Martin Thomas Durkin

412-889-8244 | mthomasdurkin@gmail.com | https://thomasdurkin.github.io/

EDUCATION

University of Rochester

Rochester, NY

M.S. in Data Science

Class of Fall 2022

GPA: 3.79/4.0

Coursework: Computational Statistics, Data Mining, Database Systems, Tools for Data Science, Deep Learning, Introduction to Statistical Machine Learning, Predictive Analytics using Python,

Rensselaer Polytechnic Institute

Troy, NY

B.S. in Computer Science

Class of 2021

GPA: 3.54/4.0

Coursework: Application Programming using Java, Computer Organization, Data Structures, Introduction to Algorithms, Large Scale Programming, Network Programming, Open Source Software, Operating Systems

SKILLS

Programming Languages: Python (PyTorch, PySpark, Pandas, NumPy, Matplotlib, Seaborn, SciKit-Learn), Bash, C, C++, C#, Java, JavaScript, R, SAS, SQL, Visual Basic

Web Development: CSS, HTML, MongoDB, .NET Framework, Node.js, PostgreSQL, Vue.js

Other: Linux Ubuntu, Git, Confluence, Jira, Jupyter Notebook, Databricks

Certifications: Databricks Data Engineer Associate

WORK EXPERIENCE

Harris School Solutions

Research and Development Intern

(January 2020 – October 2021)

- Engaged in an Agile workflow to modernize the BOCES module for the purpose of providing a better user experience over the legacy WinCap application, which manages contracts, shared programs, and services used by school districts
- Implemented the entire Actual Use Bill Schedule financial management module, using Blazor, C#, and Harris' Cheyenne Framework, allowing clients to issue, process, and post bills
- Actively participated in code reviews and communicated with QA to accelerate the release of new features to beta users
- Utilized Jira to manage tasks throughout two week sprints and prioritize items in the backlog with the Product Owner

RELEVANT PROJECTS

NASA Capstone Researcher

Fall 2022

- Worked in a team of students alongside experts from NASA and Coral Vita to build a machine learning pipeline using Python that is able to determine coral presence and bleaching levels in order to assist large-scale coral farming
- Employed data from two NASA satellites that was spatially and temporally aligned with coral databases resulting in the ability detect coral at a specific location and date with an overall accuracy of 91 percent
- Dataset consisted of 31 LiDAR features plus an additional 21 features were engineered to further enhance the model's capability of correctly identifying moderate/severely bleached coral

Classification of Cancer Discussion Posts

Fall 2022

- A comparative study of deep learning models, conducted with a partner, to correctly identify the cancer a patient has, creating a more streamlined process when making a post on the Cancer Survivors Network website
- Scraped data using Beautiful Soup resulting in over 100,000 total posts and 13 unique classes
- Used PyTorch to create and train multiple deep learning models and determined that a stacked model consisting of a Bi-LSTM and transformer encoder provided the best results at nearly 71 percent

Trending Research Topics

Fall 2021

- Utilized Dimensions.ai to construct a dataset consisting of over 51,000 grants from 131 R1 universities in order to compare trends in Computer Science research to those on CSRankings.org by applying LDA and BERT topic modeling
- Data was cleaned using numerous NLP techniques in order for the models create distinctive and identifiable topics
- Additional models were created for only the University of Rochester, seeing a shift in research towards lasers, cancer treatment, and psychology