A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language

Tramy Nguyen¹ Nicholas Roehner² Chris Myers¹

University of Utah¹

Boston University²

COMBINE

October 13, 2015

Systems Biology Markup Language

- The Systems Biology Markup Language (SBML) is a standard for behavioral models of biological systems.
- SBML models biological systems at the molecular level.
- A typical SBML model is composed of a number of chemical species (i.e., proteins, genes, etc.) and reactions that transform these species.
- SBML is supported by more than 280 tools, enabling researchers to create, annotate, simulate, and visualize models.
- SBML models can also be archived in the BioModels database.

Synthetic Biology Open Language

- The Synthetic Biology Open Language (SBOL) describes structural and basic qualitative behavioral aspects of a biological design.
- Version 1.1 specifies the hierarchical composition of DNA components.
- Version 2.0 adds generalized components, interactions between them, and modules for hierarchically describing genetic designs.
- SBOL is supported by about 20 tools.
- SBOL data can be archived in several repositories (iGEM, SBPkb, JBEI ICE, SBOL Stack, VirtualParts, etc.).

Converter from SBML and SBOL

- Standards are important because they enable exchange and reproducibility of genetic designs.
- Converting SBML to SBOL enables a consistent connection between behavioral and structural information about a biological design.
- Previously, a converter from SBOL to annotated SBML models has been developed (Roehner et al., ACS Synthetic Biology 2015).
- This new converter takes an SBML model with annotations using the Systems Biology Ontology (SBO), and it infers the structure and qualitative function to produce an SBOL data file.

Example: Lacl Inverter

Example: Lacl Inverter with SBOL Annotations

Roehner et al., ACS Synthetic Biology 2013

Converting Species to ComponentDefinition

- An SBOL ComponentDefinition is created for each species which is not already annotated with a ComponentDefinition.
- The type for the ComponentDefinition can be DNA, protein, small molecule, etc. which is inferred from the SBO term associated with the species.

ComponentDefinitions for the LacI Inverter

Converting SBML Models to ModuleDefinitions

- All models referenced within a top level SBML model are converted to an SBOL ModuleDefinition.
- For each ModuleDefinition, an SBOL Model is created that will reference its SBML model.

ModuleDefinitions for the Lacl Inverter

SBML

SBOL

Model for the Lacl Inverter

Converting Species to FunctionalComponents

- A FunctionalComponent is created within the ModuleDefinition for each species used in the corresponding SBML model.
- A FunctionalComponent contains a definition that references the corresponding ComponentDefinition for the species.
- A FunctionalComponent is also given a direction: an in, out, or none.
- The direction is inferred from SBO terms on the SBML ports referencing the corresponding species.
- If a FunctionalComponent has an in or out direction, it is given a public accessType.

FunctionalComponents for the LacI Inverter

Converting Reactions to Interactions

- Each SBML reaction is converted into an SBOL Interaction(s).
- Interactions are used for functional relationship between the reactants, products, and modifiers of the reactions.
- Depending on what type of SBML reaction (inferred by its SBO term), one or more SBOL Interaction(s) are created between the corresponding FunctionalComponents.

Converting Different Reactions to Interactions

- Genetic production reaction creates an Interaction for each activator or inhibitor and the promoter, and it creates one production Interaction for each promoter with its products.
- Complex formation reaction results in an Interaction that includes the separate proteins as reactants and the complex as a product.
- A degradation reaction includes the degraded protein as a Participant.
- For an ordinary chemical reaction, an Interaction is created that includes all reactants, products, and modifiers as Participants.

Interactions for the LacI Inverter

Example: TetR Inverter

Example: TetR Inverter with SBOL Annotations

ModuleDefinitions for TetR Inverter

SBML SBOL

Model for TetR Inverter

FunctionalComponents for the TetR Inverter

Interactions for the TetR Inverter

Example: Genetic Toggle Switch

ComponentDefinitions for the Genetic Toggle Switch

ComponentDefinitions for the Genetic Toggle Switch

ModuleDefinition for the Genetic Toggle Switch

Model for the Genetic Toggle Switch

FunctionalComponents for the Genetic Toggle Switch

Complex Formation Interactions

Degradation Interactions

Modules from SBML subModels

- A Module is created within the ModuleDefinition for each subModel used in the corresponding SBML model.
- A Module contains a definition that references the corresponding ModuleDefinition for the subModel.

Modules for Genetic Toggle Switch

Converting SBML Replacements/ReplacedBys to MapsTos

- The SBML replacements and replacedBy objects are used when the same species are used at different levels of hierarchy.
- A **replacement** in an SBML model indicates all **species** instances within the **subModel** should be replaced with the top level **species**.
- A replacedBy object indicates a species in the top-level model should be replaced by a species in the corresponding subModel.
- The replacements and replacedBy elements are converted to MapsTo in SBOL.

Example: Genetic Toggle Switch

Creating MapsTo

- MapsTo objects map a local FunctionalComponent to a remote FunctionalComponent.
- For a replacement, MapsTo object has a RefinementType of useLocal indicating that the properties of this object should be taken from the FunctionalComponent in the top level object.
- For a replacedBy, the MapsTo object has a RefinementType of useRemote indicating that the properties of this object should be taken from the referenced object.

MapsTos for the Genetic Toggle Switch

GeneticToggleSwitch

Discussion

- SBML is used to create models for simulation.
- SBOL is used for the structural design of genetic circuits.
- Conversion of annotated SBML to SBOL is capable of representing structural and qualitative behavioral information.
- Converting an SBOL file back to SBML has limitations.
- The conversion is not able to represent quantitative information (i.e., reaction rate constants, species initial amounts, stoichiometry, etc.).
- Expand conversion by expressing quantitative information through SBOL
 GenericTopLevel objects and Annotations.
- Current converter can convert a single SBML element to SBOL element.
- Future goal is to create a converter for different level of abstractions.

Acknowledgements

• National Science Foundation under Grant Number DBI-1356041.