Knight: Chapter 18

The Micro/Macro Connection

(Thermal Energy & Specific Heat, Thermal Interactions and Heat)

Last time...

■ *Mean free path..*

$$\lambda = \frac{1}{4\sqrt{2}\pi(N/V)r^2}$$

□ Pressure in a gas..

$$P = \frac{F}{A} = \frac{1}{3} \frac{N}{V} m v_{rms}^2$$

$$\frac{1}{\epsilon} - \frac{1}{2} mv^2 - \frac{3}{2} k_B T$$

Temperature

• Define ϵ_{ave} to be the *average translational* KE of molecules in a gas.

$$\left(\epsilon_{avg} = \frac{1}{2}m(v^2)_{avg} = \frac{1}{2}mv_{rms}^2\right)$$

Using our expression for pressure and the ideal gas law...

$$\boxed{\epsilon_{avg} = \frac{3}{2}k_BT}$$

Equating these expressions and solving for rms speed...

Temperature

• Define $\varepsilon_{\mathrm{ave}}$ to be the *average translational* KE of molecules in a gas.

$$\left[\epsilon_{avg} = \frac{1}{2}m(v^2)_{avg} = \frac{1}{2}mv_{rms}^2\right]$$

Using our expression for pressure and the ideal gas law...

$$\boxed{\epsilon_{avg} = \frac{3}{2}k_BT}$$

Equating these expressions and solving for rms speed...

$$v_{rms} = \sqrt{\frac{3k_BT}{m}}$$

$$V_{M} = \sqrt{\frac{3k_{b}T}{M}}$$

i.e. 18.4: Total microscopic KE i.e. 18.5: Calculating a rms speed

What is the total translational KE of the molecules in 1.0 mol of gas at standard pressure and room temperature (20° C)?

What is the rms speed of nitrogen molecules at room temperature?

temperature?

a.)
$$\mathcal{E}_{AVg} = \frac{3}{2} K_b T = \frac{3}{2} (1.38 \times 10^{23} J_K) (293 K) = 6.1 \times 10^{-21} J$$

$$N = 1.0 \text{ mol} \qquad n = \frac{N}{NA}$$

$$N = N_A n = (1.0 \text{ mol}) (602 \times 10^{23} \text{ mol}^{-1}) = 6.02 \times 10^{23}$$

$$K = N \mathcal{E}_{avg} = 3.7 \times 10^3 J$$

$$b.) V_{ms} = \frac{2 \mathcal{E}_{AVg}}{M} = 510 \text{ M/s}$$

m=4.6×0°26 Kg

A rigid container holds both hydrogen gas (H_2) and nitrogen gas (N_2) at 100°C.

Which statement describes the *average translational kinetic energies* of the molecules?

- 1. ϵ_{avg} of $H_2 \le \epsilon_{\text{avg}}$ of N_2 .
- 3. ϵ_{avg} of $H_2 > \epsilon_{\text{avg}}$ of N_2 .

A rigid container holds both hydrogen gas (H_2) and nitrogen gas (N_2) at 100°C.

Which statement describes their rms speeds?

- 1. $v_{\rm rms}$ of $H_2 \le v_{\rm rms}$ of N_2 .
- 2. $v_{\rm rms}$ of $H_2 = v_{\rm rms}$ of N_2 .
- (3.) v_{rms} of $H_2 > v_{\text{rms}}$ of N_2 .

Thermal Energy of a Monatomic Gas..

The thermal energy of a system is

$$E_{\rm th} = K_{\rm micro} + U_{\rm micro}$$
.

- The atoms in a *monatomic* gas have no molecular bonds with their neighbors, hence $U_{\text{micro}} = 0$.
- Since the average kinetic energy of a single atom in an ideal gas is

$$\epsilon_{\rm avg} = 3/2 \ k_{\rm B} T..$$

 $E_{th} = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$

The total thermal energy is:

Atom i has translational kinetic energy ϵ_i but no potential energy or rotational kinetic energy.

 $E_{\rm th} = \epsilon_1 + \epsilon_2 + \epsilon_3 + \cdots = N\epsilon_{\rm avg}$.

Thermal Energy of a Monatomic Gas..

The *molar specific heat* for a *monatomic gas* is predicted to be...

TABLE 17.4 Molar specific heats of gases (J/mol K)

Gas	$C_{ m P}$	$C_{ m v}$	$C_{\rm P}-C_{ m V}$
Monat	omic Gases	S	
He	20.8	12.5	8.3
Ne	20.8	12.5	8.3
Ar	20.8	12.5	8.3
Diaton	nic Gases		
H_2	28.7	20.4	8.3
N_2	29.1	20.8	8.3
O_2	29.2	20.9	8.3

Thermal Energy of a Monatomic Gas...

The *molar specific heat* for a *monatomic gas* is predicted to be...

$$C_V = \frac{3}{2}R = 12.5 \text{ J/mol K}$$

TABLE 17.4 Molar specific heats of gases (J/mol K)

Gas	$C_{ m P}$	$C_{ m v}$	$C_{\rm P}-C_{ m V}$
Monat	omic Gases	5	
He	20.8	12.5	8.3
Ne	20.8	12.5	8.3
Ar	20.8	12.5	8.3
Diaton	nic Gases		
H_2	28.7	20.4	8.3
N_2	29.1	20.8	8.3
O_2	29.2	20.9	8.3

The Equipartition Theorem...

 Atoms in a monatomic gas carry energy exclusively as translational K..

$$\epsilon = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2) = \epsilon_x + \epsilon_y + \epsilon_z$$

• ϵ_x , ϵ_y , ϵ_z can be thought of as independent *modes* of storing energy (a.k.a. 3 degrees of freedom (d.o.f.)).

Notice:

• Molecules in a gas may have additional modes of energy storage, i.e. the *K* and *U* associated with *vibration*, or *rotational K*.

The Equipartition Theorem...

The thermal energy of a system of particles is *equally divided* among all the possible degrees of freedom.

For a system of *N* particles at temperature *T*, the energy stored in each mode is...

$$\frac{1}{2}Nk_BT$$
 or $\frac{1}{2}nRT$

A mass on a spring oscillates back and forth on a frictionless surface.

How many degrees of freedom does this system have?

4	1
1.	

3⋅ 3

4. 4

5. 6

Thermal Energy of a Solid...

Model a solid as atoms connected by *spring-like* molecular bonds...

- 3 d.o.f. associated with K
- 3 d.o.f. associated with U
- 6 d.o.f. *total*.

Each atom has microscopic translational kinetic energy *and* microscopic potential energy along all three axes.

• The energy stored in each d.o.f. is $\frac{1}{2} Nk_BT...$

$$E_{th} = 3Nk_BT = 3nRT$$

Thermal Energy of a Solid..

The molar specific heat for a solid is predicted to be...

TABLE 17.2 Specific heats and molar specific heats of solids and liquids

Substance	c(J/kgK)	C (J/mol K)
Solids		
Aluminum	900	24.3
Copper	385	24.4
Iron	449	25.1
Gold	129	25.4
Lead	128	26.5
Ice	2090	37.6
Liquids		
Ethyl alcohol	2400	110.4
Mercury	140	28.1
Water	4190	75.4

Thermal Energy of a Solid..

The molar specific heat for a solid is predicted to be...

$$C = 3R = 24.9 \text{ J/mol K}$$

TABLE 17.2 Specific heats and molar specific heats of solids and liquids

Substance	c(J/kgK)	C (J/mol K)	
Solids			
Aluminum	900	24.3	
Copper	385	24.4	
Iron	449	25.1	
Gold	129	25.4	
Lead	128	26.5	
Ice	2090	37.6	
Liquids			
Ethyl alcohol	2400	110.4	
Mercury	140	28.1	
Water	4190	75.4	

Thermal Energy of a Diatomic Gas...

Model a diatomic molecule as atoms connected by *spring-like* molecular bonds...

- 3 d.o.f. associated with translational K
- 2 d.o.f. associated with rotational K
- 5 d.o.f. *total**

Rotation end-over-end about the *z*-axis

• The energy stored in each d.o.f. is $\frac{1}{2} Nk_BT...$

$$E_{th} = \frac{5}{2}Nk_BT = \frac{5}{2}nRT$$

Rotation end-over-end about the *y*-axis

* at commonly used temps

Thermal Energy of a Diatomic Gas..

The molar specific heat for a diatomic gas is predicted to be...

$$C_V = \frac{5}{2}R = 20.8 \text{ J/mol K}$$

TABLE 17.4 Molar specific heats of gases (J/mol K)

Gas	$C_{ m P}$	$C_{ m v}$	$C_{\rm P}-C_{ m V}$
Monat	omic Gases	5	
He	20.8	12.5	8.3
Ne	20.8	12.5	8.3
Ar	20.8	12.5	8.3
Diaton	nic Gases		
H_2	28.7	20.4	8.3
N_2	29.1	20.8	8.3
O_2	29.2	20.9	8.3

Systems A and B are both monatomic gases. At this instant,

A B
$$N = 1000$$

$$E_{th} = 2 \times 10^{-17} \text{ J}$$

$$E_{th} = 3 \times 10^{-17} \text{ J}$$

- 1) $T_{A} > T_{B}$. 2. $T_{A} = T_{B}$. 3. $T_{A} < T_{B}$.

 - 4. There's not enough info to compare their temps.

i.e. 18.7: The rotational frequency of a molecule

The nitrogen molecule N_2 has a bond length of 0.12 nm. Estimate the rotational frequency of N_2 at 20° C.

$$\mathcal{E}_{ROT} = \frac{1}{2}I\omega^{2}$$

$$I = m\left(\frac{1}{2}\right)^{2} + m\left(\frac{1}{a}\right)^{2} = \frac{1}{2}ml^{2}$$

$$T = 293 K$$

$$\mathcal{E}_{ROT} = \frac{1}{2} \cdot \frac{1}{2}ml^{2}\omega^{2} = \frac{1}{2}kB^{T}$$

$$\omega = \sqrt{\frac{2kB^{T}}{ml^{2}}} = 4.9 \times 10^{12} \text{ s}^{-1}$$