Package 'godley'

February 21, 2025

Type Package

Title Stock-Flow-Consistent Model Simulator

Version 0.2.1

Maintainer Elżbieta Jowik < jowik.elzbieta@gmail.com>

Description

Define, simulate, and validate stock-flow consistent (SFC) macroeconomic models. The godley R package offers tools to dynamically define model structures by adding variables and specifying governing systems of equations. With it, users can analyze how different macroeconomic structures affect key variables, perform parameter sensitivity analyses, introduce policy shocks, and visualize resulting economic scenarios. The accounting structure of SFC models follows the approach outlined in the seminal study by Godley and Lavoie Godley and Lavoie (2007, ISBN:978-1-137-08599-3), ensuring a comprehensive integration of all economic flows and stocks. The algorithms implemented to solve the models are based on methodologies from Kinsella and O'Shea (2010) <doi:10.2139/ssrn.1729205>, Peressini and Sullivan (1988, ISBN:0-387-96614-5), and contributions by Joao Macalos.

```
URL https://gamrot.github.io/godley/
BugReports https://github.com/gamrot/godley/issues
License GPL (>= 3)
Encoding UTF-8
Imports dplyr, stringr, tidyr, igraph, purrr, vctrs, rlang, rootSolve,
     plotly, magrittr, checkmate, vecsets, lubridate, data.table,
     tibble, visNetwork
Depends R (>= 4.1.0)
RoxygenNote 7.3.2
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Michał Gamrot [aut, cph],
     Iwo Augustyński [ctb],
     Julian Kacprzak [ctb],
     Elżbieta Jowik [cre, ctb]
```

2 add_equation

Repository CRAN

Date/Publication 2025-02-21 11:50:24 UTC

Contents

add (equation	Add equations to the model	
Index			12
	simulate_scenario .		10
	plot_simulation		9
	plot_cycles		8
	d		8
	create_shock		7
	create_sensitivity .		7
	-		
	change_init		ϵ
	_		
	-		
	add equation		2

Description

Add equations to the model

Usage

```
add_equation(model, ...)
```

Arguments

model SFC model object
... additional arguments passed to the function.

Value

updated SFC model object containing added equation

add_equation_single 3

add_equation_single Add single equation to the model

Description

```
helper for add_equation()
```

Usage

```
add_equation_single(model, equation, hidden = FALSE, desc = "")
```

Arguments

model SFC model object

equation string equation in format: x = y + z - a * b + (c + d) / e + f[-1]

hidden logical, indicates if equation should be written as hidden, defaults to FALSE

desc string equation description

add_scenario Add scenario to the model

Description

Add scenario to the model

Usage

```
add_scenario(
  model,
  name = "expansion",
  origin = "baseline",
  origin_start = NA,
  origin_end = NA,
  shock
)
```

Arguments

model SFC model object

name string name of scenario, defaults to 'expansion'

origin string name of origin scenario, from which the new scenario will be created,

defaults to 'baseline'

origin_start numeric period number from origin scenario from which the new scenario will

oegin

origin_end numeric period number from origin scenario on which the new scenario will end

shock shock object from create_shock() and add_shock()

4 add_shock

Value

updated SFC model object containing added scenario

add_shock

Add shock to shock object

Description

Add shock to shock object

Usage

```
add_shock(
   shock,
   variable,
   value = NA,
   rate = NA,
   absolute = NA,
   start = NA,
   end = NA,
   desc = ""
)
```

Arguments

shock tibble from create_shock() variable string variable name value numeric, an explicit value or values for the variable, will be extended with last value rate numeric, multiplier to influence the original value of the variable numeric, absolute value to influence the original value of the variable absolute numeric or date period number for the shock to take place, defaults to NA start numeric or date period number for the shock to take place, defaults to NA end string variable description desc

Value

updated shock object containing added shock

add_variable 5

add_variable

Add variables to the model

Description

Add variables to the model

Usage

```
add_variable(model, ...)
```

Arguments

model SFC model object

... additional arguments passed to the function.

Value

updated SFC model object containing added variable

add_variable_single

Add single variable to the model

Description

```
helper for add_variable()
```

Usage

```
add_variable_single(model, name, init = NA, desc = "")
```

Arguments

model	SFC model	object
-------	-----------	--------

name string name for added variable

init numeric initial value, defaults to 1e-05

desc string variable description

6 create_model

change_init

Change initial value of a variable

Description

Change initial value of a variable

Usage

```
change_init(model, name, value)
```

Arguments

model SFC model object name string variable name

value numeric value that will replace existing initial value

Value

updated SFC model object with new variable initial value

create_model

Create SFC model object

Description

Create SFC model object

Usage

```
create_model(name = "SFC model", template)
```

Arguments

name string name for created SFC model object

template string name of model template chosen from: 'SIM', 'PC', 'LP', 'REG', 'OPEN',

'BMW', 'BMWK', 'DIS', 'DISINF', 'SIMEX', 'PCEX' or user created SFC

model object to be used as a template

Value

SFC model object

create_sensitivity 7

create_sensitivity

Create model with sensitivity scenarios

Description

Create model with sensitivity scenarios

Usage

```
create_sensitivity(model_pass, variable, lower = 0, upper = 1, step = 0.1)
```

Arguments

model_pass SFC model object that will be used as a baseline for sensitivity calculation

variable string name of the variable that will be used lower numeric lower bound value of the variable upper numeric upper bound value of the variable

step numeric step between upper and lower bounds for the variable to take value

Value

SFC model object with sensitivity scenarios

create_shock

Create shock used in add_scenario().

Description

Create shock used in add_scenario().

Usage

```
create_shock()
```

Value

shock object

8 plot_cycles

d

Calculate 1 order lag difference of a variable in model

Description

Calculate 1 order lag difference of a variable in model

Usage

d(x)

Arguments

Х

variable name

Details

this is a special function to be used exclusively in model equation strings e.g. x = d(y) + z

Value

difference

plot_cycles

Network plot of the model

Description

Network plot of the model

Usage

```
plot_cycles(model, save_file = NULL)
```

Arguments

model SFC model object created with create_model save_file name and path to save the plot as html file

Details

This function creates a representation of a model as a directed graph. Additionally it shows cycles in the model including these with lagged variables. Graph can be saved as html file.

Value

visNetwork object

plot_simulation 9

Examples

```
model <- godley::create_model(name = "SFC model", template = "BMW")
plot_cycles(model)</pre>
```

 ${\tt plot_simulation}$

Plot simulations of multiple variables in multiple scenarios

Description

Plot simulations of multiple variables in multiple scenarios

Usage

```
plot_simulation(
  model,
  scenario = "baseline",
  take_all = FALSE,
  from = NA,
  to = NA,
  expressions = "Y"
)
```

Arguments

model	SFC model object
scenario	vector of strings or single string name of scenario(s) from which take variables values, defaults to 'baseline'
take_all	logical indicating whether all scenarios containing the given scenario name string(s) should be used, defaults to FALSE
from	numeric period number from which the plot should start, defaults to maximum value
to	numeric period number on which the plot should end, defaults to minimum value
expressions	vector of strings or single string name of variable(s) expression(s) to plot, defaults to 'Y'

Value

```
plotly plot
```

simulate_scenario

prepare

Make initial matrix row for baseline scenario and prepare equations for simulate_scenario()

Description

Make initial matrix row for baseline scenario and prepare equations for simulate_scenario()

Usage

```
prepare(model, verbose = FALSE)
```

Arguments

model

SFC model object

verbose

logical to tell if additional model verbose should be displayed

Value

verified and prepared SFC model object

simulate_scenario

Simulate scenario of SFC model object

Description

Simulate scenario of SFC model object

Usage

```
simulate_scenario(
  model,
  scenario,
  periods = NA,
  start_date = NA,
  method = "Gauss",
  max_iter = 350,
  tol = 1e-05,
  hidden_tol = 0.1,
  verbose = FALSE
)
```

simulate_scenario 11

Arguments

model	SFC model object
scenario	vector of strings or single string name of scenario(s) to simulate
periods	numeric total number of rows (periods) in the model, defaults to 100
start_date	character date to begin the simulation in the format "yyyy-mm-dd"
method	string name of method used to find solution chosen from: 'Gauss', 'Newton', defaults to 'Gauss'
max_iter	numeric maximum iterations allowed per period, defaults to 350
tol	numeric tolerance accepted to determine convergence, defaults to 1e-05
hidden_tol	numeric error tolerance to accept the equality of hidden equations, defaults to 0.1 .
verbose	logical to tell if additional model verbose should be displayed

Value

updated model containing simulated scenario(s)

Index

```
add_equation, 2
add_equation_single, 3
add_scenario, 3
add_shock, 4
add_variable, 5
add_variable_single, 5

change_init, 6
create_model, 6, 8
create_sensitivity, 7
create_shock, 7

d, 8

plot_cycles, 8
plot_simulation, 9
prepare, 10

simulate_scenario, 10
```