The Johns Hopkins University JHU Engineering for Professionals Program NEURAL NETWORKS

Problem Set #9

- 9.1 Let $A_1 = (1, 1, -1, -1)$, $A_2 = (1, -1, 1, -1)$, $B_1 = (1, 1)$ and $B_2 = (-1, 1)$ in a Binary Associative Memory.
 - (a) Determine the weight matrix for this system.
 - (b) If the vector $\mathbf{X} = (-1, 1, -1, -1)$ is input into the system, what is the output vector \mathbf{Y} ?
 - (c) If the vector \mathbf{Y} obtained in part b is input into the system, what is the output vector \mathbf{X}^* ?

Ans: The weight matrix is given by the following equation:

(a)

$$\mathbf{A}_1^{\mathbf{T}}\mathbf{B}_1 + \mathbf{A}_2^{\mathbf{T}}\mathbf{B}_2 = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} \begin{pmatrix} 1&1\\\end{pmatrix} + \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix} \begin{pmatrix} -1&1\\\end{pmatrix} =$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ -1 & -1 \\ -1 & -1 \end{pmatrix} + \begin{pmatrix} -1 & 1 \\ 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \\ -2 & 0 \\ 0 & -2 \end{pmatrix}$$

(b) \mathbf{X} multiplied on the right of the matrix yields

$$\begin{pmatrix} -1 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 2 & 0 \\ -2 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & -1 \end{pmatrix}$$

depending on how you define the hard-limiting function insofar as the 0 is concerned.

(c) If (1, 1) or (1, -1) is multiplied by the weight matrix, we get:

$$\begin{pmatrix} 0 & 2 \\ 2 & 0 \\ -2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & -2 & -2 \end{pmatrix}^{T} \rightarrow \begin{pmatrix} 1 & 1 & -1 & -1 \end{pmatrix}^{T}$$

$$\begin{pmatrix} 0 & 2 \\ 2 & 0 \\ -2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 & 2 & -2 & 2 \end{pmatrix}^{T} \rightarrow \begin{pmatrix} -1 & 1 & -1 & 1 \end{pmatrix}^{T}$$

Suppose we have a third layer of nodes and exemplar pairs associations between the **B** vectors and a set of **C** vectors where $C_1 = (1, 1, -1)$ and $C_2 = (1, -1, 1)$. How would you set up such a system? What would be its weight matrices? Note, there is no right answer here, but I am looking for creativity and exploration. Use your knowledge of BAMs to address this question.

Ans: One matrix can handle the $A \leftarrow \rightarrow B$ transformations, and a second matrix can handle the $B \leftarrow \rightarrow C$ transformations. Thus, the first transformation matrix is given above. The second transformation matrix is defined in similar fashion as the previous one:

$$\mathbf{B}_{1}^{\mathrm{T}}\mathbf{C}_{1} + \mathbf{B}_{2}^{\mathrm{T}}\mathbf{C}_{2}$$