Weekly Thesis Presentation

A project on Non-linear loudspeaker estimation 01.07.2024

Johannes Nørskov Toke

Contents

1	Theoretical considerations	4
	.a Model approaches	5
	.b Universal approximators	
	.c Dynamical systems	
	.d Deep learning models	
	1.d.a PINN methods	
2	Fechnical considerations	. 13
	2.a Frameworks	
	2.b simplification of the Nonlinear problem	
3	Pre-Week meeting #1	
	B.a Motivation	
	8.b Theory – Linear Parameter Estimation	
	3.b.a Estimation of linear params	
	8.c Hypothesis	
	3.d Planned Experiments	
4	Pre-Week meeting #2	
	O	

Contents (ii)

•••000000000000000000000000000000000000

	4.a	Re	sea	ırcı	n qı	ues	stio	n.	• • •	• • •	• •	 	• • •	 • • •	• •	• • •	• • •	• • •	• • •	 • • •	• •	• • •	 • • •	• •	• • •	 • • •	• • •	• •	• • •	 ٠	• •	 • • •	. 2	7
1												 		 						 			 			 				 		 	. 2	28

1 Theoretical considerations

Model approaches

In data driven modelling 3 system classes of systems are often used to describe the how informed the model is being:

Blackbox

using no apriori information on model structure e.g. MLE based methods such as: Universal aproximator regression, sparse regression such as sindy and symbolic regression

Graybox

using some apriori information for some model structure e.g. Scientific ML such as **PINN's**,neural odes, **NN - injected models**

Whitebox

using only apriori information to infer the model structure e.g. physics-based models

Universal approximators

A Universal Approximator (\mathcal{U}) is a function which is proven to estimate almost all functions to an arbitrary precisoin. Currently at least 8 types of \mathcal{U} have been proven:

Taylor - f must be k-times differentiable at a

$$f(x) = \sum_{i=0}^k c_i(x-a)^i + R_k(x) \\ \text{where} \\ c_i = \frac{1}{i!} \frac{\mathrm{d}^i}{\mathrm{d}x^i} f(x)|_{x=a} \text{ and } R_k(x) = o\big(|x-a|^k\big) \\ \text{ which is the residual term.}$$

Fourier Series – f is piecewise C^1 and 2π -periodic

$$f(x) = A_0 + \sum_{n=1}^{N} \left[A_i \cos\left(\frac{2\pi i}{T}x + \phi_i\right) \right]$$
 where T is the period of f, A_i is the amplitude and ϕ_i is the phase of the i'th harmonic component.

Universal approximators (ii)

•••••••

Stone, Weierstrass - f must be continuous real-valued function defined on an interval [a,b]

kolmogorov, Arnold - f must be continuous multivariate function

Funahashi, Hornick and Cybenko - single layer MLP

$$f_{\mathrm{NN}}(x) = \sigma(oldsymbol{A_1} oldsymbol{X} + oldsymbol{b_1})$$
 where $oldsymbol{A_1}$ is \mathbb{R}^m

Park et al. - MLP of width max(n+1,m)) for $\mathbb{R}^n \to \mathbb{R}^m$

$$f_{\mathrm{NN}}(x) = \boldsymbol{A_2} \sigma(\boldsymbol{A_1}\boldsymbol{X} + \boldsymbol{b_1}) + \boldsymbol{b_2}$$

Universal approximators (iii)

•••••••

Park et al. - spiking neural networks

Park et al. - spiking neural networks

Dynamical systems

•••••••

State space models

System of differential equations of one variables of the form

$$\dot{x} = Ax + Bu, \quad y = Cx, \quad x_0 = x|_{t=0}$$

Non-linear - State space models

System of differential equations of one variables of the form

$$\dot{x} = A(x)x + B(x)u, \quad y = C(x)x, \quad x_0 := x|_{t=0}$$

Dynamical systems (ii)

Universal Differential Equations

System of differential equations of one variables of the form

 $\dot{x} = \text{NN}(\theta, x)$ note this is also known by forced stochastic delay partial differential equation(PDE) defined with embedded universal approximators.

Deep learning models

••••••••

Multilayer perceptron - $\mathcal U$

$$\sum_{i=0}^m \sigma(A_i x + b_1)$$

Convolutional neural network - f * g)

$$\int f * g$$

1.d.a PINN methods

Neural Ode

Attention(Data-Dependent Kernel (Nadaraya-Watson))

Deep learning models (ii)

2 Technical considerations

Frameworks

••••••••••

Technical considerations in this project are made from first a purely standpoint which then is formulated in practical terms:

theoretic

- mathematical concepts:
 - automatic differentiation(for black-/graybox modelling)
 - ode solving (for gray-/whitebox modelling)
- implementations of models/techniques

Frameworks (ii)

••••••••••••

Python

- mathematical concepts:
 - ► jax (AD)
 - equinox/diffrax(ODE solving)
- implementations of models/techniques
 - dynax (sysid/basisfitting)
 - jax sys-id (sysid)

Frameworks (iii)

••••••••••••

Julia

- mathematical concepts:
 - ▶ DifferentiationInterface.jl (AD)
 - OrdinaryDiffEq.jl (ODE solving)
- implementations of models/techniques
 - ScimlSensitivity.jl (sysid/nn fitting)
 - DatadrivenDiffEq.jl (Sindy)

To avoid making the ode too stiff, i think of deploying https://juliapackages.com/p/varpro. Varpro is based on theoretical findings that any NL with a linear part can be recast to a purely nonlinear problem

simplification of the Nonlinear problem (ii)

- [1] Golub, G.H., Pereyra, V.: "The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate". SIAM Journal on Numerical Analysis 10, pp 413-432 (1973)
- [2] Golub, G.H., Pereyra, V.: "Separable nonlinear least squares: The variable projection method and its applications". Inverse Problems 19 (2), R1–R26 (2003)
- [3] Pereyra, V., Scherer, eds: "Exponential Data Fitting and its Applications" Bentham Books, ISBN: 978-1-60805-048-2 (2010)
- [4] Dianne P. O'Leary, Bert W. Rust: "Variable projection for nonlinear least squares problems". Computational Optimization and Applications April 2013, Volume 54, Issue 3, pp 579-593 Available here
- [5] B. P. Abbott el. al. "ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914" The Astrophysical Journal Letters, Volume 818, Number 2
- [6] J.E. Dennis, D.M. Gay, R.E. Welsch, "An Adaptive Nonlinear Least-Squares Algorithm", ACM Transactions on Mathematical Software (TOMS), Volume 7 Issue 3, Sept. 1981, pp 348-368, ACM New York, NY, USA see here

simplification of the Nonlinear problem (iii)

• [7] J.E. Dennis, D.M. Gay, R.E. Welsch, "Algorithm 573: NL2SOL—An Adaptive Nonlinear Least-Squares Algorithm", ACM Transactions on Mathematical Software (TOMS), Volume 7 Issue 3, Sept. 1981, pp 369-383, ACM New York, NY, USA

3 Pre-Week meeting #1

Motivation

•••••••••••

Estimation of linear parameters (e.g., Re, Le, Bl, Mm, Km, Rm) in our loudspeaker dynamic model is crucial for:

- Accurate System Identification: Capturing the true electrical and mechanical dynamics ensures that controller design and simulation reflect real-world behavior.
- **Computational Efficiency**: VarPro eliminates the need to estimate linear coefficients in each nonlinear iteration, yielding faster and more stable parameter convergence.

Theory - Linear Parameter Estimation

3.b.a Estimation of linear params

In a linear time-invariant loudspeaker model

$$\dot{u} = A(\theta, u) + B(x)$$
$$y = C(u)$$

with parameter vector

$$\theta = [R_e, L_e, Bl, M_m, K_m, R_m]$$

and Gaussian measurement noise, the maximum-likelihood estimate is the weighted least-squares solution:

$$\hat{\theta} = \arg\min_{\theta} \sum_{n=1}^{N} \left[\frac{(i[n] - \hat{\imath}[n;\theta])^2}{\sigma_i^2} + \frac{(v[n] - \hat{v}[n;\theta])^2}{\sigma_v^2} \right].$$

Theory - Linear Parameter Estimation (if)

Using Variable Projection (VarPro):

- Separate linear-in- θ blocks (impulse responses) from nonlinear parameters.
- Project out the linear coefficients analytically at each iteration.
- Solve a lower-dimensional nonlinear least-squares on θ .

Hypothesis

- •••••••
- **1. Time-domain WLS** recovers θ with accuracy comparable to cross-spectral methods under 5% noise.
- 2. Welch-based TF-LS exhibits higher variance and bias at high frequencies due to window leakage.
- 3. Multitaper + Wiener yields the lowest PSD-estimation variance but at greater computational cost.

Planned Experiments

1. Data generation

- Simulate true model with known $\theta_{\rm true}$.
- Drive with (a) unit impulse, (b) white noise; sample $N = 5 * 10^6$ points, add 5% uniform noise.

2. Parameter estimation methods

- **TD-WLS**: minimize $\sum (y x(\theta))^2 \sigma^2$ via Levenberg–Marquardt.
- Welch TF-LS: estimate $\hat{G}(\omega)$ with DSP.welch, fit $\sum |\hat{G} G(\theta)|^2$.
- Cross-spectral WLS: use weighted cross-spectral fit (Eq.18 Lab A).

3. Evaluation metrics

- Parameter RMSE: $|\hat{\theta} \theta_{\text{true}}|$.
- FRF error: $\max_{\omega} |H_{\{\mathrm{est}\}} H_{\mathrm{true}}|$.
- Compute time per method.

4 Pre-Week meeting #2

Research question

- **1. Q:** What "surrogate model"/"In-situ-compensation" or "function approximation" minimizes the physics informed loss function of the chosen subset of models modelling the loudspeaker?
 - Follow-up: Whats the assumptions of the model? White-,Gray- or Black-box?
 - **A:** preferably Gray-box
- **Follow-up:** Which physics informed loss function?
 - **A:** MSE + PINN terms
- **Follow-up:** which model?
 - potential models:
 - polynomial basis based on orthogonal basis
 - **Resovoir computing** based on chaos
 - **neural networks** based on linear combination of nonlinear basis
 - **kolmogorov arnold networks** based on linear combination of nonlinear basis
- 2. Q: How can an analytical model be extracted from data, Black-box or Gray-box models?
 - Follow-up:

