Dynamic Programming II

Longest Common Subsequence

A subsequence of a sequence X is a sequence that can be derived from X by deleting some or no elements without changing the order of the remaining elements. Example: AURAY is a subsequence of SATURDAY.

<u>Problem</u>: Given two sequences X and Y, determine the longest subsequence that is common to both.

Example: CTAGGATC and TGCCATGCT

Answer: TGATC

Monkey: \nearrow

Lower bound: (problem size)

Applications: DNA analysis, plagiarism detection, min-

imum update/file difference

Longest Common Subsequence

Let
$$X = x_1 x_2 \dots x_n$$
 and $Y = y_1 y_2 \dots y_m$

Step 1: Define $LCS(i,j)\equiv$ the length of the longest common subsequence of $x_1 \dots x_i$ and $y_1 \dots y_j$

$$\frac{\text{Step 2: }LCS(i,j) =}{\begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } x_i = y_j \\ \max\{LCS(i,j-1), LCS(i-1,j)\} & \text{otherwise} \end{cases}}$$

Are x_i and y_j the same or not?

Longest Common Subsequence


```
LCS(i,j) =
                                     if i = 0 or j = 0
 LCS(i-1,j-1)+1
                                     if x_i = y_i
 \max\{LCS(i, j-1), LCS(i-1, j)\} otherwise
         Empty "t" "g" "c" "c" "a" "t" "g"
   Empty
    "a"
                                              5
```

Answer: TGATC

Matrix Chain Multiplication: Warmup


```
0.362486 0.349886 0.0373537 0.532757

0.704704 0.670112 0.046316 0.989327

0.652105 0.905593 0.758684 0.257016 0.83652 0.473145 0.0355967 0.0583746 0.242247 0.611268 0.193707 0.173584
```

If we multiply together matrices of size $a \times b$ and $b \times c$, how large will the answer be?

Answer: $a \times c$

If we multiply together matrices of size $a \times b$ and $b \times c$, how many single-register multiplications does it take to get one entry in the answer?

Answer: b

How many total multiplications are necessary to multiply together matrices of size $a \times b$ and $b \times c$?

Answer: abc

Assume that $M_1: 10 \times 100, M_2: 100 \times 5, M_3: 5 \times 50$

Goal: Compute $M_1M_2M_3$

Which is better? $(M_1M_2)M_3$ or $M_1(M_2M_3)$

Matrix multiplication associativity: As far as the answer is concerned, it doesn't matter.

 $M_1M_2: 10 \cdot 100 \cdot 5 = 5000$ multiplications

 $(M_1M_2)M_3:10\cdot 5\cdot 50=2500$ multiplications

Total: 7500 multiplications

 $M_2M_3:100\cdot 5\cdot 50=25000$ multiplications

 $M_1(M_2M_3): 10 \cdot 100 \cdot 50 = 50000$ multiplications

Total: 75000 multiplications

Which is preferable? $(M_1M_2)M_3$

Given a sequence of matrix multiplications $M_1M_2...M_n$, a parenthesization is valid iff the parenthesization could be used to program the ordering into software without running-time ambiguity.

Example: $M_1(M_2M_3)(M_4M_5)$ is invalid.

Example: $M_1((M_2M_3)(M_4M_5))$ is valid.

<u>Problem</u>: Given a sequence of n matrices (of valid sizes) to be multiplied together $M_1M_2...M_n$, determine the parenthesization that uses the minimum number of single-register multiplications to get the answer.

Monkey: \nearrow

Lower bound: (problem size)

Example: $M_1: 3 \times 5, M_2: 5 \times 4, M_3: 4 \times 1, M_4: 1 \times 9$

Step 1: Define $m(i,j) \equiv$ the minimum number of single-register multiplications needed to determine the product $M_i M_{i+1} \dots M_j$

$$\frac{\text{Step 2: } m(i,j) =}{\begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} m(i,k) + m(k+1,j) + \text{cost} & \text{otherwise} \end{cases}}$$

Notice that there must be a last multiplication. Assume that it occurs between M_k and M_{k+1} .

$$(M_i M_{i+1} \dots M_k) (M_{k+1} \dots M_{j-1} M_j)$$

 $M_1: 3 \times 5, M_2: 5 \times 4, M_3: 4 \times 1, M_4: 1 \times 9$ $m(i,j) = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} m(i,k) + m(k+1,j) + \text{cost} & \text{otherwise} \end{cases}$ Step 3:

m	j = 1	j=2	j=3	j=4
i = 1	0	k=1?	k=1,2?	$\begin{array}{ c c } k=1,2,3 \\ ? \end{array}$
i=2	(undefined)	0	k=2 ?	k=2,3 ?
i=3	(undefined)	(undefined)	0	k=3 ?
i=4	(undefined)	(undefined)	(undefined)	0

 $M_1: 3 \times 5, M_2: 5 \times 4, M_3: 4 \times 1, M_4: 1 \times 9$

$$m(i, j) = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} m(i, k) + m(k+1, j) + \text{cost} & \text{otherwise} \end{cases}$$

m	j=1	j=2	j=3	j=4
i = 1	0	k=1 60	k=1,2?	$\begin{array}{ c c c } k=1,2,3 \\ ? \end{array}$
i=2	(undefined)	0	k=2 20	k=2,3?
i=3	(undefined)	(undefined)	0	$k=3 \atop 36$
i=4	(undefined)	(undefined)	(undefined)	0

$$m(1,2): k = 1 \rightarrow m(1,1) + m(2,2) + 3 \cdot 5 \cdot 4 = 60$$

$$m(2,3): k = 2 \rightarrow m(2,2) + m(3,3) + 5 \cdot 4 \cdot 1 = 20$$

$$m(3,4): k = 3 \rightarrow m(3,3) + m(4,4) + 4 \cdot 1 \cdot 9 = 36$$

 $M_1: 3 \times 5, M_2: 5 \times 4, M_3: 4 \times 1, M_4: 1 \times 9$

$$m(i,j) = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} m(i,k) + m(k+1,j) + \text{cost} & \text{otherwise} \end{cases}$$

m	j = 1	j=2	j=3	j=4
i=1	0	k=1 60	k=1,2 35	$\begin{array}{ c c c c }\hline k=1,2,3\\?\\\hline \end{array}$
i=2	(undefined)	0	k=2 20	k=2,3 ?
i=3	(undefined)	(undefined)	0	$k=3 \atop 36$
i=4	(undefined)	(undefined)	(undefined)	0

$$m(1,3): k = 1 \to m(1,1) + m(2,3) + 3 \cdot 5 \cdot 1 = 35$$

 $k = 2 \to m(1,2) + m(3,3) + 3 \cdot 4 \cdot 1 = 72$

 $M_1: 3 \times 5, M_2: 5 \times 4, M_3: 4 \times 1, M_4: 1 \times 9$

$$m(i,j) = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} m(i,k) + m(k+1,j) + \text{cost} & \text{otherwise} \end{cases}$$

m	j = 1	j=2	j=3	j=4
i = 1	0	k=1 60	$\begin{array}{c} k=1,2\\35\end{array}$	$\begin{array}{ c c } k=1,2,3 \\ ? \end{array}$
i=2	(undefined)	0	k=2 20	k=2,3 65
i=3	(undefined)	(undefined)	0	$k=3 \atop 36$
i=4	(undefined)	(undefined)	(undefined)	0

$$m(2,4): k = 2 \to m(2,2) + m(3,4) + 5 \cdot 4 \cdot 9 = 216$$

 $k = 3 \to m(2,3) + m(4,4) + 5 \cdot 1 \cdot 9 = 65$

 $M_1: 3 \times 5, M_2: 5 \times 4, M_3: 4 \times 1, M_4: 1 \times 9$

$$m(i,j) = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} m(i,k) + m(k+1,j) + \text{cost} & \text{otherwise} \end{cases}$$

m	j=1	j=2	j=3	j=4
i = 1	0	k=1 60	$k=\frac{1}{35}$	$k=1,2,3 \\ 62$
i=2	(undefined)	0	k=2 20	k=2,3 65
i=3	(undefined)	(undefined)	0	$k=3 \atop 36$
i=4	(undefined)	(undefined)	(undefined)	0

$$m(1,4): k = 1 \to m(1,1) + m(2,4) + 3 \cdot 5 \cdot 9 = 200$$

$$k = 2 \rightarrow m(1,2) + m(3,4) + 3 \cdot 4 \cdot 9 = 204$$

$$k = 3 \rightarrow m(1,3) + m(4,4) + 3 \cdot 1 \cdot 9 = 62$$

Answer: $(M_1(M_2M_3))M_4$