1 Метод моментов

Пусть случайные величины X_1 , ..., X_n независимы и одинаково распределены. Закон больших чисел говорит нам, что среднее выборочное \bar{X} является хорошей оценкой для математического ожидания $\mathbb{E}(X_i)$:

$$\bar{X}_n \stackrel{P}{\longrightarrow} \mathbb{E}(X_i)$$

На практике это означает, что при больших n эти величины равны:

$$\bar{X}_n \approx \mathbb{E}(X_i)$$

На этой нехитрой идее и построен метод моментов. Как конкретно используется идея понятно из следующих двух примеров:

Пример 1. Допустим, что случайные величины $X_1, ..., X_n$ независимы и равномерны на $[\theta; \theta+1]$. Постройте оценку неизвестного параметра θ с помощью метода моментов.

В данном случае $\mathbb{E}(X_i) = \theta + 0.5$ и, следовательно:

$$\bar{X}_n \approx \theta + 0.5$$

Выражаем θ :

$$\theta \approx \bar{X}_n - 0.5$$

Это и есть нужная нам оценка:

$$\hat{\theta}_{MM} := \bar{X}_n - 0.5$$

Пример 2. Неправильная монетка выпадает орлом с неизвестной вероятностью p. Провели несколько экспериментов и каждый раз записывали, сколько раз ее потребовалось подкинуть до появления первого орла. Обозначим эти величины $X_1, ..., X_n$. Постройте оценку неизвестного параметра p с помощью метода моментов.

Величины X_i имеют геометрическое распределение, поэтому $\mathbb{E}(X_i) = \frac{1}{p}$. Принцип метода моментов гласит:

$$\bar{X}_n pprox rac{1}{p}$$

Выражаем неизвестный параметр p:

$$p pprox rac{1}{\bar{X}_{rr}}$$

Это и есть нужная нам оценка:

$$\hat{p}_{MM} := \frac{1}{\bar{X}_n}$$

Если говорить более формально...

Определение. Пусть X_i одинаково распределены и независимы, а $\mathbb{E}(X_i)$ зависит от неизвестного параметра θ , скажем $\mathbb{E}(X_i) = f(\theta)$. Тогда оценкой метода моментов называется случайная величина:

$$\hat{\theta}_{MM} := f^{-1}(\bar{X}_n)$$

Конечно, иногда бывают ситуации, когда математическое ожидание $\mathbb{E}(X_i)$ не зависит от θ . Например, если X_i равномерны на $[-\theta;\theta]$, то математическое ожидание $\mathbb{E}(X_i)=0$. Что делать в такой ситуации?

Неспроста же наш метод называется методом моментов... Напомним, что k-ым моментом случайной величины X_i называется математическое ожидание $\mathbb{E}(X_i^k)$...

Итак, если условия $\bar{X}_n \approx \mathbb{E}(X_i)$ связанного с первым моментом не хватило, то на помощь придет второй момент случайной величины. В силу того же закона больших чисел:

$$\frac{\sum X_i^2}{n} \approx \mathbb{E}(X_i^2)$$

Пример 3. Величины X_i независимы и равномерны на $[-\theta;\theta]$. Постройте оценку неизвестного параметра θ с помощью метода моментов.

Убеждаемся, что $\mathbb{E}(X_i) = 0$. Находим $\mathbb{E}(X_i^2)$:

$$\mathbb{E}(X_i^2) = \int_{-\theta}^{\theta} x^2 \frac{1}{2\theta} dx = \dots = \frac{\theta^2}{3}$$

Согласно принципу метода моментов:

$$\frac{\sum X_i^2}{n} \approx \frac{\theta^2}{3}$$

Выражаем θ :

$$\theta \approx \sqrt{3 \frac{\sum X_i^2}{n}}$$

Это и есть нужная нам оценка:

$$\hat{\theta}_{MM} = \sqrt{3 \frac{\sum X_i^2}{n}}$$

Если не хватит и второго момента, тогда воспользуемся третьим и т.д. Для произвольного k мы имеем:

$$\frac{\sum X_i^k}{n} \approx \mathbb{E}(X_i^k)$$

В большинстве случаев хватает именного первого момента. Последующие моменты нужны чаще всего при оценке нескольких параметров.