$n\bar{x}^2$) Gemittelte Summe der quadrati- 2 Wahrscheinlichkeitsrechnung Hilfszettel zur Klausur schen Abweichung vom Mittelwert von JD., Seite 1 von 2 BeschreibendeStatistik 1.4.3 Stichprobenstandardabweichungebnisse eines Experiments 1.1 Begriffe R:sd(x)ment von Ω

lerquadrate an.

Quartil;

1.5 p-Quantile

ungsparameter.

1.7 Chebyshev

1.8 Korrelation

 $\frac{1}{n-1}(\sum_{i=1}^{n}(x_iy_i-n\overline{xy}))$

 $s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit

wie beobachteten Daten $x_i.\bar{x}$ minimiert

die "quadratische Verlustfunktionöder

die Varianz gibt das Minimum der Feh-

ten x_i ca. im Verhältnis p: (1-p) d.h.

 $\hat{F}(x_p) \approx p$ 1. Quartil = 0.25-Quantil; Me-

dian = 0.5-Quantil; 3. Quartil = 0.75-

 $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1 \overline{x}$ der

Durchschnitt, s > 0 die Stichproben-

Standardabweichung von Beobachtungs-

werten $x_1,...,x_n$. Sei $S_k = \{i, 1 \le i \le n : |x_i - \overline{x}| < k \cdot s\}$; Für eine beliebige Zahl

 $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{k^2})$ Pro-

zent der Daten im Intervall von $\bar{x} - ks$ bis

 $\overline{x} + ks$. **Speziell:**Für k = 2 liegen mehr als

75% der Daten im 2s-Bereich um \bar{x} . Für k=3 liegen mehr als 89% der Daten im

3s-Bereich um \bar{x} . **Komplement Formulie**-

rung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(S_k)}{n} \le \frac{1}{k^2};$

Die Ungleichheit lifert nur eine sehr gro-

be Abschätzung, ist aber unabhängig

von der Verteilung der Daten. Empiri-

sche Regeln 68% der Daten im Bereich

um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$.

Grafische Zusammenhang zwischen multivariaten Daten y und y durch ein Streudiagramm. Kennzahlen zur Unter-

suchung des Zusammenhangs:

1.8.1 Empirische Kovarians

1.6 Interquartilsabstand I

Beobachtete Daten werden durch geeignete statistische Kennzahlen charakterisiert und durch geeignete Grafiken anschaulich gemacht.

Statistik

1.1.1 Beschreibende/Deskriptive

1.1.2 Schließende/Induktive Sta-Aus beobachtete Daten werden Schlüsse

gezogen und diese im Rahmen vorgegebener Modelle der Wahrscheinlichkeitstheorie bewertet.

Ausprägungen), stetig(≥30 Ausprägun-

der

ten. Empfindlich gegemüber Ausreißern.

gen), univariat(p=1), mulivariat(p>1)

Ω : Grundgesamtheit ω :Element oder Objekt der Grundgesamtheit diskret(<30

1.1.3 Grundgesamtheit

1.2 Lagemaße 1.2.1 Modalwerte x_{mod} Am häufigsten auftretende Ausprägun-

gen (insbesondere bei qualitativen Merkmalen) 1.2.2 Mittelwert

R:mean(x)Schwerpunkt

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 1.3 Median

R:median(x)

Liegt in der Mitt der sortierten Daten x_i . Unempfindlich gegenüber Ausreißern.

 $x_{0.5} = \begin{cases} x_{\frac{n+1}{2}}, \text{ falls n ungerade} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}), \text{ falls n gerade} \end{cases}$

1.4 Streuungsmaße 1.4.1 Spannweite

 $\max x_i$ - $\min x_i$

1.4.2 Stichprbenverians s²

R:var(x)Verschiebungssatz: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s_x} \text{ und } t = \overline{y} - m \cdot \overline{x}$

2.1 Begriffe

Ergebnisraum Ω : Menge aller möglichen **Elementarereignis** $\omega \in \Omega$: einzelnes Ele-**Ereignis** $E \subseteq \Omega$: beliebige Teilmenge des

Ergebnisraums Ω heißt sicheres Ereignis,

Ø heißt unmögliches Ereignis **Vereinigung** $E \cup F$: Ereignis E oder Ereignis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein R:quantile(x, p). Teilt die **sortierten** Da- **Schnitt** $E \cap F$: Ereignis E und Ereignis F $\bigcap_{i=1}^n E_i$ alle Ereignisse E_i treten ein. **Ge**genereignis $\overline{E} = \Omega / E$: Ereignis E tritt nicht ein (Komplement von E) **Disjunkte Ereignisse**E und F: $E \cap F = \emptyset$

 $I = x_{0.75} - x_{0.25}$. Ist ein weiterer Streu- 2.2 De Morgan'schen Regeln $E_1 \cup E_2 = E_1 \cap E_2$ $\overline{E_1 \cap E_2} = \overline{E}_1 \cup \overline{E}_2$ 2.3 Wahrscheinlichkeit $0 \le P(E) \le 1$; $P(\Omega) = 1$; $P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$, falls $E_i \cap E_j = \emptyset$

Ereignis E_i tritt ein.

2.3.1 Satz 2.1 $P(\overline{E}) = 1 - P(E)$

2.4 Laplace-Experiment Zufallsexperimente mit n gleich wahr-Elementarereignissen. Dann berechnet sich die Wahrscheinlich-

 $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

(Übungsaufgabe!!! Ergänzen)

keit P(E) für $E \subseteq \Omega$ aus: $P(E) = \frac{AnzahlderfrEgnstigenEreignisse}{AnzahldermglichenEreignisse}$

 $\frac{\textit{MchtigkeitvonE}}{\textit{Mchtigkeitvon}\Omega} = \frac{|E|}{\Omega} \textbf{text}$ 2.5 Kombinatorik

2.5.1 Allgmeines Zählprinzip

Anzahl der Möglihckeiten für ein kstufiges Zufallsexperiment mit n_i Varianten im i-ten Schritt: $n_1 \cdot n_2 \cdot ... \cdot n_k$

1.8.2 Empirische Korrellationsko-R:cor(x, x); $r = \frac{s_{xy}}{s_x x_y}$; Näherungsweise lin.

R:cov(x, y); $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$

Zusammenhang zw. x und y, falls $|\mathbf{r}| \approx 1$.

1.8.3 Regressionsgerade y

2.5.2 Permutationen

Anzahl einer n-elementigen Menge nmaliges Ziehen ohne Zurücklgen mit Beachtung der Reihenfolge: n unterscheid**bare Elemente**: $n! = n \cdot (n-1) t ext b f ... 2 \cdot 1$ ren Elementen $n = sum_k^{i=1} n_i$: $\frac{n!}{n_1! \cdot n_2! \cdot n_k!}$

einer n-elementigen Menge ohne Zurücklegen = $k \le n$. mit Zurücklegen = k > n möglich. mit Beachtung der Reihenfolge, ohne

mengen einer n-elementigen

Menge k-maliges Ziehen aus

2.5.3 Anzahl k-elementigen Teil- 2.6.4 Formel von Bayes

Zurücklegen: $\frac{n!}{(n-k)!}$ ohne Beachtung der Reihenfolge, ohne **Zurücklegen**: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ mit Beachtung der Reihenfolge, mit Zurücklegen: nk ohne Beachtung der Reihenfolge, mit Zurücklegen $\binom{n+k-1}{k}$

2.6 Bedingte Wahrscheinlichkeit

 $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}$

2.6.1 Satz 2.2

 $P(E \cap F) = P(E|F) \cdot P(F)$ $P(E \cap F) = P(F|E) \cdot P(E)$

2.6.2 Satz der totalen Wahrschein-

Sei $\Omega = \bigcup_{i=1}^n E_i$ mit $E_i \cap E_j = \emptyset$ für $i \neq j$ d.h. die Ereignisse bilde eine disjunkte Zerlegung bzw. eine Partition von Ω . Somit gilt: $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$

Summe der Äste des Wahrscheinlichkeitsbaums zu allen Schnitten $F \cap E_i$

2.6.3 Vierfeldertafel

$P(F) = P(F \cap E) + P(F \cap \overline{E})$

 $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$ EĒ P(TAE) P(TAE) P(T)

 $P(\bar{\epsilon}) P(\bar{\epsilon}) 1$

Satz 2.2 $P(E \cap F)P(E)$. **k** Klassen mit je n_i nicht unterscheidba- $P(F|E) = P(F) \cdot P(E|F)$ Tafel = $P(F) - P(F \cap F)$ \overline{E}) = $P(E) - P(\overline{F} \cap E)$; $P(\overline{F}|E) = 1 - P(F|E)$

aber nicht $P(E_k|F)$ Satz 2.4 $P(E_k|F) =$ $P(F|E_k)\cdot P(E_k)$ $\sum P(F|E_i) \cdot P(E_i)$

Hilfreich, wenn man man $P(F|E_i)$ kennt,

Nur Nenner!P(F) aus dem Satz der totalen Wahrscheinlichkeit.

2.6.5 Stochastische Unabhängig-

Ereignisses die Wahrscheinlichkeit für das Eintreten des anderen Ereignisses nicht ändert, d.h. falls $P(E|F) = P(E)oderP(E \cap F) = P(E) \cdot P(F)$

Uebung Die Ereignisse E und F heißen

(stochastisch) unabhängig, wenn die

Information über das Eintreten des einen

Es gilt Falls die Ereignisse E, F unabhängig sind, dann sind auch:

 \overline{E} , \overline{F} unabhängig **Bemerkung**

Stochastische Unabhängigkeit be-

deutet nicht notwendigerweise eine kausale Abhängigkeit

· Veranschaulichung mit Venn Dia-

• $A, B \neq \emptyset$ und $A \cap B = \emptyset$ $P(A \cap B) \stackrel{?}{=} P(A) \cdot P(B)$ $\emptyset \neq P(A) \cdot P(B)$ da P(A) > 0 und => A, B stochastisch abhängig