Formal verification of the 5G EAP-TLS authentication protocol using Proverif

2023

Alessandro Zanatta

University of Pisa

Reference paper (DOI): 10.1109/ACCESS.2020.2969474

• Symbolic verification tool:

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - $\circ \ \ Messages \rightarrow terms;$

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - \circ Messages \rightarrow terms;
 - \circ Cryptographic primitives \rightarrow black-box;

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - \circ Messages \rightarrow terms;
 - $\circ \ \ Cryptographic \ primitives \rightarrow black-box;$
 - Perfect cryptography assumption.

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - Messages → terms;
 - Cryptographic primitives → black-box;
 - o Perfect cryptography assumption. Suppose we have:
 - Two primitives: enc, dec;
 - Two terms: *m*, *k*;
 - The following equality:

$$dec (enc (m, k), k) = m$$
 (1)

• Symbolic verification tool:

- \circ Attacker \rightarrow Dolev-Yao;
- Messages → terms;
- Cryptographic primitives → black-box;
- o Perfect cryptography assumption. Suppose we have:
 - Two primitives: enc, dec;
 - Two terms: *m*, *k*;
 - The following equality:

$$dec (enc (m, k), k) = m$$
 (1)

• can decrypt enc $(m, k) \iff k$ is known

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao:
 - \circ Messages \rightarrow terms;
 - Cryptographic primitives → black-box;
 - o Perfect cryptography assumption. Suppose we have:
 - Two primitives: enc, dec;
 - Two terms: *m*, *k*;
 - The following equality:

$$dec (enc (m, k), k) = m$$
 (1)

- can decrypt enc $(m, k) \iff k$ is known
- Based on applied π -calculus;

```
Grammar of processes (P, Q):
```

```
0 (* null process *)
```

```
0
                    (* null process *)
out(N, M); P
                   (* output to channel N the message M *)
in(N, M: T); P
                   (* input from channel N of message M *)
```

Applied π -calculus

Applied π -calculus

Grammar of processes (*P*, *Q*):

Additionally:

Grammar of processes (*P*, *Q*):

Additionally:

Grammar of processes (*P*, *Q*):

Additionally:

5G EAP-TLS protocol entities

Involved entities:

- User Equipment (UE):
 - o Subscription Permanent Identifier (SUPI)
 - $\circ~$ Public asymmetric key pk_{HN}

Involved entities:

- User Equipment (UE):
 - o Subscription Permanent Identifier (SUPI)
 - \circ Public asymmetric key pk_{HN}
- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Unified Data Management (UDM)

Involved entities:

- User Equipment (UE):
 - Subscription Permanent Identifier (SUPI)
 - \circ Public asymmetric key pk_{HN}
- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Unified Data Management (UDM)
- Serving Network (SN):
 - Security Anchor Function (SEAF)

Involved entities:

- User Equipment (UE):
 - o Subscription Permanent Identifier (SUPI)
 - \circ Public asymmetric key pk_{HN}
- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Unified Data Management (UDM)
- Serving Network (SN):
 - Security Anchor Function (SEAF)

Assumptions:

• $HN \leftrightarrow SN$ communications are secure

Required security properties

• Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

• Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

Secrecy properties:

- S1. The attacker cannot obtain the identity *SUPI* of an honest subscriber
- S2. The attacker cannot obtain the pre-master key $R_{\it prekey}$ of an honest subscriber
- S3. The attacker cannot obtain the session key $K_{session}$ of an honest subscriber

It's **DEMO** time!!

Broken properties

Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

• Secrecy properties:

- S1. The attacker cannot obtain the identity *SUPI* of an honest subscriber
- S2. The attacker cannot obtain the pre-master key R_{prekey} of an honest subscriber
- S3. The attacker cannot obtain the session key $K_{session}$ of an honest subscriber

