ESTRUCTURAS ALGEBRAICAS. Problemas. 26 de Octubre.

Ejercicio 2. Hoja 3. Demuestra que S_4 tiene un subgrupo H isomorfo a D_8 .

Solución:

Interpretamos los elementos del grupo D_8 como movimientos en el plano. Identificamos los cuatro vértices de un cuadrado con puntos del plano, como sigue:

$$1 \leftrightarrow (1,1), \quad 2 \leftrightarrow (-1,1), \quad 3 \leftrightarrow (-1,-1), \quad 4 \leftrightarrow (1,-1).$$

Recordamos que $D_8 = \langle r, s \rangle$. De esta forma, podemos interpretar la rotación r como la aplicación $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ y la simetría s como la aplicación $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$.

Así, definimos una acción de D_8 sobre el conjunto $\{1, 2, 3, 4\}$, que da lugar a un homomorfismo de grupos

$$\rho \colon D_8 \to S_4, \quad g \mapsto \rho_q,$$

donde $\rho_g(a)$ es el número del vértice resultante tras aplicar el movimiento g al vértice a. Es claro que el homomorfismo es inyectivo, pues el único movimiento que fija todos los vértices es la identidad, correspondiente con el elemento neutro de D_8 . Por tanto, aplicando el Primer Teorema de Isomorfía, concluimos que $D_8 \cong \operatorname{im}(\rho) \leq S_4$.

Ejercicio 4. Hoja 3. Sea G un grupo y sea $N \subseteq G$ abeliano. Consideramos $\Omega = \operatorname{Hom}(N, N)$ el conjunto de homomorfismos de N en sí mismo. Dado $\phi \in \Omega$ y $g \in G$ escribimos ϕ_g para denotar a la aplicación $\phi_g(n) = \phi(g^{-1}ng)$ de N en sí mismo.

- (a) Probad que $g \cdot \phi = \phi_q$ define una acción de G sobre Ω .
- (b) Decidid si la acción es fiel o transitiva.
- (c) En el caso en que $G = \mathsf{D}_{2n}$ y $N = \langle \rho \rangle$ donde $\rho \in G$ tiene orden n, demostrad que $|\Omega| = n$ y que la acción de G sobre Ω tiene un único punto fijo si, y solo si, n es impar.

Solución:

(a) Comprobamos que $G \times \Omega \to \Omega, (g, \phi) \mapsto g \cdot \phi := \phi_g$ define una acción. En primer lugar, observamos que es una aplicación bien definida. Como N es normal, tenemos que $gng^{-1} \in N$ para todo $g \in G, n \in N$. De hecho, $\sigma_g \colon N \to N$ definida por $\sigma_g(n) = gng^{-1}$ es un automorfismo de N. Por lo que, para todo $g \in G, n \in N$, se tiene $\phi(gng^{-1}) \in N$ y $\phi_g = \phi \circ \sigma_{g^{-1}} \in \Omega$. Ahora, comprobamos que satisface las propiedades de una acción. Para todo $g, g' \in G$ y $\phi \in \Omega$, tenemos que

$$e \cdot \phi = \phi \circ \sigma_{e^{-1}} = \phi \circ id_{N} = \phi$$

$$g \cdot (g' \cdot \phi) = g \cdot \phi_{g'} = g \cdot (\phi \circ \sigma_{g'^{-1}}) = (\phi \circ \sigma_{g'^{-1}})_{g} = \phi \circ \sigma_{g'^{-1}} \circ \sigma_{g^{-1}}$$

$$= \phi \circ \sigma_{g'^{-1}g^{-1}} = \phi \circ \sigma_{(gg')^{-1}} = \phi_{gg'} = (gg') \cdot \phi.$$

(b) Definimos $\ker(\cdot) = \{g \in G : g \cdot \phi = \phi, \text{ para todo } \phi \in \Omega\}$. Decimos que la acción es fiel si $\ker(\cdot) = \{e\}$. En este caso, como N es abeliano, observamos que $\sigma_n = \operatorname{id}_N$ para todo $n \in N$. Entonces

$$n \cdot \phi = \phi \circ \sigma_n = \phi \circ \mathrm{id}_N = \phi.$$

Es decir, $N \subseteq \ker(\cdot)$. Por tanto, si $N \neq \{e\}$, entonces la acción no es fiel. Si N es el grupo trivial, entonces $\Omega = \{\mathrm{id}_N\}$. En este caso, $g \cdot \mathrm{id}_N = \mathrm{id}_N$ para todo $g \in G$. Por lo que, $\ker(\cdot) = G$ y la acción tampoco es fiel.

Decimos que la acción es transitiva si para cada par de elementos $\phi, \phi' \in \Omega$, existe $g \in G$ tal que $\phi = g \cdot \phi'$. Consideramos el elemento $\phi_0 \in \Omega$ definido por $\phi_0(n) = e$. Observamos que $g \cdot \phi_0 = \phi_0$ para todo $g \in G$, pues $\phi_0(g^{-1}ng) = e$. Es decir, ϕ_0 es un punto fijo de la acción. Si $N = \{e\}$, entonces $\Omega = \{id_N\}$ y la acción es transitiva. Si N no es trivial, entonces Ω contiene al menos dos elementos distintos: el homomorfismo trivial ϕ_0 y el homomorfismo identidad. Como ϕ_0 es un punto fijo, tiene una órbita propia, distinta de la órbita de id $_N$. Por lo que, la acción no es transitiva.

(c) Sean $G = D_{2n}$ y $N = \langle \rho \rangle$, donde $o(\rho) = n$. Observamos que [G:N] = 2, por lo que, N es normal en G. Para definir un homomorfismo $\phi \in \Omega$, basta con determinar la imagen del generador ρ . Observamos que todo homomorfismo estará determinado por $\phi_k(\rho) = \rho^k$, para algún k = 0, 1, ..., n-1. Comprobamos que cada ϕ_k es un homomorfismo:

$$\phi_k(e) = \phi_k(\rho^n) = (\rho^n)^k = e^k = e$$

$$\phi_k(\rho^l \rho^m) = \phi_k(\rho^{l+m}) = (\rho^{l+m})^k = (\rho^l)^k (\rho^m)^k = \phi_k(\rho^l) \phi_k(\rho^m).$$

Por tanto, tenemos que $\Omega = \{\phi_k : k = 0, 1, \dots, n-1\}$. En particular, $|\Omega| = n$.

Ya hemos visto en el apartado anterior que ϕ_0 es un punto fijo de la acción. Veamos que es el único si y solo si n es impar. Sea $s \in D_{2n}$ la simetría que genera D_{2n} junto a la rotación ρ . Observamos que

$$\rho^l \cdot \phi_k(\rho) = \phi_k(\rho^{-l}\rho\rho^l) = \phi_k(\rho) = \rho^k$$
$$s\rho^l \cdot \phi_k(\rho) = \phi_k((s\rho^l)^{-1}\rho s\rho^l) = \phi_k(\rho^{-l}s\rho s\rho^l) = \phi_k(\rho^{-1}) = \rho^{-k}.$$

Tendremos que ϕ_k es un punto fijo si y solo si $\rho^{-k} = \rho^k$. Esto sucede si $\rho^{2k} = e$. Esto significa que n|2k, pero k < n. Por tanto, si $k \neq 0$, n no divide a k y necesariamente n es par.

Ejercicio 5. Hoja 3. Sea G un grupo y S un subconjunto no vacío de G. Se definen $\mathbf{C}_G(S) = \{g \in G \mid gs = sg \text{ para todo } s \in S\}$ y $\mathbf{N}_G(S) = \{g \in G \mid gSg^{-1} = S\}$.

- (a) Demostrad que $\mathbf{C}_G(S) \leq \mathbf{N}_G(S) \leq G$.
- (b) Demostrad que si $S \leq G$ entonces, S es abeliano si, y solo si, $S \subseteq \mathbf{C}_G(S)$.
- (c) Demostrad que si $S \leq G$ entonces $\mathbf{N}_G(S)/\mathbf{C}_G(S)$ es isomorfo a un subgrupo de $\mathrm{Aut}(S)$.

Solución:

(a) Para todo $g, g' \in \mathbf{N}_G(S)$, se tiene que

$$gg'S(gg')^{-1} = gg'Sg'^{-1}g^{-1} = g(g'Sg'^{-1})g^{-1} = gSg^{-1} = S;$$

$$g^{-1}S(g^{-1})^{-1} = g^{-1}Sg = g^{-1}(gSg^{-1})g = g^{-1}gSgg^{-1} = eSe = S.$$

Por tanto, tenemos que $N_G(S) \leq G$.

Sea $g \in \mathbf{C}_G(S)$. Observamos que $gsg^{-1} = s$ para todo $s \in S$. Por lo que, $gSg^{-1} = S$, es decir, $g \in \mathbf{N}_G(S)$. Para todo $g, g' \in \mathbf{C}_G(S)$, se tiene que

$$gg's = gsg' = sgg'; \quad g^{-1}s = g^{-1}sgg^{-1} = g^{-1}gsg^{-1} = sg^{-1}.$$

Por tanto, tenemos que $\mathbf{C}_G(S) \leq \mathbf{N}_G(S)$.

- (b) Supongamos que $S \leq G$ es abeliano, entonces para todo $s, s' \in S$ se tiene que ss' = s's. En particular $s \in \mathbf{C}_G(S)$. Por lo que, $S \subseteq \mathbf{C}_G(S)$. Supongamos que $S \subseteq \mathbf{C}_G(S)$. Entonces para todo $g \in G$, $s \in S$, se tiene que gs = sg. En particular, para todo $g \in S$. Por tanto, S es abeliano.
- (c) Definimos una aplicación $\phi \colon \mathbf{N}_G(S) \to \mathrm{Aut}(S)$ como $\phi(g) = \sigma_g$, donde $\sigma_g \colon S \to S$ es tal que $\sigma(s) = gsg^{-1}$. Comprobamos que es un homomorfismo bien definido:
 - (Bien definido) Veamos que σ_g es un automorfismo de S. En primer lugar, observamos que $gSs^{-1} = S$. Por lo que, $\sigma_g(S) = gSg^{-1}$. Entonces σ_g es una aplicación sobreyectiva bien definida. Además, si $\sigma_g(s) = \sigma_g(s')$, es claro que s = s'. Por lo que, σ_g es inyectiva. Como sabemos que la conjugación define un homomorfismo, concluimos que $\sigma_g \in \text{Aut}(S)$.
 - (Homomorfismo) Para todo $g, g' \in G$, tenemos que $\phi(gg') = \sigma_{gg'} = \sigma_g \circ \sigma_{g'} = \phi(g) \circ \phi_{g'}$.

Veamos que $\ker(\phi) = \mathbf{C}_G(S)$. Observamos que si $g \in \mathbf{C}_G(S)$, entonces $\sigma_g(s) = gsg^{-1} = sgg^{-1} = s$ para todo $s \in S$; es decir, $\sigma_g = \mathrm{id}_S$. Por lo que, $\mathbf{C}_G(S) \subseteq \ker(\phi)$. Recíprocamente, supongamos que $g \in \ker(\phi)$, entonces $\sigma_g = \mathrm{id}_S$. En consecuencia, se tiene que $gsg^{-1} = \sigma_g(s) = s$ para todo $s \in S$, es decir, gs = sg para todo $s \in S$. Por tanto, $g \in \mathbf{C}_G(S)$. Finalmente, aplicamos el Primer Teorema de Isomorfía para concluir que

$$\mathbf{N}_G(S)/\mathbf{C}_G(S) = \mathbf{N}_G(S)/\ker(\phi) \cong \operatorname{im}(\phi) \leq \operatorname{Aut}(S).$$

Ejercicio 8. Hoja 3. Sea G un p-grupo finito y sea $1 < N \le G$. Probad que $N \cap \mathbf{Z}(G) > 1$.

Solución:

Como N es normal en G, la conjugación por elementos de G define una acción de G en N. La ecuación de clases nos dice que

$$|N| = |N^G| + \sum_i [G:G_{n_i}].$$

Observamos que

$$N^G = \{ n \in N : gng^{-1} = n \} = N \cap \mathbf{Z}(G).$$

Como las clases son disjuntas, ningún representante n_i pertenece al centro. Por lo que,

$$G_{n_i} = \{ g \in G \colon g n_i g^{-1} = n_i \} < G.$$

Entonces $[G:G_{n_i}] > 1$. Además, tenemos |N| > 1. Así, como G es un p-subgrupo, deducimos de la ecuación de clases que p divide a $|N^G|$. Por tanto, $|N \cap \mathbf{Z}(G)| > 1$.