

Teoria da Computação

Primeiro Teste 2020–2021

Data: 20 de Novembro de 2020 Duração: 60 minutos

Justifique de forma clara e sucinta todas as respostas.

1. Considere o AFD A definido pelo seguinte diagrama de transições:

- (a) (4 valores) Usando o método de identificação de estados indistinguíveis, determine se o autómato A é ou não mínimo. Indique quantas iterações realizou e para cada par de estados distinguíveis apresente uma palavra que os distinga.
- (b) (4 valores) Indique uma expressão regular R tal que $\mathcal{L}(R) = \mathcal{L}(A)$.
- (c) (4 valores) Determine uma expressão regular S tal que $\mathcal{L}(S) = \mathcal{L}(A)^{-1}$.
- 2. Sejam R, S e T expressões regulares.
 - (a) (2 valores) Sabendo que $R^* = \varepsilon + RR^* = \varepsilon + R^*R$, mostre que $R^*(\varepsilon + R) = (\varepsilon + R)R^*$.
 - (b) (3 valores) Suponha que $\mathcal{L}(R+ST)\subseteq\mathcal{L}(S)$. Mostre que $\mathcal{L}(RT^*)\subseteq\mathcal{L}(S)$.
- 3. Um Autómato Generalizado (AG) sobre um alfabeto Σ é um quintuplo $A=(Q,\Sigma,\Delta,s,F)$, onde Q é um conjunto finito de estados, $s\in Q$ é estado inicial, F é conjunto de estados aceitação e a função $\Delta\colon Q\times Q\to \mathcal{P}(\Sigma^*)$ associa a cada par de estados (p,q) uma linguagem $\Delta(p,q)\subset \Sigma^*$.

Denote-se por $Q^{\geq 2}$ o conjunto de todas as sequências finitas de dois ou mais estados (com eventuais repetições de estados), denominadas passeios no diagrama do autómato A. Um passeio de um estado p para um estado q é uma sequência finita da forma $P = (p, q_1, \ldots, q_k, q) \in Q^{\geq 2}$, para algum $k \geq 0$. Denote-se por $Q_{p,q}$ o conjunto de todos os passeios de p para q.

Seja $\Delta^*: Q^{\geq 2} \to \mathcal{P}(\Sigma^*)$ a função que a cada passeio $P = (q_1, q_2, \dots, q_n)$, de comprimento $n \geq 2$, faz corresponder a linguagem $\Delta^*(P) = \prod_{i=1}^{n-1} \Delta(q_i, q_{i+1})$, onde o símbolo \prod denota a concatenação de linguagens.

A linguagem reconhecida pelo autómato generalizado é

$$\mathcal{L}(A) = \bigcup_{t \in T, P \in Q_{s,t}} \Delta^*(P).$$

(a) (1 valor) Determine a linguagem reconhecida pelo AG, $A=(\{s,f\}\,,\{a,b\}\,,\Delta,s,\{f\})$ definido pela tabela

$$\begin{array}{c|cccc}
s & f \\
\hline
s & L_1 & L_2 \\
\hline
f & L_2 & \emptyset
\end{array}$$

onde L_1 e L_2 são duas quaisquer linguagens sobre o alfabeto $\{a,b\}$.

(b) (2 valores) Seja $A=(Q,\Sigma,\Delta,s,F)$ um qualquer AG. Mostre que se todas as linguagens $\Delta(p,q),\ p,q\in Q,$ são regulares então $\mathcal{L}(A)$ é uma linguagem regular.

FIM.