Laboratorio 05

Enzyme Linked Immunosorbent Assay (ELISA)

L.M. in Ingegneria Biomedica – A.A. 22/23

Laboratorio di fotonica per la medicina

Prof. Marco Consales

Benedetta Masone

<u>b.masone@studenti.unimol.it</u> – mat.177470

Martina Rainone

m.rainone@studenti.unimol.it - mat.177471

Fabrizio Ravelli

<u>f.ravelli@studenti.unimol.it</u> – mat.177085

INDICE

- 1. Obbiettivo
- 2. Introduzione teorica
- 3. Strumentazione utilizzata
- 4. Procedura operativa
- 5. Analisi dati

OBBIETTIVO

Saggio ELISA indiretto per valutare e quantizzare la presenta di anticorpi all'interno di un campione biologico attraverso l'acquisizione di misure di fluorescenza.

INTRODUZIONE TEORICA

Il saggio ELISA indiretto è impostato in modo tale che:

- l'antigene blocca l'anticorpo target sul pozzetto;
- l'anticorpo secondario lega l'enzima con il quale è accoppiato all'anticorpo target;
- il substrato serve all'enzima per renderlo fluorescente.

Il risultato finale è influenzato dalla quantità di enzima e di conseguenza l'anticorpo secondario è correlato al target.

STRUMENTAZIONE UTILIZZATA

- Pipettor
- Piastre
- Buffer PBS
- EnSight

STRUMENTAZIONE UTILIZZATA

EnSight Multimode Plate Reader

Features	Details	Assays
Absorbance	High Speed Monochromators	ELISA, DNA, protein quantification
Fluorescence	Filter based QuadX Monochromator based Fusion Optics (filter + monochromator)	 Fluorescence Intensity Fluorescence Polarization Time-Resolved Fluorescence HTRF®, LanthaScreen® 3D spectral scans
Luminescence	Dedicated PMT - single photon counting Multi-color monochromator (40 filters)	Glow , flash, multicolor assays, and spectral scans; BRET™, DLR™
AlphaScreen®	High performance laser excitation IR sensor based temperature correction	AlphaScreen®, AlphaLisa®, AlphaPLex®
Imaging	Brightfield imaging 4x objective	Cell imaging Confluence assessment Cell Counting

- 1. Coating antigene riferimento
- 2. Blocking
- 3. Inserimento del campione biologico
- 4. Inserimento dell'anticorpo secondario
- 5. Aggiunta del substrato e reazione fluorogena.
- 6. Lettura della fluorescenza

1. COATING ANTIGENE RIFERIMENTO

Caricamento dei pozzetti (A1-A12 e B1-B6) con 100 μ L di antigene primario

Adsorbimento:

37 °C

2 h

2. BLOCKING

Aggiunta di un volume di 120 µL a pozzetto di soluzione contente BSA (Bovine Serum Albumin) per saturare parte del pozzetto non ricoperto dall'antigene

Incubazione:

37 °C

1 h

3. CAMPIONE BIOLOGICO

Aggiunta di 100 µL di siero contenente la molecola target e altri componenti in ogni pozzetto.

Incubazione:

37 °C

1 h

Al termine dell'incubazione, si effettuano dei lavaggi per rimuovere le componenti che non hanno interagito

4. ANTICORPO SECONDARIO CON ENZIMA AP (FOSFATASI ALCALINA)

Aggiunta di un anticorpo secondario marcato con l'enzima AP.

Incubazione:

37 °C

1 h

Al termine dell'incubazione, si effettuano dei lavaggi con una soluzione salina.

5. REAZIONE CON SUBSTRATO FLUOROGENICO

Aggiunta in ogni pozzetto di 100 µl di substrato MUP.

Incubazione:

25 °C

30 min

Al termine dell'incubazione, i campioni sono stati trasferiti in una piastra nera.

6. LETTURA DELLA FLUORESCENZA

ANALISI DATI

ANALISI DEI DATI E CONCLUSIONI

La concentrazione incognita è stata ricavata tramite la funzione polyval.

$$c_1 = 343.61 [g/m1]$$

ERRORE

