EFFICIENT CALIBRATION OF EMBEDDED MPC

Marco Forgione¹, Dario Piga¹, and Alberto Bemporad ²

¹IDSIA Dalle Molle Institute for Artificial Intelligence SUPSI-USI, Lugano, Switzerland ²IMT School for Advanced Studies Lucca, Lucca, Italy

> IFAC 2020 World Congress Berlin, Germany

Motivations

Calibration of model predictive controllers is costly and time-consuming. One has to choose model, cost function weights, prediction/control horizon, design a state estimator, etc.

The design is even more involved for embedded applications, where the hardware is also a limit. Need to choose carefully:

- Solution strategy (QP solver?)
- Low-level solver settings (e.g., tolerances)
- A feasible MPC sampling time

In this paper, we introduce an approach to ease embedded MPC calibration based on global optimization and repeated experiements.

Control architecture

Model Predictive Controller

Linear constrained MPC for a (non-linear) plant with model

$$\dot{x}(t) = f(x(t), u(t); \beta)
y(t) = g(x(t); \beta)
\Rightarrow
x_{t+1} = A(T_s^{\text{MPC}}, \beta)x_t + B(T_s^{\text{MPC}}, \beta)u_t
\Rightarrow
y_t = C(\beta)x_t$$

input u chosen on-line as the solution (applied in receding horizon) of:

$$\min_{\left\{u_{t+k|t}\right\}_{k=1}^{N_c}} \sum_{k=1}^{N_p} \left\|\hat{y}_{t+k|t} - \overline{y}_{t+k}\right\|_{Q_y}^2 + \left\|u_{t+k|k} - u_{t+k-1|t}\right\|_{Q_{\Delta u}}^2$$

s.t. model equations + constraints on y, u, Δu

Control architecture

Design variables

The MPC design variables to be tuned are

• Model parameters: β

ullet MPC sampling time: T_s^{MPC}

ullet MPC cost function: $Q_y, Q_{\Delta u}, N_c, N_p$

• State estimator: Kalman covariances W_v, W_w

MPC calibration procedure

Overview

In our optimization-based MPC calibration, we define

- Tunable design parameters collected in a design vector $\theta \in \Theta$.
- A closed-loop performance index J defined in terms of measured input/outputs during the calibration experiment: $J = J(y_{1:T}, u_{1:T}; \theta)$
- An procedure to perform calibration experiments (or SIL simulations) representative of the intended closed-loop operation

MPC calibration is seen as a global optimization problem:

$$\theta^{\text{opt}} = \operatorname*{arg\,min}_{\theta \in \Theta} J(y_{1:T}, u_{1:T}; \ \theta)$$
s.t. $T_{\text{calc}}^{\text{MPC}}(\theta) \leq T_s^{\text{MPC}}$

each (noisy) function evaluation correspond to a calibration experiment. Both J and $T_{\rm calc}^{\rm MPC}$ (worst-case MPC computation time) are observed!

MPC calibration procedure

Overview

In our optimization-based MPC calibration, we define

- Tunable design parameters collected in a design vector $\theta \in \Theta$.
- A closed-loop performance index J defined in terms of measured input/outputs during the calibration experiment: $J = J(y_{1:T}, u_{1:T}; \theta)$
- An procedure to perform calibration experiments (or SIL simulations) representative of the intended closed-loop operation

MPC calibration is seen as a global optimization problem:

$$\begin{split} \theta^{\text{opt}} &= \mathop{\arg\min}_{\theta \in \Theta} J(y_{1:T}, u_{1:T}; \; \theta) \\ \text{s.t. } T_{\text{calc}}^{\text{MPC}}(\theta) &\leq T_{s}^{\text{MPC}} \end{split}$$

each (noisy) function evaluation correspond to a calibration experiment. Both J and $T_{\rm calc}^{\rm MPC}$ (worst-case MPC computation time) are observed!

Global Optimization Algorithm

Overview

Several derivative-free global optimization algorithms exist:

- Response surface methods
- Bayesian Optimization
- Genetic algorithms
- Particle Swarm Optimization
- ...

Here, we adopt GLIS: a method recently introduced in (Bemporad, 2019).

- Radial basis function surrogate + inverse distance weighting (IDW) for exploration
- Performs better than BO on standard benchmarks, at a lower computational cost

Global Optimization Algorithm

Overview

Several derivative-free global optimization algorithms exist:

- Response surface methods
- Bayesian Optimization
- Genetic algorithms
- Particle Swarm Optimization
- ...

Here, we adopt GLIS: a method recently introduced in (Bemporad, 2019).

- Radial basis function surrogate + inverse distance weighting (IDW) for exploration
- Performs better than BO on standard benchmarks, at a lower computational cost

Surrogate function

Goal: solve global optimization problem:

$$\min_{\theta \in \Theta} J(\theta)$$

- Collect n_{in} initial observations $\{(\theta_1, J_1), (\theta_2, J_2), \dots, (\theta_{n_{\text{in}}}, J_{n_{\text{in}}})\}$
- 2 Build a surrogate function

$$\hat{J}(\theta) = \sum_{i=1}^{n} \alpha_i \phi(\|\theta - \theta_i\|_2)$$

True $J(\theta)$, surrogate $\hat{J}(\theta)$

 $\phi = {\rm radial\ basis\ function}$

Example: $\phi(d) = \frac{1}{1 + (\epsilon d)^2}$

Minimizing $\hat{J}(\theta)$ to find θ_{n+1} may easily miss the global optimum!

Surrogate function

Goal: solve global optimization problem:

$$\min_{\theta \in \Theta} J(\theta)$$

- Collect n_{in} initial observations $\{(\theta_1, J_1), (\theta_2, J_2), \dots, (\theta_{n_{\text{in}}}, J_{n_{\text{in}}})\}$
- 2 Build a surrogate function

$$\hat{J}(\theta) = \sum_{i=1}^{n} \alpha_i \phi(\|\theta - \theta_i\|_2)$$

True $J(\theta)$, surrogate $\hat{J}(\theta)$

 $\phi = \text{radial basis function}$

Example:
$$\phi(d) = \frac{1}{1 + (\epsilon d)^2}$$

Minimizing $\hat{J}(\theta)$ to find θ_{n+1} may easily miss the global optimum!

Exploration vs. Exploitation

Construct the IDW exploration function

$$z(\theta) = \frac{2}{\pi} \Delta F \tan^{-1} \left(\frac{1}{\sum_{i=1}^{n} w_i(\theta)} \right)$$

where
$$w_i(\theta) = \frac{e^{-\|\theta-\theta_i\|^2}}{\|\theta-\theta_i\|^2}$$

Optimize the acquisition function:

$$\theta_{n+1} = \arg\min_{\theta \in \Theta} \hat{J}(\theta) - \frac{\delta}{\delta}z(\theta)$$

 δ : exploitation vs. exploration trade-off

exploration trade-off

to get the query point θ_{n+1} . Execute experiment with θ_{n+1} , measure J_{n+1} .

Iterate the procedure for n+2, n+3...

Exploration vs. Exploitation

Construct the IDW exploration function

$$z(\theta) = \frac{2}{\pi} \Delta F \tan^{-1} \left(\frac{1}{\sum_{i=1}^{n} w_i(\theta)} \right)$$

where
$$w_i(\theta) = \frac{e^{-\|\theta-\theta_i\|^2}}{\|\theta-\theta_i\|^2}$$

Optimize the acquisition function:

$$\theta_{n+1} = \arg\min_{\theta \in \Theta} \hat{J}(\theta) - \frac{\delta}{\delta}z(\theta)$$

Exploration function $z(\theta)$

 δ : exploitation vs. exploration trade-off

to get the query point θ_{n+1} . Execute experiment with θ_{n+1} , measure J_{n+1} .

Iterate the procedure for n+2, n+3...

Cart-pole system

- Input: force F with fast disturbance (5 rad/sec)
- ullet Output: noisy position p
- Objective: follow trajectory for p, keep ϕ small.

Optimization-based calibration of

- lacktriangledown MPC sample time $T_s^{
 m MPC}$
- **②** MPC weights Q_y and $Q_{\Delta u}$
- Open Prediction and control horizon
- Kalman filter covariance matrices
- QP solver's abs. and rel. tolerances

 $n_{\theta}=14$ design parameters optimized using n=500 iterations of GLIS

$$J = \int_0^{T_{\rm exp}} |\overline{p}(t) - p(t)| + 30|\phi(t)| \ dt$$

Python codes on-line, 100% open source (including all dependencies). https://github.com/forgi86/efficient-calibration-embedded-MPC

Cart-pole system

- Input: force F with fast disturbance (5 rad/sec)
- ullet Output: noisy position p
- Objective: follow trajectory for p, keep ϕ small.

Optimization-based calibration of

- **②** MPC weights Q_y and $Q_{\Delta u}$
- Opening Prediction and control horizon
- Malman filter covariance matrices
- OP solver's abs. and rel. tolerances

 $n_{\theta}=14$ design parameters optimized using n=500 iterations of GLIS

$$J = \int_0^{T_{\text{exp}}} |\overline{p}(t) - p(t)| + 30|\phi(t)| dt$$

Python codes on-line, 100% open source (including all dependencies). https://github.com/forgi86/efficient-calibration-embedded-MPC

- An Intel i5 PC (left) vs. an ARM-based Raspberry PI 3 (right)
- PI is about 10 time slower than the PC for MPC computations

- Position and angle control tighter on the PC
- \bullet Faster loop update on the PC \Rightarrow more effective disturbance rejection
- Calibration squeezes max performance out of the hardware!

4 D > 4 B > 4

GLIS iterations on the Raspberry PI

- High cost for interrupted tests/unfeasible design
- ullet For increasing n, more points have "low" cost
- ullet Experiments with high cost still appear for large n (exploration)

Simulation Example

Cart-pole system

Similar calibration results are obtained using Bayesian Optimization (BO). However, BO is a much heavier algorithm!

• With GLIS, the overall computation time is dominated by function evaluations (= running MPC and simulating the system).

Conclusions

An approach for embedded MPC calibration approach based on global optimization and repeated experiments

- Higher- and lower-level tuning knobs jointly optimized for performance, while keeping the design feasible for real-time implementation.
- Tested in simulation on two hardware platforms

Current/future works

- Application to robotic systems
- Preference-based MPC calibration

Conclusions

An approach for embedded MPC calibration approach based on global optimization and repeated experiments

- Higher- and lower-level tuning knobs jointly optimized for performance, while keeping the design feasible for real-time implementation.
- Tested in simulation on two hardware platforms

Current/future works

- Application to robotic systems
- Preference-based MPC calibration

Thank you. Questions?

marco.forgione@idsia.ch