Manifolds I

September 26, 2024

Class Organization

1 Takehome Midterm

1 Takehome Final

Homeworks assigned, but not graded.

https://ginzburg.math.ucsc.edu/teaching/208manifolds1-2024/syl.html

Definition: Topological Manifolds

For M a topological space, M is a topological manifold if $\forall x \in M, \exists M \supset U \ni x$ and homeomorphism $\phi : U \to V \subset \mathbb{R}^n$ for V open.

To avoid problems (see below), further assume that M is Hausdorff and second countable.

Exercise

We can require V to be an open ball.

Problems

• M need not be Hausdorff.

With $(\mathbb{R} \times 0 \coprod \mathbb{R} \times 1)/\sim$.

• *M* need not be second countable.

Take $\coprod_{S} \mathbb{R}_{S}$ where S is an uncountable index.

Examples

Example 1

If $N \simeq M$, this implies N is a manifold.

Example 2

Example 3

An open subset of a manifold is a manifold.

Example 4

M, N manfiolds implies $M \times N$ is a manifold.

Example 5

Take \mathbb{R}/\mathbb{Z} by the equivalence relation $t \sim t'$ iff $t' - t \in \mathbb{Z}$.

Then $\operatorname{{\it C}}^0(\operatorname{{\it S}}^1)$ relates to periodic functions with period 1.

Example 6

$$\mathbb{T}^n = S^1 \times \cdots \times S^1.$$

Counterexample 1

[0,1] is not a manifold.

Since 0 must map somewhere in the open interval, its deletion results in a connected space in the former case but a disconnected one in the latter. Similarly, the following breaks into three and two connected components respectively.

Definition: Manifold with Boundary

There exists a neighborhood $\forall x \in M$ homeomorphic to either the open ball or the half-closed half-ball.

Exercise

A connected manifold is path-connected.

Examples

Example 7

Take $f: \mathbb{R}^n \stackrel{C^0}{\to} \mathbb{R}$ with graph $\Gamma_f = \{(x, f(x)) : x \in \mathbb{R}^n\} \subset \mathbb{R}^n \times \mathbb{R}$.

Example 8

Take $f: M \to N$ between manfiolds, then $M \simeq \Gamma_f \subseteq M \times N$.

Example 9

 $S^n \subset \mathbb{R}^{n+1}$.

Definition: Real Projective Spaces

Take $\mathbb{RP}^n = \mathbb{R}^{n+1} \setminus \{0\} / \sim$ where $x \sim y \iff x = \lambda y$ for $\lambda \neq 0$. Informally, the collection of lines through the origin.

Alternatively, $\mathbb{RP}^n = S^n / \sim \text{ where } x \sim -x$.

That is, identifying the antipodal points of the unit sphere. We may also consider $\mathbb{RP}^n = SO(n+1)/SO(n)$.

Claim

 \mathbb{RP}^n is a manifold.

 $\mathbb{RP}^1 \setminus \{x\text{-axis}\} \overset{\text{homeo}}{\to} \mathbb{R}.$

$$\mathbb{RP}^2 \setminus \mathbb{RP}^1 \xrightarrow{\text{homeo}} \mathbb{R}^2$$

 $\begin{array}{l} \mathbb{RP}^2 \setminus \mathbb{RP}^1 \stackrel{\text{homeo}}{\longrightarrow} \mathbb{R}^2 \\ \text{We have that } \mathbb{RP}^1 \text{ is homeomorphic to the circle, and } \mathbb{RP}^n = \mathbb{RP}^{n-1} \cup B^n. \end{array}$

Take $x=(x_0,\ldots,x_n),\ y=(y_0,\ldots,y_n)=(\lambda x_0,\ldots,\lambda x_n)$ and $[x]=[x_0:x_1:\cdots:x_n].$ Then for $U_k\subset\mathbb{RP}^n$ with $U_k=\{[x]:x_k\neq 0\}$, we have that U_0,\ldots,U_n covers $\mathbb{RP}^n.$ Then define $U_k\to\mathbb{R}^n$ by $[x_0:\cdots:x_n]\to\left(\frac{x_0}{x_k},\ldots,\frac{x_k}{x_k},\ldots,\frac{x_n}{x_k}\right).$

Connected Sum of Manfiolds

$$M \setminus B^n \coprod N \setminus B^n$$

M#N.

Mobius Band

October 1, 2024

A Failed Definition

$$f \in C^{r \ge 1}$$
; $f \circ \phi^{-1} : V \xrightarrow{C^r} \mathbb{R}$.

Example

Definition: Charts

Say there exists a cover U_i by open sets and $U_i \stackrel{\phi_i}{\to} V_i \subseteq \mathbb{R}^n$ fixed. Then the pair (U_i, ϕ_i) is a chart.

What if a point belongs to two charts?

With f smooth at x, $f \circ \phi_i^{-1}$ smooth at $\phi_i(x)$ and $f \circ \phi_j^{-1}$ smooth at $\phi_j(x)$.

Notation

The notation C^{r} will be used interchangably with the term smooth.

Definition: Smooth Atlas

Let M be a topological manifold. A smooth atlas on M is a cover $(U_i, \phi_i : U_i \xrightarrow{\sim} V_i \subset \mathbb{R}^n)$ where $\phi_j \circ \phi_i^{-1}$ and $\phi_i \circ \phi_j^{-1}$ are smooth for every i and j.

Say that the charts are (smooth) compatible.

Definition: Smooth Function

Say that f is smooth at $x \in M$ if there exists a chart $U_i \ni x$ such that $f \circ \phi_i$ is smooth at $\phi_i(x)$. Equivalently, if for every chart $U_i \ni x$ we have that $f \circ \phi_i$ is smooth at $\phi_i(x)$.

Proof

$$f \circ \phi_j^{-1} = (f \circ \phi_i^{-1}) \circ \underbrace{(\phi_i \circ \phi_j^{-1})}_{C^r}$$

Definition: Compatibility (Equivalence) of Atlases

Atlases A_1 and A_2 are compatible or equivalent if every chart in A_1 is compatible with every chart in A_2 . Equivalently, $A_1 \cup A_2$ is also an atlas.

· Claim: This is an equivalence relation.

Example

Consider \mathbb{R} .

Atlas 1: $U = \mathbb{R}$ and $\phi = id$.

Atlas 2: $U_1 = (1, \infty)$, $\phi_1 = (x) = x^2$, $U_2 = (-\infty, 2)$ and $\phi_2(x) = x$.

Definition: Diffeomorphism

 $\mathbb{R}^n \supset V \xrightarrow{F} W \subset \mathbb{R}^n$ is a diffeomorphism if

- F is C^r .
- F is invertible, and
- F^{-1} is C^r

Counterexample

 $y = x^3$ is a smooth homemorphism but not a diffeomorphism.

Definition: Smooth Structure / Maximal Atlas

Given an atlas, we may take all compatible atlases and define a smooth structure by the union of all such objects (i.e. the maximal atlas).

Lemma:

Every smooth manifold has a countable, locally finite atlas of precompact charts.

Examples

- Zero dimensional manfiolds (i.e. a point).
- \mathbb{R}^n and open subsets of \mathbb{R}^n .
- If M, N are smooth manifolds, then $M \times N$ is a smooth manifold.

That is, if we have atlases (U_i, ϕ_i) and (W_j, ψ_j) , we may generate $(U_i \times W_j, \phi_i \times \psi_j)$.

• Take $F: M \stackrel{\text{homeo}}{\to} N$ with N a smooth manifold. Then M is smooth.

Take an atlas A on N and the pullback $F^{-1}A = \{(F^{-1}(U_i), \phi_i \circ F)\}.$

- An open subset of a smooth *M* is a smooth manifold.
- $GL(n,\mathbb{R}) \subset \mathbb{R}^{n^2}$.

The n-Sphere

Sⁿ is a manifold

$$U_N = S^n \setminus NP \xrightarrow{\phi_N} \mathbb{R}^n$$
$$U_S = S^n \setminus SP \xrightarrow{\phi_S} \mathbb{R}^n$$

$$\phi_S\phi_N^{-1}(z)=\frac{z}{|z|^2}.$$

A different construction for Sⁿ.

Take hemispheres $U \xrightarrow{\text{orthogonal projection}} B^n$.

Projective Space

 $\mathbb{RP}^n = \mathbb{R}^{n+1} \setminus 0 / \sim \text{ where } x \sim \lambda x \text{ for } \lambda \neq 0.$

 $[x] = [x_0 : x_2 : \dots : x_n] = [\lambda x_0 : \lambda x_2 : \dots : \lambda x_n].$ Take $U_i = \{x_i \neq 0\}$ and open cover, and maps $U_i \to \mathbb{R}^n$ given by $[x_0 : \dots : x_n] \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_i}{x_i}, \dots, \frac{x_n}{x_i}\right).$ Then for j < i take

$$\phi_{j}\phi_{i}^{-1}(y_{1},...,y_{n}) = \left(\frac{y_{0}}{y_{j}},...,\frac{y_{j-1}}{y_{j}},\frac{y_{i+1}}{y_{j}},...,\frac{y_{i-1}}{y_{1}},\frac{1}{y_{i}},\frac{y_{i}}{y_{i}},...,\frac{y_{n}}{y_{1}}\right)$$

Definition: Diffeomorphism

$$M \xrightarrow{F} N$$

$$B \subset B_{\text{max}} \qquad A \supset A_{\text{max}}$$

F is a diffeomorphism if F is a homoeomorphism and $F^{-1}A_{\text{max}} = B_{\text{max}}$ ($F^{-1}A \sim B$).