NAME: JUI HALVADIA 03-12-2019

EXAMPLE AND SUMMARY

EXAMPLE 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Aula A = $10m \times 5m \times 4m$ Temperature = $7^{\circ}C$ Saturation pressure of water = 1.0021 kPaAtmospheric pressure = 102 kPaRelative humidity = 84%

$$R_v = 0.4615$$

$$\begin{split} \phi &= \frac{m_v}{m_g} = \frac{P_v}{P_g} \\ P_v &= \phi \ x \ P_g = \ 0.84 \ x \ 1.0021 \ = 0.84 \ kPa \\ P_a &= P \ - \ P_v \ = \ 102 \ kPa \ - \ 0.84 \ kPa \ = \ 101.16 \ kPa \end{split}$$

Absolute humidity

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{0.84}{101.16} = 0.0052 \frac{kg_{vapour}}{kg_{dryAir}}$$

Mass of water vapor

$$m = \frac{PV}{R_{sp}T}; m_v = \frac{P_v V_v}{R_v T}$$

$$m_v = \frac{0.84 \times (10 \times 5 \times 4)}{0.4615 \times (273 + 7)} = 1.3 \text{ kg water vapor}$$

Enthalpy

$$h = h_a + wh_v = (1.005 x 7) + 0.0052 (2501 + (1.82 x 7)) = 20.11 \frac{kJ}{kg_{dryAir}}$$

Wet-bulb temperature

EXAMPLE 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

	BRINDISI, Italy														WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	ating and h	lumidificat	ion Design C	onditions												
	Coldest	Coldest Heating DB 99.6% 99%		Humidification DP/MCDB and HR											PCWD		
	Month			99.6% DP HR MCDB			99% DP HR M		MCDB				MCDB MCWS		9% DB PCWD		
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(/)	(k)	(1)	(m)	(n)	(o)		
-	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		
(1)	-							3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Cooling, Dehumidification, and Enthalpy Design Conditions																
																DOWN	i
	Hottest Hottest Month 0.			Cooling DB/MCWB			2% 0			Evaporation WB/MCDB			2%		MCWS/PCWD to 0.4% DB		
	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
1-9																1-9	
		0.4%		Dehumidification DP/MCDB and HF 1%			2%						% 2%			Hours 8 to 4 &	
	DP	HR	MCDB	DP	HR I	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
(0)	Extreme Annual Design Conditions														(4)		
	Extreme A	innual Desi	gn Conditio	ons													
				Extreme		F-tro	Annual DB				- V D-	turn Davind	Values of E	DD			i
	Extreme Annual WS			Max	Mean		Standard deviation		n=5 years		n=10 years		Values of Extreme DB n=20 years		n=50 years		
	1% 2.5% 5%		WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	,
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Building height = 2.5mFloor area = $200 m^2$ Number of occupants = 2Number of bedrooms = 1Wall area = $144 m^2$

Temperature for cooling and heating

$$T_{cooling} = 31.1 \,^{\circ}C$$

 $T_{heating} = 4.1 \,^{\circ}C$

Temperature difference

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}C$$

 $\Delta T_{heating} = 20 - 4.1 = 15.9 \,^{\circ}C$

Internal gains

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + 2.2 \times 200 + 22 \times 2 = 620 W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 \times 200 + 12 \times 2 = 88 W$$

Infiltration

$$\begin{split} A_{ul} &= 1.4 \, \frac{cm^2}{m^2} \\ A_{es} &= 200 \, + \, 144 \, = \, 344 \, m^2 \\ A_L &= A_{es} \, x \, A_{ul} \, = \, 344 \, x \, 1.4 \, = \, 481.6 \, cm^2 \\ IDF_{heating} &= 0.065 \, \frac{L}{s. \, cm^2} \\ IDF_{cooling} &= 0.032 \, \frac{L}{s. \, cm^2} \\ \dot{Q}_{i_{heating}} &= A_L \, x \, IDF \, = \, 481.6 \, x \, 0.065 \, = \, 31.30 \, \frac{L}{s} \\ \dot{Q}_{i_{cooling}} &= A_L \, x \, IDF \, = \, 481.6 \, x \, 0.032 \, = \, 15.41 \, \frac{L}{s} \end{split}$$

Ventilation

$$\dot{Q}_{v} = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 + 3.5 \times 2 = 17 \frac{L}{s}$$

$$\dot{Q}_{inf-ventilation_{heating}} = 31.30 + 17 = 48.30 \frac{L}{s}$$

$$\dot{Q}_{inf-ventilation_{cooling}} = 15.41 + 17 = 32.41 \frac{L}{s}$$

$$\dot{Q}_{inf-ventilation_{cooling_{sensible}}} = C_{sensible} \dot{V} \Delta T_{cooling} = 1.23 \times 32.41 \times 7.1 = 283.04 W$$

$$\dot{Q}_{inf-ventilation_{cooling_{latent}}} = C_{latent} \dot{V} \Delta \omega_{cooling} = 3010 \times 32.41 \times 0.0045 = 438.99 W$$

$$\dot{Q}_{inf-ventilation_{heating_{sensible}}} = C_{sensible} \dot{V} \Delta T_{heating} = 1.23 \times 48.30 \times 15.9 = 944.60 W$$