] \\ &j(x) = j_{0}e^{-\mu x} \quad \mu_{\gamma} = n_{\mathrm{a}}\sigma_{\gamma} = \frac{\rho N_{\mathrm{A}}}{M_{\mathrm{m}}}\sigma_{\gamma} \quad \lambda_{\gamma} = 1/\mu_{\gamma} \\ &\mu_{\mathrm{tot}} = \sum_{i} w_{i}\mu_{i} = \sum_{i} \left(\frac{A_{i}}{\sum_{i} A_{j}}\right) \mu_{i} \quad \text{(polyatomic substances)} \end{split}$$

Compton Scattering

Incident and scattered γ energies: E_{γ}, E'_{γ} ; θ scattering angle $\frac{E'_{\gamma}}{E_{\gamma}} = \frac{1}{1+\alpha(1-\cos\theta)}, \qquad \alpha \equiv \frac{E_{\gamma}}{m_{\rm e}c^2}$ $\frac{{\rm d}\sigma}{{\rm d}\Omega} = \frac{r_{\rm e}^2}{2} \left(\frac{E'_{\gamma}}{E_{\gamma}}\right)^2 \left[\frac{E'_{\gamma}}{E_{\gamma}} + \frac{E_{\gamma}}{E'_{\gamma}} - \sin^2\theta\right]$ $\sigma_{\rm C} = \frac{8\pi r_{\rm e}^2}{3} \left[\frac{1-2\alpha+1.2\alpha^2}{(1+2\alpha)^2}\right], \qquad r_{\rm e} = \frac{1}{4\pi\epsilon_0} \frac{\epsilon_0}{m_{\rm e}c^2} \sim 2.8 \, {\rm fm}$ $\frac{{\rm d}\sigma_{\rm C}}{{\rm d}T} = \frac{\pi r_0^2}{m_{\rm e}c^2\alpha^2} \left[2 + \frac{s^2}{\alpha^2(1-s)^2} + \frac{s}{1-s} \left(s - \frac{2}{\alpha}\right)\right], \quad s = T/E_{\gamma}$

Particle Detectors

Energy Resolution

For a particle depositing energy $E_{\rm dep}$ and producing N ion pairs in a detector with Fano factor F...

$$\mathcal{R} \equiv rac{\sigma_{E_{ ext{dep}}}}{E_{ ext{dep}}} = rac{\sigma_{N}}{N}$$

Particle passes through detector: $\sigma_N = \sqrt{N}$

Particle stops inside detector: $\sigma_N = \sqrt{FN}$

$$N = \frac{E_{\text{dep}}}{w_{\text{i}}} \implies \mathcal{R} = \sqrt{\frac{w_{\text{i}}}{E_{\text{dep}}}} \text{ or } \mathcal{R} = \sqrt{\frac{Fw_{\text{i}}}{E_{\text{dep}}}}$$

Ionization-Based Detectors

Parallel-Plate Ionization Cell

Consider a parallel-plate cell with pressure p, spacing d, potential difference U and constant electric field E = U/d.

$$dW = qE dx = \frac{qU}{d} dx \qquad \text{(work on a charge } q\text{)}$$

$$dW_C = CU dU \qquad \text{(change in capacitor energy)}$$

$$dW = dW_C \implies dU = \frac{q}{C} \frac{dx}{d}$$

$$dW = dW_C \implies dU = \frac{1}{C} \frac{dM}{d}$$

$$v_{\rm d} = \frac{E\mu}{p}$$
 (drift velocity, mobility)
 $\Delta U(t) = \frac{q}{G} \frac{\mu}{r^2} Et$ (before all ions reach electrodes)

$$\Delta U(t) = \frac{q}{C} \frac{\mu}{pd} Et$$
 (before all ions reach electrodes)
 $\Delta U = \frac{Q}{C}$ (when total charge Q reaches electrodes)

Multiplication Factor

For an incident particle freeing N_0 primary ions, which in turn free an average of N secondary ions...

$$M \equiv \frac{N}{N_0}$$
 (multiplication factor)

 λ is electron mean free path for ionizing collisions

$$\alpha \equiv 1/\lambda$$
 is probability for ionization per distance traveled $dN = N\alpha dx \implies N(x) = N_0 e^{\alpha x}$ (for N initial electrons)

$$M(x) \equiv N/N_0 = e^{\alpha x}$$
 or $M = \exp\left(\int_{x_1}^{x_2} \alpha(x) dx\right)$

In a cell at pressure p with electric field E...

$$\alpha = Ape^{-\frac{Bp}{E}}$$
 (Townsend discharge model; A, B given)

Cylindrical Ionization Chamber

For a cylindrical chamber with outer radius R and anode wire

For a cylindrical chamber with outer radius
$$R$$
 and anode wire radius r_0 at voltage U_0
$$E(r) = \frac{U_0}{\ln(R/r_0)} \frac{1}{r} \quad \phi(r) = -\frac{U_0}{\ln(R/r_0)} \ln \frac{r}{r_0} \quad C = \frac{2\pi\epsilon_0 L}{\ln(R/r_0)}$$

$$v_{\rm d} = E\mu \qquad \qquad \text{(drift velocity } v_{\rm d}, \text{ mobility } \mu\text{)}$$
Signal detection delay t , between ionization event at $r = r^*$

Signal detection delay t_{sig} between ionization event at $r=r^*$ and primary electrons reaching anode wire is...

$$t_{\text{sig}} = \frac{\ln(R/r_0)R^2}{2\mu_{\text{e}}U_0} \left[\left(\frac{r^*}{R} \right)^2 - \left(\frac{r_0}{R} \right)^2 \right] \approx \frac{\ln(R/r_0)}{2\mu_{\text{e}}U_0} (r^*)^2$$

and primary electrons reaching anode wire is...
$$t_{\rm sig} = \frac{\ln(R/r_0)R^2}{2\mu_{\rm e}U_0} \left[\left(\frac{r^*}{R} \right)^2 - \left(\frac{r_0}{R} \right)^2 \right] \approx \frac{\ln(R/r_0)}{2\mu_{\rm e}U_0} (r^*)^2 \qquad \phi(x) = \begin{cases} \frac{e_0N_{\rm a}}{2\epsilon\epsilon_0} (x+x_{\rm p})^2 & x \in (-x_{\rm p},0) \\ V_0 - \frac{e_0N_{\rm d}}{2\epsilon\epsilon_0} (x-x_{\rm n})^2 & x \in (0,x_{\rm n}) \end{cases}$$
 Only secondary positive ions contribute appreciably to signal
$$x_{\rm n}^2 = \frac{2\epsilon\epsilon_0V_0}{e_0N_{\rm d}\left(1+\frac{N_{\rm d}}{N_{\rm a}}\right)} \qquad x_{\rm p}^2 = \frac{2\epsilon\epsilon_0V_0}{e_0N_{\rm d}\left(1+\frac{N_{\rm d}}{N_{\rm d}}\right)}$$

$$U(t) = -\frac{Q_{\rm i}}{4\pi\epsilon_0L} \ln\left[1 + \frac{\mu_{\rm i}CU_0}{\pi\epsilon_0Lr_0^2} \cdot (t-t_{\rm sig})\right] \equiv -\frac{Q_{\rm i}}{4\pi\epsilon_0L} \ln\left(1 + \frac{t-t_{\rm sig}}{t_0}\right) \qquad d_{\rm pn} = x_{\rm n} + x_{\rm p} = \sqrt{\frac{2\epsilon\epsilon_0V_0}{e_0}\frac{N_{\rm a}+N_{\rm d}}{N_{\rm a}N_{\rm d}}}$$

$$U(t) = -\frac{N_{\rm s}e_0}{4\pi\epsilon_0 L} \begin{cases} \approx 0 & t < t_{\rm sig} \\ \ln\left(1 + \frac{t - t_{\rm sig}}{t_0}\right) & t_{\rm sig} < t < t_{\rm sig} + t_{\rm ion}. \end{cases}$$

$$t_0 \equiv \frac{\pi\epsilon_0 L r_0^2}{\mu_{\rm i} C U_0}, \qquad t_{\rm ion} \approx \frac{\ln(R/r_0)}{2\mu_{\rm i} U_0} R^2$$

$$N_{\rm s} = M N_{\rm p} = M \frac{E_{\rm dep}}{w_{\rm i}}$$

$$t_0 \equiv \frac{\pi \epsilon_0 L r_0^2}{\mu_i C U_0}, \qquad t_{\text{ion}} \approx \frac{\ln(R/r_0)}{2\mu_i U_0} R^2$$

$$N_{\rm s} = M N_{\rm p} = M \frac{E_{\rm dep}}{w_{\rm i}}$$

Measuring Momentum

Use a central drift chamber with beamline axis $\hat{\mathbf{z}}$ and magnetic field $\mathbf{B} \approx B \,\hat{\mathbf{e}}_{\tau}$

For particle of charge q with trajectory curvature radius R...

$$\frac{mv_{\rm T}^2}{R} = qv_{\rm T}B \implies p_{\rm T} = qBR$$
 (very simplified)
$$p_{\rm T}c \approx (0.3qBR)\,{\rm GeV}\,\dots$$

... if q is measured in e_0 , B in tesla and R in meters

Momentum resolution $\sigma_{p_{\mathrm{T}}}$ if trajectory resolution is σ_{x} ...

$$\frac{\sigma_{p_{\mathrm{T}}}}{p_{\mathrm{T}}} \approx \frac{\sqrt{96}\sigma_{x}}{qBL^{2}} \cdot p_{\mathrm{T}} \qquad \text{(three points on trajectory)}$$

$$\frac{\sigma_{p_{\mathrm{T}}}}{p_{\mathrm{T}}} \approx \frac{\sigma_{x}}{qBL^{2}} \cdot \sqrt{\frac{720}{N+4}} \cdot p_{\mathrm{T}} \qquad (N \text{ points on trajectory)}$$

L is characteristic length of cylindrical drift chamber

Semiconducting Detectors

 $E_{\rm v}$ is top of valence band

 $E_{\rm c}$ is bottom of conduction band

 $E_{\rm g} \equiv E_{\rm c} - E_{\rm v}$ is band gap

$$f(E) = \frac{1}{e^{\beta(E-\mu)}+1}$$
 (Fermi-Dirac distribution)

$$g_{\rm c}(E) \approx \frac{1}{2\pi^2} \left(\frac{2m_{\rm c}^*}{\hbar^2}\right)^{3/2} \sqrt{|E - E_{\rm c}|}$$

$$g_{\rm v}(E) pprox \frac{1}{2\pi^2} \left(\frac{2m_{\rm v}^*}{\hbar^2}\right)^{3/2} \sqrt{|E - E_{\rm v}|}$$

$$n_{\rm c} = \frac{1}{4} \left(\frac{2m_{\rm c}^* k_B T}{\pi \hbar^2} \right)^{3/2} e^{-\beta (E_{\rm c} - \mu)} \equiv N_{\rm c}(T) e^{-\beta (E_{\rm c} - \mu)}$$

$$p_{\rm v} = \frac{1}{4} \left(\frac{2m_{\rm v}^* k_B T}{\pi \hbar^2} \right)^{3/2} e^{-\beta(\mu - E_{\rm v})} \equiv P_{\rm v}(T) e^{-\beta(\mu - E_{\rm v})}$$

In instrinsic SC: $n_{\rm c}=p_{\rm v}\equiv n_{\rm i} \implies n_{\rm i}^2=N_{\rm c}P_{\rm v}e^{-\beta E_{\rm g}}$

$$n_{\rm i} = \frac{1}{4} \left(\frac{2k_B T \sqrt{m_{\rm e}^* m_{\rm h}^*}}{\pi \hbar^2} \right)^{3/2} e^{-\frac{\beta E_{\rm g}}{2}}$$

Resistivity, Conductivty, Current Density

Consider conductor of conductivity $\sigma_{\rm E}$ with number density n of charge carriers q and mobility μ moving at drift velocity $v_{\rm d}$ under external electric field E

$$j = \sigma_{\rm E} E$$
 and $j = nq v_{\rm d}$

$$v_{\rm d} = \mu E$$

$$\rho_{\rm E} \equiv \frac{1}{\sigma_{\rm E}}; \qquad \rho_{\rm E} = \frac{1}{nq\mu} \qquad \sigma_{\rm E} = nq\mu$$

$$\begin{split} j &= e_0 n_{\rm i} (\mu_{\rm e} + \mu_{\rm h}) E \\ j_{\rm n} &\approx e_0 N_{\rm d} \mu_{\rm e} E, \quad j_{\rm p} \approx e_0 N_{\rm a} \mu_{\rm h} E \end{split} \tag{in instrinsic SC)} \end{split}$$

p-n Junction

Join p- and n-type SCs with dopant densities $N_{\rm a}$ and $N_{\rm d}$ Depletion region spans $x \in (-x_p, x_n)$

$$N_{\rm a}x_{\rm p} = N_{\rm d}x_{\rm n}$$
 (conservation of charge)

$$\frac{\partial^2 \phi}{\partial x^2} = -\frac{\rho(x)}{\epsilon \epsilon_0}$$
 (Poisson equation for potential)

$$\rho(x) \approx \begin{cases} -e_0 N_{\text{a}} & x \in (-x_{\text{p}}, 0) \\ e_0 N_{\text{d}} & x \in (0, x_{\text{n}}) \end{cases}$$

$$\rho(x) \approx \begin{cases} -e_0 N_{\rm a} & x \in (-x_{\rm p}, 0) \\ e_0 N_{\rm d} & x \in (0, x_{\rm n}) \end{cases}$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}x} \approx \begin{cases} \frac{e_0 N_{\rm a}}{\epsilon \epsilon_0} (x + x_{\rm p}) & x \in (-x_{\rm p}, 0) \\ -\frac{e_0 N_{\rm d}}{\epsilon \epsilon_0} (x - x_{\rm n}) & x \in (0, x_{\rm n}). \end{cases}$$

$$\phi(-x_{\rm p}) \equiv 0 \, {\rm V}, \quad V_0 \equiv \phi(x_{\rm n}) - \phi(-x_{\rm p}) = \phi(x_{\rm n})$$

$$V_0 = \frac{e_0}{2\epsilon\epsilon_0} \left(N_{\rm d} x_{\rm n}^2 + N_{\rm a} x_{\rm p}^2 \right)$$

$$\phi(x) = \begin{cases} \frac{e_0 N_a}{2\epsilon \epsilon_0} (x + x_p)^2 & x \in (-x_p, 0) \\ V_0 - \frac{e_0 N_d}{2\epsilon_0} (x - x_p)^2 & x \in (0, x_p) \end{cases}$$

$$x_{\rm n}^2 = \frac{2\epsilon\epsilon_0 V_0}{e_0 N_{\rm d} \left(1 + \frac{N_{\rm d}}{N_{\rm d}}\right)} \qquad x_{\rm p}^2 = \frac{2\epsilon\epsilon_0 V_0}{e_0 N_{\rm d} \left(1 + \frac{N_{\rm d}}{N_{\rm d}}\right)}$$

$$y_{\rm pn} = x_{\rm n} + x_{\rm p} = \sqrt{\frac{2\epsilon\epsilon_0 V_0}{e_0} \frac{N_{\rm a} + N_{\rm d}}{N_{\rm a} N_{\rm d}}}$$

$$d_{\rm pn} \approx x_{\rm n} \approx \sqrt{\frac{2\epsilon\epsilon_0 V_0}{\epsilon_0 N_{\rm d}}}$$
 (if $N_{\rm a} \gg N_{\rm d}$)

$$d_{\rm pn} = x_{\rm n} + x_{\rm p} = \sqrt{\frac{2\epsilon\epsilon_0 V_0}{e_0} \frac{N_{\rm a} + N_{\rm d}}{N_{\rm a} N_{\rm d}}}$$

$$d_{\rm pn} \approx x_{\rm n} \approx \sqrt{\frac{2\epsilon\epsilon_0 V_0}{e_0 N_{\rm d}}} \qquad (\text{if } N_{\rm a} \gg N_{\rm d})$$

$$d_{\rm pn} \approx x_{\rm p} \approx \sqrt{\frac{2\epsilon\epsilon_0 V_0}{e_0 N_{\rm a}}} \qquad (\text{if } N_{\rm d} \gg N_{\rm a})$$

$$d_{\rm pn}^{(\rm b)} = d_{\rm pn}^{(0)} \sqrt{1 + \frac{V_{\rm b}}{V_0}} \qquad (\text{with re}$$

$$d_{\rm pn}^{(\rm b)} = d_{\rm pn}^{(0)} \sqrt{1 + \frac{V_{\rm b}}{V_{\rm c}}}$$
 (with reverse bias voltage $V_{\rm b}$)

Approximate Expressions Depletion Region Width

$$\sigma_{\rm n} \approx e_0 N_{\rm d} \mu_{\rm e}, \ \sigma_{\rm p} \approx e_0 N_{\rm a} \mu_{\rm h} \implies \rho_{\rm n} \approx \frac{1}{e_0 N_{\rm d} \mu_{\rm e}}, \ \rho_{\rm p} \approx \frac{1}{e_0 N_{\rm a} \mu_{\rm h}}$$
$$d_{\rm pn} \approx \sqrt{2\epsilon \epsilon_0 \rho_{\rm n} \mu_{\rm e} V_0} \qquad (\text{if } N_{\rm a} \gg N_{\rm d})$$

$$d_{\rm pn} \approx \sqrt{2\epsilon\epsilon_0 \rho_{\rm p} \mu_{\rm h} V_0}$$
 (if $N_{\rm d} \gg N_{\rm a}$)

Using
$$\epsilon_{\rm Si} \approx 12$$
 and $\epsilon_{\rm Ge} \approx 16$ we get...

$$d_{\mathrm{Si}} \approx 0.53 \sqrt{\rho_{\mathrm{n}} V_{\mathrm{0}}} \cdot \mu \mathrm{m}$$
 (if $N_{\mathrm{a}} \gg N_{\mathrm{d}}$)

$$d_{\rm Si} \approx 0.32 \sqrt{\rho_{\rm p} V_0} \cdot \mu \text{m}$$
 (if $N_{\rm d} \gg N_{\rm a}$)

$$\begin{array}{ll} d_{\rm Ge} \approx 1.00 \sqrt{\rho_{\rm n} V_0} \cdot \mu {\rm m} & \quad ({\rm if} \ N_{\rm a} \gg N_{\rm d}) \\ d_{\rm Ge} \approx 0.65 \sqrt{\rho_{\rm p} V_0} \cdot \mu {\rm m} & \quad ({\rm if} \ N_{\rm d} \gg N_{\rm a}) \end{array}$$

$$d_{\rm Ge} \approx 0.65 \sqrt{\rho_{\rm p} V_0} \cdot \mu \text{m}$$
 (if $N_{\rm d} \gg N_{\rm s}$) ... assuming V_0 in volts and ρ in Ω cm

Signal Dynamics in a p-n Semiconducting Detector

Shift coordinate system so that $x_p \equiv 0$

Let x_0 denote initial position of electron-hole pair

$$\begin{split} &\tau_{\rm h} \equiv \frac{\epsilon\epsilon_0}{e_0\mu_{\rm h}N_{\rm a}}, \quad \tau_{\rm e} \equiv \frac{\mu_{\rm h}}{\mu_{\rm e}}\tau_{\rm h}, \quad t_{\rm e} = \tau_{\rm h}\frac{\mu_{\rm h}}{\mu_{\rm e}} \cdot \ln\frac{d_{\rm pn}}{x_0} \\ &Q_{\rm e}(t) = +\frac{e_0}{d_{\rm pn}}x_0 \left(1-e^{\frac{\mu_{\rm e}}{\mu_{\rm h}}\frac{t}{\tau_{\rm h}}}\right) \qquad ({\rm for} \ t < t_{\rm e}) \\ &Q_{\rm h}(t) = -\frac{e_0}{d_{\rm pn}}x_0 \left(1-e^{-t/\tau_{\rm h}}\right) \\ &I_{\rm e}(t) = \frac{\mathrm{d}Q_{\rm e}}{\mathrm{d}t} = -\frac{e_0}{d_{\rm pn}}\frac{x_0}{\tau_{\rm h}}\frac{\mu_{\rm e}}{\mu_{\rm h}}\frac{t}{\tau_{\rm h}} \\ &I_{\rm h}(t) = \frac{\mathrm{d}Q_{\rm e}}{\mathrm{d}t} = \frac{e_0}{d_{\rm pn}}\frac{x_0}{\tau_{\rm h}}e^{-t/\tau_{\rm h}} \\ &I_{\rm h}(t) = \frac{d_{\rm e}Q_{\rm e}}{d_{\rm pn}}\frac{x_0}{\tau_{\rm h}}, \qquad I_{\rm o}^{\rm e} \equiv -\frac{e_0}{d_{\rm pn}}\frac{x_0}{\tau_{\rm e}} \\ &U_{\rm e}(t) = \frac{I_{\rm o}^{\rm e}R}{1+(RC)/\tau_{\rm e}} \begin{cases} e^{t/\tau_{\rm e}} - e^{-\frac{t}{RC}} & t < t_{\rm e} \\ \left(e^{t_{\rm e}/\tau_{\rm e}} - e^{-\frac{t_{\rm e}}{RC}}\right) e^{-\frac{(t-t_{\rm e})}{RC}} & t > t_{\rm e}. \end{cases} \\ &U_{\rm h}(t) = \frac{I_{\rm o}^{\rm h}R}{1-(RC)/\tau_{\rm h}} \left(e^{-t/\tau_{\rm h}} - e^{-\frac{t}{RC}}\right), \end{split}$$

Limit Cases of Electron Signal

$$\frac{\text{Ellitt Cases of Electron Signal}}{U_{\rm e}(t) \approx I_0^{\rm e} R \begin{cases} e^{t/\tau_{\rm e}} - e^{-\frac{t}{RC}} & t < t_{\rm e} \\ \left(e^{t_{\rm e}/\tau_{\rm e}} - e^{-\frac{t_{\rm e}}{RC}}\right) e^{-\frac{(t-t_{\rm e})}{RC}} & t > t_{\rm e} \end{cases} } \begin{cases} t < t_{\rm e} \\ (RC \ll \tau_{\rm e}) & \frac{{\rm d}P}{{\rm d}E'} = \begin{cases} 0 & E' < \alpha E \\ \frac{1}{(1-\alpha)E} & E' \in (\alpha E, E) \\ 0 & E' > E. \end{cases}$$

$$U_{\rm e}(t) = \frac{I_{\rm 0}^{\rm e}\tau_{\rm e}}{C} \left(e^{t_{\rm e}/\tau_{\rm e}}-1\right) e^{-\frac{(t-t_{\rm e})}{RC}} = \frac{Q_{\rm e}(t_{\rm e})}{C} e^{-\frac{(t-t_{\rm e})}{RC}} \quad (RC\gg\tau_{\rm e})$$

Position Measurement

Consider parallel silicon microstrips separated by $pitch\ p$ $\sigma_x = \frac{p}{\sqrt{12}}$ (when using one strip to measure position) $\overline{x} = \frac{\sum_i Q_i x_i}{\sum_i Q_i}$ (using multiple strips to measure position) $\sigma_x^2 \propto p^2 \frac{\sum_j \sigma_{Q_j}^2}{\left(\sum_i Q_i\right)^2} = p^2 \frac{(\text{noise})^2}{(\text{signal})^2} = \frac{p^2}{\text{SNR}^2}$ Q_j is charge on j-th strip $\sigma_{Q_j}^2$ is resolution of charge on j-th strip

Scintillating Detectors

Consider scintillator with time constant τ , emitting $Y \equiv \frac{\mathrm{d}N}{\mathrm{d}E}$ photons per unit absorbed energy and photodetector with efficiency η and multiplication factor M

$$\begin{array}{ll} \eta \equiv E_{\rm scint}/E_{\rm dep}, & E_{\rm scint} = N_{\rm scint}h\nu = hc/\lambda & ({\rm efficiency}) \\ N(t) = N_0 e^{-t/\tau} & ({\rm number~of~scintillation~photons}) \\ {\rm We~assume~a~fast~photodetector,~so~}I(t)~{\rm follows~}N(t),~{\rm i.e.} \\ I(t) = I_0 e^{-t/\tau} & ({\rm photodetector~current}) \end{array}$$

$$Q = \eta e_0 M Y E_{\text{dep}}$$
 (photodetector charge)

$$Q = \int_0^\infty (t) \, dt = I_0 \tau \implies I_0 \tau = \eta e_0 M Y E_{\text{dep}}$$

$$U(t) = \frac{I_0 R}{1 - (RC)/\tau} \left(e^{-t/\tau} - e^{-\frac{t}{RC}} \right)$$

$$U(t) \approx \frac{I_0 \tau}{C} e^{-t/RC} = \frac{Q}{C} e^{-t/(RC)}$$

$$($$

$$U(t) \approx \frac{I_0 \tau}{C} e^{-t/RC} = \frac{Q}{C} e^{-t/(RC)}$$

$$U(t) \approx RI_0 e^{-t/\tau} = RI(t)$$

$$(RC \gg \tau)$$

$$(RC \ll \tau)$$

Fluctuations in Photomultipliers

X is the number of secondary electrons reaching PMT anode as a result of one initial cathode photoelectron

n is the number of initial cathode photoelectrons

S is the sum of all secondary electrons reaching PMT anode n is Poisson-distributed with mean λ

$$\langle S \rangle = \lambda \, \langle X \rangle$$

$$\sigma_S^2 = \lambda \, \langle X^2 \rangle \, \Big(1 + \frac{\sigma_X^2}{\langle X \rangle^2} \Big) \equiv F \lambda \, \big\langle X^2 \big\rangle$$

Neutron Detection

In a material with scattering center density n_s and neutron cross section σ ... $\lambda = \frac{1}{n_s \sigma}$

In a material of width d with neutron MFP λ , probability for one neutron interaction is... $P = \int_0^d \frac{1}{\lambda} e^{-\frac{x}{\lambda}} dx$

Post-Scattering Energy Distribution of Fast Neutrons

Consider fast neutron with initial energy $E \gg k_B T$ scattering from a nucleus with mass number A at angle θ

Assume isotropic scattering $\frac{d\sigma}{d\Omega} = \frac{\sigma_{\text{tot}}}{4\pi}$

$$\begin{split} \alpha &\equiv \frac{(A-1)^2}{(A+1)^2} \\ \frac{E'}{E} &= \frac{A^2 + 2A\cos\theta + 1}{(A+1)^2} \\ E'_{\max} &= E, \quad E'_{\min} = \alpha E \qquad \qquad \text{(bounds on } E'\text{)} \\ \frac{\mathrm{d}P}{\mathrm{d}E'} &= \begin{cases} 0 & E' < \alpha E \\ \frac{1}{(1-\alpha)E} & E' \in (\alpha E, E) \\ 0 & E' > E. \end{cases} \end{split}$$
 (distribution of E')

Slowing Neutrons to Thermal Energy

Goal: slow neutron from $E_0 \gg k_B T$ to $E_T \sim k_B T$

$$\begin{split} \xi &\equiv \left\langle \ln \frac{E_0}{E'} \right\rangle \implies \ln \frac{E'}{E_0} = -\xi \implies E' = E_0 e^{-\xi} \\ \xi &= 1 + \frac{\alpha}{1-\alpha} \ln \alpha = 1 + \frac{(A-1)^2}{2A} \ln \frac{A-1}{A+1} \\ \xi &\approx \frac{2}{A+2/3} & \text{(for heavy nuclei, } A \gtrsim 10) \\ \overline{\xi} &\equiv \frac{\sum_i \sigma_i \xi_i}{\sum_i \sigma_i} & \text{(polyatomic materials)} \\ E'_N &= e^{-N\xi} E_0 & \text{(energy after N-th collision)} \\ N &= \frac{1}{\xi} \ln \frac{E_0}{E_{\mathrm{T}}} & \text{(collisions to reach energy E_{T})} \end{split}$$

Cherenkov Radiation

Consider particle with charge $z=q/e_0$ moving along x axis in material with refractive index n at speed v>c/n

$$\cos \theta_{\rm C} = \frac{1}{n\beta} \implies \theta_{\rm C} = \cos^{-1} \frac{1}{n\beta} \qquad \text{(Cherenkov angle)}$$

$$\beta > 1/n \quad \text{or} \quad pc > \frac{mc^2}{\sqrt{1 - (1/n^2)}} \qquad \text{(thresholds for radiation)}$$

$$\frac{\mathrm{d}^2 E}{\mathrm{d}x \, \mathrm{d}\omega} = z^2 \frac{\alpha \hbar \omega}{c} \sin^2 \theta_{\rm C}$$

$$\frac{\mathrm{d}^2 N}{\mathrm{d}x \, \mathrm{d}\omega} = \frac{z^2 \alpha}{c} \sin^2 \theta_{\rm C} = \frac{z^2 \alpha}{c} \left(1 - \frac{1}{(n\beta)^2}\right)$$

$$\frac{\mathrm{d}^2 N}{\mathrm{d}x \, \mathrm{d}\omega} = \frac{z^2 \alpha}{c} \sin^2 \theta_{\mathrm{C}} = \frac{z^2 \alpha}{c} \left(1 - \frac{1}{(n\beta)^2} \right)$$
$$\frac{\mathrm{d}^2 N}{\mathrm{d}x \, \mathrm{d}\lambda} = \frac{2\pi z^2 \alpha}{\lambda^2} \sin^2 \theta_{\mathrm{C}} = \frac{2\pi z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{(n\beta)^2} \right)$$

Cherenkov Detectors

Consider a detector sensitive to radiation in the range $\lambda_{\min}, \lambda_{\max}$ with efficiency $\eta(\lambda)$

$$\begin{split} N_{\mathrm{det}} &= d \int_{\lambda_{\mathrm{min}}}^{\lambda_{\mathrm{max}}} \eta(\lambda) \frac{\mathrm{d}^2 N}{\mathrm{d}x \, \mathrm{d}\lambda} \, \mathrm{d}\lambda \\ N_{\mathrm{C}} &\propto \sin^2 \theta_{\mathrm{C}} = \left(1 - \frac{1}{(\beta n)^2}\right) \implies N_{\mathrm{C}} \to N_{\mathrm{max}} \text{ as } \beta \to 1 \\ \langle N \rangle &= \frac{N_{\mathrm{max}}}{1 - 1/n^2} \left(1 - \frac{1}{\beta^2 n^2}\right) \equiv a \left(1 - \frac{1}{\beta^2 n^2}\right) \\ &\Longrightarrow \beta = \frac{1}{n \sqrt{1 - \left(\langle N \rangle / a\right)}} \end{split}$$