Google Cloud Platform

Google Container Engine

Google Cloud Platform Fundamentals V2.0

Agenda

- 1 Introduction to Containers
- 2 → Kubernetes
- Google Container Engine
- **4** → Quiz & Lab

What is a Container?

- Virtualization at the operating system layer
- Separates operating system from application code and dependencies
- Isolates individual processes
- Popular implementations include <u>Docker</u> and <u>rkt</u>

Virtual Machine

Why Use Containers?

- Support consistency across development, testing, and production environments
- Loose coupling between application and operating system layers
- Much simpler to migrate workloads between on-premises and cloud environments
- Support agile development and operations

Agenda

- 1 Introduction to Containers
- 2 → Kubernetes
- Google Container Engine
- **4** → Quiz & Lab

Kubernetes ('k8s')

- Open source container cluster orchestration system
 - Automates deployment, scaling, and operations for container clusters
- Based on Google's experience over 10+ years
- Built for a multi-cloud world:
 - Public, private, hybrid

Features of Kubernetes (1 of 2)

- Workload portability
 - Run in many environments, across cloud providers
 - Implementation is open and modular
- Rolling updates
 - Upgrade application with zero downtime
- Autoscaling
 - Automatically adapt to changes in workload

Features of Kubernetes (2 of 2)

- Persistent storage
 - Abstracts details of how storage is provided from how it is consumed
- Multi-zone clusters
 - Run a single cluster in multiple zones
 - Alpha on Google Cloud Platform
- Load balancing
 - External IP address routes traffic to correct port

Agenda

- 1 → Introduction to Containers
- 2 → Kubernetes
- 3 → Google Container Engine
- **4** → Quiz & Lab

Google Cloud Platform

laaS and PaaS

Towards managed infrastructure (DevOps)

laaS

Raw compute, storage and network

More granular control

Pay for what you allocate More management overhead

PaaS

Preset run-times Java, Go, PHP, Python... Focus is application logic

Pay for what you use Less management overhead Towards managed services (NoOps)

Google Container Engine (1 of 2)

- Fully managed cluster management and orchestration system for running containers
 - Based on Kubernetes
 - Uses Compute Engine instances and resources
- Complimentary services:
 - Google Cloud Container Builder Beta Create Docker container images from app code in Google Cloud Storage
 - Google Container Registry Secure, private Docker image storage

Google Container Engine (2 of 2)

- Uses a declarative syntax to manage applications
 - Declare desired application configuration, Container Engine implements, manages
- Decouples operational, development concerns
- Manages and maintains
 - Logging, health management, monitoring
- Easily update Kubernetes versions as they are released

"Our platform sometimes has to be deployed on a cluster. How do we enable containers to communicate from different hosts? Google has the answer: Kubernetes. This awesome tool helps us manage our clusters of containers as if they were a single system."

scale

speed

-30%

Docker containers automate scalability

REST APIs speed provisioning of new instances; JAVA applications can be deployed in minutes

Administrative costs reduced by 30%

Deploying Apps: Container Engine vs App Engine

	Container Engine	App Engine Standard	App Engine Flexible
Language support	Any	Java, Python, Go & PHP	Any
Service model	Hybrid	PaaS	PaaS
Primary use case	Container-based workloads	Web and mobile applications	Web and mobile applications, container-based workloads

Agenda

- 1 → Introduction to Containers
- 2 Kubernetes
- 3 → Google Container Engine
- **4** → Quiz & Lab

Quiz

- 1. Name two reasons for deploying applications using containers.
- 2. *True or False*: Kubernetes allows you to manage container clusters in multiple cloud providers.
- 3. *True or False*: Google Cloud Platform provides a secure, high-speed container image storage service for use with Container Engine.

Quiz Answers

- 1. Name two reasons for deploying applications using containers.
 - Answer: Consistency across development, testing, production environments; Simpler to migrate workloads; Loose coupling; Agility
- 2. *True*: Kubernetes allows you to manage container clusters in multiple cloud providers.
- 3. *True*: Google Cloud Platform provides a secure, high-speed container image storage service for use with Container Engine.

Lab (1 of 2)

Deploy the Bookshelf application to Container Engine.

- 1. Create a Container Engine cluster
- 2. Build and push a Bookshelf image to Google Container Registry
- 3. Use the kubectl command utility to deploy the Bookshelf container
- 4. Test the Bookshelf application in your browser

Lab (2 of 2)

Resources

- Container Engine Overview
 https://cloud.google.com/container-engine/
- Container Engine tutorials
 https://cloud.google.com/container-engine/docs/tutorials
- Kuberneteshttp://kubernetes.io/
- An introduction to containers, Kubernetes, and the trajectory of modern cloud computing

http://googlecloudplatform.blogspot.co.uk/2015/01/in-coming-weeks-we-will-be-publishing.html

