Who Needs Privacy?

Analyses

Contents

Items	2
Need for privacy	. 2
Sociability	. 3
Integrity	. 3
Anxiety	. 3
Risk avoidance	. 3
Traditionalism	. 4
Sample	5
Missing values	. 5
Response time	. 5
Response patterns	
Power analyses	9
Multivariate normal distribution	10
Measures	11
Need for Privacy	. 12
Sociability	. 46
Integrity	. 58
Anxiety	. 66
Risk avoidance	. 73
Traditionalism	. 82
Results	90
Structural regression model	. 90
Tables	. 94
Figures	
Additional analyses	100
Structural regression model with need for privacy measured as bifactor	. 100
Structural regression model with individual items	

Items

"To what extent do you agree or disagree with the following statements?"

(-3) Strongly Disagree, (-2) Disagree, (-1) Slightly Disagree, (0) Neutral, (1) Slightly Agree (2) Agree, (3) Strongly Agree

(Inverted items are labelled "*".)

Need for privacy

Informational

- 1. I prefer it when other people do not know much about me.
- 2. When given the chance, I prefer being incognito.
- 3. I don't want personal information about me being publicly available.
- 4. Not everybody needs to know everything about me.

Societal

Government Surveillance

- 1. I need government agencies to respect my privacy, even if that hinders a greater societal cause.
- 2. I need the information that companies (e.g., Amazon, Facebook, or Google) have about me to stay private so that the government cannot access it.
- 3. I don't want the government to gather information about me, even if that makes it more difficult for them to spend tax income efficiently.
- 4. I don't want government agencies to monitor my personal communication, even if doing so prevents future terrorist attacks.

Anonymity

- 5. I need to be able to surf online anonymously.
- 6. I need to be able to use a fake name on social network sites to preserve my privacy.
- 7. I feel the need to avoid places with video surveillance.
- 8. I prefer not to carry my ID with me all the time to preserve my privacy

Both

9. I feel the need to protect my privacy from government agencies.

Interpersonal

Online

- 1. I feel the need to disclose personal information about me on social network sites.
- 2. My need for privacy is so strong that it prevents me from using Facebook actively.
- 3. I don't feel the need to be able to communicate about very personal things with others online.
- 4. I need to know that my boss or future employers cannot find information about me online that they might disapprove of.

Offline

- 5. I always need a person to talk about personal things.*
- 6. I don't need to know a lot of things about people I interact with, as that might cause problems.
- 7. I don't feel the need to tell my friends all my secrets.

- 8. I sometimes feel the need to share my personal point of view with someone I don't know that well.*
 Both
 - 9. I feel the need to protect my privacy from other people.

Sociability

- 1. I shy away from crowds of people.*
- 2. I like to have a lot of people around me.
- 3. I usually prefer to do things alone.*
- 4. I really feel the need for other people if I am by myself for long.
- 5. I prefer jobs that let me work alone without being bothered by other people.*
- 6. I'd rather vacation at a popular beach than an isolated cabin in the woods.
- 7. Social gatherings are usually boring to me.*
- 8. I enjoy parties with lots of people.

Integrity

- 1. I am often tempted to take things that do not belong to me.*
- 2. I don't think there's anything wrong with cheating a little on one's income tax forms.*
- 3. When traveling, I would always declare everything at customs.
- 4. If I found a wallet, I would not be tempted to keep any money.
- 5. If I could get away with it, I would leave a restaurant or bar without paying the bill.*
- 6. I would buy stolen merchandise if the price was right.*
- 7. I would mislead people when it comes to my academic achievements.*
- 8. I think that there are circumstances when people are justified in cheating.*

Self-designed

- 9. I have cheated on an exam in school.*
- 10. I have watched movies or listened to music online for free, even though I knew doing so violated copyright law.*
- 11. Certain things that I have done would be considered illegal in some places.*

Anxiety

- 1. I am not a worrier.*
- 2. I am easily frightened.
- 3. I rarely feel fearful or anxious.*
- 4. I often feel tense and jittery.
- 5. I'm seldom apprehensive about the future.
- 6. I often worry about things that might go wrong.
- 7. I have fewer fears than most people.*
- 8. Frightening thoughts sometimes come into my head.

Risk avoidance

- 1. Over the years I've done some pretty stupid things.*
- 2. I think things through before coming to a decision.
- 3. Occasionally I act first and think later.*
- 4. I always consider the consequences before I take action.

- 5. I often do things on the spur of the moment.*
- 6. I rarely make hasty decisions.
- 7. I plan ahead carefully when I go on a trip.
- 8. I think twice before I answer a question.

Traditionalism

- 1. I'm pretty set in my ways.
- 2. I think it's interesting to learn and develop new hobbies.*
- 3. Once I find the right way to do something, I stick to it.
- 4. I often try new and foreign foods.*
- 5. I prefer to spend my time in familiar surroundings.
- 6. Sometimes I make changes around the house just to try something different.*
- 7. On a vacation, I prefer going back to a tried and true spot.
- 8. I follow the same route when I go someplace.

Sample

Missing values

Inspect how much data is missing.

Shows that most people answered all questions. There were 15 empty data sets, and some with more than 50% missing data. These were deleted. In the final sample, there was 0.004 missing data.

Response time

Inspect how long it took respondents to answer the questionnaire.

Shows that some participants took very long to answer. Inspect regular times.

Distribution looks okay (no early peak). Also no answers faster than 5 mins. No respondents will be excluded.

Response patterns

We inspect response patterns using the Guttman criterion. Cases with most extreme values will be excluded.

Only few participants seem to have particularly atypical data. Will filter respondents with m>.30. Inspect those cases to see whether they indeed show irregular response patterns.

```
##
      id male age inc time pri_nee_gen_1 pri_nee_gen_2 pri_nee_gen_3 pri_nee_gen_4
## 1 128
            1 19
                    2 458
                                                                     7
                                        1
                                                      1
                    1 351
                                        7
            1 19
     pri_nee_soc_1 pri_nee_soc_2 pri_nee_soc_3 pri_nee_soc_4 pri_nee_soc_5 pri_nee_soc_6
## 1
                 1
                                1
                                              1
                                                             1
## 2
                                7
                                              7
                                                             7
                                                                           7
                                                                                          7
     pri_nee_soc_7 pri_nee_soc_8 pri_nee_soc_9 pri_nee_int_1 pri_nee_int_2 pri_nee_int_3
                                                             7
## 1
                 1
                               1
                                              1
                                                                           1
## 2
                                7
                                              7
                                                             7
                                                                           1
                                                                                          1
##
     pri_nee_int_4 pri_nee_int_5 pri_nee_int_6 pri_nee_int_7 pri_nee_int_8 pri_nee_int_9
## 1
                                7
                                                                           7
## 2
                 1
                                              1
                                                             1
##
     soc_1 soc_2 soc_3 soc_4 soc_5 soc_6 soc_7 soc_8 itg_1 itg_2 itg_3 itg_4 itg_5 itg_6
                     7
                                  7
                                        7
                                                    7
               7
                           1
                                              7
                                                           7
                                                                 7
                                                                                   7
## 1
         1
                                                                             1
                                                                       1
## 2
                            4
                                  4
                                        4
                                              4
                                                    4
                                                           6
                                                                 5
                                                                       2
                                                                             3
                                                                                   7
     itg_7 itg_8 itg_9 itg_10 itg_11 anx_1 anx_2 anx_3 anx_4 anx_5 anx_6 anx_7 anx_8 ria_1
## 1
               7
                     7
                            7
                                    7
                                          7
                                                1
                                                      7
                                                             1
                                                                   7
                                                                                      1
         7
                                                                         1
                     7
               5
                             6
                                    7
                                                2
                                                             2
                                                                   6
                                                                         2
## 2
         6
                                          6
                                                      6
                                                                                            6
##
     ria_2 ria_3 ria_4 ria_5 ria_6 ria_7 ria_8 tra_1 tra_2 tra_3 tra_4 tra_5 tra_6 tra_7
                           7
                                                           7
                                                                       7
## 1
               7
                     1
                                  1
                                        1
                                              1
                                                     1
                                                                 1
                                                                             1
                                                                                   7
## 2
         2
               6
                     2
                            6
                                  2
                                        2
                                              2
                                                     2
                                                           6
                                                                 1
                                                                       7
                                                                             3
                                                                                          2
     tra_8 miss_per guttman
                      0.788
## 1
                  0
         1
## 2
         2
                       0.442
```

The cases indeed show extreme response patterns. Also, several inverted variables were not recognized (e.g., pri_nee_int_1, pri_nee_int_5, pri_nee_int_8, itg_1, itg_2, itg_5, itg_6, itg_7, itg_8, itg_9, itg_10, itg_11, soc_1, soc_3, soc_5, soc_7, anx_1, anx_3, anx_5, anx_7, ria_1, ria_3, ria_5, tra_2, tra_4, tra_6). These respondents will be deleted.

Power analyses

Estimate achieved power for small effects.

```
##
##
        approximate correlation power calculation (arctangh transformation)
##
##
                  n = 273
##
                  r = 0.1
         sig.level = 0.05
##
##
             power = 0.379
##
       alternative = two.sided
Estimate achieved power for small to moderate effects.
##
##
        approximate correlation power calculation (arctangh transformation)
##
##
                  n = 273
##
                  r = 0.2
##
         sig.level = 0.05
##
              power = 0.916
       alternative = two.sided
Estimate the size of effects that we were able to find with a probability of 95%.
##
##
        approximate correlation power calculation (arctangh transformation)
##
##
                  n = 273
                  r = 0.216
##
##
         sig.level = 0.05
##
             power = 0.95
##
       alternative = two.sided
Estimate the sample size needed to find small effects with a probability of 95%.
##
##
        approximate correlation power calculation (arctangh transformation)
##
##
                  n = 1293
##
                  r = 0.1
##
         sig.level = 0.05
##
             power = 0.95
##
       alternative = two.sided
```

Multivariate normal distribution

We test for the assumption of multivariate normal distribution by running Mardia's test.

```
## Test Statistic p value Result
## 1 Mardia Skewness 61296.1 6.45e-239 NO
## 2 Mardia Kurtosis 24.7 0.00e+00 NO
```

Shows that the assumptions of multivariate normal distribution was violated. Will hence use robust estimator in the following analyses.

Measures

In what follows, we present the measures we used. Specifically, we present each item's distribution and a confirmatory factor analysis (CFA) of the original scale. If the scale did not show sufficient fit, we first ran exploratory factor analyses (EFA) to better determine the underlying factor structure. In an iterative process, we then adapted the scales (e.g., by introducing subdimensions, trying bifactor solutions, or deleting items).

Need for Privacy

Items

CFA 1

We first analyze all dimensions separately to see how they do individually and as specified theoretically a priori. The general aim is, of course, to find the general structure of the items when analyzed together.

Informational Privacy

illiormational i rivacy			
## lavaan 0.6-3 ended normally after 22 ite	rations		
##			
## Optimization method	NLMINB		
## Number of free parameters	8		
##			
## Number of observations	273		
##			
## Estimator	ML	Robust	
## Model Fit Test Statistic	23.261	17.543	
## Degrees of freedom	2	2	
## P-value (Chi-square)	0.000	0.000	
## Scaling correction factor		1.326	
## for the Satorra-Bentler correction			
##			
## Model test baseline model:			
##			
## Minimum Function Test Statistic	184.045	151.709	
## Degrees of freedom	6	6	
## P-value	0.000	0.000	
##			
## User model versus baseline model:			
##			
## Comparative Fit Index (CFI)	0.881	0.893	
## Tucker-Lewis Index (TLI)	0.642	0.680	
##			
## Robust Comparative Fit Index (CFI)		0.883	
## Robust Tucker-Lewis Index (TLI)		0.650	
##			
## Loglikelihood and Information Criteria:			
##			
## Loglikelihood user model (HO)	-1682.729	-1682.729	
## Loglikelihood unrestricted model (H1)	-1671.099	-1671.099	
##			
## Number of free parameters	8	8	
## Akaike (AIC)	3381.459	3381.459	
## Bayesian (BIC)	3410.335	3410.335	
## Sample-size adjusted Bayesian (BIC)	3384.969	3384.969	
##			
## Root Mean Square Error of Approximation:			
##			
## RMSEA	0.197		
## 90 Percent Confidence Interval	0.130 0.273		0.235
## P-value RMSEA <= 0.05	0.000	0.001	
##			
## Robust RMSEA		0.194	
## 90 Percent Confidence Interval		0.118	0.282
##			

```
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.062
                                                                  0.062
##
## Parameter Estimates:
##
##
     Information
                                                  Expected
                                                Structured
##
     Information saturated (h1) model
##
     Standard Errors
                                                Robust.sem
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
     pri_nee_gen =~
##
                         1.000
                                                               0.943
                                                                        0.707
##
       pri_nee_gen_1
##
       pri_nee_gen_2
                          0.914
                                   0.140
                                            6.510
                                                     0.000
                                                               0.862
                                                                        0.624
##
       pri_nee_gen_3
                         0.631
                                   0.095
                                            6.648
                                                     0.000
                                                               0.595
                                                                        0.527
                                                     0.000
##
       pri_nee_gen_4
                          0.558
                                   0.096
                                            5.807
                                                               0.526
                                                                        0.500
##
## Variances:
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
##
##
      .pri_nee_gen_1
                         0.892
                                   0.164
                                            5.431
                                                     0.000
                                                               0.892
                                                                        0.501
##
      .pri_nee_gen_2
                          1.165
                                   0.165
                                            7.066
                                                     0.000
                                                               1.165
                                                                        0.610
##
                         0.919
                                   0.094
                                            9.745
                                                     0.000
                                                               0.919
                                                                        0.722
      .pri_nee_gen_3
##
      .pri_nee_gen_4
                          0.829
                                   0.099
                                            8.341
                                                     0.000
                                                               0.829
                                                                        0.750
                                            5.019
##
                          0.889
                                   0.177
                                                     0.000
                                                               1.000
                                                                        1.000
       pri_nee_gen
```

Does not show adequate fit.

Government

## ##	lavaan 0.6-3 ended normally after 23 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	12		
##	1			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	16.155	12.921	
##	Degrees of freedom	9	9	
## ##	1	0.064	0.166 1.250	
##	Scaling correction factor for the Satorra-Bentler correction		1.250	
##	for the Satoria Bentler Correction			
	Model test baseline model:			
##				
##	Minimum Function Test Statistic	725.827	576.462	
##	Degrees of freedom	15	15	
##	P-value	0.000	0.000	
##				
	User model versus baseline model:			
##	Componentiano Eit Indon (CEI)	0.000	0.003	
##	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.990 0.983	0.993 0.988	
##	Idekel Lewis index (ILI)	0.905	0.966	
##	Robust Comparative Fit Index (CFI)		0.993	
##	Robust Tucker-Lewis Index (TLI)		0.988	
##				
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-2635.744		
##	Loglikelihood unrestricted model (H1)	-2627.666	-2627.666	
## ##	Number of free parameters	12	12	
##	Akaike (AIC)	5295.488		
##	Bayesian (BIC)	5338.802		
##	Sample-size adjusted Bayesian (BIC)	5300.753		
##				
##	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.054	0.040	0 000
##	90 Percent Confidence Interval	0.000 0.096	0.000	0.080
##	P-value RMSEA <= 0.05	0.388	0.609	
##	Robust RMSEA		0.045	
##	90 Percent Confidence Interval		0.000	0.095
##			2,000	
##	Standardized Root Mean Square Residual:			
##	-			
##	SRMR	0.024	0.024	
##	ъ			
##	Parameter Estimates:			

##							
##	Information				Expected		
##	Information satu	rated (h1)	model	St	ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov =~						
##	pri_nee_soc_1	1.000				1.115	0.764
##	<pre>pri_nee_soc_2</pre>	0.950	0.094	10.055	0.000	1.059	0.707
##	pri_nee_soc_3	0.977	0.085	11.490	0.000	1.089	0.754
##	pri_nee_soc_4	1.119	0.081	13.730	0.000	1.247	0.814
##	pri_nee_soc_5	0.882	0.088	9.966	0.000	0.983	0.623
##	pri_nee_soc_9	0.977	0.086	11.345	0.000	1.089	0.724
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_soc_1	0.887	0.097	9.175	0.000	0.887	0.416
##	.pri_nee_soc_2	1.119	0.170	6.589	0.000	1.119	0.499
##	.pri_nee_soc_3	0.902	0.129	6.994	0.000	0.902	0.432
##	.pri_nee_soc_4	0.791	0.110	7.170	0.000	0.791	0.337
##	.pri_nee_soc_5	1.525	0.151	10.068	0.000	1.525	0.612
##	.pri_nee_soc_9	1.078	0.110	9.780	0.000	1.078	0.476
##	<pre>pri_nee_gov</pre>	1.243	0.176	7.068	0.000	1.000	1.000

Shows good fit, can be used individually for future research.

Anonymity

111	iony mitoy				
## ##	lavaan 0.6-3 ended normally after 33 item	rations			
##	Optimization method		NLMINB		
##	Number of free parameters		8		
##	Number of fice parameters		J		
##	Number of observations		273		
##			2.0		
##	Estimator		ML	Robust	
##	Model Fit Test Statistic		11.179	9.225	
##	Degrees of freedom		2	2	
##			0.004	0.010	
##	-			1.212	
##	for the Satorra-Bentler correction				
##					
##	Model test baseline model:				
##					
##	Minimum Function Test Statistic	1	73.863	156.865	
##	Degrees of freedom		6	6	
##	P-value		0.000	0.000	
##					
##	User model versus baseline model:				
##					
##	Comparative Fit Index (CFI)		0.945	0.952	
##	Tucker-Lewis Index (TLI)		0.836	0.856	
##					
##	<u> i</u>			0.948	
##	Robust Tucker-Lewis Index (TLI)			0.843	
##					
	Loglikelihood and Information Criteria:				
##		4.0	00 000	1000 000	
##	Loglikelihood user model (HO)		09.282		
##	Loglikelihood unrestricted model (H1)	-19	03.692	-1903.692	
##	Number of free parameters		8	8	
##	Number of free parameters Akaike (AIC)	30	34.564		
##	Bayesian (BIC)		63.440		
##	Sample-size adjusted Bayesian (BIC)		38.074	3838.074	
##	bampic bize dajubica bayesian (bio)	50	00.014	0000.074	
	Root Mean Square Error of Approximation:				
##	noor noun square siror or approximation.				
##	RMSEA		0.130	0.115	
##		0.063			0.187
##	P-value RMSEA <= 0.05		0.027	0.043	
##					
##	Robust RMSEA			0.127	
##	90 Percent Confidence Interval			0.053	0.214
##					
##	Standardized Root Mean Square Residual:				
##	-				
##	SRMR		0.045	0.045	
##					
##	Parameter Estimates:				

## ## ## ## ##	Information Information satu Standard Errors Latent Variables:	rated (h1)	model	St	Expected ructured bust.sem		
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_ano =~						
##	pri_nee_soc_5	1.000				0.677	0.429
##	pri_nee_soc_6	1.272	0.219	5.810	0.000	0.861	0.565
##	pri_nee_soc_7	1.630	0.284	5.736	0.000	1.103	0.779
##	pri_nee_soc_8	1.234	0.231	5.340	0.000	0.835	0.566
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_soc_5	2.032	0.159	12.744	0.000	2.032	0.816
##	.pri_nee_soc_6	1.582	0.183	8.636	0.000	1.582	0.681
##	.pri_nee_soc_7	0.791	0.206	3.835	0.000	0.791	0.394
##	.pri_nee_soc_8	1.482	0.207	7.143	0.000	1.482	0.680
##	<pre>pri_nee_ano</pre>	0.458	0.133	3.446	0.001	1.000	1.000

Shows moderate fit.

Interpersonal online

## ##	lavaan 0.6-3 ended normally after 83 item	rations			
##	Optimization method	1	NLMINB		
##	Number of free parameters		10		
##					
##	Number of observations		273		
##					
##	Estimator		ML	Robust	
##	Model Fit Test Statistic	4	11.600	39.815	
##	Degrees of freedom		5	5	
##	P-value (Chi-square)		0.000	0.000	
##	Scaling correction factor			1.045	
##	for the Satorra-Bentler correction				
##	Model test baseline model.				
##	Model test baseline model:				
##	Minimum Function Test Statistic	10	9.731	100.419	
##	Degrees of freedom	10	10	10	
##	P-value		0.000	0.000	
##					
##	User model versus baseline model:				
##					
##	Comparative Fit Index (CFI)		0.633	0.615	
##	Tucker-Lewis Index (TLI)		0.266	0.230	
##	2.1 (277)			0.000	
##	Robust Comparative Fit Index (CFI)			0.632	
##	Robust Tucker-Lewis Index (TLI)			0.264	
	Loglikelihood and Information Criteria:				
##	Logithorinood and information official.				
##	Loglikelihood user model (HO)	-237	74.145	-2374.145	
##	Loglikelihood unrestricted model (H1)	-235	3.345	-2353.345	
##					
##	Number of free parameters		10	10	
##	Akaike (AIC)		88.290		
##	Bayesian (BIC)		04.385		
##	Sample-size adjusted Bayesian (BIC)	4//	72.677	4772.677	
	Root Mean Square Error of Approximation:				
##	noot hear square lift of Approximation.				
##	RMSEA		0.164	0.160	
##	90 Percent Confidence Interval	0.120	0.211	0.117	0.206
##	P-value RMSEA <= 0.05		0.000	0.000	
##					
##	Robust RMSEA			0.163	
##	90 Percent Confidence Interval			0.118	0.212
##					
	Standardized Root Mean Square Residual:				
##	CDMD		0 000	0 000	
##	SRMR		0.090	0.090	
	Parameter Estimates:				

```
##
                                                  Expected
##
     Information
##
     Information saturated (h1) model
                                               Structured
##
     Standard Errors
                                               Robust.sem
##
## Latent Variables:
                        Estimate Std.Err z-value P(>|z|)
##
                                                               Std.lv Std.all
##
     pri_nee_int_onl =~
##
       pri_nee_int_1
                           1.000
                                                                0.102
                                                                         0.070
##
       pri_nee_int_2
                          -5.086
                                    5.309
                                            -0.958
                                                       0.338
                                                               -0.520
                                                                        -0.340
##
       pri_nee_int_3
                          -4.220
                                    4.859
                                             -0.868
                                                       0.385
                                                               -0.431
                                                                        -0.297
##
                          -4.752
                                    5.230
                                             -0.909
                                                       0.363
                                                               -0.486
                                                                        -0.365
       pri_nee_int_4
##
       pri_nee_int_9
                         -10.584
                                   11.941
                                            -0.886
                                                       0.375
                                                               -1.082
                                                                        -0.830
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
                                                             Std.lv Std.all
##
                         2.119
                                  0.130
                                          16.252
                                                     0.000
                                                              2.119
                                                                       0.995
      .pri_nee_int_1
                         2.067
                                  0.156
                                          13.262
                                                     0.000
                                                              2.067
                                                                       0.884
##
      .pri_nee_int_2
                         1.917
                                  0.152
                                                     0.000
                                                                       0.912
##
      .pri_nee_int_3
                                          12.646
                                                              1.917
                         1.540
                                  0.146
                                          10.540
                                                    0.000
                                                                       0.867
##
      .pri_nee_int_4
                                                              1.540
##
      .pri_nee_int_9
                         0.529
                                  0.344
                                           1.539
                                                    0.124
                                                              0.529
                                                                       0.311
##
      pri_nee_int_nl
                         0.010
                                  0.023
                                           0.458
                                                     0.647
                                                              1.000
                                                                       1.000
```

Shows poor fit.

Interpersonal offline

## ##	lavaan 0.6-3 ended normally after 59 iter	ations			
##	Optimization method		NLMINB		
##	Number of free parameters		10		
##	1				
##	Number of observations		273		
##					
##	Estimator		ML	Robust	
##	Model Fit Test Statistic		14.729	12.018	
##	Degrees of freedom		5	5	
##	P-value (Chi-square)		0.012	0.035	
##	Scaling correction factor for the Satorra-Bentler correction			1.226	
##	for the Satorra-Bentler Correction				
	Model test baseline model:				
##	noder vest suscrine moder.				
##	Minimum Function Test Statistic		63.063	52.699	
##	Degrees of freedom		10	10	
##	P-value		0.000	0.000	
##					
	User model versus baseline model:				
##					
##	Comparative Fit Index (CFI)		0.817	0.836	
##	Tucker-Lewis Index (TLI)		0.633	0.671	
##	Robust Comparative Fit Index (CFI)			0.832	
##	Robust Tucker-Lewis Index (TLI)			0.663	
##	, ,				
##	Loglikelihood and Information Criteria:				
##					
##	Loglikelihood user model (HO)		24.018	-2324.018	
##	Loglikelihood unrestricted model (H1)	-23	16.653	-2316.653	
##	Number of force recomplished		10	10	
##	Number of free parameters Akaike (AIC)	16	10 68.035	10 4668.035	
##	Bayesian (BIC)		04.130	4704.130	
##	Sample-size adjusted Bayesian (BIC)		72.422	4672.422	
##	2				
##	Root Mean Square Error of Approximation:				
##	-				
##	RMSEA		0.084	0.072	
##	90 Percent Confidence Interval	0.036	0.136	0.024	0.119
##	P-value RMSEA <= 0.05		0.106	0.188	
##	D. I DMGEA			0.070	
##	Robust RMSEA			0.079	0.138
##	90 Percent Confidence Interval			0.020	0.138
	Standardized Root Mean Square Residual:				
##	Danial allow hour byune hobitual.				
##	SRMR		0.055	0.055	
##					
##	Parameter Estimates:				

##							
##	Information			I	Expected		
##	Information satur	rated (h1)	model	Sti	ructured		
##	Standard Errors			Rob	oust.sem		
##							
##	Latent Variables:						
##		Estimate	std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_int_off =	=~					
##	pri_nee_int_5	1.000)			0.240	0.166
##	pri_nee_int_6	1.872	1.109	1.688	0.091	0.449	0.342
##	pri_nee_int_7	3.433	1.994	1.721	0.085	0.823	0.643
##	pri_nee_int_8	-0.030	0.533	-0.057	7 0.955	-0.007	-0.005
##	pri_nee_int_9	2.626	1.399	1.877	7 0.060	0.630	0.483
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_int_5	2.024	0.150	13.469	0.000	2.024	0.972
##	.pri_nee_int_6	1.520	0.146	10.405	0.000	1.520	0.883
##	.pri_nee_int_7	0.961	0.247	3.884	0.000	0.961	0.586
##	.pri_nee_int_8	2.040	0.131	15.615	0.000	2.040	1.000
##	.pri_nee_int_9	1.303	0.192	6.785	0.000	1.303	0.767
##	pri_nee_int_ff	0.058	0.061	0.946	0.344	1.000	1.000

Does not show adequate fit.

Combined

```
## lavaan 0.6-3 did NOT end normally after 1219 iterations
## ** WARNING ** Estimates below are most likely unreliable
##
                                                      NLMINB
##
     Optimization method
##
     Number of free parameters
                                                          56
##
     Number of observations
                                                         273
##
##
                                                          ML
##
     Estimator
##
     Model Fit Test Statistic
                                                          NA
##
     Degrees of freedom
                                                          NA
##
     P-value
                                                          NA
##
## Parameter Estimates:
##
     Information
                                                    Expected
##
     Information saturated (h1) model
                                                 Structured
##
     Standard Errors
                                                 Robust.sem
##
## Latent Variables:
                         Estimate Std.Err z-value P(>|z|)
##
                                                                 Std.lv Std.all
##
     pri_nee_gen =~
##
                            1.000
                                                                  1.077
                                                                            0.807
       pri_nee_gen_1
                                                                            0.577
##
       pri_nee_gen_2
                            0.740
                                         NA
                                                                  0.797
##
       pri_nee_gen_3
                            0.494
                                         NA
                                                                  0.532
                                                                            0.472
                                                                  0.474
                                                                            0.450
##
       pri_nee_gen_4
                            0.440
                                         NA
##
     pri_nee_gov =~
##
       pri_nee_soc_1
                            1.000
                                                                  1.093
                                                                            0.749
##
                            0.986
                                         NA
                                                                  1.078
                                                                            0.720
       pri_nee_soc_2
##
       pri_nee_soc_3
                            1.010
                                         NA
                                                                  1.105
                                                                            0.764
##
                                         NA
                                                                  1.220
                                                                            0.797
       pri_nee_soc_4
                            1.116
##
                            0.897
                                         NA
                                                                  0.981
                                                                            0.621
       pri_nee_soc_5
##
       pri_nee_soc_9
                            1.016
                                         NA
                                                                  1.110
                                                                            0.738
##
     pri_nee_ano =~
##
                                                                  0.000
                                                                            0.000
       pri_nee_soc_5
                            1.000
                                         NA
                                                                  0.957
                                                                            0.628
##
       pri_nee_soc_6
                         5456.577
                                                                  0.999
                                                                            0.705
##
       pri_nee_soc_7
                         5698.535
                                         NA
                                                                            0.576
##
       pri_nee_soc_8
                         4848.096
                                         NA
                                                                  0.850
##
     pri nee int onl =~
##
       pri_nee_int_1
                                                                  0.286
                                                                            0.196
                            1.000
                                                                           -0.514
##
       pri_nee_int_2
                           -2.751
                                         NA
                                                                 -0.787
##
       pri_nee_int_3
                           -1.112
                                         NΑ
                                                                 -0.318
                                                                           -0.219
                                                                           -0.340
##
       pri_nee_int_4
                           -1.583
                                         NA
                                                                 -0.453
##
       pri_nee_int_9
                           -0.907
                                         NA
                                                                 -0.260
                                                                           -0.199
##
     pri_nee_int_off =~
                            1.000
                                                                  0.202
                                                                            0.140
##
       pri_nee_int_5
##
       pri_nee_int_6
                            2.606
                                         NA
                                                                  0.527
                                                                            0.402
##
                                         NA
                                                                  0.636
                                                                            0.497
       pri_nee_int_7
                            3.143
##
       pri_nee_int_8
                           -0.068
                                         NA
                                                                 -0.014
                                                                           -0.010
##
                                         NA
                                                                  0.482
                                                                            0.370
                            2.384
       pri_nee_int_9
##
## Covariances:
```

##		Estimate	Std.Er	r z-value	e P(> z)	Std.l	std.all
##	pri_nee_gen ~~						
##	<pre>pri_nee_gov</pre>	0.387	N.	A		0.328	0.328
##	<pre>pri_nee_ano</pre>	0.000	N.	A		0.259	0.259
##	<pre>pri_nee_int_nl</pre>	-0.209	N.	A		-0.679	-0.679
##	<pre>pri_nee_int_ff</pre>	0.189	N.	A		0.866	0.866
##	<pre>pri_nee_gov ~~</pre>						
##	<pre>pri_nee_ano</pre>	0.000	N.	A		0.711	0.711
##	pri_nee_int_nl	-0.242	N.	A		-0.773	3 -0.773
##	<pre>pri_nee_int_ff</pre>	0.090	N.	A		0.408	0.408
##	pri_nee_ano ~~						
##	<pre>pri_nee_int_nl</pre>	-0.000	N.	A		-0.829	-0.829
##	pri_nee_int_ff	0.000	N.	A		0.297	0.297
##	pri_nee_int_onl ·	~ ~					
##	pri_nee_int_ff	-0.061	N	A		-1.061	-1.061
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_gen_1	0.621	NA			0.621	0.349
##	.pri_nee_gen_2	1.272	NA			1.272	0.667
##	.pri_nee_gen_3	0.989	NA			0.989	0.777
##	.pri_nee_gen_4	0.882	NA			0.882	0.797
##	.pri_nee_soc_1	0.935	NA			0.935	0.439
##	.pri_nee_soc_2	1.077	NA			1.077	0.481
##	.pri_nee_soc_3	0.869	NA			0.869	0.416
##	.pri_nee_soc_4	0.858	NA			0.858	0.366
##	.pri_nee_soc_5	1.529	NA			1.529	0.614
##	.pri_nee_soc_9	1.031	NA			1.031	0.455
##	.pri_nee_soc_6	1.405	NA			1.405	0.605
##	.pri_nee_soc_7	1.011	NA			1.011	0.503
##	.pri_nee_soc_8	1.457	NA			1.457	0.668
##	.pri_nee_int_1	2.047	NA			2.047	0.962
##	.pri_nee_int_2	1.719	NA			1.719	0.735
##	.pri_nee_int_3	2.002	NA			2.002	0.952
##	$.\mathtt{pri_nee_int_4}$	1.571	NA			1.571	0.885
##	.pri_nee_int_9	1.134	NA			1.134	0.667
##	.pri_nee_int_5	2.040	NA			2.040	0.980
##	.pri_nee_int_6	1.443	NA			1.443	0.839
##	.pri_nee_int_7	1.234	NA			1.234	0.753
##	.pri_nee_int_8	2.040	NA			2.040	1.000
##	pri_nee_gen	1.160	NA			1.000	1.000
##	pri_nee_gov	1.195	NA			1.000	1.000
##	pri_nee_ano	0.000	NA			1.000	1.000
##	pri_nee_int_nl	0.082	NA			1.000	1.000
##	pri_nee_int_ff	0.041	NA			1.000	1.000

The combined scale does not converge. Will need to be adapted thoroughly.

EFA 1

In what follows, we now try to find what items need to be selected in order to attain a measure of need for privacy that includes as many items as possible.

Kaiser-Meyer-Oltkin criterion

The Kaiser-Meyer-Oltkin criterion measures the extent to which items are suitable for being combined as a single factor.

```
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = d_tmp)
## Overall MSA = 0.84
## MSA for each item =
## pri_nee_gen_1 pri_nee_gen_2 pri_nee_gen_3 pri_nee_gen_4 pri_nee_soc_1 pri_nee_soc_2
##
            0.79
                          0.80
                                         0.71
                                                       0.68
                                                                      0.87
                                                                                    0.90
## pri_nee_soc_3 pri_nee_soc_4 pri_nee_soc_5 pri_nee_soc_6 pri_nee_soc_7 pri_nee_soc_8
##
            0.89
                          0.86
                                         0.90
                                                       0.92
                                                                      0.84
                                                                                    0.84
## pri_nee_soc_9 pri_nee_int_1 pri_nee_int_2 pri_nee_int_3 pri_nee_int_4 pri_nee_int_5
            0.93
                                                                      0.78
                                                                                    0.54
##
                          0.81
                                         0.89
                                                       0.69
## pri_nee_int_6 pri_nee_int_7 pri_nee_int_8 pri_nee_int_9
##
            0.82
                          0.81
                                         0.71
                                                       0.78
```

On the basis of the KMO, the following items should (and will) be exluded: pri_nee_gen_4, pri_nee_int_3, pri_nee_int_5.

Parallel analysis

Next, we run a parallel analysis to determine the underlying structure.

Parallel analysis suggests that the number of factors = 3 and the number of components = 3

Factor analysis 1

```
##
## Loadings:
                         MR2
                                MR3
##
                 MR1
## pri_nee_gen_1
                          0.760
                                 0.138
                          0.460
## pri nee gen 2
## pri_nee_gen_3
                  0.153
                         0.483 -0.330
## pri_nee_gen_4
                          0.433 - 0.350
## pri_nee_soc_1
                  0.784
## pri_nee_soc_2
                  0.662
                          0.102
                  0.729
                          0.109
## pri_nee_soc_3
## pri_nee_soc_4
                  0.812
## pri_nee_soc_5
                  0.634
## pri_nee_soc_6
                  0.260
                          0.119
                                 0.424
## pri_nee_soc_7
                  0.272
                                 0.614
## pri_nee_soc_8
                  0.102
                          0.175
                                 0.510
## pri_nee_soc_9
                  0.691
                                 0.115
## pri_nee_int_1
                          0.125 - 0.565
## pri_nee_int_2
                  0.104
                          0.354
                                 0.376
## pri_nee_int_3
                          0.410 - 0.290
                          0.288
## pri_nee_int_4
                  0.185
## pri_nee_int_6 -0.102
                         0.391
                                0.393
## pri nee int 7
                          0.545 - 0.118
## pri_nee_int_8 -0.102
                                -0.283
## pri nee int 9
                  0.257
                          0.434
##
##
                    MR1
                           MR2
## SS loadings
                  3.448 2.324 1.884
## Proportion Var 0.164 0.111 0.090
## Cumulative Var 0.164 0.275 0.365
```

Three latent factors emerge:

- factor 1 measures need for privacy from the government (vertical)
- factor 2 measures need for privacy from other people (horizontal)
- factor 3 can be described as desire for anonymity (combined)

The following items will be exluded:

- Communalities reveal that item itg_4 and itg_8 don't load sufficiently strong on latent factors.
- Item itg_1 only loads negative on factor 3 little positive contribution.

The following items show double-loadings:

• BOT_3, BOT_4, itg_2, itg_6. Will be difficult to decide whether to maintain or delete.

Run novel factor analysis.

Factor analysis 2

```
##
## Loadings:
                              MR3
##
                MR1
                       MR2
                        0.774 0.147
## pri_nee_gen_1
## pri_nee_gen_2
                        0.465
## pri_nee_gen_3 0.154 0.469 -0.367
                        0.442 - 0.427
## pri_nee_gen_4
## pri_nee_soc_1 0.782
## pri_nee_soc_2 0.666
## pri_nee_soc_3 0.733
## pri_nee_soc_4 0.808
## pri_nee_soc_5 0.642
## pri_nee_soc_6 0.294
                        0.111 0.391
## pri_nee_soc_7 0.312
                               0.596
## pri_nee_soc_8 0.140
                        0.176 0.481
## pri_nee_soc_9 0.712
## pri_nee_int_2 0.136 0.362 0.350
## pri_nee_int_3
                        0.402 -0.240
## pri_nee_int_6
                        0.393 0.388
## pri_nee_int_7
                        0.533 -0.121
## pri_nee_int_9 0.284 0.415
##
##
                   MR1
                         MR2
                               MR3
## SS loadings
                 3.511 2.208 1.449
## Proportion Var 0.195 0.123 0.080
## Cumulative Var 0.195 0.318 0.398
```

Looks better. Will now be tested in CFA.

CFA 2

## ##	lavaan 0.6-3 ended normally after 38 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	41		
##	•			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	372.177		
##	Degrees of freedom	130	130	
##	111111	0.000	0.000	
##	Scaling correction factor for the Satorra-Bentler correction		1.139	
##	for the Satorra-Bentler Correction			
	Model test baseline model:			
##	noder tobt buberine moder.			
##	Minimum Function Test Statistic	1739.283	1543.938	
##	Degrees of freedom	153	153	
##	P-value	0.000	0.000	
##				
	User model versus baseline model:			
##	G (GDT)	0.047	0.050	
##	Comparative Fit Index (CFI)	0.847	0.859	
##	Tucker-Lewis Index (TLI)	0.820	0.834	
##	Robust Comparative Fit Index (CFI)		0.857	
##	Robust Tucker-Lewis Index (TLI)		0.832	
##	,			
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-7917.003		
##	Loglikelihood unrestricted model (H1)	-7730.915	-7730.915	
##	Number of face and the second	4.4	4.4	
##	Number of free parameters Akaike (AIC)	41 15916.006	41 15916.006	
##	Bayesian (BIC)	16063.995		
##	Sample-size adjusted Bayesian (BIC)	15933.994		
##	2			
##	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.083	0.074	
##	90 Percent Confidence Interval	0.073 0.093	0.065	0.084
##	P-value RMSEA <= 0.05	0.000	0.000	
##	Dalacet DMCEA		0.070	
##	Robust RMSEA 90 Percent Confidence Interval		0.079 0.069	0.090
##	90 Percent Confidence Interval		0.069	0.090
	Standardized Root Mean Square Residual:			
##				
##	SRMR	0.082	0.082	
##				
##	Parameter Estimates:			

## ## ## ##	Information Information satu Standard Errors	rated (h1)	model	St	Expected ructured bust.sem		
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov =~				,		
##	pri_nee_soc_1	1.000				1.095	0.750
##	pri_nee_soc_2	0.986	0.091	10.776	0.000	1.079	0.721
##	pri_nee_soc_3	1.005	0.085	11.852	0.000	1.100	0.761
##	pri_nee_soc_4	1.120	0.082	13.615	0.000	1.227	0.801
##	pri_nee_soc_5	0.895	0.088	10.197	0.000	0.980	0.621
##	pri_nee_soc_9	1.010	0.087	11.544	0.000	1.105	0.735
##	<pre>pri_nee_int =~</pre>						
##	pri_nee_gen_1	1.000				0.954	0.715
##	pri_nee_gen_2	0.756	0.103	7.330	0.000	0.721	0.522
##	pri_nee_gen_3	0.637	0.077	8.323	0.000	0.608	0.539
##	pri_nee_gen_4	0.526	0.078	6.731	0.000	0.502	0.477
##	pri_nee_int_2	0.461	0.127	3.626	0.000	0.440	0.288
##	pri_nee_int_3	0.652	0.103	6.346	0.000	0.622	0.429
##	pri_nee_int_6	0.352	0.102	3.443	0.001	0.336	0.256
##	pri_nee_int_7	0.714	0.090	7.906	0.000	0.681	0.532
##	pri_nee_int_9	0.709	0.088	8.079	0.000	0.677	0.519
## ##	pri_nee_ano =~	1 000				0.921	0.604
##	<pre>pri_nee_soc_6 pri_nee_soc_7</pre>	1.000 1.155	0.139	8.324	0.000	1.063	0.804
##	pri_nee_soc_8	0.921	0.139	7.541	0.000	0.848	0.730
##	pri_nee_soc_s pri_nee_int_2	0.753	0.122	6.206	0.000	0.693	0.453
##	pri_nee_int_6	0.418	0.096	4.353	0.000	0.385	0.293
##	Pri_ncc_ind_c	0.110	0.000	1.000	0.000	0.000	0.200
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov ~~				- (1-1)		
##	pri_nee_int	0.365	0.085	4.272	0.000	0.349	0.349
##	pri_nee_ano	0.678	0.103	6.583	0.000	0.673	0.673
##	pri_nee_int ~~						
##	pri_nee_ano	0.137	0.077	1.777	0.076	0.156	0.156
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_soc_1	0.931	0.094	9.950	0.000	0.931	0.437
##	.pri_nee_soc_2	1.074	0.155	6.924	0.000	1.074	0.480
##	.pri_nee_soc_3	0.878	0.122	7.209	0.000	0.878	0.420
##	.pri_nee_soc_4	0.842	0.110	7.672	0.000	0.842	0.359
##	.pri_nee_soc_5	1.530	0.150	10.185	0.000	1.530	0.614
##	.pri_nee_soc_9	1.042	0.109	9.559	0.000	1.042	0.460
##	.pri_nee_gen_1	0.871	0.111	7.846	0.000	0.871	0.489
##	.pri_nee_gen_2	1.388	0.140	9.918	0.000	1.388	0.728
##	.pri_nee_gen_3	0.903	0.090	10.047	0.000	0.903	0.710
##	.pri_nee_gen_4	0.854	0.102	8.395	0.000	0.854	0.772
##	.pri_nee_int_2	1.569	0.147	10.676	0.000	1.569	0.671 0.816
## ##	<pre>.pri_nee_int_3 .pri_nee_int_6</pre>	1.716 1.420	0.146 0.122	11.792 11.605	0.000	1.716 1.420	0.816
##	·brr_nee_inc_o	1.420	0.122	11.003	0.000	1.420	0.025

```
9.551
                                                       0.000
##
      .pri_nee_int_7
                          1.174
                                    0.123
                                                                 1.174
                                                                          0.717
##
                          1.242
                                    0.140
                                             8.893
                                                       0.000
                                                                 1.242
                                                                          0.731
      .pri_nee_int_9
      .pri_nee_soc_6
                          1.475
                                                                 1.475
##
                                    0.168
                                             8.773
                                                       0.000
                                                                          0.635
                                    0.135
                                             6.479
##
      .pri_nee_soc_7
                          0.878
                                                       0.000
                                                                 0.878
                                                                          0.437
##
      .pri_nee_soc_8
                          1.460
                                    0.178
                                             8.203
                                                       0.000
                                                                 1.460
                                                                           0.670
##
       pri_nee_gov
                          1.199
                                    0.171
                                             7.009
                                                       0.000
                                                                 1.000
                                                                          1.000
##
       pri nee int
                          0.910
                                    0.137
                                             6.663
                                                       0.000
                                                                 1.000
                                                                          1.000
                          0.848
                                    0.174
                                             4.859
                                                       0.000
                                                                 1.000
                                                                           1.000
##
       pri_nee_ano
```

Does not yield good results. Inspect modification indices.

```
epc sepc.lv sepc.all sepc.nox
##
                 lhs op
                                  rhs
                                        mi
## 75
         pri_nee_ano =~ pri_nee_gen_4 33.1 -0.430
                                                             -0.377
                                                   -0.396
                                                                      -0.377
## 72
                                                                       0.279
         pri_nee_ano =~ pri_nee_gen_1 20.6 0.404
                                                    0.372
                                                              0.279
## 166 pri_nee_gen_1 ~~ pri_nee_gen_2 20.3 0.419
                                                                       0.381
                                                    0.419
                                                              0.381
## 190 pri_nee_gen_3 ~~ pri_nee_int_6 20.0 -0.336
                                                   -0.336
                                                             -0.297
                                                                      -0.297
## 215 pri_nee_int_3 ~~ pri_nee_soc_7 16.9 -0.374
                                                    -0.374
                                                             -0.305
                                                                      -0.305
## 53
         pri_nee_gov =~ pri_nee_int_9 16.5 0.311
                                                    0.340
                                                              0.261
                                                                       0.261
## 187 pri nee gen 3 ~~ pri nee gen 4 14.7 0.233
                                                    0.233
                                                              0.265
                                                                       0.265
## 162 pri_nee_soc_9 ~~ pri_nee_int_9 12.3 0.270
                                                    0.270
                                                              0.238
                                                                       0.238
## 175 pri_nee_gen_1 ~~ pri_nee_soc_7 10.3 0.237
                                                    0.237
                                                              0.271
                                                                       0.271
## 182 pri_nee_gen_2 ~~ pri_nee_int_7 10.3 -0.288
                                                   -0.288
                                                             -0.226
                                                                      -0.226
         pri_nee_gov =~ pri_nee_gen_4 10.2 -0.200
                                                   -0.219
                                                             -0.208
                                                                      -0.208
## 167 pri_nee_gen_1 ~~ pri_nee_gen_3 10.2 -0.243
                                                   -0.243
                                                             -0.274
                                                                      -0.274
```

As expected, items BOT_2, BOT_3, & BOT_4 cause trouble. Will be deleted.

CFA 3

## ##	lavaan 0.6-3 ended normally after 43 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	35		
##	-			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	202.956	171.404	
##	8	85	85	
##	1	0.000	0.000 1.184	
##	Scaling correction factor for the Satorra-Bentler correction		1.164	
##	Tor the Satorra-Bentler Correction			
	Model test baseline model:			
##	THE STATE OF THE S			
##	Minimum Function Test Statistic	1415.306	1223.769	
##	Degrees of freedom	105	105	
##	P-value	0.000	0.000	
##				
	User model versus baseline model:			
##	G T. 1 (GDT)	0.040	0.000	
##	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.910 0.889	0.923	
##	Tucker-Lewis Index (ILI)	0.889	0.905	
##	Robust Comparative Fit Index (CFI)		0.921	
##	Robust Tucker-Lewis Index (TLI)		0.902	
##				
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-6697.423		
##	Loglikelihood unrestricted model (H1)	-6595.944	-6595.944	
##	N 1 C C	0.5	25	
##	Number of free parameters Akaike (AIC)	35 13464.845	35 13464.845	
##	Bayesian (BIC)	13591.177		
##	Sample-size adjusted Bayesian (BIC)	13480.200		
##	24mp10 2120 daja2004 24j02141 (210)	101001200	101001200	
##	Root Mean Square Error of Approximation:			
##	-			
##	RMSEA	0.071	0.061	
##	90 Percent Confidence Interval	0.059 0.084	0.049	0.073
##	P-value RMSEA <= 0.05	0.003	0.067	
##	D. I DMGEA		0.000	
##	Robust RMSEA 90 Percent Confidence Interval		0.066	0 001
##	90 Percent Confidence Interval		0.052	0.081
	Standardized Root Mean Square Residual:			
##	Daniararazza 11000 fican bytare fiebratar.			
##	SRMR	0.070	0.070	
##				
##	Parameter Estimates:			

## ## ## ##	Information Information satu Standard Errors	rated (h1)	model	St	Expected ructured bust.sem		
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov =~						
##	pri_nee_soc_1	1.000		40.000		1.097	0.752
##	pri_nee_soc_2	0.980	0.092	10.683	0.000	1.075	0.718
##	pri_nee_soc_3	1.003	0.085	11.809	0.000	1.100	0.761
##	pri_nee_soc_4	1.120	0.082	13.580	0.000	1.229	0.802
##	pri_nee_soc_5	0.893	0.088	10.181	0.000	0.979	0.620
##	pri_nee_soc_9	1.008	0.087	11.561	0.000	1.106	0.735
##	pri_nee_int =~	1 000				0.001	0.660
##	<pre>pri_nee_gen_1 pri_nee_int_2</pre>	1.000	0 140	2 760	0 000	0.881 0.494	
## ##	pri_nee_int_2 pri_nee_int_3	0.561 0.733	0.149 0.143	3.762 5.127	0.000	0.494	0.323 0.445
##	pri_nee_int_6	0.733	0.143	3.994	0.000	0.468	0.445
##	pri_nee_int_7	0.844	0.133	6.003	0.000	0.743	0.581
##	pri_nee_int_9	0.781	0.141	5.894	0.000	0.688	0.528
##	pri_nee_ano =~	0.701	0.100	0.004	0.000	0.000	0.020
##	pri_nee_soc_6	1.000				0.920	0.604
##	pri_nee_soc_7	1.155	0.141	8.201	0.000	1.063	0.750
##	pri_nee_soc_8	0.926	0.123	7.527	0.000	0.852	0.577
##	pri_nee_int_2	0.695	0.128	5.440	0.000	0.639	0.418
##	pri_nee_int_6	0.340	0.100	3.386	0.001	0.313	0.239
##	F						
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov ~~						
##	pri_nee_int	0.355	0.087	4.058	0.000	0.367	0.367
##	pri_nee_ano	0.681	0.104	6.554	0.000	0.675	0.675
##	pri_nee_int ~~						
##	pri_nee_ano	0.191	0.078	2.452	0.014	0.236	0.236
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_soc_1	0.927	0.094	9.872	0.000	0.927	0.435
##	.pri_nee_soc_2	1.085	0.156	6.938	0.000	1.085	0.484
##	.pri_nee_soc_3	0.878	0.123	7.167	0.000	0.878	0.420
##	.pri_nee_soc_4	0.837	0.110	7.609	0.000	0.837	0.357
##	.pri_nee_soc_5	1.532	0.150	10.210	0.000	1.532	0.615
##	.pri_nee_soc_9	1.040	0.109	9.569	0.000	1.040	0.459
##	.pri_nee_gen_1	1.005	0.147	6.835	0.000	1.005	0.564
##	.pri_nee_int_2	1.536	0.147	10.437	0.000	1.536	0.657
##	.pri_nee_int_3	1.686	0.141	11.938	0.000	1.686	0.802
##	.pri_nee_int_6	1.336	0.126	10.589	0.000	1.336	0.776
##	.pri_nee_int_7	1.086	0.127	8.519	0.000	1.086	0.663
##	.pri_nee_int_9	1.226	0.151	8.123	0.000	1.226	0.721
##	.pri_nee_soc_6	1.476	0.169	8.742	0.000	1.476	0.636
##	.pri_nee_soc_7	0.879	0.137	6.415	0.000	0.879	0.438
##	.pri_nee_soc_8	1.454	0.177	8.214	0.000	1.454	0.667
##	<pre>pri_nee_gov</pre>	1.203	0.172	7.012	0.000	1.000	1.000

```
##
       pri_nee_int
                           0.776
                                    0.162
                                              4.781
                                                        0.000
                                                                  1.000
                                                                            1.000
##
                           0.847
                                    0.176
                                              4.815
                                                        0.000
                                                                  1.000
                                                                            1.000
       pri_nee_ano
```

Shows shows improved but still not really acceptable fit. Problem is, we don't want to exclude too many items and to overfit the data. Let's inspect modification indices once more to see if there's a theoretically plausible adaption.

```
##
                 lhs op
                                               epc sepc.lv sepc.all sepc.nox
                                  rhs
                                        mi
## 155 pri_nee_int_3 ~~ pri_nee_soc_7 17.6 -0.386
                                                    -0.386
                                                                      -0.317
                                                             -0.317
##
         pri_nee_gov =~ pri_nee_int_9 16.3 0.333
                                                     0.365
                                                              0.280
                                                                       0.280
## 64
         pri_nee_ano =~ pri_nee_int_3 15.0 -0.435
                                                             -0.276
                                                    -0.400
                                                                      -0.276
## 63
         pri_nee_ano =~ pri_nee_gen_1 13.6 0.397
                                                     0.366
                                                              0.274
                                                                       0.274
## 132 pri_nee_soc_9 ~~ pri_nee_int_9 11.8 0.268
                                                     0.268
                                                              0.238
                                                                       0.238
         pri_nee_ano =~ pri_nee_int_7 11.4 -0.337
## 65
                                                    -0.310
                                                             -0.242
                                                                      -0.242
## 55
         pri_nee_int =~ pri_nee_soc_7 10.6 -0.411
                                                    -0.362
                                                             -0.255
                                                                      -0.255
```

Item itg_3 is a troublemaker. As it's an inverted item, we have a good reason to delete it. Also, item itg_6 doesn't really have anything to do with anonymity; we can delete it. Likewise, item soc_5 loads on government, while it also measure anonymity. Maybe delete.

CFA 4

## ##	lavaan 0.6-3 ended normally after 40 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	28		
##	-			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	122.850	101.720	
##	Degrees of freedom	50	50	
##	1	0.000	0.000 1.208	
##	for the Satorra-Bentler correction		1.208	
##	Tor the Satorra-Bentler Correction			
	Model test baseline model:			
##				
##	Minimum Function Test Statistic	1133.873	973.421	
##	Degrees of freedom	66	66	
##	P-value	0.000	0.000	
##				
	User model versus baseline model:			
##	G (GDT)	0.000	0.040	
##	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.932 0.910	0.943	
## ##	Tucker-Lewis Index (ILI)	0.910	0.925	
##	Robust Comparative Fit Index (CFI)		0.941	
##	Robust Tucker-Lewis Index (TLI)		0.922	
##	,			
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-5335.808	-5335.808	
##	Loglikelihood unrestricted model (H1)	-5274.383	-5274.383	
##	N 1 C C	00	00	
##	Number of free parameters Akaike (AIC)	28 10727.617	28 10727.617	
##	Bayesian (BIC)	10828.682		
##	Sample-size adjusted Bayesian (BIC)	10739.901		
##	24mp10 2120 daja2004 24j02141 (210)	20,00,002	10.00.001	
##	Root Mean Square Error of Approximation:			
##	-			
##	RMSEA	0.073	0.062	
##	90 Percent Confidence Interval	0.057 0.089	0.046	0.077
##	P-value RMSEA <= 0.05	0.011	0.109	
##	D. I DMGEA		0.000	
##	Robust RMSEA		0.068 0.049	0 006
## ##	90 Percent Confidence Interval		0.049	0.086
	Standardized Root Mean Square Residual:			
##	2 canada a a a a a a a a a a a a a a a a a			
##	SRMR	0.062	0.062	
##				
##	Parameter Estimates:			

##	T				F + d		
## ##	Information	mated (h1)	madal		Expected ructured		
##	Information saturated (h1) model						
##	Standard Errors			no	bust.sem		
	Latent Variables:						
##	Latent variables.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov =~	LBCIMACC	Dua.LII	Z varuc	1 (7 2)	Dua.iv	Dua.aii
##	pri_nee_soc_1	1.000				1.085	0.743
##	pri_nee_soc_2	0.977	0.092	10.593	0.000	1.060	0.708
##	pri_nee_soc_3	1.022	0.088	11.639	0.000	1.109	0.767
##	pri_nee_soc_4	1.143	0.087	13.081	0.000	1.240	0.809
##	pri_nee_soc_9	1.021	0.088	11.541	0.000	1.107	0.736
##	pri_nee_int =~						
##	pri_nee_gen_1	1.000				0.889	0.666
##	pri_nee_int_2	0.519	0.172	3.017	0.003	0.461	0.302
##	pri_nee_int_7	0.753	0.138	5.441	0.000	0.669	0.523
##	pri_nee_int_9	0.818	0.147	5.586	0.000	0.727	0.558
##	pri_nee_ano =~						
##	pri_nee_soc_6	1.000				0.928	0.609
##	pri_nee_soc_7	1.119	0.144	7.791	0.000	1.038	0.733
##	pri_nee_soc_8	0.922	0.122	7.545	0.000	0.855	0.579
##	<pre>pri_nee_int_2</pre>	0.637	0.138	4.616	0.000	0.591	0.387
##							
	Covariances:				_		
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov ~~			4 500			
##	pri_nee_int	0.421	0.092	4.588	0.000	0.437	0.437
##	pri_nee_ano	0.700	0.105	6.664	0.000	0.696	0.696
##	pri_nee_int ~~	0.000	0 006	2 200	0 001	0.240	0 240
## ##	<pre>pri_nee_ano</pre>	0.288	0.086	3.329	0.001	0.349	0.349
	Variances:						
##	variances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_soc_1	0.954	0.099	9.628	0.000	0.954	0.448
##	.pri_nee_soc_2	1.116	0.158	7.070	0.000	1.116	0.498
##	.pri_nee_soc_3	0.859	0.119	7.220	0.000	0.859	0.411
##	.pri_nee_soc_4	0.810	0.117	6.932	0.000	0.810	0.345
##	.pri_nee_soc_9	1.038	0.108	9.619	0.000	1.038	0.459
##	.pri_nee_gen_1	0.992	0.164	6.032	0.000	0.992	0.557
##	.pri_nee_int_2	1.585	0.149	10.670	0.000	1.585	0.678
##	.pri_nee_int_7	1.191	0.133	8.986	0.000	1.191	0.727
##	.pri_nee_int_9	1.171	0.156	7.490	0.000	1.171	0.689
##	.pri_nee_soc_6	1.462	0.172	8.522	0.000	1.462	0.629
##	.pri_nee_soc_7	0.931	0.140	6.646	0.000	0.931	0.463
##	.pri_nee_soc_8	1.449	0.175	8.258	0.000	1.449	0.665
##	pri_nee_gov	1.177	0.171	6.872	0.000	1.000	1.000
##	<pre>pri_nee_int</pre>	0.790	0.179	4.404	0.000	1.000	1.000
##	<pre>pri_nee_ano</pre>	0.861	0.180	4.768	0.000	1.000	1.000

Although not ideal, shows a satisfactory solution. Will be used for analyses. In what follows, run specific CFAs for the dimensions, to get a better idea how they would work when used separately.

CFA privacy need government

## ##	lavaan 0.6-3 ended normally after 23 item	ations			
##	Optimization method		NLMINB		
##	Number of free parameters		10		
##	-				
##	Number of observations		273		
##					
##	Estimator		ML	Robust	
##	Model Fit Test Statistic		9.127	7.264	
##	Degrees of freedom		5	5	
##	P-value (Chi-square)		0.104	0.202	
##	Scaling correction factor for the Satorra-Bentler correction			1.256	
##	for the Satorra-Bentler correction				
	Model test baseline model:				
##	Hodel test baseline model.				
##	Minimum Function Test Statistic	6	06.691	471.613	
##	Degrees of freedom		10	10	
##	P-value		0.000	0.000	
##					
##	User model versus baseline model:				
##					
##	Comparative Fit Index (CFI)		0.993	0.995	
##	Tucker-Lewis Index (TLI)		0.986	0.990	
##	Debugge Commenced Bit To Jose (CDT)			0.005	
##	Robust Comparative Fit Index (CFI)			0.995	
##	Robust Tucker-Lewis Index (TLI)			0.990	
	Loglikelihood and Information Criteria:				
##	Logitkorinood dha information officera.				
##	Loglikelihood user model (HO)	-21	79.858	-2179.858	
##	Loglikelihood unrestricted model (H1)	-21	75.294	-2175.294	
##					
##	Number of free parameters		10	10	
##	Akaike (AIC)		79.716		
##	Bayesian (BIC)		15.810		
##	Sample-size adjusted Bayesian (BIC)	43	84.103	4384.103	
##	Doot Moon Course Error of Annavironian				
##	Root Mean Square Error of Approximation:				
##	RMSEA		0.055	0.041	
##	90 Percent Confidence Interval	0.000	0.111	0.000	0.094
##	P-value RMSEA <= 0.05		0.374	0.545	
##					
##	Robust RMSEA			0.046	
##	90 Percent Confidence Interval			0.000	0.112
##					
	Standardized Root Mean Square Residual:				
##	anun				
##	SRMR		0.019	0.019	
##	Darameter Estimates				
##	Parameter Estimates:				

## ## ## ## ##	Information Information satu Standard Errors Latent Variables:	rated (h1)	model	St	Expected ructured bust.sem		
##	Later variables.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov =~						
##	pri_nee_soc_1	1.000				1.105	0.757
##	pri_nee_soc_2	0.942	0.095	9.896	0.000	1.040	0.695
##	pri_nee_soc_3	0.993	0.089	11.190	0.000	1.097	0.759
##	pri_nee_soc_4	1.148	0.088	13.043	0.000	1.268	0.828
##	pri_nee_soc_9	0.980	0.088	11.176	0.000	1.083	0.720
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_soc_1	0.910	0.104	8.736	0.000	0.910	0.427
##	.pri_nee_soc_2	1.157	0.172	6.726	0.000	1.157	0.517
##	.pri_nee_soc_3	0.885	0.128	6.925	0.000	0.885	0.424
##	.pri_nee_soc_4	0.740	0.120	6.147	0.000	0.740	0.315
##	.pri_nee_soc_9	1.091	0.111	9.836	0.000	1.091	0.482
##	<pre>pri_nee_gov</pre>	1.220	0.177	6.908	0.000	1.000	1.000

CFA privacy need interpersonal

## ##	lavaan 0.6-3 ended normally after 27 item	ations			
##	Optimization method		NLMINB		
##	Number of free parameters		8		
##	•				
##	Number of observations		273		
##					
##	Estimator		ML	Robust	
##	Model Fit Test Statistic		10.781	10.223	
##	Degrees of freedom		2	2	
##	P-value (Chi-square)		0.005	0.006	
##	Scaling correction factor			1.055	
##	for the Satorra-Bentler correction				
##	W 1 7 1 7 1 7				
	Model test baseline model:				
##	Minimum Function Test Statistic	1	31.687	116.857	
##	Degrees of freedom	1	6	110.037	
##	P-value		0.000	0.000	
##	1 Value		0.000	0.000	
	User model versus baseline model:				
##					
##	Comparative Fit Index (CFI)		0.930	0.926	
##	Tucker-Lewis Index (TLI)		0.790	0.777	
##					
##	Robust Comparative Fit Index (CFI)			0.931	
##	Robust Tucker-Lewis Index (TLI)			0.792	
##					
	Loglikelihood and Information Criteria:				
## ##	I and i had i hand a mandad (IIA)	10	02 E44	1002 E44	
##	Loglikelihood user model (HO) Loglikelihood unrestricted model (H1)		23.544 18.153		
##	Logitkeiinood uniestlicted model (ni)	-10	10.100	-1010.133	
##	Number of free parameters		8	8	
##	Akaike (AIC)	36	63.087		
##	Bayesian (BIC)	36	91.963		
##	Sample-size adjusted Bayesian (BIC)	36	66.597	3666.597	
##					
##	Root Mean Square Error of Approximation:				
##					
##	RMSEA		0.127	0.123	
##	90 Percent Confidence Interval	0.060		0.057	0.200
##	P-value RMSEA <= 0.05		0.031	0.036	
##	Robust RMSEA			0.126	
##	90 Percent Confidence Interval			0.126	0.207
##	90 refeelt confidence interval			0.037	0.201
	Standardized Root Mean Square Residual:				
##					
##	SRMR		0.044	0.044	
##					
##	Parameter Estimates:				

##							
##	Information				Expected		
##	Information satu	rated (h1)	model	St	ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	<pre>pri_nee_int =~</pre>						
##	pri_nee_gen_1	1.000				0.942	0.706
##	<pre>pri_nee_int_2</pre>	0.703	0.157	4.485	0.000	0.662	0.433
##	<pre>pri_nee_int_7</pre>	0.738	0.138	5.340	0.000	0.695	0.543
##	<pre>pri_nee_int_9</pre>	0.689	0.128	5.367	0.000	0.649	0.498
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_gen_1	0.893	0.184	4.865	0.000	0.893	0.501
##	.pri_nee_int_2	1.899	0.164	11.572	0.000	1.899	0.812
##	.pri_nee_int_7	1.155	0.131	8.786	0.000	1.155	0.705
##	.pri_nee_int_9	1.278	0.154	8.326	0.000	1.278	0.752
##	pri_nee_int	0.888	0.195	4.566	0.000	1.000	1.000

CFA privacy need anonymity

## ##	lavaan 0.6-3 ended normally after 29 item	rations			
##	Optimization method		NLMINB		
##	Number of free parameters		8		
##	1				
##	Number of observations		273		
##					
##	Estimator		ML	Robust	
##	Model Fit Test Statistic		5.024	3.160	
##	Degrees of freedom		2	2	
##	P-value (Chi-square)		0.081	0.206	
##	Scaling correction factor			1.590	
##	for the Satorra-Bentler correction				
##	W 1 7 1 7 1 7				
	Model test baseline model:				
##	Minimum Function Test Statistic	1	81.622	154.549	
##	Degrees of freedom	1	6	134.349	
##	P-value		0.000	0.000	
##	- 14240				
##	User model versus baseline model:				
##					
##	Comparative Fit Index (CFI)		0.983	0.992	
##	Tucker-Lewis Index (TLI)		0.948	0.977	
##					
##	Robust Comparative Fit Index (CFI)			0.989	
##	Robust Tucker-Lewis Index (TLI)			0.968	
##	I and inclinated and Information Contaction				
##	Loglikelihood and Information Criteria:				
##	Loglikelihood user model (HO)	-18	93.669	-1893.669	
##	Loglikelihood unrestricted model (H1)		91.157		
##	,				
##	Number of free parameters		8	8	
##	Akaike (AIC)	38	03.337	3803.337	
##	Bayesian (BIC)	38	32.213	3832.213	
##	Sample-size adjusted Bayesian (BIC)	38	06.847	3806.847	
##					
	Root Mean Square Error of Approximation:				
##	DMCEA		0 074	0.046	
##	RMSEA 90 Percent Confidence Interval	0 000	0.074 0.159	0.046 0.000	0.118
##	P-value RMSEA <= 0.05	0.000	0.139	0.442	0.110
##	1 Value IMIDEA (0.00		0.220	0.442	
##	Robust RMSEA			0.058	
##	90 Percent Confidence Interval			0.000	0.173
##					
##	Standardized Root Mean Square Residual:				
##					
##	SRMR		0.029	0.029	
##					
##	Parameter Estimates:				

## ## ## ## ##	Information Information satu Standard Errors Latent Variables:	rated (h1)	model	St	Expected ructured bust.sem		
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_ano =~						
##	pri_nee_soc_6	1.000				0.904	0.593
##	pri_nee_soc_7	1.143	0.164	6.964	0.000	1.033	0.729
##	pri_nee_soc_8	0.970	0.142	6.836	0.000	0.876	0.594
##	<pre>pri_nee_int_2</pre>	0.850	0.129	6.590	0.000	0.768	0.502
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_soc_6	1.506	0.193	7.820	0.000	1.506	0.649
##	.pri_nee_soc_7	0.942	0.185	5.092	0.000	0.942	0.469
##	.pri_nee_soc_8	1.412	0.199	7.088	0.000	1.412	0.648
##	.pri_nee_int_2	1.748	0.207	8.439	0.000	1.748	0.748
##	<pre>pri_nee_ano</pre>	0.816	0.185	4.405	0.000	1.000	1.000

CFA bifactor

## ##	lavaan 0.6-3 ended normally after 87 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	37		
##	1			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	85.621	70.179	
##	Degrees of freedom	41	41	
##	P-value (Chi-square)	0.000	0.003	
##	Scaling correction factor		1.220	
##	for the Satorra-Bentler correction			
##				
	Model test baseline model:			
##	With English English Control	4400 070	070 404	
##	Minimum Function Test Statistic	1133.873		
##	Degrees of freedom P-value	66 0.000	66 0.000	
##	r-value	0.000	0.000	
	User model versus baseline model:			
##	ober moder versus buserine moder.			
##	Comparative Fit Index (CFI)	0.958	0.968	
##	Tucker-Lewis Index (TLI)	0.933	0.948	
##				
##	Robust Comparative Fit Index (CFI)		0.966	
##	Robust Tucker-Lewis Index (TLI)		0.946	
##				
	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-5317.194		
##	Loglikelihood unrestricted model (H1)	-5274.383	-5274.383	
## ##	Number of free parameters	37	37	
##	Akaike (AIC)	10708.388		
##	Bayesian (BIC)	10841.938		
##	Sample-size adjusted Bayesian (BIC)	10724.620		
##	2			
##	Root Mean Square Error of Approximation:			
##	•			
##	RMSEA	0.063	0.051	
##	90 Percent Confidence Interval	0.044 0.082	0.032	0.069
##	P-value RMSEA <= 0.05	0.120	0.440	
##				
##	Robust RMSEA		0.056	
##	90 Percent Confidence Interval		0.033	0.078
##				
##	Standardized Root Mean Square Residual:			
##	SRMR	0.042	0.042	
##	SIGIR	0.042	0.042	
	Parameter Estimates:			
	- al amount love and out.			

## ## ## ##	Information Information satu Standard Errors	rated (h1)	model	St	Expected ructured bust.sem		
##	Latent Variables:	.	G. 1 E	,	D(>)	Q. 1. 1	Q. 1 33
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
## ##	pri_nee_gen =~	1.000				0.971	0.665
##	<pre>pri_nee_soc_1 pri_nee_soc_2</pre>	1.000	0.106	9.798	0.000	1.006	0.672
##	pri_nee_soc_3	1.087	0.105	10.313	0.000	1.056	0.731
##	pri_nee_soc_4	1.037	0.109	9.439	0.000	1.002	0.751
##	pri_nee_soc_9	1.191	0.121	9.820	0.000	1.156	0.769
##	pri_nee_gen_1	0.418	0.101	4.160	0.000	0.406	0.304
##	pri_nee_int_2	0.662	0.119	5.568	0.000	0.642	0.419
##	pri_nee_int_7	0.151	0.097	1.559	0.119	0.147	0.115
##	pri_nee_int_9	0.570	0.098	5.795	0.000	0.554	0.425
##	pri_nee_soc_6	0.774	0.122	6.344	0.000	0.752	0.493
##	pri_nee_soc_7	0.777	0.123	6.321	0.000	0.754	0.532
##	pri_nee_soc_8	0.654	0.123	5.330	0.000	0.635	0.430
##	pri_nee_gov =~						
##	pri_nee_soc_1	1.000				0.422	0.289
##	pri_nee_soc_2	0.658	0.208	3.161	0.002	0.278	0.185
##	pri_nee_soc_3	0.753	0.219	3.430	0.001	0.318	0.220
##	pri_nee_soc_4	2.658	1.791	1.484	0.138	1.121	0.732
##	pri_nee_soc_9	0.270	0.270	1.000	0.317	0.114	0.076
##	pri_nee_int =~						
##	pri_nee_gen_1	1.000				0.765	0.573
##	pri_nee_int_2	0.501	0.181	2.772	0.006	0.383	0.250
##	pri_nee_int_7	1.060	0.262	4.041	0.000	0.811	0.634
##	pri_nee_int_9	0.639	0.164	3.889	0.000	0.489	0.375
##	pri_nee_ano =~						
##	pri_nee_soc_6	1.000				0.476	0.312
##	pri_nee_soc_7	1.612	0.639	2.522	0.012	0.767	0.541
##	pri_nee_soc_8	1.244	0.441	2.824	0.005	0.592	0.401
##	<pre>pri_nee_int_2</pre>	0.886	0.341	2.598	0.009	0.421	0.275
##							
	Covariances:			_	- ()		
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gen ~~						
##	pri_nee_gov	0.000				0.000	0.000
##	pri_nee_int	0.000				0.000	0.000
##	pri_nee_ano	0.000				0.000	0.000
##	pri_nee_gov ~~	0 000				0 000	0 000
##	pri_nee_int	0.000				0.000	0.000
##	pri_nee_ano	0.000				0.000	0.000
## ##	pri_nee_int ~~	0 000				0.000	0.000
##	<pre>pri_nee_ano</pre>	0.000				0.000	0.000
##	Variances:						
##	var rances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_soc_1	1.009	0.110	9.165	0.000	1.009	0.474
##	.pri_nee_soc_1	1.151	0.110	7.850	0.000	1.151	0.514
##	.pri_nee_soc_3	0.873	0.119	7.365	0.000	0.873	0.418
ππ	·briliee_poc_o	0.013	0.119	1.505	0.000	0.013	0.410

##	.pri_nee_soc_4	0.085	0.713	0.119	0.905	0.085	0.036
##	.pri_nee_soc_9	0.914	0.137	6.650	0.000	0.914	0.404
##	.pri_nee_gen_1	1.031	0.186	5.547	0.000	1.031	0.579
##	.pri_nee_int_2	1.609	0.169	9.536	0.000	1.609	0.686
##	.pri_nee_int_7	0.959	0.175	5.475	0.000	0.959	0.585
##	.pri_nee_int_9	1.154	0.143	8.084	0.000	1.154	0.679
##	.pri_nee_soc_6	1.531	0.170	8.979	0.000	1.531	0.659
##	.pri_nee_soc_7	0.851	0.242	3.516	0.000	0.851	0.424
##	.pri_nee_soc_8	1.426	0.212	6.726	0.000	1.426	0.654
##	pri_nee_gen	0.943	0.185	5.102	0.000	1.000	1.000
##	<pre>pri_nee_gov</pre>	0.178	0.162	1.097	0.272	1.000	1.000
##	pri_nee_int	0.585	0.181	3.238	0.001	1.000	1.000
##	<pre>pri_nee_ano</pre>	0.226	0.133	1.697	0.090	1.000	1.000

Bifactor-solution fits the data best. However, for theoretical reasons will not be used for the analyses.

Sociability

\mathbf{Items}

## ##	lavaan 0.6-3 ended normally after 30 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	16		
##	•			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	151.846	121.106	
##	8	20	20	
##	111111	0.000	0.000	
##	Scaling correction factor for the Satorra-Bentler correction		1.254	
##	for the Satorra-Bentler correction			
	Model test baseline model:			
##	noder test baserine moder.			
##	Minimum Function Test Statistic	611.340	515.674	
##	Degrees of freedom	28	28	
##	P-value	0.000	0.000	
##				
##	User model versus baseline model:			
##				
##	Comparative Fit Index (CFI)	0.774		
##	Tucker-Lewis Index (TLI)	0.684	0.710	
##	Robust Comparative Fit Index (CFI)		0.781	
##	Robust Tucker-Lewis Index (TLI)		0.781	
##	Woodby Identif Heart (III)		0.000	
##	Loglikelihood and Information Criteria:			
##	<u> </u>			
##	Loglikelihood user model (HO)	-3681.313	-3681.313	
##	Loglikelihood unrestricted model (H1)	-3605.390	-3605.390	
##				
##	Number of free parameters Akaike (AIC)	16 7394.627	16 7394.627	
##	Bayesian (BIC)	7452.378		
##	Sample-size adjusted Bayesian (BIC)	7401.646		
##	Sample 5126 dajabted bayesian (516)	7 101.010	7 101.010	
	Root Mean Square Error of Approximation:			
##	•			
##	RMSEA	0.155	0.136	
##	90 Percent Confidence Interval	0.133 0.179	0.116	0.157
##	P-value RMSEA <= 0.05	0.000	0.000	
##				
##	Robust RMSEA		0.152	0 470
##	90 Percent Confidence Interval		0.127	0.179
## ##	Standardized Root Mean Square Residual:			
##	brancararzoa moor mean byuare mesiduar.			
##	SRMR	0.090	0.090	
##				
##	Parameter Estimates:			

##							
##	Information				Expected		
##	Information satu	rated (h1)	model	St	ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	soc =~						
##	soc_1	1.000				1.008	0.676
##	soc_2	0.979	0.100	9.826	0.000	0.987	
##	soc_3	0.676	0.095	7.130	0.000	0.682	0.485
##	soc_4	0.584	0.113	5.180	0.000	0.589	
##	soc_5	0.679		6.587	0.000	0.685	0.456
##	soc_6	0.557		5.264	0.000	0.562	
##	soc_7	0.839	0.082	10.268	0.000	0.846	0.670
##	soc_8	1.016	0.095	10.745	0.000	1.024	0.698
##							
##	Variances:						
##		Estimate	Std.Err		P(> z)	Std.lv	
##	.soc_1	1.209	0.129	9.375	0.000	1.209	0.543
##	.soc_2	0.895	0.118	7.554	0.000	0.895	0.479
##	.soc_3	1.516	0.123	12.344	0.000	1.516	0.765
##	.soc_4	2.175	0.173	12.596	0.000	2.175	0.863
##	.soc_5	1.791	0.162	11.037	0.000	1.791	0.792
##	.soc_6	2.061	0.154	13.424	0.000	2.061	0.867
##	.soc_7	0.880	0.115	7.618	0.000	0.880	0.551
##	.soc_8	1.103	0.138	7.976	0.000	1.103	0.513
##	SOC	1.017	0.164	6.191	0.000	1.000	1.000

Does not show sufficient fit. Run EFAs to determine underlying factor structure.

EFA 1 Parallel analysis

Parallel analysis suggests that the number of factors = 3 and the number of components = 2

Factor analysis

```
##
## Loadings:
##
         ML2
               ML3
                      ML1
## soc_1 0.493 0.380 -0.127
## soc_2 0.511 0.163 0.285
## soc_3
                 0.642
## soc_4
                        0.996
## soc_5
                 0.753
## soc_6 0.477 -0.189
## soc_7 0.517 0.256
## soc_8 0.860
##
##
                   ML2
                         ML3
                               ML1
## SS loadings
                 1.740 1.257 1.118
## Proportion Var 0.217 0.157 0.140
## Cumulative Var 0.217 0.375 0.514
```

The three factor solution does not show a coherent picture; for example, Factor 3 is determined by a single item

EFA 2

Factor analysis

```
##
## Loadings:
##
        ML1
               ML2
## soc_1 0.441 0.359
## soc_2 0.685
## soc_3 0.104 0.599
## soc_4 0.423
## soc_5
                0.779
## soc_6 0.558 -0.223
## soc_7 0.512 0.254
## soc_8 0.791
##
##
                   ML1 ML2
                 2.055 1.222
## SS loadings
## Proportion Var 0.257 0.153
## Cumulative Var 0.257 0.410
```

Seems more plausible. Will be modelled as bifactor solution next.

## ##	lavaan 0.6-3 ended normally after 44 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	18		
##	-			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	81.367	70.983	
##	Degrees of freedom	18	18	
##	1	0.000	0.000	
## ##	Scaling correction factor for the Satorra-Bentler correction		1.146	
##	for the Satorra-Bentler Correction			
	Model test baseline model:			
##				
##	Minimum Function Test Statistic	611.340	515.674	
##	Degrees of freedom	28	28	
##	P-value	0.000	0.000	
##				
	User model versus baseline model:			
##	G T. 1 (GDT)	0.004	0.004	
##	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.891 0.831	0.891	
## ##	Tucker-Lewis Index (ILI)	0.831	0.831	
##	Robust Comparative Fit Index (CFI)		0.895	
##	Robust Tucker-Lewis Index (TLI)		0.837	
##				
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-3646.074		
##	Loglikelihood unrestricted model (H1)	-3605.390	-3605.390	
##	N 1 C C	40	4.0	
##	Number of free parameters Akaike (AIC)	18 7328.147	18 7328.147	
##	Bayesian (BIC)	7393.118		
##	Sample-size adjusted Bayesian (BIC)	7336.044		
##				
##	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.114		
##	90 Percent Confidence Interval	0.089 0.139	0.081	0.128
##	P-value RMSEA <= 0.05	0.000	0.000	
##	Dalas - DMCEA		0 111	
## ##	Robust RMSEA 90 Percent Confidence Interval		0.111 0.085	0.139
##	90 Fercent Confidence Interval		0.065	0.139
	Standardized Root Mean Square Residual:			
##	and the second s			
##	SRMR	0.083	0.083	
##				
##	Parameter Estimates:			

## ## ## ##	Information Information Standard Er	satu	rated (h1)	model	St	Expected ructured bust.sem		
##	Latent Variab	les:						
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	soc_one =~	, ,						
##	soc_1	(a)	1.000				0.662	0.427
##	soc_3	(a)	1.000				0.662	0.466
##	soc_5	(a)	1.000				0.662	0.452
##	soc_7	(a)	1.000				0.662	0.519
##	soc_two =~	(1.)	4 000				0 700	0 400
##	soc_1	(b)	1.000				0.722	0.466
##	soc_2	(b)	1.000				0.722	0.533
##	soc_4	(b)	1.000				0.722	0.434
##	soc_6	(b)	1.000				0.722	0.459
## ##	soc_7	(b)	1.000				0.722 0.722	0.566 0.519
##	soc_8	(b)	1.000				0.722	0.519
##	soc_gen =~ soc_1		1.000				0.536	0.345
##	soc_1		1.646	0.400	4.114	0.000	0.882	0.651
##	soc_2		1.513	0.361	4.196	0.000	0.811	0.570
##	soc_3		1.021	0.340	3.008	0.003	0.547	0.329
##	soc_ 1		1.303	0.301	4.332	0.000	0.698	0.477
##	soc_6		0.517	0.245	2.114	0.035	0.277	0.176
##	soc_7		0.423	0.175	2.413	0.033	0.226	0.177
##	soc_8		0.909	0.195	4.657	0.000	0.487	0.350
##	200_0		0.000	0.100	2.00.	0.000	0.10.	0.000
	Covariances:							
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	soc_one ~~							
##	soc_two		0.000				0.000	0.000
##	soc_gen		0.000				0.000	0.000
##	soc_two ~~							
##	soc_gen		0.000				0.000	0.000
##								
##	Variances:							
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.soc_1		1.158	0.115	10.065	0.000	1.158	0.482
##	.soc_3		0.925	0.147	6.279	0.000	0.925	0.458
##	.soc_5		1.220	0.142	8.567	0.000	1.220	0.569
##	.soc_7		0.619	0.117	5.293	0.000	0.619	0.380
##	.soc_2		0.535	0.143	3.748	0.000	0.535	0.292
##	.soc_4		1.952	0.186	10.489	0.000	1.952	0.704
##	.soc_6		1.881	0.152	12.379	0.000	1.881	0.759
##	.soc_8		1.178	0.127	9.262	0.000	1.178	0.608
##	soc_one		0.438	0.091	4.826	0.000	1.000	1.000
##	soc_two		0.522	0.084	6.177	0.000	1.000	1.000
##	soc_gen		0.287	0.130	2.214	0.027	1.000	1.000

Shows no solution for two factors. Single-dimension solution will be fitted next.

## ##	lavaan 0.6-3 ended normally after 28 item	rations			
##	Optimization method	N	ILMINB		
##	Number of free parameters		12		
##	1				
##	Number of observations		273		
##					
##	Estimator		ML	Robust	
##	Model Fit Test Statistic	7	6.986	60.090	
##	Degrees of freedom		9	9	
##	P-value (Chi-square)		0.000	0.000	
##	Scaling correction factor			1.281	
##	for the Satorra-Bentler correction				
##					
	Model test baseline model:				
##	Minimum Franchism Trest Obstickie	4.4	4 000	251 050	
##	Minimum Function Test Statistic	44	4.982 15	351.850 15	
##	Degrees of freedom P-value		0.000	0.000	
##	1 value		0.000	0.000	
	User model versus baseline model:				
##	0001 10001 001000 00001110 110001				
##	Comparative Fit Index (CFI)		0.842	0.848	
##	Tucker-Lewis Index (TLI)		0.736	0.747	
##					
##	Robust Comparative Fit Index (CFI)			0.846	
##	Robust Tucker-Lewis Index (TLI)			0.744	
##					
	Loglikelihood and Information Criteria:				
##		07.4	7 407	0747 007	
##	Loglikelihood user model (HO)		7.687		
##	Loglikelihood unrestricted model (H1)	-270	9.194	-2709.194	
##	Number of free parameters		12	12	
##	Akaike (AIC)	551	9.375		
##	Bayesian (BIC)		32.688		
##	Sample-size adjusted Bayesian (BIC)		4.639	5524.639	
##					
##	Root Mean Square Error of Approximation:				
##					
##	RMSEA		0.166	0.144	
##	90 Percent Confidence Interval	0.133		0.115	0.176
##	P-value RMSEA <= 0.05		0.000	0.000	
##	2.1				
##	Robust RMSEA			0.163	0 004
##	90 Percent Confidence Interval			0.125	0.204
##	Ctandardigad Doot Maan Causes Desiders				
##	Standardized Root Mean Square Residual:				
##	SRMR		0.075	0.075	
##	~~~ ** AAV		3.310	0.010	
	Parameter Estimates:				

##							
##	Information				Expected		
##	Information satu	rated (h1)	model	St	ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	soc_gen =~						
##	soc_1	1.000				0.934	0.626
##	soc_2	1.067	0.114	9.372	0.000	0.996	0.729
##	soc_4	0.655	0.128	5.100	0.000	0.612	0.385
##	soc_6	0.689	0.121	5.716	0.000	0.644	0.417
##	soc_7	0.878	0.094	9.359	0.000	0.820	0.649
##	soc_8	1.188	0.118	10.078	0.000	1.109	0.756
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.soc_1	1.354	0.138	9.818	0.000	1.354	0.608
##	.soc_2	0.877	0.123	7.153	0.000	0.877	0.469
##	.soc_4	2.148	0.173	12.401	0.000	2.148	0.852
##	.soc_6	1.962	0.154	12.702	0.000	1.962	0.826
##	.soc_7	0.924	0.132	7.009	0.000	0.924	0.579
##	.soc_8	0.921	0.136	6.763	0.000	0.921	0.428
##	soc_gen	0.872	0.162	5.374	0.000	1.000	1.000

Uni-dimensional solution with 6 items not feasible; need to reduce to 4.

## ##	lavaan 0.6-3 ended normally after 23 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	8		
##	-			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	8.014	6.195	
##	8	2	2	
##	1	0.018	0.045	
## ##	Scaling correction factor for the Satorra-Bentler correction		1.293	
##	Tor the Satorra-Bentler Correction			
	Model test baseline model:			
##	THE STATE OF THE S			
##	Minimum Function Test Statistic	307.550	228.680	
##	Degrees of freedom	6	6	
##	P-value	0.000	0.000	
##				
	User model versus baseline model:			
##	G T. 1 (GDT)	0.000	0.004	
## ##	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.980 0.940	0.981 0.943	
##	Tucker-Lewis Index (ILI)	0.940	0.943	
##	Robust Comparative Fit Index (CFI)		0.982	
##	Robust Tucker-Lewis Index (TLI)		0.946	
##				
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-1762.758		
##	Loglikelihood unrestricted model (H1)	-1758.752	-1758.752	
##	Number of free newspapers	0	0	
##	Number of free parameters Akaike (AIC)	8 3541.517	8 3541.517	
##	Bayesian (BIC)	3570.393		
##	Sample-size adjusted Bayesian (BIC)	3545.027		
##	2			
##	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.105	0.088	
##	90 Percent Confidence Interval	0.037 0.185	0.022	0.160
##	P-value RMSEA <= 0.05	0.084	0.139	
##	Dalas - + DMGEA		0 100	
## ##	Robust RMSEA 90 Percent Confidence Interval		0.100 0.013	0.193
##	90 Fercent Confidence Interval		0.013	0.193
	Standardized Root Mean Square Residual:			
##	Tauro Mostadar.			
##	SRMR	0.027	0.027	
##				
##	Parameter Estimates:			

##							
##	Information				Expected		
##	Information satu	rated (h1)	model	St	ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	soc_gen =~						
##	soc_1	1.000				1.023	0.686
##	soc_2	0.897	0.102	8.795	0.000	0.918	0.672
##	soc_7	0.850	0.091	9.299	0.000	0.870	0.689
##	soc_8	1.059	0.105	10.069	0.000	1.084	0.739
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.soc_1	1.178	0.132	8.956	0.000	1.178	0.529
##	.soc_2	1.026	0.132	7.778		1.026	0.549
##	.soc_7	0.838	0.125	6.686	0.000	0.838	0.525
##	.soc_8	0.977	0.167	5.849	0.000	0.977	0.454
##	soc_gen	1.047	0.170	6.175	0.000	1.000	1.000

Shows adequate fit.

Integrity

Items

Does not show adequate fit.

## ##	lavaan 0.6-3 ended normally after 30 item	rations			
##	Optimization method	NLMI	ΙB		
##	Number of free parameters		22		
##	1				
##	Number of observations	27	73		
##					
##	Estimator	ľ	ΊL	Robust	
##	Model Fit Test Statistic	153.68	37	139.219	
##	Degrees of freedom	4	14	44	
##	P-value (Chi-square)	0.00	00	0.000	
##	Scaling correction factor			1.104	
##	for the Satorra-Bentler correction				
##					
	Model test baseline model:				
##					
##	Minimum Function Test Statistic	686.97		618.697	
##	Degrees of freedom		55	55	
##	P-value	0.00)0	0.000	
##	Haan madal wangua bagalina madal.				
##	User model versus baseline model:				
##	Comparative Fit Index (CFI)	0.82	26	0.831	
##	Tucker-Lewis Index (TLI)	0.78		0.789	
##	racker bewild index (IBI)	0.70	,,	0.100	
##	Robust Comparative Fit Index (CFI)			0.832	
##	Robust Tucker-Lewis Index (TLI)			0.790	
##					
##	Loglikelihood and Information Criteria:				
##					
##	Loglikelihood user model (HO)	-5430.33	35	-5430.335	
##	Loglikelihood unrestricted model (H1)	-5353.49	91	-5353.491	
##					
##	Number of free parameters		22	22	
##	Akaike (AIC)	10904.66			
##	Bayesian (BIC)	10984.07		10984.078	
##	Sample-size adjusted Bayesian (BIC)	10914.32	21	10914.321	
##	Doot Moon Course Error of Annayimation.				
##	Root Mean Square Error of Approximation:				
##	RMSEA	0.09	26	0.089	
##	90 Percent Confidence Interval	0.079 0.11		0.003	0.105
##	P-value RMSEA <= 0.05	0.00		0.000	0.100
##	1 Value Imberi V 0.00	0.00	, ,	0.000	
##	Robust RMSEA			0.094	
##	90 Percent Confidence Interval			0.076	0.111
##					
##	Standardized Root Mean Square Residual:				
##	-				
##	SRMR	0.07	78	0.078	
##					
##	Parameter Estimates:				

##							
##	Information				Expected		
##	Information satu	rated (h1)	model		ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:				- 4 1 15		
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	itg =~						
##	itg_1	1.000				1.038	0.710
##	itg_2	0.864	0.096	9.042	0.000	0.897	0.613
##	itg_3	0.029	0.116	0.246	0.805	0.030	0.019
##	itg_4	0.315	0.130	2.419	0.016	0.327	0.181
##	itg_5	0.886	0.100	8.855	0.000	0.919	0.611
##	itg_6	1.102	0.103	10.748	0.000	1.144	0.721
##	itg_7	0.919	0.093	9.825	0.000	0.954	0.623
##	itg_8	0.848	0.111	7.667	0.000	0.880	0.541
##	itg_9	0.899	0.118	7.617	0.000	0.933	0.503
##	itg_10	0.318	0.109	2.907	0.004	0.330	0.211
##	itg_11	0.651	0.130	5.014	0.000	0.676	0.374
##							
	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.itg_1	1.062	0.146	7.285	0.000	1.062	0.496
##	.itg_2	1.333	0.174	7.642	0.000	1.333	0.624
##	.itg_3	2.541	0.193	13.171	0.000	2.541	1.000
##	.itg_4	3.170	0.227	13.937	0.000	3.170	0.967
##	.itg_5	1.418	0.160	8.871	0.000	1.418	0.626
##	.itg_6	1.208	0.174	6.960	0.000	1.208	0.480
##	.itg_7	1.435	0.178	8.043	0.000	1.435	0.612
##	.itg_8	1.871	0.179	10.462	0.000	1.871	0.707
##	.itg_9	2.568	0.175	14.694	0.000	2.568	0.747
##	.itg_10	2.346	0.203	11.578	0.000	2.346	0.956
##	$.itg_11$	2.803	0.194	14.457	0.000	2.803	0.860
##	itg	1.078	0.167	6.464	0.000	1.000	1.000

EFA 1 Parallel analysis

Parallel analysis suggests that the number of factors = 3 and the number of components = 2

Factor analysis 1

```
##
## Loadings:
##
          ML2
                 ML3
                        ML1
## itg_1
           0.733
## itg_2
           0.586
                         0.998
## itg_3
           0.239
                         0.281
## itg_4
## itg_5
           0.703 -0.107
           0.671 0.101
## itg_6
## itg_7
           0.593
           0.306
                  0.386
## itg_8
## itg_9
           0.151
                  0.594
## itg_10 -0.161
                  0.594
                  0.504 -0.108
## itg_11
##
##
                    ML2
                          ML3 ML1
## SS loadings
                  2.382 1.146 1.10
## Proportion Var 0.217 0.104 0.10
## Cumulative Var 0.217 \ 0.321 \ 0.42
```

Two factors don't really convince, as factor 3 consists of one item only. Will try two-factor solution.

Factor analysis 2

```
##
## Loadings:
                 ML2
##
          ML1
## itg_1
           0.725
           0.602
## itg_2
## itg_3
           0.182 -0.251
          0.323 -0.211
## itg_4
## itg_5
           0.711 -0.119
## itg_6
           0.660 0.117
           0.573
## itg_7
           0.325 0.369
## itg_8
## itg_9
           0.195 0.531
## itg_10 -0.128 0.556
## itg_11
                  0.566
##
##
                    ML1
                          ML2
## SS loadings
                  2.456 1.193
## Proportion Var 0.223 0.108
## Cumulative Var 0.223 0.332
```

Suggests that item 3 and item 4 should be dropped.

## ##	lavaan 0.6-3 ended normally after 36 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	20		
##	-			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	51.646	47.441	
##	8 8 8 8 8 8	25	25	
##	1	0.001	0.004 1.089	
##	Scaling correction factor for the Satorra-Bentler correction		1.089	
##	Tor the Satorra-Bentler Correction			
	Model test baseline model:			
##				
##	Minimum Function Test Statistic	634.166	602.164	
##	Degrees of freedom	36	36	
##	P-value	0.000	0.000	
##				
	User model versus baseline model:			
##	G (GDT)	0.055	0.000	
##	Comparative Fit Index (CFI)	0.955	0.960	
##	Tucker-Lewis Index (TLI)	0.936	0.943	
##	Robust Comparative Fit Index (CFI)		0.959	
##	Robust Tucker-Lewis Index (TLI)		0.941	
##	()			
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-4341.632		
##	Loglikelihood unrestricted model (H1)	-4315.809	-4315.809	
##	N 1 6 6	0.0	22	
## ##	Number of free parameters Akaike (AIC)	20 8723.265	20 8723.265	
##	Bayesian (BIC)	8795.454		
##	Sample-size adjusted Bayesian (BIC)	8732.039		
##	Sample 5126 dajabted bayesian (516)	0102.000	0102.000	
##	Root Mean Square Error of Approximation:			
##	•			
##	RMSEA	0.062	0.057	
##	90 Percent Confidence Interval	0.038 0.087	0.033	0.081
##	P-value RMSEA <= 0.05	0.183	0.284	
##	2.1			
##	Robust RMSEA		0.060	0 000
##	90 Percent Confidence Interval		0.033	0.086
## ##	Standardized Root Mean Square Residual:			
##	beandardized noor hean square hesidual.			
##	SRMR	0.044	0.044	
##			-	
##	Parameter Estimates:			

##								
##	Information					Expected		
##	Information	satu	rated (h1)	model	St	ructured		
##	Standard Er	rors			Ro	bust.sem		
##								
##	Latent Variab	les:						
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	int_1 =~							
##	itg_1	(a)	1.000				0.564	0.390
##	itg_2	(a)	1.000				0.564	0.387
##	itg_5	(a)	1.000				0.564	0.377
##	itg_6	(a)	1.000				0.564	0.354
##	itg_7	(a)	1.000				0.564	0.365
##	itg_8	(a)	1.000				0.564	0.341
##	int_2 =~							
##	itg_8	(b)	1.000				0.712	0.431
##	itg_9	(b)	1.000				0.712	0.388
##	itg_10	(b)	1.000				0.712	
##	itg_11	(b)	1.000				0.712	0.395
##	itg_gen =~							
##	itg_1		1.000				0.871	0.602
##	itg_2		0.802	0.129	6.217		0.698	0.479
##	itg_5		0.865	0.140	6.183	0.000	0.754	0.503
##	itg_6		1.173	0.146	8.016	0.000	1.022	0.641
##	itg_7		0.938	0.125	7.500	0.000	0.817	
##	itg_8		0.721	0.150	4.808		0.628	
##	itg_9		1.151	0.276			1.003	
##	itg_10		0.393	0.165				
##	itg_11		0.753	0.215	3.495	0.000	0.656	0.364
##	a .							
	Covariances:		.	Q. 1 B	,	D(>)	Q. 1. 1	a. 1 11
##	:		Estimate	Sta.Err	z-value	P(> z)	Std.lv	Std.all
##	int_1 ~~		0.000				0 000	0 000
## ##	int_2		0.000				0.000	0.000
##	itg_gen int 2 ~~		0.000				0.000	0.000
##	-		0.000				0.000	0.000
##	itg_gen		0.000				0.000	0.000
	Variances:							
##	variances.		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.itg_1		1.019	0.146	6.976	0.000	1.019	0.486
##	.itg_2		1.322	0.169	7.812	0.000	1.322	0.621
##	.itg_5		1.354	0.155	8.724	0.000	1.354	0.605
##	.itg_6		1.181	0.184	6.414	0.000	1.181	0.464
##	.itg_7		1.404	0.179	7.841	0.000	1.404	0.587
##	.itg_8		1.512	0.178	8.476	0.000	1.512	0.554
##	.itg_9		1.856	0.260	7.142	0.000	1.856	0.551
##	.itg_10		1.852	0.188	9.828	0.000	1.852	0.748
##	.itg_11		2.309	0.231	9.998	0.000	2.309	0.711
##	int_1		0.318	0.162	1.964	0.050	1.000	1.000
##	int_2		0.507	0.093	5.469	0.000	1.000	1.000
##	itg_gen		0.759	0.219	3.462	0.001	1.000	1.000

The data fit a bifactor model well.

Anxiety

Items

## ##	lavaan 0.6-3 ended normally after 28 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	16		
##	1			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	103.655	74.424	
##	Degrees of freedom	20	20	
##	111111	0.000	0.000	
##	8		1.393	
##	for the Satorra-Bentler correction			
##				
	Model test baseline model:			
##	Minimum Function Test Statistic	568.029	463.372	
##		28	463.372	
##	P-value	0.000	0.000	
##	1 Value	0.000	0.000	
	User model versus baseline model:			
##				
##	Comparative Fit Index (CFI)	0.845	0.875	
##	Tucker-Lewis Index (TLI)	0.783	0.825	
##				
##	Robust Comparative Fit Index (CFI)		0.858	
##	Robust Tucker-Lewis Index (TLI)		0.801	
##				
	Loglikelihood and Information Criteria:			
## ##	I amlibalihaad ugam madal (HA)	_2716 707	-3716.797	
##	Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)		-3664.970	
##	Logitkerinood uniestricted moder (ni)	3004.570	3004.370	
##	Number of free parameters	16	16	
##	Akaike (AIC)	7465.594		
##	Bayesian (BIC)	7523.345	7523.345	
##	Sample-size adjusted Bayesian (BIC)	7472.613	7472.613	
##				
	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.124		
##	90 Percent Confidence Interval	0.101 0.148	0.080	0.121
##	P-value RMSEA <= 0.05	0.000	0.000	
##	Robust RMSEA		0.118	
##	90 Percent Confidence Interval		0.090	0.147
##	Jo Telecho confluence inscival		0.000	0.117
	Standardized Root Mean Square Residual:			
##	1			
##	SRMR	0.070	0.070	
##				
##	Parameter Estimates:			

##							
##	Information				Expected		
##	Information satu	rated (h1)	model	St	ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	anx =~						
##	anx_1	1.000				0.972	0.646
##	anx_2	0.951	0.132	7.202	0.000	0.924	0.588
##	anx_3	0.878	0.117	7.485	0.000	0.853	0.573
##	anx_4	0.826	0.109	7.588	0.000	0.803	0.581
##	anx_5	0.525	0.112	4.681	0.000	0.510	0.354
##	anx_6	0.933	0.107	8.746	0.000	0.907	0.633
##	anx_7	0.931	0.119	7.803	0.000	0.905	0.604
##	anx_8	0.953	0.118	8.068	0.000	0.926	0.621
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.anx_1	1.319	0.163	8.100	0.000	1.319	0.583
##	.anx_2	1.621	0.184	8.794	0.000	1.621	0.655
##	.anx_3	1.490	0.197	7.574	0.000	1.490	0.672
##	.anx_4	1.268	0.124	10.217	0.000	1.268	0.663
##	.anx_5	1.817	0.149	12.233	0.000	1.817	0.875
##	.anx_6	1.230	0.157	7.836	0.000	1.230	0.599
##	$.anx_7$	1.424	0.160	8.905	0.000	1.424	0.635
##	.anx_8	1.368	0.142	9.612	0.000	1.368	
##	anx	0.945	0.174	5.446	0.000	1.000	1.000

Does not show adequate fit.

EFA 1 Parallel analysis

Parallel analysis suggests that the number of factors = 2 and the number of components = 1 Implies three dimension.

Factor analysis

```
##
## Loadings:
##
        ML2
               ML1
## anx_1
                0.844
## anx_2 0.623
## anx_3
                0.583
## anx_4 0.526 0.115
## anx_5
                0.415
## anx_6 0.468 0.252
## anx_7 0.253 0.420
## anx_8 0.802
##
##
                 ML2
                       ML1
                 1.6 1.485
## SS loadings
## Proportion Var 0.2 0.186
## Cumulative Var 0.2 0.385
```

Seems appropriate. First, try bifactor solution.

## ##	lavaan 0.6-3 ended normally after 35 iter	ations		
##	Optimization method	NLMINB		
##	Number of free parameters	18		
##	1			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	49.242	36.984	
##	Degrees of freedom	18	18	
##	P-value (Chi-square)	0.000	0.005	
##	Scaling correction factor		1.331	
##	for the Satorra-Bentler correction			
##	W 1 2			
	Model test baseline model:			
##	Minimum Function Test Statistic	568.029	462 270	
##	Degrees of freedom	28	463.372 28	
##	P-value	0.000	0.000	
##	1 Value	0.000	0.000	
	User model versus baseline model:			
##				
##	Comparative Fit Index (CFI)	0.942	0.956	
##	Tucker-Lewis Index (TLI)	0.910	0.932	
##				
##	Robust Comparative Fit Index (CFI)		0.953	
##	Robust Tucker-Lewis Index (TLI)		0.926	
##				
	Loglikelihood and Information Criteria:			
##	I1:h-1:h-1:h1 (IIO)	2000 501	2600 501	
##	Loglikelihood user model (HO)	-3689.591 -3664.970	-3689.591 -3664.970	
##	Loglikelihood unrestricted model (H1)	-3004.970	-3004.970	
##	Number of free parameters	18	18	
##	Akaike (AIC)	7415.181		
##	Bayesian (BIC)	7480.152		
##	Sample-size adjusted Bayesian (BIC)	7423.078	7423.078	
##				
##	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.080	0.062	
##	90 Percent Confidence Interval	0.054 0.107	0.037	0.087
##	P-value RMSEA <= 0.05	0.032	0.193	
##	Dalarat DMCDA		0.070	
##	Robust RMSEA 90 Percent Confidence Interval		0.072	0 105
##	90 Percent Confidence Interval		0.038	0.105
	Standardized Root Mean Square Residual:			
##	beamagranzea moor heam square hesidual.			
##	SRMR	0.041	0.041	
##		0.011	0.011	
##	Parameter Estimates:			

##								
##	Information				Expected			
##	# Information saturated (h1) model Stru							
##								
##								
	Latent Variabl	les:			_	- ()		
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	anx_one =~							
##	anx_2	(a)	1.000				0.436	0.277
##	anx_4	(a)	1.000				0.436	0.316
##	anx_6	(a)	1.000				0.436	0.303
##	anx_8	(a)	1.000				0.436	0.294
##	anx_two =~	(1.)	1 000				0 507	0 200
##	anx_1	(b)	1.000				0.597	0.399
##	anx_3	(b)	1.000				0.597	0.402
##	anx_5	(b)	1.000				0.597	0.414
##	anx_7	(b)	1.000				0.597	0.396
## ##	anx_gen =~		1 000				0 000	0 560
##	anx_2		1.000 0.844	0 126	6.223	0.000	0.898	0.569
##	anx_4 anx_7		0.889	0.136 0.271	3.282	0.000	0.758 0.798	0.548 0.529
##	anx_8		1.009	0.271	6.917	0.001	0.798	0.529
##	anx_1		0.984	0.140	3.490	0.000	0.883	0.511
##	anx_3		0.843	0.252	3.269	0.000	0.757	0.509
##	anx_5		0.406	0.186	2.190	0.001	0.757	0.309
##	anx_6		0.400	0.151	6.418	0.029	0.869	0.233
##	alix_0		0.301	0.131	0.410	0.000	0.009	0.004
	Covariances:							
##	oovariances.		Estimate	Std Err	7-value	P(> z)	Std.lv	Std.all
##	anx_one ~~		LBUIMQUE	Dournin	Z varuo	1 (7 121)	Dod.iv	Doa.aii
##	anx_two		0.000				0.000	0.000
##	anx_gen		0.000				0.000	0.000
##	anx_two ~~		0.000				0.000	0.000
##	anx_gen		0.000				0.000	0.000
##								
##	Variances:							
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.anx_2		1.494	0.184	8.112	0.000	1.494	0.600
##	$.\mathtt{anx}_4$		1.147	0.118	9.737	0.000	1.147	0.600
##	.anx_6		1.126	0.152	7.406	0.000	1.126	0.544
##	.anx_8		1.186	0.131	9.040	0.000	1.186	0.540
##	.anx_1		1.107	0.148	7.461	0.000	1.107	0.493
##	.anx_3		1.279	0.187	6.827	0.000	1.279	0.579
##	.anx_5		1.589	0.153	10.362	0.000	1.589	0.764
##	.anx_7		1.279	0.153	8.352	0.000	1.279	0.563
##	anx_one		0.190	0.209	0.912	0.362	1.000	1.000
##	anx_two		0.357	0.168	2.120	0.034	1.000	1.000
##	anx_gen		0.806	0.267	3.025	0.002	1.000	1.000
	_							

Shows an adequate solution.

Risk avoidance

Items

CFA 1

## ##	lavaan 0.6-3 ended normally after 42 item	ations			
##	Optimization method		NLMINB		
##	Number of free parameters		16		
##	1				
##	Number of observations		273		
##					
##	Estimator		ML	Robust	
##	Model Fit Test Statistic	1	16.607	98.156	
##	Degrees of freedom		20	20	
##	P-value (Chi-square)		0.000	0.000	
##	Scaling correction factor			1.188	
##	for the Satorra-Bentler correction				
##	Model test baseline model.				
##	Model test baseline model:				
##	Minimum Function Test Statistic	5	75.375	418.315	
##	Degrees of freedom	Ü	28	28	
##	P-value		0.000	0.000	
##					
##	User model versus baseline model:				
##					
##	Comparative Fit Index (CFI)		0.824	0.800	
##	Tucker-Lewis Index (TLI)		0.753	0.720	
##					
##	Robust Comparative Fit Index (CFI)			0.827	
##	Robust Tucker-Lewis Index (TLI)			0.758	
	Loglikelihood and Information Criteria:				
##	Logitaciinood and information officia.				
##	Loglikelihood user model (HO)	-34	88.796	-3488.796	
##	Loglikelihood unrestricted model (H1)	-34	30.492	-3430.492	
##					
##	Number of free parameters		16	16	
##	Akaike (AIC)		09.591		
##	Bayesian (BIC)		67.343	7067.343	
##	Sample-size adjusted Bayesian (BIC)	70	16.611	7016.611	
##	Root Mean Square Error of Approximation:				
##	Root Mean Square Error of Approximation:				
##	RMSEA		0.133	0.120	
##	90 Percent Confidence Interval	0.110	0.157	0.098	0.142
##	P-value RMSEA <= 0.05	0.110	0.000	0.000	0.111
##					
##	Robust RMSEA			0.130	
##	90 Percent Confidence Interval			0.105	0.157
##					
	Standardized Root Mean Square Residual:				
##	anv.		0 000		
##	SRMR		0.086	0.086	
##	Parameter Estimates:				
##	Tarameter Eptimates.				

##							
##	Information				Expected		
##	Information satu	rated (h1)	model	St	ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	ria =~						
##	ria_1	1.000				0.400	0.288
##	ria_2	1.928	0.416	4.631	0.000	0.771	0.690
##	ria_3	1.774	0.378	4.689	0.000	0.710	0.469
##	ria_4	2.389	0.534	4.477	0.000	0.956	0.741
##	ria_5	1.697	0.390	4.351	0.000	0.679	0.480
##	ria_6	2.067	0.447	4.624	0.000	0.827	0.618
##	ria_7	1.796	0.425	4.228	0.000	0.719	0.522
##	ria_8	1.994	0.426	4.680	0.000	0.797	0.651
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.ria_1	1.763	0.141	12.513	0.000	1.763	0.917
##	.ria_2	0.653	0.071	9.134		0.653	
##	.ria_3	1.789	0.160	11.194	0.000	1.789	0.780
##	.ria_4	0.751	0.101	7.428	0.000	0.751	0.451
##	.ria_5	1.542	0.125	12.348	0.000	1.542	0.770
##	.ria_6	1.105	0.122	9.026	0.000	1.105	0.618
##	.ria_7	1.379	0.164	8.404	0.000	1.379	0.728
##	.ria_8	0.866	0.095	9.075		0.866	0.577
##	ria	0.160	0.071	2.267	0.023	1.000	1.000

Does not show sufficient fit.

EFA 1 Parallel analysis

Parallel analysis suggests that the number of factors = 2 and the number of components = 2

Factor analysis

```
##
## Loadings:
##
        ML2
                ML1
## ria_1
                 0.466
## ria_2 0.745
## ria_3
                 0.892
## ria_4 0.687 0.107
## ria_5 0.192 0.498
## ria_6 0.554
## ria_7 0.647 -0.153
## ria_8 0.627
##
##
                    ML2
                         ML1
                  2.182 1.308
## SS loadings
## Proportion Var 0.273 0.164
## Cumulative Var 0.273 0.436
```

Produces a plausible solution.

CFA 2

```
## lavaan 0.6-3 did NOT end normally after 4490 iterations
## ** WARNING ** Estimates below are most likely unreliable
##
     Optimization method
                                                      NLMINB
##
     Number of free parameters
                                                          24
##
##
     Number of observations
                                                         273
##
##
     Estimator
                                                          ML
     Model Fit Test Statistic
##
                                                          NA
##
     Degrees of freedom
                                                          NΑ
##
     P-value
                                                          NA
##
## Parameter Estimates:
##
##
     Information
                                                    Expected
##
     Information saturated (h1) model
                                                 Structured
##
     Standard Errors
                                                 Robust.sem
##
## Latent Variables:
                                   Std.Err z-value P(>|z|)
##
                                                                Std.lv Std.all
                       Estimate
##
     ria_one =~
##
       ria_2
                   (a)
                           1.000
                                                                  0.804
                                                                           0.714
##
       ria_4
                   (a)
                           1.000
                                                                  0.804
                                                                           0.642
##
       ria_5
                           0.536
                                        NA
                                                                  0.431
                                                                           0.305
##
       ria_6
                   (a)
                           1.000
                                                                  0.804
                                                                           0.595
                                                                  0.804
##
       ria 7
                   (a)
                           1.000
                                                                           0.585
##
       ria_8
                   (a)
                           1.000
                                                                  0.804
                                                                           0.646
##
     ria two =~
##
       ria_1
                           1.000
                                                                    {\tt NaN}
                                                                             NaN
##
       ria_3
                           0.000
                                        NA
                                                                    NaN
                                                                             NaN
##
       ria_5
                           0.000
                                        NA
                                                                    {\tt NaN}
                                                                             NaN
##
     ria_gen =~
##
       ria_1
                           1.000
                                                                  0.005
                                                                           0.003
##
       ria_2
                          80.676
                                        NA
                                                                  0.369
                                                                           0.328
##
       ria_3
                         403.087
                                                                           1.219
                                        NA
                                                                  1.845
##
                                        NA
                                                                  0.497
                                                                           0.397
       ria_4
                         108.522
                                        NA
##
       ria_5
                         146.971
                                                                  0.673
                                                                           0.475
##
       ria_6
                          88.574
                                        NA
                                                                  0.405
                                                                           0.300
       ria_7
                          51.765
                                        NA
                                                                  0.237
##
                                                                           0.172
##
       ria_8
                          93.436
                                        NA
                                                                  0.428
                                                                           0.344
##
## Covariances:
                                   Std.Err z-value P(>|z|)
##
                       Estimate
                                                                Std.lv Std.all
##
     ria_one ~~
                                                                -0.004
##
       ria two
                          -0.257
                                        NA
                                                                          -0.004
##
       ria_gen
                          -0.001
                                        NA
                                                                 -0.172
                                                                          -0.172
##
     ria_two ~~
##
                           0.006
                                                                  0.015
                                                                           0.015
       ria_gen
                                        NA
##
## Variances:
##
                       Estimate
                                  Std.Err z-value P(>|z|)
                                                                Std.lv Std.all
```

##	.ria_2	0.586	NA	0.586	0.462
##	.ria_4	0.814	NA	0.814	0.519
##	.ria_5	1.464	NA	1.464	0.731
##	.ria_6	1.128	NA	1.128	0.618
##	.ria_7	1.254	NA	1.254	0.663
##	.ria_8	0.837	NA	0.837	0.541
##	.ria_1	7154.260	NA	7154.260	3722.042
##	.ria_3	-1.113	NA	-1.113	-0.486
##	ria_one	0.646	NA	1.000	1.000
##	ria_two	-7152.349	NA	NaN	NaN
##	ria_gen	0.000	NA	1.000	1.000

Does not produce a good-fitting model. Try single-dimension next.

CFA 3

## ##	lavaan 0.6-3 ended normally after 24 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	10		
##	•			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	6.589	5.268	
##	8	5	5	
##	1	0.253	0.384	
##	Scaling correction factor for the Satorra-Bentler correction		1.251	
##	for the Satorra-Bentler Correction			
	Model test baseline model:			
##	noder tobt buberine moder.			
##	Minimum Function Test Statistic	360.534	217.930	
##	Degrees of freedom	10	10	
##	_	0.000	0.000	
##				
	User model versus baseline model:			
##	G T. 1 (GDT)	0.005	0.000	
##	Comparative Fit Index (CFI)	0.995	0.999	
##	Tucker-Lewis Index (TLI)	0.991	0.997	
##	Robust Comparative Fit Index (CFI)		0.999	
##	Robust Tucker-Lewis Index (TLI)		0.998	
##				
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-2081.818	-2081.818	
##	Loglikelihood unrestricted model (H1)	-2078.523	-2078.523	
##	N 1 6 6	40	4.0	
##	Number of free parameters Akaike (AIC)	10 4183.636	10 4183.636	
##	Bayesian (BIC)	4219.731		
##	Sample-size adjusted Bayesian (BIC)	4188.023		
##	Sample 5126 dajabted bayesian (516)	1100.020	1100.020	
##	Root Mean Square Error of Approximation:			
##	•			
##	RMSEA	0.034	0.014	
##	90 Percent Confidence Interval	0.000 0.096	0.000	0.080
##	P-value RMSEA <= 0.05	0.585	0.744	
##	2.1			
##	Robust RMSEA		0.016	0 000
##	90 Percent Confidence Interval		0.000	0.096
## ##	Standardized Root Mean Square Residual:			
##	beandardized noot hear bquare hesidual.			
##	SRMR	0.023	0.023	
##				
##	Parameter Estimates:			

##							
##	Information				Expected		
##	Information sat	curated (h1)	model	St	ructured		
##	Standard Errors	3		Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	ria_gen =~						
##	ria_2	1.000				0.810	0.725
##	ria_4	1.180	0.135	8.752	0.000	0.955	0.740
##	ria_6	0.974	0.123	7.890	0.000	0.789	0.590
##	ria_7	0.963	0.102	9.489	0.000	0.780	0.566
##	ria_8	0.998	0.101	9.918	0.000	0.808	0.660
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.ria_2	0.592	0.079	7.497	0.000	0.592	0.475
##	.ria_4	0.752	0.109	6.924	0.000	0.752	0.452
##	.ria_6	1.167	0.112	10.378	0.000	1.167	0.652
##	.ria_7	1.287	0.166	7.746	0.000	1.287	0.679
##	.ria_8	0.848	0.101	8.415	0.000	0.848	0.565
##	ria_gen	0.655	0.132	4.963	0.000	1.000	1.000

Shows an adequate solution.

Traditionalism

Items

CFA 1

## ##	lavaan 0.6-3 ended normally after 27 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	16		
##	-			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	114.157		
##	Degrees of freedom	20	20	
##	1	0.000	0.000 1.107	
##	for the Satorra-Bentler correction		1.107	
##	Tor the Satorra-Bentler Correction			
	Model test baseline model:			
##	THE STATE OF THE S			
##	Minimum Function Test Statistic	389.347	325.626	
##	Degrees of freedom	28	28	
##	P-value	0.000	0.000	
##				
	User model versus baseline model:			
##	g (GDT)	0.700	0 701	
##	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.739 0.635	0.721	
##	Tucker-Lewis Index (ILI)	0.635	0.609	
##	Robust Comparative Fit Index (CFI)		0.741	
##	Robust Tucker-Lewis Index (TLI)		0.638	
##	,			
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-3511.023	-3511.023	
##	Loglikelihood unrestricted model (H1)	-3453.944	-3453.944	
##	Number of force	1.0	1.0	
##	Number of free parameters Akaike (AIC)	16 7054.046	16 7054.046	
##	Bayesian (BIC)	7111.798		
##	Sample-size adjusted Bayesian (BIC)	7061.065	7061.065	
##	24mp10 2120 daja2004 24j02141 (210)	, 002,000		
##	Root Mean Square Error of Approximation:			
##	-			
##	RMSEA	0.131	0.123	
##	90 Percent Confidence Interval	0.108 0.155	0.102	0.146
##	P-value RMSEA <= 0.05	0.000	0.000	
##	D. I DMGEA		0.400	
##	Robust RMSEA		0.130 0.106	0 155
##	90 Percent Confidence Interval		0.106	0.155
	Standardized Root Mean Square Residual:			
##	Daniararazza 11000 fican bytare fiebratar.			
##	SRMR	0.095	0.095	
##				
##	Parameter Estimates:			

##							
##	Information				Expected		
##	Information satu	rated (h1)	model	St	ructured		
##	Standard Errors			Ro	bust.sem		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	tra_gen =~						
##	tra_1	1.000				0.910	0.685
##	tra_2	-0.014	0.090	-0.156	0.876	-0.013	-0.013
##	tra_3	0.791	0.100	7.886	0.000	0.720	0.633
##	tra_4	0.204	0.125	1.625	0.104	0.186	0.124
##	tra_5	0.948	0.109	8.713	0.000	0.863	0.692
##	tra_6	0.071	0.124	0.571	0.568	0.065	0.046
##	tra_7	0.733	0.111	6.585	0.000	0.667	0.470
##	tra_8	0.841	0.117	7.170	0.000	0.766	0.569
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.tra_1	0.938	0.128	7.332	0.000	0.938	0.531
##	.tra_2	0.961	0.111	8.661	0.000	0.961	1.000
##	.tra_3	0.776	0.094	8.268	0.000	0.776	0.599
##	.tra_4	2.207	0.164	13.447	0.000	2.207	0.985
##	.tra_5	0.813	0.113	7.186	0.000	0.813	0.522
##	.tra_6	1.998	0.148	13.473	0.000	1.998	0.998
##	.tra_7	1.570	0.127	12.347	0.000	1.570	0.779
##	.tra_8	1.223	0.136	9.015	0.000	1.223	
##	tra_gen	0.829	0.146	5.680	0.000	1.000	1.000

Data show poor fit to the model.

EFA 1 Parallel analysis

Parallel analysis suggests that the number of factors = 3 and the number of components = 2

Factor analysis

```
##
## Loadings:
       ML1
              ML3 ML2
##
## tra_1 0.344 0.408
## tra_2 0.996
## tra_3
                      0.769
## tra_4 0.218 0.329 -0.193
## tra_5
               0.698
## tra_6 0.458 -0.143 0.211
## tra_7
               0.566
## tra_8 -0.122 0.317 0.314
##
##
                  ML1 ML3 ML2
## SS loadings 1.271 1.155 0.949
## Proportion Var 0.159 0.144 0.119
## Cumulative Var 0.159 0.303 0.422
```

Does not show a convincing solution.

Factor analysis

```
##
## Loadings:
         ML2
##
                ML1
## tra_1 0.687
## tra_2
                 0.997
## tra_3 0.635
## tra_4 0.128
                 0.255
## tra_5 0.690
## tra_6
                 0.433
## tra_7 0.470
## tra_8 0.573 -0.121
##
##
                   ML2
                         ML1
## SS loadings
                  1.92 1.277
## Proportion Var 0.24 0.160
## Cumulative Var 0.24 0.399
```

Implies a single dimension, as on factor 2 there is only one significant loading.

CFA 2

## ##	lavaan 0.6-3 ended normally after 24 item	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	10		
##	•			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	12.362	10.686	
##	8	5	5	
##	1111111	0.030	0.058	
## ##	Scaling correction factor for the Satorra-Bentler correction		1.157	
##	for the Satorra-Bentler Correction			
	Model test baseline model:			
##	noder tobt buberine moder.			
##	Minimum Function Test Statistic	283.858	243.214	
##	Degrees of freedom	10	10	
##	_	0.000	0.000	
##				
	User model versus baseline model:			
##	g (GDT)	0.070	0.074	
##	Comparative Fit Index (CFI)	0.973	0.976	
## ##	Tucker-Lewis Index (TLI)	0.946	0.951	
##	Robust Comparative Fit Index (CFI)		0.976	
##	Robust Tucker-Lewis Index (TLI)		0.952	
##	,			
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-2151.223		
##	Loglikelihood unrestricted model (H1)	-2145.042	-2145.042	
##	Number of force	10	10	
## ##	Number of free parameters Akaike (AIC)	10 4322.447	10 4322.447	
##	Bayesian (BIC)	4358.541		
##	Sample-size adjusted Bayesian (BIC)	4326.834		
##	2			
##	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.073	0.065	
##	90 Percent Confidence Interval	0.021 0.126	0.005	0.115
##	P-value RMSEA <= 0.05	0.188	0.266	
##	Dalas - + DMGEA		0.000	
## ##	Robust RMSEA 90 Percent Confidence Interval		0.069 NA	0.128
##	90 Percent Confidence Interval		NA	0.120
	Standardized Root Mean Square Residual:			
##	and the second s			
##	SRMR	0.034	0.034	
##				
##	Parameter Estimates:			

## ## ## ##	Information Information sat Standard Errors Latent Variables:		model	St	Expected ructured bust.sem		
##	Latent variables:	Estimate	Std Err	7-value	P(> z)	Std.lv	Std.all
##	tra_gen =~	Lbulmauc	Dodini	Z varuo	1 (7 2)	Dog.iv	Dou.uii
##	tra_1	1.000				0.916	0.689
##	tra_3	0.794	0.099	7.993	0.000	0.727	0.639
##	tra_5	0.933	0.107	8.706	0.000	0.854	0.684
##	tra_7	0.725	0.110	6.589	0.000	0.664	0.468
##	tra_8	0.836	0.116	7.174	0.000	0.765	0.569
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.tra_1	0.928	0.128	7.234	0.000	0.928	0.525
##	.tra_3	0.767	0.093	8.225	0.000	0.767	0.592
##	.tra_5	0.829	0.113			0.829	
##	.tra_7	1.574				1.574	
##	.tra_8	1.224				1.224	
##	tra_gen	0.838	0.146	5.729	0.000	1.000	1.000

Shows adequate fit.

Results

Structural regression model

In what follows, we present the results of the structural regression model, in which we predict the three dimensions of privacy on the basis of the aforementioned personality facets. The personality facets are modelled as latent factors with single indicators, in which the indicators' error variances are specified using the results from the CFAs.

## ##	lavaan 0.6-3 ended normally after 48 iter	ations		
##	Optimization method	NLMINB		
##	Number of free parameters	67		
##	-			
##	Number of observations	273		
##				
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	242.667	226.975	
##	Degrees of freedom	137	137	
##		0.000	0.000	
##			1.069	
##	for the Satorra-Bentler correction			
##				
##	Model test baseline model:			
##				
##	Minimum Function Test Statistic	1409.494	1317.911	
##	Degrees of freedom	187	187	
##	P-value	0.000	0.000	
##				
##	User model versus baseline model:			
##				
##	Comparative Fit Index (CFI)	0.914	0.920	
##	Tucker-Lewis Index (TLI)	0.882	0.891	
##				
##	Robust Comparative Fit Index (CFI)		0.920	
##	Robust Tucker-Lewis Index (TLI)		0.891	
##				
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-6845.604		
##	Loglikelihood unrestricted model (H1)	-6724.271	-6724.271	
##				
##	Number of free parameters	67		
##	Akaike (AIC)		13825.208	
##	Bayesian (BIC)	14067.042		
##	Sample-size adjusted Bayesian (BIC)	13854.602	13854.602	
##				
	Root Mean Square Error of Approximation:			
##	DWCEA	2 252	0 040	
##		0.053	0.049	0 000
##		0.042 0.064	0.038	0.060
##	P-value RMSEA <= 0.05	0.307	0.544	
##	Dahuat DMCEA		0.054	
##	Robust RMSEA		0.051	

## ##	90 Percent Confidence Interval					0.0	39 0.062
##	Standardized Root	Mean Squar	e Residua	1:			
## ##	SRMR				0.056	0.0	56
##	Siunt				0.000	0.0	00
##	Parameter Estimate	s:					
##							
##	Information	(1.4)			Expected		
##	Information satu	rated (h1)	model		ructured		
##	Standard Errors			КО	bust.sem		
##	Latent Variables:						
##	Lavoiro variabios.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov =~						
##	pri_nee_soc_1	1.000				1.077	0.741
##	pri_nee_soc_2	0.979	0.092	10.649	0.000	1.054	0.707
##	pri_nee_soc_3	1.022	0.090	11.405	0.000	1.101	0.765
##	pri_nee_soc_4	1.144	0.088	12.925	0.000	1.232	0.808
##	pri_nee_soc_9	1.017	0.090	11.290	0.000	1.096	0.731
##	pri_nee_int =~	1 000				0 000	0.000
## ##	pri_nee_gen_1	1.000	O 1E2	3.002	0.003	0.923 0.425	0.690 0.278
##	<pre>pri_nee_int_2 pri_nee_int_7</pre>	0.460 0.737	0.153 0.121	6.115	0.003	0.425	0.278
##	pri_nee_int_9	0.768	0.121	6.322	0.000	0.708	0.543
##	pri_nee_ano =~	0.700	0.121	0.022	0.000	0.700	0.040
##	pri_nee_soc_6	1.000				0.912	0.599
##	pri_nee_soc_7	1.152	0.147	7.844	0.000	1.050	0.743
##	pri_nee_soc_8	0.929	0.121	7.690	0.000	0.848	0.575
##	pri_nee_int_2	0.656	0.138	4.768	0.000	0.598	0.391
##	soc =~						
##	soc_gen	1.000				0.808	0.887
##	anx =~	1 000				0 670	0.000
##	anx_gen tra =~	1.000				0.679	0.902
##	tra_gen	1.000				0.686	0.858
##	ria =~	1.000				0.000	0.000
##	ria_gen	1.000				0.639	0.881
##	itg =~						
##	itg_gen	1.000				0.620	0.887
##							
	Regressions:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	pri_nee_gov ~	0 042	0 110	0 005	0 007	0 100	0.100
## ##	soc	-0.243 -0.062	0.110 0.150	-2.205 -0.414	0.027 0.679	-0.182 -0.036	-0.182 -0.036
##	itg anx	-0.269	0.130	-2.037	0.042	-0.170	-0.170
##	tra	0.162	0.132	1.138	0.042	0.103	0.170
##	ria	0.236	0.161	1.468	0.142	0.140	0.140
##	male	0.344	0.153	2.249	0.025	0.320	0.143
##	age	0.027	0.012	2.217	0.027	0.025	0.067
##	inc	0.044	0.069	0.647	0.518	0.041	0.041
##	pri_nee_int ~						
##	soc	-0.380	0.097	-3.922	0.000	-0.333	-0.333

##	itg	0.037	0.127	0.292	0.770	0.025	0.025
##	anx	0.003	0.111	0.029	0.977	0.002	0.002
##	tra	0.183	0.147	1.239	0.215	0.136	0.136
##	ria	0.399	0.139	2.862	0.004	0.276	0.276
##	male	0.299	0.139	2.153	0.031	0.324	0.145
##	age	0.016	0.012	1.329	0.184	0.017	0.045
##	inc	0.022	0.076	0.286	0.775	0.024	0.024
##	pri_nee_ano ~						
##	SOC	-0.240	0.094	-2.550	0.011	-0.213	-0.213
##	itg	-0.366	0.137	-2.669	0.008	-0.249	-0.249
##	anx	-0.147	0.113	-1.299	0.194	-0.109	-0.109
##	tra	-0.012	0.133	-0.087	0.931	-0.009	-0.009
##	ria	0.039	0.126	0.312	0.755	0.028	0.028
##	male	0.303	0.145	2.081	0.037	0.332	0.148
##	age	0.034	0.016	2.100	0.036	0.037	0.098
##	inc	0.130	0.073	1.777	0.076	0.143	0.143
##							
	Covariances:				- 4 1 15		
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	SOC ~~	0 110	0 040	0 404	0 001	0 070	0.070
##	anx	-0.148	0.043	-3.431	0.001	-0.270	-0.270
##	tra	-0.086	0.043	-1.993	0.046	-0.155	-0.155 -0.094
##	ria	-0.049 0.039	0.047 0.040	-1.044 0.968	0.297 0.333	-0.094 0.078	0.078
## ##	itg anx ~~	0.039	0.040	0.900	0.333	0.076	0.076
##	tra	0.081	0.039	2.049	0.040	0.174	0.174
##	ria	0.035	0.038	0.923	0.356	0.081	0.081
##	itg	-0.015	0.032	-0.478	0.633	-0.037	-0.037
##	tra ~~	0.020	0.002	0.1.0	0.000	0.00.	0.00.
##	ria	0.177	0.039	4.591	0.000	0.404	0.404
##	itg	-0.004	0.036	-0.124	0.902	-0.010	-0.010
##	ria ~~						
##	itg	0.118	0.029	4.012	0.000	0.297	0.297
##	.pri_nee_gov ~~						
##	.pri_nee_int	0.270	0.081	3.352	0.001	0.345	0.345
##	.pri_nee_ano	0.589	0.103	5.718	0.000	0.702	0.702
##	.pri_nee_int ~~						
##	.pri_nee_ano	0.218	0.076	2.870	0.004	0.340	0.340
##							
	Variances:	.	a	,	D(:)	Q. 1. 7	a. 1 77
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.soc_gen	0.177				0.177	0.213
##	.itg_gen	0.104				0.104	0.213
##	.anx_gen	0.106				0.106	0.187
##	.tra_gen	0.169				0.169	0.264
##	.ria_gen	0.118	0 000	0 504	0 000	0.118	0.224
##	.pri_nee_soc_1	0.953	0.099	9.594	0.000	0.953	0.451
##	.pri_nee_soc_2	1.112	0.154	7.244	0.000	1.112	0.500
##	.pri_nee_soc_3	0.858	0.119	7.212		0.858	0.414
## ##	<pre>.pri_nee_soc_4 .pri_nee_soc_9</pre>	0.807 1.046	0.115	6.997 9.762	0.000	0.807 1.046	0.347 0.466
##	.pri_nee_soc_9 .pri_nee_gen_1	0.935	0.107 0.141	6.618	0.000	0.935	0.466
##	.pri_nee_gen_1 .pri_nee_int_2	1.622	0.141	10.600	0.000	1.622	0.694
##	.pri_nee_int_7	1.179	0.133	9.295	0.000	1.179	0.718
ππ	· L	1.113	0.121	0.200	0.000	1.113	0.710

##	.pri_nee_int_9	1.201	0.155	7.761	0.000	1.201	0.705
##	.pri_nee_soc_6	1.485	0.172	8.657	0.000	1.485	0.641
##	.pri_nee_soc_7	0.897	0.135	6.670	0.000	0.897	0.449
##	.pri_nee_soc_8	1.456	0.176	8.259	0.000	1.456	0.670
##	.pri_nee_gov	1.023	0.162	6.322	0.000	0.882	0.882
##	.pri_nee_int	0.598	0.142	4.212	0.000	0.702	0.702
##	.pri_nee_ano	0.688	0.158	4.357	0.000	0.827	0.827
##	soc	0.653	0.074	8.851	0.000	1.000	1.000
##	anx	0.461	0.043	10.673	0.000	1.000	1.000
##	tra	0.471	0.052	8.980	0.000	1.000	1.000
##	ria	0.409	0.059	6.972	0.000	1.000	1.000
##	itg	0.384	0.036	10.823	0.000	1.000	1.000

Tables

Final items measuring need for privacy

name	content
pri_nee_soc_1	I need government agencies to respect my privacy, even if that hinders a greater societal cause.
pri_nee_soc_2	I need the information that companies (e.g., Amazon, Facebook, or Google) have about me to stay private so that the government can never access it.
pri_nee_soc_3	I don't want the government to gather information about me, even if that makes it more difficult for them to spend tax income efficiently.
pri_nee_soc_4	I don't want government agencies to monitor my personal communication, even if doing so prevents future terrorist attacks.
pri_nee_soc_6	I need to be able to use a fake name on social network sites to preserve my privacy.
pri_nee_soc_7	I feel the need to avoid places with video surveillance.
pri_nee_soc_8	I prefer not to carry my ID with me all the time to preserve my privacy.
pri_nee_soc_9	I feel the need to protect my privacy from government agencies.
pri_nee_int_2	My need for privacy is so strong that it prevents me from using Facebook actively.
pri_nee_int_7	I don't feel the need to tell my friends all my secrets.
pri_nee_int_9	I feel the need to protect my privacy from other people.
pri_nee_gen_1	I prefer it when other people do not know much about me.

Psychometrics

	m	sd	chisq	df	pvalue	cfi	tli	rmsea	srmr	omega	alpha	ave
(Combined)	4.18	1.62	101.72	50	< .001	.94	.92	.06	.06	.85	.88	.46
Government	4.13	1.49	7.26	5	.202	1.00	.99	.04	.02	.87	.87	.57
Interpersonal	4.21	1.59	10.22	2	.006	.93	.78	.12	.04	.62	.62	.30
Anonymity	2.92	1.50	3.16	2	.206	.99	.98	.05	.03	.69	.70	.37
Sociability	4.70	1.50	6.20	2	.045	.98	.94	.09	.03	.79	.79	.49
Integrity	4.56	1.84	47.44	25	.004	.96	.94	.06	.04	.79	.83	.41
Anxiety	4.41	1.53	36.98	18	.005	.96	.93	.06	.04	.80	.82	.42
Risk avoidance	4.30	1.56	5.27	5	.384	1.00	1.00	.01	.02	.79	.79	.43
Traditionality	3.91	1.60	10.69	5	.058	.98	.95	.06	.03	.74	.74	.37

Structural regression model

Outcome	Predictor	b	11	ul	beta	р
Privacy need government	Sociability	-0.24	-0.46	-0.03	18	.027
Privacy need government	Integrity	-0.06	-0.36	0.23	04	.679
Privacy need government	Anxiety	-0.27	-0.53	-0.01	17	.042
Privacy need government	Traditionalism	0.16	-0.12	0.44	.10	.255
Privacy need government	Risk avoidance	0.24	-0.08	0.55	.14	.142
Privacy need government	Male	0.34	0.04	0.64	.14	.025
Privacy need government	Age	0.03	< 0.01	0.05	.07	.027
Privacy need government	Income	0.04	-0.09	0.18	.04	.518
Privacy need interpersonal	Sociability	-0.38	-0.57	-0.19	33	< .001
Privacy need interpersonal	Integrity	0.04	-0.21	0.29	.02	.770
Privacy need interpersonal	Anxiety	< 0.01	-0.21	0.22	< .01	.977
Privacy need interpersonal	Traditionalism	0.18	-0.11	0.47	.14	.215
Privacy need interpersonal	Risk avoidance	0.40	0.13	0.67	.28	.004
Privacy need interpersonal	Male	0.30	0.03	0.57	.14	.031
Privacy need interpersonal	Age	0.02	-0.01	0.04	.04	.184
Privacy need interpersonal	Income	0.02	-0.13	0.17	.02	.775
Privacy need anonymity	Sociability	-0.24	-0.43	-0.06	21	.011
Privacy need anonymity	Integrity	-0.37	-0.63	-0.10	25	.008
Privacy need anonymity	Anxiety	-0.15	-0.37	0.07	11	.194
Privacy need anonymity	Traditionalism	-0.01	-0.27	0.25	01	.931
Privacy need anonymity	Risk avoidance	0.04	-0.21	0.29	.03	.755
Privacy need anonymity	Male	0.30	0.02	0.59	.15	.037
Privacy need anonymity	Age	0.03	< 0.01	0.07	.10	.036
Privacy need anonymity	Income	0.13	-0.01	0.27	.14	.076

Figures

Bivariate relations

Structural regression model

Confidence intervals estimated using lavaan's standardized solution.

Confidence intervals estimated using Bootstrap approach with 2000 draws. Note that the results differ slightly from the regular approach, which is why in the paper we present the results using lavaan's standardized solution.

Additional analyses

Structural regression model with need for privacy measured as bifactor

Results

## ##	lavaan 0.6-3 ended normally after 95 iter	rations		
##	Optimization method	NLMINB		
##	Number of free parameters	84		
##	Number of free parameters	04		
##	Number of observations	273		
	Number of observations	213		
##	B	М	ъ.	
##	Estimator	ML	Robust	
##	Model Fit Test Statistic	190.360	177.781	
##	Degrees of freedom	120	120	
##	P-value (Chi-square)	0.000	0.000	
##	Scaling correction factor		1.071	
##	for the Satorra-Bentler correction			
##				
##	Model test baseline model:			
##				
##	Minimum Function Test Statistic	1409.494	1317.911	
##	Degrees of freedom	187	187	
##	P-value	0.000	0.000	
##				
##	User model versus baseline model:			
##				
##	Comparative Fit Index (CFI)	0.942	0.949	
##	Tucker-Lewis Index (TLI)	0.910	0.920	
##				
##	Robust Comparative Fit Index (CFI)		0.949	
##	Robust Tucker-Lewis Index (TLI)		0.920	
##				
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-6819.451	-6819.451	
##	Loglikelihood unrestricted model (H1)			
##	0			
##	Number of free parameters	84	84	
##	Akaike (AIC)	13806.901		
##	Bayesian (BIC)	14110.097		
##	Sample-size adjusted Bayesian (BIC)	13843.754	13843.754	
##	bampio bizo dajabioa bayobian (bio)	10010.701	10010.701	
	Root Mean Square Error of Approximation:			
##	noot hear bequare brior or approximation.			
##	RMSEA	0.046	0.042	
##	90 Percent Confidence Interval	0.040	0.042	0.054
##	P-value RMSEA <= 0.05	0.676	0.029	0.004
##	1 value mada N- 0.00	0.076	0.054	
	Robust RMSEA		0.043	
##				0.056
##	90 Percent Confidence Interval		0.029	0.056
##				

```
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                       0.046
                                                                    0.046
##
## Parameter Estimates:
##
##
     Information
                                                    Expected
##
     Information saturated (h1) model
                                                  Structured
##
     Standard Errors
                                                  Robust.sem
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
                                                                Std.lv Std.all
##
     pri_nee_gen =~
                                                                          0.583
##
       pri_nee_soc_1
                          1.000
                                                                 0.846
##
                                    0.129
                                             8.622
                                                       0.000
                                                                 0.939
                                                                          0.629
       pri_nee_soc_2
                          1.110
##
                          1.119
                                    0.115
                                             9.750
                                                       0.000
                                                                 0.947
                                                                          0.658
       pri_nee_soc_3
##
                          1.117
                                    0.110
                                            10.113
                                                       0.000
                                                                 0.945
                                                                          0.621
       pri_nee_soc_4
##
                          1.299
                                    0.144
                                             9.048
                                                       0.000
                                                                 1.099
                                                                          0.730
       pri_nee_soc_9
##
                                    0.127
                                             3.241
                                                       0.001
                                                                 0.347
                          0.410
                                                                          0.260
       pri_nee_gen_1
##
       pri_nee_int_2
                          0.847
                                    0.171
                                             4.947
                                                       0.000
                                                                 0.717
                                                                          0.468
##
       pri_nee_int_7
                          0.040
                                    0.125
                                             0.319
                                                       0.750
                                                                 0.034
                                                                          0.026
##
                          0.645
                                    0.128
                                             5.027
                                                       0.000
                                                                 0.546
                                                                          0.418
       pri_nee_int_9
##
                          1.027
                                    0.180
                                             5.700
                                                       0.000
       pri_nee_soc_6
                                                                 0.869
                                                                          0.570
                          0.993
                                    0.203
                                             4.893
                                                       0.000
                                                                 0.840
##
       pri_nee_soc_7
                                                                          0.596
##
       pri_nee_soc_8
                          0.934
                                    0.174
                                             5.361
                                                       0.000
                                                                 0.790
                                                                          0.535
##
     pri_nee_gov =~
##
                          1.000
                                                                 0.828
                                                                          0.570
       pri_nee_soc_1
                          0.757
                                    0.149
                                             5.075
                                                       0.000
                                                                 0.627
##
                                                                          0.420
       pri_nee_soc_2
##
                          0.864
                                    0.140
                                             6.165
                                                       0.000
                                                                          0.497
       pri_nee_soc_3
                                                                 0.715
##
                          1.212
                                    0.153
                                             7.930
                                                       0.000
                                                                 1.004
                                                                          0.660
       pri_nee_soc_4
##
       pri_nee_soc_9
                          0.605
                                    0.156
                                             3.868
                                                       0.000
                                                                 0.501
                                                                          0.333
##
     pri_nee_int =~
##
                          1.000
                                                                 0.808
                                                                          0.605
       pri_nee_gen_1
                          0.423
                                             2.718
                                                                 0.342
                                                                          0.223
##
                                    0.156
                                                       0.007
       pri_nee_int_2
##
                          1.019
                                    0.189
                                             5.397
                                                       0.000
                                                                 0.823
                                                                          0.643
       pri_nee_int_7
##
                          0.599
                                    0.135
                                             4.432
                                                       0.000
                                                                          0.371
       pri_nee_int_9
                                                                 0.484
##
     pri_nee_ano =~
##
                          1.000
                                                                 0.374
                                                                          0.245
       pri_nee_soc_6
##
                          2.319
                                    0.922
                                             2.514
                                                       0.012
                                                                 0.868
                                                                          0.616
       pri_nee_soc_7
##
                                             2.522
                                                       0.012
                                                                 0.440
                                                                          0.298
                          1.174
                                    0.465
       pri_nee_soc_8
##
                                    0.422
                                             2.029
                                                       0.042
                                                                          0.209
       pri_nee_int_2
                          0.856
                                                                 0.320
##
     soc =~
##
       soc_gen
                          1.000
                                                                 0.808
                                                                          0.887
##
     itg =~
##
                          1.000
                                                                 0.620
                                                                          0.887
       itg_gen
##
     anx =~
##
                          1.000
                                                                 0.679
                                                                          0.902
       anx_gen
##
     ria =~
##
                          1.000
                                                                 0.639
                                                                          0.881
       ria_gen
##
     tra =~
##
                                                                 0.686
                          1.000
                                                                          0.858
       tra_gen
##
## Regressions:
##
                       Estimate Std.Err z-value P(>|z|)
                                                                Std.lv Std.all
```

##	pri_nee_gen ~						
##	soc	-0.163	0.115	-1.425	0.154	-0.156	-0.156
##	itg	-0.149	0.163	-0.911	0.362	-0.109	-0.109
##	anx	0.139	0.152	0.914	0.360	0.111	0.111
##	ria	0.430	0.191	2.253	0.024	0.325	0.325
##	tra	-0.330	0.198	-1.669	0.095	-0.268	-0.268
##	male	0.243	0.181	1.344	0.179	0.287	0.128
##	age	0.049	0.021	2.341	0.019	0.058	0.153
##	inc	0.085	0.080	1.071	0.284	0.101	0.101
##	<pre>pri_nee_gov ~</pre>						
##	SOC	-0.077	0.138	-0.559	0.576	-0.075	-0.075
##	itg	0.109	0.181	0.604	0.546	0.082	0.082
##	anx	-0.470	0.181	-2.601	0.009	-0.385	-0.385
##	ria	-0.269	0.199	-1.352	0.176	-0.208	-0.208
##	tra	0.596	0.248	2.405	0.016	0.494	0.494
##	male	0.077	0.209	0.371	0.711	0.093	0.042
##	age	-0.028	0.023	-1.216	0.224	-0.033	-0.088
##	inc	-0.051	0.082	-0.621	0.535	-0.061	-0.061
##	pri_nee_int ~						
##	SOC	-0.294	0.090	-3.264	0.001	-0.294	-0.294
##	itg	0.095	0.125	0.764	0.445	0.073	0.073
##	anx	-0.069	0.106	-0.654	0.513	-0.058	-0.058
##	ria	0.233	0.148	1.571	0.116	0.184	0.184
##	tra	0.291	0.148	1.961	0.050	0.247	0.247
##	male	0.187	0.136	1.381	0.167	0.232	0.103
## ##	age	-0.006 -0.022	0.011 0.067	-0.557 -0.325	0.577 0.745	-0.008 -0.027	-0.020 -0.027
##	inc	-0.022	0.007	-0.323	0.745	-0.021	-0.021
##	pri_nee_ano ~ soc	-0.049	0.066	-0.753	0.452	-0.107	-0.107
##	itg	-0.136	0.000	-1.395	0.432	-0.225	-0.225
##	anx	-0.177	0.109	-1.621	0.105	-0.321	-0.321
##	ria	-0.232	0.143	-1.616	0.106	-0.395	-0.395
##	tra	0.186	0.131	1.412	0.158	0.340	0.340
##	male	0.067	0.098	0.684	0.494	0.180	0.080
##	age	-0.008	0.009	-0.876	0.381	-0.022	-0.058
##	inc	0.028	0.047	0.586	0.558	0.074	0.074
##							
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_gen ~~						
##	.pri_nee_gov	0.000				0.000	0.000
##	.pri_nee_int	0.000				0.000	0.000
##	.pri_nee_ano	0.000				0.000	0.000
##	.pri_nee_gov ~~						
##	.pri_nee_int	0.000				0.000	0.000
##	.pri_nee_ano	0.000				0.000	0.000
##	.pri_nee_int ~~						
##	.pri_nee_ano	0.000				0.000	0.000
##	SOC ~~						
##	itg	0.039	0.040	0.970	0.332	0.078	0.078
##	anx	-0.148	0.043	-3.428	0.001	-0.269	-0.269
##	ria	-0.048	0.047	-1.041	0.298	-0.094	-0.094
##	tra	-0.086	0.043	-1.995	0.046	-0.156	-0.156
##	itg ~~						

##	anx	-0.015	0.032	-0.480	0.632	-0.037	-0.037
##	ria	0.118	0.029	4.009	0.000	0.297	0.297
##	tra	-0.004	0.036	-0.122	0.903	-0.010	-0.010
##	anx ~~						
##	ria	0.035	0.038	0.917	0.359	0.080	0.080
##	tra	0.081	0.039	2.052	0.040	0.174	0.174
##	ria ~~						
##	tra	0.178	0.039	4.600	0.000	0.405	0.405
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.soc_gen	0.177				0.177	0.213
##	.itg_gen	0.104				0.104	0.213
##	.anx_gen	0.106				0.106	0.187
##	.ria_gen	0.118				0.118	0.224
##	.tra_gen	0.169	0.407	0 500	0 000	0.169	0.264
##	.pri_nee_soc_1	0.914	0.107	8.522	0.000	0.914	0.433
##	.pri_nee_soc_2	1.127	0.151	7.481	0.000	1.127	0.506
##	.pri_nee_soc_3	0.864	0.117	7.366	0.000	0.864	0.417
## ##	<pre>.pri_nee_soc_4 .pri_nee_soc_9</pre>	0.695 0.966	0.127 0.111	5.476 8.700	0.000	0.695 0.966	0.300 0.427
##	.pri_nee_soc_9 .pri_nee_gen_1	0.900	0.111	6.820	0.000	0.900	0.427
##	.pri_nee_gen_1 .pri_nee_int_2	1.636	0.143	10.594	0.000	1.636	0.698
##	.pri_nee_int_7	0.956	0.146	6.554	0.000	0.956	0.583
##	.pri_nee_int_9	1.139	0.140	8.142	0.000	1.139	0.667
##	.pri_nee_soc_6	1.511	0.140	9.224	0.000	1.511	0.649
##	.pri_nee_soc_7	0.702	0.220	3.188	0.001	0.702	0.354
##	.pri_nee_soc_8	1.445	0.167	8.658	0.000	1.445	0.663
##	.pri_nee_gen	0.572	0.151	3.775	0.000	0.799	0.799
##	.pri_nee_gov	0.475	0.152	3.118	0.002	0.692	0.692
##	.pri_nee_int	0.484	0.127	3.802	0.000	0.740	0.740
##	.pri_nee_ano	0.090	0.069	1.302	0.193	0.639	0.639
##	soc	0.653	0.074	8.853	0.000	1.000	1.000
##	itg	0.384	0.036	10.823	0.000	1.000	1.000
##	anx	0.461	0.043	10.671	0.000	1.000	1.000
##	ria	0.408	0.059	6.964	0.000	1.000	1.000
##	tra	0.471	0.052	8.992	0.000	1.000	1.000
##							
##	R-Square:						
##		Estimate					
##	soc_gen	0.787					
##	itg_gen	0.787					
##	anx_gen	0.813					
##	ria_gen	0.776					
##	tra_gen	0.736					
##	pri_nee_soc_1	0.567					
##	pri_nee_soc_2	0.494					
##	pri_nee_soc_3	0.583					
##	pri_nee_soc_4	0.700					
##	pri_nee_soc_9	0.573					
##	pri_nee_gen_1	0.455					
## ##	pri_nee_int_2	0.302					
##	pri_nee_int_7	0.417 0.333					
##	<pre>pri_nee_int_9</pre>	0.333					

##	pri_nee_soc_6	0.351
##	pri_nee_soc_7	0.646
##	pri_nee_soc_8	0.337
##	pri_nee_gen	0.201
##	<pre>pri_nee_gov</pre>	0.308
##	pri_nee_int	0.260
##	pri nee ano	0.361

Visualization

Structural regression model with individual items

```
## lavaan 0.6-3 ended normally after 121 iterations
##
##
     Optimization method
                                                    NLMINB
     Number of free parameters
##
                                                       465
##
##
     Number of observations
                                                        273
##
##
     Estimator
                                                        ML
                                                                 Robust
##
     Model Fit Test Statistic
                                                     0.000
                                                                  0.000
     Degrees of freedom
##
                                                                      0
##
    Minimum Function Value
                                           0.000000000000
##
     Scaling correction factor
                                                                     NA
       for the Satorra-Bentler correction
##
##
## Model test baseline model:
##
     Minimum Function Test Statistic
                                                  2449.509
##
                                                               2142.747
##
     Degrees of freedom
                                                        435
                                                                    435
##
     P-value
                                                     0.000
                                                                  0.000
##
## User model versus baseline model:
##
##
     Comparative Fit Index (CFI)
                                                     1.000
                                                                  1.000
##
     Tucker-Lewis Index (TLI)
                                                     1.000
                                                                  1.000
##
##
     Robust Comparative Fit Index (CFI)
                                                                     NA
     Robust Tucker-Lewis Index (TLI)
##
                                                                     NA
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                -12098.427 -12098.427
     Loglikelihood unrestricted model (H1)
##
                                                -12098.427 -12098.427
##
##
     Number of free parameters
                                                       465
                                                                    465
##
     Akaike (AIC)
                                                 25126.855
                                                              25126.855
##
     Bayesian (BIC)
                                                 26805.259
                                                              26805.259
     Sample-size adjusted Bayesian (BIC)
                                                 25330.858
##
                                                              25330.858
##
## Root Mean Square Error of Approximation:
##
                                                     0.000
##
     RMSEA
                                                                  0.000
     90 Percent Confidence Interval
                                              0.000 0.000
                                                                  0.000 0.000
##
##
     P-value RMSEA <= 0.05
                                                        NA
                                                                     NA
##
##
     Robust RMSEA
                                                                  0.000
     90 Percent Confidence Interval
##
                                                                  0.000 0.000
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.000
                                                                  0.000
##
## Parameter Estimates:
```

## ## ## ##	Information Information sat Standard Errors	urated (h1)	model	St	Expected ructured bust.sem		
## ##	Regressions:	Estimate	Std.Err	7-W21110	P(> z)	Std.lv	Std.all
##	pri_nee_gen_1 ~	LBCIMACC	Dua.LII	Z varuc	1 (> 2)	Dua.iv	Dua.aii
##	itg_gen	-0.081	0.116	-0.701	0.483	-0.081	-0.042
##	soc_gen	-0.356	0.086	-4.127	0.000	-0.356	-0.243
##	anx_gen	-0.029	0.106	-0.278	0.781	-0.029	-0.017
##	tra_gen	0.224	0.114	1.957	0.050	0.224	0.134
##	ria_gen	0.302	0.113	2.663	0.008	0.302	0.164
##	male	0.266	0.171	1.557	0.120	0.266	0.089
##	age	0.003	0.015	0.218	0.828	0.003	0.007
##	inc	0.106	0.079	1.339	0.181	0.106	0.080
##	pri_nee_gen_2 ~						
##	itg_gen	0.005	0.125	0.038	0.969	0.005	0.002
##	soc_gen	-0.310	0.092	-3.357	0.001	-0.310	-0.204
##	anx_gen	0.055	0.122	0.455	0.649	0.055	0.030
##	tra_gen	0.151	0.126	1.197	0.231	0.151	0.087
##	ria_gen	0.136	0.115	1.177	0.239	0.136	0.071
##	male	0.605	0.196	3.085	0.002	0.605	0.195
##	age	0.025	0.017	1.424	0.154	0.025	0.048
##	inc	-0.072	0.087	-0.827	0.408	-0.072	-0.052
##	pri_nee_gen_3 ~						
##	itg_gen	0.388	0.099	3.931	0.000	0.388	0.240
##	soc_gen	0.061	0.077	0.801	0.423	0.061	0.050
##	anx_gen	0.120	0.093	1.286	0.198	0.120	0.080
##	tra_gen	0.127	0.095	1.328	0.184	0.127	0.090
##	ria_gen	0.186	0.097	1.919	0.055	0.186	0.120
##	male	0.086	0.150	0.573	0.567	0.086	0.034
##	age	0.022	0.020	1.068	0.285	0.022	0.051
##	inc	-0.119	0.079	-1.493	0.135	-0.119	-0.105
##	pri_nee_gen_4 ~	0.470	0 000	0.400	0.000	0.470	0 445
##	itg_gen	0.173	0.082	2.102	0.036	0.173	0.115
##	soc_gen	0.162	0.080 0.077	2.030	0.042	0.162	0.141
##	anx_gen	0.136 0.236	0.077	1.769 2.796	0.077 0.005	0.136 0.236	0.097 0.180
##	tra_gen ria_gen	0.230	0.084	2.790	0.003	0.230	0.137
##	male	0.133	0.141	0.868	0.386	0.122	0.157
##	age	-0.014	0.014	-0.966	0.334	-0.014	-0.035
##	inc	-0.060	0.067	-0.895	0.371	-0.060	-0.057
##	pri_nee_soc_1 ~	0.000	0.001	0.000	0.011	0.000	0.001
##	itg_gen	0.003	0.132	0.023	0.982	0.003	0.001
##	soc_gen	-0.161	0.103	-1.570	0.116	-0.161	-0.101
##	anx_gen	-0.230	0.138	-1.671	0.095	-0.230	-0.119
##	tra_gen	0.187	0.128	1.460	0.144	0.187	0.102
##	ria_gen	0.195	0.122	1.595	0.111	0.195	0.097
##	male	0.200	0.201	0.992	0.321	0.200	0.061
##	age	0.021	0.020	1.041	0.298	0.021	0.038
##	inc	0.020	0.084	0.241	0.809	0.020	0.014
##	pri_nee_soc_2 ~						
##	itg_gen	0.017	0.139	0.121	0.904	0.017	0.008

##	soc_gen	-0.112	0.102	-1.097	0.273	-0.112	-0.068
##	anx_gen	-0.022	0.144	-0.155	0.877	-0.022	-0.011
##	tra_gen	0.214	0.117	1.826	0.068	0.214	0.114
##	ria_gen	0.208	0.143	1.453	0.146	0.208	0.101
##	male	0.461	0.196	2.349	0.019	0.461	0.137
##	age	0.012	0.023	0.518	0.604	0.012	0.021
##	inc	0.039	0.092	0.420	0.674	0.039	0.026
##	<pre>pri_nee_soc_3 ~</pre>						
##	itg_gen	-0.030	0.135	-0.223	0.824	-0.030	-0.015
##	soc_gen	-0.277	0.101	-2.751	0.006	-0.277	-0.174
##	anx_gen	-0.240	0.128	-1.872	0.061	-0.240	-0.125
##	tra_gen	0.205	0.124	1.661	0.097	0.205	0.114
##	ria_gen	0.136	0.134	1.015	0.310	0.136	0.068
##	male	0.384	0.188	2.037	0.042	0.384	0.118
##	age	0.034	0.017	2.045	0.041	0.034	0.062
##	inc	0.048	0.094	0.513	0.608	0.048	0.033
##	pri_nee_soc_4 ~						
##	itg_gen	-0.066	0.143	-0.458	0.647	-0.066	-0.030
##	soc_gen	-0.207	0.111	-1.869	0.062	-0.207	-0.123
##	anx_gen	-0.271	0.137	-1.972	0.049	-0.271	-0.133
##	tra_gen	0.210	0.130	1.613	0.107	0.210	0.110
##	ria_gen	0.147	0.135	1.093	0.275	0.147	0.070
##	male	0.347	0.210	1.652	0.099	0.347	0.101
##	age	0.030	0.015	1.980	0.048	0.030	0.051
##	inc	0.059	0.096	0.619	0.536	0.059	0.039
##	pri_nee_soc_5 ~						
##	itg_gen	0.012	0.138	0.085	0.932	0.012	0.005
##	soc_gen	-0.143	0.110	-1.291	0.197	-0.143	-0.082
##	anx_gen	-0.158	0.144	-1.101	0.271	-0.158	-0.075
##	tra_gen	0.111	0.133	0.834	0.404	0.111	0.056
##	ria_gen	0.135	0.162	0.838	0.402	0.135	0.062
##	male	0.545	0.230	2.367	0.018	0.545	0.154
##	age	0.045	0.023	1.994	0.046	0.045	0.076
##	inc	-0.051	0.092	-0.555	0.579	-0.051	-0.032
##	pri_nee_soc_6 ~	0.050	0 110	4 700	0 075	0.050	0.444
##	itg_gen	-0.250	0.140	-1.782	0.075	-0.250	-0.114
##	soc_gen	-0.132	0.107	-1.226	0.220	-0.132	-0.079
##	anx_gen	-0.011	0.134	-0.084	0.933	-0.011	-0.006
##	tra_gen	0.017	0.126	0.137	0.891	0.017	0.009
##	ria_gen	0.055	0.132	0.420	0.675	0.055	0.026
##	male	0.099	0.203	0.485	0.627	0.099	0.029
##	age	0.048	0.021	2.245	0.025	0.048	0.082
##	inc pri_nee_soc_7 ~	0.159	0.108	1.470	0.142	0.159	0.104
## ##	<u> </u>	-0.359	0.127	-2.835	0.005	-0.359	-0.177
##	itg_gen	-0.339	0.127	-2.035 -2.177	0.003	-0.339	-0.177
##	soc_gen anx_gen	-0.198	0.009	-1.537	0.029	-0.198	-0.105
##	tra_gen	0.198	0.129	0.509	0.124	0.198	0.103
##	ria_gen	-0.086	0.112	-0.756	0.450	-0.086	-0.044
##	male	0.445	0.209	2.128	0.033	0.445	0.140
##	age	0.028	0.203	1.621	0.105	0.443	0.140
##	inc	0.028	0.017	1.561	0.103	0.028	0.099
##	pri_nee_soc_8 ~	0.110		2.001		3.110	3.300
##	itg_gen	-0.326	0.129	-2.522	0.012	-0.326	-0.154
	0-0					3.020	,

##	soc_gen	-0.291	0.103	-2.829	0.005	-0.291	-0.180
##	anx_gen	-0.060	0.119	-0.503	0.615	-0.060	-0.030
##	tra_gen	-0.020	0.125	-0.158	0.874	-0.020	-0.011
##	ria_gen	0.217	0.113	1.920	0.055	0.217	0.106
##	male	0.104	0.197	0.528	0.598	0.104	0.031
##	age	0.047	0.019	2.449	0.014	0.047	0.084
##	inc	0.161	0.096	1.665	0.096	0.161	0.109
##	pri_nee_soc_9 ~						
##	itg_gen	-0.123	0.138	-0.897	0.370	-0.123	-0.057
##	soc_gen	-0.175	0.110	-1.588	0.112	-0.175	-0.106
##	anx_gen	-0.199	0.151	-1.313	0.189	-0.199	-0.100
##	tra_gen	-0.179	0.130	-1.378	0.168	-0.179	-0.095
##	ria_gen	0.336	0.139	2.409	0.016	0.336	0.162
##	male	0.424	0.218	1.951	0.051	0.424	0.126
##	age	0.043	0.019	2.258	0.024	0.043	0.076
##	inc	0.060	0.091	0.664	0.507	0.060	0.040
##	pri_nee_int_1 ~						
##	itg_gen	0.206	0.136	1.516	0.129	0.206	0.099
##	soc_gen	-0.049	0.103	-0.480	0.631	-0.049	-0.031
##	anx_gen	-0.205	0.130	-1.584	0.113	-0.205	-0.106
##	tra_gen	-0.032	0.122	-0.259	0.795	-0.032	-0.017
##	ria_gen	0.295	0.132	2.232	0.026	0.295	0.147
##	male	-0.189	0.212	-0.893	0.372	-0.189	-0.058
##	age	-0.042	0.027	-1.538	0.124	-0.042	-0.075
##	inc	-0.069	0.094	-0.736	0.462	-0.069	-0.047
##	<pre>pri_nee_int_2 ~</pre>						
##	itg_gen	-0.023	0.143	-0.162	0.871	-0.023	-0.011
##	soc_gen	-0.227	0.100	-2.269	0.023	-0.227	-0.135
##	anx_gen	-0.010	0.139	-0.070	0.944	-0.010	-0.005
##	tra_gen	-0.087	0.128	-0.684	0.494	-0.087	-0.046
##	ria_gen	0.058	0.128	0.458	0.647	0.058	0.028
##	male	0.651	0.212	3.069	0.002	0.651	0.190
##	age	0.017	0.028	0.596	0.551	0.017	0.029
##	inc	0.018	0.090	0.199	0.843	0.018	0.012
##	pri_nee_int_3 ~	0.007	0 101	1 710	0.006	0 007	0 100
##	itg_gen	0.207	0.121	1.718	0.086	0.207	0.100 -0.103
## ##	soc_gen	-0.164	0.097	-1.692 -1.312	0.091	-0.164	
##	anx_gen	-0.158 0.223	0.120	1.883	0.189 0.060	-0.158 0.223	-0.082
##	tra_gen ria_gen	0.223	0.119 0.125	3.005	0.000	0.223	0.123 0.187
##	male	-0.037	0.125	-0.200	0.841	-0.037	-0.011
##		0.037	0.103	1.392	0.164	0.037	0.011
##	age inc	-0.024	0.017	-0.286	0.104	-0.024	-0.019
##	pri_nee_int_4 ~	0.021	0.033	0.200	0.113	0.021	0.013
##	itg_gen	-0.193	0.113	-1.715	0.086	-0.193	-0.101
##	soc_gen	0.052	0.079	0.657	0.511	0.150	0.036
##	anx_gen	0.082	0.110	2.603	0.009	0.287	0.162
##	tra_gen	0.277	0.114	2.438	0.015	0.277	0.167
##	ria_gen	0.176	0.109	1.622	0.105	0.176	0.096
##	male	-0.215	0.170	-1.261	0.207	-0.215	-0.072
##	age	0.032	0.037	0.865	0.387	0.032	0.063
##	inc	0.180	0.066	2.721	0.007	0.180	0.135
##	pri_nee_int_5 ~						
##	itg_gen	0.155	0.130	1.196	0.232	0.155	0.075
	0_0						

##	soc_gen	-0.200	0.095	-2.098	0.036	-0.200	-0.126
##	anx_gen	-0.142	0.141	-1.005	0.315	-0.142	-0.074
##	tra_gen	-0.234	0.124	-1.886	0.059	-0.234	-0.130
##	ria_gen	-0.081	0.141	-0.577	0.564	-0.081	-0.041
##	male	0.661	0.204	3.240	0.001	0.661	0.204
##	age	-0.001	0.019	-0.062	0.950	-0.001	-0.002
##	inc	-0.143	0.080	-1.798	0.072	-0.143	-0.099
##	pri_nee_int_6 ~						
##	itg_gen	-0.070	0.116	-0.603	0.546	-0.070	-0.037
##	soc_gen	-0.281	0.093	-3.018	0.003	-0.281	-0.195
##	anx_gen	0.156	0.118	1.331	0.183	0.156	0.090
##	tra_gen	0.084	0.107	0.779	0.436	0.084	0.051
##	ria_gen	-0.063	0.128	-0.491	0.623	-0.063	-0.035
##	male	0.664	0.177	3.744	0.000	0.664	0.226
##	age	0.032	0.028	1.136	0.256	0.032	0.065
##	inc	0.102	0.075	1.357	0.175	0.102	0.078
##	pri_nee_int_7 ~						
##	itg_gen	0.105	0.107	0.976	0.329	0.105	0.057
##	soc_gen	-0.210	0.085	-2.461	0.014	-0.210	-0.149
##	anx_gen	-0.076	0.113	-0.673	0.501	-0.076	-0.045
##	tra_gen	0.187	0.118	1.583	0.113	0.187	0.117
##	ria_gen	0.261	0.116	2.259	0.024	0.261	0.148
##	male	0.172	0.173	0.991	0.322	0.172	0.060
##	age	-0.002	0.014	-0.140	0.888	-0.002	-0.004
##	inc	-0.071	0.087	-0.817	0.414	-0.071	-0.056
##	pri_nee_int_8 ~	0.0.2	0.00.	0.01.	0.111	0.0.2	0.000
##	itg_gen	0.237	0.135	1.748	0.080	0.237	0.116
##	soc_gen	-0.101	0.093	-1.082	0.279	-0.101	-0.064
##	anx_gen	-0.082	0.128	-0.642	0.521	-0.082	-0.043
##	tra_gen	0.177	0.125	1.414	0.157	0.177	0.099
##	ria_gen	0.116	0.134	0.871	0.384	0.116	0.059
##	male	-0.295	0.205	-1.441	0.150	-0.295	-0.092
##	age	-0.041	0.020	-2.033	0.042	-0.041	-0.075
##	inc	-0.074	0.089	-0.836	0.403	-0.074	-0.052
##	pri_nee_int_9 ~	0.011	0.000	0.000	0.100	0.011	0.002
##	itg_gen	0.104	0.110	0.951	0.341	0.104	0.056
##	soc_gen	-0.164	0.084	-1.965	0.049	-0.164	-0.115
##	anx_gen	0.202	0.120	1.691	0.091	0.202	0.117
##	tra_gen	0.032	0.113	0.285	0.776	0.032	0.020
##	ria_gen	0.294	0.120	2.443	0.015	0.294	0.164
##	male	0.193	0.177	1.091	0.275	0.193	0.066
##	age	0.051	0.020	2.558	0.011	0.051	0.104
##	inc	-0.005	0.084	-0.056	0.955	-0.005	-0.004
##	IIIC	0.000	0.004	0.000	0.500	0.000	0.004
	Covariances:						
##	covariances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	itg_gen ~~	<u> Lboimacc</u>	Dou. LII	Z varac	1 (7 121)	Dod.iv	Doa.aii
##	soc_gen	0.039	0.040	0.967	0.333	0.039	0.062
##	anx_gen	-0.015	0.032	-0.478	0.633	-0.015	-0.029
##	tra_gen	-0.004	0.032	-0.124	0.902	-0.004	-0.008
##	ria_gen	0.118	0.030	$\frac{-0.124}{4.012}$	0.000	0.118	0.232
##	male	-0.022	0.029	-1.136	0.256	-0.022	-0.072
##		-0.013	0.020	-0.067	0.230	-0.013	-0.007
##	age inc	-0.013	0.199	-0.163	0.947	-0.013	-0.007
##	1110	0.007	0.043	0.103	0.010	0.007	0.010

##	soc_gen ~~						
##	anx_gen	-0.148	0.043	-3.428	0.001	-0.148	-0.216
##	tra_gen	-0.086	0.043	-1.987	0.047	-0.086	-0.118
##	ria_gen	-0.049	0.047	-1.043	0.297	-0.049	-0.073
##	male	0.044	0.024	1.851	0.064	0.044	0.108
##	age	-0.058	0.128	-0.453	0.650	-0.058	-0.024
##	inc	0.078	0.054	1.462	0.144	0.078	0.086
##	anx_gen ~~						
##	tra_gen	0.081	0.039	2.052	0.040	0.081	0.134
##	ria_gen	0.035	0.038	0.923	0.356	0.035	0.064
##	male	-0.104	0.020	-5.149	0.000	-0.104	-0.309
##	age	-0.208	0.073	-2.862	0.004	-0.208	-0.105
##	inc	-0.050	0.043	-1.157	0.247	-0.050	-0.067
##	tra_gen ~~						
##	ria_gen	0.177	0.039	4.586	0.000	0.177	0.305
##	male	0.035	0.023	1.541	0.123	0.035	0.098
##	age	0.116	0.166	0.696	0.486	0.116	0.055
##	inc	0.064	0.046	1.385	0.166	0.064	0.080
##	ria_gen ~~						
##	male	0.004	0.020	0.208	0.835	0.004	0.013
##	age	0.068	0.109	0.627	0.531	0.068	0.036
##	inc	-0.029	0.039	-0.760	0.447	-0.029	-0.041
##	male ~~						
##	age	0.212	0.105	2.009	0.045	0.212	0.180
##	inc	0.025	0.028	0.915	0.360	0.025	0.056
##	age ~~						
##	inc	0.362	0.313	1.158	0.247	0.362	0.137
##	.pri_nee_gen_1 ~~	0.710	0 110	C 107	0 000	0.710	0 440
##	.pri_nee_gen_2	0.710	0.116	6.127	0.000	0.710	0.440
## ##	.pri_nee_gen_3	0.418	0.087	4.793	0.000	0.418	0.319
##	.pri_nee_gen_4	0.450	0.079	5.701		0.450 0.271	0.367
##	.pri_nee_soc_1 .pri_nee_soc_2	0.271	0.116	2.338	0.019	0.271	0.155
##	.pri_nee_soc_2	0.334 0.252	0.117 0.113	2.866 2.232	0.004 0.026	0.354	0.186 0.148
##	.pri_nee_soc_4	0.232	0.113	1.911	0.026	0.232	0.146
##	.pri_nee_soc_4 .pri_nee_soc_5	0.228	0.119	1.481	0.030	0.228	0.125
##	.pri_nee_soc_6	0.173	0.117	2.783	0.139	0.173	0.091
##	.pri_nee_soc_7	0.285	0.120	2.892	0.003	0.285	0.172
##	.pri_nee_soc_8	0.251	0.113	2.222	0.004	0.251	0.172
##	.pri_nee_soc_9	0.201	0.116	1.804	0.020	0.209	0.117
##	.pri_nee_int_1	0.100	0.115	0.959	0.337	0.100	0.057
##	.pri_nee_int_2	0.580	0.127	4.565	0.000	0.580	0.315
##	.pri_nee_int_3	0.305	0.110	2.775	0.006	0.305	0.179
##	.pri_nee_int_4	0.267	0.096	2.776	0.006	0.267	0.173
##	.pri_nee_int_5	0.321	0.104	3.077	0.002	0.321	0.189
##	.pri_nee_int_6	0.449	0.101	4.450	0.000	0.449	0.294
##	.pri_nee_int_7	0.528	0.099	5.315	0.000	0.528	0.349
##	.pri_nee_int_8	0.019	0.106	0.180	0.857	0.019	0.011
##	.pri_nee_int_9	0.390	0.101	3.864	0.000	0.390	0.253
##	.pri_nee_gen_2 ~~						
##	.pri_nee_gen_3	0.460	0.087	5.264	0.000	0.460	0.333
##	.pri_nee_gen_4	0.267	0.080	3.344	0.001	0.267	0.206
##	.pri_nee_soc_1	0.198	0.119	1.670	0.095	0.198	0.107
##	.pri_nee_soc_2	0.481	0.120	3.992	0.000	0.481	0.254

##	.pri_nee_soc_3	0.169	0.120	1.413	0.158	0.169	0.094
##	.pri_nee_soc_4	0.187	0.128	1.460	0.144	0.187	0.097
##	.pri_nee_soc_5	0.289	0.127	2.281	0.023	0.289	0.145
##	.pri_nee_soc_6	0.175	0.122	1.434	0.152	0.175	0.090
##	.pri_nee_soc_7	0.183	0.107	1.715	0.086	0.183	0.105
##	.pri_nee_soc_8	0.253	0.133	1.907	0.056	0.253	0.137
##	.pri_nee_soc_9	0.244	0.125	1.953	0.051	0.244	0.129
##	.pri_nee_int_1	0.026	0.112	0.228	0.819	0.026	0.014
##	.pri_nee_int_2	0.317	0.128	2.477	0.013	0.317	0.163
##	.pri_nee_int_3	0.160	0.118	1.357	0.175	0.160	0.089
##	.pri_nee_int_4	0.204	0.097	2.107	0.035	0.204	0.125
##	.pri_nee_int_5	0.238	0.107	2.222	0.026	0.238	0.132
##	.pri_nee_int_6	0.139	0.110	1.261	0.207	0.139	0.086
##	.pri_nee_int_7	0.138	0.099	1.400	0.162	0.138	0.087
##	.pri_nee_int_8	0.085	0.121	0.704	0.482	0.085	0.047
##	.pri_nee_int_9	0.217	0.106	2.047	0.041	0.217	0.134
##	.pri_nee_gen_3 ~~						
##	.pri_nee_gen_4	0.368	0.067	5.468	0.000	0.368	0.352
##	.pri_nee_soc_1	0.072	0.097	0.746	0.456	0.072	0.048
##	.pri_nee_soc_2	0.331	0.098	3.360	0.001	0.331	0.216
##	.pri_nee_soc_3	0.261	0.093	2.805	0.005	0.261	0.179
##	.pri_nee_soc_4	0.083	0.100	0.831	0.406	0.083	0.053
##	.pri_nee_soc_5	0.061	0.097	0.634	0.526	0.061	0.038
##	.pri_nee_soc_6	0.075	0.099	0.752	0.452	0.075	0.047
##	.pri_nee_soc_7	-0.016	0.090	-0.175	0.462	-0.016	-0.011
##	.pri_nee_soc_8	0.013	0.096	0.548	0.583	0.053	0.035
##	.pri_nee_soc_9	0.165	0.090	1.835	0.066	0.165	0.108
##	.pri_nee_int_1	0.229	0.095	2.405	0.016	0.229	0.152
##	.pri_nee_int_2	0.216	0.099	2.183	0.010	0.225	0.137
##	.pri_nee_int_3	0.354	0.092	3.859	0.000	0.354	0.243
##	.pri_nee_int_4	0.329	0.032	3.996	0.000	0.329	0.248
##	.pri_nee_int_5	0.028	0.002	0.281	0.779	0.028	0.019
##	.pri_nee_int_6	-0.070	0.033	-0.902	0.779	-0.070	-0.054
##	.pri_nee_int_7	0.230	0.078	2.542	0.011	0.070	0.034
##	.pri_nee_int_8	0.052	0.030	0.589	0.556	0.250	0.178
##	.pri_nee_int_8	0.032	0.087	5.510	0.000	0.032	0.365
##	.pri_nee_gen_4 ~~	0.402	0.001	3.310	0.000	0.402	0.303
##	.pri_nee_gen_4	-0.003	0.079	-0.037	0.970	-0.003	-0.002
##	.pri_nee_soc_1	-0.018	0.073	-0.211	0.833	-0.018	-0.013
##	.pri_nee_soc_2	0.018	0.089	1.035	0.301	0.018	0.013
##	.pri_nee_soc_4	-0.003	0.089	-0.032	0.301	-0.003	-0.002
##	.pri_nee_soc_4	0.003	0.088	0.032	0.889	0.003	0.002
##	.pri_nee_soc_6	-0.187	0.082	-2.273	0.003	-0.187	-0.127
##	.pri_nee_soc_7	-0.167	0.082	-3.112	0.023	-0.167	-0.127
##	-			-3.112 -2.069	0.002	-0.245 -0.179	
##	.pri_nee_soc_8	-0.179	0.086 0.088	0.056	0.039	0.005	-0.128
	.pri_nee_soc_9	0.005					0.003
##	.pri_nee_int_1	0.237	0.081	2.942	0.003	0.237	0.169
##	.pri_nee_int_2	0.017	0.079	0.211	0.833	0.017	0.011
##	.pri_nee_int_3	0.151	0.081	1.853	0.064	0.151	0.111
##	.pri_nee_int_4	0.132	0.070	1.885	0.059	0.132	0.107
##	.pri_nee_int_5	0.118	0.074	1.594	0.111	0.118	0.086
##	.pri_nee_int_6	0.026	0.069	0.371	0.711	0.026	0.021
##	.pri_nee_int_7	0.349	0.071	4.935	0.000	0.349	0.288
##	.pri_nee_int_8	-0.091	0.078	-1.160	0.246	-0.091	-0.066

##	.pri_nee_int_9	0.182	0.068	2.666	0.008	0.182	0.148
##	.pri_nee_soc_1 ~~	4 044	0 440	7 000	0.000	4 044	0 507
##	.pri_nee_soc_2	1.041	0.143	7.293	0.000	1.041	0.507
##	.pri_nee_soc_3	0.977	0.138	7.068	0.000	0.977	0.501
##	.pri_nee_soc_4	1.304	0.156	8.366	0.000	1.304	0.625
##	.pri_nee_soc_5	1.036	0.151	6.879	0.000	1.036	0.478
##	.pri_nee_soc_6	0.609	0.145	4.204	0.000	0.609	0.288
##	.pri_nee_soc_7	0.667	0.124	5.358	0.000	0.667	0.352
##	.pri_nee_soc_8	0.310	0.127	2.446	0.014	0.310	0.155
##	.pri_nee_soc_9	1.118	0.145	7.730	0.000	1.118	0.545
##	.pri_nee_int_1	-0.313	0.134	-2.326	0.020	-0.313	-0.156
##	.pri_nee_int_2	0.422	0.143	2.941	0.003	0.422	0.200
##	.pri_nee_int_3	0.137	0.132	1.036	0.300	0.137	0.070
##	$.\mathtt{pri_nee_int_4}$	0.353	0.108	3.259	0.001	0.353	0.199
##	.pri_nee_int_5	0.016	0.133	0.119	0.905	0.016	0.008
##	.pri_nee_int_6	0.222	0.111	2.001	0.045	0.222	0.127
##	.pri_nee_int_7	0.057	0.125	0.461	0.645	0.057	0.033
##	.pri_nee_int_8	-0.217	0.130	-1.669	0.095	-0.217	-0.110
##	.pri_nee_int_9	0.506	0.137	3.701	0.000	0.506	0.286
##	.pri_nee_soc_2 ~~						
##	.pri_nee_soc_3	0.975	0.134	7.258	0.000	0.975	0.489
##	.pri_nee_soc_4	1.183	0.146	8.081	0.000	1.183	0.554
##	.pri_nee_soc_5	1.044	0.143	7.295	0.000	1.044	0.471
##	.pri_nee_soc_6	0.800	0.137	5.831	0.000	0.800	0.370
##	.pri_nee_soc_7	0.783	0.120	6.529	0.000	0.783	0.404
##	.pri_nee_soc_8	0.611	0.135	4.534	0.000	0.611	0.299
##	.pri_nee_soc_9	1.055	0.145	7.274	0.000	1.055	0.503
##	.pri_nee_int_1	-0.297	0.133	-2.228	0.026	-0.297	-0.145
##	.pri_nee_int_2	0.648	0.149	4.358	0.000	0.648	0.300
##	.pri_nee_int_3	0.145	0.121	1.192	0.233	0.145	0.072
##	.pri_nee_int_4	0.406	0.106	3.817	0.000	0.406	0.224
##	.pri_nee_int_5	0.015	0.130	0.118	0.906	0.015	0.008
##	.pri_nee_int_6	0.183	0.118	1.553	0.120	0.183	0.102
##	.pri_nee_int_7	0.036	0.109	0.332	0.740	0.036	0.020
##	.pri_nee_int_8	-0.296	0.126	-2.351	0.019	-0.296	-0.147
##	.pri_nee_int_9	0.302	0.119	2.545	0.011	0.302	0.167
##	.pri_nee_soc_3 ~~						
##	.pri_nee_soc_4	1.232	0.146	8.438	0.000	1.232	0.608
##	.pri_nee_soc_5	0.865	0.138	6.289	0.000	0.865	0.411
##	.pri_nee_soc_6	0.700	0.138	5.068	0.000	0.700	0.341
##	.pri_nee_soc_7	0.617	0.118	5.231	0.000	0.617	0.335
##	.pri_nee_soc_8	0.495	0.133	3.712	0.000	0.495	0.255
##	.pri_nee_soc_9	1.136	0.138	8.223	0.000	1.136	0.571
##	.pri_nee_int_1	-0.246	0.131	-1.876	0.061	-0.246	-0.126
##	.pri_nee_int_2	0.642	0.125	5.128	0.000	0.642	0.314
##	.pri_nee_int_3	0.287	0.123	2.322	0.020	0.287	0.151
##	$.\mathtt{pri_nee_int_4}$	0.467	0.097	4.820	0.000	0.467	0.271
##	.pri_nee_int_5	0.078	0.115	0.678	0.498	0.078	0.041
##	.pri_nee_int_6	0.189	0.109	1.738	0.082	0.189	0.111
##	.pri_nee_int_7	0.135	0.113	1.200	0.230	0.135	0.080
##	.pri_nee_int_8	-0.249	0.126	-1.977	0.048	-0.249	-0.130
##	.pri_nee_int_9	0.623	0.111	5.606	0.000	0.623	0.363
##	.pri_nee_soc_4 ~~						
##	.pri_nee_soc_5	0.979	0.146	6.716	0.000	0.979	0.435

##	.pri_nee_soc_6	0.727	0.151	4.810	0.000	0.727	0.331
##	.pri_nee_soc_7	0.712	0.131	5.436	0.000	0.712	0.362
##	.pri_nee_soc_8	0.518	0.138	3.757	0.000	0.518	0.249
##	.pri_nee_soc_9	1.156	0.147	7.855	0.000	1.156	0.542
##	.pri_nee_int_1	-0.277	0.136	-2.040	0.041	-0.277	-0.133
##	.pri_nee_int_2	0.522	0.135	3.878	0.000	0.522	0.238
##	.pri_nee_int_3	-0.046	0.132	-0.346	0.729	-0.046	-0.023
##	$.{\tt pri_nee_int_4}$	0.218	0.110	1.989	0.047	0.218	0.118
##	.pri_nee_int_5	-0.024	0.130	-0.182	0.855	-0.024	-0.012
##	.pri_nee_int_6	0.164	0.122	1.349	0.177	0.164	0.090
##	.pri_nee_int_7	0.012	0.120	0.102	0.919	0.012	0.007
##	.pri_nee_int_8	-0.316	0.135	-2.349	0.019	-0.316	-0.155
##	.pri_nee_int_9	0.356	0.128	2.776	0.006	0.356	0.194
##	.pri_nee_soc_5 ~~						
##	.pri_nee_soc_6	0.717	0.152	4.705	0.000	0.717	0.314
##	.pri_nee_soc_7	0.671	0.124	5.397	0.000	0.671	0.328
##	.pri_nee_soc_8	0.226	0.134	1.694	0.090	0.226	0.105
##	.pri_nee_soc_9	0.960	0.145	6.619	0.000	0.960	0.434
##	.pri_nee_int_1	-0.339	0.142	-2.396	0.017	-0.339	-0.157
##	.pri_nee_int_2	0.382	0.140	2.723	0.006	0.382	0.168
##	.pri_nee_int_3	-0.170	0.137	-1.242	0.214	-0.170	-0.081
##	$.{\tt pri_nee_int_4}$	0.440	0.121	3.653	0.000	0.440	0.230
##	.pri_nee_int_5	-0.040	0.131	-0.303	0.762	-0.040	-0.019
##	.pri_nee_int_6	0.072	0.118	0.607	0.544	0.072	0.038
##	.pri_nee_int_7	0.053	0.117	0.456	0.648	0.053	0.029
##	.pri_nee_int_8	-0.451	0.136	-3.326	0.001	-0.451	-0.212
##	.pri_nee_int_9	0.310	0.131	2.376	0.017	0.310	0.163
##	.pri_nee_soc_6 ~~						
##	.pri_nee_soc_7	0.766	0.136	5.624	0.000	0.766	0.384
##	.pri_nee_soc_8	0.641	0.139	4.623	0.000	0.641	0.304
##	.pri_nee_soc_9	0.733	0.145	5.048	0.000	0.733	0.340
##	.pri_nee_int_1	-0.551	0.140	-3.951	0.000	-0.551	-0.261
##	.pri_nee_int_2	0.791	0.148	5.356	0.000	0.791	0.356
##	.pri_nee_int_3	-0.031	0.132	-0.239	0.811	-0.031	-0.015
##	$.{\tt pri_nee_int_4}$	0.355	0.109	3.250	0.001	0.355	0.190
##	.pri_nee_int_5	-0.106	0.132	-0.804	0.422	-0.106	-0.052
##	.pri_nee_int_6	0.337	0.123	2.742	0.006	0.337	0.183
##	.pri_nee_int_7	0.053	0.111	0.482	0.630	0.053	0.029
##	.pri_nee_int_8	-0.413	0.134	-3.080	0.002	-0.413	-0.200
##	.pri_nee_int_9	0.442	0.118	3.739	0.000	0.442	0.238
##	.pri_nee_soc_7 ~~						
##	.pri_nee_soc_8	0.816	0.128	6.369	0.000	0.816	0.432
##	.pri_nee_soc_9	0.803	0.131	6.151	0.000	0.803	0.415
##	.pri_nee_int_1	-0.718	0.124	-5.770	0.000	-0.718	-0.379
##	.pri_nee_int_2	0.661	0.113	5.873	0.000	0.661	0.332
##	.pri_nee_int_3	-0.375	0.115	-3.255	0.001	-0.375	-0.204
##	.pri_nee_int_4	0.046	0.098	0.472	0.637	0.046	0.028
##	.pri_nee_int_5	0.073	0.112	0.650	0.516	0.073	0.040
##	.pri_nee_int_6	0.264	0.107	2.456	0.014	0.264	0.159
##	.pri_nee_int_7	-0.102	0.101	-1.012	0.312	-0.102	-0.062
##	.pri_nee_int_8	-0.372	0.123	-3.036	0.002	-0.372	-0.200
##	.pri_nee_int_9	0.099	0.103	0.958	0.338	0.099	0.059
##	.pri_nee_soc_8 ~~	0 077	0 101	F 050	0 000	0 077	0.004
##	.pri_nee_soc_9	0.677	0.134	5.050	0.000	0.677	0.331

##	.pri_nee_int_1	-0.559	0.126	-4.435	0.000	-0.559	-0.279
##	.pri_nee_int_2	0.470	0.140	3.356	0.001	0.470	0.224
##	.pri_nee_int_3	-0.127	0.121	-1.045	0.296	-0.127	-0.065
##	$.{\tt pri_nee_int_4}$	0.165	0.100	1.659	0.097	0.165	0.093
##	.pri_nee_int_5	-0.010	0.119	-0.085	0.932	-0.010	-0.005
##	.pri_nee_int_6	0.380	0.124	3.059	0.002	0.380	0.217
##	.pri_nee_int_7	0.035	0.109	0.324	0.746	0.035	0.020
##	.pri_nee_int_8	-0.392	0.133	-2.943	0.003	-0.392	-0.200
##	.pri_nee_int_9	0.356	0.108	3.293	0.001	0.356	0.202
##	.pri_nee_soc_9 ~~						
##	.pri_nee_int_1	-0.471	0.128	-3.679	0.000	-0.471	-0.230
##	.pri_nee_int_2	0.538	0.141	3.825	0.000	0.538	0.250
##	.pri_nee_int_3	0.018	0.123	0.145	0.885	0.018	0.009
##	$.{\tt pri_nee_int_4}$	0.392	0.102	3.840	0.000	0.392	0.216
##	.pri_nee_int_5	0.080	0.130	0.615	0.538	0.080	0.040
##	.pri_nee_int_6	0.189	0.120	1.579	0.114	0.189	0.106
##	.pri_nee_int_7	0.083	0.115	0.721	0.471	0.083	0.047
##	.pri_nee_int_8	-0.284	0.131	-2.167	0.030	-0.284	-0.141
##	.pri_nee_int_9	0.633	0.116	5.455	0.000	0.633	0.351
##	.pri_nee_int_1 ~~						
##	.pri_nee_int_2	-0.451	0.139	-3.252	0.001	-0.451	-0.214
##	.pri_nee_int_3	0.462	0.125	3.708	0.000	0.462	0.237
##	$.\mathtt{pri_nee_int_4}$	-0.105	0.110	-0.953	0.341	-0.105	-0.059
##	.pri_nee_int_5	0.191	0.120	1.596	0.110	0.191	0.098
##	.pri_nee_int_6	-0.239	0.107	-2.236	0.025	-0.239	-0.136
##	.pri_nee_int_7	0.208	0.111	1.874	0.061	0.208	0.120
##	.pri_nee_int_8	0.502	0.125	4.012	0.000	0.502	0.255
##	.pri_nee_int_9	-0.145	0.108	-1.341	0.180	-0.145	-0.082
##	.pri_nee_int_2 ~~						
##	.pri_nee_int_3	0.269	0.114	2.352	0.019	0.269	0.131
##	$.\mathtt{pri_nee_int_4}$	0.245	0.109	2.245	0.025	0.245	0.131
##	.pri_nee_int_5	0.071	0.139	0.511	0.610	0.071	0.035
##	.pri_nee_int_6	0.552	0.122	4.519	0.000	0.552	0.300
##	.pri_nee_int_7	0.199	0.116	1.707	0.088	0.199	0.109
##	.pri_nee_int_8	-0.173	0.135	-1.280	0.200	-0.173	-0.084
##	.pri_nee_int_9	0.491	0.111	4.408	0.000	0.491	0.265
##	.pri_nee_int_3 ~~						
##	.pri_nee_int_4	0.125	0.098	1.273	0.203	0.125	0.072
##	.pri_nee_int_5	0.010	0.120	0.083	0.934	0.010	0.005
##	.pri_nee_int_6	0.221	0.107	2.060	0.039	0.221	0.130
##	.pri_nee_int_7	0.448	0.111	4.035	0.000	0.448	0.266
##	.pri_nee_int_8	0.179	0.122	1.469	0.142	0.179	0.094
##	.pri_nee_int_9	0.344	0.114	3.025	0.002	0.344	0.201
##	.pri_nee_int_4 ~~	0.000	0.400	0.705	0 400	0 000	0.050
##	.pri_nee_int_5	-0.090	0.122	-0.735	0.462	-0.090	-0.052
##	.pri_nee_int_6	0.236	0.089	2.644	0.008	0.236	0.152
##	.pri_nee_int_7	0.323	0.092	3.505	0.000	0.323	0.211
##	.pri_nee_int_8	0.005	0.110	0.043	0.966	0.005	0.003
##	.pri_nee_int_9	0.447	0.118	3.779	0.000	0.447	0.286
##	.pri_nee_int_5 ~~	0 076	0 110	0 690	0 406	0 076	0.045
##	.pri_nee_int_6	0.076	0.112 0.117	0.680 1.416	0.496	0.076 0.166	0.045 0.098
## ##	<pre>.pri_nee_int_7 .pri_nee_int_8</pre>	0.166 0.375	0.117	2.908	0.157 0.004	0.166	0.098
##	<u> </u>	0.375	0.129	1.303	0.004	0.375	0.196
##	.pri_nee_int_9	0.145	0.111	1.303	0.192	0.145	0.084

##	.pri_nee_int_6 ~~						
##	.pri_nee_int_7	0.302	0.094	3.214	0.001	0.302	0.199
##	.pri_nee_int_8	-0.098	0.113	-0.866	0.387	-0.098	-0.057
##	.pri_nee_int_9	0.190	0.105	1.814	0.070	0.190	0.123
##	.pri_nee_int_7 ~~						
##	.pri_nee_int_8	0.009	0.103	0.084	0.933	0.009	0.005
##	.pri_nee_int_9	0.411	0.105	3.913	0.000	0.411	0.269
##	.pri_nee_int_8 ~~						
##	.pri_nee_int_9	-0.227	0.114	-1.989	0.047	-0.227	-0.131
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.pri_nee_gen_1	1.529	0.112	13.691	0.000	1.529	0.859
##	.pri_nee_gen_2	1.702	0.130	13.110	0.000	1.702	0.892
##	.pri_nee_gen_3	1.120	0.096	11.661	0.000	1.120	0.880
##	.pri_nee_gen_4	0.981	0.096	10.170	0.000	0.981	0.887
##	.pri_nee_soc_1	2.008	0.162	12.366	0.000	2.008	0.943
##	.pri_nee_soc_2	2.101	0.151	13.913	0.000	2.101	0.938
##	.pri_nee_soc_3	1.892	0.143	13.215	0.000	1.892	0.906
##	.pri_nee_soc_4	2.170	0.165	13.142	0.000	2.170	0.924
##	.pri_nee_soc_5	2.338	0.158	14.778	0.000	2.338	0.939
##	.pri_nee_soc_6	2.225	0.162	13.753	0.000	2.225	0.958
##	.pri_nee_soc_7	1.790	0.142	12.604	0.000	1.790	0.891
##	.pri_nee_soc_8	1.994	0.166	11.994	0.000	1.994	0.915
##	.pri_nee_soc_9	2.093	0.155	13.464	0.000	2.093	0.925
##	.pri_nee_int_1	2.009	0.145	13.864	0.000	2.009	0.944
##	.pri_nee_int_2	2.215	0.170	13.007	0.000	2.215	0.948
##	.pri_nee_int_3	1.892	0.152	12.445	0.000	1.892	0.900
##	.pri_nee_int_4	1.570	0.136	11.590	0.000	1.570	0.884
##	.pri_nee_int_5	1.895	0.139	13.594	0.000	1.895	0.910
##	.pri_nee_int_6	1.532	0.113	13.561	0.000	1.532	0.890
##	.pri_nee_int_7	1.496	0.128	11.674	0.000	1.496	0.913
##	.pri_nee_int_8	1.928	0.121	15.980	0.000	1.928	0.945
##	.pri_nee_int_9	1.555	0.141	10.995	0.000	1.555	0.915
##	itg_gen	0.488	0.036	13.749	0.000	0.488	1.000
##	soc_gen	0.830	0.074	11.254	0.000	0.830	1.000
##	anx_gen	0.567	0.043	13.153	0.000	0.567	1.000
##	tra_gen	0.640	0.053	12.180	0.000	0.640	1.000
##	ria_gen	0.527	0.059	8.988	0.000	0.527	1.000
##	male	0.199	0.012	16.370	0.000	0.199	1.000
##	age	6.951	4.850	1.433	0.152	6.951	1.000
##	inc	0.999	0.113	8.807	0.000	0.999	1.000

Visualization

