厦门大学《数字逻辑》 课程试卷

信息科学与技术 学院 计算机科学系 2011 年级____专业

主考教师: 程明、刘向荣 试卷类型: A卷

学号:	姓名:	
J J:	A-U:	

一、逻辑代数(20分)

- (1) 将逻辑函数 $F_1(A,B,C,D) = \sum m(0.5.6.8.15) + \sum d(2.3.7.9.10.13)$ 化成最简与-或式。
- (2) 已知逻辑函数 $F_2 = \overline{A+C}(\overline{BC}+D)(B+C)+AD$,利用反演规则求 $\overline{F_2}$ (不要求化简)。
- (3) 已知逻辑函数 $F_3(A, B, C, D) = \sum m(0,1,4,5,8,11,12,13,15)$, 求 F_3 的最大项表达式。
- (4) 讨论实现逻辑函数 $F_4 = \overline{C} \, \overline{D} + \overline{A} \, \overline{C} + B \overline{C} + A C D$ 的电路是否存在竞争和险象; 若存在险象,用增加冗余项的办法消除。

二、简答(15分)

- (1) X = -0110, Y = +0101, 用补码计算 X Y.
- (2) 下图各电路均由 TTL 型门电路构成,说明 $Y_1 \times Y_2 \times Y_3$ 和 Y_4 的状态。

(3) 画出 J-K 触发器和 T 触发器的激励表。

三、组合电路设计(25分)

(1) 设计一个水箱控制电路。如下面的水箱示意图,A、B、C为3个电极,当电极被水浸没时,会有信号输出。当水面在A、B间为正常状态,点亮绿灯G;水面在B、C间或者在A以上为异常状态,点亮黄灯Y;水面在C以下为危险状态,点亮红灯R。列出真值表,写出输出表达式,画出逻辑电路图。要求:仅用2输入与非门实现该电路,输入不提供反变量,注意考虑无关项。

(2) 用两片 4 位二进制加法器实现一个 7 位二进制数 $A = A_6 A_5 A_4 A_3 A_2 A_1 A_0$ 乘 3 的运算, 画出逻辑电路图。 4 位二进制加法器的逻辑符号如下:

(3) 用一片 PROM 实现半加器,画出阵列图。

四、分析下面的时序电路,要求: 画出状态表和状态图,并说明电路功能及自启动能力。 (12分)

五、时序电路设计(28分)

(1) 74163 是 4 位二进制加法计数器,功能表如下表。输出端中 Q_D 是最高位, Q_{CC} 是进位输出端。请用 1 片 74163 和适当的门电路设计一个余 3 码输出的模 10 计数器。

			<u></u>		入					输			-
CP	$\overline{C_r}$	\overline{LD}	P	\boldsymbol{T}	\boldsymbol{D}	$\boldsymbol{\mathcal{C}}$	В	\boldsymbol{A}	Q_D	Q_{c}	$Q_{\scriptscriptstyle B}$	$Q_{\scriptscriptstyle A}$	
		×											$egin{array}{cccccccccccccccccccccccccccccccccccc$
\uparrow	1	0	×	×	\boldsymbol{D}	\boldsymbol{C}	\boldsymbol{B}	\boldsymbol{A}	D	\boldsymbol{C}	В	\boldsymbol{A}	\sim CP 74163 Q_{cc}
×	1	1	0	×	×	×	×	×		保	持		$\begin{bmatrix} \overline{C_r} & D & C & B & A & \overline{LD} \end{bmatrix}$
×	1	1	×	0	×	×	×	×		保	持		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\uparrow	1	1	1	1	×	×	×	×		计	数		_

(2) 用 D 触发器和门电路设计一个序列检测器。该检测器有一个输入端 x 和一个输出端 Z, 当输入序列出现"011"时,输出一个"1"信号。典型输入、输出序列如下:

用 Moore 型电路实现。写出完整的设计过程,给出输出函数表达式和触发器的激励信号表达式。不用画时序图和逻辑电路图。