I teoremi di isomorfismo

di Gabriel Antonio Videtta

Nota. Nel corso del documento per (G, \cdot) si intenderà un qualsiasi gruppo. Analogamente si intenderà lo stesso per G'.

Si illustrano i tre teoremi di isomorfismo nella loro forma più generale.

Teorema (Primo teorema di isomorfismo). Sia φ un omomorfismo da G in G'. Allora, se $N \leq \operatorname{Ker} \varphi$, esiste un unico omomorfismo f da G/N in G' che faccia commutare il seguente diagramma commutativo:

Inoltre, tale f è iniettiva se e solo se $N=\operatorname{Ker}\varphi$ e in tal caso induce il seguente isomorfismo:

$$G/\operatorname{Ker}\varphi\cong\operatorname{Im}\varphi.$$

Dimostrazione. Affinché il diagramma commuti, deve valere la seguente relazione:

$$\varphi(g) = f(\pi_N(g)) = f(gN).$$

Pertanto l'unica possibilità è che valga $f(gN) = \varphi(g)$. Chiaramente tale mappa è ben definita, infatti se $n \in N$, $\varphi(gn) = \varphi(g)\varphi(n) = \varphi(g)$, dacché n in particolare è anche un elemento di Ker φ . Inoltre f è un omomorfismo, dal momento che $f(gNhN) = f(ghN) = \varphi(g)\varphi(h) = f(gN)f(hN)$.

Sia $k \in \operatorname{Ker} \varphi$. Se f è iniettiva, allora $f(gN) = \varphi(g) = e \implies gN = N$. Dal momento che $f(kN) = \varphi(k) = e$, kN = N, e quindi $k \in N$, da cui si deduce che $N = \operatorname{Ker} \varphi$. Se invece $N = \operatorname{Ker} \varphi$, $f(gN) = e \implies \varphi(g) = e \implies g \in N$, e quindi gN = N, l'identità di G/N, da cui si deduce che f è iniettiva. In tal caso la restrizione sull'immagine di f a $\operatorname{Im} f$, coincidente con $\operatorname{Im} f \circ \pi_N = \operatorname{Im} \varphi$ dacché π_N è surgettiva, fornisce l'isomorfismo ricercato.

In particolare si osserva che Ker $f = \text{Ker } \varphi/N$, infatti:

$$\operatorname{Ker} f = \{gN \mid \varphi(g) = e\} = \{gN \mid g \in \operatorname{Ker} \varphi\} = \operatorname{Ker} \varphi/N.$$

Teorema (Secondo teorema di isomorfismo, o teorema del diamante). Siano $H, N \leq G$ con $N \leq G$. Allora¹²:

$$H/(H \cap N) \cong HN/N$$
.

Pertanto se si considera il seguente diagramma:

i lati paralleli del parallelogramma ("diamante") forniscono gli isomorfismi dell'enunciato se anche H è normale in G.

Dimostrazione. Si costruisce l'omomorfismo $\varphi: H \to HN/N$ tale per cui $h \mapsto hN$. Si osserva che φ è effettivamente un omomorfismo, infatti:

$$\varphi(hh') = (hh')N = (hN)(h'N) = \varphi(h)\varphi(h').$$

Sia $hnN \in HN/N$. Allora hnN = hN, e quindi $\varphi(h) = hN = hnN$, da cui si deduce che φ è surgettiva (e quindi Im $\varphi = HN/N$).

Sia $\varphi(h) = e$. Allora $hN = N \implies h \in H \cap N$. Si deduce dunque che Ker $\varphi = H \cap N$, da cui, applicando il Primo teorema di isomorfismo, si ottiene la tesi:

$$H/(H \cap N) \cong HN/N$$
.

Teorema (Terzo teorema di isomorfismo). Siano H e N due sottogruppi normali di G e sia $N \leq H$. Allora³:

$$\frac{G/N}{H/N} \cong G/H.$$

¹Si osserva che effettivamente $H \cap N$ è normale in H. Infatti se $g \in H \cap N$, allora, se $h \in H$, hgh^{-1} appartiene sempre a N perché N è normale in G e appartiene anche ad H poiché è prodotto di elementi in H.

²Analogamente N è normale in HN, essendo normale in G.

³Ci sono più modi per vedere che H/N è normale in G/N. Un modo di vederlo si ottiene dalla dimostrazione stessa del teorema, dal momento che si ottiene che H/N è il kernel dell'omomorfismo φ . Altrimenti, se $hN \in H/N$, $gNhNg^{-1}N = (ghg^{-1})N$, e poiché H è normale in G, $ghg^{-1} \in H$, da cui $(ghg^{-1})N \in H/N$.

Dimostrazione. Si costruisce l'omomorfismo $\varphi: G/N \to G/H$ tale per cui $gN \mapsto gH$. Si verifica innanzitutto che la mappa φ è ben definita:

$$gnH = gH \iff N \subseteq H.$$

Inoltre φ è effettivamente un omomorfismo dal momento che:

$$\varphi(gkN) = gkH = gH \, kH = \varphi(gN)\varphi(kN).$$

Chiaramente φ è una mappa surgettiva e quindi $\operatorname{Im} \varphi = G/H$. Allora, se $g \in \operatorname{Ker} \varphi$, $\varphi(gN) = gH = H$, e quindi $g \in H$. Pertanto $\operatorname{Ker} \varphi = \{gN \mid g \in H\} = H/N$. Si conclude allora, per il Primo teorema di isomorfismo, che:

$$\frac{G/N}{H/N} \cong G/H.$$