Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра автоматизованих систем обробки інформації і управління

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження лінійних алгоритмів » Варіант <u>8</u>

| Виконав   | ІП-15, Дацьо Іван Іванович          | _ |
|-----------|-------------------------------------|---|
| студент   | (шифр, прізвище, ім'я, по батькові) |   |
|           |                                     |   |
|           |                                     |   |
| Перевірив |                                     |   |

#### Київ 2021

## Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

**Мета** — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

## Індивідуальне завдання:

### Варіант 8

Задача:

Із заданою точністю  $\varepsilon$  обчислити значення функції  $\cos x$ :

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

## 1. Постановка задачі.

Визначити значення  $\cos(x)$  із заданою точністю і із заданим x використовуючи оператори повторювання дій до моменту , коли модуль елемента буде меншим за задану точність.

Результатом є значення косинуса.

## 2.Побудова математичної моделі

| <b>З</b> мінна  | Тип           | Ім'я | Призначення    |
|-----------------|---------------|------|----------------|
| Точність        | Дійсний       | Е    | Початкові дані |
| Змінна          | Дійсний       | х    | Початкові дані |
| Лічильник циклу | Цілочисельний | k    | Проміжні дані  |
| Елементи        | Дійсний       | term | Проміжні дані  |

| Результат суми | Дійсний | Sum | Кінцеві дані |
|----------------|---------|-----|--------------|
|                |         |     |              |

Для порівняння елемента із точністю використовуємо формулу:

abs(term)> E

Для знаходження елементів використовуємо формулу:

term = -x\*x\*term/((2\*k)\*(2\*k-1))

Для знаходження суми використовуємо формулу:

Sum = Sum + term

## 3.Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блоксхеми .

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію присвоєння значень змінним

Крок 3. Деталізуємо дію порівняння елемента з точністю

Крок 4. Деталізуємо дію знаходження елементів та їх суми

Крок 5. Деталізуємо дію надання нового значення к

## 4. Псевдокод

Крок 1.

#### Початок

Присвоєння змінним значень

Порівняння елемента з точністю

Знаходження значень елементів та їх суми

Надання нового значення к

#### Кінець

Крок 2.

#### Початок

term=1

sum=term

k=1

### Порівняння елемента з точністю

Знаходження значень елементів та їх суми

Надання нового значення к

#### Кінець

```
Крок 3..
```

#### Початок

```
term=1
sum=term
k=1
Якщо abs(term) >0
Повторити для k= k+1
<u>Знаходження значень елементів та їх суми</u>
Надання нового значення k
```

# Інакше : Вивести Sum

### Кінець

Крок 4.

#### Початок

```
term=1
sum=term
k=1
Якщо abs(term) >0
term = -x*x*term/((2*k)*(2*k-1)
Sum = Sum + term
Надання нового значення k
```

Інакше: Вивести Sum

## Кінець

```
Крок 5.
```

```
Початок
```

```
term=1
sum=term
k=1
Якщо abs(term) >0
term = -x*x*term/((2*k)*(2*k-1)
Sum = Sum + term
Повторити для k= k+1
Все повторити
Інакше : Вивести Sum
```

## Кінець

# 5. Блок-схема алгоритму

Крок 1.



Крок 2.



Крок 3.



Крок 4.



Крок 5.



# 6. Випробування алгоритму Випробування 1

| Блок | Дія (цикл 1)  | Дія (цикл 2) | Дія (цикл 3) | Дія (цикл 4)   |
|------|---------------|--------------|--------------|----------------|
|      | початок       |              |              |                |
| 1    | E=0.0001      |              |              |                |
| 2    | X=1.2         |              |              |                |
| 3    | Sum=term=1    |              |              |                |
| 4    | term= -0.72   | term=0.0864  | term=-       | term=0.0001066 |
|      |               |              | 0.0041472    |                |
| 5    | Sum=0.28      | Sum=0.3664   | Sum=0.362253 | Sum=0.362359   |
| 6    | true          | true         | true         | true           |
| Блок | Дія(цикл 5)   |              |              |                |
|      |               |              |              |                |
| 1    |               |              |              |                |
| 2    |               |              |              |                |
| 3    |               |              |              |                |
| 4    | term=-        |              |              |                |
|      | 0.000001706   |              |              |                |
| 5    | Sum=0.362358  |              |              |                |
| 6    | false         |              |              |                |
|      | Виведення Sum |              |              |                |
|      | Кінець        |              |              |                |

# Випробування 2

| Блок | Дія(цикл 1) | Дія(цикл 2)    | Дія(цикл  | Дія (цикл 4)        |
|------|-------------|----------------|-----------|---------------------|
|      |             |                | 3)        |                     |
|      | початок     |                |           |                     |
| 1    | E=0.00001   |                |           |                     |
| 2    | X=0.5       |                |           |                     |
| 3    | Sum=term=1  |                |           |                     |
| 4    | term=-0.125 | term =         | term = -  | term=0.000000096881 |
|      |             | 0.0260417      | 0.0000217 |                     |
| 5    | Sum=0.875   | Sum=0.87760417 | Sum=      | Sum=0.887583        |
|      |             |                | 0.877582  |                     |

| 6 | true | true | true | false         |
|---|------|------|------|---------------|
|   |      |      |      | Виведення Sum |
|   |      |      |      | Кінець        |

### 7.Висновок

Було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій. В результаті виконання лабораторної роботи ми отримали два значення косинуса в залежності від точності та х ,розділивши задачу на 5 кроків : визначення основних дій, деталізація дії присвоєння значень змінним, деталізація дії порівняння елемента з точністю, деталізація дії знаходження елементів та їх суми, деталізація дії надання нового значення к.Алгоритм було побудовано з використанням ітераційного циклу випробування передумови. В результаті було розглянуто значення E=0.0001 ,x=1.2 отримано результат  $\cos(x)=0.362358$  та E=0.00001, x=0.5 отримали cos(x) ==0.887583.