COMS3261: Computer Science Theory

Fall 2013

Mihalis Yannakakis

Lecture 10, 10/7/13

Parse tree (Derivation tree)

- Rooted ordered tree: has root, children of every node are ordered
- · Internal nodes labeled with variables
- Leaves labeled with variables, terminals or ε
- If internal node labeled A and children $X_1,...X_k$ in left-to-right order then production $A \rightarrow X_1...X_k \in P$
- Yield of parse tree=string of labels of leaves from left to right
- Complete parse tree: all leaves labeled by terminals or ε and root labeled by S (start symbol) – we'll see the set of yields of such trees = L(G)
- Parse tree shows structure of a string, eg. structure of a sentence in a language, of an expression (eg. an arithmetic expression), of a program

Recursive Inference

- Recursive inference: use productions from body to head to deduce that string is of type S
- If $A \rightarrow w \in P$ then terminal string w is of type A
- If $A \to X_1 X_2 ... X_k \in P$ and w_1 is either $= X_1$ if X_1 is a terminal or is of type X_1 if X_1 is a variable, ..., w_k is equal to X_k or of type X_k then $w_1 w_2 ... w_k$ is of type A

Example:

- 0 palindrome (by rule $S \rightarrow 0$)
- 000 palindrome (by rule S →0S0)
- 10001 palindrome (by rule S →1S1)

Derivations = Parse trees = Rec. Inference

Theorem: Let G = (V,T,P,S) be a cfg and $A \in V$. The following are equivalent for any string w in T^* .

- 1. Recursive inference implies that w is in the language with start symbol A.
- 2. $A \Rightarrow^* w$ (by any derivation)
- 3. A \Rightarrow^* w (by a leftmost derivation)
- 4. A \Rightarrow^*_{rm} w (by a rightmost derivation)
- 5. There is a parse tree with root labeled A and yield w

Recursive Inference → Parse tree

- If w can be inferred then there is parse tree with root labeled A and yield w
- Induction on # steps in inference
- Basis: 1 step. Production A →w
- Induction: w is inferred in n>1 steps
 using A →X₁...X_k where w= w₁...w_k and
 we inferred each w_i is of type X_i if X_i ∈V
 or w_i=X_i if X_i∈T. By induction hypothesis
 have parse trees for the w_i's.
 - Combine in one tree.

Parse Tree → LM / RM Derivation

- · Given parse tree, obtain a lm and a rm derivation of yield
- Induction on height of tree.
- Basis: height 1. Tree is:
 Then production A→w , so
 A ⇒_{Im} w and A⇒_{rm} w

Example

Leftmost derivation:

 $E \Rightarrow E+E \Rightarrow E*E+E \Rightarrow I*E+E \Rightarrow a*E+E \Rightarrow a*I+E \Rightarrow a*b+E \Rightarrow a*b+I \Rightarrow a*b+a$

Derivation → Inference

- Suppose A ⇒* w. Then can infer w of type A
- Induction on length of derivation.
- Basis. Length 1. Then production A →w
- Induction: Length n>1.
- Derivation is A⇒ X₁...X_k ⇒*w₁w₂...w_k =w , where each w_i is = X_i (if in T) or is derived from X_i in fewer than n steps.
- In the latter case can infer wi is of type Xi by i.h.
- Follows that w is of type A

Ambiguity in Grammars

- A string can have multiple derivations that correspond to the same parse tree.
- There is 1-1 correspondence between parse trees of a terminal string, leftmost derivations and rightmost derivations
- A grammar G is ambiguous if there is a string w in L(G) that has more than one parse trees (equivalently Im or rm derivations)
- Otherwise G is unambiguous.
- Ambiguity can be a problem: different parse trees → different structure → different meaning

a*b+a: Different meaning: (a*b)+a versus a*(b+a)

For example if a=b=2, then left=6, right=8

Removing ambiguity

- Want to remove ambiguity, if possible (not always possible)
- In this case we can by introducing more variables: T for term,
 F for factor, to enforce priority of * over +
- E → T | E+T (so E is a sum of terms)
- T → F | T*F (so T is a product of factors)
- F → I | (E) (F is an identifier or a parenthesized expression)
- I → a | b | Ia | Ib | I0 | I1
- Generates same language.
- Only one parse tree for every string in the language

Inherently Ambiguous Language

- A CFL L is inherently ambiguous if all cfg's for L are ambiguous
- There are inherently ambiguous languages
- for example { $a^nb^nc^md^m \mid n,m \ge 1$ } \cup { $a^nb^mc^md^n \mid n,m \ge 1$ }
- Strings of the form aⁿbⁿcⁿdⁿ must have 2 parse trees
- There is no algorithm that can determine whether a given CFG is ambiguous. (Undecidable problem)
- Also whether the language of a given CFG is inherently ambiguous