Tuesday Reading Assessment: Unit 4, Reactance and Impedance

Prof. Jordan C. Hanson

April 8, 2024

1 Memory Bank

- $X_{\rm C} = 1/(2\pi fC)$... The reactance of a capacitor with capacitance C, at frequency f.
- $X_{\rm L}=2\pi f L$... The reactance of an inductor with inductance L, at frequency f.
- $Z_{\rm tot} = \sqrt{R^2 + (X_{\rm L} X_{\rm C})^2}$... The total impedance of a series circuit with resistance R, and reactances $X_{\rm C}$ and $X_{\rm L}$.
- $\tau=RC$... The time constant of an RC circuit.
- $f_0 = \frac{1}{2\pi\sqrt{LC}}$... The resonance frequency of an RLC circuit.

2 Reactance, Impedance, and Waveforms

- 1. (a) What is the reactance of a capacitor with $C=0.1~\mu\mathrm{F}$ at a frequency $f=1~\mathrm{MHz?}$ (b) What will the reactance be at $f=0.5~\mathrm{MHz?}$ (c) If this capacitor is installed in an RC circuit with a 50Ω resistor, what is the total impedance? (d) What is the time constant of this circuit?
- 2. (a) What is the total impedance of an RLC circuit at f=10 kHz, if R=100 Ω , and C=10 pF, and L=1 μ H? (b) What is the resonance frequency of this circuit?
- 3. An amplitude modulated radio wave is generated by a mixer based on an LC resonating circuit (see Fig. 1). The carrier, with frequency $f_{\rm C}$, and the audio, with frequency $f_{\rm A}$, are mixed. The modulated result is comprised of two frequencies: $f_{\rm C} f_{\rm A}$, and $f_{\rm C} + f_{\rm A}$. (a) If we have an audio signal at 4 kHz and a carrier at 1 MHz, what are the final frequencies? (b) Given what you know about filtering, how would you construct a circuit that only responds to the signal at $f_{\rm C} + f_{\rm A}$?

Figure 1: An example of an amplitude modulated (AM) waveform.