MATH 503: Mathematical Statistics

Lecture 2: Dist. Theory, and Estimation

Readings: Sections 5.4-5.5, 6.3, 7.1-7.2

Kimberly F. Sellers

Department of Mathematics and Statistics

Today's Topics

- Delta Method
- Order Statistics
- (Point) Estimation Theory
 - Method of moments
 - Maximum likelihood estimation

Intro. to Statistical Inference

- Setup: have random variable X with unknown pdf (or pmf):
 - 1. f(x) [or p(x)] completely unknown
 - 2. f(x) [or p(x)] known, but based on θ unknown
- Goal: estimate θ
- Estimation based on sampling

Random Sample

- The random variables $X_1, ..., X_n$ constitute a random sample on a random variable X if they are independent and identically distributed (i.e. have the same distribution).
- Implications:

$$F_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n F(x_i)$$

$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f(x_i)$$

Statistic

- Suppose the n random variables $X_1, ..., X_n$ constitute a sample from the distribution of a random variable X. Then any function $T = T(X_1, ..., X_n)$ of the sample is a <u>statistic</u>.
- T is a random variable
- T is <u>unbiased</u> $\Leftrightarrow E(T) = \theta$
- T is consistent $\Leftrightarrow T \xrightarrow{p} \theta$
- $T(X_1, ..., X_n)$ point estimator $[T(x_1, ..., x_n)]$ point estimate] of θ

Exercise

Let $X_1, ..., X_n$ be iid $N(\mu, \sigma^2)$. Show that \overline{X} and S^2 are both unbiased estimators for μ and σ^2 , respectively.

Delta Method

- Goal: to derive large sample moments of a transformation of a (consistent) statistic
- **Theorem**: Let $\{Y_n\}$ be a sequence of random variables such that $\sqrt{n}(Y_n \theta) \stackrel{d}{\rightarrow} N(0, \sigma^2)$. Suppose the function g is differentiable at θ and $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(Y_n) - g(\theta)) \stackrel{d}{\rightarrow} N(0, \sigma^2(g'(\theta))^2)$$

Slutsky's Theorem

• Let X_n , X, A_n , B_n be random variables and let a and b be constants. If $X_n \overset{d}{\to} X$, $A_n \overset{p}{\to} a$ and $B_n \overset{d}{\to} b$, then

$$A_n + B_n X_n \stackrel{d}{\to} a + bX$$
.

Delta Method Derivation

- Let T be a statistic s.t. $E(T) = \mu$ and $V(T) = \sigma^2$. We want the moments for g(T), where g is twice differentiable function
- Taylor expansion gives

$$g(t) = g(\mu) + g'(\mu)(t - \mu) + R_2(a),$$

where $R_2(a) = \frac{1}{2}g''(a)(t - \mu)^2$ for some $a \in (t, \mu).$

Delta Method Derivation (cont.)

By consistency, remainder vanishes

$$\Rightarrow g(T) = g(\mu) + g'(\mu)(T - \mu),$$

•
$$E(g(T)) = g(\mu) + g'(\mu)E(T - \mu)$$

= $g(\mu)$

•
$$V(g(T)) = E[g(T) - g(\mu)]^2$$

= $E[g'(\mu)(T - \mu)]^2$
= $[g'(\mu)]^2V(T)$

Delta Method Derivation (cont.)

 Slutsky's Thm ⇒ asymptotic distribution of transformations of statistics of interest

• **Theorem**: Let $\{Y_n\}$ be a sequence of random variables such that $\sqrt{n}(Y_n - \theta) \stackrel{d}{\to} N(0, \sigma^2)$. Suppose the function g is differentiable at θ and $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(Y_n) - g(\theta)) \stackrel{d}{\to} N(0, \sigma^2(g'(\theta))^2)$$

• Let X_i , i = 1,2,... be independent Bernoulli(p) random variables and let $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then,

$$\sqrt{n}(Y_n-p) \stackrel{d}{\to} N(0,p(1-p))$$

• Use the delta method to find the asymptotic distribution of $log(Y_n)$.

• Let $X_1, \dots, X_n \sim \text{Poisson}(\lambda)$ iid. By CLT, $\sqrt{n}(\overline{X} - \lambda) \overset{d}{\to} N(0, \lambda)$

• Use the delta method to determine the asymptotic distribution using the function, $g(x) = \exp(.5x)$.

Order Statistics

• Consider ordering random sample X_1, \dots, X_n , by denoting $X_{(1)} < X_{(2)} < \dots < X_{(n)}$

 $X_{(1)} = \text{minimum of } X_i s$

 $X_{(n)} = \text{maximum of } X_i \text{s}$

 $X_{(k)} = k$ th order statistic (i.e. kth smallest) of X_i s

• Assume X_i s are continuous with density f(x), and cdf F(x). What are the pdf and cdf for the order statistics?

CDF and PDF for $X_{(n)}$

CDF and PDF for $X_{(1)}$

More generally....

$$F_{X_{(k)}}(x) = \sum_{j=k}^{n} {n \choose j} F^{j}(x) [1 - F(x)]^{n-j}$$

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)! (n-k)!} F^{k-1}(x) [1 - F(x)]^{n-k} f(x)$$

• Thm: The joint pdf of $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ is given by

$$f_{X_{(1)},X_{(2)},...,X_{(n)}}(x_{(1)},x_{(2)},...,x_{(n)}) = n! \prod_{i=1}^{n} f(x_{(i)}), \quad x_{(1)} < \cdots < x_{(n)}$$

Estimation Theory

- Two common approaches to estimating θ
 - Method of moments (MOM)
 - Maximum likelihood estimation (MLE)

Method of Moments

- Applies only for X_1, \dots, X_n iid with distribution depending on unknown parameter θ
- Idea:

$$E(X) = g(\theta)$$
, thus $g(\tilde{\theta}) = \bar{X}$.
Solve for $\tilde{\theta}$.

 More generally, find first nontrivial moment to determine estimator

• Let $X_1, ..., X_n$ iid ~ Unif $(0, \theta)$. Find the MOM for θ .

• Let $X_1, ..., X_n$ iid ~ Beta $(\theta + 1,1)$. Find the MOM for θ .

• Let $X_1, ..., X_n$ iid ~ Unif $(-\theta, \theta)$. Find the MOM for θ .

Notes Regarding MOMs

• For $X_1, ..., X_n$ iid with distribution depending on unknown parameters $\theta = (\theta_1, ..., \theta_k)$

• Let $X_1, ..., X_n$ iid ~ Gamma (α, β) . Find the MOM for α, β .

• Let $X_1, ..., X_n$ iid ~ Beta (α, β) . Find the MOM for α, β .

Maximum Likelihood Estimation

- Let $X_1, ..., X_n$ iid ~ $f(x; \theta), \theta \in \Omega$ unknown scalar
- Let $L(\theta; \mathbf{x}) = L(\theta; x_1, ..., x_n) = \prod_{i=1}^n f(x_i; \theta)$.
- $L(\theta; x)$ is called a <u>likelihood function</u>
- The estimator, $\hat{\theta}$, that maximizes $L(\theta; x)$ over all θ is called the maximum likelihood estimator of θ .
- When dealing with differentiation where $L(\theta; x) \neq 0$, it is generally better to consider

$$\frac{L'(\theta)}{L(\theta)} = 0$$

$$\underbrace{\frac{\partial}{\partial \theta}(\log L(\theta))}$$

Steps for Determining MLEs*

- 1. Determine $L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f(x_i; \theta)$
- 2. Transform to get $lnL(\theta; x)$.
- 3. Differentiate $\ln L(\theta)$ wrt θ and set equal to 0. These are sometimes referred to as the estimating equation(s).
- 4. Solve for θ . This solution is then labeled as the MLE, $\hat{\theta}$.

*Note: this algorithm doesn't work when support space depends on θ .

• Let $X_1, ..., X_n$ iid ~ Exponential(θ). Find the MLE of θ .

Let $X_1, ..., X_n$ iid ~ $N(\theta, \sigma^2)$, σ^2 known. Find the MLE of θ .

Let $X_1, ..., X_n$ iid ~ Unif $(0, \theta)$. Find the MLE of θ .

Theorem 1

- Let θ₀ be the true parameter. Under the following regularity conditions, namely
 - 1. Pdfs are distinct, i.e. $\theta \neq \theta' \Rightarrow f(x_i; \theta) \neq f(x_i; \theta')$
 - 2. Pdfs have common support for all θ

$$\lim_{n\to\infty} P_{\theta_0}[L(\theta_0, \boldsymbol{X}) > L(\theta, \boldsymbol{X})] = 1, \text{ for all } \theta \neq \theta_0$$

• The point: asymptotically, $L(\theta)$ is maximized at the true value θ_0

Proof to Theorem 1

$$L(\theta_0, \mathbf{X}) > L(\theta, \mathbf{X})$$

$$\Leftrightarrow \prod_{i=1}^n f(x_i; \theta_0) > \prod_{i=1}^n f(x_i; \theta)$$

$$\Leftrightarrow \sum_{i=1}^n \log f(x_i; \theta_0) > \sum_{i=1}^n \log f(x_i; \theta)$$

$$\Leftrightarrow \sum_{i=1}^n [\log f(x_i; \theta) - \log f(x_i; \theta_0)] < 0$$

$$\Leftrightarrow \frac{1}{n} \sum_{i=1}^n \left[\log \left(\frac{f(x_i; \theta)}{f(x_i; \theta_0)} \right) \right] < 0$$

Proof to Theorem 1 (cont.)

$$\frac{1}{n} \sum_{i=1}^{n} \left[\log \left(\frac{f(x_i; \theta)}{f(x_i; \theta_0)} \right) \right] \xrightarrow{p} E_{\theta_0} \left[\log \left(\frac{f(x_i; \theta)}{f(x_i; \theta_0)} \right) \right] \\
\leq \log E_{\theta_0} \left(\frac{f(x_i; \theta)}{f(x_i; \theta_0)} \right) \\
= \log \left[\int \frac{f(x_i; \theta)}{f(x_i; \theta_0)} f(x_i; \theta_0) dx \right] \\
= 0.$$

Theorem 2

Let $X_1, ..., X_n$ iid with pdf $f(x; \theta), \theta \in \Omega$. For a specified function g, let $\eta = g(\theta)$ be a parameter of interest. Suppose $\hat{\theta}$ is the mle of θ . Then $g(\hat{\theta})$ is the mle of $\eta = g(\theta)$.

Proof: For g a 1-1 function, $\max I(a(\theta)) = \max I(n) = \max I(a^{-1}(n))$

$$\max L(g(\theta)) = \max_{\eta = g(\theta)} L(\eta) = \max_{\eta} L(g^{-1}(\eta)).$$

Maximum occurs when $g^{-1}(\eta) = \hat{\theta} \Rightarrow \hat{\eta} = g(\hat{\theta})$. For g not 1-1, define set $g^{-1}(\eta) = \{\theta \colon g(\theta) = \eta\}$. Maximum occurs at $\hat{\theta}$, and domain of g is Ω which covers $\hat{\theta}$. Thus, $\hat{\theta}$ lies in (only one of) the preimages. Thus, choose $\hat{\eta}$ s.t. $g^{-1}(\hat{\eta})$ is that unique preimage containing $\hat{\theta} : \hat{\eta} = g(\hat{\theta})$.

Theorem 3

- Assume $X_1, ..., X_n$ satisfy the following regularity conditions, where θ_0 is the true parameter:
 - 1. Pdfs are distinct, i.e. $\theta \neq \theta' \Rightarrow f(x_i; \theta) \neq f(x_i; \theta')$
 - 2. Pdfs have common support for all θ
 - 3. The point θ_0 is an interior point in Ω
- Further, assume $f(x; \theta)$ differentiable wrt $\theta \in \Omega$. Then the likelihood equation has a solution $\hat{\theta}$ s.t. $\hat{\theta} \stackrel{p}{\rightarrow} \theta_0$
- Corollary: If $\hat{\theta}$ is unique, then $\hat{\theta}$ is a consistent estimator of θ_0 .