

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Классификация методов повышения разрешающей способности изображений

Студент: Светличная Алина Алексеевна (группа – ИУ7-73Б)

Научный руководитель: Филиппов Михаил Владимирович

Цель и задачи

Цель: классифицировать методы повышения разрешающей способности изображений.

Задачи:

- о провести анализ предметной области;
- о описать существующие методы повышения разрешения изображений;
- о сформулировать критерии сравнения методов повышения разрешающей способности изображений;
- о сравнить описанные методы на основании выделенных критериев;
- о описать результаты сравнения рассмотренных методов.

Введение в классические методы

Адаптивные

учитывают локальную структуру и содержание изображения при принятии решений о том, как интерполировать

Неадаптивные

не учитывают контекст или структуру изображения, а применяют один и тот же метод интерполяции ко всем пикселям

Интерполяция — процесс определения значений между известными точками данных.

- о **Ступенчатость** видимые лестничные ступеньки или резкие перепады яркости вдоль контуров объектов.
- о **Размытие** потеря деталей и четкости изображения при сглаживании краев.
- Граничное гало светлые или темные области, окружающие объекты или контуры на изображении.

Введение в нейронные методы

Машинное обучение — направление искусственного интеллекта, сосредоточенное на создании систем, которые обучаются и развиваются на основе получаемых ими данных.

Без учителя

обучение выявлять закономерности и скрытые взаимосвязи на наборах неразмеченных данных без контроля со стороны пользователя

С учителем

построение моделей на основе множества примеров, содержащих пары «известный вход – известный выход»

Искусственные нейронные сети – системы, преобразующие информацию подобно процессам, происходящим в человеческом мозге.

Классические методы

- о **Метод ближайшего соседа** учитывает только один пиксель ближайший к точке интерполяции.
- о **Билинейная интерполяция** рассматривает квадрат 2х2 известных пикселей, окружающих неизвестный.
- о **Бикубическая интерполяция** рассматривает массив из 4х4 окружающих пикселей.
- о **Метод Ланцоша** основан на применении нормированной функции *sinc()*.

Нейронные методы

- Сверточные нейронные сети автоматическом извлечение иерархии признаков из входных данных.
- Генеративно-состязательные
 нейронные сети система из двух
 нейронных сетей, выполняющих роли
 генератора (генерирует изображения) и
 дискриминатора (оценивает
 реалистичность сгенерированных
 изображений).

Схема сверточной нейронной сети для решения задачи увеличения разрешения

Классификация методов

Классические методы:

- \circ K_1 ступенчатость
- \circ K_2 размытие
- \circ K_3 граничное гало
- \circ K_4 вычислительная сложность

Нейронные методы:

- \circ K_1 время обучения
- \circ K_2 вычислительная сложность
- \circ K_3 память
- \circ K_4 сложность реализации
- \circ K_5 пиковый сигнальный шум
- \circ K_6 коэффициент структурной схожести

Метод	K_1	<i>K</i> ₂	<i>K</i> ₃	K_4
Ближайшего соседа	4	1	1.5	1
Билинейный	3	3	1.5	2
Бикубический	1	4	3.5	3
Ланцоша	2	2	3.5	4

Метод	K_1	<i>K</i> ₂	<i>K</i> ₃	K_4	K ₅	<i>K</i> ₆
Сверточный	1	1	1	1	1	2
Генеративно- состязательный	2	2	2	2	2	1

Классификация методов

Классические и нейронные типы методов:

- \circ K_1 вычислительная сложность
- \circ K_2 сложность реализации
- \circ K_3 качество

Методы	K_1	K_2	K_3
Классические	1	1	2
Нейронные	2	2	1

Вывод: нейронные методы показывают визуально более качественные результаты, однако являются ресурсозатратными (вычислительные, человеческие, по памяти и т.д.), в то время как классические методы демонстрируют приемлемое для отдельных задач качество и являются в разы более легкими. Из названных типов методов можно выделить как наиболее хорошо показавших себя методы бикубической интерполяции и Ланцоша из классических и сверточные нейронные сети из соответственно нейронных методов.

Заключение

В ходе выполнения научно-исследовательской работы поставленная цель была достигнута: классифицированы методы повышения разрешающей способности изображений.

Все задачи выполнены:

- о проведен анализ предметной области;
- о описаны существующие методы повышения разрешения изображений;
- о сформулированы критерии сравнения методов повышения разрешающей способности изображений;
- проведено сравнение описанных методов на основании выделенных критериев;
- о описаны результаты сравнения рассмотренных методов.