Problem I: Risk Armies

Filename: i
Time Limit: 2 seconds

In the game of Risk, players can choose territories to place their armies. For a school project, you've created a simplified version of the game. The n territories are aligned in a single line, and each territory has a number of armies associated with it. You may claim any subset of n of the territories, of exactly size k, provided that no two of the territories are adjacent. Write a program to calculate the maximum possible sum of the number of armies in the over all possible sets of exactly k territories you could claim.

Problem

Given the number of armies in each of n consecutive territories, determine the maximum sum of number of armies in any k of the territories, where no two are right next to each other.

<u>Input</u>

The first line of input will contain a single integer, \mathbf{c} , which represents the number of cases. The first line of each case will contain two positive integers, \mathbf{n} , representing the number of territories, and \mathbf{k} , the number of territories you can select, for the input case. The second line of each case will contain \mathbf{n} space-separated integers $(\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n})$ representing the number of armies in each territory, from left to right. You are guaranteed that there will be at least one way to select \mathbf{k} territories, no two of which are adjacent.

<u>Output</u>

For each case, output the maximum sum of the number of armies in any k territories, where no two are adjacent.

Input Bounds and Corresponding Credit

- $1 \le \mathbf{c} \le 20$
- $1 \le n \le 30$
- $1 \le k \le 6, 2k-1 \le n$
- $1 \le a_i \le 10^6$

Samples

Input	Output
2	18
5 2	44
10 9 3 8 6	
8 3 12 13 14 11 18 16 2 9	