Exercício de Escalonamento de Processos

Nome: Murilo Aldigueri Marino

Introdução

Considere o seguinte conjunto de processos:

Processo	Tempo de Execução	Instante de Ativação	Instante de Tempo para E/S(*)	Tipo de Operação de E/S
P1	13	0	4	А
P2	11	4	2,6	В, А
P3	7	5		
P4	8	7		
P5	12	8	2,7	A, B

^(*) A partir do início da execução do processo.

Os processos são criados na ordem **P1**, **P2**, **P3**, **P4** e **P5**. As operações de E/S do tipo **A** consomem 7 unidades de tempo, e do tipo **B** consomem 4 unidades de tempo.

Objetivo

Apresentar o gráfico de execução dos processos para os algoritmos de escalonamento **FIFO** (First-Come, First-Served) e **Round-Robin** (com Quantum = 4), e calcular o **turnaround** de cada processo para cada um desses algoritmos.

Resposta

Gráfico de Execução para o Algoritmo FIFO

Para o algoritmo **FIFO**, os processos são executados na ordem de chegada, e as operações de E/S são respeitadas. O gráfico abaixo ilustra o processo de execução para cada um dos processos:

Turnaround para o Algoritmo FIFO

O **turnaround** de um processo é o tempo total que ele leva para ser concluído, desde o momento em que entra no sistema até o momento em que é totalmente executado. A fórmula para calcular o turnaround é:

Turnaround = Tempo de término – Tempo de ativação

Processo	Tempo de Ativação	Tempo de Término
P1	0	20
P2	4	42
P3	5	49
P4	7	57
P5	8	80

Cálculos

- Turnaround $P_1 = 20 0 = 20$
- Turnaround $P_2 = 42 4 = 38$
- Turnaround $P_3 = 49 5 = 44$
- Turnaround $P_4 = 57 7 = 50$
- Turnaround $_{P5} = 80 8 = 72$

Gráfico de Execução para o Algoritmo Round-Robin (Quantum = 4)

No algoritmo **Round-Robin**, o tempo de execução de cada processo é limitado por um quantum de 4 unidades de tempo. Os processos são interrompidos a cada 4 unidades de tempo, e as operações de E/S também são respeitadas.

Turnaround para o Algoritmo Round-Robin

Para o algoritmo **Round-Robin**, a fórmula para calcular o turnaround é a mesma:

Turnaround = Tempo de término - Tempo de ativação

Processo	Tempo de Ativação	Tempo de Término
P1	0	45
P2	4	46
P3	5	27
P4	7	31
P5	8	51

Cálculos

- Turnaround $P_1 = 45 0 = 45$
- Turnaround $P_2 = 46 4 = 42$
- Turnaround $_{P3} = 27 5 = 22$
- Turnaround $P_4 = 31 7 = 24$
- Turnaround $_{P5} = 51 8 = 43$