1. РАСЧЕТ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

3.1. Задание для самостоятельной работы

Двигатель постоянного тока параллельного возбуждения характеризуют следующие номинальные величины: напряжение на зажимах двигателя $U_{\rm H}$; мощность $P_{\rm H}$; частота вращения $n_{\rm H}$; ток якоря $I_{\rm S.H.}$; ток обмотки возбуждения $I_{\rm B.H.}$; вращающий момент $M_{\rm H}$; ток, потребляемый из сети, $I_{\rm H}$; коэффициент полезного действия $\eta_{\rm H}$; сопротивление цепи якоря $r_{\rm S}$; сопротивление обмотки возбуждения $r_{\rm B}$; мощность потерь в цепи якоря $\Delta P_{\rm S}$; мощность потерь в обмотке возбуждения $\Delta P_{\rm B}$.

Числовые значения заданных величин и номера пунктов задания, подлежащих выполнению, указаны в табл. 23–32.

Необходимо сформулировать условие задачи для своего варианта и выполнить следующее:

- 1) начертить схему двигателя;
- 2) определить номинальный вращающий момент $M_{\rm H}$;
- 3) рассчитать коэффициент полезного действия $\eta_{\rm H}$ двигателя при номинальной нагрузке;
- 4) вычислить частоту вращения двигателя при статическом моменте сопротивления нагрузки $M_{\rm c}=0.8M_{\rm H}$ и токе возбуждения $I_{\rm B}=0.6I_{\rm B.H.}$ Воспользоваться зависимостью $\Phi=f(I_{\rm B})$, приведенной на рис. 5. Построить графики естественной и искусственной механических характеристик;
- 5) найти пределы изменения частоты вращения двигателя при изменении величины добавочного сопротивления в цепи якоря $r_{\rm д}$ от 0 до 4 $r_{\rm s}$, при статическом моменте сопротивления $M_{\rm c}=1,2M_{\rm H}$. Построить графики естественной и искусственной (при $r_{\rm d}=4r_{\rm s}$) механических характеристик;
 - 6) определить номинальную мощность двигателя;
- 7) рассчитать энергию, потребляемую двигателем из сети в течение полутора часов;
- 8) вычислить сопротивление пускового реостата, выбранного из условия, что $I_{\Pi} = 2I_{H}$, и соответствующее этому току значение пускового момента.

Построить графики естественной и искусственной (при введенном сопротивлении пускового реостата) механических характеристик;

9) построить графики семейства механических характеристик двигателя, регулируемого реостатом в цепи возбуждения при постоянном моменте сопротивления, равном номинальному, для значений сопротивления реостата в цепи возбуждения: 0; 0,5; 1,0 $r_{\rm B}$;

Определить пределы изменения частоты вращения и мощность потерь в обмотке якоря и цепи возбуждения при различных значениях сопротивления цепи возбуждения. Воспользоваться зависимостью $\Phi = f(I_{\rm B})$, приведенной на рис. 5;

- 10) рассчитать сопротивление обмотки возбуждения;
- 11) найти пределы изменения частоты вращения двигателя при изменении добавочного сопротивления в цепи якоря $r_{\rm d}$ от 0 до $6r_{\rm g}$, если статический момент сопротивления $M_{\rm c}=1,4M_{\rm H}$. Построить графики естественной и искусственной (при $r_{\rm d}=6r_{\rm g}$) механических характеристик. Определить КПД двигателя при $r_{\rm d}=6r_{\rm g}$ и $M_{\rm c}=1,4M_{\rm H}$;
- 12) построить семейство механических характеристик n = f(M) при значениях тока возбуждения 1,0; 0,9; 0,8; 0,7; 0,6 $I_{\rm B.H.}$ Определить КПД при указанных значениях тока возбуждения, если статический момент сопротивления равен номинальному. Построить график зависимости КПД от тока возбуждения.

У к а з а н и е. Воспользоваться зависимостью $\Phi = f(I_B)$, (см. рис. 5);

Рис. 5

- 13) построить графики семейства механических характеристик n = f(M) при значениях добавочного сопротивления $r_{\rm H}$ в цепи якоря: 0; 1,0; 2,0; 3,0; 4,0 $r_{\rm H}$. Определить КПД двигателя при указанных значениях добавочного сопротивления, если статический момент сопротивления равен номинальному. Построить график зависимости КПД от частоты вращения;
- 14) вычислить частоту вращения двигателя при увеличении сопротивления цепи возбуждения на 40% и статическом моменте сопротивления $M_{\rm c}=0.7M_{\rm H}$. Построить естественную и искусственную механические характеристики. Определить КПД двигателя в этом режиме;
- 15) определить пределы изменения сопротивления $r_{\rm д}$ регулировочного реостата, включаемого в цепь якоря, для регулирования частоты вращения двигателя от $n_{\rm H}$ до $0.2n_{\rm H}$ при номинальном статическом моменте сопротивления;
- 16) найти КПД двигателя при статическом моменте сопротивления, равном номинальному, и частотах вращения 1,0; 0,8; 0,6; 0,4; 0,2 $n_{\rm H}$. Построить график зависимости КПД от частоты вращения;
- 17) регулирование частоты вращения двигателя осуществляется реостатом в цепи якоря в пределах от $n_{\rm H}$ до $0.5n_{\rm H}$ при постоянной мощности на валу.

Вычислить КПД двигателя при значениях частоты вращения 1,0; 0,9; 0,8; 0,7; 0,6; $0,5n_{\rm H}$. Построить график зависимости КПД от частоты вращения.

Таблица 23 Исходные данные для вариантов 01–10

Пункты задания, подлежащие выполнению: 1, 2, 3, 4								
Вариант	P_{H} , к $\mathrm{B}\mathrm{T}$	$n_{ m H}$, об/мин	$U_{\scriptscriptstyle m H},{ m B}$	$I_{\mathtt{M.H}},\mathrm{A}$	$r_{\text{\tiny M}}$, Om	$r_{\rm B}$, Om		
01	6	750	110	63,73	0,1223	75,0		
02	32	1000	220	167,0	0,0666	44,0		
03	8	1000	110	83,5	0,0644	42,4		
04	55	1500	220	283,0	0,0301	44,0		
05	25	750	110	264,0	0,0254	11,0		
06	11	500	220	60,0	0,2895	44,0		
07	42	750	110	436,0	0,0119	9,45		
08	100	1500	220	505,0	0,0135	37,8		
09	19	600	110	204,0	0,0398	11,0		
10	75	750	220	380,0	0,0236	28,0		

Таблица 24 Исходные данные для вариантов 11–20

Пункты задания, подлежащие выполнению: 1, 2, 5									
Вариант	$P_{ m H}$, к ${ m B}{ m T}$	$n_{ m H}$, об/мин	$U_{\mathrm{H}},\mathrm{B}$	$I_{ ext{B.H}}, ext{A}$	$r_{\text{\tiny M}}$, Om	η H, $\%$			
11	1,5	1500	220	0,4	1,85	78,5			
12	13,5	1060	220	1,2	0,126	84,0			
13	3,2	1500	220	1,2	0,67	79,0			
14	42,0	750	110	11,7	0,0119	85,3			
15	6,0	1500	220	1,2	0,34	82,5			
16	8,0	1500	110	2,6	0,0678	84,5			
17	11,0	1500	220	1,4	0,15	84,0			
18	25,0	750	110	10,0	0,0254	82,5			
19	19,0	1500	220	1,7	0,101	84,7			
20	12,0	685	220	1,8	0,281	85,2			

Таблица 25 Исходные данные для вариантов 21–30

	Пункты задания, подлежащие выполнению: 1, 6, 7, 8									
Вариант	$M_{\mathrm{H}},\mathrm{H}\cdot\mathrm{M}$	$n_{ m H}$, об/мин	$U_{\scriptscriptstyle m H},{ m B}$	$\eta_{\scriptscriptstyle m H},\%$	$r_{\text{\tiny M}}$, Om	$r_{\rm B},{ m Om}$				
21	76,4	750	110	83,5	0,1183	75,0				
22	50,9	1500	110	84,5	0,0656	41,8				
23	302,4	600	110	81,0	0,0398	11,0				
24	350,2	1500	220	87,0	0,0300	44,0				
25	267,4	500	220	79,0	0,2895	44,0				
26	636,7	1500	220	89,6	0,0135	37,8				
27	534,8	750	110	85,3	0,0119	9,5				
28	1019,0	1500	220	90,0	0,0064	28,0				

29	955,0	750	220	88,0	0,0236	28,0
30	25.6	3000	110	84.5	0.0362	41.4

Таблица 26 Исходные данные для вариантов 31–40

	Пункты задания, подлежащие выполнению: 1, 9									
Вариант	P_{H} , к $\mathrm{B}\mathrm{T}$	$n_{ m H}$, об/мин	$U_{\mathrm{H}},\mathrm{B}$	$\eta_{\scriptscriptstyle m H},\%$	$r_{\rm s}$, Ом	$r_{\rm B}$, Om				
31	6	750	110	83,5	0,1223	75,0				
32	8	1000	110	86,0	0,0644	42,4				
33	11	500	220	80,0	0,2895	44,0				
34	14	500	220	83,0	0,2895	44,0				
35	19	600	220	81,5	0,1645	44,0				
36	25	750	110	83,5	0,0254	11,0				
37	32	1000	110	84,5	0,0164	11,0				
38	55	1500	220	87,0	0,0301	44,0				
39	75	750	220	88,0	0,0236	28,0				
40	100	1500	220	89,6	0,0135	37,8				

Таблица 27 Исходные данные для вариантов 41–50

	Пункты задания, подлежащие выполнению: 1, 2, 10, 11									
Вариант	$I_{\rm H},{ m A}$	$n_{ m H}$, об/мин	$U_{\mathrm{H}},\mathrm{B}$	$\eta_{\scriptscriptstyle m H},$ %	$\Delta P_{\mathfrak{A}}$, к B т	ΔP_{B} , к B т				
41	65,3	750	110	83,5	0,497	0,162				
42	86,0	1000	110	84,5	0,449	0,284				
43	66,0	1500	110	82,5	0,433	0,267				
44	86,0	1500	110	84,5	0,472	0,289				
45	86,0	3000	110	84,5	0,284	0,293				
46	288,0	1500	220	87,0	2,412	1,100				
47	172,0	1000	220	84,5	1,857	1,100				
48	137,0	750	220	83,5	1,782	1,100				
49	107,0	600	220	81,5	1,711	1,100				
50	511,0	1500	220	89,6	3,440	1,280				

Таблица 28 Исходные данные для вариантов 51–60

	Пункты задания, подлежащие выполнению: 1, 12									
Вариант	I_{H} , A	$n_{\rm H}$, об/мин	$U_{\scriptscriptstyle m H},{ m B}$	$M_{\mathrm{H}},\mathrm{H}\cdot\mathrm{M}$	$r_{\text{\tiny M}}$, Om	$r_{\rm B}$, Om				
51	388	750	220	955	0,02362	28,0				
52	808	1500	220	1019	0,00638	28,0				
53	511	1500	220	637	0,01349	37,8				
54	448	750	110	535	0,01193	9,45				
55	65	500	220	210	0,2895	44,0				
56	107	600	220	302	0,1645	44,0				
57	137	750	220	318	0,1023	44,0				
58	172	1000	220	306	0,0666	44,0				
59	288	1500	220	350	0,03012	44,0				
60	86	3000	110	25,5	0,041	41,4				

Таблица 29 Исходные данные для вариантов 61–70

	Пункты задания, подлежащие выполнению: 1, 13								
Вариант	$I_{\mathrm{H}},\mathrm{A}$	$n_{ m H}$, об/мин	$U_{\scriptscriptstyle m H},{ m B}$	M_{H} , Н·м	$r_{\text{\tiny M}}$, Om	$r_{\rm B}$, Om			
61	8,7	1500	220	9,55	1,85	490,0			
62	18,4	1500	220	20,37	0,67	156,0			
63	33,2	1500	220	38,2	0,34	132,0			
64	59,8	1500	220	70,0	0,15	121,0			
65	102,0	1500	220	121,0	0,101	100,0			
66	73,0	1060	220	121,6	0,126	183,0			
67	65,2	750	110	76,4	0,1223	75,0			
68	86,0	1000	110	76,4	0,0644	42,4			
69	66,0	1500	110	38,2	0,107	45,2			
70	86,0	1500	110	50,93	0,0678	41,8			

Таблица 30 Исходные данные для вариантов 71–80

	Пункты задания, подлежащие выполнению: 1, 3, 14									
Вариант	$I_{\rm H},{ m A}$	$n_{ m H}$, об/мин	$U_{ ext{ iny H}}, ext{ iny B}$	$M_{\rm H}$, Н·м	r_{M} , Om	$r_{\rm B}$, Om				
71	8,7	1500	220	9,55	1,85	490,0				
72	18,4	1500	220	20,37	0,67	156,0				
73	73,0	1060	220	121,6	0,126	183,0				
74	64,0	685	220	167,3	0,281	128,0				
75	86,0	1000	110	76,4	0,0618	42,4				
76	66,0	1500	110	38,2	0,1026	45,2				
77	346,0	1000	110	305,6	0,0164	11,0				
78	275,0	750	110	318,3	0,0252	11,0				
79	172,0	1000	220	305,6	0,0666	44,0				
80	65,0	500	220	210,0	0,2895	44,0				

Таблица 31 Исходные данные для вариантов 81–90

Пункты задания, подлежащие выполнению: 1, 15, 16									
Вариант	I_{H} , A	$n_{ m H}$, об/мин	$U_{\scriptscriptstyle m H},{ m B}$	P_{H} , к $\mathrm{B}\mathrm{T}$	$r_{\text{\tiny M}}$, Om	$r_{\rm B}$, Om			
81	65,2	750	110	6,0	0,1223	75,0			
82	86,0	1000	110	8,0	0,0644	42,4			
83	86,0	1500	110	8,0	0,0678	41,8			
84	275,0	750	110	25,0	0,0254	11,0			
85	344,0	1000	110	32,0	0,0164	11,0			
86	288,0	1500	220	55,0	0,0301	44,0			
87	107,0	600	220	19,0	0,1645	44,0			
88	83,0	500	220	14,0	0,2896	44,0			
89	65,0	500	220	11,0	0,2895	44,0			
90	388,0	750	220	75,0	0,0236	28,0			

Исходные данные для вариантов 91–100

	Пункты задания, подлежащие выполнению: 1, 17									
Вариант	$P_{ ext{ iny H}}$, к $ ext{B}$ т	$n_{ m H}$, об/мин	$U_{\scriptscriptstyle m H},{ m B}$	$\eta_{\scriptscriptstyle m H},$ %	$r_{\text{\tiny M}}$, Om	$r_{\rm B},{ m Om}$				
91	1,5	1500	220	78,5	1,85	490,0				
92	3,2	1500	220	79,0	0,67	156,0				
93	12,0	685	220	85,2	0,281	126,0				
94	19,0	1500	220	84,7	0,101	100,0				
95	25,0	750	110	82,5	0,0254	11,0				
96	32,0	1000	110	84,0	0,0164	11,0				
97	42,0	750	110	85,3	0,0119	9,45				
98	75,0	750	220	88,0	0,0236	28,0				
99	100,0	1500	220	89,6	0,0135	37,8				
100	160,0	1500	220	90,0	0,0064	28,0				

3.2. Методические указания

При решении задачи реакция якоря не учитывается, а мощность магнитных и механических потерь $P_{\rm H} + P_{\rm Mex}$ принимается постоянной, равной мощности потерь в обмотке якоря в номинальном режиме $\Delta P_{\rm 9.H}$.

Коэффициент полезного действия двигателя при номинальной нагрузке

$$\eta_{\rm H} = \frac{P_{\rm H}}{P_{\rm 1H}} = \frac{P_{\rm H}}{P_{\rm H} + \sum P},\tag{25}$$

где $P_{1\text{H}} = I_{\text{H}}U_{\text{H}}$ — мощность, потребляемая двигателем из сети; $\sum P = \Delta P_{\text{R.H}} + \Delta P_{\text{B.H}} + P_{\text{MAГH}} + P_{\text{MEX}}$ — суммарные потери в двигателе;

 $\Delta P_{\rm я. H} = I_{\rm я. H}^2 r_{\rm я}$ — потери в обмотке якоря в номинальном режиме;

 $\Delta P_{\rm B.H} = I_{\rm B.H}^2 r_{\rm B} -$ потери в обмотке возбуждения в номинальном режиме.

Номинальная мощность двигателя может быть определена по значению номинального момента:

$$P_{\rm H} = \frac{M_{\rm H} n_{\rm H}}{9,55}.\tag{26}$$

Пусковой ток двигателя I_{Π} зависит от сопротивлений пускового реостата $r_{\Pi,p}$ и цепи якоря :

$$I_{\Pi} = \frac{U_{\mathrm{H}}}{r_{\mathrm{g}} + r_{\mathrm{\Pi,p}}}.$$
 (27)

Механическая характеристика двигателя параллельного возбуждения линейна. Ее график может быть построен по двум точкам. Обычно для построения графика механической характеристики используют значения частоты вращения холостого хода при некотором заданном моменте сопротивления нагрузки.

Частоту вращения двигателя для электромеханической характеристики определяют по формуле:

$$n = (U - (r_{\rm g} + r_{\rm g})I_{\rm g})/C_e\Phi,$$
 (28)

где U — напряжение на зажимах двигателя;

 $r_{\rm M}$ — сопротивление обмотки якоря;

 $r_{\rm д}$ — добавочное сопротивление в цепи якоря;

 $I_{\rm M}$ – ток якоря;

 C_e — постоянная машины;

 Φ – магнитный поток.

В номинальном режиме добавочное сопротивление $r_{\rm д}$ в цепи якоря отсутствует, а напряжение на зажимах двигателя, ток якоря и магнитный поток имеют номинальные значения. Поэтому номинальная частота вращения определяется из выражения:

$$n_{\rm H} = (U_{\rm H} - r_{\rm H} I_{\rm M.H}) / C_e \Phi.$$
 (29)

Из соотношения $n/n_{\rm H}$ получим выражение, позволяющее определить частоту вращения для любого режима, используя номинальные данные:

$$n = n_{\rm H} \left(U - \left(r_{\rm g} + r_{\rm II} \right) I_{\rm g} \right) \Phi_{\rm H} / \left(U_{\rm H} - r_{\rm g} I_{\rm g, H} \right) \Phi. \tag{30}$$

Поясним методику построения графика механической характеристики на примере.

Двигатель постоянного тока параллельного возбуждения характеризуют следующие номинальные величины: напряжение на зажимах $U_{\rm H}=220~{\rm B}$; мощность $P_{\rm H}=160~{\rm kBT}$; частота вращения $n_{\rm H}=1500~{\rm of/muh}$; ток $I_{\rm H}=808~{\rm A}$; сопротивление обмотки якоря $r_{\rm g}=0,0046~{\rm Om}$; сопротивление обмотки возбуждения $r_{\rm B}=28~{\rm Om}$.

Построить графики естественной и искусственной (при добавочном сопротивлении в цепи якоря $r_{\rm d}=10r_{\rm g}$) механических характеристик.

Решение.

Для каждого из значений добавочного сопротивления ($r_{\rm д}=0$ и $r_{\rm д}=10r_{\rm Я}$) в цепи якоря определим частоты вращения для двух значений момента сопротивления нагрузки: $M_{\rm c}=0$ (холостой ход) и $M_{\rm c}=M_{\rm H}$.

При моменте сопротивления, равном номинальному, и $r_{\rm д}=0$ (естественная характеристика) ток якоря и частота вращения имеют номинальные значения $I_{\rm R.H}$ и $n_{\rm H}$.

Рассчитаем номинальные значения момента $M_{\rm H}$ и тока якоря $I_{\rm S.H.}$:

$$M_{\rm H} = 9,55P_{\rm H} / n_{\rm H} = 9,55 \cdot 160000 / 1500 = 1019 \text{ H} \cdot \text{M};$$

 $I_{\rm H,H} = I_{\rm H} - I_{\rm B,H} = I_{\rm H} - U_{\rm H} / r_{\rm B} = 808 - 220 / 28 = 800 \text{ A}.$

Вычислим частоту вращения в режиме холостого хода. Ток якоря в режиме холостого хода мал, но не равен нулю, так как имеют место механические и магнитные потери. Значение тока якоря $I_{\rm R.X}$ в режиме холостого хода может быть найдено исходя из того, что мощность механических и магнитных потерь принимается постоянной, равной мощности потерь в обмотке якоря в номинальном режиме.

Мощность потерь в обмотке якоря в номинальном режиме

$$\Delta P_{\rm H,H} = I_{\rm H,H}^2 r_{\rm H} = 800^2 \cdot 0.0046 = 2944 \text{ Bt.}$$

Ток якоря в режиме холостого хода

$$I_{\text{H.X}} = \Delta P_{\text{H.H}} / U_{\text{H}} = 2944 / 220 = 13,38 \text{ A}.$$

Учитывая, что $U=U_{\rm H}\;$ и $\Phi=\Phi_{\rm H},$ рассчитаем частоту вращения холостого хода на естественной характеристике:

$$n_{\rm X}=\ n_{\rm H}(U_{\rm H}-r_{\rm g}I_{\rm H.X})\,/(U_{\rm H}-r_{\rm g}I_{\rm H.H});$$
 $n_{\rm X}=1500(220-0.0046\cdot13.38)/(220-0.0046\cdot800)=1525$ об/мин.

При $r_{\rm J} = 10~r_{\rm H}$ (искусственная характеристика) и моменте сопротивления, равном номинальному, ток якоря остается равным номинальному, так как магнитный поток полюсов остается неизменным $\Phi = \Phi_{\rm H}$.

Частота вращения при номинальном моменте сопротивления

$$n'=\ n_{\rm H}(U_{\rm H}-(r_{\rm S}+10r_{\rm S})I_{\rm S.H})\,/\!(U_{\rm H}-r_{\rm S}I_{\rm S.H});$$

$$n'=1500(220-(0{,}0046+10{\cdot}0{,}0046)\,\,800)/(220-0{,}0046{\cdot}800)=1245\,\,{\rm об/мин}.$$

Частота вращения при холостом ходе

$$n_{\rm X}' = n_{\rm H}(U_{\rm H} - (r_{\rm S} + 10r_{\rm S})I_{\rm S.X})/(U_{\rm H} - r_{\rm S}I_{\rm S.H});$$

$$n_{\text{X}}' = 1500(220 - (0,0046 + 10.0,0046) \ 13,38)/(220 - 0,0046.800) = 1520 \ \text{об/мин}.$$

По результатам вычислений строим графики естественной (рис. 6, прямая 1) и искусственной (рис. 6, прямая 2) механических характеристик. По горизонтальной оси откладываем момент сопротивления нагрузки (без учета

момента, обусловленного силами трения и магнитными потерями), по вертикальной – частоту вращения.

Рис. 6

Для вычисления частоты вращения двигателя при статическом моменте сопротивления нагрузки, не равном номинальному, $M_{\rm c}=k_1M_{\rm H}$ и неполном токе возбуждения $I_{\rm B}=k_2I_{\rm B.H}$ необходимо предварительно определить значения магнитного потока Φ' (по зависимости $\Phi=f(I_{\rm B})$, см. рис. 1) и тока якоря:

$$I_{\rm g}' = \frac{M_{\rm c}}{M_{\rm H}} \cdot \frac{\Phi_{\rm H}}{\Phi'} \cdot I_{\rm g, H}. \tag{31}$$

Частота вращения якоря для известных значений Φ' и $I_{\mathtt{N}}'$ определяется по формуле (30).

Библиографический список

- 1. В о л ь д е к А. И. Электрические машины. Л.: Энергия, 1974.
- 2. Справочник по электрическим машинам / Под ред. И. П. К о п ы л о в а. М.: Энергоатомиздат, 1988.
- 3. Электротехника / Под ред. В. Г. Герасимова. М.: Высшая школа, 1985.
- 4. Электротехника / Под ред. В. С. П а н т ю ш и н а. М.: Высшая школа, 1976.

ХАРЛАМОВ Виктор Васильевич, БЕЛЯЕВ Владимир Павлович, СЕРКОВА Любовь Ефимовна, ШЕЛЬМУК Евгений Ильич

Электрические машины

Редактор Т. С. Паршикова

Подписано в печать

. Формат $60 \times 84 \frac{1}{16}$.

Бумага офсетная. Плоская печать. Усл. печ. л. 1,9. Уч. -изд. л. 1,8. Тираж 400 экз. Заказ .

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

644046, г. Омск, пр. Маркса, 35