MATH 2208: ORDINARY DIFFERENTIAL EQUATIONS

Lecture 14 Worksheet

Spring 2020

Subhadip Chowdhury

Apr 1

TITLE: Linear Systems with Complex Eigenvalues

SUMMARY: We'll continue to explore the various scenarios that occur with linear systems of ODEs; this time dealing with those that possess complex eigenvalues. Corresponding Book Chapter - 3.4.

§A. Two Complex Eigenvalues

Recall that the general solution to the ODE

$$\frac{d\vec{r}}{dt} = A\vec{r}$$

can be written as

$$\vec{r}(t) = k_1 e^{\lambda_1 t} \vec{v}_1 + k_2 e^{\lambda_2 t} \vec{v}_2$$

where λ_i s are the eigenvalues of **A** and $\vec{v_i}$ are the eigenvectors corresponding to λ_i . What happens if λ_1 and λ_2 are Complex numbers?

■ Question 1.

Consider the ODE $\frac{d\vec{r}}{dt} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \vec{r} = A\vec{r}$.

(a) Find the eigenvalues and corresponding eigenvectors of **A**. By an exercise from the last worksheet, we know they will be of the form $\alpha \pm i\beta$ for some real numbers α and β .

Solution. Eigenvalues are $1 \pm 2i$. Eigenvectors are $\begin{bmatrix} \pm i \\ 1 \end{bmatrix}$.

(b) Let $\lambda = \alpha + i\beta$ and name the corresponding eigenvector \vec{v} . Then $\vec{r}_0(t) = e^{(\alpha + i\beta)t}\vec{v}$ is a (complex-valued) solution to our ODE. Use Euler's formula to rewrite your solution in the form

$$\vec{r}_0(t) = \vec{r}_{\Re e}(t) + i \vec{r}_{\Im m}(t)$$

where $\vec{r}_{Re}(t)$ and $\vec{r}_{Im}(t)$ are real-valued functions of t.

Solution.

$$e^{(1+2i)t} \begin{bmatrix} i \\ 1 \end{bmatrix} = e^{t} \left(\cos(2t) + i\sin(2t)\right) \begin{bmatrix} i \\ 1 \end{bmatrix}$$

$$= e^{t} \begin{bmatrix} -\sin(2t) + i\cos(2t) \\ \cos(2t) + i\sin(2t) \end{bmatrix}$$

$$= e^{t} \begin{bmatrix} -\sin(2t) \\ \cos(2t) \end{bmatrix} + ie^{t} \begin{bmatrix} \cos(2t) \\ \sin(2t) \end{bmatrix}$$

(c) Check that $\vec{r}_{\Re}(t)$ and $\vec{r}_{\Im}(t)$ are also (real-valued) solutions to the ODE.

Our goal is to express the general solution to the ODE in terms of real-valued functions. Recall from assignment 6 that the solution space is two-dimensional. Hence the expression

$$\vec{r}(t) = k_1 \vec{r}_{Re}(t) + k_2 \vec{r}_{Im}(t)$$

will represent a general real-valued solution as long as $\vec{r}_{Re}(t)$ and $\vec{r}_{Im}(t)$ are linearly independent for all t (in which case, they form a basis). So let's prove the linear independence of $\vec{r}_{Re}(t)$ and $\vec{r}_{Im}(t)$.

Answer the following two questions for a general matrix **A**.

■ Question 2.

Suppose a matrix **A** with real entries has the complex eigenvalue $\lambda = \alpha + i\beta$, $\beta \neq 0$. Let \vec{v} be an eigenvector for λ and write $\vec{v} = \vec{v}_1 + i\vec{v}_2$, where $\vec{v}_1 = \langle x_1, y_1 \rangle$ and $\vec{v}_2 = \langle x_2, y_2 \rangle$ have real entries. Show that \vec{v}_1 and \vec{v}_2 are linearly independent.

[Hint: Suppose they are not linearly independent. Then $\langle x_2, y_2 \rangle = k \langle x_1, y_1 \rangle$ for some constant k. Then $\vec{v} = (1 + ik)\vec{v}_1$. Then use the fact that \vec{v} is an eigenvector of A and that $A\vec{v}_1$ contains no imaginary part.]

Solution.

$$A\vec{v} = \lambda \vec{v} \implies (1+ik)A\vec{v}_1 = \lambda(1+ik)\vec{v}_1 \implies A\vec{v}_1 = \lambda\vec{v}_1$$

This is a contradiction since the LHS $\in \mathbb{R}^2$ but the RHS $\notin \mathbb{R}^2$.

■ Question 3.

Let $\lambda = \alpha + i\beta$ (where $\beta \neq 0$) be an eigenvalue of **A** with associated eigenvector $\vec{v} = \vec{v}_1 + i\vec{v}_2$, where \vec{v}_1 and \vec{v}_2 are real valued vectors. Let $\vec{r}_{Re}(t)$ and $\vec{r}_{Im}(t)$ be the real and imaginary parts of the complex valued solution

$$\vec{r}_0(t) = e^{\lambda t} \vec{v}.$$

Prove that $\vec{r}_{\Re}(t)$ and $\vec{r}_{\Im}(t)$ are linearly independent for all t.

[Hint: Observe that $\vec{r}_{\Re}(0) = \vec{v}_1$ and $\vec{r}_{\Im}(0) = \vec{v}_2$. Then use a theorem from assignment 6.]

Solution. We have

$$\vec{r}_0(t) = e^{\lambda t} \vec{v} = \vec{r}_{\Re \varepsilon}(t) + i \vec{r}_{\Im m}(t)$$

Recall the following theorem from assignment 6:

Theorem A.1

If $\vec{r}_{Re}(t)$ and $\vec{r}_{Im}(t)$ are both solutions to the system and if $\vec{r}_{Re}(0)$ and $\vec{r}_{Im}(0)$ are linearly independent, then $\vec{r}_{Re}(t)$ and $\vec{r}_{Im}(t)$ are linearly independent.

Observe that

$$\frac{d\vec{r}_0}{dt} = A\vec{r}_0 \implies \frac{d\vec{r}_{\Re e}}{dt} + i\frac{d\vec{r}_{\Im m}}{dt} = A\vec{r}_{\Re e} + iA\vec{r}_{\Im m}$$

Since \vec{r}_{Re} and \vec{r}_{Im} are both real-valued, comparing the real and imaginary parts of both sides of above equality we get

$$\frac{d\vec{r}_{\Re e}}{dt} = A\vec{r}_{\Re e}$$

and

$$\frac{d\vec{r}_{Im}}{dt} = A\vec{r}_{Im}$$

In other words, $\vec{r}_{Re}(t)$ and $\vec{r}_{Im}(t)$ are both solutions to the system.

Next, note that $\vec{r}_{\Re e}(0) = \vec{v}_1$ and $\vec{r}_{\Im m}(0) = \vec{v}_2$. Question 2 above concludes that \vec{v}_1 and \vec{v}_2 are linearly independent for any eigenvalue $\vec{v}_1 + i\vec{v}_2$ of a complex eigenvalue λ . Hence $\vec{r}_{\Re e}(0)$ and $\vec{r}_{\Im m}(0)$ are linearly independent.

Thus by theorem A.1, $\vec{r}_{\Re e}(t)$ and $\vec{r}_{\Im m}(t)$ are linearly independent for all t.

§B. Classification of Solutions in case of Complex Eigenvalues

Now write

$$e^{\lambda t} \vec{v} = e^{\alpha + i\beta} (\vec{v}_1 + i\vec{v}_2)$$

and simplify using the Euler's formula.

Solution.
$$e^{\alpha+i\beta}(\vec{v}_1+i\vec{v}_2)=e^{\alpha}(\cos\beta+i\sin\beta)(\vec{v}_1+i\vec{v}_2)=e^{\alpha}\left[(\cos\beta\vec{v}_1-\sin\beta\vec{v}_2)+i(\sin\beta\vec{v}_1+\cos\beta\vec{v}_2)\right]$$

■ Question 4.

Can you justify the following statement:

The effect of the exponential term on solutions depends on the sign of α whereas β determines the periodic nature of the solutions.

We are going to discuss the nature of the solution curves in the following three cases:

- a) Case 1: $\alpha < 0$ (Spiral Sink). b) Case 2: $\alpha > 0$ (Spiral Source). c) Case 3: $\alpha = 0$ (Center). In each case,
- (i) Come up with your own examples of 2×2 matrices $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ that have complex eigenvalues and

HINT: It may be helpful to recall that the eigenvalues are given by the formula

the corresponding ODE for each of the three cases named above.

$$\lambda = \alpha \pm i\beta = \frac{\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}(A)^2 - 4\operatorname{det}(A)}}{2}$$

(ii) Find the period and frequency of the solution curves using the analytical formula.

Hint: What is period of $\cos(\beta t)$?

- (iii) Determine the direction of the oscillations in the phase plane (do the solutions go clockwise or counterclockwise around the origin?)
- (iv) Are there any straight line solutions?
- (v) Use PPLANE to sketch the phase portrait for each case. Also use PPLANE to draw the x(t) vs t and y(t) vs. t graphs for some initial condition and check that they are consistent with your answers above. Do you see a justification for the names of the equilibria.