DATASET ANALYSIS REPORT

Dataset: true_cost_of_fast_fashion

Name: Mani Chandana

Rollno:160623747089

Sec:AI&DS-B

1. To begin the data analysis, we import the necessary Python libraries:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
sns.set(style="whitegrid")

Purpose of Each Library

pandas:

Used for loading, manipulating, and analyzing structured data (like CSV files). It provides data structures like DataFrame for tabular data.

matplotlib.pyplot:

A powerful plotting library for creating static visualizations like line plots, bar charts, histograms, etc.

· seaborn:

Built on top of matplotlib, Seaborn provides a high-level interface for creating visually appealing statistical graphics (like box plots, heatmaps, etc.).

numpy:

Used for numerical operations, handling arrays, and mathematical functions efficiently.

sns.set(style="whitegrid"):

This sets the visual style for Seaborn plots. The "whitegrid" style makes it easier to interpret charts by adding grid lines over a white background.

2. Load the Dataset

```
df= pd.read_csv('/content/true_cost_fast_fashion.csv')
pd.read_csv() is a function from the pandas library used to read a CSV file
```

3. Overview of dataset

• The .head() method returns the **first 5 rows** of the DataFrame df by default.


```
[5] print("Shape:", df.shape)

Shape: (3000, 25)

[6] print("\nColumn Names:\n", df.columns.tolist())

Column Names:
['Brand', 'Country', 'Year', 'Monthly_Production_Tonnes', 'Avg_Item_Price_USD', 'Release_Cycles_Per_Year', 'Carbon_Emission', 'Avg_Item_Price_USD', 'Avg_Item_Price_USD', 'Avg_Item_Price_USD', 'Avg_Item_Price_USD', 'Avg_Item_Price_USD', 'Avg_
```

		Year	Monthly_Production_Tonnes	Avg_Item_Price_USD	Release_Cycles_Per_Year	Carbon_Emissions_tCO2e	Water_
	count	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	
	mean	2019.529667	497.319890	19.936187	17.757333	10003.873717	
	std	2.894002	149.543176	4.919126	6.981358	3017.980553	
	min	2015.000000	3.820000	1.090000	6.000000	206.090000	
	25%	2017.000000	396.360000	16.540000	12.000000	7892.112500	
	50%	2020.000000	495.535000	19.890000	18.000000	9926.940000	
	75%	2022.000000	596.800000	23.320000	24.000000	12012.625000	
	max	2024.000000	1005.840000	36.460000	29.000000	19585.470000	

4. Data Visualization and Exploration

- Generated a correlation matrix using .corr()
- Sustainability_Score correlates well with Compliance_Score and Transparency_IndexCarbon_Emissions_tCO2e is highly correlated with Landfill_Waste_Tonnes

- Created a scatter plot:
 Carbon_Emissions_tCO2e vs Sustainability_Score
- Finding: Brands with high emissions often have low sustainability scores

- Created a regression plot: Avg_Item_Price_USD vs Ethical_Rating
- Finding: A weak but positive trend higher prices tend to be associated with better ethical ratings

5. Predictive Modeling

- **Objective:** To predict Sustainability_Score based on a brand's practices and metrics.
- train_test_split
 From: sklearn.model selection
- Purpose: Splits your dataset into a training set and a testing set.

```
# Section 8: Simple Predictive Modeling

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
```

• The selected features are key operational and environmental indicators used to predict the Sustainability Score.

- Model Training
- RandomForestRegressor: A regression model that uses an ensemble of decision trees.

```
# Model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

RandomForestRegressor
RandomForestRegressor(random_state=42)
```

 This next step visualizes which features contributed most to the model's predictions of sustainability. • It ranks feature importance from the trained Random Forest model and plots them in a horizontal bar chart.

6. Conclusion

- This project shows that brands with a focus on transparency and compliance tend to achieve better sustainability outcomes.
 - Data-driven approaches like this can help guide strategic decisions in the fast fashion industry to make ethical, environmentally-conscious changes without compromising business viability.