Машинное обучение

Лекция 1. Постановка задачи машинного обучения

Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться.

Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться.

Зачем нужно машинное обучение?

Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться.

Зачем нужно машинное обучение?

• Автоматизация

Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться.

Зачем нужно машинное обучение?

- Автоматизация
- Поиск закономерностей, которые человек не может найти

Постановка задачи

Задача машинного обучения:

- Данные (что такое объект, какие признаки);
- Что предсказывать;
- Оценка качества (критерий качества + способ валидации).

ML 3/11

Постановка задачи: Данные

Матрица объекты-признаки

	Признак 1	Признак 2		Признак К
Объект 1	0.77	1742		red
Объект 2	0.79	436		blue
Объект 3	0.82	910		green
• • •	• • •	• • •	• • •	• • •
Объект К	0.83	1054		blue

ML 4/11

Постановка задачи: Данные

Объект — вектор в [конечномерном] пространстве признаков. Виды признаков:

- вещественные
- бинарные
- категориальные
- порядковые (упорядоченные категориальные)
- подмножество
- о строковые

Категориальные признаки можно кодировать через one-hot кодирование.

ML 5/11

Постановка задачи: Что предсказываем?

6 / 11

ML

• *X* — множество объектов.

- *X* множество объектов.
- Y множество номеров классов.

- *X* множество объектов.
- Y множество номеров классов.
- ullet Конечная обучающая выборка $X^m = \{(x_1, y_1), \dots, (x_m, y_m)\}.$

- *X* множество объектов.
- Y множество номеров классов.
- ullet Конечная обучающая выборка $X^m = \{(x_1, y_1), \dots, (x_m, y_m)\}.$

Существует неизвестная целевая зависимость — отображение $y^*: X \to Y$, значения которой известны только на объектах конечной обучающей выборки X^m . Требуется построить алгоритм $a: X \to Y$, способный классифицировать произвольный объект $x \in X$.

• X — множество объектов, $\rho(x,x')$ метрика на X.

- X множество объектов, $\rho(x,x')$ метрика на X.
- Y множество номеров кластеров.

- X множество объектов, $\rho(x,x')$ метрика на X.
- Y множество номеров кластеров.
- ullet Конечная обучающая выборка $X^m = \{x_1, \dots, x_m\} \subset X.$

- X множество объектов, $\rho(x,x')$ метрика на X.
- Y множество номеров кластеров.
- ullet Конечная обучающая выборка $X^m = \{x_1, \dots, x_m\} \subset X.$

Требуется разбить выборку на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из объектов, близких по метрике ρ , а объекты разных кластеров существенно отличались.

- X множество объектов, $\rho(x,x')$ метрика на X.
- Y множество номеров кластеров.
- ullet Конечная обучающая выборка $X^m = \{x_1, \dots, x_m\} \subset X.$

Требуется разбить выборку на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из объектов, близких по метрике ρ , а объекты разных кластеров существенно отличались.

В чем отличие от классификации?

- X множество объектов, $\rho(x,x')$ метрика на X.
- Y множество номеров кластеров.
- ullet Конечная обучающая выборка $X^m = \{x_1, \dots, x_m\} \subset X.$

Требуется разбить выборку на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из объектов, близких по метрике ρ , а объекты разных кластеров существенно отличались.

В чем отличие от классификации? Кластеризация отличается от классификации тем, что номера исходных объектов y_i изначально не заданы, и даже может быть неизвестно само множество Y.

• Задана выборка — множество $\{x_1,...,x_N|x\in\mathbb{R}^M\}$ значений свободных переменных и множество $\{y_1,...,y_N|y\in\mathbb{R}\}$ соответствующих им значений зависимой переменной.

- Задана выборка множество $\{x_1,...,x_N|x\in\mathbb{R}^M\}$ значений свободных переменных и множество $\{y_1,...,y_N|y\in\mathbb{R}\}$ соответствующих им значений зависимой переменной.
- Задана регрессионная модель параметрическое семейство функций f(w,x) зависящая от параметров $w \in \mathbb{R}^W$ и свободных переменных x.

- Задана выборка множество $\{x_1,...,x_N|x\in\mathbb{R}^M\}$ значений свободных переменных и множество $\{y_1,...,y_N|y\in\mathbb{R}\}$ соответствующих им значений зависимой переменной.
- Задана регрессионная модель параметрическое семейство функций f(w,x) зависящая от параметров $w \in \mathbb{R}^W$ и свободных переменных x.

- Задана выборка множество $\{x_1,...,x_N|x\in\mathbb{R}^M\}$ значений свободных переменных и множество $\{y_1,...,y_N|y\in\mathbb{R}\}$ соответствующих им значений зависимой переменной.
- Задана регрессионная модель параметрическое семейство функций f(w,x) зависящая от параметров $w \in \mathbb{R}^W$ и свободных переменных x.

Выборку обозначают как $D = \{(x,y)_i\}$. Требуется найти наиболее вероятные параметры \bar{w} :

$$\bar{\boldsymbol{w}} = \arg\max_{\boldsymbol{w} \in \mathbb{R}^W} p(D|\boldsymbol{w}, f).$$

- Задана выборка множество $\{x_1,...,x_N|x\in\mathbb{R}^M\}$ значений свободных переменных и множество $\{y_1,...,y_N|y\in\mathbb{R}\}$ соответствующих им значений зависимой переменной.
- Задана регрессионная модель параметрическое семейство функций f(w,x) зависящая от параметров $w \in \mathbb{R}^W$ и свободных переменных x.

Выборку обозначают как $D = \{(x,y)_i\}$. Требуется найти наиболее вероятные параметры \bar{w} :

$$\bar{\boldsymbol{w}} = \arg\max_{\boldsymbol{w} \in \mathbb{R}^W} p(D|\boldsymbol{w}, f).$$

В каком смысле правдоподобные?

Постановка задачи: Критерии качества

$$Q(a) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a(x_i))$$

- ullet размер тестовой выборки.
- y_i правильный ответ на i-ом объекте.
- $a(x_i)$ предсказанный ответ на i-ом объекте.
- L функция потерь ("loss function")

ML 10 / 11

Какая может быть функция потерь?

Какая может быть функция потерь?

Для регрессии:

•
$$L(y_i, a(x_i)) = y_i - a(x_i)$$

Какая может быть функция потерь?

Для регрессии:

• $L(y_i, a(x_i)) = y_i - a(x_i) - плохо, почему?$

Какая может быть функция потерь?

Для регрессии:

- $L(y_i, a(x_i)) = y_i a(x_i) плохо, почему?$
- $L(y_i, a(x_i)) = |y_i a(x_i)|$ mean absolute error

Какая может быть функция потерь?

Для регрессии:

- $L(y_i, a(x_i)) = y_i a(x_i) плохо, почему?$
- $L(y_i, a(x_i)) = |y_i a(x_i)|$ mean absolute error
- $L(y_i, a(x_i)) = (y_i a(x_i))^2$ mean square error

Какая может быть функция потерь?

Для регрессии:

- $L(y_i, a(x_i)) = y_i a(x_i) плохо, почему?$
- $L(y_i, a(x_i)) = |y_i a(x_i)|$ mean absolute error
- $L(y_i, a(x_i)) = (y_i a(x_i))^2$ mean square error

Для классификации:

Какая может быть функция потерь?

Для регрессии:

- $L(y_i, a(x_i)) = y_i a(x_i) плохо, почему?$
- $L(y_i, a(x_i)) = |y_i a(x_i)|$ mean absolute error
- $L(y_i, a(x_i)) = (y_i a(x_i))^2$ mean square error

Для классификации:

$$L(y_i, a(x_i)) = \begin{cases} 1 & y_i = a(x_i) \\ 0 & y_i \neq a(x_i) \end{cases}$$

ML

accuracy

11 / 11