MATRYCS: MLFlow tutorial

Gregor Cerar, PhD Comsensus

What MFlow IS?

- Model development aspect:
 - ... is a service to **store** binary blobs of the models.
 - ... is a service to track changes and progress of ML development.
 - ... is a service that helps propagate information about which models are production-ready. Models are cherry-picked by a leading model developer or automated through an external service/script.
- Model deployment aspect:
 - ... is a service that provides labels "production," and "staging" to help determine which models are suitable for deployment. *Hint:* More recent is not often better.
 - ... can serve models on its own

What MLFlow IS NOT?

- ... a Continuous retraining system. **Why?** MLFlow has no clue what data was used from pushed models nor where data came from. Retraining is typically done by, for instance, ArgoCD, Flux, GitLab, DataBricks, or KubeFlow.
- ... a MLOps management system. Why? MLFlow is simple & minimalistic, but it has no security integrated. No permissions. No authentication. That's why it is not exposed to the Internet through public IP. Its web UI is not meant for a production environment. It is not a good idea to have it accessible to everyone. Inside MATRYCS project, service is secured with KeyCloak.

The purpose of MLFlow (1/2)

The purpose of MLFlow (2/2)

- Keep the records of models, and track the progress of ML model development. This functionality is referred to as a "model registry."
- Decouples model development (data science) and model deployment (DevOps).

MLFlow terminology (2/2)

Versions of the registered model and its status

Registered Models > Airline_Delay_SparkML >

▼ Description

Predicts airline delays (in minutes) using the best Spark RF model from the AutoML Toolkit.

▼ Versions All Active(1)

	Version	Registered at	Created by	Stage	Pending Requests
0	Version 1	2019-10-10 15:20:30	clemens@demo.com	Archived	-
0	Version 2	2019-10-10 21:47:29	clemens@demo.com	Archived	-
0	Version 3	2019-10-10 23:39:43	clemens@demo.com	Production	-
\otimes	Version 4	2019-10-11 09:55:29	clemens@demo.com	None	-
0	Version 5	2019-10-11 12:44:44	matei@demo.com	Staging	1

What are model development team responsibilities?

- Add extra lines of code to push models to MLFlow.
- Integrate with Apache Airflow for retraining. Why? MLFlow has no idea where data comes from. That is the responsibility of the ML model developer.
- Update "staging" and "production" labels as needed. The model development team is responsible for cherry-picking "the right" model for production.

Push built ML model to MLFlow

Pre-requirements:

- Working script that builds the ML model.
- MFLow experiment name already exists

Steps:

- 1. Install MLFlow as dependency to your project
- 2. Import *mlflow* package
- 3. Set URI to MLFlow server
- 4. Set MLFlow experiment name
- 5. Call MLFlow method to store mode
- 6. Run the script & model will appear on server

```
class config:
    SEED = 42
    MLFLOW_TRACKING_URI = 'http://192.168.0.76:5000/'
    EXPERIMENT_NAME = 'dummy-regression'
    REGISTERED_MODEL_NAME = 'matrycs-dummy-regressor'

# Configure logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configure MLFLow settings to be aware of remote tracker server
mlflow.set_tracking_uri(config.MLFLOW_TRACKING_URI)
mlflow.set_experiment(config.EXPERIMENT_NAME)
```

```
# MLFlow will store model into pickle for us.
mlflow.sklearn.log_model(
    sk_model=model,
    artifact_path='model',
    registered_model_name=config.REGISTERED_MODEL_NAME,
    pip_requirements=['-r ./requirements.txt'],
)
```

Example: Push attempt to experiment

What are model deployment team responsibilities?

- Integration with Apache Airflow for awareness of when to re-deploy. An alternative is polling the MLFlow server for updates.
- Deploy only models labeled by the model development team.

Example: Programmatically list all registered models

main()

def main(): Create client instance """Let's retrieve and print some information from MLFlow.""" client = mlflow.tracking.MlflowClient(tracking uri=config.MLFLOW TRACKING URI, Access all registered models # Print every registered model print('\n\nView all registered models:') for my in client.list registered models(): pprint(dict(mv), indent=4) Access latest versions of model print(f'\n\nView latest versions of "{config.REGISTERED_MODEL NAME}" model:') for mv in client.get latest versions(name=config.REGISTERED MODEL NAME): pprint(dict(mv), indent=4) if name == " main ":

Example: Programmatically pull latest model

class config: MLFLOW TRACKING URI = 'http://192.168.0.76:5000/' EXPERIMENT NAME = 'dummy-regression' REGISTERED MODEL NAME = 'matrycs-dummy-regressor' STAGE = 'Production' URI to MLFlow service logging.basicConfig(level=logging.INFO) logger = logging.getLogger(name) # Configure MLFLow settings to be aware of remote tracker server Obtain model (*.pkl) from MLFlow mlflow.set tracking uri(config.MLFLOW TRACKING URI) with helper function def main(): model = mlflow.pvfunc.load model(model uri=f'models:/{config.REGISTERED MODEL NAME}/{config.STAGE}' suppress warnings=False, # Retrieve the data Let model predict value N SAMPLES = 2N FEATURES = 4 # 'matrycs-dummy-regressor' accepts 4 inputs input size = (N SAMPLES, N FEATURES) inputs = np.random.random(input size) outputs = model.predict(inputs) print(f'Model output for {N SAMPLES} sample(s):\n\t{outputs}') if name == " main ":

main()

What is the end goal?

- Fully automated MLOps pipeline, which MLFlow is part of.
 - 1. Apache Airflow triggers retraining.
 - 2. Python scripts (or Jupyter notebooks) produces newer model on new data.
 - 3. Python scripts (or Notebook) push a new binary model to MLFlow.
 - 4. (optionally) If a new model is tagged as "production," Apache Airflow (or polling service) would trigger an update of a deployment.

Resources

MLFlow documentation: https://www.mlflow.org/docs/latest/model-registry.html

MLFlow deployment & examples: https://github.com/MATRYCS/ml model tracking framework

How to get access to MLFlow deployment?

For local & test deployment try our docker-compose based solution. Instructions:

https://github.com/MATRYCS/ml model tracking framework/tree/main/mlflow

MATRYCS project partners use deployment accessible from EGI's internal network using KeyCloak

- IPv4 address: 192.168.0.76
- Within testing period, instance can be accessed through VPN or SSH port forwarding.
 - Port forwarding: ssh -L 5000:192.168.0.76:5000 < MATRYCS-SSH-PROXY-IPv4-ADDR>
 - After port forwarding MLFlow is accessible through localhost: http://127.0.0.1:5000

Contact

Gregor Cerar, Comsensus, Slovenia

gregor.cerar@comsensus.si