Natural Language Understanding

Lecture 11: Unsupervised Part-of-Speech Tagging with Neural Networks

Frank Keller

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

March 3, 2017

- Introduction
 - Hidden Markov Models
 - Extending HMMs
- Maximum Entropy Models as Emissions
 - Estimation
 - Features
 - Results
- 3 Embeddings as Emissions
 - Embeddings
 - Estimation
 - Results

Reading: Berg-Kirkpatrick et al. (2010); Lin et al. (2015).

Background: Jurafsky and Martin (2009: Ch. 6.5).

Recall our notation for HMM from the last lecture:

The parameters of the HMM are $\theta = (\tau, \omega)$. They define:

- τ : the probability distribution over tag-tag transitions;
- ullet ω : the probability distribution over word-tag outputs.

The model is based on a set of multinomial distributions. For tag types $t = 1 \dots T$ and word types $w = 1 \dots W$:

- $\omega = \omega^{(1)} \dots \omega^{(T)}$: the output distributions for each tag;
- $\tau = \tau^{(1)} \dots \tau^{(T)}$: the transition distributions for each tag;
- $\omega^{(t)} = \omega_1^{(t)} \dots \omega_W^{(t)}$: the output distribution from tag t;
- $\tau^{(t)} = \tau_1^{(t)} \dots \tau_T^{(t)}$: the transition distribution from tag t.

Goal of this lecture: replace the output distributions ω with something cleverer than multinomials.

Example: $\omega^{(NN)}$ is the output distribution for tag NN:

```
w
John
Mary
running
jumping
```

Example: $\omega^{(\mathrm{NN})}$ is the output distribution for tag NN:

$\omega_{\it w}^{({\tt NN})}$	w
0.1	John
0.0	Mary
0.2	running
0.0	jumping

Example: $\omega^{(NN)}$ is the output distribution for tag NN:

$\omega_{\it w}^{({\tt NN})}$	W	f(NN, w)
0.1	John	+Cap
0.0	Mary	+Cap
0.2	running	+ing
0.0	jumping	+ing

Example: $\omega^{(NN)}$ is the output distribution for tag NN:

$\omega_{w}^{(\mathtt{NN})}$	W	f(NN, w)	$e^{\boldsymbol{\lambda}\cdot\mathbf{f}(\mathtt{NN},w)}$
0.1	John	+Cap	0.3
0.0	Mary	+Cap	0.3
0.2	running	+ing	0.1
0.0	jumping	+ing	0.1

First idea: use local features to define $\omega^{(t)}$ (Berg-Kirkpatrick et al.

$$\omega_w^{(t)} = \frac{\exp(\boldsymbol{\lambda} \cdot \mathbf{f}(t, w))}{\sum_{w'} \exp(\boldsymbol{\lambda} \cdot \mathbf{f}(t, w'))}$$
(1)

Multinomials become maximum entropy models.

Example: $\omega^{(NN)}$ is the output distribution for tag NN:

```
w
John
Mary
running
jumping
```

Example: $\omega^{(\mathrm{NN})}$ is the output distribution for tag NN:

```
\omega_w^{(\mathrm{NN})} w

0.1 John

0.0 Mary

0.2 running

0.0 jumping
```

Example: $\omega^{(\mathrm{NN})}$ is the output distribution for tag NN:

$\omega_{\it w}^{({\tt NN})}$	W	$\mathbf{v}_{\scriptscriptstyle W}$
0.1	John	[0.1 0.4 0.06 1.7]
0.0	Mary	[0.2 1.3 0.20 0.0]
0.2	running	[3.1 0.4 0.06 1.7]
0.0	jumping	[0.7 0.4 0.02 0.5]

/----

Example: $\omega^{(NN)}$ is the output distribution for tag NN:

$\omega_{w}^{(\mathrm{NN})}$	W	\mathbf{v}_w	$p(\mathbf{v}_w; oldsymbol{\mu}_t, oldsymbol{\Sigma}_t)$
0.1	John	[0.1 0.4 0.06 1.7]	0.3
0.0	Mary	[0.2 1.3 0.20 0.0]	0.3
0.2	running	[3.1 0.4 0.06 1.7]	0.1
0.0	jumping	[0.7 0.4 0.02 0.5]	0.1

Second idea: use word embeddings to define $\omega^{(t)}$ (Lin et al. 2015):

$$\omega_w^{(t)} = \frac{\exp(-\frac{1}{2}(\mathbf{v}_w - \boldsymbol{\mu}_t)^{\top} \boldsymbol{\Sigma}_t^{-1} (\mathbf{v}_w - \boldsymbol{\mu}_t))}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_t|}}$$

Multinomials become multivariate Gaussians with d dimensions.

Standard Expectation Maximization

For both ideas, we can use the *Expectation Maximization Algorithm* to estimate model parameters.

Standard EM optimizes $L(\theta) = \log P_{\theta}(\mathbf{w})$. The E-step computes the expected counts for the emissions:

$$e_{(t,w)} \leftarrow \mathbb{E}_{\omega} \left[\sum_{i} \mathbb{I}(t,w_{i}) \middle| \mathbf{w} \right]$$
 (2)

The expected counts are then normalized in the M-step to re-estimate θ :

$$\omega_w^{(t)} \leftarrow \frac{e_{(t,w)}}{\sum_{w'} e_{(t,w')}} \tag{3}$$

The expected counts can be computed efficiently using the Forward-Backward algorithm (aka Baum-Welch algorithm).

Expectation Maximization for HMMs with Features

Now the E-step first computes $\omega_w^{(t)}$ given λ as in (1), then it computes the expectations as in (2) using Forward-Backward.

The M-step now optimizes the regularized expected log likelihood over all word-tag pairs:

$$\ell(\lambda, \mathbf{e}) = \sum_{(t,w)} e_{(t,w)} \log \omega_w^{(t)}(\lambda) - \kappa ||\lambda||_2^2$$

To compute $\ell(\lambda, \mathbf{e})$, we use a general gradient-based search algorithm, e.g., the LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) algorithm.

HMMs with Features

The key advantage of Berg-Kirkpatrick et al.'s (2010) approach is that we can now add arbitrary features to the HMM:

BASIC: $\mathbb{I}(w = \cdot, t = \cdot)$

CONTAINS-DIGIT: Check if w contains digit and conjoin with t:

 $\mathbb{I}(containsDigit(w) = \cdot, t = \cdot)$

CONTAINS-HYPHEN: $\mathbb{I}(containsHyphen(w) = \cdot, t = \cdot)$

INITIAL-CAP: Check if the first letter of w is

capitalized: $\mathbb{I}(isCap(w) = \cdot, t = \cdot)$

N-GRAM: Indicator functions for character n-grams

of up to length 3 present in w.

A standard HMM only has the BASIC features. (\mathbb{I} is the indicator function; returns 1 if the features is present, 0 otherwise.)

Results

Embeddings

Estimation Results

Embeddings as Multivariate Gaussians

Given a tag t, instead of a word w, we generate a pretrained embedding $\mathbf{v}_w \in \mathbb{R}^d$ (d dimensionality of the embedding).

We assume that \mathbf{v}_w is distributed according to a multivariate Gaussian with the mean vector $\boldsymbol{\mu}_t$ and covariance matrix $\boldsymbol{\Sigma}_t$:

$$\omega_w^{(t)} = p(\mathbf{v}_w; \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) = \frac{\exp(-\frac{1}{2}(\mathbf{v}_w - \boldsymbol{\mu}_t)^{\top} \boldsymbol{\Sigma}_t^{-1}(\mathbf{v}_w - \boldsymbol{\mu}_t))}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_t|}}$$

This means we assume that the embeddings of words which are often tagged as t are concentrated around the point μ_t , where the concentration decays according to Σ_t .

Embeddings as Multivariate Gaussians

Now, the joint distribution over a sequence of words $\mathbf{w} = w_1 \dots w_n$ is represented as a sequence of vectors $\mathbf{v} = v_{w_1} \dots v_{w_n}$. The joint probability of a word and tag sequence is:

$$P(\mathbf{t}, \mathbf{w}) = \prod_{i=1}^{n} P(t_i | t_{i-1}) p(\mathbf{v}_w; \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$$

We again estimate the parameters μ_t and Σ_t using Forward-Backward.

EM for HMMs with Embeddings

In each EM iteration, we update μ_{t^*} :

$$m{\mu}_{t^*}^{\mathsf{new}} = rac{\sum_{\mathbf{v} \in \mathcal{T}} \sum_{i=1...n} p(t_i = t^* | \mathbf{v}) \cdot \mathbf{v}_{w_i}}{\sum_{\mathbf{v} \in \mathcal{T}} \sum_{i=1...n} p(t_i = t^* | \mathbf{v})}$$

where \mathcal{T} is a data set of word embedding sequences \mathbf{v} , each of length $|\mathbf{v}| = n$, and $p(t_i = t^*|\mathbf{v})$ is the posterior probability of label t^* at position i in the sequence \mathbf{v} .

EM for HMMs with Embeddings

In each EM iteration, we update Σ_{t^*} :

$$\mathbf{\Sigma}_{t^*}^{new} = \frac{\sum_{\mathbf{v} \in \mathcal{T}} \sum_{i=1...n} p(t_i = t^* | \mathbf{v}) \cdot \delta \delta^{\top}}{\sum_{\mathbf{v} \in \mathcal{T}} \sum_{i=1...n} p(t_i = t^* | \mathbf{v})}$$

where $\pmb{\delta} = \pmb{\mathsf{v}}_{w_{i}} - \pmb{\mu}_{t^{*}}^{new}$.

Model Comparison

Compare related models for unsupervised PoS tagging:

- HMM with multinomial emissions;
- HMM with MaxEnt emissions (Berg-Kirkpatrick et al. 2010);
- conditional random field (CRF) autoencoder with multinomial reconstructions;
- HMM with Gaussian emissions;
- CRF autoencoder with Gaussian reconstructions.

Note: CRF models will not be covered in this course.

Setup

- Train models on CoNLL shared task data for eight languages;
- for evaluation, map language-specific gold-standard tag sets onto universal PoS tags;
- use skip-gram embeddings with window size 1 and d = 100;
- train embeddings on largest corpus available for each language;
- estimate μ_t as above;
- estimating Σ_t did not lead to improvement; assume fixed, diagonal co-variance matrix;
- HMM parameters initialized randomly;
- tune hyperparameters on English PTB and then keep fixed;
- evaluate using V-measure.

Universal PoS Tagset

ADJ adjective **ADP** adposition **ADV** adverb AUX auxiliary verb CONI coordinating conjunction DFT determiner INTJ interjection NOUN noun NUM numeral PART particle PRON pronoun **PROPN** proper noun **PUNCT** punctuation **SCONJ** subordinating conjunction **SYM** symbol **VERB** verb X other

Results: Effect of Model

Results: Standard Skip-gram vs. Structured Skip-gram

Results: Window Size

Results: Dimensionality of Embeddings

Summary

- Word embeddings improve unsupervised PoS tagging;
- Gaussian HMM outperforms MaxEnt HMM and CRF autoencoder;
- Gaussian CRF autoencoder similar to Gaussian HMM;
- but: models with embeddings use a lot more training data;
- structured skip-gram slightly outperform skip-gram;
- embeddings with d = 20 outperform embeddings with high dimensionality;
- window size of 1 is optimal.

References

- Berg-Kirkpatrick, Taylor, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. 2010. Painless unsupervised learning with features. In *Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics*. Uppsala, pages 582–590.
- Jurafsky, Daniel and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Pearson Education, Upper Saddle River, NJ, 2 edition.
- Lin, Chu-Cheng, Waleed Ammar, Chris Dyer, and Lori Levin. 2015.
 Unsupervised POS induction with word embeddings. In *Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics*. Denver, CO, pages 1311–1316.