Funções exponenciais e logarítmicas Uma revisão e o número e

Nesta aula faremos uma pequena revisão sobre as funções $f(x) = a^x e g(x) = \log_a x$, sendo a uma constante real, a > 0 e $a \ne 1$. Faremos ainda uma apresentação do número e, uma constante importante da matemática universitária.

9.1 Pequena revisão de potências

Sabemos que, sendo a um número real positivo,

$$\boxed{\alpha^{1/n} = \sqrt[n]{\alpha} e \alpha^{m/n} = \sqrt[n]{\alpha^m}}$$

se $\mathfrak{m},\mathfrak{n}\in\mathbb{Z}$, e $\mathfrak{n}>0$. Assim define-se a potência de base \mathfrak{a} e expoente $\mathfrak{p},\mathfrak{a}^{\mathfrak{p}}$ (lê-se " \mathfrak{a} elevado a \mathfrak{p} "), para todo $\mathfrak{p}\in\mathbb{Q}$.

Se α é um número irracional, existe uma sequência de números racionais que tende a α (uma sequência de aproximações de α por números racionais), ou seja, existe uma sequência de números racionais

$$\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n, \ldots$$

tal que $\lim_{n\to +\infty} \alpha_n = \alpha$.

Por exemplo, se $\alpha = \sqrt{2} \approx 1,414213562$, existe uma seqüência de aproximações de $\sqrt{2}$, cujos cinco primeiros termos são dados na primeira coluna da tabela abaixo:

$$\begin{array}{llll} \alpha_1 = 1,4 & (\alpha_1^2 = 1,96) & |\alpha_1 - \alpha| \approx 0,014213562 < 0,1 \\ \alpha_2 = 1,41 & (\alpha_2^2 = 1,9881) & |\alpha_2 - \alpha| \approx 0,004213562 < 0,01 \\ \alpha_3 = 1,414 & (\alpha_3^2 = 1,999396) & |\alpha_3 - \alpha| \approx 0,000213562 < 0,001 \\ \alpha_4 = 1,4142 & (\alpha_4^2 = 1,99996164) & |\alpha_4 - \alpha| \approx 0,000013562 < 0,0001 \\ \alpha_5 = 1,41421 & (\alpha_5^2 = 1,99998992) & |\alpha_5 - \alpha| \approx 0,000003562 < 0,00001 \end{array}$$

Uma calculadora nos fornece uma aproximação de $\sqrt{2}$ com 12 casas decimais: $\sqrt{2}\approx 1,414213562373$. A sequência acima, de aproximações sucessivas de $\sqrt{2}$, é tal que $|\alpha_n-\sqrt{2}|<10^{-n}$, e assim $\lim_{n\to+\infty}|\alpha_n-\sqrt{2}|=0$, e então $\lim_{n\to+\infty}\alpha_n=\sqrt{2}$ (a segunda coluna da tabela acima sugere que $\lim_{n\to+\infty}\alpha_n^2=2$).

Sendo $\alpha \in R$, $\alpha > 0$, e sendo β um número irracional, e $\beta_1, \beta_2, \beta_3, \ldots$ uma sequência de racionais com limite β , α^{β} é definido como o limite da sequência¹

$$\alpha^{\beta_1}, \alpha^{\beta_2}, \alpha^{\beta_3}, \alpha^{\beta_4}, \dots$$

Por exemplo, $2^{\sqrt{2}}$ é o limite da sequência

$$2^{1}, 2^{1,4}, 2^{1,41}, 2^{1,414}, \dots$$

Uma calculadora nos fornece as aproximações:

$$2^{1} = 2$$

$$2^{1,4} = 2^{14/10} = \sqrt[10]{2^{14}} \qquad \approx 2,6390$$

$$2^{1,41} = 2^{141/100} = \sqrt[100]{2^{141}} \qquad \approx 2,6574$$

$$2^{1,414} = 2^{1414/1000} \qquad \approx 2,6647$$

$$2^{1,4142} = 2^{14142/10000} \qquad \approx 2,6651$$

No que diz respeito a potências de base real positiva e expoente real, temos as seguintes boas propriedades, que aceitaremos sem demonstração:

Se
$$a \in \mathbb{R}$$
, $a > 0$, $b > 0$ e $x, y \in \mathbb{R}$

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{-x} = \frac{1}{a^{x}}, \quad a^{x-y} = \frac{a^{x}}{a^{y}}, \quad a^{0} = 1$$

$$a^{x} \cdot b^{x} = (ab)^{x}$$

 $^{^1}A$ existência do limite da sequência α^{β_π} , quando $n\to +\infty$, pode ser demonstrada num tratamento teórico de fundamentos do Cálculo.

9.2 A função exponencial

Sendo α um número real, positivo, $\alpha \neq 1$, define-se a função exponencial de base α por

$$f(x) = a^x$$
, para cada $x \in \mathbb{R}$

Tomamos $\alpha \neq 1$ pela simples razão de que $1^x = 1$ para todo $x \in \mathbb{R}$, o que torna α^x constante no caso em que $\alpha = 1$ (funções constantes não são classificadas como funções exponenciais). Além disso, tomamos $\alpha > 0$ porque, se $\alpha < 0$, α^x não se define para uma infinidade de valores reais de x. Por exemplo, se $\alpha = -4$ então, para cada $\alpha \in \mathbb{N}$, $\alpha \geq 1$, $\alpha^{1/2n} = (-4)^{1/2n} = \sqrt[2n]{-4}$ não se define como número real.

Assumiremos que, se $\alpha > 0$ e $\alpha \neq 1$, a função exponencial dada por $f(x) = \alpha^x$, é contínua em \mathbb{R} , isto é,

$$\lim_{x\to x_0}\alpha^x=\alpha^{x_0}, \quad \text{para cada } x_0\in\mathbb{R}$$

Assumiremos também que

- (i) se $\alpha > 1$, a função $f(x) = \alpha^x$ é crescente, com $\lim_{x \to +\infty} \alpha^x = +\infty$;
- (ii) se $0 < \alpha < 1$, a função é decrescente, com $\lim_{x \to +\infty} \alpha^x = 0^+ (=0)$.

Na figura 9.1 temos esboços dos gráficos de $f(x) = 2^x$ e $g(x) = \left(\frac{1}{2}\right)^x$.

Figura 9.1. Esboços dos gráficos de (a) $y = 2^x$, (b) $y = (1/2)^x$.

Temos agora as seguintes novidades na álgebra de limites:

Se
$$\alpha > 1$$
, $\alpha^{+\infty} = +\infty$, $\alpha^{-\infty} = \frac{1}{\alpha^{+\infty}} = \frac{1}{+\infty} = 0^+ (=0)$
Se $0 < \alpha < 1$, $\alpha^{+\infty} = 0^+ (=0)$, $\alpha^{-\infty} = \frac{1}{\alpha^{+\infty}} = \frac{1}{0^+} = +\infty$

Por exemplo,

$$\lim_{x \to +\infty} 2^x = 2^{+\infty} = +\infty$$

$$\lim_{x \to -\infty} 2^x = 2^{-\infty} = 0$$

$$\lim_{x \to +\infty} \left(\frac{1}{2}\right)^x = \left(\frac{1}{2}\right)^{+\infty} = 0$$

$$\lim_{x \to -\infty} \left(\frac{1}{2}\right)^x = \left(\frac{1}{2}\right)^{-\infty} = 2^{+\infty} = +\infty$$

9.3 Logaritmos e funções logarítmicas

Se $\alpha > 0$, $\alpha \neq 1$, e $\alpha > 0$, o *logaritmo de* α *na base* α , denotado por $\log_{\alpha} \alpha$, é o expoente ao qual devemos elevar α para obtermos α , ou seja

$$\log_{\alpha} x = y$$
 se e somente se $\alpha^y = x$

Assim sendo,

$$a^{\log_a x} = x$$

Por exemplo,

$$\log_2 8 = 3$$
, pois $2^3 = 8$;
 $\log_9 27 = \frac{3}{2}$, pois $9^{3/2} = \sqrt{9^3} = 3^3 = 27$;
 $\log_2 \frac{1}{4} = -2$, pois $2^{-2} = 1/4$;
 $\log_{1/2} 16 = -4$, pois $\left(\frac{1}{2}\right)^{-4} = 16$;
 $\log_2 5 \approx 2,3219$, pois $2^{2,3219} \approx 4,9999$.

 $\log_2 5$ não é um número racional, pois se $\log_2 5 = \frac{m}{n}$, com m e n inteiros positivos, então $2^{m/n} = 5$. Daí, $2^m = (2^{m/n})^n = 5^n$, o que é impossível pois 2^m é par e 5^n é ímpar.

Listamos aqui, sem dedução, algumas propriedades elementares dos logaritmos:

Sendo x e y reais positivos, z real, e $\alpha > 0$, $\alpha \neq 1$,

$$\begin{split} \log_{\alpha}(xy) &= \log_{\alpha} x + \log_{\alpha} y \\ \log_{\alpha} \frac{x}{y} &= \log_{\alpha} x - \log_{\alpha} y \\ \log_{\alpha} x^{z} &= z \cdot \log_{\alpha} x \\ \log_{\alpha} x^{1/z} &= \frac{\log_{\alpha} x}{z} \quad (\text{se } z \neq 0) \\ \log_{\alpha} x &= \frac{\log_{b} x}{\log_{b} a}, \quad (\text{se } b > 0, b \neq 1) \end{split} \qquad \text{(mudança de base)}$$

Assim, por exemplo, a passagem dos logaritmos decimais (base 10) para os logaritmos de base 2 é dada por

$$\log_2 x = \frac{\log_{10} x}{\log_{10} 2} = \frac{\log x}{\log 2}$$

Sendo a função $f(x) = a^x$ contínua e crescente quando a > 1, e decrescente quando 0 < a < 1, temos que $\log_a x$ é definida para todo a > 0.

Por exemplo, poderíamos perguntar se existe $\log_2 5$. Para responder a esta questão, notamos que $f(x) = 2^x$ é crescente, $2^2 = 4$ e $2^3 = 8$. Pela continuidade de f, a imagem do intervalo [2,3], pela função f, é o intervalo² [4,8]. Existe então $x_0 \in [2,3]$ tal que $2^{x_0} = 5$. Assim, $\log_2 5 = x_0$. Portanto, realmente existe o número real $\log_2 5$.

Além disso,

- (i) se a > 1, $f(x) = \log_a x$ é crescente;
- (ii) e se $0 < \alpha < 1$, $f(x) = \log_{\alpha} x$ é decrescente.

Na figura 9.2, temos esboços dos gráficos de $f(x) = \log_2 x$ e $g(x) = \log_{1/2} x$.

Admitiremos que $f(x) = \log_a x$ é contínua no seu domínio $]0, +\infty[$, ou seja,

se
$$x_0 > 0$$
 então $\lim_{x \to x_0} \log_{\alpha} x = \log_{\alpha} x_0$

 $^{^2 \}text{Um}$ teorema sobre funções contínuas é o Teorema do Valor Intermediário: Se f é uma função contínua em $[\mathfrak{a},\mathfrak{b}] \subset D(f)$, então a imagem do intervalo $[\mathfrak{a},\mathfrak{b}]$ pela função f, que é o conjunto $f([\mathfrak{a},\mathfrak{b}]) = \{f(x) \mid x \in [\mathfrak{a},\mathfrak{b}]\}$ é o intervalo fechado $[\mathfrak{m},M]$ sendo \mathfrak{m} e M os valores mínimo e máximo de f em $[\mathfrak{a},\mathfrak{b}].$

Além disso, temos ainda (observe os gráficos da figura 9.2).

$$\lim_{x \to 0^+} \log_{\alpha} x = \log_{\alpha} (0^+) = \begin{cases} -\infty & \text{se } \alpha > 1 \\ +\infty & \text{se } 0 < \alpha < 1 \end{cases}$$

bem como também (confira observando os gráficos da figura 9.2)

$$\lim_{x \to +\infty} \log_{\alpha} x = \log_{\alpha} (+\infty) = \begin{cases} +\infty & \text{se } \alpha > 1 \\ -\infty & \text{se } 0 < \alpha < 1 \end{cases}$$

Figura 9.2. Esboços dos gráficos de (a) $y = \log_2 x$, (b) $y = \log_{1/2} x$.

9.4 O número e

Na matemática universitária, há duas constantes numéricas muito importantes. São elas o número pi, $[\pi \approx 3, 14159]$, e o número e, $[e \approx 2, 71828]$.

O número e é definido como sendo o limite

$$e = \lim_{\substack{n \to +\infty \\ n \in \mathbb{N}}} \left(1 + \frac{1}{n} \right)^n$$

Pode ser demonstrado que o número e é irracional.

Observe a tabela 9.1, de valores (aproximados) de $(1 + \frac{1}{n})^n$, para n = 1, 10, 100, 1000, 10000.

Tabela 9.1.

n	1/n	$1 + \frac{1}{n}$	$\left(1+\frac{1}{n}\right)^n$
1	1	2	$2^1 = 2$
10	0, 1	1,1	$(1,1)^{10} \approx 2,59374$
100	0,01	1,01	$(1,01)^{100} \approx 2,70481$
1000	0,001	1,001	$(1,001)^{1000} \approx 2,71692$
10000	0,0001	1,0001	$(1,0001)^{10000} \approx 2,71815$
100000	0,00001	1,00001	$(1,00001)^{100000} \approx 2,71828$

Note que
$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right) = 1+\frac{1}{+\infty} = 1$$
.

Assim, podemos enganosamente intuir que, quando n é muito grande, $\left(1+\frac{1}{n}\right)^n \approx 1^n = 1$ (mesmo calculadoras de boa qualidade podem nos induzir a este erro). Neste caso, nossa intuição é falha, pois pode ser demonstrado que o número $\alpha_n = \left(1+\frac{1}{n}\right)^n$ cresce à medida que n cresce, sendo $\alpha_1 = 2$, e $2 < \alpha_n < 3$ para cada $n \ge 2$. Na tabela 9.1, ilustramos o fato de que

para valores de n muito grandes,
$$\left(1 + \frac{1}{n}\right)^n \approx 2,71828$$

Assim sendo, temos $\overline{\text{um novo símbolo de indeterminação: } 1^{\pm \infty}}$

Vamos admitir, sem demonstração, que também, para x real

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Neste caso, podemos deduzir:

Proposição 9.1.

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Demonstração. De fato, fazendo a mudança de variável

$$x = -(y + 1)$$

temos y = -x - 1, e portanto $x \to -\infty$ se e somente se $y \to +\infty$.

Assim, sendo

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^{x} = \lim_{y \to +\infty} \left(1 - \frac{1}{y+1} \right)^{-(y+1)}$$

$$= \lim_{y \to +\infty} \left(\frac{y}{y+1} \right)^{-(y+1)}$$

$$= \lim_{y \to +\infty} \left(\frac{y+1}{y} \right)^{y+1}$$

$$= \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^{y+1}$$

$$= \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^{y} \cdot \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)$$

$$= e \cdot 1 = e$$

Como consequência, temos também

Proposição 9.2.

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

Demonstração. Mostraremos que

$$\lim_{x \to 0^+} (1 + x)^{\frac{1}{x}} = e, \quad e \lim_{x \to 0^-} (1 + x)^{\frac{1}{x}} = e.$$

Pondo $\alpha = 1/x$, temos que $x \to 0^+$ se e somente se $\alpha \to +\infty$. Daí

$$\lim_{x \to 0^+} (1+x)^{\frac{1}{x}} = \lim_{\alpha \to +\infty} \left(1 + \frac{1}{\alpha}\right)^{\alpha} = e$$

Além disso, $x \to 0^-$ se e somente se $\alpha \to -\infty$. Daí, pela proposição 9.1,

$$\lim_{x\to 0^{-}} (1+x)^{\frac{1}{x}} = \lim_{\alpha\to -\infty} \left(1+\frac{1}{\alpha}\right)^{\alpha} = e$$

Se x > 0, chama-se logaritmo natural ou logaritmo neperiano de x ao logaritmo

$$\ln x = \log_e x$$

Como $e \approx 2,71828 > 1$, a função $f(x) = \ln x$ é crescente e seu gráfico tem, qualitativamente, a forma do gráfico de $g(x) = \log_2 x$, figura 9.2 a.

A passagem dos logaritmos naturais para os logaritmos decimais (base 10) é dada por

$$\log_{10} x = \frac{\log_e x}{\log_e 10} = \frac{\ln x}{\ln 10}$$

9.5 Levantando indeterminações da forma 1^{±∞}

Mostraremos com um exemplo simples um procedimento habitual para se calcular um limite do tipo $\lim_{x\to\alpha} f(x)^{g(x)}$ quando este é indeterminado na forma $1^{\pm\infty}$. Em outras palavras, nesta indeterminação estamos supondo que $\lim_{x\to\alpha} f(x) = 1$ (com $f(x) \neq 1$ quando x está nas proximidades de α) e $\lim_{x\to\alpha} g(x) = \pm\infty$.

Exemplo 9.1. Calcular
$$\lim_{x \to +\infty} \left(\frac{1-2x}{5-2x} \right)^{2-x}$$

Solução.

Um cálculo elementar nos dá $\lim_{x\to +\infty} \frac{1-2x}{5-2x} = 1$, e portanto o limite é indeterminado na forma $1^{-\infty}$.

Para "levantar" a indeterminação, podemos recorrer a uma mudança de variável escrevendo

$$\frac{1 - 2x}{5 - 2x} = 1 + \frac{1}{y}$$

Isolando $\frac{1}{y}$ temos

$$\frac{1}{y} = \frac{1 - 2x}{5 - 2x} - 1 = \frac{-4}{5 - 2x}$$

e chegamos a

$$y = \frac{5-2x}{4} = \frac{2x-5}{4}$$

Neste momento deduzimos que se $x \to +\infty$ então também $y \to +\infty$.

Isolando x a partir da última igualdade, temos 2x - 5 = 4y e então $x = 2y + \frac{5}{2}$. Voltamos então ao limite proposto inicialmente usando a nova variável y:

$$\lim_{x \to +\infty} \left(\frac{1 - 2x}{5 - 2x} \right)^{2 - x} = \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^{2 - (2y + \frac{5}{2})} = \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^{-2y - \frac{1}{2}}$$

$$= \lim_{y \to +\infty} \left[\left(1 + \frac{1}{y} \right)^{-2y} \left(1 + \frac{1}{y} \right)^{-\frac{1}{2}} \right]$$

$$= \lim_{y \to +\infty} \left(\left(1 + \frac{1}{y} \right)^{y} \right)^{-2} \cdot \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^{\frac{1}{2}} = e^{-2} \cdot 1 = e^{-2}$$

Portanto
$$\lim_{x \to +\infty} \left(\frac{1 - 2x}{5 - 2x} \right)^{2 - x} = \frac{1}{e^2}.$$

Observação 9.1. Em um procedimento mais geral, porém não mais facilitador, se $\lim_{x \to \alpha} f(x) = 1$ (com $f(x) \neq 1$ quando x está nas proximidades de α) e $\lim_{x \to \alpha} g(x) = \pm \infty$,

para levantar a indeterminação da forma $1^{\pm\infty}$ no limite $\lim_{x\to\alpha} f(x)^{g(x)}$, podemos tomar $\phi(x) = f(x) - 1, \text{ e tendo em conta que } \lim_{x \to \alpha} (1 + \phi(x))^{\frac{1}{\phi(x)}} = \lim_{u \to 0} (1 + y)^{\frac{1}{y}} = e, \text{ obter}$

$$\lim_{x \to \alpha} f(x)^{g(x)} = \lim_{x \to \alpha} \left[(1 + \phi(x))^{\frac{1}{\phi(x)}} \right]^{\phi(x)g(x)} = e^{L}$$

com L = $\lim_{x\to a} (\phi(x)g(x))$, este limite sendo indeterminado da forma $0 \cdot (\pm \infty)$, pois $\lim_{x\to\alpha}\varphi(x)=\lim_{x\to\alpha}(f(x)-1)=0.$

9.6 **Problemas**

1. Calcule os seguintes limites. Lembre-se que $1^{\pm\infty}$ é um símbolo de indeterminação.

(a)
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x$$

Sugestão. Para contornar a indeterminação $1^{+\infty}$, faça $1 + \frac{2}{x} = 1 + \frac{1}{y}$

(b)
$$\lim_{x \to +\infty} \left(\frac{x}{1+x}\right)^x$$

Sugestão. Para contornar a indeterminação $1^{+\infty}$, faça $\frac{x}{1+x} = 1 + \frac{1}{y}$

- $\begin{array}{ll} \text{(c)} & \lim\limits_{x \to -\infty} \left(\frac{2x+3}{2x+1}\right)^{x+1} & \text{(d)} & \lim\limits_{x \to +\infty} \left(\frac{3x+1}{2x+3}\right)^{x} \\ \text{(e)} & \lim\limits_{x \to -\infty} \left(\frac{3x+1}{2x+3}\right)^{x} & \text{(f)} & \lim\limits_{x \to -\infty} \left(1 \frac{1}{3x}\right)^{2x} \end{array}$

Respostas. (a) e^2 (b) 1/e (c) e (d) $+\infty$ (e) 0 (f) $1/\sqrt[3]{e^2}$

2. Mostre que, sendo $\alpha > 0$, $\lim_{h \to 0} \frac{\alpha^h - 1}{h} = \ln \alpha$.

Sugestão: Trate o caso $\alpha = 1$ em separado. Para $\alpha \neq 1$, faça a mudança de variável $a^h - 1 = z$, e então $h = \ln(z + 1) / \ln a$.

3. Usando o resultado do problema anterior, calcule

(a)
$$\lim_{n \to +\infty} n \cdot (\alpha^{1/n} - 1)$$
 (sendo $\alpha > 0$, $\alpha \neq 1$)

(b)
$$\lim_{x\to 0} \frac{e^{\alpha x}-1}{x}$$

Sugestão. $\lim_{x\to 0} \frac{e^{\alpha x}-1}{x} = \lim_{x\to 0} \left(\alpha \cdot \frac{e^{\alpha x}-1}{\alpha x}\right) = \alpha \cdot \lim_{x\to 0} \frac{e^{\alpha x}-1}{\alpha x}$

(c)
$$\lim_{x\to 0} \frac{e^{\alpha x} - e^{bx}}{x}$$

Sugestão. $\lim_{x\to 0} \frac{e^{\alpha x} - e^{bx}}{x} = \lim_{x\to 0} \frac{(e^{\alpha x} - 1) - (e^{bx} - 1)}{x}$ (d) $\lim_{x\to 0} \frac{e^{\alpha x} - 1}{e^{bx} - 1}$

(d)
$$\lim_{x\to 0} \frac{e^{ax}-1}{e^{bx}-1}$$

Respostas. (a) $\ln a$ (b) a (c) a - b (d) a/b

4. Sendo $f(x) = 2^{\frac{1}{x}}$, calcule os limites laterais $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x)$. Resposta. $+\infty$ e 0, respectivamente.

5. Sendo

$$g(x) = \frac{1}{1 + 2^{\frac{1}{x-\alpha}}}$$

calcule os limites laterais $\lim_{x \to a^+} g(x)$ e $\lim_{x \to a^-} g(x)$. Resposta. 0 e 1, respectivamente.