Master MAS Université Rennes

Devoir Maison Analyse de Données

1 Sujet 1 : AFC

Une AFC sera programmée en R ou python avec les étapes impératives suivantes.

- 1. Créer une fonction qui prend en entrée un tableau de contingence nommé N et qui effectue les étapes suivantes :
 - (a) Calculer les métriques D_I et D_J ;
 - (b) Calculer le tableau Z des écarts à l'indépendance
 - (c) Calculer le tableau X à partir de Z (le tableau dont on fait l'ACP)
 - (d) Calculer la matrice $V = X'D_IX$
 - (e) Calculer VD_J puis ses vecteurs propres et valeurs propres. Normez ces vecteurs propres avec la norme D_J à l'unité. Ces vecteurs propres seront disposés dans une matrice A
 - (f) Déduire avec les formules de transition les vecteurs propres D_I -normés à l'unité de WD_I et disposez ces vecteurs en colonne dans C
 - (g) Calculez le vecteur des pourcentages d'inertie de chaque axe : Λ
 - (h) Calculez les coordonnées des lignes \tilde{C} et des colonnes \tilde{A}
 - (i) Renvoyez la liste résultat comportant les pourcentages d'inertie Λ et les matrices A, C, \tilde{A} et \tilde{C} . Les étapes ci-dessus seront indiquées avec l'aide de commentaires adéquats.
- 2. Faire une fonction qui prend en entrée le résultat de la fonction de la question 1 et qui trace sur un graphique « carré » les lignes ;
- 3. Faire une fonction qui prend en entrée le résultat de la fonction de la question 1 et qui trace sur graphique « carré » les colonnes ;
- 4. Tester les 3 fonctions avec le tableau bordeaux.

2 Sujet 2: AFCM

Une AFCM sera programmée en R ou python avec les étapes impératives suivantes.

- 1. Créer une fonction qui prend en entrée un tableau de données nommé X et qui effectue les étapes suivantes :
 - (a) Calculer les métriques $Q = \frac{1}{nK}D_{\Sigma}$ et D;
 - (b) Calculer le tableau de disjonctif complet U;
 - (c) Calculer le tableau $X = nUD_{\Sigma}^{-1} 1$;
 - (d) Calculer VQ puis ses vecteurs propres et valeurs propres. Normez ces vecteurs propres avec la norme Q à l'unité. Ces vecteurs propres seront disposés dans une matrice A
 - (e) Déduire avec les formules de transition les vecteurs propres D-normés à l'unité de WD et disposez ces vecteurs en colonne dans C
 - (f) Calculez le vecteur des pourcentages d'inertie de chaque axe : Λ
 - (g) Calculez les coordonnées des lignes \tilde{C} et des colonnes \tilde{A}
 - (h) Renvoyez la liste résultat comportant les pourcentages d'inertie Λ et les matrices A, C, \tilde{A} et \tilde{C} . Les étapes ci-dessus seront indiquées avec l'aide de commentaires adéquats.
- 2. Faire une fonction qui prend en entrée le résultat de la fonction de la question 1 et qui trace sur un graphique « carré » les lignes ;
- 3. Faire une fonction qui prend en entrée le résultat de la fonction de la question 1 et qui trace sur graphique « carré » les colonnes ;
- 4. Tester les 3 fonctions avec le tableau exacm.