Classification

Boston University CS 506 - Lance Galletti

age	Tumor size	malignant?
20	9	no
30	16	yes
40	18	no
50	28	yes

age	Tumor size	malignant?
20	9	no
30	16	yes
40	18	no
50	28	yes

age	Tumor size	malignant?
20	9	no
30	16	yes
40	18	no
50	28	yes

age	Tumor size	malignant?
20	9	no
30	16	yes
40	18	no
50	28	yes

CLASS

PREDICTORS / FEATURES / ATTRIBUTES

age	Tumor size	malignant?
20	9	no
30	16	yes
40	18	no
50	28	yes

age	Tumor size	malignant?
20	9	no
40	18	no
30	16	yes
50	28	yes

age	Tumor size	malignant?
20	9	no
40	18	no
30	16	yes
50	28	yes

age	Tumor size	malignant?
20	9	no
40	18	no
30	16	yes
50	28	yes

age	Tumor size	malignant?
20	9	no
40	18	no
30	16	yes
50	28	yes

What property of age and tumor size is unique to malignant tumors?

Could be because we have wrong or insufficient attributes for the task

Could be because the problem just doesn't

Could be because the problem just doesn't

Could be because the problem just doesn't

The feasibility of classification task completely depends on the relationship between the attributes predictors) and the class.

For example if we used age instead of weight for elephants and rhinos

Age cannot distinguish rhinos and elephants

Takeaways

- There could be many correct answers
- There could be no correct answers
 - But the model could **still be useful** if it's more or less correct most of the time
- Whether a task is feasible depends on:
 - The relationship between the predictors and the class

Lots of Questions

- How do we know if we have good predictors for a task?
- How do we know we have done a good job at classification?

Lots of Questions

- How do we know if we have good predictors for a task?
- How do we know we have done a good job at classification?

What constitutes a good feature/predictor?

What constitutes a good feature/predictor?

What constitutes a good set of features/predictors?

- What constitutes a good feature/predictor?
- What constitutes a good set of features/predictors?
- BUT....

Correlation is not causation.

Correlation VS Causation

1. Temperature and ice cream sales are positively correlated

Correlation VS Causation

- 1. Temperature and ice cream sales are positively correlated
 - a. Temperature increases cause ice cream sales to spike
 - b. Ice cream sale increases do not cause the temperature to rise

Correlation VS Causation

- 1. Temperature and ice cream sales are positively correlated
 - a. Temperature increases cause ice cream sales to spike
 - b. Ice cream sale increases do not cause the temperature to rise
- Sleeping with shoes on is strongly correlated with waking up with a headache.

Correlation VS Causation

- 1. Temperature and ice cream sales are positively correlated
 - a. Temperature increases cause ice cream sales to spike
 - b. Ice cream sale increases do not cause the temperature to rise
- Sleeping with shoes on is strongly correlated with waking up with a headache.
 - a. But neither causes the other...
 - b. There's a third common factor causing this correlation: going to bed drunk.

Testing for causality requires specific testing / experimentation with a control group

Lots of Questions

- How do we know if we have good predictors for a task?
- How do we know we have done a good job at classification?

Testing without cheating. Learning not memorizing.

- Testing without cheating. Learning not memorizing.
 - Split up our data into a training set and a separate testing set
 - Use the training set to find patterns and create a model
 - Use the testing set to evaluate the model on data it has not seen before

train

test

- Testing without cheating. Learning not memorizing.
 - Split up our data into a training set and a separate testing set
 - Use the training set to find patterns and create a model
 - Use the testing set to evaluate the model on data it has not seen before
- Also allows us to check that we have not learned a model TOO SPECIFIC to the dataset
 - Overfitting vs underfitting

train

test

Underfitting VS Overfitting

Underfitting VS Overfitting

mistakes made by the model

Complexity of the model

- Testing without cheating:
 - Split up our data into a training set and a separate testing set
 - Use the training set to find patterns and create a model
 - Use the testing set to evaluate the model on data it has not seen before
- Also allows us to check that we have not learned a model TOO SPECIFIC to the dataset
 - Overfitting vs underfitting
 - Goal is to capture general trends
 - Watch out for outliers and noise

Outliers and Noise

Outliers and Noise

Outliers and Noise

- Testing without cheating:
 - Split up our data into a training set and a separate testing set
 - Use the training set to find patterns and create a model
 - Use the testing set to evaluate the model on data it has not seen before
- Also allows us to check that we have not learned a model TOO SPECIFIC to the dataset
 - Overfitting vs underfitting
 - Goal is to capture general trends
 - Watch out for outliers and noise
- The types of mistakes made matters

Types of mistakes

- Testing for a rare disease
 - Out of 1000 data points, only 10 have this rare disease. A model that simply tells folks they don't have the disease will have an accuracy of 99%.

Part 1

Classification

- Training Step
 - Create the model based on the examples / data points in the training set
- Testing Step
 - Use the model to fill in the blanks of the testing set
 - Compare the result of the model to the true values

Instance-Based Classifiers

- Use the stored training records to predict the class label of unseen cases
- Rote-learners:
 - Perform classification only if the attributes of the unseen record exactly match a record in our training set

Instance-Based Classifiers: Training Step

Instance-Based Classifiers: Applying the model

age	Tumor size	malignant?			
20	10	no	200	Tumor size	malignant?
30	15	yes	age	Turrior Size	mangnant?
40	20	no	20	10	?
50	25	yes			

Instance-Based Classifiers: Applying the model

age	Tumor size	malignant?			
20	10	no	200	Tumor sizo	malianant2
30	15	yes	age	Tumor size	malignant?
40	20	no	20	10	no
50	25	yes			

Instance-Based Classifiers

- Use the stored training records to predict the class label of unseen cases
- Rote-learners:
 - Perform classification only if the attributes of the unseen record exactly match a record in our training set

Instance-Based Classifiers

age	Tumor size	malignant?				
20	10	no		200	Tumor size	malignant?
30	15	yes	*	age	Turrior Size	mangnant!
40	20	no		25	5	?
50	25	yes				

Use **SIMILAR** records to perform classification

Requires:

- Training set
- Distance function
- Value for k

How to classify an unseen record:

- 1. Compute distance of unseen record to all training records
- 2. Identify the k nearest neighbors
- 3. Aggregate the labels of these k neighbors to predict the unseen record class (ex: majority rule)

Aggregation methods:

- Majority rule
- Weighted majority based on distance ($w = 1/d^2$)

Scaling issues:

- Attributes should be scaled to prevent distance measures from being dominated by one attribute. Example:
 - o Age: 0 -> 100
 - o Income: 10k -> 1million

Scaling Attributes

Choosing the value of k:

- If k is too small ->
 - sensitive to noise points + doesn't generalize well
- If k is too big ->
 - neighborhood may include points from other classes

Pros:

Simple to understand why a given unseen record was given a particular class

Cons:

- Expensive to classify new points
- KNN can be problematic in high dimensions (curse of dimensionality)

