PC7: Algorithmes d'approximations

Christoph Dürr, Nguyễn Kim Thắng

1 Couverture par ensembles

On vous donne un univers $U = \{u_1, \ldots, u_n\}$ et m ensembles $S_1, \ldots, S_m \subseteq U$ ainsi qu'une pondération $w_i \in \mathbb{N}$ pour tout chacun des ensembles S_i . Une couverture par ensembles est une collection \mathcal{C} de ces ensembles telle que $\bigcup_{S_i \in \mathcal{C}} S_i = U$. L'objectif est de trouver une couverture telle que le poids total $\sum_{i:S_i \in \mathcal{C}} w_i$ soit minimal.

Ce problème est NP-complet. Nous allons chercher un algorithme d'approximation. Considérez l'algorithme suivant.

Figure 1: En gras une solution possible

Algorithm 1 Algorithme glouton pour Couverture des ensembles.

- 1: Initialement, $R \leftarrow U$ and $C \leftarrow \emptyset$.
- 2: while $R \neq \emptyset$ do
- 3: Soit S_i un ensemble qui minimise $\frac{w_i}{|S_i \cap R|}$.
- 4: $\mathcal{C} \leftarrow \mathcal{C} \cup S_i$.
- 5: $c_u \leftarrow \frac{w_i}{|S_i \cap R|}$ pour tous $u \in S_i \cap R$. {cette définition est pour l'analyse seulement.}
- 6: $R \leftarrow R \setminus S_i$.
- 7: Retourner C.
 - 1. Donner une interprétation de c_u .
 - 2. Montrer que $\sum_{S_i \in \mathcal{C}} w_i = \sum_{u \in U} c_u$.
 - 3. Notons OPT le coût d'une solution optimale. Renommons les éléments de l'univers U dans l'ordre dans lequel l'algorithme les a couverts, donc pour i < j, u_i a été couvert en même temps ou avant u_i . Montrer que pour tout $i = 1, \ldots, n$,

$$c_{u_i} \leq OPT/(n-i+1).$$

4. Déduire que l'algorithme glouton ci-dessus est une $O(\log n)$ -approximation.

2 Couverture par sommets

On vous donne un graphe G(V, E) avec n = |V|, m = |E| et chaque sommet $v \in V$ est associé avec un poids w_v . Une couverture par sommets est un sous-ensemble des sommets $S \subseteq V$ tel que chaque arête $e \in E$ a au moins une extrémité dans S. L'objectif est de trouver une couverture des arêtes telle que le poids total $w(S) = \sum_{v \in S} w_v$ soit minimal.

Ce problème est NP-complet. Nous allons chercher un algorithme d'approximation. Intuitivement, nous allons associer un prix p_e

Figure 2: Le problème de couverture par sommets.

à chaque arête. Les prix p_e (pour $e \in E$) sont équitables si $\sum_{e\ni v} p_e \le w_v$ pour chaque sommet v; c.a.d., les arêtes adjacentes à v ne payent pas plus que le poids du sommet v.

1. Montrer que pour chaque couverture des arêtes S, on a $\sum_{e} p_{e} \leq w(S)$.

Etant donné les prix p_e pour $e \in E$, un sommet v est dit saturé si $\sum_{e\ni v} p_e = w_v$. Considérer l'algorithme suivant.

Algorithm 2 Algorithme pour Couverture des arêtes.

- 1: Initialement, $p_e \leftarrow 0$ pour toutes $e \in E$.
- 2: while il y a une arête e = (u, v) telle que soit u ou v n'est pas saturé do
- 3: Choisir une telle arête e arbitraire.
- 4: Augmenter p_e au maximum sans violer la propriété équitable.
- 5: Retourner l'ensemble S des sommets saturés.
 - 2. Prouver que l'ensemble S et les prix p_e retournés par l'algorithme satisfait $w(S) \le 2\sum_{e \in E} p_e$.
 - 3. Montrer que l'algorithme est 2-approximation.