Full Analysis

Chris Hoover August 22, 2018

Numeric estimation of max profit

For each prawn species, shows trajectories of length, density, harvestable biomass, and profit over time over a range of stocking densities

Example cycle

Figure showing prawn aquaculture dynamics through time

Eumetric curves

We want to add estimates of uncertainty to the eumetric curve in addition to the eumetric curve generated by point estimates of all parameters (above). We'll use the same parameter sets from the latin hypercube generated for the PRCC sensitivity analysis to run the model over all tested stocking densities

Optimal management table

Also want a table showing set of parameters and outputs from "optimal management". Two approaches here: can either take uncertainty

Table 1: Estimates of M. vollenhovenii optimal management (uncertainty during optimization)

P_nought	2300
Cum_profit_med	2374.808
$harvest_time_sum$	260 (228 - 365)
$harvest_mass_sum$	$22.91 \ (16.11 - 30.52)$
$harvest_length_sum$	169.62 (162.45 - 177.62)
$harvest_number_sum$	815.23 (591.61 - 1036.37)
$profit_cycle_sum$	170.36 (55.89 - 311.42)
roi_sum	$0.93 \ (0.33 - 1.8)$
$n_harvest_sum$	14 (10 - 16)
cum_profit_sum	2374.81 (640.69 - 5117.8)

Table 2: Estimates of M. vollenhovenii optimal management (uncertainty during optimization)

2900
8218.367
173 (146 - 192)
38.39 (30.74 - 46.95)
167.66 (161.02 - 175.09)
1505.14 (1315 - 1702.93)
371.89 (232.09 - 540.08)
$1.63 \ (0.97 - 2.46)$
21 (19 - 25)
8218.37 (4802.95 - 12645.21)

Table 3: Estimates of M. vollenhovenii optimal management (parametric uncertainty)

P_nought	2400
L_nought	40
$harvest_time_med$	280 (228 - 365)
$harvest_mass_med$	23.57 (16.59 - 31.36)
$harvest_length_med$	169.82 (162.42 - 177.77)
$harvest_number_med$	846.26 (611.96 - 1074.91)
$profit_cycle_med$	171.19 (54.07 - 315.4)
roi_med	$0.89 \ (0.3 - 1.75)$
n_harvest_med	13 (10 - 16)
cum_profit_med	2369.91 (618.51 - 5157.65)

Table 4: Estimates of M. rosenbergii optimal management (parametric uncertainty)

P_nought 2600 L_nought 40 165 (146 - 192) $harvest_time_med$ $harvest_mass_med$ 36.37 (29.3 - 44.94) 168.06 (160.86 - 175.34) $harvest_length_med$ $harvest_number_med$ 1365.39 (1198.27 - 1543.09) profit_cycle_med 366.46 (232.58 - 528.41) roi_med 1.8 (1.08 - 2.69) $n_harvest_med$ 22 (19 - 25) cum_profit_med 8171.43 (4821.01 - 12459.85)

Parameter	Definition	M. vollenhovenii	M. rosenbergii
$\overline{P_{0opt}^{\ sp}}$	Optimal stocking density	$2.4 \ Pm^{-2}$	$2.6 \ Pm^{-2}$
L_0	Mean length at stocking	$40 \ mm$	$40 \ mm$
$\Omega(t_0)$	Total biomass at stocking	kg \$k	g\$
$T_{opt}^{\hat{s}p}$	Optimal harvest time	days	days
$Y(T_{opt}^{sp}, P_{0opt}^{sp})$	Commercial yield	kg \$kg	\$
$L(T_{opt}^{sp})$ Mean length at	harvest kg	kg	

Epi simulations

Sensitivity analysis