本节主题

输入输出接口 的编址方式

北京大学。嘉课

计算机组制成

制作人:陈龄就

输入输出接口(I/O接口)的基本结构

I/O端口及其编址方式

- I/O端口
 - 。I/O接口内部包含一组称为I/O端口的寄存器
 - 。每个I/O端口都需有自己的端口地址(或称端口号),以便CPU访问
- № I/O端口的编址方式
 - 。在计算机系统中,如何编排I/O接口的端口地址?

常见的I/O端口编址方式

- № I/O端口和存储器分开编址
 - 。I/O映像的I/O方式, I/O Mapped I/O
 - 。x86体系结构采用该方式

- № I/O端口和存储器统一编址
 - 。存储器映像的I/O方式, Memory Mapped I/O
 - 。 ARM、MIPS、PowerPC等体系结构采用该方式

I/O端口和存储器分开编址

❷ 假设地址宽度为3,一个分开编址的地址空间划分示例

I/O指令说明

IN指令(输入)

。格式:IN AC, PORT

。操作:把外设端口的内容输入到AL或AX

OUT指令(输出)

。格式:OUT PORT, AC

。操作:把AL或AX的内容输出到外设端口

IN/OUT指令的寻址方式和示例

❷ 端口地址为0~255

。直接寻址:用一个字节立即数指定端口地址

。间接寻址:用DX的内容指定端口地址

❷ 端口地址大于255

。间接寻址:用DX的内容指定端口地址

	76543210	76543210
IN:直接寻址	1110010w	port
IN:间接寻址	1110110w	
OUT:直接寻址	1110011w	port
OUT:间接寻址	1110111w	

IN	AL,	80H
IN	AX,	80H
OUT	80H,	AL
OUT	80H,	AX

MOV	DX,	288
IN	AL,	DX
IN	AX,	DX
OUT	DX,	AL
OUT	DX,	AX

I/O指令的地址译码过程示例

I/O端口和存储器统一编址

段设地址宽度为3,一个统一编址的地址空间划分示例

整个 地址空间

模型机采用了统一编址的方式

统一编址的特点

❷ 优点

- 。可以用访问存储器的指令来访问I/O端口,访问存储器的指令功能比较齐全,可以实现直接对I/O端口内的数据进行处理
- 。可以将CPU中的I/O操作与访问存储器操作统一设计为一套控制逻辑,简化内部结构,同时减少CPU的引脚数目

❷ 缺点

- 。由于I/O端口占用了一部分存储器地址空间,因而使存储地址空间减小
- 。由于利用访问存储器的指令来进行I/O操作,指令的长度通常比单独I/O 指令要长,因而指令的执行时间也较长

分开编址的特点

❷ 优点

- 。I/O端口不占用存储器地址,不会减少用户的存储器地址空间
- 。I/O指令编码短,执行速度快
- 。I/O指令的地址码较短,地址译码方便
- 。采用单独的I/O指令,使程序中I/O操作和其他操作层次清晰,便于理解

❷ 缺点

0

本节小结

输入输出接口 的编址方式

北京大学。嘉课

计算机组制方

制作人:随俊称

