$Math\ 321\ Fall\ 2011$

Homework 2

Due: September 9, 2011

You are welcome to work together but everyone needs to write up **distinct** solutions. If you use any books outside of our textbook or other people, please make sure to give them credit. Make sure your solutions are complete. If your handwriting is atrocious, I am happy to give you a basic introduction to LATEX.

- 1. pg 43 # 1. If a and b are both nonzero and $b \mid a$ then $|b| \leq |a|$. Hence if a and b are both positive and $b \mid a$ then $b \leq a$.
- 2. pg 45 #2-4. Assume a and b are both positive integers and $a \nmid b$ and $b \nmid a$.
 - (a) Define $q_i, r_i \in \mathbb{Z}$ by

$$a = q_1b + r_1 \qquad 0 \le r < b$$

$$b = q_2r_1 + r_2 \qquad 0 \le r_2 < r_1$$

$$r_i = q_{i+2}r_{i+1} + r_{i+2} \qquad i \in \mathbb{N}, i \ge 1.$$

Prove there exists a positive integer n such that $r_{n+1} = 0$

- (b) Prove that $gcd(a,b) = gcd(b,r_1) = gcd(r_i,r_{i+1})$ for $1 \le i \le m-1$, hence that $r_m = gcd(a,b)$.
- (c) Use (a) and (b) to find gcd(991, 236).
- 3. pg. 69 # 2. Let $\mathbb{Q}_0 = \mathbb{Q} \{0\}$.
 - (a) Prove that \mathbb{Q}_0 is a group with respect to multiplication.
 - (b) Prove that the only elements of finite order in \mathbb{Q}_0 are 1 and -1. What is o(1)? o(-1)?
- 4. pg 71 # 1. Let z be an element in a group G and let o(z) = mn. Prove that there exist elements $a, b \in G$ such that ab = ba and o(a) = n, o(b) = m. (Hint: Let $a = z^m$ and $b = z^n$.)
- 5. pg 74. #1. Prove that every cyclic group is abelian.
- 6. Suppose a and b are integers that divide the integer c. If a and b are relatively prime, show that ab divides c. Show, by example, that if a and b are not relatively prime, then ab need not divide c.
- 7. Prove that every prime greater than 3 can be written in the form 6n + 1 or 6n + 5.
- 8. Prove that there are infinitely many primes. (Hint: Let $p_1, p_2, ..., p_n$ be primes. Show that $p_1p_2 \cdots p_n + 1$ is divisible by none of these primes.)