Feuille d'exercices n° 13 : correction

Exercice 1. Pour chacune des fonctions suivantes, déterminer le domaine de dérivabilité et étudier l'existence de tangentes (éventuellement verticales) aux points posant problème.

1.
$$f(x) = (x^2 - 1)\arccos(x)$$
 2. $f(x) = \sqrt{x}e^{-x}$

2.
$$f(x) = \sqrt{x}e^{-x}$$

3.
$$f(x) = (1-x)\sqrt{1-x^2}$$

Solution.

1. f(x) existe si et seulement si $-1 \leqslant x^2 \leqslant 1 \Leftrightarrow x^2 \leqslant 1 \Leftrightarrow x \in [-1,1]$. $\boxed{\mathcal{D}_f = [-1,1]}$. f est dérivable comme produit de fonctions dérivables pour les x vérifiant $: -1 < x^2 < 1 \Leftrightarrow x$ $x \in]-1,1[.$

En x = 1: $\frac{f(x) - f(1)}{x - 1} = \frac{(x^2 - 1)\arccos(x)}{x - 1} = (x + 1)\arccos(x) \xrightarrow[x \to 1]{} 0.$ Donc f est dérivable en 1. En x = -1: $\frac{f(x) - f(-1)}{x + 1} = \frac{(x^2 - 1)\arccos(x)}{x + 1} = (x - 1)\arccos(x) \xrightarrow[x \to -1]{} -2\pi.$ Donc f est dérivable en -1.

2. $\mathcal{D}_f = \mathbb{R}_+$. f est dérivable sur $]0, +\infty[$ comme produit de fonctions dérivables.

En x = 0: $\frac{f(x) - f(0)}{x - 0} = \frac{e^{-x}}{\sqrt{x}} \xrightarrow[x \to 0^+]{} + \infty$.

Donc f n'est pas dérivable en zéro. Elle admet une tangente horizontale en x = 0.

3. f(x) existe si et seulement si : $1 - x^2 \ge 0 \Leftrightarrow x^2 \le 1 \Leftrightarrow -1 \le x \le 1$. $\boxed{\mathcal{D}_f = [-1, 1]}$. f est dérivable comme produit de fonctions dérivables pour les x vérifiant : $0 < 1 - x^2 \Leftrightarrow x \in]-1, 1[$. En $x = 1 : \frac{f(x) - f(1)}{x - 1} = -\sqrt{1 - x^2} \xrightarrow[x \to 1]{} 0$. Donc f est dérivable en 1. En $x = -1 : \frac{f(x) - f(-1)}{x + 1} = (1 - x) \frac{\sqrt{1 - x}}{\sqrt{1 - x}} \xrightarrow[x \to -1^+]{} +\infty$. Donc f n'est dérivable en -1. Elle y admet

une tangente verticale.

Finalement, f est dérivable sur]-1,1].

Exercice 2. Les fonctions suivantes sont-elles prolongeables par continuité aux bornes de leur domaine de définition? Si oui, étudier la dérivabilité de la fonction prolongée. Et si oui, la fonction est-elle \mathcal{C}^1 ?

$$1. \ f(x) = \frac{x\sqrt{x}}{e^x - 1}$$

$$2. \ f(x) = xe^{\frac{1}{\ln(x)}}$$

Solution.

1. $\mathcal{D}_f = \mathbb{R}_+^*$. En x = 0: $\lim_{x \to 0} \frac{x\sqrt{x}}{e^x - 1} = 0$. Donc f est prolongeable par continuité en x = 0 par la valeur f.

On note \tilde{f} la fonction prolongée.

 \hat{f} est dérivable sur \mathbb{R}_{+}^{*} comme quotient de fonctions dérivables.

En
$$x = 0$$
: $\frac{\tilde{f}(x) - \tilde{f}(0)}{x - 0} = \frac{x}{e^x - 1} \frac{1}{\sqrt{x}} \underset{x \to 0^+}{\longrightarrow} +\infty$. \tilde{f} n'est pas dérivable en $x = 0$.

2. $\mathcal{D}_f =]0, 1[\cup]1, +\infty[$. En x = 1: $\lim_{x \to 1^+} f(x) = +\infty$. Donc f n'est pas prolongeable par continuité en x = 1.

En x = 0: $\lim_{x \to 0} f(x) = 0$. Donc f est prolongeable par continuité en x = 0 par la valeur f.

On note \tilde{f} la fonction prolongée.

 \widetilde{f} est dérivable sur \mathcal{D}_f comme composée de fonctions dérivables.

En
$$x = 0$$
: $\frac{\tilde{f}(x) - \tilde{f}(0)}{x - 0} = \exp(\frac{1}{\ln x}) \xrightarrow[x \to 0^+]{1}$. \tilde{f} est dérivable en $x = 0$ et $\tilde{f}'(0) = 1$.

En
$$x = 0$$
: $\frac{\tilde{f}(x) - \tilde{f}(0)}{x - 0} = \exp(\frac{1}{\ln x}) \xrightarrow[x \to 0^+]{1}$. \tilde{f} est dérivable en $x = 0$ et $\tilde{f}'(0) = 1$. $\forall x \neq 0$ et $x \neq 1$, $f'(x) = \exp(1/\ln x)(1 - \frac{1}{(\ln x)^2} \xrightarrow[x \to 0^+]{1} = \tilde{f}'(0)$. Donc \tilde{f}' est continue en 0 : elle est \mathcal{C}^1 en 0 .

Exercice 3. Soit $f: x \mapsto 1 + |x| \sin x$.

- 1. Montrer que f est continue, dérivable sur \mathbb{R} . Déterminer f'(x) pour tout $x \in \mathbb{R}$.
- 2. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
- 3. f est-elle de classe C^2 sur \mathbb{R} ?

Solution.

1. f est continue sur \mathbb{R} comme somme de fonctions continues.

f est dérivable sur \mathbb{R}^* comme somme de fonctions dérivables.

En
$$x = 0$$
: $\frac{f(x) - f(0)}{x} = \frac{|x|}{x} \sin x \xrightarrow[x \to 0]{} 0$. (bornée × limite nulle). Donc f est dérivable en 0. Finalement, f est dérivable en 0 et $f'(0) = 0$. Pour $x > 0$, $f'(x) = x \cos x + \sin x$ et pour $x < 0$, $f'(x) = -x \cos x - \sin x$.

Pour
$$x > 0$$
, $f'(x) = x \cos x + \sin x$ et pour $x < 0$, $f'(x) = -x \cos x - \sin x$.

2. f' est continue sur \mathbb{R}^* comme somme de fonctions continues.

En
$$x = 0$$
: pour $x > 0$, $f'(x) = x \cos x + \sin x \longrightarrow 0 = f'(0)$

En
$$x = 0$$
: pour $x > 0$, $f'(x) = x \cos x + \sin x \xrightarrow[x \to 0^+]{} 0 = f'(0)$
Pour $x < 0$, $f'(x) = -x \cos x - \sin x \xrightarrow[x \to 0^-]{} 0 = f'(0)$.

Donc
$$f'$$
 est continue sur \mathbb{R} . On vient donc de démontrer que f est \mathcal{C}^1 sur \mathbb{R} .

3. Pour x > 0, $f''(x) = 2\cos x - x\sin x \xrightarrow[x \to 0^+]{} 2$ et pour x < 0, $f'(x) = -2\cos x + x\sin x \xrightarrow[x \to 0^-]{} -2$. On constate que les limites sont différentes. Donc f'' ne peut pas être continue en 0: \boxed{f} n'est pas C^2

Exercice 4.

- 1. Déterminer la dérivée k-ième de $f: x \mapsto x^n$ pour $n \in \mathbb{N}$ et $g: x \mapsto \ln x$.
- 2. En déduire la dérivée p-ième $h: x \mapsto x^{p-1} \ln x$.

Solution.

- 1. $f^{(k)}(x) = \frac{n!}{(n-k)!}x^{n-k}$ si $k \le n$ et 0 sinon. (conjecture à démontrer par récurrence) $g'(x) = x^{-1}$ et $g^{(k)} = (-1)^{k-1}x^{-k}(k-1)!$ pour $k \ge 1$. (conjecture à démontrer par récurrence)
- 2. On pose $f(x) = x^{p-1}$ et $g(x) = \ln x$. f et g sont C^{∞} sur \mathbb{R}_+^* . D'après la formule de Leibniz :

$$h^{(p)} = \sum_{k=0}^{p} {p \choose k} g^{(k)} f^{(p-k)}$$
. Pour $k = 0$, $g^{(0)} = \ln$ et $f^{(p)} = 0$. On peut donc retirer le terme en $k = 0$.

$$h^{(p)} = \sum_{k=1}^{p} \binom{p}{k} g^{(k)} f^{(p-k)} = \sum_{k=1}^{p} \binom{p}{k} (-1)^{k-1} x^{-k} (k-1)! \times \frac{(p-1)!}{(p-1-(p-k))!} x^{p-1-(p-k)}$$

$$h^{(p)}(x) = \sum_{k=1}^{p} \binom{p}{k} (-1)^{k-1} x^{-1} (p-1)! = -\frac{(p-1)!}{x} \sum_{k=1}^{p} \binom{p}{k} (-1)^k = -\frac{(p-1)!}{x} ((1-1)^p - 1)$$

(le -1 est là parce que la somme démarre à 1, alors que dans la formule du binome de Newton, la somme doit commencer à 0).

$$h^{(p)}(x) = \frac{(p-1)!}{x}.$$

Exercice 5. Soit n un entier naturel non nul.

- 1. Déterminer la dérivée k-ième de $f(x) = x^n$.
- 2. Déterminer la dérivée *n*-ième de $g(x) = x^{2n}$.
- 3. Pour calculer la dérivée n-ième de g, appliquer la formule de Leibniz à $g(x) = f(x) \times f(x)$. En déduire

$$\sum_{p=0}^{n} \binom{n}{p}^2 = \binom{2n}{n}.$$

Solution.

- 1. $f^{(k)}(x) = \frac{n!}{(n-k)!} x^{n-k}$ si $k \le n$ et 0 sinon. (conjecture à démontrer par récurrence)
- 2. Donc $g^{(n)}(x) = \frac{(2n)!}{(2n-n)!} x^{2n-n} \cdot \left| g^{(n)}(x) = \frac{(2n)!}{(n)!} x^n \right|$
- 3. f est \mathcal{C}^{∞} sur $\mathbb{R}.$ D'après la formule de Leibniz :

$$g^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} f^{(n-k)}.$$

$$g^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{(n-k)!} x^{n-k} \frac{n!}{(n-(n-k))!} x^{n-(n-k)} = \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{(n-k)!} x^{n} \frac{n!}{k!}.$$

$$g^{(n)}(x) = x^{n} n! \sum_{k=0}^{n} \binom{n}{k}^{2}.$$

Or on connait $g^{(n)}$. Donc on obtient l'égalité :

$$\frac{(2n)!}{(n)!}x^n = x^n n! \sum_{k=0}^n \binom{n}{k}^2.$$
Après division :
$$\sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}.$$

Exercice 6. Soit f définie par $f(x) = \exp\left(-\frac{1}{x^2}\right)$ si $x \neq 0$ et 0 si x = 0.

- 1. Montrer que f est continue sur \mathbb{R} .
- 2. Montrer que f est dérivable sur \mathbb{R} et que f' est continue.
- 3. Montrer que pour tout $n \in \mathbb{N}$, $f^{(n)}$ existe et est continue.
- 4. En déduire que f est C^{∞} .

Solution.

1. f est continue sur \mathbb{R}^* comme composée de fonctions continues.

$$f$$
 est continue sur \mathbb{R}^* comme composée de fonctions continues.
En $x=0$: $\lim_{x\to 0^-}0=0=f(0)$ et $\lim_{x\to 0}\exp\left(-\frac{1}{x^2}\right)=0=f(0)$. Donc f est continue en 0 . Finalement, f est continue sur \mathbb{R} .

2.
$$f$$
 est dérivable sur \mathbb{R}^* comme composée de fonctions dérivables. Si $x \neq 0$, : $f'(x) = \frac{2}{x^3} \exp\left(-\frac{1}{x^2}\right)$

En x = 0: $\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{2}{x^3} \exp\left(-\frac{1}{x^2}\right) = 0$ par croissance comparée

Donc f' admet une limite en 0 qui vaut

On sait que f est continue sur \mathbb{R} , dérivable sur \mathbb{R}^* avec $\lim_{x\to 0} f'(x)$ qui existe.

Par théorème, f'(0) existe et vaut f'(0) = 0. Donc f est dérivable sur \mathbb{R}

f' est continue sur \mathbb{R}^* comme composée de fonction continues. Comme $\lim_{x\to 0} f'(x) = f'(0)$, f' est continue sur \mathbb{R}

3. Par récurrence. On note \mathcal{P}_n : " $\forall x \neq 0, f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} \exp(-1/x^2)$ avec P_n polynôme".

Montrons par récurrence sur n que \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : n = 0. On prend $P_0 = 1$.

Hérédité : soit $n \in \mathbb{N}$. On suppose que \mathcal{P}_n est vérifié.

 $f^{(n)}$ est dérivable sur \mathbb{R}^* comme composée de fonctions dérivables.

Si
$$x \neq 0$$
,: $f^{(n+1)}(x) = \exp\left(-\frac{1}{x^2}\right) \left(\frac{P_n(x)}{2x^{3n+3}} + \frac{P'_n(x)}{x^{3n}} + \frac{-2nP_n(x)}{x^{3n+1}} = \exp\left(-\frac{1}{x^2}\right) \frac{x^3P_n(x) - 3nx^2P_n(x) + 2P_n(x)}{x^3n + 1}$
En posant $P_{n+1}(x) = x^3P_n(x) - 3nx^2P_n(x) + 2P_n(x)$, on obtient $\mathcal{P}_{n+1}(x)$.

D'après le principe de récurrence, $\forall x \neq 0, f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} \exp(-1/x^2)$ avec P_n polynôme. Par croissance comparée, on a : $\lim_{x\to 0} f^{(n)}(x) = 0$.

Par récurrence, on montre que pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = 0$, que $f^{(n)}$ est continue en 0, dérivable en zéro et $f^{n+1}(0) = 0$.

4. Par définition : f est \mathcal{C}^{∞} .

Exercice 7. On considère la fonction $f: x \mapsto e^{-x^2}$.

- 1. Calculer f' et f''.
- 2. Montrer que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n de degré n tel que : $f^{(n)}(x) = P_n(x)e^{-x^2}$. Établir une relation entre P_{n+1}, P_n et P'_n .
- 3. Déterminer P_1, P_2 et déterminer le monôme de plus haut degré de P_n .
- 4. Montrer la relation (R): f'(x) = -2x f(x).

En dérivant (R), déterminer une relation entre $f^{(n+1)}$, $f^{(n)}$ et $f^{(n-1)}$.

En déduire : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, \quad P_{n+1}(x) = -2xP_n(x) - 2nP_{n-1}(x).$

5. Montrer que $\forall n \in \mathbb{N}^*, P'_n = -2nP_{n-1}$.

Montrer que le polynôme P_n vérifie l'équation diffréntielle : $P''_n(x) - 2xP'_n(x) + 2nP_n(x) = 0$.

- 6. Déterminer $\lim_{x \to +\infty} f^{(n)}(x)$ et $\lim_{x \to -\infty} f^{(n)}(x)$.
- 7. Montrer par récurrence que P_n admet n racines réelles distinctes.

Exercice 8. En utilisant l'égalité des accroissements finis, déterminer $\lim_{t \to +\infty} t^2 \left(e^{\frac{1}{t}} - e^{\frac{1}{t+1}} \right)$

Solution. On pose $f(x) = e^x$. Pour $t \neq 0$, f est définie et dérivable sur $\left[\frac{1}{t+1}, \frac{1}{t}\right]$.

D'après l'égalité des accroissements finis appliquées à f sur $\left[\frac{1}{t+1}, \frac{1}{t}\right]$, il existe $x \in \left[\frac{1}{t+1}, \frac{1}{t}\right]$ tel que $\frac{f\left(\frac{1}{t}\right) - f\left(\frac{1}{t+1}\right)}{\frac{1}{t} - \frac{1}{t+1}} = \frac{f\left(\frac{1}{t+1}\right) - f\left(\frac{1}{t+1}\right)}{\frac{1}{t} - \frac{1}{t+1}} = \frac{f\left(\frac{1}{t+1}\right)}{\frac{1}{t} - \frac{1}{t+1}} = \frac{f\left(\frac{1}{t+1}\right) - f\left(\frac{1}{t+1}\right)}{\frac{1}{t+1}} = \frac{f\left(\frac{1}{t+1}\right) - f\left(\frac{$ $f'(x) = e^x$.

Donc pour $x \in [\frac{1}{t+1}, \frac{1}{t}]$, on a : $(e^{\frac{1}{t}} - e^{\frac{1}{t+1}}) = \frac{1}{t(t+1)}e^x$.

Alors: pour $x \in \left[\frac{1}{t+1}, \frac{1}{t}\right]$, on a: $t^2\left(e^{\frac{1}{t}} - e^{\frac{1}{t+1}}\right) = \frac{t^2}{t(t+1)}e^x$. Quand t tend vers l'infini, on a toujours $\frac{1}{t+1} \leqslant x \leqslant \frac{1}{t}$. Donc x tend vers 0 et $\frac{t^2}{t(t+1)}$ tend vers 1.

Finalement,
$$\lim_{t \to +\infty} \frac{t^2}{t(t+1)} e^x = 1$$
.
$$\lim_{t \to +\infty} t^2 \left(e^{\frac{1}{t}} - e^{\frac{1}{t+1}} \right) = 1$$

Exercice 9.

- 1. Montrer que $\forall k \in \mathbb{N}^*$, $\frac{1}{k+1} \leq \ln(k+1) \ln k \leq \frac{1}{k}$.
- 2. On considère la suite (u_n) définie par $u_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \ln n$. A l'aide d'un passage à la somme, montrer que $\frac{1}{n+1} \leqslant u_n$.
- 3. Montrer que la suite u est convergente.

Solution.

1. On considère $f(x) = \ln x$. Pour $k \in \mathbb{N}^*$, f est dérivable sur [k, k+1]. $f'(x) = \frac{1}{x}$. Si $k \leqslant x \leqslant k+1$, alors $\frac{1}{k+1} \leqslant \frac{1}{x} \leqslant \frac{1}{k}$.

D'après l'inégalité des accroissements finis appliquées à
$$f$$
 sur $[k, k+1]$: $\forall k \in \mathbb{N}^*, \quad \frac{1}{k+1} \leqslant \ln(k+1) - \ln k \leqslant \frac{1}{k}$

2. Par passage à la somme dans l'inégalité précédente, on obtient :

$$\sum_{k=1}^{n} \frac{1}{k+1} \leqslant \sum_{k=1}^{n} \ln(k+1) - \ln k \leqslant \sum_{k=1}^{n} \frac{1}{k}.$$

La somme du milieu est une somme télescopique. Il reste : $\sum_{k=1}^{n} \ln(k+1) - \ln k = \ln(n+1) - \ln 1 = \ln(n+1)$.

A droite, on reconnait
$$u_n + \ln n$$
. Donc: $\ln(n+1) \leqslant u_n + \ln n$.
Alors: $u_n \geqslant \ln(n+1) - \ln n \geqslant \frac{1}{n+1}$

3. $u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln n \le 0$. Donc la suite est décroissante. Elle est minorée par 0 car $u_n \geqslant \frac{1}{n+1} \geqslant 0$ (pas de minorant qui dépend de n!) Donc u converge.

Exercice 10. Soit P un polynôme de degré n à coefficients réels, qui possède n racines réelles distinctes. Montrer que P' possède n-1 racines réelles distinctes.

Solution. On note $a_1 < a_2 < \cdots < a_n$ les n racines distinctes de P.

On obtient n-1 intervalles $[a_i, a_{i+1}]$ quand $i \in \{1, \dots, n-1\}$.

P est dérivable sur chaque intervalle $[a_i, a_{i+1}]$ et $P(a_i) = 0 = P(a_{i+1})$.

Da'preès le théorème de Rolle, P' s'annule sur $[a_i, a_{i+1}]$. On obtient donc n-1 racines pour P'. Comme P' est de degré n-1, il ne peut pas avoir plus de n-1 racines. Donc, on les a toutes

Exercice 11.

1. Soit $f:[0;1] \to \mathbb{R}$ définie par $f(x) = \frac{e^x}{x+2}$ pour tout $x \in [0;1]$.

- (a) Calculer f'(x) et f''(x).
- (b) Étudier le sens de variation de f sur [0,1]. Quelle est l'image de [0,1] par f?
- (c) Montrer que $\forall x \in [0,1], \quad \frac{1}{4} \leqslant f'(x) \leqslant \frac{2}{3}$.
- (d) Montrer que l'équation f(x) = x admet une unique solution dans [0,1]. On note ℓ cette valeur.
- 2. Soit la suite (u_n) définie par $u_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{e^{u_n}}{u_n + 2}$.
 - (a) Montrer que : $\forall n \in \mathbb{N}, u_n \in [0, 1].$
 - (b) Montrer que : $\forall n \in \mathbb{N}, \quad |u_{n+1} \ell| \leqslant \frac{2}{3}|u_n \ell|.$
 - (c) En déduire que (u_n) converge vers ℓ , et déterminer un entier n_0 tel que $n \ge n_0 \Rightarrow |u_n \ell| \le 10^{-3}$.

Solution.

- 1. (a) f est \mathcal{C}^{∞} sur [0,1] comme quotient de fonctions \mathcal{C}^{∞} sur [0,1]. $f'(x) = \frac{(x+1)e^x}{(x+2)^2}. \ f''(x) = \frac{(x^2+2x+2)e^x}{(x+2)^3}.$
 - (b) Sur [0,1], f'(x) > 0.

x	0 1
f'(x)	+
f	$ \begin{array}{c c} e/3 \\ 1/2 \end{array} $

On a : f([0,1]) = [1/2, e/3]

(c) On étudie le signe de f''(x) pour avoir les variations de f'. $x^2 + 2x + 2$ ne s'annule pas sur \mathbb{R} . Donc f''(x) > 0 sur [0, 1].

x	0	1
f''(x)	+	
f,	1/4	e/9

On a : $[0,1], \frac{1}{4} \le f'(x) \le \frac{2e}{9} \le \frac{2}{3}$

(d) On considère la fonction g(x) = f(x) - x. g est définie et dérivable sur [0,1].

$$g'(x) = f'(x) - 1 \le 2/3 - 1 \le 0 \text{ sur } [0, 1].$$

$$x = 0 \qquad 1$$

$$g'(x) = -$$

$$1/2$$

$$g$$

$$(e-3)/3$$

g est continue, strictement décroissante sur [0,1] avec g(0)>0 et g(1)<0. D'après le théorème de la bijection g s'annule une fois et une seule sur [0,1]. donc f(x)=x admet une unique solution sur [0,1].

- 2. (a) Récurrence en utilisant : $f([0,1]) = [1/2,e/3] \subset [0,1]$.
 - (b) f est continu et dérivable sur [0,1]. On sait aussi : $\forall x \in [0,1], \quad |f'(x)| = f'(x) \leqslant \frac{2}{3}$. D'après l'inégalité des accroissements finis appliquées à f pour $a = u_n \in [0,1]$ et $b = \ell \in [0,1]$: $|f(u_n) f(\ell)| \leqslant \frac{2}{3} |u_n \ell|$. Or $f(u_n) = u_{n+1}$ et $f(\ell) = \ell$ car ℓ est solution de f(x) = x. Donc $\forall n \in \mathbb{N}, \quad 0 \leqslant |u_{n+1} \ell| \leqslant \frac{2}{3} |u_n \ell|$.

(c) Par récurrence, on monte que :
$$\forall n \in \mathbb{N}$$
, $0 \leqslant |u_n - \ell| \leqslant (\frac{2}{3})^n |u_0 - \ell|$.
Or $2/3 \in]-1,1[$. Donc $(2/3)^n \underset{n \to +\infty}{\longrightarrow} 0$. Par théorème d'encadrement : $\boxed{/dlim_{n \to +\infty}u_n = \ell}$.
Pour avoir $|u_n - \ell| \leqslant 10^{-3}$, il suffit d'avoir : $(\frac{2}{3})^n |u_0 - \ell| \leqslant 10^{-3}$.
On sait que $u_0 = \frac{1}{2}$ et $\ell \in [0,1]$. Donc on peut majorer la distance $u_0 - \ell$ par 1.
On résout donc : $(\frac{2}{3})^n \leqslant 10^{-3} \Leftrightarrow n \ln(2/3) \leqslant -3 \ln 10 \Leftrightarrow n \geqslant \frac{-3 \ln 10}{\ln(2/3)}$ (car $\ln(2/3) < 0$).
Donc, à partir de $\boxed{n_0 = \left\lfloor \frac{-3 \ln 10}{\ln(2/3)} \right\rfloor + 1}$, on obtient l'inégalité demandée.

Exercice 12. On considère la fonction f définie sur $]0, \frac{1}{e}[\cup]\frac{1}{e}, +\infty[$ par $f(x) = \frac{x}{\ln x + 1}$.

- 1. Montrer que f est prolongeable par continuité en 0. On appellera encore f la fonction ainsi prolongée. La fonction f prolongée est-elle dérivable en 0?
- 2. Étudiez les variations de f.
- 3. Déterminer les points fixes de f.
- 4. Étudiez sur \mathbb{R}_+ la fonction $g:t\mapsto \frac{t}{(t+1)^2},$ en déduire que :

$$\forall x \in [1; +\infty[, \qquad 0 \le f'(x) \le \frac{1}{4}]$$

- 5. On définit une suite (x_n) par $x_0 = 2$ et : $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$.
 - (a) Montrer que la suite (x_n) est bien définie en la minorant.
 - (b) Montrer que : $\forall n \in \mathbb{N}, |x_{n+1} 1| \le \frac{1}{4}|x_n 1|.$
 - (c) En déduire que (x_n) converge et déterminer la limite de la suite.

Solution.

1.
$$\lim_{x\to 0} f(x) = 0$$
. f est prolongeable en 0 par la valeur 0.
En $x = 0$: $\frac{f(x) - f(0)}{x - 0} = \frac{1}{\ln x + 1} \xrightarrow[x\to 0^+]{} 0$. Donc la fonction prolongée est dérivable en 0

2. f est dérivable sur son domaine comme quotient de fonctions dérivables.

- 3. On résout : $f(x) = x \Leftrightarrow \frac{x}{\ln x + 1} = x$ ou $x = 0 \Leftrightarrow x = 0$ ou $\ln x + 1 = 1 \Leftrightarrow x = 0$ ou x = 1. Il y a deux points fixes : 0 et 1
- 4. g est définie et dérivable sur \mathbb{R}_+ comme quotient de fonctions dérivables. $g'(t) = \frac{1}{(t+1)^2} + \frac{-2t}{(t+1)^3} = \frac{1-t}{(t+1)^3}.$

Sur \mathbb{R}_+ , g' est du signe de t-1.

Dai III	-, g	a a a .	318110	ac t
t	0	1		$+\infty$
g'(t)	+	0	_	
g	0	1/4		` 0

On constate: $\forall t \ge 0$, $0 \le g(t) \le \frac{1}{4}$.

On prend $t = \ln x$ pour $x \in [1, +\infty[$. On en déduit : $\forall x \in [1; +\infty[$, $0 \le f'(x) \le \frac{1}{4}$

- 5. (a) Par récurrence. \mathcal{P}_n : " x_n existe et $x_n \ge 1$ ". Clé de l'hérédité: $x_n \ge 1 > \frac{1}{e}$ donc x_{n+1} existe. f est croissante sur $[1, +\infty[$ donc $x_n \ge 1 \Longrightarrow f(x_n) \ge f(1) \Longrightarrow x_{n+1} \ge 1$. Donc pour tout $n \in \mathbb{N}$, x_n existe et $x_n \ge 1$
 - (b) f est continue et dérivable sur $[1, +\infty[$. On a vu : $\forall x \geqslant 1, \quad |f'(x)| \leqslant \frac{1}{4}$. D'après l'inégalité des accroissements finis appliquées à f pour $a = x_n \geqslant 1$ et $b = 1 \geqslant 1$: $|f(x_n) f(1)| \leqslant \frac{1}{4}|x_n 1|$. Or $f(x_n) = x_{n+1}$ et f(1) = 1. $\forall n \in \mathbb{N}, |x_{n+1} 1| \leq \frac{1}{4}|x_n 1|$.
 - (c) Par récurrence, on obtient : $\forall n \in \mathbb{N}, |x_n 1| \leq (\frac{1}{4})^n$. Comme $\frac{1}{4} \in]-1,1[, (1/4)^n \to 0$. Par théorème d'encadrement : $\lim_{n \to +\infty} x_n = 1$