Group No. 16

Manjal Shah(202003037)

Piyush Parmar(202003038)

Lab No. 10(29/10/2021)

Online Learning Platform Management System

❖ Requirements :-

- 1) Find the name of the course taught by an educator having EID=5.
 - ➤ Query in relational algebra :

$$\Pi_{\text{course name}}(\sigma_{\text{(eid=5)}} \text{Course})$$

➤ SQL query :

select course_name from course where eid = 5

- 2) Find Email IDs of educators working in Google.
 - ➤ Query in relational algebra :

$$\Pi_{\text{email id}}(\sigma_{(\text{Company Name='Google'})} \text{Educator})$$

select email_id from educator where company_name = 'Google'

- 3) Find the names of the cities of students who have taken the course having CID=MA101
 - ➤ Query in relational algebra :

$$\Pi_{\text{city}}(\sigma_{(\text{CID='MA101'})}(Student \bowtie Learn))$$

➤ SQL query :

select city from learn natural join student where cid = 'MA101'

- 4) Find contact numbers of all female students.
 - ➤ Query in relational algebra :

 $\Pi_{\text{contact no.}}(\sigma_{(\text{gender='F'})}(\text{Student_Contact} \bowtie \text{Student}))$

➤ SQL query:

select contact_no from student natural join student_contact where
gender = 'F'

- 5) Find name of all the courses who belongs to domain "Competitive programming"
 - ➤ Query in relational algebra :

 $\Pi_{course_name.}(\sigma_{(d.name='Competitive\ Programming')}(Domain\ \theta_{(Domain.DID} = course.Domain\ ID)} Course\))$

select course_name from course join domain on course.domain_id = domain.did and dname = 'Competitive Programming'

- 6) Find the total number of students who have taken a course on "DSA in c++".
 - ➤ Query in relational algebra :

(course_name)
$$\mathcal{F}_{\text{(count(sid),course_name)}}$$
 ($\sigma_{\text{(course_name = 'DSA in C++')}}$ (course \bowtie learn))

➤ SQL query :

select course_name,count(sid) from course natural join learn where course_name = 'DSA in C++' group by(course_name)

- 7) Find rating for an educator having eid=2.
 - ➤ Query in relational algebra :

$$\Pi_{(\text{ eid, rating })}(\sigma_{(\text{eid=2})} \, \text{educator})$$

select eid, rating from educator where eid=2

- 8) Find the name of domains which have more than 2 courses.
 - ➤ Query in relational algebra :

$$\sigma_{\text{(count(domain_id) > 2)}}\text{(}_{\text{dname}}\mathcal{F}_{\text{(count(domain_id),dname)}}\text{(}_{\text{course.domain_id=domain.did)}}\text{)}$$

➤ SQL query :

select dname,count(domain_id) from course join domain on course.domain_id = domain.did group by(dname) having count(domain_id) > 2

- 9) Find the name of the courses which have more fees than the average fees for all live courses.
 - > Query in relational algebra :

```
\Pi_{\text{course\_name}}(\text{course} \bowtie_{\text{cid=live\_id}} (\sigma_{\text{(fees>avg\_fees)}}(\text{live\_course} \bowtie (\mathcal{F}_{\text{avg(fees)} \rightarrow \text{avg\_fees}}(\text{live\_course}))))
```

select course_name from course where cid in(

select live_id from live_course natural join(

select avg(fees) as avg_fees from live_course

)as r1 where fees>avg_fees

)

select course_name from course where cid in(select live_id from live_course natural join(4 5 select avg(fees) as avg_fees from live_course)as r1 where fees>avg_fees 6 7 **Data Output** Messages Notifications Explain course_name character varying (50) Logistic regression Probability and statistics 2 DSA in C++ 3

- 10) Find the total number of live courses held on Tuesdays or Fridays.
 - ➤ Query in relational algebra :

```
F (sum(num)) ( week_day F (count(live_id) → num, week_day) ( σ(week_day = 'tuesday' or 'friday') (week_day) )

> SQL query :

select sum(num) from

(

select week_day,count(live_id) as num from week_days where week_day = 'tuesday' or week_day = 'friday' group by(week_day)
) as t1

540 select sum(num) from
541 (
542 select week_day,count(live_id) as num from week_days where week_day = 'tuesday' or week_day = 'friday' group by(week_day)

343 ) as t1

544 Data Output Explain Messages Notifications

| Numeric | Prince | Pr
```

- 11) Find the name of the students who have taken the maximum number of courses.
 - ➤ Query in relational algebra :

```
\begin{split} &\Pi_{((fname \ ||' \ || \ lname) \rightarrow name, \ noc)} (\ student \bowtie (\ (\ _{sid}\mathcal{F}_{sid, \ count(cid) \rightarrow noc} \ (learn)\ )\ \theta \\ &(\ \mathcal{F}_{max(noc) \rightarrow mc} \ (\ _{sid}\mathcal{F}_{sid, \ count(cid) \rightarrow noc} \ (learn)\ )\ )_{noc=mc})\ ) \\ & \Rightarrow SQL \ query: \\ &select \ fname \ ||' \ || \ lname \ as \ name, \ noc \ from \ student \ natural \ join \ (\\ &select \ * \ from \ (\ select \ sid, count(cid) \ as \ noc \ from \ learn \ group \ by \ sid\ )\ as \ r1 \\ &join \ (\end{split}
```

select max(noc) as mc from (select sid,count(cid) as noc from learn group by sid) as r2

) as r3 on noc=mc

) as r4

- 12) Find the total number of students who have passed the exam for a live course which has live id=MA104.
 - ➤ Query in relational algebra :

```
\mathcal{F}_{\text{(count (sid))}} \sigma_{\text{(live id= 'MA104' and status = 'Pass')}} (result \bowtie exam)
```

➤ SQL query :

select count(sid) from result natural join exam where status = 'pass' and live_id = 'MA104'

- 13) Find the name of companies which have educators with less experience than the average experience of all educators.
 - ➤ Query in relational algebra :

```
Π<sub>company_name</sub>(σ<sub>((exeperience_in_years < (F_(avg(exeperience_in_years)))
    (σ_(company_name!='Platform') (educator)))) and (company_name!= 'Platform')) (educator) )

> SQL query :
select company_name from educator
    where exeperience_in_years <
(
        select avg(exeperience_in_years) from educator where company_name <> 'Platform'
) and company_name <> 'Platform'</sub>
```

552 select company_name from educator where exeperience_in_years < 553 554 select avg(exeperience_in_years) from educator where company_name <> 'Platform' 555 556) and company_name <> 'Platform' Data Output Explain Messages Notifications company name character varying (30) Google Amazon Facebook

- 14) Find the total number of girl students who have got at least 1 certificate.
 - ➤ Query in relational algebra :

```
\mathcal{F}_{(count\,(\,distinct(sid)\,)\,)} ( \sigma_{\,(\,gender\,=\,\,'F'\,\,and\,\,status\,\,=\,\,'Pass'\,)} (result \bowtie student ) )
```

select count(distinct(sid)) from result natural join student where gender = 'F' and status = 'pass'

- 15) Find the total number of providing skills for each course having more no. of lessons than average number of lessons for all courses.
 - ➤ Query in relational algebra :

$$\begin{array}{l} \text{cid } \mathcal{F}_{(count(providing_skill)\,,\,cid)} \left(\, \sigma_{(\,no_of_lesson\,\,>\,\,\mathcal{F}_(avg(no_of_lesson))\,\,(course)} \right. \\ \left. \left(course_provide \bowtie \, course \, \right) \, \right) \end{array}$$

➤ SQL query :

select count(providing_skill),cid from course natural join course_provide where no_of_lesson > (select avg(no_of_lesson) from course) group by cid

Find the list of students who have taken all the recorded courses. 16) ➤ Query in relational algebra : $\Pi_{\text{(sid)}}(\text{student} \bowtie_{\text{(sid <> sid)}}(\Pi_{\text{(sid,cid)}}(\text{student cross join }(\Pi_{\text{(cid)}}(\sigma))))$ $(type_of_course = `Record')(course)) - \Pi_{(sid,cid)}(learn)))))$ ➤ SQL query: select sid from student where sid not in (select sid from (select sid,cid from student cross join (select cid from course where type of course = 'Record') as c except select sid, cid from learn) as t1) 423 select sid from student where sid not in (select sid from (select sid,cid from student cross join (424 select cid from course where type_of_course = 'Record')as c except select sid,cid from learn) 425 426 as t1 427 Data Output Explain Messages Notifications ∠ [PK] integer 13

- 17) Find the list of educators who have taught all the courses which have "Basic Java" as a prerequisite.
 - ➤ Query in relational algebra :

```
\Pi_{\text{(fname)}}(\text{educator} \bowtie_{(\text{eid} <> \text{eid})} (\Pi_{(\text{eid})}(\Pi_{(\text{eid},\text{ci->cid})}(\text{educator cross join }(\Pi_{(\text{eid})})))
   (\text{cid->ci})(\sigma_{(\text{prerequisite\_skill = 'Basic Java'})}(\text{course\_prerequiste} \bowtie \text{course})) - \Pi
    (eid,cid) (course))))))))
➤ SQL query :
    select fname from educator where eid not in (
             select eid from (
                      select ci as cid,eid from educator cross join (
                               select cid as ci from course prerequiste natural
   join course where prerequiste skill = 'Basic Java')
                      as t1 except select cid,eid from course
    ) as t2
     146 select fname from educator where eid not in (
            select eid from (
     148
                 select ci as cid,eid from educator cross join (
                     select cid as ci from course_prerequiste natural join course where prerequiste_skill = 'Basic Java')
     149
     150
                 as t1 except select cid, eid from course
     151 ) as t2
     152 )
      Data Output Explain Messages Notifications
      1 Rahul
```

- 18) Find the list of students who have given feedback for all the courses which they have taken.
 - ➤ Query in relational algebra :

```
\Pi_{\text{(sid , (fname ||' || name) -> name)}} \sigma_{\text{(learn }\bowtie \langle \text{sid = sid >} \bowtie (\text{sid }\mathcal{F}_{\text{(count(cid) -> c, sid)}}(\text{feedback})}
    \sigma_{(c)} = \mathcal{F}_{count(cid)} \sigma_{(sid)} = sid(cid)  (student)
➤ SQL query :
    select sid, fname | ' ' | Iname as name from student where sid in(
            select sid from learn as I natural join(
                     select sid, count(cid) as c from feedback group by sid
            ) as r1 where c=(select count(cid) from learn where sid=r1.sid)
    )
             select sid,fname || ' ' || lname as name from student where sid in(
                  select sid from learn as l natural join(
         5
                        select sid,count(cid) as c from feedback group by sid
                    as r1 where c=(select count(cid) from learn where sid=r1.sid)
         6
        Data Output Explain
                                Messages
                              name 🖺
             [PK] integer
                           3 mukun...
         2
                           4 manjal ..
                              shidha...
         3
         5
                             arishfa ..
         6
                              jigisha
                          23
                             piyush ...
         8
                          24 maulik
         9
        10
                          28 manav ..
        11
                          30 aditi sh...
```

- 19) Find the list of students who have passed all the exams which they have given.
 - ➤ Query in relational algebra :

```
\Pi_{(\text{sid }, (\text{fname } || ' || \text{ name}) \rightarrow \text{ name})} \left( \sigma_{(\text{ } \bowtie < \text{sid } != \text{ sid } > (\text{ } \prod \text{ } \text{ } \text{ } \sigma_{(\text{status } = 'fail' )} (\text{result }) \right) \right) (student \bowtie \text{ result })
```

select sid, fname || ' ' || lname as name from student natural join result where sid not in (select sid from result where status='fail')

20 21	<pre>select sid,fname ' ' lname as name from student natural join result where sid not in (select sid from result where status='fail')</pre>		
Data	Output Explain	n Mess	ages Notifications
4	sid [PK] integer	name text	
1	4	manjal	
2	14	vidhi p	
3	23	piyush	
4	5	prayag	
5	15	arishfa	
6	24	maulik	
7	6	ishan p	
8	25	ankit si	
9	7	shidha	
10	17	kim jen	
11	8	paras c	
12	23	piyush	
13	10	nishan	
14	28	manav	
15	29	nishita	
16	19	jigisha	
17	20	bhumi	

- 20) Find the list of live courses which have at least 3 hours of live classes every week.
 - ➤ Query in relational algebra :

$$\begin{split} &\Pi_{\text{live_id}} \text{ (} \sigma_{\text{(time*}_{c} >= `3:00:00")} \text{(time_table} \bowtie \text{ (} \Pi_{\text{(live_id, end_time-start_time -> time, c)}} \text{ (time_table} \bowtie {}_{\text{live_id, count(live_id) -> c)}} \text{(week_days)))))} \end{split}$$

➤ SQL query :

select live_id from time_table natural join (

select live_id, end_time - start_time as time, c from time_table
natural join (

select live_id, count(live_id) as c from week_days group by live_id

) as r

) as t where time *c = '03:00:00'

- 21) Find the list of students who have taken all the courses from the 'Applied Mathematics' domain.
 - ➤ Query in relational algebra :

$$\Pi_{\text{(sid)}} \ \sigma(\ t2 \bowtie_{\text{(sid != sid)}} \Pi_{\text{(cid , si -> sid)}} \text{(learn } \bowtie_{\text{(cid = cid)}} \bowtie \ domain \ \sigma_{\text{(dname = capplied mathematics)}}) \ x \ (\Pi_{\text{sid -> si}} \text{(student)}) \ - \ \Pi_{\text{cid,sid}} \ \text{(learn)} \) \ \text{(student)}$$

➤ SQL query :

select sid from student where sid not in(

select sid from (

select cid,si as sid from (

select * from learn where cid in (

```
select cid from course join domain on course.domain_id = domain.did where dname = 'Applied Mathematics'))

as t2 cross join (
```

as s except select cid, sid from learn

select sid as si from student)

) as t3

```
186 select sid from student where sid not in(
187
         select sid from (
188
             select cid,si as sid from (
189
                 select * from learn where cid in (
190
                     select cid from course join domain on course.domain_id = domain.did where dname = 'Applied Mathematics'))
191
             as t2 cross join (
                 select sid as si from student)
192
193
             as s except select cid, sid from learn
194
     ) as t3
195
196
197
Data Output Explain Messages Notifications
 [PK] integer
```

- 22) Find the list of students who have not taken any live course after october 2020.
 - ➤ Query in relational algebra :

```
\Pi_{\text{((fname || ' || lname)} \rightarrow name)} \text{( student } \bowtie_{\text{(sid=sid)}} \text{( take } \bowtie_{\text{(pid=pid)}} \text{(} \sigma_{\text{(pay\_date}} < ^{\circ}2020-09-30')} \text{(payment))))}
```

➤ SQL query :

select fname ||' || Iname as name from student where sid in (

select sid from take where pid in (

select pid from payment where pay_date < '2020-09-30')

)

- 23) Find the total amount of payment done by students whose name starts with A.
 - ➤ Query in relational algebra :

$$\mathcal{F}_{(\text{sum (amount)})}(\Pi(\sigma_{(\text{fname like `a\%'})}(\text{take}\bowtie \text{payment}\bowtie \text{student})))$$

➤ SQL query :

select sum(amount) from (select * from take natural join payment natural join student where fname like 'a%') as t1

- 24) Give the list of courses in their descending order of rating.
 - ➤ Query in relational algebra :

$$\Pi_{\text{ (rating (desc))}}(\Pi_{\text{ (cid,rating)}}(\text{course)})$$

select cid, rating from course order by rating desc

)ata	Output Explain M	lessages Notifications
4	cid [PK] character (5)	rating numeric (3,2)
1	CP102	5.00
2	MA103	4.50
3	CP103	4.00
4	MA102	4.00
5	AM101	3.67
6	MA104	3.50
7	CP101	3.00
8	MA101	3.00
9	AM102	2.00
10	WD101	0.00

- 25) Find the list of companies which have provided only live courses and not recorded.
 - ➤ Query in relational algebra :

```
\Pi(colab\_company \bowtie_{(comp\_name <> company\_name)} (\sigma_{(company\_name='Platform' or type\_of\_course='Record')}(educator as e \bowtie_{(e.eid=c.eid)} COURSE as C)))
```

```
select * from colab_company where comp_name not in (
```

select company_name from educator as e join course as c on e.eid=c.eid where company_name = 'Platform' or type_of_course = 'Record'

)

