Percepción y procesado de señales

Tema 1: Introducción al procesado de señales digitales - Parte 3

Marcos Boullón Magán

Área de Lenguajes y Sistemas Departamento de Electrónica y Computación

- La mayor parte de las señales de interés son analógicas: señales biológicas, sísmicas, radar, de comunicación (audio, video), etc.
- Para poder procesar señales analógicas a través de medios digitales, primero es necesario convertirlas a formato digital: secuencias de números de precisión finita.
- ☐ Este proceso se denomina conversión analógico-digital (A/D).
 - Dispositivos que la realizan: convertidores A/D (ADC)
- Este proceso involucra tres pasos:
 - Muestreo
 - Cuantificación
 - Codificación

- Muestreo: Consiste en la conversión de una señal en tiempo continuo a tiempo discreto mediante la toma de muestras.
- Cuantificación: conversión de una señal de valores continuos tomados en instantes discretos en una señal de valores discretos (conjunto finito de posibles valores)
- Codificación: Proceso que convierte cada valor discreto $x_q[n]$ en una secuencia binaria de b bits

Conversión analógica-digital

- En la práctica la conversión A/D se realiza a través de un único dispositivo
- Las operaciones de muestreo y cuantificación se pueden realizar en cualquier orden, pero típicamente se realiza primero el muestreado de la señal

Muestreo

Muestreo periódico:

$$x[n] = x(nT_s)$$
 $-\infty < n < \infty$

T_s es el período de muestreo (se toma una muestra cada T_s segundos) y $F_s=1/T_s$ es la frecuencia de muestreo

Muestreo

- Muestrear a una velocidad de $F_s = 1/T_s$
- Las variables t (señal continua) y n (señal discreta) quedan relacionadas a través del período de muestreo

$$t = nT_s = n/F_s$$

 Las frecuencia de las señales (analógica y discreta en el tiempo) también quedan relacionadas

$$x(t) = A \cos(\Omega t + \Phi) = A \cos(2\pi F_0 t + \Phi)$$

$$x(nT_s) \equiv x[n] = A \cos(2\pi F_0 nT_s + \Phi) = A \cos(2\pi F_0 n/F_s + \Phi)$$

frecuencia relativa o normalizada

$$f_0 = F_0 / F_s = F_0 T_s$$

$$\omega = \Omega / F_s = \Omega T_s$$

☐ Muestreo

Con esta relación podemos usar f_0 para obtener F_0 si la frecuencia de muestreo F_s es conocida

$$f_0 = F_0 / F_s$$

 Recordemos los rangos de las frecuencias para las sinusoides continuas y discretas

$$-\infty < F_0 < \infty$$
 $-1/2 \le f_0 \le 1/2$
 $-\infty < \Omega < \infty$ $-\pi \le \omega \le \pi$

 Tenemos el problema de establecer una relación entre los rangos de frecuencias (señal continua en el tiempo, rango infinito; discreta en el tiempo, rango finito)

☐ Muestreo

Con estos rangos, y dada una frecuencia de muestreo F_s , la frecuencia de la sinusoide continua deberá de caer en el siguiente rango

$$-\frac{1}{2T_s} = -\frac{F_s}{2} \le F_0 \le \frac{F_s}{2} = \frac{1}{2T_s} \qquad f_0 = \frac{F_0}{F_s} \qquad -\frac{1}{2} \le f_0 \le \frac{1}{2}$$

Los valores máximos de F_0 y Ω

$$F_{max} = \frac{F_s}{2} = \frac{1}{2T_s} \qquad \Omega_{max} = \pi F_s = \frac{\pi}{T_s}$$

Por lo tanto, el muestreo introduce ambigüedad, dado que la frecuencia más alta que puede determinarse unívocamente cuando se muestrea a F_s es F_{max}

Ejercicio

- Obtén las señales discretas de las siguientes señales analógicas, muestreadas a $F_s=40~Hz$ (recuerda que $\Omega=2\pi F_0$ y $f_0=F_0/F_s$):
 - $x_1(t) = \cos((2\pi(10)t))$
 - $x_2(t) = \cos((2\pi(50)t))$
- ¿Cuáles son los alias de estas señales (otras que también son descritas por estos muestreos)?

Muestreo

- Dada una tasa de muestreo F_s , solo podemos muestrear sin ambigüedad señales analógicas que tengan una frecuencia máxima $F_{max} = F_s/2$
- Debemos modificar la tasa de muestreo acorde a la frecuencia máxima de la señal analógica para evitar el aliasing

Ejemplo de aliasing

 $F_1 = 7/8 \; Hz$

Muestreo

En general, si tenemos una señal sinusoidal continua en el tiempo con una tasa de muestreo F_s , generamos una señal discreta en el tiempo equivalente

$$x(t) = A \cos(2\pi F_0 t + \Phi)$$

$$x[n] = A \cos(2\pi f_0 n + \Phi)$$

$$F_s = 1/T_s$$

$$f_0 = F_0/F_s$$

Si suponemos que

$$-F_s/2 \le F_0 \le F_s/2$$

• ... entonces f_0 se encontrará en el rango de frecuencias para las señales discretas en el tiempo. La relación entre F_0 y f_0 es uno a uno sin ambigüedad (es decir, que se podrá reconstruir la señal original sin problemas)

Muestreo

Por el contrario si la señal analógica tiene una frecuencia

$$F_k = F_0 + kF_s$$
 $k = \pm 1, \pm 2 \dots$

■ ... no va a pertenecer al rango fundamental $-F_s/2 \le F_0 \le F_s/2$

$$x(t) = A \cos(2\pi F_k t + \Phi)$$

$$x[n] \equiv x(nT_s) = A \cos(2\pi ((F_0 + kF_s)/F_s)n + \Phi) =$$

$$= A \cos(2\pi F_0 n/F_s + \Phi - 2\pi kn) =$$

$$= A \cos(2\pi f_0 n + \Phi)$$

 Un número infinito de sinusoides continuas está representado por la misma señal discreta

□ Teorema del muestreo

- Para una señal analógica genérica, ¿cómo elegimos la frecuencia de muestreo F_s ?
- Necesitamos conocer el contenido en frecuencias de esa señal
- Cualquier señal analógica se puede representar como una suma de sinusoides (en un intervalo pequeño de tiempo):

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\Omega_k t + \Phi_k} \sim \sum_k c_k \cos(2\pi F_k t + \Phi_k)$$

■ En esta suma existe una sinusoide con el valor máximo de frecuencia (por ejemplo, voz, $F_{max} \sim 3$ kHz; vídeo, $F_{max} \sim 5$ MHz)

□ Teorema del muestreo

- \blacksquare Conocer F_{max} nos permite seleccionar la frecuencia de muestreo
- La frecuencia más alta de una señal analógica que se puede reconstruir sin ambigüedad cuando se muestrea a F_s es $F_s/2$
- Escogemos

$$F_s > 2 F_{max}$$

- Con este muestreo cualquier componente de frecuencia de la señal analógica (sinusoide) puede discretizarse sin ambigüedad
- Y con todas las componentes de frecuencia correctamente representadas, la señal analógica puede reconstruirse a partir de las muestras empleando el método adecuado de interpolación

Teorema del muestreo

- Si la frecuencia más alta contenida en una señal analógica x(t) es F_{max} y la señal se muestrea a una frecuencia $F_s > 2$ F_{max} , entonces x(t) puede recuperarse desde sus muestras
- Aproximación del seno cardinal

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT_s) g(t - nT_s)$$

- ... siendo g(x) la función de interpolación normalizada
 - g(x) = sinc(x) = sin(x)/x
 - $_{\circ}$ con frecuencia de oscilación de 1/2 F_s
- ... siendo $x(nT_s)$ las **muestras** discretas de la señal
 - $x(nT_s) = x[n]$

- □ Teorema del muestreo
 - Original

□ Teorema del muestreo

Reconstrucción

Ejercicio

Dada la siguiente señal

$$x(t) = 3 \cos(50\pi t) + 10 \sin(300\pi t) - \cos(100\pi t)$$

... ¿cuál es la frecuencia de muestreo mínima que se necesita para no tener ambigüedad en una posterior reconstrucción?

- Cuantificación de señales continuas en amplitud
 - Es el proceso de convertir una señal en tiempo discreto de amplitud continua en una señal digital
 - Cada muestra pasa a expresarse mediante un número finito de cifras por el proceso de cuantificación

$$x_a[n] = Q\{x[n]\}$$

Definimos también un error de cuantificación

$$e_q(n) = x_q(n) - x(n)$$

- Cuantificación de señales continuas en amplitud
 - Ejemplo
 - Señal

$$x[n] = \begin{cases} 0.9^n & para & n \ge 0 \\ 0 & para & n < 0 \end{cases}$$

Muestreo

$$Fs = 1 Hz$$
$$x(t) = 0.9t \quad t \ge 0$$

n	x[n]	x _q [n] truncamiento	x _q [n] redondeo	e _q [n] = x _q [n] - x[n] redondeo
0	1	1.0	1.0	0.0
1	0.9	0.9	0.9	0.0
2	0.81	0.8	0.8	-0.01
3	0.729	0.7	0.7	-0.029
4	0.6561	0.6	0.7	0.0439
5	0.59049	0.5	0.6	0.00951
6	0.531441	0.5	0.5	-0.031441
7	0.4782969	0.4	0.5	0.0217031

Cuantificación de señales continuas en amplitud

 En el caso del redondeo, el error de cuantificación se encuentra en el intervalo

$$-\Delta/2 \le e_a[n] \le \Delta/2$$

- Si X_{min} y X_{max} son respectivamente los valores mínimos y máximos de x[n], X_{max} X_{min} es el rango dinámico de la señal
- Para L niveles de cuantificación

$$\Delta = (X_{max} - X_{min}) / (L - 1)$$

 La cuantificación es un proceso irreversible que produce pérdida de información, ya que a todas las muestras a una distancia inferior a Δ/2 de un determinado nivel se les asigna el mismo valor del nivel

Codificación de las muestras cuantificadas

- En un conversor A/D, la cuantificación asigna un número binario único a cada nivel de cuantificación
- Si empleamos *L* niveles, necesitamos *L* números binarios
- Con una secuencia de b bits podemos representar 2^b números binarios diferentes. Así que necesitamos

$$2^b \ge L$$
$$b \ge \log_2 L$$

Por tanto, seleccionamos para b el menor entero mayor o igual al valor log_2L y codificamos los niveles con secuencias de b bits

Ejercicio

La señal discreta

$$x[n] = 6.35 \cos(n \pi/10)$$

... se cuantifica con una resolución de

- a) $\Delta = 0.1$
- b) $\Delta = 0.02$

¿Cuántos bits son necesarios en el convertidor A/D en cada caso?

Conversión digital - analógica

- El objetivo de un conversor D/A es interpolar entre muestras
- El teorema del muestreo especifica una interpolación óptima para una señal de banda limitada, pero es complejo y poco práctico
- En la práctica se emplean esquemas más sencillos

