Matemática I (MAT021)

 2^{do} Semestre de 2014. Pauta Certamen 1, Martes 09 de Septiembre de 2014.

1. Sean $A, B \neq C$ tres conjuntos cualesquiera. Demuestre que $[(A-B)-(A-C)] \cup (A\cap B\cap C) = A\cap C$ Solución:

```
\begin{split} [(A-B)-(A-C)] \cup (A\cap B\cap C) &= [(A\cap B^c)-(A\cap C^c)] \cup (A\cap B\cap C) \\ &= [(A\cap B^c)\cap (A\cap C^c)^c] \cup (A\cap B\cap C) \\ &= [(A\cap B^c)\cap (A^c\cup C)] \cup (A\cap B\cap C) \\ &= [(A\cap B^c\cap A^c)\cup (A\cap B^c\cap C)] \cup (A\cap B\cap C) \\ &= \phi\cup (A\cap B^c\cap C)\cup (A\cap B\cap C) \\ &= A\cap C\cap (B^c\cup B) \\ &= A\cap C\cap \mathcal{U} \\ &= A\cap C \end{split}
```

MAT021 Certamen 1

2. Considerando la figura dada, determinar el valor de $\tan \beta$.

Solución:

De acuerdo a la figura, tenemos que:

$$\tan \beta = \frac{x}{6}$$
, $\tan(\beta + \alpha) = \frac{3}{x}$ y $\tan \alpha = \frac{1}{x}$

Por lo tanto

$$\frac{3}{x} = \tan(\beta + \alpha) = \frac{\tan\beta + \tan\alpha}{1 - \tan\beta \tan\alpha} = \frac{\frac{x}{6} + \frac{1}{x}}{1 - \frac{x}{6} \cdot \frac{1}{x}}$$

lo cual implica que

$$\frac{3}{x} = \frac{\frac{x^2 + 6}{6x}}{\frac{5x}{6x}} = \frac{x^2 + 6}{5x} \Rightarrow 15 = x^2 + 6$$

Por lo tanto

$$x^2 = 9$$
, así $x = 3$

Finamelte $\tan \beta = \frac{3}{6} = \frac{1}{2}$.

- 3. Se desea construir un edificio de base triangular, de tal manera que el triángulo resultante sea un triángulo rectángulo de perímetro $20+10\sqrt{2}$ mts. La hipotenusa de este triángulo corresponderá a la entrada del edificio y tendrá una longitud de $10\sqrt{2}$ mts
 - a) Exprese el área del piso como una función $f: X \subset \mathbb{R} \to \mathbb{R}$ que dependa de uno de los lados del triángulo que lo forma, donde X es el dominio de f(x) de tal manera que X tenga sentido en el contexto del problema.
 - b) Encuentre el recorrido de la función obtenida a)
 - c) ¿Qué valores de los lados del triángulo escogería de tal manera que se alcance el área máxima?

Solución:

(a) Dado que el perímetro de la base triangular está dado por $10\sqrt{2} + a + b = 20 + 10\sqrt{2}$ (donde a y b son los catetos de tal base) entonces $f(a) = \frac{a}{2}(20 - a)$ representa el área de un triángulo rectángulo de lados a y b y perímetro $20 + 10\sqrt{2}$ mts. Ahora bien, como f(a) representa el área de un triángulo se sigue que 0 < a < 20 de esta manera la función buscada está dada por

$$\begin{array}{ccc} f:]0,20[& \to & \mathbb{R} \\ a & \to & \frac{a}{2}(20-a) \end{array}$$

- (b) Debido a que f(a) es una función cuadrática es fácil argumentar que su recorrido está dado por]0, f(10)] donde f(10) = 50.
- (c) Dado que el Rec(f) =]0, f(10)] entonces a = 10 es el lado del triángulo que hace que su área sea máxima, luego b = 20 a = 10 y conseguimos las longitudes buscadas.

MAT021 Certamen 1

4. Determinar el conjunto solución de la siguiente inecuacuación

$$\frac{(|x|-1)(x^2+x+2)}{(x^2+x-6)} > 0$$

Solución:

Primero estudiemos la expresión (|x|-1).

Si $x \ge 0$, entonces (|x|-1)=(x-1). Este término es positivo si x>1 y es negativo para los valores de $0 \le x < 1$.

En el caso x < 0, tenemos que (|x| - 1) = (-x - 1). Este término es negativo para $-1 \le x < 0$ y es positivo para los valores de x < -1.

Finalmente (|x|-1) es positivo para los valores de x<-1 y x>1, y es negativo para los valores de x tales que -1 < x < 1.

La expresión cuadrática $(x^2 + x + 2)$ tiene discriminante $\Delta = -7 < 0$, luego es siempre positiva o siempre negativa. como es una parábola que abre hacia arriba vemos que es siempre positiva.

El denominador $(x^2 + x - 6) = (x - 2)(x + 3)$. El término (x - 2) es negativo para x < 2 y positivo para x > 2. A su vez, (x + 3) es negativo para x < -3 y positivo para x > -3.

Esta información la podemos resumir en la siguiente tabla:

	x < -3	-3 < x < -1	-1 < x < 1	1 < x < 2	2 < x
(x - 1)	+	+	_	+	+
(x-2)	_	_	_	_	+
(x+3)	_	+	+	+	+
$\frac{(x -1)(x^2+x+2)}{(x^2+x-6)}$	+	_	+	_	+

Por lo tanto, el conjunto solución de la inecuación es

$$Sol =]-\infty, -3[\cup]-1, 1[\cup]2, \infty[$$

MAT021 Certamen 1