

CHEMICAL ARITHMETIC (MOLE CONCEPT)

Atomic, Molecular and Equivalent

masses

- 45. The element whose a atom has mass of $10.86 \times 10^{-26} kg$ is
 - (a) Boron
- (b) Calcium
- (c) Silver
- (d) Zinc
- 46. The number of gram atoms of oxygen present in 0.3 gram mole of $(COOH)_2$. $2H_2O$ is
 - (a) 0.6
- (b) 1.8
- (c) 1.2
- (d) 3.6
- 47. A gaseous mixture contains CH_4 and C_2H_6 in equimolecular proportion. The weight of 2.24 litres of this mixture at NTP is
 - (a) 4.6 g
- (b) 1.6 g
- (c) 2.3 g
- (d) 23 g
- Vapour density of a metal chloride is66. Its oxide contains 53% metal. The atomic weight of the metal is
 - (a) 21
- (b) 54
- (c) 27.06
- (d) 2.086
- 49. One gram of hydrogen is found to combine with 80*g* of bromine one gram of calcium valency=2 combines

- with 4g of bromine the equivalent weight of calcium is
- (a) 10
- (b) 20
- (c) 40
- (d) 80
- 50. The equivalent weight of $MnSO_4$ is half its molecular weight when it is converted to
 - (a) Mn_2O_3
- (b) MnO_2
- (c) MnO_4
- (d) MnO_4^{2-}
- $_{51}$. 100~mL of PH_3 on decomposition produced phosphorus and hydrogen. The change in volume is
 - (a) 50 mL increase
 - (b) 500 mL decrease
 - (c) 900 mL decrease
 - (d) Nil.
- 12g of Mg (at. mass 24) on reacting completely with acid gives hydrogen gas, the volume of which at STP would be
 - (a) 22.4 L
- (b) 11.2 L
- (c) 44.8 L
- (d) 6.1 L
- 53. Which of the following has least mass
 - (a) 2 g atom of nitrogen
 - (b) 3×10^{23} atoms of C
 - (c) 1 mole of S

CHEMICAL ARITHMETIC (MOLE CONCEPT)

- (d) 7.0 g of Ag
- 54. How many mole of helium gas occupy 22.4 L at $0^{o}\,\mathrm{C}$ at 1 atm. pressure
 - (a) 0.11
- (b) 0.90
- (c) 1.0
- (d) 1.11
- Volume of a gas at STP is 1.12×10^{-7} cc. Calculate the number of molecules in it
 - (a) 3.01×10^{20}
- (b) 3.01×10^{12}
- (c) 3.01×10^{23}
- (d) 3.01×10^{24}
- 56. 4.4 g of an unknown gas occupies2.24L of volume at standard temperature and pressure. The gas may be
 - (a) Carbon dioxide
 - (b) Carbon monoxide
 - (c) Oxygen
 - (d) Sulphur dioxide
- 57. The number of moles of oxygen in1 L of air containing 21% oxygen byvolume, in standard conditions, is
 - (a) 0.186 mol
- (b) 0.21 *mol*
- (c) 2.10 mol
- (d) 0.0093 mol

- 58. The number of molecules in 8.96 L of a gas at $0^{\circ}C$ and 1 atmosphere pressure is approximately
 - (a) 6.02×10^{23}
 - (b) 12.04×10^{23}
 - (c) 18.06×10^{23}
 - (d) 24.08×10^{22}
- 59. The equivalent weight of a metal is 9 and vapour density of its chloride is 59.25. The atomic weight of metal is
 - (a) 23.9
- (b) 27.3
- (c) 36.3
- (d) 48.3
- 60. The molecular weight of a gas is 45.

 Its density at STP is
 - (a) 22.4
- (b) 11.2
- (c) 5.7
- (d) 2.0
- 6. Equivalent weight of a bivalent metal is 37.2. The molecular weight of its chloride is
 - (a) 412.2
- (b) 216
- (c) 145.4
- (d) 108.2
- On reduction with hydrogen, 3.6 g of an oxide of metal left 3.2 g of metal.If the vapour density of metal is 32,

IIT-JEE CHEMISTRY

CHEMICAL ARITHMETIC (MOLE CONCEPT)

the simplest formula of the oxide would be

- (a) *MO*
- (b) M_2O_3
- (c) M_2O
- (d) M_2O_5
- $_{63}$. The number of molecules in 4.25 g of ammonia are
 - (a) 0.5×10^{23}
- (b) 1.5×10^{23}
- (c) 3.5×10^{23}
- (d) 1.8×10^{32}

