Analyse von Prozess- und Produktdaten DSCB450

# Predictive Emission Monitoring Systems (PEMS) of CO and NO<sub>X</sub>

- Gil Baram
- Afaque Jajja

### Contents

| Data Preparation                                       | 3    |
|--------------------------------------------------------|------|
| Feature Selection Criteria                             | 4    |
| CEN/TS 17198 Requirements                              | 5    |
| Uncertainty check of emissions                         | - 6  |
| CO Emission in years 2011-2015                         | - 9  |
| NO <sub>X</sub> Emission in years 2011-2015            | 9    |
| Train data from 2011 – 2012 to predict CO emission     | - 11 |
| Train data from 2011 – 2012 to predict $NO_X$ emission | - 13 |
| Prediction in case of sensor failure                   | - 1. |

### Data Preparation

- Load .csv file of each year
- Add Datetime column to every year's dataframe
- Concat to make it one big pandas. Dataframe
- Save it as a .parquet file

### Feature Selection Criteria



|      | CO     | NOX    |
|------|--------|--------|
| AT   | -0.174 | -0.558 |
| AP   | 0.067  | 0.192  |
| АН   | 0.107  | 0.165  |
| AFDP | -0.448 | -0.188 |
| GTEP | -0.519 | -0.202 |
| TIT  | -0.706 | -0.214 |
| TAT  | 0.058  | -0.093 |
| TEY  | -0.57  | -0.116 |
| CDP  | -0.551 | -0.171 |

SoSe 2

#### CEN/TS 17198:2018

Stationary source emissions - Predictive Emission Monitoring Systems (PEMS) - Applicability, execution and quality assurance

#### CEN/TS 17198:2018 (E)

Table A.1 — PEMS summary

| PEMS output |             | PEMS range                  |     | Average | Unit  |                                         |
|-------------|-------------|-----------------------------|-----|---------|-------|-----------------------------------------|
| No.         | Description | Tag. no.                    | min | max     | value |                                         |
| 1           | NOX         | SteamBoiler_NO <sub>X</sub> | 55  | 100     | 75    | mg/m <sup>3</sup> at 3 % O <sub>2</sub> |

|     | PEMS input sensor (PIS)    |                       | Operating envelope |      | Nominal | Unit              |
|-----|----------------------------|-----------------------|--------------------|------|---------|-------------------|
| No. | Description                | Tag. no.              | Min                | Max  | value   |                   |
| 1   | Air/fuel ratio Total       | AirFuelRatio_total    | 9                  | 14   | 11      | -                 |
| 2   | Natural gas to burner 2    | NaturalGas_burner2    | 0                  | 5000 | 3250    | m <sup>3</sup> /h |
| 3   | Refinery gas total         | RefineryGasFlow_total | 0                  | 2000 | 500     | m <sup>3</sup> /h |
| 4   | Natural gas to burner 1    | NaturalGas_burner1    | 2000               | 5000 | 3250    | m <sup>3</sup> /h |
| 5   | Fuel burner 1+2 vs. total  | FuelRatio_burner1+2   | 0,45               | 1,00 | 0.67    | -                 |
| 6   | Combustion air temperature | CombustionAirTemp     | 0                  | 25,0 | 14,0    | °C                |

| Uncertainty check                                            | Value | Unit              |
|--------------------------------------------------------------|-------|-------------------|
| Maximum range                                                | 100   | mg/m <sup>3</sup> |
| Uncertainty maximum range (at 95 % confidence level)         | 4,5   | mg/m <sup>3</sup> |
| Uncertainty PEMS at maximum range (at 95 % confidence level) | 4,5   | %                 |
| Maximum permissible uncertainty                              | 20    | %                 |
| PEMS compliant with requirement?                             | yes   |                   |

 $C_m(i)$  - is the concentration measured in the field of the  $i^{th}$  value pair.

 $C_p(i)$  - is the concentration measured in the field of the i<sup>th</sup> value pair.

 $\Delta_i$  — is the deviation between the emission concentration measured in the field and the concentration predicted by the field of the i<sup>th</sup> value pair.

$$\Delta_i = C_m(i) - C_p(i)$$

 $\Delta_m$  – is the mean the relative deviations

$$\Delta_m = \frac{1}{n} \sum_{i=1}^n \Delta_i = 4.57 \ mg/m^3$$

 $u_{\text{model}}$  - is the standard uncertainty of the emission model.

$$u_{\text{model}} = \sqrt{\frac{\sum (\Delta_i - \Delta_m)^2}{n-1}} = 4$$

 $u_{
m input}$  - is the standard uncertainty due to deviations in the PEMS input sensors.

 $*u_{other}$  - is the standard uncertainty due to parameters not included in the PEMS.

 $u_{\rm PEMS}$  - is the standard uncertainty of the PEMS.

$$u_{\text{PEMS}} = \sqrt{\left(u_{\text{model}}^2 + u_{\text{input}}^2 + u_{\text{other}}^2\right)}$$
$$= \sqrt{\left(4^2\right)} = 4$$

 $c_{\rm PEMS}$  - is the concentration range of the PEMS.

 $U_{\rm PEMS}$  - is the relative expanded uncertainty of the PEMS.

$$U_{\text{PEMS}} = 1.96 \times \frac{u_{\text{PEMS}}}{c_{\text{PEMS}}}$$
$$= 1.96 \times \frac{4}{48.92 \, mg/m^3} = 0.081 = 8.1\%$$

\* Uncertainty of Parameters not included in PEMS have no impact

### Uncertainty Check of NOX Emission

- Maximum range: 119.83  $mg/m^3$
- Range of PEMS:  $48.92 mg/m^3$
- Uncertainty range at 95%:  $4 mg/m^3$
- Uncertainty PEMS at Range 95% (at 95% Confidence Level): 8.1%
- Maximum Permissable Uncertainty: 20%
- PEMS compliant with requirement? Yes



### Emission of CO and NO<sub>X</sub> during years 2011-2015

Average measurement of CO: 2,37  $mg/m^3$ Average measurement of NO<sub>X</sub>: 65,3  $mg/m^3$ 



### Prediction

- Data from years 2011-2013 to train our model
- Data from years 2014 and 2015 to test our model

### Model trained on data from 2011-2013 to predict CO emissions

**Model:** MLPRegressor

|                      | Test Data |
|----------------------|-----------|
| R <sup>2</sup> score | 0.52      |
| MAE                  | 1.02      |
| MAPE                 | 103.01    |
| RMSE                 | 1.51      |

**Model:** GradientBoostingRegressor with Cross validation

|                      | Training Data | Test Data |
|----------------------|---------------|-----------|
| R <sup>2</sup> score | 0.71          | 0.74      |
| MAE                  | 0.6           | 0.53      |
| MAPE                 | 0.75          | 0.76      |
| RMSE                 | 1.22          | 1.09      |

### Plotting true values against predicted values





### Plotting true values against predicted values



## Model trained on data from 2011-2013 to predict $NO_X$ emissions

**Model:** MLPRegressor

|                      | Test Data |
|----------------------|-----------|
| R <sup>2</sup> score | 0.4       |
| MAE                  | 10.87     |
| MAPE                 | 18.51     |
| RMSE                 | 12.54     |

**Model:** GradientBoostingRegressor with Cross validation

|                      | Training Data | Test Data |
|----------------------|---------------|-----------|
| R <sup>2</sup> score | 0.73          | 0.72      |
| MAE                  | 4.17          | 3.87      |
| MAPE                 | 0.6           | 0.64      |
| RMSE                 | 5.73          | 5.51      |

### Plotting true values against predicted values





### Using in case of sensor failure (CO)





### Using in case of sensor failure $(NO_X)$



### Streamlit



Vielen Dank für Ihre Aufmerksamkeit