

数据库的前世今生

管长龙

KCN 数据库运营

2021.01.19

大纲

- 数据库概述
- 数据库发展史
- 数据库的分类

什么是数据库?

数据

数据 (data) 在 **计算机科学** 中,数据是所有能输入计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的 数字、字母、符号和模拟量等的通称。

数据库

数据库 (database) 是一个长期存储在计算机内的、有组织的、可共享的、统一管理的 大量数据的集合。

数据库管理系统

数据库管理系统 (Database Management System) 操纵和管理数据库的 大型软件,简称 DBMS。

对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。

用户通过应用等方式访问数据库中的数据,数据库管理员(DBA)也通过 DBMS 进行数据库的维护工作。

* 人们习惯将 数据库管理系统 简称为 数据库

现实类比

数据库出现的历史必然性

存在哪?

怎么存取?

商品盘点表

盘点单位

盆点日期 华月日

牌存	期末库存		本期销售		本期似进		期初库存					
金額	数重	金額	数量	金額	数量	金額	数量	命	盤位	规格	品名	
										H		
								-				
								H				
											i+	

数据库发展史

层次型、网络型

1950s

科学研究阶段

代表:

IMS (IBM 公司)

关系型

1970s

商业处理

代表:

DB2 (IBM 公司) Oracle (甲骨文) 关系型、数据仓库

1990s

企业信息化、数字化

代表:

PostgreSQL (开源) SQLServer (微软) 开源、NoSQL

2000s

电子商务、社交、媒体

代表:

MySQL (开源) BigData (Google) MongoDB (开源) 云数据库

2015s

云计算、物联网、金融

代表:

AWS RDS (亚马逊) 阿里云 RDS (阿里巴巴)

• • • •

未来.....

数据库在架构中的具体位置?

数据库发展史

数据库的位置

一般位于整体应用的最底层。

属于应用价值的 核心!

数据库有哪些分类?

有哪些代表数据库?

不同的分类角度

数据结构:关系型、NoSQL (文档、键值、图、时序等)、NewSQL (TiDB)

业务类型:事务类(OLTP)、分析类(OLAP)->HTAP

架构复杂度: 单机、分布式

部署(交付)方式:本地部署、云上部署->云原生

商业模式: 开源、商业

https://db-engines.com/en/article/Relational+DBMS?ref=RDBMS

关系型数据库(RDBMS)

以二维表的形式来描述数据。

使用结构化查询语言 **SQL** (Structured Query Language) 来进行操作! 是当今世界主流的数据库结构化模式。

代表数据库:

Oracle, MySQL, SQL Server, PostgreSQL

https://db-engines.com/en/article/Relational+DBMS?ref=RDBMS

关系型数据库的数据存储结构示例

SQL: SELECT 课程名称 FROM 科目表 ORDER BY 学分 DESC LIMIT 1;

结果: 英语 (二)

非关系型数据库(NoSQL)

不使用结构化查询语言 SQL(Structured Query Language) 来进行操作! 针对特定的使用场景。

主要类型及代表数据库:

- 文档型: MongoDB
- 键值: Redis、Memcached
- 搜索引擎: Elasticsearch
- 图: Neo4j、Nebula Graph
- 时序: InfluxDB、ClickHouse (可实现)

事务类与分析类(OLTP & OLAP)

	OLTP	OLAP
业务类型	日常交易和读写	统计、分析
数据类型	当前的、最新的	历史的、聚集的
数据规模	GB	TB ~ PB
使用者	用户	管理员

数据库跟大数据是什么关系?

兼具事务与分析(HTAP)

能够统一支持事务处理(TP)和工作负载分析(AP)的数据库成为众多企业的需求。

在此背景下,由 Gartner 提出的 HTAP(混合事务 / 分析处理,Hybrid Transactional/Analytical Processing)的概念,行业认同持疑。

代表数据库:

TiDB MySQL + ClickHouse

单机结构:

集群结构:

分布式:

单机、集群、分布式

本地、云上

略:同自建机房和云服务器的区别。

云原生数据库

弹性、高可用、弹性扩展、开放生态

- Shared Everything: 共享硬件资源 (一体化)
- Share-Nothing: 独立单元, 通过协议互相关联(物理分割)

代表数据库及云环境:

Aurora (AWS) 、Spanner (Google) 、Socrates (微软)

TiDB (PingCAP) 、PolarDB (阿里) 、CynosDB (腾讯)

下期预告

- 主流数据库及对应使用场景
- 《2021 中国数据库研究报告》解读

changlongguan@yunify.com