

David Salinas Professional Summary

- Senior Research Scientist specializing in Large Language Models with extensive experience in evaluation pipelines, multilingual model training, and collaborative AI research.
- Heading evaluation efforts for a €37M EU consortium developing production-grade multi-lingual and open LLMs across 20 European institutions.
- O Strong publishing track record in AutoML, Forecasting with 6,800+ citations and h-index of 26.
- Experienced in deploying scalable ML systems at AWS and developing open-source frameworks.

Professional Experience

2025-Present Group Leader OpenEuroLLM at ELLIS Institute, Tübingen, Germany

- O Leadership & Strategy:
 - Lead evaluation Work Package for the consortium (one of the three technical core Work Packages)
 - Contribute to pre-training and post-training pipeline architecture and design
 - Authored internal technical roadmap and technical onboarding document
 - Established GitHub repository and task board for consortium-wide project tracking and collaboration
 - Managed hiring process for 8 positions: wrote jobpost, organized interview process, and handle negotiations
- Technical Contributions:
 - Tuned open-weights LLM judges to match proprietary model performance
 - Evaluated 20,000+ model/task combinations for Open-sci-ref-0.01 release across 1.7B parameter models trained on 8 diverse datasets
 - Built benchmarking infrastructure for systematic model comparison and reproducible analysis

2024-Present Senior Research Scientist at University of Freiburg, Freiburg, Germany

- O Research focus: model evaluation, AutoML for LLMs, and foundational model architectures.
- My team achieved 2nd place in the Kaggle AutoML Grand Prix competition and won a \$20,000 prize.
- I co-developed a time-series method was the top method on the GiftEval leaderboard for three months.

2020–2024 Senior Applied Scientist at Amazon, Grenoble, France

- Lead developer of **Syne Tune**, an open-source Hyperparameter Optimization library that is now used in two AWS services.
- O Developed a transfer-learning method to learn default configurations of AutoGluon Tabular that achieved a win rate of 54% against the best tabular methods while decreasing latency by 20%.

2019–2020 Senior Machine Learning Scientist at NAVERLABS Europe, Grenoble, France

O Proposed an inductive bias improving compositionality and sample efficiency of question-answering.

2015–2019 Senior Applied Scientist at Amazon, Berlin, Germany

- Proposed and implemented **DeepAR**, a neural forecasting model which had a significant impact on the field (cited 2,900+ times) and that got released as an AWS service.
- Developed production forecasting system for labor planning surpassing human expert accuracy, deployed across all Amazon warehouses globally.

Education

2010–2013 PhD in Computer Science at Grenoble Alpes University, Grenoble, France.

2007–2010 BSc and MSc at Ecole Normale Supérieure de Lyon, Lyon, France.

Main Current Research Interests

Large Language Models. ICML 2025, Arxiv2025a, Arxiv2025b.

AutoML. ICML 2020, 2023 & 2025, AutoML Conf 2022, NeurIPS 2025a & 2025b (Spotlight).

Time-series. NeurIPS 2016 (Oral) & 2019, AISTATS 2019, IJF 2020, JMLR 2020, NeurIPS 2025w.

Selected High-Impact Publications.

- O DeepAR (IJF2020) forecasting model widely adopted in academia and industry cited cited 2,900+ times.
- O Syne Tune (AutoML 2023) HPO framework integrated into two AWS production services.
- TabRepo & TabArena (AutoML 2024 & NeurIPS 2025 Spotlight): strong performance gain to AutoGluon the current best tabular prediction method

Scientific Publication and Citation Records

Citations. 6809 citations, h-index: 26, i10-index: 32 (Google Scholar Oct 2025).

Tutorials. AutoML Conf (2023), MESS Summer School (2024), AutoML School (2025).

Reviewing. AutoML-Conf (area-chair). NeurIPS, ICML and ICLR (reviewer).

Open-source

I am a core developer of Syne Tune (Hyperparameter Optimization), SlurmPilot (Python wrapper for Slurm experiments). I was also a core-developer of Gluon-ts (forecasting), Datawig (data imputation) and Gudhi (topological data analysis).

Selected Publications

- H. Nguyen, V. May, H. Raj, M. Nezhurina, Y. Wang, Y. Luo, M. Vu, T. Nakamura, K. Tsui, V. Nguyen, **D. Salinas**, M. Richter, X. Son, and J. Jitsev. Mixturevitae: Open web-scale pretraining dataset with high quality instruction and reasoning data built from permissive-first text sources. **Arxiv 2025**.
- M. Nezhurina, J. Franke, T. Nakamura, T. Carstensen, N. Ajroldi, V. Komulainen, **D. Salinas**, and J. Jitsev. Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison. **Arxiv 2025**.
- M. Arbel, **D. Salinas**, and F. Hutter. Equitabpfn: A target-permutation equivariant prior fitted networks. **NeurIPS 2025**.
- N. Erickson, L. Purucker, A. Tschalzev, D. Holzmüller, P. Mutalik Desai, **D. Salinas**, and F. Hutter. Tabarena: A living benchmark for machine learning on tabular data. **NeurIPS 2025 Datasets & Benchmarks Track 2025 (Spotlight)**.
- **D.** Salinas, O. Swelam, and F. Hutter. Tuning LLM judge design decisions for 1/1000 of the cost. **ICML 2025**.
- S. Hoo, S. Müller, **D. Salinas**, and Frank Hutter. The tabular foundation model tabPFN outperforms specialized time series forecasting models based on simple features. **NeurIPS Workshop 2024**, 2024.
- **D. Salinas**, J. Golebiowski, A. Klein, M. Seeger, and C. Archambeau. Optimizing hyperparameters with conformal quantile regression. **ICML 2023**.
- **D.** Salinas, M. Seeger, A. Klein, V. Perrone, M. Wistuba, and C. Archambeau. Syne tune: A library for large scale hyperparameter tuning and reproducible research. **AutoML-Conf 2022**.
- **D. Salinas**, H. Shen, and V. Perrone. A quantile-based approach for hyperparameter transfer learning. **ICML 2020**.
- A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski, D. Maddix, S. Rangapuram, **D. Salinas**, J. Schulz, L. Stella, A. Türkmen, and Y. Wang. Gluonts: Probabilistic and neural time series modeling in python. **JMLR 2020**.
- **D. Salinas**, M. Bohlke-Schneider, L. Callot, R. Medico, and J. Gasthaus. High-dimensional multivariate forecasting with low-rank gaussian copula processes. **NeurIPS 2019**.
- J. Gasthaus, K. Benidis, Y. Wang, S. Rangapuram, **D. Salinas**, V. Flunkert, and T. Januschowski. Probabilistic forecasting with spline quantile function rnns. **AISTATS 2019**.
- F. Biessmann, T. Rukat, P. Schmidt, P. Naidu, S. Schelter, A. Taptunov, D. Lange, and **D. Salinas**. Datawig: Missing value imputation for tables. **JMLR 2019**.
- **D. Salinas**, V. Flunkert, J. Gasthaus, and T. Januschowski. Deepar: Probabilistic forecasting with autoregressive recurrent networks. **IJF 2020**.
- T. Januschowski, J. Gasthaus, Y. Wang, **D. Salinas**, V. Flunkert, M. Bohlke-Schneider, and L. Callot. Criteria for classifying forecasting methods. **IJF 2020**.
- F. Biessmann, **D. Salinas**, S. Schelter, P. Schmidt, and D. Lange. Deep learning for missing value imputation in tables with non-numerical data. **CIKM 2018**.
- J. Böse Joos-Hendrik, V. Flunkert, J. Gasthaus, T. Januschowski, D. Lange, **D. Salinas**, S. Schelter, M. Seeger, and Y. Wang. Probabilistic demand forecasting at scale. **VLDB 2017**.
- M. Seeger, **D. Salinas**, and V. Flunkert. Bayesian intermittent demand forecasting for large inventories. **NeurIPS 2016 (oral)**.