11th i-CoMSE Workshop: Mesoscale Particle-Based Modeling

Mississippi State University July 21–25, 2025

Session 7: Periodic boundary conditions I (structure)

Boundaries in Simulations

Deroche, I., Daou, T.J., Picard, C. et al. Reminiscent capillarity in subnanopores. Nat Commun 10, 4642 (2019). DOI:10.1038/s41467-019-12418-9

Periodic Boundaries

Solution: Periodic Boundary Conditions!

Allen, Michael P., and Dominic J. Tildesley. Computer simulation of liquids. Oxford university press, 2017.

- A way to deal with box edges without walls:
 - Tile space with "infinite" repeats of the original box
 - If particle leaves on one side of the box, it re-appears on the opposite side with the same velocity

Alternative view:

Minimum Image Convention

box

box + periodic images

if (periodic_x) then if (x < -x_size * 0.5) x = x + x_size if (x >= x_size * 0.5) x = x - x_size end if

Notes:

- Watch out for how the box is defined: (0, L) vs.
 (-L/2, L/2)
- Box needs to be large enough that particles don't interact with themselves
- It is useful to keep track of PBC crossings with so called images (arrays of integers)

or

$$x(i) = x(i) - floor(x(i) / x_size) * x_size$$

Exercise

Objective:

Learn how to apply the minimum image convention to compute distances

Finite Size Effects

Did we fix everything? No.

Interfacial tensions:

Schmitz, et al. "Investigation of Finite-Size Effects in the Determination of Interfacial Tensions." HPCSE, 2014, 5-18.

Diffusion coefficients:

Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics, S. Jamali et al. JCTC 2018 14 (5), 2667-2677, DOI: 10.1021/acs.jctc.8b00170

Critical Points, transitions, coexistence:

Díaz-Herrera, et al. "Finite size effect on the existence of the liquid–vapour spinodal curve." Molecular Physics 120.4 (2022): e1989071.

Lattice/size mismatches:

Arora et al. "Commensurability and finite size effects in lattice simulations of diblock copolymers." Soft Matter 11.24 (2015): 4862-4867.

Structure of Simple Models

How to assess local structure and density?

Radial Distribution Function

Pair correlation function:

Probability of finding a particle at given distance from another particle:

- short distances: nearest neighbors, how particles are packed together
- Intermediate distances: layers around particles, next-nearest neighbors
- large distances: probability of finding two spheres with a given separation is essentially constant – related to overall density (normalize by density)

$$g(r) = \frac{1}{N^2} \sum_{i} \sum_{j} \langle \delta(|\vec{r}_i - \vec{r}_j| - r) \rangle$$

Exercise

Objectives:

- Calculate the radial distribution function
- Learn how to use freud to calculate g(r)

Radial Distribution Function

- Fourier transform of the the structure factor S(k)
- Relates bulk density to local density: $\rho(r) = \rho_{bulk} \cdot g(r)$
- Coordination number: $n(r') = 4\pi\rho \int_0^{r'} g(r)r^2 dr$
- Compressibility: $\rho KT \chi_T = 1 + \rho \int_V d\vec{r} \left[g(r) 1 \right]$
- Potential of mean force: $g(r) = \exp \left[-\frac{w^{(2)}(r)}{kT} \right]$
- •

What about Polymers?

Polymer solutions

Radius of Gyration of a Polymer

- There are many different sizes one can consider for polymers:
 - End-to-end distance R_{ee}
 - Hydrodynamic radius R_h
 - Radius of gyration R_g

•
$$R_g^2 = \frac{1}{N} \langle \sum_{k=1}^N |\vec{r}_k - \vec{r}_{com}|^2 \rangle$$

- Theory:
 - $\langle R_{ee}^2 \rangle = Nb^2$ (theta solvent)

N = degree of polymerization \vec{r}_k = position of monomer k com = center of mass

Why R_g?

- Not all polymers have ends (for R_{ee})
- Easy to define, measure, compare
- Structural quantity
- Tells us about how the mass (or monomers) is distributed in an object (polymer)
- Known theoretical relationships (theta solvent):

$$- \langle R_g^2 \rangle = \frac{\langle R_{ee}^2 \rangle}{6}$$
$$- R_h = C R_g$$

Polymer (solution) behavior depends on its size and concentration.
 Think about overlap concentration instead of monomer density.

Center of Mass of a Polymer

Center of mass (assuming all monomers have mass 1):

$$R_{com} = \frac{1}{N} \sum_{k} \vec{r}_{k}$$

Exercise

Objectives:

- Learn how to unwrap positions
- Calculate the center of mass of a polymer
- Calculate the radius of gyration of a polymer (as function of chain length N)

Common Pitfalls

- Ignoring finite size effects, using systems that are "too small"
- Forgetting about PBCs (clustering, order parameters, neighbors, ...)
- Forgetting to write out images
- $\langle R_g \rangle^2 vs. \langle R_g^2 \rangle$ etc.
- Not comparing against theory or scaling predictions