

BSc (Hons) in Software Engineering

Database Management Systems Course Code: IT1203 Week 5

Logical Database Design (Relational Model)

Objectives

BE ABLE TO IDENTIFY:

- What is logical database design?.
- How to derive a logical model from the information represented in the ER model (conceptual model)
- We focus on one type of logical model which is relational model

Relational Model

- Simple & elegant mod:
 - Everything is a relation (= table)
 Every relation is a table with rows & columns
- There are standard ways to convert from the E-R model (conceptual model) TO
 - Relational model (logical model)

Relational Model (contd.)

 The relational model represents the database as a collection of relations.

- Relation consists of
 - Relation schema
 - Relation instance (table)

Relation

- RELATION:
 - o Schema
 - Instance

Relation Schema

Describes the column heads (attributes) of the relation

- oname of the relation,oname of each filed,odomain of each field
 - Domain: is described by domain name and set of associated values

Relation Schema

 Schema Name(relation name) Students (sid:string, name:string;* Field name domain login:string, age:integer, gpa:real)

Domain GPA: real (0-4)

Relation Instance

- Set of tuples or records or rows:
- Each tuple has the same number of fields as the relation schema

Example: Relation Instance

Degree of a relation

- The degree of R is the number of attributes in R
- (ID,Name,Address,Phone)=4

ID	Name	Address	Phone
100	Sampath	Moratuwa	01992883
110	Amali	Colombo -3	01983733
120	Sanath	Negombo	null

Integrity Constraints= IC

- Data base is only good as the information stored in it
- DBMS must prevent entry of incorrect information
- To prevent :
 - Constraints / conditions are specified on a relational schema = ICs
- Database which satisfies all constraints specified on a database schema is a legal instance.
- DBMS enforces constraints permits only legal instances to be stored
- When the application is run the DBMS checks for the violation and disallows the changes to the data that violates the specified IC

• 10

Integrity Constraints

 Specified and enforced at different times.

- Specified: When the DBA /end user defines the data base schema
- Enforced: When database application is run
 - DBMS checks for violations
 - Disallow violating entries

Integrity Constraints

Many kinds of ICs:

- o Domain constraints
- Key constraints
- Entity integrity constraints
- Referential integrity constraints

Domain Constraints

 Domain constraints: value in the Column must be drawn from the domain associated with that column

Restricts the :

- Type
- Values that can appear in the field

Eg.

- Name Char (25)
- GPA (real >=0, =<4)

Key constraints

Is a statement that;

- A certain minimal subset of the fields of a relation is a unique identifier for a tuple.
- A set of fields that uniquely identifies a tuple according to a key constraint is called **Candidate Key**

Which Means

- No two in a legal instance cannot have identical values in all the fields of a key.
- No subset of the set of fields in a key is a unique identifier for a tuple. = (minimal)

Super Key

- Any other set of attributes that uniquely identify a tuple is called the superkey of a relation Student (SID, Name, Address, Contact, GPA)
- What is the minimal set of attributes that uniquely identify the relation?
 - SID =Referred to as Key
- (SID + Name) Is this unique?
 - Yes, but NOT the minimal set
- Referred to as Super Key

Key Constraints

<u>Example</u>: The CAR relation schema:
 CAR(State, Reg#, <u>SerialNo</u>, Make, Model, Year)

Can you identify the possible keys?

```
Key1 = {State, Reg#},
Key2 = {SerialNo},
```

- If a relation has several candidate keys, one is chosen arbitrarily to be the primary key. The primary key attributes are underlined.
 - {SerialNo, Make} is a superkey but not a key.

Constraints...

- Entity Integrity Constraints: states that primary key values cannot be null
 - This is because primary key values are used to identify the individual tuples.
- Referential Integrity Constraints
 - Some times information stored in one relation is linked to information stored in another relation.
 - If one is modified the other must be modified to keep the data consistent.
 - An IC involving both relations must be specified
 - IC involving 2 relations is a foreign key constraint.
 - Foreign keys enforce referential integrity constraints

Referential Integrity

- A constraint involving two relations
 - referencing relation
 - referenced relation.
- Tuples in the referencing relation have attributes FK (called foreign key attributes) that reference the primary key attributes PK of the referenced relation

```
referencing Enrolled (cid ,grade, studid)FK

referenced Students (sld name ,login, age, gpa)
```

 Display the foreign keys by drawing an arrow from the foreign key to the primary key

Referential Integrity

- The value in the foreign key column (can be <u>either</u>:
 - o a value of an existing primary key in the

referenced relation or a null

		FK	1			Ctudonto		
cid	grade	stuid		PK		Students		
Carnatic101	C	53666		sid	name	login	age	gpa
Reggae203	В	53666—	\rightarrow	53666	Jones	jones@cs	18	3.4
Topology112	A	53650 \		53688	Smith	smith@eecs	18	3.2
History105	В	53666		53650	Smith	smith@math	19	3.8
		<u> </u>			·			

Enrolled

DB operations & constraints

- IC are specified when a relation is created and enforced (checked) when a relation is modified
- 3 types of modifications to the relation :
 - Insertinserts a new tuple(s) into a relation.
 - Delete : delete tuple(s) in a relation.
 - Update : changes the values of some attributes in existing tuples .

Insert operation

- The insert operation can violate the following constraints:
 - o Domain constraints (invalid value)
 - Key constraints (duplicate key values)
 - Entity integrity constraints (null primary key value)
 - Referential integrity constraint (non-existing primary key value)

Students

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

examples

- Domain constraints (invalid value)
 Insert < 'abc', 'Tom', 'tom@lk', '17', 3.2 > into Students
 - o sid value is not in the domain
- Key constraints (duplicate key values)
 Insert <'53666','Tom','tom@lk','17',3.2>into Students
- Entity integrity constraints (null primary key value)

Insert <null, 'Tom', 'tom@lk', '17', 3.2>into Students

Referential integrity constraint (non-existing primary key value)

Insert <'IT','A','53900'>into Enrolled

Enrolled

<u>cid</u>	Grade	sid	
IT	A	53666	
IS	В	53650	22

Delete operation

Delete operation can violate referential integrity.

T	72401100	
cid	grade	stuid
Carnatic101	С	53666
Reggae203	В	53666
Topology112	A	53650
History105	В	53666
_		JI

Students

name	login	age	gpa
Jones	jones@cs	18	3.4
Smith	smith@eecs	18	3.2
Smith	smith@math	19	3.8
	Jones Smith	nameloginJonesjones@csSmithsmith@eecsSmithsmith@math	Jones jones@cs 18 Smith smith@eecs 18

- Two options:
 - Reject the deletion
 - o Cascade the delete

• 23

Update operation

- Update operation can be considered as a deleting a tuple and re-inserting the tuple with new values
- All constraints discussed in Insert & Delete need to be considered
 - Domain constraints (invalid value)
 - Key constraints (duplicate key values)
 - Entity integrity constraints (null primary key value)
 - Referential integrity constraint (non-existing primary key value)

In-Class Exercise

- Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course:
- STUDENT(SSN, Name, Major, Bdate)
- COURSE(Course#, Cname, Dept)
- ENROLL(SSN, Course#, Quarter, Grade)
- BOOK_ADOPTION(<u>Course#</u>, <u>Quarter</u>, Book_ISBN)
- TEXT(<u>Book_ISBN</u>, Book_Title, Publisher, Author)
- Draw a relational schema diagram specifying the foreign keys for this schema.

25

ER to Relational Mapping...

- In the Database Design process, we firstly derive a conceptual model (ER Diagram)
- This model needs to be mapped to the relational model in order to be implemented using a relational DBMS (RDBMS). Moving from Conceptual (ER) to lower level Logical Model (Relational)
- ER is independent of the details of the implementation (relational, network or OO)_
- This section discusses the rules that can be used for this process...

26

Mapping: Regular Entity

ER Model

Relational Model

○ Entity (strong) → Relation

o For example,

• 27

Mapping: Composite Attribute

ER Model

Relational Model

 Composite attributes → Set of simple atomic attributes

EMPLOYEE

surname firstname

Mapping: Multivalued Attributes

ER Model Model

Relational

• 29

Mapping:1:1 conversion with total participation

If there is a 1:1 relationship R from entity A to B and if B is in total participation with A on R then the foreign key is placed in B

Mapping:1:1 conversion with total participation

If there is a 1:1 relationship R from entity A to B and if A and B are both in total participation with R then A & B can be collapsed as 1 table

•31

Mapping:1:N Conversion

1:N relationships, post the identifier (Primary Key) from the 'one' side as an attribute into the 'many' side

Course

C-ID	C-Name	C-Type	C-Max	Director	Tel
1001	ILS	PG/MSc	75	P Burton	3906

Student

S-ID	S-Name	S-DofB	S-Degree	C-ID
2005123	M Mouse	1/1/1982	Economics	1001
2005987	D Duck	1/8/1984	Aquatic Eng.	1001

Mapping: M:N Conversion

 For N:M relationships, create a <u>new</u> table and post the identifiers from each of the linked entities as attributes in this table

Class

<u>CI-ID</u>	Cl-Name	CI-Type
CS504	IR	Lectures
CS520	DBMS	Lectures

FK Crass-Student

S-ID	Mark
2005123	67%
2005987	59%
	2005123

FK

Student

S-ID	S-Name	S-DofB	S-Degree	C-ID
2005123	M Mouse	1/1/1982	Economics	1001
2005987	D Duck	1/8/1984	Aquatic Eng.	1001

Mapping ..N-ary Relationships

ER Model

 N-ary relationship relation and n foreign keys

Relational Model

"Relationship"

Mapping Weak Entities ... (contd.)

Mapping - Summary

ER Model

- Entity (strong)
- Simple Attributes -> Attributes
- Primary Key
- 1:1 or 1:N relationship ->

- N-ary relationship -> Weak Entity

Relational Model

- -> Relation

 - -> Primary Key
- Composite attributes -> Set of simple attributes
 - Foreign keys
- M:N relationship -> Relation and foreign keys
- Multivalued attribute -> Relation and foreign key
 - Relation and n foreign keys
 - Relation and combination of primary and partial keys

Your Turn

• 37

Summary

- What is logical database design?.
- How to derive a logical model from the information represented in the ER model (conceptual model)
- We focus on one type of logical model which is relational model

Next Lecture

Creating Tables

Q & A

Thank You.