ESI, 2CPI

Intérrogation Analyse mathématique 3

Février 20

Durée : 1h

 Les documents, calculatrices et téléphones sont interdits 	• Les do	cuments, c	alculatrices	et téléphones	sont interdits.
---	----------	------------	--------------	---------------	-----------------

•	Rép	ondre	sur	le	su	iet

Nom :	Prénom :	Groupe :
Exercice 1 (4 points) : Les questions sont indépendantes.	
1) Etudier la	nature de la série $\sum u_n$ où $u_n = \frac{n^{2021}}{n!}$.	
2) Etudier la	nature (convergence absolue et semi-convergence) $u_n = \log \left(1 + \frac{(-1)^n}{2n}\right).$	ce) de la série $\sum u_n$ où
	·	

Exercice 2 (6 points) : Soit $F(x) = \sum f_n(x)$ où
$f_n(x) = e^{-n^3 x} \text{ pour } x > 0.$
1) Montrer que F est bien définie pour tout $x > 0$.

2) Montrer que F est continue sur $]0,+\infty[$.
3) Montrer que F est dérivable sur $]0,+\infty[$.

