$$m \times n - Mahi \times A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m_1} & a_{m_2} & \cdots & a_{m_j} & \cdots & a_{m_m} \end{pmatrix} \rightarrow \hat{i} - \hat{t} = \hat$$

Rechen operationen:

2.) Shalan Mulliphihadian:

3.) Malnix - Mulliph kution:

Sei
$$A = (a_{ij}) = mxn - Mahix$$

$$= C = AB$$

$$C_{ij} = \sum_{h=1}^{n} a_{ih} b_{hj} = mxr - Mahix$$

$$U = C_{ij} = \sum_{h=1}^{n} a_{ih} b_{hj} = mxr - Mahix$$

$$U = C_{ij} = \sum_{h=1}^{n} a_{ih} b_{hj} = mxr - Mahix$$

$$U = C_{ij} = \sum_{h=1}^{n} a_{ih} b_{hj} = mxr - Mahix$$

$$U = C_{ij} = \sum_{h=1}^{n} a_{ih} b_{hj} = mxr - Mahix$$

Sperial fall: B = x = nxI - Mahix = Verter nn t y - Komponenten=) Ax = mxI - Manix = Verter nn t m Komponenten

2. B. <math>m = y -) quadratiste Malnix

$$A \overset{\vee}{x} = \overset{\vee}{b} \qquad \begin{pmatrix} a_{11} a_{12} & \cdots & a_{1n} \\ a_{21} a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$a_{11} X_1 + a_{12} X_2 + \cdots a_{1n} X_n = b_1$$

 $a_{21} X_1 + a_{22} X_2 + \cdots a_{2n} X_n = b_2$

lineares bleitrupsystem

 $a_{h_1}x_1 + a_{h_2}x_2 + \cdots a_{h_n}x_h = b_n$

$$A+B=B+A$$
 hommitentiv
 $A(B+C)=AB+AC$ associativ
 $A(BC)=(AB)C=ABC$ distributiv

aber:

AB + BA im allgmeinen

[A, B] := AB-BA | Kommutator Spielt withige Pholle in der Quan tenmechani/2

Die Transponiere! AT eine Malnix A etheret man duch Verteurschen von Weilen und Spullen: (AT); = A; i

Er plet:

$$(AB)^T = B^TA^T$$

anadrahiste nxn Mahiza

Bowie Mahix moltiplihationen.

Einher's matn'x:

$$E = 11 = (6j) = \begin{pmatrix} 10 & 0 \\ 01 & 0 \\ 0 & 1 \end{pmatrix}$$

Determinante:

n=2:

$$\left| \begin{array}{ccc}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{array} \right| = a_{11} a_{22} - a_{12} a_{21}$$

n=3:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{23} - a_{13} a_{22} a_{31}$$

Man hann reigen!

Wenn IAI = 0 dann gibt es elle ilnouse Malnix A mit $A^{-1}A = AA^{-1} = 11 = E$

In diesem Full hat ein lineares Gleidunpsystem

$$A\vec{x} = \vec{b}$$
 die eindenhige Lösung $\vec{x} = A^{-1}\vec{b}$

Anwendens: Taylorentwichlung in 12":

$$f(\vec{x}) = f(\vec{x}_0) + \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} (\vec{x}_0) (x_i - x_0 i) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2 \partial x_i^2} (\vec{x}_0) (x_i - x_0 i) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2 \partial x_i^2} (\vec{x}_0) (x_i - x_0 i) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2 \partial x_i^2} (\vec{x}_0) (x_i - x_0 i) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2 \partial x_i^2} (\vec{x}_0) (x_i - x_0 i) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2 \partial x_i^2} (\vec{x}_0) (x_i - x_0 i) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2 \partial x_i^2} (\vec{x}_0) (x_i - x_0 i) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2} (\vec{x}_0) (x_i - x_0 i) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2} (\vec{x}_0) (\vec{x$$

$$\overset{\sim}{\gamma} = (\chi_{i}) \qquad \overset{\sim}{\gamma_{0}} = (\chi_{0i})$$

hann geschnieben werden als

$$f(\vec{r}) = f(\vec{r}_0) + \vec{r} f(\vec{r}_0) \cdot (\vec{r} - \vec{r}_0) + \frac{1}{2} (\vec{r}_0 - \vec{r}_0)^T Q(\vec{r}_0 - \vec{r}_0)$$

$$m' + Q_{ij} = \frac{\partial^2 f}{\partial x \cdot \partial x} (\vec{r}_0)$$

Beispiel: Entwishlung des Potentiels 1/4-21 eine Puntstquelle bei a

$$\frac{\partial}{\partial x_i} \frac{1}{|\vec{x} - \vec{\alpha}|} = -\frac{1}{|\vec{x} - \vec{\alpha}|^2} \frac{\partial}{\partial x_i} |\vec{x} - \vec{\alpha}| = -\frac{x_i^* - \alpha_i^*}{|\vec{x} - \vec{\alpha}|^3}$$

$$\frac{\partial^2}{\partial x_i^* \partial x_i^*} \frac{1}{|\vec{x} - \vec{\alpha}|} = -\frac{\int_{|\vec{x} - \vec{\alpha}|^2} \partial x_i^* |\vec{x} - \vec{\alpha}|}{|\vec{x} - \vec{\alpha}|^3} + \frac{3(x_i^* - \alpha_i^*)(x_j^* - \alpha_j^*)}{|\vec{x} - \vec{\alpha}|^3}$$

$$=) \frac{1}{|\vec{x}-\vec{a}|} = \frac{1}{\alpha} + \frac{\vec{a}\cdot\vec{r}}{a^3} + \frac{\vec{r}^TQ\vec{r}}{2\alpha^5}$$

Eigenschaften;

Spur (trace) Tr
$$Q = \overline{Z}Q_{jj} = \overline{Z}(3a_{j}a_{j} - a^{2}J_{jj}) = 3a^{2} - 3a^{2} = 0$$

Summe de Diagonalellemente

n-ter simple Tenscent and Objette mit a Indies die sich für jeden Index wie ein Vella transformier (Kocidina tentransformationen siehe spieter)

Also: Shular = tahl = Tansa Ote Stufe Verte = Tenser liste Shife Mulnix = Tonse 2 te Smft Elih = Tensa 3th Simfe

X hujst Figur veliter rum Figur wit 2 wenn $Ax = \lambda x$ Fix $x \neq 0$

2 Figuret (=) 1A-21=0

Wenn A nxn Mahix, dann ist

 $|A-\lambda \mathcal{I}| = \alpha_0 + \alpha_1 \lambda + \dots + (-1)^n \lambda^n = \chi_n(x)$

des chantenishishe Polynom n-ten Crade on + n(u.U. and Mehrfachnulls tellen)

 $(\lambda_n(\lambda) - (\lambda_n - \lambda)(\lambda_n - \lambda) - (\lambda_n - \lambda)$

also find Di die Eignweste von A

Soute: Die Eigenwerte eine reeller synnehisten Matrix sind reell Beweis:

Z(aij - 2 dis) xix=0, noulliphinie Zaijxj=2xi mitxi

 $= \sum_{i} (a_{ij} - \lambda^* f_{ij}) x_i x_i^* = 0$ hamplexe thanjugation

Subhahiere und verwande symmetrie van a; und sij

 $= \sum_{i,j} (-\lambda + \lambda^*) \int_{i,j} x_i^* x_j^* = (\lambda^* - \lambda) \sum_{i} |x_i|^2 = 0 = \lambda^* = \lambda$

Sati: Die Eigenvehtern eine nellen, symmetrischen Malnig
u verdie denen Eigen werten sind orthugonal
Remark (
$\frac{\overline{Z} a_{ij} y_{j}^{*} = \alpha x_{i}^{*}}{\widehat{Z} a_{ij} y_{j}^{*} = \beta y_{i}^{*}} \alpha \neq \beta$
multipliziete mit y; bru. j; und hummiere eiber i
$=) \geq q_{ij} \mathbf{y}_{i} x_{j} = \alpha \sum_{i} x_{i} y_{i}$
\overline{Z} 9') χ'_{i} $y'_{j} = \beta \overline{Z} \chi'_{i} y'_{i} - \beta \overline{Z} \chi'_{i} y'_{i}$
$= \frac{1}{2} = $
mit ais =aji
Beripiel: Trajheristenser eine Massenverteilung
$\frac{T_{ij}}{Z} = \int dV P \left(\int_{ij} r^2 - \chi_i^2 \chi_j^2 \right) \qquad \tilde{\gamma} = \left(\chi_1 \chi_2 \chi_3^2 \right)$ $Z = \left(\chi_1 \chi_2 \chi_3^2 \right)$ $Z = \left(\chi_1 \chi_2 \chi_3^2 \right)$ $Z = \left(\chi_1 \chi_2 \chi_3^2 \right)$
reell and grownetnish bolivinen - Integral
Eignwere and reell und heißen Hamptträgheibmomente
m't entspredenden Hamptträgherbachsen (= Eigenvertern X.)
Beignel:
asymmetristic $A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} = 1 A - \lambda 11 = \begin{pmatrix} 1 - \lambda & 4 \\ 1 & 1 - \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda \end{pmatrix}^2 - 4 = 0$ $\frac{\text{Mulnix}}{\text{Mulnix}}$
=) 2= 3,-1
Figure Varen $\left(1-\lambda_{\pm}\right)\left(\frac{x_{\pm 1}}{x_{\pm 2}}\right)=0$
$\lambda = \lambda_{+} = 1 - 2x_{+1} + 2x_{+2} = 0 = 1 \qquad x_{+1} = 2x_{+2} = 1 \qquad x \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ Sind}$ $\text{analog:} x \begin{pmatrix} -2 \\ 1 \end{pmatrix} \text{ and } \text{ Eigenvelstown} \text{ and } \lambda_{-} = -1 \qquad \text{analog:} x \begin{pmatrix} -2 \\ 1 \end{pmatrix} \text{ and } \text{ Eigenvelstown}$
analog: $x\left(\frac{-2}{1}\right)$ and E ignvertor $2n \lambda_{-} = -1$ $2n \lambda_{+} = 3$

Beinvel symmetriste Matrix:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \Rightarrow \begin{vmatrix} A - 21/1 \\ 2 & |-2/2 \end{vmatrix} = \begin{vmatrix} 1 - 2 & 2 \\ 2 & |-2/2 \end{vmatrix} = \begin{vmatrix} 1 -$$

$$=(1-\lambda)^{2}-4=0$$

Eigenverteen:
$$\left(\frac{1-\lambda_{\pm}}{2}, \frac{2}{1-\lambda_{\pm}}, \frac{X_{\pm 1}}{X_{\pm 2}}\right) = 0$$

$$= \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_{+1} \\ x_{+2} \end{pmatrix} = 0 = \begin{pmatrix} -2x_{1} + 2x_{+2} = 0 \\ x_{+2} \end{pmatrix}$$

$$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x_{-1} \\ x_{-2} \end{pmatrix} = 0 = 1 \qquad x_{-1} = -x_{-2}$$

Die Eigenverten sind wen orthogonal; wie evalet

$$\left(1,1\right) \cdot \left(1\atop -1\right) = 1-1=0$$

Physikalishe Rolle des Tragheilstensors:

Starrer Körpa rolière mit Winhal geshwindisheit w Ein Mussen element din = SdV am Ort ir macht dann Folgen den Beitrag rum Drehilmpuls:

$$= \sum_{i,j} L_i = \sum_{i,j} W_j$$

$$= \sum_{i,j} L_i = \sum_{i,j} W_j$$

$$= \sum_{i,j} L_i = \sum_{i,j} W_j$$

$$= \sum_{i,j} W_j = \sum_{i,j} W_$$

Beitrag de Massen elements du ran Kinchischen Energie:

$$dE_{hih} = \frac{1}{2}dm \dot{v}^2 = \frac{1}{2}S(\tilde{w}x\tilde{x})^2 dV = \frac{1}{2}S(\tilde{w}x\tilde{$$

$$=\frac{1}{2}S\left[w^2\eta^2-(\ddot{w},\ddot{\eta})^2\right]dV=$$

Dertorn und Koa dina ten transfermy honen
B 1 1 2
$\frac{e_3}{\sqrt{1+e_3}}$
433/
23
(\mathcal{I}) \mathcal{I}
$\frac{1}{1}\left(\frac{1}{1}\right)^{\frac{1}{1}}$
Drehung 3
$\vec{e}_i = \sum D_{ij} \vec{e}_j$
J=1
Eigenstruften: 1.) confin = $\vec{e}_{n} \cdot \vec{e}_{i}' = \vec{e}_{n} \cdot \vec{e}_{i}' = \vec{e}_{n} \cdot \vec{e}_{i}' = \vec{e}_{n}$
2.) $\sin z = (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) = (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) = (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) = (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) = (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) = (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{i}) = (\overline{z} \cdot e_{i}) \cdot (\overline{z} \cdot e_{$
(2 b) (2 b) (2 b) (2 b) (2 b) (2 b)
= \(\frac{7}{2}\D_{he}\vec{e}_{\frac{1}{2}\vec{e}_{\frac{1}{2}}\vec{D}_{i}\vec{i}}\D_{he}\vec{e}_{\frac{1}{2}\vec{e}_{\frac{1}{2}}\vec{D}_{i}\vec{i}}\D_{he}\vec{i}
die
=) D bildet puarweite arthugonale Spalten vehteren
3)=)
$D = \begin{vmatrix} \vec{e}_1 \cdot \vec{e}_1 & \vec{e}_2 \cdot \vec{e}_1 & \vec{e}_3 \cdot \vec{e}_1 \\ \vec{e}_1 \cdot \vec{e}_2 & \vec{e}_2 \cdot \vec{e}_3 & \vec{e}_3 \cdot \vec{e}_2 \end{vmatrix} - \vec{e}_1 \cdot (\vec{e}_2 \times \vec{e}_3) = 1$ $\vec{e}_1 \cdot \vec{e}_3 \vec{e}_2 \cdot \vec{e}_3 \vec{e}_3 \cdot \vec{e}_4 \cdot \vec{e}_4 \cdot \vec{e}_4 \cdot \vec{e}_4 \cdot \vec{e}_5 \cdot \vec{e}_3 \cdot \vec{e}_3 \cdot \vec{e}_3 \cdot \vec{e}_4 \cdot \vec{e}_4 \cdot \vec{e}_4 \cdot \vec{e}_5 \cdot \vec{e}_$
Rechtsystem
$\frac{\langle f_i \rangle \left(\int_{i}^{\infty} h_i = \overline{Z} D_{i,j} D_{k,j} = \overline{Z} D_{i,j} (D^T)_{j,k}^{\infty}}{h^{2}} \right)}{h^{2}}$
=) $D^{-1} = D^{T} = $ $DD^{T} = D^{T}D = 11$ =) Dist "or the genule Mahix"
=1 Dist "or thogonale Mahix"

Beigniel: Zweidimensianale Dretrungen Dly)= (Corf Sing)
-Sing core) $|\vec{e}_1| = |(\vec{e}_1 + \vec{h}_1 + \vec{h}_2)| = |(\vec{e}_1 + \vec{h}_2)| = |(\vec{e}_2 + \vec{h}_1 + \vec{h}_2)| = |(\vec{e}_1 + \vec{h}_2)| = |(\vec{e}_1 + \vec{h}_2)| = |(\vec{e}_2 + \vec{h}_1)| = |(\vec{e}_1 + \vec{h}_2)| = |(\vec{e}_2 + \vec{h}_1)| = |(\vec{e}_1 + \vec{h}_2)| = |(\vec{e}_2 + \vec{h}_1)| = |(\vec{e}_2 + \vec{h}_2)| = |(\vec{e}_1 + \vec{h}_2)| = |(\vec{e}_2 + \vec{h}_1)| = |(\vec{e}_2 = |(\vec{e}_2 + \vec{$ D(42) D(41) = D(41) D(42) = D(41+ 82) for 33 Dimensionen Rommubien Dretrungen i.a. mill o Transformation van Vortor bemponenten; $\vec{x} = \vec{\Sigma} x_i \cdot \vec{e}_i = \vec{\Sigma} x_i' \cdot \vec{e}_i'$ $=1 \quad \chi' = \vec{e}_j \cdot \vec{n} = \vec{z} \, \chi_i \, \vec{e}_j \cdot \vec{e}_i = \vec{z} \, \vec{D}_j \cdot \vec{\chi}_i$ also X = DX =1 Hamponente trous formien wie Einheits velstern Ansblide! Bei mitter-arthugonalen Transformationen ist dies mitte de Fall und man untervaidet ho- und hantavaniante Verteran Anwenden; $|\vec{x}'|^2 = \vec{x}' \cdot \vec{x}' = \vec{x}' \cdot \vec{x}' = \vec{x}' \cdot \vec{x} = \vec{x}' \cdot \vec{x} = \vec{x}' \cdot \vec{x} = |\vec{x}|^2$ =) Norm exhalfen

Lineare Differential gleichungen

Betrade die gewöhnliche Differential sleichung

$$\dot{X} + a(t)\dot{x} + b(t)\dot{x} = f(t) \tag{1}$$

mit teitabhängigen Koeffizientn. Wichhij 2.B. fur Besidveibung von Schwingungen.

Gleichung 2. Ordnung hann in 2 Heidungen 1. Ordnung umgeschrieben Werden:

$$\ddot{X} = U$$

$$\ddot{U} = f(t) - b(t)x - a(t)v$$

besolveist t. B. Trajelitorien im Phosen raum

Ol. (1) heißt "inhomogen" wenn flt) #0, ansonsken "homogen"

Die Lösungen von homogenen Differential gleichungen bilden einen linearen Vehtorraum, d.h. Linear kombin ahionen von Lösungen sind wieder Lösungen. Ferner ist die Lösung für jede Anfang bedingung

xlto) = xo, xlto) = vo ein dentis,

Satz: Seizen X, ltl, x_2lt) zwei lübungen der homogenen Differenhindsleichung $\ddot{x} + alt | \ddot{x} + blt | x = 0$ So erfielt die <u>Wrondzi- Determinanke</u>

Wlt) = X, ltl $\ddot{x}_2(t) - \ddot{x}_1(t) x_2lt$

die lineare Differential gleichung 1. Ordnung

$$\mathring{W}(t) = -alt/Wlt)$$

Beveis:

$$\dot{W} = X_1 \dot{X}_2 - X_1 \dot{X}_2 = X_1 \left(-a \dot{X}_2 - b \dot{X}_2 \right) - \left(-a \dot{X}_1 - b \dot{X}_1 \right) \dot{X}_2$$
Einstehen O. fleven halgl.
$$= -a \left(X_1 \dot{X}_2 - X_1 \dot{X}_2 \right) = -a W$$

Lösung dieser Gludung;

$$\frac{dw}{w} = -alt|dt = \int \ln \frac{wlt}{wlto} = -\int dt'alt'$$

$$= \int wlt = wlto = \int dt'alt'$$

Satz: Zwai Lüsunyu X, 1t), x2 lt) sind genan dann linear abhänsi's, Wenn W(t) = X, (t) x2(t) - X, (t) x2(t) = 0

Beweil: Sei $\lambda_1 x_1 + \lambda_2 x_2 \equiv 0$ mit $\lambda_1 \neq 0$

$$=) \quad \chi_1 = -\frac{\lambda_1}{\lambda_1} \chi_2 \quad , \quad \dot{\chi_1} = -\frac{\lambda_2}{\lambda_1} \chi_2$$

$$=) W = -\frac{\lambda_1}{\lambda_1} x_2 \dot{x_1} + \frac{\lambda_1}{\lambda_1} \dot{x_2} \dot{x_1} = 0$$

for is to analog

Sei WIt = 0. Wenn and einem Interval X, 1/2 +0

=)
$$\frac{\chi_1}{\chi_1} = \frac{\chi_2}{\chi_2}$$
 =) $\frac{d\chi_1}{\chi_1} = \frac{d\chi_2}{\chi_2}$ =) $\ln \chi_1(t) = \ln \chi_2(t) + const.$

Salt: Sei XIII eine auf einem Interall nicht verstum dende Lösurs der homogenen Differential gleichung, Dann ist y(t) = x(t) \(\frac{\omega(t')}{\sqrt{2\frac{t'}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

eine Linear unabhänsise Losuns, wobei die unteren Integrations grenten beliebig sind.

Beweis

$$\ddot{y} = \ddot{x} \int \frac{w(t)}{x^2(t)} dt' + x \frac{w}{x^2} = \frac{1}{x} (yx + w) = w = x\dot{y} - x\dot{y} \neq 0$$

= 1 x und y linear unabhänsij. Ferner

$$w = x\dot{y} - \dot{x}\dot{y} = \lambda \dot{y} - \dot{x}\dot{y} = \dot{w} = -\alpha (x\dot{y} - \dot{x}\dot{y})$$

$$=) \quad \chi(\ddot{y} + a\ddot{y}) - y(\ddot{x} + a\ddot{x}) = 0$$

da $\ddot{x} + a\dot{x} = -bx$ =) $x(\ddot{y} + a\ddot{y} + by) = 0$ Da $x \neq 0$ auf behadletem Inkvall =) $\ddot{y} + a\ddot{y} + by = 0$, also ist Ylt) line Lissung

Eine allgemeine Lösung XIII = 2, XIIII + 2, XIII einer homogenen Differential gleichung 2. Ordnung hann durch Wahl geeigneter Koeffinienten 21,22 jede Anfangs hedingung XIIII=xo, XIII=vo erfüllen:

$$\chi_0 = \lambda_1 \chi_1(t_0) + \lambda_2 \chi_2(t_0)$$

$$U_0 = \lambda_1 \chi_1'(t_0) + \lambda_2 \chi_2(t_0)$$

$$\lambda_1 = \frac{\chi_0 \chi_2(t_0) - U_0 \chi_2(t_0)}{\chi_1(t_0) \chi_2(t_0) - \chi_1(t_0) \chi_2(t_0)}$$

$$\lambda_2 = \frac{U_0 \chi_1(t_0) - \chi_0 \chi_1(t_0) \chi_2(t_0)}{\chi(t_0) \chi_1(t_0) - \chi_1(t_0) \chi_2(t_0)}$$

Sind eindentige Löbrugen da der Normer = WHO) +0

Ist XIt) ivagendeine Livers der inhomogenen Gleidung (1), und sind XIII, XIII hinea unabhänsise Libergen der zusehövigen homogenen Gleichung, so ist die allgemeine Liberg der inhomogenen Gleidung

Lineare Shurngunge

De hamoniste Oszilluter mit ånser Kuft ein undrung als lineare Waherung de Newton'sten Bewyngsleidrung

mx = F(x,t)

(Als gewöhnliche D. Ffernhälgleichung 2. Irdnung hal sie i.a.

eine einden hige Lösung für zwei Bedingungen, e.g.

Anfangs bedingungen: Xlto) = Xo X(to) = Vo

Rand bedingungen Xlto) = Xo X(to) = X,

 $F(x,t) = F_0(t) + a(t) x + O(x^2)$

 $=) \quad \stackrel{?}{x} + w_0^2(t) \quad x = f(t)$

mit $w_0^2|t| = -\frac{a(t)}{m}$ $\int f(t) = \frac{F_0(t)}{m}$

Gedampfle Orn'Water mit zurährlichen Reibunghräften:

 $x' + 28x + \omega_0^2 x = f(t)$ \tag{7.20}

Sperialfall: wo = const. f(t) = fo con 12 t

Freie Schwingunger

homogene Diff- Sleichung (heine außer Kreift):

 $\frac{x}{X} + 2x + \omega_0 x = 0$

	14 36
Unjedern pfle Suhwingungen; V=0	
reelle Lorngen:	
$X t = A cos(w_0 t + x)$ $A, x \in \mathbb{R}$	Σ
Umformung: xlt = Acox con wot -Asind Go	-w.t
	G
hample a lôjunym:	
xlt= ate inst + a e-inst	
Verteil: leichtege Handhabung von Exponé	0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Verter leavitege Handrison van Expone	son ned fun Mone
Erineung:	
e ±iwot = conwot ±ishwot	
e = (or Wat I showst	
1 - 1 / siwot -iwot	riwit -iwihl
$cow_{0}t = \frac{1}{2}(e^{i\omega_{0}t} + e^{-i\omega_{0}t}); sin \omega_{0}t = \frac{1}{2i}($	<u>e - e - e - e - e - e - e - e - e - e -</u>
Dien Lösunger sind periodisch: xlt+211 = xlt)	
Cedin Ale Co	
gedain Afte Shud-gunga: 4>0	
Answh: $x(t) = e^{\lambda t} = x(t) = \lambda x$; $x'(t) = \lambda$	2
,	
$=) (\lambda^2 + 2\gamma\lambda + \omega^2) \times lt = 0 \qquad \forall t$	
$=) \qquad \lambda^2 + 2r\lambda + \omega_0^2 = 0$	
$=) \qquad \lambda = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$	
,	
a) Shwingfell: Work: It = -8 ± iw; w	$1 = 1/w_0^2 - 1^2 $
,	V G V
=) x(t) = e-8t (c+eiwt + c-iwt)	

Subverbe: $C_{+} = \frac{A}{2}e^{i\alpha}$, $C_{-} = \frac{A}{2}e^{-i\alpha}$	C,AEC, XEIR
=) $x t = Ae^{-\delta t} (os(wt+x))$	
Benipiel: Spenial fall x10)=0 x10/= vo	1 xlrl
=1 xlt)= vo e-8t shut	(XIV)
·	-) Vw2-+21
Anglidade ninnt ab, un	linen Falter
$e^{-1} pro Suring mit$ $mit T = \frac{2\pi}{\omega} = \frac{2\pi}{Vw^2 - t^2}$	$1 = \ln \frac{x(t)}{x(t-1)} = T$
$m_1' + J = \frac{1}{\omega} = \frac{1}{\sqrt{w_0^2 + v_1^2}}$	lugar thindshe Delarement
b) Kriechfall: wo Ly	
definite $\tilde{\omega}:=\sqrt{\delta^2-\omega_0^2}$	
$= x t = e^{-\beta t} (a_{+}e^{i\omega t} + a_{-}e^{-i\omega t})$	t) ist aller and line
Beripiel: Spezialfall xloj=0; xloj=0) in a grant me costing
=) xlt)= vo e-st (est-e-wt)	1 = vo e-rtsuhwt
Axte)	<i>ω</i>
	,
t	
c) apeniodisher Crent full: W = +	
	ta. C. V
Note $e^{-\gamma t}$ ist and $te^{-\gamma t}$ eine Lisu $X_i(t):=te^{-\gamma t}=1$ $X_i(t)=(1-\gamma t)e^{-\gamma t}$; $X_i(t)$	a Tax Way To-tt
7,111/2 (10/6)	= (-2x+x2+)e-xt
	= 1-1x+x-+10

$$= 1 \quad \chi_{1} + 2 \chi_{1} + w_{0}^{2} \chi_{1} = (-\chi^{2} + w_{0}^{2}) t e^{-\chi t} = 0 \quad \text{PI-58}$$

Enwangene Shumjungen

Es write nun eine periodiste außer Kreeft fo con Ut:

Finde runaitst eine Losung de nomplexen Ol.

fo, NEIR

mit Ansalz ZIt) = A eint, und bilde dann Realteil. Das erist Lisury de reller bleichung.

¿ | t| = i N 2(t); ¿ (t) = - N2 2(t)

$$=) A = \frac{fo}{\omega_0^2 - \ell^2 + 2 i k \ell}$$

In Pola darstellung ist A= 1A1eio

$$|A|^2 = \frac{f_0^2}{(w_0^2 - n^2 + 2i f n)(w_0^2 - n^2 - 2i f n)} = \frac{f_0^2}{(w_0^2 - n^2)^2 + (2 f n)^2}$$

$$\psi = -\arctan \frac{\operatorname{Im} 1/A}{\operatorname{Re}(1/A)} = -\arctan \frac{2 r \Omega}{w^2 - n^2} ; |A| = \frac{f_0}{\sqrt{(w_0^2 - n^2)^2 + (r \partial \Omega)^2}}$$

Fin NCCWO => 10/cc/ pco N-) Wo =) 4-) - 丁

allymeine Lisury e.g. im Sharnyfull:

Energiebilanz

=)
$$E = m(\dot{x}\dot{x} + \omega_0^2 x\dot{x}) = m\dot{x}(\dot{x} + \omega_0^2 x) =$$

Bewegunggleichung

= Fo(t) X - 2m 8 X²

Arbeit de anßern Reibungsverluste

Nach Einschwing vergeng ist Bewegung periodisch mit Periode 27 => Sat 2mrx2 = Sat Folt)x

Die aufruwendende Leistung (gemiltelt über eine Periode) ist

$$P = \frac{AE}{T} = \frac{2mr}{T} \int_{0}^{T} dt \dot{x}^{2} = \frac{2mr\Omega^{2}}{T} \int_{0}^{T} dt |A|^{2} \sin^{2}(\Omega t + \phi) = \frac{1}{2} \int_{0}^{\infty} dt \int_{0}^{\infty} dt |A|^{2} \sin^{2}(\Omega t + \phi)$$

=
$$m \gamma \Omega^2 |A|^2 = \frac{m \gamma \Omega^2 f^2}{(w^2 - \Omega^2)^2 + (2\gamma \Omega)^2}$$

Miltel von sin² über eine Penide
ist $\frac{1}{2}$ =) Integral = $|A|^2 \frac{T}{2}$

Gehoppelk Silvingungen

Beispill: 2 Massen + 3 Feden:

Bewegung gleidungen;

$$m_1 \dot{x}_1' = -(D_1 + D_{12}) x_1 + D_{12} x_2$$

 $m_2 \dot{x}_2' = D_{12} x_1 - (D_2 + D_{12}) x_2$

in Mahix Form:

$$\begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} \chi_1' \\ \chi_2' \end{pmatrix} + \begin{pmatrix} D_1 + D_{12} & -D_{12} \\ -D_{12} & D_2 + D_{12} \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 0$$

Dies hat die allgemeine Form:

$$m_i \stackrel{\times}{x_i} + \frac{\sum_{j=1}^{n} k_{ij} x_j}{\sum_{j=1}^{n} k_{ij} x_j} = 0 \qquad i = 1, 2, ..., n$$

$$M \stackrel{\times}{x} + K \stackrel{\times}{x} = 0 \qquad M = (m_i \cdot \delta_{ij}) \quad \mathcal{K} = (h_{ij})$$

Definiere

und biordiere Bewesung gleichungen durch Vmit

$$=) V_{mi} x_{i}^{n} + \sum_{j=1}^{n} \frac{h_{ij}}{V_{mi}} x_{j} = y_{i}^{n} + \sum_{j=1}^{n} \frac{h_{ij}}{V_{mim_{j}}} y_{j} = 0 \quad i = h_{i}, n$$

Definiere

$$N_{ij}^2 = (N_i^2)_{ij}^2 = \frac{h_{ij}^2}{\sqrt{m_i m_j}} = N_{ij}^2$$

when achio = reachio 4

ist kij Symmethish

$$=) \qquad \ddot{y} + \Omega^2 \dot{y} = 0$$
Makix ∇

Ansah: ÿ= a eiwt

=) Die charalterishiste Gleichung

liefert n Eigenwerte Wil...; wir mit zugehönigen Eigenvelztoren ä.,.. än

=) "Eign frequenzen" Wi, ", who und "Normal hoordinaten" a, 1. 1 an wir sind reell, ai honnen reell gewählt werden, da and ai ta! Eignverter ist. Die Normal hoordinaten sind fener orthogonal:

Die Normalshuringungen"

$$y_{\pm}^{(i)}(t) = \alpha_i e^{\pm \omega_i t} = y_{c(t)}^{(i)} \pm i y_{s}^{(i)}(t)$$

Oder

sind Lösungen de Bewegungsgleichungen. = 1 Die allgemeine Lösung ist eine Linear hambination von Normal schwingungen:

$$\ddot{y}[t] = \sum_{s=1}^{n} (c_{+}^{(i)} \ddot{y}_{+}^{(i)}[t] + c_{-}^{(i)} \ddot{y}_{-}^{(i)}[t])$$

$$= \sum_{s=1}^{n} (c_{s}^{(i)} \ddot{y}_{s}^{(i)}[t] + c_{c}^{(i)} \ddot{y}_{c}^{(i)}[t])$$

2n fra wählbere Kanstanten (1) entspreden 2n Anfongs bedingungen Beispiel: Yilol= yoi; yilol= voi

$$N=2$$
, $m_1 = m_2 = m$, $D_1 = D_2 = D$, $D_{12} = d$

$$=) \quad \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} \frac{D+d}{m} & -\frac{d}{m} \\ -\frac{d}{m} & \frac{D+d}{m} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 0$$

=) Charahteristische Gleichung:

$$\left(\frac{D+d}{m}-\omega^2\right)^2=\left(\frac{d}{m}\right)^2=0 \implies \omega^2=\frac{D+d}{m}\pm\frac{d}{m}$$

=1 Eigenfrequencen sind
$$w_1 = \sqrt{\frac{D}{m}}$$
; $w_2 = \sqrt{\frac{D+2d}{m}}$

$$(D+d)(\alpha_1)_1 - d(\alpha_1)_2 = D(\alpha_1)_1 = (\alpha_1)_1 = (\alpha_1)_2 -d(\alpha_2)_1 + (D+d)(\alpha_2)_2 = (D+2d)(\alpha_2)_2 = (\alpha_2)_1 = -(\alpha_2)_2$$

=) Die Normalhoodingten sind

$$\ddot{a}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \ddot{a}_2 = \frac{1}{\sqrt{27}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

=) Die allgemeine Lisung (centet

$$X_{1}|t|=b_{1}\cos(\omega_{1}t+\phi_{1})+b_{2}\cos(\omega_{2}t+\phi_{2})$$

 $X_{2}|t|=b_{1}\cos(\omega_{1}t+\phi_{1})-b_{2}\cos(\omega_{2}t+\phi_{2})$

4 wählbore Konstenten bijbzidi, de hönnen durch 4 Anfang = oder Randbedinsungen flestgelest werden.

Special fall:
$$b_1 = b_2 = b$$
, $\psi_1 = \phi_2 = \frac{11}{2}$

=)
$$X_1[t] = b(shw_1t + sinw_2t) = 2b con \frac{w_1 - w_2}{2}t sin \frac{w_1 + w_2}{2}t$$

 $X_2[t] = b(shw_1t - sinw_2t) = 2b sin \frac{w_1 - w_2}{2}t con \frac{w_1 + w_2}{2}t$

Fin | Wi-wil 22 | witwil hat man "Schwebungen": Die Amphitude eine schnellen Ostillation wird langsam moduliert:

Nicht-mechanische Schwingungen

Baispiel: Elehtrischer Schwinglereis:

Gesamt Spanning
$$U = 0 = L \frac{dI}{dt} + \frac{Q}{C} + RI$$

Differntiation liefert mit I = do:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0$$

Das entspricht einer Frequent $w_0 = \frac{1}{VLCI}$ der freien, ungedämpften Shains and einem Dampfungs faithe $y = \frac{R}{2}$

transversale Schwingungen einer Schna mit N Perlen; die an beiden Enden fest eingespannt ist

IEN EN

Un = transversale Anslenhung

Die Spannung in de Schner sei To = Elashtritabmodul

=) transversale that
$$F_{\perp} = T_0 \operatorname{Sih} \theta_{\gamma} - T_0 \operatorname{Sih} \theta_{\zeta}$$

$$\frac{2}{a} T_0 \frac{V_{n+1} - V_n}{a} - T_0 \frac{V_n - V_{n-1}}{a}$$

Dies ist sleich de Newtonischen Koraft m (= Masse de Pale) x a

$$= \int \frac{d^2 \psi_n}{dt^2} = \int \left(\frac{\psi_{n+1} - \psi_n}{\alpha} - \frac{\psi_n - \psi_{n+1}}{\alpha} \right)$$

In limes a > 0 hønnen wir eine konhinaierliste Saite mit Masse pro lønge = So =) m = So a

$$=) \quad S_0 \frac{d^2 4n}{dt^2} \Rightarrow \frac{T_0}{a} \left[\frac{\partial \psi}{\partial x} \left(x = (n + \frac{1}{2})a \right) - \frac{\partial \psi}{\partial x} \left(x = (n - \frac{1}{2})a \right) \right]$$

$$\Rightarrow \quad T_0 \frac{\partial^2 \psi}{\partial x^2} \left(x = na \right)$$

Darans resultiet die partielle Differn hal gleidrung

$$90 \frac{2^2 \psi}{3 k^2} = T_0 \frac{3^2 \psi}{3x^2}$$
 -) Wellensleidrung in 1)

4 = transversele Auslenhung ist nun Funktion von t und der longi tudinalen Koordinake X

Andre Schreibweise:

$$\frac{\partial^2 \psi}{\partial x^2} - c^2 \frac{\partial x^2}{\partial x^2} = 0 \qquad \text{mit} \quad C = \sqrt{\frac{I_0}{I_0}}$$

Verallgemeinerung in 30:

$$\frac{\partial^2 \psi}{\partial t^2} \left(\ddot{r}_1 t \right) - C^2 \Delta \psi \left(\ddot{v}_1 t \right) ; \qquad \Delta \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$$

Losunger de 1D Wellegleitrung:

définier neue Kordinaten

$$= \frac{\partial x}{\partial x} + 2 \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y} = \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y$$

$$\frac{\partial v}{\partial t} = \frac{\partial v}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial v}{\partial v} \frac{\partial v}{\partial t} = c \left(\frac{\partial v}{\partial v} - \frac{\partial u}{\partial v} \right)$$

$$= -c = c$$

$$=) \frac{\partial^2 h}{\partial t^3} = C \left[\frac{3n}{3} \left(\frac{3h}{3h} \right) - \frac{3n}{3} \left(\frac{3h}{3h} \right) \right] = C_5 \left(\frac{3n_3n}{3n_3} - 5 \frac{3n_3n}{3n_4} + \frac{3n_5}{3n_5} \right)$$

Welleyleiting =)
$$\frac{\partial^2 \psi}{\partial u \partial v} = 0$$

Integration uber
$$u = \frac{\eta \psi}{\eta v} = h(v)$$
 für $v \neq h(x)$
Integration uber $v = \frac{\eta \psi}{\eta v} = \int h(v') dv' + f(u) = g(v) + f(u)$
=1 $\psi(x,t) = g(x+ct) + f(x-ct)$

Ser'
$$X_1 = X_0 + C(t_1 - t_0) = Y(X_1, t_1) = Y(X_1 - Ct_1) = Y(X_0 - Ct_0) = Y(X_0, t_0)$$

 $f_0 = 0$

Spernal faille:

Harmonishe Wellen:

$$V_{\pm}(x,t) = Ae^{\pm i\frac{\omega}{c}(x-ct)} = Ae^{\pm i(hx-\omega t)} \qquad h = \frac{\omega}{c}$$

raundische Peniode
$$\lambda = \frac{2\pi}{k} = \frac{2\pi c}{w}$$
 "Wellenzerle k"

Peniode $T = \frac{2\pi}{w}$

Stevende Wellen:

überlagerung van recht- und linkslamfenden hamonischen Wellen mit Gleiber Amphitude:

e.g.
$$\Psi(x,t) = A cos(hx-wt) + A cos(hx+wt)$$

$$\Psi(x_1t)=0$$
 It für $x_n=(2n+1)\frac{11}{2k}=(2n+1)\frac{2}{4}$ -) Schwingungsknoten

$$\Psi(x,t) = X(x)T(t)$$

=)
$$c^{2}T(t)\frac{d^{2}x}{dx^{2}} = X(x)\frac{d^{2}T}{dt^{2}}$$
 (=) $\frac{c^{2}}{x(x)}\frac{d^{2}Y}{dx^{2}} = \frac{1}{T(t)}\frac{d^{2}T}{dt^{2}} = const. = c^{2}t^{2}$

$$=) \frac{d^2X}{dx^2} + \rho^2X = 0 \qquad \frac{d^2T}{dt^2} + c^2\rho^2T = 0$$

-) gewöhnliche Differntialgleitzungen mit den Lösungen

$$X(x) = Acop x + 13 shpx = b cos(px+ps)$$

$$T(t) = Ccos cpt + D sin cpt = a(coscpt + x)$$

Rand bedingungen erlanden 1.a. ner diskrete weste Pn, nEIN fil p Dann lantet die allgemeine Löswerg:

Die Konstanten Cy werden durch Anfang bedingungen $\Psi(x,0), \frac{\partial \Psi}{\partial t}(x,0)$ feitgeleft

Beigniel: An beiden Enden eingespannte Saite
Randbedingungen $\Psi(x=0,t)=0$ $\Psi(x=L,t)=0$

$$=) \quad \chi_n(x) = S \ln \rho_n x \qquad \text{mit} \quad \rho_n = \frac{n \pi}{L} \quad ; \quad n \in \mathbb{N}$$

=) allgameine losury hat die Form $\Psi(x,t) = \sum_{n=1}^{\infty} c_n \sin \frac{n\pi x}{L} \cos \left(\frac{c n\pi t}{L} + \alpha_n\right)$

$$=) \qquad \forall (x,0) = \frac{2}{2} C_n \sin \frac{n\pi x}{L} (oc \alpha_n)$$

$$\frac{\partial \psi}{\partial t} (x,0) = -\frac{2}{2} C_n \sin \frac{n\pi x}{L} \sin \alpha_n \cdot \frac{C_n \pi}{L}$$

Linke Seiten sind vorgegeben. Wähle en, an so, daß diese Bedingungen erfüllt sind

Einschub: Fourier - Reihen allgemeine Fourie-Reine hat die Form $f(x) = \frac{\alpha_0}{2} + \frac{\infty}{2} \left(a_h \cosh x + b_h \sinh x \right)$ lede periodistre Funthian f(x+211) = f(x) die "hinreidend glatt" ist, hann so dargistelle werden. Man sagt man entwirtele in die orthogonale Funttionen coshx und sinhx: Sinhx sinh xdx = TT Shhl $\int_{-tT}^{tT} \cosh x \cos h x \, dx = \int_{-tT}^{tT} \int_{hh}^{hh} \int_{hh}^{h} \int_{h}^{h} \int_{hh}^{h} \int_{hh}^{h}$ $\int_{0}^{+\pi} \cos hx \, \sin hx \, dx = 0$ Beweis beispiel: $\int_{-1}^{1} csh x csh' x = \int_{-1}^{1} \int_{-1}^{1} \left[cs(h+h')x) + cs((h-h')x) \right] dx$ Additions theorem = Shh! Cdx = IT Shh! Darans folger die Konstanten ah, bh: $a_{h} = \frac{1}{11} \int_{-\pi}^{\pi} f(x) \sinh x \, dx$ k=1,2,.. h = 0, 1, .. Alternatio: hamplexe Fourier-Reihen: $f(x) = \frac{t^{\alpha}}{2} g_h e^{ihx}$

Mit der Othogonalitah relation $\int_{-\infty}^{\infty} e^{-ihx} e^{ihx} dx = 2\pi \int_{h'h}^{\infty}$ hat man dann $g_{1} = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ihx} dx =$ Aussednicht duch die reellen Fourierholffizienten: $9bh = \frac{1}{2} \left(a_h \ddagger ib_h \right) \qquad h = 0,1,\dots \qquad mit b_0 = 0$ weil e = cshx ± 15in hx Anwendung: Bestimmung der Koellinden ten Coppile den Anfang bedingungen der Wellengleichung Y(X,0) - E Cn SIL NAY CO Kn or (x,0) = - CTT > n Ch Sm hTTY Sindh delinier $X = \frac{TTX}{L}$ and deliniere $\psi(X') = -\psi(-X')$, $\frac{\partial \psi}{\partial t}(X') = -\frac{\partial \psi}{\partial t}(-x')$ Full -TT 68/60 =) $\Psi(x,0) = Z C_n S_{1}L_n x^{1} C_{2} \alpha_{n}$ =1 $T \leq x' \leq T$ $\frac{\partial \varphi(x',0)}{\partial z} = -\frac{c\Pi}{L} \frac{1}{2} n c_n s_m n x' s_n \alpha_n$ $= \frac{1}{U} C_{n} \cos \alpha_{n} = \frac{1}{\Pi} \int_{-\Pi}^{\Pi} \Psi(x_{i}^{1} o) \sin n x^{i} dx = \frac{1}{U}$ where $\frac{1}{U}$ allgemeine Formel Integrand gende in X , fin Fourier Peiken $=\frac{2}{2}\int_{Y}\psi(x,o)\sin\frac{n\pi x}{r}dx=:\frac{2}{7}I_{n}$

$$-\frac{c\pi n}{L} \operatorname{Cn} \operatorname{Sin} \alpha_{n} = \frac{1}{17} \int_{-7}^{17} \frac{2\psi}{2t} (\alpha_{1}^{1}0) \operatorname{Sin} n x^{1} dx^{1}$$

$$= \frac{2}{L} \int_{0}^{2\psi} (x_{1}0) \operatorname{cm} \frac{n\pi y}{L} dx := \frac{2}{L} \operatorname{Jin}$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \alpha_{n} = -\frac{2}{C\pi n} \operatorname{Jin}$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \alpha_{n} = -\frac{2}{C\pi n} \operatorname{Jin}$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\psi}{2t} (x_{1}0) \operatorname{Sin} \frac{n\pi y}{L} dx \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Sin} \frac{n\pi y}{L} \operatorname{Cor} \left(\frac{2\pi n}{L} + \alpha_{n} \right)$$

$$= \int_{0}^{17} \operatorname{Cn} \operatorname{Cn$$