The training formulation

 Given input output pairs at a number of locations, estimate the entire function

Start with an initial function

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

Effect of number of samples

- Problem with conventional gradient descent: we try to simultaneously adjust the function at all training points
 - We must process all training points before making a single adjustment
 - "Batch" update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
 - Eventually, when we have processed all the training points, we will have adjusted the entire function
 - With greater overall adjustment than we would if we made a single "Batch" update

Incremental Update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For all t = 1:T
 - For every layer *k*:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

$$W_k = W_k - \eta \nabla_{W_k} \mathbf{Div}(Y_t, \mathbf{d}_t)^T$$

Until Loss has converged

Incremental Updates

- The iterations can make multiple passes over the data
- A single pass through the entire training data is called an "epoch"
 - An epoch over a training set with T samples results in T updates of parameters

Incremental Update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K$
- Do:

 Over multiple epochs

 For all t=1:T• For every layer k:

 Compute $\nabla_{W_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)$ Update $W_k = W_k \eta \nabla_{W_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)^T$ One update
- Until Loss has converged

• If we loop through the samples in the same order, we may get *cyclic* behavior

 If we loop through the samples in the same order, we may get cyclic behavior

 If we loop through the samples in the same order, we may get cyclic behavior

 If we loop through the samples in the same order, we may get cyclic behavior

- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior

- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior

- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior

- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior

- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them randomly to get more convergent behavior

Incremental Update: Stochastic Gradient Descent

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For all t = 1:T
 - For every layer *k*:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

$$W_k = W_k - \eta \nabla_{W_k} \mathbf{Div}(\mathbf{Y_t}, \mathbf{d_t})^T$$

Until Loss has converged