Unit 3-5 组合逻辑电路案例

数字逻辑设计

Digital Logic Design

张春慨 School of Computer Science ckzhang@hit.edu.cn

Example 1

三人表决器设计

少数服从多数,结果为多数人的选择。

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

举重比赛裁判电路设计

Example 2

- 一个主裁判,两个副裁判
- 比赛结果用红、绿两只灯显示 →

> 两灯都亮: 成功

> 只有红灯亮: 需讨论

> 其他: 未成功

规则

1. 红绿两只灯都亮:

- 三个裁判均按下自己的按钮;
- 两个裁判(其中有一个是主裁判)按下自己的按钮;

2. 只红灯亮:

- 两个裁判(均是副裁判);
- 只一个主裁判按下自己的按钮;
- 3. 其它情况,红绿灯都灭

Example 2

Truth Table

A B C	$\mathbf{F_2}\mathbf{F_1}$
主付付	红绿
0 0 0	0 0
0 0 1	0 0
0 1 0	0 0
0 1 1	1 0
100	1 0
101	1 1
1 1 0	1 1
1 1 1	1 1

$$F_2 = A + BC$$

$$F_1 = AB + AC$$

Example 3

Truth Table

ABC	$\mathbf{F_2}\mathbf{F_1}$
$\times+-$	
0 0 0	0 0
0 0 1	1 1
0 1 0	1 0
0 1 1	××
100	0 1
101	××
1 1 0	××
111	××

用与或非门设计一个操作码形成器, 当按下×、十、一各个操作键时(同 时按无效),要求分别产生乘法、加 法、减法的操作码01、10和11

Constraint:
$$AB=0$$

$$BC=0$$

$$ABC=0$$

$$ABC=0$$

$$ABC=0$$

$$ABC=0$$

$$ABC=0$$

Example 3

A^{BC} 00		01	11	10	
0	0	1	×	1	
1	0	X	X	×	

ABC 0		0	01	11	10
0	0		1	×	0
1	1		X	×	×

$$F_1=A+C$$

X is 2-bit binary, Design a circuit to realize Y=X²

X ₁	X ₀	y ₃	y ₂	y ₁	y ₀
0	0	0	0	0	0
0	1	0	0	0	1
1	0	0	1	0	0
1	1	1	0	0	1

$$\begin{cases} y_3 = x_1 x_0 \\ y_2 = x_1 \overline{x}_0 \\ y_1 = 0 \\ y_0 = x_0 \end{cases}$$

功能:对两个1位二进制数执行相加运算

a _i	b _i	Si	Ci
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S_i = a_i \oplus b_i$$

利用单一逻辑门与非门实现半加器

$$\begin{cases}
S_{i} = \overline{a_{i}}b_{i} + a_{i}\overline{b_{i}} = \overline{a_{i}}b_{i} + a_{i}\overline{b_{i}} + a_{i}\overline{a_{i}} + b_{i}\overline{b_{i}} \\
= \underline{a_{i}}(\overline{a_{i}} + \overline{b_{i}}) + b_{i}(\overline{a_{i}} + \overline{b_{i}}) = a_{i}} \overline{a_{i}b_{i}} + b_{i} \overline{a_{i}b_{i}} \\
= \overline{a_{i}} \overline{a_{i}\overline{b_{i}}} \overline{b_{i}} \overline{a_{i}\overline{b_{i}}} \\
C_{i} = \overline{a_{i}\overline{b_{i}}}
\end{cases}$$

全加器(Full adder)

Example 6

$\mathbf{a_i}$	b _i (Si	$C_{\mathbf{i}}$	
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

b _i c	i-1	S	ì		$\mathbf{b_{i'}}$
a_i	00	01	11	10	a_i
0	0	1	0	1	0
1	1	0	1	0	1

$\mathbf{b_i c_j}$	i-1	C_{i}		
a_i	00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$\begin{split} S_i &= \overline{a_i} \overline{b_i} c_{i-1} + \overline{a_i} b_i \ \overline{c_{i-1}} + a_i \ \overline{b_i} \overline{c_{i-1}} + a_i \ b_i \ c_{i-1} \\ &= & (\overline{a_i} \overline{b_i} + a_i \ b_i) \ c_{i-1} + (\overline{a_i} b_i + a_i \ \overline{b_i}) \ \overline{c_{i-1}} \\ &= & (\overline{a_i} \oplus \ b_i) \ c_{i-1} + (a_i \oplus \ b_i) \ \overline{c_{i-1}} \\ &= & a_i \oplus \ b_i \oplus \ C_{i-1} \end{split}$$

$$C_i = (a_i \oplus b_i) C_{i-1} + a_i b_i$$

solution 2:

$$S_{i} = a_{i} \oplus b_{i} \oplus C_{i-1}$$

$$C_{i} = (a_{i} \oplus b_{i}) C_{i-1} + a_{i}b_{i}$$

$$\begin{cases} S_i = a_i \oplus b_i \\ C_i = a_i b_i \end{cases}$$

全加器(Full adder)

典型芯片

74LS82: 2-bit adder

74LS283: 4-bit adder

二进制数 A ₃ A ₂ A ₁ A ₀	余三码 S ₃ S ₂ S ₁ S ₀	二进制数 A ₃ A ₂ A ₁ A ₀	余三码 S ₃ S ₂ S ₁ S ₀
0 0 0 0	0 0 1 1	1000	1011
0 0 0 1	0 1 0 0	1001	1100
0 0 1 0	0101	1010	×
0 0 1 1	0110	1011	X
0 1 0 0	0111	1 1 0 0	X
0 1 0 1	1 0 0 0	1 1 0 1	X
0 1 1 0	1001	1110	×
0 1 1 1	1010	1111	×

应用——余3码产生器

A₃A₂A₁A₀: 输入 8421 BCD码

S₃S₂S₁S₀: 输出余3码

S = A + 0011

4位并行加法器

 $S_i = a_i \oplus b_i \oplus C_{i-1}$

上土土人 $C_i=(a_i \oplus b_i) C_{i-1}+a_i b_i$

(1) 串行进位

- 缺点:串行进位,运算速度慢
- 优点:线路简单
- 关键:进位形成时间
- 解决方案: 改串行进位为并行进位

(2) 超前进位

$$A = A_3 A_2 A_1 A_0 = 1011$$

$$C_i = (A_i \oplus B_i) C_{i-1} + A_i B_i$$

$$B = B_3 B_2 B_1 B_0 = 1110$$

$$C_i = P_i C_{i-1} + G_i$$
 $P_i = A_i \oplus B_i$
 $G_i = A_i B_i$

——进位迭代公式

$$C_0 = P_0 C_{-1} + G_0$$

 $C_1 = P_1 C_0 + G_1 = P_1 P_0 C_{-1} + P_1 G_0 + G_1$
 $C_2 = P_2 C_1 + G_2 = P_2 P_1 P_0 C_{-1} + P_2 P_1 G_0 + P_2 G_1 + G_2$
 $C_3 = P_3 C_2 + G_3 = P_3 P_2 P_1 P_0 C_{-1} + P_3 P_2 P_1 G_0 + P_3 P_2 G_1 + P_3 G_2 + G_3$

(2) 超前进位

$$P_{i} = A_{i} \ni B_{i} \qquad G_{i} = A_{i}B_{i}$$

$$C_{0} = P_{0}C_{-1} + G_{0}$$

$$C_{1} = P_{1}C_{0} + G_{1} = P_{1}P_{0}C_{-1} + P_{1}G_{0} + G_{1}$$

$$C_{2} = P_{2}C_{1} + G_{2} = P_{2}P_{1}P_{0}C_{-1} + P_{2}P_{1}G_{0} + P_{2}G_{1} + G_{2}$$

$$C_{3} = P_{3}C_{2} + G_{3} = P_{3}P_{2}P_{1}P_{0}C_{-1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}G_{1} + P_{3}G_{2} + G_{3}$$

74LS181 ALU是主要进行算术和逻辑运算的电路,可以作为处理器进行运算的核心部件。它对两个4位操作数进行逻辑或者算术运算等。

M=1, logic operation

74ls181芯片总共有22个引脚。

数据引脚

- 8个数据输入端, A0m、A1n、A2n、A3n, B0n、B1n、B2n、B3n, (其中A3和B3是高位)。
- 4个二进制输出端F0、F1、F2、F3,以四位二进制形式输出运算的结果。
- CN端处理进入芯片前进位值,CN4记录运算后的进位。
- GN先行进位产生端。PN先行进位传递函数。

控制引脚

- 4个控制端, S0、S1、S2、S3, 控制两个四位输入数据的运算, 例如加、减、与、或。
- M控制芯片的运算方式,包括算术运算和逻辑运算。

功能表

\$3	\$2	S1	S0	M = H	Arithm	M = L etic Operations
				Logic Functions	/Cn = H	/Cn = L
L	L	L	L	F = /A	F = A	F = A plus 1
L	L	L	Н	F = /(A + B)	F = A + B	F = (A + B) plus 1
L	L	H	L	F = (/A)B	F = A + /B	F = (A + /B) plus 1
L	L	Н	Н	F = 0	F = minus 1 (2s Comp)	F = ZERO
L	Н	L	L	F = /(AB)	F = A plus A(/B)	F = A plus A(/B) plus 1
L	Н	L	Н	F = /B	F = (A + B) plus A(/B)	F = (A + B) plus A(/B) plus 1
L	Н	Н	L	F = A xor B	F = A minus B minus 1	F = A minus B
L	Н	Н	Н	F = A(/B)	F = A(/B) minus 1	F = A(/B)
Н	L	L	L	F = /A+ B	F = A plus AB	F = A plus AB plus 1
Н	L	L	Н	F = /(A xor B)	F = A plus B	F = A plus B plus 1
Н	L	Н	L	F = B	F = (A + /B) plus AB	F = (A + /B) plus AB plus 1
Н	L	Н	Н	F = AB	F = AB minus 1	F = AB
Н	Н	L	L	F = 1	F = A plus A	F = A plus A plus 1
Н	Н	L	Н	F = A + /B	F = (A + B) plus A	F = (A + B) plus A plus 1
Н	Н	Н	L	F = A + B	F = (A + /B) plus A	F = (A + /B) plus A plus 1
Н	Н	Н	Н	F = A	F = A minus 1	F = A

注: +是或的意思/是非 plus是加 xor是异或

全减器(Binary Full Subtracter)

A=
$$a_3 a_2 a_1 a_0 = 1110$$

B = $b_3 b_2 b_1 b_0 = 1011$

a _i	b _i	C _{i-1}	D _i	Ci
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Example 8

a _i	b _i	C _{i-1}	D _i	Ci
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\begin{cases}
D_i = a_i \oplus b_i \oplus C_{i-1} \\
C_i = (C_{i-1} \oplus b_i) \overline{a}_i + C_{i-1} b_i
\end{cases}$$

三态门 (Three-State Buffers)

= 杰___

- **0**
- **1**
- Z: 高阻态

三态门(恒等)

B: 使能端, 高电平有效

- 包括三态恒等门、三态非门、三态与非门等, 商品名称为缓冲器(驱动门)。
- 用途之一:可用来增强输出驱动能力

В	Α	С
0	0	Z
0	1	Z
1	0	0
1	1	1

三态门 (Three-State Buffers)

В	A	C	В	Α	C	В	Α	C	В	Α	C
0	0	Z	0	0 1	Z	0	0	0	0	0	1
0	1	Z	0	1	Z	0	1	1	0	1	0
1	0	0	1	0	1	1	0	Z	1	0	Z
1	1	1	1	0 1	0	1	1	Z	1	1	Z
	(a)			(b)	C.		(c)	10		(d)	,

理解三态门——

- 高阻态: 电阻很大, 相当于开路
- ■高阻态相当于该门同与它连接的电路处于断开的状态。(实际电路中你不可能去断开它)

		S ₂		
<i>S</i> ₁	X	0	1	Z
X	X	X	X	X
0	X	0	X	0
1	X	X	1	1
Z	X	0	1	Z

应用

■ 三态总线

■ 管脚输入输出可编程

应用

■ 双向数据总线

理解三态门——

内存里的一个存储单元

- •读写控制线处于低电位时,可以写入;
- 读写控制线处于高电位时,可以读出
- 但是不读不写,就要用高阻态

Example

 $X=X_3X_2X_1X_0$ 为8421BCD码,设计一个MOD 5选择电路,要求选择那些能被5整除的数输出。

①真值表(F为控制信号)

$X_3 X_2 X_1 X_0$	F	$X_3 X_2 X_1 X_0$	F
0 0 0 0	1	1 0 0 0	0
0 0 0 1	0	1 0 0 1	0
0 0 1 0	0	1 0 1 0	×
0 0 1 1	0	1 0 1 1	×
0 1 0 0	0	1 1 0 0	×
0 1 0 1	1	1 1 0 1	×
0 1 1 0	0	1 1 1 0	×
0 1 1 1	0	1 1 1 1	×

② 化简

$$F = \overline{X_2 \overline{X_1} X_0 + \overline{X_3} \overline{X_2} \overline{X_1} \overline{X_0}}$$

$$= (\overline{X_2 \overline{X_1} X_0}) (\overline{\overline{X_3} \overline{X_2} \overline{X_1} \overline{X_0}})$$

③ 逻辑图

$$\overline{\mathsf{F}} = (\overline{\mathsf{X}_2 \overline{\mathsf{X}}_1 \mathsf{X}_0}) (\overline{\overline{\mathsf{X}}_3 \overline{\mathsf{X}}_2 \overline{\mathsf{X}}_1 \overline{\mathsf{X}}_0})$$

OC门 (Open Collector Gate)

- 几个OC门的输出端可以直接互连 使用时必须加负载电阻

$$F = \overline{AB}$$

OC门 (Open Collector Gate)

$$F=F_1 \cdot F_2 = \overline{A_1B_1C_1} \cdot \overline{A_2B_2C_2}$$

