Estadística I

Tercero del grado en Matemáticas, UAM, 2018-2019

Examen de la convocatoria extraordinaria, 14-6-2019

Ejercicio 1. (2 puntos) Consideramos una muestra aleatoria (X_1, X_2, X_3, X_4) de tamaño 4 de una variable $X \sim \mathcal{N}(\mu, \sigma^2)$, con $\mu = 0$ y $\sigma^2 = 2$.

a) Definimos el vector aleatorio $\mathbb{Z} = (Z_1, Z_2, Z_3, Z_4)^{\mathsf{T}}$ dado por

$$\begin{cases}
Z_1 = X_1 + X_2 \\
Z_2 = X_1 - 2X_2 + X_3 \\
Z_3 = X_2 + X_3 \\
Z_4 = -X_2 + X_4
\end{cases}$$

Calcula

$$V(Z_2), V(Z_1 + Z_2)$$
 y $cov(Z_1, Z_2).$

b) Seguimos considerando las variables (X_1,X_2,X_3,X_4) y (Z_1,Z_2,Z_3,Z_4) del apartado anterior.

Considera las siguientes variables aleatorias:

$$A = \frac{Z_1 + Z_3 + Z_4}{4}$$
 y $B = \frac{1}{3} \sum_{i=1}^{4} (X_i - \overline{X})^2$.

Calcula la probabilidad de que ocurra, o bien que |A| < 1/5, o bien que B < 2.

Ejercicio 2. (3 puntos) La variable X toma valores 0, 1, 2 y 3 con probabilidades p, 2p, 2p y 1 - 5p. Aquí, p es un parámetro, con $p \in (0, 1/5)$.

Para muestras aleatorias de tamaño n de X, se consideran dos estimadores de p:

- $T_1 = (3 \overline{X})/9$, donde \overline{X} es la media muestral;
- \bullet T_2 es el promedio de ceros en la muestra.
- a) Comprueba que ambos estimadores son insesgados.
- b) Determina cuál de los dos es más eficiente.
- c) Calcula la cota de Cramér–Rao para la varianza de estimadores insesgados de p con muestras aleatorias de X de tamaño n. ¿Es alguno de los estimadores anteriores $(T_1 \ y \ T_2)$ de mínima varianza?

Ejercicio 3. (2 puntos) Queremos construir intervalos de confianza para el parámetro $p \in (0,1)$ con muestras aleatorias de tamaño n de una variable $X \sim \text{BER}(p)$. Sea \overline{X} la variable media muestral (para muestras de tamaño n).

a) Obtén un resultado de normalidad asintótica para la variable

$$T = \frac{\overline{X} - p}{\sqrt{\overline{X}(1 - \overline{X})}}.$$

b) Utiliza el resultado anterior para construir un intervalo de confianza (aproximadamente) $1-\alpha$ para p cuando n es muy grande.

Ejercicio 4. (1 punto) Disponemos de una muestra aleatoria (x_1, \ldots, x_{75}) de tamaño 75 de una variable X que sigue una normal $\mathcal{N}(\mu, \sigma^2)$, donde $\sigma^2 = 25$. Aquí, μ es un parámetro desconocido.

Los datos de la muestra se han tomado en dos etapas: primero 50, y luego 25. Nos informan de que

- la media muestral de los primeros 50 datos es 13, y la cuasidesviación típica muestral, 5.3;
- la media muestral de los otros 25 datos es 15, y la cuasidesviación típica muestral, 6.1.

¿Aporta la muestra (completa) suficiente evidencia estadística como para concluir que el valor de μ es menor que 15? Justifica tu respuesta usando p-valores.

Ejercicio 5. (2 puntos) En este ejercicio consideramos una variable X que sigue una distribución de Poisson de parámetro $\lambda > 0$. Es decir,

$$\mathbf{P}(X = j) = e^{-\lambda} \frac{\lambda^{j}}{j!}$$
 para $j = 0, 1, 2, ...$

- a) Dada una muestra aleatoria (x_1, \ldots, x_n) de X, halla la estimación por máxima verosimilitud del parámetro λ .
 - b) Se desea contrastar la hipótesis

$$H_0: \lambda < 1$$

utilizando muestras aleatorias (x_1, \ldots, x_5) de X de tamaño 5.

Para ello, se diseña el siguiente test: si en la muestra (de tamaño 5) hay algún valor que sea ≥ 4 , entonces se rechaza H_0 .

Halla la función de potencia del test, y deduce (justificadamente) su nivel de significación.

Algunos valores de percentiles de la normal estándar y de la t de Student con 74 grados de libertad:

α	5%	4.5%	4.0%	3.5%	3.0%	2.5%	2.0%	1.5%	1.0%	0.5%
$\overline{z_{\alpha}}$	1.645	1.695	1.751	1.812	1.881	1.960	2.054	2.170	2.326	2.576
$t_{\{74;\alpha\}}$	1.655	1.706	1.763	1.825	1.895	1.976	2.072	2.191	2.352	2.609