STA261 Summer 2018 Quiz 10 August 13th, 2018

First Name: Solutions.		
Last Name:		
Student Number:		
This quiz is out of 10 marks. Do ALL of your work on the back of trough work, but nothing on the front will be marked, or even seen by		ns are. You can use the front fo
If $X_i \overset{IID}{\sim} Unif(0,\theta)$ then $W_n = X_{(n)}/\theta$ has CDF $F(w) = w^n$.		
DELOW OR OF IS BOD DOUGH WORK NOMILING WRITTEN	HEDE WILL DE DEAD	OD MADKED

1. (a) (8 marks) Let $X_i \stackrel{IID}{\sim} Unif(0,\theta)$. Find a $1-\alpha$ confidence interval for θ of the form $(X_{(n)},qX_{(n)})$, where $X_{(n)}=max(X_i)$ is the sample maximum, and q>1 is a constant that you have to find.

2 Warst
$$P(X_{(n)} \le 0 \le QX_{(n)}) = 1 - \infty$$

= $P(\frac{1}{QX_{(n)}} \le \frac{1}{Q} \le \frac{1}{X_{(n)}})$
= $P(\frac{1}{Q} \le \frac{X_{(n)}}{Q} \le 1)$

$$\frac{1}{9}^n = \alpha$$

$$q = \alpha^{-1/n}$$

- (b) (2 marks) Suppose I suggest the interval $\left(2\bar{x} \frac{1}{\sqrt{n}}, 2\bar{x} + \frac{1}{\sqrt{n}}\right)$. Give a clear and very brief explanation as to why your interval from part (a) is preferable.
- The interval $(2\bar{x} 1/\sqrt{n}, 2\bar{x} + 1/\sqrt{n})$ contains (possibly) values of θ that are less than $\chi_{(n)}$. We know $\theta \ge \chi_{(n)}$, so we should make $\chi_{(n)}$ the lower value of any confidence interval we build for $\chi_i = 0$ unif $(0, \theta)$