Package 'tsapp'

October 14, 2022

,
Type Package
Title Time Series, Analysis and Application
Version 1.0.4
Author Rainer Schlittgen
Maintainer Rainer Schlittgen < R. Schlittgen@t-online.de>
Description Accompanies the book Rainer Schlittgen and Cristina Sattarhoff (2020) https://www.degruyter.com/view/title/575978 ``Angewandte Zeitreihenanalyse mit R, 4. Auflage" . The package contains the time series and functions used therein. It was developed over many years teaching courses about time series analysis.
License GPL
Encoding UTF-8
LazyData true
Depends R (>= 3.6.0), Matrix, vars, fftwtools, hdm
SystemRequirements under Linux, fftwtools needs libfftw3-dev
RoxygenNote 7.1.1
NeedsCompilation no
•
Repository CRAN
Date/Publication 2021-10-30 11:30:02 UTC
R topics documented:
ACCIDENT
acfmat
acfpacf
armathspec
aspectratio
bandfilt
BEER
bispeces
BLACKOUT

BoxCox	. 10
COFFEE	. 11
DAX	. 11
DIABETES	. 12
DOMINANCE	. 12
lynspecest	. 13
ENGINES	. 14
FINANCE	. 14
GDP	. 15
GDPORIG	. 15
Grangercaus	. 16
HAC	. 17
HEARTBEAT	. 18
HSV	. 18
IBM	. 19
ICECREAM	. 19
nit_values	. 20
NORDER	
nterpol	
kweightsHAC	
L921	
agwinba	
agwinpa	
agwintu	
ambdaCalculationHAC	
ambdaCalculationLoad	
drec	
LITH	
LjungBoxPierceTest	. 28
LUHORMONE	. 28
LYNX	. 29
LYNXHARE	. 29
MACHINES	
MAUNALOA	
MDAX	. 31
MELANOM	. 31
mfraccheck	. 32
missar	. 33
missls	. 34
noveav	. 35
movemed	. 35
MUSKRAT	
NIKKEI	
outidentify	
OXYGEN	
pacfmat	
PAPER	
periodogram	

R	topics	documented:
---	--------	-------------

periodotest	. 40
erwinba	
perwinda	. 41
perwinpa	. 42
pestep	. 43
PIGPRICE	. 43
polymake	. 44
PPDEMAND	. 44
PRODINDEX	. 45
osifair	. 45
osihuber	. 46
RAINFALL	. 46
REDWINE	. 47
·lassoHAC	. 48
·lassoLoad	. 50
obsplinedecomp	. 53
RS	. 54
SALES	. 54
SCHAUINSLAND	. 55
simpledecomp	. 55
smoothls	. 56
smoothrb	. 57
specest	. 57
specplot	. 58
splinedecomp	. 59
SPRUCE	. 60
statcheck	. 60
subsets	. 61
symplot	. 61
aper	. 62
TAXES	. 62
TREERING	. 63
ГREMOR	. 64
smat	. 64
USAPOP	. 65
vartable	. 65
WHORMONE	. 66
wntest	. 66

4 acfmat

ACCIDENT

Monthly numbers of road traffic accidents with personal injury in BRD

Description

Monthly numbers of road traffic accidents with personal injury in BRD

Usage

ACCIDENT

Format

ACCIDENT is a univariate time series of length 528, start January 1974, frequency = 12

ACCIDENT Monthly numbers of road traffic accidents with personal injury

Source

< https://www-genesis.destatis.de/genesis//online?operation=table&code=46241-0002&levelindex=0&levelid=1583749114977>

Examples

```
data(ACCIDENT)
## maybe tsp(ACCIDENT) ; plot(ACCIDENT)
```

acfmat

acfmat computes a sequence of autocorrelation matrices for a multivariate time series

Description

acfmat computes a sequence of autocorrelation matrices for a multivariate time series

Usage

```
acfmat(y, lag.max)
```

Arguments

y multivariate time series lag.max maximum number of lag

acfpacf 5

Value

out list with components:

M array with autocovariance matrices

M1 array with indicators if autocovariances are significantly greater (+), lower (-)

than the critical value or insignificant (.) at 95 percent level

Examples

```
data(ICECREAM)
out <- acfmat(ICECREAM,7)</pre>
```

acfpacf

acfpacf produces a plot of the acf and the pacf of a time series

Description

acfpacf produces a plot of the acf and the pacf of a time series

Usage

```
acfpacf(x, lag, HV = "H")
```

Arguments

x the series, a vector or a time series

lag scalar, maximal lag to be plotted

HV character, controls division of graphic window: "H" horizontal, "V" vertical,

default is "H"

```
data(LYNX)
acfpacf(log(LYNX),15,HV="H")
```

6 armathspec

ALCINCOME

Alcohol Demand, UK, 1870-1938.

Description

Alcohol Demand, UK, 1870-1938.

Usage

ALCINCOME

Format

ALCINCOME is a threevariate time series of length 69 and 3 variables; start 1870, frequency = 1

- Y log consumption per head
- **Z** log real income per head
- X log real price

Source

Durbin & Watson (1951) https://doi.org/10.1093/biomet/38.1-2.159

Examples

```
data(ALCINCOME)
## maybe tsp(ALCINCOME); plot(ALCINCOME)
```

armathspec

armathspec determines the theoretical spectrum of an arma process

Description

armathspec determines the theoretical spectrum of an arma process

Usage

```
armathspec(a, b, nf, s = 1, pl = FALSE)
```

Arguments

a	ar-coefficients
b	ma-coefficients
nf	scalar, the number of equally spaced frequencies
S	variance of error process
pl	logical, if TRUE, the spectrum is plotted, FALSE for no plot

aspectratio 7

Value

```
out (nf+1,2) matrix, the frequencies and the spectrum
```

Examples

```
out <-armathspec(c(0.3,-0.5),c(-0.8,0.7),50,s=1,pl=FALSE)
```

aspectratio

aspectratio determines the aspect ratio to plot a time series

Description

aspectratio determines the aspect ratio to plot a time series

Usage

```
aspectratio(y)
```

Arguments

У

time series

Value

```
a scalar, the aspect ratio
```

Examples

```
data(GDP)
a <- aspectratio(GDP)</pre>
```

bandfilt

bandfilt does a bandpass filtering of a time series

Description

bandfilt does a bandpass filtering of a time series

Usage

```
bandfilt(y, q, pl, pu)
```

8 BEER

Arguments

У	the series, a vector or a time series
q	scalar, half of length of symmetric weights
pl	scalar, lower periodicity ($>= 2$)
pu	scalar, upper periodicity (> pl)

Value

yf (n,1) vector, the centered filtered time series with NA's at beginning and ending

Examples

```
data(GDP)
yf <- bandfilt(GDP,5,2,6)
plot(GDP); lines(yf+mean(GDP),col="red")</pre>
```

BEER

Monthly beer production in Australia: megalitres. Includes ale and stout. Does not include beverages with alcohol percentage less than 1.15.

Description

Monthly beer production in Australia: megalitres. Includes ale and stout. Does not include beverages with alcohol percentage less than 1.15.

Usage

BEER

Format

BEER is a univariate time series of length 476, start January 1956, end Aug 1995, frequency = 12

BEER Monthly production of beer in Australia

Source

R package tsdl https://github.com/FinYang/tsdl

```
data(BEER)
## maybe tsp(BEER) ; plot(BEER)
```

bispeces 9

bispeces	bispeces performs indirect bivariate spectral estimation of two series y1, y2 using lagwindows

Description

bispeces performs indirect bivariate spectral estimation of two series y1, y2 using lagwindows

Usage

```
bispeces(y1, y2, q, win = "bartlett")
```

Arguments

y1	vector, the first time series
y2	vector, the second time series
q	number of covariances used for indirect spectral estimation
win	lagwindow (possible: "bartlett", "parzen", "tukey")

Value

out data frame with columns:

```
f frequencies 0, 1/n, 2/n, \dots (<= 1/2)
coh estimated coherency at Fourier frequencies 0,1/n, \dots
ph estimated phase at Fourier frequencies 0,1/n, \dots
```

Examples

```
data(ICECREAM)
y <- ICECREAM
out <- bispeces(y[,1],y[,2],8,win="bartlett")</pre>
```

BLACKOUT

Weekly number of births in New York

Description

Weekly number of births in New York

Usage

BLACKOUT

10 BoxCox

Format

BLACKOUT is a univariate time series of length 313, 1961 – 1966

BLACKOUT Weekly numbers of births in New York

Source

Izenman, A. J., and Zabell, S. L. (1981) https://www.sciencedirect.com/science/article/abs/pii/0049089X81900181

Examples

```
data(BLACKOUT)
## maybe tsp(BLACKOUT); plot(BLACKOUT)
```

BoxCox

BoxCox determines the power of a Box-Cox transformation to stabilize the variance of a time series

Description

BoxCox determines the power of a Box-Cox transformation to stabilize the variance of a time series

Usage

```
BoxCox(y, seg, Plot = FALSE)
```

Arguments

y the series, a vector or a time series

seg scalar, number of segments

Plot logical, should a plot be produced?

Value

1 scalar, the power of the Box-Cox transformation

```
data(INORDER)
lambda <-BoxCox(INORDER,6,Plot=FALSE)</pre>
```

COFFEE 11

COFFEE

U.S. annual coffee consumption

Description

U.S. annual coffee consumption

Usage

COFFEE

Format

COFFEE is a univariate time series of length 61; start 1910, frequency = 1

COFFEE annual coffee-consumption USA, logarithmic transformed

Source

R package tsdl https://github.com/FinYang/tsdl

Examples

```
data(COFFEE)
## maybe tsp(COFFEE); plot(COFFEE)
```

DAX

Market value of DAX

Description

Market value of DAX

Usage

DAX

Format

DAX is a multivariate time series of length 12180 and 4 variables

DAY Day of the week

MONTH Month

Year Year

DAX30 Market value

12 DOMINANCE

Examples

```
data(DAX)
## maybe tsp(DAX); plot(DAX)
```

DIABETES

Incidences of insulin-dependent diabetes mellitus

Description

Incidences of insulin-dependent diabetes mellitus

Usage

DIABETES

Format

DIABETES is a univariate time series of length 72, start January 1979, frequency = 12

DIABETES Incidences of insulin-dependent diabetes mellitus

Source

Waldhoer, T., Schober, E. and Tuomilehto, J. (1997) https://www.sciencedirect.com/science/article/abs/pii/S0895435696003344

Examples

```
data(DIABETES)
## maybe tsp(DIABETES); plot(DIABETES)
```

DOMINANCE

Running yield of public bonds in Austria and Germany

Description

Running yield of public bonds in Austria and Germany

Usage

DOMINANCE

Format

DOMINANCE is a bivariate time series of length 167:

- X Interest rate Germany
- Y Interest rate Austria

dynspecest 13

Source

```
Jaenicke, J. and Neck, R. (1996) <a href="https://doi.org/10.17713/ajs.v25i2.555">https://doi.org/10.17713/ajs.v25i2.555</a>
```

Examples

```
data(DOMINANCE)
## maybe tsp(DOMINANCE); plot(DOMINANCE)
```

dynspecest

dynspecest performs a dynamic spectrum estimation

Description

dynspecest performs a dynamic spectrum estimation

Usage

```
dynspecest(y, nseg, nf, e, theta = 0, phi = 15, d, Plot = FALSE)
```

Arguments

у	time series or vector
nseg	number of segments for which the spectrum is estimated
nf	number of equally spaced frequencies
е	equal bandwidth
theta	azimuthal viewing direction, see R function persp
phi	colatitude viewing direction, see R function persp
d	a value to vary the strength of the perspective transformation, see R function persp
Plot	logical, schould a plot be generated?

Value

out list with components

f frequencies, vector of length nf
t time, vector of length nseg
spec the spectral estimates, (nf,nt)-matrix

```
data(IBM)
y <- diff(log(IBM))
out <- dynspecest(y,60,50,0.2,theta=0,phi=15,d=1,Plot=FALSE)</pre>
```

14 FINANCE

ENGINES

ENGINES is an alias for MACHINES

Description

ENGINES is an alias for MACHINES

Usage

ENGINES

Format

ENGINES is a univariate time series of length 188, start January 1972 frequency = 12

ENGINES Incoming orders for engines

Examples

```
data(ENGINES)
## maybe tsp(ENGINES); plot(ENGINES)
```

FINANCE

Portfolio-Insurance-Strategies

Description

Portfolio-Insurance-Strategies

Usage

FINANCE

Format

FINANCE is a multivariate time series of length 7529:

CPPI first Portfolio-Insurance-Strategy

TIPP second Portfolio-Insurance-Strategy

StopLoss third Portfolio-Insurance-Strategy

SyntheticPut fourth Portfolio-Insurance-Strategy

CASH money market investment

Source

Dichtl, H. and Drobetz, W. (2011) <doi:10.1016/j.jbankfin.2010.11.012>

GDP 15

Examples

```
data(FINANCE)
## maybe tsp(FINANCE); plot(FINANCE)
```

GDP

Germany's gross domestic product adjusted for price changes

Description

Germany's gross domestic product adjusted for price changes

Usage

GDP

Format

GDP is a univariate time series of length 159, start January 1970, frequency = 4

GDP Gross domestic product adjusted for price changes

Source

https://www-genesis.destatis.de/genesis//online?operation=table&code=81000-0002&levelindex=0&levelid=1583750132341

Examples

```
data(GDP)
## maybe tsp(GDP); plot(GDP)
```

GDPORIG

Germany's gross domestic product, values of Laspeyres index to base 2000

Description

Germany's gross domestic product, values of Laspeyres index to base 2000

Usage

GDPORIG

Format

GDPORIG is a univariate time series of length 159, start January 1970, frequency = 4

GDPORIG gross domestic product, values of Laspeyres index to the base 2000

16 Grangercaus

Source

https://www-genesis.destatis.de/genesis//online?operation=table&code=81000-0002&levelindex=0&levelid=1583750132341

Examples

```
data(GDPORIG)
## maybe tsp(GDPORIG) ; plot(GDPORIG)
```

Grangercaus

Grangercaus determines three values of BIC from a twodimensional VAR process

Description

Grangercaus determines three values of BIC from a twodimensional VAR process

Usage

```
Grangercaus(x, y, p)
```

Arguments

x first time seriesy second time series

p maximal order of VAR process

Value

out list with components

BIC vector of length 3:

BIC1 minimum aic value for all possible lag structures

BIC2 minimum aic value when Y is not included as regressor in the equation for X BIC3 minimum aic value when X is not included as regressor in the equation for Y

out1 output of function lm for regression equation for x-series out2 output of function lm for regression equation for y-series

```
data(ICECREAM)
out <- Grangercaus(ICECREAM[,1],ICECREAM[,2],3)</pre>
```

HAC 17

HAC	HAC Covariance Matrix Estimation HAC computes the central quantity (the meat) in the HAC covariance matrix estimator, also called sandwich estimator. HAC is the abbreviation for "heteroskedasticity and autocorrelation consistent".

Description

HAC Covariance Matrix Estimation HAC computes the central quantity (the meat) in the HAC covariance matrix estimator, also called sandwich estimator. HAC is the abbreviation for "heteroskedasticity and autocorrelation consistent".

Usage

```
HAC(mcond, method = "Bartlett", bw)
```

Arguments

mcond a q-dimensional multivariate time series. In the case of OLS regression with q

regressors moond contains the series of the form regressor*residual (see example

below).

method kernel function, choose between "Truncated", "Bartlett", "Parzen", "Tukey-Hanning",

"Quadratic Spectral".

bw bandwidth parameter, controls the number of lags considered in the estimation.

Value

```
mat a (q,q)-matrix
```

Source

Heberle, J. and Sattarhoff, C. (2017) <doi:10.3390/econometrics5010009> "A Fast Algorithm for the Computation of HAC Covariance Matrix Estimators"

```
data(MUSKRAT)
y <- ts(log10(MUSKRAT))
n <- length(y)
t <- c(1:n)
t2 <- t^2
out2 <- lm(y ~ t +t2)
mat_xu <- matrix(c(out2$residuals,t*out2$residuals, t2*out2$residuals),nrow=62,ncol=3)
hac <- HAC(mat_xu, method="Bartlett", 4)

mat_regr<- matrix(c(rep(1,62),t,t2),nrow=62,ncol=3)
mat_q <- t(mat_regr)%*%mat_regr/62</pre>
```

18 HSV

```
vcov_HAC <- solve(mat_q)%*%hac%*%solve(mat_q)/62
# vcov_HAC is the HAC covariance matrix estimation for the OLS coefficients.</pre>
```

HEARTBEAT

Cardiac frequency of a patient

Description

Cardiac frequency of a patient

Usage

HEARTBEAT

Format

HEARTBEAT is a univariate time series of length 30:

HEARTBEAT cardiac frequency of a patient

Examples

```
data(HEARTBEAT)
## maybe tsp(HEARTBEAT); plot(HEARTBEAT)
```

HSV

HSV's position in the first German soccer league

Description

HSV's position in the first German soccer league

Usage

HSV

Format

HSV is a univariate time series of length 47:

HSV HSV's position in the first German soccer league

Source

https://www.transfermarkt.de/hamburger-sv/platzierungen/verein/41

```
data(HSV)
## maybe tsp(HSV); plot(HSV)
```

IBM 19

IBM

IBM's stock price

Description

IBM's stock price

Usage

IBM

Format

IBM is a univariate time series of length 369, start 17 May 1961

IBM IBM's daily stock price

Source

Box, G. E. P. and Jenkins, G. M. (1970, ISBN: 978-0816210947) "Time series analysis: forecasting and control"

Examples

```
data(IBM)
## maybe tsp(IBM) ; plot(IBM)
```

ICECREAM

Temperature and consumption of ice cream

Description

Temperature and consumption of ice cream

Usage

ICECREAM

Format

ICECREAM is a bivariate time series of length 160:

ICE consumption of ice cream

TEMP Temperature in Fahrenheit degrees

20 init_values

Source

Hand, D. J., et al. (1994, ISBN: 9780412399206) "A Handbook of Small Data Sets"

Examples

```
data(ICECREAM)
## maybe tsp(ICECREAM); plot(ICECREAM)
```

init_values

init_values is an auxiliary function for rlassoHAC, for fitting linear models with the method of least squares where only the variables in X with highest correlations are considered; taken from package hdm.

Description

init_values is an auxiliary function for rlassoHAC, for fitting linear models with the method of least squares where only the variables in X with highest correlations are considered; taken from package hdm.

Usage

```
init_values(X, y, number = 5, intercept = TRUE)
```

Arguments

X Regressors (matrix or object can be coerced to matrix).

y Dependent variable(s).

number How many regressors in X should be considered.

intercept Logical. If TRUE, intercept is included which is not penalized.

Value

init_values returns a list containing the following components:

residuals Residuals.

coefficients Estimated coefficients.

Source

Victor Chernozhukov, Chris Hansen, Martin Spindler (2016). hdm: High-Dimensional Metrics, R Journal, 8(2), 185-199. URL https://journal.r-project.org/archive/2016/RJ-2016-040/index.html.

INORDER 21

INORDER

Income orders of a company

Description

Income orders of a company

Usage

INORDER

Format

INORDER is a univariate time series of length 237, start January 1968, frequency =12

INORDER Income orders of a company

Examples

```
data(INORDER)
## maybe tsp(INORDER); plot(INORDER)
```

interpol

interpol help function for missls

Description

interpol help function for missls

Usage

```
interpol(rho, xcent)
```

Arguments

rho autocorrelation function xcent centered time series

Value

z new version of xcent

22 L921

kweightsHAC

kweightsHAC help function for HAC

Description

kweightsHAC help function for HAC

Usage

```
kweightsHAC(
  kernel = c("Truncated", "Bartlett", "Parzen", "Tukey-Hanning", "Quadratic Spectral"),
  dimN,
  bw
)
```

Arguments

kernel kernel function, choose between "Truncated", "Bartlett", "Parzen", "Tukey-Hanning",

"Quadratic Spectral".

dimN number of observations bw bandwidth parameter

Value

ww weights

L921

Subsoil water level and precipitation at pilot well L921

Description

Subsoil water level and precipitation at pilot well L921

Usage

L921

Format

L921 is a trivariate time series of length 335:

- T Day
- Y Water level
- **Z** Supplemented water level

lagwinba 23

Examples

```
data(L921)
## maybe tsp(L921); plot(L921)
```

lagwinba

lagwinba Bartlett's Lag-window for indirect spectrum estimation

Description

lagwinba Bartlett's Lag-window for indirect spectrum estimation

Usage

```
lagwinba(NL)
```

Arguments

NL

number of lags used for estimation

Value

win vector, one-sided weights

Examples

```
win <-lagwinba(5)</pre>
```

lagwinpa

lagwinpa Parzen's Lag-window for indirect spectrum estimation

Description

lagwinpa Parzen's Lag-window for indirect spectrum estimation

Usage

```
lagwinpa(NL)
```

Arguments

NL

number of lags used for estimation

Value

win vector, one-sided weights

```
win <- lagwinpa(5)</pre>
```

24 lambdaCalculationHAC

lagwintu

lagwintu Tukey's Lag-window for indirect spectrum estimation

Description

lagwintu Tukey's Lag-window for indirect spectrum estimation

Usage

```
lagwintu(NL)
```

Arguments

NL

number of lags used for estimation

Value

win vector, one-sided weights

Examples

```
win <- lagwintu(5)</pre>
```

 ${\tt lambdaCalculation HAC}$

 $\label{lambdaCalculationHAC} \ is \ an \ auxiliary \ function \ for \ rlassoHAC; \ it \ calculates \ the \ penalty \ parameters.$

Description

lambdaCalculationHAC is an auxiliary function for rlassoHAC; it calculates the penalty parameters.

Usage

```
lambdaCalculationHAC(
   X.dependent.lambda = FALSE,
   c = 2,
   gamma = 0.1,
   kernel,
   bands,
   bns,
   lns,
   nboot,
   y = NULL,
   x = NULL
)
```

lambdaCalculationLoad 25

Arguments

X.dependent.lambda

Logical, TRUE, if the penalization parameter depends on the design of the ma-

trix x. FALSE, if independent of the design matrix (default).

c Constant for the penalty with default c = 2.

gamma Constant for the penalty with default gamma=0.1.

kernel String kernel function, choose between "Truncated", "Bartlett", "Parzen", "Tukey-

Hanning", "Quadratic Spectral".

bands Constant bandwidth parameter.

bns Block length.

lns Number of blocks.

nboot Number of bootstrap iterations.

y Residual which is used for calculation of the variance or the data-dependent

loadings.

x Regressors (vector, matrix or object can be coerced to matrix).

Value

lambda0 Penalty term

Ups0 Penalty loadings, vector of length p (no. of regressors)

1ambda This is lambda0 * Ups0

penalty Summary of the used penalty function.

Source

Victor Chernozhukov, Chris Hansen, Martin Spindler (2016). hdm: High-Dimensional Metrics, R Journal, 8(2), 185-199. URL https://journal.r-project.org/archive/2016/RJ-2016-040/index.html.

lambdaCalculationLoad is an auxiliary function for rlassoLoad; it calculates the penalty parameters with predefined loadings.

Description

lambdaCalculationLoad is an auxiliary function for rlassoLoad; it calculates the penalty parameters with predefined loadings.

26 lambdaCalculationLoad

Usage

```
lambdaCalculationLoad(
   X.dependent.lambda = FALSE,
   c = 2,
   gamma = 0.1,
   load,
   bns,
   lns,
   nboot,
   y = NULL,
   x = NULL
)
```

Arguments

X.dependent.lambda

Logical, TRUE, if the penalization parameter depends on the design of the ma-

trix x. FALSE, if independent of the design matrix (default).

c Constant for the penalty with default c = 2.

gamma Constant for the penalty with default gamma=0.1.

load Penalty loadings, vector of length p (no. of regressors).

bns Block length.

lns Number of blocks.

nboot Number of bootstrap iterations.

y Residual which is used for calculation of the variance or the data-dependent

penalty.

x Regressors (vector, matrix or object can be coerced to matrix).

Value

lambda0 Penalty term

Ups0 Penalty loadings, vector of length p (no. of regressors)

lambda This is lambda0 * Ups0

penalty Summary of the used penalty function

Source

Victor Chernozhukov, Chris Hansen, Martin Spindler (2016). hdm: High-Dimensional Metrics, R Journal, 8(2), 185-199. URL https://journal.r-project.org/archive/2016/RJ-2016-040/index.html.

Idrec 27

ldrec

ldrec does Levinson-Durbin recursion for determing all coefficients a(i,j)

Description

1drec does Levinson-Durbin recursion for determing all coefficients a(i,j)

Usage

```
ldrec(a)
```

Arguments

а

(p+1,1)-vector of acf of a time series: acov(0),...,acov(p) or 1,acor(1),...,acor(p)

Value

mat (p,p+2)-matrix, coefficients in lower triangular, pacf in colum p+2 and Q(p) in colum p+1

Examples

```
data(HEARTBEAT)
a <- acf(HEARTBEAT,5,plot=FALSE)
mat <- ldrec(a$acf)</pre>
```

LITH

Daily subsoil water level and precipitation at pilot well Lith

Description

Daily subsoil water level and precipitation at pilot well Lith

Usage

LITH

Format

LITH is a bivariate time series of length 1347:

N precipitation amount

G water level

```
data(LITH)
## maybe tsp(LITH) ; plot(LITH)
```

28 LUHORMONE

LjungBoxPierceTest	LjungBoxPierceTest determines the test statistic and p values for several lags for a residual series

Description

LjungBoxPierceTest determines the test statistic and p values for several lags for a residual series

Usage

```
LjungBoxPierceTest(y, n.par = 0, maxlag = 48)
```

Arguments

y the series of residuals, a vector or a time series

n.par number of parameters which had been estimated

maxlag maximal lag up to which the test statistic is computed, default is maxlag = 48

Value

BT matrix with columns: lags, degrees of freedom, test statistic, p-value

Examples

```
data(COFFEE)
out <- arima(COFFEE,order=c(1,0,0))
BT <- LjungBoxPierceTest(out$residuals,1,20)</pre>
```

LUHORMONE

Level of Luteinzing hormone of a cow

Description

Level of Luteinzing hormone of a cow

Usage

LUHORMONE

Format

LUHORMONE is a bivariate time series of length 29:

T Time in minutes

X Level of the Luteinzing-hormone

LYNX 29

LYNX

Annual lynx trappings in a region of North-West Canada. Taken from Andrews and Herzberg (1985).

Description

Annual lynx trappings in a region of North-West Canada. Taken from Andrews and Herzberg (1985).

Usage

LYNX

Format

LYNX is a univariate time series of length 114; start 1821 frequency = 1

LYNX annual lynx trappings in a region of North-west Canada

Source

Andrews, D. F. and Herzberg, A. M. (1985) "Data" https://www.springer.com/gp/book/9781461295631

Examples

```
data(LYNX)
## maybe tsp(LYNX); plot(LYNX)
```

LYNXHARE

Size of populations of lynxes and snow hares

Description

Size of populations of lynxes and snow hares

Usage

LYNXHARE

Format

LYNXHARE is a simulated bivariate time series from a VAR[1]-model of length 100:

X Number of lynxes

Y Number of snow hares

Examples

data(LYNXHARE)

30 MAUNALOA

MACHINES

Number of incoming orders for machines

Description

Number of incoming orders for machines

Usage

MACHINES

Format

MACHINES is a univariate time series of length 188, start January 1972 frequency = 12

MACHINES Incoming orders for machines

Examples

```
data(MACHINES)
## maybe tsp(MACHINES); plot(MACHINES)
```

MAUNALOA

Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii

Description

Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii

Usage

MAUNALOA

Format

MAUNALOA is a univariate time series of length 735; start March 1958, frequency = 12

MAUNALOA CO2-concentration at Mauna Loa

Source

Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., and Meijer, H. A. (2001) https://library.ucsd.edu/dc/object/bb3859642r

MDAX 31

Examples

```
data(MAUNALOA)
## maybe tsp(MAUNALOA); plot(MAUNALOA)
```

 MDAX

Stock market price of MDAX

Description

Stock market price of MDAX

Usage

MDAX

Format

MDAX is a multivariate time series of length 6181 and 4 variables

DAY Day of the week

MONTH Month

YEAR Year

MDAX Opening stock market price

Source

https://www.onvista.de/index/MDAX-Index-323547

Examples

```
data(MDAX)
## maybe tsp(MDAX); plot(MDAX[,3])
```

MELANOM

Melanoma incidence in Connecticut

Description

Melanoma incidence in Connecticut

Usage

MELANOM

32 mfraccheck

Format

MELANOM is a multivariate time series of length 45 and 3 variables

POP PopulationRATE IncidenceSUN Sunspots

Source

Andrews, D. F. and Herzberg, A. M. (1985) "Data" https://www.springer.com/gp/book/9781461295631

Examples

```
data(MELANOM)
## maybe tsp(MELANOM); plot(MELANOM[,-1])
```

mfraccheck

multifractal check mfraccheck computes the absolute empirical moments of the differenced series for various lags and moment orders. E.g. for lag = 3 and moment order = 1 the average absolute value of the differences with lag 3 will be computed. By default, the maximum lag is determined so that the differenced series contains at lest 50 observations.

Description

multifractal check mfraccheck computes the absolute empirical moments of the differenced series for various lags and moment orders. E.g. for lag = 3 and moment order = 1 the average absolute value of the differences with lag 3 will be computed. By default, the maximum lag is determined so that the differenced series contains at lest 50 observations.

Usage

```
mfraccheck(p, q_max)
```

Arguments

p the series

q_max maximum moment order

Value

out list with components:

moments matrix with lagmax raws and q_max columns containing the values of the abso-

lute empirical moments

lagmax the maximum lag for differencing

missar 33

Examples

```
data(NIKKEI)
p <- NIKKEI
out <- mfraccheck(log(p),5)
mom <- ts(out$moments,start=1)
ts.plot(mom, log ="xy",xlab="lag",ylab="abs. empirical moments", lty=c(1:5))</pre>
```

missar

missar Substitution of missing values in a time series by conditional exspectations of AR(p) models

Description

missar Substitution of missing values in a time series by conditional exspectations of AR(p) models

Usage

```
missar(x, p, iterout = 0)
```

Arguments

x vector, the time series

p integer, the maximal order of ar polynom 0 ,

iterout if = 1, iteration history is printed

Value

out list with elements

a (p,p)-matrix, estimated ar coefficients for ar-models

y (n,1)-vector, completed time series iterhist matrix, NULL or the iteration history

Source

Miller R.B., Ferreiro O. (1984) <doi.org/10.1007/978-1-4684-9403-7_12> "A Strategy to Complete a Time Series with Missing Observations"

```
data(HEARTBEAT)
x <- HEARTBEAT
x[c(20,21)] <- NA
out <- missar(x,2)</pre>
```

34 missls

missls	missls substitutes missing values in a time series using the LS approach with ARMA models

Description

missls substitutes missing values in a time series using the LS approach with ARMA models

Usage

```
missls(x, p = 0, tol = 0.001, theo = 0)
```

Arguments

х	vector, the time series
р	integer, the order of polynom alpha(B)/beta(B)
tol	tolerance that can be set; it enters via tol*sd(x,na.rm=TRUE)
theo	(k,1)-vector, prespecified Inverse ACF, IACF (starting at lag 1)

Value

y completed time series

Source

S. R. Brubacher and G. Tunnicliffe Wilson (1976) https://www.jstor.org/stable/2346678 "Interpolating Time Series with Application to the Estimation of Holiday Effects on Electricity Demand Journal of the Royal Statistical Society"

```
data(HEARTBEAT)
x <- HEARTBEAT
x[c(20,21)] <- NA
out <- missls(x,p=2,tol=0.001,theo=0)</pre>
```

moveav 35

moveav

moveav smoothes a time series by moving averages

Description

moveav smoothes a time series by moving averages

Usage

```
moveav(y, q)
```

Arguments

```
y the series, a vector or a time series
q scalar, span of moving average
```

Value

```
g vector, smooth component
```

Examples

```
data(GDP)
g <- moveav(GDP,12)
plot(GDP) ; lines(g,col="red")</pre>
```

movemed

movemed smoothes a time series by moving medians

Description

movemed smoothes a time series by moving medians

Usage

```
movemed(y, q)
```

Arguments

```
y the series, a vector or a time series q scalar, span of moving median
```

Value

```
g vector, smooth component
```

36 NIKKEI

Examples

```
data(BIP)
g <- movemed(GDP,12)
plot(GDP) ; t <- seq(from = 1970, to = 2009.5,by=0.25) ; lines(t,g,col="red")</pre>
```

MUSKRAT

Annual trade of muskrat pelts

Description

Annual trade of muskrat pelts

Usage

MUSKRAT

Format

MUSKRAT is a univariate time series of length 62; start 1848, frequency = 1

MUSKRAT annual trade of muskrat pelts

Source

https://archive.uea.ac.uk/~gj/book/data/mink.dat

Examples

```
data(MUSKRAT)
## maybe tsp(MUSKRAT); plot(MUSKRAT)
```

NIKKEI

Daily values of the Japanese stock market index Nikkei 225 between 02.02.2000 and 20.10.2020

Description

Daily values of the Japanese stock market index Nikkei 225 between 02.02.2000 and 20.10.2020

Usage

NIKKEI

Format

NIKKEI is a univariate time series of length 5057

NIKKEI Daily values of Nikkei

outidentify 37

Source

Heber, G., Lunde, A., Shephard, N. and Sheppard, K. (2009) "Oxford-Man Institute's realized library, version 0.3", Oxford-Man Institute, University of Oxford, Oxford https://realized.oxford-man.ox.ac.uk/data

Examples

```
data(NIKKEI)
## maybe plot(NIKKEI)
```

outidentify

outidentify performs one iteration of Wei's iterative procedure to identify impact, locations and type of outliers in arma processes

Description

outidentify performs one iteration of Wei's iterative procedure to identify impact, locations and type of outliers in arma processes

Usage

```
outidentify(x, object, alpha = 0.05, robust = FALSE)
```

Arguments

x vector, the time series

object output of a model fit with the function arima (from stats)

alpha the level of the tests for deciding which value is to be considered an outlier

robust logical, should the standard error be computed robustly?

Value

out list with elements

outlier matrix with time index (ind), type of outlier (1 = AO, 2 = IO) and value of test

statistic (lambda)

arima.out output of final arima model where the outliers are incorporated as fixed regres-

sors

```
data(SPRUCE)
out <- arima(SPRUCE,order=c(2,0,0))
out2 <- outidentify(SPRUCE,out,alpha=0.05, robust = FALSE)</pre>
```

38 pacfmat

OXYGEN

Amount of an Oxygen isotope

Description

Amount of an Oxygen isotope

Usage

OXYGEN

Format

OXYGEN is a matrix with 164 rows and 2 columns

T Time

D DELTA18O

Source

Belecher, J., Hampton, J. S., and Tunnicliffe Wilson, T. (1994, ISSN: 1369-7412) "Parameterization of Continuous Time Autoregressive Models for Irregularly Sampled Time Series Data"

Examples

```
data(OXYGEN)
## maybe plot(OXYGEN[,1],OXYGEN[,2],type="1"); rug(OXYGEN[,1])
```

pacfmat

pacfmat sequence of partial autocorrelation matrices and related statistics for a multivariate time series

Description

pacfmat sequence of partial autocorrelation matrices and related statistics for a multivariate time series

Usage

```
pacfmat(y, lag.max)
```

Arguments

y multivariate time series lag.max maximum number of lag

PAPER 39

Value

out list with components:

M array with matrices of partial autocovariances divided by their standard error

M1 array with indicators if partial autocovariances are significantly greater (+), lower

(-) than the critical value or insignificant (.)

R array with matrices of partial autocovariances

S matrix of diagonals of residual covariances (row-wise)

Test test statistic pval p value of test

Examples

```
data(ICECREAM)
out <- pacfmat(ICECREAM,7)</pre>
```

PAPER

Two measurements at a paper machine

Description

Two measurements at a paper machine

Usage

PAPER

Format

PAPER is a bivariate time series of length 160

H High

W Weight

Source

Janacek, G. J. & Swift, L. (1993, ISBN: 978-0139184598) "Time Series: Forecasting, Simulation, Applications"

```
data(PAPER)
## maybe tsp(PAPER); plot(PAPER)
```

40 periodotest

periodogram

periodogram determines the periodogram of a time series

Description

periodogram determines the periodogram of a time series

Usage

```
periodogram(y, nf, ACF = FALSE, type = "cov")
```

Arguments

y (n,1) vector, the time series or an acf at lags 0,1,...,n-1

nf scalar, the number of equally spaced frequencies; not necessay an integer

ACF logical, FALSE, if y is ts, TRUE, if y is acf

type c("cov", "cor"), area under spectrum, can be variance or normed to 1.

Value

```
out (floor(nf/2)+1,2) matrix, the frequencies and the periodogram
```

Examples

```
data(WHORMONE)
## periodogram at Fourier frequencies and frequencies 0 and 0.5
out <-periodogram(WHORMONE,length(WHORMONE)/2,ACF=FALSE,type="cov")</pre>
```

periodotest

periodotest computes the p-value of the test for a hidden periodicity

Description

periodotest computes the p-value of the test for a hidden periodicity

Usage

```
periodotest(y)
```

Arguments

y vector, the time series

Value

pval the p-value of the test

perwinba 41

Examples

```
data(PIGPRICE)
y <- PIGPRICE
out <- stl(y,s.window=6)
e <- out$time.series[,3]
out <- periodotest(e)</pre>
```

perwinba

perwinba Bartlett-Priestley window for direct spectral estimation

Description

perwinba Bartlett-Priestley window for direct spectral estimation

Usage

```
perwinba(e, n)
```

Arguments

e equal bandwidth (at most n frequencies are used for averaging)

n length of time series

Value

```
w weights (symmetric)
```

Examples

```
data(WHORMONE)
w <- perwinba(0.1,length(WHORMONE))</pre>
```

perwinda

perwinda Daniell window for direct spectral estimation

Description

perwinda Daniell window for direct spectral estimation

Usage

```
perwinda(e, n)
```

42 perwinpa

Arguments

e equal bandwidth (at most n frequencies are used for averaging)

n length of time series

Value

```
w weights (symmetric)
```

Examples

```
data(WHORMONE)
w <- perwinda(0.1,length(WHORMONE))</pre>
```

perwinpa

perwinpa Parzen's window for direct spectral estimation

Description

perwinpa Parzen's window for direct spectral estimation

Usage

```
perwinpa(e, n)
```

Arguments

- e equal bandwidth (at most n frequencies are used for averaging)
- n length of time series

Value

```
w weights (symmetric)
```

```
data(WHORMONE)
w <- perwinpa(0.1,length(WHORMONE))</pre>
```

pestep 43

pestep

 ${\tt pestep} \ \textit{help function for missar}$

Description

pestep help function for missar

Usage

```
pestep(f, xt)
```

Arguments

f IACF, inverse ACF

xt segment of the time series

Value

xt new version of xt

PIGPRICE

Monthly prices for pigs

Description

Monthly prices for pigs

Usage

PIGPRICE

Format

PIGPRICE is a univariate time series of length 240; start January 1894, frequency =12

PIGPRICE Monthly prices for pigs

Source

Hanau, A. (1928) "Die Prognose der Schweinepreise"

```
data(PIGPRICE)
## maybe tsp(PIGPRICE); plot(PIGPRICE)
```

PPDEMAND PPDEMAND

polymake	polymake generates the coefficients of an AR process given the zeros
	of the characteristic polynomial. The norm of the roots must be greater
	than one for stationary processes.

Description

polymake generates the coefficients of an AR process given the zeros of the characteristic polynomial. The norm of the roots must be greater than one for stationary processes.

Usage

```
polymake(r)
```

Arguments

r

vector, the zeros of the characteristic polynomial

Value

```
C coefficients (a[1],a[2],...,a[p]) of the polynomial 1 - a[1]z -a[2]z^2 -...- a[p]z^p
```

Examples

```
C <- polymake(c(2,-1.5,3))
```

PPDEMAND

Peak power demand in Berlin

Description

Peak power demand in Berlin

Usage

PPDEMAND

Format

```
PPDEMAND is a univariate time series of length 37; start 1955, frequency = 1
```

PPDEMAND annual peak power demand in Berlin, Megawatt

Source

Fiedler, H. (1979) "Verschiedene Verfahren zur Prognose des des Stromspitzenbedarfs in Berlin (West)"

PRODINDEX 45

Examples

```
data(PPDEMAND)
## maybe tsp(PPDEMAND); plot(PPDEMAND)
```

PRODINDEX

Production index of manufacturing industries

Description

Production index of manufacturing industries

Usage

PRODINDEX

Format

PRODINDEX is a univariate time series of length 119:

PRODINDEX Production index of manufacturing industries

Source

Statistisches Bundesamt (2009) https://www-genesis.destatis.de/genesis/online

Examples

```
data(PRODINDEX)
## maybe tsp(PRODINDEX); plot(PRODINDEX)
```

psifair

psifair is a psi-function for robust estimation

Description

psifair is a psi-function for robust estimation

Usage

psifair(u)

Arguments

u

vector

46 RAINFALL

Value

out transformed vector

Examples

```
out <- psifair(c(3.3,-0.7,2.1,1.8))
```

psihuber

psihuber is a psi-function for robust estimation

Description

psihuber is a psi-function for robust estimation

Usage

psihuber(u)

Arguments

..

vector

Value

out transformed vector

Examples

```
out <- psihuber(c(3.3,-0.7,2.1,1.8))
```

RAINFALL

Annual amount of rainfall in Los Angeles

Description

Annual amount of rainfall in Los Angeles

Usage

RAINFALL

REDWINE 47

Format

RAINFALL is a univariate time series of length 119; start 1878, frequency = 1

RAINFALL Amount of rainfall in Los Angeles

Source

```
LA Times (January 28. 1997)
```

Examples

```
data(RAINFALL)
## maybe tsp(RAINFALL); plot(RAINFALL)
```

REDWINE

Monthly sales of Australian red wine (1000 l)

Description

Monthly sales of Australian red wine (1000 l)

Usage

REDWINE

Format

REDWINE is a univariate time series of length 187; start January 1980, frequency =12

REDWINE Monthly sales of Australian red wine

Source

R package tsdl https://github.com/FinYang/tsdl

```
data(REDWINE)
## maybe tsp(REDWINE); plot(REDWINE)
```

48 rlassoHAC

rlassoHAC	rlassoHAC performs Lasso estimation under heteroscedastic and au-
	tocorrelated non-Gaussian disturbances.

Description

rlassoHAC performs Lasso estimation under heteroscedastic and autocorrelated non-Gaussian disturbances.

Usage

```
rlassoHAC(
 х,
 у,
 kernel = "Bartlett",
 bands = 10,
 bns = 10,
  lns = NULL,
  nboot = 5000,
 post = TRUE,
  intercept = TRUE,
 model = TRUE,
 X.dependent.lambda = FALSE,
 c = 2,
  gamma = NULL,
 numIter = 15,
  tol = 10^{-5},
  threshold = NULL,
)
```

Arguments

X	Regressors (vector, matrix or object can be coerced to matrix).	
у	Dependent variable (vector, matrix or object can be coerced to matrix).	
kernel	Kernel function, choose between "Truncated", "Bartlett" (by default), "Parzen", "Tukey-Hanning", "Quadratic Spectral".	
bands	Bandwidth parameter with default bands=10.	
bns	Block length with default bns=10.	
lns	Number of blocks with default lns = floor(T/bns).	
nboot	Number of bootstrap iterations with default nboot=5000.	
post	Logical. If TRUE (default), post-Lasso estimation is conducted, i.e. a refit of the model with the selected variables.	
intercept	Logical. If TRUE, intercept is included which is not penalized.	

rlassoHAC 49

model Logical. If TRUE (default), model matrix is returned.

X.dependent.lambda

Logical, TRUE, if the penalization parameter depends on the design of the ma-

trix x. FALSE (default), if independent of the design matrix.

c Constant for the penalty, default value is 2.

gamma Constant for the penalty, default gamma=0.1/log(T) with T=data length.

numIter Number of iterations for the algorithm for the estimation of the variance and

data-driven penalty, ie. loadings.

tol Constant tolerance for improvement of the estimated variances.

threshold Constant applied to the final estimated lasso coefficients. Absolute values below

the threshold are set to zero.

... further parameters

Value

rlassoHAC returns an object of class "rlasso". An object of class "rlasso" is a list containing at least the following components:

coefficients Parameter estimates.

beta Parameter estimates (named vector of coefficients without intercept).

intercept Value of the intercept.

index Index of selected variables (logical vector).

lambda Data-driven penalty term for each variable, product of lambda0 (the penalization

parameter) and the loadings.

lambda0 Penalty term.

loadings Penalty loadings, vector of length p (no. of regressors).

residuals Residuals, response minus fitted values.

sigma Root of the variance of the residuals.

iter Number of iterations.

call Function call.

options Options.

model Model matrix (if model = TRUE in function call).

Source

Victor Chernozhukov, Chris Hansen, Martin Spindler (2016). hdm: High-Dimensional Metrics, R Journal, 8(2), 185-199. URL https://journal.r-project.org/archive/2016/RJ-2016-040/index.html.

50 rlassoLoad

Examples

```
set.seed(1)
T = 100 \text{ #sample size}
p = 20 \# number of variables
b = 5 # number of variables with non-zero coefficients
beta0 = c(rep(10,b), rep(0,p-b))
rho = 0.1 #AR parameter
Cov = matrix(0,p,p)
for(i in 1:p){
  for(j in 1:p){
     Cov[i,j] = 0.5^(abs(i-j))
  }
}
C <- chol(Cov)
X <- matrix(rnorm(T*p),T,p)%*%C</pre>
eps <- arima.sim(list(ar=rho), n = T+100)</pre>
eps <- eps[101:(T+100)]</pre>
Y = X\%*\%beta0 + eps
reg.lasso.hac1 <- rlassoHAC(X, Y, "Bartlett") #lambda is chosen independent of regressor
                                                #matrix X by default.
bn = 10 # block length
bwNeweyWest = 0.75*(T^{(1/3)})
reg.lasso.hac2 <- rlassoHAC(X, Y, "Bartlett", bands=bwNeweyWest, bns=bn, nboot=5000,</pre>
                              X.dependent.lambda = TRUE, c=2.7)
```

rlassoLoad

rlassoLoad performs Lasso estimation under heteroscedastic and autocorrelated non-Gaussian disturbances with predefined penalty loadings.

Description

rlassoLoad performs Lasso estimation under heteroscedastic and autocorrelated non-Gaussian disturbances with predefined penalty loadings.

Usage

```
rlassoLoad(
    x,
    y,
    load,
    bns = 10,
    lns = NULL,
    nboot = 5000,
    post = TRUE,
```

rlassoLoad 51

```
intercept = TRUE,
model = TRUE,
X.dependent.lambda = FALSE,
c = 2,
gamma = NULL,
numIter = 15,
tol = 10^-5,
threshold = NULL,
...
)
```

Arguments

x Regressors (vector, matrix or object can be coerced to matrix).

y Dependent variable (vector, matrix or object can be coerced to matrix).

load Penalty loadings, vector of length p (no. of regressors).

bns Block length with default bns=10.

lns Number of blocks with default lns = floor(T/bns).

nboot Number of bootstrap iterations with default nboot=5000.

post Logical. If TRUE (default), post-Lasso estimation is conducted, i.e. a refit of

the model with the selected variables.

intercept Logical. If TRUE, intercept is included which is not penalized.

model Logical. If TRUE (default), model matrix is returned.

X.dependent.lambda

Logical, TRUE, if the penalization parameter depends on the design of the ma-

trix x. FALSE (default), if independent of the design matrix.

c Constant for the penalty default is 2.

gamma Constant for the penalty default gamma=0.1/log(T) with T=data length.

numIter Number of iterations for the algorithm for the estimation of the variance and

data-driven penalty.

tol Constant tolerance for improvement of the estimated variances.

threshold Constant applied to the final estimated lasso coefficients. Absolute values below

the threshold are set to zero.

... further parameters

Value

rlassoLoad returns an object of class "rlasso". An object of class "rlasso" is a list containing at least the following components:

coefficients Parameter estimates.

beta Parameter estimates (named vector of coefficients without intercept).

intercept Value of the intercept.

index Index of selected variables (logical vector).

52 rlassoLoad

lambda	Data-driven penalty term for each variable, product of lambda0 (the penalization parameter) and the loadings.
lambda0	Penalty term.
loadings	Penalty loadings, vector of lenght p (no. of regressors).
residuals	Residuals, response minus fitted values.
sigma	Root of the variance of the residuals.
iter	Number of iterations.
call	Function call.
options	Options.
model	Model matrix (if model = TRUE in function call).

Source

Victor Chernozhukov, Chris Hansen, Martin Spindler (2016). hdm: High-Dimensional Metrics, R Journal, 8(2), 185-199. URL https://journal.r-project.org/archive/2016/RJ-2016-040/index.html.

```
set.seed(1)
T = 100 \text{ #sample size}
p = 20 \# number of variables
b = 5 # number of variables with non-zero coefficients
beta0 = c(rep(10,b), rep(0,p-b))
rho = 0.1 #AR parameter
Cov = matrix(0,p,p)
for(i in 1:p){
  for(j in 1:p){
     Cov[i,j] = 0.5^(abs(i-j))
C <- chol(Cov)
X <- matrix(rnorm(T*p),T,p)%*%C</pre>
eps <- arima.sim(list(ar=rho), n = T+100)</pre>
eps <- eps[101:(T+100)]
Y = X\%*\%beta0 + eps
fit1 = rlasso(X, Y, penalty = list(homoscedastic = "none",
              lambda.start = 2*0.5*sqrt(T)*qnorm(1-0.1/(2*p))), post=FALSE)
beta = fit1$beta
intercept = fit1$intercept
res = Y - X %*% beta - intercept * rep(1, length(Y))
load = rep(0,p)
for(i in 1:p){
  load[i] = sqrt(lrvar(X[,i]*res)*T)
reg.lasso.load1 <- rlassoLoad(X,Y,load) #lambda is chosen independent of regressor
                                              #matrix X by default.
```

robsplinedecomp 53

robsplinedecomp

robsplinedecomp decomposes a vector into trend, season and irregular component by robustified spline approach; a time series attribute is lost

Description

robsplinedecomp decomposes a vector into trend, season and irregular component by robustified spline approach; a time series attribute is lost

Usage

```
robsplinedecomp(y, d, alpha, beta, Plot = FALSE)
```

Arguments

У	the series, a vector or a time series
d	seasonal period
alpha	smoothing parameter for trend component (the larger alpha is, the smoother will the smooth component g be)
beta	smoothing parameter for seasonal component
Plot	logical, should a plot be produced?

Value

out list with the elements trend, season, residual

```
data(GDP)
out <- robsplinedecomp(GDP,4,2,10,Plot=FALSE)</pre>
```

54 SALES

RS

RS rescaled adjusted range statistic

Description

RS rescaled adjusted range statistic

Usage

```
RS(x, k)
```

Arguments

x univariate time series

k length of the segments for which the statistic is computed. Starting with t=1, the segments do not overlap.

Value

(1,3)-matrix, 1. column: k, second column: starting time of segment, third column: value of RS statistic.

Examples

```
data(TREMOR)
R <- RS(TREMOR,10)</pre>
```

SALES

Monthly sales of a company

Description

Monthly sales of a company

Usage

SALES

Format

SALES is a univariate time series of length 77:

y monthly sales of a company

SCHAUINSLAND 55

Source

Newton, H. J. (1988, ISBN: 978-0534091989): "TIMESLAB: A time series analysis laboraty"

Examples

```
data(SALES)
## maybe tsp(SALES); plot(SALES)
```

SCHAUINSLAND

CO2-Concentration obtained in Schauinsland, Germany

Description

CO2-Concentration obtained in Schauinsland, Germany

Usage

SCHAUINSLAND

Format

SCHAUINSLAND is a univariate time series of length 72:

SCHAUINSLAND CO2-Concentration obtained in Schauinsland

Source

http://cdiac.ornl.gov/trends/co2/uba/uba-sc.html

Examples

```
data(SCHAUINSLAND)
## maybe tsp(SCHAUINSLAND); plot(SCHAUINSLAND)
```

simpledecomp

simpledecomp decomposes a vector into trend, season and irregular component by linear regression approach

Description

simpledecomp decomposes a vector into trend, season and irregular component by linear regression approach

Usage

```
simpledecomp(y, trend = 0, season = 0, Plot = FALSE)
```

56 smoothls

Arguments

y the series, a vector or a time series trend order of trend polynomial season period of seasonal component logical, should a plot be produced?

Value

out: (n,3) matrix

column smooth component
 column seasonal component
 column irregular component

Examples

```
data(GDP)
out <- simpledecomp(GDP,trend=3,season=4,Plot=FALSE)</pre>
```

smoothls

smoothls smoothes a time series by Whittaker graduation. The function depends on the package Matrix.

Description

smoothls smoothes a time series by Whittaker graduation. The function depends on the package Matrix.

Usage

```
smoothls(y, beta = 0)
```

Arguments

y the series, a vector or a time series

beta smoothing parameter >=0 (the larger beta is, the smoother will g be)

Value

g vector, smooth component

```
data(GDP)
g <- smoothls(GDP,12)

plot(GDP)
t <- seq(from = tsp(GDP)[1], to = tsp(GDP)[2],by=1/tsp(GDP)[3]) ; lines(t,g,col="red")</pre>
```

smoothrb 57

smoothrb	smoothrb smoothes a time series robustly by using Huber's psi-		
	function. The initialisation uses a moving median.		

Description

smoothrb smoothes a time series robustly by using Huber's psi-function. The initialisation uses a moving median.

Usage

```
smoothrb(y, beta = 0, q = NA)
```

Arguments

У	the series, a vector or a time series
beta	smoothing parameter (The larger beta is, the smoother will the smooth component g be.) $ \\$
q	length of running median which is used to get initial values

Value

```
g vector, the smooth component
```

Examples

```
data(GDP)
g <- smoothrb(GDP,8,q=8)

plot(GDP) ; t <- seq(from = 1970, to = 2009.5,by=0.25) ; lines(t,g,col="red")</pre>
```

specest spectral estimation of series y using periodogram window win

Description

specest direct spectral estimation of series y using periodogram window win

58 specplot

Usage

```
specest(
   y,
   nf,
   e,
   win = c("perwinba", "perwinpa", "perwinda"),
   conf = 0,
   type = "cov"
)
```

Arguments

```
y (n,1) vector, the ts

nf number of equally spaced frequencies

e equal bandwidth, must be 0 \le e \le 0.5

win string, name of periodogram window (possible: "perwinba", "perwinpa", "perwinda")

conf scalar, the level for confidence intervals

type c("cov","cor"), area under spectrum is variance or is normed to 1.
```

Value

```
est (nf+1,2)- or (nf+1,4)-matrix:

column 1: frequencies 0, 1/n, 2/n, ..., m/n

column 2: the estimated spectrum

column 3+4: the confidence bounds
```

Examples

```
data(WHORMONE)
est <- specest(WHORMONE,50,0.05,win = c("perwinba","perwinpa","perwinda"),conf=0,type="cov")</pre>
```

specplot

specplot plot of spectral estimate

Description

specplot plot of spectral estimate

Usage

```
specplot(s, Log = FALSE)
```

splinedecomp 59

Arguments

s (n,2) or (n,4) matrix, output of specest

Log, logical, if TRUE, the logs of the spectral estimates are shown

Examples

```
data(WHORMONE)
est <- specest(WHORMONE,50,0.05,win = c("perwinba","perwinpa"),conf=0,type="cov")
specplot(est,Log=FALSE)</pre>
```

splinedecomp

splinedecomp decomposes a time series into trend, season and irregular component by spline approach.

Description

splinedecomp decomposes a time series into trend, season and irregular component by spline approach.

Usage

```
splinedecomp(x, d, alpha, beta, Plot = FALSE)
```

Arguments

x the series, a vector or a time series

d seasonal period

alpha smoothing parameter for trend component (The larger alpha is, the smoother

will the smooth component g be.)

beta smoothing parameter for seasonal component

Plot logical, should a plot be produced?

Value

out (n,3) matrix:

column smooth component
 column seasonal component
 column irregular component

```
data(GDP)
out <- splinedecomp(GDP,4,2,4,Plot=FALSE)</pre>
```

60 statcheck

SPRUCE

Annual logging of spruce wood.

Description

Annual logging of spruce wood.

Usage

SPRUCE

Format

SPRUCE is a univariate time series of length 42:

SPRUCE Annual logging of spruce wood

Examples

```
data(SPRUCE)
## maybe tsp(SPRUCE); plot(SPRUCE)
```

statcheck

statcheck determines the means, standard deviations and acf's of segmets of a time series and plots the acf's for the segments.

Description

statcheck determines the means, standard deviations and acf's of segmets of a time series and plots the acf's for the segments.

Usage

```
statcheck(y, d)
```

Arguments

y the series, a vector or a time series
d scalar, number of segments

Value

out list with components:

ms matrix with means and standard deviations of the segments

ac matrix with acf's, the first column: acf of the series, the others: acf's of the

segments

subsets 61

Examples

```
data(COFFEE)
out <- statcheck(COFFEE,4)</pre>
```

subsets

subsets determines all subsets of a set of n elements (labelled by 1,2,...,n).

Description

subsets determines all subsets of a set of n elements (labelled by 1,2,...,n).

Usage

```
subsets(n)
```

Arguments

n

scalar, integer >= 1

Value

mat (2^n,n)-matrix, each row gives the membership indicators of the elements 1,2,...,n

Examples

```
out <- subsets(4)</pre>
```

symplot

symplot produces a symmetry plot

Description

```
symplot produces a symmetry plot
```

Usage

```
symplot(y)
```

Arguments

У

the series, a vector or a time series

62 TAXES

Examples

```
data(LYNX)
symplot(LYNX)
```

taper

taper taper modification of a time series

Description

taper taper modification of a time series

Usage

```
taper(y, part)
```

Arguments

y the time series

part scalar, $0 \le part \le 0.5$, part of modification (at each end of y)

Value

tp tapered time series

Examples

```
data(WHORMONE)
out <-taper(WHORMONE,0.3)
plot(WHORMONE)
lines(out,col="red")</pre>
```

TAXES

Monthly community taxes in Germany (billions EURO)

Description

Monthly community taxes in Germany (billions EURO)

Usage

TAXES

TREERING 63

Format

TAXES is a univariate time series of length 246; start January 1999, frequency = 12

TAXES monthly community taxes in Germany

Source

https://www-genesis.destatis.de/genesis/online?operation=previous&levelindex=1&step=1&titel=Tabellenaufbau&levelid=1583748637039>

Examples

```
data(TAXES)
## maybe tsp(TAXES); plot(TAXES)
```

TREERING

Mean thickness of annual tree rings

Description

Mean thickness of annual tree rings

Usage

TREERING

Format

TREERING is a multivariate time series of length 66 with 3 variables:

THICK mean thickness of annual tree rings

TEMP mean temperature of the year

RAIN amount of rain of the year

Source

```
<a href="https://ltrr.arizona.edu/">https://ltrr.arizona.edu/>
```

```
data(TREERING)
## maybe tsp(TREERING) ; plot(TREERING)
```

64 tsmat

TREMOR

Measurements of physiological tremor

Description

Measurements of physiological tremor

Usage

TREMOR

Format

TREMOR is a univariate time series of length 400.

TREMOR Tremor

Examples

```
data(TREMOR)
## maybe tsp(TREMOR); plot(TREMOR)
```

tsmat

tsmat constructs a (n-p+1,p) matrix from a time series where the first column is the shortened series y[p],...,y[n], the second is y[p-1],...,y[n-1], etc.

Description

tsmat constructs a (n-p+1,p) matrix from a time series where the first column is the shortened series y[p],...,y[n], the second is y[p-1],...,y[n-1], etc.

Usage

```
tsmat(y, p)
```

Arguments

y the series, a vector or a time series of length n
p desired number of columns

Value

```
mat (n-p+1,p) matrix
```

```
out <- tsmat(c(1:20),4)
```

USAPOP 65

USAPOP

Population of USA

Description

Population of USA

Usage

USAPOP

Format

USAPOP is a univariate time series of length 39; start 1630, frequency = 0.1

USAPOP Population of USA

Source

https://www.worldometers.info/world-population/us-population/

Examples

```
data(USAPOP)
## maybe tsp(USAPOP); plot(USAPOP)
```

vartable

vartable determines table of variate differences

Description

vartable determines table of variate differences

Usage

```
vartable(y, season)
```

Arguments

y the series, a vector or a time series (no NA's)

season scalar, period of seasonal component

Value

d matrix with ratios of variances for differend numbers of simple and seasonal differencing

66 wntest

Examples

```
data(GDP)
out <- vartable(GDP,4)</pre>
```

WHORMONE

Concentration of growth hormone of a bull

Description

Concentration of growth hormone of a bull

Usage

WHORMONE

Format

WHORMONE is a univariate time series of length 97:

WHORMONE Concentration of growth hormone of a bull

Source

Newton, H. J. (1988, ISBN: 978-0534091989): "TIMESLAB: A time series analysis laboraty"

Examples

```
data(WHORMONE)
## maybe tsp(WHORMONE); plot(WHORMONE)
```

wntest

wntest graphical test for white noise for a time series or a series of regression residuals

Description

wntest graphical test for white noise for a time series or a series of regression residuals

Usage

```
wntest(e, a, k = 0)
```

wntest 67

Arguments

```
e vector, the time series (k = 0) or residuals (k > 0)
```

a scalar, level of significance

k scalar >= 0, number of regressors used to compute e as residuals

Value

tp vector, value of test statistic and p-value

```
data(WHORMONE)
out <- wntest(WHORMONE,0.05,0)</pre>
```

Index

* datasets	TAXES, 62
ACCIDENT, 4	TREERING, 63
ALCINCOME, 6	TREMOR, 64
BEER, 8	USAPOP, 65
BLACKOUT, 9	WHORMONE, 66
COFFEE, 11	
DAX, 11	ACCIDENT, 4
DIABETES, 12	acfmat,4
DOMINANCE, 12	acfpacf, 5
ENGINES, 14	ALCINCOME, 6
FINANCE, 14	armathspec, 6
GDP, 15	aspectratio, 7
GDPORIG, 15	
HEARTBEAT, 18	bandfilt,7
HSV, 18	BEER, 8
IBM, 19	bispeces, 9
ICECREAM, 19	BLACKOUT, 9
INORDER, 21	BoxCox, 10
L921, 22	COFFEE 11
LITH, 27	COFFEE, 11
LUHORMONE, 28	DAX, 11
LYNX, 29	DIABETES, 12
LYNXHARE, 29	DOMINANCE, 12
MACHINES, 30	dynspecest, 13
MAUNALOA, 30	ujepecee, 15
MDAX, 31	ENGINES, 14
MELANOM, 31	
MUSKRAT, 36	FINANCE, 14
NIKKEI, 36	
OXYGEN, 38	GDP, 15
PAPER, 39	GDPORIG, 15
PIGPRICE, 43	Grangercaus, 16
PPDEMAND, 44	U4C 17
PRODINDEX, 45	HAC, 17
RAINFALL, 46	HEARTBEAT, 18
REDWINE, 47	HSV, 18
SALES, 54	IBM, 19
SCHAUINSLAND, 55	ICECREAM, 19
SPRUCE, 60	init_values, 20
3. 1.002, 00	11110_101000, 20

INDEX 69

INORDER, 21	REDWINE, 47
interpol, 21	rlassoHAC,48
	rlassoLoad, 50
kweightsHAC, 22	robsplinedecomp, 53
1.021.22	RS, 54
L921, 22	
lagwinba, 23	SALES, 54
lagwinpa, 23	SCHAUINSLAND, 55
lagwintu, 24	simpledecomp, 55
lambdaCalculationHAC, 24	smoothls, 56
lambdaCalculationLoad, 25	smoothrb, 57
1drec, 27	specest, 57
LITH, 27	specplot, 58
LjungBoxPierceTest, 28	splinedecomp, 59
LUHORMONE, 28	SPRUCE, 60
LYNX, 29	statcheck, 60
LYNXHARE, 29	subsets, 61
MACHINES, 30	symplot, 61
MAUNALOA, 30	tamam 60
MDAX, 31	taper, 62
MELANOM, 31	TAXES, 62 TREERING, 63
mfraccheck, 32	*
missar, 33	TREMOR, 64 tsmat, 64
missls, 34	tsillat, 04
moveav, 35	USAPOP, 65
movemed, 35	
MUSKRAT, 36	vartable, 65
,	
NIKKEI, 36	WHORMONE, 66
	wntest, 66
outidentify, 37	
OXYGEN, 38	
pacfmat, 38	
PAPER, 39	
periodogram, 40	
periodotest, 40	
perwinda, 41 perwinda, 41	
perwinda, 41 perwinda, 42	
pestep, 43	
PIGPRICE, 43	
polymake, 44	
PPDEMAND, 44	
PRODINDEX, 45	
psifair, 45	
psihuber, 46	
politicol, TO	
RAINFALL, 46	