ES572 - Circuitos Lógicos

Atividade Teórica

6 de setembro de 2021

1. Atividade Teórica

Apresentação Resolução das questões de Circuitos Lógicos por Guilherme Nunes Trofino, 217276, sobre **Abstração Digital** e **Dispositivos Eletrônicos**.

Questão 1

Exercício. Você recebe as Curvas Características de Transferência de dispositivos de uma entrada e uma saída, para serem utilizados em uma nova família de dispositivos lógicos:

Obtenha um conjunto único de valores de $(V_{OL}, V_{IL}, V_{OH}, V_{IH})$ adequado para serem usados nestes dispositivos. Maximize a **Imunidade ao Ruído**, definida como a menor entre as duas margens de ruído.

Resolução. Nota-se que o gráfico a esquerda representa um Inversor enquanto o gráfico a direita representa um Buffer. Desta forma os seguintes valores, em volts, seriam adequados:

	V_{OL}	V_{IL}	V_{IH}	V_{OH}
Inversor	1.0	1.5	3.5	4.0
Buffer	0.0	1.0	3.0	4.0

Exercício. Uma família de circuitos lógicos combinacionais possui as seguintes especificações:

- 1. Saída '0' será garantidamente representada por uma tensão de 0.4 ± 0.1 volts;
- 2. Saída '1' será garantidamente representada por uma tensão de 4.6 ± 0.2 volts;
- 3. Tensão de Threshold de 2.5 ± 0.2 volts com:
 - (a) $V_{TH}-0.5$ volts são garantidamente interpretadas como '0';
 - (b) $V_{TH} + 0.5$ volts são garantidamente interpretadas como '1';

Forneça valores adequados para $(V_{OL},\,V_{IL},\,V_{IH},\,V_{OH})$. Forneça também as duas margens de ruído e a imunidade do ruído desta família de dispositivos.

Resolução. Análise...

Desta forma os seguintes valores, em volts, seriam adequados:

	V_{OL}	V_{IL}	V_{IH}	V_{OH}
Circuito	0.5	2.2	2.8	4.4

Nota-se que ... $V_{OH}-V_{IH}=1.6\ V_{IL}-V_{OL}=1.7\ \mathrm{Implicando}$ que a **Imunidade de Ruído** será 1.6 V

Exercício. Você recebe as Curvas Características de Transferência de um inversor NMOS como mostrado abaixo:

Considere as seguintes combinações entre $(V_{OL},\,V_{IL},\,V_{OH},\,V_{IH})$ fornecida:

	V_{OL}	V_{IL}	V_{IH}	V_{OH}
(a)	0.1	0.4	4.6	4.9
(b)	0.6	0.9	4.1	4.4
(c)	1.1	1.4	3.6	3.9

Verifique se as regras estáticas estão satisfeitas. Em caso negativo, detalhe o motivo. Em caso positivo informe a **Imunidade ao Ruído**.

Resolução. Considera-se a seguintes condições: (1) VOH - VOL $\stackrel{.}{,}$ VIH - VIL (2) VOH $\stackrel{.}{,}$ VIH $\stackrel{.}{,}$ VIL - VOL (3) VOUT $\stackrel{.}{,}$ VOH quando VIN $\stackrel{.}{,}$ VIL (4) VOUT $\stackrel{.}{,}$ VOL quando VIN $\stackrel{.}{,}$ VIH

	(a)	(b)	(c)
(1)	ok	ok	ok
(2)	ok	ok	ok
(3)	ok	erro	ok
(4)	ok	erro	ok

Exercício. Construa a rede pull-down correspondente à rede de pull-up do circuito CMOS apresentado:

Apresente a **Tabela Verdade** deste circuito.

Resolução. Nota-se que a rede de pull-down correspondente será: (A+B)//(nA+nB) Implicando a seguinte **Tabela Verdade**:

\overline{A}	В	Ā	\bar{B}	pull-up	pull-down
0	0	1	1	0	1
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	0	1

Exercício. Uma única porta CMOS, que consiste de uma saída conectada a uma única rede pull-up construída por PMOS e uma única rede de pull-down construída por NMOS, calcula F(A, B, C, D).

- 1. F(0,0,1,0)
- 2. F(1,1,1,0)
- 3. F(1,1,1,1)

Observa-se que F(1,0,1,0)=1 então sobre as combinações acima, responda com 0, 1 ou não é possível saber.

Resolução. 1. F(0,0,1,0) = não 'e possível saber;

- 2. F(1,1,1,0) = não 'e possível saber;
- 3. F(1,1,1,1) = 0;

Exercício. Considere as funções F(A,B,C) e G(A,B,C) apresentadas na tabela a seguir:

A	В	С	F	G
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

Apresente o esquemático do circuito de uma única rede de pull-up por PMOS e uma única rede de pull-down por NMOS se puder ser implementado. Caso contrário, indique que não é possível.

Resolução. 1

Exercício. Considere o seguinte circuito:

Considere os seguintes atrasados para cada uma das portas lógicas apresentadas:

Porta	t_{CD}	t_{PD}
INV	$0.1 \; \mathrm{ns}$	1.0 ns
NAND2	$0.2 \mathrm{\ ns}$	1.5 ns
NAND3	$0.3 \mathrm{\ ns}$	$1.8 \mathrm{\ ns}$
XOR2	$0.6 \; \mathrm{ns}$	2.5 ns

Calcule o atraso de propagação e o atraso de contaminação do circuito completo.

Resolução. $T_{PD}=5~\mathrm{ns},\,2~\mathrm{XORs}\;T_{CD}=0.6~\mathrm{ns},\,\mathrm{INV}$