PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-110199

(43) Date of publication of application: 12.04.2002

(51)Int.Cl.

H01M 8/02

H01M 8/04 H01M 8/10 H01M 8/24

(21)Application number : 2001-255288

(71)Applicant: CALIFORNIA INST OF TECHNOL

(22)Date of filing:

09.12.1996

(72)Inventor: SURAMPUDI SUBBARAO

FRANK HARVEY A

NARAYANAN SEKHARIPURAM R

CHUN WILLIAM

JEFFRIES-NAKAMURA BARBARA

KINDLER ANDREW HALPERT GERALD

(30)Priority

Priority number : 1995 569452

Priority date: 08.12.1995

Priority country: US

(54) DIRECT METHANOL FEED FUEL CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a fuel-efficient methanol feed fuel cell and a method for feeding the fuel. SOLUTION: The fuel cell comprises an anode and a cathode electrodes, a fuel-feeding pipe and a flow-field element which operates to feed the fuel to the electrodes from the fuel-feeding pipe. The flow-field element is pushed to the electrodes, and the fuel-feeding pipe is communicated with the flow-field area surrounding the sides of the electrodes so that the fuel can directly be fed to the sides.

Searching PAJ Page 2 of 2

LEGAL STATUS

[Date of request for examination]

15.01.2002

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(51) Int.Cl.7

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-110199 (P2002-110199A)

テーマコート*(参考)

最終頁に続く

(43)公開日 平成14年4月12日(2002.4.12)

H01M 8/02		H01M 8/0	2	L 5H026
8/04		8/0	4	L 5H027
8/10		8/1	0	
8/24		8/2	/24 L	
		審査請求	有 請求項の	D数5 OL (全 18 頁)
(21)出願番号	特願2001-255288(P2001-255288)	(71)出顧人 59	38128421	
(62)分割の表示	特願平9-521493の分割	ħ	リフォルニア	インスティチュート オ
(22)出顧日	平成8年12月9日(1996.12.9)	J	/ テクノロジー	•
		7	メリカ合衆国	91125 カリフォルニア
(31)優先権主張番号	₱ 08/569, 452	HI.	・パサデナ イ	ーストカリフォルニアブ
(32)優先日	平成7年12月8日(1995.12.8)	JL	パード 1201	
(33)優先権主張国	米国 (US)	(72)発明者 ス	ランプディ・	スッパラオ
	,	1		91741 カリフォルニア
		1		イーストレオドラアペニ
		1	— 1210	
		_	00064724	
		(14) (OE)(10	JUUU-11 2-1	

FΙ

(54) 【発明の名称】 直接供給式メタノール燃料電池

識別記号

(57)【要約】

【課題】 燃料効率のよいメタノール燃料電池およびその燃料の供給方法を提供する。

【解決手段】 燃料電池を、アノード及びカソード電極 と、燃料供給管と、燃料を燃料供給管から電極に供給するように作動するフローフィールドエレメントとを備えて構成する。フローフィールドエレメントは、電極に対して押しつけられており、その側面を取り囲んでいるフローフィールド領域に燃料供給管が連通していて、燃料を直接当該側面に対して供給するようになっている。

弁理士 長谷 照一 (外1名)

.

【特許請求の範囲】

【請求項1】少なくともアノード及びカソード電極と、 燃料供給管と、

燃料を前記燃料供給管から前記アノード及びカソード電 極の少なくとも一方に供給するように作動するフローフ ィールドエレメントとを備えてなり、

前記フローフィールドエレメントは、前記一方の電極に 対して押しつけられており、そして複数のアイランド領 域を有しており、各アイランド領域は加圧表面と側面を 有し、その加圧表面は前記一方の電極に対して押しつけ 10 送車両は、多くの環境問題の源となってきている。内燃 られており、また前記フローフィールドエレメントは、 前記側面を取り囲んでいるフローフィールド領域を有し ており、前記フローフィールド領域は前記燃料供給管と 連通しており、

前記燃料供給管は、ある方向に延びるフローフィールド に開口する少なくとも一つの開口部を有し、前記方向に フローフィールドに燃料を供給し、前記方向は前記側面 の一つと直接交差する直線状に延びており、前記燃料供 給管が前記燃料を直接前記側面の一つに対して供給する ように構成されていることを特徴とする直接供給式メタ 20 ノール燃料電池。

【請求項2】請求項1に記載の燃料電池において、 前記アイランド領域は、長方形で、その長軸が前記方向 に平行であり、そして前記燃料は、前記方向に垂直に延 びる前記側面の一つに直接供給されることを特徴とする 燃料電池。

【請求項3】請求項2に記載の燃料電池において、 前記燃料供給管は、複数のノズルを備えており、全部が 前記方向に延びていて、そして全部が前記側面の一つに 対して直接燃料を供給することを特徴とする燃料電池。

【請求項4】電極に対してフローフィールドエレメント を押しつける工程であって、前記フローフィールドエレ メントは、複数のアイランド領域を備えており、そのそ れぞれには上面と側面を有する加圧表面があり、その加 圧表面上面は前記一つの電極に押しつけられ、また前記 フローフィールドエレメントは、前記側面を取り囲んで いるフローフィールド領域を有している工程と、

前記フローフィールドエレメントの一つの前記側面の一 つにメタノール燃料を直接供給して燃料の流れの中の乱 流を増加させる工程とを含んでなる加圧されることを必 40 要とするタイプの電極に燃料を供給する方法。

【請求項5】少なくともアノード及びカソード電極と、 燃料を供給する手段と、

燃料を前記燃料供給手段から前記アノード及びカソード 電極の少なくとも一方に供給するように作動するフロー フィールドエレメントとを備えてなり、

前記フローフィールドエレメントは、前記一方の電極に 対して押しつけられており、そして複数のアイランド領 域を有しており、また前記フローフィールドエレメント

いることを特徴とする直接供給式メタノール燃料電池。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、酸性電解質また はリフォーマを用いないで作動するシステムのための、 改良された直接供給式メタノール燃料電池およびその燃 料の供給方法に関する。

[0002]

【従来の技術】ガソリン動力型の内燃機関で作動する輸 機関から出る産物は、例えばスモッグや他の排気ガスが 関連した問題を生じさせる。種々の汚染制御対策によっ て、ある種の望ましくない排気ガス成分が最小限にされ ている。しかしながら、燃焼のプロセスは、本質的に何 らかの排気ガスを生成する。また、たとえ排気ガスを全 面的に環境に優しくできたとしても、ガソリンをベース とする内燃機関は、非再生性の化石燃料に依然として頼 っている。

【0003】多くのグループがこのエネルギー問題の適 切な解決法を探ってきた。一つの可能性のある解決法と して、燃料電池が挙げられている。燃料電池は、再生可 能な燃料材料からのエネルギーを用いて化学的に反応す る。例えば、メタノールは、完全に再生可能な供給源で ある。また、燃料電池は、燃焼反応の代わりに、酸化還 元反応を利用する。との燃料電池の反応から得られる最 終生成物は、典型的には、殆どが二酸化炭素と水であ

【0004】いくつかの従来のメタノール燃料電池は、 メタノールを燃料電池で用いられるH、ガスに変換する 30 ために「リフォーマ」を使用した。メタノール燃料電池 は、強酸の電解質を使用した。この発明の発明者らは、 最初に、酸性電解質を用いることなくメタノールから直 接燃料電池を作動させる技術、いわゆる直接供給式メタ ノール燃料電池を提案した。その改良の主題事項は、同 発明者らの米国特許第5,599,638号に記載され ており、適切な理解のために必要な程度に、当該特許を 参照されたい。

[0005]

【発明が解決しようとする課題】この発明は、そのよう なメタノール直接供給型燃料電池の更なる改良をするも のであり、燃料効率のよいメタノール燃料電池およびそ の燃料の供給方法を提供することを目的とする。

[0006]

【課題を解決するための手段】この発明の直接供給式メ タノール燃料電池は、少なくともアノード及びカソード 電極と、燃料供給管と、燃料を燃料供給管からアノード 及びカソード電極の少なくとも一方に供給するように作 動するフローフィールドエレメントとを備えて構成さ れ、前記フローフィールドエレメントは、前記一方の電 は、さらに前記燃料中に乱流を生じさせる手段を有して 50 極に対して押しつけられており、そして複数のアイラン

1

ド領域を有しており、各アイランド領域は加圧表面と側 面を有し、その加圧表面は前記一方の電極に対して押し つけられており、また前記フローフィールドエレメント は、前記側面を取り囲んでいるフローフィールド領域を 有しており、前記フローフィールド領域は前記燃料供給 管と連通しており、前記燃料供給管は、ある方向に延び るフローフィールドに開口する少なくとも一つの開口部 を有し、前記方向にフローフィールドに燃料を供給し、 前記方向は前記側面の一つと直接交差する直線状に延び ており、前記燃料供給管が前記燃料を直接前記側面の一 10 つに対して供給するようになっている。

【0007】また、この発明の燃料電池の実施態様で は、前記アイランド領域は、長方形で、その長軸が前記 方向に平行であり、前記燃料は、前記方向に垂直に延び る前記側面の一つに直接供給される。

【0008】さらにまた、この発明の燃料電池の実施態 様では、前記燃料供給管は、複数のノズルを備えてお り、全部が前記方向に延びていて、そして全部が前記側 面の一つに対して直接燃料を供給する。

【0009】さらにまた、この発明の燃料電池の実施態 20 様では、前記燃料中に乱流を生じさせる手段を有してい る。

【0010】また、この発明は、直接供給式メタノール 燃料電池に燃料を供給する方法を提供し、その方法は、 電極に対してフローフィールドエレメントを押しつける 工程であって、前記フローフィールドエレメントは、複 数のアイランド領域を備えており、そのそれぞれには上 面と側面を有する加圧表面があり、その加圧表面上面は 前記一つの電極に押しつけられ、また前記フローフィー ルドエレメントは、前記側面を取り囲んでいるフローフ ィールド領域を有している工程と、前記フローフィール ドエレメントの一つの前記側面の一つに燃料を直接供給 して燃料の流れの中の乱流を増加させる工程とを含んで なっている。

[0011]

【発明の実施の形態】発明者らの更なる研究業績に基づ いて、燃料電池の構造自体に対する種々の改良をとこに 記載する。これらの改良事項には、電極の作用を改善す る電極の改良された調製が含まれている。電極の作用に は、メタノール生成の効率を高める改良触媒が含まれて いる。燃料電池は、髙価な白金触媒を用いる。とこで提 供する電極調製法は、白金触媒を用いる必要性を減少さ せたりなくしたりできる技術を定義するものである。カ ソード電極を形成する技術もことに開示されている。と れらの技術は、非圧縮空気で使用するカソードの作用を 最適にする。とれによって、還元メカニズムに周囲温度 や大気圧を許容できるようになり、燃料電池の効率をさ らに改善できる。また、電極形成の技術も説明し、それ には膜の条件を整える技術も含まれている。特に好まし

は、また、液体燃料を触媒に供給するのを容易にするフ ローフィールドの設計にも及ぶ。

【0012】この燃料電池システムは、結局、最終製品 において使用される必要がある。この最終製品は、内燃 機関であってもよいし、またはラジオのようなずっと簡 単な電子機器であってもよい。電気で作動するいかなる 製品も、これらの燃料電池から発生した電力に基づいて 作動させることができる。この発明の発明者らは、この 作動を改良するとともに、他の方法では起こる可能性の あるこれらの諸問題点を改善するある技術を見つけ出し た。この発明の技術は、また、全体システムの一部とし てこの燃料電池を作動させる技術について説明すること によって、「システム作動」をも可能にした。これらの システム技術には、メタノール濃度や他の重要なパラメ ータを測定するためのセンサが含まれる。この発明者ら は、種々のパラメータを検出するための種々のセンサが 必要であろうことを理解している。この発明者らは、市 販のセンサを見つけることができなかった。この発明に は、この燃料電池で用いる技術をセンサの形成のために 変形する方法が記載されている。このセンサは、この燃 料電池の技術を用いて高い信頼性を保って作動する。も う一つの技術は、単極性電池の形成を定義している。

【0013】我々の上記で言及した特許に記載された液 体供給システムは、アノード上に白金ールテニウム触媒 を、またカソード上に白金触媒を用いている。ペルフル オロスルホン膜、好ましくは DuPont のナフィオン(Naf ion)(登録商標) 117が、ポリマー電解質膜として用 いられる。重要なことは、このシステムがいかなる酸性 電解質もリフォーマも使用する必要なく、作動したこと である。種々の材料の持つ種々の特性を変えて、この改 良がなされた。

【0014】アノード電極をイオノマー添加剤を用いて 親水性を高めることによって、アノード表面へのメタノ ール水溶液の接近性を改善できた。アノードの親水性を 高める別の方法は、超酸(「C8酸」)を含む電解質を 用いることであった。例えば、トリメトキシメタン「T MM」のような別のメタノール誘導体燃料は、それらの 分子サイズが大きいため、また他の特性のために、燃料 の移動性(crossover)が小さくなる。

【0015】この発明のこれらの及び他の面について、 添付図面を参照して以下に詳細に説明する。

【0016】図1は、ハウジング12、アノード14、 カソード16および固体ポリマープロトン伝導性カチオ ン交換電解質膜18を有する液体供給有機燃料電池10 を示す。以下に一層詳細に説明するように、アノード1 4、カソード16および固体ポリマー電解質膜18は、 好ましくは単一の多層複合構造体であり、ここでは膜電 極アセンブリと称する。ポンプ20が、有機燃料と水の 溶液をハウジング12のアノード室22内にポンプ輸送 い膜電極アセンブリの形成も定義されている。との発明 50 するために設けられている。その有機燃料と水の混合物

は、出口ポート23から取り出して、図2を参照して以 下に説明する、メタノールタンク19を有する再循環シ ステムを通して再循環される。アノード室で生成した二 酸化炭素は、タンク19内のポート24を通して放出さ れる。酸素または空気の圧縮器26が、ハウジング12 内のカソード室28の中に酸素または空気を供給するた めに設けられている。以下に説明する図2は、再循環シ ステムを含む個々の燃料電池のスタックを組み込んだ燃 料電池システムを示す。図1の燃料電池の以下の詳細な 説明は、アノード14、カソード16 および膜18の構 10 造と機能を主に中心として行う。

【0017】使用に先だって、アノード室22は有機燃 料と水の混合物で満たし、そしてカソード室28は空気 と酸素で満たす。作動中は、有機燃料はアノード14を 通過して循環され、一方、酸素または空気はカソード室 28内にポンプ輸送されカソード16を通過して循環さ れる。電気負荷(図示せず)がアノード14とカソード 16の間に接続されると、有機燃料の電気酸化がアノー ド14で起こり、かつ酸素の電気還元がカソード16で 起こる。アノードとカソードでこのような異なる反応が 20 起こることにより、これら2電極間に電圧差が生じる。 アノード14での電気酸化で生成した電子が外部負荷 (図示せず)を通して伝導されて、最後にカソード16 で捕捉される。アノード14で生成した水素イオンつま りプロトンは、膜電解質18を直接横切ってカソード1 6に輸送される。したがって、電流の流れは、電池を通 過するイオンの流れと外部負荷を通過する電子によって 維持される。

【0018】上記のように、アノード14、カソード1 6 および膜18は、一つの複合層構造体を形成してい る。好ましい実施態様では、膜18はペルフルオロ化プ ロトン交換膜材料のナフィオン(登録商標)で形成され る。ナフィオン(登録商標)は、テトラフルオロエチレ ンとペルフルオロビニルエーテルスルホン酸のコポリマ -である。他の膜材料も使用できる。例えば、改変ペル フルオロ化スルホン酸ポリマー、ポリ炭化水素スルホン 酸および2種以上のプロトン交換膜の複合体の膜が使用 できる。

【0019】アノード14は、白金ルテニウム合金の粒 子から、微細金属粉末つまり「非担持構造」としてか、 または大表面積の炭素上に分散させつまり「担持構造」 で、形成される。大表面積の炭素は、米国の Cabot In c.社が提供する Vulcan XC-72A のような材料でもよ い。電気触媒の粒子との電気的接続を行うために、炭素*

 $PJ-F:CH_1OH+H_2O\rightarrow CO_2+6H^2+6e^-$

が起こり、電子を放出する。

【0023】上記反応で生成した二酸化炭素は、燃料と 水の溶液とともに出口23を通して取り出され、気液分 離器でその溶液から分離される (図2を参照して以下に 説明する)。燃料と水の溶液は、次いでポンプ20によ 50

* 繊維シートのバッキング(図示せず)を使用する。市販 の Toray (登録商標) ペーパーが電極バッキングシート として使用される。Toray(登録商標)ペーパーのバッ キング上の担持構造の合金電気触媒が米国マサチューセ ッツ州フラミンガム所在の E-Tek, Inc.社から入手でき る。あるいは、非担持構造の電気触媒と担持構造の電気 触媒の何れも、テフロン (登録商標) 結合剤で結合し T oray (登録商標) ペーパーバッキング上に散布する化学 的方法でアノードを製造することができる。電気触媒電 極を効率的に時間をかけずに製造する方法を、以下に詳 細に説明する。

【0020】第二の金属がスズ、イリジウム、オスミウ ムまたはレニウムである白金ベースの合金を、白金ルテ ニウムの代わりに使用できる。一般に、合金の選択は、 燃料電池に使用される燃料に依存して行われる。メタノ ールを電気酸化するには、白金ルテニウムが好ましい。 白金ルテニウムの場合、電気触媒層中に添加する合金粒 子の量は、0.5~4.0mg/cm'の範囲が好まし い。添加レベルは、低いより高い方がより効率的な電気 酸化が実現される。

【0021】カソード16は、ガス拡散電極であり、白 金粒子が膜18の一方の面に結合れている。カソード1 6は、膜18のアノード14とは反対側の面に結合され た非担持構造または担持構造の白金で形成することが好 ましい。米国の Johnson Matthey Inc.社から入手でき る非担持構造の白金黒(燃料電池グレード)または米国 の E-Tek Inc.社から入手できる担持構造の白金材料が カソード用に適している。アノードの場合のように、カ ソード用の金属粒子を炭素のバッキング材料上に載せる 30 ことが好ましい。電気触媒粒子を炭素バッキング上に負 荷する量は、好ましくは、0.5~4.0mg/cm² の範囲である。電気触媒合金と炭素繊維のバッキング は、10~50重量%のテフロン(登録商標)を含有 し、三相界面を生成しかつ酸素の電気還元によって生成 した水を効率的に除去するのに必要な疎水性を与えてい

【0022】作動中は、濃度範囲が0.5~3.0モル /リットルの燃料及び水の混合物(酸性の電解質もアル カリ性の電解質も含有していない)を、アノード室22 40 内のアノード14を通過させて循環させる。好ましく は、10~500mL/分の範囲の流速が使用される。 燃料と水の混合物がアノード14を通過して循環すると き、例示的なメタノール電池の場合、下記の電気化学反

(1)

り電池内へ再循環される。

【0024】上記式(1)で示す電気化学反応と同時 に、電子を捕捉する、酸素の電気還元を行う他の電気化 学反応がカソード16で起とり、下記式

カソード: $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2 O$

(2)

で表される。

*応によって、例示的なメタノール燃料電池について、下

【0025】式(1)と(2)で表される個々の電極反* 記式 電池: CH, OH+1.5O,→CO,+2H,O

(3)

で表される全体反応が行われる。

【0026】十分に高い濃度の燃料で、500mA/c m'より高い電流密度を維持することができる。しかし ながら、これらの濃度では、膜18を横切ってカソード 16へ向かう燃料の移動速度 (crossover rate) が、そ の燃料電池の効率と電気的性能が有意に低下する程度に まで増大する。0.5モル/しより低い濃度では、電池 の作動は100mA/cm'未満の電流密度に限定され る。低い電流密度の場合には、低い流速が適用可能であ ることが見出された。高電流密度で作動させる場合は、 電気化学反応によって生成する二酸化炭素を除くためは もとより、有機燃料のアノードへの輸送質量速度を増大 するために、高い流速が必要である。また、低流速で は、燃料が膜を通過してアノードからカソードへ移動す るのが減少する。

【0027】好ましくは、酸素または空気は、10~3 20 Opsigの範囲の圧力下でカソード16を通過して循 環させる。外界圧力より高い圧力にすると、電気化学反 応の場所への酸素の質量輸送が、特に高い電流密度の場 合、改善される。カソードにおいて電気化学反応で生成 する水は、ポート30を通して酸素の流れによってカソ ード室28から運び出される。

【0028】水に溶解している液体燃料は、アノードで 電気酸化されるのに加えて、固体ポリマー電解質膜18 を透過して、カソードの電気触媒の表面上で酸素と結合 する。このプロセスは、メタノールを例に挙げて、式 (3)で表される。この現象は、「燃料移動(fuel cro ssover)」と呼ばれる。燃料の移動によって、酸素電極 の作動電位が低下して、その結果、有用な電気エネルギ ーを生成することなく燃料が消費される。一般に、燃料 の移動は、効率を低下させるとともに性能を低下させか つ燃料電池内で熱を発生させる寄生反応である。したが って、燃料の移動速度を最小にすることが望ましい。こ の移動速度は、固体電解質膜を通過する燃料の透過率に 比例し、濃度が増大し温度が上昇するにつれて増大す る。含水量が低い固体電解質膜を選ぶことによって、膜 40 の液体燃料に対する透過率を低下させることができる。 燃料に対する透過率を低下させると、移動速度が低下す る。また、分子の大きさが大きい燃料は、分子の大きさ が小さい燃料よりも、拡散係数が小さい。したがって、 透過率は、分子の大きさが大きい燃料を選択することに よって下げることができる。水溶性の燃料が望ましいと はいえ、溶解度が中位の燃料は低い透過率を呈する。髙 沸点の燃料は蒸発しないので、膜を通してのそれら燃料 の輸送は液相で行われる。蒸気の透過率は液体より高い ので、高沸点の燃料は一般に移動速度が低い。液体燃料 50 る)か、または水含量が異なっているか、または架橋の

の濃度は、移動速度を小さくするためにも下げることが できる。疎水性部位と親水性部位が最適に分布している アノード構造体は、液体燃料によって適度に濡れること で電気化学反応を維持することができ、かつ過剰量の燃 料が膜電解質に接近するのを防止する。したがって、ア ノードの構造を適当に選択すれば、高性能と望ましい低 移動速度を得ることができる。

【0029】固体電解質膜は、60℃より高い温度では 水が透過可能なので、かなりの量の水が透過と蒸発によ って膜を横切って輸送される。固体電解質膜を通して輸 送される水は、水回収システム内で凝縮されて、水タン ク(この水回収システムとタンクについては、図2を参 照して以下に詳細に説明する) に送られ、その水はアノ ード室22の中へ再循環させることができる。

【0030】アノード14で生成したプロトンおよびカ ソード16で生成した水は、プロトン伝導性固体電解質 膜18によって二つの電極間を輸送される。膜18の高 いプロトン伝導性を維持することは、有機/空気燃料電 池を有効に作動させるのに重要である。電解質膜の含水 量は、液体燃料と水の混合物と直接接触させることによ って維持される。プロトン伝導性固体ポリマー電解質膜 の厚みは、好ましくは、0.05~0.5mmの範囲と する。0.05mmより薄い膜を用いると、機械的強度 が劣った膜電極アセンブリとなる可能性があり、一方 0.5mmより厚い膜を用いると、液体燃料と水の溶液 30 によってそのポリマーが膨潤して極端でかつ損傷を与え る寸法変化をもたらすとともに、過剰の抵抗値を呈する 可能性がある。電解質膜のイオン伝導率は、燃料電池が 許容可能な内部抵抗を持つためには、10 h m-1 c m-1 より大きくなければならない。

【0031】上記のように、電解質膜は液体燃料に対す る透過率が低くなければならない。ナフィオン(登録商 標)膜がプロトン伝導性固体ポリマー電解質膜として有 効であることが見出されたが、ナフィオン(登録商標) と特性が類似している、Aciplex(登録商標)(日本の Asahi Glass Co.社製造) のようなペルフルオロ化スル ホン酸ポリマー製の膜、および米国の Dow Chemical C o.社が製造しているポリマー膜、例えば XUS13204.10 も利用できる。ポリエチレン及びポリプロピレンスルホ ン酸の膜、ポリスチレンスルホン酸の膜、および他のポ リ炭化水素ベースのスルホン酸類の膜(例えば、米国の RAI Corporation 社が製造した膜)も、燃料電池の作 動する温度と期間に応じて、使用することができる。酸 当量が異なっているか、または化学組織が異なっている (例えば、酸性基またはポリマーの骨格が修飾されてい

種類と程度が異なっている(例えば、Al3+, Mg2+な どのような多価カチオンで架橋されている)かの2種以 上のプロトン伝導性カチオン交換ポリマーからなる複合 体の膜を用いて、低い燃料透過性を達成することができ る。このような複合体の膜を製造して、高いイオン伝導 率、液体燃料に対する低い透過性率よび優れた電気化学 的安定性を達成することができる。

【0032】以上の説明から理解されるように、電解質 としてプロトン伝導性の固体高分子膜を用いることによ り、遊離の可溶性酸または塩基の電解質を用いる必要な 10 く、液体供給式直接酸化型有機燃料電池が得られる。唯 一の電解質は、プロトン伝導性の固体高分子膜である。*

*液体燃料と水の混合物の中には、遊離の形態の酸は存在 しない。自由な酸が存在しないので、現用技術の酸ベー スの有機物/空気燃料電池において起こりがちな電池部 品の酸誘発による腐食が回避される。このことは、燃料 電池および連係サブシステムのための材料選択に相当な 柔軟性をもたらす。さらに、液体電解質として水酸化カ リウムを含む燃料電池と違って、可溶性の炭酸塩が形成 されないので、電池性能が低下しない。また、固体電解 質膜の使用により、寄生短絡電流が回避される。

10

【0033】更なる改良

直接型メタノール/液体供給式燃料電池の反応は、

アノード $H_2O = 6H^* + CO_2 + 6e^-$ CH,OH + 1. $5O_2 + 6H^+ + 6e^- = 3H_2O$ カソード

正味 $CH_{1}OH + 1.5O_{2} = CO_{2} + 2H_{2}O$

である。

【0034】この明細書には、この発明によって用いら れる好ましい構造と材料を製造し形成する際の種々の改 実験により、一つの特定の好ましい触媒材料は、白金ル テニウム (「Pt-Ru」) であることが確かめられ た。これらの二つの金属を組み合わせる種々の製法が可 能である。発明者らは、別個の白金粒子と別個のルテニ ウム粒子を有する二金属性の粉末の方が、白金ルテニウ ム合金よりも良い結果をもたらすことを見いだした。こ の発明によって用いられる好ましいPt-Ru材料は、 大きな表面積を有しているため、この材料と燃料との間 の接触を容易にする。白金もルテニウムも触媒反応で用 いられるが、この発明者らは、白金ルテニウムの混成物 が材料全体にわたって均一に混合されてランダムに間隔 が空けられていることが重要であること、すなわちその 材料が均質でなくてはならないことを見つけだした。

【0035】との発明の第1番目の面は、異なる金属を 組み合わせて、異なる材料の特異個別の箇所を有する白 金ルテニウム二金属性粉末を形成することである。粒子 同士の間には何らかの結合が存在するが、この発明の技 術は、結合の程度を最小限にすることを保証する。好ま しい材料を形成するプロセスをこの明細書に記載する。 まず最初に、白金塩とルテニウム塩を塩酸に入れたスラ リーを形成する。塩酸にクロロ白金酸結晶を溶解するこ とにより、クロロ白金酸ヘキサ水和物塩H、PtCl。・ 6H₂Oを生成させる。ペンタクロロアクオルテニウム (III)のカリウム塩から、ルテニウム塩のK,Ru Cl₃・H₂Oを生成させる。12.672グラムのクロ ロ白金酸結晶を、13.921グラムのペンタクロロア クオルテニウムのカリウム塩の結晶及び1モルの塩酸の 600mlと混合する。酸と塩の混合物を15~30分 間攪拌して、均質な混合物を得る。

当たり140グラムの炭酸ナトリウム(Na,CO,)を 20~30℃の間の温度で添加することにより、中和し て沈澱させる。との間に、二酸化炭素がこの溶液から激 良が記述されている。発明者らによって行われた種々の 20 しく放出されるであろう。炭酸ナトリウムは、このガス の放出が終わるまで添加し続ける。この時点で、その溶 液は、茶黒色に変わる。発明者らは、これに約15分間 かかることを見いだした。この操作を行う間中、適当な pHに維持することが大切で、pHは、炭酸ナトリウム をゆっくりと加えることによって9.25付近で維持す べきである。

> 【0037】次いで、この「灰色の粉末状塊(grey pow derv mass)」を処理して、そのスラリーから水をエバ ポレートする。このエバポレートには1時間ないし2時 間かかり、ついに、材料が乾燥して塊となった黒いにか わ状の固形物が形成される。次に、との黒いにかわ状固 形物を真空中で乾燥させるか、または窒素気流下、80 ℃~100℃で乾燥させる。塊状の灰色の固体が得られ る。この固体には、それでもまだなお塩化ナトリウムと ともに溶液中に存在している材料が含まれている。この 灰色の粉末の化学的内容物には、水酸化ルテニウム=R u (OH), 水酸化白金=Pt (OH), 及び「べと べとのもの(qunk)」すなわち塩化物、それに加えて過 剰なNa,CO,がある。発明者らは、これらの余分な材 40 料が白金とルテニウムの間の分離を維持すると推定して いる。これらの白金及びルテニウム材料のみで維持され ていると、それらは焼結して結合してしまい、粒子の大 きさが大きくなってしまう。粒子間の炭酸塩の緩衝剤が 合着を防いでいる。

【0038】との塊状の固体材料は、次に、水素とアル ゴンの雰囲気下で還元されて、塩から金属に変わる。と の材料をグラスボートに移し変える。このボートを管状 炉のガラス管の中心に配設する。7%の水素と93%の アルゴンからなる混合ガス中で、またはその代わりに水 【0036】次いで、この酸性スラリーに、毎分1ml 50 素/窒素の混合ガス中で、その材料を225℃付近で還

12

元させる。このガスは、毎分50~200mlの流速でボートの上を流されるべきである。このガス流は、その加熱雰囲気で14時間維持し続ける。そして、水素を依然としてその粉末に流し続けたまま、その触媒粉末を40℃あたりにまで冷却させる。これにより、白金、ルテニウム、の粒子、それに加えて他の塩化物や炭酸塩からなる混合物が形成される。

【0039】得られた材料は、次に洗浄しなくてはなら ない。この材料は、数回の洗浄、例えば60℃で6回の 洗浄を行う。それぞれの洗浄によって、ガラスボート内 10 のサンプルを、60℃の脱イオン水を1リットル入れた ビーカーに移す。白金ルテニウムは、水に不溶である。 したがって、洗浄しても白金ルテニウム材料に影響はな く、他の材料のみが除去される。それぞれの洗浄では、 水溶液を15分間攪拌する工程が行われるため、可溶性 の塩化物及び炭酸塩が溶解する。金属粒子の大きさはサ ブミクロンなので、それらは底に沈むことなく、代わり にコロイド状の混合物を形成する。この溶液を40℃に まで冷却させる。この溶液を後程3000rpmで1時 間、遠心分離する。遠心分離プロセスにより、澄んだ上 20 澄み液が残る。この上澄みの液体を移し出して、黒い沈 降物を1リットルの60℃の脱イオン水を入れたフラス コに移し変える。このさらなる洗浄により、いかなる溶 解した塩化物も除去される。

【0040】この洗浄工程は、全部で6回繰り返す。水を攪拌してかつ遠心分離することが、塩化物を全体的に除去するために重要であることがわかった。これらの塩化物は、触媒作用にとって有害である。しかしながら、発明者らは、これらの塩化物が材料の合着を最小限に抑えるのに必要な結合剤ではあるが、後で除去されねばな 30 らないことを見出した。

【0041】最終的な遠心分離操作を行った後、その粉末をビーカーに移して60℃の真空オーブン中で3時間乾燥する。これに代えて、この材料を凍結乾燥してもよい。これによって、自由に流動できるサブミクロンサイズの活性な白金ルテニウム触媒が得られる。乾燥した材料がサブミクロンサイズであること、そのためそれらが容易に空気で運ばれることに注目することが重要である。安全を確保するために、サブミクロンマスクを装着しなくてはならない。

【0042】この活性な触媒粉末は、サブミクロンサイズの白金粒子及びルテニウム粒子の均質な混合物を含むことがわかった。また、RuOz、酸化ルテニウム、及びルテニウム合金の痕跡量の残渣も存在する。この粉末は、この明細書に記載するように、アノード上で触媒として用いられる。

【 $0\,0\,4\,3$ 】との転化法による最初の生成物である白金 あるものは、次いで、 $C\,O_2 + 6\,H^* + 6\,e^-$ とし 塩及びルテニウム塩は、二酸化チタン($T\,i\,O_2$)、イ に組み合わされる。 H^* (プロトン)は、アノー リジウム($I\,r$)及び/又はオスミウム($O\,s$)で改変 成し、そのアノードからカソードへと横切って、してもよい。これらの材料は、比較的少ないコストで燃 50 還元される。これは、二機能性触媒と言われる。

料電池の性能を改善すべく使用することができる。

【0044】先行技術の粒子と比較すると、この処理を行った粒子は際だった利点を示す。先行技術の粒子は、5ミクロンの大きさの粒子である。これらの粒子には、二酸化ルテニウムが含まれていた。この発明の粒子を分析すると、ミクロンサイズの粒子に至るまで均質な混合物であることを示す。走査型電子顕微鏡で見ると、明るい点も曇った点もなく、全ての材料は全体的に灰色に見える。このことは、混合プロセスによって全体的に均質な材料が形成されたことを示している。

【0045】このプロセスにより調製された材料は、アノード触媒材料と言われる。このアノード触媒をナフィオン(登録商標)溶液などと結合させてさらにプロセスを進めると、「インク(ink)」になる。この明細書に記載するように、これには白金金属とルテニウム金属の組み合わさったものが含まれている。発明者らは、白金のルテニウムに対する好ましい比率は、60/40と40/60の間であることを見つけている。最良の性能は、60%の白金と40%のルテニウムのときに得られると考えられる。性能は、触媒が100%の中金になると僅かに低下する。性能は、触媒が100%のルテニウムになると、急激に低下する。

【0046】他の添加物をこの塩に添加することにより、特性を改善でき、またこの触媒材料を別のより安価な材料と置換することができる。発明者らは、この燃料電池を低価格の材料で形成すべきであると考えた。残念ながら、白金は非常に高価な材料である。今日の著述の限りでは、白金ルテニウムが触媒として最良の材料である。発明者らは、この触媒の白金の全てまたは一部分に対する置換物を使用することを研究してきた。この置換は、白金ルテニウム触媒が機能する要領に基づいている。

【0047】アノードで起こる反応は、CH,OH+H,O→CO,+6H'+6e⁻である。発明者らは、白金ルテニウムがその触媒表面で材料を解離させる手助けをすることによりこの反応を触媒すると考えている。この材料は、電子を引き出して、それらを解離させる。この反応は、以下のように説明することができる。

【0048】メタノールは、炭素化合物である。炭素原 40 子は、他の4つの原子と結合される。そのボンドのうち の3つは、水素原子に対してである。もう一つのボンド は、水酸基、すなわち〇Hに対してである。白金は、メタノールをその水素とのボンドから解離して、M=C-〇H(Mは、Ptまたは他の金属サイトの触媒)+3H *を形成する。ルテニウムは、水の分子(HOH)から 水素を解離して、M-〇Hを形成する。これらの表面に あるものは、次いで、CO,+6 H*+6 e *として新た に組み合わされる。H*(プロトン)は、アノードで生成し、そのアノードからカソードへと横切って、そこで 環元される。これは、二機能性触媒と言われる。

【0049】この明細書に記載したような、メタノール と水を解離させる類似の機能を持つ如何なる材料でも、 白金の代わりに使用することができる。発明者らは、そ のような数種の材料を研究した。彼らは、C-Hボンド を解離することのできる、パラジウム、タングステン、 ロジウム、鉄、コバルト、及びニッケルなど、白金の代 替物を見出した。モリブデン(Mo〇」)、ニオビウム (Nb_2O_3) 、ジルコニウム (ZrO_2) 、及びロジウ ム(Rh)も、H-OHを解離してM-OHにする性能 があるようである。したがって、これらを組み合わせた 10 ものは、良好な触媒である。H‐〇‐Hボンドを解離す る好ましい触媒には、Ru、Ti、Os、Ir、Cr、 及び/又はMnが挙げられる。

【0050】ルテニウムは、その全部または一部をルテ ニウムに似た材料で置換してもよい。発明者らは、イリ ジウムがルテニウムに似た多くの特性を有していること を見出した。したがって、この面での第1の実施態様で は、白金、ルテニウム及びイリジウムを相対比で50-25-25で組み合わせたものを使用している。これ は、塩H、IrCl。・H、Oを上記に記載した最初の材 料に、50-25-25 (Pt-Ru-Ir) の組合せ とするのに適した量で添加する。また、この触媒は、よ り少ないルテニウムを使用して、実にうまく働くことが 分かった。

【0051】何らかの利点を有することが分かった別の 材料としては、チタン化合物を含む材料が挙げられる。 如何なるチタンアルコキシドやチタンプトキシド、例え ばチタンイソプロポキシドまたはTiCl.をも元の混 合物に添加することができる。これによって、白金ール テニウム-TiO₂の最終的な結合体が形成でき、それ も50-25-25 (Pt-Ru-TiO,) の組合せ に形成されている。白金-ルテニウム-オスミウムも使 用することができる。オスミウムは、塩H、OsCl。・ 6H,Oとして混合物に添加され、これによっても有利 な特性がもたらされることが判明した。どのように形成 される場合でも、白金インクを形成するために使用され るこれらの材料は、アノードに付けられなければならな い。この材料を付けるには、種々の技術を用いることが できる。そとで、アノードの形成について以下に説明す

【0052】カーボンペーパーの形成

燃料の移動(クロスオーバー)は、この燃料電池におい て効率低下の原因である。この燃料電池における燃料移 動は、メタノールがアノードで反応する代わりに、アノ ードを通り抜ける際に起こる。メタノールは、アノード を通り抜けて、膜電極アセンブリ、膜、そしてカソード を透過する。メタノールは、カソードと反応する可能性 があり、そうなると燃料の効率を低下させる。

【0053】との発明の電極は、好ましくは、カーボン ペーパーのベースを用いて形成する。開始材料は、ニュ 50 で、その溶液中にカーボンペーパーを浸す工程に対応す

ーヨーク州ニューヨーク市サードアベニュー500所在 の Toray 社から入手できる TGPH-090 カーボンペーバ ーである。しかしながら、このペーパーは、まず初めに 前処理を行って、その特性を改善する。との前処理に は、約60%の固体の DuPont 社の「テフロン(登録商 標)30」懸濁液を使用する。また、このペーパーは、 バインダーと混合したこま切れのカーボンファイバーで あってもよい。このファイバーは、ローラがけした後、 バインダーを燃焼除去することによって、約75%の多 孔度の最終材料を形成する。また、カーボンクロスペー パーを用いることも可能である。これは、この明細書に 記載した技術により処理される。また、カーボンペーパ ークロスも用いることができる。これは、ここに記載し た技術によって処理し、ガス拡散性/電流コレクタのバ ッキングを形成する。

【0054】好ましい処理をされたカーボンペーパー は、テフロン(登録商標)粒子が内部に埋め込まれたべ ーパーを含む。テフロン(登録商標)粒子間のスペース は、メタノールがそこを通り抜けることができないほど 20 十分に小さいことが好ましい。例えば、TMMのような 他のメタノール誘導体を用いる場合でさえも、より良好 な特性が利用される。とのアノードアセンブリは、カー ボンペーパーのベース上に形成する。このカーボンペー パーはテフロン(登録商標)化され、それはテフロン (登録商標)を加えて特性を改善することを意味する。 発明者らは、ベーパーに添加するテフロン(登録商標) の量と最終的な特性との間に重要な兼ね合いがあること を見出した。

【0055】との明細書に記載するように、使用するテ 30 フロン (登録商標) の量を適当なバランスに維持すると とが重要である。このペーパーは、テフロン(登録商 標) 化して撥水性を付与するとともに、白金インクの混 合物がそのペーパーを通ってしみ出ないようにする。こ のペーパーは、湿潤性である必要があるが、多孔質でな い必要がある。この微妙なバランスは、ペーパーを浸漬 し加熱することによりもたらされる。発明者らは、ペー パーの湿潤性の程度とそのペーパーへの含浸量との間に 兼ね合いが存在することを見出したので、そのことをこ こに説明する。

【0056】まず初めに、テフロン(登録商標)30の エマルジョンを希釈しなければならない。各17.1グ ラムごとの水に1グラムずつのテフロン(登録商標)3 0を添加する。1グラムのテフロン(登録商標)30の 60重量%は、100ml当たり60グラムのテフロン (登録商標) に相当する。この材料を、例えばガラス皿 のような適当な容器に注入する。カーボンペーパーは、 その材料の中にしみ込むまで維持される。

【0057】浸漬操作は、一枚のカーボンペーパーを評 量して、次いで約10秒間、または明らかに濡れるま

16

る。カーボンペーパーを、出来る限りそのペーパーと接触しないようにしながら、ビンセットを用いて溶液から取り出す。しかしながら、テフロン(登録商標)の性質上、ビンセット自体がそのテフロン(登録商標)を引きつけ、液体の分布が不均一になる。この可能性を最小限にするために、テフロン(登録商標)コートされたビンセットが使用される。カーボンペーパーは、角を下に向けて保持されて、過剰の溶液を流出させる。

【0058】テフロン(登録商標)エマルジョンの表面 張力特性により、その材料がもしガラス表面に横たえら れたりすると、多くのテフロン(登録商標)が表面張力 によって引き剥がされるであろう。そうしないで、ペー パー乾燥アセンブリを図3に示されたように形成する。 複数のテフロン (登録商標)被覆を施したワイヤー20 2がディッシュ200のような目皿の上に張られてい る。この張設したワイヤーは、2セットの直交して延び る支持体202及び204を形成する。テフロン(登録 商標)溶液で処理されたばかりのカーボンペーパーをこ れらの支持体を跨いで保持する。理想的には、これらの ワイヤーは、直径が0.43インチのテフロン(登録商 20 標)被覆したワイヤーである。これらの寸法は微妙では ないが、ペーパーと接触する面積が小さければ、ワイヤ ー上の懸濁液の分布をより均一にすることができる。 ワ イヤーにはキンク206が形成されており、カーボンペ ーパーがワイヤーにその長さ方向の全長に沿って接触し ないようにし、それによって接触面積をさらに小さくし ている。

【0059】図3に示されたペーパー乾燥アセンブリは、次いで70℃のオーブンの中へ1時間入れられる。
処理を行ったカーボンペーパーは、乾燥後にディッシュ 30から取り外し、ガラス容器の中へ入れる。続いて、これらを360℃のオーブン炉内で1時間焼結する。適切に
処理されたペーパーは、この処理工程を経て5%重量が増加している。さらに一般的に言うと、重量の増加が3~20%の間であれば、許容できる。このペーパーは、十分な吸収がなされたかどうか、及び/又はさらにペーパーの処理を行う必要があるかどうかを決めるために評量する。この「基板+触媒層」が最終的な電極を形成する

【0060】層を含む触媒を付ける好ましい技術を二つ 40 とこに説明する。すなわち、直接塗布法とスパッタ蒸着 法である。両方法とも、上記に形成の仕方を説明した特殊なカーボンペーパー材料を用いてもよいし、また何ら 特別な処理を施さないで用いるカーボンペーパーを含む 他のカーボンペーパーを用いてもよい。この発明の直接 塗布法は、上記に説明した白金ルテニウム材料と各種材料を混合したり、あるいは他の何らかの配合剤、より一般的には触媒材料と各種材料を混合したりする。この触 媒材料は、特性を改善する追加の材料とともに処理される。 50

【0061】白金ルテニウム粉末は、イオノマーと混合し、そして撥水剤と混合する。好ましい材料には、ベルフルオロスルホン酸(ナフィオン(登録商標))とテフロン(登録商標)のミクロ粒子の溶液が挙げられる。ナフィオン(登録商標)溶液100mlにつき、5グラムの白金ルテニウム粉末を添加する。

【0062】適当に希釈した60重量%のテフロン(登録商標)固体の DuPont 社の T-30混合物を添加する。続いて、これらのテフロン(登録商標)のミクロ粒子を混合する。好ましくは、4グラムの脱イオン水に1グラムのテフロン(登録商標)30の濃縮液を入れた12重量パーセントの固体を含む希釈テフロン(登録商標)30懸濁液を調合する。上記の12重量%のテフロン(登録商標)溶液350mgに、300mgの脱イオン水を添加する。との溶液に144mgの白金ルテニウムを混合する。得られた混合物を、次いで「音波処理」として従来技術で公知の超音波混合技術を用いて混合する。超音波混合は、好ましくは、約1/4インチの深さまで水を満たした超音波浴内で行う。この混合物は、約4分間「超音波処理」される。

【0063】上述したように、テフロン(登録商標)をまず白金ルテニウムと混合して、約15重量%のテフロン(登録商標)を調製しなくてはならない点が重要である。この混合物を作った後でしか、ナフィオン(登録商標)を添加することができない。発明者らは、もしナフィオン(登録商標)が最初に添加されると、それが白金とルテニウムの粒子を取り囲んでしまう可能性があることを見出した。したがって、この操作の順序は微妙で、重要である。この時点で、5重量%のナフィオン(登録商標)0.72グラムを広口ビンに入れ、もう一度音波処理を4分間行う。より一般的に言うと、被覆する電極の1平方センチメートル当たり、おおよそ1mgのナフィオン(登録商標)を添加する必要がある。上述のナフィオン(登録商標)の重もまた、例えば溶液を僅か652m1だけ添加することによって変更することができる

【0064】この処理を行うと、スラリー状の黒色の材料が生成する。次に、このスラリー状の黒色材料を、カーボンペーパーに塗布する。塗布法は、多くの方法のうちのいずれの一つで行ってもよい。最も簡単な形態は、異なる方向にストロークを変えながら、カーボンペーパーパッキング上にその材料を塗ることである。これを塗布するためには、ラクダの毛の小さなブラシが用いられる。材料の上述した好ましい量は、5重量%のテフロン(登録商標)化カーボンペーパーの2インチ×2インチ片の片面に対する十分な重の触媒を形成するための量である。したがって、塗布は、全ての触媒を使ってしまうまで続ける。

【0065】材料が被覆と被覆の間で半乾燥状態となる 50 ように、被覆と被覆の間で2分~5分の乾燥時間を設け るべきであり、また各被覆は異なる方向に塗布されるべきである。アノードは、その後、約30分間乾燥する必要がある。その30分の経過後、そのアノードを直ちに「プレス加工」しなくてはならない。このプレス加工の操作については、この明細書に説明されている。得られた構造体は、ガス及び液体を拡散させるのに用いられる多孔性炭素基板であり、それは1平方センチあたり4回の触媒材料で被覆されている。この材料を付着させる代替技術は、バッキング上にその材料をスパッタすることである。

【0066】我々は、ことに、アノードを形成する方法について説明してきた。次に、好ましいプロトン伝導性の膜(ナフィオン(登録商標))を形成する工程が関与する技術について、そして次いで、カソードを形成する技術について説明する。

【0067】プロトン伝導性膜

ことに記載した好ましい材料は、ナフィオン(登録商標)117である。しかしながら、他の材料もプロトン伝導性膜を形成するために用いることができる。例えば、他のベルフルオロスルホン酸材料を利用することが 20可能である。カルボン酸基を持つ異なる諸材料もとの目的で用いられる可能性があると仮定できる。

【0068】好ましい実施態様は、DuPont 社から入手できるナフィオン(登録商標)117を用いて始まる。この材料を、まず、適当な大きさに切断する。適当な大きさにすることが重要であり、それはその大きさによって最終材料の条件が決って来るためである。まず初めに、ナフィオン(登録商標)を過酸化水素溶液中で煮沸する。5%の過酸化水素溶液を手に入れて、この膜をこの溶液中で80~90℃で1時間ボイルする。これによって、酸化可能な有機不純物が除去される。この過酸化物による煮沸工程を行った後、その膜を脱イオン水中で100℃近くで30分間煮沸する。その前に膜に吸収されていた過酸化水素が、他の水溶性有機材料とともに取り除かれる。

【0069】このように処理が施された膜を、次に硫酸溶液中で煮沸する。1モルの硫酸溶液を、市販の18モルの濃縮されたACSグレードの硫酸を希釈することによって調製する。ACSグレードの酸は、50ppmより少ない量の金属不純物しか含んでいないものである。この膜を1モルの硫酸中で約100℃で煮沸することによって、その膜をより完全にプロトン伝導性に変換できる。

【0070】処理された材料を、次に脱イオン水中で90~100℃で30分間煮沸する。その水を捨て、この煮沸工程をさらに3回繰り返して膜の純度を上げる。

【0071】これらの洗浄工程を行った後では、その膜には硫酸が存在せず、完全に「プロトン性の」形態になる。その膜は、さらなる処理を行う用意ができるまで、密封された容器内ので脱イオン水に入れて保存する。

【0072】カソード構成

カソードは、まずカソード用触媒インクを調製すること によって構成する。カソード用触媒インクは、好ましく は、純粋な白金であるが、他のインクも用いることがで きるし、またこの明細書に記載したように他の諸材料を インクに混合してもよい。250mgの白金触媒を、3 7-1/2mgのテフロンを含む0.5グラムの水と混 合する。この混合物を5分間音波処理し、5%のナフィ オン(登録商標)溶液と合わせる。得られた混合物を再 度5分間音波処理して、均一な分散剤を得る。 これによ って、2×2インチのカーボンペーパー片を被覆するの に十分な材料を形成する。未処理の Toray カーボンペ ーパーを、テフロン(登録商標)含有なしで用いること ができる。しかしながら、好ましくは、この材料は、上 述したようにテフロン(登録商標)化する。次いで、5 %のテフロン(登録商標)を含浸したペーパーを形成す る工程が続く。続いて、そのペーパーを300℃で1時 間加熱して、テフロン (登録商標) 粒子を焼結する。そ の後で、触媒インクをそのペーパーに上述したとおりに 塗布することにより、4mg/cm²/gのPTでその 材料を被覆する。このペーパーのテフロン(登録商標) 含有量は、3~20%の間で変わってもよいが、5%が 好ましい。

【0073】スパッタリング

カソードを形成する代替技術では、スパッタ形成した白金電極が形成される。このスパッタ形成した白金電極は、平面状の空気電極として用いる場合に際だった利点を備えていることが判明した。スパッタリング形成の白金電極を製造する工程は、この明細書に記載されている。

【0074】カソード電極は、O₂+4H'+4e⁻→水という反応を行う。このO₂は、白金電極の周辺のガス(気体)から受け取られ、これに対して電子とプロトンは、膜を介して受け取られる。カソード電極を形成するためのこの代替技術は、燃料電池用のグレードの白金を用いて始まる。これは、Johnson-Matthey 社などの多くのソースから購入することができる。表面積1平方メートルあたり20~30グラムのこの白金を、0.1~1ミクロンの粒子の大きさでその電極に塗布する。

【0075】白金のソースは、固体ロッド状の材料である。この実施態様によれば、その材料を、上述したように形成した基板にスパッタする。白金粉末を、まずアルミニウム粉末と混合する。この混合は、例えば機械的な手段を用いて行ってもよいし、あるいはアノードインクを製造する際に行った上述したような塩組合せの技術を用いて行ってもよい。白金アルミニウム混合物は、半導体技術で既知のスパッタ法を用いてカーボンペーパー上にスパッタする。

【0076】白金は、図4に図示されたシステムを用い 50 て以下のようにスパッタする。標準的な4インチのター

ブで止めて、材料の層を所定の位置に保持する。アセン ブリを間に挟んでプレスするためのチタンホイルと膜 は、それぞれ約0.25インチの厚みの二枚のステンレ ス鋼プレートを含んでいる。クリップで止めたチタンホ イルアセンブリ内の膜と電極を、二枚のステンレス鋼ブ

20

レートの間に注意深く配設する。この二枚のプレート は、例えばアーバープレスのようなプレス装置のジョー の間に保持されている。そのプレス装置は、低温に、例 えば室温に維持されているべきである。

【0084】続いて、そのプレス装置を作動させて、1 000から1500psiの間の圧力、最適な圧力は1 250psi、を発生させる。その圧力は、10分間維 持する。この10分間が経過した後で、加熱が開始され る。加熱は、ゆっくりと約146度まで上昇させるが、 140~150℃の温度範囲内のいずれの温度でも効果 的であることが分かっている。ゆっくりと温度を上昇さ せるには、時間を25~30分かけるべきであって、加 熱の最後の5分間は、温度を安定化させるための時間で ある。その温度は、約1分間146℃に留めておく。そ 20 の時点で、加熱は中止するが、圧力は維持しておく。

【0085】続いて、圧力を1250psiに維持した まま、そのプレス装置を循環水を用いて急速に冷却す る。約15分が経過して、温度が45℃に達したら、そ の圧力を開放する。その後、結合された膜と電極を取り 外して、脱イオン水中に保存する。

【0086】フローフィールド

燃料電池は、反応が起こったり触媒作用が起きたりする ように、燃料が適切に膜に供給されている場合にのみ、 適切に作動する。この発明の膜電極アセンブリは、図5 に示されているようなフローフィールドアセンブリを使 用する。それぞれの膜電極アセンブリ(「MEA」)3 02は、バイプレートと端部プレートとを有する一対の フロー変更用プレート304及び312の間に挟まれて いる。燃料の流れは、それぞれのバイブレート/端部ブ レートとMEAとの間の各空間303に確立する。バイ プレート/端部プレートとMEAが集まって「スタッ ク」を形成する。バイプレートは、対向して面している 両表面に液体のフローのための構成を備えている。との スタックの端部のフロープレートは、バイブレートでは なく、端部プレート312である。端部プレートは、片 側面にのみチャンバを有している。バイプレート304 には、複数のセパレータ306と複数のチャンバ形成領 域308が設けられている。セパレータ306は、膜電 極アセンブリ302に対して押しつける機能を有してい る。セパレータ306の端面は、実質的に平面状の表面 であり、それはMEA302の表面と接触する。バイプ レートは、膜電極アセンブリ302、310の全てを互 いに直列に結合するように導電性材料で形成されてい

【0083】二枚のチタンホイルの端部を一緒にクリッ 50 【0087】上述したような膜電極アセンブリ302

ゲット250には、カーボンペーパー電極252が保持 されている。このターゲットは、モータ254によって 10秒間で1回転するようになっている。ここで用いる 好ましい技術によれば、第1のPt供給源260からP tをスパッタし、AI供給源262からアルミニウムを スパッタする。200ボルト付近で、白金は0.23a mpsで、またアルミニウムは0.15ampsでスパ ッタされる。二つの供給源は、向い合った異なる方向か らターゲットへ向かって45°の角度で衝突する。

【0077】発明者らは、このスパッタリングにとって 10 理想的な圧力は、20トルであるが、1~50トルの間 の任意の圧力も利用できることを見出した。アルゴンの 圧力は、約30ミリトルである。しかしながら、異なる サイズの粒子を形成するために異なるアルゴンの気圧を 用いることができる。スパッタリングは、約8分間行 う。

【0078】好ましくは、スパッタリングを終えたあ と、そのスパッタ形成したバッキングをエッチング溶液 に浸漬することによってエッチングを行い、続いて洗浄 溶液に浸漬する。

【0079】スパッタ形成した電極は、バッキング上の A1粒子とPt粒子の混合物である。電極を水酸化カリ ウム (KOH) で洗浄することによって、アルミニウム 粒子を除去する。これによって、非常に多孔質の白金が 付着したカーボンペーパーバッキングが形成される。ア ルミニウムが形成されたそれぞれの領域は除去され、そ の位置に穴の開いた空間が残る。発明者らは、Pt-A 1材料の被覆が厚いと、その触媒の幾分下方の領域から Alが洗い流されるのが阻害されることを見出した。こ の発明は、薄い被覆(コーティング)を使用し、好まし 30 くは、それは0.1ミクロンまたはそれより薄い被膜で あって、材料密度が0.2mg毎cm²と0.5mg毎 cm'の間である。

【0080】このプロセスにけるこの現時点で、アノー ド、膜、及びカソードができた。これらの材料が、膜電 極アセンブリ(「MEA」)に組み立てられる。

【0081】MEAの形成

電極及び膜を、CP級の5ミル厚、12インチ×12イ ンチのチタンホイル上にまず配置、すなわちスタックし (積み重ね)た。発明者らは、膜から出て来る如何なる 酸成分もホイルに浸透しないように、チタンホイルを用 いている。

【0082】まず、アノード電極をそのホイル上に置 く。プロトン伝導性膜は、所望の膜の特性を維持すべ く、濡らして保存されていたものである。とのプロトン 伝導性膜は、まずぬぐって乾燥し、サイズの大きい粒子 を除去する。それから、その膜を直接アノード上に置 く。カソードをその膜の上に置く。もう一つのチタンホ イルをそのカソードを覆って配設する。

る。

低下は、このスタックについて約0.06psiであ

は、アノード、膜、及びカソードを備えている。それぞ れの膜電極アセンブリのアノード側312は、空間31 4で水性メタノールの供給源と接触している。それぞれ の膜電極アセンブリのカソード側は、前記で説明した反 応を行うためのガス状物質を提供する酸化剤空気の供給 源316と接触している。この空気は、単なる空気であ ってもよいし、酸素であってもよい。これらの生材料の フローは、電極に燃料を適切に供給し続けるために必要 である。また、安定したフローを維持することもまた、 望ましい。

【0088】との発明のスタック設計の一例は、図6に 示されたシステムを利用している。燃料は、燃料供給チ ャンバ602から供給され、それは、通常、加圧された 燃料が入った髙容量の部屋である。狭いノズルのような 部分606は、それに沿って大きく圧力を低下させる。 との細い管での圧力の低下は、供給路に沿った如何なる 圧力低下よりもずっと大きい。これによって、電池内及 び電池間でのフローを平準化する。

【0089】加圧要素として作用する表面の総量と保持 要素として作用する表面の総量との間で、注意深く兼ね 20 合いのバランスをとらなくてはならない。いろいろな理 由により、両面から膜電極アセンブリ202に対して一 様な圧力をかけることが望ましい。しかしながら、加圧 表面306が膜に対して押しているところでは、膜電極 アセンブリ302はメタノールと直接接触することはで きない。そのかわり、そとは表面315によって押され ている。したがって、MEA302の表面のその部分は 反応しない。この発明による種々の設計のものが、さま ざまな機能を持っていて、フローを改善したり、信頼性 の面でのいくつかの特性を改善する。

【0090】それぞれのノズル606の幅は狭い。各ノ ズル606の出口605は、加圧表面306に対応する 領域608を加圧する一つのアイランドに面している。 ノズル606から供給される燃料は、アイランド608 の界面610に直接供給される。図6に示したアイラン ドは長方形である。界面610は、この長方形のアイラ ンドの狭い方の側辺である。このアイランドの広い方の 側面は、フローに対して平行である。全ての入力流は、 アイランドの表面の一つに直接向かう。

【0091】発明者らは、この好ましい狭いレイアウト により、アイランド608の領域に乱流が形成されると とを見出した。乱流は、チャンバ内の燃料を攪拌し、こ のシステムを通るフローをより安定化させる。この乱流 は、各アイランド間のフローを容易にもする。出力フロ ーは、最終的に出力ノズル612によって受け入れられ て、出力管614に導かれる。出力ノズルは、アイラン ドの表面620に隣接して類似した形で配設され、これ によってさらに乱流が形成される。この実施態様による アイランドは、境界の側610が50ミルであって、広 い方の側が150ミルである。スタックの両端での圧力 50 らの二つの層は、一緒になって、バイブレートを横切っ

【0092】この他の配置形状のバイブレートを用いる こともできる。バイプレート自体は、軽量で薄く、でき る限りスタックの間隔を大きくできることが重要であ る。グラファイトは機械加工するには難しく、比較的厚 みがある。グラファイトの利点としては、液体や気体を 通過しないことが挙げられる。

【0093】この発明によれば、数多くの別の溶液が用 10 いられる。この発明の第1の変更は、図7に示したよう なシステムを利用する。境界層702は、高密で、導電 性の液体や気体を通さない層である。これによって、材 料を覆うバイブレートアセンブリを横切ることのできる 燃料、気体又は液体の量を減少させる。しかしながら、 稠密で多孔性の材料がクロス領域700として用いられ ている。多孔性であると、ある程度の量の材料をこの境 界層を通ってMEAにしみ込ませてしまう。

【0094】稠密で多孔性の材料は、例えばグラファイ トよりもずっと機械加工のしやすい導電性のカーボンで あってもよい。浸透は、境界材料によってせき止められ るが、これによって液体や気体がバイブレート全体を横 切るのを防止できる。加圧部分が多孔性になっている と、加圧部分で加圧されている膜電極アセンブリのある 程度の部分に液体や気体を到達させてしまう。したがっ て、メタノールがこれらの領域に浸透する可能性があ り、別な状態で変換効率が減少してしまう。

【0095】中心のパインダー層704は、低密度 (「LD」) の炭素である。LD炭素は、比較的取り扱 いやすく、価格も安い。しかしながら、LD炭素は全て 30 の部分がグラファイトで覆われているため、その望まし くない特性は殆ど隠される。

【0096】バイブレートの形成で利用される第2番目 の実施態様が図8に示されている。この第2番目の実施 態様のバイプレートは、層状になったチタン-カーボン 製の超薄型バイブレートである。我々は、任意の所望電 圧に対して出来る限り薄くしたスタックを望むため、バ イプレートは薄くなくてはならない。それぞれの膜電極 アセンブリとバイブレートは、活性化されると電圧が発 生するが、それを固有電圧 (inherent voltage) と言 う。固有電圧、及びこの装置の厚みは、この発明の装置 の厚み1インチあたりで取り得る最大の電圧を決める。 厚みに対する電圧に関する重要な要素は、バイプレート の厚みである。

【0097】図8にはこの発明の第2の実施態様のバイ プレートが示されている。この材料は、その材料の最良 の特性を組み合わせてバイブレートを形成するという層 状化の思想を用いている。チタンカーバイドの境界層8 00は、チタン結合層802に接合している。チタン結 合層802は、好ましくは、厚さが3ミルである。これ

24

てプロトンが移動するのを阻止するとともに、適当な電 気的結合性も確保している。このチタン材料は、分離材 料804で被覆されていて、バイブレートを所定位置に 保持する。したがって、ある程度の多孔性は、図7の実 施態様におけるのと同様に可能である。当然のことであ るが、チタンは、同じような導電性と化学的安定性を持 つ如何なる金属でも置換することができる。この発明の 発明者らは、普通に用いられているグラファイト材料 が、競合する要求事項間での兼ね合いが生じるに違いな いと認識している。

【0098】作動効率を良くするには、燃料が、一枚の バイプレートの一方の側、例えばアノード側からその同 じバイプレートのもう一方の側、すなわちカソードに面 する中間層側に横切ってしみ込まないようにすることが 必要である。バイプレートがかりに多孔性であったとす ると、燃料材料は横切ってしみ込む可能性がある。しか しながら、バイブレートを通過できる液体はないため、 加圧表面を持つバイブレートによって、例えば306に よって加圧されている電極膜アセンブリの領域に達する 液体がないことを意味している。したがって、これらの 20 膜電極アセンブリにおいて加圧表面によって加圧されて いるこれらの部分では、効率的に電気的活性が発生しな い。これによって、この電池全体の効率が悪くなる。

【0099】この発明のこれらの実施態様では、新しい 種類の兼ね合い事項(一長一短の事項)が持ち上がる。 膜電極アセンブリは、バイブレートの多孔性部分によっ て加圧される。この多孔性部分を用いたことで少なくと も幾分かの燃料が電極の加圧された部分に供給されるよ うになる。 これによって、MEAの電気的作動性が改善 できる。また、この発明のこの特徴によれば、電極膜ア 30 ロールする。 センブリの他の部分に液体が通過するのを阻止する他の 結合片も提供できる。

【0100】システム

この発明の基本的なシステムを図9に示す。このシステ ムは、発明者らが認識した、燃料電池の出力をリサイク ルするやり方に基づいている。燃料電池は、メタノール やメタノール誘導体、水を消費して、メタノールまたは メタノール誘導体、水、及びガスなどの出力生成物が発 生する。メタノールは、消費される燃料を意味する。如 何なる燃料電池システムでも、消費される量のメタノー 40 ル燃料を運搬しなくてはならない。しかし、その反応 は、等量の水も必要とする。発明者らは、この反応で用 いられる水をカソードから回収しリサイクルさせること ができることに気づいた。これによって、大量の水を運 搬する必要性を回避できる。

【0101】乗り物から生成できる仕事量は、車両総重 量(ペイロード)、すなわち乗り物とその搭載物の重量 によって制限される。どの乗り物も、それが運搬しなく てはならない重量によってパワーに限界がある。重量が 大きいと乗り物のパワーは制限され、そのため乗り物の 50 ノールと水は、両方とも循環タンクに戻される。メタノ

効率が小さくなる。例えば、乗用車は、通常、20~3 0ガロン以上のガソリンを載せてはいない。これは、乗 り物がタンクに再給油するまでに走れる距離と、燃料タ ンクを大きくすることで増える重量との間が最適な兼ね 合いとなるようにいろいろなことから決められている。 乗り物のエンジニアは、快く許容できるペイロードがど れくらいかを決定する。発明者らは、このペイロードが 水ではなく燃料で取られることを確保する技術について 説明する。

【0102】との発明のシステムの特徴の一つは、水の 10 殆どをリサイクルして、運搬する必要のある水の実質的 な供給源を持たないように、水のバランスを維持するこ とである。

【0103】全体システムが図9に示されている。メタ ノールタンク900は、純粋なメタノール(または、他 のメタノールタイプの誘導体の燃料)を保存している。 第1液体ポンプ902は、メタノールをバルブ904を 経て循環タンク906にポンプ輸送する。水タンク90 8は、必要なところに水を供給する。この水は、ポンプ 910によってバルブ912を通って再循環タンク90 6にポンプ輸送される。中央制御装置914は、この全 体システムの総合的な作動をコントロールする。制御装 置914はバルブ904と912の相対的な位置をコン トロールする。

【0104】メタノール濃度センサ916は、メタノー ル内かメタノールの非常に近くかいずれかの場所に取り 付けることが好ましい。メタノールセンサ916は、循 環タンク内のメタノール濃度を検出し、制御装置914 がこの情報に基づいて更にこのシステムの作動をコント

【0105】循環タンクに入っている水性メタノール は、この制御システムによって1~2Mに維持されてい る。したがって、ライン918内のメタノールも適当な 濃度になっているべきである。ポンプ920はメタノー ルを、燃料フィルター922を通して膜電極スタック9 24にポンプ輸送する。ここで用いたスタックは、前述 したものと同じスタックであればよい。スタック924 から出る電気的な出力926は、モータに送られて搭載 荷重を動かすとともに、制御装置914や例えば圧縮装 置930のような他の電気的なシステムも作動させる。 またこのスタックは、圧縮装置930を通る取り込み空 気932を用いて作動する。空気フィルター934は、 スタックに入る前に空気を清浄化する。

【0106】とのスタックの燃料出口は、二つの成分、 すなわち水とメタノールを含んでいる。二つの成分をそ れぞれ凝縮装置940及び942を用いて処理して水の 温度を十分に低くすることによって、メタノールと水の 両方を凝縮できる。ファン944は、この冷却を容易に 行うために用いることができる。リサイクルされるメタ

ールスタックの出口からリサイクルされたメタノール9 46と、取り込み空気952からリサイクルされた空気 と水は、循環タンク906に回収する。

【0107】液体技術者は、ガスをポンプ輸送すること はエネルギー供給源の点から見ると非常に不経済である が、これに対して液体をポンプ輸送することはそれほど 費用がかさまないことを知っている。この発明のある面 では、カソードに空気を加圧することが要求されるであ ろう。例えば、空気を20psiに加圧することが必要 である可能性もある。しかしながら、ライン944上の 10 られる。電流計1012が電流を測定する。図11は、 出てきた空気(カソードで反応した後)は、髙度に圧縮 されている場合が殆どである。この出力空気944は、 19psiに圧縮されているであろう。こうして出力空 気944は、圧力駆動型タービン946に入る。このエ キスパンダ装置は、圧力によって作動し、空気圧縮装置 930を駆動するために用いられる。圧縮されたパワー をこのように再利用しないと、空気圧縮装置は、燃料電 池によって生成した電力の20~30%を利用するかも しれない。

水の組合せを含んでいる。この水と空気は、分離し、9 50で排出空気が吐き出され、また回収された水は、循 環タンク902に戻される。過剰の水を抜く通水孔95 4も必要とされるであろう。この通水孔は、制御装置9 14によってコントロールされ、再還流されている水が 多すぎる場合に、時々必要とされる。センサ及び制御装 置に代わる手段として、供給される燃料の量を測定して もよい。しかしながら、最近の燃料電池は、約90℃で 作動するように企画されている。電気化学的な燃料電池 の反応が、結局、適当な温度にまでその燃料電池を加熱 30 させる。

【0109】この発明は、メタノールセンサを用いて作 動する。特に好ましいメタノールセンサは、上述したM EA技術を利用している。上述したように、燃料電池 は、アノードとカソードで構成される。アノードは、メ タノールを受け取る。カソードは、空気または酸素を受 け取る。このセンサは、図10に示された変形した燃料 電池を用いる。Pt-Ruアノード1002は、ナフィ オン電解質1004に接合しており、その電解質はPt も大きい方が好ましく、例えばカソードの面積はアノー ドの3倍である。

【0110】カソード1006(及びアノード)は、メ タノール溶液に浸漬される。したがって、カソード10 06は、液体の中にあるために空気と反応することはで きず、そのため基本的な燃料電池反応で起こるようにH ぇはH、Oになる反応は起こり得ない。電圧をこの燃料電 池にかけると、起こる反応は変化し、例えば反転する。 電流が発生する場合、アノードは直接メタノールと反応 してCO、を生成し、またカソードはプロトンを水素に 26

変化させる。カソードが小さくてアノードが大きいと、 プロトンを還元し、このメタノール電極の感受性をさら に髙める。

【0111】したがって、この反応は、次の各式

(+) $H_{2}O + CH_{3}OH \rightarrow CO_{3} + 6H_{4} + 6$

(-) 2 H⁺ + 2 e⁻ \rightarrow H₂ を含む。

【0112】定電圧が定電圧回路1010によってかけ 電流と溶液中のメタノール濃度の関係を示している。制 御装置1014は、プロセスコントローラまたはマイク ロプロセッサであればよく、図11のプロットされた関 係を用いて測定された電流に対応する最も近いメタノー ル濃度をルックアップする。図11のプロットは、温度 依存性が大きいようなので、熱電対を温度補正に用いる とよい。

【0113】との発明のもう一つの重要な特徴は、自動 車の環境でこのシステムを実際に使用することに関す 【0108】エキスパンダ装置の出力948は、空気と 20 る。実用的に使用するには、ガスポンプのメタノール装 置でメタノールを供給する必要があるであろう。メタノ ールをガスポンプから取り出す場合、炭化水素の不純物 を含んでいるかもしれない。このような不純物がある と、純度の高いメタノールを必要とするこの発明で記載 されたシステムでは非常に危険である。したがって、こ の発明では燃料フィルタが用いられる。この燃料フィル タは、図12に図示されている。3段階のフィルタは、 合成の25M (Mobil) タイプか中性タイプのゼオライ ト結晶を含んでいる。通常ゼオライトは、モレキュラー シーブとして作用する。このゼオライト結晶は、メタノ ールを濾過してそとから何らかの炭化水素不純物を除去 するために用いられる。これらのゼオライトは、3~1 0オングストロームの範囲で層1から3へ徐々に異なる 大きさの孔を持つ3つ以上の層からなる―セットの層構 造を含んでいるとよい。

[0114]

2 3 CH,OH, H,O,O, H, 層1は、通常は大きな直径の孔を持つゼオライトX、オ ファライト、Aであって、大きな分子を除去できる。層 カソードに接合している。このカソードはアノードより 40 2で用いられているのは、モルデナイト、天然のゼオラ イトであって、n-パラフィン類、n-ブタン類、及び n-アルカン類を取り除ける。ゼオライト3Aや4Aは 例えばプロバンやエタンのような小さな分子を層3で除 去するために用いることができる。これは徐々に変化す るモレキュラーシーブを形成すると好ましい。

【0115】単極性のアプローチ

燃料電池についての以前のアプローチでは、多くの燃料 電池を直列に用いていた。燃料電池を直列に接続する と、出力電圧を加算でき、スタックの出力を高くてより 50 利用可能な電圧に増加させるように全体の電圧を高くす

28

の取り出し領域に結合している。

ることが可能である。この発明の発明者らは、さらに、 スタックにしていないアプローチを用いて、すなわち、 この発明者が単極性と名称を付けたアプローチを用い て、ある種の効果が得られることに気づいた。この単極 性のアプローチは、他のすべての構成要素とは完全に分 離した状態にそれぞれの膜電極アセンブリを維持してい る。この完全に分離したアプローチによれば、アセンブ リのそれぞれの要素は、ずっと大きくできるとともに、 より良好な効率を持てるようになる。それぞれの単極性 の要素は、スタックに組み立ててもよい。この特徴によ 10 る。構成要素は、二つのアノードが隣接するように組み る重要なことは、それぞれの膜電極アセンブリが別個に 接続されていること、またその別個に接続された要素が スタックに組み立てられているのではなく、直列に接続 されていることである。

【0116】単極性の発明の第1実施態様を、電気的な 接続を形成するために接触力を必要としない燃料電池を 形成するために用いることができる。膜としては、ナフ ィオン(登録商標)膜が好ましい。ナフィオン(登録商 標) 膜は、金属クロス片、例えばスクリーンの末端を設 けた中心領域を有している。金属クロスまたはスクリー 20 ンは、上述したタイプの適当な触媒で被覆されている。 電流を運ぶタブが、生成した電圧を外部に導出する。

【0117】プラスチック製または金属製のフローフィ ールド挿入部品が、適当な燃料材料を触媒被膜を施した クロスのそれぞれの側に導く。フローフィールド部材 は、他方の側に設けてもよい。したがって、表面に触媒 を設けた材料をナフィオン(登録商標)バッキングに取 り付け、それに向かって加圧することによって、電気的 には同じであるが機械的には異なる方法で燃料電池を形

【0118】タブから、電極領域に電流を流す。メタノ ールは、メタノールチャンパに、すなわち膜の一方の側 の密閉された領域に送られる。この密閉は、リング状密 閉領域によって維持される。空気は、反対側で同様に密 閉された空気チャンバを通って膜の第2の側面に導かれ る。これらの構成要素のそれぞれは、他のユニットとは 無関係に、独立型のユニットとして作動する。これらの 構成要素から発生する電流を直列に接続することによっ て、より高い電圧を提供できる。

【0119】この発明の第2の代替実施態様は、チタン 40 シートに沿った膜を用いている。チタンクロスは、チタ ンシートにスポット溶接されている。チタンクロスは、 カソードとして機能し、白金で被覆されていてもよい。 チタンクロスは、アノードとして機能し、適当な白金ル テニウムで被覆されていてもよい。ガスケットと結合用 リングが、膜とアノードとの間にチャンバを形成する。 同様に、もう一つのガスケットと結合用リングが膜とカ ソードとの間にチャンバを形成する。チタンシートは、 チャンバを維持するためにその表面に球状のシールを備 えている。このチタンシートから発生する電圧は、電流 50 のシステム作動を示す系統図である。

【0120】また、ビードシールを用いれば金属製ファ スナを利用できるようになるため、この態様ではリベッ トまたはファスナを取り付ける場所も設けられている。

との統合されたシステムは、特にチタンホイルを用いれ ば、きわめて薄くすることが可能である。

【0121】との実施態様は、二重電池モジュールの装 置で用いることができる。これらの二重電池モジュール のそれぞれには、カソードとアノードが設けられてい 立てられており、互いに向いあう電池が作り上げられて いる。フローフィールドは、二つのアノードの間に形成 される。このフローフィールドは、それらの間を流れる 空気を含んでいなくてはならない。同様に、二つの隣接 するカソードは互いに向いあっていて、フローフィール ドがそれらの間に形成され、そこで適当な空気の流れが 生じている。フローフィールドは、第1番目の電池のカ ソード側に面した空気のフローフィールドである。その アノード側は、第2のメタノールのフローフィールドに 面している。メタノールは、メタノール流入口から流入 し、流出口から流出する。また、このメタノールのフロ ーフィールドは、第2のバイポーラ電池のアノード側に 面している。この第2のバイポーラ電池のカソード側 は、空気が流れる別のフローフィールドの部分に面して

【0122】ほんの少数の実施態様のみを上記に詳細に 説明したが、当業者は、この教示範囲から逸脱すること なく、好ましい実施態様に種々の改変を行えることを確 かに理解することができるであろう。そのような改変の 全ては、前掲の請求の範囲に包含されると解釈される。

【図面の簡単な説明】

【図1】 この発明による燃料電池の基本構成を示す一部 断面構成図である。

【図2】との発明による燃料電池の燃料循環系統を示す ブロック線図であるである。

【図3】テフロン(登録商標)をエンコードしたカーボ ンペーパーシートを乾燥するために用いる乾燥用ディッ シュを示す平面図である。

【図4】 この発明に使用する基本的な白金スパッタ装置 を示す構成図である。

【図5】との発明の実施態様に係る基本的なフローフィ ールド装置を示す構成図である。

【図6】図5の6-6線に沿って切断した好ましいフロ ーフィールドの断面図である。

【図7】この発明に係るバイプレートの実施態様を示す 構造図である。

【図8】 この発明に係るバイブレートの他の実施態様を 示す構造図である。

【図9】 この発明による直接メタノール供給式燃料電池

【図10】 この発明に係る燃料電池の改変概念を示すブロック線図である。

【図11】この発明に係る燃料電池におけるメタノール 濃度と電流との関係を示すグラフである。

【図12】この発明に係る燃料電池用の3段階燃料フィルタを示す概略構成図である。

【符号の説明】

* 10…燃料電池、12…ハウジング、14…アノード、16…カソード、18…電解質膜、20…ポンプ、22 …アノード質、28…カソード室、602…燃料供給チャンバ、605…ノズルの出口、606…ノズル部分、608…アイランド、610…アイランドの界面、612…出力ノズル、614…出力管。

【図4】 【図2】 ガルル 野蔵シク E-7 燃料+水 注入装置 水回收装置 熱交換器 Arがス 酸化剂 供給装置 20 【図5】 循環タンク ポンプ 305 316 - 302 【図11】 -310 **電流(A)** (電圧固定) MeOH 濃度

【図7】

【図9】

直接型片り上心液供給式燃料電池

フロントページの続き

(72)発明者 フランク、 ハーベイ エイ.アメリカ合衆国 91316 カリフォルニア 州 エンシーノ ニューキャッスルアベニュー 5328 ナンバー33

(72)発明者 ナラーヤナン, セハリブラム アール. アメリカ合衆国 91001 カリフォルニア 州 アルタディーナ イーストワペロスト リート 212

(72)発明者 チュン, ウィリアムアメリカ合衆国 90031 カリフォルニア州 ロサンゼルス オロスストリート2206

(72)発明者 ジェフリーズナカムラ、 バーバラ アメリカ合衆国 91108 カリフォルニア 州 サンマリノ ミラソルドライブ 1420

(72)発明者 キンドラー, アンドルーアメリカ合衆国 91108 カリフォルニア州 サンマリノ プリマスロード 616

(72)発明者 ハルバート, ジェラルド
アメリカ合衆国 91106 カリフォルニア
州 バサデナ イーストカリフォルニアブ
ルバート 1000 ナンバー304

F ターム(参考) 5H026 AA06 AA08 BB02 BB03 BB06 BB10 CX06 CX10 HH02 HH03 HH09

> 5H027 AA06 AA08 BA13 BC11 CC06 KK05 KK25 MM09

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] It comes at least to have an anode and a cathode electrode, a fuel feeding pipe, and the flow field element that operates so that a fuel may be supplied from said fuel feeding pipe to either [at least] said anode or a cathode electrode. Said flow field element is forced to one [said] electrode. And have two or more island fields and each island field has a pressurization front face and a side face. The pressurization front face is forced to one [said] electrode. Moreover, said flow field element It has the flow field field which encloses said side face, and said flow field field is open for free passage with said fuel feeding pipe. Said fuel feeding pipe It has at least one opening which carries out opening to the flow field which extends in a certain direction. It is the direct supply type methanol fuel cell characterized by being constituted so that the fuel might be supplied in said direction in the flow field, said direction may have extended in the shape of [which crosses one and directly / of said side face] a straight line and said fuel feeding pipe may supply said fuel to one of said the side faces directly.

[Claim 2] It is the fuel cell with which it is characterized by for said island field being a rectangle in a fuel cell according to claim 1, and supplying directly one of said the side faces in which said fuel extends at right angles to said direction in parallel [the major axis] with said direction and.

[Claim 3] It is the fuel cell which said fuel feeding pipe is equipped with two or more nozzles in the fuel cell according to claim 2, and all are prolonged in said direction, and is characterized by all supplying a direct fuel to one of said the side faces.

[Claim 4] It is the process which forces a flow field element to an electrode. Said flow field element It has two or more island fields, and there are a top face and a pressurization front face which has a side

face in the each. The pressurization surface top face is forced on said one electrode. Moreover, said flow field element The process which has the flow field field which encloses said side face, How to supply a fuel to the electrode of the type which needs the thing which come to contain the process to which supply a methanol fuel to one of said the one side face of said flow field element directly, and the turbulent flow in the flow of a fuel is made to increase, and which is pressurized.

[Claim 5] It comes at least to have an anode and a cathode electrode, a means to supply a fuel, and the flow field element that operates so that a fuel may be supplied from said fuel-supply means to either [at least] said anode or a cathode electrode. Said flow field element is forced to one [said] electrode, and it has two or more island fields. Moreover, said flow field element The direct supply type methanol fuel cell characterized by having a means to produce a turbulent flow in said fuel furthermore.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the supply approach of the direct supply type methanol fuel cell by which it was improved for the system which operates without using an acid electrolyte or a reformer, and its fuel.

[0002]

[Description of the Prior Art] The transportation car which operates with the internal combustion engine of a gasoline power mold is becoming the source of many environmental problems. The product which comes out of an internal combustion engine produces the problem to which smog and

other exhaust gas related. By the various cures against pollution control, the exhaust gas component which a certain kind does not have is made into the minimum. However, the process of combustion essentially generates a certain exhaust gas. Moreover, even if it can make exhaust gas environment-friendly extensively, the internal combustion engine which uses a gasoline as the base still depends on the fossil fuel of non-reproducibility.

[0003] Many groups have explored the suitable solution of these energy problems. The fuel cell is mentioned as solution with one possibility. A fuel cell reacts chemically using the energy from a refreshable fuel ingredient. For example, a methanol is a completely refreshable source of supply. Moreover, a fuel cell uses an oxidation reduction reaction instead of a combustion reaction. Typically, most of the end product obtained from the reaction of this fuel cell are a carbon dioxide and water.

[0004] Some conventional methanol fuel cells used the "reformer", in order to change a methanol into H2 gas used with a fuel cell. The methanol fuel cell used the electrolyte of strong acid. The artificers of this invention proposed first the technique of operating a direct fuel cell from a methanol, and the so-called direct supply type methanol fuel cell, without using an acid electrolyte. The theme matter of the amelioration is indicated by these artificers' U.S. Pat. No. 5,599,638, and refer to the patent concerned for it to extent required for a suitable understanding.

[0005]
[Problem(s) to be Solved by the Invention] This invention carries out further amelioration of such a methanol direct supply mold fuel cell,

and aims at offering the supply approach of the good methanol fuel cell of fuel efficiency, and its fuel.

[0006]

[Means for Solving the Problem] The direct supply type methanol fuel cell of this invention Have at least an anode and a cathode electrode, a fuel feeding pipe, and the flow field element that operates so that a fuel may be supplied from a fuel feeding pipe to either [at least] an anode or a cathode electrode, and it is constituted. Said flow field element is forced to one [said] electrode. And have two or more island fields and each island field has a pressurization front face and a side face. The pressurization front face is forced to one [said] electrode. Moreover, said flow field element It has the flow field field which encloses said side face, and said flow field field is open for free passage with said fuel feeding pipe. Said fuel feeding pipe It has at

least one opening which carries out opening to the flow field which extends in a certain direction. A fuel is supplied in said direction in the flow field, said direction has extended in the shape of [which crosses one and directly / of said side face] a straight line, and said fuel feeding pipe supplies said fuel to one of said the side faces directly.

[0007] Moreover, in the embodiment of the fuel cell of this invention, said island field is a rectangle, that major axis is parallel to said direction, and said fuel is directly supplied to one of said the side faces which extend at right angles to said direction.

[0008] In the embodiment of the fuel cell of this invention, said fuel feeding pipe is equipped with two or more nozzles, and all are prolonged in said direction, and all supply a direct fuel to one of said the side faces in it further again.

[0009] In the embodiment of the fuel cell of this invention, it has a means to produce a turbulent flow in said fuel further again.
[0010] This invention offers the approach of supplying a fuel to a

direct supply type methanol fuel cell. Moreover, that approach It is the process which forces a flow field element to an electrode. Said flow field element It has two or more island fields, and there are a top face and a pressurization front face which has a side face in the each. The pressurization surface top face is forced on said one electrode. Moreover, said flow field element It has come to contain the process which has the flow field field which encloses said side face, and the process to which supply a fuel to one of said the one side face of said flow field element directly, and the turbulent flow in the flow of a fuel is made to increase.

[0011]

[Embodiment of the Invention] Based on artificers' further research achievements, the various amelioration to the structure of a fuel cell itself is indicated here. Preparation by which the electrode which improves an operation of an electrode was improved is included in these amelioration matters. The amelioration catalyst which raises the effectiveness of methanol generation is included in the operation of an electrode. An expensive platinum catalyst is used for a fuel cell. The electrode method of preparation offered here defines the technique which is decreased, can be lacking and can carry out the need of using a platinum catalyst. The technique which forms a cathode electrode is also indicated here. These techniques make the optimal an operation of the cathode used with incompressible air. By this, ambient temperature and atmospheric pressure can be permitted now in a reduction mechanism, and

the effectiveness of a fuel cell can be improved further. Moreover, the technique of electrode formation is also explained and the technique of preparing membranous conditions is also included in it. Formation of a desirable membrane electrode assembly is also defined especially. This invention also attains to the design of the flow field which makes it easy to supply liquid fuel to a catalyst again.

[0012] This fuel cell system needs to be used in a final product after all. This final product may be an internal combustion engine, or may be much easy electronic equipment like radio. Any products which operate electrically can be operated based on the power generated from these fuel cells. The artificers of this invention found out a certain technique of improving many of these troubles that may happen, by other approaches while improving this actuation. The technique of this invention enabled "system actuation" by explaining the technique of operating this fuel cell as some whole systems again. The sensor for measuring methanol concentration and other important parameters is contained in these system technologies. This artificer understands the thing for which the various sensors for detecting various parameters will be required. This artificer was not able to find a commercial sensor. The approach of transforming into this invention the technique used with this fuel cell for formation of a sensor is indicated. Using the technique of this fuel cell, this sensor maintains high dependability and operates. Another technique defines formation of a unipolar cell.

[0013] A platinum-ruthenium catalyst is used for the liquid distribution system indicated by the patent which made reference by our above on an anode, and the platinum catalyst is used for it on the cathode. the perfluoro-sulfone film -- desirable -- DuPont Nafion (Nafion) (trademark) 117 is used as a polymer electrolyte membrane. An important thing is that this system needed to use neither any acid electrolytes nor a reformer, and operated. The various properties which various ingredients have were changed and this amelioration was made. [0014] By raising a hydrophilic property for an anode electrode using an ionomer additive, the accessibility of the methanol water solution on the front face of an anode is improvable. The option which raises the hydrophilic property of an anode was using the electrolyte containing superacid ("C8 acid"). For example, since those molecule sizes of another methanol derivative fuel like trimethoxy methane "TMM" are large, migratory [of a fuel] (crossover) becomes small for other properties. [0015] These and other fields of this invention are explained below with reference to an accompanying drawing at a detail.

[0016] Drawing 1 shows the liquid supply organic fuel cell 10 which has housing 12, an anode 14, a cathode 16, and the solid-state polymer proton conductivity cation exchange electrolyte membrane 18. An anode 14, a cathode 16, and the solid-state polymer electrolyte membrane 18 are desirable single multilayer composite-construction objects, and are called a membrane electrode assembly here so that it may explain further below at a detail. The pump 20 is formed in order to carry out pumping of the solution of an organic fuel and water into the anode room 22 of housing 12. The mixture of the organic fuel and water is taken out from an exit port 23, and recycling is carried out through the recycling system which is explained below with reference to drawing 2 and which has the methanol tank 19. The carbon dioxide generated at the anode room is emitted through the port 24 in a tank 19. The compressor 26 of oxygen or air is formed in order to supply oxygen or air into the cathode room 28 in housing 12. Drawing 2 explained below shows the fuel cell system incorporating the stack of each fuel cell containing a recycling system. The following detailed explanation of the fuel cell of drawing 1 mainly performs the structure and the function of an anode 14, a cathode 16, and the film 18 as a core.

[0017] In advance of use, the anode room 22 is filled with the mixture of an organic fuel and water, and fills the cathode room 28 with air and oxygen. An organic fuel passes and circulates through an anode 14 during actuation, on the other hand, pumping of oxygen or the air is carried out into the cathode room 28, and it passes and circulates through a cathode 16. If electric load (not shown) is connected with an anode 14 between cathodes 16, electric oxidation of an organic fuel will take place with an anode 14, and electric reduction of oxygen will take place with a cathode 16. When such a different reaction occurs with an anode and a cathode, an electrical-potential-difference difference arises in these 2 inter-electrode. The electron generated by electric oxidation with an anode 14 conducts through an external load (not shown), and, finally is caught with a cathode 16. The film electrolyte 18 is crossed directly, the hydrogen ion, i.e., the proton, generated with the anode 14, and it is conveyed to a cathode 16. Therefore, the flow of a current is maintained with the electron which passes the flow and the external load of the ion which passes a cell.

[0018] As mentioned above, an anode 14, a cathode 16, and the film 18 form one compound layer structure object. In the desirable embodiment, the film 18 is formed by Nafion (trademark) of a perfluoro-** proton exchange film ingredient. Nafion (trademark) is the copolymer of tetrafluoroethylene and a perfluoro-vinyl ether sulfonic acid. Other

film ingredients can be used. For example, the film of the complex of an alteration perfluoro-** sulfonic-acid polymer, the Pori hydrocarbon sulfonic acid, and two or more sorts of proton exchange film can be used. [0019] From the particle of a platinum ruthenium alloy, it is made to distribute on the carbon of the large surface area as detailed metal powder, i.e., "structure where it does not support", that is, an anode 14 is "support structure" and is formed. The carbon of large surface area is the U.S. A Cabot Inc. company provides. Vulcan XC-72A An ingredient [like] is sufficient. In order to perform electrical installation with the particle of the electrocatalysis, the backing (not shown) of a carbon fiber sheet is used. Marketing A Toray (trademark) paper is used as an electrode backing sheet. The alloy electrocatalysis of the support structure on the backing of a Toray (trademark) paper is the U.S. Massachusetts hula MINGAMU whereabouts. It can obtain from E-Tek and an Inc. company. Or both the electrocatalysis of the structure where it does not support, and the electrocatalysis of support structure are combined with a Teflon (trademark) binder. An anode can be manufactured by the chemical approach sprinkled on Toray (trademark) paper backing. How to manufacture an electrocatalysis electrode, without spending many hours efficiently is explained below at a detail. [0020] The second metal can use the alloy of the platinum base which is tin, iridium, an osmium, or a rhenium instead of a platinum ruthenium. Generally, selection of an alloy is performed depending on the fuel used for a fuel cell. A platinum ruthenium is desirable in order to carry out electric oxidation of the methanol. In the case of a platinum ruthenium, the amount of the alloy particle added in an electrocatalysis layer is $0.5 - 4.0 \, \text{mg/cm}$ 2. The range is desirable. Electric oxidation with the more efficient higher one is realized rather than addition level is low. [0021] A cathode 16 is a gas diffusion electrode and a platinum particle is joint ****** to one field of the film 18. As for the anode 14 of the film 18, it is [a cathode 16] desirable to form with the platinum of the structure combined with the field of the opposite side where it does not support, or support structure. U.S. The platinum black (fuel cell grade) or the U.S. of the structure where it does not support which can obtain from a Johnson Matthey Inc. company The platinum ingredient of the support structure which can come to hand from an E-Tek Inc. company fits cathodes. It is desirable like [in the case of an anode] to carry the metal particles for cathodes on a carbonaceous backing ingredient. The amount which carries out the load of the electrocatalysis particle on carbon backing is 0.5 - 4.0 mg/cm2 preferably. It is the range. The backing of an electrocatalysis alloy

and a carbon fiber has given hydrophobicity required to remove efficiently the water which contained 10 - 50% of the weight of Teflon (trademark), and generated the three-phase zone, and was generated by electric reduction of oxygen.

[0022] During actuation, a density range passes the anode 14 in the anode room 22, and circulates the mixture (neither an acid electrolyte nor an alkaline electrolyte is contained) of the fuel which is 0.5-3.0 mols/l., and water. Preferably, the rate of flow of the range for 10-500 mL/is used. When the mixture of a fuel and water passes and circulates through an anode 14, in the case of an instantiation methanol cell, it is the following electrochemical reaction. Anode: CH3 $0\text{H}+\text{H}2\ 0->\text{CO}2+6\text{H}++6\text{e}-$ (1)

****** and an electron are emitted.

[0023] The carbon dioxide generated at the above-mentioned reaction is taken out through an outlet 23 with the solution of a fuel and water, and is separated from the solution by the vapor-liquid-separation machine (with reference to drawing 2, it explains below). Subsequently recycling of the solution of a fuel and water is carried out into a cell with a pump 20.

[0024] The electrochemical reaction shown by the above-mentioned formula (1) and other electrochemical reaction which performs electric reduction of oxygen which catches an electron to coincidence occur with a cathode 16, and it is the following type. Cathode: 02+4H++4e-->2H2O (2) It is come out and expressed.

[0025] By each electrode reaction expressed in (2) as a formula (1), it is the following formula about an instantiation-methanol fuel cell. Cell: CH30H+1.502->C02+2H20 (3)

It comes out and the whole reaction expressed is performed. [0026] With the fuel of concentration high enough, it is 500 mA/cm2. High current density is maintainable. However, by such concentration, the passing speed (crossover rate) of the fuel which crosses the film 18 and faces to a cathode 16 increases even to extent to which the effectiveness and the electrical order of the fuel cell fall intentionally. At concentration lower than 0.5 mols / L, actuation of a cell is 100 mA/cm2. It is limited to the current density of the following. It was found out that the low rate of flow can be applied in the case of low current density. Since it increases but also the transportation mass velocity to the anode of an organic fuel not only in order to remove the carbon dioxide generated according to electrochemical reaction when making it operate with high current density, the high rate of flow is required. Moreover, in the low rate of

flow, that a fuel passes the film and moves to a cathode from an anode decreases.

[0027] Preferably, oxygen or air passes and circulates a cathode 16 under the pressure of the range of 10 - 30psig. If it is made a pressure higher than an external world pressure, in the case of high current density, the mass transport of the oxygen to the location of electrochemical reaction will be improved especially. The water generated by electrochemical reaction in a cathode is carried out of the cathode room 28 by the flow of oxygen through a port 30. [0028] In addition to electric oxidation being carried out with an anode, the liquid fuel which is dissolving in water penetrates the solid-state polymer electrolyte membrane 18, and combines it with oxygen on the front face of the electrocatalysis of a cathode. This process mentions a methanol as an example and is expressed with a formula (3). This phenomenon is called "fuel migration (fuel crossover)." A fuel is consumed without the action potential of an oxygen electrode falling, consequently generating useful electrical energy by migration of a fuel. Generally, migration of a fuel is a parasitism reaction which reduces the engine performance and generates heat within a fuel cell while reducing effectiveness. Therefore, it is desirable to make passing speed of a fuel into min. This passing speed is proportional to the permeability of the fuel which passes a solid-electrolyte membrane, concentration increases, and it increases as temperature rises. The permeability to membranous liquid fuel can be reduced by choosing a solid-electrolyte membrane with low moisture content. If the permeability to a fuel is reduced, passing speed will fall. Moreover, the fuel with a large molecular size has a diffusion coefficient smaller than a fuel with a small molecular size. Therefore, permeability can be lowered by choosing a fuel with a large molecular size. Although a water-soluble fuel is desirable, the fuel of a medium presents permeability with low solubility. Since the fuel of a high-boiling point does not evaporate, transportation of these fuels that let the film pass is performed by the liquid phase. Since steamy permeability is higher than a liquid, generally the fuel of a high-boiling point has low passing speed. The concentration of liquid fuel can be lowered also in order to make passing speed small. The hydrophobic section and the anode structure over which the hydrophilic part is distributed the optimal prevent that can maintain electrochemical reaction by getting wet moderately with liquid fuel, and the fuel of an excessive amount approaches a film electrolyte. Therefore, if the structure of an anode is chosen suitably, high performance and desirable low passing speed can

be obtained.

[0029] Since water can be penetrated at temperature higher than 60 degrees C, most quantity of water crosses the film by transparency and evaporation, and a solid-electrolyte membrane is conveyed. The water conveyed through a solid-electrolyte membrane is condensed within a water recovery system, and is sent to a water tank (this water recovery system and tank are explained below with reference to drawing 2 at a detail), and recycling of that water can be carried out into the anode room 22.

[0030] Inter-electrode [two] is conveyed to the water generated with the proton generated with the anode 14, and the cathode 16 by the proton conductivity solid-electrolyte membrane 18. It is important for operating organic / air fuel cell effectively to maintain the high proton conductivity of the film 18. The moisture content of an electrolyte membrane is maintained by making it contact liquid fuel, the mixture of water, and directly. Let preferably thickness of a proton conductivity solid-state polymer electrolyte membrane be the range of 0.05-0.5mm. Superfluous resistance may be presented while the polymer will bring about the dimensional change which swells and is going too far and does damage with the solution of liquid fuel and water, if it may become the membrane electrode assembly which was inferior in the mechanical strength when the film thinner than 0.05mm was used and the film thicker than 0.5mm is used on the other hand. The ionic conductivity of an electrolyte membrane must be larger than lohm-lcm-1, in order to have the internal resistance which can permit a fuel cell. [0031] As mentioned above, the permeability of an electrolyte membrane to liquid fuel must be low. film made from a perfluoro-** sulfonic-acid polymer like Aciplex (trademark) (Japan's Asahi Glass Co. company manufacture) with which Nafion (trademark) and a property are similar although it was found out that the Nafion (trademark) film is effective as a proton conductivity solid-state polymer electrolyte membrane, and the U.S. the polymer film which the Dow Chemical Co. company is manufacturing -- for example, -- XUS 13204.10 It can use. The film of polyethylene and a polypropylene sulfonic acid, the film of polystyrene sulfonate, and the film (for example, U.S. RAI Corporation film which the shrine manufactured) of the sulfonic acids of other Pori hydrocarbon bases can also be used according to the temperature and the period when a fuel cell operates. acid equivalents differ or chemistry organizations differ -- **** (for example, the frame of an acidic group or a polymer is embellished) -- or low fuel permeability can be attained using the film of the complex which consists of two or more sorts of those proton

conductivity cation exchange polymers from which water content differs or the class and extent of bridge formation differ (for example, the bridge is constructed by multivalent cations, such as aluminum3+ and Mg2+). The film of such complex can be manufactured and high ionic conductivity and the low penetrable ******* electrochemical stability over liquid fuel can be attained.

[0032] It is not necessary to use the fusibility acid of isolation, or the electrolyte of a base, and a liquid supply type direct oxidation type organic fuel cell is obtained by using the solid-state poly membrane of proton conductivity as an electrolyte so that I may be understood from the above explanation. The only electrolyte is the solid-state poly membrane of proton conductivity. The acid of the gestalt of isolation does not exist in the mixture of liquid fuel and water. since a free acid does not exist -- present -- business -- the corrosion by acid induction of the cell components which tend to happen in the organic substance / air fuel cell of the technical acid base is avoided. This brings considerable flexibility to the ingredient selection for a fuel cell and a coordinated subsystem. Furthermore, since the carbonate of fusibility is not formed unlike the fuel cell which contains a potassium hydroxide as a liquid electrolyte, the cell engine performance does not fall. Moreover, a parasitism short-circuit current is avoided by use of a solid-electrolyte membrane. [0033] reaction of further amelioration direct mold methanol / liquid

[0033] reaction of further amelioration direct mold methanol / liquid supply type fuel cell Anode CH30H + H20 = 6H++C02+6e- Cathode 1.502+6H - - ++6e-= 3H20 ------ Net CH30H It is +1.502 = C02+2H20.

[0034] The various amelioration at the time of manufacturing and forming the desirable structure and the desirable ingredient which are used by this invention is described by this specification. It was confirmed by the various experiments conducted by artificers that the desirable catalyst ingredient of one specification is a platinum ruthenium ("Pt-Ru"). The various processes which combine these two metals are possible. Artificers found out that the direction of the powder of 2 metallicity which has a ruthenium particle separate from a separate platinum particle brought about a result better than a platinum ruthenium alloy. Since the desirable Pt-Ru ingredient used by this invention has big surface area, it makes contact between this ingredient and fuel easy. Although platinum and a ruthenium were used by catalytic reaction, this artificer found out that it was important that the mixture of a platinum ruthenium is mixed by homogeneity over the whole ingredient, and spacing is vacated at random, i.e., that ingredient must be homogeneous.

[0035] The 1st field of this invention is forming the platinum ruthenium 2 metallicity powder which has a part according to unique individual of a different ingredient combining a different metal. Although a certain association exists among particles, it guarantees that the technique of this invention makes extent of association the minimum. The process which forms a desirable ingredient is indicated on these specifications. First, the slurry which put platinum salts and a ruthenium salt into the hydrochloric acid is formed. Platinic chloride hexa hydrate salt H2PtCl6.6H2O is made to generate by dissolving a platinic chloride crystal in a hydrochloric acid. K2RuC15 and H2O of a ruthenium salt are made to generate from the potassium salt of a PENTAKUROROAKUO ruthenium (III). A 12.672g platinic chloride crystal is mixed with 600ml of the crystal of the potassium salt of a 13.921g PENTAKUROROAKUO ruthenium, and an one-mol hydrochloric acid. The mixture of an acid and a salt is stirred for 15 - 30 minutes, and homogeneous mixture is obtained. [0036] Subsequently, by adding a 140g [per ml/m] sodium carbonate (Na2CO3) at the temperature between 20-30 degrees C, it neutralizes to this acid slurry and it is settled. In the meantime, the carbon dioxide will be violently emitted from this solution. Adding a sodium carbonate is continued until emission of this gas finishes. That solution changes to tea black at this time. Artificers found out this thing for about 15 minutes to this. While performing this actuation, maintaining to suitable pH is important and pH should be maintained in the 9.25 neighborhoods by adding a sodium carbonate slowly. [0037] Subsequently, this "a gray powdered lump (grey powdery mass)" is processed, and water is evaporated from that slurry. It takes 2 hours and the solid of the shape of 1 hour thru/or black glue which the ingredient dried and became a lump at last is formed in this evaporation. Next, this black glue-like solid is dried in a vacuum, or it is made to dry at 80 degrees C - 100 degrees C under a nitrogen air current. The solid-state of massive gray is obtained. The ingredient which still exists in a solution with the sodium chloride in addition is contained in this solid-state. In addition to hydroxylation ruthenium =Ru (OH)3, platinum hydroxide =Pt (OH)4 and "a sticky thing (gunk)", i.e., a chloride, and it, there is superfluous Na2CO3 in the chemical contents of the powder of this gray. Artificers presume that these excessive ingredients maintain separation between platinum and a ruthenium. If maintained only with these platinum and a ruthenium ingredient, they will sinter and join together and the magnitude of a particle will become large. The buffer of the carbonate between particles has prevented fusion.

[0038] Next, it is returned under the ambient atmosphere of hydrogen and an argon, and this massive solid material changes to a metal from a salt. This ingredient is moved and changed into a glass boat. This boat is arranged in the core of the glass tube of a tube furnace. The ingredient is made to return instead of [its] in the mixed gas which consists of 7% of hydrogen, and 93% of argon near 225 degree C in the mixed gas of hydrogen/nitrogen. This gas should have the boat top passed by the per minute 50-200ml rate of flow. Maintaining this gas stream is continued in that heating ambient atmosphere for 14 hours. And per 40 degrees C is made to cool the catalyst powder, still continuing passing hydrogen to the powder. Thereby, platinum, the particle of ruthenium **, and the mixture that consists of other chlorides and carbonates in addition to it are formed.

[0039] The obtained ingredient must be washed next. This ingredient performs six washing by several washing, for example, 60 degrees C. By each washing, the sample in a glass boat is moved to the beaker into which 11. of 60-degree C deionized water was put. The platinum ruthenium is insoluble in water. Therefore, even if it washes, it is uninfluential into a platinum ruthenium ingredient, and only other ingredients are removed. In each washing, since the process which stirs a water solution for 15 minutes is performed, the chloride and carbonate of fusibility dissolve. Since the magnitude of metal particles is submicron, they form the mixture of colloid instead, without sinking to a bottom. Even 40 degrees C is made to cool this solution. Centrifugal separation of this solution is later carried out by 3000rpm for 1 hour. The clear supernatant remains according to a centrifugal separation process. It is being begun to move the liquid which besides becomes clear, and black sediment is moved and changed into the flask into which 11. deionized water [60-degree C] was put. Any chlorides which dissolved are removed by this further washing.

[0040] This washing process is repeated 6 times in all. It turned out that it is important to stir and carry out centrifugal separation of the water in order to remove a chloride on the whole. These chlorides are harmful for a catalysis. However, although artificers were the binders which need these chlorides to stop the fusion of an ingredient to the minimum, they found out that it had to be removed later.

[0041] After performing final centrifugal separation actuation, the powder is moved to a beaker and it dries in 60-degree C vacuum oven for 3 hours. It may replace with this and this ingredient may be freezedried. A platinum ruthenium catalyst [activity / size / which can flow freely / submicron] is acquired by this. It is important to note that

the dry ingredient is submicron size, therefore that they are easily carried with air. In order to secure insurance, it must equip with a submicron mask.

[0042] It turned out that this activity catalyst powder contains the homogeneous mixture of the platinum particle of submicron size, and a ruthenium particle. Moreover, the residue of RuO2, ruthenium oxide, and the amount of traces of a ruthenium alloy also exists. This powder is used as a catalyst on an anode so that it may indicate on these specifications.

[0043] The platinum salts and the ruthenium salt which are the first product by this converting method may be changed with a titanium dioxide (TiO2), iridium (Ir), and/or an osmium (Os). These ingredients can be used that the engine performance of a fuel cell should be improved at comparatively little cost.

[0044] The particle which performed this processing as compared with the particle of the advanced technology shows the advantage which it was at the time. The particle of the advanced technology is a particle with a magnitude of 5 microns. The diacid-ized ruthenium was contained in these particles. When the particle of this invention is analyzed, it is shown that it is homogeneous mixture until it results in the particle of micron size. When it sees with a scanning electron microscope, there is neither a bright point nor a cloudy point, and all ingredients look overall to gray. This shows that the ingredient homogeneous on the whole was formed of the mixed process.

[0045] The ingredient prepared according to this process is called anode catalyst ingredient. If this anode catalyst is combined with the Nafion (trademark) solution etc. and a process is advanced further, it will become "ink (ink)." That with which the platinum metal and the ruthenium metal combined is contained in this so that it may indicate on these specifications. Artificers have found that the desirable ratio to the ruthenium of platinum is between 60/40 and 40/60. It is thought that the best engine performance is obtained at the time of 60% of platinum and 40% of ruthenium. The engine performance will fall slightly, if a catalyst becomes 100% of platinum. The engine performance will fall rapidly, if a catalyst becomes 100% of ruthenium.

[0046] By adding other additives in this salt, a property can be improved and this catalyst ingredient can be permuted by another cheaper ingredient. Artificers thought that this fuel cell should have been formed with the ingredient of a low price. Though regrettable, platinum is a very expensive ingredient. As long as it is today's writing, a platinum ruthenium is the best ingredient as a catalyst. Artificers have

studied using the permutation object to all or some of platinum of this catalyst. This permutation is due to the point on which a platinum ruthenium catalyst functions.

[0047] the reaction which occurs with an anode -- CH3 OH+H2 O->CO2+6H++6e- it is. Artificers think that the catalyst of this reaction is carried out, when a platinum ruthenium carries out the help which makes an ingredient dissociate on that catalyst front face. This ingredient pulls out an electron and makes them dissociate. This reaction can be explained as follows.

[0048] A methanol is a carbon compound. A carbon atom is combined with other four atoms. three of the bond come out to a hydrogen atom. another bond comes out to a hydroxyl group, i.e., OH. Platinum dissociates a methanol from bond with the hydrogen, and forms M=C-OH(M is catalyst of Pt or other metal sites)+3H+. A ruthenium dissociates hydrogen from the molecule (HOH) of water, and forms M-OH. Subsequently the thing in these front faces is newly together put as CO2+6H++6e-. An anode generates H+ (proton), it is crossed from the anode to a cathode, and is returned there. This is called 2 functionality catalyst.

[0049] A methanol which was indicated on these specifications, and any ingredients with the similar function to make water dissociate can be used instead of platinum. Artificers studied several sorts of such ingredients. They found out the alternative of platinum for the palladium and the tungsten which can dissociate C-H bond, a rhodium, iron, cobalt, nickel, etc. It seems that the engine performance whose molybdenum (MoO3), niobium (Nb 2O5), zirconium (ZrO2), and rhodium (Rh) dissociate H-OH, and make it M-OH occurs. Therefore, it is the good catalyst which combined these. Ru, Ti, Os, Ir, Cr, and/or Mn are mentioned to the desirable catalyst which dissociates H-O-H bond. [0050] A ruthenium may permute the all or part with the ingredient similar to a ruthenium. Artificers found out having many properties that iridium resembled the ruthenium. Therefore, in the 1st embodiment in this field, what combined platinum, a ruthenium, and iridium by phase contrast 50-25-25 is used. This adds salt H2IrCl6 and H2O in the amount which was suitable for the first ingredient indicated above considering as the combination of 50-25-25 (Pt-Ru-Ir). Moreover, it turned out that fewer rutheniums are used for this catalyst and it works very well. [0051] The ingredient containing a titanium compound is mentioned as another ingredient with which it turned out that it has a certain advantage. Any titanium alkoxides and titanium butoxide, for example, titanium isopropoxide, or TiCl4 can be added into the original mixture. By this, it is a platinum-ruthenium. - The final combination of TiO2

</SUB> can be formed and it is also formed in the combination of 50-25-25 (Pt-Ru-TiO2). A platinum-ruthenium-osmium can also be used. The osmium was added by mixture as salt H2OsCl6.6H2O, and it became clear that an advantageous property was brought about by this. Even when formed how, these ingredients used in order to form platinum ink must be attached to an anode. Various techniques can be used in order to attach this ingredient. Then, formation of an anode is explained below.
[0052] Migration (crossover) of the formation fuel for carbon paper caused degradation in this fuel cell. Instead of reacting with an anode, a methanol happens, in case the fuel migration in this fuel cell passes through an anode. A methanol passes through an anode and penetrates a membrane electrode assembly, the film, and a cathode. A methanol may react with a cathode, and the effectiveness of a fuel will be reduced if it becomes so.

[0053] The electrode of this invention is preferably formed using the base of carbon paper. An initiation ingredient is the New York State City of New York third avenue 500 whereabouts. Toray It can obtain from a shrine. TGPH-090 It is carbon paper. However, this paper pretreats first and improves that property. In this pretreatment, it is about 60% of solid-state. DuPont The "Teflon (trademark) 30" suspension of a shrine is used. Moreover, this paper may be the carbon fiber of the top piece mixed with the binder. After carrying out the roller cliff of this fiber, it forms the last ingredient of about 75% of porosity by carrying out combustion removal of the binder. Moreover, it is also possible to use a carbon cross paper. This is processed by the technique indicated on these specifications. Moreover, a carbon paper cross can also be used. This is processed with the technique indicated here and forms the backing of gaseous diffusion nature / current collector. [0054] The carbon paper carried out in desirable processing contains the paper with which the Teflon (trademark) particle was embedded inside. As

paper with which the Teflon (trademark) particle was embedded inside. As for the tooth space between Teflon (trademark) particles, it is desirable that it is fully so small that a methanol cannot pass through that. For example, a better property is used even when using other methanol derivatives like TMM. This anode assembly is formed on the base of carbon paper. It means this carbon paper turning Teflon (trademark), and it adding Teflon (trademark), and improving a property. Artificers found out that there was balance important between the amount of the Teflon (trademark) added on a paper and a final property.

[0055] It is important to maintain the amount of the Teflon (trademark) to be used to suitable balance so that it may indicate on these specifications. While this paper turns Teflon (trademark) and giving

water repellence, it is made for the mixture of platinum ink not to ooze through that paper. Although this paper needs to be a wettability, it does not need to be porosity. This delicate balance is brought about by being immersed and heating a paper. Since artificers found out that balance existed between extent and the amounts of sinking in to a paper of the wettability of a paper, they explain that here.

[0056] First, the emulsion of Teflon (trademark) 30 must be diluted. Every 1g Teflon (trademark) 30 is added in the water in every 17.1g. 60% of the weight of 1g Teflon (trademark) 30 is equivalent to 60g [per 100ml] Teflon (trademark). This ingredient is poured into a suitable container like for example, a glass pan. Carbon paper is maintained until it sinks in into the ingredient.

[0057] Immersion actuation **** the carbon paper of one sheet, and subsequently to the process which dips carbon paper, for about 10 seconds, it corresponds in the solution until it gets wet clearly. Carbon paper is picked out from a solution using a pincette, making it not contact the paper as much as possible. However, the pincette itself draws the Teflon (trademark) on the property of Teflon (trademark), and distribution of a liquid becomes an ununiformity. In order to make this possibility into the minimum, the pincette by which the Teflon (trademark) coat was carried out is used. Carbon paper turns an angle downward, is held and makes a superfluous solution flow out. [0058] Much Teflon (trademark) will be torn off by surface tension if the ingredient lays on a glass front face with the surface tension property of a Teflon (trademark) emulsion. It meets and drops off, and a paper desiccation assembly is formed as shown in drawing 3. The wire 202 which gave two or more Teflon (trademark) covering is stretched on a perforated plate like a dish 200. It intersects perpendicularly and this stretched wire forms the prolonged two-set base materials 202 and 204. The carbon paper just processed with the Teflon (trademark) solution is held ranging over these base materials. Ideally, these wires are wires whose diameters are 0.43 inches and which carried out Teflon (trademark) covering. Although these dimensions are not delicate, if the area in contact with a paper is small, distribution of the suspension on a wire can be made more into homogeneity. The kink 206 is formed in the wire, it is made for carbon paper not to contact a wire along with the overall length of the die-length direction, and it makes the touch area still smaller by it.

[0059] Subsequently it is put into the paper desiccation assembly shown in drawing 3 into 70-degree C oven for 1 hour. The carbon paper which processed is removed from a dish after desiccation, and is put in into

glassware. Then, these are sintered in a 360-degree C oven furnace for 1 hour. Weight is increasing the paper processed appropriately by 5% through this down stream processing. It is permissible if weight increase's being for 3 - 20%, speaking still more generally. a ******* [that absorption with this sufficient paper was made] -- and/or, it **** in order to decide whether it is necessary to process a paper further. This "substrate + catalyst bed" forms a final electrode. [0060] Two desirable techniques which attach the catalyst containing a layer are explained here. That is, they are the direct applying method and spatter vacuum deposition. Other carbon paper containing the carbon paper used without using the special carbon paper ingredient which both explained the method of formation of law to the above and performing special processing in any way may be used. The direct applying method of this invention mixes the platinum ruthenium ingredient and the various ingredients which were explained above, or mixes a catalyst ingredient and various ingredients on other compounding agents of a certain and a general twist target. This catalyst ingredient is processed with the ingredient of the addition which improves a property. [0061] It mixes with an ionomer and platinum ruthenium powder is mixed with water repellent. A perfluoro-sulfonic acid (Nafion (trademark)) and the solution of the micro particle of Teflon (trademark) are mentioned to a desirable ingredient. 5g [per 100ml of Nafion (trademark) solutions] platinum ruthenium powder is added. [0062] 60% of the weight of Teflon (trademark) solid-state diluted suitably DuPont Shrine T-30 mixture is added. Then, the micro particle of such Teflons (trademark) is mixed. Dilution Teflon (trademark) 30 suspension which contains in 4g deionized water preferably the solidstate of 12 percentage by weight into which the concentration liquid of lg Teflon (trademark) 30 was put is prepared. 300mg deionized water is added in the 350mg of 12% of the weight of the above-mentioned Teflon (trademark) solutions. A 144mg platinum ruthenium is mixed in this solution. Subsequently the obtained mixture is mixed using a well-known ultrasonic blending technique with the conventional technique as "sonication." Ultrasonic mixing is preferably performed within the ultrasonic bath which filled water with Fukashi (about 1 / 4 inches). This mixture "is ultrasonicated" for about 4 minutes. [0063] As mentioned above, the point that Teflon (trademark) must be first mixed with a platinum ruthenium, and about 15% of the weight of Teflon (trademark) must be prepared is important. Nafion (trademark) can be added only after making this mixture. Artificers found out that it might enclose the particle of platinum and a ruthenium, if Nafion

(trademark) was added first. Therefore, the sequence of this actuation is delicate and important. At this time, 0.72g (trademark) of 5% of the weight of Nafion is put into a jar, and sonication is performed for 4 minutes once again. 1 square centimeter of electrodes covered as more generally saying hits, and it is necessary to add 1mg Nafion (trademark) about. The amounts of above-mentioned Nafion (trademark) are also few, or when only 652ml adds, they can change a solution.

[0064] If this processing is performed, a black slurry-like ingredient will generate. Next, the black ingredient of the shape of this slurry is applied to carbon paper. The applying method may be performed by one [which] of many approaches. The easiest gestalt is applying the ingredient on carbon paper backing, changing a stroke in the different direction. In order to apply this, a brush with the small hair of a camel is used. The desirable amount which the ingredient mentioned above is an amount for forming the catalyst of sufficient amount to one side of the 2 inch x 2 inch piece of 5% of the weight of Teflon(trademark)-ized carbon paper. Therefore, spreading is continued until it will use all catalysts.

[0065] The drying time for 2 minutes - 5 minutes should be established between covering, and each covering should be applied in the different direction so that an ingredient may be in half-dryness between covering. It is necessary to dry an anode for about 30 minutes after that. "Press working of sheet metal" of the anode must be immediately carried out after progress of the 30 minutes. Actuation of this press working of sheet metal is explained to this specification. It is the porous carbon substrate used for the obtained structure diffusing gas and a liquid, and it is covered with 4 times per 1 square centimeter of catalyst ingredients. The alternative technology to which this ingredient is made to adhere is carrying out the spatter of that ingredient on backing. [0066] We have explained how to form an anode here. Next, the technique which subsequently forms a cathode about the technique in which the process which forms the desirable film (Nafion (trademark)) of proton conductivity involves is explained.

[0067] the proton conductivity film — the desirable ingredient indicated here is Nafion (trademark) 117. However, in order that other ingredients may form the proton conductivity film, it can use. For example, it is possible to use other perfluoro-sulfonic-acid ingredients. It can be assumed that many different ingredients with a carboxylic-acid radical may also be used for this purpose.

[0068] A desirable embodiment is DuPont. It begins from a shrine using Nafion (trademark) 117 which can come to hand. This ingredient is first

cut in suitable magnitude. It is important to make it suitable magnitude and it is because the conditions of the last ingredient are decided by the magnitude. First, Nafion (trademark) is boiled in a hydrogen-peroxide solution. 5% of hydrogen-peroxide solution is got, and this film is boiled at 80-90 degrees C in this solution for 1 hour. Oxidizable organic impurities are removed by this. After performing the boiling process by this peroxide, that film is boiled for 30 minutes at about 100 degrees C in deionized water. The hydrogen peroxide absorbed by the film before that is removed with other water-soluble organic materials.

[0069] Thus, the film with which processing was performed is boiled in a sulfuric-acid solution next. An one-mol sulfuric-acid solution is prepared by diluting the sulfuric acid of the condensed 18-mol commercial ACS grade. The acid of ACS grade contains only the metal impurity of an amount smaller than 50 ppm. By boiling this film at about 100 degrees C in an one-mol sulfuric acid, that film can be more completely changed into proton conductivity.

[0070] The processed ingredient is boiled for 30 minutes at 90-100 degrees C in deionized water next. That water is thrown away, this boiling process is repeated further 3 times, and membranous purity is raised.

[0071] After performing these washing processes, a sulfuric acid does not exist in the film, but it becomes a "protonic" gestalt completely. It is put in and saved by that in the sealed container at deionized water until the film is ready to perform further processing. [0072] A cathode configuration cathode is constituted by preparing the catalyst ink for cathodes first. Preferably, although the catalyst ink for cathodes is pure platinum, as other ink can be used and being indicated on these specifications, it may mix many of other ingredients in ink. A 250mg platinum catalyst is mixed with the 0.5g water containing 37-1 / 2mg Teflon. Sonication of this mixture is carried out for 5 minutes, and it is aligned with 5% of Nafion (trademark) solution. Sonication of the obtained mixture is again carried out for 5 minutes, and a uniform dispersant is obtained. Enough ingredients to cover the 2x2 inches piece of carbon paper with this are formed. It is unsettled. Toray Carbon paper can be used without Teflon (trademark) content. However, preferably, this ingredient changes Teflon (trademark), as mentioned above. Subsequently, the process which forms the paper which sank in 5% of Teflon (trademark) continues. Then, the paper is heated at 300 degrees C for 1 hour, and a Teflon (trademark) particle is sintered. The ingredient is covered with PT of 4 mg/cm2/g by applying after that,

as catalyst ink was mentioned above on the paper. Although the Teflon (trademark) content of this paper may change among 3 - 20%, it is desirable. [5% of]

[0073] In the alternative technology which forms a sputtering cathode, the platinum electrode which carried out spatter formation is formed. When this platinum electrode that carried out spatter formation was used as a plane air electrode, it became clear that it had the advantage which it was at the time. The process which manufactures the platinum electrode of sputtering formation is indicated by this specification. [0074] A cathode electrode performs a reaction called 02+4H++4e--> water. These 02 is received from the surrounding gas (gas) of a platinum electrode, and an electron and a proton are received through the film to this. This alternative technology for forming a cathode electrode starts using the platinum of the grade for fuel cells. This is Johnson-Matthey. It can purchase from many sources, such as a shrine. This 20-30g [per surface area of 1 square meter] platinum is applied to that electrode in the magnitude of a 0.1-1-micron particle.

[0075] The source of platinum is a solid-state rod-like ingredient. According to this embodiment, the spatter of that ingredient is carried out to the substrate formed as mentioned above. Platinum powder is first mixed with an aluminium powder. This mixing may be performed using the technique of salt combination which was performed when you could carry out, for example using a mechanical means or anode ink was manufactured and which was mentioned above. The spatter of the platinum aluminum mixture is carried out on carbon paper using a spatter known by semiconductor technology.

[0076] The spatter of the platinum is carried out as follows using the system illustrated by drawing 4. The carbon paper electrode 252 is held at the 4 inches standard target 250. This target rotates one time in 10 seconds by the motor 254. According to the desirable technique used here, the spatter of the Pt is carried out from the 1st Pt source of supply 260, and the spatter of the aluminum is carried out from the aluminum source of supply 262. Near 200 volt, platinum is 0.23amps(es) and the spatter of the aluminum is carried out by 0.15amps(es). Two sources of supply collide at the include angle of 45 degrees toward a target from a different direction which faced each other.

[0077] Although the pressure with artificers ideal for this sputtering was 20torr, it found out that the pressure of the arbitration between 1-50torr could also be used. The pressure of an argon is an about 30mm torr. However, the atmospheric pressure of an argon which is different in order to form the particle of different size can be used. Sputtering

is performed for about 8 minutes.

[0078] Preferably, after finishing sputtering, by immersing the backing which carried out spatter formation in an etching solution, it etches, and it is continuously immersed in a washing solution.

[0079] The electrode which carried out spatter formation is the mixture of aluminum particle on backing, and Pt particle. An aluminum particle is removed by washing an electrode with a potassium hydroxide (KOH). Of this, the carbon paper backing to which porous platinum adhered very much is formed. Each field in which aluminum was formed is removed and the space which the hole opened in the location remains. When artificers' covering of a Pt-aluminum ingredient was thick, that aluminum is flushed [of the catalyst] from a downward field found out being prevented a little. This invention uses thin covering (coating), it is a coat with it it is desirable and thinner than 0.1 microns or it, and an ingredient consistency is between cm2 the whole 0.5mg with cm2 the whole 0.2mg.

[0080] An anode, the film, and a cathode were made in this this time kicked in this process. These ingredients are assembled by the membrane electrode assembly ("MEA").

[0081] the formation electrode and film of MEA -- a 5-mil thickness [of CP class], and titanium 12 inch x12 inch foil top -- first -- arrangement, i.e., a stack, -- carrying out (pile) -- **. Artificers use the titanium foil so that any acid components which come out from the film may not permeate the foil.

[0082] First, an anode electrode is placed on the foil. That the property of the desired film should be maintained, it soaks and the proton conductivity film is saved. This proton conductivity film is wiped first, and is dried, and a particle with large size is removed. And the film is placed on a direct anode. A cathode is placed on the film. The cathode is covered and another titanium foil is arranged. [0083] The edge of the titanium foil of two sheets is stopped with a clip together, and the layer of an ingredient is held to a position. The titanium foil and film for pressing on both sides of an assembly in between contain two stainless steel plates with a thickness of about 0.25 inches, respectively. The film and electrode in the titanium foil assembly stopped with a clip are carefully arranged between two stainless steel plates. These two plates are held between the jaws of press equipment like an arbor press. The press equipment should be maintained by low temperature at the room temperature.

[0084] Then, the press equipment is operated and the pressure between 1500psi(s) and the optimal pressure generate 1250psi(s) from 1000. The

pressure is maintained for 10 minutes. Heating is started after for these 10 minutes passes. Although heating is slowly raised to about 146 degrees, it turns out at any temperature in a 140-150-degree C temperature requirement that it is effective. In order to raise temperature slowly, many hours should be spent for 25 to 30 minutes, and it is the time amount for stabilizing temperature for [of the last of heating] 5 minutes. The temperature is stopped at 146 degrees C for about 1 minute. The pressure is maintained although heating is stopped at the time.

[0085] Then, the press equipment is quickly cooled using circulating water, maintaining a pressure to 1250psi(s). The pressure will be opened, if about 15 minutes pass and temperature amounts to 45 degrees C. Then, the film and electrode which were combined are removed and it saves in deionized water.

[0086] A flow field fuel cell operates appropriately, only when the fuel is appropriately supplied to the film so that a reaction may occur or a catalysis may break out. A flow field assembly as shown in drawing 5 is used for the membrane electrode assembly of this invention. Each membrane electrode assembly ("MEA") 302 is inserted among the plates 304 and 312 for flow modification of the pair which has a BAIPU rate and an edge plate. The flow of a fuel is established to each space 303 between each BAIPU rate / edge plate, and MEA. A BAIPU rate / edge plate, and MEA(s) gather, and a "stack" is formed. The BAIPU rate equips with the configuration for the flow of a liquid both the front faces that face face to face. The flow plate of the edge of this stack is not a BAIPU rate but the edge plate 312. The edge plate has the chamber only in the single-sided side. Two or more separators 306 and two or more chamber formation fields 308 are established in the BAIPU rate 304. The separator 306 has the function forced to the membrane electrode assembly 302. The end face of a separator 306 is a plane front face substantially, and it contacts the front face of MEA302. The BAIPU rate is formed with the conductive ingredient so that all the membrane electrode assemblies 302,310 may be mutually combined with a serial.

[0087] The membrane electrode assembly 302 which was mentioned above is equipped with an anode, the film, and a cathode. Anode side 312 of each membrane electrode assembly touches the source of supply of an aquosity methanol in space 314. The cathode side of each membrane electrode assembly touches the source of supply 316 of oxidizer air which offers the gaseous substance for performing the reaction explained above. This air may be mere air and may be oxygen. The flow of these charges of green wood is required in order to continue supplying a fuel to an

electrode appropriately. Moreover, it is also desirable to maintain the stable flow.

[0088] An example of a stack design of this invention uses the system shown in drawing 6. A fuel is supplied from the fuel-supply chamber 602, and it is the room of high capacity into which the pressurized fuel usually went. A part 606 like a narrow nozzle reduces a pressure greatly along with it. The fall of the pressure in this thin tubing is much larger than what kind of pressure drop along a supply way. The flow between the cells within a cell is equalized by this.

[0089] The careful balance of balance must be taken between the total amount of the front face which acts as a pressurization element, and the total amount of the front face which acts as a maintenance element. It is desirable to put a uniform pressure on the membrane electrode assembly 202 for various reasons from both sides. However, when the pressurization front face 306 is pushing to the film, the membrane electrode assembly 302 cannot contact a methanol and directly. Instead, it is pushed there by the front face 315. Therefore, the part of the front face of MEA302 does not react. It has various functions, and a flow is improved or the thing of the various designs by this invention improves some properties in the field of dependability.

[0090] The width of face of each nozzle 606 is narrow. The outlet 605 of each nozzle 606 faces one island which pressurizes the field 608 corresponding to the pressurization front face 306. The fuel supplied from a nozzle 606 is directly supplied to the interface 610 of an island 608. The island shown in drawing 6 is a rectangle. An interface 610 is the side side with the narrower island of this rectangle. The side face with this larger island is parallel to a flow. All input styles go to one of the front faces of an island directly.

[0091] Artificers found out that a turbulent flow was formed in the field of an island 608 according to this desirable narrow layout. A turbulent flow stirs the fuel in a chamber and stabilizes more the flow which passes along this system. This turbulent flow is also easy in the flow between each island. Finally an output flow is accepted by the output nozzle 612, and is led to an output tube 614. An output nozzle is arranged in the form which adjoined on the surface of [620] the island, and was similar, and a turbulent flow is further formed of this. Side 610 of a boundary is 50 mils and the larger one side of the island by this embodiment is 150 mils. The pressure drops in the both ends of a stack are about 0.06 psi(s) about this stack.

[0092] The BAIPU rate of other arrangement configurations can also be used. The BAIPU rate itself is lightweight, it is thin, and it is

important for it that spacing of a stack can be enlarged as much as possible. Graphite is difficult for machining and comparatively thick. Passing neither a liquid nor a gas is mentioned as an advantage of graphite.

[0093] According to this invention, many another solutions are used. Modification of the 1st of this invention uses a system as shown in drawing 7. a boundary layer 702 -- high -- it is dense and is the layer which does not let a conductive liquid or a conductive gas pass. By this, the amount of the fuel which can cross a wrap BAIPURETO assembly for an ingredient, a gas, or a liquid is decreased. However, the dense porous ingredient is used as a cross field 700. A certain amount of quantity of an ingredient will be infiltrated into MEA through this boundary layer as it is porosity.

[0094] A dense porous ingredient may be conductive carbon which machining tends [much more / than graphite] to carry out. Although osmosis is dammed up by the boundary ingredient, it can prevent that a liquid and a gas cross the whole BAIPU rate by this. If the pressurization part has porosity, a liquid and a gas will be made to reach a certain amount of part of the membrane electrode assembly currently pressurized in the pressurization part. Therefore, a methanol may permeate these fields and conversion efficiency will decrease in the another condition.

[0095] The main binder layer 704 is carbon of a low consistency ("LD"). It is comparatively easy to deal with LD carbon, and its price is also cheap. However, since, as for LD carbon, all parts are covered by graphite, the fact, most of the property which is not desirable, is hidden.

[0096] The 2nd embodiment used by formation of a BAIPU rate is shown in drawing 8. The BAIPU rate of this 2nd embodiment is super-thin BAIPURETO made from titanium-carbon which became layer-like. Since we desire a stack made as thin as possible to the request electrical potential difference of arbitration, a BAIPU rate must be thin. Each membrane electrode assembly and BAIPU rate say it as a proper electrical potential difference (inherent voltage), although an electrical potential difference will occur if it activates. A proper electrical potential difference and the thickness of this equipment determine the greatest electrical potential difference which can be taken per thickness of 1 inch of the equipment of this invention. The important element about the electrical potential difference to thickness is the thickness of a BAIPU rate.

[0097] The BAIPU rate of the 2nd embodiment of this invention is shown

in drawing 8 . The thought of lamination of forming a BAIPU rate combining the best property of that ingredient is used for this ingredient. The boundary layer 800 of a titanium carbide is joined to the titanium binder course 802. The titanium binder course 802 is desirable and thickness is 3 mils. These two layers became together, and while preventing that cross a BAIPU rate and a proton moves, suitable electrical coupling nature is also secured. This titanium ingredient is covered with the separation ingredient 804, and holds a BAIPU rate in a predetermined location. Therefore, a certain amount of porosity is possible similarly in the embodiment of drawing 7 . Although it is natural, titanium can permute any metals with the same conductivity and chemical stability. The graphite ingredient used ordinarily recognizes the artificers of this invention that the balance between the requirements which compete will surely arise.

[0098] In order to improve actuation effectiveness, it is required for a fuel to cross to the interlayer side who faces same another [the] BAIPURETO side, i.e., a cathode, and to make it not sink in from an one, for example, anode, the BAIPU rate of one sheet side. Supposing a BAIPU rate is porosity, a fuel ingredient may be crossed and it may sink into a loan. However, it means that it does not have the liquid which arrives at the field of the electrode layer assembly currently pressurized by 306 with a BAIPU rate with a pressurization front face since there is no liquid which can pass a BAIPU rate. Therefore, in these parts currently pressurized by the pressurization front face in these membrane electrode assemblies, electrical activity does not occur efficiently. The effectiveness of this whole cell worsens by this.

[0099] In these embodiments of this invention, the balance matter (matter of merits and demerits) of a new class occurs. A membrane electrode assembly is pressurized by the porous part of a BAIPU rate. That fuel comes to be supplied a little to the part by which the electrode was pressurized at least by having used this porous part. The electrical performance nature of MEA is improvable with this. Moreover, according to this description of this invention, other joint pieces which prevent that a liquid passes into other parts of an electrode layer assembly can be offered.

[0100] The fundamental system of invention of system ** is shown in drawing 9. This system is based on the way of recycling the output of a fuel cell which artificers have recognized. A fuel cell consumes a methanol, a methanol derivative, and water, and output products, such as a methanol or a methanol derivative, water, and gas, generate it. A methanol means the fuel consumed. The methanol fuel of an amount

consumed must be carried by any fuel cell systems. However, the reaction also needs equivalent water. Artificers have noticed that the water used at this reaction can be made to collect and recycle from a cathode. The need of carrying a lot of water is avoidable with this.

[0101] A workload generable from a vehicle is restricted by the gross vehicle weight (payload), i.e., the weight of a vehicle and its loading object. A limitation is in power with the weight in which it must carry every vehicle. If weight is large, the power of a vehicle will be restricted, therefore the effectiveness of a vehicle will become small. For example, the passenger car has not usually carried the gasoline 20-30 gallons or more. This is decided from things various so that between the distance which can run by the time a vehicle re-refuels a tank, and the weight which increases by enlarging a fuel tank may serve as optimal balance. The engineer of a vehicle determines how much a pleasantly permissible payload is. Artificers explain the technique of securing this payload being taken not with water but with a fuel.

[0102] One of the system features of this invention is maintaining the balance of water, as it does not have the substantial source of supply of water with the need of recycling and carrying most water.

[0103] The whole system is shown in drawing 9. The methanol tank 900 saves the pure methanol (or fuel of a derivative methanol type [other]). The 1st liquid pump 902 carries out pumping of the methanol to the circulation tank 906 through a bulb 904. A water tank 908 supplies water to a required place. Pumping of this water is carried out to the recycling tank 906 through a bulb 912 with a pump 910. A central control unit 914 controls synthetic actuation of this whole system. A control device 914 controls the relative location of bulbs 904 and 912. [0104] The thing of the inside of a methanol or a methanol for which the methanol concentration sensor 916 will be attached very much in the location of a paddle gap soon is desirable. The methanol sensor 916 detects the methanol concentration in a circulation tank, and a control unit 914 controls actuation of this system further based on this information.

[0105] The aquosity methanol included in a circulation tank is maintained by 1-2M with this control system. Therefore, the methanol in Rhine 918 should also have suitable concentration. A pump 920 carries out pumping of the methanol to the membrane electrode stack 924 through a fuel filter 922. The stack used here should just be the same stack as what was mentioned above. The electric output 926 which comes out of a stack 924 operates other electric systems like a control unit 914 or a compression equipment 930 while it is sent to a motor and moves a

loading load. Moreover, this stack operates using the incorporation air 932 which passes along a compression equipment 930. The air filter 934 defecates air, before going into a stack.

[0106] The fuel outlet of this stack contains two components, i.e., water, and a methanol. Both a methanol and water can be condensed by processing two components using condensing plant 940 and 942, respectively, and making temperature of water low enough. A fan 944 can use in order to perform this cooling easily. As for the methanol and water which are recycled, both are returned to a circulation tank. The methanol 946 recycled from the outlet of a methanol stack, and the air and water which were recycled from the incorporation air 952 are collected on the circulation tank 906.

[0107] In the liquid engineer, although it is very uneconomical to carry out pumping of the gas if it sees from the point of an energy source of supply, carrying out pumping of the liquid to this knows that costs will not increase so much. In respect of there being this invention, the cathode will be required to pressurize air. For example, it may be required to pressurize air at 20psi(s). However, it is that the air (after reacting with a cathode) which came out on Rhine 944 is compressed into altitude in most cases. Probably, this output air 944 is compressed into 19psi. In this way, the output air 944 goes into the pressure drive mold turbine 946. This expander equipment operates with a pressure, and since air compression equipment 930 is driven, it is used. If the compressed power is not reused in this way, 20 - 30% of the power generated with the fuel cell may be used for air compression equipment. [0108] The output 948 of expander equipment includes the combination of air and water. This water and air are separated and the water with which discharge air was breathed out and collected by 950 is returned to the circulation tank 902. Probably, the water flow hole 954 which drains superfluous water is also needed. This water flow hole is controlled by the control unit 914, and when there is too much water which is reflowing back, it is sometimes needed. The amount of the fuel supplied may be measured as a means replaced with a sensor and a control unit. However, the latest fuel cell is planned so that it may operate at about 90 degrees C. The reaction of an electrochemical fuel cell makes even suitable temperature heat the fuel cell after all.

[0109] This invention operates using a methanol sensor. Especially the desirable methanol sensor uses the MEA technique mentioned above. As mentioned above, a fuel cell consists of an anode and a cathode. An anode receives a methanol. A cathode receives air or oxygen. The fuel cell which was shown in drawing 10 and which deformed is used for this

sensor. It has joined to the Nafion electrolyte 1004 and the Pt-Ru anode 1002 has joined the electrolyte to Pt cathode. The larger one of this cathode than an anode is desirable, for example, the area of a cathode is 3 times the anode.

[0110] It is immersed in a methanol solution by the cathode 1006 (and anode). Therefore, the reaction from which H2 is set to H20 so that it cannot react with air since a cathode 1006 is in a liquid, therefore it may happen at a fundamental fuel cell reaction cannot occur. If an electrical potential difference is applied to this fuel cell, the occurring reaction will change, for example, will be reversed. When a current occurs, an anode reacts with a direct methanol, and CO2 is generated, and a cathode changes a proton to hydrogen. If a cathode is small and an anode is large, a proton will be returned and the susceptibility of this methanol electrode will be raised further.

[0111] Therefore, this reaction is each following formula (+). H2O+CH3OH -> CO2+6H++6e- (-) 2H++2e--> H2 are included.

[0112] A constant voltage is applied by the voltage stabilizer 1010. An ammeter 1012 measures a current. Drawing 11 shows the relation of the methanol concentration in a current and a solution. A control unit 1014 carries out the lookup of the nearest methanol concentration corresponding to the current measured using the relation by which drawing 11 was plotted that what is necessary is just a process controller or a microprocessor. Since it seems that temperature dependence is large, the plot of drawing 11 is good to use a thermocouple for temperature compensation.

[0113] Another important description of this invention is related with actually using this system in the environment of an automobile. It will be necessary to supply the methanol with the methanol equipment of a gas cylinder, in order to use it practical. The impurity of a hydrocarbon may be included when picking out a methanol from a gas cylinder. If there is such an impurity, it is very dangerous with the system indicated by this invention that needs a methanol with high purity. Therefore, a fuel filter is used in this invention. This fuel filter is illustrated by drawing 12. The filter of a three-stage includes the zeolite crystal 25M (Mobil) composite type or neutral type. Usually, a zeolite acts as a molecular sieve. This zeolite crystal is used in order to filter a methanol and to remove a certain hydrocarbon impurity from there. These zeolites are good to include the one-set layer structure which consists of three or more layers with the hole of magnitude which is different gradually to layers 1-3 in 3-10A.

[0114]

1 2 3 CH30H, H20, O2, and H two-layer 1 are the zeolite X with the hole of a usually big diameter, an offer light, and A, and they can remove a big molecule. Mordenite and a natural zeolite are used in the layer 2, and it removes n-paraffin, n-butane, and n-alkane. Zeolite 3A and 4A can be used in order to remove a small molecule like a propane or ethane in a layer 3. This is desirable when the molecular sieve which changes gradually is formed.

[0115] Many fuel cells were used for the serial in the approach of before about a unipolar approach fuel cell. If a fuel cell is connected to a serial, it is possible to make the whole electrical potential difference high so that output voltage can be added and the output of a stack may be made to increase to a high and more nearly available electrical potential difference. The artificers of this invention have noticed a certain kind of effectiveness acquired further using the approach with which this artificer attached the unipolar and the name, using the approach which has not been made into the stack. The approach of this unipolar is maintaining each membrane electrode assembly in the condition of having dissociated completely [all other components]. According to this approach separated completely, each element of an assembly can have better effectiveness while being made greatly all the time. The element of each unipolar may be assembled to a stack. The important thing to depend on this description is that each membrane electrode assembly's being connected separately and its element connected separately are not assembled by the stack, and is connected to a serial.

[0116] It can use in order to form the fuel cell which does not need contact force in order to form electric connection for the 1st embodiment of unipolar invention. As film, the Nafion (trademark) film is desirable. The Nafion (trademark) film has the piece of a metal cross, for example, the central field in which the end of a screen was prepared. The metal cross or the screen is covered with the suitable catalyst of the type mentioned above. The tab which carries a current derives the generated electrical potential difference outside.

[0117] The flow field insertion components of the product made from plastics or metal lead a suitable fuel ingredient to the each side of a cross which gave the catalyst coat. A flow field member may be prepared in an another side side. Therefore, by attaching in Nafion (trademark) backing the ingredient which prepared the catalyst in the front face, and pressurizing toward it, although it is electrically the same, a fuel cell can be formed by mechanically different approach.

[0118] From a tab, a current is passed to an electrode field. A methanol

is sent to a methanol chamber, i.e., the field to which one membranous side was sealed. This sealing is maintained by the ring-like sealing field. Air is led to the 2nd membranous side face through the air chamber sealed similarly in the opposite side. Each of these components operates as a unit of a standalone version regardless of other units. A higher electrical potential difference can be offered by connecting to a serial the current generated from these components.

[0119] The film which met the titanium sheet is used for the 2nd alternative embodiment of this invention. Spot welding of the titanium cross is carried out to the titanium sheet. A titanium cross functions as a cathode and may be covered with platinum. A titanium cross functions as an anode and may be covered with the suitable platinum ruthenium. A gasket and the ring for association form a chamber between the film and an anode. Similarly, another gasket and ring for association form a chamber between the film and a cathode. The titanium sheet equips the front face with the spherical seal, in order to maintain a chamber. The electrical potential difference generated from this titanium sheet is combined with the ejection field of a current. [0120] Moreover, since a metal fastener can be used if a bead sealing is used, in this mode, the location in which a rivet or a fastener is attached is also prepared. Especially this system integrated can be made very thin if the titanium foil is used.

[0121] This embodiment can be used with the equipment of a duplex battery module. The cathode and the anode are prepared in each of these duplex battery modules. The component is assembled so that two anodes may adjoin, and the cell which faces mutually is completed. The flow field is formed between two anodes. This flow field must include the air which flows between them. Similarly, it faces mutually, the flow field was formed among them, and the flow of suitable air has produced two adjoining cathodes there. The flow field is the flow field of air facing the 1st cathode side of a cell. The anode side faces the flow field of the 2nd methanol. A methanol flows from methanol input and flows out of a tap hole. Moreover, the flow field of this methanol faces the anode side of the 2nd bipolar cell. The cathode side of this 2nd bipolar cell faces the part of another flow field where air flows.

[0122] Although only the embodiment of a mere fraction was explained to the detail above, to be sure, this contractor can understand that various alterations can be carried out to a desirable embodiment, without deviating from this instruction range. It is interpreted as such all alterations being included by the claim shown above.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] the basic configuration of the fuel cell by this invention is shown — it is a cross-section block diagram a part.

[Drawing 2] it is the block diagram showing the fuel circulation network of the fuel cell by this invention -- it comes out.

[Drawing 3] It is the top view showing the dish for desiccation used in order to dry the carbon paper sheet which encoded Teflon (trademark).

[Drawing 4] It is the block diagram showing the fundamental platinum sputtering system used for this invention.

[Drawing 5] It is the block diagram showing the fundamental flow field equipment concerning the embodiment of this invention.

[Drawing 6] It is the sectional view of the desirable flow field cut along with six to 6 line of drawing 5.

[Drawing 7] It is structural drawing showing the embodiment of the BAIPU rate concerning this invention.

[Drawing 8] It is structural drawing showing other embodiments of the BAIPU rate concerning this invention.

[Drawing 9] It is the schematic diagram showing system actuation of the direct methanol supply type fuel cell by this invention.

[Drawing 10] It is the block diagram showing the alteration concept of the fuel cell concerning this invention.

[Drawing 11] It is the graph which shows the relation of the methanol concentration and the current in the fuel cell concerning this invention. [Drawing 12] It is the outline block diagram showing the three-stage fuel filter for fuel cells concerning this invention.

[Description of Notations]

10 [-- A cathode, 18 / -- An electrolyte membrane, 20 / -- A pump, 22 /

-- The quality of an anode 28 / -- A cathode room, 602 / -- A fuel-supply chamber, 605 / -- The outlet of a nozzle 606 / -- A nozzle part, 608 / -- An island, 610 / -- The interface of an island 612 / -- An output nozzle, 614 / -- Output tube.] -- A fuel cell, 12 -- Housing, 14 -- An anode, 16

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 2]

[Drawing 5]

[Drawing 7]

直接型メタノール燃料電池用バイプレートの要件

[Drawing 8]

燃料電池用層型テタン/カーボン超薄バイマルナの概念

[Drawing 9]

直接型メタノール液供給式燃料電池

[Translation done.]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.