Scientific Data Model

What is a Data Model?

How do you describe the data represented by this image?

Describe the objects represented by the data

- Describe the objects represented by the data
 - Structures of the objects

(u,v)
Temperature
Pressure
Cloud density
...

- Describe the objects represented by the data
 - Structures of the objects
 - Properties of the objects

- Describe the objects represented by the data
 - Structures of the objects
 - Properties of the objects
 - Relationships between the objects

Scientific Data Model

Data Model

Data set – a single or multiple valued function

Temperature Pressure Cloud density

m dependent variables x_i (i=1..m) n independent variable v_i (j = 1..n)

$$\mathbf{y}_{1} = f_{1}(x_{1}, x_{2}, x_{3}, ..., x_{n})$$

$$\mathbf{y}_{2} = f_{2}(x_{1}, x_{2}, x_{3}, ..., x_{n})$$

$$\cdots$$

$$\mathbf{y}_{m} = f_{m}(x_{1}, x_{2}, x_{3}, ..., x_{n})$$

Each dependent variable y_i can have a tensor rank k k = 0: scalar; k = 1: vector; k = 2; 2D matrix, etc.

Scientific Data Model

Data set – a single or multiple valued function

 Independent variables (dimensions)

- Spatial coordinates
 (longitude, latitude, height)
- Time
- Zone ID

– ..

• Dimensionality - number of independent variables

(u,v)

Temperature Pressure Cloud density

• • •

Dependent variables

- The function values of independent variables
- The number of values
 associated with each
 dependent variable can be
 described by its tensor rank

0: scalar

1: vector

2: n x n matrix ...

Domain Discretization

Scientific Data Set

Scientific Data Set =

Domain Structure +

Attributes

Domain Structure

- Topology: property invariant under transformation
- Geometry: instantiation of topology with specific positions
- Consists of *Points* and *Cells*, which define the *Mesh*

Attributes

One or multiple values (scalars, vectors, tensors) defined at points or cells

Domain Structure - Cell

- Cells are the fundamental building blocks of scientific data sets
- Cells define how points are connected together to form the basis for interpolation
- Cells can be of different dimensionality
 - 0 D: Vertices
 - 1 D: Line; Polylines;
 - 2 D: Triangle; Quadrilateral; Polygon
 - 3 D: Tetrahedron; Hexahedron; Voxel;

Cell Types

Attributes

• Scalars (e.g. density), Vectors (e.g. momentum), Tensors (e.g. stress tensor)

- Data sets are categorized into different types based on their underlying grid (domain structures)
 - Structured Grid

Unstructured Grid

- Data sets are categorized into different types based on their underlying grid (domain structures)
 - Structured Grid
 - Consisting of a collection of points and cells arranged on a regular lattice

- Data sets are categorized into different types based on their underlying grid (domain structures)
 - Structured Grid
 - Consisting of a collection of points and cells arranged on a regular lattice
 - Every point in the structured grid can be indexed by (i,j) in 2D,
 (i,j,k) in 3D, etc.

- Data sets are categorized into different types based on their underlying grid (domain structures)
 - Structured Grid
 - Consisting of a collection of points and cells arranged on a regular lattice
 - Every point in the structured grid can be indexed by (i,j) in 2D,
 (i,j,k) in 3D, etc.
 - The position of the points, and hence the geometry of the cells, can be either implicitly defined (Cartesian gird), or explicitly specified (rectilinear or curvilinear grid)

- Data sets are categorized into different types based on their underlying grid (domain structures)
 - Structured Grid
 - Cartesian mesh

Cartesian Grid

- Data sets are categorized into different types based on their underlying grid (domain structures)
 - Structured Grid
 - Cartesian mesh
 - Rectilinear mesh

Rectilinear Grid

Cartesian Grid

- Data sets are categorized into different types based on their underlying grid (domain structures)
 - Structured Grid
 - Cartesian mesh
 - Rectilinear mesh
 - Curvilinear mesh

Rectilinear Grid

- Unstructured Grid
 - Also called irregular grid data

- Unstructured Grid
 - Also called irregular grid data
 - Unstructured grid points are irregularly distributed in space

- Unstructured Grid
 - Also called irregular grid data
 - Unstructured grid points are irregular located in space
 - It is ocen a result of space tessellation with simple shapes

- Unstructured Grid
 - Also called irregular grid data
 - Unstructured grid points are irregular located in space
 - It is ocen a result of space tessellation with simple shapes
 - Explicit connectivity information to form cells is necessary

 Data sets are categorized into different types based on their underlying grid (domain

structure)

- Unstructured Grid
 - Polygonal mesh

Polygonal mesh

 Data sets are categorized into different types based on their underlying grid (domain

structure)

- Unstructured Grid
 - Polygonal mesh
 - Tetrahedral mesh

Polygonal mesh

Tetrahedral mesh

 Data sets are categorized into different types based on their underlying grid (domain

structure)

Unstructured Grid

- Polygonal mesh
- Tetrahedral mesh
- Hybrid Mesh

Polygonal mesh

Tetrahedral mesh

Hybrid mesh