Kapitel 5

Zufallsvariable, Verteilung, Verteilungsfunktion

5.1 Zufallsvariable

Sei (Ω, \mathcal{A}, P) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl $X(\omega)$, d.h. wir betrachten eine Abbildung $\omega \mapsto X(\omega)$

Beispiel 5.1 $2 \times$ würfeln

$$\Omega = \{(i, j) | i, j \in \{1, 2 \dots, 6\}\}$$

$$X(\omega) = X((i, j)) = i + j \text{ "Augensumme"}$$

Sei $X:\Omega\to\mathbb{R}$ Wir möchten jetzt dem Ereignis $X\in B=\{\omega\in\Omega|X(\omega)\in B\},B\subset\mathbb{R}$ eine Wahrscheinlichkeit zuordnen.

Also muss $\{\omega | X(\omega) \in B\} \in \mathcal{A}$ sein.

Definition 5.1 Sei (Ω, \mathcal{A}) ein beliebiger Messraum. Eine Abbildung $X : \Omega \to \mathbb{R}$ heißt Zufallsvariable, falls

$$X^{-1}(B) = \{ \omega \in \Omega | X(\omega) \in B \} \in \mathcal{A}, \quad \forall B \in \mathfrak{B}$$

Diese Bedingung nennt man auch (A, \mathfrak{B}) -Messbarkeit von X.

Satz 5.1

Eine Abbildung $X: \Omega \to \mathbb{R}$ ist genau dann **Zufallsvariable**, wenn

$$X^{-1}((-\infty, a]) = \{\omega | X(\omega) \le a\} =: \{X \in B\} =: (X \in B) \in \mathcal{A}, \qquad \forall a \in \mathbb{R}$$

Beweis " \Rightarrow " Sei X Zufallsvariable. $(-\infty, a] \in \mathfrak{B} \Rightarrow$ Behauptung

"
$$\Leftarrow$$
" $X^{-1}((-\infty, a]) \in \mathcal{A}$

Definiere $A_0 = \{B \subset \mathbb{R} | X^{-1}(B) \in A\}$. A_0 ist eine σ -Algebra über \mathbb{R} :

(i)
$$X^{-1}(\mathbb{R}) = \Omega \in \mathcal{A} \Rightarrow \mathbb{R} \in \mathcal{A}_0$$

(ii)
$$X^{-1}(B^c) = \{\omega | X(\omega) \notin B\} = \{\omega | X(\omega) \in B\}^c = (X^{-1}(B))^c$$

Also $B \subset \mathcal{A}_0 \Rightarrow B^c \subset \mathcal{A}_0$

(iii)

$$X^{-1}(\bigcup_{n=1}^{\infty} B_n) = \bigcup_{n=1}^{\infty} X^{-1}(B_n)$$

Nach Voraussetzung ist $\mathcal{E} = \{(-\infty, a], a \in \mathbb{R}\} \subset \mathcal{A}_0 \Rightarrow \mathcal{A}_0 \supset \sigma(\mathcal{E}) = \mathfrak{B} \Rightarrow$ Behauptung

Bemerkung 5.1

- a) Satz 5.1 bleibt richtig, wenn wir $\mathcal{E} = \{(-\infty, a], a \in \mathbb{R}\}$ durch ein anderes Erzeugendensystem von \mathfrak{B} ersetzen.
- b) Bei Anwendungen ist oft $(\Omega, \mathcal{A}) = (\mathbb{R}, \mathfrak{B})$

Wann ist eine Abbildung $X : \mathbb{R} \to \mathbb{R}$ messbar (ZV)?

Satz 5.2 Sei $(\mathbb{R}, \mathfrak{B})$ gegeben, $X : \mathbb{R} \to \mathbb{R}$ ist z.B. messbar, falls X stetig oder (schwach) monoton wachsend oder fallend.

Beweis Sei X stetig. Dann ist $X^{-1}(U)$ offen, falls U offen. Sei X wachsend $\Rightarrow \{\omega \in \mathbb{R} | X(\omega) \leq a\}$ ist von der Gestalt $(-\infty,b) \in \mathfrak{B}$ oder $(-\infty,b] \in \mathfrak{B}$

Bemerkung 5.2 Es sei $X(\omega) = c \ \forall \omega \in \Omega, c \in \mathbb{R}$. Dann ist X eine Zufallsvariable.

Satz 5.3 Seien $X : \Omega \to \mathbb{R}$ und $Y : \mathbb{R} \to \mathbb{R}$ Zufallsvariablen, dann ist $Y \circ X : \Omega \to \mathbb{R}$ wieder eine Zufallsvariable.

Satz 5.4 Sei (Ω, A) ein Messraum und X, Y Zufallsvariablen darauf.

a)
$$\{X < Y\} = \{\omega \in \Omega | X(\omega) < Y(\omega)\}, \{X \le Y\}, \{X = Y\} \in \mathcal{A}$$

- b) Sind $\alpha, \beta \in \mathbb{R}$, so sind $\alpha X + \beta, X + Y, X \cdot Y, X \wedge Y = \min\{X, Y\}, X \vee Y = \max\{X, Y\}$ Zufallsvariablen
- c) Ist $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen, so sind auch $\sup_{n\in\mathbb{N}} X_n$, $\inf_{n\in\mathbb{N}} X_n$, $\limsup_{n\to\infty} X_n$, $\liminf_{n\to\infty} X_n$ Zufallsvariablen, falls sie \mathbb{R} -wertig sind. Gilt $X_n(\omega) \to X(\omega) \forall \omega \in \Omega$, so ist auch X eine Zufallsvariable.

Beweis a)
$$\{X < Y\} = \bigcup_{q \in \mathbb{Q}} \{\underbrace{X < q}\} \cap \{\underbrace{Y > q}\}$$

$$\{X \le Y\} = \{X > Y\}^c \in \mathcal{A}, \{X = Y\} = \{X \le Y\} \cap \{X \ge Y\} \in \mathcal{A}$$

b) (i) $x \mapsto \alpha x + \beta$ ist stetig

- (ii) $\{X + Y \le a\} = \{X \le a Y\} = \{X \le a Y\} \in \mathcal{A} \, \forall a \in \mathbb{R}, \text{ da } a Y \text{ Zufalls$ $Variable} + Teil a)$
- (iii) $X \cdot Y = \frac{1}{4}((X+Y)^2 (X-Y)^2)$
- (iv) $\{X \lor Y \le a\} = \{X \le a\} \cap \{Y \le a\} \in \mathcal{A}$
- c) $\{\sup_{n\in\mathbb{N}} X_n \leq a\} = \bigcap_{n=1}^{\infty} \{X_n \leq a\} \in \mathcal{A}$ $\inf_{n\in\mathbb{N}} X_n = -\sup_{n\in\mathbb{N}} (-X_n)$ $\lim\sup_{n\to\infty} X_n = \inf_{n\in\mathbb{N}} \sup_{m\geq n} X_m$ $\lim\inf_{n\to\infty} X_n = \sup_{n\in\mathbb{N}} \inf_{m\geq n} X_m$ $\operatorname{Im Falle der Konvergenz ist } X = \lim\sup_{n\to\infty} X_n$

Bemerkung 5.3 Teil c) ist ohne Einschränkung gültig, wenn man $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$ betrachtet und \mathfrak{B} zu $\mathfrak{B}(\overline{\mathbb{R}}) = \sigma(\mathfrak{B} \cup \{\{-\infty\}, \{+\infty\}\})$ erweitert.

5.2 Verteilungen

Definition 5.2

Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Die **Verteilung** der Zufallsvariablen ist die Mengenfunktion $P_X : \mathfrak{B} \to [0, 1]$ mit $P_X(B) = P(\{\omega \in \Omega | X(\omega) \in B\}) \quad \forall B \in \mathfrak{B}$

Bemerkung 5.4

- a) P_X ist ein Wahrscheinlichkeitsmaß auf dem Messraum (\mathbb{R}, \mathfrak{B}), denn:
 - $-P_X(\mathbb{R}) = P(\Omega) = 1$ (Normiertheit)
 - Für $B_1, B_2, \ldots \in \mathfrak{B}$ paarweise disjunkt gilt: (σ -Additivität)

$$P_X(\sum_{i=1}^{\infty} B_i) = P(X^{-1}(\sum_{i=1}^{\infty} B_i)) = P(\sum_{i=1}^{\infty} X^{-1}(B_i)) = \sum_{i=1}^{\infty} P(X^{-1}(B_i)) = \sum_{i=1}^{\infty} P_X(B_i)$$

b) Die Abbildung $P \to P_X$ nennt man **Maßtransport** vom Messraum (Ω, \mathcal{A}) in den Messraum $(\mathbb{R}, \mathfrak{B})$

5.3 Verteilungsfunktion

Eine Verteilung $P_X: \mathfrak{B} \to [0,1]$ kann durch eine "einfachere" Funktion $F_X: \mathbb{R} \to [0,1]$ beschrieben werden.

Definition 5.3 Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Die Funktion $F_X : \mathbb{R} \to [0, 1]$ mit $F_X(x) = P(X \le x) = P(\{\omega \in \Omega | X(\omega) \le x\}) = P_X((-\infty, x])$ heißt **Verteilungs-funktion** von X.

Bemerkung 5.5 Da die Mengen $(-\infty, x], x \in \mathbb{R}$ einen \cap -stabilen Erzeuger von \mathfrak{B} bilden, wird P_X durch F_X eindeutig festgelegt (siehe Satz 4.4)

Satz 5.5

Sei $X : \Omega \to \mathbb{R}$ eine Zufallsvariable und $F_X : \mathbb{R} \to [0,1]$ ihre Verteilungsfunktion. Dann gilt:

a)

$$\lim_{x \to -\infty} F_X(x) = 0, \qquad \lim_{x \to \infty} F_X(x) = 1$$

- b) F_X ist (schwach) monoton wachsend.
- c) F_X ist rechtsseitig stetig.

Beweis b) folgt aus der Monotonie von P_X

- a) Sei (x_n) eine reellwertige Folge mit $\lim_{n\to\infty} x_n = -\infty$ Setze $y_n := \sup_{m\geq n} x_m$ Dann gilt $y_n \downarrow -\infty$, also $(-\infty, y_n] \downarrow \emptyset$ Da P_X stetig in \emptyset ist (Satz 1.4) folgt: $0 \leq F_X(x_n) = P_X((-\infty, x_n]) \leq P_X((-\infty, y_n]) \to 0$ für $n \to \infty$ Andere Grenzwertaussage mit Stetigkeit von unten von P_X
- c) Sei $x \in \mathbb{R}, x_n \ge x \, \forall n \in \mathbb{N}$ und $\lim_{x \to \infty} x_n = x$ Setze $y_n = \sup_{m \ge n} x_m$, also $y_n \downarrow x$ und $F_X(x) = P_X((-\infty, x]) \le P_X((-\infty, x_n]) = F_X(x_n) \le P_X((-\infty, y_n]) \xrightarrow{n \to \infty} P_X((-\infty, x]) = F_X(x)$ weil P_X stetig von oben.

Umgekehrt gibt es zu jeder Funktion $F : \mathbb{R} \to [0,1]$ mit den Eigenschaften a),b),c) aus Satz 5.5 eine Zufallsvariable X, so dass $F = F_X$.

Definition 5.4

Es sei $F : \mathbb{R} \to [0,1]$ eine Funktion mit den Eigenschaften a),b),c) aus Satz 5.5. Die Quantilfunktion F^{-1} zu F ist:

$$F^{-1}(0,1) \to \mathbb{R}, \quad F^{-1}(y) = \inf\{x \in \mathbb{R} | F(x) > y\}$$

Bemerkung 5.6

- a) Ist F stetig und streng monoton wachsend, so ist F^{-1} die übliche Umkehrfunktion.
- b) Für $0 < \alpha < 1$ heißt $F_X^{-1}(x)$ α -Quantil zu X

Lemma 5.6

$$y \le F(x) \Leftrightarrow F^{-1}(y) \le x, \quad \forall y \in (0,1), x \in \mathbb{R}$$

Beweis " \Rightarrow " Definition von F^{-1}

"<-- " $F(x) < y \Rightarrow F(x+\frac{1}{n}) < y$ für ein $n \in \mathbb{N}$ (F ist rechtsseitig stetig)

$$\Rightarrow F^{-1}(y) \ge x + \frac{1}{n} \ (F \text{ monoton wachsend})$$

 $\Rightarrow F^{-1}(y) > x$

Satz 5.7

Es sei $F: \mathbb{R} \to [0,1]$ eine Funktion mit den Eigenschaften a),b),c) aus Satz 5.5. Dann gibt es einen Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) und eine Zufallsvariable $X: \Omega \to \mathbb{R}$ mit Verteilungsfunktion F.

Beweis Wähle $\Omega = [0,1), \mathcal{A} = \mathfrak{B}_{[0,1)}, P = \mathrm{Unif}[0,1)$ (Gleichverteilung). Definiere $X: \Omega \to \mathbb{R}$ durch $X(\omega) := F^{-1}(\omega)$ Offenbar ist F^{-1} monoton wachsend, also X eine Zufallsvariable und $F_X(x) = P(X < x) = P(\{\omega \in \Omega | F^{-1}(\omega) \le x\}) \stackrel{L.5.6}{=} P(\{\omega \in \Omega | \omega \le F(x)\}) = P([0,F(x)]) = F(x)$