目录

第1章	子流形	1
1.1	嵌入子流形	1
	1.1.1 嵌入子流形的切片图	2

第1章 子流形

1.1 嵌入子流形

定义 1.1 (嵌入子流形)

设 M 是光滑(带边)流形。称 M 的子集 $S \subseteq M$ 是一个嵌入子流形,若 S 在配备了子空间拓扑,和使得含入映射 $S \hookrightarrow M$ 成为光滑嵌入的光滑结构下,成为一个光滑(带边)流形。

Remark

1. 嵌入子流形也被称为是正则子流形。

命题 1.1

设M是一个光滑流形,则M的余维数为0的嵌入子流形与M的开子流形等价。

命题 1.2 (嵌入像作为子流形)

设 M 是一个光滑(带边)流形,N 是一个光滑流形,令 $F:N\to M$ 是光滑嵌入。S=F(N)。那么在子空间拓扑下,S 是一个拓扑流形,并且其上存在唯一的光滑结构,使得 S 成为 M 的嵌入子流形,且 F 是从 N 到 F(N) 的微分同胚。

Proof

1. 唯一性: 若有两个光滑结构 (S, A_1) , (S, A_2) 满足条件, 分别取一坐标卡 (V_1, ψ_1) , (V_2, ψ_2) , 需要说明 $\psi_2 \circ \psi_1^{-1}$ 在 ψ_1 $(V_1 \cap V_2)$ 上光滑,只需要说明在其上每一点 ψ_1 $(p) \in \psi_1$ $(V_1 \cap V_2)$ 附近光滑。 F^{-1} $(V_1 \cap V_2) = F^{-1}$ $(V_1) \cap F^{-1}$ (V_2) 是开集,点 F^{-1} (p) 附近存在 N 的光滑坐标卡 (U, φ) ,F 的光滑性要求 $\psi_1 \circ F \circ \varphi^{-1}$ 光滑,F 是微分同胚,故 $\varphi \circ F^{-1} \circ \psi_1^{-1}$ 也是光滑映射,对于 ψ_2 有类似地结论。

于是在 $\psi_1(p)$ 附近,有

$$\psi_2 \circ \psi_1^{-1} = \psi_2 \circ F \circ \varphi^{-1} \circ \varphi \circ F^{-1} \circ \psi_1^{-1}$$

是光滑的。

2. 存在性: F 要是微分同胚, 那么 F(U) 就得是开集, $\varphi \circ F^{-1}$ 亦然是双射, 可以直截了当的取 $\{(F(U), \varphi \circ F^{-1})\}$ 作为图册, 其中 (U, φ) 是 N 的任意光滑图册。相容性是容易得到的。

1.1.1 嵌入子流形的切片图

注意本小节的概念和结论都是对开集和光滑流形谈的,先不考虑带边的流形。

定义 1.2 (欧式开集的切片)

设 U 是 \mathbb{R}^n 的一个开子集, $k \in \{0, \cdots, n\}$,U 的一个 k-维切片 ¹是指一个形如下的子集 $S = \left\{ \left(x^1, \cdots, x^k, x^{k+1}, \cdots, x^n \right) \in U : x^{k+1} = c^{k+1}, \cdots, x^n = c^n \right\}$

其中 c^{k+1}, \dots, c^n 是常数。

定义 1.3 (坐标开集²的 k-切片)

设 M 是光滑 n-流形, (U,φ) 是 M 上的一个光滑坐标卡。若 S 是 U 的一个子集,使得 $\varphi(S)$ 称为 $\varphi(U)$ 的一个 k-切片,则称 S 是 U 的一个 k-切片。

定义 1.4 (k-切片条件)

设 M 是光滑 n-流形。给定子集 $S \subseteq M$ 和非整数 k。我们说 S 是满足局部 k-切片条件 a 的,若 S 上的每一点都含于 M 的某个光滑坐标卡 (U,φ) ,使得 $S \cap U$ 是 U 上的一个 k-切片。每个这样的坐标卡都被称为是 S 在 M 中的一个切片图,相应的坐标 (x^1, \dots, x^n) 被称为切片坐标b。

"满足切片条件的子流形,就是局部上,在某组坐标下,能被看成是父流形的截面的东西。

定理 1.1 (嵌入子流形的局部切片判据)

设 M 是一个光滑 n-流形。若 $S \subseteq M$ 是一个嵌入 k-维子流形,则 S 满足局部 k-切条件。 反之,若 $S \subseteq M$ 是满足局部 k-切片条件的子集,则在 S 的子空间拓扑下,S 是 k-拓扑流形,并且存在使得它成为 M 的 k-维嵌入子流形的光滑结构。

^b切片坐标就是使得 S 能被看成是截面的那些坐标。

 $^{^{1}}$ 固定后面的分量,看成是开集U的"截面"

²在流形上谈论切片时,只对坐标开集考虑