Introduction to Analysis II

Study Notes

Sungchan Yi

Fall 2021

Chapter 6

Sequence of Functions

6.1 Sequence of Continuous Functions

Definition. (Sequence of Functions) Let $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$. Given

$$f_n:X\to Y$$

for each $n \in \mathbb{N}$, we call $\langle f_n \rangle$ a sequence of functions from X to Y.

Definition. (Pointwise Convergence) The sequence $\langle f_n \rangle$ converges pointwise to the function $f: X \to Y$ if and only if

$$\lim_{n \to \infty} f_n(x) = f(x)$$

for each $x \in X$. In other words, given $\epsilon > 0$ and for all $x \in X$,

$$\exists N \in \mathbb{N} \quad \text{s.t.} \quad n \ge N \implies ||f_n(x) - f(x)|| < \epsilon.$$

Definition. (Sequence of Continuous Functions) $\langle f_n \rangle$ is a sequence of continuous functions if and only if f_n is continuous for all $n \in \mathbb{N}$.

Question. Suppose $\langle f_n \rangle$ is a sequence of continuous functions that converges pointwise to f. Is f also continuous?

Definition. (Uniform Convergence) Let $\langle f_n \rangle$ be a sequence of functions defined on $X \subseteq \mathbb{R}^n$ and let f be a function defined on X. We say that $\langle f_n \rangle$ is **uniformly convergent on** X if and only if for any given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n \ge N, \ x \in X \implies ||f_n(x) - f(x)|| < \epsilon$$

 $^{^1}$ 여기서 주의해야 할 점은 자연수 N 이 양수 $\epsilon>0$ 뿐 아니라 정의역의 점 $x\in X$ 에도 의존한다는 점이다.

Problem 6.1.1. Following are equivalent.

- (1) $\langle f_n \rangle$ is uniformly convergent on X.
- (2) $\lim_{n \to \infty} \sup \{ ||f_n f|| : x \in X \} = 0.$

Proof. $(1 \Longrightarrow 2)$ Uniformly convergent on $X \Longrightarrow \forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $n \ge N, x \in X \Longrightarrow \|f_n(x) - f(x)\| < \epsilon/2$. Then $0 \le \sup\{\|f_n(x) - f(x)\| : x \in X\} < \epsilon/2 < \epsilon$, and we have the desired result. $(2 \Longrightarrow 1)$ If $\lim_{n \to \infty} \sup\{\|f_n - f\| : x \in X\} = 0$, for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $n \ge N$, $\sup\{\|f_n(x) - f(x)\| : x \in X\} < \epsilon/2$. Then $\|f_n(x) - f(x)\|$ should be less than ϵ for all $x \in X$, and thus $\langle f_n \rangle$ is uniformly convergent.

Problem 6.1.2. $f_n(x) = \frac{1}{n}x$ is not uniformly convergent on \mathbb{R} .

Proof. Suppose $\langle f_n \rangle$ is converges uniformly on \mathbb{R} to 0. Then for any given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n \geq N, x \in \mathbb{R} \implies \left|\frac{1}{n}x\right| < \epsilon$. But this can't be true, because for any ϵ , we can take x to be as large as we want. Take $x = 2\epsilon n$ for example, then $\left|\frac{1}{n}x\right| = 2\epsilon > \epsilon$. Contradiction.

Theorem 6.1.1. If a sequence f_n of continuous functions from X to Y converges uniformly to $f: X \to Y$, then f is a continuous function.

Proof. Given $\epsilon > 0$ and $x_0 \in X$, choose large enough $N \in \mathbb{N}$ such that

$$x \in X \implies ||f(x) - f_N(x)|| < \frac{\epsilon}{3}$$

Since f_N is continuous, there exists $\delta > 0$ such that

$$x \in X, \ \|x - x_0\| < \delta \implies \|f_N(x) - f_N(x_0)\| < \frac{\epsilon}{3}$$

If $x \in X$ and $||x - x_0|| < \delta$, then we have

$$||f(x) - f(x_0)|| \le ||f(x) - f_N(x)|| + ||f_N(x) - f_N(x_0)|| + ||f_N(x_0) - f(x_0)||$$
$$= \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

So we can conclude that f is continuous at x_0 . (Also note that uniform convergence implies pointwise convergence.)