# Results

## Tiffany Timbers & Jordan Bourak

# Contents

### library(tidyverse)

```
## -- Attaching packages
## v ggplot2 3.4.0
                                   1.0.1
## v tibble 3.1.8
                         v dplyr
                                   1.0.10
## v tidyr
             1.2.1
                         v stringr 1.5.0
## v readr
             2.1.3
                         v forcats 0.5.2
## -- Conflicts --
                                                             tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
```

This is citation, R Core Team (2019)

This project explores the historical population of horses in Canada between 1906 and 1972 for each province.

Horse population data were sourced from the Government of Canada's Open Data website (Government of Canada, 2017a and Government of Canada, 2017b).

The R programming language (R Core Team, 2019) and the following R packages were used to perform the analysis: knitr (Xie 2014), tidyverse (Wickham 2017), and bookdown (Xie 2016). *Note: this report is adapted from (Timbers 2020).* 

See Figure @ref(fig:plot of horse population).



Figure 1: plot of horse population

Figure 1: Horse populations for all provinces in Canada from 1906 - 1972

We can see from Figure 1 that Ontario, Saskatchewan and Alberta have had the highest horse populations in Canada. All provinces have had a decline in horse populations since 1940. This is likely due to the rebound of the Canadian automotive industry after the Great Depression and the Second World War. An interesting follow-up visualisation would be car sales per year for each Province over the time period visualised above to further support this hypothesis.

Suppose we were interested in looking in more closely at the province with the highest spread (in terms of standard deviation) of horse populations. We present the standard deviations here:

See Table @ref(tab:table of horse population).

Table 1: table of horse populations

| Province         | Std       |
|------------------|-----------|
| Saskatchewan     | 377265.58 |
| Ontario          | 266435.32 |
| Alberta          | 266063.19 |
| Manitoba         | 122403.87 |
| Quebec           | 111411.10 |
| New Brunswick    | 22019.49  |
| Nova Scotia      | 19879.25  |
| British Columbia | 14945.66  |
| P.E.I.           | 11355.75  |

horses\_sd\_table <- read\_csv("../../results/horses\_sd.csv")</pre>

```
## Rows: 9 Columns: 2
## -- Column specification -----
## Delimiter: ","
## chr (1): Province
## dbl (1): Std
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
largest_sd <- horses_sd_table$Province[1]</pre>
```

knitr::kable(horses\_sd\_table)

| Province         | Std       |
|------------------|-----------|
| Saskatchewan     | 377265.58 |
| Ontario          | 266435.32 |
| Alberta          | 266063.19 |
| Manitoba         | 122403.87 |
| Quebec           | 111411.10 |
| New Brunswick    | 22019.49  |
| Nova Scotia      | 19879.25  |
| British Columbia | 14945.66  |
| P.E.I.           | 11355.75  |
|                  |           |

```
knitr::kable(horses_sd_table, caption = "table of horse populations")
```

Note that we define standard deviation (of a sample) as

$$s = sqrt(sum_{i=1}^{n}(x_i - \bar{x})/(n-1))$$

Additionally, note that in Table 1 we consider the sample standard deviation of the number of horses during the same time span as Figure 1.

See Figure @ref(fig:plot of horse pop with largest sd).

Figure 2: Horse populations for the province with the largest standard deviation

In Figure 2 we zoom in and look at the province of?, which had the largest spread of values in terms of standard deviation.

References

# Historical number of horses in Saskatchewan 900,000 300,000 OF GRAND Year

Figure 2: plot of horse population with largest sd

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.