Functionatheone, Tutorium 8

1. Berechnen Sie mit Hilfe der Cauchy-Integralformel:

Berechnen Sie mit Hille der Cauchy-Integrationmei:
(i)
$$\int_{\partial D_2(0)} \frac{dz}{z^2-1}$$
 und $\int_{\partial D_2(0)} \frac{dz}{z^2+1}$ und $\int_{\partial D_2(0)} \frac{z}{z^2+1} = \frac{1}{2}$

(iii*)
$$\int_{\partial D_1(3/2)} \frac{z^7+1}{z^2(z^4+1)} \, dz$$
 und $\int_{\partial D_{3/2}(1)} \frac{z^7+1}{z^2(z^4+1)} \, dz$

(iv*) Zeigen Sie für
$$a,b>0$$
, daß $\int_0^{2\pi} \frac{dt}{a^2\cos^2t+b^2\sin^2t}=\frac{2\pi}{ab}$

 $\mathit{Hinweis}$: Stellen Sie eine Verbindung her zum Integral der Form $\frac{dz}{z}$ über eine geeignete Ellipse in \mathbb{C}^* .

Berechnen Sie mit Hilfe der Cauchy-Integralformel: (i)
$$\int_{\partial D_2(0)} \frac{dz}{z^2-1}$$
 und $\int_{\partial D_2(0)} \frac{dz}{z^2+1}$ und $\int_{\partial D_2(0)} \frac{z}{z^2+1}$ and $\int_{\partial D_2(0)} \frac{z}{z^2+1}$ = $\frac{1}{2}$ $\int \frac{(\mathbf{z}^2+\mathbf{1})^2}{\mathbf{z}^2+\mathbf{1}} dz = \frac{1}{2}$ 2Ti $\int \frac{\mathbf{z}^2+\mathbf{1}}{\mathbf{z}^2+\mathbf{1}} dz = \frac{1}{2}$ (iii) $\int_{\partial D_1(2)} \frac{z^2}{z^2+1} dz$ und $\int_{\partial D_2(2)} \frac{z^2+1}{z^2+1} dz$ und $\int_{\partial D_2(2)} \frac{z^2+1}{z^2+1} dz$ of $\int_{\partial D_2(2)} \frac{z^2+1}{z^2+1} dz = \frac{1}{2}$ 2Ti $\int \frac{\mathbf{z}^2+\mathbf{1}}{\mathbf{z}^2+\mathbf{1}} dz = \frac{1}{2}$

$$f: \mathcal{U} \to \mathbb{C} \quad \text{lubout orph,} \quad a \in \mathcal{U}$$

$$c: to_{1} \longrightarrow \mathcal{U} \setminus \{a\}'$$

$$\frac{1}{2\pi}: \int_{C} \frac{f(z)}{z^{2}-\alpha} dz = \nu(c_{1}\alpha) f(\alpha)$$

$$\frac{n!}{2\pi}: \int_{\partial D_{c}(z_{0})} \frac{f(z)}{(z^{2}-\alpha)^{n+1}} dz = f^{(n)}(a)$$

$$\int \frac{dz}{z^{2}+1} \qquad \frac{1}{z^{2}+1} = \frac{f}{z-i} + \frac{g}{z+i}$$

$$\partial D_{2}(0) \qquad 1$$

$$1 = (z+i)f + (z-i)g$$

$$= z (f+g) + if - ig$$

$$\Rightarrow f = g \Rightarrow = i2f = 1$$

$$f = -\frac{i}{2}$$

$$= 2\pi i \left(-\frac{i}{z} + \frac{i}{z}\right) = 0$$

$$Candy-Idyalformal$$

$$\int \frac{2^{2}+1}{z^{2}(z^{4}+1)} dz , \qquad \int \dots$$

$$\partial D_{1}(^{3}z) \qquad \partial D_{3}(t)$$

Nulloteller on $z^{2}(^{2}z^{4}+1)$ and $z^{2}(^{2}z^{4}+1)$

$$\frac{3^{2}(\xi^{2}+1)}{4^{2}} den en fach touly den Gebret $D_{1+\xi}(\frac{3}{2})$

$$\frac{3}{2}(\xi^{2}+1) den en fach touly den Gebret $D_{1+\xi}(\frac{3}{2})$

$$\frac{3}{2}(\xi^{2}+1) den en fach touly den Gebret $D_{1+\xi}(\frac{3}{2})$

$$\frac{3}{2}(\xi^{2}+1) den en fach touly den Gebret $D_{1+\xi}(\frac{3}{2})$$$$$$$$$

$$= \sqrt{\frac{1-2\sqrt{2}+2+1}{2}} = \sqrt{2-\sqrt{2}} < \sqrt{\frac{3}{2}}$$

$$|\frac{1}{\sqrt{7}}(-1 \pm i)-1| = \sqrt{2+\sqrt{2}} + \sqrt{\frac{9}{4}} = \frac{3}{2}$$

$$|\frac{2^{3}+1}{2^{2}(2^{4}+1)}| = \frac{\sqrt{1}}{2^{2}} + \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2-3} + \frac{\sqrt{4}}{2-3^{3}} + \frac{\sqrt{5}}{2-3^{5}} + \frac{\sqrt{6}}{2-3^{5}}$$

$$|\alpha_{3}(3)| \qquad \text{with intersent}$$

 $|\vec{z}(1\pm i) - 1| = \sqrt{(\frac{1-\sqrt{2}}{\sqrt{2}})^2 + \frac{1}{2}} =$

 $0 \in \mathbb{D}_{\frac{3}{2}}(1) \Rightarrow 3, 5^{\dagger}$

$$\alpha_{1}(0) = \left(2^{7} + 1\right)(0) = 1$$

$$\alpha_{2}(0) = \left(2^{7} + 1 - \alpha_{1}\right)(0) = \left(\frac{\alpha_{1} - 1}{2}\right)(0) = -\alpha_{1}^{7}(0)$$

$$\alpha_{3}(0) = \left(\frac{\alpha_{1} - 1}{2}\right)(0) = -\alpha_{1}^{7}(0)$$

$$\frac{1}{2\pi i} \left(\int \frac{\alpha_{i}(z)}{z^{2}} dz + \int \frac{\alpha_{i}(z)}{z} dz \right)$$

$$= \alpha_{i}'(0) + \alpha_{i}(0) = 0$$

 $= \alpha_1'(0) + \alpha_2(0) = 0$

 $\varphi_{3}(3) = \left(\frac{2^{7}+1}{2^{2}+1}\right)(3)$

note: $\frac{2^{4}+1}{2-3}=(2-3^{3})(2-3^{5})(2-3^{7})$

$$\frac{3^{7}+1}{3^{2}(3-3^{3})(3-5^{5})(3-3^{7})} + \frac{3^{49}+1}{3^{14}(3^{7}-3)(3^{7}-3^{3})(3^{7}-3^{5})}$$

$$\frac{3^{5}+3^{6}+3^{49-8}+1}{(3-3^{3})(3-5^{7})(3-5^{7})}$$

 $\Rightarrow \frac{1}{2\pi i} \int_{\partial \mathcal{D}_{\frac{3}{2}}(1)} \frac{\underline{z^{2}+1}}{z^{2}(\underline{z}^{4}+1)} dz = \frac{1}{2\pi i} \left(\int \frac{\kappa_{3}}{z-7} dz + \int \frac{\kappa_{6}}{z-7} dz \right)$

 $\omega_{3}(3) + \omega_{6}(3^{7}) =$

& analog für × (57).

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{2\sqrt{2}}$$

 $\frac{1}{(7-\zeta^3)(5-\zeta^5)(5-\zeta^5)} = \frac{1-\zeta}{2\sqrt{2}} (1-\zeta)(1-\zeta)$

35+36+3+1

$$\int + \int_{2}^{3} = 0$$

$$1+i = 2$$

$$2 = 2$$

$$2 = 2\pi i$$

$$2 = -\frac{\pi i}{2\sqrt{2}} = -\frac{\pi i}{\sqrt{2}}$$

$$2 = -\frac{\pi i}{2\sqrt{2}}$$

- 3. Fundamentalsatz der Algebra (topologisches Argument mit der Umlaufzahl). Es sei $P(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_0$ ein komplexes Polynom vom Grad $n \ge 1$.
 - (i) Es existiert $r_0 > 0$, so daß alle Nullstellen von P in der Scheibe $D_{r_0}(0)$ liegen.

(ii*) Die Schleifen $c_r: [0, 2\pi] \to \mathbb{C}^*$ gegeben durch $c_r(t) = P(re^{it})$ für $r \ge r_0$ haben Umlaufzahl $\nu(c_r; 0) = n$.

Hinweis: Betrachten Sie $\frac{c_r}{r^n}$ für $r \to \infty$. (iii) P(z) hat eine Nullstelle.

Hinweis: Sonst wären die Schleifen c_r in \mathbb{C}^* nullhomotop.

(i) Withle
$$r_0 > \max \{|x| \mid P(x) = 0, x \in \mathbb{C} \}$$
.

(ii*) Suche Homotopie
$$H: C0,2\pi J \times C0,1 J \longrightarrow C^{\times}$$

 $H(\cdot, 6) = c_{C}$

$$\#(\cdot,1) = r^n e^{int}$$

 $\#(t,s) = (1-s)^n P(\frac{r}{1-s} e^{it})$

$$H(t,s) = (1-s)^{N} P(\frac{1}{1-s} e^{it})$$

$$= r^{n} e^{int} + \alpha_{N-1} (1-s) r^{N-1} e^{i(N-1)t}$$

$$= r^{n} e^{int} + a_{n-1} (1-s) r^{n-1} e^{i(n-1)} + \dots + a_{n-1} (1-s)^{n}$$
ist stellip,

Bild
$$(+)$$
 $\in \mathbb{C}^{\times}$:
$$(1-5)^{n}P(\frac{1}{1-5}e^{it}) = +(t,s)=0 \implies P(\frac{1}{1-5}e^{it})=0$$

$$\Rightarrow \left| \frac{r}{1-5} e^{it} \right| < r_0$$

$$V(C_{r}, 0) = V(H(\cdot, 0), 0) = V(H(\cdot, 1), 0)$$

$$= V(t \mapsto r^{e^{int}}, 0) = n$$

(iii)
$$t \mapsto re^{it}$$
 ist multionestip in C

$$\Rightarrow C_r = P \circ (t \mapsto re^{it})$$
nullimentop in $P(C)$

Fells $P(C) \subseteq C^{\times}$, $\Rightarrow O = \emptyset (c_r; O) = n$

$$P \text{ lut liene}$$

$$\text{Nulliphlle}$$

$$C = C_r C_2$$

$$C = C_r$$

4. Eine Funktion $f: \mathbb{C} \to \mathbb{C}$ hat polynomielles Wachstum vom Grad $\leq n$, falls

$$|f(z)| \leqslant C(1+|z|^n)$$

für alle $z\in\mathbb{C}$ mit einer Konstante C>0. Beweisen Sie die folgende Verallgemeinerung des Satzes von Liouville:

Ganze Funktionen mit polynomiellem Wachstum sind Polynome.

Hinweis: Wenden Sie die Cauchy-Abschätzungen für die Ableitungen holomorpher Funktionen auf eine hinreichend hohe Ableitung der Funktion an.

Cauchy-Associatinger:
$$f. \mathcal{U} \rightarrow \mathcal{C}$$
 hol.

$$\frac{1}{D_r(z_0)} \subseteq \mathcal{U}$$

$$\forall n \in \mathbb{N}: |f^{(n)}(z_0)| \leq \frac{n!}{\Gamma^n} \max |f| \frac{\partial D_r(z_0)}{\partial D_r(z_0)}$$
Here $\mathcal{U} = \mathbb{C}$, $z_0 \in \mathbb{C}$, $r > 0$ beliefly
$$|f^{(n+1)}(z_0)| \leq \frac{(n+1)!}{\Gamma^{n-1}} \max |f(z_0)|$$

$$\leq \frac{(n+1)!}{\Gamma^{n+1}} \max_{z \in \partial D_r(z_0)} \mathbb{C} \left(1 + |z|^n\right) \leq (n+1)! \mathbb{C} \frac{1 + (r + |z_0|)^n}{\Gamma^{n+1}}$$

$$\Rightarrow f \text{ ist in Polynome}$$
wour Grand $\leq n$. \square

2. Mittelwerteigenschaft harmonischer Funktionen. Ist $U \subset \mathbb{C}$ ein Gebiet mit $\overline{D_r(0)} \subset U$ und $u: U \to \mathbb{R}$ harmonisch, so gilt

$$u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{it})dt.$$

Hinweis: Zurückführen auf die Mittelwerteigenschaft für holomorphe Funktionen.

S:= dist
$$(\overline{D}_{r}(0), C(\mathcal{U}) > 0$$

| hompalet also also |

inf $2|x-y| \mid x \in \overline{D}_{r}(0), \int ds$ with $y \in C(\mathcal{U})$
 $\Rightarrow \quad \widetilde{\mathcal{U}} := \mathcal{D}_{r+\frac{1}{2}}(0) \subseteq \mathcal{U}$ eight $2sulpd$.

 $\Rightarrow \quad f: \widetilde{\mathcal{U}} \rightarrow C$ had $Re(f) = \mathcal{U}$

alter 2π

They soully $f(0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(re^{it}) dt$

west - eightfult 2π

 $\Rightarrow u(0) = Re(f(0)) = \frac{1}{2\pi} \int_{0}^{\infty} Re(f(re^{it})) dt$

$$= \frac{1}{2\pi} \int_{0}^{\infty} u(re^{it}) dt$$

= i I(x) - i I(x')

d(x+iy) = i dy

$$\Rightarrow J(x) = J(x') = J(0) = \begin{cases} x'=0 \\ x'=0 \end{cases}$$

Transtitue Annechung (nach dem Tutorium) Nouplexe Funktionen skitzieren:

3B. people. ucsc. edu/~ wbolden/complex/#Z

(Klein's Thosaedes quotient:
$$\frac{\left(-(2^{20}+1)+228(2^{15}-2^{5})-4942^{10}\right)^{3}}{\left(1728+\left(2^{10}+112^{5}-1\right)\right)^{5}}$$

Polotelle = schwarz = 12 Echen des Ihosaeders (eve Polstelle be ∞)

Nullatelle = weiß = 20 Kittelpunkte des Kauten)