BỘ GIÁO DỰC VÀ ĐÀO TẠO

KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2017 Bài thi: TOÁN

ĐỀ THI CHÍNH THỨC (Đề thi có 06 trang)

Thời gian làm bài: 90 phút, không kể thời gian phát đề

Ho, tên thí sinh:

Mã đề thi 104

Số báo danh:

Câu 1. Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau

Mệnh đề nào dưới đây đúng?

- **A**. Hàm số đồng biến trên khoảng (-2; 0).
- **B**. Hàm số đồng biến trên khoảng $(-\infty; 0)$.
- C. Hàm số nghịch biến trên khoảng (0; 2).
- **D**. Hàm số nghịch biến trên khoảng $(-\infty; -2)$.

Câu 2. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu $(S): x^2 + (y+2)^2 + (z-2)^2 = 8$. Tính bán kính R của (S).

A.
$$R = 8$$
.

B.
$$R = 4$$
.

C.
$$R = 2\sqrt{2}$$
.

D.
$$R = 64$$
.

Câu 3. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;0) và B(0;1;2). Vecto nào dưới đây là một vecto chỉ phương của đường thẳng AB?

$$\overrightarrow{b} = (-1; 0; 2)$$

$$\mathbf{B}. \overrightarrow{c} = (1; 2; 2).$$

C.
$$\vec{d} = (-1; 1; 2)$$
.

A.
$$\overrightarrow{b} = (-1; 0; 2)$$
. **B.** $\overrightarrow{c} = (1; 2; 2)$. **C.** $\overrightarrow{d} = (-1; 1; 2)$. **D.** $\overrightarrow{a} = (-1; 0; -2)$.

Câu 4. Cho số phức z = 2 + i. Tính |z|.

A.
$$|z| = 3$$
.

B.
$$|z| = 5$$
.

C.
$$|z| = 2$$
.

C.
$$|z| = 2$$
. D. $|z| = \sqrt{5}$.

Câu 5. Tìm nghiệm của phương trình $\log_2(x-5) = 4$.

A.
$$x = 21$$
.

B.
$$x = 3$$
.

$$C_{x} = 11$$

D.
$$x = 13$$
.

Câu 6. Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

B.
$$y = x^4 - x^2 + 1$$
.

C.
$$y = x^4 + x^2 + 1$$
.

$$\mathbf{D}. \ y = -x^3 + 3x + 2.$$

Câu 7. Hàm số $y = \frac{2x+3}{x+1}$ có bao nhiều điểm cực trị ?

B. 0.

C. 2.

D. 1.

Câu 8. Cho α là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?

$$\mathbf{A}.\log_2 a = \log_a 2.$$

$$\mathbf{B}.\log_2 a = \frac{1}{\log_2 a}.$$

A.
$$\log_2 a = \log_a 2$$
. **B.** $\log_2 a = \frac{1}{\log_2 a}$. **C.** $\log_2 a = \frac{1}{\log_a 2}$. **D.** $\log_2 a = -\log_a 2$.

$$\mathbf{D}.\log_2 a = -\log_a 2.$$

Câu 9. Tìm nguyên hàm của hàm số $f(x) = 7^x$.

$$\mathbf{A.} \int 7^x \mathrm{d}x = 7^x \mathrm{ln}7 + C.$$

$$\mathbf{B.} \int 7^x \mathrm{d}x = \frac{7^x}{\ln 7} + C.$$

$$C. \int 7^x \mathrm{d}x = 7^{x+1} + C.$$

$$\mathbf{D}. \int 7^x \mathrm{d}x = \frac{7^{x+1}}{x+1} + C.$$

Câu 10. Tìm số phức z thỏa mãn z + 2 - 3i = 3 - 2i.

A.
$$z = 1 - 5i$$
.

B.
$$z = 1 + i$$
.

C.
$$z = 5 - 5i$$
.

D.
$$z = 1 - i$$
.

Câu 11. Tìm tập xác định *D* của hàm số $y = (x^2 - x - 2)^{-3}$.

$$\mathbf{A}.D=\mathbb{R}.$$

$$\mathbf{B}.\ D=(0;+\infty).$$

C.
$$D = (-\infty; -1) \cup (2; +\infty)$$
.

D.
$$D = \mathbb{R} \setminus \{-1; 2\}$$
.

Câu 12. Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(2; 3; -1), N(-1; 1; 1) và P(1; m-1; 2). Tìm m để tam giác MNP vuông tại N.

A.
$$m = -6$$
.

B.
$$m = 0$$
.

C.
$$m = -4$$
.

D.
$$m = 2$$
.

Câu 13. Cho số phức $z_1 = 1 - 2i$, $z_2 = -3 + i$. Tìm điểm biểu diễn số phức $z = z_1 + z_2$ trên mặt phẳng tọa độ.

A.
$$N(4; -3)$$
.

B.
$$M(2; -5)$$
.

C.
$$P(-2; -1)$$
.

D.
$$Q(-1;7)$$

Câu 14. Cho hình phẳng D giới hạn bởi đường cong $y = \sqrt{x^2 + 1}$, trục hoành và các đường thẳng x = 0, x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

A.
$$V = \frac{4\pi}{3}$$
.

$$\mathbf{B}.\,V=2\pi\,.$$

C.
$$V = \frac{4}{3}$$
.

D.
$$V = 2$$
.

Câu 15. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3). Gọi M_1, M_2 lần lượt là hình chiếu vuông góc của M trên các trục Ox, Oy. Vecto nào dưới đây là một vecto chỉ phương của đường thẳng M_1M_2 ?

A.
$$\vec{u}_2 = (1; 2; 0)$$
.

B.
$$\vec{u}_3 = (1; 0; 0)$$

B.
$$\vec{u}_3 = (1; 0; 0)$$
. **C**. $\vec{u}_4 = (-1; 2; 0)$. **D**. $\vec{u}_1 = (0; 2; 0)$.

D.
$$\vec{u}_1 = (0; 2; 0)$$

Câu 16. Đồ thị của hàm số $y = \frac{x-2}{x^2-4}$ có bao nhiều tiệm cận ?

Câu 17. Kí hiệu z_1, z_2 là hai nghiệm phức của phương trình $z^2 + 4 = 0$. Gọi M, N lần lượt là các điểm biểu diễn của z_1 , z_2 trên mặt phẳng tọa độ. Tính T=OM+ON với O là gốc tọa độ.

$$\mathbf{A}.\ T=2\sqrt{2}.$$

B.
$$T = 2$$
.

C.
$$T = 8$$
.

D.
$$T = 4$$
.

Câu 18. Cho hình nón có bán kính đáy $r = \sqrt{3}$ và độ dài đường sinh l = 4. Tính diện tích xung quanh S_{xq} của hình nón đã cho.

A.
$$S_{xq} = 12\pi$$
.

$$\mathbf{B}.\,S_{xq}=4\sqrt{3}\pi\,.$$

C.
$$S_{xa} = \sqrt{39} \pi$$
.

D.
$$S_{xa} = 8\sqrt{3}\pi$$
.

Câu 19. Tìm tất cả các giá trị thực của tham số m để phương trình $3^x = m$ có nghiệm thực.

A.
$$m \geq 1$$
.

B.
$$m \geq 0$$
.

C.
$$m > 0$$
.

D.
$$m \neq 0$$
.

Câu 20. Tìm giá trị nhỏ nhất m của hàm số $y = x^2 + \frac{2}{x}$ trên đoạn $\left[\frac{1}{2}; 2\right]$.

A.
$$m = \frac{17}{4}$$
.

B.
$$m = 10$$
.

C.
$$m = 5$$
.

D.
$$m = 3$$
.

Câu 21. Cho hàm số $y = \sqrt{2x^2 + 1}$. Mệnh đề nào dưới đây đúng?

- **A**. Hàm số nghịch biến trên khoảng (-1; 1).
- **B**. Hàm số đồng biến trên khoảng $(0; +\infty)$.
- C. Hàm số đồng biến trên khoảng $(-\infty; 0)$.
- **D**. Hàm số nghịch biến trên khoảng $(0; +\infty)$.

Câu 22. Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm M(1; 2; -3) và có một vecto pháp tuyến $\overrightarrow{n} = (1; -2; 3)$?

$$A. x - 2y + 3z - 12 = 0.$$

B.
$$x - 2y - 3z + 6 = 0$$
.

C.
$$x - 2y + 3z + 12 = 0$$
.

$$\mathbf{D}. \ x - 2y - 3z - 6 = 0.$$

Câu 23. Cho hình bát diện đều cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình bát diện đó. Mệnh đề nào dưới đây đúng?

$$\mathbf{A}. S = 4\sqrt{3}a^2.$$

B.
$$S = \sqrt{3}a^2$$
.

$$\mathbf{C}.\,S=2\sqrt{3}a^2.$$

D.
$$S = 8a^2$$
.

Câu 24. Cho hàm số $y = -x^4 + 2x^2$ có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình $-x^4 + 2x^2 = m$ có bốn nghiệm thực phân biệt.

A.
$$m > 0$$
.

B.
$$0 \le m \le 1$$
.

C.
$$0 < m < 1$$
.

D.
$$m < 1$$
.

Câu 25. Cho
$$\int_{0}^{\frac{\pi}{2}} f(x) dx = 5. \text{ Tính } I = \int_{0}^{\frac{\pi}{2}} [f(x) + 2\sin x] dx.$$

A.
$$I = 7$$
.

B.
$$I = 5 + \frac{\pi}{2}$$
.

C.
$$I = 3$$
.

D.
$$I = 5 + \pi$$
.

Câu 26. Tìm tập xác định *D* của hàm số $y = \log_3(x^2 - 4x + 3)$.

A.
$$D = (2 - \sqrt{2}; 1) \cup (3; 2 + \sqrt{2})$$
.

B.
$$D = (1; 3)$$
.

C.
$$D = (-\infty; 1) \cup (3; +\infty)$$
.

D.
$$D = (-\infty; 2 - \sqrt{2}) \cup (2 + \sqrt{2}; +\infty)$$
.

Câu 27. Cho khối chóp tam giác đều S. ABC có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích V của khối chóp S. ABC.

A.
$$V = \frac{\sqrt{13}a^3}{12}$$

B.
$$V = \frac{\sqrt{11}a^3}{12}$$

$$\mathbf{C}.\ V = \frac{\sqrt{11}a^3}{6}.$$

A.
$$V = \frac{\sqrt{13}a^3}{12}$$
. **B.** $V = \frac{\sqrt{11}a^3}{12}$. **C.** $V = \frac{\sqrt{11}a^3}{6}$. **D.** $V = \frac{\sqrt{11}a^3}{4}$.

Câu 28. Tìm nguyên hàm F(x) của hàm số $f(x) = \sin x + \cos x$ thỏa mãn $F\left(\frac{n}{2}\right) = 2$.

$$\mathbf{A}.\,F(x)=\cos x-\sin x+3.$$

$$\mathbf{B}.\,F(x)=-\cos x+\sin x+3.$$

$$\mathbf{C}. F(x) = -\cos x + \sin x - 1.$$

$$\mathbf{D}. F(x) = -\cos x + \sin x + 1.$$

Câu 29. Với mọi a, b, x là các số thực dương thỏa mãn $\log_2 x = 5\log_2 a + 3\log_2 b$, mệnh đề nào dưới đây đúng?

$$\mathbf{A}.\ x = 3a + 5b.$$

B.
$$x = 5a + 3b$$
.

C.
$$x = a^5 + b^3$$
. D. $x = a^5b^3$.

$$\mathbf{D}.\ x = a^5 b^3.$$

Câu 30. Cho hình chóp S. ABCD có đáy là hình chữ nhật với AB = 3a, BC = 4a, SA = 12a và SA vuông góc với đáy. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S. ABCD.

$$\mathbf{A}.\ R = \frac{5a}{2}.$$

$$\mathbf{B}.\,R=\frac{17a}{2}.$$

C.
$$R = \frac{13a}{2}$$
.

$$\mathbf{D}.\,R=6a.$$

Câu 31. Tìm giá trị thực của tham số m để phương trình $9^x - 2.3^{x+1} + m = 0$ có hai nghiệm thực x_1, x_2 thỏa mãn $x_1 + x_2 = 1$.

A.
$$m = 6$$
.

B.
$$m = -3$$
.

C.
$$m = 3$$
.

$$\mathbf{D}.\ m=1.$$

Câu 32. Cho hình hộp chữ nhật $ABCD \cdot A'B'C'D'$ có AD = 8, CD = 6, AC' = 12. Tính diên tích toàn phần S_{tp} của hình trụ có hai đường tròn đáy là hai đường tròn ngoại tiếp hai hình chữ nhật ABCD và A'B'C'D'.

A.
$$S_{tp} = 576\pi$$
.

B.
$$S_{tp} = 10(2\sqrt{11} + 5)\pi$$
.

$$\mathbf{C}.\,S_{tp}=26\pi.$$

D.
$$S_{tp} = 5(4\sqrt{11} + 5)\pi$$
.

Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; -1; 2), B(-1; 2; 3) và thẳng $d: \frac{x-1}{1} = \frac{y-2}{1} = \frac{z-1}{2}$. Tìm điểm M(a; b; c) thuộc d sao $MA^2 + MB^2 = 28$, biết c < 0.

A.
$$M(-1; 0; -3)$$
. **B**. $M(2; 3; 3)$.

C.
$$M\left(\frac{1}{6}; \frac{7}{6}; -\frac{2}{3}\right)$$

C.
$$M\left(\frac{1}{6}; \frac{7}{6}; -\frac{2}{3}\right)$$
. D. $M\left(-\frac{1}{6}; -\frac{7}{6}; -\frac{2}{3}\right)$.

Câu 34. Một vật chuyển động theo quy luật $s = -\frac{1}{3}t^3 + 6t^2$ với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiều?

Câu 35. Một người chạy trong thời gian 1 giờ, vận tốc v(km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol với đỉnh $I\left(\frac{1}{2};8\right)$ và trục đối

xứng song song với trục tung như hình bên. Tính quãng đường s người đó chạy được trong khoảng thời gian 45 phút, kế từ khi bắt đầu chạy.

A.
$$s = 4,0(km)$$
.

B.
$$s = 2, 3(km)$$
.

C.
$$s = 4, 5(km)$$
.

D.
$$s = 5, 3(km)$$
.

Câu 36. Cho số phức z thỏa mãn |z| = 5 và |z+3| = |z+3-10i|. Tìm số phức w = z - 4 + 3i.

A.
$$w = -3 + 8i$$
.

B.
$$w = 1 + 3i$$
.

C.
$$w = -1 + 7i$$
. D. $w = -4 + 8i$.

$$\mathbf{D}.\,w=\,-\,4+8i\,.$$

Câu 37. Tìm giá trị thực của tham số m để đường thẳng d: y = (2m-1)x + 3 + m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = x^3 - 3x^2 + 1$.

A.
$$m = \frac{3}{2}$$
.

B.
$$m = \frac{3}{4}$$
.

C.
$$m = -\frac{1}{2}$$
. D. $m = \frac{1}{4}$.

D.
$$m = \frac{1}{4}$$

Câu 38. Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm M(2;3;3), N(2;-1;-1), P(-2;-1;3) và có tâm thuộc mặt phẳng $(\alpha): 2x + 3y - z + 2 = 0.$

A.
$$x^2 + y^2 + z^2 - 2x + 2y - 2z - 10 = 0$$
. **B**. $x^2 + y^2 + z^2 - 4x + 2y - 6z - 2 = 0$. **C**. $x^2 + y^2 + z^2 + 4x - 2y + 6z + 2 = 0$. **D**. $x^2 + y^2 + z^2 - 2x + 2y - 2z - 2 = 0$.

B.
$$x^2 + y^2 + z^2 - 4x + 2y - 6z - 2 = 0$$
.

C.
$$x^2 + y^2 + z^2 + 4x - 2y + 6z + 2 = 0$$

D.
$$x^2 + y^2 + z^2 - 2x + 2y - 2z - 2 = 0$$

Câu 39. Cho khối lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác cân với AB = AC = a, $\widehat{BAC} = 120^{\circ}$, mặt phẳng (AB'C') tạo với đáy một góc 60° . Tính thể tích V của khối lăng trụ đã cho.

$$\mathbf{A}.\,V=\frac{3a^3}{9}.$$

B.
$$V = \frac{9a^3}{8}$$

$$\mathbf{C}.\ V = \frac{a^3}{8}.$$

B.
$$V = \frac{9a^3}{8}$$
. **C.** $V = \frac{a^3}{8}$. **D.** $V = \frac{3a^3}{4}$.

Câu 40. Tìm tất cả các giá trị thực của tham số m để hàm số $y = \ln(x^2 - 2x + m + 1)$ có tập xác định là \mathbb{R} .

A.
$$m = 0$$
.

B.
$$0 < m < 3$$
.

$$C. m < -1 \text{ hoặc } m > 0.$$

D.
$$m > 0$$
.

Câu 41. Cho hàm số $y = \frac{mx + 4m}{r + m}$ với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên các khoảng xác định. Tìm số phần tử của S.

Câu 42. Cho $F(x) = \frac{1}{2x^2}$ là một nguyên hàm của hàm số $\frac{f(x)}{x}$. Tìm nguyên hàm của hàm số $f'(x)\ln x$.

A.
$$\int f'(x) \ln x dx = -\left(\frac{\ln x}{x^2} + \frac{1}{2x^2}\right) + C$$
. **B.** $\int f'(x) \ln x dx = \frac{\ln x}{x^2} + \frac{1}{x^2} + C$.

B.
$$\int f'(x) \ln x dx = \frac{\ln x}{x^2} + \frac{1}{x^2} + C$$

C.
$$\int f'(x) \ln x dx = -\left(\frac{\ln x}{x^2} + \frac{1}{x^2}\right) + C$$
. D. $\int f'(x) \ln x dx = \frac{\ln x}{x^2} + \frac{1}{2x^2} + C$.

D.
$$\int f'(x) \ln x dx = \frac{\ln x}{x^2} + \frac{1}{2x^2} + C$$

Câu 43. Với các số thực dương x, y tùy ý, đặt $\log_3 x = \alpha, \log_3 y = \beta$. Mệnh đề nào dưới đây

$$\mathbf{A}.\log_{27}\left(\frac{\sqrt{x}}{y}\right)^3 = 9\left(\frac{\alpha}{2} - \beta\right).$$

$$\mathbf{B.} \log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = \frac{\alpha}{2} + \beta.$$

C.
$$\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = 9 \left(\frac{\alpha}{2} + \beta \right)$$
.

$$\mathbf{D}.\log_{27}\left(\frac{\sqrt{x}}{y}\right)^3 = \frac{\alpha}{2} - \beta.$$

Câu 44. Cho mặt cầu (S) tâm O, bán kính R = 3. Mặt phẳng (P) cách O một khoảng bằng 1 và cắt (S) theo giao tuyến là đường tròn (C) có tâm H. Gọi T là giao điểm của tia HO với (S), tính thể tích V của khối nón có đỉnh T và đáy là hình tròn (C).

$$\mathbf{A}.\ V = \frac{32\pi}{3}.$$

B.
$$V = 16\pi$$
.

C.
$$V = \frac{16\pi}{3}$$
.

D.
$$V = 32\pi$$
.

Câu 45. Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số $y = x^3 - 3mx^2 + 4m^3$ có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 4 với O là gốc tọa độ.

A.
$$m = -\frac{1}{\sqrt[4]{2}}; m = \frac{1}{\sqrt[4]{2}}$$

B.
$$m = -1$$
; $m = 1$.

C.
$$m = 1$$
.

D.
$$m \neq 0$$
.

Câu 46. Xét các số nguyên dương a, b sao cho phương trình $a \ln^2 x + b \ln x + 5 = 0$ có hai nghiệm phân biệt x_1, x_2 và phương trình $5\log^2 x + b\log x + a = 0$ có hai nghiệm phân biệt x_3 , x_4 thỏa mãn $x_1x_2 > x_3x_4$. Tìm giá trị nhỏ nhất S_{\min} của S = 2a + 3b.

A.
$$S_{\min} = 30$$
.

B.
$$S_{\min} = 25$$
.

C.
$$S_{\min} = 33$$
.

D.
$$S_{\min} = 17$$
.

Câu 47. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-2;0;0), B(0;-2;0) và C(0;0;-2). Gọi D là điểm khác O sao cho DA, DB, DC đôi một vuông góc với nhau và I(a;b;c) là tâm mặt cầu ngoại tiếp tứ diện ABCD. Tính S=a+b+c.

$$A. S = -4.$$

B.
$$S = -1$$
.

C.
$$S = -2$$
.

D.
$$S = -3$$
.

Câu 48. Cho hàm số y = f(x). Đồ thị của hàm số y = f'(x) như hình bên. Đặt $g(x) = 2f(x) + (x+1)^2$. Mệnh đề nào dưới đây đúng?

B.
$$g(1) < g(-3) < g(3)$$
.

C.
$$g(3) = g(-3) < g(1)$$
.

D.
$$g(3) = g(-3) > g(1)$$
.

Câu 49. Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9, tính thể tích *V* của khối chóp có thể tích lớn nhất.

A.
$$V = 144$$
.

B.
$$V = 576$$
.

C.
$$V = 576\sqrt{2}$$
.

D.
$$V = 144\sqrt{6}$$
.

Câu 50. Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn $z \cdot \overline{z} = 1$ và $|z - \sqrt{3} + i| = m$. Tìm số phần tử của S.

A. 2.