

Allen-Bradley

9/Series OCI

(8520-9API)

API Developer's Guide

Important User Information

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application, Installation, and Maintenance of Solid-State Control (available from your local Allen-Bradley office), describes some important differences between solid-state equipment and electromechanical devices that should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or in part, without written permission of Allen-Bradley Company, Inc., is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage or economic loss.

Attention statements help you to:

- · identify a hazard
- avoid the hazard
- recognize the consequences

Important: Identifies information that is critical for successful application and understanding of the product.

Table of Contents

Chapter 1		
Open Control Interface (OCI) O	verview	
	OCI Data Server Overview	1-1
	Your DDE Compliant Application Program	1-2
	DDE Overview	1-3
	The OCI Data Server	1-4
	OCI Data Server Read Data Requests	1-4
	OCI Data Server Write Data Requests	1-4
	OCI Data Server Command Requests	1-5
	OCI Data Server Return and Error Codes	1-5
	Status of Commands and POKE Data Items	1-6
	Errors on Automatic Items	1-6
	Errors on Manual Items	1-6
	RSLinx OEM	1-6
	Your Development Tool (Visual Basic [™])	1-7
	Special API Development Tools	1-7
	RSLinx JBOX and RSData.OCX	1-7
	OCI Basic Display Set Source Code Routines	1-8
Chapter 2	, ,	
DDE Data Server Examples		
	DDE Conversation Overview	2-1
	DDE Server	2-1
	Topic Name	2-2
	Item Name	2-2
	Using Visual Basic	2-2
	Reading Data	2-2
	Writing Data (POKE)	2-3
	DDE Commands	2-4
	Using Microsoft Excel	2-4
Chapter 3	Ç	
OCI Basic Display Set (BDS)		
20. 240.0 2.0pia, 20. (220)	Basic Display Set Overview	3-1
	Installing the Source Code	3-2
	Installing RSData Custom OCX	3-3
	Source Code Directory Structure	3-3
	Data Files	3-4
	Basic Display Set Source Code Overview	3-5
	Basic Display Set Screen Construction	3-6
	Basic Display Set Basic Modules	3-7
	Using MASTERM.FRM	3-8
	Template to Create a Display Form	3-8
	Making a Copy of MASTER.FRM	3-8
	MASTER.FRM Recommended Subroutines	3-10
	Managing Errors on your Form	

Chapter 4 OCI Data Server Data Items

Using the Softkey Editor Utility	3-11
Changing Softkey Text	3-14
Changing the Softkey Row Pointer	3-15
Creating/Editing a Softkey	3-16
Inserting a New Screen	3-17
Creating/Editing the Screen Pointer	3-17
	3-17
Exiting Softkey Edit Mode	3-18
G .	
Using the Text Find Utility	3-20
Using the Text Find Utility	3-20
Exiting the Text Search Utility	3-21
Using the Print Utilities	3-22
Testing and Debugging Utilities	3-26
Debugging Utility	3-26
Write to Error File Utility	3-27
Data Item Format	4–1
Data Type	4-2
Read/Write	4-2
Array Indexes	4-3
AXIS_NUM	4-4
SPINDLE_NUM	4-4
NUM_CNC_DIRECTORIES	4-4
SERVO_MODULES	4-5
SERVO_NUM	4-5
M MODAL GROUP	4-6
G MODAL GROUP	4-6
SETUP BUFFERS	4-7
NUM_PP_FILES	4-7
OFFSET NUM	4-8
TOOL NUM	4-8
Control Type	4-8
Link Type	4-9
The OCI WatchList	4-11
Background/Foreground	4-13
Selecting the Process for Dual Process Controls	4-14
	4-14
Logical vs Physical Axes	_
AMP Parameter Data Items	4-16
Axis Calibration Data Items	4-18
Communication Port Data Items	4-21
Error Message Data Items	4-33
Miscellaneous Data Items	4–38
Offset Data	4-43
Operating Mode	4-46

P	AL Variable Data Items	4-47
Р	aramacro Variable Data Items	4-51
Р	art Program Directory Data Items	4-51
Р	art Program Block Data Items	4-54
Р	art Program Rotation and Scaling	4-55
Р	osition Data Items	4-56
S	pindle Data Items	4-59
S	ystem Information Data Items	4-62
Z	ones and Overtravels	4-63
Chapter 5		
OCI Data Server CNC Commands		
	NC Command Overview	5-1
	Command Arguments	5-1
R	leturn Codes	5-1
	electing the Process	5-2
	OCI Command Syntax	5-2
Α	MP Commands	5-3
	MODIFYING_AMP (no argument)	5-4
	RESTORE_AMP (no argument)	5-4
	TRANSFER_AMP_FROM_PORTA (no argument)	5-4
	TRANSFER_AMP_FROM_PORTB (no argument)	5-5
	TRANSFER_AMP_TO_PORTA (no argument)	5-5
	TRANSFER_AMP_TO_PORTB (no argument)	5-6
	TRANSFER_HOMECAL_TO_PORTA (no argument)	5-6
	TRANSFER_HOMECAL_TO_PORTB (no argument)	5-7
	TRANSFER_REVERSAL_ERROR_TO_PORTA (no argument)	5-7
	TRANSFER_REVERSAL_ERROR_TO_PORTB (no argument)	5-8
	UPDATE_AMP (no argument)	5-8
A	xis Calibration	5-8
	DELETE_ALL_AXISCAL_POINTS (no argument)	5-9
	DELETE_AXISCAL_POINT (axis_num, axis_cal_point)	5-9
	ENTER_AXISCAL_MODIFY_MODE (no argument)	5-9
	EXIT_AXISCAL_MODIFY_MODE (no argument)	5-10
	INITIALIZE_AXISCAL_TABLE (axis number, calibration_type,	
	calibration_start)	5-10
	INSERT_AXISCAL_POINT (axis_number)	5-11
	REPLACE_AXISCAL_VALUE (axis_number, axis_cal_point, value)	5-11
	RESTORE_AXISCAL (no argument)	5-12
	STOP_AXISCAL (axis_number)	5-12
	TRANSFER_AXISCAL_FROM_PORTA (no argument)	5-12
	TRANSFER_AXISCAL_FROM_PORTB (no argument)	5-13
	TRANSFER_AXISCAL_TO_PORTA (no argument)	5-13
	TRANSFER_AXISCAL_TO_PORTB (no argument)	5-14
C	communications	5-14
	AUX COM ABORT COMMAND (no argument)	5-14
	AUX_COM_BACKUP_CONFIG_TABLE ("filename")	5-15

	AUX_COM_CMD_FWD_SEARCH (search_type, "search_string")	5-15
	AUX_COM_CMD_REV_SEARCH (search_type," search_string")	5-16
	AUX_COM_CMDTBL_TO_FLASH (no argument)	5-16
	AUX_COM_CONFIG_TO_FLASH (no argument)	5-16
	AUX_COM_DOWNLOAD_FILE ("source_filename",	
	"destination_filename")	5-17
	AUX_COM_HOST_WRITE_TO_FLASH (no argument)	5-17
	AUX_COM_SENDCMD (command_index)	5-17
	COPY_DEVICE_SETUP_DEFAULTS (port_id, device_num)	5-18
	DEACTIVATE_RIO_PASSTHROUGH (no argument)	5-18
	ENTER_SERIAL_IO_MONITOR_MODE ('port_ id", "com_mode")	5-18
	EXIT_SERIAL_IO_MONITOR_MODE (no arguments)	5-19
	REPEAT_TX_SERIAL_IO (character)	5-19
	SAVE_DEVICE_SETUP (no argument)	5-20
	SINGLE_TX_SERIAL_IO (character)	5-20
	START_SERIAL_IO_MONITOR (no arguments)	5-20
	STOP SERIAL IO MONITOR (no arguments)	5-21
M	iscellaneous	5-21
	CALCULATE("calc_string")	5-21
	CLEAR_ACTIVE_ERRORS (no argument)	5-21
	CLEAR_CYCLE_TIME (no argument)	5-22
	CLEAR_ERROR_LOG (no argument)	5-22
	CLEAR_POWER_ON_TIME_OVERALL (no argument)	5-22
	CLEAR_RUNTIME (no argument)	5-22
	CLEAR WORKPIECES CUT OVERALL (no argument)	5-22
	INPUT MDI STRING ("text string")	5-22
	REFORMAT_MEMORY (no arguments)	5-23
	RELINQUISH_CONTROL (no argument)	5-23
	REQUEST_CONTROL (no argument)	5-23
	RESET_MAX_TIMES (no argument)	5-24
	STORE_OEM_MESSAGE (no arguments)	5-24 5-24
Λ.		5-2 4 5-24
U	#SETNATE TOOL LENGTH (offeet number)	
	ACTIVATE_TOOL_ENGTH (offset_number)	5-25
	ACTIVATE_TOOL_RADIUS (offset_number)	5-25
	ACTIVATE_NULFEL_OFON (affect number)	5-26
	ACTIVATE_WHEEL_GEOM (offset_number)	5-26
	ACTIVATE_WHEEL_RADIUS (offset_number)	5-27
	BACKUP_ALL_OFFSETS ("Filename_string")	5-27
	BACKUP_INTERF_TABLE ("Filename_string")	5-28
	BACKUP_RADIUS_TABLE ("Filename_string")	5-28
	BACKUP_TOOL_GEOM ("Filename_string")	5-29
	BACKUP_TOOL_WEAR ("Filename_string")	5-29
	BACKUP_WHEEL_GEOMETRY ("Filename_string")	5-30
	BACKUP_WORK_COORD ("Filename_string")	5-30
	COPY_OFFSET ("source_axis, destination_axis")	5-31
	MEASURE TOOL GEOM (tool number, axis number, ref pos) .	5-31

MEASURE_TOOL_WEAR (tool_number, axis_number, ref_pos) .	5-32
MEASURE_WHEEL_GEOM (tool_number, axis_number, ref_pos)	5-32
PAL Commands	5-33
TRANSFER_PAL_FROM_PORTB (no argument)	5-34
TRANSFER_PAL_TO_PORTA (no argument)	5-34
TRANSFER_PAL_TO_PORTB (no argument)	5-35
Paramacro Commands	5-35
BACKUP_COM1_PARAMETERS ("Filename_string")	5-36
BACKUP_COM2A_PARAMETERS ("Filename_string")	5-36
BACKUP_COM2B_PARAMETERS ("Filename_string")	5-37
BACKUP_SHARED_PARAMETERS ("Filename_string")	5-37
Part Program Commands	5-38
COPY_PART_PROGRAM ('src_filename_string", "dest_filename _string")	5-38
COPY_MEM_TO_MEM ('src_filename_string", "dest_filename_string	
mode)	5-39
COPY_MEM_TO_PORTA ('src_filename_string", "dest_name",	- 4
mode)	5-40
COPY_MEM_TO_PORTB ('src_filename_string", "dest_name",	5-40
mode)	5-40
mode)	5-41
COPY_PORTB_TO_MEM ('src_name", "dest_filename_string",	•
mode)	5-42
DEACTIVATE_PART_PROGRAM (no argument)	5-43
DELETE PART PROGRAM ("filename string")	5-43
ENTER PART PROGRAM SEARCH MODE (search type)	5-43
EXECUTE PART PROGRAM SEARCH (Search Method)	5-44
RENAME PART PROGRAM ("src filename string",	
"dest_filename_string")	5-44
RESTART_PART_PROGRAM (restart_action)	5-45
SEQUENCE_STOP_PART_PROGRAM (block_num)	5-45
SET_DIRECTORY (target_dir, "password_string")	5-46
SET_PART_PROGRAM_COMMENT ('filename_string",	
"text_string")	5-46
SET_PART_PROGRAM_INPUT_DEVICE (pp_source)	5-47
SET_PART_PROGRAM_SEARCH_PATTERN ("text_string")	5-47
VERIFY_PART_PROGRAM ("filename1", "filename2", mode)	5-48
VERIFY_WITH_PORTA ("filename1", mode)	5-49
VERIFY_WITH_PORTB ("filename1", mode)	5-50
Part Program Execution	5-51
EXECUTE_MIDSTART_SEARCH (search_method)	5-51
SET_MIDSTART_SEARCH_PATTERN ("search_string")	5-52
STOP_QUICK_CHECK (no argument)	5-52
SYNTAX_QUICK_CHECK (no argument)	5-53
Tool Management/Random Tool	5-53
BACKUP_RANDOM_TOOL ("Filename_string")	5-54

Chapter 6 Array Indices and Strings

	BACKUP_TOOL_MANAGE ("Filename_string")	5-54
	RT_CUSTOMIZE_TOOL (pocket_number, pockets_needed,	
	shaft_pocket)	5-55
	RT_SET_TOOL_NUM (tool_number, pocket_number)	5-56
	TM_DELETE_ALL (no argument)	5-56
	TM_DELETE_GROUP (tool_group_num)	5-56
	TM_DELETE_TOOL (tool_group_num, entry_num)	5-57
	TM_INSERT_TOOL (tool_group_num, tool_num, entry_num)	5-57
'	Variable Ranges	6-1
	Enumerations	6-1
	ACTIVE_RADIUS_DIAMETER_MODE enumeration	6-1
	AMP_DATA_TYPE enumeration	6-2
	AUX_COM_REM_STATION_TYPE enumeration	6-2
	AUX_COM_SEARCH_TYPE enumeration	6-2
	BACK_BORING_SHIFT_DIRECTION enumeration	6-3
	CALIBRATION START enumeration	6-3
	CALIBRATION TYPE enumeration	6-3
	COM_MODE enumeration	6-4
	COPY_MEM_TO_PORTA/B (copy to type) enumeration	6-4
	COPY PORTA/B TO MEM (copy from type) enumeration	6-4
	DOWNLOAD IN PROGRESS enumeration	6-5
	DH CHANNEL TYPE enumeration	6-5
	DH COMMAND enumeration	6-5
	DH BAUD RATE enumeration	6-6
	DH OUTPUT FORMAT enumeration	6-6
	DH PARITY enumeration	6-6
	DH REMOTE STATION enumeration	6-7
	ERROR MESSAGE TYPE enumeration	6-7
	MACHINE TYPE enumeration	6-8
	MID_START_ACTION enumeration	6-8
	MID_START_TYPE enumeration	6-8
	MODE ACTIVE (active mode) enumeration	6-9
	<u> </u>	6-9
	MODE_FEED (feed mode) enumeration	6-9
	MODE_INCH/METRIC (inch/metric mode)enumeration	
	OPTION_SELECTED_INDICES enumeration	6-10
	PORT_BAUD_RATE enumeration	6-11
	PORT_COMM_FORMAT enumeration	6-11
	PORT_DATA_BITS enumeration	6-11
	PORT_PARITY enumeration	6-12
	PORT_ID enumeration	6-12
	PORT_TYPE enumeration	6-12
	PORTA_DEVICE enumeration	6-13
	PORTB_DEVICE enumeration	6-14
	PORT PROTOCOL enumeration	6_1/

	PORT_STOP_BITS enumeration	6-15
	PORT_TAPE_MULTI enumeration	6-15
	PORT_TIMEOUT_VALUE enumeration	6-15
	PP_SOURCE enumeration	6-16
	PRODUCT_ID enumeration	6-16
	ROTATION_EXT_STATUS enumeration	6-16
	SCALING_INDICATOR enumeration	6-16
	SEARCH_METHOD enumeration	6-17
	SEARCH_TYPE enumeration	6-17
	SERVO_STATUS enumeration	6-17
	SYSTEM_STATE enumeration	6-18
	TARGET_DIR enumeration	6-18
	TM_STATUS enumeration	
	TM_GRAPHICS_TOOL_COLOR enumeration	6-19
	UART_A/B BUSY_STATUS enumeration	6-19
	Strings	
	TEXT_STRING string	6-20
Appendix A OCI Data Items		
Appendix B OCI Commands		
Appendix C OCI Error Handling		
	OCI Error Handling Overview	C-1
	API Data Request Errors	C-1
	Command and Data Item POKE Errors	C-1

Open Control Interface (OCI) Overview

OCI Data Server Overview

This chapter contains an overview of the OCI system and how it uses Windows DDE [™] and RSLinx [™] software to establish communications between the OCI data server and the 9/Series or 9/PC CNCs.

Once the OCI data server and RSLinx software for 9/Series CNCs have been configured and launched, your DDE—compliant application (for example the OCI Basic Display Set) can read and write data and execute commands on networked CNCs.

Your DDE-compliant applications can access the data from the OCI data server by establishing a DDE link to the Server through the application's link function. The basic display set uses the RSJunctionBoxt utility for AdvancedDDE communications. RSJunctionBox is optional for your own application based upon your applications performance requirements.

The OCI data server uses RSLinx software to access the processor(s) through Windows TCP/IP Ethernet tools. This access does not apply for the 9/PC.

Your DDE Compliant Application Program

Your application program is your DDE–compliant Microsoft-Windows ™ based application. This application provides the interface between your personal computer and the OCI data server. The application can range from the more complex, such as a compiled Microsoft Visual Basic ™ executable which can provide the entire operator interface to your 9/Series or 9/PC, to a simple Microsoft-Excel ™ spread sheet with only a few DDE calls used for data collection.

The Basic Display Set included with the OCI package is an example of a DDE compliant application program. The basic display set is a compiled visual basic program and is discussed later in this manual. The visual basic source code for these default screens is available as an option through your Allen-Bradley sales office.

DDE Overview

DDE is a method used by Microsoft Windows to accomplish process-to-process communications. This common protocol allows a DDE-compliant Windows application to communicate with another DDE-compliant Windows application. DDE has been a part of Windows since version 2.0 and is supported by many of the most popular Windows application packages, such as MS Excel™ and MS Word™ for Windows.

The implementation of DDE uses a data server (called the OCI data server) to send and receive data from the CNC. This data server provides a DDE interface so other DDE compliant Windows applications can access data as though the CNC information was from a local DDE device.

A DDE application must provide three pieces of information to access a single piece of data from the OCI DDE data server:

- Service or Application name
- Topic name
- Item name

The service for your DDE application will be the Allen–Bradley OCI DDE data server. The name for this service is:

ABOCISERVER

For the Allen-Bradley OCI data server, a topic is an ethernet alias for a specific 9/Series CNC. Refer to your *OCI Installation Guide* for details on establishing 9/Series ethernet topic names. This alias is identified in the OCIDSCFG.INI file as the TopicId.

For 9/PC CNCs, the topic name is used to identify a 9/PC (located in the host computer) to facilitate communication between the 9/PC CNC executive and various client applications and services running on a PC. TopicId for the 9/PC CNC is set in the Configuration Manager.

An item is either a data item or a command item. Data items are listed starting on page 4–1 and are used to read and write data from/to your CNC. Command items are listed starting on page 5–1 and are used to request the 9/Series CNC perform a specific task.

To access a piece of data named num_axes on a specific CNC, you enter this information into your application's DDE Link function:

Service (or Application) Name	Topic Name	Item Name
ABOCISERVER	CNC_1	NUM_AXES

Once you specify this information in your application program and execute the request, the application establishes a link to the OCI data server and requests the data or command.

The OCI Data Server

Once installed and executing, the OCI data server is used to converse between a 9/Series CNC (using RSLinx) or 9/PC CNC and your application program (using DDE). Refer to your *OCI Installation Manual* or 9/PC Installation and Integration Manual for details on OCI installation and configuration.

The OCI data server provides a DDE interface for your application program from a specific CNC. The service name for the OCI data server is:

ABOCISERVER

The OCI data server runs in the Microsoft Windows NT[™] (4.0 or higher) operating environment.

OCI Data Server Read Data Requests

Your OCI application can request data from the CNC. Read requests can be automatic or manual. Automatic items are added and maintained on a watchlist at the control. Manual items are placed on the watchlist just long enough to report the current value of the item. Refer to page 4–1 for details on reading data items.

OCI Data Server Write Data Requests

Information can be written to your CNC using a Poke operation. When a Poke request is made by your application program to the OCI data server, the data server passes this data on to the CNC processor which (if valid) will change the data item value.

Poke requests are only honored by the CNC when they are made from the data servers controlling OCI station. Refer to the API data item chapter in this manual for details on requesting control.

ATTENTION: Extreme care must be taken when using the POKE capability. If you inadvertently write bad data to a critical 9/Series or 9/PC configuration, you could adversely affect the operation of the CNC.

OCI Data Server Command Requests

Your OCI application can request the CNC to execute a command. A description of the available CNC OCI commands begins on page 5–1. Commands ask the control to perform specific tasks such as download a part program or reformat the RAM disk. When your application program requests a command be executed for a specific CNC, the OCI data server passes this command on to the CNC which will (if valid) execute the command.

OCI Data Server Return and Error Codes

CNCs that are off-line or powered down will not respond to the requests that the OCI data server is sending them. The OCI data server will retry a read, write, or command transaction if the processor is on-line but currently busy. If the OCI data server detects a severe error, such as no response from the processor, the OCI data server will stop trying to communicate to the device. After a time specified in the 9/Series data server's INI file for the 9/Series CNCs and in the Configuration Manager for 9/PC CNCs, the OCI data server will again try to contact the processor. If it fails again, the OCI data server will repeat the process until the failure no longer exists.

Important: The 9/PC data server is configured via the 9/PC Configuration Manager.

The retries will affect OCI data server performance, since they entail additional OCI data server communications.

When your OCI application requests either a data item or issues a command to the CNC through the OCI data server the request is either performed or rejected by the CNC.

Status of Commands and POKE Data Items

When a data item read is successful no return code is sent to the OCI, only the requested data is sent. When a data item or command write is requested, the control will send a return code indicating that the request was successful or failed. API data item POKE request status is returned to the OCI in the reserved data item "WRITE_ERROR_CODE". Command status is returned to the OCI in the reserved data item COMMAND_ERROR.

See page C-1 for details on error handling.

Errors on Automatic Items

When your OCI application requests a data item as automatic, the OCI data server requests that item be added to the watchlist on the specified CNC (refer to the data item chapter in this manual for details on the CNC watchlist). If this data item is invalid for some reason (e.g. bad syntax, not a valid item, watchlist full) the control will return an error to the OCI data server indicating the error and the item was not added to the watchlist. These errors are returned as text to the requesting DDE object (e.g., Server Error [29]). See Chapter 3 for details on how we use a CNC based watchlist for automatic items.

Errors on Manual Items

When your OCI application requests a data item as manual, the OCI data server requests a value for that item from the specified CNC. If the data item is invalid the control will return an error to the OCI data server indicating the error condition. These errors are returned as text to the requesting DDE object (e.g. Server Error [29]).

RSLinx OEM is installed on your windows workstation as an integral part of a complete OCI system. This Rockwell Software utility provides the OCI DDE data server access to the 9/Series CNC through an ethernet connection.

A copy of RSLinx OEM comes with each OCI system you purchase from Allen–Bradley. RSLinx is not included with the development tool. For each OCI station that you create or ship you must purchase an additional RSLinx license for that station. Contact your Rockwell Automation sales representative for additional RSLinx licenses.

RSLinx OEM

Your Development Tool (Visual Basic ™)

Many development tools are available to enhance your machine interface as well as document machine statistics, etc. This manual is written assuming the use of Microsoft's Visual Basic $^{\mathsf{TM}}$ development tool.

Special API Development Tools

When we developed the basic display set we took advantage of several special development tools to simplify development and improve performance of our application.

RSLinx JBOX and RSData.OCX

The basic display set was developed using a sub–set of Rockwell Softwares RSTools[™] development kit. This development tool provides many custom controls that will improve the look of your final application as well as enhance performance.

The basic display set makes extensive use of the RSData.OCX custom control. This control is used in place of standard windows DDE text transfers for most of the data links to the OCI data server. This custom OCX dramatically improves the speed at which DDE data is transferred.

Included with the basic display set package is the JBOX.DLL which is required to allow this custom control to function. You must include this DLL with any OCI software you ship that uses the basic display set.

Included with the API development package is a subset of RSTools called RSData which provides the custom OCX control to add to your visual basic development tool and the JBox.DLL necessary to make this application work.

Refer to your RSData user's guide for details.

JBoxDestroyInactiveParts

When an item is requested of the OCI data server using the RSdata JBox control it is added to the watchlist on the specified control. Because of the nature of more typical JBox applications when the request for this data from the application no longer exists JBox does not normally terminate the request for this item. Since watchlist space on the CNC is limited even a small application will quickly run out of watchlist space. To prevent this scenario we used an undocumented attribute of JBox called JBoxDestroyInactiveParts. This attribute will remove any inactive automatic links from the data server which than removes it from the CNC watchlist.

Since JBoxDestroyInactiveParts is not a documented feature of JBox you will not find it in any property sheet or attribute of a JBox control. We used this feature by first making the declaration:

Declare Sub JBoxDestroyInactiveParts Lib "RSJBOX32.dll" (bDestroyInactive as Long)

Than calling the function in the mainMDI form Load routine:

JBoxDestroyInactiveParts (True)

Important: This function call must be made only after the first

RSData link data item is placed as an Automatic Item in

the watch list.

OCI Basic Display Set Source Code Routines

The OCI basic display set source code contains many useful subroutines that will make data retrieval, command requests, and data formatting simpler. Refer to page 3–1 for details on this source code and its subroutines. Printing functions and debugging routines are also available in this source code.

DDE Data Server Examples

DDE Conversation Overview

This chapter assumes you have:

- Already installed your 9/Series or 9/PC OCI software on your machine
- Configured your INI files properly (OCI) (9/Series only)
- Configured your 9/PC via the 9/PC Configuration Manager
- Made proper Ethernet connections with your 9/Series (OCI only)
- Run your OCI data server without errors
- Confirmed your communication is working, for OCI by using the OCI testing tool (refer to your *9/Series OCI Installation Manual* for information about parsercl.exe), and for 9/PC by using the 9/PC Installation and Integration Manual

A DDE conversation with the data service can be established using any Windows-compliant application that supports Microsoft's Dynamic Data Exchange functions. This chapter gives examples of such conversations established using Microsoft's Visual Basic and Microsoft's Excel.

A DDE conversation, regardless of the software used to start the communication, requires the following three things:

- 1. A DDE Server or Application Name
- 2. A Topic Name to that server
- **3.** A Data Item or Command to pass to that server

DDE Server

For the 9/Series or 9/PC, the DDE server is always:

"ABOCISERVER"

This is the server name registered in Windows when you launch the 9/Series or 9/PC OCI data server.

Topic Name

The topic name is created by the data server when it is launched. 9/Series only topic names are defined by you in the INI file OCIDSCFG.INI. A different topic name is created for each 9/Series CNC connection to the data server as an alias. If you are using the 9/PC, you create the topic name during 9/PC executive software installation or change the topic name via the 9/PC Configuration Manager. The 9/PC has only one topic name. The default alias for one CNC connection is:

"CNC 1"

The rest of this chapter assumes this is the alias you are using. Refer to your *9/Series OCI Installation Manual* for details on configuring the INI file for 9/Series OCI or the Configuration Manager in the 9/PC Installation and Integration Manual for configuring the 9/PC.

Item Name

The item name for the 9/Series or 9/PC data server can be either a data item (refer to chapter 3 or appendix A) or a command (refer to chapter 4 or appendix B). For example:

AVAILABLE_MEMORY

Is the valid name of an OCI topic that returns free memory information from the 9/Series or 9/PC.

Using Visual Basic

Several different VB objects can be used to create DDE links to a DDE server. Refer to your VB instruction manual for these items. For the following example we created a text box on the VB form and named that text box "X_RAW". This text box then stores the data returned from the data server (X_RAW.Text). It is important to remember that if the command fails or is invalid for some reason the string "Server Error [code]" for the connection will also be returned as the text value for this text box. Your code should test the value of your DDE objects to identify and handle errors appropriately.

Reading Data

In Microsoft Visual Basic the Service and Topic are included in the same property separated by a pipe character and enclosed in quotes. This example simply gets the raw value of the axis 1 position (no decimal point). Later you'll need to format this data as determined by your system configuration before passing it on to users.

```
X_raw.LinkTopic = "abociserver|CNC_1" 'Set Link Service and Topic
X_raw.LinkItem = "axis_position_prg,1" 'Sets Link Item to axis1 program position
X_raw.LinkMode = 1 'Sets link mode to automatic so 9/Series will update data
'X_raw.LinkRequest Establishes the connection if manual link had been requested
```

Once these four lines of code are executed, the value (X_raw.Text) will automatically be updated by the 9/Series or 9/PC whenever the data changes. This is accomplished by the 9/Series or 9/PC adding this data item to a watch list stored on the 9/Series or 9/PC. When a piece of data changes that's included on the watchlist the 9/Series or 9/PC automatically passes the new value to the OCI data server which then passes it on to the appropriate application (in our case Visual Basic).

Writing Data (POKE)

This example waits for a command button to be clicked by the operator to place the control in E–STOP. Since a command button is not a DDE conversation tool, a text box was also created on the form named "E_STOP". To place the control in E–Stop a 1 is written to the PAL/Logic flag \$ESTOP. Like a DDE read the Write data is also stored as the text of the text box. The following code was placed in the Click event of the command button. Writing of data takes place when the LinkPoke request is made to the text box.

```
E_Stop.LinkTopic = "abociserver|CNC_1" 'Set Link Service and Topic
E_Stop.LinkItem = "$ESTOP" 'Sets Link Item to PAL/Logic ESTOP flag
E_Stop.LinkMode = 2 'Sets the link mode to manual
E_Stop.Text = 1 'Places the data to write into the text box
E_Stop.LinkPoke 'Writes the value 1 to $ESTOP
E_Stop.LinkMode = VBLinkNone 'breaks the manual connection
```

Note that since we are using a PAL/Logic flag in this example the control's PAL/Logic program still has the ability to overwrite items sent to the control. PAL/Logic always wins when conflicting writes occur to a flag since they are written immediately before the PAL/Logic scan. In this case unless your PAL program is written to repeatedly write a zero to \$ESTOP every scan or to write a True—or—False to your Logic program, it shouldn't be a problem but you should keep it in mind when writing to PAL/Logic variables through the OCI DDE interface.

DDE Commands

In this example we execute a DDE command that writes MDI data to the CNC. The user places the program block in a text box we created on the form named "MDI_Input". Commands are always placed between square brackets []. This example uses the "INPUT_MDI_STRING" command. Commands can be found in chapter 4 or appendix B. The following code is executed when a command button is pressed.

```
MDI_Input.LinkTopic = "abociserver|CNC_1" 'Set Link Service and Topic
MDI_Input.LinkMode = 1 'Set Link Mode to Automatic
MDI_Input.LinkExecute ("[input_mdi_string(" & Chr$(34) & MDI_Input.Text & _
Chr$(34) & ")]")
MDI_Input.LinkMode = vbLinkNone
```

Using Microsoft Excel

MS Excel is also capable of performing DDE conversations with the OCI data server. This can prove a useful tool to collect data for statistical analysis of your machine process. The following example shows a cell in Excel that is used to store the accumulated tool life though any valid OCI DDE could be substituted for the item name.

The syntax for a DDE call in Excel is all placed as an equation in the desired cell. The equation defines the DDE Application, Topic, and data item. The equation syntax is as follows:

```
=Application | Topic! 'ItemName'
```

The following is an example of an Excel cell that returns the accumulated tool life for tool number 3.

```
=ABOCISERVER | CNC_1!'TM_ACCUMULATED_LIFE,3'
```

OCI Basic Display Set (BDS)

Basic Display Set Overview

The Basic Display Set is the standard OCI application software that comes with your OCI system. This Windows-based application program is the standard operator interface to your CNC. It is designed to run in Windows NT^{TM} and communicates with the OCI DDE data server.

The Basic Display Set is designed to closely emulate the 9/Series standard front panel. For details on using the OCI Basic Display Set (BDS) refer to your *OCI User's Manual* and your operation and programming manual. For details on installing the OCI Basic Display Set refer to your *OCI Installation Manual* or your 9/PC Installation and Integration Manual.

This chapter is designed to give you an understanding of how the Basic Display Set was developed and make it easier for you to modify and customize the Basic Display Set for your application. The Basic Display Set was developed using Microsoft's Visual Basic Pro™ development tool.

Important: Allen–Bradley assumes no responsibility for the operation and function of the Basic Display Set once it has been modified from its original form.

To edit the Basic Display Set you will need:

- A personal computer running the Microsoft Windows NT[™] (version 4.0 or later) operating system
- Microsoft Visual Basic[™] (version 5.0 or 6.0)
- RSData[™] custom control (a product of Rockwell Software)
- Allen Bradley Basic Display Set source code disks (OCI or 9/PC)
- A working knowledge of Visual Basic Pro, Windows programming, and the concepts of Dynamic Data Exchange (DDE)

We recommend your personal computer be linked through an Ethernet connection to an OCI–compatible 9/Series CNC or have a 9/PC CNC running (please use the 9/PC Configuration Manager to ensure that the 9/PC is running). This is helpful for writing and debugging your edits. In addition to the above list this optional connection requires:

- Appropriate personal computer ethernet hardware and drivers
- An OCI compatible 9/Series installed and powered up on the Ethernet network

Important:

The 9/PC CNC does not use Ethernet connections. If you are using a 9/PC CNC, we recommend that you use the 9/PC Configuration Manager to make sure your 9/PC is running.

- Rockwell Softwares JunctionBox[™] executable
- The OCI data server installed, running, and communicating to the OCI–compatible CNC (necessary to use the softkey and other provided editor utilities).

Not having your personal computer connected to your CNC will cause data errors any time you run code for a screen that contains a DDE call to a data item or command.

Installing the Source Code

The Basic Display Set was developed using Microsoft Visual Basic Pro[™] development tool. You should be familiar with Visual Basic Pro, Windows programming, and the concepts behind dynamic data exchange (DDE).

The source code for the Basic Display Set comes on 3.5–inch floppy disks labeled "Basic Display Set Source Code". Use the following procedure to import this source code to your Visual Basic Application:

- 1. Insert the first disk of the Basic Display Set source code into your disk drive.
- **2.** Select the "Run" option from the Start menu.
- **3.** Enter in the Run dialog:

A:SETUP

where A: is the name of the drive containing disk one of the Basic Display Set source code.

4. Follow the setup instructions as prompted on the screen.

Important:

During the setup process you will be prompted for a destination directory for this source code. It is important that you choose the same directory that was used to load the Basic Display Set executable. The Basic Display Set executable installation contains data files (not included with the source code) that are necessary to build a working OCI system. The default setup directory for both the Basic Display Set executable and source code is C:\ABOCI or c:\ab9PC depending on the system the Basic Display Set was developed for (9/Series or 9/PC).

When the setup utility is complete the Visual Basic Pro project file ABOCI.VBP is installed in the source code directory. Before you can open this project in Visual Basic, you must first install the custom OCX called RSData. This custom OCX is an improved DDE tool used extensively in the Basic Display Set source code.

Installing RSData Custom OCX

RSData[™] is a Microsoft OLE custom control (OCX) created by Rockwell Software. The RSData control is designed to be used with any Dynamic Data Exchange Server and provides enhanced performance when used with applications that conform to AdvanceDDE[™] protocol. This custom OCX is used extensively in the Basic Display Set source code.

The RSData OCX uses a high speed DDE communications module called RSJunctionBox[™]. RSJunctionBox allows RSData to communicate with the OCI DDE data server with considerably higher performance than standard DDE communications provide.

To install the RSData Custom OCX and the RSJunctionBox DDE communications module follow the instructions that accompanied these Rockwell Software products.

Source Code Directory Structure

The Basic Display Set pulls data from a variety of subdirectories created during the setup of both the Basic Display Set executable and source code. This directory structure must be maintained to properly compile the source code. These subdirectories of the source code are as follows:

This Directory:	Contains this Data
ABOCI or ab9pc	This is the main source code directory. All other directories in this table are subdirectories of ABOCI or ab9PC. This directory contains the main Visual Basic project manager ABOCI.VBP.
ABOCI\BAS or ab9pc\BAS	Basic routines commonly used by different forms in the Basic Display Set.
ABOCI\DAT or ab9pc\DAT	Contains the text files for softkey names, error messages, and screen text. Note files exist in this directory for each of the supported 9/Series languages.
ABOCI\FIL or ab9pc\FIL	Contains data for the Allen Bradley part program editor
ABOCI\FRM or ab9pc\FRM	Forms used to generate the Basic Display Set screens.
ABOCI\PIC or ab9pc\PIC	Graphics files used by the Visual Basic application.

Data Files

Data files are found in the ABOCI\DAT or ab9PC\DAT directory and contain data that is used by the Basic Display Set to build 9/Series or 9/PC displays. There are several different types of data files. Each file is duplicated for the different languages supported by the control. Most of these files are not standard ASCII text files. You should not attempt to edit these files using an ASCII text editor. We recommend using the text editor utilities provided with the Basic Display Set source code and discussed later in this chapter.

- (language).ABM These data files contain the text for standard system and error messages. The control sends a numeric error code when an error occurs which is then identified by the Visual Basic code as a specific line of text in this file. In addition to this error message text, the coded error message can also contain axis and direction information which is also decoded by the Basic Display Set executable.
- (language).ABL These data files contain the screen text used on mill and lathe control types. Text is pulled from these files to build a screen on the Basic Display Set.
- (language).ABG These data files contain the screen text used on <u>grinder</u> control types. Text is pulled from these files to build a screen on the Basic Display Set.
- (language).ABE These data files contain text for screen displays and error messages related towards the PC side of the OCI system.
- GCODE.DAT This file contains G–code names and descriptions.
- DGCODE.DAT This file contains G–code names and descriptions for dual process capability.
- SCRNPOS.DAT This file is used for active G–code status as well as storing the format of the display.
- PD.ABG this file contains the PD pointers for grinder control types. This file is an integral part of the 9/Series softkey tree structure. This file is **not** supported by the 9/PC.
- PD.ABL this file contains the PD pointers for mill and lathe control types. This file is an integral part of the 9/Series or 9/PC softkey tree structure.
- SPD.ABG this file contains the SPD pointers for grinder control types. This file is an integral part of the 9/Series softkey tree structure. This file is **not** supported by the 9/PC.
- SPD.ABL this file contains the SPD pointers for mill and lathe control types. This file is an integral part of the 9/Series or 9/PC softkey tree structure.

Important:

Editing these text files should only be necessary when making minor name changes to screens or softkeys. If your intent is to add additional information to screens or create new softkey levels we strongly recommend that you create your own text files. Note if you update or upgrade your Basic Display Set source code these standard text files will be overwritten.

Basic Display Set Source Code Overview

The Basic Display Set was developed using Microsoft's Visual Basic Pro development tool. Assuming you have already installed the OCI source code, open the OCI project (ABOCI.VBP) using Microsoft's Visual Basic Pro. You should see a project window similar to the following:

This project window gives you access to the display forms and code used to compile the Basic Display Set screens. Each form typically represents a specific 9/Series or 9/PC screen.

Basic Display Set Screen Construction

The majority of the 9/Series or 9/PC Basic Display Set screens are laid out using a combination of overlaying forms. The forms used to build a typical 9/Series or 9/PC screen include:

- Main Form (MAINMDI.FRM) This form provides the structure for all the 9/Series or 9/PC screens (MDI parent form). It defines the size and layout, initializes global variables, loads system information form, PAL/Logic message form, and softkey form. Other forms overlay this form to provide the proper display.
- System Form (SYSTEM.FRM) This form overlays at the top of the Basic Display Set screen. It is used to display system messages and prompts for input information. It also manages keyboard input. This form is loaded by MAINMDI.FRM.
- Display Form (screenname.FRM) This form overlays the center portion of MAINMDI.FRM. It is different and specific for each 9/Series or 9/PC screen to be displayed. The Program Position Screen (PROGPOS.FRM) is an example of a display form. The PROGPOS.FRM differs from other display forms in that it remains loaded in background anytime the Basic Display Set is running. This improves performance since this screen is the most commonly used display form. Typically, display forms are loaded and unloaded by the softkey modules.

- PAL/Logic Messages (PALMSG.FRM) This form resides just below the display form and is used to display any messages sent from the PAL/Logic to be displayed on lines 21 and 22 of the BDS. This form is loaded by MAINMDI.FRM. Line 1 PAL/Logic messages are displayed on the SYSTEM.frm, Line 13–19 PAL/Logic messages are displayed on the MESSAGES.frm.
- Softkey Form (SOFTKEYS.FRM) This form resides at the bottom of MAINMDI.FRM. It is used to handle softkey display and loads and unloads display forms as needed. This form is loaded by MAINMDI.FRM.

Basic Display Set Basic Modules

In addition to the standard forms several basic modules can be found in the ABOCI.VBP. The function of these basic modules is:

This Basic Module:	Is Used To:
GLOBAL.BAS	Manages general global data such as screen size, font sizes, error handling and identifies general information about the CNC connected to the OCI.
LANGUAGE.BAS	Manages transition between languages and changes between the different text files for the different languages.
OPT_NUMS.BAS	Defines constants used by the BDS to enforce option PAL capabilities removing softkeys and screens for features not supported on the system.
PD_NUMS.BAS	Defines constants used by the BDS to navigate the softkey tree
PR_NUMS.BAS	Defines constants used by the BDS to refer to prompt text strings.
SK_NUMS.BAS	Assigns text names to the softkey numbers returned by the softkey module per row of softkeys.
SOFTKEYS.BAS	Uses a case statement to identify what action should be taken when a specific softkey is pressed.
SR_NUMS.BAS	Assigns text names to the screen numbers returned by the softkey module.

Using MASTERM.FRM Template to Create a Display Form

Also include with the Basic Display Set source code are three forms used as templates to create the majority of the other display forms in this Visual Basic project. These forms are found with the rest of the Basic Display Set forms in the FRM sub–directory of your Basic Display Set source code. We call these "master" forms. They are:

- MASTER.FRM a highly comment form typically used for reference only when building other forms.
- MASTER0.FRM use to build forms with no cursor movement
- MASTERM.FRM use to build forms that require cursor movement

The following section will walk you through the development of a screen using a MASTER.FRM.

Making a Copy of MASTER.FRM

Since the master forms are a good place to start for creating any additional screens in the Basic Display Set, it is probably a good idea to use a copy of these forms instead of editing them directly. This will always give you a clean starting point for any additional forms you need to create.

To make a copy of the MASTER.FRM:

- **1.** Open a dummy Visual Basic project. The default "Project1" is acceptable.
- 2. Under the Visual Basic "File" menu select "Add File". Browse to your Basic Display set source code directory and select the master.frm you wish to use for your new screen.
- **3.** From the project window open the form and press F4 to bring up the properties sheet.
- **4.** On the properties form change the "Name" field for the form to something other than one already used in the OCI Basic Display Set source code (this name should be descriptive of what you plan to use this form for). You may also choose to change the "Caption" field at this time as well.
- **5.** From the "File" menu select "Save File As".
- **6.** Type in a new file name for the form in the Save As dialog box and select save. This must also be a unique file name not already used in the Basic Display Set source code.
- 7. From the "File" menu select "Open Project". Visual Basic will prompt you to "Save Changes to ...". Assuming you already saved the file from step 5., you should be able to select "No to All" on this dialog.
- **8.** Open the Basic Display Set Visual Basic source project (ABOCI.VBP). You should find this file in the directory you specified when you installed the Basic Display Set source code.
- **9.** Under the Visual Basic "File" menu select "Add File". Select the form name you saved in step 6.

This will add your copy of the master form to the Basic Display Set source project while keeping the original master form intact.

MASTER.FRM Recommended Subroutines

When you develop your new screen we recommend you use the following subroutines to properly integrate your form into the Basic Display Set.

Use this Subroutine:	Description:
APromptPressed (public)	Keyboard input is passed from the system form to this subroutine. Use APromptPressed to identify what actions should be taken when the user presses a keyboard key. This routine receives the KeyCode and Shift status from the system form (FormKeyPressed).
ASoftkeyPressed (public)	Softkey inputs are passed from the softkey form to this subroutine. Use ASoftkeyPressed to identify what actions should be taken when the user presses a softkey. This routine receives the softkey index (0 - 6) as variable SoftkeyChoice). Note softkey management (changing of levels and softkey names) is handled by the softkey form. Use this index in this form only to identify what actions your form should take.
Form_Activate (private)	Use this code to perform activities after the form is loaded. This routine sets focus to the system form to monitor keyboard inputs after a new form is loaded. Most forms Activate module has the line "fmSystem setFocus".
Form_Unload (private)	This software module is typically used to shut off any automatic data links to the CNC as well as set the current form to whatever form should be shown when your form is unloaded.
InitForm (private)	Most of the Basic Display Set forms make use of this routine to position labels (based on MDI location) and other assorted initialization parameters.
CreateDataLinks (private)	This module is used to create any necessary DDE links to the CNC to load your form.
DisplayRows (private)	This module is used to format the data on the display. It is typically called from the module Inkdata_change and handles how data is presented on the form.
InitformLevelVariables	This module is used to initialize all the form level variables on a Form_Load event.

Managing Errors on your Form

When you develop your new screen we recommend you place in your code the following routine we use to handle and report error conditions.

```
On Error GoTo ProgramError

(add your code here)

Exit Sub

Program Error:

WriteErrors string, Err, debug, errorFile

Resume Next
End Sub
```

Where:

string – is the message you want displayed

Err – indicates to the code it is an error (enter the string ERR)

debug – is the string you want to pass on to help debug the error condition. We recommend you use the name of the form and its sub name.

errorFile – the number of the file to write errors into. #1 writes to the poking error files, #2 writes to the linking error file. See Writing to Error files utility later in this section.

Using the Softkey Editor Utility

Also included with this source code is the softkey editor utility. Use this utility whenever you need to add, remove, rename, or replace a softkey in the Basic Display Set softkey structure. Though possible, it is not recommended that you attempt to edit the softkey structure without using this utility. You must have installed the Basic Display Set source code before you will be allowed to use the softkey editor.

Each softkey in the Basic Display Set is assigned a number. Each rack of five softkeys plus the more and back arrow keys is also assigned a number. These numbers are used by the Basic Display Set source code to determine if a softkey is to be displayed and what forms appear when a specific softkey is pressed. Text for the softkeys are stored in the data files with the extension .ABL and .ABG. Aliases for the softkey numbers are created in the basic file SOFTKEYS.BAS.

Important: Any softkeys you add must be softkey 1500 or higher.

Softkeys 1 to 1499 are used or reserved by Allen–Bradley for future product development.

This procedure assumes you already have Visual Basic active with the source file ABOCI.VBP open. To use the softkey editor utility:

- 1. Access the search utilities from the "Setup" menu in the Basic Display Set. The "Setup" menu is only available when the source code is loaded in the same directory as the Basic Display Set and the variable SETUPMenu is set to True. Set this variable by either:
- Manually change the variable in source code (SETUPMenu is found in Global.Bas InitGlobals) or
- Manually change the variable FINAL_EXE to False
- 2. From the Visual Basic Run menu select "START". The source code should load and begin running. You should have the OCI workstation connected to an OCI compatible CNC and the OCI data server active or have your 9/PC running via the 9/PC Configuration Manager. If the Basic Display Set can not find the default CNC you have selected you will be prompted to select another CNC to connect.

You should see the power turn—on screen. Pressing [Enter] should display the program position display.

The basic displays should show the softkey edit tools after loading the text files for all valid languages. The softkey edit tools are shown in the following figure.

Current Softkey Row (SPD_PTR)

When you first load the softkey editor you will notice that the number on the far left (where the up arrow would normally be) is 18. This number indicates the current softkey row number. So anytime softkey row 18 is called the softkeys {prgram manag}, {offset}, {macroparam}, etc... are displayed.

Softkey Row Number Called

The number in the white box below where the up arrow should be currently shows a zero. This number indicates the row number called when the up arrow is pressed. Since this is the first level of softkeys this box is white and zero indicates no new softkey row is called.

Current Softkey Number

The current softkey number appears on top of the right arrow. This field is not changeable however, since this value is referenced throughout the Basic Display Set, it is provided on this screen.

Edit Softkey Text Buttons

The five buttons on the softkey names are used to change the text for a softkey

K/S Button

Initially this button is set to K, which indicates the pointer field beneath the softkeys is showing the softkey key numbers. Pressing this button again changes it to S, which indicates the pointer field shows the screen number.

Softkey and Screen Pointer

This field contains either the number of the softkey row (S mode) or the screen number (K mode) called when that softkey is pressed.

Create New Softkey Pointer Buttons

The 6 buttons to the right of the softkey and screen pointer are used to create a new softkey with a new softkey pointer and screen pointer if desired.

The softkey tree can be navigated as usual, change rows or levels using the function keys or mouse as you would normally.

Important:

Though the softkey tree appears to be functional, the tree will not call different forms or perform any of the functions usually available with the softkeys when in the softkey edit mode.

Changing Softkey Text

To edit the text for any softkey click on the appropriate "Edit Softkey Text" button (button shown just to the right of the softkey text you wish to change). An "Enter Text" window opens up showing the current text for that softkey in all languages available on that system.

Softkey text can not contain more then 12 characters including any spaces. The first six characters entered go on the first line of the softkey, use spaces to move any text to the second line.

Changing the Softkey Row Pointer

To edit or change the set of softkeys called when a softkey is pressed edit the softkey row pointer. The softkey row pointer is located in the white or yellow box beneath the softkey text.

When the softkey pointer field is yellow, it indicates that pressing this key will display another softkey row. When the softkey pointer field is white, it indicates that pressing this key does not call another softkey row. The number in a white softkey row pointer is the softkey number. A new form may be loaded for any softkey pressed regardless of if another softkey row is called. See "Inserting a New Screen" on page 3–17 for details on identifying a screen pointer.

To change the next row of softkeys called by pressing a softkey, edit the "Softkey Row Number" field. You can change this field for the five softkeys as well as the up arrow (back) and right arrow (more) softkeys.

Creating/Editing a Softkey

1. To create a new or change the operation of an existing softkey press the "Create New Softkey Pointer" button.

2. If you haven't already entered text for this new softkey you are prompted for text for the softkey in the available languages.

Each of the text fields in the above screen writes data to a different softkey data file for each language. The softkeys toggle through different languages each time the {SWITCH LANG} softkey is pressed. After entering language text for your softkey in the appropriate languages press the OK button.

3. The softkey editor prompts you to add a Key or a Row.

Key – select "KEY" if you are entering a softkey only that will not call another row of softkeys. Note this key can still call a new screen.

Row – select "ROW" if you are entering a softkey that is to call a new (or existing) row of softkeys.

4. After deciding if you are entering a key or row you are prompted to add a screen number. If this softkey is to call a new form you should select "Yes".

Inserting a New Screen

Screens for the Basic Display Set are called by softkey events. When you add a new softkey using the softkey editor (Create New Softkey Pointer) you are prompted to add a screen number as shown above.

When you select yes to add the softkey screen number the source code adds a screen pointer to the softkey structure. Note the screen pointer added is always the same number as the softkey pointer (see page 3–17 for details on screen pointers).

To edit, view, or change the screen pointer for a softkey, view the screen pointer by clicking on the K button to toggle it to S (screen mode). Change the pointer manually as discussed in the next section.

Creating/Editing the Screen Pointer

To change the screen number called when a softkey is pressed, edit the "Screen Pointer Number" field while in the softkey editor. You can change this field for the five softkeys. You can not change the screen number displayed when the up arrow (back) or right arrow (more) softkeys are pressed.

Important:

Edits to this field are typically only necessary when changing the field for an existing softkey. If you are adding a new softkey to call a screen follow the directions for adding a softkey on page 3–16 and you will be prompted if you want the system to add the screen number automatically.

A zero in the screen pointer field indicates that no screen is called when that softkey is pressed. New screen numbers added to Basic Display Set should be numbered 1501 or higher (below 1501 is reserved by Allen–Bradley). This will help protect the integrity of your edits if any future Allen Bradley updates are installed on your OCI system.

Exiting Softkey Edit Mode

After you have completed the necessary changes to the softkey tree and screen pointers added you must save and exit the softkey editor.

Exit the softkey editor by selecting "Softkey Tree" under the "Setup" menu.

You are prompted to save or discard your changes.

Calling the Screen Pointer in Source Code

Once you have added the necessary softkey and screen pointers you must make modifications to your source code to call the proper screens. Screens are called using two subroutines of the Basic Display Set:

SetSPDPointer

You should not need to edit this file unless there are special conditions you wish to apply to determine when and what screen is loaded when a softkey is pressed. For example you may want to add a condition that prohibits access to a servo configuration screen when running a program.

SetSPDPointer is a routine found in the file SOFTKEY.BAS. This subroutine uses the softkeys PD Number (PD_PTR) to determine which softkey choice was made and sets the variable "ScreenNumber" using a series of Case statements.

The Case Else statement at the end of this routine sets the variable ScreenNumber = PD (PD_PTR).ScreenNum. The variable ScreenNum is the screen number pointer assigned in the softkey tree (see page 3–17) so by default this routine loads the assigned screen number to the variable ScreenNumber whenever the softkey is pressed. PD_PTR numbers are assigned in the file PD_NUMS.BAS.

LoadScreenForm

This subroutine ,found in the file Softkey.BAS, is used to load the final form. This routine uses the "ScreenNumber" variable assigned in SetSPDPointer to determine what screen should be loaded. A series of Case statements are used to define two variables which load the appropriate form, CurrentForm (a form), and CurrentFormName (a string).

Identify screen numbers with their corresponding screen names in the file SR_NUMS.BAS. Any new screen numbers you are adding should be defined in this file.

Using the Text Find Utility

To improve flexibility of our source code, screen text and prompts are not directly entered on any screens. Instead they are entered in different language text files and each screen calls the required piece of text from the appropriate file by a pointer when needed. Unfortunately this can make it difficult to identify exactly what text is to be displayed on what screen when writing code since only a file pointer is available on the screen.

The Basic Display Set source code has a search utility which allows you to change text or prompts on any of the standard 9/Series screens as well as identify the text pointer numbers.

Important:

These search utilities do not apply to text found on the 9/Series or 9/PC editor, any ODS screens including the PAL search monitor screens. These screens can not be edited and are not part of the Basic Display Set source code.

Access the search utilities from the "Setup" menu in the Basic Display Set. The "Setup" menu is only available when the source code is loaded in the same directory as the Basic Display Set and the variable SETUPMenu is set to True. Set this variable by:

- Manually change the variable in source code (found in Global.Bas InitGlobals) or in SetupGlobalVarsforNewCNC) or
- Manually change the variable FINAL_EXE to False
 You can search for either prompts or text:

Prompt Search – If you select "Prompt" search from the setup menu you will be searching for prompts (such as MDI: or CHANGE VALUE:). Prompts are text strings used to request an operator input of some type.

Text Search – If you select "Text" search from the setup menu you will be searching for text used to build the standard screens (such as ACTIVE PROGRAM or MEMORY).

After you have selected your search type the softkeys are removed from the screen and replaced with the following search dialog:

Enter either a pointer number, text, or prompt string in the appropriate box. Pressing the enter key performs the search. If you enter a string to search for, the pointer number for the found string appears in the # box. Wildcard characters (*) are invalid. The search string function automatically inserts wild cards before and after the entered search string (for example entering a search string "A" will find all strings that contain the letter A). The found text for the search operation is displayed in the last found search string field.

Press the "EDIT" button to change the text for an already found pointer number. Press the "NEW" button to add a new text pointer with a new text string to the language files.

Exiting the Text Search Utility

After you have completed the necessary changes to the text and prompt files you must save and exit the utility.

Exit the text or prompt search utility by selecting "Text" or "Prompt" under the "Setup" menu. You will be prompted to save your changes.

Using the Print Utilities

The Basic Display Set provides a print utility to help you document your application. This utility writes the requested data to a file for printing or use in a spread sheet. The following items can be printed to a file:

- Error Messages writes all error messages to an ASCII file.
- Prompts writes all screen prompts to an ASCII file.
- Softkey Tree writes all softkey text to an ASCII file.
- Text writes all miscellaneous screen text to an ASCII file.
- PD_Ptr's writes all softkey pointers to an ASCII file.
- SPD_Ptr's writes all screen pointers to an ASCII file.

Access the print utilities from the "File" menu in the Basic Display Set. The "Print" option under the File menu is only available when the source code is loaded in the same directory as the Basic Display Set and the variable PRINTMenu is set to True. Set this variable by:

- Manually change the variable in source code (PRINTMenu is found in Global.Bas InitGlobals or in SetupGlobalVarsforNEWCNC) or
- Manually change the variable FINAL_EXE to False

When you select the desired print option the Basic Display Set creates, or overwrites if the file already exists, a data file containing the text, corresponding pointer number, and other relevant information. File naming convention is as follows:

Language		File Extension				
	File Name	Error MSG	Prompts	Softkey Tree	Text	SPD_Ptr's
English	English	.err	.pmp	.sft	.stx	.spd
German	Deutsch					<u> </u>
French	Francais					
Italian	Italian					
Spanish	Espanol					

A file is created only for the currently active language on the Basic Display Set. Use the {SWITCH LANG} softkey to change the Basic Display Sets displayed language and create different language print files.

Since the pointer file PD_PTR's is identical for all languages the print PD_Ptr's selection always creates the file PD_ptr.pd.

The following screen shows an example of the English.sft file which is compiled from the English softkey tables. This file uses tab characters to indicate different levels of the softkey tree. It also shows the softkey number to the right of the text.

This next screen example shows the English.spd file which is compiled from the English softkey text file combined with the pointer information and softkey tree structure. This file uses "?"characters to separate different softkey names from the same softkey rack. Below each softkey rack is pointer information for the first thru seventh softkey (includes back and more softkeys) and the softkey text pointer number.

The error text file shown in the next figure lists the error message text strings and their respective error pointer numbers.

The following screen shows the PD_Ptr.pd file. The same file is generated for all languages. The file header contains a key identifying the pointers. These pointers are defined in SK_NUMS, PR_NUMS, and SR_NUMS and found in the (*language*).SPD printouts. Each pointer is separated with a comma and spaces.

The following screen shows the english.pmp file created when a request is made to print the screen prompts in English. The left column of this file contains the text pointer number, the right column contains the prompt.

The following screen shows the english.stx file created when a request is made to print the screen text in English. The left column of this file contains the text pointer number, the right column contains the screen text.

Testing and Debugging Utilities

The Basic Display Set has built in testing and debugging utilities that can simplify diagnosing problems with your modifications. There are two different utilities provided:

- Debugging when this utility is enabled extensive error messages appear in a MsgBox reporting detailed information on coding errors.
- Write to File this utility writes program errors, data linking errors, and data poke errors to their respective files.

Debugging Utility

The debugging utility enables a Message box which identifies errors.

The Debugging utility is only available when the source code is loaded in the same directory as the Basic Display Set and the variable DEBUGGING is set to True. Set this variable by one of these methods:

- Manually change the variable in source code (DEBUGGING is found in Global.Bas InitGlobals) or
- Manually change the variable FINAL_EXE to False

Write to Error File Utility

This utility writes program errors, data linking errors, and data poke errors to their respective files. When this utility is enabled it creates the following files:

File Name:	Registers these type of errors:
ABVBPOKE.ERR	Data poking errors from the Basic Display Set source code that uses the CNCPoke sub call. This file is referenced as error file number 1 in source code.
ABVBPRGM.ERR	Linking errors from all CreateDataLinks routines and other program errors encountered in the Basic Display Set. This file is referenced as error file number 2 in source code.

The write to error file utility is only available when the source code is loaded in the same directory as the Basic Display Set and the variable WRITE2ERRORFILE is set to True. Set this variable by one of these methods:

- Manually change the variable in source code (WRITE2ERRORFILE is found in Global.Bas InitGlobals)
- Manually change the variable FINAL_EXE to False

OCI Data Server Data Items

Data Item Format

Each OCI data item is presented in the following format:

Data Item	Description
Data Type	Indicates the format the data item will be presented to the OCI data server. Refer to page 4-2 for details.
Read/Write	R indicates the data is read only (passed from CNC). R/W indicates the data is both read and write. Refer to page 4-2 for details
Array Index	Indicates the index in an array, none indicates data can not be accessed as an array. Refer to page 4-3 for details.
CNC Type	Indicates the type of CNC that uses the data item. For example lathe/mill/grinder etc. Refer to page 4-8 for details.

Other important information that may be included with data items is:

- Link Type None, Automatic, Notify, Manual. The link type is application selectable. Refer to page 4–9 for details.
- Background/Foreground All data items are monitored in the controls background unless otherwise indicated in the text describing the data item. All foreground data items are discussed in this chapter. Refer to page 4–13 for details.
- Dual Process Follow the data item with a .1 or .2 to indicate the process number. No process number by default makes a request for process 1. Single process systems can also use .1 as a valid data item request. Use the table in appendix A to determine if an item is available as dual process. For example:

PROCESS_NAMES.1

would return the text string used to identify the process 1 name.

Important: Currently, process options do not apply to the 9/PC CNC.

• The value returned by many data items (especially axis position information) is not always rounded by the systems configured basic positional resolution. If your application requires rounded display information you must perform the rounding in your applications code. For example you may see an axis position as -0.5 on the position display but axis calibration items may see this position as -0.499999980314961.

Data Type

The data type for a OCI data item determines how the data is returned from the control to the OCI. You define variables according to this data type. Requesting the wrong data type for a data item to the control can return invalid data or an error. Valid data types include:

DATA TYPE:	Description:
STRING	Alphanumeric string ranging from 0 to 65,535 characters
INT	Whole number ranging from -32,768 to 32,767
UINT	Unsigned integer
DINT	Double integer
UDINT	Unsigned double integer
LINT	Long Integer
SINT	Signed integer
USINT	Unsigned single integer
REAL	Real number
LREAL	Long Real
BOOL	Boolean (True/False)

Read/Write

R indicates the data is read only (passed from CNC to OCI). W indicates the data is write only (passed from the OCI to the CNC). R/W indicates the data is both read and write. Errors are generated if you attempt to write data to a read only OCI data item.

Write privileges for commands and API data items are reserved for the controlling OCI station. You must first successfully issue the REQUEST_CONTROL command before write requests will be accepted by the OCI station. Refer to the command chapter for details on issuing the REQUEST_CONTROL command.

Array Indexes

Some OCI data items are accessed as arrays. The format for the majority of these arrays can be broken down into just a few array indexes. The array index is called out with each data item. The following presents the format for the most common arrayed data. This is not an inclusive list. Other less frequently used array indexes are used and described with the data items or commands that use them.

Array Index:	Description:
AXIS_NUM	AMP configured axis number
SPINDLE_NUM	AMP configured spindle number (1 to 3) configured spindle number for 9/PC (1 to 2)
CNC_DIRECTORIES	1 (the main directory), 2 (the protectable directory or 3 (the PC local OCI file handler directory typically the Pc's hard disk).
SERVO_MODULES	the servo module number on the system (1 to 3) ¹
SERVO_NUM	AMP configured number of the servo on your system
M_MODAL_GROUP	the modal group of a M code
G_MODAL_GROUP	the modal group of a G code
SETUP_BUFFERS	the active number of part program setup buffers
NUM_PP_FILES	the number of part programs currently in the directory
OFFSET_NUM	the tool offset number

 $^{^{1}}$ Always = 1 on 9/PC

Many of the data items are two dimensional arrays and would thus have two array indexes associated with them. For example the data item TOOL_LENGTH_WEAR_OFFSETS is a two dimensional array using the indexes OFFSET_NUM and AXIS_NUM to define its boundaries. Making the following data request of the server:

requests the tool length wear offset number 2 for axis number 3.

Unless otherwise mentioned in the argument description, most data items allow the omission of indexes which returns all data in that array. For items that use two or more arguments, only the right most argument can be omitted if it is valid to omit arguments. Data returned from an array is delaminated by Tab characters and ended with a return/line feed character.

AXIS_NUM

This array index is dimensioned by the axes number as configured on the system in AMP. For example the data item AXIS_NAME, which returns the name of the axes from the CNC, is an array based on *Axes_Number*. So calling the data item:

AXIS NAME, 2

returns the text string axis name for the second axis. Calling the data item:

AXIS_NAME, 2-4

calls the text string for the axis names 2, 3, and 4. The values are separated by a | (or tab) character.

SPINDLE_NUM

This array index is dimensioned by the spindle number as configured on the system in AMP. The 9/PC CNC supports 2 spindles. Some 9/Series systems can support up to 3 spindles so this dimension ranges from 1 to 3 spindles. For example the data item SPIN_SPD_VALUE, which returns the active programmed spindle speed for a specified spindle, uses this array index to determine which spindle speed you are requesting.

SPIN_SPD_VALUE, 2

returns the LREAL value representing the active spindle speed for spindle number 2.

SPIN_SPD_VALUE, 2-3

returns the LREAL values representing the active spindle speed for spindle number 2 and 3. The returned values are separated by a | (tab) character.

NUM_CNC_DIRECTORIES

This array index is dimensioned by the three available CNC part program directories. They are:

- 1 Main Program Directory
- 2 Protectable Program Directory
- 3 OCI File Handler Configured Directory (local to PC)

For example the data item NUM_FILES, which returns the number of part programs that exist in a specific directory, uses this array index to determine which directory you are requesting information.

NUM_FILES, 2

returns the UINT value representing the number of part programs currently residing in the protected part program directory. You can not request information from multiple directories with the same command. This argument can not be omitted from items that use the CNC_DIRECTORIES argument.

SERVO MODULES

This array index is dimensioned by the number of servo modules available on your 9/Series. The array index always returns "1" on a 9/PC CNC. The 9/260 and 9/290 CNCs can have up to three servo modules installed. This array index ranges from 1 to 3.

For example the data item SERVO_FW_REVISION returns the firmware revision number for the servo control on the 9/PC card. This item does not return revision of the servo software on the 1394 CNC serial drive. The data item uses this array index to determine which servo module you are referencing.

SERVO_FW_REVISION, 2

returns the DINT value representing the firmware revision number for the second servo module on a 9/260 or 9/290. Refer to the SERVO_FW_REV item description for details on the return value format for this item.

SERVO_NUM

This array index is dimensioned by the AMP configured number of a specific servo port on the control. This is the logical servo number including split, dual, spindles, and adaptive depth probes. This array index ranges from 1 to 15.

For example the data item SERVO_NAME, which returns the name of the servo as configured in AMP, uses this array index to determine which servo you are referencing.

SERVO_NAME, 6

returns the SINT value representing the axis name of the number six axis configured in AMP.

M_MODAL_GROUP

This array index is dimensioned by the valid M code modal groups. M code modal groups range from 0 to 13. Refer to your operation and programming manual for details on M codes and their respective modal groups.

For example the data item M_CODE_STATUS, which returns the active programmed M code number, uses this array index to determine which modal group you are checking.

M_CODE_STATUS, 4

returns:

If this Group 4 M-code is Active:	Returned Value
M00	0
M01	1
M02	2
M30	30

G_MODAL_GROUP

This array index is dimensioned by the valid G code modal groups. You can find the G code modal groups range in NUM_G_GROUPS_1 (an API item). Refer to your operation and programming manual for details on G codes and their respective modal groups.

For example the data item G_CODE_STATUS, which returns the active programmed G code number, uses this array index to determine which modal group you are checking.

G_CODE_STATUS, 4

returns:

If this group 4 G-code is Active:	Returned Value
G22	220
G22.1	221
G23	230
G23.1	231

SETUP_BUFFERS

This array index is dimensioned by the currently available part program setup buffers. This number is dependent on several factors including complexity of the current part program and number and type of features active at any given time. This number will range from a minimum of 1 to a maximum of 21.

For example the data item ACTIVE_PART_PROGRAM_BLOCKS, which allows you to identify blocks that have been read into the setup buffer uses this array index:

ACTIVE PART PROGRAM BLOCKS, 2

NUM PP FILES

This array index is dimensioned by the number of part programs currently in the directory. Not to be confused with the part program name (proceeded with the O word and often a number) this integer value is the number in the directory of the program you want to investigate. For example if the main directory has three part programs in it:

O123456 DRVSHAFT RRIGHT47

O123456 would be program one. DRVSHAFT would be program 2 and RRIGHT47 would be program 3. The maximum size of this array index is dependent on the number of programs in the directory.

For example the data item FILE_NAME, which returns a string of the part program name, uses this array index to determine which program name you want. Note this data item also uses the NUM_CNC_DIRECTORIES array index. Format is: FILE_NAME, NUM_CNC_DIRECTORIES, NUM_PP_FILES

FILE_NAME, 1, 3

returns the STRING of "RRIGHT47" assuming RRIGHT47 is the third program in the main part program directory.

Part programs are stored in alphabetical order in the CNC directories.

OFFSET_NUM

This array index is dimensioned in AMP as the maximum number of tool offsets allowed on your system.

TOOL NUM

This array index is dimensioned in AMP as the maximum number of tool numbers allowed on your system.

Control Type

The "Control Type" attribute indicates the application(s) for which a particular data item can be used: either:

- Mill,
- Lathe
- Grinder ¹

Important: ¹ Grinder type control is not available for Release 1 of the 9/PC.

The entire dual processing system is not available for Release 1 of the 9/PC CNC. The single processing system is available on both the 9/Series and the 9/PC CNC. Some data items are not available on the dual processing system or are not available on the single processing system. These are indicated as:

(dual-process only) or (single-process only)

Other data items without this designation should be assumed available on both single and dual-processing controls (dual process is not available for Release 1 of the 9/PC).

The control type is determined by a combination of the executive software supplied with the control and the AMP configured control type.

Link Type

Your OCI application program must choose the link type to be used based on your specific data needs. When you create an OCI application program, you must choose the link type that meets your needs. If your OCI application program requests a:

 Manual Link. Data that is identified as a manual link type must be requested by your application program to get an update. Changes to the data are not automatically updated on the OCI station by the control. Your application must request that the control update the OCI station. The application program receives only one update of the data from the control when the request is made.

Automatic Link. Data that is identified as an automatic link type
is added by the OCI server to the watch list. The value for the
item is then sent from the control to the OCI server and again any
time the data item on the watch list changes. Your application
receives updates to the items each time the value changes on the
control.

Notify link mode option, though supported by most DDE application programs, are not recommended. Since the OCI system is designed to minimize network traffic, notify links are added to the watch list instead of requiring your server continuously pole the CNC for status. This nullifies the advantages typically gained by using a notify link type.

The OCI WatchList

Once your DDE application makes a DDE request to the OCI data server, the data item is added to a watchlist maintained by the CNC. New items are added and old items are removed from the watch list as requested by the OCI data server. Once the CNC has a watch list it monitors the specified items in the list for changes. When a change occurs to a piece of data, the processor (after waiting a configurable number of coarse iterations) sends the OCI data server the new information.

If multiple OCI data servers are running on the network, there can be multiple watch lists on any one control. The 9/Series control is capable of maintaining multiple watch lists (up to 4 different OCI stations) and will return data as needed to the appropriate OCI station. The 9/PC can maintain watchlists for only one data server.

Since the watchlist is maintained on the control's processor instead of on the workstation (as is common with more typical DDE applications) the OCI shows improved network performance over similar competition by not requiring continuous polling of data from the workstation. It also prevents continuous transmission of automatic data on the network as data is only transferred to the OCI server when an item on the watchlist changes. This is the reason no polling rate configuration is necessary for the OCI installation.

As more items are added to the watch list, more processing time is required from the processor. We recommend keeping the watchlist as small as possible to prevent performance degradation and out of room on watchlist errors. Though most OCI applications make a negligible change in performance you should not unnecessarily load the system up with requests for data until that data item is actually needed. The maximum combined number of data items that any processor can maintain on all watch lists is based on what data items are in the watch list as well as remaining control memory.

Important: If your application uses RSJunctionBox (as used by the

Basic Display Set) you must include an item destroy command in your logic. Item destroy is used to prevent the WatchList from filling by maintaining links to data items that are no longer needed. Refer to page 1–8 for

details on item destroy.

Important: Refer to your AMP reference manual for details on

determining and configuring the OCI WatchList Buffer

Size.

Two watch lists are created on the CNC for every connected OCI station. See the background/foreground section in this chapter for details. Systems with extremely large watch lists may need to increase their AMP configured system scan times.

 POKE POKE operations are used to send data to the processor from the OCI data server. The Server sends the value from your application program to the processor that contains the data item.

ATTENTION: Extreme care must be taken when using the POKE capability. If you inadvertently write to critical data in the CNC, you could adversely affect the operation of the CNC.

Monitor the status of POKE commands using the data item WRITE_ERROR_CODE which will return the success or failure of a POKE operation as discussed in the error appendix later in this manual.

Important:

To perform a poke operation, the OCI station making the request must be the controlling station. Refer to the API command items "REQUEST_CONTROL" and "RELINQUISH_CONTROL".

Background/Foreground

All data items are monitored in the controls background unless otherwise indicated in the text describing the data item. Foreground and Background speed is related to the system scan time. The system scan time for the control is set in AMP. You can set the system scan time in increments of 2 ms from 6 to 30 ms. Foreground tasks occur during each system scan time. Data items are hard coded in the processor as foreground or background. Only the following data items are foreground items:

- ESTOP STATE
- Select PAL/Logic system flags (ones that are foreground only) The rate at which the CNC tests and reports data changes for OCI watchlists is configured in AMP. Refer to your AMP Reference Manual for details.

Background tasks are executed whenever there is excess time available during a system scan time. The execution continues only as long as there is excess time. When the excess time is used up, the current background task is marked and foreground PAL/Logic execution begins. Background execution resumes at the marked position when there is excess time available again during future coarse iterations.

Important:

Since background tasks may be updated at various intervals of the control cycle, it is necessary to coordinate I/O or other PAL/Logic variables with system timing. For the 9/PC, no I/O variables exist and the only access is through system flags. For the 9/Series only, any values that change in foreground and are accessed by the OCI (at a later time time in a background scan) should be saved to a global variable before the I/O value changes due to another change of the variable in foreground. Failing to do this can cause foreground events to be missed by the OCI data server.

When the OCI data server creates watch lists on the CNC, it creates two different watchlists; one for foreground data items, and one for background data items. If multiple OCI data servers connect to the same 9/Series CNC, each OCI data server creates a separate foreground and background watch list.

Important: Release 1 of the 9/PC can support only one data server.

Selecting the Process for Dual Process Controls

The 9/Series provides a dual process option which allows the use of the 9/Series to control multiple processes. Many API data items and commands present different data based on the process you are looking at. Refer to appendix A and B to identify if your API data item or command is available in two different process.

Important: Dual process options are not available for Release 1 of the 9/PC CNC.

To specify which process your API data request or command is targeting you can append the process number to the data item or command following a period. For example:

NUM_AXES.1 NUM_AXES.2

would request the number of axes in process 1 and process two respectively.

The default for all per process commands and API items is always process 1 so the API item:

NUM_AXES

on a dual process system returns only process 1 data.

If an item or command has an argument, follow the process number with the argument. For example:

AXIS_NAME.2,2-3

would return the second and third axis names in process 2.

Logical vs Physical Axes

All data items for axes are presented in the OCI API in "logical" order with the exception of some AMP parameters which are defined in physical axis terms. For example the data item

"DRILLING_AXIS_LOGICAL_BIT_PATTERN" is an example of a axis data returned as a logical bit pattern.

Logical axis refers to the order that the axis are presented in the process. For single process controls this is not much of an issue with the exception of spindles and virtual axes which are always stored as the last axes in the process.

Physical axis refers to the order in which the axes are created using the ODS AMP tool and are independent of the process the axes are assigned to.

Numb	ical Axis er (order 1Ped)	Process Assigned	Logical Axis Process 1	Logical Axis Process 2
Axis 1	Χ	Process 1	1	
Axis 2	Υ	Process 1	2	
Axis 3	Z	Process 1	3	
Axis 4	U	Shared	4	1
Axis 5	Α	Process 2		2
Axis 6	В	Process 2		3
Axis 7	С	Process 1	5	

If looking at process 1 data item:

"DRILLING_AXIS_LOGICAL_BIT_PATTERN.1" axis data would be returned in the bit pattern as X, Y, Z, U, C in the first five bits.

and for process 2:

"DRILLING_AXIS_LOGICAL_BIT_PATTERN.2" axis data would be returned in the bit pattern as U, A, B in the first three bits.

Important: Only single process is available for Release 1 of 9/PC.

AMP Parameter Data Items

@parameter num

Data Type	LREAL
Read/Write	Read/Write (patch AMP only) Read (others)
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Follow the @ symbol with the AMP parameter number you want to edit. Refer to your AMP reference manual for details on AMP parameters and their respective QuickEdit numbers.

Before you can make write to AMP parameters you must first execute a MODIFYING_AMP command request. When your changes are complete execute an UPDATE_AMP command to close the AMP file. After completing AMP changes with this data item you must cycle power to the control for the change occur. Exceptions to this are online AMP parameters that can be set real time (such as servo motor integral and proportional gain values). Online AMP parameters are provided as separate API data items, found under their corresponding topic, later in this chapter or appendix A.

Important:

Only patch AMP parameters are writable. Other AMP parameters (except online AMP parameters) are read only. Use the data item AMP_PARAMETER_NUMBER to identify what parameters are available patch AMP.

You should identify the data type for an AMP parameter before attempting to write to the parameter (see AMP_PARAMETER_DATA_TYPE).

AMP_PARAMETER_DATA_TYPE patchAMP_num

Data Type	USINT
Read/Write	Read
Array Index	patchAMP_num
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This data item is used to identify the data type (format) for AMP parameters that can be accessed using the patch AMP feature. The patchAMP_num argument is the number of the patch AMP parameter to identify, not the quick edit number or parameter number (see AMP_PARAMETER_NUMBER). The AMP_PARAMETER_DATA_TYPE item returns an enumeration identifying the data type as follows:

Enumeration	Result:
0	Short
1	Unsigned Short
2	Long
3	Unsigned Long
4	Quad
5	Unsigned Quad
6	Float
7	Double
8	Unsigned Character
9	ASCII Character

For example:

AMP_PARAMETER_DATA_TYPE,1

returns the data type enumeration for patch AMP parameter number 1. Use AMP_PARAMETER_NUMBER to identify the actual AMP parameter associated with patch AMP parameter number 1.

AMP_PARAMETER_NUMBER patchAMP num

Data Type	UINT
Read/Write	Read
Array Index	patchAMP_num
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This data item is used to identify quick edit number of a specific patchAMP parameter. For example:

AMP_PARAMETER_NUMBER, 1

returns the value 11 indicating that AMP parameter with the quick edit number of 11 is the first patch AMP parameter.

NUM_PATCHABLE_AMP_PARAMETERS

Data Type	UINT
Read/Write	Read
Array Index	patchAMP_num
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This data item is used to identify the quantity of available AMP parameters that can be changed thru patch AMP. For example if the value of NUM_PATCHABLE_AMP_PARAMETERS is 299 it indicates that the patch AMP numbers range from 1 to 299. Use this to identify the range for the patchAMP_num argument for the items AMP_PARAMETER_NUMBER, and AMP_PARAMETER_DATA_TYPE.

Axis Calibration Data Items

AXISCAL_ABS_POS, point num, axis num

Data Type	LREAL
Read/Write	Read only
Array Index	point_number, axis_number
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The AXISCAL_ABS_POS item is used to read back the absolute point locations from the axis calibration table. This item is read only. Data points are added or removed using axis calibration command items. Indexes for this item include:

point_num – this index identifies which point you are referencing. Refer to your AMP reference manual for details. You can address multiple points with one command. An error is returned if a point is requested that does not exist for the specified axis. Use this item in conjunction with AXISCAL_POINTS_USED.

axis_num – this index identifies the logical axis number for which you are requesting axis calibration data. Axis numbers are determined by your AMP configuration. You can only make requests for one axis at a time. Use the axis number in this request. Axis names are not valid.

AXISCAL_ABS_POS,1-34, 1

returns axis calibration absolute positions for points 1 thru 34 for axis 1.

Use this item in conjunction with the AXISCAL_MEAS_DEV_AMOUNT item which returns the actual measurement for the absolute position.

AXISCAL_MEAS_DEV_AMOUNT, point_num, axis_num

Data Type	LREAL
Read/Write	Read only
Array Index	point_number, axis_number
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The AXISCAL_MEAS_DEV_AMOUNT item is used to read back the correction values from the axis calibration table. Note this item is read only. Data points are added or removed using axis calibration command items. Indexes for this item include:

point_num – this index identifies which point you are referencing. Points can be entered into the table as deviation or absolute. Refer to your AMP reference manual for details. You can address multiple points with one command. An error is returned if a point is requested that does not exist for the specified axis. Use this item in conjunction with AXISCAL_POINTS_USED.

axis_num – this index identifies the logical axis number for which you are requesting axis calibration data. Axis numbers are determined by your AMP configuration. You can only make requests for one axis at a time. Use the axis number in this request. Axis names are not valid.

AXISCAL_MEAS_DEV_AMOUNT,5-6, 2

returns axis calibration table values of points 5 and 6 for axis 2.

Use this item in conjunction with the AXISCAL_ABS_POS item which returns the absolute position for axis calibration points.

AXISCAL	POINTS	USED, axis	num

Data Type	UINT
Read/Write	Read only
Array Index	axis_number
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The AXISCAL_POINTS_USED item is used to read back the number of used axis calibration points used for a selected axis. This item has one index as follows:

axis_num – this index identifies the logical axis number for which you are requesting the number of axis calibration points. Axis numbers are determined by your AMP configuration. You can address multiple axes with one command. An error is returned if a request is made to an invalid axis name. Use the axis number in this request. Axis names are not valid.

AXISCAL_POINTS_USED,1-4

returns the number of axis calibration points used for axes 1, 2, 3, and 4 separated by the (TAB) character.

AXISCAL_POINTS_FREE

Data Type	UINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The AXISCAL_POINTS_FREE item is used to identify the how many axis calibration points remain unused. Note the total number of axis calibration points is a total for all axes. If this item indicates 100 points free it means 100 points are available on the system for all axes configured, not 100 points per axis.

AXISCAL_STATUS

Data Type	INT (bit pattern)
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The AXISCAL_STATUS identifies, the status on a specific axis, if axis calibration is enabled. This item is returned as a integer that must be interpreted as a bit pattern. Convert this items returned integer value to a bit pattern to interpret which axes have axis calibration enabled. A one in any bit indicates axis calibration is enabled for that axis. The first bit (right most) representing axis 1. A zero in any bit indicates axis calibration is disabled. The maximum number of bits representing axes is the maximum configured number of program axes plus any deskew slaves.

AXISCAL_STATUS

could return the integer 4 which would indicate only axis three has axis calibration enabled (0000000100).

Communication Port Data Items

Important: The data items in this section apply to 9/Series controls only.

PORT_BAUD_RATE, port id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/write the communication baud rate for the specified port. The index *port_id* identifies the port as follows:

1 - port A

2 – port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	300 Baud
1	600 Baud
2	1200 Baud
3	2400 Baud
4	4800 Baud
5	9600 Baud
6	19200 Baud
7	38400 Baud*
* For release 12 or greater	

For example assigning a value of 6 to the following item:

PORT_BAUD_RATE, 1

selects the baud rate of 19200 for port A.

PORT_PROTOCOL, port_id

Data Type	INT (enumerated)
Dala Type	iivi (eliulilelateu)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/write the communication protocol for the specified port. The index *port_id* identifies the port as follows:

1 - port A

2 - port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	Raw
1	Level 1
2	Level 2
3	DF1
4	Level 2

For example assigning a value of 3 to the following item:

PORT_PROTOCOL, 1

selects DF1 protocol for port A.

Not all devices support all of these protocol options. Refer to your hardware specification manual valid protocol types.

PORT_TYPE, port id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/write the type of port for port B (note port A is always RS-232). The index *port_id* identifies the port as follows:

1 - port A

2 – port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	RS232C
1	RS422A

For example assigning a value of 1 to the following item:

PORT_TYPE, 2

selects RS422A communication hardware drivers for port B.

PORT_COMMUNICATION_FORMAT, port_id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/write the communication format for the specified communication port. The index *port_id* identifies the port as follows:

1 - port A

2 - port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	EIA
1	ASCII
2	N/A

For example assigning a value of 1 to the following item:

PORT_COMMUNICATION_FORMAT, 2

selects ASCII communication format for port B.

PORT_PARITY, port_id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/write the parity used for the specified communication port. The index *port_id* identifies the port as follows:

1 - port A

2 - port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	Odd
1	Even
2	None

For example assigning a value of 1 to the following item:

PORT_PARITY, 2

selects Even parity for port B.

PORT_STOP_BITS, port_id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/write the number of stop bits used for the specified communication port. The index *port_id* identifies the port as follows:

1 - port A

2 – port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	1 bit
1	1.5 bits
2	2 bits

For example assigning a value of 1 to the following item:

PORT_STOP_BITS, 2

selects 1.5 stop bits for port B.

PORT_DATA_BITS, port_id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/write the number of data bits used for the specified communication port. The index *port_id* identifies the port as follows:

1 - port A

2 - port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	7 bit
1	8 bits

For example assigning a value of 1 to the following item:

PORT_STOP_BITS, 2

selects 8 data bits for port B.

PORT_AUTO_FILENAME, port id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/enable/disable the auto filename feature. The auto filename feature is used for tape punch and intelligent devices. Refer to your operation and programming manual for details on using this feature. The index *port_id* identifies the port as follows:

1 - port A

2 – port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	No (disabled)
1	Yes (enabled)
2	N/A

For example assigning a value of 1 to the following item:

PORT_AUTO_FILENAME, 2

enables the auto filename feature for port B. The N/A enumeration is only available for tape devices that do not support this feature.

PORT STOP AT PROGRAM END, port id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/enable/disable the tape stop at program end feature. This feature is used for tape devices. Refer to your operation and programming manual for details on using this feature. The index *port_id* identifies the port as follows:

1 - port A

2 – port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	No (disabled)
1	Yes (enabled)
2	N/A

For example assigning a value of 1 to the following item:

PORT_STOP_AT_PROGRAM_END, 2

enables this feature for port B. The N/A enumeration is only available for tape devices that do not support this feature. Non-tape devices do not have this feature and will return an error if you attempt to read or write this data item.

PORT_REWIND_ON_MO2_M30,port_id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/enable/disable the tape rewind on M02/M30 feature. This feature is used for tape and intelligent devices. Refer to your operations and programming manual for details on using this feature. The index *port_id* identifies the port as follows:

1 - port A

2 – port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	No (disabled)
1	Yes (enabled)
2	N/A

For example assigning a value of 1 to the following item:

PORT REWIND ON M02 M30, 2

enables this feature for port B. The N/A enumeration is only available for tape devices that do not support this feature. Non-tape devices do not have this feature and will return an error if you attempt to read or write this data item.

PORT_REWIND_ON_M99,port_id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/enable/disable the tape rewind on M99 feature. This feature is used for tape or intelligent devices. Refer to your operations and programming manual for details on using this feature. The index *port_id* identifies the port as follows:

1 - port A

2 - port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	No (disabled)
1	Yes (enabled)
2	N/A

For example assigning a value of 1 to the following item:

PORT_REWIND_ON_M99, 2

enables this feature for port B. The N/A enumeration is only available for tape devices that do not support this feature. Non-tape devices do not have this feature and will return an error if you attempt to read or write this data item.

PORT_PERCENT_SELECTION, port id

Data Type	INT (enumerated)
Read/Write	Read/Write
Array Index	port_id
Control Type	Lathe/Mill/Grinder

This item is used to read/enable/disable the % sign as a valid end of program character for a tape. This feature is used for tape or intelligent devices. Refer to your operations and programming manual for details on using this feature. The index *port_id* identifies the port as follows:

1 - port A

2 – port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	No (disabled)
1	Yes (enabled)
2	N/A

For example assigning a value of 1 to the following item:

PORT_PERCENT_SELECTION, 2

enables this feature for port B. The N/A enumeration is only available for tape devices that do not support this feature. Non-tape devices do not have this feature.

PORT_PROGRAM_NAME, port_id

Data Type	INT (enumerated)	
Read/Write	Read/Write	
Array Index	port_id	
Control Type	Lathe/Mill/Grinder	

This item is used to read/enable/disable the part program name on tape feature. This feature is used for tape devices. Refer to your operation and programming manual for details on using this feature. The index *port_id* identifies the port as follows:

1 - port A

2 - port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	No (disabled)
1	Yes (enabled)
2	N/A

For example assigning a value of 1 to the following item:

PORT_PROGRAM_NAME, 2

enables this feature for port B. The N/A enumeration is only available for tape devices that do not support this feature. Non-tape devices do not have this feature.

PORT_TIMEOUT_VALUE, port_id

Data Type	INT (enumerated)	
Read/Write	Read/Write	
Array Index	port_id	
Control Type	Lathe/Mill/Grinder	

This item is used to read/write the timeout value used for the specified communication port. The index *port_id* identifies the port as follows:

1 - port A

2 - port B

The *port_id* index must always be used with this data item. You can not use this index to access more than one port per request. Data for this item is enumerated as follows:

This Value:	Indicates/Selects
0	3 Seconds
1	15 Seconds
2	30 Seconds
3	60 Seconds
4	120 Seconds
5	180 Seconds
6	300 Seconds
7	600 Seconds
8	Unlimited (no timeout)

For example assigning a value of 4 to the following item:

PORT_TIMEOUT_VALUE, 1

selects a timeout value of 120 seconds for port A.

RX_CHAR_PORTA(rx char size)

Data Type	USINT
Read/Write	Read only
Array Index	see RS232 charts
Control Type	Lathe/Mill/Grinder

The RX_CHAR_PORTA item identifies a character received on serial port A. The control always forces a null after each character received over this port. So if a device sends an "A" character to this port, this item will identify two characters received, the A followed by the null character.

RX_CHAR_PORTB(rx_char_size)

Data Type	USINT
Read/Write	Read only
Array Index	see RS232 charts
Control Type	Lathe/Mill/Grinder

The RX_CHAR_PORTB item identifies a character received on serial port B. The control always forces a null after each character received over this port. So if a device sends an "A" character to this port, this item will identify two characters received, the A followed by the null character.

HARDWARE_STATUS_PORTA

Data Type	USINT (bit pattern)	
Read/Write	Read only	
Array Index	none	
Control Type	Lathe/Mill/Grinder	

The HARDWARE_STATUS_PORTA item identifies the current hardware status of port A. This is a bit pattern item whose bits identify the hardware status as follows:

This Bit:	Indicates:	
0	CTS	
1	RTS	
2	(not used)	
3	(not used)	

HARDWARE_STATUS_PORTB

Data Type	USINT (bit pattern)	
Read/Write	Read only	
Array Index	none	
Control Type	Lathe/Mill/Grinder	

The HARDWARE_STATUS_PORTB item identifies the current hardware status of port B. This is a bit pattern item whose bits identify the hardware status as follows:

This Bit:	Indicates:	
0	CTS	
1	RTS	
2	DSR	
3	DTR	

LEVEL_2_STATUS_PORTA

Data Type	USINT (bit pattern)	
Read/Write	Read only	
Array Index	none	
Control Type	Lathe/Mill/Grinder	

The LEVEL_2_STATUS_PORTA item identifies the current data status of communications on port A. This is a bit pattern item whose bits identify the hardware status as follows:

This Bit:	Indicates:	This Bit:	Indicates:
0	dc1 (receive)	4	dc1 (transmit)
1	dc2 (receive)	5	dc2 (transmit)
2	dc3 (receive)	6	dc3 (transmit)
3	dc4 (receive)	7	dc4 (transmit)

LEVEL_2_STATUS_PORTB

Data Type	USINT (bit pattern)
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder

The LEVEL_2_STATUS_PORTB item identifies the current data status of communications on port B. This is a bit pattern item whose bits identify the hardware status as follows:

This Bit:	Indicates:	This Bit:	Indicates:
0	dc1 (receive)	4	dc1 (transmit)
1	dc2 (receive)	5	dc2 (transmit)
2	dc3 (receive)	6	dc3 (transmit)
3	dc4 (receive)	7	dc4 (transmit)

UART_MAX_BAUD_MODE

Data Type	USINT
Read/Write	Read/Write
Array Index	none
Control Type	Lathe/Mill/Grinder

Use this data item to select the maximum configured baud rate for all devices connected to the UART port. Refer to your users manual for details on why this baud rate needs to be selected. Setting a value of 176 selects a max baud rate of 19.2 kbaud. Setting a value to this item at 48 selects a max baud rate of 38.4 kbaud. Values other than 176 or 48 are ignored.

Error Message Data Items

COMMAND_ERROR_CODE

Data Type	INT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this command to identify the status of OCI commands issued to the CNC (see the API command chapter in this manual). Once a command is issued the command error code changes to 3000 indicating the control is executing the command. Refer to Appendix C for a listing of the command errors.

The sign bit for this word is toggled after each error condition (except 3000) to allow the PC to identify a transition in this value in the event multiple commands execute on the CNC quickly. To identify the actual error you must strip the most significant bit from this items value. Strip this sign bit by anding the value returned by this item with 32767 (7FFF). The resulting value can be used in appendix C to identify the error. The following table shows the value of Command_Error after a request has been made to the CNC to execute three different commands, the first of which is a bad command request, the second and third executes successfully:

Value of Command_Error	Value after sign bit removed	Indicates
0	0	Status OK
3000	3000	Executing Command
35786	3018	Bad Command Request
3000	3000	Executing Command
0	0	Status OK
3000	3000	Executing Command
8000	0	Status OK

LINE_1_MESSAGE_DATA, error integer

Data Type	UDINT
Read/Write	Read only
Array Index	error_integer
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to pass the active line 1 error message from the CNC. Refer to your operation and programming manual for details on line one active error messages. If messages of the same priority are active this item will change between the different messages. If a lower priority message is active it will not be passed into this item until the higher priority message is cleared.

Messages are returned to the OCI station as a message base, an index, and any special characters for that message. This information is provided using the three integer array associated with this data item.

Important:

Refer to your 9/Series *PAL Reference Manual* or 9/*PC Logic Interface Reference Manual*, System Error Detection chapter for tables listing bases and the corresponding message index. Descriptions for the error messages are available in your operation and programming manual.

LINE_1_MESSAGE_DATA,1

This data item returns the error message base for the currently active line one error message.

LINE 1 MESSAGE DATA,2

This data item is an enumeration that identifies the use of the information in the third word. It is enumerated as follows:

Value of LINE_1_MESSAGE_DATA,2	Resulting impact to LINE_1_MESSAGE_DATA,3:
0	NO_VARIABLE - this indicates that the third word is not used. This means there is no accompanying text for the message and there is only one message in this base.
1	EXCLUSIVE – mutually exclusive message. This indicates the third word of this data item is the message index for the given base.
2	AXIS_HEAD - there is only one message in this base. The third word indicates the axis name to be shown at the beginning of the message.
3	AXIS_TAIL - there is only one message in this base. The third word indicates the axis name to be shown at the end of the message.
4	CHANNEL_HEAD - there is only one message in this base. The third word indicates the channel used to be shown at the beginning of the message.
5	CHANNEL_TAIL - there is only one message in this base. The third word indicates the channel used to be shown at the end of the message.
6	SLOT_HEAD - there is only one message in this base. The third word indicates the amplifier slot number to be shown at the beginning of the message.
7	SLOT_TAIL - there is only one message in this base. The third word indicates the amplifier slot number to be shown at the end of the message.

LINE_1_MESSAGE_DATA,3

This data item returns an integer that is dependent on the value of LINE_1_MESSAGE_DATA,2. The value of LINE_1_MESSAGE_DATA,3 is interpreted as follows:

Exclusive Number – (word two value is 1). Word 3 returns the index of the error message in the message base. Refer to your 9/Series PAL Reference Manual or 9/PC Logic Interface Reference Manual (System Error Detection chapter) for details on this error number indexes.

Axis Name – (word two value is 2(head) or 3(tail)). Word 3 returns a bit pattern indicating which axis is to be displayed. A one in any bit indicates that logical axis number is to have its axis name displayed (right most bit being axis 1). Axis names are assigned to logical axis numbers in AMP.

Channel Number – (word two value is 4(head) or 5(tail)). Word 3 returns a value corresponding to the communications channel which has the error. 1 indicates Port A, 2 indicates Port B.

Slot Number – (word two value is 6 or 7). Word 3 returns a value corresponding to the slot number of the offending axis module in a 1394 or 9/440 amplifier rack.

For example if:

```
LINE_1_MESSAGE_DATA,1 = 48
LINE_1_MESSAGE_DATA,2 = 3
LINE_1_MESSAGE_DATA,3 = 5
```

it indicates message base 48 (see your PAL/Logic Manual system error detection chapter) should be displayed followed by axis names for logical axes 1 and 3 (00101). Assuming logical axes 1 and 3 axis names are X and Z the error message should read:

EXCESS SKEW ON XZ

or if:

```
LINE_1_MESSAGE_DATA,1 = 55
LINE_1_MESSAGE_DATA,2 = 1
LINE_1_MESSAGE_DATA,3 = 16
```

it indicates error message 16 from message base 55 (see your *PAL Manual* or *9/PC Logic Interface Reference Manual* system error detection chapter) should be displayed with no special head or tail characters. This error message should read:

INVALID AMP-DEFINED G CODE

Important:

Source files are available with the Allen-Bradley OCI Basic Display set source code that have all error message strings and their corresponding message bases. Code is also available with the Basic Display Set source that manages these data items and displays errors accordingly. Line 1 Message Data has a 4th entry for "dual process" only.

MESSAGE	BASE-LAST-	INDEX, range_num

Data Type	UDINT
Read/Write	Read only
Array Index	range_num
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The message bases for system error messages are divided into three categories, Common Message Base (Range 1 – 200), Single Process Control Specific Message Base (Range 201–300) and Dual Process Control Specific Message Base (301–400). The MESSAGE_BASE_LAST_INDEX API returns the values of the last index in each of the message base sections mentioned above. The range_num may be used to obtain the last index for a particular section. For example, MESSAGE_BASE_LAST_INDEX,1 returns the last index of the Common Message Base.

ACTIVE_PAL_MESSAGES, line num

Data Type	String
Read/Write	Read only
Array Index	line_num
Control Type	Lathe/Mill/Grinder

Important: This data item does not apply to 9/PC.

This item is used to pass any active PAL/Logic messages to the OCI station. PAL/Logic messages are created by your logic program.

The *line_num* index is used to identify the number of the PAL/Logic message. You must use valid PAL/Logic message line numbers for this data item. Valid line numbers are 1, and 13-22. You can request up to five line numbers with each DDE request. The data item is returned as invalid if any other line numbers are used.

ACTIVE_PAL_MESSAGES,13

Returns the text string for the active PAL/Logic message that should be displayed on line 13 as defined in your PAL/Logic application. For each line returned the first 40 characters contain the ASCII characters that make up the message. The next 40 characters contain a control character for each of the 40 message text characters. Each of these control characters is made up of three attributes assigned to different bits of the word. These control characters identify how each character of the message should be displayed as follows:

CODE_INVERSE	0x40
CODE_NORMAL	0x00
CODE BLINK ON	0x80
CODE_BLINK_OFF	0x00
CUD DI ACIV	0.10
CHR_BLACK	0x10
CHR_RED	0x11
CHR_GREEN	0x12
CHR_YELLOW	0x13
CHR_BLUE	0x14
CHR_MAGENTA	0x15
CHR_CYAN	0x16
CHR_WHITE	0x17

Miscellaneous Data Items

COPYRIGHT_DATE

Data Type	String1
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to identify the copyright date for the 9/Series or 9/PC CNC firmware. Data is returned as a text string with the format:

(mm/dd/yy)

where:

mm – month dd – day yy – year

DATE

Data Type	String1
Read/Write	Read/Write
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item is used to set/read the current date from the control. Format for this text string is:

mm/dd/yy

where:

 $\begin{array}{l} mm-month\\ dd-day\\ yy-year \end{array}$

When writing this data item you must use all eight characters of this text string. Leading zeros must be included (01/02/96)

TIME

Data Type	String1
Read/Write	Read/Write
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item is used to set/read the current time from the control. Format for this text string is:

hr:mm:ss

where:

hr – hour (in 24 hour clock) mm – minute ss – second

When writing this data item you must use all eight characters of this text string. Leading zeros must be included (22:03:00)

PROCESS_CHANGE_REQUEST

Data Type	INT
Read/Write	Read/Write
Array Index	none
Control Type	Lathe/Mill

On dual process systems use this data item to request the control change the currently active process. Seting the value of PROCESS_CHANGE_REQUEST to one will request a process change. The control resets the value to zero when the process change is completed. Use the PAL/Logic flag \$SPROCI to identify the currently active process.

Important: Dual process systems are not available for the 9/PC.

PRODUCT ID

Data Type	UINT (enumerated)
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to identify the CNC hardware platform connected to your OCI station. The value returned for this product ID is enumerated as follows:

Enumeration	Result:
9	9/260 Lathe/Mill
10	9/260 Grinder ¹
11	9/290 Lathe/Mill
12	9/290 Grinder ¹
15	9/260 Multi Process
17	9/290 Multi-Process
22	9/PC Lathe/Mill

¹ Grinder Control Type is not available for the 9/PC.

Important: Dual process systems are not available for the 9/PC.

FW_REVISION

Data Type	DINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This double word provides the revision of the system executive as a 32 bit word. The upper 16 bits indicate the major and minor revisions. The lower 16 bits indicate the an internal Allen–Bradley software revision that you should ignore.

For example for firmware revision 11.00 you would be returned the decimal integer 720896048 or in HEX

2AF8-0030

The lower 16 bits is the internal revision The upper 16 bits is the major revision 11000 (11.00)

PROCESS NAMES

Data Type	String
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill (dual process only)

The PROCESS_NAMES data item identifies AMP process name for dual process systems. The system installer configures a process name in AMP for each process controlled by the CNC. This item returns the process name as a text string for the requested process.

Important: Dual process systems are not available for release 1 of the 9/PC.

Follow the data item with a .1 or .2 to indicate the process number. No process number makes a request for process 1. Single process systems can also use .1 as a valid data item request. For example:

PROCESS_NAMES.1

would return the text string used to identify the process 1 name.

SERVO_FW_REVISION, num_module

Data Type	DINT
Read/Write	Read only
Array Index	num_module
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This double word provides the servo firmware revision as a 32 bit word. The upper 16 bits indicate the major and minor revisions. The lower 16 bits indicate the an internal Allen–Bradley software revision that you should ignore.

For example for firmware revision 11.00 you would be returned the decimal integer 720896048 or in HEX

The lower 16 bits is the internal revision The upper 16 bits is the major revision 11000 (11.00)

You can access this data item for each servo module individually using the *num_module* index. This index corresponds to the position of the servo module in the chassis. Not including the num_module index results in the data being returned for all servo modules in the system (separated by the (TAB) character).

9/260 - 9/290 Chassis

Important: On the 9/PC system, the number of servo modules is always 1.

Offset Data

ACTIVE_TOOL_GEOM_NUM

Data Type	UINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The ACTIVE_TOOL_GEOM_NUM data item identifies the last tool geometry offset number activated on the control (refer to the offset chapter of your operation and programming manual for details). This tool geometry number may have been activated through part program execution, or from the execution of the OCI command ACTIVATE_TOOL_GEOM. .

Note that an active offset <u>number</u> does not necessarily indicate the offset is physically implemented on the machine. It only indicates the number of the offset that may or may not be active depending on the programmed operating mode of the control and the AMP configuration on how the offset is activated. Refer to the offset chapter of your operation and programming manual for details.

ACTIVE_TOOL_LENGTH_AXIS_LOGICAL_BIT_PATTERN

Data Type	UDINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to determine what axes are currently selected as the tool length axes in the process. It returns a bit pattern of the logical axes in the process. If a zero is reported to the logical axis number that axis is not currently a tool length axis. A one indicates the logical axis is a tool length axis. For example:

ACTIVE_TOOL_LENGTH_AXIS_LOGICAL_BIT_PATTERN.1

Could return the bit pattern 00000100. This would indicate that the third axis defined in that process is selected as the tool length axis.

ACTIVE_TOOL_WEAR_NUM

Data Type	UINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The ACTIVE TOOL WEAR NUM data item identifies the last tool wear offset number activated on the control. This tool wear number may have been activated through part program execution, or from the execution of the OCI command ACTIVATE TOOL WEAR.

Note that an active offset number does not necessarily indicate the offset is physically implemented on the machine. It only indicates the number of the offset that may or may not be active depending on the programmed operating mode of the control and the AMP configuration on how the offset is activated. Refer to the offset chapter of your operation and programming manual for details.

ACTIVE_TOOL_RADIUS_NUM

Data Type	UINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The ACTIVE TOOL RADIUS NUM data item identifies the last tool radius offset number activated on the control (refer to the cutter compensation chapter of your operation and programming manual for details). This tool radius number may have been activated through part program execution, or from the execution of the OCI command ACTIVATE_TOOL_RADIUS.

Note that an active offset number does not necessarily indicate the offset is currently active. It only indicates the number of the offset that may or may not be active depending on the programmed operating mode of the control and the AMP configuration on how the offset is activated. Refer to the offset chapter of your operation and programming manual for details.

AMPED '	Tool Leng	th axis l	OGICAL BIT	PATTERN

Data Type	UDINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to determine what axes are AMPed as the tool length axes in the process. It returns a bit pattern of the logical axes in the process. If a zero is reported to the logical axis number that axis is not AMPed as a tool length axis. A one indicates the logical axis is configured to be the default tool length axis. For example:

AMPED_TOOL_LENGTH_AXIS_LOGICAL_BIT_PATTERN.1

Could return the bit pattern 00000100. This would indicate that the third axis is AMPed to be the default tool length axis.

DRILLING_AXIS_LOGICAL_BIT_PATTERN

Data Type	UDINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to determine what axes are currently selected as the drilling axes in the process. The drilling axis is the axis used for drilling operations for fixed drilling cycles. It returns a bit pattern of the logical axes in the process. If a zero is reported to the logical axis number that axis is not currently the active drilling axis. A one indicates the logical axis is a active drilling axis. For example:

DRILLING_AXIS_LOGICAL_BIT_PATTERN.1

Could return the bit pattern 00000100. This would indicate that the third axis is selected as the drilling axis for fixed cycles.

Operating Mode

ACTIVE_UNITS

Data Type	UINT (enumerated)
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The ACTIVE_UNITS data item is used to identify the current operating mode, in terms of measurement system, being used on the control. The returned value is enumerated as follows:

Enumeration	Result:
2118	Inch Mode
2119	Metric Mode

AXIS_RAD_DIA_MODE

Data Type	DINT (bit pattern)
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The AXIS_RAD_DIA_MODE data item is used to identify which axes on the system are currently in radius or diameter mode (refer to your *Lathe or Grinder Operation and Programming Manual* for details on radius/diameter mode). The data for this item is returned as a bit pattern. A true value in any bit indicates that the axis is in diameter mode. The first bit of this word represents axis 1.

For example if the returned integer is 8, which translates into 01000 indicating the fourth axis is in diameter mode.

On Mill controls all axes are always in radius mode (all bits of this word remain zero). Only one axis can be in diameter mode on a Lathe. Grinders can have multiple axes in diameter mode.

ACTIVE_SCALE_INDICATOR

Data Type	DINT (bit pattern)
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The ACTIVE_SCALE_INDICATOR data item is used to identify which axes on the system are currently being scaled (refer to your operation and programming manual for details on scaling). The data for this item is returned as a bit pattern. A true value in any bit indicates the axis is scaled. The first bit of this word represents axis 1.

For example if the returned integer is 11, which translates into 001011 indicating axes 1, 2 and 4 are scaled.

PAL Variable Data Items

% I/O Variable

Data Type	(defined in ODS I/O assigner)
Read/Write	Read - Write (outputs only) (both PAL protected)
Array Index	none
Control Type	Lathe/Mill/Grinder

Important: % I/O Variable does not apply to 9/PC.

You can access all PAL I/O variables assuming they have been assigned properly with the ODS I/O assigner. Your OCI application can read both PAL inputs and outputs. Your OCI application can write to only PAL outputs. All read and writes are subject to the PAL logic which always has the authority to override any OCI settings.

Automatic reads of PAL variables are always added to the controls background watch list. You must consider any timing issues this may present in your PAL and API applications.

Variables set by the OCI occur at the beginning of a PAL scan. The PAL ladder runs and acts on these changes by writing to the variable tables. This means if your OCI sets an output to true at the beginning of a PAL scan, PAL can change the output point back to false during the PAL scan thus overriding the OCI request to set the output to true.

Format for this data item is % followed by the variable name:

%HDIO1

There can be timing issues related to I/O variables that are altered through the PAL logic, for example if your OCI station changes a PAL variable that is later changed in the foreground scan the last device (PAL logic or the OCI station) that changes the data will be used.

! User Defined Globals

Data Type	Defined by PAL programmer
Read/Write	Read/Write (PAL protected)
Array Index	none
Control Type	Lathe/Mill/Grinder

You can access all PAL user defined global variables assuming they have been defined properly in PAL (local PAL variables can not be accessed). All read and writes are subject to the PAL logic which always has the authority to override any OCI settings.

Automatic reads of PAL variables are always added to the controls background watch list. You must consider any timing issues this may present in your PAL and API applications.

Important: !User Defined Globals do not apply to 9/PC.

Variables set by the OCI occur at the beginning of a PAL scan. The PAL ladder runs and acts on these changes by writing to the variable tables. This means if your OCI sets an output to true at the beginning of a PAL scan, PAL can change the output point back to false during the PAL scan thus overriding the OCI request to set the output to true.

Format for this data item is ! followed by the name of the global variable:

! ARDF

There can be timing issues related to I/O variables that are altered through the PAL, for example if your OCI station changes a PAL variable that is later changed in the foreground scan the last device (PAL logic or the OCI station) that changes the data will be used.

\$ System Flags

Data Type	Defined by PAL
Read/Write	Read/Write (PAL protected)
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

You can access all PAL/Logic system flags provided they are available on your 9/Series executive type (e.g. some grinder system flags are not available on a lathe/mill). All read and writes are subject to the logic which always has the authority to override any OCI settings.

Automatic reads of PAL/Logic variables are always added to the controls background watch list. You must consider any timing issues this may present in your PAL/Logic and API applications.

Variables set by the OCI occur at the beginning of a PAL scan. The PAL/Logic ladder runs and acts on these changes by writing to the variable tables. This means if your OCI sets an output to true at the beginning of a PAL/Logic scan, PAL/Logic can change the output point back to false during the PAL/Logic scan thus overriding the OCI request to set the output to true.

PAL/Logic system variables that are defined by PAL/Logic as foreground only are also added to the OCI Foreground watchlist. Foreground/Background selectable and Background only PAL/Logic system variables are always loaded in to the OCI background watchlist as most other OCI API data items.

Format for this data item is \$ followed by the name of the system variable:

\$ESTOPI

Important: For the 9/PC, flags have a different syntax in Logic. API still uses the "\$" format.

There can be timing issues related to variables that are altered through the logic, for example if your OCI station changes a PAL/Logic variable that is later changed in the foreground scan the last device (PAL/Logic or the OCI station) that changes the data will be used. The foreground/background state of an OCI PAL/Logic system variable is defined in your PAL/Logic reference manual and not set by simply writing the variable in a foreground or background PAL/Logic module.

Important:

Before the OCI system is allowed to set certain PAL/Logic variables, the software front panel flag (\$SW_PANE) must be set to one (true). Failing to set \$SW_PANE will cause the control to overwrite, each PAL/Logic scan, any OCI requests to the following flags:

\$MODREQ	\$FRO_SW
\$RPDOREQ	\$SPNDIR
\$SSO_SW	\$RPDTRV
\$DRY_RUN	\$BDRQ
\$AUXLRQ	\$OPTSTP
\$SNGBLK	\$MXRQ
\$INHR	\$STZE
\$BKRTRQ	\$JRETRQ
\$CYCSTR	\$CYCSTP

Important: The above flags do not apply to the 9/PC CNC.

PAL_REVISION

Data Type	DINT
Read/Write	Read
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This double word provides the revision of the PAL symbols file. This is not related to your compile date or download date for the PAL image. It is an internal revision of the symbols used by your PAL application. This is typically only used by Allen-Bradley service representatives. The upper 16 bits indicate the major revision, the lower 16 bits indicate the minor revision.

Important: This data item does not apply to the 9/PC CNC.

Paramacro Variable Data Items

SP (variable number)

Data Type	LREAL
Read/Write	Read/Write
Array Index	paramacro variable number
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use paramacro data items to read or write paramacro variable values. You can access all paramacro variables including, local, common, system, PAL/Logic and dual process variables. The majority of these support both read and write functions with the exception of some select system paramacro variables. Details on read/write capability of system paramacro variables are given in your operation and programming manual. Format for this data item is SP followed by the variable number:

```
SP101 (reads the value of paramacro variable #101)
SP102,5 (reads the value of paramacro variables #102 thru 106)
```

There can be timing issues related to paramacro variables that are altered through part program execution, for example if your OCI station changes a variable that is later changed during part program execution (or PAL/Logic assignment in some cases) foreground scan.

When reading/writing local data items the local item is only valid for the main/subprogram or paramacro program currently executing. Refer to the paramacro chapter of your operation and programming manual for details on local values.

Part Program Directory Data Items

AVAILABLE MEMORY

Data Type	UDINT	
11: -		
Read/Write	Read only	
neau/wnie	neau only	
Arroy Indov	nono	
Array Index	none	
0	1 11 /14/11/0 : 1 1	
Control Type	Lathe/Mill/Grinder ¹	
	II.	

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use the AVAILABLE_MEMORY data item to determine the remaining part program space on the CNC's Main and Protected part program directories. This data is returned as the number of bytes available. Bytes can be converted to meters (as indicated on the basic display set) as 393.846 bytes = 1 meter of tape.

Note the main and protected directories share the same RAM disk space. This item will not return information about the PC's hard disk. It is only valid for the CNC's RAM disk.

SELECTED_PART_PROGRAM_DIR

Data Type	UINT (enumerated)
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use the SELECTED_PART_PROGRAM_DIR data item to identify the currently active control part program directory. The directory is typically changed using the OCI command SET_DIRECTORY. The value returned for this item is enumerated as follows:

- 1 Main CNC directory
- 2 Protected CNC directory
- 3 OCI configured hard drive directory

FILE_NAME, directory spec, file num

Data Type	String
Read/Write	Read only
Array Index	Program directory, and file number
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use the FILE_NAME data item to receive the file name string from a specific directory for a specific file. The *directory_spec* index is enumerated as follows:

- 1 Main CNC directory
- 2 Protected CNC directory

The *file_num* index identifies the specific file in the directory. This index is the position of the file in the directory, the first file being file 1. Files are placed in the directory in alpha/numeric order. You can ask for multiple filenames from the same directory if desired. For example:

FILE_NAME,1,1-6

would return the filename string for programs 1 thru 6 (tab delaminated) in the main CNC directory.

NUM_FILES, cnc directory id	NUM	FILES.	, cnc	directory	id
-----------------------------	-----	--------	-------	-----------	----

Data Type	UINT
Read/Write	Read only
Array Index	cnc_directory_id
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to determine the number of part programs currently stored on the CNC in the specified directory. This item can not be used for part programs stored on the OCI hard drive or network drive. The index for this item identifies the directory on the CNC in which you want the total number of part programs stored there. Valid values for $cnc_directory_id$ are:

- 1 main directory.
- 2 protected directory.

Excluding the index for this item provides the total number of part programs in both the main and protected directories.

PART PROGRAM COMMENT, directory spec, file num

Data Type	String
Read/Write	Read only
Array Index	Program directory, and file number
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use the PART_PROGRAM_COMMENT data item to receive the comment string from a specific directory for a specific file. The *directory_spec* index is enumerated as follows:

- 1 Main CNC directory
- 2 Protected CNC directory

The *file_num* index identifies the specific file in the directory. This index is the position of the file in the directory, the first file being file 1. Files are placed in the directory in alpha/numeric order.

Requesting multiple part program comments will return the comment strings separated by the Tab character. If a request is made for a comment name string of a directory that is currently empty, the server error code #29 is returned.

Part Program Block Data Items

ACTIVE_PART_PROGRAM_BLOCKS, setup buffers

Data Type	String
Read/Write	Read only
Array Index	setup_buffers
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This data item is used to identify either the currently executing or about to execute part program blocks. The control looks ahead a certain number of blocks when a part program is selected as active. These blocks are loaded into the controls setup buffer. The number of blocks actually in the controls setup buffer are dependent on the amount of available memory at any given time on the control.

The index for this data item is the number of the setup blocks. The active block (the one that's about to execute) is in setup buffer 1. To request the active part program block you would link:

ACTIVE_PART_PROGRAM_BLOCKS,1

You must include the index with this data item. You can not return more than one block per DDE request.

Important:

Due to the speed at which the control is capable of executing part program blocks, some very short or no-motion blocks may not get passed to the DDE data server before the next block moves into that slot in the setup buffer. This can cause some very fast executing blocks to not make it to your OCI DDE application.

The actual part program block data begins in column 3 of the returned data. The first two characters are reserved for the following symbols:

Symbol:	Identifies:	
!	MDI Block	
*	Current executing block	
@	Block execution complete	
Δ	Space	

Part Program Rotation and Scaling

EXT_ROT_FIRST_AXIS

Data Type	String
Read/Write	Read/Write
Array Index	none
Control Type	Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This data item identifies the abscissa axis for the external part rotation plane. Refer to your operation and programming manual for details on external part rotation.

This item returns the ASCII character(s) representing the currently configured abscissa axis name. Use the ASCII character(s) representing the desired axis when writing to this item. Note valid axis names are listed in your operation and programming manual. Some two axis names are two characters (e.g. \$X).

EXT_ROT_SECOND_AXIS

Data Type	String
Read/Write	Read/Write
Array Index	none
Control Type	Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This data item identifies the ordinate axis for the external part rotation plane. Refer to your operation and programming manual for details on external part rotation.

This item returns the ASCII character(s) representing the currently configured ordinate axis name. Use the ASCII character(s) representing the desired axis when writing to this item. Note valid axis names are listed in your operation and programming manual. Some two axis names are two characters (e.g. \$X).

G_CODE_STATUS, *g_code_group*

Data Type	UINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this parameter to identify the active G code status. the g_code_group argument is the modal group number to identify the active G code. The returned value is 10 times the G code value. For example:

G_CODE_STATUS,2

returns a value of 170 indicating that G code group 2s active G code is G17. You can not use this data item to identify non-modal (group 0) G codes. Leaving off the argument will return all of the active modal G codes.

Position Data Items

AXIS_PRESENT_LOGICAL_BIT_PATTERN

Data Type	UDINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to determine what axes are currently present in the process. It returns a bit pattern of the logical axes in the process. If a zero is reported to the logical axis number that axis is not pressent in the current configuration. A one indicates the logical axis is in the plane. For example:

AXIS_PRESENT_LOGICAL_BIT_PATTERN.1

Could return the bit pattern 00000111. This would indicate that the first, second, and third axes are present in process one.

PLANE_AXIS_INDICES, plane axes

Data Type	INT[array]
Read/Write	Read only
Array Index	plane_axis
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to determine the axes in the currently active plane. This item returns the axis number of the logical axes in the process. If a zero is reported to the logical axis number that axis is not in the currently active plane. Dual axes will return a set bit for all axes in the dual group if the group is in the process. For example:

PLANE_AXES_INDICES.2, 1

Returns an integer array of axes currently in the plane. If this returns a 3, this would indicate the third logical axes in process two are in the currently active plane. The first array reterns the number of the first axis in the plane. The second array the second axis in the plane.

ROLLOVER_AXIS_LOGICAL_BIT_PATTERN

Data Type	UDINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to determine what axes are currently configured as rollover axes in the in the process. It returns a bit pattern of the logical axes in the process. If a zero is reported to the logical axis number that axis is not configured as a rollover axis. A one indicates the logical axis is a rollover axis. For example:

ROLLOVER_AXIS_LOGICAL_BIT_PATTERN.1

Could return the bit pattern 00000100. This would indicate that the third axis in the process is configured as a rollover axis.

ROTARY_AXIS_LOGICAL_BIT_PATTERN

Data Type	UDINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to determine what axes are currently configured as rotary axes in the process. It returns a bit pattern of the logical axes in the process. If a zero is reported to the logical axis number that axis is not configured as a rotary axis. A one indicates the logical axis is a rotary axis. For example:

ROTARY_AXIS_LOGICAL_BIT_PATTERN.1

Could return the bit pattern 00000100. This would indicate that the third axis in the process is configured as a rotary axis.

VIRTUAL_NAMES, disp mode

Data Type	Integer
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to identify the name used for the virtual axis in G16.1 and G16.2 modes. This virtual axis is typically only available when in one of these modes. This is an an array of 4 integers. The argument selects the integers as follows:

VIRTUAL_NAMES,1 Provides axis name for Absolute Displays VIRTUAL_NAMES,2 Provides axis name for DTG Displays VIRTUAL_NAMES,3 Provides axis name for Program Displays VIRTUAL_NAMES,4 Provides axis name for Target Displays

Not including the *disp_mode* argument returns all four integers. The axis name is returned as its ASCII character value. Axis names for virtual axes are defined in AMP. This item returns all zeros if not in G16.1 or G16.2 modes.

This data item only returns the name for virtual axes in the four different display modes. If you also require the actual location of the axis use the items AXIS_POSITION_ABS,

AXIS_POSITION_DTG, AXIS_POSITION_PRG, and AXIS_POSITION_TAR with arguments for the axis number after the last configured real logical axis number.

SKEW SLAVE ABSOLUTE POSITION, skew se	SKEW SLAVE	ABSOLUTE	POSITION.	, skew	set
---------------------------------------	------------	----------	-----------	--------	-----

Data Type	LREAL (array)
Read/Write	Read only
Array Index	skew_set
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to identify the absolute position of the skew slave axis for a skew axis pair. The control supports two sets of skew axe so the dimension of the skew_set array is two. For example:

SKEW_SLAVE_ABSOLUTE_POSITION, 1

would return the axis position of the skew slave axis for skew set 1. Multiprocess systems still have a maximum of two skew axis total.

VIRTUAL_FORMATS, disp mode

Data Type	INT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to identify the display format for a virtual axis (16.1 and G16.2 modes). This item returns the number of digits to the right of the decimal point for the virtual axis position items (AXIS_POSITION_ABS, AXIS_POSITION_DTG, AXIS_POSITION_PRG, and AXIS_POSITION_TAR). This is an an array of 4 integers. The argument *disp_mode* selects the integers as follows:

VIRTUAL_FORMATS,1 Absolute Displays VIRTUAL_FORMATS,2 DTG Displays VIRTUAL_FORMATS,3 Program Displays VIRTUAL_FORMATS,4 Target Displays

Spindle Data Items

CONTROLLING SPINDLE NUM

Data Type	UINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to identify the controlling spindle. The controlling spindle is selected on the control with an G12.1 to G12.3 (G12.3 for 9/PC). This data item returns an integer value:

- 1 Indicates Spindle 1 controlling
- 2 Indicates Spindle 2 controlling
- 3 Indicates Spindle 3 controlling

Important: Only 2 spindles are available for Release 1 of the 9/PC.

NUM SPINDLES

Data Type	UINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to identify the number of spindles currently configured on the CNC. This data item returns an integer ranging from 1 to 3 spindles on the 9/Series and from 1 to 2 spindles on the 9/PC.

SPINDLE_DAC_COMMAND, spindle_num

Data Type	INT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to retrieve the current DAC output command for any given spindle. The spindle_num index is the number of the spindle to monitor as configured in AMP (1 – 3 for 9/Series or 1–2 for 9/PC). This item is only valid for spindles using an analog output. A value of \pm 4096 is equal to the max output of \pm 10Volts. A returned value of zero is zero volts.

${\bf SPINDLE_MOTOR_TYPE}, spindle_num$

Data Type	UINT (enumerated)
Read/Write	Read only
Array Index	spindle num
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

The SPINDLE_MOTOR_TYPE data item is used to identify the motor commutation of the spindle (spindle_num) configured in AMP. The maximum allowable value for spindle_num is the number of configured spindles in AMP. The return value is enumerated as follows:

Enumeration	Result
0	None
1	Position or Analog Spindle
2	Position/Velocity
4	Digital or Digital Spindle
8	SERCOS

SPINDLE_SPEED_VALUE, Spindle Num

Data Type	LREAL
Read/Write	Read only
Array Index	SPINDLE_NUM
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to identify the spindle speed in RPM. This item can be used as an array whose dimension is equal to the number of spindles on the 9/Series being polled. For example:

SPINDLE_SPEED_VALUE, 2

will return the spindle speed in RPM for the second spindle on the control.

S_WORD

Data Type	LREAL
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This data item returns the last programmed S word. This is not necessarily the active spindle RPM, only the value of the last programmed S word for the spindle. The spindle that the S word is applied to is dependent on the active controlling spindle when the S word was programmed (G12.1 to G12.3 on the 9/Series or G12.1 to G12.2 on the 9/PC).

System Information Data Items

ESTOP_STATE

Data Type	USINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This parameter is used to identify the E–STOP status of the control. It is updated as a foreground task on the CNC though update time to the OCI station is still configured in AMP.

0 Indicates this CNC is in E-STOP

1 Indicates this CNC is out of E-STOP

NUM_PROCESSES

Data Type	UINT
Read/Write	Read only
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This parameter is used to identify the number of processes the on the CNC. Use this data item to identify multi–process systems from single process systems.

- 1 Indicates this CNC controls 1 process
- 2 Indicates this CNC controls 2 processes

Important: This parameter does not apply to Release 1 of the 9/PC.

VELOCITY_GAINS_FROM_TABLE, axis_num

Data Type	INT
Read/Write	Read/Write
Array Index	none
Control Type	Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

This item is used to determine if standard motor table values are used for digital systems. Standard motor tables select motor gains, maximum RPM, etc. from a fixed table based on the motor type selected. The axis_num argument for this command identifies which logical axis number to modify. Data for this item is enumerated as follows:

0 – Yes (use standard motor table values)

1 - No (don't use standard motor table values)

For example assiging a value of 1 to the following item:

VELOCITY_GAINS_FROM_TABLE(1)

Tells the control to ignore the standard motor table values and use the gains as entered by the user configuration for axis 1.

Zones and Overtravels

LOGICAL AXIS ZONE GROUP, axis num

UINT (array)
Read only
Axis Number
Lathe/Mill/Grinder ¹

¹ Grinder Control Type is not available for Release 1 of 9/PC.

Use this data item to identify to what interference zone group the axis is assigned. This is an array of n entries (1 entry per logical axis in the process). Retrun values are:

0 – axis is not in a zone group

2 – axis is assigned to zone group 2

3 – axis is assigned to zone group 3

OCI Data Server CNC Commands

CNC Command Overview

The OCI data server provides a number of CNC commands that can be passed from your application to the CNC. These commands are used to request the CNC to perform some action or activity, for example delete a part program from the CNC file directory or backup AMP to flash memory.

Important:

Commands (as well as data poke requests) can only be performed by the OCI data server if it is identified as the controlling OCI system at the CNC. Use the request and relinquish control commands discussed on page 5–23.

Command Arguments

Some commands require a string, numeric, or numeric enumeration be passed to the data server with the command name. We call these strings or numerics "Arguments". Some of the more frequently used numeric enumerations and string formats are listed starting on page 6–1. Command argument names are included within parenthesis following the command. Text strings appear in quotation marks. Numerics and numeric enumerations appear without quotation marks. For example:

[AUX_COM_CMD_FWD_SEARCH (search_type, "search_string")]

AUX_COM_CMD_FWD_SEARCH is a command. Arguments for this command are search_type (a numeric enumeration) and "search_string" (a string).

You must include all argument when making a command request to the OCI data server even if you leave the argument blank. All comas must be included and all character strings, even if they are blank "", must be included.

Return Codes

By executing a command in your OCI application program, a request is made by the OCI data server to the specified CNC. The CNC attempts to perform the requested operation and sends a return code to the OCI data server (see the data item COMMAND_ERROR_CODE) indicating status of the request.

While the CNC is processing a request the COMMAND_ERROR_CODE returns 3000. Typically a return code value of zero (0) indicates the request was performed successfully.

For applications where it is critical that the command is executed successfully before continuing on with processing, make certain your code monitors the return code for confirmation before continuing. Return code values are given in a table with each command.

The Basic Display Set checks some return codes and translates them into error messages. See chapter 3 for details on the Basic Display Set.

Selecting the Process

For dual process systems, follow the command name with a .1 or .2 to indicate the process number. No process number by default makes a request for process 1. Single process systems can also use .1 as a valid command request. Use the table in appendix B to determine if a command is available as dual process. For example:

would attempt to stop quick check on process 1.

Important: Dual process does not apply to Release 1 of the 9/PC CNC.

OCI Command Syntax

Most development tools accept DDE commands in a standard format. You must specify to the server:

- Service or Application name ABOCISERVER
- Topic Name CNC1 (or your alias for the CNC)
- Link Type (commands use manual link type)

After the above connection has been made the command can be issued. The standard format for the command syntax of a DDE request is:

[command (argument, argument, ...)]

Where:

command – is the command string which identifies the operation. For example "INSERT_AXISCAL_POINT" is an example command string.

argument – is the data to pass to the CNC with the command. For example *axis_num* is an argument which is used to pass the number of the axis back to the control with the command string. If multiple arguments are used with the command, they are separated by a comma.

The final command, including argument, to insert an axis calibration point would be:

[INSERT_AXISCAL_POINT(1)]

Important:

If you are using the source code for the Basic Display Set, a command subroutine is available that simplifies the format and execution of CNC commands. Use the routine CNCCommand passing it arguments of the Command String.

The following sections give the syntax and discuss the use of many of the OCI DDE commands. They are categorized by feature and alphabetized in each category.

Feature:	Page:
AMP Commands	5-3
Axis Calibration	5-8
Communications	5-14
Miscellaneous	5-21
Offsets	5-24
PAL Commands	5-33
Paramacro Commands	5-35
Part Program Commands	5-38
Part Program Execution	5-51
Tool Management/Random Tool	5-53

AMP Commands

BACKUP_AMP (no argument)

Use this command to back up the current AMP configuration to flash memory on the control. Refer to your AMP reference manual for details on when and why AMP should be backed up to flash.

For example:

[BACKUP_AMP]

writes into flash memory the AMP file currently residing in the control's RAM. Use the command RESTORE_AMP to retrieve the AMP file currently in flash.

MODIFYING_AMP (no argument)

Use this command to open patch AMP. You must send this command before the control will allow you access to patch AMP parameters. The control must be in E-STOP before this command is issued.

For example:

[MODIFYING_AMP]

opens the AMP image on the control for editing.

RESTORE AMP (no argument)

writes into RAM the AMP file currently stored in FLASH memory. It is necessary to cycle power on the control when AMP is restored. Use the command BACKUP_AMP to store an AMP file into flash.

TRANSFER_AMP_FROM_PORTA (no argument)

Use this command to restore an AMP configuration that was backed up to a peripheral device attached to the <u>control's portA</u>. This will restore the AMP configuration to RAM.

For example:

[TRANSFER_AMP_FROM_PORTA]

reads the AMP configuration from the device connected to the control's port A. This command will overwrite the AMP file currently in the control's RAM. This will not affect the AMP configuration stored in the control's flash memory. It is necessary to cycle power on the control when AMP is restored.

Use this command to restore into RAM the AMP file currently in flash memory. This command will overwrite the AMP currently residing in RAM. Refer to your AMP reference manual for details on when and why AMP should be restored from flash.

For example:

[RESTORE_AMP]

TRANSFER_AMP_FROM_PORTB (no argument)

Use this command to restore an AMP configuration that was backed up to a peripheral device attached to the <u>control's port B</u>. This will restore the AMP configuration to RAM.

For example:

[TRANSFER_AMP_FROM_PORTB]

reads the AMP configuration from the device connected to the control's port B. This command will overwrite the AMP file currently in the control's RAM. This will not affect the AMP configuration stored in the control's flash memory. It is necessary to cycle power on the control when AMP is restored.

Important: This command does not apply to the 9/PC CNC.

TRANSFER AMP TO PORTA (no argument)

Use this command to back up the current AMP configuration to a device connected to the <u>control's portA</u>. This will back up configuration currently in RAM. This may or may not be the same configuration stored in the control's backup memory.

For example:

[TRANSFER_AMP_TO_PORTA]

writes the AMP configuration to the device connected to the control's port A. This backup file is not in a man–readable format. If you require a man–readable version of AMP refer to the ODS document utility. Use the command TRANSFER_AMP_FROM_PORTA to retrieve an AMP configuration from a peripheral device.

TRANSFER_AMP_TO_PORTB (no argument)

Use this command to back up the current AMP configuration to a device connected to the <u>control's port B</u>. This will back up configuration currently in RAM. This may or may not be the same configuration stored in the control's backup memory.

For example:

[TRANSFER_AMP_TO_PORTB]

writes the AMP configuration to the device connected to the control's port B. This backup file is not in a man–readable format. If you require a man–readable version of AMP refer to the ODS document utility. Use the command TRANSFER_AMP_FROM_PORTB to retrieve an AMP configuration from a peripheral device.

Important: This command does not apply to the 9/PC CNC.

TRANSFER_HOMECAL_TO_PORTA (no argument)

Use this command to send the current home calibration data to a printer or other device connected to the <u>control's port A</u>. This will print the home calibration data currently in RAM. This may or may not be the same home calibration data stored in the control's backup memory.

For example:

[TRANSFER_HOMECAL_TO_PORTA]

prints the home calibration data to the device connected to the control's port A. You can only use this command to output home calibration data to a printer.

TRANSFER_HOMECAL_TO_PORTB (no argument)

Use this command to send the current home calibration data to a printer or other device connected to the <u>control's port B</u>. This will print the home calibration data currently in RAM. This may or may not be the same home calibration data stored in the control's flash memory.

For example:

[TRANSFER_HOMECAL_TO_PORTB]

prints the home calibration data to the device connected to the control's port B. You can only use this command to output home calibration data to a printer.

Important: This command does not apply to the 9/PC CNC.

TRANSFER_REVERSAL_ERROR_TO_PORTA (no argument)

Use this command to send the current reversal error data to a printer or other device connected to the <u>control's port A</u>. This will print the reversal error compensation data <u>currently in RAM</u>. This may or may not be the same data stored in the control's flash memory.

For example:

[TRANSFER_REVERSAL_ERROR_TO_PORTA]

prints the reversal error data to the device connected to the control's port A. You can only use this command to output reversal error data to a printer.

TRANSFER_REVERSAL_ERROR_TO_PORTB (no argument)

Use this command to send the current reversal error data to a printer or other device connected to the <u>control's port B</u>. This will print the reversal error compensation data currently in RAM. This may or may not be the same data stored in the control's flash memory.

For example:

[TRANSFER_REVERSAL_ERROR_TO_PORTB]

prints the reversal error data to the device connected to the control's port B. You can only use this command to output reversal error data to a printer.

Important: This command does not apply to the 9/PC CNC.

UPDATE_AMP (no argument)

Use this command to save patch AMP changes you have made since the MODIFY_AMP command was issued. When this command is executed the control saves the edits to patch AMP and closes the AMP image. You must cycle power on the control after successfully executing the UPDATE_AMP command.

For example:

[UPDATE_AMP]

updates the AMP file image on the control. It does not update AMP in flash memory.

Axis Calibration

BACKUP_AXISCAL (no argument)

Use this command to back up the current axis calibration tables to flash memory on the control. Refer to your AMP reference manual for details on when and why axis calibration should be backed up to flash.

For example:

[BACKUP_AXISCAL]

writes into flash memory the axis calibration data currently residing in the control's RAM. Use the command RESTORE_AXISCAL to retrieve axis calibration data from flash.

DELETE_ALL_AXISCAL_POINTS (no argument)

Use this command to delete all axis calibration points from the axis calibration table. After execution of this command the control will clear any data previously entered in the axis calibration table (all processes).

For example:

[DELETE_ALL_AXISCAL_POINTS]

deletes all axis calibration points currently stored in the axis calibration table for all axes.

DELETE AXISCAL POINT (axis num, axis cal point)

Use this command to delete an axis calibration point. The *axis_num* argument for this command identifies which logical axis number to modify. The *axis_cal_point* argument identifies the specific point to be deleted. Both arguments for this command are integers (DINT).

For example:

[DELETE_AXISCAL_POINT(1,6)]

deletes the sixth calibration point for the first axis in the process configured in AMP.

ENTER_AXISCAL_MODIFY_MODE (no argument)

When this command is executed the axis calibration tables are opened for editing. You must successfully issue this command before attempting to modify the axis calibration tables.

For example:

[ENTER_AXISCAL_MODIFY_MODE]

opens the axis calibration table for editing and allows access to the axis calibration data.

EXIT_AXISCAL_MODIFY_MODE (no argument)

When this command is executed the axis calibration tables are closed for editing. You must issue this command when your edits to the axis calibration table are complete. This command will close the axis calibration data tables.

For example:

[EXIT_AXISCAL_MODIFY_MODE]

closes the axis calibration table. Note this command does not send the axis calibration table to backup memory.

INITIALIZE_AXISCAL_TABLE (axis number, calibration_type, calibration_start)

Use this command to initialize the axis calibration table after you have opened it for editing. Typically the table is only initialized the first time it is opened for editing. This command determines how axis calibration points are entered.

axis_number – Defines the logical axis number (as defined in AMP) for the axis calibration table being modified. This argument is an integer.

calibration_type – Defines how points will be defined. Select between:

0 – measurement (points referenced from zero)

1 – deviation (points referenced from previous point)

calibration start – Defines if the first point is:

0 - Most + on the axis

1 - Most - on the axis

Refer to your AMP reference manual for details on these different axis calibration measurement types.

For example:

[INITIALIZE_AXISCAL_TABLE(1,0,1)]

initializes the axis calibration table for the first logical axis setting, referencing all points from the same machine zero point and indicating the first point is the most negative point on that axis.

INSERT_AXISCAL_POINT (axis number)

Use this command to insert an axis calibration point at the current axis position. The *axis_number* argument defines the logical axis number (as defined in AMP) for the axis point being added. This argument is an integer (DINT)

For example:

[INSERT_AXISCAL_POINT(2)]

inserts an axis calibration point on the second logical axis at the current axis position.

REPLACE AXISCAL VALUE (axis number, axis cal point, value)

Use this command to replace an axis calibration value. When a point is inserted (INSERT_AXISCAL_POINT) the control enters a measurement for the point equal to either the deviation or distance from zero as defined when the table was initialized. Use this command to change the measurement.

axis_number – Defines the logical axis number (as defined in AMP) for the axis calibration table being modified. This argument is an integer (DINT)

axis_cal_point – Defines the point number you wish to modify. This argument is an integer (DINT) and must be an already existing axis calibration point.

value – the actual measurement from zero or the previous point as defined when the table was initialized.

For example:

[REPLACE_AXISCAL_VALUE(1,10,10.321)]

replaces the 10th axis calibration point measurement value for the first logical axis with the value of 10.321.

Important:

Axis calibration points are numbered (axis_cal_point) based on their position on the axis, not the order they are entered. If you insert an axis calibration point, it is assigned an axis_cal_point number based on its position on the axis. All other points are renumbered accordingly.

RESTORE_AXISCAL (no argument)

Use this command to restore into RAM the axis calibration data currently in flash memory. This command will overwrite any axis calibration data currently residing in RAM. Refer to your AMP reference manual for details on when and why axis calibration should be restored from flash.

For example:

[RESTORE_AXISCAL]

would write into RAM the axis calibration data currently stored in backup memory. Use the command BACKUP_AXISCAL to store axis calibration into backup.

STOP_AXISCAL (axis number)

Use this command to disable axis calibration on the specified axis.

axis_number – Defines the logical axis number (as defined in AMP) for the axis to disable axis calibration. This argument is an integer (DINT). For example:

[STOP_AXISCAL(1)]

would cancel axis calibration from being applied to logical axis 1.

Once disabled axis calibration can only be enabled by re-homing the axis.

TRANSFER_AXISCAL_FROM_PORTA (no argument)

Use this command to restore an axis calibration data table from a peripheral device attached to the the control's port A. This will restore the axis calibration data to RAM.

For example:

[TRANSFER_AXISCAL_FROM_PORTA]

would read the axis calibration data from the device connected to the control's port A. This command will overwrite the axis calibration data currently in the control's RAM. This will not affect axis calibration data stored in the control's backup memory.

TRANSFER_AXISCAL_FROM_PORTB (no argument)

Use this command to restore an axis calibration data table from a peripheral device attached to the <u>control's port B</u>. This will restore the axis calibration data to RAM.

For example:

[TRANSFER_AXISCAL_FROM_PORTB]

would read the axis calibration data from the device connected to the control's port B. This command will overwrite the axis calibration data currently in the control's RAM. This will not affect axis calibration data stored in the control's backup memory.

Important: This command does not apply to the 9/PC CNC.

TRANSFER_AXISCAL_TO_PORTA (no argument)

Use this command to back up the current axis calibration data to a device connected to the <u>control's port A</u>. This will back up axis calibration data currently in RAM. This may or may not be the same axis calibration data stored in the control's backup memory.

For example:

[TRANSFER_AXISCAL_TO_PORTA]

would write the axis calibration data to the device connected to the control's port A. This backup file is not in a man–readable format. Use the command TRANSFER_AXISCAL_FROM_PORTA to retrieve axis calibration data configuration from a peripheral device.

TRANSFER_AXISCAL_TO_PORTB (no argument)

Use this command to back up the current axis calibration data to a device connected to the <u>control's port B</u>. This will back up axis calibration data currently in RAM. This may or may not be the same axis calibration data stored in the control's backup memory.

For example:

[TRANSFER_AXISCAL_TO_PORTB]

would write the axis calibration data to the device connected to the control's port B. This backup file is not in a man–readable format. Use the command TRANSFER_ AXISCAL_FROM_PORTB to retrieve axis calibration data configuration from a peripheral device.

Important: This command does not apply to the 9/PC CNC.

Communications

ACTIVATE_RIO_PASSTHROUGH (no argument)

Use this command to enable the remote I/O passthrough feature.

For example:

[ACTIVATE_RIO_PASSTHROUGH]

Important: This command does not apply to the 9/PC CNC.

AUX_COM_ABORT_COMMAND (no argument)

This command is used only for systems with a data highway module. Use this command to abort data highway module communications in progress.

For example:

AUX_COM_ABORT_COMMAND

aborts the the current DH transfer.

AUX_COM_BACKUP_CONFIG_TABLE ("filename")

This command is used only for systems with a data highway module. Use this command to back up the data highway communication table setup.

For example:

[AUX_COM_BACKUP_CONFIG_TABLE("MAIND:DHPARAM")]

backs up the data highway configuration tables to a file called DHPARAM in the controls main part program directory.

Important: This command does not apply to the 9/PC CNC.

AUX_COM_CMD_FWD_SEARCH (search type, "search string")

This command is used only for systems with a data highway module. Use this command to perform a forward search in AUX COMM.

The search_type enumeration for the aux com feature is as follows:

Enumeration	Result:
0	index line
1	command line
2	channel name line
3	rem node line
4	file 9240 line
5	file remote line
6	remote station line
7	format line
8	num symbols line
9	symbol 9240 line
10	symbol remote line

AUX_COM_CMD_REV_SEARCH (search_type," search_string")

This command is used only for systems with a data highway module. Use this command to perform a reverse search in AUX COMM.

The search_type enumeration for the aux com feature is as follows:

Enumeration	Result:
0	index line
1	command line
2	channel name line
3	rem node line
4	file 9240 line
5	file remote line
6	remote station line
7	format line
8	num symbols line
9	symbol 9240 line

Important: This command does not apply to the 9/PC CNC.

AUX_COM_CMDTBL_TO_FLASH (no argument)

This command is used only for systems with a data highway module. Use this command to write a command table to the flash memory.

For example:

[AUX_COM_CMDTBL_TO_FLASH]

Important: This command does not apply to the 9/PC CNC.

AUX_COM_CONFIG_TO_FLASH (no argument)

This command is used only for systems with a data highway module. Use this command to write an AUX COMM configuration to the flash memory.

For example:

[AUX_COM_CONFIG_TO_FLASH]

AUX_COM_DOWNLOAD_FILE ("source_filename", "destination_filename")

This command is used only for systems with a data highway module. Use this command to download a file using the AUX COM module. Note the source filename requires the source directory, the destination filename does not. For example:

[AUX_COM_DOWNLOAD_FILE("maind:PROG1.ppg", "Prog2.ppg")]

Important: This command does not apply to the 9/PC CNC.

AUX COM HOST WRITE TO FLASH (no argument)

This command is used only for systems with a data highway module. Use this command to write the AUX COMM host address configuration to the flash memory.

For example:

[AUX_COM_HOST_WRITE_TO_FLASH]

Important: This command does not apply to the 9/PC CNC.

AUX_COM_SENDCMD (command index)

This command is used only for systems with a data highway module. Use this command to transmit data using the argument command_index to identify the DH channel to use (1 - 64 DINT).

For example:

[AUX_COM_SENDCMD(1)]

Refer to your DH+ users manuals for details on the operation of this command. This command is typically used to simulate a keystroke or other operation for the purpose of testing.

Important: This command does not apply to the 9/PC CNC.

COPY_DEVICE_SETUP_DEFAULTS (port_ id, device_num)

This command is used to restore the communication defaults for a device attached to the control. Executing this command restores the defaults set for a specific device and overwrites any changes that were made for that device with the device configuration API data items.

The "port_id" argument is an enumeration which identifies which port you are configuring. The "device_num" argument is also enumerated and identifies the specific device for which communication defaults are to be loaded. See the enumerations chapters for port_id and device_num enumerations. For example:

```
[COPY_DEVICE_SETUP_DEFAULTS (1, 16)]
```

Loads the defaults in port A (1) for the Greco Minifile (device number 16).

Important: This command does not apply to the 9/PC CNC.

DEACTIVATE_RIO_PASSTHROUGH (no argument)

Use this command to deactivate the remote I/O passthrough feature.

For example:

[DEACTIVATE RIO PASSTHROUGH]

deactivates RIO passthrough.

Important: This command does not apply to the 9/PC CNC.

ENTER SERIAL IO MONITOR MODE ('port id", "com mode")

This command is used to load the serial I/O monitor. This will place the control in a "setup diagnostic" mode and tie up the serial port for diagnostics. Use this mode to troubleshoot the control's serial communications.

The "port_id" argument is an enumeration which identifies which port you are configuring. The "com_mode" argument specifies the I/O monitor will be in either transmit or receive mode and is enumerated as follows:

Enumeration	Result:
1	Receive
2	Transmit

For example:

[ENTER_SERIAL_IO_MONITOR_MODE (2, 2)]

would request the serial I/O monitor for port B on the control be in transmit mode. You must exit the serial I/O monitor before continuing with normal control operation. Use the command EXIT_SERIAL_IO_MONITOR_MODE to leave the serial I/O monitor mode.

Important: This command does not apply to the 9/PC CNC.

EXIT_SERIAL_IO_MONITOR_MODE (no arguments)

This command is used to unload the serial I/O monitor. For example:

[EXIT_SERIAL_IO_MONITOR]

will take the control out of the serial I/O monitor mode. You can not exit the serial I/O monitor mode if the port is currently sending diagnostic data.

Important: This command does not apply to the 9/PC CNC.

REPEAT_TX_SERIAL_IO (character)

This command repeatedly transmits a character out the serial port when the I/O monitor is active. Specify the character to be sent out the serial port as an argument for this command. The transmitted character must be an integer (DINT) equivalent of the ASCII character to transmit. For example:

[REPEAT_TX_SERIAL_IO (68)]

will repeatedly transmit the lone character "D" out the serial port. Note this is used primarily for I/O monitor diagnostics. Use the STOP SERIAL IO MONITOR command to halt transmission.

SAVE_DEVICE_SETUP (no argument)

Use this command to save changes made to the control's external device setup for ports A and/or B. After configuring a device for a specific serial port (such as baud rate, stop bits, etc...) use this command to save and activate your changes.

For example:

[SAVE_DEVICE_SETUP]

saves the device setup for the control's port A and port B.

Important: This command does not apply to the 9/PC CNC.

SINGLE_TX_SERIAL_IO (character)

This command is used to transmit a single character out the serial port when the I/O monitor is active. Specify the character to be sent out the serial port as an argument for this command. The transmitted character must be an integer (DINT) equivalent of the ASCII character to transmit. For example:

[SINGLE_TX_SERIAL_IO (68)]

will transmit the lone character "D" out the serial port. Note this is used primarily for I/O monitor diagnostics.

Important: This command does not apply to the 9/PC CNC.

START SERIAL IO MONITOR (no arguments)

This command is used to start the serial I/O monitor. For example:

[START_SERIAL_IO_MONITOR]

will begin the I/O monitoring operation on the port selected with the command ENTER_SERIAL_IO_MONITOR.

STOP_SERIAL_IO_MONITOR (no arguments)

This command is used to stop the serial I/O monitor. For example:

[STOP_SERIAL_IO_MONITOR]

will halt the I/O monitoring operation on the port selected with the command ENTER_SERIAL_IO_MONITOR. This command does not however exit serial I/O monitor mode. Use the EXIT_SERIAL_IO_MONITOR command to exit monitor mode.

Important: This command does not apply to the 9/PC CNC.

Miscellaneous

CANCEL_MESSAGE (no argument)

Use this command to cancel active messages at the CNC. Note it does not clear any active OCI error messages (those loaded by your DDE application, the OCI data server, or the Windows NT operating system). This command clears all active error messages (provided the cause of the error has been eliminated).

CALCULATE("calc_string")

Use this command to perform a calculation on the equation entered as the calc_string with this command. Refer to your operation and programming manual for valid calc syntax. The solution to this calculation is returned in the API data item CALCULATION_RESULT.

For example:

[CALCULATE("2*8")]

would return the value of 16 to the API item CALCULATION_RESULT.

CLEAR ACTIVE ERRORS (no argument)

This command clears all active error messages at the CNC from the error message log. Note it does not clear any active OCI error messages (those loaded by your DDE application, the OCI data server, or the Windows NT operating system).

CLEAR_CYCLE_TIME (no argument)

Use this command to clear the cycle time recorded by the "Time Parts Count Feature". This command clears the time recorded for the individual part program elapsed execution time (time between cycle start request and end of program). Refer to your operation and programming manual for details on this feature.

CLEAR_ERROR_LOG (no argument)

This command clears all error messages in the system error log.

CLEAR_POWER_ON_TIME_OVERALL (no argument)

Use this command to clear the controls overall power–on–time. This feature is included on the time/parts display of the standard displays. Refer to your operation and programming manual for details.

CLEAR_RUNTIME (no argument)

This command is used to clear the runtime clock. This clock records the time the control has spent actually executing part programs. This feature is included on the time/parts display of the Basic Display Set. Refer to your operation and programming manual for details.

CLEAR WORKPIECES CUT OVERALL (no argument)

Use this command to clear the overall workpieces cut counter. This counter indicates how many times any part program has been run. This feature is included on the time/parts display of the Basic Display Set. Refer to your operation and programming manual for details.

INPUT MDI STRING ("text string")

This command inputs a string as an MDI operation. Once input a cycle start request will execute the MDI input. For example:

[INPUT_MDI_STRING ("G01X10Y10F100")]

loads this part program block as the active block in MDI mode. If loading multiple blocks include them in the same string separating each block with the end of block character (;).

REFORMAT_MEMORY (no arguments)

This command reformats the RAM disk on the CNC. It will delete all part programs in both the main and protectable CNC directories. It will not effect programs stored on the OCI stations hard drive. Refer to your operation and programming manual for details on the reformat operation.

RELINQUISH_CONTROL (no argument)

Use this command to manage your system when multiple personal computers are running the OCI data server and file handler. Only one OCI station can be in control (able to issue commands and write data) of any one given CNC. This command identifies to the 9/Series or 9/PC CNC that it should no longer accept commands and file management activities from the OCI data server and file handler on this PC. Use this command in conjunction with the REQUEST_CONTROL command.

Important: For Release 1 of the 9/PC CNC, a single PC runs the

OCI data server.

REQUEST_CONTROL (no argument)

This command is used to take control of a specific CNC with your OCI station. The controlling OCI station (personal computer) has authority to execute commands and write data items on the CNC. OCI stations that do not have control can only view OCI data items from the CNC. This request is only honored if there is currently no other OCI station currently in control of the requested CNC.

Important: This command only applies to the local PC for Release 1 of the 9/PC CNC.

This command must be performed successfully before any other command can be executed or any data items are written by this OCI server.

Important:

The request and relinquish control commands are for the data server only. They do not influence the controlling the file handler. The controlling file handler is determined on a first connection basis. Refer to your *OCI Installation Manual* for details on configuring the OCIFHCFG.INI file for the 9/Series system and refer to your *9/PC Installation Manual* for using the Configuration Manager on the 9/PC system.

Once in control of a specific CNC, other OCI stations can not request control of the CNC until the controlling station relinquishes control. Control of a specific CNC is only relinquished when:

- The controlling OCI station successfully sends a RELINQUISH_CONTROL command
- The heartbeat timer specified in the OCIDSCFG.INI file (refer to your OCI installation manual for details) times out. On the 9/PC, check your Configuration Manager. When a OCI station gains control of a CNC the heartbeat timer value is sent to the CNC. If the CNC does not hear the heartbeat timer from the OCI station in the specified amount of time it assumes the OCI station is no longer valid, clears the watchlist for that station and removes that station as the controlling OCI
- power to the control is lost.

RESET_MAX_TIMES (no argument)

This command resets maximum recorded times for system foreground timing. These maximums are returned to OCI data items FG_CRITICAL_MAX and FG_TOTAL_MAX

STORE_OEM_MESSAGE (no arguments)

This command writes the entered OEM message (which appears on the power turn on screen for standard OCI screens) to flash memory. Note you enter the OEM message using the data items OEM_MESSAGE_1, OEM_MESSAGE_2, AND OEM_MESSAGE_3. When you send the STORE_OEM_MESSAGE command to the control the current text string in these three data items is stored to flash memory for display on the power turn on screen.

Offsets

ACTIVATE_TOOL_GEOM (offset_number)

This command activates the specified tool geometry offset. This command is valid only for lathe control types.

The *offset_number* argument for this command is the any valid offset number as entered into the tool geometry offset table for this tool.

[ACTIVATE_TOOL_GEOM(4)]

Activates the tool geometry offset number 4.

ACTIVATE_TOOL_LENGTH (offset number)

This command loads the specified tool length offset (H word). This command is valid only for mill control types.

The *offset_number* argument for this command is the valid offset number as entered into the offset table for this tool.

[ACTIVATE_TOOL_LENGTH(4)]

Activates the tool length offset number 4 (equivalent of programming an H4 in a part program). This command only activates the offset value for tool length (H word). You must still program the appropriate G code (G43, G44, G49) in the part program to specify when and how the offset is activated. Refer to your Mill operation and programming manual for details on activating tool length offsets.

ACTIVATE TOOL RADIUS (offset number)

This command loads the specified tool radius offset (D word). This command is valid only for mill control types.

The *offset_number* argument for this command is the valid offset number as entered into the offset table for this tool.

[ACTIVATE_TOOL_RADIUS(4)]

Activates the tool radius offset number 4 (equivalent of programming an D4 in a part program). This command only activates the offset value for tool radius (D word). You must still program the appropriate G code (G40, G41, G42) in the part program to specify when and how the offset is activated. Refer to your Mill operation and programming manual for details on activating tool cutter compensation.

ACTIVATE_TOOL_WEAR (offset_number)

This command activates the specified tool wear offset. This command is valid only for lathe control types.

The *offset_number* argument for this command is the any valid offset number as entered into the tool wear offset table for this tool.

[ACTIVATE_TOOL_WEAR,(4)]

Activates the tool wear offset number 4. This command only activates the offset value for tool radius (T word). You must still program the appropriate G code (G40, G41, G42) in the part program to specify when and how the offset is activated. Refer to your Lathe operation and programming manual for details on activating TTRC.

ACTIVATE_WHEEL_GEOM (offset_number)

This command activates the specified wheel/dresser geometry offset. This command is valid only for grinder control types.

The *offset_number* argument for this command is the any valid offset number as entered into the wheel or dresser geometry offset table for this tool.

[ACTIVATE_WHEEL_GEOM(4)]

Activates the wheel/dresser geometry offset number 4.

ACTIVATE_WHEEL_RADIUS (offset number)

This command activates the specified wheel/dresser radius offset. This command is valid only for grinder control types.

The *offset_number* argument for this command is the any valid offset number as entered into the wheel/dresser offset table for this tool.

[ACTIVATE_WHEEL_RADIUS(4)]

Activates the wheel/dresser offset number 4. This command only activates the offset value (T word). You must still program the appropriate G code (G40, G41, G42) in the part program to specify when and how the offset is activated. Refer to your Grinder operation and programming manual for details on activating dresser/wheel radius compensation.

Important: This command does not apply to the 9/PC CNC.

BACKUP_ALL_OFFSETS ("Filename string")

This command tells the control to create a backup program of the all offset tables including, work coordinate system, tool geometry, and tool wear offset tables. All of these tables are backed up into one part program file. Refer to your operation and programming manual for details.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_ALL_OFFSETS("maind:allback.ppg")]

would create the backup program on the CNC's main directory and name the backup program allback.

BACKUP_INTERF_TABLE ("Filename string")

This command tells the control to create a backup program of the interference tables (for dual process systems only). Refer to your operation and programming manual for details.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_INTERF_TABLE("maind:intbck.ppg")]

would create the backup program on the CNCs main directory and name the backup program intbck.

Important: This command does not apply to the 9/PC CNC.

BACKUP RADIUS TABLE ("Filename string")

This command tells the control to create a backup program of the grinder wheel/dresser radius offset table (for grinder systems only). Refer to your operation and programming manual for details.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_RADIUS_TABLE("maind:radbck.ppg")]

would create the backup program on the CNCs main directory and name the backup program radbck.

BACKUP_TOOL_GEOM ("Filename_string")

This command tells the control to create a backup program of the tool geometry offset tables. Refer to your operation and programming manual for details on tool geometry offsets.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_TOOL_GEOM ("maind:geombck.ppg")]

would create the backup program on the CNCs main directory and name the backup program geombck.

BACKUP TOOL WEAR ("Filename string")

This command tells the control to create a backup program of the tool wear offset tables. Refer to your operation and programming manual for details on wear offsets.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_TOOL_WEAR ("maind:wearbck.ppg")]

would create the backup program on the CNCs main directory and name the backup program wearbck.

BACKUP_WHEEL_GEOMETRY ("Filename string")

This command tells the control to create a backup program of the grinder wheel/dresser geometry offset table (for grinder systems only). Refer to your operation and programming manual for details.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_WHEEL_GEOMETRY ("maind:geombck.ppg")]

would create the backup program on the CNCs main directory and name the backup program geombck.

Important: This command does not apply to the 9/PC CNC.

BACKUP WORK COORD ("Filename string")

This command tells the control to create a backup program of the work coordinate system offset tables. Refer to your operation and programming manual for details on work coordinate offsets.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_WORK_COORD ("maind:workbck.ppg")]

would create the backup program on the CNCs main directory and name the backup program workbck.

COPY_OFFSET ("source_axis, destination_axis")

This command copies all of the tool offset values from the tool geometry and wear tables from a source axis, to a destination axis. All tool offset values for the source axis are copied to the destination axis.

For example:

[COPY OFFSET ("X, Y")]

copies the geometry and wear tables for the X axis to the Y axis values.

MEASURE_TOOL_GEOM (tool_number, axis_number, ref_pos)

This command performs the tool measure function (refer to your operation and programming manual for details on measure). When executed, this command compares the actual axis position to the entered *ref_pos* to determine the geometry offset. Three arguments are specified with this command.

tool_number – the tool geometry offset number you are changing with this measure command.

axis number – the logical axis number as defined in AMP.

ref_pos – the fixed reference position (with no geometry or wear offsets active) of the tool. Refer to your operation and programming manual for details on determining this fixed machine position. This is the position the control compares to the actual axis position to determine the geometry amount.

Important: On Lathe and Cylindrical Grinder control types this

position (ref_pos) value is always entered as a radius

value.

For example:

[MEASURE_TOOL_GEOM (2, 1, 1.777)]

would perform a measure operation to calculate the geometry offset amount for tool offset 2, axis 1. If no tool geometry or wear offsets were present the current tool position should be 1.777. The control then compares the actual tool position to 1.777 and uses the difference to create the appropriate geometry offset.

MEASURE_TOOL_WEAR (tool number, axis number, ref pos)

This command performs the tool measure function (refer to your operation and programming manual for details on measure). When executed, this command compares the actual axis position to the entered ref_pos to determine the wear offset. Three arguments are specified with this command.

tool_number - the tool wear offset number you are changing with this measure command.

axis_number - the logical axis number as defined in AMP.

ref_pos – the fixed reference position (with no wear offsets active) of the tool. Refer to your operation and programming manual for details on determining this fixed machine position. This is the position the control compares to the actual axis position to determine the wear amount.

Important: On Lathe and Cylindrical Grinder control types this

position (ref_pos) value is always entered as a radius

value.

For example:

[MEASURE_TOOL_WEAR (1, 2, 1.777)]

would perform a measure operation to calculate the wear offset amount for tool offset 1, axis 2. If no tool wear were present the current tool position should be 1.777. The control then compares the actual tool position to 1.777 and uses the difference to create the appropriate wear offset.

MEASURE WHEEL GEOM (tool number, axis number, ref pos)

This command performs the tool measure function (refer to your operation and programming manual for details on measure). This command is for grinder controls only. When executed, this command compares the actual axis position to the entered ref_pos to determine the geometry offset. Three arguments are specified with this command.

tool_number – the wheel/dresser geometry offset number you are changing with this measure command.

axis number – the logical axis number as defined in AMP.

ref_pos – the fixed reference position (with no geometry or wear offsets active) of the wheel or dresser. Refer to your operation and programming manual for details on determining this fixed machine position. This is the position the control compares to the actual axis position to determine the geometry amount.

Important: On Lathe and Cylindrical Grinder control types this

position (ref_pos) value is always entered as a radius

value.

For example:

[MEASURE_WHEEL_GEOM (2, 1, 1.777)]

would perform a measure operation to calculate the geometry offset amount for tool offset 2, axis 1. If no tool geometry or wear offsets were present the current tool position should be 1.777. The control then compares the actual tool position to 1.777 and uses the difference to create the appropriate geometry offset.

Important: This command does not apply to the 9/PC CNC.

PAL Commands

TRANSFER_PAL_FROM_PORTA (no argument)

Use this command to restore a PAL image from a peripheral device attached to the <u>control's portA</u>. This will restore the PAL image to RAM.

For example:

[TRANSFER_PAL_FROM_PORTA]

would read the PAL image from the device connected to the control's port A. This command will overwrite the PAL image currently in the control's RAM. This will not affect the PAL image stored in the control's backup memory.

You must cycle power to the control whenever PAL is updated.

TRANSFER_PAL_FROM_PORTB (no argument)

Use this command to restore a PAL image from a peripheral device attached to the <u>control's port B</u>. This will restore the PAL image to RAM.

For example:

[TRANSFER_PAL_FROM_PORTB]

would read the PAL image from the device connected to the control's port B. This command will overwrite the PAL image currently in the control's RAM. This will not affect the PAL image stored in the control's backup memory.

You must cycle power to the control whenever PAL is updated.

Important: This command does not apply to the 9/PC CNC.

TRANSFER_PAL_TO_PORTA (no argument)

Use this command to back up the current PAL image (and its source code if present on the control) to a device connected to the <u>control's portA</u>. This will back up the PAL image currently in RAM. This may or may not be the same image stored in the control's backup memory.

For example:

[TRANSFER_PAL_TO_PORTA]

would write the PAL image to the device connected to the control's port A. This backup file is not in a man-readable format. If you require a man-readable version of PAL refer to the ODS document utility. Use the command TRANSFER_PAL_FROM_PORTA to retrieve an PAL image from a peripheral device.

Important: This command does not apply to the 9/PC CNC.

TRANSFER_PAL_TO_PORTB (no argument)

Use this command to back up the current PAL image (and its source code if present on the control) to a device connected to the <u>control's port B</u>. This will back up the PAL image currently in RAM. This may or may not be the same image stored in the control's backup memory.

For example:

[TRANSFER_PAL_TO_PORTB]

would write the PAL image to the device connected to the control's port B. This backup file is not in a man-readable format. If you require a man-readable version of PAL refer to the ODS document utility. Use the command TRANSFER_PAL_FROM_PORTB to retrieve an PAL image from a peripheral device.

Important: This command does not apply to the 9/PC CNC.

Paramacro Commands

BACKUP ALL PARAMETERS ("Filename string")

This command tells the control to create a backup program of the paramacro parameters COM1 (#100 - #199), COM2A (#500 - #519), COM2B (#520 - #999), and shared parameters for dual process systems (#7100 - #7199). Refer to your operation and programming manual for details.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_ALL_PARAMETERS ("maind:paraback.ppg")]

would create the backup program on the CNC's main directory and name the backup program paraback.

BACKUP_COM1_PARAMETERS ("Filename string")

This command tells the control to create a backup program of all the common 1 paramacro parameters (#100 - #199). Refer to your operation and programming manual for details.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_COM1_PARAMETERS ("maind:com1back.ppg")]

would create the backup program on the CNCs main directory and name the backup program com1back.

BACKUP COM2A PARAMETERS ("Filename string")

This command tells the control to create a backup program of all the common 2A paramacro parameters (#500 – #519). Refer to your operation and programming manual for details.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_COM2A_PARAMETERS ("maind:cm2Aback.ppg")]

would create the backup program on the CNCs main directory and name the backup program cm2aback.

BACKUP_COM2B_PARAMETERS ("Filename_string")

This command tells the control to create a backup program of all the common 2B paramacro parameters (#520 – #999). Refer to your operation and programming manual for details.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_COM2B_PARAMETERS ("maind:cm2Bback.ppg")]

would create the backup program on the CNCs main directory and name the backup program cm2bback.

BACKUP_SHARED_PARAMETERS ("Filename string")

This command tells the control to create a backup program of all the shared paramacro parameters (#7100 - 7199). Refer to your operation and programming manual for details. Shared paramacro parameters are only available on dual process control types.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_SHARED_PARAMETERS ("maind:shrdbck.ppg")]

would create the backup program on the CNCs main directory and name the backup program shrdbck.

Important: This command does not apply to the 9/PC CNC.

Part Program Commands

ACTIVATE_PART_PROGRAM ("Filename string")

Use this command to activate a part program for automatic execution. This command typically follows the SET_PART_PROGRAM_INPUT_DEVICE command which identifies the input device for the part program. In the event that either port A or port B are selected as the input device, the filename_string argument does not require a source directory, only the file name is necessary.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The directory for this program must be either the main (MAIND), protected (PROTD), on the CNC or the file servers configured directory on a local or networked drive (HARDD).

For example:

[ACTIVATE_PART_PROGRAM("HARDD:test1.ppg")]

activates the part program test1 on the OCI stations configured file handler drive.

The use of any hard drive or networked drive from the PC is a valid part program storage devices however, this path must be the same path specified in the OCI file handler configuration file (OCIFHCFG.INI for the 9/Series or the Configuration Manager for the 9/PC) as the file handlers working directory (see your OCI installation manual for details).

Important:

On CNC's connected to multiple OCI stations the controlling file handler can directly impact the success or failure of this command. Note this may or may not be the same as the controlling data server. Refer to your OCI installation manual for details.

COPY_PART_PROGRAM ('src_filename_string", "dest_filename_string")

Use this command to copy your part programs to/from your Pc's hard drive to/from either the protected or main CNC directories. Valid devices in the filename string include the CNCs main directory, the CNCs protected directory, and the OCI file handlers configured PC directory.

The filename string format is given on page 6–19 and includes specific directory information. Format for the arguments is source filename followed by destination filename.

For example:

```
[COPY_PART_PROGRAM("MAIND:SOURCE.PPG", "PROTD:DEST.PPG")]
```

copies the program named SOURCE.PPG from the main CNC directory, to a programmed named DEST.PPG in the protected CNC directory.

```
COPY_MEM_TO_MEM ('src_filename_string'', 'dest filename string'', mode)
```

This command is used to copy a part program that already exists in one of the directories in control memory (protected or main).

The filename string format is given on page 6–19. For example: and includes specific directory information. You can not use this command as a method of moving files from control memory to the PC hard drive. Use the COPY_PART_PROGRAM command to copy across devices. Format for the arguments is source filename followed by destination filename.

The remaining argument with this command is the mode argument which is an enumeration used to identify that you want to perform the copy or test the command syntax. The test option will check the command syntax (including the existence of the source program). The enumeration for the *mode* argument is as follows:

Enumeration	Result:
0	test mode
1	execute copy

For example:

```
[COPY MEM TO MEM ("MAIND: SOURCE.PPG", "MAIND: DESTINATION.PPG", 1)]
```

creates a new part program named DESTINATION.PPG in the MAIND of the CNC that is a duplicate of the program named SOURCE.PPG.

The destination file should not exist when you execute this command. If it does the control will overwrite the previously existing destination part program.

COPY_MEM_TO_PORTA ('src_filename_string", "dest_name", mode)

Use this command to copy your part program file from memory (either the main, protected, or PC drive) to port A.

The *src_filename_string* is the same as the file name string given on page 6–19 and includes specific directory information. The *dest_name* string is the name used to store the part program on tape.

The remaining argument with this command is the mode argument which is an enumeration used to identify that you want to perform the copy or test the command syntax. The test option will check the command syntax (including the existence of the source program). The enumeration for the *mode* argument is as follows:

Enumeration	Result:
0	test mode
1	execute copy

For example:

copies the program named SOURCE from the main CNC directory to a new part program named DSTIN on the device attached to port A. Note the .PPG extension is not necessary for most devices connected to port A.

If copying from the hardd directory this path must be the OCI file handlers configured working directory as specified in the OCIFHCFG.INI file (see your OCI integration manual).

Important: This command does not apply to the 9/PC CNC.

COPY_MEM_TO_PORTB ('src_filename_string", "dest_name", mode)

Use this command to copy your part program file from memory (either the main, protected, or PC drive) to port B.

The *src_filename_string* is the same as the file name string given on page 6–19 and includes specific directory information. The *dest_name* string is the name used to store the part program on tape.

The remaining argument with this command is the mode argument which is an enumeration used to identify that you want to perform the copy or test the command syntax. The test option will check the command syntax (including the existence of the source program). The enumeration for the *mode* argument is as follows:

Enumeration	Result:
0	test mode
1	execute copy

For example:

copies the program named SOURCE from the main CNC directory to a new part program named DSTIN on the device attached to port B. Note the .PPG extension is not necessary for most devices connected to port B.

If copying from the hardd directory this path must be the OCI file handlers configured working directory as specified in the OCIFHCFG.INI file (see your OCI integration manual).

Important: This command does not apply to the 9/PC CNC.

COPY_PORTA_TO_MEM ("src_name", 'dest_filename_string", mode)

Use this command to copy your part program file from port A to memory, either the main or protected directories (you can not copy directly to the PC drive).

The *src_name* string is the name of the part program you are copying from the peripheral device on port A. The *dest_filename_string* is the same as the file name string given on page 6–19 and includes specific directory information.

The remaining argument with this command is the mode argument which is an enumeration used to identify that you want to perform the copy or test the command syntax. The test option will check the command syntax (including the existence of the source program). The enumeration for the *mode* argument is as follows:

Enumeration	Result:
0	test mode
1	execute copy

For example:

```
[COPY_PORTA_TO_MEM ("SOURCE", "MAIND: DSTIN.PPG", 1)]
```

copies the program named SOURCE from the device connected to port A to the new part program named DSTIN in the main CNC directory. Note the .PPG extension is not necessary for most devices connected to port A.

Important: This command does not apply to the 9/PC CNC.

COPY_PORTB_TO_MEM ('src_name", "dest_filename_string", mode)

Use this command to copy your part program file from port B to memory, either the main or protected directory(you can not copy directly to the PC drive).

The *src_name* string is the name of the part program you are copying from the peripheral device on port B. The *dest_filename_string* is the same as the file name string given on page 6–19 and includes specific directory information.

The remaining argument with this command is the mode argument which is an enumeration used to identify that you want to perform the copy or test the command syntax. The test option will check the command syntax (including the existence of the source program). The enumeration for the *mode* argument is as follows:

Enumeration	Result:
0	test mode
1	execute copy

For example:

```
[COPY_PORTB_TO_MEM ("SOURCE", "MAIND: DSTIN.PPG", 1)]
```

copies the program named SOURCE from the device connected to port B to the new part program named DSTIN in the main CNC directory. Note the .PPG extension is not necessary for most devices connected to port B.

Important: This command does not apply to the 9/PC CNC.

DEACTIVATE_PART_PROGRAM (no argument)

Use this command to deactivate the currently active part program. No arguments are required with this command. For example:

```
[DEACTIVATE_PART_PROGRAM]
```

would deactivate the part program currently active on the control.

DELETE_PART_PROGRAM ("filename_string")

This command deletes the part program from the control or OCI station. The filename string format is given on page 6–19 and includes specific directory information. For example:

```
[DELETE PART PROGRAM ("MAIND:DSTIN.PPG")]
```

would delete the part program DSTIN located in the controls main directory.

ENTER_PART_PROGRAM_SEARCH_MODE (search_type)

Use this command to access part program search mode. The *search_type* argument is an enumeration that identifies the type of search operation the control is to perform.

The enumerations are as follows:

Enumeration	Result:
1	N-Search
2	O-Search
3	EOB Search
4	Slew Search
5	String Search

For example:

[ENTER_PART_PROGRAM_SEARCH_MODE (1)]

readies the control to perform an N word search. Exit search mode using the command [EXECUTE_PART_PROGRAM_SEARCH(5)].

Use this command in conjunction with the EXECUTE_PART_PROGRAM_SEARCH_MODE and the SET_PART_PROGRAM_SEARCH_PATTERN commands.

EXECUTE_PART_PROGRAM_SEARCH (Search Method)

After you have entered a search mode, use this command to execute a part program search. The *search_method* argument is an enumeration that identifies the direction of the search operation the control is to perform. The enumerations are as follows:

Enumeration	Result:
1	Forward
2	Reverse
3	Top of Program
4	Cancel
5	Exit Search

For example:

```
[EXECUTE_PART_PROGRAM_SEARCH (1)]
```

executes the search in the forward direction.

This command typically follows the ENTER_PART_PROGRAM_SEARCH_MODE and the SET_PART_PROGRAM_SEARCH_PATTERN commands. This search operation is performed on the active part program.

RENAME_PART_PROGRAM ("src_filename_string", "dest_filename_string")

This command is used to rename a program that already exists in the specified directory. The filename string format is given on page 6–19 and includes specific directory information. Note the destination file directory and the source file directory must be the same. You can not use this command as a method of moving files from drive to drive. Format for the arguments is source filename followed by destination filename. For example:

```
RENAME_PART_PROGRAM ("MAIND:SOURCE.PPG",
"MAIND:DESTINATION.PPG")
```

renames the program called source.ppg to destination.ppg in the main CNC directory.

RESTART_PART_PROGRAM (restart action)

Use this command to restart your part program.

restart_action enumeration is used to control the restart search operation. This enumeration is:

Enumeration	Result:
1	Continue
2	Top of Program
3	Quit
4	Exit
5	Exit and Move

For example:

[RESTART_PART_PROGRAM(5)]

would select the current block as the next active program block and generate axis motion to place the axis at the calculated start point for this program block (refer to your operation and programming manual for details).

SEQUENCE_STOP_PART_PROGRAM (block_num)

This command activates or deactivates the sequence number stop feature and also specifies the block number that program execution will halt at. Refer to your operation and programming manual for details on the "Sequence Number Stop" feature.

The *block_num* argument with this command specifies the sequence number (block number N word). This numeric must be a whole number numeric ranging from 0 to 99999. Passing the argument value of 0 to the OCI server disables the sequence number stop feature. For example:

[SEQUENCE_STOP_PART_PROGRAM(0)]

disables the sequence number stop feature until the command is issued again with a valid block number.

SET_DIRECTORY (target_dir, "password_string")

Use this command to select the active part program directory. This command is only valid when the input device is set to CNC using the command SET_PART_PROGRAM_INPUT_DEVICE. The two arguments for this command are as follows:

target_dir – This argument is enumerated and identifies the directory to select. The enumeration is as follows:

Enumeration:	Result:
1	Main Directory - Selects the main part program directory on the control.
2	Protected – Selects the protectable part program directory on the control.
3	Hard Drive – Selects the local or network drive on the PC as defined for the OCI file handler (OCIFHCFG.INI for 9/Series or the Configuration Manager for the 9/PC). Refer to your OCI installation documentation for details on this file.

password_string – The protected directory of the CNC may be configured to require a password before allowing access. If a password is necessary to select the directory use this second argument to include the password. If no password is required this argument must still be passed as a NULL character.

For example:

[SET_DIRECTORY(2,"opertr1")]

would select the protected CNC directory using the password opertr1.

SET_PART_PROGRAM_COMMENT ('filename string", "text string")

This command adds a comment to the part program name to help better identify the part program. The filename string format is given on page 6–19 and includes specific directory information. The text string is the program comment as discussed in your operation and programming manual (max 20 characters).

[SET_PART_PROGRAM_COMMENT("MAIND:FILE1.PPG","CUT INSIDE THREAD")]

would assign the comment "CUT INSIDE THREAD" to the part program named FILE1 in the main directory.

SET_PART_PROGRAM_INPUT_DEVICE (pp_source)

This command selects the input source for part programs. The pp_source argument is an enumeration as follows:

PP_Source – is used to select the source device for part programs. For example use this enumeration to specify the port name of a program you intend to execute from a tape reader. The PP_Source enumeration is:

Enumeration	Result:
0	Control Memory
2	Port A
4	Port B

Selecting enumeration 0 (control memory) allows the selection of a program directory (either main, protected, or hard drive) using the SET_DIRECTORY command. For example:

[SET_PART_PROGRAM_INPUT_DEVICE(0)]

selects control memory for program selection.

Important: This command does not apply to the 9/PC CNC.

SET_PART_PROGRAM_SEARCH_PATTERN ("text_string")

Use this command to set your part program search string. This command specifies the text to be searched for in the part program.

Use this command in conjunction with the ENTER_PART_PROGRAM_SEARCH_MODE and the EXECUTE_PART_PROGRAM_SEARCH commands. The actual string required for this search depends on these other commands.

For example:

[SET_PART_PROGRAM_SEARCH_PATTERN("100")]

If the command ENTER_PART_PROGRAM_SEARCH_MODE is set to N-Search (1) the search will find program block number N100. If ENTER_PART_PROGRAM_SEARCH_MODE is set to string search (5) any text with the string 100 will be found.

VERIFY_PART_PROGRAM ("filename1", "filename2", mode)

Use this command to perform a compare of two part programs that both reside in control memory (you can not verify program on the hard drive with this command). (if you need to verify a part program from a peripheral see VERIFY_WITH_PORTA or PORTB).

Both the filename1 and filename2 strings are described on page 6–19. These filename strings contain specific directory information. The remaining argument with this command is the mode argument which is an enumeration used to identify that you want to perform the verification or test the command syntax. The test option will check the command syntax and in control memory to memory program checks, will verify the programs exist. The enumeration for the *mode* argument is as follows:

Enumeration	Result:
0	test mode
1	execute verify

For example:

[VERIFY_PART_PROGRAM("MAIND:FILE1.PPG","MAIND: FILE2.PPG",1)]

performs the verification of part programs "FILE1" to "FILE2" in the controls main program directory. Results of this command come back as an error code in the command error API item. Test mode success can be checked using the COMMAND_ERROR_CODE API item.

Н

VERIFY_WITH_PORTA ("filename1", mode)

Use this command to perform a compare of two part programs. One must reside in control memory (you can not verify program on the hard drive with this command), and one must be on the peripheral device attached to serial port A. (if you need to verify a part program from memory to memory see VERIFY_PART_PROGRAM command).

The filename1 argument is a file name strings and is described on page 6–19. This file should be resident in control memory. The remaining argument with this command is the mode argument which is an enumeration used to identify that you want to perform the verification or test the command syntax. The test option will check the command syntax. The enumeration for the *mode* argument is as follows:

Enumeration	Result:
0	test mode
1	execute verify

For example:

[VERIFY_WITH_PORTA("MAIND:FILE1.PPG",1)]

performs the verification of part programs "FILE1" which resides in the controls main program directory against the file currently accessed through portA. Results of this command come back as an error code in the command error API item ACTIVE_ERROR_MESSAGES. Test mode success can be checked using the COMMAND_ERROR_CODE API item.

Important: This command does not apply to the 9/PC CNC.

VERIFY_WITH_PORTB ("filename1", mode)

Use this command to perform a compare of two part programs. One must reside in control memory (you can not verify program on the hard drive with this command), and one must be on the peripheral device attached to serial port B. (if you need to verify a part program from memory to memory see VERIFY_PART_PROGRAM command).

The filename1 argument is a file name strings and is described on page 6–19. This file should be resident in control memory. The filename string contain specific directory information. The remaining argument with this command is the mode argument which is an enumeration used to identify if you want to perform the verification or test the command syntax. The test option will check the command syntax. The enumeration for the *mode* argument is as follows:

Enumeration	Result:
0	test mode
1	execute verify

For example:

[VERIFY_WITH_PORTB("MAIND:FILE1.PPG",1)]

performs the verification of part programs "FILE1" which resides in the controls main program directory against the file currently accessed through portB. Results of this command come back as an error code in the command error API item

ACTIVE_ERROR_MESSAGES. Test mode success can be checked using the COMMAND_ERROR_CODE API item.

Important: This command does not apply to the 9/PC CNC.

Part Program Execution

ENTER_MIDSTART_SEARCH_MODE(search type)

Use this command to enter midstart program. Refer to your operation and programming manual for details on midstart operation. The *search_type* argument is an enumeration that identifies the type of search operation the control is to perform.

The enumerations are as follows:

Enumeration	Result:
1	N-Search
2	O-Search
3	EOB Search
4	Slew Search
5	String Search

For example:

[ENTER_MIDSTART_SEARCH_MODE (1)]

readies the control to perform an N word search. Exit search mode using the command [EXECUTE_MIDSTART_SEARCH(5)].

Use this command in conjunction with the EXECUTE_MIDSTART_SEARCH_MODE and the SET MIDSTART SEARCH PATTERN commands.

EXECUTE_MIDSTART_SEARCH (search_method)

After you have entered a search mode, use this command to execute a mid program search. The *search_method* argument is an enumeration that identifies the direction of the search operation the control is to perform. The enumerations are as follows:

Enumeration	Result:
1	Forward
2	Reverse
3	Top of Program
4	Cancel
5	Exit Search

For example:

[EXECUTE_MIDSTART_SEARCH (1)]

executes the midstart search in the forward direction.

Use this command in conjunction with the ENTER_MIDSTART_SEARCH_MODE and the SET_MIDSTART_SEARCH_PATTERN commands. This search operation is performed on the active part program.

SET_MIDSTART_SEARCH_PATTERN ("search_string")

Use this command to set your midstart program search string. This command specifies the text to be searched for in the part program.

Use this command in conjunction with the ENTER_MIDSTART_SEARCH_MODE and the EXECUTE_MIDSTART_SEARCH commands. The actual string required for this search depends on these other commands.

For example:

[SET_MIDSTART_SEARCH_PATTERN("100")]

If the command ENTER_MIDSTART_SEARCH_MODE is set to N-Search (1) the search will find program block number N100. If ENTER_MIDSTART_SEARCH_MODE is set to string search (5) any text with the string 100 will be found.

STOP QUICK CHECK (no argument)

This command is used to take the control out of QuickCheck mode. QuickCheck is the 9/Series syntax checker. Refer to your operation and programming manual for details on using QuickCheck and when QuickCheck requests are valid.

For example:

[STOP_QUICK_CHECK]

would take the control out of QuickCheck mode. Use the command SYNTAX_QUICK_CHECK to enable the QuickCheck mode.

SYNTAX_QUICK_CHECK (no argument)

This command is used to place the control in QuickCheck mode. QuickCheck is the 9/Series syntax checker. When in this mode a cycle start request checks the currently active part program for syntax errors. Axis motion typically does not occur (PAL may request motion of an axis during a quick check operation). Refer to your operation and programming manual for details on using QuickCheck and when QuickCheck requests are valid.

For example:

[SYNTAX_QUICK_CHECK]

would place the control in QuickCheck mode. Use the command STOP_QUICK_CHECK to disable the QuickCheck mode.

Tool Management/Random Tool

ACTIVATE_RANDOM_TOOL (tool_number, pockets_needed, shaft_pocket)

This command tells the control to look up characteristics for the specified tool (active tool) if it is to be used with the random tool feature. Refer to your operation and programming manual for details on using the random tool feature.

There are three argument for this command. They are:

tool_number – the tool number you are defining for the tool changer

pockets_needed – the number of pockets required to hold this tool.

shaft_pocket – the pocket number that will contain the tool shaft. If the tool covers more than one pocket enter which of the pockets that will contain the tool shaft here (from 1 to the value entered for *pockets_needed*).

For example:

[ACTIVATE_RANDOM_TOOL(3, 1, 1)

would activate random tool 3 which requires 1 pocket which is also the shaft pocket for the tool.

[ACTIVATE_RANDOM_TOOL(4, 3, 2)

would activate random tool 4 which requires three tool pockets with the shaft in the second pocket.

BACKUP_RANDOM_TOOL ("Filename string")

This command tells the control to create a backup program of the random tool management tables. Refer to your operation and programming manual for details on using the random tool feature.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_RANDOM_TOOL ("maind:randback.ppg")]

would create the backup program on the CNC's main directory and name the backup program randback.

BACKUP TOOL MANAGE ("Filename string")

This command tells the control to create a backup program of the tool management tables. Refer to your operation and programming manual for details on using the tool management feature.

The argument for this command is the *filename_string* (as discussed on page 6–19) which will specify the directory and filename for the backup program. The target directory for this backup program must be either the MAIND or PROTD. You cannot create the backup program on the remote OCI hard drive. If the filename specified with this argument does not exist on the CNC the control will create it (assuming proper syntax is followed in the command). If the filename already exists, the control will abort the backup and send an error return code.

For example:

[BACKUP_TOOL_MANAGE ("maind:mangback.ppg")]

Would create the backup program on the CNCs main directory and name the backup program mangback.

RT_CUSTOMIZE_TOOL (pocket_number, pockets_needed, shaft pocket)

Use this command after you have already entered a tool number in the pocket (using the RT_SET_TOOL_NUM command) and you need to make this a custom tool by adding additional pocket spaces and defining the shaft pocket for the tool.

This command tells the control how many pockets a tool requires and the location of the shaft pocket with respect to the first pocket for the custom tool. Refer to your operation and programming manual for details on using the random tool feature.

There are three argument for this command. They are:

pocket_number – the pocket number you are defining for the custom tool. Note there must be a tool already assigned to this pocket. This pocket number is the shaft pocket for the tool.

pockets_needed – the number of pockets required to hold this tool. (Include any pockets that the tool fixture overlaps).

shaft_pocket – the shaft pocket is always the pocket number used in the first argument for this command. This argument identify the location of this shaft pocket with respect to the total number of pockets needed. (always one for single pocket tools). This argument ranges from 1 to the value entered for *pockets_needed*.

These argument are integers. For example:

[RT_CUSTOMIZE_TOOL(16, 4, 2)

would identify the tool currently in pocket 16 as a custom tool. The shaft pocket is pocket 16 and the tool fixture overlaps pockets 15, 16, 17, and 18.

[RT_CUSTOMIZE_TOOL(4, 3, 1)

would identify the tool currently in pocket 4 as a custom tool. The shaft pocket is pocket 4 and the tool fixture overlaps pockets 5 and 6.

RT_SET_TOOL_NUM (tool_number, pocket_number)

Use this command to assign a tool number to a pocket in the random tool tables. This command tells the control the location of a tool number in the tool changer. Refer to your operation and programming manual for details on using the random tool feature.

To assign custom tool use the RT_CUSTOM_TOOL command. To register a tool currently in the tool holder use the ACTIVATE_RANDOM_TOOL command.

There are two arguments for this command. They are:

tool_number - the tool number you are defining for the tool changer

pocket_number – the number of the pocket currently holding the tool.

Both of these arguments are integers. For example:

```
[RT_SET_TOOL_NUM(3, 1)]
```

would identify in the random tool table that tool number 3 is in tool changer pocket 1.

TM_DELETE_ALL (no argument)

Use this command to delete all the tool management groups.

For example:

[TM_DELETE_ALL]

deletes all data in the tool management tables.

TM_DELETE_GROUP (tool_group_num)

Use this command to delete all tools from a specified tool group. The argument tool_group_num is the tool group number to delete.

For example:

[TM_DELETE_GROUP(2)]

deletes all the tools in tool management tool group 2.

TM_DELETE_TOOL (tool_group_num, entry_num)

Use this command to delete a specific tool from a tool management group. The two arguments for this command are:

tool_group_num – the group the tool is currently assigned.

entry_num – the entry position of the tool to be deleted in the tool group.

For example:

[TM_DELETE_TOOL(3,5)]

delete from tool group 3, the tool in the fifth position in that group.

TM_INSERT_TOOL (tool_group_num, tool_num, entry_num)

Use this command to insert a tool into the a tool management group.

tool_group_num – the group the tool is to be assigned.

tool_num – the tool number to be added to the group.

entry_num – the entry position in the tool management table for this entry. A value of zero places it at the last entry in the table.

For example:

[TM_INSERT_TOOL(2,7,0)]

adds tool number 7 to the next open entry position in tool group 2.

Array Indices and Strings

Variable Ranges

The following section lists the range of select variable indices. Other enumerated indices and strings are discussed later in this chapter.

Indices Name (see appendix A)	Max Value 9/Series	Max Value 9/PC
LOG_SIZE	99	999
MAX_BLOCK_TRANSFER	32	32
MAX_CUSTOM_DIM	20	20
MAX_NUMBER_POCKETS	201	201
MAX_NUMBER_RING_DEVICES	40	N/A
MAX_OFFSETS	201	201
MAX_PAL_MESSAGES	22	N/A
MAX_PAXES	12	12
MAX_REMOTE_IO	8	8
MAX_SLOTS	16	16
MAX_TOOL_ENTRIES	201	201
MAX_TOOL_GROUPS	201	201
MAX_WORK_COORD	10	10
MEM_DUMP_SIZE	10	10
NUM_CHANNELS	2	N/A
NUM_CMDS	64	N/A
NUM_CNC_DIRECTORIES	2	2
NUM_COM2A_PARAMS	20	20
NUM_DEVICES	16	N/A
NUM_DISP_LINES	9	9
NUM_FEATURES	26	26
NUM_OEM_MSGS	3	3
NUM_OPTION_SLOTS	2	N/A
NUM_MSGS	122	122
NUM_VIRTUAL_NAMES	4	4

Enumerations

This section lists the enumerations that can be passed to or from the control with the different commands and data items. The enumerations that are valid with a specific command or data item are listed with the command or data item descriptions.

ACTIVE_RADIUS_DIAMETER_MODE enumeration

This enumeration identifies the controls operating mode for diameter or radius programming

Enumeration	Result:
0	Not Radius/Diameter Axis
1	Radius Mode
2	Diameter Mode

AMP_DATA_TYPE enumeration

This enumeration identifies the data type for AMP parameters.

Enumeration	Result:
0	Short
1	Unsigned Short
2	Long
3	Unsigned Long
4	Quad
5	Unsigned Quad
6	Float
7	Double
8	Unsigned Character
9	ASCII Character

AUX_COM_REM_STATION_TYPE enumeration

This enumeration for the aux com identifies the station type.

Enumeration	Result:
1	PLC-2 Unprotected r/w
2	PLC-3 Word range r/w
3	PLC-5 Typed r/w
4	Compute Typed r/w

Important: Enumeration does not apply to the 9/PC CNC.

AUX_COM_SEARCH_TYPE enumeration

The search_type enumeration for the aux com feature is as follows:

Enumeration	Result:
0	index line
1	command line
2	channel name line
3	rem node address
4	CNC file
5	remote file
6	remote station type
7	output format line
8	num symbols line
9	CNC symbol line
10	remote symbol line

BACK_BORING_SHIFT_DIRECTION enumeration

This enumeration identifies the shift direction for back boring cycles.

Enumeration	Result:
+Axis 1 Name	Plane (G17/G18/G19) Primary Axis 1+
- Axis 1 Name	Plane (G17/G18/G19) Primary Axis 1-
+ Axis 2 Name	Plane (G17/G18/G19) Primary Axis 2+
-Axis 2 Name	Plane (G17/G18/G19) Primary Axis 2-

CALIBRATION_START enumeration

The Calibration Start enumeration is used to determine the start point of axis calibration measurement for a specific axis. The Calibration_Start enumeration is:

Enumeration	Result:
0	Most +
1	Most -

Most + means calibration points start at the calibration point entered with the most positive value. Most negative means calibration points start at the calibration point entered with the most negative value. Subsequent points will then be measured from the most positive or negative data point you enter for your ballscrew. The Calibration_Type enumeration determines if the points are measured from the start point or from subsequent entered points.

CALIBRATION_TYPE enumeration

The Calibration Type enumeration is used to identify the method used to enter calibration data in the axis calibration tables for a specific axis. The Calibration_Type enumeration is:

Enumeration	Result:
0	Measurement
1	Deviation

Measurement means each point entered is a measurement from the original start point. Deviation means each point is a measurement from the preceding adjacent point entered.

COM_MODE enumeration

Used for the I/O monitor diagnostic screen. Use this enumeration to specify that the I/O monitor will transmit or receive data.

Enumeration	Result:
0	Transmit
1	Receive

Important: Enumeration does not apply to the 9/PC CNC.

COPY_MEM_TO_PORTA/B (copy to type) enumeration

Use this enumeration to identify the copy type to be performed from memory.

Enumeration	Result:
0	Test Mode
1	Punch file
2	Multi punch
3	Punch next file
4	Punch all
5	Finish punch

Important: Enumeration does not apply to the 9/PC CNC.

COPY_PORTA/B_TO_MEM (copy from type) enumeration

Use this enumeration to identify the copy type to be performed from port.

Enumeration	Result:
0	Test Mode
1	Input from reader
2	Multi reader input
3	Input next file

DOWNLOAD_IN_PROGRESS enumeration

The download_in_progress enumeration is used to identify the current status of AMP and PAL downloads. The enumeration is:

Enumeration:	Result:
0	Idle
1	AMP Download Started
2	AMP Download Complete
3	PAL Download Started ¹
4	PAL Download Complete ¹

Important: ¹ Enumeration does not apply to the 9/PC CNC.

DH_CHANNEL_TYPE enumeration

The data highway channel type enumeration is used to select a communication port on the data highway module. The DH_CHANNEL_TYPE enumeration is:

Enumeration:	Result:
0	Available (but not configured)
1	DH Plug Port A
2	DH Plug Port B
3	RS232 Serial Port
4	RS422 Serial Port

Important: Enumeration does not apply to the 9/PC CNC.

DH_COMMAND enumeration

The data highway command enumeration is used to make requests for data transfers through the data highway module. The communication command enumeration is:

Enumeration:	Result:
W	Write Variables
r	Read Variables
f	Send Fixed Status
d	Download File
0	Empty Command (zero)

DH_BAUD_RATE enumeration

The data highway baud rate enumeration is used to select the communication baud rate for the data highway port. The baud rate enumeration is:

Enumeration:	Result:
1	57.6K Baud (DH only)
2	115.2K Baud (DH only)
3	230.4K Baud (DH only)
4	1200 Baud (serial only)
5	2400 Baud (serial only)
6	4800 Baud (serial only)
7	9600 Baud (serial only)
8	19200 Baud (serial only)

Important: Enumeration does not apply to the 9/PC CNC.

DH_OUTPUT_FORMAT enumeration

The data highway output format enumeration is used to identify the communication format being used. The output format enumeration is:

Enumeration:	Result:
1	Integer
2	Float
3	Long Real
4	Boolean

Important: Enumeration does not apply to the 9/PC CNC.

DH_PARITY enumeration

The data highway parity enumeration is used to select the parity for serial communications. This is used only for serial communications from the data highway module (not available for DH communications). The parity enumeration is:

Enumeration:	Result:
1	Odd
2	Even
3	None

DH_REMOTE_STATION enumeration

The data highway remote station type enumeration is used to identify the type of remote device being used. The remote station enumeration is:

Enumeration:	Result:
1	PLC-2 unprotected R/W
2	PLC-3 Word Range R/W
3	PLC-5 Typed R/W
4	Computer Typed R/W

Important: Enumeration does not apply to the 9/PC CNC.

ERROR_MESSAGE_TYPE enumeration

The Error_Message_Type enumeration is used to identify the type of error message to be displayed. The Error_Message_Type enumeration is:

Enumeration:	Result:
1	Exclusive – This indicates that no axis name or slot name accompanies this message. It is a typically a system wide type message and not specific to a select axis or servo.
2	Axis Head - The axis name is to precede the error message.
3	Axis Tail - The axis name is to proceed the error message.
4	Channel Head - communication port name precede the error message.
5	Channel Tail - communication port name proceed the error message.
6	Slot Head - The 1394 slot number is to precede the error message.
7	Slot Tail - The 1394 Slot number is to proceed the error message.

MACHINE_TYPE enumeration

The Machine_Type enumeration is used to identify the AMP machine type configuration. The Machine_Type enumeration is:

Enumeration	Result:
17	Mill
34	Lathe A
35	Lathe B
36	Lathe C
69	Surface Grinder ¹
70	Cylindrical Grinder ¹
23	Transfer Line ¹
145	Dual Mill ¹
2	Dual Lathe A ¹
163	Dual Lathe B ¹
164	Dual Lathe C ¹

Important: ¹ Does not apply to the 9/PC CNC.

MID_START_ACTION enumeration

Mid_Start_Action enumeration is used to control the mid program search operation. The Mid_Start_Action enumeration is:

Enumeration	Result:
1	Execute Restart
2	Continue
3	Top of Program
4	Quit
5	Exit
6	Exit and Move

MID_START_TYPE enumeration

Mid_Start_Type enumeration is used to determine the type of search operation to be performed when doing a mid program start. The Mid_Start_Type enumeration is:

Enumeration	Result:
1	Restart
2	Seq # Search
3	String Search

MODE_ACTIVE (active mode) enumeration

Mode_Active enumeration is used to select the execution mode of the control. The Mode_Active enumeration is:

Enumeration	Result:
0	Manual
1	Auto
2	MDI

MODE_FEED (feed mode) enumeration

Mode_Feed enumeration is used to select the active feedrate mode on the control. The Mode_Feed enumeration is:

Enumeration	Result:
0	V/D mode
1	IPM mode
2	IPR mode

MODE_INCH/METRIC (inch/metric mode)enumeration

Mode_Inch/Metric enumeration to the data server is used to select the active unit mode on the control. Mode_Inch/Metric enumeration is:

Enumeration	Result:
2118	Inch Mode
2119	Metric Mode

OPTION_SELECTED enumeration

The option_selected_indices enumeration is used to identify the options enabled on your specific CNC. The Option_Select_Indices enumeration is:

Enumeration:	Result:	Enumeration:	Result:
0	Control Type	38	Reference Point Return
1	Part Program Storage Length	39	PAL/Logic Offset Modification
2	QuickView/QuickPath	40 1	PAL Display Page Capability
3	Tool Tip Radius Programming ⁴ Cutter Diameter Compensation ⁵	41	PAL/Logic Axis Mover
4	Thread Cutting Cycle Retract	42	G93 (Inverse Time Programming)
5	Constant Surface Speed	43	Polar Coordinate Programming
6	G34 (Variable Lead Thread Cutting)	44	Fixed Cycles
7	Auto Mid Program Start and Seq Srch	45	Programmable Mirror Image
8	Part Rotation	46 ¹	Feed Function (F! Digit Feed)
9	Spindle Orient	47	G10 (Programmable Data Input)
10	Helical Interpolation	48	Part Program Up/Download from ODS
11	Random Tool	49	Protected Paramacro Directory
12	Spindle Speed Dev. Detection and Output	50	Software Option not Used
13	Tool Path Graphics	51	US Feed Function
14	QuickView (Guiding Graphics)	52 ¹	Remote I/O
15	Scaling	53	Part Rotation
16	Paramacro Programming	54 ¹	7300 Tape Compatibility Mode
17	Interrupt Macro	55	Deskew (split) Axes
18	HLL and Chamfering/Corner Rounding	56	Dual Axes
19	Auto Acc/Dec	57	Multiple Spindle
20	Zero Following Error	58 1	Multiple Processes
21	Multi-Block Retrace	59 1, 2	Interference Check Over the Wheel Dresser ^{6,7}
22	Multi-Level Block Delete	60 1, 2	Part Program Sync PAL Block Create ^{6,7}
23	Virtual C Axis	61 ¹	Teach Pendant PAL Disp Page Measure ^{6,7}
24	Pocket Cycles	62	Solid Tapping Teach Pendant ⁷
25	Irregular Pocket Cycles	63 ²	Shared Axes Solid Tapping ⁷
26	Cylindrical Interpolation	64 ¹	On-Line Search Monitor
27	Tool Management and Redundant Tool	67	512KB Extended Program Storage
28	Touch Probe Capability and Cycles	68	Synchronized Spindles
29	External Input Skip	69	S-Curve Accel/Decel
30	Combined Zones 2 and 3	70 ³	Hi Res Axis 2
31 1	Arbitrary Angle Jog	71 3	Hi Res Axis 4
32	Manual/Absolute On/Off	72 ³	9/PC 1MB Storage
33	HPG ¹ /JOG during Program Execution	73 ³	9/PC 4MB Storage
34	Interpolated Axis Calibration	74 3	9/PC 1 Servo Loop
35	2nd Auxiliary Function (B Codes)	75 ³	9/PC 4 Servo Loops
		**	

Enumeration:	Result:	Enumeration:	Result:
36 ¹	Digitizing	76 ³	9/PC 5 Servo Loops
37	PAL/Logic Program Activation	77 3	9/PC 8 Servo Loops

¹Does not apply to 9/PC

PORT BAUD RATE enumeration

The port_baud_rate enumeration is used to select the baud rate for one of the serial communication ports. The enumeration are:

Enumeration:	Result:
0	300 Baud
1	600 Baud
2	1200 Baud
3	2400 Baud
4	4800 Baud
5	9600 Baud
6	19200 Baud

Important: Enumeration does not apply to the 9/PC CNC.

PORT_COMM_FORMAT enumeration

The port_comm_format enumeration is used to select the format for communication on one of the serial communication ports. The enumerations are:

Enumeration:	Result:
0	EIA
1	ASCII
2	N/A

Important: Enumeration does not apply to the 9/PC CNC.

PORT DATA BITS enumeration

The port_data_bits enumeration is used to determine the number of data bits used for communication on one of the serial communication ports. The enumeration are:

Enumeration:	Result:
0	7 bit
1	8 bits

²Applies to a dual-process system only

³Applies to 9/PC only

⁴Applies to lathe only

⁵Apllies to mill only

⁶Applies to grinder only

⁷Applies to a mono-process system only

Important: Enumeration does not apply to the 9/PC CNC.

PORT_PARITY enumeration

The port_parity enumeration is used to select the parity for serial communications. The parity enumeration is:

Enumeration:	Result:
0	Odd
1	Even
2	None

Important: Enumeration does not apply to the 9/PC CNC.

PORT_ID enumeration

The port_option enumeration is used to select one of the serial communication ports. The enumeration are:

Enumeration:	Result:
1	Port A
2	Port B

Important: Enumeration does not apply to the 9/PC CNC.

PORT_TYPE enumeration

The port_type enumeration is used to select the communication type for one of the serial communication ports. The enumeration are:

Enumeration:	Result:
0	RS232C
1	RS422A

PORTA_DEVICE enumeration

The port_device enumeration is used to select the communication device used on port A. The devices available for the port A enumeration are:

Enumeration:	Result:
1	AB 1770-SB
2	RICOH PTR240R
3	DECITEK AB 8000-XPDR
4	FACIT N4000
5	DSI SP75
6	FACIT N4070
7	EPSON LX-810
8	EPSON SP-500
9	TEACH PENDANT
10	ODS
11	USER PUNCH
12	USER READER
13	USER PRINTER
14	GENERIC LEVEL 2
15	PAL RS232 COMM
16	GRECO MINIFILE
17	INTELLIGENT DEVICE

Important: Enumeration does not apply to the 9/PC CNC.

PORTB_DEVICE enumeration

The portB_device enumeration is used to select the communication device used on port B. The devices available for the port B enumeration are:

Enumeration:	Result:
1	AB 1770-SB
2	RICOH PTR240R
3	DECITEK AB 8000-XPDR
4	FACIT N4000
5	DSI SP75
6	FACIT N4070
7	EPSON LX-810
8	EPSON SP-500
9	TEACH PENDANT
10	ODS
11	USER PUNCH
12	USER READER
13	USER PRINTER
14	GENERIC LEVEL 2
15	PAL RS232 COMM
16	GRECO MINIFILE
17	INTELLIGENT DEVICE

Important: Enumeration does not apply to the 9/PC CNC.

PORT_PROTOCOL enumeration

The port_protocol enumeration is used to select the protocol used for one of the serial communication ports. The enumeration are:

Enumeration:	Result:
0	Raw
1	Level 1
2	Level 2
3	DF1
4	Level 2

Important: Enumeration does not apply to the 9/PC CNC.

PORT_STOP_BITS enumeration

The port_stop_bits enumeration is used to determine the number of stop bits used for communication on one of the serial communication ports. The enumeration are:

Enumeration:	Result:
0	1 bit
1	1.5 bits
2	2 bits

Important: Enumeration does not apply to the 9/PC CNC.

PORT_TAPE_MULTI enumeration

The port_tape_multi enumeration is used to determine if a tape being read/written to the serial port contains multiple programs on the same tape. The enumeration are:

Enumeration:	Result:
0	No (one program per tape)
1	Yes (multiple program tape)
2	N/A

Important: Enumeration does not apply to the 9/PC CNC.

PORT_TIMEOUT_VALUE enumeration

The port_timeout_value enumeration is used to select the timeout period for failure to make/maintain serial communications though one of the serial ports. the enumeration are:

Enumeration:	Result:
0	3 Seconds
1	15 Seconds
2	30 Seconds
3	60 Seconds
4	120 Seconds
5	180 Seconds
6	300 Seconds
7	600 Seconds
8	Unlimited (no timeout)

Important: Enumeration does not apply to the 9/PC CNC.

PP_SOURCE enumeration

PP_Source enumeration is used to select the source that the executing part program is going to come from. For example use this enumeration to specify the port name of a program you intend to execute from a tape reader. The PP_Source enumeration is:

Enumeration	Result:
0	Control Memory
2 1	Port A
4 1	Port B

Important: 1 Does not apply to the 9/PC CNC.

PRODUCT_ID enumeration

PRODUCT_ID enumeration is used to identify the hardware platform. The PRODUCT_ID enumeration is:

Enumeration	Result:
9	9/260 Lathe/Mill
10	9/260 Grinder
11	9/290 Lathe/Mill
12	9/290 Grinder
15	9/260 Multi Process
17	9/290 Multi-Process
22	9/PC Lathe/Mill

ROTATION_EXT_STATUS enumeration

Rotation_Ext_Status enumeration is used to identify the status of external part rotation for a specific axis. The Rotation_Ext_Status enumeration is:

Enumeration	Result:
0	External Rotation ON
1	External Rotation OFF

SCALING_INDICATOR enumeration

Scaling_Indicator enumeration is used to identify the status of scaling for a specific axis. The Scaling_Indicator enumeration is:

Enumeration	Result:
0	Scaling Off
1	Scaling On

SEARCH_METHOD enumeration

Search_Method enumeration is used to control the search operation. The Search_Method enumeration is:

Enumeration	Result:
1	Forward
2	Reverse
3	Top of Program
4	Cancel
5	Exit Search

SEARCH_TYPE enumeration

Search_Type enumeration is used to identify the type of search operation. The Search_Type enumeration is:

Enumeration	Result:
1	N-Search
2	O-Search
3	EOB Search
4	Slew Search
5	String Search
6	Next Program

SERVO_STATUS enumeration

Servo_Status enumeration is used to identify the status of a specific servo. The Servo_Status enumeration is:

Enumeration	Result:
0	< Feedrate suppression
1	In position
2	> Feedrate suppression
3	Excess error

SYSTEM_STATE enumeration

System_State enumeration is used to select the status of execution on the control. The System_State enumeration is:

Enumeration	Result:
1	Cycle Stop
2	Cycle On
3	Cycle Suspend
4	E-Stopped

TARGET_DIR enumeration

The directory Enumeration is used to select one of the two directories on the control. The enumeration are:

Enumeration:	Result:
1	Main Directory - Selects the main part program directory on the control.
2	Protected - Selects the protectable part program directory on the control.
3	Hard Drive – Selects the local or network drive on the PC as defined for the OCI file handler (OCIFHCFG.INI for 9/Series or the Configuration Manager for the 9/PC). Refer to your OCI installation documentation for details on configuring the hard drive.

TM_STATUS enumeration

This enumeration identifies the status of the current tool for tool management.

Enumeration	Result:
0	Active Tool
1	Expired
2	Old

TM_GRAPHICS_TOOL_COLOR enumeration

This enumeration identifies the tool color for tool management graphing purposes.

Enumeration	Result:
4	Red
8	Green
12	Yellow
16	Blue
20	Magenta
24	Cyan
28	White

UART_A/B BUSY_STATUS enumeration

UART_A/B BUSY_STATUS is used to identify the status of the serial communication ports on the 9/Series processor. The UART/AB BUSY STATUS enumeration is:

Enumeration:	Result:
0	Available
1	Allocated
2	In Use

Important: Enumeration does not apply to the 9/PC CNC.

Strings

FILENAME string

The filename argument only applies to requests that are made to specific part program file. Filename command arguments to the data server use the following format:

command "drive:filename.PPG"

Where:

drive – is the disk the file is located on. The drive argument is optional. Valid drives include:

MAIND: – main directory on the CNC PROTD: – protectable directory on the CNC HARDD: – OCI disk drive on your PC (not valid for some commands) filename.PPG – enter the name of the file in the selected directory that the command is targeting. Valid filenames can be no more than eight alpha–numerics long. Any filename using numerics only (no alpha characters) is altered when passed to the CNC to conform to the 9/Series or 9/PC standard O word filename (Oxxxxx). The .PPG must follow all part program names.

The following is a FILENAME example. This command deletes the part program named O7654321 in the main directory.

```
[PP_DELETE (MAIND: "7654321.PPG")]
```

Important:

The HARDD option specifies a hard drive location on your PC that is configured when the OCI system is installed. Refer to your *OCI Installation Manual* for details on specifying the path on your PC used for part program storage.

TEXT STRING string

Text_String command arguments to the data server use the following format:

command "textstring"

textstring – Enter any null terminated, character string "". The length of the string will be verified by the control when it receives the command.

The following is a TEXTSTRING example. This command writes a textstring to the OEM message area of the CNC:

[OEM_MESSAGE_STORE ("This is CNC1 Ethernet Addr 130.120.10.3")]

OCI Data Items

This appendix lists the OCI data items categorized by feature. The feature categories are:

а	AMP Data	n	Paramacro Items
b	Axis Calibration		Part Program Directory Items
C	Communication Port Parameters	р	Part Program Rotation and Scaling
d	Error Message Items	q	Position Information
е	Factory Communication Module	r	Probing and Skip Cycles
f	Feedrate Data	s	Program Block Items
g	Fixed Cycles	t	Random Tool and Tool Life Management
h	G and M Code Data	u	Servo Information
i	In Process Dresser	٧	Servo Parameters
j	Miscellaneous System Information	W	Spindle Data
k	Offset Data	X	Work Coordinate System Information
Ι	Operating Mode	у	Zones and Overtravels
m	PAL Data	Z	

The following table of OCI data items uses these headings:

Item (Name): – The string that should be passed to the OCI data server to read or write a specific piece of data.

Description: – A brief description indicating what data that item references.

Num Indices: – The number of array indices associated with the data item.

Array Indices: – The indices (or enumeration) used to reference a specific value of an data item array.

Units: – If the value returned is dependent on a specific measuring system or unit (e.g. inch/metric) as determined by the units dependency column.

Units Dependency: – The controlling factor in determining the Units used to return a piece of data (e.g. is the control in inch mode when the data is requested).

Dual Proc.: – Is this data item referenced independently in each process of a dual process system. If yes the item can be referenced as *item_name*.1 and *item_name*.2 representing the different processes.

Req: – Identifies if the item is read only (R), write only (W), both read and writable (R/W) or dependent on your application or machine configuration (such as PAL prot. which indicates PAL defines the read/writable properties of this item).

Control Type: – Identifies what control types allow the use of this data item. Valid control types are All Controls (lathe, mill, surface grinder, cylindrical grinder), Cyc (cylindrical grinder), Surf (surface grinder), Grinder (both surface and cylindrical grinders), DLathe (dual lathe), DMill (dual mill), Dual (both dual lathe and mill).

OCI / 9/PC: Indicates which CNC provides this API information. "**OCI**" means information provided by 9/260–9/290 products. "**9/PC**" means information provided by the 9/PC product. "**Both**" means information provided by all three products listed earlier.

LAST ITEM #370 Both

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
а	AMP Data										
	@	Patch AMPable Parameters @param_no	LREAL	Both					No	R/W	All Controls
	@	Non-Patch AMPable Parameters @param_no	LREAL	Both					No	R	All Controls
311	AMP_PARAMETER_DATA_TYPE	Data Type for Adjustable Machine Parameters	USINT []	Both	1	NUM_PATCHABLE_	AMP_PARA	METERS	No	R	All Controls
312	AMP_PARAMETER_NUMBER	Parameter number for AMP parameter	UINT []	Both	1	NUM_PATCHABLE_	AMP_PARA	METERS	No	R	All Controls
310	NUM_PATCHABLE_AMP_PARAMETERS	Number of AMP parameters which are patch AMPable	UINT	Both	0				No	R	All Controls
156	SYSTEM_SCAN_TIME	AMPed System Scan Time	UINT AMP	Both	0		usec		No	R	All Controls
b	Axis Calibration			Both							
119	AXISCAL_ABS_POS	Axis Cal Absolute Position	LREAL[][]	Both	2	Point Num, Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
120	AXISCAL_MEAS_DEV_AMOUNT	Axis Cal Measurement/Deviation Amount	LREAL[][]	Both	2	Point Num, Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
122	AXISCAL_POINTS_FREE	Points Free	UINT	Both	0				No	R	All Controls
121	AXISCAL_POINTS_USED	Points Used	UINT []	Both	1	Num Axes			Yes	R	All Controls
123	AXISCAL_STATUS	Axis Calibration Status	INT bit pattern	Both	1	Num Axes			Yes	R	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
309	AXISCAL_TABLE_TYPE	Type of the Axiscal table (Measurement/Deviation)	SINT []	Both	1	NUM_PROG_AXES	PLUS_SKI	EWSLAVES	Yes	R	All Controls
С	Communication Port Paramet	ers									
240	DEVICE_ON_PORTA	UART device attached to port A	INT enumerated	OCI	0				No	R/W	All Controls
241	DEVICE_ON_PORTB	UART device attached to port B	INT enumerated	OCI	0				No	R/W	All Controls
139	HARDWARE_STATUS_PORTA	Port A Serial I/O RTS/CTS/DSR/DTR Status	USINT	OCI	1				No	R	All Controls
143	HARDWARE_STATUS_PORTB	Port B Serial I/O RTS/CTS/DSR/DTR Status	USINT	OCI	0				No	R	All Controls
141	LEVEL_2_STATUS_PORTA	Port A Serial I/O DC1-DC4 Status	USINT	OCI	0				No	R	All Controls
145	LEVEL_2_STATUS_PORTB	Port B Serial I/O DC1-DC4 Status	USINT	OCI	0				No	R	All Controls
233	PORT_AUTO_FILENAME	UART device auto select program name	INT	OCI	2				No	R/W	All Controls
226	PORT_BAUD_RATE	UART device baud rate	INT enumerated	OCI	2				No	R/W	All Controls
229	PORT_COMMUNICATION_ FORMAT	UART device communication format	INT enumerated	OCI	2				No	R/W	All Controls
232	PORT_DATA_BITS	UART device number of data bits	INT enumerated	OCI	2				No	R/W	All Controls
230	PORT_PARITY	UART device parity	INT enumerated	OCI	2				No	R/W	All Controls
237	PORT_PERCENT_SELECTION	UART device % valid in tape	INT	OCI	2				No	R/W	All Controls
238	PORT_PROGRAM_NAME	UART device program name in tape	INT	OCI	2				No	R/W	All Controls
227	PORT_PROTOCOL	UART device protocol	INT enumerated	OCI	2				No	R/W	All Controls
235	PORT_REWIND_ON_M02_M30	UART device action on M02/M30	INT	OCI	2				No	R/W	All Controls
236	PORT_REWIND_ON_M99	UART device action on M99	INT	OCI	2				No	R/W	All Controls
234	PORT_STOP_AT_PROGRAM_ END	UART device stop at program end	INT	OCI	2				No	R/W	All Controls
231	PORT_STOP_BITS	UART device number of stop bits	INT enumerated	OCI	2				No	R/W	All Controls
239	PORT_TIMEOUT_VALUE	UART device timeout value selection	INT enumerated	OCI	2				No	R/W	All Controls
228	PORT_TYPE	UART device port type (RS232/RS422A)	INT enumerated	OCI	2				No	R/W	All Controls
138	RX_CHAR_PORTA	Port A Serial I/O Receive Character	USINT []	OCI	1	RX_char_size			No	R	All Controls
142	RX_CHAR_PORTB	Port B Serial I/O Receive Character	USINT []	OCI	1	RX_char_size			No	R	All Controls
140	TX_CHAR_PORTA	Port A Serial I/O Transmit Character	USINT	OCI	0				No	R	All Controls
144	TX_CHAR_PORTB	Port B Serial I/O Transmit Character	USINT	OCI	0				No	R	All Controls
316	UART_A_BUSY_STATUS	Port A busy status enum	UINT	OCI	0				No	R	All Controls
317	UART_B_BUSY_STATUS	Port B busy status enum	UINT	OCI	0				No	R	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
353	UART_MAX_BAUD_MODE	Assign 176 for 19.2 kbaud 48 for 38.4 kbaud	USINT	OCI	0				No	R/W	All Controls
d	Error Message Items	1									
158	ACTIVE_ERROR_MESSAGES	Groups numbers of the active error messages	UINT []	Both	1	NUM_DISP_LINES			Yes	R	All Controls
49	ACTIVE_PAL_MESSAGES	Active PAL Messages	STRING1 PAL	Both	0				No	R	All Controls
270	COMMAND_ERROR_CODE	Error code from DDE command operations	UINT	Both	0				Yes	R	All Controls
99	ERROR_LOG_MESSAGE_NUM	Error log message number	UINT []	Both	1	LOG_SIZE			No	R	All Controls
100	ERROR_LOG_MESSAGE_ PARAMETER	Error log message parameter	UINT []	Both	1	LOG_SIZE			No	R	All Controls
101	ERROR_LOG_TIME_STAMP	Error log message time stamp	STRING1 []	Both	1	LOG_SIZE			No	R	All Controls
174	ERROR_MESSAGE_TYPE	Type of Error Messages	USINT [] enumerated	Both	1	NUM_MSG_GROU PS			Yes	R	All Controls
157	ERROR_MESSAGES	Error Messages	UINT []	Both	1	NUM_MSG_GROU PS			Yes	R	All Controls
320	LINE_1_MESSAGE_DATA	Base, type and parameter for CRT error line number 1	UDINT []	Both	0				Yes	R	All Controls
4	NUM_MESSAGE_GROUPS	Number of error message groups	UINT	Both	0				No	R	All Controls
269	WRITE_ERROR_CODE	Error code from DDE write operations	UINT	Both	0				Yes	R	All Controls
369	MESSAGE_BASE_LAST_INDEX	Number of system/error messages in 100, 200 and 300 ranges	UINT[]	Both	1	NUM_MSG_BASE _SECTIONS			No	R	All Controls
е	Factory Communication Modu	ile									
255	AUX_COM_CHANNEL_NUMBER	Aux comm command table channel number	USINT []	OCI	1	NUM_CMDS+1			No	R/W	All Controls
257	AUX_COM_CNC_FILENAME	Aux comm command table CNC filename	STRING1 []	OCI	1	NUM_CMDS+1			No	R/W	All Controls
262	AUX_COM_CNC_SYMBOL	Aux comm command table CNC symbol	STRING1 []	OCI	1	NUM_CMDS+1			No	R/W	All Controls
254	AUX_COM_COMMAND	Aux comm command table command	SINT[] enumerated	OCI	1	NUM_CMDS+1			No	R/W	All Controls
149	AUX_COM_CURRENT_ CONFIG_NUM	Current Aux Comm Config Entry No	DINT	OCI	0				No	R/W	All Controls
150	AUX_COM_HOST_CHANNEL_ NUM	Aux Comm Host Addr Config Channel Num	USINT	OCI	0				No	R/W	All Controls
151	AUX_COM_HOST_REMNODE_ ADDR	Aux Comm Host Addr Config Remote Node Addr	STRING1	OCI	0				No	R/W	All Controls
261	AUX_COM_NUM_SYMBOLS	Aux comm command table number of symbols	INT []	OCI	1	NUM_CMDS+1			No	R/W	All Controls
260	AUX_COM_OUTPUT_FORMAT	Aux comm command table output format	USINT [] enumerated	OCI	1	NUM_CMDS+1			No	R/W	All Controls
258	AUX_COM_REMOTE_ FILENAME	Aux comm command table remote filename	STRING1 []	OCI	1	NUM_CMDS+1			No	R/W	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
256	AUX_COM_REMOTE_NODE_ ADDRESS	Aux comm command table remote node address	STRING1 []	OCI	1	NUM_CMDS+1			No	R/W	All Controls
259	AUX_COM_REMOTE_STATION_ TYPE	Aux comm command table remote station type	USINT [] enumerated	OCI	1	NUM_CMDS+1			No	R/W	All Controls
263	AUX_COM_REMOTE_SYMBOL	Aux comm command table remote symbol	STRING1 []	OCI	1	NUM_CMDS+1			No	R/W	All Controls
305	AUX_COM_SEND_COMMAND_ PACKET	Aux Com file transfer progress indicator	INT	OCI	0				No	R	All Controls
306	AUX_COM_SEND_COMMAND_ STATUS	Aux Com file transfer status indicator	INT	OCI	0				No	R	All Controls
250	AUX_CONFIG_BAUD_RATE	Aux comm configuration baud rate	USINT [] enumerated	OCI	1	NUM_CHANNELS			No	R/W	All Controls
243	AUX_CONFIG_CHANNEL_NAME	Aux comm configuration channel name	STRING1 []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
242	AUX_CONFIG_CHANNEL_TYPE	Aux comm configuration channel type	USINT [] enumerated	OCI	1	NUM_CHANNELS			No	R/W	All Controls
245	AUX_CONFIG_FILE_PID	Aux comm configuration file pid	USINT []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
249	AUX_CONFIG_FILE_TIMEOUT	Aux comm configuration file timeout	UINT []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
247	AUX_CONFIG_KEYBOARD_PID	Aux comm configuration keyboard pid	USINT []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
248	AUX_CONFIG_PACKET_ TIMEOUT	Aux comm configuration packet timeout	UINT []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
253	AUX_CONFIG_SERIAL_DATA_ LENGTH	Aux comm configuration serial data length	USINT []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
251	AUX_CONFIG_SERIAL_PARITY	Aux comm configuration serial parity	USINT [] enumerated	OCI	1	NUM_CHANNELS			No	R/W	All Controls
252	AUX_CONFIG_SERIAL_STOP_BITS	Aux comm configuration serial number of stop bits	USINT []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
244	AUX_CONFIG_STATION_ ADDRESS	Aux comm configuration station address	STRING1 []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
246	AUX_CONFIG_STATUS_PID	Aux comm configuration status pid	USINT []	OCI	1	NUM_CHANNELS			No	R/W	All Controls
321	AUX_MODIFYING_TABLES	Status word indicates the AUX comm tables are currently being modified	INT	OCI	0				No	R/W	All Controls
f	Feedrate Data										
286	F1_DIGIT_FEEDRATE	Single Digit Feedrates - Online AMP	LREAL[]	OCI	1	9	Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	All Controls
200	FEED_CLAMPED	Status of Feed Clamping	UINT	Both	0				Yes	R	All Controls
33	FEED_MODE	Feed Mode	UINT enumerated	Both	0				Yes	R	All Controls
201	FEED_MODE_DISPLAY	FEED_VALUE is in rotary units	UINT	Both	0				Yes	R	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
32	FEED_VALUE	Feedrate Value	LREAL	Both	0		IPM/ MMPM, IPR/ MMPR, V/D	ACTIVE_UNITS, FEED_MODE	Yes	R	All Controls
g	Fixed Cycles										
285	BACK_BORING_SHIFT_DIRECTION	Shift direction for back boring cycles - Online AMP	STRING1 []	Both	3				Yes	R/W	All Controls
284	DRILLING_CLEARANCE_ AMOUNT	Clearance amount for drilling cycles - Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	All Controls
283	DRILLING_RETRACT_AMOUNT	Retract amount for drilling cycles - Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	All Controls
288	THREADING_PULLOUT_ANGLE	Pullout angle for threading cycles - Online AMP	LREAL	Both	0			Degrees always	No	R/W	Lathe,DLathe
287	THREADING_PULLOUT_DISTANCE	Pullout distance for threading cycles - Online AMP	LREAL	Both	0			Thread units	No	R/W	Lathe,DLathe
h	G and M Code Data										
29	G_CODE_STATUS	G Code Status	INT []	Both	1	Num G groups			Yes	R	All Controls
30	G_GROUP_PROGRAMMED	G Group Programmed	DINT bit pattern	Both	0	Num G groups			Yes	R	All Controls
27	M_CODE_STATUS	M Code Status	INT []	Both	1	Num M groups			Yes	R	All Controls
28	M_GROUP_PROGRAMMED	M Group Programmed	DINT bit pattern	Both	0	Num M groups			Yes	R	All Controls
6	NUM_G_GROUPS	Num G groups	UINT Max Value 23	Both	0				No	R	All Controls
5	NUM_M_GROUPS	Num M groups	UINT Max Value 14	Both	0				No	R	All Controls
40	SECONDARY_AUX_WORD	Secondary Auxiliary word Value	DINT	Both	0				Yes	R	All Controls
i	In Process Dresser										
164	CURRENT_DRESSER_RPM	Current dresser RPM	LREAL	OCI	0		RPM		No	R	Grinder
163	CURRENT_WHEEL_DIAMETER	Current wheel diameter	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R	Grinder
171	DRESSER_AMOUNT_PER_REV	Dresser amount per rev	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Grinder
161	DRESSER_HOLD_STATUS	Dresser Hold Status	UINT	OCI	0				No	R	Grinder
172	DRESSER_RETRACT_ DISTANCE	Dresser retract distance	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Grinder

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
170	DRESSER_ROLL_DIAMETER	Dresser roll diameter	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Grinder
160	DRESSER_STATUS	Dresser Status	UINT	OCI	0				No	R	Grinder
173	DRESSER_SURFACE_SPEED_ RATIO	Dresser surface speed ratio	LREAL	OCI	0				No	R/W	Grinder
326	DRESSER_TABLE_UNITS	Units for over the wheel dresser data entry	UINT (inch/metric) enum	OCI	0				No	R/W	Grinder
162	INITIAL_WHEEL_DIAMETER	Initial wheel diameter	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R	Grinder
168	MAX_WHEEL_SPEED	Maximum wheel speed (RPM)	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Grinder
167	MIN_WHEEL_DIAMETER	Minimum wheel diameter	LREAL - AMP	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Grinder
165	NEW_WHEEL_DIAMETER	New wheel diameter	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Grinder
166	WARNING_WHEEL_DIAMETER	Warning wheel diameter	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Grinder
169	WHEEL_WIDTH	Wheel width	LREAL	OCI	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Grinder
j	Miscellaneous System Inform	ation									
15	BOOT_FW_REVISION	Boot Firmware Revision	STRING1	Both	0				No	R	All Controls
13	COPYRIGHT_DATE	Copyright Date	STRING1	Both	0				No	R	All Controls
118	CALCULATION_RESULTS	Returned results from CALCULATE command	LREAL	Both	0				No	R	All Controls
336	CONTROLLING_OCI	True (1) indicates this station is the data server controlling station (not necissarily controlling file server)	USINT	OCI	0				No	R	All Controls
146	DATASCOPE_DATA	Data Scope Monitor serial port data	USINT []	OCI	130				No	R	All Controls
62	DATE	Current Date	STRING1	Both	0				No	R/W	All Controls
337	DOWNLOAD_IN_PROGRESS	Downloading AMP/PAL status	INT (enumerated)	Both					No	R	All Controls
343	ESTOP_STATE	0 - control in E-STOP, 1 - control out of E-STOP	USINT	Both					No	R	All Controls
14	FW_REVISION	Firmware Revision	DINT	Both	0				No	R	All Controls
318	IFP_COPY_CANCEL	A write parameter to cancel copy in progress	UINT	Both	1				No	R/W	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
175	MACHINE_TYPE	Type of machine lathe, mill, grinder, dual,	USINT	Both	0				No	R	All Controls
11	NUM_OPTIONS	Num Options	UINT Max Value 2	Both	0				No	R	All Controls
3	NUM_PROCESSES	Num Proc	UINT Max Value 2	Both	0				No	R	All Controls
313	NUM_PROG_AXES	Number of programmable axes in the system (incl duals)	UINT	Both	0				Yes	R	All Controls
314	NUM_PROG_AXES_PLUS_SKEWSLAVES	Number of prog axes plus deskew slaves in the system	UINT	Both	0				Yes	R	All Controls
179	OEM_MESSAGE_1	OEM Message Line 1	STRING1	Both	0				No	R/W	All Controls
180	OEM_MESSAGE_2	OEM Message Line 2	STRING1	Both	0				No	R/W	All Controls
181	OEM_MESSAGE_3	OEM Message Line 3	STRING1	Both	0				No	R/W	All Controls
159	OPTION_SELECTED	Options Selected	USINT []	Both	1	Num Options			No	R	All Controls
17	OPTION_SLOT_NAME_1	Option Slot Name - Slot 1	STRING1	OCI	0				No	R	All Controls
18	OPTION_SLOT_NAME_2	Option Slot Name - Slot 2	STRING1	OCI	0				No	R	All Controls
19	OPTION_SLOT_REV_1	Option Slot Revision - Slot 1	STRING1	OCI	0				No	R	All Controls
20	OPTION_SLOT_REV_2	Option Slot Revision - Slot 2	STRING1	OCI	0				No	R	All Controls
352	PROCESS_CHANGE_REQUEST	Assigning 1 forces process change for dual	INT	OCI	0				Yes	R/W	Dual
55	PROCESS_NAMES	Process Names	STRING1	OCI	0				Yes	R	Dual
12	PRODUCT_ID	Product ID	UINT enumerated	Both	0				No	R	All Controls
16	SERVO_FW_REVISION	Servo Firmware Revision	DINT []	Both	1	Num Servo Mod- ules			No	R	All Controls
47	SYSTEM_STATE	System State	UINT enumerated PAL	Both	0				Yes	R	All Controls
63	TIME	Current Time	STRING1	Both	0				No	R/W	All Controls
k	Offset Data										
51	ACTIVE_TOOL_GEOM_NUM	Active Tool Geometry Number	UINT	Both	0				Yes	R	All Controls
350	ACTIVE_TOOL_LENGTH_AXIS_ LOGICAL_BIT_PATTERN	Bit pattern of axes currently programmed as the active tool length axis	UDINT	Both					Yes	R	All Controls
53	ACTIVE_TOOL_RADIUS_NUM	Active Tool Radius Number	UINT	Both	0				Yes	R	All Controls
52	ACTIVE_TOOL_WEAR_NUM	Active Tool Wear Number	UINT	Both	0				Yes	R	All Controls
349	AMPED_TOOL_LENGTH_AXIS_ LOGICAL_BIT_PATTERN	Bit pattern of axes configured as tool length axis	UDINT	Both					Yes	R	All Controls
39	D_WORD	D-Word for Display	UINT	Both	0				Yes	R	All Controls
351	DRILLING_AXIS_LOGICAL_BIT_PATTERN	Bit pattern of axes configured as drilling axis for fixed cycles	UDINT	Both					Yes	R	All Controls
38	H_WORD	H-Word for Display	DINT	Both	0				Yes	R	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
276	MAX_GEOM_OFFSET	Maximum geom offset - Online AMP	LREAL[]	Both	1	NUM_PROG_AXE S	Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Lathe, Grinder, DLathe
274	MAX_GEOM_OFFSET_CHANGE	Maximum geom offset change - Online AMP	LREAL[]	Both	1	NUM_PROG_AXE S	Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Lathe, Grinder, DLathe
272	MAX_GEOM_RADIUS	Maximum geom radius - Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	All Controls
319	MAX_RADIUS_CHANGE	Maximum radius change - Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	Grinder
275	MAX_WEAR_OFFSET	Maximum wear offset - Online AMP	LREAL[]	Both	1	NUM_PROG_AXE S	Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	All Controls
273	MAX_WEAR_OFFSET_CHANGE	Maximum wear offset change - Online AMP	LREAL[]	Both	1	NUM_PROG_AXE S	Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	All Controls
271	MAX_WEAR_RADIUS	Maximum wear radius - Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	Lathe, Grinder, DLathe
294	MILL_MAX_GEOM_OFFSET	Maximum geom offset for Mill & Dmill- Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Mill, DMill
292	MILL_MAX_GEOM_OFFSET_ CHANGE	Maximum geom offset change for Mill & Dmill – Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Mill, DMill
293	MILL_MAX_WEAR_OFFSET	Maximum wear offset for Mill & Dmill- Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Mill, DMill
291	MILL_MAX_WEAR_OFFSET_ CHANGE	Maximum wear offset change for Mill & Dmill - Online AMP	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	Mill, DMill
176	NUM_TOOLS	Number of tools AMP	UINT	Both	0				Yes	R	All Controls
36	T_WORD	T-Word for Display	DINT	Both	0				Yes	R	All Controls
97	TOOL_ENTRY_UNITS	Units for data display and entry for the tool	INT []	Both	1	Offset Num			No	R/W	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
93	TOOL_LENGTH_GEOM_ OFFSETS	Tool Length Geometry Offset	LREAL [][]	Both	2	Offset Num, Num Axes	Inch/Met- ric/De- grees	TOOL_ENTRY_UN ITS [Tool_number]	Yes	R/W	Lathe, Mill
92	TOOL_LENGTH_WEAR_ OFFSETS	Tool Length Wear Offset	LREAL[][]	Both	2	Offset Num, Num Axes	Inch/Met- ric/De- grees	TOOL_ENTRY_UN ITS [Tool_number]	Yes	R/W	Lathe, Mill
98	TOOL_ORIENTATION	Tool Orientation Direction	INT []	Both	1	Offset Num			Yes	R/W	Lathe, Grinder
95	TOOL_RADIUS_GEOM_ OFFSETS	Tool Radius Geometry Offset	LREAL []	Both	1	Offset Num	Inch/Met- ric/De- grees	TOOL_ENTRY_UN ITS [Tool_number]	Yes	R/W	Lathe, Mill
94	TOOL_RADIUS_WEAR_ OFFSETS	Tool Radius Wear Offset	LREAL []	Both	1	Offset Num	Inch/Met- ric/De- grees	TOOL_ENTRY_UN ITS [Tool_number]	Yes	R/W	Lathe, Mill
96	WHEEL_GEOM_OFFSETS	Wheel Geometry Offset	LREAL[][]	Both	2	Offset Num, Num Axes	Inch/Met- ric/De- grees	TOOL_ENTRY_UN ITS [Tool_number]	No	R/W	Grinder
I	Operating Mode										
46	ACTIVE_MODE	Active Mode	UINT enumerated PAL	Both	0				Yes	R	All Controls
50	ACTIVE_SCALE_INDICATOR	Active Scaling Indicator on Scaled Axes	DINT	Both	0				Yes	R	All Controls
31	ACTIVE_UNITS	Inch/Metric Mode	UINT enumerated	Both	0				Yes	R	All Controls
54	AXIS_RAD_DIA_MODE	Axis Radius/Diameter mode	DINT bit pattern	Both	0				Yes	R	Lathe/Cyl
m	PAL/Logic Data										
	%	I/O Variables (%variables)	UINT []	OCI					No	PAL Prot	All Controls
	I	User defined PAL globals (!variables)	UINT []	OCI					No	PAL Prot	All Controls
	\$	System defined PAL globals (\$variables)	UINT []	Both					PAL Spec	PAL Prot	All Controls
298	BLOCK_TRANSFER_READ_ DATA	Block transfer read data (\$ARST)	INT []	OCI	1	MAX_BLOCK_TRAN	ISFER		No	R	All Controls
299	BLOCK_TRANSFER_WRITE_ DATA	Block transfer write data (\$AWST)	INT []	OCI	1	MAX_BLOCK_TRAN	ISFER		No	R	All Controls
152	FG_CRITICAL_AVERAGE	Critical Foreground Average	UINT	OCI	0		usec		No	R	All Controls
153	FG_CRITICAL_MAX	Critical Foreground Maximum	UINT	OCI	0		usec		No	R	All Controls
154	FG_TOTAL_AVERAGE	Total Foreground Average	UINT	OCI	0		usec		No	R	All Controls
155	FG_TOTAL_MAX	Total Foreground Maximum	UINT	OCI	0		usec		No	R	All Controls
192	MEMORY_DUMP_ADDRESS	Memory dump start address (debug monitor)	DINT	OCI	0				No	R/W	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
193	MEMORY_DUMP_DATA	Memory dump data (debug monitor)	INT[]	OCI	1	MEM_DUMP_SIZE			No	R	All Controls
198	NUM_RING_DEVICES	Number of I/O ring devices configured	INT	OCI					No	R	All Controls
190	PAL_REVISION	PAL Symbols Revision (debug monitor)	DINT	OCI	0				No	R	All Controls
191	PALLOC_FREE_SPACE	Available Pool Memory (debug monitor)	DINT	Both	0		Bytes		No	R	All Controls
296	REMOTE_INPUT_DATA	Remote I/O input data (\$RMI1,8)	INT []	OCI	1	MAX_REMOTE_IO			No	R	All Controls
297	REMOTE_OUTPUT_DATA	Remote I/O output data (\$RMO1,8)	INT []	OCI	1	MAX_REMOTE_IO			No	R	All Controls
304	RING_IO_CARD_TYPE	Output data from the ring device at the requested position	USINT [][]	OCI	1	MAX_NUMBER_RIN	G_DEVICE	S	No	R	All Controls
301	RING_IO_DEVICE_ADDRESS	Device address on the ring at the requested position	USINT []	OCI	1	MAX_NUMBER_RIN	G_DEVICE	S	No	R	All Controls
302	RING_IO_DEVICE_INPUT_DATA	Input data from the ring device at the requested position	USINT []	OCI	1	MAX_NUMBER_RIN	G_DEVICE	S	No	R	All Controls
303	RING_IO_DEVICE_OUTPUT_ DATA	Output data from the ring device at the requested position	USINT []	OCI	1	MAX_NUMBER_RIN	G_DEVICE	S	No	R	All Controls
300	RING_IO_DEVICE_TYPE	Device type on the ring at the requested position	USINT []	OCI	1	MAX_NUMBER_RIN	G_DEVICE	S	No	R	All Controls
356	FINE_SCAN_TIME_AVG	Average scan time for secondary interpolation	UINT	9/PC	0				No	R	All Controls
357	FINE_SCAN_TIME_MAX	Maximum scan time for secondary interpolation	UINT	9/PC	0				No	R	All Controls
358	BLOCK_CYCLE_TIME	Average block activation interval	UINT	9/PC	0				No	R	All Controls
359	BLOCK_CYCLE_TIME_MAX	Maximum block activation interval	UINT	9/PC	0				No	R	All Controls
360	FOREGROUND_LOGIC_TIME	Average foreground logic execution interval	UINT	9/PC	0				No	R	All Controls
361	FOREGROUND_LOGIC_TIME_MAX	Maximum foreground logic execution interval	UINT	9/PC	0				No	R	All Controls
362	AMPED_FINE_SCAN_TIME	AMPed secondary interpolation rate	UINT	9/PC	0				No	R	All Controls
363	COARSE_SCAN_TIME	AMPed and computed primary interpolation rate	UINT	9/PC	0				No	R	All Controls
n	Paramacro Items										
	SP	Paramacro Parameters by their # numbers	LREAL []	Both					Yes	R/W	All Controls
113	COM2A_PARAMETER_NAMES	Com 2A Parameters Names	STRING1 []	Both	1	NUM_COM2A_PA- RAMS			Yes	R/W	All Controls
0	Part Program Directory Items	•									
42	ACTIVE_PART_PROGRAM	Active Program Name	STRING1	Both	0				Yes	R	All Controls
43	ACTIVE_SUB_PROGRAM	Active Sub-program Name	STRING1	Both	0				Yes	R	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
60	AVAILABLE_MEMORY	Available Memory in number of bytes	UDINT	Both	0		Bytes		No	R	All Controls
68	CYCLE_TIME	Cycle Time	UDINT	Both	0				Yes	R	All Controls
57	FILE_NAME	File Names	STRING1 [][]	Both	2	PP Dir, Num Files			No	R	All Controls
58	FILE_SIZE	File Sizes	UDINT [][]	Both	2	PP Dir, Num Files	Bytes		No	R	All Controls
70	LOT_SIZE	Lot Size	UDINT	Both	0				Yes	R/W	All Controls
8	NUM_FILES	Num Files	UINT []	Both	1	NUM_CNC_DI- RECTORIES			No	R	All Controls
59	PART_PROGRAM_COMMENT	Program Comments	STRING1 [][]	Both	2	PP Dir, Num Files			No	R	All Controls
45	PART_PROGRAM_SOURCE	Source of Part Program	USINT enumerated	Both	0				No	R	All Controls
67	POWER_ON_TIME_AFTER_ RESET	Power On Time After Reset	UDINT	Both	0				Yes	R	All Controls
64	POWER_ON_TIME_OVERALL	Power-On Time Overall	UDINT	Both	0				Yes	R	All Controls
66	RUNTIME	Run Time	UDINT	Both	0				Yes	R	All Controls
56	SELECTED_PART_ PROGRAM_DIR	Selected Part Program Directory	UINT enumerated	Both	0				No	R	All Controls
44	SUB_PROGRAM_ REPEAT_COUNT	Sub-program/Macro Repeat Count	UINT	Both	0				Yes	R	All Controls
69	WORKPIECES_CUT_ AFTER_RESET	Workpieces Cut After Reset	UDINT	Both	0				Yes	R	All Controls
65	WORKPIECES_CUT_OVERALL	Workpieces Cut Overall	UDINT	Both	0				Yes	R	All Controls
71	WORKPIECES_REMAINING	Workpieces Remaining	UDINT	Both	0				Yes	R	All Controls
p	Part Program Rotation and So	caling									
111	CURRENT_SCALE_FACTORS	Current Scale Factor	LREAL []	Both	1	Num Axes			Yes	R	All Controls
112	DEFAULT_SCALE_FACTORS	Default Scale Factor	LREAL []	Both	1	Num Axes			Yes	R/W	All Controls
108	EXT_ROT_ANGLE	External Rotation Angle	LREAL	Both	0		Degrees		Yes	R/W	Mill, Grinder
102	EXT_ROT_FIRST_AXIS	External Rotation Plane Abscissa Axis	String1	Both	4				Yes	R/W	Mill, Grinder
104	EXT_ROT_FIRST_AXIS_ CENTER	Abscissa Rotation Center	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	Mill, Grinder
106	EXT_ROT_FIRST_AXIS_ VECTOR	Abscissa Vector	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	Mill, Grinder
103	EXT_ROT_SECOND_AXIS	External Rotation Plane Ordinate Axis	String1	Both	4				Yes	R/W	Mill, Grinder
105	EXT_ROT_SECOND_AXIS_ CENTER	Ordinate Rotation Center	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	Mill, Grinder

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
107	EXT_ROT_SECOND_AXIS_ VECTOR	Ordinate Vector	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	Mill, Grinder
109	PROG_ROT_ANGLE	Programmable Rotation Angle	LREAL	Both	0		Degrees		Yes	R/W	Mill, Grinder
110	SCALING_CENTER	Scaling Center	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
q	Position Information										
328	AXIS_FORMATS_INCH	Num of digits to the right of the decimal point in inch mode for axis names	USINT []	Both	1	Num_Prog_Axes			Yes	R	All Controls
329	AXIS_FORMATS_METRIC	Num of digits to the right of the decimal point in metric mode for axis names	USINT []	Both	1	Num_Prog_Axes			Yes	R	All Controls
24	AXIS_POSITION_ABS	Axis Positions - Absolute	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
26	AXIS_POSITION_DTG	Axis Positions - Distance To Go	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
23	AXIS_POSITION_PRG	Axis Positions - Programmed	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
25	AXIS_POSITION_TAR	Axis Positions - Target	LREAL[]	Both	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
355	SKEW_SLAVE_ABSOLUTE_POSITION	Absolute position of Skew slave axes.	LREAL []	Both	1	Num Skew Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
r	Probing and Skip Cycles										
308	DEPTH_PROBE_FOLLOWING_ERROR	Following error for the depth probe servo	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	Mill, DMill
307	DEPTH_PROBE_POSITION	Position value for depth probe	LREAL	Both	0		Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	Mill, DMill
277	PROBE_APPROACH_DISTANCE	Probing cycles compensation (D) - Online AMP	LREAL	Both	1	Probe Entry Units	Inch/Met- ric/De- grees	Metric units always (mm)	Yes	R/W	Mill, DMill
279	PROBE_APPROACH_FEEDRATE	Probe cycle approach speed (E) - Online AMP	LREAL	Both	1	Probe Entry Units	Inch/Met- ric/De- grees	Metric units always (mm/sec)	Yes	R/W	Mill, DMill

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
327	PROBE_ENTRY_UNITS	Units for touch probe data entry	INT (inch/metric) enum	Both	0				Yes	R/W	Mill, DMill
280	PROBE_FEEDRATE	Probe cycle feedrate (F) - Online AMP	LREAL	Both	1	Probe Entry Units	Inch/Met- ric/De- grees	Metric units always (mm/sec)	Yes	R/W	Mill, DMill
281	PROBE_LENGTH	Probe length for compensation - Online AMP	LREAL	Both	1	Probe Entry Units	Inch/Met- ric/De- grees	Metric units always (mm)	Yes	R/W	Mill, DMill
282	PROBE_RADIUS	Probe radius for compensation – Online AMP	LREAL	Both	1	Probe Entry Units	Inch/Met- ric/De- grees	Metric units always (mm)	Yes	R/W	Mill, DMill
278	PROBE_TOLERANCE_BAND	Probing cycles compensation (B) - Online AMP	LREAL	Both	1	Probe Entry Units	Inch/Met- ric/De- grees	Metric units always (mm)	Yes	R/W	Mill, DMill
S	Program Block Items										
48	ACTIVE_PART_PROGRAM_BLOCKS	Active Part Program Blocks	STRING1 []	Both	1	Num setupbuffers			Yes	R	All Controls
37	N_WORD	Programmed N-Word (from the letter table)	DINT	Both	0				Yes	R	All Controls
7	NUM_SETUP_BUFFERS	Num setupbuffers	DINT Max Value 21	Both	0				No	R	All Controls
t	Random Tool and Tool Life Ma	anagement									
194	ACTIVE_RANDOM_TOOL_NUM	Active random tool number	INT	Both	0				Yes	R	Lathe, Mill, Dual
195	ACTIVE_RANDOM_TOOL_NUM_POCKETS	Number of pockets for active random tool	USINT	Both	0				Yes	R	Lathe, Mill, Dual
196	ACTIVE_RANDOM_TOOL_SHAFT_POCKET	Shaft pocket number of active random tool	USINT	Both	0				Yes	R	Lathe, Mill, Dual
197	NUM_AMP_PARAMETERS	Number of AMP Parameters	UINT	Both	0				No	R	All Controls
178	NUM_POCKETS	Number of tool pockets AMP	UINT	Both	0				Yes	R	All Controls
224	RT_POCKETS_NEEDED	Random tool pockets needed	USINT []	Both	1	MAX_NUM- BER_POCKETS			Yes	R	Lathe, Mill
225	RT_SHAFT_POCKET	Random tool shaft pocket	USINT []	Both	1	MAX_NUM- BER_POCKETS			Yes	R	Lathe, Mill
223	RT_TOOL_NUM	Random tool number	INT []	Both	1	MAX_NUM- BER_POCKETS			Yes	R	Lathe, Mill
213	TM_ACTIVE_ENTRY	Active tool management tool entry	INT	Both	0				Yes	R	Lathe, Mill, Dual
212	TM_ACTIVE_TOOL	Active tool management tool	INT	Both	0				Yes	R	Lathe, Mill, Dual
211	TM_ACTIVE_TOOL_GROUP	Active tool management tool group	INT	Both	0				Yes	R	Lathe, Mill, Dual
220	TM_ACCUMULATED_LIFE	Tool management data accumulated life	REAL[]	Both	1	MAX_TOOL_EN- TRIES			Yes	R/W	Lathe, Mill

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
218	TM_CUTTER_COMP_NUM	Tool management data cutter comp number	USINT []	Both	1	MAX_TOOL_EN- TRIES			Yes	R/W	Lathe, Mill
216	TM_ENTRY_NUM	Tool management data entry number	USINT []	Both	1	MAX_TOOL_EN- TRIES			Yes	R	Lathe, Mill
221	TM_EXPECTED_LIFE	Tool management data expected tool life	REAL[]	Both	1	MAX_TOOL_EN- TRIES			Yes	R/W	Lathe, Mill
222	TM_GRAPHICS_TOOL_COLOR	Tool management data graphics tool color	USINT [] enumerated	Both	1	MAX_TOOL_EN- TRIES			Yes	R/W	Lathe, Mill
215	TM_GROUP_NUM	Tool management data group number	INT[]	Both	1	MAX_TOOL_EN- TRIES			Yes	R	Lathe, Mill
219	TM_STATUS	Tool management data status	USINT []	Both	1	MAX_TOOL_EN- TRIES			Yes	R	Lathe, Mill
208	TM_TOOL_GROUP_LIFE_TYPE	Tool management group life type	USINT []	Both	1	MAX_TOOL_GRO UPS			Yes	R/W	Lathe, Mill
209	TM_TOOL_GROUP_THLD_RATE	Tool management group threshold rate	USINT []	Both	1	MAX_TOOL_GRO UPS			Yes	R/W	Lathe, Mill
214	TM_TOOL_NUM	Tool management data tool number	INT []	Both	1	MAX_TOOL_EN- TRIES			Yes	R	Lathe, Mill
217	TM_TOOL_OFFSET_NUM	Tool management data tool offset number	USINT []	Both	1	MAX_TOOL_EN- TRIES			Yes	R/W	Lathe, Mill
210	TM_TOOLS_PER_GROUP	Number of tools in each valid tool group	USINT []	Both	1	MAX_TOOL_GRO UPS			Yes	R	Lathe, Mill, Dual
339	TM_UPDATE_IN_PROGRESS	True if tool management update is in progress	INT	Both					Yes	R	All Controls
u	Servo Information										
342	ANGLED_WHEEL_ALLOWED	True if system supports angled wheel mode	INT []	OCI					Yes	R	Grinder
21	AXIS_NAME	Displayed Axis Names Per Process	STRING1 []	Both	1	Num Axes			Yes	R	All Controls
346	AXIS_PRESENT_LOGICAL_BIT_PATTERN	Bit pattern of axes in currently active plane	UDINT	Both					Yes	R	All Controls
368	NUM_1394_RACKS	Number of 1394 racks connected to the CNC	UINT	9/PC	0				No	R	All Controls
2	NUM_AXES	Num Axes num_rv_axes	UINT Max Value 12	Both	0				Yes	R	All Controls
315	NUM_MONITORED_SERVOS	# of servos monitored (prog axes+skew slaves+spindle)	UINT	Both	0				Yes	R	All Controls
341	NUM_PROG_AXES_PLUS_EXTRA	Num programming axis (inc. duals, and angled virtual axes)	UINT	Both	0				Yes	R	All Controls
1	NUM_SERVO_MODULES	Num Servo Modules	UINT Max Value 3	OCI	0				No	R	All Controls
9	NUM_SERVOS	Num Servos (inc. deskew and depth probe)	UINT Max Value 15	Both	0				Yes	R	All Controls
335	NUM_SERVOS_PLUS_SPINDLES	Number of servos plus the number of spindles	INT Max Value 15	Both	0				Yes	R	All Controls
268	NUM_SKEWSLAVES	Num of skew slaves in the process	INT	Both					Yes	R	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
364	RACK_1394_SYSTEM_MODULE_HW_REVISION	Revision number associated with each rack of 1394 drives	UINT[]	9/PC	1	MAX_1394_SE- RIAL_RACKS			No	R	All Controls
365	RACK_1394_SERCOS_ADDRESS	Configured address associated with each rack of 1394 drives	UINT[]	9/PC	1	MAX_1394_SE- RIAL_RACKS			No	R	All controls
366	RACK_1394_BOARD_NUMBER	Physical connector number for a 1394 rack to the CNC	UINT	9/PC	1	MAX_1394_SE- RIAL_RACKS			No	R	All Controls
367	RACK_1394_AXIS_MODULE_ERRORS	Error codes for the axis modules in one 1394 rack	UINT[]	9/PC	1	MAX_1394_SE- RIAL_RACKS			No	R	All Controls
348	ROLLOVER_AXIS_LOGICAL_BIT_PATTERN	Bit pattern of axes configured as rollover	UDINT	Both					Yes	R	All Controls
348	ROTARY_AXIS_LOGICAL_BIT_PATTERN	Bit pattern of axes configured as rotary	UDINT	Both					Yes	R	All Controls
22	SERVO_NAME	Servo Names in AMPed Order	SINT[] AMP	Both	1	Num Servos			No	R	All Controls
338	VIRTUAL_AXIS_ALLOWED	Value is true if system supports virtual axis	INT []	Both					Yes	R	All Controls
323	VIRTUAL_FORMATS	Num digits to the right of the decimal point for virtual/cylindrical axes	INT []	Both	1	Num Virtual Names			Yes	R	All Controls
322	VIRTUAL_NAMES	Axis name used for virual C and cylindrical features	INT[]	Both	1	Num Virtual Names			Yes	R	All Controls
٧	Servo Parameters										
199	AXIS_SKEW_AMOUNT	Amount of Axis Skew	LREAL []	Both	1	Num Skew Slaves	Inch/ Metric/ Degrees	Active Units	Yes	R	All Controls
134	DISTANCE_TO_MARKER	Distance To Marker	LREAL []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
130	FEED_FORWARD_PERCENT	Feed Forward Percentage	LREAL []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R/W	All Controls
124	FOLLOWING_ERROR	Following Error	LREAL []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R	All Controls
290	HOME_CALIBRATION_AMOUNT	Home calibration amount - Online AMP	LREAL []	Both	1	NUM_PROG_AXE S_PLUS_SKEWS- LAVES	Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	All Controls
136	MARKER_STATUS	Marker (Not) Found	UINT bit pattern	Both	0	Num Servos			Yes	R	All Controls
128	MAX_NEGATIVE_TORQUE	Maximum % Rated Torque (-)	LREAL []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R/W	All Controls
127	MAX_POSITIVE_TORQUE	Maximum % Rated Torque (+)	LREAL []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R/W	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
131	POSITION_LOOP_INIT_GAIN	Initial Gain of Position Loop	REAL[]	Both	1	NUM_SER- VOS_PLUS_SPIN DLES	IPM/MIL, MMPM/ MIL	ACTIVE_UNITS	Yes	R/W	All Controls
289	REVERSAL_ERROR_DISTANCE	Distance for reversal error comp - Online AMP	LREAL[]	Both	1	NUM_PROG_AXE S_PLUS_SKEWS- LAVES	Inch/Met- ric/De- grees	ACTIVE_UNITS	No	R/W	All Controls
137	SERVO_STATUS	Servo Status	INT [] enumerated	Both	1	Num Servos			Yes	R	All Controls
126	TORQUE	Torque	LREAL []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R	All Controls
129	TORQUE_OFFSET_PERCENT	Torque Offset Percentage	LREAL []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R/W	All Controls
133	VELOCITY_DISCHARGE_RATE	Discharge rate for velocity loops	INT []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R/W	All Controls
147	VELOCITY_INTEGRAL_GAIN	Integral gain for the velocity loop	UDINT []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R/W	All Controls
148	VELOCITY_PROPORTIONAL_ GAIN	Proportional gain for the velocity loop	UDINT []	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R/W	All Controls
344	VELOCITY_GAINS_FROM_TABLE	Use Motor Tables (1 = No)	INT	Both	1	NUM_SER- VOS_PLUS_SPIN DLES			Yes	R/W	All Controls
W	Spindle Data	1									
41	CONTROLLING_SPINDLE_NUM	Controlling Spindle Number	UINT	Both	0				Yes	R	All Controls
10	NUM_SPINDLES	Num Spindles	UINT Max Value 3	Both	0				No	R	All Controls
35	S_WORD	Programmed S-Word (from the letter table)	LREAL	Both	0				Yes	R	All Controls
135	SPINDLE_DAC_COMMAND	Spindle DAC Cmd for Control Spindle	INT []	Both	1	Num Spindles	4096 = 10 Volts		No	R	All Controls
132	SPINDLE_GEAR_RANGE_MAX_VOLTAGE	Max Voltage for Spindle Gear Range	REAL[][]	Both	2	Num Spindles, 8	Volts		No	R/W	All Controls
370	SPINDLE_MOTOR_TYPE	Motor Commutation of the Spindle	UINT[]	Both	1	Num Spindles			Yes	R	All Controls
34	SPINDLE_SPEED_VALUE	Spindle Speed Value (from FGDATA)	LREAL []	Both	1	Num Spindles	RPM		Yes	R	All Controls
371	SYNC_SPINDLE_SKEW	Difference in following error between the synchronized spindles	LREAL	Both	0		Degrees		No	R	All Controls
х	Work Coordinate System Info	rmation									

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
340	ACTIVE_PLANE_AXES	Bit pattern of axes in active plane	DINT	Both					Yes	R	All Controls
90	EXTERNAL_WORK_COORD	External Work Coordinate	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	EXTER- NAL_WORK_COO RD_UNITS	Yes	R/W	All Controls
91	EXTERNAL_WORK_COORD_ UNITS	External Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
72	G54_WORK_COORD	G54 Work Coordinate	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	G54_WORK_COO RD_UNITS	Yes	R/W	All Controls
73	G54_WORK_COORD_UNITS	G54 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
74	G55_WORK_COORD	G55 Work Coordinate	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	G55_WORK_COO RD_UNITS	Yes	R/W	All Controls
75	G55_WORK_COORD_UNITS	G55 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
76	G56_WORK_COORD	G56 Work Coordinate	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	G56_WORK_COO RD_UNITS	Yes	R/W	All Controls
77	G56_WORK_COORD_UNITS	G56 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
78	G57_WORK_COORD	G57 Work Coordinate	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	G57_WORK_COO RD_UNITS	Yes	R/W	All Controls
79	G57_WORK_COORD_UNITS	G57 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
80	G58_WORK_COORD	G58 Work Coordinate	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	G58_WORK_COO RD_UNITS	Yes	R/W	All Controls
81	G58_WORK_COORD_UNITS	G58 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
82	G59_WORK_COORD	G59Work Coordinate	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	G59_WORK_COO RD_UNITS	Yes	R/W	All Controls
83	G59_WORK_COORD_UNITS	G59 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
84	G591_WORK_COORD	G59.1 Work Coordinate	LREAL []	Both	1	Num Axes	Inch/Met- ric/De- grees	G591_WORK_CO ORD_UNITS	Yes	R/W	All Controls
85	G591_WORK_COORD_UNITS	G59.1 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
86	G592_WORK_COORD	G59.2 Work Coordinate	LREAL[]	Both	1	Num Axes	Inch/Met- ric/De- grees	G592_WORK_CO ORD_UNITS	Yes	R/W	All Controls
87	G592_WORK_COORD_UNITS	G59.2 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
88	G593_WORK_COORD	G59.3 Work Coordinate	LREAL[]	Both	1	Num Axes	Inch/Met- ric/De- grees	G593_WORK_CO ORD_UNITS	Yes	R/W	All Controls
89	G593_WORK_COORD_UNITS	G59.3 Work Coordinate Units	INT	Both	0				Yes	R/W	All Controls
345	PLANE E_AXES_INDICES	Bit pattern of axes in currently active plane	INT[]	Both					Yes	R	All Controls
202	WORK_COORD_LABELS	Labels for work coordinates	STRING1 []	Both	1	MAX_WORK_CO ORD			No	R/W	Grinder
у	Zones and Overtravels										
265	INTERF_FIRST_AXIS_MINUS_AREA_1	Interference zones first axis minus limit for dual process interference zone 1	LREAL []	OCI	1	Interf Tool Number	Inch/Met- ric/De- grees	INTERF_UNITS [Interf Tool Number]	Yes	R/W	Dual
264	INTERF_FIRST_AXIS_PLUS_ AREA_1	Interference zones first axis plus limit for dual process interference zone 1	LREAL []	OCI	1	Interf Tool Number	Inch/Met- ric/De- grees	INTERF_UNITS [Interf Tool Number]	Yes	R/W	Dual
267	INTERF_SECOND_AXIS_MINUS_AREA_1	Interference zones second axis minus limit for dual process interference zone 1	LREAL []	OCI	1	Interf Tool Number	Inch/Met- ric/De- grees	INTERF_UNITS [Interf Tool Number]	Yes	R/W	Dual
266	INTERF_SECOND_AXIS_PLUS_AREA_1	Interference zones second axis plus limit for dual process interference zone 1	LREAL []	OCI	1	Interf Tool Number	Inch/Met- ric/De- grees	INTERF_UNITS [Interf Tool Number]	Yes	R/W	Dual
331	INTERF_FIRST_AXIS_MINUS_AREA_2	Interference zones first axis minus limit for dual process interference zone 2	LREAL[]	OCI	1	Interf Tool Number	Inch/Met- ric/De- grees	INTERF_UNITS [Interf Tool Number]	Yes	R/W	Dual
330	INTERF_FIRST_AXIS_PLUS_ AREA_2	Interference zones first axis plus limit for dual process interference zone 2	LREAL[]	OCI	1	Interf Tool Number	Inch/Met- ric/De- grees	INTERF_UNITS [Interf Tool Number]	Yes	R/W	Dual
333	INTERF_SECOND_AXIS_MINUS_AREA_2	Interference zones second axis minus limit for dual process interference zone 2	LREAL[]	OCI	1	Interf Tool Number	Inch/Met- ric/De- grees	INTERF_UNITS [Interf Tool Number]	Yes	R/W	Dual
332	INTERF_SECOND_AXIS_PLUS_AREA_2	Interference zones second axis plus limit for dual process interference zone 2	LREAL[]	OCI	1	Interf Tool Number	Inch/Met- ric/De- grees	INTERF_UNITS [Interf Tool Number]	Yes	R/W	Dual
177	INTERF_TOOL_NUM	Number of Interference tools AMP	UINT	OCI	0				Yes	R	All Controls
114	LIMIT2_LOWER_LIMITS	Limit 2 Lower Limit	LREAL[]	OCI	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	All Controls
115	LIMIT2_UPPER_LIMITS	Limit 2 Upper Limit	LREAL []	OCI	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	All Controls

	Item (Name)	Description	Data Type	OCI/9/PC	Num Indices	Array Indices	Units	Units Dependency	Dual Proc.	Req	Control Type
116	LIMIT3_LOWER_LIMITS	Limit 3 Lower Limit	LREAL []	OCI	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	All Controls
117	LIMIT3_UPPER_LIMITS	Limit 3 Upper Limit	LREAL[]	OCI	1	Num Axes	Inch/Met- ric/De- grees	ACTIVE_UNITS	Yes	R/W	All Controls
354	LOGICAL_AXIS_ZONE_GROUP	Array of integers for each axis where 0 axis is not in zone group 2 axis is in zone group 2 3 axis is in zone group 3	UINT[]	OCI	1	Num Axes			Yes	R	All Controls
Z											
						_					

Appendix **B**

OCI Commands

Inst ID	Item (Name)	Command Description	Control Type	OCI / 9/PC	# Params	Dual Proc.	Parameter 1	P1 type	Parameter 2	P2 type	Parameter 3	P3 type
AMP	Commands			l.					•	I.	•	
42	BACKUP_AMP	Send AMP to backup storage	All Controls	Both		No						
44	MODIFYING_AMP	Modifying AMP for patch AMP utility	All Controls	Both		No						-
43	RESTORE_AMP	Sends AMP from backup storage	All Controls	Both		No						
49	TRANSFER_AMP_FROM_PORTA	AMP from port A	All Controls	OCI		No						
53	TRANSFER_AMP_FROM_PORTB	AMP from port B	All Controls	OCI		No						
48	TRANSFER_AMP_TO_PORTA	AMP to port A	All Controls	OCI		No						
52	TRANSFER_AMP_TO_PORTB	AMP to port B	All Controls	OCI		No						-
56	TRANSFER_HOMECAL_TO_PORTA	Home calibration to port A	All Controls	OCI		Yes						
62	TRANSFER_HOMECAL_TO_PORTB	Home calibration to port B	All Controls	OCI		Yes						
58	TRANSFER_REVERSAL_ERROR_TO_ PORTA	Reversal error to port A	All Controls	OCI		Yes						
64	TRANSFER_REVERSAL_ERROR_TO_ PORTB	Reversal error to port B	All Controls	OCI		Yes						
45	UPDATE_AMP	Updates AMP on control after patch AMP modification	All Controls	Both		No						
Axis	Calibration		•	•				•	•	•		
46	BACKUP_AXISCALOCI	Sends axis calibration to backup storage	All Controls	Both		No						
41	DELETE_AXISCAL_POINT	Deletes axis calibration point	All Controls	Both	2	Yes	Logical Axis Number	DINT	Axis Cal Point No	DINT		
148	DELETE_ALL_AXISCAL_POINTS	Deletes ALL axis calibration point all axes	All Controls	Both		Yes						
68	ENTER_AXISCAL_MODIFY_MODE	Gets axis calibration data	All Controls	Both		No						-
69	EXIT_AXISCAL_MODIFY_MODE	Sends axis calibration data	All Controls	Both		No						-
39	INITIALIZE_AXISCAL_TABLE	Initializse axis calibration table	All Controls	Both	3	Yes	Logical Axis Number	DINT	Cal Type enum	DINT	Cal Start enum	DINT
40	INSERT_AXISCAL_POINT	Insert axis calibration point	All Controls	Both	1	Yes	Logical Axis Number	DINT				
155	NEXT_AXISCAL_AXIS	Selects the axis for axiscal operations	All Controls	Both	1	Yes	Logical Axis Number	DINT				
65	REPLACE_AXISCAL_VALUE	Replaces axis calibration values in table	All Controls	Both	3	Yes	Logical Axis Number	DINT	Axis Cal Point No	DINT	Axiscal Meas/Deviation Value	LREAL
47	RESTORE_AXISCAL	Sends axis calibration from backup storage	All Controls	Both		No						
154	SET_AXISCAL_PROCESS_NUMBER	Sets the process number for axiscal	All Controls	Both	1	No	Process Number	DINT				
5	STOP_AXISCAL	Disables axis calibration on the specified axis	All Controls	Both	1	No	Logical Axis Number	DINT				
61	TRANSFER_AXISCAL_FROM_PORTA	Axis calibration from port A	All Controls	OCI		No						
67	TRANSFER_AXISCAL_FROM_PORTB	Axis calibration from port B	All Controls	OCI		No						

Inst ID	Item (Name)	Command Description	Control Type	OCI / 9/PC	# Params	Dual	Parameter 1	P1 type	Parameter 2	P2 type	Parameter 3	P3 type
60	TRANSFER AXISCAL TO PORTA	Axis calibration to port A	All Controls	OCI		Proc.						
66	TRANSFER_AXISCAL_TO_PORTB	Axis calibration to port B	All Controls	OCI		No						
		Axis calibration to port b	All Collilois	OCI		INU						
Com	munications											
88	ACTIVATE_RIO_PASSTHROUGH	Activates remote I/O passthrough	All Controls	OCI		No						
113	AUX_COM_ABORT_COMMAND	Aborts Aux Comm command in progress	All Controls	OCI		No						
82	AUX_COM_BACKUP_CONFIG_TABLE	Aux Comm backup communication tables	All Controls	OCI	1	No	File Name	STRING1				
78	AUX_COM_CMD_FWD_SEARCH	Aux Comm command forward search	All Controls	OCI	2	No	Search Type enum	DINT	Search String	STRING1		
79	AUX_COM_CMD_REV_SEARCH	Aux Comm command reverse search	All Controls	OCI	2	No	Search Type enum	DINT	Search String	STRING1		
150	AUX_COM_CMDTBL_FROM_FLASH	Reads command table from flash	All Controls	OCI		No						
81	AUX_COM_CMDTBL_TO_FLASHH	Writes command table to flash	All Controls	OCI		No						
149	AUX_COM_CONFIG_FROM_FLASH	Read Aux Comm configuration from flash	All Controls	OCI		No						
77	AUX_COM_CONFIG_TO_FLASH	Writes Aux Comm configuration to flash	All Controls	OCI		No						
83	AUX_COM_DOWNLOAD_FILE	Aux Comm download file	All Controls	OCI	2	No	Local File Name	STRING1	Remote File Name	STRING1		
151	AUX_COM_HOST_FROM_FLASH	Aux Comm host address config read from flash	All Controls	OCI		No						
84	AUX_COM_HOST_WRITE_TO_FLASH	Aux Comm host address config writes to flash	All Controls	OCI		No						
80	AUX_COM_SENDCMD	Aux Comm send command	All Controls	OCI	1	No	Command Index 1-64	DINT				
70	COPY_DEVICE_SETUP_DEFAULTS	Copies defaults for device setup	All Controls	OCI	2	No	Device Num enum	DINT	Port ID enum	DINT		
89	DEACTIVATE_RIO_PASSTHROUGH	Deactivates remote I/O passthrough	All Controls	OCI		No						
101	ENTER_SERIAL_IO_MONITOR_MODE	Enters serial I/O monitoring mode	All Controls	OCI	2	No	Port ID enum	DINT	Receive/Transmit	DINT		
102	EXIT_SERIAL_IO_MONITOR_MODE	Exits serial I/O monitoring mode	All Controls	OCI		No						
156	INITIALIZE_DEVICE_SETUP	Initialize the RAM copy of device setup at start- up	All Controls	OCI		No						
74	REPEAT_TX_SERIAL_IO	Repeat transmits on serial I/O	All Controls	OCI	1	No	Repeat Char	DINT				
112	SAVE_DEVICE_SETUP	Saves changes to device setup	All Controls	OCI		No						
73	SINGLE_TX_SERIAL_IO	Single transmits on serial I/O	All Controls	OCI	1	No	Char	DINT				
71	START_SERIAL_IO_MONITOR	Starts serial I/O monitor	All Controls	OCI		No						
72	STOP_SERIAL_IO_MONITOR	Stops serial I/O monitor	All Controls	OCI		No						
Misc	ellaneous				•	•	1	•	•			
63	CANCEL_MESSAGE	Cancels active messages	All Controls	Both		No						
4	CALCULATE	Perform a math calculation on a string	All Controls	Both	1	Yes	Calc_string	STRING1				
86	CLEAR_ACTIVE_ERRORS	Clears active errors	All Controls	Both		Yes						
109	CLEAR_CYCLE_TIME	Clears cycle time	All Controls	Both		Yes						
59	CLEAR_DEBUG_MONITOR	Clears fields in the debug monitor parameters	All Controls	Both	1	No	Parameter Index enum	DINT				
87	CLEAR_ERROR_LOG	Clears error log	All Controls	Both		No						
		1	·		1		l .	1	1		1	

Inst ID	Item (Name)	Command Description	Control Type	OCI / 9/PC	# Params	Dual Proc.	Parameter 1	P1 type	Parameter 2	P2 type	Parameter 3	P3 type
106	CLEAR_POWER_ON_TIME_OVERALL	Clears power on time overall	All Controls	Both		No						
108	CLEAR_RUNTIME	Clears runtime	All Controls	Both		Yes						
107	CLEAR_WORKPIECES_CUT_OVERALL	Clears workpieces cut overall	All Controls	Both		Yes						
90	INPUT_MDI_STRING	Inputs MDI string	All Controls	Both	1	Yes	MDI String	STRING1				
92	RELINQUISH_CONTROL	Relinquishes to CNC status as controlling OCI	All Controls	Both								
91	REQUEST_CONTROL	Registers with CNC as controlling OCI	All Controls	Both		No						
85	RESET_MAX_TIMES	Resets maximum times	All Controls	Both		No						
1	STORE_OEM_MESSAGE	Stores OEM message in backup	All Controls	Both		No						
Offs	ets					•				•		
20	ACTIVATE_TOOL_GEOM	Activates tool geometry offset	"Lathe, Dual Lathe"	Both	1	Yes	Tool Number	DINT				
94	ACTIVATE_TOOL_LENGTH	Activates tool length offset on mill	"Mill, Dual Mill"	Both	1	Yes	Tool Number	DINT				
93	ACTIVATE_TOOL_RADIUS	Activates tool radius offset on mill	"Mill, Dual Mill"	Both	1	Yes	Tool Number	DINT				
18	ACTIVATE_TOOL_WEAR	Activates tool wear offset	"Lathe, Dual Lathe"	Both	1	Yes	Tool Number	DINT				
22	ACTIVATE_WHEEL_GEOM	Activates wheel geometry offset	Grinder	OCI	1	No	Tool Number	DINT				
57	ACTIVATE_WHEEL_RADIUS	Activates wheel radius offset	Grinder	OCI	1	No	Tool Number	DINT				
30	BACKUP_ALL_OFFSETS	Backs up all offsets to part program	All Controls	Both	1	Yes	File Name	STRING1				
31	BACKUP_INTERF_TABLE	Backs up Interference table to part program	Dual	OCI	1	Yes	File Name	STRING1				
99	BACKUP_RADIUS_TABLE	Backs up grinder tool radius table	Grinder	OCI	1	No	File Name	STRING1				
28	BACKUP_TOOL_GEOM	Backs up tool geometry offset to part program	"Lathe, Mill, Dual"	Both	1	Yes	File Name	STRING1				
27	BACKUP_TOOL_WEAR	Backup tool wear offset to part program	"Lathe, Mill, Dual"	Both	1	Yes	File Name	STRING1				
100	BACKUP_WHEEL_GEOMETRY	Backs up grinder tool geometry table	Grinder	OCI	1	No	File Name	STRING1				
29	BACKUP_WORK_COORD	Backs up work coordinate offset to part program	All Controls	Both	2	Yes	File Name	STRING1				
120	COPY_OFFSET	Copies offset from source to destination for all tools	All Controls	Both	1	Yes	Src Ax Name, Dest Ax Name	STRING1				
21	MEASURE_TOOL_GEOM	Measure tool geometry offset	"Lathe, Dual Lathe"	Both	3	Yes	Tool Number	DINT	Proc Axis No	DINT	Desired Prog Pos	LREAL
19	MEASURE_TOOL_WEAR	Measure tool wear offset	"Lathe, Dual Lathe"	Both	3	Yes	Tool Number	DINT	Proc Axis No	DINT	Desired Prog Pos	LREAL
23	MEASURE_WHEEL_GEOM	Measure wheel geometry offset	Grinder	OCI	3	No	Tool Number	DINT	Axis No	DINT	Desired Prog Pos	LREAL
PAL	Commands			•	•	•			•	•		
51	TRANSFER_PAL_FROM_PORTA	PAL and I/O from port A	All Controls	OCI		No						
55	TRANSFER_PAL_FROM_PORTB	PAL and I/O from port B	All Controls	OCI		No				İ		
50	TRANSFER_PAL_TO_PORTA	PAL and I/O to port A	All Controls	OCI		No				İ		
	1	ı	1						1	1	1	

Inst ID	Item (Name)	Command Description	Control Type	OCI / 9/PC	# Params	Dual Proc.	Parameter 1	P1 type	Parameter 2	P2 type	Parameter 3	P3 type
54	TRANSFER_PAL_TO_PORTB	PAL and I/O to port B	All Control	OCI		No						
Para	macro Commands		l	•		ı		•	•	•	•	-
36	BACKUP_ALL_PARAMETERS	Backup all paramacro parameters	All Controls	Both	1	Yes	File Name	STRING1				
32	BACKUP_COM1_PARAMETERS	Backup Com-1 paramacro parameters	All Controls	Both	1	Yes	File Name	STRING1				
33	BACKUP_COM2A_PARAMETERS	Backup Com-2A paramacro parameters	All Controls	Both	1	Yes	File Name	STRING1				
34	BACKUP_COM2B_PARAMETERS	Backup Com-2B paramacro parameters	All Controls	Both	1	Yes	File Name	STRING1				
35	BACKUP_SHARED_PARAMETERS	Backup Shared paramacro parameters	Dual	Both	1	Yes	File Name	STRING1				
103	CLEAR_COM_NAME	Clears all paramacro com2a names	All Controls	Both	1	Yes	Param Index (0 - all)	DINT				
104	ZERO_ALL_COM_VALUES	Sets specified paramacro com params to zero	All Controls	Both	1	Yes	Com Table (enum)	DINT				
Part	Program Commands											
2	ACTIVATE_PART_PROGRAM	Activates part program	All Controls	Both	1	Yes	File Name	STRING1				
152	CHECK_IF_FILE_PRESENT	Checks for exsitance of file	All Controls	Both		No						
8	COPY_PART_PROGRAM	Copies part program	All Controls	Both	2	No	Source Name	STRING1	Destination Name	STRING1		
153	COPY_PART_PROGRAM_FOR_EDIT	Copies part program to/from OCI for editing	All Controls	Both		No						
132	COPY_MEM_TO_MEM	Copies part program file memory to memory	All Controls	Both	3	No	Source File Name	STRING1	Dest File Name	STRING1	Test(0)/Exec(1)	DINT
133	COPY_MEM_TO_PORTA	Copies part program file memory to port A	All Controls	OCI	3	No	Source File Name	STRING1	Copy to type enum	DINT	Test(0)/Exec(1)	DINT
134	COPY_MEM_TO_PORTB	Copies part program file memory to port B	All Controls	OCI	3	No	Source File Name	STRING1	Copy to type enum	DINT	Test(0)/Exec(1)	DINT
135	COPY_PORTA_TO_MEM	Copies part program file port A to memory	All Controls	OCI	3	No	Dest File Name	STRING1	Copy from type enum	DINT	Test(0)/Exec(1)	DINT
136	COPY_PORTB_TO_MEM	Copies part program file port B to memory	All Controls	OCI	3	No	Dest File Name	STRING1	Copy from type enum	DINT	Test(0)/Exec(1)	DINT
3	DEACTIVATE_PART_PROGRAM	Deactivates part program	All Controls	Both		Yes						
9	DELETE_PART_PROGRAM	Deletes part program	All Controls	Both	1	No	File Name	STRING1				
114	ENTER PART_PROGRAM_ SEARCH_MODE	Enters part program search mode	All Controls	Both	1	Yes	Search Type enum	DINT				
115	EXECUTE_PART_PROGRAM_SEARCH	Executes part program search	All Controls	Both	1	Yes	Search Method enum	DINT				
14	REFORMAT_MEMORY	Reformats part program memory	All Controls	Both		No						
12	RENAME_PART_PROGRAM	Renames part program	All Controls	Both	2	No	File Name 1	STRING1	File Name 2	STRING1		
6	SEQUENCE_STOP_PART_PROGRAM	Sequence stop part program	All Controls	Both	1	Yes	Stop Sequence No	DINT				
15	SET_DIRECTORY	Sets directory	All Controls	Both	2	No	Target Directory	DINT enum	Password	STRING1		
11	SET_PART_PROGRAM_COMMENT	Sets comments for part program	All Controls	Both	2	No	File Name	STRING1	Comment String	STRING1		
13	SET_PART_PROGRAM_INPUT_DEVICE	Inputs device	All Controls	Both	1	Yes	Source of Part Prog enum	DINT				
116	SET_PART_PROGRAM_SEARCH_ PATTERN	Sets part program search pattern	All Controls	Both	1	Yes	Search Pattern	STRING1				
10	VERIFY_PART_PROGRAM	Verifies part program	All Controls	Both	3	No	File Name 1	STRING1	File Name 2	STRING1	Source of Part Prog enum	DINT
121	VERIFY_WITH_PORTA	Verifies part program with port A	All Controls	OCI	2	Yes	File Name	STRING1	Test(0)/Exec(1)	DINT		

Inst ID	Item (Name)	Command Description	Control Type	OCI / 9/PC	# Params	Dual Proc.	Parameter 1	P1 type	Parameter 2	P2 type	Parameter 3	P3 type
122	VERIFY_WITH_PORTB	Verifies part program with port B	All Controls	OCI	2	Yes	File Name	STRING1	Test(0)/Exec(1)	DINT		
Part	Program Execution			•	•		•			•		
117	ENTER_MIDSTART_SEARCH_MODE	Enters midstart search mode	All Controls	Both	1	Yes	Midstart Type enum	DINT				
118	EXECUTE_MIDSTART_SEARCH	Executes midstart search	All Controls	Both	1	Yes	Midstart Search Mode enum	DINT				
119	SET_MIDSTART_SEARCH_PATTERN	Sets midstart seach pattern	All Controls	Both	1	Yes	Search Pattern	STRING1				
38	STOP_QUICK_CHECK	Stops Quick Check	All Controls	Both		Yes	File Name	STRING1				
37	SYNTAX_QUICK_CHECK	Quick Checks syntax	All Controls	Both		Yes						
Tool	Management/Random Too	l				I.		ı		U.	1	
26	ACTIVATE_RANDOM_TOOL	Activates random tool	"Lathe, Mill, Dual"	Both	3	Yes	Tool Number	DINT	Pockets Needed	DINT	Shaft Pocket	DINT
25	BACKUP_RANDOM_TOOL	Backup random tool data to part program	"Lathe, Mill, Dual"	Both	1	Yes	File Name	STRING1				
24	BACKUP_TOOL_MANAGE	Backup tool management data to part program	"Lathe, Mill, Dual"	Both	1	Yes	File Name	STRING1				
111	RT_CUSTOMIZE_TOOL	Customize random tool pocket	"Lathe, Mill, Dual"	Both	3	Yes	Pocket Number	DINT	Pockets Needed	DINT	Shaft Pocket	DINT
110	RT_SET_TOOL_NUM	Assign random tool number to pocket	"Lathe, Mill, Dual"	Both	2	Yes	Tool Number	DINT	Number of Pockets	DINT		
98	TM_DELETE_ALL	Delete all the tool management groups	"Mill, Dual Mill"	Both		Yes						
95	TM_DELETE_GROUP	Delete tool group in tool management	"Mill, Dual Mill"	Both	1	Yes	Tool Group Number	DINT				
97	TM_DELETE_TOOL	Delete tool from tool management group	"Mill, Dual Mill"	Both	2	Yes	Tool Group Number	DINT	Entry Number	DINT		
96	TM_INSERT_TOOL	Insert tool into tool management group	"Mill, Dual Mill"	Both	3	Yes	Tool Group Number	DINT	Tool Number	DINT	Entry Number (where to put tool)	DINT
54	TRANSFER_PAL_TO_PORTB	PAL and I/O to port B	All Controls	Both		No						
Para	macro Commands											
36	BACKUP_ALL_PARAMETERS	Backup all paramacro parameters	All Controls	Both	1	Yes	File Name	STRING1				
32	BACKUP_COM1_PARAMETERS	Backup Com-1 paramacro parameters	All Controls	Both	1	Yes	File Name	STRING1				
33	BACKUP_COM2A_PARAMETERS	Backup Com-2A paramacro parameters	All Controls	Both	1	Yes	File Name	STRING1				
34	BACKUP_COM2B_PARAMETERS	Backup Com-2B paramacro parameters	All Controls	Both	1	Yes	File Name	STRING1				
35	BACKUP_SHARED_PARAMETERS	Backup Shared paramacro parameters	Dual	Both	1	Yes	File Name	STRING1				
103	CLEAR_COM_NAME	Clears all paramacro com2a names	All Controls	Both	1	Yes	Param Index (0 - all)	DINT				
104	ZERO_ALL_COM_VALUES	Sets specified paramacro com params to zero	All Controls	Both	1	Yes	Com Table (enum)	DINT				
Part	Program Commands	·	•	•	•		•	•	•	•	•	•
2	ACTIVATE_PART_PROGRAM	Activates part program	All Controls	Both	1	Yes	File Name	STRING1				
152	CHECK_IF_FILE_PRESENT	Checks for exsitance of file	All Controls	Both		No						
8	COPY_PART_PROGRAM	Copies part program	All Controls	Both	2	No	Source Name	STRING1	Destination Name	STRING1		

Inst ID	Item (Name)	Command Description	Control Type	OCI / 9/PC	# Params	Dual Proc.	Parameter 1	P1 type	Parameter 2	P2 type	Parameter 3	P3 type
153	COPY_PART_PROGRAM_FOR_EDIT	Copies part program to/from OCI for editing	All Controls	Both		No						
132	COPY_MEM_TO_MEM	Copies part program file memory to memory	All Controls	Both	3	No	Source File Name	STRING1	Dest File Name	STRING1	Test(0)/Exec(1)	DINT
133	COPY_MEM_TO_PORTA	Copies part program file memory to port A	All Controls	OCI	3	No	Source File Name	STRING1	Copy to type enum	DINT	Test(0)/Exec(1)	DINT
134	COPY_MEM_TO_PORTB	Copies part program file memory to port B	All Controls	OCI	3	No	Source File Name	STRING1	Copy to type enum	DINT	Test(0)/Exec(1)	DINT
135	COPY_PORTA_TO_MEM	Copies part program file port A to memory	All Controls	OCI	3	No	Dest File Name	STRING1	Copy from type enum	DINT	Test(0)/Exec(1)	DINT
136	COPY_PORTB_TO_MEM	Copies part program file port B to memory	All Controls	OCI	3	No	Dest File Name	STRING1	Copy from type enum	DINT	Test(0)/Exec(1)	DINT
3	DEACTIVATE_PART_PROGRAM	Deactivates part program	All Controls	Both		Yes						
9	DELETE_PART_PROGRAM	Deletes part program	All Controls	Both	1	No	File Name	STRING1				
114	ENTER_PART_PROGRAM_ SEARCH_MODE	Enters part program search mode	All Controls	Both	1	Yes	Search Type enum	DINT				
115	EXECUTE_PART_PROGRAM_SEARCH	Executes part program search	All Controls	Both	1	Yes	Search Method enum	DINT				
14	REFORMAT_MEMORY	Reformats part program memory	All Controls	Both		No						
12	RENAME_PART_PROGRAM	Renames part program	All Controls	Both	2	No	File Name 1	STRING1	File Name 2	STRING1		
6	SEQUENCE_STOP_PART_PROGRAM	Sequence stop part program	All Controls	Both	1	Yes	Stop Sequence No	DINT				
15	SET_DIRECTORY	Sets directory	All Controls	Both	2	No	Target Directory	DINT enum	Password	STRING1		
11	SET_PART_PROGRAM_COMMENT	Sets comments for part program	All Controls	Both	2	No	File Name	STRING1	Comment String	STRING1		
13	SET_PART_PROGRAM_INPUT_DEVICE	Inputs device	All Controls	Both	1	Yes	Source of Part Prog enum	DINT				
116	SET_PART_PROGRAM_SEARCH_ PATTERN	Sets part program search pattern	All Controls	Both	1	Yes	Search Pattern	STRING1				
10	VERIFY_PART_PROGRAM	Verifies part program	All Controls	Both	3	No	File Name 1	STRING1	File Name 2	STRING1	Source of Part Prog enum	DINT
121	VERIFY_WITH_PORTA	Verifies part program with port A	All Controls	OCI	2	Yes	File Name	STRING1	Test(0)/Exec(1)	DINT		
122	VERIFY_WITH_PORTB	Verifies part program with port B	All Controls	OCI	2	Yes	File Name	STRING1	Test(0)/Exec(1)	DINT		
Part	Program Execution											
117	ENTER_MIDSTART_SEARCH_MODE	Enters midstart search mode	All Controls	Both	1	Yes	Midstart Type enum	DINT				
118	EXECUTE_MIDSTART_SEARCH	Executes midstart search	All Controls	Both	1	Yes	Midstart Search Mode enum	DINT				
119	SET_MIDSTART_SEARCH_PATTERN	Sets midstart seach pattern	All Controls	Both	1	Yes	Search Pattern	STRING1				
38	STOP_QUICK_CHECK	Stops Quick Check	All Controls	Both		Yes	File Name	STRING1				
37	SYNTAX_QUICK_CHECK	Quick Checks syntax	All Controls	Both		Yes						
Tool	Management/Random Tool		•	•		•		•	•			
26	ACTIVATE_RANDOM_TOOL	Activates random tool	"Lathe, Mill, Dual"	Both	3	Yes	Tool Number	DINT	Pockets Needed	DINT	Shaft Pocket	DINT
25	BACKUP_RANDOM_TOOL	Backup random tool data to part program	"Lathe, Mill, Dual"	Both	1	Yes	File Name	STRING1				
24	BACKUP_TOOL_MANAGE	Backup tool management data to part program	"Lathe, Mill, Dual"	Both	1	Yes	File Name	STRING1				

Inst ID	Item (Name)	Command Description	Control Type	OCI / 9/PC	# Params	Dual Proc.	Parameter 1	P1 type	Parameter 2	P2 type	Parameter 3	P3 type
111	RT_CUSTOMIZE_TOOL	Customize random tool pocket	"Lathe, Mill, Dual"	Both	3	Yes	Pocket Number	DINT	Pockets Needed	DINT	Shaft Pocket	DINT
110	RT_SET_TOOL_NUM	Assign random tool number to pocket	"Lathe, Mill, Dual"	Both	2	Yes	Tool Number	DINT	Number of Pockets	DINT		
98	TM_DELETE_ALL	Delete all the tool management groups	"Mill, Dual Mill"	Both		Yes						
95	TM_DELETE_GROUP	Delete tool group in tool management	"Mill, Dual Mill"	Both	1	Yes	Tool Group Number	DINT				
97	TM_DELETE_TOOL	Delete tool from tool management group	"Mill, Dual Mill"	Both	2	Yes	Tool Group Number	DINT	Entry Number	DINT		
96	TM_INSERT_TOOL	Insert tool into tool management group	"Mill, Dual Mill"	Both	3	Yes	Tool Group Number	DINT	Tool Number	DINT	Entry Number (where to put tool)	DINT

OCI Error Handling

OCI Error Handling Overview

The table on the following pages lists the errors that can be returned or generated by your OCI system. The text files for these error strings can not be edited and are not in ASCII text form. If you purchased the optional basic display set source code, you can use the routine GetMsgString to call error messages. GetMsgString is found in the Global.BAS module and must be passed the integer error message number to return the text string of the appropriate error message.

API Data Request Errors

Requests to the OCI data server that are invalid are returned as a text string to the requesting item. For example if you are requesting AXIS_NAME(7) and only 6 axes are configured on the system, the value of AXIS_NAME would be "Server Error [29]". Always test returned data for the string "Server Error" before presenting data to your application.

Command and Data Item POKE Errors

The following tables list the error or status messages returned by the OCI data server or CNC when you issue a command or data item request. The server will return the Error Number as data for the API data items. When POKE requests are made to data items errors (or success indication) are returned to the API item WRITE_ERROR_CODE. In the case of commands errors are returned to the API data item COMMAND_ERROR_CODE.

Error Num:	Error Name:
Misc. System I	Errors:
0	"ОК"
1	"FILE DOESN'T EXIST"
2	"CONTINUE TO 'RE-RUN' THIS TEST?"
3	"*** CORRUPTED PASSWORD FILE ***"
4	"*** INCORRECT PASSWORD ***"
5	"*** MISSING PASSWORD FILE ***"
6	"CANNOT LINK:"
7	"DIVIDE BY ZERO"
8	"MISSING LATHE/MILL 'PD' FILES"
9	"CORRUPTED"
10	"MISSING GRINDER 'SPD' FILES"
11	"MISSING LATHE/MILL 'SPD' FILES"
12	"MISSING PROMPT FILES"

Error Num:	Error Name:
13	"MISSING MESSAGE FILES"
14	"MISSING GRINDER LANGUAGE FILES"
15	"#VALUE"
16	"CANNOT LINK TO"
17	"SAVE PROMPT CHANGES?"
18	"SAVE SOFTKEY CHANGES?"
19	"SAVE TEXT CHANGES?"
20	"ILLEGAL FILE NAME"
21	"FILE ALREADY EXISTS. OVERWRITE?"
22	"ADD THE SOFTKEY SCREEN NUMBER, TOO?"
23	"#REF?"
24	"CANNOT LOAD ERROR MESSAGES CORRECTLY"
25	"CANNOT LOAD CONTROL OPTIONS CORRECTLY"
26	"ERROR: MESSAGE NUMBER,"
27	"CNC SHOWS:"
28	"DATA FILE:"
29	"ITEM NOT FOUND"
30	"COMMAND ERROR:"
31	"POKE ERROR:"
32	"INVALID CHARACTER FROM PAL"
33	"*** LINKING CLOSED, MUST END ***"
34	"MAKE YOUR 'Public Sub ASoftkeyPressed(Index)' ROUTINE"
35	"MAKE YOUR 'Public Sub APromptPressed(KeyCode, Shift)' ROUTINE"
36	"#NUM?"
37	"ODS-PAL ALREADY RUNNING"
38	"NCRYPT MODE NOT SUPPORTED"
39	"COMMENT PART PROGRAM NOT AVAILABLE ON HARD DISK"
40	"REFORMAT MEMORY NOT ALLOWED ON HARD DISK"
41	"BACKUP NOT ALLOWED ON HARD DISK"
42	"N/A"
43	"MISSING G-CODE FILES"
44	"HAS NOT BEEN LINKED TO A FORM"
45	"DOES NOT EXIST IN CASE STATEMENT"
46	"FORM NOT NEEDED"
47	"SCREEN"
48	"&File"
49	"&Print"

Error Num:	Error Name:
50	"&Error Msg's"
51	"&Prompts"
52	"&Softkey Tree"
53	"&Text"
54	"E&xit"
55	"&Options"
56	"&Control CNC"
57	"&Select CNC"
58	"Si&ze"
62	"&Testing"
63	"&New"
64	"&Run"
65	"Rando&m"
66	"&Stop"
67	"&Setup"
68	"PRESS ANY KEY TO CONTINUE"
69	"ENTER PPG DIRECTORY"
70	"CONTINUE?"
71	"MISSING GRINDER 'PD' FILES"
72	"MISSING LATHE/MILL LANGUAGE FILES"
73	"*** INCORRECT PASSWORD, MUST END ***"
74	"MISSING:"
75	"MISSING SCREEN POSITION FILES"
76	"BASIC DISPLAY SET REVISION"
77	"SELECT VALUE TO ZERO AND PRESS ENTER"
78	"SELECT NAME TO CLEAR AND PRESS ENTER"
79	"FORMATTING MEMORY - PLEASE WAIT"
80	"CHANGE ALLOWED ONLY AT TOP SOFTKEY LEVEL"
81	"TO MAIN?TO PROTEC?TO HARDD??"
82	"Insufficient RAM memory in CNC to"
83	"support the current AMP configuration"
84	"Error Writing File to Disk,"
85	"Edited Program stored as"
86	"on Hard Drive"
87	"BASIC DISPLAY SET"
88	"SELECT EXIT HERE, THEN POWER DOWN THE CNC"
89	"THERE IS NOT ENOUGH SPACE ON THE DISK"

Error Num:	Error Name:
90	"PART PROGRAM EDITOR ACTIVE, CANNOT SWITCH CNC"
91	"SEARCH MONITOR ACTIVE, CANNOT SWITCH CNC"
92	"LGCMSG EDIT ?LOGIC ANALYZ? OSCIL SCOPE"
93	"SAVE & EXIT ?CANCEL ???"
94	"LOGIC MESSAGES IN SOFTLOGIX"
95	"STRING DATA FILE NUMBER"
96	"ACTIVE LOGIC MSG LINE"
97	"LOGIC ENGINE TOP NAME"
98	"CNC WAS STOPPED. RESTART CNC USING THE 9/PC CONFIGURATION MANAGER."
99	"SELECT EXIT OR USE THE OPTIONS MENU TO RECONNECT BDS TO THE CNC."
100	"- LOGIC MESSAGE LINK ERROR"
101	"WARNING - LOGIC MESSAGES UNAVAILABLE"
102	"Unable to connect to the Logic Engine for Messages. RSLinx could"
103	"not be started and/or the Logic Engine Topic Name is Invalid."
104	"Connection to the Logic Engine was lost. RSLinx was terminated "
105	"and/or the Logic Engine Topic Name is Invalid. Press the SAVE & EXIT"
106	"softkey in the LGCMSG EDIT screen to reestablish connection with the"
107	"Logic Engine for Messages."
Data Highway	Errors:
134	SYMBOL_FORMAT_ERROR
135	SYMBOL_NOT_FOUND
136	NO_ACCESS
137	INVALID_OUTPUT_FORMAT
138	OVERSIZED_COMMAND
AB File Handle	er Errors:
241	"FILE HANDLER POSITION ERROR"
242	"FILE HANDLER FILE ALREADY EXISTS"
243	"FILE HANDLER REPOSITON ERROR"
244	"FILE HANDLER CLOSE ERROR"
245	"FILE HANDLER READ ERROR"
246	"FILE HANDLER FILE NOT OPEN"
247	"FILE HANDLER REOPEN ERROR"
248	"FILE HANDLER MAX FILES OPENED"
249	"FILE HANDLER OPEN ERROR"
250	"FILE HANDLER SEQUENCE ERROR"

Error Num:	Error Name:
Read Errors fo	r API data items:
1000	"DATA TYPE ERROR"
1001	"INVALID ITEM NAME"
1002	"PACKET DATA SIZE ERROR"
1003	"API INDEX TOO LARGE"
1004	"ITEM NOT DEFINED"
1005	"ITEM NOT AMPED"
1006	"WATCH LIST OPEN ERROR"
1007	"SPINDLE INDEX ERROR"
1008	"TOO MANY WATCH LISTS OPENED"
1009	"WATCH LIST NOT OPEN"
1010	"SMB CHANNEL NOT AVAILABLE"
1011	"INVALID ADDRESS"
1012	"DIRECTORY NOT SPECIFIED"
1013	"THIS IS NOT A CARD RACK"
1014	"TOO MANY ITEMS REQUESTED"
1015	"INVALID AMP PARAMETER"
1016	"ONLY ONE AXIS ALLOWED"
1017	"TWO INDEX PAIRS NOT SPECIFIED"
1018	"INDEX BEYOND END OF DATA"
1019	"ITEM NOT VALID"
1020	"PACKET WILL NOT FIT IN SMB"
1021	"PACKET WILL NOT FIT IN WATCH LIST"
1022	"ONLY ONE ITEM ALLOWED"
1023	"INVALID START OR END INDEX"
1024	"AUX EDITOR NOT ACTIVE"
1025	"REVISION MISMATCH"
Write Errors fo	or API Data Items:
2000	"PROCESSING DDE WRITE"
2001	"INVALID UNITS"
2002	"STRING LENGTH ERROR"
2003	"INVALID BOARD"
2004	"BAD SELECTION"
2005	"MISSING DH"
2006	"INVALID DH CHANNEL"
2007	"INVALID CCT COMMAND"

Error Num:	Error Name:
2008	"EMPTY COMMAND"
2009	"ACCUM NOT ZERO"
2010	"NOT IN MODIFY AMP MODE"
2011	"UNDEFINED DATA"
2012	"CHANNEL NOT CONFIGURED"
2013	"INVALID INDEX"
2014	"INVALID MODE FOR WRITE"
2015	"OFFSET ACTIVATION ERROR"
2016	"NOT CONTROLLING CLIENT"
2017	"TOO MANY ITEMS ENTERED"
2018	"READ ONLY DATA"
2019	"CAN NOT RESET LATCH"
2020	"ONLY ONE ITEM ALLOWED"
Command Erro	ors for API Command Requests:
3000	"PROCESSING DDE COMMAND"
3001	"INVALID DISK SELECTION"
3002	"INVALID DRIVE NAME"
3003	"INVALID FILE EXTENSION"
3004	"INVALID PORT SELECTION"
3005	"SCOPE ALREADY ACTIVE"
3006	"DATA SCOPE NOT ACTIVE"
3007	"ILLEGAL INPUT DEVICE"
3008	"NOT IN AXISCAL MODIFY MODE"
3009	"INVALID POINT"
3010	"AXISCAL TABLE NOT INITIALIZED"
3011	"PARAMETER 3 OUT OF RANGE"
3012	"PARAMETER 2 OUT OF RANGE"
3013	"AXISCAL TABLE NOT EMPTY"
3014	"INVALID AXIS"
3015	"AXIS NOT CALIBRATED"
3016	"CANNOT REPLACE START POINT"
3017	"NOT CONTROLLING CLIENT"
3018	"BAD COMMAND"
3019	"DH SEARCH FAILED"
3020	"DH BAD SEARCH TYPE"
3021	"BACKUP FILE ERROR"
3022	"CANNOT COPY MAIN/PROTEC OR PROTEC/MAIN"

Error Num:	Error Name:
3023	"ILLEGAL MONITOR MODE"
3024	"MONITOR NOT ACTIVE"
3025	"ILLEGAL DEVICE"
3026	"INVALID SECONDARY PARAMETER"
3027	"BAD SEARCH TYPE"
3029	"SETUP DEVICE SELECTED"
3030	"ERROR WRITING TO FLASH"
3031	"BAD SEARCH EXECUTE"
3032	"BAD SEARCH NUMBER"
3033	"NO SEARCH PATTERN"
3034	"MUST TERMINATE SEARCH"
3035	"UNRECOGNIZED COMMAND"
3036	"MIDSTART NO PATTERN"
3037	"INVALID CNC COMMAND"
3038	"DH SEND ERROR"
3039	"SYNTAX ERROR"
3040	"TOOL ACTIVATION ERROR"
3041	"NO ACTIVE OFFSET"
3042	"ERROR ACTIVATING PROGRAM"
3043	"NO PP CHANNEL"
3044	"PP ALREADY ACTIVE"
3045	"DH DOWNLOAD ERROR"
3046	"DH DOWNLOAD SENT"
3047	"MAX REM NODE SIZE ERROR"
3048	"PERIPHERAL DEVICE ERROR"
3049	"BAD COPY OFFSET STRING"
3050	"DH CARD NOT INSTALLED"
3051	"INVALID COPY TYPE"
3052	"MULTI READER INPUT COMPLETE"
3053	"OSC PLOT NOT STOPPED"
3054	"TRIGGER CONDITION NOT ENTERED"
3055	"CHANNEL ALREADY IN USE"
3056	"INVALID TRIGGER CONDITION"
3057	"INVALID SYMBOL"
3058	"LOGIC ANALYZER NOT STOPPED"
3059	"INVALID CHANNEL NUMBER"
3060	"ALL CHANNELS DEASSIGNED"

Error Num:	Error Name:
3063	"NO OFFSET ACTIVE"
3064	"OFFSET MOTION PENDING ON CYCLE START"
File Server Err	ors:
4011	"ERROR OPENING FILE ON HARD DRIVE"
4012	"ERROR READING FILE ON HARD DRIVE"
4013	"ERROR WRITING FILE TO HARD DRIVE"
4014	"ERROR CLOSING FILE ON HARD DRIVE"
4015	"ERROR ACCESSING FILE ON HARD DRIVE"
4019	"ERROR ACCESSING FILE ON HARD DRIVE"
4102	"INVALID OPERATION"
4103	"ERROR OPENING FILE"
4104	"FILE READ ERROR"
4105	"SERVER BUSY"
4106	"NOT CONTROLLING CLIENT"
4107	"IS ACTIVE"
4108	"MUST SPECIFY ALL ADDRESS"
4109	"BAD SMB SIZE"
4110	"ERROR OPENING CNC FILE"
4111	"ERROR WRITING FILE TO CNC"
4112	"FILE HANDLER NOT ACTIVE"
4113	"ENCRYPT ERROR"
4114	"FILE HANDLER TIMEOUT"
4115	"FILE HANDLER NETWORK ERROR"

Part Program Decode Errors:	
5001	"THREAD LEAD ERROR"
5002	"READ ERROR"
5003	"INVALID AXIS FOR CSS"
5004	"CODING ERROR"
5005	"TOO MANY DECIMAL POINTS"
5006	"(G-CODE) TABLE ERROR"
5007	"AXIS ASSIGNED TO PAL/LOGIC AXIS MOVER"
5008	"INVALID ZONE LIMIT"
5009	"THREAD LEAD IS ZERO"
5010	"MISSING (F) IN INVERSE TIME" 10
5011	"DWELL VALUE NOT PROGRAMMED"

5012	"MOTION NOT ALLOWED"
5013	"NEGATIVE DWELL VALUE"
5014	"ROTARY WORD OUT OF RANGE"
5015	"NOT ALLOWED - THREADING ACTIVE"
5016	"NOT ALLOWED - G41/G42 ACTIVE"
5017	"CHANGE NOT MADE IN BUFFERED BLOCKS"
5018	"CIRCULAR PROGRAMMING ERROR"
5019	"ILLEGAL (/) VALUE"
5020	"DECIMAL POINT NOT ALLOWED" 20
5021	"ILLEGAL CHARACTER"
5022	"ILLEGAL (G) CODE"
5023	"+/- SIGN ERROR"
5024	"BLOCK LENGTH ERROR"
5025	"NEGATIVE VALUE NOT ALLOWED"
5026	"NUMERIC VALUE MISSING"
5027	"PARENTHESIS INPUT ERROR"
5028	"ENTRY OUT OF RANGE"
5029	"RADIUS TOO SMALL"
5030	"MOTION IN DWELL BLOCK" 30
5031	"NO FEEDRATE PROGRAMMED"
5032	"PLANE SELECT ERROR"
5033	"ILLEGAL MACRO CMD VIA MDI"
5034	"TOO MANY G67'S"
5035	"MISSING PROGRAM NUMBER (P)"
5036	"CALLED 7300 PATTERN NAME IS BAD" not used
5037	"TOO MANY MACRO CALLS"
5038	"TOO MANY SUBPROGRAM CALLS"
5039	"CANNOT OPEN SUBPROGRAM"
5040	"(GOTO) SEQ. NUMBER NOT FOUND" 40
5041	"CANNOT (GOTO) TO INSIDE A (DO)"
5042	"MISSING A (DO) COMMAND"
5043	"INVALID (DO) COMMAND NUMBER"
5044	"TOO MANY NESTED (DO) COMMANDS"
5045	"INVALID (END) COMMAND NUMBER"
5046	"(+) OVERTRAVEL PROGRAM ERROR"
5047	"(-) OVERTRAVEL PROGRAM ERROR"

5040	"ZONE A DROODAN EDROD"
5048	"ZONE 2 PROGRAM ERROR"
5049	"ZONE 3 PROGRAM ERROR"
5050	"INVALID VALUE ZONE 3" 50
5051	"INVALID DATA BEFORE A MACRO COMMAND"
5052	"INVALID DATA AFTER A MACRO COMMAND"
5053	"INVALID PROGRAM NUMBER (P)"
5054	"INVALID REPEAT COUNT (L)"
5055	"UNUSABLE WORDS IN ZONE BLOCK"
5056	"HOMING NOT COMPLETED"
5057	"(DO) RANGES INTERSECT"
5058	"MISSING (GOTO) COMMAND"
5059	"ERROR LOOKING FOR (END) COMMAND"
5060	"MISSING (END) COMMAND" 60
5061	"(DO) NUMBER ALREADY USED"
5062	"INVALID OFFSET NUMBER"
5063	"INVALID TOOL TABLE TYPE"
5064	"INVALID T-CODE FORMAT"
5065	"CANCEL/REMOVE OFFSET BEFORE AXIS CHANGE"
5066	"INVALID TOOL AXIS"
5067	"TOOL OFFSET REQUIRES MOTION BLOCK"
5068	"INVALID G10 CODE"
5069	"MACHINE HOME REQUIRED OR G28"
5070	"INVALID ENDPOINT IN G27 BLOCK" 70
5071	"INVALID M99 IN MAIN PROGRAM"
5072	"INVALID PARAMETER NUMBER"
5073	"CANNOT READ A WRITE-ONLY PARAMETER"
5074	"CANNOT WRITE A READ-ONLY PARAMETER"
5075	"TOO MANY I-J-K SETS"
5076	"INVALID ARGUMENT ASSIGNMENT"
5077	"PARAMETER ASSIGNMENT SYNTAX ERROR"
5078	"G40 NOT ALLOWED IN CIRCULAR"
5079	"ILLEGAL G40 EXIT BLOCK"
5080	"CUTTER COMP./TTRC INTERFERENCE" 80
5081	"MUST BE IN (LINEAR MODE)"
5082	"BAD STATE/TOKEN COMBINATION (PROGRM ERR)"
5083	"INVALID ARC-COSINE ARGUMENT"
L	

5084	"RIGHT OPERAND MUST BE POSITIVE"
5085	"MULTIPLE FUNCTIONS NOW ALLOWED"
5086	"ARCTAN SYNTAX ERROR"
5087	"SQUARE ROOT OF NEGATIVE INVALID"
5088	"EXPRESSION INCOMPLETE"
5089	"TOO MANY EXPRESSION NESTS"
5090	"TOO MANY ([) IN EXPRESSION" 90
5091	"COMPLETED WITH NO ERRORS"
5092	"COMPLETED WITH ERROR(S)"
5093	"ERROR FOUND"
5094	"NO MORE MDI BLOCKS"
5095	"PART PROGRAM NOT SELECTED"
5096	"MISSING M02 OR M30"
5097	"NO MORE MDI BLOCKS TO RESET"
5098	"MAXIMUM RETRACE COUNT REACHED"
5099	"NO FURTHER RETRACE ALLOWED"
5100	"RETRACE NOT ALLOWED" 100
5101	"BLOCK RETRACE ABORTED"
5102	"MDI NOT ALLOWED DURING RETRACE"
5103	"TOO MANY (]) IN EXPRESSION"
5104	"INVALID OPERATOR IN EXPRESSION"
5105	"MISSING ([) AFTER FUNCTION NAME"
5106	"CANNOT DIVIDE BY ZERO"
5107	"INVALID FUNCTION ARGUMENT"
5108	"NUMBER IS OUT OF RANGE"
5109	"SEE (MESSAGE) IN PROGRAM BLOCK"
5110	"INVALID PARAMETER VALUE" 110
5111	"SEQUENCE STOP NUMBER FOUND"
5112	"DEVICE NOT OPENED YET"
5113	"DEVICE ALREADY OPENED"
5114	"MISSING (])"
5115	"INVALID FORMAT SPECIFIED IN B/DPRNT CMD"
5116	"CC/TTRC ON, CAN'T ASSIGN TIME DEP. PARAM"
5117	"PART ROTATION FORMAT ERROR"
5118	"ILLEGAL ROTATION PLANE SELECTED"
5119	"CIRCULAR BLOCK NOT ALLOWED"

5120	"OPTION NOT INSTALLED" 120
5121	"AXES DATA MISSING"
5122	"QPP BLOCK FORMAT ERROR"
5123	"ANGLE WORD NOT ALLOWED"
5124	"ILLEGAL ANGLE VALUE"
5125	"BOTH LINES ARE PARALLEL"
5126	"NO INTERSECTION EXISTS"
5127	"EXTRA DATA IN QPP BLOCK"
5128	"G91 MODE NOT ALLOWED IN QPP"
5129	"EXTRA DATA IN INTERRUPT MACRO BLK"
5130	"UNDEFINED INTERRUPT MACRO/SUBPROG" 130
5131	"P VALUE OUT OF RANGE"
5132	"L VALUE OUT OF RANGE"
5133	"FIXED CYCLE PROGRAMMING ERROR"
5134	"BLK DELETE CHG IGNORED ON PREPARED BLKS"
5135	"INVALID AMP LETTER FORMAT"
5136	"INVALID LIFE TYPE"
5137	"INVALID EXPECTED TOOL LIFE"
5138	"INVALID TOOL GROUP"
5139	"INVALID TOOL NUMBER"
5140	"MODE CHANGE NOT ALLOWED IN CYCLES" 140
5141	not used
5142	"NO TOOL GROUP PROGRAMMED"
5143	"NO TOOL NUMBER PROGRAMMED"
5144	"INVALID WORD IN G10L3 MODE"
5145	"NOT IN G10L3 MODE"
5146	"INVALID WORD IN G11 BLOCK"
5147	"MISSING QPP ANGLE WORD"
5148	"BOTH AXES IN QPP PLANE NOT PRGMD"
5149	"MISSING INTEGRAND/RADIUS WORD"
5150	"TOO MANY QPP NONMOTION BLOCKS" 150
5151	"ILLEGAL PRGRAMMED RETURN GROUP"
5152	"ILLEGAL PROGRAMMED RETURN TOOL"
5153	"INVALID MACRO COMMAND"
5154	"INTERRUPT NOT RECOGNIZED"
5155	"MISSING ROUGHING CYCLE DEPTH (D) WORD"

5156	"MISSING ROUGHING CYCLE (P/Q) WORD"
5157	"INVALID ROUGHING CYCLE (P/Q) WORD VALUE"
5158	"ROUGHING CYCLE NESTING ERROR"
5159	"ROUGHING CYCLE PROGRAMMING ERROR"
5160	"TOO MANY POCKETS IN ROUGHING CYCLE" 160
5161	"PROGRAM CURRENTLY IN USE"
5162	"DATA STARVED"
5163	"A RETRACE BUFFER WAS DELETED"
5164	"TOO MANY NONMOTION BLOCKS-DEADLOCK"
5165	"INVALID ',' WORD"
5166	"CHAMFER LENGTH/RADIUS TOO LARGE"
5167	"CHAMFER/RADIUS NOT ALLOWED"
5168	"TOO MANY NONMOTION CHAMFER/RADIUS BLOCKS"
5169	"INVALID MACRO FROM TAPE"
5170	"G53 NOT ALLOWED IN INCREMENTAL MODE" 170
5171	"G53 ON AN UNHOMED AXES"
5172	"QPP MDI BLOCK LOOKAHEAD ERROR"
5173	"MDI NOT ALLOWED DURING INTERRUPT MACRO"
5174	"INVALID THRESHOLD RATE"
5175	"ILLEGAL CODES IN RANDOM TOOL BLOCK"
5176	"SHAFT VALUE > NUMBER OF POCKETS"
5177	"INVALID SHAFT POCKET VALUE"
5178	"INVALID NUMBER OF POCKETS"
5179	"INVALID TOOL NUMBER"
5180	"INVALID POCKET NUMBER" 180
5181	"ILLEGAL RANDOM TOOL TABLE ASSIGNMENT"
5182	"INVALID TOOL NUMBER FROM PAL/LOGIC"
5183	"PROGRAMMED AXIS IS OFF OR DETACHED" 183
5184	"CIRCULAR NOT ALLOWED AFTER SKIP" 184
5185	"ILLEGAL G CODE IN INTERRUPT MACRO" 185
5186	"CANNOT SET DATA WHEN TOOL IS ACTIVE" 186
5187	"MIRROR NOT ALLOWED ON ROLLOVER AXIS" 187
5188	"PROBE ERROR"
5189	"PROBE CYCLES CALCULATION ERROR"
5190	"PROBE CYCLES PROGRAMMING ERROR" 190
5191	"THREAD FEEDRATE TOO LARGE"

E400	"DEDTIL DROOP ANALED ENDROWIT"
5192	"DEPTH > PROGRAMMED ENDPOINT"
5193	"INVALID INFEED (P WORD)"
5194	"INVALID_THREAD_ANGLE"
5195	"THREADING DISTANCE IS ZERO"
5196	"FIXED CYCLE ALREADY ACTIVE"
5197	"G10 NOT ALLOWED DURING CYCLE"
5198	"INVALID ARC-SINE ARGUMENT"
5199	"NEGATIVE F-WORD PROGRAMMED" 199
5200	"INVALID POCKET PROFILE" 200
5201	"PAL/LOGIC OVERWRITING G54 -> G59.3"
5202	"CYLINDER RADIUS IS ZERO"
5203	"ILLEGAL CYLINDRICAL BLOCK"
5204	"PARK AXIS MOTION NOT ALLOWED"
5205	"FEED AXIS MOTION NOT ALLOWED" 205
5206	"CYLINDRICAL AXIS NOT PRESENT"
5207	"TOOL RADIUS TOO LARGE"
5208	"POCKET MILLING SHAPE IS INVALID"
5209	"D-WORD IS GREATER THAN TOOL DIA."
5210	"MDI NOT ALLOWED DURING POCKET MILLING" 210
5211	"TOOL OFFSET CHANGES NOT ALLOWED"
5212	"Z-WORD CANNOT BE GREATER THAN R-WORD"
5213	"INVALID TOOL DIAMETER VALUE"
5214	"MISSING Q-WORD"
5215	"MISSING L-WORD" 215
5216	"CYCLE ALREADY ACTIVE"
5217	"CYLIND/VIRTUAL CONFIGURATION ERROR"
5218	"INVALID CODE PROGRAMMED FOR 7300"
5219	"PROGRMD G26 DEPTH < TRIGGER TOLERANCE"
5220	"DEPTH PROBE TRAVEL LIMIT" 220
5221	"INVALID COMMUNICATIONS PARAMETER"
5222	"NOT ALLOWED FROM MDI"
5223	"POCKET END NOT SAME AS START"
5224	"ILLEGAL G-CODE IN POCKET"
5225	"TOOL RADIUS TOO SMALL FOR POCKET SIZE" 225
5226	"PLUNGE NOT ALLOWED"
5227	"MISSING OR ILLEGAL L-VALUE"

5228	"MISSING CUTTER COMP CODE"
5229	"MISSING DATA FROM BLOCK"
5230	"L-WORD CANOT BE GREATER THAN TOOL RADIUS" 230
5231	"ILLEGAL G88.5 OR G88.6 PARAMETERS"
5232	"VIRTUAL C NEEDS SPINDLE WITH FDBK"
5233	"VIRTUAL/REAL AXIS NAME CONFLICT"
5234	"INVALID SCALE FACTOR (P-WORD)"
5235	"SCALE FACTORS MUST BE EQUAL FOR PLANE" 235
5236	"ROTARY AXIS CAN NOT BE SCALED"
5237	"AXIS AMPED AS NON-SCALING AXIS"
5238	"SCALING INVALID DURING POLAR"
5239	"INVALID FIXED DRILLING AXIS"
5240	"ILLEGAL CODE DURING VIRTUAL C" 240
5241	"ILLEGAL CODE DURING G41/G42"
5242	"OVER SPEED IN POCKET CYCLE"
5243	"INVALID CYCLE PROFILE"
5244	"SLAVE AXIS LETTER CANNOT BE PROGRAMMED"
5245	"ALL DUAL AXES ARE PARKED" 245
5246	"DUALS CANNOT CHANGE OFFSETS IN CIRCULAR"
5247	"DUALS ONLY ALLOWING SINGLE AXIS HOME"
5248	"TOO MANY AXES PROGRAMMED"
5249	"RECIP AXIS NOT PROGRAMMED"
5250	"RECIP AXIS IN WRONG PLANE" 250
5251	"FEED AXIS DATA NOT PROGRAMMED"
5252	"NO RECIPROCATION FEEDRATE"
5253	"NO RECIPROCATION DISTANCE"
5254	"D-WORD OUT OF RANGE"
5255	"L-WORD OUT OF RANGE" 255
5256	"DRESSER AXIS NOT ALLOWED" 256
5257	"MASTER ONLY G-CODE - MUST PARK SLAVES"
5258	"INTEGRANDS NOT AMPED PROPERLY"
5259	"G28 BLOCK DOES NOT PRECEDE G29 BLOCK"
5260	"G29 BLOCK DOES NOT FOLLOW G28 BLOCK" 260
5261	"NET PICK/PLUNGE AWAY FROM ENDPOINT"
5262	"ILLEGAL (M) CODE"
5263	"QPP NOT ALLOWED DURING POLAR MODE"

5264	"ILLEGAL RECIPROCATION INTERVAL"
5265	"ONLY ONE M19 ALLOWED PER BLOCK" 265
5266	"AUXILIARY SPINDLE 2 NOT CONFIGURED"
5267	"AUXILIARY SPINDLE 3 NOT CONFIGURED"
5268	"MAXIMUM NUMBER OF AXES EXCEEDED"
5269	"SYNCHRONIZATION DEADLOCK"
5270	"TOO MANY CODES IN SYNCH BLOCK" 270
5271	"D-WORD IS LESS THAN AMP THRESHOLD"
5272	"MISSING COMMA OR RIGHT PARENTHESIS"
5273	"CHANNEL NAME TOO LONG"
5274	"INVALID CHANNEL NAME"
5275	"INVALID REMOTE STATION TYPE" 275
5276	"MISSING COMMA"
5277	"INVALID REMOTE NODE NAME"
5278	"INVALID OUTPUT FORMAT"
5279	"INCORRECT NUMBER OF SYMBOLS"
5280	"INVALID SYMBOL NAME" 280
5281	"INVALID CNC FILENAME"
5282	"MISSING END PARENTHESIS"
5283	"INVALID DH COMMAND TYPE"
5284	"MISSING START PARENTHESIS"
5285	"SLASH NOT ALLOWED" 285
5286	"INVALID CCT INDEX"
5287	"CONTROL RESET NOT ALLOWED"
5288	"CANNOT TAP IN CSS"
5289	"NEED SPINDLE FEEDBACK"
5290	"CANNOT TAP IN VIRTUAL-C MODE" 290
5291	"OFFSET EXCEEDS MAX CHANGE"
5292	"OFFSET EXCEEDS MAX VALUE"
5293	"PAL/LOGIC AXIS STATUS CANNOT CHANGE"
5294	"INVALID WHEEL ANGLE"
5295	"ANGLED WHEEL NOT CONFIGURED" 295
5296	"REAL WHEEL AXIS NOT ALLOWED"
5297	"INVALID IN ANGLED WHEEL MODE"
5298	"PLUNGE MOTION NOT PROGRAMMED"
5299	"PLUNGE STEPS MIS-PROGRAMMED"

5300	"VIRTUAL AXIS NOT ALLOWED" 300
5301	"IPD AND G16.3/G16.4 CANNOT BE CONCURRENT"
5302	"WHEEL AXIS MOTION INVALID IN G16.3/G16.4"
5303	"AXIS MOVER CONFLICT WITH G16.3/G16.4"
5304	"SHIFT AWAY FROM ENDPOINT"
5305	"WORK CO-ORD CHANGES NOT ALLOWED" 305
5306	"G26 PLANE INCOMPATABILITY"
5307	"G26 NOT ALLOWED"
5308	"DEPTH PROBE AXIS NOT AMPED"
5309	"DUAL SLAVE OR SPLIT AXIS NOT ALLOWED"
5310	"INVALID AXIS" 310
5311	"FEED TO HARDSTOP PROGRAMMING ERROR"
5312	"ADAPTIVE FEED PRG ERROR"
5313	"G25 PLANE INCOMPATABILITY"
5314	"G25 NOT ALLOWED"
5315	"G24 PLANE INCOMPATABILITY" 315
5316	"G24 NOT ALLOWED"
5317	"AXIS INVALID FOR G24/G25"
5318	"AMPED HOLDING OR DETECT TRQ OUT OF RANGE"
5319	"HARDSTOP AXIS NOT ALLOWED IN INTERRUPT"
5320	"BAD FIRST POCKET BLOCK" 320
5321	"THREAD PULLOUT STOPPED AT I-PLANE"
5322	"INCOMPATIBLE TOOL ACTIVATION MODES",
5323	"SPINDLE IS CLAMPED",
5324	"T-WORD NOT ALLOWED WITH M06",
5325	"UNABLE TO SYNC IN CURRENT MODE",
5326	"SPINDLE MODES INCOMPATIBLE",
5327	"PROGRAMMED SPINDLE UNAVAILABLE",
5328	"SPINDLE SYNC NOT CONFIGURED",
5329	"RAMP/JERK OUT OF RANGE",
5330	"S-CURVE CONFIGURATION ERROR",
5331	"ILLEGAL DATA IN ASYNCH MODE",
5332	"FIXED CYCLES NOT ALLOWED",
5333	"ILLEGAL PRE-BLOCK REQUEST",
5334	"ILLEGAL POST-BLOCK REQUEST",
5335	"ILLEGAL XFER INHIBIT REQUEST",

5336	"NO TIME DEPENDENT MACRO IN G60.1",
5337	"NO SOLID TAPPING IN G60.1",
5338	"POCKET CYCLES & AMP PLANES INCOMPATIBLE"
6001	"ILLEGAL INPUT"
6002	"MEMORY FULL"
6003	"OPTION NOT INSTALLED"
6004	"POCKET IS PART OF CUSTOM TOOL"
6005	"CANNOT OPEN PROGRAM FOR WRITE"
6006	"CANNOT DELETE ALL PROGRAMS"
6007	"DUPLICATE PROGRAM"
6008	"PROGRAM NOT FOUND"
6009	"MISSING PROMPT DATA"
6010	"CANNOT RENAME" 10
6011	"CANNOT FIND PAL/LOGIC PAGE"
6012	"CANNOT OPEN PROGRAM FOR READ"
6013	"DUPLICATE PROGRAM NAME"
6014	"PROGRAMS ARE DIFFERENT"
6015	"CANNOT CALCULATE - PROMPT PRESENT"
6016	"MATH OVERFLOW"
6017	"PAL/LOGIC & 9/SERIES REVISIONS DIFFER"
6018	"SEQUENCE NUMBER OUT OF RANGE"
6019	"PROGRAMS ARE IDENTICAL"
6020	"CANNOT ASSIGN IN CURRENT MODE" 20
6021	"ILLEGAL PASSWORD"
6022	"CANNOT FORMAT RAM PARTITION"
6023	"MUST ASSIGN TOOL NUMBER FIRST"
6024	"TOOL CONFIGURATION WILL NOT FIT"
6025	"CANNOT READ PROGRAM"
6026	"END OF PROGRAM"
6027	"\021CORRUPTED PROGRAM FOUND & DELETED"
6028	"CANNOT READ DIRECTORY"
6029	"PASSWORD PROTECTED"
6030	"CANNOT OPEN DIRECTORY" 30
6031	"CANNOT DELETE PROGRAM"
6032	"BUSY, REQUEST IGNORED"

6033	"MUST BE IN (E-STOP)"
6034	"MUST BE IN (CYCLE STOP) AND (EOB)"
6035	"MUST BE IN (MDI)"
6036	"MUST BE IN (AUTO)"
6037	"MUST BE IN (MANUAL)"
6038	"NOT ACTIVE SOFTKEY-MTB"
6039	"INPUT DATA TOO LONG"
6040	"+/- SIGN ERROR" 40
6041	"DECIMAL POINT ERROR"
6042	"INVALID CHARACTER"
6043	"MISSING PROGRAM NAME"
6044	"SYNTAX ERROR (COMMA)"
6045	"PROGRAM NAME TOO LONG"
6046	"CANNOT EDIT ACTIVE PROGRAM"
6047	"ERASE PROMPT"
6048	"INVALID SHAFT POCKET"
6049	"CANNOT WRITE TO PROGRAM"
6050	"PROGRAM BLOCK TOO LONG" 50
6051	"PAL/LOGIC PAGE WAITING - EXIT DISPLAY SELECT"
6052	"SEARCH STRING NOT FOUND"
6053	"MAXIMUM BLOCK NUMBER REACHED"
6054	"CANNOT DELETE - OPEN PROGRAM"
6055	"CANNOT FORMAT - OPEN PROGRAM"
6056	"CANNOT ACTIVATE - OPEN PROGRAM"
6057	"MDI INPUT COMMAND TOO LONG"
6058	"PARAMETER VALUE OUT OF RANGE"
6059	"MUST BE IN (E-STOP)"
6060	"PARAMETER NUMBER NOT FOUND" 60
6061	"PERIPHERAL DEVICE ERROR"
6062	"PARITY ERROR IN PROGRAM"
6063	"ERROR ACCESSING PROGRAM"
6064	"SAVE COMPLETED"
6065	"DEFAULTS LOADED"
6066	"CURSORING NOT ALLOWED"
6067	"ILLEGAL AXIS DATA FORMAT"
6068	"ERROR IN CIRCLE DATA"

6069	"TAN CIRCLE NOT IN 1ST BLOCK"
6070	"CIRCLE MID-POINT NOT ENTERED" 70
6071	"CREATING BACKUP FILE - PLEASE WAIT"
6072	"PROGRAM ACTIVE"
6073	"PROGRAM BEING EDITED"
6074	"CANNOT ACTIVATE RAM PARTITION"
6075	"INVALID INPUT VALUE"
6076	"NET CORRECTION IS NOT ZERO"
6077	"MEASUREMENT POINT OVERFLOW"
6078	"LOWER > UPPER"
6079	"CANNOT REPLACE START POINT"
6080	"PAL/LOGIC PAGE WAITING - SCREEN HAS PROMPT" 80
6081	"BOTH PORTS ARE BUSY"
6082	"NEW TOOL OFFSET SETUP BUT NOT ACTIVATED"
6083	"OPTION NOT INSTALLED (PAL/LOGIC DISPLAY PAGE)"
6084	"ACTIVE OFFSET CAN NOT CHANGE"
6085	"MUST DISABLE RUN-TIME GRAPHICS"
6086	"EMPTY PROGRAM WAS DELETED FROM DIRECTORY"
6087	"CANNOT MERGE WITH SAME PROGRAM"
6088	"CREATING TOOL MGMT. FILE - PLEASE WAIT"
6089	"INVALID TOOL GROUP"
6090	"INVALID TOOL NUMBER" 90
6091	"INVALID TOOL LIFE TYPE"
6092	"INVALID EXPECTED LIFE"
6093	"INVALID THRESHOLD RATE"
6094	"INVALID CUTTER COMPENSATION NUMBER"
6095	"POINT ALREADY EXISTS"
6096	"TOOL ENTRY EXCEEDS LIMIT"
6097	"TOOL GROUP DOES NOT EXIST"
6098	"MISSING TOOL ENTRY"
6099	"ACCUM. AND EXPECTED LIFE ARE 0"
6100	"ACTIVE TOOL CANNOT BE DELETED" 100
6101	"ACTIVE GROUP CANNOT BE DELETED"
6102	"ACTIVE TOOL CANNOT BE CHANGED"
6103	"NO UNEXPIRED TOOL AVAILABLE"
6104	"CANNOT EDIT - OPEN PROGRAM"
L	

6105	"OPTIONAL FEATURE IS NOT PROVIDED" 105
6106	"CANNOT EDIT - OTHER FILE IS BEING EDITED"
6107	"CANNOT EDIT - MUST BE IN CYCLE OR E STOP"
6108	"INVALID TIME FORMAT MUST BE HH:MM:SS"
6109	"INVALID DATE FORMAT MUST BE MM/DD/YY"
6110	"MUST BE IN E-STOP OR CYCLE STOPPED" 110
6111	"NETWORK COMMUNICATION DISABLED"
6112	"MAX SIZE EXCEEDED"
6113	"DUPLICATE 7300 PATTERN NAME"
6114	"TOO MANY 7300 PATTERNS IN MEMORY"
6115	"7300 PATTERN NAME TOO LONG" 115
6116	"DIRECTORY CHANGED TO MAIN DIRECTORY"
6117	"STORED PASSWORD LIST TO BACKUP"
6118	"AXIS DISPLAY DISABLED BY PAL/LOGIC"
6119	"TOO MANY AXES SELECTED FOR DISPLAY"
6120	"MUST SETUP THE ENCRYPTION ARRAY" 120
6121	"AXIS SELECT NOT ALLOWED"
6122	"COMMUNICATIONS DISPLAY PAGE ENABLED"
6123	"INTERNAL COMMUNICATIONS ERROR"
6124	"RECIPROCATION NOT STOPPED"
6125	"PREVIOUS ABORT COMMAND NOT COMPLETE" 125
6126	"CANNOT SEND AVAILABLE COMMAND"
6127	"FLASH IN USE - TRY AGAIN LATER"
6128	"PORT B IS BUSY"
6129	"FILE DOWNLOAD COMPLETE"
6130	"FILE DOWNLOAD ERROR" 130
6131	"FILE DOWNLOAD IN PROGRESS"
6132	"UNSPECIFIED NETWORK ERROR"
6133	"PLEASE WAIT FOR CLEARING OF PAL/LOGIC MEMORY"
6134	"SYMBOL NAME FORMAT ERROR"
6135	"SYMBOL NOT FOUND" 135
6136	"CAN'T ACCESS REMOTE VARIABLE"
6137	"INVALID OUTPUT FORMAT"
6138	"REQUESTED DATA TOO LARGE"
6139	"MAXIMUM NUMBER OF PROGRAMS"
6140	"CANNOT EDIT - FILE UPLOADING" 140

6141	"PROBE IS ARMED, CAN'T ADJUST SERVOS"
6142	"MUST START WITH \$,%,!,# OR LETTER"
6143	"LETTER OR DIGIT MUST FOLLOW \$,%,!,& OR #"
6144	"WILDCARD MUST BE AT START/END OF SYMBOL"
6145	"MUST START WITH A LETTER" 145
6146	"MUST START WITH \$,%,!,&,#,+,-,LTR,DIGIT"
6147	"CHARACTERS MUST BE DIGIT"
6148	"MUST START WITH \$,! OR LETTER"
6149	"LETTER OR DIGIT MUST FOLLOW \$ OR !"
6150	"SHIFT VALUE HAS TOO MANY DIGITS" 150
6151	"CHAR MUST BE LETTER,DIGIT,UNDERSCORE"
6152	"LETTER OR DIGIT MUST FOLLOW \$, % OR !"
6153	"TIMER MUST START WITH #"
6154	"LETTER OR DIGIT MUST FOLLOW #"
6155	"MUST START WITH \$,%,! OR LETTER" 155
6156	"EXACTLY 2 DIGITS MUST FOLLOW DECIMAL PT"
6157	"MUST START WITH \$,%,!,# OR LETTER"
6158	"LETTER OR DIGIT MUST FOLLOW \$,%,! OR #"
6159	"CHAR MUST BE _,.,LETTER,DIGIT"
6160	"RUNG NUMBER NOT FOUND" 160
6161	"INCOMPATIBLE PAL/LOGIC SOURCE"
6162	"PAL/LOGIC SOURCE NOT DOWNLOADED TO CNC"
6163	"ODS RUNG MONITOR ACTIVE"
6164	"OBJECT NOT FOUND IN PROGRAM"
6165	"DISP SELECT NOT ALLOWED" 165
6166	"SEARCH MONITOR SELECT NOT ALLOWED"
6167	"CHARACTERS MUST FOLLOW WILDCARD"
6168	"NO CHARACTERS ENTERED FOR SYMBOL"
6169	"SKIPPING EXCLUDED SOURCE MODULE(S)"
6170	"NEED SHADOW RAM FOR ONLINE SEARCH" 170
6171	"PAL/LOGIC PAGE WAITING - EXIT MONITOR"
6172	"NO PDP/LDP GRAPHICS-OTHER GRAPHICS ACTIVE"
6173	"ENTER ALL REQUIRED PROMPT DATA"
6174	"MISSING ADAPTIVE FEED DATA"
6175	"HARD STOP AND/OR ADAPTIVE DATA CONFLICT" 175
6176	"TEMPLATE PROGRAM NOT FOUND"
1	

6177	"REQUIRES AT LEAST TWO AXES"
6178	"PAL/LOGIC SOURCE REV. MISMATCH - CANT MONITOR"
6179	"HARD STOP DETECTION ERROR"
6180	"HARD STOP ACTIVATION ERROR" 180
6181	"HARD STOP DIRECTION ERROR"
6182	"HARD STOP EXCESS ERROR"
6183	"ADAPTIVE FEED MAX LIMIT"
6184	"ADAPTIVE FEED MIN LIMIT"
6185	"AXIS IS HARD STOPPED, CANT ADJUST SERVO" 185
6186	"NO OFFSET ACTIVE"
6187	"OFFSET MOTION PENDING ON CYCLE START"
7001	"SERIAL COMMUNICATIONS ERROR #1"
7002	"COMMUNICATION TIME-OUT"
7003	"SERIAL PORT IN USE"
7004	"COMMUNICATIONS LINK IS DOWN"
7005	"SERIAL COMMUNICATIONS ERROR #2"
7006	"SERIAL COMMUNICATIONS ERROR #3"
7007	"CANNOT UPLOAD - PAL/LOGIC SOURCE NOT LOADED"
7008	"ILLEGAL COMMAND FROM ODS"
7009	"INVALID FILE TYPE"
7010	"ILLEGAL CONTROL TYPE" 10
7011	"\0210DS & 9/SERIES REVISIONS DIFFER"
7012	"CANNOT UPLOAD - PAL/LOGIC NOT IN PROM"
7013	"\021PAL/LOGIC PROM CHECKSUM ERROR"
7014	"AMP FILE SIZE ERROR"
7015	"SERIAL COMMUNICATIONS ERROR #4"
7016	"ILLEGAL FILENAME"
7017	"END OF FILE"
7018	"SERIAL COMMUNICATIONS ERROR #5"
7019	"MUST BE IN (E-STOP)"
7020	"CHECKSUM ERROR IN FILE" 20
7021	"PORT IS BUSY - REQUEST DENIED"
7022	"DATA MAY BE OUTPUT TO PRINTER ONLY"
7023	"INSUFFICIENT MEMORY FOR PART PROGRAM"
7024	"TIME-OUT OCCURED WHILE WAITING FOR INPUT"

7025	"FILE CANNOT BE CONVERTED TO EIA FORMAT"
7026	"UNABLE TO OPEN THE UART PORT"
7027	"UART PORT IS ALREADY OPEN"
7028	"ILLEGAL COMMAND FROM TEACH PENDANT"
7029	"ILLEGAL APPLICATION COMMAND FROM TEACH"
7030	"SERIAL UART BUFFER OVERFLOW" 30
7031	"SERIAL COMMUNICATIONS BUFFER OVERFLOW"
7032	"SERIAL COMMUNICATIONS PARITY ERROR"
7033	"SERIAL COMMUNICATIONS FRAMING ERROR"
8001	"PAL/LOGIC INITIATED MOTION POSSIBLE"
9001	"UNABLE TO OPEN PROGRAM"
9002	"MISSING G67"
9003	"NO STRING INPUT"
9004	"SEARCH ALREADY IN PROGRESS"
9005	"NO ACTIVE PROGRAM"
9006	"MUST BE IN (CYCLE STOP)"
9007	"END OF PROGRAM REACHED"
9008	"BAD RECORD IN PROGRAM"
9009	"TOP OF PROGRAM REACHED"
9010	"PROGRAM REWIND ERROR"
10001	"MUST BE IN (AUTO)"
10002	"MUST BE IN (CYCLE STOP)"
10003	"CANNOT RESTART G24 HARD STOP"
10004	"PROGRAM SHOULD START HERE"
10005	"NO PROGRAM TO RESTART"
10006	"CONTINUE NOT ALLOWED"
10007	"INPUT STRING SYNTAX ERROR"
10008	"M02 OR M30 FOUND - REQUEST TERMINATED"
10009	"WARNING - VERIFY MODAL CODES"
10010	"WARNING - G10 OFFSETS ALTERED"
10011	"CANNOT FIND CORRECT POSITION"
10012	"CANNOT USE EXIT - BLOCK NOT FOUND"
10013	"SEARCH REQUIRES AN ACTIVE PROGRAM"
10014	"MIDSTART NOT ALLOWED FROM TAPE"

10015	"CANNOT EXIT IN CYCLE"
10016	"AXIS POSITION INCORRECT"
11000	"API_WRITE_ENCRYPTION_ENTRY_ERROR"

Symbols

! User-defined Globals. 4-48

\$ system flags, 4-49

% I/O Variables, 4-47

@ - AMP Parameters, A-2

@ - AMP parameters, A-2

@ AMP Data, 4-16

Numbers

G591_WORK_COORD_UNITS, A-18

Α

ABE Files, source code, 3-4

ABG Files, source code, 3-4

ABL Files, source code, 3-4

ABM Files, source code, 3-4

ABOCI

launching in Visual Basic, 3-5 source code directory structure, 3-3

ABOCI/DAT, data files, 3-4

ACTIVATE_PART_PROGRAM, 5-38, B-4, B-5

ACTIVATE_RANDOM_TOOL, 5-53, B-5, B-6

ACTIVATE_RIO_PASSTHROUGH, 5-14, B-2

ACTIVATE_TOOL_GEOM, 5-24, B-3

ACTIVATE TOOL LENGTH, 5-25, B-3

ACTIVATE_TOOL_RADIUS, 5-25, B-3

ACTIVATE_TOOL_WEAR, 5-26, B-3

ACTIVATE_WHEEL_GEOM, 5-26, B-3

ACTIVATE WHEEL RADIUS, 5-27

Activating a Form, Form_Activate subroutine, 3-10

ACTIVE_ERROR_MESSAGES, A-4

ACTIVE MODE, A-10

ACTIVE_MODE Enumeration, 6-9

ACTIVE PAL MESSAGES, 4-37, A-4

ACTIVE_PART_PROGRAM, A-11

ACTIVE_PART_PROGRAM_BLOCKS, 4-7, 4-54, A-14

ACTIVE_PLANE_AXES, A-18

ACTIVE_RADIUS_DIAMETER_MODE Enumeration, 6-1

ACTIVE RANDOM TOOL NUM, A-14

ACTIVE_RANDOM_TOOL_NUM_POCKET S, A-14

ACTIVE_RANDOM_TOOL_SHAFT_POCK ET, A-14

ACTIVE_SCALE_INDICATOR, 4-47, A-10

ACTIVE_SUB_PROGRAM, A-11

ACTIVE_TOOL_GEOM_NUM, 4-43, A-8

ACTIVE_TOOL_LENGTH_AXIS_LOGICAL _BIT_PATTERN, 4-43, A-8

ACTIVE TOOL RADIUS NUM, 4-44, A-8

ACTIVE TOOL WEAR NUM, 4-44, A-8

ACTIVE UNITS, 4-46, A-10

AdvancedDDE

installing RSData, 3-3

through RSLinx, 3-3

Allen-Bradley, Basic Display Set source code, 3-1

AMP Commands

BACKUP AMP, 5-3, B-1

MODIFYING_AMP, 5-4, B-1

RESTORE AMP, 5-4, B-1

TRANSFER_AMP_FROM_PORTA, 5-4, B-1

TRANSFER_AMP_FROM_PORTB, 5-5, B-1

TRANSFER_AMP_TO_PORTA, 5-5, B-1

TRANSFER_AMP_TO_PORTB, 5-6, B-1

TRANSFER_HOMECAL_TO_PORTA, 5-6, B-1

TRANSFER_HOMECAL_TO_PORTB, 5-7, B-1

TRANSFER_REVERSAL_ERROR_TO_ PORTA, 5-7, B-1

TRANSFER_REVERSAL_ERROR_TO_ PORTB, 5-8

TRANSFER_REVERSAL_ERROR_TO_ PORTB, B-1

UPDATE AMP, 5-8, B-1

AMP Data @ - AMP parameters, A-2 AMP PARAMETER DATA TYPE, A-2 AMP PARAMETER NUMBER, A-2 NUM PATCHABLE AMP PARAMETER S, A-2 SYSTEM_SCAN_TIME, A-2 **AMP Parameter Data** @param num, 4-16 AMP PARAMETER DATA TYPE, 4-16 AMP PARAMETER NUMBER, 4-17 NUM PATCHABLE AMP PARAMETER S, 4-17 AMP_DATA_TYPE Enumeration, 6-2 AMP PARAMETER DATA TYPE, 4-16, AMP_PARAMETER_NUMBER, 4-17, A-2 AMPED_FINE_SCAN_TIME, A-11 AMPED TOOL LENGTH AXIS LOGICAL BIT PATTERN, 4-45, A-8 AMPED TOOL LENGTH DRILLING AXIS LOGICAL BIT PATTERN, A-8 ANGLED_WHEEL_ALLOWED, A-15 API Data Items, 4-1 Application Name, 1-3 Arguments, for commands, 5-1 Array Index. See Index Array Indexes, 4-3 Automatic Items, errors from, 1-6 Automatic Link Type, 4-10 AUX COM ABORT_COMMAND, 5-14, B-2 AUX COM BACKUP CONFIG TABLE, 5-15, B-2 AUX_COM_CMD_FWD_SEARCH, 5-15, B-2 AUX COM CMD_REV_SEARCH, 5-16, B-2 AUX COM CMDTBL FROM FLASH, B-2 AUX_COM_CMDTBL_TO_FLASH, 5-16, AUX COM CNC FILENAME, A-4 AUX_COM_CNC_SYMBOL, A-4 AUX COM COMMAND, A-4 AUX COM CONFIG FROM FLASH, B-2

AUX COM CONFIG TO FLASH, 5-16,

B-2

AUX COM DOWNLOAD FILE, 5-17, B-2 AUX COM HOST CHANNEL NUM, A-4 AUX COM HOST FROM FLASH, B-2 AUX_COM_HOST_REMNODE_ADDR, AUX COM HOST WRITE TO FLASH, 5-17, B-2 AUX_COM_NUM_SYMBOLS, A-4 AUX_COM_OUTPUT_FORMAT, A-4 AUX COM REM STATION TYPE Enumeration, 6-2 AUX_COM_REMOTE_FILENAME, A-4 AUX_COM_REMOTE_NODE_ADDRESS, A-5 AUX COM REMOTE_STATION_TYPE, A-5 AUX_COM_REMOTE_SYMBOL, A-5 AUX COM SEARCH TYPE Enumeration, 6-2 AUX_COM_SEND_COMMAND_PACKET, AUX COM SEND COMMAND STATUS, AUX_COM_SENDCMD, 5-17, B-2 AUX CONFIG BAUD RATE, A-5 AUX CONFIG CHANNEL NAME, A-5 AUX CONFIG CHANNEL TYPE, A-5 AUX CONFIG FILE PID, A-5 AUX_CONFIG_FILE_TIMEOUT, A-5 AUX CONFIG KEYBOARD PID, A-5 AUX CONFIG PACKET TIMEOUT, A-5 AUX CONFIG SERIAL DATA LENGTH, AUX CONFIG SERIAL PARITY, A-5 AUX CONFIG SERIAL STOP BITS, A-5 AUX CONFIG STATION ADDRESS, A-5 AUX CONFIG STATUS PID, A-5 AUX MODIFYING TABLES, A-5 AVAILABLE MEMORY, 4-51, A-11 Axes, logical vs physical, 4-15 Axis Calibration AXISCAL_ABS_POS, A-2

AUX COM CURRENT CONFIG NUM,

AXISCAL POINTS FREE, A-2 AXISCAL POINTS USED, A-2 AXISCAL STATUS, A-2 BACKUP AXISCAL, B-1 DELETE ALL AXISCAL POINTS, B-1 DELETE AXISCAL POINT, B-1 ENTER_AXISCAL_MODIFY_MODE, B-1 EXIT AXISCAL MODIFY MODE, B-1 INITIALIZE AXISCAL_TABLE, B-1 INSERT AXISCAL POINT, B-1 NEXT AXISCAL AXIS, B-1 REPLACE AXISCAL VALUE, B-1 RESTORE AXISCAL, B-1 SET AXISCAL PROCESS NUMBER, STOP_AXISCAL, B-1 TRANSFER AXISCAL FROM PORTA, B-1, B-2 TRANSFER_AXISCAL_FROM_PORTB, B-1 TRANSFER AXISCAL TO PORTB, B-2 Axis Calibration Commands BACKUP AXISCAL, 5-8 DELETE ALL AXISCAL POINTS, 5-9 DELETE AXISCAL POINT, 5-9 ENTER AXISCAL MODIFY MODE, 5-9 EXIT_AXISCAL_MODIFY_MODE, 5-10 INITIALIZE AXISCAL TABLE, 5-10 INSERT AXISCAL POINT, 5-11 REPLACE AXISCAL VALUE, 5-11 RESTORE AXISCAL, 5-12 STOP AXISCAL, 5-12 TRANSFER AXISCAL FROM PORTA, 5-12 TRANSFER_AXISCAL_FROM_PORTB, 5-13 TRANSFER_AXISCAL_TO_PORTA, 5-13 TRANSFER_AXISCAL_TO_PORTB, 5-14 Axis Calibration Data AXISCAL ABS POS, 4-18 AXISCAL MEAS DEV AMOUNT, 4-19 AXISCAL POINTS FREE, 4-20 AXISCAL POINTS USED, 4-19 AXISCAL STATUS, 4-20 AXIS FORMATS INCH, A-13 AXIS_FORMATS_METRIC, A-13 AXIS NAME, 4-4, A-15 AXIS NUM Index, 4-4 AXIS POSITION ABS, A-13

AXIS POSITION DTG, A-13

AXISCAL MEAS DEV AMOUNT, A-2

В

BACK BORING SHIFT DIRECTION, A-6 BACK BORING SHIFT DIRECTION Enumeration, 6-3 Background WatchLists, 4-13 BACKUP ALL OFFSETS, 5-27, B-3 BACKUP ALL PARAMETERS, 5-35, B-4, B-5 BACKUP AMP, 5-3, B-1 BACKUP_AXISCAL, 5-8 BACKUP_COM1_PARAMETERS, 5-36, B-4, B-5 BACKUP COM2A PARAMETERS, 5-36, B-4, B-5 BACKUP COM2B PARAMETERS, 5-37, B-4, B-5 BACKUP_INTERF_TABLE, 5-28, B-3 BACKUP RADIUS TABLE, 5-28, B-3 BACKUP RANDOM TOOL, 5-54, B-5, B-6 BACKUP SHARED PARAMETERS, 5-37, B-4, B-5 BACKUP TOOL GEOM, 5-29, B-3 BACKUP TOOL MANAGE, 5-54, B-5, B-6 BACKUP TOOL WEAR, 5-29, B-3 BACKUP WHEEL GEOMETRY, 5-30, B-3 BACKUP WORK COORD, 5-30, B-3 Basic Modules, source code, 3-7

Baud Rate. See Port CLEAR WORKPIECES CUT OVERALL, 5-22, B-3 **BDS** CNC, commands, 5-1 ABE files, 3-4 ABG files, 3-4 CNC Information, global.bas, 3-7 ABL files, 3-4 CNCCommand Subroutine, 5-3 ABM files, 3-4 basic modules, 3-7 COARSE_SCAN_TIME, A-11 DG-code data file, 3-4 Coding, using Visual Basic, 1-7 display form, 3-6 Cold Link, 4-9 G-code data file, 3-4 installing source code, 3-2 COM MODE Enumeration, 6-4 keyboard input, 3-6 COM2A PARAMETER NAMES, A-11 main MDI form, 3-6 master form, 3-10 Command Requests, overview, 1-5 PAL message form, 3-7 COMMAND_ERROR_CODE, 4-33, A-4 PD pointers, 3-4 Commands screen construction, 3-6 SCRNPOS file, 3-4 arguments, 5-1 source code directory structure, 3-3 example using Visual Basic, 2-4 overview, 5-1 source code installation directory, 3-2 syntax for, 5-2 source code overview, 3-1, 3-5 source code softkey form, 3-7 using CNCCommand subroutine, 5-3 SPD pointer file, 3-4 Communication Commands system form, 3-6 ACTIVATE RIO PASSTHROUGH, 5-14 AUX COM ABORT COMMAND, 5-14 Bit Pattern, logical vs physical axes, 4-15 AUX COM BACKUP CONFIG TABLE, BLOCK CYCLE TIME, A-11 5-15 BLOCK CYCLE TIME MAX, A-11 AUX COM CMD FWD SEARCH, 5-15 AUX COM CMD REV SEARCH, 5-16 BLOCK_TRANSFER_READ_DATA, A-10 AUX COM CMDTBL TO FLASH, 5-16 BLOCK TRANSFER WRITE DATA, A-10 AUX COM CONFIG TO FLASH, 5-16 AUX COM DOWNLOAD FILE, 5-17 BOOT FW REVISION, A-7 AUX_COM_HOST_WRITE_TO_FLASH, 5-17 AUX COM SENDCMD, 5-17 COPY_DEVICE_SETUP_DEFAULTS, CALCULATE, 5-21, B-2 DEACTIVATE_RIO_PASSTHROUGH, CALCULATION RESULTS, A-7 5-18 ENTER_SERIAL_IO_MONIT OR_MODE, CALIBRATION START enumeration, 6-3 5-18 CALIBRATION TYPE Enumeration, 6-3 EXIT SERIAL IO MONITOR MODE, 5-19 CANCEL MESSAGE, 5-21, B-2 REPEAT TX SERIAL IO, 5-19 Characters, max allowed in prompt, 3-20 SAVE DEVICE SETUP, 5-20 CHECK IF FILE PRESENT, B-4, B-5 SINGLE TX SERIAL IO, 5-20 START SERIAL IO MONITOR, 5-20 CLEAR ACTIVE ERRORS, 5-21, B-2 STOP_SERIAL_IO_MONITOR, 5-21 CLEAR COM NAME, B-4, B-5 Communication Port Data CLEAR CYCLE TIME, 5-22, B-2 HARDWARE STATUS PORTA, 4-31 HARDWARE_STATUS_PORTB, 4-31 CLEAR DEBUG_MONITOR, B-2 INDEX UART MAX BAUD MODE, CLEAR ERROR LOG, 5-22, B-2 4-32 CLEAR POWER_ON_TIME_OVERALL, LEVEL 2 STATUS PORTA, 4-31 5-22, B-3 LEVEL 2 STATUS PORTB, 4-32 PORT AUTO FILENAME, 4-25

CLEAR RUNTIME, 5-22, B-3

PORT BAUD RATE, 4-21 AUX COM CONFIG FROM FLASH, PORT COMMUNICATION FORMAT, B-2 AUX COM CONFIG TO FLASH, B-2 4-23 PORT DATA BITS, 4-25 AUX COM DOWNLOAD FILE, B-2 PORT PARITY, 4-23 AUX COM HOST FROM FLASH, B-2 PORT PERCENT SELECTION, 4-28 AUX COM HOST WRITE TO FLASH, PORT PROGRAM NAME, 4-29 AUX COM SENDCMD, B-2 PORT_PROTOCOL, 4-21 COPY_DEVICE_SETUP_DEFAULTS, PORT REWIND ON M99, 4-27 PORT REWINDE ON M02 M30, 4-27 DEACTIVATE_RIO_PASSTHROUGH, PORT STOP AT PROGRAM END, B-2 4-26 PORT STOP BITS, 4-24 ENTER SERIAL IO MONITOR MODE, B-2 PORT TIMEOUT VALUE, 4-29 EXIT SERIAL IO MONITOR MODE, PORT TYPE, 4-22 B-2 RX CHAR PORTA, 4-30 INITIALIZE DEVICE SETUP, B-2 RX CHAR PORTB, 4-30 REPEAT TX SERIAL IO, B-2 Communication Port Parameters SAVE DEVICE SETUP, B-2 DEVICE ON PORTA, A-3 SINGLE TX SERIAL IO, B-2 DEVICE ON PORTB, A-3 START SERIAL IO MONITOR, B-2 HARDWARE STATUS PORTB, A-3 STOP SERIAL IO MONITOR, B-2 HARDWARE SUPPORT PORTA, A-3 Constants, screen names, 3-7 LEVEL 2 STATUS PORTA, A-3 LEVEL 2 STATUS PORTB, A-3 Control CNC Commands, 5-23 PORT AUTO FILENAME, A-3 Control Type Attribute, 4–8 PORT BAUD RATE, A-3 Controlling OCI Station, 4-2 PORT COMMUNICATION FORMAT, A-3 CONTROLLING OCI, A-7 PORT DATA BITS, A-3 CONTROLLING_SPINDLE_NUM, 4-60 PORT PARITY, A-3 PORT PERCENT SELECTION, A-3 COPY DEVICE SETUP DEFAULTS, PORT PROGRAM NAME, A-3 5-18, B-2 PORT PROTOCOL, A-3 COPY FROM TYPE Enumeration, 6-4 PORT REWIND ON M02 M03, A-3 PORT REWIND ON M99, A-3 COPY MEM TO MEM, 5-39, B-4, B-6 PORT STOP AT PROGRAM END, COPY MEM TO PORTA, 5-40, B-4, B-6 A-3 COPY_MEM_TO_PORTA/B Enumeration, PORT STOP BITS, A-3 6-4 PORT TIMEOUT VALUE, A-3 PORT TYPE, A-3 COPY MEM TO PORTB, 5-40, B-4, B-6 RX CHAR PORTA, A-3 COPY OFFSET, 5-31, B-3 RX CHAR PORTB, A-3 TX CHAR PORTB, A-3 COPY_PART_PROGRAM, 5-38, B-4, B-5 UART A BUSY STATUS, A-3 COPY PART PROGRAM_FOR_EDIT, UART B BUSY STATUS, A-3 B-4, B-6 UART MAX BAUD MODE, A-4 COPY PORTA/B_TO_MEM Enumeration, Communications 6-4 ACTIVATE_RIO PASSTHROUGH, B-2 COPY PORTA TO MEM, 5-41, B-4, B-6 AUX COM ABORT COMMAND, B-2 AUX COM BACKUP CONFIG TABLE, COPY PORTB TO MEM, 5-42, B-4, B-6 B-2 COPY TO TYPE Enumeration, 6-4 AUX COM CMD FWD SEARCH, B-2 COPYRIGHT DATE, 4-38, A-7 AUX COM CMD REV SEARCH, B-2 AUX COM CMDTBL FROM FLASH, CURRENT DRESSER RPM, A-6 B-2 CURRENT_SCALE_FACTORS, A-12

AUX COM CMDTBL TO FLASH, B-2

CURRENT WHEEL DIAMETER, A-6 DEPTH PROBE FOLLOWING ERROR, A-13 Cursor Movement, on master form, 3-8 DEPTH PROBE POSITION, A-13 CYCLE TIME, A-11 Destroylnactive, RSJbox, 1-8 Development Tool, Visual Basic, 1-7 D DEVICE_ON_PORTA, A-3 D WORD, A-8 DEVICE_ON_PORTB, A-3 Data Buffer, 4-11 DG-code, data file, 3-4 Data Files, description, 3-4 DH BAUD RATE Enumeration, 6-6 Data Items DH CHANNEL TYPE Enumeration, 6-5 presentation overview, 4-1 DH_COMMAND Enumeration, 6-5 overview, 4-1 DH OUTPUT FORMAT Enumeration, 6-6 Data Links, creating subroutine, 3-10 DH PARITY Enumeration, 6-6 **Data Server** DH REMOTE STATION Enumeration, 6-7 commands, 5-1 defined, 1-3 Dimension, two-dimensional array, 4-3 read requests, 1-4 Directory, source code destination, 3-2 write requests, 1-4 Directory Structure, BDS source code, 3-3 Data Types, for data items, 4-2 Directory, Set Command, 5-46 DATASCOPE DATA, A-7 Disks, installing BDS source code, 3-2 DATE, 4-39, A-7 Display, formatting subroutine, 3-10 DDE automatic links, 4-10 Display Form, 3-6 manual links, 4-9 DISTANCE TO MARKER, A-16 notify links, 4-10 DLL, RSJBox, 1-8 OCI interaction, 1-2 POKE requests, 4-12 Document, using print utilities, 3-22 service name, 1-3 DOWNLOAD IN PROGRESS, A-7 topic name, 1-3 your compliant application, 1-2 DOWNLOAD IN PROGRESS Enumeration, 6-5 DDE Item Name, 2-2 DRESSER AMOUNT PER REV, A-6 DDE Overview, 2-1 DRESSER HOLD STATUS, A-6 DDE Service, 2-1 DRESSER RETRACT DISTANCE, A-6 DDE Topic Name, 2-2 DRESSER_ROLL_DIAMETER, A-7 DEACTIVATE PART_PROGRAM, 5-43, B-4, B-6 DRESSER STATUS, A-7 DEACTIVATE RIO PASSTHROUGH, DRESSER_SURFACE_SPEED_RATIO, 5-18, B-2 A-7 Debugging, global variable, 3-26 DRESSER TABLE UNITS, A-7 Debugging Utilities, 3-26 DRILLING AXIS LOGICAL_BIT_PATTERN , 4-45 DEFAULT SCALE FACTORS, A-12 DRILLING CLEARANCE AMOUNT, A-6 DELETE ALL AXISCAL POINTS, 5-9, B-1 DRILLING RETRACT AMOUNT, A-6 DELETE AXISCAL POINT, 5-9, B-1 **Dual Process** commands, 5-2 DELETE PART PROGRAM, 5-43, B-4, selecting for data items, 4-1 B-6

Delimination of Multiple Data, 4-3

Dual-process data items, 4-14 selecting for commands, 5-2 Dual-process Only, 4-8	OPTION)SELECTED_INDICES, 6-10 PORT_BAUD_RATE, 6-11 PORT_COMM_FORMAT, 6-11 PORT_DATA_BITS, 6-11 PORT_ID, 6-12 PORT_PARITY, 6-12 PORT_PROTOCOL, 6-14 PORT_STOP_BITS, 6-15
Editor part program install directory, 3-2 softkeys, 3-11 English language.bas, 3-7 printing, 3-22 text find utility, 3-20 ENTER_AXISCAL_MODIFY_MODE, 5-9, B-1 ENTER_MIDSTART_SEARCH_MODE, 5-51, B-5, B-6 ENTER_PART_PROGRAM_SEARCH_MO DE, 5-43, B-4, B-6 ENTER_SERIAL_IO_MONITOR_MODE,	PORT_TAPE_MULTI, 6-15 PORT_TIMEOUT_VALUE, 6-15 PORT_TYPE, 6-12 PORTA_DEVICE, 6-13 PORTB_DEVICE, 6-14 PP_SOURCE, 6-16 PRODUCT_ID, 6-16 ROTATION_EXT_STATUS, 6-16 SCALING_INDICATOR, 6-16 SEARCH_METHOD, 6-17 SEARCH_TYPE, 6-17 SERVO_STATUS, 6-17 SYSTEM_STATE, 6-18 TARGET_DIR, 6-18 TM_GRAPHICS_TOOL_COLOR, 6-19 TM_STATUS, 6-18 UART_A/B_BUSY_STATUS, 6-19
5-18, B-2 Enumerations ACTIVE_MODE, 6-9 ACTIVE_RADIUS_DIAMETER_MODE, 6-1 AMP_DATA_TYPE, 6-2 AUX_COM_REM_STATION_TYPE, 6-2	Error Conditions, overview, 1-5 Error Handling, C-1 global.bas, 3-7 Error Message Cancel Command, 5-21 Error Message Data
AUX_COM_SEARCH_TYPE, 6-2 BACK_BORING_SHIFT_DIRECTION, 6-3 CALIBRATION_START, 6-3 CALIBRATION_TYPE, 6-3 COM_MODE, 6-4 COPY_FROM_TYPE, 6-4 COPY_MEM_TO_PORTA/B, 6-4 COPY_PORTA/B_TO_MEM, 6-4 COPY_TO_TYPE, 6-4 DH_BAUD_RATE, 6-6 DH_CHANNEL_TYPE, 6-5 DH_COMMAND, 6-5 DH_OUTPUT_FORMAT, 6-6	ACTIVE_PAL_MESSAGES, 4-37 COMMAND_ERROR_CODE, 4-33 LINE_1_MESSAGE_DATA, 4-34 Error Message Items ACTIVE_ERROR_MESSAGES, A-4 ACTIVE_PAL_MESSAGES, A-4 COMMAND_ERROR_CODE, A-4 ERROR_LOG_MESSAGE_NUM, A-4 ERROR_LOG_MESSAGE_PARAMETE R, A-4 ERROR_LOG_TIME_STAMP, A-4 ERROR_MESSAGE_TYPE, A-4 ERROR_MESSAGES, A-4 LINE_1_MESSAGE_DATA, A-4
DH_PARITY, 6-6 DH_REMOTE_STATION, 6-7 DOWNLOAD_IN_PROGRESS, 6-5 ERROR_MESSAGE_TYPE, 6-7 FEED_MODE, 6-9 INCH/METRIC_MODE, 6-9 MACHINE_TYPE, 6-8 MID_START_ACTION, 6-8 MID_START_TYPE, 6-8 MODE_ACTIVE, 6-9 MODE_INCH/METRIC, 6-9	NUM_MESSAGE_DATA, A-4 NUM_MESSAGE_GROUPS, A-4 WRITE_ERROR_CODE, A-4 Error Numbers, C-1 ERROR_LOG_MESSAGE_NUM, A-4 ERROR_LOG_MESSAGE_PARAMETER, A-4 ERROR_LOG_TIME_STAMP, A-4 ERROR_MESSAGE_TYPE, A-4

ERROR MESSAGE TYPE Enumeration, AUX_COM_CURRENT_CONFIG_NUM, 6-7 A-4 AUX COM HOST CHANNEL NUM, ERROR MESSAGES, A-4 A-4 ErrorFile, creating, 3-11 AUX COM HOST REMNODE ADDR, A-4 **Errors** AUX COM NUM SYMBOLS, A-4 managing subroutine, 3-11 AUX COM OUTPUT FORMAT, A-4 on commands, 5-1 AUX_COM_REMOTE_FILENAME, A-4 printing text with pointers, 3-22 AUX COM REMOTE NODE ADDRES writing to file, 3-26 S, A-5 writing to MsgBox, 3-26 AUX_COM_REMOTE_STATION_TYPE, ESTOP STATE, 4-62, A-7 A-5 AUX COM REMOTE SYMBOL, A-5 Example, using Visual Basic, 2-2 AUX COM SEND COMMAND PACKE Examples T, A-5 DDE Overview, 2-1 AUX COM SEND COMMAND STATUS using Excel, 2-4 . A-5 Visual Basic command, 2-4 AUX CONFIG BAUD RATE, A-5 AUX CONFIG CHANNEL NAME, A-5 Excel, example read, 2-4 AUX_CONFIG_CHANNEL_TYPE, A-5 EXECUTE MIDSTART SEARCH, 5-51, AUX CONFIG FILE PID, A-5 B-5, B-6 AUX_CONFIG_FILE_TIMEOUT, A-5 EXECUTE PART PROGRAM_SEARCH, AUX CONFIG KEYBOARD PID, A-5 5-44, B-4, B-6 AUX CONFIG PACKET TIMEOUT, A-5 AUX CONFIG SERIAL DATA LENGTH EXIT_AXISCAL_MODIFY_MODE, 5-10, , A-5 AUX CONFIG SERIAL PARITY, A-5 EXIT SERIAL IO MONITOR MODE, AUX CONFIG SERIAL STOP BITS, 5-19, B-2 AUX CONFIG STATION ADDRESS, Exiting, text search utility, 3-21 A-5 EXT ROT ANGLE, A-12 AUX CONFIG STATUS PID, A-5 EXT ROT FIRST AXIS, 4-55, A-12 AUX MODIFYING TABLES, A-5 EXT_ROT_FIRST_AXIS_CENTER, A-12 Fanal EXE, setting the variable, 3-12 EXT_ROT_FIRST_AXIS_VECTOR, A-12 FEED_CLAMPED, A-5 EXT_ROT_SECOND_AXIS, 4-55, A-12 FEED_FORWARD_PERCENT, A-16 EXT ROT SECOND AXIS CENTER, FEED MODE, A-5 A-12 FEED MODE Enumeration, 6-9 EXT ROT_SECOND_AXIS_VECTOR, FEED_MODE_DISPLAY, A-5 A-12 FEED VALUE, A-6 EXTERNAL_WORK_COORD, A-18 Feedrate Data EXTERNAL_WORK_COORD_UNITS, F1 DIGIT FEEDRATE, A-5 A-18 FEED_CLAMPED, A-5 FEED MODE, A-5 FEED MODE DISPLAY, A-5 F FEED VALUE, A-6 F1 DIGIT FEEDRATE, A-5 FG CRITICAL AVERAGE, A-10 FG CRITICAL MAX, A-10 **Factory Communication Module** AUX COM CHANNEL NUMBER, A-4 FG TOTAL AVERAGE, A-10 AUX COM CNC FILENAME, A-4

FG TOTAL MAX, A-10

AUX_COM_CNC_SYMBOL, A-4 AUX_COM_COMMAND, A-4

FILE NAME, 4-7, 4-52, A-12 G55 WORK COORD, A-18 FILE SIZE, A-12 G55_WORK_COORD_UNITS, A-18 Filename String, 6-19 G56_WORK_COORD_UNITS, A-18 FINE SCAN TIME MAX, A-11 G57 WORK COORD, A-18 Fixed Cycles G57 WORK COORD UNITS, A-18 BACK BORING SHIFT DIRECTION, G58_WORK_COORD, A-18 A-6 G58_WORK_COORD_UNITS, A-18 DRILLING CLEARANCE AMOUNT, A-6 DRILLING RETRACT AMOUNT, A-6 G59_WORK_COORD, A-18 THREADING PULLOUT ANGLE, A-6 G59_WORK_COORD_UNITS, A-18 THREADING PULLOUT_DISTANCE, A-6 G591 WORK COORD, A-18 Focus, LoadScreenForm, 3-19 G592 WORK COORD, A-18 FOLLOWING_ERROR, A-16 G592_WORK_COORD_UNITS, A-18 Font Size, global.bas, 3-7 G593_WORK_COORD, A-19 Foreground WatchLists, 4-13 G593_WORK_COORD_UNITS, A-19 FOREGROUND LOGIC TIME, A-11 German language.bas, 3-7 FOREGROUND LOGIC TIME MAX, A-11 printing text, 3-22 Form, load/unload subroutine, 3-10 GLOBAL.BAS, 3-7 Form Master, MASTER.FRM, 3-8 Grinder Data Items, 4-8 **Forms** defining new text, 3-20 for source code, 3-6 н French H WORD, A-8 language.bas, 3-7 printing text, 3-22 Handling Errors, C-1 Frequency of Update. See AMP reference HARDWARE STATUS PORTA, 4-31, A-3 manual HARDWARE_STATUS_PORTB, 4-31, A-3 Functions, recommended with master,

G

FW REVISION, 4-41, A-7

3-10

G and M Code Status
G_CODE_STATUS, A-6
G_GROUP_PROGRAMMED, A-6
M_CODE_STATUS, A-6
M_GROUP_PROGRAMMED, A-6
NUM_G_GROUPS, A-6
NUM_M_GROUPS, A-6
SECONDARY_AUX_WORD, A-6
G_CODE_STATUS, 4-6, 4-56, A-6
G_GROUP_PROGRAMMED, A-6
G_MODAL_GROUP Index, 4-6
G54_WORK_COORD, A-18
G54_WORK_COORD_UNITS, A-18

Hot Link, 4-10

IFP_COPY_CANCEL, A-7
In Process Dresser
 CURRENT_DRESSER_RPM, A-6
 CURRENT_WHEEL_DIAMETER, A-6
 DRESSER_AMOUNT_PER_REV, A-6
 DRESSER_HOLD_STATUS, A-6
 DRESSER_RETRACT_DISTANCE, A-6
 DRESSER_ROLL_DIAMETER, A-7
 DRESSER_STATUS, A-7
 DRESSER_SURFACE_SPEED_RATIO, A-7
 DRESSER_TABLE_UNITS, A-7
 INITIAL_WHEEL_DIAMETER, A-7
 MAX_WHEEL_SPEED, A-7
 MIN_WHEEL_DIAMETER, A-7
 NEW_WHEEL_DIAMETER, A-7

HOME_CALIBRATION_AMOUNT, A-16

Publication 8520-6.6 - August 1999

WARNING_WHEEL_DIAMETER, A-7 WHEEL_WIDTH, A-7	INTERF_FIRST_AXIS_MINUS_AREA_1, A-19
Inactive Items, removing from WatchList, 1-8	INTERF_FIRST_AXIS_MINUS_AREA_2, A-19
INCH/METRIC_MODE Enumeration, 6-9	INTERF_FIRST_AXIS_PLUS_AREA_1, A-19
Index AXIS_NUM, 4-4 G_MODAL_GROUP, 4-6	INTERF_FIRST_AXIS_PLUS_AREA_2, A-19
LOG_SIZE, 6-1 M_MODAL_GROUP, 4-6	INTERF_SECOND_AXIS_MINUS_AREA_1 , A-19
MAX_BLOCK_TRANSFER, 6-1 MAX_CUSTOM_DIM, 6-1	INTERF_SECOND_AXIS_MINUS_AREA_2 , A-19
MAX_NUMBER_POCKETS, 6-1 MAX_NUMBER_RING_DEVICES, 6-1 MAX_OFFSETS, 6-1	INTERF_SECOND_AXIS_PLUS_AREA_1, A-19
MAX_PAL_MESSAGES, 6-1 MAX_PAXES, 6-1	INTERF_SECOND_AXIS_PLUS_AREA_2, A-19
MAX_REMOTE_IO, 6-1	INTERF TOOL NUM, A-19
MAX_SLOTS, 6-1 MAX_TOOL_ENTRIES, 6-1	INTIAL WHEEL DIAMETER, A-7
MAX_TOOL_ENTRIES, 6-1	- -
MAX WORK COORD, 6-1	Italian language.bas, 3-7
MEM_DUMP_SIZE, 6-1	printing text, 3-22
NUM_CHANNELS, 6-1	,
NUM_CMDS, 6-1	Item Name, 1-3, 2-2
NUM_CNC_DIRECTORIES, 4-4, 6-1 NUM_COM2A_PARAMS, 6-1	
NUM DEVICES, 6-1	J
NUM DISP LINES, 6-1	•
NUM_FEATURES, 6-1	JunctionBox, used with the BDS, 1-7
NUM_MSGS, 6-1	
NUM_OEM_MSGS, 6-1	V
NUM_OPTION_SLOTS, 6-1 NUM PP FILES, 4-7	K
NUM_FF_FILES, 4-7 NUM_VIRTUAL_NAMES, 6-1	Keyboard
OFFSET NUM, 4-8	adding softkeys, 3-11
SERVO_MODULES, 4-5	softkey input, 3-7
SERVO_NUM, 4-5	Keyboard Input, system form, 3-6
SETUP_BUFFERS, 4-7 SPINDLE NUM, 4-4	KeyPressed, form, 3-10
TOOL NUM, 4-8	Killing Inactive Items, RSJunctionBox, 1-7
Index Omission, 4-3	Talling Indulve Items, Houdifelionbox, 17
INDEX UART MAX BAUD MODE, 4-32	
Indexes, for data items, 4-3	L
Initialize Forms, subroutine, 3-10	LANGUAGE.BAS, 3-7
	Languages, printing, 3-22
INITIALIZE_AXISCAL_TABLE, 5-10, B-1	Lathe Data Items, 4-8
INITIALIZE_DEVICE_SETUP, B-2	·
INPUT_MDI_STRING, 5-22, B-3	LEVEL_2_STATUS_PORTA, 4-31, A-3
INSERT_AXISCAL_POINT, 5-11, B-1	LEVEL_2_STATUS_PORTB, 4-32, A-3
Installing, RSData, 3-3	LIMIT2_LOWER_LIMITS, A-19
Installing , RSJunctionBox, 3-3	LIMIT2_UPPER_LIMITS, A-19

LIMIT3_LOWER_LIMITS, A-20

Installing BDS Source Code, 3-2

LIMIT3 UPPER LIMITS, A-20 LINE 1 MESSAGE DATA, 4-34, A-4 Link automatic, 4-10 manual, 4-9 notify, 4-10 Link Type Attribute, 4–9 Linking CreateDataLink subroutine, 3-10 DisplayRows subroutine, 3-10 Linx, RSLinx Lite, 1-6 LoadScreenForm, 3-19 LOG SIZE Index, 6-1 Logical vs Physical Axes, 4-15 LOGICAL AXIS ZONE GROUP, 4-63, A-20 LOT_SIZE, A-12 М

M CODE STATUS, 4-6, A-6 M GROUP PROGRAMMED, A-6, A-17 M_MODAL_GROUP Index, 4-6 MACHINE TYPE, A-8 MACHINE TYPE Enumeration, 6-8 Main, MDI form, 3-6 MAINMDI form, 3-7 Manual Items, errors on, 1-6 Manual Link Type, 4-9 MARKER STATUS, A-16 MASTER.FRM, 3-8 Max Characters, in prompt, 3-20 MAX BLOCK TRANSFER Index, 6-1 MAX_CUSTOM_DIM Index, 6-1 MAX_GEOM_OFFSET, A-9 MAX GEOM OFFSET CHANGE, A-9 MAX_GEOM_RADIUS, A-9 MAX_NEGATIVE_TORQUE, A-16 MAX NUMBER POCKETS Index, 6-1 MAX_NUMBER_RING_DEVICES Index, 6-1 MAX_OFFSETS Index, 6-1 MAX PAL MESSAGES Index, 6-1 MAX POSITIVE TORQUE, A-16

MAX RADIUS CHANGE, A-9 MAX RAXES Index, 6-1 MAX REMOTE IO Index, 6-1 MAX SLOTS Index, 6-1 MAX TOOL ENTRIES Index, 6-1 MAX_TOOL_GROUPS Index, 6-1 MAX_WEAR_OFFSET, A-9 MAX_WEAR_OFFSET_CHANGE, A-9 MAX_WEAR_RADIUS, A-9 MAX WHEEL SPEED, A-7 MAX WORK COORD Index, 6-1 MDI, main source code, 3-6 MEASURE_TOOL_GEOM, 5-31, B-3 MEASURE_TOOL_WEAR, 5-32, B-3 MEASURE WHEEL GEOM, 5-32, B-3 MEM DUMP SIZE Index, 6-1 MEMORY DUMP ADDRESS, A-10 MEMORY_DUMP_DATA, A-10 Menu, print enable, 3-22 MID START ACTION Enumeration, 6-8 MID START TYPE Enumeration, 6-8 Mill Data Items, 4-8 MILL_MAX_GEOM_OFFSET, A-9 MILL_MAX_GEOM_OFFSET_CHANGE, A-9 MILL MAX WEAR OFFSET, A-9 MILL MAX WEAR OFFSET CHANGE, MIN WHEEL DIAMETER, A-7 Miscellaneous CALCULATE, B-2 CANCEL MESSAGE, B-2 CLEAR ACTIVE ERRORS, B-2 CLEAR CYCLE TIME, B-2 CLEAR DEBUG MONITOR, B-2 CLEAR ERROR LOG, B-2 CLEAR POWER ON TIME OVERALL, B-3 CLEAR RUNTIME, B-3 INPUT MDI STRING, B-3 RELINQUISH CONTROL, B-3 REQUEST_CONTROL, B-3 RESET MAX TIMES, B-3 STORE OEM MESSAGE, B-3 Miscellaneous Commands

CALCULATE, 5-21

CANCEL MESSAGE, 5-21 MODE ACTIVE Enumeration, 6–9 CLEAR ACTIVE ERRORS, 5-21 MODE FEED Enumeration, 6-9 CLEAR CYCLE TIME, 5-22 MODE INCH/METRIC Enumeration, 6-9 CLEAR ERROR LOG, 5-22 CLEAR POWER ON TIME OVERALL, MODIFYING AMP, 5-4, B-1 5-22 MsgBox, to report errors, 3-26 CLEAR RUNTIME, 5-22 CLEAR_WORKPIECES_CUT_OVERALL Multiprocess , 5-22 for commands, 5-2 INPUT MDI STRING, 5-22 selecting for commands, 5-2 REFORMAT MEMORY, 5-23 selecting for data items, 4-1 RELINQUISH CONTROL, 5-23 Multiprocess Systems, data items for, 4-14 REQUEST CONTROL, 5-23 RESET MAX TIMES, 5-24 STORE OEM MESSAGE, 5-24 Ν Miscellaneous Data COPYRIGHT DATE, 4-38 N WORD, A-14 DATE, 4-39 Network, loading, 4-11 FW REVISION, 4-41 PROCESS CHANGE REQUEST, 4-40 NEW WHEEL DIAMETER, A-7 PROCESS NAMES, 4-41 NEXT AXISCAL AXIS, B-1 PRODUCT ID, 4-40 Notify Link Type, 4–10 SERVO FW REVISION, 4-42 TIME, 4-39 NUM 1394 RACKS, A-15 Miscellaneous System Information NUM_AMP_PARAMETERS, A-14 SYSTEM STATE, A-8 NUM_AXES, A-15 TIME, A-8 NUM CHANNELS Index, 6-1 Miscellaneous System Information BOOT_FW_REVISION, A-7 NUM CMDS Index, 6-1 CALCULATION RESULTS, A-7 NUM CNC DIRECTORIES Index, 4-4, CONTROLLING OCI, A-7 COPYRIGHT DATE, A-7 NUM COM2A PARAMS Index, 6-1 DATASCOPE_DATA, A-7 DATE, A-7 NUM DEVICES Index, 6-1 DOWNLOAD IN PROGRESS, A-7 NUM_DISP_LINES index, 6-1 ESTOP_STATE, A-7 FW REVISION, A-7 NUM FEATURES Index, 6-1 IFP COPY CANCEL, A-7 NUM FILES, 4-5, 4-53, A-12 MACHINE TYPE, A-8 NUM_G_GROUPS, A-6 NUM OPTIONS, A-8 NUM PROCESSES, A-8 NUM_M_GROUPS, A-6 NUM PROG AXES, A-8 NUM MESSAGE GROUPS, A-4 NUM_PROG_AXES_PLUS_SKEWSLAV ES, A-8 NUM_MONITORED_SERVOS, A-15 OEM MESSAGE 1, A-8 NUM MSGS Index, 6-1 OEM_MESSAGE_2, A-8 NUM_OEM_MSGS Index, 6-1 OEM MESSAGE 3, A-8 OPTION SELECTED, A-8 NUM_OPTION_SLOTS Index, 6-1 OPTION SLOT NAME 1, A-8 NUM OPTIONS, A-8 OPTION SLOT NAME 2, A-8 OPTION SLOT REV 1, A-8 NUM_PATCHABLE_AMP_PARAMETERS, OPTION SLOT REV 2, A-8 PROCESS_CHANGE_REQUEST, A-8 NUM PATCHAPBLE_AMP_PARAMETERS PROCESS NAMES, A-8 , 4–17 PRODUCT ID, A-8 NUM_POCKETS, A-14

SERVO FW REVISION, A-8

NUM PP FILES Index, 4-7 MEASURE TOOL GEOM, 5-31 MEASURE TOOL WEAR, 5-32 NUM PROCESS, 4-62 MEASURE WHEEL GEOM, 5-32 NUM PROCESSES, A-8 Offset Data NUM PROG AXES, A-8 ACTIVE_TOOL_GEOM_NUM, 4-43, A-8 NUM PROG AXES PLUS EXTRA, A-15 ACTIVE TOOL LENGTH AXIS LOGIC NUM_PROG_AXES_PLUS_SKEWSLAVES AL BIT PATTERN, 4-43, A-8 , A-8 ACTIVE_TOOL_RADIUS_NUM, 4-44, A-8 NUM RING DEVICES, A-11 ACTIVE TOOL WEAR NUM, 4-44, NUM_SERVOS, A-15 A-8 NUM SERVOS MODULES, A-15 AMPED TOOL LENGTH AXIS LOGIC AL_BIT_PATTERN, 4-45, A-8 NUM_SERVOS_PLUS_SPINDLES, A-15 D WORD, A-8 NUM_SETUP_BUFFERS, A-14 DRILLING AXIS LOGICAL BIT PATTE RN, 4-45, A-8 NUM SKEWSLAVES, A-15 H WORD, A-8 NUM_SPINDLES, 4-60, A-17 MAX GEOM OFFSET, A-9 NUM TOOLS, A-9 MAX GEOM OFFSET CHANGE, A-9 MAX_GEOM_RADIUS, A-9 NUM VIRTUAL NAMES Index, 6-1 MAX RADIUS CHANGE, A-9 Number, screen pointer, 3-17 MAX WEAR OFFSET, A-9 MAX WEAR OFFSET CHANGE, A-9 MAX WEAR RADIUS, A-9 O MILL MAX GEOM OFFSET, A-9 MILL MAX GEOM OFFSET CHANGE, OCL A-9 MILL MAX WEAR OFFSET, A-9 commands overview, 5-1 MILL MAX WEAR OFFSET CHANGE, overview. 1-1 A-9 WatchList, 4-11 NUM TOOLS, A-9 OCI Basic Display Set, installing source, T WORD, A-9 3-3 TOOL ENTRY UNITS, A-9 OCI Data Server, defined, 1-3 TOOL LENGTH GEOM OFFSETS, A-9 TOOL LENGTH WEAR OFFSETS, OCI Source Code. See BDS A-10 OCX, RSData in source code, 3-3 TOOL_ORIENTATION, A-10 TOOL RADIUS GEOM OFFSETS, OEM MESSAGE 1, A-8 A-10 OEM MESSAGE 2, A-8 TOOL RADIUS WEAR OFFSETS, OEM_MESSAGE_3, A-8 A-10 WHEEL_GEOM_OFFSETS, A-10 Offset Commands OFFSET NUM Index, 4-8 ACTIVATE TOOL GEOM, 5-24 ACTIVATE TOOL LENGTH, 5-25 Offsets ACTIVATE TOOL RADIUS, 5-25 ACTIVATE TOOL GEOM, B-3 ACTIVATE_TOOL_WEAR, 5-26 ACTIVATE TOOL LENGTH, B-3 ACTIVATE WHEEL GEOM, 5-26 ACTIVATE_TOOL_RADIUS, B-3 ACTIVATE WHEEL RADIUS, 5-27 ACTIVATE TOOL WEAR, B-3 BACKUP ALL OFFSETS, 5-27 ACTIVATE WHEEL GEOM, B-3 BACKUP INTERF TABLE, 5-28 ACTIVATE WHEEL RADIUS, B-3 BACKUP_RADIUS_TABLE, 5-28 BACKUP ALL OFFSETS, B-3 BACKUP TOOL GEOM, 5-29 BACKUP INTERF TABLE, B-3 BACKUP TOOL WEAR, 5-29

BACKUP WHEEL GEOMETRY, 5-30

BACKUP WORK COORD, 5-30

COPY OFFSET, 5-31

BACKUP RADIUS TABLE, B-3

BACKUP TOOL GEOM, B-3

BACKUP TOOL WEAR, B-3

BACKUP_WHEEL_GEOMETRY, B-3 BACKUP_WORK_COORD, B-3 COPY_OFFSET, B-3 MEASURE_TOOL_GEOM, B-3 MEASURE_TOOL_WEAR, B-3 MEASURE_WHEEL_GEOM, B-3 OLE, RSData custom, 3-3 Omission of Index, 4-3 Open Control Interface. See OCI Operating Mode	FG_CRITICAL_AVERAGE, A-10 FG_CRITICAL_MAX, A-10 FG_TOTAL_AVERAGE, A-10 FG_TOTAL_MAX, A-10 MEMORY_DUMP_ADDRESS, A-10 MEMORY_DUMP_DATA, A-10 NUM_RING_DEVICES, A-11 PAL_REVISION, 4-50, A-11 PALLOC_FREE_SPACE, A-11 REMOTE_INPUT_DATA, A-11 REMOTE_OUTPUT_DATA, A-11 RING_IO_CARD_TYPE, A-11
ACTIVE_MODE, A-10 ACTIVE_SCALE_INDICATOR, 4-47, A-10 ACTIVE_UNITS, 4-46, A-10 AXIS_RAD_DIA_MODE, 4-46, A-10	RING_IO_DEVICE_ADDRESS, A-11 RING_IO_DEVICE_INPUT_DATA, A-11 RING_IO_DEVICE_OUTPUT_DATA, A-11 RING_IO_DEVICE_TYPE, A-11
OPT NUMS.BAS, 3-7	PAL Messages, source code form, 3-7
OPTION SELECTED, A-8	
OPTION_SELECTED_INDICES Enumeration, 6-10	FINE_SCAN_TIME_AVG, A-11 PAL/Logic Data, A-10 \$, A-10
OPTION_SLOT_NAME_1, A-8	φ, A-10 !, A-10
OPTION_SLOT_NAME_2, A-8	%, A-10
OPTION_SLOT_REV_1, A-8	AMPED_FINE_SCAN_TIME, A-11 BLOCK CYCLE TIME, A-11
OPTION_SLOT_REV_2, A-8	BLOCK CYCLE TIME MAX, A-11
Options, OP_NUMS.bas, 3-7	COARSE_SCAN_TIME, A-11
Overview BDS screen construction, 3–6 BDS source code, 3–1 command requests, 1–5	FINE_SCAN_TIME_AVG, A-11 FINE_SCAN_TIME_MAX, A-11 FOREGROUND_LOGIC_TIME, A-11 FOREGROUND_LOGIC_TIME_MAX, A-11
error conditions, 1–5 OCI system, 1–1	PAL_REVISION, 4-50, A-11
RSLinx, 1-6	PALLOC_FREE_SPACE, A-11
PAL Commands	Paramacro Commands BACKUP_ALL_PARAMETERS, 5-35, B-4, B-5 BACKUP_COM1_PARAMETERS, 5-36, B-4, B-5
TRANFER_PAL_FROM_PORTA, 5-33	BACKUP_COM2A_PARAMETERS,
TRANFER_PAL_TO_PORTA, 5-34 TRANSFER PAL FROM PORTA, B-3	5-36, B-4, B-5 BACKUP COM2B PARAMETERS, B-4,
TRANSFER_PAL_FROM_PORTB, 5-34, B-3	B-5 BACKUP_COM2V_PARAMETERS,
TRANSFER_PAL_TO_PORTA, B-3 TRANSFER_PAL_TO_PORTB, 5-35, B-4	5-37 BACKUP_SHARED_PARAMETERS, 5-37, B-4, B-5 CLEAR COM NAME, B-4, B-5
PAL Data	ZERO ALL COM VALUES, B-4, B-5
! user-defined globals, 4-48 \$ system flags, 4-49	Paramacro Data, SP variable number,
% I/O Variables, 4-47	4-51
BLOCK_TRANSFER_READ_DATA,	Paramacro Items
A-10 BLOCK_TRANSFER_WRITE_DATA, A-10	COM2A_PARAMETER_NAMES, A-11 SP, A-11

Parent, main MDI, 3-6	Part Program Directory Items
Parity Enumeration, 6-12	ACTIVE_PART_PROGRAM, A-11
Part Program, filename string, 6-19	ACTIVE_SUB_PROGRAM, A-11 AVAILABLE MEMORY, A-11
0 ,	CYCLE TIME, A-11
Part Program Block Data, ACTIVE PART PROGRAM BLOCKS,	FILE NAME, A-12
4-54	FILE SIZE, A-12
	LOT SIZE, A-12
Part Program Commands	NUM FILES, A-12
ACTIVATE_PART_PROGRAM, 5-38,	PART PROGRAM COMMENT, A-12
B-4, B-5	PART PROGRAM SOURCE, A-12
CHECK_IF_FILE_PRESENT, B-4, B-5 COPY MEM TO MEM, 5-39, B-4, B-6	POWER_ON_TIME_AFTER_RESET,
COPY MEM TO PORTA, 5-40	A-12
COPY MEM TO PORTA, B-4, B-6	POWER_ON_TIME_OVERALL, A-12
COPY MEM TO PORTB, 5-40, B-4,	RUNTIME, A-12
B-6	SELECTED_PART_PROGRAM_DIR,
COPY PART PROGRAM, 5-38, B-4,	A-12
B-5	SUB_PROGRAM_REPEAT_COUNT,
COPY_PART_PROGRAM_FOR_EDIT,	A-12
B-4, B-6	WORKPIECES_CUT_AFTER_RESET, A-12
COPY_PORTA_TO_MEM, 5-41, B-4,	WORKPIECES CUT OVERALL, A-12
B-6	WORKPIECES REMAINING, A-12
COPY_PORTB_TO_MEM, 5-42, B-4,	-
B-6 DEACTIVATE PART PROGRAM, 5-43,	Part Program Editor, directory location, 3-2
B-4, B-6	Part Program Execution
DELETE PART PROGRAM, 5-43, B-4,	ENTER_MIDSTART_SEARCH_MODE,
B-6	5-51
ENTER_PART_PROGRAM_SEARCH_M	EXECUTE_MIDSTART_SEARCH, 5-51 SET MIDSTART SEARCH PATTERN,
ODE, 5-43, B-4, B-6	5-52
EXECUTE_PART_PROGRAM_SEARCH	STOP QUICK CHECK, 5-52
, 5-44, B-4, B-6	SYNTAX QUICK CHECK, 5-53
REFORMAT_MEMORY, B-4, B-6 RENAME PART PROGRAM, 5-44,	Part Program Execution Commands
B-4, B-6	ENTER MIDSTART SEARCH MODE,
RESTART PART PROGRAM, 5-45	B-5, B-6
SEQUENCE STOP PART PROGRAM,	EXECUTE MIDSTART SEARCH, B-5,
5-45, B-4, B-6	B-6
SET_DIRECTORY, 5-46, B-4, B-6	SET_MIDSTART_SEARCH_PATTERN, B-5, B-6
SET_PART_PROGRAM_COMMENT,	B-5, B-6
5-46, B-4, B-6	STOP_QUICK_CHECK, B-5, B-6
SET_PART_PROGRAM_INPUT_DEVIC	SYNTAX_QUICK_CHECK, B-5, B-6
E, 5-47, B-4, B-6 SET PART PROGRAM SEARCH PATT	Part Program Rotation and Scaling
ERN, 5-47, B-4, B-6	CURRENT_SCALE_FACTORS, A-12
VERIFY PART PROGRAM, 5-48, B-4,	DEFAULT_SCALE_FACTORS, A-12
B-6	EXT_ROT_ANGLE, A-12
VERIFY_WITH_PORTA, 5-49, B-4, B-6	EXT_ROT_FIRST_AXIS, 4-55, A-12
VERIFY WITH PORTB, 5-50, B-5,	EXT_ROT_FIRST_AXIS_CENTER, A-12
B-6	EXT_ROT_FIRST_AXIS_VECTOR,
Part Program Directory Data	A-12 EXT ROT SECOND AXIS, 4-55, A-12
AVAILABLE_MEMORY, 4-51	EXT ROT SECOND AXIS CENTER,
FILE NAME, 4-52	A-12
NUM_FILES, 4-53	EXT_ROT_SECOND_AXIS_VECTOR,
PART_PROGRAM_COMMENT, 4-53	A-12
SELECTED_PART_PROGRAM_DIR,	G_CODE_STATUS, 4-56
4-52	PROG_ROT_ANGLE, A-13

	SCALING_CENTER, A-13	PORT_STOP_BITS, 4-24, A-3
	PART_PROGRAM_COMMENT, 4-53,	PORT_STOP_BITS Enumeration, 6-15
	A-12	PORT_TAPE_MULTI Enumeration, 6-15
	PART_PROGRAM_SOURCE, A-12	PORT_TIMEOUT_VALUE, 4-29, A-3
	Patch AMP, writing, 4-16	PORT_TIMEOUT_VALUE Enumeration,
	PD Pointers, source code, 3-4	6–15
	PD.ABL Pointer, source code, 3-4	PORT_TYPE, 4-22, A-3
	PD_NUMS.BAS, 3-7	PORT_TYPE Enumeration, 6-12
	PD_Pointers, printing, 3-22	PORTA_DEVICE Enumeration, 6-13
	Physical vs Logical Axes, 4-15	PORTB_DEVICE Enumeration, 6-14
	PLANE_AXES_INDICES, A-19	Position Data
	PLANE_AXIS_INDICES, 4-57	AXIS_PRESENT_LOGICAL_BIT_PATTE RN, 4-56
	Pointer adding screen, 3-17	PLANE_AXIS_INDICES, 4-57
	softkey rows, 3-15	ROLLOVER_AXIS_LOGICAL_BIT_PATT ERN, 4-57
	POKE, 4-12	ROTARY_AXIS_LOGICAL_BIT_PATTER
	Example using Visual Basic, 2–3	N, 4-58 SKEW SLAVE ABSOLUTE POSITION,
	inadvertently writing to critical data locations using, 1-5, 4-12	4-59
	Poke, writing errors, 3–26	VIRTUAL_FORMATS, 4-59 VIRTUAL NAMES, 4-58
	PORT_AUTO_FILENAME, 4-25, A-3	Position Information
	PORT_BAUD_RATE, 4-21, A-3	AXIS_FROMATS_INCH, A-13
	PORT_BAUD_RATE Enumeration, 6-11	AXIS_FROMATS_METRIC, A-13 AXIS_POSITION_ABS, A-13
	PORT_COMM_FORMAT Enumeration,	AXIS_POSITION_DTG, A-13
	6–11	AXIS_POSITION_PRG, A-13
	PORT_COMMUNICATION_FORMAT, 4-23, A-3	AXIS_POSITION_TAR, A-13 SKEW SLAVE ABSOLUTE POSITION,
	PORT DATA BITS, 4-25, A-3	A-13
	PORT_DATA_BITS Enumerations, 6-11	POSITION_LOOP_INIT_GAIN, A-17
	PORT ID Enumeration, 6–16	POWER_ON_TIME_AFTER_RESET, A-12
	PORT ID Enumerations, 6-12	POWER_ON_TIME_OVERALL, A-12
	PORT PARITY, 4-23, A-3	PP_SOURCE Enumeration, 6-16
	PORT PARITY Enumeration, 6-12	PR_NUMS.BAS, 3-7
	PORT PERCENT SELECTION, 4-28,	Printing
	A-3	errors, 3-22 prompts and pointers, 3-22
	PORT_PROGRAM_NAME, 4-29, A-3	softkeys and pointers, 3-22
	PORT_PROTOCOL, A-3	text and pointers, 3-22
	PORT_PROTOCOL, 4-21	PrintMenu Global Variable, 3-22
	PORT_PROTOCOL Enumeration, 6-14	PROBE_APPROACH_DISTANCE, A-13
	PORT_REWIND_ON_M02_M03, A-3	PROBE_APPROACH_FEEDRATE, A-13
PORT_REWIND_ON_M02_M30, 4-27 PORT_REWIND_ON_M99, 4-27, A-3		PROBE_ENTRY_UNITS, A-13
		PROBE_FEEDRATE, A-14
	PORT_STOP_AT_PROGRAM_END, 4-26,	PROBE_LENGTH, A-14
	A-3	PROBE_RADIUS, A-14

ACTIVE RANDOM TOOL SHAFT POC PROBE TOLERANCE BAND, A-14 KET, A-14 Probing and Skip Cycles NUM AMP PARAMETERS, A-14 DEPTH PROBE FOLLOWING ERROR NUM POCKETS, A-14 , A-13 RT POCKETS NEEDED, A-14 DEPTH PROBE POSITION, A-13 RT SHAFT POCKET, A-14 PROBE_APPROACH_DISTANCE, A-13 RT TOOL NUM, A-14 PROBE APPROACH FEEDRATE, A-13 TM_ACCUMULATED_LIFE, A-14 PROBE_ENTRY_UNITS, A-13 TM ACTIVE ENTRY, A-14 PROBE FEEDRATE, A-14 TM ACTIVE TOOL, A-14 PROBE LENGTH, A-14 TM ACTIVE TOOL GROUP, A-14 PROBE RADIUS, A-14 TM CUTTER COMP NUM, A-14 PROBE TOLERANCE BAND, A-14 TM ENTRY NUM, A-15 **Process** TM EXPECTED LIFE, A-15 selecting for commands, 5-2 TM GRAPHICS TOOL COLOR, A-15 selecting for data items, 4-1 TM GROUP NUM, A-15 setting for commands, 5-2 TM STATUS, A-15 TM TOOL GROUP LIFE TYPE, A-15 Process Select, for data items, 4-14 TM TOOL NUM, A-15 PROCESS CHANGE REQUEST, 4-40, TM TOOL OFFSET NUM, A-15 TM TOOLS PER GROUP, A-15 PROCESS NAMES, 4-41, A-8 TM UPDATE IN PROGRESS, A-15 PRODUCT ID, 4-40, A-8 Read, Example using Visual Basic, 2-2 PROG ROT ANGLE, A-13 Read Requests, 1-4 Program Block Items Read/Write property, data items, 4-2 ACTIVE PART PROGRAM BLOCKS, REFORMAT MEMORY, 5-23, B-4, B-6 A-14 RELINQUISH_CONTROL, 5-23, B-3 N WORD, A-14 NUM_SETUP_BUFFERS, A-14 REMOTE INPUT DATA, A-11 ProgramError, Write Error subroutine, 3-11 REMOTE OUTPUT DATA, A-11 Project, Visual Basic BDS source RENAME PART PROGRAM, 5-44, B-4, installation, 3-3 B-6 Prompt, promptpressed subroutine, 3-10 REPEAT TX SERIAL IO, 5-19, B-2 Prompt Search, 3-20 REPLACE AXISCAL VALUE, 5-11, B-1 **Prompts** REQUEST CONTROL, 5-23, B-3 PR Nums.bas, 3-7 RESET MAX TIMES, 5-24, B-3 text find utility, 3-20 RESTART PART PROGRAM, 5-45 RESTORE AMP, 5-4, B-1 R RESTORE AXISCAL, 5-12, B-1 RACK 1394-SERCOS ADDRESS, A-16 Return Codes, for commands, 5-1 RACK 1394 AXIS MODULE ERRORS, REVERSAL ERROR DISTANCE, A-17 A-16 RING IO CARD TYPE, A-11 RACK_1394_BOARD_NUMBER, A-16 RING_IO_DEVICE_ADDRESS, A-11 RACK 1394 SYSTEM MODULE HW RE RING IO DEVICE INPUT DATA, A-11 VISION, A-15 RING IO DEVICE OUTPUT DATA, A-11 Random Tool. See RT

Random Tool and Tool Life Management ACTIVE_RANDOM_TOOL_NUM, A-14

ETS, A-14

ACTIVE RANDOM TOOL NUM POCK

ROLLOVER AXIS LOGICAL BIT PATTE

RING IO DEVICE TYPE, A-11

RN, 4-57, A-16

ROTARY AXIS LOGICAL BIT PATTERN, SEQUENCE STOP PART PROGRAM, 4-58, A-16 5-45, B-4, B-6 ROTATION EXT STATUS Enumeration, Server. See Data Server Service, 2-1 Rows, adding new softkeys, 3-16 Service Name, 1-3 RSData, installing, 3-3 Servo Information **RSJunctionBox** ANGLED_WHEEL_ALLOWED, A-15 installing, 3-3 AXIS NAME, A-15 used with the BDS, 1-7 AXIS_PRESENT_LOGICAL_BIT_PATTE RN, A-15 RSLinx, overview, 1-6 NUM 1394 RACKS, A-15 RSLinx Configurator Application, 1-4 NUM AXES, A-15 NUM PROG AXES PLUS EXTRA, RT_CUSTOMIZE_TOOL, 5-55, B-5, B-7 Ā-15 RT POCKETS NEEDED, A-14 NUM SERVO MODULES, A-15 NUM SERVOS, A-15 RT SET TOOL NUM, 5-56, B-5, B-7 NUM SERVOS PLUS SPINDLES, RT SHAFT POCKET, A-14 A-15 RT TOOL NUM, A-14 NUM SKEWSLAVES, A-15 RACK 1394 BOARD NUMBER, A-16 RUNTIME, A-12 RACK 1394 MODULE ERRORS, A-16 RX_CHAR_PORTA, 4-30, A-3 RACK 1394 SERCOS ADDRESS, A-16 RX_CHAR_PORTB, 4-30, A-3 RACK 1394 SYSTEM MODULE HW REVISION, A-15 ROLLOVER AXIS LOGICAL BIT PATT S ERN, A-16 ROTARY_AXIS_LOGICAL_BIT_PATTER S WORD, 4-61, A-17 N, A-16 SAVE_DEVICE_SETUP, 5-20, B-2 SERVO NAME, A-16 VIRTUAL AXIS ALLOWED, A-16 Saving, text and prompt changes, 3-21 VIRTUAL FORMATS, A-16 Saving Softkey Changes, 3-18 VIRTUAL_NAMES, A-16 SCALING CENTER, A-13 Servo Parameters SCALING INDICATOR Enumeration, 6-16 AXIS SKEW AMOUNT, A-16 AXISCAL TABLE TYPE, A-3 Scan Time, 4-13 DISTANCE TO MARKER, A-16 Screen Names, SR NUMS.bas, 3-7 FEED FORWARD PERCENT, A-16 FOLLOWING ERROR, A-16 Screen Size, global.bas, 3-7 HOME CALIBRATION AMOUNT, A-16 Screens MARKER STATUS, A-16 adding new pointer, 3-17 MAX NEGATIVE TORQUE, A-16 BDS display forms, 3-6 MAX_POSITIVE_TORQUE, A-16 MASTER.FRM, 3-8 NUM MONITORED SERVOS, A-15 printing pointers, 3-22 PLANE AXES INDICES, A-19 SetSPDPointer, 3-19 POSITION LOOP INIT GAIN, A-17 template, 3-8 REVERSAL ERROR DISTANCE, A-17 SERVO STATUS, A-17 SCRNPOS, data files, 3-4 TORQUE, A-17 Search, text or prompts, 3-20 TORQUE OFFSET_PERCENT, A-17 SEARCH METHOD Enumeration, 6-17 VELOCITY DISCHARGE RATE, A-17 VELOCITY_GAINS_FROM_TABLE, SEARCH TYPE Enumeration, 6-17 A-17 SECONDARY AUX WORD, A-6 VELOCITY INTEGRAL GAIN, A-17 VELOCITY PROPORTIONAL GAIN, SELECTED PART PROGRAM DIR,

A-17

4-52, A-12

Index

SERVO_FW_REVISION, 4-5, 4-42, A-8	BDS overview, 3–5
SERVO_MODULES Index, 4-5	directory structure, 3–3
SERVO_NAME, 4-5, A-16	display form, 3-6 installing, 3-2
SERVO_NUM Index, 4-5	master.frm, 3-8
SERVO_STATUS, A-17	overview, 3-1
SERVO_STATUS Enumeration , 6-17	PAL message form, 3-7 softkey form, 3-7
SET_AXISCAL_PROCESS_NUMBER, B-1	system form, 3-6
SET DIRECTORY, 5-46, B-4, B-6	SP, A-11
SET MIDSTART SEARCH PATTERN,	SP Paramacro Variable, 4-51
5-52, B-5, B-6	Spanish
SET_PART_PROGRAM_COMMENT, 5-46, B-4, B-6	language.bas, 3-7 printing text, 3-22
SET_PART_PROGRAM_INPUT_DEVICE,	SPD Pointer File, source code, 3-4
5-47, B-4, B-6	SPD.ABL Pointer, source code, 3-4
SET_PART_PROGRAM_SEARCH_PATTE RN, 5-47, B-4, B-6	SPD_Pointers, printing, 3-22
SetSPDPointer, to call screens, 3-19	SPD_PTR, current softkey row, 3-13
Setup Menu, activating, 3–12	SPIN_SPD_VALUE, 4-4
SETUP_BUFFERS Index, 4-7	Spindle Data
Single-process Only, 4-8	CONTROLLING_SPINDLE_NUM, 4-60, A-17
SINGLE_TX_SERIAL_IO, 5-20, B-2	NUM_SPINDLES, 4-60, A-17
Size, WatchList buffer, 4–11	S_WORD, 4-61, A-17 SPINDLE DAC COMMAND, 4-60,
SK NUMS.BAS, 3-7	A-17
SKEW SLAVE ABSOLUTE POSITION,	SPINDLE_GEAR_RANGE_MAX_VOLTA GE, A-17
4-59, A-13	SPINDLE_MOTOR_TYPE, 4-61, A-17
Sofkteys, exiting editor, 3-18	SPINDLE SPEED VALUE, 4-61
Softkey, action CASE statement, 3-7	SYNC_SPINDLE_SKEW, A-17
Softkey Constants, PR_Nums.bas, 3-7	SPINDLE_DAC_COMMAND, 4-60, 4-61, A-17
Softkey Editor Utility, 3-11	SPINDLE_GEAR_RANGE_MAX_VOLTAG
Softkey Names, SK_NUMS.bas, 3-7	E, A-17
Softkeys	SPINDLE_MOTOR_TYPE, A-17
adding/changing, 3-11	SPINDLE_NUM Index, 4-4
adding new rows, 3–16 ASoftkeyPressed subroutine, 3–10	SPINDLE_SPEED_VALUE, 4-61
changing text, 3-14	SYNC_SPINDLE_SKEW, A-17
printing pointers, 3-22	SR_NUMS.BAS, 3-7
printing tree, 3-22 row pointer, 3-15	START_SERIAL_IO_MONITOR, 5-20,
saving changes, 3-18	B-2
source code softkey form, 3-7 SPD PTR, 3-13	STOP_AXISCAL, 5-12, B-1
SOFTKEYS.BAS, 3-7	STOP_QUICK_CHECK, 5-52, B-5, B-6
Software, required to edit BDS, 3-1	STOP_SERIAL_IO_MONITOR, 5-21, B-2
Software Options, Opt nums.bas, 3-7	STORE_OEM_MESSAGE, 5-24, B-3
Source Code	Strings
basic modules, 3-7	filename, 6-19

text, 6-20	TM_ACTIVE_TOOL_GROUP, A-14
SUB_PROGRAM_REPEAT_COUNT, A-12	TM_CUTTER_COMP_NUM, A-14
Subroutines	TM_DELETE_ALL, 5-56, B-5, B-7
APromptPressed, 3-10	TM_DELETE_GROUP, 5-56, B-5, B-7
ASoftkeyPressed, 3-10 CreateDataLinks, 3-10	TM_DELETE_TOOL, 5-57, B-5, B-7
DisplayRows, 3-10	TM_ENTRY_NUM, A-15
Form_Activate, 3-10 Form Unload, 3-10	TM_EXPECTED_LIFE, A-15
InitForm, 3-10	TM_GRAPHICS_TOOL_COLOR, A-15
InitformLevel variables, 3-10 LoadScreenForm, 3-19	TM_GRAPHICS_TOOL_COLOR Enumeration, 6-19
recommended, 3-10 using CNCCommand, 5-3	TM_GROUP_NUM, A-15
Syntax	TM_INSERT_TOOL, 5-57, B-5, B-7
filename string, 6-19	TM_STATUS, A-15
for commnads, 5-2 text strings, 6-20	TM_STATUS Enumeration, 6-18
SYNTAX QUICK CHECK, 5-53, B-5, B-6	TM_TOOL_GROUP_LIFE_TYPE, A-15
System Form, source code, 3-6	TM_TOOL_NUM, A-15
System Information Data	TM_TOOL_OFFSET_NUM, A-15
ESTOP STATE, 4-62	TM_TOOLS_PER_GROUP, A-15
NUM_PROCESS, 4-62	TM_UPDATE_IN_PROGRESS, A-15
VELOCITY_GAINS_FROM_TABLE, 4-63	Tool Management. See TM
System Messages, display on system form, 3-6	Tool Management/Random Tool ACTIVATE_RANDOM_TOOL, 5-53,
SYSTEM_SCAN_TIME, A-2	B-5, B-6 BACKUP_RANDOM_TOOL, 5-54, B-5,
SYSTEM_STATE Enumeration, 6-18	B-6
SYTEM_STATE, A-8	BACKUP_TOOL_MANAGE, 5-54, B-5, B-6
_	RT_CUSTOMIZE_TOOL, 5-55, B-5, B-7
	RT_SET_TOOL_NUM, 5-56, B-5, B-7
T_WORD, A-9	TM_DELETE_ALL, 5-56, B-5, B-7 TM_DELETE_GROUP, B-5, B-7
TARGET_DIR Enumeration, 6-18	TM_DELETE_TOOL, 5-57, B-5, B-7
Template, MASTER.FRM, 3-8	TM_INSERT_TOOL, 5-57, B-5, B-7
Text	TOOL_ENTRY_UNITS, A-9
changing softkeys, 3-14	TOOL_LENGTH_GEOM_OFFSETS, A-9
language.bas, 3-7	TOOL_LENGTH_WEAR_OFFSETS, A-10
Text Find Utility, 3–20	TOOL_NUM Index, 4-8
Text Search, 3-20	TOOL_ORIENTATION, A-10
TEXT_STRING, 6-20	TOOL_RADIUS_GEOM_OFFSETS, A-10
THREADING_PULLOUT_ANGLE, A-6	TOOL_RADIUS_WEAR_OFFSETS, A-10
THREADING_PULLOUT_DISTANCE, A-6	Tools Required, to edit Basic Display Set,
TIME, 4-39, A-8	3-1 T : N = 4.0.00
TM_ACCUMULATED_LIFE, A-14	Topic Name, 1–3, 2–2
TM_ACTIVE_ENTRY, A-14	TORQUE, A-17

TORQUE_OFFSET_PERCENT, A-17

TM_ACTIVE_TOOL, A-14

TRANSFER AMP FROM PORTA, 5-4, B-1 TRANSFER AMP FROM PORTB, 5-5, B-1 TRANSFER AMP TO PORTA, 5-5, B-1 TRANSFER AMP TO PORTB, 5-6, B-1 TRANSFER AXISCAL FROM PORTA, 5-12, B-1, B-2 TRANSFER_AXISCAL_FROM_PORTB, 5-13, B-1 TRANSFER AXISCAL TO PORTA, 5-13 TRANSFER_AXISCAL_TO_PORTB, 5-14, TRANSFER_HOMECAL_TO_PORTA, 5-6, B-1 TRANSFER_HOMECAL_TO_PORTB, 5-7, B-1 TRANSFER PAL FROM PORTA, 5-33, TRANSFER_PAL_FROM_PORTB, 5-34, B-3 TRANSFER PAL TO PORTA, 5-34, B-3 TRANSFER PAL TO PORTB, 5-35, B-4 TRANSFER REVERSAL ERROR TO PO RTA, 5-7, B-1 TRANSFER REVERSAL ERROR TO PO RTB, 5-8, B-1 Tree, Softkey, PD Nums.bas, 3-7 Two Process Systems, 4-14 Two-dimensional Arrays, 4-3

U

TX_CHAR_PORTB, A-3

UART_A/B_BUSY_STATUS Enumeration, 6-19

UART_A_BUSY_STATUS, A-3

UART_B_BUSY_STATUS, A-3

UART_MAX_BAUD_MODE, A-4

Unload, Form_Unload subroutine, 3-10

Update Rate. See AMP Reference Manual

UPDATE_AMP, 5-8, B-1

Utilities, text find, 3-20

V

Variables, initialize subroutine, 3-10 VBP, Visual Basic ABOCI.VBP, 3-3 VELOCITY_DISCHARGE RATE, A-17 VELOCITY GAINS FROM TABLE, 4-63, A-17 VELOCITY_INTEGRAL_GAIN, A-17 VELOCITY PROPORTIONAL GAIN, A-17 VERIFY PART PROGRAM, 5-48, B-4, B-6 VERIFY_WITH_PORTA, 5-49, B-4, B-6 VERIFY WITH PORTB, 5-50, B-5, B-6 VIRTUAL_AXIS_ALLOWED, A-16 VIRTUAL FORMATS, 4-59, A-16 VIRTUAL NAMES, 4-58, A-16 Visual Basic BDS source code overview, 3-1 overview, 1-7 Visual Basic Source Code. See BDS

W

Warm Links, 4-10

WARNING WHEEL DIAMETER, A-7 Watch List, defined, 4-11 WatchList removing inactive items, 1-8 update rate, 4-13 WatchList Buffer Size, 4-11 WHEEL GEOM OFFSETS, A-10 WHEEL WIDTH, A-7 Work Coordinate System Information ACTIVE PLANE AXES, A-18 EXTERNAL WORK COORD, A-18 EXTERNAL WORK COORD UNITS, A-18 G54 WORK COORD, A-18 G54 WORK COORD UNITS, A-18 G55 WORK COORD, A-18 G55 WORK COORD UNITS, A-18 G56 WORK COORD, A-18 G56_WORK_COORD_UNITS, A-18 G57 WORK COORD, A-18

G57 WORK COORD UNITS, A-18 G58_WORK_COORD_UNITS, A-18 G59 WORK COORD, A-18 G59 WORK COORD UNITS, A-18 G591 WORK COORD, A-18 G591 WORK COORD UNITS, A-18 G592_WORK_COORD, A-18 G592_WORK_COORD_UNITS, A-18 G593 WORK COORD, A-19 G593 WORK COORD UNITS, A-19 WORK_COORD_LABELS, A-19 Work Coordinate System Information', G58 WORK COORD, A-18 WORK_COORD_LABELS, A-19 WORKPIECES_CUT_AFTER_RESET, A-12 WORKPIECES CUT OVERALL, A-12 WORKPIECES_REMAINING, A-12 Write, Example using Visual Basic, 2-3 Write Requests, 1-4 Write/Read Property, data items, 4-2 WRITE ERROR CODE, A-4 Write2ErrorFile variable, 3-27 Writing Data Items, poke, 4-12

Z

ZERO_ALL_COM_VALUES, B-4, B-5 Zones and Overtravels INTERF FIRST AXIS MINUS AREA 1, A-19 INTERF_FIRST_AXIS_MINUS_AREA_2, A-19 INTERF_FIRST_AXIS_PLUS_AREA_1, INTERF_FIRST_AXIS_PLUS_AREA_2, A-19 INTERF_SECOND_AXIS_MINUS_AREA 1, A-19 INTERF_SECOND_AXIS_MINUS_AREA 2, A-19 INTERF_SECOND_AXIS_PLUS_AREA_ 1, A-19 INTERF_SECOND_AXIS_PLUS_AREA_ 2, A-19 INTERF TOOL NUM, A-19 LIMIT2 LOWER_LIMITS, A-19 LIMIT2 UPPER LIMITS, A-19 LIMIT3 LOWER LIMITS, A-20 LIMIT3 UPPER LIMITS, A-20 LOGICAL_AXIS_ZONE_GROUP, 4-63, A-20

Allen-Bradley

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's leading technology companies.

Worldwide representation. -

Argentina • Australia • Australa • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia-CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Publication 8520-6.6 - August 1999 PN 176714