PK-1

Технологии Машинного Обучения

Трифонов Дмитрий Алексеевич, ИУ5-65Б, Вариант 18

Задача 3, датасет 2

Задание

Для заданного набора данных произведите:

- масштабирование данных (для одного признака)
- преобразование категориальных признаков в количественные для одного признака способами:

rk-1

- label encoding
- one hot encoding

Какие методы Вы использовали для решения задачи и почему?

Для студентов группы ИУ5-65Б, ИУ5И-65Б - для набора данных построить "парные диаграммы".

Решение

Загрузка датасета

Для работы с набором данных буду использовать библиотеку pandas, так как это наиболее распространённый и простой в использовании инструмент для решения поставленной задачи.

```
In [ ]: from sklearn.datasets import load_wine
   import pandas as pd

wine = load_wine()
   data = pd.DataFrame(data = wine.data, columns = wine.feature_names)
```

Первичный анализ

```
In [ ]: print('Bcero строк: {}'.format(data.shape[0]))
    print('Всего колонок: {}'.format(data.shape[1]))
```

Всего строк: 178 Всего колонок: 13

In []:	dat	ca.dtype:	S							
Out[]:	mai asl ale mag to fla non pro coi hue od;	calinity gnesium tal_phen avanoids nflavano oanthocy lor_inte e	_of_ash ols id_phenols anins nsity 5_of_dilute	ed_wir	float64 float64 float64 float64 float64 float64 float64 float64 float64 float64 float64 float64					
In []:	<pre>data.head()</pre>									
Out[]:		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonfl	
	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06		
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76		
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24		
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49		
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69		

Масштабирование данных

Для масштабирования выберу показатель color_intensity (интенсивность цвета). Это потребуется мне для следующего задания.

```
In []: import matplotlib.pyplot as plt
%matplotlib inline

plt.hist(data['color_intensity'], 50)
plt.show()
```


Для масштабирования выберу метод Z-оценки. С помощью такого масштабирования удобно рассматривать, сколько стандартных отклонений составляет разброс значений выбранного показателя относительного среднего значения.

С помощью Z-оценки я смогу далее удобно создать новый категориальный признак, основанный на числовых значениях color intensity

Для масштабирования буду использовать инструмент библиотеки sklearn - StandardScaler.

```
In [ ]: from sklearn.preprocessing import StandardScaler

z_sc = StandardScaler()
z_sc_data = z_sc.fit_transform(data[['color_intensity']])

plt.hist(z_sc_data, 50)
plt.show()
```


По графику можно заметить, что большинство значений меньше среднего для показателя

Добавление нового категориального признака

Так как категориальных признаков в моём датасете нет, мне нужно создать один новый.

Один из показателей, который можно категоризировать - это color_intensity , или же интенсивность цвета. Разделю по этому показателю вина на блеклые, яркие и средней яркости.

Для этого мне поможет прежде сделанное масштабирование данных для color_intensity. По сделанному масштабированию, разные виды вина я могу распределить по цветам следующим образом:

- Цвет яркий, если промасштабированное значение color_intensity больше 0.5
- Цвет блеклый, если промасштабированное значение color_intensity меньше -0.5
- Для остальных случаев цвет вина буду считать средним.

```
In [ ]: cat_list = []
for i in z_sc_data:
    if i < -0.5:</pre>
```

```
cat_list.append('faded')
elif i > 0.5:
    cat_list.append('bright')
else:
    cat_list.append('average')
data['color_category'] = cat_list

data.head()
```

Out[]:		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonfl
	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	
	4								•

Преобразование категориального признака в количественный

```
In [ ]: cat_enc = data['color_category']
        cat_enc
Out[ ]: 0
               average
               average
         2
               average
         3
               bright
               average
                . . .
        173
               bright
        174
                bright
        175
                bright
        176
                bright
        177
                bright
        Name: color_category, Length: 178, dtype: object
```

Label encoding

Так как я работаю только с одним признаком, логично будет использовать инструмент LabelEncoder из библиотеки sklearn

```
In [ ]: cat_enc.unique()
Out[ ]: array(['average', 'bright', 'faded'], dtype=object)
In [ ]: from sklearn.preprocessing import LabelEncoder
```

```
le = LabelEncoder()
        cat_enc_le = le.fit_transform(cat_enc)
In [ ]: le.classes_
Out[ ]: array(['average', 'bright', 'faded'], dtype=object)
In [ ]: cat enc le
Out[ ]: array([0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,
               2, 0, 2, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,
               0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 2, 0, 2, 0,
               0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2,
               2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
               2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0,
               0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
               1, 1])
In [ ]: import numpy as np
        np.unique(cat_enc_le)
Out[]: array([0, 1, 2])
In [ ]: le.inverse_transform([0, 1, 2])
Out[]: array(['average', 'bright', 'faded'], dtype=object)
        One-hot encoding
In [ ]: from sklearn.preprocessing import OneHotEncoder
        ohe = OneHotEncoder()
        cat_enc_ohe = ohe.fit_transform(data[['color_category']])
In [ ]: cat_enc_ohe.shape
Out[]: (178, 3)
In [ ]: cat_enc_ohe.todense()[0:10]
Out[]: matrix([[1., 0., 0.],
                [1., 0., 0.],
                [1., 0., 0.],
                [0., 1., 0.],
                [1., 0., 0.],
                [0., 1., 0.],
                [1., 0., 0.],
                [1., 0., 0.],
                [1., 0., 0.],
                [0., 1., 0.]])
In [ ]: cat_enc.head()
```

```
Out[]: 0 average
    1 average
    2 average
    3 bright
    4 average
    Name: color_category, dtype: object
```

Парные диаграммы

```
In [ ]: import seaborn as sns
    sns.set_theme(style="ticks")
    sns.pairplot(data)
```

Out[]: <seaborn.axisgrid.PairGrid at 0x1bab1182990>

