(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 November 2003 (13.11.2003)

PCT

(10) International Publication Number WO 03/093462 A2

(51) International Patent Classification⁷: C12N 7/00

(21) International Application Number: PCT/GB03/01797

(22) International Filing Date: 28 April 2003 (28.04.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

0209680.8 27 April 2002 (27.04.2002) GB

(71) Applicant (for all designated States except US): UNIVER-SITY OF STRATHCLYDE [GB/GB]; McCance Building, 16 Richmond Street, Glasgow G1 1XQ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCOTT, Hugh [GB/GB]; 12 Glencoats Drive, Paisley PA3 1RW (GB). MATTEY, Michael [GB/GB]; 10 Ratho Gate, Cumbernauld G68 0GG (GB).

(74) Agents: MacDOUGALL, Donald, Carmichael et al.; Cruikshank & Fairweather, 19 Royal Exchange Square, Glasgow G1 3AE (GB). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IIU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

03/093462 A2

(54) Title: IMMOBILISATION AND STABILISATION OF VIRUS

(57) Abstract: The present invention relates to a method for immobilization and optional stabilization of viruses whilst retaining the viral biological activity and the use of immobilized virus in therapy. In particular, the immobilized virus relates to immobilized bacteriophage and their use as an antibiotic or bacteriostatic agent and in the treatment of antibiotic-resistant infections.

1

IMMOBILISATION AND STABILISATION OF VIRUS

The present invention relates to a method for immobilising and optionally stabilising viruses including bacteriophage, preferably to a solid phase substrate, for use in therapy, in particular as an antibiotic (bactericide) or bacteriostatic agent, in the treatment of antibiotic-resistant superficial infections and use in vaccinations.

5

10

15

20

25

30

35

Bacteria have proven adept at developing resistance to new anti-microbial agents and so-called "super-bugs" are a cause of rising costs spent on means to combat super-bug-related infections and fatalities in hospitals throughout the world. For example, the use of antibiotics, whether in an individual patient or in a hospital with its special environment and catalogue of micro-organisms, will destroy antibiotic-susceptible bacteria but permit the proliferation of bacteria that are intrinsically resistant or that have acquired extra chromosomal resistance. Thus, the more antibiotics are used, the more resistant bacteria become.

Bacteria can survive on common hospital materials including cotton and/or polyester lab coats, privacy curtains and polyethylene splash aprons for anything up to seven weeks increasing the chance of spreading infection. Indeed, common disinfectants used to sterilise hospital rooms and equipment are not sufficient to curb the spread of "super-bugs".

Furthermore, no fundamentally new antibiotic has been discovered for at least 30 years and there is no guarantee that new classes of antibiotics will be developed let alone even discovered in the next decade.

An alternative to antibiotics in the fight against "super-bugs" is the use of bacteriophage. A bacteriophage is a water-borne virus that infects specific bacteria. Virus particles vary in shape and size, from 0.02 to 0.3 μ m and contain RNA or DNA, either double or single stranded, which forms the viral genome. The viruses have a varied

2

structure but the nucleic acid is always located within the virus particle surrounded by a protein coat (capsid or shell). The complex of nucleic acid and protein (the nucleocapsid) may be the whole structure of the virus (for example $\phi 6$, an RNA bacterial virus, or $\phi X174$, a DNA bacterial virus) but structures that are more complicated occur. The enveloped viruses may have lipid and protein membranes around the capsid while the complex viruses possess not only icosahedral heads but also helical tails with up to 20 proteins within the tail.

5

10

15

20

25

30

35

Bacteriophage on infection of their hosts can multiply by either a lytic or lysogenic pathway. Bacteriophage that can integrate their DNA into bacterial chromosomes are known as lysogenic bacteriophage, with the integrated viral DNA replicating along with the host chromosome to produce new integrated viral DNA copies. Alternatively, the virus may replicate freely to produce several hundred progeny Lysis of the cells then releases this large number of free viruses, which are then able to infect neighbouring bacteria. Although, bacteriophage were first identified in 1917, studies in the West into their application in medicine have been few and far between but studies have persisted and proved successful in Russia. Even so, various problems with bacteriophage therapy remain. For example, although bacteriophage are easy to grow they are particularly unstable and thus difficult to store.

Bennett et al (1997) describe the immobilisation of a Salmonella-specific bacteriophage by adsorption. They detail the passive adsorption of bacteriophage onto polystyrene solid phases. However, this process is inefficient due to complex bacteriophages being immobilised via both "head" and "tail" groups. The tail group is required to be free in order to recognise and infect specific bacteria. Further, the adsorption process is reversible so that adsorbed bacteriophage will desorb and release free bacteriophage. The product of this process

3

is described for use as a separation system for the removal of specific bacteria from foods only and does not require the bacteriophage to be viable.

It is an object of the present invention to obviate and/or mitigate at least some of the above disadvantages.

5

10

15

20

25

30

35

Broadly speaking, the present invention describes for the first time a method for the immobilisation and optional stabilisation of viruses whilst retaining the viral biological activity. Furthermore, it documents its use in therapy, for example the manufacture of medical devices comprising immobilised virus, such as bacteriophage, with the ability to destroy specific resistant bacteria when, and only when, they are present.

In a first aspect the present invention provides a device comprising virus immobilised to a substrate for medical application.

In a further aspect of the present invention there is provided a device comprising virus immobilised to a substrate for use as an antibiotic (bactericide) or bacteriostatic agent. Preferably, said virus is a bacteriophage.

Immobilisation is understood to relate to a specific physical immobilisaton, such as by chemical bonding and is therefore distinguished from any passive adherence of a virus to a substrate.

The term "virus" according to the present invention includes double-stranded or single-stranded RNA or DNA viruses, which infect cells of bacteria, plants and/or animals. These include viruses from the following families of viruses: Iridoviridae, African swine fever virus, Poxviridae, Parvoviridae, Reoviridae, Birnaviridae, Picornaviridae, Togaviridae, Flaviviridae, Rhabdoviridae, Bunyaviridae, Herpesviridae, Adenoviridae, Papovaviridae, Hepadnaviridae, Coronaviridae, Calicivirus, Arenaviridae, Paramyxoviridae, Orthomyxoviridae, Filoviridae, Retroviridae, Baculoviridae, Polydnaviridae, Nudaurelia β virus group, Nodaviridae, Caulimovirus, Geminivirus, Tomato

4

spotted wilt virus group, Luteovirus, Machlovirus, Necrovirus, Sobemovirus, Tombusvirus, Tymovirus, Bromovirus, Cucumovirus, Ilarvirus, Alfafa mosaic virus group, Comovirus, Dianthovirus, Nepovirus, Pea enation mosaic virus group, Tobamovirus, Tobravirus, Hordeivirus, Potexvirus, Potyvirus, Carlavirus, Closterovirus, Totiviridae, Partitiviridae, Myoviridae, Styloviridae, Podoviridae, Tectiviridae, Plasmaviridae, Corticoviridae, Microviridae, Inoviridae, Cystoviridae and Leviviridae.

5

10

15

20

25

30

35

It should be understood that a virus may include viruses or infectious agents, which do not fall into the above mentioned families, e.g., plant satellite viruses, prions, baculoviruses and bacteriophage respectively.

The term "bacteriophage" according to the present invention is indicative of bacteriophage, which infect specific strains of bacteria e.g. salmonella, *Escherichia coli*, staphylococcus or pseudomonus bacteriophage.

The term "medical" according to the present invention is understood to mean the treatment or prevention of viral, bacterial or prion infections and/or contamination in humans, animals or plants. For example, in the case of bacterial infections and/or contamination, treatment or prevention may be achieved by bacteriophage immobilised on a substrate. It will be understood to the skilled man that bacteriophage can recognise and infect specific strains of bacteria. Thus, bacteriophage immobilised to a substrate according to the present invention, may be utilised to strain-specific bacterial infections "bactericide" by inducing selective killing of bacteria through cell lysis or as a "bacteriostatic agent" by inhibiting bacterial growth. Bacteriophage immobilised to substrate may also be used as a antibacterial agent/disinfectant in order to "sterilise" bacteriallycontaminated material.

The term "substrate" according to the present invention is understood to mean any solid phase material to which a virus may be immobilised. For example, said

5

10

15

20

25

30

35

5

substrate may be a material which may be advantageously activated to allow head-group specific binding of a virus, such as complex bacteriophage. Said substrate may take many forms, for example, nylon and any other polymer with amino or carboxyl surface groups, cellulose or other hydroxyl-containing polymer, polystyrene or other similar polymer, various plastics or microbeads including magnetic particles, biological substances. More preferably, said substrate is made of a material commonly used in therapy/medicine. For example, nylon thread for use in surgery; plastics, lint or gauze material used to dress open wounds; microbeads, which can be ingested; adhesives such as cyanoacrylates; and/or biological substances such as collagen or hyaluronic acid.

Immobilisation of virus to the substrate may be achieved in a number of ways. Preferably, viruses, such as bacteriophage, are immobilised via bonds, typically covalent bonds formed between the bacteriophage coat protein and the substrate.

More preferably, bacteriophage are immobilised to the substrate via their head groups or nucleocapsid by activating the substrate before the addition and coupling of bacteriophage.

The term "activated/activating/activation" according to the present invention is understood to mean the activation of a substrate by reacting said substrate with various chemical groups (leaving a surface chemistry able to bind viruses, such as bacteriophage head or capsid groups).

Activation of said substrate may be achieved by, for example, preliminary hydrolysis with an acid, preferably HCl followed by a wash step of water and an alkali to remove the acid. Preferably, said alkali is sodium bicarbonate. Binding of viruses, for example bacteriophage, via their head groups is important. In the case of complex bacteriophage for example, binding via head groups leaves the tail groups, which are necessary for

5

10

15

20

25

30

35

6

bacteria-specific recognition, free to infect, i.e., bind and penetrate a host bacterial cell. It will be understood that this mechanism of infection of a host cell is similar for many other viruses other than viruses that infect and multiply only in bacteria. A plurality of viruses, e.g., various strain-specific bacteriophage, may be immobilised to a substrate at any one time.

Coupling of viruses to a substrate is as a result of the formation of covalent bonds between the viral coat protein and the substrate such as through an amino group on a peptide, for example a peptide bond. "Coupling Agents" that aid this process vary, dependent on the substrate used. For example, for coupling to the substrate nylon or other polymer with amino or carboxy surface groups the coupling agents carbodiimide or glutaraldehyde may be used. For coupling to the substrate cellulose or other hydroxylcontaining polymer the coupling vinylsulfonylethylene ether or triazine may be used. Coupling agents for the coupling of virus to the substrate polythene or other similar polymer include corona discharge or permanganate oxidation. Generally speaking, coupling agents for the coupling of bacteriophage to a substrate include: S-Acetylmercaptosuccinic anhydride; S-Acetylthioglycolic acid N-hydroxysuccinimide ester; dihydrazide; 4-Azidobenzoic Adipic acid acid Nhydroxysuccinimide ester; N-(5-Azido-2nitrobenzyloxy) succinimide; 6-(4~Azido-2nitrophenylamino) hexanoic acid N-hydroxysuccinimide ester; p-Azidophenacyl bromide; 4-Azidosalicylic acid

N-hydroxysuccinimide ester; Bromoacetic acid N-hydroxysuccinimide ester; 1,4-Butanediol diglycidyl ether; 2~Diazo-3,3,3-trifluoroproprionic acid nitrophenyl ester; Diethyl malonimidate; 4,4 ~Diisothiocyanatostilbene-2,2'-disulfonic acid; Dimethyl adipimidate: Dimethyl 3,3'-dithiobispropionimidate; Dimethyl pimelimidate; Dimethyl suberimidate; 4,4'-Dithiobisphenyl azide; Dithiobis (propionic acid N-

7

hydroxysuccinimide ester); Ethylene Glycol bis-(succinic acid N-hydroxysuccinimide ester); 4-Fluoro-3-nitrophenyl p-Formylbenzoic acid N-hydroxysuccinimide ester; Glutaraldehyde; 2-Iminothiolane; 6-(Iodoacetamide)caproic 5 acid N-hydroxysuccinimide ester; lodoacetic acid N-hydroxysuccinimide ester; 3-Maleimidoacetic acid N-hydroxysuccinimide ester; 3-Maleimidobenzoic acid N-hydroxysuccinimide ester; 4-(N.Maleimido)benzophenone; γ-Maleimidobutyric acid N-hydroxysuccinimide ester; ε-Maleimidocaproic acid N-hydroxysuccinimide ester; 10 4-(N-Maleimidomethyl)cyclohexenecarboxylic acid N-hydroxysuccinimide ester; 4 - (N -Maleimidomethyl) cyclohexanecarboxylic acid 3-sulfo-Nhydroxysuccinimide ester; β-Maleimidopropionic acid N-hydroxysuccinimide ester; N, N'-bis(3-Maleimidopropionyl) -15 2-hydroxy-1,3-propanediamine; 1,4-Phenylene diisothiocyanete; N, N'-o-Phenylenedimaleimide; Polyoxyethylene bis(glycidyl ether); bis(Polyoxyethylene bis (qlycidyl ether); Polyoxyethylene 20 bis(imidazolylcarbonyl)1; Bis(Polyoxyethylene bis[Imidolylcarbonyl]); Polyoxyethylene bis(p-nitropheny) carbonate); 3-(2-Pyridyldithio)propionic acid N-hydroxysuccinimide ester; Suberic acid bis(Nhydroxysuccinimide) ester; Succinic Acid Maleimidoethyl-Nhydroxysuccinimide 25 ester; 1 , 5 bis(succinimidooxycarbonyloxy)-pentene; bis(Nsuccinimidyl) carbonate.

Advantageously the present inventor has observed that where virus is immobilised to said substrate, said immobilization confers stability. For example, the immobilised virus is stabilised in such a way that it maintains its viability and infectivity even when in contact with agents, for example proteases, which may otherwise inactivate the virus and similarly, when exposed to physical stress, such as dehydration, temperature or pH which would otherwise inactivate the virus. Further stability is conferred to the immobilised virus using known

30

5

10

15

20

25

30

35

8

compounds that protect proteins against dehydration, prolonged storage and other stresses. An example of such a compound is trehalose.

and other similar Trehalose agents including functional analogues are known as stabilizing agents for a number of chemicals, living tissues and even organisms, including viruses (Colaco et al., 1992; Crowe and Crowe 2000). Trehalose, a disaccharide, has been documented to be involved in the stabilisation of membranes and proteins in dry animals and other anhydrobiotic organisms. for example, organisms include, dry baker's yeast Sacchoromyces cerevisiae, resurrection plants, cysts of certain crustaceans (including the brine shrimp Artemia) and many bacteria (Crowe and Crowe, 2000, Nature Biotech., 18, pp 145-146). Trehalose has also been shown to preserve mammalian cells during freezing (Beattie et al., 1997, Diabetes, 46, pp519-523) and proteins (Colaco et al., 1992, Biotechnology, 10, pp1007-1011) during drying. also been documented to be involved has stabilisation of viruses in their native state by Bieganski 1998, Biotechnol. Prog., 14, "Stabilization of active recombinant retroviruses in an amorphos dry state with trehalose"

The present invention not only shows that trehalose may be used to stabilise viruses in their native state but for the first time shows that further stability results from trehalose treatment of viruses immobilised by covalent attachment to a substrate. Thus, in a further aspect of the present invention there is provided use of trehalose for the further stabilisation of a device comprising virus immobilised to a substrate according to the present described. invention and as hereinbefore Covalent immobilization (forming of a chemical bond) of proteins as known, results in a substantial increase in stability. The present inventors have also shown that this is true for bacteriophage by describing herein the stability of an insoluble nylon/bacteriophage co-polymer of considerable

9

molecular weight.

5

10

15

20

25

30

35

Thus, according to the present invention said virus(es) immobilised to said substrate may be for example, coated with trehalose by, for example, dipping into a solution of trehalose before drying and storage such that the virus(es) maintain their viability and infectivity.

Further applications of the present invention may include the treatment of MRSA; food poisoning, wherein bacteriophage may be immobilised on a substrate such as microbead suspension, which can be ingested; or in the decontamination of hospital equipment/surfaces; Prevention of infection by methicillin-resistant Staphylococcus aureus (vancomycin insensitive S. aureus) or VISA by immobilization of appropriate bacteriophage onto, example, sutures or wound dressings; prevention of specific pathogen entry through catheters and similar devices by immobilization of appropriate bacteriophage onto the surface of the device; treatment of pulmonary infection such as tuberculosis with, for example, micro-particles of about 10 microns diameter with appropriate bacteriophage by inhalation; treatment of immobilized onto them, infections such as meningitis, for example, by injection of micro particles with appropriate bacteriophage strains immobilized; treatment of gastrointestinal infections, for example, by particles or gels containing appropriate immobilized bacteriophage; treatment of bacterial plant diseases; elimination of, for example, E.coli in cattle by incorporation into the diet of immobilized bacteriophage; incorporation of appropriate bacteriophage into food wrapping materials to prevent or eliminate contamination by organisms causing food poisoning; incorporation bacteriophage into paints to appropriate contamination of surfaces in, for example, hospitals, or farms; treatment of surfaces of air-conditioning units with appropriate immobilized bacteriophage to prevent, for example, Legionella contamination.

WO 03/093462

5

10

15

20

25

30

35

10

PCT/GB03/01797

The present invention may also be used for the purposes of vaccination. For example, the present invention may be used to immobilize any live, infectious virus, which could be then used to vaccinate populations at This may be particularly useful where no vaccine exists for a particular virus and any form of prevention of viral infection would be useful. Thus, a virus as hereinbefore described may be immobilised and used directly to vaccinate reducing the time taken to develop a more standard attenuated virus. It will be understood that such vaccinations may only be conducted, especially with regard to humans, in extreme cases. Without wishing to be bound by theory, the action of the immobilised virus used to vaccinate would be such that the immobilized virus would be unable to reach its target cells from the vaccination site; preventing the immobilised virus infecting the patient. It will be understood, therefore, that immobilised HIV virus would not be able to be used for vaccination in this Preferably, the immobilised virus is kept at the inoculation site for longer than conventional vaccines allowing a better immune response to be raised. Advantageously, the present inventor has shown that the present invention of immobilising viruses substantially reduces or eliminates free, unimmobilised viruses.

In a further aspect, the present invention provides a method of preparing a device comprising a substrate having virus immobilised thereon, said method comprising the steps of:

- a) activating the substrate so as to enable virus to bind thereto;
- b) mixing the modified substrate with virus and a coupling agent to aid the binding of virus to the substrate.

In a yet further aspect said method comprises the further step of:

c) mixing the device with a a stabilising agent that maintains the viability and infectivity of the virus

11

bound to the modified substrate when said modified substrate is exposed to dehydration, prolonged storage and/or other stresses.

It should be understood that the term "activating" is as hereinbefore defined.

Preferably, the stabilising agent according to the present invention is trehalose or other agent such as known heat shock proteins known in the art that protect proteins or viruses against dehydration, prolonged storage and other stresses.

In a preferred embodiment of the present invention, said device mixed with a stabilising agent may be dried, allowing prolonged storage of said device whilst maintaining the infectivity and viability of the virus.

The present invention will now be further described by way of example, with reference to the following methods and figures in which:

Figure 1- Graphical Representation of Wound Model 1

The graph depicts the activity over three days of nylon strips with or without bacteriophage in killing Staphylococcus aureus bacterium present on the surface of raw pork to simulate a surgical wound. The activity represents the average of three replicates, score + or -, wherein + depicts the clearing of bacterium and - depicts the bacterium remaining cloudy.

Figure 2 - Graphical Representation of Wound Model 2
Activity is measure over 9 days and is scored as in Figure
1. Nylon +/- bacteriophage is inserted into a wound in fresh raw pork, which is replaced with fresh tissue every three days.

Figure 3 - Graphical Representation of Resistance of Immobilised Bacteriophage to proteolytic activity

Series 1 - control;

5

10

15

20

25

30

35

Series 2 - 0.1 g/l trypsin;

Series 3 - 0.5 q/l trypsin;

Series 4 - 2.5 g/l trypsin

12

Figure 4

Graphical representation of numbers of bacteriophage immobilised on activated nylon. The reduction of phage numbers with time is depicted.

Figure 5

As for Figure 4, repeated with larger strips of activated nylon $(5 \times 1 \text{ cm})$

Figure 6

Schematic drawing of Wound Models 1 and 2 (depicted in Figures 1 and 2 respectively).

<u>Figure 7 - Graphical Representation of Infection of</u>
Animal Cells by Adenovirus.

The graph depicts the infectivity of free adenovirus, and adenovirus immobilised onto nylon on HEK 293 cells.

15 Methods

5

10

20

25

30

35

Propagation: An overnight subculture of bacteria was adjusted to a cell concentration of 1.5×10^9 cells/ml. 0.1ml of this was mixed with 1×10^5 pfu (plaque forming units) of bacteriophage. After incubation at 37°C for 20 minutes the mixture was poured onto 1.5% LB agar, 0.7% LB agar was layered over this and allowed to set. Plates were incubated at 37°C for 12 hours. Almost confluent bacteriophage plaques were formed.

Bacteriophage were harvested by adding 5ml of sterile bacteriophage suspension buffer and shaking. The bacteriophage suspended in the buffer were purified by centrifugation and filtration through a 100kDa cut-off filter to remove bacterial protein. Yield was 1x10° pfu/ml.

Plaque assays: for the presence of bacteriophage were carried out by the two layer plate assay as described for propagation.

Immobilisation: Nylon strip 8x1 cm was used.

Activation: Nylon was activated by preliminary hydrolysis with 4M HCl for 2.5 minutes at 70°C, washed in distilled water and 0.1M sodium bicarbonate to remove acid.

13

Coupling to nylon or other polymer with amino or carboxyl surface groups.

i) Carbodiimide as a coupling agent.

5

10

15

25

30

35

After this brief acid hydrolysis of the nylon surface the sample is washed with dimethylformamide (DMF) and 20mM 1-cyclohexyl-3-[2-morpholinoethyl]-carbodiimidemethyl-p-toluene sulphonate is added. The solution is stirred for 90 minutes, and then the nylon is washed with DMF. The activated nylon is stirred overnight with bacterophage in suitable buffer, and then washed to remove unbound bacteriophage.

ii) Glutaraldehyde as a coupling agent.

After a brief acid hydrolysis of the nylon surface the sample is washed with 0.1M bicarbonate buffer pH9.4 and incubated with 10% glutaraldehyde in 0.1M bicarbonate buffer. The surface was then washed in bicarbonate buffer and distilled water before being incubated overnight with bacteriophage in a suitable buffer.

20 <u>Coupling to cellulose or other hydroxyl-containing polymer.</u>

i) Vinylsulfonylethylene ether

Vinylsulfonyl groups can be introduced into hydroxylcontaining polymers by treatment of the polymer with vinyl sulfone at pH11. The activated polymer is stirred overnight with bacteriophage in suitable buffer, and then washed to remove unbound bacteriophage.

ii) Triazine addition

Cellulose or a modified cellulose (about 10g) is added to 50ml of acetone/water (1:1) containing 1g 2-amino-4, 6dichloro-s-triazine at 50° and stirred for 5 minutes. Then 20ml of 15% (w/v) aqueous sodium carbonate to which 0.6 vol. of 1M HC1 has been added is poured into the reaction Concentrated HC1 is then added to bring the mixture. mixture below 7. The amino-chloro-s-triazine нα substituted cellulose is washed with acetone/water, then water and finally with 0.05M phosphate buffer as pH7.0. The coupling reaction with the bacteriophage is carried out

14

at pH8.0 in 0.05M phosphate buffer by stirring for 12 to 18 hours.

Coupling to Polythene or other similar polymer

1. Corona discharge

Polythene was exposed to a corona discharge for about 1 second; bacteriophage dehydrated in the presence of trehalose was dusted onto the treated surface immediately.

2. Permanganate oxidation.

Polythene was exposed to concentrated potassium permanganate solution for several hours, washed with distilled water and immediately treated with bacteriophage in trehalose or other stabilizing agent.

15 Example 1

plaque assay.

5

1. Bacteriophage P1 with *Escherichia coli* 11291
The nylon/bacteriophage preparation was challenged with 50ml of bacterial culture at about 1x10⁸ cells/ml.
After incubation the culture was assayed by the two layer

Example 2 Bacteriophage \(\lambda \) against \(E.coli. \)

In this experiment the number of pfu's used in the preparation of the immobilised system is compared with the number of pfu's observed when the immobilised system is challenged with the bacteria.

		Plaques	
Free bacteriophage	8	40	35
no bacteriophage	0	0	0
Immobilised bacteriophage	7	23	17

The numbers of bacteriophage plaques arising from the immobilised systems with this bacteriophage-bacteria combination shows:

30

35

20

15

- That immobilised bacteriophage are viable and infective.
- a relationship between free bacteriophage numbers used in the preparation and the number of bacteriophage produced by immobilised systems.

5

10

Example 3 Unknown bacteriophage against Staphylococcus.aureus.

Bacteriophage was isolated by incubating a lawn of S. aureus with contaminated water which had been filtered through a 0.18µ filter to remove bacteria. Where a plaque formed indicated the presence of a lytic bacteriophage. This was isolated and grown as previously described.

15

Dilution	Plaques expected	Plate count
1	1	0
2	10	0
3	100	10
4	1000	100
5	10000	1000
6	100000	10000

20

25

Example 4 Effect of trehalose on viability

The experimental system was as previously described except that the nylon/bacteriophage preparations were dipped into a trehalose solution of various concentrations and dried before assay (Nylon/bacteriophage preparations previously described were stored in buffer for 24 to 48 hours before use) dried preparations were used 72 hours later.

	Plaques
Free bacteriophage	24
no bacteriophage	0
Immobilised bacteriophage	21
Trehalose 1%	27
Trehalose 0.5%	18
Trehalose 0.1%	24 .
Trehalose 0.05%	21

10

5

The data indicate that trehalose enables immobilised bacteriophage to withstand dessication and storage for at least 72 hours without significant loss of viability and infectivity. The free bacteriophage, no bacteriophage and immobilised bacteriophage samples were controls not treated to dessication and storage.

15

Dilution	Plaques expected	Plate count	
1	1	1	
2	10	1	
3	100	15	
4	1000	250	
5	10000	500	
6	100000	1000	

20

25

The data show that significant numbers of viable and infective bacteriophage have been immobilised on the nylon sheet. There is also a dose/response relationship between the estimated numbers of bacteriophage immobilised and the plaques formed from the immobilised system.

Validation of washings:

The washings from the nylon/bacteriophage reaction were assayed by the two layer plaque assay to determine the rate and efficiency of removal of free bacteriophage (those that did not form covalent attachment as a result of the

17

chemistry).

Washing	pfu/ml		
1	10000		
2	100		
3	8		
4	0		
5	0		
6	0		

10

15

20

5

Example 5 Bacteriophage NCIMB 9563 (ATCC6538-B) against Staphylococcus aureus in the presence of tissue.

Bacteriophage 9563 was grown as previously described, immobilized onto nylon membrane, washed to remove unbound bacteriophage and tested against a strain of S. aureus in two experimental situations.

1. Does the presence of animal tissue affect the response of the immobilised bacteriophage?

The nylon membrane with immobilized bacteriophage was placed in a flask with 50ml of *S. aureus* growth medium and 10g of macerated beef, to model a wound situation, the flask was inoculated with 2x10⁸ bacterial cells and incubated for 24 hours at 37°C. Samples were tested for the presence of bacteriophage by the two layered assay previously described. The results showed that the macerated tissue did not significantly affect the infection of *S.* aureus by immobilized bacteriophage 9536.

Dilution	Plaques expected	Plate count	
1	1	Ö	
2	10	0	
3	100	10	
4	1000	100	
5	10000	1000	
6	100000	10000	

The "plaques expected" is based on the estimated number of bacteriophage immobilized and their expected subsequent propagation in the bacterial culture. The result implies that under the conditions of the experiment about 10% of the immobilized bacteriophage infected bacteria or, more likely, that 10% of the inoculated bacteria came into contact with the nylon membrane.

2. Does the immobilized bacteriophage have an effect in a wound model?

A series of two-centimeter cuts were made in a beef or pork slice and each was inoculated with 2x10⁸ bacterial cells. Sections of nylon membrane with immobilized bacteriophage 9536 were inserted into ten of the cuts, nylon membrane without bacteriophage into another ten, and ten left untreated.

After 24 hours visible growth was evident in cuts left untreated or treated with nylon only, but no growth was seen in cuts treated with immobilized bacteriophage. This indicates that immobilized bacteriophage is effective in preventing bacterial growth in the presence of muscle tissue.

Example 6

5

10

15

20

25

30

35

1. Wound Models:

In a hypothetical clinical situation where sutures with immobilised bacteriophage had been used, the longer the phage remained active the greater the protection given. Although the major period of contamination would be during

19

PCT/GB03/01797

and immediately after surgery, the material would not be activated until contact between target bacteria and the suture occurred.

Initial experiments used surface contact with fresh, raw pork to simulate a surgical wound - See Figure 6a.

The assay involved incubating the exposed nylon/phage strips with the target *S. aureus* (8588) cultures. Exposed strips were sterilized with chloroform (2.5%) to prevent contamination from other bacteria present on the pork surface. The target bacterium was either cleared (+ result) or remained cloudy (- result).

Conclusions:

5

10

15

20

25

30

35

Activity is substantially retained for three days in contact with "wound" - see Figure 1.

Wound Model 2

In this test, the strips (nylon/phage) were inserted into a wound in fresh raw pork, which was replaced with fresh tissue every three days - see Figure 6b.

Results are depicted in Figure 2

Conclusions:

The activity was retained at a high level for 6 to 7 days. After that period, one or more of the replicate strips failed to clear the *S. aureus* culture. This result suggests that a single presentation would provide protection for longer than the likely time sutures would be used, and longer than the time in which wound dressings would be left unchanged.

Trypsin digest

The aim of this was to determined how resistant phage were to proteolytic degradation, a possible stress in certain situations. Two experimental approaches were used, free bacteriophage were tested to determine their susceptibility to tryptic inactivation and immobilised bacteriophage were tested, to determine any protective effect from the immobilization.

Free phage test 1.

Three concentrations of trypsin were used:

20

0.1q/1

0.5q/1

2.5g/1

5

15

20

25

30

35

Tests were carried out in universal tubes with 5 ml of stock phage.

Samples were diluted and assayed for viable phage by standard plaque assay.

Results are depicted in Figure 3 Conclusions:

The trypsin at these concentrations and times was without effect on the free phage.

This experiment was repeated three times with similar outcomes.

The immobilised phage is at least as resistant as the free phage to proteolytic inactivation.

This result has implications for possible oral administration of bacteriophage.

Numbers of phage immobilised

Two approaches have been adopted, one is to determine the residual phage after immobilization and the other electron microscopy.

1. Activated nylon was added to phage solution of known concentration and the reduction of phage numbers with time measured by plaque assay.

Results are depicted in Figure 5

The area of the strips was 5 x 1 cm, with the number of phage immobilised being 7 x 10^7 per strip. This gives a density of one phage per $15\mu^2$, electron microscopy methods give a similar density (7 to 15μ spacing). The size of phage is about 0.3μ , so the surface density could be increased.

Example 7

Production of lytic bacteriophage active against pathological strains of S. aureus.

Method

21

A lytic bacteriophage isolated from environmental sources was treated with mutagenic chemicals to alter the binding capability of the bacteriophage towards its target bacterium. Random mutagenesis can be carried out by any standard method, in the case reported below this was treatment with hydroxylamine (4%).

Result

1	0

5

15

Antibiogram	Methi-	Phage type	PFGE	Plagues
	cillin	754 97.64	profile	with
,	MIC			mutant
PuSuTe (MtCxErCp)	R	932/77ih/83A/	PF108a	None
		84IH/85/90+		
PnMtCx	R '	75w	PF15a	Confluent
PnMtCxErCp(Im)	R	NT	PF15b	Confluent
PnMtCxErClCpKmTb	R	83Cw/29ih/75w/	PF16a	Confluent
		77w/83Aw		
PnMtCxImErClCpKm	R	83Cih/29ih/52ih/	PF16m	Confluent
		75w/77/83Aw		

Conclusions

20 PF15a and b correspond to EMRSA type 15, which accounts for about 70% of hospital-acquired infections. PF16a and M correspond to EMRSA type 16 which accounts for about 20% of such infections. This phage would be effective against 90% of all hospital-acquired infections in the UK.

25

Example 8

Activity of Immobilised Adenovirus

Background.

Method

Nylon samples were activated with carbodiimide as previously indicated and reacted with Adeno-X-LacZ[™] viral stock (BD Biosciences Palo Alta, USA). The samples were washed 5 times, then introduced into wells of a 12 well assay plate. Healthy HEK 293 cells (5 x 10⁵ cells/ml) were seeded into each well, together with positive and negative controls. The positive control consisted of un-immobilised

22

Adeno-X_LacZ virus ("free virus"). Cells were cultured in DMEM+10% Fetal Bovine serum medium. Several dilutions of the stock virus were used $(10^{-2} \text{ to } 10^{-6})$. Plates were incubated at 37°C in $5^{\circ}\text{CO}_2/\text{air}$ for 48 hours. The medium was removed cells air dried for 5 minutes, then fixed by adding 1ml ice-cold methanol to each well. After 10 minutes the methanol was removed and wells rinsed three times with 1ml Phosphate buffered saline (PBS) + 1% bovine serum albumin (BSA).

Anti-hexon antibody (BD Biosciences Palo Alta, USA) was diluted 1:1000, and 0.5ml added to each well, incubated for 1 hour at 37°C with shaking.

The antibody was removed, wells rinsed three times with PBS+1% BSA. Rat Anti-Mouse antibody (Horse radish peroxidase conjugate), diluted 1:500, was added to each well (0.5ml), incubated with shanking for a further 1 hour at 37°C, then rinsed three times with PBS=1% BSA (1ml). DAB working solution was prepared by dilution of the 10% concentrate with Stable peroxidase buffer (BD Biosciences Palo Alta, USA).

0.5ml of DAB working solution was added to each well and incubated at room temperature for 10 minutes. The DAB solution was removed and 1ml PBS added.

25 Immunisation Protocol

5 .

10

15

20

30

35

The Adeno-X-LacZ $^{\text{TM}}$ viruses were immobilised onto nylon spheres of approximately 10 microns diameter, using the carbodiimide protocol previously described and washed five times. About 0.25ml of a suspension of the nylon spheres with immobilised adenovirus in complete Freunds Adjuvant were injected into Balb C mice, and a further 0.3ml injected after three weeks.

Mice were bled 14 days after the final injection and the serum tested for the presence of antibody to the adenovirus.

Adeno-X-Lac Z^{TM} immobilised onto nylon was treated with diluted serum from the mice instead of the Anti-hexon

23

antibody, otherwise the protocol was as described in the previous section.

Sampling

5

Wells with cell layers were viewed using an inverted microscope under 10, 20 and 40 x objectives with bright field and phase contrast.

Nylon squares were mounted on slides and viewed with bright field and phase contrast microscopy under 10, 20 and 40 \times objectives.

Darkly brown-stained cells were interpreted as infected (+). Unstained cells as uninfected (-).

15 Results

The immobilised adenovirus was incapable of infecting the HEK 293 cells, although the free virus was infective. This indicates that immobilization prevents phagocytosis of virus particles by animal cells, and hence infection by the virus.

The immobilised adenovirus, when injected into rats, gave an immune response indicating that the adenovirus protein was present on the surface of the nylon.

25

20

24

REFERENCES

Bennett, A.R., Davids, FGC., Vlahodimou, S., Banks, J.G. and Betts, R.P., 1997. Journal of Applied Microbiology, 83, 259-265.

Colaco, C., Sen, S., Thangavelu, M., Pinder, S., and Roser, B., 1992. Biotechnology, 10, 1007-1011.

10 Crowe, J.H., and Crowe, L.M., 2000. Nature Biotechnology, 18, 145.

15

5

20

25

30

25

PCT/GB03/01797

CLAIMS

WO 03/093462

1. A device comprising virus immobilised to a substrate for medical application.

5

- 2. A device according to claim 1 wherein said virus is a bacteriophage.
- 3. A device according to either of claims 1 or 2 for use as an antibiotic (bactericide) or bacteriostatic agent.
 - 4. A device according to any preceding claim wherein immobilisation confers increased stability to said virus.
- 5. A device according to any preceding claim wherein said device has a plurality of various strain-specific virus immobilised thereon.
- 6. A device according to any preceding claim wherein said substrate is a material which is activated to allow head-group specific binding of a virus.
 - 7. A device according to any preceding claim wherein virus is immobilised via covalent bonds formed between the virus and the substrate.
 - 8. A device according to any preceding claim wherein said virus is immobilised via its head group leaving the tail group free.

30

- 9. A device according to any preceding claim wherein said immobilisation of virus to a substrate via a covalent bond is aided by the addition of a coupling agent.
- 10. A device according to any preceding claim wherein said coupling agent is carbodiimide or glutaraldehyde for coupling to the substrate nylon or other polymer with amino

5

10

35

26

or carboxy surface groups; vinylsulfonylethylene ether or triazine for coupling to the substrate cellulose or other hydroxyl-containing polymer; corona discharge or permanganate oxidation for the coupling of virus to the substrate polythene or other similar polymer.

- 11. A device according to any preceding claim wherein said immobilised virus is treated with a compound that protects proteins against dehydration, prolonged storage and other stresses and wherein said immobilised virus displays incrased viability and a infectivity when treated in comparison to untreated virus.
- 12. A device according to claim 11 wherein said compound is trehalose.
 - 13. A device according to any preceding claim for the treatment of bacterial plant diseases;
- 20 14. A device according to any preceding claim for the elimination of *E. coli* in cattle by incorporation into the diet of immobilized bacteriophage;
- 15. A device according to any preceding claim for use as food wrapping.
 - 16. A device according to any preceding claim for use as a paint.
- 30 17. A device according to any preceding claim for use as a vaccine.
 - 18. A method of preparing a device comprising a substrate having virus immobilised thereon, said method comprising the steps of:
 - a) activating the substrate so as to enable virus to bind thereto;

27

- b) mixing the modified substrate with virus and a coupling agent to aid the binding of virus to the substrate.
- 5 19. The method according to claim 18 comprising the further step of:
 - c) adding a stabilising agent that maintains the viability and infectivity of the virus bound to the modified substrate when said modified substrate is exposed to dehydration, prolonged storage and/or other stresses.
 - 20. A method according to either of claims 18 or 19 wherein activation of said substrate comprises the steps of:
- 15 1) a preliminary hydrolysis with acid;
 - 2) washing with water; and
 - 3) washing with alkali to remove the acid.
- 21. The method according to claim 19 wherein the stabilising agent is trehalose or heat shock protein.
 - 22. The method according to any one of claims 19 to 21 wherein said device is dried, allowing prolonged storage of said device whilst maintaining the infectivity and viability of the virus.
 - 23. Use of a device according to any preceding claim for the manufacture of a medicament in the treatment or prevention of viral, bacterial or prion infections and/or contamination.
 - 24. Use of trehalose or functional analogue thereof for the further stabilisation of the immobilised virus of the device according to claims 1-18.

25

30

28

25. A medical device for prevention and/or treatment of a bacterial infection and/or contamination, the device comprising bacteriophage immobilised as a substrate.

5 26. The device according to claim 25 in the form of a bandage, suture, compress or wound-dressing, implant, bead, plaster, or the like.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6a

Figure 6b

Wound model 2

Figure 7

