Aaron Grabowy: 345766 Timo Bergerbusch: 344408

Felix Linhart: 318801

Exercise 1

a)

Exercise 2

a)

The statement does not hold.

Counterexample:

 TS_1 :

 TS_2 :

 $TS_1||TS_2$:

Then:

- $trace(TS_1) = \{\emptyset^{\omega}\}$
- $trace(TS_1) = \{\emptyset\emptyset\}$
- $trace(TS_1||TS_2) = \{\emptyset\emptyset\}$
- $\Rightarrow \emptyset^{\omega} \in Traces(TS_1)$, but $\emptyset^{\omega} \notin Traces(TS_1||TS_2)$

b)

The statement does not hold.

Counterexample:

 TS_1 :

 TS_2 :

 $TS_1||TS_2$:

Then:

- $trace(TS_1) = \{(\emptyset\{a\})^{\omega}\}$
- $trace(TS_1) = \{\emptyset\emptyset\}$

Felix Linhart: 318801

- $trace(TS_1||TS_2) = \{\emptyset\{a\}\}$
- $\Rightarrow \emptyset\{a\} \in Traces(TS_1||TS_2), \text{ but } \emptyset\{a\} \notin Traces(TS_1)$

c)

The statement holds.

Let $Traces(TS_1) \subseteq Traces(TS_2)$. Then $Traces(TS_1) \setminus Traces(TS_2) = \emptyset$. Further let t be an arbitrary trace, with $t \in Traces(TS_1) \cap Traces(TS_2)$: If t is a \mathcal{F} -fair execution then $t \in FairTraces_{\mathcal{F}}(TS_1)$ and $t \in FairTraces_{\mathcal{F}}(TS_2)$ If t is not a \mathcal{F} -fair execution then $t \notin FairTraces_{\mathcal{F}}(TS_1)$ and $t \notin FairTraces_{\mathcal{F}}(TS_2)$ So $FairTraces(TS_1) \subseteq FairTraces(TS_2)$.

d)

Let $Traces(TS_1) \subseteq Traces(TS_2)$, E = eventually a will occur, with $a \in Act_2$, but $a \notin Act_1$, and $TS_2 \models_F E$.

Through the lecture we know, that liveness properties are not effected by fairness assumptions.

So $TS \models_{\mathcal{F}} E \Leftrightarrow TS \models E$ for any liveness property E.

So $TS_1 \models_{\mathcal{F}} E \Leftrightarrow TS_1 \models E$. Let a finite word σ be given, not containing an a. Since $a \notin Act_1$ we cannot find a σ' s.t. $\sigma\sigma' \in E$. So $TS_1 \not\models E$ and therefore $TS_1 \not\models_{\mathcal{F}} E$.

Exercise 3

a)

 E_a : $TS \not\models E_a$, since $\sigma = (\emptyset\{b\})^\omega \in Traces(TS)$, but σ obviously contains no a.

 E_b : $TS \not\models E_b$, since $\sigma' = (\emptyset\{a\})^\omega \in Traces(TS)$, but σ' obviously contains no b.

E': $TS \not\models E'$, since $\sigma'' = (\emptyset\{a\}\{a,b\}\emptyset)^{\omega} \in Traces(TS)$, but there ex. a i = 1, such that $A_i = \{a\}, A_{i+1} = \{a,b\}$ and $A_{i+2} = \emptyset$.

b)

3.2.1 E_a

$$B = B_1$$
: $TS \models_{\mathcal{F}^1_{strong}} E_a$

There is no path from an initial state s.t. never an α -transition is enabled. Therefore we have to take an α infinitely many times. So we either go the loop $s_1s_2s_4$ or the loop $s_1s_3s_4$ both fulfilling the premise and conclusion of strong fairness. But then we

Aaron Grabowy: 345766 Timo Bergerbusch: 344408 Felix Linhart: 318801

Model Checking Exercise Sheet 4

infinitely often visit state s_4 containing an a in its label. So we have have a infinitely often.

 $B = B_2$: $TS \not\models \mathcal{F}_{strong}^2 E_a$

One path that fulfils the strong fairness condition is $\pi = s_1 s_3 s_1 s_3 \dots$

But $trace(\pi) = (\emptyset\{b\})^{\omega}$ does not have infinitely many a's.

 $B = B_3$: $TS \not\models \mathcal{F}_{strong}^3 E_a$

One path that fulfils the strong fairness condition is $\pi = s_1 s_3 s_1 s_3 \dots$

But $trace(\pi) = (\emptyset\{b\})^{\omega}$ does not have infinitely many a's.

- **3.2.2** E_b
- $B = B_1$: $TS \not\models \mathcal{F}^1_{strong} E_b$

One path that fulfils the strong fairness condition is $\pi = s_1 s_2 s_1 s_2 \dots$

But $trace(\pi) = (\emptyset\{a\})^{\omega}$ does not have infinitely many b's.

 $B = B_2$: $TS \not\models \mathcal{F}_{strong}^2 E_b$

One path that fulfils the strong fairness condition is $\pi = s_1 s_2 s_1 s_2 \dots$

But $trace(\pi) = (\emptyset\{a\})^{\omega}$ does not have infinitely many b's.

 $B = B_3$: $TS \models \mathcal{F}_{strong}^3 E_b$

There is just one path fulfilling the strong fairness condition: $\pi = s_1 s_3 s_4 s_1 s_3 s_4 \dots$

Then $trace(\pi) = (\emptyset\{b\}\{a,b\})^{\omega}$ has infinitely many b's.

- **3.2.3** E'
- $B = B_1$: $TS \not\models \mathcal{F}^1_{strong} E'$

One path that fulfils the strong fairness condition is $\pi = s_1 s_2 s_4 s_1 s_2 s_4 \dots$

But $trace(\pi) = (\emptyset\{a\}\{a,b\})^{\omega} \not\models E'$.

 $B = B_2$: $TS \not\models \mathcal{F}^2_{strong} E'$

One path that fulfils the strong fairness condition is $\pi = s_1 s_2 s_4 s_1 s_2 s_4 \dots$

But $trace(\pi) = (\emptyset\{a\}\{a,b\})^{\omega} \not\models E'$.

 $B = B_3$: $TS \not\models \mathcal{F}^2_{strong}E'$

One path that fulfils the strong fairness condition is $\pi = s_1 s_3 s_4 s_1 s_2 s_4 s_1 s_3 s_4 s_1 s_2 s_4 \dots$

But $traces(\pi) = (\emptyset\{b\}\{a,b\}\emptyset\{a\}\{a,b\})^{\omega} \not\models E'$

c)

- **3.3.1** E_a

 $B = B_1$: $TS \models_{\mathcal{F}^1_{weak}} E_a$ The only path not containing infinitely many a's is the path $\pi = s_1 s_3 s_1 s_3 \dots$ Then

Felix Linhart: 318801

Model Checking Exercise Sheet 4

 π fulfils the conditions of weak fairness, but not the conclusion and therefore is so eligible path. So we have to take $s_3 \xrightarrow{\alpha} a_4$ or $s_1 \xrightarrow{\alpha} s_2$ infinitely often leading to a state having a in the label. So we have infinitely many a's.

 $B = B_2$: $TS \not\models \mathcal{F}_{weak}^2 E_a$

One path that fulfils the weak fairness condition is $\pi = s_1 s_3 s_1 s_3 \dots$ We fulfil the premise, but by taking β every second time we also fulfil the conclusion. But $trace(\pi) = (\emptyset\{b\})^{\omega}$ does not have infinitely many a's.

 $B = B_3$: $TS \not\models \mathcal{F}_{weak}^3 E_a$

There is no path in TS, such that the premise holds. So all paths are fair with respect to the stated fairness condition. But again we can take the path $\pi = s_1 s_3 s_1 s_3 \dots$ and observe, that $trace(\sigma) = (\emptyset\{b\})^{\omega}$ does not contain infinitely many a's.

3.3.2 E_b

 $B = B_1$: $TS \not\models \mathcal{F}_{weak}^1 E_b$

One path that does not fulfil the weak fairness premise is $\pi = s_1 s_2 s_1 s_2 \dots$ Since it does not satisfy the premise is satisfies the whole condition.

But $trace(\pi) = (\emptyset\{a\})^{\omega}$ does not have infinitely many b's.

 $B = B_2$: $TS \not\models \mathcal{F}_{weak}^2 E_b$

One path that fulfils the weak fairness premise and conclusion is $\pi = s_1 s_2 s_1 s_2 \dots$ But $trace(\pi) = (\emptyset\{a\})^{\omega}$ does not have infinitely many b's.

 $B = B_3$: $TS \not\models \mathcal{F}_{weak}^3 E_b$

There is not path s.t. contentiously β transitions are enabled. So the premise does not hold and therefore the weak fairness is fulfilled. But obviously there are paths not fulfilling the property, like $\pi = s_1 s_2 s_1 s_2 \ldots$, with $trace(\pi) = (\emptyset\{a\})^{\omega}$ does not have infinitely many b's.

3.3.3 E'

 $B = B_1$: $TS \not\models \mathcal{F}_{strong}^1 E'$

One path that does not fulfil the weak fairness premise is $\pi = s_1 s_2 s_4 s_1 s_2 s_4 \dots$ Since it does not satisfy the premise is satisfies the whole condition.

But $trace(\pi) = (\emptyset\{a\}\{a,b\})^{\omega}$ does not satisfy the property.

 $B = B_2$: $TS \not\models \mathcal{F}^2_{strong} E'$

One path that does not fulfil the weak fairness premise is $\pi = s_1 s_2 s_4 s_1 s_2 s_4 \dots$ Since it does not satisfy the premise is satisfies the whole condition.

But $trace(\pi) = (\emptyset\{a\}\{a,b\})^{\omega}$ does not satisfy the property.

 $B = B_3$: $TS \not\models \mathcal{F}_{strong}^2 E'$

There is not path s.t. contentiously β transitions are enabled. So the premise does

Aaron Grabowy: 345766 Timo Bergerbusch: 344408

Felix Linhart: 318801

Model Checking Exercise Sheet 4

not hold and therefore the weak fairness is fulfilled. But for the path $\pi = s_1 s_2 s_4 s_1 s_2 s_4 \dots$ the trace looks like the following $trace(\pi) = (\emptyset\{a\}\{a,b\})^{\omega}$ and obviously does not satisfy the property.