The Function problems

Coding the Matrix, 2015

For auto-graded problems, edit the file The_Function_problems.py to include your solution.

Problem 1: tuple_sum(A, B)

input: lists A and B of the same length, where each element in each list is a pair (x,y) of numbers output: list of pairs (x,y) in which the first element of the i^{th} pair is the sum of the first element of the i^{th} pair in A and the first element of the i^{th} pair in B example: given lists [(1,2),(10,20)] and [(3,4),(30,40)], return [(4,6),(40,60)].

Problem 2: inv_dict(d)

input: dictionary d representing an invertible function f
output: dictionary representing the inverse of f, the returned dictionary's keys are the values of d and its
values are the keys of d
example: given an English-French dictionary
{'thank you': 'merci', 'goodbye': 'au revoir'}
return a French-English dictionary
{'merci':'thank you', 'au revoir':'goodbye'}

Problem 3: First write a procedure row(p, n) with the following spec:

- input: integer p, integer n
- output: n-element list such that element i is p+i
- example: given p = 10 and n = 4, return [10, 11, 12, 13]

Next write a comprehension whose value is a 15-element list of 20-element lists such that the j^{th} element of the i^{th} list is i+j. You can use row(p, n) in your comprehension.

Finally, write the same comprehension but without using row(p, n). Hint: replace the call to row(p, n) with the comprehension that forms the body of row(p, n).

Functional Inverses

Ungraded problem: Is the following function invertible? If yes, explain why. If not, can you change domain and/or codomain of the function to make it invertible?

Ungraded problem: Is the following function invertible? If yes, explain why. If not, can you change domain and/or codomain of the function to make it invertible?

Functional composition

Ungraded problem: Let $f: \mathbb{R} \to \mathbb{R}$ where f(x) = abs(x). Is there a choice of domain and co-domain for the function g(x) with rule $g(x) = \sqrt{x}$ such that $g \circ f$ is defined? If so, specify it. If not, explain why not. Could you change domain and/or codomain of f or g so that $g \circ f$ will be defined?

Ungraded problem: Consider functions f and g in the following figure:

Is $f \circ g$ defined? If so, draw it, otherwise explain why not.

Problem 4: A function f(x)=x+1 with domain $\{1,2,3,5,6\}$ and codomain $\{2,3,4,6,7\}$ has the following probability function on its domain: $\Pr(1)=0.5$, $\Pr(2)=0.2$ and $\Pr(3)=\Pr(5)=\Pr(6)=0.1$. What is the probability of getting an even number as an output of f(x)? An odd number?

Problem 5: A function $g(x)=x \mod 3$ with domain $\{1,2,3,4,5,6,7\}$ and codomain $\{0,1,2\}$ has the following probability function on its domain: $\Pr(1)=\Pr(2)=\Pr(3)=0.2$ and $\Pr(4)=\Pr(5)=\Pr(6)=\Pr(7)=0.1$. What is the probability of getting 1 as an output of g(x)? What is the probability of getting 0 or 2?