

Track patient recovery in real-time by processing streaming data

BIOMEDICAL DATA DESIGN

TA: Haoyin Xu

Group:Zhenyu Xiao Haobin Zhou Yimeng Xu Emma Cardenas

Last Week:

RNN model deal with time series of different lengths

Last Week:

Patient 2

Training set:

Discharge

Patient 1

Discharge

Repeat for five times:

```
Epoch 8/20, Loss: 0.10321918874979019
Epoch 9/20, Loss: 0.0093935402110219
Epoch 10/20, Loss: 0.07064346969127655
Epoch 11/20, Loss: 0.09824777394533157
Epoch 12/20, Loss: 0.09720230847597122
Epoch 13/20, Loss: 0.023129863664507866
Epoch 14/20, Loss: 0.07097922265529633
Epoch 15/20, Loss: 0.5772714018821716
Epoch 16/20, Loss: 1.3697293996810913
Epoch 17/20, Loss: 0.0018030975479632616
Epoch 18/20, Loss: 0.28388893604278564
Epoch 19/20, Loss: 0.38625386357307434
Epoch 20/20, Loss: 0.011136839166283607
Accuracy: 0.9139784946236559
Precision: 0.8926553672316384
Recall: 0.9239766081871345
 [ 13 169]]
Accuracy: [0.9139784946236559, 0.8924731182795699, 0.9274193548387096, 0.8978494623655914, 0.9327956989247311]
avg_Acc:0.9129032258064516
Time taken: 31197.8478 seconds
```

Accuracy: 91.3%

'Real-time' Prediction This Week: Testing set: Training set: Discharge Discharge Patient 1 Patient 3 Discharge Discharge Patient 2 Patient 4

For the testing part, we don't give the last hour to predict the final mortality

Repeat for four times:

Epoch 10/20, Loss: 0.31515413522720337

Epoch 11/20, Loss: 1.2940282821655273

Epoch 12/20, Loss: 0.6931993365287781 Epoch 13/20, Loss: 0.31462329626083374

Epoch 14/20, Loss: 0.3369888663291931

Epoch 15/20, Loss: 0.31822213530540466

Epoch 16/20, Loss: 0.3157409131526947

Epoch 17/20, Loss: 0.6965146064758301

Epoch 18/20, Loss: 0.6935627460479736

Epoch 19/20, Loss: 0.3151668310165405

Epoch 20/20, Loss: 0.6933030486106873

Accuracy: 0.806970509383378

Recall: 0.6358381502890174 F1 Score: 0.7534246575342467

Confusion Matrix:

[[191 9]

[63 110]]

Precision: 0.9243697478991597

```
Epoch 10/20, Loss: 0.6931630969047546
Epoch 11/20, Loss: 0.3337962329387665
Epoch 12/20, Loss: 0.6931714415550232
Epoch 13/20, Loss: 0.6932192444801331
Epoch 14/20, Loss: 0.3200587034225464
Epoch 15/20, Loss: 0.3239499628543854
Epoch 16/20, Loss: 0.5084646940231323
Epoch 17/20, Loss: 0.6931554675102234
Epoch 18/20, Loss: 0.6961817741394043
Epoch 19/20, Loss: 0.693185031414032
Epoch 20/20, Loss: 0.693149983882904
Accuracy: 0.8579088471849866
Precision: 0.8520710059171598
Recall: 0.8372093023255814
F1 Score: 0.844574780058651
Confusion Matrix:
[[176 25]
 [ 28 144]]
```

```
Epoch 10/20, Loss: 0.6934880018234253
Epoch 11/20, Loss: 0.6932013630867004
Epoch 12/20, Loss: 0.6931668519973755
Epoch 13/20, Loss: 0.6941850781440735
Epoch 14/20, Loss: 0.31728488206863403
Epoch 15/20, Loss: 0.6931740045547485
Epoch 16/20, Loss: 0.693154513835907
Epoch 17/20, Loss: 0.6931524872779846
Epoch 18/20, Loss: 1.3090211153030396
Epoch 19/20, Loss: 0.6931576132774353
Epoch 20/20, Loss: 0.3151927590370178
Accuracy: 0.848404255319149
Precision: 0.8155339805825242
Recall: 0.8983957219251337
F1 Score: 0.8549618320610687
Confusion Matrix:
[[151 38]
[ 19 168]]
```

```
Epoch 10/20, Loss: 0.3345186114311218
Epoch 11/20, Loss: 0.6931914687156677
Epoch 12/20, Loss: 0.31854328513145447
Epoch 13/20, Loss: 1.0125386714935303
Epoch 14/20, Loss: 0.4884851574897766
Epoch 15/20, Loss: 0.3698061406612396
Epoch 16/20, Loss: 0.8132229447364807
Epoch 16/20, Loss: 0.31506800651550293
Epoch 18/20, Loss: 0.3157444894313812
Epoch 19/20, Loss: 0.695896565914154

Accuracy: 84.5%

Recall: 84.3%
```

Epoch 20/20, Loss: 0.3164122700691223

Accuracy: 0.8679245283018868

Recall: 0.8947368421052632

Confusion Matrix:

[[169 31]

[18 153]]

F1 Score: 0.8619718309859156

Precision: 0.8315217391304348

A significant drop!!

O2 Next Step

Change the training set

For the testing part, we don't give the last hour to predict the final mortality

Change the parameters

Learning rate

Loss

Drop out

. . .

LSTM

First two day's flattened data as two time stamps

<u>'</u>	· · · · · · · · · · · · · · · · · · ·
Patient1	Patient1
Patient2	Patient2
Patient3	Patient3

Time stamp1 Time stamp2

LSTM

LSTM: 2 days

	precision	recall	f1-score	support
0.0	0.48	1.00	0.65	154
1.0	0.00	0.00	0.00	165
accuracy			0.48	319
macro avg	0.24	0.50	0.33	319
weighted avg	0.23	0.48	0.31	319
[[154 0] [165 0]]				

All Zero

Too few time stamps

LSTM:48 hours (with interpolation)

Add more time stamps

RNN model deal with time series of different lengths

Fill the series and record the raw length

```
# load the data
data = pd.read_csv('balanced_LSTM_long.csv')
# Tagged feature columns and label columns
feature_columns = [col for col in data.columns if col not in ('patientunitstayid', 'observationoffset', 'actualicumortality')]
label_column = 'actualicumortality'
# Initialize the list of features and labels
sequences = []
labels = []
# Group and create sequences for each patient
for _, group in data.groupby('patientunitstayid'):
    # For each patient, the features are converted to a tensor
    sequence = torch.tensor(group[feature_columns].values, dtype=torch.float)
    sequences.append(sequence)
    # Assuming that each patient has the same label, so we only take the label of the first record
    labels.append(group[label_column].iloc[0])
lengths = torch.tensor([len(seq) for seq in sequences])
print(lengths.numpy())
# Fill the sequence
padded_sequences = pad_sequence(sequences, batch_first=True)
```

RNN

How to use the inputs?

```
def forward(self, input seq, input length):
    #print(input_seq.size())
   batch_size, _, _ = input_seq.size()
   seq len = int(input length.item()) # Get the value of the length from the tensor
    #print(seq_len)
   h0 = torch.zeros(1, batch_size, self.hidden_size)
   c0 = torch.zeros(1, batch size, self.hidden size)
    # Initialize the previous day's output
   prev_output = torch.zeros(batch_size, self.output_size)
    # Process the entire sequence recursively
    for t in range(seq_len):
        # Combining the day's input with the previous day's output
        combined input = torch.cat((input seq[:, t, :], prev output), dim=1).unsqueeze(1)
        # Through LSTM
        if t == 0:
            lstm_out, (h, c) = self.lstm(combined_input, (h0, c0))
        else:
            lstm_out, (h, c) = self.lstm(combined_input, (h, c)/)
        # Use only the last output of the sequence
        final_output = self.fc(lstm_out[:, -1, :])
        # Updating the previous day's output
        prev output = self.sigmoid(final_output)
    return prev_output
```

Results

```
Epoch 1/10, Loss: 0.3596692979335785
Epoch 2/10, Loss: 0.7099694013595581
Epoch 3/10, Loss: 0.3183300793170929
Epoch 4/10, Loss: 0.6963921189308167
Epoch 5/10, Loss: 0.35637760162353516
Epoch 6/10, Loss: 0.6995091438293457
Epoch 7/10, Loss: 0.7040725350379944
Epoch 8/10, Loss: 0.6934269070625305
Epoch 9/10, Loss: 0.5024394392967224
Epoch 10/10, Loss: 0.6532086133956909
```

Accuracy~85%

Time-consuming

```
Epoch 17/100, Loss: 0.31905150413513184
Epoch 18/100, Loss: 0.6933485865592957
Epoch 19/100, Loss: 0.6933465003967285
Epoch 20/100, Loss: 0.3626611530780792
Epoch 21/100, Loss: 0.3548220694065094
Epoch 22/100, Loss: 0.6931563019752502
Epoch 23/100, Loss: 0.3166859745979309
Epoch 24/100, Loss: 0.3259027302265167
Epoch 71/100, Loss: 0.6931471824645996
Epoch 72/100, Loss: 0.3139694035053253
Epoch 73/100, Loss: 0.3144867420196533
Epoch 74/100, Loss: 0.31408748030662537
```

Whole night but failed!!

Check if there are mistakes

Another easier method:

Use the last day of patients to train

Use each single day's data as input to predict

We assume that different days' data are independent

Repeat for four times:

```
Epoch 10/20, Loss: 0.6931630969047546
Epoch 11/20, Loss: 0.3337962329387665
Epoch 12/20, Loss: 0.6931714415550232
Epoch 13/20, Loss: 0.6932192444801331
Epoch 14/20, Loss: 0.3200587034225464
Epoch 15/20, Loss: 0.3239499628543854
Epoch 16/20, Loss: 0.5084646940231323
Epoch 17/20, Loss: 0.6931554675102234
Epoch 18/20, Loss: 0.6961817741394043
Epoch 19/20, Loss: 0.693185031414032
Epoch 20/20, Loss: 0.693149983882904
Accuracy: 0.8579088471849866
Precision: 0.8520710059171598
Recall: 0.8372093023255814
F1 Score: 0.844574780058651
Confusion Matrix:
[[176 25]
 [ 28 144]]
```


1.0

Epoch 10/20, Loss: 0.3345186114311218

Epoch 11/20, Loss: 0.6931914687156677

Epoch 12/20, Loss: 0.31854328513145447

Receiver Operating Characteristic (ROC) Curve

--- AUC = 0.87

Accuracy: 84.0%

Recall: 85.2%

A significant drop!!

```
Epoch 10/20, Loss: 0.6934880018234253
Epoch 11/20, Loss: 0.6932013630867004
Epoch 12/20, Loss: 0.6931668519973755
Epoch 13/20, Loss: 0.6941850781440735
Epoch 14/20, Loss: 0.31728488206863403
Epoch 15/20, Loss: 0.6931740045547485
Epoch 16/20, Loss: 0.69315451
                                        Receiver Operating Characteristic (ROC) Curve
Epoch 17/20, Loss: 0.69315248
Epoch 18/20, Loss: 1.30902111
Epoch 19/20, Loss: 0.69315761
Epoch 20/20, Loss: 0.31519275
Accuracy: 0.848404255319149
Precision: 0.8155339805825242
Recall: 0.8983957219251337
F1 Score: 0.8549618320610687
Confusion Matrix:
[[151 38]
[ 19 168]]
                                                                   AUC = 0.85
                                                                 0.8
                                                  False Positive Rate
```

Next step

Epoch	1/10,	Loss:	0.	53234	1660	6254	15776	
Epoch	2/10,	Loss:	0.	70056	6360	9600	0671	
Epoch	3/10,	Loss:	0.	34396	6567	9407	11975	5
Epoch	4/10,	Loss:	0.	3216	5986	2995	1477	
Epoch	5/10,	Loss:	0.	3701	1444	5686	34033	3
Epoch	6/10,	Loss:	1.	11233	3425	1403	88086	
	7/10,						3049	
		Loss:						
Epoch	9/10,	Loss:	0.	73653	3179	4071	1975	
Epoch	10/10,	Loss:	0	. 6936	6031	5799	71313	3
Accura	acy: 0.	820375	33	51206	6434			
Precis	sion: (). 75862	206	8965	5172	4		
Recal1	: 0.89	534883	372	09302	24			
F1 Sco	re: 0.	821333	33	33333	3334			
Confus	sion Ma	atrix:						
[[152	49]							
[18	154]]							
Epoch	1/10,	Loss:	0.	6513	7088	3298	79761	
Epoch	2/10,	Loss:	0.	6125	3941	059	11255	
Epoch	3/10,	Loss:	0.	7148	7271	785	73608	
Epoch	4/10,	Loss:	0.	7017	6172	2256	46973	
Epoch	5/10,	Loss:	0.	3344	1460	132	59887	7
Epoch	6/10,	Loss:	0.	3995	6706	762	31384	
Epoch	7/10,	Loss:	0.	6942	0349	597	93091	
Epoch	8/10,	Loss:	0.	3185	0522	2756	57654	
Epoch	9/10,	Loss:	0.	6968	3694	1839	47754	
	-	Loss						
Accura	acy: 0.	778978	574	1239	8922	2		
Precis	sion: (0. 69432	231	4410	4803	34		
Recal:	1: 0.92	2982456	614	0350	88			
F1 Sco	ore: 0.	794999	999	9999	9999)		
Confus	sion Ma	atrix:						
[[130	70]							
[12	159]]							

```
Epoch 1/10, Loss: 0.9933973550796509
   Epoch 2/10, Loss: 0.717208981513977
   Epoch 3/10, Loss: 0.3334490954875946
   Epoch 4/10, Loss: 0.5397564768791199
   Epoch 5/10, Loss: 0.5919001698493958
   Epoch 6/10, Loss: 0.6943417191505432
   Epoch 7/10, Loss: 0.6934819221496582
   Epoch 8/10, Loss: 0.31822171807289124
   Epoch 9/10, Loss: 0.6941342949867249
   Epoch 10/10, Loss: 0.31616759300231934
   Accuracy: 0.8471849865951743
   Precision: 0.8333333333333334
   Recall: 0.838150289017341
   F1 Score: 0.8357348703170029
   Confusion Matrix:
   [[171 29]
    [ 28 145]]
Epoch 1/10, Loss: 0.7399792075157166
Epoch 2/10, Loss: 0.8454279899597168
Epoch 3/10, Loss: 0.33754962682724
Epoch 4/10, Loss: 0.697210967540741
Epoch 5/10, Loss: 0.3270319104194641
Epoch 6/10, Loss: 0.32441461086273193
Epoch 7/10, Loss: 0.5552095174789429
Epoch 8/10, Loss: 0.32459592819213867
Epoch 9/10, Loss: 1.3068009614944458
Epoch 10/10, Loss: 0.32740145921707153
Accuracy: 0.8191489361702128
Precision: 0.7430167597765364
Recall: 0.8580645161290322
F1 Score: 0.7964071856287425
Confusion Matrix:
[[175 46]
```

[22 133]]

```
Epoch 1/10, Loss: 0.7011728882789612
  Epoch 2/10, Loss: 0.710917592048645
  Epoch 3/10, Loss: 0.3280715346336365
  Epoch 4/10, Loss: 0.6912604570388794
  Epoch 5/10, Loss: 0.6948522925376892
  Epoch 6/10, Loss: 1.030002236366272
  Epoch 7/10, Loss: 0.6941815614700317
  Epoch 8/10, Loss: 0.32503750920295715
  Epoch 9/10, Loss: 0.693243145942688
  Epoch 10/10, Loss: 0.6932666301727295
  Accuracy: 0.848404255319149
  Precision: 0.8421052631578947
  Recall: 0.8556149732620321
  F1 Score: 0.8488063660477454
   Confusion_Matrix:
ata set.
     27 160]]
                                                    Discharge
     Patient 1
                                          Discharge
     Patient 2
```

Next step

Data set:

Patient 1

Discharged

Discharged

Patient 2

Record Raw Length

