

By Saied Mighani, Anna Bukareva, Brendan Chan

California Wildfires

- Wildfires more frequent
- The Tubbs Fire (2017)
 - Destroyed 5600 buildings
 - 22 fatalities
 - Costs \$1.3 billion
- Situational information is crucial for effective response.

Project Goals

Client: FEMA, Humanitarian Assistance and Disaster Recovery (HADR)

Goal: Use satellite imagery to detect houses damaged by wildfires

Result: Automate damage assessment to accelerate recovery from natural disasters by creating a Housing Damage Prediction Model

The Data

Computer Vision Image Analysis

Process:

- Image Classification
 - Identify what is in an image
- Image Detection
 - Locate objects and their boundarieswithin an image
 - Destroyed vs No Damage
- Image Segmentation:
 - Create a pixel-wise mask for each object in the image.

SpaceNet Building Detection

- Left: SpaceNet Satellite image
- Right: image mask, (target)
- U-net, a Convolutional Neural Networks (CNN) developed for medical image segmentation.
- Trained on SpaceNet satellite images
- Credit: Motoki Kimura

Classification Model

- Model: CNN
- Localized image labels:
 - Damaged
 - Undamaged
- Dataset size: (validation/training: 0.25)

Classification model results

Model accuracy: 100%

Future Direction

- Multiclass classification
 - Level of damage
- Get more data
- Train our own CNN models
- Test Model on other disasters