Primal Affine Scaling Algorithm

Consider the LP Problem (Standard Form)

(P1)
$$\min c^t x$$

s.t. $Ax = b, \qquad x \ge 0$

Define the feasible region of P1:

$$P = \{x : Ax = b, x \ge 0\}$$

The relative interior of P is defined as:

$$P^0 = \{x : Ax = b, x > 0\}$$

Affine Scaling Transformation

Let $x^k \in \mathfrak{R}^n$, and x>0 for i = 1, 2, ..., n. $\Rightarrow x^k \in ri(\mathfrak{R}^{n+})$,

where $ri(\bullet)$ denotes the relative interior of \Re^{n+} the non-negative octant of \Re^n

Define a $n \times n$ matrix

$$X_k = \begin{bmatrix} x_1^k & & & \\ & x_2^k & & \\ & & \ddots & \\ & & & x_n^k \end{bmatrix}$$

 X_k is non-singular, hence X exists, which is also a diagonal matrix but with 1/x being its i-th diagonal element for i = 1, 2, ..., n.

Reforming the AFFINE SCALING TRANSFORMATION as follows:

$$y = T_k(x) = X_x$$

The following properties of $T_k(\bullet)$:

- 1. T_k is a well-defined mapping from \mathfrak{R}^{n+} to \mathfrak{R}^{n+} ;
- 2. $T_k(x^k) = c;$
- 3. $T_k(x) =$ is a vertex if x is a vertex;
- 4. $T_k(x)$ is a interior point if x is a interior point;
- 5. $T_k((x))$ is on the boundary of \Re^{n+} if x is on the boundary of \Re^{n+} ;
- 6. T_k is an one-to-one and onto mapping with an inverse transform T, such that $T_i = X_k y$ for each $y \in \mathfrak{R}^{n+}$.

1

PRIMAL AFFINE SCALING ALGORITHM

Rewrite problem P1 using y:

min
$$c_k^t y$$

s.t. $A_k y = b, y \ge 0$,
where $c_k = X_k c$, $A_k = AX_k$

Basic Ideas:

a) Find an improving direction, d, such that

$$c_k^t(y^k + \alpha^k d_y^k) < c_k^t y^k, \quad \forall \alpha^k > 0,$$

 $AX_k d_y^k = 0, \quad \Rightarrow d_y^k \text{ onto the null space of } A_k (= AX_k),$
 $\Rightarrow A_k(y^k + \alpha^k d_y^k) = b$

- b) Find a step-size, such that $y^k + \alpha^k d_y^k > 0$
- c) Let $y^{k+1} = y^k + \alpha^k d_y^k$, and $x^{k+1} = X_k y^{k+1}$
- a) Finding An Improving Direction (d):

Since we are minimizing $c_k^t y$, c_k is then an improving direction. To ensure d is also a feasible direction, we must make sure that $A_k d_y^k = A X_k d_y^k = 0$, we can project c_k onto the null space of A_k to define d.

Define the orthogonal projection matrix,

$$P_k = I - A_k^t (A_k A_k^t)^{-1} A_k = I - X_k A^t (A X_k^2 A^t)^{-1} A X_k$$

NOTE:

- 1. $P_k = P_k^2$
- 2. $P_k = P_k^t$ is symmetric
- 3. $(I P_k)^t b P_k c = b^t (I P_k)^t P_k c = b^t (P_k P_k^2)^t c = 0$ $(I P_k)^t b : \text{the error vector.}$

The improving direction can be calculated as follows:

$$d_y^k = P_k(-c_k) = -[I - X_k A^t (A X_k^2 A^t)^{-1} A X_k](X_k c) = -P_k X_k c \ A_k y = b.$$

2

b) Finding An Appropriate Step Size (α^k) :

If
$$d \ge 0$$
, $y^k + \alpha^k d_y^k > 0 \quad \forall \alpha^k > 0$.

If
$$d_i < 0$$
, for some i , then $\alpha^k < \frac{y_i^k}{-(d_y^k)_i} = \frac{1}{-(d_y^k)_i}$,

Choose α^k based on the minimum ratio test:

$$\alpha^k = \min_i \{ \frac{\gamma}{-(d_y^k)_i} : (d_y^k)_i < 0, i = 1, 2, ..., n \}, \quad \text{ where } 0 < \gamma < 1, \text{ e.g., } \gamma = 0.9.$$

c) Calculate New Solution (x^{k+1})

We can calculate the original vaule of x^k at the current iteration k,

$$x^{k+1} = T(y^{k+1}) = X_k y^{k+1}$$

$$= X_k (y^k + \alpha^k d_y)$$

$$= x^k + \alpha^k X_k d_y$$

$$= x^k + \alpha^k X_k P_k X_k c$$

$$= x^k - \alpha^k X_k [I - X_k A^t (AX_k^2 A^t)^{-1} AX_k (X_k c)]$$

$$= x^k - \alpha^k X_k^2 [c - A^t (AX_k^2 A^t)^{-1} AX_k^2 c]$$

$$= x^k - \alpha^k X_k^2 [c - A^t w^k],$$

where w^k is the dual vector, such that

$$w^k = (AX_k^2 A^t)^{-1} AX_k^2 c$$

Hence, the improving direction at current point x^k denoted as d,

$$d_x^k = -X_k^2[c - A^t w^k],$$

and the improving direction for y,

$$d_y^k = -X_k[c - A^t w^k]$$

$$= X_k[A^t w^k - c], \text{ or}$$

$$(d_y^k)_j = x_j^k(z_j - c_j)$$

Conclusions:

1)
$$d_y^k = -P_k c_k = -[I - X_k A^t (A X_k^2 A^t)^{-1} A X_k] (X_k c)$$
 and $d_x^k = X_k d_y^k = X_k^2 [A^t w^k - c]$

$$c^t x^{k+1} = c^t x^k + \alpha^k c^t X_k d_y^k$$

$$= c^t x^k + \alpha^k (c_k^t) d_y^k$$

$$= c^t x^k + \alpha^k (c_k^t) P_k^2 (-c_k)$$

$$= c^t x^k + \alpha^k (P_k c_k)^t (-P_k c_k)$$

$$= c^t x^k - \alpha^k (d_y^k)^t (d_y^k)$$

$$= c^t x^k - \alpha^k ||d_y^k||^2$$

- 2) If $x^k \in P^0$ and $d_y^k > 0$, P1 is unbounded.
- 3) If $x^k \in P^0$ and $d_y^k = 0, x^k$ is the optimum of P1.
- 4) If P1 has a finite optimal solution, then the sequence generated by the primal affine scaling algorithm, $\{c^t x^k | k = 1, 2, ...\}$ is well-defined and strictly decreasing.
- 5) Let the dual slack variables reduced cost $s^k = [c A^t w^k]$

The duality gap

$$c^t x^k - b^t w^k = \bar{e} X_k s^k$$
 if $\bar{e} X_k s^k \geq 0$, we have optimum at hand

Hence,
$$d_y^k = -X_k s^k$$
.

PRIMAL AFFINE ALGORITHM

STEP 1 (Initialization) Set
$$k = 0$$
. Find $x^0 > 0$ and $Ax^0 = b$.

STEP 2 (Computation of the Dual Solutions)

$$w^k = (AX_k^2 A^t)^{-1} AX_k^2 c$$

$$s^k = c - A^t w^k$$

- STEP 3 (Computation of Improving Direction) Let $d_y^k = -X_k s^k$
- STEP 4 (Check for Optimality) If $x^k \in P^0$ and $d_y^k > 0$, STOP, problem P1 is unbounded; If $\bar{e}^t d_y^k < \varepsilon$ and $s^k \geq 0$, STOP, we have the optimum of P1; Otherwise, go to STEP 5.
- STEP 5 (Computation of Step-Size) Compute $\alpha^k = \min_i \{ \frac{\gamma}{-(d_y^k)_i} : (d_y^k)_i < 0, i=1,2,...,n \}, \text{ where } 0 < \gamma < 1.$
- STEP 6 (Computation of new solution) $x^{k+1} = x^k + \alpha^k X_k d$ $k \leftarrow k+1$ go to STEP 2.