Машинное обучение для жизни

Курс «Аналитическое мышление»

Алексей Кузьмин

Директор разработки ДомКлик.ру

Алексей Кузьмин

Директор разработки ДомКлик.ру

О спикере

- Руковожу направлением работы с данными и Data Science
- Преподаю в Нетологии

- Работаю в IT с 2010 года (АВВҮҮ, ДомКлик)
- Окончил МехМат МГУ в 2012 году

В слаке

Структура курса

План занятия

- (1) Что такое машинное обучение и зачем оно нужно
- **2** Три вида задач машинного обучения
- Типовой процесс решения Data Science задачи
- (4) Пример конкретного алгоритма машинного обучения: в теории и на Python

Машинное обучение

Области Data Science

- Искусственный интеллект: «научить машины думать»
- Машинное обучение: инструменты для извлечения знаний из данных
- Глубокое обучение: многослойные нейронные сети
- Data Science: понимание и придание смысла данным
- Большие данные: совокупность подходов к обработке огромных объемов неструктурированных данных

HP

Компания Hewlett-Packard оценивает риски ухода своих сотрудников, которых более 333 000 по всему миру.

Алгоритм помогает менеджерам заранее найти замену человеку, который планирует покинуть свою должность в компании.

Результат: Система с 80% точностью вычисляла имена тех, кто планирует уйти. Иногда человек ещё сам не знал об этом, а машина «предсказывала» его судьбу на ближайшие полгода.

Dubai Airports

Международный аэропорт Дубая. Большие данные о показателях работы аэропорта, рейсах и перемещении пассажиров широко используются для оптимизации работы аэропорта и повышения удовлетворенности пассажиров.

Что в основе: Аэропорт использует сложные алгоритмы оптимизации для динамического назначения выходов для посадки и прилета.

Пассажиры посещают Дубай для шоппинга, что приводит к частым опозданиям на рейс. Многие не говорят на английском или арабском – языках, на которых делаются объявления.

После внедрения новой программы оповещений в каждом магазине аэропорта сканируются посадочные талоны пассажиров, и они получают оповещения на языке, которым владеют.

Результат: оптимизировано назначение выходов на посадку и прилет, значительно сократилось число опозданий на рейсы.

Сбербанк

Сбербанк разработал систему анализа фотографий для идентификации клиентов и предотвращения мошенничества с документами

Как работает: в основе работы системы лежит сравнение фотографий с помощью технологий компьютерного зрения.

Платформа: биометрическая платформа «Каскад-Поиск» от компании «Техносерв».

Преимущества: система работает очень быстро. Благодаря ряду инновационных решений, таких как In-Memory Processing, сопоставление изображений камеры и изображений в базе занимает несколько секунд.

Результат: потери от мошенничества с документами физических лиц сократились в 10 раз.

Машинное обучение

Основные понятия

Объекты и признаки

- Объект сущность, для которой мы проводим анализ
- Признаки характеристики объекта

Пример:

- Объект: человек
- Признаки: рост, возраст, вес и т.д.

3 классические задачи

Классификация — определять тип (мужчина/женщина)

Регрессия — прогнозировать значения для объектов (возраст, доход, рост)

Кластеризация — группировать (школьники, бизнесмены, политики, любители чая)

3 классические задачи

Классификация

Дано:

 обучающая выборка, состоящая из признакового описания объектов и метки класса для каждого объекта.

Найти:

 алгоритм, который бы для каждого нового объекта по его признаковому описанию прогнозировал класс этого объекта.

Регрессия

Дано:

 обучающая выборка, состоящая из признакового описания объектов и значения целевой переменной для каждого объекта.

Найти:

 алгоритм, который бы для каждого нового объекта по его признаковому описанию прогнозировал целевую переменную этого объекта.

Геометрически алгоритм восстанавливает зависимость между признаками и целевой переменной.

Важно помнить

Классификация

- Ответ алгоритма конечное количество меток
- Нужна «обучающая» выборка объекты, их признаки и правильные ответы

Регрессия

- Ответом алгоритма может быть любое число
- Нужна «обучающая» выборка
 объекты, их признаки и
 правильные ответы

Кластеризация

Геометрически алгоритм группирует данные объекты в кластеры наилучшим образом

Дано:

обучающая выборка, состоящая
 из признакового описания объектов.

Найти:

– разделение всех объектов на кластеры.

Ответов нет. Есть только объекты и признаки!

Примеры задач

Классификация:

- Возьмет ли клиент кредит
- Что изображено на картинке
- Будет ли отзыв положительным

Регрессия:

- Предсказание погоды
- Прогноз цены акций
- Прогноз спроса

Кластеризация:

- Какие основные темы обращений клиентов?
- Какие группы пользователей у нас есть?

Процесс решения

Как решить любую DS-задачу

Общая схема

- 1. Получить данные
- 2. Подготовить объекты и признаки
- 3. Разделить данные на обучающую и тестовую выборку при необходимости
- 4. Выбрать алгоритм машинного обучения
- 5. Обучить модель на обучающей выборке
- 6. Оценить качество на тестовой выборке

1. Получить данные

Много способов. Самый простой — из csv-файла

2. Подготовить объекты и признаки

Часто данные бывают некачественными или неподходящими для машинного обучения:

- Есть строковые значения (математика же работает только на цифрах)
- Есть пропуски
- Есть выбросы и шумы

Перед применением алгоритма данные нужно привести в порядок.

3. Разделить данные

Машина, как и человек, может понять закономерность, а может просто «зазубрить» обучающую выборку.

Нужно уметь честно оценивать качество работы алгоритма на данных, которые он не видел.

Для этого имеющееся множество делят на 2 группы:

- Обучающая выборка используется при обучении алгоритма
- Тестовая выборка скрыта от алгоритма и используется только для оценки качества

4. Выбрать алгоритм

Алгоритм зависит от:

- Задачи (классификация/регрессия/кластеризация)
- Структуры и особенностей данных
- ... <- pабота data science

5. Обучить модель

Выбрав алгоритм, ему надо подать на вход обучающуюу выборку, чтобы он на ее основе вывел основные закономерности в данных (обучился)

6. Оценить качество

Чтобы оценить качество алгоритма, нужно:

- 1. выбрать меру качества (в зависимости от задачи они бывают разные)
- 2. сделать предсказания для тестовой выборки
- 3. оценить насколько они похожи на правильные ответы

Качество алгоритма оцениваем на тестовой выборке

Линейная регрессия

Как пример

Линейная регрессия

$$\hat{y} = b_0 + b_1 x_1 + \dots + b_k x_k$$

у^ — предсказание модели

b0, b1, ..., bk — коэффициенты модели

х1, ..., хk — признаки объекта

Как оценить качество модели?

Разные коэффициенты b0, b1, ..., bk дают разные по качеству модели. Как понять, какая из них наилучшего качества?

Вводим функцию качества предсказания модели:

$$S^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

Часто функцию S2 дополнительно усредняют по количеству наблюдений. Получается функция MSE — средняя квадратичная ошибка

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

Разберем на примере домов

количество спален	площадь	этажей	реальная цена
2	50	1	1000000
1	40	1	600000
4	120	2	25000000

Есть две модели с разными коэффициентами

модель	стартовая стоимость дома	стоимость спальни	стоимость метра	стоимость этажа
1	100000	1000000	10000	100000
2	200000	2000000	5000	500000

Для каждой модели и каждого дома можно построить прогноз

Цена дома 1 по версии модели 1 = стартовая стоимость дома (модель 1) + стоимость спальни (модель 1) * количество спален (дом 1) + стоимость метра (модель 1) * количество метров (дом 1) + стоимость этажа (модель 1) * количество этажей (дом 1)

Ошибка прогноза дома 1 для модели 1 = (цена дома 1 по версии модели 1 - цена дома 1 реальная) ** 2

реальная цена	прогноз цены по модели 1	прогноз цены по модели 2	ошибка модели 1	ошибка модели 2
1000000	450000	11250000	3025000000000	1562500000000
6000000	340000	9200000	676000000000	1024000000000
25000000	8200000	20600000	282240000000000	19360000000000

ср. ошибка модели 1	ср. ошибка модели 2
10641666666667	1038750000000

Средняя ошибка меньше у модели 2 => она лучше, чем модель 1

Линейная регрессия в жизни

- Прогноз продаж
- Предсказание цены товара на основе его характеристик
- Построение трендов на основе предыдущих значений

• ...

Одна из самых простых моделей, которую можно построить

A kak Ha Python?

Пример в коде

scikit-learn

Библиотека машинного обучения на Python

- Огромный набор инструментов для создания моделей на основе машинного обучения
- Качественная документация
- Высокая скорость работы
- Единообразный API взаимодействия

https://scikit-learn.org

Содержит

Множество моделей

- Включая линейную регрессию
- from sklearn.linear_model import LinearRegression

Методы оценки качества

- Включая mse
- from sklearn.metrics import mean_squared_error

Методы разделения данных

- Включая разделение на выборку для обучения и выборку для валидации
- from sklearn.model_selection import train_test_split

Единый подход для всех моделей

```
from sklearn.linear_model import LinearRegression
X, y = KAKИЕ-TO ДАННЫЕ
model = LinearRegression(fit_intercept=True)
model.fit(X, y)
prediction = model.predict(X)
```


Практика

Попробуем предсказать цены на дома в
 Бостоне при помощи линейной регрессии

Итоги

Аналитическое мышление

Что мы узнали сегодня

- Что такое машинное обучение и посмотрели кейсы, как оно применяется в реальной жизни
- Что такое классификация, регрессия и кластеризация три основных вида задач машинного обучения
- Поняли, как обычно решаются задачи машинного обучения
- Познакомились с линейной регрессией и научились предсказывать цены на дома на ее основе

Дополнительные ресурсы

Рекомендуемая литература

- Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных
- Python и машинное обучение
- Профессия «Data Scientist» в Нетологии

Спасибо за внимание!

Алексей Кузьмин

🗱 нетология