

Magellium

Domaines d'activité

Observation de la terre

Géo-information

Imagerie & applications

2003
création

150+
employés

2 sites
Paris
Toulouse*

14,2 M€
CA 2016

Intégrée au groupe ARTAL depuis le 1^{er} Septembre 2016

Etudes scientifiques & techniques

Développement logiciel & intégration de systèmes

Consulting & assistance technique

Etudes scientifiques & techniques

Développement logiciel & intégration de systèmes

Consulting & assistance technique

Deep Learning

Groupe de travail et R&D interne

4 experts

Plus d'un an d'expérience

Partenariats académiques

Le Deep Learning appliqué au traitement des images satellite, un retour d'expérience

20/09/2017

Qu'est-ce que c'est?

Comment on fait?

Principes de base

Concepts théoriques

Cas d'usage

Points durs

Le Deep Learning

Qu'est-ce que c'est?

Machine learning

«Apprendre à une machine à reproduire un résultat, un comportement »

- Jouer aux échecs
- Parler
- Lire
- Traduire
- Reconnaitre une personne, un objet
- Se déplacer

Machine learning – une brève histoire

- 1950 Alan Turing invente le « test de Turing » qui permet de déterminer si une machine est « intelligente » 1952 Arthur Samuel crée le premier programme de Machine Learning pour jouer aux échecs et progresser au fur et à mesure des parties jouées 1957 Invention du perceptron par Frank Rosenblatt (Cornell University). Premier réseau de neurones. Inspiré des théories cognitives. 1997 Deep Blue (IBM) bat Gary Kasparov, alors champion du monde, aux échecs 2006 Apparition du terme « Deep Learning » pour désigner les nouveaux programmes de reconnaissance d'objets dans les images et les vidéos Amazon et Microsoft lancent leurs outils de Machine Learning 2011 2014 Développement de Google Brain et de réseaux de neurones pour la reconnaissance d'objets 2015 Facebook développe DeepFace, un programme capable de reconnaitre les visages et les personnes dans les photos avec les mêmes performance qu'un être humain 2016 Google crée AlphaGo, un programme capable de battre 5 fois de suite le champion du
- Premières puces de calcul dédiées au calcul neural (Apple A11 bionic neural engine, NPU, ...)

monde de Go, jeu considéré le plus complexe au monde.

Introduction aux réseaux de neurones

Exemple: classification d'image

Modèle linéaire

Construction d'un modèle simple – Perceptron / SVM à noyau linéaire

$$W_1X + B_1 = P$$

classe = argmax(P)

Vecteur en entrée Probabilités en sortie

$$X \in \mathbb{R}^M$$

 $P \in \mathbb{R}^N$

Poids Biais

$$W_1 \in \mathbb{R}^{M \times N}$$
$$B_1 \in \mathbb{R}^N$$

Input

Output

Réseau de neurones

Passage à deux couches

__

ReLU – Rectified Linear Unit

Sigmoïde

Tangente hyperbolique

Vecteur en entrée

 $X \in \mathbb{R}^{M}$

Couche 1

 $W_1 \in \mathbb{R}^{M \times K}$

 $B_1 \in \mathbb{R}^K$

Vecteur caché

 $Y \in \mathbb{R}^K$

Couche 2

 $W_2 \in \mathbb{R}^{K \times N}$

 $B_2 \in \mathbb{R}^N$

Probabilités en sortie

 $P \in \mathbb{R}^N$

Réseau de neurones « Fully Connected »

Property of Magellium

Apprentissage - Optimisation

Optimisation – trouver les poids et les biais qui permettent de résoudre le problème posé

$$W_2[relu(W_1X + B_1)] + B_2 = \mathbf{P}$$

Couche 1

 $W_1 \in \mathbb{R}^{M \times K}$ $B_1 \in \mathbb{R}^K$ $(M+1) \times K$ variables

Couche 2

 $W_2 \in \mathbb{R}^{K \times N}$ $B_2 \in \mathbb{R}^N$ $(K+1) \times N$ variables

Exemple : N = 4, K = 64, M = 32

2372 variables à optimiser

Jeu de données d'apprentissage

Fonction coût : Softmax

 (X_{true}, P_{true})

 $\sigma(P)_i = \frac{e^{P_i}}{\sum_{k=1}^{N} e^{P_k}}$

Cross entropy

 $H(\sigma(P), P_{true}) = -\sum_{i} P_{true,i} \log(\sigma(P)_{i})$

Exemple numérique

$$P = \begin{bmatrix} -0.3 \\ 0.2 \\ 2.4 \end{bmatrix} \quad \sigma(P) = \begin{bmatrix} 0.06 \\ 0.09 \\ 0.85 \end{bmatrix} \qquad \begin{array}{l} P_{true} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} & H(\sigma(P), P_{true}) = 0.16 \\ P_{true} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} & H(\sigma(P), P_{true}) = 2.86 \end{array}$$

$$\sigma(P) = \begin{bmatrix} 0.06 \\ 0.09 \\ 0.85 \end{bmatrix}$$

$$P_{true} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$P_{true} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$H(\sigma(P), P_{true}) = 0.16$$

$$H(\sigma(P), P_{true}) = 2.86$$

Réseau de neurones

Problèmes

- Convergence de la méthode d'optimisation
- Trouver une « bonne » solution
- Temps de calcul
- Calcul efficace des gradients

Solutions

Stochastic Gradient Descent (SGD)

Gros jeux de données, représentatifs, ...

GPU + Calculs par batch

Back-propagation / Chain-rule

Calcul de gradient – Back-propagation

- Calcul d'erreur
- Stockage des valeurs intermédiaires : cartes d'activation
- Rétro-propagation de l'erreur et calcul des gradients
- Ajustement des poids

Traitement des images

Réseau de neurones convolutifs

Couches de convolution

- Utilisation d'un noyau de convolution
- Parcours de l'image
- Extraction d'information avec invariance par translation
- Noyaux de convolution multi-couches

Property of Magellium

Réseau de neurones convolutifs

Réduction des dimensions

Pas ou « Stride » > 1

« Pooling »
 Max / moyenne / ...

Property of Magellium

Réseau de neurones convolutifs

LeNet-5, Yann Le Cun (1990)

Reconnaissance de caractères (32x32) 2 convolutions / 2 fully-connected

Y. Le Cun et al., « Handwritten digit recognition with a back-propagation network », in Advances in neural information processing systems 2, NIPS 1989, 1990, p. 396–404.

GoogLeNet, Inception, R-CNN (2014)

Reconnaissance d'objets (Imagenet)
59 convolutions / 5 fully-connected / pooling ...

La révolution?

La raison

Conséquence

Le Deep Learning

Un cas concret

Détection de bâtiments dans des images satellites

Préparation des données

Jeux de données pour l'apprentissage

Images PHR, 50cm

Haute-Garonne

328 images de 10000x10000 pixels

composition colorée RGB

Vecteur Open Street Map, Batiments

environ 1M de polygones

Objectif

Produire des couples de vignettes 224x224 (image/masque batiment)

+ augmentation des données

Equilibre du jeu de données ...

magellium

Nombreuses structures existantes

http://www.asimovinstitute.org/neural-network-zoo/

La construction du réseau dépend de

La nature du problème à résoudre (segmentation, classification, etc...)

La quantité de données disponible

La puissance de calcul disponible (+ mémoire)

Architecture U-Net

Apprentissage

Gestion de l'optimisation

Fonction coût

- Régularisations L1 ou L2
- Complexité ++

Augmentation de données « in-the-loop »

Variabilité ++

Luminosité / contraste / teinte / saturation

Méthode d'optimisation

- Plusieurs méthodes
- Hyper-paramètres

Hard-example mining

Présenter plus fréquemment les cas difficiles

Suivi de l'apprentissage

GeForce GTX 1080 – 8GB

100k itérations par batchs de 12 samples

Environ 40h de calculs

- Suivi de la fonction coût et de la précision
- Jeu de validation -> éviter le sur-apprentissage (overfitting)

Implémentation

Nombreuses bibliothèques existantes, la plupart en Python

Notre choix

Keras

A développer :

Construction du réseau

Pipeline d'apprentissage

Gestion du jeu de données

La 1^{ère} fois

La 2^{ème} fois

Résultats

Property of Magellium

24/10/2017

Construction de réseaux de neurones

Demande un peu de savoir-faire et d'expérience Lecture bibliographie souvent suffisante

Apprentissage du réseau

Effort d'adaptation aux librairies Deep Savoir faire non négligeable sur la méthodologie

Jeux de données

Recul **spécifique** indispensable

Notions particulières d'équilibre, de fiabilité des jeux de données Discipline particulière d'augmentation des données

Merci!

Thomas RISTORCELLI Unité IA thomas.ristorcelli@magellium.fr

François De Vieilleville Unité EO françois.devieilleville@magellium.fr

Sébastien Bosch Unité GEO sebastien.bosch@magellium.f

