

主要内容

- 图的基本概念
- 图的存储
- 图的遍历
- 最小生成树
- 最短路径
- 关键路径

顶点表示事件(状态);

边表示活动;

每个事件表示在它之前的活动已经完成,在它之后的活动可以开始;边上的权,通常表示活动所需要的时间;

边表示活动的带权的无环有向图称为AOE网

通常, AOE 网中只有一个入度为 0 的顶点(源点), 一个出度为 0 的顶点(汇点)。

对于一个AOE 网,最关心的两个问题:

- 1. 完成整项工程至少需要多少时间?
- 2. 哪些活动是影响工程进度的关键?

完成工程的最短时间是从源点到汇点的最长路径的长度,这里的最长路径叫做关键路径。

辨别关键活动就是要找 $I(a_i) = e(a_i)$ 的活动;

因此首先必须求出 AOE 网中的所有活动的 $e(a_i)$ 和 $l(a_i)$ 。

例 a₄

 $e(a_4) = ve(v_3)$

一. 事件与活动之间的关系

$$l(a_4) = vl(v_4) - dut(3, 4)$$

设活动 a_i 关联的前后事件分别为 v_j 、 v_k

则有
$$e(a_i) = ve(v_j)$$
 v_j a_i v_k $l(a_i) = vl(v_k) - dut(j, k)$

注意: 源点和汇点一定是关键活动, 其最早和最迟发生时间相等

例,

$$ve(v_2) = ve(v_1) + 6$$
 $ve(v_3) = ve(v_1) + 3$
 $ve(v_4) = ve(v_2) + 1$?
 $ve(v_3) + 1$?

 $ve(v_j) = Max\{ ve(v_i) + dut(i, j) \}$ $v_i \neq v_j$ 的前驱事件

例,

$$vl(v_5) = vl(v_7) - 2$$

 $vl(v_6) = vl(v_7) - 3$
 $vl(v_4) = vl(v_5) - 9$?
 $vl(v_6) - 6$?

$$vl(v_i) = Min\{ vl(v_j) - dut(i, j) \}$$
 $v_j \neq v_i$ 的后继事件

初始 $\mathbf{ve}(\mathbf{v_1}) = \mathbf{0}$ $\mathbf{vl}(\mathbf{v_7}) = \mathbf{18}$

两个递推公式 的计算必须分 别在拓扑有序 和逆拓扑有序 前提下进行

2

- 1. 从源点 v_0 出发,令 $ve(v_0) = 0$,按拓扑有序求其余 各事件的最早发生时间 $ve(v_i)$ 。
- 2. 从汇点 v_n 出发,令 $vl(v_n) = ve(v_n)$,按逆拓扑有序 求其余各事件的最迟发生时间 $vl(v_i)$ 。
- 3. 根据各事件的 $ve(v_i)$ 和 $vl(v_i)$,求各活动的最早开始时间 $e(a_i)$ 和最迟开始时间 $l(a_i)$ 。
- 4. $l(a_i) = e(a_i)$ 的活动叫做关键活动。

例		(V ₁)	= 6 (V ₂	23		9 (V ₅) a ₅	3 (V ₇	
		事件	ve	vl		活动	e	þ
逆拓扑有序		$\mathbf{v_1}$	0	0		a_1	0	0
		$\mathbf{v_2}$	6	6		$\mathbf{a_2}$	0	3
		$\mathbf{v_3}$	3	6		a_3	6	6
		$\mathbf{v_4}$	7	7		a_4	3	6
		\mathbf{v}_{5}	16	16		a_5	7	27
		$\mathbf{v_6}$	13	15		\mathbf{a}_{6}	7	9
	1	\mathbf{v}_7	18	18		a_7	16	16
,	VF. End	nh /7				$\mathbf{a_8}$	13	15
关键路径 a_1 a_3 a_5 a_7						- 1/2 M	-7/1/N	

