Genome annotation

MDBP-105

Gene annotation

- Adding biological information to sequences
- There is a gene X in contig Y on location Z
 - Size of the gene
 - Name of the gene
 - Function of the gene (protein / RNA gene)

Contig Y = 20 035 bp

Ways to identify protein coding genes

- Sequence alignments
 - E.g. BLAST
 - Search contigs against a database
 - Computationally (and manually) intensive
- Gene finding
 - Start codon (ATG)
 - Open reading frame (ORF)
 - Stop codon (TAA, TAG, TGA)
- 1. ATG CAA TGG GGA AAT GTT ACC AGG TCC GAA CTT ATT GAG GTA AGA CAG ATT TAA
- 2. A TGC AAT GGG GAA ATG TTA CCA GGT CCG AAC TTA TTG AGG TAA GAC AGA TTT AA
- 3. AT GCA ATG GGG AAA TGT TAC CAG GTC CGA ACT TAT TGA GGT AAG ACA GAT TTA A

Functions to genes

- Homology
- Statictical modelling of protein families/domains
- Annotation databases
 - NCBI
 - KEGG
 - COG
 - SEED
 - GO
 - UNIPROT
 - INTERPRO
 - PFAM
 - TIGR
 - •

6.2.2024

BAKTA

 rapid and standardized annotation of bacterial genomes via alignmentfree sequence identification

https://doi.org/10.1099/mgen.0.000685

Taxonomy and completeness of your genome

CheckM2

- Predicts genome completeness and contamination based on ML model
- Designed for metagenomeassembled genomes (MAGs)

GTDB-Tk

- The Genome Taxonomy Database Toolkit
- Taxonomic assignment based on GTDB
- Domain-specific concatenated protein reference trees