Tarea 1

Estudiantes

John Daniel hoyos Arias Ivan Santiago Rojas Martinez Genaro Aristizabal

Docente

Juan Carlos Salazar Uribe

Asignatura

Analitica de datos

Sede Medellín 17 de septiembre del 2022

Índice

1.	Ejercicio1	4			
2.	Ejercicio2	4			
3.	. Ejercicio3				
	3.1. K-nearest neighbors (KNN)	4			
	3.2. a) Distancia a cada observación	5			
	3.3. b) Predicción para K = 1	5			
	3.4. c) Predicción para K = 3	6			
	3.5. d) Frontera de decisión de Bayes	6			
4.	Ejercicio4	6			

Índice de figuras

1. Ejercicio1

2. Ejercicio2

3. Ejercicio3

3.1. K-nearest neighbors (KNN)

$$Pr(Y = J \mid X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = j)$$

Cuadro 1: Base de datos

<u>X1</u>	X2	Х3	Y
0	3	0	Red
2	0	0	Red
0	1	3	Red
0	1	2	Green
-1	0	1	Green
1	1	1	Red

3.2. a) Distancia a cada observación

Usando la distancia euclidiana entre dos punto u y v definida como:

$$d(u,v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + (u_3 - v_3)^2}$$

Calculamos la distancia entre cada observación y el punto $X_1 = X_2 = X_3 = 0$ usando R.

```
point <- c(0, 0, 0)

dist_eucl <- function(x){
   ans <- c()
   for (i in 1:nrow(x)){
      xi <- as.numeric(t(as.vector(x[i, ])))
      result <- sqrt(sum((xi-point)^2))
      ans <- append(ans, result)
   }
   return (ans)
}

db <- mutate(db, dist = dist_eucl(db[1:3]))</pre>
```

Se obtiene:

Cuadro 2: Distancia a cada observación desde el punto $X_1 = X_2 = X_3 = 0$

Observación	Grupo	Distancia Euclidiana
1	Red	3.000000
2	Red	2.000000
3	Red	3.162278
4	Green	2.236068
5	Green	1.414214
6	Red	1.732051

3.3. b) Predicción para K = 1

Con una selección de K = 1. Knn identifica la observación más cercana al punto con características $X_1 = X_2 = X_3 = 0$ y en este caso la observación mas cercana es la **numero** 5 con una distancia de **1.414214**. Dando así Knn una estimación de 1/1 de pertenecer al grupo **Green**. Por ende la estimación es pertenecer a la clase **Green**.

3.4. c) Predicción para K=3

Con una selección de K = 3. Knn identifica las 3 observaciones más cercanas al punto con características $X_1 = X_2 = X_3 = 0$ y en este caso las observaciones mas cercana son la **numero 5**, la **numero 6** y la **numero 2** que consisten en 2 observaciones de la clase **Red** y una observación de la clase **Green**, dando como restulado una estimación de 2/3 de pertenecer a la clase **Red** y 1/3 de pertenecer a la clase **Green**. Por consiguiente se estima pertenecer a la clase **Red**.

3.5. d) Frontera de decisión de Bayes

Si la frontera de decisión de Bayes en este problema es altamente no lineal, ¿esperaríamos que el mejor valor de K fuera grande o pequeño? ¿Por qué?

4. Ejercicio4