04.ml.model

August 20, 2024

0.1 Real Estate Model Building

0.2 1. Import sklearn Libraries

```
[]: import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
  import matplotlib.pylab as pylab
  from sklearn.preprocessing import LabelEncoder
  from sklearn.model_selection import train_test_split

import warnings
  warnings.filterwarnings('ignore')
```

0.3 2. Import Dataset

```
[ ]: mum_prop = pd.read_csv('Final_Project.csv')
    mum_prop
```

```
Г1:
                           Property_Name \
     0
                      Omkar Alta Monte
     1
           T Bhimjyani Neelkanth Woods
     2
                Legend 1 Pramila Nagar
     3
                       Unnamed Property
     4
                       Unnamed Property
                    Shagun White Woods
     2526
     2527
                             Guru Anant
     2528
                 Balaji Mayuresh Delta
     2529
                 Balaji Mayuresh Delta
     2530
               Gurukrupa Tulsi Heights
                                                     Location
                                                                          Region \
     0
                                                                    Malad Mumbai
                                W E Highway Malad East Mumbai
     1
                                         Manpada Thane Mumbai
                                                                   Manpada Thane
     2
                                          Dahisar West Mumbai
                                                                  Dahisar Mumbai
     3
                                                                Central Mumbai
           Vidyavihar West Vidyavihar West Central Mumbai...
```

4	176 Cst Road	d Kalina Mumbai	400098 Santacruz Ea	Santacruz Mumbai	
•••			•••	•••	
25			'lwe Navi Mumbai Mumbai		
25		Sector 2 U	'lwe Navi Mumbai Mumbai		
25			'lwe Navi Mumbai Mumbai		
25			'lwe Navi Mumbai Mumbai		
25	30	U	Twe Navi Mumbai Mumbai	Ulwe Navi-Mumbai	
	D			A CaE+ Data CaE+	,
0	Property_Age	•	- · ·	Area_SqFt Rate_SqFt 2900.0 17241	\
1	0 to 1 Year 1 to 5 Year	•	•	2900.0 17241 1900.0 12631	
2	105 rear	•		595.0 15966	
3	5 to 10 Year	•	•	1450.0 25862	
4	5 to 10 Year	•	-		
	5 to 10 fear	r Ready To Move	-		
 25	 26 1 to 5 Yeaı	 r Ready To Move	Built Up Area	 1180.0 10338	
25		•	•	1090.0 8073	
25		•		1295.0 10579	
	20	v	•	1850.0 9243	
25		r Ready To Move	•	1100.0 8636	
20	00 0 00 1 1001	i iteaay 10 110ve	Dullt op hica	1100.0	
	Floor_No Be	edroom Bathroom	Price_Lakh		
0	14	3 4	500.0		
1	8	3 3	240.0		
2	3	1 2	95.0		
3	1	3 3	375.0		
4	5	2 2	350.0		
•••		•••	•••		
25	26 2	2 2	122.0		
25	27 11	2 2	88.0		
25	28 6	2 2	137.0		
25	29 6	3 3	171.0		
25	30 4	2 2	95.0		

[2531 rows x 12 columns]

0.4 3. Data Understanding

[]: mum_prop.shape

[]: (2531, 12)

[]: mum_prop.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2531 entries, 0 to 2530
Data columns (total 12 columns):

Column Non-Null Count Dtype

0	Property_Name	2531 non-null	object
1	Location	2531 non-null	object
2	Region	2531 non-null	object
3	Property_Age	2531 non-null	object
4	Availability	2531 non-null	object
5	Area_Tpye	2531 non-null	object
6	Area_SqFt	2531 non-null	float64
7	Rate_SqFt	2531 non-null	int64
8	Floor_No	2531 non-null	int64
9	Bedroom	2531 non-null	int64
10	Bathroom	2531 non-null	int64
11	Price_Lakh	2531 non-null	float64
dtyp	es: float64(2),	int64(4), object	t(6)
memo	ry usage: 257.1-	+ KB	

[]: mum_prop.isna().sum()

[]:	Property_Name	0
	Location	0
	Region	0
	Property_Age	0
	Availability	0
	Area_Tpye	0
	Area_SqFt	0
	Rate_SqFt	0
	Floor_No	0
	Bedroom	0
	Bathroom	0
	Price_Lakh	0
	dtype: int64	

[]: mum_prop.describe().round()

[]:		${\tt Area_SqFt}$	${\tt Rate_SqFt}$	Floor_No	${\tt Bedroom}$	${\tt Bathroom}$	Price_Lakh
	count	2531.0	2531.0	2531.0	2531.0	2531.0	2531.0
	mean	949.0	16554.0	9.0	2.0	2.0	161.0
	std	487.0	10204.0	8.0	1.0	1.0	162.0
	min	185.0	1808.0	-1.0	1.0	1.0	13.0
	25%	634.0	8751.0	3.0	1.0	2.0	66.0
	50%	850.0	13636.0	6.0	2.0	2.0	110.0
	75%	1150.0	22314.0	12.0	2.0	2.0	197.0
	max	5000.0	55611.0	55.0	6.0	7.0	1900.0

0.5 4. Feature Engineering

0.5.1 4.1 Drop Unwanted Columns

```
[]: mum_prop.head()
[]:
                       Property_Name \
     0
                   Omkar Alta Monte
     1
       T Bhimjyani Neelkanth Woods
     2
             Legend 1 Pramila Nagar
     3
                    Unnamed Property
                    Unnamed Property
     4
                                                 Location
                                                                      Region \
                            W E Highway Malad East Mumbai
     0
                                                                Malad Mumbai
     1
                                     Manpada Thane Mumbai
                                                               Manpada Thane
     2
                                      Dahisar West Mumbai
                                                              Dahisar Mumbai
     3 Vidyavihar West Vidyavihar West Central Mumbai...
                                                            Central Mumbai
      176 Cst Road Kalina Mumbai 400098 Santacruz Ea... Santacruz Mumbai
        Property_Age
                       Availability
                                               Area_Tpye
                                                          Area_SqFt
                                                                     Rate_SqFt \
     0
        0 to 1 Year Ready To Move
                                     Super Built Up Area
                                                              2900.0
                                                                          17241
         1 to 5 Year Ready To Move
                                     Super Built Up Area
     1
                                                              1900.0
                                                                          12631
     2
            10+ Year Ready To Move
                                     Super Built Up Area
                                                               595.0
                                                                          15966
     3 5 to 10 Year Ready To Move
                                           Built Up Area
                                                              1450.0
                                                                          25862
     4 5 to 10 Year Ready To Move
                                             Carpet Area
                                                               876.0
                                                                          39954
        Floor_No
                 Bedroom Bathroom Price_Lakh
     0
              14
                        3
                                  4
                                          500.0
     1
               8
                        3
                                  3
                                          240.0
     2
               3
                        1
                                  2
                                           95.0
     3
               1
                        3
                                  3
                                          375.0
               5
                        2
                                          350.0
[]: mum_prop.drop(columns=['Property_Name', 'Location', 'Availability', 'Bathroom'],
      →inplace = True)
     print('Shape of data :', mum_prop.shape)
    Shape of data: (2531, 8)
    0.5.2 4.2 Label Encoding for Categorical Columns
[]: le = LabelEncoder()
[]: for column in mum_prop.describe(include='object').columns:
         mum_prop[column] = le.fit_transform(mum_prop[column])
[]: mum_prop.describe().round(2).T
```

[]:	count	mean	std	min	25%	50%	75%	\
Region	2531.0	67.56	40.60	0.0	31.0	60.0	107.0	
Property_Ag	ge 2531.0	1.30	1.09	0.0	0.0	1.0	2.0	
Area_Tpye	2531.0	1.74	1.18	0.0	1.0	1.0	3.0	
${\tt Area_SqFt}$	2531.0	948.77	486.83	185.0	634.5	850.0	1150.0	
Rate_SqFt	2531.0	16553.69	10204.27	1808.0	8751.0	13636.0	22314.0	
Floor_No	2531.0	8.78	7.98	-1.0	3.0	6.0	12.0	
${\tt Bedroom}$	2531.0	1.95	0.83	1.0	1.0	2.0	2.0	
Price_Lakh	2531.0	161.35	162.32	13.0	66.0	110.0	197.0	

max Region 144.0 Property_Age 4.0 Area_Tpye 3.0 Area_SqFt 5000.0 Rate_SqFt 55611.0 Floor_No 55.0 Bedroom 6.0 Price_Lakh 1900.0

[]: mum_prop

[]:		Region	Property_Age	Area_Tpye	Area_SqFt	Rate_SqFt	Floor_No	\
	0	69	0	3	2900.0	17241	14	
	1	73	1	3	1900.0	12631	8	
	2	24	2	3	595.0	15966	3	
	3	18	3	0	1450.0	25862	1	
	4	107	3	1	876.0	39954	5	
	•••	•••	•••		•••	•••		
	2526	130	1	0	1180.0	10338	2	
	2527	130	0	0	1090.0	8073	11	
	2528	130	1	0	1295.0	10579	6	
	2529	130	1	0	1850.0	9243	6	
	2530	130	0	0	1100.0	8636	4	

	${\tt Bedroom}$	Price_Lakh
0	3	500.0
1	3	240.0
2	1	95.0
3	3	375.0
4	2	350.0
•••	•••	•••
2526	2	122.0
2527	2	88.0
0500	_	400 0
2528	2	137.0
2529	3	137.0 171.0

[]: mum_prop.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 2531 entries, 0 to 2530 Data columns (total 8 columns): Non-Null Count Dtype Column _____ _____ 0 Region 2531 non-null int32 1 Property_Age 2531 non-null int32 2 Area Tpye 2531 non-null int32 3 Area_SqFt 2531 non-null float64 Rate SqFt 2531 non-null int64 5 Floor No 2531 non-null int64 Bedroom 2531 non-null 6 int64 7 Price_Lakh 2531 non-null float64 dtypes: float64(2), int32(3), int64(3) memory usage: 148.3 KB

0.5.3 4.3 Looking for Minimum & Maximum

```
[]: for i in mum prop.columns:
        print(i,'Min value :', mum_prop[i].min(),'Max value :', mum_prop[i].max())
    Region Min value : 0 Max value : 144
    Property_Age Min value : 0 Max value : 4
    Area_Tpye Min value : 0 Max value : 3
    Area_SqFt Min value : 185.0 Max value : 5000.0
    Rate_SqFt Min value : 1808 Max value : 55611
    Floor No Min value : -1 Max value : 55
    Bedroom Min value : 1 Max value : 6
    Price Lakh Min value: 13.0 Max value: 1900.0
```

0.5.4 4.4 Correlation Heatmap

```
[]: fig = plt.figure( figsize =(9,8))
     rcParams = {'xtick.labelsize':'14','ytick.labelsize':'14','axes.labelsize':'16'}
     sns.heatmap(mum_prop.corr(),annot = True, linewidths=.5, cbar_kws={"shrink": .

→5},fmt='.2f', cmap='coolwarm')
     fig.suptitle('Heatmap Mumbai Property Data',fontsize=18, fontweight="bold")
     pylab.rcParams.update(rcParams)
     fig.tight_layout()
     plt.show()
     fig.savefig('Heatmap_Encoding', dpi = 250)
```

Heatmap Mumbai Property Data

0.6 5. Model Building

[]: mum_prop.head()

[]:	Region	Property_Age	Area_Tpye	${\tt Area_SqFt}$	Rate_SqFt	Floor_No	${\tt Bedroom}$	\
0	69	0	3	2900.0	17241	14	3	
1	73	1	3	1900.0	12631	8	3	
2	24	2	3	595.0	15966	3	1	
3	18	3	0	1450.0	25862	1	3	
4	107	3	1	876.0	39954	5	2	

Price_Lakh

0 500.0

1 240.0

```
95.0375.04350.0
```

0.6.1 5.1 Train Test Split

[]: print(X_train.shape, X_test.shape)

(2024, 7) (507, 7)

0.6.2 5.2 Linear Regression

```
[]: from sklearn.linear_model import LinearRegression
linear = LinearRegression()
linear.fit(X_train, y_train)

print("Training Accuracy = ", linear.score(X_train, y_train))
print("Test Accuracy = ", linear.score(X_test, y_test))
```

Training Accuracy = 0.8729615274576085 Test Accuracy = 0.8696528670699649

0.6.3 5.3 Decision Tree Regressor

```
[]: from sklearn.tree import DecisionTreeRegressor

dt = DecisionTreeRegressor(min_samples_split=2)
   dt.fit(X_train, y_train)

print("Training Accuracy = ", dt.score(X_train, y_train))
   print("Test Accuracy = ", dt.score(X_test, y_test))
```

Training Accuracy = 1.0 Test Accuracy = 0.9606113566682924

0.6.4 5.4 Random Forest Regressor

```
[]: from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(n_estimators = 1000, max_depth=5, random_state = 12)
 rf.fit(X_train, y_train);
```

```
print("Training Accuracy = ", rf.score(X_train, y_train))
print("Test Accuracy = ", rf.score(X_test, y_test))
```

Training Accuracy = 0.9753917006228885 Test Accuracy = 0.9641944588626601

0.6.5 5.5 Polynomial Features

Training Accuracy = 0.9903850350980973 Test Accuracy = 0.9821027587862007

Training Accuracy = 0.9832978154650837 Test Accuracy = 0.9873735094928728

0.7 Obeservation:

- 0.7.1 1. We select the final model Polynomial Feature.
- 0.7.2 2. We got 98.73 % Model Accuracy.
- 0.8 6. Final Model Evaluation

```
[]: def evaluate(model, test_features, test_labels):
    predictions = model.predict(test_features)
    errors = abs(predictions - test_labels)
    accuracy = model.score(test_features, test_labels)

print('Average Error = {:0.4f} degrees'.format(np.mean(errors)))
    print('Model Accuracy = {:0.4f} %'.format(accuracy))
```

```
[]: evaluate(poly_model, X_train, y_train)
```

```
Average Error = 8.1346 degrees
Model Accuracy = 0.9833 %
```

```
[]: evaluate(poly_model, X_test, y_test)
```

```
Average Error = 8.7685 degrees
Model Accuracy = 0.9874 %
```

0.8.1 6.1 Visualizing Results

```
[]: pred = poly_model.predict(X_test)
```

```
[]: fig = plt.figure(figsize=(8,7))

sns.scatterplot(y_test, pred)
fig.suptitle('Prediction using Polynomial', fontsize= 18 , fontweight='bold')
plt.xlabel("Actual")
plt.ylabel("Prediction")
pylab.rcParams.update(rcParams)
fig.tight_layout()
fig.subplots_adjust(top=0.92)
plt.show()

#fig.savefig('Prediction_Polynomial', dpi = 500)
```

Prediction using Polynomial

0.9 7. Model Deployement

```
[]: from pickle import dump
[]: dump(poly_model,open('regression_model.pkl','wb'))
```

1 The End !!!