MAXimal

home

algo

bookz

forum about

Рёберная связность. Свойства и нахождение

Определение

Пусть дан неориентированный граф G с n вершинами и m рёбрами.

Рёберной связностью λ графа G называется наименьшее число рёбер, которое нужно удалить, чтобы граф перестал быть связным.

Содержание [скрыть]

добавлено: 10 Jun 2008 23:07 редактировано: 31 Aug 2011 21:57

- Рёберная связность. Свойства и нахождение
 - О Определение
 - О Свойства
 - Соотношение Уитни
 - Теорема Форда-Фалкерсона
 - О Нахождение рёберной связности
 - Простой алгоритм на основе поиска максимального
 - Специальный алгоритм
 - О Литература

Например, для несвязного графа рёберная связность равна нулю. Для связного графа с единственным мостом рёберная связность равна единице.

Говорят, что множество S рёбер **разделяет** вершины s и t, если при удалении этих рёбер из графа вершины u и v оказываются в разных компонентах связности.

Ясно, что рёберная связность графа равна минимуму от наименьшего числа рёбер, разделяющих две вершины s и t, взятому среди всевозможных пар (s,t).

Свойства

Соотношение Уитни

Соотношение Уитни (Whitney) (1932 г.) между рёберной связностью λ , вершинной связностью κ и наименьшей из степеней вершин δ :

 $\kappa < \lambda < \delta$.

Докажем это утверждение.

Докажем сначала первое неравенство: $\kappa \leq \lambda$. Рассмотрим этот набор из λ рёбер, делающих граф несвязным. Если мы возьмём от каждого из этих ребёр по одному концу (любому из двух) и удалим из графа, то тем самым с помощью $\leq \lambda$ удалённых вершин (поскольку одна и та же вершина могла встретиться дважды) мы сделаем граф несвязным. Таким образом, $\kappa \leq \lambda$.

Докажем второе неравенство: $\lambda \leq \delta$. Рассмотрим вершину минимальной степени, тогда мы можем удалить все δ смежных с ней рёбер и тем самым отделить эту вершину от всего остального графа. Следовательно, $\lambda \leq \delta$.

Интересно, что неравенство Уитни **нельзя улучшить**: т.е. для любых троек чисел, удовлетворяющих этому неравенству, существует хотя бы один соответствующий граф. См. задачу "Построение графа с указанными величинами вершинной и рёберной связностей и наименьшей из степеней вершин".

Теорема Форда-Фалкерсона

Теорема Форда-Фалкерсона (1956 г.):

Для любых двух вершин наибольшее число рёберно-непересекающихся цепей, соединяющих их, равно наименьшему числу рёбер, разделяющих эти вершины.

Нахождение рёберной связности

Простой алгоритм на основе поиска максимального потока

Этот способ основан на теореме Форда-Фалекрсона.

Мы должны перебрать все пары вершин (s,t), и между каждой парой найти наибольшее число непересекающихся по рёбрам путей. Эту величину можно найти с помощью алгоритма максимального потока: мы делаем s истоком, t — стоком, а пропускную способность каждого ребра кладём равной 1.

Таким образом, псевдокод алгоритма таков:

Асимптотика алгоритма при использовании \edmonds_karp{алгоритма Эдмондса-Карпа нахождения максимального потока} получается $O(n^2 \cdot nm^2) = O(n^3m^2)$, однако следует заметить, что скрытая в асимптотике константа весьма мала, поскольку практически невозможно создать такой граф, чтобы алгоритм нахождения максимального потока работал медленно сразу при всех стоках и истоках.

Особенно быстро такой алгоритм будет работать на случайных графах.

Специальный алгоритм

Используя потоковую терминологию, данная задача — это задача поиска **глобального минимального разреза**.

Для её решения разработаны специальные алгоритмы. На данном сайте представлен один из которых — алгоритм Штор-Вагнера, работающий за время $O(n^3)$ или O(nm).

Литература

- Hassler Whitney. Congruent Graphs and the Connectivity of Graphs [1932]
- Фрэнк Харари. Теория графов [2003]