Pulse Waveforms

Free Running Pulse Train

Also known as a **square wave**. Your lab bench **function generators** can do this.

One-Shot

"One shot" means one pulse, and that's it.

3 one-shots with short on time:

Could be irregularly spaced, with irregular on time:

Using One Shot Example

Fans coming into Dodger Stadium. They don't come in on a rhythm, and some stay longer in the turnstiles than others. Extended to 16 bits, your lab counter can get one game's attendance. They'll count one-shots.

2 One-Shots with long on time

We don't know how long that third pulse will be on.

Pulse Waveform Characteristics Theoretical or Ideal

The "Ideal" thing is that the pulse rises and falls in zero time. Hah! That's a fairy tale.

Frequency and Period

See that frequency formula at the bottom right of last slide?

Frequency = 1 / Period

Frequency is measured in Hertz, kHz, MHz, GHz...

So, by algebra,

Period = 1 / Frequency

Period is time! It's ns, µs, ms, seconds, minutes... years...

Well, It's Not So Simple...

Frequency = 1 / Period only for a pure sine wave.

But for our square pulses,

Frequency = n / Period Where n = 1 is the fundamental; n = 2 is the 2^{nd} harmonic...

Let's Look at Those Pulses...

Frequency = n / Period Where n = 1 is the fundamental; n = 2 is the 2^{nd} harmonic...

But for our square pulses,

Frequency = n / 0.0068 s = 147 Hz, 294 Hz, 441 Hz, 588 Hz...

Frequency and Period Example

Period = half a second. What is the fundamental frequency?

For a quiz, you only need to know fundamentals. In 4th year and college, you'll do the others.

Frequency and Period Example (2)

Fundamental frequency = 1 kHz. What is the period? *Remember what kilo means...*

```
Period = 1 / frequency= 1 / 1000 Hz= 1 ms
```

Remember what milli means?

Frequency and Period Example (3)

Fundamental frequency = 146.52 MHz. What is the period?

```
    Period = 1 / frequency
    = 1 / 146,520,000 Hz
    = 6.825 ns
```

146.52 MHz is the national ham radio 2-meter simplex calling frequency. We DON'T want the 2nd harmonic, which would interfere with garage door openers using 293.04 MHz.

Practical Pulse Waveform

This is "Practical" because the **pulse takes some time to rise and fall**. *That's the real world, baby...*

Note how the **last halves of the rise and fall take more time** than the earlier half...

Practical or Real Pulse Waveform Characteristics

Getting 90% of the max pulse voltage is high enough to be "on". Dropping to 10% of the max pulse voltage is low enough to be "off".

Practical or Real Pulse Waveform Characteristics (2)

So, we don't wait for the rise to get to 100% or down to 0%. 90% or 10% is enough.

Practical or Real Pulse Waveform Characteristics (3)

Rise time = 8 mSec

Fall time = 6 mSec. They don't have to be equal.

Duty Cycle

- Ratio of On Time to Period
- Percentage (%) of the waveform's period

```
on time (sec)
X 100 = Duty Cycle (%)
period (sec)
```

Duty Cycle Example

- On time = 40 ns. Off time = 60 ns. How long is the period?
- Duty cycle = on time / period = 40ns / (40ns + 60ns) x 100% = 40%

Duty Cycle Example (2)

- On time = 9 hours. Off time = 1 hour. How long is the period?
- Duty cycle = on time / period = 9 h / (9 h + 1 h) x 100% = 90%

What's your prayer duty cycle?