

Projeto Final da Disciplina Infraestrutura Google BigQuery – Pós Graduação MIT em Engenharia de dados: Big Data

Rafael Diniz Ramos

Google BigQuery

É um serviço de Data Warehouse para processamento de grandes volumes de dados, através de queries de consultas.

Conceitos Fundamentais

Armazenamento Colunar -> o armazenamento dos dados é colunar, deixando assim as consultas assertivas.

Cobrança por consulta -> a cobrança do serviço é feita através da quantidade de dados que será analisado/processado.

SQL -> o BigQuery usa linguagem SQL para fazer suas consultas.

Integração -> o BigQuery pode ser integrado com outras ferramentas do GCP.

Streaming de Dados -> é possível fazer análise de dados em tempos real.

Arquitetura do BigQuery

Como vimos acima em conceitos fundamentais, o BigQuery possui armazenamento colunar, ou seja, dados armazenados por colunas separadas e de forma compactada. Isso faz com que as consultas sejam rápidas possibilitando uma consulta com filtragem.

Por baixo do BigQuery, existe um sistema de arquivos distribuídos da Google, o Colossus. Ele armazena e replica os dados em vários servidores para que garanta assim a disponibilidade.

Além disso, os dados são separados em blocos e replicados em vários nós, para que aja paralelismo e tolerância a falhas.

Para fazer a consulta, o BigQuery utiliza o Dremel, que é o sistema de consulta do Google que utiliza SQL de forma distribuída.

Integração SQL e NoSQL

Apesar do BigQuery ser um serviço de Data Warehouse para análise e processamento de bases de dados em SQL, ele integra com alguns bancos NoSQL como o Firestore e o nativo Google Cloud Bigtable.

O Firestore é um banco NoSQL onde os arquivos tem o formato JSON, formato esse que é compatível com o BQ.

Outros que também são possíveis, é o Cassandra e o MongoDB, porém, não possui conexão direta com o BQ, os dados têm que ser exportados e salvos em CSV ou JSON para serem utilizados.

Em bases SQL, o BigQuey pode ser utilizado para fazer consultas de uma grande quantidade de dados, fazer análises e integração com ferramentas de visualização como o Looker Studio e Tableau.

Benefícios do BigQuery

Linguagem SQL -> utiliza SQL padrão p fazer consultas complexas eficientes.

Cobrança -> a cobrança é de acordo com a quantidade de processamento de dados da consulta.

Serverless -> não precisa de servidor, não sendo necessário infraestrutura e gerenciamento do hardware.

Desempenho -> as consultas são extremamente rápidas mesmo em grandes volumes de dados; pois sua estrutura de armazenamento colunar e o paralelismo nas consultas fazem com que a resposta seja rápida e eficiente.

Segurança -> oferece segurança avançada com criptografia e auditoria de acesso.

Pipeline de Dados

Pipeline de dados é uma infraestrutura, um tunelamento, com diversas tecnologias empregadas, para fazer a extração do dado, o tratamento e o seu carregamento (ETL).

Em meu dia a dia, o pipeline de dados começaria no nosso sistema ERP da empresa, onde são registradas as informações por exemplo de compra e venda. Eu extraio essas informações para um CSV com seus dados brutos, faço o tratamento, limpeza e enriquecimento com Python/Pandas e utilizo o Power BI para fazer análise

exploratória de dados e criação de dashboard, para assim gerar insights de compra e venda e apresentar para a Diretoria.

Prática

Vamos agora "subir" um dataframe para o BQ, mas antes vamos fazer alguns tratamentos em nossa base de dados.

Para isso iremos utilizar o Jupyter Notebook e Python.

Abaixo vamos visualizar nosso df.

Abaixo vamos excluir algumas colunas que não nos interessam para nossa análise, renomear as colunas, mudar o tipo de dado e trazer algumas informações do nosso dataframe.

Fazendo o upload de nossa base dados para o BigQuery.

Ao logar no Google Cloud, escolhemos a opção do menu BigQuery, BigQuery Studio.

Após, vamos em My First Project e criamos um novo projeto. O nome do meu projeto dado pelo Google foi mystic-rigging-417723. A hierarquia do BQ é Projeto, Conjunto de Dados e Tabela. É importante saber sobre essa hierarquia, pois ao dar o acesso de um projeto a um terceiro, você poderá restringir o nível de privilégio dado.

Com esta tela aberta, iremos clicar em adicionar, arquivo local.

Na origem vamos escolher "fazer upload" e selecionar o arquivo.

No destino, vamos criar primeiramente um conjunto de dados, onde nele iremos fazer a criação da tabela.

Em esquema, iremos marcar para identificar automaticamente, para que pegue o header do arquivo.

Esquema de nossa base de dados após ser "upado" no BQ.

Visualização de nosso dataframe.

ESQUE	EMA DETALHES	VISI	JALIZAÇÃO	LINHAGEM	PERFIL DE DADO		ALIDADE DOS [
inha /	Selecao	1.	Posicao	1.	Nome	1.	Nascimento	Clube	1	Altura //	Peso /	
1	Argentina		DF		TAGLIAFICO		1992-08-31	AFC Ajax (NED)		169	65	
2	Argentina		DF		SALVIO		1990-07-13	SL Benfica (POR)		167	69	
3	Argentina		DF		ANSALDI		1986-09-20	Torino FC (ITA)		181	73	
4	Argentina		DF		MASCHERANO		1984-08-06	Hebei China Fortune FC (CHN	1)	174	73	
5	Argentina		DF		ACUÑA		1991-10-28	Sporting CP (POR)		172	77	
6	Argentina		DF		MERCADO		1987-03-18	Sevilla FC (ESP)		181	81	
7	Argentina		DF		OTAMENDI		1988-12-02	Manchester City FC (ENG)		181	81	
8	Argentina		DF		ROJO		1990-03-20	Manchester United FC (ENG)		189	82	
9	Argentina		DF		FAZIO		1987-03-17	AS Roma (ITA)		199	85	
10	Australia		DF		BEHICH		1990-12-16	Bursaspor (TUR)		170	63	
11	Australia		DF		RISDON		1992-07-27	WS Wanderers FC (AUS)		169	70	
12	Australia		DF		MEREDITH		1988-05-04	Millwall FC (ENG)		179	71	
13	Australia		DF		SAINSBURY		1992-05-01	Grasshopper Club (SUI)		183	76	
14	Australia		DF		MILLIGAN		1985-04-08	Al Ahli SC (KSA)		178	78	
15	Australia		DF		JURMAN		1989-08-12	Suwon Samsung Bluewings F	C	190	83	
16	Australia		DF		DEGENEK		1994-04-28	Yokohama F-Marinos (JPN)		187	85	
17	Belgium		DF		DENDONCKER		1995-04-15	RSC Anderlecht (BEL)		188	76	

Estamos trabalhando um dataframe sobre a Copa do Mundo de 2018; vamos buscar algumas informações a respeito.

Quais jogadores do Brasil jogaram a Copa de 2018 e por quais clubes atuavam?

Quais jogadores das seleções da Copa jogavam no Barcelona?

Quais os jogadores mais altos de cada Seleção?

INFOR	MAÇÕES DO JOB	RESULTAD	os gráfi	CO JSON	DETALHES
Linha /	Selecao ▼	//	Nome ▼	/	altura_maxima ▼
10	Portugal		FONTE		191
11	Serbia		MILENKOVIĆ		195
12	Spain		PIQUÉ		194
13	Switzerland		DJOUROU		192
14	Uruguay		COATES		196
15	Korea Republic		S W KIM		197
16	Morocco		BOUTAIB		190
17	Nigeria		NWANKWO		197
18	Russia		DZYUBA		196
19	Australia		JONES		193
20	Belgium		COURTOIS		199
21	Brazil		CASSIO		195
22	Croatia		L. KALINIĆ		201
23	England		BUTLAND		196
24	Iceland		SCHRAM		198
25	IR Iran		A. BEIRANVAND		194
26	Morocco		BOUNOU		190
27	Morocco		EL KAJOUI		190
28	Panama		RODRIGUEZ		197
29	Peru		GALLESE		189
30	Poland	5	SZCZESNY		195
31	Senegal	(SOMIS		196
32	Serbia	\$	STOJKOVIĆ		195
33	Sweden	(DLSEN		198
34	Tunisia	E	BEN MUSTAPHA		192
35	France	1	NZONZI		197
36	Saudi Arabia	ŀ	CANNO		192
37	Senegal	5	S. SANE		196

Quais os top 10 clubes que tiveram seus jogadores participando da Copa?

Utilizando agora o Looker Studio, programa nativo da Google para geração de gráficos e relatórios, vamos criar um gráfico de barras com o resultado desta última query.

Mas antes, temos que salvar nossa consulta em forma de tabela, para podermos enviá-la para o Looker.

Adicionando a tabela com a consulta no Looker.

Vamos agora criar um gráfico de dispersão para compararmos duas variáveis, a de defensor (DF) com a altura referência de 1,88m.

O intuito é vermos se a maioria dos jogadores com 1,88m são defensores.

Para isso, iremos conectar o Colab ao BQ e migrarmos nosso dataframe inteiro pra lá.

Iremos usar novamente Python e as bibliotecas do Matplotlib e Seaborn.

Vamos instalar o Google Cloud, importar as bibliotecas supracitadas, importar o bigquery e a classe auth para nos autenticarmos no BQ.

Após, criamos um client onde por ele iremos conectar ao BQ para fazermos nossa consulta.

```
Arquivo Editar Ver Inserir Ambiente de execução Ferramentas Ajuda Todas as alterações foram salvas

- Código + Texto

[24] pip install geogle.cloud

Collecting geogle.cloud

Downloading geogle_cloud-0.34.0-py2.py3-none-any.whl (1.8 kB)
Installing collected packages: geogle.cloud
Successfully installed geogle.cloud-0.34.0

[29] import matplotlib.pyplot as plt
import seaborn as sns

[2] from geogle.cloud import bigquery

[3] from geogle.colab import auth

[4] auth.authenticate_user()

[5] project_id = 'mystic-rigging-417723'

[6] client = bigquery.Client(project= project_id)
```

Aqui, criamos o objeto "dados" que recebe nossa tabela inteira através da instrução SQL e em seguida, transformamos em Dataframe. Após, vimos que 174 jogadores têm acima de 1,88m.

```
dados = client.query(''' SELECT * FROM `mystic-rigging-417723.schema_projeto.tabela_wcup18` ''')
df = dados.result().to_dataframe()

jogadores_acima_188 = df[df['Altura'] >= 188]
total_jogadores_acima_188 = len(jogadores_acima_188)
print(total_jogadores_acima_188)
174
```

Nesse passo, criamos a coluna Defensores através da coluna Posição e extraímos apenas os jogadores com a posição DF; em seguida, criamos a variável "df_filtrado" que recebeu da coluna Altura, jogadores com altura maior igual a 1,88m. Após, contamos quantas linhas atendem a condição e calculamos a percentagem de cada.

```
df['Defensores'] = df['Posicao'] == 'DF'

df_filtrado = df[df['Altura'] >= 188]

total = len(df_filtrado)
defensores = len(df_filtrado[df_filtrado['Defensores']])
nao_defensores = total - defensores
percent_defensores = (defensores / total) * 100
percent_nao_defensores = (defensores / total) * 100
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df_filtrado, x='Altura', y='Defensores', hue='Defensores', palette=(False: 'blue', True: 'red'))
plt.xlabel('Defensor')
plt.ylabel('Defensor')
plt.title(f'Relação entre altura e posição de defensor(DF)\ndefensores: {percent_defensores: .2f}%, Não defensores: {percent_nao_defensores: .2f}%')
plt.legend(title='', loc='center right', labels=['Não defensores', 'Defensores'])
plt.show()
```

Agora podemos ver através do gráfico de dispersão que, surpreendentemente, a maioria dos jogadores com mais de 1,88m não são defensores.

Pipeline de dados do projeto

Considerações Finais

Primeiramente é bom dizer que é incrível conhecer essa ferramenta para consultas/análises/processamento de grandes volumes de dados!

Os resultados foram satisfatórios em minha opinião, e, poder agregar às outras ferramentas utilizadas nesse projeto, sem dúvida, enriquece e abre um leque para a criatividade e principalmente para o aprofundamento do conhecimento.