Lab 5: Monte Carlo

SI1136 Simulation and Modeling

Axel Strömberg January 15, 2019

Contents

5	1
5	2

- 5.2
- 5.3
- 5.4

Appendix

5.1

5.1 Project

Use the Metropolis method to calculate

$$\langle x \rangle = \frac{\int_0^\infty x e^{-x} dx}{\int_0^\infty e^{-x} dx} . \tag{1}$$

Try different, also sufficiently large values of the parameter delta. Study σ/N and compare with the actual difference to the exact answer.¹

¹Note: N_0 is not critical when $x_0 = 0$.

5.1 Background

Exact value of the integral (1).

$$\langle x \rangle = \frac{\int_0^\infty x e^{-x} dx}{\int_0^\infty e^{-x} dx} = \frac{\left[-x e^{-x}\right]_0^\infty + \int_0^\infty e^{-x} dx}{\int_0^\infty e^{-x} dx} = 1.$$

3

5.1 Method i

10 000 points are generated for $\delta = 0.0001, 0.0002, \dots, 0.1$ after the first 100 points are thrown. Starting parameter $x_0 = 1$ since this is x_i should converge to.

5.1 Results i

5.1 Results ii

5.1 Results iii

- **small** δ : For small $\delta < 0.01, \langle x \rangle$ varies around the true value $\langle x \rangle = 1$.
- large δ : For large $\delta > 0.01, \langle x \rangle$ increases linearly and fluctuates.
- σ/N : σ/N increases as δ increases (which is expected). σ/N is several (\approx 5) orders of magnitudes smaller than the actual difference to the exact answer. Since
 - $N=10\,000$, $\sigma\sim$ the actual difference to the exact answer.

5.2

5.2 Project

Implement the Lennard-Jones potential with $\sigma=1$ and $\varepsilon=1$ in the template. Try to find a large MC step size that gives reasonable acceptance. How does the step size affect the convergence of the energy?

5.2 Background

Lennard-Jones potential.

The Lennard-Jones potential approximates the interaction between a pair of neutral atoms or molecules to the potential

$$V_{LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] .$$

9

5.2 Method

A 5 000 step Monte-Carlo simulation is executed for each δ in

5.2 Results i

5.2 Results ii

small δ : Poor convergence. Small variance.

large δ : Good convergence. Large variance.

best δ : 0.05 < δ < 0.1.

5.3

5.3 Project

Run LJ simulations at T=1 and 0.2. What differences in collective behavior do you observe between 1 and 0.2 at long times? A physics question: can you explain what you see?

5.3 Method

A 5 000 step Monte-Carlo simulation is executed with $\delta=0.05$ for each $\,T\,$ in

Tarray =
$$[0.2, 0.4, 0.6, 0.8, 1]$$
.

5.3 Results i

5.3 Results ii

small T: Small variance. Converges to small V.

large T: Large variance. Converges to large V.

physical interpretation: T is determined by the average kinetic energy of the particles. Large $T \implies$ higher movement \implies more chaotic system.

Furthermore, large $T \implies$ greater energy \implies greater V.

convergence: Convergence is similar for all T.

5.4

5.4 Project

Use MC to calculate the average energy and heat capacity at several temperatures between $\mathcal{T}=0.2$ and 1. Can you explain the behavior of the heat capacity by looking at the sampled configurations?

5.4 Method i

The heat capacity is determined for T in

$$TArray = [0.1, 0.15, 0.2, ..., 1]$$

by averaging over $2\,000 \leq step \leq 10\,000$.

5.4 Results i

5.4 Results ii

The heat capacity decreases as the temperature increases.

Appendix

Source code

```
Available at:
```

```
\verb|https://github.com/axelstr/SI1336-Simulations-and-Modeling/tree/master/1%20Monte%20Carlo||
```