Introduction

M. Soleymani
Sharif University of Technology
Fall 2017

Course Info

- Course Number: 40-959 (Time: Sun-Tue 13:30-15:00 Location: CE 103)
- Instructor: Mahdieh Soleymani (<u>soleymani@sharif.edu</u>)
- TAs:
 - Mahsa Ghorbani (Head TA)
 - Seyed Ali Osia
 - Sarah Rastegar
 - Alireza Sahaf
 - Seyed Mohammad Chavoshian
 - Zeynab Golgooni
- Website: http://ce.sharif.edu/cources/96-97/1/ce979-1
- Office hours: Tuesdays 15:00-16:00

Materials

• Text book: Ian Goodfellow, Yoshua Bengio and Aaron Courville, *Deep Learning*, Book in preparation for MIT Press, 2016.

Papers

Notes, lectures, and demos

Marking Scheme

• Midterm Exam: 25%

• Final Exam: 30%

• Project: 5-10%

• Homeworks (written & programming): 25-30%

• Mini-exams: 10%

Prerequisites

- Machine Learning
- Knowledge of calculus and linear algebra
- Probability and Statistics
- Programming (Python)

This Course

Goals:

- Review principles and introduce fundamentals for understanding deep networks.
- Introduce several popular networks and training issues
- Develop skill at designing architectures for applications.

Deep Learning

- Learning a computational models consists of multiple processing layers
 - learn representations of data with multiple levels of abstraction.

 Dramatically improved the state-of-the-art in many speech, vision and NLP tasks (and also in many other domains like bioinformatics)

Machine Learning Methods

- Conventional machine learning methods:
 - try to learn the mapping from the input features to the output by samples
 - However, they need appropriately designed hand-designed features

Example

• x_1 : intensity

• x_2 : symmetry

Representation of Data

- Performance of traditional learning methods depends heavily on the representation of the data.
 - Most efforts were on designing proper features
- However, designing hand-crafted features for inputs like image,
 videos, time series, and sequences is not trivial at all.
 - It is difficult to know which features should be extracted.
 - Sometimes, it needs long time for a community of experts to find (an incomplete and over-specified) set of these features.

Hand-designed Features Example: Object Recognition

- Multitude of hand-designed features currently in use
 - e.g., SIFT, HOG, LBP, DPM

 These are found after many years of research in image and computer vision areas

Hand-designed Features Example: Object Recognition

Source: http://www.learnopencv.com/histogram-of-oriented-gradients/

Representation Learning

- Using learning to discover both:
 - the representation of data from input features
 - and the mapping from representation to output

Previous Representation Learning Methods

 Although metric learning and kernel learning methods attempted to solve this problem, they were shallow models for feature (or representation) learning

- Deep learning finds representations that are expressed in terms of other, simpler representations
 - Usually hierarchical representation is meaningful and useful

Deep Learning Approach

- Deep breaks the desired complicated mapping into a series of nested simple mappings
 - each mapping described by a layer of the model.
 - each layer extracts features from output of previous layer
- shows impressive performance on many Artificial Intelligence tasks

Example of Nested Representation

[Lee et al., ICML 2009]

[Deep Learning book]

Deep Representations: The Power of Compositionality

- Compositionality is useful to describe the world around us efficiently
 - Learned function seen as a composition of simpler operations
 - Hierarchy of features, concepts, leading to more abstract factors enabling better generalization
 - each concept defined in relation to simpler concepts
 - more abstract representations computed in terms of less abstract ones.
 - Again, theory shows this can be exponentially advantageous

 Deep learning has great power and flexibility by learning to represent the world as a nested hierarchy of concepts

This slide has been adopted from: http://www.ds3-datascience-polytechnique.fr/wp-content/uploads/2017/08/2017_08_28_1000-1100_Yoshua_Bengio_DeepLearning_1.pdf

Feed-forward Networks or MLPs

- A multilayer perceptron is just a mapping input values to output values.
 - The function is formed by composing many simpler functions.
 - These middle layers are not given in the training data must be determined

Multi-layer Neural Network

[Deep learning, Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Nature 521, 436–444, 2015]

Training Multi-layer Neural Networks

- Backpropagation algorithm indicate to change parameters
 - Find parameters that are used to compute the representation in each layer

 Using large data sets for training, deep learning can discover intricate structures

Deep Learning Brief History

- 1940s-1960s:
 - development of theories of biological learning
 - implementations of the first models
 - perceptron (Rosenblatt, 1958) for training of a single neuron.
- 1980s-1990s: back-propagation algorithm to train a neural network with more than one hidden layer
 - too computationally costly to allow much experimentation with the hardware available at the time.
- 2006 "Deep learning" name was selected
 - ability to train deeper neural networks than had been possible before
 - Although began by using unsupervised representation learning, later success obtained usually using large datasets of labeled samples

Why does deep learning become popular?

Large datasets

Availability of the computational resources to run much larger models

New techniques to address the training issues

ImageNet

[Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009]

- 22K categories and 14M images
 - Collected from web & labeled by Amazon Mechanical Turk

- The Image Classification Challenge:
 - 1,000 object classes
 - 1,431,167 images

Much larger than the previous datasets of image classification

Alexnet (2012)

[Krizhevsky, Alex, Sutskever, and Hinton, Imagenet classification with deep convolutional neural networks, NIPS 2012]

• Reduces 25.8% top 5 error of the winner of 2011 challenge to 16.4%

CNN for Digit Recognition as origin of AlexNet

LeNet: Handwritten Digit Recognition (recognizes zip codes)

Training Sample: 9298 zip codes on mails

[LeNet, Yann Lecun, et. al, 1989]

AlexNet Success

• Trained on a large labeled image dataset

 ReLU instead of sigmoids, enable training much deeper networks by backprop

Deeper Models Work Better

• 5.1% is the performance of human on this data set

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Using Pre-trained Models

- We don't have large-scale datasets on all image tasks and also we may not time to train such deep networks from scratch
- On the other hand, learned weights for popular networks (on ImageNet) are available.
- Use pre-trained weights of these networks (other than final layers) as generic feature extractors for images
- Works better than handcrafted feature extraction on natural images

Speech Recognition

• The introduction of deep learning to speech recognition resulted in a sudden drop of error rates.

Source: clarifai

Text

- Language translation by a sequence-to-sequence learning network
 - RNN with gating units + attention

Edinburgh's WMT Results Over the Years

Source: http://www.meta-net.eu/events/meta-forum2016/slides/09 sennrich.pdf

Deep Reinforcement Learning

 Reinforcement learning: an autonomous agent must learn to perform a task by trial and error

 DeepMind showed that Deep RL agent is capable of learning to play Atari video games reaching human-level performance on many tasks

 Deep learning has also significantly improved the performance of reinforcement learning for robotics

Deep Reinforcement Learning

- DQN (2013): Atari 2600 games
 - neural network agent that is able to successfully learn to play as many of the games as possible without any hand-designed feature.

Deep Mind's alphaGo defeats former world champion in 2016.

Source: https://gogameguru.com/alphago-shows-true-strength-3rd-victory-lee-sedol/

Generative Adversarial Networks

GANs to synthesize a diversity of images, sounds and text imitating unlabeled images, sounds or text

[Goodfellow, NIPS 2016 Tutorial, https://arxiv.org/pdf/1701.00160.pdf]

Memory Networks & Neural Turing Machines

 Memory-augmented networks gave rise to systems which intend to reason and answer questions

- Neural Turing Machine can learn simple programs from examples of desired behavior
 - They can learn to sort lists of numbers given examples of scrambled and sorted sequences.
 - This self-programming technology is in its infancy.

Questions

- Why deep learning approach?
 - Which makes it such popular (in comparison with traditional artificial neural networks)

- Future development
 - The road to general-purpose AI?

Still Far from Human-Level Al

- Industrial successes mostly based on supervised learning
 - Unsupervised and reinforcement learning are more important in human intelligence
 - Human outperforms machines at unsupervised learning
 - Discovering the underlying causal factors is much helpful
 - Human interact with the world not just observe it
- Learning superficial clues, not generalizing well outside of training contexts, easy to fool trained networks
- Still unable to discover higher-level abstractions at multiple time scales, very longterm dependencies
- Still relying heavily on smooth differentiable predictors (using backprop, the workhorse of deep learning)

This slide has been adapted from: http://www.ds3-datascience-polytechnique.fr/wp-content/uploads/2017/08/2017_08_28_1000-1100_Yoshua_Bengio_DeepLearning_1.pdf

Still Far from Human-Level Al

- We need sufficient computational power for models large enough to capture human-level knowledge
- Actually understanding language (also solves generating), requiring enough world knowledge / commonsense
 - Neural nets which really understand the notions of object, agent, action, etc.
- Large-scale knowledge representation allowing one-shot learning as well as discovering new abstractions and explanations by 'compiling' previous observations
- Many fundamental research questions are in front of us

Course Outline

- Introduction
- Machine Learning review and history of deep learning
- Multi-layer perceptrons and Backpropagation
- Convolutional neural networks (CNN)
- Recurrent neural networks (RNN)
- Deep reinforcement learning (Deep RL)
- Unsupervised deep methods
- Generative Adversarial networks (GAN)
- Variational Autoencoders (VAE)
- Advanced topics
- Applications

Applications We Enter

- Computer vision
- Text and NLP
- Control (Atari games)

Resource

• Deep learning book, Chapter 1.