Endsem	-Model	Answers
	_	

a) The dimension of [D]=

(b) ... direction of thermal forces

is random

or any direction

Wernst potential

Nernst potential

Changes by $\frac{\ln 2}{\ln 2}$ $\frac{dv'}{dz} = \ln \frac{c_1}{c_2}$ $\frac{dv'}{dz} = \ln 2 + \ln \frac{c_1}{c_2}$

Pg	2
1	

(e)	 always	goto	9	ste	He	WITH
		Minimum		free	ene	vgy

F ... in a funnel-like free energy tand scape

(No marks for hills and valleys)

$$f_{max} = \ln \left(\frac{k}{k} \right) = -\ln \left(\frac{k}{k} \right)$$

$$f_{max} = \ln \left(\frac{k}{k} \right) = -\ln \left(\frac{k}{k} \right)$$

$$f_{max} = \ln \left(\frac{k}{k} \right) = -\ln \left(\frac{k}{k} \right)$$

$$f_{max} = \ln \left(\frac{k}{k} \right)$$

Pg:(3) a= typial size u= typial speed R= Pug $P = 10^3 \text{ SI units}$ 7=103 SI unit $R \approx 10^6 \, \text{ya}$ | Ubacterium | |ym| s | $|\text{Obacterium}| \approx |\text{ym}| \text{s}$ | for anything Rbacterium 2 10 near this Rhyman $= 10^6 \times 0.1 \times 10^8$ Rhyman $\approx 10^5$ give mark for anything new this

$$N = 100$$
$$p = 0.3$$

at least one
$$=0$$
 $k \ge 1$

Prob of finding
$$\leq G(n, |r, P)$$
at least one $G(n, 0, P)$

$$= 1 - G(n, o, P)$$

$$C_{1}(n, 0, P) = (0.3)(1-0.3)$$

$$= (0.7)^{100}$$

$$Ans = 1 - (0.7)^{100}$$

$$(2) = Ae^{\frac{f2}{kBT}}$$

C= AE FOT < 2 mark

$$J_D = -D \frac{dC}{dz} - -DAE \frac{fz}{lcsT} \left(\frac{f}{lcsT}\right)$$

$$J_{D} = -D A \left(\frac{f^{2}}{knT} \right) e^{\frac{f^{2}}{knT}}$$

$$J_p = + Df C$$

$$|CBT|$$

or
$$|J_D| = |J_f|$$

$$(N_0(x) = Ax^4 - Bx^2$$

$$\chi^2 = \frac{2B}{4A}$$
 $\chi = \frac{1}{\sqrt{B}} = \frac{B}{2A}$

or $\chi = 0 \leftarrow \text{maxima}$

$$-\frac{B^2}{AB}$$

$$\frac{\left(\int_{0}^{\infty}\left(\min_{A}\right) = \frac{B^{2}}{A} - \frac{B^{2}}{A^{2}} - \frac{B^{2}}{A^{2}} - \frac{B^{2}}{A^{2}} \right)}{\left(\int_{0}^{\infty}\left(\min_{A}\right) \left(\min_{A}\right) dA} = \frac{B^{2}}{A^{2}} - \frac{B^$$

$$\left(\int_0^{\infty} \left(a + minima\right)\right) = \frac{B^2}{4A}$$

 $\frac{Ghiersth}{Est} = Roe \frac{(G-lómin)}{Est}$ $R = Roe \frac{B^2}{4mks^T}$ R = Roe Imark

Very sols slow by when $\frac{B^2}{4A} > |C_5T|$ $\frac{B^2}{4A} > 4A|C_5T$

Pn = Pc = 1/6

1 mark for 5= answer

(Pg 12)

AA, AT, AG, T, TA, TU, TC, MUA, UT, UC

CC, CT, CU, CA

= 12 16 possibilities =

B all are equally probable

S = K In 16 7