PROC TTEST, PROC CORR, Output Delivery System

Shannon Pileggi

STAT 330

Output Delivery System

The data

The data

OUTLINE

Data

PROC TTEST

PROC CORR

Output Delivery System

Beat the Blues data

- enrolled patients with depression/anxiety
- randomly assigned them to Treatment as Usual (TAU) or BtheB, a new treatment delivery therapy via computers
- measured depression via Beck Depression Inventory (BDI) at baseline (pre-treatment), and 2, 4, 6, and 8 month follow up
- ▶ BDI scores range from 0 to 63 with higher scores indicating more severe depression

First 6 observations

SAS output								
Obs	drug	length	treatment	bdi_pre	bdi_2m	bdi_4m	bdi_6m	bdi_8m
1	No	>6m	TAU	29	2	2		
2	Yes	>6m	BtheB	32	16	24	17	20
3	Yes	<6m	TAU	25	20	•		
4	No	>6m	BtheB	21	17	16	10	9
5	Yes	>6m	BtheB	26	23	•		
6	Yes	<6m	BtheB	7	0	0	0	0
	SAS output							

Review

On your own: Match the appropriate statistical method for each research question.

- between bdi_pre and bdi_2m?

 Does the population average of
 - Does the population average of bdi_pre differ from 20?
 - On average in the population, does bdi change between the pre and

Is there a strong linear relationship

- 2m measurements?
- Does population average bdi differ by whether or not patients were on anti-depressants (drug)?

- 1. one-sample t-test
- 2. two sample t-test
- 3. paired t-test
- correlation

Dat

The data

PROC TTEST

PROC CORE

Output Delivery System

Overview of PROC TTEST

- ▶ One sample t-test
- Paired t-test (use PAIRED statement)
- ► Two sample t-test (use CLASS statement)
- Options include
 - ► HO = null value
 - ► ALPHA = significance level
 - ► SIDES = U (upper)
 L (lower)
 2 (two-sided)

One sample t-test

Does the population average baseline depression score differ from 20, at $\alpha = 0.05$? Test H_0 : $\mu = 20$ vs H_A : $\mu \neq 20$

```
PROC TTEST DATA = flash.BtheB HO = 20 ALPHA = 0.05 SIDES = 2;

VAR bdi_pre ;

RUN ;

SAS Code _____
```

Default settings are $\boxed{\text{ALPHA} = 0.05}$ and $\boxed{\text{SIDES} = 2}$, so the only thing you must specify for this test is the null value of 20.

One sample t-test output

We (do/do not) have evidence that the (population/sample) mean baseline BDI score differs from 20.

- 1. do; population
- 2. do; sample
- 3. do not; population
- 4. do not; sample

Does the population average baseline depression score differ among patients who were and were not on antidepressants (drug), at $\alpha = 0.05$? Test H_0 : $\mu_1 = \mu_2$ vs H_A : $\mu_1 \neq \mu_2$

```
SAS Code _____
PROC TTEST DATA = flash.BtheB ALPHA = 0.05 SIDES = 2;
  VAR bdi_pre ;
  CLASS drug ;
RUN:
                         SAS Code _
```

Default settings are H_0 : $\mu_1 = \mu_2$, ALPHA = 0.05, and SIDES = 2,.

Two sample t-test output

The TTEST Procedure Variable: bdi pre Mean Std Dev Std Err Minimum Maximum drug Nο 56 21 5536 8.9745 1.1993 7.0000 40.0000 Yes 44 25.5909 12.5778 1.8962 2.0000 49.0000 Diff (1-2) -4.0373 | 10.7059 | 2.1568

drug	Method	nod Mean 95% CL Mean		Std Dev	95% CL Std Dev		
No		21.5536	19.1502	23.9570	8.9745	7.5662	11.0320
Yes		25.5909	21.7669	29.4149	12.5778	10.3921	15.9364
Diff (1-2)	Pooled	-4.0373	-8.3174	0.2427	10.7059	9.3941	12.4470
Diff (1-2)	Satterthwaite	-4.0373	-8.5069	0.4322			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	98	-1.87	0.0642
Satterthwaite	Unequal	74.911	-1.80	0.0760

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F	43	55	1.96	0.0185	

We (do/do not) have evidence that the population mean baseline BDI differs among the two groups.

- 1. do
- 2. do not

The data

Paired t-test

Does the population average baseline depression score change between baseline and two month follow-up, at $\alpha=0.05$? Let $\mu_d=\mu_{pre}-\mu_{2m}$; test H_0 : $\mu_d=0$ vs H_A : $\mu_d\neq0$

```
PROC TTEST DATA = flash.BtheB HO = 0 ALPHA = 0.05 SIDES = 2;
PAIRED bdi_pre*bdi_2m;
RUN;
SAS Code
```

Default settings are $\boxed{\text{H0=0}}$, $\boxed{\text{ALPHA} = 0.05}$, and $\boxed{\text{SIDES} = 2}$, so these options do not need to be specified.

For the paired t-test, you cannot use CLASS or VAR statements.

←□▶ ←□▶ ←□▶ ←□▶ →□ ● ●○○○

Paired t-test output

We (do/do not) have evidence that the population mean BDI changes between baseline and 2 month follow up. Furthermore, we have evidence that μ_{pre} is (greater/less) than

- 1. do; greater
 - 2. do; less

 μ_{2m} .

- 3. do not; greater
- 4. do not; less

Checking conditions

In general, conditions required for a t-test include:

- 1. Independent observations
- 2. Normal underlying distribution $OR \ n > 30$ (in each group for the two sample case)

On your own: How would you go about checking these conditions in SAS? What procedures/options would you use?

Data

The data

PROC TTEST

PROC CORR

Output Delivery System

Overview of PROC CORR

- PROC CORR calculates Pearson's correlation coefficient by default
 - measures the strength of the linear relationship between two quantitative variables
- ► To obtain Spearman's Rank Correlation use PROC CORR SPEARMAN
 - measures monotonic relationships between two variables (does not require linear relationship)
- Use the VAR and WITH statements to specify the variables for computing the correlation matrix:
 - ▶ VAR variables are listed across columns
 - WITH variables are listed along rows
 - ▶ If WITH variables are omitted, then VAR variables are listed on both columns and rows produces redundant information.

Correlation

What is the strength of the linear relationship between baseline BDI and the follow-up BDI measurements?

```
PROC CORR DATA = flash.BtheB;

VAR bdi_pre;

WITH bdi_2m bdi_4m bdi_6m bdi_8m;

RUN;
```

Correlation select output

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations				
	bdi_pre			
bdi_2m	0.61422 <.0001 97			
bdi_4m	0.56912 <.0001 73			
bdi_6m	0.50773 <.0001 58			
bdi_8m	0.38351 0.0050 52			

The p-value tests H_0 : $\rho = 0$ vs H_A : $\rho \neq 0$.

On your own:

- 1. How important do you think the p-value is here?
- 2. Is the correlation between baseline BDI and follow-up measurements increasing or decreasing over time?
- 3. Why does *n* change?

How do you determine if Pearson's correlation is appropriate?

```
SAS Code

PROC CORR DATA = flash.BtheB PLOTS = matrix ;

VAR bdi_pre ;

WITH bdi_2m bdi_4m bdi_6m bdi_8m ;

RUN ;

SAS Code
```


PROC CORR

The data

Output Delivery System

PROC TTEST

Where graphs go

- ► By default our graphs so far have gone to the output window, or the results viewer
- The png's automatically get saved as well to find the location look for the path located in the lower right hand corner of your SAS window
- Really, the Output Delivery System (ODS) determines where graphs go and what they look like

Output Delivery System

The SAS Output Delivery System (ODS) can produce output in different *destinations*. The following work with ODS graphics:

- 1. ODS LISTING
- 2. ODS HTML
- 3. ODS PDF
- 4. ODF RTF

Styles can be applied to the destinations to alter the general appearance. To view available styles:

PROC TEMPLATE;
LIST styles;
RUN;
SAS Code

Location of saved files

To change the location of your saved png's, use GPATH.

```
SAS Code

ODS HTML GPATH = "&dir";
ODS GRAPHICS ON / IMAGENAME = "L11_scatter" RESET = INDEX;
PROC CORR DATA = flash.BtheB PLOTS = matrix;
VAR bdi_pre;
WITH bdi_2m bdi_4m bdi_6m bdi_8m;
RUN;

SAS Code
```

Default Destination

The default destination for graphics output is the HTML destination, which is displayed in the Results Viewer window. You can also specify the destination for your output.

ODS destination FILE = "filename.ext" STYLE=stylename;

SAS/GRAPH (and/or other procedure) code to create a report

ODS destination CLOSE;

SAS Code

Example: change destination

```
ODS PDF FILE = "&dir.L11_correlation.pdf" STYLE = HTMLBlue;
OPTIONS NODATE NONUMBER;
PROC CORR DATA = flash.BtheB PLOTS = matrix;
VAR bdi_pre;
WITH bdi_2m bdi_4m bdi_6m bdi_8m;
RUN;
ODS PDF CLOSE;

SAS Code
```