

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/1
Paper 1 Pure Mat	hematics 1 (P1)	Octob	er/November 2019
			1 hour 45 minutes
Candidates answe	er on the Question Paper.		
Additional Materia	ls: List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

© UCLES 2019

	erm independent		\	T ル /		
						••••
						••••
•••••	•••••	•••••	•••••	••••••		••••
						••••
•••••	•••••	•••••	•••••	••••••••••		••••
		•••••				· • • • •
••••••	•••••	•••••	•••••			••••
		•••••				
•••••						••••
••••••	••••••	•••••	••••••		•••••	••••
•••••		•••••	•••••			••••
••••••	••••••	•••••	••••••	••••••••••••		••••
						••••
•••••	•••••	•••••	•••••			••••
						••••

Find the least pos	sible value of n .				[
••••••	•••••	•••••	••••••		 •••••
•••••	•••••				 •••••
	•••••			•••••	 ••••••
••••••	••••••			•••••	 ••••••
	•••••				 ••••••
	•••••		••••••		 ••••••
	•••••				 ••••••
					 •••••
	•••••				

The line $y = ax + b$ is a tangent to the curve $y = 2x^3 - 5x^2$ of the constants a , b and c .	[5

5

A runner who is training for a long-distance race plans to run increasing distances each day for 21 days.

1)	
	Find the distance she must run on day 1 in order to achieve this. Give your answer in km correct to 1 decimal place.
i)	Find the total distance she runs over the 21 days.

	at $4 \tan x + 3 \cot x$	$\cos x$, ,		C	,	
							•••••
							•••••
						•••••	
				•••••		••••	
		••••••	••••••	••••••••••••	•••••••	•••••	••••••
•••••		•••••	••••••	•••••		•••••	•••••
•••••	,	•••••	••••••	•••••	••••••	•••••	•••••
		••••••	•••••	•••••	••••••		•••••
				•••••	••••••		•••••
			•••••	•••••		•••••	
••••		•••••	••••••	•••••	••••••	•••••	•••••

(ii)	Hence.	showing a	all necessary	working.	solve t	he equation
(==/	Tichec,	SHOWING C	iii iiccessai y	, ,,	50110	are equation

$4\tan(2x - 20^\circ) + 3\cos(2x - 20^\circ) + \frac{1}{\cos(2x - 20^\circ)} = 0$	
for $0^{\circ} \le x \le 180^{\circ}$.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

•••••	
•••••	
•••••	

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
••••••
• • • • • • • • • • • • • • • • • • • •

7 Functions f and g are defined by

$$f: x \mapsto \frac{3}{2x+1}$$
 for $x > 0$,
 $g: x \mapsto \frac{1}{x} + 2$ for $x > 0$.

(i)	Find the range of f and the range of g.	[3]
		•••••

)	Find an expression for $fg(x)$, giving your answer in the form $\frac{ax}{bx+c}$, where a, b and c are integers
	bx + c' [2
•	
•	
•••	
•••	
•••	
•••	
••••	
_	
	Find an expression for $(fg)^{-1}(x)$, giving your answer in the same form as for part (ii). [3]
••	
•••	
•••	
•••	
••	
•	

The diagram shows a sector OAC of a circle with centre O. Tangents AB and CB to the circle meet at B. The arc AC is of length 6 cm and angle $AOC = \frac{3}{8}\pi$ radians.

(i)	Find the length of <i>OA</i> correct to 4 significant figures. [2]
(ii)	Find the perimeter of the shaded region. [2]

Find the area of the shaded region.	[4]

Find the equ	ation of the cur	ve.				
•••••			•••••			•••••
	•••••		•••••		••••••	•••••
						•••••
•••••	•••••		•••••		•••••	
		•••••			•••••	•••••
	•••••	•••••	•	•	••••••••••••	••••••
•••••			•••••			
•••••			•••••		•••••	••••••
•••••	•••••	•••••	•••••	•	••••••	•••••
•••••		•••••			•••••	•••••
	••••••					
						•••••

(ii)	Find $\frac{d^2y}{dx^2}$. [2]
(iii)	Find the coordinates of the stationary point on the curve and, showing all necessary working,
` /	determine the nature of this stationary point. [4]

10

Relative to an origin O, the position vectors of the points A, B, C and D, shown in the diagram, are given by

$$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}.$$

(i)	Show that AB is perpendicular to BC .	[3]
(ii)	Show that <i>ABCD</i> is a trapezium.	[3]

		•••••
		•••••
(iii)	Find the area of ABCD, giving your answer correct to 2 decimal places.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

11

The diagram shows a shaded region bounded by the y-axis, the line y = -1 and the part of the curve $y = x^2 + 4x + 3$ for which $x \ge -2$.

(i)	Express $y = x^2 + 4x + 3$ in the form $y = (x + a)^2 + b$, where a and b are constants. Hence, for $x \ge -2$, express x in terms of y.	or 4]
		· • •
		· • •
		· • •
		.
		.
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

	360° about the <i>y</i> -		e volume obtains	ed when the shaded	[6]
•••••					
		••••••••••	••••••	••••••	•••••••
•••••••••••	•••••	••••••	••••••	••••••	•••••
•••••				••••••	•••••
					••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.