LVC 3: Glossary of Notations

Recurring Notations from lectures 1 and 2:

L = The original user-item interaction matrix

 L_{ij} = Likelihood of the i^{th} user matching with the j^{th} item in the user-item interaction matrix

 L_i = The average of observed entries in the i^{th} row of the user-item interaction matrix

 n_i = The number of observed entries in the i^{th} row of the user-item interaction matrix

 L_{i} = The average of observed entries in the j^{th} column of the user-item interaction matrix

 n_{j} = The number of observed entries in the j^{th} column of the user-item interaction matrix

 x_i = Features of the i^{th} user

 y_{i} = Features of the j^{th} item

U = A user embedding matrix $\textit{U} \in \textit{R}^{n \times r}$, where row i is the embedding for user i denoted by $u_{_i}$

S = The sigma matrix; a diagonal matrix with shape $r \times r$, where r is the rank/number of latent features

 \boldsymbol{V}^T = An item embedding matrix $\boldsymbol{V} \in \boldsymbol{R}^{m \times r}$, where row j is the embedding for item j denoted by v_j

r = rank/number of latent features

 s_{ν} = The k^{th} value of the sigma matrix S

 u_{ik} = The value in the i^{th} row and k^{th} column of the matrix U

 v_{jk} = The value in the j^{th} row and the k^{th} column of the matrix \boldsymbol{V}^T

Notations introduced in lecture 3:

 $f_{obs}(x_i, y_j)$ = A mathematical function/model learned to make predictions using the observed features of users and items

 $f_{latent}(u_i, v_j)$ = A mathematical function/model learned to make predictions using the latent features of users and items

 L^{obs} = The matrix of values predicted by the function f^{obs}

 L_{ij}^{obs} = Predicted value at i^{th} row and the j^{th} column of L^{obs}

 L_{ij}^{diff} = Difference between the i^{th} row and the j^{th} column of matrix L and the predicted matrix L^{obs}

 L^{ME} = Resultant matrix of matrix estimation on the matrix L^{diff}

 \hat{L}_{ij} = Combined estimate value of the i^{th} row and the j^{th} column of L^{obs} and L^{ME}

 $L_{ij}(t)$ = Value of the i^{th} row and the j^{th} column at time t of matrix L

 $u_i(t)^T$ = The i^{th} latent feature at time t of matrix U

 $u_i(t)^T$ = Transpose of the i^{th} latent feature at time t of matrix U

 $v_i(t)$ = The j^{th} latent feature at time t of matrix V

X =The time Series data

X(t) = Time Series data at a given time t

T = The time of the last instance of the time series data

 R^d = Real numbers in the *d*-dimensional space

P =The page matrix

 P_{ij} = The entry at the i^{th} row and the j^{th} column of the matrix P

 $(T + 1 \mod L)$ = The remainder after diving T + 1 by L

Z = Concatenation of page matrices for all users and items across time t

 \hat{Z} = Result of performing matrix estimation over the matrix Z

k = Number of measurements

 $\hat{L}_{ij}(t)$ = Predicted value of the i^{th} row and the j^{th} column at time t

 $f(u_i(t), v_j(t))$ = A mathematical function/model learned with inputs as the i^{th} latent feature of users at time t and j^{th} latent feature of items at time t

 $L_{ijk}(t)$ = Likelihood of the i^{th} user matching with the j^{th} item for a given measurement k at some time t

 $f_{obs}^{k}(x_{i}, y_{j})$ = A mathematical function/model learned using the observed users and items features for a given measurement k

 $f_{latent}^k(u_i(t), v_j(t))$ = A mathematical function/model learned over the latent features of users and items for a given time t and a given measurement k

 Z^k = Stacked Page matrices for k measurements

 $\hat{L}_{ijk}(t)$ = Predicted likelihood of the i^{th} user matching with the j^{th} item in a user-item interaction matrix for a given measurement k at a given time t

$$\widehat{L_{ijk}^{diff}}(t)$$
 = Result of matrix estimation on Z^k

 L_{ijk}^{obs} = Predicted likelihood of the i^{th} user matching with the j^{th} item in a user-item interaction matrix for a given measurement k