DIGITALNI SUSTAVI ZA OBRADU SIGNALA

DSOS13

Julije Ožegović FESB Split

DIGITALNI SUSTAVI ZA OBRADU SIGNALA

UVOD: ANALOGNI I DIGITALNI SUSTAVI

I. OSNOVE DIGITALNE OBRADE SIGNALA

II. DIGITALNI FILTRI U VREMENSKOM I FREKVENCIJSKOM PODRUČJU

III. STRUKTURA DIGITALNIH SUSTAVA ZA OBRADU SIGNALA

IV. DIGITALNA OBRADA SIGNALA U PRIMJENI

I. OSNOVE DIGITALNE OBRADE SIGNALA

- 1. DIGITALNA OBRADA SIGNALA
- 2. SUSTAVI ZA DIGITALNU OBRADU SIGNALA
- 3. ANALIZA U VREMENSKOM PODRUČJU
- 4. DIGITALNA KONVOLUCIJA
- 5. ANALIZA U FREKVENCIJSKOM PODRUČJU
- 6. TRANSFORMACIJA APERIODIČKIH DIGITALNIH SEKVENCI
- 7. Z TRANSFORMACIJA

5. ANALIZA U FREKVENCIJSKOM PODRUČJU

5.1. OSNOVE FREKVENCIJSKE ANALIZE

5.2. DISKRETNI FOURIEROV NIZ

5.3. SVOJSTVA I ENERGIJA SPEKTRA

5.4. SVOJSTVA DISKRETNOG FOURIEROVOG NIZA

5.1. OSNOVE FREKVENCIJSKE ANALIZE

- POVIJESNI RAZVOJ
- SVOJSTVA FREKVENCIJSKE ANALIZE
- PRIMJENA FREKVENCIJSKE ANALIZE

- POVIJEST FREKVENCIJSKE ANALIZE

- Frekvencijska analiza započinje radovima Fouriera:
 - Baron de Fourier, bavi se protokom topline
 - dokazuje da se svaki signal može prikazati sumom sinusoidalnih signala
 - periodični signali **linijskim spektrom**, sumom sinusoida u harmonijskom odnosu (harmonijski = signal s višekratnikom osnovne frekvencije)
 - aperiodički signali kontinuiranim spektrom
 - Našao je rješenje u kontinuiranom području
 - Značajno zbog široke promjene na tehničke probleme

POVIJEST FREKVENCIJSKE ANALIZE

- Fourierova analiza u diskretnim sustavima
 - prilagođena diskretnom signalu
 (koji je suma impulsa pomaknutih za period uzorkovanja)
 - masovno se koristi u digitalnim računalima
 - prikazuje se spektar signala i
 - frekvencijsko ponašanje sustava
 - konvolucija
 - je snažno sredstvo analize u vremenskom području
 - zašto bi se bavili frekvencijskim područjem?

POVIJEST FREKVENCIJSKE ANALIZE

- Razlozi rada u frekvencijskom području
 - sinusoidalni signali se pojavljuju u prirodi
 - odziv LTI je jednostavan:
 - mijenja samo amplitudu i fazu
 - ne može mijenjati frekvenciju
 - Signal predstavljamo spektrom
 - LTI predstavljamo frekvencijskom karakteristikom
 - komponente množimo s pojačanjem odziva, pa ih superponiramo
 - Dizajn LTI započinjemo specifikacijom u frekvencijskom području

- SVOJSTVA FREKVENCIJSKE ANALIZE

- Za primjenu na signale i sustave bitno je:
 - signal se može prikazati odnosno sintetizirati
 - od sinusnih i kosinusnih komponenti
 - prikladne frekvencije, faze i amplitude
 - parne funkcije sadrže samo kosinuse
 - neparne funkcije sadrže samo sinuse
 - Aproksimacija konačnim brojem komponenti daje najbolji prikaz u smislu najmanjih kvadrata

SVOJSTVA FREKVENCIJSKE ANALIZE

- Za signale:
 - Za periodičke signale:
 - imamo harmonijske komponente i linijski spektar
 - matematički to je Fourierov niz
 - možemo zapisati u eksponencijalnom obliku
 - Za neperiodičke signale:
 - beskonačnu sumu (integral) i kontinuirani spektar
 - komponente nisu u harmonijskom odnosu
 - matematički to je Fourierova transformacija
 - Inverzna Fourierova transformacija
 - rekonstruira vremenski signal

- PRIMJENA FREKVENCIJSKE ANALIZE

- Postoje Furierove tehnike za diskretni signal:
 - diskretni Fourierov niz
 - primjenjuje se na periodičke signale
 - Fourierova transformacija u diskretnom vremenu
 - primjenjuje se na neperiodičke signale
 - Diskretna Fourierova transformacija (DFT)
 - ima ključni značaj, za signal pretpostavljamo da je periodičan!
 - Brza Fourierova transformacija (FFT)
 - je optimalni način izvođenja DFT

5.2. DISKRETNI FOURIEROV NIZ

- DEFINICIJA FOURIEROVOG NIZA
- BROJ STUPNJEVA SLOBODE SIGNALA
- PROŠIRENJE OSNOVNOG SPEKTRA
- PRIKAZ AMPLITUDOM I FAZOM

- Periodički signal prikazujemo Fourierovim nizom:
 - koeficijenti a_k linijskog spektra prikazuju amplitudu svake komponente k-struke frekvencije

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \exp\left(\frac{-j2\pi kn}{N}\right)$$

N je broj uzoraka u periodu signala

- Računanje Fourierovog niza:
 - U stvarnosti računamo:

$$A \cdot \exp(-j\Omega n) = A \cdot \cos(\Omega n) - jA \cdot \sin(\Omega n)$$

$$a_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \{\cos(2\pi kn/N) - j \cdot \sin(2\pi kn/N)\}$$

imamo realni i imaginarni dio:

$$a_k = \Re(a_k) + j \cdot \Im(a_k)$$

- Frekvencija uzoraka:
 - Izračunajmo a_k za k=1,2,...:

$$a_{1} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \left\{ \cos \left(2\pi \frac{1}{N} n \right) - j \cdot \sin \left(2\pi \frac{1}{N} n \right) \right\}$$

$$a_{2} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \left\{ \cos \left(2\pi \frac{2}{N} n \right) - j \cdot \sin \left(2\pi \frac{2}{N} n \right) \right\}$$

$$a_{3} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \left\{ \cos \left(2\pi \frac{3}{N} n \right) - j \cdot \sin \left(2\pi \frac{3}{N} n \right) \right\}$$

- $-a_1$ je komponenta frekvencije $2\pi/N$, dakle N uzoraka
- $-a_2$ je komponenta frekvencije $4\pi/N$, dakle N/2 uzoraka
- $-a_3$ je komponenta frekvencije $6\pi/N$, dakle N/3 uzoraka

- Rekonstrukcija vremenskog signala:
 - Rekonstruiramo vremenski signal jednadžbom sinteze:

$$x[n] = \sum_{k=0}^{N-1} a_k \exp\left(\frac{j2\pi kn}{N}\right)$$

- U stvarnosti računamo: $A \cdot \exp(j\Omega n) = A \cdot \cos(\Omega n) + jA \cdot \sin(\Omega n)$

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} a_k \{ \cos(2\pi kn/N) + j \cdot \sin(2\pi kn/N) \}$$

imaginarne komponente se ponište

PRIMJER FOURIEROVOG NIZA

- Signal sa N=7:
 - transformiramo:

$$a_k = \frac{1}{7} \sum_{n=0}^{6} x[n] \exp\left(\frac{-j2\pi kn}{7}\right)$$

- dobijemo:
- uočavamo:
 - zrcalnost
 - parnost/neparnost

PRIMJER FOURIEROVOG NIZA

- Signal sa N=7:
 - program 7 daje:

PROGRAM 7: Discrete Fourier Series for real signal with 7 sample values

- 0 0.428571, 0.000000
- 1 0.301801, -0.108658
- 2 0.786407, 0.384777
- 3 -0.302493, -0.668791
- 4 -0.302492, 0.668793
- 5 0.786405, -0.384778
- 6 0.301801, 0.108658

BROJ STUPNJEVA SLOBODE SIGNALA

- Broj komponenti u spektru:
 - izračunali smo po N komponenti u realnom i imaginarnom dijelu spektra
 - ukupno imamo N vrijednost:
 - istosmjernu komponentu a₀
 - tri realne komponente koje se parno zrcale
 - tri imaginarne komponente koje se neparno zrcale
 - broj uzoraka signala jednak je broju vrijednosti u spektru
 - to je logično jer svaka komponenta se zasebno mijenja
 - broj komponenti nazivamo broj stupnjeva slobode

PROŠIRENJE OSNOVNOG SPEKTRA

- Nastavljamo računati komponente:
 - spektar je periodičan sa periodom N

$$a_k = \frac{1}{7} \sum_{n=0}^{6} x[n] \exp\left(\frac{-j2\pi kn}{7}\right)$$

- to je posljedica digitalnog signala
 - niz uzoraka predstavlja osnovni signal
 - istovremeno se kroz uzorke može provući beskonačan broj harmonijskih signala
 - stoga je spektar zapravo beskonačan, koristimo osnovni signal
- spektar se proteže u pozitivnu i negativnu beskonačnost
- potvrda potrebe za anti aliasing filtrima!

PROŠIRENJE OSNOVNOG SPEKTRA

SPEKTAR SE PONAVLJA

 za prenisku frekvenciju dolazi do prekrivanja

- aliasing
- potrebno analogno filtriranje
- anti-aliasing filtar

PRIKAZ AMPLITUDOM I FAZOM

- Kompleksni parovi predstavljaju vektore:
 - amplituda:

$$|a_k| = {\Re(a_k)^2 + \Im(a_k)^2}^{1/2}$$

 $|a_k|$ $R(a_k)$

– fazni kut:

$$\phi_k = \arctan\{\Im(a_k)/\Re(a_k)\}$$

– često su nam bitne samo amplitude

5.3. SVOJSTVA I ENERGIJA SPEKTRA

- ODNOS FREKVENCIJA SIGNALA I UZORKOVANJA
- SPEKTAR JEDINIČNOG IMPULSA
- SPEKTAR POMAKNUTOG JEDINIČNOG IMPULSA
- PARSEVALOV TEOREM

- ODNOS FREKVENCIJA SIGNALA I UZORKOVANJA

• Program 8, N=64:

$$x[n] = \sin\left(\frac{2\pi n}{64}\right) + \cos\left(\frac{2\pi n}{16}\right) + 0.6\cos\left(\frac{2\pi n}{8}\right) + 0.5\sin\left(\frac{2\pi n}{4}\right); 0 \le n \le 63$$

- signal je opisan
 sa svoje 4
 harmonijske
 komponente
 1/64, 4/64,
 8/64 i 16/64
- donji grafprikazujefaze

- ODNOS FREKVENCIJA SIGNALA I UZORKOVANJA

- Program 8b:
 - komponentanije višekratnikosnovnefrekvencije
 - umjesto jedne imamo čitav niz oko 2,5

$$x[n] = \cos\left(\frac{2\pi \cdot 2.5}{64}n\right) ; 0 \le n \le 63$$

- SPEKTAR JEDINIČNOG IMPULSA

• Jedinični impuls:

 $x[n] = \delta[n] ; \quad 0 \le n \le 63$

- spektar jekonstantanbijeli šum
- daje svefrekvencijeidealan zatestiranje
- fazni spektarje 0 (nula)

- SPEKTAR JEDINIČNOG IMPULSA

• Jedinični impuls algebarski:

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \exp\left(\frac{-j2\pi kn}{N}\right)$$
 $x[n] = \delta[n] ; 0 \le n \le 63$

- slijedi:
$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} \delta[n] \exp\left(\frac{-j2\pi kn}{N}\right)$$

$$a_k = \frac{1}{N} \exp\left(\frac{-j2\pi kn}{N}\right)\Big|_{n=0} = \frac{1}{N} \exp(0) = \frac{1}{N}$$

$$\Re(a_k) = \frac{1}{N}$$
; $\Im(a_k) = 0 \Rightarrow |a_k| = \frac{1}{N}$; $\phi_k = \arctan(0) = 0$

- SPEKTAR POMAKNUTOG JEDINIČNOG IMPULSA

• Pomaknuti jedinični impuls:

$$x[n] = \delta[n-1]$$
; $0 \le n \le 63$

- spektar jeponovokonstantanbijeli šum
- fazni spektarje linearan

- PARSEVALOV TEOREM

- Teorem očuvanja energije:
 - energija je ista u vremenskom i frekvencijskom području
 - za realni periodični digitalni signal vrijedi:

$$\frac{1}{N} \sum_{n=0}^{N-1} \{x[n]\}^2 = \sum_{n=0}^{N-1} |a_k|^2$$

- lijeva strana prikazuje:
 - srednju vrijednost energije jedne komponente,
 - izračunatu kroz jedan period vremenskog signala
- desna strana prikazuje:
 - spektralnu energiju signala,
 - izračunatu kroz jednu instancu spektra

- PARSEVALOV TEOREM

- Za jedinični impuls izračunamo:
 - u vremenskom području:

$$\frac{1}{N} \sum_{n=0}^{N-1} \{\delta[n]\}^2 = \frac{1}{N} \cdot (1) = \frac{1}{N}$$

u frekvencijskom području :

$$\sum_{n=0}^{N-1} |a_k|^2 = \sum_{n=0}^{N-1} \left| \frac{1}{N} \right|^2 = N \left(\frac{1}{N} \right)^2 = \frac{1}{N}$$

5.4. SVOJSTVA DISKRETNOG FOURIEROVOG NIZA

- LINEARNOST

- VREMENSKI POMAK

- DIFERENCIJA I INTEGRACIJA

- KONVOLUCIJA I MODULACIJA

- LINEARNOST DFN

- Svojstvo linearnosti definiramo:
 - spektar sume dvaju signala jednak je sumi njihovih spektara
 - ako vrijedi:

$$x_1[n] \leftrightarrow a_k \ i \ x_2[n] \leftrightarrow b_k$$

– tada je:

$$A \cdot x_1[n] + B \cdot x_2[n] \leftrightarrow A \cdot a_k + B \cdot b_k$$

– kod sume spektara voditi računa o amplitudi i fazi!

- VREMENSKI POMAK DFN

- Vremenski pomak definiramo:
 - ako vrijedi:

$$x[n] \leftrightarrow a_k$$

– tada je:

$$x[n-n_0] \leftrightarrow a_k \cdot exp(-j2\pi kn_0/N)$$

– za n₀=N vrijedi:

$$x[n-N] \leftrightarrow a_k \cdot \exp(-j2\pi kN/N) = a_k$$

odnosno spektar je nepromijenjen
 za kašnjenje punog perioda, odnosno višekratnika n₀=mN

- DIFERENCIJA DFN

- Diferenciju definiramo:
 - ako vrijedi:

$$x[n] \leftrightarrow a_k$$

– tada je:

$$x[n]-x[n-1] \leftrightarrow a_k \cdot \{1-exp(-j2\pi k/N)\}$$

kao neposredna primjena svojstva linearnosti i vremenskog pomaka

- INTEGRACIJA DFN

- Integraciju definiramo:
 - ako vrijedi a₀=0 i:

$$x[n] \leftrightarrow a_k$$

– tada je:

$$\sum_{k=-\infty}^{n} x[k] \leftrightarrow a_k \cdot \{1 - \exp(-j2\pi k/N)\}^{-1}$$

- i predstavlja pomičnu sumu koja je periodična ako je istosmjerna komponenta a₀=0,
- u suprotnom gornja definicija ne vrijedi

- KONVOLUCIJA DFN

- Integraciju definiramo:
 - ako su signali x₁ i x₂ istog perioda i:

$$x_1[n] \leftrightarrow a_k \ i \ x_2[n] \leftrightarrow b_k$$

– tada je:

$$\sum_{m=0}^{N-1} x_1[m] \cdot x_2[n-m] \leftrightarrow N \cdot a_k \cdot b_k$$

- ili: konvolucija u vremenskom području jednaka je množenju u frekvencijskom području
- radi se o konvoluciji unutar jednog perioda koja se još zove cirkularna konvolucija *

- MODULACIJA DFN

- Modulaciju definiramo:
 - ako su signali x₁ i x₂ istog perioda i:

$$x_1[n] \leftrightarrow a_k \ i \ x_2[n] \leftrightarrow b_k$$

– tada je:

$$x_1[n] \cdot x_2[n] \leftrightarrow \sum_{m=0}^{N-1} a_m \cdot b_{k-m}$$

 ili: modulacija u vremenskom području jednaka je konvoluciji u frekvencijskom području

6. TRANSFORMACIJA APERIODIČKIH DIGITALNIH SEKVENCI

- 6.1. TRANSFORMACIJA APERIODIČKIH SEKVENCI
- 6.2. INVERZNA TRANSFORMACIJA APERIODIČKIH SEKVENCI
- 6.3. TRANSFORMACIJA JEDINIČNOG IMPULSA I SVOJSTVA
- 6.4. FREKVENCIJSKI ODZIV LTI SUSTAVA
- 6.5. JEDNADŽBA DIFERENCIJA i FREKVENCIJSKI ODZIV, SVOJSTVA

6.1. TRANSFORMACIJA APERIODIČKIH SEKVENCI

- MOTIVACIJA
- PRISTUP TRANSFORMACIJI APERIODIČKIH SEKVENCI
- DEFINICIJA TRANSFORMACIJE APERIODIČKIH SEKVENCI

- MOTIVACIJA

- Aperiodičke sekvence
 - mnogi praktični signali u prirodi su aperiodički
 - znači da se ne ponavljaju striktno, npr. dnevne promjene temperature
 - da bi signal nosio informaciju,
 ne smije biti unaprijed poznat
 - u analognim sustavima koristimo Fourierovu transformaciju
 - Fourierovu transformaciju za digitalne nizove ovdje izvodimo digitalno!

- PRISTUP TRANSFORMACIJE APS

- Transformacija aperiodičkih sekvenci:
 - počinjemo s Fourierovim nizom:

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] exp\left(\frac{-j2\pi kn}{N}\right)$$

- njega primjenjujemo na jedan period striktno periodičkog signala, u trajanju N uzoraka
- sada pokušajmo razmicati uzastopne periode, a razmak popunjavati nulama
- na kraju su susjedni periodi beskonačno udaljeni
- posljedično N→∞

PRISTUP TRANSFORMACIJE APS

• Transformacija signala razmicanjem perioda:

- DEFINICIJA TRANSFORMACIJE APS

• N→∞:

koeficijenti a_k postaju beskonačno gusti zbog

$$\exp\left(\frac{-j2\pi kn}{\infty}\right)$$

- i teže nuli nestaju zbog 1/N = 1/∞
- međutim, produkt $N \cdot a_k$ ostaje konačan, označimo ga sa $X_k = N \cdot a_k$
- također označimo Ω=2πk/N,
 kontinuirana varijabla "frekvencije" jer k ide do ∞
- stoga možemo pisati $X_k = X(\Omega)$

DEFINICIJA TRANSFORMACIJE APS

- Dobijemo jednadžbu transformacije APS :
 - granice sumacije možemo proširiti na ±∞ jer smo razmakli susjedne periode u beskonačnost:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] \exp(-j\Omega n)$$

- ispitujemo korelaciju niza diskretnih uzoraka s vrijednostima komponente spektra frekvencije Ω
- $-\Omega$ je kontinuiran, pa je spektar kontinuiran

6.2. INVERZNA TRANSFORMACIJA APERIODIČKIH SEKVENCI

- PRISTUP INVERZNOJ TRANSFORMACIJI APERIODIČKIH SEKVENCI
- DEFINICIJA INVERZNE TRANSFORMACIJE APERIODIČKIH SEKVENCI

- PRISTUP INVERZNOJ TRANSFORMACIJI APS

- Koristimo slične argumente:
 - polazimo od jednadžbe sinteze:

$$x[n] = \sum_{k=0}^{N-1} a_k \exp\left(\frac{j2\pi kn}{N}\right)$$

definiramo osnovnu frekvenciju (osnovni harmonik)

$$\Omega_0 = \frac{2\pi}{N}$$
 ; $\Omega = \mathbf{k} \cdot \Omega_0$

odnosno

$$\frac{\Omega_0}{2\pi} = \frac{1}{N}$$

- DEFINICIJA INVERZNE TRANSFORMACIJE APS

• Definiramo:

- kako je:
$$X(\Omega) = N \cdot a_k \Rightarrow a_k = \frac{X(k\Omega_0)}{N}$$

– dobijemo:

$$x[n] = \sum_{k=0}^{N-1} \left\{ \frac{X(k\Omega_0)}{N} \right\} \exp(jk\Omega_0 n)$$

odnosno

$$x[n] = \frac{1}{2\pi} \sum_{k=0}^{N-1} X(k\Omega_0) \cdot \exp(jk\Omega_0 n) \cdot \Omega_0$$

- DEFINICIJA INVERZNE TRANSFORMACIJE APS

• Sada $N \rightarrow \infty$:

- osnovna frekvencija $\Omega_0 \to 0$, postaje d Ω
- frekvencija k Ω_0 postaje Ω
- sumacija postaje integriranje
- spektar je periodičan, pa integriramo unutar jednog perioda spektra (simbolički označimo sa 2π)

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot \exp(j\Omega n) \cdot d\Omega$$

dobijemo Fourierove parove, koje možemo koristiti

- TRANSFORMACIJA APS PRIMJER

Za signal sa 5 članova imamo:

$$X(\Omega) = 0.2(1 + 2\cos\Omega + 2\cos2\Omega)$$

6.3. TRANSFORMACIJA JEDINIČNOG IMPULSA I SVOJSTVA

- SPEKTAR JEDINIČNOG I POMAKNUTOG JEDINIČNOG IMPULSA

- SVOJSTVA TRANSFORMACIJE APERIODIČKIH SEKVENCI

- SPEKTAR JEDINIČNOG I POMAKNUTOG IMPULSA

• Računamo:

- uvrstimo $x[n] = \delta[n]$

$$X(\Omega) = \sum_{n = -\infty}^{\infty} x[n] \exp(-j\Omega n) = \sum_{n = -\infty}^{\infty} \delta[n] \exp(-j\Omega n)$$

– pa slijedi:

$$X(\Omega) = \exp(-j\Omega n)\Big|_{n=0} = 1$$

– kao i kod Fourierovog niza, imamo sve frekvencije, ali sada kontinuirano!

- SPEKTAR JEDINIČNOG I POMAKNUTOG IMPULSA

- Za pomaknuti impuls računamo:
 - uvrstimo $x[n] = \delta[n]$

$$X(\Omega) = \sum_{n=-\infty}^{\infty} \delta[n-1] \exp(-j\Omega n) = \exp(-j\Omega n)\Big|_{n=1} = \exp(-j\Omega)$$

- pa slijedi:
$$|X(\Omega)| = |\exp(-j\Omega)| = 1$$

– ali faza više nije 0!

- SPEKTAR JEDINIČNOG I POMAKNUTOG IMPULSA

- SVOJSTVA TRANSFORMACIJE APS

Vrijede ista svojstva kao kod Fourierovog niza:

- Ako:
$$x_1[n] \leftrightarrow X_1(\Omega) i x_2[n] \leftrightarrow X_2(\Omega)$$

– Linearnost:

$$A \cdot x_1[n] + B \cdot x_2[n] \leftrightarrow A \cdot X_1(\Omega) + B \cdot X_2(\Omega)$$

– Vremenski pomak:

$$x[n-n_0] \leftrightarrow X(\Omega) \cdot exp(-j\Omega n_0)$$

– Konvolucija:

$$x_1[n] * x_2[n] \leftrightarrow X_1(\Omega) \cdot X_2(\Omega)$$

6.4. FREKVENCIJSKI ODZIV LTI SUSTAVA

- ODNOS VELIČINA U VREMENSKOM I FREKVENCIJSKOM PODRUČJU
- RAČUNANJE ODZIVA
- ODZIV NA JEDINIČNI IMPULS

- ODNOS VELIČINA

- Opis LTI sustava
 - Transformacija APS ima drugu korisnu primjenu opisuje ponašanje LTI u frekvencijskom području
 - osnovni odnosi veličina:

- RAČUNANJE ODZIVA

- Množenje vektora
 - Koristimo svojstvo da je konvolucija u vremenskom ekvivalentna množenju u frekvencijskom području

- Računamo:
$$X(\Omega) = |X(\Omega)| \cdot \exp(j\Phi_{x}(\Omega))$$

$$H(\Omega) = |H(\Omega)| \cdot \exp(j\Phi_H(\Omega))$$

– pa je:

$$X(\Omega) \cdot H(\Omega) = |X(\Omega)| \cdot |H(\Omega)| \cdot \exp(j\{\Phi_X(\Omega) + \Phi_H(\Omega)\})$$

– pomnožimo veličine, a zbrojimo fazne kutove!

- ODZIV NA JEDINIČNI IMPULS

Koristimo spektar jediničnog impulsa

$$\delta[n] \leftrightarrow 1$$

– Računamo:

$$Y(\Omega) = X(\Omega) \cdot H(\Omega) = 1 \cdot H(\Omega) = H(\Omega)$$

- zaključujemo da je i ovdje iskorišten jedinični spektar i svojstvo testiranja sustava jediničnim impulsom
- kao što impulsni odziv h[n] potpuno opisuje LTI, tako je LTI potpuno opisan frekvencijskim odzivom H[Ω]

- PRIMJER FREKVENCIJSKOG ODZIVA

- Za odziv od 5 impulsa:
 - dobijemo isto kao i za signal!

$$X(\Omega) = 0.2(1 + 2\cos\Omega + 2\cos2\Omega)$$

to je niskopropusni filtar

h[n]↑

6.5. JEDNADŽBA DIFERENCIJA I FREKVENCIJSKI ODZIV, SVOJSTVA

- TRANSFORMACIJA SUME ČLANOVA

- PRIJENOSNA FUNKCIJA

- TRANSFORMACIJA SUME ČLANOVA

Polazimo od jednadžbe diferencija

$$\sum_{k=0}^{P} c_{k} \cdot y[n-k] = \sum_{k=0}^{Q} d_{k} \cdot x[n-k]$$

to su sume pomaknutih impulsa, transformiramo

$$\sum_{k=0}^{P} c_k \cdot \exp(-jk\Omega) \cdot Y(\Omega) = \sum_{k=0}^{Q} d_k \cdot \exp(-jk\Omega) \cdot X(\Omega)$$

- PRIJENOSNA FUNKCIJA

- Izračunamo prijenosnu funkciju
 - izlučimo $X[\Omega]$ i $Y[\Omega]$ jer ne ovise o k:

$$Y(\Omega) \cdot \sum_{k=0}^{P} c_k \cdot \exp(-jk\Omega) = X(\Omega) \cdot \sum_{k=0}^{Q} d_k \cdot \exp(-jk\Omega)$$

- izračunamo $H[\Omega]$:

$$H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{\sum_{k=0}^{Q} d_k \cdot \exp(-jk\Omega)}{\sum_{k=0}^{P} c_k \cdot \exp(-jk\Omega)}$$

- PRIJENOSNA FUNKCIJA PRIMJER

• Filtar propusnik opsega $y[n]=1,5 \cdot y[n-1]=0,85 \cdot y[n-2]+x[n]$

– Program 9:

$$H(\Omega) = \frac{1}{1 - 1.5 \exp(-j\Omega) + 0.85 \exp(-j2\Omega)} = \frac{1}{(1 - 1.5 \cos\Omega + 0.85 \cos 2\Omega) + j(1.5 \sin\Omega + 0.85 \sin 2\Omega)}$$

