Appunti di Sistemi Dinamici

Andrea Starrantino 28 ottobre 2025

Indice

1	Alge	bra lineare
	1.1	Spazi vettoriali
		1.1.1 Esempio
	1.2	Matrici
		1.2.1 Esempio matrice complementi
		1.2.2 Esempio matrice inversa
	1.3	Determinante
		1.3.1 Esempio
	1.4	Sistemi lineari
		1.4.1 Esercizio
	1.5	Autovalori e autovettori
		1.5.1 Esempio
	1.6	Jordan
	1.7	Equazioni differenziali
		1.7.1 Esempio casareccio
		1.7.2 Equazioni differenziali elementari
		1.7.3 Problema di Cauchy
		1.7.4 Coefficenti costanti
		1.7.4 Coefficient Costanti
2	Intr	oduzione e notazione 11
	2.1	Notazione
3	Sist	emi lineari 11
	3.1	Sistemi a tempo continuo lineari stazionari
		3.1.1 Sistema Massa-Molla-Smorzatore
		3.1.2 Modello implicito
		3.1.3 Modello esplicito
		3.1.4 Risposta libera e forzata
		3.1.5 Ipotesi di linearità
		3.1.6 Ipotesi di stazionarietà
		3.1.7 Forma generale
	3.2	Sistemi a tempo discreto
		3.2.1 Modello implicito
	3.3	Evoluzione libera
	3.4	Cambio coordinate del sistema
		3.4.1 Autovalori complessi
		3.4.2 Cambio di base da \mathbb{C} a \mathbb{R}
		3.4.3 Autovalori misti
		3.4.4 Moti aperiodici e pseudoperiodici
		3.4.5 Tempo discreto
		3.4.6 Organo di ritenuta
	3.5	Osservabilità e eccitabilità
	0.0	3.5.1 Autovalori multipli
	3.6	Esercizi
	3.0	Esercizi
4	Stal	ilità 28
•	4.1	Il pendolo
	4.2	Sistemi
	1.4	4.2.1 Definizioni di stabilità
	4.3	Criterio di Routh
	1.0	

Starry	Appunti di Sistemi Dinamici
4.4	Stabilità nei punti di equilibrio
4.5	Dominio di Laplace

4.5.2 4.5.3

4.5.4

Appendice

4.5.1

1 Algebra lineare

Ripasso di algebra lineare estratto dal test di autovalutazione.

1.1 Spazi vettoriali

Definizione 1.1 (Combinazione lineare).

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

 $a \in R, x \in R^n$

Definizione 1.2 (Spazio vettoriale). Uno spazio vettoriale V su un campo \mathbb{F} è un insieme dotato di due operazioni: l'addizione di vettori e la moltiplicazione per scalari, che soddisfano le seguenti proprietà per ogni $u, v, w \in V$ e ogni scalare $a, b \in \mathbb{F}$:

- 1. Chiusura sotto l'addizione: $u + v \in V$
- 2. Commutatività dell'addizione: u + v = v + u
- 3. Associatività dell'addizione: (u+v)+w=u+(v+w)
- 4. Elemento neutro dell'addizione: Esiste un elemento $0 \in V$ tale che u+0=u per ogni $u \in V$
- 5. Elemento inverso dell'addizione: Per ogni $u \in V,$ esiste un elemento $-u \in V$ tale che u + (-u) = 0
- 6. Chiusura sotto la moltiplicazione per scalari: $au \in V$
- 7. Distributività della moltiplicazione per scalari rispetto all'addizione di vettori: a(u+v)=au+av
- 8. Distributività della moltiplicazione per scalari rispetto all'addizione di scalari: (a+b)u = au + bu
- 9. Associatività della moltiplicazione per scalari: a(bu) = (ab)u
- 10. Elemento neutro della moltiplicazione per scalari: 1u = u

Definizione 1.3 (Vettori dipendenti).

$$\exists a, b, c \neq 0 : av_1 + bv_2 + cv_3 = 0$$

Definizione 1.4 (Base di uno spazio vettoriale).

$$(v_1, \cdots, v_n) = \{\cdots, \alpha_n v_n\}, \alpha \in \mathbb{R}$$

Definizione 1.5 (Kernel).

$$\ker(F) = \{ v \in V : F(v) = 0 \}$$

Definizione 1.6 (Immagine).

$$Im(F) = \{F(v) : v \in V\}$$

1.1.1 Esempio

Scrivere
$$w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 nella base definita da $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
$$w_1 = \alpha_1 v_1 + \alpha_2 v_2 \Rightarrow \text{ricavo } \alpha_1, \alpha_2$$

$$\begin{cases} 1 = \alpha_1 + 2\alpha_2 \\ 1 = -\alpha_1 + \alpha_2 \end{cases} \Rightarrow 3\alpha_2 = 2 \Rightarrow \alpha_2 = \frac{2}{3}, \alpha_1 = -\frac{1}{3}$$
$$w_1 = -\frac{1}{3}v_1 + \frac{2}{3}v_2$$

1.2 Matrici

Definizione 1.7 (Matrice dei complementi algebrici).

$$A^c: a^c_{ij} = (-1)^{i+j} det(A^T_{ij}),$$
i e j soppressi

1.2.1 Esempio matrice complementi

$$A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}, A^{T} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}$$

$$A^{c} = \begin{pmatrix} (-1)^{1+1} * det(4) & (-1)^{1+2} * det(-1) \\ (-1)^{2+1} * det(3) & (-1)^{2+2} * det(2) \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ -3 & 2 \end{pmatrix}$$

Definizione 1.8 (Matrice inversa).

$$A^{-1} = \frac{A^c}{\det(A)}$$

Teorema 1.1 (Esistenza matrice inversa). La matrice inversa esiste se e solo se $det(A) \neq 0$

1.2.2 Esempio matrice inversa

Calcolare, se esiste, la matrice inversa della matrice

$$A = \begin{pmatrix} 3 & -1 & 0 \\ 2 & 2 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$

Verifica esistenza matrice inversa

$$det(A) = 6 \Rightarrow \exists A^{-1}$$

$$A^{T} = \begin{pmatrix} 3 & 2 & 1 \\ -1 & 2 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

$$A^{c} = \begin{pmatrix} 2 & 1 & -2 \\ 0 & 3 & -6 \\ -2 & -1 & 8 \end{pmatrix}$$

$$A^{-1} = A^{c}/6 = \begin{pmatrix} 1/3 & 1/6 & -1/3 \\ 0 & 1/2 & -1 \\ -1/3 & -1/6 & 4/3 \end{pmatrix}$$

1.3 Determinante

Definizione 1.9 (Determinante 2x2).

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$det(A) = ad - bc$$

Definizione 1.10 (Metodo di Sarrus).

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$det(A) = aei + bfg + cdh - ceg - bdi - afh$$

Definizione 1.11 (Laplace).

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$det(A) = a * det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b * det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c * det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

generalizzato:

$$det(A) = \sum_{i=1}^{n} a_{ij} * (-1)^{i+j} * det(M_{ij})$$

con i-esima riga e j-esima colonna eliminata

1.3.1 Esempio

Calcolare il determinante della matrice

$$A = \begin{pmatrix} 3 & -1 & 0 \\ 2 & 2 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$

Usiamo Laplace che sarà il metodo usato per tutte le matrici di dimensione superiore a 3

$$det(A) = 3 * (2 - 0) - (-1) * (2 - 2) + 0 * (0 - 2) = 6$$

1.4 Sistemi lineari

Definizione 1.12 (Matrice Completa).

$$A = (\cdots), B = (\cdots), Ax = B$$

Matrice completa

Teorema 1.2 (Teorema di Rouché-Capelli).

$$rank(A) = rank(A|B) \Rightarrow il \ sistema \ ammette \ soluzioni$$

$$incognite \ libere = n - rank(A)$$

1.4.1 Esercizio

$$\begin{pmatrix} 1 & -2 \\ 1 & 2 \end{pmatrix} x = 0, x \in \mathbb{R}^2$$

$$\begin{cases} x_1 - 2x_2 = 0 \\ x_1 + 2x_2 = 0 \end{cases} \Rightarrow x_1 = 2x_2 \Rightarrow x = k \begin{pmatrix} 2 \\ 1 \end{pmatrix}, k \in \mathbb{R}$$

1.5 Autovalori e autovettori

Definizione 1.13 (Autovettore di F). F(v) endomorfismo

$$\underline{\mathbf{v}}$$
 autovettore di $\mathbf{F} \Rightarrow \underline{\mathbf{v}} \neq \mathbf{0} : F(\underline{\mathbf{v}}) = \lambda \underline{\mathbf{v}}$

Definizione 1.14 (Autovalore di F).

$$\lambda$$
 autovalore di F \Leftrightarrow zeri di $det(F - \lambda I) = 0$

Definizione 1.15 (Polinomio caratteristico).

$$P(\lambda) = det(F - \lambda I) = |F - \lambda I|$$

Definizione 1.16 (Spettro di F).

$$\sigma(F) = \{v : F(v) = \lambda v\}$$

Definizione 1.17 (Molteplicità algebrica m_a). La molteplicità algebrica di un autovalore è la sua molteplicità come radice del polinomio caratteristico.

Definizione 1.18 (Molteplicità geometrica m_q). dim $(\ker(F - \lambda I))$

Teorema 1.3 (Diagonalizzabilità). A diagonalizzabile se ha n autovalori distinti

Teorema 1.4 (Indipendenza autovettori). Gli autovettori associati ad autovalori distinti sono linearmente indipendenti.

Definizione 1.19 (Matrice diagonalizzata). Una matrice D è diagonalizzata se esiste una matrice invertibile P tale che $D = P^{-1}AP$ per una matrice A.

1.5.1 Esempio

Diagonalizzare la matrice

$$A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$P_A(\delta) = \det(A - \delta I) = P_A(\delta) = \det \begin{pmatrix} 3 - \delta & 1 & -1 \\ 1 & 3 - \delta & -1 \\ 0 & 0 & 2 - \delta \end{pmatrix}$$

$$P_A(\delta) = (2 - \delta)((3 - \delta)^2 - 1) = (\delta - 2)^2(\delta - 4) = 0$$

$$\delta_1 = 2, \delta_2 = 2, \delta_3 = 4, m_a(2) = 2, m_a(4) = 1$$

troviamo gli autovettori

$$(A - 2I)x = 0 \Rightarrow V_2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

$$(A - 4I)x = 0 \Rightarrow x_1 = x_2, x_3 = 0$$

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$P = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$D = PAP^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix} 1/2$$

Teorema 1.5 $(A^n = PD^nP^{-1})$.

$$A^n = PD^nP^{-1}$$

Ogni elemento sarà la combinazione lineare degli autovettori destri elevati alla n

$$A_{ij}^n = \sum_i c_i \lambda_i^n$$

1.6 Jordan

Teorema 1.6 (Teorema di Jordan).

 $\forall \Phi \in End(v), dim_c V, \Phi \grave{e}$ rappresentabile da una matrice diagonale a blocchi di Jordan

Definizione 1.20 (Blocco di Jordan).

$$B_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}$$

Esempio 1.1 $(B_3(2))$.

$$B_3(2) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Definizione 1.21.

$$m_a(\lambda) = \sum \dim B_k(\lambda)$$

Definizione 1.22 (N blocchi $\geq j$ associati a λ).

$$N_j(\lambda)$$

$$\dim \ker (A - \lambda I)^J = \sum_{k \ge j} N_k(\lambda)$$

Esempio 1.2 (Calcolo \tilde{J}).

$$A = \begin{pmatrix} 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \end{pmatrix}$$

$$P_a(\lambda) = (\lambda - 1)(\lambda - 2)(\lambda - 4)^2$$

So che $m_a(1) = 1, m_a(2) = 1, m_a(4) = 2$, quindi devo capire se ho un blocco di ordine 2 o due blocchi di ordine 1 per l'autovalore 4.

 $\dim \ker(A - 4I) = 1 \Rightarrow \text{un blocco di ordine } 2$

$$\tilde{J} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

1.7 Equazioni differenziali

Definizione 1.23 (Ordine dell'equazione). L'ordine di un'equazione differenziale è l'ordine della derivata con ordine maggiore

1.7.1 Esempio casareccio

f'(x) = x è del 1 ordine

$$f(x) = \int f'(x)dx = \int xdx = \frac{x^2}{2} + c$$

Definizione 1.24 (Soluzione generale). La soluzione generale di un'equazione differenziale è l'insieme di tutte le sue soluzioni, spesso espresso in termini di una funzione che include costanti arbitrarie. Dall'esempio di prima, $\frac{x^2}{2} + c$ è la soluzione generale.

1.7.2 Equazioni differenziali elementari

1.
$$y' = f(x)$$

$$y' = f(x) \Leftrightarrow y = \int f(x)dx = F(x) + c$$

esempio
$$y' = 3e^{2x} \Leftrightarrow y = \int 3e^{2x} dx = \frac{3}{2}e^{2x} + c$$

2.
$$y'' = f(x)$$

$$y' = \int f(x)dx = F(X) + c_1, y = \int [F(x) + c_1]dx = F(x) + c_1x + c_2$$

1.7.3 Problema di Cauchy

Equazione differenziale con condizioni iniziali.

$$\begin{cases} y' = -e^{-x} \\ y(0) = 3 \end{cases} \Rightarrow y = e^{-x} + c$$

La condizione iniziale ci dice che la funzione per $\mathbf{x}=0$ vale 3, quindi:

$$e^{-0} + c = 3 \Leftrightarrow c = 2 \Rightarrow y(x) = e^{-x} + 2$$

esempio 2 ordine

$$\begin{cases} y'' = x \\ y(0) = 1 \\ y'(0) = 4 \end{cases}$$

soluzione

$$y' = \int x dx = \frac{x^2}{2} + c_1, y = \int \left(\frac{x^2}{2} + c_1\right) dx = \frac{x^3}{6} + c_1 x + c_2$$

avendo due condizioni iniziali possiamo calcolare c_1 e c_2

$$1 = 0^{3}/6 + c_{1} \cdot 0 + c_{2} \Rightarrow c_{2} = 1$$
$$4 = 0^{2} + c_{1} \Rightarrow c_{1} = 4$$
$$y(x) = \frac{x^{3}}{6} + 4x + 1$$

1.7.4 Coefficenti costanti

Notazione $\dot{x}(t) = \frac{dx}{dt}$, forma generale ay''(x) + by'(x) + cx(x) = 0

Teorema 1.7 (Insieme soluzioni). L'insieme delle soluzioni è uno spazio vettoriale di dimensione 2. La soluzione generale sarà $c_1y_1(x) + c_2y_2(x)$. c_1 e c_2 sono parametri liberi, y_1 e y_2 sono una base.

Definizione 1.25 (Equazione caratteristica).

$$az^2 + bz + c = 0, z \in \mathbb{C}$$

Teorema 1.8 (Soluzione generale). La soluzione è la soluzione dell'equazione caratteristica.

• radici distinte reali

$$z_1 = e^{\delta_1} x, z_2 = e^{\delta_2} x$$

 $y(x) = c_1 z_1 + c_2 z_2$

• radici coincidenti reali

$$z_1 = z_2 = e^{\delta x}$$
$$y(x) = c_1 e^{\delta x} + c_2 x e^{\delta x}$$

• radici complesse coniugate

$$\lambda_{1,2} = \alpha \pm i\beta, z_1 = e^{\alpha x} \cos(\beta x), x_2 = e^{\alpha x} \sin(\beta x)$$
$$y(x) = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

Esempio 1.3. y'' - 5y' + 4y = 0

$$z^{2} - 5z + 4 = 0 \Rightarrow (z - 4)(z - 1) = 0, z_{1} = 4, z_{2} = 1$$

base dello spazio

$$e^{4x}, e^{1x} \Rightarrow y(x) = c_1 e^{4x} + c_2 e^{1x}$$

Esempio 1.4 (Problema di Cauchy).

$$\begin{cases} y'' + 2y' + 2y = 0\\ y(0) = 1\\ y'(0) = 1 \end{cases}$$

equazione caratteristica

$$z^{2} + 2z + 2 = 0 \Rightarrow (z+1)^{2} + 1 = 0 \Rightarrow z_{1} = -1 + i, z_{2} = -1 - i$$

 $\alpha = -1, \beta = 1$

base

$$e^{-x}\cos(x), e^{-x}\sin(x), y(x) = c_1e^{-x}\cos(x) + c_2e^{-x}\sin(x)$$

sappiamo y'

$$y'(x) = -e^{-x}(c_1\cos(x) + c_2\sin(x)) + e^{-x}(-c_1\sin(x) + c_2\cos(x))$$

sostituendo le coordinate troviamo

$$\begin{cases} c_1 = 1 \\ c_2 = 2 \end{cases} \Rightarrow y(x) = e^{-x}(\cos(x) + 2\sin(x))$$

2 Introduzione e notazione

In questa prima sezione introduciamo i concetti base e la notazione usata negli appunti.

Definizione 2.1 (Sistema dinamico). Insieme di elementi interconnessi che evolvono nel tempo e su cui in genere è possibile intervenire modificandone il comportamento.

Figura 1: Elementi circuitali: Resistenza e Condensatore

2.1 Notazione

$$\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$$

3 Sistemi lineari

3.1 Sistemi a tempo continuo lineari stazionari

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m \\ x(t_0) = x_0 \end{cases}$$

Come ottenere m dalla matrice B:

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{pmatrix}$$

 $\Rightarrow m$ è il numero di colonne di B.

3.1.1 Sistema Massa-Molla-Smorzatore

Di seguito il sistema massa-molla-smorzatore con ingresso esterno u e posizione y.

Figura 2: Carrello di massa M con molla k e smorzatore viscoso b.

legge che descrive il movimento

$$M\ddot{y}(t) + b\dot{y}(t) + ky(t) = u(t)$$

vogliamo passare allo spazio di stato

$$x_1(t) = y(t), x_2(t) = \dot{y}(t)$$

Essendo $\dot{x_1}(t)$ lo spazio e $\dot{x_2}(t)$ la velocità

$$\dot{x_1}(t) = x_2(t)$$

$$\dot{x_2}(t) = \ddot{y}(t) = \frac{1}{M}(u(t) - b\dot{y}(t) - ky(t))$$

adesso abbiamo la forma $\dot{x}(t)=\ldots$ e $y(t)=\ldots$

Possiamo riscriverlo in forma matriciale

$$\begin{cases} \dot{x} = \begin{pmatrix} 0 & 1 \\ -\frac{k}{M} & -\frac{b}{M} \end{pmatrix} x + \begin{pmatrix} 0 \\ \frac{1}{M} \end{pmatrix} u \\ y = \begin{pmatrix} 1 & 0 \end{pmatrix} x \end{cases}$$

3.1.2 Modello implicito

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

Teorema 3.1 (Soluzioni del sistema).

$$\begin{cases} x(t) = e^{a(t-t_0)x_0} &, \dot{x} = ax \\ x(t) = e^{a(t-t_0)}x_0 + \int_{t_0}^t e^{a(t-\tau)}bu(\tau)d\tau &, \dot{x} = ax + bu \end{cases}$$

[Osservazione] La soluzione non dipende da t o t_0 ma solo dalla differenza $t-t_0$.

3.1.3 Modello esplicito

$$\begin{cases} x(t) = e^{a(t-t_0)}x_0 + \int_{t_0}^t e^{a(t-\tau)}bu(\tau)d\tau \\ y(t) = c\left(e^{a(t-t_0)}x_0 + \int_{t_0}^t +t_0e^{a(t-\tau)bu(\tau)d\tau}\right) + du(t) \end{cases}$$

3.1.4 Risposta libera e forzata

Definizione 3.1 (Risposta libera). Dipende dalle condizioni iniziali

$$x_l(t) = e^{a(t-t_0)} x_0$$

Definizione 3.2 (Risposta forzata). Dipende dall'ingresso

$$x_f(t) = \int_{t_0}^t e^{a(t-\tau)} bu(\tau) d\tau$$

3.1.5 Ipotesi di linearità

Definiamo $x_{01}(t)$ e $x_{02}(t)$ come gli stati raggiungi a tempo t partendo da $x_{01}(t_0)$ e $x_{02}(t_0)$ con ingressi $u_1(t)$ e $u_2(t)$ rispettivamente. Possiamo dire allora che

$$x_0(t) = c_1 x_{01}(t_0) + c_2 x_{02}(t_0), u(t) = c_1 u_1(t) + c_2 u_2(t)$$

e che lo stato raggiunto sarà

$$x(t) = c_1 x_1(t) + c_2 x_2(t)$$

Siano

1.
$$x_{01}(t_0) = x_0(t_0)$$
 e $u_1 = 0$, $x_1(t) = e^{a(t-t_0)}x_0 = x_l$

2.
$$x_{02}(t_0) = 0$$
 e $u_2 = u$, $x_2(t) = \int_{t_0}^t e^{a(t-\tau)} bu(\tau) d\tau = x_f$

Allora possiamo combinarle

$$\bar{x}_0 = c_1 x_{01}(t_0) + c_2 x_{02}(t_0), \ \bar{u} = c_1 u_1(t) + c_2 u_2(t)$$

$$\bar{x}(t) = c_1 x_1(t) + c_2 x_2(t)$$

Concludiamo ponendo $c_1 = c_2 = 1$

$$\bar{x}(t) = x_1(t) + x_2(t) = x_l(t) + x_f(t) = x(t)$$

3.1.6 Ipotesi di stazionarietà

Definizione 3.3 (Sistema stazionario). Un sistema è stazionario se spostando u(t) nel tempo, anche l'uscita si sposta, senza cambiare forma.

Teorema 3.2 (Condizione di stazionarietà). Se

$$u(t - \Delta) \Rightarrow y(t - \Delta)$$

allora il sistema è stazionario.

Prova Facciamo un esperimento all'istante t_0 e dopo a t_1 . Avremo $\bar{x_0}(t_1) = x_0$ e $\bar{u}(t) = u(t - \Delta) = u(t - t_1 + t_0)$. Idealmente avremo $u(t) = \bar{u}(t - \Delta)$. Prendiamo la soluzione esplicita

$$\bar{x}(t) = e^{a(t-t_0)}x_0 + \int_{t_1}^{\bar{t}} e^{a(\bar{t}-\tau)}b\bar{u}(\tau)d\tau$$

Siano $\xi = \tau - \Delta$, $\bar{t} = t + \Delta$

$$\bar{x}(t+\Delta) = e^{a(\bar{t}-t_0)}x_0 + \int_{t_1}^{t+\Delta} e^{a(t+\Delta-\tau)}b\bar{u}(\tau)d\tau$$

- $\tau \to t_1 \Rightarrow \xi \to t_0$
- $\tau \to \bar{t} \Rightarrow \xi \to t$

Dovendo integrare sostituiamo

$$\bar{x}(t+\Delta) = e^{a(t-t_0)}x_0 + \int_{t_0}^t e^{a(t-\xi)}bu(\xi)d\xi = x(t)$$

3.1.7 Forma generale

Definiamo le seguenti matrici

- $\Phi = e^{a(t-t_0)}$ matrice di transizione di stato
- $H = e^{At}B = \Phi B$ matrice risposte impulsive dello stato, colonne = risposta a impulso
- $\Gamma = e^{At}D$ matrice trasformazione dello stato
- $W=Ce^{At}=C\Phi$ matrice risposte impulsive dell'uscita

La forma esplicita diventa

$$\begin{cases} x(t) = \Phi(t - t_0)x_0 + \int_{t_0}^t H(t - \tau)u(\tau)d\tau \\ y(t) = W(t - t_0)x_0 + \int_{t_0}^t W(t - \tau)u(\tau)d\tau + Du(t) \end{cases}$$

che nel caso scalare diventa, con $t_0 = 0$

$$\begin{cases} x(t) = e^{at}x_0 + \int^t e^{a(t-\tau)}bu(\tau)d\tau \\ y(t) = ce^{at}x_0 + \int^t ce^{a(t-\tau)}bu(\tau)d\tau + \int^t d\delta(t-\tau)u(\tau)d\tau \end{cases}$$

Definizione 3.4 (Impulso di Dirac).

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ +\infty & t = 0 \end{cases}$$

3.2 Sistemi a tempo discreto

3.2.1 Modello implicito

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases} \quad x(0) = x_0, x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p$$

Esempio 3.1 (Laurea triennale). L'idea è che ogni anno una percentuale α di studenti non finisce gli esami del 10 anno, mentre $1-\alpha$ inizia gli esami del 20 anno.

Possiamo formalizzare il primo anno in questo modo

$$x_1(k+1) = \alpha_1 x_1(k) + u(k)$$

quindi gli studenti che entrano e quelli che ripetono gli esami.

Nel secondo ci andranno quelli che passano dal primo e quelli che ripetono

$$x_2(k+1) = \alpha_2 x_2(k) + (1-\alpha_1)x_1(k)$$

Quelli che si laureano sono l'output del sistema

$$y(k) = (1 - \alpha_3)x_3(k)$$

Nel complesso il sistema è

$$\begin{cases} x_1(k+1) = \alpha_1 x_1(k) + u(k) \\ x_2(k+1) = (1-\alpha_1)x_1(k) + \alpha_2 x_2(k) \\ x_3(k+1) = (1-\alpha_2)x_2(k) + \alpha_3 x_3(k) \\ y(k+1) = (1-\alpha_3)x_3(k) \end{cases}$$

in forma matriciale

$$\begin{cases} x(k+1) = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 1 - \alpha_1 & \alpha_2 & 0 \\ 0 & 1 - \alpha_2 & \alpha_3 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} u(k) \\ y(k) = \begin{pmatrix} 0 & 0 & 1 - \alpha_3 \end{pmatrix} x(k) \end{cases}$$

Teorema 3.3. $D = 0 \Rightarrow no$ legame diretto tra input e output.

Esempio 3.2 (Calcolo radice quadrata con metodo tangenti). Con il metodo delle tangenti cerchiamo la radice di a, ovvero la soluzione di

$$f(x) = x^2 - a$$

dove $x = k + 1, x_0 = k$.

Sviluppando con Taylor otteniamo

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

 $\Rightarrow x_{k+1} - x_k = \frac{f(x_{k+1}) - f(x_k)}{f'(x_k)}$

mettiamo k nella formula

$$f(x_k) = x_k^2 - a$$
$$f'(x_k) = 2x_k$$

$$f(x_{k+1}) = x_{k+1}^2 - a$$

$$\Rightarrow x_{k+1} = x_k + \frac{-x_k^2 + a}{2x_k} = x_k - \frac{x_k}{2} + \frac{a}{2x_k}, \ f(x_{k+1}) \text{ approximato}$$

e otteniamo il sistema

$$\begin{cases} x_{k+1} = x_k - \frac{1}{2}x_k + \frac{a}{2x_k} = \frac{1}{2}x_k + \frac{a}{2x_k} \\ y_k = x_k \end{cases}$$

3.3 Evoluzione libera

$$\begin{cases} \dot{x}(t) = Ax(t) + bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

- 1. evoluzione libera: $e^{A(t-\tau)}$
- 2. evoluzione forzata: $\int_{t_0}^t e^{A(t-\tau)}bu(\tau)d\tau$

Dall'ipotesi di linearità:

$$\begin{cases} x_{01} \\ u_1[t_0, t) \end{cases} \rightarrow x_1(t) = e^{a(t-t_0)} x_0 1 + \int_{t_0}^t e^{a(t-\tau)} b u_1(\tau) d\tau$$

$$\begin{cases} x_{02} \\ u_2[t_0, t) \end{cases} \rightarrow x_2(t) = e^{a(t-t_0)} x_0 2 + \int_{t_0}^t e^{a(t-\tau)} b u_2(\tau) d\tau$$

$$\begin{cases} x_{02} \\ u_2[t_0, t) \end{cases} \to x_2(t) = e^{a(t-t_0)} x_0 2 + \int_{t_0}^t e^{a(t-\tau)} b u_2(\tau) d\tau$$

 x_0 è la combinazione lineare di x_{01} e x_{02} , u è la combinazione lineare di u_1 e u_2 . Abbiamo quindi

$$\begin{cases} x_0 = c_1 x_{01} + c_2 x_{02} \\ u = c_1 u_1 + c_2 u_2 \end{cases}$$

allora riscriviamo X(t)

$$X(t) = e^{a(t-t_0)}(c_1x_{01} + c_2x_{02}) + \int_{t_0}^t e^{a(t-\tau)}b(c_1u_1(\tau) + c_2u_2(\tau))d\tau = c_1x_1(t) + c_2x_2(t)$$

Abbiamo ora due casi

- $c_2 = 0, x_0 = x_{01}, u = u_1 = 0 \Rightarrow$ risposta libera (non dipende da u)
- $c_1 = 0$, $c_2 = 1$, $x_0 = x_{02} = 0$, $u = u_2 \Rightarrow$ risposta forzata (dipende da u)

Teorema 3.4 (Sovrapposizione delle risposte (degli effetti)).

$$x(t) = x_1(t) + x_2(t), c_1 = c_2 = 1$$

Secondo questa condizione posso studiare separatamente la risposta libera e quella forzata.

Definizione 3.5 (Costante di tempo). $\tau = -\frac{1}{a}$

Allora riscriviamo la risposta libera

$$x_l(t) = e^{a(t-t_0)}x_0 = e^{-\frac{t}{\tau}}x(0)$$

che essendo un esponenziale avrà questo andamento

Figura 3: Comportamento dell'esponenziale e^{at} in funzione del segno di a.

3.4 Cambio coordinate del sistema

Per cambiare le coordinate definiamo $z = Tx : \exists T^{-1}$. Da qui ci rifacciamo al sistema classico

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

Abbiamo poi che $\dot{z} = T\dot{x} = TAx + TBu, x = zT^{-1}$ e quindi risulta (con y stessa cosa)

$$\begin{cases} \dot{z}(t) = TAT^{-1}z(t) + TBu(t) \\ y(t) = CT^{-1}z(t) + Du(t) \end{cases}$$

Definizione 3.6 $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$.

$$\tilde{A} = TAT^{-1}, \tilde{B} = TB, \tilde{C} = CT^{-1}, \tilde{D} = D$$

Definizione 3.7 (Autovettori destri e sinistri). Gli autovalori sono gli stessi, ma cambiano gli autovettori

- destro $Au = \lambda u$, u vettore colonna
- sinistro $A^T v = \lambda v$, v vettore riga

Per trovarli

$$T^{-1} = \begin{pmatrix} u_1 & u_2 & \dots & u_n \end{pmatrix}, \quad T = \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{pmatrix}$$

Date queste informazioni possiamo riscrivere

$$e^{At} = I_d + At + \frac{A^2t^2}{2} = T^{-1}T + T^{-1}\tilde{A}Tt + T^{-1}\tilde{A}^2T\frac{t^2}{2}$$

Sappiamo inoltre da algebra che $A^k = T^{-1} \tilde{A}^k T$ e quindi e^{At} diventa

$$e^{At} = T^{-1}(I_d + \tilde{A}t + ...)T = T^{-1}e^{\tilde{A}t}T$$

Esempio 3.3 (Evoluzione sistema). Essendo $e^{\tilde{A}t} = \begin{pmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{pmatrix}$

$$e^{At} = T^{-1}e^{\tilde{A}t}T = \left(e^{\lambda_1 t}u_1 - e^{\lambda_2 t}u_2\right)\left(v_1^T v_2^T\right) = e^{\lambda_1 t}u_1 v_1^T + e^{\lambda_2 t}u_2 v_2^T$$
$$x_0 = c_1 u_1 + c_2 u_2 \Rightarrow x(t) = e^{\lambda_1 t}c_1 u_1 + e^{\lambda_2 t}c_2 u_2$$

Esempio 3.4.

$$A = \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} -4 & -1 \\ 0 & 1 \end{pmatrix}, \quad T^{-1} = \begin{pmatrix} -\frac{1}{4} & -\frac{1}{4} \\ 0 & 1 \end{pmatrix}, \quad x_0 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Casi particolari

- x_0 su $u_1 \Rightarrow c_2 = 0$ diverge
- x_0 su $u_2 \Rightarrow c_1 = 0$ converge

3.4.1 Autovalori complessi

Poniamo che il polinomio caratteristico abbia radici complesse coniugate $\lambda_{1,2} = \alpha \pm j\beta$. Sostituendo nell'equazione avremo

$$(A - \alpha I - jwI)(u_a + ju_b) = 0 \Leftrightarrow (A - \alpha I)u_a - jwIu_a + J(A - \alpha I)u_b + jwIu_b = 0$$

$$\begin{cases} (A - \alpha I)u_a + wu_b = 0\\ (A - \alpha I)u_b - wu_a = 0 \end{cases} \Leftrightarrow \begin{cases} Au_a = \alpha u_a - wu_b\\ Au_b = wu_a + \alpha u_b \end{cases}$$

$$A \begin{pmatrix} u_a & u_b \end{pmatrix} = \begin{pmatrix} u_a & u_b \end{pmatrix} \begin{pmatrix} \alpha & -w\\ w & \alpha \end{pmatrix}$$

Sappiamo che

$$TAT^{-1} = \tilde{A}, T^{-1} = \begin{pmatrix} u_a & u_b \end{pmatrix} \Rightarrow \tilde{A} = \begin{pmatrix} \alpha & -w \\ w & \alpha \end{pmatrix}$$

Teorema 3.5 (Evoluzione libera con autovalori complessi).

$$e^{\tilde{A}t} = e^{\alpha t} \begin{pmatrix} \cos(wt) & -\sin(wt) \\ \sin(wt) & \cos(wt) \end{pmatrix}$$

con α che determina l'andamento esponenziale e w la frequenza di rotazione.

$$X_l(t) = T^{-1}e^{\tilde{A}t}Tx_0$$

sostituiamo tutto nella formula

$$X_l(t) = \begin{pmatrix} u_a & u_b \end{pmatrix} e^{\alpha t} \begin{pmatrix} \cos(wt) & -\sin(wt) \\ \sin(wt) & \cos(wt) \end{pmatrix} \begin{pmatrix} v_a^T \\ v_b^T \end{pmatrix} (c_a u_a + c_b u_b)$$

Portando $e^{\alpha t}$ all'inizio

$$X_l(t) = e^{\alpha t} \left(\cos(wt) u_a + \sin(wt) u_b - \sin(wt) u_a + \cos(wt) u_b \right) \begin{pmatrix} v_a^T \\ v_b^T \end{pmatrix} (c_a u_a + c_b u_b)$$

$$\Leftrightarrow X_l(t) = e^{\alpha t} \left[\cos(wt) u_a v_a^T + \sin(wt) u_b v_a^T - \sin(wt) u_a v_b^T + \cos(wt) u_b v_b^T \right] (c_a u_a + c_b u_b)$$

$$\Leftrightarrow X_l(t) = e^{\alpha t} \left[\cos(wt) (u_a v_a^T + u_b v_b^T) + \sin(wt) (u_b v_a^T - u_a v_b^T) \right] (c_a u_a + c_b u_b)$$

Prendiamo il Delta di Kronecker $\delta_{ij} = v_i^T u_j$ (se i = j vale 1, altrimenti 0), e facciamo le seguenti osservazioni

•
$$(u_a v_a^T + u_b v_b^T) u_a = u_a$$

$$\bullet \ (u_a v_a^T + u_b v_b^T) u_b = u_b$$

e il primo membro diventa x_0 ,

$$\bullet \ (u_b v_a^T - u_a v_b^T) u_a = -u_b$$

$$\bullet \ (u_b v_a^T - u_a v_b^T) u_b = u_a$$

quindi sostituiamo ancora

$$X_l(t) = e^{\alpha t} [\cos(wt)(c_a u_a + c_b u_b) + \sin(wt)(-c_a u_b + c_b u_a)]$$

$$\Leftrightarrow X_l(t) = e^{\alpha t} [u_a(c_a \cos(wt) + c_b \sin(wt)) + u_b(c_b \cos(wt) - c_a \sin(wt))]$$

Passaggio ad ampiezza-fase

$$c_a = m\sin(\varphi), c_b = m\cos(\varphi)$$

Date le formule di prostaferesi (a detta del prof)

$$\begin{cases} \sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B) \\ \cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B) \end{cases}$$

allora riscriviamo tutto come

$$X_l(t) = me^{\alpha t} [u_a \sin(wt + \varphi) + u_b \cos(wt + \varphi)]$$

3.4.2 Cambio di base da $\mathbb C$ a $\mathbb R$

Ora siamo nella seguente situazione: abbiamo una coppia di autovalori complessi coniugati $\alpha \pm j\beta$ e un autovettore complesso coniugato $u_a \pm ju_b$. Dunque avremo u_a e u_b come autovettori reali. L'obiettivo è usare una base reale al posto di u e u^* .

$$\begin{pmatrix} u & u^* \end{pmatrix} = \begin{pmatrix} u_a & u_b \end{pmatrix} \begin{pmatrix} 1 & 1\\ j & -j \end{pmatrix}$$

Definizione 3.8 (Forma canonica reale). \tilde{A} sarà diagonale a blocchi con

- $\lambda_i \forall$ autovalore reale
- $\begin{pmatrix} \alpha_j & w_j \\ -w_j & \alpha_j \end{pmatrix} \forall$ coppia di autovalori coniugati

3.4.3 Autovalori misti

Nel caso generico avremo autovalori reali e complessi. Dall'ultima definizione sappiamo come si trasforma \tilde{A} , dunque nel caso di una matrice A 3x3 con autovalori misti avremo la seguente situazione

$$\lambda_1 \in \mathbb{R} = u_1, \lambda_{2,3} = \alpha \pm jw = u_a, u_b$$

$$\tilde{A} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \alpha & -w \\ 0 & w & \alpha \end{pmatrix}$$

prendiamo lo sviluppo di $e^{A_2t}=e^{\alpha t}\begin{pmatrix}\cos wt & -\sin wt\\\sin wt & \cos wt\end{pmatrix}, A_2=\begin{pmatrix}\alpha & -w\\w & \alpha\end{pmatrix}$ e quindi otteniamo \tilde{A} finale in forma canonica reale

$$\tilde{A} = \begin{pmatrix} e^{\lambda_1 t} & 0 & 0\\ 0 & e^{\alpha t} \cos wt & -e^{\alpha t} \sin wt\\ 0 & e^{\alpha t} \sin wt & e^{\alpha t} \cos wt \end{pmatrix}$$

Ora riprendiamo i 3 autovettori reali u_1,u_a,u_b e riscriviamo e^{At} con \tilde{A}

$$e^{At} = T^{-1}e^{\tilde{A}t}T = \begin{pmatrix} u_1 & u_a & u_b \end{pmatrix} \begin{pmatrix} e^{\lambda_1 t} & 0 & 0 \\ 0 & e^{\alpha t}\cos wt & -e^{\alpha t}\sin wt \\ 0 & e^{\alpha t}\sin wt & e^{\alpha t}\cos wt \end{pmatrix} \begin{pmatrix} v_1^T \\ v_a^T \\ v_b^T \end{pmatrix}$$

Osservazione 3.1 (Gli autovettori moltiplicano solo con autovalori corrispondenti).

$$\Leftrightarrow e^{At} = \left(e^{\lambda_1 t} u_1 - e^{\alpha t} \cos(wt) u_a - e^{\alpha t} \sin(wt) u_b - e^{\alpha t} \sin(wt) u_a + e^{\alpha t} \cos(wt) u_b\right) \begin{pmatrix} v_1^T \\ v_a^T \\ v_b^T \end{pmatrix}$$

$$\Leftrightarrow e^{At} = e^{\lambda_1 t} u_1 v_1^T + e^{\alpha t} (\cos(wt) u_a v_a^T - \sin(wt) u_b v_a^T + \sin(wt) u_a v_b^T + \cos(wt) u_b v_b^T)$$

$$\Leftrightarrow e^{At} = e^{\lambda_1 t} u_1 v_1^T + e^{\alpha t} [\cos(wt) (u_a v_a^T + u_b v_b^T) + \sin(wt) (u_a v_b^T - u_b v_a^T)]$$

Definizione 3.9 (Forma spettrale di e^{At}).

$$e^{At} = e^{\lambda_1 t} u_1 v_1^T + e^{\alpha t} [\cos(wt)(u_a v_a^T + u_b v_b^T) + \sin(wt)(u_a v_b^T - u_b v_a^T)]$$

Lemma 3.1 (Forma generale risposta libera).

$$X_{l}(t) = \sum_{i} e^{\lambda_{i}t} u_{i} v_{i}^{T} + \sum_{j} e^{\alpha_{j}t} [\cos(w_{j}t)(u_{ja}v_{ja}^{T} + u_{jb}v_{jb}^{T}) + \sin(w_{j}t)(u_{ja}v_{jb}^{T} - u_{jb}v_{ja}^{T})]$$

3.4.4 Moti aperiodici e pseudoperiodici

 x_0 nella base degli autovettori = $c_1u_1 + c_au_a + c_bu_b$, dobbimao calcolare $X_l(t)$. Ricordiamo che

- $v_1^T \times u_1 = 1$
- $v_1^T \times u_a = 0$
- $v_1^T \times u_b = 0$

dato che

$$T = \begin{pmatrix} v_1^T \\ v_a^T \\ v_b^T \end{pmatrix}, \quad T^{-1} = \begin{pmatrix} u_1 & u_a & u_b \end{pmatrix} \quad T \cdot T^{-1} = I$$

e anche gli altri prodotti verranno semplificati, dunque

$$e^{At}x_0 = e^{\lambda_1 t}c_1 u_1 + e^{\alpha t}[\cos(wt)(c_a u_a + c_b u_b) + \sin(wt)(-c_a u_b + c_b u_a)]$$

raccogliamo u_a e u_b

$$\Leftrightarrow e^{At}x_0 = e^{\lambda_1 t}c_1u_1 + e^{\alpha t}[u_a(c_a\cos(wt) + c_b\sin(wt)) + u_b(c_b\cos(wt) - c_a\sin(wt))]$$

come già fatto in precedenza, passiamo ad ampiezza-fase con $c_a = n \sin(\varphi)$ e $c_b = n \cos(\varphi)$

$$\Leftrightarrow e^{At}x_0 = e^{\lambda_1 t}c_1 u_1 + ne^{\alpha t}[u_a \sin(wt + \varphi) + u_b \cos(wt + \varphi)]$$

Definizione 3.10 (Moto aperiodico).

$$e^{\lambda_i}u_ic_i$$

Definizione 3.11 (Moto pseudoperiodico).

$$ne^{\alpha t}[u_a\sin(wt+\varphi)+u_b\cos(wt+\varphi)]$$

In un grafico a 3 dimensioni, partiamo da $x_0 = (3,3,3)$ e prendiamo come esempio i vettori

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad u_a = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad u_b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

ora il moto deve seguire la convergenza/divergenza lungo u_1 e la rotazione sul piano $u_a - u_b$, prendiamo solo il caso in cui $\lambda_1 < 0$. Nb: i vettori sono gli assi, non sono della loro effettiva dimensione.

3.4.5 Tempo discreto

Definiamo di nuovo le matrici di trasformazione

$$\begin{cases} \phi = A^k \\ \psi = B^k \\ H = A^{k-1}B \\ W = \begin{cases} CA^{k-1}B & k > 0 \\ D & k = 0 \end{cases}$$

Prendiamo una matrice 3x3 A diagonalizzabile $\Rightarrow \exists u_1, u_a, u_b : T^{-1} = (u_1 u_a u_b)$. Abbiamo quindi che $A^k = T^{-1} \tilde{A}^k T$.

$$\tilde{A}^{k} = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \alpha & w \\ 0 & -w & \alpha \end{pmatrix}^{k}$$

$$\begin{pmatrix} \alpha & w \\ -w & \alpha \end{pmatrix}^{k} = \begin{pmatrix} \sigma \cos(\theta) & \sigma \sin(\theta) \\ -\sigma \sin(\theta) & \sigma \cos(\theta) \end{pmatrix}^{k} = \sigma^{k} \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^{k}$$

Definizione 3.12. $\sigma = \sqrt{\alpha^2 + w^2}$ e $\theta = \arctan\left(\frac{w}{\alpha}\right)$

Teorema 3.6 (A^k) .

$$A^{k} = T^{-1} \begin{pmatrix} \lambda_{1}^{k} & 0 & 0 \\ 0 & \sigma^{k} \cos(k\theta) & \sigma^{k} \sin(k\theta) \\ 0 & -\sigma^{k} \sin(k\theta) & \sigma^{k} \cos(k\theta) \end{pmatrix} T$$

si dimostra per induzione.

$$A^{k} = \lambda_{1}^{k} u_{1} v_{1}^{T} + \sigma^{k} [\cos(k\theta)(u_{a} v_{a}^{T} + u_{b} v_{b}^{T}) + \sin(k\theta)(u_{a} v_{b}^{T} - u_{b} v_{a}^{T})]$$

$$x_{0} = c_{1} \lambda_{1} + c_{a} \lambda_{a} + c_{b} \lambda_{b}$$

$$X_{l}(k) = \lambda_{1}^{k} c_{1} u_{1} + \sigma^{k} [\cos(k\theta)(u_{a} c_{a} + u_{b} c_{b}) + \sin(k\theta)(u_{a} c_{b} - u_{b} c_{a})]$$

che sempre con le formule di prostaferesi diventa

$$X_l(k) = \lambda_1^k c_1 u_1 + \sigma^k (n \sin(\theta k + \varphi) u_a + n \cos(\theta k + \varphi) u_b)$$

Definizione 3.13 (Moto alternante). Dato $\lambda_i < 0$, allora il moto aperiodico associato si dice alternante. In sostanza avendo il — nell'elevamento a potenza, il segno del moto cambia ad ogni passo.

3.4.6 Organo di ritenuta

Prendiamo un segnale in ingresso discreto, il compito dell'organo di ritenuta è di mantenere il valore dell'ultimo campione fino al successivo. Ora prendiamo un sistema a tempo continuo, definiamo $T = t - t_0$, $t_0 = kT$ e t = (k + 1)T.

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$x((k+1)T) = e^{AT}x(kT) + \int_{kT}^{(k+1)T} e^{A((k+1)T - \tau)} Bu(kT) d\tau$$

da qua definiamo le matrici discrete

- $A_d = e^{At}$
- $B_d = \int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)} Bu(kT) d\tau$
- $C_d = C$
- $D_d = D$

sia $\xi = (k+1)T - \tau$ allora

$$B_d = -\int_T^0 e^{A\xi} B d\xi = \int_0^T e^{A\xi} B d\xi$$

Per gli autovalori reali o complessi usiamo T al posto di t e otteniamo

$$\lambda_i \to e^{\lambda_i T}, \quad \alpha_j \pm j w_j \to e^{\alpha_j T} (\cos(w_j T) \pm j \sin(w_j T))$$

3.5 Osservabilità e eccitabilità

Prendiamo un sistema con 1 autovalore reale e 1 coppia di autovalori complessi coniugati

$$e^{At} = e^{\lambda_1 t} u_1 v_1^T + e^{\alpha t} [\cos(wt)(u_a v_a^T + u_b v_b^T) + \sin(wt)(u_a v_b^T - u_b v_a^T)]$$

prendiamo la matrice B e calcoliamo $H = e^{At}B$

$$H(t) = e^{\lambda_1 t} u_1 v_1^T B + e^{\alpha t} [\cos(wt)(u_a v_a^T + u_b v_b^T) B + \sin(wt)(u_a v_b^T - u_b v_a^T) B]$$

Notiamo che se $v_1^T B = 0$ il moto non comparirà nell'espressione di H(t) che è definita come matrice risposte impulsive dello stato, di conseguenza si dice che il moto non è eccitabile da un impulso in ingresso.

Definizione 3.14 (Eccitabilità). Definizione per ogni moto

- Un moto aperiodico è eccitabile se $v_i^T B \neq 0$.
- Un moto pseudoperiodico è eccitabile se $v_{ja}^T B \neq 0$ o $v_{jb}^T B \neq 0$.

Teorema 3.7 (Moto eccitabile). Se $u_i \in \text{Im}\{B\}$ allora il moto è eccitabile.

Esempio 3.5 (Esercizio stile esonero).

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix} B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & -1 \end{pmatrix} C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} D = 0$$

- 1. schema di simulazione
- 2. evoluzione libera con $x_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
- 3. determinare gli stati to $X_L(t) \to 0$
- 4. determinare gli stati to $X_L(t)$ limitata

Soluzione. 1. Riscriviamo il sistema nella forma implicita e poi X(t) per componenti

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

ha 2 ingressi (colonne di B) quindi per componenti diventa

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$$

$$\begin{cases} \dot{x}_1(t) = x_2(t) + u_2(t) \\ \dot{x}_2(t) = x_3(t) \\ \dot{x}_3(t) = 2x_2(t) + u_1(t) - u_2(t) \\ y(t) = x_1(t) \end{cases}$$

Il disegno prima o poi arriverà (se mi ricordo) (aprite una issue o fate una PR)

2. Calcoliamo gli autovalori di A

$$P_a(A) = \det(A - \lambda I) = \begin{bmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 0 & 2 & 1 - \lambda \end{bmatrix} = -\lambda(\lambda + \lambda^2 - 2) = 0$$

$$\Rightarrow \lambda_1 = 0, \lambda_{2,3} = 2, -1$$

Ora per $X_L(t) = e^{At}x_0 = \left(\sum e^{\lambda_i t}u_iv_i^T\right)x_0$ ci servono gli autovettori destri e sinistri.

$$T^{-1} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \end{pmatrix}$$

Dato $\lambda = (0, 2, -1)$, calcoliamo $X_L(t)$, ricordando che $c_i = v_i^T x_0$

$$X_L(t) = u_1c_1 + e^{2t}u_2c_2 + e^{-t}u_3c_3$$

- 3. $x_0 = c_3 u_3$ essendo l'unico moto che converge
- 4. $x_0 = c_1u_1 + c_3u_3$ essendo gli unici moti che non divergono

Prendiamo l'uscita Y e facciamo dei calcoli veloci:

$$W = C \left(\sum_{i} e^{\lambda_{i} t} u_{i} v_{i}^{T} + \sum_{j} e^{\alpha_{j} t} \left(\cos(w_{j} t) (u_{ja} v_{ja}^{T} + u_{jb} v_{jb}^{T}) + \sin(w_{j} t) (u_{ja} v_{jb}^{T} - u_{jb} v_{ja}^{T}) \right) \right)$$

Definizione 3.15 (Osservabilità). Definizione per ogni moto

- Un moto aperiodico è osservabile se $Cu_i \neq 0$.
- Un moto pseudoperiodico è osservabile se $Cu_{ja} \neq 0$ o $Cu_{jb} \neq 0$.

Osservazione 3.2 (In W compaiono solo i moti osservabili ed eccitabili).

3.5.1 Autovalori multipli

Prendiamo queste due matrici che sono molto simili tra di loro

$$A = \begin{pmatrix} -2 & 1\\ 0 & -2 \end{pmatrix} \quad \hat{A} = \begin{pmatrix} -2 & 0\\ 0 & -2 \end{pmatrix}$$

Entrambe le matrici hanno un autovalore doppio, però A non è diagonalizzabile, infatti l'unico autovettore associato è $u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. \hat{A} invece è diagonalizzabile con autovettori $u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Nel caso normale con $m_a(\lambda_i) = m_g(\lambda_i)$, $\lambda_1 = -2 \rightarrow e^{-2t}$. Se la matrice non è diagonalizza-

bile usiamo la forma di Jordan. Dato che compare un blocco di Jordan, compaiono i modi polinomiali-esponenziali. k è la dimensione del blocco di Jordan associato a λ_i .

$$\lambda_i \to e^{\lambda_i t}, \quad t e^{\lambda_i t}, \dots, \frac{t^k}{k!} e^{\lambda_i t}$$

$$\lim_{\lambda_i \to 0} \frac{t^k}{k!} e^{\lambda_i t} = 0$$

per $\lambda_i \to 0$

per $\lambda_i \to \infty$

$$\lim_{\lambda_i \to \infty} \frac{t^k}{k!} e^{\lambda_i t} = \infty$$

caso critico $\lambda_i = 0$

- $m_a(\lambda_i) = m_a(\lambda_i) \Rightarrow \text{moto limitato}$
- $m_a(\lambda_i) > m_a(\lambda_i) \Rightarrow$ moto divergente

3.6 Esercizi

Esercizio 3.1 (Schema di simulazione, eccitabilità, osservabilità e matrici a tempo discreto).

$$\begin{cases} x(k+1) = \begin{pmatrix} -1 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} u(k) \\ y(k) = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} x(k) + u(k) \end{cases}$$

Soluzione. 1. Riscriviamo il sistema nella forma implicita e poi X(t) per componenti

$$\begin{cases} x_1(k+1) = -x_1 + 3x_2 + x_3 + u_1(k) \\ x_2(k+1) = x_2 - x_3 \\ x_3(k+1) = x_2 + x_3 + u_3(k) \end{cases}$$

e si fa il grafico (aspetto PR)

2. A diagonale a blocchi $\Rightarrow \lambda_1 = -1$

$$(1 - \lambda)^2 + 1 = 0 \Rightarrow \lambda_{2,3} = 1 \pm j$$

Per l'autovettore associato a $\lambda_1 = -1$ il calcolo è semplice e viene $u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ (1 incognita libera), per gli autovalori complessi coniugati si usa la forma

$$A\begin{pmatrix} u_a & u_b \end{pmatrix} = \begin{pmatrix} u_a & u_b \end{pmatrix} \begin{pmatrix} \alpha & w \\ -w & \alpha \end{pmatrix}$$

 $con \alpha = 1 e w = 1, dunque$

$$\begin{pmatrix} -1 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

da cui otteniamo il sistema

$$\begin{cases}
-a_1 + 3a_2 + a_3 = a_1 - b_1 \\
a_2 - a_3 = a_2 - b_2 \\
a_2 + a_3 = b_2 + b_3 \\
-b_1 + 3b_2 + b_3 = a_1 + b_1 \\
b_2 - b_3 = a_2 + b_2 \\
b_2 + b_3 = a_3 + b_3
\end{cases}$$

ora dobbiamo capire quali sono le 2 equazioni linearmente dipendenti. Dalla 6a equazione ricaviamo che $a_3=b_2$, dalla 3a che $a_2=-b_3$. Sostituendo nel sistema togliamo le equazioni 2 e 5 rimanendo con

$$\begin{cases}
-a_1 + 3a_2 + a_3 = a_1 - b_1 \\
-b_1 + 3b_2 + b_3 = a_1 + b_1
\end{cases}$$

$$\begin{cases}
2a_1 - b_1 = 3a_2 + a_3 \\
a_1 + 2b_1 = 3b_2 + b_3
\end{cases}$$

sappiamo da prima che $a_2 = -b_3$ e $a_3 = b_2$, dunque

$$\begin{cases} 2a_1 - b_1 = 3(-b_3) + b_2 \\ a_1 + 2b_1 = 3b_2 + b_3 \end{cases}$$

scegliamo $b_2 = 1$ e $b_3 = 0$ per semplicità, dunque

$$\begin{cases} 2a_1 - b_1 = 1\\ a_1 + 2b_1 = 3 \end{cases}$$

risolvendo otteniamo $a_1 = 1, b_1 = 1, dunque$

$$u_a = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad u_b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

3. Osservabilità

$$Cu_1 = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$$
 non osservabile

$$Cu_a = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 1$$
 osservabile (basta che uno dei 2 sia non nullo)

$$Cu_b = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 1$$
 osservabile

Per l'eccitabilità calcoliamo gli autovettori sinistri

$$T^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow T = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 $facciamo i calcoli con v^T e B$

$$v_1^T B = \begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 1$$
 non eccitabile

$$v_a^T B = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 1$$
 eccitabile (basta che uno dei 2 sia non nullo)

$$v_b^T B = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 0$$

4. Matrici a tempo discreto

$$\Phi(k) = \lambda_1^k u_1 v_1^T + \sigma^k (\cos(\theta k)(u_a v_a^T + u_b v_b^T) + \sin(\theta k)(u_a v_b^T - u_b v_a^T))$$

$$con \ \sigma = \sqrt{\alpha^2 + w^2} = \sqrt{1^2 + 1^2} = \sqrt{2} \ e \ \theta = \arctan\left(\frac{w}{\alpha}\right) = \arctan(1) = \frac{\pi}{4}$$

$$\Phi(k) = (-1)^k \begin{pmatrix} 1\\0\\0 \end{pmatrix} \begin{pmatrix} 1\\-1\\-1 \end{pmatrix} + (\sqrt{2})^k (\dots)$$

$$H(k) = \Phi(k)B, \quad v_1^T B = 0, v_a^T B = 1, v_b^T B = 0$$

$$H(k) = (\sqrt{2})^{k-1} (\cos(\theta (k-1)) u_a - \sin(\theta (k-1)) u_b)$$

4 Stabilità

4.1 II pendolo

Consideriamo un pendolo, ha due posizioni in cui può stare fermo:

- la posizione con il pendolo verso il basso (posizione di equilibrio stabile);
- la posizione con il pendolo verso l'alto (posizione di equilibrio instabile).

I sistemi dinamici li descriviamo con $\dot{x} =$ una funzione, che dipende da x e da u. La \dot{x} nel caso del pendolo è la velocità, quindi se trovassimo $\dot{x} = f(x_e, u_e) = 0$, avremmo trovato un punto dove il pendolo sta fermo, cioè un punto di equilibrio.

4.2 Sistemi

Prendiamo il sistema

$$\begin{cases} \dot{x} = Ax = 0 \\ u = 0 \end{cases}$$

Teorema 4.1 (Soluzioni equilibrio di un sistema). Devono valere le seguenti condizioni:

$$\begin{cases} \operatorname{rank}(A) = n & x_e = 0 \text{ unico punto di equilibrio} \\ \operatorname{rank}(A) = q < n & numero \text{ soluzioni} = \infty^{n-q} \end{cases}$$

4.2.1 Definizioni di stabilità

Le seguenti definizioni valgono per u=0, cioè il sistema

$$\begin{cases} \dot{x} = Ax \\ x(t) = e^{At}x_0 \\ \Phi(t) = e^{At} \end{cases}$$

Definizione 4.1 (Sistema stabile). Devono valere le seguenti condizioni:

- 1. $\forall \epsilon > 0 \exists \delta_{\epsilon} > 0 : ||x_0 x_e|| < \delta_{\epsilon}, ||x(t) x_e|| < \epsilon \ \forall t > 0$
- 2. $\lim_{t\to\infty} ||x(t)-x_e||=0$ equiasintoticità

Dimostrazione.

$$x_{e} = (0,0) \Rightarrow ||x_{0}|| < \delta_{\epsilon}$$

$$||x(t)|| = ||\Phi(t)x_{0}|| < \epsilon$$

$$||\Phi(t)x_{0}|| \le ||\Phi(t)|| ||x_{0}|| \le ||\Phi(t)|| \delta_{\epsilon} < \epsilon$$

Definizione 4.2 (Stabilità asintotica). Devono valere le seguenti condizioni:

- 1. $\nexists Re(\lambda_i) > 0$ (traiettoria divergente)
- 2. $\exists Re(\lambda_i) = 0$ (traiettoria limitata)

Definizione 4.3 (Stabilità). Devono valere le seguenti condizion:

- $Re(\lambda_i) \leq 0$
- $Re(\lambda_i) = 0$ e $m_a(\lambda_i) = m_q(\lambda_i)$

Definizione 4.4 (Instabilità). Devono valere le seguenti condizioni:

- $\exists Re(\lambda_i) > 0$
- $\exists Re(\lambda_i) = 0 \text{ e } m_a(\lambda_i) > m_g(\lambda_i)$

Ipersfera attorno p.t. equilibrio

Figura 4: Stabilità e stabilità asintotica attorno all'origine

4.3 Criterio di Routh

Condizione necessaria: i coefficienti del $P_a(\lambda)$ devono essere tutti dello stesso segno. Costruiamo la tabella di Routh:

Dove:

$$b_{n-2} = \frac{\begin{bmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{bmatrix}}{-a_{n-1}} \quad b_{n-3} = \frac{\begin{bmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{bmatrix}}{-a_{n-1}}$$

Se campo mancante $\rightarrow 0$.

Teorema 4.2 (Riga invariante (nome di fantasia)). Posso moltiplicare una riga per n > 0 senza cambiare il risultato.

Teorema 4.3 (Numero radici con parte reale positiva). Il numero di cambi di segno nella prima colonna della tabella di Routh è uguale al numero di radici del polinomio caratteristico con parte reale positiva.

Esempio 4.1 (Routh + verifica radici < -3).

$$P(\lambda) = \lambda^5 + \lambda^4 + 3\lambda^3 + 3\lambda^2 + \lambda + 1$$

tabella di Routh:

La presenza di una riga di zeri indica la presenza di radici simmetriche rispetto l'asse reale. Costruiamo il polinomio ausiliario:

$$P(\lambda) = P_1(\lambda)P_2(\lambda), P_2(\lambda) = \lambda^4 + 3\lambda^2 = 1$$

$$P_2 = 4\lambda^3 + 6\lambda$$

Costruiamo la tabella di Routh per P_2 :

No cambi di segno \Rightarrow radici di P_2 con parte reale ≤ 0 . Verifica radici < -3:

- 1. origine portata in -3
- 2. $\lambda = z \alpha$, con $\alpha = 3$
- 3. p(z) = z + 3 3 = z

Costruisco il polinomio con z e uso di nuovo Routh, se non ci sono cambi di segno avrò le radici < -3 (perchè l'asse è spostato).

4.4 Stabilità nei punti di equilibrio

Sviluppiamo la funzione $\dot{x} = f(x, u)$ in serie di Taylor attorno al punto di equilibrio (x_e, u_e) :

Definizione 4.5 (Matrice Jacobiana). Matrice delle derivate parziali

$$\dot{x} = f(x_e, u_e) + \frac{\partial f}{\partial x} \bigg|_{(x_e, u_e)} (x - x_e) + \frac{\partial f}{\partial u} \bigg|_{(x_e, u_e)} (u - u_e)$$

 $f(x_e, u_e) = 0$ che è il punto di equilibrio.

$$\dot{x} = A(x - x_e) + B(u - u_e) = A(x - x_e) + B\tilde{u}$$

Sostiuiamo $z = x - x_e$ e diventa lineare

$$\dot{z} = Az + B\tilde{u}$$

Teorema 4.4 (Stabilità con la matrice Jacobiana). *Possiamo studiare la stabilità con gli autovalori della matrice Jacobiana calcolata nel punto di equilibrio.*

- $\forall \operatorname{Re}\{\lambda_i\} < 0$ sistema asintoticamente stabile
- $\exists \operatorname{Re}\{\lambda_i\} > 0 \text{ sistema instabile }$
- $\exists \operatorname{Re}\{\lambda_i\} = 0 \ e \ m_a(\lambda_i) = m_q(\lambda_i) \ sistema \ stabile$

Teorema 4.5 (Regola di Cartesio). Il numero di radici con parte reale positiva è uguale al numero di cambi di segno nei coefficienti del polinomio caratteristico, o minore di un numero pari.

- Nessun cambiamento di segno \Rightarrow nessuna radice con parte reale positiva
- Un cambiamento di segno $\Rightarrow \exists \operatorname{Re} > 0$

Esempio 4.2 (Pendolo).

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2 + \frac{1}{ml}u \end{cases}$$

Capiamo dove sono i punti di equilibrio:

- $x_1 = k\pi \Rightarrow -\frac{g}{l}\sin(x_1) = 0$
- $x_2 = 0 \Rightarrow -\frac{k}{m}x_2 = 0$
- $u=0 \Rightarrow -\frac{1}{ml}x_2=0$

Quindi i punti di equilibrio sono $(k\pi,0)$, quindi ci sono (0,0) e $(\pi,0)$. Matrice Jacobiana

$$\frac{\partial f}{\partial x} = \begin{pmatrix} 0 & 1\\ -\frac{g}{l}\cos(x_1) & -\frac{k}{m} \end{pmatrix} \quad \frac{\partial f}{\partial u} = \begin{pmatrix} 0\\ \frac{1}{ml} \end{pmatrix}$$

1. Calcoliamo la Jacobiana nel punto di equilibrio (0,0):

$$\left. \frac{\partial f}{\partial x} \right|_{(0,0)} = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{k}{m} \end{pmatrix} \quad \left. \frac{\partial f}{\partial u} \right|_{(0,0)} = \begin{pmatrix} 0 \\ \frac{1}{ml} \end{pmatrix}$$

$$P_a(\lambda) = \begin{vmatrix} -\lambda & 1\\ -\frac{g}{l} & -\frac{k}{m} - \lambda \end{vmatrix} = \lambda^2 + \frac{k}{m}\lambda + \frac{g}{l}$$

Cartesio \Rightarrow sistema stabile asintoticamente localmente.

2. Calcoliamo la Jacobiana nel punto di equilibrio $(\pi, 0)$:

$$\left. \frac{\partial f}{\partial x} \right|_{(\pi,0)} = \begin{pmatrix} 0 & 1\\ \frac{g}{l} & -\frac{k}{m} \end{pmatrix} \quad \left. \frac{\partial f}{\partial u} \right|_{(\pi,0)} = \begin{pmatrix} 0\\ \frac{1}{ml} \end{pmatrix}$$

Autovalori matrice Jacobiana:

$$\begin{pmatrix} -\lambda & 1\\ \frac{g}{l} & -\frac{k}{m} - \lambda \end{pmatrix} \Rightarrow P_a(\lambda) = \lambda^2 + \frac{k}{m}\lambda - \frac{g}{l}$$

Cartesio \Rightarrow sistema instabile

4.5 Dominio di Laplace

Possiamo spostare nel dominio complesso una funzione tramite la trasformata di Laplace che è così definita

$$F(s) = \mathcal{L}(f(t)) = \int_0^\infty f(t)e^{-st}dt$$

(tutte le trasformate sono riassunte nell'appendice)

4.5.1 Calcoli delle trasformate utili

Moti naturali aperiodici

$$\mathcal{L}(e^{\lambda t}) = \int_0^\infty e^{-st} dt = \int_0^\infty e^{-t(s-\lambda)} dt = \left[\frac{e^{-t(s-\lambda)}}{-(s-\lambda)} \right]_0^\infty = \frac{1}{s-\lambda}$$

Gradino

$$\mathcal{L}(\delta_{-1}) = \mathcal{L}(e^{\lambda t}) \bigg|_{\lambda=0} = \frac{1}{s}$$

Impulso

$$\mathcal{L}(\delta(t)) = 1$$

Moti pseudo-periodici

$$\mathcal{L}(\sin(wt)) = \mathcal{L}\left(\frac{e^{jwt} - e^{-jwt}}{jt}\right) = \int_0^\infty \frac{e^{jwt} - e^{-jwt}}{jt} e^{-st} dt$$

$$= \frac{1}{2j} \left(\int_0^\infty e^{jwt} e^{-st} dt - \int_0^\infty e^{-jwt} e^{-st} dt\right)$$

$$= \frac{1}{2j} \left(\frac{1}{s - jw} - \frac{1}{s + jw}\right)$$

$$= \frac{1}{2j} \frac{s + jw - s + jw}{s^2 + w^2} = \frac{w}{s^2 + w^2}$$

$$\mathcal{L}(\cos(wt)) = \frac{s}{s^2 + w^2}$$

4.5.2 Proprietà

$$\mathcal{L}(x(t)) = x(s)$$

$$\mathcal{L}(\dot{x}(t)) = sx(s) - x(0)$$

$$\mathcal{L}(u(t)) = u(s)$$

4.5.3 Applicazione al Modello implicito

Partiamo dall'espressione di $\dot{x}(t)$

$$\mathcal{L}(\dot{x}(t)) = \mathcal{L}(Ax(t) + Bu(t))$$

$$\Leftrightarrow sx(s) - x(0) = Ax(s) + Bu(s)$$

$$\Leftrightarrow x(s)(sI - A) = x(0) + Bu(s)$$

$$\Rightarrow x(s) = (sI - A)^{-1}(x(0) + Bu(s))$$

Ponendo $t_0 = 0$

$$\mathcal{L}(x(t)) = \mathcal{L}(\Phi(t)x(0)) + \mathcal{L}\left(\int_0^t H(t-\tau)u(\tau)d\tau\right)$$

vale $\forall x(0)$ che ammettono la trasformata. Ponendo u=0

$$(sI - A)^{-1}x(0) = \mathcal{L}(\Phi(t)x(0))$$
$$\Rightarrow \mathcal{L}(\Phi(t)) = (sI - A)^{-1}$$

Poi l'evoluzione forzata

$$(sI - A)^{-1}Bu(s) = \mathcal{L}\left(\int_0^t H(t - \tau)u(\tau)d\tau\right)$$

e la matrice

$$H(t) = e^{At}B \to H(s) = (sI - A)^{-1}B$$

In uscita abbiamo y(s) = cx(s) + Du(s)

$$y(s) = C\left((sI - A)^{-1}x(0) + (sI - A)^{-1}Bu(s)\right) + Du(s)$$

$$= \mathcal{L}\left(Ce^{At}x(0)\right) + \mathcal{L}\left(\int_{t_0}^t W(t-\tau)u(\tau)d\tau\right)$$

abbiamo le altre due matrici

$$\mathcal{L}(\Psi(t)) = c(sI - A)^{-1}$$

e

$$W(t) = Ce^{At}B + D\delta(t)$$

Definizione 4.6 (Matrice delle funzioni di trasferimento).

$$W(s) = C(sI - A)^{-1}B + D$$

dato che $\mathcal{L}(\delta(t)) = 1$

4.5.4 Sviluppo in frazioni parziali

Prendiamo un sistema in forma implicita

$$\begin{cases} \dot{x} = \begin{pmatrix} -1 & 2\\ 0 & -2 \end{pmatrix} x + \begin{pmatrix} 0\\ 1 \end{pmatrix} u\\ y = \begin{pmatrix} 1 & 1 \end{pmatrix} x + u \end{cases}$$

L'obiettivo (a quanto pare) è scrivere $\Phi(s)$ nella forma $\frac{R_1}{s+\lambda_1} + \frac{R_2}{s+\lambda_2}$

$$\Phi(s) = (sI - A)^{-1} = \begin{pmatrix} s+1 & -2 \\ 0 & s+2 \end{pmatrix}^{-1} = \frac{1}{(s+1)(s+2)} \begin{pmatrix} s+2 & 2 \\ 0 & s+1 \end{pmatrix}$$

$$\Phi(s) = \frac{R_1(s+2) + R_2(s+1)}{(s+1)(s+2)}$$

$$\Leftrightarrow \frac{\binom{s+2}{0} + \binom{2}{0}}{(s+1)(s+2)} = \frac{1}{s+1} + \frac{R_2}{s+2}$$

Ricaviamo R_1 e R_2 facendo il limite rispettivamente per $s \to -1$ e $s \to -2$ e otteniamo

$$\dots = \lim_{s \to -1} (R_1 + R_2 \frac{s+1}{s+2}) = R_1 = \frac{\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}}{1}$$

е

$$R_2 = -\begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}$$

essendo $\Phi(t)$ l'evoluzione libera riscriviamo tutto

$$\Phi(s) = \frac{1}{s - \lambda_1} u_1 v_1^T + \frac{1}{s - \lambda_2} u_2 v_2^T$$
$$= R_1 \frac{1}{s - \lambda_1} + R_2 \frac{1}{s - \lambda_2}$$

Calcoliamo le altre matrici H, Ψ e W

$$H(s) = (sI - A)^{-1}B$$

$$\Psi(s) = C(sI - A)^{-1}$$

$$W(s) = C(sI - A)^{-1}B + D$$

Nota d'onore al burino che è entrato in aula e ha fatto sclerare la Califano interrompendo la lezione

5 Appendice

 $\label{eq:materiali} \mbox{Materiali di riferimento, dimostrazioni tecniche, e tabelle utili (es. trasformata di Laplace, formule di integrazione).}$