UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE LABORATÓRIO DE ENGENHARIA E EXPLORAÇÃO DE PETRÓLEO CENTRO DE CIÊNCIA E TECNOLOGIA

PROJETO DE ENGENHARIA DESENVOLVIMENTO DO SOFTWARE

Analise Incrustação Amostra de Salmoura DISCIPLINA : Introdução ao Projeto de Engenharia

Setor de Modelagem Matemática Computacional

Versão 1: AUTORES Allida Faial e João Vitor Pardo Versão 2: AUTORES

Prof. André Duarte Bueno

MACAÉ - RJ Junho- 2025

Sumário

1	Cor	ıcepção	6				
	1.1	Metodologia					
	1.2	Nome do Sistema/Produto					
	1.3	Especificação	7				
		1.3.1 Requisitos funcionais	7				
		1.3.2 Requisitos não funcionais	8				
	1.4	Casos de Uso do Software	8				
		1.4.1 Diagrama de caso de uso geral do Software	Ĉ				
		1.4.2 Diagrama de caso de uso especifico Aniônico	Ĉ				
		1.4.3 Diagrama de caso de uso especifico Catiônico	11				
2	Ela	boração	13				
	2.1	Análise de domínio	13				
	2.2	Formulação teórica	13				
	2.3	Identificação de pacotes – assuntos	14				
	2.4	Diagrama de pacotes – assuntos					
3	AO	O – Análise Orientada a Objeto	15				
	3.1	Diagramas de classes	15				
		3.1.1 Dicionário de classes	15				
	3.2	Diagrama de seqüência – eventos e mensagens	16				
		3.2.1 Diagrama de sequência geral	16				
		3.2.2 Diagrama de sequência específico	17				
	3.3	Diagrama de comunicação – colaboração	17				
	3.4	Diagrama de estado	18				
	3.5	Diagrama de atividades	20				
4	Pro	ojeto	23				
	4.1	Projeto do Sistema	23				
	4.2	Projeto Orientado a Objeto – POO	24				
	4.3	Diagrama de Componentes	26				
	4.4	Diagrama de Implantação	27				

SUMÁRIO S		MÁRIO	
5	${\bf Lista\ das\ Caracter\'isticas}/{\it Features}$	28	
	5.1 Lista de características < <features>></features>	28	

Lista de Figuras

1.1	Metodologia utilizada no desenvolvimento do sistema	10
1.2	Diagrama de caso de uso – Caso de uso geral	10
1.3	Diagrama de caso de uso específico – Caso de Uso Simulação de Salmoura Catiônica	12
2.1	Diagrama de Pacotes	14
3.2	Diagrama de seqüência	17
3.4	Diagrama de comunicação	18
3.5	Diagrama de máquina de estado	19
3.6	Diagrama de atividades	20
3.1	Diagrama de classes	2
3.3	Diagrama de Sequência Específico	22
4.1	Diagrama de componentes	26
4.2	Diagrama de implantação	2

Lista de Tabelas

1.1 Caso de ι	iso $1 \dots \dots$			8
---------------	---------------------	--	--	---

Concepção

O projeto foi desenvolvido com base nos princípios de Engenharia de Software e Modelagem Matemática Computacional. A metodologia adotada incluiu as etapas clássicas de concepção, elaboração, modelagem orientada a objetos e implementação modular. Utilizou-se C++ como linguagem de programação, aplicando-se princípios de POO (Programação Orientada a Objetos) para garantir expansibilidade, organização e manutenção do sistema. Diagramas UML foram empregados para representar os aspectos estruturais e dinâmicos do

software.

O projeto foi pensado na área de incrustação pois hoje a incrustação nos tubos de perfuração vem sendo um grande problema pois os sais em sistemas de produção de petróleo é um problema recorrente na indústria de óleo e gás. Essas precipitações podem ocorrer quando duas salmouras com diferentes composições iônicas entram em contato sob certas condições de pressão, temperatura e pH, formando sais insolúveis como sulfato de bário, carbonato de cálcio e outros. Esses sais podem obstruir tubulações, danificar equipamentos e comprometer a produção.

Motivados por esse desafio, desenvolvemos um simulador de precipitação de sais que permite prever a formação de sólidos a partir da mistura de salmouras, com base em dados químicos e condições termodinâmicas. O projeto é especialmente relevante em contextos de laboratório, onde o preparo manual das soluções pode ser substituído ou complementado por simulações digitais.

1.1 Metodologia

O desenvolvimento do sistema seguiu a metodologia de projeto orientado a objeto, conforme apresentado na Figura 1.1 do documento base. Iniciou-se com a concepção e levantamento de requisitos, seguido por análise de domínio, elaboração de diagramas UML (caso de uso, classes, sequência, comunicação, atividades e estado), e culminando com a implementação em C++.

1.2 Nome do Sistema/Produto

Nome	Sistema de Análise de Incrustação em
	Amostras de Salmoura
Componentes principais	Interface de entrada para criação de íons,
	sais, salmouras e condições termodinâmicas;
	módulo de análise da precipitação; e
	relatório de resultados.
Missão	Prever a possibilidade de formação de
	incrustação mineral em ambientes de
	produção de petróleo a partir da análise de
	dados de salmouras

1.3 Especificação

O principal objetivo deste projeto é construir um software capaz de:

- Cadastrar e gerenciar íons com suas propriedades (nome, carga),
- Definir sais como combinações específicas de íons, com seus respectivos produtos de solubilidade (Ksp),
- Criar salmouras contendo diferentes íons e sais dissolvidos em volumes definidos,
- Simular a mistura de salmouras e calcular as concentrações finais de íons na solução resultante,
- Verificar se ocorrerá precipitação, utilizando cálculos de produto iônico comparados ao Ksp dos sais,
- Exibir os resultados da simulação, plote de gráficos comparando diferentes cenários e indicando quais sais precipitam ou permanecem estáveis.

O sistema também permite alterar temperatura e pressão da simulação, o que afeta a solubilidade dos sais e a dinâmica da precipitação.

A justificativa para o desenvolvimento deste software se baseia na demanda por uma ferramenta prática, didática e confiável para simulações químicas em ambientes educacionais e industriais. Atualmente, a previsão de precipitação salina é feita com ferramentas pagas ou por meio de experimentos laboratoriais demorados Requisitos

Apresenta-se nesta seção os requisitos funcionais e não funcionais.

1.3.1 Requisitos funcionais

Apresenta-se a seguir os requisitos funcionais.

RF-01	O sistema deve permitir ao usuário cadastrar íons com nome,	
	concentração e carga	

RF-02	O sistema deve permitir ao usuário criar sais a partir de dois	
	íons e um valor de Kps	
RF-03	O sistema deve aceitar a entrada de condições termodinâmicas	
	(temperatura e pressão)	
RF-04	O sistema deve calcular o produto iônico com base nas informa-	
	ções inseridas	
RF-05	O sistema deve informar se ocorre ou não precipitação para cada	
	sal inserido	

1.3.2 Requisitos não funcionais

RNF-01	RNF-01 O software deve ser multiplataforma (Windows, Linux, M	
	cOS).	
RNF-02	O sistema deve ser desenvolvido em linguagem C++ com es-	
	trutura orientada a objeto	
RNF-03	O sistema deve ser implementado em linguagem C++ com	
	interface gráfica amigável.	

1.4 Casos de Uso do Software

A Tabela 1.1 mostra a descrição de um caso de uso.

Tabela 1.1: Caso de uso 1			
Nome do caso de uso:	Analisar Precipitação de Sal em Salmoura		
Resumo/descrição: O usuário insere dados dos íons presentes na sa			
	as condições de temperatura e pressão, e o sistema cal-		
	cula se ocorrerá ou não a precipitação de sais com base		
	na comparação entre o produto iônico (Q) e o Kps.		
Etapas:	1. Criar íons com nome, carga e concentração.		
	2. Criar sais com os íons e valor de Kps.		
	3. Inserir condições termodinâmicas (T e P).		
	4. Executar a análise de precipitação.		
	5. Obter diagnóstico (precipita / não precipita).		
Cenários alternativos:	O usuário pode inserir um sal que não atinge o Kps, e		
	o sistema deverá corretamente indicar que não há pre-		
	cipitação. O sistema também deve lidar com inserções		
	incompletas ou inconsistentes, emitindo mensagens de		
	erro		

1.4.1 Diagrama de caso de uso geral do Software

O diagrama de caso de uso geral descreve as funcionalidades acessíveis ao usuário:

- Definir ions e suas propriedades (nome e carga);
- Definir sais com íons participantes, coeficientes e Ksp;
- Criar amostras de salmouras e especificar concentrações molares;
- Informar condições termodinâmicas (temperatura e pressão);
- Executar a simulação;
- Visualizar os sais que precipitam.

Além disso, foram desenvolvidos casos de uso específicos para o preparo individual das salmouras aniônicas e catiônicas, refletindo a prática laboratorial de preparo em separado antes da mistura final.

Esses diagramas são compatíveis com os métodos implementados em CSimuladorPrecipitação e refletem diretamente os fluxos interativos do terminal.

1.4.2 Diagrama de caso de uso especifico Aniônico

- O diagrama de caso de uso específico representa as ações realizadas pelo usuário durante a preparação de uma salmoura aniônica no contexto laboratorial ou experimental. As interações descritas são:
 - Separar Sais Aniônicos: O usuário seleciona os sais aniônicos adequados para a preparação da solução.
 - Pesar Sais Aniônicos: Após a separação, o usuário realiza a pesagem precisa dos sais para garantir a proporção estequiométrica correta.
 - Preparar Salmoura Aniônica: Com os sais pesados, o usuário prepara a solução de salmoura contendo os ânions desejados, dissolvendo-os em água deionizada ou outro meio apropriado.
 - Verificar pH: Por fim, o usuário mede o pH da salmoura preparada para assegurar que a solução esteja dentro da faixa adequada às análises.

Este diagrama descreve o fluxo de atividades manuais que antecedem a simulação computacional, garantindo que os dados de entrada (concentração e tipo de íons) estejam corretamente preparados e representem com fidelidade as condições reais do experimento

Diagrama de caso de uso específico – Caso de Uso Simulação de Salmoura Aniônica

Figura 1.1: Metodologia utilizada no desenvolvimento do sistema

Figura 1.2: Diagrama de caso de uso - Caso de uso geral

1.4.3 Diagrama de caso de uso especifico Catiônico

O diagrama de caso de uso específico catiônico descreve as etapas realizadas pelo usuário durante a preparação da salmoura catiônica, no contexto laboratorial. Este processo faz parte da fase experimental do sistema de simulação e visa garantir que os dados inseridos no software representem adequadamente uma solução real.

As ações realizadas pelo usuário incluem:

- Separar Sais Catiônicos: O usuário identifica e seleciona os sais catiônicos que serão utilizados na formulação da salmoura.
- Pesar Sais Catiônicos: Os sais previamente separados são pesados com precisão para garantir as quantidades corretas na solução.
- Preparar Salmoura Catiônica: Os sais são dissolvidos em solvente apropriado (geralmente água deionizada), formando a salmoura com os cátions desejados.
- Verificar pH: Após a preparação, o pH da solução é medido para assegurar que ela está dentro da faixa adequada para os testes de simulação de precipitação.

Este diagrama ilustra claramente a sequência de interações que o usuário realiza com o sistema físico (antes da simulação computacional), servindo como base para a entrada de dados que serão analisados no simulador. Assim, reforça a integração entre a parte experimental e o funcionamento do software.

Figura 1.3: Diagrama de caso de uso específico – Caso de Uso Simulação de Salmoura Catiônica

Elaboração

Depois da definição dos objetivos, da especificação do software e da montagem dos primeiros diagramas de caso de uso, a equipe de desenvolvimento do projeto de engenharia passa por um processode elaboração que envolve o estudo de conceitos relacionados ao sistema a ser desenvolvido, a análise de domínio e a identificação de pacotes.

Na elaboração fazemos uma análise dos requisitos, ajustando os requisitos iniciais de forma a desenvolver um sistema útil, que atenda às necessidades do usuário e, na medida do possível, permita seu reuso e futura extensão.

Eliminam-se os requisitos "impossíveis" e ajusta-se a ideia do sistema de forma que este seja flexível, considerando-se aspectos como custos e prazos.

2.1 Análise de domínio

O sistema pertence à área de engenharia de petróleo e foca nos problemas relacionados à formação de incrustações minerais em tubulações e equipamentos. As incrustações são formadas a partir da precipitação de sais em águas de formação e representam um desafio significativo por reduzirem a eficiência da produção.

2.2 Formulação teórica

O software se baseia na equação do produto iônico (Q):

$$Q = [A]^a * [B]^b$$

Onde [A] e [B] são as concentrações dos íons, e "a" e "b" seus coeficientes estequiométricos. A comparação entre Q e o Kps (produto de solubilidade) define o estado do sistema:

- Se Q < Kps: solução insaturada (não precipita);
- Se Q = Kps: solução saturada;
- Se Q > Kps: ocorre precipitação.

2.3 Identificação de pacotes – assuntos

Pacote CConcentracaolons: Responsável por armazenar e recuperar íons cadastrados.

Pacote CSal: Modela os sais e seus dados (Kps, íons e coeficientes).

Pacote CCalcularPrecipitacao: Realiza os cálculos do produto iônico e compara com o Kps.

Pacote CIon: representa íons com nome, concentração e carga.

2.4 Diagrama de pacotes – assuntos

O diagrama de pacotes mostra como os módulos se organizam e se comunicam. Cada pacote representa

uma responsabilidade específica no sistema.

Repositorio(github)

Figura 2.1: Diagrama de Pacotes

AOO – Análise Orientada a Objeto

A terceira etapa do desenvolvimento de um projeto de engenharia, no nosso caso um software aplicado a engenharia de petróleo, é a AOO – Análise Orientada a Objeto. A AOO utiliza algumas regras para identificar os objetos de interesse, as relações entre os pacotes, as classes, os atributos, os métodos, as heranças, as associações, as agregações, as composições e as dependências.

O modelo de análise deve ser conciso, simplificado e deve mostrar o que deve ser feito, não se preocupando como isso será realizado.

O resultado da análise é um conjunto de diagramas que identificam os objetos e seus relacionamentos.

3.1 Diagramas de classes

O diagrama de classes (Figura 3.1) mostra as classes do sistema, seus atributos e métodos, bem como suas relações. As principais classes incluem:

CIon: representa íons com nome, concentração e carga.

CConcentracaolons: gerencia um mapa de íons.

CSal: modela sais com dois íons, seus coeficientes e o valor de Kps.

CCalcularPrecipitacao: módulo que executa a comparação entre Q e Kps.

3.1.1 Dicionário de classes

- CIon: Contém informações básicas dos íons, como nome e carga elétrica. Essa classe é utilizada na construção dos sais (CSal) e no controle das concentrações nas salmouras.
- CTabelaPropriedadesIons: Armazena todos os íons disponíveis no sistema em um unordered_map. Permite adicionar novos íons, salvar e carregar arquivos de dados, além de recuperar íons por nome.
- CSalmoura: Representa uma solução aquosa contendo sais e íons dissolvidos. Permite adicionar sais e íons, calcular o mapa de mols de cada espécie e controlar o volume da salmoura.
- CMisturaSalmouras: Responsável por armazenar um conjunto de salmouras e combinar seus dados. Fornece métodos para obter os sais de todas as salmouras e calcular as concentrações finais dos íons.

- CSalt: Modela um sal com base em seu nome, produto de solubilidade (Ksp), lista de íons participantes e seus coeficientes estequiométricos. Implementa os cálculos do produto iônico e da condição de precipitação.
- CSimuladorPrecipitação: Gerencia toda a simulação, criando salmouras, misturando-as, executando os cálculos e verificando se ocorre ou não a precipitação de sais com base nas condições e concentrações finais.

3.2 Diagrama de seqüência – eventos e mensagens

Foram elaborados dois diagramas de sequência específicos:

- Criação de Íons e Sais: descreve o processo de inserção de dados pelo usuário e posterior construção de objetos CIon e CSal usando a fábrica Criarlons.
- Execução da Simulação: mostra a ordem de chamada de métodos para definição das condições termodinâmicas, adição de íons à salmoura, cálculo das concentrações e análise de precipitação utilizando CalcularPrecipitação::AnalisarPrecipitação().

Esses diagramas refletem a dinâmica real de execução do software e ajudam a visualizar dependências entre os módulos.

3.2.1 Diagrama de sequência geral

Veja o diagrama de seqüência na Figura 3.2 3.2.

O diagrama de sequência apresentado descreve de forma detalhada a execução do método executar() da classe CSimuladorPrecipitação, que orquestra a simulação da precipitação de sais em solução. O processo se inicia na função principal main, que chama o método executar() do simulador. Em seguida, são criadas duas instâncias da classe CSalmoura por meio das funções criarSalmouraTeste1() e criar-SalmouraTeste2(), representando soluções com diferentes íons. Essas salmouras são adicionadas a um objeto CMisturaSalmouras, responsável por armazenar e tratar múltiplas soluções simultaneamente.

Após a mistura ser definida, um íon é criado utilizando a classe CIon, com nome e carga específicos, e é adicionado à salmoura com a respectiva concentração. Posteriormente, o método calcularConcentracoesFinais() da classe CMisturaSalmouras é invocado para obter as concentrações finais dos íons na mistura. Com esses dados, é instanciado um sal (CSal) utilizando seu nome, valor de constante de solubilidade (Ksp), íons envolvidos e seus coeficientes estequiométricos.

Esse diagrama mostra de forma clara e cronológica a interação entre os principais objetos do sistema durante uma simulação. Ele reforça a boa organização do código, evidenciando a separação de responsabilidades entre as classes, e auxilia na documentação e compreensão da lógica de simulação implementada.

Figura 3.2: Diagrama de seqüência

3.2.2 Diagrama de sequência específico

Na Figura 3.3. observamos o diagrama de sequência específico. O diagrama ilustra a execução pontual do método executar() da classe CSimuladorPrecipitação, destacando o fluxo lógico de verificação da possibilidade de precipitação de sais. A sequência tem início com a chamada ao método calcular-Concentrações Finais() no objeto CMisturaSalmouras, que retorna um mapa contendo as concentrações molares dos íons resultantes da mistura.

Em seguida, essas concentrações são utilizadas para calcular o produto iônico do sal, por meio do método CalcularProdutoIon(), pertencente à classe CSal. Durante esse cálculo, há uma chamada ao método getNome() da classe CIon, que fornece os nomes dos íons envolvidos na reação.

Por fim, o método VaiPrecipitar() é invocado para comparar o produto iônico obtido com o valor da constante de solubilidade (Ksp). Se o produto for superior ao Ksp, o sistema determina que haverá precipitação, encerrando a simulação com a exibição do resultado ao usuário.

3.3 Diagrama de comunicação – colaboração

O diagrama de estado (Figura 3.4). O diagrama de comunicação ilustra a troca de mensagens entre os principais objetos do sistema durante a execução da simulação de precipitação. O fluxo iniciase a partir do objeto CSimuladorPrecipitação, que coordena a execução chamando métodos da classe CMisturaSalmouras para adicionar salmouras (adicionarSalmoura()) e calcular as concentrações finais dos íons (calcularConcentraçõesFinais()).

Essas salmouras são compostas por objetos da classe CSalmoura, que armazenam os sais e íons dissolvidos. A inserção de íons nas salmouras é feita por meio do método adicionarIon(), que busca o íon desejado na CTabelaPropriedadesIons através da função obterIon().

A classe CIon, retirados da tabela, possuem métodos como getNome() que são utilizados na construção de sais (CSal). Estes, por sua vez, realizam o cálculo do produto iônico usando calculateIonic-Product(), com base nas concentrações finais fornecidas pela mistura. Ao final, o sistema determina se

ocorre ou não precipitação.

Figura 3.4: Diagrama de comunicação

3.4 Diagrama de estado

Um diagrama de máquina de estado representa os diversos estados que o objeto assume e os eventos que ocorrem ao longo de sua vida ou mesmo ao longo de um processo (histórico do objeto). É usado para modelar aspectos dinâmicos do objeto.

Figura 3.5: Diagrama de máquina de estado

3.5 Diagrama de atividades

Figura 3.6: Diagrama de atividades

Figura 3.1: Diagrama de classes

Projeto

Neste capítulo do projeto de engenharia veremos questões associadas ao projeto do sistema, incluindo protocolos, recursos, plataformas suportadas, implicações nos diagramas feitos anteriormente, diagramas de componentes e implantação. Na segunda parte revisamos os diagramas levando em conta as decisões do projeto do sistema.

4.1 Projeto do Sistema

Depois da análise orientada a objeto desenvolve-se o projeto do sistema, qual envolve etapas como a definição dos protocolos, da interface API, o uso de recursos, a subdivisão do sistema em subsistemas, a alocação dos subsistemas ao hardware e a seleção das estruturas de controle, a seleção das plataformas do sistema, das bibliotecas externas, dos padrões de projeto, além da tomada de decisões conceituais e políticas que formam a infraestrutura do projeto.

Deve-se definir padrões de documentação, padrões para o nome das classes, padrões de retorno e de parâmetros em métodos, características da interface do usuário e características de desempenho.

Segundo [Rumbaugh et al., 1994, Blaha and Rumbaugh, 2006], o projeto do sistema é a estratégia de alto nível para resolver o problema e elaborar uma solução. Você deve se preocupar com itens como:

1. Protocolos

- Definição dos protocolos de comunicação entre os diversos elementos externos Neste projeto não há comunicação com dispositivos externos, mas o sistema pode ser adaptado para ler sensores de pH ou condutividade via serial no futuro.
- A comunicação interna entre objetos ocorre por chamadas diretas a métodos públicos.
- A interface API é implementada implicitamente nas classes que encapsulam a lógica de precipitação e manipulação de dados (ex: CalcularPrecipitação, Sal, ion)
- Os arquivos gerados são .txt ou .csv, formatos abertos e compatíveis com editores comuns e softwares de análise.
- Os arquivos devem usar codificação de caracteres UTF-8.

2. Recursos

- Os recursos são gerenciados pelo próprio sistema, que armazena os dados em memória RAM.
 Não há alocação externa.
- Não há necessidade de banco de dados;
- O sistema não requer armazenamento de massa dedicado, apenas pequenos arquivos locais armazenados em disco.

3. Controle

- O controle do sistema é sequencial, baseado em eventos gerados pela interação do usuário com a interface (via terminal ou GUI futura).
- O sistema prevê condições inválidas (ex: sais sem coeficientes definidos) com mensagens de erro.
- Não foi feito otimização nesta versão do código
- O sistema não possui concorrência ou paralelismo nesta versão.

4. Plataformas

- O sistema segue arquitetura tradicional cliente-desktop.
- Os subsistemas identificados são: Pacote CConcentracaoIons,Pacote CSal,Pacote CCalcular-Precipitação e Pacote CIon.
- O sistema suporta as plataformas Windows, Linux e Mac via compilação com CMake.
- As bibliotecas externas utilizadas são padrão do C++
- Utilizdos os dados da literatura e livros de qumica para temos acesso aos Kps e cargas dos Ios.

5. Padrões de projeto

- O sistema emprega encapsulamento, modularização e composição de objetos.
- Os nomes das classes seguem padrão com prefixo C (ex: CSal, CIon.CTabelaPropriedadesIons)

4.2 Projeto Orientado a Objeto – POO

O projeto orientado a objeto considera as decisões tomadas no projeto do sistema e implementa uma solução concreta. Foram feitas otimizações de métodos e atributos, modularização do código, uso de encapsulamento, clareza nos nomes e divisão lógica das responsabilidades.

Efeitos do projeto no modelo estrutural

- Os diagramas foram atualizados com inclusão de bibliotecas e classes utilitárias.
- Foram criadas classes adicionais como Calcular Precipitação e Criar Ion para modularização.
- Dependências entre Sal, Ion e Criarlons foram estabelecidas com composição.

Efeitos do projeto no modelo dinâmico

- O diagrama de sequência foi ajustado para representar interações com o novo fluxo de entrada de dados e execução.
- Não há necessidade de novos diagramas de máquina de estado nesta versão.

Efeitos do projeto nos atributos

• Foram incluídos atributos auxiliares como coef1, coef2, Ksp, concentração, carga, e nome com validadores nas classes.

Efeitos do projeto nos métodos

- Métodos para análise de precipitação foram adicionados (CalcularProdutoIonico, VaiPrecipitar).
- Métodos foram organizados em funções públicas de controle e funções internas de cálculo.

Efeitos do projeto nas heranças

• Não há uso de herança nesta versão para manter o sistema simples e modular. Futuras versões poderão introduzir polimorfismo para tipos de sais.

Efeitos do projeto nas associações

- As associações são diretas (ex: Sal contém dois ions).
- Quando necessário, utiliza-se unordered map como dicionário de íons.

Efeitos do projeto nas otimizações

- Loops otimizados com acesso direto às estruturas.
- Arquitetura simples evita acessos encadeados profundos.
- Atributos temporários foram criados para facilitar operações.
- Execução ajustada para resposta em tempo real.
- As associações foram revisadas para garantir performance sem comprometer legibilidade.

Depois de revisados os diagramas da análise você pode montar dois diagramas relacionados à infraestrutura do sistema. As dependências dos arquivos e bibliotecas podem ser descritos pelo diagrama de componentes, e as relações e dependências entre o sistema e o hardware podem ser ilustradas com o diagrama de implantação.

4.3 Diagrama de Componentes

O diagrama de componentes representa a estrutura lógica do sistema, mostrando como os principais módulos do software interagem entre si. No projeto Simulador de Precipitação de Sais, cada classe foi implementada com responsabilidade própria, sem a divisão tradicional em camadas (como na arquitetura MVC), refletindo uma abordagem orientada à funcionalidade. Na Figura 4.1 observa-se que:

- A entrada de dados é realizada diretamente pelas classes responsáveis, sem um módulo exclusivo de entrada. As classes CIons e CSal cuidam da criação, armazenamento e manipulação dos íons e sais, respectivamente.
- A classe CSimuladorPrecipitação executa os cálculos principais do programa, verificando a possibilidade de precipitação de sais com base nas concentrações iônicas e valores de Ksp. Ela representa o núcleo da análise do sistema. O sistema também será possivel criar diferentes graficos para que seja possivel comparar quando irá incrustar no cenário
- O arquivo principal Sandbox.cpp atua como ponto de execução, agregando as classes descritas, orquestrando a criação dos dados e invocando os métodos de análise. Não há uma camada específica de visualização neste projeto, embora seja possível futuramente integrar uma interface gráfica.
- Todos esses componentes são compilados em um único executável final:SimuladorPrecipitacao.exe.

• Nota:

Não perca de vista a visão do todo; do projeto de engenharia como um todo. Cada capítulo, cada seção, cada parágrafo deve se encaixar. Este é um diferencial fundamental do engenheiro em relação ao técnico, a capacidade de desenvolver projetos, de ver o todo e suas diferentes partes, de modelar processos/sistemas/produtos de engenharia.

Figura 4.1: Diagrama de componentes

4.4 Diagrama de Implantação

O diagrama de implantação é um diagrama de alto nível que inclui relações entre o sistema e o hardware e que se preocupa com os aspectos da arquitetura computacional escolhida. Seu enfoque é o hardware, a configuração dos nós em tempo de execução.

No caso do Software de Análise de Incrustação de Amostras de Salmouras, o sistema é executado localmente em um computador pessoal (desktop ou notebook), sem necessidade de rede. Todos os módulos estão compilados em um único executável e são armazenados localmente, sendo a execução feita por linha de comando ou futura interface gráfica.

Veja na Figura 4.2 4.2 o diagrama de implantação adaptado ao projeto. Ele mostra:

- Um nó denominado Computador Corporativo, com anotações do tipo {localização: laboratório de simulação}.
- Conectado a este nó está o executável SimuladorPrecipitacao.exe, que contém internamente os módulos Analise, EntradaDados e Interface.
- Todos os arquivos .cpp e .h estão acessíveis localmente, não sendo necessário banco de dados nem rede para o funcionamento do sistema.

Essa arquitetura simples e portátil facilita a execução do sistema em ambientes acadêmicos e industriais, com poucos requisitos de hardware. O uso de arquivos .txt para entrada e saída também favorece integração com outros softwares externos.

Figura 4.2: Diagrama de implantação

Lista das Características/Features

Neste capítulo lista-se as características do sistema a ser desenvolvido (seção 5.1).

5.1 Lista de características <<features>>

No final do ciclo de concepção e análise chegamos a uma lista de características << features>> que teremos de implementar.

Após a análises desenvolvidas e considerando o requisito de que este material deve ter um formato didático, chegamos a seguinte lista:

• v0.1

- O sistema deve permitir o cadastro de íons com nome, concentração e carga elétrica.
- O sistema deve permitir recuperar dados de íons previamente cadastrados (Ex: "Ca2+", "CO3_2-").
- O sistema deve permitir definir um sal com nome, produto de solubilidade (Ksp), dois íons e seus coeficientes estequiométricos.
- O sistema deve calcular o produto iônico e compará-lo com o Ksp para verificar se há precipitação.
- O sistema deve plotar a saída no terminal, indicando o nome do sal, o valor de Q (produto iônico), o valor do Ksp e se ocorre ou não precipitação.
- O sistema deve permitir inserir condições termodinâmicas (pressão e temperatura), mesmo que ainda não influenciem os cálculos diretamente.

• v0.3

- O sistema deve armazenar múltiplos sais e avaliar todos com um único comando.
- O sistema deve permitir expansão para novos tipos de sais, com diferentes coeficientes estequiométricos.
- O sistema deve incluir mensagens mais claras para o usuário final (ex: usar nomes comerciais dos sais).

- Testes unitários devem ser desenvolvidos para as seguintes classes:
- CreateIons
- Salt
- PrecipitationCalculator
- Lista de classes a serem testadas e aprimoradas:
- Salt incluir variação da constante Ksp com temperatura (futuramente).
- Precipitation Calculator incluir uso de condições termodinâmicas reais.

• v0.7

- O sistema deve apresentar uma interface simples (GUI) ou permitir leitura de dados a partir de arquivos externos (.txt, .dat ou .csv).
- O sistema deve plotar gráficos de pressão vs. temperatura, simulando cenários reais de precipitação de sais.
- Testes de integração entre os módulos devem ser realizados

Referências Bibliográficas

[Blaha and Rumbaugh, 2006] Blaha, M. and Rumbaugh, J. (2006). Modelagem e Projetos Baseados em Objetos com UML 2. Campus, Rio de Janeiro. 23

[Rumbaugh et al., 1994] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1994). Modelagem e Projetos Baseados em Objetos. Edit. Campus, Rio de Janeiro. 23