Balanced Search Trees

Intro

• Operations on a binary search tree (BST) are $O(\log n)$ if the tree is balanced.

 Unfortunately, the add and remove operations do not ensure that a binary search tree remains balanced.

• You could take an unbalanced search tree and rearrange its nodes to **get a balanced BST**. Recall that every node in a balanced binary tree has subtrees whose height differ by no more than 1.

AVL Trees

• The idea of rearranging nodes to balance a tree was first developed in 1962 by two Russian (USSR) mathematicians, Adel'son-Vel'skii and Landis. Named after them, the **AVL tree** is a *BST* that rearranges its nodes whenever it becomes unbalanced.

 The balance of a binary search tree is upset only when you add or remove a node. Thus, during these operations, the AVL tree rearranges nodes as necessary to maintain its balance.

Single Rotations: Right rotations

(a) Before addition

(b) After addition

(c) After right rotation

Algorithm rotateRight(nodeN)

// Corrects an imbalance at a given node nodeN due to an addition // in the left subtree of nodeN's left child.

nodeC = left child of nodeN
Set nodeN's left child to nodeC's right child
Set nodeC's right child to nodeN
return nodeC

Single Rotations: Left Rotations

(b) After addition

(c) After left rotation

Algorithm rotateLeft(nodeN)

// Corrects an imbalance at a given node nodeN due to an addition // in the right subtree of nodeN's right child.

nodeC = right child of nodeN
Set nodeN's right child to nodeC's left child
Set nodeC's left child to nodeN
return nodeC

Double Rotations: Right-Left double rotations

Algorithm rotateRightLeft(nodeN)

// Corrects an imbalance at a given node nodeN due to an addition // in the left subtree of nodeN's right child.

nodeC = right child of nodeN
Set nodeN's right child to the node returned by rotateRight(nodeC)
return rotateLeft(nodeN)

Double Rotations: Left-Right double rotations

Double Rotations: Left-Right double rotations

Algorithm rotateLeftRight(nodeN)

// Corrects an imbalance at a given node nodeN due to an addition // in the right subtree of nodeN's left child.

nodeC = left child of nodeN
Set nodeN's left child to the node returned by rotateLeft(nodeC)
return rotateRight(nodeN)

Summary

- Following an addition to an AVL tree, a temporary imbalance might occur. Let *N* be an unbalanced node that is closest to the new leaf. Either a single or double rotation will restore the tree's balance. No other rotations are necessary.
- The four rotations cover the only four possibilities for the cause of the imbalance at node *N*:
 - 1. The addition occurred in the left subtree of N's left child (right rotation)
 - 2. The addition occurred in the right subtree of N's left child (left-right rotation)
 - 3. The addition occurred in the left subtree of N's right child (right-left rotation)
 - 4. The addition occurred in the right subtree of N's right child (left rotation)

An AVL tree versus a binary search tree

The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) binary search tree.

References

• F. M. Carrano & T. M. Henry, "Data Structures and Abstractions with Java", 4th ed., 2015. Pearson Education, Inc.