Explaining Patterns of Malnutrition among Children in Uganda

Jing Hao 04/15/2013

Outline

- Introduction
- Data
- Modeling child stunting and wasting
- Results
- Conclusions and further research

Source: http://www.turkey-visit.com/uganda-map.asp

FAO, 2006

Background

Child malnutrition is a severe problem in Uganda

- Causes 40% of child deaths
- Stunting rate: 38%
- Wasting rate: 6%
- Underweight rate: 16%

Mothers' education

Maternal health and breastfeeding

Regional differences

Clean water and improved sanitation

Agricultural yields <1/3 potential yield

over-dependence on rainfall

limited access to farm credit

Research Questions

- Which factors play the most important roles in improving child growth outcomes in Uganda?
- Do differences in agricultural potential and productivity help to explain differences in rates of child malnutrition?

Data

Data Sources and Construction

- 2006 Uganda Demographic and Health Survey (UDHS)
- Child characteristics
- Mother characteristics
- Father and household characteristics

Merged by nesting of district, urban/rural, sex of head of household and farm size

- 2005/06 Uganda National Household Survey (UNHS)
- Agricultural performance
- Distance to nearest health facility

Merged by DHS cluster

- Normalized Difference Vegetation Index (NDVI)
- Remotely sensed data at a 5 km spatial resolution
- [-1, 1]
- Jan 2001 Dec 2011

Child Z-scores

- Used as indicators of child nutritional status
- $Z_i = X i X / \sigma$

Note: Data for 2,176 Ugandan children below age five, from 2006 UDHS.

- HAZ<-2 SD indicates stunting (chronic malnutrition)
- WHZ<-2 SD indicates wasting (acute malnutrition)

Mother Characteristics

Household Characteristics

NDVIs

Modeling of child stunting and wasting

OLS Approach

$$\begin{split} Z_{i} &= \alpha_{1} + \beta_{1i} A_{i} + \epsilon_{1j} \\ Z_{i} &= \alpha_{2} + \beta_{2i} A_{i} + \tau_{2i} B_{i} + \epsilon_{2j} \\ Z_{i} &= \alpha_{3} + \beta_{3i} A_{i} + \tau_{3i} B_{i} + \gamma_{3i} C_{i} + \epsilon_{3j} \\ Z_{i} &= \alpha_{4} + \beta_{4i} A_{i} + \tau_{4i} B_{i} + \gamma_{4i} C_{i} + \eta_{4i} D_{i} + \epsilon_{4j} \\ Z_{i} &= \alpha_{5} + \beta_{5i} A_{i} + \tau_{5i} B_{i} + \gamma_{5i} C_{i} + \eta_{5i} D_{i} + \delta_{5i} E_{j} + \epsilon_{5j} \end{split}$$

Z_i –HAZ or WHZ of the ith child

A_i – child characteristics

B_i – mother characteristics

C_i – father and household characteristics

D_i – UNHS variables summarized at the district level (with 8-level nesting)

E_i – NDVI variables matched at the cluster level

$$\varepsilon_{ii} \sim N(0, \sigma^2), i=1, 2, ..., n$$

Logit Approach

```
\ln \left[ p(\theta \downarrow 1 i = 1 | A \downarrow i) / 1 - p(\theta \downarrow 1 i = 1 | A \downarrow i) \right] = \alpha + \beta \Delta
                                                                                   Odds Ratio
                                                                                   For binary var: P(Y=1|\theta=1)/P(Y=0|\theta=1)
 ln[p(\theta\downarrow 2i=1|A\downarrow i,B\downarrow i)/1-p(\theta\downarrow 2i=1|A\downarrow i]
                                                                                   \theta = 1
\beta_{2i}A_i+\tau_{2i}B_i
                                                                                   For continuous var: P(Y=m+1)
                                                                                   \theta=1)/P(Y=m|\theta=1)
 ln/p(\theta \downarrow 3i=1|A\downarrow i,B\downarrow i,C\downarrow i)/1-p(\theta \downarrow 3i=1|A\downarrow i,B\downarrow i,
C(i) = \alpha_3 + \beta_{3i}A_i + \tau_{3i}B_i + \gamma_{3i}C_i
 ln[p(\theta \downarrow 4i=1|A\downarrow i,B\downarrow i,C\downarrow i,D\downarrow i)/1-p(\theta \downarrow 4i=1|A\downarrow i,B\downarrow i,
 C\downarrow i, D\downarrow i) = \alpha_4 + \beta_{4i}A_i + \tau_{4i}B_i + \gamma_{4i}C_i + \eta_{4i}D_i
 ln[p(\theta\downarrow 5i=1|A\downarrow i,B\downarrow i,C\downarrow i,D\downarrow i,E\downarrow i)/1-p(i=1|A\downarrow i,B\downarrow i,E\downarrow i)
\theta \downarrow i – binary outcome of child nutritional status
1 = \text{not wasted}, 0 = \text{wasted}
```

Modeling cont. Control Variables

- 11 ecological zones
- 24 monthly NDVI anomalies
- ANDVI=DNVI-NDVI
- For HAZ or Stunting (0/1): child birth year and utero
- For WHZ or Wasting (0/1): years 2005 and 2006
- Standard errors are clustered by DHS reporting areas

Results

OLS Estimates for HAZ

	variable name	child	mother	household	l UNHS	NDVI
	age	-0.016***	-0.014***	-0.014***	-0.014***	-0.014***
child	twin (1/0)	-0.828***	-0.878**	-0.831***	-0.802***	-0.818***
	anemia (1/0)	-0.416***	-0.346***	-0.337***	-0.357***	-0.357***
	age		0.027***	0.021*	0.022*	0.022*
41	BMI		0.029**	0.020	0.022*	0.021*
mother	breastfeeding (1/0)	-0.224**	-0.203**	-0.190*	-0.191*
	breastfeeding time		-0.019***	-0.018***	-0.017***	-0.017***
	wealth index score			0.013**	0.013**	0.014**
household	urban/rural (1/0)			0.040	0.375***	0.328**
	internally displaced	l person (ID	P) (1/0)	-0.612*	-0.455*	-0.435*
	crop yield				-0.034*	-0.035*
IINIIIC	sales ratio				-0.987**	-0.965**
UNHS	purchased inputs p	ercentage			0.689**	0.687**
	distance to a neares	st health uni	it		0.012***	0.012***
\mathbb{R}^2		0.130	0.158	0.169	0.181	0.182
N		2,158	2,158	2,158	2,158	2,158

Note: p<0.10, p<0.05, p<0.01. Non-significant variables excluded from table.

Logistic Estimates for Child Stunting

	variable name	child	mother	household	UNHS	NDVI
	age	0.981***	0.983***	0.982***	0.981***	0.982***
child	twin (1/0)	0.334***	0.326***	0.340***	0.368***	0.367***
	anemia (1/0)	0.613***	0.655***	0.651***	0.633***	0.631***
	age		1.047***	1.040***	1.041***	1.041***
	BMI		1.061***	1.054***	1.058***	1.057***
mother	anemia (1/0)		1.159**	1.171**	1.193**	1.191**
	breastfeeding time		0.984*	0.986*	0.986	0.986
	child number		0.924***	0.932***	0.926***	0.926***
household	wealth index score			1.017*	1.017*	1.017*
UNHS	crop yield				0.931***	0.931***
	distance to a nearest	health unit			1.012***	1.012***
Pseudo R2	2	0.0751	0.09490	0.1004	0.1067	0.1067
n		2.158	2.158	2.158	2.158	2.158

Note: p<0.10, p<0.05, p<0.01. Non-significant variables excluded from table.

OLS Estimates for WHZ

	variable name	child	mother	household	UNHS	NDVI
	age	0.010***	0.013***	0.013***	0.013***	0.013***
1 11 1	twin (1/0)	-0.292**	-0.310**	-0.301**	-0.278**	-0.272**
child	bcg vaccine (1/0)	0.309**	0.268*	0.269*	0.263*	0.261*
	anemia (1/0)	-0.216***	-0.147***	-0.162***	-0.169***	-0.173***
	mother's BMI		0.075***	0.077***	0.078***	0.078***
mother	mother's pregnancy	(1/0)	-0.166**	-0.174**	-0.173**	-0.173**
	breastfeeding time		-0.014***	-0.013***	-0.013***	-0.013***
household altitude			-0.02	-0.021*	-0.025*	
UNHS	distance to a neares	t health unit			0.004*	0.005*
NDVI	ndvi06harv					0.002*
\mathbb{R}^2		0.077	0.123	0.126	0.128	0.130
N		2,158	2,158	2,158	2,158	2,158

Note: p<0.10, p<0.05, p<0.05, p<0.01. Non-significant variables excluded from table.

Logistic Estimates for Child Wasting

	variable	child	mother	household	UNHS	NDVI
	age	1.052***	1.060***	1.059***	1.059***	1.059***
	sex (1/0)	0.793**	0.743***	0.769**	0.773**	0.772**
child	twin (1/0)	0.235***	0.206***	0.222***	0.251***	0.262**
	bcg vaccine (1/0)	2.146*	2.076	2.167	2.090	2.090
	anemia (1/0)	0.711*	0.835	0.822	0.830	0.829
	BMI		1.158***	1.180***	1.185***	1.185***
mother	breastfeeding time		0.963**	0.966**	0.965**	0.966**
1 1. 1.1	age of head of househ	old		0.981*	0.980*	0.980*
household	number of eligible we		>	0.826***	0.837***	0.835***
Pseudo R2		0.1358	0.1602	0.1768	0.1808	0.1814
n		2,158	2,158	2,158	2,158	2,158

Note: p<0.10, p<0.05, p<0.01. Non-significant variables excluded from table.

OLS Estimates among Sub-groups

		rural, non-IDP camps		<u>urba</u>	an only	IDP camps only	
	variable	HAZ	WHZ	HAZ	WHZ	HAZ	WHZ
child	age	-0.014***	0.014***	-0.012**	0.001	-0.003	0.013**
	twin (1/0)	-1.059***	-0.177*				
	anemia (1/0)	-0.395***	-0.196***				
	age	0.021*	-0.002			0.024	-0.007
	education	-0.007	-0.001	0.040*	0.018	-0.055	-0.023
mother	BMI	0.016	0.076***	0.016	0.067***	0.089*	0.156***
	pregnancy (1/0)	-0.164	-0.177**				
	breastfeeding time	-0.016***	-0.011***	-0.01	-0.026***	-0.049***	-0.029**
	wealth	0.012*	-0.001	0.040***	-0.018*	-0.005	0.053*
	dependency	-0.095*	-0.016	0.122	-0.329***	0.164*	0.011
household	safe water (1/0)	0.228	-0.147	-0.275*	-0.279	0.547*	0.116
	TLU	0.035**	0.002	-0.026*	0.015		
	altitude	-0.006	-0.040*	0.011	0.003	-0.032	0.191
HAILIC	crop yield	-0.031	-0.016*	-0.075*	0.064		
UNHS	disthealth	0.011***	0.005				
NIDVI	ndvi05harv		0.002**				
NDVI	ndvi06harv		-0.002**				
n		1733	1733	204	204	221	221

Note: p<0.10, p<0.05, p<0.01. Non-significant variables excluded from table.

Logistic Estimates among Sub-groups

		rural, non-IDP camps		<u>urba</u>	<u>urban only</u>		ps only
	variable name	HAZ	WHZ	HAZ	WHZ	HAZ	WHZ
child	age	0.981***	1.066***	0.995	1.026	0.995	1.068*
	twin (1/0)	0.297***	0.315**				
	anemia (1/0)	0.671***	0.854				
	age	1.038***	1.038			1.037	0.982
	BMI	1.045***	1.235***	1.059*	1.057	1.127	1.163
41	anemia (1/0)	1.166*	1.132				
mother	pregnancy (1/0)	-0.164	-0.177**				
	breastfeeding time	0.988	0.968	1.009	0.926	0.932***	0.957
	child number	0.908***	0.925				
	dad work	1.318	0.640	0.443***	0.267	0.823	0.641
	hoh age	1.007	0.976*			1.023**	1.020
household	hoh sex (1/0)	1.066	0.883	0.406***	1.385	1.540	2.064
	wealth	1.023**	1.016	1.027	0.968	0.968	1.148
	dependency	0.961	1.017	0.963	0.345**	* 0.935	0.714
	crop yield	0.940**	0.987	0.858**	1.129		
UNHS	sales ratio	0.505	0.992	0.041**	0.087		
	disthealth	1.013***	1.029				
NDVI	ndvi05harv		0.002**				
n			1733	1733	204	204	221

Note: *p<0.10, **p<0.05, ***p<0.01. Non-significant variables excluded from table.

Conclusions and Further Research

Conclusions

- Child and mother characteristics play the most important role in child growth in Uganda
- Agricultural variables nested at the district level have only limited explanatory power
- Average NDVI values corresponding to recently preceding harvest months are positively correlated with a short-term measure of child wasting (WHZ)
- Factors associated with child malnutrition appear to differ across sub-regions

Limitations and Further Research

• Children in the same nesting with different nutritional status are tagged with the same UNHS information

• NDVI values in general are found to be of limited use in explaining child Z-scores

• This research uses data from DHS and UNHS in 2006, surveys for other years could be analyzed.

Questions?