

数学建模

浙江大学数学系 谈之奕

tanzy@zju.edu.cn

运筹学

 主要用数学方法研究国民经济和国防等方面的运行系统在人力、 物力、财力等资源和其他约束条件下系统地设计和管理的最有效 (最优)决策

——《中国大百科全书(第二版)》

用科学方法研究复杂的系统,以 求在可获得的资源条件下改善该 系统的效率和产出

——《不列颠百科全书(国际中文版)》

高祖曰: "公知其一, 未知其二。夫 運籌策帷帳之中, 决勝於千里之外, 吾不如子房。鎮國家, 撫百姓, 給餽 飾, 不絶糧道, 吾不如蕭何。連百萬 之軍, 戰必勝, 攻必取, 吾不如韓 信。此三者, 皆人傑也, 吾能用之, 此吾所以取天下也。項羽有一<u>范增</u>而

不與人利,此其所以失天下也。"上曰:"公知其一,未知其二。夫運籌帷幄之中,决勝千里之外,吾不如子房;填國家,撫百姓,給餉魄,不絕

——《史记•高祖本纪》

《汉书•高帝纪》

运筹学

ングラング Zhe Jiang University 数学建模

- (美) Operations Research
- (英) Operational Research

Industrial EngineeringOptimization(工业工程)(最优化)

op-e-ra-tion / apə\refən; opə'reifən/ n

6 ►MILITARY/POLICE ACTION 军事的/警方的行动 【C] a planned military or police action, especially

one that involves a lot of people [尤指涉及人数众多的] 军事行动; 警方的行动: an espionage operation 谍报行动

许国志:运用学中的一些问题。科学通报, 1956(5), 15-23

周华章: 谈谈运筹科学及其在交通运输问题中的应用。科学, 1957, 33(2), 66-70

许国志 (1919-2001) 江苏扬州人 中国工程院院士

周华章 (1917-1968) 江苏江阴人 运筹学家

起源

• 优化理论与算法

- Fermat定理(1637)
- Lagrange乘子法(1788)
- Newton法(1665)

$$x_{k+1} = x_k - \alpha_k \left(\nabla^2 f(x_k) \right)^{-1} \nabla f(x_k)$$

Cauchy最速下降法(1847)

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Pierre de Fermat (1607-1665)

(1642-1727)法国数学家 英国数学家、物理学家 Joseph-Louis Lagrange Augustin-Louis Cauchy (1736-1813) (1789-1857)

法国数学家

法国数学家、物理学家

起源

- 著名数学问题
 - 七桥问题(Euler, 1736)
 - Steiner树问题(Gauss, 1836)
- 企业管理实践
 - 伯利恒钢铁公司(Taylor, Gantt 等,二十世纪初)
 - 哥本哈根电话公司(Erlang, 1909)

Frederick Winslow Taylor (1856-1915) 美国管理学家

Taylor FW. The Principles of Scientific Management. Harper & Brothers, 1914.

数学建模

Johann Carl Friedrich Gauss (1777-1855)德国数学家、物理学家 题图: Gauss 致天文学家Heinrich Christian Schumacher的信(1836)

诞生

数学建模

- 第二次世界大战期间, 英、美等国在运用科技指导作战的实践中认识到优化决策的作用和意义,推 公运筹学发展为一个独立 学科
 - Blackett领导的多学科团队 Blackett Circus对英国空军 雷达系统的决策支持

Patrick Maynard Stuart Blackett (1897—1974)

Philip McCord Morse (1903—1985)

• Morse参与美国海军反潜作 英国物理学家、运筹学家 美国物理学家、运 战 1948年诺贝尔物理学奖得主 筹学家

Lovell SB. Blackett in war and peace. *Journal of the Operational Research Society*, 39(3), 221-233, 1988.

Little JD. Philip M. Morse and the beginnings. Operations Research, 50(1), 146-148, 2002.

- 自二十世纪三十年代起, Kantorovich开始研究计划经济 体系中的数学问题,提出了众多实际问题的线性规划模型
- 二十世纪四十年代,Koopmans 在对商船调度的研究中提出了 运输问题及其它资源配置问题 的线性规划模型

Kantorovich LV. Mathematical Methods in the Organization and Planning of Production. Leningrad State University Press, 1939.

Leonid Vitaliyevich Tjalling Charles Kantorovich (1912-1986)

Koopmans (1910-1985)苏联数学家、经济学家 美国经济学家

Kantorovich和Koopmans分享1975年Nobel经济学奖。Prize motivation: for their contributions to the theory of optimum allocation of resources

发展

Mジュラ ZheJlang University 数学建模

- 1947年,Dantzig提出了一般线性规划模型及其求解方法——单纯形法
- 1951年,Kuhn和
 Tucker给出了刻划非线
 性规划最优解性质的
 Karush-Kuhn-Tucker
 条件
- 1958年,Gomory给出 了求解整数线性规划的 割平面法

左: George Bernard Dantzig (1914-2005)

右: Ralph Edward Gomory (1929-)

左: Harold William Kuhn (1925-)

右: Albert William Tucker (1905—1995)

主要分支

- 数学规划(Mathematical Programming)
 - 线性规划(Linear Programming)
 - 非线性规划(Nonlinear Programming)
 - 整数规划(Integer Programming)
 - 多目标规划(Multiobjective Programming)

- 组合优化(Combinatorial Optimization)
- 随机运筹
 - 排队论 (Queuing Theory)
 - 可靠性理论(Reliability Theory)
 - 库存论 (Inventory theory)
 - 博弈论(Game Theory) 与决策理论(Decision Theory)

研究内容与基础

- 研究内容
 - 优化理论
 - 应用问题
 - 实际案例
- 应用问题与案例研究过程
 - 实际问题建模
 - 数学和计算机求解
 - 推广与应用成果

- 数学基础
 - 连续: 微积分、线性代数、数值分析
 - 离散: 离散数学(组合数学、图论)、算法设计与分析
- 随机:概率论、随机过程从确定到随机 从静态到动态从连续到离散 从线性到非线性

学术组织

Mルルチ ZheJlang University 数学建模

- 1995年,美国运筹学会(ORSA)与美国管理 学会(TIMS)合并成立
- INFORMS每年评选Franz Edelman奖,该奖被公认为国际运筹与管理科学应用领域的最高荣誉
- MOS (Mathematical Optimization Society)
- IFORS (International Federation of Operational Research Societies)
- 中国运筹学会
 - 1991年,由原中国数学会运筹学分会升格为中国科学技术协会下属一级学会

https://www.informs.org/

Mathematical Optimization Society

http://www.mathopt.org/

http://ifors.org/

学术期刊

数学建模

Operations Research

Management Manufacturing & Service INFORMS Journal Operations Management on Computing **Science**

Production and Operations Management

Mathematics of Operations Research

Interfaces

Mathematical Programming

DALLAS School of Management

上方5种属UT达拉斯商学院 经济管理类24种期刊

(除POM和MP外均为 INFORMS协会出版期刊)

数学规划

- 若干个变量在满足一些等式或不等式限制条件下,使一个 或多个目标函数取得最大值或最小值
- 极值问题
 - 求函数 $f(\mathbf{x})$ 在 $\mathbf{x} \in S$ 上的 极大(小)值
- 条件极值
 - 求函数 $f(\mathbf{x})$ 在满足 $h_i(\mathbf{x}) = 0, \quad j = 1, \dots, t$ 条件下的极大(小)值

• 数学规划

以下为约束条件

变量取值 范围约束

不等式约束

数学规划

- 满足所有约束条件的点称为可行点(解)(feasible point),可行点的集合称为可行域(feasible region),记为 S
- $\mathbf{x}^* \in S$ 称为(单目标、极小化)优化问题的最优解(optimal solution),若对任意 $\mathbf{x} \in S$,均有 $f(\mathbf{x}^*) \leq f(\mathbf{x})$;相应地 $f(\mathbf{x}^*)$ 称为最优值
 - 局部最优解和全局最优解

分类

- 线性规划与非线性规划
 - 线性规划:目标函数为线性函数,约束条件为线性等式或不等式
 - 非线性规划:目标函数为非线性函数,或者至少有一个约束条件为非线性等式或不等式
 - 二次规划(Quadratic Programming): 目标函数为二次函数,约束条件为线性等式或不等式
 - 带二次约束的二次规划(Quadratically Constrained Quadratic Program, QCQP):目标函数为二次函数,约束条件为线性或二次等式或不等式
- 整数规划: 至少有一个决策变量限定取整数值
 - 混合整数规划(Mixed Integer Programming, MIP): 部分决策 变量取整数值
 - 0-1规划:所有决策变量都取 0 或 1

问题建模

- ZheJlang University
 - 数学建模

- 将实际问题表示成数学规划的 形式使得可以借助数学规划的 算法或软件求解一些具体的实 例,也可利用数学规划的理论 和方法分析解决问题
- 建立实际问题的数学规划模型 一般包含确定决策变量、给出 目标函数、列出约束条件等步 骤

Williams HP. Model Building in Mathematical Programming. Wiley, 2013.

Chen DS, Batson RG, Dang Y. Applied Integer Programming: Modeling and Solution. Wiley, 2011.

- 食谱问题 (diet problem)
 - 在市场上可以买到 n 种不同的食品,第 j 种食品的单位售价为 c_j
 - 人体正常生命活动过程需要m种基本营养成分,一个人每天至少需要摄入第i种营养成分 b_i 个单位
 - 每单位第j种食物包含第i种营养成分 a_{ij} 个单位
 - 在满足人体营养需求的前提下,如何寻找最经济的配食方案

George Joseph Stigler (1911-1991) 美国经济学家 1982年诺贝尔经 济学奖得主

- 决策变量: 食谱中第 j种食物的数量为 x_j 个单位, $j=1,\cdots,n$
- 目标函数: 所有食物费用之和 $\sum_{i=1}^{n} c_i x_i$
- 约束条件:
 - 满足人体营养需求
 - x_i 个单位第 j 种食物中含第 i种营养成分 $a_{ij}x_j$ 个单位
 - 人体摄入的第 i种营养成分的总量为 $\sum_{i=1}^{n} a_{ij} x_{j}$
 - 每种营养成分应满足人体需要 $\sum_{i=1}^{n} a_{ij} x_j^{j=1} \geq b_i, i=1,\dots,m$
 - 摄入食物量非负 $x_j \ge 0, j = 1, \dots, n$

数学建模

$$\min \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, i = 1, \dots, m$$

 $x_{i} \ge 0, j = 1, \dots, n$

min cx

$$\mathbf{x} = (x_1, x_2, \cdots, x_n)^{\mathrm{T}}$$

s.t. $Ax \ge b$

$$\mathbf{A} = \left(a_{ij}\right)_{m \times n}$$

$$x \ge 0$$

$$\mathbf{c}=(c_1,\cdots,c_n)$$

$$\mathbf{b} = (b_1, \cdots, b_m)^{\mathrm{T}}$$

MATHEMATICA

```
in[55]:= c = \{4, 2, 3\};

b = \{4, 11\};

A = \begin{pmatrix} 2 & 0 & 2 \\ 4 & 3 & 1 \end{pmatrix};
```

LinearProgramming[c, A, b]

Out[58]= $\{2, 1, 0\}$

MODEL:

nut/1..2/:b; food/1..3/:c,x; cost(nut,food):a; Global optimal solution found.
Objective value:
Infeasibilities:
Total solver iterations:

Variable

X(1)

X(2)

X (3)

Value 2.000000

1.000000

0.000000

10.00000

0.000000

a=2 0 2 4 3 1; enddata

endsets

c=4 2 3;

data:

min=@sum(food(j):c(j)*x(j));

@for(nut(i): @sum(food(j):a(i,j)*x(j))>b(i););
END

营养物质	PDA
热量	3000卡
蛋白质	70克
钙	0.8克
铁	12毫克
维生素A	5000IU
维生素B1	1.8毫克
维生素B2	2.7毫克
烟碱酸	18毫克
维生素C	75毫克

1943年美国研究院发布的从事中等强度活动,体重为154磅的成年男性9种营养成分的每天推荐摄入量(PDA)

TABLE A. NUTRITIVE VALUES OF COMMON FOODS PER DOLLAR OF EXPENDITURE, AUGUST 15, 1989

Commodity	Unit	Price Aug. 15, 1939 (cents)	Edible Weight per \$1.00 (grams)	Calories (1,000)	Protein (grams)	Calcium (grams)	Iron (mg.)	Vitamin A (1,000 I.U.)	Thiamine (mg.)	Ribo- flavin (mg.)	Niacin (mg.)	Ascorbic Acid (mg.)
**1. Wheat Flour (Enriched) 2. Macaroni 3. Wheat Cereal (Enriched) 4. Corn Flakes 5. Corn Meal 6. Hominy Grits 7. Rice	10 lb. 1 lb. 28 oz. 8 oz. 1 lb. 24 oz. 1 lb.	36.0 14.1 24.2 7.1 4.6 8.5 7.5	12,600 3,217 3,280 3,194 9,861 8,005 6,048	44.7 11.6 11.8 11.4 36.0 28.6 21.2	1,411 418 377 252 897 680 460	2.0 .7 14.4 .1 1.7 .8 .6	365 54 175 56 99 80 41	30.9	55.4 3.2 14.4 13.5 17.4 10.6 2.0	33.3 1.9 8.8 2.3 7.9 1.6 4.8	441 68 114 68 106 110 60	
71. Tea 72. Cocoa 73. Chocolate 74. Sugar 75. Corn Sirup 76. Molasses 77. Strawberry Preserves	1 lb. 8 oz. 8 oz. 10 lb. 24 oz. 18 oz. 1 lb.	17.4 8.6 16.2 51.7 13.7 13.6 20.5	652 2,637 1,400 8,773 4,966 3,752 2,213	8.7 8.0 84.9 14.7 9.0 6.4	237 77 — — — —	8.0 1.3 	72 39 74 244 7	.2	2.0 .9	2.3 11.9 3.4	42 40 14 5 146 3	

77种常见食物所含各种营养成分数量(以价值1美元计)

G. J. Stigler, The Cost of Subsistence, *Journal of Farm Economics*, 27, 303-314, 1945

数学建模

今日孙米	Stigler所	得近似解	最优解		
食品种类 (选自77种常用食品)	年摄入量	费用 (\$)	年摄入量	费用 (\$)	
小麦粉(Wheat Flour)	370磅	13.33	299磅	10.78	
炼乳(Evaporated Milk)	57加仑	3.84			
卷心菜(Cabbage)	111磅	4.11	111磅	4.10	
菠菜(Spinach)	23磅	1.85	23磅	1.83	
干菜豆(Dried Navy Beans)	285磅	16.80	378磅	22.29	
牛肝(Beef Liver)			2.57磅	0.69	
年度总费用 (以1939年度价格计算)		39.93	5 6	39.69	

数学建模

- 运输问题 (Transportation Problem)
 - 某货物有m个产地,产地i的 产量为 a_i , $i=1,\dots,m$, n个销 地,销地j的销量为 b_i , $j=1,\dots,n$
 - 由产地 i 到销地 j 的运输单价为 c_{ij} , $i=1,\dots,m,\ j=1,\dots,n$
 - 产销平衡, $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$
 - 如何调运货物从产地到销地, 可使总运输费用最小

1925年全球主要港口到港离港货物量(百万吨)

Koopmans TC. Optimum utilization of the transportation system. Econometrica, 17(S), 136-146, 1949.

***	. 1 ^	した	
	到港	离岗	净值
纽约(New York)	23.5	32.7	-9.2
旧金山(San Francisco)	7.2	9.7	-2.5
圣托马斯(St. Thomas)	10.3	11.5	-1.2
布宜诺斯艾利斯(Buenos Aires)	7.0	9.6	-2.6
安托法加斯塔(Antofagasta)	1.4	4.6	-3.2
鹿特丹(Rotterdam)	126.4	130.5	-4.1
里斯本 (Lisbon)	37.5	17.0	20.5
雅典(Athens)	28.3	14.4	13.9
敖德萨 (Odessa)	0.5	4.7	-4.2
拉各斯 (Lagos)	2.0	2.4	-0.4
德班 (Durban)	2.1	4.3	-2.2
孟买 (Bombay)	5.0	8.9	-3.9
新加坡(Singapore)	3.6	6.8	-3.2
横滨 (Yokohama)	9.2	3.0	6.2
悉尼(Sydney)	2.8	6.7	-3.

运输问题

• 决策变量

• *x_{ij}* : 产地 *i* 调运到 销地 *j* 的货物数量

$$\min \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \ j = 1, \dots, n$$

$$x_{ij} \ge 0$$

以净输入港口为产地,净输出港口为销地的运输问题的最优解,给出了最优空船调运路线

下料问题

- 下料问题(Cutting-Stock Problem)
 - 给定生产一批产品所需的某种材料的大小与数量列表,如何从相同规格的原料中下料,使所用的原料最少

现有15米长的钢管若干,生产某产品需4米,5米,7米长的钢管各100,150,200根,如何截取方能使材料最省

如何选择决策变量

- 装箱问题(bin-packing problem)
 - 给定一系列大小已知的物品 和若干个容量相同的箱子, 如何将物品放入箱子中,使 所用箱子数尽可能少

下料问题

数学建模

- 列举所有可能的截取方式
- 决策变量
 - x_i : 按第 i 种方式截取的原料的数量, $i = 1, \dots, 7$
 - x_i 必须取正整数值

方式	1	2	3	4	5	6	7
7米	2	1	1	0	0	0	0
5米	0	1	0	3	2	1	0
4米	0	0	2	0	1	2	3
余料	1	3	0	0	1	2	3

min
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

s.t. $2x_1 + x_2 + x_3$ ≥ 200
 $x_2 + 3x_4 + 2x_5 + x_6$ ≥ 150
 $2x_3 + x_5 + 2x_6 + 3x_7 \geq 100$
 $x_i \geq 0$ 且 x_i 为整数, $i = 1, 2, \dots, 7$.

选址问题

- 选址问题
 - 设在平面上有n个点,第j个点的坐标为 (x_i, y_i)
 - 求一个面积最小的圆,使这*n*个点均为 该圆内的点

A QUESTION IN THE GEOMETRY OF SITUATION.

By J. J. SYLVESTER.

It is required to find the least circle which shall contain a given system of points in a plane.

THE

QUARTERLY JOURNAL

OP

PURE AND APPLIED

MATHEMATICS.

EDITED BY

J. J. SYLVESTER, M.A., F.R.S.,
PROFESSOR OF MATHEMATICS IN THE BOYAL MILITARY ACADEMY,
WOOLWICH; AND

N. M. FERRERS, M.A.,

FELLOW OF GONVILLE AND CAIUS COLLEGE, CAMBRIDGE:

ASSISTED BY

G. G. STOKES, M.A., F.R.S.,
LUCASIAN PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF CAMBRIDGE.

A. CAYLEY, M.A., F.R.S.,

LATE FELLOW OF TRINITY COLLEGE, CAMBRIDGE; AND

M. HERMITE,

CORRESPONDING EDITOR IN PARIS.

VOL. I.

ο τι οθσία πρός γένεσιν, έπιστημή πρός πίστιν και διάνοια πρός είκασίαν έστι.

LONDON: JOHN W. PARKER AND SON, WEST STRAND.

选址问题

• 决策变量: 圆心(x₀, y₀), 半径 r

• 目标函数: r²

• 约束条件:每个点到圆心的距离不超过半径

 $\min r^2$

带二次约束的二次规划

s.t.
$$(x_i - x_0)^2 + (y_i - y_0)^2 \le r^2$$
, $i = 1, 2, \dots, n$

• 定义新决策变量 $\lambda = r^2 - (x_0^2 + y_0^2)$ 替代 r

min
$$\lambda + x_0^2 + y_0^2$$

二次规划

s.t.
$$\lambda + 2x_0 x_i + 2y_0 y_i \ge x_i^2 + y_i^2$$
, $i = 1, 2, \dots, n$

$$x_i^2 - 2x_0x_i + x_0^2 + y_i^2 - 2y_0y_i + y_0^2 \le r^2 \implies x_i^2 - 2x_0x_i + y_i^2 - 2y_0y_i \le r^2 - x_0^2 - y_0^2 = \lambda$$

支持向量机

- 支持向量机(Support Vector Machine)
 - 拟将一数据集分为 C_1 , C_2 两类。每个数据有 n 个特征,用 n 维实向量表示数据
 - 重表示数据
 训练集 $S = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$,其分类已知,记 $y_i = \begin{cases} 1 & \mathbf{x}_i \in C_1 \\ -1 & \mathbf{x}_i \in C_2 \end{cases}$
 - 训练集可线性分离(linearly separable),即存在超平
 面 $\mathbf{w} \cdot \mathbf{x} + b = 0$,使得 $\begin{cases} \mathbf{w} \cdot \mathbf{x}_i + b > 0 & \mathbf{x}_i \in C_1 \end{cases}$,或 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$
 留平面 $\begin{cases} \mathbf{w} \cdot \mathbf{x}_i + b < 0 & \mathbf{x}_i \in C_2 \end{cases}$
- 超平面
 - 设 w为 n 维实向量,b 为实数,称 w·x+b=0为 \mathbb{R}^n 中的超平面 (hyperplane)
 - \mathbb{R}^n 中点 \mathbf{x} 到超平面 $\mathbf{w} \cdot \mathbf{x} + b = 0$ 的距离为 $\frac{|\mathbf{w} \cdot \mathbf{x} + b|}{\sqrt{\mathbf{w} \cdot \mathbf{w}}}$ 不妨要求 $\mathbf{w} \cdot \mathbf{w} = 1$

Cortes C, Vapnik V. Support-vector networks. *Machine Learning*, 20(3), 273-297, 1995.

支持向量机

数学建模

所有点至超平面距离

的最小值尽可能大

- 若(I) 有解, (I) 与(II) 等价
 - (I)的可行域包含在(II)的可行域内
 - (II)的最优解在(I)的可行域内

(I)

• 由于 (I) 有解,存在 \mathbf{w}, b ,满足 $\mathbf{w} \cdot \mathbf{w} = 1$ 与 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$, $i = 1, \dots, m$ 。这也是 (II) 的一组可行解,故 (II) 的最优值非负。因此 (II) 的最优解 \mathbf{w}^*, b^* 总满足 $y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*) > 0$, $i = 1, \dots, m$

• 由于
$$y_i = \pm 1$$
,若 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$,则 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = |\mathbf{w} \cdot \mathbf{x}_i + b|$ max $\min_{i=1,\dots,m} |\mathbf{w} \cdot \mathbf{x}_i + b|$ max $\min_{i=1,\dots,m} y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$ s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$, $i = 1,\dots,m$ s.t. $\mathbf{w} \cdot \mathbf{w} = 1$

支持向量机

- 若 \mathbf{w}_0, b_0 是 (III) 的最优解,则 $\frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}, \frac{b_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}$ 是 (II) 的最优解

 - 设 \mathbf{w}^*, b^* 是 (II) 的最优解, $\mathbf{w}^* \cdot \mathbf{w}^* = 1$,最优值为 $\gamma^* = \min_{i=1,\cdots,m} y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*)$ $y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*) \ge \gamma^*$, $i = 1, \cdots, m$,即 $y_i\left(\frac{\mathbf{w}^*}{\gamma^*} \cdot \mathbf{x}_i + \frac{b^*}{\gamma^*}\right) \ge 1$, $i = 1, \cdots, m$,故 $\frac{\mathbf{w}^*}{\gamma^*}, \frac{b^*}{\gamma^*}$ 是 (III) 的可行解
 - 由于 \mathbf{w}_0', b_0 是(III)的最优解, $\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0} \le \sqrt{\frac{\mathbf{w}^*}{\nu^*}} \cdot \frac{\mathbf{w}^*}{\nu^*} = \frac{1}{\nu^*}$
 - $y_i \left(\frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}} \cdot \mathbf{x}_i + \frac{b_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}} \right) \ge y_i \left(\gamma^* \mathbf{w}_0 \cdot \mathbf{x}_i + \gamma^* b_0 \right) = \gamma^* y_i \left(\mathbf{w}_0 \cdot \mathbf{x}_i + b_0 \right) \ge \gamma^*, i = 1, \dots, m$, 故 $\frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}$, $\frac{\dot{b_0}}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}$ 的目标值不小于 \mathbf{w}^*, b^* 的目标值,也是(II)的最优解 带不等式约束的二次规划

$$\max \quad \min_{i=1,\dots,m} y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$$

s.t. $\mathbf{w} \cdot \mathbf{w} = 1$

(III)

s.t.
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, \dots, m$$

 $\min \mathbf{w} \cdot \mathbf{w}$

(II)

数学规划

- 建立实际问题数学规划的原则与技巧
 - 选择合适的决策变量,数量适中,目标函数和约束条件表达清晰、形式简单
 - 约束条件完整反映问题要求,不遗漏,不冗余。确保数学规划的最优值与原问题的最优值一致
 - 善于转化和变形,一般应尽量减少非线性约束和整数取值限制,灵活处理绝对值、分段函数等复杂情况
 - 善于运用0-1变量建立决策变量之间的联系和描述逻辑 关系
 - 结合计算求解检验、修正和改进已有规划

标准形

• 线性规划的标准形

价格系数 向量 $\min_{\mathbf{c} \mathbf{x}} \mathbf{c} \mathbf{x}$ $s.t. \quad \mathbf{A} \mathbf{x} = \mathbf{b} \bullet$

系数矩阵

 $x \ge 0$

右端向量

- 目标为极小化函数
- 所有约束均为等式约束
- 约束等式右端均为非负常数
- 决策变量取非负值

任何线性规划总可通 过适当变形变为标准 形

线性规划解的情况

- 有唯一最优解
- 有无穷多最优解
- 最优解无下界(可行域 非空)
- 可行域为空

由可行域的凸性,线性规划不可能出现有有限多个最优解的情况

基本可行解

- 设A为m×n阶系数矩阵, A行满秩
 - 将 \mathbf{A} 分块为(\mathbf{B} , \mathbf{N})(必要时调整列的次序),其中 \mathbf{B} 为m 阶可逆方阵,称为基(basis)
 - 决策变量 \mathbf{X} 相应地分块为 $\begin{pmatrix} \mathbf{X}_B \\ \mathbf{X}_N \end{pmatrix}$, \mathbf{X}_B 和 \mathbf{X}_N 中

的分量分别称为基变量和非基变量

• 约束条件变为 $\mathbf{B}\mathbf{x}_B + \mathbf{N}\mathbf{x}_N = \mathbf{b}, \mathbf{x}_B \ge 0, \mathbf{x}_N \ge 0$

基本可行解

•
$$\mathbf{x}_N = \mathbf{0}$$
 , $\mathbf{y} \mathbf{x}_B = B^{-1} \mathbf{b}$

$$\mathbf{B}\mathbf{x}_{B} + \mathbf{N}\mathbf{x}_{N} = \mathbf{b}$$
$$\mathbf{x}_{B} \ge 0, \mathbf{x}_{N} \ge 0$$

- $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{pmatrix}$ 为相应于基 \mathbf{B} 的基本解
- 当 $B^{-1}b \ge 0$ 时,称 X 为一基本可行解
- (线性规划基本定理)若线性规划有可行解,必有基本可行解;若线性规划有有界最优解,则必有最优基本可行解

单纯形法

- 由线性规划基本定理,要寻求线性规划的最优解,只需在所有基本可行解中寻找。基本可行解的数目不超过 A 的所有可能的不同的基的数目,因此不超过 [m] 个
- 单纯形法(Simplex Method)的基本思想是先找到一个初始基本可行解,判断是否是最优解。若不是最优解,则转换到另一个基本可行解(它们对应的基只有一列不同),并使目标值下降(或不上升)。重复有限次,可找到最优解或判断解无界

几何意义

- 线性规划的可行域是一个凸多面体(有界或无界),每个基本可行解对应于凸多面体的一个顶点
- 由线性规划基本定理,最优解必在某个顶点处达到
- 单纯形法的几何意义是从凸多面体的一个顶点转到相邻的另一个顶点,直至找到最优解

时间复杂性

- ングランス Zhe Jiang University
 - 数学建模

- 大量实践表明,对多数线性规划问题,单纯形法迭代次数为*m*和*n*的多项式

$$\max \sum_{i=1}^{m} 10^{m-i} x_i$$

s.t.
$$2\sum_{i=1}^{j-1} 10^{j-i} x_i + x_j \le 100^{j-1}, j = 1, \dots, m$$

$$x_i \ge 0, i = 1, \dots, m$$

多项式时间算法

Mパル学 ZheJiang University 数学建模

- 1979年,Khachiyan 给出了求解 线性规划的第一个多项式时间算 法——椭球算法(Ellipsoid algorithm),解决了关于线性规 划问题复杂性的open问题
- 1984年,Karmarkar 给出了实际效果更好的多项式时间算法——内点法(Interior Point Method),在数学规划领域产生了深远的影响

Narendra Karmarkar (1957-) 印度数学家

Leonid Genrikhovich Khachiyan (1952-2005) 苏联数学家

多项式时间算法

Mジナ学 ZheJlang University 数学建模

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 1, Pages 39–56 S 0273-0979(04)01040-7 Article electronically published on September 21, 2004

- E. L. Lawler, The great mathematical sputnik of 1979, *The Mathematical Intelligencer*, 2, 191-198, 1980
- N. K. Karmarkar, A new polynomial-time algorithm for linear programming, *Combinatorica*, 4, 373–395, 1984
- M. H. Wright, The interior-point revolution in optimization: History, recent developments, and lasting consequences, Bulletin of the American Mathematical Society, 42, 39-56, 2005
- D. A. Spielman, S.-T. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time, *Journal of the ACM*, 51, 385–463, 2004

THE INTERIOR-POINT REVOLUTION IN OPTIMIZATION: HISTORY, RECENT DEVELOPMENTS, AND LASTING CONSEQUENCES

MARGARET H. WRIGHT

ABSTRACT. Interior methods are a pervasive feature of the optimization landscape today, but it was not always so. Although interior-point techniques, primarily in the form of barrier methods, were widely used during the 1960s for problems with nonlinear constraints, their use for the fundamental problem of linear programming was unthinkable because of the total dominance of the simplex method. During the 1970s, barrier methods were superseded, nearly to the point of oblivion, by newly emerging and seemingly more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost universally regarded as a closed chapter in the history of optimization.

This picture changed dramatically in 1984, when Narendra Karmarkar announced a fast polynomial-time interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have continued to transform both the theory and practice of constrained optimization. We present a condensed, unavoidably incomplete look at classical material and recent research about interior methods.

1. Overview

REVOLUTION:

(i) a sudden, radical, or complete change;

 (ii) a fundamental change in political organization, especially the overthrow or renunciation of one government or ruler and the substitution of another.¹

松弛

- 设有整数线性规划(IP),去除决策变量 取整数约束后所得线性规划记为(LP), 称(LP)为(IP)的松弛(relaxation)
 - (IP)的可行域包含于(LP)的可行域中
 - (IP)的可行解也是(LP)的可行解,但反之不然
 - (IP)的最优值不优于(LP)的最优值
 - 若(LP)的最优解为整数解,则它也是(IP) 的最优解

min cx

(IP)
$$s.t.$$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x} \in \mathbb{Z}_{+}^{n}$$

min cx

(LP)
$$s.t.$$
 $Ax = b$

 $\mathbf{x} \in \mathbb{R}^n_+$

松弛线性规划

数学建模

min
$$-30x_1 - 36x_2$$

(IP) $s.t.$ $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$ 且为整数
min $-30x_1 - 36x_2$
(LP) $s.t.$ $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$

不存在简单的取整策略将 (LP)的最优解变为(IP)的 最优解

分枝定界法

- (BP) had ambitions to extend the model to deal also with the planning of world movement of oil from source to refinery, but knew that the capacity restrictions on the ships and storage tanks introduced discrete variables into their models
- the solution of this type of problem required electronic computation, but unfortunately LSE at that time did not have any access to such a facility. However, we had no doubt that using the same approach to computing could be achieved, if rather painfully, on desk computers, which were plentifully available. We became quite skilful at doing vector operations by multiplying with the left hand, and adding and subtracting with the right hand on another machine

Ailsa Land Alison Doig

An automatic method of solving discrete programming problems, *Econometrica* 28, 497–520, 1960.

ECONOMETRICA

数学建模

- Branch and Bound (B-B)
 - (分枝)求解整数线性规划 (IP)的松弛(LP),若 其最优解不为整数解,选择 最优解中任一个不取整数值 的变量,在(IP)中分别加 入一对互斥的约束,形成两 个分枝整数线性规划。原 (IP)的任一可行解分属两 个分枝的可行域之一

分枝定界法

- 分枝定界法是求解整数规划最常用的算法之一, 但仍是指数时间算法。采用更为复杂的定界方法 或选择适宜的分枝策略可在一定程度上减少运算 时间
- 用于求解0-1规划等特殊整数规划的分枝定界法有更为简单的表现形式和更好的实际效果
- 分枝定界法的思想可用于其它离散优化问题的求解,分枝、定界的策略与方法和问题特征密切相关

多目标规划

 多目标规划研究变量在满足给 定约束条件下,如何使多个目 标函数同时极小化的问题

$$\min \mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_p(\mathbf{x}))^{\mathrm{T}}$$

(MOP) s.t.
$$\mathbf{g}_i(\mathbf{x}) \geq \mathbf{0}, i = 1, \dots, s,$$

$$\mathbf{h}_{j}(\mathbf{x}) = \mathbf{0}, j = 1, \dots, t.$$

Vilfredo Federico Damaso Pareto (1848-1923) 意大利经济学家

解的类型

- $\mathcal{C} \mathbf{x}^* \in S$
 - 若对任意 $\mathbf{x} \in S$, $f_k(\mathbf{x}^*) \le f_k(\mathbf{x})$, $k = 1, \dots, p$,则称 \mathbf{x}^* 为 (MOP) 的绝对最优解
 - 若不存在 $\mathbf{x} \in S$,使得 $f_k(\mathbf{x}) \leq f_k(\mathbf{x}^*), k = 1, \cdots, p$,且至少存在某个 $k, f_k(\mathbf{x}) < f_k(\mathbf{x}^*)$,则称 \mathbf{x}^* 为(MOP)的Pareto最优解
 - 若不存在 $\mathbf{x} \in S$,使得 $f_k(\mathbf{x}) < f_k(\mathbf{x}^*), k = 1, \dots, p$,则称 \mathbf{x}^* 为 (MOP) 的弱Pareto最优解
- (MOP) 的所有绝对最优解,Pareto最优解,弱 Pareto最优解的集合分别记作 S_a , S_p 和 S_{wp}

解的关系

数学建模

记 Sⁱ 为单目标规划 min f_i(x)的 x∈S
 最优解,则

$$S_a = \bigcap_{i=1}^p S^i$$

$$S^i \subseteq S_{wp}$$

解的关系

- $S_a \subseteq S_p \subseteq S_{wp} \subseteq S$
 - 若 $\mathbf{x}^* \in S_a$,但 $\mathbf{x}^* \notin S_p$,则存在 $\overline{\mathbf{x}} \in S$ 和某个 k,使得 $f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*), f_l(\overline{\mathbf{x}}) \le f_l(\mathbf{x}^*), l \ne k$,与 $\mathbf{x}^* \in S_a$ 矛盾
 - 若 $\mathbf{x}^* \in S_p$, 但 $\mathbf{x}^* \notin S_{wp}$, 则存在 $\overline{\mathbf{x}} \in S$, 使得 $f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*), k = 1, \dots, p$, 与 $\mathbf{x}^* \in S_p$ 矛盾
- 若 $S_a \neq \emptyset$,则 $S_a = S_p$
 - 若 $\mathbf{x}^* \in S_p$,但 $\mathbf{x}^* \notin S_a$,由于 $S_a \neq \emptyset$,存在 $\overline{\mathbf{x}} \in S_a$,使得 $f_k(\overline{\mathbf{x}}) \leq f_k(\mathbf{x}^*), k = 1, \dots, p$,由于 $\mathbf{x}^* \neq \overline{\mathbf{x}}$,存在某个 $k, f_k(\overline{\mathbf{x}}) \neq f_k(\mathbf{x}^*), f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*)$,与 $\mathbf{x}^* \in S_p$ 矛盾

多目标问题解法

- 求(MOP)所有的Pareto最优解或弱Pareto最优解
- 加权法

 - 令 $\Lambda = \{\lambda \mid \lambda > 0, \sum_{k=1}^{p} \lambda_{k} = 1\}$ 线性加权和法 $(SP_{\lambda}) \min_{\mathbf{x} \in S} \sum_{k=1}^{p} \lambda_{k} f_{k}(\mathbf{x})$ 极小化极大法 $(P_{\lambda}) \min_{\mathbf{x} \in S} \max_{1 \le k \le p} \lambda_{k} f_{k}(\mathbf{x})$

 - 对任意 $\lambda \in \Lambda$, (SP_{λ}) 的最优解必是(MOP)的Pareto最 优解 $,(P_{\lambda})$ 的最优解必是(MOP)的弱Pareto最优解

多目标问题解法

- 分层排序法
 - 将目标按重要程度排序,在前一个目标的最优解集中,寻找后一个目标的最优解集,并把最后一个目标的最优解作为(MOP)的解
 - 分层排序法得到的解必为(MOP)的Pareto最 优解
- 带宽容值的分层排序法

多目标问题解法

- 主要目标法
 - 确定一个目标函数,如 $f_1(x)$,为主要目标,对其余 p-1个目标函数 $f_k(x)$,选定一定的界限值 $u_k, k = 2, \dots, p$,求解单目标规划 min $f_1(\mathbf{x})$

$$(SP)$$
 s.t. $f_k(\mathbf{x}) \le u_k, k = 2, \dots, p,$

 $\mathbf{x} \in S$

• (SP)的最优解都是(MOP)的弱Pareto最优解

赛程编制问题

- - 数学建模

- 2018世界杯南美赛区预选赛

 - 10个成员国,4.5个决赛阶段名额 双循环主客场制,9阶段18轮。两轮为一个阶段,每阶段跨时一周,不同阶段相隔一月或数月
- 2002-2014世界杯南美赛区预选赛赛程

	1	2	3	4	5	6	7	8	9
ARG	CHI	VEN	BOL	COL	ECU	BRA	PAR	PER	URU
BOL	URU	COL	ARG	VEN	CHI	PAR	ECU	BRA	PER
BRA	COL	ECU	PER	URU	PAR	ARG	CHI	BOL	VEN
CHI	ARG	PER	URU	PAR	BOL	VEN	BRA	COL	ECU
COL	BRA	BOL	VEN	ARG	PER	ECU	URU	CHI	PAR
			PAR	Committee of the Commit	ALL CONTROL OF THE PROPERTY OF THE PARTY OF	and the second s		MATRICES OF A DATE OF A STATE OF	
									COL
PER	PAR	CHI	BRA	ECU	COL	URU	VEN	ARG	BOL
URU	BOL	PAR	CHI	BRA	VEN	PER	COL	ECU	ARG
VEN	ECU	ARG	COL	BOL	URU	CHI	PER	PAR	BRA

•	Argentina 阿根廷							
	Bolivia 玻利维亚							
(Brazil 巴西							
+	Chile 智利							
	Colombia 哥伦比亚							
-8-	Ecuador 厄瓜多尔							
-0	Paraguay 巴拉圭							
	Peru 秘鲁							
•=	Uruguay 乌拉圭							
	Venezuela 委内瑞拉							

- · 2002-2014世界杯南美赛区预选赛赛程特点
 - 任意两队在前后两个半程各交手一次,两场比赛的主客场互换
 - 镜像双循环 1~10, 2~11, 9~18
 - 不存在多于两场的连续主场与客场
 - 任一队不连续对阵巴西与阿根廷
- 赛程缺点
 - 存在同一阶段内两场比赛均为主场或客场的情况,且各队出现上述情况的次数不均衡
 - 同一阶段内各队先主后客和先客后主的次数不均衡
 - 赛程编制原理不透明,关键比赛存在争议

最后一轮:阿根廷——乌拉圭

ment all the control of the control									
	2002	02-2014							
	主主,	主客	客主						
ARG	0	9	0						
BOL	4	2	3						
BRA	0	0	9						
CHI	2	1	6						
COL	2	6	1						
ECU	2	4	3						
PAR	2	3	4						
PER	2	6	1						
URU	2	4	3						
VEN	2	1_	6						

赛程编制新举措

- 2018世界杯新举措
 - 各成员国提交候选方案,南美洲足联投票决定最终 赛程模板
 - 赛程模板中各队用编号代替,抽签决定编号与球队 对应关系(种子队与非种子队分别抽签)
 - Durán团队为智利足联编制赛程已逾十年,他们设计的方案为智利足联所采纳,并最终在投票中胜出

Alarcón F, Durán G, Guajardo M. Referee assignment in the Chilean football league using integer programming and patterns. *International Transactions in Operational Research*, 21: 415-438, 2014.

Bonomo F, Cardemil A, Durán G, et al. An application of the traveling tournament problem: The Argentine volleyball league. *Interfaces*, 42: 245-259, 2012.

Durán G, Guajardo M, Wolf-Yadlin R. Operations research techniques for scheduling Chile's second division soccer league. *Interfaces*, 42: 273-285, 2012.

Guillermo Durán
Professor of
Department of
Mathematics and
Calculus Institute
Faculty of Exact and
Natural Sciences
University of Buenos
Aires

镜像赛程

- n 支队伍的单循环赛程,全程所有队伍总break数至少为 n-2
 - 用形如 HAH...HA,长度为 n-1(奇数)的字符串表示每支队伍的主客 场安排,称为模式
 - 任何两支队伍的模式互不相同
 - 只有HAHA...HAH 和 AHAH...AHA 两种模式没有break, 其它模式的 break数至少为 1
- n 支队伍的镜像双循环赛程,全程所有队伍总break数至少为 3n-6
 - 若半程没有break,则全程也没有break,这样的队伍至多有两支
 - 若半程只有一个break,由于模式字符串长度为奇数,在前后半程之间有一个break
 - 若半程有至少两个break,全程break数至少为4
 - 总break数至少为 3(n-2) = 3n-6

	1	2	3	•••	9	10	11	12	•••	18	
镜像 (mirror)	1	2	3	•••	9	1	2	3	<u>.</u>	9	意大利

单循环赛程

数学建模

			~	1 1	
. 20,808(0)	1	2	3	4	5
1	-6	+3	- 5	+2	_4
2	- 5	+6	+4	-1	+3
3	+4	$\overline{-1}$	-6	+5	-2
4	-3	+5	-2	+6	+1)
5	+2	-4	+1(-3	-6
6	+1	-2	+3	-4	+5

镜像赛程

- 根据世界杯南美赛区预选赛的特点,不必考虑连续两场比赛之间的 break,只需考虑同一阶段两场比赛之间的double-round break
- 10支队的镜像赛程的double-round break数至少为16 如何证明?
 - 若半程没有break,则全程也没有break,这样的队伍至多有两支。其他 队伍半程至少有1个break,全程至少有2个double-round break
 - 前后半程之间若有break,必为double-round break
 - 若前半程的break不为double-round,后半程的break必为double-round

	1	2	3	•••	9	10	11	12	•••	17	18	, and the
镜像 (mirror)	1:	2	3	•••	9	1	2	3	•••	8	9	意、德
法制(French)	1	2	3	•••	9	2	3	4	•••	9	1	法、俄
英制(English)	1	2	3	•••	9	9	1	2	•••	7	8	奥
逆向(Inverted)	1	2	3	•••	9	9	8	7	•••	2	1	瑞士

- - 每轮各队恰有一场比赛

$$\sum_{i=0}^{10} \left(x_{ijk} + x_{jik} \right) = 1, \quad j = 1, \dots, 10, k = 1, \dots, 18$$

• 任意两队在前后半程各交手一次

$$\sum_{k=1}^{9} \left(x_{ijk} + x_{jik} \right) = 1, \ i, j = 1, \dots, 10$$

$$\sum_{k=10}^{18} \left(x_{ijk} + x_{jik} \right) = 1, \ i, j = 1, \dots, 10$$

• 任意两队之间的两场比赛中每队均有一个主场

$$\sum_{k=1}^{18} x_{ijk} = 1, \quad i, j = 1, \dots, 10, i \neq j$$

- 约束条件
 - 法制规则

$$x_{i,j,1} = x_{j,i,18}, x_{i,j,k} = x_{j,i,k+8}, k = 2, \dots, 9, i, j = 1, \dots, 10$$

- 任一队不连续与种子队(用 I_s 表示)对阵 $\sum_{j \in I_s} (x_{ijk} + x_{jik} + x_{i,j,k+1} + x_{j,i,k+1}) \le 1, i \in I \setminus I_s, k = 1, \dots, 17$
- 各支队伍各阶段先主后客(先客后主)的次数尽可能均衡
- 同一阶段出现两个客场的次数尽可能少

• (辅助)决策变量

$$y_{il} = \begin{cases} 1 & \text{第} l \text{ 阶段队} i \text{ 两场比赛为先主后客} \\ 0 & \text{其他} \end{cases}$$

 $i = 1, \dots, 10, l = 1, \dots, 9$

• 两组决策变量之间的联系

$$y_{il} = 1$$

队 i 在第 2l-1 轮为主场作战,第 2l 轮为主场作战

存在
$$j_1$$
,使得 $x_{i,j_1,2l-1} = 1$,
存在 j_2 ,使得 $x_{j_2,i,2l} = 1$

$$\sum_{i=1}^{10} x_{i,j,2l-1} = 1, \sum_{i=1}^{10} x_{j,i,2l} = 1$$

$$\sum_{i=1}^{10} \left(x_{i,j,2l-1} + x_{j,i,2l} \right) \le 1 + y_{il}, \quad i = 1, \dots, 10, l = 1, \dots, 9$$

$$y_{il} \le \sum_{j=1}^{10} x_{i,j,2l-1}, i = 1, \dots, 10, l = 1, \dots, 9$$

$$y_{il} \le \sum_{j=1}^{10} x_{j,i,2l}, i = 1, \dots, 10, l = 1, \dots, 9$$

$$4 \le \sum_{l=1}^{9} y_{il} \le 5, \quad i = 1, \dots, 10$$

• (辅助)决策变量

$$w_{il} = \begin{cases} 1 & \text{第} l \text{ 阶段队} i \text{ 两场比赛均为客场} \\ 0 & \text{其他} \end{cases}$$

 $i = 1, \dots, 10, l = 1, \dots, 9$

• 两组决策变量之间的联系

$$w_{il} = 1$$

$$\sum_{j=1}^{10} \left(x_{j,i,2l-1} + x_{j,i,2l} \right) \le 1 + w_{il}, \quad i = 1, \dots, 10, l = 1, \dots, 9$$

队 i 在第 2l-1 轮和第 2l 轮均为客场作战

存在
$$j_1$$
, 使得 $x_{j_1,i,2l-1} = 1$,
存在 j_2 , 使得 $x_{j_2,i,2l} = 1$

$$w_{il} \le \sum_{j=1}^{10} x_{j,i,2l-1}, i = 1, \dots, 10, l = 1, \dots, 9$$

$$w_{il} \le \sum_{j=1}^{10} x_{j,i,2l}, \ i = 1, \dots, 10, l = 1, \dots, 9$$

• 目标函数: $\min \sum_{i=1}^{10} \sum_{l=1}^{9} w_{il}$

最终赛程

	1	2	3	4	5	6	7	8	9
ARG	ECU	PAR	BRA	COL	CHI	BOL	URU	VEN	PER
BOL	URU	ECU	VEN	PAR	COL	ARG	PER	CHI	BRA
BRA	CHI	VEN	ARG	PER	URU	PAR	ECU	COL	BOL
CHI	BRA	PER	COL	URU	ARG	VEN	PAR	BOL	ECU
COL	PER	URU	CHI	ARG	BOL	ECU	VEN	BRA	PAR
ECU	ARG	BOL	URU	VEN	PAR	COL	BRA	PER	CHI
PAR	VEN	ARG	PER	BOL	ECU	BRA	CHI	URU	COL
PER	COL	CHI	PAR	BRA	VEN	URU	BOL	ECU	ARG
URU	BOL	COL	ECU	CHI	BRA	PER	ARG	PAR	VEN
VEN	PAR	BRA	BOL	ECU	PER	CHI	COL	ARG	URU

排名	ø		٠			Ł	÷	X0		^
积分	41	31	28	27	26	26	24	20	14	12
净胜球	30	12	3	2	**1	-1	-6	-3	-22	-16

	2018								
	主主,	主客	客主						
ARG	0	5	4						
BOL	0	5	4						
BRA	0	4	5						
CHI	0	5	4						
COL	0	5	4						
ECU	0	4	5						
PAR	0	4	5						
PER	0	4	5						
URU	0	4	5						
VEN	0	5	4						

0-1变量

- 仅当0-1变量 y = 1时,n 个0-1变量 x_1, x_2, \dots, x_n 中的任一个才能取值 1
 - $\sum x_j \le ny$
- $n ext{ } extstyle ^{J=1}_{n}$ **1** 0 **2** 0 **3** 0 **2** 0 **3** 0 **4** 0 **4** 0 **4** 0 **5** 0 **6** 0 **7** 0 **1** 0 **9** 0 **1**
 - $\sum_{j=1}^{n} x_{j} = 1$, 且取值为1的那个变量的足标为 $\sum_{j=1}^{n} jx_{j}$
- 整变量 0≤y≤a 是否取非零值
 - 0-1变量 w 满足 w ≤ y ≤ aw
- 两个整变量 y, z, 当 y > z 时, **0-1**变量 w = 1
 - $w = 1 \Leftrightarrow y \ge z + 1, w = 0 \Leftrightarrow y \le z$
 - $(1+M)W M \le y z \le Mw$

设施选址

- 设施选址(facility location)
 - 现有n个居民小区需提供某项服务,有m处地点可用于开设服务点。在地点i开设服务点所需开设费用为 f_i , $i=1,\cdots,m$ 。设置在地点i的服务点为小区j提供服务所需的运营费用为 c_{ij} , $i=1,\cdots,m$, $j=1,\cdots,n$ 。现需选择若干地点开设服务点,并确定每个服务点的服务对象,使每个小区至少有一个服务点为其提供服务,并且总费用最小

- 问题分析 y_i x
 - 决策变量: 是否开设、服务对象
 - 约束条件: 小区全覆盖、先开设再服务

用对、用好、用活0-1变量

Zvi, D, Hamacher, HW (eds.), Facility Location: Applications and Theory. Springer, 2001.

