Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

~	Congra	atulations! You passed!	Next Item	
	~	1 / 1 points		
	1. Which notation would you use to denote the 3rd layer's activations when t input is the 7th example from the 8th minibatch?			
	0	$a^{[3]\{8\}(7)}$		
	Corre	ect		
		$a^{[3]\{7\}(8)}$		
		$a^{[8]\{3\}(7)}$		
		$a^{[8]\{7\}(3)}$		
	~	1 / 1 points		
	2. Which with?	of these statements about mini-batch gradient descent d	o you agree	
		Training one epoch (one pass through the training set) to batch gradient descent is faster than training one epoch batch gradient descent	_	

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm

processes all mini-batches at the same time (vectorization).

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Correct

1/1 points 4.

Suppose your learning algorithm's cost J, plotted as a function of the $Optimization_{u}$ algorithm's, looks like this:

10/10 points (100%)

Quiz, 10 questions

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.			
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.			
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.			
O	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.			
Correct				

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with eta=0.5 to track the temperature: $v_0=0$, $v_t=eta v_{t-1}+(1-eta) heta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$v_2=10$$
, $v_2^{corrected}=10$

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
, $v_2^{corrected}=10$

Correct

1/1 points

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = 0.95^t lpha_0$$

$$lpha = rac{1}{\sqrt{t}}\,lpha_0$$
 $lpha = e^tlpha_0$

$$\bigcirc \quad \alpha = e^t \alpha_0$$

Correct

$$igcap lpha = rac{1}{1+2*t}\,lpha_0$$

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing eta will shift the red line slightly to the right.

Un-selected is correct

lacksquare Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Quiz, 10 questions

Decreasing

Decreasing β will create more oscillation within the red line.

Optimization algorithms

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

10/10 points (100%)

Increasing β will create more oscillations within the red line.

Un-selected is correct

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

/13/2018	Coursera Online Courses From Top Universities. Join for Free Coursera	
Optimizatio	(1) is gradient descent with momentum (small eta), (2) is gradient on $algorithms$	10/10 points (100%)
	1/1 points	
	9. Suppose batch gradient descent in a deep network is taking excessively lot to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check a that apply)	
	Try mini-batch gradient descent Correct	
	Try tuning the learning rate $lpha$	
	Correct	
	Try better random initialization for the weights Correct	
	Try using Adam Correct	
	Try initializing all the weights to zero	

Un-selected is correct

10/10 points (100%)

Quiz, 10 questions

Which of the following statements about Adam is False?

