

Budker Institute of Nuclear Physics

The development of digital X-ray detector for osteodensitometry

Oleynikov Vladislav Petrovich

Scientific adviser – Porosev Vyacheslav Viktorovich Ph.D. in Physics and Mathematics, Senior Scientist

The main aim

detector

osteodensitometr

At present, densitometers are not produced in Russia

Place of Origin: South Korea

Place of Origin: France

Densitometer is a device that allows to determine bone mineral density

There are three main ways of collecting information from the detector

1) integrating mode (signal is proportional to the number of detected photons)

$$S = \sum_{i=0}^{N} Q_i \qquad Var[S] = Var[N] * E[Q]^2 + Var[Q] * E[N]^2$$

2) counting mode (allows to distinguish each individual X-ray photon)

$$S = Q_i$$
 $Var[S] = Var[Q]$

3) spectrometric mode (we not only separates each individual photon, but also register its energy)

$$S = Q_i$$
 $Var[S] = Var[Q]$

The detector

Scintillator

- non-hygroscopic
- bright
- fast
- high density and atomic number
- high energy resolution

Two scintillators

YAP:Ce or LuYAG:Pr

CdTe is not technologically and requires special electronics

HPGe is too expensive for everyday use, because it requires cooling

Selection of SiPM

The main characteristic significantly affecting the energy resolution is quantum efficiency

OKETEC

What is necessary energy resolution of the detector?

17% energy resolution at the energy of 59.5 keV

SIPM KETEC

YAP:Ce

20% (FWHM at an energy of 40 keV (estimation)

Self-consistent model

- the response of the detector
- the incident X-ray spectrum
- o the number of particles in it
- the error of determining bone density

The case of two monoenergetic sources

At present

$$\mathcal{L}_P^*(t) = \log f(d \mid t) = \sum_i \left(-\gamma_i + d_i \log \gamma_i - \log d_i! \right).$$

$$\operatorname{Cov}\left(\hat{t}_{i}, \hat{t}_{j}\right) \approx \sum_{k} \sum_{l} \left(\frac{\partial \hat{t}_{i}}{\partial d_{k}}\right) \left(\frac{\partial \hat{t}_{j}}{\partial d_{l}}\right) \operatorname{Cov}\left(d_{k}, d_{l}\right)$$

a more precise and complex model

Conslusions

- one produced detector based on the combination of SiPM scintillator allowing to achieve 17% energy resolution at the energy of 59.5 keV with high counting rate
- The model of the two monoenergetic sources allowing in the first approximation to estimate the error of determining bone density was considered

Thank you for your attention!