МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра КСУ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Математическое моделирование объектов и систем управления»

ТЕМА: МОДЕЛИРОВАНИЕ НЕЧЕТКИХ СИСТЕМ

Вариант 5

Студенты гр. 9492	 Викторов А.Д. Керимов М.М.
Преподаватель	 Шпекторов А.Г

Санкт-Петербург

Цель работы: получить представление о способах создания нечетких моделей, изучить функции языка MATLAB библиотеки FUZZY LOGIC TOOLBOX, создать и исследовать нечеткую модель объекта управления.

Задание

Для заданного объекта управления реализовать две нечеткие модели управления. Одна из которых должна содержать подробное описание каждой лингвистической переменной, а другая усеченное описание и усеченный набор правил.

Объект управления – кондиционер воздуха в помещении.

Входные переменные:

- температура воздуха;
- скорость изменения температуры.

Выходная переменная – угол поворота регулятора (влево – больше холода, вправо – больше тепла).

Ход работы

1. Зададим для каждого входа и выхода лингвистические переменные с множеством термов, в полном и усеченном виде. После чего зададим правила для полного и усеченного случая. Набор переменных и правил представлен в таблицах 1 и 2.

Таблица 1 – Набор лингвистических переменных и правил для усеченной модели

Входные переменные		Выходная переменная
Температура	Скорость изменения	Режим кондиционера
	температуры	
We Hot	Cooling	Cooling
We Cold	Cooling	Heating
We Ok	Heating	Cooling
We Hot	Maintenance	Cooling
We Cold	Maintenance	Heating
we Ok	Cooling	Heating

Таблица 2 – Набор лингвистических переменных и правил для полной модели

Входные	Входные переменные	
Температура	Скорость изменения	Режим кондиционера
	температуры	
Very hot	Not fast cooling	Super cooling
Hot	Not cooling	Cooling
Ok	Cooling	Maintenance
Ok	Heating	Maintenance
Ok	fast cooling	Heating
Ok	fast heating	Cooling
Cold	Not heating	Heating
Very cold	Not fast heating	Super heating
Hot	-	Cooling
Cold	-	Heating
Ok	-	Maintenance

2. Используем редактор моделей нечеткой логики и создадим два нечетких регулятора по описанным выше правилам. На рисунках 1-2 представлены графики поверхности регуляторов для полной и усеченной модели соответственно.

Рисунок 1 - График поверхности регулятора полной для полной модели

Рисунок 2 - График поверхности регулятора для усеченной модели

На рисунках 3-4 представлены диаграммы для описанных в пункте 1 правил.

Рисунок 3 - Диаграммы правил регулятора для полной модели

Рисунок 4 - Диаграммы правил регулятора для усеченной модели

3. Проведем моделирование системы с обоими нечеткими регуляторами. Для этого будем использовать модель, схема которой представлена на рисунке 5.

Рисунок 5 - Модель для исследования нечеткого регулятора

Проведем моделирование двух различных ситуаций для обоих регуляторов и сравним графики переходных процессов по температуре. Сначала проведем моделирование при начальной температуре 30 градусов, с промежуточным значением 20 градусов и конечным 23 градуса по Цельсию. Графики переходных процессов представлены на рисунках 6-7. На верхней части рисунка представлен график температуры желаемой и реальной, а в нижней – угол поворота регулятора кондиционера.

Как видно из сравнения этих графиков более подробный набор термов по каждой лингвистической переменной поспособствовал уменьшению статической ошибки, ускорению переходного процесса и уменьшению дребезга регулятора.

На рисунках 8-9 представлены аналогичные графики переходных процессов, но при других условиях: начальная температура 18 градусов, промежуточное значение 25 градусов и конечным 20 градусов по Цельсию.

Из анализа графиков на рисунках 8-9 еще больше заметно уменьшение частоты переключения регулятора, влияние на качество переходного процесса также подтверждается.

Рисунок 6 - График переходного процесса регулятора для полной модели

Рисунок 7 - График переходного процесса регулятора для усеченной модели

Рисунок 8 - График переходного процесса регулятора для полной модели

Рисунок 9- График переходного процесса регулятора для усеченной модели

Вывод

В ходе выполнения данной лабораторной работы получено представление о способах создания нечетких моделей, а также о способах их применения.

Была создана модель нечеткого регулятора в двух версиях — полная и усеченная. Проведено сравнение переходных процессов объекта управления — кондиционера при работе с обеими версиями нечеткого регулятора. Было выявлено, что подробность описания нечеткой логики регулятора влияет на качество управления.