Прокопов Н.И., Гервальд А.Ю., Зубов В.П., Литманович Е.А.

СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ

для тематического и итогового контроля по дисциплине «Химия и физика полимеров»

MOCKBA 2008

http://www.mitht.ru/e-library

Федеральное агентство по образованию

Московская государственная академия тонкой химической технологии имени М.В. Ломоносова

Кафедра

Химии и технологии высокомолекулярных соединений имени С.С. Медведева

Прокопов Н.И., Гервальд А.Ю., Зубов В.П., Литманович Е.А.

СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ

для тематического и итогового контроля по дисциплине «Химия и физика полимеров»

Утверждено Библиотечно-издательской комиссией МИТХТ им. М.В. Ломоносова в качестве сборника тестовых заданий по дисциплине «Химия и физика полимеров» для студентов, обучающихся по специальностям - 240501.65 «Химическая технология ВМС», 240502.65 «Технология переработки пластических масс и эластомеров», 240504.65 «Химическая технология кинофотоматериалов и магнитных носителей», а также для повышения квалификации профессорскопреподавательского состава.

Москва **МИТХТ им. М.В. Ломоносова** 2008

http://www.mitht.ru/e-library

УДК 542.48/.49/.61(076.5) ББК 24.2

Рецензент: д.х.н., проф. Киреев В.В. (заведующий кафедрой химической технологии пласти-

ческих масс Российского химико-технологического университета

им. Д.И. Менделеева)

Рекомендовано к изданию кафедрой Химии и технологии высокомолекулярных соединений

имени С.С. Медведева (протокол №10 от 11.06.08)

Доп. план. (поз № 270/2008)

Прокопов Н.И., Гервальд А.Ю., Зубов В.П., Литманович Е.А.

Сборник тестовых заданий для тематического и итогового контроля по дисциплине «Химия и

физика полимеров» М.: МИТХТ им. М.В. Ломоносова, 2008 – 88 с.

В сборнике представлены тестовые задания по основным разделам и темам дисциплины «Хи-

мия и физика полимеров». Тестовые задания могут быть использованы как преподавателями для тема-

тического и итогового контроля успеваемости студентов, так и студентами для усвоения и закрепления

лекционного материала.

Для студентов, обучающихся по специальностям - 240501.65 «Химическая технология ВМС»,

240502.65 «Технология переработки пластических масс и эластомеров», 240504.65 «Химическая тех-

нология кинофотоматериалов и магнитных носителей», а также для повышения квалификации профес-

сорско-преподавательского состава.

УДК 542.48/.49/.61(076.5)

ББК 24.2

© ХиТ ВМС им. С.С. Медведева, 2008

© МИТХТ им. М.В. Ломоносова, 2008

1	Och	овные понятия и определения химии и физики полимероверы	. 4	_
		Понятие о статистическом сегменте. Модель свободно-сочлененной цепи		
		Гибкость и размеры макромолекулы		
		Понятие о конфигурации. Виды конфигурационной изомерии макромолекул		
		Молекулярно - массовые характеристики полимеров		
		Дифференциальные и интегральные функции ММР		
2		ссификация и структурные формулы основных полимеров		
۷.		Классификация полимеров		
		Структурные формулы основных полимеров		
3		годы получения и структура основных типов полимеров		
٦.		Виды полимеризации. Инициирование и ингибирование полимеризации		
		Термодинамика полимеризации		
		Основное уравнение радикальной полимеризации		
		Ионная и ионно-координационная полимеризации		
		Радикальная сополимеризация		
		Ионная сополимеризация		
		Ступенчатые процессы синтеза полимеров		
1		нические приемы синтеза основных полимеров и их характеристика		
╼.		Технические приемы синтеза основных полимеров и их характеристика		
		Характеристика основных промышленных полимеров		
5		повные физико-механические свойства полимеров		
٦.		Термомеханическая кривая		
		Температура стеклования		
		Деформационные свойства полимеров		
		Деформация каучуков и ее характеристики		
		Вязкотекучее состояние полимеров		
		Пластификация полимеров		
		Прочность и долговечность полимеров		
6		исталлические полимеры и особенности их механических свойств		
٠.		Кристаллизация полимеров		
		Степень кристалличности полимеров		
		Плавление полимеров		
		Изменение термодинамических параметров в процессах плавления и кристаллизации		
		Изменение свойств полимеров в процессах кристаллизации		
7.		ические реакции полимеров		
		Полимераналогичные превращения		
		Характерные особенности макромолекул как реагентов		
	/.3.	термическая и термоокислительная деструкция, деполимеризация	//	-
		Термическая и термоокислительная деструкция, деполимеризация Блок-сополимеры		
	7.4.	Блок-сополимеры Привитые сополимеры	82	-

1. Основные понятия и определения химии и физики полимеров

1.1. Понятие о статистическом сегменте. Модель свободно-сочлененной цепи

Вопрос 1501

Даны два образца полиэтилена молекулярной массы 280000 (1) и 1120000 (2) (действует модель свободно сочлененной цепи). Верным заключением о степени свернутости (А) молекул этих образцов является:

1.
$$A_1 = 2 \cdot A_2$$

2.
$$A_2 = 2 \cdot A_1$$

3.
$$A_2 = 1.4 \cdot A_1$$

4.
$$A_1 = A_2$$

Вопрос 1502

Верным заключением о соотношении равновесных жесткостей (Ж) полиэтилена (ПЭ), поливинилхлорида (ПВХ), целлюлозы (ЦЛЗ) и поли-п-бензамида (ППБА) является:

1.
$$\mathbb{X}_{\Pi \ni} > \mathbb{X}_{\Pi BX} > \mathbb{X}_{\Pi \Pi 5A}$$

3.
$$X_{\Pi \ni} > X_{\Pi BX} > X_{\Pi \Pi BA} > X_{\Pi \Pi BA}$$

2.
$$\mathcal{K}_{\Pi \ni} < \mathcal{K}_{\Pi B X} < \mathcal{K}_{\Pi \Pi B A} < \mathcal{K}_{\sqcup \Pi \exists}$$

4.
$$\mathcal{K}_{\Pi \ni} < \mathcal{K}_{\Pi B X} < \mathcal{K}_{L J \Pi 3} < \mathcal{K}_{\Pi \Pi B A}$$

Вопрос 1503

Увеличить долю звеньев линейного полиэтилена, находящегося в транс-конформации можно:

1. нагреванием полимера

3. невозможно без разрыва связей

2. охлаждением полимера

4. транс-конформации у полиэтилена нет

Вопрос 1504

Даны два образца полистирола среднечисловой молекулярной массы 2080000 (1) и 1040000 (2). Верным заключением о степени свернутости (А) молекул этих двух образцов является:

1.
$$A_1 = 1,4 \cdot A_2$$

2.
$$A_1 = 1.8 \cdot A_2$$

3.
$$A_2 = 2,0.A_2$$

4.
$$A_1 = A_2$$

Вопрос 1405

Для модели свободно сочлененной цепи полиэтилена квадрат среднеквадратичного расстояния между концами цепи равен $2000000 \cdot L^2$ (L - длина звена), среднечисловая молекулярная масса 5600000. Величина статистического сегмента полиэтилена равна:

- 1. 20 звеньев
- 2. 10 звеньев
- 3. 50 звеньев
- 4. 100 звеньев

Вопрос 1406

Степень свернутости макромолекулы карбоцепного полимера при переходе от модели свободно сочлененной цепи к цепи с фиксированными валентными углами уменьшается в N раз, значение N находится в интервале:

2.
$$2 < N < 10$$

4.
$$N > 10$$

Вопрос 1407

Для модели свободно сочлененной цепи квадрат среднеквадратичного расстояния между концами цепи равен $2400000 \cdot L^2$ (L - длина звена), среднечисловая молекулярная масса 12500000. Величина статистического сегмента поливинилхлорида равна:

- 1. 16 звеньев
- 2. 12 звеньев
- 3. 20 звеньев
- 4. 40 звеньев

Вопрос 1408

Величины статистических сегментов некоторых полимеров имеют следующие значения: полиэтилен (ПЭ) – 8, полиизобутилен (ПИБ) – 7, поливинилхлорид (ПВХ) – 12, поли-п-бензамид (ППБА) – 320 мономерных звеньев. Верным заключением о соотношении равновесных гибкостей (Г) этих полимеров является:

1.
$$\Gamma_{\Pi N B} > \Gamma_{\Pi B} > \Gamma_{\Pi B X} > \Gamma_{\Pi \Pi B A}$$

3.
$$\Gamma_{\Pi \ni} < \Gamma_{\Pi \mathsf{NB}} < \Gamma_{\Pi \mathsf{BX}} < \Gamma_{\Pi \mathsf{\Pi} \mathsf{BA}}$$

2.
$$\Gamma_{\Pi N B} < \Gamma_{\Pi B} < \Gamma_{\Pi B X} < \Gamma_{\Pi \Pi B A}$$

4.
$$\Gamma_{\Pi \ni} = \Gamma_{\Pi \mathsf{M} \mathsf{B}} = \Gamma_{\Pi \mathsf{B} \mathsf{X}} = \Gamma_{\Pi \Pi \mathsf{B} \mathsf{A}}$$

Молекула полиэтилена (принять модель свободно сочлененной цепи) молекулярной массы 280000 максимально растягивается в:

- 1. 200 раз
- 2. 500 раз
- 3. 1000 раз
- 4. 100 раз

Вопрос 1310

Молекула полистирола (принять модель свободно сочлененной цепи) среднечисловой молекулярной массы 4160000 максимально растягивается в:

- 1. 500 раз
- 2. 200 раз
- 3. 50 раз
- 4. 10 раз

Вопрос 1311

Для модели свободно сочлененной цепи квадрат среднеквадратичного расстояния между концами цепи (H^2) равен $4000000 \cdot L^2$ (L - длина звена), среднечисловая молекулярная масса 41600000. Величина статистического сегмента полистирола равна:

- 1. 15 звеньям
- 2. 20 звеньям
- 3. 10 звеньям
- 4. 5 звеньям

1.2. Гибкость и размеры макромолекулы

Вопрос 2501

Даны зависимости потенциальной энергии (U) от угла внутреннего вращения для четырех полимеров, степени полимеризации, длины связей, валентные углы у всех одинаковы. Наибольшее среднеквадратичное расстояние между концами цепи имеет:

Вопрос 2502

Даны зависимости потенциальной энергии (U) от угла внутреннего вращения для двух полимеров, степени полимеризации, длины связей, валентные углы у них одинаковы. Верным заключением о соотношении их термодинамических гибкостей (Г) является:

- 1. $\Gamma_1 > \Gamma_2$
- 2. $\Gamma_1 < \Gamma_2$

- U 2 2 360 360
- 3. $\Gamma_1 = \Gamma_2$
- 4. нельзя ответить однозначно

Вопрос 2503

Даны зависимости потенциальной энергии (U) от угла внутреннего вращения для двух полимеров, степени полимеризации, длины связей, валентные углы у них одинаковы. Верным заключение о соотношении их кинетических гибкостей (Г) является:

- 1. $\Gamma_1 > \Gamma_2$
- 2. $\Gamma_1 < \Gamma_2$

- 3. $\Gamma_1 = \Gamma_2$
- 4. нельзя ответить однозначно

Даны зависимости потенциальной энергии (U) от угла внутреннего вращения для четырех полимеров, степени полимеризации, длины связей, валентные углы у всех одинаковы. Наибольшее среднеквадратичное расстояние между концами цепи имеет:

Вопрос 2405

Даны зависимости потенциальной энергии (U) от угла внутреннего вращения для четырех полимеров, степени полимеризации, длины связей, валентные углы у всех одинаковы. Правильным соотношением между термодинамическими гибкостями (Г) этих полимеров является:

Вопрос 2406

Даны зависимости потенциальной энергии (U) от угла внутреннего вращения для четырех полимеров, степени полимеризации, длины связей, валентные углы у всех одинаковы. Наименее термодинамически гибкие цепи имеет:

Вопрос 2407

Дана зависимость потенциальной энергии (U) от угла внутреннего вращения для полимера. Кинетическая гибкость макромолекул определяется разностью энергий, соответствующей:

1. U₂, U₃

U₄

3. U₁ 4. U₂, U₄

Вопрос 2408

Дана зависимость потенциальной энергии (U) от угла внутреннего вращения для полимера. Термодинамическая гибкость макромолекул определяется разностью энергий, соответствующей:

1. U₂

2. U₃

3. U₄

4. U₁

Вопрос 2409

Дана зависимость потенциальной энергии (U) от угла внутреннего вращения для полимера. Термодинамическая гибкость макромолекул определяется разностью энергий, соответствующей:

1. U₁, U₃

2. U₄

3. U₂

4. U₅

Вопрос 2410

Среднеквадратичное расстояние $(H^2)^{\frac{1}{2}}$ между концами цепи, состоящей из P звеньев (P>>1), с тетраэдрическим валентным углом (109,5 градусов) и свободным внутренним вращением (длина звена L=1) равно:

1.
$$(H^2)^{\frac{1}{2}} = (2, 3 \cdot P \cdot \log(P))^{\frac{1}{2}}$$

3.
$$(H^2)^{1/2} = (2 \cdot P)^{1/2}$$

2.
$$(H^2)^{\frac{1}{2}} = (4 \cdot P)^{\frac{1}{2}}$$

4.
$$(H^2)^{1/2} = \frac{(P^2)}{2}$$

Вопрос 2311

Квадрат среднеквадратичного расстояния (H²) между концами цепи, состоящей из P звеньев (P>>1), с валентным углом 90° и свободным внутренним вращением (длина звена L=1) равен:

$$1. \quad \overline{H}^2 = \frac{P}{2}$$

2.
$$\overline{H}^2 = 2.3 \cdot \log(P)$$
 3. $\overline{H}^2 = 2\sqrt{P}$ 4. $\overline{H}^2 = P$

3.
$$\overline{H}^2 = 2\sqrt{P}$$

4.
$$\overline{H}^2 = P$$

Вопрос 2312

Определяющее влияние на зависимость (H^2) от температуры в выражении для среднеквадратичного расстояния между концами цепи (H^2) оказывает:

$$\overline{H}^2 = L^2 \cdot \overline{P_N} \cdot \frac{1 - \cos Q}{1 + \cos Q} \cdot \frac{1 + \overline{\cos \gamma}}{1 - \overline{\cos \gamma}}$$

- 1. Q валентный угол
- 2. Y угол внутреннего вращения
- 3. L длина звена
- 4. Р_N среднечисловая степень полимеризации

Определяющее влияние на зависимость (H²) от природы растворителя в выражении для среднеквадратичного расстояния между концами цепи (H^2) оказывает:

$$\overline{H}^2 = L^2 \cdot \overline{P_N} \cdot \frac{1 - \cos Q}{1 + \cos Q} \cdot \frac{1 + \overline{\cos \gamma}}{1 - \overline{\cos \gamma}}$$

- 1. Y угол внутреннего вращения
- 2. Q валентный угол
- 3. Р_N среднечисловая степень полимеризации
- 4. L длина звена

Вопрос 2314

Дана зависимость потенциальной энергии (U) от угла внутреннего вращения для полимера. Кинетическая гибкость макромолекул определяется разностью энергий, соответствующей:

1. U₃

2. U₁

3. U₂, U₅

4. U₄

1.3. Понятие о конфигурации. Виды конфигурационной изомерии макромолекул

Вопрос 3501

Для полиизопрена из перечисленных типов конфигурационной изомерии (1.изо-синдио 2.цис-транс 3. "голова-голова" - "голова-хвост") характерны:

1. типы 1 и 2

2. типы 1 и 3

3. все три типа

4. типы 2 и 3

Вопрос 3502

Изо-синдио изомерия в полиизопрене:

1. возможна для 1,2 – полиизопрена

3. возможна для 1, 2 – и 1,4 – полиизопрена

2. возможна для 1,4 - полиизопрена

4. невозможна

Вопрос 3503

Для диады (двух соседних звеньев) полиизобутилена количество вариантов конфигурационных изомеров равно:

1. 3

2. 2

3. 6

4. 0

Вопрос 3504

Наличие цис-транс конфигурационной изомерии характерно для:

1. полиметилметакрилата

3. полиаллилметакрилата

2. полибутилметакрилата

4. полибутадиена

Вопрос 3505

Для гуттаперчи и натурального каучука характерна:

1. изо-синдио изомерия

3. изомерия "голова-голова" - "голова-хвост":

2. цис-транс изомерия 4. все три перечисленных выше типа Вопрос 3406 Диада (два соседних звена) полиакрилонитрила может иметь конфигурационные изомеры в количестве равном: 1. 8 2. 6 3. 12 4. 2 Вопрос 3407 Диада (два соседних звена) полиметилметакрилата может иметь конфигурационные изомеры в количестве равном: 1. 8 2. 6 3. 12 4. 2 Вопрос 3408 Диада (два соседних звена) поливинилиденфторида может иметь конфигурационные изомеры в количестве равном: 1. 3 2. 2 3. 6 4. 0 Вопрос 3409 Из перечисленных типов конфигурационной изомерии для поливинилиденхлорида характерен: 1. изо-синдио 3. "голова-голова" - "голова-хвост" 2. цис-транс 4. ни один из перечисленных типов Вопрос 3410 На конфигурационный состав полимера (-CH₂-CHX-) $_{\rm n}$ в процессе его эксплуатации влияют: 1. температура 3. время 2. механические воздействия 4. ни один из перечисленных факторов Вопрос 3411 Относительное содержание изомеров "голова-голова" - "голова-хвост" в цепи 1,2-полибутадиена определяется: 3. такой изомерии у полимера не существует 1. условиями эксплуатации 4. условиями синтеза и эксплуатации 2. условиями синтеза Вопрос 3312 Диада (два соседних звена) полиэтилена может иметь конфигурационные изомеры в количестве равном: 3. такой изомерии для полиэтилена нет 1. два 4. шесть 2. четыре Вопрос 3313 Диада (два соседних звена) политрифторхлорэтилена может иметь конфигурационные изомеры в количестве равном: 1. 6 2. 4 3. 2 4. 8

Вопрос 3314

Синдиотактический полипропилен переводится в атактический без разрыва -С–С- связей основной цепи полимера путем:

1. изменения температуры

3. воздействия ионизирующим излучением

2. изменения конформации

4. такой перевод невозможен

Факторами, определяющими относительное содержание изомеров "голова-голова" - "голова-хвост" в цепи 1,4-полибутадиена, являются:

- 1. условия синтеза
- 2. условия эксплуатации

- 3. такой изомерии для этого полимера нет
- 4. условия синтеза и условия эксплуатации

Вопрос 3516

Приведены фишеровские проекции фрагмента цепи поливинилхлорида. Правильным заключением о пути перехода является:

- 1. переход происходит самопроизвольно
- 2. без разрыва связей -С-С- основной цепи переход невозможен
- 3. переход происходит изменением конформации
- 4. переход происходит поворотом звена вокруг -С-С- связи

Вопрос 3517

Приведены фишеровские проекции фрагмента цепи полиакрилонитрила. Правильным заключением о пути перехода является:

- 1. без разрыва связей -С-С- основной цепи невозможен
- 2. переход происходит самопроизвольно
- 3. переход происходит за счет повышения температуры
- 4. переход происходит изменением конформации

Вопрос 3518

Из приведенных формул фрагментам цепи полихлоропрена соответствуют:

1. формула А

формула Б

- 3. формула В
- 4. формула Г

5. формула Д

Вопрос 3519

Из приведенных формул фрагментам цепи полиметилакрилата соответствуют:

- 1. формула А
- 2. формула Б
- 3. формула В
- 4. формула Г

Вопрос 3520

Из приведенных формул фрагментам цепи поливинилацетата соответствуют:

- 1. формула А
- 2. формула Б
- 3. формула В
- 4. формула Г

Из приведенных формул фрагментам цепи полибутадиена соответствуют:

формула А

3. формула В

5. формула Д

2. формула Б

4. формула Г

Вопрос 3422

Для полиизопрена, изображенного на рисунке, характерны следующие типы изомерии:

$$CH_3$$
 H_2 CH_3 CH_2 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_4 CH_5 CH_5

Вопрос 3423

Для полиизопрена, изображенного на рисунке, характерны следующие типы изомерии:

- 1. изо изомерия
- 2. синдио изомерия
- 3. цис изомерия
- 4. транс изомерия

Вопрос 3324

Приведенный фрагмент цепи поливинилхлорида с точки зрения конфигурационной изомерии соответствует полимеру:

- 1. изотактическому
- 2. синдиотактическому

- 3. имеющему транс конфигурацию
- 4. построенному по типу "голова голова"

Приведена структурная формула фрагмента цепи поливинилхлорида. Правильным заключением о типе конфигурационной изомерии этого фрагмента является:

- 1. имеет транс конфигурацию
- 2. построен по типу "голова голова"
- 3. является синдиотактическим полимером
- 4. принадлежит изотактическому полимеру

Вопрос 3326

Приведена структурная формула фрагмента цепи полиакрилонитрила. Верным заключение о конфигурационной изомерии этого фрагмента является:

- 1. полимер изотактический
- 2. полимер синдиотактический
- 3. цис-изомер

- 4. транс-изомер
- 5. построен по типу "голова голова"
- 6. построен по типу "голова хвост"

1.4. Молекулярно - массовые характеристики полимеров

Вопрос 4501

К смеси двух фракций полимера, состоящей из N молекул со среднечисловой степенью полимеризации P_N , равной 100 и N молекул с P_N , равной 10000, добавили еще N молекул с P_N , равной 10000. При этом параметр полидисперсности $A_1 = M_W/M_N$ изменился до значения A_2 (M_W - средневесовая, M_N - среднечисловая молекулярные массы). Соотношение A_2/A_1 равно:

- 1. $1 < A_2/A_1 < 2$ 2. $1 < A_1/A_2 < 2$ 3. $A_1/A_2 > 2$ 4. $A_2/A_1 > 2$

Вопрос 4502

Для смеси двух фракций полимера, состоящей из N молекул со среднечисловой степенью полимеризации P_N , равной 100 и N молекул с P_N , равной 10000, параметр полидисперсности $A = M_W/M_N = 2$. При добавлении N молекул с P_N, равной 100, величина A меняется. Чтобы компенсировать это изменение, надо добавить к смеси молекул с P_N, равной 10000, в количестве равном:

1. N

- 2. N/100
- 3. 100·N
- 4. N/2

К смеси двух фракций полимера, состоящей из N молекул со среднечисловой степенью полимеризации P_N , равной 100 и N молекул с P_N , равной 10000, добавили еще N молекул с P_N , равной 100. При этом параметр полидисперсности $A_1 = M_W/M_N$ изменился до значения A_2 (M_W - средневесовая, M_N - среднечисловая молекулярные массы) . Соотношение A_2/A_1 равно:

1.
$$A_2/A_1 > 2$$

2.
$$A_1/A_2 > 2$$

3.
$$1 < A_2/A_1 < 2$$

3.
$$1 < A_2/A_1 < 2$$
 4. $1 < A_1/A_2 < 2$

Вопрос 4404

Средняя молекулярная масса системы, состоящей из 100 молекул с массой 100, 20 молекул с массой 500 и 50 молекул с массой 200 равна 267. При этом средняя молекулярная масса является:

Вопрос 4405

Средняя молекулярная масса системы, состоящей из 10 молекул с массой 4000, 40 молекул с массой 10000 и 50 молекул с массой 40000 равна 24400. При этом средняя молекулярная масса является:

Вопрос 4306

Правильным соотношением между характеристиками ММР для полидисперсного полимера является (М_W средневесовая, M_N – среднечисловая, M_Z - z–средняя молекулярные массы)

1.
$$M_7 < M_N < M_W$$

2.
$$M_7 > M_W > M_N$$

2.
$$M_Z > M_W > M_N$$
 3. $M_Z > M_N > M_W$ 4. $M_N > M_W > M_Z$

4.
$$M_N > M_W > M_Z$$

Вопрос 4307

Отношение M_W/M_N (M_W - средневесовая, M_N - среднечисловая молекулярные массы) для системы, содержащей 2N молекул с массой 1, 2N молекул с массой 2, 7N молекул с массой 3, 2N молекул с массой 4, описывается следующим неравенством:

1.
$$1.0 < M_W/M_N < 1.2$$

3.
$$1.4 < M_W/M_N < 1.6$$

2.
$$1.2 < M_W/M_N < 1.4$$

4.
$$1.6 < M_W/M_N < 1.8$$

Вопрос 4308

Среднечисловая молекулярная масса для системы, содержащей N молекул с массой 1, N молекул с массой 2, 3N молекул с массой 3, 5N молекул с массой 4, 4N молекул с массой 5 и 2N молекул с массой 6, равна:

Вопрос 4309

Среднемассовая молекулярная масса для системы, содержащей N молекул с массой 1, 3N молекул с массой 2, 4N молекул с массой 3 и 2N молекул с массой 4, равна:

Вопрос 4310

Несоблюдение закона постоянства состава для полимеров обуславливает наличие:

- 1. распределения по молекулярным массам
- 3. разветвлений

2. разных концевых групп

4. в цепи атомов различной природы

Вопрос 4411

Молекулярная масса поливинилпирролидона со степенью полимеризации 100 равна (концевыми группами при расчете пренебречь):

- 1. 11200
- 2. 11100
- 3. 12500
- 4. 9700

Вопрос 4412

Молекулярная масса полидиметилсилоксана со степенью полимеризации 100 равна (концевыми группами при расчете пренебречь):

1. 10400

2. 7400

3. 10600

4. 7200

Вопрос 4413

Молекулярная масса поливинилиденфторида со степенью полимеризации 100 равна (концевыми группами при расчете пренебречь):

1. 6400

2. 4600

3. 10000

4. 3200

Вопрос 4314

Молекулярная масса полиметилметакрилата со степенью полимеризации 80 равна (концевыми группами при расчете пренебречь):

1. 6720

2. 8000

3. 8160

4. 6880

Вопрос 4315

Молекулярная масса поли-альфа-метилстирола со степенью полимеризации 50 равна (концевыми группами при расчете пренебречь):

1. 5900

2. 4900

3. 5200

4. 2100

Вопрос 4416

Молекулярная масса поливиниленкарбоната со степенью полимеризации 1000 равна (концевыми группами при расчете пренебречь):

1. 92000

2. 86000

3. 72000

4. 78000

Вопрос 4317

Молекулярная масса поливинилацетата со степенью полимеризации 1500 равна:

1. 120000

2. 129000

3. 111000

4. 101000

Вопрос 4518

Если в 1 г полиэтилентерефталата (лавсан) со степенью полимеризации 1000 содержится N молекул вещества, то величина N находится в интервале (концевыми группами при расчете пренебречь):

1. $1.10^{18} < N < 2.10^{18}$

3. $4.10^{18} < N < 6.10^{18}$

2. $2 \cdot 10^{18} < N < 4 \cdot 10^{18}$

4. $8.10^{18} < N < 10^{19}$

Вопрос 4519

Если в 1 г полигексаметиленадипинамида (найлон-66) со среднечисловой степенью полимеризации 1000 содержится N молекул вещества, то величина N находится в интервале (концевыми группами при расчете пренебречь):

1. $1.10^{17} < N < 10^{18}$

3. $3 \cdot 10^{18} < N < 4 \cdot 10^{18}$

2. $2.10^{18} < N < 3.10^{18}$

4. $4.10^{18} < N < 5.10^{18}$

Вопрос 4520

Имеется смесь по 0,1 моль (в расчете на одно звено) полимеров: полипропилена, полихлоропрена, полибутадиена и полистирола. С этой смесью может прореагировать (в темноте, в мягких условиях, возможными реакциями концевых групп пренебречь) бром в количестве равном:

1. 0,2 моля

2. 0,3 моля

3. 0,4 моля

4. 0,1 моля

Вопрос 4521

Если в 1 г целлюлозы со среднечисловой степенью полимеризации 1000 содержится N молекул вещества, то величина N находится в интервале (концевыми группами при расчете пренебречь):

- 1. $3.10^{18} < N < 4.10^{18}$
- 2. $4.10^{18} < N < 5.10^{18}$

- 3. $2 \cdot 10^{18} < N < 3 \cdot 10^{18}$
- 4. $1.10^{17} < N < 1.10^{18}$

Если в 1 г поливинилового спирта со степенью полимеризации 1000 содержится N молекул вещества, то величина N находится в интервале (концевыми группами при расчете пренебречь):

- 1. $5.10^{18} < N < 1.10^{19}$
- 2. $2 \cdot 10^{18} < N < 5 \cdot 10^{18}$

- 3. $10^{18} < N < 2.10^{18}$
- 4. $10^{19} < N < 2.10^{19}$

Вопрос 4423

Из приведенных кривых зависимости температуры плавления нормальных алканов от числа – CH_2 - групп в цепи (N) (интервал изменения N до 100000-1000000) соответствует:

- 1. кривая В
- 2. кривая Б
- 3. кривая Г
- 4. кривая А

1.5. Дифференциальные и интегральные функции ММР

Вопрос 5501

На рисунке приведены Q_W - массовые функции MMP двух образцов полимера. Правильным заключением о среднечисловых молекулярных массах M_N образцов 1 и 2 является:

- 1. $M_N(1) < M_N(2)$
- 2. $M_N(1) > M_N(2)$

- 3. $M_N(1) = M_N(2)$
- 4. нельзя ответить однозначно

Вопрос 5502

На рисунке приведены Q_N - числовые функции MMP двух образцов полимера. Правильным заключения о среднемассовых молекулярных массах M_W образцов 1 и 2 является:

- 1. нельзя ответить однозначно
- 2. $M_W(1) < M_W(2)$

- 3. $M_W(1) > M_W(2)$
- 4. $M_W(1) = M_W(2)$

Вопрос 5503

На рисунке представлена Q_W - массовая функция MMP трех полимеров. Верным заключением о среднечисловых молекулярных массах M_N трех образцов полимера является:

- 1. $M_N(1) < M_N(2) < M_N(3)$
- 2. $M_N(1) = M_N(2) = M_N(3)$

- 3. $M_N(1) > M_N(2) > M_N(3)$
- 4. нельзя ответить однозначно

На рисунке приведены Q_W - массовые функции MMP двух образцов полимера. Правильным заключением о среднечисловых молекулярных массах M_N этих образцов является:

- 1. $M_N(1) < M_N(2)$
- 2. $M_N(1) > M_N(2)$

- 3. $M_N(1) = M_N(2)$
- 4. нельзя ответить однозначно

Вопрос 5505

На рисунке приведены Q_N - числовые функции MMP двух образцов полимера. Правильным заключением о среднемассовых молекулярных массах M_W образцов 1 и 2 является

- 1. $M_W(1) > M_W(2)$
- 2. $M_W(1) < M_W(2)$

- 3. $M_W(1) = M_W(2)$
- 4. нельзя ответить однозначно

Вопрос 5506

На рисунке приведены Q_W - массовые функции MMP двух образцов полимера. Правильным заключением о среднечисловых молекулярных массах M_N этих образцов является:

- 1. $M_N(1) > M_N(2)$
- 2. $M_N(1) < M_N(2)$

- 3. $M_N(1) = M_N(2)$
- 4. нельзя ответить однозначно

Вопрос 5407

При рассмотрении интегральных массовых функций MMP – F(M) правильным заключением о среднемассовых молекулярных массах M_W трех образцов (1, 2, 3) является:

- 1. $M_W(1) > M_W(2) > M_W(3)$
- 2. $M_W(1) = M_W(2) = M_W(3)$

- 3. $M_W(1) < M_W(2) < M_W(3)$
- 4. нельзя ответить однозначно

На рисунке приведены Q_N - числовые функции MMP двух фракций полимера. Правильным заключением о среднечисловых молекулярных массах (M_N) этих фракций является:

- 1. $M_N(1) = M_N(2)$
- 2. $M_N(1) < M_N(2)$

- 3. $M_N(1) > M_N(2)$
- 4. нельзя ответить однозначно

Вопрос 5409

Дифференциальная числовая функция молекулярно — массового распределения имеет вид, представленный на рисунке. Физическим смыслом параметров X и Y является (М — молекулярная масса):

- 1. X M, Y массовая доля молекул массы, меньшей или равной М
- 2. X M, Y массовая доля молекул массы М
- 3. Х М, Ү число молекул массы М
- 4. Х М, Ү общая масса молекул массы М

Вопрос 5410

Интегральная массовая функция молекулярно – массового распределения имеет вид, представленный на рисунке. Физическим смыслом параметров X и Y является (М – молекулярная масса):

- 1. Х М, У массовая доля молекул массы, меньшей или равной М
- 2. Х М, Ү число молекул массы М
- 3. X M, Y массовая доля молекул массы М
- 4. Х М, Ү общая масса молекул массы М

Дифференциальная массовая функция молекулярно — массового распределения имеет вид, представленный на рисунке. Физическим смыслом параметров X и Y является (М — молекулярная масса):

- 1. Х числовая доля молекул массы М, Ү М
- 2. Х М, Ү числовая доля молекул массы М
- 3. X числовая доля молекул массы, меньшей или равной М, Y M
- 4. Х М, Ү числовая доля молекул массы, меньшей или равной М

Вопрос 5412

Из кривых, приведенных на рисунке, интегральной массовой функции ММР соответствует:

- 1. кривая Б
- 2. кривая Г
- 3. кривая В
- 4. кривая А

Вопрос 5413

На рисунке приведены Q_N - числовые функции MMP трех образцов полимера. Правильным заключением о среднемассовых молекулярных массах M_W этих образцов является:

- 1. $M_W(1) > M_W(2) > M_W(3)$
- 2. $M_W(1) < M_W(2) < M_W(3)$

- 3. $M_W(1) = M_W(2) = M_W(3)$
- 4. нельзя ответить однозначно

Вопрос 5414

На рисунке представлена Q_N - числовая функция MMP для трех полимеров. Правильным заключением о среднемассовых молекулярных массах M_W трех образцов полимера является:

- 1. $M_W(1) < M_W(2) < M_W(3)$
- 2. $M_W(1) > M_W(2) > M_W(3)$

- 3. $M_W(1) = M_W(2) = M_W(3)$
- 4. нельзя ответить однозначно

На рисунке представлена Q_W - массовая функция MMP для трех различных полимеров M_W - средневесовая, M_N - среднечисловая молекулярные массы. Верным заключением о величинах параметра полидисперсности $A=M_W/M_N$ является:

- 1. $A_1 > A_2 > A_3$
- 2. $A_1 = A_2 = A_3$

- 3. Нельзя ответить однозначно
- 4. $A_1 < A_2 < A_3$

Вопрос 5316

На рисунке представлена Q_W - массовая функция ММР для трех полимеров. M_W - средневесовая, M_N - среднечисловая молекулярные массы. Верным заключением о величинах параметра полидисперсности $A=M_W/M_N$ является:

- 1. $A_1 > A_2 > A_3$
- 2. $A_1 < A_2 < A_3$

- 3. $A_1 = A_2 = A_3$
- 4. нельзя ответить однозначно

Прокопов Н.И.,	, Гервальд А.Ю.	, Зубов В.П.,	Литманович Е.А

2.Классификация и структурные формулы основных полимеров

2.1. Классификация полимеров

Вопрос 2501

Среди перечисленных ниже полимеров гетероцепными являются:

1. полиметилметакрилат

5. полиформальдегид

2. целлюлоза

6. Полиэтиленоксид

3. полифенилен

7. полиэтилентерефталат

4. поликапроамид

Вопрос 2502

Поликапроамид относится к:

1. линейным полимерам

2. карбоцепным полимерам

3. гомоцепным полимерам

4. гетероцепным полимерам

5. полиацеталям

6. полиамидам

7. полиэфирам

Вопрос 2403

Полиэтиленоксид, полиэтилентерефталат и полиформальдегид относят к:

1. линейным полимерам

4. гетероцепным полимерам

2. гомоцепным полимерам

5. элементоорганическим полимерам

3. карбоцепным полимерам

6. лестничным полимерам

Вопрос 2404

Полимеры: полиизобутилен, полиметилметакрилат, полиэтиленгликольтерефталат, поликапроамид, полифосфонитрилхлорид объединены в одну группу по следующим признакам:

1. органические

4. высокомолекулярные

2. гетероцепные

5. сшитые

3. элементоорганические

Вопрос 2405

Полимерами винилового ряда являются:

1. полипропилен

3. полистирол

5. полихлоропрен

2. полиизобутилен

4. полиметилметакрилат

6. поликапроамид

Вопрос 2406

Полимеры: гуттаперча, поливинилпиридин, пластическая сера, алмаз, объединены в одну группу по следующим признакам:

1. элементоорганические

3. гомоцепные

5. гетероцепные

2. природные

4. трехмерные

6. линейные

Вопрос 2307

Поливинилбутираль относится к типу полимеров:

1. линейных

4. гетероцепных

2. гомоцепных

5. элементоорганических

3. лестничных

2.2. Структурные формулы основных полимеров

Вопрос 3501

Среди перечисленных формул целлюлозе соответствует:

- 1. формула Г
- 2. формула А
- 3. формула Б
- 4. формула В

Вопрос 3402

Из приведенных формул звену поливинилиденфторида соответствует:

- 1. формула Г
- 2. формула А
- 3. формула Б
- 4. формула В

Вопрос 3303

Из приведенных формул правильно отражает строение звена полиметилметакрилата формула:

- 1. формула Г
- 2. формула А
- 3. формула Б
- 4. формула В

Вопрос 3304

Для сополимера изопрена с метилметакрилатом справедлива формула:

- 1. формула А
- 2. формула Б
- 3. формула В
- 4. формула Г

Звену поливинилиденхлорида соответствует формула:

$$A \quad \left(--- CH_2 --- CHCI --- \right)_n$$

Б
$$(--cH_2-ccI_2-)_r$$

$$\Gamma \left(--\text{CCl}_2 --\text{CCl}_2 -- \right)_n$$

- 1. формула В
- 2. формула Б
- 3. формула Г
- 4. формула А

Вопрос 3306

Среди перечисленных формул полиамиду 6 соответствует:

- 1. формула А
- 3. формула В
- 4. формула Г

Вопрос 3307

Среди перечисленных формул полиамиду 6,6 соответствует:

$$\begin{array}{|c|c|c|c|c|c|}\hline A & (--CO-(CH_2)_5-NH-)_n \\ \hline B & (--CO-(CH_2)_6-CONH-(CH_2)_6-NH-)_n \\ \hline B & (--CO-(CH_2)_4-CONH-(CH_2)_6-NH-)_n \\ \hline \hline \Gamma & (--O-(CH_2)_6-NHCO-(CH_2)_6-O-)_n \\ \hline & 0 \\ \hline \end{array}$$

- 1. формула Г
- 2. формула В
- 3. формула А
- 4. формула Б

Вопрос 3308

Среди перечисленных формул полиуретанам соответствует:

- 1. формула Г
- 2. формула А
- 3. формула В
- 4. формула Б

Среди перечисленных формул полиакриламиду соответствует:

- 1. формула А
- 2. формула Б
- 3. формула В
- 4. формула Г

3. Методы получения и структура основных типов полимеров

3.1. Виды полимеризации. Инициирование и ингибирование полимеризации

Вопрос 1501

Из перечисленных соединений не замедляет радикальную полимеризацию метилметакрилата:

ZnCl₂ O
$$O_2$$
N O_2 O_3 O_4 O_5 O_4 O_5 O_5 O_5 O_6 O_7 O_8 O_8 O_8 O_9 O_9

Вопрос 1502

1. A

Из приведенных на рисунке веществ увеличивает скорость полимеризации стирола в присутствии перекиси бензоила при 20°C:

Вопрос 1503

Полиметилметакрилат полимеризацией метилметакрилата можно получить в присутствии инициаторов:

- 1. перекиси бензоила
- 2. н-бутиллития

- 3. кислорода воздуха при нагревании до 100°C
- 4. окиси алюминия

Вопрос 1504

Синдиотактический полиметилметакрилат, построенный по типу "голова-хвост", можно получить из метилметакрилата:

нагреванием в бензольном растворе при 70°C в присутствии гидроперекиси кумола

- 1. у-облучением в массе при 58°C
- 2. полимеризацией в растворе тетрагидрофурана в присутствии бутиллития при -78°C
- 3. УФ облучением в массе при -70°С в присутствии азобисизобутиронитрила
- 4. полимеризацией в толуоле в присутствии бутиллития при -78°C

Вопрос 1505

Полимеризацию стирола вызывают:

- 1. калий-нафталиновый комплекс
- 2. персульфат аммония
- 3. хлорид натрия
- 4. гидропероксид изопропилбензола
- 5. трихлоруксусная кислота
- 6. диэтилмагний
- 7. триизобутилалюминийхлорид ванадия (III)

Вопрос 1406

По механизму «живых цепей» в присутствии бутиллития полимеризуется:

- 1. изобутилен
- стирол
- 3. винилбутиловый эфир
- 4. пропилен

Под действием катализаторов на основе кислот Льюиса будет полимеризоваться:

1. изобутилен

- 2. акрилонитрил
- 3. метилметакрилат

Вопрос 1408

Добавление дифенилпикрилгидразила в систему винилацетат - перекись бензоила, полимеризующуюся при 80°С, приводит к:

$$O_2N$$
 $N-\dot{N}$
 O_2N
 O_2N

- 1. ингибированию реакции (полному подавлению полимеризации)
- 2. замедлению полимеризации
- 3. ускорению полимеризации
- 4. снижению степени полимеризации, не влияя на скорость полимеризации

Вопрос 1409

Из веществ, представленных на рисунке, ингибирует (полностью подавляет) полимеризацию винилацетата, инициированную перекисью бензоила:

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_4N
 O_5N
 O_5N

Вопрос 1410

Из веществ, представленных на рисунке, ингибирует (полностью подавляет) полимеризацию акрилонитрила, инициированную разложением динитрила азобисизомасляной кислоты при 60°C:

CHCl₃ HCON(CH₃)₂ HO OH C₄H₉SH

A B F

1. A 2. B 3. B 4.
$$\Gamma$$

Вопрос 1411

Высокомолекулярный атактический полиметилметакрилат можно получить из метилметакрилата:

- 1. УФ облучением в массе при -70°С в присутствии азобисизобутиронитрила;
- 2. нагреванием в растворе бензола при 70°С в присутствии перекиси ацетила;
- 3. полимеризацией в растворе толуола при -70°С в присутствии бутиллития;
- 4. УФ облучением в массе при 40°С в присутствии азобисизобутиронитрила;
- 5. нагреванием в массе при 60°С в присутствии диазоаминобензола.

Полибутадиен, полученный при радикальной полимеризации при 50°C, состоит из последовательности звеньев, присоединенных по типу:

1. 1, 4-цис

3. 1, 4-транс

2. 1, 4- μ c + 1, 4- μ rpahc + 1, 2

4. 1, 4-цис + 1, 2

Вопрос 1313

Наиболее высокой константой скорости роста при радикальной полимеризации (в одинаковых условиях) обладает:

1. хлорвинил

3. метилметакрилат

2. винилацетат

4. акрилонитрил

Вопрос 1314

Активным центром полимеризации виниловых мономеров, инициированной системой «катион железа (II)

+ перекись водорода» служит:

1. свободный радикал

3. катион

2. полимеризации нет

4. анион

Вопрос 1315

Полимеризация стирола в воде в присутствии заряженных частиц катиона калия и анион-радикала сульфата протекает по:

1. анионному механизму

3. радикальному механизму

2. катионному механизму

4. полимеризация не происходит

Вопрос 1316

Вода может служить сокатализатором в полимеризации:

- 1. инициированной бутиллитием
- 2. инициированной фторидом бора
- 3. в растворе, инициированной перекисью бензоила
- 4. в эмульсии, инициированной персульфатом калия

Вопрос 1317

Полимеризацию винил-бутилового эфира вызывает:

1. литий в толуоле

3. литий в тетрагидрофуране

2. хлорид олова (IV) в бензоле

4. натрий в аммиаке

Вопрос 1318

Металлоорганические соединения щелочных металлов инициируют полимеризацию:

1. оксида этилена

2. винилбутилового эфира

3. изобутилена

Вопрос 1319

Стереорегулярный изоактический полипропилен может быть получен из пропилена:

- 1. радикальной полимеризацией при высоком давлении
- 2. координационно-ионной полимеризацией на комплексных металлоорганических катализаторах
- 3. анионной полимеризацией по методу «живых цепей»
- 4. катионной полимеризацией при низкой температуре

3.2. Термодинамика полимеризации

Вопрос 2501

Соотношение констант изо- и синдио-присоединений при радикальной полимеризации метилметакрилата в растворе определяет:

- 1. концентрация мономера в растворителе
- 2. тип и концентрация инициатора
- 3. температура полимеризации

Вопрос 2502

Для кинетического вывода выражения для константы полимеризационно-деполимеризационного равновесия в виде K=1/[M], [M] – равновесная концентрация мономера, используются следующие допущения:

- 1. условие квазистационарности
- 2. независимость реакционной способности активного центра макромолекул от длины цепи
- 3. равенство скоростей роста и обрыва цепи
- 4. образование полимера со средней степенью полимеризации >>1

Вопрос 2503

Для полимеризации приготовлен раствор альфа-метилстирола в бензоле концентрации 5,0 моль/л. Концентрация образовавшегося полимера (в расчете на моль звена) после установления в системе при 20°С полимеризационно-деполимеризационного равновесия (К_{равнов} при 20°C равна 0,45 л/моль) находится в интервале значений:

1.
$$2,0-3,0$$

$$2. 1,0-2,0$$

3.
$$0.1 - 1.0$$

Вопрос 2504

Глубина превращения в реакционной смеси в результате реакции полимеризации при температуре 27°С (исходная концентрация мономера была 1 моль/л, изменение стандартной энтропии -25 кал/(моль град), а тепловой эффект реакции составил 10,26 ккал/моль) равна:

Вопрос 2505

Для описания константы полимеризационно-деполимеризационного равновесия из приведенных соотношений справедливо:

1.
$$K_{\text{равн}} = [M]_{\text{равн}} \cdot e^{-\Delta Q_{\text{ПМ}}/RT}$$

$$2. \quad K_{\text{равн}} = RT \cdot Ln \left(\left[M \right]_{\text{равн}} + \frac{1}{\overline{P}_N} \right)$$

3.
$$K_{\text{равн}} = \frac{1}{[M]_{\text{равн}}}$$
4. $K_{\text{равн}} = \text{RT} \cdot \text{Ln}[M]_{\text{равн}}$

4.
$$K_{pabh} = RT \cdot Ln[M]_{pabh}$$

Вопрос 2406

Равновесный выход полимера после реакции полимеризации метилметакрилата при 260°C (изменение стандартной энтропии -125,5 Дж/(моль град), тепловой эффект реакции 62,8 кДж/моль, а исходная концентрация мономера 1 моль/л) равен:

Вопрос 2407

Энергия активации радиационнохимического инициирования радикальной полимеризации равна:

- 1. +40 кДж/моль
- 2. 0 кДж/моль
- 3. +120 кДж/моль
- 4. -20 кДж/моль

Вопрос 2408

Значение энергии активации Е (кДж/моль) фотохимического инициирования находится в пределах:

- 1. $0 \le E \le 10$
- 2. $10 \le E \le 20$
- 3. $40 \le E \le 80$
- 4. $80 \le E \le 120$

Если полимеризация характеризуется увеличением энтропии, то происходит раскрытие:

C=С связи

3. такая полимеризация невозможна

2. ненапряженных циклов

С=О связи

Вопрос 2310

Критическая температура полимеризации T_{KP} некоторого мономера (тепловой эффект его полимеризации 54 кДж/моль, а энтропия полимеризации равна -100 Дж/моль град), находится в пределах (значения приведены в кельвинах):

- 1. от 300 до 400
- 2. от 400 до 600
- 3. от 200 до 300
- 4. от 100 до 200

Вопрос 2311

Существование верхней или нижней предельных температур полимеризации мономеров определяется:

- 1. знаком энтропии полимеризации
- 2. знаком энтальпии полимеризации
- 3. соотношением знаков энтальпии и энтропии полимеризации
- 4. определяется только отношением абсолютных величин энтальпии и энтропии

Вопрос 2312

Необходимым и достаточным для систем, характеризующихся верхней предельной температурой полимеризации (DH(0) и DS(0) - изменения стандартных энтальпии и энтропии полимеризации), является условие:

- 1. DH(0)<0, DS(0)<0 2. DH(0)<0, DS(0)>0 3. DH(0)<0 4. DH(0)>0

Вопрос 2313

Необходимым и достаточным для систем, характеризующихся нижней предельной температурой полимеризации (DH(0) и DS(0) - изменения стандартных энтальпии и энтропии полимеризации), является условие:

- 1. DH(0)>0
- 2. DH(0)=0, DS(0)>0
- 3. DH(0)<0, DS(0)<0 4. DH(0)<0, DS(0)>0

3.3. Основное уравнение радикальной полимеризации

Вопрос 3501

Порядок реакции присоединения метилметакрилата к концу растущей цепи по инициатору в процессе его олигомеризации в присутствии достаточно большого количества бензохинона составляет:

1. 1,5

2. 1,0

3. 0,0

4. 0,5

Вопрос 3502

Максимальная среднечисловая молекулярная масса M_N при полимеризации метилметакрилата при 50°С, при фотохимическом инициировании (константа скорости роста К_Р=410 л/(моль сек), константа скорости обрыва $K_0 = 24 \cdot 10^6$ л/(моль·сек), концентрация мономера M = 9.25 моль/л, константа скорости передачи цепи на мономер $K_M=1,95$ л/(моль сек), скорость полимеризации $V(\Pi M)=1\cdot 10^{-5}$ моль/(л сек)) находится в интервале значений: 2. $10^6 < M_N \le 10^8$ 3. $10 < M_N \le 10^2$ 4. $10^2 < M_N \le 10^4$

- 1. $10^4 < M_N \le 10^6$

Вопрос 3503

Для порядка радикальной полимеризации по концентрации инициатора (П) при наличии в полимеризациионной системе одновременно двух типов реакции обрыва цепи: 1) на молекулах слабого ингибитора и 2) квадратичного обрыва в результате рекомбинации радикалов роста, является верным следующее выражение:

- 1. $\Pi = 1$
- 2. $0.5 < \Pi < 1$
- 3. Π**=**0
- 4. $0 < \Pi < 0.5$

Средняя степень полимеризации полимера при полимеризации метилакрилата в массе, инициированной разложением динитрила азоизомасляной кислоты при 70°C, при увеличении концентрации инициатора в 4 раза (влиянием реакции передачи цепи пренебречь)

1. уменьшится в 2 раза

3. увеличится в 2 раза

2. не изменится

4. уменьшится в 4 раза

Вопрос 3505

Из следующих допущений необходимы и достаточны для вывода уравнения средней степени полимеризации полимера, получаемого радикальной полимеризацией,

$$\frac{1}{\overline{P_{\text{\tiny \Pi}}}} = \frac{1}{2} \left(1 + \lambda \right) \cdot \frac{K_{\text{\tiny O}}}{K_{\text{\tiny P}}^2} \cdot \frac{V_{\text{\tiny \PiM}}}{\left[M \right]^2} + C_{\text{\tiny M}} + C_{\text{\tiny S}} \cdot \frac{\left[S \right]}{\left[M \right]}$$

являются:

- 1. равенство скоростей инициирования и бимолекулярного обрыва цепи
- 2. отсутствие обрыва на непосредственных радикалах, производных инициатора
- 3. условие независимости реакционной способности радикала от его степени полимеризации
- 4. равенство скоростей обрыва по механизму диспропорционирования и рекомбинации
- 5. равенство скоростей инициирования и передачи цепи.

Вопрос 3406

Низкие скорости полимеризации аллиловых мономеров (CH_2 = CH_2X) и низкие молекулярные массы их полимеров объясняются:

- 1. образованием неактивного аллильного радикала из мономера
- 2. влиянием природы заместителя Х
- 3. высокой константой самопередачи
- 4. высокой константой передачи на растворитель
- 5. высокой энергией активации реакции роста.

Вопрос 3407

Порядки реакций по концентрациям мономера $\Pi_{\rm M}$ и инициатора $\Pi_{\rm M}$ при полимеризации аллиловых мономеров, если ограничение кинетических и материальных цепей обусловлено деградационной передачей цепи на мономер с образованием малоактивных аллильных радикалов, не способных к продолжению реакции роста, равны:

1.
$$\Pi_{M} = 0$$
, $\Pi_{M} = 0$

2.
$$\Pi_{M} = 0$$
, $\Pi_{M} = 1.5$

1.
$$\Pi_{M} = 0$$
, $\Pi_{N} = 1$ 2. $\Pi_{M} = 0$, $\Pi_{N} = 1$, 5 3. $\Pi_{M} = 1$, $\Pi_{N} = 0$, 5 4. $\Pi_{M} = 1$, $\Pi_{N} = 1$

4.
$$\Pi_{M} = 1$$
, $\Pi_{M} = 1$

Вопрос 3408

Из приведенных ниже соединений будут снижать молекулярную массу полистирола при радикальной полимеризации стирола, не влияя на скорость реакции полимеризации:

1. Б

B

4. A

Из приведенных ниже соединений будет одновременно снижать скорость и молекулярную массу образующегося полимера при радикальной полимеризации метилметакрилата:

Вопрос 3410

Средняя длина полимерных молекул, образующихся при линейной радикальной полимеризации, если доля обрывающихся кинетических цепей по механизму диспропорционирования возрастает с 20% до 80% (реакции передачи цепи отсутствуют):

1. увеличится в 5 раз

2. уменьшится в 5 раз

3. уменьшится в 1,5 раза

4. увеличится в 1,5 раза

Вопрос 3411

Возрастание общей скорости радикальной полимеризации метилметакрилата в массе при конверсиях выше 15% обусловлено:

1. увеличением эффективной константы скорости роста цепи

2. уменьшением эффективной константы скорости обрыва цепи

3. увеличением константы скорости инициирования

4. одновременным действием всех трех причин

Вопрос 3412

Правильным уравнением начальной скорости радикальной полимеризации (при наличии квадратичного обрыва цепи) является:

1.
$$V = K_p \cdot [M] \cdot \left(\frac{V_{NH}}{2K_0}\right)$$

3.
$$V = K_p \cdot \left(\frac{V_{\text{NH}}}{K_0}\right)$$

2.
$$V = K_p \cdot [M] \cdot \left(\frac{V_{NH}}{K_O}\right)^{0.5}$$

4.
$$V = K_p \cdot \left(\frac{V_{NH}}{2K_0}\right)^{0.5}$$

Вопрос 3313

Концентрация свободных радикалов [R] при радикальной полимеризации стирола при конверсиях от 2 до 10% описывается уравнением:

1.
$$\left[R \cdot \right] = \left(\frac{K_O}{V_{NH}}\right)^{0,5}$$

3.
$$\left[R \cdot \right] = \left[M\right] \cdot \left(\frac{V_{\text{NH}}}{K_{\text{O}}}\right)^{0.5}$$

$$2. \quad \left[R \cdot \right] = \left(\frac{V_{\text{NH}}}{K_{\text{O}}}\right)^{0.5}$$

4.
$$[R \cdot] = (V_{NH} \cdot K_O)^{0.5}$$

Вопрос 3314

Средняя степень полимеризации полимера, полученного радикальной полимеризацией в массе (скорость роста цепи 0,00001 моль/л·сек, скорость обрыва цепи, происходящего путем рекомбинации 0,000000004 моль/л·сек, другими реакциями ограничения цепи пренебречь) находится в интервале значений:

1. от 10000 до 1000000

3. от 1000000 до 100000000

2. от 100 до 10000

4. от 0 до 100

Из перечисленных ниже факторов не влияет на молекулярную массу продукта радикальной полимеризации на начальных конверсиях:

1. степень превращения

- 3. концентрация инициатора
- 2. концентрация передатчика кинетической цепи
- 4. способность мономера к самопередаче

Вопрос 3316

Величину отношения константы роста K_P к квадратному корню из константы K_O можно определить, зная скорость полимеризации и:

- 1. скорость инициирования и концентрацию мономера
- 2. константу скорости распада инициатора
- 3. концентрацию мономера и константу скорости распада инициатора
- 4. концентрацию мономера и инициатора

Вопрос 3317

Полиметилметакрилат (ПММА) с содержанием синдиотактических триад около 100% может быть получен радикальной полимеризацией метилметакрилата в условиях:

- 1. в присутствии перекиси бензоила при +80°C
- 2. УФ облучения при -70°C
- 3. синдиотактический ПММА радикальной полимеризацией нельзя получить
- 4. в присутствии комплекса перекись бензоила метиланилин при +20°C

3.4. Ионная и ионно-координационная полимеризация

Вопрос 4501

Для получения полимера с узким молекулярно-массовым распределением $M_W/M_N=1,1$ необходимо и достаточно выполнение при полимеризации следующих условий (K_N , K_P , K_O и K_Π – соответственно, константы скоростей инициирования, роста, обрыва и передачи цепи):

- 1. $K_N >> K_P, K_O = 0, K_\Pi = 0$
- 3. реакционная система гомогенна и $K_{\Pi} = 0$
- 2. $K_P >> K_M, K_O = 0, K_\Pi = 0$
- 4. реакционная система гомогенна и $K_P >> K_N$, а $K_O = 0$

Вопрос 4502

Поли-2-винилпиридин с узким молекулярно-массовым распределением $M_W/M_N=1,1$ можно получить полимеризацией мономера в присутствии:

- 1. эквимолекулярной смеси четыреххлористого титана и этанола
- 2. эквимолекулярной смеси бромида алюминия и этилбромида
- 3. перекиси бензоила
- 4. бутиллития

Вопрос 4503

Средняя степень полимеризации полистирола не зависит от концентрации катализатора в системе:

- 1. бутиллитий в бензоле
- 2. азобисизобутиронитрил в гексане
- 3. комплекс пероксид водорода метиланилин при 20°C
- 4. эквимольная смесь хлорида олова (IV) и этанола в дихлорэтане

Вопрос 4404

Среднечисловая молекулярная масса полибутадиена, полученного в присутствии натрий-нафталинового комплекса в растворе эфира (исходная концентрация мономера 3 моль/л, концентрация инициатора 0,015 моль/л, конверсия мономера-80%), находится в интервале значений

1. 1000 < M < 10000

3. 100000 < M < 1000000

2. 10000 < M < 100000

4. 0 < M < 1000

Для получения высокомолекулярного продукта при полимеризации пара-метоксистирола реакцию нужно проводить в присутствии:

1. бензохинона

3. бутиллития

2. хлорида олова (IV) в нитробензоле

4. натрия в жидком аммиаке

Вопрос 4406

Изоактический поливинилизобутиловый эфир можно получить:

- 1. при 70°С в присутствии эфирата фторида бора
- 2. при 80°С в присутствии перекиси бензоила
- 3. при -70°C на катализаторе моногидрат фторида бора
- 4. при УФ облучении мономера в присутствии азобисизобутиронитрила при 20°C

Вопрос 4407

Высокомолекулярный узкодисперсный полистирол $(M_W/M_N=1,1)$ можно получить:

- 1. в присутствии эфирата фторида бора
- 2. в присутствии натрий-нафталинового комплекса
- 3. в присутствии моногидрата хлорида олова (IV)
- 4. в присутствии перекиси бензоила

Вопрос 4408

Высокомолекулярный 1,4-цис-полиизопрен можно получить при использовании в качестве инициирующей системы:

1. натрий тетрагидрофуране

3. литий в гептане

2. натрий в гептане

4. литий в тетрагидрофуране

Вопрос 4409

Высокомолекулярный 1, 4-цис-полиизопрен можно получить при использовании в качестве инициирующей системы:

1. литий в толуоле

3. бутиллитий в тетрагидрофуране

2. натрий в бензоле

4. хлорид титана (IV) в метиленхлориде

Вопрос 4310

Полимеризация стирола, если известно, что при степени превращения Q=2% средняя степень полимеризации P=1000, при Q=50% P=5000, при Q=100% P=10000, а степень полидисперсности $(M_W/M_N=1,1)$, инициирована:

1. натрий-нафталиновым комплексом

3. серной кислотой

2. системой «катион железа (II) – пероксид водорода»

4. гидропероксидом кумола

Вопрос 4311

Высокомолекулярный 1, 4-цис-полиизопрен можно получить при использовании в качестве инициирующей системы:

1. натрий в гептане

3. литий в гептане

2. рубидий в гептане

4. калий в гептане

Вопрос 4312

В системе винилбутиловый эфир – фторид бора (III) – следы воды – растворитель скорость полимеризации и степень полимеризации образующегося полимера максимальны, если в качестве растворителя взять:

- 1. нитробензол
- 2. гептан
- 3. бензол
- 4. ксилол

Полимеризация полибутадиена в присутствии бутиллития в растворе тетрагидрофурана прошла до полного исчерпания мономера без гибели активных центров. Исходная концентрация инициатора [I], (средняя степень полимеризации получившегося полимера 100000, а начальная концентрация мономера 1 моль/л), находится в интервале значений:

1.
$$0,00001 < [I] < 0,001$$

3.
$$0.00000001 < [I] < 0.000001$$

2.
$$0,000001 < [I] < 0,0001$$

4.
$$0,001 < [I] < 0,1$$

Вопрос 4314

Увеличение скорости полимеризации изобутилена в присутствии катализаторов – кислот Льюиса с понижением температуры реакции обусловлено:

- 1. меньшей энергией активации роста по сравнению с энергией активации обрыва
- 2. увеличение вязкости системы («гель эффект»)
- 3. меньшим расходом инициатора на активные примеси
- 4. антибатным ходом зависимостей скоростей обрыва и роста от температуры

Вопрос 4315

При полимеризации альфа-метилстирола в присутствии эфирата фторида Бора (III) наиболее высокомолекулярный полимер образуется при температуре (градусы Цельсия):

3.5. Радикальная сополимеризация

Вопрос 5501

Зависимость состава сополимера при радикальной сополимеризации стирола (1) и метилметакрилата (2) (константы сополимеризации, соответственно, R_1 =0,52, R_2 =0,46, F_1 – доля стирольных звеньев в сополимере, M_1 – мольная доля стирола в смеси мономера) описывается кривой

1. Б

2. A

3. Г

4. B

Вопрос 5502

Из приведенных допущений необходим и достаточным для вывода дифференциального уравнения состава сополимера Майо-Льюиса является:

- 1. зависимость реакционной способности радикалов роста от концевого звена
- 2. зависимость реакционной способности радикалов роста от концевого и предконцевого звеньев
- 3. условие квазистационарности
- 4. влияние природы инициатора на состав сополимера
- 5. приближение начальных конверсий $(F_1/F_2=([M_1]/[M_2])\cdot((R_1\cdot[M_1]+[M_2])/(R_2\cdot[M_2]+[M_1]))$, где F_1 и F_2 – мольные доли звеньев мономеров 1 и 2 в сополимере, R_1 и R_2 – константы сополимеризации мономеров 1 и 2, $[M_1]$ и $[M_2]$ – молярные концентрации мономеров в реакционной смеси

Вопрос 5503

В соответствии с «Q-E» схемой значение константы сополимеризации стирола R₁ при сополимеризации стирола с метилметакрилатом, $(Q_1=1, E_1=-0.8, Q_2=0.74, E_2=0.4)$, составляет:

1.
$$R_1 < 1.0$$

2.
$$R_1 = 0$$

3.
$$R_1 = 1.0$$

4. $R_1 > 1.0$

При радикальной сополимеризации эквимолярной смеси стирола (А) с винилиденцианидом (В), характеризующейся параметрами констант сополимеризации $R_A = 0.005$, $R_B = 0.001$, образуется сополимер:

- 1. чередующийся
- 2. статистический эквимольного состава
- 3. обогащенный стиролом
- 4. обогащенный винилиденцианидом

Вопрос 5405

При радикальной сополимеризации в растворе на состав сополимера влияет

1. концентрация инициатора

3. скорость обрыва цепи

2. тип растворителя

4. полярность мономеров

Вопрос 5406

При сополимеризации мономеров А и В получен сополимер, имеющий структуру АВАВАВА. Параметры констант сополимеризации R(A) и R(B) составляют:

- 1. R(A)=R(B)=1
- 2. R(A)>1, $R(B)\le 1$ 3. $R(A)\to 0$, $R(B)\to 0$ 4. R(A)<1, R(B)>1

Вопрос 5407

Константы радикальной сополимеризации стирола (A) и винилацетата (B) R(A)=55, R(B)=0,01. Образующийся сополимер, если мономерная смесь имела состав 1:1, имеет структуру:

- 1. AAABAAAA
- 2. BBBBABBB
- 3. ABABAB
- 4. AAAABBBB

Вопрос 5408

При радикальной сополимеризации в растворе значения констант сополимеризации R зависят от:

1. природы сомономеров

3. концентрации сомономеров

2. скорости обрыва цепи

4. скорости инициирования

Вопрос 5309

В радикальной сополимеризации, описываемой схемой «Q-E» метилметакрилат имеет E=0,40. Метилметакрилат проявляет наибольшую склонность к чередованию:

1. с бутадиеном (Е=-1,05)

- 3. co стиролом (E=-0,8)
- с винилэтиловым эфиром (E=-1,3)
 с винилацетатом (E=-0,20)

Вопрос 5310

При сополимеризации мономеров А и В получен сополимер следующей структуры АААААВАААА. Константы сополимеризаций R(A) и R(B) составляют:

1. $R(A) \ge 0$, $R(B) \ge 1$

3. $R(A) \ge 1$, $R(B) \rightarrow 0$

2. R(A) = R(B) = 1

4. $R(A) \ge 0$, $R(B) \ge 0$

Вопрос 5311

Для приведенной зависимости Б состава сополимера от состава мономерной смеси (F_1 – доля звеньев в сополимере, M_1 – доля мономеров в реакционной смеси) величины констант сополимеризации R_1 и R_2 составляют:

- 1. $R_2 < 1 R_1 < 1$ 2. $R_2 > 1 R_1 > 1$
- 3. $R_2 > 1 R_1 < 1$ 4. $R_2 < 1 R_1 > 1$

При протекании процесса радикальной сополимеризации стирола (Ст) с метилметакрилатом (ММА) в растворе состав сополимера, образующегося на начальных стадиях превращения, может быть однозначно определен:

- 1. константами сополимеризации Ст и ММА и соотношением концентраций Ст и ММА
- 2. природой и концентрацией растворителя
- 3. константами сополимеризации Ст и ММА
- 4. концентрацией инициатора и соотношением концентраций Ст и ММА

Вопрос 5313

При протекании процесса радикальной сополимеризации состав образующегося сополимера зависит, главным образом, от:

- 1. констант скоростей роста цепи
- 3. константы скорости обрыва цепи
- 2. способа проведения сополимеризации
- 4. скорости инициирования

Вопрос 5314

Константы радикальной сополимеризации бутилакрилата (1) с акрилонитрилом (2) равны, соответственно, 1,0003 и 1,005. Доля акрилонитрила в сополимере F_2 , если его доля в мономерной смеси равна 0,1, находится в интервале значений:

- 1. $0.2 < F_2 \le 0.4$
- 2. $0.0 < F_2 \le 0.2$ 3. $0.4 < F_2 \le 0.7$ 4. $0.7 < F_2 \le 1.0$

Вопрос 5315

Константы радикальной сополимеризации акрилонитрила (1) с бутилакрилатом (2) равны, соответственно, 1,005 и 1,003. Доля акрилонитрила F_1 в сополимере, если мольная доля бутилакрилата в мономерной смеси равна 0,7, находится в интервале значений:

- 1. $0.4 < F_1 \le 0.7$ 2. $0.7 < F_1 \le 1.0$ 3. $0.2 < F_1 \le 0.4$ 4. $0.0 < F_1 \le 0.2$

Вопрос 5316

Раздельная радикальная полимеризация стильбена (1) и малеинового ангидрида (2) практически не может быть осуществлена из-за пространственных затруднений на стадии роста, а их совместная полимеризация происходит. Процесс их сополимеризации можно охарактеризовать следующими значениями констант сополимеризации R_1 и R_2 :

- 1. $R_1 > 1 R_2 < 1$
- 2. $R_1 \rightarrow 0 R_2 \rightarrow 0$ 3. $R_1 < 1 R_2 > 1$ 4. $R_1 = R_2 = 1$

3.6. Ионная сополимеризация

Вопрос 6501

Из приведенных мономеров (А) при сополимеризации стирола (В) в присутствии трихлорида алюминия со следами воды сополимер, имеющий структуру типа ААААВАААА, образуется с:

- 1. акриловой кислотой
- 2. изобутиленом
- 3. акрилонитрилом
- 4. винилхлоридом

Вопрос 6502

При сополимеризации стирола с паразамещенным стиролом будет получаться сополимер стирола, наиболее близкий к гомополимеру стирола, если реакция протекает в присутствии трихлоруксусной кислоты, а в качестве пара-заместителя используется:

- 1. метил
- 2. циангруппа
- 3. нитрогруппа
- 4. метоксигруппа

Вопрос 6503

В результате сополимеризации смеси стирола и метилметакрилата состава 1:1 в растворе нитробензола в присутствии хлорида олова (IV) образуется сополимер:

- 1. статистический эквимольного состава
- 3. обогащенный метилметакрилатом

2. обогащенный стиролом

4. чередующийся сополимер

При введении диэтилмагния в смесь стирола и метилового эфира альфа-цианакриловой кислоты (МЭЦАК) состава 1:1 образуется:

- 1. сополимер, значительно обогащенный МЭЦАК
- 2. чередующийся сополимер
- 3. статистический сополимер эквимольного состава
- 4. гомополимер стирола

Вопрос 6405

При инициировании сополимеризации метилметакрилата и стирола четыреххлористым оловом в присутствии следов воды образуется сополимер:

- 1. обогащенный метилметакрилатом
- 2. обогащенный стиролом

- 3. статистический эквимольного состава
- 4. чередующийся метилметакрилата и стирола

Вопрос 6406

При введении эфирата трехфтористого бора в смесь стирола и винил-н-бутилового эфира состава 1:1 образуется сополимер:

- 1. обогащенный винил-н-бутиловым эфиром
- 2. чередующийся

- 3. статистический эквимольного состава
- 4. обогащенный стиролом

Вопрос 6307

Если зависимость состава сополимера от состава исходной смеси мономеров имеет вид, представленный на рисунке (F(A) – доля звеньев A в сополимере, M(A) – доля мономера A в реакционной смеси), то для сополимера можно предположить:

- 1. тенденцию к чередованию звеньев А и В
- 2. тенденцию к образованию длинных блоков А и В
- 3. тенденцию к образованию длинных блоков В и коротких А
- 4. тенденцию к образованию длинных блоков А и коротких В

Вопрос 6308

При полимеризации стирола с изопреном, инициированной литийалкилом, сополимер обогащен 1,4-цисизопреновыми звеньями, если в качестве растворителя взят (соотношение исходных концентраций мономеров в гомогенной реакционной смеси 1:1):

- 1. бензол
- 2. триэтиламин
- 3. диэтиловый эфир
- 4. тетрагидрофуран

Вопрос 6309

Сополимер изобутилена со стиролом с преимущественным содержанием изобутиленовых звеньев можно получить на инициирующей системе:

- 1. натрий в жидком аммиаке
- 2. хлорид олова (IV) со следами воды
- 3. динитрил азоизомаслянной кислоты
- 4. перекись водорода с солью железа (II)

При сополимеризации эквимольной смеси стирола и акрилонитрила получается сополимер, содержащий 99% стирола и 1% акрилонитрила, если инициатором служит:

1. хлорид олова (IV)

- 3. дитрет-бутилперекись
- 2. динитрил изомасляной кислоты
- 4. металлический натрий

Вопрос 6311

При сополимеризации смеси стирола и метилметакрилата состава 1:1 в растворе тетрагидрофурана в присутствии бутиллития образуется:

- 1. гомополимер стирола
- 2. сополимер, обогащенный метилметакрилатом
- 3. сополимер, обогащенный стиролом
- 4. статистический сополимер эквимольного состава

3.7. Ступенчатые процессы синтеза полимеров

Вопрос 7501

Продукты линейной поликонденсации мономера типа A-R-B и линейной радикальной полимеризации описываются однотипной функцией ММР (наиболее вероятное распределение Флори), если ограничение растущих цепей при полимеризации происходит путем:

- 1. независимо от механизма ограничения макрорадикалов
- 2. рекомбинации и диспропорционирования оновременно
- 3. передачи цепи и диспропорционирования
- 4. рекомбинации

Вопрос 7502

Степень полимеризации при равновесной поликонденсации зависит от:

- 1. времени реакции
- 2. степени завершении реакции (глубины превращения)
- 3. соотношения концентраций функциональных групп
- 4. концентрации низкомолекулярного продукта, выделяющегося в результате реакции.

Вопрос 7503

Зависимости скорости полиэтерификации (V) 1,6-гександиола и 1,6-гександионовой кислоты и степени полимеризации получаемого полиэфира (Р) от концентрации мономеров [М] (диол и дикислота взяты в стехиометрическом соотношении, а полиэтерификация проводится в присутствии следов серной кислоты) определяются соотношениями:

- 1. V прямо пропорциональна [M][M], а Р зависит от [M]
- 2. V и Р прямо пропорциональны изменению [M]
- 3. V и P не зависят от [M]
- 4. V не зависит, а Р прямо пропорциональна [M]

Вопрос 7404

Степень превращении (Q) при поликонденсации эквимольных количеств адипиновой кислоты и гексаметилендиамина, если средняя степень полимеризации образующегося полимера 1000, находится в интервале значений:

- 1. 0,95 < Q <1,0

- 2. 0,85 < Q <0,9 3. 0,90 < Q <0,95 4. 0,80 < Q <0,85

Вопрос 7405

Средняя степень полимеризации (Р) при поликонденсации эквимольных количеств этиленгликоля и терефталевой кислоты, если степень завершенности реакции 0,92, находится в интервале значений:

- 1. $15 < P \le 30$
- 2. $0 < P \le 15$
- 3. $30 < P \le 45$
- 4. $45 < P \le 60$

При рассмотрении кинетики равновесной поликонденсации предполагается, что константа скорости поликонденсации:

- 1. не зависит от длины цепи
- 3. уменьшается с длиной цепи
- 2. растет с длиной цепи
- 4. проходит через максимум в зависимости от длины цепи

Вопрос 7407

Принципиальное отличие реакций полимеризации и поликонденсации связано с:

- 1. различием молекулярно-массовых распределений образующихся полимеров
- 2. различием в механизмах ограничения растущих цепей
- 3. различием в механизмах химических реакций роста полимерных цепей
- 4. соответствием элементарного состава мономеров и образующихся из них полимеров

Вопрос 7308

Степень полимеризации продукта равновесной линейной поликонденсации при степени превращения 0,95 зависит от:

- 1. соотношения концентраций мономеров
- 3. концентрации катализатора
- 2. температуры проведения процесса
- 4. давления

Вопрос 7309

Средняя степень полимеризации Р продукта поликонденсации эквимольных количеств адипиновой кислоты и гексаметилендиамина, если степень превращения составляет 90 %, находится в интервале значений:

- 1. $6 < P \le 9$
- 2. $3 < P \le 6$
- 3. $1 < P \le 3$
- 4. $9 < P \le 12$

Вопрос 7310

Степень превращения Q при поликонденсации эквимольных количеств терефталевой кислоты и этиленгликоля, если средняя степень полимеризации образующегося продукта 10, находится в интервале значений:

- 1. $0.8 < Q \le 1.0$ 2. $0.6 < Q \le 0.8$ 3. $0.4 < Q \le 0.6$ 4. $0.2 < Q \le 0.4$

Вопрос 7311

В реакциях неравновесной поликонденсации участвуют:

- 1. гомополиконденсация 6-аминогексановой кислоты
- 2. гексаметилендиамин и дихлорангидрид терефталевой кислоты
- 3. 1,2-этандиол и 1,2-бензолдиовая кислота и 1,2,3-пропантриол
- 4. гексаметилендиол и гексаметилендиизоцианат

Вопрос 7512

Из приведенных ниже систем: А) гомополиконденсация 6-аминокапроновой кислоты; Б) 1,6-гександиамин + дихлорангидрид 1,4-бензолдиовой кислоты; В) этиленгликоль + ортофталевая кислота + глицерин; Г) гептаметилендиол-1,7 + гексаметилендиизоцианат-1,6, в реакциях равновесной поликонденсации участвуют:

1. A, B

2. А, Б

- 3. Б, Г
- 4. Β, Γ

Вопрос 7513

Максимальная вероятность циклизации в процессе поликонденсации оксикислот следующего строения НО $-(CH_2)_M$ – COOH достигается при значении:

- 1. M=1
- 2. M=2

3. M=5

4. M=6

Максимально возможное содержание воды (в мольных долях) в системе, при котором полиамид, полученный при поликонденсации аминокапроновой кислоты, имеет среднюю степень полимеризации 3200 (константа равновесия этой реакции 10), находится в интервале значений:

1. $0.00001 < C \le 0.0001$

3. $0.0001 < C \le 0.001$

2. $0 < C \le 0.00001$

4. $0,001 < C \le 0,01$

Вопрос 7515

После окончания реакции поликонденсации 5,24 грамм 6-аминогексановой кислоты, содержание кислотных групп в реакционной смеси составило 0,0004 моля., степень полимеризации Р и степень превращения Q находятся в следующих интервалах значений:

1. 75 < P < 125

0,98 < Q < 1,00

3. 50 ≤ P < 75

 $0.98 \le Q < 0.99$

2. $25 \le P < 50$

 $0.96 \le Q < 0.98$

4. $200 < P \le 400$

0.99 < Q < 1.0

Вопрос 7416

При поликонденсации аминокапроновой кислоты в растворе наименьшего выхода побочных циклических продуктов можно достичь:

1. повышением концентрации мономера

2. снижением концентрации мономера

3. повышением концентрации катализатора

4. одновременным повышением концентрации катализатора при снижении концентрации мономера

Вопрос 7417

Среднечисловая степень полимеризации при образовании полиэфира на основе гликоля и дикарбоновой кислоты зависит от:

1. концентрации воды в системе и температуры эксперимента

2. концентрации катализатора при постоянных концентрациях мономеров

3. скорости разогрева реактора до температуры эксперимента

4. скорости удаления воды из системы (до определенной постоянной концентрации)

Вопрос 7418

Количество бензойной кислоты, в молях, которое необходимо добавить при поликонденсации 2 молей адипиновой кислоты и 2 молей этиленгликоля, чтобы полимер, полученный при полном завершении реакции, имел среднюю степень полимеризации 800, составляет:

1. 0,001

2. 0,0001

3. 0,01

4. 0,1

Вопрос 7419

Максимальная теоретически возможная средняя степень полимеризации Р полимера при поликонденсации 36,5г адипиновой кислоты и 12,4 г этиленгликоля, находится в интервале значений:

1. $50 < P \le 100$

2. $5 < P \le 15$

3. $15 < P \le 50$

4. $1 < P \le 4$

Вопрос 7420

Средняя степень полимеризации Р полиамида, получаемого поликонденсацией 6-аминогексановой кислоты, если равновесную концентрацию воды уменьшить в 4 раза, при прочих равных условиях:

1. увеличится в 4 раза

3. уменьшится в 4 раза

2. увеличится в 2 раза

4. увеличится в 16 раз

Вопрос 7321

Максимальная вероятность циклизации в процессе поликонденсации аминокислот следующего строения H_2N –(CH $_2$)_м–СООН достигается при значении:

1. M=2

2. M=1

3. M=6

4. M=10

Максимальная вероятность циклизации в процессе поликонденсации этиленгликоля с дикарбоновыми кислотами следующего строения $HOOC-(CH_2)_M-COOH$ достигается при значении:

Вопрос 7323

Наиболее высокая средняя степень полимеризации продукта линейной обратимой поликонденсации может быть достигнута путем:

- 1. повышения концентрации катализатора
- 2. удаления выделяющегося низкомолекулярного продукта
- 3. повышения температуры
- 4. введения низкомолекулярного монофункционального соединения

Вопрос 7324

Предельная степень полимеризации Р продукта поликонденсации 5 молей терефталевой кислоты и 5 молей гексаметилендиамина с добавкой 0,016 моля бутиламина, находится в интервале значений:

1.
$$1500 < P \le 3000$$

2.
$$1 < P \le 1500$$

3.
$$3000 < P \le 4500$$

4.
$$4500 < P \le 6000$$

Вопрос 7325

Соотношение исходных молярных концентраций М₀ терефталевой кислоты и гексаметилендиамина, если полимер, полученный при полном завершении реакции, имеет среднюю степень полимеризации 1000, находится в интервале значений:

1.
$$0.50 < M_0 \le 0.75$$

2.
$$0.75 < M_0 \le 1.0$$

2.
$$0.75 < M_0 \le 1.0$$
 3. $0.10 < M_0 \le 0.50$ 4. $0.00 < M_0 \le 0.10$

4.
$$0.00 < M_0 \le 0.10$$

Прокопов Н.И., Гервальд А.Ю., Зубов В.П., Литманович Е.А
Tipokoliob Tilvii, i epadibil Alioi, syoob billi, iii ilaliobi i Eli

4. Технические приемы синтеза основных полимеров и их характеристика

4.1. Технические приемы синтеза полимеров

Вопрос 1301

Наименьшее загрязнение образующегося полимера побочными продуктами происходит при полимеризации в:

- 1. массе
- 2. растворе
- 3. эмульсии
- 4. суспензии

Вопрос 1302

Основным недостаток полимеризации в массе (блоке) является:

1. высокая скорость процесса

- 3. низкий выход полимера
- 2. сложность отвода выделяющегося тепла
- 4. загрязнение полимера

Вопрос 1303

При проведении полимеризации в растворе, по сравнению с полимеризацией в массе, происходит:

- 1. возрастание молекулярной массы полимера и скорости процесса
- 2. снижение молекулярной массы полимера и возрастание скорости процесса
- 3. возрастание молекулярной массы полимера и снижение скорости процесса
- 4. снижение молекулярной массы полимера и скорости процесса

Вопрос 1304

Причинами, сдерживающими промышленное применение полимеризации в растворе, являются:

- 1. необходимость использования растворителей и их регенерации
- 2. необходимость выделения полимера из раствора
- 3. легкость теплоотвода
- 4. высокая молекулярная масса образующегося полимера

Вопрос 1305

Для синтеза полимеров по ионному и ионно-координационному механизму в промышленности широко используется полимеризация в:

- 1. растворе
- 2. эмульсии
- 3. суспензии
- массе

Вопрос 1306

Основным промышленным методом синтеза полимеров радикальной полимеризацией является:

1. полимеризация в массе

3. полимеризация в растворе

2. эмульсионная полимеризация

4. суспензионная полимеризация

Вопрос 1307

Основными преимуществами эмульсионной полимеризации, по сравнению с другими способами проведения радикальной полимеризации, являются:

- 1. образование высокомолекулярных продуктов при большой скорости процесса
- 2. значительное облегчение отвода тепла по сравнению с полимеризацией в массе
- 3. расширение температурного интервала полимеризации
- 4. возможность получения полимера с узким ММР
- 5. возможность синтеза полимеров с заданной микроструктурой
- 6. получение незагрязненного побочными продуктами полимера

Основными преимуществами суспензионной полимеризации, по сравнению с другими способами проведения радикальной полимеризации, являются:

- 1. значительное облегчение отвода тепла по сравнению с полимеризацией в массе
- 2. изотермические условия процесса
- 3. возможность получения полимера с узким ММР
- 4. возможность синтеза полимеров с заданной микроструктурой
- 5. получение незагрязненного побочными продуктами полимера
- 6. образование высокомолекулярных продуктов при большой скорости процесса

Вопрос 1309

Ступенчатые реакции синтеза полимеров в промышленности чаще всего осуществляются:

1. в расплавах мономеров

3. на границе раздела фаз

2. в растворах мономеров

4. в эмульсии

Вопрос 1310

Методом газофазной полимеризации получают:

- 1. полиэтилен
- 2. полистирол
- 3. полиметилметакрилат
- 4. полиизопрен

4.2. Характеристика основных промышленных полимеров

Вопрос 2401

Полиэтилен низкой плотности характеризуется следующими свойствами

(молекулярная масса – MM, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\varepsilon_{p,\%}$):

- 1. MM=80-500;
- ρ=920;
- $f_{\rm p} = 14;$
- $\epsilon_{\rm p}$ =600

- 2. MM=20-200;
- $\rho = 1200;$
- $f_{p}=140;$
- $\varepsilon_{\rm p}$ =3,5

- 3. MM=10-25;
- $\rho = 1140;$
- $f_{p} = 80;$
- $\epsilon_{\rm p} = 20 30$

- 4. MM=30-150;
- $\rho = 1400;$
- $f_p = 40-60;$
- $\epsilon_{p} = 50-100$

Вопрос 2402

Полиэтилен высокой плотности характеризуется следующими свойствами (молекулярная масса – MM, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, от-

носительное удлинение при разрыве, $\epsilon_{p,\%}$):

 $f_{p} = 140;$ $\varepsilon_{\rm p}=3$

- 1. MM=20-200; 2. MM=10-25;
- ρ=1200; $\rho = 1140;$
- $\epsilon_{\rm p} = 20 30$

- 3. MM=80-500;
- ρ=1400;
- f_p=80; f_p=40-60;
- $\varepsilon_{\rm p}=14$

- 4. MM=80-800;
- ρ=950;
- $f_{p} = 22;$
- $\epsilon_{\rm p} = 300 700$

Вопрос 2403

Полипропилен характеризуется следующими свойствами

(молекулярная масса – MM, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\varepsilon_{p,\%}$):

- 1. MM=20-200;
- $\rho = 1200;$
- $f_{D} = 140;$
- $\varepsilon_{\rm p}$ =3,5

- 2. MM=80-200;
- ρ=910;
- $f_p = 25-40;$
- $\epsilon_{\rm p}$ =200

- 3. MM=10-25;
- ρ=1140;
- $f_p = 80;$
- $\epsilon_{p} = 20 30$

- 4. MM=10-100;
- ρ=1200-1300;
- $f_p = 60-1200;$
- $\varepsilon_n = 3$

Полистирол характеризуется следующими свойствами

(молекулярная масса – ММ, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\epsilon_{p,\%}$):

- 1. MM=10-25;
- $\rho = 1140;$
- $f_{p} = 80;$
- $\epsilon_{\rm p} = 20 30$

- 2. MM=15-30;
- $\rho = 1330;$
- $f_p = 100-180;$
- $\epsilon_{\rm p} = 60 180$

- 3. MM=50-300;
- ρ=1050-1080;
- $f_p = 37-40;$
- $\varepsilon_{\rm p} = 1,5-3,0$

- 4. MM=80-200;
- $\rho = 910;$
- $f_p = 25-40;$
- $\varepsilon_p = 200$

Вопрос 2405

Полиметилметакрилат характеризуется следующими свойствами

(молекулярная масса – ММ, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\epsilon_{p,\%}$):

- 1. MM=80-200;
- ρ=910;
- $f_p = 25-40;$
- $\epsilon_{D}=200$

- 2. MM=10-25;
- ρ=1140;
- $f_{D} = 80;$
- ε_{p} =20-30 ε_{p} =50-100

- MM=30-150;
 MM=20-200;
- ρ=1400; ρ=1200;
- $f_p = 40-60;$ $f_p = 140;$
- $\varepsilon_n = 3.5$

Вопрос 2406

Поливинилхлорид характеризуется следующими свойствами

(молекулярная масса – ММ, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\epsilon_{p,\%}$):

- 1. MM=30-150;
- $\rho = 1400;$
- $f_{p}=40-60;$
- $\epsilon_{\rm p} = 50 100$

- 2. MM=20-200;
- ρ=1200;
- $f_p = 140;$
- ε_p =3,5

- 3. MM=10-25;
- ρ=1140;
- $f_p = 80;$
- $\epsilon_{\rm p} = 20 30$

- 4. MM=15-30;
- $\rho = 1330;$
- $f_p = 100-180;$
- $\epsilon_{\rm p} = 60 180$

Вопрос 2407

Поливинилацетат характеризуется следующими свойствами

(молекулярная масса – ММ, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\epsilon_{p,\%}$):

- 1. MM=20-200;
- $\rho = 1200;$
- $f_p = 140;$
- $\varepsilon_p = 3,5$

- 2. MM=10-1600;
- $\rho = 1190;$
- $f_p = 25-50;$
- $\varepsilon_{\rm p}$ =10-20

- 3. MM=10-25;
- ρ=1130, ρ=1140;
- $f_{p}=80;$
- $\epsilon_{\rm p} = 20-30$

- 4. MM=30-150;
- $\rho = 1400;$
- $f_p = 40-60;$
- $\epsilon_{\rm p} = 50 100$

Вопрос 2408

Полиизопрен характеризуется следующими свойствами

(молекулярная масса – ММ, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\epsilon_{p,\%}$):

- 1. MM=35-1300;
- $\rho = 910 920;$
- $f_p = 23-32;$
- $\varepsilon_{\rm p} = 750 900$

- 2. MM=20-200;
- ρ=1200;
- $f_{p}=140;$
- $\varepsilon_p = 3.5$

- 3. MM=10-25;
- $\rho = 1140;$
- $f_p = 80;$
- ϵ_p =20-30

- 4. MM=10-1600;
- $\rho = 1190;$
- $f_p = 25-50;$
- $\epsilon_{\rm n} = 10 20$

Полиэтилентерефталат характеризуется следующими свойствами

(молекулярная масса – ММ, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\epsilon_{p,\%}$):

- 1. MM=20-200;
- $\rho = 1200;$
- $f_{D} = 140;$
- $\varepsilon_p = 3,5$

- 2. MM=10-25;
- $\rho = 1140;$
- $f_{p} = 80;$
- $\epsilon_{p} = 20-30$

- 3. MM=30-150;
- ρ=1400;
- f_p=40-60;
- $\epsilon_{p} = 50-100$

- 4. MM=15-30;
- ρ=1330;
- f_p=100-180;
- $\epsilon_{p} = 60-180$

Вопрос 2410

Полидиметилсилоксан характеризуется следующими свойствами

(молекулярная масса – ММ, тыс.ед., плотность – ρ , кг/м³, предел прочности при растяжении, f_p , МПа, относительное удлинение при разрыве, $\epsilon_{p,\%}$):

- 1. MM=20-200;
- $\rho = 1200;$
- $f_p = 140;$
- $\varepsilon_p = 3.5$

- MM=35-1300;
 MM=400-650;
- ρ =910-920;
- $f_p = 23-32;$
- $\varepsilon_p = 750-900$ $\varepsilon_p = 450-600$

- 4. MM=30-150;
- ρ=980; ρ=1400;
- $f_p=6,5-8,0$ $f_p=40-60;$
- $\epsilon_{p} = 50-100$

5. Основные физико-механические свойства полимеров

5.1. Термомеханическая кривая

Вопрос 1501

Для полипропилена, если предварительно выдержать его при $T > T_\Pi$ (учитывая, что при этом происходят деструкция и сильное сшивание макромолекул) и резко охладить до $T < T_C$, будет характерна термомеханическая кривая:

 $(T_{\Pi}$ - температура плавления, T_{C} - стеклования, T_{T} - течения, E - деформация полимера)

- 1. кривая Г
- 2. кривая А
- 3. кривая Б
- 4. кривая В

Вопрос 1502

Линейному полиэтилену достаточно большой молекулярной массы, будет соответствовать термомеханическая кривая:

 $(T_C$ - температура стеклования, T_T - течения, T_Π - плавления, E - деформация полимера)

- 1. кривая Б
- 2. кривая В
- 3. кривая Г
- 4. кривая А

Вопрос 1403

Дана термомеханическая кривая. Приведенная зависимость соответствует:

 $(T_C$ и T_Π - температуры стеклования и плавления)

- 1. полиэтилену низкого давления
- 2. бутадиенстирольному каучуку

- 3. атактическому полистиролу
- 4. аморфизованному полиэтилентерефталату

Получена термомеханическая кривая (T_{C} - температура стеклования полимера). Приведенная зависимость соответствует:

- 1. пластику (из линейного полиэтилена)
- 3. резине на основе бутадиен-стирольного каучука

2. перхлорвиниловой смоле

4. волокну (из полиамида-6,6)

Вопрос 1405

Получена термомеханическая кривая (T_C и T_Π - температуры стеклования и плавления полимеров). Приведенная зависимость соответствует:

- 1. поли-4-бутилстиролу
- 2. аморфизованному полиамиду-6,8
- 3. поли-п-бензамиду
- 4. полиизопреновому каучуку

Вопрос 1306

Дана термомеханическая кривая (T_C - температура стеклования). Приведенная зависимость соответствует:

- 1. полиэтилену высокой плотности
- 2. поликапролактаму

- 3. целлюлозе
- 4. атактическому полистиролу

Вопрос 1307

Получена термомеханическая кривая (T_Π - температура плавления). Приведенная зависимость соответствует:

- 1. пластику (из изотактического полипропилена)
- 2. резине на основе полиизопренового каучука
- 3. органическому стеклу (из полиметилметакрилата)
- 4. резиту (фенол формальдегидной смоле)

Для аморфизованного кристаллизующегося полимера получена термомеханическая кривая. Верным соотношением между температурами стеклования (T_C) , кристаллизации (T_K) , текучести (T_T) и плавления (T_{Π}) испытанного полимера является:

- 1. $T_C < T_\Pi < T_K < T_T$
- 2. $T_C < T_K < T_T < T_\Pi$

- 3. $T_C < T_K < T_\Pi < T_T$
- 4. $T_C = T_K < T_T < T_\Pi$

5.2. Температура стеклования

Вопрос 2501

Верным соотношением между температурами стеклования (T_C) полиметилметакрилата (1), полиэтилметакрилата (2) и полибутилметакрилата (3) является:

1.
$$T_{C1} > T_{C3} > T_{C2}$$

2.
$$T_{C1} > T_{C2} > T_{C3}$$

1.
$$T_{C1} > T_{C3} > T_{C2}$$
 2. $T_{C1} > T_{C2} > T_{C3}$ 3. $T_{C1} = T_{C2} > T_{C3}$ 4. $T_{C1} < T_{C2} < T_{C3}$

4.
$$T_{C1} < T_{C2} < T_{C3}$$

Вопрос 2502

Верным соотношением между температурами стеклования (Т_С) полиэтилена (А) полипропилена (Б), полистирола (В), полибромстирола (Г) является:

1.
$$T_{CA} > T_{CB} > T_{CB} > T_{CT}$$

$$3. \quad T_{CA} < T_{CB} < T_{CB} < T_{CT}$$

2.
$$T_{CB} < T_{CA} < T_{CB} < T_{CT}$$

4.
$$T_{CB} < T_{CE} < T_{CT} < T_{CA}$$

Вопрос 2403

Даны температурные зависимости предела вынужденной эластичности некоторых полимеров (А, Б, В, Г). Верным соотношением между температурами стеклования (Т_С) испытанных образцов является:

- 1. $T_{CA} > T_{CB} > T_{CB} > T_{CT}$
- 2. $T_{CA} < T_{CB} < T_{CB} < T_{CT}$

- 3. $T_{C\Gamma} < T_{CA} < T_{CB} < T_{CB}$
- 4. $T_{C\Gamma} > T_{CA} > T_{CB} > T_{CB}$

Вопрос 2404

Зависимости удельного объема (V) аморфных полимеров от температуры при медленном изобарическом охлаждении в области температуры стеклования (T_C) соответствует:

Величина температуры стеклования сополимера акрилонитрила и бутадиена при увеличении в сополимере числа нитрильных групп:

1. увеличится

2. уменьшится

3. уменьшится, а затем увеличится

4. увеличится, а затем уменьшится

Вопрос 2406

Значение температуры стеклования полимера, определяемое методом объемной дилатометрии, с увеличением скорости нагревания:

1. увеличится

2. уменьшится

3. не изменится

4. сначала уменьшится, а затем увеличится

Вопрос 2407

Верным соотношением между температурами стеклования (Т_С) полипропилена (А), полиметилметакрилата (Б), полиэтиленоксида (В) является:

1. $T_{CA} < T_{CB} < T_{CB}$

2. $T_{CB} < T_{CB} < T_{CA}$ 3. $T_{CB} < T_{CG} < T_{CA}$ 4. $T_{CB} < T_{CA} < T_{CB}$

Вопрос 2408

Из представленных графиков зависимости теплоемкости (C_P) аморфного полимера от температуры (T) при медленном изобарическом охлаждении в области температуры стеклования (T_c) соответствует:

Вопрос 2309

Температура стеклования (T_c) статистического сополимера метилметакрилата (MMA) с винилацетатом (ВА) при содержании ВА 58% (T_C ПММА = 100°C, T_C ПВА = 35°C) равна:

1. $35 < T_C < 100$

2. $T_C = 100$

3. $T_C = 35$

4. $T_{\rm C} < 35$

Вопрос 2310

Верным соотношением между температурами стеклования (T_C) полистирола (A), полипропилена (B), полидиметилсилоксана (В) и поли-4-бромстирола (Г) является:

 $1. \quad T_{CB} < T_{CB} < T_{CA} < T_{C\Gamma}$

3. $T_{CA} < T_{CB} < T_{CB} < T_{CT}$ 4. $T_{CB} < T_{CA} < T_{CT} < T_{CB}$

2. $T_{CB} < T_{CE} < T_{CA} < T_{CF}$

Вопрос 2311

Величина температуры стеклования бутадиенстирольного каучука при увеличении числа стирольных звеньев в сополимере:

1. увеличится

3. уменьшится, а затем увеличится

2. уменьшится

4. увеличится, а затем уменьшится

Вопрос 2312

Образцы полиметилметакрилата (ПММА) характеризуются следующими значениями молекулярной массы: 300 (1), 500 (2), 800 (3), 1500 (4) (молекулярная масса механического сегмента полимера равна 600). Верным соотношением между величинами температур стеклования (Т_с) образцов ПММА является:

1. $T_{C1} < T_{C2} < T_{C3} < T_{C4}$

3. $T_{C1} = T_{C2} = T_{C3} = T_{C4}$

2. $T_{C1} < T_{C2} < T_{C3} = T_{C4}$

4. $T_{C1} < T_{C2} = T_{C3} = T_{C4}$

Из приведенных графиков зависимости величин температур стеклования (T_c) соединений от их молекулярной массы (M) в области перехода от олигомеров к полимерам соответствует:

Вопрос 2314

Наибольшей величиной деформируемости при 0°C характеризуется:

- 1. полипропилен $T_C = 0$ °C
- 2. полиизопреновый каучук $T_C = -50$ °C
- 3. полистирол $T_C = 100$ °C
- 4. полиэтилентерефталат $T_C = 60$ °C

5.3. Деформационные свойства полимеров

Вопрос 3501

Величина времени релаксации напряжения в растянутой резине при постоянной величине удлинения (через 10 минут после растяжения полимера десятичный логарифм величины напряжения в полимере равен 1,8, в 20 минут - 1,5, в 40 минут - 0,9, десятичный логарифм величины 2,7 равен 0,43) составляет:

- 1. 5 10 минут
- 2. 21 30 минут
- 3. 11 20 минут
- 4. 31 40 минут

Вопрос 3502

Величина напряжения (F), приложенного к стеклообразному полимеру в процессе одноосного деформирования образцов, влияет на величину времени релаксации (T) полимера. При увеличении F:

1. Т уменьшается

3. Т возрастает до постоянной величины

2. Т не изменяется

4. Т не изменяется, затем возрастает

Вопрос 3503

Отношение напряжения к деформации (Е) при растяжении эластомера с постоянной скоростью в широком диапазоне деформаций до сотен и более %:

- 1. не изменяется
- 2. постоянно, затем уменьшается и далее возрастает
- 3. возрастает до постоянного значения
- 4. сначала возрастает, затем уменьшается

Вопрос 3404

Величина времени релаксации напряжения в полимере при повышении температуры в области выше температуры стеклования полимера:

1. увеличится

- 3. уменьшится
- 2. уменьшится, а затем увеличится
- 4. увеличится, а затем уменьшится

Вопрос 3405

Величина модуля упругости полимера, находящегося в температурной области перехода из стеклообразного в высокоэластическое состояние при эксплуатации образца в частотном механическом поле (ω - частота воздействия нагрузки на образец, Т-температура опыта) уменьшится при:

1. уменьшении ω, увеличении Т

3. увеличении ω, увеличении Т

2. увеличении ω, уменьшении Т

4. уменьшении ω, уменьшении Т

Величина модуля упругости полимера, находящегося в температурной области перехода из стеклообразного в высокоэластическое состояние при эксплуатации образца в частотном механическом поле (ω - частота воздействия нагрузки на образец, T -температура опыта) увеличится при:

1. уменьшении ω, увеличении Т

3. увеличении ω, уменьшении Т

2. увеличении ω, увеличении Т

4. уменьшении ω, уменьшении Т

Вопрос 3407

Время релаксации полимеров определяется как:

- 1. время, больше которого измеряемая физическая величина (напряжение "F" или деформация "D") не изменяется
- 2. время, в течение которого "F" или "D" изменяются в "E"= 2,7 раз
- 3. время, в течение которого "F" или "D" изменяются в 2 раза
- 4. время, в течение которого "F" или "D" изменяются в 0,43 раза

Вопрос 3408

Для полиметилметакрилата приведены зависимости предела вынужденной эластичности от температуры, полученные при различных скоростях (U) деформации: $U_A < U_B < U_B < U_\Gamma$ полимера. Зависимость "L", отмеченная на рисунке, соответствует:

- скорости U_Б
- 2. скорости U_{Γ}
- 3. скорости U_A
- 4. скорости U_B

Вопрос 3309

Для одного и того же полимера получены термомеханические кривые в температурной области стеклования при воздействии с различной частотой (ω) нагрузки на полимер. Кривые, представленные на рисунке, соответствуют соотношению:

- 1. $\omega_A > \omega_B > \omega_B$
- 2. $\omega_A = \omega_B = \omega_B$
- 3. $\omega_A < \omega_B < \omega_B$
- 4. $\omega_A < \omega_B < \omega_B$

Для образцов вулканизированного каучука получены кривые (А, Б, В, Г) развития высокоэластической деформации во времени при различных температурах (Т). Верным соотношением между температурами опытов является:

1.
$$T_A < T_B < T_B < T_\Gamma$$

2.
$$T_A = T_B = T_B = T_\Gamma$$

3.
$$T_A > T_B > T_B > T_\Gamma$$

4.
$$T_A > T_B > T_B = T_D$$

Вопрос 3311

На рисунке представлены кривые релаксации напряжения при постоянном удлинении образцов сшитого эластомера. Образцу с наибольшей степенью сшивки соответствует:

1. зависимость Б

2. зависимость А

3. зависимость В

4. зависимость Г

Вопрос 3312

Предел вынужденной эластичности стеклообразного полимера при увеличении скорости деформирования образцов:

1. уменьшится

3. увеличится, а затем уменьшится

2. уменьшится, а затем увеличится

4. увеличится

Вопрос 3313

Сшитый полимер, находящийся в высокоэластическом состоянии, растянули до некоторой длины, которая затем поддерживается постоянной. Величина напряжения, приложенного к образцу:

1. полностью релаксирует

3. не меняется

2. релаксирует до равновесного значения

Вопрос 3514

Из приведенных формул зависимости величин модуля (Е) деформации сшитых каучуков от величин молекулярной массы отрезка цепи (МС) между узлами химической сетки соответствует (К - коэффициент, зависящий от температуры):

1.
$$E = \frac{K}{M_C}$$

2.
$$E = \frac{K}{M_C^2}$$

3.
$$E = K \cdot M_0$$

3.
$$E = K \cdot M_C$$
 4. $In E = K \cdot M_C$

Представленная на рисунке зависимость "напряжение-деформация", полученная при 20°C, соответствует (T_X – температура хрупкости, T_C – температура стеклования):

- 1. полиметилметакрилату $T_X=10$ °C, $T_C=100$ °C
- 2. аморфизованному полиэтилентерефталату $T_X = -60$, TC = 70°C
- 3. полистиролу $T_X=80$ °C, $T_C=100$ °C
- 4. резине на основе натурального каучука $T_X = -80$ °C, $T_C = -50$ °C

Вопрос 3416

При равных условиях деформирования образцов обратимая деформация полимеров характеризуется петлей гистерзиса наибольшей площади:

- 1. ниже температуры стеклования (T_C) полимера
- 3. в области Т_С

2. выше T_C или

Вопрос 3417

Для 4-х образцов полимера получены кривые гистерезиса при различных температурах испытаний. Изменению механических свойств полимера в переходном (из стеклообразного в высокоэластическое) состоянии соответствует:

- 1. график В
- 2. график Г
- 3. график А
- 4. график Б

Вопрос 3418

Температура (T) образца сшитого полибутилметакрилата ($T_C=19$ °C) в процессе растяжения-сокращения полимера при 19°C в адиабатических условиях:

1. увеличится

3. уменьшится

2. не изменится

4. зависит от степени растяжения полимера

Вопрос 3419

Из приведенных зависимостей "напряжение-деформация" изменению механических свойств полимера в стеклообразном состоянии выше температуры хрупкости соответствует:

- 1. зависимость В
- 2. зависимость Б
- 3. зависимость Г
- 4. зависимость А

Из представленных на рисунке механических моделей качественно описывает деформационное поведение слабо сшитого каучука модель:

Вопрос 3321

1. Б

Для образцов (А, Б, В) аморфного полимера получены кривые "напряжение-деформация" при различных скоростях (U) деформирования и одной температуре. Верным соотношением между скоростями деформирования образцов является:

- 1. $U_A < U_B < U_B$ 2. $U_A = U_B = U_B$
- 3. $U_A > U_B = U_B$ 4. $U_A > U_B > U_B$

Вопрос 3322

Для аморфного полимера получены кривые "напряжение-деформация" (А, Б, В) при различных температурах (Т). Верным соотношением между температурами проведенных испытаний является:

- 1. $T_A < T_B < T_B$ 2. $T_A > T_B > T_B$
- 3. $T_A = T_B = T_B$ 4. $T_A > T_B = T_B$

Вопрос 3323

Из приведенных на рисунке зависимостей "напряжение-деформация" изменению механических свойств полимера в стеклообразном состоянии ниже температуры хрупкости соответствует:

- 1. зависимость А
- 2. зависимость Б
- 3. зависимость В
- 4. зависимость Г

Методом динамометрии исследованы несколько полимеров. Зависимость "напряжение-деформация", полученная при 28°C, соответствует (T_X – температура хрупкости, T_C - температура стеклования):

- 1. полиметилметакрилат $T_X=10$, $T_C=100$
- 2. натуральный каучук $T_X = -80$, $T_C = -55$
- 3. поливинилхлорид $T_x = -90$, $T_c = 80$
- 4. атактический полистирол $T_X = 80$, $T_C = 100$

5.4. Деформация каучуков и ее характеристики

Вопрос 4501

Работа, совершаемая при растяжении эластомера, составляет 2 джоуля на грамм, количество выделившейся теплоты 1,8 Дж/г. Изменения внутренней энергии (DU) и энтропии (DS) полимера, сопровождающие процесс деформирования образцов, соответствуют выражению:

1.
$$DU > 0$$
, $DS < 0$

2.
$$DU > 0$$
, $DS > 0$

4.
$$DU = 0$$
, $DS = 0$

Вопрос 4502

Эластомер в процессе растяжения (выше 10%):

- 1. нагревается
- 2. охлаждается

3. не изменяет температуру в адиабатических условиях?

Вопрос 4403

Из приведенных графиков зависимости величин модуля упругости (G) аморфных полимеров от температуры в области ниже и выше их температур стеклования (T_c) соответствует:

Вопрос 4404

Зависимости модуля упругости "Е" сшитого каучука от температуры "Т" в температурном интервале высокоэластического состояния полимера соответствует формула (А - коэффициент, не зависящий от температуры):

1.
$$E = A \cdot T$$

2.
$$E = \frac{A}{T}$$

3.
$$E = A \cdot lnT$$
 4. $E = A \cdot T^2$

4.
$$E = A \cdot T^2$$

Вопрос 4405

К образцу из слабо сшитого каучука подвешен груз весом, равным 0,01 величины разрывного напряжения. Система находится в равновесии. При нагревании образца:

1. положение груза не изменится

3. груз опустится

2. груз поднимется

4. груз сначала опустится, а затем поднимется

Приведены зависимости равновесной упругой силы "F" полимера от температуры "Т" при постоянной величине деформации полимера. Верным заключением (для графика A) относительно изменений энтропии "DS" и внутренней энергии "DU" полимера, приходящихся на единицу удлинения "DL" образцов в равновесных условиях, является:

Вопрос 4407

Приведены зависимости равновесной упругой силы "F" полимера от температуры "T" при постоянной величине деформации полимера. Верным заключением (для графика Б) относительно изменений энтропии "DS" и внутренней энергии "DU" полимера, приходящихся на единицу удлинения "DL" образцов в равновесных условиях, является:

Вопрос 4408

Из приведенных температурных зависимостей величин равновесной упругой силы (F) при постоянной деформации для идеального каучука характерна:

Вопрос 4309

Возрастание температуры на величину равновесного модуля упругости "Е" сшитого каучука в температурном интервале высокоэластического состояния полимера приводит к:

- 1. уменьшению "Е"
- 2. не изменению "Е"

- 3. увеличению "Е"
- 4. уменьшению "Е", а затем увеличению "Е"

Наименьшую величину равновесного модуля упругости при 19°C имеет:

- 1. натуральный каучук $T_C = -50$
- 2. полиметилметакрилат $T_C = 100$

- 3. поливинилхлорид $T_C = 80$
- 4. полибутилметакрилат $T_C = 19$

Вопрос 4311

Работа, совершаемая при растяжении образца слабо сшитого каучука на 300%, составляет 2 Дж/г, количество выделившейся при этом теплоты равно 1,8 Дж/г, а потери на преодоление межмолекулярного трения составляют 10% от величины работы растяжения. Изменение внутренней энергии в образце каучука в процессе деформирования полимера составит:

- 1. 0,2 Дж/г
- 2. 0,18 Дж/г
- 3. 1,6 Дж/г
- 4. 0 Дж/г

Вопрос 4312

На рисунке представлена температурная зависимость величин равновесного напряжения для 4-х образцов сшитого эластомера при постоянной величине деформации. Образец с наибольшим отрезком цепи между сшивками соответствует:

- 1. графику А
- 2. графику Г
- 3. графику Б
- 4. графику В

5.5. Вязкотекучее состояние полимеров

Вопрос 5501

Величины сдвиговой вязкости расплава полимера при увеличении напряжения сдвига в области проявления аномалии вязкого течения:

1. не изменяются

3. уменьшаются

2. возрастают

4. уменьшаются, затем возрастают

Вопрос 5502

Величины сдвиговой вязкости расплава полимера при увеличении скорости течения образцов в области проявления аномалии вязкого течения полимера:

1. уменьшаются

3. не изменяются

2. возрастают

4. сначала возрастают, затем уменьшаются

Вопрос 5503

Вязкость расплава линейного полимера, проявляющего явление аномалии вязкого течения, при увеличении его молекулярной массы в 2 раза:

1. увеличится в 4-6 раз

3. уменьшится в 4-6 раз

2. увеличится более, чем в 10 раз

4. увеличится в 2 раза

Вопрос 5504

Вязкость расплава линейного полимера, не проявляющего явления аномалии вязкого течения, при увеличении его молекулярной массы в 2 раза:

1. увеличится в 4 раза

3. увеличится более, чем в 10 раз

2. уменьшится в 4 раза

4. увеличится в 2 раза

В полимерах, находящихся в вязкотекучем состоянии, могут проявляться деформации:

- 1. упругие
- 2. высокоэластические
- 3. необратимые
- 4. растяжения

Вопрос 5506

Зависимость вязкости Н расплава полимеров от температуры (Т) выражается формулой (А - коэффициент, не зависящий от температуры):

1.
$$H = \frac{A}{T}$$

2.
$$H = A \cdot E^{\frac{U}{RT}}$$
 3. $H = A \cdot \ln T$ 4. $H = A \cdot E^{-\frac{U}{RT}}$

3.
$$H = A \cdot ln T$$

4.
$$H = A \cdot E^{-\frac{U}{RT}}$$

Вопрос 5407

Верным соотношением величин теплот (Н) активации вязкого течения 1,4 цис-полибутадиена (А), полиизобутилена (Б) и полистирола (В) является:

Вопрос 5408

Верным соотношением величин теплот активации (Н) вязкого течения линейного полиэтилена (ПЭ1) и разветвленного полиэтилена (ПЭ2) является:

1.
$$H_{\Pi \ni 1} > H_{\Pi \ni 2}$$

3.
$$H_{\Pi \ni 1} = H_{\Pi \ni 2}$$

2.
$$H_{\Pi \ni 1} < H_{\Pi \ni 2}$$

4. нельзя ответить однозначно

Вопрос 5409

Верным соотношением величин теплот (Н) активации вязкого течения линейного полиэтилена (ПЭ) и поливинилацетата (ПВА) является:

1.
$$H_{\Pi \ni} > H_{\Pi BA}$$

3. нельзя дать однозначного ответа

2.
$$H_{\Pi \ni} = H_{\Pi BA}$$

4. $H_{\Pi \ni} < H_{\Pi BA}$

Вопрос 5410

Величина сдвиговой вязкости текучего полимера при увеличении напряжения сдвига в области наибольшей ньютоновской вязкости:

1. возрастают

3. возрастают, затем уменьшаются

2. уменьшаются

4. не изменяются

Вопрос 5411

Величина сдвиговой вязкости текучего полимера при увеличении скорости его течения в области наименьшей ньютоновской вязкости:

1. не изменяются

3. возрастают

2. уменьшаются

4. сначала уменьшаются, затем возрастают

Вопрос 5412

Величина сдвиговой вязкости текучего полимера при скорости его течения в области наибольшей ньютоновской вязкости:

1. не изменится

3. уменьшится

2. увеличится

4. сначала увеличится, затем уменьшится

Вопрос 5413

Величина сдвиговой вязкости текучего полимера при увеличении напряжения сдвига в области наименьшей ньютоновской вязкости:

1. уменьшится

3. увеличится

2. не изменится

4. сначала увеличится, затем уменьшится

В области наибольшей ньютоновской вязкости полимеров связь между скоростью сдвига (U) и напряжением сдвига (G) выражается законом Ньютона. Этому закону соответствует формула:

2.
$$G = \frac{H}{\upsilon}$$

3.
$$\upsilon = H \cdot G$$

4.
$$\upsilon = G \cdot H^2$$

Вопрос 5315

Из приведенных графиков зависимости величин теплоты активации (U) вязкого течения соединений с увеличением степени полимеризации (Р) в области перехода от олигомеров к полимерам соответствует:

5.6. Пластификация полимеров

Вопрос 5601

Введение 28% низкомолекулярного пластификатора в полиметилметакрилат приводит к (Т_С – температура стеклования, Π_{B9} – предел вынужденной эластичности, P_y – разрывное удлинение):

1. уменьшению T_C , Π_{B3} , увеличению P_y

3. уменьшению T_C , увеличению Π_{B9} , P_y

2. увеличению T_C , Π_{B3} , уменьшению P_y

4. увеличению T_{C} , уменьшению Π_{B9} , P_{y}

Вопрос 6502

Образцы полистирола пластифицированы равными объемами дибутилфталата (образец А), бутилбензилфталата (образец Б) и трикрезилфосфата (образец В). Верным соотношением температуры стеклования (T_C) пластифицированных образцов полимера является (при пластификации выполняется правило объемных долей):

1.
$$T_{CA} < T_{CB} < T_{CB}$$

3.
$$T_{CA} > T_{CB} > T_{CB}$$

4. $T_{CA} = T_{CB} < T_{CB}$

2. имеют близкие значения

$$4 \quad T_{CA} = T_{CF} < T_{CF}$$

Вопрос 6503

Поливинилхлорид (1 моль) пластифицирован дибутилфталатом (0,2 моля). Температура стеклования (T_c) пластифицированного полимера равна (коэффициент в формуле Журкова равен 40, Т_С полимера равна 80°C):

1. 50-55°C

2. 10-15°C

3. 60-76°C

4. 78-80°C

Вопрос 6404

Зависимости снижения температуры стеклования (DT) полимеров при увеличении числа (N) молекул полярного пластификатора, сорбированных полярными группами макромолекул (К - коэффициент, не зависящий от природы пластификатора) соответствует:

1.
$$DT = \frac{K}{N}$$

2.
$$DT = K \cdot N$$

2.
$$DT = K \cdot N$$
 3. $DT = \frac{K}{N}$ 4. $DT = K \cdot E^{N}$

4.
$$DT = K \cdot E^N$$

Вопрос 6405

Зависимости снижения температуры стеклования (DT) неполярных полимеров от объемной доли (Ф) пластификатора (К - коэффициент, не зависящий от природы пластификатора) соответствует:

$$1.\quad DT=K\cdot \Phi$$

2.
$$DT = K \cdot ln \Phi$$

3.
$$DT = \frac{K}{\Phi}$$

2.
$$DT = K \cdot ln \Phi$$
 3. $DT = \frac{K}{\Phi}$ 4. $DT = \frac{K}{ln \Phi}$

В полимер введен пластификатор, достаточно хорошо совместимый с полимером. Температура стеклования (T_C) пластифицированных образцов полимера при увеличении объемной доли пластификатора (при механизме внутриструктурной пластификации):

- 1. непрерывно уменьшается до T_C пластификатора
- 2. непрерывно уменьшается до некоторого предела, а затем остается постоянной
- 3. начинает уменьшаться при больших количествах пластификатора
- 4. проходит минимум

Вопрос 6407

В полимер введен пластификатор, ограниченно совместимый с полимером. Температура стеклования (T_C) системы полимер-пластификатор при увеличении объемной доли введенного пластификатора (при механизме межструктурной пластификации):

- 1. непрерывно уменьшается до Т_С пластификатора
- 2. непрерывно уменьшается до некоторого предела, а затем остается постоянной
- 3. начинает уменьшаться при введении больших количеств пластификатора
- 4. проходит минимум

Вопрос 6308

При пластификации гибкоцепных полимеров изменяются:

- 1. только температура стеклования
- 2. только температура текучести
- 3. температура стеклования или температура текучести в зависимости от количества пластифи-
- 4. температура стеклования и температура текучести

5.7. Прочность и долговечность полимеров

Вопрос 7501

В процессе одноосного растяжения образцов полимера при температурах выше температуры хрупкости: $T_1 < T_2 < T_3 < T_C$, где T_C - температура стеклования, измерены величины разрывных удлинений "L" полимера. Опыты проводились с одинаковой скоростью растяжения образцов. Верным соотношением измеренных величин "L" является:

1.
$$L_{TC} > L_3 > L_2 >$$

2.
$$L_{TC} > L_1 > L_2 >$$

3.
$$L_{TC} < L_3 < L_2 <$$

1.
$$L_{TC} > L_3 > L_2 >$$
 2. $L_{TC} > L_1 > L_2 >$ 3. $L_{TC} < L_3 < L_2 <$ 4. $L_{TC} = L_1 = L_2 =$ L_3

Вопрос 7502

В процессе одноосного растяжения полимера при температурах выше температуры его стеклования были измерены величины разрывных напряжений "F" образцов. Все опыты проводились с одинаковой скоростью деформирования. Величины "F" с увеличением температуры испытаний:

1. возрастали

3. сначала уменьшались, а затем возрастали

2. не изменялись

4. уменьшались

Вопрос 7503

Величина прочности полимеров на разрыв с увеличением молекулярной массы образцов:

- 1. возрастает до некоторого предела, затем не изменяется
- 2. непрерывно возрастает
- 3. непрерывно уменьшается
- 4. сначала не изменяется, затем возрастает

Вопрос 7404

Величина долговечности капрона с увеличением температуры испытаний от 20 до 80°С:

1. увеличится

- 3. уменьшится
- 2. увеличится, а затем уменьшится
- 4. уменьшится, а затем увеличится

Зависимости величин долговечности полистирола от напряжения, прикладываемого к образцам при температурах ниже температуры стеклования полимера, соответствует ($10 \text{ M}\Pi a = 1 \text{ кг/кв.мм}$):

Вопрос 7406

Зависимости величин долговечности резин от напряжения, прикладываемого к образцам при температурах выше температуры стеклования полимера, соответствует (10 МПа = 1 кг/кв.мм):

Вопрос 7407

Увеличение температуры испытания полиметилметакрилата (температура стеклования полимера равна 100° C) от 20 до 80° C приводит к (Π_{B9} – предел вынужденной эластичности, P_{y} – разрывное удлинение):

- 1. уменьшению Π_{B9} и увеличению P_y
- 2. уменьшению $\Pi_{B \ni}$ и P_y

- 3. увеличению П_{вэ} и Р_у
- 4. увеличению Π_{B3} и уменьшению P_y

Вопрос 7308

Величина относительного удлинения каучука при разрыве после вулканизации серой (от 5 до 20 % содержания серы в образце):

- 1. увеличится
- 2. не изменится

- 3. уменьшится
- 4. увеличится, затем уменьшится

Вопрос 7309

Долговечность образцов полистирола при напряжении 4 кг/кв.мм (S), приложенном к полимеру, составляет 10 секунд (T); при S=3 кг/мм 2 T=100 секунд, при S=1 кг/мм 2 T=10000 секунд. Долговечность образца при S=2,5 кг/мм 2 равна:

- 1. 1000 сек
- 2. 315 сек
- 3. 600 сек
- 4. 110 сек

Вопрос 7310

Величина долговечности волокна (из полиамида 6) при увеличении величины напряжения, прикладываемого к образцам:

- 1. уменьшится
- 2. увеличится

- 3. не изменится
- 4. уменьшится, затем увеличится

6. Кристаллические полимеры и особенности их механических свойств

6.1. Кристаллизация полимеров

Вопрос 1501

Для осуществления процесса кристаллизации полимеров необходимо:

- 1. минимальная гибкость полимера
- 2. регулярность химического и геометрического строения макромолекул
- 3. выполнение условия плотной упаковки макромолекул в кристаллической структуре
- 4. выбор температуры кристаллизации выше температуры стеклования T_{C} полимера
- 5. выбор температуры кристаллизации ниже T_{C}

Вопрос 1502

Из графиков зависимостей (A, Б, В, Г) доли закристаллизованного вещества (D) от времени кристаллизации (T) процессу кристаллизации полимеров при постоянной температуре соответствует:

- 1. график В
- 2. график Г
- 3. график А
- 4. график Б

Вопрос 1503

Получить ориентированный образец полимера, не уменьшающий размеры при нагревании его до температуры плавления образца, можно растяжением:

- 1. аморфизованного образца полимера способного кристаллизоваться (1), ниже температуры стеклования (T_C)
- 2. образца 1 выше T_{C} полимера
- 3. кристаллического полимера (2) при температуре ниже $T_{\rm C}$
- 4. полимерного образца 2 при температуре выше T_C , но ниже температуры плавления полимера

Вопрос 1504

Структурообразование полимеров в процессе их кристаллизации происходит:

- 1. присоединением сегментов отдельных макромолекул к растущей грани кристалла
- 2. упорядоченной агрегацией макромолекул в ламелярные кристаллические структуры и последующей агрегацией таких структур
- 3. плавлением мелких кристаллитов до макромолекул

Вопрос 1405

В полимер, способный кристаллизоваться, введен пластификатор, достаточно хорошо совместимый с полимером. При этом практически изменилась лишь температура стеклования полимера. Скорость (V) кристаллизации полимера, если его образцы предварительно пластифицировать таким пластификатором:

- 1. изменится
- 2. не изменится
- 3. изменится только при введении значительных количеств (до 50%) пластификатора
- 4. нельзя дать однозначного ответа, не зная величины молекулярной массы полимера

4. R₄

Вопрос 1406

Растворитель в процессе кристаллизации полимеров из растворов может:

- 1. быть кинетическим стимулятором процесса, снижая температуру стеклования полимера
- 2. влиять на морфологию надмолекулярных структур
- 3. включаться в процесс структурообразования макромолекул
- 4. препятствовать структурообразованию макромолекул

Вопрос 1307

Изменение величины свободной энергии образования зародыша кристалла (F) в зависимости от его размера (R) соответствует кривой, представленной на рисунке.

Кристалл не будет самопроизвольно расти при размерах зародыша:

Вопрос 1308

1. R₁

На графике представлены зависимости скорости зародышеобразования (V_1) и скорости роста сферолитов (V_2) от температуры. Получить сферолиты с наименьшими размерами можно при температуре кристаллизации (из отмеченных на рисунке: $T_1 < T_2 < T_3 < T_4$) равной:

Вопрос 1309

1. T₄

1. T₂

На графике представлены зависимости скорости зародышеобразования (V_1) и скорости роста сферолитов (V_2) от температуры. Наименее дефектные и крупные сферолиты можно получить при температуре кристаллизации (из отмеченных на рисунке: $T_1 < T_2 < T_3 < T_4$) равной:

http://www.mitht.ru/e-library

Слабосшитый каучук, способный кристаллизоваться при растяжении, останется в кристаллическом состоянии при 20°C, если образец полимера:

- 1. растянуть в 1-2 раза выдержать в растянутом состоянии 10 часов и вынуть из зажимов машины
- 2. растянуть в 7-9 раз, выдержать в растянутом состоянии 10 часов, резко охладить до температуры ниже температуры стеклования полимера, вынуть из зажимов машины и нагреть до 20°C
- 3. растянуть в 7-9 раз и оставить в зажимах машины

6.2. Степень кристалличности полимеров

Вопрос 2501

Степень кристалличности "СК" статистического сополимера этилена и пропилена в случае примерно их равного содержания в сополимере (для соответствующих полимеров "СК" равны: для полиэтилена 70%, для полипропилена 40%) равна:

1. СК стремится к 0%

3. CK = 40%

2. 49% < CK < 70%

4. CK = 70%

Вопрос 2502

Во время кристаллизации аморфизованного полиэтилентерефталата (ПЭТФ) будет образована надмолекулярная структура полимера, характеризующаяся наибольшей степенью кристалличности (температура стеклования ПЭТФ равна 80°С, а температура плавления 290°С) при температуре равной:

1. 100°C

2. 200°C

3. 80°C

4. 60°C

Вопрос 2403

В полимер, способный кристаллизоваться, введен пластификатор, достаточно хорошо совместимый с полимером. При этом практически изменилась лишь температура стеклования полимера. Степень кристалличности (СК) образцов полимера, если полимер до кристаллизации пластифицировать таким пластификатором:

- 1. не изменится
- 2. изменится
- 3. изменится при введении значительных количеств (до 50%)
- 4. нельзя дать однозначного ответа, не зная молекулярной массы полимера

Вопрос 2404

Кристаллизация полиэтилена проведена разными способами. К образованию структур полиэтилена с наибольшей степенью кристалличности приводит:

- 1. кристаллизация из разбавленного раствора полимера в тетрахлорэтилене и последующим отжигом в течение 38 минут при 125°C
- 2. медленное охлаждение на воздухе тонкой расплавленной пленки
- 3. резкое охлаждение расплава и последующий отжиг в атмосфере азота при 131°C в течение 10 часов

Вопрос 2405

Степень кристалличности полимеров зависит от:

- 1. способа кристаллизации
- 2. молекулярной массы полимеров
- 3. разности между температурами плавления и кристаллизации образцов
- 4. разности между температурами стеклования и хрупкости полимеров

Хлорирование полиэтилена проводили в расплаве. Полученные образцы с различным содержанием хлора были закристаллизованы в одинаковых условиях. Наибольшей степенью кристалличности характеризуется образец полимера с содержанием хлора:

1. 10%

2. 5%

3. 30%

4. 50%

6.3. Плавление полимеров

Вопрос 3501

Верным соотношением между величинами равновесных температур плавления (T_{Π}) полистирола (ΠC), полипропилена ($\Pi \Pi$), полиэтилена ($\Pi \Theta$) и полиэтиленоксида ($\Pi \Theta O$), (величины энергии когезии $\Pi C > \Pi \Pi O$) является:

1. $T_{\Pi} \Pi C < T_{\Pi} \Pi \Pi < T_{\Pi} \Pi \Im < T_{\Pi} \Pi \Im O$

3. $T_{\Pi} \Pi\Pi > T_{\Pi} \PiC > T_{\Pi} \Pi\exists > T_{\Pi} \Pi\exists O$

2. $T_{\Pi} \Pi C = T_{\Pi} \Pi \Im > T_{\Pi} \Pi \Im O > T_{\Pi} \Pi \Pi$

4. $T_{\Pi} \Pi C > T_{\Pi} \Pi \Pi > T_{\Pi} \Pi \Im > T_{\Pi} \Pi \Im O$

Вопрос 3502

Возрастание экспериментальной температуры плавления (T_{Π}) полимеров с уменьшением скорости нагрева обусловлено:

1. возможностью рекристаллизации полимера в области T_Π

2. наличием поликристалличности в полимерах

3. дефектностью надмолекулярных структур

4. большой теплоемкостью полимерных материалов

Вопрос 3503

Верным соотношением между равновесными температурами плавления (T_{Π}) 1,4-цис полибутадиена (Π Б), полипропилена (Π П) и полиамида (Π А) (величины энергии когезии Π А > Π П = Π Б) является:

1. $T_{\Pi} \Pi A < T_{\Pi} \Pi \Pi < T_{\Pi} \Pi B$

3. $T_{\Pi} \Pi\Pi < T_{\Pi} \Pi A < T_{\Pi} \Pi B$

2. $T_{\Pi} \Pi\Pi > T_{\Pi} \Pi A > T_{\Pi} \Pi B$

4. $T_{\Pi} \Pi A > T_{\Pi} \Pi \Pi > T_{\Pi} \Pi B$

Вопрос 3504

Верным соотношением между равновесными температурами плавления (T_{Π}) полипропилена ($\Pi\Pi$), политетрафторэтилена (Π ТФЭ) и 1,4-цис полибутадиена (Π Б) (энергии когезии макромолекул примерно равны) является:

1. $T_{\Pi} \Pi T \Phi \exists < T_{\Pi} \Pi \Pi < T_{\Pi} \Pi B$

3. $T_{\Pi} \Pi T \Phi \ni = T_{\Pi} \Pi \Pi > T_{\Pi} \Pi B$

2. $T_{\Pi} \Pi T \Phi \ni T_{\Pi} \Pi \Pi = T_{\Pi} \Pi B$

4. $T_{\Pi} \Pi T \Phi \ni T_{\Pi} \Pi \Pi = T_{\Pi} \Pi B$

Вопрос 3505

Температура плавления полимеров (со степенью кристалличности 30-40%) зависит от:

1. температуры кристаллизации

2. времени плавления

3. скорости нагрева при плавлении образцов

4. молекулярно-массового распределения полимера

Вопрос 3406

Экспериментальная температура плавления полимеров с возрастанием температуры кристаллизации:

1. уменьшается

3. не изменяется

2. увеличивается

4. уменьшается, а затем увеличивается

Вопрос 3407

Верным соотношением между величинами равновесных температур плавления (T_{Π}) гуттаперчи (Γ) и натурального каучука (НК) является

1. T_{Π} HK $< T_{\Pi}$ Γ

3. $T_{\Pi} HK = T_{\Pi} \Gamma$

2. $T_{\Pi} HK > T_{\Pi} \Gamma$

4. нельзя дать однозначного ответа

Равновесная температура плавления полимеров зависит от:

1. гибкости макромолекул

3. скорости нагрева полимера при плавлении

2. молекулярной массы полимера

4. температуры кристаллизации полимера

Вопрос 3309

Определение тепловых эффектов (Q) при кристаллизации трех образцов полимера показало, что $Q_A = 2Q_5 = 3Q_B$. Изменение энтропии (S) при плавлении образцов: SA = 1/2 SE = 1/3SB. Верным соотношением температур плавления (T_{Π}) образцов кристаллического полимера является:

1.
$$T_{\Pi A} < T_{\Pi B} < T_{\Pi B}$$

3.
$$T_{\Pi A} = T_{\Pi B} = T_{\Pi B}$$

2.
$$T_{\Pi A} > T_{\Pi B} > T_{\Pi B}$$

4.
$$T_{\Pi A} < T_{\Pi B} > T_{\Pi B}$$

Вопрос 3310

Верным соотношением между температурами стеклования (T_C), кристаллизации (T_K) и плавления (T_Π) для полимера, способного кристаллизоваться в конденсированном состоянии, является:

1.
$$T_C < T_K < T_\Pi$$

3.
$$T_K < T_\Pi < T$$

2.
$$T_{\Pi} = T_{K} = T_{C}$$

3.
$$T_K < T_\Pi < T_C$$

4. $T_C > T_K > T_\Pi$

Вопрос 3311

Экспериментальная температура плавления (T_{Π}) пропилена после процесса ориентации полимера при температуре выше температуры стеклования образца:

увеличится

уменьшится

2. не изменится

4. полимер перейдет в аморфное состояние

6.4. Изменение термодинамических параметров в процессах плавления и кристаллизации

Вопрос 4501

Наибольшее значение энтропии плавления в расчете на мономерное звено имеет (T_{Π} – температура плавления, Н – теплота плавления):

- 1. полиэтилен T_П =137°C, H=288 Дж/г
- 2. полипропилен $T_{\Pi} = 176$ °C $H = 240 \ Дж/г$
- 3. изотактический полистирол T_{Π} =242°C H=81 Дж/г
- 4. полиизопрен 1,4-цис T_{Π} =11°C, H=65 Дж/г

Вопрос 4502

Наиболее высокую температуру плавления имеет (Н – теплота плавления, S – энтропия плавления):

 $H = 288 \, \text{Дж/г},$ $S = 19,3 \, \text{Дж/моль град. K}$ 1. полиэтилен Н = 240 Дж/г, 2. полипропилена $S = 22,3 \, \text{Дж/моль град. K}$ 3. полиизопрена 1,4-цис $H = 65 \, \text{Дж/г},$ $S = 14,7 \, \text{Дж/моль град. K}$ 4. полистирол $H = 81 \, \text{Дж/г},$ $S = 16,0 \, \text{Дж/моль :}$ град.K

Вопрос 4403

На рисунке представлены графики зависимости величин теплоемкости полимеров (C_P) от температуры. Изменению термодинамических свойств полимера при плавлении соответствует:

Из графиков зависимостей теплоемкости (C_P) от температуры (T) изменению термодинамических свойств изотактического полипропилена в области температуры его кристаллизации соответствует:

Вопрос 4305

Изменению удельного объема (V) полимеров от температуры (T) в области температуры плавления соответствует:

Вопрос 4306

Изменению удельного объема (V) аморфизованных полимеров, способных к образованию кристаллических структур при медленном нагревании полимерных образцов в области выше температуры стеклования полимеров, соответствует:

6.5. Изменение свойств полимеров в процессах кристаллизации

Вопрос 5401

Два образца сополимера этилена и изотактического пропилена (48% пропилена), имеющих статистическое (1) и блочное (2) распределение звеньев, подвергли деформации на 200% при 20°С (температура стеклования сополимера = -55°С. Верным соотношением между величинами остаточной деформации (L) испытанных образцов является:

1.
$$L_1 < L_2$$

2.
$$L_1 > L_2$$

3.
$$L_1 = L_2 (L_1, L_2$$
 не равны нулю)

4.
$$L_1 = L_2 = 0$$

Образцы линейного полипропилена были закристаллизованы охлаждением расплава до температур кристаллизации: 76 (1) и 100 (2) °C температура стеклования полимера равна 8°C, а равновесная температура плавления 176°С. Верным соотношением между величинами разрывных напряжений "F", измеренных для образцов 1 и 2 при 28°C, при растяжении полимера является:

1.
$$F_1 = F_2$$

2.
$$F_1 < F_2$$

3.
$$F_1 > F_2$$

4.
$$F_1 = 0.5 F_2$$

Вопрос 5403

При использовании метода объемной дилатометрии можно получить информацию о:

- 1. величине параметров кристаллической решетки
- 2. величине валовой скорости кристаллизации
- 3. конформации макромолекул
- 4. размерах кристаллитов можно получить

Вопрос 5304

Расплав полимера охладили ниже температуры стеклования с различными скоростями $V_1 > V_2 > V_3$ и получили соответственно три образца стеклообразного полимера. Верным соотношением плотностей (D) образцов (1, 2, 3) полимера после завершения опыта является:

1.
$$D_1 > D_2 > D_3$$

2.
$$D_1 < D_2 < D_3$$

3.
$$D_1 > D_2 = D_3$$
 4. $D_1 = D_2 = D_3$

4.
$$D_1 = D_2 = D_3$$

Вопрос 5305

Изотактический (А) и сшитый (Б) атактический полипропилен, температура стеклования которого равна -20°C деформировали на 200% при 38°C. Затем образцы вынули из зажимов и измерили остаточную деформацию (L). Верным соотношение между величинами "L" испытанных образцов является:

1.
$$L_A$$
 примерно равна $L_5 < 200\%$

3.
$$L_A$$
 примерно равна $L_5 = 200\%$

2.
$$L_A < L_B$$

4.
$$L_A > L_B$$

Вопрос 5306

На рисунке приведена кривая "напряжение-деформация", характерная для процессов растяжения кристаллических полимеров при постоянной температуре. Испытали 8 образцов кристаллических полимеров различных молекулярных масс (М). Цифры на кривой соответствуют разрыву образцов. Верным соотношением между молекулярными массами испытанных образцов является:

1.
$$M_1 > M_2 > M_3 > M_4 > M_5 > M_6 > M_7 > M_8$$

$$M_1 > M_2 > M_3 = M_4 = M_5 = M_6 > M_7 > M_8$$

4.
$$M_1 < M_2 < M_3 < M_4 = M_5 = M_6 = M_7 = M_8$$

Вопрос 5307

Предел прочности полимера после ориентации кристаллического образца при температуре выше температуры стеклования полимера при испытании материала в направлении оси ориентации:

1. не изменится

3. сначала возрастет, затем уменьшится

2. возрастет

4. уменьшится

Натуральный каучук со временем может кристаллизоваться. При этом величина его модуля упругости во времени:

- 1. уменьшается
- 2. увеличивается

- 3. увеличивается, а затем уменьшается
- 4. уменьшается, а затем увеличивается

7. Химические реакции полимеров

7.1. Полимераналогичные превращения

Вопрос 1501

Образование окрашенного продукта на начальных стадиях дегидратации поливинилового спирта свиде-

- 1. образовании сшитого продукта
- 2. автокаталитическом характере процесса
- 3. появлении комплекса с переносом заряда
- 4. изменении надмолекулярной структуры полимера

Вопрос 1502

Процесс дегидрохлорирования поливинилхлорида характеризуется:

- 1. автоускорением реакции
- 2. появлением системы сопряженных двойных связей
- 3. автозамедлением реакции
- 4. изменением электропроводности

Вопрос 1503

Кинетическое уравнение полимераналогичной реакции полимера (А) с низкомолекулярным реагентом (В) при учете эффекта соседа описывается следующим уравнением:

1.
$$-\frac{d(A)}{dt} = K_0(AA) + K_1(AB) + K_2(BB)$$
 3. $-\frac{d(A)}{dt} = 2K_0(AAA) + K_1(AAB)$

3.
$$-\frac{d(A)}{dt} = 2K_0(AAA) + K_1(AAB)$$

2.
$$-\frac{d(A)}{dt} = K_0(AAA) + K_1(ABA) + K_2(ABB)$$

2.
$$-\frac{d(A)}{dt} = K_0(AAA) + K_1(ABA) + K_2(ABB)$$
 4. $-\frac{d(A)}{dt} = K_0(AAA) + K_1(AAB) + K_2(BAB)$

Вопрос 1504

Наличие ускоряющего "эффекта соседа" в полимераналогичной реакции можно установить:

- 1. измерением констант реакции К(АА), К(АВ), К(ВВ)
- 2. определением относительных концентраций триад звеньев по данным ЯМР
- 3. исследованием композиционной неоднородности методом гель-хроматографии
- 4. определением состава сополимера методом ИК-спектроскопии

Вопрос 1505

Вес исходного полимера составлял 345 г, а реакция прошла до конверсии 30 %.

Вес полимерного продукта (в граммах), выделенного через 5 часов гидролиза поли-пара-нитрофенилметакрилата, составит:

1. 284,5

2. 241,5

3. 103,5

4. 332,4

Вопрос 1506

Вес исходного полимера составлял 126 г, а реакция прошла до конверсии 58 %.

Вес полимерного продукта (в граммах), выделенного через 10 часов гидролиза полидифенилметилметакрилата, составит:

1. 63,0

2. 84,5

3. 117,0

4. 94,5

Вопрос 1407

На начальной стадии реакции образуется окрашенный продукт. Верным заключением о кинетических закономерностях реакции дегидрохлорирования поливинилхлорида, является:

- 1. реакция протекает с автозамедлением
- 3. реакция протекает с автоускорением
- 2. реакция протекает с постоянной скоростью
- 4. нельзя сделать определенного вывода

Кинетика гидролиза синдиотактического полиметилметакрилата в серной кислоте описывается функцией типа log(y)=-Ax+B, где A,B>0. Распределение звеньев в цепи при степени превращения 50%:

- 1. блочное
- 2. строгое чередование прореагировавших и исходных звеньев типа АВАВАВ...
- 3. чередование пар типа ААВВ...
- 4. случайное

Вопрос 1409

Кинетическая кривая реакции гидролиза синдиотактического полиметилметакрилата в присутствии серной кислоты в полулогарифмических координатах представляет собой зависимость типа Y=-AX+B, где A,B>0, Y- логарифм концентрации метилметакрилатных звеньев. Верным заключением о кинетических закономерностях реакции является:

- 1. нельзя сделать однозначного вывода
- 3. реакция идет с автоускорением
- 2. реакция идет с постоянной скоростью
- 4. реакция идет с автозамедлением

Вопрос 1410

Текущая концентрация функциональных групп [X] в ходе полимераналогичной реакции изменяется согласно зависимости: [X]= $B \cdot EXP(A \cdot T)$, где T - время, A < 0, B > 0. Верным заключением о кинетических закономерностях реакции является:

- 1. константа скорости реакции не зависит от глубины превращения
- 2. нельзя сделать однозначного вывода
- 3. реакция идет с автоускорением
- 4. реакция идет с автозамедлением

Вопрос 1411

В результате дегидратации полиакриловой кислоты (ПАК) идет образование полиангидрида. Выход ангидридных звеньев будет выше при:

- 1. дегидратации изоактической ПАК
- 2. дегидратации синдиотактической ПАК
- 3. дегидратации атактической ПАК
- 4. степень дегидратации не зависит от стереотактичности цепи

Вопрос 1412

В основе получения поливинилацеталя лежит реакция:

- 1. полимеризация винилацеталя
- 2. гидролиза поливинилацетата
- 3. взаимодействия поливинилового спирта с альдегидом
- 4. взаимодействия поливинилового спирта с уксусной кислотой

Вопрос 1313

Кинетическая кривая реакции щелочного гидролиза полиметилметакрилата (ПММА) имеет вид, представленный на рисунке, где Log[-MMA] — логарифм концентрации негидролизованных звеньев. Верным заключением о кинетических закономерностях реакции является:

- 1. реакция идет с самозамедлением
- 2. реакция идет с самоускорением
- 3. реакция идет с постоянной скоростью
- 4. необходтим количественный анализ кривой

Из приведенных на рисунке кинетических кривых полимераналогичной реакции, протекающей с ускоряющим «эффектом соседа», отвечает (М – функциональная группа мономерного звена исходного полимера):

1. A

2. Б

4. _[

Вопрос 1315

Из приведенных на рисунке кинетических кривых полимераналогичной реакции, протекающей с замедляющим «эффектом соседа», отвечает (М – функциональная группа мономерного звена исходного полимера):

1. A

2. Б

3. B

4. T

Вопрос 1316

Скорость гидролиза поливинилацетата по мере накопления гидроксильных групп в макромолекулах:

- 1. не изменяется
- 2. возрастает
- 3. падает
- 4. зависимость скорости носит экстремальный характер

7.2. Характерные особенности макромолекул как реагентов

Вопрос 2501

Реакция отщепления хлора от поливинилхлорида идет с образованием продукта, характеризующегося:

- 1. повышенной термостабильностью
- 2. появлением полупроводниковых свойств
- 3. возникновением окраски
- 4. практически неизменностью присущих поливинилхлориду свойств

Вопрос 2502

К образованию полимерного продукта, содержащего внутримолекулярный цикл, приводит пиролиз:

1. полибутилметакрилата

3. полиметакриловой кислоты

2. поливинилацетата

4. полистирола

Вопрос 2503

Хлорирование полиэтилена до степеней замещения 20-30% приводит к:

- 1. повышению степени кристалличности
- 2. снижению эластичности материала
- 3. повышению эластичности материала
- 4. повышению растворимости в углеводородах

Верным заключением о свойствах продукта дегидрирования полиакрилонитрила является:

- 1. продукт обладает полупроводниковыми свойствами
- 2. продукт окрашен
- 3. продукт обладает низкой термостабильностью

Вопрос 2505

При реакции стирола с полиизопреном в присутствии перекиси бензоила образуется:

- 1. привитой сополимер полистирола на полиизопрене
- 2. блок-сополимер полистирола с полиизопреном
- 3. привитой сополимер полиизопрена на полистироле
- 4. статистический сополимер изопрена с стиролом

Вопрос 2406

Полимером, который нельзя синтезировать из мономера, название которого получается отбрасыванием частицы «поли-», является:

1. поливиниловый спирт

3. поликапролактам

2. поли-альфа-метилстирол

4. полиакриламид

Вопрос 2407

При обработке водным раствором щелочи сополимера винилацетата с винилхлоридом наиболее вероятно протекает процесс:

- 1. образования сополимера винилового спирта с винилхлоридом
- 2. образования поливинилового спирта
- 3. образования сополимера винилацетата с виниловым спиртом
- 4. гидролиз основной цепи сополимера

Вопрос 2408

С увеличением молекулярной массы поливинилацетата скорость его кислотного гидролиза:

- 1. увеличивается
- 2. уменьшается
- 3. зависит от молекулярно-массового распределения
- 4. не изменяется

Вопрос 2409

Скорость щелочного гидролиза поливинилацетата с увеличением молекулярной массы полимера:

- 1. увеличивается
- 2. не изменяется
- 3. уменьшается
- 4. зависит от молекулярно-массового распределения

Вопрос 2410

К образованию полиакриловой кислоты приводит гидролиз:

1. поливинилацетата

3. полиметакриловой кислоты

2. полиметилакрилата

4. поливинилбутилового эфира

Вопрос 2411

Сшитый полиэтилен можно получить при нагревании полимера с:

1. перекисью ди-трет-бутила

3. гексаметилендиамином

2. дикарбоновыми кислотами

4. серой

Полимер строения (-CH=CH-CH=CH-) можно получить из:

1. поливинилового спирта

3. полиакрилонитрила

2. полиизобутилена

4. поливинилиденхлорида

Вопрос 2313

Верным заключением о распределении непрореагировавших метиленовых групп при реакции хлорирования полиэтилена, протекающей с автозамедлением, является:

- 1. распределены случайным образом
- 2. разделены хлорированными метиленовыми группами
- 3. в виде блоков длиной не менее 3-5 групп
- 4. практически отсутствуют

Вопрос 2314

К образованию поливинилового спирта приводит гидролиз:

1. полиакрилонитрила

3. поливинилацетата

2. полиметилакрилата

4. полиакриламида

Вопрос 2315

Гидролиз полиметилметакрилата приводит к образованию:

1. полиметакриловой кислоты

3. полиакриловой кислоты

2. полиметилметакрилата

4. метилметакрилата

Вопрос 2316

Поливиниловый спирт получают:

1. гидролизом полиниленгалогенидов

3. гидролизом полиакрилонитрила

2. полимеризацией винилового спирта

4. гидролизом поливинилацетата

Вопрос 2317

В результате реакции хлорированного полиэтилена (ПЭ) с оксидами металлов преимущественно образуются:

1. внутримолекулярные циклы

3. продукты окислительной деструкции ПЭ

2. сшитый (вулканизированный) ПЭ

4. металлорганические полимерные молекулы

Вопрос 2318

Обработка предварительно озонированной пленки полиэтилена (ПЭ) водным раствором акриламида (АА) приводит к:

- 1. получению гомополимера AA и полиакриламида привитого к ПЭ восстановлению кислородосодержащих групп ПЭ
- 2. образованию аминогрупп на ПЭ
- 3. нейтрализации образовавшихся карбоксигрупп ПЭ

7.3. Термическая и термоокислительная деструкция, деполимеризация

Вопрос 3501

В процессе термической деструкции по цепному механизму усредненная масса монодисперсного полиметилметакрилата (ПММА) изменяется в соответствии с кривой:

 $(M(C_P)$ – усредненная молекулярная масса ПММА, M(0) – масса исходного образца, DM – потери массы):

1. Б

2. B

3. Г

4. A

Вопрос 3502

При термической деструкции деполимеризуется:

1. полиметилметакрилат

3. полиэтилен

2. поли-альфа-метилстирол

4. политетрафторэтилен

Вопрос 3503

Легче подвергается термоокислительной деструкции:

- 1. ПЭ высокой плотности
- 2. ПЭ низкой плотности
- 3. ПЭ не подвержен термоокислительной деструкции

Вопрос 3504

Присутствие металлов переменной валентности в процессе термоокислительной деструкции влияет на скорость:

1. стадии инициирования

3. стадии разветвления цепи

2. стадии роста цепи

4. стадии обрыва цепи

Вопрос 3505

При термической деструкции наблюдается преимущественное образование мономера у:

1. политетрафторэтилена

3. полиметилакрилата

2. полиизопрена

4. полиэтилена

Вопрос 3406

Высокий выход мономера при термическом разложении политетрафторэтилена объясняется:

- 1. высокой теплотой полимеризации тетрафторэтилена
- 2. низкой скоростью реакции роста цепи
- 3. отсутствием реакции передачи цепи при деструкции
- 4. высокой температурой размягчения

Вопрос 3407

При термической деструкции полиметилакрилата препятствуют образованию мономера:

- 1. разрушение мономерных звеньев и образование летучих фрагментов
- 2. реакция обрыва кинетической цепи
- 3. реакция передачи кинетической цепи
- 4. реакция инициирования деструкции

Термическая деструкция полиметакрилонитрила идет с образованием:

1. олигомеров

3. сшитых продуктов

2. полиметакриловой кислоты

4. метакрилонитрила

Вопрос 3409

Верным заключением о скоростях термоокислительной деструкции V полиэтилена (ПЭ) и бутадиенового каучука (БК) является:

1.
$$V_{BK} < V_{\Pi \ni}$$

2.
$$V_{BK} = V_{\Pi \ni} > 0$$
 3. $V_{BK} > V_{\Pi \ni}$ 4. $V_{BK} = V_{\Pi \ni} = 0$

3.
$$V_{BK} > V_{\Pi 9}$$

4.
$$V_{BK} = V_{\Pi 3} = 0$$

Вопрос 3310

Под действием кислот способен гидролизоваться:

1. поливиниловый спирт

3. поликапролактам

2. полиакриловая кислота

4. полифенилен

Вопрос 3311

Под действием кислот способен гидролизоваться:

1. полиэтилентерефталат

3. политетрафторэтилен

2. поливиниловый спирт

4. полиэтилен

Вопрос 3312

Термическая деструкция полиоксиметилена протекает преимущественно с образованием:

1. формальдегида

3. олигомерных циклов

2. уксусной кислоты

4. этиленгликоля

Вопрос 3313

Диаде мономерных звеньев в цепи полистирола, который при термической деструкции образует 1,3дифенилбутан, соответствует конфигурация:

- 1. синдиотактическая «голова-голова»
- 2. изотактическая «голова-голова»
- 3. синдиотактическая или изотактическая «голова-хвост»

Вопрос 3314

Одним из основных продуктов термической деструкции стирола является 1,4-дифенилбутан. Строение такого полистирола можно охарактеризовать как:

1. структура типа «голова-голова»

3. структура типа «голова-хвост»

2. транс-структура

4. цис-структура

Вопрос 3315

Диаде мономерных звеньев в цепи полиметилметакрилата, который при термической деструкции образует диметиловый эфир 2,2,4-триметилпентандиовой кислоты, соответствует конфигурация:

- 1. изо- или синдиотактическая «голова-хвост»
- 2. изотактическая «голова-голова»
- 3. синдиотактическая «голова-голова»

Вопрос 3516

При длительном нагревании поливинилхлорида в присутствии цинка образуется полимер, содержащий:

- 1. только трехмерную структуру
- 2. внутримолекулярные циклы и трехмерную структуру
- 3. систему сопряженных двойных связей
- 4. только внутримолекулярные циклы

При нагревании полиметилметакрилата выше 500 К преимущественно проходит:

- 1. деструкция с образованием олигомера
- 2. образованием ангидрида метакриловой кислоты
- 3. деполимеризация
- 4. сшивание

Вопрос 3518

При нагревании полиметилакрилата выше 500 К преимущественно проходит:

- 1. образованием ангидрида кислоты
- 3. деструкция с образованием олигомеров

2. деполимеризация

4. сшивание

Вопрос 3519

Электропроводность полиакрилонитрила при прогревании до 500 К в течении нескольких часов:

1. уменьшится

3. сначала уменьшится, а потом увеличится

2. увеличится

4. не изменится

Вопрос 3420

Не деполимеризуется:

1. полиэтилен

3. полиметилметакрилат

2. полиметакрилонитрил

4. поли-альфа-метилстирол

Вопрос 3421

Длительное нагревание поли-третбутилметакрилата сопровождается преимущественно образованием:

- 1. изобутилена и мономера
- 2. полимера с сопряженными связями
- 3. поливинилового спирта
- 4. изобутилового спирта и полиметакриловой кислоты

Вопрос 3422

С разрывом основной цепи в кислой среде гидролизуется:

1. полибутилметакрилат

- 3. полиметилфенилсилоксан
- 2. поли-2,3-диметил-1,4-бутадиен
- 4. поли-пара-гидроксиметилстирол

Вопрос 3423

Электрическое сопротивление образца поливинилового спирта после термообработки при 450К:

1. уменьшится

3. экстремально изменится

2. увеличится

4. не изменится

Вопрос 3424

Верным соотношением устойчивостей к кислотному гидролизу полимеров: поликапроамида (I), полипропиленоксида (II), полиэтиленсебацината (III) является:

- 1. I < III < II
- 2. I < II < III
- 3. I > II > III 4. I = III = II

Вопрос 3425

Верным соотношением устойчивостей к кислотному гидролизу полимеров: полигексаметиленадипамида (I), полиэтиленоксида (II), полиэтилентерефталата (III) является:

- 1. I < II < III
- 2. I < III < II
- 3. I > II > III
- 4. I = III = II

На графике приведено изменение молекулярно-массового распределения при механической деструкции каучука при различных временах деструкции. М – значение молекулярной массы полимера, Q(W) – массовая доля молекул массы M. Верным соотношением между временами T_1 , T_2 и T_3 является:

- 1. $T_1 \le T_2 < T_3$ 2. $T_1 > T_2 > T_3$
- 3. $T_1 = T_2 = T_3$
- 4. $T_1 < T_2 < T_3$

Вопрос 3327

При длительном нагревании поливинилхлорида выше температуры его текучести выделяется преимущественно:

- 1. хлороводород
- 2. водород
- 3. винилхлорид
- 4. хлор

Вопрос 3328

В щелочной среде с разрывом основной цепи может гидролизоваться:

1. полиамид-6

3. полиметилметакрилат

2. поливиниленхлорид

4. поливинилацетат

Вопрос 3329

Без разрыва основной цепи в кислой среде может гидролизоваться:

1. полиэтиленоксид

3. полиформальдегид

2. полиметилакрилат

4. полиамид-6,6

Вопрос 3330

Без разрыва основной цепи в щелочной среде может гидролизоваться:

- 1. сополимер этилена с винилацетатом
- 3. поливиниловый спирт
- 2. сополимер этилена с пропиленом
- 4. полипропиленоксид

Вопрос 3331

Верным соотношением термических стабильностей поливинилфторида (ПВФ), поливинилхлорида (ПВХ), поливинилбромида (ПВБ) является:

ΠΒΦ < ΠΒΧ < ΠΒΕ

3. $\Pi B \Phi > \Pi B X > \Pi B B$

2. $\Pi B \Phi < \Pi B X > \Pi B F$

4. $\Pi B \Phi = \Pi B X = \Pi B B$

Вопрос 3532

Ингибирование термоокислительной деструкции сульфидами типа R'-S-R основано:

- 1. на взаимодействии с гидроперекисями с образованием насыщенного стабильного низкомолекулярного соединения
- 2. на взаимодействии с гидроперекисями с образованием стабильных свободных радикалов
- 3. на взаимодействии с гидроперекисями с образованием активных свободных радикалов
- 4. сульфиды не ингибируют процесс

Вопрос 3533

Энергия активации термоокислительной деструкции при введении стабилизатора:

1. увеличивается

3. изменяется экстремально

2. уменьшается

4. остается постоянной

Блок-сополимер стирола и изопрена (температура стекловании ($T_{\rm C}$) полиизопрена -70°C, полистирола +100°C), пластифицированный дибутилфталатом будет иметь:

- 1. две температуры стеклования: -70 и +70
- 3. две температуры стеклования: -40 и +70
- 2. одну температуру стеклования: -70
- 4. две температуры стеклования: -90 и +100

Вопрос 3535

Механизм действия стабилизаторов, увеличивающий период индукции термоокислительной деструкции полимеров, основывается на:

- 1. повышении энергии активации реакции инициирования
- 2. обрыве кинетических цепей реакции окислительной деструкции
- 3. реакции стабилизации «слабых связей» полимерных цепей
- 4. создании механической защитной пленки на поверхности полимера

Вопрос 3436

Кривая изменения скорости окисления бутадиен-стирольного каучука при 120° С в зависимости от содержания ингибитора имеет вид, приведенный на рисунке. $M(O_2)$ – количество кислорода, связанного каучуком. Системе без ингибитора отвечает кривая:

1. A

Вопрос 3437

Скорость окислительной деструкции полипропилена в присутствии веществ, распадающихся на свободные радикалы:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется
- 4. на ранних стадиях уменьшается, затем не меняется

Вопрос 3438

Эффективными стабилизаторами для поли-альфа-олефинов при термоокислительной деструкции могут служить:

1. альдегиды

3. простые и сложные эфиры

2. карбоновые кислоты

4. многоатомные ароматические спирты

4. T

Вопрос 3439

Практически не образуется мономера при термической деструкции:

1. политетрафторэтилена

3. полибутилметакрилата

2. полиакрилонитрила

4. поли-альфа-метилстирола

Вопрос 3540

Диаде мономерных звеньев в цепи полиметилметакрилата, который при термической деструкции образует диметиловый эфир 2,2,3,3-тетраметилбутандиовой-1,4 кислоты, соответствует конфигурация:

- 1. синдиотактическая "голова-хвост",
- 2. синдио- или изотактическая "голова-голова",
- 3. изотактическая "голова-хвост"

В кислой среде с разрывом основной цепи гидролизуется:

1. полиэтилентерефталат

3. политетрафторэтилен

2. полиакрилонитрил

4. поливинилацетат

Вопрос 3342

Стабилизатором при термоокислительной деструкции полиолефинов может служить:

1. гидроперекись кумола

3. дифенил

2. дифениламин

4. дибутилфталат

7.4. Блок-сополимеры

Вопрос 4501

Поверхностно-активным веществом в системе вода-масло может служить:

1. полиэтиленоксид-полистирол

3. полибутадиен-полистирол

2. поливинилхлорид-полибутадиен

4. полиэтиленоксид-полиакриловая кислота

Вопрос 4502

Анионной полимеризацией на "живых цепях" можно получить:

1. полиэтилентерефталат-полистирол

3. полистирол-поливинилхлорид

2. полипропилен-полистирол

4. полистирол-полибутадиен

Вопрос 4503

Блок-сополимер этилена с пропиленом (температуры плавления полиэтилена 135°C, полипропилена 170°C) будет иметь:

- 1. изменяющуюся от 135 до 170 температуру плавления в зависимости от состава блок-сополимера
- 2. две температуры плавления 135 и 170
- 3. одну температуру 135
- 4. одну температуру 170

Вопрос 4504

Блок-сополимеры методами радикальной полимеризации получить:

- 1. можно последовательным дозированием мономеров и облучением в присутствии третичных гидроперекисей и солей меди (I)
- 2. можно, используя последовательное фотоинициирование смесей мономеров излучением различной длины волны
- 3. нельзя, так как получится статистический сополимер
- 4. нельзя, так как будут образовываться только гомополимеры

Вопрос 4405

Конденсационным методом можно получить блок-сополимер:

- 1. полиметилметакрилат-политетрафторэтилен
- 2. полистирол-полибутадиен
- 3. лавсан-поликапролактам
- 4. поливинилацетат-полипропилен

Вопрос 4406

Блок-сополимер бутадиена и стирола можно получить:

бутадиена

- 1. нагреванием смеси полистирола и бутадиена в присутствии перекиси бензоила
- 2. анионной сополимеризацией бутадиена со стиролом при низких температурах
- 3. нагреванием смеси полибутадиена и стирола в присутствии перекиси бензоила
- 4. анионной полимеризацией стирола с добавлением к реакционной смеси

Методами ионной полимеризации можно получать:

- 1. и блок-, и привитые, и статистические сополимеры
- 2. только блоксополимеры
- 3. только привитые сополимеры
- 4. только блок- и статистические сополимеры

Вопрос 4308

Блок-сополимер бутадиена и стирола можно получить:

- 1. анионной полимеризацией стирола на "живых цепях" полибутадиена
- 2. сополимеризацией в присутствии ионов железа (II)
- 3. радикальной полимеризацией стирола в присутствии полибутадиена
- 4. радикальной полимеризацией бутадиена в присутствии полистирола

Вопрос 4309

Блок-сополимер полиизопрен-полистирол (температура стеклования гомополимеров равна, соответственно, -70 и +100) будет иметь:

- 1. нижнюю -70
- 2. две температуры стеклования -70 и +100
- 3. верхнюю +100
- 4. изменяющуюся от -70 до +100 температуру стеклования в зависимости от состава блок-сополимера

Вопрос 4310

Блок-сополимер из гомополимера позволяет получить

- 1. автокаталитический (ускоряющий "эффект соседа") тип кинетического механизма
- 2. автоингибирование (замедляющий "эффект соседа") тип кинетического механизма
- 3. отсутствие "эффекта соседа"
- 4. полимераналогичными превращениями блок-сополимеры нельзя получить

Вопрос 4311

Основной особенностью, определяющей комплекс физико-механических свойств блоксополимеров, служит:

- 1. полная гомогенность системы
- 2. тенденция к микрорасслаиванию (микрофазовое расслаивание)
- 3. ярковыраженная двухфазность (макрофазовое расслаивание)
- 4. отсутствие способности кристаллизоваться

Вопрос 4312

Блок-сополимер (БС), состоящий из отрезков жесткоцепного полимера А и эластомера Б, обладает:

- 1. свойствами эластомера и повышенной прочностью
- 2. свойствами пластика с пониженной прочностью
- 3. усредненными свойствами полимеров А и Б
- 4. нельзя дать однозначного ответа

7.5. Привитые сополимеры

Вопрос 5501

Степень прививки, инициированной перекисью бензоила, будет выше:

1. на полидиметилсилоксан

3. на поливинилацетат

2. на полиизобутилен

4. на политетрафторэтилен

Сополимер лавсана и полиакриловой кислоты (ПАК) с помощью прививки можно получить:

- 1. обрабатывая смесь акриловой кислоты и лавсана гамма-излучением
- 2. облучая смесь лавсана и ПАК УФ-светом при низкой температуре
- 3. нагревая смесь лавсана и ПАК в присутствии серной кислоты
- 4. нагревая смесь акриловой кислоты и лавсана в присутствии катализатора Циглера-Натта

Вопрос 5503

Успешно можно привить акриловую кислоту методом передачи цепи:

1. на полиметилметакрилат

3. на поли-пара-бензамид

2. на натуральный каучук

Вопрос 5504

Привитой сополимер полибутилентерефталата (ПБТФ) и метакриловой кислоты (МАК) можно получить:

- 1. обрабатывая смесь МАК и ПБТФ гамма-лучами
- 2. нагревая смесь МАК и ПБТФ в присутствии катализаторов Циглера-Натта
- 3. облучая смесь МАК и ПБТФ УФ-светом при низкой температуре
- 4. нагревая смесь МАК и ПБТФ в присутствии серной кислоты

Вопрос 5505

При прививке полиметилметакрилата (ПММА) на поливиниловый спирт (ПВС) даст наиболее частые ответвления:

- 1. полимеризация ММА в присутствии ПВС, ацилированного хлорангидридом метакриловой кислоты
- 2. полимеризация ММА в присутствии ПВС, инициированная гамма-излучением
- 3. полимеризация ММА в присутствии ПВС, инициированная перекисью бензоила
- 4. совместное облучение смеси ПВС и ПММА

Вопрос 5406

Для привитого сополимера стирола на крахмале, (температура стеклования полистирола равна +90 град) характерна термомеханическая кривая (T - температура; E - деформация):

Вопрос 5407

Полимер, обладающий свойствами эластомера, может быть получен из привитого сополимера на основе 1,4-цис-полиизопрена и метилметакрилата путем:

- 1. испарения растворителя из раствора сополимера в метаноле
- 2. осаждения сополимера из раствора петролейным эфиром
- 3. осаждения сополимера из раствора метанолом
- 4. испарения растворителя из раствора сополимера в воде

Полимерный материал, обладающий свойствами пластика, может быть получен из привитого сополимера на основе 1,4-цис-полиизопрена и метилметакрилата путем:

- 1. осаждения сополимера из раствора метанолом
- 2. испарения растворителя из раствора сополимера в воде
- 3. осаждения сополимера из раствора петролейным эфиром
- 4. испарения растворителя из раствора сополимера в бензоле

Вопрос 5409

Основными экспериментальными методами доказательства того, что образец - привитой сополимер, а не смесь гомополимеров являются:

1. турбидиметрия

3. рентгеноструктурный анализ

2. ИК- и УФ-спектроскопия

4. электронная микроскопия

Вопрос 5410

Привитой сополимер имеет:

- 1. температуру стеклования компонента с более низкой T_{C}
- 2. среднюю температуру стеклования между T_{C1} и T_{C2}
- 3. температуру стеклования компонента с более высокой $T_{\rm C}$
- 4. две температуры стеклования T_{C1} и T_{C2}

Вопрос 5411

Возможность задать длину привитых цепей ПЭО при синтезе привитого сополимера полиакриловой кислоты (ПАК) и полиэтиленоксида (ПЭО) дает:

- 1. конденсация концевых групп ПЭО с карбоксильными группами ПАК
- 2. анионная полимеризация окиси этилена в присутствии ПАК
- 3. радиационное облучение водного раствора ПЭО и ПАК
- 4. механическая обработка смеси с большими сдвиговыми деформациями (вальцевание)

Вопрос 5412

Прививка на целлюлозу полистирола придаст ей:

1. маслостойкость

3. термостойкость

2. гидрофобность

4. морозостойкость

Вопрос 5413

Прививка на тефлон поливинилацетата придаст ему:

1. способность к окрашиванию

3. кислотостойкость

2. термостойкость

4. ударопрочность

Вопрос 5314

Привитой сополимер полиэтилентерефталата (ПЭТФ) и полиметилметакрилата (ПММА) можно получить:

- 1. нагреванием смеси ПЭТФ и ПММА в присутствии серной кислоты
- 2. облучением смеси ПЭТФ и ПММА УФ-светом при низкой температуре
- 3. нагреванием смеси метилметакрилата и ПЭТФ в присутствии катализатора Циглера-Натта
- 4. обработкой смеси метилметакрилата и ПЭТФ гамма-излучением

Вопрос 5315

Повысить совместимость полистирола (ПС) с натуральным каучуком можно:

- 1. прививкой полиизопрена на ПС
- 3. озонированием ПС

2. хлорированием ПС

4. прививкой полиакриловой кислоты на ПС

Повысить совместимость полистирола (ПС) с полиметакриловой кислотой можно:

1. хлорированием ПС

- 3. озонированием ПС
- 2. прививкой полиакриловой кислоты на ПС
- 4. прививкой полиизопрена на ПС

7.6. Взаимодействие полимеров с низкомолекулярными соединениями

Вопрос 6501

Полиаллиловый спирт может быть получен в результате реакции:

- 1. восстановления полиметилакрилата
- 2. полимеризации аллилового спирта в присутствии перекиси бензоила
- 3. этерификации поливинилового спирта
- 4. гидролиза поливинилпропионата

Вопрос 6502

Начальный вес полимера составлял 595 г, а прибавка в весе составила 137 г. Конверсия реакции кватернизации поли-2-метил-5-винилпиридина бутилбромидом составляет:

- 1. 18,7 %
- 2. 20,0 %
- 3. 40,0 %
- 4. 23,0 %

Вопрос 6503

При хлорировании 200 г СКБН, получено 220 г хлорированного СКБН. Степень превращения непредельных связей бутадиен-нитрильного каучука (СКБН), содержащего 80 % мольных бутадиена, составляет:

- 1. 8,0 %
- 2. 9,47 %
- 3. 7,31 %
- 4. 11,40 %

Вопрос 6504

Для улучшения маслостойкости бутадиен-стирольных каучуков (СКС) их подвергают обработке меркаптанами. При обработке 200 г СКС тиофенолом получено 222 г меркаптанного СКС. Степень превращения непредельных связей СКС, содержащего 20 % мольных стирола, составляет:

- 1. 15,0 %
- 2. 6,7 %
- 3. 25,3 %
- 4. 3,1 %

Вопрос 6405

В основе получения полигидроксиметилена лежит реакция гидролиза:

1. поливинилацеталя

3. поливиниленкарбоната

2. полиэтиленгликоля

4. полиметилметакрилата

Вопрос 6406

Начальный вес полимера составлял 680 г, а привес составил 80 г. Конверсия реакции эпоксидирования полиизопрена надбензойной кислотой, составляет:

- 1. 70 %
- 2. 50 %
- 3. 10 %
- 4. 20 %

Вопрос 6407

Начальный вес полимера составлял 354 г, а конечный 343 г. Конверсия сшивания хлоропренового каучука оксидом цинка, составляет:

- 1. 10,0 %
- 2. 20,0 %
- 3. 4,5 %
- 4. 5,0 %

Вопрос 6408

Начальный вес целлюлозы был 324 г, а привес составил 11 г. Конверсия реакции получения тринитрата целлюлозы, составляет:

- 1. 4,074 %
- 2. 4,60 %
- 3. 8,148 %
- 4. 9,20 %

Начальный вес целлюлозы составлял 648 г, а конечный составил 656 г. Конверсия ацетилирования целлюлозы (в расчете на триацетат), составляет:

1. 1,667 %

2. 3,674 %

3. 1,587 %

4. 5,00 %

Вопрос 6410

Начальный вес полимера составлял 108 г, а привес 14,4 г. Конверсии реакции эпоксидирования 1,4-полибутадиена, составляет:

1. 60 %

2. 45 %

3. 5 %

4. 20 %

Вопрос 6311

Вес исходного полимера был 100 г, а прибавка в весе составила 74 г. Конверсии реакции этерификации полиметакриловой кислоты октиловым спиртом, составляет:

1. 57,47 %

2. 56,82 %

3. 74,0 %

4. 42,53 %

Вопрос 6312

Начальный вес полимера был 350 г, а привес составил 165 г. Конверсия реакции бронирования непредельных связей полиизопрена, составляет:

1. 20 %

2. 32 %

3. 40 %

4. 47 %

Вопрос 6313

Начальный вес полимера был 399 г, а привес составил 32 г. Конверсия реакции хлорирования непредельных связей полихлоропрена, составляет:

1. 20,0 %

2. 6,7 %

3. 10,0 %

4. 7,4 %

Вопрос 6314

Для гидрохлорирования 340 г полизопрена в дихлорэтановом растворе до 30 % конверсии необходима HCl в количестве:

1. 54,75 г

2. 72,55 г

3. 90,0 г

4. 25,5 r