6

KRYLOV SUBSPACE METHODS PART I

The next two chapters explore a few methods which are considered currently to be among the most important iterative techniques available for solving large linear systems. These techniques are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these techniques approximate $A^{-1}b$ by p(A)b, where p is a "good" polynomial. This chapter covers methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers methods based on Lanczos biorthogonalization.

INTRODUCTION

6.1

Recall from the previous chapter that a general *projection method* for solving the linear system

$$Ax = b, (6.1)$$

is a method which seeks an approximate solution x_m from an affine subspace $x_0 + \mathcal{K}_m$ of dimension m by imposing the Petrov-Galerkin condition

$$b - Ax_m \perp \mathcal{L}_m$$

where \mathcal{L}_m is another subspace of dimension m. Here, x_0 represents an arbitrary initial guess to the solution. A Krylov subspace method is a method for which the subspace \mathcal{K}_m is the Krylov subspace

$$\mathcal{K}_m(A, r_0) = span\{r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0\},\$$

where $r_0 = b - Ax_0$. When there is no ambiguity, $\mathcal{K}_m(A, r_0)$ will be denoted by \mathcal{K}_m . The different versions of Krylov subspace methods arise from different choices of the subspace \mathcal{L}_m and from the ways in which the system is *preconditioned*, a topic that will be covered in detail in later chapters.

Viewed from the angle of approximation theory, it is clear that the approximations obtained from a Krylov subspace method are of the form

$$A^{-1}b \approx x_m = x_0 + q_{m-1}(A)r_0,$$

in which q_{m-1} is a certain polynomial of degree m-1. In the simplest case where $x_0=0$, then

$$A^{-1}b \approx q_{m-1}(A)b.$$

In other words, $A^{-1}b$ is approximated by $q_{m-1}(A)b$.

Although all the techniques provide the same type of *polynomial* approximations, the choice of \mathcal{L}_m , i.e., the constraints used to build these approximations, will have an important effect on the iterative technique. Two broad choices for \mathcal{L}_m give rise to the best-known techniques. The first is simply $\mathcal{L}_m = \mathcal{K}_m$ and the minimum-residual variation $\mathcal{L}_m = A\mathcal{K}_m$. A few of the numerous methods in this category will be described in this chapter. The second class of methods is based on defining \mathcal{L}_m to be a Krylov subspace method associated with A^T , namely, $\mathcal{L}_m = \mathcal{K}_m(A^T, r_0)$. Methods of this class will be covered in the next chapter. There are also block extensions of each of these methods termed *block Krylov subspace methods*, which will be discussed only briefly. Note that a projection method may have several different implementations, giving rise to different algorithms which are all mathematically equivalent.

KRYLOV SUBSPACES

6.2

In this section we consider projection methods on Krylov subspaces, i.e., subspaces of the form

$$\mathcal{K}_m(A, v) \equiv \text{span} \{v, Av, A^2v, \dots, A^{m-1}v\}$$
(6.2)

which will be denoted simply by \mathcal{K}_m if there is no ambiguity. The dimension of the subspace of approximants increases by one at each step of the approximation process. A few elementary properties of Krylov subspaces can be established, many of which need no proof. A first property is that \mathcal{K}_m is the subspace of all vectors in \mathbb{R}^n which can be written as x=p(A)v, where p is a polynomial of degree not exceeding m-1. Recall that the minimal polynomial of a vector v is the nonzero monic polynomial p of lowest degree such that p(A)v=0. The degree of the minimal polynomial of v with respect to A is often called the *grade of v with respect to A*, or simply the grade of v if there is no ambiguity. A consequence of the Cayley-Hamilton theorem is that the grade of v does not exceed v. The following proposition is easy to prove.

PROPOSITION 6.1 Let μ be the grade of v. Then \mathcal{K}_{μ} is invariant under A and $\mathcal{K}_{m} = \mathcal{K}_{\mu}$ for all $m \geq \mu$.

It was mentioned above that the dimension of \mathcal{K}_m is nondecreasing. In fact, the following proposition determines the dimension of \mathcal{K}_m in general.

PROPOSITION 6.2 The Krylov subspace K_m is of dimension m if and only if the grade μ of v with respect to A is not less than m, i.e.,

$$\dim(\mathcal{K}_m) = m \quad \leftrightarrow \quad \operatorname{grade}(v) \geq m.$$

Therefore,

$$\dim(\mathcal{K}_m) = \min \{m, \operatorname{grade}(v)\}.$$

Proof. The vectors $v, Av, \ldots, A^{m-1}v$ form a basis of \mathcal{K}_m if and only if for any set of m scalars $\alpha_i, i = 0, \ldots, m-1$, where at least one α_i is nonzero, the linear combination $\sum_{i=0}^{m-1} \alpha_i A^i v$ is nonzero. This is equivalent to the condition that the only polynomial of degree $\leq m-1$ for which p(A)v=0 is the zero polynomial. The second part of the proposition is a consequence of the previous proposition.

PROPOSITION 6.3 Let Q_m be any projector onto \mathcal{K}_m and let A_m be the section of A to \mathcal{K}_m , that is, $A_m = Q_m A_{|\mathcal{K}_m}$. Then for any polynomial q of degree not exceeding m-1,

$$q(A)v = q(A_m)v,$$

and for any polynomial of degree < m,

$$Q_m q(A)v = q(A_m)v.$$

Proof. First we prove that $q(A)v=q(A_m)v$ for any polynomial q of degree $\leq m-1$. It is sufficient to show the property for the monic polynomials $q_i(t)\equiv t^i,\ i=0,\ldots,m-1$. The proof is by induction. The property is true for the polynomial $q_0(t)\equiv 1$. Assume that it is true for $q_i(t)\equiv t^i$:

$$q_i(A)v = q_i(A_m)v.$$

Multiplying the above equation by A on both sides yields

$$q_{i+1}(A)v = Aq_i(A_m)v.$$

If $i+1 \leq m-1$ the vector on the left-hand side belongs to \mathcal{K}_m , and therefore if the above equation is multiplied on both sides by Q_m , then

$$q_{i+1}(A)v = Q_m A q_i(A_m)v.$$

Looking at the right-hand side we observe that $q_i(A_m)v$ belongs to \mathcal{K}_m . Hence,

$$q_{i+1}(A)v = Q_m A_{|\mathcal{K}_m} q_i(A_m)v = q_{i+1}(A_m)v,$$

which proves that the property is true for i+1, provided $i+1 \le m-1$. For the case i+1=m, it only remains to show that $Q_mq_m(A)v=q_m(A_m)v$, which follows from

 $q_{m-1}(A)v = q_{m-1}(A_m)v$ by simply multiplying both sides by Q_mA .

ARNOLDI'S METHOD

6.3

Arnoldi's method [9] is an orthogonal projection method onto \mathcal{K}_m for general non-Hermitian matrices. The procedure was introduced in 1951 as a means of reducing a dense matrix into Hessenberg form. Arnoldi presented his method in this manner but hinted that the eigenvalues of the Hessenberg matrix obtained from a number of steps smaller than n could provide accurate approximations to some eigenvalues of the original matrix. It was later discovered that this strategy leads to an efficient technique for approximating eigenvalues of large sparse matrices. The method will first be described theoretically, i.e., assuming exact arithmetic, then implementation details will be addressed.

6.3.1 THE BASIC ALGORITHM

Arnoldi's procedure is an algorithm for building an orthogonal basis of the Krylov subspace \mathcal{K}_m . In exact arithmetic, one variant of the algorithm is as follows:

ALGORITHM 6.1: Arnoldi

- 1. Choose a vector v_1 of norm 1
- 2. For j = 1, 2, ..., m Do:
- 3. Compute $h_{ij} = (Av_j, v_i)$ for i = 1, 2, ..., j
- 4. Compute $w_j := Av_j \sum_{i=1}^{J} h_{ij}v_i$
- $5. h_{j+1,j} = ||w_j||_2$
- 6. If $h_{j+1,j} = 0$ then Stop
- 7. $v_{j+1} = w_j/h_{j+1,j}$
- 8. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector v_j by A and then orthonormalizes the resulting vector w_j against all previous v_i 's by a standard Gram-Schmidt procedure. It will stop if the vector w_j computed in line 4 vanishes. This case will be examined shortly. Now a few simple properties of the algorithm are proved.

PROPOSITION 6.4 Assume that Algorithm 6.1 does not stop before the m-th step. Then the vectors v_1, v_2, \ldots, v_m form an orthonormal basis of the Krylov subspace

$$\mathcal{K}_m = \operatorname{span}\{v_1, Av_1, \dots, A^{m-1}v_1\}.$$

Proof. The vectors $v_j, j=1,2,\ldots,m$, are orthonormal by construction. That they span \mathcal{K}_m follows from the fact that each vector v_j is of the form $q_{j-1}(A)v_1$ where q_{j-1} is a polynomial of degree j-1. This can be shown by induction on j as follows. The result is clearly true for j=1, since $v_1=q_0(A)v_1$ with $q_0(t)\equiv 1$. Assume that the result is true for all integers $\leq j$ and consider v_{j+1} . We have

$$h_{j+1}v_{j+1} = Av_j - \sum_{i=1}^{j} h_{ij}v_i = Aq_{j-1}(A)v_1 - \sum_{i=1}^{j} h_{ij}q_{i-1}(A)v_1$$
 (6.3)

which shows that v_{j+1} can be expressed as $q_j(A)v_1$ where q_j is of degree j and completes the proof.

PROPOSITION 6.5 Denote by V_m , the $n \times m$ matrix with column vectors v_1, \ldots, v_m , by \bar{H}_m , the $(m+1) \times m$ Hessenberg matrix whose nonzero entries h_{ij} are defined by Algorithm 6.1, and by H_m the matrix obtained from \bar{H}_m by deleting its last row. Then the following relations hold:

$$AV_m = V_m H_m + w_m e_m^T (6.4)$$

$$=V_{m+1}\bar{H}_m,\tag{6.5}$$

$$V_m^T A V_m = H_m. ag{6.6}$$

Proof. The relation (6.5) follows from the following equality which is readily derived from lines 4, 5, and 7 of Algorithm 6.1,

$$Av_j = \sum_{i=1}^{j+1} h_{ij} v_i, \quad j = 1, 2, \dots, m.$$
 (6.7)

Relation (6.4) is a matrix reformulation of (6.7). Relation (6.6) follows by multiplying both sides of (6.4) by V_m^T and making use of the orthonormality of $\{v_1, \ldots, v_m\}$.

The result of the proposition is illustrated in Figure 6.1.

Figure 6.1 The action of A on V_m gives $V_m H_m$ plus a rankone matrix.

As was noted earlier, the algorithm may break down in case the norm of w_j vanishes at a certain step j. In this case, the vector v_{j+1} cannot be computed and the algorithm stops.

Still to be determined are the conditions under which this situation occurs.

PROPOSITION 6.6 Arnoldi's algorithm breaks down at step j (i.e., $h_{j+1,j} = 0$ in line 5 of Algorithm 6.1), if and only if the minimal polynomial of v_1 is of degree j. Moreover, in this case the subspace \mathcal{K}_j is invariant under A.

Proof. If the degree of the minimal polynomial is j, then w_j must be equal to zero. Indeed, otherwise v_{j+1} can be defined and as a result \mathcal{K}_{j+1} would be of dimension j+1. Then Proposition 6.2 would imply that $\mu \geq j+1$, which is a contradiction. To prove the converse, assume that $w_j=0$. Then the degree μ of the minimal polynomial of v_1 is such that $\mu \leq j$. Moreover, it is impossible that $\mu < j$. Otherwise, by the first part of this proof, the vector w_μ would be zero and the algorithm would have stopped at the earlier step number μ . The rest of the result follows from Proposition 6.1.

A corollary of the proposition is that a projection method onto the subspace \mathcal{K}_j will be exact when a breakdown occurs at step j. This result follows from Proposition 5.6 seen in Chapter 5. It is for this reason that such breakdowns are often called *lucky breakdowns*.

6.3.2 PRACTICAL IMPLEMENTATIONS

In the previous description of the Arnoldi process, exact arithmetic was assumed, mainly for simplicity. In practice, much can be gained by using the Modified Gram-Schmidt or the Householder algorithm instead of the standard Gram-Schmidt algorithm. With the Modified Gram-Schmidt alternative the algorithm takes the following form:

ALGORITHM 6.2: Arnoldi-Modified Gram-Schmidt

```
1. Choose a vector v_1 of norm 1

2. For j = 1, 2, ..., m Do:

3. Compute w_j := Av_j

4. For i = 1, ..., j Do:

5. h_{ij} = (w_j, v_i)

6. w_j := w_j - h_{ij}v_i

7. EndDo

8. h_{j+1,j} = ||w_j||_2. If h_{j+1,j} = 0 Stop

9. v_{j+1} = w_j/h_{j+1,j}

10. EndDo
```

In exact arithmetic, this algorithm and Algorithm 6.1 are mathematically equivalent. In the presence of round-off the above formulation is much more reliable. However, there are cases where cancellations are so severe in the orthogonalization steps that even the Modified Gram-Schmidt option is inadequate. In this case, two further improvements can be utilized.

The first improvement resorts to double orthogonalization. Whenever the final vector w_i obtained at the end of the main loop in the above algorithm has been computed, a

test is performed to compare its norm with the norm of the initial w_j (which is $||Av_j||_2$). If the reduction falls below a certain threshold, indicating severe cancellation might have occurred, a second orthogonalization is made. It is known from a result by Kahan that additional orthogonalizations are superfluous (see, for example, Parlett [160]).

The second improvement is to use a different technique altogether. From the numerical point of view, one of the most reliable orthogonalization techniques is the Householder algorithm. Recall from Chapter 1 that the Householder orthogonalization uses reflection matrices of the form $P_k = I - 2w_k w_k^T$ to transform a matrix X into upper triangular form. In the Arnoldi algorithm, the column vectors of the matrix X to be orthonormalized are not available ahead of time. Instead, the next vector is obtained as Av_j , where v_j is the current basis vector. In the Householder algorithm an orthogonal column v_i is obtained as $P_1P_2\dots P_ie_i$ where P_1,\dots,P_i are the previous Householder matrices. This vector is then multiplied by A and the previous Householder transforms are applied to it. Then, the next Householder transform is determined from the resulting vector. This procedure is described in the following algorithm, which was originally proposed by Walker [221].

ALGORITHM 6.3: Householder Arnoldi

```
1. Select a nonzero vector v; Set z_1 = v

2. For j = 1, \ldots, m, m+1 Do:

3. Compute the Householder unit vector w_j such that

4. (w_j)_i = 0, i = 1, \ldots, j-1 and

5. (P_j z_j)_i = 0, i = j+1, \ldots, n, where P_j = I - 2w_j w_j^T

6. h_{j-1} = P_j z_j

7. v_j = P_1 P_2 \ldots P_j e_j

8. If j \le m compute z_{j+1} := P_j P_{j-1} \ldots P_1 A v_j

9. EndDo
```

For details regarding the determination of the Householder vector w_j in the third to fifth lines and on its use in the sixth to eight lines, see Chapter 1. Recall that the matrices P_j need not be formed explicitly. To obtain h_{j-1} from z_j in line 6, zero out all the components from position j+1 through n of the n-vector z_j and change its j-th component, leaving all others unchanged. Thus, the $n\times m$ matrix $[h_0,h_1,\ldots,h_m]$ will have the same structure as the matrix X_m of equation (1.22) in Chapter 1. By comparison with the Householder algorithm seen in Chapter 1, we can infer that the above process computes the QR factorization of the matrix $v, Av_1, Av_2, Av_3, \ldots, Av_m$. Define

$$Q_j = P_j P_{j-1} \dots P_1. \tag{6.8}$$

The definition of z_{j+1} in line 8 of the algorithm yields the relation,

$$Q_j A v_j = z_{j+1}$$
.

After the next Householder transformation P_{j+1} is applied in line 6, h_j satisfies the relation,

$$h_{i} = P_{i+1}z_{i+1} = P_{i+1}Q_{i}Av_{i} = Q_{i+1}Av_{i}.$$
(6.9)

Now observe that since the components $j+2,\ldots,n$ of h_j are zero, then $P_ih_j=h_j$ for any $i\geq j+2$. Hence,

$$h_j = P_m P_{m-1} \dots P_{j+2} h_j = Q_m A v_j, \quad j = 1, \dots, m.$$

This leads to the factorization,

$$Q_m[v, Av_1, Av_2, \dots, Av_m] = [h_0, h_1, \dots, h_m]$$
(6.10)

where the matrix $[h_0, \ldots, h_m]$ is $n \times (m+1)$ and is upper triangular and Q_m is unitary.

It is important to relate the vectors v_i and h_i defined in this algorithm with vectors of the standard Arnoldi process. Let \bar{H}_m be the $(m+1)\times m$ matrix obtained from the first m+1 rows of the $n\times m$ matrix $[h_1,\ldots,h_m]$. Since Q_{j+1} is unitary we have $Q_{j+1}^{-1}=Q_{j+1}^T$ and hence, from the relation (6.9)

$$Av_j = Q_{j+1}^T \sum_{i=1}^{j+1} h_{ij} e_i = \sum_{i=1}^{j+1} h_{ij} Q_{j+1}^T e_i$$

where each e_i is the *i*-th column of the $n \times n$ identity matrix. Since $P_k e_i = e_i$ for i < k, it is not difficult to see that

$$Q_{j+1}^T e_i = P_1 \dots P_{j+1} e_i = v_i, \text{ for } i \le j+1.$$
 (6.11)

This yields the relation $Av_j = \sum_{i=1}^{j+1} h_{ij}v_i$, for $j=1,\ldots,m$, which can be written in matrix form as

$$AV_m = V_{m+1}\bar{H}_m.$$

This is identical with the relation (6.5) obtained with the Gram-Schmidt or Modified Gram-Schmidt implementation. The v_i 's form an orthonormal basis of the Krylov subspace \mathcal{K}_m and are identical with the v_i 's defined by the Arnoldi process, apart from a possible sign difference.

Although the Householder algorithm is numerically more viable than the Gram-Schmidt or Modified Gram-Schmidt versions, it is also more expensive. The cost of each of the outer loops, corresponding to the j control variable, is dominated by lines 7 and 8. These apply the reflection matrices P_i for $i=1,\ldots,j$ to a vector, perform the matrix-vector product Av_j , and then apply the matrices P_i for $i=j,j-1,\ldots,1$ to a vector. The application of each P_i to a vector is performed as

$$(I - 2w_i w_i^T)v = v - \sigma w_i$$
 with $\sigma = 2w_i^T v$.

This is essentially the result of a dot-product of length n-i+1 followed by a vector update of the same length, requiring a total of about 4(n-i+1) operations for each application of P_i . Neglecting the last step, the number of operations due to the Householder transformations alone approximately totals

$$\sum_{j=1}^{m} \sum_{i=1}^{j} 8(n-i+1) = 8 \sum_{j=1}^{m} \left(jn - \frac{j(j-1)}{2} \right) \approx 4m^{2}n - \frac{4}{3}m^{3}.$$

The table below shows the costs of different orthogonalization procedures. GS stands for Gram-Schmidt, MGS for Modified Gram-Schmidt, MGSR for Modified Gram-Schmidt with reorthogonalization, and HO for Householder.

	GS	MGS	MGSR	НО
Flops	$2m^2n$	$2m^2n$	$4m^2n$	$4m^2n - \frac{4}{3}m^3$
Storage	(m+1)n	(m+1)n	(m+1)n	$(m+1)n - \frac{1}{2}m^2$

The number of operations shown for MGSR corresponds to the worst case scenario when a second orthogonalization is performed each time. In practice, the number of operations is usually closer to that of the standard MGS. Regarding storage, the vectors $v_i, i=1,\ldots,m$ need not be saved. In the algorithms for solving linear systems, these vectors are needed at the end of the process. This issue will be covered with the Householder implementations of these algorithms. For now, assume that only the w_i 's are saved. The small gain in memory usage in the Householder version can be explained by the diminishing lengths of the vectors required at each step of the Householder transformation. However, this difference is negligible relative to the whole storage requirement of the algorithm, because $m \ll n$, typically.

The Householder orthogonalization may be a reasonable choice when developing general purpose, reliable software packages where robustness is a critical criterion. This is especially true for solving eigenvalue problems since the cost of orthogonalization is then amortized over several eigenvalue/eigenvector calculations. When solving linear systems, the Modified Gram-Schmidt orthogonalization, with a reorthogonalization strategy based on a measure of the level of cancellation, is more than adequate in most cases.

ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM)

6.4

Given an initial guess x_0 to the original linear system Ax = b, we now consider an orthogonal *projection method* as defined in the previous chapter, which takes $\mathcal{L} = \mathcal{K} = \mathcal{K}_m(A, r_0)$, with

$$\mathcal{K}_m(A, r_0) = span\{r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0\},\tag{6.12}$$

in which $r_0 = b - Ax_0$. This method seeks an approximate solution x_m from the affine subspace $x_0 + \mathcal{K}_m$ of dimension m by imposing the Galerkin condition

$$b - Ax_m \perp \mathcal{K}_m. \tag{6.13}$$

If $v_1 = r_0/\|r_0\|_2$ in Arnoldi's method, and set $\beta = \|r_0\|_2$, then

$$V_m^T A V_m = H_m$$

by (6.6) and

$$V_m^T r_0 = V_m^T(\beta v_1) = \beta e_1.$$

As a result, the approximate solution using the above m-dimensional subspaces is given by

$$x_m = x_0 + V_m y_m, (6.14)$$

$$y_m = H_m^{-1}(\beta e_1). (6.15)$$

A method based on this approach and called the Full Orthogonalization Method (FOM) is described next. Modified Gram-Schmidt is used in the Arnoldi step.

ALGORITHM 6.4: Full Orthogonalization Method (FOM)

```
1. Compute r_0 = b - Ax_0, \beta := ||r_0||_2, and v_1 := r_0/\beta
 2. Define the m \times m matrix H_m = \{h_{ij}\}_{i,j=1,\dots,m}; Set H_m = 0
 3. For j = 1, 2, ..., m Do:
        Compute w_i := Av_i
 4.
 5.
        For i = 1, \ldots, j Do:
            h_{ij} = (w_j, v_i)
 6.
            w_j := w_j - h_{ij}v_i
 7.
 8.
        Compute h_{j+1,j} = ||w_j||_2. If h_{j+1,j} = 0 set m := j and Goto 12
 9.
        Compute v_{j+1} = w_j / h_{j+1,j}.
10.
11. EndDo
12. Compute y_m = H_m^{-1}(\beta e_1) and x_m = x_0 + V_m y_m
```

The above algorithm depends on a parameter m which is the dimension of the Krylov subspace. In practice it is desirable to select m in a dynamic fashion. This would be possible if the residual norm of the solution x_m is available inexpensively (without having to compute x_m itself). Then the algorithm can be stopped at the appropriate step using this information. The following proposition gives a result in this direction.

PROPOSITION 6.7 The residual vector of the approximate solution x_m computed by the FOM Algorithm is such that

$$b - Ax_m = -h_{m+1,m} e_m^T y_m v_{m+1}$$

and, therefore,

$$||b - Ax_m||_2 = h_{m+1,m}|e_m^T y_m|. (6.16)$$

Proof. We have the relations,

$$b - Ax_m = b - A(x_0 + V_m y_m)$$

= $r_0 - AV_m y_m$
= $\beta v_1 - V_m H_m y_m - h_{m+1,m} e_m^T y_m v_{m+1}$.

By the definition of y_m , $H_m y_m = \beta e_1$, and so $\beta v_1 - V_m H_m y_m = 0$ from which the result follows immediately.

A rough estimate of the cost of each step of the algorithm is determined as follows. If Nz(A) is the number of nonzero elements of A, then m steps of the Arnoldi procedure will require m matrix-vector products at the cost of $2m \times Nz(A)$. Each of the Gram-Schmidt steps costs approximately $4 \times j \times n$ operations, which brings the total over the m steps to

approximately $2m^2n$. Thus, on the average, a step of FOM costs approximately

$$2Nz(A) + 2mn$$
.

Regarding storage, m vectors of length n are required to save the basis V_m . Additional vectors must be used to keep the current solution and right-hand side, and a scratch vector for the matrix-vector product. In addition, the Hessenberg matrix H_m must be saved. The total is therefore roughly

$$(m+3)n + \frac{m^2}{2}.$$

In most situations m is small relative to n, so this cost is dominated by the first term.

6.4.1 VARIATION 1: RESTARTED FOM

Consider now the algorithm from a practical viewpoint. As m increases, the computational cost increases at least as $O(m^2)n$ because of the Gram-Schmidt orthogonalization. The memory cost increases as O(mn). For large n this limits the largest value of m that can be used. There are two remedies. The first is to restart the algorithm periodically and the second is to "truncate" the orthogonalization in the Arnoldi algorithm. In this section we consider the first of these two options, which is described below.

ALGORITHM 6.5: Restarted FOM (FOM(m))

- 1. Compute $r_0 = b Ax_0$, $\beta = ||r_0||_2$, and $v_1 = r_0/\beta$.
- 2. Generate the Arnoldi basis and the matrix H_m using the Arnoldi algorithm
- 3. starting with v_1 .
- 4. Compute $y_m = H_m^{-1}\beta e_1$ and $x_m = x_0 + V_m y_m$. If satisfied then Stop.
- 5. Set $x_0 := x_m$ and go to 1.

There are many possible variations to this basic scheme. One that is generally more economical in practice is based on the observation that sometimes a small m is sufficient for convergence and sometimes the largest possible m is necessary. Hence, the idea of averaging over different values of m. Start the algorithm with m=1 and increment m by one in line 5 until a certain m_{max} is reached, after which m is reset to one, or kept the same. These variations will not be considered here.

Example 6.1 Table 6.1 shows the results of applying the FOM algorithm with no preconditioning to three of the test problems described in Section 3.7.

Matrix	Iters	Kflops	Residual	Error
F2DA	109	4442	0.36E-03	0.67E-04
F3D	66	11664	0.87E-03	0.35E-03
ORS	300	13558	0.26E+00	0.71E-04

Table 6.1 A test run of FOM with no preconditioning.

The column labeled *Iters* shows the total actual number of matrix-vector multiplications (matvecs) required to converge. The stopping criterion used is that the 2-norm of the residual be reduced by a factor of 10^7 relative to the 2-norm of the initial residual. A maximum of 300 matvecs are allowed. *Kflops* is the total number of floating point operations performed, in thousands. *Residual* and *Error* represent the two-norm of the residual and error vectors, respectively. In this test, m was taken to be 10. Note that the method did not succeed in solving the third problem.

6.4.2 VARIATION 2: IOM AND DIOM

A second alternative to FOM is to truncate the Arnoldi recurrence. Specifically, an integer k is selected and the following "incomplete" orthogonalization is performed.

ALGORITHM 6.6: Incomplete Orthogonalization Process

```
1. For j=1,2,\ldots,m Do:

2. Compute w:=Av_j

3. For i=\max\{1,j-k+1\},\ldots,j Do:

4. h_{i,j}=(w,v_i)

5. w:=w-h_{ij}v_i

6. EndDo

7. Compute h_{j+1,j}=\|w\|_2 and v_{j+1}=w/h_{j+1,j}

8. EndDo
```

The number of directions k against which to orthogonalize may be dictated by memory limitations. The Incomplete Orthogonalization Method (IOM) consists of performing the above incomplete orthogonalization procedure and computing an approximate solution using the same formulas (6.14) and (6.15).

ALGORITHM 6.7: IOM Algorithm

Run a modification of Algorithm 6.4 in which the Arnoldi process in lines 3 to 11 is replaced by the Incomplete Orthogonalization process and every other computation remains unchanged.

It is now necessary to keep only the k previous v_i vectors. The others are not needed in the above process and may be discarded. However, the difficulty remains that when the solution is computed by formula (6.14), all the vectors v_i for $i=1,2,\ldots,m$ are required. One option is to recompute them at the end, but essentially this doubles the cost of the algorithm. Fortunately, a formula can be developed whereby the current approximate solution x_m can be updated from the previous approximation x_{m-1} and a small number

of vectors that are also updated at each step. This *progressive* formulation of the solution leads to an algorithm termed *Direct IOM* (DIOM) which we now derive.

The Hessenberg matrix H_m obtained from the incomplete orthogonalization process has a band structure with a bandwidth of k + 1. For example, when k = 3 and m = 5, it is of the form

$$H_{m} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ & h_{32} & h_{33} & h_{34} & h_{35} \\ & & h_{43} & h_{44} & h_{45} \\ & & & h_{54} & h_{55} \end{pmatrix}.$$
(6.17)

The *Direct* version of IOM is derived from exploiting the special structure of the LU factorization, $H_m = L_m U_m$, of the matrix H_m . Assuming no pivoting is used, the matrix L_m is unit lower bidiagonal and U_m is banded upper triangular, with k diagonals. Thus, the above matrix has a factorization of the form

$$H_m = \begin{pmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ & l_{32} & 1 & & \\ & & l_{43} & 1 & \\ & & & l_{54} & 1 \end{pmatrix} \times \begin{pmatrix} u_{11} & u_{12} & u_{13} & & \\ & u_{22} & u_{23} & u_{24} & \\ & & u_{33} & u_{34} & u_{35} \\ & & & u_{44} & u_{45} \\ & & & u_{55} \end{pmatrix}.$$

The approximate solution is then given by

$$x_m = x_0 + V_m U_m^{-1} L_m^{-1} (\beta e_1).$$

Defining

$$P_m \equiv V_m U_m^{-1}$$

and

$$z_m = L_m^{-1}(\beta e_1),$$

the approximate solution is given by

$$x_m = x_0 + P_m z_m. (6.18)$$

Because of the structure of U_m , P_m can be updated easily. Indeed, equating the last columns of the matrix relation $P_m U_m = V_m$ yields

$$\sum_{i=m-k+1}^{m} u_{im} p_i = v_m,$$

which allows the vector p_m to be computed from the previous p_i 's and v_m , with the help of the relation,

$$p_m = \frac{1}{u_{mm}} \left[v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i \right].$$

In addition, because of the structure of L_m , we have the relation

$$z_m = \left[egin{array}{c} z_{m-1} \ \zeta_m \end{array}
ight]$$

in which

$$\zeta_m = -l_{m,m-1}\zeta_{m-1}.$$

From (6.18),

$$x_m = x_0 + [P_{m-1}, p_m] \begin{bmatrix} z_{m-1} \\ \zeta_m \end{bmatrix} = x_0 + P_{m-1} z_{m-1} + \zeta_m p_m.$$

Noting that $x_0 + P_{m-1}z_{m-1} = x_{m-1}$, it follows that the approximation x_m can be updated at each step by the relation,

$$x_m = x_{m-1} + \zeta_m p_m$$

where p_m is defined above. This gives the following algorithm, called the Direct Incomplete Orthogonalization Method (DIOM).

ALGORITHM 6.8: DIOM

- 1. Choose x_0 and compute $r_0 = b Ax_0$, $\beta := ||r_0||_2$, $v_1 := r_0/\beta$.
- 2. For m = 1, 2, ..., until convergence Do:
- Compute h_{im} , $i = \max\{1, m k + 1\}, \dots, m$ and v_{m+1} as in 3.
- 4. lines 2-7 of Algorithm (6.6).
- 5. Update the LU factorization of H_m , i.e., obtain the last column
- 6. of U_m using the previous k pivots. If $u_{mm} = 0$ Stop.
- $\zeta_m = \{ \text{ if } m = 1 \text{ then } \beta, \text{ else } -l_{m,m-1} \zeta_{m-1} \}$ $p_m = u_{mm}^{-1} \left(v_m \sum_{i=m-k+1}^{m-1} u_{im} p_i \right) \text{ (for } i \leq 0 \text{ set } u_{im} p_i \equiv 0)$ 8.
- $x_m = x_{m-1} + \zeta_m p_m$
- 10. EndDo

Note that the above algorithm is based implicitly on Gaussian elimination without pivoting for the solution of the Hessenberg system $H_m y_m = \beta e_1$. This may cause a premature termination in line 6. Fortunately, there is an implementation based on Gaussian elimination with partial pivoting. The details of this variant can be found in [174]. DIOM can also be derived by imposing the properties that are satisfied by the residual vector and the conjugate directions, i.e., the p_i 's.

Observe that (6.4) is still valid and as a consequence, Proposition 6.7, which is based on it, still holds. That is because the orthogonality properties were not used to derive the two relations therein. Since the residual vector is a scalar multiple of v_{m+1} and since the v_i 's are no longer orthogonal, IOM and DIOM are not orthogonal projection techniques. They can, however, be viewed as oblique projection techniques onto K_m and orthogonal to an artificially constructed subspace.

PROPOSITION 6.8 IOM and DIOM are mathematically equivalent to a projection process onto \mathcal{K}_m and orthogonally to

$$\mathcal{L}_m = \operatorname{span}\{z_1, z_2, \dots, z_m\}$$

where

$$z_i = v_i - (v_i, v_{m+1})v_{m+1}, \quad i = 1, \dots, m.$$

Proof. The proof is an immediate consequence of the fact that r_m is a multiple of v_{m+1} and by construction, v_{m+1} is orthogonal to all z_i 's defined in the proposition.

The following simple properties can be shown:

• The residual vectors r_i , i = 1, ..., m, are "locally" orthogonal,

$$(r_i, r_i) = 0$$
, for $|i - j| \le k$, $i \ne j$.

• The p_j 's are locally A-orthogonal to the Arnoldi vectors, i.e.,

$$(Ap_j, v_i) = 0$$
 for $j - k + 1 < i < j$.

• For the case $k = \infty$ (full orthogonalization) the p_i 's are semi-conjugate, i.e.,

$$(Ap_i, p_i) = 0$$
 for $i < j$.

GMRES

6.5

The Generalized Minimum Residual Method (GMRES) is a projection method based on taking $\mathcal{K} = \mathcal{K}_m$ and $\mathcal{L} = A\mathcal{K}_m$, in which \mathcal{K}_m is the m-th Krylov subspace with $v_1 = r_0/\|r_0\|_2$. As seen in Chapter 5, such a technique minimizes the residual norm over all vectors in $x_0 + \mathcal{K}_m$. The implementation of an algorithm based on this approach is similar to that of the FOM algorithm. We first describe the basic idea and then discuss a few practical variations.

6.5.1 THE BASIC GMRES ALGORITHM

There are two ways to derive the algorithm. The first way exploits the optimality property and the relation (6.5). Any vector x in $x_0 + \mathcal{K}_m$ can be written as

$$x = x_0 + V_m y, (6.19)$$

where y is an m-vector. Defining

$$J(y) = ||b - Ax||_2 = ||b - A(x_0 + V_m y)||_2,$$
(6.20)

the relation (6.5) results in

$$b - Ax = b - A (x_0 + V_m y)$$

$$= r_0 - AV_m y$$

$$= \beta v_1 - V_{m+1} \bar{H}_m y$$

$$= V_{m+1} (\beta e_1 - \bar{H}_m y).$$
(6.21)

Since the column-vectors of V_{m+1} are orthonormal, then

$$J(y) \equiv \|b - A(x_0 + V_m y)\|_2 = \|\beta e_1 - \bar{H}_m y\|_2.$$
(6.22)

The GMRES approximation is the unique vector of $x_0 + \mathcal{K}_m$ which minimizes (6.20). By (6.19) and (6.22), this approximation can be obtained quite simply as $x_m = x_0 + V_m y_m$ where y_m minimizes the function $J(y) = \|\beta e_1 - \bar{H}_m y\|_2$, i.e.,

$$x_m = x_0 + V_m y_m, \quad \text{where} \tag{6.23}$$

$$y_m = \operatorname{argmin}_u \|\beta e_1 - \bar{H}_m y\|_2.$$
 (6.24)

The minimizer y_m is inexpensive to compute since it requires the solution of an $(m+1) \times m$ least-squares problem where m is typically small. This gives the following algorithm.

ALGORITHM 6.9: GMRES

```
1. Compute r_0 = b - Ax_0, \beta := ||r_0||_2, and v_1 := r_0/\beta
 2. Define the (m+1) \times m matrix \bar{H}_m = \{h_{ij}\}_{1 \leq i \leq m+1, 1 \leq j \leq m}. Set \bar{H}_m = 0.
 3. For j = 1, 2, ..., m Do:
 4.
         Compute w_i := Av_i
 5.
         For i = 1, \ldots, j Do:
              \begin{array}{l} h_{ij} := (w_j, v_i) \\ w_j := w_j - h_{ij} v_i \end{array}
 6.
 7.
 8.
 9.
         h_{j+1,j} = ||w_j||_2. If h_{j+1,j} = 0 set m := j and go to 12
         v_{j+1} = w_j / h_{j+1,j}
10.
11. EndDo
12. Compute y_m the minimizer of \|\beta e_1 - \bar{H}_m y\|_2 and x_m = x_0 + V_m y_m.
```

The second way to derive the GMRES algorithm is to use the equations (5.7) with $W_m = AV_m$. This is the subject of Exercise 4.

6.5.2 THE HOUSEHOLDER VERSION

The previous algorithm utilizes the Modified Gram-Schmidt orthogonalization in the Arnoldi process. Section 6.3.2 described a Householder variant of the Arnoldi process which is numerically more robust than Gram-Schmidt. Here, we focus on a modification of GM-RES which retrofits the Householder orthogonalization. Section 6.3.2 explained how to get the v_j and the columns of \bar{H}_{m+1} at each step, from the Householder-Arnoldi algorithm. Since V_m and \bar{H}_m are the only items needed to extract the approximate solution at the end of the GMRES process, the modification seems rather straightforward. However, this is only true if the v_i 's are stored. In this case, line 12 would remain the same and the modification to the algorithm would be in lines 3-11 which are to be replaced by the Householder variant of the Arnoldi process. It was mentioned in Section 6.3.2 that it is preferable not to store the v_i 's because this would double the storage requirement. In this case, a formula must be found to generate the approximate solution in line 12, using only the w_i 's, i.e., the P_i 's. Let

$$y_m = (\eta_1, \eta_2, \cdots, \eta_m)^T,$$

so that the solution is of the form $x_m = x_0 + \eta_1 v_1 + \cdots + \eta_m v_m$. Recall that in the Householder variant of the Arnoldi process, each v_i is defined by

$$v_i = P_1 P_2 \dots P_i e_i$$
.

Using a Horner-like scheme, we obtain

$$x_m = x_0 + \eta_1 P_1 e_1 + \eta_2 P_1 P_2 e_2 + \ldots + \eta_m P_1 P_2 \ldots P_m e_m$$

= $x_0 + P_1 (\eta_1 e_1 + P_2 (\eta_2 e_2 + \ldots + P_{m-1} (\eta_{m-1} e_{m-1} + P_m \eta_m e_m)))$.

Therefore, when Householder orthogonalization is used, then line 12 of the GMRES algorithm should be replaced by a step of the form

$$z := 0 \tag{6.25}$$

$$z := P_j (\eta_j e_j + z), j = m, m - 1, \dots, 1$$
(6.26)

$$x_m = x_0 + z. (6.27)$$

The above step requires roughly as many operations as computing the last Arnoldi vector v_m . Therefore, its cost is negligible relative to the cost of the Arnoldi loop.

ALGORITHM 6.10: GMRES with Householder orthogonalization

- 1. Compute $r_0 = b Ax_0$, $z := r_0$.
- 2. For j = 1, ..., m, m + 1 Do:
- 3. Compute the Householder unit vector w_i such that
- 4. $(w_j)_i = 0, i = 1, \dots, j-1$ and
- 5. $(P_j z)_i = 0, i = j + 1, ..., n \text{ where } P_j = I 2w_j w_j^T;$
- 6. $h_{j-1} := P_j z$; If j = 1 then let $\beta := e_1^T h_0$.
- 7. $v := P_1 P_2 \dots P_j e_j.$
- 8. If $j \leq m$ compute $z := P_j P_{j-1} \dots P_1 Av$,
- 9. EndDo
- 10. Define $H_m = \text{the } (m+1) \times m$ upper part of the matrix $[h_1, \dots, h_m]$.
- 11. Compute $y_m = \operatorname{Argmin}_{y} \|\beta e_1 H_m y\|_2$. Let $y_m = (\eta_1, \eta_2, \dots, \eta_m)^T$.
- 12. z := 0
- 13. For j = m, m 1, ..., 1 Do:
- 14. $z := P_j (\eta_j e_j + z),$
- 15. EndDo
- 16. Compute $x_m = x_0 + z$

Note that now only the set of w_j vectors needs to be saved. The scalar β defined in line 6 is equal to $\pm ||r_0||_2$. This is because $P_1z = \beta e_1$ where β is defined by the equations (1.21) seen in Chapter 1, which define the first Householder transformation. As was observed earlier the Householder factorization actually obtains the QR factorization (6.10) with $v = r_0$. We can also formulate GMRES directly from this factorization. Indeed, if $x = x_0 + V_m y_m$, then according to this factorization, the corresponding residual norm is equal to

$$||h_0 - \eta_1 h_1 - \eta_2 h_2 - \ldots - \eta_m h_m||_2$$

whose minimizer is the same as the one defined by the algorithm.

The details of implementation of the solution of the least-squares problem as well as the estimate of the residual norm are identical with those of the Gram-Schmidt versions and are discussed next.

6.5.3 PRACTICAL IMPLEMENTATION ISSUES

A clear difficulty with Algorithm 6.9 is that it does not provide the approximate solution x_m explicitly at each step. As a result, it is not easy to determine when to stop. One remedy is to compute the approximation solution x_m at regular intervals and check for convergence by a test on the residual, for example. However, there is a more elegant solution which is related to the way in which the least-squares problem (6.24) is solved.

In order to solve the least-squares problem $\min \|\beta e_1 - \bar{H}_m y\|$, it is natural to transform the Hessenberg matrix into upper triangular form by using plane rotations. Define the rotation matrices

$$\Omega_{i} = \begin{pmatrix}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & c_{i} & s_{i} & & & \\
& & -s_{i} & c_{i} & & & \\
& & & 1 & & \\
& & & & \ddots & \\
& & & & 1
\end{pmatrix} \qquad \leftarrow \text{row } i \\
\leftarrow \text{row } i + 1 \qquad (6.28)$$

with $c_i^2 + s_i^2 = 1$. If m steps of the GMRES iteration are performed then these matrices have dimension $(m+1) \times (m+1)$.

Multiply the Hessenberg matrix \bar{H}_m and the corresponding right-hand side $\bar{g}_0 \equiv \beta e_1$ by a sequence of such matrices from the left. The coefficients s_i, c_i are selected to eliminate $h_{i+1,i}$ at each time. Thus, if m=5 we would have

$$\bar{H}_5 = \begin{pmatrix} h_{11} & h_{12} & h_{13} & h_{14} & h_{15} \\ h_{21} & h_{22} & h_{23} & h_{24} & h_{25} \\ & h_{32} & h_{33} & h_{34} & h_{35} \\ & & h_{43} & h_{44} & h_{45} \\ & & & h_{54} & h_{55} \\ & & & & h_{65} \end{pmatrix}, \quad \bar{g}_0 = \begin{pmatrix} \beta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Then premultiply \bar{H}_5 by

with

$$s_1 = \frac{h_{21}}{\sqrt{h_{11}^2 + h_{21}^2}}, \quad c_1 = \frac{h_{11}}{\sqrt{h_{11}^2 + h_{21}^2}}$$

to obtain the matrix and right-hand side

$$\bar{H}_{5}^{(1)} = \begin{pmatrix} h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \\ h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \\ h_{32} & h_{33} & h_{34} & h_{35} \\ & & h_{43} & h_{44} & h_{45} \\ & & & h_{54} & h_{55} \\ & & & & h_{65} \end{pmatrix}, \quad \bar{g}_{1} = \begin{pmatrix} c_{1}\beta \\ -s_{1}\beta \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}. \tag{6.29}$$

We can now premultiply the above matrix and right-hand side again by a rotation matrix Ω_2 to eliminate h_{32} . This is achieved by taking

$$s_2 = \frac{h_{32}}{\sqrt{(h_{22}^{(1)})^2 + h_{32}^2}}, \quad c_2 = \frac{h_{22}^{(1)}}{\sqrt{(h_{22}^{(1)})^2 + h_{32}^2}}.$$

This elimination process is continued until the *m*-th rotation is applied, which transforms the problem into one involving the matrix and right-hand side,

$$\bar{H}_{5}^{(5)} = \begin{pmatrix} h_{11}^{(5)} & h_{12}^{(5)} & h_{13}^{(5)} & h_{14}^{(5)} & h_{15}^{(5)} \\ h_{22}^{(5)} & h_{23}^{(5)} & h_{24}^{(5)} & h_{25}^{(5)} \\ & & h_{33}^{(5)} & h_{34}^{(5)} & h_{35}^{(5)} \\ & & & h_{44}^{(5)} & h_{45}^{(5)} \\ & & & & h_{55}^{(5)} & h_{55}^{(5)} \end{pmatrix}, \quad \bar{g}_{5} = \begin{pmatrix} \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \vdots \\ \gamma_{6} \end{pmatrix}.$$
(6.30)

Generally, the scalars c_i and s_i of the i^{th} rotation Ω_i are defined as

$$s_{i} = \frac{h_{i+1,i}}{\sqrt{(h_{ii}^{(i-1)})^{2} + h_{i+1,i}^{2}}}, \quad c_{i} = \frac{h_{ii}^{(i-1)}}{\sqrt{(h_{ii}^{(i-1)})^{2} + h_{i+1,i}^{2}}}.$$
 (6.31)

Define Q_m the product of matrices Ω_i ,

$$Q_m = \Omega_m \Omega_{m-1} \dots \Omega_1 \tag{6.32}$$

and

$$\bar{R}_m = \bar{H}_m^{(m)} = Q_m \bar{H}_m,$$
 (6.33)

$$\bar{g}_m = Q_m(\beta e_1) = (\gamma_1, \dots, \gamma_{m+1})^T.$$
 (6.34)

Since Q_m is unitary,

$$\min \|\beta e_1 - \bar{H}_m y\|_2 = \min \|\bar{g}_m - \bar{R}_m y\|_2.$$

The solution to the above least-squares problem is obtained by simply solving the triangular system resulting from deleting the last row of the matrix \bar{R}_m and right-hand side \bar{g}_m in (6.30). In addition, it is clear that for the solution y_* , the "residual" $\|\beta e_1 - \bar{H}_m y_*\|$ is nothing but the last element of the right-hand side, i.e., the term γ_6 in the above illustration.

PROPOSITION 6.9 Let Ω_i , $i=1,\ldots,m$ be the rotation matrices used to transform \bar{H}_m into an upper triangular form and \bar{R}_m , $\bar{g}_m = (\gamma_1, \ldots, \gamma_{m+1})^T$ the resulting matrix and right-hand side, as defined by (6.33), (6.34). Denote by R_m the $m \times m$ upper triangular

matrix obtained from \bar{R}_m by deleting its last row and by g_m the m-dimensional vector obtained from \bar{g}_m by deleting its last component. Then,

- 1. The rank of AV_m is equal to the rank of R_m . In particular, if $r_{mm} = 0$ then A must be singular.
- 2. The vector y_m which minimizes $\|\beta e_1 \bar{H}_m y\|_2$ is given by

$$y_m = R_m^{-1} g_m.$$

3. The residual vector at step m satisfies

$$b - Ax_m = V_{m+1} \left(\beta e_1 - \bar{H}_m y_m \right) = V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1}) \tag{6.35}$$

and, as a result,

$$||b - Ax_m||_2 = |\gamma_{m+1}|. (6.36)$$

Proof. To prove first part (1), use (6.5), to obtain the relation

$$AV_m = V_{m+1}\bar{H}_m$$

= $V_{m+1}Q_m^TQ_m\bar{H}_m$
= $V_{m+1}Q_m^T\bar{R}_m$.

Since $V_{m+1}Q_m^T$ is unitary, the rank of AV_m is that of \bar{R}_m , which equals the rank of R_m since these two matrices differ only by a zero row (the last row of \bar{R}_m). If $r_{mm}=0$ then R_m is of rank $\leq m-1$ and as a result AV_m is also of rank $\leq m-1$. Since V_m is of full rank, this means that A must be singular.

The second part (2), was essentially proved before the proposition. For any vector y,

$$\|\beta e_1 - \bar{H}_m y\|_2^2 = \|Q_m (\beta e_1 - \bar{H}_m y)\|_2^2$$

$$= \|\bar{g}_m - \bar{R}_m y\|_2^2$$

$$= |\gamma_{m+1}|^2 + \|g_m - R_m y\|_2^2$$
(6.37)

The minimum of the left-hand side is reached when the second term in the right-hand side of (6.37) is zero. Since R_m is nonsingular, this is achieved when $y = R_m^{-1} g_m$.

To prove the third part (3), we start with the definitions used for GMRES and the relation (6.21). For any $x = x_0 + V_m y$,

$$b - Ax = V_{m+1} (\beta e_1 - \bar{H}_m y)$$

= $V_{m+1} Q_m^T Q_m (\beta e_1 - \bar{H}_m y)$
= $V_{m+1} Q_m^T (\bar{g}_m - \bar{R}_m y)$.

As was seen in the proof of the second part above, the 2-norm of $\bar{g}_m - \bar{R}_m y$ is minimized when y annihilates all components of the right-hand side \bar{g}_m except the last one, which is equal to γ_{m+1} . As a result,

$$b - Ax_m = V_{m+1}Q_m^T(\gamma_{m+1}e_{m+1})$$

which is (6.35). The result (6.36) follows from the orthonormality of the column-vectors of $V_{m+1}Q_m^T$.

So far we have only described a process for computing the least-squares solution y_m

of (6.24). Note that this approach with plane rotations can also be used to solve the linear system (6.15) for the FOM method. The only difference is that the last rotation Ω_m must be omitted. In particular, a single program can be written to implement both algorithms using a switch for selecting the FOM or GMRES options.

It is possible to implement the above process in a progressive manner, i.e., at each step of the GMRES algorithm. This approach will allow one to obtain the residual norm at every step, with virtually no additional arithmetic operations. To illustrate this, start with (6.30), i.e., assume that the first m rotations have already been applied. Now the residual norm is available for x_5 and the stopping criterion can be applied. Assume that the test dictates that further steps be taken. One more step of the Arnoldi algorithm must be executed to get Av_6 and the 6-th column of \bar{H}_6 . This column is appended to \bar{R}_5 which has been augmented by a zero row to match the dimension. Then the previous rotations $\Omega_1, \Omega_2, \ldots, \Omega_5$ are applied to this last column. After this is done the following matrix and right-hand side are obtained:

$$H_{6}^{(5)} = \begin{pmatrix} h_{11}^{(5)} & h_{13}^{(5)} & h_{13}^{(5)} & h_{14}^{(5)} & h_{15}^{(5)} & h_{16}^{(5)} \\ & h_{22}^{(5)} & h_{23}^{(5)} & h_{24}^{(5)} & h_{25}^{(5)} & h_{26}^{(5)} \\ & & h_{33}^{(5)} & h_{34}^{(5)} & h_{35}^{(5)} & h_{36}^{(5)} \\ & & & h_{44}^{(5)} & h_{45}^{(5)} & h_{46}^{(5)} \\ & & & h_{55}^{(5)} & h_{56}^{(5)} \\ & & & 0 & h_{66}^{(5)} \\ & & & 0 & h_{76}^{(5)} \end{pmatrix}, g_{6}^{(5)} = \begin{pmatrix} \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \vdots \\ \gamma_{6} \\ 0 \end{pmatrix}.$$
(6.38)

The algorithm now continues in the same way as before. We need to premultiply the matrix by a rotation matrix Ω_6 (now of size 7×7) with

$$s_6 = \frac{h_{76}}{\sqrt{(h_{66}^{(5)})^2 + h_{76}^2}}, \quad c_6 = \frac{h_{66}^{(5)}}{\sqrt{(h_{66}^{(5)})^2 + h_{76}^2}}$$

to get the matrix and right-hand side,

$$\bar{R}_{6} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & r_{14} & r_{15} & r_{16} \\ & r_{22} & r_{23} & r_{24} & r_{25} & r_{26} \\ & & r_{33} & r_{34} & r_{35} & r_{36} \\ & & & r_{44} & r_{45} & r_{46} \\ & & & & r_{55} & r_{56} \\ & & & & & r_{66} \\ & & & & & 0 \end{pmatrix}, \ \bar{g}_{6} = \begin{pmatrix} \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \vdots \\ c_{6}\gamma_{6} \\ -s_{6}\gamma_{6} \end{pmatrix}.$$
(6.39)

If the residual norm as given by $|\gamma_{m+1}|$ is small enough, the process must be stopped. The last rows of \bar{R}_m and \bar{g}_m are deleted and the resulting upper triangular system is solved to obtain y_m . Then the approximate solution $x_m = x_0 + V_m y_m$ is computed.

Note from (6.39) that the following useful relation for γ_{j+1} results

$$\gamma_{j+1} = -s_j \gamma_j. \tag{6.40}$$

In particular, if $s_j = 0$ then the residual norm must be equal to zero which means that the solution is exact at step j.

6.5.4 BREAKDOWN OF GMRES

If Algorithm 6.9 is examined carefully, we observe that the only possibilities of breakdown in GMRES are in the Arnoldi loop, when $\hat{v}_{j+1}=0$, i.e., when $h_{j+1,j}=0$ at a given step j. In this situation, the algorithm stops because the next Arnoldi vector cannot be generated. However, in this situation, the residual vector is zero, i.e., the algorithm will deliver the exact solution at this step. In fact, the converse is also true: If the algorithm stops at step j with $b-Ax_j=0$, then $h_{j+1,j}=0$.

PROPOSITION 6.10 Let A be a nonsingular matrix. Then, the GMRES algorithm breaks down at step j, i.e., $h_{j+1,j} = 0$, if and only if the approximate solution x_j is exact.

Proof. To show the necessary condition, observe that if $h_{j+1,j} = 0$, then $s_j = 0$. Indeed, since A is nonsingular, then $r_{jj} = h_{jj}^{(j-1)}$ is nonzero by the first part of Proposition 6.9 and (6.31) implies $s_j = 0$. Then, the relations (6.36) and (6.40) imply that $r_j = 0$.

To show the sufficient condition, we use (6.40) again. Since the solution is exact at step j and not at step j-1, then $s_j=0$. From the formula (6.31), this implies that $h_{j+1,j}=0$.

6.5.5 RELATIONS BETWEEN FOM AND GMRES

If the last row of the least-squares system in (6.38) is deleted, instead of the one in (6.39), i.e., before the last rotation Ω_6 is applied, the same approximate solution as FOM would result. As a practical consequence a single subroutine can be written to handle both cases. This observation can also be helpful in understanding the relationships between the two algorithms.

We begin by establishing an interesting relation between the FOM and GMRES iterates, which will be exploited in the next chapter. A general lemma is first shown regarding the solutions of the triangular systems

$$R_m y_m = q_m$$

obtained from applying successive rotations to the Hessenberg matrices \bar{H}_m . As was stated before, the only difference between the y_m vectors obtained in GMRES and Arnoldi is that the last rotation Ω_m is omitted in FOM. In other words, the R_m matrix for the two methods differs only in its (m,m) entry while the right-hand sides differ only in their last components.

LEMMA 6.1 Let \tilde{R}_m be the $m \times m$ upper part of the matrix $Q_{m-1}\bar{H}_m$ and, as before, let R_m be the $m \times m$ upper part of the matrix $Q_m\bar{H}_m$. Similarly, let \tilde{g}_m be the vector of the first m components of $Q_{m-1}(\beta e_1)$ and let g_m be the vector of the first m components of $Q_m(\beta e_1)$. Define

$$\tilde{y}_m = \tilde{R}_m^{-1} \tilde{g}_m, \quad y_m = R_m^{-1} g_m$$

the y vectors obtained for an m-dimensional FOM and GMRES methods, respectively.

GMRES 165 6.5

Then

$$y_m - \begin{pmatrix} y_{m-1} \\ 0 \end{pmatrix} = c_m^2 \left(\tilde{y}_m - \begin{pmatrix} y_{m-1} \\ 0 \end{pmatrix} \right) \tag{6.41}$$

in which c_m is the cosine used in the m-th rotation Ω_m , as defined by (6.31).

Proof. The following relation holds:

$$R_m = \begin{pmatrix} R_{m-1} & z_m \\ 0 & \xi_m \end{pmatrix}, \quad \tilde{R}_m = \begin{pmatrix} R_{m-1} & z_m \\ 0 & \tilde{\xi}_m \end{pmatrix}.$$

Similarly, for the right-hand sides,

$$g_m = \begin{pmatrix} g_{m-1} \\ \gamma_m \end{pmatrix}, \quad \tilde{g}_m = \begin{pmatrix} g_{m-1} \\ \tilde{\gamma}_m \end{pmatrix}$$

with

$$\gamma_m = c_m \tilde{\gamma}_m. \tag{6.42}$$

 $\gamma_m=c_m\tilde{\gamma}_m. \tag{6.42}$ Denoting by λ the scalar $\sqrt{\tilde{\xi}_m^2+h_{m+1,m}^2}$, and using the definitions of s_m and c_m , we

$$\xi_m = c_m \tilde{\xi}_m + s_m h_{m+1,m} = \frac{\tilde{\xi}_m^2}{\lambda} + \frac{h_{m+1,m}^2}{\lambda} = \lambda = \frac{\tilde{\xi}_m}{c_m}.$$
 (6.43)

Now,

$$y_m = R_m^{-1} g_m = \begin{pmatrix} R_{m-1}^{-1} & -\frac{1}{\xi_m} R_{m-1}^{-1} z_m \\ 0 & \frac{1}{\xi_m} \end{pmatrix} \begin{pmatrix} g_{m-1} \\ \gamma_m \end{pmatrix}$$
(6.44)

which, upon observing that $R_{m-1}^{-1}g_{m-1} = y_{m-1}$, yields

$$y_m - {y_{m-1} \choose 0} = \frac{\gamma_m}{\xi_m} {-R_{m-1}^{-1} z_m \choose 1}.$$
 (6.45)

Replacing y_m, ξ_m, γ_m by $\tilde{y}_m, \tilde{\xi}_m, \tilde{\gamma}_m$, respectively, in (6.44), a relation similar to (6.45) would result except that γ_m/ξ_m is replaced by $\tilde{\gamma}_m/\tilde{\xi}_m$ which, by (6.42) and (6.43), satisfies the relation

$$\frac{\gamma_m}{\xi_m} = c_m^2 \frac{\tilde{\gamma}_m}{\tilde{\xi}_m}.$$

The result follows immediately.

If the FOM and GMRES iterates are denoted by the superscripts F and G, respectively, then the relation (6.41) implies that

$$x_m^G - x_{m-1}^G = c_m^2 (x_m^F - x_{m-1}^G),$$

or,

$$x_m^G = s_m^2 x_{m-1}^G + c_m^2 x_m^F. (6.46)$$

This leads to the following relation for the residual vectors obtained by the two methods,

$$r_m^G = s_m^2 r_{m-1}^G + c_m^2 r_m^F (6.47)$$

which indicates that, in general, the two residual vectors will evolve hand in hand. In particular, if $c_m=0$, then GMRES will not progress at step m, a phenomenon known as stagnation. However, in this situation, according to the definitions (6.31) of the rotations, $h_{mm}^{(m-1)}=0$ which implies that H_m is singular and, therefore, x_m^F is not defined. In fact, the reverse of this is also true, a result due to Brown [43], which is stated without proof in the following proposition.

PROPOSITION 6.11 If at any given step m, the GMRES iterates make no progress, i.e., if $x_m^G = x_{m-1}^G$ then H_m is singular and x_m^F is not defined. Conversely, if H_m is singular at step m, i.e., if FOM breaks down at step m, and A is nonsingular, then $x_m^G = x_{m-1}^G$.

Note also that the use of the above lemma is not restricted to the GMRES-FOM pair. Some of the iterative methods defined in this chapter and the next involve a least-squares problem of the form (6.24). In such cases, the iterates of the least-squares method and those of the orthogonal residual (Galerkin) method will be related by the same equation.

Another important observation from (6.40) is that if ρ_i is the residual norm $||b - Ax_i||_2$ obtained at step i, then

$$\rho_m^G = |s_m| \rho_{m-1}^G.$$

The superscripts G and F are used again to distinguish between GMRES and FOM quantities. A consequence of this is that,

$$\rho_m^G = |s_1 s_2 \dots s_m| \beta. \tag{6.48}$$

Now consider the FOM iterates, assuming that x_m is defined, i.e., that H_m is nonsingular. An equation similar to (6.48) for FOM can be derived. Using the same notation as in the proof of the lemma, and recalling that

$$\rho_m^F = h_{m+1,m} |e_m^T H_m^{-1}(\beta e_1)|,$$

note that

$$e_m^T H_m^{-1}(\beta e_1) = \frac{\tilde{\gamma}_m}{\tilde{\xi}_m}.$$

Clearly,

$$|\tilde{\gamma}_m| = |s_{m-1}\gamma_{m-1}| = \dots = |s_1s_2\dots s_{m-1}\beta|$$

and therefore,

$$\rho_m^F = \frac{h_{m+1,m}}{|\tilde{\xi}_m|} |s_1 s_2 \dots s_{m-1} \beta|.$$

Using (6.31), observe that $h_{m+1,m}/|\tilde{\xi}_m|$ is the tangent of the angle defining the m-th rotation, and therefore,

$$\rho_m^F = \frac{|s_m|\sqrt{\tilde{\xi}_m^2 + h_{m+1,m}^2}}{|\tilde{\xi}_m|} |s_1 s_2 \dots s_{m-1} \beta|$$

which, by a comparison with (6.48), yields a revealing relation between the residuals of

the FOM and GMRES algorithms, namely,

$$ho_m^F = rac{1}{c_m}
ho_m^G \ =
ho_m^G \ \sqrt{1 + rac{h_{m+1,m}^2}{ ilde{\xi}_m^2}}.$$

Another way to prove the above expression is to exploit the relation (6.47); see Exercise 12. These results are summarized in the following proposition (Brown [43]).

PROPOSITION 6.12 Assume that m steps of the Arnoldi process have been taken and that H_m is nonsingular. Let $\xi \equiv (Q_{m-1}\bar{H}_m)_{mm}$ and $h \equiv h_{m+1,m}$. Then the residual norms produced by the FOM and the GMRES algorithms are related by the equality

$$\rho_m^F = \frac{1}{c_m} \rho_m^G = \rho_m^G \sqrt{1 + \frac{h^2}{\xi^2}}.$$
 (6.49)

6.5.6 VARIATION 1: RESTARTING

Similar to the FOM algorithm of the previous section, the GMRES algorithm becomes impractical when m is large because of the growth of memory and computational requirements as m increases. These requirements are identical with those of FOM. As with FOM, there are two remedies. One is based on restarting and the other on truncating the Arnoldi orthogonalization. The straightforward restarting option is described here.

ALGORITHM 6.11: Restarted GMRES

- 1. Compute $r_0 = b Ax_0$, $\beta = ||r_0||_2$, and $v_1 = r_0/\beta$
- 2. Generate the Arnoldi basis and the matrix \bar{H}_m using the Arnoldi algorithm
- 3. starting with v_1
- 4. Compute y_m which minimizes $\|\beta e_1 \bar{H}_m y\|_2$ and $x_m = x_0 + V_m y_m$
- 5. If satisfied then Stop, else set $x_0 := x_m$ and GoTo 1

Note that the implementation tricks discussed in the previous section can be applied, providing the residual norm at each sub-step j without computing the approximation x_j . This enables the program to exit as soon as this norm is small enough.

A well known difficulty with the restarted GMRES algorithm is that it can *stagnate* when the matrix is not positive definite. The full GMRES algorithm is guaranteed to converge in at most n steps, but this would be impractical if there were many steps required for convergence. Obviously, a preconditioner for the linear system can be used to reduce the number of steps, or a better preconditioner if one is already in use. This issue will be covered later along with preconditioning techniques.

Example 6.2 Table 6.2 shows the results of applying the GMRES algorithm with no preconditioning to three of the test problems described in Section 3.7.

Matrix	Iters	Kflops	Residual	Error
F2DA	95	3841	0.32E-02	0.11E-03
F3D	67	11862	0.37E-03	0.28E-03
ORS	205	9221	0.33E+00	0.68E-04

Table 6.2 A test run of GMRES with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In this test, the dimension of the Krylov subspace is m = 10. Observe that the problem ORS, which could not be solved by FOM(10), is now solved in 205 steps.

6.5.7 VARIATION 2: TRUNCATED GMRES VERSIONS

It is possible to derive an Incomplete version of the GMRES algorithm. This algorithm is called Quasi-GMRES (QGMRES) for the sake of notational uniformity with other algorithms developed in the literature (some of which will be seen in the next chapter). A direct version called DQGMRES using exactly the same arguments as in Section 6.4.2 for DIOM can also be derived. We begin by defining the QGMRES algorithm, in simple terms, by replacing the Arnoldi Algorithm with Algorithm 6.6, the Incomplete Orthogonalization procedure.

ALGORITHM 6.12: Quasi-GMRES

Run a modification of Algorithm 6.9 in which the Arnoldi process in lines 3 to 11 is replaced by the Incomplete Orthogonalization process and all other computations remain unchanged.

Similar to IOM, only the k previous v_i vectors must be kept at any given step. However, this version of GMRES will potentially save computations but not storage. This is because computing the solution by formula (6.23) requires the vectors v_i for $i=1,\ldots,m$ to be accessed. Fortunately, the approximate solution can be updated in a progressive manner, as in DIOM.

The implementation of this progressive version is quite similar to DIOM. First, note that if \bar{H}_m is banded, as for example, when m=5, k=2,

$$\bar{H}_{5} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} & h_{23} \\ & h_{32} & h_{33} & h_{34} \\ & & h_{43} & h_{44} & h_{45} \\ & & & h_{54} & h_{55} \\ & & & & h_{65} \end{pmatrix}, g = \begin{pmatrix} \beta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$(6.50)$$

then the premultiplications by the rotation matrices Ω_i as described in the previous section will only introduce an additional diagonal. For the above case, the resulting least-squares

system is $\bar{R}_5 y = \bar{g}_5$ with:

$$\bar{R}_{5} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & & & \\ & r_{22} & r_{23} & r_{24} & & \\ & & r_{33} & r_{34} & r_{35} \\ & & & r_{44} & r_{45} \\ & & & & r_{55} \\ & & & & 0 \end{pmatrix}, \qquad \bar{g}_{5} = \begin{pmatrix} \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \vdots \\ \gamma_{6} \end{pmatrix}. \tag{6.51}$$

The approximate solution is given by

$$x_m = x_0 + V_m R_m^{-1} g_m$$

where R_m and g_m are obtained by removing the last row of \bar{R}_m and \bar{g}_m , respectively. Defining P_m as in DIOM,

$$P_m \equiv V_m R_m^{-1}$$

then,

$$x_m = x_0 + P_m g_m.$$

Also note that similarly to DIOM,

$$g_m = \left[\begin{array}{c} g_{m-1} \\ \gamma_m \end{array} \right]$$

in which

$$\gamma_m = c_m \gamma_m^{(m-1)},$$

where $\gamma_m^{(m-1)}$ is the last component of the vector \bar{g}_{m-1} , i.e., the right-hand side before the m-th rotation is applied. Thus, x_m can be updated at each step, via the relation

$$x_m = x_{m-1} + \gamma_m p_m.$$

ALGORITHM 6.13: DQGMRES

- 1. Compute $r_0 = b Ax_0$, $\gamma_1 := ||r_0||_2$, and $v_1 := r_0/\gamma_1$
- 2. For m = 1, 2, ..., until convergence Do:
- 3. Compute h_{im} , $i = \max\{1, m k + 1\}, \dots, m$ and v_{m+1}
- 4. as in lines 2 to 6 of Algorithm 6.6
- 5. Update the QR factorization of \bar{H}_m , i.e.,
- 6. Apply Ω_i , $i = m k, \dots, m 1$ to the m-th column of H_m
- 7. Compute the rotation coefficients c_m , s_m by (6.31)
- 8. Apply Ω_m to \bar{H}_m and \bar{g}_m , i.e., Compute:
- $9. \gamma_{m+1} := -s_m \gamma_m$
- $10. \gamma_m := c_m \gamma_m$
- 11. $h_{mm} := c_m h_{mm} + s_m h_{m+1,m} \quad (= \sqrt{h_{m+1,m}^2 + h_{mm}^2})$
- 12. $p_m = \left(v_m \sum_{i=m-k}^{m-1} h_{im} p_i\right) / h_{mm}$
- $13. x_m = x_{m-1} + \gamma_m p_m$
- 14. If $|\gamma_{m+1}|$ is small enough then Stop
- 15. EndDo

The above algorithm does not minimize the norm of the residual vector over $x_0 + \mathcal{K}_m$. Rather, it attempts to perform an approximate minimization. The formula (6.35) is still valid since orthogonality is not used to derive it. Therefore,

$$b - Ax_m = V_{m+1}Q_m^T(\gamma_{m+1}e_{m+1}). (6.52)$$

If the v_i 's were orthogonal to each other, then this is equivalent to GMRES and the residual norm is minimized over all vectors of the form $x_0 + V_m y$. Since only an incomplete orthogonalization is used then the v_i 's are only locally orthogonal and, as a result, only an approximate minimization may be obtained. In addition, (6.36) is no longer valid. This equality had been derived from the above equation by exploiting the orthogonality of the v_i 's. It turns out that in practice, $|\gamma_{m+1}|$ remains a reasonably good estimate of the actual residual norm because the v_i 's are nearly orthogonal. The following inequality provides an actual upper bound of the residual norm in terms of computable quantities:

$$||b - Ax_m|| \le \sqrt{m - k + 1} |\gamma_{m+1}|. \tag{6.53}$$

Here, k is to be replaced by m when $m \le k$. The proof of this inequality is a consequence of (6.52). If the unit vector $q \equiv Q_m^T e_{m+1}$ has components $\eta_1, \eta_2, \ldots, \eta_{m+1}$, then

$$\begin{split} \|b - Ax_m\|_2 &= |\gamma_{m+1}| \ \|V_{m+1}q\|_2 \\ &\leq |\gamma_{m+1}| \ \left(\left\| \sum_{i=1}^{k+1} \eta_i v_i \right\|_2 + \left\| \sum_{i=k+2}^{m+1} \eta_i v_i \right\|_2 \right) \\ &\leq |\gamma_{m+1}| \ \left(\left[\sum_{i=1}^{k+1} \eta_i^2 \right]^{1/2} + \sum_{i=k+2}^{m+1} |\eta_i| \ \|v_i\|_2 \right) \\ &\leq |\gamma_{m+1}| \ \left(\left[\sum_{i=1}^{k+1} \eta_i^2 \right]^{1/2} + \sqrt{m-k} \ \left[\sum_{i=k+2}^{m+1} \eta_i^2 \right]^{1/2} \right) \end{split}$$

Here, the orthogonality of the first k+1 vectors v_i was used and the last term comes from using the Cauchy-Schwartz inequality. The desired inequality follows from using the Cauchy-Schwartz inequality again in the form

$$1.a + \sqrt{m-k}.b \le \sqrt{m-k+1}\sqrt{a^2+b^2}$$

and from the fact that the vector q is of norm unity. Thus, using $|\gamma_{m+1}|$ as a residual estimate, we would make an error of a factor of $\sqrt{m-k+1}$ at most. In general, this is an overestimate and $|\gamma_{m+1}|$ tends to give an adequate estimate for the residual norm.

It is also interesting to observe that with a little bit more arithmetic, it is possible to actually compute the exact residual vector and norm. This is based on the observation that, according to (6.52), the residual vector is γ_{m+1} times the vector z_{m+1} which is the last column of the matrix

$$Z_{m+1} \equiv V_{m+1} Q_m^T. (6.54)$$

It is an easy exercise to see that this last column can be updated from v_{m+1} and z_m . Indeed,

$$Z_{m+1} = [V_m, v_{m+1}]Q_{m-1}^T \Omega_m$$

$$= [V_m Q_{m-1}^T, v_{m+1}] \Omega_m$$
$$= [Z_m, v_{m+1}] \Omega_m$$

where all the matrices related to the rotation are of size $(m+1) \times (m+1)$. The result is that

$$z_{m+1} = -s_m z_m + c_m v_{m+1}. (6.55)$$

The z_i 's can be updated at the cost of one extra vector in memory and 4n operations at each step. The norm of z_{m+1} can be computed at the cost of 2n operations and the exact residual norm for the current approximate solution can then be obtained by multiplying this norm by $|\gamma_{m+1}|$.

Because this is a little expensive, it may be preferred to just "correct" the estimate provided by γ_{m+1} by exploiting the above recurrence relation,

$$||z_{m+1}||_2 \le |s_m|||z_m||_2 + |c_m|.$$

If $\zeta_m \equiv ||z_m||_2$, then the following recurrence relation holds,

$$\zeta_{m+1} \le |s_m|\zeta_m + |c_m|. \tag{6.56}$$

The above relation is inexpensive to update, yet provides an upper bound that is sharper than (6.53); see Exercise 20.

An interesting consequence of (6.55) is a relation between two successive residual vectors:

$$r_{m} = \gamma_{m+1} z_{m+1}$$

$$= \gamma_{m+1} [-s_{m} z_{m} + c_{m} v_{m+1}]$$

$$= s_{m}^{2} r_{m-1} + c_{m} \gamma_{m+1} v_{m+1}.$$
(6.57)

This exploits the fact that $\gamma_{m+1} = -s_m \gamma_m$ and $r_j = \gamma_{j+1} z_{j+1}$.

Example 6.3 Table 6.3 shows the results of applying the DQGMRES algorithm with no preconditioning to three of the test problems described in Section 3.7.

Matrix	Iters	Kflops	Residual	Error
F2DA	98	7216	0.36E-02	0.13E-03
F3D	75	22798	0.64E-03	0.32E-03
ORS	300	24138	0.13E+02	0.25E-02

Table 6.3 A test run of DQGMRES with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In this test the number k of directions in the recurrence is k = 10.

It is possible to relate the quasi-minimal residual norm to the actual minimal residual norm provided by GMRES. The following result was proved by Nachtigal (1991) [152] for the QMR algorithm to be seen in the next chapter.

THEOREM 6.1 Assume that V_{m+1} , the Arnoldi basis associated with DQGMRES, is of full rank. Let r_m^Q and r_m^G be the residual norms obtained after m steps of the DQGMRES and GMRES algorithms, respectively. Then

$$||r_m^Q||_2 \le \kappa_2(V_{m+1})||r_m^G||_2.$$
 (6.58)

Proof. Consider the subset of \mathcal{K}_{m+1} defined by

$$\mathcal{R} = \{ r : r = V_{m+1}t; \ t = \beta e_1 - \bar{H}_m y; \ y \in \mathbb{C}^m \}.$$

Denote by y_m the minimizer of $\|\beta e_1 - \bar{H}_m y\|_2$ over y and $t_m = \beta e_1 - \bar{H}_m y_m$, $r_m = V_{m+1} t_m \equiv r_m^Q$. By assumption, V_{m+1} is of full rank and there is an $(m+1) \times (m+1)$ nonsingular matrix S such that $W_{m+1} = V_{m+1} S$ is unitary. Then, for any member of \mathcal{R} ,

$$r = W_{m+1}S^{-1}t, \quad t = SW_{m+1}^H r$$

and, in particular,

$$||r_m||_2 \le ||S^{-1}||_2 ||t_m||_2. \tag{6.59}$$

Now $||t_m||_2$ is the minimum of the 2-norm of $\beta e_1 - \bar{H}_m y$ over all y's and therefore,

$$||t_{m}||_{2} = ||SW_{m+1}^{H}r_{m}|| \le ||SW_{m+1}^{H}r||_{2} \quad \forall r \in \mathcal{R}$$

$$\le ||S||_{2}||r||_{2} \quad \forall r \in \mathcal{R}$$

$$\le ||S||_{2}||r^{G}||_{2}. \tag{6.60}$$

The result follows from (6.59), (6.60), and the fact that $\kappa_2(V_{m+1}) = \kappa_2(S)$.

THE SYMMETRIC LANCZOS ALGORITHM

6.6

The symmetric Lanczos algorithm can be viewed as a simplification of Arnoldi's method for the particular case when the matrix is symmetric. When A is symmetric, then the Hessenberg matrix H_m becomes symmetric tridiagonal. This leads to a three-term recurrence in the Arnoldi process and short-term recurrences for solution algorithms such as FOM and GMRES. On the theoretical side, there is also much more to be said on the resulting approximation in the symmetric case.

6.6.1 THE ALGORITHM

To introduce the Lanczos algorithm we begin by making the observation stated in the following theorem.