

KONGERIKET NORGE The Kingdom of Norway

Bekreftelse på patentsøknad nr

Certification of patent application no

000 5915

- Det bekreftes herved at vedheftede dokument er nøyaktig utskrift/kopi av ovennevnte søknad, som opprinnelig inngitt 2000.11.22
- It is hereby certified that the annexed document is a true copy of the abovementioned application, as originally filed on 2000.11.22

2001.03.02

Freddy Strømmen

Foodly Stopmmen

Seksjonsleder

Ellen B. Olsen

PATENTSTYRET 00-11-22*20005915

Søker:

Fridtjov Johansen

Høybråtenvn. 11A

1055 OSLO

Fullmektig:

ONSAGERS AS

Postboks 265 Sentrum

N-0103 OSLO

Oppfinner:

Søker

Oppfinnelsens

tittel:

Miljøvennlig isolasjonsmateriale og fremgangsmåte for

fremstilling av dette

Denne oppfinnelse gjelder et miljøvennlig isolasjonsmateriale, nærmere bestemt en isolasjonsmatte for isolasjon av bygninger, boliger etc. og en fremgangsmåte for å fremstille denne. Matten er allergisikker og nær 100% resirkulerbar.

Bakgrunn

10

15

20

I dag blir det ofte benyttet matter av stein- eller glassull for isolering av bygninger, boliger og andre byggverk. Begge disse typene isolasjonsmatter er beheftet med miljømessige ulemper.

Glassull blir f.eks. framstilt ved å smelte standard glass som tilsettes noen tilsetningsstoffer som gir glasset en lav varmeledningsevne, for deretter å slynge ut glasset ved hjelp av hurtigroterende viklingsmaskiner til lange tynne tråder. Trådene samles sammen og bindes ved hjelp av et fenollim til f.eks. isolasjonsmatter med varierende tykkelse og stivhet. Steinull blir produsert på en analog måte, men nå er det en bergart som blir smeltet, tilsatt kalk og slynget ut i hurtigroterende viklingsmaskiner. Også her blir det benyttet et fenollim for å danne isolasjonsmatter. Begge disse prosessene krever høye temperaturer på mange hundre grader Celsius, og dermed et relativt høyt energiforbruk, og de bruker ikkefornybare ressurser som henholdsvis stein og sand.

Et kjent problem innen bygningsbransjen er at begge typene isolasjonsmatter kan gi allergireaksjoner, kløe, svie og sår hals, spesielt under arbeid med å legge mattene. I tillegg er fibrene harde og vil til en viss grad penetrere huden slik at mattene stikker og gir ubehag mot bar hud. Slike fibernåler kan gi mye irritasjon og i tillegg være vanskelig å få plukket ut av huden. Dermed bør man benytte åndedrettsvern og heldekkende tekstiler under arbeid med isolasjonsmatter. Dette både kompliserer og fordyrer byggeprosessen.

Et annet problem er at limet vil etter en tid tørke inn og smuldre opp slik at steineller glassfibre i isolasjonsmaterialet vil løsne. Dermed vil det i mange tilfeller sive fibre inn i bygningen gjennom sprekker etc. og forringe inneluften. Det er kjent flere eksempler på at det er funnet uakseptabelt mye glassfibre og/eller steinullfibre i filtrene til lufteanleggene til f.eks. barneskoler. Det er i dag mistanke om at glassfibre kan ha en kreftfremkallende virkning. En annen konsekvens av at limet forstøves er at isolasjonsmattene vil etter en tid sige sammen, noe som forringer isolasjonsmaterialets isolasjonsevne. Fra et miljømessig standpunkt er dette uheldig fordi mattene blir dårlig egnet for gjenbruk, og fordi en redusert isolasjon av bygningene resulterer i økt energiforbruk til oppvarming.

Det er derfor et behov for nye typer isolasjonsmaterialer som kan løse ovennevnte problemer, og som er miljøvennlig både mot mennesker og miljøet forøvrig.

Kjent teknikk

5

15

20

25

30

35

Det er kjent fra bilindustrien å lage isolasjonsmatter for biler ved å rive opp brukte klær til sjoddi og lime dette med akryllim til tynne harde plater. Denne metoden vil imidlertid kun virke for tynne plater da tykke sjoddilag holdt sammen av lim vil uunngåelig splittes opp ved behandling. Dessuten vil platene bli for stive til å være praktisk i bruk som bygningsisolasjon.

Oppfinnelsens målsetning

Det er en hovedmålsetning med denne oppfinnelsen å fremskaffe et isolasjonsmateriale som er miljøvennlig under produksjon og bruk.

Det er også en målsetning med denne oppfinnelsen å fremskaffe et isolasjonsmateriale som er astma- og allergivennlig, både for produksjonsarbeidere og brukere av bygninger som er isolert med produktet.

En ytterligere målsetning med denne oppfinnelsen er å fremskaffe et isolasjonsmateriale som benytter et avfall som råstoff og som kan resirkuleres fullstendig etter endt levetid.

Redegjørelse for oppfinnelsen

Oppfinnelsens målsetninger kan oppnås ved det som framgår av vedlagte krav og det som framgår av nedenstående beskrivelse av oppfinnelsen.

Oppfinnelsen målsetning kan oppnås ved at isolasjonsmaterialet produseres av brukte tekstiler som rives opp til sjoddi, blandes med linfibrer og en polyester med lave smeltepunkt til en homogen masse som formes til ønsket form, f.eks. matter og deretter varmebehandles inntil at polyesteren smelter og binder sammen fibrene for å danne isolasjonsmaterialet. Blandingsforholdene avhenger av ønsket stivhetsgrad på det ferdige produkt og vil normalt være innenfor 5-50 vekt% linfibrer og 5-50 vekt% polyester, fortrinnsvis 15-40 vekt% linfibrer og 10-30 vekt% polyester, og mest fortrinnsvis 20-30 vekt% linfibrer og 15-20 vekt% polyester. Resten utgjøres av sjoddi.

Det er også mulig å erstatte inntil 30-40 vekt% av sjoddien med returpapir/papp. I dette tilfellet blir papiret/pappen opprevet til tilsvarende malegrad som tekstilene for så å bli oppblandet med tekstilfibrene, linfibrene og polyesteren til en homogen masse. Deretter formes massen til ønsket form og varmebehandles inntil at polyesteren smelter og binder sammen fibrene for å danne isolasjonsmaterialet.

Det kan benyttes alle former for brukte tekstiler. Tekstiler som gir lange fibrer, såsom ull etc. er spesielt egnet, men oppfinnelsen fungerer helt utmerket med tekstiler med kortere fibre, f.eks. bomull og syntetiske tekstiler. På grunn av krav

til isolasjonsmaterialers brannbestandighet, bør tekstiler som inneholder brannfarlige materialer, f.eks. plastmaterialer som oljehyre etc. unngås helt eller delvis. Til denne oppfinnelsen foretrekkes det å bruke innsamlede brukte klær og tekstilrester fra møbelindustrien.

Det er foretrukket å anvende linfibrer av typen som selges under handelsnavnet "Flax Tow" eller "Scutching Tow", fordi disse fibrene er billige, lange og sterke, og gir isolasjonsmaterialet en god spenst. Disse fibrene stammer fra den ytre delen av linplantens stengel, og er et biprodukt fra heklingen av linplantens fibermasse.

10

15

20

25

30

Det kan benyttes enhver polyester såfremt den er lavtsmeltende, dvs. smelter ved temperaturer under 300°C, helst under 200°C. Det er mest foretrukket å benytte polyestere som smelter i området 120-170°C. Man bør helst unngå å benytte polyestere som har et vesentlig lavere smeltepunkt enn 120°C p.g.a. at isolasjonsmaterialet må tåle en del oppvarming uten fare for at polyesteren mister limeffekten ved at den smelter og forårsaker en utflytning og/eller sammenpakning av fibrene i isolasjonsmaterialet. Et annet moment er at jo lavere smeltepunkt, desto større blir damptrykket til polyesteren, og desto mer uønskelig avgassing av polyesteren vil oppstå. Som eksempler på egnede polysetere, kan det nevnes følgende bikomponent polyestere: Trevira T252 med dtex-område fra 2,2-4,4 fra Hoechst Trevisa GmbH, Tyskland; Celbond Type 255 eller 256 med dtex 3,3 fra Hoechst Celanese Corp., USA; Terital TBM med dtex 4,4 fra Enichem England; og Wellbond med dtex-område 5,3-10 fra Wellman International Ltd., Irland.

For å gi isolasjonsmaterialet godkjent brannbestandighet, bør det tilsettes brannhemmende midler. Det er gjennomført branntester på matter av isolasjonsmaterialet i henhol7d til oppfinnelsen ved SINTEF Bygg og miljøteknikk - Norges branntekniske laboratorium som har blitt tilsatt 2,5 kg Station 1 per m³ isolasjonsmasse, noe som tilsvarer 0,25 l/m² for en 10 cm tykk matte. Station 1 er et kommersielt tilgjengelig vannbasert giftfritt brannhemmende middel. Det kan også benyttes andre brannhemmende midler spå fremt de er giftfrie og miljøvennlige. Testene dokumenterer at matter lagd av isolasjonsmaterialet i henhold til oppfinnelsen, tilfredsstiller kriteriene for løs isolasjonsmasse i henhold til standard NT FIRE 035 og i henhold til Melding HO-1/94,Plast i bygninger fra Statens bygningstekniske etat. Dette er en standard som gjelder for stort sett alle bygninger. Unntak er bygninger som klassifiseres i brannklasse 4, tiltaksklasse 3 eller risikoklasse 6.

Det er også gjennomført tester av mattene ved Mycoteam as som viser at isolasjonsmaterialet kan benyttes under normale fuktforhold uten fare for vekst av muggsopp. For anvendelser hvor det er fare ekstra mye fuktighet, kan det selvsagt tilsettes soppmidler til isolasjonsmaterialet.

Ved at det benyttes brukte tekstiler/tekstilavfall og eventuelt returpapir/papp som rives opp til sjoddi, blir dette isolasjonsmaterialet spesielt miljøvennlig. For det første er råmaterialet resirkulerte materialer som i dag i stor grad enten brennes i søppelanlegg eller deponeres i søppelfyllinger. Dermed bidrar oppfinnelsen til å redusere avfallsmengdene og avgivelse av klimagasser. I Norge kastes 3500-4000 tonn tekstilavfall hvert år. Det er kjent at tekstilavfall vil avgi metangass under forråtnelse. Metangass er en sterk drivhusfremmende gass hvis den slippes ut i atmosfæren. Også brenning av tekstilavfall avgir klimagasser, i dette tilfellet CO₂. Det er av denne grunn f.eks. innført en lov i Tyskland som pålegger resirkulering av tekstiler, og det jobbes med å få en tilsvarende lov for hele EU-området.

Materialet er også gunstig ved at det krever relativt lite energi under produksjonen. F.eks. er energibehovet for en isolasjonsmatte i henhold til oppfinnelsen på 1 m² og 15 cm tykkelse ca. 4 kWh, mens for en tilsvarende Glava-matte er energiforbruket på ca. 14 kWh eller 3,5 ganger så mye. Dette er opplagt en betydelig innsparing. I tillegg vil foreliggende oppfinnelse spare energi ved at isolasjonsmatter lagd av dette materialet vil holde på formen i all overskuelig framtid slik at isolasjonsevnen holdes intakt over meget lange tidsrom. Dette er ikke tilfelle med mange av dagens isolasjonsmaterialer. Dermed vil behovet for energi til oppvarming av bygningene/objektene som benytter isolasjonsmaterialet reduseres i forhold til behovet som dagens isolasjonsmaterialer gir.

I tillegg er isolasjonsmaterialet i henhold til oppfinnelsen vennlig mot brukerne, dvs. bygningsarbeidere og de etterfølgende beboer(ne) ved at materialet er lite astma- og allergifremkallende, avgir nesten ikke helseskadelige gasser og avgir lite støv. Dermed blir isolasjonsmaterialet spesielt egnet for astmatikere og allergikere og vil medvirke til at inneklimaet bedres for disse. Det er dokumentert flere tilfeller av at dagens isolasjonsmaterialer av typen glass- og/eller steinull vil avgi støv i form av fibre som er helseskadelige. Fibrene avgis spesielt under oppføring av bygget og rester av dette blir liggende i bygget i lang tid tiltross for rengjøring, men kan også avgis over tid ved at limet som holder sammen fibrene til en matte vil etterhvert tørke inn. Den sistnevnte effekten medfører at inneklimaet i bygningen tilføres fiberstøv og at isolasjonsmaterialet tynnes ut/siger sammen slik at bygningens isolasjon svekkes over tid.

Et ytterligere moment er at isolasjonsmaterialer lagd i henhold til oppfinnelsen er så godt som 100% resirkulerbare. Brukt isolasjonsmateriale er nesten like godt egnet som råstoff til nye isolasjonsmatter som tekstilavfall, og kan utmerket godt innblandes dette under produksjon av isolasjonsmateriale i henhold til oppfinnelsen. Det at materialet kan resirkuleres vil også bidra til å redusere

avfallsmengdene som må deponeres. Bygningsbransjen er en stor bidragsyter til avfall for deponering.

Detaljert beskrivelse av oppfinnelsen

5

10

15

20

25

30

Oppfinnelsen vil nå bli beskrevet i større detalj under henvisning til Fig. 1 og et foretrukket utføringseksempel.

Fig. 1 viser et eksempel på en isolasjonsmatte i henhold til oppfinnelsen.

Eksempel på produksjon av en foretrukket isolasjonsmatte

Innsamlede brukte klær, såkalt avfallstøy ble revet i stykker i en Picker 800 maskin. Maskinen skilte også ut knapper, glidelåser, metallspenner etc. fra tekstilrestene. Deretter ble de opprevne tekstilene sendt til en tresylinders sjoddimaskin. Sjoddimaskinen rev opp tekstilrestene ytterligere til tekstilfibrer, såkalt sjoddi. Sjoddien ble sendt til en vektfordeler hvor ca. 15 vekt% polyester og 20 vekt% linfibrer, basert på massens totalvekt, ble tilsatt sjoddien før den ble tilsatt 2,5 kg brannhemmende middel av merket Station 1 per kubikkmeter tekstilmasse. Etter innveiing ble massen (sjoddi, linfibrer, polyester og brannhemmende middel) sendt til en trommel i vektfordeleren hvor massen ble gjennomblåst med luft for å danne en homogen og luftig sjoddi. Deretter ble sjoddimassen sendt til en teppeformer som dannet en matte (se Fig. 1) med dimensjoner 0,15x1,20x0,58 m³, og som i neste omgang ble sendt til en smelteovn som holdt ca. 170°C. Den høye temperaturen i ovnen forårsaket at polypropylenfibrene i sjoddien smeltet og dermed bandt sammen tekstilfibrene slik at det ble dannet en isolasjonsmatte som har omtrent samme stivhet som en Glava glassullmatte.

En slik matte er testet av Norsk Byggforskningsinstitutt og har fått karakteristikken som angitt i Tabell 1.

Varmeledningsevnen til matten ble målt til å ligge rundt 0,036-0,037 W/mK, som er like bra som dagens markedsledende isolasjonsmaterialer.

I tilfeller hvor man også benytter papp/papir som råstoff tilsettes dette i Picker-maskinen. Den har kapasitet til å rive både papp, papir og tekstilavfall. Ellers er fremgangsmåten helt analog med ovenstående eksempel.

Selv om oppfinnelsen er eksemplifisert som en matte med bestemte mål, er det opplagt for en fagmann at isolasjonsmaterialet i henhold til oppfinnelsen lett kan utformes i alle tenkelige geometriske former og med alle tenkelige dimensjoner slik at også disse ligger innefor oppfinnelsens ide. Det er imidlertid foretrukket at

for bruk til bygninger, utformes isolasjonsmaterialet til matter som er 1 m lange og hvor bredden ligger innenfor 58-120 cm og tykkelsen ligger innenfor 5-15 cm.

Tabell 1 Norsk Byggforskningsinstitutts karakteristikk av isolasjonsmaterialet i henhold til denne oppfinnelse

5

Egenskap :	Karakteristikk ***
Brannsikkerhet	God ¹⁾
Støv- og partikkelavgivelse	God
Avgassing	God
Biologisk aktivt innhold	God
Hånteringskomfort	God
Varmeisolasjonsevne	Meget god
Energiforbruk ved framstilling	Meget god
Bruk av gjenbruksmaterialer	Meget god
Resirkulerbarhet	God
Vekt	Meget god
Sammenpressbarhet	God
Fuktopptak	Mindre god
Motstand mot biologisk vekst og	Mindre god
nedbryting	
Aldring	God
Mekanisk styrke	God
Bearbeidbarhet	Mindre god

1) Skalaen er; Dårlig, mindre god, god og meget god.

PATENTKRAV

30

- 1. Miljøvennlig isolasjonsmateriale for isolering av bygninger etc. som ikke inneholder skadelige/irriterende stoffer for mennesker og som ikke avgir skadelige stoffer/støv til bygningenes inneluft,
- k a r a k t e r i s e r t v e d at isolasjonsmaterialet består av tekstilrester som er revet opp til en sjoddi, deretter innblandet med linfibrer og en lavtsmeltende polyester i fiberform til en homogen masse, som så ble utformet til ønsket form og varmebehandlet inntil at polyesterfibrene smeltet og bandt sammen tekstil- og linfibrene.
- Isolasjonsmateriale i henhold til krav 1,
 k a r a k t e r i s e r t v e d at tekstilrestene er innsamlede brukte klær og/eller tekstilavfall fra møbelindustrien.
- 3. Isolasjonsmateriale i henhold til krav 1-2, k a r a k t e r i s e r t v e d at polyesteren er en hvilken som helst polyester som foreligger i fiberform, som har et smeltepunkt i området 100-300°C, fortrinnsvis i området 100-200°C og mest fortrinnsvis i området 120-170°C, og som har en dtex-verdi i området 2-10, mer fortrinnsvis fra 2,5-6, og mest fortrinnsvis fra 3-5.
- 4. Isolasjonsmateriale i henhold til krav 3,
 20 k a r a k t e r i s e r t v e d at polyesteren fortrinnsvis tilsettes i området 5-50 vekt%, mer fortrinnsvis 10-30 vekt% og mest fortrinnsvis 15-20 vekt%, basert på materialets totalvekt.
- 5. Isolasjonsmateriale i henhold til krav 1-4,
 k a r a k t e r i s e r t v e d at linfibrene fortrinnsvis tilsettes i området 5-50
 vekt%, mer fortrinnsvis 15-40 vekt% og mest fortrinnsvis 20-30 vekt%, basert på materialets totalvekt.
 - 6. Isolasjonsmateriale i henhold til krav 1-5, k a r a k t e r i s e r t v e d at isolasjonsmaterialet tilsettes et brannhemmende middel for å oppnå godkjent brannbestandighet i henhold til standard NT FIRE 035.
 - 7. Isolasjonsmateriale i henhold til krav 6, k a r a k t e r i s e r t v e d at det brannhemmende midlet er det kommersielt tilgjengelige produkt Station 1 og ved at det tilsettes i en mengde på 2,5 kg per kubikkmeter isolasjonsmateriale.

- 8. Isolasjonsmateriale i henhold til krav 1-7, k a r a k t e r i s e r t v e d at sjoddimassen innblandes fra 0 til 40 vekt% resirkulerte papp og/eller papirrester som er revet opp til fiberform.
- 9. Isolasjonsmateriale i henhold til krav 1-8,
 5 k a r a k t e r i s e r t v e d at isolasjonsmaterialet utformes til matter med lengde på 1,20 m, bredde innefor 0,58 1,00 m og tykkelse innenfor 5 15 cm.

10

15

20

25

30

- 10. Fremgangsmåte for produksjon av et isolasjonsmateriale i henhold til krav 1-9, k a r a k t e r i s e r t v e d at prosessen omfatter trinnene å:
 - sende de innsamlede klærne/tekstilrestene til midler for å rive de opp i biter og fjerne alle ikke-tekstiler slik som knapper, glidelåser, spenner etc.,
 - sende tekstilrestene til en sjoddimaskin som river opp tekstilene ytterligere til enkeltfibre og blander massen til en homogen sjoddi,
 - sende de opprevne tekstilrestene til midler for tilsetning av egnet mengde linfibrer og polyester i fiberform, og for gjennomblåse sjoddien og polyestermassen slik at de blandes til en luftig og homogen sjoddi med innblandet lin- og polyesterfibre,
 - sende sjoddien til midler for å forme sjoddimassen til en matte eller annen geometrisk form med ønsket mål, og
 - sende matten til midler for å varmebehandle matten inntil at polyesterfibrene smelter og binder sammen tekstil- og linfibrene.
- 11. Fremgangsmåte for produksjon av et isolasjonsmateriale i henhold til krav 10, karakterisert ved at det fortrinnsvis innblandes, basert på total masse,
 - fortrinnsvis 5-50 vekt%, mer fortrinnsvis 10-30 vekt% og mest fortrinnsvis 15-20 vekt% polyster,
 - fortrinnsvis 5-50 vekt%, mer fortrinnsvis 15-40 vekt% og mest fortrinnsvis 20-30 vekt% linfibrer i tekstilrestene, og
 - opptil 2,5 kg brannhemmende middel 1 per m³ sjoddimasse, og at varmebehandlingen innebærer å oppvarme den ferdigformede sjoddimassen til området
 - fortrinnsvis 100-300°C, mer fortrinnsvis 100-200°C og mest fortrinnsvis 120-170°C.
- 12. Fremgangsmåte for produksjon av et isolasjonsmateriale i henhold til krav 10-11,
- k a r a k t e r i s e r t v e d at tekstilrestene tilsettes papp og/eller papir i en mengde fra 0 til 40 vekt% i første trinn i fremgangsmåten angitt i krav 10, dvs. midlene for å rive opp tekstilrestene og fjerne alle ikke-tekstiler slik som knapper, glidelåser, spenner etc.

SAMMENDRAG

Denne oppfinnelse gjelder et miljøvennlig
isolasjonsmateriale, nærmere bestemt en
isolasjonsmatte for isolasjon av bygninger, boliger etc.

5 og en fremgangsmåte for å fremstille denne. Matten er
allergisikker og nær 100% resirkulerbar, og den
kjennetegnes ved at den består av tekstilrester som er
revet opptil sjoddi, blandet med en lavtsmeltende
polyester i fiberform og linfibrer til en homogen masse,
som så ble utformet til ønsket form og deretter varmebehandlet inntil at polyesterfibrene smeltet og bandt
sammen tekstil- og linfibrene.

Fig. 1

5-15 cm 58-100 cm

Figur 1

