# Sage Reference Manual: Polynomials

Release 6.10

**The Sage Development Team** 

# CONTENTS

| 1  | Polynomial Rings                                                                                                                                                                                       | 1               |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
|    | 1.1 Constructors for polynomial rings                                                                                                                                                                  | 1               |  |  |  |
| 2  | Univariate Polynomials  2.1 Univariate Polynomials and Polynomial Rings  2.2 Generic Convolution                                                                                                       |                 |  |  |  |
| 3  | Multivariate Polynomials23.1Multivariate Polynomials and Polynomial Rings23.2Classical Invariant Theory33.3Educational Versions of Groebner Basis and Related Algorithms4                              | 77              |  |  |  |
| 4  | Rational Functions44.1 Fraction Field of Integral Domains44.2 Fraction Field Elements44.3 Univariate rational functions over prime fields4                                                             | 23              |  |  |  |
| 5  | Laurent Polynomials45.1 Ring of Laurent Polynomials45.2 Elements of Laurent polynomial rings4                                                                                                          |                 |  |  |  |
| 6  | Infinite Polynomial Rings46.1 Infinite Polynomial Rings.46.2 Elements of Infinite Polynomial Rings.46.3 Symmetric Ideals of Infinite Polynomial Rings46.4 Symmetric Reduction of Infinite Polynomials4 | 65<br>73        |  |  |  |
| 7  |                                                                                                                                                                                                        | <b>89</b><br>89 |  |  |  |
| 8  |                                                                                                                                                                                                        | <b>47</b><br>47 |  |  |  |
| 9  | Indices and Tables 56                                                                                                                                                                                  | 69              |  |  |  |
| Bi | ibliography                                                                                                                                                                                            |                 |  |  |  |

**CHAPTER** 

ONE

# **POLYNOMIAL RINGS**

# 1.1 Constructors for polynomial rings

This module provides the function PolynomialRing(), which constructs rings of univariate and multivariate polynomials, and implements caching to prevent the same ring being created in memory multiple times (which is wasteful and breaks the general assumption in Sage that parents are unique).

There is also a function <code>BooleanPolynomialRing\_constructor()</code>, used for constructing <code>Boolean</code> polynomial rings, which are not technically polynomial rings but rather quotients of them (see module <code>sage.rings.polynomial.pbori</code> for more details).

```
sage.rings.polynomial_ring_constructor.BooleanPolynomialRing_constructor(n=None,
```

names=N or-

der='lex'

Construct a boolean polynomial ring with the following parameters:

# INPUT:

- •n number of variables (an integer > 1)
- •names names of ring variables, may be a string or list/tuple of strings
- •order term order (default: lex)

```
sage: R.<x, y, z> = BooleanPolynomialRing() # indirect doctest
sage: R
Boolean PolynomialRing in x, y, z
sage: p = x*y + x*z + y*z
sage: x*p
x*y*z + x*y + x*z
sage: R.term_order()
Lexicographic term order
sage: R = BooleanPolynomialRing(5,'x',order='deglex(3),deglex(2)')
sage: R.term_order()
Block term order with blocks:
(Degree lexicographic term order of length 3,
Degree lexicographic term order of length 2)
sage: R = BooleanPolynomialRing(3,'x',order='degneglex')
sage: R.term_order()
Degree negative lexicographic term order
```

```
sage: BooleanPolynomialRing(names=('x','y'))
    Boolean PolynomialRing in x, y
    sage: BooleanPolynomialRing(names='x,y')
    Boolean PolynomialRing in x, y
    TESTS:
    sage: P.<x,y> = BooleanPolynomialRing(2,order='deglex')
    sage: x > y
    True
    sage: P.\langle x0, x1, x2, x3 \rangle = BooleanPolynomialRing(4, order='deglex(2), deglex(2)')
    sage: x0 > x1
    True
    sage: x2 > x3
    True
sage.rings.polynomial.polynomial ring constructor.PolynomialRing(base ring,
                                                                             arg1=None,
                                                                             arg2=None,
                                                                             sparse=False,
                                                                             or-
                                                                             der='degrevlex',
                                                                             names=None,
                                                                             name=None,
                                                                             var_array=None,
                                                                             implementa-
                                                                             tion=None)
```

Return the globally unique univariate or multivariate polynomial ring with given properties and variable name or names.

There are five ways to call the polynomial ring constructor:

```
1.PolynomialRing(base_ring, name, sparse=False)
2.PolynomialRing(base_ring, names, order='degrevlex')
3.PolynomialRing(base_ring, name, n, order='degrevlex')
4.PolynomialRing(base_ring, n, name, order='degrevlex')
5.PolynomialRing(base_ring, n, var_array=var_array, order='degrevlex')
```

The optional arguments sparse and order *must* be explicitly named, and the other arguments must be given positionally.

#### INPUT:

```
base_ring - a ring
name - a string
names - a list or tuple of names, or a comma separated string
var_array - a list or tuple of names, or a comma separated string
n - an integer
sparse - bool (default: False), whether or not elements are sparse
order - string or TermOrder object, e.g.,
```

```
-'degrevlex' (default) - degree reverse lexicographic
-'lex' - lexicographic
-'deglex' - degree lexicographic
-TermOrder('deglex', 3) + TermOrder('deglex', 3) - block ordering
```

•implementation – string or None; selects an implementation in cases where Sage includes multiple choices (currently  $\mathbf{Z}[x]$  can be implemented with 'NTL' or 'FLINT'; default is 'FLINT')

**Note:** The following rules were introduced in trac ticket #9944, in order to preserve the "unique parent assumption" in Sage (i.e., if two parents evaluate equal then they should actually be identical).

- •In the multivariate case, a dense representation is not supported. Hence, the argument sparse=False is silently ignored in that case.
- •If the given implementation does not exist for rings with the given number of generators and the given sparsity, then an error results.

#### **OUTPUT:**

PolynomialRing (base\_ring, name, sparse=False) returns a univariate polynomial ring; also, PolynomialRing(base\_ring, names, sparse=False) yields a univariate polynomial ring, if names is a list or tuple providing exactly one name. All other input formats return a multivariate polynomial ring.

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one single-variate polynomial ring over each base ring in each choice of variable, sparseness, and implementation. There is also exactly one multivariate polynomial ring over each base ring for each choice of names of variables and term order. The names of the generators can only be temporarily changed after the ring has been created. Do this using the localvars context:

#### EXAMPLES of VARIABLE NAME CONTEXT:

```
sage: R.\langle x,y \rangle = \text{PolynomialRing}(QQ,2); R Multivariate Polynomial Ring in x, y over Rational Field sage: f = x^2 - 2*y^2
```

You can't just globally change the names of those variables. This is because objects all over Sage could have pointers to that polynomial ring.

```
sage: R._assign_names(['z','w'])
Traceback (most recent call last):
...
ValueError: variable names cannot be changed after object creation.
```

However, you can very easily change the names within a with block:

After the with block the names revert to what they were before.

```
sage: print f
x^2 - 2*y^2
```

SQUARE BRACKETS NOTATION: You can alternatively create a single or multivariate polynomial ring over a ring R by writing R['varname'] or R['var1, var2, var3, ...']. This square brackets notation doesn't allow for setting any of the optional arguments.

#### **EXAMPLES:**

```
1.PolynomialRing(base_ring, name, sparse=False)
sage: PolynomialRing(QQ, 'w')
Univariate Polynomial Ring in w over Rational Field
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:

```
sage: R.<w> = PolynomialRing(QQ)
sage: (1 + w)^3
w^3 + 3*w^2 + 3*w + 1
```

You must specify a name:

```
sage: PolynomialRing(QQ)
Traceback (most recent call last):
...
TypeError: You must specify the names of the variables.

sage: R.<abc> = PolynomialRing(QQ, sparse=True); R
Sparse Univariate Polynomial Ring in abc over Rational Field

sage: R.<w> = PolynomialRing(PolynomialRing(GF(7),'k')); R
Univariate Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of signature.
```

The square bracket notation:

```
sage: R.<y> = QQ['y']; R
Univariate Polynomial Ring in y over Rational Field
sage: y^2 + y
y^2 + y
```

In fact, since the diamond brackets on the left determine the variable name, you can omit the variable from the square brackets:

```
sage: R.<zz> = QQ[]; R
Univariate Polynomial Ring in zz over Rational Field
sage: (zz + 1)^2
zz^2 + 2*zz + 1
```

This is exactly the same ring as what PolynomialRing returns:

```
sage: R is PolynomialRing(QQ,'zz')
True
```

However, rings with different variables are different:

```
sage: QQ['x'] == QQ['y']
False
```

Sage has two implementations of univariate polynomials over the integers, one based on NTL and one based on FLINT. The default is FLINT. Note that FLINT uses a "more dense" representation for its polynomials than NTL, so in particular, creating a polynomial like 2^1000000 \* x^1000000 in FLINT may be unwise.

```
sage: ZxNTL = PolynomialRing(ZZ, 'x', implementation='NTL'); ZxNTL
Univariate Polynomial Ring in x over Integer Ring (using NTL)
sage: ZxFLINT = PolynomialRing(ZZ, 'x', implementation='FLINT'); ZxFLINT
Univariate Polynomial Ring in x over Integer Ring
sage: ZxFLINT is ZZ['x']
True
sage: ZxFLINT is PolynomialRing(ZZ, 'x')
True
sage: xNTL = ZxNTL.gen()
sage: xFLINT = ZxFLINT.gen()
sage: xNTL.parent()
Univariate Polynomial Ring in x over Integer Ring (using NTL)
sage: xFLINT.parent()
Univariate Polynomial Ring in x over Integer Ring
```

There is a coercion from the non-default to the default implementation, so the values can be mixed in a single expression:

```
sage: (xNTL + xFLINT^2)
x^2 + x
```

The result of such an expression will use the default, i.e., the FLINT implementation:

```
sage: (xNTL + xFLINT^2).parent()
Univariate Polynomial Ring in x over Integer Ring

2.PolynomialRing(base_ring, names, order='degrevlex')

sage: R = PolynomialRing(QQ, 'a,b,c'); R
Multivariate Polynomial Ring in a, b, c over Rational Field

sage: S = PolynomialRing(QQ, ['a','b','c']); S
Multivariate Polynomial Ring in a, b, c over Rational Field

sage: T = PolynomialRing(QQ, ('a','b','c')); T
Multivariate Polynomial Ring in a, b, c over Rational Field

All three rings are identical.

sage: (R is S) and (S is T)
True
```

There is a unique polynomial ring with each term order:

```
sage: R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: S = PolynomialRing(QQ, 'x,y,z', order='invlex'); S
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: S is PolynomialRing(QQ, 'x,y,z', order='invlex')
True
sage: R == S
False
```

Note that a univariate polynomial ring is returned, if the list of names is of length one. If it is of length zero, a multivariate polynomial ring with no variables is returned.

```
sage: PolynomialRing(QQ,["x"])
Univariate Polynomial Ring in x over Rational Field
sage: PolynomialRing(QQ,[])
Multivariate Polynomial Ring in no variables over Rational Field
```

3.PolynomialRing(base\_ring, name, n, order='degrevlex')

If you specify a single name as a string and a number of variables, then variables labeled with numbers are created.

```
sage: PolynomialRing(QQ, 'x', 10)
Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field
sage: PolynomialRing(QQ, 2, 'alpha0')
Multivariate Polynomial Ring in alpha00, alpha01 over Rational Field
sage: PolynomialRing(GF(7), 'y', 5)
Multivariate Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7
sage: PolynomialRing(QQ, 'y', 3, sparse=True)
Multivariate Polynomial Ring in y0, y1, y2 over Rational Field
```

Note that a multivariate polynomial ring is returned when an explicit number is given.

```
sage: PolynomialRing(QQ,"x",1)
Multivariate Polynomial Ring in x over Rational Field
sage: PolynomialRing(QQ,"x",0)
Multivariate Polynomial Ring in no variables over Rational Field
```

It is easy in Python to create fairly arbitrary variable names. For example, here is a ring with generators labeled by the first 100 primes:

```
sage: R = PolynomialRing(ZZ, ['x%s'%p for p in primes(100)]); R
Multivariate Polynomial Ring in x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41,
```

By calling the inject\_variables() method, all those variable names are available for interactive use:

```
sage: R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x6
sage: (x2 + x41 + x71)^2
x2^2 + 2*x2*x41 + x41^2 + 2*x2*x71 + 2*x41*x71 + x71^2
```

This creates an array of variables where each variables begins with an entry in  $var\_array$  and is indexed from 0 to n-1.

sage: PolynomialRing(ZZ, 3, var\_array=['x','y']) Multivariate Polynomial Ring in x0, y0, x1, y1, x2, y2 over Integer Ring sage: PolynomialRing(ZZ, 3, var\_array='a,b') Multivariate Polynomial Ring in a0, b0, a1, b1, a2, b2 over Integer Ring

If var\_array is a single string, this creates an  $m \times n$  array of variables:

5.PolynomialRing(base\_ring, n, m, var\_array=var\_array,

```
sage: PolynomialRing(ZZ, 2, 3, var_array='m')
Multivariate Polynomial Ring in m00, m01, m02, m10, m11, m12 over Integer Ring
```

If var\_array is a single string and m is not specified, this creates an  $n \times n$  array of variables:

```
sage: PolynomialRing(ZZ, 2, var_array='m')
Multivariate Polynomial Ring in m00, m01, m10, m11 over Integer Ring
```

#### TESTS:

We test here some changes introduced in trac ticket #9944.

order='degrevlex')

If there is no dense implementation for the given number of variables, then requesting a dense ring results yields the corresponding sparse ring:

```
sage: R.\langle x,y \rangle = QQ[]
sage: S.\langle x,y \rangle = PolynomialRing(QQ, sparse=False)
sage: R is S
True
```

If the requested implementation is not known or not supported for the given number of variables and the given sparsity, then an error results:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='Foo')
Traceback (most recent call last):
...
ValueError: Unknown implementation Foo for ZZ[x]
sage: R.<x,y> = PolynomialRing(ZZ, implementation='FLINT')
Traceback (most recent call last):
...
ValueError: The FLINT implementation is not known for multivariate polynomial rings
```

The following corner case used to result in a warning message from libSingular, and the generators of the resulting polynomial ring were not zero:

```
sage: R = Integers(1)['x','y']
sage: R.0 == 0
True
```

We verify that trac ticket #13187 is fixed:

```
sage: var('t')
     sage: PolynomialRing(ZZ, name=t) == PolynomialRing(ZZ, name='t')
     We verify that polynomials with interval coefficients from trac ticket #7712 and trac ticket #13760 are fixed:
     sage: P.<y, z> = PolynomialRing(RealIntervalField(2))
     sage: Q.<x> = PolynomialRing(P)
     sage: C = (y-x)^3
     sage: C(y/2)
     1.?*y^3
     sage: R. \langle x, y \rangle = PolynomialRing(RIF, 2)
     sage: RIF(-2,1)*x
     0.?e1*x
sage.rings.polynomial_polynomial_ring_constructor.polynomial_default_category(base_ring_category
                                                                                                   mul-
                                                                                                   ti-
                                                                                                   vari-
                                                                                                   ate)
     Choose an appropriate category for a polynomial ring.
```

#### INPUT:

•base\_ring\_category: The category of ring over which the polynomial ring shall be defined.

•multivariate: Will the polynomial ring be multivariate?

```
sage: from sage.rings.polynomial_polynomial_ring_constructor import polynomial_default_category
sage: polynomial_default_category(Rings(), False) is Algebras(Rings())
sage: polynomial_default_category(Rings().Commutative(),False) is Algebras(Rings().Commutative()
sage: polynomial_default_category(Fields(),False) is EuclideanDomains() & Algebras(Fields())
sage: polynomial_default_category(Fields(),True) is UniqueFactorizationDomains() & CommutativeAl
True
sage: QQ['t'].category() is EuclideanDomains() & CommutativeAlgebras(QQ.category())
sage: QQ['s','t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ.category()
sage: QQ['s']['t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ['s'].category
True
```

**CHAPTER** 

**TWO** 

# UNIVARIATE POLYNOMIALS

# 2.1 Univariate Polynomials and Polynomial Rings

Sage's architecture for polynomials 'under the hood' is complex, interfacing to a variety of C/C++ libraries for polynomials over specific rings. In practice, the user rarely has to worry about which backend is being used.

The hierarchy of class inheritance is somewhat confusing, since most of the polynomial element classes are implemented as Cython extension types rather than pure Python classes and thus can only inherit from a single base class, whereas others have multiple bases.

# 2.1.1 Univariate Polynomial Rings

Sage implements sparse and dense polynomials over commutative and non-commutative rings. In the non-commutative case, the polynomial variable commutes with the elements of the base ring.

#### AUTHOR:

- · William Stein
- Kiran Kedlaya (2006-02-13): added macaulay2 option
- Martin Albrecht (2006-08-25): removed it again as it isn't needed anymore
- Simon King (2011-05): Dense and sparse polynomial rings must not be equal.
- Simon King (2011-10): Choice of categories for polynomial rings.

#### **EXAMPLES:**

```
sage: z = QQ['z'].0

sage: (z^3 + z - 1)^3

z^9 + 3*z^7 - 3*z^6 + 3*z^5 - 6*z^4 + 4*z^3 - 3*z^2 + 3*z - 1
```

Saving and loading of polynomial rings works:

```
sage: loads(dumps(QQ['x'])) == QQ['x']
True
sage: k = PolynomialRing(QQ['x'],'y'); loads(dumps(k)) == k
True
sage: k = PolynomialRing(ZZ,'y'); loads(dumps(k)) == k
True
sage: k = PolynomialRing(ZZ,'y', sparse=True); loads(dumps(k))
Sparse Univariate Polynomial Ring in y over Integer Ring
```

Rings with different variable names are not equal; in fact, by trac ticket #9944, polynomial rings are equal if and only if they are identical (which should be the case for all parent structures in Sage):

```
sage: QQ['y'] != QQ['x']
True
sage: QQ['y'] != QQ['z']
True
```

We create a polynomial ring over a quaternion algebra:

```
sage: A.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: R.<w> = PolynomialRing(A, sparse=True)
sage: f = w^3 + (i+j)*w + 1
sage: f
w^3 + (i + j)*w + 1
sage: f^2
w^6 + (2*i + 2*j)*w^4 + 2*w^3 - 2*w^2 + (2*i + 2*j)*w + 1
sage: f = w + i ; g = w + j
sage: f * g
w^2 + (i + j)*w + k
sage: g * f
w^2 + (i + j)*w - k
```

trac ticket #9944 introduced some changes related with coercion. Previously, a dense and a sparse polynomial ring with the same variable name over the same base ring evaluated equal, but of course they were not identical. Coercion maps are cached - but if a coercion to a dense ring is requested and a coercion to a sparse ring is returned instead (since the cache keys are equal!), all hell breaks loose.

Therefore, the coercion between rings of sparse and dense polynomials works as follows:

```
sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: S.<x> = QQ[]
sage: S == R
False
sage: S.has_coerce_map_from(R)
True
sage: R.has_coerce_map_from(S)
False
sage: (R.0+S.0).parent()
Univariate Polynomial Ring in x over Rational Field
sage: (S.0+R.0).parent()
Univariate Polynomial Ring in x over Rational Field
```

It may be that one has rings of dense or sparse polynomials over different base rings. In that situation, coercion works by means of the pushout () formalism:

```
sage: R.<x> = PolynomialRing(GF(5), sparse=True)
sage: S.<x> = PolynomialRing(ZZ)
sage: R.has_coerce_map_from(S)
False
sage: S.has_coerce_map_from(R)
False
sage: S.0 + R.0
2*x
sage: (S.0 + R.0).parent()
Univariate Polynomial Ring in x over Finite Field of size 5
sage: (S.0 + R.0).parent().is_sparse()
False
```

Similarly, there is a coercion from the (non-default) NTL implementation for univariate polynomials over the integers to the default FLINT implementation, but not vice versa:

```
sage: R.<x> = PolynomialRing(ZZ, implementation = 'NTL')
sage: S.<x> = PolynomialRing(ZZ, implementation = 'FLINT')
sage: (S.0+R.0).parent() is S
True
sage: (R.0+S.0).parent() is S
True
TESTS:
sage: K.<x>=FractionField(00['x'])
sage: V.<z> = K[]
sage: x+z
7. + X
Check that trac ticket #5562 has been fixed:
sage: R.<u> = PolynomialRing(RDF, 1, 'u')
sage: v1 = vector([u])
sage: v2 = vector([CDF(2)])
sage: v1 * v2
2.0*u
These may change over time:
sage: x = var('x')
sage: type(ZZ['x'].0)
<type 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint'>
sage: type (QQ['x'].0)
<type 'sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint'>
sage: type(RR['x'].0)
<type 'sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense'>
sage: type(Integers(4)['x'].0)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: type(Integers(5*2^100)['x'].0)
<type 'sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ'>
sage: type(CC['x'].0)
<class 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field'>
sage: type(CC['t']['x'].0)
<type 'sage.rings.polynomial_polynomial_element.Polynomial_generic_dense'>
sage: type (NumberField (x^2+1,'I')['x'].0)
<class 'sage.rings.polynomial.polynomial_number_field.Polynomial_absolute_number_field_dense'>
sage: type (NumberField(x^2+1,'I')['x'])
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category'>
sage: type (NumberField([x^2-2, x^2-3], 'a')['x'].0)
<class 'sage.rings.polynomial_polynomial_number_field.Polynomial_relative_number_field_dense'>
sage: type (NumberField([x^2-2, x^2-3], 'a')['x'])
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category'>
class sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative(base_ring,
                                                                              name=None,
                                                                              sparse=False,
                                                                              ele-
                                                                              ment class=None,
                                                                              cate-
                                                                              gory=None)
    Bases:
                    sage.rings.polynomial.polynomial ring.PolynomialRing general,
```

sage.rings.ring.CommutativeAlgebra

```
Univariate polynomial ring over a commutative ring.
     quotient_by_principal_ideal (f, names=None)
         Return the quotient of this polynomial ring by the principal ideal (generated by) f.
         INPUT:
            •f - either a polynomial in self, or a principal ideal of self.
         EXAMPLES:
         sage: R. < x > = QQ[]
         sage: I = (x^2-1) *R
         sage: R.quotient_by_principal_ideal(I)
         Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
         The same example, using the polynomial instead of the ideal, and customizing the variable name:
         sage: R. < x > = QQ[]
         sage: R.quotient_by_principal_ideal(x^2-1, names=('foo',))
         Univariate Quotient Polynomial Ring in foo over Rational Field with modulus x^2 - 1
         TESTS:
         Quotienting by the zero ideal returns self (trac ticket #5978):
         sage: R = QQ['x']
         sage: R.quotient_by_principal_ideal(R.zero_ideal()) is R
         sage: R.quotient_by_principal_ideal(0) is R
         True
     weyl_algebra()
         Return the Weyl algebra generated from self.
         EXAMPLES:
         sage: R = QQ['x']
         sage: W = R.weyl_algebra(); W
         Differential Weyl algebra of polynomials in x over Rational Field
         sage: W.polynomial_ring() == R
         True
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field(base_ring,
                                                                                             name='x',
                                                                                             el-
                                                                                             ment_class=None,
                                                                                             im-
                                                                                             ple-
                                                                                             men-
                                                                                             ta-
                                                                                             tion=None)
     Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_field
     Univariate polynomial ring over a finite field.
     EXAMPLE:
```

```
sage: R = PolynomialRing(GF(27, 'a'), 'x')
    sage: type(R)
    <class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field_with_category'>
    irreducible_element (n, algorithm=None)
         Construct a monic irreducible polynomial of degree n.
         INPUT:
            •n – integer: degree of the polynomial to construct
            •algorithm - string: algorithm to use, or None
               -' random': try random polynomials until an irreducible one is found.
               -'first_lexicographic': try polynomials in lexicographic order until an irreducible one
                is found.
         OUTPUT:
         A monic irreducible polynomial of degree n in self.
         EXAMPLES:
         sage: GF(5^3, 'a')['x'].irreducible_element(2)
         x^2 + (4*a^2 + a + 4)*x + 2*a^2 + 2
         sage: GF(19)['x'].irreducible_element(21, algorithm="first_lexicographic")
         x^21 + x + 5
         sage: GF(5**2, 'a')['x'].irreducible_element(17, algorithm="first_lexicographic")
         x^17 + a*x + 4*a + 3
         AUTHORS:
            •Peter Bruin (June 2013)
            •Jean-Pierre Flori (May 2014)
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n (base_ring,
                                                                                 name=None,
                                                                                 ele-
                                                                                 ment_class=None,
                                                                                 imple-
                                                                                 menta-
                                                                                 tion=None)
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative
    TESTS:
    sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_dense_mod_n as PRing
    sage: R = PRing(Zmod(15), 'x'); R
    Univariate Polynomial Ring in x over Ring of integers modulo 15
    sage: type(R.gen())
    <type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
    sage: R = PRing(Zmod(15), 'x', implementation='NTL'); R
    Univariate Polynomial Ring in x over Ring of integers modulo 15 (using NTL)
    sage: type(R.gen())
    <type 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz'>
    sage: R = PRing(Zmod(2**63*3), 'x', implementation='NTL'); R
    Univariate Polynomial Ring in x over Ring of integers modulo 27670116110564327424 (using NTL)
    sage: type(R.gen())
```

<type 'sage.rings.polynomial.polynomial\_modn\_dense\_ntl.Polynomial\_dense\_modn\_ntl\_ZZ'>

```
sage: R = PRing(Zmod(2**63*3), 'x', implementation='FLINT')
    Traceback (most recent call last):
    ValueError: FLINT does not support modulus 27670116110564327424
    sage: R = PRing(Zmod(2**63*3), 'x'); R
    Univariate Polynomial Ring in x over Ring of integers modulo 27670116110564327424 (using NTL)
    sage: type(R.gen())
    <type 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ'>
    modulus()
        EXAMPLES:
         sage: R. < x > = Zmod(15)[]
         sage: R.modulus()
        15
    residue field(ideal, names=None)
         Return the residue finite field at the given ideal.
        EXAMPLES:
         sage: R.<t> = GF(2)[]
         sage: k.<a> = R.residue_field(t^3+t+1); k
         Residue field in a of Principal ideal (t^3 + t + 1) of Univariate Polynomial Ring in t over
         sage: k.list()
         [0, a, a^2, a + 1, a^2 + a, a^2 + a + 1, a^2 + 1, 1]
         sage: R.residue_field(t)
         Residue field of Principal ideal (t) of Univariate Polynomial Ring in t over Finite Field of
         sage: P = R.irreducible_element(8) * R
         sage: P
         Principal ideal (t^8 + t^4 + t^3 + t^2 + 1) of Univariate Polynomial Ring in t over Finite F
         sage: k.<a> = R.residue_field(P); k
        Residue field in a of Principal ideal (t^8 + t^4 + t^3 + t^2 + 1) of Univariate Polynomial F
         sage: k.cardinality()
         256
         Non-maximal ideals are not accepted:
         sage: R.residue_field(t^2 + 1)
         Traceback (most recent call last):
        ArithmeticError: ideal is not maximal
         sage: R.residue_field(0)
        Traceback (most recent call last):
        ArithmeticError: ideal is not maximal
        sage: R.residue_field(1)
        Traceback (most recent call last):
         ArithmeticError: ideal is not maximal
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p (base_ring,
                                                                              name='x',
                                                                              imple-
                                                                              menta-
                                                                              tion=None)
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field,
    sage.rings.polynomial.polynomial ring.PolynomialRing dense mod n,
```

sage.rings.polynomial.polynomial\_singular\_interface.PolynomialRing\_singular\_repr

#### TESTS:

```
sage: P = GF(2)['x']; P
Univariate Polynomial Ring in x over Finite Field of size 2 (using NTL)
sage: type(P.gen())
<type 'sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X'>
sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_dense_mod_p
sage: P = PolynomialRing_dense_mod_p(GF(5), 'x'); P
Univariate Polynomial Ring in x over Finite Field of size 5
sage: type(P.gen())
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: P = PolynomialRing_dense_mod_p(GF(5), 'x', implementation='NTL'); P
Univariate Polynomial Ring in x over Finite Field of size 5 (using NTL)
sage: type(P.gen())
<type 'sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_mod_p'>
sage: P = PolynomialRing_dense_mod_p(GF(9223372036854775837), 'x')
Univariate Polynomial Ring in x over Finite Field of size 9223372036854775837 (using NTL)
sage: type(P.gen())
<type 'sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_mod_p'>
```

## irreducible\_element (n, algorithm=None)

Construct a monic irreducible polynomial of degree n.

#### INPUT:

- •n integer: the degree of the polynomial to construct
- •algorithm string: algorithm to use, or None. Currently available options are:
  - -'adleman-lenstra': a variant of the Adleman-Lenstra algorithm as implemented in PARI.
  - -'conway': look up the Conway polynomial of degree n over the field of p elements in the database; raise a RuntimeError if it is not found.
  - -'ffprimroot': use the ffprimroot() function from PARI.
  - -' first\_lexicographic': return the lexicographically smallest irreducible polynomial of degree n.
  - -'minimal\_weight': return an irreducible polynomial of degree n with minimal number of non-zero coefficients. Only implemented for p=2.
  - -'primitive': return a polynomial f such that a root of f generates the multiplicative group of the finite field extension defined by f. This uses the Conway polynomial if possible, otherwise it uses ffprimroot.
  - -' random': try random polynomials until an irreducible one is found.

If algorithm is None, use x-1 in degree 1. In degree > 1, the Conway polynomial is used if it is found in the database. Otherwise, the algorithm minimal\_weight is used if p=2, and the algorithm adleman-lenstra if p>2.

#### **OUTPUT:**

A monic irreducible polynomial of degree n in self.

```
sage: GF(5)['x'].irreducible_element(2)
        x^2 + 4*x + 2
         sage: GF(5)['x'].irreducible_element(2, algorithm="adleman-lenstra")
         sage: GF(5)['x'].irreducible_element(2, algorithm="primitive")
         x^2 + 4 x + 2
         sage: GF(5)['x'].irreducible_element(32, algorithm="first_lexicographic")
        x^32 + 2
         sage: GF(5)['x'].irreducible_element(32, algorithm="conway")
         Traceback (most recent call last):
         RuntimeError: requested Conway polynomial not in database.
         sage: GF(5)['x'].irreducible_element(32, algorithm="primitive")
         x^32 + ...
        In characteristic 2:
         sage: GF(2)['x'].irreducible_element(33)
         x^33 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^3 + 1
         sage: GF(2)['x'].irreducible_element(33, algorithm="minimal_weight")
         x^33 + x^10 + 1
         In degree 1:
         sage: GF(97)['x'].irreducible_element(1)
         sage: GF(97)['x'].irreducible_element(1, algorithm="conway")
         sage: GF(97)['x'].irreducible_element(1, algorithm="adleman-lenstra")
         AUTHORS:
           •Peter Bruin (June 2013)
           •Jeroen Demeyer (September 2014): add "ffprimroot" algorithm, see trac ticket #8373.
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_field_capped_relative
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_field_generic
    TESTS:
    sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_dense_padic_field_capped_
    sage: R = PRing(Qp(13), name='t'); R
    Univariate Polynomial Ring in t over 13-adic Field with capped relative precision 20
    sage: type(R.gen())
    <class 'sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_cap</pre>
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_field_generic(base_ring,
                                                                                              name='x',
                                                                                              sparse=Fal
                                                                                              el-
                                                                                              e-
                                                                                              ment_class
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_field
    TESTS:
```

```
sage: from sage.rings.polynomial_polynomial_ring import PolynomialRing_field as PRing
    sage: R = PRing(QQ, 'x'); R
    Univariate Polynomial Ring in x over Rational Field
    sage: type(R.gen())
    <type 'sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint'>
    sage: R = PRing(QQ, 'x', sparse=True); R
    Sparse Univariate Polynomial Ring in x over Rational Field
    sage: type(R.gen())
    <class 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_field'>
    sage: R = PRing(CC, 'x'); R
    Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
    sage: type(R.gen())
    <class 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field'>
    Demonstrate that trac ticket #8762 is fixed:
    sage: R.<x> = PolynomialRing(GF(next_prime(10^20)), sparse=True)
    sage: x^{(10^20)} # this should be fast
    class sage.rings.polynomial_polynomial_ring.PolynomialRing_dense_padic_field_lazy(base_ring,
                                                                                       name=None,
                                                                                       el-
                                                                                       0-
                                                                                       ment class=No
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_field_generic
    sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_dense_padic_field_lazy as
    sage: R = PRing(Qp(13, type='lazy'), name='t')
    Traceback (most recent call last):
    NotImplementedError: lazy p-adics need more work. Sorry.
    #sage: type(R.gen())
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_absolute()
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic
    TESTS:
    sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_dense_padic_ring_capped_a
    sage: R = PRing(Zp(13, type='capped-abs'), name='t'); R
    Univariate Polynomial Ring in t over 13-adic Ring with capped absolute precision 20
    sage: type(R.gen())
    <class 'sage.rings.polynomial.padics.polynomial_padic_flat.Polynomial_padic_flat'>
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_relative()
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic
    TESTS:
```

```
sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_dense_padic_ring_capped_r
    sage: R = PRing(Zp(13), name='t'); R
    Univariate Polynomial Ring in t over 13-adic Ring with capped relative precision 20
    sage: type(R.gen())
    <class 'sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_cap
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_fixed_mod(base_ring
                                                                                             name=No
                                                                                             el-
                                                                                             ρ-
                                                                                             ment_clas
    Bases: sage.rings.polynomial.polynomial ring.PolynomialRing dense padic ring generic
    sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_dense_padic_ring_fixed_mo
    sage: R = PRing(Zp(13, type='fixed-mod'), name='t'); R
    Univariate Polynomial Ring in t over 13-adic Ring of fixed modulus 13^20
    sage: type(R.gen())
    <class 'sage.rings.polynomial.padics.polynomial_padic_flat.Polynomial_padic_flat'>
class sage.rings.polynomial_polynomial_ring.PolynomialRing_dense_padic_ring_generic(base_ring,
                                                                                           name='x',
                                                                                           sparse=False
                                                                                           im-
                                                                                           ple-
                                                                                           men-
                                                                                           ta-
                                                                                           tion=None,
                                                                                           el-
                                                                                           ment_class=
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain
    TESTS:
    sage: from sage.rings.polynomial_polynomial_ring import PolynomialRing_integral_domain as PRing
    sage: R = PRing(ZZ, 'x'); R
    Univariate Polynomial Ring in x over Integer Ring
    sage: type(R.gen())
    <type 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint'>
    sage: R = PRing(ZZ, 'x', implementation='NTL'); R
    Univariate Polynomial Ring in x over Integer Ring (using NTL)
    sage: type(R.gen())
    <type 'sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl'>
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_lazy (base_ring,
                                                                                       name=None,
                                                                                       el-
                                                                                        ment_class=None
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic
    TESTS:
    sage: from sage.rings.polynomial_polynomial_ring import PolynomialRing_dense_padic_ring_lazy as
    sage: R = PRing(Zp(13, type='lazy'), name='t')
```

```
Traceback (most recent call last):
    NotImplementedError: lazy p-adics need more work. Sorry.
    #sage: type(R.gen())
class sage.rings.polynomial.polynomial_ring.PolynomialRing_field(base_ring,
                                                                     name='x',
                                                                     sparse=False,
                                                                     ele-
                                                                     ment class=None)
    Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain,
    sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr,
    sage.rings.ring.PrincipalIdealDomain
    TESTS:
    sage: from sage.rings.polynomial.polynomial ring import PolynomialRing field as PRing
    sage: R = PRing(QQ, 'x'); R
    Univariate Polynomial Ring in x over Rational Field
    sage: type(R.gen())
    <type 'sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint'>
    sage: R = PRing(QQ, 'x', sparse=True); R
    Sparse Univariate Polynomial Ring in x over Rational Field
    sage: type(R.gen())
    <class 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_field'>
    sage: R = PRing(CC, 'x'); R
    Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
    sage: type(R.gen())
    <class 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field'>
    Demonstrate that trac ticket #8762 is fixed:
    sage: R.<x> = PolynomialRing(GF(next_prime(10^20)), sparse=True)
    sage: x^{(10^20)} # this should be fast
```

# divided\_difference (points, full\_table=False)

Return the Newton divided-difference coefficients of the Lagrange interpolation polynomial through points.

## INPUT:

- •points a list of pairs  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$  of elements of the base ring of self, where  $x_i x_j$  is invertible for  $i \neq j$ . This method converts the  $x_i$  and  $y_i$  into the base ring of self.
- •full\_table boolean (default: False): If True, return the full divided-difference table. If False, only return entries along the main diagonal; these are the Newton divided-difference coefficients  $F_{i,i}$ .

# OUTPUT:

The Newton divided-difference coefficients of the n-th Lagrange interpolation polynomial  $P_n(x)$  that passes through the points in points (see lagrange\_polynomial()). These are the coefficients  $F_{0,0}, F_{1,1}, \ldots, F_{n,n}$  in the base ring of self such that

$$P_n(x) = \sum_{i=0}^{n} F_{i,i} \prod_{j=0}^{i-1} (x - x_j)$$

#### **EXAMPLES:**

```
Only return the divided-difference coefficients F_{i,i}. This example is taken from Example 1, page 121 of
    [BF05]:
    sage: points = [(1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022), (1.9, 0.2818186), (2.2
    sage: R = PolynomialRing(RR, "x")
    sage: R.divided_difference(points)
    [0.765197700000000,
    -0.108733888888889,
    0.0658783950617283,
    0.00182510288066044]
    Now return the full divided-difference table:
    sage: points = [(1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022), (1.9, 0.2818186), (2.2
    sage: R = PolynomialRing(RR, "x")
    sage: R.divided_difference(points, full_table=True)
    [[0.765197700000000],
    [0.620086000000000, -0.483705666666666],
    [0.455402200000000, -0.548946000000000, -0.108733888888889],
    [0.281818600000000,
    -0.578612000000000,
    -0.04944333333333339,
    0.0658783950617283],
    [0.110362300000000,
    -0.571520999999999,
    0.01181833333333349,
    0.0680685185185209,
    0.00182510288066044]]
    The following example is taken from Example 4.12, page 225 of [MF99]:
    sage: points = [(1, -3), (2, 0), (3, 15), (4, 48), (5, 105), (6, 192)]
    sage: R = PolynomialRing(QQ, "x")
    sage: R.divided_difference(points)
    [-3, 3, 6, 1, 0, 0]
    sage: R.divided_difference(points, full_table=True)
    [[-3],
    [0, 3],
    [15, 15, 6],
    [48, 33, 9, 1],
    [105, 57, 12, 1, 0],
    [192, 87, 15, 1, 0, 0]]
    REFERENCES:
fraction_field()
    Returns the fraction field of self.
    EXAMPLES:
    sage: R.<t> = GF(5)[]
    sage: R.fraction_field()
    Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
```

lagrange\_polynomial (points, algorithm='divided\_difference', previous\_row=None)

Return the Lagrange interpolation polynomial through the given points.

INPUT:

- •points a list of pairs  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$  of elements of the base ring of self, where  $x_i x_j$  is invertible for  $i \neq j$ . This method converts the  $x_i$  and  $y_i$  into the base ring of self.
- •algorithm (default: 'divided\_difference'): one of the following:
  - -'divided difference': use the method of divided differences.
  - -algorithm='neville': adapt Neville's method as described on page 144 of [BF05] to recursively generate the Lagrange interpolation polynomial. Neville's method generates a table of approximating polynomials, where the last row of that table contains the *n*-th Lagrange interpolation polynomial. The adaptation implemented by this method is to only generate the last row of this table, instead of the full table itself. Generating the full table can be memory inefficient.
- •previous\_row (default: None): This option is only relevant if used with algorithm='neville'. If provided, this should be the last row of the table resulting from a previous use of Neville's method. If such a row is passed, then points should consist of both previous and new interpolating points. Neville's method will then use that last row and the interpolating points to generate a new row containing an interpolation polynomial for the new points.

# OUTPUT:

The Lagrange interpolation polynomial through the points  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ . This is the unique polynomial  $P_n$  of degree at most n in self satisfying  $P_n(x_i) = y_i$  for  $0 \le i \le n$ .

#### **EXAMPLES:**

By default, we use the method of divided differences:

```
sage: R = PolynomialRing(QQ, 'x')
sage: f = R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)]); f
-23/84 \times x^3 - 11/84 \times x^2 + 13/7 \times x + 1
sage: f(0)
1
sage: f(2)
sage: f(3)
-2
sage: f(-4)
sage: R = PolynomialRing(GF(2**3,'a'), 'x')
sage: a = R.base ring().gen()
sage: f = R.lagrange_polynomial([(a^2+a,a),(a,1),(a^2,a^2+a+1)]); f
a^2*x^2 + a^2*x + a^2
sage: f(a^2+a)
sage: f(a)
sage: f(a^2)
a^2 + a + 1
```

Now use a memory efficient version of Neville's method:

```
sage: R = PolynomialRing(QQ, 'x')
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)], algorithm="neville")
[9,
-11/7*x + 19/7,
-17/42*x^2 - 83/42*x + 53/7,
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1]
sage: R = PolynomialRing(GF(2**3,'a'), 'x')
sage: a = R.base_ring().gen()
sage: R.lagrange_polynomial([(a^2+a,a),(a,1),(a^2,a^2+a+1)], algorithm="neville")
[a^2 + a + 1, x + a + 1, a^2*x^2 + a^2*x + a^2]
```

```
Repeated use of Neville's method to get better Lagrange interpolation polynomials:
sage: R = PolynomialRing(QQ, 'x')
sage: p = R.lagrange_polynomial([(0,1),(2,2)], algorithm="neville")
sage: R.lagrange_polynomial((0,1),(2,2),(3,-2),(-4,9)], algorithm="neville", previous_row=polynomial((0,1),(2,2),(3,-2))
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1
sage: R = PolynomialRing(GF(2**3,'a'), 'x')
sage: a = R.base_ring().gen()
sage: p = R.lagrange\_polynomial([(a^2+a,a),(a,1)], algorithm="neville")
a^2*x^2 + a^2*x + a^2
TESTS:
The value for algorithm must be either 'divided difference' (default), or 'neville':
sage: R = PolynomialRing(QQ, "x")
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)], algorithm="abc")
Traceback (most recent call last):
ValueError: algorithm must be one of 'divided_difference' or 'neville'
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)], algorithm="divided difference")
Traceback (most recent call last):
ValueError: algorithm must be one of 'divided_difference' or 'neville'
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)], algorithm="")
Traceback (most recent call last):
ValueError: algorithm must be one of 'divided_difference' or 'neville'
Make sure that trac ticket #10304 is fixed. The return value should always be an element of self in the
case of divided_difference, or a list of elements of self in the case of neville:
sage: R = PolynomialRing(QQ, "x")
sage: R.lagrange_polynomial([]).parent() == R
sage: R.lagrange_polynomial([(2, 3)]).parent() == R
sage: row = R.lagrange_polynomial([], algorithm='neville')
sage: all(poly.parent() == R for poly in row)
sage: row = R.lagrange_polynomial([(2, 3)], algorithm='neville')
sage: all(poly.parent() == R for poly in row)
True
Check that base fields of positive characteristic are treated correctly (see trac ticket #9787):
sage: R. < x > = GF(101)[]
sage: R.lagrange_polynomial([[1, 0], [2, 0]])
sage: R.lagrange_polynomial([[1, 0], [2, 0], [3, 0]])
```

REFERENCES:

Univariate polynomial ring over a ring.

#### $base_extend(R)$

Return the base extension of this polynomial ring to R.

#### **EXAMPLES:**

```
sage: R.<x> = RR[]; R
Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: R.base_extend(CC)
Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
sage: R.base_extend(QQ)
Traceback (most recent call last):
...
TypeError: no such base extension
sage: R.change_ring(QQ)
Univariate Polynomial Ring in x over Rational Field
```

#### $change\_ring(R)$

Return the polynomial ring in the same variable as self over R.

#### **EXAMPLES:**

```
sage: R.<ZZZ> = RealIntervalField() []; R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
sage: R.change_ring(GF(19^2,'b'))
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2
```

#### change\_var(var)

Return the polynomial ring in variable var over the same base ring.

#### **EXAMPLES**:

```
sage: R.<x> = ZZ[]; R
Univariate Polynomial Ring in x over Integer Ring
sage: R.change_var('y')
Univariate Polynomial Ring in y over Integer Ring
```

#### characteristic()

Return the characteristic of this polynomial ring, which is the same as that of its base ring.

```
sage: R.<ZZZ> = RealIntervalField() []; R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
sage: R.characteristic()
0
sage: S = R.change_ring(GF(19^2,'b')); S
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2
sage: S.characteristic()
19
```

```
completion (p, prec=20, extras=None)
```

Return the completion of self with respect to the irreducible polynomial p. Currently only implemented for p=self.gen(), i.e. you can only complete R[x] with respect to x, the result being a ring of power series in x. The prec variable controls the precision used in the power series ring.

#### **EXAMPLES:**

```
sage: P.<x>=PolynomialRing(QQ)
sage: P
Univariate Polynomial Ring in x over Rational Field
sage: PP=P.completion(x)
sage: PP
Power Series Ring in x over Rational Field
sage: f=1-x
sage: PP(f)
1 - x
sage: 1/f
1/(-x + 1)
sage: 1/PP(f)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^24 + x^
```

#### construction()

## cyclotomic\_polynomial(n)

Return the nth cyclotomic polynomial polynomial as a this polynomial ring. For details of the implementation, see the documentation for sage.rings.polynomial.cyclotomic.cyclotomic\_coeffs().

#### **EXAMPLES:**

```
sage: R = ZZ['x']
sage: R.cyclotomic_polynomial(8)
x^4 + 1
sage: R.cyclotomic_polynomial(12)
x^4 - x^2 + 1
sage: S = PolynomialRing(FiniteField(7), 'x')
sage: S.cyclotomic_polynomial(12)
x^4 + 6*x^2 + 1
sage: S.cyclotomic_polynomial(1)
x + 6
```

## TESTS:

Make sure it agrees with other systems for the trivial case:

```
sage: ZZ['x'].cyclotomic_polynomial(1)
x - 1
sage: gp('polcyclo(1)')
x - 1
```

#### extend\_variables (added\_names, order='degrevlex')

Returns a multivariate polynomial ring with the same base ring but with added\_names as additional variables.

```
sage: R.<x> = ZZ[]; R
Univariate Polynomial Ring in x over Integer Ring
sage: R.extend_variables('y, z')
Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: R.extend_variables(('y', 'z'))
Multivariate Polynomial Ring in x, y, z over Integer Ring
```

#### gen(n=0)

Return the indeterminate generator of this polynomial ring.

#### **EXAMPLES:**

```
sage: R.<abc> = Integers(8)[]; R
Univariate Polynomial Ring in abc over Ring of integers modulo 8
sage: t = R.gen(); t
abc
sage: t.is_gen()
True
```

An identical generator is always returned.

```
sage: t is R.gen()
True
```

#### gens dict()

Return a dictionary whose entries are {name:variable,...}, where name stands for the variable names of this object (as strings) and variable stands for the corresponding generators (as elements of this object).

#### **EXAMPLES:**

```
sage: R.<y,x,a42> = RR[]
sage: R.gens_dict()
{'a42': a42, 'x': x, 'y': y}
```

#### is exact()

#### is field(proof=True)

Return False, since polynomial rings are never fields.

## **EXAMPLES:**

```
sage: R.<z> = Integers(2)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 2 (using NTL)
sage: R.is_field()
False
```

#### is finite()

Return False since polynomial rings are not finite (unless the base ring is 0.)

# **EXAMPLES:**

```
sage: R = Integers(1)['x']
sage: R.is_finite()
True
sage: R = GF(7)['x']
sage: R.is_finite()
False
sage: R['x']['y'].is_finite()
False
```

#### is\_integral\_domain (proof=True)

```
sage: ZZ['x'].is_integral_domain()
True
sage: Integers(8)['x'].is_integral_domain()
False
```

#### is\_noetherian()

#### is\_sparse()

Return true if elements of this polynomial ring have a sparse representation.

#### **EXAMPLES:**

```
sage: R.<z> = Integers(8)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 8
sage: R.is_sparse()
False
sage: R.<W> = PolynomialRing(QQ, sparse=True); R
Sparse Univariate Polynomial Ring in W over Rational Field
sage: R.is_sparse()
True
```

#### is\_unique\_factorization\_domain(proof=True)

#### **EXAMPLES:**

```
sage: ZZ['x'].is_unique_factorization_domain()
True
sage: Integers(8)['x'].is_unique_factorization_domain()
False
```

# karatsuba\_threshold()

Return the Karatsuba threshold used for this ring by the method \_mul\_karatsuba to fall back to the school-book algorithm.

#### **EXAMPLES:**

```
sage: K = QQ['x']
sage: K.karatsuba_threshold()
8
sage: K = QQ['x']['y']
sage: K.karatsuba_threshold()
0
```

## krull\_dimension()

Return the Krull dimension of this polynomial ring, which is one more than the Krull dimension of the base ring.

#### **EXAMPLES:**

## monics (of\_degree=None, max\_degree=None)

Return an iterator over the monic polynomials of specified degree.

# INPUT: Pass exactly one of:

- max\_degree an int; the iterator will generate all monic polynomials which have degree less than
  or equal to max\_degree
- •of\_degree an int; the iterator will generate all monic polynomials which have degree of\_degree

#### OUTPUT: an iterator

```
EXAMPLES:
```

```
sage: P = PolynomialRing(GF(4,'a'),'y')
sage: for p in P.monics( of_degree = 2 ): print p
y^2
y^2 + a
y^2 + a + 1
y^2 + 1
y^2 + a*y
y^2 + a * y + a
y^2 + a*y + a + 1
y^2 + a*y + 1
y^2 + (a + 1) * y
y^2 + (a + 1) * y + a
y^2 + (a + 1) * y + a + 1
y^2 + (a + 1) * y + 1
y^2 + y
y^2 + y + a
y^2 + y + a + 1
y^2 + y + 1
sage: for p in P.monics( max_degree = 1 ): print p
y + a
y + a + 1
sage: for p in P.monics( max_degree = 1, of_degree = 3 ): print p
Traceback (most recent call last):
ValueError: you should pass exactly one of of_degree and max_degree
```

#### **AUTHORS:**

•Joel B. Mohler

#### ngens()

Return the number of generators of this polynomial ring, which is 1 since it is a univariate polynomial ring.

#### **EXAMPLES:**

```
sage: R.\langle z \rangle = Integers(8)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 8
sage: R.ngens()
1
```

#### parameter()

Return the generator of this polynomial ring.

This is the same as self.gen().

# polynomials (of\_degree=None, max\_degree=None)

Return an iterator over the polynomials of specified degree.

INPUT: Pass exactly one of:

- •max\_degree an int; the iterator will generate all polynomials which have degree less than or equal to max\_degree
- •of\_degree an int; the iterator will generate all polynomials which have degree of\_degree

#### OUTPUT: an iterator

```
EXAMPLES:
```

```
sage: P = PolynomialRing(GF(3),'y')
sage: for p in P.polynomials( of_degree = 2 ): print p
y^2 + 1
y^2 + 2
y^2 + y
y^2 + y + 1
y^2 + y + 2
y^2 + 2*y
y^2 + 2*y + 1
y^2 + 2*y + 2
2*y^2
2*y^2 + 1
2*y^2 + 2
2*y^2 + y
2*y^2 + y + 1
2*y^2 + y + 2
2*y^2 + 2*y
2*y^2 + 2*y + 1
2*y^2 + 2*y + 2
sage: for p in P.polynomials( max_degree = 1 ): print p
1
2
У
y + 1
y + 2
2 * y
2*y + 1
2*y + 2
sage: for p in P.polynomials( max_degree = 1, of_degree = 3 ): print p
Traceback (most recent call last):
ValueError: you should pass exactly one of of_degree and max_degree
```

#### **AUTHORS:**

•Joel B. Mohler

```
random_element (degree=(-1, 2), *args, **kwds)
```

Return a random polynomial of given degree or with given degree bounds.

#### INPUT:

- •degree optional integer for fixing the degree or or a tuple of minimum and maximum degrees. By default set to (-1, 2).
- •\*args, \*\*kwds Passed on to the random\_element method for the base ring

```
sage: R.<x> = ZZ[]
sage: R.random_element(10, 5,10)
9*x^10 + 8*x^9 + 6*x^8 + 8*x^7 + 8*x^6 + 9*x^5 + 8*x^4 + 8*x^3 + 6*x^2 + 8*x + 8
```

```
sage: R.random_element(6)
x^6 - 3*x^5 - x^4 + x^3 - x^2 + x + 1
sage: R.random_element(6)
-2*x^6 - 2*x^5 + 2*x^4 - 3*x^3 + 1
sage: R.random_element(6)
-x^6 + x^5 - x^4 + 4*x^3 - x^2 + x
```

If a tuple of two integers is given for the degree argument, a polynomial of degree in between the bound is given:

```
sage: R.random_element(degree=(0,8))
x^8 + 4*x^7 + 2*x^6 - x^4 + 4*x^3 - 5*x^2 + x + 14
sage: R.random_element(degree=(0,8))
-5*x^7 + x^6 - 3*x^5 + 4*x^4 - x^2 - 2*x + 1
```

Note that the zero polynomial has degree -1, so if you want to consider it set the minimum degree to -1:

```
sage: any(R.random_element(degree=(-1,2),x=-1,y=1) == R.zero() for _ in xrange(100))
True
```

#### TESTS:

```
sage: R.random_element(degree=[5])
Traceback (most recent call last):
...
ValueError: degree argument must be an integer or a tuple of 2 integers (min_degree, max_degree: R.random_element(degree=(5,4))
Traceback (most recent call last):
```

Check that trac ticket #16682 is fixed:

ValueError: minimum degree must be less or equal than maximum degree

#### set\_karatsuba\_threshold(Karatsuba\_threshold)

Changes the default threshold for this ring in the method \_mul\_karatsuba to fall back to the schoolbook algorithm.

**Warning:** This method may have a negative performance impact in polynomial arithmetic. So use it at your own risk.

```
sage: K = QQ['x']
sage: K.karatsuba_threshold()
8
sage: K.set_karatsuba_threshold(0)
sage: K.karatsuba_threshold()
```

```
0
     some_elements()
         Return a list of polynomials.
         This is typically used for running generic tests.
         EXAMPLES:
         sage: R. < x > = QQ[]
         sage: R.some_elements()
         [x, 0, 1, 1/2, x^2 + 2*x + 1, x^3, x^2 - 1, x^2 + 1, 2*x^2 + 2]
    variable_names_recursive (depth=+Infinity)
         Returns the list of variable names of this and its base rings, as if it were a single multi-variate polynomial.
         EXAMPLES:
         sage: R = QQ['x']['y']['z']
         sage: R.variable_names_recursive()
         ('x', 'y', 'z')
         sage: R.variable_names_recursive(2)
         ('v', 'z')
class sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain(base_ring)
                                                                                      name='x',
                                                                                      sparse=False,
                                                                                      im-
                                                                                      ple-
                                                                                      men-
                                                                                      ta-
                                                                                      tion=None.
                                                                                      el-
                                                                                      ment class=None)
                sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative,
    sage.rings.ring.IntegralDomain
    TESTS:
    sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_integral_domain as PRing
    sage: R = PRing(ZZ, 'x'); R
    Univariate Polynomial Ring in x over Integer Ring
    sage: type(R.gen())
     <type 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint'>
    sage: R = PRing(ZZ, 'x', implementation='NTL'); R
    Univariate Polynomial Ring in x over Integer Ring (using NTL)
    sage: type(R.gen())
    <type 'sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl'>
sage.rings.polynomial.polynomial_ring.is_PolynomialRing(x)
    Return True if x is a univariate polynomial ring (and not a sparse multivariate polynomial ring in one variable).
    EXAMPLES:
```

```
sage: from sage.rings.polynomial.polynomial_ring import is_PolynomialRing
sage: from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing
sage: is_PolynomialRing(2)
False
```

This polynomial ring is not univariate.

```
sage: is_PolynomialRing(ZZ['x,y,z'])
False
sage: is_MPolynomialRing(ZZ['x,y,z'])
True
sage: is_PolynomialRing(ZZ['w'])
```

Univariate means not only in one variable, but is a specific data type. There is a multivariate (sparse) polynomial ring data type, which supports a single variable as a special case.

```
sage: is_PolynomialRing(PolynomialRing(ZZ,1,'w'))
False
sage: R = PolynomialRing(ZZ,1,'w'); R
Multivariate Polynomial Ring in w over Integer Ring
sage: is_PolynomialRing(R)
False
sage: type(R)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'>
sage.rings.polynomial.polynomial_ring.polygen(ring_or_element, name='x')
```

sage.rings.polynomial.polynomial\_ring.polygen(ring\_or\_element, name='x')

Return a polynomial indeterminate.

#### INPUT:

```
polygen(base_ring, name="x")polygen(ring_element, name="x")
```

If the first input is a ring, return a polynomial generator over that ring. If it is a ring element, return a polynomial generator over the parent of the element.

#### **EXAMPLES:**

```
sage: z = polygen(QQ,'z')
sage: z^3 + z +1
z^3 + z + 1
sage: parent(z)
Univariate Polynomial Ring in z over Rational Field
```

**Note:** If you give a list or comma separated string to polygen, you'll get a tuple of indeterminates, exactly as if you called polygens.

sage.rings.polynomial.polynomial\_ring.polygens (base\_ring, names='x')
Return indeterminates over the given base ring with the given names.

```
sage: x,y,z = polygens(QQ,'x,y,z')
sage: (x+y+z)^2
x^2 + 2*x*y + y^2 + 2*x*z + 2*y*z + z^2
sage: parent(x)
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: t = polygens(QQ,['x','yz','abc'])
sage: t
(x, yz, abc)
```

# 2.1.2 Ring homomorphisms from a polynomial ring to another ring

This module currently implements the canonical ring homomorphism from A[x] to B[x] induced by a ring homomorphism from A to B.

#### **Todo**

Implement homomorphisms from A[x] to an arbitrary ring R, given by a ring homomorphism from A to R and the image of x in R.

#### **AUTHORS:**

• Peter Bruin (March 2014): initial version

The canonical ring homomorphism from R[x] to S[x] induced by a ring homomorphism from R to S.

#### **EXAMPLE:**

```
sage: QQ['x'].coerce_map_from(ZZ['x'])
Ring morphism:
   From: Univariate Polynomial Ring in x over Integer Ring
   To: Univariate Polynomial Ring in x over Rational Field
   Defn: Induced from base ring by
        Natural morphism:
        From: Integer Ring
        To: Rational Field
```

# 2.1.3 Univariate Polynomial Base Class

#### **AUTHORS:**

- William Stein: first version.
- Martin Albrecht: Added singular coercion.
- Robert Bradshaw: Move Polynomial\_generic\_dense to Cython.
- Miguel Marco: Implemented resultant in the case where PARI fails.
- Simon King: Use a faster way of conversion from the base ring.
- Julian Rueth (2012-05-25,2014-05-09): Fixed is\_squarefree() for imperfect fields, fixed division without remainder over QQbar; added \_cache\_key for polynomials with unhashable coefficients
- Simon King (2013-10): Implement copying of PolynomialBaseringInjection.

# TESTS:

```
sage: R.<x> = ZZ[]
sage: f = x^5 + 2*x^2 + (-1)
sage: f == loads(dumps(f))
True

sage: PolynomialRing(ZZ,'x').objgen()
(Univariate Polynomial Ring in x over Integer Ring, x)

class sage.rings.polynomial.polynomial_element.ConstantPolynomialSection
    Bases: sage.categories.map.Map
```

This class is used for conversion from a polynomial ring to its base ring.

Since trac ticket #9944, it calls the constant\_coefficient method, which can be optimized for a particular polynomial type.

```
EXAMPLES:
```

```
sage: P0.<y_1> = GF(3)[]
sage: P1.\langle y_2, y_1, y_0 \rangle = GF(3)[]
sage: P0(-y_1) # indirect doctest
2 * y_1
sage: phi = GF(3).convert_map_from(P0); phi
Generic map:
 From: Univariate Polynomial Ring in y_1 over Finite Field of size 3
 To: Finite Field of size 3
sage: type(phi)
<type 'sage.rings.polynomial.polynomial_element.ConstantPolynomialSection'>
sage: phi(P0.one())
sage: phi(y_1)
Traceback (most recent call last):
TypeError: not a constant polynomial
Bases: sage.structure.element.CommutativeAlgebraElement
```

class sage.rings.polynomial.polynomial element.Polynomial

A polynomial.

```
EXAMPLE:
sage: R. < y> = QQ['y']
sage: S.\langle x \rangle = R['x']
sage: S
Univariate Polynomial Ring in x over Univariate Polynomial Ring in y
over Rational Field
sage: f = x * y; f
y*x
sage: type(f)
<type 'sage.rings.polynomial_polynomial_element.Polynomial_generic_dense'>
sage: p = (y+1)^10; p(1)
1024
_add_ (right)
    Add two polynomials.
    EXAMPLES:
    sage: R = ZZ['x']
    sage: p = R([1,2,3,4])
    sage: q = R([4, -3, 2, -1])
    sage: p + q # indirect doctest
    3*x^3 + 5*x^2 - x + 5
_sub_(left, right)
_lmul_(left)
    Multiply self on the left by a scalar.
```

```
sage: R.<x> = ZZ[]
    sage: f = (x^3 + x + 5)
    sage: f._lmul_(7)
    7*x^3 + 7*x + 35
    sage: 7*f
    7*x^3 + 7*x + 35
_rmul_(right)
    Multiply self on the right by a scalar.
    EXAMPLE:
    sage: R. < x > = ZZ[]
    sage: f = (x^3 + x + 5)
    sage: f._rmul_(7)
    7*x^3 + 7*x + 35
    sage: f*7
    7*x^3 + 7*x + 35
_mul_ (right)
    EXAMPLES:
    sage: R. < x > = ZZ[]
    sage: (x - 4) * (x^2 - 8*x + 16)
    x^3 - 12*x^2 + 48*x - 64
    sage: C.<t> = PowerSeriesRing(ZZ)
    sage: D.<s> = PolynomialRing(C)
    sage: z = (1 + O(t)) + t*s^2
    sage: z*z
    t^2*s^4 + (2*t + O(t^2))*s^2 + 1 + O(t)
    ## More examples from trac 2943, added by Kiran S. Kedlaya 2 Dec 09
    sage: C.<t> = PowerSeriesRing(Integers())
    sage: D.<s> = PolynomialRing(C)
    sage: z = 1 + (t + O(t^2)) *s + (t^2 + O(t^3)) *s^2
    (t^4 + O(t^5))*s^4 + (2*t^3 + O(t^4))*s^3 + (3*t^2 + O(t^3))*s^2 + (2*t + O(t^2))*s + 1
_mul_trunc_(right, n)
    Return the truncated multiplication of two polynomials up to n.
    This is the default implementation that does the multiplication and then truncate! There are custom imple-
    mentations in several subclasses:
       •on dense polynomial over integers (via FLINT)
       •on dense polynomial over Z/nZ (via FLINT)
       •on dense rational polynomial (via FLINT)
       •on dense polynomial on Z/nZ (via NTL)
    EXAMPLES:
    sage: R = QQ['x']['y']
    sage: y = R.gen()
    sage: x = R.base_ring().gen()
    sage: p1 = 1 - x*y + 2*y**3
    sage: p2 = -1/3 + y**5
    sage: p1._mul_trunc_(p2, 5)
```

 $-2/3*y^3 + 1/3*x*y - 1/3$ 

#### Todo

implement a generic truncated Karatsuba and use it here.

## add\_bigoh (prec)

Returns the power series of precision at most prec got by adding  $O(q^{\text{prec}})$  to self, where q is its variable.

#### **EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: f = 1 + 4*x + x^3
sage: f.add_bigoh(7)
1 + 4*x + x^3 + O(x^7)
sage: f.add_bigoh(2)
1 + 4*x + O(x^2)
sage: f.add_bigoh(2).parent()
Power Series Ring in x over Integer Ring
```

### any\_root (ring=None, degree=None, assume\_squarefree=False)

Return a root of this polynomial in the given ring.

#### INPUT:

- •ring The ring in which a root is sought. By default this is the coefficient ring.
- •degree (None or nonzero integer) Used for polynomials over finite fields. Returns a root of degree abs (degree) over the ground field. If negative, also assumes that all factors of this polynomial are of degree abs (degree). If None, returns a root of minimal degree contained within the given ring.
- •assume\_squarefree (bool) Used for polynomials over finite fields. If True, this polynomial is assumed to be squarefree.

```
sage: R. < x > = GF(11)[]
sage: f = 7 \times x^7 + 8 \times x^6 + 4 \times x^5 + x^4 + 6 \times x^3 + 10 \times x^2 + 8 \times x + 5
sage: f.any_root()
sage: f.factor()
(7) * (x + 9) * (x^6 + 10*x^4 + 6*x^3 + 5*x^2 + 2*x + 2)
sage: f = x^6 + 10 \times x^4 + 6 \times x^3 + 5 \times x^2 + 2 \times x + 2
sage: f.any_root(GF(11^6, 'a'))
a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a
sage: sorted(f.roots(GF(11^6, 'a')))
(10*a^5 + 2*a^4 + 8*a^3 + 9*a^2 + a, 1), (a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a, 1), (9*a^5 + 5*a^4 + 10*a, 1)
sage: f.any root(GF(11^6, 'a'))
a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a
sage: q = (x-1)*(x^2 + 3*x + 9) * (x^5 + 5*x^4 + 8*x^3 + 5*x^2 + 3*x + 5)
sage: g.any_root(ring=GF(11^10, 'b'), degree=1)
sage: g.any_root(ring=GF(11^10, 'b'), degree=2)
5*b^9 + 4*b^7 + 4*b^6 + 8*b^5 + 10*b^2 + 10*b + 5
sage: g.any_root(ring=GF(11^10, 'b'), degree=5)
5*b^9 + b^8 + 3*b^7 + 2*b^6 + b^5 + 4*b^4 + 3*b^3 + 7*b^2 + 10*b
TESTS:
sage: R. < x > = GF(5)[]
sage: K. < a > = GF (5^12)
sage: for _ in range(40):
```

```
f = R.random_element(degree=4)
...:
assert f(f.any_root(K)) == 0
```

Check that our Cantor-Zassenhaus implementation does not loop over finite fields of even characteristic (see trac ticket #16162):

```
sage: K.<a> = GF(2**8)
sage: x = polygen(K)
sage: (x**2+x+1).any_root() # used to loop
Traceback (most recent call last):
...
ValueError: no roots A 1
sage: (x**2+a+1).any_root()
a^7 + a^2
```

Also check that such computations can be interrupted:

```
sage: K.<a> = GF(2^8)
sage: x = polygen(K)
sage: pol = x^10000000 + x + a
sage: alarm(0.5); pol.any_root()
Traceback (most recent call last):
...
AlarmInterrupt
```

Check root computation over large finite fields:

```
sage: K.<a> = GF(2**50)
sage: x = polygen(K)
sage: (x**10+x+a).any_root()
a^49 + a^47 + a^44 + a^42 + a^41 + a^39 + a^38 + a^37 + a^36 + a^34 + a^33 + a^29 + a^27 + a
sage: K.<a> = GF(2**150)
sage: x = polygen(K)
sage: (x**10+x+a).any_root()
a^149 + a^148 + a^146 + a^144 + a^143 + a^140 + a^138 + a^136 + a^134 + a^132 + a^131 + a^134
```

## args()

Returns the generator of this polynomial ring, which is the (only) argument used when calling self.

#### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: x.args()
(x,)
```

A constant polynomial has no variables, but still takes a single argument.

```
sage: R(2).args()
(x,)
```

### $base\_extend(R)$

Return a copy of this polynomial but with coefficients in R, if there is a natural map from coefficient ring of self to R.

```
sage: R.<x> = QQ[]
sage: f = x^3 - 17*x + 3
sage: f.base_extend(GF(7))
Traceback (most recent call last):
```

```
TypeError: no such base extension sage: f.change_ring(GF(7)) x^3 + 4*x + 3
```

## base\_ring()

Return the base ring of the parent of self.

### **EXAMPLES**:

```
sage: R.<x> = ZZ[]
sage: x.base_ring()
Integer Ring
sage: (2*x+3).base_ring()
Integer Ring
```

## $change\_ring(R)$

Return a copy of this polynomial but with coefficients in R, if at all possible.

## **EXAMPLES:**

```
sage: K.<z> = CyclotomicField(3)
sage: f = K.defining_polynomial()
sage: f.change_ring(GF(7))
x^2 + x + 1
```

### change\_variable\_name (var)

Return a new polynomial over the same base ring but in a different variable.

#### **EXAMPLES:**

```
sage: x = polygen(QQ,'x')
sage: f = -2/7*x^3 + (2/3)*x - 19/993; f
-2/7*x^3 + 2/3*x - 19/993
sage: f.change_variable_name('theta')
-2/7*theta^3 + 2/3*theta - 19/993
```

### coefficients (sparse=True)

Return the coefficients of the monomials appearing in self. If sparse=True (the default), it returns only the non-zero coefficients. Otherwise, it returns the same value as self.list(). (In this case, it may be slightly faster to invoke self.list() directly.)

# EXAMPLES:

```
sage: _.<x> = PolynomialRing(ZZ)
sage: f = x^4+2*x^2+1
sage: f.coefficients()
[1, 2, 1]
sage: f.coefficients(sparse=False)
[1, 0, 2, 0, 1]
```

### coeffs()

Using coeffs () is now deprecated (trac ticket #17518). Returns self.list().

(It is potentially slightly faster to use self.list() directly.)

```
sage: x = QQ['x'].0
sage: f = 10*x^3 + 5*x + 2/17
sage: f.coeffs()
doctest:...: DeprecationWarning: The use of coeffs() is now deprecated in favor of coefficient
```

```
See http://trac.sagemath.org/17518 for details. [2/17, 5, 0, 10]
```

### complex\_roots()

Return the complex roots of this polynomial, without multiplicities.

Calls self.roots(ring=CC), unless this is a polynomial with floating-point coefficients, in which case it is uses the appropriate precision from the input coefficients.

## **EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: (x^3 - 1).complex_roots() # note: low order bits slightly different on ppc.
[1.000000000000, -0.5000000000000 - 0.86602540378443...*I, -0.5000000000000 + 0.866025
```

### TESTS:

```
sage: x = polygen(RR)
sage: (x^3 - 1).complex_roots()[0].parent()
Complex Field with 53 bits of precision
sage: x = polygen(RDF)
sage: (x^3 - 1).complex_roots()[0].parent()
Complex Double Field
sage: x = polygen(RealField(200))
sage: (x^3 - 1).complex_roots()[0].parent()
Complex Field with 200 bits of precision
sage: x = polygen(CDF)
sage: (x^3 - 1).complex_roots()[0].parent()
Complex Double Field
sage: x = polygen(ComplexField(200))
sage: (x^3 - 1).complex_roots()[0].parent()
Complex Field with 200 bits of precision
sage: x=polygen(ZZ,'x'); v=(x^2-x-1).complex_roots()
sage: v[0].parent() is CC
True
```

## constant\_coefficient()

Return the constant coefficient of this polynomial.

OUTPUT: element of base ring

## **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: f = -2 \times x^3 + 2 \times x - 1/3
sage: f.constant_coefficient()
-1/3
```

#### content (

Return the content of self, which is the ideal generated by the coefficients of self.

### **EXAMPLES:**

```
sage: R.<x> = IntegerModRing(4)[]
sage: f = x^4 + 3*x^2 + 2
sage: f.content()
Ideal (2, 3, 1) of Ring of integers modulo 4
```

## degree (gen=None)

Return the degree of this polynomial. The zero polynomial has degree -1.

### **EXAMPLES:**

```
sage: x = ZZ['x'].0
sage: f = x^93 + 2*x + 1
sage: f.degree()
sage: x = PolynomialRing(QQ, 'x', sparse=True).0
sage: f = x^100000
sage: f.degree()
100000
sage: x = QQ['x'].0
sage: f = 2006 \times x^2 006 - x^2 + 3
sage: f.degree()
2006
sage: f = 0 * x
sage: f.degree()
-1
sage: f = x + 33
sage: f.degree()
```

### **AUTHORS:**

•Naqi Jaffery (2006-01-24): examples

## denominator()

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.

Note that some subclasses may implement their own denominator function. For example, see sage.rings.polynomial\_polynomial\_rational\_flint.Polynomial\_rational\_flint

**Warning:** This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.

## **EXAMPLES:**

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.

```
sage: R.\langle x \rangle = ZZ[]
sage: f = x^3 + 17*x + 1
sage: f.denominator()
1
```

Next we compute the denominator of a polynomial with rational coefficients.

```
sage: R.<x> = PolynomialRing(QQ)
sage: f = (1/17)*x^19 - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/3
sage: f.denominator()
51
```

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```
sage: R.<x> = RR[]
sage: f = x + RR('0.3'); f
x + 0.30000000000000
```

```
sage: f.denominator()
1.000000000000000
```

Check that the denominator is an element over the base whenever the base has no denominator function. This closes #9063.

```
sage: R.<a> = GF(5)[]
sage: x = R(0)
sage: x.denominator()
1
sage: type(x.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: isinstance(x.numerator() / x.denominator(), Polynomial)
True
sage: isinstance(x.numerator() / R(1), Polynomial)
False
```

## TESTS:

Check that trac ticket #18518 is fixed:

```
sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: p = x^{(2^{100})} - 1/2
sage: p.denominator()
```

## derivative (\*args)

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

## See also:

```
_derivative()
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: q = -x^4 + x^2/2 - x
sage: g.derivative()
-4 * x^3 + x - 1
sage: g.derivative(x)
-4 * x^3 + x - 1
sage: g.derivative(x, x)
-12 * x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3 \times x^2 + t^4 \times x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2
```

# dict()

Return a sparse dictionary representation of this univariate polynomial.

## **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: f = x^3 + -1/7*x + 13
sage: f.dict()
{0: 13, 1: -1/7, 3: 1}
```

### diff(\*args)

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

#### See also:

```
_derivative()
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: q = -x^4 + x^2/2 - x
sage: g.derivative()
-4 * x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3 * x^2 + t^4 * x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2
```

# differentiate(\*args)

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

### See also:

```
_derivative()

EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1
```

```
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3*x^2 + t^4*x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2
```

## discriminant()

Returns the discriminant of self.

The discriminant is

$$R_n := a_n^{2n-2} \prod_{1 < i < j < n} (r_i - r_j)^2,$$

where n is the degree of self,  $a_n$  is the leading coefficient of self and the roots of self are  $r_1, \ldots, r_n$ .

OUTPUT: An element of the base ring of the polynomial ring.

## ALGORITHM:

Uses the identity  $R_n(f) := (-1)^{n(n-1)/2} R(f, f') a_n^{n-k-2}$ , where n is the degree of self,  $a_n$  is the leading coefficient of self, f' is the derivative of f, and k is the degree of f'. Calls resultant ().

#### **EXAMPLES**

In the case of elliptic curves in special form, the discriminant is easy to calculate:

```
sage: R.<x> = QQ[]
sage: f = x^3 + x + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant()/16
-31
sage: R.<x> = QQ[]
sage: f = 2*x^3 + x + 1
sage: d = f.discriminant(); d
-116
```

We can compute discriminants over univariate and multivariate polynomial rings:

```
sage: R.<a> = QQ[]
sage: S.<x> = R[]
sage: f = a*x + x + a + 1
sage: d = f.discriminant(); d
1
sage: d.parent() is R
True

sage: R.<a, b> = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a + b
sage: d = f.discriminant(); d
-4*a - 4*b
sage: d.parent() is R
True
```

```
TESTS:
    sage: R. < x, y > = QQ[]
    sage: S.<a> = R[]
    sage: f = x^2 + a
    sage: f.discriminant()
    Check that trac ticket #13672 is fixed:
    sage: R.<t> = GF(5)[]
    sage: S. < x > = R[]
    sage: f = x^10 + 2x^6 + 2x^5 + x + 2
    sage: (f-t).discriminant()
    4*t^5
    The following examples show that trac ticket #11782 has been fixed:
    sage: ZZ.quo(81)[x](3*x^2 + 3*x + 3).discriminant()
    sage: ZZ.quo(9)[x](2*x^3 + x^2 + x).discriminant()
    This was fixed by trac ticket #15422:
    sage: R.<s> = PolynomialRing(Qp(2))
    sage: (s^2).discriminant()
    This was fixed by trac ticket #16014:
    sage: PR.\langle b, t1, t2, x1, y1, x2, y2 \rangle = QQ[]
    sage: PRmu.<mu> = PR[]
    sage: E1 = diagonal_matrix(PR, [1, b^2, -b^2])
    sage: M = matrix(PR, [[1,-t1,x1-t1*y1],[t1,1,y1+t1*x1],[0,0,1]])
    sage: E1 = M.transpose() *E1*M
    sage: E2 = E1.subs(t1=t2, x1=x2, y1=y2)
    sage: det(mu*E1 + E2).discriminant().degrees()
    (24, 12, 12, 8, 8, 8, 8)
    This addresses an issue raised by trac ticket #15061:
    sage: R.<T> = PowerSeriesRing(QQ)
    sage: F = R([1,1],2)
    sage: RP.<x> = PolynomialRing(R)
    sage: P = x^2 - F
    sage: P.discriminant()
    4 + 4 * T + O(T^2)
euclidean_degree()
    Return the degree of this element as an element of a euclidean domain.
    If this polynomial is defined over a field, this is simply its degree ().
    EXAMPLES:
    sage: R. < x > = QQ[]
    sage: x.euclidean_degree()
    sage: R. < x > = ZZ[]
    sage: x.euclidean_degree()
```

Traceback (most recent call last):

```
NotImplementedError
```

## exponents()

Return the exponents of the monomials appearing in self.

## **EXAMPLES:**

```
sage: \_.<x> = PolynomialRing(ZZ)
sage: f = x^4+2*x^2+1
sage: f.exponents()
[0, 2, 4]
```

## factor (\*\*kwargs)

Return the factorization of self over its base ring.

## INPUT:

•kwargs — any keyword arguments are passed to the method \_factor\_univariate\_polynomial() of the base ring if it defines such a method.

## OUTPUT:

•A factorization of self over its parent into a unit and irreducible factors. If the parent is a polynomial ring over a field, these factors are monic.

### **EXAMPLES:**

Factorization is implemented over various rings. Over **Q**:

```
sage: x = QQ['x'].0

sage: f = (x^3 - 1)^2

sage: f.factor()

(x - 1)^2 * (x^2 + x + 1)^2
```

Since **Q** is a field, the irreducible factors are monic:

```
sage: f = 10 \times x^5 - 1
sage: f.factor()
(10) * (x^5 - 1/10)
sage: f = 10 \times x^5 - 10
sage: f.factor()
(10) * (x - 1) * (x^4 + x^3 + x^2 + x + 1)
```

Over **Z** the irreducible factors need not be monic:

```
sage: x = ZZ['x'].0
sage: f = 10*x^5 - 1
sage: f.factor()
10*x^5 - 1
```

We factor a non-monic polynomial over a finite field of 25 elements:

```
sage: k.<a> = GF(25)
sage: R.<x> = k[]
sage: f = 2*x^10 + 2*x + 2*a
sage: F = f.factor(); F
(2) * (x + a + 2) * (x^2 + 3*x + 4*a + 4) * (x^2 + (a + 1)*x + a + 2) * (x^5 + (3*a + 4)*x^4
```

Notice that the unit factor is included when we multiply F back out:

```
sage: expand(F)
2*x^10 + 2*x + 2*a
```

A new ring. In the example below, we set the special method \_factor\_univariate\_polynomial() in the base ring which is called to factor univariate polynomials. This facility can be used to easily extend polynomial factorization to work over new rings you introduce:

```
sage: R.<x> = PolynomialRing(IntegerModRing(4),implementation="NTL")
sage: (x^2).factor()
Traceback (most recent call last):
NotImplementedError: factorization of polynomials over rings with composite characteristic i
sage: R.base_ring()._factor_univariate_polynomial = lambda f: f.change_ring(ZZ).factor()
sage: (x^2).factor()
x^2
sage: del R.base_ring()._factor_univariate_polynomial # clean up
Arbitrary precision real and complex factorization:
sage: R. < x > = RealField(100)[]
sage: F = factor(x^2-3); F
(x - 1.7320508075688772935274463415) * (x + 1.7320508075688772935274463415)
sage: expand(F)
sage: factor (x^2 + 1)
sage: R. < x > = ComplexField(100)[]
sage: F = factor(x^2+3); F
(x - 1.7320508075688772935274463415*I) * (x + 1.7320508075688772935274463415*I)
sage: expand(F)
sage: factor (x^2+1)
(x - I) * (x + I)
sage: f = R(I) * (x^2 + 1); f
I*x^2 + I
sage: F = factor(f); F
sage: expand(F)
I*x^2 + I
Over a number field:
sage: K.<z> = CyclotomicField(15)
sage: x = polygen(K)
sage: ((x^3 + z*x + 1)^3*(x - z)).factor()
(x - z) * (x^3 + z*x + 1)^3
sage: cyclotomic_polynomial(12).change_ring(K).factor()
(x^2 - z^5 - 1) * (x^2 + z^5)
sage: ((x^3 + z*x + 1)^3*(x/(z+2) - 1/3)).factor()
(-1/331*z^7 + 3/331*z^6 - 6/331*z^5 + 11/331*z^4 - 21/331*z^3 + 41/331*z^2 - 82/331*z + 165/31*z^6 + 11/331*z^6 + 11/331
Over a relative number field:
sage: x = polygen(QQ)
sage: K.<z> = CyclotomicField(3)
sage: L.\langle a \rangle = K.extension(x^3 - 2)
sage: t = polygen(L, 't')
sage: f = (t^3 + t + a)*(t^5 + t + z); f
```

 $(t^3 + t + a) * (t^5 + t + z)$ 

sage: f.factor()

 $t^8 + t^6 + a*t^5 + t^4 + z*t^3 + t^2 + (a + z)*t + z*a$ 

Over the real double field:

```
sage: R.<x> = RDF[]
sage: (-2*x^2 - 1).factor()
(-2.0) * (x^2 + 0.50000000000000001)
sage: (-2*x^2 - 1).factor().expand()
-2.0*x^2 - 1.0000000000000002
sage: f = (x - 1)^3
sage: f.factor() # abs tol 2e-5
(x - 1.0000065719436413) * (x^2 - 1.9999934280563585*x + 0.9999934280995487)
```

The above output is incorrect because it relies on the roots () method, which does not detect that all the roots are real:

```
sage: f.roots() # abs tol 2e-5
[(1.0000065719436413, 1)]
```

Over the complex double field the factors are approximate and therefore occur with multiplicity 1:

```
sage: R.<x> = CDF[]
sage: f = (x^2 + 2*R(I))^3
sage: F = f.factor()
sage: F # abs tol 3e-5
(x - 1.0000138879287663 + 1.0000013435286879*I) * (x - 0.9999942196864997 + 0.99998730098039
sage: [f(t[0][0]).abs() for t in F] # abs tol 1e-13
[1.979365054e-14, 1.97936298566e-14, 1.97936990747e-14, 3.6812407475e-14, 3.65211563729e-14,
```

Factoring polynomials over  $\mathbb{Z}/n\mathbb{Z}$  for composite n is not implemented:

```
sage: R.<x> = PolynomialRing(Integers(35))
sage: f = (x^2+2*x+2)*(x^2+3*x+9)
sage: f.factor()
Traceback (most recent call last):
...
NotImplementedError: factorization of polynomials over rings with composite characteristic in
```

Factoring polynomials over the algebraic numbers (see trac ticket #8544):

```
sage: R.\langle x \rangle = QQbar[] sage: (x^8-1).factor() (x - 1) * (x - 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475? + 0.7071067811865475 + 0.7071067811865475 + 0.7071067811865475 + 0.7071067811865475 + 0.7071067811865475 + 0.7071067811865475 + 0.7
```

Factoring polynomials over the algebraic reals (see trac ticket #8544):

```
sage: R.<x> = AA[]
sage: (x^8+1).factor()
(x^2 - 1.847759065022574?*x + 1.00000000000000) * (x^2 - 0.7653668647301795?*x + 1.0000000
```

## TESTS:

This came up in ticket #7088:

```
sage: R.<x>=PolynomialRing(ZZ)
sage: f = 12*x^10 + x^9 + 432*x^3 + 9011
sage: g = 13*x^11 + 89*x^3 + 1
sage: F = f^2 * g^3
sage: F = f^2 * g^3; F.factor()
(12*x^10 + x^9 + 432*x^3 + 9011)^2 * (13*x^11 + 89*x^3 + 1)^3
sage: F = f^2 * g^3 * 7; F.factor()
7 * (12*x^10 + x^9 + 432*x^3 + 9011)^2 * (13*x^11 + 89*x^3 + 1)^3
```

This example came up in ticket #7097:

```
sage: x = polygen(QQ)
sage: f = 8 * x^9 + 42 * x^6 + 6 * x^3 - 1
sage: g = x^24 - 12*x^23 + 72*x^22 - 286*x^21 + 849*x^20 - 2022*x^19 + 4034*x^18 - 6894*x^17
sage: assert g.is_irreducible()
sage: K.<a> = NumberField(g)
sage: len(f.roots(K))
sage: f.factor()
(8) * (x^3 + 1/4) * (x^6 + 5*x^3 - 1/2)
sage: f.change_ring(K).factor()
(8) * (x - 3260097/3158212 * a^22 + 35861067/3158212 * a^21 - 197810817/3158212 * a^20 + 7229708258 + 197810817/3158212 * a^20 + 197810817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817/318817
sage: f = QQbar['x'](1)
sage: f.factor()
Factorization also works even if the variable of the finite field is nefariously labeled "x":
sage: R.\langle x \rangle = GF(3^2, 'x')[]
sage: f = x^10 +7 \times x -13
sage: G = f.factor(); G
(x + x) * (x + 2*x + 1) * (x^4 + (x + 2)*x^3 + (2*x + 2)*x + 2) * (x^4 + 2*x*x^3 + (x + 1)*x^3 + (x + 2)*x^4 + (
sage: prod(G) == f
True
sage: R.\langle x0\rangle = GF(9,'x')[] # purposely calling it x to test robustness
sage: f = x0^3 + x0 + 1
sage: f.factor()
(x0 + 2) * (x0 + x) * (x0 + 2*x + 1)
sage: f = 0 * x0
sage: f.factor()
Traceback (most recent call last):
ValueError: factorization of 0 not defined
sage: f = x0^0
sage: f.factor()
1
Over a complicated number field:
sage: x = polygen(QQ, 'x')
sage: f = x^6 + 10/7 \times x^5 - 867/49 \times x^4 - 76/245 \times x^3 + 3148/35 \times x^2 - 25944/245 \times x + 48771/1225
sage: K.<a> = NumberField(f)
sage: S.<T> = K[]
sage: ff = S(f); ff
T^6 + 10/7 \times T^5 - 867/49 \times T^4 - 76/245 \times T^3 + 3148/35 \times T^2 - 25944/245 \times T + 48771/1225
sage: F = ff.factor()
sage: len(F)
4
sage: F[:2]
[(T - a, 1), (T - 40085763200/924556084127*a^5 - 145475769880/924556084127*a^4 + 52761709648]
sage: expand(F)
T^6 + 10/7 \times T^5 - 867/49 \times T^4 - 76/245 \times T^3 + 3148/35 \times T^2 - 25944/245 \times T + 48771/1225
sage: f = x^2 - 1/3
sage: K.<a> = NumberField(f)
sage: A.<T> = K[]
sage: A(x^2 - 1).factor()
(T - 1) * (T + 1)
```

sage:  $A(3*x^2 - 1).factor()$ 

```
(3) * (T - a) * (T + a)
sage: A(x^2 - 1/3).factor()
 (T - a) * (T + a)
Test that ticket #10279 is fixed:
sage: R.<t> = PolynomialRing(QQ)
sage: K. < a > = NumberField(t^4 - t^2 + 1)
sage: pol = t^3 + (-4*a^3 + 2*a)*t^2 - 11/3*a^2*t + 2/3*a^3 - 4/3*a
sage: pol.factor()
 (t - 2*a^3 + a) * (t - 4/3*a^3 + 2/3*a) * (t - 2/3*a^3 + 1/3*a)
Test that this factorization really uses nffactor() internally:
sage: pari.default("debug", 3)
sage: F = pol.factor()
Entering nffactor:
sage: pari.default("debug", 0)
Test that ticket #10369 is fixed:
sage: x = polygen(QQ)
sage: K. < a > = NumberField(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
sage: R.<t> = PolynomialRing(K)
sage: pol = (-1/7*a^5 - 1/7*a^4 - 1/7*a^3 - 1/7*a^2 - 2/7*a - 1/7)*t^10 + (4/7*a^5 - 2/7*a^4 - 1/7*a^4 - 1/7*a^4
sage: pol.factor()
 (-1/7*a^5 - 1/7*a^4 - 1/7*a^3 - 1/7*a^2 - 2/7*a - 1/7) * t * (t - a^5 - a^4 - a^3 - a^2 - a^4 - a^5)
sage: pol = (1/7*a^2 - 1/7*a)*t^10 + (4/7*a - 6/7)*t^9 + (102/49*a^5 + 99/49*a^4 + 96/49*a^3)
sage: pol.factor()
(1/7*a^2 - 1/7*a) * t^5 * (t^5 + (-40/7*a^5 - 38/7*a^4 - 36/7*a^3 - 34/7*a^2 - 32/7*a - 30/7*a^5 - 38/7*a^4 - 36/7*a^5 - 38/7*a^5 
sage: pol = x^10 + (4/7*a - 6/7)*x^9 + (9/49*a^2 - 3/7*a + 15/49)*x^8 + (8/343*a^3 - 32/343*a^3 - 32/34*a^3 - 32/
sage: pol.factor()
x^5 * (x^5 + (4/7*a - 6/7)*x^4 + (9/49*a^2 - 3/7*a + 15/49)*x^3 + (8/343*a^3 - 32/343*a^2 + 3/7*a + 15/49)*x^3 + (8/343*a^3 - 32/343*a^3 + 3/7*a + 15/49)*x^3 + (8/343*a^3 - 3/7*a +
Factoring over a number field over which we cannot factor the discriminant by trial division:
sage: x = polygen(QQ)
sage: K. < a > = NumberField(x^16 - x - 6)
sage: R.<x> = PolynomialRing(K)
sage: f = (x+a)^50 - (a-1)^50
sage: len(factor(f))
sage: pari(K.discriminant()).factor(limit=0)
[-1, 1; 3, 15; 23, 1; 887, 1; 12583, 1; 2354691439917211, 1]
sage: factor(K.discriminant())
-1 * 3^15 * 23 * 887 * 12583 * 6335047 * 371692813
Factoring over a number field over which we cannot factor the discriminant and over which nffactor()
sage: p = next_prime(10^50); q = next_prime(10^51); n = p*q;
sage: K.<a> = QuadraticField(p*q)
sage: R.<x> = PolynomialRing(K)
```

```
sage: K.pari_polynomial('a').nffactor("x^2+1")
Mat([x^2 + 1, 1])
sage: factor(x^2 + 1)
x^2 + 1
sage: factor((x - a) * (x + 2*a))
(x - a) * (x + 2*a)
A test where nffactor used to fail without a nf structure:
sage: x = polygen(QQ)
sage: K = NumberField([x^2-1099511627777, x^3-3],'a')
sage: x = polygen(K)
sage: f = x^3 - 3
sage: factor(f)
(x - a1) * (x^2 + a1*x + a1^2)
We check that trac ticket #7554 is fixed:
sage: L.<q> = LaurentPolynomialRing(QQ)
sage: F = L.fraction_field()
sage: R.<x> = PolynomialRing(F)
sage: factor(x)
sage: factor(x^2 - q^2)
(-1) * (-x + q) * (x + q)
sage: factor(x^2 - q^{-2})
(1/q^2) * (q*x - 1) * (q*x + 1)
sage: P.<a,b,c> = PolynomialRing(ZZ)
sage: R.<x> = PolynomialRing(FractionField(P))
sage: p = (x - a) * (b*x + c) * (a*b*x + a*c) / (a + 2)
sage: factor(p)
```

## gcd (other)

Return a greatest common divisor of this polynomial and other.

 $(a/(a + 2)) * (x - a) * (b*x + c)^2$ 

#### INPUT:

•other – a polynomial in the same ring as this polynomial

#### **OUTPUT**

A greatest common divisor as a polynomial in the same ring as this polynomial. If the base ring is a field, the return value is a monic polynomial.

**Note:** The actual algorithm for computing greatest common divisors depends on the base ring underlying the polynomial ring. If the base ring defines a method \_gcd\_univariate\_polynomial, then this method will be called (see examples below).

```
sage: R.<x> = QQ[]
sage: (2*x^2).gcd(2*x)
x
sage: R.zero().gcd(0)
0
sage: (2*x).gcd(0)
```

```
One can easily add gcd functionality
                                                             providing a
                                                                          method
                                        to
                                            new
                                                  rings
                                                        by
_gcd_univariate_polynomial:
sage: O = ZZ[-sqrt(5)]
sage: R. < x > = O[]
sage: a = 0.1
sage: p = x + a
sage: q = x^2 - 5
sage: p.gcd(q)
Traceback (most recent call last):
NotImplementedError: Order in Number Field in a with defining polynomial x^2 - 5 does not pr
sage: S.<x> = O.number_field()[]
sage: 0._gcd_univariate_polynomial = lambda f,g : R(S(f).gcd(S(g)))
sage: p.gcd(q)
x + a
sage: del 0._gcd_univariate_polynomial
```

### hamming\_weight()

Returns the number of non-zero coefficients of self.

#### **EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: f = x^3 - x
sage: f.hamming_weight()
2
sage: R(0).hamming_weight()
0
sage: f = (x+1)^100
sage: f.hamming_weight()
101
sage: S = GF(5)['y']
sage: S(f).hamming_weight()
5
sage: cyclotomic_polynomial(105).hamming_weight()
33
```

## homogenize (var='h')

Return the homogenization of this polynomial.

The polynomial itself is returned if it homogeneous already. Otherwise, its monomials are multiplied with the smallest powers of var such that they all have the same total degree.

## INPUT:

•var – a variable in the polynomial ring (as a string, an element of the ring, or 0) or a name for a new variable (default: 'h')

## **OUTPUT**:

If var specifies the variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable var.

## **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: f = x^2 + 1
sage: f.homogenize()
x^2 + h^2
```

The parameter var can be used to specify the name of the variable:

```
sage: g = f.homogenize('z'); g
x^2 + z^2
sage: g.parent()
Multivariate Polynomial Ring in x, z over Rational Field
```

However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:

```
sage: f = x^2
sage: g = f.homogenize('z'); g
x^2
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field
```

For compatibility with the multivariate case, if var specifies the variable of the polynomial ring, then the monomials are multiplied with the smallest powers of var such that the result is homogeneous; in other words, we end up with a monomial whose leading coefficient is the sum of the coefficients of the polynomial:

```
sage: f = x^2 + x + 1
sage: f.homogenize('x')
3*x^2
```

In positive characterstic, the degree can drop in this case:

```
sage: R.<x> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x)
0
```

For compatibility with the multivariate case, the parameter var can also be 0 to specify the variable in the polynomial ring:

```
sage: R.<x> = QQ[]
sage: f = x^2 + x + 1
sage: f.homogenize(0)
3*x^2
```

## integral (var=None)

Return the integral of this polynomial.

By default, the integration variable is the variable of the polynomial.

Otherwise, the integration variable is the optional parameter var

**Note:** The integral is always chosen so that the constant term is 0.

#### **EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: R(0).integral()
0
sage: f = R(2).integral(); f
2*x
```

Note that the integral lives over the fraction field of the scalar coefficients:

```
sage: f.parent()
Univariate Polynomial Ring in x over Rational Field
sage: R(0).integral().parent()
```

```
Univariate Polynomial Ring in x over Rational Field
sage: f = x^3 + x - 2
sage: g = f.integral(); g
1/4 * x^4 + 1/2 * x^2 - 2 * x
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field
This shows that the issue at trac ticket #7711 is resolved:
sage: P.\langle x, z \rangle = PolynomialRing(GF(2147483647))
sage: Q.<y> = PolynomialRing(P)
sage: p=x+y+z
sage: p.integral()
-1073741823*y^2 + (x + z)*y
sage: P.<x, z> = PolynomialRing(GF(next_prime(2147483647)))
sage: Q.<y> = PolynomialRing(P)
sage: p=x+y+z
sage: p.integral()
1073741830*y^2 + (x + z)*y
A truly convoluted example:
sage: A.<a1, a2> = PolynomialRing(ZZ)
sage: B. <b> = PolynomialRing(A)
sage: C.<c> = PowerSeriesRing(B)
sage: R.<x> = PolynomialRing(C)
sage: f = a2*x^2 + c*x - a1*b
sage: f.parent()
Univariate Polynomial Ring in x over Power Series Ring in c
over Univariate Polynomial Ring in b over Multivariate Polynomial
Ring in a1, a2 over Integer Ring
sage: f.integral()
1/3*a2*x^3 + 1/2*c*x^2 - a1*b*x
sage: f.integral().parent()
Univariate Polynomial Ring in x over Power Series Ring in c
over Univariate Polynomial Ring in b over Multivariate Polynomial
Ring in a1, a2 over Rational Field
sage: g = 3*a2*x^2 + 2*c*x - a1*b
sage: g.integral()
a2*x^3 + c*x^2 - a1*b*x
sage: g.integral().parent()
Univariate Polynomial Ring in x over Power Series Ring in c
over Univariate Polynomial Ring in b over Multivariate Polynomial
Ring in al, a2 over Rational Field
Integration with respect to a variable in the base ring:
sage: R. < x > = QQ[]
sage: t = PolynomialRing(R,'t').gen()
sage: f = x*t +5*t^2
sage: f.integral(x)
5*x*t^2 + 1/2*x^2*t
```

# TESTS:

52

Check that trac ticket #18600 is fixed:

```
sage: Sx. < x > = ZZ[]
sage: Sxy. < y > = Sx[]
sage: Sxyz. < z > = Sxy[]
sage: p = 1 + x*y + x*z + y*z^2
sage: q = p.integral()
sage: q
1/3*y*z^3 + 1/2*x*z^2 + (x*y + 1)*z
sage: q.parent()
Univariate Polynomial Ring in z over Univariate Polynomial Ring in y
over Univariate Polynomial Ring in x over Rational Field
sage: q.derivative() == p
True
sage: p.integral(y)
1/2*y^2*z^2 + x*y*z + 1/2*x*y^2 + y
sage: p.integral(y).derivative(y) == p
sage: p.integral(x).derivative(x) == p
True
Check that it works with non-integral domains (trac ticket #18600):
sage: x = polygen(Zmod(4))
sage: p = x * * 4 + 1
sage: p.integral()
x^5 + x
sage: p.integral().derivative() == p
True
```

## inverse mod(a, m)

Inverts the polynomial a with respect to m, or raises a ValueError if no such inverse exists. The parameter m may be either a single polynomial or an ideal (for consistency with inverse\_mod in other rings).

## See also:

If you are only interested in the inverse modulo a monomial  $x^k$  then you might use the specialized method inverse series trunc() which is much faster.

### **EXAMPLES**:

```
sage: S.<t> = QQ[]
sage: f = inverse_mod(t^2 + 1, t^3 + 1); f
-1/2*t^2 - 1/2*t + 1/2
sage: f * (t^2 + 1) % (t^3 + 1)
1
sage: f = t.inverse_mod((t+1)^7); f
-t^6 - 7*t^5 - 21*t^4 - 35*t^3 - 35*t^2 - 21*t - 7
sage: (f * t) + (t+1)^7
1
sage: t.inverse_mod(S.ideal((t + 1)^7)) == f
True
```

This also works over inexact rings, but note that due to rounding error the product may not always exactly equal the constant polynomial 1 and have extra terms with coefficients close to zero.

```
sage: R.<x> = RDF[]
sage: epsilon = RDF(1).ulp()*50  # Allow an error of up to 50 ulp
sage: f = inverse_mod(x^2 + 1, x^5 + x + 1); f # abs tol 1e-14
0.4*x^4 - 0.2*x^3 - 0.4*x^2 + 0.2*x + 0.8
sage: poly = f * (x^2 + 1) % (x^5 + x + 1)
sage: # Remove noisy zero terms:
```

```
sage: parent(poly)([ 0.0 if abs(c)<=epsilon else c for c in poly.coefficients(sparse=False)
1.0
sage: f = inverse_mod(x^3 - x + 1, x - 2); f
0.14285714285714285
sage: f * (x^3 - x + 1) % (x - 2)
1.0
sage: g = 5*x^3+x-7; m = x^4-12*x+13; f = inverse_mod(g, m); f
-0.0319636125...*x^3 - 0.0383269759...*x^2 - 0.0463050900...*x + 0.346479687...
sage: poly = f*g % m
sage: # Remove noisy zero terms:
sage: parent(poly)([ 0.0 if abs(c)<=epsilon else c for c in poly.coefficients(sparse=False)
1.00000000000000004</pre>
```

ALGORITHM: Solve the system as + mt = 1, returning s as the inverse of a mod m.

Uses the Euclidean algorithm for exact rings, and solves a linear system for the coefficients of s and t for inexact rings (as the Euclidean algorithm may not converge in that case).

#### **AUTHORS:**

•Robert Bradshaw (2007-05-31)

```
inverse_of_unit()
```

```
EXAMPLES:
```

```
sage: R.<x> = QQ[]
sage: f = x - 90283
sage: f.inverse_of_unit()
Traceback (most recent call last):
...
ValueError: self is not a unit.
sage: f = R(-90283); g = f.inverse_of_unit(); g
-1/90283
sage: parent(g)
Univariate Polynomial Ring in x over Rational Field
```

### inverse\_series\_trunc(prec)

Return a polynomial approximation of precision prec of the inverse series of this polynomial.

## See also:

The method inverse\_mod() allows more generally to invert this polynomial with respect to any ideal.

## **EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: s = (1+x).inverse_series_trunc(5)
sage: s
x^4 - x^3 + x^2 - x + 1
sage: s * (1+x)
x^5 + 1
```

Note that the constant coefficient needs to be a unit:

```
sage: ZZxx.<x> = ZZ[]
sage: ZZxy.<y> = ZZx[]
sage: (1+x + y**2).inverse_series_trunc(4)
Traceback (most recent call last):
...
ValueError: constant term x + 1 is not a unit
sage: (1+x + y**2).change_ring(ZZx.fraction_field()).inverse_series_trunc(4)
(-1/(x^2 + 2*x + 1))*y^2 + 1/(x + 1)
```

The method works over any polynomial ring:

```
sage: R = Zmod(4)
sage: Rx.<x> = R[]
sage: Rxy.<y> = Rx[]

sage: p = 1 + (1+2*x)*y + x**2*y**4
sage: q = p.inverse_series_trunc(10)
sage: (p*q).truncate(11)
(2*x^4 + 3*x^2 + 3)*y^10 + 1
```

#### Even noncommutative ones:

```
sage: M = MatrixSpace(ZZ,2)
sage: x = polygen(M)
sage: p = M([1,2,3,4])*x^3 + M([-1,0,0,1])*x^2 + M([1,3,-1,0])*x + M.one()
sage: q = p.inverse_series_trunc(5)
sage: (p*q).truncate(5) == M.one()
True
sage: q = p.inverse_series_trunc(13)
sage: (p*q).truncate(13) == M.one()
True

TESTS:
sage: x = polygen(ZZ['a','b'])
sage: (x+1).inverse_series_trunc(0)
Traceback (most recent call last):
```

## is\_constant()

Return True if this is a constant polynomial.

#### **OUTPUT:**

•bool - True if and only if this polynomial is constant

ValueError: the precision must be positive, got 0

## **EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: x.is_constant()
False
sage: R(2).is_constant()
True
sage: R(0).is_constant()
```

### is cyclotomic(certificate=False, algorithm='pari')

Test if self is a cyclotomic polynomial.

A cyclotomic polynomial is a monic, irreducible polynomial such that all roots are roots of unity.

By default the answer is a boolean. But if certificate is True, the result is a non-negative integer: it is 0 if self is not cyclotomic, and a positive integer n if self is the n-th cyclotomic polynomial.

#### See also:

```
is_cyclotomic_product()
INPUT:
```

```
•certificate - boolean, default to False. Only works with algorithm set to "pari".
```

```
•algorithm - either "pari" or "sage" (default is "pari")
```

## ALGORITHM:

The native algorithm implemented in Sage uses the first algorithm of [BD89]. The algorithm in pari is more subtle since it does compute the inverse of the Euler  $\phi$  function to determine the n such that the polynomial is the n-th cyclotomic polynomial.

#### **EXAMPLES:**

```
Quick tests:
sage: P.\langle x \rangle = ZZ['x']
sage: (x - 1).is_cyclotomic()
sage: (x + 1).is_cyclotomic()
True
sage: (x^2 - 1).is_cyclotomic()
False
sage: (x^2 + x + 1).is_cyclotomic(certificate=True)
sage: (x^2 + 2*x + 1).is_cyclotomic(certificate=True)
0
Test first 100 cyclotomic polynomials:
sage: all(cyclotomic_polynomial(i).is_cyclotomic() for i in xrange(1,101))
True
Some more tests:
sage: (x^{16} + x^{14} - x^{10} + x^{8} - x^{6} + x^{2} + 1).is_cyclotomic(algorithm="pari")
sage: (x^{16} + x^{14} - x^{10} + x^{8} - x^{6} + x^{2} + 1).is_cyclotomic(algorithm="sage")
False
sage: (x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1).is_{cyclotomic(algorithm="pari")}
sage: (x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1).is_cyclotomic(algorithm="sage")
True
sage: y = polygen(QQ)
sage: (y/2 - 1/2).is_cyclotomic()
False
sage: (2*(y/2 - 1/2)).is\_cyclotomic()
True
Invalid arguments:
sage: (x - 3).is_cyclotomic(algorithm="sage", certificate=True)
Traceback (most recent call last):
ValueError: no implementation of the certificate within Sage
Test using other rings:
sage: z = polygen(GF(5))
sage: (z - 1).is_cyclotomic()
Traceback (most recent call last):
```

NotImplementedError: not implemented in non-zero characteristic

```
TESTS:
sage: R = ZZ['x']
sage: for _ in range(20):
         p = R.random_element(degree=randint(10,20))
         ans_pari = p.is_cyclotomic(algorithm="pari")
        ans_sage = p.is_cyclotomic(algorithm="sage")
. . . . :
         assert ans_pari == ans_sage, "problem with p={}".format(p)
sage: for d in range(2,20):
      p = cyclotomic_polynomial(d)
         assert p.is_cyclotomic(algorithm="pari"), "pari problem with p={}".format(p)
. . . . :
         assert p.is_cyclotomic(algorithm="sage"), "sage problem with p={}".format(p)
. . . . :
Test the output type when certificate=True:
sage: type((x^2 - 2).is_cyclotomic(certificate=True))
<type 'sage.rings.integer.Integer'>
sage: type((x -1).is_cyclotomic(certificate=True))
<type 'sage.rings.integer.Integer'>
Check that the arguments are forwarded when the input is not a polynomial with coefficients in Z:
sage: x = polygen(QQ)
sage: (x-1).is_cyclotomic(certificate=True)
REFERENCES:
```

#### is\_cyclotomic\_product()

Test whether self is a product of cyclotomic polynomials.

This method simply calls the function poliscycloprod from the Pari library.

### See also:

```
is_cyclotomic()

EXAMPLES:
sage: x = polygen(ZZ)
sage: (x^5 - 1).is_cyclotomic_product()
True
sage: (x^5 + x^4 - x^2 + 1).is_cyclotomic_product()
False

sage: p = prod(cyclotomic_polynomial(i) for i in [2,5,7,12])
sage: p.is_cyclotomic_product()
True

sage: (x^5 - 1/3).is_cyclotomic_product()
False

sage: x = polygen(Zmod(5))
sage: (x-1).is_cyclotomic_product()
Traceback (most recent call last):
...
NotImplementedError: not implemented in non-zero characteristic
```

## is\_gen()

Return True if this polynomial is the distinguished generator of the parent polynomial ring.

### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: R(1).is_gen()
False
sage: R(x).is_gen()
True
```

Important - this function doesn't return True if self equals the generator; it returns True if self *is* the generator.

```
sage: f = R([0,1]); f
x
sage: f.is_gen()
False
sage: f is x
False
sage: f == x
True
```

## is\_homogeneous()

Return True if this polynomial is homogeneous.

## **EXAMPLES:**

```
sage: P.<x> = PolynomialRing(QQ)
sage: x.is_homogeneous()
True
sage: P(0).is_homogeneous()
True
sage: (x+1).is_homogeneous()
False
```

## is\_irreducible()

Return True precisely if this polynomial is irreducible over its base ring.

Testing irreducibility over  $\mathbf{Z}/n\mathbf{Z}$  for composite n is not implemented.

# **EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: (x^3 + 1).is_irreducible()
False
sage: (x^2 - 1).is_irreducible()
False
sage: (x^3 + 2).is_irreducible()
True
sage: R(0).is_irreducible()
False

See trac ticket #5140,
sage: R(1).is_irreducible()
False
sage: R(4).is_irreducible()
False
sage: R(5).is_irreducible()
```

The base ring does matter: for example, 2x is irreducible as a polynomial in QQ[x], but not in ZZ[x],

```
sage: R.<x> = ZZ[]
sage: R(2*x).is_irreducible()
False
sage: R.<x> = QQ[]
sage: R(2*x).is_irreducible()
True

TESTS:
sage: F.<t> = NumberField(x^2-5)
sage: Fx.<xF> = PolynomialRing(F)
sage: f = Fx([2*t - 5, 5*t - 10, 3*t - 6, -t, -t + 2, 1])
sage: f.is_irreducible()
False
sage: f = Fx([2*t - 3, 5*t - 10, 3*t - 6, -t, -t + 2, 1])
sage: f.is_irreducible()
True
```

## is\_monic()

Returns True if this polynomial is monic. The zero polynomial is by definition not monic.

### **EXAMPLES**:

```
sage: x = QQ['x'].0
sage: f = x + 33
sage: f.is_monic()
True
sage: f = 0*x
sage: f.is_monic()
False
sage: f = 3*x^3 + x^4 + x^2
sage: f.is_monic()
True
sage: f = 2*x^2 + x^3 + 56*x^5
sage: f.is_monic()
False
```

## **AUTHORS:**

•Naqi Jaffery (2006-01-24): examples

## is\_monomial()

Returns True if self is a monomial, i.e., a power of the generator.

## **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: x.is_monomial()
True
sage: (x+1).is_monomial()
False
sage: (x^2).is_monomial()
True
sage: R(1).is_monomial()
```

### The coefficient must be 1:

```
sage: (2*x^5).is_monomial()
False
```

To allow a non-1 leading coefficient, use is\_term():

```
sage: (2*x^5).is_term()
True
```

**Warning:** The definition of is\_monomial in Sage up to 4.7.1 was the same as is\_term, i.e., it allowed a coefficient not equal to 1.

## is\_nilpotent()

Return True if this polynomial is nilpotent.

## **EXAMPLES:**

```
sage: R = Integers(12)
sage: S.<x> = R[]
sage: f = 5 + 6*x
sage: f.is_nilpotent()
False
sage: f = 6 + 6*x^2
sage: f.is_nilpotent()
True
sage: f^2
```

EXERCISE (Atiyah-McDonald, Ch 1): Let A[x] be a polynomial ring in one variable. Then  $f = \sum a_i x^i \in A[x]$  is nilpotent if and only if every  $a_i$  is nilpotent.

### TESTS:

Check that trac ticket #18600 is fixed:

```
sage: R.\langle x \rangle = PolynomialRing(Zmod(4), sparse=True)
sage: (2*x^2100 + 2).is_nilpotent()
True
```

## is\_one()

Test whether this polynomial is 1.

# **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: (x-3).is_one()
False
sage: R(1).is_one()
True

sage: R2.<y> = R[]
sage: R2(x).is_one()
False
sage: R2(1).is_one()
True
sage: R2(-1).is_one()
```

## is\_primitive (n=None, n\_prime\_divs=None)

Returns True if the polynomial is primitive. The semantics of "primitive" depend on the polynomial coefficients.

•(field theory) A polynomial of degree m over a finite field  $\mathbf{F}_q$  is primitive if it is irreducible and its root in  $\mathbf{F}_{q^m}$  generates the multiplicative group  $\mathbf{F}_{q^m}^*$ .

•(ring theory) A polynomial over a ring is primitive if its coefficients generate the unit ideal.

Calling  $is_p rimitive$  on a polynomial over an infinite field will raise an error.

The additional inputs to this function are to speed up computation for field semantics (see note).

### INPUT:

- •n (default: None) if provided, should equal q-1 where self.parent() is the field with q elements; otherwise it will be computed.
- •n\_prime\_divs (default: None) if provided, should be a list of the prime divisors of n; otherwise it will be computed.

**Note:** Computation of the prime divisors of n can dominate the running time of this method, so performing this computation externally (e.g. pdivs=n.prime\_divisors()) is a good idea for repeated calls to is\_primitive for polynomials of the same degree.

Results may be incorrect if the wrong n and/or factorization are provided.

```
Field semantics examples.
::
  sage: R. < x > = GF(2)['x']
  sage: f = x^4+x^3+x^2+x+1
 sage: f.is_irreducible(), f.is_primitive()
  (True, False)
  sage: f = x^3+x+1
  sage: f.is_irreducible(), f.is_primitive()
  (True, True)
  sage: R.<x> = GF(3)[]
  sage: f = x^3-x+1
  sage: f.is_irreducible(), f.is_primitive()
  (True, True)
  sage: f = x^2+1
  sage: f.is_irreducible(), f.is_primitive()
  (True, False)
  sage: R.<x> = GF(5)[]
  sage: f = x^2+x+1
 sage: f.is_primitive()
 False
 sage: f = x^2-x+2
  sage: f.is_primitive()
  sage: x=polygen(QQ); f=x^2+1
 sage: f.is_primitive()
 Traceback (most recent call last):
 NotImplementedError: is_primitive() not defined for polynomials over infinite fields.
Ring semantics examples.
::
  sage: x=polygen(ZZ)
  sage: f = 5*x^2+2
  sage: f.is_primitive()
 True
```

```
sage: f = 5 * x^2 + 5
  sage: f.is_primitive()
  False
  sage: K=NumberField(x^2+5,'a')
  sage: R=K.ring_of_integers()
  sage: a=R.gen(1)
  sage: a^2
  -5
  sage: f=a*x+2
  sage: f.is_primitive()
  True
  sage: f = (1+a) *x+2
  sage: f.is_primitive()
  False
  sage: x=polygen(Integers(10));
  sage: f=5*x^2+2
  sage: #f.is_primitive() #BUG:: elsewhere in Sage, should return True
  sage: f=4*x^2+2
  sage: #f.is_primitive() #BUG:: elsewhere in Sage, should return False
TESTS:
sage: R. < x > = GF(2)['x']
sage: f = x^4 + x^3 + x^2 + x + 1
sage: f.is_primitive(15)
False
sage: f.is_primitive(15, [3,5])
False
sage: f.is_primitive(n_prime_divs=[3,5])
False
sage: f = x^3+x+1
sage: f.is_primitive(7, [7])
True
sage: R. < x > = GF(3)[]
sage: f = x^3-x+1
sage: f.is_primitive(26, [2,13])
True
sage: f = x^2+1
sage: f.is_primitive(8, [2])
False
sage: R. < x > = GF(5)[]
sage: f = x^2+x+1
sage: f.is_primitive(24, [2,3])
False
sage: f = x^2-x+2
sage: f.is_primitive(24, [2,3])
sage: x=polygen(Integers(103)); f=x^2+1
sage: f.is_primitive()
False
```

## is\_square(root=False)

Returns whether or not polynomial is square. If the optional argument root is set to True, then also returns the square root (or None, if the polynomial is not square).

INPUT:

•root - whether or not to also return a square root (default: False)

### **OUTPUT**:

- •bool whether or not a square
- •root (optional) an actual square root if found, and None otherwise.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: (x^2 + 2*x + 1).is_square()
sage: (x^4 + 2*x^3 - x^2 - 2*x + 1).is_square(root=True)
(True, x^2 + x - 1)
sage: f = 12 * (x+1)^2 * (x+3)^2
sage: f.is_square()
sage: f.is_square(root=True)
(False, None)
sage: h = f/3; h
4*x^4 + 32*x^3 + 88*x^2 + 96*x + 36
sage: h.is_square(root=True)
(True, 2*x^2 + 8*x + 6)
sage: S.<y> = PolynomialRing(RR)
sage: g = 12*(y+1)^2 * (y+3)^2
sage: q.is_square()
True
```

## TESTS:

Make sure trac ticket #9093 is fixed:

```
sage: R(1).is_square()
True
sage: R(4/9).is_square(root=True)
(True, 2/3)
sage: R(-1/3).is_square()
False
sage: R(0).is_square()
True
```

## is\_squarefree()

Return False if this polynomial is not square-free, i.e., if there is a non-unit g in the polynomial ring such that  $g^2$  divides self.

**Warning:** This method is not consistent with squarefree\_decomposition() since the latter does not factor the content of a polynomial. See the examples below.

```
sage: R.\langle x \rangle = QQ[]
sage: f = (x-1)*(x-2)*(x^2-5)*(x^17-3); f
x^21 - 3*x^20 - 3*x^19 + 15*x^18 - 10*x^17 - 3*x^4 + 9*x^3 + 9*x^2 - 45*x + 30
sage: f.is_squarefree()
True
```

```
sage: (f*(x^2-5)).is_squarefree()
False
```

A generic implementation is available, which relies on gcd computations:

```
sage: R.<x> = ZZ[]
sage: (2*x).is_squarefree()
True
sage: (4*x).is_squarefree()
False
sage: (2*x^2).is_squarefree()
False
sage: R(0).is_squarefree()
False
sage: S.<y> = QQ[]
sage: R.<x> = S[]
sage: (2*x*y).is_squarefree()
True
sage: (2*x*y^2).is_squarefree()
False
```

In positive characteristic, we compute the square-free decomposition or a full factorization, depending on which is available:

```
sage: K.<t> = FunctionField(GF(3))
sage: R.<x> = K[]
sage: (x^3-x).is_squarefree()
True
sage: (x^3-1).is_squarefree()
False
sage: (x^3+t).is_squarefree()
True
sage: (x^3+t).is_squarefree()
False
```

In the following example,  $t^2$  is a unit in the base field:

```
sage: R(t^2).is_squarefree()
True
```

This method is not consistent with squarefree\_decomposition():

```
sage: R.<x> = ZZ[]
sage: f = 4 * x
sage: f.is_squarefree()
False
sage: f.squarefree_decomposition()
(4) * x
```

If you want this method equally not to consider the content, you can remove it as in the following example:

```
sage: c = f.content()
sage: (f/c).is_squarefree()
True
```

If the base ring is not an integral domain, the question is not mathematically well-defined:

```
sage: R.<x> = IntegerModRing(9)[]
sage: pol = (x + 3)*(x + 6); pol
x^2
sage: pol.is_squarefree()
```

```
Traceback (most recent call last):
...
TypeError: is_squarefree() is not defined for polynomials over Ring of integers modulo 9
```

## is\_term()

Return True if self is an element of the base ring times a power of the generator.

### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: x.is_term()
True
sage: R(1).is_term()
True
sage: (3*x^5).is_term()
True
sage: (1+3*x^5).is_term()
False
```

To require that the coefficient is 1, use is\_monomial() instead:

```
sage: (3*x^5).is_monomial()
False
```

### is\_unit()

Return True if this polynomial is a unit.

### **EXAMPLES**:

```
sage: a = Integers(90384098234^3)
sage: b = a(2*191*236607587)
sage: b.is_nilpotent()
True
sage: R.<x> = a[]
sage: f = 3 + b*x + b^2*x^2
sage: f.is_unit()
True
sage: f = 3 + b*x + b^2*x^2 + 17*x^3
sage: f.is_unit()
False
```

EXERCISE (Atiyah-McDonald, Ch 1): Let A[x] be a polynomial ring in one variable. Then  $f = \sum a_i x^i \in A[x]$  is a unit if and only if  $a_0$  is a unit and  $a_1, \ldots, a_n$  are nilpotent.

## TESTS:

Check that trac ticket #18600 is fixed:

```
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: c = x^2^{100} + 1
sage: c.is_unit()
False
```

### is\_zero()

Test whether this polynomial is zero.

```
sage: R = GF(2)['x']['y']
sage: R([0,1]).is_zero()
False
sage: R([0]).is_zero()
```

```
True
sage: R([-1]).is_zero()
False
```

### lcm (other)

Let f and g be two polynomials. Then this function returns the monic least common multiple of f and g.

## leading\_coefficient()

Return the leading coefficient of this polynomial.

OUTPUT: element of the base ring

## **EXAMPLES:**

```
sage: R.\langle x \rangle = QQ[]
sage: f = (-2/5) * x^3 + 2 * x - 1/3
sage: f.leading_coefficient()
-2/5
```

### list()

Return a new copy of the list of the underlying elements of self.

#### **EXAMPLES**:

```
sage: R.\langle x \rangle = QQ[]

sage: f = (-2/5) *x^3 + 2 *x - 1/3

sage: v = f.list(); v

[-1/3, 2, 0, -2/5]
```

Note that v is a list, it is mutable, and each call to the list method returns a new list:

```
sage: type(v)
<type 'list'>
sage: v[0] = 5
sage: f.list()
[-1/3, 2, 0, -2/5]
```

Here is an example with a generic polynomial ring:

```
sage: R.<x> = QQ[]
sage: S.<y> = R[]
sage: f = y^3 + x*y -3*x; f
y^3 + x*y - 3*x
sage: type(f)
<type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: v = f.list(); v
[-3*x, x, 0, 1]
sage: v[0] = 10
sage: f.list()
[-3*x, x, 0, 1]
```

## map\_coefficients (f, new\_base\_ring=None)

Returns the polynomial obtained by applying f to the non-zero coefficients of self.

If f is a sage.categories.map.Map, then the resulting polynomial will be defined over the codomain of f. Otherwise, the resulting polynomial will be over the same ring as self. Set new\_base\_ring to override this behaviour.

## INPUT:

 $\bullet$ f – a callable that will be applied to the coefficients of self.

•new\_base\_ring (optional) - if given, the resulting polynomial will be defined over this ring.

```
EXAMPLES:
```

```
sage: R. < x > = SR[]
sage: f = (1+I)*x^2 + 3*x - I
sage: f.map_coefficients(lambda z: z.conjugate())
(-I + 1) *x^2 + 3*x + I
sage: R. < x > = ZZ[]
sage: f = x^2 + 2
sage: f.map_coefficients(lambda a: a + 42)
43*x^2 + 44
sage: R.<x> = PolynomialRing(SR, sparse=True)
sage: f = (1+I) *x^(2^32) - I
sage: f.map_coefficients(lambda z: z.conjugate())
(-I + 1) *x^4294967296 + I
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: f = x^{(2^{32})} + 2
sage: f.map_coefficients(lambda a: a + 42)
43 \times x^4294967296 + 44
```

## Examples with different base ring:

```
sage: R. < x > = ZZ[]
sage: k = GF(2)
sage: residue = lambda x: k(x)
sage: f = 4 \times x^2 + x + 3
sage: g = f.map_coefficients(residue); g
x + 1
sage: g.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: g = f.map_coefficients(residue, new_base_ring = k); g
x + 1
sage: g.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using NTL)
sage: residue = k.coerce_map_from(ZZ)
sage: q = f.map_coefficients(residue); q
x + 1
sage: g.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using NTL)
```

## mod (other)

Remainder of division of self by other.

### **EXAMPLES**:

```
sage: R.<x> = ZZ[]
sage: x % (x+1)
-1
sage: (x^3 + x - 1) % (x^2 - 1)
2*x - 1
```

### monic()

Return this polynomial divided by its leading coefficient. Does not change this polynomial.

```
sage: x = QQ['x'].0
sage: f = 2*x^2 + x^3 + 56*x^5
sage: f.monic()
x^5 + 1/56*x^3 + 1/28*x^2
sage: f = (1/4)*x^2 + 3*x + 1
```

```
sage: f.monic() x^2 + 12*x + 4
```

The following happens because f = 0 cannot be made into a monic polynomial

```
sage: f = 0*x
sage: f.monic()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero
```

Notice that the monic version of a polynomial over the integers is defined over the rationals.

```
sage: x = ZZ['x'].0
sage: f = 3*x^19 + x^2 - 37
sage: g = f.monic(); g
x^19 + 1/3*x^2 - 37/3
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field
```

#### **AUTHORS:**

•Naqi Jaffery (2006-01-24): examples

## $newton_raphson(n, x0)$

Return a list of n iterative approximations to a root of this polynomial, computed using the Newton-Raphson method.

The Newton-Raphson method is an iterative root-finding algorithm. For f(x) a polynomial, as is the case here, this is essentially the same as Horner's method.

## INPUT:

- •n an integer (=the number of iterations),
- •x0 an initial guess x0.

OUTPUT: A list of numbers hopefully approximating a root of f(x)=0.

If one of the iterates is a critical point of f then a ZeroDivisionError exception is raised.

## **EXAMPLES:**

```
sage: x = PolynomialRing(RealField(), 'x').gen()
sage: f = x^2 - 2
sage: f.newton_raphson(4, 1)
[1.50000000000000, 1.41666666666667, 1.41421568627451, 1.41421356237469]
```

## **AUTHORS:**

•David Joyner and William Stein (2005-11-28)

## newton\_slopes (p, lengths=False)

Return the *p*-adic slopes of the Newton polygon of self, when this makes sense.

## **OUTPUT:**

If lengths is False, a list of rational numbers. If lengths is True, a list of couples (s, l) where s is the slope and l the length of the corresponding segment in the Newton polygon.

```
sage: x = QQ['x'].0
sage: f = x^3 + 2
```

```
sage: f.newton_slopes(2)
[1/3, 1/3, 1/3]
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^5 + 6*x^2 + 4
sage: p.newton_slopes(2)
[1/2, 1/2, 1/3, 1/3, 1/3]
sage: p.newton_slopes(2, lengths=True)
[(1/2, 2), (1/3, 3)]
sage: (x^2^100 + 27).newton_slopes(3, lengths=True)
[(3/1267650600228229401496703205376, 1267650600228229401496703205376)]
```

ALGORITHM: Uses PARI if lengths is False.

### norm(p)

Return the *p*-norm of this polynomial.

DEFINITION: For integer p, the p-norm of a polynomial is the pth root of the sum of the pth powers of the absolute values of the coefficients of the polynomial.

## INPUT:

•p - (positive integer or +infinity) the degree of the norm

#### **EXAMPLES:**

```
sage: R. < x > = RR[]
sage: f = x^6 + x^2 + -x^4 - 2 \times x^3
sage: f.norm(2)
2.64575131106459
sage: (sqrt(1^2 + 1^2 + (-1)^2 + (-2)^2)).n()
2.64575131106459
sage: f.norm(1)
5.00000000000000
sage: f.norm(infinity)
2.000000000000000
sage: f.norm(-1)
Traceback (most recent call last):
ValueError: The degree of the norm must be positive
TESTS:
sage: R. < x > = RR[]
sage: f = x^6 + x^2 + -x^4 - x^3
sage: f.norm(int(2))
2.000000000000000
Check that trac ticket #18600 is fixed:
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: (x^2^100 + 1).norm(1)
2.000000000000000
```

## **AUTHORS:**

- Didier Deshommes
- •William Stein: fix bugs, add definition, etc.

#### numerator()

Return a numerator of self computed as self \* self.denominator()

Note that some subclases may implement its own numerator function. For example, see sage.rings.polynomial.polynomial\_rational\_flint.Polynomial\_rational\_flint

**Warning:** This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

### **EXAMPLES:**

First we compute the numerator of a polynomial with integer coefficients, which is of course self.

```
sage: R.<x> = ZZ[]
sage: f = x^3 + 17*x + 1
sage: f.numerator()
x^3 + 17*x + 1
sage: f == f.numerator()
True
```

Next we compute the numerator of a polynomial with rational coefficients.

```
sage: R.<x> = PolynomialRing(QQ)
sage: f = (1/17)*x^19 - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/3
sage: f.numerator()
3*x^19 - 34*x + 17
sage: f == f.numerator()
False
```

We try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```
sage: R.<x> = RR[]
sage: f = x + RR('0.3'); f
x + 0.300000000000000
sage: f.numerator()
x + 0.300000000000000
```

We check that the computation the numerator and denominator are valid

```
sage: K=NumberField(symbolic_expression('x^3+2'),'a')['s,t']['x']
sage: f=K.random_element()
sage: f.numerator() / f.denominator() == f
True
sage: R=RR['x']
sage: f=R.random_element()
sage: f.numerator() / f.denominator() == f
True
```

### ord (p=None)

This is the same as the valuation of self at p. See the documentation for self.valuation.

### **EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: (x^2+x).ord(x+1)
```

# padded\_list(n=None)

Return list of coefficients of self up to (but not including)  $q^n$ .

Includes 0's in the list on the right so that the list has length n.

### INPUT:

•n - (default: None); if given, an integer that is at least 0

```
EXAMPLES:
```

```
sage: x = polygen(QQ)
sage: f = 1 + x^3 + 23*x^5
sage: f.padded_list()
[1, 0, 0, 1, 0, 23]
sage: f.padded_list(10)
[1, 0, 0, 1, 0, 23, 0, 0, 0, 0]
sage: len(f.padded_list(10))
sage: f.padded_list(3)
[1, 0, 0]
sage: f.padded_list(0)
sage: f.padded_list(-1)
Traceback (most recent call last):
ValueError: n must be at least 0
```

### TESTS:

Check that trac ticket #18600 is fixed:

```
sage: R. < x > = PolynomialRing(ZZ, sparse=True)
sage: (x^2^100 + x^8 - 1).padded_list(10)
[-1, 0, 0, 0, 0, 0, 0, 0, 1, 0]
```

plot (xmin=None, xmax=None, \*args, \*\*kwds)

Return a plot of this polynomial.

### INPUT:

- •xmin float
- •xmax float
- •\*args, \*\*kwds passed to either plot or point

OUTPUT: returns a graphic object.

#### **EXAMPLES:**

```
sage: x = polygen(GF(389))
sage: plot(x^2 + 1, rgbcolor=(0,0,1))
Graphics object consisting of 1 graphics primitive
sage: x = polygen(QQ)
sage: plot(x^2 + 1, rgbcolor=(1,0,0))
Graphics object consisting of 1 graphics primitive
```

## polynomial(var)

Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.

For univariate polynomials, if var is the generator of the parent ring, we return this polynomial, otherwise raise an error.

```
sage: R.<x> = QQ[]
sage: (x+1).polynomial(x)
x + 1

TESTS:
sage: x.polynomial(1)
Traceback (most recent call last):
...
ValueError: given variable is not the generator of parent.
```

### prec()

Return the precision of this polynomial. This is always infinity, since polynomials are of infinite precision by definition (there is no big-oh).

## **EXAMPLES**:

```
sage: x = polygen(ZZ)
sage: (x^5 + x + 1).prec()
+Infinity
sage: x.prec()
+Infinity
```

### pseudo\_quo\_rem(other)

Compute the pseudo-division of two polynomials.

### INPUT:

•other - a nonzero polynomial

### **OUTPUT:**

Q and R such that  $l^{m-n+1}$ self =  $Q \cdot \text{other} + R$  where m is the degree of this polynomial, n is the degree of other, l is the leading coefficient of other. The result is such that  $\deg(R) < \deg(\text{other})$ .

# ALGORITHM:

Algorithm 3.1.2 in [GTM138].

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^4 + 6*x^3 + x^2 - x + 2
sage: q = 2*x^2 - 3*x - 1
sage: (quo, rem) = p.pseudo_quo_rem(q); quo, rem
(4*x^2 + 30*x + 51, 175*x + 67)
sage: 2^(4-2+1)*p == quo*q + rem
True

sage: S.<T> = R[]
sage: p = (-3*x^2 - x)*T^3 - 3*x*T^2 + (x^2 - x)*T + 2*x^2 + 3*x - 2
sage: q = (-x^2 - 4*x - 5)*T^2 + (6*x^2 + x + 1)*T + 2*x^2 - x
sage: quo, rem=p.pseudo_quo_rem(q); quo, rem
((3*x^4 + 13*x^3 + 19*x^2 + 5*x)*T + 18*x^4 + 12*x^3 + 16*x^2 + 16*x,
(-113*x^6 - 106*x^5 - 133*x^4 - 101*x^3 - 42*x^2 - 41*x)*T - 34*x^6 + 13*x^5 + 54*x^4 + 126*sage: (-x^2 - 4*x - 5)^(3-2+1) * p == quo*q + rem
True
```

#### REFERENCES:

### radical()

Returns the radical of self; over a field, this is the product of the distinct irreducible factors of self. (This

is also sometimes called the "square-free part" of self, but that term is ambiguous; it is sometimes used to mean the quotient of self by its maximal square factor.)

### **EXAMPLES:**

```
sage: P.<x> = ZZ[]
sage: t = (x^2-x+1)^3 * (3*x-1)^2
sage: t.radical()
3*x^3 - 4*x^2 + 4*x - 1
sage: radical(12 * x^5)
6*x
```

If self has a factor of multiplicity divisible by the characteristic (see trac ticket #8736):

```
sage: P.<x> = GF(2)[]
sage: (x^3 + x^2).radical()
x^2 + x
```

## real\_roots()

Return the real roots of this polynomial, without multiplicities.

Calls self.roots(ring=RR), unless this is a polynomial with floating-point real coefficients, in which case it calls self.roots().

## **EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: (x^2 - x - 1).real_roots()
[-0.618033988749895, 1.61803398874989]

TESTS:
sage: x = polygen(RealField(100))
sage: (x^2 - x - 1).real_roots()[0].parent()
    Real Field with 100 bits of precision
sage: x = polygen(RDF)
sage: (x^2 - x - 1).real_roots()[0].parent()
Real Double Field

sage: x=polygen(ZZ,'x'); v=(x^2-x-1).real_roots()
sage: v[0].parent() is RR
True
```

# resultant(other)

Return the resultant of self and other.

### INPUT:

```
•other - a polynomial
```

OUTPUT: an element of the base ring of the polynomial ring

## ALGORITHM:

Uses PARI's polresultant function. For base rings that are not supported by PARI, the resultant is computed as the determinant of the Sylvester matrix.

```
sage: R.\langle x \rangle = QQ[]
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
```

```
sage: r.parent() is QQ
True
We can compute resultants over univariate and multivariate polynomial rings:
sage: R.<a> = QQ[]
sage: S. < x > = R[]
sage: f = x^2 + a; q = x^3 + a
sage: r = f.resultant(g); r
a^3 + a^2
sage: r.parent() is R
True
sage: R. < a, b > = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a; g = x^3 + b
sage: r = f.resultant(g); r
a^3 + b^2
sage: r.parent() is R
True
TESTS:
sage: R. < x, y > = QQ[]
sage: S. < a > = R[]
sage: f = x^2 + a; q = y^3 + a
sage: h = f.resultant(g); h
y^3 - x^2
sage: h.parent() is R
True
Check that trac ticket #13672 is fixed:
sage: R. < t > = GF(2)[]
sage: S.<x> = R[]
sage: f = (t^2 + t) *x + t^2 + t
sage: q = (t + 1) *x + t^2
sage: f.resultant(q)
t^4 + t
Check that trac ticket #15061 is fixed:
sage: R.<T> = PowerSeriesRing(QQ)
sage: F = R([1,1],2)
sage: RP.<x> = PolynomialRing(R)
sage: P = x^2 - F
sage: P.resultant(P.derivative())
-4 - 4 * T + O(T^2)
Check that trac ticket #16360 is fixed:
sage: K.<x> = FunctionField(QQ)
sage: R. < y> = K[]
sage: y.resultant(y+x)
sage: K.<a> = FunctionField(QQ)
sage: R. < b > = K[]
sage: L. < b > = K.extension(b^2-a)
sage: R.<x> = L[]
```

```
sage: g=x-b
sage: f.resultant(g)
0

Check that trac ticket #17817 is fixed:
sage: A.<a,b,c> = Frac(PolynomialRing(QQ,'a,b,c'))
sage: B.<d,e,f> = PolynomialRing(A,'d,e,f')
sage: R.<x>= PolynomialRing(B,'x')
sage: S.<y> = PolynomialRing(R,'y')
sage: p = ((1/b^2*d^2+1/a)*x*y^2+a*b/c*y+e+x^2)
sage: q = -4*c^2*y^3+1
sage: p.resultant(q)
16*c^4*x^6 + 48*c^4*e*x^4 + (1/b^6*d^6 + 3/(a*b^4)*d^4 + ((-12*a^3*b*c + 3)/(a^2*b^2))*d^2 + (-12*a^3*b*c + 3)/(a^2*b^2)
```

## reverse (degree=None)

sage:  $f=x^2-a$ 

Return polynomial but with the coefficients reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

### **EXAMPLES:**

```
sage: R.<x> = ZZ[]; S.<y> = R[]
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: f.reverse()
-3*x*y^3 + x*y^2 + 1
sage: f.reverse(degree=2)
-3*x*y^2 + x*y
sage: f.reverse(degree=5)
-3*x*y^5 + x*y^4 + y^2
TESTS:
sage: f.reverse(degree=1.5r)
Traceback (most recent call last):
...
ValueError: degree argument must be a non-negative integer, got 1.5
```

# root\_field(names, check\_irreducible=True)

Return the field generated by the roots of the irreducible polynomial self. The output is either a number field, relative number field, a quotient of a polynomial ring over a field, or the fraction field of the base ring.

```
sage: R.<x> = QQ['x']
sage: f = x^3 + x + 17
sage: f.root_field('a')
Number Field in a with defining polynomial x^3 + x + 17
sage: R.<x> = QQ['x']
sage: f = x - 3
sage: f.root_field('b')
Rational Field
sage: R.<x> = ZZ['x']
sage: f = x^3 + x + 17
```

```
sage: f.root_field('b')
Number Field in b with defining polynomial x^3 + x + 17
sage: y = QQ['x'].0
sage: L.\langle a \rangle = NumberField(y^3-2)
sage: R. < x > = L['x']
sage: f = x^3 + x + 17
sage: f.root_field('c')
Number Field in c with defining polynomial x^3 + x + 17 over its base field
sage: R.<x> = PolynomialRing(GF(9,'a'))
sage: f = x^3 + x^2 + 8
sage: K.<alpha> = f.root_field(); K
Univariate Quotient Polynomial Ring in alpha over Finite Field in a of size 3^2 with modulus
sage: alpha^2 + 1
alpha^2 + 1
sage: alpha^3 + alpha^2
sage: R. < x > = QQ[]
sage: f = x^2
sage: K.<alpha> = f.root_field()
Traceback (most recent call last):
ValueError: polynomial must be irreducible
TESTS:
sage: (PolynomialRing(Integers(31), name='x').0+5).root_field('a')
Ring of integers modulo 31
```

roots (ring=None, multiplicities=True, algorithm=None)

Return the roots of this polynomial (by default, in the base ring of this polynomial).

### INPUT:

- •ring the ring to find roots in
- •multiplicities bool (default: True) if True return list of pairs (r, n), where r is the root and n is the multiplicity. If False, just return the unique roots, with no information about multiplicities.
- •algorithm the root-finding algorithm to use. We attempt to select a reasonable algorithm by default, but this lets the caller override our choice.

By default, this finds all the roots that lie in the base ring of the polynomial. However, the ring parameter can be used to specify a ring to look for roots in.

If the polynomial and the output ring are both exact (integers, rationals, finite fields, etc.), then the output should always be correct (or raise an exception, if that case is not yet handled).

If the output ring is approximate (floating-point real or complex numbers), then the answer will be estimated numerically, using floating-point arithmetic of at least the precision of the output ring. If the polynomial is ill-conditioned, meaning that a small change in the coefficients of the polynomial will lead to a relatively large change in the location of the roots, this may give poor results. Distinct roots may be returned as multiple roots, multiple roots may be returned as distinct roots, real roots may be lost entirely (because the numerical estimate thinks they are complex roots). Note that polynomials with multiple roots are always ill-conditioned; there's a footnote at the end of the docstring about this.

If the output ring is a RealIntervalField or ComplexIntervalField of a given precision, then the answer will always be correct (or an exception will be raised, if a case is not implemented). Each root will be contained

in one of the returned intervals, and the intervals will be disjoint. (The returned intervals may be of higher precision than the specified output ring.)

At the end of this docstring (after the examples) is a description of all the cases implemented in this function, and the algorithms used. That section also describes the possibilities for "algorithm=", for the cases where multiple algorithms exist.

#### **EXAMPLES:**

```
sage: x = QQ['x'].0
sage: f = x^3 - 1
sage: f.roots()
[(1, 1)]
                    # note -- low order bits slightly different on ppc.
sage: f.roots(ring=CC)
sage: f = (x^3 - 1)^2
sage: f.roots()
[(1, 2)]
sage: f = -19 * x + 884736
sage: f.roots()
[(884736/19, 1)]
sage: (f^20).roots()
[(884736/19, 20)]
sage: K.<z> = CyclotomicField(3)
sage: f = K.defining_polynomial()
sage: f.roots(ring=GF(7))
[(4, 1), (2, 1)]
sage: q = f.change_ring(GF(7))
sage: g.roots()
[(4, 1), (2, 1)]
sage: g.roots(multiplicities=False)
[4, 2]
```

A new ring. In the example below, we add the special method \_roots\_univariate\_polynomial to the base ring, and observe that this method is called instead to find roots of polynomials over this ring. This facility can be used to easily extend root finding to work over new rings you introduce:

```
sage: R.<x> = QQ[]
sage: (x^2 + 1).roots()
[]
sage: g = lambda f, *args, **kwds: f.change_ring(CDF).roots()
sage: QQ._roots_univariate_polynomial = g
sage: (x^2 + 1).roots() # abs tol 1e-14
[(2.7755575615628914e-17 - 1.0*I, 1), (0.999999999999997*I, 1)]
sage: del QQ._roots_univariate_polynomial
```

An example over RR, which illustrates that only the roots in RR are returned:

```
sage: x = RR['x'].0
sage: f = x^3 -2
sage: f.roots()
[(1.25992104989487, 1)]
sage: f.factor()
(x - 1.25992104989487) * (x^2 + 1.25992104989487*x + 1.58740105196820)
sage: x = RealField(100)['x'].0
sage: f = x^3 -2
sage: f.roots()
[(1.2599210498948731647672106073, 1)]
```

```
sage: x = CC['x'].0
sage: f = x^3 -2
sage: f.roots()
[(1.25992104989487, 1), (-0.62996052494743... - 1.09112363597172*I, 1), (-0.62996052494743...
sage: f.roots(algorithm='pari')
[(1.25992104989487, 1), (-0.629960524947437 - 1.09112363597172*I, 1), (-0.629960524947437 + 1.09112363597172*I, 1)
```

Another example showing that only roots in the base ring are returned:

```
sage: x = polygen(ZZ)
sage: f = (2*x-3) * (x-1) * (x+1)
sage: f.roots()
[(1, 1), (-1, 1)]
sage: f.roots(ring=QQ)
[(3/2, 1), (1, 1), (-1, 1)]
```

An example involving large numbers:

Describing roots using radical expressions:

```
sage: x = QQ['x'].0
sage: f = x^2 + 2
sage: f.roots(SR)
[(-I*sqrt(2), 1), (I*sqrt(2), 1)]
sage: f.roots(SR, multiplicities=False)
[-I*sqrt(2), I*sqrt(2)]
```

The roots of some polynomials can't be described using radical expressions:

```
sage: (x^5 - x + 1).roots(SR)
```

For some other polynomials, no roots can be found at the moment due to the way roots are computed. trac ticket #17516 addresses these defecits. Until that gets implemented, one such example is the following:

```
sage: f = x^6-300*x^5+30361*x^4-1061610*x^3+1141893*x^2-915320*x+101724 sage: f.roots()
```

A purely symbolic roots example:

```
sage: X = var('X')
sage: f = expand((X-1)*(X-I)^3*(X^2 - sqrt(2))); f
```

```
X^6 - (3*I + 1)*X^5 - \text{sqrt}(2)*X^4 + (3*I - 3)*X^4 + (3*I + 1)*\text{sqrt}(2)*X^3 + (I + 3)*X^3 - (3*I*1)*\text{sage: f.roots()}
[(I, 3), (-2^(1/4), 1), (2^(1/4), 1), (1, 1)]
```

The same operation, performed over a polynomial ring with symbolic coefficients:

```
sage: X = SR['X'].0
sage: f = (X-1)*(X-I)^3*(X^2 - sqrt(2)); f

X^6 + (-3*I - 1)*X^5 + (-sqrt(2) + 3*I - 3)*X^4 + ((3*I + 1)*sqrt(2) + I + 3)*X^3 + (-(3*I - sage: f.roots())
[(I, 3), (-2^(1/4), 1), (2^(1/4), 1), (1, 1)]
sage: f.roots(multiplicities=False)
[I, -2^(1/4), 2^(1/4), 1]
```

A couple of examples where the base ring doesn't have a factorization algorithm (yet). Note that this is currently done via naive enumeration, so could be very slow:

```
sage: R = Integers(6)
sage: S.<x> = R['x']
sage: p = x^2-1
sage: p.roots()
Traceback (most recent call last):
...
NotImplementedError: root finding with multiplicities for this polynomial not implemented (t sage: p.roots(multiplicities=False)
[1, 5]
sage: R = Integers(9)
sage: A = PolynomialRing(R, 'y')
sage: y = A.gen()
sage: f = 10*y^2 - y^3 - 9
sage: f.roots(multiplicities=False)
[0, 1, 3, 6]
```

An example over the complex double field (where root finding is fast, thanks to NumPy):

```
sage: R.<x> = CDF[]
sage: f = R.cyclotomic_polynomial(5); f
x^4 + x^3 + x^2 + x + 1.0
sage: f.roots(multiplicities=False) # abs tol le-9
[-0.8090169943749469 - 0.5877852522924724*I, -0.8090169943749473 + 0.5877852522924724*I, 0.3
sage: [z^5 for z in f.roots(multiplicities=False)] # abs tol le-14
[0.999999999999757 - 1.2864981197413038e-15*I, 0.9999999999976 + 3.062854959141552e-15*I
sage: f = CDF['x']([1,2,3,4]); f
4.0*x^3 + 3.0*x^2 + 2.0*x + 1.0
sage: r = f.roots(multiplicities=False)
sage: [f(a).abs() for a in r] # abs tol le-14
[2.574630599127759e-15, 1.457101633618084e-15, 1.1443916996305594e-15]
```

Another example over RDF:

```
sage: x = RDF['x'].0
sage: ((x^3 -1)).roots() # abs tol 4e-16
[(1.0000000000000000, 1)]
sage: ((x^3 -1)).roots(multiplicities=False) # abs tol 4e-16
[1.00000000000000000]
```

More examples involving the complex double field:

```
sage: x = CDF['x'].0
sage: i = CDF.0
```

sage: f.roots() # abs tol 1e-14

sage:  $f = x^3 + 2 i$ ; f

sage: p.roots(ring=CIF)

 $x^3 + 2.0*I$ 

```
[(-1.0911236359717227 - 0.6299605249474374*I, 1), (3.885780586188048e-16 + 1.2599210498948738e-16)
sage: f.roots(multiplicities=False) # abs tol 1e-14
sage: [abs(f(z)) for z in f.roots(multiplicities=False)] # abs tol 1e-14
[8.95090418262362e-16, 8.728374398092689e-16, 1.0235750533041806e-15]
sage: f = i * x^3 + 2; f
I*x^3 + 2.0
sage: f.roots() # abs tol 1e-14
[(-1.0911236359717227 + 0.6299605249474374*I, 1), (3.885780586188048e-16 - 1.2599210498948738e-16 - 1.259921049894873e-16 - 1.259921049894874e-16 - 1.259921049894894e-16 - 1.2599210498948948-16 - 1.259921049894894-16 - 1.259921049894894-16 - 1.259921049894894-16 - 1.259921049894894-16 - 1.259921049894894-16 - 1.2599210498948-16 - 1.2599210498948-16 - 1.2599210498948-16 - 1.2599210498948-16 - 1.2599210498948-16 - 1.259921049894-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.2599210498-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.25992104949-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.259921049-16 - 1.25992
sage: abs(f(f.roots()[0][0])) # abs tol 1e-13
1.1102230246251565e-16
Examples using real root isolation:
sage: x = polygen(ZZ)
sage: f = x^2 - x - 1
sage: f.roots()
[]
sage: f.roots(ring=RIF)
[(-0.6180339887498948482045868343657?, 1), (1.6180339887498948482045868343657?, 1)]
sage: f.roots(ring=RIF, multiplicities=False)
[-0.6180339887498948482045868343657?, 1.6180339887498948482045868343657?]
sage: f.roots(ring=RealIntervalField(150))
 \left[ \left( -0.6180339887498948482045868343656381177203091798057628621354486227?, \ 1 \right), \ \left( 1.6180339887498948482045868343656381177203091798057628621354486227?, \ 1 \right), \ \left( 1.61803398874984821486277, \ 1 \right), \ \left( 1.6180339887498484821486277, \ 1 \right), \ \left( 1.6180339887498484821486277, \ 1 \right), \ \left( 1.618033988749848482148627, \ 1 \right), \ \left( 1.618033988749848482148627, \ 1 \right), \ \left( 1.618033988749848482148627, \ 1 \right), \ \left( 1.6180339887498482148621, \ 1 \right), \ \left( 1.61803398874984821, \ 1 \right), \ \left( 1.61803398874984, \ 1 \right), \ \left( 1.618033984, \ 1 \right), \ \left( 1.6180384, \ 1 \right), \ \left( 1.61
sage: f.roots(ring=AA)
[(-0.618033988749895?, 1), (1.618033988749895?, 1)]
sage: f = f^2 * (x - 1)
sage: f.roots(ring=RIF)
sage: f.roots(ring=RIF, multiplicities=False)
Examples using complex root isolation:
sage: x = polygen(ZZ)
sage: p = x^5 - x - 1
sage: p.roots()
[]
sage: p.roots(ring=CIF)
sage: p.roots(ring=ComplexIntervalField(200))
sage: rts = p.roots(ring=QQbar); rts
[(1.167303978261419?, 1), (-0.7648844336005847? - 0.3524715460317263?*I, 1), (-0.76488443360)
sage: p.roots(ring=AA)
[(1.167303978261419?, 1)]
sage: p = (x - rts[4][0])^2 * (3*x^2 + x + 1)
sage: p.roots(ring=QQbar)
 \big[ (-0.1666666666666667? - 0.552770798392567?*I, 1), (-0.1666666666666667? + 0.552770798392567?*I, 1) \big]
```

Note that coefficients in a number field with defining polynomial  $x^2 + 1$  are considered to be Gaussian rationals (with the generator mapping to +I), if you ask for complex roots.

[(-0.1666666666666667? - 0.552770798392567?\*I, 1), (-0.166666666666667? + 0.552770798392567?\*I)

```
sage: K.<im> = NumberField(x^2 + 1)
sage: y = polygen(K)
sage: p = y^4 - 2 - im
sage: p.roots(ring=CC)
[(-1.2146389322441... - 0.14142505258239...*I, 1), (-0.14142505258239... + 1.2146389322441...
sage: p = p^2 * (y^2 - 2)
sage: p.roots(ring=CIF)
[(-1.414213562373095?, 1), (1.414213562373095?, 1), (-1.214638932244183? - 0.141425052582394)
```

Note that one should not use NumPy when wanting high precision output as it does not support any of the high precision types:

```
sage: R.<x> = RealField(200)[]
sage: f = x^2 - R(pi)
sage: f.roots()
[(-1.7724538509055160272981674833411451827975494561223871282138, 1), (1.77245385090551602729)
sage: f.roots(algorithm='numpy')
doctest... UserWarning: NumPy does not support arbitrary precision arithmetic. The roots for [(-1.77245385090551..., 1), (1.77245385090551..., 1)]
```

We can also find roots over number fields:

```
sage: K.<z> = CyclotomicField(15)
sage: R.<x> = PolynomialRing(K)
sage: (x^2 + x + 1).roots()
[(z^5, 1), (-z^5 - 1, 1)]
```

There are many combinations of floating-point input and output types that work. (Note that some of them are quite pointless like using algorithm='numpy' with high-precision types.)

```
sage: rflds = (RR, RDF, RealField(100))
sage: cflds = (CC, CDF, ComplexField(100))
sage: def cross(a, b):
         return list(cartesian_product_iterator([a, b]))
sage: flds = cross(rflds, rflds) + cross(rflds, cflds) + cross(cflds, cflds)
sage: for (fld_in, fld_out) in flds:
      x = polygen(fld_in)
. . . . :
         f = x^3 - fld_in(2)
         x2 = polygen(fld_out)
         f2 = x2^3 - fld_out(2)
. . . . :
         for algo in (None, 'pari', 'numpy'):
             rts = f.roots(ring=fld_out, multiplicities=False)
             if fld_in == fld_out and algo is None:
                 print fld_in, rts
             for rt in rts:
                 assert(abs(f2(rt)) <= 1e-10)
                 assert(rt.parent() == fld_out)
Real Field with 53 bits of precision [1.25992104989487]
Real Double Field [1.25992104989...]
Real Field with 100 bits of precision [1.2599210498948731647672106073]
Complex Field with 53 bits of precision [1.25992104989487, -0.62996052494743... - 1.09112363
Complex Double Field [1.25992104989..., -0.629960524947... - 1.0911236359717...*I, -0.629960
Complex Field with 100 bits of precision [1.2599210498948731647672106073, -0.629960524947436
```

Note that we can find the roots of a polynomial with algebraic coefficients:

```
sage: rt2 = sqrt(AA(2))
sage: rt3 = sqrt(AA(3))
sage: x = polygen(AA)
```

```
sage: f = (x - rt2) * (x - rt3); f
    x^2 - 3.146264369941973?*x + 2.449489742783178?

sage: rts = f.roots(); rts
[(1.414213562373095?, 1), (1.732050807568878?, 1)]

sage: rts[0][0] == rt2
True

sage: f.roots(ring=RealIntervalField(150))
[(1.414213562373095048801688724209698078569671875376948073176679738?, 1), (1.732050807568877)
```

We can handle polynomials with huge coefficients.

This number doesn't even fit in an IEEE double-precision float, but RR and CC allow a much larger range of floating-point numbers:

```
sage: bigc = 2^1500
sage: CDF(bigc)
+infinity
sage: CC(bigc)
3.50746621104340e451
```

Polynomials using such large coefficients can't be handled by numpy, but pari can deal with them:

```
sage: x = polygen(QQ)
sage: p = x + bigc
sage: p.roots(ring=RR, algorithm='numpy')
Traceback (most recent call last):
LinAlgError: Array must not contain infs or NaNs
sage: p.roots(ring=RR, algorithm='pari')
[(-3.50746621104340e451, 1)]
sage: p.roots(ring=AA)
[(-3.5074662110434039?e451, 1)]
sage: p.roots(ring=QQbar)
[(-3.5074662110434039?e451, 1)]
sage: p = bigc*x + 1
sage: p.roots(ring=RR)
[(0.00000000000000, 1)]
sage: p.roots(ring=AA)
[(-2.8510609648967059?e-452, 1)]
sage: p.roots(ring=QQbar)
[(-2.8510609648967059?e-452, 1)]
sage: p = x^2 - bigc
sage: p.roots(ring=RR)
[(-5.92238652153286e225, 1), (5.92238652153286e225, 1)]
sage: p.roots(ring=QQbar)
[(-5.9223865215328558?e225, 1), (5.9223865215328558?e225, 1)]
```

# Algorithms used:

For brevity, we will use RR to mean any RealField of any precision; similarly for RIF, CC, and CIF. Since Sage has no specific implementation of Gaussian rationals (or of number fields with embedding, at all), when we refer to Gaussian rationals below we will accept any number field with defining polynomial  $x^2 + 1$ , mapping the field generator to +I.

We call the base ring of the polynomial K, and the ring given by the ring= argument L. (If ring= is not specified, then L is the same as K.)

If K and L are floating-point (RDF, CDF, RR, or CC), then a floating-point root-finder is used. If L is RDF or CDF then we default to using NumPy's roots(); otherwise, we use PARI's polroots(). This choice can

be overridden with algorithm='pari' or algorithm='numpy'. If the algorithm is unspecified and NumPy's roots() algorithm fails, then we fall back to pari (numpy will fail if some coefficient is infinite, for instance).

If L is SR, then the roots will be radical expressions, computed as the solutions of a symbolic polynomial expression. At the moment this delegates to sage.symbolic.expression.Expression.solve() which in turn uses Maxima to find radical solutions. Some solutions may be lost in this approach. Once trac ticket #17516 gets implemented, all possible radical solutions should become available.

If L is AA or RIF, and K is ZZ, QQ, or AA, then the root isolation algorithm sage.rings.polynomial.real\_roots.real\_roots() is used. (You can call real\_roots() directly to get more control than this method gives.)

If L is QQbar or CIF, and K is ZZ, QQ, AA, QQbar, or the Gaussian rationals, then the root isolation algorithm sage.rings.polynomial.complex\_roots.complex\_roots() is used. (You can call complex\_roots() directly to get more control than this method gives.)

If L is AA and K is QQbar or the Gaussian rationals, then complex\_roots() is used (as above) to find roots in QQbar, then these roots are filtered to select only the real roots.

If L is floating-point and K is not, then we attempt to change the polynomial ring to L (using .change\_ring()) (or, if L is complex and K is not, to the corresponding real field). Then we use either PARI or numpy as specified above.

For all other cases where K is different than L, we just use .change\_ring(L) and proceed as below.

The next method, which is used if K is an integral domain, is to attempt to factor the polynomial. If this succeeds, then for every degree-one factor a\*x+b, we add -b/a as a root (as long as this quotient is actually in the desired ring).

If factoring over K is not implemented (or K is not an integral domain), and K is finite, then we find the roots by enumerating all elements of K and checking whether the polynomial evaluates to zero at that value.

**Note:** We mentioned above that polynomials with multiple roots are always ill-conditioned; if your input is given to n bits of precision, you should not expect more than n/k good bits for a k-fold root. (You can get solutions that make the polynomial evaluate to a number very close to zero; basically the problem is that with a multiple root, there are many such numbers, and it's difficult to choose between them.)

To see why this is true, consider the naive floating-point error analysis model where you just pretend that all floating-point numbers are somewhat imprecise - a little 'fuzzy', if you will. Then the graph of a floating-point polynomial will be a fuzzy line. Consider the graph of  $(x-1)^3$ ; this will be a fuzzy line with a horizontal tangent at x=1, y=0. If the fuzziness extends up and down by about j, then it will extend left and right by about cube\_root(j).

### TESTS:

```
sage: K.<zeta> = CyclotomicField(2)
sage: R.<x> = K[]
sage: factor(x^3-1)
(x - 1) * (x^2 + x + 1)
```

This shows that the issue from trac ticket #6237 is fixed:

```
sage: R.<u> = QQ[]
sage: g = -27*u^14 - 32*u^9
sage: g.roots(CDF, multiplicities=False) # abs tol 2e-15
[-1.0345637159435719, 0.0, -0.3196977699902601 - 0.9839285635706636*I, -0.3196977699902601 +
sage: g.roots(CDF) # abs tol 2e-15
[(-1.0345637159435719, 1), (0.0, 9), (-0.3196977699902601 - 0.9839285635706636*I, 1), (-0.3196977699902601 - 0.9839285635706636*I, 1), (-0.3196977699902601 - 0.9839285635706636*I, 1), (-0.3196977699902601 - 0.9839285635706636*I, 1)
```

```
This shows that the issue at trac ticket #2418 is fixed:
    sage: x = polygen(QQ)
    sage: p = (x^50/2^100 + x^10 + x + 1).change_ring(ComplexField(106))
    sage: rts = (p/2^100).roots(multiplicities=False)
    sage: eps = 2^{(-50)} # we test the roots numerically
    sage: [abs(p(rt)) < eps for rt in rts] == [True] *50</pre>
    True
    This shows that the issue at trac ticket #10901 is fixed:
    sage: a = var('a'); R. < x > = SR[]
    sage: f = x - a
    sage: f.roots(RR)
    Traceback (most recent call last):
    TypeError: Cannot evaluate symbolic expression to a numeric value.
    sage: f.roots(CC)
    Traceback (most recent call last):
    TypeError: Cannot evaluate symbolic expression to a numeric value.
    We can find roots of polynomials defined over Z or Q over the p-adics, see trac ticket #15422:
    sage: R.<x> = ZZ[]
    sage: pol = (x - 1)^2
    sage: pol.roots(Qp(3,5))
    [(1 + O(3^5), 2)]
    This doesn't work if we first change coefficients to \mathbf{Q}_{p}:
    sage: pol.change_ring(Qp(3,5)).roots()
    Traceback (most recent call last):
    PrecisionError: p-adic factorization not well-defined since the discriminant is zero up to t
    sage: (pol - 3^6).roots(Qp(3,5))
    [(1 + 2*3^3 + 2*3^4 + 0(3^5), 1), (1 + 3^3 + 0(3^5), 1)]
    sage: r = pol.roots(Zp(3,5), multiplicities=False); r
    [1 + 0(3^5)]
    sage: parent(r[0])
    3-adic Ring with capped relative precision 5
    Spurious crash with pari-2.5.5, see trac ticket #16165:
    sage: f = (1+x+x^2)^3
    sage: f.roots(ring=CC)
    shift(n)
    Returns this polynomial multiplied by the power x^n. If n is negative, terms below x^n will be discarded.
    Does not change this polynomial (since polynomials are immutable).
    EXAMPLES:
    sage: R. < x > = QQ[]
    sage: p = x^2 + 2 x + 4
    sage: p.shift(0)
    x^2 + 2 x + 4
    sage: p.shift(-1)
```

x + 2

```
sage: p.shift(-5)
0
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```

One can also use the infix shift operator:

```
sage: f = x^3 + x
sage: f >> 2
x
sage: f << 2
x^5 + x^3

TESTS:
sage: p = R(0)
sage: p.shift(3).is_zero()
True
sage: p.shift(-3).is_zero()</pre>
```

### **AUTHORS:**

True

- •David Harvey (2006-08-06)
- •Robert Bradshaw (2007-04-18): Added support for infix operator.

## splitting\_field(names, map=False, \*\*kwds)

Compute the absolute splitting field of a given polynomial.

### INPUT:

- •names a variable name for the splitting field.
- •map (default: False) also return an embedding of self into the resulting field.
- •kwds additional keywords depending on the type. Currently, only number fields are implemented. See sage.rings.number\_field.splitting\_field.splitting\_field() for the documentation of these keywords.

# **OUTPUT:**

If map is False, the splitting field as an absolute field. If map is True, a tuple (K, phi) where phi is an embedding of the base field of self in K.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ)
sage: K.<a> = (x^3 + 2).splitting_field(); K
Number Field in a with defining polynomial x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1
sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K
Number Field in a with defining polynomial x^3 - 3*x + 1
```

# Relative situation:

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 + 2)
sage: S.<t> = PolynomialRing(K)
sage: L.<b> = (t^2 - a).splitting_field()
sage: L
Number Field in b with defining polynomial t^6 + 2
```

```
With map=True, we also get the embedding of the base field into the splitting field:
sage: L.<b>, phi = (t^2 - a).splitting_field(map=True)
sage: phi
Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Number Field in b with defining polynomial t^6 + 2
 Defn: a I--> b^2
An example over a finite field:
sage: P. < x > = PolynomialRing(GF(7))
sage: t = x^2 + 1
sage: t.splitting_field('b')
Finite Field in b of size 7^2
sage: P.<x> = PolynomialRing(GF(7^3, 'a'))
sage: t = x^2 + 1
sage: t.splitting_field('b', map=True)
(Finite Field in b of size 7^6,
Ring morphism:
  From: Finite Field in a of size 7^3
  To: Finite Field in b of size 7^6
  Defn: a |--> 2*b^4 + 6*b^3 + 2*b^2 + 3*b + 2)
If the extension is trivial and the generators have the same name, the map will be the identity:
sage: t = 24 * x^13 + 2 * x^12 + 14
sage: t.splitting_field('a', map=True)
(Finite Field in a of size 7<sup>3</sup>,
Identity endomorphism of Finite Field in a of size 7^3)
sage: t = x^56 - 14 \times x^3
sage: t.splitting_field('b', map=True)
(Finite Field in b of size 7<sup>3</sup>,
Ring morphism:
From: Finite Field in a of size 7^3
   To: Finite Field in b of size 7^3
   Defn: a |--> b)
See also:
sage.rings.number_field.splitting_field.splitting_field() for more examples
over number fields
TESTS:
sage: K.<a,b> = x.splitting_field()
Traceback (most recent call last):
IndexError: the number of names must equal the number of generators
sage: polygen(RR).splitting_field('x')
Traceback (most recent call last):
. . .
NotImplementedError: splitting_field() is only implemented over number fields and finite fie
sage: P.<x> = PolynomialRing(GF(11^5, 'a'))
sage: t = x^2 + 1
sage: t.splitting_field('b')
Finite Field in b of size 11^10
sage: t = 24 \times x^13 + 2 \times x^12 + 14
```

```
sage: t.splitting_field('b')
Finite Field in b of size 11^30
sage: t = x^56 - 14 \times x^3
sage: t.splitting_field('b')
Finite Field in b of size 11^130
sage: P.\langle x \rangle = PolynomialRing(GF(19^6, 'a'))
sage: t = -x^6 + x^2 + 1
sage: t.splitting_field('b')
Finite Field in b of size 19^6
sage: t = 24 \times x^13 + 2 \times x^12 + 14
sage: t.splitting_field('b')
Finite Field in b of size 19^18
sage: t = x^56 - 14 \times x^3
sage: t.splitting_field('b')
Finite Field in b of size 19^156
sage: P.<x> = PolynomialRing(GF(83^6, 'a'))
sage: t = 2 \times x^14 - 5 + 6 \times x
sage: t.splitting_field('b')
Finite Field in b of size 83^84
sage: t = 24 \times x^13 + 2 \times x^12 + 14
sage: t.splitting_field('b')
Finite Field in b of size 83^78
sage: t = x^56 - 14 \times x^3
sage: t.splitting_field('b')
Finite Field in b of size 83^12
sage: P.<x> = PolynomialRing(GF(401^13, 'a'))
sage: t = 2 * x^14 - 5 + 6 * x
sage: t.splitting_field('b')
Finite Field in b of size 401^104
sage: t = 24 \times x^13 + 2 \times x^12 + 14
sage: t.splitting_field('b')
Finite Field in b of size 401^156
sage: t = x^56 - 14 \times x^3
sage: t.splitting_field('b')
Finite Field in b of size 401<sup>52</sup>
```

# square()

Returns the square of this polynomial.

# TODO:

- •This is just a placeholder; for now it just uses ordinary multiplication. But generally speaking, squaring is faster than ordinary multiplication, and it's frequently used, so subclasses may choose to provide a specialised squaring routine.
- •Perhaps this even belongs at a lower level? RingElement or something?

## **AUTHORS:**

•David Harvey (2006-09-09)

```
sage: R.<x> = QQ[]
sage: f = x^3 + 1
sage: f.square()
x^6 + 2*x^3 + 1
```

```
sage: f*f
    x^6 + 2*x^3 + 1
squarefree_decomposition()
    Return the square-free decomposition of this polynomial. This is a partial factorization into square-free,
    coprime polynomials.
    EXAMPLES:
    sage: x = polygen(QQ)
    sage: p = 37 * (x-1)^3 * (x-2)^3 * (x-1/3)^7 * (x-3/7)
    sage: p.squarefree_decomposition()
    (37*x - 111/7) * (x^2 - 3*x + 2)^3 * (x - 1/3)^7
    sage: p = 37 * (x-2/3)^2
    sage: p.squarefree_decomposition()
    (37) * (x - 2/3)^2
    sage: x = polygen(GF(3))
    sage: x.squarefree_decomposition()
    sage: f = QQbar['x'](1)
    sage: f.squarefree_decomposition()
subs (*x, **kwds)
    Identical to self(*x).
    See the docstring for self.__call__.
    EXAMPLES:
    sage: R. < x > = QQ[]
    sage: f = x^3 + x - 3
    sage: f.subs(x=5)
    127
    sage: f.subs(5)
    sage: f.subs(\{x:2\})
    sage: f.subs({})
    x^3 + x - 3
    sage: f.subs({'x':2})
    Traceback (most recent call last):
    TypeError: keys do not match self's parent
substitute(*x, **kwds)
    Identical to self(*x).
    See the docstring for self.__call__.
    EXAMPLES:
    sage: R. < x > = QQ[]
    sage: f = x^3 + x - 3
    sage: f.subs(x=5)
    127
    sage: f.subs(5)
    127
    sage: f.subs(\{x:2\})
    sage: f.subs({})
```

```
x^3 + x - 3
sage: f.subs({'x':2})
Traceback (most recent call last):
...
TypeError: keys do not match self's parent
```

### sylvester\_matrix (right, variable=None)

Returns the Sylvester matrix of self and right.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

## INPUT:

•right: a polynomial in the same ring as self.

•variable: optional, included for compatibility with the multivariate case only. The variable of the polynomials.

# EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
sage: M = f.sylvester_matrix(g)
sage: M
[ 42 317 134 1786 0
  0 42 317 134 1786 0
                             01
     0
         42 317 134 1786
                             01
 0
     0
              42 317 134 1786]
 0
         0
[ 18 141 12 100
                  47
                      0
                            01
                      47
     18 141
              12 100
  0
                             0]
       0
          18 141
                   12 100
                            471
```

If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will be zero:

```
sage: M.determinant()
0
```

If self and right are polynomials of positive degree, the determinant of the Sylvester matrix is the resultant of the polynomials.:

```
sage: h1 = R.random_element()
sage: h2 = R.random_element()
sage: M1 = h1.sylvester_matrix(h2)
sage: M1.determinant() == h1.resultant(h2)
True
```

The rank of the Sylvester matrix is related to the degree of the gcd of self and right:

```
sage: f.gcd(g).degree() == f.degree() + g.degree() - M.rank()
True
sage: h1.gcd(h2).degree() == h1.degree() + h2.degree() - M1.rank()
True
```

## TESTS:

The variable is optional, but must be the same in both rings:

```
sage: K.<x> = QQ['x']
sage: f = x+1
sage: g = QQ['y']([1, 0, 1])
```

```
sage: f.sylvester_matrix(f, x)
    [1 1]
    [1 1]
    sage: f.sylvester_matrix(g, x)
    Traceback (most recent call last):
    TypeError: no common canonical parent for objects with parents: 'Univariate Polynomial Ring
    Polynomials must be defined over compatible base rings:
    sage: f = QQ['x']([1, 0, 1])
    sage: g = ZZ['x']([1, 0, 1])
    sage: h = GF(25, 'a')['x']([1, 0, 1])
    sage: f.sylvester_matrix(g)
    [1 0 1 0]
    [0 1 0 1]
    [1 0 1 0]
    [0 1 0 1]
    sage: g.sylvester_matrix(h)
    [1 0 1 0]
    [0 1 0 1]
    [1 0 1 0]
    [0 1 0 1]
    sage: f.sylvester_matrix(h)
    Traceback (most recent call last):
    TypeError: no common canonical parent for objects with parents: 'Univariate Polynomial Ring
    We can compute the sylvester matrix of a univariate and multivariate polynomial:
    sage: K.\langle x, y \rangle = QQ['x, y']
    sage: g = K.random_element()
    sage: f.sylvester_matrix(g) == K(f).sylvester_matrix(g,x)
    True
    Corner cases:
    sage: K.<x>=QQ[]
    sage: f = x^2+1
    sage: q = K(0)
    sage: f.sylvester_matrix(g)
    Traceback (most recent call last):
    ValueError: The Sylvester matrix is not defined for zero polynomials
    sage: g.sylvester_matrix(f)
    Traceback (most recent call last):
    ValueError: The Sylvester matrix is not defined for zero polynomials
    sage: g.sylvester_matrix(g)
    Traceback (most recent call last):
    ValueError: The Sylvester matrix is not defined for zero polynomials
    sage: K(3).sylvester_matrix(x^2)
    [3 0]
    [0 3]
    sage: K(3).sylvester_matrix(K(4))
truncate (n)
```

Returns the polynomial of degree '<n' which is equivalent to self modulo  $x^n$ .

## **EXAMPLES:**

```
sage: R.<x> = ZZ[]; S.<y> = PolynomialRing(R, sparse=True)
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: f.truncate(2)
x*y - 3*x
sage: f.truncate(1)
-3*x
sage: f.truncate(0)
0
```

### valuation (p=None)

If  $f = a_r x^r + a_{r+1} x^{r+1} + \cdots$ , with  $a_r$  nonzero, then the valuation of f is r. The valuation of the zero polynomial is  $\infty$ .

If a prime (or non-prime) p is given, then the valuation is the largest power of p which divides self.

The valuation at  $\infty$  is -self.degree().

### **EXAMPLES:**

```
sage: P.<x> = ZZ[]
sage: (x^2+x).valuation()
1
sage: (x^2+x).valuation(x+1)
1
sage: (x^2+1).valuation()
0
sage: (x^3+1).valuation(infinity)
-3
sage: P(0).valuation()
+Infinity
```

## variable\_name()

Return name of variable used in this polynomial as a string.

**OUTPUT:** string

# **EXAMPLES:**

```
sage: R.<t> = QQ[]
sage: f = t^3 + 3/2*t + 5
sage: f.variable_name()
't'
```

### variables()

Returns the tuple of variables occurring in this polynomial.

### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: x.variables()
(x,)
```

A constant polynomial has no variables.

```
sage: R(2).variables()
()
```

#### xqcd (other)

Return an extended gcd of this polynomial and other.

#### INPUT:

•other – a polynomial in the same ring as this polynomial

### **OUTPUT**:

A tuple (r, s, t) where r is a greatest common divisor of this polynomial and other, and s and t are such that r = s\*self + t\*other holds.

**Note:** The actual algorithm for computing the extended gcd depends on the base ring underlying the polynomial ring. If the base ring defines a method \_xgcd\_univariate\_polynomial, then this method will be called (see examples below).

```
EXAMPLES:
sage: R.<x> = QQbar[]
sage: (2*x^2).gcd(2*x)
sage: R.zero().gcd(0)
sage: (2*x).gcd(0)
One can easily add xgcd functionality to
                                            new
                                                   rings
                                                          by
                                                              providing a
                                                                            method
_xgcd_univariate_polynomial:
sage: R. < x > = QQ[]
sage: S.<y> = R[]
sage: h1 = y * x
sage: h2 = y^2 \times x^2
sage: h1.xgcd(h2)
Traceback (most recent call last):
NotImplementedError: Univariate Polynomial Ring in x over Rational Field does not provide ar
sage: T. < x, y > = QQ[]
sage: def poor_xgcd(f,g):
        ret = S(T(f).gcd(g))
```

class sage.rings.polynomial.polynomial\_element.PolynomialBaseringInjection
 Bases: sage.categories.morphism.Morphism

if ret == f: return ret,S.one(),S.zero()
if ret == g: return ret,S.zero(),S.one()

This class is used for conversion from a ring to a polynomial over that ring.

....: raise NotImplementedError
sage: R.\_xgcd\_univariate\_polynomial = poor\_xgcd

sage: del R.\_xgcd\_univariate\_polynomial

It calls the \_new\_constant\_poly method on the generator, which should be optimized for a particular polynomial type.

Technically, it should be a method of the polynomial ring, but few polynomial rings are cython classes, and so, as a method of a cython polynomial class, it is faster.

**EXAMPLES:** 

sage: h1.xgcd(h2)
(x\*y, 1, 0)

We demonstrate that most polynomial ring classes use polynomial base injection maps for coercion. They are supposed to be the fastest maps for that purpose. See trac ticket #9944.

```
sage: R. < x > = Qp(3)[]
    sage: R.coerce_map_from(R.base_ring())
    Polynomial base injection morphism:
      From: 3-adic Field with capped relative precision 20
           Univariate Polynomial Ring in x over 3-adic Field with capped relative precision 20
    sage: R.<x,y> = Qp(3)[]
    sage: R.coerce_map_from(R.base_ring())
    Polynomial base injection morphism:
      From: 3-adic Field with capped relative precision 20
      To: Multivariate Polynomial Ring in x, y over 3-adic Field with capped relative precision 20
    sage: R. \langle x, y \rangle = QQ[]
    sage: R.coerce_map_from(R.base_ring())
    Polynomial base injection morphism:
      From: Rational Field
      To: Multivariate Polynomial Ring in x, y over Rational Field
    sage: R. < x > = QQ[]
    sage: R.coerce_map_from(R.base_ring())
    Polynomial base injection morphism:
      From: Rational Field
           Univariate Polynomial Ring in x over Rational Field
    By trac ticket #9944, there are now only very few exceptions:
    sage: PolynomialRing(QQ, names=[]).coerce_map_from(QQ)
    Generic morphism:
      From: Rational Field
            Multivariate Polynomial Ring in no variables over Rational Field
    section()
        TESTS:
         sage: from sage.rings.polynomial.polynomial element import PolynomialBaseringInjection
         sage: m = PolynomialBaseringInjection(RDF, RDF['x'])
         sage: m.section()
        Generic map:
          From: Univariate Polynomial Ring in x over Real Double Field
          To: Real Double Field
         sage: type(m.section())
         <type 'sage.rings.polynomial.polynomial_element.ConstantPolynomialSection'>
class sage.rings.polynomial.polynomial_element.Polynomial_generic_dense
    Bases: sage.rings.polynomial.polynomial_element.Polynomial
    A generic dense polynomial.
    EXAMPLES:
    sage: R.<x> = PolynomialRing(PolynomialRing(QQ,'y'))
    sage: f = x^3 - x + 17
    sage: type(f)
    <type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
    sage: loads(f.dumps()) == f
    True
    constant coefficient()
         Return the constant coefficient of this polynomial.
         OUTPUT: element of base ring
```

```
EXAMPLES: sage: R.<t> = QQ[] sage: S.<x> = R[] sage: f = x*t + x + t sage: f.constant_coefficient() t
degree (gen=None)
    EXAMPLES:
    sage: R. < x > = RDF[]
    sage: f = (1+2*x^7)^5
    sage: f.degree()
    35
    TESTS:
    Check that trac ticket #12552 is fixed:
    sage: type(f.degree())
    <type 'sage.rings.integer.Integer'>
list (copy=True)
    Return a new copy of the list of the underlying elements of self.
    EXAMPLES:
    sage: R. < x > = GF(17)[]
    sage: f = (1+2*x)^3 + 3*x; f
    8*x^3 + 12*x^2 + 9*x + 1
```

### quo\_rem(other)

Returns the quotient and remainder of the Euclidean division of self and other.

Raises ZerodivisionError if other is zero. Raises ArithmeticError if other has a nonunit leading coefficient.

### **EXAMPLES:**

sage: f.list()
[1, 9, 12, 8]

```
sage: P.<x> = QQ[]
sage: R.<y> = P[]
sage: f = R.random_element(10)
sage: g = y^5+R.random_element(4)
sage: q,r = f.quo_rem(g)
sage: f == q*g + r
True
sage: g = x*y^5
sage: f.quo_rem(g)
Traceback (most recent call last):
...
ArithmeticError: Nonunit leading coefficient
sage: g = 0
sage: f.quo_rem(g)
Traceback (most recent call last):
...
ZeroDivisionError: Division by zero polynomial
```

# $\mathbf{shift}(n)$

Returns this polynomial multiplied by the power  $x^n$ . If n is negative, terms below  $x^n$  will be discarded. Does not change this polynomial.

```
sage: R.<x> = PolynomialRing(PolynomialRing(QQ,'y'), 'x')
sage: p = x^2 + 2 * x + 4
```

```
sage: type(p)
         <type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
         sage: p.shift(0)
          x^2 + 2 x + 4
         sage: p.shift(-1)
          x + 2
         sage: p.shift(2)
          x^4 + 2*x^3 + 4*x^2
         TESTS:
         sage: p = R(0)
         sage: p.shift(3).is_zero()
         True
         sage: p.shift(-3).is_zero()
         True
         AUTHORS:
            •David Harvey (2006-08-06)
    truncate (n)
         Returns the polynomial of degree '<n' which is equivalent to self modulo x^n.
         EXAMPLES:
         sage: S.<q> = QQ['t']['q']
         sage: f = (1+q^10+q^11+q^12).truncate(11); f
         sage: f = (1+q^10+q^100).truncate(50); f
         q^10 + 1
         sage: f.degree()
         sage: f = (1+q^10+q^100).truncate(500); f
         q^100 + q^10 + 1
         TESTS:
         Make sure we're not actually testing a specialized implementation.
         sage: type(f)
         <type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage.rings.polynomial.polynomial_element.is_Polynomial(f)
    Return True if f is of type univariate polynomial.
    INPUT:
        •f - an object
    EXAMPLES:
    sage: from sage.rings.polynomial.polynomial_element import is_Polynomial
    sage: R.<x> = ZZ[]
    sage: is_Polynomial(x^3 + x + 1)
    True
    sage: S.<y> = R[]
    sage: f = y^3 + x*y - 3*x; f
    y^3 + x * y - 3 * x
    sage: is_Polynomial(f)
    True
```

However this function does not return True for genuine multivariate polynomial type objects or symbolic polynomials, since those are not of the same data type as univariate polynomials:

```
sage: R. < x, y > = 00[]
     sage: f = y^3 + x*y - 3*x; f
     y^3 + x*y - 3*x
     sage: is_Polynomial(f)
     False
     sage: var('x,y')
     (x, y)
     sage: f = y^3 + x*y -3*x; f
     y^3 + x*y - 3*x
     sage: is_Polynomial(f)
     False
sage.rings.polynomial.polynomial element.make generic polynomial(parent,
                                                                                 coeffs)
sage.rings.polynomial.polynomial_element.universal_discriminant(n)
     Return the discriminant of the 'universal' univariate polynomial a_n x^n + \cdots + a_1 x + a_0 in \mathbb{Z}[a_0, \dots, a_n][x].
     INPUT:
```

•n - degree of the polynomial

#### **OUTPUT:**

The discriminant as a polynomial in n+1 variables over  $\mathbb{Z}$ . The result will be cached, so subsequent computations of discriminants of the same degree will be faster.

### **EXAMPLES:**

```
sage: from sage.rings.polynomial.polynomial_element import universal_discriminant
sage: universal_discriminant(1)
1
sage: universal_discriminant(2)
a1^2 - 4*a0*a2
sage: universal_discriminant(3)
a1^2*a2^2 - 4*a0*a2^3 - 4*a1^3*a3 + 18*a0*a1*a2*a3 - 27*a0^2*a3^2
sage: universal_discriminant(4).degrees()
(3, 4, 4, 4, 3)
```

## See also:

```
Polynomial.discriminant()
```

# 2.1.4 Univariate Polynomials over domains and fields

#### **AUTHORS:**

- William Stein: first version
- Martin Albrecht: Added singular coercion.
- David Harvey: split off polynomial\_integer\_dense\_ntl.pyx (2007-09)
- Robert Bradshaw: split off polynomial\_modn\_dense\_ntl.pyx (2007-09)

### TESTS:

We test coercion in a particularly complicated situation:

```
sage: W.<w>=QQ['w']
sage: WZ.<z>=W['z']
sage: m = matrix(WZ, 2, 2, [1, z, z, z^2])
sage: a = m.charpoly()
sage: R.<x> = WZ[]
sage: R(a)
x^2 + (-z^2 - 1) *x
class sage.rings.polynomial.polynomial element generic.Polynomial generic dense field (parent,
                                                                                                  x=None,
                                                                                                  check=Tr
                                                                                                  is_gen=F
                                                                                                  con-
                                                                                                  struct=Fa
               sage.rings.polynomial.polynomial_element.Polynomial_generic_dense,
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field
class sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_domain (parent,
                                                                                             is gen=False,
                                                                                             con-
                                                                                             struct=False)
                               sage.rings.polynomial.polynomial_element.Polynomial,
    sage.structure.element.IntegralDomainElement
    is_unit()
         Return True if this polynomial is a unit.
         EXERCISE (Atiyah-McDonald, Ch 1): Let A[x] be a polynomial ring in one variable. Then f = \sum a_i x^i \in
         A[x] is a unit if and only if a_0 is a unit and a_1, \ldots, a_n are nilpotent.
         EXAMPLES:
         sage: R.<z> = PolynomialRing(ZZ, sparse=True)
         sage: (2 + z^3).is_unit()
         sage: f = -1 + 3 * z^3; f
         3*z^3 - 1
         sage: f.is_unit()
         False
         sage: R(-3).is_unit()
         False
         sage: R(-1).is_unit()
         sage: R(0).is_unit()
         False
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field (parent,
                                                                                           is_gen=False,
                                                                                           struct=False)
    Bases: sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr,
    sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_domain,
    sage.structure.element.EuclideanDomainElement
    {\tt quo\_rem}\,(other)
         Returns a tuple (quotient, remainder) where self = quotient*other + remainder.
         EXAMPLES:
```

```
sage: R.<y> = PolynomialRing(QQ)
         sage: K.<t> = NumberField(y^2 - 2)
         sage: P.<x> = PolynomialRing(K)
         sage: x.quo_rem(K(1))
         sage: x.xgcd(K(1))
         (1, 0, 1)
class sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse(parent,
                                                                                              x=None.
                                                                                               check=True,
                                                                                               is_gen=False,
                                                                                               con-
                                                                                               struct=False)
     Bases: sage.rings.polynomial.polynomial_element.Polynomial
     A generic sparse polynomial.
     The Polynomial_generic_sparse class defines functionality for sparse polynomials over any base ring.
     A sparse polynomial is represented using a dictionary which maps each exponent to the corresponding coeffi-
     cient. The coefficients must never be zero.
     EXAMPLES:
     sage: R.<x> = PolynomialRing(PolynomialRing(QQ, 'y'), sparse=True)
     sage: f = x^3 - x + 17
     sage: type(f)
     <class 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse'>
     sage: loads(f.dumps()) == f
     True
     A more extensive example:
     sage: A.<T> = PolynomialRing(Integers(5), sparse=True); f = T^2+1; B = A.quo(f)
     sage: C.<s> = PolynomialRing(B)
     Univariate Polynomial Ring in s over Univariate Quotient Polynomial Ring in Tbar over Ring of ir
     sage: s + T
     s + Tbar
     sage: (s + T) * *2
     s^2 + 2*Tbar*s + 4
     coefficients (sparse=True)
         Return the coefficients of the monomials appearing in self.
         EXAMPLES:
         sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
         sage: f = 5 + w^1997 - w^10000; f
         7*w^10000 + w^1997 + 5
         sage: f.coefficients()
         [5, 1, 7]
     degree (gen=None)
         Return the degree of this sparse polynomial.
         EXAMPLES:
         sage: R.<z> = PolynomialRing(ZZ, sparse=True)
```

**sage:**  $f = 13*z^50000 + 15*z^2 + 17*z$ 

```
sage: f.degree()
50000
```

### dict()

Return a new copy of the dict of the underlying elements of self.

#### **EXAMPLES:**

```
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: d = f.dict(); d
{0: 5, 1997: 1, 10000: 7}
sage: d[0] = 10
sage: f.dict()
{0: 5, 1997: 1, 10000: 7}
```

#### exponents()

Return the exponents of the monomials appearing in self.

## **EXAMPLES:**

```
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: f.exponents()
[0, 1997, 10000]
```

### gcd (other, algorithm=None)

Return the gcd of this polynomial and other

# INPUT:

•other – a polynomial defined over the same ring as this polynomial.

### ALGORITHM:

Two algorithms are provided:

•generic: Uses the generic implementation, which depends on the base ring being a UFD or a field.

•dense: The polynomials are converted to the dense representation, their gcd is computed and is converted back to the sparse representation.

Default is dense for polynomials over ZZ and generic in the other cases.

```
sage: R.<x> = PolynomialRing(ZZ,sparse=True)
sage: p = x^6 + 7*x^5 + 8*x^4 + 6*x^3 + 2*x^2 + x + 2
sage: q = 2*x^4 - x^3 - 2*x^2 - 4*x - 1
sage: gcd(p,q)
x^2 + x + 1
sage: gcd(p, q, algorithm = "dense")
x^2 + x + 1
sage: gcd(p, q, algorithm = "generic")
x^2 + x + 1
sage: gcd(p, q, algorithm = "foobar")
Traceback (most recent call last):
...
ValueError: Unknown algorithm 'foobar'
```

```
integral (var=None)
```

Return the integral of this polynomial.

By default, the integration variable is the variable of the polynomial.

Otherwise, the integration variable is the optional parameter var

**Note:** The integral is always chosen so that the constant term is 0.

```
EXAMPLES:
```

```
sage: R.\langle x \rangle = PolynomialRing(ZZ, sparse=True)

sage: (1 + 3*x^10 - 2*x^100).integral()

-2/101*x^101 + 3/11*x^11 + x
```

### TESTS:

Check that trac ticket #18600 is fixed:

```
sage: R.\langle x \rangle = PolynomialRing(ZZ, sparse=True)
sage: (x^2^100).integral()
1/1267650600228229401496703205377*x^1267650600228229401496703205377
```

Check the correctness when the base ring is a polynomial ring:

```
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: S.<t> = PolynomialRing(R, sparse=True)
sage: (x*t+1).integral()
1/2*x*t^2 + t
sage: (x*t+1).integral(x)
1/2*x^2*t + x
```

Check the correctness when the base ring is not an integral domain:

```
sage: R.<x> = PolynomialRing(Zmod(4), sparse=True)
sage: (x^4 + 2*x^2 + 3).integral()
x^5 + 2*x^3 + 3*x
sage: x.integral()
Traceback (most recent call last):
...
ZeroDivisionError: Inverse does not exist.
```

# list()

Return a new copy of the list of the underlying elements of self.

#### **EXAMPLES**

```
sage: R.<z> = PolynomialRing(Integers(100), sparse=True)
sage: f = 13*z^5 + 15*z^2 + 17*z
sage: f.list()
[0, 17, 15, 0, 0, 13]
```

#### quo\_rem(other)

Returns the quotient and remainder of the Euclidean division of self and other.

Raises ZerodivisionError if other is zero. Raises ArithmeticError if other has a nonunit leading coefficient.

```
sage: P.<x> = PolynomialRing(ZZ,sparse=True)
sage: R.<y> = PolynomialRing(P,sparse=True)
sage: f = R.random_element(10)
```

```
sage: g = y^5+R.random_element(4)
sage: q,r = f.quo_rem(g)
sage: f == q * g + r and r.degree() < g.degree()
True
sage: g = x * y^5
sage: f.quo_rem(g)
Traceback (most recent call last):
ArithmeticError: Nonunit leading coefficient
sage: g = 0
sage: f.quo_rem(g)
Traceback (most recent call last):
ZeroDivisionError: Division by zero polynomial
TESTS:
sage: P.<x> = PolynomialRing(ZZ, sparse=True)
sage: f = x^10-4 \times x^6-5
sage: q = 17 \times x^2 + x^1 - 3 \times x^5 + 1
sage: q,r = g.quo_rem(f)
sage: g == f*g + r and r.degree() < f.degree()</pre>
True
sage: zero = P(0)
sage: zero.quo_rem(f)
(0, 0)
sage: Q.<y> = IntegerModRing(14)[]
sage: f = y^10-4*y^6-5
sage: g = 17*y^22+y^15-3*y^5+1
sage: q,r = g.quo_rem(f)
sage: g == f*q + r and r.degree() < f.degree()</pre>
sage: f += 2*y^10 # 3 is invertible mod 14
sage: q_r = q_q uo_rem(f)
sage: g == f*q + r and r.degree() < f.degree()</pre>
True
```

## **AUTHORS:**

•Bruno Grenet (2014-07-09)

# reverse (degree=None)

Return this polynomial but with the coefficients reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^4 + 2*x^2^100
sage: p.reverse()
x^1267650600228229401496703205372 + 2
sage: p.reverse(10)
x^6
```

# $\mathbf{shift}(n)$

Returns this polynomial multiplied by the power  $x^n$ . If n is negative, terms below  $x^n$  will be discarded. Does not change this polynomial.

```
EXAMPLES:
         sage: R.<x> = PolynomialRing(ZZ, sparse=True)
         sage: p = x^100000 + 2 x + 4
         sage: type(p)
         <class 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse'>
         sage: p.shift(0)
         x^100000 + 2 x + 4
         sage: p.shift(-1)
         x^99999 + 2
         sage: p.shift(-100002)
         sage: p.shift(2)
         x^{100002} + 2*x^{3} + 4*x^{2}
         TESTS:
         Check that trac ticket #18600 is fixed:
         sage: R.<x> = PolynomialRing(ZZ, sparse=True)
         sage: p = x^2^100 - 5
         sage: p.shift(10)
         x^1267650600228229401496703205386 - 5*x^10
         sage: p.shift(-10)
         x^1267650600228229401496703205366
         sage: p.shift(1.5)
         Traceback (most recent call last):
         TypeError: Attempt to coerce non-integral RealNumber to Integer
         AUTHOR: - David Harvey (2006-08-06)
    truncate (n)
         Return the polynomial of degree < n equal to self modulo x^n.
         EXAMPLES:
         sage: R.<x> = PolynomialRing(ZZ, sparse=True)
         sage: (x^11 + x^10 + 1).truncate(11)
         x^10 + 1
         sage: (x^2^500 + x^2^100 + 1).truncate(2^101)
         x^{1267650600228229401496703205376 + 1
    valuation()
        EXAMPLES:
         sage: R.<w> = PolynomialRing(GF(9,'a'), sparse=True)
         sage: f = w^1997 - w^10000
         sage: f.valuation()
         1997
         sage: R(19).valuation()
         sage: R(0).valuation()
         +Infinity
class sage.rings.polynomial.polynomial element generic.Polynomial generic sparse field (parent,
```

x=None check=T is\_gen= construct=H

```
Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse,
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field

EXAMPLES:
    sage: R.<x> = PolynomialRing(Frac(RR['t']), sparse=True)
    sage: f = x^3 - x + 17
    sage: type(f)
    <class 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_field'>
    sage: loads(f.dumps()) == f
```

# 2.1.5 Univariate Polynomials over GF(2) via NTL's GF2X.

```
AUTHOR: - Martin Albrecht (2008-10) initial implementation
```

```
sage.rings.polynomial.polynomial_gf2x.GF2X_BuildIrred_list(n)
```

Return the list of coefficients of the lexicographically smallest irreducible polynomial of degree n over the field of 2 elements.

### **EXAMPLE:**

True

```
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
sage: GF2X_BuildIrred_list(2)
[1, 1, 1]
sage: GF2X_BuildIrred_list(3)
[1, 1, 0, 1]
sage: GF2X_BuildIrred_list(4)
[1, 1, 0, 0, 1]
sage: GF(2)['x'](GF2X_BuildIrred_list(33))
x^33 + x^6 + x^3 + x + 1
```

sage.rings.polynomial.polynomial\_gf2x.GF2X\_BuildRandomIrred\_list(n)

Return the list of coefficients of an irreducible polynomial of degree n of minimal weight over the field of 2 elements.

### **EXAMPLE:**

```
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildRandomIrred_list
sage: GF2X_BuildRandomIrred_list(2)
[1, 1, 1]
sage: GF2X_BuildRandomIrred_list(3) in [[1, 1, 0, 1], [1, 0, 1, 1]]
True
```

sage.rings.polynomial.polynomial\_gf2x.GF2X\_BuildSparseIrred\_list(n)

Return the list of coefficients of an irreducible polynomial of degree n of minimal weight over the field of 2 elements.

### **EXAMPLE:**

```
sage: from sage.rings.polynomial_polynomial_gf2x import GF2X_BuildIrred_list, GF2X_BuildSparseIr
sage: all([GF2X_BuildSparseIrred_list(n) == GF2X_BuildIrred_list(n)
....: for n in range(1,33)])
True
sage: GF(2)['x'](GF2X_BuildSparseIrred_list(33))
x^33 + x^10 + 1
```

```
class sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X
```

Bases: sage.rings.polynomial.polynomial\_gf2x.Polynomial\_template

Univariate Polynomials over GF(2) via NTL's GF2X.

#### **EXAMPLE:**

```
sage: P.<x> = GF(2)[]

sage: x^3 + x^2 + 1

x^3 + x^2 + 1
```

### is irreducible()

Return True precisely if this polynomial is irreducible over GF(2).

#### **EXAMPLES:**

```
sage: R.<x> = GF(2)[]
sage: (x^2 + 1).is_irreducible()
False
sage: (x^3 + x + 1).is_irreducible()
True
```

## modular\_composition (g, h, algorithm=None)

Compute  $f(g) \pmod{h}$ .

Both implementations use Brent-Kung's Algorithm 2.1 (Fast Algorithms for Manipulation of Formal Power Series, JACM 1978).

## INPUT:

- •g a polynomial
- •h a polynomial
- •algorithm either 'native' or 'ntl' (default: 'native')

#### **EXAMPLE:**

```
sage: P.<x> = GF(2)[]
sage: r = 279
sage: f = x^r + x +1
sage: g = x^r
sage: g.modular_composition(g, f) == g(g) % f
True

sage: P.<x> = GF(2)[]
sage: f = x^29 + x^24 + x^22 + x^21 + x^20 + x^16 + x^15 + x^14 + x^10 + x^9 + x^8 + x^7 + x^18
sage: g = x^31 + x^30 + x^28 + x^26 + x^24 + x^21 + x^19 + x^18 + x^11 + x^10 + x^9 + x^8 + x^8
sage: h = x^30 + x^28 + x^26 + x^25 + x^24 + x^22 + x^21 + x^18 + x^17 + x^15 + x^13 + x^12
sage: f.modular_composition(g,h) == f(g) % h
True
```

### **AUTHORS:**

- •Paul Zimmermann (2008-10) initial implementation
- •Martin Albrecht (2008-10) performance improvements

```
class sage.rings.polynomial.polynomial_gf2x.Polynomial_template
    Bases: sage.rings.polynomial.polynomial_element.Polynomial
```

Template for interfacing to external C / C++ libraries for implementations of polynomials.

## **AUTHORS:**

- •Robert Bradshaw (2008-10): original idea for templating
- •Martin Albrecht (2008-10): initial implementation

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a 'linkage' file which implements the celement\_ functions (see sage.libs.ntl.ntl\_GF2X\_linkage for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See sage.rings.polynomial.polynomial\_gf2x for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).

**Note:** Implementations using this template MUST implement coercion from base ring elements and \_\_getitem\_\_. See Polynomial\_GF2X for an example.

```
EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.degree()
    sage: P(1).degree()
    sage: P(0).degree()
gcd (other)
    Return the greatest common divisor of self and other.
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: f = x*(x+1)
    sage: f.gcd(x+1)
    x + 1
    sage: f.gcd(x^2)
get_cparent()
is gen()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.is_gen()
    True
    sage: (x+1).is_gen()
    False
is_one()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: P(1).is_one()
    True
is_zero()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.is_zero()
    False
list()
    EXAMPLE:
```

degree()

```
sage: P. < x > = GF(2)[]
    sage: x.list()
    [0, 1]
    sage: list(x)
    [0, 1]
quo_rem(right)
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: f = x^2 + x + 1
    sage: f.quo_rem(x + 1)
    (x, 1)
shift(n)
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: f = x^3 + x^2 + 1
    sage: f.shift(1)
    x^4 + x^3 + x
    sage: f.shift(-1)
    x^2 + x
truncate(n)
    Returns this polynomial mod x^n.
    EXAMPLES:
    sage: R. < x > = GF(2)[]
    sage: f = sum(x^n for n in range(10)); f
    x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
    sage: f.truncate(6)
    x^5 + x^4 + x^3 + x^2 + x + 1
    If the precision is higher than the degree of the polynomial then the polynomial itself is returned:
    sage: f.truncate(10) is f
    True
xgcd (other)
    Computes extended gcd of self and other.
    EXAMPLE:
    sage: P. < x > = GF(7)[]
    sage: f = x*(x+1)
    sage: f.xgcd(x+1)
    (x + 1, 0, 1)
    sage: f.xgcd(x^2)
    (x, 1, 6)
```

# sage.rings.polynomial.polynomial\_gf2x.make\_element(parent, args)

# 2.1.6 Univariate polynomials over number fields.

### AUTHOR:

• Luis Felipe Tabera Alonso (2014-02): initial version.

### **EXAMPLES:**

Define a polynomial over an absolute number field and perform basic operations with them:

```
sage: N. < a > = NumberField(x^2-2)
sage: K. < x > = N[]
sage: f = x - a
sage: g = x^3 - 2*a + 1
sage: f * (x + a)
x^2 - 2
sage: f + g
x^3 + x - 3*a + 1
sage: g // f
x^2 + a * x + 2
sage: q % f
1
sage: factor(x^3 - 2*a*x^2 - 2*x + 4*a)
(x - 2*a) * (x - a) * (x + a)
sage: gcd(f, x - a)
х - а
```

Polynomials are aware of embeddings of the underlying field:

We can also construct polynomials over relative number fields:

```
sage: N.<i, s2> = QQ[I, sqrt(2)]
sage: K. < x > = N[]
sage: f = x - s2
sage: q = x^3 - 2 *i *x^2 + s2 *x
sage: f*(x + s2)
x^2 - 2
sage: f + g
x^3 - 2*I*x^2 + (sqrt2 + 1)*x - sqrt2
sage: g // f
x^2 + (-2*I + sqrt2)*x - 2*sqrt2*I + sqrt2 + 2
sage: g % f
-4*I + 2*sqrt2 + 2
sage: factor(i*x^4 - 2*i*x^2 + 9*i)
(I) * (x - I + sqrt2) * (x + I - sqrt2) * (x - I - sqrt2) * (x + I + sqrt2)
sage: gcd(f, x-i)
1
```

class sage.rings.polynomial\_polynomial\_number\_field.Polynomial\_absolute\_number\_field\_dense (pa

x=
ch
is\_
co

sti

```
Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field
```

Class of dense univariate polynomials over an absolute number field.

### gcd (other)

Compute the monic gcd of two univariate polynomials using PARI.

#### INPUT:

•other – a polynomial with the same parent as self.

#### **OUTPUT**:

•The monic gcd of self and other.

#### **EXAMPLES:**

```
sage: N.<a> = NumberField(x^3-1/2, 'a')
sage: R.<r> = N['r']
sage: f = (5/4*a^2 - 2*a + 4)*r^2 + (5*a^2 - 81/5*a - 17/2)*r + 4/5*a^2 + 24*a + 6
sage: g = (5/4*a^2 - 2*a + 4)*r^2 + (-11*a^2 + 79/5*a - 7/2)*r - 4/5*a^2 - 24*a - 6
sage: gcd(f, g**2)
r - 60808/96625*a^2 - 69936/96625*a - 149212/96625
sage: R = QQ[I]['x']
sage: f = R.random_element(2)
sage: g = f + 1
sage: h = R.random_element(2).monic()
sage: f *=h
sage: gcd(f, g) - h
0
sage: f.gcd(g) - h
0
```

### TESTS:

Test for degree one extensions:

```
sage: x = var('x')
sage: N = NumberField(x-3, 'a')
sage: a = N.gen()
sage: R = N['x']
sage: f = R.random_element()
sage: g1 = R.random_element()
sage: g2 = g1*R.random_element() + 1
sage: g1 *= f
sage: g2 *= f
sage: d = gcd(g1, g2)
sage: f.monic() - d
0
sage: d.parent() is R
```

Test for coercion with other rings and force weird variables to test PARI behavior:

```
sage: r = var('r')
sage: N = NumberField(r^2 - 2, 'r')
sage: a = N.gen()
sage: R = N['r']
sage: r = R.gen()
sage: f = N.random_element(4)*r + 1
sage: g = ZZ['r']([1, 2, 3, 4, 5, 6, 7]); g
7*r^6 + 6*r^5 + 5*r^4 + 4*r^3 + 3*r^2 + 2*r + 1
```

```
sage: gcd(f, g) == gcd(g, f)
True
sage: h = f.gcd(g); h
1
sage: h.parent()
Univariate Polynomial Ring in r over Number Field in r with defining polynomial r^2 - 2
sage: gcd([a*r+2, r^2-2])
r + r
```

class sage.rings.polynomial.polynomial\_number\_field.Polynomial\_relative\_number\_field\_dense(pa

Bases: sage.rings.polynomial.polynomial\_element\_generic.Polynomial\_generic\_dense\_field

Class of dense univariate polynomials over a relative number field.

#### gcd (other)

Compute the monic gcd of two polynomials.

Currently, the method checks corner cases in which one of the polynomials is zero or a constant. Then, computes an absolute extension and performs the computations there.

### INPUT:

•other – a polynomial with the same parent as self.

#### **OUTPUT:**

•The monic gcd of self and other.

See Polynomial\_absolute\_number\_field\_dense.gcd() for more details.

#### **EXAMPLES:**

```
sage: N = QQ[sqrt(2), sqrt(3)]
sage: s2, s3 = N.gens()
sage: x = polygen(N)
sage: f = x^4 - 5 \times x^2 + 6
sage: g = x^3 + (-2*s2 + s3)*x^2 + (-2*s3*s2 + 2)*x + 2*s3
sage: gcd(f, g)
x^2 + (-sqrt2 + sqrt3) *x - sqrt3*sqrt2
sage: f.gcd(g)
x^2 + (-sqrt2 + sqrt3)*x - sqrt3*sqrt2
TESTS:
sage: x = var('x')
sage: R = NumberField([x^2-2, x^2-3], 'a')['x']
sage: f = R.random_element()
sage: g1 = R.random_element()
sage: g2 = R.random_element()*g1+1
sage: g1 *= f
sage: q2 *= f
sage: f.monic() - g1.gcd(g2)
```

Test for degree one extensions:

ch is\_ co str

```
sage: R = NumberField([x-2,x+1,x-3],'a')['x']
sage: f = R.random_element(2)
sage: g1 = R.random_element(2)
sage: g2 = R.random_element(2)*g1+1
sage: g1 *= f
sage: q2 *= f
sage: d = gcd(g1, g2)
sage: d - f.monic()
sage: d.parent() is R
True
Test for hardcoded variables:
sage: R = N['sqrt2sqrt3']
sage: x = R.gen()
sage: f = x^2 - 2
sage: g1 = x^2 - s3
sage: g2 = x - s2
sage: gcd(f, g1)
sage: gcd(f, g2)
sqrt2sqrt3 - sqrt2
```

# 2.1.7 Dense univariate polynomials over Z, implemented using FLINT.

### **AUTHORS:**

- David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler's recent rewrite of the NTL wrapper
- David Harvey: split off from polynomial\_element\_generic.py (2007-09)
- Burcin Erocal: rewrote to use FLINT (2008-06-16)

### TESTS:

We check that the buggy gcd is fixed (see trac ticket #17816):

```
sage: R.<q> = ZZ[]
sage: X = 3*q^12 - 8*q^11 - 24*q^10 - 48*q^9 - 84*q^8 - 92*q^7 - 92*q^6 - 70*q^5 - 50*q^4 - 27*q^3 -
sage: Y = q^13 - 2*q^12 + 2*q^10 - q^9
sage: gcd(X,Y)
1
```

class sage.rings.polynomial.polynomial\_integer\_dense\_flint.Polynomial\_integer\_dense\_flint
 Bases: sage.rings.polynomial.polynomial\_element.Polynomial

A dense polynomial over the integers, implemented via FLINT.

```
_add_(right)
```

Returns self plus right.

```
sage: R.<x> = PolynomialRing(ZZ)
sage: f = 2*x + 1
sage: g = -3*x^2 + 6
sage: f + g
-3*x^2 + 2*x + 7
```

```
_sub_(right)
    Return self minus right.
    EXAMPLES:
    sage: R.<x> = PolynomialRing(ZZ)
    sage: f = 2 \times x + 1
    sage: g = -3 * x^2 + 6
    sage: f - g
    3*x^2 + 2*x - 5
_lmul_(right)
    Returns self multiplied by right, where right is a scalar (integer).
    EXAMPLES:
    sage: R.<x> = PolynomialRing(ZZ)
    sage: x*3
    3*x
    sage: (2*x^2 + 4)*3
    6*x^2 + 12
_rmul_ (right)
    Returns self multiplied by right, where right is a scalar (integer).
    sage: R.<x> = PolynomialRing(ZZ)
    sage: 3*x
    3*x
    sage: 3*(2*x^2 + 4)
    6*x^2 + 12
_mul_(right)
    Returns self multiplied by right.
    EXAMPLES:
    sage: R.<x> = PolynomialRing(ZZ)
    sage: (x - 2) * (x^2 - 8*x + 16)
    x^3 - 10*x^2 + 32*x - 32
_mul_trunc_(right, n)
    Truncated multiplication
    EXAMPLES:
    sage: x = polygen(ZZ)
    sage: p1 = 1 + x + x**2 + x**4
    sage: p2 = -2 + 3*x**2 + 5*x**4
    sage: p1._mul_trunc_(p2, 4)
    3*x^3 + x^2 - 2*x - 2
```

### content()

Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.

**EXAMPLES:** 

sage: (p1\*p2).truncate(4)
3\*x^3 + x^2 - 2\*x - 2
sage: p1.\_mul\_trunc\_(p2, 6)

 $5*x^5 + 6*x^4 + 3*x^3 + x^2 - 2*x - 2$ 

```
sage: R.<x> = PolynomialRing(ZZ)
sage: (2*x^2 - 4*x^4 + 14*x^7).content()
2
sage: x.content()
1
sage: R(1).content()
1
sage: R(0).content()
0

TESTS:
sage: t = x^2+x+1
sage: t.content()
1
sage: (123456789123456789123456789123456789123456789*t).content()
123456789123456789123456789123456789123456789
Verify that trac ticket #13053 has been resolved:
sage: R(-1).content()
-1
```

## degree (gen=None)

Return the degree of this polynomial.

The zero polynomial has degree -1.

#### **EXAMPLES**:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: x.degree()
1
sage: (x^2).degree()
2
sage: R(1).degree()
0
sage: R(0).degree()
-1

TESTS:
sage: type(x.degree())
<type 'sage.rings.integer.Integer'>
```

### disc(proof=True)

Return the discriminant of self, which is by definition

```
(-1)^{m(m-1)/2} \operatorname{resultant}(a, a') / \operatorname{lc}(a),
```

where  $m = \deg(a)$ , and  $\operatorname{lc}(a)$  is the leading coefficient of a. If proof is False (the default is True), then this function may use a randomized strategy that errors with probability no more than  $2^{-80}$ .

```
sage: R.<x> = ZZ[]
sage: f = 3*x^3 + 2*x + 1
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339
```

### TESTS:

Confirm that trac ticket #17603 has been applied:

```
sage: f.disc()
-339
```

#### discriminant (proof=True)

Return the discriminant of self, which is by definition

```
(-1)^{m(m-1)/2} resultant(a, a')/\operatorname{lc}(a),
```

where  $m = \deg(a)$ , and  $\operatorname{lc}(a)$  is the leading coefficient of a. If proof is False (the default is True), then this function may use a randomized strategy that errors with probability no more than  $2^{-80}$ .

#### **EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: f = 3*x^3 + 2*x + 1
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339
```

#### TESTS:

Confirm that trac ticket #17603 has been applied:

```
sage: f.disc()
-339
```

### factor()

This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use Pari or NTL based on some benchmarking.

Note: This function factors the content of the polynomial, which can take very long if it's a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.

### **EXAMPLES:**

```
sage: R.<x>=ZZ[]
sage: f=x^4-1
sage: f.factor()
(x - 1) * (x + 1) * (x^2 + 1)
sage: f=1-x
sage: f.factor()
(-1) * (x - 1)
sage: f.factor().unit()
-1
sage: f = -30*x; f.factor()
(-1) * 2 * 3 * 5 * x
```

## ${\tt factor\_mod}\,(p)$

Return the factorization of self modulo the prime p.

INPUT:

```
•p – prime
```

### **OUTPUT**:

factorization of self reduced modulo p.

```
EXAMPLES:
            sage: R. < x > = ZZ['x']
            sage: f = -3*x*(x-2)*(x-9) + x
            sage: f.factor_mod(3)
            sage: f = -3*x*(x-2)*(x-9)
            sage: f.factor_mod(3)
            Traceback (most recent call last):
            ValueError: factorization of 0 not defined
            sage: f = 2 * x * (x-2) * (x-9)
            sage: f.factor_mod(7)
            (2) * x * (x + 5)^2
factor_padic (p, prec=10)
            Return p-adic factorization of self to given precision.
            INPUT:
                    •p – prime
                    •prec – integer; the precision
            OUTPUT:
                    •factorization of self over the completion at p.
           EXAMPLES:
            sage: R.<x> = PolynomialRing(ZZ)
            sage: f = x^2 + 1
            sage: f.factor_padic(5, 4)
            ((1 + O(5^4))*x + (2 + 5 + 2*5^2 + 5^3 + O(5^4)))*((1 + O(5^4))*x + (3 + 3*5 + 2*5^2 + 3*5))
            A more difficult example:
            sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
            sage: f.factor_padic(5, 10)
            (4 + O(5^10)) * ((5 + O(5^11)))^2 * ((1 + O(5^10))*x + (5 + O(5^10)))^2 * ((5 + O(5^10))*x + (5 + O(5^10)))^2 * ((5 + O(5^10
gcd (right)
           Return the GCD of self and right. The leading coefficient need not be 1.
           EXAMPLES:
            sage: R.<x> = PolynomialRing(ZZ)
            sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
            sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
            sage: f.gcd(g)
            6 * x + 47
inverse_series_trunc(prec)
            Return a polynomial approximation of precision prec of the inverse series of this polynomial.
```

```
sage: x = polygen(ZZ)
sage: p = 1+x+2*x**2
sage: q5 = p.inverse_series_trunc(5)
sage: q5
-x^4 + 3*x^3 - x^2 - x + 1
```

```
sage: p*q5
    -2*x^6 + 5*x^5 + 1
    sage: q100 = p.inverse_series_trunc(100)
    sage: (q100 * p).truncate(100)
    TESTS:
    sage: ZZ['x'].zero().inverse_series_trunc(4)
    Traceback (most recent call last):
    ValueError: constant term is zero
    sage: ZZ['x'](2).inverse_series_trunc(4)
    Traceback (most recent call last):
    ValueError: constant term 2 is not a unit
    sage: x = polygen(ZZ)
    sage: (x+1).inverse_series_trunc(0)
    Traceback (most recent call last):
    ValueError: the precision must be positive, got 0
is_zero()
    Returns True if self is equal to zero.
    EXAMPLES:
    sage: R. < x > = ZZ[]
    sage: R(0).is_zero()
    True
    sage: R(1).is_zero()
    False
    sage: x.is_zero()
    False
lcm (right)
    Return the LCM of self and right.
    EXAMPLES:
    sage: R.<x> = PolynomialRing(ZZ)
    sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
    sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
    sage: h = f.lcm(g); h
    126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786
    sage: h == (6*x + 47)*(7*x^2 - 2*x + 38)*(3*x^3 + 2*x + 1)
    True
list()
    Return a new copy of the list of the underlying elements of self.
    EXAMPLES:
    sage: x = PolynomialRing(ZZ,'x').0
    sage: f = x^3 + 3*x - 17
    sage: f.list()
    [-17, 3, 0, 1]
    sage: f = PolynomialRing(ZZ,'x')(0)
    sage: f.list()
    []
```

#### $pseudo_divrem(B)$

Write A = self. This function computes polynomials Q and R and an integer d such that

$$lead(B)^d A = BQ + R$$

where R has degree less than that of B.

#### INPUT:

•B – a polynomial over **Z** 

### **OUTPUT**:

- •Q, R polynomials
- •d nonnegative integer

#### **EXAMPLES:**

```
sage: R.<x> = ZZ['x']
sage: A = R(range(10)); B = 3*R([-1, 0, 1])
sage: Q, R, d = A.pseudo_divrem(B)
sage: Q, R, d
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 75*x + 60, 1)
sage: B.leading_coefficient()^d * A == B*Q + R
True
```

### quo\_rem(right)

Attempts to divide self by right, and return a quotient and remainder.

```
sage: R.<x> = PolynomialRing(ZZ)
sage: f = R(range(10)); g = R([-1, 0, 1])
sage: q, r = f.quo_rem(g)
sage: q, r
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 25*x + 20)
sage: q*q + r == f
sage: f = x^2
sage: f.quo_rem(0)
Traceback (most recent call last):
ZeroDivisionError: division by zero polynomial
sage: f = (x^2 + 3) * (2*x - 1)
sage: f.quo_rem(2*x - 1)
(x^2 + 3, 0)
sage: f = x^2
sage: f.quo_rem(2 \times x - 1)
(0, x^2)
TESTS:
sage: z = R(0)
sage: z.quo_rem(1)
(0, 0)
sage: z.quo_rem(x)
(0, 0)
```

```
sage: z.quo_rem(2*x)
(0, 0)
```

Ticket #383, make sure things get coerced correctly:

```
sage: f = x+1; parent(f)
Univariate Polynomial Ring in x over Integer Ring
sage: g = x/2; parent(g)
Univariate Polynomial Ring in x over Rational Field
sage: f.quo_rem(g)
(2, 1)
sage: g.quo_rem(f)
(1/2, -1/2)
sage: parent(f.quo_rem(g)[0])
Univariate Polynomial Ring in x over Rational Field
sage: f.quo_rem(3)
(0, x + 1)
sage: (5*x+7).quo_rem(3)
(x + 2, 2*x + 1)
```

### real\_root\_intervals()

Returns isolating intervals for the real roots of this polynomial.

EXAMPLE: We compute the roots of the characteristic polynomial of some Salem numbers:

```
sage: R.\langle x \rangle = PolynomialRing(ZZ)

sage: f = 1 - x^2 - x^3 - x^4 + x^6

sage: f.real_root_intervals()

[((1/2, 3/4), 1), ((1, 3/2), 1)]
```

## resultant (other, proof=True)

Returns the resultant of self and other, which must lie in the same polynomial ring.

If proof = False (the default is proof=True), then this function may use a randomized strategy that errors with probability no more than  $2^{-80}$ .

### INPUT:

•other – a polynomial

#### **OUTPUT:**

an element of the base ring of the polynomial ring

### **EXAMPLES:**

```
sage: x = PolynomialRing(ZZ,'x').0
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
sage: r.parent() is ZZ
True
```

### reverse (degree=None)

Return a polynomial with the coefficients of this polynomial reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

```
sage: R.<x> = ZZ[]
    sage: p = R([1,2,3,4]); p
    4*x^3 + 3*x^2 + 2*x + 1
    sage: p.reverse()
    x^3 + 2*x^2 + 3*x + 4
    sage: p.reverse(degree=6)
    x^6 + 2*x^5 + 3*x^4 + 4*x^3
    sage: p.reverse(degree=2)
    x^2 + 2 x + 3
    TESTS:
    sage: p.reverse(degree=1.5r)
    Traceback (most recent call last):
    ValueError: degree argument must be a non-negative integer, got 1.5
revert series(n)
    Return a polynomial f such that f(sel f(x)) = sel f(f(x)) = xmodx^n.
    EXAMPLES:
    sage: R.<t> = ZZ[]
    sage: f = t - t^3 + t^5
    sage: f.revert_series(6)
    2*t^5 + t^3 + t
    sage: f.revert_series(-1)
    Traceback (most recent call last):
    ValueError: argument n must be a non-negative integer, got -1
    sage: g = - t^3 + t^5
    sage: g.revert_series(6)
    Traceback (most recent call last):
    ValueError: self must have constant coefficient 0 and a unit for coefficient t^1
squarefree_decomposition()
    Return the square-free decomposition of self. This is a partial factorization of self into square-free, rela-
    tively prime polynomials.
    This is a wrapper for the NTL function SquareFreeDecomp.
    EXAMPLES:
    sage: R.<x> = PolynomialRing(ZZ)
    sage: p = (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
    sage: p.squarefree_decomposition()
    (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
    sage: p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
    sage: p.squarefree_decomposition()
    (37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
    TESTS:
    Verify that trac ticket #13053 has been resolved:
    sage: R.<x> = PolynomialRing(ZZ, implementation='FLINT')
    sage: f=-x^2
```

```
sage: f.squarefree_decomposition()
(-1) * x^2
```

### xgcd (right)

Return a triple (g, s, t) such that g = s \* self + t \* right and such that g is the gcd of self and right up to a divisor of the resultant of self and other.

As integer polynomials do not form a principal ideal domain, it is not always possible given a and b to find a pair s, t such that gcd(a, b) = sa + tb. Take a = x + 2 and b = x + 4 as an example for which the gcd is 1 but the best you can achieve in the Bezout identity is 2.

If self and right are coprime as polynomials over the rationals, then g is guaranteed to be the resultant of self and right, as a constant polynomial.

#### **EXAMPLES:**

```
sage: P.<x> = PolynomialRing(ZZ)
sage: (x+2).xgcd(x+4)
(2, -1, 1)
sage: (x+2).resultant(x+4)
sage: (x+2).gcd(x+4)
1
sage: F = (x^2 + 2) * x^3; G = (x^2+2) * (x-3)
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(27*x^2 + 54, 1, -x^2 - 3*x - 9)
sage: u*F + v*G
27*x^2 + 54
sage: zero = P(0)
sage: x.xgcd(zero)
(x, 1, 0)
sage: zero.xgcd(x)
(x, 0, 1)
sage: F = (x-3)^3; G = (x-15)^2
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(2985984, -432*x + 8208, 432*x^2 + 864*x + 14256)
sage: u*F + v*G
2985984
TESTS:
Check that trac ticket #17675 is fixed:
sage: R. < x > = ZZ['x']
sage: R(2).xgcd(R(2))
(2, 0, 1)
sage: R.zero().xgcd(R(2))
(2, 0, 1)
sage: R(2).xgcd(R.zero())
```

(2, 1, 0)

# 2.1.8 Dense univariate polynomials over Z, implemented using NTL.

#### **AUTHORS:**

- David Harvey: split off from polynomial\_element\_generic.py (2007-09)
- David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler's recent rewrite of the NTL wrapper

Sage includes two implementations of dense univariate polynomials over  $\mathbf{Z}$ ; this file contains the implementation based on NTL, but there is also an implementation based on FLINT in sage.rings.polynomial.polynomial\_integer\_dense\_flint.

The FLINT implementation is preferred (FLINT's arithmetic operations are generally faster), so it is the default; to use the NTL implementation, you can do:

```
sage: K.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: K
Univariate Polynomial Ring in x over Integer Ring (using NTL)
```

class sage.rings.polynomial.polynomial\_integer\_dense\_ntl.Polynomial\_integer\_dense\_ntl
 Bases: sage.rings.polynomial.polynomial element.Polynomial

A dense polynomial over the integers, implemented via NTL.

#### content()

Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.

#### EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: (2*x^2 - 4*x^4 + 14*x^7).content()
2
sage: (2*x^2 - 4*x^4 - 14*x^7).content()
-2
sage: x.content()
1
sage: R(1).content()
1
sage: R(0).content()
```

### degree (gen=None)

Return the degree of this polynomial. The zero polynomial has degree -1.

#### EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: x.degree()
1
sage: (x^2).degree()
2
sage: R(1).degree()
0
sage: R(0).degree()
-1
```

### discriminant (proof=True)

Return the discriminant of self, which is by definition

```
(-1)^{m(m-1)/2}resultant(a, a')/lc(a),
```

where m = deg(a), and lc(a) is the leading coefficient of a. If proof is False (the default is True), then this function may use a randomized strategy that errors with probability no more than  $2^{-80}$ .

#### **EXAMPLES:**

```
sage: f = ntl.ZZX([1,2,0,3])
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339
```

#### factor()

This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use Pari or NTL based on some benchmarking.

Note: This function factors the content of the polynomial, which can take very long if it's a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.

### **EXAMPLES**:

```
sage: R.<x>=ZZ[]
sage: f=x^4-1
sage: f.factor()
(x - 1) * (x + 1) * (x^2 + 1)
sage: f=1-x
sage: f.factor()
(-1) * (x - 1)
sage: f.factor().unit()
-1
sage: f = -30*x; f.factor()
(-1) * 2 * 3 * 5 * x
```

## $factor\_mod(p)$

Return the factorization of self modulo the prime p.

#### INPUT:

```
•p - prime
```

OUTPUT: factorization of self reduced modulo p.

### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ, 'x', implementation='NTL')
sage: f = -3*x*(x-2)*(x-9) + x
sage: f.factor_mod(3)
x
sage: f = -3*x*(x-2)*(x-9)
sage: f.factor_mod(3)
Traceback (most recent call last):
...
ValueError: factorization of 0 not defined

sage: f = 2*x*(x-2)*(x-9)
sage: f.factor_mod(7)
(2) * x * (x + 5)^2
```

# $factor\_padic(p, prec=10)$

Return *p*-adic factorization of self to given precision.

INPUT:

```
•p – prime
                 •prec – integer; the precision
          OUTPUT:
                 •factorization of self over the completion at p.
          EXAMPLES:
          sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
          sage: f = x^2 + 1
          sage: f.factor_padic(5, 4)
          ((1 + O(5^4))*x + (2 + 5 + 2*5^2 + 5^3 + O(5^4)))*((1 + O(5^4))*x + (3 + 3*5 + 2*5^2 + 3*5))
          A more difficult example:
          sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
          sage: f.factor_padic(5, 10)
           (4 + O(5^10)) * ((5 + O(5^11)))^2 * ((1 + O(5^10))*x + (5 + O(5^10)))^2 * ((5 + O(5^10))*x + (5 + O(5^10)))^2 * ((5 + O(5^10
gcd(right)
          Return the GCD of self and right. The leading coefficient need not be 1.
          EXAMPLES:
          sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
          sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
          sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
          sage: f.gcd(g)
          6*x + 47
lcm (right)
          Return the LCM of self and right.
          EXAMPLES:
          sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
          sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
          sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
          sage: h = f.lcm(g); h
          126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786
          sage: h == (6*x + 47)*(7*x^2 - 2*x + 38)*(3*x^3 + 2*x + 1)
          True
list()
          Return a new copy of the list of the underlying elements of self.
          sage: x = PolynomialRing(ZZ,'x',implementation='NTL').0
          sage: f = x^3 + 3*x - 17
          sage: f.list()
          [-17, 3, 0, 1]
          sage: f = PolynomialRing(ZZ,'x',implementation='NTL')(0)
          sage: f.list()
          []
quo_rem(right)
          Attempts to divide self by right, and return a quotient and remainder.
```

If right is monic, then it returns (q, r) where self = q \* right + r and deg(r) < deg(right).

If right is not monic, then it returns (q, 0) where q = self/right if right exactly divides self, otherwise it raises an exception.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = R(range(10)); g = R([-1, 0, 1])
sage: q, r = f.quo_rem(g)
sage: q, r
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 25*x + 20)
sage: q*g + r == f
sage: 0//(2*x)
sage: f = x^2
sage: f.quo_rem(0)
Traceback (most recent call last):
ArithmeticError: division by zero polynomial
sage: f = (x^2 + 3) * (2*x - 1)
sage: f.quo_rem(2*x - 1)
(x^2 + 3, 0)
sage: f = x^2
sage: f.quo\_rem(2*x - 1)
Traceback (most recent call last):
ArithmeticError: division not exact in Z[x] (consider coercing to Q[x] first)
TESTS:
sage: z = R(0)
sage: z.quo_rem(1)
(0, 0)
sage: z.quo_rem(x)
(0, 0)
sage: z.quo_rem(2*x)
(0, 0)
```

#### real\_root\_intervals()

Returns isolating intervals for the real roots of this polynomial.

EXAMPLE: We compute the roots of the characteristic polynomial of some Salem numbers:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = 1 - x^2 - x^3 - x^4 + x^6
sage: f.real_root_intervals()
[((1/2, 3/4), 1), ((1, 3/2), 1)]
```

### resultant (other, proof=True)

Returns the resultant of self and other, which must lie in the same polynomial ring.

If proof = False (the default is proof=True), then this function may use a randomized strategy that errors with probability no more than  $2^{-80}$ .

# INPUT:

•other – a polynomial

#### **OUTPUT:**

an element of the base ring of the polynomial ring

### **EXAMPLES:**

### squarefree\_decomposition()

Return the square-free decomposition of self. This is a partial factorization of self into square-free, relatively prime polynomials.

This is a wrapper for the NTL function SquareFreeDecomp.

### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
sage: p.squarefree_decomposition()
(37) * (x-4) * (x^2 - 3*x + 2)^2 * (x-3)^3
```

#### TESTS:

Verify that trac ticket #13053 has been resolved:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f=-x^2
sage: f.squarefree_decomposition()
(-1) * x^2
```

### xgcd (right)

This function can't in general return (g, s, t) as above, since they need not exist. Instead, over the integers, we first multiply g by a divisor of the resultant of a/g and b/g, up to sign, and return g, u, v such that g = s \* self + s \* right. But note that this g may be a multiple of the gcd.

If self and right are coprime as polynomials over the rationals, then g is guaranteed to be the resultant of self and right, as a constant polynomial.

```
sage: P.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: F = (x^2 + 2) * x^3; G = (x^2+2) * (x-3)
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(27*x^2 + 54, 1, -x^2 - 3*x - 9)
sage: u*F + v*G
27*x^2 + 54
sage: x.xgcd(P(0))
(x, 1, 0)
sage: f = P(0)
sage: f.xgcd(x)
(x, 0, 1)
sage: F = (x-3)^3; G = (x-15)^2
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(2985984, -432*x + 8208, 432*x^2 + 864*x + 14256)
sage: u*F + v*G
2985984
```

# 2.1.9 Univariate polynomials over Q implemented via FLINT

#### AUTHOR:

Sebastian Pancratz

```
class sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint
    Bases: sage.rings.polynomial.polynomial_element.Polynomial
```

Univariate polynomials over the rationals, implemented via FLINT.

Internally, we represent rational polynomial as the quotient of an integer polynomial and a positive denominator which is coprime to the content of the numerator.

```
\_add\_(right)
```

Returns the sum of two rational polynomials.

```
EXAMPLES:
```

```
sage: R.<t> = QQ[]
sage: f = 2/3 + t + 2*t^3
sage: g = -1 + t/3 - 10/11*t^4
sage: f + g
-10/11*t^4 + 2*t^3 + 4/3*t - 1/3

TESTS:
sage: R.<t> = QQ[]
sage: f = R.random_element(2000)
sage: f + f == 2 * f # indirect doctest
True
```

### \_**sub**\_(*right*)

Returns the difference of two rational polynomials.

### **EXAMPLES:**

```
sage: R.<t> = QQ[]
    sage: f = -10/11 * t^4 + 2 * t^3 + 4/3 * t - 1/3
    sage: g = 2*t^3
    sage: f - g
                                                    # indirect doctest
    -10/11*t^4 + 4/3*t - 1/3
    TESTS:
    sage: R.<t> = QQ[]
    sage: f = R.random_element(2000)
    sage: f - f/2 == 1/2 * f
                                         # indirect doctest
    sage: f[:1000] == f - f[1000:]
                                       # indirect doctest
    True
_lmul_(right)
    Returns self * right, where right is a rational number.
```

```
sage: R.\langle t \rangle = QQ[]
sage: f = 3/2*t^3 - t + 1/3
```

```
sage: f * 6
                                    # indirect doctest
    9*t^3 - 6*t + 2
_rmul_(left)
    Returns left * self, where left is a rational number.
    EXAMPLES:
    sage: R.<t> = QQ[]
    sage: f = 3/2*t^3 - t + 1/3
    sage: 6 * f
                                   # indirect doctest
    9*t^3 - 6*t + 2
_mul_(right)
    Returns the product of self and right.
    EXAMPLES:
    sage: R.<t> = QQ[]
    sage: f = -1 + 3*t/2 - t^3
    sage: g = 2/3 + 7/3*t + 3*t^2
                                            # indirect doctest
    sage: f * g
    -3*t^5 - 7/3*t^4 + 23/6*t^3 + 1/2*t^2 - 4/3*t - 2/3
    TESTS:
    sage: R.<t> = QQ[]
    sage: f = R.random_element(2000)
    sage: g = R.random_element(2000)
    sage: (f + g) * (f - g) == f^2 - g^2 \# indirect doctest
    True
_mul_trunc_(right, n)
    Truncated multiplication.
    EXAMPLES:
    sage: x = polygen(QQ)
    sage: p1 = 1/2 - 3*x + 2/7*x**3
    sage: p2 = x + 2/5*x**5 + x**7
    sage: p1._mul_trunc_(p2, 5)
    2/7*x^4 - 3*x^2 + 1/2*x
    sage: (p1*p2).truncate(5)
    2/7*x^4 - 3*x^2 + 1/2*x
    sage: p1._mul_trunc_(p2, 1)
    sage: p1._mul_trunc_(p2, 0)
    Traceback (most recent call last):
    ValueError: n must be > 0
    ALGORITHM:
    Call the FLINT method fmpq_poly_mullow.
degree()
    Return the degree of self.
    By convention, the degree of the zero polynomial is -1.
    EXAMPLES:
```

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2/2 + t^3/3 + t^4/4
sage: f.degree()
4
sage: g = R(0)
sage: g.degree()
-1

TESTS:
sage: type(f.degree())
<type 'sage.rings.integer.Integer'>
```

#### denominator()

Returns the denominator of self.

#### **EXAMPLE:**

```
sage: R.<t> = QQ[]
sage: f = (3 * t^3 + 1) / -3
sage: f.denominator()
3
```

### disc()

Returns the discriminant of this polynomial.

The discriminant  $R_n$  is defined as

$$R_n = a_n^{2n-2} \prod_{1 \le i < j \le n} (r_i - r_j)^2,$$

where n is the degree of this polynomial,  $a_n$  is the leading coefficient and the roots over  $\overline{\mathbf{Q}}$  are  $r_1, \dots, r_n$ . The discriminant of constant polynomials is defined to be 0.

### **OUTPUT:**

•Discriminant, an element of the base ring of the polynomial ring

**Note:** Note the identity  $R_n(f) := (-1)^{\ell} n(n-1)/2 R(f,f') a_n^{\ell} n - k - 2$ , where n is the degree of this polynomial,  $a_n$  is the leading coefficient, f' is the derivative of f, and k is the degree of f'. Calls resultant ().

### ALGORITHM:

Use PARI.

### **EXAMPLES:**

In the case of elliptic curves in special form, the discriminant is easy to calculate:

```
sage: R.<t> = QQ[]
sage: f = t^3 + t + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant() / 16
-31
```

```
sage: R.<t> = QQ[]
sage: f = 2*t^3 + t + 1
sage: d = f.discriminant(); d
-116

sage: R.<t> = QQ[]
sage: f = t^3 + 3*t - 17
sage: f.discriminant()
-7911

TESTS:
sage: R.<t> = QQ[]
sage: R(0).discriminant()
0
sage: R(2/3).discriminant()
0
sage: (t + 1/2).discriminant()
```

#### discriminant()

Returns the discriminant of this polynomial.

The discriminant  $R_n$  is defined as

$$R_n = a_n^{2n-2} \prod_{1 \le i < j \le n} (r_i - r_j)^2,$$

where n is the degree of this polynomial,  $a_n$  is the leading coefficient and the roots over  $\overline{\mathbf{Q}}$  are  $r_1, \ldots, r_n$ .

The discriminant of constant polynomials is defined to be 0.

### **OUTPUT**:

•Discriminant, an element of the base ring of the polynomial ring

**Note:** Note the identity  $R_n(f) := (-1)^{(n(n-1)/2)} R(f,f') a_n^{(n-k-2)}$ , where n is the degree of this polynomial,  $a_n$  is the leading coefficient, f' is the derivative of f, and k is the degree of f'. Calls resultant ().

### ALGORITHM:

Use PARI.

### **EXAMPLES:**

In the case of elliptic curves in special form, the discriminant is easy to calculate:

```
sage: R.<t> = QQ[]
sage: f = t^3 + t + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant() / 16
-31
sage: R.<t> = QQ[]
sage: f = 2*t^3 + t + 1
sage: d = f.discriminant(); d
-116
```

```
sage: R.<t> = QQ[]
sage: f = t^3 + 3*t - 17
sage: f.discriminant()
-7911

TESTS:
sage: R.<t> = QQ[]
sage: R(0).discriminant()
0
sage: R(2/3).discriminant()
0
sage: (t + 1/2).discriminant()
```

#### $factor_mod(p)$

Returns the factorization of self modulo the prime p.

Assumes that the degree of this polynomial is at least one, and raises a ValueError otherwise.

#### INPUT:

•p - Prime number

#### **OUTPUT**:

•Factorization of this polynomial modulo p

### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: (x^5 + 17*x^3 + x+ 3).factor_mod(3)
x * (x^2 + 1)^2
sage: (x^5 + 2).factor_mod(5)
(x + 2)^5
```

### factor\_padic (p, prec=10)

Return the p-adic factorization of this polynomial to the given precision.

#### INPUT:

•p - Prime number

•prec - Integer; the precision

## **OUTPUT**:

•factorization of self viewed as a p-adic polynomial

#### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: f = x^3 - 2
sage: f.factor_padic(2)
(1 + O(2^10))*x^3 + (O(2^10))*x^2 + (O(2^10))*x + (2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^2 + 2^6 + 2^7 + 2^2 + 2^6 + 2^7 + 2^6 + 2^7 + 2^6 + 2^7 + 2^6 + 2^7 + 2^6 + 2^7 + 2^6 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7 + 2^7
```

The input polynomial is considered to have "infinite" precision, therefore the p-adic factorization of the polynomial is not the same as first coercing to  $Q_p$  and then factoring (see also trac ticket #15422):

```
sage: f = x^2 - 3^6
    sage: f.factor_padic(3,5)
    ((1 + O(3^5)) *x + (3^3 + O(3^5))) * ((1 + O(3^5)) *x + (2*3^3 + 2*3^4 + O(3^5)))
    sage: f.change_ring(Qp(3,5)).factor()
    Traceback (most recent call last):
    PrecisionError: p-adic factorization not well-defined since the discriminant is zero up to t
    A more difficult example:
    sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
    sage: f.factor_padic(5, 10)
    (4*5^4 + O(5^14)) * ((1 + O(5^9)) *x + (5^-1 + O(5^9)))^2 * ((1 + O(5^10)) *x + (5 + O(5^10)))
    Try some bogus inputs:
    sage: f.factor_padic(3,-1)
    Traceback (most recent call last):
    ValueError: prec_cap must be non-negative.
    sage: f.factor_padic(6,10)
    Traceback (most recent call last):
    ValueError: p must be prime
    sage: f.factor_padic('hello', 'world')
    Traceback (most recent call last):
    TypeError: unable to convert 'hello' to an integer
galois_group (pari_group=False, algorithm='pari')
    Returns the Galois group of self as a permutation group.
```

# INPUT:

- •self Irreducible polynomial
- •pari\_group bool (default: False); if True instead return the Galois group as a PARI group. This has a useful label in it, and may be slightly faster since it doesn't require looking up a group in Gap. To get a permutation group from a PARI group P, type PermutationGroup (P).
- •algorithm 'pari', 'kash', 'magma' (default: 'pari', except when the degree is at least 12 in which case 'kash' is tried).

### OUTPUT:

Galois group

#### ALGORITHM:

The Galois group is computed using PARI in C library mode, or possibly KASH or MAGMA.

**Note:** The PARI documentation contains the following warning: The method used is that of resolvent polynomials and is sensitive to the current precision. The precision is updated internally but, in very rare cases, a wrong result may be returned if the initial precision was not sufficient.

MAGMA does not return a provably correct result. Please see the MAGMA documentation for how to obtain a provably correct result.

```
sage: R.<x> = QQ[]
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: G = f.galois_group(); G  # optional - database_gap
Transitive group number 5 of degree 4
sage: G.gens()  # optional - database_gap
[(1,2), (1,2,3,4)]
sage: G.order()  # optional - database_gap
24
```

It is potentially useful to instead obtain the corresponding PARI group, which is little more than a 4-tuple. See the PARI manual for the exact details. (Note that the third entry in the tuple is in the new standard ordering.)

```
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: G = f.galois_group(pari_group=True); G
PARI group [24, -1, 5, "S4"] of degree 4
sage: PermutationGroup(G) # optional - database_gap
Transitive group number 5 of degree 4
```

You can use KASH to compute Galois groups as well. The advantage is that KASH can compute Galois groups of fields up to degree 21, whereas PARI only goes to degree 11. (In my not-so-thorough experiments PARI is faster than KASH.)

```
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: f.galois_group(algorithm='kash') # optional - kash
Transitive group number 5 of degree 4

sage: f = x^4 - 17*x^3 - 2*x + 1
sage: f.galois_group(algorithm='magma') # optional - magma database_gap
Transitive group number 5 of degree 4
```

### TESTS:

We illustrate the behaviour in the case of reducible polynomials:

```
sage: R.<t> = QQ[]
sage: f = (1 + t)^2
sage: f.galois_group()
Traceback (most recent call last):
...
ValueError: The polynomial must be irreducible
```

#### gcd (right)

Returns the (monic) greatest common divisor of self and right.

Corner cases: if self and right are both zero, returns zero. If only one of them is zero, returns the other polynomial, up to normalisation.

```
sage: R.<t> = QQ[]
sage: f = -2 + 3*t/2 + 4*t^2/7 - t^3
sage: g = 1/2 + 4*t + 2*t^4/3
sage: f.gcd(g)
1
sage: f = (-3*t + 1/2) * f
sage: g = (-3*t + 1/2) * (4*t^2/3 - 1) * g
sage: f.gcd(g)
t - 1/6
```

#### hensel lift (p, e)

Assuming that this polynomial factors modulo p into distinct monic factors, computes the Hensel lifts of these factors modulo  $p^e$ . We assume that self has integer coefficients.

Returns an empty list if this polynomial has degree less than one.

### INPUT:

- •p Prime number; coerceable to Integer
- •e Exponent; coerceable to Integer

#### **OUTPUT**:

•Hensel lifts; list of polynomials over  $\mathbf{Z}/p^e\mathbf{Z}$ 

#### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: R((x-1)*(x+1)).hensel_lift(7, 2)
[x + 1, x + 48]
```

If the input polynomial f is not monic, we get a factorization of f/lc(f):

```
sage: R(2*x^2 - 2).hensel_lift(7, 2)
[x + 1, x + 48]

TESTS:
sage: R.<x> = QQ[]
sage: R(0).hensel_lift(7, 2)
[]
sage: R(x).hensel_lift(7, 2)
[x]
sage: R(x-1).hensel_lift(7, 2)
[x + 48]
```

#### inverse\_series\_trunc(prec)

Return a polynomial approximation of precision prec of the inverse series of this polynomial.

```
sage: x = polygen(QQ)
sage: p = 2 + x - 3/5*x**2
sage: q5 = p.inverse_series_trunc(5)
sage: q5
151/800*x^4 - 17/80*x^3 + 11/40*x^2 - 1/4*x + 1/2
sage: q5 * p
-453/4000*x^6 + 253/800*x^5 + 1

sage: q100 = p.inverse_series_trunc(100)
sage: (q100 * p).truncate(100)
1

TESTS:
sage: (0*x).inverse_series_trunc(4)
Traceback (most recent call last):
...
ValueError: constant term is zero
sage: x.inverse_series_trunc(4)
Traceback (most recent call last):
```

```
ValueError: constant term is zero
sage: (x+1).inverse_series_trunc(0)
Traceback (most recent call last):
...
ValueError: the precision must be positive, got 0
```

### is\_irreducible()

Returns whether self is irreducible.

This method computes the primitive part as an element of  $\mathbf{Z}[t]$  and calls the method is\_irreducible for elements of that polynomial ring.

By definition, over any integral domain, an element r is irreducible if and only if it is non-zero, not a unit and whenever r = ab then a or b is a unit.

### **OUTPUT**:

•bool - Whether this polynomial is irreducible

#### **EXAMPLES:**

```
sage: R.<t> = QQ[]
sage: (t^2 + 2).is_irreducible()
True
sage: (t^2 - 1).is_irreducible()
False

TESTS:
sage: R.<t> = QQ[]
sage: R(0).is_irreducible()
False
sage: R(-1/2).is_irreducible()
False
sage: (t+1).is_irreducible()
```

### is\_one()

Returns whether or not this polynomial is one.

#### **EXAMPLES**:

```
sage: R.<x> = QQ[]
sage: R([0,1]).is_one()
False
sage: R([1]).is_one()
True
sage: R([0]).is_one()
False
sage: R([-1]).is_one()
False
sage: R([1,1]).is_one()
```

# is\_zero()

Returns whether or not self is the zero polynomial.

```
sage: R.<t> = QQ[]
sage: f = 1 - t + 1/2*t^2 - 1/3*t^3
sage: f.is_zero()
```

```
False
sage: R(0).is_zero()
True
```

#### lcm (right)

Returns the monic (or zero) least common multiple of self and right.

Corner cases: if either of self and right are zero, returns zero. This behaviour is ensures that the relation lcm(a,b) gcd(a,b) == a b holds up to multiplication by rationals.

#### **EXAMPLES:**

```
sage: R.<t> = QQ[]
sage: f = -2 + 3*t/2 + 4*t^2/7 - t^3
sage: g = 1/2 + 4*t + 2*t^4/3
sage: f.lcm(g)
t^7 - 4/7*t^6 - 3/2*t^5 + 8*t^4 - 75/28*t^3 - 66/7*t^2 + 87/8*t + 3/2
sage: f.lcm(g) * f.gcd(g) // (f * g)
-3/2
```

#### list()

Returns a list with the coefficients of self.

#### **EXAMPLES:**

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2/2 + t^3/3 + t^4/4
sage: f.list()
[1, 1, 1/2, 1/3, 1/4]
sage: g = R(0)
sage: g.list()
[]
```

### numerator()

Returns the numerator of self.

Representing self as the quotient of an integer polynomial and a positive integer denominator (coprime to the content of the polynomial), returns the integer polynomial.

### EXAMPLE:

```
sage: R.<t> = QQ[]
sage: f = (3 * t^3 + 1) / -3
sage: f.numerator()
-3*t^3 - 1
```

#### quo\_rem(right)

Returns the quotient and remainder of the Euclidean division of self and right.

Raises a ZerodivisionError if right is zero.

# EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = R.random_element(2000)
sage: g = R.random_element(1000)
sage: q, r = f.quo_rem(g)
sage: f == q*g + r
True
```

#### real\_root\_intervals()

Returns isolating intervals for the real roots of self.

#### **EXAMPLES:**

We compute the roots of the characteristic polynomial of some Salem numbers:

```
sage: R.<t> = QQ[]
sage: f = 1 - t^2 - t^3 - t^4 + t^6
sage: f.real_root_intervals()
[((1/2, 3/4), 1), ((1, 3/2), 1)]
```

#### resultant (right)

Returns the resultant of self and right.

Enumerating the roots over  $\mathbf{Q}$  as  $r_1, \dots, r_m$  and  $s_1, \dots, s_n$  and letting x and y denote the leading coefficients of f and g, the resultant of the two polynomials is defined by

$$x^{\deg g} y^{\deg f} \prod_{i,j} (r_i - s_j).$$

Corner cases: if one of the polynomials is zero, the resultant is zero. Note that otherwise if one of the polynomials is constant, the last term in the above is the empty product.

### **EXAMPLES:**

```
sage: R.<t> = QQ[]
sage: f = (t - 2/3) * (t + 4/5) * (t - 1)
sage: g = (t - 1/3) * (t + 1/2) * (t + 1)
sage: f.resultant(g)
119/1350
sage: h = (t - 1/3) * (t + 1/2) * (t - 1)
sage: f.resultant(h)
```

#### reverse (n=None)

Reverses the coefficients of self - thought of as a polynomial of length n.

Assumes that whenever n is not None it is an integral value that fits into an unsigned long. Otherwise, a ValueError is raised.

#### INPUT:

•n - Integral value that fits in an unsigned long: the power of t modulo which we consider self before reversing it (default: None, interpreted as the length of self)

### **OUTPUT**:

•The reversed polynomial as a Polynomial\_rational\_flint

#### **EXAMPLES:**

We first consider the simplest case, where we reverse all coefficients of a polynomial and obtain a polynomial of the same degree:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3 + t^4 / 4
sage: f.reverse()
t^4 + t^3 + 1/2*t^2 + 1/3*t + 1/4
```

Next, an example we the returned polynomial has lower degree because the original polynomial has low coefficients equal to zero:

```
sage: R.<t> = QQ[]
sage: f = 3/4*t^2 + 6*t^7
sage: f.reverse()
3/4*t^5 + 6
```

The next example illustrates the passing of a value for n less than the length of self, notationally resulting in truncation prior to reversing:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3 + t^4 / 4
sage: f.reverse(3)
t^2 + t + 1/2
```

Now we illustrate the passing of a value for n greater than the length of self, notationally resulting in zero padding at the top end prior to reversing:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3
sage: f.reverse(5)
t^4 + t^3 + 1/2*t^2 + 1/3*t
```

#### TESTS:

We illustrate two ways in which the interpretation of n as an unsigned long int may fail. Firstly, an integral value which is too large, yielding an OverflowError:

```
sage: R.<t> = QQ[]
sage: f = 1 + t/2
sage: f.reverse(2**64)
Traceback (most recent call last):
...
OverflowError: long int too large to convert
```

Secondly, a value which cannot be converted to an integral value, resulting in a ValueError:

```
sage: R.<t> = QQ[]
sage: f = 1 + t/2
sage: f.reverse(I)
Traceback (most recent call last):
...
ValueError: cannot convert I to int
```

### $revert\_series(n)$

Return a polynomial f such that  $f(self(x)) = self(f(x)) = xmodx^n$ .

#### **EXAMPLES**:

```
sage: R.<t> = QQ[]
sage: f = t - t^3/6 + t^5/120
sage: f.revert_series(6)
3/40*t^5 + 1/6*t^3 + t

sage: f.revert_series(-1)
Traceback (most recent call last):
ValueError: argument n must be a non-negative integer, got -1

sage: g = - t^3/3 + t^5/5
sage: g.revert_series(6)
Traceback (most recent call last):
...
ValueError: self must have constant coefficient 0 and a unit for coefficient t^1
```

#### truncate (n)

Returns self truncated modulo  $t^n$ .

INPUT:

•n - The power of t modulo which self is truncated

#### **EXAMPLES:**

```
sage: R.<t> = QQ[]
sage: f = 1 - t + 1/2*t^2 - 1/3*t^3
sage: f.truncate(0)
0
sage: f.truncate(2)
-t + 1
```

### xgcd (right)

Returns polynomials d, s, and t such that d == s \* self + t \* right, where d is the (monic) greatest common divisor of self and right. The choice of s and t is not specified any further.

Corner cases: if self and right are zero, returns zero polynomials. Otherwise, if only self is zero, returns (d, s, t) = (right, 0, 1) up to normalisation, and similarly if only right is zero.

#### **EXAMPLES:**

```
sage: R.<t> = QQ[]
sage: f = 2/3 + 3/4 * t - t^2
sage: g = -3 + 1/7 * t
sage: f.xgcd(g)
(1, -12/5095, -84/5095*t - 1701/5095)
```

### TESTS:

The following example used to crash (cf. #11771):

```
sage: R.<t> = QQ[]
sage: f = 10**383 * (t+1)
sage: g = 10**445 * t^2 + 1
sage: r = f.xgcd(g)
sage: r[0] == f.gcd(g)
True
sage: r[1]*f + r[2]*g == r[0]
True
```

# 2.1.10 Dense univariate polynomials over $\mathbb{Z}/n\mathbb{Z}$ , implemented using FLINT.

This module gives a fast implementation of  $(\mathbf{Z}/n\mathbf{Z})[x]$  whenever n is at most sys.maxsize. We use it by default in preference to NTL when the modulus is small, falling back to NTL if the modulus is too large, as in the example below.

### **EXAMPLES:**

```
sage: R.<a> = PolynomialRing(Integers(100))
sage: type(a)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: R.<a> = PolynomialRing(Integers(5*2^64))
sage: type(a)
<type 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ'>
sage: R.<a> = PolynomialRing(Integers(5*2^64), implementation="FLINT")
Traceback (most recent call last):
...
ValueError: FLINT does not support modulus 92233720368547758080
```

#### **AUTHORS:**

- Burcin Erocal (2008-11) initial implementation
- Martin Albrecht (2009-01) another initial implementation

```
class sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template
    Bases: sage.rings.polynomial.polynomial_element.Polynomial
```

Template for interfacing to external C / C++ libraries for implementations of polynomials.

#### **AUTHORS:**

degree()

**EXAMPLE**:

- •Robert Bradshaw (2008-10): original idea for templating
- •Martin Albrecht (2008-10): initial implementation

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a 'linkage' file which implements the celement\_ functions (see sage.libs.ntl.ntl\_GF2X\_linkage for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See sage.rings.polynomial.polynomial\_gf2x for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).

**Note:** Implementations using this template MUST implement coercion from base ring elements and \_\_getitem\_\_. See Polynomial\_GF2X for an example.

```
sage: P. < x > = GF(2)[]
    sage: x.degree()
    sage: P(1).degree()
    sage: P(0).degree()
gcd (other)
    Return the greatest common divisor of self and other.
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: f = x * (x+1)
    sage: f.gcd(x+1)
    x + 1
    sage: f.gcd(x^2)
get_cparent()
is_gen()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.is_gen()
    sage: (x+1).is_gen()
    False
is_one()
    EXAMPLE:
```

```
sage: P. < x > = GF(2)[]
    sage: P(1).is_one()
    True
is_zero()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.is_zero()
    False
list()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.list()
    [0, 1]
    sage: list(x)
    [0, 1]
quo_rem(right)
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: f = x^2 + x + 1
    sage: f.quo_rem(x + 1)
    (x, 1)
shift(n)
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: f = x^3 + x^2 + 1
    sage: f.shift(1)
    x^4 + x^3 + x
    sage: f.shift(-1)
    x^2 + x
truncate (n)
    Returns this polynomial mod x^n.
    EXAMPLES:
    sage: R. < x > = GF(2)[]
    sage: f = sum(x^n for n in range(10)); f
    x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
    sage: f.truncate(6)
    x^5 + x^4 + x^3 + x^2 + x + 1
    If the precision is higher than the degree of the polynomial then the polynomial itself is returned:
    sage: f.truncate(10) is f
    True
xgcd (other)
    Computes extended gcd of self and other.
    EXAMPLE:
    sage: P. < x > = GF(7)[]
    sage: f = x*(x+1)
```

```
sage: f.xgcd(x+1)
         (x + 1, 0, 1)
         sage: f.xgcd(x^2)
         (x, 1, 6)
{\bf class} \; {\tt sage.rings.polynomial.polynomial\_zmod\_flint.Polynomial\_zmod\_flint}
     Bases: sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template
     Polynomial on \mathbf{Z}/n\mathbf{Z} implemented via FLINT.
     _add_ (right)
         EXAMPLE:
         sage: P. < x > = GF(2)[]
         sage: x + 1
         x + 1
     _sub_(right)
         EXAMPLE:
         sage: P. < x > = GF(2)[]
         sage: x - 1
         x + 1
     lmul (right)
         EXAMPLES:
         sage: P. < x > = GF(2)[]
         sage: t = x^2 + x + 1
         sage: t*0
         sage: t*1
         x^2 + x + 1
         sage: R. < y > = GF(5)[]
         sage: u = y^2 + y + 1
         sage: u*3
         3*y^2 + 3*y + 3
         sage: u*5
     _rmul_(left)
         EXAMPLES:
         sage: P. < x > = GF(2)[]
         sage: t = x^2 + x + 1
         sage: 0*t
         0
         sage: 1*t
         x^2 + x + 1
         sage: R. < y > = GF(5)[]
         sage: u = y^2 + y + 1
         sage: 3*u
         3*y^2 + 3*y + 3
         sage: 5*u
         sage: (2^81) *u
         2*y^2 + 2*y + 2
```

**sage:** (-2^81) \*u

```
_mul_(right)
EXAMPLE:
sage: P. <x> = GF(2)[]
sage: x*(x+1)
x^2 + x

_mul_trunc_(right, n)
Return the product of this polynomial and other truncated to the given length n.
This function is usually more efficient than simply doing the multiplication and then truncating. The function is tuned for length n about half the length of a full product.
```

**EXAMPLES:** 

```
sage: P.<a>=GF(7)[]
sage: a = P(range(10)); b = P(range(5, 15))
sage: a._mul_trunc_(b, 5)
4*a^4 + 6*a^3 + 2*a^2 + 5*a

TESTS:
sage: a._mul_trunc_(b, 0)
Traceback (most recent call last):
...
ValueError: length must be > 0
```

#### factor()

Returns the factorization of the polynomial.

## EXAMPLES:

**sage:** R. < x > = GF(5)[]**sage:**  $(x^2 + 1).factor()$ 

```
TESTS:
sage: (2*x^2 + 2).factor()
(2) * (x + 2) * (x + 3)
sage: P.<x> = Zmod(10)[]
sage: (x^2).factor()
Traceback (most recent call last):
...
NotImplementedError: factorization of polynomials over rings with composite characteristic in
```

# $\verb|is_irreducible|()$

Return True if this polynomial is irreducible.

## **EXAMPLES:**

```
sage: R.<x> = GF(5)[]
sage: (x^2 + 1).is_irreducible()
False
sage: (x^3 + x + 1).is_irreducible()
True
```

TESTS:

```
sage: R(0).is_irreducible()
    False
    sage: R(1).is_irreducible()
    False
    sage: R(2).is_irreducible()
    False
    sage: S. < s > = Zmod(10)[]
    sage: (s^2).is_irreducible()
    Traceback (most recent call last):
    NotImplementedError: checking irreducibility of polynomials over rings with composite characteristics.
    sage: S(1).is_irreducible()
    False
    sage: S(2).is_irreducible()
    Traceback (most recent call last):
    NotImplementedError: checking irreducibility of polynomials over rings with composite charac
monic()
    Return this polynomial divided by its leading coefficient.
    Raises ValueError if the leading cofficient is not invertible in the base ring.
```

## **EXAMPLES:**

```
sage: R. < x > = GF(5)[]
sage: (2*x^2+1).monic()
x^2 + 3
TESTS:
sage: R. < x > = Zmod(10)[]
sage: (5*x).monic()
Traceback (most recent call last):
ValueError: leading coefficient must be invertible
```

## rational\_reconstruct $(m, n\_deg=0, d\_deg=0)$

Construct a rational function n/d such that p\*d is equivalent to n modulo m where p is this polynomial.

# **EXAMPLES:**

```
sage: P. < x > = GF(5)[]
sage: p = 4*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + 4*x + 2
sage: n, d = p.rational_reconstruct(x^9, 4, 4); n, d
(3*x^4 + 2*x^3 + x^2 + 2*x, x^4 + 3*x^3 + x^2 + x)
sage: (p*d % x^9) == n
True
```

## resultant (other)

Returns the resultant of self and other, which must lie in the same polynomial ring.

#### INPUT:

```
•other – a polynomial
```

OUTPUT: an element of the base ring of the polynomial ring

```
sage: R.<x> = GF(19)['x']
sage: f = x^3 + x + 1;  g = x^3 - x - 1
sage: r = f.resultant(g); r
11
sage: r.parent() is GF(19)
True
```

The following example shows that #11782 has been fixed:

```
sage: R.\langle x \rangle = ZZ.quo(9)['x']

sage: f = 2*x^3 + x^2 + x; g = 6*x^2 + 2*x + 1

sage: f.resultant(g)
```

## reverse (degree=None)

Return a polynomial with the coefficients of this polynomial reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

## **EXAMPLES:**

```
sage: R. < x > = GF(5)[]
sage: p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
sage: p.reverse()
x^3 + 2*x^2 + 3*x + 4
sage: p.reverse(degree=6)
x^6 + 2*x^5 + 3*x^4 + 4*x^3
sage: p.reverse(degree=2)
x^2 + 2 x + 3
sage: R. < x > = GF(101)[]
sage: f = x^3 - x + 2; f
x^3 + 100*x + 2
sage: f.reverse()
2*x^3 + 100*x^2 + 1
sage: f.reverse() == f(1/x) * x^f.degree()
True
```

Note that if f has zero constant coefficient, its reverse will have lower degree.

```
sage: f = x^3 + 2*x
sage: f.reverse()
2*x^2 + 1
```

In this case, reverse is not an involution unless we explicitly specify a degree.

```
sage: f
x^3 + 2*x
sage: f.reverse().reverse()
x^2 + 2
sage: f.reverse(5).reverse(5)
x^3 + 2*x

TESTS:
sage: p.reverse(degree=1.5r)
Traceback (most recent call last):
...
ValueError: degree argument must be a non-negative integer, got 1.5
```

```
revert_series(n)
    Return a polynomial f such that f(self(x)) = self(f(x)) = xmodx^n.
    EXAMPLES:
    sage: R.<t> = GF(5)[]
    sage: f = t + 2*t^2 - t^3 - 3*t^4
    sage: f.revert_series(5)
    3*t^4 + 4*t^3 + 3*t^2 + t
    sage: f.revert_series(-1)
    Traceback (most recent call last):
    ValueError: argument n must be a non-negative integer, got -1
    sage: g = - t^3 + t^5
    sage: g.revert_series(6)
    Traceback (most recent call last):
    ValueError: self must have constant coefficient 0 and a unit for coefficient t^1
    sage: g = t + 2*t^2 - t^3 - 3*t^4 + t^5
    sage: g.revert_series(6)
    Traceback (most recent call last):
    ValueError: the integers 1 up to n=5 are required to be invertible over the base field
small_roots (*args, **kwds)
    See sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots() for the
    documentation of this function.
    EXAMPLE:
    sage: N = 10001
    sage: K = Zmod(10001)
    sage: P.<x> = PolynomialRing(K)
    sage: f = x^3 + 10*x^2 + 5000*x - 222
    sage: f.small_roots()
    [4]
squarefree_decomposition()
    Returns the squarefree decomposition of this polynomial.
    EXAMPLES:
    sage: R. < x > = GF(5)[]
    sage: ((x+1)*(x^2+1)^2*x^3).squarefree_decomposition()
    (x + 1) * (x^2 + 1)^2 * x^3
    TESTS:
    sage: (2*x*(x+1)^2).squarefree_decomposition()
    (2) * x * (x + 1)^2
    sage: P.\langle x \rangle = Zmod(10)[]
    sage: (x^2).squarefree_decomposition()
    Traceback (most recent call last):
    NotImplementedError: square free factorization of polynomials over rings with composite char
```

```
sage.rings.polynomial.polynomial_zmod_flint.make_element(parent, args)
```

# 2.1.11 Dense univariate polynomials over $\mathbb{Z}/n\mathbb{Z}$ , implemented using NTL.

This implementation is generally slower than the FLINT implementation in polynomial\_zmod\_flint, so we use FLINT by default when the modulus is small enough; but NTL does not require that n be int-sized, so we use it as default when n is too large for FLINT.

Note that the classes Polynomial\_dense\_modn\_ntl\_zz and Polynomial\_dense\_modn\_ntl\_ZZ are different; the former is limited to moduli less than a certain bound, while the latter supports arbitrarily large moduli.

#### AUTHORS:

- Robert Bradshaw: Split off from polynomial\_element\_generic.py (2007-09)
- Robert Bradshaw: Major rewrite to use NTL directly (2007-09)

A dense polynomial over the integers modulo n, where n is composite, with the underlying arithmetic done using NTL.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(Integers(16), implementation='NTL')
sage: f = x^3 - x + 17
sage: f^2
x^6 + 14*x^4 + 2*x^3 + x^2 + 14*x + 1
sage: loads(f.dumps()) == f
True
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: p = 3*x
sage: q = 7 * x
sage: p+q
10*x
sage: R.<x> = PolynomialRing(Integers(8), implementation='NTL')
sage: parent(p)
Univariate Polynomial Ring in x over Ring of integers modulo 100 (using NTL)
sage: p + q
10*x
sage: R({10:-1})
7*x^10
degree (gen=None)
    Return the degree of this polynomial. The zero polynomial has degree -1.
int_list()
list()
    Return a new copy of the list of the underlying elements of self.
    EXAMPLES:
    sage: _.<x> = PolynomialRing(Integers(100), implementation='NTL')
    sage: f = x^3 + 3*x - 17
    sage: f.list()
```

[83, 3, 0, 1]

## ntl\_ZZ\_pX()

Return underlying NTL representation of this polynomial. Additional "bonus" functionality is available through this function.

Warning: You must call  $ntl.set\_modulus(ntl.ZZ(n))$  before doing arithmetic with this object!

## ntl\_set\_directly(v)

Set the value of this polynomial directly from a vector or string.

Polynomials over the integers modulo n are stored internally using NTL's  $ZZ_pX$  class. Use this function to set the value of this polynomial using the NTL constructor, which is potentially very fast. The input v is either a vector of ints or a string of the form [n1 n2 n3 ...] where the ni are integers and there are no commas between them. The optimal input format is the string format, since that's what NTL uses by default.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_dense_mod_n as
sage: poly_modn_dense(R, ([1,-2,3]))
3*x^2 + 98*x + 1
sage: f = poly_modn_dense(R, 0)
sage: f.ntl_set_directly([1,-2,3])
sage: f
3*x^2 + 98*x + 1
sage: f.ntl_set_directly('[1 -2 3 4]')
sage: f
4*x^3 + 3*x^2 + 98*x + 1
```

# quo\_rem(right)

Returns a tuple (quotient, remainder) where self = quotient\*other + remainder.

#### shift(n)

Returns this polynomial multiplied by the power  $x^n$ . If n is negative, terms below  $x^n$  will be discarded. Does not change this polynomial.

# **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(Integers(12345678901234567890), implementation='NTL')
sage: p = x^2 + 2*x + 4
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(-5)
0
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
TESTS:
sage: p = R(0)
sage: p.shift(3).is_zero()
True
sage: p.shift(-3).is_zero()
True
```

# AUTHOR:

```
•David Harvey (2006-08-06)
     small_roots (*args, **kwds)
         See sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots() for the
         documentation of this function.
         EXAMPLE:
         sage: N = 10001
         sage: K = Zmod(10001)
         sage: P.<x> = PolynomialRing(K, implementation='NTL')
         sage: f = x^3 + 10*x^2 + 5000*x - 222
         sage: f.small_roots()
class sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p
     Bases: sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n
     A dense polynomial over the integers modulo p, where p is prime.
     discriminant()
         EXAMPLES:
         sage: _.<x> = PolynomialRing(GF(19),implementation='NTL')
         sage: f = x^3 + 3*x - 17
         sage: f.discriminant()
         12
     gcd (right)
         Return the greatest common divisor of this polynomial and other, as a monic polynomial.
         INPUT:
            •other - a polynomial defined over the same ring as self
         EXAMPLES:
         sage: R.<x> = PolynomialRing(GF(3),implementation="NTL")
         sage: f,g = x + 2, x^2 - 1
         sage: f.gcd(g)
         x + 2
     resultant (other)
         Returns the resultant of self and other, which must lie in the same polynomial ring.
         INPUT:
            •other - a polynomial
         OUTPUT: an element of the base ring of the polynomial ring
         EXAMPLES:
         sage: R.<x> = PolynomialRing(GF(19),implementation='NTL')
         sage: f = x^3 + x + 1; g = x^3 - x - 1
         sage: r = f.resultant(g); r
         sage: r.parent() is GF(19)
         True
     xgcd (other)
         Compute the extended gcd of this element and other.
```

INPUT:

```
•other – an element in the same polynomial ring
         OUTPUT:
         A tuple (r, s, t) of elements in the polynomial ring such that r = s*self + t*other.
         EXAMPLES:
         sage: R.<x> = PolynomialRing(GF(3),implementation='NTL')
         sage: x.xqcd(x)
         (x, 0, 1)
         sage: (x^2 - 1).xgcd(x - 1)
         (x + 2, 0, 1)
         sage: R.zero().xgcd(R.one())
         (1, 0, 1)
         sage: (x^3 - 1).xgcd((x - 1)^2)
         (x^2 + x + 1, 0, 1)
         sage: ((x - 1) * (x + 1)).xgcd(x*(x - 1))
         (x + 2, 1, 2)
class sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ
    Bases: sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n
    degree()
        EXAMPLES:
         sage: R.<x> = PolynomialRing(Integers(14^34), implementation='NTL')
         sage: f = x^4 - x - 1
        sage: f.degree()
        sage: f = 14^43 \times x + 1
         sage: f.degree()
    is gen()
    list()
    quo rem (right)
        Returns q and r, with the degree of r less than the degree of right, such that q * right + r = self.
        EXAMPLES:
        sage: R.<x> = PolynomialRing(Integers(10^30), implementation='NTL')
        sage: f = x^5+1; g = (x+1)^2
        sage: q, r = f.quo_rem(g)
         sage: q
         sage: r
        5*x + 5
         sage: q*g + r
         x^5 + 1
    reverse()
         Reverses the coefficients of self. The reverse of f(x) is x^n f(1/x).
         The degree will go down if the constant term is zero.
         EXAMPLES:
         sage: R.<x> = PolynomialRing(Integers(12^29), implementation='NTL')
         sage: f = x^4 + 2 \times x + 5
```

```
sage: f.reverse()
         5*x^4 + 2*x^3 + 1
         sage: f = x^3 + x
         sage: f.reverse()
         x^2 + 1
    shift(n)
         Shift self to left by n, which is multiplication by x^n, truncating if n is negative.
         EXAMPLES:
         sage: R.<x> = PolynomialRing(Integers(12^30), implementation='NTL')
         sage: f = x^7 + x + 1
         sage: f.shift(1)
         x^8 + x^2 + x
         sage: f.shift(-1)
         x^6 + 1
         sage: f.shift(10).shift(-10) == f
         True
         TESTS:
         sage: p = R(0)
         sage: p.shift(3).is_zero()
         True
         sage: p.shift(-3).is_zero()
         True
    truncate (n)
         Returns this polynomial mod x^n.
         EXAMPLES:
         sage: R.<x> = PolynomialRing(Integers(15^30), implementation='NTL')
         sage: f = sum(x^n for n in range(10)); f
         x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
         sage: f.truncate(6)
         x^5 + x^4 + x^3 + x^2 + x + 1
    valuation()
         Returns the valuation of self, that is, the power of the lowest non-zero monomial of self.
         sage: R.<x> = PolynomialRing(Integers(10^50), implementation='NTL')
         sage: x.valuation()
         sage: f = x-3; f.valuation()
         sage: f = x^99; f.valuation()
         sage: f = x-x; f.valuation()
         +Infinity
class sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz
    Bases: sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n
    Polynomial on \mathbf{Z}/n\mathbf{Z} implemented via NTL.
     _add_(_right)
         TESTS:
```

```
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
    sage: (x+5) + (x^2 - 6)
    x^2 + x + 99
_sub_(_right)
    TESTS:
    sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
    sage: (x+5) - (x^2 - 6)
    99 \times x^2 + x + 11
lmul(c)
    TESTS:
    sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
    sage: 3 * (x+5)
    3*x + 15
_rmul_(c)
    TESTS:
    sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
    sage: (x+5) * 3
    3*x + 15
_mul_(_right)
    TESTS:
    sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
    sage: (x+5) * (x^2 - 1)
    x^3 + 5*x^2 + 99*x + 95
_mul_trunc_(right, n)
    Return the product of self and right truncated to the given length \boldsymbol{n}
    EXAMPLES:
    sage: R.<x> = PolynomialRing(Integers(100), implementation="NTL")
    sage: f = x - 2
    sage: g = x^2 - 8*x + 16
    sage: f*g
    x^3 + 90*x^2 + 32*x + 68
    sage: f._mul_trunc_(g, 42)
    x^3 + 90*x^2 + 32*x + 68
    sage: f._mul_trunc_(g, 3)
    90*x^2 + 32*x + 68
    sage: f._mul_trunc_(g, 2)
    32 * x + 68
    sage: f._mul_trunc_(g, 1)
    sage: f._mul_trunc_(g, 0)
    sage: f = x^2 - 8*x + 16
    sage: f._mul_trunc_(f, 2)
    44 * x + 56
degree()
    EXAMPLES:
```

```
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
    sage: f = x^4 - x - 1
    sage: f.degree()
    sage: f = 77 * x + 1
    sage: f.degree()
int_list()
    Returns the coefficients of self as efficiently as possible as a list of python ints.
    EXAMPLES:
    sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
    sage: from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_dense_mod_n as
    sage: f = poly_modn_dense(R, [5, 0, 0, 1])
    sage: f.int_list()
    [5, 0, 0, 1]
    sage: [type(a) for a in f.int_list()]
    [<type 'int'>, <type 'int'>, <type 'int'>]
is_gen()
ntl_set_directly(v)
quo_rem(right)
    Returns q and r, with the degree of r less than the degree of right, such that q * right + r = self.
    sage: R.<x> = PolynomialRing(Integers(125), implementation='NTL')
    sage: f = x^5+1; g = (x+1)^2
    sage: q, r = f.quo_rem(g)
    sage: q
    x^3 + 123*x^2 + 3*x + 121
    sage: r
    5*x + 5
    sage: q*g + r
    x^5 + 1
reverse()
    Reverses the coefficients of self. The reverse of f(x) is x^n f(1/x).
    The degree will go down if the constant term is zero.
    EXAMPLES:
    sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
    sage: f = x^4 - x - 1
    sage: f.reverse()
    76*x^4 + 76*x^3 + 1
    sage: f = x^3 - x
    sage: f.reverse()
    76 * x^2 + 1
shift(n)
    Shift self to left by n, which is multiplication by x^n, truncating if n is negative.
    EXAMPLES:
    sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
    sage: f = x^7 + x + 1
```

```
sage: f.shift(1)
         x^8 + x^2 + x
         sage: f.shift(-1)
         x^6 + 1
         sage: f.shift(10).shift(-10) == f
         TESTS:
         sage: p = R(0)
         sage: p.shift(3).is_zero()
         True
         sage: p.shift(-3).is_zero()
         True
    truncate (n)
         Returns this polynomial mod x^n.
         EXAMPLES:
         sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
         sage: f = sum(x^n for n in range(10)); f
         x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
         sage: f.truncate(6)
         x^5 + x^4 + x^3 + x^2 + x + 1
    valuation()
         Returns the valuation of self, that is, the power of the lowest non-zero monomial of self.
         sage: R.<x> = PolynomialRing(Integers(10), implementation='NTL')
         sage: x.valuation()
         sage: f = x-3; f.valuation()
         sage: f = x^99; f.valuation()
         sage: f = x-x; f.valuation()
         +Infinity
sage.rings.polynomial.polynomial_modn_dense_ntl.make_element (parent, args)
sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots(self,
                                                                                X=None,
                                                                      beta=1.0,
                                                                                    en-
                                                                      silon=None,
                                                                      **kwds)
    Let N be the characteristic of the base ring this polynomial is defined over:
```

Let N be the characteristic of the base ring this polynomial is defined over:  $N = self.base\_ring()$ . characteristic(). This method returns small roots of this polynomial modulo some factor b of N with the constraint that  $b >= N^{\beta}$ . Small in this context means that if x is a root of f modulo b then |x| < X. This X is either provided by the user or the maximum X is chosen such that this algorithm terminates in polynomial time. If X is chosen automatically it is  $X = ceil(1/2N^{\beta^2/\delta - \epsilon})$ . The algorithm may also return some roots which are larger than X. 'This algorithm' in this context means Coppersmith's algorithm for finding small roots using the LLL algorithm. The implementation of this algorithm follows Alexander May's PhD thesis referenced below.

#### **INPUT:**

•X – an absolute bound for the root (default: see above)

- •beta compute a root mod b where b is a factor of N and  $b \ge N^{\beta}$ . (Default: 1.0, so b = N.)
- •epsilon the parameter  $\epsilon$  described above. (Default:  $\beta/8$ )
- •\*\*kwds passed through to method Matrix\_integer\_dense.LLL().

## **EXAMPLES:**

First consider a small example:

```
sage: N = 10001
sage: K = Zmod(10001)
sage: P.\langle x \rangle = PolynomialRing(K, implementation='NTL')
sage: f = x^3 + 10 \times x^2 + 5000 \times x - 222
```

This polynomial has no roots without modular reduction (i.e. over **Z**):

```
sage: f.change_ring(ZZ).roots()
[]
```

To compute its roots we need to factor the modulus N and use the Chinese remainder theorem:

```
sage: p,q = N.prime_divisors()
sage: f.change_ring(GF(p)).roots()
[(4, 1)]
sage: f.change_ring(GF(q)).roots()
[(4, 1)]
sage: crt(4, 4, p, q)
4
```

This root is quite small compared to N, so we can attempt to recover it without factoring N using Coppersmith's small root method:

```
sage: f.small_roots()
[4]
```

An application of this method is to consider RSA. We are using 512-bit RSA with public exponent e=3 to encrypt a 56-bit DES key. Because it would be easy to attack this setting if no padding was used we pad the key K with 1s to get a large number:

```
sage: Nbits, Kbits = 512, 56
sage: e = 3
```

We choose two primes of size 256-bit each:

```
sage: p = 2^256 + 2^8 + 2^5 + 2^3 + 1

sage: q = 2^256 + 2^8 + 2^5 + 2^3 + 2^2 + 1

sage: N = p*q

sage: Z mod N = Z mod (N)
```

We choose a random key:

```
sage: K = ZZ.random_element(0, 2^Kbits)

and pad it with 512-56=456 1s:
sage: Kdigits = K.digits(2)
sage: M = [0]*Kbits + [1]*(Nbits-Kbits)
sage: for i in range(len(Kdigits)): M[i] = Kdigits[i]

sage: M = ZZ(M, 2)
```

```
Now we encrypt the resulting message: 
 sage: C = ZmodN(M)^e

To recover K we consider the following polynomial modulo N: 
 sage: P. < x > = PolynomialRing(ZmodN, implementation='NTL') 
 sage: f = (2^Nbits - 2^Kbits + x)^e - C
```

and recover its small roots:

```
sage: Kbar = f.small_roots()[0]
sage: K == Kbar
True
```

The same algorithm can be used to factor N=pq if partial knowledge about q is available. This example is from the Magma handbook:

First, we set up p, q and N:

```
sage: length = 512
sage: hidden = 110
sage: p = next_prime(2^int(round(length/2)))
sage: q = next_prime( round(pi.n()*p) )
sage: N = p*q
```

Now we disturb the low 110 bits of q:

```
sage: qbar = q + ZZ.random_element(0,2^hidden-1)
```

And try to recover q from it:

```
sage: F.<x> = PolynomialRing(Zmod(N), implementation='NTL')
sage: f = x - gbar
```

We know that the error is  $\leq 2^{\text{hidden}} - 1$  and that the modulus we are looking for is  $\geq \sqrt{N}$ :

```
sage: set_verbose(2)
sage: d = f.small_roots(X=2^hidden-1, beta=0.5)[0] # time random
verbose 2 (<module>) m = 4
verbose 2 (<module>) t = 4
verbose 2 (<module>) X = 1298074214633706907132624082305023
verbose 1 (<module>) LLL of 8x8 matrix (algorithm fpLLL:wrapper)
verbose 1 (<module>) LLL finished (time = 0.006998)
sage: q == qbar - d
```

## REFERENCES:

Don Coppersmith. *Finding a small root of a univariate modular equation*. In Advances in Cryptology, EuroCrypt 1996, volume 1070 of Lecture Notes in Computer Science, p. 155–165. Springer, 1996. http://cr.yp.to/bib/2001/coppersmith.pdf

Alexander May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis, University of Paderborn, 2003. http://www.cs.uni-paderborn.de/uploads/tx\_sibibtex/bp.pdf

# 2.1.12 Dense univariate polynomials over R, implemented using MPFR

## TESTS:

Check that operations with numpy elements work well (see trac ticket #18076 and trac ticket #8426):

```
sage: import numpy
sage: x = polygen(RR)
sage: x * numpy.int32('1')
sage: numpy.int32('1') * x
sage: x * numpy.int64('1')
sage: numpy.int64('1') * x
sage: x * numpy.float32('1.5')
1.50000000000000*x
sage: numpy.float32('1.5') * x
1.500000000000000*x
class sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense
    Bases: sage.rings.polynomial.polynomial_element.Polynomial
    EXAMPLES:
    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
    sage: PolynomialRealDense(RR['x'], [1, int(2), RR(3), 4/1, pi])
    sage: PolynomialRealDense(RR['x'], None)
    TESTS:
    Check that errors and interrupts are handled properly (see trac ticket #10100):
    sage: a = var('a')
    sage: PolynomialRealDense(RR['x'], [1,a])
    Traceback (most recent call last):
    TypeError: Cannot evaluate symbolic expression to a numeric value.
    sage: R. < x > = SR[]
    sage: (x-a).change_ring(RR)
    Traceback (most recent call last):
    TypeError: Cannot evaluate symbolic expression to a numeric value.
    sage: sig_on_count()
    Test that we don't clean up uninitialized coefficients (trac ticket #9826):
    sage: k. < a > = GF(7^3)
    sage: P.<x> = PolynomialRing(k)
    sage: (a*x).complex_roots()
    Traceback (most recent call last):
    TypeError: Unable to convert x = (='a') to real number.
    Check that trac ticket #17190 is fixed:
    sage: RR['x']({})
    change\_ring(R)
        EXAMPLES:
```

```
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
    sage: f = PolynomialRealDense(RR['x'], [-2, 0, 1.5])
    sage: f.change_ring(QQ)
    3/2*x^2 - 2
    sage: f.change_ring(RealField(10))
    1.5*x^2 - 2.0
    sage: f.change_ring(RealField(100))
    degree()
    Return the degree of the polynomial.
    EXAMPLES:
    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
    sage: f = PolynomialRealDense(RR['x'], [1, 2, 3]); f
    3.000000000000000 *x^2 + 2.000000000000 *x + 1.00000000000000
    sage: f.degree()
   TESTS:
    sage: type(f.degree())
    <type 'sage.rings.integer.Integer'>
integral()
    EXAMPLES:
    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
    sage: f = PolynomialRealDense(RR['x'], [3, pi, 1])
    sage: f.integral()
    0.333333333333333*x^3 + 1.57079632679490*x^2 + 3.00000000000000*x
list()
    EXAMPLES:
    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
    sage: f = PolynomialRealDense(RR['x'], [1, 0, -2]); f
    -2.000000000000000 \times x^2 + 1.0000000000000
    sage: f.list()
    [1.000000000000000, 0.0000000000000, -2.0000000000000]
quo_rem(other)
    Return the quotient with remainder of self by other.
    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
    sage: f = PolynomialRealDense(RR['x'], [-2, 0, 1])
    sage: g = PolynomialRealDense(RR['x'], [5, 1])
    sage: q, r = f.quo_rem(g)
    sage: q
    x - 5.00000000000000
    sage: r
    23.0000000000000
    sage: q*g + r == f
   True
    sage: fg = f*g
    sage: fq.quo_rem(f)
```

```
sage: fg.quo_rem(g)
    sage: f = PolynomialRealDense(RR['x'], range(5))
    sage: g = PolynomialRealDense(RR['x'], [pi, 3000, 4])
    sage: q, r = f.quo_rem(g)
    sage: g*q + r == f
    True
    TESTS:
    Check that trac ticket #18467 is fixed:
    sage: S. < x > = RR[]
    sage: z = S.zero()
    sage: z.degree()
    -1
    sage: q, r = z.quo_rem(x)
    sage: q.degree()
    -1
reverse()
    Returns x^d f(1/x) where d is the degree of f.
    EXAMPLES:
    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
    sage: f = PolynomialRealDense(RR['x'], [-3, pi, 0, 1])
    sage: f.reverse()
    shift (n)
    Returns this polynomial multiplied by the power x^n. If n is negative, terms below x^n will be discarded.
    Does not change this polynomial.
    EXAMPLES:
    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
    sage: f = PolynomialRealDense(RR['x'], [1, 2, 3]); f
    3.000000000000000 \star x^2 + 2.0000000000000 \star x + 1.0000000000000
    sage: f.shift(10)
    3.0000000000000000 \times x^{12} + 2.0000000000000 \times x^{11} + x^{10}
    sage: f.shift(-1)
    3.0000000000000000 *x + 2.00000000000000
    sage: f.shift(-10)
    TESTS:
    sage: f = RR['x'](0)
    sage: f.shift(3).is_zero()
    sage: f.shift(-3).is_zero()
    True
truncate (n)
    Returns the polynomial of degree < n which is equivalent to self modulo x^n.
    EXAMPLES:
```

```
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RealField(10)['x'], [1, 2, 4, 8])
sage: f.truncate(3)
4.0*x^2 + 2.0*x + 1.0
sage: f.truncate(100)
8.0*x^3 + 4.0*x^2 + 2.0*x + 1.0
sage: f.truncate(1)
1.0
sage: f.truncate(0)
0
```

## truncate\_abs (bound)

Truncate all high order coefficients below bound.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RealField(10)['x'], [10^-k for k in range(10)])
sage: f
1.0e-9*x^9 + 1.0e-8*x^8 + 1.0e-7*x^7 + 1.0e-6*x^6 + 0.000010*x^5 + 0.00010*x^4 + 0.0010*x^3
sage: f.truncate_abs(0.5e-6)
1.0e-6*x^6 + 0.000010*x^5 + 0.00010*x^4 + 0.0010*x^3 + 0.010*x^2 + 0.10*x + 1.0
sage: f.truncate_abs(10.0)
0
sage: f.truncate_abs(10.0) == f
```

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial_polynomial_real_mpfr_dense import make_PolynomialRealDense
sage: make_PolynomialRealDense(RR['x'], [1,2,3])
3.0000000000000xx^2 + 2.00000000000000xx + 1.0000000000000
```

# 2.1.13 Polynomial Interfaces to Singular

#### **AUTHORS:**

- Martin Albrecht <malb@informatik.uni-bremen.de> (2006-04-21)
- Robert Bradshaw: Re-factor to avoid multiple inheritance vs. Cython (2007-09)
- Syed Ahmad Lavasani: Added function field to \_singular\_init\_ (2011-12-16) Added non-prime finite fields to \_singular\_init\_ (2012-1-22)

## TESTS:

```
sage: R = PolynomialRing(GF(2**8,'a'),10,'x', order='invlex')
sage: R == loads(dumps(R))
True
sage: P.<a,b> = PolynomialRing(GF(7), 2)
sage: f = (a^3 + 2*b^2*a)^7; f
a^21 + 2*a^7*b^14
```

This class is a base class for all univariate and multivariate polynomial rings which support conversion from and to Singular rings.

class sage.rings.polynomial.polynomial\_singular\_interface.Polynomial\_singular\_repr
 Implements coercion of polynomials to Singular polynomials.

This class is a base class for all (univariate and multivariate) polynomial classes which support conversion from and to Singular polynomials.

Due to the incompatibility of Python extension classes and multiple inheritance, this just defers to module-level functions.

sage.rings.polynomial.polynomial\_singular\_interface.can\_convert\_to\_singular(R)
Returns True if this ring's base field or ring can be represented in Singular, and the polynomial ring has at least one generator. If this is True then this polynomial ring can be represented in Singular.

The following base rings are supported: finite fields, rationals, number fields, and real and complex fields.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
True

sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
False
```

# 2.1.14 Base class for generic *p*-adic polynomials

This provides common functionality for all p-adic polynomials, such as printing and factoring.

 $1 (1 + O(3^3)) *t^2 + (0 + O(3^3)) *t + (1 + O(3^3))$ 

 $(500 + O(5^9)) *t^2 + (-2600 + O(5^8)) *t + (500 + O(5^9))$ 

## **AUTHORS:**

• Jeroen Demeyer (2013-11-22): initial version, split off from other files, made Polynomial\_padic the common base class for all p-adic polynomials.

```
class sage.rings.polynomial.padics.polynomial padic.Polynomial padic (parent,
                                                                             x=None.
                                                                             check=True,
                                                                             is_gen=False,
                                                                             con-
                                                                             struct=False)
    Bases: sage.rings.polynomial.polynomial_element.Polynomial
    factor()
         Return the factorization of this polynomial.
         EXAMPLES:
         sage: R.<t> = PolynomialRing(Qp(3,3,print_mode='terse',print_pos=False))
         sage: pol = t^8 - 1
         sage: for p,e in pol.factor(): print e, p
         1 (1 + O(3^3)) *t + (1 + O(3^3))
         1 (1 + O(3^3)) *t + (-1 + O(3^3))
         1 (1 + O(3^3)) *t^2 + (5 + O(3^3)) *t + (-1 + O(3^3))
         1 (1 + O(3^3))*t^2 + (-5 + O(3^3))*t + (-1 + O(3^3))
```

sage: R.<t> = PolynomialRing(Qp(5,6,print\_mode='terse',print\_pos=False))

sage: pol

**sage:** pol = 100 \* (5\*t - 1) \* (t - 5)

```
sage: pol.factor()
(500 + O(5^9)) * ((1 + O(5^5))*t + (-1/5 + O(5^5))) * ((1 + O(5^6))*t + (-5 + O(5^6)))
sage: pol.factor().value()
(500 + O(5^8))*t^2 + (-2600 + O(5^8))*t + (500 + O(5^8))
The same factorization over \mathbb{Z}_p. In this case, the "unit" part is a p-adic unit and the power of p is considered
to be a factor:
sage: R.<t> = PolynomialRing(Zp(5,6,print_mode='terse',print_pos=False))
sage: pol = 100 * (5*t - 1) * (t - 5)
sage: pol
(500 + O(5^9)) *t^2 + (-2600 + O(5^8)) *t + (500 + O(5^9))
sage: pol.factor()
(4 + O(5^6)) * ((5 + O(5^7)))^2 * ((1 + O(5^6))*t + (-5 + O(5^6))) * ((5 + O(5^6))*t + (-1 + O(5^6))) * ((5 + O(5^6))) * ((
sage: pol.factor().value()
(500 + O(5^8)) *t^2 + (-2600 + O(5^8)) *t + (500 + O(5^8))
In the following example, the discriminant is zero, so the p-adic factorization is not well defined:
sage: factor(t^2)
Traceback (most recent call last):
PrecisionError: p-adic factorization not well-defined since the discriminant is zero up to t
More examples over \mathbf{Z}_p:
sage: R.<w> = PolynomialRing(Zp(5, prec=6, type = 'capped-abs', print_mode = 'val-unit'))
sage: f = w^5-1
sage: f.factor()
((1 + O(5^6))*w + (3124 + O(5^6)))*((1 + O(5^6))*w^4 + (12501 + O(5^6))*w^3 + (9376 + O(5^6))*w^4)
See trac ticket #4038:
sage: E = EllipticCurve('37a1')
sage: K = Qp(7, 10)
sage: EK = E.base_extend(K)
sage: E = EllipticCurve('37a1')
sage: K = Qp(7,10)
sage: EK = E.base_extend(K)
sage: g = EK.division_polynomial_0(3)
```

## TESTS:

sage: q.factor()

Check that trac ticket #13293 is fixed:

```
sage: R.\langle T \rangle = Qp(3)[]

sage: f = 1926*T^2 + 312*T + 387

sage: f.factor()

(3^2 + 2*3^3 + 2*3^4 + 3^5 + 2*3^6 + O(3^22)) * ((1 + O(3^19))*T + (2*3^-1 + 3 + 3^2 + 2*3^5))
```

 $(3 + O(7^{10})) * ((1 + O(7^{10})) * x + (1 + 2*7 + 4*7^2 + 2*7^3 + 5*7^4 + 7^5 + 5*7^6 + 3*7^7 + 7^8) * (3 + O(7^{10})) * (1 + O(7^{10}$ 

# 2.1.15 p-adic Capped Relative Dense Polynomials

class sage.rings.polynomial\_padics.polynomial\_padic\_capped\_relative\_dense.Polynomial\_padic\_ca

Bases: sage.rings.polynomial.polynomial\_element\_generic.Polynomial\_generic\_domain, sage.rings.polynomial.padics.polynomial\_padic.Polynomial\_padic

#### TESTS:

```
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: R([K(13), K(1)])
(1 + O(13^7))*t + (13 + O(13^8))
sage: T.<t> = ZZ[]
sage: R(t + 2)
(1 + O(13^7))*t + (2 + O(13^7))
```

Check that trac ticket #13620 has been fixed:

```
sage: f = R.zero()
sage: R(f.dict())
0
```

## content()

Returns the content of self.

The content is returned to maximum precision: since it's only defined up to a unit, we can choose p^k as the representative.

Returns an error if the base ring is actually a field: this is probably not a function you want to be using then, since any nonzero answer will be correct.

The content of the exact zero polynomial is zero.

```
sage: K = Zp(13,7)
sage: R.<t> = K[]
sage: a = 13^7*t^3 + K(169,4)*t - 13^4
sage: a.content()
13^2 + O(13^9)
sage: R(0).content()
0
sage: P.<x> = ZZ[]
sage: f = x + 2
sage: f.content()
1
sage: fp = f.change_ring(pAdicRing(2, 10))
sage: fp
(1 + O(2^10))*x + (2 + O(2^11))
sage: fp.content()
1 + O(2^10)
```

```
sage: (2*fp).content()
2 + O(2^11)
```

## degree()

Returns the degree of self, i.e., the largest n so that the coefficient of  $x^n$  does not compare equal to 0.

#### **EXAMPLES:**

```
sage: K = Qp(3,10)
sage: x = O(3^5)
sage: li =[3^i * x for i in range(0,5)]; li
[O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)]
sage: R.<T> = K[]
sage: f = R(li); f
(O(3^9))*T^4 + (O(3^8))*T^3 + (O(3^7))*T^2 + (O(3^6))*T + (O(3^5))
sage: f.degree()
-1
```

#### disc()

## factor mod()

Returns the factorization of self modulo p.

## hensel\_lift(a)

#### lift()

Returns an integer polynomial congruent to this one modulo the precision of each coefficient.

**NOTE:** The lift that is returned will not necessarily be the same for polynomials with the same coefficients (ie same values and precisions): it will depend on how the polynomials are created.

#### **EXAMPLES:**

```
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: a = 13^7*t^3 + K(169,4)*t - 13^4
sage: a.lift()
62748517*t^3 + 169*t - 28561
```

#### list()

Returns a list of coefficients of self.

NOTE: The length of the list returned may be greater than expected since it includes any leading zeros that have finite absolute precision.

## **EXAMPLES:**

```
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: a = 2*t^3 + 169*t - 1
sage: a
(2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + (12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5
sage: a.list()
[12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7),
13^2 + O(13^9),
0,
```

## lshift\_coeffs (shift, no\_list=False)

Returns a new polynomials whose coefficients are multiplied by p^shift.

**EXAMPLES:** 

 $2 + 0(13^7)$ 

```
sage: K = Qp(13, 4)
sage: R.<t> = K[]
sage: a = t + 52
sage: a.lshift_coeffs(3)
(13^3 + O(13^7))*t + (4*13^4 + O(13^8))
```

## newton\_polygon()

Returns the Newton polygon of this polynomial.

**Note:** If some coefficients have not enough precision an error is raised.

## **OUTPUT:**

•a Newton polygon

#### **EXAMPLES:**

```
sage: K = Qp(2, prec=5)
sage: P.<x> = K[]
sage: f = x^4 + 2^3*x^3 + 2^13*x^2 + 2^21*x + 2^37
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0)
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
```

Here is an example where the computation fails because precision is not sufficient:

```
sage: g = f + K(0,0)*t^4; g
(5^2 + O(5^22))*t^10 + (O(5^0))*t^4 + (3 + O(5^20))*t + (5 + O(5^21))
sage: g.newton_polygon()
Traceback (most recent call last):
...
PrecisionError: The coefficient of t^4 has not enough precision
```

## TESTS:

```
sage: (5*f).newton_polygon()
Finite Newton polygon with 4 vertices: (0, 2), (1, 1), (4, 1), (10, 3)
```

#### AUTHOR:

•Xavier Caruso (2013-03-20)

## newton\_slopes(repetition=True)

Returns a list of the Newton slopes of this polynomial.

These are the valuations of the roots of this polynomial.

If repetition is True, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.

## INPUT:

```
•repetition - boolean (default True)
```

# OUTPUT:

•a list of rationals

## **EXAMPLES:**

```
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
sage: f.newton_slopes()
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3]
sage: f.newton_slopes(repetition=False)
[1, 0, -1/3]
```

## **AUTHOR:**

•Xavier Caruso (2013-03-20)

# prec\_degree()

Returns the largest n so that precision information is stored about the coefficient of  $x^n$ .

Always greater than or equal to degree.

## precision\_absolute(n=None)

Returns absolute precision information about self.

INPUT: self – a p-adic polynomial n – None or an integer (default None).

OUTPUT: If n == None, returns a list of absolute precisions of coefficients. Otherwise, returns the absolute precision of the coefficient of  $x^n$ .

## precision\_relative (n=None)

Returns relative precision information about self.

INPUT: self – a p-adic polynomial n – None or an integer (default None).

OUTPUT: If n == None, returns a list of relative precisions of coefficients. Otherwise, returns the relative precision of the coefficient of  $x^n$ .

# $quo\_rem(right)$

## rescale(a)

Return f(a\*X)

NOTE: Need to write this function for integer polynomials before this works.

## **EXAMPLES:**

```
sage: K = Zp(13, 5)
sage: R.<t> = K[]
sage: f = t^3 + K(13, 3) * t
sage: f.rescale(2) # not implemented
```

## reverse (n=None)

Returns a new polynomial whose coefficients are the reversed coefficients of self, where self is considered as a polynomial of degree n.

If n is None, defaults to the degree of self. If n is smaller than the degree of self, some coefficients will be discarded.

```
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: f = t^3 + 4*t; f
(1 + O(13^7))*t^3 + (4 + O(13^7))*t
```

```
sage: f.reverse()
(4 + O(13^7))*t^2 + (1 + O(13^7))
sage: f.reverse(3)
(4 + O(13^7))*t^2 + (1 + O(13^7))
sage: f.reverse(2)
(4 + O(13^7))*t
sage: f.reverse(4)
(4 + O(13^7))*t^3 + (1 + O(13^7))*t
sage: f.reverse(6)
(4 + O(13^7))*t^5 + (1 + O(13^7))*t^3
```

## rshift\_coeffs (shift, no\_list=False)

Returns a new polynomial whose coefficients are p-adiclly shifted to the right by shift.

NOTES: Type Qp(5)(0).\_\_rshift\_\_? for more information.

#### **EXAMPLES:**

```
sage: K = Zp(13, 4)
sage: R.<t> = K[]
sage: a = t^2 + K(13,3)*t + 169; a
(1 + O(13^4))*t^2 + (13 + O(13^3))*t + (13^2 + O(13^6))
sage: b = a.rshift_coeffs(1); b
(O(13^3))*t^2 + (1 + O(13^2))*t + (13 + O(13^5))
sage: b.list()
[13 + O(13^5), 1 + O(13^2), O(13^3)]
sage: b = a.rshift_coeffs(2); b
(O(13^2))*t^2 + (O(13))*t + (1 + O(13^4))
sage: b.list()
[1 + O(13^4), O(13), O(13^2)]
```

## valuation(val\_of\_var=None)

Returns the valuation of self

INPUT: self – a p-adic polynomial val\_of\_var – None or a rational (default None).

OUTPUT: If val\_of\_var == None, returns the largest power of the variable dividing self. Otherwise, returns the valuation of self where the variable is assigned valuation val\_of\_var

## valuation\_of\_coefficient(n=None)

Returns valuation information about self's coefficients.

INPUT: self – a p-adic polynomial n – None or an integer (default None).

OUTPUT: If n == None, returns a list of valuations of coefficients. Otherwise, returns the valuation of the coefficient of  $x^n$ .

# xgcd(right)

Extended gcd of self and other.

## INPUT:

•other - an element with the same parent as self

# OUTPUT:

Polynomials q, u, and v such that q = u \* self + v \* other

**Warning:** The computations are performed using the standard Euclidean algorithm which might produce mathematically incorrect results in some cases. See trac ticket #13439.

```
EXAMPLES:
         sage: R. < x > = Qp(3,3)[]
         sage: f = x + 1
         sage: f.xqcd(f^2)
         ((1 + O(3^3))*x + (1 + O(3^3)), (1 + O(3^3)), 0)
         In these examples the results are incorrect, see trac ticket #13439:
         sage: R. < x > = Qp(3,3)[]
         sage: f = 3 * x + 7
         sage: g = 5*x + 9
         sage: f.xgcd(f*g) # known bug
         ((3 + O(3^4)) *x + (1 + 2*3 + O(3^3)), (1 + O(3^3)), 0)
         sage: R. < x > = Qp(3)[]
         sage: f = 490473657 \times x + 257392844/729
         sage: g = 225227399/59049*x - 8669753175
         sage: f.xgcd(f*g) # known bug
         ((3^3 + 3^5 + 2*3^6 + 2*3^7 + 3^8 + 2*3^10 + 2*3^11 + 3^12 + 3^13 + 3^15 + 2*3^16 + 3^18 + 3^18)
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.make_padic_poly(parent,
                                                                                                  x.
                                                                                                  ver-
                                                                                                  sion)
2.1.16 p-adic Flat Polynomials
class sage.rings.polynomial.padics.polynomial_padic_flat.Polynomial_padic_flat (parent,
```

```
x=None,
                                                                                      check=True,
                                                                                      is_gen=False,
                                                                                      con-
                                                                                      struct=False,
                                                                                      ab-
                                                                                     sprec=None)
Bases:
          sage.rings.polynomial.polynomial_element.Polynomial_generic_dense,
sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic
TESTS:
Check that trac ticket #13620 has been fixed:
sage: K = ZpFM(3)
sage: R.<t> = K[]
sage: R(R.zero())
```

# 2.1.17 Univariate Polynomials over GF(p^e) via NTL's ZZ pEX.

#### **AUTHOR:**

• Yann Laigle-Chapuy (2010-01) initial implementation

```
class sage.rings.polynomial_polynomial_zz_pex.Polynomial_ZZ_pEX
    Bases: sage.rings.polynomial.polynomial_zz_pex.Polynomial_template
    Univariate Polynomials over GF(p^n) via NTL's ZZ_pEX.
```

## **EXAMPLE:**

```
sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K,implementation='NTL')
sage: (x^3 + a*x^2 + 1) * (x + a)
x^4 + 2*a*x^3 + a^2*x^2 + x + a
```

## is\_irreducible (algorithm='fast\_when\_false', iter=1)

Returns True precisely when self is irreducible over its base ring.

INPUT:

## **Parameters**

- **algorithm** a string (default "fast\_when\_false"), there are 3 available algorithms: "fast\_when\_true", "fast\_when\_false" and "probabilistic".
- iter (default: 1) if the algorithm is "probabilistic" defines the number of iterations. The error probability is bounded by q \* \* iter for polynomials in GF(q)[x].

## **EXAMPLES:**

```
sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K,implementation='NTL')
sage: P = x^3+(2-a)*x+1
sage: P.is_irreducible(algorithm="fast_when_false")
True
sage: P.is_irreducible(algorithm="fast_when_true")
True
sage: P.is_irreducible(algorithm="probabilistic")
True
sage: Q = (x^2+a)*(x+a^3)
sage: Q.is_irreducible(algorithm="fast_when_false")
False
sage: Q.is_irreducible(algorithm="fast_when_true")
False
sage: Q.is_irreducible(algorithm="fast_when_true")
False
```

#### list()

Returs the list of coefficients.

## **EXAMPLE:**

```
sage: K.<a> = GF(5^3)
sage: P = PolynomialRing(K, 'x')
sage: f = P.random_element(100)
sage: f.list() == [f[i] for i in range(f.degree()+1)]
True
sage: P.0.list()
[0, 1]
```

## resultant (other)

Returns the resultant of self and other, which must lie in the same polynomial ring.

INPUT:

## Parameters other – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

```
sage: K. < a > = GF (next\_prime (2 * * 60) * * 3)
         sage: R.<x> = PolynomialRing(K,implementation='NTL')
         sage: f = (x-a) * (x-a**2) * (x+1)
         sage: q = (x-a**3)*(x-a**4)*(x+a)
         sage: r = f.resultant(g)
         sage: r == prod(u-v for (u,eu) in f.roots() for (v,ev) in g.roots())
    shift(n)
        EXAMPLE:
         sage: K. < a > = GF (next_prime (2 * * 60) * * 3)
         sage: R.<x> = PolynomialRing(K, implementation='NTL')
         sage: f = x^3 + x^2 + 1
         sage: f.shift(1)
         x^4 + x^3 + x
         sage: f.shift(-1)
         x^2 + x
class sage.rings.polynomial.polynomial_zz_pex.Polynomial_ZZ_pX
    Bases: sage.rings.polynomial.polynomial_zz_pex.Polynomial_template
class sage.rings.polynomial.polynomial_zz_pex.Polynomial_template
    Bases: sage.rings.polynomial.polynomial_element.Polynomial
```

Template for interfacing to external C / C++ libraries for implementations of polynomials.

## **AUTHORS:**

- •Robert Bradshaw (2008-10): original idea for templating
- •Martin Albrecht (2008-10): initial implementation

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a 'linkage' file which implements the celement\_ functions (see sage.libs.ntl.ntl\_GF2X\_linkage for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See sage.rings.polynomial.polynomial\_gf2x for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).

**Note:** Implementations using this template MUST implement coercion from base ring elements and \_\_getitem\_\_. See Polynomial\_GF2X for an example.

```
degree ()
    EXAMPLE:
    sage: P.<x> = GF(2)[]
    sage: x.degree()
    1
    sage: P(1).degree()
    0
    sage: P(0).degree()
    -1

gcd (other)
    Return the greatest common divisor of self and other.
    EXAMPLE:
```

```
sage: P. < x > = GF(2)[]
    sage: f = x*(x+1)
    sage: f.gcd(x+1)
    x + 1
    sage: f.gcd(x^2)
get_cparent()
is_gen()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.is_gen()
    True
    sage: (x+1).is_gen()
    False
is_one()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: P(1).is_one()
    True
is zero()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.is_zero()
    False
list()
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: x.list()
    [0, 1]
    sage: list(x)
    [0, 1]
quo_rem(right)
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: f = x^2 + x + 1
    sage: f.quo_rem(x + 1)
    (x, 1)
shift(n)
    EXAMPLE:
    sage: P. < x > = GF(2)[]
    sage: f = x^3 + x^2 + 1
    sage: f.shift(1)
    x^4 + x^3 + x
    sage: f.shift(-1)
    x^2 + x
truncate(n)
```

Returns this polynomial mod  $x^n$ .

#### **EXAMPLES:**

```
sage: R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

```
sage: f.truncate(10) is f
True
```

## xgcd (other)

Computes extended gcd of self and other.

#### **EXAMPLE:**

```
sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)
```

sage.rings.polynomial.polynomial zz pex.make element(parent, args)

# 2.1.18 Isolate Real Roots of Real Polynomials

# **AUTHOR:**

• Carl Witty (2007-09-19): initial version

This is an implementation of real root isolation. That is, given a polynomial with exact real coefficients, we compute isolating intervals for the real roots of the polynomial. (Polynomials with integer, rational, or algebraic real coefficients are supported.)

We convert the polynomials into the Bernstein basis, and then use de Casteljau's algorithm and Descartes' rule of signs on the Bernstein basis polynomial (using interval arithmetic) to locate the roots. The algorithm is similar to that in "A Descartes Algorithm for Polynomials with Bit-Stream Coefficients", by Eigenwillig, Kettner, Krandick, Mehlhorn, Schmitt, and Wolpert, but has three crucial optimizations over the algorithm in that paper:

- Precision reduction: at certain points in the computation, we discard the low-order bits of the coefficients, widening the intervals.
- Degree reduction: at certain points in the computation, we find lower-degree polynomials that are approximately equal to our high-degree polynomial over the region of interest.
- When the intervals are too wide to continue (either because of a too-low initial precision, or because of precision or degree reduction), and we need to restart with higher precision, we recall which regions have already been proven not to have any roots and do not examine them again.

The best description of the algorithms used (other than this source code itself) is in the slides for my Sage Days 4 talk, currently available from http://www.sagemath.org:9001/days4schedule .

```
exception sage.rings.polynomial.real_roots.PrecisionError
    Bases: exceptions.ValueError
```

```
sage.rings.polynomial.real roots.bernstein down (d1, d2, s)
```

Given polynomial degrees d1 and d2 (where d1 < d2), and a number of samples s, computes a matrix bd.

If you have a Bernstein polynomial of formal degree d2, and select s of its coefficients (according to subsample\_vec), and multiply the resulting vector by bd, then you get the coefficients of a Bernstein polynomial of formal degree d1, where this second polynomial is a good approximation to the first polynomial over the region of the Bernstein basis.

#### **EXAMPLES:**

```
sage.rings.polynomial.real_roots.bernstein_expand (c, d2)
```

Given an integer vector representing a Bernstein polynomial p, and a degree d2, compute the representation of p as a Bernstein polynomial of formal degree d2.

This is similar to multiplying by the result of bernstein\_up, but should be faster for large d2 (this has about the same number of multiplies, but in this version all the multiplies are by single machine words).

Returns a pair consisting of the expanded polynomial, and the maximum error E. (So if an element of the returned polynomial is a, and the true value of that coefficient is b, then  $a \le b \le a + E$ .)

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(ZZ, [1000, 2000, -3000])
sage: bernstein_expand(c, 3)
((1000, 1666, 333, -3000), 1)
sage: bernstein_expand(c, 4)
((1000, 1500, 1000, -500, -3000), 1)
sage: bernstein_expand(c, 20)
((1000, 1100, 1168, 1205, 1210, 1184, 1126, 1036, 915, 763, 578, 363, 115, -164, -474, -816, -11
```

## class sage.rings.polynomial.real\_roots.bernstein\_polynomial\_factory

An abstract base class for bernstein\_polynomial factories. That is, elements of subclasses represent Bernstein polynomials (exactly), and are responsible for creating interval\_bernstein\_polynomial\_integer approximations at arbitrary precision.

Supports four methods, coeffs\_bitsize(), bernstein\_polynomial(), lsign(), and usign(). The coeffs\_bitsize() method gives an integer approximation to the log2 of the max of the absolute values of the Bernstein coefficients. The bernstein\_polynomial(scale\_log2) method gives an approximation where the maximum coefficient has approximately coeffs\_bitsize() - scale\_log2 bits. The lsign() and usign() methods give the (exact) sign of the first and last coefficient, respectively.

## lsign()

Returns the sign of the first coefficient of this Bernstein polynomial.

#### usign ()

Returns the sign of the last coefficient of this Bernstein polynomial.

This class holds an exact Bernstein polynomial (represented as a list of algebraic real coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

#### bernstein polynomial (scale log2)

Compute an interval\_bernstein\_polynomial\_integer that approximates this polynomial, using the given scale log2. (Smaller scale log2 values give more accurate approximations.)

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: bpf = bernstein_polynomial_factory_ar(p, False)
sage: print bpf.bernstein_polynomial(0)
degree 3 IBP with 2-bit coefficients
sage: bpf.bernstein_polynomial(-20)
<IBP: ((-2965821, 2181961, -1542880, 1048576) + [0 .. 1)) * 2^-20>
sage: bpf = bernstein_polynomial_factory_ar(p, True)
sage: bpf.bernstein_polynomial(-20)
<IBP: ((-2965821, -2181962, -1542880, -1048576) + [0 .. 1)) * 2^-20>
sage: p = x^2 - 1
sage: bpf = bernstein_polynomial_factory_ar(p, False)
sage: bpf.bernstein_polynomial(-10)
<IBP: ((-1024, 0, 1024) + [0 .. 1)) * 2^-10>
```

## coeffs\_bitsize()

Computes the approximate log2 of the maximum of the absolute values of the coefficients.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: bernstein_polynomial_factory_ar(p, False).coeffs_bitsize()
1
```

```
class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist (coeffs)
    Bases: sage.rings.polynomial.real_roots.bernstein_polynomial_factory
```

This class holds an exact Bernstein polynomial (represented as a list of integer coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

# bernstein\_polynomial(scale\_log2)

Compute an interval\_bernstein\_polynomial\_integer that approximates this polynomial, using the given scale\_log2. (Smaller scale\_log2 values give more accurate approximations.)

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bpf = bernstein_polynomial_factory_intlist([10, -20, 30, -40])
sage: print bpf.bernstein_polynomial(0)
degree 3 IBP with 6-bit coefficients
sage: bpf.bernstein_polynomial(20)
<IBP: ((0, -1, 0, -1) + [0 .. 1)) * 2^20; lsign 1>
sage: bpf.bernstein_polynomial(0)
<IBP: (10, -20, 30, -40) + [0 .. 1)>
sage: bpf.bernstein_polynomial(-20)
<IBP: ((10485760, -20971520, 31457280, -41943040) + [0 .. 1)) * 2^-20>
```

#### coeffs bitsize()

Computes the approximate log2 of the maximum of the absolute values of the coefficients.

```
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_polynomial_factory_intlist([1, 2, 3, -60000]).coeffs_bitsize()
16
```

```
class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ratlist (coeffs)
    Bases: sage.rings.polynomial.real_roots.bernstein_polynomial_factory
```

This class holds an exact Bernstein polynomial (represented as a list of rational coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

## bernstein\_polynomial(scale\_log2)

Compute an interval\_bernstein\_polynomial\_integer that approximates this polynomial, using the given scale\_log2. (Smaller scale\_log2 values give more accurate approximations.)

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bpf = bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99])
sage: print bpf.bernstein_polynomial(0)
degree 3 IBP with 3-bit coefficients
sage: bpf.bernstein_polynomial(20)
<IBP: ((0, -1, 0, -1) + [0 .. 1)) * 2^20; lsign 1>
sage: bpf.bernstein_polynomial(0)
<IBP: (0, -4, 2, -2) + [0 .. 1); lsign 1>
sage: bpf.bernstein_polynomial(-20)
<IBP: ((349525, -3295525, 2850354, -1482835) + [0 .. 1)) * 2^-20>
```

## coeffs\_bitsize()

Computes the approximate log2 of the maximum of the absolute values of the coefficients.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_polynomial_factory_ratlist([1, 2, 3, -60000]).coeffs_bitsize()
15
sage: bernstein_polynomial_factory_ratlist([65535/65536]).coeffs_bitsize()
-1
sage: bernstein_polynomial_factory_ratlist([65536/65535]).coeffs_bitsize()
1
```

```
sage.rings.polynomial.real_roots.bernstein_up(d1, d2, s=None)
```

Given polynomial degrees d1 and d2, where d1 < d2, compute a matrix bu.

If you have a Bernstein polynomial of formal degree d1, and multiply its coefficient vector by bu, then the result is the coefficient vector of the same polynomial represented as a Bernstein polynomial of formal degree d2.

If s is not None, then it represents a number of samples; then the product only gives s of the coefficients of the new Bernstein polynomial, selected according to subsample vec.

## **EXAMPLES:**

sage.rings.polynomial.real\_roots.bitsize\_doctest(n)

```
sage.rings.polynomial.real roots.cl maximum root (cl)
```

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.

Uses two algorithms of Akritas, Strzebo'nski, and Vigklas, and picks the better result.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root([RIF(-1), RIF(0), RIF(1)])
1.00000000000000
```

```
sage.rings.polynomial.real_roots.cl_maximum_root_first_lambda(cl)
```

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.

Uses the first-lambda algorithm from "Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials", by Akritas, Strzebo'nski, and Vigklas.

#### **EXAMPLES**

```
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root_first_lambda([RIF(-1), RIF(0), RIF(1)])
1.00000000000000

TESTS:
sage: bnd = cl_maximum_root_first_lambda(map(RIF, [0, 0, 0, 14, 1]))
sage: bnd, bnd.parent()
(0.0000000000000000,
Real Field with 53 bits of precision and rounding RNDU)
```

```
sage.rings.polynomial.real_roots.cl_maximum_root_local_max(cl)
```

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.

Uses the local-max algorithm from "Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials", by Akritas, Strzebo'nski, and Vigklas.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root_local_max([RIF(-1), RIF(0), RIF(1)])
1.41421356237310
```

class sage.rings.polynomial.real\_roots.context

Bases: object

A simple context class, which is passed through parts of the real root isolation algorithm to avoid global variables.

Holds logging information, a random number generator, and the target machine wordsize.

```
get_be_log()
get_dc_log()
```

```
sage.rings.polynomial.real_roots.de_casteljau_doublevec(c, x)
```

Given a polynomial in Bernstein form with floating-point coefficients over the region [0 .. 1], and a split point x, use de Casteljau's algorithm to give polynomials in Bernstein form over [0 .. x] and [x .. 1].

This function will work for an arbitrary rational split point x, as long as 0 < x < 1; but it has a specialized code path for x==1/2.

## INPUT:

- •c vector of coefficients of polynomial in Bernstein form
- •x rational splitting point; 0 < x < 1

## **OUTPUT:**

- •c1 coefficients of polynomial over range [0 .. x]
- •c2 coefficients of polynomial over range [x .. 1]
- •err\_inc number of half-ulps by which error intervals widened

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(RDF, [0.7, 0, 0, 0, 0])
sage: de_casteljau_doublevec(c, 1/2)
((0.7, 0.35, 0.175, 0.0875, 0.04375, 0.021875), (0.021875, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), 5)
sage: de_casteljau_doublevec(c, 1/3) # rel tol
((0.7, 0.466666666666666667, 0.31111111111111111111111, 0.20740740740740746, 0.13827160493827165, 0.0921
sage: de_casteljau_doublevec(c, 7/22) # rel tol
((0.7, 0.4772727272727373, 0.3254132231404959, 0.22187265214124724, 0.15127680827812312, 0.10314
```

```
sage.rings.polynomial.real_roots.de_casteljau_intvec(c, c_bitsize, x, use_ints)
```

Given a polynomial in Bernstein form with integer coefficients over the region [0 .. 1], and a split point x, use de Casteljau's algorithm to give polynomials in Bernstein form over [0 .. x] and [x .. 1].

This function will work for an arbitrary rational split point x, as long as 0 < x < 1; but it has specialized code paths that make some values of x faster than others. If x == a/(a + b), there are special efficient cases for a==1, b==1, a+b fits in a machine word, a+b is a power of 2, a fits in a machine word, b fits in a machine word. The most efficient case is x==1/2.

Given split points x == a/(a + b) and y == c/(c + d), where min(a, b) and min(c, d) fit in the same number of machine words and a+b and c+d are both powers of two, then x and y should be equally fast split points.

If use\_ints is nonzero, then instead of checking whether numerators and denominators fit in machine words, we check whether they fit in ints (32 bits, even on 64-bit machines). This slows things down, but allows for identical results across machines.

## INPUT:

- •c vector of coefficients of polynomial in Bernstein form
- •c\_bitsize approximate size of coefficients in c (in bits)
- •x rational splitting point; 0 < x < 1

## **OUTPUT:**

- •c1 coefficients of polynomial over range [0 .. x]
- •c2 coefficients of polynomial over range [x .. 1]
- err\_inc amount by which error intervals widened

```
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(ZZ, [1048576, 0, 0, 0, 0, 0])
sage: de_casteljau_intvec(c, 20, 1/2, 1)
((1048576, 524288, 262144, 131072, 65536, 32768), (32768, 0, 0, 0, 0, 0), 1)
sage: de_casteljau_intvec(c, 20, 1/3, 1)
((1048576, 699050, 466033, 310689, 207126, 138084), (138084, 0, 0, 0, 0, 0, 0), 1)
```

```
sage: de_casteljau_intvec(c, 20, 7/22, 1)
  ((1048576, 714938, 487457, 332357, 226607, 154505), (154505, 0, 0, 0, 0, 0), 1)

sage.rings.polynomial.real_roots.degree_reduction_next_size(n)
  Given n (a polynomial degree), returns either a smaller integer or None. This defines the sequence of degrees followed by our degree reduction implementation.
```

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: degree_reduction_next_size(1000)
30
sage: degree_reduction_next_size(20)
15
sage: degree_reduction_next_size(3)
2
sage: degree_reduction_next_size(2) is None
True
```

```
sage.rings.polynomial.real_roots.dprod_imatrow_vec(m, v, k)
```

Computes the dot product of row k of the matrix m with the vector v (that is, compute one element of the product m\*v).

If v has more elements than m has columns, then elements of v are selected using subsample\_vec.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: m = matrix(3, range(9))
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 0, 0, 0]), 1)
0
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 1, 0, 0]), 1)
3
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 1, 0]), 1)
4
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 0, 1]), 1)
5
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 0, 0]), 1)
3
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 1, 0]), 1)
4
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 1]), 1)
5
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 2, 3]), 1)
26
```

 $\verb|sage.rings.polynomial.real_roots.get_realfield\_rndu|(n)$ 

A simple cache for RealField fields (with rounding set to round-to-positive-infinity).

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: get_realfield_rndu(20)
Real Field with 20 bits of precision and rounding RNDU
sage: get_realfield_rndu(53)
Real Field with 53 bits of precision and rounding RNDU
sage: get_realfield_rndu(20)
Real Field with 20 bits of precision and rounding RNDU
```

class sage.rings.polynomial.real\_roots.interval\_bernstein\_polynomial

Bases: object

An interval\_bernstein\_polynomial is an approximation to an exact polynomial. This approximation is in the form of a Bernstein polynomial (a polynomial given as coefficients over a Bernstein basis) with interval coefficients.

The Bernstein basis of degree n over the region [a.. b] is the set of polynomials

$$\binom{n}{k}(x-a)^k(b-x)^{n-k}/(b-a)^n$$

for  $0 \le k \le n$ .

A degree-n interval Bernstein polynomial P with its region [a .. b] can represent an exact polynomial p in two different ways: it can "contain" the polynomial or it can "bound" the polynomial.

We say that P contains p if, when p is represented as a degree-n Bernstein polynomial over [a..b], its coefficients are contained in the corresponding interval coefficients of P. For instance,  $[0.9..1.1]*x^2$  (which is a degree-2 interval Bernstein polynomial over [0..1]) contains  $x^2$ .

We say that P bounds p if, for all a  $\leq$  x  $\leq$  b, there exists a polynomial p' contained in P such that p(x) == p'(x). For instance, [0...1]\*x is a degree-1 interval Bernstein polynomial which bounds x^2 over [0...1].

If P contains p, then P bounds p; but the converse is not necessarily true. In particular, if n < m, it is possible for a degree-n interval Bernstein polynomial to bound a degree-m polynomial; but it cannot contain the polynomial.

In the case where P bounds p, we maintain extra information, the "slope error". We say that P (over [a .. b]) bounds p with a slope error of E (where E is an interval) if there is a polynomial p' contained in P such that the derivative of (p - p') is bounded by E in the range [a .. b]. If P bounds p with a slope error of 0 then P contains p.

(Note that "contains" and "bounds" are not standard terminology; I just made them up.)

Interval Bernstein polynomials are useful in finding real roots because of the following properties:

- •Given an exact real polynomial p, we can compute an interval Bernstein polynomial over an arbitrary region containing p.
- •Given an interval Bernstein polynomial P over [a .. c], where a < b < c, we can compute interval Bernstein polynomials P1 over [a .. b] and P2 over [b .. c], where P1 and P2 contain (or bound) all polynomials that P contains (or bounds).
- •Given a degree-n interval Bernstein polynomial P over [a .. b], and m < n, we can compute a degree-m interval Bernstein polynomial P' over [a .. b] that bounds all polynomials that P bounds.
- •It is sometimes possible to prove that no polynomial bounded by P over [a .. b] has any roots in [a .. b]. (Roughly, this is possible when no polynomial contained by P has any complex roots near the line segment [a .. b], where "near" is defined relative to the length b-a.)
- •It is sometimes possible to prove that every polynomial bounded by P over [a .. b] with slope error E has exactly one root in [a .. b]. (Roughly, this is possible when every polynomial contained by P over [a .. b] has exactly one root in [a .. b], there are no other complex roots near the line segment [a .. b], and every polynomial contained in P has a derivative which is bounded away from zero over [a .. b] by an amount which is large relative to E.)
- •Starting from a sufficiently precise interval Bernstein polynomial, it is always possible to split it into polynomials which provably have 0 or 1 roots (as long as your original polynomial has no multiple real roots).

So a rough outline of a family of algorithms would be:

- •Given a polynomial p, compute a region [a .. b] in which any real roots must lie.
- •Compute an interval Bernstein polynomial P containing p over [a .. b].

•Keep splitting P until you have isolated all the roots. Optionally, reduce the degree or the precision of the interval Bernstein polynomials at intermediate stages (to reduce computation time). If this seems not to be working, go back and try again with higher precision.

Obviously, there are many details to be worked out to turn this into a full algorithm, like:

- •What initial precision is selected for computing P?
- •How do you decide when to reduce the degree of intermediate polynomials?
- •How do you decide when to reduce the precision of intermediate polynomials?
- •How do you decide where to split the interval Bernstein polynomial regions?
- •How do you decide when to give up and start over with higher precision?

Each set of answers to these questions gives a different algorithm (potentially with very different performance characteristics), but all of them can use this interval\_bernstein\_polynomial class as their basic building block.

To save computation time, all coefficients in an interval\_bernstein\_polynomial share the same interval width. (There is one exception: when creating an interval\_bernstein\_polynomial, the first and last coefficients can be marked as "known positive" or "known negative". This has some of the same effect as having a (potentially) smaller interval width for these two coefficients, although it does not affect de Casteljau splitting.) To allow for widely varying coefficient magnitudes, all coefficients in an interval\_bernstein\_polynomial are scaled by  $2^n$  (where n may be positive, negative, or zero).

There are two representations for interval\_bernstein\_polynomials, integer and floating-point. These are the two subclasses of this class; interval\_bernstein\_polynomial itself is an abstract class.

interval bernstein polynomial and its subclasses are not expected to be used outside this file.

```
region()
region_width()
try_rand_split(ctx, logging_note)
```

Compute a random split point r (using the random number generator embedded in ctx). We require  $1/4 \le r \le 3/4$  (to ensure that recursive algorithms make progress).

Then, try doing a de Casteljau split of this polynomial at r, resulting in polynomials p1 and p2. If we see that the sign of this polynomial is determined at r, then return (p1, p2, r); otherwise, return None.

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
sage: bp1
\langle IBP: (50, 29, -27, -56, -11) + [0 .. 6) \text{ over } [0 .. 43/64] \rangle
sage: bp2
<IBP: (-11, 10, 49, 111, 200) + [0 .. 6) over [43/64 .. 1] >
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(seed=42), None)
sage: bp1
\langle \text{IBP}: (50, 32, -11, -41, -29) + [0 .. 6) \text{ over } [0 .. 583/1024] \rangle
\langle IBP: (-29, -20, 13, 83, 200) + [0 .. 6) \text{ over } [583/1024 .. 1] \rangle
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
sage: bp1 # rel tol
<IBP: (0.5, 0.2984375, -0.2642578125, -0.5511661529541015, -0.3145806974172592) + [-0.1 .. (
sage: bp2 # rel tol
<IBP: (-0.3145806974172592, -0.19903896331787108, 0.04135986328125002, 0.43546875, 0.99) + |
```

# try\_split (ctx, logging\_note)

Try doing a de Casteljau split of this polynomial at 1/2, resulting in polynomials p1 and p2. If we see that the sign of this polynomial is determined at 1/2, then return (p1, p2, 1/2); otherwise, return None.

# **EXAMPLES**:

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: bp1, bp2, _ = bp.try_split(mk_context(), None)
sage: bp1
<IBP: (50, 35, 0, -29, -31) + [0 .. 6) over [0 .. 1/2]>
sage: bp2
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1]>
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, _ = bp.try_split(mk_context(), None)
sage: bp1
<IBP: (0.5, 0.35, 0.0, -0.2875, -0.369375) + [-0.1 .. 0.01] over [0 .. 1/2]>
sage: bp2
<IBP: (-0.369375, -0.45125, -0.3275, 0.14500000000000002, 0.99) + [-0.1 .. 0.01] over [1/2 ..</pre>
```

## variations()

Consider a polynomial (written in either the normal power basis or the Bernstein basis). Take its list of coefficients, omitting zeroes. Count the number of positions in the list where the sign of one coefficient is opposite the sign of the next coefficient.

This count is the number of sign variations of the polynomial. According to Descartes' rule of signs, the number of real roots of the polynomial (counted with multiplicity) in a certain interval is always less than or equal to the number of sign variations, and the difference is always even. (If the polynomial is written in the power basis, the region is the positive reals; if the polynomial is written in the Bernstein basis over a particular region, then we count roots in that region.)

In particular, a polynomial with no sign variations has no real roots in the region, and a polynomial with one sign variation has one real root in the region.

In an interval Bernstein polynomial, we do not necessarily know the signs of the coefficients (if some of the coefficient intervals contain zero), so the polynomials contained by this interval polynomial may not all have the same number of sign variations. However, we can compute a range of possible numbers of sign variations.

This function returns the range, as a 2-tuple of integers.

```
class sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float
    Bases: sage.rings.polynomial.real_roots.interval_bernstein_polynomial
```

This is the subclass of interval\_bernstein\_polynomial where polynomial coefficients are represented using floating-point numbers.

In the floating-point representation, each coefficient is represented as an IEEE double-precision float A, and the (shared) lower and upper interval widths E1 and E2. These represent the coefficients  $(A+E1)*2^n <= c <= (A+E2)*2^n$ .

Note that we always have  $E1 \le 0 \le E2$ . Also, each floating-point coefficient has absolute value less than one.

(Note that mk\_ibpf is a simple helper function for creating elements of interval\_bernstein\_polynomial\_float in doctests.)

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpf([0.1, 0.2, 0.3], pos_err=0.5); print bp
degree 2 IBP with floating-point coefficients
sage: bp
```

```
<IBP: (0.1, 0.2, 0.3) + [0.0 .. 0.5]>
sage: bp.variations()
(0, 0)
sage: bp = mk_ibpf([-0.3, -0.1, 0.1, -0.1, -0.3, -0.1], lower=1, upper=5/4, usign=1, pos_err=0.2
degree 5 IBP with floating-point coefficients
sage: bp
<IBP: ((-0.3, -0.1, 0.1, -0.1, -0.3, -0.1) + [0.0 .. 0.2]) * 2^-3 over [1 .. 5/4]; usign 1; level
sage: bp.variations()
(3, 3)</pre>
```

## as float()

### de casteljau (ctx, mid, msign=0)

Uses de Casteljau's algorithm to compute the representation of this polynomial in a Bernstein basis over new regions.

# INPUT:

- •mid where to split the Bernstein basis region; 0 < mid < 1
- •msign default 0 (unknown); the sign of this polynomial at mid

# **OUTPUT**:

- •bp1, bp2 the new interval Bernstein polynomials
- •ok a boolean; True if the sign of the original polynomial at mid is known

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: ctx = mk_context()
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)
sage: bp1
\langle 1BP: (0.5, 0.35, 0.0, -0.2875, -0.369375) + [-0.1 .. 0.01] \text{ over } [0 .. 1/2] \rangle
sage: bp2
\langle IBP: (-0.369375, -0.45125, -0.3275, 0.1450000000000002, 0.99) + [-0.1 .. 0.01] \text{ over } [1/2]
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 2/3)
sage: bp1 # rel tol 2e-16
<IBP: (0.5, 0.3000000000000000, -0.255555555555555, -0.544444444444444, -0.32172839506172
sage: bp2 # rel tol 3e-15
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 7/39)
sage: bp1 # rel tol
<IBP: (0.5, 0.4461538461538461, 0.36653517422748183, 0.27328680523946786, 0.1765692706232836
sage: bp2 # rel tol
<IBP: (0.1765692706232836, -0.26556803047927313, -0.7802038132807364, -0.3966666666666666, (
```

# get\_msb\_bit()

Returns an approximation of the log2 of the maximum of the absolute values of the coefficients, as an integer.

#### slope\_range()

Compute a bound on the derivative of this polynomial, over its region.

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp.slope_range().str(style='brackets')
'[-4.8400000000000017 .. 7.2000000000000011]'
```

```
class sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer
    Bases: sage.rings.polynomial.real_roots.interval_bernstein_polynomial
```

This is the subclass of interval\_bernstein\_polynomial where polynomial coefficients are represented using integers.

In this integer representation, each coefficient is represented by a GMP arbitrary-precision integer A, and a (shared) interval width E (which is a machine integer). These represent the coefficients  $A*2^n \le c < (A+E)*2^n$ .

(Note that mk\_ibpi is a simple helper function for creating elements of interval\_bernstein\_polynomial\_integer in doctests.)

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([1, 2, 3], error=5); print bp
degree 2 IBP with 2-bit coefficients
sage: bp
<IBP: (1, 2, 3) + [0 .. 5)>
sage: bp.variations()
(0, 0)
sage: bp = mk_ibpi([-3, -1, 1, -1, -3, -1], lower=1, upper=5/4, usign=1, error=2, scale_log2=-3, degree 5 IBP with 2-bit coefficients
sage: bp
<IBP: ((-3, -1, 1, -1, -3, -1) + [0 .. 2)) * 2^-3 over [1 .. 5/4]; usign 1; level 2; slope_err 3
sage: bp.variations()
(3, 3)</pre>
```

# as float()

Compute an interval\_bernstein\_polynomial\_float which contains (or bounds) all the polynomials this interval polynomial contains (or bounds).

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: print bp.as_float()
degree 4 IBP with floating-point coefficients
sage: bp.as_float()
<IBP: ((0.1953125, 0.078125, -0.3515625, -0.2734375, 0.78125) + [-1.12757025938e-16 .. 0.019</pre>
```

# de\_casteljau(ctx, mid, msign=0)

Uses de Casteljau's algorithm to compute the representation of this polynomial in a Bernstein basis over new regions.

# INPUT:

- •mid where to split the Bernstein basis region; 0 < mid < 1
- •msign default 0 (unknown); the sign of this polynomial at mid

# **OUTPUT:**

- •bp1, bp2 the new interval Bernstein polynomials
- •ok a boolean; True if the sign of the original polynomial at mid is known

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: ctx = mk_context()
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)
sage: bp1
\langle IBP: (50, 35, 0, -29, -31) + [0 .. 6) \text{ over } [0 .. 1/2] \rangle
sage: bp2
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1] >
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 2/3)
sage: bp1
<IBP: (50, 30, -26, -55, -13) + [0 .. 6) over [0 .. 2/3] >
sage: bp2
\langle IBP: (-13, 8, 47, 110, 200) + [0 .. 6) \text{ over } [2/3 .. 1] \rangle
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 7/39)
sage: bp1
<IBP: (50, 44, 36, 27, 17) + [0 .. 6) over [0 .. 7/39]>
sage: bp2
<IBP: (17, -26, -75, -22, 200) + [0 .. 6) over [7/39 .. 1] >
```

# down\_degree (ctx, max\_err, exp\_err\_shift)

Compute an interval\_bernstein\_polynomial\_integer which bounds all the polynomials this interval polynomial bounds, but is of lesser degree.

During the computation, we find an "expected error" expected\_err, which is the error inherent in our approach (this depends on the degrees involved, and is proportional to the error of the current polynomial).

We require that the error of the new interval polynomial be bounded both by max\_err, and by expected\_err << exp\_err\_shift. If we find such a polynomial p, then we return a pair of p and some debugging/logging information. Otherwise, we return the pair (None, None).

If the resulting polynomial would have error more than 2^17, then it is downscaled before returning.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: ctx = mk_context()
sage: bp
<IBP: (0, 100, 400, 903) + [0 .. 2)>
sage: dbp, _ = bp.down_degree(ctx, 10, 32)
sage: dbp
<IBP: (-1, 148, 901) + [0 .. 4); level 1; slope_err 0.?e2>
```

# down degree iter(ctx, max scale)

Compute a degree-reduced version of this interval polynomial, by iterating down\_degree.

We stop when degree reduction would give a polynomial which is too inaccurate, meaning that either we think the current polynomial may have more roots in its region than the degree of the reduced polynomial, or that the least significant accurate bit in the result (on the absolute scale) would be larger than 1 << max\_scale.

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903, 1600, 2500], error=2)
sage: ctx = mk_context()
sage: bp
<IBP: (0, 100, 400, 903, 1600, 2500) + [0 .. 2)>
sage: rbp = bp.down_degree_iter(ctx, 6)
sage: rbp
```

```
<IBP: (-4, 249, 2497) + [0 .. 9); level 2; slope_err 0.?e3>
```

## downscale (bits)

Compute an interval\_bernstein\_polynomial\_integer which contains (or bounds) all the polynomials this interval polynomial contains (or bounds), but uses "bits" fewer bits.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: bp.downscale(5)
<IBP: ((0, 3, 12, 28) + [0 .. 1)) * 2^5>
```

## get\_msb\_bit()

Returns an approximation of the log2 of the maximum of the absolute values of the coefficients, as an integer.

## slope\_range()

Compute a bound on the derivative of this polynomial, over its region.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: bp.slope_range().str(style='brackets')
'[294.00000000000000 .. 1515.000000000000]'
```

```
sage.rings.polynomial.real_roots.intvec_to_doublevec(b, err)
```

Given a vector of integers A = [a1, ..., an], and an integer error bound E, returns a vector of floating-point numbers B = [b1, ..., bn], lower and upper error bounds F1 and F2, and a scaling factor d, such that

$$(bk + F1) * 2^d < ak$$

and

$$ak + E \le (bk + F2) * 2^d$$

If bj is the element of B with largest absolute value, then  $0.5 \le abs(bj) \le 1.0$ .

### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: intvec_to_doublevec(vector(ZZ, [1, 2, 3, 4, 5]), 3)
((0.125, 0.25, 0.375, 0.5, 0.625), -1.1275702593849246e-16, 0.3750000000000017, 3)
```

class sage.rings.polynomial.real\_roots.island

Bases: object

This implements the island portion of my ocean-island root isolation algorithm. See the documentation for class ocean, for more information on the overall algorithm.

Island root refinement starts with a Bernstein polynomial whose region is the whole island (or perhaps slightly more than the island in certain cases). There are two subalgorithms; one when looking at a Bernstein polynomial covering a whole island (so we know that there are gaps on the left and right), and one when looking at a Bernstein polynomial covering the left segment of an island (so we know that there is a gap on the left, but the right is in the middle of an island). An important invariant of the left-segment subalgorithm over the region [1 .. r] is that it always finds a gap [r0 .. r] ending at its right endpoint.

Ignoring degree reduction, downscaling (precision reduction), and failures to split, the algorithm is roughly:

Whole island:

- 1.If the island definitely has exactly one root, then return.
- 2. Split the island in (approximately) half.
- 3.If both halves definitely have no roots, then remove this island from its doubly-linked list (merging its left and right gaps) and return.
- 4.If either half definitely has no roots, then discard that half and call the whole-island algorithm with the other half, then return.
- 5.If both halves may have roots, then call the left-segment algorithm on the left half.
- 6. We now know that there is a gap immediately to the left of the right half, so call the whole-island algorithm on the right half, then return.

# Left segment:

- 1. Split the left segment in (approximately) half.
- 2.If both halves definitely have no roots, then extend the left gap over the segment and return.
- 3.If the left half definitely has no roots, then extend the left gap over this half and call the left-segment algorithm on the right half, then return.
- 4.If the right half definitely has no roots, then split the island in two, creating a new gap. Call the whole-island algorithm on the left half, then return.
- 5.Both halves may have roots. Call the left-segment algorithm on the left half.
- 6. We now know that there is a gap immediately to the left of the right half, so call the left-segment algorithm on the right half, then return.

Degree reduction complicates this picture only slightly. Basically, we use heuristics to decide when degree reduction might be likely to succeed and be helpful; whenever this is the case, we attempt degree reduction.

Precision reduction and split failure add more complications. The algorithm maintains a stack of different-precision representations of the interval Bernstein polynomial. The base of the stack is at the highest (currently known) precision; each stack entry has approximately half the precision of the entry below it. When we do a split, we pop off the top of the stack, split it, then push whichever half we're interested in back on the stack (so the different Bernstein polynomials may be over different regions). When we push a polynomial onto the stack, we may heuristically decide to push further lower-precision versions of the same polynomial onto the stack.

In the algorithm above, whenever we say "split in (approximately) half", we attempt to split the top-of-stack polynomial using try\_split() and try\_rand\_split(). However, these will fail if the sign of the polynomial at the chosen split point is unknown (if the polynomial is not known to high enough precision, or if the chosen split point actually happens to be a root of the polynomial). If this fails, then we discard the top-of-stack polynomial, and try again with the next polynomial down (which has approximately twice the precision). This next polynomial may not be over the same region; if not, we split it using de Casteljau's algorithm to get a polynomial over (approximately) the same region first.

If we run out of higher-precision polynomials (if we empty out the entire stack), then we give up on root refinement for this island. The ocean class will notice this, provide the island with a higher-precision polynomial, and restart root refinement. Basically the only information kept in that case is the lower and upper bounds on the island. Since these are updated whenever we discover a "half" (of an island or a segment) that definitely contains no roots, we never need to re-examine these gaps. (We could keep more information. For example, we could keep a record of split points that succeeded and failed. However, a split point that failed at lower precision is likely to succeed at higher precision, so it's not worth avoiding. It could be useful to select split points that are known to succeed, but starting from a new Bernstein polynomial over a slightly different region, hitting such split points would require de Casteljau splits with non-power-of-two denominators, which are much much slower.)

# $bp\_done(bp)$

Examine the given Bernstein polynomial to see if it is known to have exactly one root in its region. (In addition, we require that the polynomial region not include 0 or 1. This makes things work if the user gives explicit bounds to real\_roots(), where the lower or upper bound is a root of the polynomial. real\_roots() deals with this by explicitly detecting it, dividing out the appropriate linear polynomial, and adding the root to the returned list of roots; but then if the island considers itself "done" with a region including 0 or 1, the returned root regions can overlap with each other.)

#### done(ctx)

Check to see if the island is known to contain zero roots or is known to contain one root.

#### has root()

Assuming that the island is done (has either 0 or 1 roots), reports whether the island has a root.

### less\_bits (ancestors, bp)

Heuristically pushes lower-precision polynomials on the polynomial stack. See the class documentation for class island for more information.

```
more_bits (ctx, ancestors, bp, rightmost)
```

Find a Bernstein polynomial on the "ancestors" stack with more precision than bp; if it is over a different region, then shrink its region to (approximately) match that of bp. (If this is rightmost – if bp covers the whole island – then we only require that the new region cover the whole island fairly tightly; if this is not rightmost, then the new region will have exactly the same right boundary as bp, although the left boundary may vary slightly.)

#### refine (ctx)

Attempts to shrink and/or split this island into sub-island that each definitely contain exactly one root.

```
refine recurse (ctx, bp, ancestors, history, rightmost)
```

This implements the root isolation algorithm described in the class documentation for class island. This is the implementation of both the whole-island and the left-segment algorithms; if the flag rightmost is True, then it is the whole-island algorithm, otherwise the left-segment algorithm.

The precision-reduction stack is (ancestors + [bp]); that is, the top-of-stack is maintained separately.

```
reset_root_width(target_width)
```

Modify the criteria for this island to require that it is not "done" until its width is less than or equal to target\_width.

```
shrink_bp(ctx)
```

If the island's Bernstein polynomial covers a region much larger than the island itself (in particular, if either the island's left gap or right gap are totally contained in the polynomial's region) then shrink the polynomial down to cover the island more tightly.

```
class sage.rings.polynomial.real_roots.linear_map(lower, upper)
```

A simple class to map linearly between original coordinates (ranging from [lower .. upper]) and ocean coordinates (ranging from [0 .. 1]).

```
from_ocean (region)
```

to\_ocean(region)

```
sage.rings.polynomial.real_roots.max_abs_doublevec(c)
```

Given a floating-point vector, return the maximum of the absolute values of its elements.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: max_abs_doublevec(vector(RDF, [0.1, -0.767, 0.3, 0.693]))
0.767
```

sage.rings.polynomial.real\_roots.max\_bitsize\_intvec\_doctest(b)

```
sage.rings.polynomial.real_roots.maximum_root_first_lambda(p)
```

Given a polynomial with real coefficients, computes an upper bound on its largest real root, using the first-lambda algorithm from "Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials", by Akritas, Strzebo'nski, and Vigklas.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: maximum_root_first_lambda((x-1)*(x-2)*(x-3))
6.000000000000001
sage: maximum_root_first_lambda((x+1)*(x+2)*(x+3))
0.00000000000000000
sage: maximum_root_first_lambda(x^2 - 1)
1.0000000000000000
```

### sage.rings.polynomial.real\_roots.maximum\_root\_local\_max(p)

Given a polynomial with real coefficients, computes an upper bound on its largest real root, using the local-max algorithm from "Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials", by Akritas, Strzebo'nski, and Vigklas.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: maximum_root_local_max((x-1)*(x-2)*(x-3))
12.0000000000001
sage: maximum_root_local_max((x+1)*(x+2)*(x+3))
0.0000000000000000
sage: maximum_root_local_max(x^2 - 1)
1.41421356237310
```

sage.rings.polynomial.real\_roots. $min_max_delta_intvec(a, b)$ 

Given two integer vectors a and b (of equal, nonzero length), return a pair of the minimum and maximum values taken on by a[i] - b[i].

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: a = vector(ZZ, [10, -30])
sage: b = vector(ZZ, [15, -60])
sage: min_max_delta_intvec(a, b)
(30, -5)
```

sage.rings.polynomial.real roots.min max diff doublevec(c)

Given a floating-point vector  $\mathbf{b} = (b0, ..., bn)$ , compute the minimum and maximum values of  $\mathbf{b}_{\{j+1\}} - \mathbf{b}_{j}$ .

### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: min_max_diff_doublevec(vector(RDF, [1, 7, -2]))
(-9.0, 6.0)
```

```
sage.rings.polynomial.real_roots.min_max_diff_intvec(b)
```

Given an integer vector b = (b0, ..., bn), compute the minimum and maximum values of  $b_{\{j+1\}} - b_{j}$ .

```
sage: from sage.rings.polynomial.real_roots import *
sage: min_max_diff_intvec(vector(ZZ, [1, 7, -2]))
(-9, 6)
```

sage.rings.polynomial.real\_roots.mk\_context (do\_logging=False, seed=0, wordsize=32)
A simple wrapper for creating context objects with coercions, defaults, etc.

For use in doctests.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: mk_context(do_logging=True, seed=3, wordsize=64)
root isolation context: seed=3; do_logging=True; wordsize=64
```

A simple wrapper for creating interval\_bernstein\_polynomial\_float objects with coercions, defaults, etc.

For use in doctests.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: print mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], pos_err=0.1, neg_err=-0.01)
degree 4 IBP with floating-point coefficients
```

```
sage.rings.polynomial.real_roots.mk_ibpi(coeffs, lower=0, upper=1, lsign=0, usign=0, er-
ror=1, scale_log2=0, level=0, slope_err=None)
```

A simple wrapper for creating interval\_bernstein\_polynomial\_integer objects with coercions, defaults, etc.

For use in doctests.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: print mk_ibpi([50, 20, -90, -70, 200], error=5)
degree 4 IBP with 8-bit coefficients
```

```
class sage.rings.polynomial.real_roots.ocean
    Bases: object
```

Given the tools we've defined so far, there are many possible root isolation algorithms that differ on where to select split points, what precision to work at when, and when to attempt degree reduction.

Here we implement one particular algorithm, which I call the ocean-island algorithm. We start with an interval Bernstein polynomial defined over the region [0 .. 1]. This region is the "ocean". Using de Casteljau's algorithm and Descartes' rule of signs, we divide this region into subregions which may contain roots, and subregions which are guaranteed not to contain roots. Subregions which may contain roots are "islands"; subregions known not to contain roots are "gaps".

All the real root isolation work happens in class island. See the documentation of that class for more information.

An island can be told to refine itself until it contains only a single root. This may not succeed, if the island's interval Bernstein polynomial does not have enough precision. The ocean basically loops, refining each of its islands, then increasing the precision of islands which did not succeed in isolating a single root; until all islands are done.

Increasing the precision of unsuccessful islands is done in a single pass using split\_for\_target(); this means it is possible to share work among multiple islands.

#### all\_done()

Returns true iff all islands are known to contain exactly one root.

```
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -14
sage: oc.all_done()
False
sage: oc.find_roots()
sage: oc.all_done()
True
```

# approx\_bp (scale\_log2)

Returns an approximation to our Bernstein polynomial with the given scale\_log2.

#### EXAMPLES

```
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -14
sage: oc.approx_bp(0)
<IBP: (0, -4, 2, -2) + [0 .. 1); lsign 1>
sage: oc.approx_bp(-20)
<IBP: ((349525, -3295525, 2850354, -1482835) + [0 .. 1)) * 2^-20>
```

### find roots()

Isolate all roots in this ocean.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -14
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.find_roots()
sage: oc
ocean with precision 120 and 3 island(s)
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1, 0, -1111/2, 0, 11108
sage: oc.find_roots()
sage: oc
ocean with precision 240 and 3 island(s)
```

# increase\_precision()

Increase the precision of the interval Bernstein polynomial held by any islands which are not done. (In normal use, calls to this function are separated by calls to self.refine\_all().)

#### **EXAMPLES**

```
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -14
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.increase_precision()
sage: oc.increase_precision()
sage: oc.increase_precision()
sage: oc.increase_precision()
```

#### refine all(

Refine all islands which are not done (which are not known to contain exactly one root).

ocean with precision 960 and 1 island(s)

```
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -14
```

```
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.refine_all()
sage: oc
ocean with precision 120 and 3 island(s)
```

# reset\_root\_width (isle\_num, target\_width)

Require that the isle\_num island have a width at most target\_width.

If this is followed by a call to find\_roots(), then the corresponding root will be refined to the specified width.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([-1, -1, 1]), lmap)
sage: oc.find_roots()
sage: oc.roots()
[(1/2, 3/4)]
sage: oc.reset_root_width(0, 1/2^200)
sage: oc.find_roots()
sage: oc
ocean with precision 240 and 1 island(s)
sage: RR(RealIntervalField(300)(oc.roots()[0]).absolute_diameter()).log2()
-232.668979560890
```

## roots()

Return the locations of all islands in this ocean. (If run after find\_roots(), this is the location of all roots in the ocean.)

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -14
sage: oc.find_roots()
sage: oc.roots()
[(1/32, 1/16), (1/2, 5/8), (3/4, 7/8)]
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1, 0, -1111/2, 0, 11108
sage: oc.find_roots()
sage: oc.roots()
[(95761241267509487747625/9671406556917033397649408, 191522482605387719863145/19342813113834
```

sage.rings.polynomial.real\_roots.precompute\_degree\_reduction\_cache(n)

Compute and cache the matrices used for degree reduction, starting from degree n.

```
sage: from sage.rings.polynomial.real_roots import *
sage: precompute_degree_reduction_cache(5)
sage: dr_cache[5]
                     -1/9 -2/63 11/126
  [121/126
             8/63
                                            -2/631
   [-3/7]
            37/42 16/21
                            1/21 -3/7
                                             1/61
       1/6
            -3/7 1/21 16/21 37/42
                                             -3/71
3, [-2/63 \ 11/126 \ -2/63 \ -1/9 \ 8/63 \ 121/126], 2,
([121 \ 16 \ -14 \ -4 \ 11 \ -4]
[-54 111 96 6 -54 21]
         6 96 111 -54]
[ 21 -54
[ -4 \ 11 \ -4 \ -14 \ 16 \ 121], 126)
```

```
sage.rings.polynomial.real_roots.pseudoinverse(m)
sage.rings.polynomial.real_roots.rational_root_bounds(p)
```

Given a polynomial p with real coefficients, computes rationals a and b, such that for every real root r of p, a < r < b. We try to find rationals which bound the roots somewhat tightly, yet are simple (have small numerators and denominators).

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: rational_root_bounds((x-1)*(x-2)*(x-3))
(0, 7)
sage: rational_root_bounds(x^2)
(-1/2, 1/2)
sage: rational_root_bounds(x*(x+1))
(-3/2, 1/2)
sage: rational_root_bounds((x+2)*(x-3))
(-3, 6)
sage: rational_root_bounds(x^995 * (x^2 - 9999) - 1)
(-100, 1000/7)
sage: rational_root_bounds(x^995 * (x^2 - 9999) + 1)
(-142, 213/2)
```

If we can see that the polynomial has no real roots, return None. sage: rational\_root\_bounds( $x^2 + 7$ ) is None True

Compute the real roots of a given polynomial with exact coefficients (integer, rational, and algebraic real coefficients are supported). Returns a list of pairs of a root and its multiplicity.

The root itself can be returned in one of three different ways. If retval=='rational', then it is returned as a pair of rationals that define a region that includes exactly one root. If retval=='interval', then it is returned as a RealIntervalFieldElement that includes exactly one root. If retval=='algebraic\_real', then it is returned as an AlgebraicReal. In the former two cases, all the intervals are disjoint.

An alternate high-level algorithm can be used by selecting strategy='warp'. This affects the conversion into Bernstein polynomial form, but still uses the same ocean-island algorithm as the default algorithm. The 'warp' algorithm performs the conversion into Bernstein polynomial form much more quickly, but performs the rest of the computation slightly slower in some benchmarks. The 'warp' algorithm is particularly likely to be helpful for low-degree polynomials.

Part of the algorithm is randomized; the seed parameter gives a seed for the random number generator. (By default, the same seed is used for every call, so that results are repeatable.) The random seed may affect the running time, or the exact intervals returned, but the results are correct regardless of the seed used.

The bounds parameter lets you find roots in some proper subinterval of the reals; it takes a pair of a rational lower and upper bound and only roots within this bound will be found. Currently, specifying bounds does not work if you select strategy='warp', or if you use a polynomial with algebraic real coefficients.

By default, the algorithm will do a squarefree decomposition to get squarefree polynomials. The skip\_squarefree parameter lets you skip this step. (If this step is skipped, and the polynomial has a repeated real root, then the algorithm will loop forever! However, repeated non-real roots are not a problem.)

For integer and rational coefficients, the squarefree decomposition is very fast, but it may be slow for algebraic reals. (It may trigger exact computation, so it might be arbitrarily slow. The only other way that this algorithm might trigger exact computation on algebraic real coefficients is that it checks the constant term of the input polynomial for equality with zero.)

Part of the algorithm works (approximately) by splitting numbers into word-size pieces (that is, pieces that fit into a machine word). For portability, this defaults to always selecting pieces suitable for a 32-bit machine; the wordsize parameter lets you make choices suitable for a 64-bit machine instead. (This affects the running time, and the exact intervals returned, but the results are correct on both 32- and 64-bit machines even if the wordsize is chosen "wrong".)

The precision of the results can be improved (at the expense of time, of course) by specifying the max\_diameter parameter. If specified, this sets the maximum diameter() of the intervals returned. (Sage defines diameter() to be the relative diameter for intervals that do not contain 0, and the absolute diameter for intervals containing 0.) This directly affects the results in rational or interval return mode; in algebraic\_real mode, it increases the precision of the intervals passed to the algebraic number package, which may speed up some operations on that algebraic real.

Some logging can be enabled with do\_logging=True. If logging is enabled, then the normal values are not returned; instead, a pair of the internal context object and a list of all the roots in their internal form is returned.

ALGORITHM: We convert the polynomial into the Bernstein basis, and then use de Casteljau's algorithm and Descartes' rule of signs (using interval arithmetic) to locate the roots.

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: real_roots(x^3 - x^2 - x - 1)
[((7/4, 19/8), 1)]
sage: real_roots((x-1)*(x-2)*(x-3)*(x-5)*(x-8)*(x-13)*(x-21)*(x-34))
[((11/16, 33/32), 1), ((11/8, 33/16), 1), ((11/4, 55/16), 1), ((77/16, 165/32), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), ((11/2, 33/46), 1), 
sage: real_roots(x^5 * (x^2 - 9999)^2 - 1)
[((-29274496381311/9007199254740992, 419601125186091/2251799813685248), 1), ((21266584501458494518691/2251799813685248), 1), ((21266584501458494518691/2251799813685248), 1)]
sage: real_roots(x^5 * (x^2 - 9999)^2 - 1, seed=42)
[((-123196838480289/18014398509481984, 293964743458749/9007199254740992), 1), ((8307259573979551
sage: real_roots(x^5 * (x^2 - 9999)^2 - 1, wordsize=64)
[(-62866503803202151050003/19342813113834066795298816, 901086554512564177624143/483570327845851
sage: real_roots(x)
[((-47/256, 81/512), 1)]
sage: real_roots(x * (x-1))
[((-47/256, 81/512), 1), ((1/2, 1201/1024), 1)]
sage: real_roots(x-1)
[((209/256, 593/512), 1)]
sage: real_roots (x*(x-1)*(x-2), bounds=(0, 2))
[((0, 0), 1), ((81/128, 337/256), 1), ((2, 2), 1)]
sage: real_roots(x*(x-1)*(x-2), bounds=(0, 2), retval='algebraic_real')
[(0, 1), (1, 1), (2, 1)]
sage: v = 2^40
sage: real_roots((x^2-1)^2 * (x^2 - (v+1)/v))
sage: real_roots(x^2 - 2)
[((-3/2, -1), 1), ((1, 3/2), 1)]
sage: real_roots(x^2 - 2, retval='interval')
[(-2.?, 1), (2.?, 1)]
sage: real_roots(x^2 - 2, max_diameter=1/2^30)
sage: real_roots(x^2 - 2, retval='interval', max_diameter=1/2^500)
sage: ar_rts = real_roots(x^2 - 2, retval='algebraic_real'); ar_rts
```

```
[(-1.414213562373095?, 1), (1.414213562373095?, 1)]
     sage: ar_rts[0][0]^2 - 2 == 0
     True
     sage: v = 2^40
     sage: real_roots((x-1) * (x-(v+1)/v), retval='interval')
     [(1.00000000000?, 1), (1.00000000001?, 1)]
     sage: v = 2^60
     sage: real_roots((x-1) * (x-(v+1)/v), retval='interval')
     [(1.00000000000000000?, 1), (1.0000000000000001?, 1)]
     sage: real_roots((x-1) * (x-2), strategy='warp')
     [((499/525, 1173/875), 1), ((337/175, 849/175), 1)]
     sage: real_roots((x+3) *(x+1) *x*(x-1) *(x-2), strategy='warp')
     [((-1713/335, -689/335), 1), ((-2067/2029, -689/1359), 1), ((0, 0), 1), ((499/525, 1173/875), 1)]
     sage: real_roots((x+3)*(x+1)*x*(x-1)*(x-2), strategy='warp', retval='algebraic_real')
     sage: ar_rts = real_roots(x-1, retval='algebraic_real')
     sage: ar_rts[0][0] == 1
     True
     If the polynomial has no real roots, we get an empty list.
     sage: (x^2 + 1).real_root_intervals()
     []
     We can compute Conway's constant (see http://mathworld.wolfram.com/ConwaysConstant.html) to arbitrary
     sage: p = x^71 - x^69 - 2 \times x^68 - x^67 + 2 \times x^66 + 2 \times x^65 + x^64 - x^63 - x^62 - x^61 - x^60 - x^5
     sage: cc = real_roots(p, retval='algebraic_real')[2][0] # long time
     sage: RealField(180)(cc)
     1.3035772690342963912570991121525518907307025046594049
     Now we play with algebraic real coefficients.
     sage: x = polygen(AA)
     sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
     sage: real_roots(p)
     [((499/525, 2171/1925), 1), ((1173/875, 2521/1575), 1), ((337/175, 849/175), 1)]
     sage: ar_rts = real_roots(p, retval='algebraic_real'); ar_rts
     [(1.0000000000000000, 1), (1.414213562373095, 1), (2.00000000000000, 1)]
     sage: ar_rts[1][0]^2 == 2
     sage: ar_rts = real_roots(x*(x-1), retval='algebraic_real')
     sage: ar_rts[0][0] == 0
     True
     sage: p2 = p * (p - 1/100); p2
     sage: real_roots(p2, retval='interval')
      [ \hspace{.05cm} (1.00?, \hspace{.05cm} 1) \hspace{.05cm}, \hspace{.05cm} (1.1?, \hspace{.05cm} 1) \hspace{.05cm}, \hspace{.05cm} (1.38?, \hspace{.05cm} 1) \hspace{.05cm}, \hspace{.05cm} (1.5?, \hspace{.05cm} 1) \hspace{.05cm}, \hspace{.05cm} (2.00?, \hspace{.05cm} 1) \hspace{.05cm}, \hspace{.05cm} (2.1?, \hspace{.05cm} 1) \hspace{.05cm} ] 
     sage: p = (x - 1) * (x - sqrt(AA(2)))^2 * (x - 2)^3 * sqrt(AA(3))
     sage: real_roots(p, retval='interval')
     [(1.0000000000000000, 1), (1.414213562373095?, 2), (2.000000000000000?, 3)]
     Check that #10803 is fixed
     sage: f = 2503841067 \times x^{-1}3 - 15465014877 \times x^{-1}2 + 37514382885 \times x^{-1}1 - 44333754994 \times x^{-1}0 + 24138665092
     sage: len(real_roots(f,seed=1))
     13
sage.rings.polynomial.real_roots.relative_bounds (a, b)
```

192

# INPUT:

- (al, ah) pair of rationals
- (bl, bh) pair of rationals

## **OUTPUT:**

• (cl, ch) - pair of rationals

Computes the linear transformation that maps (al, ah) to (0, 1); then applies this transformation to (bl, bh) and returns the result.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: relative_bounds((1/7, 1/4), (1/6, 1/5))
(2/9, 8/15)
```

```
sage.rings.polynomial.real_roots.reverse_intvec(c)
```

Given a vector of integers, reverse the vector (like the reverse() method on lists).

Modifies the input vector; has no return value.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: v = vector(ZZ, [1, 2, 3, 4]); v
(1, 2, 3, 4)
sage: reverse_intvec(v)
sage: v
(4, 3, 2, 1)
```

```
sage.rings.polynomial.real_roots.root_bounds(p)
```

Given a polynomial with real coefficients, computes a lower and upper bound on its real roots. Uses algorithms of Akritas, Strzebo'nski, and Vigklas.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: root_bounds((x-1)*(x-2)*(x-3))
(0.545454545454545, 6.0000000000000001)
sage: root_bounds(x^2)
(0.000000000000000, 0.000000000000000)
sage: root_bounds(x*(x+1))
(-1.0000000000000, 0.00000000000000)
sage: root_bounds((x+2)*(x-3))
(-2.44948974278317, 3.46410161513776)
sage: root_bounds(x^995 * (x^2 - 9999) - 1)
(-99.9949998749937, 141.414284992713)
sage: root_bounds(x^995 * (x^2 - 9999) + 1)
(-141.414284992712, 99.9949998749938)
```

If we can see that the polynomial has no real roots, return None.

```
sage: root_bounds(x^2 + 1) is None
True
```

```
class sage.rings.polynomial.real_roots.rr_gap
    Bases: object
```

A simple class representing the gaps between islands, in my ocean-island root isolation algorithm. Named "rr\_gap" for "real roots gap", because "gap" seemed too short and generic.

```
region()
```

```
sage.rings.polynomial.real_roots.scale_intvec_var(c, k)
```

Given a vector of integers c of length n+1, and a rational k == kn / kd, multiplies each element c[i] by  $(kd^i)*(kn^(n-i)).$ 

Modifies the input vector; has no return value.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: v = vector(ZZ, [1, 1, 1, 1])
sage: scale_intvec_var(v, 3/4)
sage: v
(64, 48, 36, 27)
```

```
sage.rings.polynomial.real_roots.split_for_targets (ctx, bp, target_list, precise=False)
```

Given an interval Bernstein polynomial over a particular region (assumed to be a (not necessarily proper) subregion of [0...1]), and a list of targets, uses de Casteljau's method to compute representations of the Bernstein polynomial over each target. Uses degree reduction as often as possible while maintaining the requested precision.

Each target is of the form (lgap, ugap, b). Suppose lgap.region() is (11, 12), and ugap.region() is (u1, u2). Then we will compute an interval Bernstein polynomial over a region [1 ... u], where  $11 \le 1 \le 12$  and  $11 \le 12$ u2. (split\_for\_targets() is free to select arbitrary region endpoints within these bounds; it picks endpoints which make the computation easier.) The third component of the target, b, is the maximum allowed scale\_log2 of the result; this is used to decide when degree reduction is allowed.

The pair (11, 12) can be replaced by None, meaning [-infinity .. 0]; or, (u1, u2) can be replaced by None, meaning [1 .. infinity].

There is another constraint on the region endpoints selected by split\_for\_targets() for a target ((11, 12), (u1, u2), b). We set a size goal g, such that  $(u - 1) \le g * (u1 - 12)$ . Normally g is 256/255, but if precise is True, then g is 65536/65535.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
    sage: bp = mk_ibpi([1000000, -2000000, 3000000, -4000000, -5000000, -6000000])
    sage: ctx = mk_context()
    sage: bps = split_for_targets(ctx, bp, [(rr_gap(1/1234567893, 1/1234567892, 1), rr_gap(1/1234567
    sage: bps[0]
    <IBP: (999992, 999992, 999992) + [0 .. 15) over [8613397477114467984778830327/106338239662793269
    sage: bps[1]
    <IBP: (-1562500, -1875001, -2222223, -2592593, -2969137, -3337450) + [0 .. 4) over [1/2 .. 28633]
sage.rings.polynomial.real roots.subsample vec doctest (a, slen, llen)
```

```
sage.rings.polynomial.real_roots.taylor_shift1_intvec(c)
```

Given a vector of integers c of length d+1, representing the coefficients of a degree-d polynomial p, modify the vector to perform a Taylor shift by 1 (that is, p becomes p(x+1)).

This is the straightforward algorithm, which is not asymptotically optimal.

Modifies the input vector; has no return value.

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
```

```
sage: p = (x-1)*(x-2)*(x-3)
sage: v = vector(ZZ, p.list())
sage: p, v
(x^3 - 6*x^2 + 11*x - 6, (-6, 11, -6, 1))
sage: taylor_shift1_intvec(v)
sage: p(x+1), v
(x^3 - 3*x^2 + 2*x, (0, 2, -3, 1))
```

## sage.rings.polynomial.real\_roots.to\_bernstein(p, low=0, high=1, degree=None)

Given a polynomial p with integer coefficients, and rational bounds low and high, compute the exact rational Bernstein coefficients of p over the region [low .. high]. The optional parameter degree can be used to give a formal degree higher than the actual degree.

The return value is a pair (c, scale); c represents the same polynomial as p\*scale. (If you only care about the roots of the polynomial, then of course scale can be ignored.)

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: to_bernstein(x)
([0, 1], 1)
sage: to_bernstein(x, degree=5)
([0, 1/5, 2/5, 3/5, 4/5, 1], 1)
sage: to_bernstein(x^3 + x^2 - x - 1, low=-3, high=3)
([-16, 24, -32, 32], 1)
sage: to_bernstein(x^3 + x^2 - x - 1, low=3, high=22/7)
([296352, 310464, 325206, 340605], 9261)
```

sage.rings.polynomial.real\_roots.to\_bernstein\_warp(p)

Given a polynomial p with rational coefficients, compute the exact rational Bernstein coefficients of p(x/(x+1)).

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: to_bernstein_warp(1 + x + x^2 + x^3 + x^4 + x^5)
[1, 1/5, 1/10, 1/10, 1/5, 1]
```

```
class sage.rings.polynomial.real_roots.warp_map(neg)
```

A class to map between original coordinates and ocean coordinates. If neg is False, then the original->ocean transform is  $x \to x/(x+1)$ , and the ocean->original transform is x/(1-x); this maps between [0 ... infinity] and [0 ... 1]. If neg is True, then the original->ocean transform is  $x \to -x/(1-x)$ , and the ocean->original transform is the same thing: -x/(1-x). This maps between [0 ... infinity] and [0 ... 1].

```
{\tt from\_ocean}\,(\mathit{region})
```

```
to_ocean(region)
```

```
sage.rings.polynomial.real_roots.wordsize_rational(a, b, wordsize)
```

Given rationals a and b, selects a de Casteljau split point r between a and b. An attempt is made to select an efficient split point (according to the criteria mentioned in the documentation for de\_casteljau\_intvec), with a bias towards split points near a.

In full detail:

Takes as input two rationals, a and b, such that  $0 \le a \le 1$ ,  $0 \le b \le 1$ , and a! = b. Returns rational r, such that  $a \le r \le b$  or  $b \le r \le a$ . The denominator of r is a power of 2. Let m be min(r, 1-r), nm be numerator(m), and dml be log2(denominator(m)). The return value r is taken from the first of the following classes to have any members between a and b (except that if  $a \le 1/8$ , or  $7/8 \le a$ , then class 2 is preferred to class 1).

```
1.dml < wordsize
2.bitsize(nm) <= wordsize
3.bitsize(nm) <= 2*wordsize
4.bitsize(nm) <= 3*wordsize
...
11.bitsize(nm) <= (k-1)*wordsize
```

From the first class to have members between a and b, r is chosen as the element of the class which is closest to a.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: wordsize_rational(1/5, 1/7, 32)
429496729/2147483648
sage: wordsize_rational(1/7, 1/5, 32)
306783379/2147483648
sage: wordsize_rational(1/5, 1/7, 64)
1844674407370955161/9223372036854775808
sage: wordsize_rational(1/7, 1/5, 64)
658812288346769701/4611686018427387904
sage: wordsize rational (1/17, 1/19, 32)
252645135/4294967296
sage: wordsize_rational(1/17, 1/19, 64)
1085102592571150095/18446744073709551616
sage: wordsize_rational(1/1234567890, 1/1234567891, 32)
933866427/1152921504606846976
sage: wordsize_rational(1/1234567890, 1/1234567891, 64)
4010925763784056541/4951760157141521099596496896
```

# 2.1.19 Isolate Complex Roots of Polynomials

# **AUTHOR:**

• Carl Witty (2007-11-18): initial version

This is an implementation of complex root isolation. That is, given a polynomial with exact complex coefficients, we compute isolating intervals for the complex roots of the polynomial. (Polynomials with integer, rational, Gaussian rational, or algebraic coefficients are supported.)

We use a simple algorithm. First, we compute a squarefree decomposition of the input polynomial; the resulting polynomials have no multiple roots. Then, we find the roots numerically, using NumPy (at low precision) or Pari (at high precision). Then, we verify the roots using interval arithmetic.

## **EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: (x^5 - x - 1).roots(ring=CIF)
[(1.167303978261419?, 1), (-0.764884433600585? - 0.352471546031727?*I, 1), (-0.764884433600585? + 0.352471546031727?*I, 1), (-0.764884433600585? + 0.352471546031727?*I, 1)
sage.rings.polynomial.complex_roots.complex_roots(p, skip_squarefree=False, ret-
```

val='interval', min\_prec=0)
Compute the complex roots of a given polynomial with exact coefficients (integer, rational, Gaussian rational, and algebraic coefficients are supported). Returns a list of pairs of a root and its multiplicity.

Roots are returned as a ComplexIntervalFieldElement; each interval includes exactly one root, and the intervals are disjoint.

By default, the algorithm will do a squarefree decomposition to get squarefree polynomials. The skip\_squarefree parameter lets you skip this step. (If this step is skipped, and the polynomial has a repeated root, then the algorithm will loop forever!)

You can specify retval='interval' (the default) to get roots as complex intervals. The other options are retval='algebraic' to get elements of QQbar, or retval='algebraic\_real' to get only the real roots, and to get them as elements of AA.

## **EXAMPLES:**

```
sage: from sage.rings.polynomial.complex_roots import complex_roots
sage: x = polygen(ZZ)
sage: complex_roots(x^5 - x - 1)
[(1.167303978261419?, 1), (-0.764884433600585? - 0.352471546031727?*I, 1), (-0.764884433600585?
sage: v=complex_roots(x^2 + 27*x + 181)
```

Unfortunately due to numerical noise there can be a small imaginary part to each root depending on CPU, compiler, etc, and that affects the printing order. So we verify the real part of each root and check that the imaginary part is small in both cases:

```
sage: v # random
[(-14.61803398874990?..., 1), (-12.3819660112501...? + 0.?e-27*I, 1)]
sage: sorted((v[0][0].real(),v[1][0].real()))
[-14.61803398874989?, -12.3819660112501...?]
sage: v[0][0].imag() < 1e25
True
sage: v[1][0].imag() < 1e25
True

sage: K.<im> = NumberField(x^2 + 1)
sage: eps = 1/2^100
sage: x = polygen(K)
sage: p = (x-1)*(x-1-eps)*(x-1+eps)*(x-1-eps*im)*(x-1+eps*im)
```

This polynomial actually has all-real coefficients, and is very, very close to  $(x-1)^5$ :

```
sage: [RR(QQ(a)) for a in list(p - (x-1)^5)]
[3.87259191484932e-121, -3.87259191484932e-121]
sage: rts = complex_roots(p)
sage: [ComplexIntervalField(10)(rt[0] - 1) for rt in rts]
[-7.8887?e-31, 0, 7.8887?e-31, -7.8887?e-31*I, 7.8887?e-31*I]
```

We can get roots either as intervals, or as elements of QQbar or AA.

```
sage: p = (x^2 + x - 1)
sage: p = p * p(x*im)
sage: p
-x^4 + (im - 1)*x^3 + im*x^2 + (-im - 1)*x + 1
```

Two of the roots have a zero real component; two have a zero imaginary component. These zero components will be found slightly inaccurately, and the exact values returned are very sensitive to the (non-portable) results of NumPy. So we post-process the roots for printing, to get predictable doctest results.

```
sage: def tiny(x):
...     return x.contains_zero() and x.absolute_diameter() < 1e-14
sage: def smash(x):
...     x = CIF(x[0]) # discard multiplicity
...     if tiny(x.imag()): return x.real()</pre>
```

```
if tiny(x.real()): return CIF(0, x.imag())
sage: rts = complex_roots(p); type(rts[0][0]), sorted(map(smash, rts))
(<type 'sage.rings.complex_interval.ComplexIntervalFieldElement'>, [-1.618033988749895?, -0.6180]
sage: rts = complex_roots(p, retval='algebraic'); type(rts[0][0]), sorted(map(smash, rts))
(<class 'sage.rings.qpbar.AlgebraicNumber'>, [-1.618033988749895?, -0.618033988749895?*I, 1.6180]
sage: rts = complex_roots(p, retval='algebraic_real'); type(rts[0][0]), rts
(<class 'sage.rings.qpbar.AlgebraicReal'>, [(-1.618033988749895?, 1), (0.618033988749895?, 1)])

TESTS:
Verify that trac ticket #12026 is fixed:
sage: f = matrix(QQ, 8, lambda i, j: 1/(i + j + 1)).charpoly()
sage: from sage.rings.polynomial.complex_roots import complex_roots
sage: len(complex_roots(f))
```

sage.rings.polynomial.complex\_roots.interval\_roots(p, rts, prec)

We are given a squarefree polynomial p, a list of estimated roots, and a precision.

We attempt to verify that the estimated roots are in fact distinct roots of the polynomial, using interval arithmetic of precision prec. If we succeed, we return a list of intervals bounding the roots; if we fail, we return None.

#### **EXAMPLES:**

 $\verb|sage.rings.polynomial.complex_roots.intervals_disjoint| (\textit{intvs})$ 

Given a list of complex intervals, check whether they are pairwise disjoint.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.complex_roots import intervals_disjoint
sage: a = CIF(RIF(0, 3), 0)
sage: b = CIF(0, RIF(1, 3))
sage: c = CIF(RIF(1, 2), RIF(1, 2))
sage: d = CIF(RIF(2, 3), RIF(2, 3))
sage: intervals_disjoint([a,b,c,d])
False
sage: d2 = CIF(RIF(2, 3), RIF(2.001, 3))
sage: intervals_disjoint([a,b,c,d2])
True
```

# 2.1.20 Refine polynomial roots using Newton–Raphson

This is an implementation of the Newton-Raphson algorithm to approximate roots of complex polynomials. The implementation is based on interval arithmetic

## **AUTHORS:**

• Carl Witty (2007-11-18): initial version

```
sage.rings.polynomial.refine_root.refine_root(ip, ipd, irt, fld)
```

We are given a polynomial and its derivative (with complex interval coefficients), an estimated root, and a complex interval field to use in computations. We use interval arithmetic to refine the root and prove that we have in fact isolated a unique root.

If we succeed, we return the isolated root; if we fail, we return None.

#### EXAMPLES:

```
sage: from sage.rings.polynomial.refine_root import refine_root
sage: x = polygen(ZZ)
sage: p = x^9 - 1
sage: ip = CIF['x'](p); ip
x^9 - 1
sage: ipd = CIF['x'](p.derivative()); ipd
9*x^8
sage: irt = CIF(CC(cos(2*pi/9), sin(2*pi/9))); irt
0.76604444311897802? + 0.64278760968653926?*I
sage: ip(irt)
0.?e-14 + 0.?e-14*I
sage: ipd(irt)
6.89439998807080? - 5.78508848717885?*I
sage: refine_root(ip, ipd, irt, CIF)
0.766044443118978? + 0.642787609686540?*I
```

# 2.1.21 Ideals in Univariate Polynomial Rings.

### **AUTHORS:**

• David Roe (2009-12-14) – initial version.

```
class sage.rings.polynomial.ideal.Ideal_1poly_field(ring, gen)
    Bases: sage.rings.ideal.Ideal_pid
```

An ideal in a univariate polynomial ring over a field.

```
residue_class_degree()
```

Returns the degree of the generator of this ideal.

This function is included for compatibility with ideals in rings of integers of number fields.

# EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: P = R.ideal(t^4 + t + 1)
sage: P.residue_class_degree()
4
```

## residue field(names=None, check=True)

If this ideal is  $P \subset F_p[t]$ , returns the quotient  $F_p[t]/P$ .

# **EXAMPLES:**

```
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + 2*t + 9)
sage: k.<a> = P.residue_field(); k
Residue field in a of Principal ideal (t^3 + 2*t + 9) of Univariate Polynomial Ring in t ove
```

# 2.1.22 Quotients of Univariate Polynomial Rings

```
sage: R.<x> = QQ[]
sage: S = R.quotient(x**3-3*x+1, 'alpha')
sage: S.gen()**2 in S
True
sage: x in S
True
sage: S.gen() in R
False
sage: 1 in S
True

sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing(ring, polynomial, names=None)
```

Create a quotient of a polynomial ring.

# INPUT:

- •ring a univariate polynomial ring in one variable.
- •polynomial element with unit leading coefficient
- •names (optional) name for the variable

OUTPUT: Creates the quotient ring R/I, where R is the ring and I is the principal ideal generated by the polynomial.

### **EXAMPLES:**

We create the quotient ring  $\mathbb{Z}[x]/(x^3+7)$ , and demonstrate many basic functions with it:

```
sage: Z = IntegerRing()
sage: R = PolynomialRing(Z,'x'); x = R.gen()
sage: S = R.quotient(x^3 + 7, 'a'); a = S.gen()
Univariate Quotient Polynomial Ring in a over Integer Ring with modulus x^3 + 7
sage: a^3
-7
sage: S.is_field()
False
sage: a in S
sage: x in S
True
sage: a in R
False
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Integer Ring
sage: S.modulus()
x^3 + 7
sage: S.degree()
3
```

We create the "iterated" polynomial ring quotient

$$R = (\mathbf{F}_2[y]/(y^2 + y + 1))[x]/(x^3 - 5).$$

```
sage: A.<y> = PolynomialRing(GF(2)); A
    Univariate Polynomial Ring in y over Finite Field of size 2 (using NTL)
    sage: B = A.quotient(y^2 + y + 1, 'y2'); print B
    Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2 with modulus y^2 + y + 1
    sage: C = PolynomialRing(B, 'x'); x=C.gen(); print C
    Univariate Polynomial Ring in x over Univariate Quotient Polynomial Ring in y2 over Finite Field
    sage: R = C.quotient(x^3 - 5); print R
    Univariate Quotient Polynomial Ring in xbar over Univariate Quotient Polynomial Ring in y2 over
    Next we create a number field, but viewed as a quotient of a polynomial ring over Q:
    sage: R = PolynomialRing(RationalField(), 'x'); x = R.gen()
    sage: S = R.quotient(x^3 + 2*x - 5, 'a')
    sage: S
    Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^3 + 2 \times x - 5
    sage: S.is_field()
    True
    sage: S.degree()
    There are conversion functions for easily going back and forth between quotients of polynomial rings over Q
    and number fields:
    sage: K = S.number_field(); K
    Number Field in a with defining polynomial x^3 + 2*x - 5
    sage: K.polynomial_quotient_ring()
    Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^3 + 2 \times x - 5
    The leading coefficient must be a unit (but need not be 1).
    sage: R = PolynomialRing(Integers(9), 'x'); x = R.gen()
    sage: S = R.quotient(2*x^4 + 2*x^3 + x + 2, 'a')
    sage: S = R.quotient(3*x^4 + 2*x^3 + x + 2, 'a')
    Traceback (most recent call last):
    TypeError: polynomial must have unit leading coefficient
    Another example:
    sage: R.<x> = PolynomialRing(IntegerRing())
    sage: f = x^2 + 1
    sage: R.quotient(f)
    Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
    This shows that the issue at trac 5482 is solved:
    sage: R.<x> = PolynomialRing(QQ)
    sage: f = x^2-1
    sage: R.quotient_by_principal_ideal(f)
    Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
class sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_domain(ring,
                                                                                              poly-
                                                                                              no-
                                                                                              mial,
                                                                                              name=None,
                                                                                               cat-
                                                                                               gory=None)
    Bases: sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic,
```

```
sage.rings.ring.IntegralDomain

EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
```

## field extension(names)

Takes a polynomial quotient ring, and returns a tuple with three elements: the NumberField defined by the same polynomial quotient ring, a homomorphism from its parent to the NumberField sending the generators to one another, and the inverse isomorphism.

#### **OUTPUT**:

- •field
- •homomorphism from self to field
- •homomorphism from field to self

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(Rationals())
sage: S.<alpha> = R.quotient(x^3-2)
sage: F.<b>, f, g = S.field_extension()
sage: F
Number Field in b with defining polynomial x^3 - 2
sage: a = F.gen()
sage: f(alpha)
b
sage: g(a)
alpha
```

Note that the parent ring must be an integral domain:

```
sage: R.<x> = GF(25,'f25')['x']
sage: S.<a> = R.quo(x^3 - 2)
sage: F, g, h = S.field_extension('b')
Traceback (most recent call last):
...
AttributeError: 'PolynomialQuotientRing_generic_with_category' object has no attribute 'field'
```

Over a finite field, the corresponding field extension is not a number field:

```
sage: R.<x> = GF(25, 'a')['x']
sage: S.<a> = R.quo(x^3 + 2*x + 1)
sage: F, g, h = S.field_extension('b')
sage: h(F.0^2 + 3)
a^2 + 3
sage: g(x^2 + 2)
b^2 + 2
```

We do an example involving a relative number field:

```
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3 - 2)
sage: S.<X> = K['X']
```

```
sage: Q.\langle b \rangle = S.quo(X^3 + 2*X + 1)
         sage: Q.field_extension('b')
         (Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field, ...
           Defn: b |--> b, Relative number field morphism:
           From: Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field
                Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial
           Defn: b |--> b
                 a |--> a)
         We slightly change the example above so it works.
         sage: R.<x> = QQ['x']
         sage: K. < a > = NumberField(x^3 - 2)
         sage: S.<X> = K['X']
         sage: f = (X+a)^3 + 2*(X+a) + 1
         sage: f
         X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
         sage: Q. < z > = S.quo(f)
         sage: F.<w>, g, h = Q.field_extension()
         sage: c = g(z)
         sage: f(c)
         sage: h(g(z))
         sage: q(h(w))
         AUTHORS:
            •Craig Citro (2006-08-07)
            •William Stein (2006-08-06)
    is finite()
         Return whether or not this quotient ring is finite.
         EXAMPLES:
         sage: R.<x> = ZZ[]
         sage: R.quo(1).is_finite()
         sage: R.quo(x^3-2).is_finite()
         False
         sage: R. < x > = GF(9, 'a')[]
         sage: R.quo(2*x^3+x+1).is_finite()
         sage: R.quo(2).is_finite()
         True
class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field(ring,
                                                                                              poly-
                                                                                              no-
                                                                                              mial,
                                                                                              name=None)
    Bases: sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain,
    sage.rings.ring.Field
    EXAMPLES:
```

```
sage: R.<x> = PolynomialRing(QQ)
     sage: S.\langle xbar \rangle = R.quotient(x^2 + 1)
     Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
     sage: loads(S.dumps()) == S
     sage: loads(xbar.dumps()) == xbar
     True
     base_field()
         Alias for base_ring, when we're defined over a field.
     complex embeddings (prec=53)
         Return all homomorphisms of this ring into the approximate complex field with precision prec.
         EXAMPLES:
         sage: R. < x > = QQ[]
         sage: f = x^5 + x + 17
         sage: k = R.quotient(f)
         sage: v = k.complex_embeddings(100)
         sage: [phi(k.0^2) for phi in v]
         [2.9757207403766761469671194565, -2.4088994371613850098316292196 + 1.902541053035052861240731613850098316292196]
class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic(ring,
                                                                                                    poly-
                                                                                                    no-
                                                                                                    mial,
                                                                                                    name=None.
                                                                                                    cat-
                                                                                                    e-
                                                                                                    gory=None)
     Bases: sage.rings.ring.CommutativeRing
     Quotient of a univariate polynomial ring by an ideal.
     EXAMPLES:
     sage: R.<x> = PolynomialRing(Integers(8)); R
     Univariate Polynomial Ring in x over Ring of integers modulo 8
     sage: S.\langle xbar \rangle = R.quotient(x^2 + 1); S
     Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 8 with modulus x^2 + 1
     We demonstrate object persistence.
     sage: loads(S.dumps()) == S
     sage: loads(xbar.dumps()) == xbar
     True
     We create some sample homomorphisms;
     sage: R.<x> = PolynomialRing(ZZ)
     sage: S = R.quo(x^2-4)
     sage: f = S.hom([2])
```

From: Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus  $x^2 - 4$ 

sage: f

Ring morphism:

To: Integer Ring
Defn: xbar |--> 2

```
sage: f(x)
2
sage: f(x^2 - 4)
0
sage: f(x^2)
4
```

# TESTS:

By trac ticket trac ticket #11900, polynomial quotient rings use Sage's category framework. They do so in an unusual way: During their initialisation, they are declared to be objects in the category of quotients of commutative algebras over a base ring. However, if it is tested whether a quotient ring is actually a field, the category might be refined, which also includes a change of the class of the quotient ring and its newly created elements.

Thus, in order to document that this works fine, we go into some detail:

```
sage: P.<x> = QQ[]
sage: Q = P.quotient(x^2+2)
sage: Q.category()
Category of commutative no zero divisors
quotients of algebras over Rational Field
```

# The test suite passes:

```
sage: TestSuite(Q).run()
```

We verify that the elements belong to the correct element class. Also, we list the attributes that are provided by the element class of the category, and store the current class of the quotient ring:

```
sage: isinstance(Q.an_element(),Q.element_class)
True
sage: [s for s in dir(Q.category().element_class) if not s.startswith('_')]
['cartesian_product', 'is_idempotent', 'is_one', 'is_unit', 'lift', 'powers']
sage: first_class = Q.__class__
```

We try to find out whether Q is a field. Indeed it is, and thus its category, including its class and element class, is changed accordingly:

```
sage: Q in Fields()
True
sage: Q.category()
Category of commutative division no zero divisors
quotients of algebras over Rational Field
sage: first_class == Q.__class__
False
sage: [s for s in dir(Q.category().element_class) if not s.startswith('_')]
['cartesian_product', 'euclidean_degree', 'gcd', 'is_idempotent', 'is_one', 'is_unit', 'lcm', 'l
```

As one can see, the elements are now inheriting additional methods: lcm and gcd. Even though Q.an\_element() belongs to the old and not to the new element class, it still inherits the new methods from the category of fields, thanks to Element.\_\_getattr\_\_():

```
sage: e = Q.an_element()
sage: isinstance(e, Q.element_class)
False
sage: e.gcd(e+1)
```

Since the category has changed, we repeat the test suite. However, we have to skip the test for its elements, since

 $an_e lement$  has been cached in the previous run of the test suite, and we have already seen that its class is not matching the new element class:

```
sage: TestSuite(Q).run(skip=['_test_elements'])
```

Newly created elements are fine, though, and their test suite passes:

```
sage: TestSuite(Q(x)).run()
sage: isinstance(Q(x), Q.element_class)
True
```

#### Element

alias of PolynomialQuotientRingElement

# S\_class\_group (S, proof=True)

If self is an étale algebra D over a number field K (i.e. a quotient of K[x] by a squarefree polynomial) and S is a finite set of places of K, return a list of generators of the S-class group of D.

## NOTE:

Since the ideal function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs (gen, order), where gen is a tuple of generators of an ideal I and order is the order of I in the S-class group.

## INPUT:

- •S a set of primes of the coefficient ring
- •proof if False, assume the GRH in computing the class group

#### **OUTPUT:**

A list of generators of the S-class group, in the form (gen, order), where gen is a tuple of elements generating a fractional ideal I and order is the order of I in the S-class group.

# **EXAMPLES:**

A trivial algebra over  $\mathbf{Q}(\sqrt{-5})$  has the same class group as its base:

```
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.S_class_group([])
[((2, -a + 1), 2)]
```

**sage:** K. < a > = QuadraticField(-5)

When we include the prime (2, -a + 1), the S-class group becomes trivial:

```
sage: S.S_class_group([K.ideal(2, -a+1)])
[]
```

Here is an example where the base and the extension both contribute to the class group:

```
sage: K.class_group()
Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 +
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x^2 + 23)
sage: S.S_class_group([])
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
sage: S.S_class_group([K.ideal(3, a-1)])
[]
sage: S.S_class_group([K.ideal(2, a+1)])
```

```
sage: S.S_class_group([K.ideal(a)])
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
```

Now we take an example over a nontrivial base with two factors, each contributing to the class group:

```
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
sage: S.S_class_group([])
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/8)
```

By using the ideal (a), we cut the part of the class group coming from  $x^2 + 31$  from 12 to 2, i.e. we lose a generator of order 6 (this was fixed in trac ticket #14489):

```
sage: S.S_class_group([K.ideal(a)])
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/8)
```

Note that all the returned values live where we expect them to:

```
sage: CG = S.S_class_group([])
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_generi
sage: type(CG[0][1])
<type 'sage.rings.integer.Integer'>
```

# S\_units (S, proof=True)

If self is an étale algebra D over a number field K (i.e. a quotient of K[x] by a squarefree polynomial) and S is a finite set of places of K, return a list of generators of the group of S-units of D.

# INPUT:

•S - a set of primes of the base field

•proof - if False, assume the GRH in computing the class group

### **OUTPUT:**

A list of generators of the S-unit group, in the form (gen, order), where gen is a unit of order order.

```
sage: K. < a > = QuadraticField(-3)
sage: K.unit_group()
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3
sage: K. < a > = QQ['x'].quotient(x^2 + 3)
sage: u,o = K.S_units([])[0]; u, o
(-1/2*a + 1/2, 6)
sage: u^6
sage: u^3
-1
sage: u^2
-1/2*a - 1/2
sage: K. < a > = QuadraticField(-3)
sage: y = polygen(K)
sage: L.\langle b \rangle = K['y'].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2
sage: L.S_units([])
[(-1/2*a + 1/2, 6), ((1/3*a - 1)*b^2 + 4/3*a*b + 5/6*a + 7/2, +Infinity), ((-1/3*a + 1)*b^2)
```

```
sage: L.S_units([K.ideal(1/2*a - 3/2)])
[((-1/6*a - 1/2)*b^2 + (1/3*a - 1)*b + 4/3*a, +Infinity), (-1/2*a + 1/2, 6), ((1/3*a - 1)*b'
sage: L.S_units([K.ideal(2)])
[((-1/2*a + 1/2)*b^2 + (-a - 1)*b - 3, +Infinity), ((-1/6*a - 1/2)*b^2 + (1/3*a - 1)*b + 5/6
```

Note that all the returned values live where we expect them to:

```
sage: U = L.S_units([])
sage: type(U[0][0])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_field_
sage: type(U[0][1])
<type 'sage.rings.integer.Integer'>
sage: type(U[1][1])
<class 'sage.rings.infinity.PlusInfinity'>
```

## ambient()

### base\_ring()

Return the base ring of the polynomial ring, of which this ring is a quotient.

## **EXAMPLES:**

```
The base ring of \mathbf{Z}[z]/(z^3+z^2+z+1) is \mathbf{Z}. sage: R.\langle z \rangle = PolynomialRing(ZZ) sage: S.\langle beta \rangle = R.\langle quo(z^3+z^2+z+1) \rangle sage: S.\langle base\_ring() \rangle Integer Ring
```

Next we make a polynomial quotient ring over S and ask for its base ring.

```
sage: T.<t> = PolynomialRing(S)
sage: W = T.quotient(t^99 + 99)
sage: W.base_ring()
Univariate Quotient Polynomial Ring in beta over Integer Ring with modulus z^3 + z^2 + z + 1
```

# cardinality()

Return the number of elements of this quotient ring.

### **EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: R.quo(1).cardinality()
1
sage: R.quo(x^3-2).cardinality()
+Infinity

sage: R.<x> = GF(9,'a')[]
sage: R.quo(2*x^3+x+1).cardinality()
729
sage: GF(9,'a').extension(2*x^3+x+1).cardinality()
729
sage: R.quo(2).cardinality()
```

# characteristic()

Return the characteristic of this quotient ring.

This is always the same as the characteristic of the base ring.

```
sage: R.<z> = PolynomialRing(ZZ)
sage: S.<a> = R.quo(z - 19)
sage: S.characteristic()
0
sage: R.<x> = PolynomialRing(GF(9,'a'))
sage: S = R.quotient(x^3 + 1)
sage: S.characteristic()
```

# class\_group (proof=True)

If self is a quotient ring of a polynomial ring over a number field K, by a polynomial of nonzero discriminant, return a list of generators of the class group.

#### NOTE:

Since the ideal function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs (gen, order), where gen is a tuple of generators of an ideal I and order is the order of I in the class group.

## INPUT:

•proof - if False, assume the GRH in computing the class group

## **OUTPUT:**

A list of pairs (gen, order), where gen is a tuple of elements generating a fractional ideal and order is the order of I in the class group.

#### **EXAMPLES:**

```
sage: K.<a> = QuadraticField(-3)
sage: K.class_group()
Class group of order 1 of Number Field in a with defining polynomial x^2 + 3
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: K.class_group()
[]
```

A trivial algebra over  $\mathbf{Q}(\sqrt{-5})$  has the same class group as its base:

```
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.class_group()
[((2, -a + 1), 2)]
```

The same algebra constructed in a different way:

```
sage: K.<a> = QQ['x'].quotient(x^2 + 5)
sage: K.class_group(())
[((2, a + 1), 2)]
```

Here is an example where the base and the extension both contribute to the class group:

```
sage: K.<a> = QuadraticField(-5)
sage: K.class_group()
Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 +
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x^2 + 23)
sage: S.class_group()
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
```

```
Here is an example of a product of number fields, both of which contribute to the class group:
```

```
sage: R.<x> = QQ[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 47))
sage: S.class_group()
[((1/12*xbar^2 + 47/12, 1/48*xbar^3 - 1/48*xbar^2 + 47/48*xbar - 47/48), 3), ((-1/12*xbar^2
```

Now we take an example over a nontrivial base with two factors, each contributing to the class group:

```
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
sage: S.class_group()
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/8
```

Note that all the returned values live where we expect them to:

```
sage: CG = S.class_group()
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_generi
sage: type(CG[0][1])
<type 'sage.rings.integer.Integer'>
```

## construction()

Functorial construction of self

# **EXAMPLES:**

```
sage: P.<t>=ZZ[]
sage: Q = P.quo(5+t^2)
sage: F, R = Q.construction()
sage: F(R) == Q
True
sage: P.<t> = GF(3)[]
sage: Q = P.quo([2+t^2])
sage: F, R = Q.construction()
sage: F(R) == Q
True
```

# AUTHOR:

- Simon King (2010-05)

# cover\_ring()

Return the polynomial ring of which this ring is the quotient.

## **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2-2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

# degree()

Return the degree of this quotient ring. The degree is the degree of the polynomial that we quotiented out by.

```
sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2005 + 1)
sage: S.degree()
2005
```

## discriminant (v=None)

Return the discriminant of this ring over the base ring. This is by definition the discriminant of the polynomial that we quotiented out by.

# **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^3 + x^2 + x + 1)
sage: S.discriminant()
-16
sage: S = R.quotient((x + 1) * (x + 1))
sage: S.discriminant()
```

The discriminant of the quotient polynomial ring need not equal the discriminant of the corresponding number field, since the discriminant of a number field is by definition the discriminant of the ring of integers of the number field:

```
sage: S = R.quotient(x^2 - 8)
sage: S.number_field().discriminant()
8
sage: S.discriminant()
32
```

#### gen(n=0)

Return the generator of this quotient ring. This is the equivalence class of the image of the generator of the polynomial ring.

# **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 8, 'gamma')
sage: S.gen()
gamma
```

# is\_field(proof=True)

Return whether or not this quotient ring is a field.

# **EXAMPLES:**

```
sage: R.<z> = PolynomialRing(ZZ)
sage: S = R.quo(z^2-2)
sage: S.is_field()
False
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 2)
sage: S.is_field()
True
```

# krull\_dimension()

# lift(x)

Return an element of the ambient ring mapping to the given argument.

```
sage: P.<x> = QQ[]
sage: Q = P.quotient(x^2+2)
sage: Q.lift(Q.0^3)
-2*x
```

```
sage: Q(-2*x)
-2*xbar
sage: Q.0^3
-2*xbar
```

## modulus()

Return the polynomial modulus of this quotient ring.

## **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2 - 2)
sage: S.modulus()
x^2 + 1
```

# ngens()

Return the number of generators of this quotient ring over the base ring. This function always returns 1.

## **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<y> = PolynomialRing(R)
sage: T.<z> = S.quotient(y + x)
sage: T
Univariate Quotient Polynomial Ring in z over Univariate Polynomial Ring in x over Rational
sage: T.ngens()
```

# number\_field()

Return the number field isomorphic to this quotient polynomial ring, if possible.

# **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^29 - 17*x - 1)
sage: K = S.number_field()
sage: K
Number Field in alpha with defining polynomial x^29 - 17*x - 1
sage: alpha = K.gen()
sage: alpha^29
17*alpha + 1
```

### order()

Return the number of elements of this quotient ring.

# **EXAMPLES:**

```
sage: F1.<a> = GF(2^7)
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.order()
16384

sage: F1 = QQ
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2 = F1.extension(x^2+x+1, 'u')
```

## polynomial\_ring()

Return the polynomial ring of which this ring is the quotient.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2-2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

# random\_element (\*args, \*\*kwds)

Return a random element of this quotient ring.

# INPUT:

•\*args, \*\*kwds - Arguments for randomization that are passed on to the random\_element method of the polynomial ring, and from there to the base ring

#### **OUTPUT**:

•Element of this quotient ring

# **EXAMPLES:**

```
sage: F1.<a> = GF(2^7)
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.random_element()
(a^6 + 1)*u + a^5 + a^4 + a^3 + 1
```

#### retract(x)

Return the coercion of x into this polynomial quotient ring.

The rings that coerce into the quotient ring canonically are:

- •this ring
- •any canonically isomorphic ring
- •anything that coerces into the ring of which this is the quotient

# selmer\_group (S, m, proof=True)

If self is an étale algebra D over a number field K (i.e. a quotient of K[x] by a squarefree polynomial) and S is a finite set of places of K, compute the Selmer group D(S,m). This is the subgroup of  $D^*/(D^*)^m$  consisting of elements a such that  $D(\sqrt[m]{a})/D$  is unramified at all primes of D lying above a place outside of S.

# INPUT:

- •S A set of primes of the coefficient ring (which is a number field).
- •m a positive integer
- •proof if False, assume the GRH in computing the class group

# **OUTPUT**:

A list of generators of D(S, m).

```
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: D.<T> = R.quotient(x)
sage: D.selmer_group((), 2)
[-1, 2]
sage: D.selmer_group([K.ideal(2, -a+1)], 2)
[2, -1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 2)
```

```
[2, -a - 1, -1]
sage: D.selmer_group((K.ideal(2, -a+1), K.ideal(3, a+1)), 4)
[2, -a - 1, -1]
sage: D.selmer_group([K.ideal(2, -a+1)], 3)
[2]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 3)
[2, -a - 1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1), K.ideal(a)], 3)
[2, -a - 1, a]
```

# units (proof=True)

If this quotient ring is over a number field K, by a polynomial of nonzero discriminant, returns a list of generators of the units.

#### INPUT:

•proof - if False, assume the GRH in computing the class group

#### **OUTPUT:**

A list of generators of the unit group, in the form (gen, order), where gen is a unit of order order.

#### **EXAMPLES:**

```
sage: K.<a> = QuadraticField(-3)
sage: K.unit_group()
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3
sage: K. < a > = QQ['x'].quotient(x^2 + 3)
sage: u = K.units()[0][0]; u
-1/2*a + 1/2
sage: u^6
sage: u^3
sage: u^2
-1/2*a - 1/2
sage: K. < a > = QQ['x'].quotient(x^2 + 5)
sage: K.units(())
[(-1, 2)]
sage: K.<a> = QuadraticField(-3)
sage: y = polygen(K)
sage: L.\langle b \rangle = K['y'].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2
sage: L.units()
[(-1/2*a + 1/2, 6), ((1/3*a - 1)*b^2 + 4/3*a*b + 5/6*a + 7/2, +Infinity), ((-1/3*a + 1)*b^2]
sage: L.\langle b \rangle = K.extension(y^3 + 5)
sage: L.unit_group()
Unit group with structure C6 x Z x Z of Number Field in b with defining polynomial x^3 + 5
sage: L.unit_group().gens() # abstract generators
(u0, u1, u2)
sage: L.unit_group().gens_values()
[-1/2*a + 1/2, (1/3*a - 1)*b^2 + 4/3*a*b + 5/6*a + 7/2, (-1/3*a + 1)*b^2 + (2/3*a - 2)*b - 5/6*a + 7/2, (-1/3*a + 1)*b^2 + (1/3*a - 1)*b
```

Note that all the returned values live where we expect them to:

```
sage: L.<b> = K['y'].quotient(y^3 + 5)
sage: U = L.units()
sage: type(U[0][0])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_field_
sage: type(U[0][1])</pre>
```

```
<type 'sage.rings.integer.Integer'>
sage: type(U[1][1])
<class 'sage.rings.infinity.PlusInfinity'>
```

sage.rings.polynomial.polynomial\_quotient\_ring.is\_PolynomialQuotientRing(x)

# 2.1.23 Elements of Quotients of Univariate Polynomial Rings

EXAMPLES: We create a quotient of a univariate polynomial ring over Z.

```
sage: R. < x > = ZZ[]
sage: S. < a > = R.quotient(x^3 + 3*x -1)
sage: 2 * a^3
-6*a + 2
Next we make a univariate polynomial ring over \mathbf{Z}[x]/(x^3+3x-1).
sage: S1.<y> = S[]
And, we quotient out that by y^2 + a.
sage: T. < z > = S1.quotient(y^2+a)
In the quotient z^2 is -a.
sage: z^2
-a
And since a^3 = -3x + 1, we have:
sage: z^6
3*a - 1
sage: R.<x> = PolynomialRing(Integers(9))
sage: S.\langle a \rangle = R.quotient(x^4 + 2*x^3 + x + 2)
sage: a^100
7*a^3 + 8*a + 7
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3-2)
sage: a
sage: a^3
```

For the purposes of comparison in Sage the quotient element  $a^3$  is equal to  $x^3$ . This is because when the comparison is performed, the right element is coerced into the parent of the left element, and  $x^3$  coerces to  $a^3$ .

```
sage: a == x
True
sage: a^3 == x^3
True
sage: x^3
x^3
sage: S(x^3)
2
```

#### **AUTHORS:**

· William Stein

 ${\bf class} \; {\tt sage.rings.polynomial.polynomial\_quotient\_ring\_element.} \\ {\bf PolynomialQuotientRingElement} \; (particles) \\ {\bf class} \; {\bf sage.rings.polynomial\_polynomial\_quotient\_ring\_element.} \\ {\bf PolynomialQuotientRingElement} \; (particles) \\ {\bf class} \; {\bf sage.rings.polynomialQuotientRingElement} \; (particles) \\ {\bf class} \; {\bf sage.rings.polynomialQuotientRingElement} \; (particles) \\ {\bf class} \; {\bf sage.rings.polynomialQuotientRingElement} \; (particles) \\ {\bf class} \; {\bf class} \; {\bf class} \; (particles) \\ {\bf class} \; {\bf class} \; {\bf class} \; (particles) \\ {\bf class} \; {\bf class} \; {\bf class} \; (particles) \\ {\bf class} \; {\bf class} \; {\bf class} \; (particles) \\ {\bf class} \; {\bf class} \; {\bf class} \; (particles) \\ {\bf class} \; {\bf class} \; {\bf class} \; (particles) \\ {\bf class} \; {\bf class} \; {\bf class} \; (particles) \\ {\bf class} \; {\bf class} \; {\bf class} \; (particles) \\ {\bf class} \; {$ 

Bases: sage.rings.polynomial.polynomial\_singular\_interface.Polynomial\_singular\_repr, sage.structure.element.CommutativeRingElement

Element of a quotient of a polynomial ring.

#### **EXAMPLES:**

```
sage: P.<x> = QQ[]
sage: Q.<xi> = P.quo([(x^2+1)])
sage: xi^2
-1
sage: singular(xi)
xi
sage: (singular(xi)*singular(xi)).NF('std(0)')
-1
```

# charpoly(var)

The characteristic polynomial of this element, which is by definition the characteristic polynomial of right multiplication by this element.

#### INPUT:

•var - string - the variable name

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quo(x^3 -389*x^2 + 2*x - 5)
sage: a.charpoly('X')
X^3 - 389*X^2 + 2*X - 5
```

# fcp(var='x')

Return the factorization of the characteristic polynomial of this element.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
sage: a.fcp('x')
x^3 - 389*x^2 + 2*x - 5
sage: S(1).fcp('y')
(y - 1)^3
```

#### field\_extension (names)

Given a polynomial with base ring a quotient ring, return a 3-tuple: a number field defined by the same polynomial, a homomorphism from its parent to the number field sending the generators to one another, and the inverse isomorphism.

#### INPUT:

•names - name of generator of output field

# OUTPUT:

•field

no mi ch

- •homomorphism from self to field
- •homomorphism from field to self

# **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^3-2)
sage: F.<a>, f, g = alpha.field_extension()
sage: F
Number Field in a with defining polynomial x^3 - 2
sage: a = F.gen()
sage: f(alpha)
a
sage: g(a)
alpha
```

Over a finite field, the corresponding field extension is not a number field:

```
sage: R.<x> = GF(25,'b')['x']
sage: S.<a> = R.quo(x^3 + 2*x + 1)
sage: F.<b>, g, h = a.field_extension()
sage: h(b^2 + 3)
a^2 + 3
sage: g(x^2 + 2)
b^2 + 2
```

We do an example involving a relative number field:

```
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3-2)
sage: S.<X> = K['X']
sage: Q.<b> = S.quo(X^3 + 2*X + 1)
sage: F, g, h = b.field_extension('c')
```

Another more awkward example:

```
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3-2)
sage: S.<X> = K['X']
sage: f = (X+a)^3 + 2*(X+a) + 1
sage: f
X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
sage: Q.<z> = S.quo(f)
sage: F.<w>, g, h = z.field_extension()
sage: c = g(z)
sage: f(c)
0
sage: h(g(z))
z
sage: g(h(w))
```

# **AUTHORS:**

- •Craig Citro (2006-08-06)
- •William Stein (2006-08-06)

#### is unit()

Return True if self is invertible.

Warning: Only implemented when the base ring is a field.

```
EXAMPLES:
```

```
sage: R.<x> = QQ[]
sage: S.<y> = R.quotient(x^2 + 2*x + 1)
sage: (2*y).is_unit()
True
sage: (y+1).is_unit()
False
```

#### TESTS:

Raise an exception if the base ring is not a field (see trac ticket #13303):

```
sage: Z16x.<x> = Integers(16)[]
sage: S.<y> = Z16x.quotient(x^2 + x + 1)
sage: (2*y).is_unit()
Traceback (most recent call last):
...
NotImplementedError: The base ring (=Ring of integers modulo 16) is not a field
```

#### lift()

Return lift of this polynomial quotient ring element to the unique equivalent polynomial of degree less than the modulus.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3-2)
sage: b = a^2 - 3
sage: b
a^2 - 3
sage: b.lift()
x^2 - 3
```

# list()

Return list of the elements of self, of length the same as the degree of the quotient polynomial ring.

# EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: a^10
-134*a^2 - 35*a + 300
sage: (a^10).list()
[300, -35, -134]
```

#### matrix()

The matrix of right multiplication by this element on the power basis for the quotient ring.

# **EXAMPLES**:

# minpoly()

The minimal polynomial of this element, which is by definition the minimal polynomial of right multiplication by this element.

# norm()

The norm of this element, which is the norm of the matrix of right multiplication by this element.

# **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
sage: a.norm()
```

#### trace()

The trace of this element, which is the trace of the matrix of right multiplication by this element.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
sage: a.trace()
389
```

# 2.1.24 Polynomial Compilers

#### **AUTHORS:**

- Tom Boothby, initial design & implementation
- · Robert Bradshaw, bug fixes / suggested & assisted with significant design improvements

```
class sage.rings.polynomial.polynomial_compiled.CompiledPolynomialFunction
    Bases: object
```

Builds a reasonably optimized directed acyclic graph representation for a given polynomial. A CompiledPolynomialFunction is callable from python, though it is a little faster to call the eval function from pyrex.

This class is not intended to be called by a user, rather, it is intended to improve the performance of immutable polynomial objects.

# TODO:

```
[ ] Recursive calling
    [ ] Faster casting of coefficients / argument
    [ ] Multivariate polynomials
    [ ] Cython implementation of Pippenger's Algorithm that doesn't
        depend heavily upon dicts.
    [ ] Computation of parameter sequence suggested by Pippenger
    [ ] Univariate exponentiation can use Brauer's method to improve
        extremely sparse polynomials of very high degree
class sage.rings.polynomial.polynomial_compiled.abc_pd
    Bases: sage.rings.polynomial.polynomial_compiled.binary_pd
class sage.rings.polynomial.polynomial_compiled.add_pd
    Bases: sage.rings.polynomial.polynomial_compiled.binary_pd
class sage.rings.polynomial.polynomial_compiled.binary_pd
    Bases: sage.rings.polynomial.polynomial_compiled.generic_pd
class sage.rings.polynomial.polynomial_compiled.coeff_pd
    Bases: sage.rings.polynomial.polynomial_compiled.generic_pd
```

```
class sage.rings.polynomial_polynomial_compiled.dummy_pd
    Bases: sage.rings.polynomial.polynomial compiled.generic pd
class sage.rings.polynomial.polynomial_compiled.generic_pd
    Bases: object
class sage.rings.polynomial.polynomial compiled.mul pd
    Bases: sage.rings.polynomial.polynomial compiled.binary pd
class sage.rings.polynomial.polynomial compiled.pow pd
    Bases: sage.rings.polynomial.polynomial_compiled.unary_pd
class sage.rings.polynomial.polynomial_compiled.sqr_pd
    Bases: sage.rings.polynomial.polynomial_compiled.unary_pd
class sage.rings.polynomial_polynomial_compiled.unary_pd
    Bases: sage.rings.polynomial.polynomial_compiled.generic_pd
class sage.rings.polynomial.polynomial_compiled.univar_pd
    Bases: sage.rings.polynomial.polynomial_compiled.generic_pd
class sage.rings.polynomial.polynomial compiled.var pd
    Bases: sage.rings.polynomial.polynomial compiled.generic pd
```

# 2.1.25 Polynomial multiplication by Kronecker substitution

# 2.2 Generic Convolution

Asymptotically fast convolution of lists over any commutative ring in which the multiply-by-two map is injective. (More precisely, if  $x \in R$ , and  $x = 2^k * y$  for some  $k \ge 0$ , we require that  $R(x/2^k)$  returns y.)

The main function to be exported is convolution().

#### **EXAMPLES:**

```
sage: convolution([1, 2, 3, 4, 5], [6, 7])
[6, 19, 32, 45, 58, 35]
```

The convolution function is reasonably fast, even though it is written in pure Python. For example, the following takes less than a second:

```
sage: v=convolution(range(1000), range(1000))
```

ALGORITHM: Converts the problem to multiplication in the ring  $S[x]/(x^M-1)$ , where  $S=R[y]/(y^K+1)$  (where R is the original base ring). Performs FFT with respect to the roots of unity  $1,y,y^2,\ldots,y^{2K-1}$  in S. The FFT/IFFT are accomplished with just additions and subtractions and rotating python lists. (I think this algorithm is essentially due to Schonhage, not completely sure.) The pointwise multiplications are handled recursively, switching to a classical algorithm at some point.

Complexity is  $O(n \log(n) \log(\log(n)))$  additions/subtractions in R and  $O(n \log(n))$  multiplications in R.

# **AUTHORS:**

- David Harvey (2007-07): first implementation
- William Stein: editing the docstrings for inclusion in Sage.

```
sage.rings.polynomial.convolution.convolution(L1, L2)

Returns convolution of non-empty lists L1 and L2. L1 and L2 may have arbitrary lengths.
```

#### **EXAMPLES:**

```
sage: convolution([1, 2, 3], [4, 5, 6, 7])
[4, 13, 28, 34, 32, 21]

sage: R = Integers(47)
sage: L1 = [R.random_element() for _ in range(1000)]
sage: L2 = [R.random_element() for _ in range(3756)]
sage: L3 = convolution(L1, L2)
sage: L3[2000] == sum([L1[i] * L2[2000-i] for i in range(1000)])
True
sage: len(L3) == 1000 + 3756 - 1
True
```

# 2.3 Fast calculation of cyclotomic polynomials

This module provides a function <code>cyclotomic\_coeffs()</code>, which calculates the coefficients of cyclotomic polynomials. This is not intended to be invoked directly by the user, but it is called by the method <code>cyclotomic\_polynomial()</code> method of univariate polynomial ring objects and the top-level <code>cyclotomic\_polynomial()</code> function.

```
sage.rings.polynomial.cyclotomic.bateman_bound(nn)
sage.rings.polynomial.cyclotomic.cyclotomic_coeffs(nn, sparse=None)
```

This calculates the coefficients of the n-th cyclotomic polynomial by using the formula

$$\Phi_n(x) = \prod_{d|n} (1 - x^{n/d})^{\mu(d)}$$

where  $\mu(d)$  is the Moebius function that is 1 if d has an even number of distinct prime divisors, -1 if it has an odd number of distinct prime divisors, and 0 if d is not squarefree.

Multiplications and divisions by polynomials of the form  $1-x^n$  can be done very quickly in a single pass.

If sparse is True, the result is returned as a dictionary of the non-zero entries, otherwise the result is returned as a list of python ints.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.cyclotomic import cyclotomic_coeffs
sage: cyclotomic_coeffs(30)
[1, 1, 0, -1, -1, -1, 0, 1, 1]
sage: cyclotomic_coeffs(10^5)
{0: 1, 10000: -1, 20000: 1, 30000: -1, 40000: 1}
sage: R = QQ['x']
sage: R(cyclotomic_coeffs(30))
x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
```

### Check that it has the right degree:

```
sage: euler_phi(30)
8
sage: R(cyclotomic_coeffs(14)).factor()
x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
```

#### The coefficients are not always +/-1:

```
sage: cyclotomic_coeffs(105)
[1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1
```

In fact the height is not bounded by any polynomial in n (Erdos), although takes a while just to exceed linear:

```
sage: v = cyclotomic_coeffs(1181895)
sage: max(v)
14102773
```

# The polynomial is a palindrome for any n:

```
sage: n = ZZ.random_element(50000)
sage: factor(n)
3 * 10009
sage: v = cyclotomic_coeffs(n, sparse=False)
sage: v == list(reversed(v))
True
```

#### **AUTHORS:**

•Robert Bradshaw (2007-10-27): initial version (inspired by work of Andrew Arnold and Michael Monagan)

```
sage.rings.polynomial.cyclotomic.cyclotomic_value (n, x)
```

Returns the value of the n-th cyclotomic polynomial evaulated at x.

#### **INPUT:**

- •n an Integer, specifying which cyclotomic polynomial is to be evaluated.
- $\bullet x$  an element of a ring.

#### **OUTPUT:**

•the value of the cyclotomic polynomial  $\Phi_n$  at x.

# ALGORITHM:

•Reduce to the case that n is squarefree: use the identity

$$\Phi_n(x) = \Phi_q(x^{n/q})$$

where q is the radical of n.

•Use the identity

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)},$$

where  $\mu$  is the Moebius function.

•Handles the case that  $x^d = 1$  for some d, but not the case that  $x^d - 1$  is non-invertible: in this case polynomial evaluation is used instead.

# **EXAMPLES:**

```
sage: cyclotomic_value(51, 3)
1282860140677441
sage: cyclotomic_polynomial(51)(3)
1282860140677441
```

#### It works for non-integral values as well:

```
sage: cyclotomic_value(144, 4/3)
79148745433504023621920372161/79766443076872509863361
sage: cyclotomic_polynomial(144)(4/3)
79148745433504023621920372161/79766443076872509863361
```

```
TESTS:
    sage: R. < x > = QQ[]
    sage: K.\langle i \rangle = NumberField(x^2 + 1)
    sage: for y in [-1, 0, 1, 2, 1/2, Mod(3, 8), Mod(3, 11), GF(9, 'a').gen(), Zp(3)(54), i, <math>x^2+2]:
               for n in [1..60]:
                   val1 = cyclotomic_value(n, y)
     . . . . :
                   val2 = cyclotomic_polynomial(n)(y)
     . . . . :
                   if val1 != val2:
     . . . . :
                        print "Wrong value for cyclotomic_value(%s, %s) in %s"%(n,y,parent(y))
     . . . . :
                   if val1.parent() is not val2.parent():
                        print "Wrong parent for cyclotomic_value(%s, %s) in %s"%(n,y,parent(y))
    sage: cyclotomic_value(20, I)
    sage: a = cyclotomic_value(10, mod(3, 11)); a
    sage: a.parent()
    Ring of integers modulo 11
    sage: cyclotomic_value(30, -1.0)
    1.000000000000000
    sage: S.<t> = R.quotient(R.cyclotomic_polynomial(15))
    sage: cyclotomic_value(15, t)
    sage: cyclotomic_value(30, t)
    2*t^7 - 2*t^5 - 2*t^3 + 2*t
    sage: S.<t> = R.quotient(x^10)
    sage: cyclotomic_value(2^128-1, t)
    -t^7 - t^6 - t^5 + t^2 + t + 1
    sage: cyclotomic_value(10, mod(3, 4))
    1
    Check that the issue with symbolic element in trac ticket #14982 is fixed:
    sage: a = cyclotomic_value(3, I)
    sage: a.pyobject()
    sage: parent(_)
    Number Field in I with defining polynomial x^2 + 1
sage.rings.polynomial.cyclotomic.my_cmp (a, b)
```

# MULTIVARIATE POLYNOMIALS

# 3.1 Multivariate Polynomials and Polynomial Rings

Sage implements multivariate polynomial rings through several backends. The most generic implementation uses the classes sage.rings.polynomial.polydict.PolyDict and sage.rings.polynomial.polydict.ETuple to construct a dictionary with exponent tuples as keys and coefficients as values.

Additionally, specialized and optimized implementations over many specific coefficient rings are implemented via a shared library interface to SINGULAR; and polynomials in the boolean polynomial ring

$$\mathbf{F}_2[x_1,...,x_n]/\langle x_1^2+x_1,...,x_n^2+x_n\rangle.$$

are implemented using the PolyBoRi library (cf. sage.rings.polynomial.pbori).

# 3.1.1 Term orders

Sage supports the following term orders:

**Lexicographic** (lex)  $x^a < x^b$  if and only if there exists  $1 \le i \le n$  such that  $a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$ . This term order is called 'lp' in Singular.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: x > y
True
sage: x > y^2
True
sage: x > 1
True
sage: x^1*y^2 > y^3*z^4
True
sage: x^3*y^2*z^4 < x^3*y^2*z^1
False</pre>
```

**Degree reverse lexicographic (degrevlex)** Let  $\deg(x^a) = a_1 + a_2 + \dots + a_n$ , then  $x^a < x^b$  if and only if  $\deg(x^a) < \deg(x^b)$  or  $\deg(x^a) = \deg(x^b)$  and there exists  $1 \le i \le n$  such that  $a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i > b_i$ . This term order is called 'dp' in Singular.

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='degrevlex')
sage: x > y
True
```

```
sage: x > y^2*z
False
sage: x > 1
True
sage: x^1*y^5*z^2 > x^4*y^1*z^3
True
sage: x^2*y*z^2 > x*y^3*z
False
```

**Degree lexicographic (deglex)** Let  $\deg(x^a) = a_1 + a_2 + \dots + a_n$ , then  $x^a < x^b$  if and only if  $\deg(x^a) < \deg(x^b)$  or  $\deg(x^a) = \deg(x^b)$  and there exists  $1 \le i \le n$  such that  $a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$ . This term order is called 'Dp' in Singular.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='deglex')
sage: x > y
True
sage: x > y^2*z
False
sage: x > 1
True
sage: x^1*y^2*z^3 > x^3*y^2*z^0
True
sage: x^2*y*z^2 > x*y^3*z
True
```

**Inverse lexicographic (invlex)**  $x^a < x^b$  if and only if there exists  $1 \le i \le n$  such that  $a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i < b_i$ . This order is called 'rp' in Singular.

# **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='invlex')
sage: x > y
False
sage: y > x^2
True
sage: x > 1
True
sage: x*y > z
False
```

This term order only makes sense in a non-commutative setting because if P is the ring  $k[x_1, \ldots, x_n]$  and term order 'invlex' then it is equivalent to the ring  $k[x_n, \ldots, x_n]$  with term order 'lex'.

**Negative lexicographic (neglex)**  $x^a < x^b$  if and only if there exists  $1 \le i \le n$  such that  $a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i > b_i$ . This term order is called 'ls' in Singular.

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='neglex')
sage: x > y
False
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
False
sage: x^3*y^2*z^4 < x^3*y^2*z^1
True
sage: x*y > z
False
```

Negative degree reverse lexicographic (negdegrevlex) Let  $\deg(x^a) = a_1 + a_2 + \dots + a_n$ , then  $x^a < x^b$  if and only if  $\deg(x^a) > \deg(x^b)$  or  $\deg(x^a) = \deg(x^b)$  and there exists  $1 \le i \le n$  such that  $a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i > b_i$ . This term order is called 'ds' in Singular.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdegrevlex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
True
sage: x^2*y*z^2 > x*y^3*z
False
```

Negative degree lexicographic (negdeglex) Let  $\deg(x^a) = a_1 + a_2 + \dots + a_n$ , then  $x^a < x^b$  if and only if  $\deg(x^a) > \deg(x^b)$  or  $\deg(x^a) = \deg(x^b)$  and there exists  $1 \le i \le n$  such that  $a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$ . This term order is called 'Ds' in Singular.

# **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdeglex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
True
sage: x^2*y*z^2 > x*y^3*z
True
```

Weighted degree reverse lexicographic (wdegrevlex), positive integral weights Let  $\deg_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n$  with weights w, then  $x^a < x^b$  if and only if  $\deg_w(x^a) < \deg_w(x^b)$  or  $\deg_w(x^a) = \deg_w(x^b)$  and there exists  $1 \le i \le n$  such that  $a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i$ . This term order is called 'wp' in Singular.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('wdegrevlex',(1,2,3)))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
True
sage: y*z > x^3*y
False
```

Weighted degree lexicographic (wdeglex), positive integral weights Let  $\deg_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n$  with weights w, then  $x^a < x^b$  if and only if  $\deg_w(x^a) < \deg_w(x^b)$  or  $\deg_w(x^a) = \deg_w(x^b)$  and there exists  $1 \le i \le n$  such that  $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i$ . This term order is called 'Wp' in Singular.

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('wdeglex',(1,2,3)))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
False
sage: y*z > x^3*y
False
```

Negative weighted degree reverse lexicographic (negwdegrevlex), positive integral weights Let  $\deg_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n$  with weights w, then  $x^a < x^b$  if and only if  $\deg_w(x^a) > \deg_w(x^b)$  or  $\deg_w(x^a) = \deg_w(x^b)$  and there exists  $1 \le i \le n$  such that  $a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i$ . This term order is called 'ws' in Singular.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdegrevlex',(1,2,3)))
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > x^2*z
True
sage: y*z > x^3*y
False
```

**Degree negative lexicographic (degneglex)** Let  $\deg(x^a) = a_1 + a_2 + \dots + a_n$ , then  $x^a < x^b$  if and only if  $\deg(x^a) < \deg(x^b)$  or  $\deg(x^a) = \deg(x^b)$  and there exists  $1 \le i \le n$  such that  $a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i > b_i$ . This term order is called 'dp\_asc' in PolyBoRi. Singular has the extra weight vector ordering '(r(1:n),rp)' for this purpose.

# **EXAMPLES:**

```
sage: t = TermOrder('degneglex')
sage: P.<x,y,z> = PolynomialRing(QQ, order=t)
sage: x*y > y*z # indirect doctest
False
sage: x*y > x
True
```

Negative weighted degree lexicographic (negwdeglex), positive integral weights Let  $\deg_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n$  with weights w, then  $x^a < x^b$  if and only if  $\deg_w(x^a) > \deg_w(x^b)$  or  $\deg_w(x^a) = \deg_w(x^b)$  and there exists  $1 \le i \le n$  such that  $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i$ . This term order is called 'Ws' in Singular.

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdeglex',(1,2,3)))
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > x^2*z
False
```

```
sage: y*z > x^3*y
```

Of these, only 'degrevlex', 'deglex', 'degneglex', 'wdegrevlex', 'wdeglex', 'invlex' and 'lex' are global orders.

Sage also supports matrix term order. Given a square matrix A,

```
x^a <_A x^b if and only if Aa < Ab
```

where < is the lexicographic term order.

#### **EXAMPLE:**

```
sage: m = matrix(2, [2, 3, 0, 1]); m
[2 3]
[0 1]
sage: T = TermOrder(m); T
Matrix term order with matrix
[2 3]
[0 1]
sage: P.<a,b> = PolynomialRing(QQ,2,order=T)
Multivariate Polynomial Ring in a, b over Rational Field
sage: a > b
False
sage: a^3 < b^2
True
sage: S = TermOrder('M(2,3,0,1)')
sage: T == S
True
```

Additionally all these monomial orders may be combined to product or block orders, defined as:

Let  $x = (x_1, x_2, ..., x_n)$  and  $y = (y_1, y_2, ..., y_m)$  be two ordered sets of variables,  $<_1$  a monomial order on k[x] and  $<_2$  a monomial order on k[y].

The product order (or block order)  $< := (<_1, <_2)$  on k[x, y] is defined as:  $x^a y^b < x^A y^B$  if and only if  $x^a <_1 x^A$  or  $(x^a = x^A \text{ and } y^b <_2 y^B)$ .

These block orders are constructed in Sage by giving a comma separated list of monomial orders with the length of each block attached to them.

# **EXAMPLE:**

As an example, consider constructing a block order where the first four variables are compared using the degree reverse lexicographical order while the last two variables in the second block are compared using negative lexicographical order.

```
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6,order='degrevlex(4),neglex(2)')
sage: a > c^4
False
sage: a > e^4
True
sage: e > f^2
False
```

The same result can be achieved by:

```
sage: T1 = TermOrder('degrevlex',4)
sage: T2 = TermOrder('neglex',2)
sage: T = T1 + T2
```

```
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6, order=T)
sage: a > c^4
False
sage: a > e^4
True
```

If any other unsupported term order is given the provided string can be forced to be passed through as is to Singular, Macaulay2, and Magma. This ensures that it is for example possible to calculate a Groebner basis with respect to some term order Singular supports but Sage doesn't:

```
sage: T = TermOrder("royalorder")
Traceback (most recent call last):
...
TypeError: Unknown term order 'royalorder'
sage: T = TermOrder("royalorder", force=True)
sage: T
royalorder term order
sage: T.singular_str()
'royalorder'
```

# **AUTHORS:**

- David Joyner and William Stein: initial version of multi\_polynomial\_ring
- Kiran S. Kedlaya: added macaulay2 interface
- · Martin Albrecht: implemented native term orders, refactoring
- Kwankyu Lee: implemented matrix and weighted degree term orders, refactoring

```
{\bf class} \ {\tt sage.rings.polynomial.term\_order.TermOrder} \ ({\it name='lex'}, {\it n=0, force=False}) \\ {\tt Bases: sage.structure.sage\_object.SageObject}
```

A term order.

See sage.rings.polynomial.term\_order for details on supported term orders.

# blocks()

Return the term order blocks of self.

#### NOTE:

This method has been added in trac ticket #11316. There used to be an *attribute* of the same name and the same content. So, it is a backward incompatible syntax change.

# EXAMPLE:

```
sage: t=TermOrder('deglex',2)+TermOrder('lex',2)
sage: t.blocks()
(Degree lexicographic term order, Lexicographic term order)
```

# $compare\_tuples\_block(f, g)$

Compares two exponent tuples with respect to the block order as specified when constructing this element.

# INPUT:

- •f exponent tuple
- •g exponent tuple

```
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),degrevlex(3)')
sage: a > c^4 # indirect doctest
False
sage: a > e^4
True
```

# $compare\_tuples\_deglex(f, g)$

Compares two exponent tuples with respect to the degree lexicographical term order.

# **INPUT:**

- •f exponent tuple
- •g exponent tuple

# **EXAMPLE:**

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='deglex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
True
```

# $compare_tuples_degneglex(f, g)$

Compares two exponent tuples with respect to the degree negative lexicographical term order.

# INPUT:

- •f exponent tuple
- •q exponent tuple

### EXAMPLE:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degneglex')
sage: x*y > y*z # indirect doctest
False
sage: x*y > x
True
```

# $compare\_tuples\_degrevlex(f, g)$

Compares two exponent tuples with respect to the degree reversed lexicographical term order.

# INPUT:

- •f exponent tuple
- •g exponent tuple

# **EXAMPLE:**

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='degrevlex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
True
```

# $compare\_tuples\_invlex(f, g)$

Compares two exponent tuples with respect to the inversed lexicographical term order.

#### INPUT:

•f - exponent tuple

```
•q - exponent tuple
    EXAMPLE:
    sage: P.<x,y> = PolynomialRing(QQbar, 2, order='invlex')
    sage: x > y^2 # indirect doctest
    False
    sage: x > 1
    True
compare\_tuples\_lex(f, g)
    Compares two exponent tuples with respect to the lexicographical term order.
    INPUT:
       •f - exponent tuple
       •g - exponent tuple
    EXAMPLE:
    sage: P.<x,y> = PolynomialRing(QQbar, 2, order='lex')
    sage: x > y^2 # indirect doctest
    sage: x > 1
    True
compare\_tuples\_matrix(f, g)
    Compares two exponent tuples with respect to the matrix term order.
    INPUT:
       •f - exponent tuple
       •g - exponent tuple
    EXAMPLES:
    sage: P.\langle x,y \rangle = PolynomialRing(QQbar, 2, order='m(1,3,1,0)')
    sage: y > x^2 # indirect doctest
    sage: y > x^3
    False
compare tuples negdeglex (f, g)
    Compares two exponent tuples with respect to the negative degree lexicographical term order.
    INPUT:
       •f - exponent tuple
       •q - exponent tuple
    EXAMPLE:
    sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdeglex')
    sage: x > y^2 # indirect doctest
    True
    sage: x > 1
    False
compare\_tuples\_negdegrevlex(f, g)
    Compares two exponent tuples with respect to the negative degree reverse lexicographical term order.
```

INPUT:

```
•f - exponent tuple

•g - exponent tuple

EXAMPLE:
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdegrevlex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
False
```

# $compare\_tuples\_neglex(f, g)$

Compares two exponent tuples with respect to the negative lexicographical term order.

### INPUT:

- •f exponent tuple
- •g exponent tuple

# **EXAMPLE:**

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='neglex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
False
```

# compare\_tuples\_negwdeglex (f, g)

Compares two exponent tuples with respect to the negative weighted degree lexicographical term order.

# INPUT:

- •f exponent tuple
- •q exponent tuple

#### **EXAMPLE:**

```
sage: t = TermOrder('negwdeglex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
True
sage: x^2 > y^3
True
```

# compare\_tuples\_negwdegrevlex(f, g)

Compares two exponent tuples with respect to the negative weighted degree reverse lexicographical term order.

# INPUT:

- •f exponent tuple
- •g exponent tuple

```
sage: t = TermOrder('negwdegrevlex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
True
sage: x^2 > y^3
True
```

# compare\_tuples\_wdeglex (f, g)

Compares two exponent tuples with respect to the weighted degree lexicographical term order.

#### INPUT:

- •f exponent tuple
- •q exponent tuple

#### **EXAMPLE:**

```
sage: t = TermOrder('wdeglex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
False
sage: x > y
True
```

#### compare\_tuples\_wdegrevlex (f, g)

Compares two exponent tuples with respect to the weighted degree reverse lexicographical term order.

# INPUT:

- •f exponent tuple
- •g exponent tuple

#### **EXAMPLE:**

```
sage: t = TermOrder('wdegrevlex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
False
sage: x^2 > y^3
True
```

# $greater\_tuple\_block(f, g)$

Return the greater exponent tuple with respect to the block order as specified when constructing this element.

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# INPUT:

- •f exponent tuple
- •q exponent tuple

#### **EXAMPLE**:

```
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest
c^4
sage: g = a + e^4; g.lm()
a
```

#### greater\_tuple\_deglex (f, g)

Return the greater exponent tuple with respect to the total degree lexicographical term order.

# INPUT:

- •f exponent tuple
- •g exponent tuple

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='deglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# greater\_tuple\_degneglex(f, g)

Return the greater exponent tuple with respect to the degree negative lexicographical term order.

# INPUT:

- •f exponent tuple
- •g exponent tuple

# **EXAMPLE:**

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degneglex')
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

#### greater\_tuple\_degrevlex(f, g)

Return the greater exponent tuple with respect to the total degree reversed lexicographical term order.

#### INPUT:

- •f exponent tuple
- •g exponent tuple

# EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# $greater\_tuple\_invlex(f, g)$

Return the greater exponent tuple with respect to the inversed lexicographical term order.

# INPUT:

- •f exponent tuple
- •g exponent tuple

#### **EXAMPLE:**

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='invlex')
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = y + x^2; f.lm()
y
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

```
greater_tuple_lex(f, g)
```

Return the greater exponent tuple with respect to the lexicographical term order.

#### INPUT:

- •f exponent tuple
- •q exponent tuple

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='lex')
sage: f = x + y^2; f.lm() # indirect doctest
x
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# $greater\_tuple\_matrix(f, g)$

Return the greater exponent tuple with respect to the matrix term order.

#### INPUT:

- •f exponent tuple
- •g exponent tuple

#### **EXAMPLE:**

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='m(1,3,1,0)')
sage: y > x^2 # indirect doctest
True
sage: y > x^3
False
```

#### greater\_tuple\_negdeglex(f, g)

Return the greater exponent tuple with respect to the negative degree lexicographical term order.

# INPUT:

- •f exponent tuple
- •q exponent tuple

# **EXAMPLE:**

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdeglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x^2*y*z^2
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# $greater\_tuple\_negdegrevlex(f, g)$

Return the greater exponent tuple with respect to the negative degree reverse lexicographical term order.

#### INPUT:

- •f exponent tuple
- •g exponent tuple

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdegrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x*y^3*z
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

### greater\_tuple\_neglex(f, g)

Return the greater exponent tuple with respect to the negative lexicographical term order.

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# INPUT:

- •f exponent tuple
- •q exponent tuple

#### **EXAMPLE:**

```
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest
c^4
sage: g = a + e^4; g.lm()
```

# greater\_tuple\_negwdeglex(f, g)

Return the greater exponent tuple with respect to the negative weighted degree lexicographical term order.

#### INPUT:

- •f exponent tuple
- •g exponent tuple

# **EXAMPLE:**

```
sage: t = TermOrder('negwdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^3 + z; f.lm()
x^3
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# greater\_tuple\_negwdegrevlex(f, g)

Return the greater exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

# INPUT:

- •f exponent tuple
- •g exponent tuple

```
sage: t = TermOrder('negwdegrevlex', (1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^3 + z; f.lm()
x^3
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

### greater\_tuple\_wdeglex(f, g)

Return the greater exponent tuple with respect to the weighted degree lexicographical term order.

#### INPUT:

- •f exponent tuple
- •g exponent tuple

#### **EXAMPLE:**

```
sage: t = TermOrder('wdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x*y + z; f.lm()
x*y
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# greater\_tuple\_wdegrevlex(f, g)

Return the greater exponent tuple with respect to the weighted degree reverse lexicographical term order.

#### INPUT:

- •f exponent tuple
- •g exponent tuple

# **EXAMPLES:**

```
sage: t = TermOrder('wdegrevlex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the lm/lc/lt methods of MPolynomial\_polydict.

# is\_block\_order()

Return true if self is a block term order.

#### **EXAMPLE**:

```
sage: t=TermOrder('deglex',2)+TermOrder('lex',2)
sage: t.is_block_order()
True
```

#### is\_global()

Return true if this term order is definitely global. Return false otherwise, which includes unknown term orders.

### **EXAMPLE:**

```
sage: T = TermOrder('lex')
sage: T.is_global()
True
sage: T = TermOrder('degrevlex', 3) + TermOrder('degrevlex', 3)
sage: T.is_global()
True
sage: T = TermOrder('degrevlex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_global()
False
sage: T = TermOrder('degneglex', 3)
sage: T.is_global()
True
```

#### is\_local()

Return true if this term order is definitely local. Return false otherwise, which includes unknown term orders.

#### **EXAMPLE:**

```
sage: T = TermOrder('lex')
sage: T.is_local()
False
sage: T = TermOrder('negdeglex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_local()
True
sage: T = TermOrder('degrevlex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_local()
False
```

#### is\_weighted\_degree\_order()

Return true if self is a weighted degree term order.

# **EXAMPLE:**

```
sage: t=TermOrder('wdeglex',(2,3))
sage: t.is_weighted_degree_order()
True
```

# macaulay2\_str()

Return a Macaulay2 representation of self.

Used to convert polynomial rings to their Macaulay2 representation.

# **EXAMPLE:**

```
sage: P = PolynomialRing(GF(127), 8,names='x',order='degrevlex(3),lex(5)')
sage: T = P.term_order()
sage: T.macaulay2_str()
'{GRevLex => 3,Lex => 5}'
sage: P._macaulay2_() # optional - macaulay2
ZZ
---[x0, x1, x2, x3, x4, x5, x6, x7, Degrees => {8:1}, Heft => {1}, MonomialOrder => {MonomialOrder}
{GRevLex => {Lex => {Positions}}
```

# magma\_str()

Return a MAGMA representation of self.

Used to convert polynomial rings to their MAGMA representation.

```
EXAMPLE:
    sage: P = PolynomialRing(GF(127), 10, names='x', order='degrevlex')
    sage: magma(P)
                                                                                   # optional - magma
    Polynomial ring of rank 10 over GF (127)
    Order: Graded Reverse Lexicographical
    Variables: x0, x1, x2, x3, x4, x5, x6, x7, x8, x9
    sage: T = P.term_order()
    sage: T.magma_str()
    "grevlex"
matrix()
    Return the matrix defining matrix term order.
    EXAMPLE:
    sage: t = TermOrder("M(1, 2, 0, 1)")
    sage: t.matrix()
    [1 2]
    [0 1]
name()
    EXAMPLE:
    sage: TermOrder('lex').name()
    'lex'
singular_moreblocks()
    Return a the number of additional blocks SINGULAR needs to allocate for handling non-native orderings
    like degneglex.
    EXAMPLE:
    sage: P = PolynomialRing(GF(127), 10, names='x', order='lex(3), deglex(5), lex(2)')
    sage: T = P.term_order()
    sage: T.singular_moreblocks()
    sage: P = PolynomialRing(GF(127),10,names='x',order='lex(3),degneglex(5),lex(2)')
    sage: T = P.term_order()
    sage: T.singular_moreblocks()
    sage: P = PolynomialRing(GF(127),10,names='x',order='degneglex(5),degneglex(5)')
    sage: T = P.term_order()
    sage: T.singular_moreblocks()
    TEST:
    The 'degneglex' ordering is somehow special: SINGULAR handles it using an extra weight vector block.
        sage: T = TermOrder("degneglex", 2) sage: P = PolynomialRing(QQ,2, names='x', order=T)
        sage: T = P.term order() sage: T.singular moreblocks() 1 sage: T = TermOrder("degneglex", 2)
        + TermOrder("degneglex", 2) sage: P = PolynomialRing(QQ,4, names='x', order=T) sage: T =
        P.term_order() sage: T.singular_moreblocks() 2
singular_str()
```

Return a SINGULAR representation of self.

Used to convert polynomial rings to their SINGULAR representation.

```
sage: P = PolynomialRing(GF(127), 10, names='x', order='lex(3), deglex(5), lex(2)')
sage: T = P.term_order()
sage: T.singular_str()
'(lp(3),Dp(5),lp(2))'
sage: P._singular_()
   characteristic : 127
   number of vars : 10
//
//
       block 1 : ordering lp
//
                  : names x0 x1 x2
//
       block 2 : ordering Dp
//
                  : names x3 x4 x5 x6 x7
        block 3 : ordering lp
//
//
                : names x8 x9
//
         block 4 : ordering C
```

# TEST:

The 'degneglex' ordering is somehow special, it looks like a block ordering in SINGULAR.

```
sage: T = TermOrder("degneglex", 2) sage: P = PolynomialRing(QQ,2, names='x', order=T)
sage: T = P.term_order() sage: T.singular_str() '(a(1:2),ls(2))'
```

sage: T = TermOrder("degneglex", 2) + TermOrder("degneglex", 2) sage: P = PolynomialRing(QQ,4, names='x', order=T) sage: T = P.term\_order() sage: T.singular\_str() '(a(1:2),ls(2),a(1:2),ls(2))' sage: P.\_singular\_() // characteristic : 0 // number of vars : 4 // block 1 : ordering a // : names x0 x1 // : weights 1 1 // block 2 : ordering ls // : names x0 x1 // block 3 : ordering a // : names x2 x3 // : weights 1 1 // block 4 : ordering ls // : names x2 x3 // block 5 : ordering C

# $tuple\_weight(f)$

Return the weight of tuple f.

# INPUT:

•f - exponent tuple

#### **EXAMPLE:**

```
sage: t=TermOrder('wdeglex',(1,2,3))
sage: P.<a,b,c>=PolynomialRing(QQbar, order=t)
sage: P.term_order().tuple_weight([3,2,1])
10
```

#### weights()

Return the weights for weighted term orders.

#### **EXAMPLE**

```
sage: t=TermOrder('wdeglex',(2,3))
sage: t.weights()
(2, 3)
```

 $sage.rings.polynomial.term\_order.termorder\_from\_singular(S)$ 

Return the Sage term order of the basering in the given Singular interface

#### INPUT:

An instance of the Singular interface.

# NOTE:

A term order in Singular also involves information on orders for modules. This is not taken into account in Sage.

```
EXAMPLE:
```

```
sage: singular.eval('ring r1 = (9,x), (a,b,c,d,e,f), (M((1,2,3,0)),wp(2,3),lp)')

sage: from sage.rings.polynomial.term_order import termorder_from_singular

sage: termorder_from_singular(singular)

Block term order with blocks:
(Matrix term order with matrix
[1 2]
[3 0],
Weighted degree reverse lexicographic term order with weights (2, 3),
Lexicographic term order of length 2)
```

#### AUTHOR:

•Simon King (2011-06-06)

# 3.1.2 Base class for multivariate polynomial rings

class sage.rings.polynomial.multi\_polynomial\_ring\_generic.MPolynomialRing\_generic
Bases: sage.rings.ring.CommutativeRing

Create a polynomial ring in several variables over a commutative ring.

#### **EXAMPLES:**

# TESTS:

Check that containment works correctly (ticket #10355):

```
sage: A1.<a> = PolynomialRing(QQ)
sage: A2.<a,b> = PolynomialRing(QQ)
sage: 3 in A2
True
sage: A1(a) in A2
True
```

# change\_ring (base\_ring=None, names=None, order=None)

Return a new multivariate polynomial ring which isomorphic to self, but has a different ordering given by the parameter 'order' or names given by the parameter 'names'.

#### INPUT:

```
base_ring - a base ring
names - variable names
order - a term order
```

### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(GF(127),3,order='lex')
sage: x > y^2
True
sage: Q.<x,y,z> = P.change_ring(order='degrevlex')
sage: x > y^2
False
```

#### characteristic()

Return the characteristic of this polynomial ring.

#### **EXAMPLES:**

```
sage: R = PolynomialRing(QQ, 'x', 3)
sage: R.characteristic()
sage: R = PolynomialRing(GF(7),'x', 20)
sage: R.characteristic()
```

# completion (p, prec=20, extras=None)

Return the completion of self with respect to the ideal generated by the variable(s) p.

#### INPUT:

- •p variable or tuple of variables
- •prec default precision of resulting power series ring
- •extras ignored; present for backward compatibility

# **EXAMPLES:**

```
sage: P.<x,y,z,w> = PolynomialRing(ZZ)
    sage: P.completion((w,x,y))
    Multivariate Power Series Ring in w, x, y over Univariate Polynomial Ring in z over Integer
    sage: P.completion((w,x,y,z))
    Multivariate Power Series Ring in w, x, y, z over Integer Ring
    sage: H = PolynomialRing(PolynomialRing(ZZ,3,'z'),4,'f'); H
    Multivariate Polynomial Ring in f0, f1, f2, f3 over
   Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
    sage: H.completion(H.gens())
    Multivariate Power Series Ring in f0, f1, f2, f3 over
    Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
    sage: H.completion(H.gens()[2])
    Power Series Ring in f2 over
    Multivariate Polynomial Ring in f0, f1, f3 over
    Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
construction()
```

Returns a functor F and base ring R such that F(R) == self.

```
sage: S = ZZ['x,y']
sage: F, R = S.construction(); R
Integer Ring
sage: F
MPoly[x,y]
```

```
sage: F(R) == S
True
sage: F(R) == ZZ['x']['y']
False

gen(n=0)
irrelevant_ideal()
```

Return the irrelevant ideal of this multivariate polynomial ring, which is the ideal generated by all of the indeterminate generators of this ring.

#### **EXAMPLES:**

```
sage: R.\langle x,y,z \rangle = QQ[]
sage: R.irrelevant_ideal()
Ideal (x, y, z) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

# is\_field(proof=True)

Return True if this multivariate polynomial ring is a field, i.e., it is a ring in 0 generators over a field.

#### is\_finite()

# is\_integral\_domain (proof=True)

# **EXAMPLES:**

```
sage: ZZ['x,y'].is_integral_domain()
True
sage: Integers(8)['x,y'].is_integral_domain()
False
```

# is\_noetherian()

#### **EXAMPLES:**

```
sage: ZZ['x,y'].is_noetherian()
True
sage: Integers(8)['x,y'].is_noetherian()
True
```

# krull\_dimension()

# macaulay\_resultant(\*args, \*\*kwds)

This is an implementation of the Macaulay Resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It's based on the implementation in Maple by Manfred Minimair, which in turn is based on the references listed below: It calculates the Macaulay resultant for a list of polynomials, up to sign!

# **REFERENCES:**

#### **AUTHORS:**

•Hao Chen, Solomon Vishkautsan (7-2014)

# INPUT:

•args – a list of n homogeneous polynomials in n variables. works when args [0] is the list of polynomials, or args is itself the list of polynomials

kwds:

•sparse – boolean (optional - default: False) if True function creates sparse matrices.

**OUTPUT:** 

•the macaulay resultant, an element of the base ring of self

#### Todo

Working with sparse matrices should usually give faster results, but with the current implementation it actually works slower. There should be a way to improve performance with regards to this.

#### **EXAMPLES:**

```
The number of polynomials has to match the number of variables:
```

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([y,x+z])
Traceback (most recent call last):
...
TypeError: number of polynomials(= 2) must equal number of variables (= 3)
```

#### The polynomials need to be all homogeneous:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([y, x+z, z+x^3])
Traceback (most recent call last):
...
TypeError: resultant for non-homogeneous polynomials is not supported
```

#### All polynomials must be in the same ring:

```
sage: S.<x,y> = PolynomialRing(QQ, 2)
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: S.macaulay_resultant([y, z+x])
Traceback (most recent call last):
...
TypeError: not all inputs are polynomials in the calling ring
```

# The following example recreates Proposition 2.10 in Ch.3 in [CLO]:

```
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,2])
sage: R.macaulay_resultant(flist)
u2^2*u4^2*u6 - 2*u1*u2*u4*u5*u6 + u1^2*u5^2*u6 - u2^2*u3*u4*u7 + u1*u2*u3*u5*u7 + u0*u2*u4*u
```

The following example degenerates into the determinant of a 3 \* 3 matrix:

```
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,1])
sage: R.macaulay_resultant(flist)
-u2*u4*u6 + u1*u5*u6 + u2*u3*u7 - u0*u5*u7 - u1*u3*u8 + u0*u4*u8
```

The following example is by Patrick Ingram(arxiv:1310.4114):

```
sage: U = PolynomialRing(ZZ,'y',2); y0,y1 = U.gens()
sage: R = PolynomialRing(U,'x',3); x0,x1,x2 = R.gens()
sage: f0 = y0*x2^2 - x0^2 + 2*x1*x2
sage: f1 = y1*x2^2 - x1^2 + 2*x0*x2
sage: f2 = x0*x1 - x2^2
sage: flist = [f0,f1,f2]
sage: R.macaulay_resultant([f0,f1,f2])
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27
```

a simple example with constant rational coefficients:

```
sage: R.<x,y,z,w> = PolynomialRing(QQ,4)
     sage: R.macaulay_resultant([w,z,y,x])
     an example where the resultant vanishes:
     sage: R. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
     sage: R.macaulay_resultant([x+y,y^2,x])
     an example of bad reduction at a prime p = 5:
     sage: R. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
     sage: R.macaulay_resultant([y,x^3+25*y^2*x,5*z])
     125
     The input can given as an unpacked list of polynomials:
     sage: R. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
     sage: R.macaulay_resultant(y, x^3+25*y^2*x, 5*z)
     125
     an example when the coefficients live in a finite field:
     sage: F = FiniteField(11)
     sage: R. <x, y, z, w> = PolynomialRing(F, 4)
     sage: R.macaulay_resultant([z, x^3, 5*y, w])
     example when the denominator in the algorithm vanishes(in this case the resultant is the constant term of
     the quotient of char polynomials of numerator/denominator):
     sage: R. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
     sage: R.macaulay_resultant([y, x+z, z^2])
     -1
     when there are only 2 polynomials, macaulay resultant degenerates to the traditional resultant:
     sage: R.<x> = PolynomialRing(QQ,1)
     sage: f = x^2+1; g = x^5+1
     sage: fh = f.homogenize()
     sage: gh = g.homogenize()
     sage: RH = fh.parent()
     sage: f.resultant(g) == RH.macaulay_resultant([fh,gh])
monomial(*exponents)
     Return the monomial with given exponents.
     EXAMPLES:
     sage: R.\langle x, y, z \rangle = PolynomialRing(ZZ, 3)
     sage: R.monomial(1,1,1)
     X * Y * Z
     sage: e=(1,2,3)
     sage: R.monomial(*e)
     x*y^2*z^3
     sage: m = R.monomial(1,2,3)
     sage: R.monomial(*m.degrees()) == m
     True
```

246

ngens()

random\_element (degree=2, terms=None, choose\_degree=False, \*args, \*\*kwargs)

Return a random polynomial of at most degree d and at most t terms.

First monomials are chosen uniformly random from the set of all possible monomials of degree up to d (inclusive). This means that it is more likely that a monomial of degree d appears than a monomial of degree d-1 because the former class is bigger.

Exactly *t distinct* monomials are chosen this way and each one gets a random coefficient (possibly zero) from the base ring assigned.

The returned polynomial is the sum of this list of terms.

#### INPUT:

- •degree maximal degree (likely to be reached) (default: 2)
- •terms number of terms requested (default: 5). If more terms are requested than exist, then this parameter is silently reduced to the maximum number of available terms.
- •choose\_degree choose degrees of monomials randomly first rather than monomials uniformly random.
- •\*\*kwargs passed to the random element generator of the base ring

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: P.random_element(2, 5)
-6/5*x^2 + 2/3*z^2 - 1

sage: P.random_element(2, 5, choose_degree=True)
-1/4*x*y - x - 1/14*z - 1

Stacked rings:
sage: R = QQ['x,y']
sage: S = R['t,u']
sage: S.random_element(degree=2, terms=1)
-1/2*x^2 - 1/4*x*y - 3*y^2 + 4*y
sage: S.random_element(degree=2, terms=1)
```

Default values apply if no degree and/or number of terms is provided:

 $(-x^2 - 2*y^2 - 1/3*x + 2*y + 9)*u^2$ 

To produce a dense polynomial, pick terms=Infinity:

```
sage: P. \langle x, y, z \rangle = GF(127)[]
               sage: P.random_element(degree=2, terms=Infinity)
               -55*x^2 - 51*x*y + 5*y^2 + 55*x*z - 59*y*z + 20*z^2 + 19*x - 55*y - 28*z + 17
               sage: P.random_element(degree=3, terms=Infinity)
               -54 \times x^3 + 15 \times x^2 \times y - x \times y^2 - 15 \times y^3 + 61 \times x^2 \times z - 12 \times x \times y \times z + 20 \times y^2 \times z - 61 \times x \times z^2 - 5 \times y \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z - 61 \times x \times z^2 + 20 \times y^2 \times z^2 + 20 \times
               sage: P.random_element(degree=3, terms=Infinity, choose_degree=True)
               57*x^3 - 58*x^2*y + 21*x*y^2 + 36*y^3 + 7*x^2*z - 57*x*y*z + 8*y^2*z - 11*x*z^2 + 7*y*z^2 + 7*y*z^3 + 7*x^3 
               The number of terms is silently reduced to the maximum available if more terms are requested:
               sage: P. \langle x, y, z \rangle = GF(127)[]
               sage: P.random_element(degree=2, terms=1000)
               5*x^2 - 10*x*y + 10*y^2 - 44*x*z + 31*y*z + 19*z^2 - 42*x - 50*y - 49*z - 60
remove_var (order=None, *var)
               Remove a variable or sequence of variables from self.
               If order is not specified, then the subring inherits the term order of the original ring, if possible.
               EXAMPLES:
               sage: P.<x,y,z,w> = PolynomialRing(ZZ)
               sage: P.remove_var(z)
               Multivariate Polynomial Ring in x, y, w over Integer Ring
               sage: P.remove_var(z,x)
               Multivariate Polynomial Ring in y, w over Integer Ring
               sage: P.remove_var(y,z,x)
               Univariate Polynomial Ring in w over Integer Ring
               Removing all variables results in the base ring:
               sage: P.remove_var(y, z, x, w)
               Integer Ring
               If possible, the term order is kept:
               sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='deglex')
               sage: R.remove_var(y).term_order()
               Degree lexicographic term order
               sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='lex')
               sage: R.remove_var(y).term_order()
               Lexicographic term order
               Be careful with block orders when removing variables:
               sage: R. \langle x, y, z, u, v \rangle = PolynomialRing(ZZ, order='deglex(2), lex(3)')
               sage: R.remove_var(x,y,z)
               Traceback (most recent call last):
               ValueError: impossible to use the original term order (most likely because it was a block or
               sage: R.remove_var(x,y,z, order='degrevlex')
              Multivariate Polynomial Ring in u, v over Integer Ring
repr_long()
               Return structured string representation of self.
               EXAMPLES:
               sage: P.<x,y,z> = PolynomialRing(QQ,order=TermOrder('degrevlex',1)+TermOrder('lex',2))
```

sage: print P.repr\_long()

```
Polynomial Ring
          Base Ring : Rational Field
               Size : 3 Variables
           Block 0 : Ordering : degrevlex
                      Names
           Block 1 : Ordering : lex
                       Names
                              : y, z
    term_order()
    univariate_ring(x)
         Return a univariate polynomial ring whose base ring comprises all but one variables of self.
            \bullet x - a variable of self.
         EXAMPLE:
         sage: P.\langle x, y, z \rangle = QQ[]
         sage: P.univariate_ring(y)
         Univariate Polynomial Ring in y over Multivariate Polynomial Ring in x, z over Rational Fiel
    variable_names_recursive(depth=None)
         Returns the list of variable names of this and its base rings, as if it were a single multi-variate polynomial.
         EXAMPLES:
         sage: R = QQ['x,y']['z,w']
         sage: R.variable_names_recursive()
         ('x', 'y', 'z', 'w')
         sage: R.variable_names_recursive(3)
         ('y', 'z', 'w')
    weyl_algebra()
         Return the Weyl algebra generated from self.
         EXAMPLES:
         sage: R = QQ['x,y,z']
         sage: W = R.weyl_algebra(); W
         Differential Weyl algebra of polynomials in x, y, z over Rational Field
         sage: W.polynomial_ring() == R
         True
sage.rings.polynomial.multi_polynomial_ring_generic.is_MPolynomialRing(x)
sage.rings.polynomial.multi_polynomial_ring_generic.unpickle_MPolynomialRing_generic(base_ring)
                                                                                                     names,
                                                                                                     or-
                                                                                                     der)
sage.rings.polynomial.multi_polynomial_ring_generic.unpickle_MPolynomialRing_generic_v1 (bas
```

nan order

# 3.1.3 Base class for elements of multivariate polynomial rings

```
class sage.rings.polynomial.multi_polynomial.MPolynomial
     Bases: sage.structure.element.CommutativeRingElement
     args()
         Returns the named of the arguments of self, in the order they are accepted from call.
          EXAMPLES:
          sage: R. < x, y > = ZZ[]
          sage: x.args()
          (x, y)
     change\_ring(R)
          Return a copy of this polynomial but with coefficients in R, if at all possible.
          INPUT:
             \bullet R - a ring
          EXAMPLES:
          sage: R.\langle x,y\rangle = QQ[]
          sage: f = x^3 + 3/5*y + 1
          sage: f.change_ring(GF(7))
          x^3 + 2*y + 1
          sage: R.\langle x, y \rangle = GF(9,'a')[]
          sage: (x+2*y).change_ring(GF(3))
          х - у
     coefficients()
          Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the
          term ordering of self.parent(), i.e. the list of coefficients matches the list of monomials returned by
          sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular.monomial
          EXAMPLES:
          sage: R.<x,y,z> = PolynomialRing(QQ,3,order='degrevlex')
          sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
          sage: f.coefficients()
          [23, 6, 1]
          sage: R.<x,y,z> = PolynomialRing(QQ,3,order='lex')
          sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
          sage: f.coefficients()
          [6, 23, 1]
          Test the same stuff with base ring \mathbf{Z} – different implementation:
          sage: R.<x,y,z> = PolynomialRing(ZZ,3,order='degrevlex')
          sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
          sage: f.coefficients()
         [23, 6, 1]
          sage: R.<x,y,z> = PolynomialRing(ZZ,3,order='lex')
          sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
          sage: f.coefficients()
          [6, 23, 1]
```

**AUTHOR:** 

# ${\tt content}\,(\,)$

Returns the content of this polynomial. Here, we define content as the gcd of the coefficients in the base ring.

# **EXAMPLES:**

```
sage: R.<x,y> = ZZ[]
sage: f = 4*x+6*y
sage: f.content()
2
sage: f.content().parent()
Integer Ring
```

### TESTS:

Since trac ticket #10771, the gcd in QQ restricts to the gcd in ZZ:

```
sage: R.<x,y> = QQ[]
sage: f = 4*x+6*y
sage: f.content(); f.content().parent()
2
Rational Field
```

#### denominator()

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.

Note that some subclases may implement its own denominator function.

**Warning:** This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.

# **EXAMPLES:**

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.

```
sage: R.\langle x, y \rangle = ZZ[]
sage: f = x^3 + 17*y + x + y
sage: f.denominator()
1
```

Next we compute the denominator of a polynomial over a number field.

```
sage: R.<x,y> = NumberField(symbolic_expression(x^2+3) ,'a')['x,y']
sage: f = (1/17)*x^19 + (1/6)*y - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/6*y + 1/3
sage: f.denominator()
102
```

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```
sage: R.<a,b,c> = RR[]
sage: f = a + b + RR('0.3'); f
a + b + 0.3000000000000000000
sage: f.denominator()
1.0000000000000000
```

Check that the denominator is an element over the base whenever the base has no denominator function. This closes #9063

```
sage: R.<a,b,c> = GF(5)[]
sage: x = R(0)
sage: x.denominator()
1
sage: type(x.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: type(a.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: from sage.rings.polynomial.multi_polynomial_element import MPolynomial
sage: isinstance(a / b, MPolynomial)
False
sage: isinstance(a.numerator() / a.denominator(), MPolynomial)
True
```

# derivative(\*args)

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

#### See also:

```
_derivative()
```

#### **EXAMPLES:**

Polynomials implemented via Singular:

```
sage: R.<x, y> = PolynomialRing(FiniteField(5))
sage: f = x^3*y^5 + x^7*y
sage: type(f)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
sage: f.derivative(x)
2*x^6*y - 2*x^2*y^5
sage: f.derivative(y)
x^7
```

#### Generic multivariate polynomials:

```
sage: R.<t> = PowerSeriesRing(QQ)
sage: S.<x, y> = PolynomialRing(R)
sage: f = (t^2 + O(t^3)) *x^2 *y^3 + (37*t^4 + O(t^5)) *x^3
sage: type(f)
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
sage: f.derivative(x)
                      # with respect to x
(2*t^2 + O(t^3))*x*y^3 + (111*t^4 + O(t^5))*x^2
sage: f.derivative(y)
                      # with respect to y
(3*t^2 + O(t^3))*x^2*y^2
sage: f.derivative(t)
                      # with respect to t (recurses into base ring)
(2*t + O(t^2))*x^2*y^3 + (148*t^3 + O(t^4))*x^3
sage: f.derivative(x, y) # with respect to x and then y
(6*t^2 + O(t^3))*x*y^2
sage: f.derivative(y, 3) # with respect to y three times
(6*t^2 + O(t^3))*x^2
sage: f.derivative()
                       # can't figure out the variable
Traceback (most recent call last):
ValueError: must specify which variable to differentiate with respect to
```

Polynomials over the symbolic ring (just for fun....):

```
sage: x = var("x")
sage: S.<u, v> = PolynomialRing(SR)
sage: f = u*v*x
sage: f.derivative(x) == u*v
True
sage: f.derivative(u) == v*x
```

# gradient()

Return a list of partial derivatives of this polynomial, ordered by the variables of self.parent().

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(ZZ,3)
sage: f = x*y + 1
sage: f.gradient()
[y, x, 0]
```

### homogenize(var='h')

Return the homogenization of this polynomial.

The polynomial itself is returned if it is homogeneous already. Otherwise, the monomials are multiplied with the smallest powers of var such that they all have the same total degree.

#### INPUT:

•var – a variable in the polynomial ring (as a string, an element of the ring, or a zero-based index in the list of variables) or a name for a new variable (default: 'h')

### **OUTPUT**:

If var specifies a variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable var.

### **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: f = x^2 + y + 1 + 5*x*y^10
sage: f.homogenize()
5*x*y^10 + x^2*h^9 + y*h^10 + h^11
```

The parameter var can be used to specify the name of the variable:

```
sage: g = f.homogenize('z'); g
5*x*y^10 + x^2*z^9 + y*z^10 + z^11
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
```

However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:

```
sage: f = x^2 + y^2
sage: g = f.homogenize('z'); g
x^2 + y^2
sage: g.parent()
Multivariate Polynomial Ring in x, y over Rational Field
```

If you want the ring of the result to be independent of whether the polynomial is homogenized, you can use var to use an existing variable to homogenize:

```
sage: R.<x,y,z> = QQ[]
sage: f = x^2 + y^2
sage: g = f.homogenize(z); g
x^2 + y^2
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f = x^2 - y
sage: g = f.homogenize(z); g
x^2 - y*z
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
```

The parameter var can also be given as a zero-based index in the list of variables:

```
sage: g = f.homogenize(2); g
x^2 - y*z
```

If the variable specified by var is not present in the polynomial, then setting it to 1 yields the original polynomial:

```
sage: g(x,y,1)
x^2 - y
```

If it is present already, this might not be the case:

```
sage: g = f.homogenize(x); g
x^2 - x*y
sage: g(1,y,z)
-y + 1
```

In particular, this can be surprising in positive characteristic:

```
sage: R.<x,y> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x)
0

TESTS:
sage: R = PolynomialRing(QQ, 'x', 5)
sage: p = R.random_element()
sage: q1 = p.homogenize()
sage: q2 = p.homogenize()
sage: q1.parent() is q2.parent()
```

### $inverse\_mod(I)$

Returns an inverse of self modulo the polynomial ideal I, namely a multivariate polynomial f such that self  $\star$  f - 1 belongs to I.

### **INPUT:**

• I – an ideal of the polynomial ring in which self lives

### **OUTPUT:**

•a multivariate polynomial representing the inverse of f modulo I

# EXAMPLES:

```
sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
```

```
sage: f = x1 + 3*x2^2; g = f.inverse_mod(I); g
1/16*x1 + 3/16
sage: (f*g).reduce(I)
1

Test a non-invertible element:
sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = x1 + x2
sage: f.inverse_mod(I)
Traceback (most recent call last):
...
ArithmeticError: element is non-invertible
```

#### is\_generator()

Returns True if this polynomial is a generator of its parent.

#### **EXAMPLES:**

```
sage: R.<x,y>=ZZ[]
sage: x.is_generator()
True
sage: (x+y-y).is_generator()
True
sage: (x*y).is_generator()
False
sage: R.<x,y>=QQ[]
sage: x.is_generator()
True
sage: (x+y-y).is_generator()
True
sage: (x*y).is_generator()
False
```

### is homogeneous()

Return True if self is a homogeneous polynomial.

### TESTS:

```
sage: from sage.rings.polynomial.multi_polynomial import MPolynomial
sage: P.<x, y> = PolynomialRing(QQ, 2)
sage: MPolynomial.is_homogeneous(x+y)
True
sage: MPolynomial.is_homogeneous(P(0))
True
sage: MPolynomial.is_homogeneous(x+y^2)
False
sage: MPolynomial.is_homogeneous(x^2 + y^2)
True
sage: MPolynomial.is_homogeneous(x^2 + y^2*x)
False
sage: MPolynomial.is_homogeneous(x^2*y + y^2*x)
```

**Note:** This is a generic implementation which is likely overridden by subclasses.

## jacobian\_ideal()

Return the Jacobian ideal of the polynomial self.

#### **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: f = x^3 + y^3 + z^3
sage: f.jacobian_ideal()
Ideal (3*x^2, 3*y^2, 3*z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field

lift(I)
    given an ideal I = (f_1,...,f_r) and some g (== self) in I, find s_1,...,s_r such that g
    = s_1 f_1 + ... + s_r f_r.

EXAMPLE:
sage: A.<x,y> = PolynomialRing(CC,2,order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7])
sage: f = x*y^13 + y^12
sage: M = f.lift(I)
sage: M
[y^1, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + y^4]
sage: sum( map( mul , zip( M, I.gens() ) ) ) == f
```

### macaulay\_resultant(\*args)

This is an implementation of the Macaulay Resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It's based on the implementation in Maple by Manfred Minimair, which in turn is based on the references [CLO], [Can], [Mac]. It calculates the Macaulay resultant for a list of Polynomials, up to sign!

#### **AUTHORS:**

•Hao Chen, Solomon Vishkautsan (7-2014)

### INPUT:

True

•args – a list of n-1 homogeneous polynomials in n variables. works when args [0] is the list of polynomials, or args is itself the list of polynomials

### **OUTPUT**:

•the macaulay resultant

#### **EXAMPLES:**

The number of polynomials has to match the number of variables:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant(x+z)
Traceback (most recent call last):
...
TypeError: number of polynomials(= 2) must equal number of variables (= 3)
```

The polynomials need to be all homogeneous:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x+z, z+x^3])
Traceback (most recent call last):
...
TypeError: resultant for non-homogeneous polynomials is not supported
```

All polynomials must be in the same ring:

```
sage: R.\langle x, y, z \rangle = PolynomialRing(QQ, 3)
sage: S.\langle x, y \rangle = PolynomialRing(QQ, 2)
```

```
sage: y.macaulay_resultant(z+x,z)
Traceback (most recent call last):
TypeError: not all inputs are polynomials in the calling ring
The following example recreates Proposition 2.10 in Ch.3 of Using Algebraic Geometry:
sage: K. \langle x, y \rangle = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,2])
sage: flist[0].macaulay_resultant(flist[1:])
u2^2*u4^2*u6 - 2*u1*u2*u4*u5*u6 + u1^2*u5^2*u6 - u2^2*u3*u4*u7 + u1*u2*u3*u5*u7 + u0*u2*u4*u7
The following example degenerates into the determinant of a 3 * 3 matrix:
sage: K. \langle x, y \rangle = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,1])
sage: flist[0].macaulay_resultant(flist[1:])
-u2*u4*u6 + u1*u5*u6 + u2*u3*u7 - u0*u5*u7 - u1*u3*u8 + u0*u4*u8
The following example is by Patrick Ingram(arxiv:1310.4114):
sage: U = PolynomialRing(ZZ,'y',2); y0,y1 = U.gens()
sage: R = PolynomialRing(U, 'x', 3); x0, x1, x2 = R.gens()
sage: f0 = y0*x2^2 - x0^2 + 2*x1*x2
sage: f1 = y1*x2^2 - x1^2 + 2*x0*x2
sage: f2 = x0*x1 - x2^2
sage: f0.macaulay_resultant(f1,f2)
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27
a simple example with constant rational coefficients:
sage: R.<x,y,z,w> = PolynomialRing(QQ,4)
sage: w.macaulay_resultant([z,y,x])
1
an example where the resultant vanishes:
sage: R. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
sage: (x+y).macaulay_resultant([y^2,x])
0
an example of bad reduction at a prime p = 5:
sage: R.\langle x, y, z \rangle = PolynomialRing(QQ, 3)
sage: y.macaulay_resultant([x^3+25*y^2*x, 5*z])
125
The input can given as an unpacked list of polynomials:
sage: R. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
sage: y.macaulay_resultant(x^3+25*y^2*x,5*z)
125
an example when the coefficients live in a finite field:
sage: F = FiniteField(11)
sage: R.<x,y,z,w> = PolynomialRing(F,4)
sage: z.macaulay_resultant([x^3,5*y,w])
```

example when the denominator in the algorithm vanishes(in this case the resultant is the constant term of

the quotient of char polynomials of numerator/denominator):

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x+z, z^2])
-1
```

when there are only 2 polynomials, macaulay resultant degenerates to the traditional resultant:

```
sage: R.<x> = PolynomialRing(QQ,1)
sage: f = x^2+1; g = x^5+1
sage: fh = f.homogenize()
sage: gh = g.homogenize()
sage: RH = fh.parent()
sage: f.resultant(g) == fh.macaulay_resultant(gh)
```

### map\_coefficients (f, new\_base\_ring=None)

Returns the polynomial obtained by applying f to the non-zero coefficients of self.

If f is a sage.categories.map.Map, then the resulting polynomial will be defined over the codomain of f. Otherwise, the resulting polynomial will be over the same ring as self. Set new\_base\_ring to override this behaviour.

#### INPUT:

- $\bullet$ f a callable that will be applied to the coefficients of self.
- •new base ring (optional) if given, the resulting polynomial will be defined over this ring.

#### **EXAMPLES:**

```
sage: k.\langle a \rangle = GF(9); R.\langle x,y \rangle = k[]; f = x*a + 2*x^3*y*a + a sage: f.map_coefficients(lambda a : a + 1) (-a + 1)*x^3*y + (a + 1)*x + (a + 1)
```

# Examples with different base ring:

```
sage: R. < r > = GF(9); S. < s > = GF(81)
sage: h = Hom(R,S)[0]; h
Ring morphism:
 From: Finite Field in r of size 3^2
  To: Finite Field in s of size 3^4
  Defn: r \mid --> 2*s^3 + 2*s^2 + 1
sage: T.\langle X, Y \rangle = R[]
sage: f = r * X + Y
sage: g = f.map_coefficients(h); g
(-s^3 - s^2 + 1) *X + Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field in s of size 3^4
sage: h = lambda x: x.trace()
sage: g = f.map_coefficients(h); g
X - Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field in r of size 3^2
sage: g = f.map_coefficients(h, new_base_ring=GF(3)); g
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field of size 3
```

### newton\_polytope()

Return the Newton polytope of this polynomial.

### **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: f = 1 + x*y + x^3 + y^3
sage: P = f.newton_polytope()
sage: P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: P.is_simple()
True

TESTS:
sage: R.<x,y> = QQ[]
sage: R(0).newton_polytope()
The empty polyhedron in ZZ^0
sage: R(1).newton_polytope()
A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex
sage: R(x^2+y^2).newton_polytope().integral_points()
((0, 2), (1, 1), (2, 0))
```

#### numerator()

Return a numerator of self computed as self \* self.denominator()

Note that some subclases may implement its own numerator function.

**Warning:** This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

#### **EXAMPLES:**

First we compute the numerator of a polynomial with integer coefficients, which is of course self.

```
sage: R.<x, y> = ZZ[]
sage: f = x^3 + 17*x + y + 1
sage: f.numerator()
x^3 + 17*x + y + 1
sage: f == f.numerator()
True
```

Next we compute the numerator of a polynomial over a number field.

```
sage: R.<x,y> = NumberField(symbolic_expression(x^2+3) ,'a')['x,y']
sage: f = (1/17)*y^19 - (2/3)*x + 1/3; f
1/17*y^19 - 2/3*x + 1/3
sage: f.numerator()
3*y^19 - 34*x + 17
sage: f == f.numerator()
False
```

We try to compute the numerator of a polynomial with coefficients in the finite field of 3 elements.

```
sage: K.<x,y,z> = GF(3)['x, y, z']
sage: f = 2*x*z + 2*z^2 + 2*y + 1; f
-x*z - z^2 - y + 1
sage: f.numerator()
-x*z - z^2 - y + 1
```

We check that the computation the numerator and denominator are valid

```
sage: K=NumberField(symbolic_expression('x^3+2'),'a')['x']['s,t']
sage: f=K.random_element()
```

```
sage: f.numerator() / f.denominator() == f
True
sage: R=RR['x,y,z']
sage: f=R.random_element()
sage: f.numerator() / f.denominator() == f
True
```

### polynomial(var)

Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.

#### **EXAMPLES:**

```
sage: R. \langle x, w, z \rangle = QQ[]
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5
sage: f.polynomial(x)
x^3 + (17*w^3 + 3*w)*x + w^5 + z^5
sage: parent(f.polynomial(x))
Univariate Polynomial Ring in x over Multivariate Polynomial Ring in w, z over Rational Fiel
sage: f.polynomial(w)
w^5 + 17*x*w^3 + 3*x*w + z^5 + x^3
sage: f.polynomial(z)
z^5 + w^5 + 17*x*w^3 + x^3 + 3*x*w
sage: R. \langle x, w, z, k \rangle = ZZ[]
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5 + x*w*z*k + 5
sage: f.polynomial(x)
x^3 + (17*w^3 + w*z*k + 3*w)*x + w^5 + z^5 + 5
sage: f.polynomial(w)
w^5 + 17*x*w^3 + (x*z*k + 3*x)*w + z^5 + x^3 + 5
sage: f.polynomial(z)
z^5 + x*w*k*z + w^5 + 17*x*w^3 + x^3 + 3*x*w + 5
sage: f.polynomial(k)
x*w*z*k + w^5 + z^5 + 17*x*w^3 + x^3 + 3*x*w + 5
sage: R. < x, y > = GF(5)[]
sage: f=x^2+x+y
sage: f.polynomial(x)
x^2 + x + y
sage: f.polynomial(y)
y + x^2 + x
```

### sylvester\_matrix (right, variable=None)

Given two nonzero polynomials self and right, returns the Sylvester matrix of the polynomials with respect to a given variable.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

#### INPUT:

- •self, right: multivariate polynomials
- •variable: optional, compute the Sylvester matrix with respect to this variable. If variable is not provided, the first variable of the polynomial ring is used.

### **OUTPUT:**

•The Sylvester matrix of self and right.

### **EXAMPLES:**

If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will be zero:

```
sage: M.determinant()
0

sage: f.sylvester_matrix(1 + g, x).determinant()
y^2 - y + 7
```

If both polynomials are of positive degree with respect to variable, the determinant of the Sylvester matrix is the resultant:

```
sage: f = R.random_element(4)
sage: g = R.random_element(4)
sage: f.sylvester_matrix(g, x).determinant() == f.resultant(g, x)
True
```

#### TEST:

The variable is optional:

```
sage: f = x + y
sage: g = x + y
sage: f.sylvester_matrix(g)
[1 y]
[1 y]
```

Polynomials must be defined over compatible base rings:

```
sage: K.<x, y> = QQ[]
sage: f = x + y
sage: L.\langle x, y \rangle = ZZ[]
sage: g = x + y
sage: R.\langle x, y \rangle = GF(25, 'a')[]
sage: h = x + y
sage: f.sylvester_matrix(g, 'x')
[1 y]
[1 y]
sage: g.sylvester_matrix(h, 'x')
[1 y]
[1 y]
sage: f.sylvester_matrix(h, 'x')
Traceback (most recent call last):
TypeError: no common canonical parent for objects with parents: 'Multivariate Polynomial Rir
sage: K.\langle x, y, z \rangle = QQ[]
sage: f = x + y
sage: L. < x, z > = QQ[]
sage: g = x + z
sage: f.sylvester_matrix(g)
```

```
[1 y]
[1 z]
Corner cases:
sage: K.<x, y>=QQ[]
sage: f = x^2+1
sage: q = K(0)
sage: f.sylvester_matrix(q)
Traceback (most recent call last):
ValueError: The Sylvester matrix is not defined for zero polynomials
sage: q.sylvester_matrix(f)
Traceback (most recent call last):
ValueError: The Sylvester matrix is not defined for zero polynomials
sage: g.sylvester_matrix(g)
Traceback (most recent call last):
ValueError: The Sylvester matrix is not defined for zero polynomials
sage: K(3).sylvester_matrix(x^2)
[3 0]
[0 3]
sage: K(3).sylvester_matrix(K(4))
```

#### truncate(var, n)

Returns a new multivariate polynomial obtained from self by deleting all terms that involve the given variable to a power at least n.

### weighted degree (\*weights)

Return the weighted degree of self, which is the maximum weighted degree of all monomials in self; the weighted degree of a monomial is the sum of all powers of the variables in the monomial, each power multiplied with its respective weight in weights.

This method is given for convenience. It is faster to use polynomial rings with weighted term orders and the standard degree function.

# INPUT:

•weights - Either individual numbers, an iterable or a dictionary, specifying the weights of each variable. If it is a dictionary, it maps each variable of self to its weight. If it is a sequence of individual numbers or a tuple, the weights are specified in the order of the generators as given by self.parent().gens():

### **EXAMPLES:**

```
sage: R.<x,y,z> = GF(7)[]
sage: p = x^3 + y + x*z^2
sage: p.weighted_degree({z:0, x:1, y:2})
3
sage: p.weighted_degree(1, 2, 0)
3
sage: p.weighted_degree((1, 4, 2))
5
sage: p.weighted_degree((1, 4, 1))
4
sage: p.weighted_degree(2**64, 2**50, 2**128)
680564733841876926945195958937245974528
sage: q = R.random_element(100, 20) #random
```

```
sage: q.weighted_degree(1, 1, 1) == q.total_degree()
True
You may also work with negative weights
sage: p.weighted_degree(-1, -2, -1)
-2
Note that only integer weights are allowed
sage: p.weighted_degree(x,1,1)
Traceback (most recent call last):
TypeError
sage: p.weighted_degree(2/1,1,1)
The weighted_degree coincides with the degree of a weighted polynomial ring, but the later is
sage: K = PolynomialRing(QQ, 'x,y', order=TermOrder('wdegrevlex', (2,3)))
sage: p = K.random_element(10)
sage: p.degree() == p.weighted_degree(2,3)
True
TESTS:
sage: R = PolynomialRing(QQ, 'a', 5)
sage: f = R.random_element(terms=20)
sage: w = random_vector(ZZ,5)
sage: d1 = f.weighted_degree(w)
sage: d2 = (f*1.0).weighted_degree(w)
sage: d1 == d2
True
```

 $\verb|sage.rings.polynomial.multi_polynomial.is_{\bf MPolynomial}(x)|$ 

# 3.1.4 Multivariate Polynomial Rings over Generic Rings

Sage implements multivariate polynomial rings through several backends. This generic implementation uses the classes PolyDict and ETuple to construct a dictionary with exponent tuples as keys and coefficients as values.

#### **AUTHORS:**

- · David Joyner and William Stein
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of Singular features
- Martin Albrecht (2006-04-21): reorganize class hierarchy for singular rep
- Martin Albrecht (2007-04-20): reorganized class hierarchy to support Pyrex implementations
- Robert Bradshaw (2007-08-15): Coercions from rings in a subset of the variables.

#### **EXAMPLES:**

We construct the Frobenius morphism on  $\mathbf{F}_5[x,y,z]$  over  $\mathbf{F}_5$ :

```
sage: R.\langle x, y, z \rangle = GF(5)[]

sage: frob = R.hom([x^5, y^5, z^5])

sage: frob(x^2 + 2*y - z^4)
```

```
-z^20 + x^10 + 2*v^5
sage: frob((x + 2*y)^3)
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
sage: (x^5 + 2*y^5)^3
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
We make a polynomial ring in one variable over a polynomial ring in two variables:
sage: R.\langle x, y \rangle = PolynomialRing(QQ, 2)
sage: S.<t> = PowerSeriesRing(R)
sage: t*(x+y)
(x + y) *t
TESTS:
sage: PolynomialRing(GF(5), 3, 'xyz').objgens()
(Multivariate Polynomial Ring in x, y, z over Finite Field of size 5,
(x, y, z)
class sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_macaulay2_repr
    is exact()
class sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict (base_ring,
                                                                                    names,
                                                                                    or-
                                                                                    der)
    Bases: sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_macaulay2_repr,
    sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr,
    sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic
    Multivariable polynomial ring.
    EXAMPLES:
    sage: R = PolynomialRing(Integers(12), 'x', 5); R
    Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Ring of integers modulo 12
    sage: loads(R.dumps()) == R
    True
class sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain(base_ring,
                                                                                            n,
                                                                                            names,
                                                                                            or-
                                                                                            der)
    Bases: sage.rings.ring.IntegralDomain, sage.rings.polynomial.multi_polynomial_ring.MPolyno
    ideal (*gens, **kwds)
         Create an ideal in this polynomial ring.
    is_field(proof=True)
    is_integral_domain (proof=True)
    monomial all divisors (t)
         Return a list of all monomials that divide t, coefficients are ignored.
         INPUT:
```

•t - a monomial

```
OUTPUT: a list of monomials
```

```
EXAMPLE:
```

```
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domais
sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
```

ALGORITHM: addwithcarry idea by Toon Segers

#### monomial divides (a, b)

Return False if a does not divide b and True otherwise.

#### INPUT:

- •a monomial
- •b monomial

#### **EXAMPLES:**

```
sage: P.<x,y,z>=PolynomialRing(ZZ,3, order='degrevlex')
sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
False

TESTS:
sage: P.<x,y,z>=PolynomialRing(ZZ,3, order='degrevlex')
sage: P.monomial_divides(P(1), P(0))
```

# $monomial_lcm(f, g)$

LCM for monomials. Coefficients are ignored.

sage: P.monomial\_divides(P(1), x)

#### INPUT:

True

True

- •f monomial
- •g monomial

# EXAMPLE:

```
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domai
sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.monomial_lcm(3/2*x*y,x)
```

#### TESTS:

х\*у

```
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domais
sage: R.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.monomial_lcm(x*y,R.gen())
x*y
sage: P.monomial_lcm(P(3/2),P(2/3))
```

```
sage: P.monomial_lcm(x,P(1))
\verb|monomial_pairwise_prime| (h,g)
    Return True if h and g are pairwise prime. Both are treated as monomials.
    INPUT:
       •h - monomial
       •q - monomial
    EXAMPLES:
    sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domai
    sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
    sage: P.monomial_pairwise_prime (x^2 * z^3, y^4)
    sage: P.monomial_pairwise_prime (1/2 \times x^3 \times y^2, 3/4 \times y^3)
    TESTS:
    sage: from sage.rings.polynomial.multi polynomial ring import MPolynomialRing_polydict_domai
    sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
    sage: Q.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
    sage: P.monomial_pairwise_prime(x^2 \times z^3, Q('y^4'))
    True
    sage: P.monomial_pairwise_prime(1/2*x^3*y^2, Q(0))
    sage: P.monomial_pairwise_prime(P(1/2),x)
    False
monomial_quotient (f, g, coeff=False)
    Return f/g, where both f and g are treated as monomials. Coefficients are ignored by default.
    INPUT:
       •f - monomial
       •q - monomial
       •coeff - divide coefficients as well (default: False)
    EXAMPLE:
    sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domai
    sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
    sage: P.monomial_quotient(3/2*x*y,x)
    sage: P.monomial_quotient(3/2*x*y,2*x,coeff=True)
    3/4*y
    TESTS:
    sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domai
    sage: R.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
    sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
```

```
sage: P.monomial_quotient(x*y,x)
y

sage: P.monomial_quotient(x*y,R.gen())
y

sage: P.monomial_quotient(P(0),P(1))
0

sage: P.monomial_quotient(P(1),P(0))
Traceback (most recent call last):
...
ZeroDivisionError

sage: P.monomial_quotient(P(3/2),P(2/3), coeff=True)
9/4

sage: P.monomial_quotient(x,y) # Note the wrong result
x*y^-1

sage: P.monomial_quotient(x,P(1))
x
```

**Note:** Assumes that the head term of f is a multiple of the head term of g and return the multiplicant m. If this rule is violated, funny things may happen.

### $monomial\_reduce(f, G)$

Try to find a g in G where g.lm() divides f. If found (g,flt) is returned, (0,0) otherwise, where flt is f/g.lm().

It is assumed that G is iterable and contains ONLY elements in self.

# INPUT:

- •f monomial
- •G list/set of mpolynomials

# EXAMPLES:

(0, 0)

```
sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: f = x*y^2
sage: G = [ 3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, P(1/2) ]
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)

TESTS:
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domais
sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: f = x*y^2
sage: G = [ 3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, P(1/2) ]

sage: P.monomial_reduce(P(0),G)
(0, 0)
sage: P.monomial_reduce(f,[P(0)])
```

sage: from sage.rings.polynomial.multi\_polynomial\_ring import MPolynomialRing\_polydict\_domai

# 3.1.5 Generic Multivariate Polynomials

#### **AUTHORS:**

- David Joyner: first version
- · William Stein: use dict's instead of lists
- Martin Albrecht malb@informatik.uni-bremen.de: some functions added
- William Stein (2006-02-11): added better \_\_div\_\_ behavior.
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of some Singular features
- William Stein (2006-04-19): added e.g., f[1,3] to get coeff of  $xy^3$ ; added examples of the new R.x, y = PolynomialRing(QQ,2) notation.
- Martin Albrecht: improved singular coercions (restructured class hierarchy) and added ETuples
- Robert Bradshaw (2007-08-14): added support for coercion of polynomials in a subset of variables (including multi-level univariate rings)
- Joel B. Mohler (2008-03): Refactored interactions with ETuples.

#### **EXAMPLES:**

We verify Lagrange's four squares identity:

#### **EXAMPLE:**

```
sage: K.<cuberoot2> = NumberField(x^3 - 2)
sage: L.<cuberoot3> = K.extension(x^3 - 3)
sage: S.<sqrt2> = L.extension(x^2 - 2)
sage: S
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
sage: P.<x,y,z> = PolynomialRing(S) # indirect doctest
```

# ${\tt change\_ring}\,(R)$

```
element()
```

class sage.rings.polynomial.multi\_polynomial\_element.MPolynomial\_polydict(parent,

```
Bases: sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr, sage.rings.polynomial.multi_polynomial_element.MPolynomial_element
```

Multivariate polynomials implemented in pure python using polydicts.

```
coefficient (degrees)
```

Return the coefficient of the variables with the degrees specified in the python dictionary degrees. Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in degrees. However, the result has the same parent as this polynomial.

This function contrasts with the function monomial\_coefficient which returns the coefficient in the base ring of a monomial.

INPUT:

```
•degrees - Can be any of:
      -a dictionary of degree restrictions
      -a list of degree restrictions (with None in the unrestricted variables)
      -a monomial (very fast, but not as flexible)
OUTPUT: element of the parent of self
See also:
For coefficients of specific monomials, look at monomial_coefficient().
EXAMPLES:
sage: R. < x, y > = QQbar[]
sage: f = 2 * x * y
sage: c = f.coefficient({x:1,y:1}); c
sage: c.parent()
Multivariate Polynomial Ring in x, y over Algebraic Field
sage: c in PolynomialRing(QQbar, 2, names = ['x','y'])
sage: f = y^2 - x^9 - 7*x + 5*x*y
sage: f.coefficient({y:1})
sage: f.coefficient({y:0})
-x^9 + (-7) *x
sage: f.coefficient({x:0,y:0})
sage: f = (1+y+y^2) * (1+x+x^2)
sage: f.coefficient({x:0})
y^2 + y + 1
sage: f.coefficient([0,None])
v^2 + v + 1
sage: f.coefficient(x)
y^2 + y + 1
sage: # Be aware that this may not be what you think!
sage: # The physical appearance of the variable x is deceiving -- particularly if the expone
sage: f.coefficient(x^0) # outputs the full polynomial
x^2 + y^2 + x^2 + y + x + y^2 + x^2 + x + y + y^2 + x + y + 1
sage: R. \langle x, y \rangle = RR[]
sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5.00000000000000
sage: parent(c)
Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision
```

### **AUTHORS:**

•Joel B. Mohler (2007-10-31)

### constant\_coefficient()

Return the constant coefficient of this multivariate polynomial.

#### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.constant_coefficient()
5
```

```
sage: f = 3*x^2
sage: f.constant_coefficient()
```

**degree** (*x*=*None*, *std\_grading*=*False*)

Return the degree of self in x, where x must be one of the generators for the parent of self.

INPUT:

•x - multivariate polynomial (a generator of the parent of self). If x is not specified (or is None), return the total degree, which is the maximum degree of any monomial. Note that a weighted term ordering alters the grading of the generators of the ring; see the tests below. To avoid this behavior, set the optional argument std\_grading=True.

**OUTPUT**: integer

#### **EXAMPLES**:

```
sage: R.<x,y> = RR[]
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9
sage: f.degree(y)
2
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10
```

Note that total degree takes into account if we are working in a polynomial ring with a weighted term order.

```
sage: R = PolynomialRing(QQ,'x,y',order=TermOrder('wdeglex',(2,3)))
sage: x,y = R.gens()
sage: x.degree()
2
sage: y.degree()
3
sage: x.degree(y),x.degree(x),y.degree(x),y.degree(y)
(0, 1, 0, 1)
sage: f = (x^2*y+x*y^2)
sage: f.degree(x)
2
sage: f.degree(y)
2
sage: f.degree(y)
3
```

Note that if x is not a generator of the parent of self, for example if it is a generator of a polynomial algebra which maps naturally to this one, then it is converted to an element of this algebra. (This fixes the problem reported in trac ticket #17366.)

```
sage: x, y = ZZ['x','y'].gens()
sage: GF(3037000453)['x','y'].gen(0).degree(x)
1

sage: x0, y0 = QQ['x','y'].gens()
sage: GF(3037000453)['x','y'].gen(0).degree(x0)
```

```
Traceback (most recent call last):
TypeError: x must canonically coerce to parent
sage: GF (3037000453) ['x','y'].gen(0).degree(x^2)
Traceback (most recent call last):
TypeError: x must be one of the generators of the parent
sage: R = PolynomialRing(GF(2)['t'],'x,y',order=TermOrder('wdeglex',(2,3)))
sage: x, y = R.gens()
sage: x.degree()
sage: y.degree()
sage: x.degree(y), x.degree(x), y.degree(x), y.degree(y)
(0, 1, 0, 1)
sage: f = (x^2 * y + x * y^2)
sage: f.degree(x)
sage: f.degree(y)
sage: f.degree()
sage: f.degree(std_grading=True)
sage: R(0).degree()
-1
```

### degrees()

Returns a tuple (precisely - an ETuple) with the degree of each variable in this polynomial. The list of degrees is, of course, ordered by the order of the generators.

### **EXAMPLES:**

```
sage: R.<x,y,z>=PolynomialRing(QQbar)
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.degrees()
(2, 2, 0)
sage: f = x^2+z^2
sage: f.degrees()
(2, 0, 2)
sage: f.total_degree() # this simply illustrates that total degree is not the sum of the degree R.<x,y,z,u>=PolynomialRing(QQbar)
sage: f = (1-x)*(1+y+z+x^3)^5
sage: f.degrees()
(16, 5, 5, 0)
sage: R(0).degrees()
(0, 0, 0, 0, 0)
```

#### dict()

Return underlying dictionary with keys the exponents and values the coefficients of this polynomial.

### exponents (as\_ETuples=True)

Return the exponents of the monomials appearing in self.

#### INPUT:

•as\_ETuples (default: True): return the list of exponents as a list of ETuples.

#### **OUTPUT**:

Return the list of exponents as a list of ETuples or tuples.

#### **EXAMPLES:**

```
sage: R.<a,b,c> = PolynomialRing(QQbar, 3)
sage: f = a^3 + b + 2*b^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
```

Be default the list of exponents is a list of ETuples:

```
sage: type(f.exponents()[0])
<type 'sage.rings.polynomial.polydict.ETuple'>
sage: type(f.exponents(as_ETuples=False)[0])
<type 'tuple'>
```

### factor (proof=True)

Compute the irreducible factorization of this polynomial.

#### INPUT:

ALGORITHM: Use univariate factorization code.

If a polynomial is univariate, the appropriate univariate factorization code is called:

```
sage: R.<z> = PolynomialRing(CC,1)
sage: f = z^4 - 6*z + 3
sage: f.factor()
(z - 1.60443920904349) * (z - 0.511399619393097) * (z + 1.05791941421830 - 1.59281852704435*)
```

# TESTS:

Check if we can handle polynomials with no variables, see trac ticket #7950:

```
sage: P = PolynomialRing(ZZ,0,'')
sage: res = P(10).factor(); res
2 * 5
sage: res[0][0].parent()
Multivariate Polynomial Ring in no variables over Integer Ring
sage: R = PolynomialRing(QQ,0,'')
sage: res = R(10).factor(); res
10
sage: res.unit().parent()
Rational Field
sage: P(0).factor()
Traceback (most recent call last):
...
ArithmeticError: Prime factorization of 0 not defined.
```

Check if we can factor a constant polynomial, see trac ticket #8207:

```
sage: R.<x,y> = CC[]
sage: R(1).factor()
1.000000000000000
```

Check that we prohibit too large moduli, trac ticket #11829:

```
sage: R.\langle x, y \rangle = GF (previous_prime (2^31))[]
sage: factor(x+y+1,proof=False)
Traceback (most recent call last):
```

We check that the original issue in trac ticket #7554 is fixed:

```
sage: K.<a> = PolynomialRing(QQ)
sage: R.<x,y> = PolynomialRing(FractionField(K))
sage: factor(x)
```

### integral (var=None)

Integrates self with respect to variable var.

**Note:** The integral is always chosen so the constant term is 0.

If var is not one of the generators of this ring, integral(var) is called recursively on each coefficient of this polynomial.

NotImplementedError: Factorization of multivariate polynomials over prime fields with charac

#### **EXAMPLES:**

On polynomials with rational coefficients:

```
sage: x, y = PolynomialRing(QQ, 'x, y').gens()
sage: ex = x * y + x - y
sage: it = ex.integral(x); it
1/2*x^2*y + 1/2*x^2 - x*y
sage: it.parent() == x.parent()
```

On polynomials with coefficients in power series:

```
sage: R.<t> = PowerSeriesRing(QQbar)
    sage: S.<x, y> = PolynomialRing(R)
    sage: f = (t^2 + O(t^3)) *x^2 *y^3 + (37*t^4 + O(t^5)) *x^3
    sage: f.parent()
    Multivariate Polynomial Ring in x, y over Power Series Ring in t over Algebraic Field
    sage: f.integral(x) # with respect to x
    (1/3*t^2 + O(t^3))*x^3*y^3 + (37/4*t^4 + O(t^5))*x^4
    sage: f.integral(x).parent()
    Multivariate Polynomial Ring in x, y over Power Series Ring in t over Algebraic Field
    sage: f.integral(y)
                        # with respect to y
    (1/4*t^2 + O(t^3))*x^2*y^4 + (37*t^4 + O(t^5))*x^3*y
    sage: f.integral(t)
                        # with respect to t (recurses into base ring)
    (1/3*t^3 + O(t^4))*x^2*y^3 + (37/5*t^5 + O(t^6))*x^3
    TESTS:
    sage: f.integral()
                        # can't figure out the variable
    Traceback (most recent call last):
    ValueError: must specify which variable to integrate with respect to
inverse_of_unit()
```

is\_constant()

True if polynomial is constant, and False otherwise.

### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.is_constant()
False
sage: g = 10*x^0
sage: g.is_constant()
True
```

### is\_generator()

Returns True if self is a generator of it's parent.

#### **EXAMPLES**:

```
sage: R.<x,y>=QQbar[]
sage: x.is_generator()
True
sage: (x+y-y).is_generator()
True
sage: (x*y).is_generator()
False
```

## is\_homogeneous()

Return True if self is a homogeneous polynomial.

#### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: (x+y).is_homogeneous()
True
sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True
```

# is\_monomial()

Returns True if self is a monomial, which we define to be a product of generators with coefficient 1.

Use is\_term to allow the coefficient to not be 1.

### **EXAMPLES**:

```
sage: R.<x,y>=QQbar[]
sage: x.is_monomial()
True
sage: (x+2*y).is_monomial()
False
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
```

To allow a non-1 leading coefficient, use is\_term():

```
sage: (2*x*y).is_term()
True
sage: (2*x*y).is_monomial()
False
```

### is term()

Returns True if self is a term, which we define to be a product of generators times some coefficient, which need not be 1

Use is\_monomial to require that the coefficent be 1.

### **EXAMPLES:**

```
sage: R.<x,y>=QQbar[]
sage: x.is_term()
True
sage: (x+2*y).is_term()
False
sage: (2*x).is_term()
True
sage: (7*x^5*y).is_term()
```

To require leading coefficient 1, use is\_monomial():

```
sage: (2*x*y).is_monomial()
False
sage: (2*x*y).is_term()
True
```

### is\_unit()

Return True if self is a unit.

#### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: (x+y).is_unit()
False
sage: R(0).is_unit()
False
sage: R(-1).is_unit()
True
sage: R(-1 + x).is_unit()
False
sage: R(2).is_unit()
```

### is\_univariate()

Returns True if this multivariate polynomial is univariate and False otherwise.

### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.is_univariate()
False
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.is_univariate()
True
sage: f = x^0
```

```
sage: f.is_univariate()
    True
1c()
    Returns the leading coefficient of self i.e., self.coefficient(self.lm())
    EXAMPLES:
    sage: R.<x,y,z>=QQbar[]
    sage: f=3*x^2-y^2-x*y
    sage: f.lc()
lift(I)
    given an ideal I = (f_1, ..., f_r) and some g := self in I, find g_1, ..., g_r such that g = g_1 : f_1 + ... + g_r : f_r
    ALGORITHM: Use Singular.
    EXAMPLE:
    sage: A.<x,y> = PolynomialRing(CC,2,order='degrevlex')
    sage: I = A.ideal([x^10 + x^9 * y^2, y^8 - x^2 * y^7])
    sage: f = x*y^13 + y^12
    sage: M = f.lift(I)
    sage: M
    [y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + y^4]
    sage: sum( map( mul , zip( M, I.gens() ) ) == f
    True
1m()
    Returns the lead monomial of self with respect to the term order of self.parent().
    EXAMPLES:
    sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
    sage: (x^1*y^2 + y^3*z^4).lm()
    sage: (x^3*y^2*z^4 + x^3*y^2*z^1).lm()
    x^3*y^2*z^4
    sage: R.<x,y,z>=PolynomialRing(CC,3,order='deglex')
    sage: (x^1*y^2*z^3 + x^3*y^2*z^0).lm()
    x*y^2*z^3
    sage: (x^1*y^2*z^4 + x^1*y^1*z^5).lm()
    x*y^2*z^4
    sage: R.<x,y,z>=PolynomialRing(QQbar,3,order='degrevlex')
    sage: (x^1*y^5*z^2 + x^4*y^1*z^3).lm()
    x*y^5*z^2
    sage: (x^4 * y^7 * z^1 + x^4 * y^2 * z^3).lm()
    x^4*y^7*z
    TESTS:
    sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict
    sage: R.<x,y>=MPolynomialRing_polydict(GF(2),2,order='lex')
    sage: f=x+y
    sage: f.lm()
1t()
```

Returns the leading term of self i.e., self.lc()\*self.lm(). The notion of "leading term" depends on the ordering defined in the parent ring.

#### **EXAMPLES:**

```
sage: R.<x,y,z>=PolynomialRing(QQbar)
sage: f=3*x^2-y^2-x*y
sage: f.lt()
3*x^2
sage: R.<x,y,z>=PolynomialRing(QQbar,order="invlex")
sage: f=3*x^2-y^2-x*y
sage: f.lt()
-y^2
TESTS:
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict
sage: R.<x,y>=MPolynomialRing_polydict(GF(2),2,order='lex')
sage: f=x+y
sage: f.lt()
```

# monomial\_coefficient (mon)

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function coefficient which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

#### INPUT:

•mon - a monomial

OUTPUT: coefficient in base ring

### See also:

For coefficients in a base ring of fewer variables, look at coefficient().

#### **EXAMPLES:**

The parent of the return is a member of the base ring.

```
sage: R.<x,y>=QQbar[]
```

The parent of the return is a member of the base ring.

```
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Algebraic Field

sage: f = y^2 + y^2*x - x^9 - 7*x + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
-1
sage: f.monomial_coefficient(x^10)
```

```
sage: var('a')
a
sage: K.<a> = NumberField(a^2+a+1)
sage: P.<x,y> = K[]
sage: f=(a*x-1)*((a+1)*y-1); f
-x*y + (-a)*x + (-a - 1)*y + 1
sage: f.monomial_coefficient(x)
-a
```

### monomials()

Returns the list of monomials in self. The returned list is decreasingly ordered by the term ordering of self.parent().

**OUTPUT:** list of MPolynomials representing Monomials

#### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.monomials()
[x^2*y^2, x^2, y, 1]

sage: R.<fx,fy,gx,gy> = QQbar[]
sage: F = ((fx*gy - fy*gx)^3)
sage: F
-fy^3*gx^3 + 3*fx*fy^2*gx^2*gy + (-3)*fx^2*fy*gx*gy^2 + fx^3*gy^3
sage: F.monomials()
[fy^3*gx^3, fx*fy^2*gx^2*gy, fx^2*fy*gx*gy^2, fx^3*gy^3]
sage: F.coefficients()
[-1, 3, -3, 1]
sage: sum(map(mul,zip(F.coefficients(),F.monomials()))) == F
True
```

# nvariables()

Number of variables in this polynomial

#### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.nvariables ()
2
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.nvariables ()
1
```

### quo\_rem (right)

Returns quotient and remainder of self and right.

#### **EXAMPLE:**

```
sage: R.<x,y> = CC[]
sage: f = y*x^2 + x + 1
sage: f.quo_rem(x)
(x*y + 1.0000000000000, 1.0000000000000)
```

ALGORITHM: Use Singular.

### reduce(I)

Reduce this polynomial by the the polynomials in I.

### INPUT:

•I - a list of polynomials or an ideal

```
EXAMPLE:
    sage: P.\langle x, y, z \rangle = QQbar[]
    sage: f1 = -2 * x^2 + x^3
    sage: f2 = -2 * y + x* y
    sage: f3 = -x^2 + y^2
    sage: F = Ideal([f1, f2, f3])
    sage: q = x*y - 3*x*y^2
    sage: q.reduce(F)
    (-6)*y^2 + 2*y
    sage: g.reduce(F.gens())
    (-6)*y^2 + 2*y
    sage: f = 3*x
    sage: f.reduce([2*x,y])
    sage: k.<w> = CyclotomicField(3)
    sage: A.\langle y9, y12, y13, y15 \rangle = PolynomialRing(k)
    sage: J = [y9 + y12]
    sage: f = y9 - y12; f.reduce(J)
    -2*y12
    sage: f = y13*y15; f.reduce(J)
    y13*y15
    sage: f = y13*y15 + y9 - y12; f.reduce(J)
    y13*y15 - 2*y12
    Make sure the remainder returns the correct type, fixing trac ticket #13903:
    sage: R.<y1, y2>=PolynomialRing(Qp(5),2, order='lex')
    sage: G=[y1^2 + y2^2, y1*y2 + y2^2, y2^3]
    sage: type((y2^3).reduce(G))
    <class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
resultant (other, variable=None)
    Compute the resultant of self and other with respect to variable.
    If a second argument is not provided, the first variable of self.parent() is chosen.
    INPUT:
       other - polynomial in self.parent()
       •variable - (optional) variable (of type polynomial) in self.parent()
    EXAMPLES:
    sage: P.\langle x,y \rangle = PolynomialRing(QQ, 2)
    sage: a = x + y
    sage: b = x^3 - y^3
    sage: a.resultant(b)
    -2*y^3
    sage: a.resultant(b, y)
    2*x^3
    TESTS:
```

sage: from sage.rings.polynomial.multi\_polynomial\_ring import MPolynomialRing\_polydict\_domai

sage: P.<x,y> = MPolynomialRing\_polydict\_domain(QQ, 2, order='degrevlex')

```
sage: a = x + y
sage: b = x^3 - y^3
sage: a.resultant(b)
-2*y^3
sage: a.resultant(b, y)
2*x^3

Check that trac ticket #15061 is fixed:
sage: R.\langle x, y \rangle = AA[]
sage: (x^2 + 1).resultant (x^2 - y)
y^2 + 2*y + 1
```

# subs (fixed=None, \*\*kw)

Fixes some given variables in a given multivariate polynomial and returns the changed multivariate polynomials. The polynomial itself is not affected. The variable, value pairs for fixing are to be provided as a dictionary of the form {variable:value}.

This is a special case of evaluating the polynomial with some of the variables constants and the others the original variables.

# INPUT:

- •fixed (optional) dictionary of inputs
- •\*\*kw named parameters

## **OUTPUT:** new MPolynomial

#### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = x^2 + y + x^2*y^2 + 5
sage: f((5,y))
25*y^2 + y + 30
sage: f.subs({x:5})
25*y^2 + y + 30
```

# total\_degree()

Return the total degree of self, which is the maximum degree of any monomial in self.

#### **EXAMPLES**:

```
sage: R.<x,y,z> = QQbar[]
sage: f=2*x*y^3*z^2
sage: f.total_degree()
6
sage: f=4*x^2*y^2*z^3
sage: f.total_degree()
7
sage: f=99*x^6*y^3*z^9
sage: f.total_degree()
18
sage: f=x*y^3*z^6+3*x^2
sage: f.total_degree()
10
sage: f=z^3+8*x^4*y^5*z
sage: f.total_degree()
10
sage: f=z^9+10*x^4+y^8*x^2
sage: f.total_degree()
10
```

### univariate\_polynomial(R=None)

Returns a univariate polynomial associated to this multivariate polynomial.

#### INPUT:

```
•R - (default: None) PolynomialRing
```

If this polynomial is not in at most one variable, then a ValueError exception is raised. This is checked using the is\_univariate() method. The new Polynomial is over the same base ring as the given MPolynomial.

#### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.univariate_polynomial()
Traceback (most recent call last):
...
TypeError: polynomial must involve at most one variable
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.univariate_polynomial ()
700*y^2 - 2*y + 305
sage: g.univariate_polynomial(PolynomialRing(QQ,'z'))
700*z^2 - 2*z + 305

TESTS:
sage: P = PolynomialRing(QQ, 0, '')
sage: P(5).univariate_polynomial()
```

# variable(i)

Returns *i*-th variable occurring in this polynomial.

### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.variable(0)
x
sage: f.variable(1)
y
```

# variables()

Returns the tuple of variables occurring in this polynomial.

### **EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.variables()
(x, y)
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.variables()
(y,)
```

### TESTS:

This shows that the issue at trac ticket #7077 is fixed:

```
sage: x,y,z=polygens(QQ,'x,y,z')
        sage: (x^2).variables()
         (x,)
sage.rings.polynomial.multi\_polynomial\_element.degree\_lowest\_rational\_function(r,
    INPUT:
```

- •r a multivariate rational function
- •x a multivariate polynomial ring generator x

#### **OUTPUT:**

•integer - the degree of r in x and its "leading" (in the x-adic sense) coefficient.

Note: This function is dependent on the ordering of a python dict. Thus, it isn't really mathematically welldefined. I think that it should made a method of the FractionFieldElement class and rewritten.

#### **EXAMPLES:**

```
sage: R1 = PolynomialRing(FiniteField(5), 3, names = ["a","b","c"])
sage: F = FractionField(R1)
sage: a,b,c = R1.gens()
sage: f = 3*a*b^2*c^3+4*a*b*c
sage: g = a^2 *b*c^2 + 2*a^2 *b^4 *c^7
Consider the quotient f/g=\frac{4+3bc^2}{ac+2ab^3c^6} (note the cancellation).
sage: r = f/q; r
(-2*b*c^2 - 1)/(2*a*b^3*c^6 + a*c)
sage: degree_lowest_rational_function(r,a)
(-1, 3)
sage: degree_lowest_rational_function(r,b)
sage: degree_lowest_rational_function(r,c)
(-1, 4)
```

 $sage.rings.polynomial.multi_polynomial_element.is_MPolynomial(x)$ 

# 3.1.6 Ideals in multivariate polynomial rings.

Sage has a powerful system to compute with multivariate polynomial rings. Most algorithms dealing with these ideals are centered on the computation of *Groebner bases*. Sage mainly uses Singular to implement this functionality. Singular is widely regarded as the best open-source system for Groebner basis calculation in multivariate polynomial rings over fields.

# **AUTHORS:**

- · William Stein
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of some Singular features
- Martin Albrecht (2008,2007): refactoring, many Singular related functions
- Martin Albrecht (2009): added Groebner basis over rings functionality from Singular 3.1
- John Perry (2012): bug fixing equality & containment of ideals

### **EXAMPLES:**

We compute a Groebner basis for some given ideal. The type returned by the groebner\_basis method is PolynomialSequence, i.e. it is not a MPolynomialIdeal:

```
sage: x,y,z = QQ['x,y,z'].gens()
sage: I = ideal(x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1)
sage: B = I.groebner_basis()
sage: type(B)
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>
```

Groebner bases can be used to solve the ideal membership problem:

```
sage: f,g,h = B
sage: (2*x*f + g).reduce(B)
0

sage: (2*x*f + g) in I
True

sage: (2*x*f + 2*z*h + y^3).reduce(B)
y^3

sage: (2*x*f + 2*z*h + y^3) in I
False
```

We compute a Groebner basis for Cyclic 6, which is a standard benchmark and test ideal.

```
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis()
sage: len(B)
45
```

We compute in a quotient of a polynomial ring over  $\mathbb{Z}/17\mathbb{Z}$ :

```
sage: R.<x,y> = ZZ[]
sage: S.<a,b> = R.quotient((x^2 + y^2, 17))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Integer Ring
by the ideal (x^2 + y^2, 17)

sage: a^2 + b^2 == 0
True
sage: a^3 - b^2
-a*b^2 - b^2
```

Note that the result of a computation is not necessarily reduced:

```
sage: (a+b)^17
256*a*b^16 + 256*b^17
sage: S(17) == 0
True
```

Or we can work with  $\mathbf{Z}/17\mathbf{Z}$  directly:

```
sage: R.\langle x, y \rangle = Zmod(17)[]
sage: S.\langle a, b \rangle = R.quotient((x^2 + y^2,))
sage: S
```

```
Quotient of Multivariate Polynomial Ring in x, y over Ring of
integers modulo 17 by the ideal (x^2 + y^2)
sage: a^2 + b^2 == 0
True
sage: a^3 - b^2
-a*b^2 - b^2
sage: (a+b) ^17
a*b^16 + b^17
sage: S(17) == 0
True
Working with a polynomial ring over Z:
sage: R. \langle x, y, z, w \rangle = ZZ[]
sage: I = ideal(x^2 + y^2 - z^2 - w^2, x-y)
sage: J = I^2
sage: J.groebner_basis()
[4*y^4 - 4*y^2*z^2 + z^4 - 4*y^2*w^2 + 2*z^2*w^2 + w^4,
2*x*y^2 - 2*y^3 - x*z^2 + y*z^2 - x*w^2 + y*w^2,
x^2 - 2*x*y + y^2
sage: y^2 - 2*x*y + x^2 in J
True
sage: 0 in J
True
We do a Groebner basis computation over a number field:
sage: K.<zeta> = CyclotomicField(3)
sage: R.\langle x, y, z \rangle = K[]; R
Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2
sage: i = ideal(x - zeta*y + 1, x^3 - zeta*y^3); i
Ideal (x + (-zeta)*y + 1, x^3 + (-zeta)*y^3) of Multivariate
Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2
sage: i.groebner_basis()
[y^3 + (2*zeta + 1)*y^2 + (zeta - 1)*y + (-1/3*zeta - 2/3), x + (-zeta)*y + 1]
sage: S = R.quotient(i); S
Quotient of Multivariate Polynomial Ring in x, y, z over
Cyclotomic Field of order 3 and degree 2 by the ideal (x +
(-zeta)*y + 1, x^3 + (-zeta)*y^3
sage: S.0 - zeta*S.1
-1
sage: S.0^3 - zeta*S.1^3
Two examples from the Mathematica documentation (done in Sage):
     We compute a Groebner basis:
     sage: R.<x,y> = PolynomialRing(QQ, order='lex')
     sage: ideal(x^2 - 2*y^2, x*y - 3).groebner_basis()
     [x - 2/3*y^3, y^4 - 9/2]
```

We show that three polynomials have no common root:

```
sage: R.\langle x, y \rangle = QQ[]
sage: ideal(x+y, x^2 - 1, y^2 - 2*x).groebner_basis()
[1]
```

The next example shows how we can use Groebner bases over **Z** to find the primes modulo which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal I in  $\mathbf{Z}[x,y,z]$ , and note that the Groebner basis of I over  $\mathbf{Q}$  contains 1, so there are no solutions over  $\mathbf{Q}$  or an algebraic closure of it (this is not surprising as there are 4 equations in 3 unknowns).

However, when we compute the Groebner basis of I (defined over  $\mathbf{Z}$ ), we note that there is a certain integer in the ideal which is not 1.

```
sage: I.groebner_basis()
[x + 130433*y + 59079*z, y^2 + 3*y + 17220, y*z + 5*y + 14504, 2*y + 158864, z^2 + 17223, 2*z +
```

Now for each prime p dividing this integer 164878, the Groebner basis of I modulo p will be non-trivial and will thus give a solution of the original system modulo p.

```
sage: factor(164878)
2 * 7 * 11777

sage: I.change_ring(P.change_ring( GF(2) )).groebner_basis()
[x + y + z, y^2 + y, y*z + y, z^2 + 1]
sage: I.change_ring(P.change_ring( GF(7) )).groebner_basis()
[x - 1, y + 3, z - 2]
sage: I.change_ring(P.change_ring( GF(11777 ))).groebner_basis()
[x + 5633, y - 3007, z - 2626]
```

The Groebner basis modulo any product of the prime factors is also non-trivial.

```
sage: I.change_ring(P.change_ring(IntegerModRing(2*7))).groebner_basis() [x + y + z, y^2 + 3*y, y*z + 11*y + 4, 2*y + 6, z^2 + 3, 2*z + 10]
```

Modulo any other prime the Groebner basis is trivial so there are no other solutions. For example:

```
sage: I.change_ring( P.change_ring( GF(3) ) ).groebner_basis()
[1]
```

TESTS:

```
sage: x,y,z = QQ['x,y,z'].gens()
sage: I = ideal(x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1)
sage: I == loads(dumps(I))
True
```

**Note:** Sage distinguishes between lists or sequences of polynomials and ideals. Thus an ideal is not identified with a particular set of generators. For sequences of multivariate polynomials see sage.rings.polynomial.multi\_polynomial\_sequence.PolynomialSequence\_generic.

```
class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal(ring,
                                                                             gens.
                                                                                     co-
                                                                             erce=True)
    Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr,
    sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_macaulay2_repr,
    sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_magma_repr,
     sage.rings.ideal.Ideal_generic
    Create an ideal in a multivariate polynomial ring.
    INPUT:
        •ring - the ring the ideal is defined in
        •gens - a list of generators for the ideal
        •coerce - coerce elements to the ring ring?
    EXAMPLES:
    sage: R.<x,y> = PolynomialRing(IntegerRing(), 2, order='lex')
    sage: R.ideal([x, y])
    Ideal (x, y) of Multivariate Polynomial Ring in x, y over Integer Ring
    sage: R. < x0, x1 > = GF(3)[]
    sage: R.ideal([x0^2, x1^3])
    Ideal (x0^2, x1^3) of Multivariate Polynomial Ring in x0, x1 over Finite Field of size 3
    basis
         Shortcut to gens ().
         EXAMPLE:
         sage: P. \langle x, y \rangle = PolynomialRing(QQ, 2)
         sage: I = Ideal([x,y+1])
         sage: I.basis
         [x, y + 1]
    change\_ring(P)
         Return the ideal I in P spanned by the generators q_1, ..., q_n of self as returned by self.gens().
         INPUT:
            •P - a multivariate polynomial ring
         EXAMPLE:
         sage: P.<x,y,z> = PolynomialRing(QQ,3,order='lex')
         sage: I = sage.rings.ideal.Cyclic(P)
         sage: I
         Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of
         Multivariate Polynomial Ring in x, y, z over Rational Field
         sage: I.groebner_basis()
         [x + y + z, y^2 + y*z + z^2, z^3 - 1]
         sage: Q.<x,y,z> = P.change_ring(order='degrevlex'); Q
         Multivariate Polynomial Ring in x, y, z over Rational Field
         sage: Q.term_order()
         Degree reverse lexicographic term order
         sage: J = I.change_ring(Q); J
         Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of
         Multivariate Polynomial Ring in x, y, z over Rational Field
```

```
sage: J.groebner_basis()
[z^3 - 1, y^2 + y*z + z^2, x + y + z]
```

# degree\_of\_semi\_regularity()

Return the degree of semi-regularity of this ideal under the assumption that it is semi-regular.

Let  $\{f_1, ..., f_m\} \subset K[x_1, ..., x_n]$  be homogeneous polynomials of degrees  $d_1, ..., d_m$  respectively. This sequence is semi-regular if:

```
\bullet \{f_1, ..., f_m\} \neq K[x_1, ..., x_n]
```

•for all  $1 \le i \le m$  and  $g \in K[x_1, \dots, x_n]$ :  $deg(g \cdot pi) < D$  and  $g \cdot f_i \in < f_1, \dots, f_{i-1} >$  implies that  $g \in < f_1, \dots, f_{i-1} >$  where D is the degree of regularity.

This notion can be extended to affine polynomials by considering their homogeneous components of highest degree.

The degree of regularity of a semi-regular sequence  $f_1, ..., f_m$  of respective degrees  $d_1, ..., d_m$  is given by the index of the first non-positive coefficient of:

$$\sum c_k z^k = \frac{\prod (1 - z^{d_i})}{(1 - z)^n}$$

#### EXAMPLE:

We consider a homogeneous example:

From this, we expect a Groebner basis computation to reach at most degree 4. For homogeneous systems this is equivalent to the largest degree in the Groebner basis:

```
sage: max(f.degree() for f in I.groebner_basis())
4
```

We increase the number of polynomials and observe a decrease the degree of regularity:

The degree of regularity approaches 2 for quadratic systems as the number of polynomials approaches  $n^2$ :

```
sage: for i in range((n-4)*n):
....: f = P.random_element(degree=2, terms=binomial(n,2))
```

```
....: f -= f(*s)
....: L.append(f.homogenize())
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
2
sage: max(f.degree() for f in I.groebner_basis())
2
```

**Note:** It is unknown whether semi-regular sequences exist. However, it is expected that random systems are semi-regular sequences. For more details about semi-regular sequences see [BFS04].

#### REFERENCES:

#### gens()

Return a set of generators / a basis of this ideal. This is usually the set of generators provided during object creation.

#### EXAMPLE:

```
sage: P.\langle x,y \rangle = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]
```

groebner\_basis (algorithm='', deg\_bound=None, mult\_bound=None, prot=False, \*args, \*\*kwds)

Return the reduced Groebner basis of this ideal.

A Groebner basis  $g_1, ..., g_n$  for an ideal I is a generating set such that  $\langle LM(g_i) \rangle = LM(I)$ , i.e., the leading monomial ideal of I is spanned by the leading terms of  $g_1, ..., g_n$ . Groebner bases are the key concept in computational ideal theory in multivariate polynomial rings which allows a variety of problems to be solved.

Additionally, a *reduced* Groebner basis G is a unique representation for the ideal G > with respect to the chosen monomial ordering.

# INPUT:

- •algorithm determines the algorithm to use, see below for available algorithms.
- •deg\_bound only compute to degree deg\_bound, that is, ignore all S-polynomials of higher degree. (default: None)
- •mult\_bound the computation is stopped if the ideal is zero-dimensional in a ring with local ordering and its multiplicity is lower than mult\_bound. Singular only. (default: None)
- •prot if set to True the computation protocol of the underlying implementation is printed. If an algorithm from the singular: or magma: family is used, prot may also be sage in which case the output is parsed and printed in a common format where the amount of information printed can be controlled via calls to set\_verbose().
- •\*args additional parameters passed to the respective implementations
- •\*\*kwds additional keyword parameters passed to the respective implementations

# ALGORITHMS:

" autoselect (default)

'singular:groebner' Singular's groebner command

- 'singular:std' Singular's std command
- 'singular:stdhilb' Singular's stdhib command
- 'singular:stdfglm' Singular's stdfglm command
- 'singular:slimgb' Singular's slimgb command
- 'libsingular:groebner' libSingular's groebner command
- 'libsingular:std' libSingular's std command
- 'libsingular:slimgb' libSingular's slimgb command
- 'libsingular:stdhilb' libSingular's stdhib command
- 'libsingular:stdfglm' libSingular's stdfqlm command
- 'toy:buchberger' Sage's toy/educational buchberger without Buchberger criteria
- 'toy:buchberger2' Sage's toy/educational buchberger with Buchberger criteria
- 'toy:d\_basis' Sage's toy/educational algorithm for computation over PIDs
- 'macaulay2:gb' Macaulay2's gb command (if available)
- 'magma:GroebnerBasis' Magma's Groebnerbasis command (if available)
- 'ginv:TQ', 'ginv:TQBlockHigh', 'ginv:TQBlockLow' and 'ginv:TQDegree' One of GINV's implementations (if available)
- 'giac:gbasis' Giac's qbasis command (if available)

If only a system is given - e.g. 'magma' - the default algorithm is chosen for that system.

**Note:** The Singular and libSingular versions of the respective algorithms are identical, but the former calls an external Singular process while the later calls a C function, i.e. the calling overhead is smaller. However, the libSingular interface does not support pretty printing of computation protocols.

# **EXAMPLES:**

Consider Katsura-3 over  $\mathbf{Q}$  with lexicographical term ordering. We compute the reduced Groebner basis using every available implementation and check their equality.

```
sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex')
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis()
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:groebner')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:std')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:stdhilb')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:stdfglm')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c
```

sage: I.groebner\_basis('libsingular:slimgb')

```
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c]
Giac only supports the degree reverse lexicographical ordering:
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: J = I.change_ring(P.change_ring(order='degrevlex'))
sage: gb = J.groebner_basis('giac') # optional - giacpy, random
sage: qb # optional - giacpy
[c^3 - 79/210*c^2 + 1/30*b + 1/70*c, b^2 - 3/5*c^2 - 1/5*b + 1/5*c, b*c + 6/5*c^2 - 1/10*b - 1/5*c
sage: ideal(J.transformed_basis()).change_ring(P).interreduced_basis() # optional - giacpy
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c
Giac's gbasis over Q can benefit from a probabilistic lifting and multi threaded operations:
sage: A9=PolynomialRing(QQ,9,'x') # optional - giacpy
sage: I9=sage.rings.ideal.Katsura(A9) # optional - giacpy
sage: I9.groebner_basis("giac",proba_epsilon=1e-7) # optional - giacpy, long time (3s)
Running a probabilistic check for the reconstructed Groebner basis...
Polynomial Sequence with 143 Polynomials in 9 Variables
The list of available Giac options is provided at sage.libs.giac.groebner_basis().
Note that toy: buchberger does not return the reduced Groebner basis,
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('toy:buchberger')
[a^2 - a + 2*b^2 + 2*c^2,
 a*b + b*c - 1/2*b, a + 2*b + 2*c - 1,
 b^2 + 3*b*c - 1/2*b + 3*c^2 - c
 b*c - 1/10*b + 6/5*c^2 - 2/5*c
 b + 30*c^3 - 79/7*c^2 + 3/7*c
 c^6 - 79/210*c^5 - 229/2100*c^4 + 121/2520*c^3 + 1/3150*c^2 - 11/12600*c
 c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c
but that toy: buchberger2 does.:
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('toy:buchberger2')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('macaulay2:gb') # optional - macaulay2
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('magma:GroebnerBasis') # optional - magma
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^3 + 
Singular and libSingular can compute Groebner basis with degree restrictions.:
sage: R. < x, y > = QQ[]
sage: I = R*[x^3+y^2,x^2*y+1]
sage: I.groebner_basis(algorithm='singular')
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: I.groebner_basis(algorithm='singular',deg_bound=2)
[x^3 + y^2, x^2*y + 1]
sage: I.groebner_basis()
```

sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching

```
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: I.groebner_basis(deg_bound=2)
[x^3 + y^2, x^2*y + 1]
```

A protocol is printed, if the verbosity level is at least 2, or if the argument prot is provided. Historically, the protocol did not appear during doctests, so, we skip the examples with protocol output.

```
sage: set_verbose(2)
sage: I = R*[x^3+y^2, x^2*y+1]
sage: I.groebner_basis() # not tested
std in (0), (x,y), (dp(2),C)
[...:2]3ss4s6
(S:2) --
product criterion:1 chain criterion:0
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: I.groebner_basis(prot=False)
std in (0), (x,y), (dp(2),C)
[...:2]3ss4s6
(S:2) --
product criterion:1 chain criterion:0
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: set_verbose(0)
sage: I.groebner_basis(prot=True) # not tested
std in (0), (x,y), (dp(2),C)
[...:213ss4s6
(S:2) --
product criterion:1 chain criterion:0
[x^3 + y^2, x^2*y + 1, y^3 - x]
```

The list of available options is provided at LibSingularOptions.

Note that Groebner bases over  ${\bf Z}$  can also be computed.:

```
sage: P.<a,b,c> = PolynomialRing(ZZ,3)
sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
sage: I.groebner_basis()
[b^3 - 23*b*c^2 + 3*b^2 + 5*b*c, 2*b*c^2 - 6*c^3 - b^2 - b*c + 2*c^2,
42*c^3 + 5*b^2 + 4*b*c - 14*c^2, 2*b^2 + 6*b*c + 6*c^2 - b - 2*c,
10*b*c + 12*c^2 - b - 4*c, a + 2*b + 2*c - 1]

sage: I.groebner_basis('macaulay2') # optional - macaulay2
[b^3 + b*c^2 + 12*c^3 + b^2 + b*c - 4*c^2,
2*b*c^2 - 6*c^3 + b^2 + 5*b*c + 8*c^2 - b - 2*c,
42*c^3 + b^2 + 2*b*c - 14*c^2 + b,
2*b^2 - 4*b*c - 6*c^2 + 2*c, 10*b*c + 12*c^2 - b - 4*c,
a + 2*b + 2*c - 1]
```

Groebner bases over  $\mathbf{Z}/n\mathbf{Z}$  are also supported:

```
sage: P.<a,b,c> = PolynomialRing(Zmod(1000),3)
sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
sage: I.groebner_basis()
[b*c^2 + 992*b*c + 712*c^2 + 332*b + 96*c,
2*c^3 + 589*b*c + 862*c^2 + 762*b + 268*c,
b^2 + 438*b*c + 281*b,
5*b*c + 156*c^2 + 112*b + 948*c,
50*c^2 + 600*b + 650*c, a + 2*b + 2*c + 999, 125*b]
```

Sage also supports local orderings:

```
sage: P.\langle x, y, z \rangle = PolynomialRing(QQ,3,order='negdegrevlex') 

sage: I = P * ( x*y*z + z^5, 2*x^2 + y^3 + z^7, 3*z^5 + y^5) 

sage: I.groebner_basis() 

[x^2 + 1/2*y^3, x*y*z + z^5, y^5 + 3*z^5, y^4*z - 2*x*z^5, z^6]
```

We can represent every element in the ideal as a combination of the generators using the lift() method:

```
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = P * ( x*y*z + z^5, 2*x^2 + y^3 + z^7, 3*z^5 + y^5 )
sage: J = Ideal(I.groebner_basis())
sage: f = sum(P.random_element(terms=2)*f for f in I.gens())
sage: f
1/2*y^2*z^7 - 1/4*y*z^8 + 2*x*z^5 + 95*z^6 + 1/2*y^5 - 1/4*y^4*z + x^2*y^2 + 3/2*x^2*y*z + 9
sage: f.lift(I.gens())
[2*x + 95*z, 1/2*y^2 - 1/4*y*z, 0]
sage: l = f.lift(J.gens()); l
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1/2*y^2 + 1/4*y*z, 1/2*y^2*z^2 - 1/4*y*z^3 + 2*x + sage: sum(map(mul, zip(1,J.gens()))) == f
True
```

Groebner bases over fraction fields of polynomial rings are also supported:

```
sage: P.<t> = QQ[]
sage: F = Frac(P)
sage: R.<X,Y,Z> = F[]
sage: I = Ideal([f + P.random_element() for f in sage.rings.ideal.Katsura(R).gens()])
sage: I.groebner_basis()
[Z^3 + (79/105*t^2 - 79/105*t + 79/630)*Z^2 + (-11/105*t^4 + 22/105*t^3 - 17/45*t^2 + 197/63*Y^2 + (-3/5)*Z^2 + (2/5*t^2 - 2/5*t + 1/15)*Y + (-2/5*t^2 + 2/5*t - 1/15)*Z - 1/10*t^4 + 1/5*Y*Z + 6/5*Z^2 + (1/5*t^2 - 1/5*t + 1/30)*Y + (4/5*t^2 - 4/5*t + 2/15)*Z + 1/5*t^4 - 2/5*t^3
```

In cases where a characteristic cannot be determined, we use a toy implementation of Buchberger's algorithm (see trac ticket #6581):

# ALGORITHM:

Uses Singular, Magma (if available), Macaulay2 (if available), Giac (if available), or a toy implementation.

```
groebner_fan (is_groebner_basis=False, symmetry=None, verbose=False)
```

Return the Groebner fan of this ideal.

The base ring must be **Q** or a finite field  $\mathbf{F}_p$  of with  $p \leq 32749$ .

# **EXAMPLES:**

```
sage: P.<x,y> = PolynomialRing(QQ)
sage: i = ideal(x^2 - y^2 + 1)
sage: g = i.groebner_fan()
sage: g.reduced_groebner_bases()
[[x^2 - y^2 + 1], [-x^2 + y^2 - 1]]
```

INPUT:

- •is\_groebner\_basis bool (default False). if True, then I.gens() must be a Groebner basis with respect to the standard degree lexicographic term order.
- •symmetry default: None; if not None, describes symmetries of the ideal
- •verbose default: False; if True, printout useful info during computations

#### homogenize (*var='h'*)

Return homogeneous ideal spanned by the homogeneous polynomials generated by homogenizing the generators of this ideal.

#### INPUT:

•h - variable name or variable in cover ring (default: 'h')

#### **EXAMPLE:**

```
sage: P.\langle x, y, z \rangle = PolynomialRing(GF(2))
sage: I = Ideal([x^2*y + z + 1, x + y^2 + 1]); I
Ideal (x^2*y + z + 1, y^2 + x + 1) of Multivariate
Polynomial Ring in x, y, z over Finite Field of size 2
sage: I.homogenize()
Ideal (x^2*y + z*h^2 + h^3, y^2 + x*h + h^2) of
Multivariate Polynomial Ring in x, y, z, h over Finite
Field of size 2
sage: I.homogenize(y)
Ideal (x^2*y + y^3 + y^2*z, x*y) of Multivariate
Polynomial Ring in x, y, z over Finite Field of size 2
       sage: I = Ideal([x^2*y + z^3 + y^2*x, x + y^2 + 1])
sage: I.homogenize()
Ideal (x^2*y + x*y^2 + z^3, y^2 + x*h + h^2) of
Multivariate Polynomial Ring in x, y, z, h over Finite
Field of size 2
```

# is\_homogeneous()

Return True if this ideal is spanned by homogeneous polynomials, i.e. if it is a homogeneous ideal.

# **EXAMPLE:**

```
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P)
sage: I
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y +
2*y*z - y) of Multivariate Polynomial Ring in x, y, z over
Rational Field

sage: I.is_homogeneous()
False

sage: J = I.homogenize()
sage: J
Ideal (x + 2*y + 2*z - h, x^2 + 2*y^2 + 2*z^2 - x*h, 2*x*y +
2*y*z - y*h) of Multivariate Polynomial Ring in x, y, z,
h over Rational Field

sage: J.is_homogeneous()
True

plot (*args, **kwds)
```

Plot the real zero locus of this principal ideal.

## INPUT:

- •self a principal ideal in 2 variables
- •algorithm set this to 'surf' if you want 'surf' to plot the ideal (default: None)
- •\*args optional tuples (variable, minimum, maximum) for plotting dimensions
- •\*\*kwds optional keyword arguments passed on to implicit plot

# **EXAMPLES:**

```
Implicit plotting in 2-d:
```

```
sage: R. \langle x, y \rangle = PolynomialRing(QQ, 2)
sage: I = R.ideal([y^3 - x^2])
sage: I.plot()
                                         # cusp
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2 - x^2 - 1])
sage: I.plot((x, -3, 3), (y, -2, 2)) # hyperbola
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2 + x^2*(1/4) - 1])
sage: I.plot()
                                         # ellipse
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2-(x^2-1)*(x-2)])
sage: I.plot()
                                         # elliptic curve
Graphics object consisting of 1 graphics primitive
sage: f = ((x+3)^3 + 2*(x+3)^2 - y^2)*(x^3 - y^2)*((x-3)^3-2*(x-3)^2-y^2)
sage: I = R.ideal(f)
                                         # the Singular logo
sage: I.plot()
Graphics object consisting of 1 graphics primitive
This used to be trac ticket #5267:
```

```
sage: I = R.ideal([-x^2*y+1])
sage: I.plot()
Graphics object consisting of 1 graphics primitive
```

# **AUTHORS:**

•Martin Albrecht (2008-09)

```
random_element (degree, compute_gb=False, *args, **kwds)
```

Return a random element in this ideal as  $r = \sum h_i \cdot f_i$ .

# INPUT:

- •compute\_qb if True then a Gröbner basis is computed first and  $f_i$  are the elements in the Gröbner basis. Otherwise whatever basis is returned by self.gens() is used.
- •\*args and \*\*kwds are passed to R.random\_element() with R = self.ring().

# **EXAMPLE:**

We compute a uniformly random element up to the provided degree.:

```
sage: P. \langle x, y, z \rangle = GF(127)[]
sage: I = sage.rings.ideal.Katsura(P)
```

```
sage: I.random_element(degree=4, compute_gb=True, terms=infinity)
34*x^4 - 33*x^3*y + 45*x^2*y^2 - 51*x*y^3 - 55*y^4 + 43*x^3*z ... - 28*y - 33*z + 45
```

Note that sampling uniformly at random from the ideal at some large enough degree is equivalent to computing a Gröbner basis. We give an example showing how to compute a Gröbner basis if we can sample uniformly at random from an ideal:

```
sage: n = 3; d = 4
sage: P = PolynomialRing(GF(127), n, 'x')
sage: I = sage.rings.ideal.Cyclic(P)
```

1. We sample  $n^d$  uniformly random elements in the ideal:

```
sage: F = Sequence(I.random_element(degree=d, compute_gb=True, terms=infinity) for _ in
```

2.We linearize and compute the echelon form:

```
sage: A,v = F.coefficient_matrix()
sage: A.echelonize()
```

3. The result is the desired Gröbner basis:

```
sage: G = Sequence((A*v).list())
sage: G.is_groebner()
True
sage: Ideal(G) == I
True
```

We return some element in the ideal with no guarantee on the distribution:

```
sage: P = PolynomialRing(GF(127), 10, 'x')
sage: I = sage.rings.ideal.Katsura(P)
sage: I.random_element(degree=3)
-25*x0^2*x1 + 14*x1^3 + 57*x0*x1*x2 + ... + 19*x7*x9 + 40*x8*x9 + 49*x1
```

We show that the default method does not sample uniformly at random from the ideal:

```
sage: P.<x,y,z> = GF(127)[]
sage: G = Sequence([x+7, y-2, z+110])
sage: I = Ideal([sum(P.random_element() * g for g in G) for _ in range(4)])
sage: all(I.random_element(degree=1) == 0 for _ in range(100))
True
```

If degree equals the degree of the generators a random linear combination of the generators is returned:

```
sage: P.<x,y> = QQ[]
sage: I = P.ideal([x^2,y^2])
sage: I.random_element(degree=2)
-x^2
```

# reduce(f)

Reduce an element modulo the reduced Groebner basis for this ideal. This returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

**EXAMPLES:** 

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: I = (x^3 + y, y)*R
sage: I.reduce(y)
0
sage: I.reduce(x^3)
0
sage: I.reduce(x - y)
x

sage: I = (y^2 - (x^3 + x))*R
sage: I.reduce(x^3)
y^2 - x
sage: I.reduce(x^6)
y^4 - 2*x*y^2 + x^2
sage: (y^2 - x)^2
y^4 - 2*x*y^2 + x^2
```

**Note:** Requires computation of a Groebner basis, which can be a very expensive operation.

```
subs (in_dict=None, **kwds)
```

Substitute variables.

This method substitutes some variables in the polynomials that generate the ideal with given values. Variables that are not specified in the input remain unchanged.

# INPUT:

- •in\_dict (optional) dictionary of inputs
- •\*\*kwds named parameters

# **OUTPUT**:

A new ideal with modified generators. If possible, in the same polynomial ring. Raises a TypeError if no common polynomial ring of the substituted generators can be found.

#### **EXAMPLES:**

```
sage: R.<x,y> = PolynomialRing(ZZ,2,'xy')
sage: I = R.ideal(x^5+y^5, x^2 + y + x^2*y^2 + 5); I
Ideal (x^5 + y^5, x^2*y^2 + x^2 + y + 5) of Multivariate Polynomial Ring in x, y over Intege
sage: I.subs(x=y)
Ideal (2*y^5, y^4 + y^2 + y + 5) of Multivariate Polynomial Ring in x, y over Integer Ring
sage: I.subs({x:y})  # same substitution but with dictionary
Ideal (2*y^5, y^4 + y^2 + y + 5) of Multivariate Polynomial Ring in x, y over Integer Ring
```

# The new ideal can be in a different ring:

```
sage: R.<a,b> = PolynomialRing(QQ,2)
sage: S.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal(a^2+b^2+a-b+2); I
Ideal (a^2 + b^2 + a - b + 2) of Multivariate Polynomial Ring in a, b over Rational Field
sage: I.subs(a=x, b=y)
Ideal (x^2 + y^2 + x - y + 2) of Multivariate Polynomial Ring in x, y over Rational Field
```

# The resulting ring need not be a mulitvariate polynomial ring:

```
sage: T.<t> = PolynomialRing(QQ)
sage: I.subs(a=t, b=t)
Principal ideal (t^2 + 1) of Univariate Polynomial Ring in t over Rational Field
```

```
sage: var("z")
z
sage: I.subs(a=z, b=z)
Principal ideal (2*z^2 + 2) of Symbolic Ring
```

Variables that are not substituted remain unchanged:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal(x^2+y^2+x-y+2); I
Ideal (x^2 + y^2 + x - y + 2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.subs(x=1)
Ideal (y^2 - y + 4) of Multivariate Polynomial Ring in x, y over Rational Field
```

# weil\_restriction()

Compute the Weil restriction of this ideal over some extension field. If the field is a finite field, then this computes the Weil restriction to the prime subfield.

A Weil restriction of scalars - denoted  $Res_{L/k}$  - is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another corresponding variety  $Res_{L/k}(X)$ , defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.

This function does not compute this Weil restriction directly but computes on generating sets of polynomial ideals:

Let d be the degree of the field extension L/k, let a generator of L/k and p the minimal polynomial of L/k. Denote this ideal by I.

Specifically, this function first maps each variable x to its representation over k:  $\sum_{i=0}^{d-1} a^i x_i$ . Then each generator of I is evaluated over these representations and reduced modulo the minimal polynomial p. The result is interpreted as a univariate polynomial in a and its coefficients are the new generators of the returned ideal.

If the input and the output ideals are radical, this is equivalent to the statement about algebraic varieties above.

**OUTPUT:** MPolynomial Ideal

#### **EXAMPLE:**

```
sage: k. < a > = GF(2^2)
sage: P. \langle x, y \rangle = PolynomialRing(k, 2)
sage: I = Ideal([x*y + 1, a*x + 1])
sage: I.variety()
[{y: a, x: a + 1}]
sage: J = I.weil_restriction()
sage: J
Ideal (x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1) of
Multivariate Polynomial Ring in x0, x1, y0, y1 over Finite Field of size
sage: J += sage.rings.ideal.FieldIdeal(J.ring()) # ensure radical ideal
sage: J.variety()
[{y1: 1, x1: 1, x0: 1, y0: 0}]
sage: J.weil_restriction() # returns J
Ideal (x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 +
x0, x1^2 + x1, y0^2 + y0, y1^2 + y1) of Multivariate Polynomial Ring in
x0, x1, y0, y1 over Finite Field of size 2
sage: k. < a > = GF(3^5)
```

**sage:**  $P.\langle x, y, z \rangle = PolynomialRing(k)$ 

```
sage: I = sage.rings.ideal.Katsura(P)
 sage: I.dimension()
 sage: I.variety()
 [{y: 0, z: 0, x: 1}]
 sage: J = I.weil_restriction(); J
 Ideal (x0 - y0 - z0 - 1, x1 - y1 - z1, x2 - y2 - z2, x3 - y3 - z3, x4 -
 y4 - z4, x0^2 + x2*x3 + x1*x4 - y0^2 - y2*y3 - y1*y4 - z0^2 - z2*z3 -
 z1*z4 - x0, -x0*x1 - x2*x3 - x3^2 - x1*x4 + x2*x4 + y0*y1 + y2*y3 + y3^2
 + y1*y4 - y2*y4 + z0*z1 + z2*z3 + z3^2 + z1*z4 - z2*z4 - x1, x1^2 -
x0*x2 + x3^2 - x2*x4 + x3*x4 - y1^2 + y0*y2 - y3^2 + y2*y4 - y3*y4 -
 z1^2 + z0*z2 - z3^2 + z2*z4 - z3*z4 - x2, -x1*x2 - x0*x3 - x3*x4 - x4^2
 + y1*y2 + y0*y3 + y3*y4 + y4^2 + z1*z2 + z0*z3 + z3*z4 + z4^2 - x3, x2^2
 -x1*x3 - x0*x4 + x4^2 - y2^2 + y1*y3 + y0*y4 - y4^2 - z2^2 + z1*z3 +
 z0*z4 - z4^2 - x4, -x0*y0 + x4*y1 + x3*y2 + x2*y3 + x1*y4 - y0*z0 +
 y4*z1 + y3*z2 + y2*z3 + y1*z4 - y0, -x1*y0 - x0*y1 - x4*y1 - x3*y2 +
 x4*y2 - x2*y3 + x3*y3 - x1*y4 + x2*y4 - y1*z0 - y0*z1 - y4*z1 - y3*z2 +
 y4*z2 - y2*z3 + y3*z3 - y1*z4 + y2*z4 - y1, -x2*y0 - x1*y1 - x0*y2 -
x4*y2 - x3*y3 + x4*y3 - x2*y4 + x3*y4 - y2*z0 - y1*z1 - y0*z2 - y4*z2 - y4*z
y3*z3 + y4*z3 - y2*z4 + y3*z4 - y2, -x3*y0 - x2*y1 - x1*y2 - x0*y3 - y3*z3 + y4*z3 - y2*z4 + y3*z4 - y2*z4 + y3*z4 - x0*y3 - x3*y0 - x2*y1 - x1*y2 - x0*y3 - x3*y0 - x3*y0
x4*y3 - x3*y4 + x4*y4 - y3*z0 - y2*z1 - y1*z2 - y0*z3 - y4*z3 - y3*z4 +
y4*z4 - y3, -x4*y0 - x3*y1 - x2*y2 - x1*y3 - x0*y4 - x4*y4 - y4*z0 -
y3*z1 - y2*z2 - y1*z3 - y0*z4 - y4*z4 - y4) of Multivariate Polynomial
Ring in x0, x1, x2, x3, x4, y0, y1, y2, y3, y4, z0, z1, z2, z3, z4 over
Finite Field of size 3
 sage: J += sage.rings.ideal.FieldIdeal(J.ring()) # ensure radical ideal
 sage: from sage.doctest.fixtures import reproducible_repr
 sage: print (reproducible_repr(J.variety()))
 [{x0: 1, x1: 0, x2: 0, x3: 0, x4: 0, y0: 0, y1: 0, y2: 0, y3: 0, y4: 0, z0: 0, z1: 0, z2: 0,
 Weil restrictions are often used to study elliptic curves over extension fields so we give a simple example
 involving those:
 sage: K.<a> = QuadraticField(1/3)
 sage: E = EllipticCurve(K, [1, 2, 3, 4, 5])
 We pick a point on E:
 sage: p = E.lift_x(1); p
 (1 : 2 : 1)
 sage: I = E.defining_ideal(); I
 Ideal (-x^3 - 2*x^2*z + x*y*z + y^2*z - 4*x*z^2 + 3*y*z^2 - 5*z^3)
 of Multivariate Polynomial Ring in x, y, z over Number Field in a with defining polynomial >
 Of course, the point p is a root of all generators of I:
 sage: I.subs(x=1, y=2, z=1)
 Ideal (0) of Multivariate Polynomial Ring in x, y, z over
 Number Field in a with defining polynomial x^2 - 1/3
```

So we compute its Weil restriction:

sage: I.radical() == I

I is also radical:

True

```
sage: J = I.weil_restriction()
sage: J
Ideal (-x0^3 - x0*x1^2 - 2*x0^2*z0 - 2/3*x1^2*z0 + x0*y0*z0 + y0^2*z0 +
1/3*x1*y1*z0 + 1/3*y1^2*z0 - 4*x0*z0^2 + 3*y0*z0^2 - 5*z0^3 -
4/3*x0*x1*z1 + 1/3*x1*y0*z1 + 1/3*x0*y1*z1 + 2/3*y0*y1*z1 - 8/3*x1*z0*z1
+ 2*y1*z0*z1 - 4/3*x0*z1^2 + y0*z1^2 - 5*z0*z1^2, -3*x0^2*x1 - 1/3*x1^3
- 4*x0*x1*z0 + x1*y0*z0 + x0*y1*z0 + 2*y0*y1*z0 - 4*x1*z0^2 + 3*y1*z0^2
- 2*x0^2*z1 - 2/3*x1^2*z1 + x0*y0*z1 + y0^2*z1 + 1/3*x1*y1*z1 +
1/3*y1^2*z1 - 8*x0*z0*z1 + 6*y0*z0*z1 - 15*z0^2*z1 - 4/3*x1*z1^2 +
y1*z1^2 - 5/3*z1^3) of Multivariate Polynomial Ring in x0, x1, y0, y1,
z0, z1 over Rational Field
```

We can check that the point p is still a root of all generators of J:

```
sage: J.subs(x0=1, y0=2, z0=1, x1=0, y1=0, z1=0)
Ideal (0, 0) of Multivariate Polynomial Ring in x0, x1, y0, y1, z0, z1 over Rational Field
```

# Example for relative number fields:

```
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^5-2)
sage: R.<x> = K[]
sage: L.<v> = K.extension(x^2+1)
sage: S.<x,y> = L[]
sage: I = S.ideal([y^2-x^3-1])
sage: I.weil_restriction()
Ideal (-x^3 + 3*x^0*x^1^2 + y^0^2 - y^1^2 - 1, -3*x^0*x^1 + x^1^3 + 2*y^0*y^1)
of Multivariate Polynomial Ring in x0, x1, y0, y1 over Number Field in w with defining polynomial x^5 - 2
```

Note: Based on a Singular implementation by Michael Brickenstein

class sage.rings.polynomial.multi\_polynomial\_ideal.MPolynomialIdeal\_macaulay2\_repr
 An ideal in a multivariate polynomial ring, which has an underlying Macaulay2 ring associated to it.

# **EXAMPLES:**

```
sage: R.\langle x,y,z,w \rangle = PolynomialRing(ZZ, 4)
sage: I = ideal(x*y-z^2, y^2-w^2)
sage: I
Ideal (x*y - z^2, y^2 - w^2) of Multivariate Polynomial Ring in x, y, z, w over Integer Ring
```

class sage.rings.polynomial.multi\_polynomial\_ideal.MPolynomialIdeal\_magma\_repr
class sage.rings.polynomial.multi\_polynomial\_ideal.MPolynomialIdeal\_singular\_base\_repr

### syzygy\_module()

Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

# **EXAMPLE:**

```
sage: G = vector(I.gens())
sage: M*G
(0, 0)
```

# ALGORITHM: Uses Singular's syz command

```
class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr
    Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr
```

An ideal in a multivariate polynomial ring, which has an underlying Singular ring associated to it.

```
associated primes (algorithm='sy')
```

Return a list of the associated primes of primary ideals of which the intersection is I = self.

An ideal Q is called primary if it is a proper ideal of the ring R and if whenever  $ab \in Q$  and  $a \notin Q$  then  $b^n \in Q$  for some  $n \in \mathbf{Z}$ .

If Q is a primary ideal of the ring R, then the radical ideal P of Q, i.e.  $P = \{a \in R, a^n \in Q\}$  for some  $n \in \mathbb{Z}$ , is called the *associated prime* of Q.

If I is a proper ideal of the ring R then there exists a decomposition in primary ideals  $Q_i$  such that

- •their intersection is I
- •none of the  $Q_i$  contains the intersection of the rest, and
- •the associated prime ideals of  $Q_i$  are pairwise different.

This method returns the associated primes of the  $Q_i$ .

#### INPUT:

- •algorithm string:
- •' sy' (default) use the shimoyama-yokoyama algorithm
- ' qtz' use the gianni-trager-zacharias algorithm

### **OUTPUT**:

•list - a list of associated primes

# **EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.associated_primes(); pd
[Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field]
```

# ALGORITHM:

Uses Singular.

# **REFERENCES:**

•Thomas Becker and Volker Weispfenning. Groebner Bases - A Computational Approach To Commutative Algebra. Springer, New York 1993.

```
basis_is_groebner (singular=Singular)
```

Returns True if the generators of this ideal (self.gens()) form a Groebner basis.

Let I be the set of generators of this ideal. The check is performed by trying to lift Syz(LM(I)) to Syz(I) as I forms a Groebner basis if and only if for every element S in Syz(LM(I)):

$$S * G = \sum_{i=0}^{m} h_i g_i - - - >_G 0.$$

# ALGORITHM:

Uses Singular.

### **EXAMPLE:**

```
sage: R.<a,b,c,d,e,f,g,h,i,j> = PolynomialRing(GF(127),10)
sage: I = sage.rings.ideal.Cyclic(R,4)
sage: I.basis_is_groebner()
False
sage: I2 = Ideal(I.groebner_basis())
sage: I2.basis_is_groebner()
```

# A more complicated example:

```
sage: R.<U6,U5,U4,U3,U2, u6,u5,u4,u3,u2, h> = PolynomialRing(GF(7583))
sage: 1 = [u6 + u5 + u4 + u3 + u2 - 3791 * h, \]
                                                                                                                U6 + U5 + U4 + U3 + U2 - 3791 *h,
                                                                                                                U2*u2 - h^2, U3*u3 - h^2, U4*u4 - h^2,
                                                                                                                \mathtt{U5} \times \mathtt{u4} + \mathtt{U5} \times \mathtt{u3} + \mathtt{U4} \times \mathtt{u3} + \mathtt{U5} \times \mathtt{u2} + \mathtt{U4} \times \mathtt{u2} + \mathtt{U3} \times \mathtt{u2} - 3791 \times \mathtt{U5} \times \mathtt{h} - 3791 \times \mathtt{U4} \times \mathtt{h} - 3791 \times \mathtt{U3} \times \mathtt{h}
                                                                                                                U4*u5 + U3*u5 + U2*u5 + U3*u4 + U2*u4 + U2*u3 - 3791*u5*h - 3791*u4*h - 3791*u3*h
                                                                                                                - 3791*U4*U2*h + U3*U2*h - 3791*U2^2*h - 3791*U4*u3*h - 3791*U4*u2*h - 3791*U3*i
                                                                                                                \mathtt{U5}^2 \times \mathtt{U4}^4 \times \mathtt{u3} \ + \ \mathtt{U5}^4 \times \mathtt{u3} \ + \ \mathtt{U5}^2 \times \mathtt{U4}^4 \times \mathtt{u2} \ + \ \mathtt{U5}^4 \times \mathtt{u2} \ + \ \mathtt{U5}^2 \times \mathtt{U3}^4 \times \mathtt{u2} \ + \ \mathtt{U5}^4 \times \mathtt{u3}^4 \times \mathtt{u3
                                                                                                                          + \ \ 05 \times 04 \times 03 \times h \ - \ \ 3791 \times 05 \times 03 \times 2 \times h \ - \ \ 3791 \times 05 \times 2 \times 02 \times h \ + \ \ \ 05 \times 04 \times 02 \times h \ + \ \ 05 \times 03 \times 02 \times h \ - \ \ 3791 \times 05 \times 100 \times 100
                                                                                                                           - U4^2*h^2 - 947*U5*U3*h^2 - U4*U3*h^2 - 948*U5*U2*h^2 - U4*U2*h^2 - 1422*U5*h^3 -
                                                                                                                + 2*u5*u3*u2*h^2 + 1899*u4*u3*u2*h^2, 
                                                                                                                +\ 3791*U5*U4*U3*u2*h + U5^2*U4*h^2 + U5*U4^2*h^2 + U5^2*U3*h^2 - U4^2*U3*h^2 - U5^2*U3*h^2 + U5^2*U3*h^2 - U4^2*U3*h^2 - U4^2*U3*h^2 + U5^2*U3*h^2 - U4^2*U3*h^2 + U5^2*U3*h^2 - U4^2*U3*h^2 + U5^2*U3*h^2 + U5^2
                                                                                                                          - \  \, \text{U5} \times \text{U3} \times \text{U2} \times \text{h}^2 \  \, - \  \, \text{U4} \times \text{U3} \times \text{U2} \times \text{h}^2 \  \, + \  \, 3791 \times \text{U5} \times \text{U4} \times \text{h}^3 \  \, + \  \, 3791 \times \text{U5} \times \text{U3} \times \text{h}^3 \  \, + \  \, 3791 \times \text{U4} \times \text{U3} \times \text{H}^3 \  \, + \  \, 3791 \times \text{U5} \times \text{U3} \times \text{H}^3 \  \, + \  \, 3791 \times \text{U5} \times \text{U5} \times \text{U3} \times \text{U5} \times 
                                                                                                                + 1521*u5*u4*u3*h^3 - 3028*u4^2*u3*h^3 - 3028*u4*u3^2*h^3 + 1521*u5*u4*u2*h^3 -
                                                                                                                 U5^2*U4*U3*U2*h + U5*U4^2*U3*U2*h + U5*U4*U3^2*U2*h + U5*U4*U3*U2^2*h + 2*U5^2*U4
                                                                                                                             - 2*U5*U4*U2^2*h^2 - 2*U5*U3*U2^2*h^2 - 2*U4*U3*U2^2*h^2 - U5*U4*U3*h^3 - U5*U4
```

```
sage: Ideal(l).basis_is_groebner()
False
sage: gb = Ideal(l).groebner_basis()
sage: Ideal(gb).basis_is_groebner()
True
```

**Note:** From the Singular Manual for the reduce function we use in this method: 'The result may have no meaning if the second argument (self) is not a standard basis'. I (malb) believe this refers to the mathematical fact that the results may have no meaning if self is no standard basis, i.e., Singular doesn't 'add' any additional 'nonsense' to the result. So we may actually use reduce to determine if self is a Groebner basis.

complete\_primary\_decomposition (algorithm='sy')

Return a list of primary ideals such that their intersection is self, together with the associated prime ideals.

An ideal Q is called primary if it is a proper ideal of the ring R, and if whenever  $ab \in Q$  and  $a \notin Q$ , then  $b^n \in Q$  for some  $n \in \mathbf{Z}$ .

If Q is a primary ideal of the ring R, then the radical ideal P of Q (i.e. the ideal consisting of all  $a \in R$  with a<sup>n</sup> in Q' for some  $n \in \mathbb{Z}$ ), is called the associated prime of Q.

If I is a proper ideal of a Noetherian ring R, then there exists a finite collection of primary ideals  $Q_i$  such that the following hold:

- •the intersection of the  $Q_i$  is I;
- •none of the  $Q_i$  contains the intersection of the others;
- •the associated prime ideals  $P_i$  of the  $Q_i$  are pairwise distinct.

# INPUT:

- •algorithm string:
  - -' sy' (default) use the Shimoyama-Yokoyama algorithm
  - -'gtz' use the Gianni-Trager-Zacharias algorithm

# **OUTPUT:**

•a list of pairs  $(Q_i, P_i)$ , where the  $Q_i$  form a primary decomposition of self and  $P_i$  is the associated prime of  $Q_i$ .

#### **EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.complete_primary_decomposition(); pd
[(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational
 Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field)
sage: I.primary_decomposition_complete(algorithm = 'gtz')
[(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational
 Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)
sage: from functools import reduce
sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), [Qi for (Qi,radQi) in pd]) == I
True
sage: [Qi.radical() == radQi for (Qi,radQi) in pd]
[True, True]
sage: P.\langle x, y, z \rangle = PolynomialRing(ZZ)
sage: I = ideal(x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.complete_primary_decomposition()
Traceback (most recent call last):
ValueError: Coefficient ring must be a field for function 'complete_primary_decomposition'.
```

# ALGORITHM:

Uses Singular.

**Note:** See [BW93] for an introduction to primary decomposition.

## TESTS:

Check that trac ticket #15745 is fixed:

```
sage: R.<x,y>= QQ[]
sage: I = Ideal(R(1))
sage: I.complete_primary_decomposition()
[]
sage: I.is_prime()
False
```

## dimension (singular='singular\_default')

The dimension of the ring modulo this ideal.

## **EXAMPLE**:

```
sage: P.<x,y,z> = PolynomialRing(GF(32003),order='degrevlex')
sage: I = ideal(x^2-y,x^3)
sage: I.dimension()
1
```

If the ideal is the total ring, the dimension is -1 by convention.

For polynomials over a finite field of order too large for Singular, this falls back on a toy implementation of Buchberger to compute the Groebner basis, then uses the algorithm described in Chapter 9, Section 1 of Cox, Little, and O'Shea's "Ideals, Varieties, and Algorithms".

### **EXAMPLE:**

```
sage: R.<x,y> = PolynomialRing(GF(2147483659),order='lex')
sage: I = R.ideal([x*y,x*y+1])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy
-1
sage: I=ideal([x*(x*y+1),y*(x*y+1)])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy
1
sage: I = R.ideal([x^3*y,x*y^2])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy
1
sage: R.<x,y> = PolynomialRing(GF(2147483659),order='lex')
sage: I = R.ideal(0)
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy
sage: I.dimension()
```

# ALGORITHM:

Uses Singular, unless the characteristic is too large.

**Note:** Requires computation of a Groebner basis, which can be a very expensive operation.

# elimination\_ideal(variables)

Returns the elimination ideal this ideal with respect to the variables given in variables.

## INPUT:

•variables - a list or tuple of variables in self.ring()

# **EXAMPLE:**

```
sage: R.<x,y,t,s,z> = PolynomialRing(QQ,5)
sage: I = R * [x-t,y-t^2,z-t^3,s-x+y^3]
sage: I.elimination_ideal([t,s])
Ideal (y^2 - x*z, x*y - z, x^2 - y) of Multivariate
Polynomial Ring in x, y, t, s, z over Rational Field
```

## ALGORITHM:

Uses Singular.

**Note:** Requires computation of a Groebner basis, which can be a very expensive operation.

#### genus()

Return the genus of the projective curve defined by this ideal, which must be 1 dimensional.

# **EXAMPLE:**

Consider the hyperelliptic curve  $y^2 = 4x^5 - 30x^3 + 45x - 22$  over **Q**, it has genus 2:

```
sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = 4*x^5 - 30*x^3 + 45*x - 22
sage: C.genus()
2

sage: P.<x,y> = PolynomialRing(QQ)
sage: f = y^2 - 4*x^5 - 30*x^3 + 45*x - 22
sage: I = Ideal([f])
sage: I.genus()
```

# TESTS:

Check that the answer is correct for reducible curves:

```
sage: R.<x, y, z> = QQ[]
sage: C = Curve(x^2 - 2*y^2)
sage: C.is_singular()
True
sage: C.genus()
-1
sage: Ideal(x^4+y^2*x+x).genus()
0
sage: T.<t1,t2,u1,u2> = QQ[]
sage: TJ = Ideal([t1^2 + u1^2 - 1,t2^2 + u2^2 - 1, (t1-t2)^2 + (u1-u2)^2 -1])
sage: TJ.genus()
-1
```

# hilbert\_numerator(singular='singular\_default', grading=None)

Return the Hilbert numerator of this ideal.

Let I = self be a homogeneous ideal and R = self.ring() be a graded commutative algebra  $(R = \oplus R_d)$  over a field K. Then the Hilbert function is defined as  $H(d) = \dim_K R_d$  and the Hilbert series of I is defined as the formal power series  $H(d) = \dim_K R_d$  and the Hilbert series of I is defined as the formal power series  $H(d) = \sum_{0}^{\infty} H(d)t^d$ .

This power series can be expressed as  $HS(t) = Q(t)/(1-t)^n$  where Q(t) is a polynomial over Z and n the number of variables in R. This method returns Q(t), the numerator; hence the name,  $hilbert_numerator$ .

An optional grading can be given, in which case the graded (or weighted) Hilbert numerator is given.

# **EXAMPLE:**

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_numerator()
-t^5 + 1
sage: R.<a,b> = PolynomialRing(QQ)
sage: J = R.ideal([a^2*b,a*b^2])
sage: J.hilbert_numerator()
t^4 - 2*t^3 + 1
sage: J.hilbert_numerator(grading=(10,3))
t^26 - t^23 - t^16 + 1
```

## hilbert\_polynomial()

Return the Hilbert polynomial of this ideal.

Let I = self be a homogeneous ideal and R = self.ring () be a graded commutative algebra  $(R = \oplus R_d)$  over a field K. The Hilbert polynomial is the unique polynomial HP(t) with rational coefficients such that  $HP(d) = \dim_K R_d$  for all but finitely many positive integers d.

## **EXAMPLE:**

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_polynomial()
5*t - 5
```

# hilbert\_series (singular='singular\_default', grading=None)

Return the Hilbert series of this ideal.

Let I = self be a homogeneous ideal and R = self.ring() be a graded commutative algebra  $(R = \oplus R_d)$  over a field K. Then the Hilbert function is defined as  $H(d) = \dim_K R_d$  and the Hilbert series of I is defined as the formal power series  $HS(t) = \sum_{0}^{\infty} H(d)t^d$ .

This power series can be expressed as  $HS(t) = Q(t)/(1-t)^n$  where Q(t) is a polynomial over Z and n the number of variables in R. This method returns  $Q(t)/(1-t)^n$ .

An optional grading can be given, in which case the graded (or weighted) Hilbert series is given.

# **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_series()
(-t^4 - t^3 - t^2 - t - 1)/(-t^2 + 2*t - 1)
sage: R.<a,b> = PolynomialRing(QQ)
sage: J = R.ideal([a^2*b,a*b^2])
sage: J.hilbert_series()
(t^3 - t^2 - t - 1)/(t - 1)
sage: J.hilbert_series(grading=(10,3))
(t^25 + t^24 + t^23 - t^15 - t^14 - t^13 - t^12 - t^11
- t^10 - t^9 - t^8 - t^7 - t^6 - t^5 - t^4 - t^3 - t^2
- t - 1)/(t^12 + t^11 + t^10 - t^2 - t - 1)
sage: J = R.ideal([a^2*b^3, a*b^4 + a^3*b^2])
sage: J.hilbert_series(grading=[1,2])
(t^11 + t^8 - t^6 - t^5 - t^4 - t^3 - t^2 - t - 1)/(t^2 - 1)
```

```
sage: J.hilbert_series(grading=[2,1])
     (2*t^7 - t^6 - t^4 - t^2 - 1)/(t - 1)
     TESTS:
     sage: P.<x,y,z> = PolynomialRing(QQ)
     sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
     sage: I.hilbert_series(grading=5)
     Traceback (most recent call last):
     TypeError: Grading must be a list or a tuple of integers.
integral closure (p=0, r=True, singular='singular default')
    Let I = \text{self}.
     Returns the integral closure of I, ..., I^p, where sI is an ideal in the polynomial ring R = k[x(1), ...x(n)].
     If p is not given, or p = 0, compute the closure of all powers up to the maximum degree in t occurring in
     the closure of R[It] (so this is the last power whose closure is not just the sum/product of the smaller). If r
     is given and r is True, I. integral closure () starts with a check whether I is already a radical
     ideal.
     INPUT:
        •p - powers of I (default: 0)
        •r - check whether self is a radical ideal first (default: True)
     EXAMPLE:
     sage: R. < x, y > = QQ[]
     sage: I = ideal([x^2, x*y^4, y^5])
     sage: I.integral_closure()
     [x^2, x*y^4, y^5, x*y^3]
     ALGORITHM:
     Uses libSINGULAR.
interreduced basis()
     If this ideal is spanned by (f_1,...,f_n) this method returns (g_1,...,g_s) such that:
        \bullet(f_1,...,f_n)=(g_1,...,g_s)
        •LT(g_i)! = LT(g_i) for all i! = j
        ullet LT(g_i) does not divide m for all monomials m of \ \{g_1,...,g_{i-1},g_{i+1},...,g_s\}
        •LC(g_i) == 1 for all i if the coefficient ring is a field.
     EXAMPLE:
     sage: R.<x,y,z> = PolynomialRing(QQ)
     sage: I = Ideal([z*x+y^3,z+y^3,z+x*y])
     sage: I.interreduced_basis()
     [y^3 + z, x*y + z, x*z - z]
     Note that tail reduction for local orderings is not well-defined:
     sage: R.<x,y,z> = PolynomialRing(QQ,order='negdegrevlex')
     sage: I = Ideal([z*x+y^3,z+y^3,z+x*y])
     sage: I.interreduced_basis()
     [z + x*y, x*y - y^3, x^2*y - y^3]
```

A fixed error with nonstandard base fields:

```
sage: R.<t>=QQ['t']
sage: K.<x,y>=R.fraction_field()['x,y']
sage: I=t*x*K
sage: I.interreduced_basis()
[x]
```

# The interreduced basis of 0 is 0:

```
sage: P.<x,y,z> = GF(2)[]
sage: Ideal(P(0)).interreduced_basis()
[0]
```

# ALGORITHM:

Uses Singular's interred command or sage.rings.polynomial.toy\_buchberger.inter\_reduction() if conversion to Singular fails.

# intersection (\*others)

Return the intersection of the arguments with this ideal.

### **EXAMPLES**:

```
sage: R.<x,y> = PolynomialRing(QQ, 2, order='lex')
sage: I = x*R
sage: J = y*R
sage: I.intersection(J)
Ideal (x*y) of Multivariate Polynomial Ring in x, y over Rational Field
```

The following simple example illustrates that the product need not equal the intersection.

```
sage: I = (x^2, y)*R
sage: J = (y^2, x)*R
sage: K = I.intersection(J); K
Ideal (y^2, x*y, x^2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: IJ = I*J; IJ
Ideal (x^2*y^2, x^3, y^3, x*y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: IJ == K
False
```

# Intersection of several ideals:

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I1 = x*R
sage: I2 = y*R
sage: I3 = (x, y)*R
sage: I4 = (x^2 + x*y*z, y^2 - z^3*y, z^3 + y^5*x*z)*R
sage: I1.intersection(I2, I3, I4)
Ideal (x*y*z^20 - x*y*z^3, x*y^2 - x*y*z^3, x^2*y + x*y*z^4) of Multivariate Polynomial Ring
```

# The ideals must share the same ring:

```
sage: R2.<x,y> = PolynomialRing(QQ, 2, order='lex')
sage: R3.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I2 = x*R2
sage: I3 = x*R3
sage: I2.intersection(I3)
Traceback (most recent call last):
...
TypeError: Intersection is only available for ideals of the same ring.
```

# is\_prime(\*\*kwds)

Return True if this ideal is prime.

#### INPUT:

•keyword arguments are passed on to complete\_primary\_decomposition; in this way you can specify the algorithm to use.

#### **EXAMPLES:**

```
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: I = (x^2 - y^2 - 1)*R
sage: I.is_prime()
True
sage: (I^2).is_prime()
False
sage: J = (x^2 - y^2)*R
sage: J.is_prime()
False
sage: (J^3).is_prime()
False
sage: (I * J).is_prime()
```

The following is trac ticket #5982. Note that the quotient ring is not recognized as being a field at this time, so the fraction field is not the quotient ring itself:

```
sage: Q = R.quotient(I); Q
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 - y^2
sage: Q.fraction_field()
Fraction Field of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the same of the
```

# minimal\_associated\_primes()

### **OUTPUT:**

•list - a list of prime ideals

# **EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, 'xyz')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: I.minimal_associated_primes ()
[Ideal (z^2 + 1, -z^2 + y) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^3 + 2, -z^2 + y) of Multivariate Polynomial Ring in x, y, z over Rational Field]
```

# ALGORITHM:

Uses Singular.

```
normal basis (algorithm='libsingular', singular='singular default')
```

Returns a vector space basis (consisting of monomials) of the quotient ring by the ideal, resp. of a free module by the module, in case it is finite dimensional and if the input is a standard basis with respect to the ring ordering.

# INPUT:

algorithm - defaults to use libsingular, if it is anything else we will use the kbase () command

# **EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: I = R.ideal(x^2+y^2+z^2-4, x^2+2*y^2-5, x*z-1)
sage: I.normal_basis()
[y*z^2, z^2, y*z, z, x*y, y, x, 1]
sage: I.normal_basis(algorithm='singular')
[y*z^2, z^2, y*z, z, x*y, y, x, 1]
```

# plot (singular=Singular)

If you somehow manage to install surf, perhaps you can use this function to implicitly plot the real zero locus of this ideal (if principal).

## INPUT:

•self - must be a principal ideal in 2 or 3 vars over Q.

## **EXAMPLES:**

# Implicit plotting in 2-d:

```
sage: R. \langle x, y \rangle = PolynomialRing(QQ, 2)
sage: I = R.ideal([y^3 - x^2])
sage: I.plot()
               # cusp
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2 - x^2 - 1])
                     # hyperbola
sage: I.plot()
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2 + x^2 * (1/4) - 1])
                # ellipse
sage: I.plot()
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2-(x^2-1)*(x-2)])
sage: I.plot() # elliptic curve
Graphics object consisting of 1 graphics primitive
```

#### Implicit plotting in 3-d:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = R.ideal([y^2 + x^2*(1/4) - z])
sage: I.plot()  # a cone; optional - surf
sage: I = R.ideal([y^2 + z^2*(1/4) - x])
sage: I.plot()  # same code, from a different angle; optional - surf
sage: I = R.ideal([x^2*y^2+x^2*z^2+y^2*z^2-16*x*y*z])
sage: I.plot()  # Steiner surface; optional - surf
```

# **AUTHORS:**

•David Joyner (2006-02-12)

#### primary decomposition (algorithm='sy')

Return a list of primary ideals such that their intersection is self.

An ideal Q is called primary if it is a proper ideal of the ring R, and if whenever  $ab \in Q$  and  $a \notin Q$ , then  $b^n \in Q$  for some  $n \in \mathbf{Z}$ .

If Q is a primary ideal of the ring R, then the radical ideal P of Q (i.e. the ideal consisting of all  $a \in R$  with a<sup>n</sup> in Q' for some  $n \in \mathbb{Z}$ ), is called the associated prime of Q.

If I is a proper ideal of a Noetherian ring R, then there exists a finite collection of primary ideals  $Q_i$  such that the following hold:

•the intersection of the  $Q_i$  is I;

- •none of the  $Q_i$  contains the intersection of the others;
- •the associated prime ideals of the  $Q_i$  are pairwise distinct.

## INPUT:

- •algorithm string:
  - -' sy' (default) use the Shimoyama-Yokoyama algorithm
  - -' gtz' use the Gianni-Trager-Zacharias algorithm

## **OUTPUT:**

•a list of primary ideals  $Q_i$  forming a primary decomposition of self.

#### **EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.primary_decomposition(); pd
[Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational F Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field]
sage: from functools import reduce
sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), pd) == I
```

## ALGORITHM:

True

Uses Singular.

## REFERENCES:

•Thomas Becker and Volker Weispfenning. Groebner Bases - A Computational Approach To Commutative Algebra. Springer, New York 1993.

# primary\_decomposition\_complete(algorithm='sy')

Return a list of primary ideals such that their intersection is self, together with the associated prime ideals.

An ideal Q is called primary if it is a proper ideal of the ring R, and if whenever  $ab \in Q$  and  $a \notin Q$ , then  $b^n \in Q$  for some  $n \in \mathbf{Z}$ .

If Q is a primary ideal of the ring R, then the radical ideal P of Q (i.e. the ideal consisting of all  $a \in R$  with a<sup>n</sup> in Q' for some  $n \in \mathbb{Z}$ ), is called the associated prime of Q.

If I is a proper ideal of a Noetherian ring R, then there exists a finite collection of primary ideals  $Q_i$  such that the following hold:

- •the intersection of the  $Q_i$  is I;
- •none of the  $Q_i$  contains the intersection of the others;
- •the associated prime ideals  $P_i$  of the  $Q_i$  are pairwise distinct.

# INPUT:

- •algorithm string:
  - -' sy' (default) use the Shimoyama-Yokoyama algorithm
  - -' gtz' use the Gianni-Trager-Zacharias algorithm

# **OUTPUT:**

•a list of pairs  $(Q_i, P_i)$ , where the  $Q_i$  form a primary decomposition of self and  $P_i$  is the associated prime of  $Q_i$ .

# **EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.complete_primary_decomposition(); pd
[(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational
  Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
sage: I.primary_decomposition_complete(algorithm = 'gtz')
[(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational
 Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^2 + 1, y - z^2)) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)
sage: from functools import reduce
sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), [Qi for (Qi,radQi) in pd]) == I
sage: [Qi.radical() == radQi for (Qi,radQi) in pd]
[True, True]
sage: P. \langle x, y, z \rangle = PolynomialRing(ZZ)
sage: I = ideal(x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.complete_primary_decomposition()
Traceback (most recent call last):
ValueError: Coefficient ring must be a field for function 'complete_primary_decomposition'.
```

# ALGORITHM:

Uses Singular.

**Note:** See [BW93] for an introduction to primary decomposition.

# TESTS:

Check that trac ticket #15745 is fixed:

```
sage: R.<x,y>= QQ[]
sage: I = Ideal(R(1))
sage: I.complete_primary_decomposition()
[]
sage: I.is_prime()
False
```

## quotient(J)

Given ideals I = self and J in the same polynomial ring P, return the ideal quotient of I by J consisting of the polynomials a of P such that  $\{aJ \subset I\}$ .

This is also referred to as the colon ideal (I:J).

# INPUT:

•J - multivariate polynomial ideal

## **EXAMPLE:**

```
sage: R.<x,y,z> = PolynomialRing(GF(181),3)
sage: I = Ideal([x^2+x*y*z,y^2-z^3*y,z^3+y^5*x*z])
sage: J = Ideal([x])
sage: Q = I.quotient(J)
sage: y*z + x in I
False
sage: x in J
True
sage: x * (y*z + x) in I
True
```

### TEST:

This example checks trac ticket #16301:

```
sage: R.<x,y,z> = ZZ[]
sage: I = Ideal(R(2), x*y, x*z + x)
sage: eD = Ideal(x, z^2-1)
sage: I.quotient(eD).gens()
[2, x*z + x, x*y]
```

# radical()

The radical of this ideal.

#### **EXAMPLES:**

This is an obviously not radical ideal:

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: I = (x^2, y^3, (x*z)^4 + y^3 + 10*x^2)*R
sage: I.radical()
Ideal (y, x) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

That the radical is correct is clear from the Groebner basis.

```
sage: I.groebner_basis()
[y^3, x^2]
```

This is the example from the Singular manual:

```
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2) of Multivariate Polynomial Ring in x, y, z over Ratio
```

**Note:** From the Singular manual: A combination of the algorithms of Krick/Logar and Kemper is used. Works also in positive characteristic (Kempers algorithm).

```
sage: R.<x,y,z> = PolynomialRing(GF(37), 3)
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y - z^2)*R
sage: I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2) of Multivariate Polynomial Ring in x, y, z over Finit
```

# saturation(other)

Returns the saturation (and saturation exponent) of the ideal self with respect to the ideal other

INPUT:

•other – another ideal in the same ring

## **OUTPUT**:

•a pair (ideal, integer)

# **EXAMPLES:**

```
sage: R.<x, y, z = QQ[]
sage: I = R.ideal(x^5*z^3, x*y*z, y*z^4)
sage: J = R.ideal(z)
sage: I.saturation(J)
(Ideal (y, x^5) of Multivariate Polynomial Ring in x, y, z over Rational Field, 4)
```

#### syzygy\_module()

Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

# **EXAMPLE:**

# ALGORITHM:

Uses Singular's syz command.

transformed\_basis (algorithm='gwalk', other\_ring=None, singular='singular\_default')

Returns a lex or other\_ring Groebner Basis for this ideal.

# INPUT:

- •algorithm see below for options.
- •other\_ring only valid for algorithm 'fglm', if provided conversion will be performed to this ring. Otherwise a lex Groebner basis will be returned.

# ALGORITHMS:

- •fglm FGLM algorithm. The input ideal must be given with a reduced Groebner Basis of a zero-dimensional ideal
- $\bullet$ gwalk Groebner Walk algorithm (default)
- •awalk1 'first alternative' algorithm
- •awalk2 'second alternative' algorithm
- •twalk Tran algorithm
- •fwalk Fractal Walk algorithm

## **EXAMPLES**:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = Ideal([y^3+x^2,x^2*y+x^2, x^3-x^2, z^4-x^2-y])
sage: I = Ideal(I.groebner_basis())
sage: S.<z,x,y> = PolynomialRing(QQ,3,order='lex')
```

## ALGORITHM:

Uses Singular.

triangular\_decomposition (algorithm=None, singular='singular\_default')

Decompose zero-dimensional ideal self into triangular sets.

This requires that the given basis is reduced w.r.t. to the lexicographical monomial ordering. If the basis of self does not have this property, the required Groebner basis is computed implicitly.

# INPUT:

•algorithm - string or None (default: None)

# ALGORITHMS:

- •singular:triangL decomposition of self into triangular systems (Lazard).
- •singular:triangLfak decomp. of self into tri. systems plus factorization.

-singular:triangM - decomposition of self into triangular systems (Moeller).

OUTPUT: a list T of lists t such that the variety of self is the union of the varieties of t in L and each t is in triangular form.

# **EXAMPLE:**

```
sage: P.<e,d,c,b,a> = PolynomialRing(QQ,5,order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: GB = Ideal(I.groebner_basis('libsingular:stdfglm'))
sage: GB.triangular_decomposition('singular:triangLfak')
[Ideal (a - 1, b - 1, c - 1, d^2 + 3*d + 1, e + d + 3) of Multivariate Polynomial Ring in e,
Ideal (a - 1, b - 1, c^2 + 3*c + 1, d + c + 3, e - 1) of Multivariate Polynomial Ring in e,
Ideal (a - 1, b^2 + 3*b + 1, c + b + 3, d - 1, e - 1) of Multivariate Polynomial Ring in e,
Ideal (a - 1, b^4 + b^3 + b^2 + b + 1, -c + b^2, -d + b^3, e + b^3 + b^2 + b + 1) of Multiva
Ideal (a^2 + 3*a + 1, b - 1, c - 1, d - 1, e + a + 3) of Multivariate Polynomial Ring in e,
Ideal (a^2 + 3*a + 1, b + a + 3, c - 1, d - 1, e - 1) of Multivariate Polynomial Ring in e,
Ideal (a^4 - 4*a^3 + 6*a^2 + a + 1, -11*b^2 + 6*b*a^3 - 26*b*a^2 + 41*b*a - 4*b - 8*a^3 + 31*a^2 + 31*a^3 + 3
Ideal (a^4 + a^3 + a^2 + a + 1, b - 1, c + a^3 + a^2 + a + 1, -d + a^3, -e + a^2) of Multiva
Ideal (a^4 + a^3 + a^2 + a + 1, b - a, c - a, d^2 + 3*d*a + a^2, e + d + 3*a) of Multivariat
Ideal (a^4 + a^3 + a^2 + a + 1, b - a, c^2 + 3*c*a + a^2, d + c + 3*a, e - a) of Multivariat
Ideal (a^4 + a^3 + a^2 + a + 1, b^2 + 3*b*a + a^2, c + b + 3*a, d - a, e - a) of Multivariat
Ideal (a^4 + a^3 + a^2 + a + 1, b^3 + b^2*a + b^2 + b*a^2 + b*a + b + a^3 + a^2 + a + 1, c + a^3 + a^4 + a
Ideal (a^4 + a^3 + 6*a^2 - 4*a + 1, -11*b^2 + 6*b*a^3 + 10*b*a^2 + 39*b*a + 2*b + 16*a^3 + 2*b
```

```
sage: R.<x1,x2> = PolynomialRing(QQ, 2, order='lex')
sage: f1 = 1/2*((x1^2 + 2*x1 - 4)*x2^2 + 2*(x1^2 + x1)*x2 + x1^2)
sage: f2 = 1/2*((x1^2 + 2*x1 + 1)*x2^2 + 2*(x1^2 + x1)*x2 - 4*x1^2)
sage: I = Ideal(f1,f2)
sage: I.triangular_decomposition()
[Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field,
    Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field,
    Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field,
    Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field,
    Ideal (x2^4 + 4*x2^3 - 6*x2^2 - 20*x2 + 5, 8*x1 - x2^3 + x2^2 + 13*x2 - 5) of Multivariate

TESTS:
sage: R.<x,y> = QQ[]
sage: J = Ideal(x^2+y^2-2, y^2-1)
sage: J.triangular_decomposition()
[Ideal (y^2 - 1, x^2 - 1) of Multivariate Polynomial Ring in x, y over Rational Field]
```

### variety (ring=None)

Return the variety of this ideal.

Given a zero-dimensional ideal I (== self) of a polynomial ring P whose order is lexicographic, return the variety of I as a list of dictionaries with (variable, value) pairs. By default, the variety of the ideal over its coefficient field K is returned; ring can be specified to find the variety over a different ring.

These dictionaries have cardinality equal to the number of variables in P and represent assignments of values to these variables such that all polynomials in I vanish.

If ring is specified, then a triangular decomposition of self is found over the original coefficient field K; then the triangular systems are solved using root-finding over ring. This is particularly useful when K is QQ (to allow fast symbolic computation of the triangular decomposition) and ring is RR, AA, CC, or QQbar (to compute the whole real or complex variety of the ideal).

Note that with ring=RR or CC, computation is done numerically and potentially inaccurately; in particular, the number of points in the real variety may be miscomputed. With ring=AA or QQbar, computation is done exactly (which may be much slower, of course).

# INPUT:

•ring - return roots in the ring instead of the base ring of this ideal (default: None)

•proof - return a provably correct result (default: True)

# **EXAMPLE:**

```
sage: K.<w> = GF(27) # this example is from the MAGMA handbook
sage: P.<x, y> = PolynomialRing(K, 2, order='lex')
sage: I = Ideal([ x^8 + y + 2, y^6 + x*y^5 + x^2 ])
sage: I = Ideal(I.groebner_basis()); I
Ideal (x - y^47 - y^45 + y^44 - y^43 + y^41 - y^39 - y^38
- y^37 - y^36 + y^35 - y^34 - y^33 + y^32 - y^31 + y^30 +
y^28 + y^27 + y^26 + y^25 - y^23 + y^22 + y^21 - y^19 -
y^18 - y^16 + y^15 + y^13 + y^12 - y^10 + y^9 + y^8 + y^7
- y^6 + y^4 + y^3 + y^2 + y - 1, y^48 + y^41 - y^40 + y^37
- y^36 - y^33 + y^32 - y^29 + y^28 - y^25 + y^24 + y^2 + y
+ 1) of Multivariate Polynomial Ring in x, y over Finite
Field in w of size 3^3
sage: V = I.variety(); V
[{y: w^2 + 2, x: 2*w}, {y: w^2 + w, x: 2*w + 1}, {y: w^2 + 2*w, x: 2*w + 2}]
sage: [f.subs(v) for f in I.gens() for v in V] # check that all polynomials vanish
```

```
[0, 0, 0, 0, 0, 0]
sage: [I.subs(v).is_zero() for v in V] # same test, but nicer syntax
[True, True, True]
However, we only account for solutions in the ground field and not in the algebraic closure:
sage: I.vector_space_dimension()
48
Here we compute the points of intersection of a hyperbola and a circle, in several fields:
sage: K.<x, y> = PolynomialRing(QQ, 2, order='lex')
sage: I = Ideal([x*y - 1, (x-2)^2 + (y-1)^2 - 1)
sage: I = Ideal(I.groebner_basis()); I
Ideal (x + y^3 - 2*y^2 + 4*y - 4, y^4 - 2*y^3 + 4*y^2 - 4*y + 1)
of Multivariate Polynomial Ring in x, y over Rational Field
These two curves have one rational intersection:
sage: I.variety()
[{y: 1, x: 1}]
There are two real intersections:
sage: I.variety(ring=RR)
[{y: 0.361103080528647, x: 2.76929235423863},
{y: 1.00000000000000, x: 1.00000000000000}]
sage: I.variety(ring=AA)
[{x: 2.769292354238632?, y: 0.3611030805286474?},
 \{x: 1, y: 1\}
and a total of four intersections:
sage: I.variety(ring=CC)
[{y: 0.31944845973567... - 1.6331702409152...*I,
 x: 0.11535382288068... + 0.58974280502220...*I
 {v: 0.31944845973567... + 1.6331702409152...*I,
 x: 0.11535382288068... - 0.58974280502220...*I},
 {y: 0.36110308052864..., x: 2.7692923542386...},
 {y: 1.00000000000000, x: 1.0000000000000]
sage: I.variety(ring=QQbar)
[{y: 0.3194484597356763? - 1.633170240915238?*I,
```

Computation over floating point numbers may compute only a partial solution, or even none at all. Notice that x values are missing from the following variety:

x: 0.11535382288068429? + 0.5897428050222055?\*I},
{y: 0.3194484597356763? + 1.633170240915238?\*I,
 x: 0.11535382288068429? - 0.5897428050222055?\*I},
{y: 0.3611030805286474?, x: 2.769292354238632?},

 $\{y: 1, x: 1\}$ 

This is due to precision error, which causes the computation of an intermediate Groebner basis to fail.

If the ground field's characteristic is too large for Singular, we resort to a toy implementation:

```
sage: R.<x,y> = PolynomialRing(GF(2147483659),order='lex')
sage: I=ideal([x^3-2*y^2,3*x+y^4])
sage: I.variety()
verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow to verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow to verbose 0 (...: multi_polynomial_ideal.py, variety) Warning: falling back to very slow to verbose 0 (...: multi_polynomial_ideal.py, variety) Warning: falling back to very slow to verbose 0 (y: 0, x: 0)]
```

The dictionary expressing the variety will be indexed by generators of the polynomial ring after changing to the target field. But the mapping will also accept generators of the original ring, or even generator names as strings, when provided as keys:

```
sage: I = ideal([x^2+2*y-5, x+y+3])
sage: v = I.variety(AA)[0]; v
{x: 4.464101615137755?, y: -7.464101615137755?}
sage: v.keys()[0].parent()
Multivariate Polynomial Ring in x, y over Algebraic Real Field
sage: v[x]
4.464101615137755?
sage: v["y"]
-7.464101615137755?
TESTS:
sage: K. < w > = GF(27)
sage: P.<x, y> = PolynomialRing(K, 2, order='lex')
sage: I = Ideal([x^8 + y + 2, y^6 + x*y^5 + x^2])
Testing the robustness of the Singular interface:
sage: T = I.triangular_decomposition('singular:triangLfak')
sage: I.variety()
[\{y: w^2 + 2, x: 2*w\}, \{y: w^2 + w, x: 2*w + 1\}, \{y: w^2 + 2*w, x: 2*w + 2\}]
Testing that a bug is indeed fixed
sage: R = PolynomialRing(GF(2), 30, ['x \% d'\%(i+1) for i in range(30)], order='lex')
sage: R.inject_variables()
Defining...
sage: I = Ideal([x1 + 1, x2, x3 + 1, x5*x10 + x10 + x18, x5*x11 + x11, \
                 x5*x18, x6, x7 + 1, x9, x10*x11 + x10 + x18, x10*x18 + x18, \
                 x11*x18, x12, x13, x14, x15, x16 + 1, x17 + x18 + 1, x19, x20, \
                 x21 + 1, x22, x23, x24, x25 + 1, x28 + 1, x29 + 1, x30, x8, x
                 x26, x1^2 + x1, x2^2 + x2, x3^2 + x3, x4^2 + x4, x5^2 + x5, \
                 x6^2 + x6, x7^2 + x7, x8^2 + x8, x9^2 + x9, x10^2 + x10,
                 x11^2 + x11, x12^2 + x12, x13^2 + x13, x14^2 + x14, x15^2 + x15,
                 x16^2 + x16, x17^2 + x17, x18^2 + x18, x19^2 + x19, x20^2 + x20,
                 x21^2 + x21, x22^2 + x22, x23^2 + x23, x24^2 + x24, x25^2 + x25, \
                 x26^2 + x26, x27^2 + x27, x28^2 + x28, x29^2 + x29, x30^2 + x30)
sage: I.basis_is_groebner()
sage: sorted("".join(str(V[q]) for q in R.gens()) for V in I.variety()) # long time (6s on
['101000100000000110001000100110',
 '101000100000000110001000101110',
 '101000100100000101001000100110',
 '101000100100000101001000101110',
```

sage:  $K.\langle x,y\rangle = QQ[]$ 

```
'101010100000000110001000100110',
 '101010100000000110001000101110',
 '101010100010000110001000100110',
 '101010100010000110001000101110',
 '101010100110000110001000100110',
 '101010100110000110001000101110',
 '101100100000000110001000100110',
'101100100000000110001000101110',
'101100100100000101001000100110',
'101100100100000101001000101110',
'101110100000000110001000100110',
'101110100000000110001000101110',
'101110100010000110001000100110',
 '101110100010000110001000101110',
 '101110100110000110001000100110',
 '101110100110000110001000101110']
Check that the issue at trac ticket #7425 is fixed:
sage: R.\langle x, y, z \rangle = QQ[]
sage: I = R.ideal([x^2-y^3*z, x+y*z])
sage: I.dimension()
sage: I.variety()
Traceback (most recent call last):
ValueError: The dimension of the ideal is 1, but it should be 0
Check that the issue at trac ticket #7425 is fixed:
sage: S.<t>=PolynomialRing(00)
sage: F. < q > = QQ. extension(t^4+1)
sage: R.<x,y>=PolynomialRing(F)
sage: I=R.ideal(x, y^4+1)
sage: I.variety()
[...{y: -q^3, x: 0}...]
Check that computing the variety of the [1] ideal is allowed (trac ticket #13977):
sage: R. \langle x, y \rangle = QQ[]
sage: I = R.ideal(1)
sage: I.variety()
[]
Check that the issue at trac ticket #16485 is fixed:
sage: R.<a,b,c> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(c^2-2, b-c, a)
sage: I.variety(QQbar)
[...a: 0...]
ALGORITHM:
```

Uses triangular decomposition.

# vector\_space\_dimension()

Return the vector space dimension of the ring modulo this ideal. If the ideal is not zero-dimensional, a TypeError is raised.

ALGORITHM:

# Uses Singular.

```
EXAMPLE:
          sage: R.<u,v> = PolynomialRing(QQ)
          sage: g = u^4 + v^4 + u^3 + v^3
          sage: I = ideal(g) + ideal(g.gradient())
          sage: I.dimension()
          sage: I.vector_space_dimension()
          When the ideal is not zero-dimensional, we return infinity:
          sage: R.<x,y> = PolynomialRing(QQ)
          sage: I = R.ideal(x)
          sage: I.dimension()
          sage: I.vector_space_dimension()
          +Infinity
class sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal (ring,
                                                                                    gens, co-
                                                                                    erce=True,
                                                                                    side='left')
     Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr,
     sage.rings.noncommutative_ideals.Ideal_nc
     Creates a non-commutative polynomial ideal.
     INPUT:
         •ring - the g-algebra to which this ideal belongs
         •gens - the generators of this ideal
         •coerce (optional - default True) - generators are coerced into the ring before creating the ideal
         •side - optional string, either "left" (default) or "twosided"; defines whether this ideal is left of two-sided.
```

#### **EXAMPLES:**

```
sage: A.\langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: H = A.q_algebra(\{y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y\})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()], coerce=False) # indirect doctest
sage: I #random
Left Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over Ra
sage: sorted(I.gens(), key=str)
[x^2, y^2, z^2 - 1]
sage: H.ideal([y^2, x^2, z^2-H.one()], side="twosided") #random
Two sided Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over
sage: sorted(H.ideal([y^2, x^2, z^2-H.one()], side="twosided").gens(),key=str)
[x^2, y^2, z^2 - 1]
sage: H.ideal([y^2, x^2, z^2-H.one()], side="right")
Traceback (most recent call last):
ValueError: Only left and two-sided ideals are allowed.
```

#### reduce (p)

Reduce an element modulo a Groebner basis for this ideal.

It returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

#### NOTE:

There are left and two-sided ideals. Hence,

#### EXAMPLE:

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False, side='twosided')
sage: Q = H.quotient(I); Q #random
Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z
over Rational Field, nc-relations: {z*x: x*z + 2*x,
z*y: y*z - 2*y, y*x: x*y - z} by the ideal (y^2, x^2, z^2 - 1)
sage: Q.2^2 == Q.one() # indirect doctest
True
```

Here, we see that the relation that we just found in the quotient is actually a consequence of the given relations:

```
sage: H.2^2-H.one() in I.std().gens()
True
```

Here is the corresponding direct test:

```
sage: I.reduce(z^2)
1
```

# res (length)

Computes the resoltuion up to a given length of the ideal.

#### NOTE

Only left syzygies can be computed. So, even if the ideal is two-sided, then the resolution is only one-sided. In that case, a warning is printed.

# **EXAMPLE:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: I.res(3)
<Resolution>
```

# std()

Computes a GB of the ideal. It is two-sided if and only if the ideal is two-sided.

### **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: I.std() #random
Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of Noncommutative Multivaria
sage: sorted(I.std().gens(),key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]
```

If the ideal is a left ideal, then std returns a left Groebner basis. But if it is a two-sided ideal, then the output of std and twostd() coincide:

```
sage: JL = H.ideal([x^3, y^3, z^3 - 4*z])
sage: JL #random
Left Ideal (x^3, y^3, z^3 - 4*z) of Noncommutative Multivariate Polynomial Ring in x, y, z of
sage: sorted(JL.gens(), key=str)
[x^3, y^3, z^3 - 4*z]
sage: JL.std() #random
Left Ideal (z^3 - 4*z, y*z^2 - 2*y*z, x*z^2 + 2*x*z, 2*x*y*z - z^2 - 2*z, y^3, x^3) of Nonco
sage: sorted(JL.std().gens(), key=str)
[2*x*y*z - z^2 - 2*z, x*z^2 + 2*x*z, x^3, y*z^2 - 2*y*z, y^3, z^3 - 4*z]
sage: JT = H.ideal([x^3, y^3, z^3 - 4*z], side='twosided')
sage: JT #random
Two sided Ideal (x^3, y^3, z^3 - 4*z) of Noncommutative Multivariate Polynomial Ring in x, y,
sage: sorted(JT.gens(), key=str)
[x^3, y^3, z^3 - 4*z]
sage: JT.std() #random
Two sided Ideal (z^3 - 4*z, y*z^2 - 2*y*z, x*z^2 + 2*x*z, y^2*z - 2*y^2, 2*x*y*z - z^2 - 2*z,
sage: sorted(JT.std().gens(), key=str)
[2*x*y*z - z^2 - 2*z, x*y^2 - y*z, x*z^2 + 2*x*z, x^2*y - x*z - 2*x, x^2*z + 2*x^2, x^3, y*z^2]
sage: JT.std() == JL.twostd()
```

ALGORITHM: Uses Singular's std command

# syzygy\_module()

Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

### NOTE:

Only left syzygies can be computed. So, even if the ideal is two-sided, then the syzygies are only one-sided. In that case, a warning is printed.

### **EXAMPLE:**

```
sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra(\{y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y\})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: G = vector(I.gens()); G
d...: UserWarning: You are constructing a free module
over a noncommutative ring. Sage does not have a concept
of left/right and both sided modules, so be careful.
It's also not guaranteed that all multiplications are
done from the right side.
d...: UserWarning: You are constructing a free module
over a noncommutative ring. Sage does not have a concept
of left/right and both sided modules, so be careful.
It's also not guaranteed that all multiplications are
done from the right side.
(y^2, x^2, z^2 - 1)
sage: M = I.syzygy_module(); M
                                                                              -z^2 - 8*z - 15
Γ
                                                                  x^2*z^2 + 8*x^2*z + 15*x^2
Γ
                   x^2*y*z^2 + 9*x^2*y*z - 6*x*z^3 + 20*x^2*y - 72*x*z^2 - 282*x*z - 360*x
Γ
                                                                  x^3*z^2 + 7*x^3*z + 12*x^3
  x^2 + y^2 + z + 4 + x^2 + y^2 - 8 + x + y + z^2 - 48 + x + y + 12 + z^3 - 64 + x + y + 108 + z^2 + 312 + z + 288
                                                      2*x^3*y*z + 8*x^3*y + 9*x^2*z + 27*x^2
```

```
x^4*z + 4*x^4
[x^3*y^2*z + 4*x^3*y^2 + 18*x^2*y*z - 36*x*z^3 + 66*x^2*y - 432*x*z^2 - 1656*x*z - 2052*x
sage: M*G
(0, 0, 0, 0, 0, 0, 0, 0, 0)
```

ALGORITHM: Uses Singular's syz command

### twostd()

Computes a two-sided GB of the ideal (even if it is a left ideal).

### **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: I.twostd() #random
Twosided Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of Noncommutative Multiv
sage: sorted(I.twostd().gens(),key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]
```

# ALGORITHM: Uses Singular's twostd command

```
class sage.rings.polynomial.multi_polynomial_ideal.RequireField(f)
Bases: sage.misc.method_decorator.MethodDecorator
```

Decorator which throws an exception if a computation over a coefficient ring which is not a field is attempted.

**Note:** This decorator is used automatically internally so the user does not need to use it manually.

```
sage.rings.polynomial.multi_polynomial_ideal.is_MPolynomialIdeal(x)
```

Return True if the provided argument x is an ideal in the multivariate polynomial ring.

# INPUT:

•x - an arbitrary object

### **EXAMPLES:**

```
sage: from sage.rings.polynomial.multi_polynomial_ideal import is_MPolynomialIdeal
sage: P.\langle x, y, z \rangle = PolynomialRing(QQ)
sage: I = [x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y]
```

Sage distinguishes between a list of generators for an ideal and the ideal itself. This distinction is inconsistent with Singular but matches Magma's behavior.

```
sage: is_MPolynomialIdeal(I)
False

sage: I = Ideal(I)
sage: is_MPolynomialIdeal(I)
True

sage.rings.polynomial.multi_polynomial_ideal.require_field
alias of RequireField
```

# 3.1.7 Polynomial Sequences

We call a finite list of polynomials a Polynomial Sequence.

Polynomial sequences in Sage can optionally be viewed as consisting of various parts or sub-sequences. These kind of polynomial sequences which naturally split into parts arise naturally for example in algebraic cryptanalysis of symmetric cryptographic primitives. The most prominent examples of these systems are: the small scale variants of the AES [CMR05] (cf. sage.crypto.mq.sr.SR()) and Flurry/Curry [BPW06]. By default, a polynomial sequence has exactly one part.

### **AUTHORS:**

- Martin Albrecht (2007ff): initial version
- Martin Albrecht (2009): refactoring, clean-up, new functions
- Martin Albrecht (2011): refactoring, moved to sage.rings.polynomial
- Alex Raichev (2011-06): added algebraic\_dependence()
- Charles Bouillaguet (2013-1): added solve()

#### **EXAMPLES:**

As an example consider a small scale variant of the AES:

```
sage: sr = mq.SR(2,1,2,4,gf2=True,polybori=True)
sage: sr
SR(2,1,2,4)
```

We can construct a polynomial sequence for a random plaintext-ciphertext pair and study it:

```
sage: set_random_seed(1)
sage: F,s = sr.polynomial_system()
Polynomial Sequence with 112 Polynomials in 64 Variables
sage: r2 = F.part(2); r2
(w200 + k100 + x100 + x102 + x103,
  w201 + k101 + x100 + x101 + x103 + 1,
  w202 + k102 + x100 + x101 + x102 + 1
  w203 + k103 + x101 + x102 + x103
   w210 + k110 + x110 + x112 + x113
   w211 + k111 + x110 + x111 + x113 + 1,
   w212 + k112 + x110 + x111 + x112 + 1
  w213 + k113 + x111 + x112 + x113,
  x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100
  x100*w100 + x100*w101 + x101*w100 + x101*w103 + x102*w102 + x103*w101
  x100*w101 + x100*w102 + x101*w100 + x101*w101 + x102*w100 + x102*w103 + x103*w102
  x100*w100 + x100*w102 + x100*w103 + x101*w100 + x101*w101 + x102*w102 + x103*w100 + x100,
  x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 + x101,
  x100*w100 + x100*w102 + x101*w100 + x101*w102 + x101*w103 + x102*w100 + x102*w101 + x103*w102 + x101*w103 + x102*w100 + x102*w101 + x103*w102 + x101*w103 + x101
   x100*w101 + x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w103 + x103,
   x100*w100 + x100*w101 + x100*w103 + x101*w101 + x102*w100 + x102*w102 + x103*w100 + w100,
   x100*w102 + x101*w100 + x101*w101 + x101*w103 + x102*w101 + x103*w100 + x103*w102 + w101
   x100*w100 + x100*w101 + x100*w102 + x101*w102 + x102*w100 + x102*w101 + x102*w103 + x103*w101 + w102*w103 + x103*w101 + w102*w103 + x103*w101 + w102*w103 + x103*w104 + w102*w105 + w102
   x100*w101 + x101*w100 + x101*w102 + x102*w100 + x103*w101 + x103*w103 + w103,
   x100*w102 + x101*w101 + x102*w100 + x103*w103 + 1,
   x110*w110 + x110*w113 + x111*w112 + x112*w111 + x113*w110,
   x110*w110 + x110*w111 + x111*w110 + x111*w113 + x112*w112 + x113*w111,
   x110*w111 + x110*w112 + x111*w110 + x111*w111 + x112*w110 + x112*w113 + x113*w112,
```

```
x110*w110 + x110*w112 + x110*w113 + x111*w110 + x111*w111 + x112*w112 + x113*w110 + x110,
x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w111 + x111,
x110*w110 + x110*w112 + x111*w110 + x111*w112 + x111*w113 + x112*w110 + x112*w111 + x113*w112 + x113
x110*w111 + x110*w112 + x111*w110 + x111*w113 + x112*w111 + x113*w113 + x113,
x110*w110 + x110*w111 + x110*w113 + x111*w111 + x112*w110 + x112*w112 + x113*w110 + w110,
x110*w112 + x111*w110 + x111*w111 + x111*w113 + x112*w111 + x113*w110 + x113*w112 + w111,
x110*w110 + x110*w111 + x110*w112 + x111*w112 + x112*w110 + x112*w111 + x112*w113 + x113*w111 + w113,
x110*w112 + x111*w110 + x111*w112 + x112*w110 + x113*w113 + w113,
x110*w112 + x111*w111 + x112*w110 + x113*w113 + 1)
```

We separate the system in independent subsystems:

```
sage: C = Sequence(r2).connected_components(); C
[w213 + k113 + x111 + x112 + x113,
  w212 + k112 + x110 + x111 + x112 + 1
  w211 + k111 + x110 + x111 + x113 + 1,
   w210 + k110 + x110 + x112 + x113
   x110*w112 + x111*w111 + x112*w110 + x113*w113 + 1,
   x110*w112 + x111*w110 + x111*w111 + x111*w113 + x112*w111 + x113*w110 + x113*w112 + w111,
   x110*w111 + x111*w110 + x111*w112 + x112*w110 + x113*w111 + x113*w113 + w113,
   x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w111 + x111,
   x110*w111 + x110*w112 + x111*w110 + x111*w113 + x112*w111 + x113*w113 + x113,
   x110*w111 + x110*w112 + x111*w110 + x111*w111 + x112*w110 + x112*w113 + x113*w112,
  x110*w110 + x110*w113 + x111*w112 + x112*w111 + x113*w110
  x110*w110 + x110*w112 + x111*w110 + x111*w112 + x111*w113 + x112*w110 + x112*w111 + x113*w112 + x111*w113 + x112*w110 + x112*w111 + x113*w112 + x111*w113 + x112*w110 + x112*w111 + x113*w112 + x111*w113 + x112*w110 + x111*w113 + x112*w110 + x111*w113 + x112*w110 + x111*w113 + x111*w113 + x112*w110 + x111*w113 + x111*w13 + x111*w113 + x111*
   x110*w110 + x110*w112 + x110*w113 + x111*w110 + x111*w111 + x112*w112 + x113*w110 + x110,
  x110*w110 + x110*w111 + x111*w110 + x111*w113 + x112*w112 + x113*w111,
   x110*w110 + x110*w111 + x110*w113 + x111*w111 + x112*w110 + x112*w112 + x113*w110 + w110, \\
   x110*w110 + x110*w111 + x110*w112 + x111*w112 + x112*w110 + x112*w111 + x112*w113 + x113*w111 + w113*w111 + w113
 [w203 + k103 + x101 + x102 + x103,
w202 + k102 + x100 + x101 + x102 + 1
w201 + k101 + x100 + x101 + x103 + 1,
w200 + k100 + x100 + x102 + x103,
x100*w102 + x101*w101 + x102*w100 + x103*w103 + 1,
x100*w102 + x101*w100 + x101*w101 + x101*w103 + x102*w101 + x103*w100 + x103*w102 + w101,
x100*w101 + x101*w100 + x101*w102 + x102*w100 + x103*w101 + x103*w103 + w103
x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 + x101,
x100*w101 + x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w103 + x103, x100*w101 + x100*w102
x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100
x100*w100 + x100*w102 + x101*w100 + x101*w102 + x101*w103 + x102*w100 + x102*w101 + x103*w102 + x102*w101 + x103*w102 + x102*w101 + x103*w102 + x102*w101 + x103*w102 + x102*w101 + x102
x100 \times w100 + x100 \times w101 + x101 \times w100 + x101 \times w103 + x102 \times w102 + x103 \times w101
x100*w100 + x100*w101 + x100*w103 + x101*w101 + x102*w100 + x102*w102 + x103*w100 + w100,
x100*w100 + x100*w101 + x100*w102 + x101*w102 + x102*w100 + x102*w101 + x102*w103 + x103*w101 + w102
sage: C[0].groebner_basis()
Polynomial Sequence with 30 Polynomials in 16 Variables
```

# and compute the coefficient matrix:

```
sage: A, v = Sequence(r2).coefficient_matrix()
sage: A.rank()
32
```

Using these building blocks we can implement a simple XL algorithm easily:

```
sage: sr = mq.SR(1,1,1,4, gf2=True, polybori=True, order='lex')
sage: F,s = sr.polynomial_system()
```

```
sage: monomials = [a*b \text{ for } a \text{ in } F.variables() \text{ for } b \text{ in } F.variables() \text{ if } a < b]
sage: len(monomials)
sage: F2 = Sequence(map(mul, cartesian_product_iterator((monomials, F))))
sage: A, v = F2.coefficient_matrix(sparse=False)
sage: A.echelonize()
6840 x 4474 dense matrix over Finite Field of size 2 (use the '.str()' method to see the entries)
sage: A.rank()
4056
sage: A[4055]*v
(k001*k003)
TEST:
sage: P.<x,y> = PolynomialRing(QQ)
sage: I = [[x^2 + y^2], [x^2 - y^2]]
sage: F = Sequence(I, P)
sage: loads(dumps(F)) == F
True
```

**Note:** In many other computer algebra systems (cf. Singular) this class would be called Ideal but an ideal is a very distinct object from its generators and thus this is not an ideal in Sage.

### **Classes**

```
sage.rings.polynomial.multi polynomial sequence.PolynomialSequence (arg1,
                                                                                      arg2=None,
                                                                                      im-
                                                                                      mutable=False,
                                                                                      cr=False,
                                                                                      cr\_str=None)
     Construct a new polynomial sequence object.
     INPUT:
         •arg1 - a multivariate polynomial ring, an ideal or a matrix
         •arg2 - an iterable object of parts or polynomials (default:None)
            -immutable - if True the sequence is immutable (default: False)
            -cr - print a line break after each element (default: False)
            -cr_str - print a line break after each element if 'str' is called (default: None)
     EXAMPLES:
     sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
     sage: I = sage.rings.ideal.Katsura(P)
     If a list of tuples is provided, those form the parts:
     sage: F = Sequence([I.gens(),I.gens()], I.ring()); F # indirect doctest
     [a + 2*b + 2*c + 2*d - 1,
      a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a
      2*a*b + 2*b*c + 2*c*d - b
      b^2 + 2*a*c + 2*b*d - c
      a + 2*b + 2*c + 2*d - 1
```

```
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,

2*a*b + 2*b*c + 2*c*d - b,

b^2 + 2*a*c + 2*b*d - c]

sage: F.nparts()
```

If an ideal is provided, the generators are used:

```
sage: Sequence(I)
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
```

If a list of polynomials is provided, the system has only one part:

```
sage: F = Sequence(I.gens(), I.ring()); F
[a + 2*b + 2*c + 2*d - 1,
    a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
    2*a*b + 2*b*c + 2*c*d - b,
    b^2 + 2*a*c + 2*b*d - c]
sage: F.nparts()
1
```

We test that the ring is inferred correctly:

```
sage: P.<x,y,z> = GF(2)[]
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
sage: PolynomialSequence([1,x,y]).ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 2

sage: PolynomialSequence([[1,x,y], [0]]).ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
```

### TESTS:

A PolynomialSequence can exist with elements in a infinite field of characteristic 2 that is not (see trac ticket #19452):

```
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
sage: F = GF(2)
sage: L.<t> = PowerSeriesRing(F,'t')
sage: R.<x,y> = PolynomialRing(L,'x,y')
sage: PolynomialSequence([0], R)
```

 ${\bf class} \ {\tt sage.rings.polynomial.multi\_polynomial\_sequence.PolynomialSequence\_generic} \ ({\it parts},$ 

ring,
immutable=False,
cr=False,
cr\_str=None)

Bases: sage.structure.sequence.Sequence\_generic

Construct a new system of multivariate polynomials.

### INPUT:

- •part a list of lists with polynomials
- •ring a multivariate polynomial ring

- •immutable if True the sequence is immutable (default: False)
- •cr print a line break after each element (default: False)
- •cr\_str print a line break after each element if 'str' is called (default: None)

### **EXAMPLES:**

```
sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
sage: I = sage.rings.ideal.Katsura(P)

sage: Sequence([I.gens()], I.ring()) # indirect doctest
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*
```

If an ideal is provided, the generators are used.:

```
sage: Sequence(I)
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*
```

If a list of polynomials is provided, the system has only one part.:

```
sage: Sequence(I.gens(), I.ring())
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*
```

# algebraic\_dependence()

Returns the ideal of annihilating polynomials for the polynomials in self, if those polynomials are algebraically dependent. Otherwise, returns the zero ideal.

### **OUTPUT**:

If the polynomials  $f_1,\ldots,f_r$  in self are algebraically dependent, then the output is the ideal  $\{F\in K[T_1,\ldots,T_r]:F(f_1,\ldots,f_r)=0\}$  of annihilating polynomials of  $f_1,\ldots,f_r$ . Here K is the coefficient ring of polynomial ring of  $f_1,\ldots,f_r$  and  $f_1,\ldots,f_r$  are new indeterminates. If  $f_1,\ldots,f_r$  are algebraically independent, then the output is the zero ideal in  $K[T_1,\ldots,T_r]$ .

### **EXAMPLES:**

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: S = Sequence([x, x*y])
sage: I = S.algebraic_dependence(); I
Ideal (0) of Multivariate Polynomial Ring in T0, T1 over Rational Field

sage: R.<x,y> = PolynomialRing(QQ)
sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])
sage: I = S.algebraic_dependence(); I
Ideal (16 + 32*T2 - 8*T0^2 + 24*T2^2 - 8*T0^2*T2 + 8*T2^3 + 9*T0^4 - 2*T0^2*T2^2 + T2^4 - T0
sage: [F(S) for F in I.gens()]

sage: R.<x,y> = PolynomialRing(GF(7))
sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])
sage: I = S.algebraic_dependence(); I
Ideal (2 - 3*T2 - T0^2 + 3*T2^2 - T0^2*T2 + T2^3 + 2*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + T2
sage: [F(S) for F in I.gens()]
```

**Note:** This function's code also works for sequences of polynomials from a univariate polynomial ring, but i don't know where in the Sage codebase to put it to use it to that effect.

**AUTHORS:** 

[0]

```
•Alex Raichev (2011-06-22)
```

```
coefficient_matrix(sparse=True)
```

Return tuple (A, v) where A is the coefficient matrix of this system and v the matching monomial vector.

Thus value of A[i,j] corresponds the coefficient of the monomial v[j] in the i-th polynomial in this system.

Monomials are order w.r.t. the term ordering of self.ring() in reverse order, i.e. such that the smallest entry comes last.

### INPUT:

•sparse - construct a sparse matrix (default: True)

**sage:**  $P. \langle a, b, c, d \rangle = PolynomialRing(GF(127), 4)$ 

```
EXAMPLE:
```

```
sage: I = sage.rings.ideal.Katsura(P)
sage: I.gens()
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a
2*a*b + 2*b*c + 2*c*d - b
b^2 + 2*a*c + 2*b*d - c
sage: F = Sequence(I)
sage: A, v = F.coefficient_matrix()
sage: A
0
                             0 1
                                    2
                                       2
                                           2 126]
[ 1 0 2 0 0 2 0 0
                            2 126 0 0 0 0]
[ 0 2 0 0 2 0 0 2 0 0 126 0 0
                                              01
[ 0 0 1 2 0 0 2 0 0 0 126 0
sage: v
[a^2]
[a*b]
[b^2]
[a*c]
[b*c]
[c^2]
[b*d]
[c*d]
[d^2]
[ a]
[ b]
[ c]
[ d1
[ 1]
sage: A*v
     a + 2*b + 2*c + 2*d - 1
[a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a]
    2*a*b + 2*b*c + 2*c*d - b
      b^2 + 2*a*c + 2*b*d - c1
```

### connected components()

Split the polynomial system in systems which do not share any variables.

# **EXAMPLE:**

As an example consider one part of AES, which naturally splits into four subsystems which are independent:

```
sage: sr = mq.SR(2,4,4,8,gf2=True,polybori=True)
sage: F,s = sr.polynomial_system()
sage: Fz = Sequence(F.part(2))
sage: Fz.connected_components()
[Polynomial Sequence with 128 Polynomials in 128 Variables,
Polynomial Sequence with 128 Polynomials in 128 Variables,
Polynomial Sequence with 128 Polynomials in 128 Variables,
Polynomial Sequence with 128 Polynomials in 128 Variables]
```

# connection\_graph()

Return the graph which has the variables of this system as vertices and edges between two variables if they appear in the same polynomial.

### **EXAMPLE:**

```
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: F = Sequence([x*y + y + 1, z + 1])
sage: F.connection_graph()
Graph on 3 vertices
```

### groebner\_basis (\*args, \*\*kwargs)

Compute and return a Groebner basis for the ideal spanned by the polynomials in this system.

### INPUT:

- •args list of arguments passed to MPolynomialIdeal.groebner\_basis call
- •kwargs dictionary of arguments passed to MPolynomialIdeal.groebner\_basis call

### **EXAMPLE:**

```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: gb = F.groebner_basis()
sage: Ideal(gb).basis_is_groebner()
True
```

### ideal()

Return ideal spanned by the elements of this system.

### **EXAMPLE:**

# is\_groebner (singular=Singular)

Returns True if the generators of this ideal (self.gens()) form a Grbner basis.

Let I be the set of generators of this ideal. The check is performed by trying to lift Syz(LM(I)) to Syz(I) as I forms a Groebner basis if and only if for every element S in Syz(LM(I)):

```
S * G = \sum_{i=0}^{m} h_i g_i - - - >_G 0.
```

### EXAMPLE:

```
sage: R.<a,b,c,d,e,f,g,h,i,j> = PolynomialRing(GF(127),10)
sage: I = sage.rings.ideal.Cyclic(R,4)
sage: I.basis.is_groebner()
False
sage: I2 = Ideal(I.groebner_basis())
sage: I2.basis.is_groebner()
```

### maximal\_degree()

Return the maximal degree of any polynomial in this sequence.

### **EXAMPLE:**

```
sage: P.<x,y,z> = PolynomialRing(GF(7))
sage: F = Sequence([x*y + x, x])
sage: F.maximal_degree()
2
sage: P.<x,y,z> = PolynomialRing(GF(7))
sage: F = Sequence([], universe=P)
sage: F.maximal_degree()
-1
```

### monomials()

Return an unordered tuple of monomials in this polynomial system.

# EXAMPLE:

```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: len(F.monomials())
49
```

### nmonomials()

Return the number of monomials present in this system.

# **EXAMPLE:**

```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.nmonomials()
49
```

### nparts()

Return number of parts of this system.

# EXAMPLE:

```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.nparts()
4
```

### nvariables()

Return number of variables present in this system.

### EXAMPLE:

```
sage: sr = mq.SR(allow_zero_inversions=True)
    sage: F,s = sr.polynomial_system()
    sage: F.nvariables()
part (i)
    Return i-th part of this system.
    EXAMPLE:
    sage: sr = mq.SR(allow_zero_inversions=True)
    sage: F,s = sr.polynomial_system()
    sage: R0 = F.part(1)
    sage: R0
    (k000^2 + k001, k001^2 + k002, k002^2 + k003, k003^2 + k000)
parts()
    Return a tuple of parts of this system.
    EXAMPLE:
    sage: sr = mq.SR(allow_zero_inversions=True)
    sage: F,s = sr.polynomial_system()
    sage: 1 = F.parts()
    sage: len(1)
    4
reduced()
    If this sequence is (f_1, ..., f_n) then this method returns (g_1, ..., g_s) such that:
        \bullet(f_1,...,f_n)=(g_1,...,g_s)
        •LT(g_i)! = LT(g_j) for all i! = j
        •LT(g_i) does not divide m for all monomials m of \{g_1,...,g_{i-1},g_{i+1},...,g_s\}
        •LC(q_i) == 1 for all i if the coefficient ring is a field.
    EXAMPLE:
    sage: R. \langle x, y, z \rangle = PolynomialRing(QQ)
    sage: F = Sequence([z*x+y^3,z+y^3,z+x*y])
    sage: F.reduced()
    [y^3 + z, x*y + z, x*z - z]
    Note that tail reduction for local orderings is not well-defined:
    sage: R.<x,y,z> = PolynomialRing(QQ,order='negdegrevlex')
    sage: F = Sequence([z*x+y^3,z+y^3,z+x*y])
    sage: F.reduced()
    [z + x*y, x*y - y^3, x^2*y - y^3]
    A fixed error with nonstandard base fields:
    sage: R.<t>=QQ['t']
    sage: K.<x,y>=R.fraction_field()['x,y']
    sage: I=t*x*K
    sage: I.basis.reduced()
    [x]
```

The interreduced basis of 0 is 0:

```
sage: P. < x, y, z > = GF(2)[]
    sage: Sequence([P(0)]).reduced()
    Leading coefficients are reduced to 1:
    sage: P.\langle x, y \rangle = QQ[]
    sage: Sequence([2*x,y]).reduced()
    [x, y]
    sage: P. \langle x, y \rangle = CC[]
    sage: Sequence([2*x,y]).reduced()
    [x, y]
    ALGORITHM:
    Uses Singular's interred command or sage.rings.polynomial.toy_buchberger.inter_reduction `()
    if conversion to Singular fails.
ring()
    Return the polynomial ring all elements live in.
    EXAMPLE:
    sage: sr = mq.SR(allow_zero_inversions=True,gf2=True,order='block')
    sage: F,s = sr.polynomial_system()
    sage: print F.ring().repr_long()
    Polynomial Ring
     Base Ring : Finite Field of size 2
          Size : 20 Variables
      Block 0 : Ordering : deglex
                  Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w1
      Block 1 : Ordering : deglex
                         : k000, k001, k002, k003
                  Names
subs (*args, **kwargs)
    Substitute variables for every polynomial in this system and return a new system.
                                                                                       See
    MPolynomial.subs for calling convention.
    INPUT:
       •args - arguments to be passed to MPolynomial.subs
       •kwargs - keyword arguments to be passed to MPolynomial.subs
    EXAMPLE:
    sage: sr = mq.SR(allow_zero_inversions=True)
    sage: F,s = sr.polynomial_system(); F
    Polynomial Sequence with 40 Polynomials in 20 Variables
    sage: F = F.subs(s); F
    Polynomial Sequence with 40 Polynomials in 16 Variables
universe()
    Return the polynomial ring all elements live in.
    EXAMPLE:
    sage: sr = mq.SR(allow_zero_inversions=True, qf2=True, order='block')
```

sage: F,s = sr.polynomial\_system()
sage: print F.ring().repr\_long()

Polynomial Ring

### variables()

Return all variables present in this system. This tuple may or may not be equal to the generators of the ring of this system.

### **EXAMPLE:**

```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.variables()[:10]
(k003, k002, k001, k000, s003, s002, s001, s000, w103, w102)
```

class sage.rings.polynomial.multi\_polynomial\_sequence.PolynomialSequence\_gf2 (parts,

ring, im-

mutable=False, cr=False.

*cr\_str=None*)

Bases: sage.rings.polynomial.multi\_polynomial\_sequence.PolynomialSequence\_generic

Polynomial Sequences over  $\mathbb{F}_2$ .

Return a new system where linear leading variables are eliminated if the tail of the polynomial has length at most maxlength.

# INPUT:

- •maxlength an optional upper bound on the number of monomials by which a variable is replaced. If maxlength==+Infinity then no condition is checked. (default: +Infinity).
- •skip an optional callable to skip eliminations. It must accept two parameters and return either True or False. The two parameters are the leading term and the tail of a polynomial (default: None).
- •return\_reductors if True the list of polynomials with linear leading terms which were used for reduction is also returned (default: False).
- `use\_polybori if True then polybori.ll.eliminate is called. While this is typically faster what is implemented here, it is less flexible (skip `is not supported) and may increase the degree (default: ``False)

## **OUTPUT:**

When return\_reductors==True, then a pair of sequences of boolean polynomials are returned, along with the promises that:

- 1. The union of the two sequences spans the same boolean ideal as the argument of the method
- 2. The second sequence only contains linear polynomials, and it forms a reduced groebner basis (they all have pairwise distinct leading variables, and the leading variable of a polynomial does not occur anywhere in other polynomials).
- 3. The leading variables of the second sequence do not occur anywhere in the first sequence (these variables have been eliminated).

When return\_reductors==False, only the first sequence is returned.

```
EXAMPLE:
```

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: F = Sequence([c + d + b + 1, a + c + d, a*b + c, b*c*d + c])
sage: F.eliminate_linear_variables() # everything vanishes
[]
sage: F.eliminate_linear_variables(maxlength=2)
[b + c + d + 1, b*c + b*d + c, b*c*d + c]
sage: F.eliminate_linear_variables(skip=lambda lm,tail: str(lm)=='a')
[a + c + d, a*c + a*d + a + c, c*d + c]
```

The list of reductors can be requested by setting 'return\_reductors' to True:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: F = Sequence([a + b + d, a + b + c])
sage: F,R = F.eliminate_linear_variables(return_reductors=True)
sage: F
[]
sage: R
[a + b + d, c + d]
```

If the input system is detected to be inconsistent then [1] is returned and the list of reductors is empty:

```
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y*z*x*y*z*y*x*z, x*y*z*1, x*y*z])
sage: S.eliminate_linear_variables()
[1]
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y*z*x*y*z*y*x*z, x*y*z*1, x*y*z])
sage: S.eliminate_linear_variables(return_reductors=True)
([1], [])
```

# TESTS:

The function should really dispose of linear equations (trac ticket #13968):

```
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x+y+z+1, y+z])
sage: S.eliminate_linear_variables(return_reductors=True)
([], [x + 1, y + z])
```

The function should take care of linear variables created by previous substitution of linear variables

```
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y*z+x*y+z*y+x*z, x+y+z+1, x+y])
sage: S.eliminate_linear_variables(return_reductors=True)
([], [x + y, z + 1])
```

We test a case which would increase the degree with polybori=True:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: f = a*d + a + b*d + c*d + 1
sage: Sequence([f, a + b*c + c+d + 1]).eliminate_linear_variables()
[a*d + a + b*d + c*d + 1, a + b*c + c + d + 1]

sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: f = a*d + a + b*d + c*d + 1
sage: Sequence([f, a + b*c + c+d + 1]).eliminate_linear_variables(use_polybori=True)
[b*c*d + b*c + b*d + c + d]
```

**Note:** This is called "massaging" in [CBJ07].

### **REFERENCES:**

# reduced()

If this sequence is  $(f_1, ..., f_n)$  this method returns  $(g_1, ..., g_s)$  such that:

```
\bullet < f_1, ..., f_n > = < g_1, ..., g_s >
```

•
$$LT(g_i)! = LT(g_i)$$
 for all  $i! = j$ 

• $LT(g_i)$  does not divide m for all monomials m of  $g_1,...,g_{i-1},g_{i+1},...,g_s$ 

## **EXAMPLE:**

```
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: F.reduced()
[k100 + 1, k101 + k001 + 1, k102, k103 + 1, ..., s002, s003 + k001 + 1, k000 + 1, k002 + 1,
```

**solve** (*algorithm='polybori'*, *n=1*, *eliminate\_linear\_variables=True*, *verbose=False*, \*\*kwds) Find solutions of this boolean polynomial system.

This function provide a unified interface to several algorithms dedicated to solving systems of boolean equations. Depending on the particular nature of the system, some might be much faster than some others.

# INPUT:

- •self a sequence of boolean polynomials
- •algorithm the method to use. Possible values are polybori, sat and exhaustive\_search. (default: polybori, since it is always available)
- •n number of solutions to return. If n = + Infinity then all solutions are returned. If  $n < \infty$  then n solutions are returned if the equations have at least n solutions. Otherwise, all the solutions are returned. (default: 1)
- •eliminate\_linear\_variables whether to eliminate variables that appear linearly. This reduces the number of variables (makes solving faster a priori), but is likely to make the equations denser (may make solving slower depending on the method).
- •verbose whether to display progress and (potentially) useful information while the computation runs. (default: False)

# **EXAMPLES:**

Without argument, a single arbitrary solution is returned:

```
sage: from sage.doctest.fixtures import reproducible_repr
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y+z, y*z+x, x+y+z+1])
sage: sol = S.solve()
sage: print(reproducible_repr(sol))
[{x: 0, y: 1, z: 0}]
```

We check that it is actually a solution:

```
sage: S.subs( sol[0] )
[0, 0, 0]
```

We obtain all solutions:

sage: sols = S.solve(n=Infinity)
sage: print(reproducible\_repr(sols))

express it as a polynomial system over  $\mathbb{F}_2$ .

```
[{x: 0, y: 1, z: 0}, {x: 1, y: 1, z: 1}]
         sage: map( lambda x: S.subs(x), sols)
         [[0, 0, 0], [0, 0, 0]]
         We can force the use of exhaustive search if the optional package FES is present:
         sage: sol = S.solve(algorithm='exhaustive_search') # optional - FES
         sage: print (reproducible_repr(sol)) # optional - FES
         [{x: 1, y: 1, z: 1}]
         sage: S.subs( sol[0] )
         [0, 0, 0]
         And we may use SAT-solvers if they are available:
         sage: sol = S.solve(algorithm='sat') # optional - cryptominisat
         sage: print(reproducible_repr(sol)) # optional - cryptominisat
         [{x: 0, y: 1, z: 0}]
         sage: S.subs( sol[0] )
         [0, 0, 0]
         TESTS:
         Make sure that variables not occurring in the equations are no problem:
         sage: R.<x,y,z,t> = BooleanPolynomialRing()
         sage: S = Sequence([x*y+z, y*z+x, x+y+z+1])
         sage: sols = S.solve(n=Infinity)
         sage: map( lambda x: S.subs(x), sols)
         [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
         Not eliminating linear variables:
         sage: sols = S.solve(n=Infinity, eliminate_linear_variables=False)
         sage: map( lambda x: S.subs(x), sols)
         [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
         A tricky case where the linear equations are insatisfiable:
         sage: R.<x,y,z> = BooleanPolynomialRing()
         sage: S = Sequence([x*y*z+x*y+z*y+x*z, x+y+z+1, x+y+z])
         sage: S.solve()
         []
class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2e (parts,
                                                                                              ring,
                                                                                              im-
                                                                                              mutable = False,
                                                                                              cr=False.
                                                                                              cr str=None)
     Bases: sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic
     PolynomialSequence over \mathbb{F}_{2^e}, i.e extensions over GF(2).
     weil_restriction()
         Project this polynomial system to \mathbb{F}_2.
         That is, compute the Weil restriction of scalars for the variety corresponding to this polynomial system and
```

```
EXAMPLE:
         sage: k. < a > = GF(2^2)
         sage: P.<x,y> = PolynomialRing(k,2)
         sage: a = P.base_ring().gen()
         sage: F = Sequence([x*y + 1, a*x + 1], P)
         sage: F2 = F.weil_restriction()
         sage: F2
         [x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 + x0,
         x1^2 + x1, y0^2 + y0, y1^2 + y1
         Another bigger example for a small scale AES:
         sage: sr = mq.SR(1,1,1,4,gf2=False)
         sage: F,s = sr.polynomial_system(); F
         Polynomial Sequence with 40 Polynomials in 20 Variables
         sage: F2 = F.weil_restriction(); F2
         Polynomial Sequence with 240 Polynomials in 80 Variables
sage.rings.polynomial.multi_polynomial_sequence.is_PolynomialSequence(F)
    Return True if F is a Polynomial Sequence.
    INPUT:
        •F - anything
    EXAMPLE:
    sage: P.<x,y> = PolynomialRing(QQ)
    sage: I = [[x^2 + y^2], [x^2 - y^2]]
    sage: F = Sequence(I, P); F
    [x^2 + y^2, x^2 - y^2]
    sage: from sage.rings.polynomial.multi_polynomial_sequence import is_PolynomialSequence
    sage: is_PolynomialSequence(F)
    True
```

# 3.1.8 Multivariate Polynomials via libSINGULAR

This module implements specialized and optimized implementations for multivariate polynomials over many coefficient rings, via a shared library interface to SINGULAR. In particular, the following coefficient rings are supported by this implementation:

- the rational numbers **Q**,
- the ring of integers **Z**,
- $\mathbf{Z}/n\mathbf{Z}$  for any integer n,
- finite fields  $\mathbf{F}_{p^n}$  for p prime and n > 0,
- and absolute number fields  $\mathbf{Q}(a)$ .

### **AUTHORS:**

The libSINGULAR interface was implemented by

- Martin Albrecht (2007-01): initial implementation
- Joel Mohler (2008-01): misc improvements, polishing
- Martin Albrecht (2008-08): added  $\mathbf{Q}(a)$  and  $\mathbf{Z}$  support

- Simon King (2009-04): improved coercion
- Martin Albrecht (2009-05): added  $\mathbb{Z}/n\mathbb{Z}$  support, refactoring
- Martin Albrecht (2009-06): refactored the code to allow better re-use
- Simon King (2011-03): Use a faster way of conversion from the base ring.
- Volker Braun (2011-06): Major cleanup, refcount singular rings, bugfixes.

### TODO:

• implement Real, Complex coefficient rings via libSINGULAR

### **EXAMPLES:**

We show how to construct various multivariate polynomial rings:

```
sage: P.\langle x, y, z \rangle = QQ[]
sage: P
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f = 27/113 * x^2 + y*z + 1/2; f
27/113*x^2 + y*z + 1/2
sage: P.term_order()
Degree reverse lexicographic term order
sage: P = PolynomialRing(GF(127), 3, names='abc', order='lex')
Multivariate Polynomial Ring in a, b, c over Finite Field of size 127
sage: a,b,c = P.gens()
sage: f = 57 * a^2*b + 43 * c + 1; f
57*a^2*b + 43*c + 1
sage: P.term_order()
Lexicographic term order
sage: z = QQ['z'].0
sage: K. < s > = NumberField(z^2 - 2)
sage: P.<x,y> = PolynomialRing(K, 2)
sage: 1/2*s*x^2 + 3/4*s
(1/2*s)*x^2 + (3/4*s)
sage: P.\langle x, y, z \rangle = ZZ[]; P
Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: P. \langle x, y, z \rangle = Zmod(2^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1024
sage: P. \langle x, y, z \rangle = Zmod(3^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 59049
sage: P.\langle x, y, z \rangle = Zmod(2^100)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1267650600228229401496703205376
sage: P.\langle x, y, z \rangle = Zmod(2521352)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 2521352
sage: type(P)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'>
```

```
sage: P.\langle x, y, z \rangle = Zmod(25213521351515232)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 25213521351515232
sage: type(P)
<class 'sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_with_category'>
We construct the Frobenius morphism on \mathbf{F}_5[x, y, z] over \mathbf{F}_5:
sage: R.\langle x,y,z\rangle = PolynomialRing(GF(5), 3)
sage: frob = R.hom([x^5, y^5, z^5])
sage: frob(x^2 + 2 * y - z^4)
-z^20 + x^10 + 2*y^5
sage: frob((x + 2*y)^3)
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
sage: (x^5 + 2*y^5)^3
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
We make a polynomial ring in one variable over a polynomial ring in two variables:
sage: R. < x, y > = PolynomialRing(QQ, 2)
sage: S.<t> = PowerSeriesRing(R)
sage: t*(x+y)
(x + y) *t
TESTS:
sage: P.\langle x, y, z \rangle = QQ[]
sage: loads(dumps(P)) == P
True
sage: loads(dumps(x)) == x
sage: P.\langle x, y, z \rangle = GF(2^8, 'a')[]
sage: loads(dumps(P)) == P
sage: loads(dumps(x)) == x
sage: P. \langle x, y, z \rangle = GF(127)[]
sage: loads(dumps(P)) == P
sage: loads(dumps(x)) == x
True
sage: P. \langle x, y, z \rangle = GF(127)[]
sage: loads(dumps(P)) == P
sage: loads(dumps(x)) == x
True
sage: Rt.<t> = PolynomialRing(QQ,1)
sage: p = 1+t
sage: R.<u,v> = PolynomialRing(QQ, 2)
sage: p(u/v)
(u + v)/v
Check if #6160 is fixed:
sage: x=var('x')
sage: K.<j> = NumberField(x-1728)
sage: R.<b,c> = K[]
sage: b-j*c
```

```
b - 1728*c
class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular
     Bases: sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic
     Construct a multivariate polynomial ring subject to the following conditions:
     INPUT:
        •base_ring - base ring (must be either GF(q), ZZ, ZZ/nZZ, QQ or absolute number field)
        •n - number of variables (must be at least 1)
        •names - names of ring variables, may be string of list/tuple
        •order - term order (default: degrevlex)
     EXAMPLES:
     sage: P.\langle x, y, z \rangle = QQ[]
     sage: P
     Multivariate Polynomial Ring in x, y, z over Rational Field
     sage: f = 27/113 * x^2 + y*z + 1/2; f
     27/113*x^2 + y*z + 1/2
     sage: P.term_order()
     Degree reverse lexicographic term order
     sage: P = PolynomialRing(GF(127), 3, names='abc', order='lex')
     Multivariate Polynomial Ring in a, b, c over Finite Field of size 127
     sage: a,b,c = P.gens()
     sage: f = 57 * a^2*b + 43 * c + 1; f
     57*a^2*b + 43*c + 1
     sage: P.term_order()
     Lexicographic term order
     sage: z = QQ['z'].0
     sage: K. < s > = NumberField(z^2 - 2)
     sage: P.\langle x,y \rangle = PolynomialRing(K, 2)
     sage: 1/2*s*x^2 + 3/4*s
     (1/2*s)*x^2 + (3/4*s)
     sage: P.\langle x, y, z \rangle = ZZ[]; P
     Multivariate Polynomial Ring in x, y, z over Integer Ring
     sage: P. \langle x, y, z \rangle = Zmod(2^10)[]; P
     Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1024
     sage: P. \langle x, y, z \rangle = Zmod(3^10)[]; P
     Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 59049
     sage: P.\langle x, y, z \rangle = Zmod(2^100); P
     Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 126765060022822940149670320
     sage: P.\langle x, y, z \rangle = Zmod(2521352)[]; P
     Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 2521352
```

sage: type(P)

```
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'>
sage: P.\langle x, y, z \rangle = Zmod(25213521351515232)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 25213521351515232
sage: type(P)
<class 'sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_with_category'>
sage: P.<x,y,z> = PolynomialRing(Integers(2^32),order='lex')
sage: P(2^32-1)
4294967295
TEST:
Make sure that a faster coercion map from the base ring is used; see trac ticket #9944:
sage: R.<x,y> = PolynomialRing(ZZ)
sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
  From: Integer Ring
       Multivariate Polynomial Ring in x, y over Integer Ring
Element
    alias of MPolynomial_libsingular
gen(n=0)
    Returns the n-th generator of this multivariate polynomial ring.
    INPUT:
       •n – an integer \geq = 0
    EXAMPLES:
    sage: P.\langle x, y, z \rangle = QQ[]
    sage: P.gen(),P.gen(1)
    (x, y)
    sage: P = PolynomialRing(GF(127),1000,'x')
    sage: P.gen (500)
    x500
    sage: P.<SAGE,SINGULAR> = QQ[] # weird names
    sage: P.gen(1)
    SINGULAR
ideal(*gens, **kwds)
    Create an ideal in this polynomial ring.
    INPUT:
       • * gens - list or tuple of generators (or several input arguments)
       •coerce - bool (default: True); this must be a keyword argument. Only set it to False if you are
        certain that each generator is already in the ring.
    EXAMPLES:
    sage: P.\langle x, y, z \rangle = QQ[]
    sage: sage.rings.ideal.Katsura(P)
    Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y) of Multivariate Polynomials
```

```
sage: P.ideal([x + 2*y + 2*z-1, 2*x*y + 2*y*z-y, x^2 + 2*y^2 + 2*z^2-x])
    Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 + 2*y^2 + 2*z^2 - x) of Multivariate Polynomials
monomial_all_divisors(t)
    Return a list of all monomials that divide t.
    Coefficients are ignored.
    INPUT:
        •t - a monomial
    OUTPUT: a list of monomials
    EXAMPLES:
    sage: P.\langle x, y, z \rangle = QQ[]
    sage: P.monomial_all_divisors(x^2 \times z^3)
    [x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
    ALGORITHM: addwithcarry idea by Toon Segers
monomial divides (a, b)
    Return False if a does not divide b and True otherwise.
    Coefficients are ignored.
    INPUT:
        •a - monomial
        •b - monomial
    EXAMPLES:
    sage: P.\langle x, y, z \rangle = QQ[]
    sage: P.monomial_divides (x*y*z, x^3*y^2*z^4)
    sage: P.monomial_divides (x^3*y^2*z^4, x*y*z)
    False
    TESTS:
    sage: P.\langle x, y, z \rangle = QQ[]
    sage: P.monomial_divides(P(1), P(0))
    sage: P.monomial_divides(P(1), x)
    True
monomial_lcm(f, g)
    LCM for monomials. Coefficients are ignored.
    INPUT:
        •f - monomial
        •q - monomial
    EXAMPLES:
    sage: P.\langle x, y, z \rangle = QQ[]
    sage: P.monomial_lcm(3/2*x*y,x)
```

х\*У

```
TESTS:
     sage: R. \langle x, y, z \rangle = QQ[]
     sage: P.\langle x, y, z \rangle = QQ[]
     sage: P.monomial_lcm(x*y,R.gen())
     х*У
     sage: P.monomial_lcm(P(3/2),P(2/3))
     sage: P.monomial_lcm(x,P(1))
monomial_pairwise_prime(g, h)
     Return True if h and g are pairwise prime. Both are treated as monomials.
     Coefficients are ignored.
     INPUT:
        •h - monomial
        •q - monomial
    EXAMPLES:
     sage: P.\langle x, y, z \rangle = QQ[]
     sage: P.monomial_pairwise_prime(x^2 \times z^3, y^4)
     sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
     False
     TESTS:
     sage: Q. \langle x, y, z \rangle = QQ[]
     sage: P.\langle x, y, z \rangle = QQ[]
     sage: P.monomial_pairwise_prime(x^2*z^3, Q('y^4'))
     sage: P.monomial_pairwise_prime(1/2*x^3*y^2, Q(0))
     True
     sage: P.monomial_pairwise_prime(P(1/2),x)
     False
monomial quotient (f, g, coeff=False)
     Return f/g, where both f and" g are treated as monomials.
     Coefficients are ignored by default.
    INPUT:
        •f - monomial
        •q - monomial
        •coeff - divide coefficients as well (default: False)
     EXAMPLES:
     sage: P.\langle x, y, z \rangle = QQ[]
     sage: P.monomial_quotient(3/2*x*y,x)
```

```
sage: P.monomial_quotient(3/2*x*y,x,coeff=True)
3/2*y
Note, that Z behaves different if coeff=True:
sage: P.monomial_quotient(2*x,3*x)
1
sage: P.<x,y> = PolynomialRing(ZZ)
sage: P.monomial_quotient(2*x,3*x,coeff=True)
Traceback (most recent call last):
ArithmeticError: Cannot divide these coefficients.
TESTS:
sage: R.\langle x, y, z \rangle = QQ[]
sage: P.\langle x, y, z \rangle = QQ[]
sage: P.monomial_quotient(x*y,x)
sage: P.monomial_quotient(x*y,R.gen())
sage: P.monomial_quotient(P(0),P(1))
sage: P.monomial_quotient(P(1),P(0))
Traceback (most recent call last):
ZeroDivisionError
sage: P.monomial_quotient(P(3/2),P(2/3), coeff=True)
9/4
sage: P.monomial_quotient(x,y) # Note the wrong result
x*y^1048575*z^1048575 # 64-bit
x*y^65535*z^65535 # 32-bit
sage: P.monomial_quotient(x,P(1))
```

**Warning:** Assumes that the head term of f is a multiple of the head term of g and return the multiplicant m. If this rule is violated, funny things may happen.

### $monomial\_reduce(f, G)$

Try to find a g in G where g.lm() divides f. If found (flt,g) is returned, (0,0) otherwise, where flt is f/g.lm().

It is assumed that G is iterable and contains *only* elements in this polynomial ring.

Coefficients are ignored.

### INPUT:

- •f monomial
- •G list/set of mpolynomials

```
EXAMPLES:
         sage: P.\langle x, y, z \rangle = QQ[]
         sage: f = x * y^2
         sage: G = [3/2 \times x^3 + y^2 + 1/2, 1/4 \times x \times y + 2/7, 1/2]
         sage: P.monomial_reduce(f,G)
         (y, 1/4*x*y + 2/7)
         TESTS:
         sage: P.\langle x, y, z \rangle = QQ[]
         sage: f = x * y^2
         sage: G = [3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, 1/2]
         sage: P.monomial_reduce(P(0),G)
         (0, 0)
         sage: P.monomial_reduce(f,[P(0)])
          (0, 0)
     ngens()
         Returns the number of variables in this multivariate polynomial ring.
         EXAMPLES:
         sage: P.\langle x, y \rangle = QQ[]
         sage: P.ngens()
         2
         sage: k. < a > = GF(2^16)
         sage: P = PolynomialRing(k,1000,'x')
         sage: P.ngens()
         1000
class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular
     Bases: sage.rings.polynomial.multi_polynomial.MPolynomial
     A multivariate polynomial implemented using libSINGULAR.
     add_m_mul_q(m, q)
         Return self + m*q, where m must be a monomial and q a polynomial.
         INPUT:
            •m - a monomial
            •q - a polynomial
         EXAMPLES:
         sage: P.<x,y,z>=PolynomialRing(QQ,3)
         sage: x.add_m_mul_q(y,z)
         y*z + x
         TESTS:
         sage: R.<x,y,z>=PolynomialRing(QQ,3)
         sage: P.<x,y,z>=PolynomialRing(QQ,3)
         sage: P(0).add_m_mul_q(P(0),P(1))
         sage: x.add_m_mul_q(R.gen(),R.gen(1))
```

x \* y + x

### coefficient (degrees)

Return the coefficient of the variables with the degrees specified in the python dictionary degrees. Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in degrees. However, the result has the same parent as this polynomial.

This function contrasts with the function monomial\_coefficient which returns the coefficient in the base ring of a monomial.

INPUT:

# •degrees - Can be any of:

- a dictionary of degree restrictions
- a list of degree restrictions (with None in the unrestricted variables)
- a monomial (very fast, but not as flexible)

**OUTPUT:** element of the parent of this element.

**Note:** For coefficients of specific monomials, look at monomial\_coefficient().

### **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: f=x*y+y+5
sage: f.coefficient({x:0,y:1})
1
sage: f.coefficient({x:0})
y + 5
sage: f=(1+y+y^2)*(1+x+x^2)
sage: f.coefficient({x:0})
y^2 + y + 1
sage: f.coefficient([0,None])
y^2 + y + 1
sage: f.coefficient(x)
```

Be aware that this may not be what you think! The physical appearance of the variable x is deceiving – particularly if the exponent would be a variable.

```
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x*y^2 + x^2 + x*y + y^2 + x + y + 1
sage: R.<x,y> = GF(389)[]
sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5
sage: parent(c)
Multivariate Polynomial Ring in x, y over Finite Field of size 389
```

**AUTHOR:** 

•Joel B. Mohler (2007.10.31)

### coefficients()

Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of the parent.

**EXAMPLES:** 

```
sage: R.<x,y,z> = PolynomialRing(QQ, order='degrevlex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]

sage: R.<x,y,z> = PolynomialRing(QQ, order='lex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[6, 23, 1]
```

### **AUTHOR:**

Didier Deshommes

### constant coefficient()

Return the constant coefficient of this multivariate polynomial.

### **EXAMPLES:**

```
sage: P.<x, y> = QQ[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.constant_coefficient()
5
sage: f = 3*x^2
sage: f.constant_coefficient()
0
```

## degree (x=None, std\_grading=False)

Return the maximal degree of this polynomial in x, where x must be one of the generators for the parent of this polynomial.

# INPUT:

•x - (default: None) a multivariate polynomial which is (or coerces to) a generator of the parent of self. If x is None, return the total degree, which is the maximum degree of any monomial. Note that a matrix term ordering alters the grading of the generators of the ring; see the tests below. To avoid this behavior, use either exponents() for the exponents themselves, or the optional argument std\_grading=False.

# **OUTPUT:** integer

### **EXAMPLES:**

```
sage: R.<x, y> = QQ[]
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9
sage: f.degree(y)
2
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10

TESTS:
sage: P.<x, y> = QQ[]
sage: P(0).degree(x)
-1
```

```
sage: P(1).degree(x)
```

With a matrix term ordering, the grading of the generators is determined by the first row of the matrix. This affects the behavior of degree () when no variable is specified. To evaluate the degree with a standard grading, use the optional argument std\_grading=True.

```
sage: tord = TermOrder(matrix([3,0,1,1,1,0,1,0,0])) sage: R.\langle x,y,z \rangle = PolynomialRing(QQ,'x',3,order=tord) sage: (x^3*y+x*z^4).degree() 9 sage: (x^3*y+x*z^4).degree(std_grading=True) 5 sage: x.degree(x), y.degree(y), z.degree(z) (1, 1, 1)
```

The following example is inspired by trac 11652:

```
sage: R.<p,q,t> = ZZ[]
sage: poly = p+q^2+t^3
sage: poly = poly.polynomial(t)[0]
sage: poly
q^2 + p
```

There is no canonical coercion from R to the parent of poly, so this doesn't work:

```
sage: poly.degree(q)
Traceback (most recent call last):
...
TypeError: argument must canonically coerce to parent
```

Using a non-canonical coercion does work, but we require this to be done explicitly, since it can lead to confusing results if done automatically:

```
sage: poly.degree(poly.parent()(q))
2
sage: poly.degree(poly.parent()(p))
1
sage: T.<x,y> = ZZ[]
sage: poly.degree(poly.parent()(x)) # noncanonical coercions can be confusing
```

The argument to degree has to be a generator:

```
sage: pp = poly.parent().gen(0)
sage: poly.degree(pp)
1
sage: poly.degree(pp+1)
Traceback (most recent call last):
...
TypeError: argument must be a generator
```

Canonical coercions are used:

```
sage: S = ZZ['p,q']
sage: poly.degree(S.0)
1
sage: poly.degree(S.1)
2
```

### degrees()

Returns a tuple with the maximal degree of each variable in this polynomial. The list of degrees is ordered by the order of the generators.

### **EXAMPLES:**

```
sage: R.<y0,y1,y2> = PolynomialRing(QQ,3)
sage: q = 3*y0*y1*y1*y2; q
3*y0*y1^2*y2
sage: q.degrees()
(1, 2, 1)
sage: (q + y0^5).degrees()
(5, 2, 1)
```

#### dict()

Return a dictionary representing self. This dictionary is in the same format as the generic MPolynomial: The dictionary consists of ETuple:coefficient pairs.

### **EXAMPLES:**

```
sage: R.\langle x, y, z \rangle = QQ[]

sage: f=2*x*y^3*z^2 + 1/7*x^2 + 2/3

sage: f.dict()

{(0, 0, 0): 2/3, (1, 3, 2): 2, (2, 0, 0): 1/7}
```

### discriminant (variable)

Returns the discriminant of self with respect to the given variable.

INPUT:

## •variable - The variable with respect to which we compute the discriminant

### **OUTPUT:**

•An element of the base ring of the polynomial ring.

# **EXAMPLES:**

```
sage: R.<x,y,z>=QQ[]
sage: f=4*x*y^2 + 1/4*x*y*z + 3/2*x*z^2 - 1/2*z^2
sage: f.discriminant(x)
1
sage: f.discriminant(y)
-383/16*x^2*z^2 + 8*x*z^2
sage: f.discriminant(z)
-383/16*x^2*y^2 + 8*x*y^2
```

Note that, unlike the univariate case, the result lives in the same ring as the polynomial:

```
sage: R.<x,y>=QQ[]
sage: f=x^5*y+3*x^2*y^2-2*x+y-1
sage: f.discriminant(y)
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
sage: f.polynomial(y).discriminant()
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
sage: f.discriminant(y).parent() == f.polynomial(y).discriminant().parent()
False
```

## **AUTHOR:** Miguel Marco

# exponents (as\_ETuples=True)

Return the exponents of the monomials appearing in this polynomial.

INPUT:

•as\_ETuples - (default: True) if true returns the result as an list of ETuples otherwise returns a list of tuples

```
EXAMPLES:
```

```
sage: R.<a,b,c> = QQ[]
sage: f = a^3 + b + 2*b^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
sage: f.exponents(as_ETuples=False)
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
```

# factor (proof=True)

Return the factorization of this polynomial.

### INPUT:

•proof - ignored.

### **EXAMPLES**:

```
sage: R.<x, y> = QQ[]
sage: f = (x^3 + 2*y^2*x) * (x^2 + x + 1); f
x^5 + 2*x^3*y^2 + x^4 + 2*x^2*y^2 + x^3 + 2*x*y^2
sage: F = f.factor()
sage: F
x * (x^2 + x + 1) * (x^2 + 2*y^2)
```

Next we factor the same polynomial, but over the finite field of order 3.:

```
sage: R.<x, y> = GF(3)[]
sage: f = (x^3 + 2*y^2*x) * (x^2 + x + 1); f
x^5 - x^3*y^2 + x^4 - x^2*y^2 + x^3 - x*y^2
sage: F = f.factor()
sage: F # order is somewhat random
(-1) * x * (-x + y) * (x + y) * (x - 1)^2
```

Next we factor a polynomial, but over a finite field of order 9.:

```
sage: K.<a> = GF(3^2)
sage: R.<x, y> = K[]
sage: f = (x^3 + 2*a*y^2*x) * (x^2 + x + 1); f
x^5 + (-a)*x^3*y^2 + x^4 + (-a)*x^2*y^2 + x^3 + (-a)*x*y^2
sage: F = f.factor()
sage: F
((-a)) * x * (x - 1)^2 * ((-a + 1)*x^2 + y^2)
sage: f - F
```

Next we factor a polynomial over a number field.:

```
sage: p = var('p')
sage: K.<s> = NumberField(p^3-2)
sage: KXY.<x,y> = K[]
sage: factor(x^3 - 2*y^3)
(x + (-s)*y) * (x^2 + (s)*x*y + (s^2)*y^2)
sage: k = (x^3-2*y^3)^5*(x+s*y)^2*(2/3 + s^2)
sage: k.factor()
((s^2 + 2/3)) * (x + (s)*y)^2 * (x + (-s)*y)^5 * (x^2 + (s)*x*y + (s^2)*y^2)^5
```

This shows that ticket trac ticket #2780 is fixed, i.e. that the unit part of the factorization is set correctly:

```
sage: x = var('x')
sage: K. < a > = NumberField(x^2 + 1)
sage: R.<y, z> = PolynomialRing(K)
sage: f = 2*y^2 + 2*z^2
sage: F = f.factor(); F.unit()
Another example:
sage: R.\langle x, y, z \rangle = GF(32003)[]
sage: f = 9 * (x-1)^2 * (y+z)
sage: f.factor()
(9) * (y + z) * (x - 1)^2
sage: R. <x, w, v, u> = QQ['x','w','v','u']
sage: p = (4*v^4*u^2 - 16*v^2*u^4 + 16*u^6 - 4*v^4*u + 8*v^2*u^3 + v^4)
sage: p.factor()
(-2*v^2*u + 4*u^3 + v^2)^2
sage: R. < a, b, c, d > = QQ[]
sage: f = (-2) * (a - d) * (-a + b) * (b - d) * (a - c) * (b - c) * (c - d)
sage: F = f.factor(); F
(-2) * (c - d) * (-b + c) * (b - d) * (-a + c) * (-a + b) * (a - d)
sage: F[0][0]
c - d
sage: F.unit()
-2
Constant elements are factorized in the base rings.
sage: P.<x,y> = ZZ[]
sage: P(2^3*7).factor()
2^3 * 7
Factorization for finite prime fields with characteristic > 2^{29} is not supported
sage: q = 1073741789
sage: T.<aa, bb> = PolynomialRing(GF(g))
sage: f = aa^2 + 12124343*bb*aa + 32434598*bb^2
sage: f.factor()
Traceback (most recent call last):
NotImplementedError: Factorization of multivariate polynomials over prime fields with characteristics.
Factorization over the integers is now supported, see trac ticket #17840:
sage: P.<x,y> = PolynomialRing(ZZ)
sage: f = 12 * (3*x*y + 4) * (5*x - 2) * (2*y + 7)^2
sage: f.factor()
2^2 * 3 * (2*y + 7)^2 * (5*x - 2) * (3*x*y + 4)
sage: g = -12 * (x^2 - y^2)
sage: g.factor()
(-1) * 2^2 * 3 * (x - y) * (x + y)
```

Factorization over non-integral domains is not supported

```
sage: R.<x,y> = PolynomialRing(Zmod(4))
sage: f = (2*x + 1) * (x^2 + x + 1)
sage: f.factor()
```

sage: factor (-4\*x\*y - 2\*x + 2\*y + 1)

(-1) \* (2\*y + 1) \* (2\*x - 1)

```
Traceback (most recent call last):
NotImplementedError: Factorization of multivariate polynomials over Ring of integers modulo
TESTS:
This shows that trac ticket #10270 is fixed:
sage: R.\langle x, y, z \rangle = GF(3)[]
sage: f = x^2 + z^2 + x + y + z - y^2
sage: f.factor()
x^2*z^2 + x*y*z - y^2
This checks that trac ticket #11838 is fixed:
sage: K = GF(4,'a')
sage: a = K.gens()[0]
sage: R.\langle x, y \rangle = K[]
sage: p=x^8*y^3 + x^2*y^9 + a*x^9 + a*x*y^4
sage: q=y^11 + (a) * y^10 + (a + 1) * x * y^3
sage: f = p*q
sage: f.factor()
x * y^3 * (y^8 + (a) * y^7 + (a + 1) * x) * (x^7 * y^3 + x * y^9 + (a) * x^8 + (a) * y^4)
We test several examples which were known to return wrong results in the past (see trac ticket #10902):
sage: R. < x, y > = GF(2)[]
sage: p = x^3 \cdot y^7 + x^2 \cdot y^6 + x^2 \cdot y^3
sage: q = x^3*y^5
sage: f = p*q
sage: p.factor()*q.factor()
x^5 * y^8 * (x*y^4 + y^3 + 1)
sage: f.factor()
x^5 * y^8 * (x*y^4 + y^3 + 1)
sage: f.factor().expand() == f
True
sage: R. < x, y > = GF(2)[]
sage: p=x^8 + y^8; q=x^2*y^4 + x
sage: f=p*q
sage: lf = f.factor()
sage: f-lf
sage: R. < x, y > = GF(3)[]
sage: p = -x*y^9 + x
sage: q = -x^8 * y^2
sage: f = p*q
sage: f
x^9*y^11 - x^9*y^2
sage: f.factor()
y^2 * (y - 1)^9 * x^9
sage: f - f.factor()
sage: R. < x, y > = GF(5)[]
sage: p=x^27*y^9 + x^32*y^3 + 2*x^20*y^10 - x^4*y^24 - 2*x^17*y
sage: q=-2*x^10*y^24 + x^9*y^24 - 2*x^3*y^30
sage: f=p*q; f-f.factor()
\cap
```

```
sage: R. < x, y > = GF(7)[]
           sage: p=-3*x^47*y^24
           sage: q=-3*x^47*y^37 - 3*x^24*y^49 + 2*x^56*y^8 + 3*x^29*y^15 - x^2*y^33
           sage: f=p*q
           sage: f-f.factor()
          The following examples used to give a Segmentation Fault, see trac ticket #12918 and trac ticket #13129:
           sage: R. < x, y > = GF(2)[]
           sage: f = x^6 + x^5 + y^5 + y^4
           sage: f.factor()
           x^6 + x^5 + y^5 + y^4
           sage: f = x^16*y + x^10*y + x^9*y + x^6*y + x^5 + x*y + y^2
           sage: f.factor()
           x^{16*y} + x^{10*y} + x^{9*y} + x^{6*y} + x^5 + x^4 + y^2
          Test trac ticket #12928:
           sage: R. < x, y > = GF(2)[]
           sage: p = x^2 + y^2 + x + 1
           sage: q = x^4 + x^2 + y^2 + y^4 + x + y^2 + x^2 + y^2 + 1
           sage: factor(p*q)
           (x^2 + y^2 + x + 1) * (x^4 + x^2*y^2 + y^4 + x*y^2 + x^2 + y^2 + 1)
           Check that trac ticket #13770 is fixed:
           sage: U.\langle v, t \rangle = GF(2)[]
           sage: f = y * t^8 + y^5 * t^2 + y * t^6 + t^7 + y^6 + y^5 * t + y^2 * t^4 + y^2 * t^2 + y^2 * t + t^3 + y^6 + 
           sage: l = f.factor()
           sage: 1[0][0] == t^2 + y + t + 1 or 1[1][0] == t^2 + y + t + 1
           True
           The following used to sometimes take a very long time or get stuck, see trac ticket #12846. These 100
           iterations should take less than 1 second:
           sage: K. < a > = GF(4)
           sage: R. < x, y > = K[]
           sage: f = (a + 1) *x^145 *y^84 + (a + 1) *x^205 *y^17 + x^32 *y^112 + x^92 *y^45
           sage: for i in range(100):
                                    assert len(f.factor()) == 4
gcd (right, algorithm=None, **kwds)
           Return the greatest common divisor of self and right.
           INPUT:
                  •right - polynomial
                  •algorithm - ezgcd - EZGCD algorithm - modular - multi-modular algorithm (default)
```

EXAMPLES:

•\*\*kwds - ignored

```
sage: P.<x,y,z> = QQ[]
sage: f = (x*y*z)^6 - 1
sage: g = (x*y*z)^4 - 1
sage: f.gcd(g)
x^2*y^2*z^2 - 1
sage: GCD([x^3 - 3*x + 2, x^4 - 1, x^6 -1])
```

```
x - 1
    sage: R. < x, y > = QQ[]
    sage: f = (x^3 + 2*y^2*x)^2
    sage: g = x^2 * y^2
    sage: f.gcd(g)
    We compute a gcd over a finite field:
    sage: F. < u > = GF(31^2)
    sage: R.\langle x, y, z \rangle = F[]
    sage: p = x^3 + (1+u) * y^3 + z^3
    sage: q = p^3 * (x - y + z*u)
    sage: gcd(p,q)
    x^3 + (u + 1) * y^3 + z^3
    sage: gcd(p,q) # yes, twice -- tests that singular ring is properly set.
    x^3 + (u + 1) * y^3 + z^3
    We compute a gcd over a number field:
    sage: x = polygen(QQ)
    sage: F.<u> = NumberField(x^3 - 2)
    sage: R.\langle x, y, z \rangle = F[]
    sage: p = x^3 + (1+u) * y^3 + z^3
    sage: q = p^3 * (x - y + z*u)
    sage: gcd(p,q)
    x^3 + (u + 1) * y^3 + z^3
    TESTS:
    sage: Q. \langle x, y, z \rangle = QQ[]
    sage: P.\langle x, y, z \rangle = QQ[]
    sage: P(0).gcd(Q(0))
    sage: x.gcd(1)
    1
    sage: k. < a > = GF(9)
    sage: R.<x,y> = PolynomialRing(k)
    sage: f = R.change_ring(GF(3)).gen()
    sage: g = x+y
    sage: g.gcd(f)
    sage: x.gcd(R.change_ring(GF(3)).gen())
gradient()
    Return a list of partial derivatives of this polynomial, ordered by the variables of the parent.
    EXAMPLES:
    sage: P.\langle x, y, z \rangle = PolynomialRing(QQ, 3)
    sage: f = x * y + 1
    sage: f.gradient()
    [y, x, 0]
```

integral(var)

Integrates this polynomial with respect to the provided variable.

One requires that **Q** is contained in the ring.

### INPUT:

•variable - the integral is taken with respect to variable

```
EXAMPLES:
```

```
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: f = 3*x^3*y^2 + 5*y^2 + 3*x + 2
sage: f.integral(x)
3/4*x^4*y^2 + 5*x*y^2 + 3/2*x^2 + 2*x
sage: f.integral(y)
x^3*y^3 + 5/3*y^3 + 3*x*y + 2*y
```

Check that trac ticket #15896 is solved:

```
sage: s = x+y
sage: s.integral(x)+x
1/2*x^2 + x*y + x
sage: s.integral(x)*s
1/2*x^3 + 3/2*x^2*y + x*y^2
```

### TESTS:

```
sage: z, w = polygen(QQ, 'z, w')
sage: f.integral(z)
Traceback (most recent call last):
...
TypeError: the variable is not in the same ring as self
sage: f.integral(y**2)
Traceback (most recent call last):
...
TypeError: not a variable in the same ring as self
sage: x,y = polygen(ZZ,'x,y')
sage: y.integral(x)
Traceback (most recent call last):
...
TypeError: the ring must contain the rational numbers
```

# inverse\_of\_unit()

Return the inverse of this polynomial if it is a unit.

## **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: x.inverse_of_unit()
Traceback (most recent call last):
...
ArithmeticError: Element is not a unit.
sage: R(1/2).inverse_of_unit()
2
```

### is constant()

Return True if this polynomial is constant.

**EXAMPLES:** 

```
sage: P.<x,y,z> = PolynomialRing(GF(127))
sage: x.is_constant()
False
sage: P(1).is_constant()
True
```

# is\_homogeneous()

Return True if this polynomial is homogeneous.

# **EXAMPLES:**

```
sage: P.<x,y> = PolynomialRing(RationalField(), 2)
sage: (x+y).is_homogeneous()
True
sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True
```

### is\_monomial()

Return True if this polynomial is a monomial. A monomial is defined to be a product of generators with coefficient 1.

# **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: x.is_monomial()
True
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True
sage: (x*y + x).is_monomial()
False
```

# is\_squarefree()

Return True if this polynomial is square free.

# **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: f= x^2 + 2*x*y + 1/2*z
sage: f.is_squarefree()
True
sage: h = f^2
sage: h.is_squarefree()
False
```

# is\_unit()

Return True if self is a unit.

# EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: (x+y).is_unit()
```

```
False
    sage: R(0).is_unit()
    False
    sage: R(-1).is_unit()
    sage: R(-1 + x).is_unit()
    False
    sage: R(2).is_unit()
    True
    sage: R. < x, y > = ZZ[]
    sage: R(1).is_unit()
    sage: R(2).is_unit()
    False
is_univariate()
    Return True if self is a univariate polynomial, that is if self contains only one variable.
    EXAMPLES:
    sage: P. < x, y, z > = GF(2)[]
    sage: f = x^2 + 1
    sage: f.is_univariate()
    sage: f = y * x^2 + 1
    sage: f.is_univariate()
    False
    sage: f = P(0)
    sage: f.is_univariate()
    True
is_zero()
    Return True if this polynomial is zero.
    EXAMPLES:
    sage: P.<x,y> = PolynomialRing(QQ)
    sage: x.is_zero()
    False
    sage: (x-x).is_zero()
    True
1c()
    Leading coefficient of this polynomial with respect to the term order of self.parent().
    EXAMPLES:
    sage: R. \langle x, y, z \rangle = PolynomialRing(GF(7), 3, order='lex')
    sage: f = 3*x^1*y^2 + 2*y^3*z^4
    sage: f.lc()
    3
    sage: f = 5 \times x^3 \times y^2 \times z^4 + 4 \times x^3 \times y^2 \times z^1
    sage: f.lc()
```

lcm(g)

Return the least common multiple of self and g.

```
EXAMPLES:
    sage: P.\langle x, y, z \rangle = QQ[]
    sage: p = (x+y) * (y+z)
    sage: q = (z^4+2) * (y+z)
    sage: lcm(p,q)
    x*y*z^4 + y^2*z^4 + x*z^5 + y*z^5 + 2*x*y + 2*y^2 + 2*x*z + 2*y*z
    sage: P.\langle x, y, z \rangle = ZZ[]
    sage: p = 2*(x+y)*(y+z)
    sage: q = 3 * (z^4+2) * (y+z)
    sage: lcm(p,q)
    6*x*y*z^4 + 6*y^2*z^4 + 6*x*z^5 + 6*y*z^5 + 12*x*y + 12*y^2 + 12*x*z + 12*y*z
    sage: r.\langle x,y\rangle = PolynomialRing(GF(2**8, 'a'), 2)
    sage: a = r.base_ring().0
    sage: f = (a^2+a)*x^2*y + (a^4+a^3+a)*y + a^5
    sage: f.lcm(x^4)
    (a^2 + a) *x^6 *y + (a^4 + a^3 + a) *x^4 *y + (a^5) *x^4
    sage: w = var('w')
    sage: r.<x,y> = PolynomialRing(NumberField(w^4 + 1, 'a'), 2)
    sage: a = r.base_ring().0
    sage: f = (a^2+a) *x^2*y + (a^4+a^3+a) *y + a^5
    sage: f.lcm(x^4)
    (a^2 + a) *x^6 *y + (a^3 + a - 1) *x^4 *y + (-a) *x^4
lift(I)
    given an ideal I = (f_1, \ldots, f_r) and some g (== self) in I, find s_1, \ldots, s_r such that g
    = s_1 f_1 + ... + s_r f_r.
    A ValueError exception is raised if g (== self) does not belong to I.
    EXAMPLES:
    sage: A.<x,y> = PolynomialRing(QQ,2,order='degrevlex')
    sage: I = A.ideal([x^10 + x^9 * y^2, y^8 - x^2 * y^7])
    sage: f = x * y^13 + y^12
    sage: M = f.lift(I)
    sage: M
    [y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + y^4]
    sage: sum( map( mul , zip( M, I.gens() ) ) == f
    True
    Check that trac ticket #13671 is fixed:
    sage: R.\langle x1, x2\rangle = QQ[]
    sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
    sage: f = I.gen(0) + x2*I.gen(1)
    sage: f.lift(I)
    [1, x2]
    sage: (f+1).lift(I)
    Traceback (most recent call last):
    ValueError: polynomial is not in the ideal
    sage: f.lift(I)
    [1, x2]
    TESTS:
```

Check that trac ticket #13714 is fixed:

```
sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: R.one().lift(I)
Traceback (most recent call last):
...
ValueError: polynomial is not in the ideal
sage: foo = I.complete_primary_decomposition() # indirect doctest
sage: foo[0][0]
Ideal (x2 - 1, x1 - 1) of Multivariate Polynomial Ring in x1, x2 over Rational Field
```

# **1m**()

Returns the lead monomial of self with respect to the term order of self.parent(). In Sage a monomial is a product of variables in some power without a coefficient.

# **EXAMPLES:**

```
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: f = x^1 * y^2 + y^3 * z^4
sage: f.lm()
x*y^2
sage: f = x^3*y^2*z^4 + x^3*y^2*z^1
sage: f.lm()
x^3*y^2*z^4
sage: R.<x,y,z>=PolynomialRing(QQ,3,order='deglex')
sage: f = x^1 * y^2 * z^3 + x^3 * y^2 * z^0
sage: f.lm()
x*y^2*z^3
sage: f = x^1 \cdot y^2 \cdot z^4 + x^1 \cdot y^1 \cdot z^5
sage: f.lm()
x*y^2*z^4
sage: R.<x,y,z>=PolynomialRing(GF(127),3,order='degrevlex')
sage: f = x^1*y^5*z^2 + x^4*y^1*z^3
sage: f.lm()
x*y^5*z^2
sage: f = x^4 \cdot y^7 \cdot z^1 + x^4 \cdot y^2 \cdot z^3
sage: f.lm()
x^4*y^7*z
```

# **1t**()

Leading term of this polynomial. In Sage a term is a product of variables in some power and a coefficient.

#### **EXAMPLES:**

```
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lt()
3*x*y^2

sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lt()
-2*x^3*y^2*z^4
```

# ${\tt monomial\_coefficient}\ (mon)$

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function coefficient which returns the coefficient of a monomial

viewing this polynomial in a polynomial ring over a base ring having fewer variables.

# INPUT:

•mon - a monomial

**OUTPUT:** coefficient in base ring

**SEE ALSO:** For coefficients in a base ring of fewer variables, look at coefficient.

# **EXAMPLES:**

```
sage: P.\langle x, y \rangle = QQ[]
The parent of the return is a member of the base ring.
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
sage: c.parent()
Rational Field
sage: f = y^2 + y^2 \times x - x^9 - 7 \times x + 5 \times x \times y
sage: f.monomial_coefficient(y^2)
sage: f.monomial_coefficient(x*y)
sage: f.monomial_coefficient(x^9)
sage: f.monomial_coefficient(x^10)
```

# monomials()

Return the list of monomials in self. The returned list is decreasingly ordered by the term ordering of self.parent().

```
EXAMPLES:
sage: P.\langle x, y, z \rangle = QQ[]
sage: f = x + 3/2*y*z^2 + 2/3
sage: f.monomials()
[y*z^2, x, 1]
sage: f = P(3/2)
sage: f.monomials()
[1]
TESTS:
sage: P.\langle x, y, z \rangle = QQ[]
sage: f = x
sage: f.monomials()
Check if trac ticket #12706 is fixed:
```

```
sage: f = P(0)
sage: f.monomials()
[]
```

# Check if trac ticket #7152 is fixed:

```
sage: x=var('x')
sage: K.<rho> = NumberField(x**2 + 1)
```

```
sage: R.<x,y> = QQ[]
sage: p = rho*x
sage: q = x
sage: p.monomials()
[x]
sage: q.monomials()
[x]
sage: p.monomials()
```

# numerator()

Return a numerator of self computed as self \* self.denominator()

If the base\_field of self is the Rational Field then the numerator is a polynomial whose base\_ring is the Integer Ring, this is done for compatibility to the univariate case.

**Warning:** This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

# **EXAMPLES:**

First we compute the numerator of a polynomial with integer coefficients, which is of course self.

```
sage: R.<x, y> = ZZ[]
sage: f = x^3 + 17*y + 1
sage: f.numerator()
x^3 + 17*y + 1
sage: f == f.numerator()
True
```

Next we compute the numerator of a polynomial with rational coefficients.

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = (1/17)*x^19 - (2/3)*y + 1/3; f
1/17*x^19 - 2/3*y + 1/3
sage: f.numerator()
3*x^19 - 34*y + 17
sage: f == f.numerator()
False
sage: f.numerator().base_ring()
Integer Ring
```

We check that the computation of numerator and denominator is valid.

```
sage: K=QQ['x,y']
sage: f=K.random_element()
sage: f.numerator() / f.denominator() == f
True
```

The following tests against a bug that has been fixed in trac ticket #11780:

```
sage: P.<foo,bar> = ZZ[]
sage: Q.<foo,bar> = QQ[]
sage: f = Q.random_element()
sage: f.numerator().parent() is P
True
```

# nvariables()

Return the number variables in this polynomial.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(GF(127))
sage: f = x*y + z
sage: f.nvariables()
3
sage: f = x + y
sage: f.nvariables()
2
```

# quo\_rem (right)

Returns quotient and remainder of self and right.

# **EXAMPLES:**

```
sage: R. \langle x, y \rangle = QQ[]
sage: f = y * x^2 + x + 1
sage: f.quo_rem(x)
(x*y + 1, 1)
sage: f.quo_rem(y)
(x^2, x + 1)
sage: R. < x, y > = ZZ[]
sage: f = 2*y*x^2 + x + 1
sage: f.quo_rem(x)
(2*x*y + 1, 1)
sage: f.quo_rem(y)
(2*x^2, x + 1)
sage: f.quo_rem(3*x)
(0, 2*x^2*y + x + 1)
TESTS:
sage: R. \langle x, y \rangle = QQ[]
sage: R(0).quo_rem(R(1))
(0, 0)
sage: R(1).quo_rem(R(0))
Traceback (most recent call last):
ZeroDivisionError
```

# reduce(I)

Return the normal form of self w.r.t. I, i.e. return the remainder of this polynomial with respect to the polynomials in I. If the polynomial set/list I is not a (strong) Groebner basis the result is not canonical.

A strong Groebner basis G of I implies that for every leading term t of I there exists an element g of G, such that the leading term of g divides t.

# INPUT:

•I - a list/set of polynomials. If I is an ideal, the generators are used.

```
sage: P.<x,y,z> = QQ[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x^2
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x^2 + y^2
sage: g.reduce(F)
-6*y^2 + y^2
```

```
sage: g.reduce(F.gens())
           -6*y^2 + 2*y
           Z is also supported.
           sage: P.\langle x, y, z \rangle = ZZ[]
           sage: f1 = -2 * x^2 + x^3
           sage: f2 = -2 * y + x* y
           sage: f3 = -x^2 + y^2
           sage: F = Ideal([f1,f2,f3])
           sage: g = x*y - 3*x*y^2
           sage: g.reduce(F)
           -6*y^2 + 2*y
           sage: g.reduce(F.gens())
           -6*y^2 + 2*y
           sage: f = 3*x
           sage: f.reduce([2*x,y])
           3*x
resultant (other, variable=None)
           Compute the resultant of this polynomial and the first argument with respect to the variable given as the
           second argument.
           If a second argument is not provide the first variable of the parent is chosen.
           INPUT:
                  •other - polynomial
                  •variable - optional variable (default: None)
           EXAMPLES:
           sage: P. \langle x, y \rangle = PolynomialRing(QQ, 2)
           sage: a = x+y
           sage: b = x^3-y^3
           sage: c = a.resultant(b); c
           sage: d = a.resultant(b,y); d
           2*x^3
           The SINGULAR example:
           sage: R.\langle x, y, z \rangle = PolynomialRing(GF(32003), 3)
           sage: f = 3 * (x+2)^3 + y
           sage: g = x+y+z
           sage: f.resultant(g,x)
           3*y^3 + 9*y^2*z + 9*y*z^2 + 3*z^3 - 18*y^2 - 36*y*z - 18*z^2 + 35*y + 36*z - 24
           Resultants are also supported over the Integers:
           sage: R.<x,y,a,b,u>=PolynomialRing(ZZ, 5, order='lex')
           sage: r = (x^4 * y^2 + x^2 * y - y). resultant (x * y - y * a - x * b + a * b + u, x)
           sage: r
           y^6*a^4 - 4*y^5*a^4*b - 4*y^5*a^3*u + y^5*a^2 - y^5 + 6*y^4*a^4*b^2 + 12*y^4*a^3*b*u - 4*y^4*a^4*b^2 + 12*y^4*a^3*b*u - 4*y^4*a^4*b^2 + 12*y^4*a^3*b*u - 4*y^4*a^4*b^2 + 12*y^4*a^4*b^2 + 12*y^4*b^2 + 12*y^4*a^4*b^2 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*a^4*b^4 + 12*y^4*a^4*b^4 + 12*y^4*a^4*b^4 + 12*y^4*b^4 + 12*y^4 +
           TESTS:
           sage: P.<x,y> = PolynomialRing(QQ, order='degrevlex')
           sage: a = x+y
           sage: b = x^3-y^3
```

```
sage: c = a.resultant(b); c
    -2*y^3
    sage: d = a.resultant(b,y); d
    2*x^3
    sage: P.<x,y> = PolynomialRing(ZZ,2)
    sage: f = x+y
    sage: g=y^2+x
    sage: f.resultant(g,y)
    x^2 + x
sub_m_mul_q(m, q)
    Return self - m*q, where m must be a monomial and q a polynomial.
    INPUT:
       •m - a monomial
       •q - a polynomial
    EXAMPLES:
    sage: P. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
    sage: x.sub_m_mul_q(y,z)
    -y*z + x
    TESTS:
    sage: Q.<x,y,z>=PolynomialRing(QQ,3)
    sage: P.<x,y,z>=PolynomialRing(QQ,3)
    sage: P(0).sub_m_mul_q(P(0),P(1))
    sage: x.sub_m_mul_q(Q.gen(1),Q.gen(2))
    -y*z + x
subs (fixed=None, **kw)
```

Fixes some given variables in a given multivariate polynomial and returns the changed multivariate polynomials. The polynomial itself is not affected. The variable, value pairs for fixing are to be provided as dictionary of the form {variable:value}.

This is a special case of evaluating the polynomial with some of the variables constants and the others the original variables, but should be much faster if only few variables are to be fixed.

# INPUT:

- •fixed (optional) dict with variable:value pairs
- •\*\*kw names parameters

# **OUTPUT:** a new multivariate polynomial

```
sage: R.<x,y> = QQ[]
sage: f = x^2 + y + x^2*y^2 + 5
sage: f(5,y)
25*y^2 + y + 30
sage: f.subs({x:5})
25*y^2 + y + 30
sage: f.subs(x=5)
```

```
25*y^2 + y + 30
sage: P.\langle x, y, z \rangle = PolynomialRing(GF(2), 3)
sage: f = x + y + 1
sage: f.subs({x:y+1})
sage: f.subs(x=y)
sage: f.subs(x=x)
x + y + 1
sage: f.subs({x:z})
y + z + 1
sage: f.subs(x=z+1)
y + z
sage: f.subs(x=1/y)
(y^2 + y + 1)/y
sage: f.subs(\{x:1/y\})
(y^2 + y + 1)/y
The parameters are substituted in order and without side effects:
sage: R.<x,y>=QQ[]
sage: g=x+y
sage: g.subs({x:x+1,y:x*y})
x * y + x + 1
sage: g.subs(\{x:x+1\}).subs(\{y:x*y\})
x \star y + x + 1
sage: g.subs(\{y:x*y\}).subs(\{x:x+1\})
x \star y + x + y + 1
sage: R.\langle x, y \rangle = QQ[]
sage: f = x + 2*y
sage: f.subs(x=y,y=x)
2*x + y
TESTS:
sage: P.\langle x, y, z \rangle = QQ[]
sage: f = y
sage: f.subs({y:x}).subs({x:z})
We test that we change the ring even if there is nothing to do:
sage: P = QQ['x,y']
sage: x = var('x')
sage: parent(P.zero() / x)
Symbolic Ring
We are catching overflows:
sage: R. \langle x, y \rangle = QQ[]
sage: n=1000; f = x^n
sage: try:
\dots: f.subs(x = x^n)
....: print "no overflow"
....: except OverflowError:
....: print "overflow"
overflow # 32-bit
```

```
x^1000000 # 64-bit
no overflow # 64-bit

sage: n=100000;
sage: try:
....: f = x^n
....: f.subs(x = x^n)
....: print "no overflow"
....: except OverflowError:
....: print "overflow"
overflow
```

# total\_degree (std\_grading=False)

Return the total degree of self, which is the maximum degree of all monomials in self.

# **EXAMPLES:**

```
sage: R.\langle x, y, z \rangle = QQ[]
sage: f=2*x*y^3*z^2
sage: f.total_degree()
sage: f=4*x^2*y^2*z^3
sage: f.total_degree()
sage: f=99*x^6*v^3*z^9
sage: f.total_degree()
sage: f=x*y^3*z^6+3*x^2
sage: f.total_degree()
sage: f=z^3+8*x^4*y^5*z
sage: f.total_degree()
10
sage: f=z^9+10*x^4+y^8*x^2
sage: f.total_degree()
10
TESTS:
sage: R. \langle x, y, z \rangle = QQ[]
sage: R(0).total_degree()
sage: R(1).total_degree()
```

With a matrix term ordering, the grading changes. To evaluate the total degree using the standard grading, use the optional argument "std\_grading=True".

# univariate\_polynomial(R=None)

Returns a univariate polynomial associated to this multivariate polynomial.

# INPUT:

```
•R - (default: None) PolynomialRing
```

If this polynomial is not in at most one variable, then a ValueError exception is raised. This is checked

using the is\_univariate() method. The new Polynomial is over the same base ring as the given MPolynomial and in the variable x if no ring R is provided.

```
EXAMPLES:
    sage: R. < x, y > = QQ[]
    sage: f = 3 \times x^2 - 2 \times y + 7 \times x^2 \times y^2 + 5
    sage: f.univariate_polynomial()
    Traceback (most recent call last):
    TypeError: polynomial must involve at most one variable
    sage: g = f.subs({x:10}); g
    700*y^2 - 2*y + 305
    sage: g.univariate_polynomial ()
    700*y^2 - 2*y + 305
    sage: g.univariate_polynomial(PolynomialRing(QQ,'z'))
    700*z^2 - 2*z + 305
    Here's an example with a constant multivariate polynomial:
    sage: g = R(1)
    sage: h = g.univariate_polynomial(); h
    1
    sage: h.parent()
    Univariate Polynomial Ring in x over Rational Field
variable(i=0)
    Return the i-th variable occurring in self. The index i is the index in self.variables().
    EXAMPLES:
```

```
sage: P. < x, y, z > = GF(2)[]
sage: f = x * z^2 + z + 1
sage: f.variables()
(x, z)
sage: f.variable(1)
```

# variables()

Return a tuple of all variables occurring in self.

# **EXAMPLES:**

```
sage: P. \langle x, y, z \rangle = GF(2)[]
sage: f = x * z^2 + z + 1
sage: f.variables()
(x, z)
```

sage.rings.polynomial.multi\_polynomial\_libsingular.unpickle\_MPolynomialRing\_libsingular(bas

inverse function for MPolynomialRing\_libsingular.\_\_reduce\_\_

# **EXAMPLES:**

```
sage: P.<x,y> = PolynomialRing(QQ)
sage: loads(dumps(P)) is P # indirect doctest
```

sage.rings.polynomial.multi\_polynomial\_libsingular.unpickle\_MPolynomial\_libsingular(R,

Deserialize an MPolynomial\_libsingular object

nan teri

# INPUT:

- •R the base ring
- •d a Python dictionary as returned by MPolynomial\_libsingular.dict()

# **EXAMPLES:**

```
sage: P.<x,y> = PolynomialRing(QQ)
sage: loads(dumps(x)) == x # indirect doctest
True
```

# 3.1.9 Direct low-level access to SINGULAR's Groebner basis engine via libSINGU-

# **AUTHOR:**

• Martin Albrecht (2007-08-08): initial version

#### **EXAMPLES:**

```
sage: x,y,z = QQ['x,y,z'].gens()
sage: I = ideal(x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1)
sage: I.groebner_basis('libsingular:std')
[y^6 + x*y^4 + 2*y^3*z^2 + x*z^3 + z^4 - 2*y^3 - 2*z^2 - x + 1,
x^2*y^3 - y^4 + x^2*z^2 - z^3 - x^2 + 1, x^3 + y^3 + z^2 - 1]
```

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

```
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis('libsingular:std')
sage: len(B)
45
```

Two examples from the Mathematica documentation (done in Sage):

• We compute a Groebner basis:

```
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: ideal(x^2 - 2*y^2, x*y - 3).groebner_basis('libsingular:slimgb')
[x - 2/3*y^3, y^4 - 9/2]
```

• We show that three polynomials have no common root:

```
sage: R.\langle x, y \rangle = QQ[]
sage: ideal(x+y, x^2 - 1, y^2 - 2*x).groebner_basis('libsingular:slimgb')
[1]
```

sage.rings.polynomial.multi\_polynomial\_ideal\_libsingular.interred\_libsingular(I) SINGULAR's interred() command.

# INPUT:

•I - a Sage ideal

```
sage: P.\langle x, y, z \rangle = PolynomialRing(ZZ)
sage: I = ideal( x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.interreduced_basis()
[y^3 - x*y, z^3 - x, x^2 - 3*y, 9*y^2 - y*z + 1]
```

```
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x^2-2*y^2, x*y-3)
sage: I.normal_basis()
```

[y^3, y^2, y, 1]

sage.rings.polynomial.multi\_polynomial\_ideal\_libsingular. $slimgb_libsingular(I)$  SINGULAR's slimgb() algorithm.

#### INPUT:

•I - a Sage ideal

sage.rings.polynomial.multi\_polynomial\_ideal\_libsingular. $std_libsingular(I) SINGULAR$ 's std() algorithm.

#### INPUT:

•I - a Sage ideal

# 3.1.10 PolyDict engine for generic multivariate polynomial rings

This module provides an implementation of the underlying arithmetic for multi-variate polynomial rings using Python dicts.

This class is not meant for end users, but instead for implementing multivariate polynomial rings over a completely general base. It does not do strong type checking or have parents, etc. For speed, it has been implemented in Cython.

The functions in this file use the 'dictionary representation' of multivariate polynomials

```
{ (e1,...,er):c1,...} <-> c1*x1^e1*...*xr^er+...,
```

which we call a polydict. The exponent tuple (el, ..., er) in this representation is an instance of the class ETuple. This class behaves like a normal Python tuple but also offers advanced access methods for sparse monomials like positions of non-zero exponents etc.

# **AUTHORS:**

- · William Stein
- · David Joyner
- Martin Albrecht (ETuple)

• Joel B. Mohler (2008-03-17) – ETuple rewrite as sparse C array

```
class sage.rings.polynomial.polydict.ETuple
    Bases: object
```

Representation of the exponents of a polydict monomial. If (0,0,3,0,5) is the exponent tuple of  $x_2^3*x_4^5$  then this class only stores  $\{2:3,4:5\}$  instead of the full tuple. This sparse information may be obtained by provided methods.

The index/value data is all stored in the \_data C int array member variable. For the example above, the C array would contain 2,3,4,5. The indices are interlaced with the values.

This data structure is very nice to work with for some functions implemented in this class, but tricky for others. One reason that I really like the format is that it requires a single memory allocation for all of the values. A hash table would require more allocations and presumably be slower. I didn't benchmark this question (although, there is no question that this is much faster than the prior use of python dicts).

# combine\_to\_positives (other)

Given a pair of ETuples (self, other), returns a triple of ETuples (a, b, c) so that self = a + b, other = a + c and b and c have all positive entries.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([-2,1,-5, 3, 1,0])
sage: f = ETuple([1,-3,-3,4,0,2])
sage: e.combine_to_positives(f)
((-2, -3, -5, 3, 0, 0), (0, 4, 0, 0, 1, 0), (3, 0, 2, 1, 0, 2))
```

# common\_nonzero\_positions (other, sort=False)

Returns an optionally sorted list of non zero positions either in self or other, i.e. the only positions that need to be considered for any vector operation.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,0,1])
sage: e.common_nonzero_positions(f)
{0, 2}
sage: e.common_nonzero_positions(f,sort=True)
[0, 2]
```

# eadd (other)

Vector addition of self with other.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,1,1])
sage: e.eadd(f)
(1, 1, 3)
```

#### Verify that trac 6428 has been addressed:

```
sage: R.<y,z> = Frac(QQ['x'])[]
sage: type(y)
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
sage: y^(2^32)
Traceback (most recent call last):
```

```
OverflowError: Exponent overflow (2147483648).
eadd_p (other, pos)
    Adds other to self at position pos.
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import ETuple
    sage: e = ETuple([1,0,2])
    sage: e.eadd_p(5, 1)
    (1, 5, 2)
    sage: e = ETuple([0] * 7)
    sage: e.eadd_p(5,4)
    (0, 0, 0, 0, 5, 0, 0)
    sage: ETuple([0,1]).eadd_p(1, 0) == ETuple([1,1])
    True
emax (other)
    Vector of maximum of components of self and other.
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import ETuple
    sage: e = ETuple([1,0,2])
    sage: f = ETuple([0,1,1])
    sage: e.emax(f)
    (1, 1, 2)
    sage: e=ETuple((1,2,3,4))
    sage: f=ETuple((4,0,2,1))
    sage: f.emax(e)
    (4, 2, 3, 4)
    sage: e=ETuple((1,-2,-2,4))
    sage: f=ETuple((4,0,0,0))
    sage: f.emax(e)
    (4, 0, 0, 4)
    sage: f.emax(e).nonzero_positions()
    [0, 3]
emin (other)
    Vector of minimum of components of self and other.
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import ETuple
    sage: e = ETuple([1,0,2])
    sage: f = ETuple([0,1,1])
    sage: e.emin(f)
    (0, 0, 1)
    sage: e = ETuple([1, 0, -1])
    sage: f = ETuple([0, -2, 1])
    sage: e.emin(f)
    (0, -2, -1)
emul(factor)
    Scalar Vector multiplication of self.
    EXAMPLES:
```

```
sage: from sage.rings.polynomial.polydict import ETuple
    sage: e = ETuple([1,0,2])
    sage: e.emul(2)
    (2, 0, 4)
esub (other)
    Vector subtraction of self with other.
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import ETuple
    sage: e = ETuple([1,0,2])
    sage: f = ETuple([0,1,1])
    sage: e.esub(f)
    (1, -1, 1)
nonzero_positions (sort=False)
    Returns the positions of non-zero exponents in the tuple.
    INPUT:
       •sort – if True a sorted list is returned. If False an unsorted list is returned. (default: False)
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import ETuple
    sage: e = ETuple([1,0,2])
    sage: e.nonzero_positions()
    [0, 2]
nonzero_values (sort=True)
    Returns the non-zero values of the tuple.
    INPUT:
       •sort - if True the values are sorted by their indices. Otherwise the values are returned unsorted.
        (default: True)
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import ETuple
    sage: e = ETuple([2,0,1])
    sage: e.nonzero_values()
    [2, 1]
    sage: f = ETuple([0,-1,1])
    sage: f.nonzero_values(sort=True)
    [-1, 1]
reversed()
    Returns the reversed ETuple of self.
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import ETuple
    sage: e = ETuple([1,2,3])
    sage: e.reversed()
    (3, 2, 1)
sparse_iter()
```

Iterator over the elements of self where the elements are returned as (i, e) where i is the position of e in the tuple.

# **EXAMPLES:**

# INPUT:

- •pdict list, which represents a multi-variable polynomial with the distribute representation (a copy is not made)
- •zero (optional) zero in the base ring
- •force\_int\_exponents bool (optional) arithmetic with int exponents is much faster than some of the alternatives, so this is True by default.
- •force\_etuples bool (optional) enforce that the exponent tuples are instances of ETuple class

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: PolyDict({(2,3):2, (1,2):3, (2,1):4})
PolyDict with representation {(1, 2): 3, (2, 3): 2, (2, 1): 4}

# I've removed fractional exponent support in ETuple when moving to a sparse C integer array
#sage: PolyDict({(2/3,3,5):2, (1,2,1):3, (2,1):4}, force_int_exponents=False)
#PolyDict with representation {(2, 1): 4, (1, 2, 1): 3, (2/3, 3, 5): 2}

sage: PolyDict({(2,3):0, (1,2):3, (2,1):4}, remove_zero=True)
PolyDict with representation {(1, 2): 3, (2, 1): 4}

sage: PolyDict({(0,0):RIF(-1,1)}, remove_zero=True)
PolyDict with representation {(0, 0): 0.?}
```

# coefficient (mon)

Return a polydict that defines a polynomial in 1 less number of variables that gives the coefficient of mon in this polynomial.

The coefficient is defined as follows. If f is this polynomial, then the coefficient is the sum T/mon where the sum is over terms T in f that are exactly divisible by mon.

# coefficients()

Return the coefficients of self.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.coefficients()
[3, 2, 4]
```

compare(other, fn=None)

```
degree (x=None)
dict()
    Return a copy of the dict that defines self. It is safe to change this. For a reference, use dictref.
    sage: from sage.rings.polynomial.polydict import PolyDict
    sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
    sage: f.dict()
    \{(1, 2): 3, (2, 1): 4, (2, 3): 2\}
exponents()
    Return the exponents of self.
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import PolyDict
    sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
    sage: f.exponents()
    [(1, 2), (2, 3), (2, 1)]
homogenize(var)
is_homogeneous()
latex (vars, atomic exponents=True, atomic coefficients=True, cmpfn=None)
    Return a nice polynomial latex representation of this PolyDict, where the vars are substituted in.
    INPUT:
       •vars - list
       •atomic_exponents - bool (default: True)
       •atomic_coefficients - bool (default: True)
    EXAMPLES:
    sage: from sage.rings.polynomial.polydict import PolyDict
    sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
    sage: f.latex(['a','WW'])
    '2 a^{2} WW^{3} + 4 a^{2} WW + 3 a WW^{2}'
    When atomic_exponents is False, the exponents are surrounded in parenthesis, since ^ has such high
    precedence:
    # I've removed fractional exponent support in ETuple when moving to a sparse C integer array
    \#sage: f = PolyDict(\{(2/3,3,5):2, (1,2,1):3, (2,1,1):4\}, force_int_exponents=False)
    #sage: f.latex(['a','b','c'], atomic_exponents=False)
    #'4 a^{2}bc + 3 ab^{2}c + 2 a^{2/3}b^{3}c^{5}'
    TESTS:
    We check that the issue on Trac 9478 is resolved:
    sage: R2.<a> = QQ[]
    sage: R3.<xi, x> = R2[]
    sage: print latex(xi*x)
    \xi x
lcmt (greater_etuple)
```

Provides functionality of lc, lm, and lt by calling the tuple compare function on the provided term order T.

374

INPUT:

```
•greater_etuple - a term order
```

#### list()

Return a list that defines self. It is safe to change this.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.list()
[[3, [1, 2]], [2, [2, 3]], [4, [2, 1]]]
```

#### max exp()

Returns an ETuple containing the maximum exponents appearing. If there are no terms at all in the PolyDict, it returns None.

The nvars parameter is necessary because a PolyDict doesn't know it from the data it has (and an empty PolyDict offers no clues).

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.max_exp()
(2, 3)
sage: PolyDict({}).max_exp() # returns None
```

# min\_exp()

Returns an ETuple containing the minimum exponents appearing. If there are no terms at all in the Poly-Dict, it returns None.

The nvars parameter is necessary because a PolyDict doesn't know it from the data it has (and an empty PolyDict offers no clues).

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.min_exp()
(1, 1)
sage: PolyDict({}).min_exp() # returns None
```

# monomial\_coefficient (mon)

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.monomial_coefficient(PolyDict({(2,1):1}).dict())
4
```

# poly\_repr (vars, atomic\_exponents=True, atomic\_coefficients=True, cmpfn=None)

Return a nice polynomial string representation of this PolyDict, where the vars are substituted in.

# INPUT:

```
•vars - list
```

- •atomic\_exponents bool (default: True)
- $\hbox{\tt •atomic\_coefficients-bool} \ (default: \ True)$

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.poly_repr(['a','WW'])
'2*a^2*WW^3 + 4*a^2*WW + 3*a*WW^2'
```

When atomic\_exponents is False, the exponents are surrounded in parenthesis, since ^ has such high precedence.

```
# I've removed fractional exponent support in ETuple when moving to a sparse C integer array #sage: f = PolyDict(\{(2/3,3,5):2, (1,2,1):3, (2,1,1):4\}, force_int_exponents=False) #sage: f.poly\_repr(['a','b','c'], atomic\_exponents=False) #'4*a^(2)*b*c + 3*a*b^(2)*c + 2*a^(2/3)*b^(3)*c^(5)'
```

We check to make sure that when we are in characteristic two, we don't put negative signs on the genera-

```
sage: Integers(2)['x,y'].gens()
(x, y)
```

We make sure that intervals are correctly represented.

```
sage: f = PolyDict({(2,3):RIF(1/2,3/2), (1,2):RIF(-1,1)})
sage: f.poly_repr(['x','y'])
'1.?*x^2*y^3 + 0.?*x*y^2'
```

# polynomial\_coefficient (degrees)

Return a polydict that defines the coefficient in the current polynomial viewed as a tower of polynomial extensions.

#### INPUT:

•degrees – a list of degree restrictions; list elements are None if the variable in that position should be unrestricted

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.polynomial_coefficient([2,None])
PolyDict with representation {(0, 3): 2, (0, 1): 4}
sage: f = PolyDict({(0,3):2, (0,2):3, (2,1):4})
sage: f.polynomial_coefficient([0,None])
PolyDict with representation {(0, 3): 2, (0, 2): 3}
```

#### scalar\_lmult(s)

Left Scalar Multiplication

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: x,y=FreeMonoid(2,'x,y').gens() # a strange object to live in a polydict, but non-comm
sage: f = PolyDict({(2,3):x})
sage: f.scalar_lmult(y)
PolyDict with representation {(2, 3): y*x}
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.scalar_lmult(-2)
PolyDict with representation {(1, 2): -6, (2, 3): -4, (2, 1): -8}
sage: f.scalar_lmult(RIF(-1,1))
PolyDict with representation {(1, 2): 0.?e1, (2, 3): 0.?e1, (2, 1): 0.?e1}
```

```
scalar rmult(s)
         Right Scalar Multiplication
         EXAMPLES:
         sage: from sage.rings.polynomial.polydict import PolyDict
         sage: x,y = Free Monoid(2, 'x, y').gens() # a strange object to live in a polydict, but non-community
         sage: f = PolyDict({(2,3):x})
         sage: f.scalar_rmult(y)
         PolyDict with representation \{(2, 3): x*y\}
         sage: f = PolyDict(\{(2,3):2, (1,2):3, (2,1):4\})
         sage: f.scalar_rmult(-2)
         PolyDict with representation \{(1, 2): -6, (2, 3): -4, (2, 1): -8\}
         sage: f.scalar_rmult(RIF(-1,1))
         PolyDict with representation {(1, 2): 0.?e1, (2, 3): 0.?e1, (2, 1): 0.?e1}
    total_degree()
    valuation (x=None)
sage.rings.polynomial.polydict.make_ETuple (data, length)
sage.rings.polynomial.polydict.make_PolyDict(data)
```

# 3.1.11 Monomials

```
sage.rings.monomials.monomials (v, n)
```

Given two lists v and n, of exactly the same length, return all monomials in the elements of v, where variable i (i.e., v[i]) in the monomial appears to degree strictly less than n[i].

# INPUT:

•v – list of ring elements

•n – list of integers

# **EXAMPLES:**

```
sage: monomials([x], [3])
[1, x, x^2]
sage: R.<x,y,z> = QQ[]
sage: monomials([x,y], [5,5])
[1, y, y^2, y^3, y^4, x, x*y, x*y^2, x*y^3, x*y^4, x^2, x^2*y, x^2*y^2, x^2*y^3, x^2*y^4, x^3, x*ge: monomials([x,y,z], [2,3,2])
[1, z, y, y*z, y^2, y^2*z, x, x*z, x*y, x*y*z, x*y^2, x*y^2*z]
```

# 3.2 Classical Invariant Theory

This module lists classical invariants and covariants of homogeneous polynomials (also called algebraic forms) under the action of the special linear group. That is, we are dealing with polynomials of degree d in n variables. The special linear group  $SL(n, \mathbb{C})$  acts on the variables  $(x_1, \ldots, x_n)$  linearly,

$$(x_1,\ldots,x_n)^t \to A(x_1,\ldots,x_n)^t, \qquad A \in SL(n,\mathbf{C})$$

The linear action on the variables transforms a polynomial p generally into a different polynomial p. We can think of it as an action on the space of coefficients in p. An invariant is a polynomial in the coefficients that is invariant under this action. A covariant is a polynomial in the coefficients and the variables  $(x_1, \ldots, x_n)$  that is invariant under the combined action.

For example, the binary quadratic  $p(x,y) = ax^2 + bxy + cy^2$  has as its invariant the discriminant  $disc(p) = b^2 - 4ac$ . This means that for any  $SL(2, \mathbf{C})$  coordinate change

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \qquad \alpha \delta - \beta \gamma = 1$$

the discriminant is invariant, disc(p(x', y')) = disc(p(x, y)).

To use this module, you should use the factory object invariant\_theory. For example, take the quartic:

```
sage: R.\langle x, y \rangle = QQ[]
sage: q = x^4 + y^4
sage: quartic = invariant_theory.binary_quartic(q); quartic
Binary quartic with coefficients (1, 0, 0, 0, 1)
```

One invariant of a quartic is known as the Eisenstein D-invariant. Since it is an invariant, it is a polynomial in the coefficients (which are integers in this example):

```
sage: quartic.EisensteinD()
1
```

One example of a covariant of a quartic is the so-called g-covariant (actually, the Hessian). As with all covariants, it is a polynomial in x, y and the coefficients:

```
sage: quartic.g_covariant()
-x^2*y^2
```

As usual, use tab completion and the online help to discover the implemented invariants and covariants.

In general, the variables of the defining polynomial cannot be guessed. For example, the zero polynomial can be thought of as a homogeneous polynomial of any degree. Also, since we also want to allow polynomial coefficients we cannot just take all variables of the polynomial ring as the variables of the form. This is why you will have to specify the variables explicitly if there is any potential ambiguity. For example:

```
sage: invariant_theory.binary_quartic(R.zero(), [x,y])
Binary quartic with coefficients (0, 0, 0, 0, 0)

sage: invariant_theory.binary_quartic(x^4, [x,y])
Binary quartic with coefficients (0, 0, 0, 0, 1)

sage: R.<x,y,t> = QQ[]
sage: invariant_theory.binary_quartic(x^4 + y^4 + t*x^2*y^2, [x,y])
Binary quartic with coefficients (1, 0, t, 0, 1)
```

Finally, it is often convenient to use inhomogeneous polynomials where it is understood that one wants to homogenize them. This is also supported, just define the form with an inhomogeneous polynomial and specify one less variable:

```
sage: R.<x, t> = QQ[]
sage: invariant_theory.binary_quartic(x^4 + 1 + t*x^2, [x])
Binary quartic with coefficients (1, 0, t, 0, 1)
```

#### REFERENCES:

The base class of algebraic forms (i.e. homogeneous polynomials).

You should only instantiate the derived classes of this base class.

Derived classes must implement coeffs () and scaled\_coeffs ()

# INPUT:

- •n The number of variables.
- •d The degree of the polynomial.
- •polynomial The polynomial.
- •\*args The variables, as a single list/tuple, multiple arguments, or None to use all variables of the polynomial.

Derived classes must implement the same arguments for the constructor.

```
sage: from sage.rings.invariant_theory import AlgebraicForm
sage: R.\langle x, y \rangle = QQ[]
sage: p = x^2 + y^2
sage: AlgebraicForm(2, 2, p).variables()
sage: AlgebraicForm(2, 2, p, None).variables()
sage: AlgebraicForm(3, 2, p).variables()
(x, y, None)
sage: AlgebraicForm(3, 2, p, None).variables()
(x, y, None)
sage: from sage.rings.invariant_theory import AlgebraicForm
sage: R.\langle x, y, s, t \rangle = QQ[]
sage: p = s*x^2 + t*y^2
sage: AlgebraicForm(2, 2, p, [x,y]).variables()
sage: AlgebraicForm(2, 2, p, x,y).variables()
(x, y)
sage: AlgebraicForm(3, 2, p, [x,y,None]).variables()
(x, y, None)
sage: AlgebraicForm(3, 2, p, x,y,None).variables()
(x, y, None)
sage: AlgebraicForm(2, 1, p, [x,y]).variables()
Traceback (most recent call last):
ValueError: Polynomial is of the wrong degree.
sage: AlgebraicForm(2, 2, x^2+y, [x,y]).variables()
Traceback (most recent call last):
ValueError: Polynomial is not homogeneous.
coefficients()
    Alias for coeffs().
    See the documentation for coeffs () for details.
    EXAMPLES:
    sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
    sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
    sage: q = invariant_theory.quadratic_form(p, x,y,z)
    sage: q.coefficients()
```

```
(a, b, c, d, e, f)
sage: q.coeffs()
(a, b, c, d, e, f)
```

# form()

Return the defining polynomial.

# **OUTPUT**:

The polynomial used to define the algebraic form.

# **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic.form()
x^4 + y^4
sage: quartic.polynomial()
x^4 + y^4
```

# homogenized (var='h')

Return form as defined by a homogeneous polynomial.

#### INPUT:

•var – either a variable name, variable index or a variable (default: 'h').

# **OUTPUT:**

The same algebraic form, but defined by a homogeneous polynomial.

# **EXAMPLES:**

```
sage: T.<t> = QQ[]
sage: quadratic = invariant_theory.binary_quadratic(t^2 + 2*t + 3)
sage: quadratic
Binary quadratic with coefficients (1, 3, 2)
sage: quadratic.homogenized()
Binary quadratic with coefficients (1, 3, 2)
sage: quadratic == quadratic.homogenized()
True
sage: quadratic.form()
t^2 + 2*t + 3
sage: quadratic.homogenized().form()
t^2 + 2*t*h + 3*h^2
sage: R. \langle x, y, z \rangle = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2 + 1, [x,y])
sage: quadratic.homogenized().form()
x^2 + h^2
```

# polynomial()

Return the defining polynomial.

# OUTPUT:

The polynomial used to define the algebraic form.

```
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic.form()
```

```
x^4 + y^4

sage: quartic.polynomial()

x^4 + y^4
```

# transformed(g)

Return the image under a linear transformation of the variables.

#### INPUT:

•g – a  $GL(n, \mathbf{C})$  matrix or a dictionary with the variables as keys. A matrix is used to define the linear transformation of homogeneous variables, a dictionary acts by substitution of the variables.

# **OUTPUT**:

A new instance of a subclass of AlgebraicForm obtained by replacing the variables of the homogeneous polynomial by their image under q.

# **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3 + 2*y^3 + 3*z^3 + 4*x*y*z)
sage: cubic.transformed({x:y, y:z, z:x}).form()
3*x^3 + y^3 + 4*x*y*z + 2*z^3
sage: cyc = matrix([[0,1,0],[0,0,1],[1,0,0]])
sage: cubic.transformed(cyc) == cubic.transformed({x:y, y:z, z:x})
True
sage: g = matrix(QQ, [[1, 0, 0], [-1, 1, -3], [-5, -5, 16]])
sage: cubic.transformed(g)
Ternary cubic with coefficients (-356, -373, 12234, -1119, 3578, -1151, 3582, -11766, -11466, 7360)
sage: cubic.transformed(g).transformed(g.inverse()) == cubic
True
```

class sage.rings.invariant\_theory.BinaryQuartic(n, d, polynomial, \*args)

Bases: sage.rings.invariant\_theory.AlgebraicForm

Invariant theory of a binary quartic.

You should use the invariant\_theory factory object to construct instances of this class. See binary\_quartic() for details.

# TESTS:

```
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: p = a0*x1^4 + a1*x1^3*x0 + a2*x1^2*x0^2 + a3*x1*x0^3 + a4*x0^4
sage: quartic = invariant_theory.binary_quartic(p, x0, x1)
sage: quartic._check_covariant('form')
sage: quartic._check_covariant('EisensteinD', invariant=True)
sage: quartic._check_covariant('EisensteinE', invariant=True)
sage: quartic._check_covariant('g_covariant')
sage: quartic._check_covariant('h_covariant')
sage: TestSuite(quartic).run()
```

# EisensteinD()

One of the Eisenstein invariants of a binary quartic.

**OUTPUT:** 

The Eisenstein D-invariant of the quartic.

$$f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4$$
$$\Rightarrow D(f) = a_0 a_4 + 3a_2^2 - 4a_1 a_3$$

# **EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: f = a0*x1^4+4*a1*x0*x1^3+6*a2*x0^2*x1^2+4*a3*x0^3*x1+a4*x0^4
sage: inv = invariant_theory.binary_quartic(f, x0, x1)
sage: inv.EisensteinD()
3*a2^2 - 4*a1*a3 + a0*a4
```

# EisensteinE()

One of the Eisenstein invariants of a binary quartic.

#### OUTPUT:

The Eisenstein E-invariant of the quartic.

$$f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4$$
  

$$\Rightarrow E(f) = a_0 a_3^2 + a_1^2 a_4 - a_0 a_2 a_4 - 2a_1 a_2 a_3 + a_2^3$$

# **EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[] 

sage: f = a0*x1^4+4*a1*x0*x1^3+6*a2*x0^2*x1^2+4*a3*x0^3*x1+a4*x0^4 

sage: inv = invariant_theory.binary_quartic(f, x0, x1) 

sage: inv.EisensteinE() 

a2^3 - 2*a1*a2*a3 + a0*a3^2 + a1^2*a4 - a0*a2*a4
```

#### coeffs()

The coefficients of a binary quartic.

Given

$$f(x) = a_0 x_1^4 + a_1 x_0 x_1^3 + a_2 x_0^2 x_1^2 + a_3 x_0^3 x_1 + a_4 x_0^4$$

this function returns  $a = (a_0, a_1, a_2, a_3, a_4)$ 

# **EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: p = a0*x1^4 + a1*x1^3*x0 + a2*x1^2*x0^2 + a3*x1*x0^3 + a4*x0^4
sage: quartic = invariant_theory.binary_quartic(p, x0, x1)
sage: quartic.coeffs()
(a0, a1, a2, a3, a4)

sage: R.<a0, a1, a2, a3, a4, x> = QQ[]
sage: p = a0 + a1*x + a2*x^2 + a3*x^3 + a4*x^4
sage: quartic = invariant_theory.binary_quartic(p, x)
sage: quartic.coeffs()
(a0, a1, a2, a3, a4)
```

# g\_covariant()

The g-covariant of a binary quartic.

# **OUTPUT**:

The g-covariant of the quartic.

$$f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4$$
$$\Rightarrow D(f) = \frac{1}{144} \left( \frac{\partial^2 f}{\partial x \partial x} \right)$$

# **EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]
sage: p = a0*x^4+4*a1*x^3*y+6*a2*x^2*y^2+4*a3*x*y^3+a4*y^4
sage: inv = invariant_theory.binary_quartic(p, x, y)
sage: g = inv.g_covariant(); g
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3*y - 2*a0*a3*x^3*y + 3*a2^2*x^2*y^2
- 2*a1*a3*x^2*y^2 - a0*a4*x^2*y^2 + 2*a2*a3*x*y^3
- 2*a1*a4*x*y^3 + a3^2*y^4 - a2*a4*y^4

sage: inv_inhomogeneous = invariant_theory.binary_quartic(p.subs(y=1), x)
sage: inv_inhomogeneous.g_covariant()
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3 - 2*a0*a3*x^3 + 3*a2^2*x^2
- 2*a1*a3*x^2 - a0*a4*x^2 + 2*a2*a3*x - 2*a1*a4*x + a3^2 - a2*a4

sage: g == 1/144 * (p.derivative(x,y)^2 - p.derivative(x,x)*p.derivative(y,y))
True
```

#### h covariant()

The h-covariant of a binary quartic.

**OUTPUT:** 

The h-covariant of the quartic.

$$f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4$$
$$\Rightarrow D(f) = \frac{1}{144} \left( \frac{\partial^2 f}{\partial x \partial x} \right)$$

# **EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]
sage: p = a0 \times x^4 + 4 \times a1 \times x^3 \times y + 6 \times a2 \times x^2 \times y^2 + 4 \times a3 \times x \times y^3 + a4 \times y^4
sage: inv = invariant_theory.binary_quartic(p, x, y)
sage: h = inv.h_covariant();
                                h
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - a0^2*a3*x^6 - 6*a1^2*a2*x^5*y + 9*a0*a2^2*x^5*y
-2*a0*a1*a3*x^5*y - a0^2*a4*x^5*y - 10*a1^2*a3*x^4*y^2 + 15*a0*a2*a3*x^4*y^2
-5*a0*a1*a4*x^4*y^2 + 10*a0*a3^2*x^3*y^3 - 10*a1^2*a4*x^3*y^3
+ 10*a1*a3^2*x^2*y^4 - 15*a1*a2*a4*x^2*y^4 + 5*a0*a3*a4*x^2*y^4
+ 6*a2*a3^2*x*y^5 - 9*a2^2*a4*x*y^5 + 2*a1*a3*a4*x*y^5 + a0*a4^2*x*y^5
+ 2*a3^3*y^6 - 3*a2*a3*a4*y^6 + a1*a4^2*y^6
sage: inv_inhomogeneous = invariant_theory.binary_quartic(p.subs(y=1), x)
sage: inv_inhomogeneous.h_covariant()
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - a0^2*a3*x^6 - 6*a1^2*a2*x^5 + 9*a0*a2^2*x^5
-2*a0*a1*a3*x^5 - a0^2*a4*x^5 - 10*a1^2*a3*x^4 + 15*a0*a2*a3*x^4
-5*a0*a1*a4*x^4 + 10*a0*a3^2*x^3 - 10*a1^2*a4*x^3 + 10*a1*a3^2*x^2
-15*a1*a2*a4*x^2 + 5*a0*a3*a4*x^2 + 6*a2*a3^2*x - 9*a2^2*a4*x
+ 2*a1*a3*a4*x + a0*a4^2*x + 2*a3^3 - 3*a2*a3*a4 + a1*a4^2
sage: g = inv.g_covariant()
sage: h == 1/8 * (p.derivative(x)*g.derivative(y)-p.derivative(y)*g.derivative(x))
True
```

# monomials()

List the basis monomials in the form.

**OUTPUT:** 

A tuple of monomials. They are in the same order as coeffs ().

```
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic.monomials()
(y^4, x*y^3, x^2*y^2, x^3*y, x^4)
```

# scaled\_coeffs()

The coefficients of a binary quartic.

Given

$$f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4$$

this function returns  $a = (a_0, a_1, a_2, a_3, a_4)$ 

#### **EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: quartic = a0*x1^4 + 4*a1*x1^3*x0 + 6*a2*x1^2*x0^2 + 4*a3*x1*x0^3 + a4*x0^4
sage: inv = invariant_theory.binary_quartic(quartic, x0, x1)
sage: inv.scaled_coeffs()
(a0, a1, a2, a3, a4)

sage: R.<a0, a1, a2, a3, a4, x> = QQ[]
sage: quartic = a0 + 4*a1*x + 6*a2*x^2 + 4*a3*x^3 + a4*x^4
sage: inv = invariant_theory.binary_quartic(quartic, x)
sage: inv.scaled_coeffs()
(a0, a1, a2, a3, a4)
```

class sage.rings.invariant\_theory.FormsBase(n, homogeneous, ring, variables)

 $Bases: \verb|sage_object.SageObject| \\$ 

The common base class of AlgebraicForm and SeveralAlgebraicForms.

This is an abstract base class to provide common methods. It does not make much sense to instantiate it.

# TESTS:

```
sage: from sage.rings.invariant_theory import FormsBase
sage: FormsBase(None, None, None)
<class 'sage.rings.invariant_theory.FormsBase'>
```

# is\_homogeneous()

Return whether the forms were defined by homogeneous polynomials.

#### OUTPUT

Boolean. Whether the user originally defined the form via homogeneous variables.

```
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.is_homogeneous()
True
sage: quartic.form()
x^2*y^2*t + x^4 + y^4

sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
sage: quartic.is_homogeneous()
False
```

```
sage: quartic.form()
x^4 + x^2 + t + 1
```

# ring()

Return the polynomial ring.

# **OUTPUT**:

A polynomial ring. This is where the defining polynomial(s) live. Note that the polynomials may be homogeneous or inhomogeneous, depending on how the user constructed the object.

# **EXAMPLES:**

```
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.ring()
Multivariate Polynomial Ring in x, y, t over Rational Field

sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
sage: quartic.ring()
Multivariate Polynomial Ring in x, y, t over Rational Field
```

#### variables()

Return the variables of the form.

# **OUTPUT**:

A tuple of variables. If inhomogeneous notation is used for the defining polynomial then the last entry will be None.

# **EXAMPLES:**

```
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.variables()
(x, y)

sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
sage: quartic.variables()
(x, None)
```

# class sage.rings.invariant\_theory.InvariantTheoryFactory

Bases: object

Factory object for invariants of multilinear forms.

# **EXAMPLES:**

```
sage: R.\langle x,y,z \rangle = QQ[]
sage: invariant_theory.ternary_cubic(x^3+y^3+z^3)
Ternary cubic with coefficients (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
```

# binary\_quadratic (quadratic, \*args)

Invariant theory of a quadratic in two variables.

# INPUT:

•quadratic - a quadratic form.

•x, y – the homogeneous variables. If y is None, the quadratic is assumed to be inhomogeneous.

# REFERENCES:

#### **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: invariant_theory.binary_quadratic(x^2+y^2)
Binary quadratic with coefficients (1, 1, 0)

sage: T.<t> = QQ[]
sage: invariant_theory.binary_quadratic(t^2 + 2*t + 1, [t])
Binary quadratic with coefficients (1, 1, 2)
```

# binary\_quartic (quartic, \*args, \*\*kwds)

Invariant theory of a quartic in two variables.

The algebra of invariants of a quartic form is generated by invariants i, j of degrees 2, 3. This ring is naturally isomorphic to the ring of modular forms of level 1, with the two generators corresponding to the Eisenstein series  $E_4$  (see EisensteinD()) and  $E_6$  (see EisensteinE()). The algebra of covariants is generated by these two invariants together with the form f of degree 1 and order 4, the Hessian g (see g\_covariant()) of degree 2 and order 4, and a covariant h (see h\_covariant()) of degree 3 and order 6. They are related by a syzygy

$$jf^3 - gf^2i + 4g^3 + h^2 = 0$$

of degree 6 and order 12.

#### INPUT:

- •quartic a quartic.
- •x, y the homogeneous variables. If y is None, the quartic is assumed to be inhomogeneous.

# **REFERENCES:**

# **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic
Binary quartic with coefficients (1, 0, 0, 0, 1)
sage: type(quartic)
<class 'sage.rings.invariant_theory.BinaryQuartic'>
```

# inhomogeneous\_quadratic\_form (polynomial, \*args)

Invariants of an inhomogeneous quadratic form.

#### INPUT:

- •polynomial an inhomogeneous quadratic form.
- •\*args the variables as multiple arguments, or as a single list/tuple.

```
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2+2*y^2+3*x*y+4*x+5*y+6
sage: inv3 = invariant_theory.inhomogeneous_quadratic_form(quadratic)
sage: type(inv3)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
sage: inv4 = invariant_theory.inhomogeneous_quadratic_form(x^2+y^2+z^2)
sage: type(inv4)
<class 'sage.rings.invariant_theory.QuadraticForm'>
```

#### quadratic form (polynomial, \*args)

Invariants of a homogeneous quadratic form.

#### INPUT:

•polynomial – a homogeneous or inhomogeneous quadratic form.

•\*args – the variables as multiple arguments, or as a single list/tuple. If the last argument is None, the cubic is assumed to be inhomogeneous.

#### **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2+y^2+z^2
sage: inv = invariant_theory.quadratic_form(quadratic)
sage: type(inv)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
```

If some of the ring variables are to be treated as coefficients you need to specify the polynomial variables:

```
sage: R.<x,y,z, a,b> = QQ[]
sage: quadratic = a*x^2+b*y^2+z^2+2*y*z
sage: invariant_theory.quadratic_form(quadratic, x,y,z)
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
sage: invariant_theory.quadratic_form(quadratic, [x,y,z]) # alternate syntax
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
```

Inhomogeneous quadratic forms (see also inhomogeneous\_quadratic\_form()) can be specified by passing None as the last variable:

```
sage: inhom = quadratic.subs(z=1)
sage: invariant_theory.quadratic_form(inhom, x, y, None)
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
```

# quaternary\_biquadratic (quadratic1, quadratic2, \*args, \*\*kwds)

Invariants of two quadratics in four variables.

# INPUT:

- •quadratic1, quadratic2 two polynomias. Either homogeneous quadratic in 4 homogeneous variables, or inhomogeneous quadratic in 3 variables.
- •w, x, y, z the variables. If z is None, the quadratics are assumed to be inhomogeneous.

# **EXAMPLES:**

```
sage: R.<w,x,y,z> = QQ[]
sage: q1 = w^2+x^2+y^2+z^2
sage: q2 = w*x + y*z
sage: inv = invariant_theory.quaternary_biquadratic(q1, q2)
sage: type(inv)
<class 'sage.rings.invariant_theory.TwoQuaternaryQuadratics'>
```

# Distance between two spheres [Salmon]

```
sage: R.<x,y,z, a,b,c, r1,r2> = QQ[]
sage: S1 = -r1^2 + x^2 + y^2 + z^2
sage: S2 = -r2^2 + (x-a)^2 + (y-b)^2 + (z-c)^2
sage: inv = invariant_theory.quaternary_biquadratic(S1, S2, [x, y, z])
sage: inv.Delta_invariant()
-r1^2
sage: inv.Delta_prime_invariant()
-r2^2
```

```
sage: inv.Theta_invariant()
a^2 + b^2 + c^2 - 3*r1^2 - r2^2
sage: inv.Theta_prime_invariant()
a^2 + b^2 + c^2 - r1^2 - 3*r2^2
sage: inv.Phi_invariant()
2*a^2 + 2*b^2 + 2*c^2 - 3*r1^2 - 3*r2^2
sage: inv.J_covariant()
0
```

# quaternary\_quadratic (quadratic, \*args)

Invariant theory of a quadratic in four variables.

# INPUT:

- •quadratic a quadratic form.
- •w, x, y, z the homogeneous variables. If z is None, the quadratic is assumed to be inhomogeneous.

# REFERENCES:

#### **EXAMPLES:**

```
sage: R.<w,x,y,z> = QQ[]
sage: invariant_theory.quaternary_quadratic(w^2+x^2+y^2+z^2)
Quaternary quadratic with coefficients (1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
sage: R.<x,y,z> = QQ[]
sage: invariant_theory.quaternary_quadratic(1+x^2+y^2+z^2)
Quaternary quadratic with coefficients (1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
```

# ternary\_biquadratic(quadratic1, quadratic2, \*args, \*\*kwds)

Invariants of two quadratics in three variables.

# INPUT:

- •quadratic1, quadratic2 two polynomials. Either homogeneous quadratic in 3 homogeneous variables, or inhomogeneous quadratic in 2 variables.
- •x, y, z the variables. If z is None, the quadratics are assumed to be inhomogeneous.

# **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: q1 = x^2+y^2+z^2
sage: q2 = x*y + y*z + x*z
sage: inv = invariant_theory.ternary_biquadratic(q1, q2)
sage: type(inv)
<class 'sage.rings.invariant_theory.TwoTernaryQuadratics'>
```

# Distance between two circles:

```
sage: R.<x,y, a,b, r1,r2> = QQ[]
sage: S1 = -r1^2 + x^2 + y^2
sage: S2 = -r2^2 + (x-a)^2 + (y-b)^2
sage: inv = invariant_theory.ternary_biquadratic(S1, S2, [x, y])
sage: inv.Delta_invariant()
-r1^2
sage: inv.Delta_prime_invariant()
-r2^2
sage: inv.Theta_invariant()
a^2 + b^2 - 2*r1^2 - r2^2
sage: inv.Theta_prime_invariant()
```

```
a^2 + b^2 - r1^2 - 2*r2^2
sage: inv.F_covariant()
2*x^2*a^2 + y^2*a^2 - 2*x*a^3 + a^4 + 2*x*y*a*b - 2*y*a^2*b + x^2*b^2 +
2*y^2*b^2 - 2*x*a*b^2 + 2*a^2*b^2 - 2*y*b^3 + b^4 - 2*x^2*r1^2 - 2*y^2*r1^2 +
2*x*a*r1^2 - 2*a^2*r1^2 + 2*y*b*r1^2 - 2*b^2*r1^2 + r1^4 - 2*x^2*r2^2 -
2*y^2*r2^2 + 2*x*a*r2^2 - 2*a^2*r2^2 + 2*y*b*r2^2 - 2*b^2*r2^2 + 2*r1^2*r2^2 +
r2^4
sage: inv.J_covariant()
-8*x^2*y*a^3 + 8*x*y*a^4 + 8*x^3*a^2*b - 16*x*y^2*a^2*b - 8*x^2*a^3*b +
8*y^2*a^3*b + 16*x^2*y*a*b^2 - 8*y^3*a*b^2 + 8*x*y^2*b^3 - 8*x^2*a*b*r1^2 +
8*y^2*a*b^3 - 8*x*y*b^4 + 8*x*y*a^2*r1^2 - 8*y*a^3*r1^2 - 8*x^2*a*b*r1^2 +
8*y^2*a*b*r1^2 + 8*x*a^2*b*r1^2 - 8*x*y*b^2*r1^2 - 8*y*a*b^2*r1^2 + 8*x*b^3*r1^2 -
8*x*y*a^2*r2^2 + 8*x^2*a*b*r2^2 - 8*y^2*a*b*r2^2 + 8*x*y*b^2*r1^2
```

# ternary\_cubic(cubic, \*args, \*\*kwds)

Invariants of a cubic in three variables.

The algebra of invariants of a ternary cubic under  $SL_3(\mathbf{C})$  is a polynomial algebra generated by two invariants S (see S\_invariant()) and T (see T\_invariant()) of degrees 4 and 6, called Aronhold invariants.

The ring of covariants is given as follows. The identity covariant U of a ternary cubic has degree 1 and order 3. The Hessian H (see Hessian ()) is a covariant of ternary cubics of degree 3 and order 3. There is a covariant  $\Theta$  (see Theta\_covariant ()) of ternary cubics of degree 8 and order 6 that vanishes on points x lying on the Salmon conic of the polar of x with respect to the curve and its Hessian curve. The Brioschi covariant J (see J\_covariant ()) is the Jacobian of U,  $\Theta$ , and H of degree 12, order 9. The algebra of covariants of a ternary cubic is generated over the ring of invariants by U,  $\Theta$ , H, and J, with a relation

$$J^{2} = 4\Theta^{3} + TU^{2}\Theta^{2} + \Theta(-4S^{3}U^{4} + 2STU^{3}H - 72S^{2}U^{2}H^{2} - 18TUH^{3} + 108SH^{4}) - 16S^{4}U^{5}H - 11S^{2}TU^{4}H^{2} - 4T^{2}U^{3}H^{3} + 54STU^{2}H^{4} - 432S^{2}UH^{5} - 27TH^{6}$$

#### REFERENCES:

# INPUT:

- •cubic a homogeneous cubic in 3 homogeneous variables, or an inhomogeneous cubic in 2 variables.
- •x, y, z the variables. If z is None, the cubic is assumed to be inhomogeneous.

#### **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: type(cubic)
<class 'sage.rings.invariant_theory.TernaryCubic'>
```

# ternary\_quadratic (quadratic, \*args, \*\*kwds)

Invariants of a quadratic in three variables.

# INPUT:

- •quadratic a homogeneous quadratic in 3 homogeneous variables, or an inhomogeneous quadratic in 2 variables.
- •x, y, z the variables. If z is None, the quadratic is assumed to be inhomogeneous.

# REFERENCES:

#### **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: invariant_theory.ternary_quadratic(x^2+y^2+z^2)
Ternary quadratic with coefficients (1, 1, 1, 0, 0, 0)

sage: T.<u, v> = QQ[]
sage: invariant_theory.ternary_quadratic(1+u^2+v^2)
Ternary quadratic with coefficients (1, 1, 1, 0, 0, 0)

sage: quadratic = x^2+y^2+z^2
sage: inv = invariant_theory.ternary_quadratic(quadratic)
sage: type(inv)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
```

class sage.rings.invariant\_theory.QuadraticForm(n, d, polynomial, \*args)

Bases: sage.rings.invariant\_theory.AlgebraicForm

Invariant theory of a multivariate quadratic form.

You should use the invariant\_theory factory object to construct instances of this class. See quadratic\_form() for details.

#### TESTS:

```
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: invariant_theory.quadratic_form(p, x,y,z)
Ternary quadratic with coefficients (a, b, c, d, e, f)
sage: type(_)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: invariant_theory.quadratic_form(p, x,y,z)
Ternary quadratic with coefficients (a, b, c, d, e, f)
sage: type(_)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
```

Since we cannot always decide whether the form is homogeneous or not based on the number of variables, you need to explicitly specify it if you want the variables to be treated as inhomogeneous:

```
sage: invariant_theory.inhomogeneous_quadratic_form(p.subs(z=1), x,y)
Ternary quadratic with coefficients (a, b, c, d, e, f)
```

# as\_QuadraticForm()

Convert into a QuadraticForm.

#### OUTPUT

Sage has a special quadratic forms subsystem. This method converts self into this QuadraticForm representation.

```
sage: quadratic.as_QuadraticForm()
Quadratic form in 3 variables over Multivariate Polynomial
Ring in x, y, z over Rational Field with coefficients:
[ 1/2 1 3/2 ]
[ * 1/2 0 ]
[ * * 1/2 ]
sage: _.polynomial('X,Y,Z')
X^2 + 2*X*Y + Y^2 + 3*X*Z + Z^2
```

# coeffs()

The coefficients of a quadratic form.

Given

$$f(x) = \sum_{0 \le i < n} a_i x_i^2 + \sum_{0 \le j < k < n} a_{jk} x_j x_k$$

this function returns  $a = (a_0, ..., a_n, a_{00}, a_{01}, ..., a_{n-1,n})$ 

# **EXAMPLES:**

```
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: inv = invariant_theory.quadratic_form(p, x,y,z); inv
Ternary quadratic with coefficients (a, b, c, d, e, f)
sage: inv.coeffs()
(a, b, c, d, e, f)
sage: inv.scaled_coeffs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)
```

# discriminant()

Return the discriminant of the quadratic form.

Up to an overall constant factor, this is just the determinant of the defining matrix, see matrix (). For a quadratic form in n variables, the overall constant is  $2^{n-1}$  if n is odd and  $(-1)^{n/2}2^n$  if n is even.

# **EXAMPLES:**

```
sage: R.<a,b,c, x,y> = QQ[]
sage: p = a*x^2+b*x*y+c*y^2
sage: quadratic = invariant_theory.quadratic_form(p, x,y)
sage: quadratic.discriminant()
b^2 - 4*a*c

sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: quadratic = invariant_theory.quadratic_form(p, x,y,z)
sage: quadratic.discriminant()
4*a*b*c - c*d^2 - b*e^2 + d*e*f - a*f^2
```

#### dual()

Return the dual quadratic form.

#### **OUTPUT:**

A new quadratic form (with the same number of variables) defined by the adjoint matrix.

```
sage: R.<a,b,c,x,y,z> = QQ[]
sage: cubic = x^2+y^2+z^2
sage: quadratic = invariant_theory.ternary_quadratic(a*x^2+b*y^2+c*z^2, [x,y,z])
```

```
sage: quadratic.form()
    a*x^2 + b*y^2 + c*z^2
    sage: quadratic.dual().form()
    b*c*x^2 + a*c*y^2 + a*b*z^2
    sage: R. \langle x, y, z, t \rangle = QQ[]
    sage: cubic = x^2+y^2+z^2
    sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2 + t*x*y, [x,y,z])
    sage: quadratic.dual()
    Ternary quadratic with coefficients (1, 1, -1/4*t^2 + 1, -t, 0, 0)
    sage: R. \langle x, y, t \rangle = QQ[]
    sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+1 + t*x*y, [x,y])
    sage: quadratic.dual()
    Ternary quadratic with coefficients (1, 1, -1/4*t^2 + 1, -t, 0, 0)
    TESTS:
    sage: R = PolynomialRing(QQ, 'a20,a11,a02,a10,a01,a00,x,y,z', order='lex')
    sage: R.inject_variables()
    Defining a20, a11, a02, a10, a01, a00, x, y, z
    sage: p = (a20*x^2 + a11*x*y + a02*y^2 +
                a10*x*z + a01*y*z + a00*z^2
    . . .
    sage: quadratic = invariant_theory.ternary_quadratic(p, x,y,z)
    sage: quadratic.dual().dual().form().factor()
    (1/4) *
    (a20*x^2 + a11*x*y + a02*y^2 + a10*x*z + a01*y*z + a00*z^2) *
    (4*a20*a02*a00 - a20*a01^2 - a11^2*a00 + a11*a10*a01 - a02*a10^2)
    sage: R. \langle w, x, y, z \rangle = QQ[]
    sage: q = invariant\_theory.quaternary\_quadratic(w^2+2*x^2+3*y^2+4*z^2+x*y+5*w*z)
    sage: q.form()
    w^2 + 2*x^2 + x*y + 3*y^2 + 5*w*z + 4*z^2
    sage: q.dual().dual().form().factor()
    (42849/256) * (w^2 + 2*x^2 + x*y + 3*y^2 + 5*w*z + 4*z^2)
    sage: R.\langle x, y, z \rangle = QQ[]
    sage: q = invariant\_theory.quaternary\_quadratic(1+2*x^2+3*y^2+4*z^2+x*y+5*z)
    sage: q.form()
    2*x^2 + x*y + 3*y^2 + 4*z^2 + 5*z + 1
    sage: q.dual().dual().form().factor()
    (42849/256) \times (2*x^2 + x*y + 3*y^2 + 4*z^2 + 5*z + 1)
matrix()
    Return the quadratic form as a symmetric matrix
    OUTPUT:
    This method returns a symmetric matrix A such that the quadratic Q equals
                              Q(x, y, z, \dots) = (x, y, \dots)A(x, y, \dots)^{t}
```

```
sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2+x*y)
sage: matrix(quadratic)
[ 1 1/2     0]
[1/2     1     0]
[ 0     0     1]
```

```
sage: quadratic._matrix_() == matrix(quadratic)
True
```

## monomials()

List the basis monomials in the form.

## **OUTPUT:**

A tuple of monomials. They are in the same order as coeffs ().

## **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: quadratic = invariant_theory.quadratic_form(x^2+y^2)
sage: quadratic.monomials()
(x^2, y^2, x*y)

sage: quadratic = invariant_theory.inhomogeneous_quadratic_form(x^2+y^2)
sage: quadratic.monomials()
(x^2, y^2, 1, x*y, x, y)
```

## scaled\_coeffs()

The scaled coefficients of a quadratic form.

Given

$$f(x) = \sum_{0 \le i < n} a_i x_i^2 + \sum_{0 \le j < k < n} 2a_{jk} x_j x_k$$

this function returns  $a=(a_0,\cdots,a_n,a_{00},a_{01},\ldots,a_{n-1,n})$ 

## EXAMPLES:

```
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: inv = invariant_theory.quadratic_form(p, x,y,z); inv
Ternary quadratic with coefficients (a, b, c, d, e, f)
sage: inv.coeffs()
(a, b, c, d, e, f)
sage: inv.scaled_coeffs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)
```

# class sage.rings.invariant\_theory.SeveralAlgebraicForms (forms)

```
Bases: sage.rings.invariant_theory.FormsBase
```

The base class of multiple algebraic forms (i.e. homogeneous polynomials).

You should only instantiate the derived classes of this base class.

See AlgebraicForm for the base class of a single algebraic form.

## INPUT:

•forms – a list/tuple/iterable of at least one AlgebraicForm object, all with the same number of variables. Interpreted as multiple homogeneous polynomials in a common polynomial ring.

```
sage: from sage.rings.invariant_theory import AlgebraicForm, SeveralAlgebraicForms
sage: R.<x,y> = QQ[]
sage: p = AlgebraicForm(2, 2, x^2, (x,y))
sage: q = AlgebraicForm(2, 2, y^2, (x,y))
sage: pq = SeveralAlgebraicForms([p, q])
```

```
get form(i)
    Return the i-th form.
    EXAMPLES:
    sage: R. \langle x, y \rangle = QQ[]
    sage: q1 = invariant_theory.quadratic_form(x^2 + y^2)
    sage: q2 = invariant_theory.quadratic_form(x*y)
    sage: from sage.rings.invariant_theory import SeveralAlgebraicForms
    sage: q12 = SeveralAlgebraicForms([q1, q2])
    sage: q12.get_form(0) is q1
    sage: q12.get_form(1) is q2
    True
    sage: q12[0] is q12.get_form(0) # syntactic sugar
    sage: q12[1] is q12.get_form(1) # syntactic sugar
    True
homogenized(var='h')
    Return form as defined by a homogeneous polynomial.
    INPUT:
       •var – either a variable name, variable index or a variable (default: 'h').
    OUTPUT:
    The same algebraic form, but defined by a homogeneous polynomial.
    EXAMPLES:
    sage: R. \langle x, y, z \rangle = QQ[]
    sage: q = invariant_theory.quaternary_biquadratic(x^2+1, y^2+1, [x,y,z])
    Joint quaternary quadratic with coefficients (1, 0, 0, 1, 0, 0, 0, 0, 0, 0)
    and quaternary quadratic with coefficients (0, 1, 0, 1, 0, 0, 0, 0, 0, 0)
    sage: q.homogenized()
    Joint quaternary quadratic with coefficients (1, 0, 0, 1, 0, 0, 0, 0, 0, 0)
    and quaternary quadratic with coefficients (0, 1, 0, 1, 0, 0, 0, 0, 0, 0)
    sage: type(q) is type(q.homogenized())
    True
n forms()
    Return the number of forms.
    EXAMPLES:
    sage: R. < x, y > = QQ[]
    sage: q1 = invariant_theory.quadratic_form(x^2 + y^2)
    sage: q2 = invariant_theory.quadratic_form(x*y)
    sage: from sage.rings.invariant_theory import SeveralAlgebraicForms
    sage: q12 = SeveralAlgebraicForms([q1, q2])
    sage: q12.n_forms()
    sage: len(q12) == q12.n_forms()
                                       # syntactic sugar
    True
```

class sage.rings.invariant\_theory.TernaryCubic (n, d, polynomial, \*args)

Bases: sage.rings.invariant\_theory.AlgebraicForm

Invariant theory of a ternary cubic.

You should use the invariant\_theory factory object to contstruct instances of this class. See ternary\_cubic() for details.

#### TESTS:

```
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic
Ternary cubic with coefficients (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
sage: TestSuite(cubic).run()
```

## Hessian()

Return the Hessian covariant.

## **OUTPUT**:

The Hessian matrix multiplied with the conventional normalization factor 1/216.

## **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.Hessian()
x*y*z

sage: R.<x,y> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
sage: cubic.Hessian()
x*y
```

## J\_covariant()

Return the J-covariant of the ternary cubic.

## **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.J_covariant()
x^6*y^3 - x^3*y^6 - x^6*z^3 + y^6*z^3 + x^3*z^6 - y^3*z^6

sage: R.<x,y> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
sage: cubic.J_covariant()
x^6*y^3 - x^3*y^6 - x^6 + y^6 + x^3 - y^3
```

## S\_invariant()

Return the S-invariant.

### **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^2*y+y^3+z^3+x*y*z)
sage: cubic.S_invariant()
-1/1296
```

# T\_invariant()

Return the T-invariant.

```
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.T_invariant()
```

```
1
               sage: R. < x, y, z, t > = GF(7)[]
               sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3+t*x*y*z, [x,y,z])
               sage: cubic.T_invariant()
               -t^6 - t^3 + 1
Theta covariant()
              Return the \Theta covariant.
              EXAMPLES:
               sage: R.\langle x, y, z \rangle = QQ[]
               sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
               sage: cubic.Theta_covariant()
               -x^3*y^3 - x^3*z^3 - y^3*z^3
               sage: R. \langle x, y \rangle = QQ[]
               sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
               sage: cubic.Theta_covariant()
               -x^3*y^3 - x^3 - y^3
               sage: R. < x, y, z, a30, a21, a12, a03, a20, a11, a02, a10, a01, a00 > = QQ[]
               sage: p = (a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z + a00*x^2*z + a00*x
                                                         a11*x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3)
               sage: cubic = invariant_theory.ternary_cubic(p, x,y,z)
               sage: len(list(cubic.Theta_covariant()))
coeffs()
               Return the coefficients of a cubic.
               Given
                                                                                p(x,y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 +
                                                                                                             a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}
               this function returns a = (a_{30}, a_{03}, a_{00}, a_{21}, a_{20}, a_{12}, a_{02}, a_{10}, a_{01}, a_{11})
               EXAMPLES:
               sage: R. < x, y, z, a30, a21, a12, a03, a20, a11, a02, a10, a01, a00> = QQ[]
               sage: p = (a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z + a00*x^2*z + a00*x
                                                          a11*x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3)
               sage: invariant theory.ternary cubic(p, x,y,z).coeffs()
               (a30, a03, a00, a21, a20, a12, a02, a10, a01, a11)
               sage: invariant_theory.ternary_cubic(p.subs(z=1), x, y).coeffs()
                (a30, a03, a00, a21, a20, a12, a02, a10, a01, a11)
monomials()
              List the basis monomials of the form.
               OUTPUT:
               A tuple of monomials. They are in the same order as coeffs ().
               EXAMPLES:
               sage: R. \langle x, y, z \rangle = QQ[]
               sage: cubic = invariant_theory.ternary_cubic(x^3+y*z^2)
               sage: cubic.monomials()
               (x^3, y^3, z^3, x^2*y, x^2*z, x*y^2, y^2*z, x*z^2, y*z^2, x*y*z)
```

## polar\_conic()

Return the polar conic of the cubic.

#### **OUTPUT:**

Given the ternary cubic f(X, Y, Z), this method returns the symmetric matrix A(x, y, z) defined by

$$xf_X + yf_Y + zf_Z = (X, Y, Z) \cdot A(x, y, z) \cdot (X, Y, Z)^t$$

## **EXAMPLES:**

## scaled\_coeffs()

Return the coefficients of a cubic.

Compared to coeffs (), this method returns rescaled coefficients that are often used in invariant theory.

Given

$$p(x,y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

this function returns  $a = (a_{30}, a_{03}, a_{00}, a_{21}/3, a_{20}/3, a_{12}/3, a_{02}/3, a_{10}/3, a_{01}/3, a_{11}/6)$ 

#### **EXAMPLES:**

# syzygy(U, S, T, H, Theta, J)

Return the syzygy of the cubic evaluated on the invariants and covariants.

## INPUT:

•U, S, T, H, Theta, J – polynomials from the same polynomial ring.

## **OUTPUT**:

0 if evaluated for the form, the S invariant, the T invariant, the Hessian, the  $\Theta$  covariant and the J-covariant of a ternary cubic.

```
sage: R.\langle x, y, z \rangle = QQ[]

sage: monomials = (x^3, y^3, z^3, x^2*y, x^2*z, x*y^2,
```

```
y^2*z, x*z^2, y*z^2, x*y*z)
sage: random_poly = sum([ randint(0,10000) * m for m in monomials ])
sage: cubic = invariant_theory.ternary_cubic(random_poly)
sage: U = cubic.form()
sage: S = cubic.S_invariant()
sage: T = cubic.T_invariant()
sage: H = cubic.Hessian()
sage: Theta = cubic.Theta_covariant()
sage: J = cubic.J_covariant()
sage: cubic.syzygy(U, S, T, H, Theta, J)
0
```

class sage.rings.invariant\_theory.TernaryQuadratic (n, d, polynomial, \*args)

Bases: sage.rings.invariant\_theory.QuadraticForm

Invariant theory of a ternary quadratic.

You should use the invariant\_theory factory object to construct instances of this class. Sectionary\_quadratic() for details.

#### TESTS:

```
sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2)
sage: quadratic
Ternary quadratic with coefficients (1, 1, 1, 0, 0, 0)
sage: TestSuite(quadratic).run()
```

## coeffs()

Return the coefficients of a quadratic.

Given

$$p(x,y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

this function returns  $a = (a_{20}, a_{02}, a_{00}, a_{11}, a_{10}, a_{01})$ 

#### **EXAMPLES:**

# $\verb"covariant_conic" (other)$

Return the ternary quadratic covariant to self and other.

INPUT:

•other – Another ternary quadratic.

#### **OUTPUT**:

The so-called covariant conic, a ternary quadratic. It is symmetric under exchange of self and other.

```
sage: ring.<x,y,z> = QQ[]
sage: Q = invariant_theory.ternary_quadratic(x^2+y^2+z^2)
sage: R = invariant_theory.ternary_quadratic(x*y+x*z+y*z)
```

```
sage: Q.covariant_conic(R)
    -x*y - x*z - y*z
    sage: R.covariant_conic(Q)
    -x*y - x*z - y*z
    TESTS:
    sage: R.<a,a_,b,b_,c,c_,f,f_,g,g_,h,h_,x,y,z> = QQ[]
    sage: p = (a*x^2 + 2*h*x*y + b*y^2 +
                2*g*x*z + 2*f*y*z + c*z^2)
    sage: Q = invariant_theory.ternary_quadratic(p, [x,y,z])
    sage: Q.matrix()
    [a h q]
    [h b f]
    [g f cl
    sage: p = (a_*x^2 + 2*h_*x*y + b_*y^2 +
                 2*g_*x*z + 2*f_*y*z + c_*z^2)
    sage: Q_ = invariant_theory.ternary_quadratic(p, [x,y,z])
    sage: Q_.matrix()
    [a_ h_ q_]
    [h_ b_ f_]
    [g_ f_ c_]
    sage: QQ_ = Q.covariant_conic(Q_)
    sage: invariant_theory.ternary_quadratic(QQ_, [x,y,z]).matrix()
           b_*c + b*c_ - 2*f*f_ f_*g + f*g_ - c_*h - c*h_ -b_*g - b*g_ + f_*h + f*h_]
    [f_*g + f*g_ - c_*h - c*h_]
                                    a_*c + a*c_ - 2*g*g_ -a_*f - a*f_ + g_*h + g*h_]
    [-b_*q - b*q_ + f_*h + f*h_ -a_*f - a*f_ + q_*h + q*h_ ]
                                                                  a_*b + a*b_ - 2*h*h_]
monomials()
    List the basis monomials of the form.
    OUTPUT:
    A tuple of monomials. They are in the same order as coeffs ().
    EXAMPLES:
    sage: R. \langle x, y, z \rangle = QQ[]
    sage: quadratic = invariant_theory.ternary_quadratic(x^2+y*z)
    sage: quadratic.monomials()
    (x^2, y^2, z^2, x*y, x*z, y*z)
scaled_coeffs()
    Return the scaled coefficients of a quadratic.
    Given
                        p(x,y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}
    this function returns a = (a_{20}, a_{02}, a_{00}, a_{11}/2, a_{10}/2, a_{01}/2,)
    EXAMPLES:
    sage: R.\langle x, y, z, a20, a11, a02, a10, a01, a00 \rangle = QQ[]
    sage: p = (a20*x^2 + a11*x*y + a02*y^2 +
                 a10*x*z + a01*y*z + a00*z^2)
    . . .
    sage: invariant_theory.ternary_quadratic(p, x,y,z).scaled_coeffs()
    (a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)
    sage: invariant_theory.ternary_quadratic(p.subs(z=1), x, y).scaled_coeffs()
    (a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)
```

```
class sage.rings.invariant_theory.TwoAlgebraicForms (forms)
    Bases: sage.rings.invariant theory.SeveralAlgebraicForms
    The Python constructor.
    TESTS:
    sage: from sage.rings.invariant_theory import AlgebraicForm, SeveralAlgebraicForms
    sage: R.\langle x, y, z \rangle = QQ[]
    sage: p = AlgebraicForm(2, 2, x^2 + y^2)
    sage: q = AlgebraicForm(2, 3, x^3 + y^3)
    sage: r = AlgebraicForm(3, 3, x^3 + y^3 + z^3)
    sage: pq = SeveralAlgebraicForms([p, q])
    sage: pr = SeveralAlgebraicForms([p, r])
    Traceback (most recent call last):
    ValueError: All forms must be in the same variables.
    first()
         Return the first of the two forms.
         OUTPUT:
         The first algebraic form used in the definition.
         EXAMPLES:
         sage: R. < x, y > = QQ[]
         sage: q0 = invariant_theory.quadratic_form(x^2 + y^2)
         sage: q1 = invariant_theory.quadratic_form(x*y)
         sage: from sage.rings.invariant_theory import TwoAlgebraicForms
         sage: q = TwoAlgebraicForms([q0, q1])
         sage: q.first() is q0
         True
         sage: q.get_form(0) is q0
         sage: q.first().polynomial()
         x^2 + v^2
    second()
         Return the second of the two forms.
         OUTPUT:
         The second form used in the definition.
         EXAMPLES:
         sage: R. \langle x, y \rangle = QQ[]
         sage: q0 = invariant_theory.quadratic_form(x^2 + y^2)
         sage: q1 = invariant_theory.quadratic_form(x*y)
         sage: from sage.rings.invariant_theory import TwoAlgebraicForms
         sage: q = TwoAlgebraicForms([q0, q1])
         sage: q.second() is q1
         sage: q.get_form(1) is q1
         sage: q.second().polynomial()
         х*У
class sage.rings.invariant_theory.TwoQuaternaryQuadratics(forms)
    Bases: sage.rings.invariant_theory.TwoAlgebraicForms
```

Invariant theory of two quaternary quadratics.

You should use the invariant\_theory factory object to construct instances of this class. See quaternary\_biquadratics() for details.

#### REFERENCES:

```
TESTS:
```

```
sage: R. \langle w, x, y, z \rangle = QQ[]
sage: inv = invariant_theory.quaternary_biquadratic(w^2 + x^2, y^2 + z^2, w, x, y, z)
sage: inv
Joint quaternary quadratic with coefficients (1, 1, 0, 0, 0, 0, 0, 0, 0, 0) and
quaternary quadratic with coefficients (0, 0, 1, 1, 0, 0, 0, 0, 0, 0)
sage: TestSuite(inv).run()
sage: q1 = 73 \times x^2 + 96 \times x \times y - 11 \times y^2 - 74 \times x \times z - 10 \times y \times z + 66 \times z^2 + 4 \times x + 63 \times y - 11 \times z + 57
sage: q2 = 61 \times x^2 - 100 \times x \times y - 72 \times y^2 - 38 \times x \times z + 85 \times y \times z + 95 \times z^2 - 81 \times x + 39 \times y + 23 \times z - 7
sage: biquadratic = invariant_theory.quaternary_biquadratic(q1, q2, [x,y,z]).homogenized()
sage: biquadratic._check_covariant('Delta_invariant', invariant=True)
sage: biquadratic._check_covariant('Delta_prime_invariant', invariant=True)
sage: biquadratic._check_covariant('Theta_invariant', invariant=True)
sage: biquadratic._check_covariant('Theta_prime_invariant', invariant=True)
sage: biquadratic._check_covariant('Phi_invariant', invariant=True)
sage: biquadratic._check_covariant('T_covariant')
sage: biquadratic._check_covariant('T_prime_covariant')
sage: biquadratic._check_covariant('J_covariant')
```

## Delta\_invariant()

Return the  $\Delta$  invariant.

# **EXAMPLES:**

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=Falsesage: q.Delta_invariant() == coeffs[4]
True
```

## Delta\_prime\_invariant()

Return the  $\Delta'$  invariant.

# **EXAMPLES:**

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=Falsesage: q.Delta_prime_invariant() == coeffs[0]
True
```

# J\_covariant()

The J-covariant.

This is the Jacobian determinant of the two biquadratics, the T-covariant, and the T'-covariant with respect

to the four homogeneous variables.

## **EXAMPLES:**

```
sage: R.<w,x,y,z,a0,a1,a2,a3,A0,A1,A2,A3> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3*w^2
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3*w^2
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [w, x, y, z])
sage: q.J_covariant().factor()
z * y * x * w * (a3*A2 - a2*A3) * (a3*A1 - a1*A3) * (-a2*A1 + a1*A2)
* (a3*A0 - a0*A3) * (-a2*A0 + a0*A2) * (-a1*A0 + a0*A1)
```

#### Phi invariant()

Return the  $\Phi'$  invariant.

## **EXAMPLES:**

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=Falsesage: q.Phi_invariant() == coeffs[2]
True
```

## T covariant()

The T-covariant.

# EXAMPLES:

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: T = invariant_theory.quaternary_quadratic(q.T_covariant(), [x,y,z]).matrix()
sage: M = q[0].matrix().adjoint() + t*q[1].matrix().adjoint()
sage: M = M.adjoint().apply_map(  # long time (4s on my thinkpad W530)
...: lambda m: m.coefficient(t))
sage: M == q.Delta_invariant()*T  # long time
```

# T\_prime\_covariant()

The T'-covariant.

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: Tprime = invariant_theory.quaternary_quadratic(
...: q.T_prime_covariant(), [x,y,z]).matrix()
sage: M = q[0].matrix().adjoint() + t*q[1].matrix().adjoint()
sage: M = M.adjoint().apply_map(  # long time (4s on my thinkpad W530)
...: lambda m: m.coefficient(t^2))
sage: M == q.Delta_prime_invariant() * Tprime # long time
```

True

## Theta\_invariant()

Return the  $\Theta$  invariant.

## **EXAMPLES:**

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=Falsesage: q.Theta_invariant() == coeffs[3]
True
```

## Theta\_prime\_invariant()

Return the  $\Theta'$  invariant.

## **EXAMPLES:**

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=Falsesage: q.Theta_prime_invariant() == coeffs[1]
True
```

# $syzygy (Delta, Theta, Phi, Theta\_prime, Delta\_prime, U, V, T, T\_prime, J)$

Return the syzygy evaluated on the invariants and covariants.

## INPUT:

•Delta, Theta, Phi, Theta\_prime, Delta\_prime, U, V, T, T\_prime, J - polynomials from the same polynomial ring.

## **OUTPUT**:

Zero if the U is the first polynomial, V the second polynomial, and the remaining input are the invariants and covariants of a quaternary biquadratic.

```
sage: R.<w,x,y,z> = QQ[]
sage: monomials = [x^2, x*y, y^2, x*z, y*z, z^2, x*w, y*w, z*w, w^2]
sage: def q_rnd(): return sum(randint(-1000,1000)*m for m in monomials)
sage: biquadratic = invariant_theory.quaternary_biquadratic(q_rnd(), q_rnd())
sage: Delta = biquadratic.Delta_invariant()
sage: Theta = biquadratic.Theta_invariant()
sage: Phi = biquadratic.Phi_invariant()
sage: Theta_prime = biquadratic.Theta_prime_invariant()
sage: Delta_prime = biquadratic.Delta_prime_invariant()
sage: U = biquadratic.first().polynomial()
sage: V = biquadratic.second().polynomial()
sage: T_prime = biquadratic.T_covariant()
sage: J = biquadratic.J_covariant()
```

```
sage: biquadratic.syzygy(Delta, Theta, Phi, Theta_prime, Delta_prime, U, V, T, T_prime, J)
0
```

If the arguments are not the invariants and covariants then the output is some (generically non-zero) polynomial:

```
sage: biquadratic.syzygy(1, 1, 1, 1, 1, 1, 1, 1, x) -x^2 + 1
```

## class sage.rings.invariant\_theory.TwoTernaryQuadratics(forms)

```
Bases: sage.rings.invariant_theory.TwoAlgebraicForms
```

Invariant theory of two ternary quadratics.

You should use the invariant\_theory factory object to construct instances of this class. See ternary\_biguadratics() for details.

## **REFERENCES:**

#### TESTS:

```
sage: R.<x,y,z> = QQ[]
sage: inv = invariant_theory.ternary_biquadratic(x^2+y^2+z^2, x*y+y*z+x*z, [x, y, z])
sage: inv

Joint ternary quadratic with coefficients (1, 1, 1, 0, 0, 0) and ternary
quadratic with coefficients (0, 0, 0, 1, 1, 1)
sage: TestSuite(inv).run()

sage: q1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: q2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: biquadratic = invariant_theory.ternary_biquadratic(q1, q2, [x,y]).homogenized()
sage: biquadratic._check_covariant('Delta_invariant', invariant=True)
sage: biquadratic._check_covariant('Theta_invariant', invariant=True)
sage: biquadratic._check_covariant('Theta_invariant', invariant=True)
sage: biquadratic._check_covariant('Theta_prime_invariant', invariant=True)
sage: biquadratic._check_covariant('J_covariant')
```

## Delta invariant()

Return the  $\Delta$  invariant.

## **EXAMPLES:**

```
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=Falsesage: q.Delta_invariant() == coeffs[3]
True
```

## Delta\_prime\_invariant()

Return the  $\Delta'$  invariant.

```
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
```

```
sage: q.Delta_prime_invariant() == coeffs[0]
True
```

## F\_covariant()

Return the F covariant.

#### **EXAMPLES:**

```
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y> = QQ[]
sage: p1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: p2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
sage: q.F_covariant()
-32566577*x^2 + 29060637/2*x*y + 20153633/4*y^2 -
30250497/2*x - 241241273/4*y - 323820473/16
```

## J\_covariant()

Return the J covariant.

## **EXAMPLES:**

```
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y> = QQ[]
sage: p1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: p2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
sage: q.J_covariant()
1057324024445*x^3 + 1209531088209*x^2*y + 942116599708*x*y^2 + 984553030871*y^3 + 543715345505/2*x^2 - 3065093506021/2*x*y + 755263948570*y^2 - 1118430692650*x - 509948695327/4*y + 3369951531745/8
```

## Theta invariant()

Return the  $\Theta$  invariant.

## **EXAMPLES:**

```
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=Falsesage: q.Theta_invariant() == coeffs[2]
True
```

# Theta\_prime\_invariant()

Return the  $\Theta'$  invariant.

## **EXAMPLES:**

```
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=Falsesage: q.Theta_prime_invariant() == coeffs[1]
True
```

## syzygy (Delta, Theta, Theta\_prime, Delta\_prime, S, S\_prime, F, J)

Return the syzygy evaluated on the invariants and covariants.

INPUT:

•Delta, Theta, Theta\_prime, Delta\_prime, S, S\_prime, F, J - polynomials from the same polynomial ring.

#### **OUTPUT:**

Zero if S is the first polynomial, S\_prime the second polynomial, and the remaining input are the invariants and covariants of a ternary biquadratic.

#### **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: monomials = [x^2, x*y, y^2, x*z, y*z, z^2]
sage: def q_rnd(): return sum(randint(-1000,1000)*m for m in monomials)
sage: biquadratic = invariant_theory.ternary_biquadratic(q_rnd(), q_rnd(), [x,y,z])
sage: Delta = biquadratic.Delta_invariant()
sage: Theta = biquadratic.Theta_invariant()
sage: Theta_prime = biquadratic.Theta_prime_invariant()
sage: Delta_prime = biquadratic.Delta_prime_invariant()
sage: S = biquadratic.first().polynomial()
sage: S_prime = biquadratic.second().polynomial()
sage: F = biquadratic.F_covariant()
sage: J = biquadratic.J_covariant()
sage: biquadratic.syzygy(Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J)
```

If the arguments are not the invariants and covariants then the output is some (generically non-zero) polynomial:

```
sage: biquadratic.syzygy(1, 1, 1, 1, 1, 1, x) 1/64*x^2 + 1
```

# 3.3 Educational Versions of Groebner Basis and Related Algorithms

# 3.3.1 Educational Versions of Groebner Basis Algorithms.

Following [BW93] the original Buchberger algorithm (c.f. algorithm GROEBNER in [BW93]) and an improved version of Buchberger's algorithm (c.g. algorithm GROEBNERNEW2 in [BW93]) are implemented.

No attempt was made to optimize either algorithm as the emphasis of these implementations is a clean and easy presentation. To compute a Groebner basis in Sage efficiently use the sage.rings.polynomial.multi\_polynomial\_ideal.MPolynomialIdeal.groebner\_basis() method on multivariate polynomial objects.

**Note:** The notion of 'term' and 'monomial' in [BW93] is swapped from the notion of those words in Sage (or the other way around, however you prefer it). In Sage a term is a monomial multiplied by a coefficient, while in [BW93] a monomial is a term multiplied by a coefficient. Also, what is called LM (the leading monomial) in Sage is called HT (the head term) in [BW93].

#### **EXAMPLES:**

Consider Katsura-6 w.r.t. a degrevlex ordering.:

```
sage: from sage.rings.polynomial.toy_buchberger import *
sage: P.<a,b,c,e,f,g,h,i,j,k> = PolynomialRing(GF(32003),10)
sage: I = sage.rings.ideal.Katsura(P,6)
sage: g1 = buchberger(I)
```

```
sage: g3 = I.groebner_basis()
 All algorithms actually compute a Groebner basis:
 sage: Ideal(g1).basis_is_groebner()
 True
 sage: Ideal(g2).basis_is_groebner()
 sage: Ideal(g3).basis_is_groebner()
 True
 The results are correct:
 sage: Ideal(g1) == Ideal(g2) == Ideal(g3)
 True
 If get_verbose() is >= 1 a protocol is provided:
 sage: set_verbose(1)
 sage: P. < a, b, c > = PolynomialRing(GF(127), 3)
 sage: I = sage.rings.ideal.Katsura(P)
 // sage... ideal
 sage: I
 Ideal (a + 2*b + 2*c - 1, a^2 + 2*b^2 + 2*c^2 - a, 2*a*b + 2*b*c - b) of Multivariate Polynomial Ringer Pol
The original Buchberger algorithm performs 15 useless reductions to zero for this example:
 sage: buchberger(I)
  (a + 2*b + 2*c - 1, a^2 + 2*b^2 + 2*c^2 - a) => -2*b^2 - 6*b*c - 6*c^2 + b + 2*c
 G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*b*c - 6*c^2 + b + 2*b*
  (a^2 + 2*b^2 + 2*c^2 - a, a + 2*b + 2*c - 1) => 0
 G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 3
  (a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b) => -5*b*c - 6*c^2 - 63*b + 2*c
 G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, -5*b*c - 6*c^2 - 63*b + 2*c, a^2 + 2*b^2 + 2*c^2 - a, -6*c^2 - 6*c^2 -
  (2*a*b + 2*b*c - b, a + 2*b + 2*c - 1) => 0
 G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, -5*b*c - 6*c^2 - 63*b + 2*c, a^2 + 2*b^2 + 2*c^2 - a, -5*b*c - 6*c^2 - 6
  (2*a*b + 2*b*c - b, -5*b*c - 6*c^2 - 63*b + 2*c) => -22*c^3 + 24*c^2 - 60*b - 62*c
 G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
  (2*a*b + 2*b*c - b, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) => 0
 G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
```

G:  $set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b$ 

G:  $set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b$ 

G:  $set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b$ 

 $(-2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c) => 0$ 

 $(a + 2*b + 2*c - 1, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) => 0$ 

 $(2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a) => 0$ 

 $(a^2 + 2*b^2 + 2*c^2 - a, 2*a*b + 2*b*c - b) => 0$ 

sage: g2 = buchberger\_improved(I)

```
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
   (a + 2*b + 2*c - 1, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
 G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
   (a^2 + 2*b^2 + 2*c^2 - a, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
 G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
   (-5*b*c - 6*c^2 - 63*b + 2*c, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
   (a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
 G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
   (a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
     (-2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
 G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
   (2*a*b + 2*b*c - b, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
 G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
   (a^2 + 2*b^2 + 2*c^2 - a, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
 G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b
15 reductions to zero.
   [a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b]
```

## The 'improved' Buchberger algorithm in contrast only performs 3 reductions to zero:

```
sage: buchberger_improved(I)
(b^2 - 26*c^2 - 51*b + 51*c, b*c + 52*c^2 + 38*b + 25*c) => 11*c^3 - 12*c^2 + 30*b + 31*c
G: set([a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, 11*c^3 - 12*c^2 + 30*b + 31*c, b*c + 52*c^2 +
(11*c^3 - 12*c^2 + 30*b + 31*c, b*c + 52*c^2 + 38*b + 25*c) => 0
G: set([a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, 11*c^3 - 12*c^2 + 30*b + 31*c, b*c + 52*c^2 +
1 reductions to zero.
[a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, c^3 + 22*c^2 - 55*b + 49*c, b*c + 52*c^2 + 38*b + 25*c^2
```

#### REFERENCES:

## **AUTHOR:**

- Martin Albrecht (2007-05-24): initial version
- Marshall Hampton (2009-07-08): some doctest additions

```
sage.rings.polynomial.toy_buchberger.\mathbf{LCM}(f,g) sage.rings.polynomial.toy_buchberger.\mathbf{LM}(f) sage.rings.polynomial.toy_buchberger.\mathbf{LT}(f) sage.rings.polynomial.toy_buchberger.\mathbf{buchberger}(F) The original version of Buchberger's algorithm as presented in [BW93], page 214. INPUT:
```

•F - an ideal in a multivariate polynomial ring

## **OUTPUT:**

a Groebner basis for F

Note: The verbosity of this function may be controlled with a set\_verbose() call. Any value >=1 will result in this function printing intermediate bases.

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.toy_buchberger import buchberger
sage: R. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
sage: set_verbose(0)
sage: buchberger(R.ideal([x^2 - z - 1, z^2 - y - 1, x*y^2 - x - 1]))
[-y^3 + x*z - x + y, y^2*z + y^2 - x - z - 1, x*y^2 - x - 1, x^2 - z - 1, z^2 - y - 1]
```

sage.rings.polynomial.toy\_buchberger.buchberger\_improved(F)

An improved version of Buchberger's algorithm as presented in [BW93], page 232.

This variant uses the Gebauer-Moeller Installation to apply Buchberger's first and second criterion to avoid useless pairs.

## INPUT:

•F - an ideal in a multivariate polynomial ring

#### **OUTPUT:**

a Groebner basis for F

Note: The verbosity of this function may be controlled with a set\_verbose() call. Any value >=1 will result in this function printing intermediate Groebner bases.

```
sage: from sage.rings.polynomial.toy_buchberger import buchberger_improved
     sage: R. \langle x, y, z \rangle = PolynomialRing(QQ, 3)
     sage: set_verbose(0)
     sage: buchberger_improved(R.ideal([x^4-y-z,x*y*z-1]))
     [x*y*z - 1, x^3 - y^2*z - y*z^2, y^3*z^2 + y^2*z^3 - x^2]
sage.rings.polynomial.toy_buchberger.inter_reduction(Q)
     If Q is the set (f_1,...,f_n) this method returns (g_1,...,g_s) such that:
         \bullet < f_1, ..., f_n > = < g_1, ..., g_s >
         •LM(g_i)! = LM(g_i) for all i! = j
         •LM(g_i) does not divide m for all monomials m of \{g_1,...,g_{i-1},g_{i+1},...,g_s\}
         •LC(g_i) == 1 for all i.
     INPUT:
         •Q - a set of polynomials
     EXAMPLES:
     sage: from sage.rings.polynomial.toy_buchberger import inter_reduction
     sage: inter_reduction(set())
     set()
     sage: P.\langle x, y \rangle = QQ[]
     sage: reduced = inter_reduction(set([x^2-5*y^2, x^3]))
```

```
sage: reduced == set([x*y^2, x^2-5*y^2])
     sage: reduced == inter_reduction(set([2*(x^2-5*y^2),x^3]))
     True
sage.rings.polynomial.toy_buchberger.select(P)
     The normal selection strategy
     INPUT:
         •P - a list of critical pairs
     OUTPUT:
         an element of P
     EXAMPLES:
     sage: from sage.rings.polynomial.toy_buchberger import select
     sage: R.<x,y,z> = PolynomialRing(QQ,3, order='lex')
     sage: ps = [x^3 - z - 1, z^3 - y - 1, x^5 - y - 2]
     sage: pairs = [[ps[i],ps[j]] for i in range(3) for j in range(i+1,3)]
     sage: select(pairs)
     [x^3 - z - 1, -y + z^3 - 1]
sage.rings.polynomial.toy_buchberger.spol (f, g)
     Computes the S-polynomial of f and g.
     INPUT:
         •f, q - polynomials
     OUTPUT:
         •The S-polynomial of f and g.
     EXAMPLES:
     sage: R.\langle x, y, z \rangle = PolynomialRing(QQ, 3)
     sage: from sage.rings.polynomial.toy_buchberger import spol
     sage: spol (x^2 - z - 1, z^2 - y - 1)
     x^2*y - z^3 + x^2 - z^2
sage.rings.polynomial.toy_buchberger.update (G, B, h)
     Update G using the list of critical pairs B and the polynomial h as presented in [BW93], page 230. For this,
     Buchberger's first and second criterion are tested.
     This function implements the Gebauer-Moeller Installation.
     INPUT:
         •G - an intermediate Groebner basis
         •B - a list of critical pairs
         •h - a polynomial
     OUTPUT:
          a tuple of an intermediate Groebner basis and a list of critical pairs
     EXAMPLES:
```

410

```
sage: from sage.rings.polynomial.toy_buchberger import update
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: set_verbose(0)
sage: update(set(),set(),x*y*z)
({x*y*z}, set())
sage: G,B = update(set(),set(),x*y*z-1)
sage: G,B = update(G,B,x*y^2-1)
sage: G,B
({x*y*z - 1, x*y^2 - 1}, {(x*y^2 - 1, x*y*z - 1)})
```

# 3.3.2 Educational Versions of Groebner Basis Algorithms: Triangular Factorization.

In this file is the implementation of two algorithms in [Laz92].

The main algorithm is Triangular; a secondary algorithm, necessary for the first, is ElimPolMin. As per Lazard's formulation, the implementation works with any term ordering, not only lexicographic.

Lazard does not specify a few of the subalgorithms implemented as the functions

- is\_triangular,
- is\_linearly\_dependent, and
- linear representation.

The implementations are not hard, and the choice of algorithm is described with the relevant function.

No attempt was made to optimize these algorithms as the emphasis of this implementation is a clean and easy presentation.

Examples appear with the appropriate function.

## **AUTHORS:**

• John Perry (2009-02-24): initial version, but some words of documentation were stolen shamelessly from Martin Albrecht's toy\_buchberger.py.

## **REFERENCES:**

```
sage.rings.polynomial.toy_variety.coefficient_matrix(polys)
```

Generates the matrix M whose entries are the coefficients of polys. The entries of row i of M consist of the coefficients of polys[i].

## INPUT:

•polys - a list/tuple of polynomials

## **OUTPUT:**

A matrix M of the coefficients of polys.

## **EXAMPLE:**

```
sage: from sage.rings.polynomial.toy_variety import coefficient_matrix
sage: R.<x,y> = PolynomialRing(QQ)
sage: coefficient_matrix([x^2 + 1, y^2 + 1, x*y + 1])
[1 0 0 1]
[0 0 1 1]
[0 1 0 1]
```

**Note:** This function may be merged with sage.rings.polynomial.multi\_polynomial\_sequence.Polynomials in the future.

```
sage.rings.polynomial.toy_variety.elim_pol(B, n=-1)
```

Finds the unique monic polynomial of lowest degree and lowest variable in the ideal described by B.

For the purposes of the triangularization algorithm, it is necessary to preserve the ring, so n specifies which variable to check. By default, we check the last one, which should also be the smallest.

The algorithm may not work if you are trying to cheat: B should describe the Groebner basis of a zero-dimensional ideal. However, it is not necessary for the Groebner basis to be lexicographic.

The algorithm is taken from a 1993 paper by Lazard [Laz92].

## INPUT:

- •B a list/tuple of polynomials or a multivariate polynomial ideal
- •n the variable to check (see above) (default: -1)

## **EXAMPLE:**

```
sage: set_verbose(0)
sage: from sage.rings.polynomial.toy_variety import elim_pol
sage: R.<x,y,z> = PolynomialRing(GF(32003))
sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
sage: p2 = z^2 - z
sage: p3 = (x-2)^2*(y-1)^3
sage: I = R.ideal(p1,p2,p3)
sage: elim_pol(I.groebner_basis())
z^2 - z
```

```
sage.rings.polynomial.toy_variety.is_linearly_dependent(polys)
```

Decides whether the polynomials of polys are linearly dependent. Here polys is a collection of polynomials.

The algorithm creates a matrix of coefficients of the monomials of polys. It computes the echelon form of the matrix, then checks whether any of the rows is the zero vector.

Essentially this relies on the fact that the monomials are linearly independent, and therefore is building a linear map from the vector space of the monomials to the canonical basis of R^n, where n is the number of distinct monomials in polys. There is a zero vector iff there is a linear dependence among polys.

The case where polys=[] is considered to be not linearly dependent.

#### INPUT:

•polys - a list/tuple of polynomials

## **OUTPUT:**

True if the elements of polys are linearly dependent; False otherwise.

```
sage: from sage.rings.polynomial.toy_variety import is_linearly_dependent
sage: R.<x,y> = PolynomialRing(QQ)
sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
sage: p = 3*B[0] - 2*B[1] + B[2]
sage: is_linearly_dependent(B + [p])
True
sage: p = x*B[0]
sage: is_linearly_dependent(B + [p])
False
sage: is_linearly_dependent([])
```

```
sage.rings.polynomial.toy_variety.is_triangular(B)
```

Check whether the basis B of an ideal is triangular. That is: check whether the largest variable in B[i] with respect to the ordering of the base ring R is R.gens () [i].

The algorithm is based on the definition of a triangular basis, given by Lazard in 1992 in [Laz92].

## INPUT:

•B - a list/tuple of polynomials or a multivariate polynomial ideal

#### **OUTPUT:**

True if the basis is triangular; False otherwise.

## **EXAMPLE:**

```
sage: from sage.rings.polynomial.toy_variety import is_triangular
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: p1 = x^2*y + z^2
sage: p2 = y*z + z^3
sage: p3 = y+z
sage: is_triangular(R.ideal(p1,p2,p3))
False
sage: p3 = z^2 - 3
sage: is_triangular(R.ideal(p1,p2,p3))
True
```

```
sage.rings.polynomial.toy_variety.linear_representation(p, polys)
```

Assuming that p is a linear combination of polys, determines coefficients that describe the linear combination. This probably doesn't work for any inputs except p, a polynomial, and polys, a sequence of polynomials. If p is not in fact a linear combination of polys, the function raises an exception.

The algorithm creates a matrix of coefficients of the monomials of polys and p, with the coefficients of p in the last row. It augments this matrix with the appropriate identity matrix, then computes the echelon form of the augmented matrix. The last row should contain zeroes in the first columns, and the last columns contain a linear dependence relation. Solving for the desired linear relation is straightforward.

## INPUT:

```
•p - a polynomial
```

•polys - a list/tuple of polynomials

## **OUTPUT:**

```
If n == len(polys), returns [a[0], a[1], ..., a[n-1]] such that p == a[0] * poly[0] + ... + a[n-1] * poly[n-1].
```

#### **EXAMPLE:**

```
sage: from sage.rings.polynomial.toy_variety import linear_representation
sage: R.<x,y> = PolynomialRing(GF(32003))
sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
sage: p = 3*B[0] - 2*B[1] + B[2]
sage: linear_representation(p, B)
[3, 32001, 1]
```

```
\verb|sage.rings.polynomial.toy_variety.triangular_factorization| (B, n=-1)
```

Compute the triangular factorization of the Groebner basis B of an ideal.

This will not work properly if B is not a Groebner basis!

The algorithm used is that described in a 1992 paper by Daniel Lazard [Laz92]. It is not necessary for the term ordering to be lexicographic.

## INPUT:

- •B a list/tuple of polynomials or a multivariate polynomial ideal
- •n the recursion parameter (default: -1)

## **OUTPUT:**

A list T of triangular sets T 0, T 1, etc.

#### **EXAMPLE:**

```
sage: set_verbose(0)
sage: from sage.rings.polynomial.toy_variety import triangular_factorization
sage: R.<x,y,z> = PolynomialRing(GF(32003))
sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
sage: p2 = z^2 - z
sage: p3 = (x-2)^2*(y-1)^3
sage: I = R.ideal(p1,p2,p3)
sage: triangular_factorization(I.groebner_basis())
[[x^2 - 4*x + 4, y, z],
[x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z],
[x^2 - 4*x + 4, y, z - 1],
[x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z - 1]]
```

# 3.3.3 Educational version of the *d*-Groebner Basis Algorithm over PIDs.

No attempt was made to optimize this algorithm as the emphasis of this implementation is a clean and easy presentation.

**Note:** The notion of 'term' and 'monomial' in [BW93] is swapped from the notion of those words in Sage (or the other way around, however you prefer it). In Sage a term is a monomial multiplied by a coefficient, while in [BW93] a monomial is a term multiplied by a coefficient. Also, what is called LM (the leading monomial) in Sage is called HT (the head term) in [BW93].

## **EXAMPLE:**

```
sage: from sage.rings.polynomial.toy_d_basis import d_basis
```

First, consider an example from arithmetic geometry:

```
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: B.<X,Y> = PolynomialRing(Rationals(),2)
sage: f = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: I = B.ideal([B(f),B(fx),B(fy)])
sage: I.groebner_basis()
[1]
```

Since the output is 1, we know that there are no generic singularities.

To look at the singularities of the arithmetic surface, we need to do the corresponding computation over Z:

```
sage: I = A.ideal([f,fx,fy])
sage: gb = d_basis(I); gb
[x - 2020, y - 11313, 22627]
```

```
sage: gb[-1].factor() 11^3 * 17
```

This Groebner Basis gives a lot of information. First, the only fibers (over  $\mathbb{Z}$ ) that are not smooth are at 11 = 0, and 17 = 0. Examining the Groebner Basis, we see that we have a simple node in both the fiber at 11 and at 17. From the factorization, we see that the node at 17 is regular on the surface (an  $I_1$  node), but the node at 11 is not. After blowing up this non-regular point, we find that it is an  $I_3$  node.

Another example. This one is from the Magma Handbook:

```
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
sage: I = ideal( x^2 - 1, y^2 - 1, 2*x*y - z)
sage: I = Ideal(d_basis(I))
sage: x.reduce(I)
x
sage: (2*x).reduce(I)
y*z
```

To compute modulo 4, we can add the generator 4 to our basis.:

```
sage: I = ideal( x^2 - 1, y^2 - 1, 2*x*y - z, 4)
sage: gb = d_basis(I)
sage: R = P.change_ring(IntegerModRing(4))
sage: gb = [R(f) for f in gb if R(f)]; gb
[x^2 - 1, x*z + 2*y, 2*x - y*z, y^2 - 1, z^2, 2*z]
```

A third example is also from the Magma Handbook.

This example shows how one can use Groebner bases over the integers to find the primes modulo which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal I in  $\mathbb{Z}[x, y, z]$ , and note that the Groebner basis of I over  $\mathbb{Q}$  contains 1, so there are no solutions over  $\mathbb{Q}$  or an algebraic closure of it (this is not surprising as there are 4 equations in 3 unknowns).:

```
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3)
sage: I = ideal( x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1 )
sage: I.change_ring( P.change_ring( RationalField() ) ).groebner_basis()
[1]
```

However, when we compute the Groebner basis of I (defined over **Z**), we note that there is a certain integer in the ideal which is not 1.:

```
sage: d_{basis}(I) # random -- waiting on upstream singular fixes at #6051 [x + 170269749119, y + 2149906854, z + ..., 282687803443]
```

Now for each prime p dividing this integer 282687803443, the Groebner basis of I modulo p will be non-trivial and will thus give a solution of the original system modulo p.:

```
sage: factor(282687803443)
101 * 103 * 27173681

sage: I.change_ring( P.change_ring( GF(101) ) ).groebner_basis()
[x + 19, y + 48, z - 33]

sage: I.change_ring( P.change_ring( GF(103) ) ).groebner_basis()
[x + 39, y + 8, z - 18]

sage: I.change_ring( P.change_ring( GF(27173681) ) ).groebner_basis()
[x - 536027, y + 3186055, z + 10380032]
```

Of course, modulo any other prime the Groebner basis is trivial so there are no other solutions. For example:

```
sage: I.change_ring( P.change_ring( GF(3) ) ).groebner_basis()
[1]
AUTHOR:
   • Martin Albrecht (2008-08): initial version
sage.rings.polynomial.toy_d_basis.LC(f)
sage.rings.polynomial.toy_d_basis.LM(f)
sage.rings.polynomial.toy d basis.d basis(F, strat=True)
     Return the d-basis for the Ideal F as defined in [BW93].
     INPUT:
        •F - an ideal
        •strat - use update strategy (default: True)
     EXAMPLE:
     sage: from sage.rings.polynomial.toy_d_basis import d_basis
     sage: A.<x,y> = PolynomialRing(ZZ, 2)
     sage: f = -y^2 - y + x^3 + 7*x + 1
     sage: fx = f.derivative(x)
     sage: fy = f.derivative(y)
     sage: I = A.ideal([f,fx,fy])
     sage: gb = d_basis(I); gb
     [x - 2020, y - 11313, 22627]
sage.rings.polynomial.toy_d_basis.gpol(g1, g2)
     Return G-Polynomial of q_1 and q_2.
     Let a_i t_i be LT(q_i), a = a_i * c_i + a_i * c_i with a = GCD(a_i, a_i), and s_i = t/t_i with t = LCM(t_i, t_i). Then
     the G-Polynomial is defined as: c_1s_1g_1 - c_2s_2g_2.
     INPUT:
        •g1 - polynomial
        •g2 - polynomial
     EXAMPLE:
     sage: from sage.rings.polynomial.toy_d_basis import gpol
     sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
     sage: f = x^2 - 1
     sage: g = 2 * x * y - z
     sage: gpol(f,g)
     x^2 + y - y
sage.rings.polynomial.toy_d_basis.select(P)
     The normal selection strategy.
     INPUT:
        •P - a list of critical pairs
     OUTPUT: an element of P
```

416

## **EXAMPLE:**

```
sage: from sage.rings.polynomial.toy_d_basis import select
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: f = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: G = [f, fx, fy]
sage: B = set(filter(lambda (x,y): x!=y, [(f1,f2) for f1 in G for f2 in G]))
sage: select(B)
(-2*y - 1, 3*x^2 + 7)
```

sage.rings.polynomial.toy\_d\_basis.**spol**(g1, g2)

Return S-Polynomial of g\_1 and g\_2.

Let  $a_i t_i$  be  $LT(g_i)$ ,  $b_i = a/a_i$  with  $a = LCM(a_i, a_j)$ , and  $s_i = t/t_i$  with  $t = LCM(t_i, t_j)$ . Then the S-Polynomial is defined as:  $b_1 s_1 g_1 - b_2 s_2 g_2$ .

#### INPUT:

- •q1 polynomial
- •q2 polynomial

#### **EXAMPLE:**

```
sage: from sage.rings.polynomial.toy_d_basis import spol
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
sage: f = x^2 - 1
sage: g = 2*x*y - z
sage: spol(f,g)
x*z - 2*y
```

```
sage.rings.polynomial.toy_d_basis.update (G, B, h)
```

Update G using the list of critical pairs B and the polynomial h as presented in [BW93], page 230. For this, Buchberger's first and second criterion are tested.

This function uses the Gebauer-Moeller Installation.

## INPUT:

- •G an intermediate Groebner basis
- •B a list of critical pairs
- •h a polynomial

**OUTPUT:** G, B where G and B are updated

```
sage: from sage.rings.polynomial.toy_d_basis import update
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: G = set([3*x^2 + 7, 2*y + 1, x^3 - y^2 + 7*x - y + 1])
sage: B = set([])
sage: h = x^2*y - x^2 + y - 3
sage: update(G,B,h)
({2*y + 1, 3*x^2 + 7, x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1},
{(x^2*y - x^2 + y - 3, 2*y + 1),
(x^2*y - x^2 + y - 3, 3*x^2 + 7),
(x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1)})
```

# **RATIONAL FUNCTIONS**

# 4.1 Fraction Field of Integral Domains

## **AUTHORS:**

- William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
- · Burcin Erocal

## **EXAMPLES:**

Quotienting is a constructor for an element of the fraction field:

```
sage: R.\langle x \rangle = QQ[]
sage: (x^2-1)/(x+1)
x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

The GCD is not taken (since it doesn't converge sometimes) in the inexact case:

```
sage: Z \cdot \langle z \rangle = CC[]
sage: I = CC.gen()
sage: (1+I+z)/(z+0.1*I)
(z + 1.00000000000000 + I)/(z + 0.100000000000000*I)
sage: (1+I*z)/(z+1.1)
(I*z + 1.00000000000000) / (z + 1.1000000000000)
TESTS:
sage: F = FractionField(IntegerRing())
sage: F == loads(dumps(F))
True
sage: F = FractionField(PolynomialRing(RationalField(),'x'))
sage: F == loads(dumps(F))
True
sage: F = FractionField(PolynomialRing(IntegerRing(),'x'))
sage: F == loads(dumps(F))
sage: F = FractionField(PolynomialRing(RationalField(),2,'x'))
sage: F == loads(dumps(F))
```

```
sage.rings.fraction_field.FractionField(R, names=None)
     Create the fraction field of the integral domain R.
     INPUT:
        •R – an integral domain
        •names - ignored
     EXAMPLES:
     We create some example fraction fields:
     sage: FractionField(IntegerRing())
     Rational Field
     sage: FractionField(PolynomialRing(RationalField(),'x'))
     Fraction Field of Univariate Polynomial Ring in x over Rational Field
     sage: FractionField(PolynomialRing(IntegerRing(),'x'))
     Fraction Field of Univariate Polynomial Ring in x over Integer Ring
     sage: FractionField(PolynomialRing(RationalField(),2,'x'))
     Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field
     Dividing elements often implicitly creates elements of the fraction field:
     sage: x = PolynomialRing(RationalField(), 'x').gen()
     sage: f = x/(x+1)
     sage: q = x**3/(x+1)
     sage: f/q
     1/x^2
     sage: q/f
     x^2
     The input must be an integral domain:
     sage: Frac(Integers(4))
     Traceback (most recent call last):
     TypeError: R must be an integral domain.
class sage.rings.fraction_field.FractionField_1poly_field(R, element_class=<class</pre>
                                                                     'sage.rings.fraction_field_element.FractionFieldEle
     Bases: sage.rings.fraction_field.FractionField_generic
     The fraction field of a univariate polynomial ring over a field.
     Many of the functions here are included for coherence with number fields.
     class number()
         Here for compatibility with number fields and function fields.
         EXAMPLES:
         sage: R.<t> = GF(5)[]; K = R.fraction_field()
         sage: K.class_number()
         1
     maximal_order()
         Returns the maximal order in this fraction field.
         EXAMPLES:
         sage: K = FractionField(GF(5)['t'])
```

sage: K.maximal\_order()

Univariate Polynomial Ring in t over Finite Field of size 5

```
ring_of_integers()
         Returns the ring of integers in this fraction field.
         EXAMPLES:
         sage: K = FractionField(GF(5)['t'])
         sage: K.ring_of_integers()
         Univariate Polynomial Ring in t over Finite Field of size 5
class sage.rings.fraction_field.FractionField_generic(R,
                                                                         element_class=<type</pre>
                                                                'sage.rings.fraction_field_element.FractionFieldElement'
                                                               category=Category of quotient
                                                               fields)
     Bases: sage.rings.ring.Field
     The fraction field of an integral domain.
     base_ring()
         Return the base ring of self; this is the base ring of the ring which this fraction field is the fraction field
         of.
         EXAMPLES:
         sage: R = Frac(ZZ['t'])
         sage: R.base_ring()
         Integer Ring
     characteristic()
         Return the characteristic of this fraction field.
         EXAMPLES:
         sage: R = Frac(ZZ['t'])
         sage: R.base_ring()
         Integer Ring
         sage: R = Frac(ZZ['t']); R.characteristic()
         sage: R = Frac(GF(5)['w']); R.characteristic()
     construction()
         EXAMPLES:
         sage: Frac(ZZ['x']).construction()
         (FractionField, Univariate Polynomial Ring in x over Integer Ring)
         sage: K = Frac(GF(3)['t'])
         sage: f, R = K.construction()
         sage: f(R)
         Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 3
         sage: f(R) == K
         True
     gen(i=0)
         Return the i-th generator of self.
         EXAMPLES:
         sage: R = Frac(PolynomialRing(QQ,'z',10)); R
```

Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over

sage: R.gen(3)

sage: R.0

7.0

```
z3
sage: R.3
z3
```

## is\_exact()

Return if self is exact which is if the underlying ring is exact.

## **EXAMPLES**:

```
sage: Frac(ZZ['x']).is_exact()
True
sage: Frac(CDF['x']).is_exact()
False
```

# is\_field(proof=True)

Return True, since the fraction field is a field.

## **EXAMPLES:**

```
sage: Frac(ZZ).is_field()
True
```

## is finite()

Tells whether this fraction field is finite.

**Note:** A fraction field is finite if and only if the associated integral domain is finite.

## EXAMPLE:

```
sage: Frac(QQ['a','b','c']).is_finite()
False
```

## ngens()

This is the same as for the parent object.

## **EXAMPLES:**

```
sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 ove
sage: R.ngens()
10
```

# random\_element (\*args, \*\*kwds)

Returns a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

### **EXAMPLES:**

```
sage: F = ZZ['x'].fraction_field()
sage: F.random_element() # random
(2*x - 8)/(-x^2 + x)

sage: f = F.random_element(degree=5)
sage: f.numerator().degree()
5
sage: f.denominator().degree()
```

# ring()

Return the ring that this is the fraction field of.

```
EXAMPLES:

sage: R = Frac(QQ['x,y'])

sage: R

Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field

sage: R.ring()

Multivariate Polynomial Ring in x, y over Rational Field

sage.rings.fraction_field.is_FractionField(x)

Test whether or not x inherits from FractionField_generic.

EXAMPLES:

sage: from sage.rings.fraction_field import is_FractionField

sage: is_FractionField(Frac(ZZ['x']))

True

sage: is_FractionField(QQ)

False
```

# 4.2 Fraction Field Elements

## **AUTHORS:**

- William Stein (input from David Joyner, David Kohel, and Joe Wetherell)
- Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici's algorithms [Ho72]

# REFERENCES:

```
class sage.rings.fraction_field_element.FractionFieldElement
    Bases: sage.structure.element.FieldElement
    EXAMPLES:
    sage: K = FractionField(PolynomialRing(QQ, 'x'))
    Fraction Field of Univariate Polynomial Ring in x over Rational Field
    sage: loads(K.dumps()) == K
    True
    sage: x = K.gen()
    sage: f = (x^3 + x)/(17 - x^19); f
     (x^3 + x) / (-x^19 + 17)
    sage: loads(f.dumps()) == f
    True
    TESTS:
    Test if trac ticket #5451 is fixed:
    sage: A = FiniteField(9,'theta')['t']
    sage: K.<t> = FractionField(A)
    sage: f = 2/(t^2+2*t); g = t^9/(t^18 + t^10 + t^2); f+g
     (2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + t^7 + t^6 + t^5 + t^4 + t^3 + t^2
    Test if trac ticket #8671 is fixed:
    sage: P.<n> = QQ[]
    sage: F = P.fraction_field()
    sage: P.one()/F.one()
    1
```

```
sage: F.one().quo_rem(F.one())
(1, 0)

denominator()
    Return the denominator of self.

EXAMPLES:
    sage: R.<x,y> = ZZ[]
    sage: f = x/y+1; f
    (x + y)/y
    sage: f.denominator()
    y
```

## is\_one()

Return True if this element is equal to one.

#### **EXAMPLES**:

```
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one()
True
sage: (x/y).is_one()
False
```

## is\_square(root=False)

Returns whether or not self is a perfect square. If the optional argument root is True, then also returns a square root (or None, if the fraction field element is not square).

## INPUT:

•root – whether or not to also return a square root (default: False)

## **OUTPUT**:

- •bool whether or not a square
- •object (optional) an actual square root if found, and None otherwise.

```
sage: R.<t> = QQ[]
sage: (1/t).is_square()
False
sage: (1/t^6).is_square()
True
sage: ((1+t)^4/t^6).is_square()
True
sage: (4*(1+t)^4/t^6).is_square()
True
sage: (2*(1+t)^4/t^6).is_square()
False
sage: ((1+t)/t^6).is_square()
False
sage: (4*(1+t)^4/t^6).is_square(root=True)
(True, (2*t^2 + 4*t + 2)/t^3)
sage: (2*(1+t)^4/t^6).is_square(root=True)
(False, None)
```

```
sage: a = 2*(x+1)^2 / (2*(x-1)^2); a
(2*x^2 + 4*x + 2)/(2*x^2 - 4*x + 2)
sage: a.numerator().is_square()
False
sage: a.is_square()
True
sage: (0/x).is_square()
```

## is\_zero()

Return True if this element is equal to zero.

## **EXAMPLES:**

```
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: t = F(0)/x
sage: t.is_zero()
True
sage: u = 1/x - 1/x
sage: u.is_zero()
True
sage: u.parent() is F
```

#### numerator()

Return the numerator of self.

## **EXAMPLES:**

```
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.numerator()
x + y
```

# ${\tt reduce}\,(\,)$

Divides out the gcd of the numerator and denominator.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must be called manually in that case.

# **EXAMPLES:**

```
sage: R.<x> = RealField(10)[]
sage: f = (x^2+2*x+1)/(x+1); f
(x^2 + 2.0*x + 1.0)/(x + 1.0)
sage: f.reduce(); f
x + 1.0
```

## valuation(v=None)

Return the valuation of self, assuming that the numerator and denominator have valuation functions defined on them.

```
sage: x = PolynomialRing(RationalField(),'x').gen()
sage: f = (x^3 + x)/(x^2 - 2*x^3)
sage: f
(x^2 + 1)/(-2*x^2 + x)
sage: f.valuation()
```

```
-1
                       sage: f.valuation(x^2+1)
class sage.rings.fraction_field_element.FractionFieldElement_1poly_field
            Bases: sage.rings.fraction_field_element.FractionFieldElement
            A fraction field element where the parent is the fraction field of a univariate polynomial ring.
            Many of the functions here are included for coherence with number fields.
            is_integral()
                      Returns whether this element is actually a polynomial.
                       EXAMPLES:
                       sage: R.<t> = QQ[]
                       sage: elt = (t^2 + t - 2) / (t + 2); elt # == (t + 2) * (t - 1) / (t + 2)
                      sage: elt.is_integral()
                      True
                       sage: elt = (t^2 - t) / (t+2); elt # == t*(t-1)/(t+2)
                       (t^2 - t)/(t + 2)
                       sage: elt.is_integral()
                       False
            support ()
                       Returns a sorted list of primes dividing either the numerator or denominator of this element.
                       EXAMPLES:
                       sage: R.<t> = QQ[]
                      sage: h = (t^14 + 2*t^12 - 4*t^11 - 8*t^9 + 6*t^8 + 12*t^6 - 4*t^5 - 8*t^3 + t^2 + 2)/(t^6 + 12*t^8 + 12*t^
                       sage: h.support()
                       [t - 1, t + 3, t^2 + 2, t^2 + t + 1, t^4 - 2]
sage.rings.fraction field element.is FractionFieldElement(x)
            Returns whether or not x is a :class'FractionFieldElement'.
            EXAMPLES:
            sage: from sage.rings.fraction_field_element import is_FractionFieldElement
            sage: R. < x > = ZZ[]
            sage: is_FractionFieldElement(x/2)
            False
            sage: is_FractionFieldElement(2/x)
            sage: is_FractionFieldElement(1/3)
            False
sage.rings.fraction_field_element.make_element(parent, numerator, denominator)
```

EXAMPLES:

```
sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y']
sage: x,y = R.gens()
sage: F = R.fraction_field()
sage: make_element(F, 1+x, 1+y)
(x + 1)/(y + 1)
```

Used for unpickling FractionFieldElement objects (and subclasses).

```
sage.rings.fraction_field_element.make_element_old(parent, cdict)
    Used for unpickling old FractionFieldElement pickles.
    EXAMPLES:
    sage: from sage.rings.fraction_field_element import make_element_old
    sage: R. < x, y > = ZZ[]
    sage: F = R.fraction_field()
    sage: make_element_old(F, {'_FractionFieldElement__numerator':x+y,'_FractionFieldElement__denomi
     (x + y)/(x - y)
4.3 Univariate rational functions over prime fields
class sage.rings.fraction_field_FpT.FpT(R, names=None)
    Bases: sage.rings.fraction field.FractionField 1poly field
    This class represents the fraction field GF(p)(T) for 2 .
    EXAMPLES:
    sage: R.<T> = GF(71)[]
    sage: K = FractionField(R); K
    Fraction Field of Univariate Polynomial Ring in T over Finite Field of size 71
    sage: 1-1/T
     (T + 70)/T
    sage: parent (1-1/T) is K
    iter(bound=None, start=None)
        EXAMPLES:
         sage: from sage.rings.fraction_field_FpT import *
         sage: R.<t> = FpT(GF(5)['t'])
         sage: list(R.iter(2))[350:355]
         [(t^2 + t + 1)/(t + 2),
          (t^2 + t + 2)/(t + 2),
          (t^2 + t + 4)/(t + 2),
          (t^2 + 2*t + 1)/(t + 2)
          (t^2 + 2*t + 2)/(t + 2)
class sage.rings.fraction_field_FpT.FpTElement
    Bases: sage.structure.element.RingElement
    An element of an FpT fraction field.
    denom()
         Returns the denominator of this element, as an element of the polynomial ring.
         EXAMPLES:
         sage: K = GF(11)['t'].fraction_field()
         sage: t = K.gen(0); a = (t + 1/t)^3 - 1
         sage: a.denom()
         t^3
    denominator()
```

Returns the denominator of this element, as an element of the polynomial ring.

```
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.denominator()
t^3

factor()
    EXAMPLES:
    sage: K = Frac(GF(5)['t'])
    sage: t = K.gen()
    sage: f = 2 * (t+1) * (t^2+t+1)^2 / (t-1)
    sage: factor(f)
    (2) * (t + 4)^-1 * (t + 1) * (t^2 + t + 1)^2
```

## is\_square()

Returns True if this element is the square of another element of the fraction field.

## **EXAMPLES:**

```
sage: K = GF(13)['t'].fraction_field(); t = K.gen()
sage: t.is_square()
False
sage: (1/t^2).is_square()
True
sage: K(0).is_square()
```

## next()

This function iterates through all polynomials, returning the "next" polynomial after this one.

The strategy is as follows:

- •We always leave the denominator monic.
- •We progress through the elements with both numerator and denominator monic, and with the denominator less than the numerator. For each such, we output all the scalar multiples of it, then all of the scalar multiples of its inverse.
- •So if the leading coefficient of the numerator is less than p-1, we scale the numerator to increase it by
- •Otherwise, we consider the multiple with numerator and denominator monic.
  - -If the numerator is less than the denominator (lexicographically), we return the inverse of that element.
  - -If the numerator is greater than the denominator, we invert, and then increase the numerator (remaining monic) until we either get something relatively prime to the new denominator, or we reach the new denominator. In this case, we increase the denominator and set the numerator to 1.

```
2/t
2*t
1/(t + 1)
2/(t + 1)
t + 1
2*t + 2
t/(t + 1)
2*t/(t + 1)
(t + 1)/t
(2*t + 2)/t
1/(t + 2)
2/(t + 2)
t + 2
2*t + 1
t/(t + 2)
2*t/(t + 2)
(t + 2)/t
(2*t + 1)/t
(t + 1)/(t + 2)
(2*t + 2)/(t + 2)
(t + 2) / (t + 1)
(2*t + 1)/(t + 1)
1/t^2
2/t^2
t^2
2*t^2
```

# numer()

Returns the numerator of this element, as an element of the polynomial ring.

## **EXAMPLES:**

```
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.numer()
t^6 + 3*t^4 + 10*t^3 + 3*t^2 + 1
```

# numerator()

Returns the numerator of this element, as an element of the polynomial ring.

## **EXAMPLES**:

```
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.numerator()
t^6 + 3*t^4 + 10*t^3 + 3*t^2 + 1
```

# sqrt (extend=True, all=False)

Returns the square root of this element.

## INPUT:

- •extend bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square is not in the base ring.
- •all bool (default: False); if True, return all square roots of self, instead of just one.

```
sage: from sage.rings.fraction_field_FpT import *
         sage: K = GF(7)['t'].fraction_field(); t = K.gen(0)
         sage: p = (t + 2)^2/(3*t^3 + 1)^4
         sage: p.sqrt()
         (3*t + 6)/(t^6 + 3*t^3 + 4)
         sage: p.sqrt()^2 == p
         True
    subs (*args, **kwds)
        EXAMPLES:
         sage: K = Frac(GF(11)['t'])
         sage: t = K.gen()
         sage: f = (t+1)/(t-1)
         sage: f.subs(t=2)
         sage: f.subs(X=2)
         (t + 1)/(t + 10)
    valuation(v)
         Returns the valuation of self at v.
         EXAMPLES:
         sage: R. < t > = GF(5)[]
         sage: f = (t+1)^2 * (t^2+t+1) / (t-1)^3
         sage: f.valuation(t+1)
         sage: f.valuation(t-1)
         sage: f.valuation(t)
class sage.rings.fraction_field_FpT.FpT_Fp_section
    Bases: sage.categories.map.Section
    This class represents the section from GF(p)(t) back to GF(p)[t]
    EXAMPLES:
    sage: R.<t> = GF(5)[]
    sage: K = R.fraction_field()
    sage: f = GF(5).convert_map_from(K); f
    Section map:
      From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
      To: Finite Field of size 5
    sage: type(f)
    <type 'sage.rings.fraction_field_FpT.FpT_Fp_section'>
class sage.rings.fraction_field_FpT.FpT_Polyring_section
    Bases: sage.categories.map.Section
    This class represents the section from GF(p)(t) back to GF(p)[t]
    EXAMPLES:
    sage: R.<t> = GF(5)[]
    sage: K = R.fraction_field()
    sage: f = R.convert_map_from(K); f
    Section map:
      From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
```

```
To:
           Univariate Polynomial Ring in t over Finite Field of size 5
    sage: type(f)
    <type 'sage.rings.fraction_field_FpT.FpT_Polyring_section'>
class sage.rings.fraction_field_FpT.FpT_iter
    Bases: object
    Returns a class that iterates over all elements of an FpT.
    EXAMPLES:
    sage: K = GF(3)['t'].fraction_field()
    sage: I = K.iter(1)
    sage: list(I)
     [0,
     1,
     2,
     t,
     t + 1,
     t + 2,
     2*t,
     2*t + 1,
     2*t + 2,
     1/t,
     2/t,
      (t + 1)/t,
      (t + 2)/t,
      (2*t + 1)/t,
      (2*t + 2)/t,
      1/(t + 1),
      2/(t + 1),
     t/(t + 1),
      (t + 2) / (t + 1),
     2*t/(t + 1),
      (2*t + 1)/(t + 1),
     1/(t + 2),
     2/(t + 2),
     t/(t + 2),
      (t + 1)/(t + 2),
     2*t/(t + 2),
      (2*t + 2)/(t + 2)
    next()
         x.next() -> the next value, or raise StopIteration
class sage.rings.fraction_field_FpT.Fp_FpT_coerce
    Bases: sage.rings.morphism.RingHomomorphism_coercion
    This class represents the coercion map from GF(p) to GF(p)(t)
    EXAMPLES:
    sage: R. < t > = GF(5)[]
    sage: K = R.fraction_field()
    sage: f = K.coerce_map_from(GF(5)); f
    Ring Coercion morphism:
      From: Finite Field of size 5
      To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
    sage: type(f)
    <type 'sage.rings.fraction_field_FpT.Fp_FpT_coerce'>
```

#### section()

Returns the section of this inclusion: the partially defined map from GF (p) (t) back to GF (p), defined on constant elements.

```
EXAMPLES:
```

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(GF(5))
sage: g = f.section(); g
Section map:
    From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
    To: Finite Field of size 5
sage: t = K.gen()
sage: g(f(1,3,reduce=False))
2
sage: g(t)
Traceback (most recent call last):
...
ValueError: not constant
sage: g(1/t)
Traceback (most recent call last):
...
ValueError: not integral
```

#### class sage.rings.fraction\_field\_FpT.Polyring\_FpT\_coerce

Bases: sage.rings.morphism.RingHomomorphism\_coercion

This class represents the coercion map from GF(p)[t] to GF(p)(t)

# **EXAMPLES:**

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
Ring Coercion morphism:
   From: Univariate Polynomial Ring in t over Finite Field of size 5
   To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.Polyring_FpT_coerce'>
```

# section()

Returns the section of this inclusion: the partially defined map from GF(p)(t) back to GF(p)[t], defined on elements with unit denominator.

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: g = f.section(); g
Section map:
   From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
   To: Univariate Polynomial Ring in t over Finite Field of size 5
sage: t = K.gen()
sage: g(t)
t
sage: g(1/t)
Traceback (most recent call last):
....
ValueError: not integral
```

```
Bases: sage.rings.morphism.RingHomomorphism_coercion
    This class represents the coercion map from ZZ to GF(p)(t)
    EXAMPLES:
    sage: R.<t> = GF(17)[]
    sage: K = R.fraction_field()
    sage: f = K.coerce_map_from(ZZ); f
    Ring Coercion morphism:
      From: Integer Ring
      To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 17
    sage: type(f)
     <type 'sage.rings.fraction_field_FpT.ZZ_FpT_coerce'>
    section()
         Returns the section of this inclusion: the partially defined map from GF (p) (t) back to ZZ, defined on
         constant elements.
         EXAMPLES:
         sage: R.<t> = GF(5)[]
         sage: K = R.fraction_field()
         sage: f = K.coerce_map_from(ZZ)
         sage: g = f.section(); g
         Composite map:
           From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
                Integer Ring
                   Section map:
                   From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size
                        Finite Field of size 5
                   To:
                 then
                   Lifting map:
                   From: Finite Field of size 5
                   To:
                        Integer Ring
         sage: t = K.gen()
         sage: g(f(1,3,reduce=False))
         sage: g(t)
         Traceback (most recent call last):
         ValueError: not constant
         sage: g(1/t)
         Traceback (most recent call last):
         ValueError: not integral
sage.rings.fraction_field_FpT.unpickle_FpT_element (K, numer, denom)
    Used for pickling.
    TESTS:
    sage: from sage.rings.fraction_field_FpT import unpickle_FpT_element
    sage: R.\langle t \rangle = GF(13)['t']
    sage: unpickle_FpT_element(Frac(R), t+1, t)
     (t + 1)/t
```

class sage.rings.fraction\_field\_FpT.ZZ\_FpT\_coerce

**CHAPTER** 

**FIVE** 

# LAURENT POLYNOMIALS

# 5.1 Ring of Laurent Polynomials

If R is a commutative ring, then the ring of Laurent polynomials in n variables over R is  $R[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$ . We implement it as a quotient ring

$$R[x_1, y_1, x_2, y_2, \dots, x_n, y_n]/(x_1y_1 - 1, x_2y_2 - 1, \dots, x_ny_n - 1).$$

#### TESTS:

```
sage: P.<q> = LaurentPolynomialRing(QQ)
sage: qi = q^(-1)
sage: qi in P
True
sage: P(qi)
q^-1

sage: A.<Y> = QQ[]
sage: R.<X> = LaurentPolynomialRing(A)
sage: matrix(R,2,2,[X,0,0,1])
[X 0]
[0 1]
```

## **AUTHORS:**

- David Roe (2008-2-23): created
- David Loeffler (2009-07-10): cleaned up docstrings

```
sage.rings.polynomial.laurent\_polynomial\_ring. \textbf{LaurentPolynomialRing} (base\_ring, \\ arg1=None, \\ arg2=None, \\ sparse=False, \\ or-\\ der='degrevlex', \\ names=None, \\ name=None)
```

Return the globally unique univariate or multivariate Laurent polynomial ring with given properties and variable name or names.

There are four ways to call the Laurent polynomial ring constructor:

```
1.LaurentPolynomialRing(base_ring, name, sparse=False)
2.LaurentPolynomialRing(base_ring, names, order='degrevlex')
3.LaurentPolynomialRing(base_ring, name, n, order='degrevlex')
```

```
4.LaurentPolynomialRing(base_ring, n, name, order='degrevlex')
```

The optional arguments sparse and order *must* be explicitly named, and the other arguments must be given positionally.

## INPUT:

```
    base_ring - a commutative ring
    name - a string
    names - a list or tuple of names, or a comma separated string
    n - a positive integer
    sparse - bool (default: False), whether or not elements are sparse
    order - string or TermOrder, e.g.,

            'degrevlex' (default) - degree reverse lexicographic
            'lex' - lexicographic
            'deglex' - degree lexicographic
```

## **OUTPUT:**

LaurentPolynomialRing(base\_ring, name, sparse=False) returns a univariate Laurent polynomial ring; all other input formats return a multivariate Laurent polynomial ring.

-TermOrder('deglex',3) + TermOrder('deglex',3) - block ordering

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one single-variate Laurent polynomial ring over each base ring in each choice of variable and sparseness. There is also exactly one multivariate Laurent polynomial ring over each base ring for each choice of names of variables and term order.

```
sage: R.<x,y> = LaurentPolynomialRing(QQ,2); R
Multivariate Laurent Polynomial Ring in x, y over Rational Field
sage: f = x^2 - 2*y^2
```

You can't just globally change the names of those variables. This is because objects all over Sage could have pointers to that polynomial ring.

```
sage: R._assign_names(['z','w'])
Traceback (most recent call last):
...
ValueError: variable names cannot be changed after object creation.
```

# **EXAMPLES:**

1.LaurentPolynomialRing(base\_ring, name, sparse=False)

```
sage: LaurentPolynomialRing(QQ, 'w')
Univariate Laurent Polynomial Ring in w over Rational Field
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:

```
sage: R.<w> = LaurentPolynomialRing(QQ)
sage: (1 + w)^3
1 + 3*w + 3*w^2 + w^3
```

You must specify a name:

```
sage: LaurentPolynomialRing(QQ)
 Traceback (most recent call last):
 TypeError: You must specify the names of the variables.
 sage: R.<abc> = LaurentPolynomialRing(QQ, sparse=True); R
 Univariate Laurent Polynomial Ring in abc over Rational Field
 sage: R.<w> = LaurentPolynomialRing(PolynomialRing(GF(7),'k')); R
 Univariate Laurent Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Fie
 Rings with different variables are different:
 sage: LaurentPolynomialRing(QQ, 'x') == LaurentPolynomialRing(QQ, 'y')
 False
2.LaurentPolynomialRing(base_ring, names, order='degrevlex')
 sage: R = LaurentPolynomialRing(QQ, 'a,b,c'); R
 Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
 sage: S = LaurentPolynomialRing(QQ, ['a','b','c']); S
 Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
 sage: T = LaurentPolynomialRing(QQ, ('a','b','c')); T
 Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
 All three rings are identical.
 sage: (R is S) and (S is T)
 True
 There is a unique Laurent polynomial ring with each term order:
 sage: R = LaurentPolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
 Multivariate Laurent Polynomial Ring in x, y, z over Rational Field
 sage: S = LaurentPolynomialRing(QQ, 'x,y,z', order='invlex'); S
 Multivariate Laurent Polynomial Ring in x, y, z over Rational Field
 sage: S is LaurentPolynomialRing(QQ, 'x,y,z', order='invlex')
 sage: R == S
 False
3.LaurentPolynomialRing(base_ring, name, n, order='degrevlex')
 If you specify a single name as a string and a number of variables, then variables labeled with numbers are
 created.
 sage: LaurentPolynomialRing(QQ, 'x', 10)
 Multivariate Laurent Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational
 sage: LaurentPolynomialRing(GF(7), 'y', 5)
```

```
Multivariate Laurent Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7
         sage: LaurentPolynomialRing(QQ, 'y', 3, sparse=True)
         Multivariate Laurent Polynomial Ring in y0, y1, y2 over Rational Field
         By calling the inject_variables () method, all those variable names are available for interactive
         use:
         sage: R = LaurentPolynomialRing(GF(7),15,'w'); R
         Multivariate Laurent Polynomial Ring in w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w1
         sage: R.inject_variables()
         Defining w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14
         sage: (w0 + 2*w8 + w13)^2
         w0^2 + 4*w0*w8 + 4*w8^2 + 2*w0*w13 + 4*w8*w13 + w13^2
class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic(R,
                                                                                              prepend_string,
                                                                                              names)
    Bases: sage.rings.ring.CommutativeRing, sage.structure.parent_gens.ParentWithGens
    Laurent polynomial ring (base class).
    EXAMPLES:
    This base class inherits from CommutativeRing. Since trac ticket #11900, it is also initialised as such:
    sage: R. \langle x1, x2 \rangle = LaurentPolynomialRing(QQ)
    sage: R.category()
    Category of commutative rings
    sage: TestSuite(R).run()
    change_ring(base_ring=None, names=None, sparse=False, order=None)
         EXAMPLES:
         sage: R = LaurentPolynomialRing(QQ,2,'x')
         sage: R.change_ring(ZZ)
         Multivariate Laurent Polynomial Ring in x0, x1 over Integer Ring
    characteristic()
         Returns the characteristic of the base ring.
         EXAMPLES:
         sage: LaurentPolynomialRing(QQ,2,'x').characteristic()
         sage: LaurentPolynomialRing(GF(3),2,'x').characteristic()
    completion (p, prec=20, extras=None)
         EXAMPLES:
         sage: P.<x>=LaurentPolynomialRing(QQ)
         Univariate Laurent Polynomial Ring in x over Rational Field
         sage: PP=P.completion(x)
         sage: PP
         Laurent Series Ring in x over Rational Field
         sage: f=1-1/x
         sage: PP(f)
```

```
-x^{-1} + 1
    sage: 1/PP(f)
    -x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^{10} - x^{11} - x^{12} - x^{13} - x^{14} - x^{15}
construction()
    Returns the construction of self.
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x,y').construction()
    (LaurentPolynomialFunctor,
    Univariate Laurent Polynomial Ring in x over Rational Field)
fraction field()
    The fraction field is the same as the fraction field of the polynomial ring.
    EXAMPLES:
    sage: L.<x> = LaurentPolynomialRing(QQ)
    sage: L.fraction_field()
    Fraction Field of Univariate Polynomial Ring in x over Rational Field
    sage: (x^-1 + 2) / (x - 1)
    (2*x + 1)/(x^2 - x)
gen(i=0)
    Returns the i^{th} generator of self. If i is not specified, then the first generator will be returned.
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').gen()
    sage: LaurentPolynomialRing(QQ,2,'x').gen(0)
    sage: LaurentPolynomialRing(QQ,2,'x').gen(1)
    x1
    TESTS:
    sage: LaurentPolynomialRing(QQ,2,'x').gen(3)
    Traceback (most recent call last):
    ValueError: generator not defined
ideal()
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').ideal()
    Traceback (most recent call last):
    NotImplementedError
is_exact()
    Returns True if the base ring is exact.
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').is_exact()
    sage: LaurentPolynomialRing(RDF, 2, 'x').is_exact()
    False
```

```
is field(proof=True)
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').is_field()
    False
is finite()
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').is_finite()
    False
is_integral_domain(proof=True)
    Returns True if self is an integral domain.
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').is_integral_domain()
    True
    The following used to fail; see #7530:
    sage: L = LaurentPolynomialRing(ZZ, 'X')
    sage: L['Y']
    Univariate Polynomial Ring in Y over Univariate Laurent Polynomial Ring in X over Integer Ri
is_noetherian()
    Returns True if self is Noetherian.
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').is_noetherian()
    Traceback (most recent call last):
    NotImplementedError
krull_dimension()
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').krull_dimension()
    Traceback (most recent call last):
    NotImplementedError
ngens()
    Returns the number of generators of self.
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').ngens()
    sage: LaurentPolynomialRing(QQ,1,'x').ngens()
polynomial_ring()
    Returns the polynomial ring associated with self.
    EXAMPLES:
    sage: LaurentPolynomialRing(QQ,2,'x').polynomial_ring()
    Multivariate Polynomial Ring in x0, x1 over Rational Field
    sage: LaurentPolynomialRing(QQ,1,'x').polynomial_ring()
    Multivariate Polynomial Ring in x over Rational Field
```

```
random_element (low_degree=-2, high_degree=2, terms=5, choose_degree=False, *args, **kwds)
        EXAMPLES:
        sage: LaurentPolynomialRing(QQ,2,'x').random_element()
        Traceback (most recent call last):
        NotImplementedError
    remove_var(var)
        EXAMPLES:
        sage: R = LaurentPolynomialRing(QQ,'x,y,z')
        sage: R.remove_var('x')
        Multivariate Laurent Polynomial Ring in y, z over Rational Field
        sage: R.remove_var('x').remove_var('y')
        Univariate Laurent Polynomial Ring in z over Rational Field
    term order()
        Returns the term order of self.
        EXAMPLES:
        sage: LaurentPolynomialRing(QQ,2,'x').term_order()
        Degree reverse lexicographic term order
class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_mpair(R,
                                                                                       prepend_string,
                                                                                       names)
    Bases: sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic
    EXAMPLES:
    sage: L = LaurentPolynomialRing(QQ, 2, 'x')
    sage: type(L)
    <class
    'sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_mpair_with_category'>
    sage: L == loads(dumps(L))
    True
class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_univariate(R,
                                                                                             names)
    Bases: sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic
    EXAMPLES:
    sage: L = LaurentPolynomialRing(QQ,'x')
    sage: type(L)
    <class 'sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_univariate_with_cate
    sage: L == loads(dumps(L))
    True
sage.rings.polynomial.laurent_polynomial_ring.is_LaurentPolynomialRing(R)
    Returns True if and only if R is a Laurent polynomial ring.
    EXAMPLES:
    sage: from sage.rings.polynomial.laurent polynomial ring import is LaurentPolynomialRing
    sage: P = PolynomialRing(QQ, 2, 'x')
    sage: is_LaurentPolynomialRing(P)
    False
```

```
sage: R = LaurentPolynomialRing(QQ,3,'x')
sage: is_LaurentPolynomialRing(R)
True
```

# 5.2 Elements of Laurent polynomial rings

class sage.rings.polynomial.laurent\_polynomial.LaurentPolynomial\_generic
 Bases: sage.structure.element.CommutativeAlgebraElement

A generic Laurent polynomial.

class sage.rings.polynomial.laurent\_polynomial.LaurentPolynomial\_mpair
 Bases: sage.rings.polynomial.laurent\_polynomial.LaurentPolynomial\_generic

Multivariate Laurent polynomials.

#### coefficient (mon)

Return the coefficient of mon in self, where mon must have the same parent as self.

The coefficient is defined as follows. If f is this polynomial, then the coefficient  $c_m$  is sum:

$$c_m := \sum_T \frac{T}{m}$$

where the sum is over terms T in f that are exactly divisible by m.

A monomial m(x,y) 'exactly divides' f(x,y) if m(x,y)|f(x,y) and neither  $x\cdot m(x,y)$  nor  $y\cdot m(x,y)$  divides f(x,y).

# INPUT:

•mon – a monomial

# **OUTPUT**:

Element of the parent of self.

**Note:** To get the constant coefficient, call constant\_coefficient().

## **EXAMPLES:**

```
sage: P.<x,y> = LaurentPolynomialRing(QQ)
```

The coefficient returned is an element of the parent of self; in this case, P.

```
sage: f = 2 * x * y
sage: c = f.coefficient(x*y); c
2
sage: c.parent()
Multivariate Laurent Polynomial Ring in x, y over Rational Field
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^2 + 5*x*y)*x^-3; f
-x^6 - 7*x^-2*y^2 + 5*x^-2*y + x^-3*y^2
sage: f.coefficient(y)
5*x^-2
sage: f.coefficient(y^2)
-7*x^-2 + x^-3
sage: f.coefficient(x*y)
```

```
0
sage: f.coefficient(x^-2)
-7*y^2 + 5*y
sage: f.coefficient(x^-2*y^2)
-7
sage: f.coefficient(1)
-x^6 - 7*x^-2*y^2 + 5*x^-2*y + x^-3*y^2
```

## coefficients()

Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of self.parent().

## **EXAMPLES:**

```
sage: L.<x,y,z> = LaurentPolynomialRing(QQ,order='degrevlex')
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.coefficients()
[4, 3, 2, 1]
sage: L.<x,y,z> = LaurentPolynomialRing(QQ,order='lex')
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.coefficients()
[4, 1, 2, 3]
```

# constant\_coefficient()

Return the constant coefficient of self.

## **EXAMPLES:**

```
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^2 + 5*x*y)*x^-3; f
-x^6 - 7*x^-2*y^2 + 5*x^-2*y + x^-3*y^2
sage: f.constant_coefficient()
0
sage: f = (x^3 + 2*x^-2*y+y^3)*y^-3; f
x^3*y^-3 + 1 + 2*x^-2*y^-2
sage: f.constant_coefficient()
1
```

## degree (x=None)

Returns the degree of x in self

# EXAMPLES:

```
sage: R.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.degree(x)
7
sage: f.degree(y)
1
sage: f.degree(z)
0
```

# derivative(\*args)

The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

# See also:

```
derivative()
```

#### **EXAMPLES:**

```
sage: R = LaurentPolynomialRing(ZZ,'x, y')
sage: x, y = R.gens()
sage: t = x**4*y+x*y+y+x**(-1)+y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
dict()
EXAMPLES:
```

```
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: list(sorted(f.dict().iteritems()))
[((3, 1, 0), 3), ((4, 0, -2), 2), ((6, -7, 0), 1), ((7, 0, -1), 4)]
```

# diff(\*args)

The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

## See also:

```
_derivative()
```

## **EXAMPLES:**

```
sage: R = LaurentPolynomialRing(ZZ,'x, y')
sage: x, y = R.gens()
sage: t = x**4*y+x*y+y+x**(-1)+y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
```

# differentiate(\*args)

The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

# See also:

```
_derivative()

EXAMPLES:

sage: R = LaurentPolynomialRing(ZZ,'x, y')

sage: x, y = R.gens()

sage: t = x**4*y+x*y+y+x**(-1)+y**(-3)

sage: t.derivative(x, x)

12*x^2*y + 2*x^-3

sage: t.derivative(y, 2)

12*y^-5
```

#### exponents()

Returns a list of the exponents of self.

```
sage: L.<w, z> = LaurentPolynomialRing(QQ)
sage: a = w^2 \times z^{-1+3}; a
w^2 \times z^{-1} + 3
sage: e = a.exponents()
sage: e.sort(); e
[(0, 0), (2, -1)]
```

## factor()

Returns a Laurent monomial (the unit part of the factorization) and a factored multi-polynomial.

#### **EXAMPLES:**

```
sage: L.\langle x, y, z \rangle = LaurentPolynomialRing(QQ)

sage: f = 4*x^7*z^{-1} + 3*x^3*y + 2*x^4*z^{-2} + x^6*y^{-7}

sage: f.factor()

(x^3*y^{-7}z^{-2}) * (4*x^4*y^7*z + 3*y^8*z^2 + 2*x*y^7 + x^3*z^2)
```

# has\_any\_inverse()

Returns True if self contains any monomials with a negative exponent, False otherwise.

#### **EXAMPLES:**

```
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.has_any_inverse()
True
sage: g = x^2 + y^2
sage: g.has_any_inverse()
False
```

# has inverse of (i)

#### INPUT:

•i - The index of a generator of self.parent()

# **OUTPUT**:

Returns True if self contains a monomial including the inverse of self.parent().gen(i), False otherwise.

## **EXAMPLES:**

```
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.has_inverse_of(0)
False
sage: f.has_inverse_of(1)
True
sage: f.has_inverse_of(2)
True
```

# is\_monomial()

Return True if this element is a monomial.

```
sage: k.<y,z> = LaurentPolynomialRing(QQ)
sage: z.is_monomial()
True
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
```

```
False
sage: (z^-2909).is_monomial()
True
sage: (38*z^-2909).is_monomial()
False
```

# is\_unit()

Return True if self is a unit.

The ground ring is assumed to be an integral domain.

This means that the Laurent polynomial is a monomial with unit coefficient.

## **EXAMPLES:**

```
sage: L.<x,y> = LaurentPolynomialRing(QQ)
sage: (x*y/2).is_unit()
True
sage: (x + y).is_unit()
False
sage: (L.zero()).is_unit()
False
sage: (L.one()).is_unit()
True

sage: L.<x,y> = LaurentPolynomialRing(ZZ)
sage: (2*x*y).is_unit()
False
```

## is\_univariate()

Return True if this is a univariate or constant Laurent polynomial, and False otherwise.

#### EXAMPLES:

```
sage: R.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = (x^3 + y^-3)*z
sage: f.is_univariate()
False
sage: g = f(1,y,4)
sage: g.is_univariate()
True
sage: R(1).is_univariate()
```

# monomial\_coefficient (mon)

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function <code>coefficient()</code> which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

# INPUT:

```
•mon - a monomial
```

# See also:

For coefficients in a base ring of fewer variables, see coefficient ().

```
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^3 + 5*x*y*)*x^-3
sage: f.monomial_coefficient(x^-2*y^3)
-7
sage: f.monomial_coefficient(x^2)
```

## monomials()

Return the list of monomials in self.

## **EXAMPLES:**

```
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^3 + 5*x*y*)*x^-3
sage: f.monomials()
[x^6, x^{-3}*y^2, x^{-2}*y, x^{-2}*y^3]
```

## **subs** (*in dict=None*, \*\*kwds)

Note that this is a very unsophisticated implementation.

#### **EXAMPLES:**

```
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = x + 2*y + 3*z
sage: f.subs(x=1)
2*y + 3*z + 1
sage: f.subs(y=1)
x + 3*z + 2
sage: f.subs(z=1)
x + 2 * y + 3
sage: f.subs(x=1, y=1, z=1)
sage: f = x^-1
sage: f.subs(x=2)
1/2
sage: f.subs({x:2})
1/2
sage: f = x + 2*y + 3*z
sage: f.subs({x:1,y:1,z:1})
sage: f.substitute(x=1, y=1, z=1)
TESTS:
sage: f = x + 2*y + 3*z
sage: f(q=10)
x + 2*y + 3*z
```

# univariate\_polynomial(R=None)

Returns a univariate polynomial associated to this multivariate polynomial.

# INPUT:

```
•R - (default: None) PolynomialRing
```

If this polynomial is not in at most one variable, then a ValueError exception is raised. The new polynomial is over the same base ring as the given LaurentPolynomial and in the variable x if no ring R is provided.

```
EXAMPLES:
         sage: R.<x, y> = LaurentPolynomialRing(ZZ)
         sage: f = 3*x^2 - 2*y^{-1} + 7*x^2*y^2 + 5
         sage: f.univariate_polynomial()
         Traceback (most recent call last):
         TypeError: polynomial must involve at most one variable
         sage: g = f(10, y); g
         700*y^2 + 305 - 2*y^{-1}
         sage: h = g.univariate_polynomial(); h
         -2*y^-1 + 305 + 700*y^2
         sage: h.parent()
         Univariate Laurent Polynomial Ring in y over Integer Ring
         sage: g.univariate_polynomial(LaurentPolynomialRing(QQ,'z'))
         -2*z^{-1} + 305 + 700*z^{2}
         Here's an example with a constant multivariate polynomial:
         sage: g = R(1)
         sage: h = g.univariate_polynomial(); h
         sage: h.parent()
         Univariate Laurent Polynomial Ring in x over Integer Ring
     variables (sort=True)
         Return a tuple of all variables occurring in self.
         INPUT:
            •sort – specifies whether the indices shall be sorted
         EXAMPLES:
         sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
         sage: f = 4 * x^7 * z^{-1} + 3 * x^3 * y + 2 * x^4 * z^{-2} + x^6 * y^{-7}
         sage: f.variables()
         (z, y, x)
         sage: f.variables(sort=False) #random
          (y, z, x)
class sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate
     Bases: sage.rings.polynomial.laurent polynomial.LaurentPolynomial generic
     A univariate Laurent polynomial in the form of t^n \cdot f where f is a polynomial in t.
     INPUT:
        •parent - a Laurent polynomial ring
        \bullet f – a polynomial (or something can be coerced to one)
        •n – (default: 0) an integer
     AUTHORS:
         •Tom
                  Boothby
                               (2011)
                                         copied
                                                    this
                                                             class
                                                                      almost
                                                                                 verbatim
                                                                                             from
         laurent_series_ring_element.pyx, so most of the credit goes to William Stein, David
         Joyner, and Robert Bradshaw
         •Travis Scrimshaw (09-2013): Cleaned-up and added a few extra methods
```

 $change\_ring(R)$ 

Return a copy of this Laurent polynomial, with coefficients in R.

# **EXAMPLES:**

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: a = x^2 + 3*x^3 + 5*x^{-1}
sage: a.change_ring(GF(3))
2*x^{-1} + x^2
```

#### coefficients()

Return the nonzero coefficients of self.

# **EXAMPLES:**

```
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = -5/t^{(2)} + t + t^2 - 10/3*t^3
sage: f.coefficients()
[-5, 1, 1, -10/3]
```

## constant coefficient()

Return the coefficient of the constant term of self.

#### **EXAMPLES:**

```
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 3*t^-2 - t^-1 + 3 + t^2
sage: f.constant_coefficient()
3
sage: g = -2*t^-2 + t^-1 + 3*t
sage: g.constant_coefficient()
0
```

# degree()

Return the degree of this polynomial.

# **EXAMPLES:**

```
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: g = x^2 - x^4
sage: g.degree()
4
sage: g = -10/x^5 + x^2 - x^7
sage: g.degree()
7
```

# derivative (\*args)

The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global :func'derivative()' function for more details.

# See also:

```
_derivative()

EXAMPLES:

sage: R.<x> = LaurentPolynomialRing(QQ)

sage: g = 1/x^10 - x + x^2 - x^4

sage: g.derivative()

-10*x^-11 - 1 + 2*x - 4*x^3

sage: g.derivative(x)

-10*x^-11 - 1 + 2*x - 4*x^3
```

```
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = LaurentPolynomialRing(R)
sage: f = 2*t/x + (3*t^2 + 6*t)*x
sage: f.derivative()
-2*t*x^-2 + (3*t^2 + 6*t)
sage: f.derivative(x)
-2*t*x^-2 + (3*t^2 + 6*t)
sage: f.derivative(t)
2*x^-1 + (6*t + 6)*x
```

# dict()

Return a dictionary representing self.

```
EXAMPLES:: sage: R.<x,y> = ZZ[] sage: Q.<t> = LaurentPolynomialRing(R) sage: f = (x^3 + y/t^3)^3 + t^2; f y^3*t^-9 + 3*x^3*y^2*t^-6 + 3*x^6*y*t^-3 + x^9 + t^2 sage: f.dict() {-9: y^3, -6: 3*x^3*y^2, -3: 3*x^6*y, 0: x^9, 2: 1}
```

## exponents()

Return the exponents appearing in self with nonzero coefficients.

#### **EXAMPLES:**

```
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = -5/t^{(2)} + t + t^2 - 10/3*t^3
sage: f.exponents()
[-2, 1, 2, 3]
```

#### factor()

Return a Laurent monomial (the unit part of the factorization) and a factored polynomial.

# **EXAMPLES:**

```
sage: R.\langle t \rangle = LaurentPolynomialRing(ZZ)

sage: f = 4*t^-7 + 3*t^3 + 2*t^4 + t^-6

sage: f.factor()

(t^-7) * (4 + t + 3*t^10 + 2*t^11)
```

# qcd(right)

Return the gcd of self with right where the common divisor d makes both self and right into polynomials with the lowest possible degree.

# **EXAMPLES:**

```
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: t.gcd(2)
1
sage: gcd(t^-2 + 1, t^-4 + 3*t^-1)
t^-4
sage: gcd((t^-2 + t)*(t + t^-1), (t^5 + t^8)*(1 + t^-2))
t^-3 + t^-1 + 1 + t^2
```

# integral()

The formal integral of this Laurent series with 0 constant term.

# **EXAMPLES:**

The integral may or may not be defined if the base ring is not a field.

```
sage: t = LaurentPolynomialRing(ZZ, 't').0
sage: f = 2*t^-3 + 3*t^2
sage: f.integral()
-t^-2 + t^3
```

```
sage: f = t^3
    sage: f.integral()
    Traceback (most recent call last):
    ArithmeticError: coefficients of integral cannot be coerced into the base ring
    The integral of 1/t is \log(t), which is not given by a Laurent polynomial:
    sage: t = LaurentPolynomialRing(ZZ,'t').0
    sage: f = -1/t^3 - 31/t
    sage: f.integral()
    Traceback (most recent call last):
    ArithmeticError: the integral of is not a Laurent polynomial, since t^-1 has nonzero coeffic
    Another example with just one negative coefficient:
    sage: A.<t> = LaurentPolynomialRing(QQ)
    sage: f = -2 * t^{(-4)}
    sage: f.integral()
    2/3*t^-3
    sage: f.integral().derivative() == f
inverse of unit()
    Return the inverse of self if a unit.
    EXAMPLES:
    sage: R.<t> = LaurentPolynomialRing(QQ)
    sage: (t^-2).inverse_of_unit()
    sage: (t + 2).inverse_of_unit()
    Traceback (most recent call last):
    ArithmeticError: element is not a unit
is_constant()
    Return True if self is constant.
    EXAMPLES:
    sage: R.<x> = LaurentPolynomialRing(QQ)
    sage: x.is_constant()
    False
    sage: R.one().is_constant()
    sage: (x^-2).is_constant()
    False
    sage: (x^2).is_constant()
    False
    sage: (x^-2 + 2).is\_constant()
    False
    Return True if this element is a monomial. That is, if self is x^n for some integer n.
```

```
sage: k.<z> = LaurentPolynomialRing(QQ)
sage: z.is_monomial()
True
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^-2909).is_monomial()
True
sage: (38*z^-2909).is_monomial()
False
```

# is\_unit()

Return True if this Laurent polynomial is a unit in this ring.

# **EXAMPLES**:

```
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (2+t).is_unit()
False
sage: f = 2*t
sage: f.is_unit()
True
sage: 1/f
1/2*t^{-1}
sage: R(0).is_unit()
False
sage: R.<s> = LaurentPolynomialRing(ZZ)
sage: g = 2*s
sage: q.is_unit()
False
sage: 1/g
1/2*s^{-1}
```

ALGORITHM: A Laurent polynomial is a unit if and only if its "unit part" is a unit.

# is\_zero()

Return 1 if self is 0, else return 0.

## **EXAMPLES**:

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x + x^2 + 3*x^4
sage: f.is_zero()
0
sage: z = 0*f
sage: z.is_zero()
```

# polynomial\_construction()

Return the polynomial and the shift in power used to construct the Laurent polynomial  $t^n u$ .

# **OUTPUT**:

A tuple (u, n) where u is the underlying polynomial and n is the power of the exponent shift.

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.polynomial_construction()
```

```
(3*x^5 + x^3 + 1, -1)
```

## $quo_rem(right_r)$

Attempts to divide self by right and returns a quotient and a remainder.

#### EXAMPLES:

```
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (t^-3 - t^3).quo_rem(t^-1 - t)
(t^-2 + 1 + t^2, 0)
sage: (t^-2 + 3 + t).quo_rem(t^-4)
(t^2 + 3*t^4 + t^5, 0)
sage: (t^-2 + 3 + t).quo_rem(t^-4 + t)
(0, 1 + 3*t^2 + t^3)
```

# residue()

Return the residue of self.

The residue is the coefficient of  $t^{-1}$ .

## **EXAMPLES**:

```
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 3*t^-2 - t^-1 + 3 + t^2
sage: f.residue()
-1
sage: g = -2*t^-2 + 4 + 3*t
sage: g.residue()
0
sage: f.residue().parent()
Rational Field
```

#### shift(k)

Return this Laurent polynomial multiplied by the power  $t^n$ . Does not change this polynomial.

# **EXAMPLES:**

```
sage: R.<t> = LaurentPolynomialRing(QQ['y'])
sage: f = (t+t^-1)^4; f
t^-4 + 4*t^-2 + 6 + 4*t^2 + t^4
sage: f.shift(10)
t^6 + 4*t^8 + 6*t^10 + 4*t^12 + t^14
sage: f >> 10
t^-14 + 4*t^-12 + 6*t^-10 + 4*t^-8 + t^-6
sage: f << 4
1 + 4*t^2 + 6*t^4 + 4*t^6 + t^8</pre>
```

## truncate (n)

Return a polynomial with degree at most n-1 whose j-th coefficients agree with self for all j < n.

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x^12 + x^3 + x^5 + x^9
sage: f.truncate(10)
x^-12 + x^3 + x^5 + x^9
sage: f.truncate(5)
x^-12 + x^3
sage: f.truncate(-16)
```

## valuation (p=None)

Return the valuation of self.

The valuation of a Laurent polynomial  $t^n u$  is n plus the valuation of u.

# **EXAMPLES**:

```
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: f = 1/x + x^2 + 3*x^4
sage: g = 1 - x + x^2 - x^4
sage: f.valuation()
-1
sage: g.valuation()
0
```

## variable\_name()

Return the name of variable of self as a string.

# **EXAMPLES:**

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.variable_name()
'x'
```

# variables()

Return the tuple of variables occuring in this Laurent polynomial.

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.variables()
(x,)
sage: R.one().variables()
()
```

**CHAPTER** 

SIX

# INFINITE POLYNOMIAL RINGS

# 6.1 Infinite Polynomial Rings.

By Infinite Polynomial Rings, we mean polynomial rings in a countably infinite number of variables. The implementation consists of a wrapper around the current *finite* polynomial rings in Sage.

# **AUTHORS:**

- Simon King <simon.king@nuigalway.ie>
- Mike Hansen <mhansen@gmail.com>

An Infinite Polynomial Ring has finitely many generators  $x_*, y_*, ...$  and infinitely many variables of the form  $x_0, x_1, x_2, ..., y_0, y_1, y_2, ..., ...$  We refer to the natural number n as the *index* of the variable  $x_n$ .

## INPUT:

- R, the base ring. It has to be a commutative ring, and in some applications it must even be a field
- names, a list of generator names. Generator names must be alpha-numeric.
- order (optional string). The default order is 'lex' (lexicographic). 'deglex' is degree lexicographic, and 'degrevlex' (degree reverse lexicographic) is possible but discouraged.

Each generator x produces an infinite sequence of variables x[1], x[2], ... which are printed on screen as  $x_1$ ,  $x_2$ , ... and are latex typeset as  $x_1$ ,  $x_2$ . Then, the Infinite Polynomial Ring is formed by polynomials in these variables.

By default, the monomials are ordered lexicographically. Alternatively, degree (reverse) lexicographic ordering is possible as well. However, we do not guarantee that the computation of Groebner bases will terminate in this case.

In either case, the variables of a Infinite Polynomial Ring X are ordered according to the following rule:

```
X.gen(i)[m] > X.gen(j)[n] if and only if i < j or (i == j and m > n)
```

We provide a 'dense' and a 'sparse' implementation. In the dense implementation, the Infinite Polynomial Ring carries a finite polynomial ring that comprises *all* variables up to the maximal index that has been used so far. This is potentially a very big ring and may also comprise many variables that are not used.

In the sparse implementation, we try to keep the underlying finite polynomial rings small, using only those variables that are really needed. By default, we use the dense implementation, since it usually is much faster.

```
sage: X.<x,y> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: A.<alpha,beta> = InfinitePolynomialRing(QQ, order='deglex')
sage: f = x[5] + 2; f
x_5 + 2
```

```
sage: g = 3*y[1]; g \\ 3*y_1
```

It has some advantages to have an underlying ring that is not univariate. Hence, we always have at least two variables:

```
sage: g._p.parent()
Multivariate Polynomial Ring in y_1, y_0 over Integer Ring

sage: f2 = alpha[5] + 2; f2
alpha_5 + 2
sage: g2 = 3*beta[1]; g2
3*beta_1
sage: A.polynomial_ring()
Multivariate Polynomial Ring in alpha_5, alpha_4, alpha_3, alpha_2, alpha_1, alpha_0, beta_5, beta_4
```

Of course, we provide the usual polynomial arithmetic:

```
sage: f+g
x_5 + 3*y_1 + 2
sage: p = x[10]^2*(f+g); p
x_10^2*x_5 + 3*x_10^2*y_1 + 2*x_10^2
sage: p2 = alpha[10]^2*(f2+g2); p2
alpha_10^2*alpha_5 + 3*alpha_10^2*beta_1 + 2*alpha_10^2
```

There is a permutation action on the variables, by permuting positive variable indices:

```
sage: P = Permutation(((10,1)))
sage: p^P
x_5*x_1^2 + 3*x_1^2*y_10 + 2*x_1^2
sage: p2^P
alpha_5*alpha_1^2 + 3*alpha_1^2*beta_10 + 2*alpha_1^2
```

Note that  $x_0^P = x_0$ , since the permutations only change *positive* variable indices.

We also implemented ideals of Infinite Polynomial Rings. Here, it is thoroughly assumed that the ideals are set-wise invariant under the permutation action. We therefore refer to these ideals as *Symmetric Ideals*. Symmetric Ideals are finitely generated modulo addition, multiplication by ring elements and permutation of variables. If the base ring is a field, one can compute Symmetric Groebner Bases:

```
sage: J = A*(alpha[1]*beta[2])
sage: J.groebner_basis()
[alpha_1*beta_2, alpha_2*beta_1]
```

For more details, see SymmetricIdeal.

Infinite Polynomial Rings can have any commutative base ring. If the base ring of an Infinite Polynomial Ring is a (classical or infinite) Polynomial Ring, then our implementation tries to merge everything into *one* ring. The basic requirement is that the monomial orders match. In the case of two Infinite Polynomial Rings, the implementations must match. Moreover, name conflicts should be avoided. An overlap is only accepted if the order of variables can be uniquely inferred, as in the following example:

```
sage: A.<a,b,c> = InfinitePolynomialRing(ZZ)
sage: B.<b,c,d> = InfinitePolynomialRing(A)
sage: B
Infinite polynomial ring in a, b, c, d over Integer Ring
```

This is also allowed if finite polynomial rings are involved:

```
sage: A.<a_3,a_1,b_1,c_2,c_0> = ZZ[]
sage: B.<b,c,d> = InfinitePolynomialRing(A, order='degrevlex')
sage: B
Infinite polynomial ring in b, c, d over Multivariate Polynomial Ring in a_3, a_1 over Integer Ring
```

It is no problem if one generator of the Infinite Polynomial Ring is called x and one variable of the base ring is also called x. This is since no *variable* of the Infinite Polynomial Ring will be called x. However, a problem arises if the underlying classical Polynomial Ring has a variable  $x_1$ , since this can be confused with a variable of the Infinite Polynomial Ring. In this case, an error will be raised:

```
sage: X.<x,y_1> = ZZ[]
sage: Y.<x,z> = InfinitePolynomialRing(X)
```

Note that X is not merged into Y; this is since the monomial order of X is 'degrevlex', but of Y is 'lex'.

```
sage: Y
Infinite polynomial ring in x, z over Multivariate Polynomial Ring in x, y_1 over Integer Ring
```

The variable x of X can still be interpreted in Y, although the first generator of Y is called x as well:

```
sage: x
x_*
sage: X('x')
x
sage: Y(X('x'))
x
sage: Y('x')
```

But there is only merging if the resulting monomial order is uniquely determined. This is not the case in the following examples, and thus an error is raised:

```
sage: X.<y_1,x> = ZZ[]
sage: Y.<y,z> = InfinitePolynomialRing(X)
Traceback (most recent call last):
...
CoercionException: Overlapping variables (('y', 'z'),['y_1']) are incompatible
sage: Y.<z,y> = InfinitePolynomialRing(X)
Traceback (most recent call last):
...
CoercionException: Overlapping variables (('z', 'y'),['y_1']) are incompatible
sage: X.<x_3,y_1,y_2> = PolynomialRing(ZZ,order='lex')
sage: # y_1 and y_2 would be in opposite order in an Infinite Polynomial Ring
sage: Y.<y> = InfinitePolynomialRing(X)
Traceback (most recent call last):
...
CoercionException: Overlapping variables (('y',),['y_1', 'y_2']) are incompatible
```

If the type of monomial orderings (e.g., 'degrevlex' versus 'lex') or if the implementations don't match, there is no simplified construction available:

```
sage: X.<x,y> = InfinitePolynomialRing(ZZ)
sage: Y.<z> = InfinitePolynomialRing(X,order='degrevlex')
sage: Y
Infinite polynomial ring in z over Infinite polynomial ring in x, y over Integer Ring
sage: Y.<z> = InfinitePolynomialRing(X,implementation='sparse')
sage: Y
Infinite polynomial ring in z over Infinite polynomial ring in x, y over Integer Ring
```

# TESTS:

Infinite Polynomial Rings are part of Sage's coercion system. Hence, we can do arithmetic, so that the result lives in a ring into which all constituents coerce.

```
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: X.<x> = InfinitePolynomialRing(R)
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1
sage: R.<a,b> = InfinitePolynomialRing(ZZ,implementation='sparse')
sage: X.<x> = InfinitePolynomialRing(R)
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1
sage: R.<a,b> = InfinitePolynomialRing(ZZ,implementation='sparse')
sage: X.<x> = InfinitePolynomialRing(R,implementation='sparse')
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: X.<x> = InfinitePolynomialRing(R,implementation='sparse')
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1
```

A dictionary-like class that is suitable for usage in sage\_eval.

This pseudo-dictionary accepts strings as index, and then walks down a chain of base rings of (infinite) polynomial rings until it finds one ring that has the given string as variable name, which is then returned.

# **EXAMPLES:**

```
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: D = R.gens_dict() # indirect doctest
sage: D
GenDict of Infinite polynomial ring in a, b over Integer Ring
sage: D['a_15']
a_15
sage: type(_)
<class 'sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense'>
sage: sage_eval('3*a_3*b_5-1/2*a_7', D)
-1/2*a_7 + 3*a_3*b_5
```

# next()

Return a dictionary that can be used to interprete strings in the base ring of self.

#### **EXAMPLES**

```
sage: R.<a,b> = InfinitePolynomialRing(QQ['t'])
sage: D = R.gens_dict()
sage: D
GenDict of Infinite polynomial ring in a, b over Univariate Polynomial Ring in t over Ration
sage: next(D)
GenDict of Univariate Polynomial Ring in t over Rational Field
sage: sage_eval('t^2', next(D))
t^2
```

class sage.rings.polynomial.infinite\_polynomial\_ring.InfiniteGenDict(Gens)
 A dictionary-like class that is suitable for usage in sage\_eval.

The generators of an Infinite Polynomial Ring are not variables. Variables of an Infinite Polynomial Ring are returned by indexing a generator. The purpose of this class is to return a variable of an Infinite Polynomial Ring, given its string representation.

# **EXAMPLES:**

```
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: D = R.gens_dict() # indirect doctest
sage: D._D
[InfiniteGenDict defined by ['a', 'b'], {'1': 1}]
sage: D._D[0]['a_15']
a_15
sage: type(_)
<class 'sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense'>
sage: sage_eval('3*a_3*b_5-1/2*a_7', D._D[0])
-1/2*a_7 + 3*a_3*b_5
```

Bases: sage.structure.sage\_object.SageObject

This class provides the object which is responsible for returning variables in an infinite polynomial ring (implemented in \_\_getitem\_\_()).

## **EXAMPLES:**

```
sage: X.<x1,x2> = InfinitePolynomialRing(RR)
sage: x1
x1_*
sage: x1[5]
x1_5
sage: x1 == loads(dumps(x1))
True
```

A factory for creating infinite polynomial ring elements. It handles making sure that they are unique as well as handling pickling. For more details, see UniqueFactory and infinite\_polynomial\_ring.

#### **EXAMPLES:**

```
sage: A.<a> = InfinitePolynomialRing(QQ)
sage: B.<b> = InfinitePolynomialRing(A)
sage: B.construction()
[InfPoly{[a,b], "lex", "dense"}, Rational Field]
sage: R.<a,b> = InfinitePolynomialRing(QQ)
sage: R is B
True
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: X2.<x> = InfinitePolynomialRing(QQ)
sage: X2.<x> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: X is X2
False
sage: X is loads(dumps(X))
True
create_key(R, names=('x',), order='lex', implementation='dense')
```

Creates a key which uniquely defines the infinite polynomial ring.

TESTS:

```
sage: InfinitePolynomialRing.create_key(QQ, ('y1',))
         (InfPoly{[y1], "lex", "dense"}(FractionField(...)), Integer Ring)
         sage: _[0].all
         [FractionField, InfPoly{[y1], "lex", "dense"}]
         sage: InfinitePolynomialRing.create_key(QQ, names=['beta'], order='deglex', implementation='
         (InfPoly{[beta], "deglex", "sparse"}(FractionField(...)), Integer Ring)
         sage: _[0].all
         [FractionField, InfPoly{[beta], "deglex", "sparse"}]
         sage: InfinitePolynomialRing.create_key(QQ, names=['x','y'], implementation='dense')
         (InfPoly{[x,y], "lex", "dense"}(FractionField(...)), Integer Ring)
         sage: _[0].all
         [FractionField, InfPoly{[x,y], "lex", "dense"}]
         If no generator name is provided, a generator named 'x', lexicographic order and the dense implementation
         are assumed:
         sage: InfinitePolynomialRing.create_key(QQ)
         (InfPoly{[x], "lex", "dense"}(FractionField(...)), Integer Ring)
         sage: _[0].all
         [FractionField, InfPoly{[x], "lex", "dense"}]
         If it is attempted to use no generator, a ValueError is raised:
         sage: InfinitePolynomialRing.create_key(ZZ, names=[])
         Traceback (most recent call last):
         ValueError: Infinite Polynomial Rings must have at least one generator
    create_object (version, key)
         Returns the infinite polynomial ring corresponding to the key key.
         sage: InfinitePolynomialRing.create_object('1.0', InfinitePolynomialRing.create_key(ZZ, ('x3
         Infinite polynomial ring in x3 over Integer Ring
class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense(R,
                                                                                               names,
                                                                                               or-
                                                                                               der)
    Bases: sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse
    Dense implementation of Infinite Polynomial Rings
    Compared with InfinitePolynomialRing_sparse, from which this class inherits, it keeps a polyno-
    mial ring that comprises all elements that have been created so far.
    construction()
         Return the construction of self.
         OUTPUT:
         A pair F, R, where F is a construction functor and R is a ring, so that F (R) is self.
         EXAMPLE:
         sage: R.<x,y> = InfinitePolynomialRing(GF(5))
         sage: R.construction()
         [InfPoly{[x,y], "lex", "dense"}, Finite Field of size 5]
```

# polynomial\_ring()

Returns the underlying *finite* polynomial ring.

**Note:** The ring returned can change over time as more variables are used.

Since the rings are cached, we create here a ring with variable names that do not occur in other doc tests, so that we avoid side effects.

## **EXAMPLES:**

```
sage: X.<xx, yy> = InfinitePolynomialRing(ZZ)
sage: X.polynomial_ring()
Multivariate Polynomial Ring in xx_0, yy_0 over Integer Ring
sage: a = yy[3]
sage: X.polynomial_ring()
Multivariate Polynomial Ring in xx_3, xx_2, xx_1, xx_0, yy_3, yy_2, yy_1, yy_0 over Integer
```

#### tensor\_with\_ring(R)

Return the tensor product of self with another ring.

INPUT:

R - a ring.

**OUTPUT:** 

An infinite polynomial ring that, mathematically, can be seen as the tensor product of self with R.

NOTE:

It is required that the underlying ring of self coerces into R. Hence, the tensor product is in fact merely an extension of the base ring.

#### **EXAMPLES:**

```
sage: R.<a,b> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: R.tensor_with_ring(QQ)
Infinite polynomial ring in a, b over Rational Field
sage: R
Infinite polynomial ring in a, b over Integer Ring
```

The following tests against a bug that was fixed at trac ticket #10468:

```
sage: R.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: R.tensor_with_ring(QQ) is R
True
```

class sage.rings.polynomial.infinite\_polynomial\_ring.InfinitePolynomialRing\_sparse(R,

names, order)

Bases: sage.rings.ring.CommutativeRing

Sparse implementation of Infinite Polynomial Rings.

An Infinite Polynomial Ring with generators  $x_*, y_*, \dots$  over a field F is a free commutative F-algebra generated by  $x_0, x_1, x_2, \dots, y_0, y_1, y_2, \dots$ , and is equipped with a permutation action on the generators, namely  $x_n^P = x_{P(n)}, y_n^P = y_{P(n)}, \dots$  for any permutation P (note that variables of index zero are invariant under such permutation).

It is known that any permutation invariant ideal in an Infinite Polynomial Ring is finitely generated modulo the permutation action – see SymmetricIdeal for more details.

Usually, an instance of this class is created using InfinitePolynomialRing with the optional parameter implementation='sparse'. This takes care of uniqueness of parent structures. However, a direct construction is possible, in principle:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: Y.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: X is Y
True
sage: from sage.rings.polynomial.infinite_polynomial_ring import InfinitePolynomialRing_sparse
sage: Z = InfinitePolynomialRing_sparse(QQ, ['x','y'], 'lex')
```

Nevertheless, since infinite polynomial rings are supposed to be unique parent structures, they do not evaluate equal.

```
sage: Z == X False
```

The last parameter ('lex' in the above example) can also be 'deglex' or 'degrevlex'; this would result in an Infinite Polynomial Ring in degree lexicographic or degree reverse lexicographic order.

See infinite\_polynomial\_ring for more details.

#### characteristic()

Return the characteristic of the base field.

```
EXAMPLES:
```

```
sage: X.<x,y> = InfinitePolynomialRing(GF(25,'a'))
sage: X
Infinite polynomial ring in x, y over Finite Field in a of size 5^2
sage: X.characteristic()
5
```

# construction()

Return the construction of self.

#### **OUTPUT:**

A pair F, R, where F is a construction functor and R is a ring, so that F(R) is self.

# EXAMPLE:

```
sage: R.<x,y> = InfinitePolynomialRing(GF(5))
sage: R.construction()
[InfPoly{[x,y], "lex", "dense"}, Finite Field of size 5]
```

#### gen (*i=None*)

Returns the  $i^{th}$  'generator' (see the description in ngens ()) of this infinite polynomial ring.

# **EXAMPLES:**

```
sage: X = InfinitePolynomialRing(QQ)
sage: x = X.gen()
sage: x[1]
x_1
sage: X.gen() is X.gen(0)
True
sage: XX = InfinitePolynomialRing(GF(5))
sage: XX.gen(0) is XX.gen()
True
```

# gens\_dict()

Return a dictionary-like object containing the infinitely many {var\_name:variable} pairs.

# **EXAMPLES:**

```
sage: R = InfinitePolynomialRing(ZZ, 'a')
sage: D = R.gens_dict()
sage: D
GenDict of Infinite polynomial ring in a over Integer Ring
sage: D['a_5']
a_5
```

## is\_field(\*args, \*\*kwds)

Return False: Since Infinite Polynomial Rings must have at least one generator, they have infinitely many variables and thus never are fields.

## **EXAMPLES:**

```
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.is_field()
False

TESTS:
sage: R = InfinitePolynomialRing(GF(2))
sage: R
Infinite polynomial ring in x over Finite Field of size 2
sage: R.is_field()
False

Ticket #9443:
sage: W = PowerSeriesRing(InfinitePolynomialRing(QQ,'a'),'x')
sage: W.is_field()
False
```

# is\_integral\_domain(\*args, \*\*kwds)

An infinite polynomial ring is an integral domain if and only if the base ring is. Arguments are passed to is\_integral\_domain method of base ring.

# **EXAMPLES**:

```
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.is_integral_domain()
True

TESTS:

Ticket #9443:
sage: W = PolynomialRing(InfinitePolynomialRing(QQ,'a'),2,'x,y')
sage: W.is_integral_domain()
True
```

# is\_noetherian(\*args, \*\*kwds)

Return False, since polynomial rings in infinitely many variables are never Noetherian rings.

Note, however, that they are noetherian modules over the group ring of the symmetric group of the natural numbers

```
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: R.is_noetherian()
False
```

#### krull dimension(\*args, \*\*kwds)

Return Infinity, since polynomial rings in infinitely many variables have infinite Krull dimension.

#### **EXAMPLES:**

```
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.krull_dimension()
+Infinity
```

## ngens()

Returns the number of generators for this ring. Since there are countably infinitely many variables in this polynomial ring, by 'generators' we mean the number of infinite families of variables. See infinite\_polynomial\_ring for more details.

## **EXAMPLES:**

```
sage: X.<x> = InfinitePolynomialRing(ZZ)
sage: X.ngens()

sage: X.<x1,x2> = InfinitePolynomialRing(QQ)
sage: X.ngens()

one()
   TESTS:
   sage: X.<x,y> = InfinitePolynomialRing(QQ)
   sage: X.one()
1
```

# order()

Return Infinity, since polynomial rings have infinitely many elements.

# **EXAMPLES:**

```
sage: R.<x> = InfinitePolynomialRing(GF(2))
sage: R.order()
+Infinity
```

# $tensor\_with\_ring(R)$

Return the tensor product of self with another ring.

# INPUT:

R - a ring.

# **OUTPUT**:

An infinite polynomial ring that, mathematically, can be seen as the tensor product of self with R.

## NOTE:

It is required that the underlying ring of self coerces into R. Hence, the tensor product is in fact merely an extension of the base ring.

```
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: R.tensor_with_ring(QQ)
Infinite polynomial ring in a, b over Rational Field
sage: R
Infinite polynomial ring in a, b over Integer Ring
```

The following tests against a bug that was fixed at trac ticket #10468:

```
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: R.tensor_with_ring(QQ) is R
True
```

#### $varname\_cmp(x, y)$

Comparison of two variable names.

#### INPUT:

x, y - two strings of the form a+'\_' +str (n), where a is the name of a generator, and n is an integer

#### RETURN:

-1,0,1 if x<y, x==y, x>y, respectively

#### THEORY:

The order is defined as follows:  $x < y \iff$  the string x.split('\_')[0] is later in the list of generator names of self than y.split('\_')[0], or (x.split('\_')[0]==y.split('\_')[0] and int(x.split('\_')[1]) <int(y.split('\_')[1]))

### **EXAMPLES:**

```
sage: X.<alpha,beta> = InfinitePolynomialRing(ZZ)
sage: X.varname_cmp('alpha_1','beta_10')
1
sage: X.varname_cmp('beta_1','alpha_10')
-1
sage: X.varname_cmp('alpha_1','alpha_10')
-1
```

# 6.2 Elements of Infinite Polynomial Rings

# **AUTHORS:**

- Simon King <simon.king@nuigalway.ie>
- Mike Hansen <mhansen@gmail.com>

An Infinite Polynomial Ring has generators  $x_*, y_*, ...$ , so that the variables are of the form  $x_0, x_1, x_2, ..., y_0, y_1, y_2, ..., ...$  (see infinite\_polynomial\_ring). Using the generators, we can create elements as follows:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: a = x[3]
sage: b = y[4]
sage: a
x_3
sage: b
y_4
sage: c = a*b+a^3-2*b^4
sage: c
x_3^3 + x_3*y_4 - 2*y_4^4
```

Any Infinite Polynomial Ring X is equipped with a monomial ordering. We only consider monomial orderings in which:

```
X.gen(i)[m] > X.gen(j)[n] \iff i < j, or i==j and m>n
```

Under this restriction, the monomial ordering can be lexicographic (default), degree lexicographic, or degree reverse lexicographic. Here, the ordering is lexicographic, and elements can be compared as usual:

```
sage: X._order
'lex'
sage: a > b
True
```

Note that, when a method is called that is not directly implemented for 'InfinitePolynomial', it is tried to call this method for the underlying *classical* polynomial. This holds, e.g., when applying the latex function:

```
sage: latex(c) x_{3}^{3} + x_{3} y_{4} - 2 y_{4}^{4}
```

There is a permutation action on Infinite Polynomial Rings by permuting the indices of the variables:

```
sage: P = Permutation(((4,5),(2,3)))

sage: c^P

x_2^3 + x_2*y_5 - 2*y_5^4
```

Note that P(0) == 0, and thus variables of index zero are invariant under the permutation action. More generally, if P(0) == 0, and thus variables of index zero are invariant under the permutation action. More generally, if P(0) == 0, and thus variables of index zero are invariant under the permutation action. More generally, if P(0) == 0, and thus variables of index zero are invariant under the permutation action. More generally, if P(0) == 0, and thus variables of index zero are invariant under the permutation action. More generally, if P(0) == 0, and thus variables of index zero are invariant under the permutation action. More generally, if P(0) == 0, and thus variables of index zero are invariant under the permutation action.

#### TESTS:

We test whether coercion works, even in complicated cases in which finite polynomial rings are merged with infinite polynomial rings:

```
sage: A.<a> = InfinitePolynomialRing(ZZ,implementation='sparse',order='degrevlex')
sage: B.<b_2,b_1> = A[]
sage: C.<b,c> = InfinitePolynomialRing(B,order='degrevlex')
sage: C
Infinite polynomial ring in b, c over Infinite polynomial ring in a over Integer Ring
sage: 1/2*b_1*a[4]+c[3]
1/2*a_4*b_1 + c_3
```

sage.rings.polynomial.infinite\_polynomial\_element.InfinitePolynomial (A, p) Create an element of a Polynomial Ring with a Countably Infinite Number of Variables.

Usually, an InfinitePolynomial is obtained by using the generators of an Infinite Polynomial Ring (see infinite\_polynomial\_ring) or by conversion.

# INPUT:

•A – an Infinite Polynomial Ring.

•p – a *classical* polynomial that can be interpreted in A.

# **ASSUMPTIONS:**

In the dense implementation, it must be ensured that the argument p coerces into A.\_P by a name preserving conversion map.

In the sparse implementation, in the direct construction of an infinite polynomial, it is *not* tested whether the argument p makes sense in A.

```
sage: from sage.rings.polynomial.infinite_polynomial_element import InfinitePolynomial
sage: X.<alpha> = InfinitePolynomialRing(ZZ)
sage: P.<alpha_1,alpha_2> = ZZ[]
```

Currently, P and X.\_P (the underlying polynomial ring of X) both have two variables:

```
sage: X._P
Multivariate Polynomial Ring in alpha_1, alpha_0 over Integer Ring
```

By default, a coercion from P to X.\_P would not be name preserving. However, this is taken care for; a name preserving conversion is impossible, and by consequence an error is raised:

```
sage: InfinitePolynomial(X, (alpha_1+alpha_2)^2)
Traceback (most recent call last):
...
TypeError: Could not find a mapping of the passed element to this ring.
```

When extending the underlying polynomial ring, the construction of an infinite polynomial works:

```
sage: alpha[2]
alpha_2
sage: InfinitePolynomial(X, (alpha_1+alpha_2)^2)
alpha_2^2 + 2*alpha_2*alpha_1 + alpha_1^2
```

In the sparse implementation, it is not checked whether the polynomial really belongs to the parent:

```
sage: Y.<alpha,beta> = InfinitePolynomialRing(GF(2), implementation='sparse')
sage: a = (alpha_1+alpha_2)^2
sage: InfinitePolynomial(Y, a)
alpha_1^2 + 2*alpha_1*alpha_2 + alpha_2^2
```

However, it is checked when doing a conversion:

```
sage: Y(a)
alpha_2^2 + alpha_1^2
```

class sage.rings.polynomial.infinite\_polynomial\_element.InfinitePolynomial\_dense(A,

```
Bases: sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse
```

Element of a dense Polynomial Ring with a Countably Infinite Number of Variables.

# INPUT:

- •A an Infinite Polynomial Ring in dense implementation
- •p a *classical* polynomial that can be interpreted in A.

Of course, one should not directly invoke this class, but rather construct elements of A in the usual way.

This class inherits from InfinitePolynomial sparse. See there for a description of the methods.

```
{\bf class} \ {\tt sage.rings.polynomial.infinite\_polynomial\_element.} \ {\bf InfinitePolynomial\_sparse} \ (A, p)
```

Bases: sage.structure.element.RingElement

Element of a sparse Polynomial Ring with a Countably Infinite Number of Variables.

# INPUT:

- •A an Infinite Polynomial Ring in sparse implementation
- •p a *classical* polynomial that can be interpreted in A.

Of course, one should not directly invoke this class, but rather construct elements of A in the usual way.

```
sage: A.<a> = QQ[]
sage: B.<b,c> = InfinitePolynomialRing(A,implementation='sparse')
sage: p = a*b[100] + 1/2*c[4]
sage: p
a*b_100 + 1/2*c_4
sage: p.parent()
Infinite polynomial ring in b, c over Univariate Polynomial Ring in a over Rational Field
sage: p.polynomial().parent()
Multivariate Polynomial Ring in b_100, b_0, c_4, c_0 over Univariate Polynomial Ring in a over Rational Rin
```

#### coefficient (monomial)

Returns the coefficient of a monomial in this polynomial.

#### INPUT:

- •A monomial (element of the parent of self) or
- •a dictionary that describes a monomial (the keys are variables of the parent of self, the values are the corresponding exponents)

#### **EXAMPLES:**

We can get the coefficient in front of monomials:

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: a = 2*x[0]*x[1] + x[1] + x[2]
sage: a.coefficient(x[0])
2*x_1
sage: a.coefficient(x[1])
2*x_0 + 1
sage: a.coefficient(x[2])
1
sage: a.coefficient(x[0]*x[1])
2
```

We can also pass in a dictionary:

```
sage: a.coefficient({x[0]:1, x[1]:1})
2
```

# footprint()

Leading exponents sorted by index and generator.

#### **OUTPUT**:

D – a dictionary whose keys are the occurring variable indices.

D[s] is a list  $[i_1, ..., i_n]$ , where  $i_j$  gives the exponent of self.parent().gen(j)[s] in the leading term of self.

# **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p = x[30]*y[1]^3*x[1]^2+2*x[10]*y[30]
sage: sorted(p.footprint().items())
[(1, [2, 3]), (30, [1, 0])]
```

#### TESTS:

This is a test whether it also works when the underlying polynomial ring is not implemented in libsingular:

```
sage: X.<x> = InfinitePolynomialRing(ZZ)
sage: <math>Y.<y,z> = X[]
```

```
sage: Z.<a> = InfinitePolynomialRing(Y)
    sage: Z
    Infinite polynomial ring in a over Multivariate Polynomial Ring in y, z over Infinite polynomial
    sage: type(Z._P)
    <class 'sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_with_category'>
    sage: p = a[12]^3*a[2]^7*a[4] + a[4]*a[2]
    sage: sorted(p.footprint().items())
    [(2, [7]), (4, [1]), (12, [3])]
gcd(x)
    computes the greatest common divisor
    EXAMPLES:
    sage: R.<x>=InfinitePolynomialRing(QQ)
    sage: p1=x[0]+x[1]**2
    sage: gcd(p1,p1+3)
    sage: gcd(p1,p1) ==p1
    True
is unit()
    Answers whether self is a unit
    EXAMPLES:
    sage: R1.<x,y> = InfinitePolynomialRing(ZZ)
    sage: R2.<x,y> = InfinitePolynomialRing(QQ)
    sage: p = 1 + x[2]
    sage: R1.<x,y> = InfinitePolynomialRing(ZZ)
    sage: R2.<a,b> = InfinitePolynomialRing(QQ)
    sage: (1+x[2]).is_unit()
    False
    sage: R1(1).is_unit()
    True
    sage: R1(2).is_unit()
    False
    sage: R2(2).is_unit()
    sage: (1+a[2]).is_unit()
    False
    TESTS:
    sage: R.<x> = InfinitePolynomialRing(ZZ.quotient_ring(8))
    sage: [R(i).is_unit() for i in range(8)]
    [False, True, False, True, False, True, False, True]
1c()
    The coefficient of the leading term of self.
    EXAMPLES:
    sage: X.<x,y> = InfinitePolynomialRing(QQ)
    sage: p = 2 \times x[10] \times y[30] + 3 \times x[10] \times y[1]^3 \times x[1]^2
    sage: p.lc()
    3
1m()
```

The leading monomial of self.

#### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p = 2*x[10]*y[30]+x[10]*y[1]^3*x[1]^2
sage: p.lm()
x_10*x_1^2*y_1^3
```

#### 1t()

The leading term (= product of coefficient and monomial) of self.

#### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p = 2*x[10]*y[30]+3*x[10]*y[1]^3*x[1]^2
sage: p.lt()
3*x_10*x_1^2*y_1^3
```

#### max index()

Return the maximal index of a variable occurring in self, or -1 if self is scalar.

#### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p=x[1]^2+y[2]^2+x[1]*x[2]*y[3]+x[1]*y[4]
sage: p.max_index()
4
sage: x[0].max_index()
0
sage: X(10).max_index()
```

#### polynomial()

Return the underlying polynomial.

### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(GF(7))
sage: p=x[2]*y[1]+3*y[0]
sage: p
x_2*y_1 + 3*y_0
sage: p.polynomial()
x_2*y_1 + 3*y_0
sage: p.polynomial().parent()
Multivariate Polynomial Ring in x_2, x_1, x_0, y_2, y_1, y_0 over Finite Field of size 7
sage: p.parent()
Infinite polynomial ring in x, y over Finite Field of size 7
```

# reduce (I, tailreduce=False, report=None)

Symmetrical reduction of self with respect to a symmetric ideal (or list of Infinite Polynomials).

#### INPUT:

- •I a SymmetricIdeal or a list of Infinite Polynomials.
- •tailreduce (bool, default False) Tail reduction is performed if this parameter is True.
- •report (object, default None) If not None, some information on the progress of computation is printed, since reduction of huge polynomials may take a long time.

#### **OUTPUT**:

Symmetrical reduction of  $\mathtt{self}$  with respect to  $\mathtt{I}$ , possibly with tail reduction.

#### THEORY:

Reducing an element p of an Infinite Polynomial Ring X by some other element q means the following:

- 1.Let M and N be the leading terms of p and q.
- 2. Test whether there is a permutation P that does not does not diminish the variable indices occurring in N and preserves their order, so that there is some term  $T \in X$  with  $TN^P = M$ . If there is no such permutation, return p
- 3.Replace p by  $p Tq^P$  and continue with step 1.

#### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p = y[1]^2*y[3]+y[2]*x[3]^3
sage: p.reduce([y[2]*x[1]^2])
x_3^3*y_2 + y_3*y_1^2
```

The preceding is correct: If a permutation turns  $y[2] *x[1]^2$  into a factor of the leading monomial  $y[2] *x[3]^3$  of p, then it interchanges the variable indices 1 and 2; this is not allowed in a symmetric reduction. However, reduction by  $y[1] *x[2]^2$  works, since one can change variable index 1 into 2 and 2 into 3:

```
sage: p.reduce([y[1]*x[2]^2])
y_3*y_1^2
```

The next example shows that tail reduction is not done, unless it is explicitly advised. The input can also be a Symmetric Ideal:

```
sage: I = (y[3])*X
sage: p.reduce(I)
x_3^3*y_2 + y_3*y_1^2
sage: p.reduce(I, tailreduce=True)
x_3^3*y_2
```

Last, we demonstrate the report option:

```
sage: p=x[1]^2+y[2]^2+x[1]*x[2]*y[3]+x[1]*y[4]
sage: p.reduce(I, tailreduce=True, report=True)
:T[2]:>
>
x_1^2 + y_2^2
```

The output ':' means that there was one reduction of the leading monomial. 'T[2]' means that a tail reduction was performed on a polynomial with two terms. At '>', one round of the reduction process is finished (there could only be several non-trivial rounds if I was generated by more than one polynomial).

# ring()

The ring which self belongs to.

This is the same as self.parent().

#### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(ZZ,implementation='sparse')
sage: p = x[100]*y[1]^3*x[1]^2+2*x[10]*y[30]
sage: p.ring()
Infinite polynomial ring in x, y over Integer Ring
```

# squeezed()

Reduce the variable indices occurring in self.

### **OUTPUT:**

Apply a permutation to self that does not change the order of the variable indices of self but squeezes them into the range 1,2,...

#### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse')
sage: p = x[1]*y[100] + x[50]*y[1000]
sage: p.squeezed()
x_2*y_4 + x_1*y_3
```

#### stretch(k)

Stretch self by a given factor.

#### INPUT:

k - an integer.

#### **OUTPUT**:

Replace  $v_n$  with  $v_{n \cdot k}$  for all generators  $v_*$  occurring in self.

# **EXAMPLES:**

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: a = x[0] + x[1] + x[2]
sage: a.stretch(2)
x_4 + x_2 + x_0

sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: a = x[0] + x[1] + y[0]*y[1]; a
x_1 + x_0 + y_1*y_0
sage: a.stretch(2)
x_2 + x_0 + y_2*y_0
```

# TESTS:

The following would hardly work in a dense implementation, because an underlying polynomial ring with 6001 variables would be created. This is avoided in the sparse implementation:

```
sage: X.<x> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: a = x[2] + x[3]
sage: a.stretch(2000)
x_6000 + x_4000
```

# symmetric\_cancellation\_order(other)

Comparison of leading terms by Symmetric Cancellation Order,  $<_{sc}$ .

# INPUT:

self, other - two Infinite Polynomials

### ASSUMPTION:

Both Infinite Polynomials are non-zero.

# OUTPUT:

```
(c, sigma, w), where
```

•c = -1,0,1, or None if the leading monomial of self is smaller, equal, greater, or incomparable with respect to other in the monomial ordering of the Infinite Polynomial Ring

```
•sigma is a permutation witnessing self <_{sc} other (resp. self >_{sc} other) or is 1 if self.lm() ==other.lm()
```

```
•w is 1 or is a term so that w*self.lt()^sigma == other.lt() if c \le 0, and w*other.lt()^sigma == self.lt() if c = 1
```

### THEORY:

If the Symmetric Cancellation Order is a well-quasi-ordering then computation of Groebner bases always terminates. This is the case, e.g., if the monomial order is lexicographic. For that reason, lexicographic order is our default order.

#### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: (x[2]*x[1]).symmetric_cancellation_order(x[2]^2)
(None, 1, 1)
sage: (x[2]*x[1]).symmetric_cancellation_order(x[2]*x[3]*y[1])
(-1, [2, 3, 1], y_1)
sage: (x[2]*x[1]*y[1]).symmetric_cancellation_order(x[2]*x[3]*y[1])
(None, 1, 1)
sage: (x[2]*x[1]*y[1]).symmetric_cancellation_order(x[2]*x[3]*y[2])
(-1, [2, 3, 1], 1)
```

#### tail()

The tail of self (this is self minus its leading term).

#### EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p = 2*x[10]*y[30]+3*x[10]*y[1]^3*x[1]^2
sage: p.tail()
2*x_10*y_30
```

#### variables()

Return the variables occurring in self (tuple of elements of some polynomial ring).

# **EXAMPLES:**

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: p = x[1] + x[2] - 2*x[1]*x[3]
sage: p.variables()
(x_3, x_2, x_1)
sage: x[1].variables()
(x_1,)
sage: X(1).variables()
```

# 6.3 Symmetric Ideals of Infinite Polynomial Rings

This module provides an implementation of ideals of polynomial rings in a countably infinite number of variables that are invariant under variable permutation. Such ideals are called 'Symmetric Ideals' in the rest of this document. Our implementation is based on the theory of M. Aschenbrenner and C. Hillar.

#### **AUTHORS:**

• Simon King <simon.king@nuigalway.ie>

Here, we demonstrate that working in quotient rings of Infinite Polynomial Rings works, provided that one uses symmetric Groebner bases.

```
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: I = R.ideal([x[1]*x[2] + x[3]])
```

Note that I is not a symmetric Groebner basis:

```
sage: G = R*I.groebner_basis()
sage: G
Symmetric Ideal (x_1^2 + x_1, x_2 - x_1) of Infinite polynomial ring in x over Rational Field
sage: Q = R.quotient(G)
sage: p = x[3]*x[1]+x[2]^2+3
sage: Q(p)
-2*x_1 + 3
```

By the second generator of G, variable  $x_n$  is equal to  $x_1$  for any positive integer n. By the first generator of G,  $x_1^3$  is equal to  $x_1$  in Q. Indeed, we have

```
sage: Q(p) *x[2] == Q(p) *x[1] *x[3] *x[5]
True
```

```
class sage.rings.polynomial.symmetric_ideal.SymmetricIdeal(ring, gens, coerce=True)
    Bases: sage.rings.ideal.Ideal_generic
```

Ideal in an Infinite Polynomial Ring, invariant under permutation of variable indices

#### THEORY:

An Infinite Polynomial Ring with finitely many generators  $x_*, y_*, \dots$  over a field F is a free commutative F-algebra generated by infinitely many 'variables'  $x_0, x_1, x_2, \dots, y_0, y_1, y_2, \dots$  We refer to the natural number n as the *index* of the variable  $x_n$ . See more detailed description at infinite\_polynomial\_ring

Infinite Polynomial Rings are equipped with a permutation action by permuting positive variable indices, i.e.,  $x_n^P = x_{P(n)}, y_n^P = y_{P(n)}, ...$  for any permutation P. Note that the variables  $x_0, y_0, ...$  of index zero are invariant under that action.

A Symmetric Ideal is an ideal in an infinite polynomial ring X that is invariant under the permutation action. In other words, if  $\mathfrak{S}_{\infty}$  denotes the symmetric group of 1, 2, ..., then a Symmetric Ideal is a right  $X[\mathfrak{S}_{\infty}]$ -submodule of X

It is known by work of Aschenbrenner and Hillar [AB2007] that an Infinite Polynomial Ring X with a single generator  $x_*$  is Noetherian, in the sense that any Symmetric Ideal  $I \subset X$  is finitely generated modulo addition, multiplication by elements of X, and permutation of variable indices (hence, it is a finitely generated right  $X[\mathfrak{S}_{\infty}]$ -module).

Moreover, if X is equipped with a lexicographic monomial ordering with  $x_1 < x_2 < x_3...$  then there is an algorithm of Buchberger type that computes a Groebner basis G for I that allows for computation of a unique normal form, that is zero precisely for the elements of I – see [AB2008]. See <code>groebner\_basis()</code> for more details.

Our implementation allows more than one generator and also provides degree lexicographic and degree reverse lexicographic monomial orderings – we do, however, not guarantee termination of the Buchberger algorithm in these cases.

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I = [x[1]*y[2]*y[1] + 2*x[1]*y[2]]*X
sage: I == loads(dumps(I))
True
```

```
sage: latex(I)   \left(x_{1} y_{2} y_{1} + 2 x_{1} y_{2} \right]  \Bold{Q}[x_{\ast}, y_{\ast}][\mathfrak{S}_{\infty}]
```

The default ordering is lexicographic. We now compute a Groebner basis:

```
sage: J = I.groebner_basis(); J # about 3 seconds
[x_1*y_2*y_1 + 2*x_1*y_2, x_2*y_2*y_1 + 2*x_2*y_1, x_2*x_1*y_1^2 + 2*x_2*x_1*y_1, x_2*x_1*y_2 -
```

Note that even though the symmetric ideal can be generated by a single polynomial, its reduced symmetric Groebner basis comprises four elements. Ideal membership in I can now be tested by commuting symmetric reduction modulo J:

```
sage: I.reduce(J)
Symmetric Ideal (0) of Infinite polynomial ring in x, y over Rational Field
```

The Groebner basis is not point-wise invariant under permutation:

```
sage: P=Permutation([2, 1])
sage: J[2]
x_2*x_1*y_1^2 + 2*x_2*x_1*y_1
sage: J[2]^P
x_2*x_1*y_2^2 + 2*x_2*x_1*y_2
sage: J[2]^P in J
False
```

However, any element of J has symmetric reduction zero even after applying a permutation. This even holds when the permutations involve higher variable indices than the ones occurring in J:

```
sage: [[(p^P).reduce(J) for p in J] for P in Permutations(3)]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
```

Since I is not a Groebner basis, it is no surprise that it can not detect ideal membership:

```
sage: [p.reduce(I) for p in J]
[0, x_2*y_2*y_1 + 2*x_2*y_1, x_2*x_1*y_1^2 + 2*x_2*x_1*y_1, x_2*x_1*y_2 - x_2*x_1*y_1]
```

Note that we give no guarantee that the computation of a symmetric Groebner basis will terminate in any order different from lexicographic.

When multiplying Symmetric Ideals or raising them to some integer power, the permutation action is taken into account, so that the product is indeed the product of ideals in the mathematical sense.

```
sage: I=X*(x[1])
sage: I*I
Symmetric Ideal (x_1^2, x_2*x_1) of Infinite polynomial ring in x, y over Rational Field
sage: I^3
Symmetric Ideal (x_1^3, x_2*x_1^2, x_2^2*x_1, x_3*x_2*x_1) of Infinite polynomial ring in x, y of sage: I*I == X*(x[1]^2)
False
```

Return a symmetric Groebner basis (type Sequence) of self.

INPUT:

- •tailreduce (bool, default False) If True, use tail reduction in intermediate computations
- •reduced (bool, default True) If True, return the reduced normalised symmetric Groebner basis.
- •algorithm (string, default None) Determine the algorithm (see below for available algorithms).

- •report (object, default None) If not None, print information on the progress of computation.
- •use\_full\_group (bool, default False) If True then proceed as originally suggested by [AB2008]. Our default method should be faster; see symmetrisation() for more details.

The computation of symmetric Groebner bases also involves the computation of *classical* Groebner bases, i.e., of Groebner bases for ideals in polynomial rings with finitely many variables. For these computations, Sage provides the following ALGORITHMS:

```
" autoselect (default)
```

'singular:groebner' Singular's groebner command

'singular:std' Singular's std command

'singular:stdhilb' Singular's stdhib command

'singular:stdfglm' Singular's stdfqlm command

'singular:slimgb' Singular's slimgb command

'libsingular:std' libSingular's std command

'libsingular:slimgb' libSingular's slimgb command

'toy:buchberger' Sage's toy/educational buchberger without strategy

'toy:buchberger2' Sage's toy/educational buchberger with strategy

'toy:d\_basis' Sage's toy/educational d\_basis algorithm

'macaulay2:gb' Macaulay2's gb command (if available)

'magma:GroebnerBasis' Magma's Groebnerbasis command (if available)

If only a system is given - e.g. 'magma' - the default algorithm is chosen for that system.

**Note:** The Singular and libSingular versions of the respective algorithms are identical, but the former calls an external Singular process while the later calls a C function, i.e. the calling overhead is smaller.

# **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I1 = X*(x[1]+x[2],x[1]*x[2])
sage: I1.groebner_basis()
[x_1]
sage: I2 = X*(y[1]^2*y[3]+y[1]*x[3])
sage: I2.groebner_basis()
[x_1*y_2 + y_2^2*y_1, x_2*y_1 + y_2*y_1^2]
```

Note that a symmetric Groebner basis of a principal ideal is not necessarily formed by a single polynomial.

When using the algorithm originally suggested by Aschenbrenner and Hillar, the result is the same, but the computation takes much longer:

```
sage: I2.groebner_basis(use_full_group=True)
[x_1*y_2 + y_2^2*y_1, x_2*y_1 + y_2*y_1^2]
```

Last, we demonstrate how the report on the progress of computations looks like:

```
sage: I1.groebner_basis(report=True, reduced=True)
Symmetric interreduction
[1/2] >
[2/2] :>
[1/2] >
```

```
[2/2] >
Symmetrise 2 polynomials at level 2
Apply permutations
Symmetric interreduction
[1/3] >
[2/3] >
[3/3] :>
-> 0
[1/2] >
[2/2] >
Symmetrisation done
Classical Groebner basis
-> 2 generators
Symmetric interreduction
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 3
Apply permutations
:>
::>
:>
::>
Symmetric interreduction
[1/4] >
[2/4] :>
-> 0
[3/4] ::>
-> 0
[4/4] :>
-> 0
[1/1] >
Apply permutations
:>
:>
:>
Symmetric interreduction
[1/1] >
Classical Groebner basis
-> 1 generators
Symmetric interreduction
[1/1] >
Symmetrise 1 polynomials at level 4
Apply permutations
:>
:>
>
:>
:>
Symmetric interreduction
[1/2] >
[2/2] :>
-> 0
[1/1] >
```

```
Symmetric interreduction
[1/1] >
[x_1]
```

The Aschenbrenner-Hillar algorithm is only guaranteed to work if the base ring is a field. So, we raise a TypeError if this is not the case:

```
sage: R.<x,y> = InfinitePolynomialRing(ZZ)
sage: I = R*[x[1]+x[2],y[1]]
sage: I.groebner_basis()
Traceback (most recent call last):
...
TypeError: The base ring (= Integer Ring) must be a field
```

#### TESTS:

In an earlier version, the following examples failed:

```
sage: X.<y, z> = InfinitePolynomialRing(GF(5), order='degrevlex')
sage: I = ['-2*y_0^2 + 2*z_0^2 + 1', '-y_0^2 + 2*y_0*z_0 - 2*z_0^2 - 2*z_0 - 1', 'y_0*z_0 +
sage: I.groebner_basis()
[1]
sage: Y.<x, y> = InfinitePolynomialRing(GF(3), order='degrevlex', implementation='sparse')
sage: I = ['-y_3']*Y
sage: I.groebner_basis()
[y_1]
```

#### interreduced basis()

A fully symmetrically reduced generating set (type Sequence) of self.

This does essentially the same as interreduction() with the option 'tailreduce', but it returns a Sequence rather than a SymmetricIdeal.

#### **EXAMPLES:**

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I=X*(x[1]+x[2],x[1]*x[2])
sage: I.interreduced_basis()
[-x_1^2, x_2 + x_1]
```

interreduction (tailreduce=True, sorted=False, report=None, RStrat=None)

Return symmetrically interreduced form of self

## INPUT:

- •tailreduce (bool, default True) If True, the interreduction is also performed on the non-leading monomials.
- •sorted (bool, default False) If True, it is assumed that the generators of self are already increasingly sorted.
- •report (object, default None) If not None, some information on the progress of computation is printed
- •RStrat (SymmetricReductionStrategy, default None) A reduction strategy to which the polynomials resulting from the interreduction will be added. If RStrat already contains some polynomials, they will be used in the interreduction. The effect is to compute in a quotient ring.

# OUTPUT:

A Symmetric Ideal J (sorted list of generators) coinciding with self as an ideal, so that any generator is symmetrically reduced w.r.t. the other generators. Note that the leading coefficients of the result are not necessarily 1.

## **EXAMPLES:**

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I=X*(x[1]+x[2],x[1]*x[2])
sage: I.interreduction()
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
```

# Here, we show the report option:

```
sage: I.interreduction(report=True)
Symmetric interreduction
[1/2] >
[2/2] :>
[1/2] >
[2/2] T[1]>
>
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
```

[m/n] indicates that polynomial number m is considered and the total number of polynomials under consideration is n. '-> 0' is printed if a zero reduction occurred. The rest of the report is as described in sage.rings.polynomial.symmetric\_reduction.SymmetricReductionStrategy.reduce().

Last, we demonstrate the use of the optional parameter RStrat:

```
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: R = SymmetricReductionStrategy(X)
sage: R
Symmetric Reduction Strategy in Infinite polynomial ring in x over Rational Field
sage: I.interreduction(RStrat=R)
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
sage: R
Symmetric Reduction Strategy in Infinite polynomial ring in x over Rational Field, modulo
    x_1^2,
    x_2 + x_1
sage: R = SymmetricReductionStrategy(X,[x[1]^2])
sage: I.interreduction(RStrat=R)
Symmetric Ideal (x_2 + x_1) of Infinite polynomial ring in x over Rational Field
```

#### is maximal()

Answers whether self is a maximal ideal.

# ASSUMPTION:

self is defined by a symmetric Groebner basis.

#### NOTE:

It is not checked whether self is in fact a symmetric Groebner basis. A wrong answer can result if this assumption does not hold. A NotImplementedError is raised if the base ring is not a field, since symmetric Groebner bases are not implemented in this setting.

```
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: I = R.ideal([x[1]+y[2], x[2]-y[1]])
sage: I = R*I.groebner_basis()
sage: I
Symmetric Ideal (y_1, x_1) of Infinite polynomial ring in x, y over Rational Field
```

```
sage: I = R.ideal([x[1]+y[2], x[2]-y[1]])
sage: I.is_maximal()
False
```

The preceding answer is wrong, since it is not the case that I is given by a symmetric Groebner basis:

```
sage: I = R*I.groebner_basis()
sage: I
Symmetric Ideal (y_1, x_1) of Infinite polynomial ring in x, y over Rational Field
sage: I.is_maximal()
True
```

# normalisation()

Return an ideal that coincides with self, so that all generators have leading coefficient 1.

Possibly occurring zeroes are removed from the generator list.

#### **EXAMPLES:**

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(1/2*x[1]+2/3*x[2], 0, 4/5*x[1]*x[2])
sage: I.normalisation()
Symmetric Ideal (x_2 + 3/4*x_1, x_2*x_1) of Infinite polynomial ring in x over Rational Field
```

#### reduce (I, tailreduce=False)

Symmetric reduction of self by another Symmetric Ideal or list of Infinite Polynomials, or symmetric reduction of a given Infinite Polynomial by self.

#### INPUT:

- •I an Infinite Polynomial, or a Symmetric Ideal or a list of Infinite Polynomials.
- •tailreduce (bool, default False) If True, the non-leading terms will be reduced as well.

### **OUTPUT**:

Symmetric reduction of self with respect to I.

## THEORY:

Reduction of an element p of an Infinite Polynomial Ring X by some other element q means the following:

- 1.Let M and N be the leading terms of p and q.
- 2. Test whether there is a permutation P that does not does not diminish the variable indices occurring in N and preserves their order, so that there is some term  $T \in X$  with  $TN^P = M$ . If there is no such permutation, return p
- 3.Replace p by  $p Tq^P$  and continue with step 1.

# **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I = X*(y[1]^2*y[3]+y[1]*x[3]^2)
sage: I.reduce([x[1]^2*y[2]])
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Fine
```

The preceding is correct, since any permutation that turns  $\times$  [1]  $^2 \times y$  [2] into a factor of  $\times$  [3]  $^2 \times y$  [2] interchanges the variable indices 1 and 2 – which is not allowed. However, reduction by  $\times$  [2]  $^2 \times y$  [1] works, since one can change variable index 1 into 2 and 2 into 3:

```
sage: I.reduce([x[2]^2*y[1]])
Symmetric Ideal (y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field
```

The next example shows that tail reduction is not done, unless it is explicitly advised. The input can also be a symmetric ideal:

```
sage: J = (y[2])*X
sage: I.reduce(J)
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Fi
sage: I.reduce(J, tailreduce=True)
Symmetric Ideal (x_3^2*y_1) of Infinite polynomial ring in x, y over Rational Field
```

# squeezed()

Reduce the variable indices occurring in self.

# **OUTPUT**:

A Symmetric Ideal whose generators are the result of applying squeezed () to the generators of self.

#### NOTE:

The output describes the same Symmetric Ideal as self.

#### **EXAMPLES:**

```
sage: X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse')
sage: I = X*(x[1000]*y[100],x[50]*y[1000])
sage: I.squeezed()
Symmetric Ideal (x_2*y_1, x_1*y_2) of Infinite polynomial ring in x, y over Rational Field
```

## symmetric\_basis()

A symmetrised generating set (type Sequence) of self.

This does essentially the same as symmetrisation() with the option 'tailreduce', and it returns a Sequence rather than a SymmetricIdeal.

# **EXAMPLES:**

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(x[1]+x[2], x[1]*x[2])
sage: I.symmetric_basis()
[x_1^2, x_2 + x_1]
```

 $\textbf{symmetrisation} \ (N=None, \ tailreduce=False, \ report=None, \ use\_full\_group=False)$ 

Apply permutations to the generators of self and interreduce

# INPUT:

- •N (integer, default None) Apply permutations in Sym(N). If it is not given then it will be replaced by the maximal variable index occurring in the generators of self.interreduction().squeezed().
- •tailreduce (bool, default False) If True, perform tail reductions.
- •report (object, default None) If not None, report on the progress of computations.
- •use\_full\_group (optional) If True, apply all elements of Sym(N) to the generators of self (this is what [AB2008] originally suggests). The default is to apply all elementary transpositions to the generators of self.squeezed(), interreduce, and repeat until the result stabilises, which is often much faster than applying all of Sym(N), and we are convinced that both methods yield the same result.

# **OUTPUT:**

A symmetrically interreduced symmetric ideal with respect to which any Sym(N)-translate of a generator of self is symmetrically reducible, where by default N is the maximal variable index that occurs in the generators of self.interreduction().squeezed().

#### NOTE:

If I is a symmetric ideal whose generators are monomials, then I.symmetrisation() is its reduced Groebner basis. It should be noted that without symmetrisation, monomial generators, in general, do not form a Groebner basis.

#### **EXAMPLES:**

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(x[1]+x[2], x[1]*x[2])
sage: I.symmetrisation()
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
sage: I.symmetrisation(N=3)
Symmetric Ideal (-2*x_1) of Infinite polynomial ring in x over Rational Field
sage: I.symmetrisation(N=3, use_full_group=True)
Symmetric Ideal (-2*x_1) of Infinite polynomial ring in x over Rational Field
```

# 6.4 Symmetric Reduction of Infinite Polynomials

SymmetricReductionStrategy provides a framework for efficient symmetric reduction of Infinite Polynomials, see infinite\_polynomial\_element.

#### **AUTHORS:**

• Simon King <simon.king@nuigalway.ie>

#### THEORY:

According to M. Aschenbrenner and C. Hillar [AB2007], Symmetric Reduction of an element p of an Infinite Polynomial Ring X by some other element q means the following:

- 1. Let M and N be the leading terms of p and q.
- 2. Test whether there is a permutation P that does not does not diminish the variable indices occurring in N and preserves their order, so that there is some term  $T \in X$  with  $TN^P = M$ . If there is no such permutation, return p.
- 3. Replace p by  $p Tq^P$  and continue with step 1.

When reducing one polynomial p with respect to a list L of other polynomials, there usually is a choice of order on which the efficiency crucially depends. Also it helps to modify the polynomials on the list in order to simplify the basic reduction steps.

The preparation of L may be expensive. Hence, if the same list is used many times then it is reasonable to perform the preparation only once. This is the background of SymmetricReductionStrategy.

Our current strategy is to keep the number of terms in the polynomials as small as possible. For this, we sort L by increasing number of terms. If several elements of L allow for a reduction of p, we chose the one with the smallest number of terms. Later on, it should be possible to implement further strategies for choice.

When adding a new polynomial q to L, we first reduce q with respect to L. Then, we test heuristically whether it is possible to reduce the number of terms of the elements of L by reduction modulo q. That way, we see best chances to keep the number of terms in intermediate reduction steps relatively small.

# **EXAMPLES:**

First, we create an infinite polynomial ring and one of its elements:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p = y[1]*y[3]+y[1]^2*x[3]
```

We want to symmetrically reduce it by another polynomial. So, we put this other polynomial into a list and create a Symmetric Reduction Strategy object:

```
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S = SymmetricReductionStrategy(X, [y[2]^2*x[1]])
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo
    x_1*y_2^2
sage: S.reduce(p)
x_3*y_1^2 + y_3*y_1
```

The preceding is correct, since any permutation that turns  $y[2]^2 \times x[1]$  into a factor of  $y[1]^2 \times x[3]$  interchanges the variable indices 1 and 2 – which is not allowed in a symmetric reduction. However, reduction by  $y[1]^2 \times x[2]$  works, since one can change variable index 1 into 2 and 2 into 3. So, we add this to S:

```
sage: S.add_generator(y[1]^2*x[2])
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo
    x_2*y_1^2,
    x_1*y_2^2
sage: S.reduce(p)
y_3*y_1
```

The next example shows that tail reduction is not done, unless it is explicitly advised:

```
sage: S.reduce(x[3] + 2*x[2]*y[1]^2 + 3*y[2]^2*x[1])

x_3 + 2*x_2*y_1^2 + 3*x_1*y_2^2

sage: S.tailreduce(x[3] + 2*x[2]*y[1]^2 + 3*y[2]^2*x[1])

x_3
```

However, it is possible to ask for tailreduction already when the Symmetric Reduction Strategy is created:

```
sage: S2 = SymmetricReductionStrategy(X, [y[2]^2*x[1],y[1]^2*x[2]], tailreduce=True)
sage: S2
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo
    x_2*y_1^2,
    x_1*y_2^2
with tailreduction
sage: S2.reduce(x[3] + 2*x[2]*y[1]^2 + 3*y[2]^2*x[1])
x_3
```

class sage.rings.polynomial.symmetric\_reduction.SymmetricReductionStrategy
 Bases: object

A framework for efficient symmetric reduction of InfinitePolynomial, see infinite\_polynomial\_element.

# INPUT:

- •Parent an Infinite Polynomial Ring, see infinite\_polynomial\_element.
- •L (list, default the empty list) List of elements of Parent with respect to which will be reduced.
- •good\_input (bool, default None) If this optional parameter is true, it is assumed that each element of L is symmetrically reduced with respect to the previous elements of L.

```
sage: X.<y> = InfinitePolynomialRing(QQ)
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S = SymmetricReductionStrategy(X, [y[2]^2*y[1],y[1]^2*y[2]], good_input=True)
```

```
sage: S.reduce(y[3] + 2*y[2]*y[1]^2 + 3*y[2]^2*y[1])
y_3 + 3*y_2^2*y_1 + 2*y_2*y_1^2
sage: S.tailreduce(y[3] + 2*y[2]*y[1]^2 + 3*y[2]^2*y[1])
y_3
```

# add\_generator(p, good\_input=None)

Add another polynomial to self.

#### INPUT:

•p – An element of the underlying infinite polynomial ring.

•good\_input – (bool, default None) If True, it is assumed that p is reduced with respect to self. Otherwise, this reduction will be done first (which may cost some time).

#### NOTE:

Previously added polynomials may be modified. All input is prepared in view of an efficient symmetric reduction.

# **EXAMPLES:**

```
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: S = SymmetricReductionStrategy(X)
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field
sage: S.add_generator(y[3] + y[1]*(x[3]+x[1]))
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo
x_3*y_1 + x_1*y_1 + y_3
```

Note that the first added polynomial will be simplified when adding a suitable second polynomial:

By default, reduction is applied to any newly added polynomial. This can be avoided by specifying the optional parameter 'good\_input':

```
sage: S.add_generator(y[2]+y[1]*x[2])
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo
    y_3,
    x_1*y_1 - y_2,
    x_2 + x_1
sage: S.reduce(x[3]+x[2])
-2*x_1
sage: S.add_generator(x[3]+x[2], good_input=True)
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo
    y_3,
    x_3 + x_2,
    x_1*y_1 - y_2,
    x_2 + x_1
```

In the previous example, x[3] + x[2] is added without being reduced to zero.

### gens()

Return the list of Infinite Polynomials modulo which self reduces.

## **EXAMPLES:**

# **reduce** (*p*, *notail=False*, *report=None*)

Symmetric reduction of an infinite polynomial.

#### INPUT:

•p – an element of the underlying infinite polynomial ring.

•notail – (bool, default False) If True, tail reduction is avoided (but there is no guarantee that there will be no tail reduction at all).

•report – (object, default None) If not None, print information on the progress of the computation.

#### **OUTPUT**:

Reduction of p with respect to self.

#### NOTE:

If tail reduction shall be forced, use tailreduce().

#### **EXAMPLES:**

```
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: S = SymmetricReductionStrategy(X, [y[3]], tailreduce=True)
sage: S.reduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1
sage: S.reduce(y[4]*x[1] + y[1]*x[4], notail=True)
x_4*y_1 + x_1*y_4
```

Last, we demonstrate the 'report' option:

Each ':' indicates that one reduction of the leading monomial was performed. Eventually, the '>' indicates that the computation is finished.

### reset()

Remove all polynomials from self.

#### setgens(L)

Define the list of Infinite Polynomials modulo which self reduces.

#### INPUT:

L - a list of elements of the underlying infinite polynomial ring.

#### NOTE:

It is not tested if L is a good input. That method simply assigns a copy of L to the generators of self.

#### **EXAMPLES:**

### tailreduce (p, report=None)

Symmetric reduction of an infinite polynomial, with forced tail reduction.

#### INPUT:

- •p an element of the underlying infinite polynomial ring.
- •report (object, default None) If not None, print information on the progress of the computation.

# **OUTPUT:**

Reduction (including the non-leading elements) of p with respect to self.

### **EXAMPLES:**

```
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: S = SymmetricReductionStrategy(X, [y[3]])
sage: S.reduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1 + x_1*y_4
sage: S.tailreduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1
```

Last, we demonstrate the 'report' option:

# The protocol means the following.

- 'T[3]' means that we currently do tail reduction for a polynomial with three terms.
- ':::>' means that there were three reductions of leading terms.
- The tail of the result of the preceding reduction still has three terms. One reduction of leading terms was possible, and then the final result was obtained.

# **BOOLEAN POLYNOMIALS**

# 7.1 Boolean Polynomials

Elements of the quotient ring

$$\mathbf{F}_2[x_1,...,x_n]/< x_1^2+x_1,...,x_n^2+x_n>.$$

are called boolean polynomials. Boolean polynomials arise naturally in cryptography, coding theory, formal logic, chip design and other areas. This implementation is a thin wrapper around the PolyBoRi library by Michael Brickenstein and Alexander Dreyer.

"Boolean polynomials can be modelled in a rather simple way, with both coefficients and degree per variable lying in  $\{0, 1\}$ . The ring of Boolean polynomials is, however, not a polynomial ring, but rather the quotient ring of the polynomial ring over the field with two elements modulo the field equations  $x^2 = x$  for each variable x. Therefore, the usual polynomial data structures seem not to be appropriate for fast Groebner basis computations. We introduce a specialised data structure for Boolean polynomials based on zero-suppressed binary decision diagrams (ZDDs), which is capable of handling these polynomials more efficiently with respect to memory consumption and also computational speed. Furthermore, we concentrate on high-level algorithmic aspects, taking into account the new data structures as well as structural properties of Boolean polynomials." - [BD07]

For details on the internal representation of polynomials see

http://polybori.sourceforge.net/zdd.html

# **AUTHORS:**

• Michael Brickenstein: PolyBoRi author

· Alexander Dreyer: PolyBoRi author

- Burcin Erocal <burcin@erocal.org>: main Sage wrapper author
- Martin Albrecht <malb@informatik.uni-bremen.de>: some contributions to the Sage wrapper
- Simon King <simon.king@uni-jena.de>: Adopt the new coercion model. Fix conversion from univariate polynomial rings. Pickling of BooleanMonomialMonoid (via UniqueRepresentation) and BooleanMonomial.
- Charles Bouillaguet <charles.bouillaguet@gmail.com>: minor changes to improve compatibility with MPolynomial and make the variety() function work on ideals of BooleanPolynomial's.

# **EXAMPLES:**

Consider the ideal

$$< ab + cd + 1, ace + de, abe + ce, bc + cde + 1 > .$$

First, we compute the lexicographical Groebner basis in the polynomial ring

```
R = \mathbf{F}_2[a, b, c, d, e].
```

If one wants to solve this system over the algebraic closure of  $\mathbf{F}_2$  then this Groebner basis was the one to consider. If one wants solutions over  $\mathbf{F}_2$  only then one adds the field polynomials to the ideal to force the solutions in  $\mathbf{F}_2$ .

```
sage: J = I1 + sage.rings.ideal.FieldIdeal(P)
sage: for f in J.groebner_basis():
...      f
a + d + 1
b + 1
c + 1
d^2 + d
e
```

So the solutions over  $\mathbf{F}_2$  are  $\{e=0, d=1, c=1, b=1, a=0\}$  and  $\{e=0, d=0, c=1, b=1, a=1\}$ .

We can express the restriction to  $\mathbf{F}_2$  by considering the quotient ring. If I is an ideal in  $\mathbb{F}[x_1,...,x_n]$  then the ideals in the quotient ring  $\mathbb{F}[x_1,...,x_n]/I$  are in one-to-one correspondence with the ideals of  $\mathbb{F}[x_0,...,x_n]$  containing I (that is, the ideals J satisfying  $I \subset J \subset P$ ).

This quotient ring is exactly what PolyBoRi handles well:

Note that  $d^2 + d$  is not representable in B = Q. Also note, that PolyBoRi cannot play out its strength in such small examples, i.e. working in the polynomial ring might be faster for small examples like this.

# 7.1.1 Implementation specific notes

PolyBoRi comes with a Python wrapper. However this wrapper does not match Sage's style and is written using Boost. Thus Sage's wrapper is a reimplementation of Python bindings to PolyBoRi's C++ library. This interface is written in Cython like all of Sage's C/C++ library interfaces. An interface in PolyBoRi style is also provided which is effectively a reimplementation of the official Boost wrapper in Cython. This means that some functionality of the official wrapper might be missing from this wrapper and this wrapper might have bugs not present in the official Python interface.

# 7.1.2 Access to the original PolyBoRi interface

The re-implementation PolyBoRi's native wrapper is available to the user too:

```
sage: from brial import *
sage: declare_ring([Block('x',2),Block('y',3)],globals())
Boolean PolynomialRing in x0, x1, y0, y1, y2
sage: r
Boolean PolynomialRing in x0, x1, y0, y1, y2

sage: [Variable(i, r) for i in xrange(r.ngens())]
[x(0), x(1), y(0), y(1), y(2)]
```

For details on this interface see:

http://polybori.sourceforge.net/doc/tutorial/tutorial.html.

Also, the interface provides functions for compatibility with Sage accepting convenient Sage data types which are slower than their native PolyBoRi counterparts. For instance, sets of points can be represented as tuples of tuples (Sage) or as BooleSet (PolyBoRi) and naturally the second option is faster.

# **REFERENCES:**

```
class sage.rings.polynomial.pbori.BooleConstant
     Bases: object
     Construct a boolean constant (modulo 2) from integer value:
     INPUT:
        •i - an integer
     EXAMPLE:
     sage: from brial import BooleConstant
     sage: [BooleConstant(i) for i in range(5)]
     [0, 1, 0, 1, 0]
     deq()
         Get degree of boolean constant.
         EXAMPLE:
         sage: from brial import BooleConstant
         sage: BooleConstant(0).deg()
         sage: BooleConstant(1).deg()
     has_constant_part()
         This is true for for BooleConstant(1).
```

# EXAMPLE:

```
sage: from brial import BooleConstant
sage: BooleConstant(1).has_constant_part()
True
sage: BooleConstant(0).has_constant_part()
False
```

### is\_constant()

This is always true for in this case.

#### **EXAMPLE**:

```
sage: from brial import BooleConstant
sage: BooleConstant(1).is_constant()
True
sage: BooleConstant(0).is_constant()
True
```

# is\_one()

Check whether boolean constant is one.

#### **EXAMPLE:**

```
sage: from brial import BooleConstant
sage: BooleConstant(0).is_one()
False
sage: BooleConstant(1).is_one()
True
```

### is\_zero()

Check whether boolean constant is zero.

#### EXAMPLE:

```
sage: from brial import BooleConstant
sage: BooleConstant(1).is_zero()
False
sage: BooleConstant(0).is_zero()
True
```

# variables()

Get variables (return always and empty tuple).

#### **EXAMPLE:**

```
sage: from brial import BooleConstant
sage: BooleConstant(0).variables()
()
sage: BooleConstant(1).variables()
()
```

# class sage.rings.polynomial.pbori.BooleSet

Bases: object

Return a new set of boolean monomials. This data type is also implemented on the top of ZDDs and allows to see polynomials from a different angle. Also, it makes high-level set operations possible, which are in most cases faster than operations handling individual terms, because the complexity of the algorithms depends only on the structure of the diagrams.

Objects of type BooleanPolynomial can easily be converted to the type BooleSet by using the member function BooleanPolynomial.set().

# INPUT:

•param - either a CCuddNavigator, a BooleSet or None.

•ring - a boolean polynomial ring.

## **EXAMPLE:**

```
sage: from brial import BooleSet
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: BS = BooleSet(a.set())
sage: BS
{{a}}

sage: BS = BooleSet((a*b + c + 1).set())
sage: BS
{{a,b}, {c}, {}}

sage: from brial import *
sage: BooleSet([Monomial(B)])
{{}}
```

**Note:** BooleSet prints as {} but are not Python dictionaries.

#### cartesian\_product (rhs)

Return the Cartesian product of this set and the set rhs.

The Cartesian product of two sets X and Y is the set of all possible ordered pairs whose first component is a member of X and whose second component is a member of Y.

$$X \times Y = \{(x, y) | x \in X \text{ and } y \in Y\}.$$

# **EXAMPLE:**

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: g = x4 + 1
sage: t = g.set(); t
{{x4}, {}}
sage: s.cartesian_product(t)
{{x1,x2,x4}, {x1,x2}, {x2,x3,x4}, {x2,x3}}
```

# change (ind)

Swaps the presence of x\_i in each entry of the set.

```
sage: P.<a,b,c> = BooleanPolynomialRing()
sage: f = a+b
sage: s = f.set(); s
{{a}, {b}}
sage: s.change(0)
{{a,b}, {}}
sage: s.change(1)
{{a,b}, {}}
sage: s.change(2)
{{a,c}, {b,c}}
```

#### diff (rhs)

Return the set theoretic difference of this set and the set rhs.

The difference of two sets X and Y is defined as:

```
X Y = \{x | x \in X \text{ and } x \notin Y\}.
```

#### **EXAMPLE:**

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: g = x2*x3 + 1
sage: t = g.set(); t
{{x2,x3}, {}}
sage: s.diff(t)
{{x1,x2}}
```

# divide (rhs)

Divide each element of this set by the monomial rhs and return a new set containing the result.

#### **EXAMPLE:**

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='lex')
sage: f = b*e + b*c*d + b
sage: s = f.set(); s
{{b,c,d}, {b,e}, {b}}
sage: s.divide(b.lm())
{{c,d}, {e}, {}}

sage: f = b*e + b*c*d + b + c
sage: s = f.set()
sage: s.divide(b.lm())
{{c,d}, {e}, {}}
```

# ${\tt divisors\_of}\,(m)$

Return those members which are divisors of m.

# INPUT:

•m - a boolean monomial

# **EXAMPLE:**

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set()
sage: s.divisors_of((x1*x2*x4).lead())
{{x1,x2}}
```

# empty()

Return True if this set is empty.

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: BS = (a*b + c).set()
sage: BS.empty()
False
```

```
sage: BS = B(0).set()
sage: BS.empty()
True
```

# include\_divisors()

Extend this set to include all divisors of the elements already in this set and return the result as a new set.

#### **EXAMPLE:**

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: f = a*d*e + a*f + b*d*e + c*d*e + 1
sage: s = f.set(); s
{{a,d,e}, {a,f}, {b,d,e}, {c,d,e}, {}}}
sage: s.include_divisors()
{{a,d,e}, {a,d}, {a,e}, {a,f}, {a}, {b,d,e}, {b,d}, {b,e},
{b}, {c,d,e}, {c,d}, {c,e}, {c}, {d,e}, {d}, {e}, {f}, {}}}
```

#### intersect (other)

Return the set theoretic intersection of this set and the set rhs.

The union of two sets X and Y is defined as:

$$X \cap Y = \{x | x \in X \text{ and } x \in Y\}.$$

#### **EXAMPLE:**

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: g = x2*x3 + 1
sage: t = g.set(); t
{{x2,x3}, {}}
sage: s.intersect(t)
{{x2,x3}}
```

# minimal\_elements()

Return a new set containing a divisor of all elements of this set.

#### **EXAMPLE**:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: f = a*d*e + a*f + a*b*d*e + a*c*d*e + a
sage: s = f.set(); s
{{a,b,d,e}, {a,c,d,e}, {a,d,e}, {a,f}, {a}}
sage: s.minimal_elements()
{{a}}
```

# $multiples_of(m)$

Return those members which are multiples of m.

#### INPUT:

•m - a boolean monomial

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
```

```
sage: f = x1*x2+x2*x3
sage: s = f.set()
sage: s.multiples_of(x1.lm())
{{x1,x2}}
```

#### n nodes()

Return the number of nodes in the ZDD.

#### **EXAMPLE:**

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: s.n_nodes()
```

# navigation()

Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding thenand else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

#### **EXAMPLE**:

```
sage: from brial import BooleSet
     sage: B = BooleanPolynomialRing(5,'x')
     sage: x0, x1, x2, x3, x4 = B.gens()
     sage: f = x1 \times x2 + x2 \times x3 \times x4 + x2 \times x4 + x3 + x4 + 1
     sage: s = f.set(); s
     \{\{x1,x2\}, \{x2,x3,x4\}, \{x2,x4\}, \{x3\}, \{x4\}, \{\}\}\}
     sage: nav = s.navigation()
     sage: BooleSet(nav,s.ring())
     \{\{x1,x2\}, \{x2,x3,x4\}, \{x2,x4\}, \{x3\}, \{x4\}, \{\}\}\}
     sage: nav.value()
     sage: nav_else = nav.else_branch()
     sage: BooleSet(nav_else,s.ring())
     \{\{x2,x3,x4\}, \{x2,x4\}, \{x3\}, \{x4\}, \{\}\}\}
     sage: nav_else.value()
     2
ring()
     Return the parent ring.
    EXAMPLE:
     sage: B = BooleanPolynomialRing(5,'x')
```

**sage:** x0, x1, x2, x3, x4 = B.gens()

sage: f.set().ring() is B

**sage:** f = x1 \* x2 + x2 \* x3 \* x4 + x2 \* x4 + x3 + x4 + 1

True

#### set()

Return self.

#### **EXAMPLE:**

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: BS = (a*b + c).set()
sage: BS.set() is BS
True
```

# size\_double()

Return the size of this set as a floating point number.

# **EXAMPLE:**

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set()
sage: s.size_double()
2.0
```

# stable\_hash()

A hash value which is stable across processes.

#### **EXAMPLE**:

**Note:** This function is part of the upstream PolyBoRi interface. In Sage all hashes are stable.

# subset0(i)

Return a set of those elements in this set which do not contain the variable indexed by i.

#### INPUT:

•i - an index

# EXAMPLE:

```
sage: BooleanPolynomialRing(5,'x')
Boolean PolynomialRing in x0, x1, x2, x3, x4
sage: B = BooleanPolynomialRing(5,'x')
sage: B.inject_variables()
Defining x0, x1, x2, x3, x4
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: s.subset0(1)
{{x2,x3}}
```

# subset1(i)

Return a set of those elements in this set which do contain the variable indexed by i and evaluate the variable indexed by i to 1.

#### INPUT:

•i - an index

```
EXAMPLE:
```

```
sage: BooleanPolynomialRing(5,'x')
Boolean PolynomialRing in x0, x1, x2, x3, x4
sage: B = BooleanPolynomialRing(5,'x')
sage: B.inject_variables()
Defining x0, x1, x2, x3, x4
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: s.subset1(1)
{{x2}}
```

## union (rhs)

Return the set theoretic union of this set and the set rhs.

The union of two sets X and Y is defined as:

$$X \cup Y = \{x | x \in X \text{ or } x \in Y\}.$$

# **EXAMPLE:**

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: g = x2*x3 + 1
sage: t = g.set(); t
{{x2,x3}, {}}
sage: s.union(t)
{{x1,x2}, {x2,x3}, {}}
```

#### vars()

Return the variables in this set as a monomial.

# EXAMPLE:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='lex')
sage: f = a + b*e + d*f + e + 1
sage: s = f.set()
sage: s
{{a}, {b,e}, {d,f}, {e}, {}}}
sage: s.vars()
a*b*d*e*f
```

class sage.rings.polynomial.pbori.BooleSetIterator

Bases: object

Helper class to iterate over boolean sets.

#### next()

 $x.next() \rightarrow the next value, or raise StopIteration$ 

 ${\bf class} \; {\tt sage.rings.polynomial.pbori.Boolean Monomial}$ 

Bases: sage.structure.element.MonoidElement

Construct a boolean monomial.

#### INPUT:

•parent - parent monoid this element lives in

### **EXAMPLE:**

```
sage: from brial import BooleanMonomialMonoid, BooleanMonomial
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: M = BooleanMonomialMonoid(P)
sage: BooleanMonomial(M)
1
```

**Note:** Use the BooleanMonomialMonoid\_\_call\_\_() method and not this constructor to construct these objects.

#### deg()

Return degree of this monomial.

#### **EXAMPLES:**

```
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: M = BooleanMonomialMonoid(P)
sage: M(x*y).deg()
2
sage: M(x*x*y*z).deg()
3
```

Note: This function is part of the upstream PolyBoRi interface.

# degree (x=None)

Return the degree of this monomial in x, where x must be one of the generators of the polynomial ring.

# INPUT:

•x - boolean multivariate polynomial (a generator of the polynomial ring). If x is not specified (or is None), return the total degree of this monomial.

### **EXAMPLES:**

```
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: M = BooleanMonomialMonoid(P)
sage: M(x*y).degree()
2
sage: M(x*y).degree(x)
1
sage: M(x*y).degree(z)
0
```

#### divisors (

Return a set of boolean monomials with all divisors of this monomial.

# **EXAMPLE:**

```
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
sage: m.divisors()
{{x,y}, {x}, {y}, {}}
```

# gcd(rhs)

Return the greatest common divisor of this boolean monomial and rhs.

# **INPUT:**

•rhs - a boolean monomial

# **EXAMPLE:**

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: a,b,c,d = a.lm(), b.lm(), c.lm(), d.lm()
sage: (a*b).gcd(b*c)
b
sage: (a*b*c).gcd(d)
1
```

# index()

Return the variable index of the first variable in this monomial.

#### **EXAMPLE:**

```
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
sage: m.index()
0

# Check that Ticket #13133 is resolved:
sage: B(1).lm().index()
Traceback (most recent call last):
...
ValueError: no variables in constant monomial; cannot take index()
```

Note: This function is part of the upstream PolyBoRi interface.

# iterindex()

Return an iterator over the indicies of the variables in self.

#### **EXAMPLES:**

```
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: M = BooleanMonomialMonoid(P)
sage: list(M(x*z).iterindex())
[0, 2]
```

### multiples (rhs)

Return a set of boolean monomials with all multiples of this monomial up to the bound rhs.

#### INPUT:

•rhs - a boolean monomial

```
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x
sage: m = f.lm()
sage: g = x*y*z
sage: n = g.lm()
sage: m.multiples(n)
{{x,y,z}, {x,y}, {x,z}, {x}}
sage: n.multiples(m)
{{x,y,z}}
```

Note: The returned set always contains self even if the bound rhs is smaller than self.

## navigation()

Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding thenand else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

```
EXAMPLE:
```

```
sage: from brial import BooleSet
    sage: B = BooleanPolynomialRing(5,'x')
    sage: x0, x1, x2, x3, x4 = B.gens()
    sage: f = x1 * x2 + x2 * x3 * x4 + x2 * x4 + x3 + x4 + 1
    sage: m = f.lm(); m
    x1*x2
    sage: nav = m.navigation()
    sage: BooleSet(nav, B)
    \{ \{ x1, x2 \} \}
    sage: nav.value()
    1
reducible_by (rhs)
    Return True if self is reducible by rhs.
    INPUT:
       •rhs - a boolean monomial
    EXAMPLE:
    sage: B.<x,y,z> = BooleanPolynomialRing(3)
    sage: f = x * y
    sage: m = f.lm()
    sage: m.reducible_by((x*y).lm())
    sage: m.reducible_by((x*z).lm())
    False
ring()
    Return the corresponding boolean ring.
    EXAMPLE:
    sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
    sage: a.lm().ring() is B
    True
set()
    Return a boolean set of variables in this monomials.
    EXAMPLE:
    sage: B.<x,y,z> = BooleanPolynomialRing(3)
    sage: f = x * y
```

sage: m = f.lm()

```
sage: m.set()
         { {x,y}}
     stable_hash()
         A hash value which is stable across processes.
         EXAMPLE:
         sage: B.<x,y> = BooleanPolynomialRing()
         sage: m = x.lm()
         sage: m.stable_hash()
         -845955105
                                       # 32-bit
         173100285919
                                       # 64-bit
         Note: This function is part of the upstream PolyBoRi interface. In Sage all hashes are stable.
     variables()
         Return a tuple of the variables in this monomial.
         EXAMPLE:
         sage: from brial import BooleanMonomialMonoid
         sage: P.\langle x, y, z \rangle = BooleanPolynomialRing(3)
         sage: M = BooleanMonomialMonoid(P)
         sage: M(x*z).variables() # indirect doctest
         (x, z)
class sage.rings.polynomial.pbori.BooleanMonomialIterator
     Bases: object
     An iterator over the variable indices of a monomial.
     next()
         x.next() -> the next value, or raise StopIteration
class sage.rings.polynomial.pbori.BooleanMonomialMonoid(polring)
     Bases:
                         sage.structure.unique_representation.UniqueRepresentation,
     sage.monoids.monoid_class
     Construct a boolean monomial monoid given a boolean polynomial ring.
     This object provides a parent for boolean monomials.
     INPUT:
        •polring - the polynomial ring our monomials lie in
     EXAMPLES:
     sage: from brial import BooleanMonomialMonoid
     sage: P.<x,y> = BooleanPolynomialRing(2)
     sage: M = BooleanMonomialMonoid(P)
     sage: M
     MonomialMonoid of Boolean PolynomialRing in x, y
     sage: M.gens()
     (x, y)
     sage: type(M.gen(0))
     <type 'sage.rings.polynomial.pbori.BooleanMonomial'>
```

Since trac ticket #9138, boolean monomial monoids are unique parents and are fit into the category framework:

```
sage: loads(dumps(M)) is M
    True
    sage: TestSuite(M).run()
    gen(i=0)
         Return the i-th generator of self.
         INPUT:
            •i - an integer
         EXAMPLES:
         sage: from brial import BooleanMonomialMonoid
         sage: P.<x,y,z> = BooleanPolynomialRing(3)
         sage: M = BooleanMonomialMonoid(P)
         sage: M.gen(0)
         sage: M.gen(2)
         sage: P = BooleanPolynomialRing(1000, 'x')
         sage: M = BooleanMonomialMonoid(P)
         sage: M.gen(50)
         x50
    gens()
         Return the tuple of generators of this monoid.
         EXAMPLES:
         sage: from brial import BooleanMonomialMonoid
         sage: P.\langle x, y, z \rangle = BooleanPolynomialRing(3)
         sage: M = BooleanMonomialMonoid(P)
         sage: M.gens()
         (x, y, z)
    ngens()
         Returns the number of variables in this monoid.
         EXAMPLES:
         sage: from brial import BooleanMonomialMonoid
         sage: P = BooleanPolynomialRing(100, 'x')
         sage: M = BooleanMonomialMonoid(P)
         sage: M.ngens()
class sage.rings.polynomial.pbori.BooleanMonomialVariableIterator
    Bases: object
    next()
         x.next() -> the next value, or raise StopIteration
class sage.rings.polynomial.pbori.BooleanMulAction
    Bases: sage.categories.action.Action
class sage.rings.polynomial.pbori.BooleanPolynomial
    Bases: sage.rings.polynomial.multi_polynomial.MPolynomial
    Construct a boolean polynomial object in the given boolean polynomial ring.
```

#### INPUT:

parent - a boolean polynomial ring

## TEST:

```
sage: from brial import BooleanPolynomial
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: BooleanPolynomial(B)
```

**Note:** Do not use this method to construct boolean polynomials, but use the appropriate \_\_call\_\_ method in the parent.

#### constant()

Return True if this element is constant.

#### **EXAMPLE:**

```
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: x.constant()
False
sage: B(1).constant()
True
```

**Note:** This function is part of the upstream PolyBoRi interface.

## constant\_coefficient()

Returns the constant coefficient of this boolean polynomial.

# EXAMPLE:

```
sage: B.<a,b> = BooleanPolynomialRing()
sage: a.constant_coefficient()
0
sage: (a+1).constant_coefficient()
1
```

## deg()

Return the degree of self. This is usually equivalent to the total degree except for weighted term orderings which are not implemented yet.

# **EXAMPLES:**

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).degree()
1
sage: P(1).degree()
0
sage: (x*y + x + y + 1).degree()
2
```

**Note:** This function is part of the upstream PolyBoRi interface.

#### degree (x=None)

Return the maximal degree of this polynomial in x, where x must be one of the generators for the parent of this polynomial.

If x is not specified (or is None), return the total degree, which is the maximum degree of any monomial.

#### **EXAMPLES:**

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).degree()
1

sage: P(1).degree()
0

sage: (x*y + x + y + 1).degree()
2

sage: (x*y + x + y + 1).degree(x)
1
```

## elength()

Return elimination length as used in the SlimGB algorithm.

#### **EXAMPLE**:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: x.elength()
1
sage: f = x*y + 1
sage: f.elength()
2
```

#### **REFERENCES:**

•Michael Brickenstein; SlimGB: Groebner Bases with Slim Polynomials http://www.mathematik.uni-kl.de/~zca/Reports\_on\_ca/35/paper\_35\_full.ps.gz

**Note:** This function is part of the upstream PolyBoRi interface.

#### first term()

Return the first term with respect to the lexicographical term ordering.

## **EXAMPLE:**

```
sage: B.<a,b, z = BooleanPolynomialRing(3,order='lex')
sage: f = b*z + a + 1
sage: f.first_term()
a
```

**Note:** This function is part of the upstream PolyBoRi interface.

## graded\_part (deg)

Return graded part of this boolean polynomial of degree deg.

## INPUT:

•deg - a degree

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + c*d + a*b + 1
sage: f.graded_part(2)
a*b + c*d
```

```
sage: f.graded_part(0)
    TESTS:
    sage: f.graded_part(-1)
has_constant_part()
    Return True if this boolean polynomial has a constant part, i.e. if 1 is a term.
    EXAMPLE:
    sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
    sage: f = a*b*c + c*d + a*b + 1
    sage: f.has_constant_part()
    True
    sage: f = a*b*c + c*d + a*b
    sage: f.has_constant_part()
    False
is_constant()
    Check if self is constant.
    EXAMPLES:
    sage: P.<x,y> = BooleanPolynomialRing(2)
    sage: P(1).is_constant()
    True
    sage: P(0).is_constant()
    True
    sage: x.is_constant()
    False
    sage: (x*y).is_constant()
    False
is_equal(right)
    EXAMPLE:
    sage: B.<a,b,z> = BooleanPolynomialRing(3)
    sage: f = a * z + b + 1
    sage: q = b + z
    sage: f.is_equal(g)
    False
    sage: f.is_equal( (f + 1) - 1 )
    True
```

**Note:** This function is part of the upstream PolyBoRi interface.

## is\_homogeneous()

Return True if this element is a homogeneous polynomial.

```
sage: P.<x, y> = BooleanPolynomialRing()
    sage: (x+y).is_homogeneous()
    True
    sage: P(0).is_homogeneous()
    sage: (x+1).is_homogeneous()
    False
is_one()
    Check if self is 1.
    EXAMPLES:
    sage: P.<x,y> = BooleanPolynomialRing(2)
    sage: P(1).is_one()
    True
    sage: P.one().is_one()
    True
    sage: x.is_one()
    False
    sage: P(0).is_one()
    False
is_pair()
    Check if self has exactly two terms.
    EXAMPLES:
    sage: P.<x,y> = BooleanPolynomialRing(2)
    sage: P(0).is_singleton_or_pair()
    True
    sage: x.is_singleton_or_pair()
    sage: P(1).is_singleton_or_pair()
    True
    sage: (x*y).is_singleton_or_pair()
    sage: (x + y).is_singleton_or_pair()
    True
    sage: (x + 1).is_singleton_or_pair()
    sage: (x*y + 1).is_singleton_or_pair()
    True
    sage: (x + y + 1).is_singleton_or_pair()
    False
    sage: ((x + 1) * (y + 1)).is_singleton_or_pair()
    False
is singleton()
    Check if self has at most one term.
```

```
EXAMPLES:
    sage: P.<x,y> = BooleanPolynomialRing(2)
    sage: P(0).is_singleton()
    True
    sage: x.is_singleton()
    True
    sage: P(1).is_singleton()
    True
    sage: (x*y).is_singleton()
    sage: (x + y).is_singleton()
    False
    sage: (x + 1).is_singleton()
    False
    sage: (x*y + 1).is_singleton()
    False
    sage: (x + y + 1).is_singleton()
    False
    sage: ((x + 1) * (y + 1)).is_singleton()
    False
is_singleton_or_pair()
    Check if self has at most two terms.
    EXAMPLES:
    sage: P.<x,y> = BooleanPolynomialRing(2)
    sage: P(0).is_singleton_or_pair()
    True
    sage: x.is_singleton_or_pair()
    True
    sage: P(1).is_singleton_or_pair()
    sage: (x*y).is_singleton_or_pair()
    True
    sage: (x + y).is_singleton_or_pair()
    True
    sage: (x + 1).is_singleton_or_pair()
    sage: (x*y + 1).is_singleton_or_pair()
    True
    sage: (x + y + 1).is_singleton_or_pair()
    False
```

```
sage: ((x + 1)*(y + 1)).is_singleton_or_pair()
False
```

## is\_unit()

Check if self is invertible in the parent ring.

Note that this condition is equivalent to being 1 for boolean polynomials.

#### **EXAMPLE:**

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.one().is_unit()
True
sage: x.is_unit()
False
```

## is\_univariate()

Return True if self is a univariate polynomial, that is if self contains only one variable.

### **EXAMPLES**:

```
sage: P.<x,y,z> = BooleanPolynomialRing()
sage: f = x + 1
sage: f.is_univariate()
True
sage: f = y*x + 1
sage: f.is_univariate()
False
sage: f = P(0)
sage: f.is_univariate()
True
```

#### is zero()

Check if self is zero.

## **EXAMPLES:**

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(0).is_zero()
True

sage: x.is_zero()
False

sage: P(1).is_zero()
False
```

# lead()

Return the leading monomial of boolean polynomial, with respect to to the order of parent ring.

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lead()
x

sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lead()
y*z
```

**Note:** This function is part of the upstream PolyBoRi interface.

## lead\_deg()

Returns the total degree of the leading monomial of self.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: p = x + y*z
sage: p.lead_deg()
1

sage: P.<x,y,z> = BooleanPolynomialRing(3,order='deglex')
sage: p = x + y*z
sage: p.lead_deg()
2

sage: P(0).lead_deg()
```

Note: This function is part of the upstream PolyBoRi interface.

## lead\_divisors()

Return a BooleSet of all divisors of the leading monomial.

#### **EXAMPLE:**

```
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*b + z + 1
sage: f.lead_divisors()
{{a,b}, {a}, {b}, {}}
```

**Note:** This function is part of the upstream PolyBoRi interface.

#### lex lead()

Return the leading monomial of boolean polynomial, with respect to the lexicographical term ordering.

## **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lex_lead()
x

sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lex_lead()
x

sage: P(0).lex_lead()
0
```

**Note:** This function is part of the upstream PolyBoRi interface.

## lex\_lead\_deg()

Return degree of leading monomial with respect to the lexicographical ordering.

```
sage: B.<x,y,z> = BooleanPolynomialRing(3,order='lex')
sage: f = x + y*z
```

```
sage: f
x + y*z
sage: f.lex_lead_deg()
1

sage: B.<x,y,z> = BooleanPolynomialRing(3,order='deglex')
sage: f = x + y*z
sage: f
y*z + x
sage: f.lex_lead_deg()
1
```

**Note:** This function is part of the upstream PolyBoRi interface.

## **lm**()

Return the leading monomial of this boolean polynomial, with respect to the order of parent ring.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lm()
x

sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lm()
y*z

sage: P(0).lm()
```

## **1t**()

Return the leading term of this boolean polynomial, with respect to the order of the parent ring.

Note that for boolean polynomials this is equivalent to returning leading monomials.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lt()
x

sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lt()
y*z
```

# map\_every\_x\_to\_x\_plus\_one()

Map every variable  $x_i$  in this polynomial to  $x_i + 1$ .

## EXAMPLE:

```
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*b + z + 1; f
a*b + z + 1
sage: f.map_every_x_to_x_plus_one()
a*b + a + b + z + 1
sage: f(a+1,b+1,z+1)
a*b + a + b + z + 1
```

## monomial\_coefficient (mon)

Return the coefficient of the monomial mon in self, where mon must have the same parent as self.

## INPUT:

•mon - a monomial

# **EXAMPLE:**

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: x.monomial_coefficient(x)
1
sage: x.monomial_coefficient(y)
0
sage: R.<x,y,z,a,b,c>=BooleanPolynomialRing(6)
sage: f=(1-x)*(1+y); f
x*y + x + y + 1
sage: f.monomial_coefficient(1)
1
sage: f.monomial_coefficient(0)
```

#### monomials()

Return a list of monomials appearing in self ordered largest to smallest.

#### **EXAMPLE:**

```
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='lex')
sage: f = a + c*b
sage: f.monomials()
[a, b*c]

sage: P.<a,b,c> = BooleanPolynomialRing(3,order='deglex')
sage: f = a + c*b
sage: f.monomials()
[b*c, a]
sage: P.zero().monomials()
[]
```

#### n\_nodes()

Return the number of nodes in the ZDD implementing this polynomial.

# **EXAMPLE:**

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2 + x2*x3 + 1
sage: f.n_nodes()
4
```

**Note:** This function is part of the upstream PolyBoRi interface.

# n\_vars()

Return the number of variables used to form this boolean polynomial.

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + 1
sage: f.n_vars()
3
```

**Note:** This function is part of the upstream PolyBoRi interface.

## navigation()

Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding thenand else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

#### **EXAMPLE:**

```
sage: from brial import BooleSet
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3*x4+x2*x4+x3+x4+1

sage: nav = f.navigation()
sage: BooleSet(nav, B)
{{x1,x2}, {x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}}

sage: nav.value()
1

sage: nav_else = nav.else_branch()

sage: BooleSet(nav_else, B)
{{x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}}

sage: nav_else.value()
2
```

**Note:** This function is part of the upstream PolyBoRi interface.

### nvariables()

Return the number of variables used to form this boolean polynomial.

#### **EXAMPLE**

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + 1
sage: f.nvariables()
3
```

#### reduce(I)

Return the normal form of self w.r.t. I, i.e. return the remainder of self with respect to the polynomials in I. If the polynomial set/list I is not a Groebner basis the result is not canonical.

## INPUT:

•I - a list/set of polynomials in self.parent(). If I is an ideal, the generators are used.

```
sage: f.reduce(gb)
0
sage: p = f*g + x0*h + x2*i
sage: p.reduce(gb)
0
sage: p.reduce(I)
x1*x2*x3 + x2
sage: p.reduce([])
x0*x1*x2 + x0*x1*x3 + x0*x2*x3 + x2
```

**Note:** If this function is called repeatedly with the same I then it is advised to use PolyBoRi's GroebnerStrategy object directly, since that will be faster. See the source code of this function for details.

```
TESTS:
```

```
sage: R=BooleanPolynomialRing(20,'x','lex')
sage: a=R.random_element()
sage: a.reduce([None,None])
Traceback (most recent call last):
...
TypeError: argument must be a BooleanPolynomial.
```

# reducible\_by (rhs)

Return True if this boolean polynomial is reducible by the polynomial rhs.

INPUT:

•rhs - a boolean polynomial

#### **EXAMPLE:**

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4,order='deglex')
sage: f = (a*b + 1)*(c + 1)
sage: f.reducible_by(d)
False
sage: f.reducible_by(c)
True
sage: f.reducible_by(c + 1)
True
```

**Note:** This function is part of the upstream PolyBoRi interface.

### ring()

Return the parent of this boolean polynomial.

## **EXAMPLE:**

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: a.ring() is B
True
```

#### set()

Return a BooleSet with all monomials appearing in this polynomial.

```
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: (a*b+z+1).set()
\{\{a,b\}, \{z\}, \{\}\}
```

#### spoly (rhs)

Return the S-Polynomial of this boolean polynomial and the other boolean polynomial rhs.

#### EXAMPLE:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + c*d + a*b + 1
sage: g = c*d + b
sage: f.spoly(g)
a*b + a*c*d + c*d + 1
```

Note: This function is part of the upstream PolyBoRi interface.

#### stable hash()

A hash value which is stable across processes.

#### **EXAMPLE**

**Note:** This function is part of the upstream PolyBoRi interface. In Sage all hashes are stable.

```
subs (in_dict=None, **kwds)
```

Fixes some given variables in a given boolean polynomial and returns the changed boolean polynomials. The polynomial itself is not affected. The variable, value pairs for fixing are to be provided as dictionary of the form {variable:value} or named parameters (see examples below).

### INPUT:

- •in\_dict (optional) dict with variable:value pairs
- •\*\*kwds names parameters

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y + z + y*z + 1
sage: f.subs(x=1)
y*z + y + z + 1
sage: f.subs(x=0)
y*z + z + 1

sage: f.subs(x=y)
y*z + y + z + 1

sage: f.subs({x:1},y=1)
0
sage: f.subs(y=1)
x + 1
sage: f.subs(y=1,z=1)
x + 1
sage: f.subs(z=1)
x*y + y
sage: f.subs({'x':1},y=1)
0
```

This method can work fully symbolic:

```
sage: f.subs(x=var('a'),y=var('b'),z=var('c'))
a*b + b*c + c + 1
sage: f.subs({'x':var('a'),'y':var('b'),'z':var('c')})
a*b + b*c + c + 1
```

#### terms()

Return a list of monomials appearing in self ordered largest to smallest.

## **EXAMPLE**:

```
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='lex')
sage: f = a + c*b
sage: f.terms()
[a, b*c]

sage: P.<a,b,c> = BooleanPolynomialRing(3,order='deglex')
sage: f = a + c*b
sage: f.terms()
[b*c, a]
```

#### total\_degree()

Return the total degree of self.

#### **EXAMPLES:**

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).total_degree()
1
sage: P(1).total_degree()
0
sage: (x*y + x + y + 1).total_degree()
2
```

# univariate\_polynomial(R=None)

Returns a univariate polynomial associated to this multivariate polynomial.

If this polynomial is not in at most one variable, then a ValueError exception is raised. This is checked using the  $is\_univariate()$  method. The new Polynomial is over GF(2) and in the variable x if no ring R is provided.

```
sage: R.<x, y> = BooleanPolynomialRing() sage: f = x - y + x*y + 1 sage: f.univariate_polynomial() Traceback (most recent call last): ... ValueError: polynomial must involve at most one variable sage: g = f.subs(\{x:0\}); g y + 1 sage: g.univariate_polynomial() y + 1 sage: g.univariate_polynomial(GF(2)['foo']) foo + 1
```

Here's an example with a constant multivariate polynomial:

```
sage: g = R(1)
sage: h = g.univariate_polynomial(); h
1
sage: h.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using NTL)
```

## variable(i=0)

Return the i-th variable occurring in self. The index i is the index in self.variables()

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*z + z + 1
sage: f.variables()
(x, z)
sage: f.variable(1)
z
```

#### variables()

Return a tuple of all variables appearing in self.

### **EXAMPLE**:

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x + y).variables()
(x, y)

sage: (x*y + z).variables()
(x, y, z)

sage: P.zero().variables()
()

sage: P.one().variables()
```

## vars as monomial()

Return a boolean monomial with all the variables appearing in self.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x + y).vars_as_monomial()
x*y

sage: (x*y + z).vars_as_monomial()
x*y*z

sage: P.zero().vars_as_monomial()
1

TESTS:
sage: R = BooleanPolynomialRing(1, 'y')
sage: y.vars_as_monomial()
y
sage: R
Boolean PolynomialRing in y
```

**Note:** This function is part of the upstream PolyBoRi interface.

#### zeros in(s)

Return a set containing all elements of s where this boolean polynomial evaluates to zero.

If s is given as a BooleSet, then the return type is also a BooleSet. If s is a set/list/tuple of tuple this function returns a tuple of tuples.

INPUT:

•s - candidate points for evaluation to zero

```
EXAMPLE:
         sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
         sage: f = a * b + c + d + 1
         Now we create a set of points:
         sage: s = a*b + a*b*c + c*d + 1
         sage: s = s.set(); s
         {{a,b,c}, {a,b}, {c,d}, {}}
         This encodes the points (1,1,1,0), (1,1,0,0), (0,0,1,1) and (0,0,0,0). But of these only (1,1,0,0) evaluates to
         sage: f.zeros_in(s)
         {{a,b}}
         sage: f.zeros_in([(1,1,1,0), (1,1,0,0), (0,0,1,1), (0,0,0,0)])
         ((1, 1, 0, 0),)
class sage.rings.polynomial.pbori.BooleanPolynomialEntry
     Bases: object
                                                                            gens=[],
class sage.rings.polynomial.pbori.BooleanPolynomialIdeal(ring,
                                                                                         co-
                                                                    erce=True)
     Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal
     Construct an ideal in the boolean polynomial ring.
     INPUT:
        •ring - the ring this ideal is defined in
        •gens - a list of generators
         •coerce - coerce all elements to the ring ring (default: True)
     EXAMPLES:
     sage: P.\langle x0, x1, x2, x3 \rangle = BooleanPolynomialRing(4)
     sage: I = P.ideal(x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0)
     Ideal (x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0) of Boolean PolynomialRing in x0, x1, x2, x3
     sage: loads(dumps(I)) == I
     True
     dimension()
         Return the dimension of self, which is always zero.
         TESTS:
         Check that trac ticket #13155 is solved:
         sage: R = BooleanPolynomialRing(11, 'x')
         sage: R2 = PolynomialRing(GF(2), 11, 'x')
         sage: I = ideal([ R(f) for f in sage.rings.ideal.Cyclic(R2, 11).gens() ])
         sage: I.dimension()
         0
     groebner basis (algorithm='polybori', **kwds)
         Return a Groebner basis of this ideal.
```

## INPUT:

- •algorithm either "polybori" (built-in default) or "magma" (requires Magma).
- •red\_tail tail reductions in intermediate polynomials, this options affects mainly heuristics. The reducedness of the output polynomials can only be guaranteed by the option redsb (default: True)
- •minsb return a minimal Groebner basis (default: True)
- •redsb return a minimal Groebner basis and all tails are reduced (default: True)
- •deg\_bound only compute Groebner basis up to a given degree bound (default: False)
- •faugere turn off or on the linear algebra (default: False)
- •linear\_algebra\_in\_last\_block this affects the last block of block orderings and degree orderings. If it is set to True linear algebra takes affect in this block. (default: True)

# •gauss\_on\_linear - perform Gaussian elimination on linear polynomials (default: True)

- •selection\_size maximum number of polynomials for parallel reductions (default: 1000)
- •heuristic Turn off heuristic by setting heuristic=False (default: True)
- •lazy (default: True)
- •invert setting invert=True input and output get a transformation x+1 for each variable x, which shouldn't effect the calculated GB, but the algorithm.
- •other\_ordering\_first possible values are False or an ordering code. In practice, many Boolean examples have very few solutions and a very easy Groebner basis. So, a complex walk algorithm (which cannot be implemented using the data structures) seems unnecessary, as such Groebner bases can be converted quite fast by the normal Buchberger algorithm from one ordering into another ordering. (default: False)
- •prot show protocol (default: False)
- •full\_prot show full protocol (default: False)

### **EXAMPLES:**

```
sage: P.<x0, x1, x2, x3> = BooleanPolynomialRing(4)
sage: I = P.ideal(x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0)
sage: I.groebner_basis()
[x0*x1 + x0*x2 + x0, x0*x2*x3 + x0*x3]
```

## Another somewhat bigger example:

```
sage: sr = mq.SR(2,1,1,4,gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: I = F.ideal()
sage: I.groebner_basis()
Polynomial Sequence with 36 Polynomials in 36 Variables
```

#### We compute the same example with Magma:

```
sage: sr = mq.SR(2,1,1,4,gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: I = F.ideal()
sage: I.groebner_basis(algorithm='magma', prot='sage') # optional - magma
Leading term degree: 1. Critical pairs: 148.
Leading term degree: 2. Critical pairs: 144.
Leading term degree: 3. Critical pairs: 462.
Leading term degree: 1. Critical pairs: 167.
Leading term degree: 2. Critical pairs: 147.
```

```
Leading term degree: 3. Critical pairs: 101 (all pairs of current degree eliminated by crit Highest degree reached during computation: 3. Polynomial Sequence with 35 Polynomials in 36 Variables
```

## TESTS:

This example shows, that a bug in our variable indices was indeed fixed:

```
sage: R.<al11,a112,a121,a122,b111,b112,b211,b212,c111,c112> = BooleanPolynomialRing(order=']
sage: I = (a111 * b111 * c111 + a112 * b112 * c112 - 1, a111 * b211 * c111 + a112 * b212 * c
... a121 * b111 * c111 + a122 * b112 * c112, a121 * b211 * c111 + a122 * b212 * c112
sage: I.groebner_basis()
[a111 + b212, a112 + b211, a121 + b112, a122 + b111, b111*b112 + b111 + b112 + 1,
b111*b211 + b111 + b211 + 1, b111*b212 + b112*b211 + 1, b112*b212 + b112 + b212 + 1,
b211*b212 + b211 + b212 + 1, c111 + 1, c112 + 1]
```

The following example shows whether boolean constants are handled correctly:

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: I = Ideal([x*z + y*z + z, x*y + x*z + x + y*z + y + z])
sage: I.groebner_basis()
[x, y, z]
```

Check that this no longer crash (trac ticket #12792):

# interreduced basis()

If this ideal is spanned by  $(f_1, \ldots, f_n)$  this method returns  $(q_1, \ldots, q_s)$  such that:

```
•<f_1,...,f_n> = <g_1,...,g_s>
•LT(g_i) != LT(g_j) for all i != j`
```

•LT (q\_i) does not divide m for all monomials m of  $\{g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_s\}$ 

## EXAMPLE:

```
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: I = F.ideal()
sage: I.interreduced_basis()
[k100 + 1, k101 + k001 + 1, k102, k103 + 1, x100 + k001 + 1, x101 + k001, x102, x103 + k001,
```

#### reduce(f)

Reduce an element modulo the reduced Groebner basis for this ideal. This returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

```
sage: P = PolynomialRing(GF(2),10, 'x')
sage: B = BooleanPolynomialRing(10,'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I = B.ideal([B(f) for f in I.gens()])
sage: gb = I.groebner_basis()
sage: I.reduce(gb[0])
0
sage: I.reduce(gb[0] + 1)
1
sage: I.reduce(gb[0]*gb[1])
0
sage: I.reduce(gb[0]*B.gen(1))
0
```

# variety(\*\*kwds)

Return the variety associated to this boolean ideal.

#### **EXAMPLE:**

A Simple example:

```
sage: from sage.doctest.fixtures import reproducible_repr
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: I = ideal([ x*y*z + x*z + y + 1, x+y+z+1 ] )
sage: print(reproducible_repr(I.variety()))
[{x: 0, y: 1, z: 0}, {x: 1, y: 1, z: 1}]
```

#### TESTS:

BooleanIdeal and regular (quotient) Ideal should coincide:

```
sage: R = BooleanPolynomialRing(6, ['x % d' % (i+1) for i in range(6)], order='lex')
sage: R.inject_variables()
Defining...
sage: polys = [\
      x1*x2 + x1*x4 + x1*x5 + x1*x6 + x1 + x2 + x3*x4 + x3*x5 + x3 + x4*x5 + x4*x6 + x4
      x1*x2 + x1*x3 + x1*x4 + x1*x6 + x2*x3 + x2*x6 + x2 + x3*x4 + x5*x6, \
      x1*x3 + x1*x4 + x1*x6 + x1 + x2*x5 + x2*x6 + x3*x4 + x3 + x4*x6 + x4 + x5*x6 + x5
      x1*x2 + x1*x3 + x1*x4 + x1*x5 + x2 + x3*x5 + x3*x6 + x3 + x5 + x6,
      x1*x2 + x1*x4 + x1*x5 + x1*x6 + x2*x3 + x2*x4 + x2*x5 + x3*x5 + x5*x6 + x5 + x6
      x1*x2 + x1*x6 + x2*x4 + x2*x5 + x2*x6 + x3*x6 + x4*x6 + x5*x6 + x5
sage: I = R.ideal( polys )
sage: print(reproducible_repr(I.variety()))
[{x1: 0, x2: 0, x3: 0, x4: 0, x5: 0, x6: 0}, {x1: 1, x2: 1, x3: 1, x4: 0, x5: 0, x6: 1}
sage: R = PolynomialRing(GF(2), 6, ['x d' (i+1) for i in range(6)], order='lex')
sage: I = R.ideal( polys )
sage: v = (I + sage.rings.ideal.FieldIdeal(R)).variety()
sage: print (reproducible_repr(v))
[{x1: 0, x2: 0, x3: 0, x4: 0, x5: 0, x6: 0}, {x1: 1, x2: 1, x3: 1, x4: 0, x5: 0, x6: 1}]
```

Check that trac ticket #13976 is fixed:

```
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: I = ideal( [ x*y*z + x*z + y + 1, x+y+z+1 ] )
sage: sols = I.variety()
```

```
sage: sols[0][y]
             Make sure the result is a key converting dict, as discussed in trac ticket #9788 and consistent with
             sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr.var
             sage: sols[0]["y"]
             1
class sage.rings.polynomial.pbori.BooleanPolynomialIterator
     Bases: object
     Iterator over the monomials of a boolean polynomial.
     next()
         x.next() -> the next value, or raise StopIteration
class sage.rings.polynomial.pbori.BooleanPolynomialRing
     Bases: sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic
     Construct a boolean polynomial ring with the following parameters:
     INPUT:
        •n - number of variables (an integer > 1)
        •names - names of ring variables, may be a string or list/tuple
        •order - term order (default: lex)
     EXAMPLES:
     sage: R.<x, y, z> = BooleanPolynomialRing()
     sage: R
     Boolean PolynomialRing in x, y, z
     sage: p = x*y + x*z + y*z
     sage: x*p
     x*y*z + x*y + x*z
     sage: R.term_order()
     Lexicographic term order
     sage: R = BooleanPolynomialRing(5,'x', order='deglex(3), deglex(2)')
     sage: R.term_order()
     Block term order with blocks:
     (Degree lexicographic term order of length 3,
     Degree lexicographic term order of length 2)
     sage: R = BooleanPolynomialRing(3,'x',order='deglex')
     sage: R.term_order()
     Degree lexicographic term order
     TESTS:
     sage: P.\langle x0, x1, x2, x3 \rangle = BooleanPolynomialRing(4, order='deglex(2), deglex(2)')
     sage: x0 > x1
     True
     sage: x2 > x3
```

```
True
sage: TestSuite(P).run()
Boolean polynomial rings are unique parent structures. We thus have:
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: R.<x,y> = BooleanPolynomialRing(2)
sage: P is R
True
sage: Q.<x,z> = BooleanPolynomialRing(2)
sage: P == Q
False
sage: S.<x,y> = BooleanPolynomialRing(2, order='deglex')
sage: P == S
False
clone (ordering=None, names=[], blocks=[])
    Shallow copy this boolean polynomial ring, but with different ordering, names or blocks if given.
    ring.clone(ordering=..., names=..., block=...) generates a shallow copy of ring, but with different ordering,
    names or blocks if given.
    EXAMPLE:
    sage: B.<a,b,c> = BooleanPolynomialRing()
    sage: B.clone()
    Boolean PolynomialRing in a, b, c
    sage: B.<x,y,z> = BooleanPolynomialRing(3,order='deglex')
    sage: y*z > x
    True
    Now we call the clone method and generate a compatible, but 'lex' ordered, ring:
    sage: C = B.clone(ordering=0)
    sage: C(y*z) > C(x)
    False
    Now we change variable names:
    sage: P.<x0,x1> = BooleanPolynomialRing(2)
    sage: P
    Boolean PolynomialRing in x0, x1
    sage: Q = P.clone(names=['t'])
    sage: Q
    Boolean PolynomialRing in t, x1
    We can also append blocks to block orderings this way:
    sage: R.<x1,x2,x3,x4> = BooleanPolynomialRing(order='deglex(1),deglex(3)')
    sage: x2 > x3 * x4
    False
    Now we call the internal method and change the blocks:
    sage: S = R.clone(blocks=[3])
    sage: S(x2) > S(x3*x4)
    True
```

**Note:** This is part of PolyBoRi's native interface.

```
cover_ring()
```

Return  $R = \mathbf{F}_2[x_1, x_2, ..., x_n]$  if  $x_1, x_2, ..., x_n$  is the ordered list of variable names of this ring. R also has the same term ordering as this ring.

#### **EXAMPLE:**

```
sage: B.<x,y> = BooleanPolynomialRing(2)
sage: R = B.cover_ring(); R
Multivariate Polynomial Ring in x, y over Finite Field of size 2
sage: B.term_order() == R.term_order()
True
```

## The cover ring is cached:

```
sage: B.cover_ring() is B.cover_ring()
True
```

# defining\_ideal()

Return  $I = \langle x_i^2 + x_i \rangle \subset R$  where  $R = self.cover\_ring()$ , and  $x_i$  any element in the set of variables of this ring.

#### **EXAMPLE:**

```
sage: B.<x,y> = BooleanPolynomialRing(2)
sage: I = B.defining_ideal(); I
Ideal (x^2 + x, y^2 + y) of Multivariate Polynomial Ring
in x, y over Finite Field of size 2
```

## qen(i=0)

Returns the i-th generator of this boolean polynomial ring.

#### INPUT:

•i - an integer or a boolean monomial in one variable

### **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.gen()
x
sage: P.gen(2)
z
sage: m = x.monomials()[0]
sage: P.gen(m)
x

TESTS:
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: P.gen(0)
x
```

## gens()

Return the tuple of variables in this ring.

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.gens()
(x, y, z)

sage: P = BooleanPolynomialRing(10,'x')
sage: P.gens()
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)

get_base_order_code()
    EXAMPLE:
    sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
    sage: B.get_base_order_code()

    sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='deglex')
    sage: B.get_base_order_code()

1
    sage: T = TermOrder('deglex',2) + TermOrder('deglex',2)
    sage: B.<a,b,c,d> = BooleanPolynomialRing(4, order=T)
    sage: B.get_base_order_code()
1
```

**Note:** This function which is part of the PolyBoRi upstream API works with a current global ring. This notion is avoided in Sage.

```
get_order_code()
    EXAMPLE:
    sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
    sage: B.get_order_code()
    0

    sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='deglex')
    sage: B.get_order_code()
    1
```

**Note:** This function which is part of the PolyBoRi upstream API works with a current global ring. This notion is avoided in Sage.

# has\_degree\_order()

Returns checks whether the order code corresponds to a degree ordering.

# **EXAMPLES:**

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.has_degree_order()
False
```

# **id**()

Returns a unique identifiert for this boolean polynomial ring.

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: print "id: ", P.id()
id: ...
```

```
sage: P = BooleanPolynomialRing(10, 'x')
sage: Q = BooleanPolynomialRing(20, 'x')
sage: P.id() != Q.id()
True
```

# ideal(\*gens, \*\*kwds)

Create an ideal in this ring.

#### INPUT:

- •gens list or tuple of generators
- •coerce bool (default: True) automatically coerce the given polynomials to this ring to form the ideal

## **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.ideal(x+y)
Ideal (x + y) of Boolean PolynomialRing in x, y, z

sage: P.ideal(x*y, y*z)
Ideal (x*y, y*z) of Boolean PolynomialRing in x, y, z

sage: P.ideal([x+y, z])
Ideal (x + y, z) of Boolean PolynomialRing in x, y, z
```

### interpolation\_polynomial(zeros, ones)

Return the lexicographically minimal boolean polynomial for the given sets of points.

Given two sets of points zeros - evaluating to zero - and ones - evaluating to one -, compute the lexicographically minimal boolean polynomial satisfying these points.

## INPUT:

- •zeros the set of interpolation points mapped to zero
- •ones the set of interpolation points mapped to one

## **EXAMPLE:**

First we create a random-ish boolean polynomial.

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(6)
sage: f = a*b*c*e + a*d*e + a*f + b + c + e + f + 1
```

Now we find interpolation points mapping to zero and to one.

Finally, we find the lexicographically smallest interpolation polynomial using PolyBoRi.

```
sage: g = B.interpolation_polynomial(zeros, ones); g
b*f + c + d*f + d + e*f + e + 1

sage: [g(*p) for p in zeros]
[0, 0, 0, 0, 0, 0, 0]
sage: [g(*p) for p in ones]
[1, 1, 1, 1, 1, 1, 1, 1]
```

Alternatively, we can work with PolyBoRi's native BooleSet's. This example is from the PolyBoRi tutorial:

```
sage: B = BooleanPolynomialRing(4,"x0,x1,x2,x3")
sage: x = B.gen
sage: V=(x(0)+x(1)+x(2)+x(3)+1).set(); V
{{x0}, {x1}, {x2}, {x3}, {}}
sage: f=x(0)*x(1)+x(1)+x(2)+1
sage: z = f.zeros_in(V); z
{{x1}, {x2}}
sage: o = V.diff(z); o
{{x0}, {x3}, {}}
sage: B.interpolation_polynomial(z,o)
x1 + x2 + 1
```

ALGORITHM: Calls interpolate\_smallest\_lex as described in the PolyBoRi tutorial.

#### n\_variables()

Returns the number of variables in this boolean polynomial ring.

#### **EXAMPLES:**

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.n_variables()
2
sage: P = BooleanPolynomialRing(1000, 'x')
sage: P.n_variables()
1000
```

Note: This is part of PolyBoRi's native interface.

## ngens()

Returns the number of variables in this boolean polynomial ring.

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.ngens()
2

sage: P = BooleanPolynomialRing(1000, 'x')
sage: P.ngens()
1000

one()
    EXAMPLES:
    sage: P.<x0,x1> = BooleanPolynomialRing(2)
    sage: P.one()
1
```

random\_element (degree=None, terms=None, choose\_degree=False, vars\_set=None)

Return a random boolean polynomial. Generated polynomial has the given number of terms, and at most given degree.

## INPUT:

- •degree maximum degree (default: 2 for len(var\_set) > 1, 1 otherwise)
- •terms number of terms requested (default: 5). If more terms are requested than exist, then this parameter is silently reduced to the maximum number of available terms.
- •choose\_degree choose degree of monomials randomly first, rather than monomials uniformly random
- vars\_set list of integer indicies of generators of self to use in the generated polynomial

#### **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.random_element(degree=3, terms=4)
x*y*z + x*z + x + y*z

sage: P.random_element(degree=1, terms=2)
z + 1
```

In corner cases this function will return fewer terms by default:

```
sage: P = BooleanPolynomialRing(2,'y')
sage: P.random_element()
y0*y1 + y0

sage: P = BooleanPolynomialRing(1,'y')
sage: P.random_element()
y
```

We return uniformly random polynomials up to degree 2:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: B.random_element(terms=Infinity)
a*b + a*c + a*d + b*c + b*d + d
```

#### TESTS:

x\*y + y

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.random_element(degree=4)
Traceback (most recent call last):
...
ValueError: Given degree should be less than or equal to number of variables (3)
sage: P.random_element(degree=1, terms=5)
y + 1
sage: P.random_element(degree=2, terms=5, vars_set=(0,1))
```

We test that trac ticket #13845 is fixed:

```
sage: n = 10
sage: B = BooleanPolynomialRing(n, 'x')
sage: r = B.random_element(terms=(n/2)**2)
```

remove\_var (order=None, \*var)

Remove a variable or sequence of variables from this ring.

If order is not specified, then the subring inherits the term order of the original ring, if possible.

```
EXAMPLES:
```

```
sage: R.<x,y,z,w> = BooleanPolynomialRing()
sage: R.remove_var(z)
Boolean PolynomialRing in x, y, w
sage: R.remove_var(z,x)
Boolean PolynomialRing in y, w
sage: R.remove_var(y,z,x)
Boolean PolynomialRing in w
```

Removing all variables results in the base ring:

```
sage: R.remove_var(y, z, x, w)
Finite Field of size 2
```

If possible, the term order is kept:

```
sage: R.<x,y,z,w> = BooleanPolynomialRing(order='deglex') sage: R.remove_var(y).term_order() Degree lexicographic term order
```

sage: R.<x,y,z,w> = BooleanPolynomialRing(order='lex') sage: R.remove\_var(y).term\_order()
Lexicographic term order

Be careful with block orders when removing variables:

```
sage: R.<x,y,z,u,v> = BooleanPolynomialRing(order='deglex(2),deglex(3)')
sage: R.remove_var(x,y,z)
Traceback (most recent call last):
...
ValueError: impossible to use the original term order (most likely because it was a block or sage: R.remove_var(x,y,z, order='deglex')
Boolean PolynomialRing in u, v
```

## variable(i=0)

Returns the i-th generator of this boolean polynomial ring.

## INPUT:

•i - an integer or a boolean monomial in one variable

## **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.variable()
x
sage: P.variable(2)
z
sage: m = x.monomials()[0]
sage: P.variable(m)
x

TESTS:
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: P.variable(0)
x
```

```
sage: P.<x0,x1> = BooleanPolynomialRing(2)
         sage: P.zero()
class sage.rings.polynomial.pbori.BooleanPolynomialVector
    Bases: object
    A vector of boolean polynomials.
    EXAMPLE:
    sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
    sage: from brial import BooleanPolynomialVector
    sage: 1 = [B.random_element() for _ in range(3)]
    sage: v = BooleanPolynomialVector(1)
    sage: len(v)
    sage: v[0]
    a*b + a + b*e + c*d + e*f
    sage: list(v)
     [a*b + a + b*e + c*d + e*f, a*d + c*d + d*f + e + f, a*c + a*e + b*c + c*f + f]
    append(el)
         Append the element el to this vector.
         EXAMPLE:
         sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
         sage: from brial import BooleanPolynomialVector
         sage: v = BooleanPolynomialVector()
         sage: for i in range(5):
                 v.append(B.random_element())
         sage: list(v)
         [a*b + a + b*e + c*d + e*f, a*d + c*d + d*f + e + f, a*c + a*e + b*c + c*f + f, a*c + a*d + f.
{\bf class} \; {\tt sage.rings.polynomial.pbori.BooleanPolynomialVectorIterator}
    Bases: object
    next()
         x.next() -> the next value, or raise StopIteration
class sage.rings.polynomial.pbori.CCuddNavigator
    Bases: object
    constant()
    else_branch()
    terminal one()
    then_branch()
    value()
class sage.rings.polynomial.pbori.FGLMStrategy
    Bases: object
    Strategy object for the FGLM algorithm to translate from one Groebner basis with respect to a term ordering A
    to another Groebner basis with respect to a term ordering B.
    main()
         Execute the FGLM algorithm.
```

#### **EXAMPLE:**

```
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: ideal = BooleanPolynomialVector([x+z, y+z])
sage: list(ideal)
[x + z, y + z]
sage: old_ring = B
sage: new_ring = B.clone(ordering=dp_asc)
sage: list(FGLMStrategy(old_ring, new_ring, ideal).main())
[y + x, z + x]
```

class sage.rings.polynomial.pbori.GroebnerStrategy

Bases: object

A Groebner strategy is the main object to control the strategy for computing Groebner bases.

**Note:** This class is mainly used internally.

#### $add_as_you_wish(p)$

Add a new generator but let the strategy object decide whether to perform immediate interreduction.

INPUT:

•p - a polynomial

#### **EXAMPLE**:

```
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
sage: gbs.add_as_you_wish(a + b)
sage: list(gbs)
[a + b]
sage: gbs.add_as_you_wish(a + c)
```

Note that nothing happened immediatly but that the generator was indeed added:

```
sage: list(gbs)
[a + b]

sage: gbs.symmGB_F2()
sage: list(gbs)
[a + c, b + c]
```

## add\_generator(p)

Add a new generator.

INPUT:

•p - a polynomial

```
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
sage: gbs.add_generator(a + b)
sage: list(gbs)
[a + b]
sage: gbs.add_generator(a + c)
Traceback (most recent call last):
```

```
ValueError: strategy already contains a polynomial with same lead
add\_generator\_delayed(p)
    Add a new generator but do not perform interreduction immediatly.
    INPUT:
       •p - a polynomial
    EXAMPLE:
    sage: from brial import *
    sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
    sage: gbs = GroebnerStrategy(B)
    sage: gbs.add_generator(a + b)
    sage: list(qbs)
    [a + b]
    sage: gbs.add_generator_delayed(a + c)
    sage: list(qbs)
    [a + b]
    sage: list(gbs.all_generators())
    [a + b, a + c]
all_generators()
    EXAMPLE:
    sage: from brial import *
    sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
    sage: gbs = GroebnerStrategy(B)
    sage: gbs.add_as_you_wish(a + b)
    sage: list(gbs)
    [a + b]
    sage: gbs.add_as_you_wish(a + c)
    sage: list(gbs)
    [a + b]
    sage: list(gbs.all_generators())
    [a + b, a + c]
all_spolys_in_next_degree()
clean_top_by_chain_criterion()
contains_one()
    Return True if 1 is in the generating system.
    EXAMPLE:
    We construct an example which contains 1 in the ideal spanned by the generators but not in the set of
    generators:
    sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
    sage: from brial import GroebnerStrategy
    sage: qb = GroebnerStrategy(B)
    sage: gb.add\_generator(a*c + a*f + d*f + d + f)
    sage: gb.add_generator(b*c + b*e + c + d + 1)
    sage: gb.add_generator(a*f + a + c + d + 1)
    sage: gb.add_generator(a*d + a*e + b*e + c + f)
    sage: gb.add_generator(b*d + c + d*f + e + f)
```

```
sage: gb.add_generator(a*b + b + c*e + e + 1)
sage: gb.add_generator(a + b + c*d + c*e + 1)
sage: gb.contains_one()
False

Still, we have that:
sage: from brial import groebner_basis
sage: groebner_basis(gb)
[1]
```

## faugere\_step\_dense(v)

Reduces a vector of polynomials using linear algebra.

#### INPUT:

•v - a boolean polynomial vector

#### **EXAMPLE:**

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import GroebnerStrategy
sage: gb = GroebnerStrategy(B)
sage: gb.add_generator(a*c + a*f + d*f + d + f)
sage: gb.add_generator(b*c + b*e + c + d + 1)
sage: gb.add_generator(a*f + a + c + d + 1)
sage: gb.add_generator(a*d + a*e + b*e + c + f)
sage: gb.add_generator(b*d + c + d*f + e + f)
sage: gb.add_generator(a*b + b + c*e + e + 1)
sage: gb.add_generator(a + b + c*d + c*e + 1)
sage: from brial import BooleanPolynomialVector
sage: V= BooleanPolynomialVector([b*d, a*b])
sage: list(gb.faugere_step_dense(V))
[b + c*e + e + 1, c + d*f + e + f]
```

# implications(i)

Compute "useful" implied polynomials of i-th generator, and add them to the strategy, if it finds any.

INPUT:

•i - an index

### 11 reduce all()

Use the built-in ll-encoded BooleSet of polynomials with linear lexicographical leading term, which coincides with leading term in current ordering, to reduce the tails of all polynomials in the strategy.

#### minimalize()

Return a vector of all polynomials with minimal leading terms.

**Note:** Use this function if strat contains a GB.

# minimalize\_and\_tail\_reduce()

Return a vector of all polynomials with minimal leading terms and do tail reductions.

Note: Use that if strat contains a GB and you want a reduced GB.

```
next_spoly()
```

```
nf(p)
    Compute the normal form of p with respect to the generating set.
    INPUT:
       •p - a boolean polynomial
    EXAMPLE:
    sage: P = PolynomialRing(GF(2),10, 'x')
    sage: B = BooleanPolynomialRing(10,'x')
    sage: I = sage.rings.ideal.Cyclic(P)
    sage: I = B.ideal([B(f) for f in I.gens()])
    sage: gb = I.groebner_basis()
    sage: from brial import GroebnerStrategy
    sage: G = GroebnerStrategy(B)
    sage: _ = [G.add_generator(f) for f in qb]
    sage: G.nf(qb[0])
    sage: G.nf(gb[0] + 1)
    sage: G.nf(gb[0]*gb[1])
    sage: G.nf(qb[0]*B.gen(1))
    Note: The result is only canonical if the generating set is a Groebner basis.
npairs()
reduction_strategy
select (m)
    Return the index of the generator which can reduce the monomial m.
    INPUT:
       •m - a BooleanMonomial
    EXAMPLE:
    sage: B.<a,b,c,d,e> = BooleanPolynomialRing()
    sage: f = B.random_element()
    sage: g = B.random_element()
    sage: from brial import GroebnerStrategy
    sage: strat = GroebnerStrategy(B)
    sage: strat.add_generator(f)
    sage: strat.add_generator(g)
    sage: strat.select(f.lm())
    sage: strat.select(g.lm())
    sage: strat.select(e.lm())
    -1
small_spolys_in_next_degree (f, n)
```

 $some\_spolys\_in\_next\_degree(n)$ 

suggest\_plugin\_variable()

#### symmGB F2()

Compute a Groebner basis for the generating system.

**Note:** This implementation is out of date, but it will revived at some point in time. Use the groebner\_basis() function instead.

```
top_sugar()
```

#### variable\_has\_value(v)

Computes, whether there exists some polynomial of the form v+c in the Strategy – where c is a constant – in the list of generators.

## INPUT:

•v - the index of a variable

```
EXAMPLE:: sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing() sage: from brial import Groebner-Strategy sage: gb = GroebnerStrategy(B) sage: gb.add_generator(a*c + a*f + d*f + d + f) sage: gb.add_generator(b*c + b*e + c + d + 1) sage: gb.add_generator(a*f + a + c + d + 1) sage: gb.add_generator(a*d + a*e + b*e + c + f) sage: gb.add_generator(b*d + c + d*f + e + f) sage: gb.add_generator(a*b + b + c*e + e + 1) sage: gb.variable_has_value(0) False
```

sage: from brial import groebner\_basis sage:  $g = groebner_basis(gb)$  sage: list(g) [a, b + 1, c + 1, d, e + 1, f]

sage: gb = GroebnerStrategy(B) sage: \_ = [gb.add\_generator(f) for f in g] sage: gb.variable\_has\_value(0) True

class sage.rings.polynomial.pbori.MonomialConstruct

Bases: object

Implements PolyBoRi's Monomial () constructor.

```
class sage.rings.polynomial.pbori.MonomialFactory
```

Bases: object

Implements PolyBoRi's Monomial () constructor. If a ring is given is can be used as a Monomial factory for the given ring.

## **EXAMPLE:**

```
sage: from brial import *
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: fac = MonomialFactory()
sage: fac = MonomialFactory(B)
```

class sage.rings.polynomial.pbori.PolynomialConstruct

Bases: object

Implements PolyBoRi's Polynomial () constructor.

# lead(x)

Return the leading monomial of boolean polynomial x, with respect to to the order of parent ring.

```
sage: from brial import *
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: PolynomialConstruct().lead(a)
```

```
class sage.rings.polynomial.pbori.PolynomialFactory
     Bases: object
     Implements PolyBoRi's Polynomial () constructor and a polynomial factory for given rings.
         Return the leading monomial of boolean polynomial x, with respect to to the order of parent ring.
         EXAMPLE:
         sage: from brial import *
         sage: B.<a,b,c> = BooleanPolynomialRing()
         sage: PolynomialFactory().lead(a)
class sage.rings.polynomial.pbori.ReductionStrategy
     Bases: object
     Functions and options for boolean polynomial reduction.
     add_generator(p)
         Add the new generator p to this strategy.
         INPUT:
            •p - a boolean polynomial.
         EXAMPLE:
         sage: from brial import *
         sage: B.<x,y,z> = BooleanPolynomialRing()
         sage: red = ReductionStrategy(B)
         sage: red.add_generator(x)
         sage: list([f.p for f in red])
         [x]
         TESTS:
         Check if #8966 is fixed:
         sage: red = ReductionStrategy(B)
         sage: red.add_generator(None)
         Traceback (most recent call last):
         TypeError: argument must be a BooleanPolynomial.
     can rewrite (p)
         Return True if p can be reduced by the generators of this strategy.
         EXAMPLE:
         sage: from brial import *
         sage: B.<a,b,c,d> = BooleanPolynomialRing()
         sage: red = ReductionStrategy(B)
         sage: red.add_generator(a*b + c + 1)
         sage: red.add_generator(b*c + d + 1)
         sage: red.can_rewrite(a*b + a)
         sage: red.can_rewrite(b + c)
         False
         sage: red.can_rewrite(a*d + b*c + d + 1)
         True
```

#### cheap\_reductions(p)

Peform 'cheap' reductions on p.

#### INPUT:

•p - a boolean polynomial

#### **EXAMPLE**:

```
sage: from brial import *
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(a*b + c + 1)
sage: red.add_generator(b*c + d + 1)
sage: red.add_generator(a)
sage: red.cheap_reductions(a*b + a)
0
sage: red.cheap_reductions(b + c)
b + c
sage: red.cheap_reductions(a*d + b*c + d + 1)
b*c + d + 1
```

#### head\_normal\_form(p)

Compute the normal form of p with respect to the generators of this strategy but do not perform tail any reductions.

#### INPUT:

•p - a polynomial

#### **EXAMPLE:**

```
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.opt_red_tail = True
sage: red.add_generator(x + y + 1)
sage: red.add_generator(y*z + z)

sage: red.head_normal_form(x + y*z)
y + z + 1

sage; red.nf(x + y*z)
y + z + 1
```

#### nf(p)

Compute the normal form of p w.r.t. to the generators of this reduction strategy object.

```
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(x + y + 1)
sage: red.add_generator(y*z + z)
sage: red.nf(x)
y + 1

sage: red.nf(y*z + x)
y + z + 1
```

```
reduced normal form(p)
         Compute the normal form of p with respect to the generators of this strategy and perform tail reductions.
         INPUT:
            •p - a polynomial
         EXAMPLE:
         sage: from brial import *
         sage: B.<x,y,z> = BooleanPolynomialRing()
         sage: red = ReductionStrategy(B)
         sage: red.add_generator(x + y + 1)
         sage: red.add_generator(y*z + z)
         sage: red.reduced_normal_form(x)
         y + 1
         sage: red.reduced_normal_form(y*z + x)
         y + z + 1
sage.rings.polynomial.pbori.TermOrder_from_pb_order(n, order, blocks)
class sage.rings.polynomial.pbori.VariableBlock
    Bases: object
class sage.rings.polynomial.pbori.VariableConstruct
    Bases: object
    Implements PolyBoRi's Variable () constructor.
class sage.rings.polynomial.pbori.VariableFactory
    Bases: object
    Implements PolyBoRi's Variable () constructor and a variable factory for given ring
sage.rings.polynomial.pbori.add_up_polynomials(v, init)
    Add up all entries in the vector v.
    INPUT:
        •v - a vector of boolean polynomials
    EXAMPLE:
    sage: from brial import *
    sage: B.<a,b,c,d> = BooleanPolynomialRing()
    sage: v = BooleanPolynomialVector()
    sage: 1 = [B.random_element() for _ in range(5)]
    sage: _ = [v.append(e) for e in 1]
    sage: add_up_polynomials(v, B.zero())
    a*d + b*c + b*d + c + 1
    sage: sum(1)
    a*d + b*c + b*d + c + 1
sage.rings.polynomial.pbori.contained_vars(m)
sage.rings.polynomial.pbori.easy_linear_factors(p)
sage.rings.polynomial.pbori.gauss on polys(inp)
    Perform Gaussian elimination on the input list of polynomials.
    INPUT:
        •inp - an iterable
```

#### **EXAMPLE:**

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import *
sage: 1 = [B.random_element() for _ in range(B.ngens())]
sage: A, v = Sequence(1,B).coefficient_matrix()
sage: A
[1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
[0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1]
[0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1]
sage: e = gauss_on_polys(1)
sage: E, v = Sequence(e, B).coefficient_matrix()
sage: E
[1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1]
[0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
[0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0]
[0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1]
sage: A.echelon_form()
[1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1]
[0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 0]
[0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1]
```

#### sage.rings.polynomial.pbori.get\_var\_mapping(ring, other)

Return a variable mapping between variables of other and ring. When other is a parent object, the mapping defines images for all variables of other. If it is an element, only variables occurring in other are mapped.

Raises NameError if no such mapping is possible.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: R.<z,y> = QQ[]
sage: sage.rings.polynomial.pbori.get_var_mapping(P,R)
[z, y]
sage: sage.rings.polynomial.pbori.get_var_mapping(P, z^2)
[z, None]
sage: R.<z,x> = BooleanPolynomialRing(2)
sage: sage.rings.polynomial.pbori.get_var_mapping(P,R)
[z, x]
sage: sage.rings.polynomial.pbori.get_var_mapping(P, x^2)
[None, x]
```

sage.rings.polynomial.pbori.if\_then\_else(root, a, b)

The opposite of navigating down a ZDD using navigators is to construct new ZDDs in the same way, namely giving their else- and then-branch as well as the index value of the new node.

## INPUT:

•root - a variable

```
•a - the if branch, a BooleSet or a BoolePolynomial
         •b - the else branch, a BooleSet or a BoolePolynomial
     EXAMPLE:
     sage: from brial import if_then_else
     sage: B = BooleanPolynomialRing(6,'x')
     sage: x0, x1, x2, x3, x4, x5 = B.gens()
     sage: f0 = x2*x3+x3
     sage: f1 = x4
     sage: if_then_else(x1, f0, f1)
     \{\{x1, x2, x3\}, \{x1, x3\}, \{x4\}\}
     sage: if_then_else(x1.lm().index(),f0,f1)
     \{\{x1, x2, x3\}, \{x1, x3\}, \{x4\}\}
     sage: if_then_else(x5, f0, f1)
     Traceback (most recent call last):
     IndexError: index of root must be less than the values of roots of the branches.
sage.rings.polynomial.pbori.interpolate(zero, one)
     Interpolate a polynomial evaluating to zero on zero and to one on ones.
     INPUT:
         •zero - the set of zero
         •one - the set of ones
     EXAMPLE:
     sage: B = BooleanPolynomialRing(4, "x0, x1, x2, x3")
     sage: x = B.gen
     sage: from brial.interpolate import *
     sage: V = (x(0) + x(1) + x(2) + x(3) + 1) \cdot set()
     sage: V
     \{\{x0\}, \{x1\}, \{x2\}, \{x3\}, \{\}\}\}
     sage: f=x(0)*x(1)+x(1)+x(2)+1
     sage: nf_lex_points(f, V)
     x1 + x2 + 1
     sage: z=f.zeros_in(V)
     sage: z
     \{\{x1\}, \{x2\}\}
     sage: o=V.diff(z)
     sage: o
     \{\{x0\}, \{x3\}, \{\}\}
     sage: interpolate(z, o)
     x0*x1*x2 + x0*x1 + x0*x2 + x1*x2 + x1 + x2 + 1
```

sage.rings.polynomial.pbori.interpolate\_smallest\_lex(zero, one)

Interpolate the lexicographical smallest polynomial evaluating to zero on zero and to one on ones.

# INPUT:

•zero - the set of zeros

•one - the set of ones

#### **EXAMPLE:**

Let V be a set of points in  $\mathbf{F}_2^n$  and f a Boolean polynomial. V can be encoded as a BooleSet. Then we are interested in the normal form of f against the vanishing ideal of V: I(V).

It turns out, that the computation of the normal form can be done by the computation of a minimal interpolation polynomial, which takes the same values as f on V:

```
sage: B = BooleanPolynomialRing(4,"x0,x1,x2,x3")
sage: x = B.gen
sage: from brial.interpolate import *
sage: V=(x(0)+x(1)+x(2)+x(3)+1).set()
```

We take  $V = \{e0,e1,e2,e3,0\}$ , where ei describes the i-th unit vector. For our considerations it does not play any role, if we suppose V to be embedded in  $\mathbf{F}_2^4$  or a vector space of higher dimension:

```
sage: V
{{x0}, {x1}, {x2}, {x3}, {}}

sage: f=x(0)*x(1)+x(1)+x(2)+1
sage: nf_lex_points(f,V)
x1 + x2 + 1
```

In this case, the normal form of f w.r.t. the vanishing ideal of V consists of all terms of f with degree smaller or equal to 1.

It can be easily seen, that this polynomial forms the same function on V as f. In fact, our computation is equivalent to the direct call of the interpolation function interpolate\_smallest\_lex, which has two arguments: the set of interpolation points mapped to zero and the set of interpolation points mapped to one:

```
sage: z=f.zeros_in(V)
sage: z
{{x1}, {x2}}

sage: o=V.diff(z)
sage: o
{{x0}, {x3}, {}}

sage: interpolate_smallest_lex(z,o)
x1 + x2 + 1
```

sage.rings.polynomial.pbori.ll\_red\_nf\_noredsb(p, reductors)

Redude the polynomial p by the set of reductors with linear leading terms.

## INPUT:

•p - a boolean polynomial

•reductors - a boolean set encoding a Groebner basis with linear leading terms.

```
sage: from brial import ll_red_nf_noredsb
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: p = a*b + c + d + 1
sage: f,g = a + c + 1, b + d + 1;
sage: reductors = f.set().union( g.set() )
sage: ll_red_nf_noredsb(p, reductors)
b*c + b*d + c + d + 1
```

```
sage.rings.polynomial.pbori.ll_red_nf_noredsb_single_recursive_call (p, reduc-
tors)
```

Redude the polynomial p by the set of reductors with linear leading terms.

ll\_red\_nf\_noredsb\_single\_recursive() call has the same specification as ll\_red\_nf\_noredsb(), but a different implementation: It is very sensitive to the ordering of variables, however it has the property, that it needs just one recursive call.

#### INPUT:

- •p a boolean polynomial
- •reductors a boolean set encoding a Groebner basis with linear leading terms.

#### **EXAMPLE:**

```
sage: from brial import ll_red_nf_noredsb_single_recursive_call
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: p = a*b + c + d + 1
sage: f,g = a + c + 1, b + d + 1;
sage: reductors = f.set().union( g.set() )
sage: ll_red_nf_noredsb_single_recursive_call(p, reductors)
b*c + b*d + c + d + 1
```

sage.rings.polynomial.pbori.ll\_red\_nf\_redsb(p, reductors)

Redude the polynomial p by the set of reductors with linear leading terms. It is assumed that the set reductors is a reduced Groebner basis.

#### INPUT:

- •p a boolean polynomial
- •reductors a boolean set encoding a reduced Groebner basis with linear leading terms.

#### **EXAMPLE:**

```
sage: from brial import ll_red_nf_redsb
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: p = a*b + c + d + 1
sage: f,g = a + c + 1, b + d + 1;
sage: reductors = f.set().union( g.set() )
sage: ll_red_nf_redsb(p, reductors)
b*c + b*d + c + d + 1

sage.rings.polynomial.pbori.map_every_x_to_x_plus_one(p)
Map every variable x_i in this polynomial to x_i + 1.

EXAMPLE:
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*b + z + 1; f
a*b + z + 1
sage: from brial import map_every_x_to_x_plus_one
```

```
sage: f(a+1,b+1,z+1)
a*b + a + b + z + 1

sage.rings.polynomial.pbori.mod_mon_set(a_s,v_s)
sage.rings.polynomial.pbori.mod_var_set(a,v)
sage.rings.polynomial.pbori.mult_fact_sim_C(v,ring)
```

sage: map\_every\_x\_to\_x\_plus\_one(f)

a\*b + a + b + z + 1

```
sage.rings.polynomial.pbori.nf3 (s, p, m)
sage.rings.polynomial.pbori.parallel_reduce(inp, strat, average_steps, delay_f)
sage.rings.polynomial.pbori.random_set (variables, length)
    Return a random set of monomials with length elements with each element in the variables variables.
    sage: from brial import random_set, set_random_seed
    sage: B.<a,b,c,d,e> = BooleanPolynomialRing()
    sage: (a*b*c*d).lm()
    a*b*c*d
    sage: set random seed(1337)
    sage: random_set((a*b*c*d).lm(),10)
     \{\{a,b,c,d\}, \{a,b\}, \{a,c,d\}, \{a,c\}, \{b,c,d\}, \{b,d\}, \{b\}, \{c,d\}, \{c\}, \{d\}\}\}
sage.rings.polynomial.pbori.recursively_insert(n, ind, m)
sage.rings.polynomial.pbori.red_tail(s, p)
    Perform tail reduction on p using the generators of s.
    INPUT:
        •s - a reduction strategy
        •p - a polynomial
    EXAMPLE:
    sage: from brial import *
    sage: B.<x,y,z> = BooleanPolynomialRing()
    sage: red = ReductionStrategy(B)
    sage: red.add_generator(x + y + 1)
    sage: red.add_generator(y*z + z)
    sage: red_tail(red,x)
    sage: red_tail(red,x*y + x)
    x*y + y + 1
sage.rings.polynomial.pbori.set_random_seed(seed)
    The the PolyBoRi random seed to seed
    EXAMPLE:
    sage: from brial import random_set, set_random_seed
    sage: B. <a, b, c, d, e> = BooleanPolynomialRing()
    sage: (a*b*c*d).lm()
    a*b*c*d
    sage: set_random_seed(1337)
    sage: random_set((a*b*c*d).lm(),2)
     {{b}, {c}}
    sage: random_set((a*b*c*d).lm(),2)
     {{a,c,d}, {c}}
    sage: set_random_seed(1337)
    sage: random_set((a*b*c*d).lm(),2)
     {{b}, {c}}
    sage: random_set((a*b*c*d).lm(),2)
     {{a,c,d}, {c}}
sage.rings.polynomial.pbori.substitute variables(parent, vec, poly)
    var(i) is replaced by vec[i] in poly.
```

```
EXAMPLE:
    sage: B.<a,b,c> = BooleanPolynomialRing()
    sage: f = a*b + c + 1
    sage: from brial import substitute_variables
    sage: substitute_variables(B, [a,b,c],f)
    a*b + c + 1
    sage: substitute_variables(B, [a+1,b,c],f)
    a*b + b + c + 1
    sage: substitute_variables(B, [a+1,b+1,c],f)
    a*b + a + b + c
    sage: substitute_variables(B, [a+1,b+1,B(0)],f)
    a*b + a + b
    Substitution is also allowed with different rings:
    sage: B.<a,b,c> = BooleanPolynomialRing()
    sage: f = a*b + c + 1
    sage: B.<w,x,y,z> = BooleanPolynomialRing(order='deglex')
    sage: from brial import substitute_variables
    sage: substitute_variables(B, [x,y,z], f) * w
    w*x*y + w*z + w
sage.rings.polynomial.pbori.top_index(s)
    Return the highest index in the parameter s.
    INPUT:
        •s - BooleSet, BooleMonomial, BoolePolynomial
    EXAMPLE:
    sage: B.\langle x, y, z \rangle = BooleanPolynomialRing(3)
    sage: from brial import top_index
    sage: top_index(x.lm())
    sage: top_index(y*z)
    sage: top_index(x + 1)
    \cap
sage.rings.polynomial.pbori.unpickle_BooleanPolynomial(ring, string)
    Unpickle boolean polynomials
    EXAMPLE:
    sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
    sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
    sage: loads(dumps(a+b)) == a+b # indirect doctest
    True
\verb|sage.rings.polynomial.pbori.unpickle_BooleanPolynomial0| (\textit{ring}, l)
    Unpickle boolean polynomials
    EXAMPLE:
    sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
    sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
    sage: loads(dumps(a+b)) == a+b # indirect doctest
    True
```

sage.rings.polynomial.pbori.unpickle\_BooleanPolynomialRing(n, names, order)
Unpickle boolean polynomial rings.

#### **EXAMPLE:**

```
sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
sage: loads(dumps(P)) == P # indirect doctest
True
```

sage.rings.polynomial.pbori.zeros(pol, s)

Return a BooleSet encoding on which points from s the polynomial pol evaluates to zero.

#### INPUT:

- •pol a boolean polynomial
- •s a set of points encoded as a BooleSet

#### **EXAMPLE:**

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b + a*c + d + b
```

Now we create a set of points:

```
sage: s = a*b + a*b*c + c*d + b*c

sage: s = s.set(); s

{{a,b,c}, {a,b}, {b,c}, {c,d}}
```

This encodes the points (1,1,1,0), (1,1,0,0), (0,0,1,1) and (0,1,1,0). But of these only (1,1,0,0) evaluates to zero.:

```
sage: from brial import zeros
sage: zeros(f,s)
{{a,b}}
```

For comparison we work with tuples:

```
sage: f.zeros_in([(1,1,1,0), (1,1,0,0), (0,0,1,1), (0,1,1,0)])
((1, 1, 0, 0),)
```

**CHAPTER** 

**EIGHT** 

# NONCOMMUTATIVE POLYNOMIALS

# 8.1 Noncommutative Polynomials via libSINGULAR/Plural

This module provides specialized and optimized implementations for noncommutative multivariate polynomials over many coefficient rings, via the shared library interface to SINGULAR. In particular, the following coefficient rings are supported by this implementation:

- the rational numbers Q, and
- finite fields  $\mathbf{F}_p$  for p prime

## **AUTHORS:**

The PLURAL wrapper is due to

- Burcin Erocal (2008-11 and 2010-07): initial implementation and concept
- Michael Brickenstein (2008-11 and 2010-07): initial implementation and concept
- Oleksandr Motsak (2010-07): complete overall noncommutative functionality and first release
- Alexander Dreyer (2010-07): noncommutative ring functionality and documentation
- Simon King (2011-09): left and two-sided ideals; normal forms; pickling; documentation

The underlying libSINGULAR interface was implemented by

- Martin Albrecht (2007-01): initial implementation
- Joel Mohler (2008-01): misc improvements, polishing
- Martin Albrecht (2008-08): added  $\mathbf{Q}(a)$  and  $\mathbf{Z}$  support
- Simon King (2009-04): improved coercion
- Martin Albrecht (2009-05): added  $\mathbf{Z}/n\mathbf{Z}$  support, refactoring
- Martin Albrecht (2009-06): refactored the code to allow better re-use

## Todo

extend functionality towards those of libSINGULARs commutative part

### **EXAMPLES:**

We show how to construct various noncommutative polynomial rings:

```
sage: A.\langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: P.\langle x, y, z \rangle = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
```

```
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -x*y
sage: y*x + 1/2
-x*y + 1/2
sage: A. \langle x, y, z \rangle = FreeAlgebra(GF(17), 3)
sage: P.\langle x, y, z \rangle = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
Noncommutative Multivariate Polynomial Ring in x, y, z over Finite Field of size 17, nc-relations: {
sage: y * x + 7
-x*y + 7
Raw use of this class; this is not the intended use!
sage: from sage.matrix.constructor import Matrix
sage: c = Matrix(3)
sage: c[0,1] = -2
sage: c[0,2] = 1
sage: c[1,2] = 1
sage: d = Matrix(3)
sage: d[0, 1] = 17
sage: P = QQ['x','y','z']
sage: c = c.change_ring(P)
sage: d = d.change_ring(P)
sage: from sage.rings.polynomial.plural import NCPolynomialRing_plural
sage: R.<x,y,z> = NCPolynomialRing_plural(QQ, c = c, d = d, order=TermOrder('lex',3),category=Algebra
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: \{y*x: -2*x: -2*x
sage: R.term_order()
Lexicographic term order
sage: a,b,c = R.gens()
sage: f = 57 * a^2*b + 43 * c + 1; f
57*x^2*y + 43*z + 1
TESTS:
sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: TestSuite(P).run()
sage: loads(dumps(P)) is P
True
sage.rings.polynomial.plural.ExteriorAlgebra (base_ring, names, order='degrevlex')
           Return the exterior algebra on some generators
           This is also known as a Grassmann algebra. This is a finite dimensional algebra, where all generators anti-
           commute.
           See Wikipedia article Exterior algebra
           INPUT:
```

•base\_ring - the ground ring

•names - a list of variable names

```
EXAMPLES:
     sage: from sage.rings.polynomial.plural import ExteriorAlgebra
     sage: E = ExteriorAlgebra(QQ, ['x', 'y', 'z']) ; E #random
     Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relat
     sage: sorted(E.cover().domain().relations().iteritems(),key=str)
     [(y*x, -x*y), (z*x, -x*z), (z*y, -y*z)]
     sage: sorted(E.cover().kernel().gens(),key=str)
     [x^2, y^2, z^2]
     sage: E.inject_variables()
     Defining xbar, ybar, zbar
     sage: x, y, z = (xbar, ybar, zbar)
     sage: y*x
     -x*v
     sage: all(v^2==0 for v in E.gens())
     True
     sage: E.one()
class sage.rings.polynomial.plural.ExteriorAlgebra plural
     Bases: sage.rings.polynomial.plural.NCPolynomialRing_plural
class sage.rings.polynomial.plural.G_AlgFactory
     Bases: sage.structure.factory.UniqueFactory
     A factory for the creation of g-algebras as unique parents.
     TESTS:
     sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
     sage: H = A.g_algebra(\{y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y\})
     sage: H is A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) # indirect doctest
     True
     create_key_and_extra_args (base_ring, c, d, names=None, order=None, category=None,
                                    check=None)
         Create a unique key for g-algebras.
         INPUT:
            •base_ring - a ring
            •c, d - two matrices
            •names - a tuple or list of names
            •order - (optional) term order
            •category - (optional) category
            •check - optional bool
         TEST:
         sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
         sage: H = A.g_algebra(\{y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y\})
         sage: H is A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) # indirect doctest
         True
     create_object (version, key, **extra_args)
         Create a g-algebra to a given unique key.
         INPUT:
```

- •key a 6-tuple, formed by a base ring, a tuple of names, two matrices over a polynomial ring over the base ring with the given variable names, a term order, and a category
- •extra\_args a dictionary, whose only relevant key is 'check'.

```
TEST:
```

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H=A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: sorted(H.relations().iteritems(),key=str)
[(y*x, x*y - z), (z*x, x*z + 2*x), (z*y, y*z - 2*y)]
```

class sage.rings.polynomial.plural.NCPolynomialRing\_plural

Bases: sage.rings.ring.Ring

A non-commutative polynomial ring.

#### **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H._is_category_initialized()
True
sage: H.category()
Category of algebras over Rational Field
sage: TestSuite(H).run()
```

Note that two variables commute if they are not part of the given relations:

```
sage: H.\langle x, y, z \rangle = A.g_algebra(\{z*x:x*z+2*x, z*y:y*z-2*y\})
sage: x*y == y*x
True
```

## gen(n=0)

Returns the n-th generator of this noncommutative polynomial ring.

#### INPUT:

```
\bulletn – an integer >= 0
```

## **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.gen(),P.gen(1)
(x, y)
```

Note that the generators are not cached:

```
sage: P.gen(1) is P.gen(1)
False
```

# ideal(\*gens, \*\*kwds)

Create an ideal in this polynomial ring.

#### INPUT:

- \*gens list or tuple of generators (or several input arguments)
- •coerce bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.
- •side string (either "left", which is the default, or "twosided") Must be a keyword argument. Defines whether the ideal is a left ideal or a two-sided ideal. Right ideals are not implemented.

#### **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')

sage: P.ideal([x + 2*y + 2*z-1, 2*x*y + 2*y*z-y, x^2 + 2*y^2 + 2*z^2-x])
Left Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 - x + 2*y^2 + 2*z^2) of Noncommutative sage: P.ideal([x + 2*y + 2*z-1, 2*x*y + 2*y*z-y, x^2 + 2*y^2 + 2*z^2-x], side="twosided")
Twosided Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 - x + 2*y^2 + 2*z^2) of Noncommutative sage: P.ideal([x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 - x + 2*y^2 + 2*z^2-x], side="twosided")
```

#### is\_commutative()

Return False.

## Todo

Provide a mathematically correct answer.

#### **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.is_commutative()
False
```

#### is field()

Return False.

#### **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.is_field()
False
```

## monomial\_all\_divisors(t)

Return a list of all monomials that divide t.

Coefficients are ignored.

#### **INPUT:**

•t - a monomial

### **OUTPUT:**

a list of monomials

## **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z

sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
```

ALGORITHM: addwithcarry idea by Toon Segers

#### monomial\_divides (a, b)

Return False if a does not divide b and True otherwise.

Coefficients are ignored.

```
INPUT:
       •a – monomial
       •b - monomial
    EXAMPLES:
    sage: A.\langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
    sage: P.inject_variables()
    Defining x, y, z
    sage: P.monomial_divides (x*y*z, x^3*y^2*z^4)
    sage: P.monomial divides (x^3*y^2*z^4, x*y*z)
    False
    TESTS:
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: Q = A.g_algebra(relations={y*x:-x*y}, order='lex')
    sage: Q.inject_variables()
    Defining x, y, z
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
    sage: P.inject_variables()
    Defining x, y, z
    sage: P.monomial_divides(P(1), P(0))
    sage: P.monomial_divides(P(1), x)
    True
monomial_lcm(f, g)
    LCM for monomials. Coefficients are ignored.
    INPUT:
       •f - monomial
       •q - monomial
    EXAMPLES:
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
    sage: P.inject_variables()
    Defining x, y, z
    sage: P.monomial_lcm(3/2*x*y,x)
    х*У
    TESTS:
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: R = A.g_algebra(relations={y*x:-x*y}, order='lex')
    sage: R.inject_variables()
    Defining x, y, z
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
```

```
sage: P.inject_variables()
    Defining x, y, z
    sage: P.monomial_lcm(x*y,R.gen()) # not tested
    х*У
    sage: P.monomial_lcm(P(3/2),P(2/3))
    sage: P.monomial_lcm(x,P(1))
monomial_pairwise_prime(g, h)
    Return True if h and g are pairwise prime.
    Both h and g are treated as monomials.
    Coefficients are ignored.
    INPUT:
       •h - monomial
       •g - monomial
    EXAMPLES:
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
    sage: P.inject_variables()
    Defining x, y, z
    sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
    True
    sage: P.monomial_pairwise_prime(1/2 \times x^3 \times y^2, 3/4 \times y^3)
    False
    TESTS:
    sage: A.<x1,y1,z1> = FreeAlgebra(QQ, 3)
    sage: Q = A.g_algebra(relations={y1*x1:-x1*y1}, order='lex')
    sage: Q.inject_variables()
    Defining x1, y1, z1
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
    sage: P.inject_variables()
    Defining x, y, z
    sage: P.monomial_pairwise_prime(x^2*z^3, x1^4) # not tested
    True
    sage: P.monomial_pairwise_prime((2)*x^3*y^2, Q.zero()) # not tested
    True
    sage: P.monomial_pairwise_prime(2*P.one(),x)
    False
monomial_quotient (f, g, coeff=False)
```

Return f/g, where both f and g are treated as monomials.

Coefficients are ignored by default.

```
INPUT:
   •f - monomial
   •g - monomial
   •coeff - divide coefficients as well (default: False)
EXAMPLES:
sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_quotient(3/2*x*y,x,coeff=True)
3/2*y
Note that Z behaves differently if coeff=True:
sage: P.monomial_quotient(2*x,3*x)
sage: P.monomial_quotient(2*x,3*x,coeff=True)
2/3
TESTS:
sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: R.inject_variables()
Defining x, y, z
sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_quotient(x*y,x)
sage: P.monomial_quotient(x*y,R.gen()) # not tested
sage: P.monomial_quotient(P(0),P(1))
sage: P.monomial_quotient(P(1),P(0))
Traceback (most recent call last):
ZeroDivisionError
sage: P.monomial_quotient(P(3/2),P(2/3), coeff=True)
9/4
sage: P.monomial_quotient(x,P(1))
```

554

TESTS:

```
sage: P.monomial_quotient(x,y) # Note the wrong result x*y^{*}...
```

**Warning:** Assumes that the head term of f is a multiple of the head term of g and return the multiplicant m. If this rule is violated, funny things may happen.

## $monomial\_reduce(f, G)$

Try to find a g in G where g.lm() divides f. If found (flt,g) is returned, (0,0) otherwise, where flt is f/g.lm().

It is assumed that G is iterable and contains *only* elements in this polynomial ring.

Coefficients are ignored.

## INPUT:

- •f monomial
- •G list/set of mpolynomials

### **EXAMPLES:**

```
sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: f = x * y^2
sage: G = [3/2 \times x^3 + y^2 + 1/2, 1/4 \times x \times y + 2/7, 1/2]
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)
TESTS:
sage: A.\langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: Q = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: Q.inject_variables()
Defining x, y, z
sage: A.\langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: f = x * y^2
sage: G = [3/2 \times x^3 + y^2 + 1/2, 1/4 \times x \times y + 2/7, 1/2]
sage: P.monomial_reduce(P(0),G)
(0, 0)
sage: P.monomial_reduce(f, [P(0)])
(0, 0)
```

## ngens()

Returns the number of variables in this noncommutative polynomial ring.

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.ngens()
3
```

#### relations (add\_commutative=False)

Return the relations of this g-algebra.

#### INPUT:

add\_commutative (optional bool, default False)

#### **OUTPUT**:

The defining relations. There are some implicit relations: Two generators commute if they are not part of any given relation. The implicit relations are not provided, unless add\_commutative==True.

#### **EXAMPLE:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({z*x:x*z+2*x, z*y:y*z-2*y})
sage: x*y == y*x
True
sage: H.relations()
{z*x: x*z + 2*x, z*y: y*z - 2*y}
sage: H.relations(add_commutative=True)
{y*x: x*y, z*x: x*z + 2*x, z*y: y*z - 2*y}
```

#### term\_order()

Return the term ordering of the noncommutative ring.

#### **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.term_order()
Lexicographic term order

sage: P = A.g_algebra(relations={y*x:-x*y})
sage: P.term_order()
Degree reverse lexicographic term order
```

# class sage.rings.polynomial.plural.NCPolynomial\_plural

Bases: sage.structure.element.RingElement

A noncommutative multivariate polynomial implemented using libSINGULAR.

## coefficient (degrees)

Return the coefficient of the variables with the degrees specified in the python dictionary degrees.

Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in degrees. However, the result has the same parent as this polynomial.

This function contrasts with the function monomial\_coefficient () which returns the coefficient in the base ring of a monomial.

#### INPUT:

## •degrees - Can be any of:

- a dictionary of degree restrictions
- a list of degree restrictions (with None in the unrestricted variables)
- a monomial (very fast, but not as flexible)

## **OUTPUT**:

element of the parent of this element.

**Note:** For coefficients of specific monomials, look at monomial\_coefficient().

#### **EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=x*y+y+5
sage: f.coefficient({x:0,y:1})
1
sage: f.coefficient({x:0})
y + 5
sage: f=(1+y+y^2)*(1+x+x^2)
sage: f.coefficient({x:0})
z + y^2 + y + 1

sage: f.coefficient(x)
y^2 - y + 1
sage: f.coefficient([0,None]) # not tested
y^2 + y + 1
```

Be aware that this may not be what you think! The physical appearance of the variable x is deceiving – particularly if the exponent would be a variable.

```
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x^2 + x*y^2 - x*y + x + z + y^2 + y + 1

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5
sage: parent(c)
Noncommutative Multivariate Polynomial Ring in x, z, y over Finite Field of size 389, nc-relations.
```

#### AUTHOR:

•Joel B. Mohler (2007-10-31)

#### constant\_coefficient()

Return the constant coefficient of this multivariate polynomial.

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.constant_coefficient()
5
sage: f = 3*x^2
```

```
sage: f.constant_coefficient()
0
```

## degree (x=None)

Return the maximal degree of this polynomial in x, where x must be one of the generators for the parent of this polynomial.

#### INPUT:

•x - multivariate polynomial (a generator of the parent of self) If x is not specified (or is None), return the total degree, which is the maximum degree of any monomial.

#### **OUTPUT:**

integer

#### **EXAMPLES:**

```
sage: A. \langle x, z, y \rangle = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f = y^2 - x^9 - x
sage: f.degree(x)
sage: f.degree(y)
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
TESTS:
sage: A. \langle x, z, y \rangle = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: P(0).degree(x)
sage: P(1).degree(x)
```

# degrees()

Returns a tuple with the maximal degree of each variable in this polynomial. The list of degrees is ordered by the order of the generators.

## **EXAMPLES:**

```
sage: A.<y0,y1,y2> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y1*y0:-y0*y1 + y2}, order='lex')
sage: R.inject_variables()
Defining y0, y1, y2
sage: q = 3*y0*y1*y1*y2; q
3*y0*y1^2*y2
sage: q.degrees()
(1, 2, 1)
sage: (q + y0^5).degrees()
(5, 2, 1)
```

dict()

Return a dictionary representing self. This dictionary is in the same format as the generic MPolynomial: The dictionary consists of ETuple:coefficient pairs.

#### **EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y

sage: f = (2*x*y^3*z^2 + (7)*x^2 + (3))
sage: f.dict()
{(0, 0, 0): 3, (1, 2, 3): 2, (2, 0, 0): 7}
```

## exponents (as\_ETuples=True)

Return the exponents of the monomials appearing in this polynomial.

#### INPUT:

•as\_ETuples - (default: True) if True returns the result as an list of ETuples otherwise returns a list of tuples

# **EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f = x^3 + y + 2*z^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 0, 1)]
sage: f.exponents(as_ETuples=False)
[(3, 0, 0), (0, 2, 0), (0, 0, 1)]
```

## is\_constant()

Return True if this polynomial is constant.

#### **EXAMPLES**:

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: x.is_constant()
False
sage: P(1).is_constant()
```

## is\_homogeneous()

Return True if this polynomial is homogeneous.

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: (x+y+z).is_homogeneous()
True
sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2+z^3).is_homogeneous()
```

```
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True
```

## is\_monomial()

Return True if this polynomial is a monomial.

A monomial is defined to be a product of generators with coefficient 1.

#### **EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: x.is_monomial()
True
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True
sage: (x*y).is_monomial()
```

#### is\_zero()

Return True if this polynomial is zero.

## **EXAMPLES**:

```
sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y

sage: x.is_zero()
False
sage: (x-x).is_zero()
True
```

## **lc**()

Leading coefficient of this polynomial with respect to the term order of  ${\tt self.parent}$  ().

```
sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z

sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lc()
3

sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lc()
```

1m()

Returns the lead monomial of self with respect to the term order of self.parent().

In Sage a monomial is a product of variables in some power without a coefficient.

#### **EXAMPLES:**

```
sage: A. \langle x, y, z \rangle = FreeAlgebra(GF(7), 3)
sage: R = A.q_algebra (relations = \{y * x : -x * y + z\}, order = 'lex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1 \cdot y^2 + y^3 \cdot z^4
sage: f.lm()
x*y^2
sage: f = x^3*y^2*z^4 + x^3*y^2*z^1
sage: f.lm()
x^3*y^2*z^4
sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='deglex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1 \cdot y^2 \cdot z^3 + x^3 \cdot y^2 \cdot z^0
sage: f.lm()
x*y^2*z^3
sage: f = x^1*y^2*z^4 + x^1*y^1*z^5
sage: f.lm()
x*y^2*z^4
sage: A.\langle x, y, z \rangle = FreeAlgebra(GF(127), 3)
sage: R = A.g_algebra(relations=\{y*x:-x*y + z\}, order='degrevlex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1*y^5*z^2 + x^4*y^1*z^3
sage: f.lm()
x*y^5*z^2
sage: f = x^4 \cdot y^7 \cdot z^1 + x^4 \cdot y^2 \cdot z^3
sage: f.lm()
x^4*y^7*z
```

**lt**()

Leading term of this polynomial.

In Sage a term is a product of variables in some power and a coefficient.

#### **EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z

sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lt()
3*x*y^2

sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lt()
-2*x^3*y^2*z^4
```

monomial\_coefficient (mon)

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function <code>coefficient()</code> which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

#### INPUT:

•mon - a monomial

#### **OUTPUT:**

coefficient in base ring

#### See also:

For coefficients in a base ring of fewer variables, look at coefficient ()

#### **EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y

The parent of the return is a member of the base ring.
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Finite Field of size 389

sage: f = y^2 + y^2*x - x^9 - 7*x + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
388
sage: f.monomial_coefficient(x^10)
0
```

#### monomials()

Return the list of monomials in self

The returned list is decreasingly ordered by the term ordering of self.parent().

#### **EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: f = x + (3*2)*y*z^2 + (2+3)
sage: f.monomials()
[x, z^2*y, 1]
sage: f = P(3^2)
sage: f.monomials()
[1]
```

TESTS:

```
sage: A.\langle x, z, y \rangle = FreeAlgebra(GF(389), 3)
    sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
    sage: P.inject_variables()
    Defining x, z, y
    sage: f = x
    sage: f.monomials()
    [x]
    Check if trac ticket #12706 is fixed:
    sage: f = P(0)
    sage: f.monomials()
    Check if trac ticket #7152 is fixed:
    sage: x=var('x')
    sage: K. < rho > = NumberField(x**2 + 1)
    sage: R. < x, y > = QQ[]
    sage: p = rho*x
    sage: q = x
    sage: p.monomials()
    [x]
    sage: q.monomials()
    [x]
    sage: p.monomials()
    [X]
reduce(I)
    EXAMPLES:
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: H.\langle x, y, z \rangle = A.g_algebra(\{y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y\})
    sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
    The result of reduction is not the normal form, if one reduces by a list of polynomials:
    sage: (x*z).reduce(I.gens())
    X * Z
    However, if the argument is an ideal, then a normal form (reduction with respect to a two-sided Groebner
    basis) is returned:
    sage: (x*z).reduce(I)
    -x
    The Groebner basis shows that the result is correct:
    sage: I.std() #random
    Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
    Noncommutative Multivariate Polynomial Ring in x, y, z over Rational
    Field, nc-relations: \{z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z\}
    sage: sorted(I.std().gens(), key=str)
    [2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]
```

Return the total degree of self, which is the maximum degree of all monomials in self.

total\_degree()

**sage:**  $A. \langle x, z, y \rangle = FreeAlgebra(QQ, 3)$ 

sage: R = A.g\_algebra(relations={y\*x:-x\*y + z}, order='lex')

```
sage: R.inject_variables()
         Defining x, z, y
         sage: f=2*x*y^3*z^2
         sage: f.total_degree()
         sage: f=4*x^2*y^2*z^3
         sage: f.total_degree()
         sage: f=99*x^6*y^3*z^9
         sage: f.total_degree()
         sage: f=x*y^3*z^6+3*x^2
         sage: f.total_degree()
         10
         sage: f=z^3+8*x^4*y^5*z
         sage: f.total_degree()
         sage: f=z^9+10*x^4+y^8*x^2
         sage: f.total_degree()
         10
         TESTS:
         sage: A. \langle x, z, y \rangle = FreeAlgebra(QQ, 3)
         sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
         sage: R.inject_variables()
         Defining x, z, y
         sage: R(0).total_degree()
         -1
         sage: R(1).total_degree()
         \cap
sage.rings.polynomial.plural.SCA(base_ring, names, alt_vars, order='degrevlex')
     Return a free graded-commutative algebra
     This is also known as a free super-commutative algebra.
     INPUT:
        •base_ring - the ground field
        •names - a list of variable names
        •alt_vars - a list of indices of to be anti-commutative variables (odd variables)
        •order – ordering to be used for the constructed algebra
     EXAMPLES:
     sage: from sage.rings.polynomial.plural import SCA
     sage: E = SCA(QQ, ['x', 'y', 'z'], [0, 1], order = 'degrevlex')
     sage: E
     Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relat
     sage: E.inject_variables()
     Defining xbar, ybar, zbar
     sage: x, y, z = (xbar, ybar, zbar)
     sage: y*x
     -x*y
     sage: z*x
```

```
X * 7.
    sage: x^2
    sage: y^2
    sage: z^2
    sage: E.one()
sage.rings.polynomial.plural.new_CRing(rw, base_ring)
    Construct MPolynomialRing_libsingular from ringWrap, assumming the ground field to be base_ring
    EXAMPLES:
    sage: H.\langle x,y,z\rangle = PolynomialRing(QQ, 3)
    sage: from sage.libs.singular.function import singular_function
    sage: ringlist = singular_function('ringlist')
    sage: ring = singular_function("ring")
    sage: L = ringlist(H, ring=H); L
    [0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0]]
    sage: len(L)
    sage: W = ring(L, ring=H); W
    <RingWrap>
    sage: from sage.rings.polynomial.plural import new_CRing
    sage: R = new_CRing(W, H.base_ring())
    sage: R # indirect doctest
    Multivariate Polynomial Ring in x, y, z over Rational Field
    Check that trac ticket #13145 has been resolved:
    sage: h = hash(R.gen() + 1) # sets currRing
    sage: from sage.libs.singular.ring import ring_refcount_dict, currRing_wrapper
    sage: curcnt = ring_refcount_dict[currRing_wrapper()]
    sage: newR = new_CRing(W, H.base_ring())
    sage: ring_refcount_dict[currRing_wrapper()] - curcnt
    1
sage.rings.polynomial.plural.new NRing(rw, base ring)
    Construct NCPolynomialRing_plural from ringWrap, assumming the ground field to be base_ring
    EXAMPLES:
    sage: A. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
    sage: H = A.g_algebra(\{y*x:x*y-1\})
    sage: H.inject_variables()
    Defining x, y, z
    sage: z*x
    sage: z*y
    y * z
    sage: y*x
    x*y - 1
    sage: I = H.ideal([y^2, x^2, z^2-1])
```

```
sage: I._groebner_basis_libsingular()
[1]
sage: from sage.libs.singular.function import singular_function
sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")
sage: L = ringlist(H, ring=H); L
                                                            [0 1 1]
                                                            [0 0 1]
0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0], [0 0 0],
[0 -1 0]
[ 0 0 0]
[ 0 0 0]
sage: len(L)
sage: W = ring(L, ring=H); W
<noncommutative RingWrap>
sage: from sage.rings.polynomial.plural import new_NRing
sage: R = new_NRing(W, H.base_ring())
sage: R # indirect doctest
Noncommutative Multivariate Polynomial Ring in x, y, z over
Rational Field, nc-relations: {y*x: x*y - 1}
```

sage.rings.polynomial.plural.new\_Ring(rw, base\_ring)

Constructs a Sage ring out of low level RingWrap, which wraps a pointer to a Singular ring.

The constructed ring is either commutative or noncommutative depending on the Singular ring.

```
sage: A.\langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra(\{y*x:x*y-1\})
sage: H.inject_variables()
Defining x, y, z
sage: z*x
X * Z
sage: z*y
y*z
sage: y*x
x*y - 1
sage: I = H.ideal([y^2, x^2, z^2-1])
sage: I._groebner_basis_libsingular()
[1]
sage: from sage.libs.singular.function import singular_function
sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")
sage: L = ringlist(H, ring=H); L
Γ
                                                               [0 1 1]
```

```
0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0], [0 0 0],
    [ 0 -1 0]
    [ 0 0 0]
    [ 0 0 0]
    sage: len(L)
    sage: W = ring(L, ring=H); W
    <noncommutative RingWrap>
    sage: from sage.rings.polynomial.plural import new_Ring
    sage: R = new_Ring(W, H.base_ring()); R
    Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: \{y*x:
sage.rings.polynomial.plural.unpickle_NCPolynomial_plural(R, d)
    Auxiliary function to unpickle a non-commutative polynomial.
    TEST:
    sage: A. < x, y, z > = FreeAlgebra(QQ, 3)
    sage: H.\langle x,y,z\rangle = A.g_algebra(\{y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y\})
    sage: p = x*y+2*z+4*x*y*z*x
    sage: loads(dumps(p)) == p # indirect doctest
    True
```



# **CHAPTER**

# **NINE**

# **INDICES AND TABLES**

- Index
- Module Index
- Search Page

- [MF99] J.H. Mathews and K.D. Fink. Numerical Methods Using MATLAB. 3rd edition, Prentice-Hall, 1999.
- [BF05] R.L. Burden and J.D. Faires. Numerical Analysis. 8th edition, Thomson Brooks/Cole, 2005.
- [BD89] R. J. Bradford and J. H. Davenport, Effective tests for cyclotomic polynomials, Symbolic and Algebraic Computation (1989) pp. 244 251, doi:10.1007/3-540-51084-2\_22
- [GTM138] Henri Cohen. A Course in Computational Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, 1993.
- [CLO] D. Cox, J. Little, D. O'Shea. Using Algebraic Geometry. Springer, 2005.
- [Can] J. Canny. Generalised characteristic polynomials. J. Symbolic Comput. Vol. 9, No. 3, 1990, 241–250.
- [Mac] F.S. Macaulay. The algebraic theory of modular systems Cambridge university press, 1916.
- [BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy, On the complexity of Groebner basis computation of semi-regular overdetermined algebraic equations. Proc. International Conference on Polynomial System Solving (ICPSS), pp. 71-75, 2004.
- [BPW06] J. Buchmann, A. Pychkine, R.-P. Weinmann Block Ciphers Sensitive to Groebner Basis Attacks in Topics in Cryptology CT RSA'06; LNCS 3860; pp. 313–331; Springer Verlag 2006; pre-print available at <a href="http://eprint.iacr.org/2005/200">http://eprint.iacr.org/2005/200</a>
- [CBJ07] Gregory V. Bard, and Nicolas T. Courtois, and Chris Jefferson. *Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF*(2) via SAT-Solvers. Cryptology ePrint Archive: Report 2007/024. available at http://eprint.iacr.org/2007/024
- [WpInvariantTheory] http://en.wikipedia.org/wiki/Glossary\_of\_invariant\_theory
- [WpBinaryForm] http://en.wikipedia.org/wiki/Invariant\_of\_a\_binary\_form
- [WpTernaryCubic] http://en.wikipedia.org/wiki/Ternary\_cubic
- [Salmon] G. Salmon: "A Treatise on the Analytic Geometry of Three Dimensions", section on "Invariants and Covariants of Systems of Quadrics".
- [Salmon2] G. Salmon: A Treatise on Conic Sections, Section on "Invariants and Covariants of Systems of Conics", Art. 388 (a).
- [BW93] Thomas Becker and Volker Weispfenning. *Groebner Bases A Computational Approach To Commutative Algebra*. Springer, New York 1993.
- [Laz92] Daniel Lazard, Solving Zero-dimensional Algebraic Systems, in Journal of Symbolic Computation (1992) vol. 13, pp. 117-131
- [Ho72] E. Horowitz, "Algorithms for Rational Function Arithmetic Operations", Annual ACM Symposium on Theory of Computing, Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, pp. 108–118, 1972

- [AB2007] M. Aschenbrenner, C. Hillar, Finite generation of symmetric ideals. Trans. Amer. Math. Soc. 359 (2007), no. 11, 5171–5192.
- [AB2008] M. Aschenbrenner, C. Hillar, An Algorithm for Finding Symmetric Groebner Bases in Infinite Dimensional Rings.
- [BD07] Michael Brickenstein, Alexander Dreyer; *PolyBoRi: A Groebner basis framework for Boolean polynomials*; pre-print available at http://www.itwm.fraunhofer.de/fileadmin/ITWM-Media/Zentral/Pdf/Berichte\_ITWM/2007/bericht122.pdf

572 Bibliography

```
r
sage.rings.fraction field, 419
sage.rings.fraction_field_element,423
sage.rings.fraction_field_FpT, 427
sage.rings.invariant theory, 377
sage.rings.monomials, 377
sage.rings.polynomial.complex_roots, 196
sage.rings.polynomial.convolution, 220
sage.rings.polynomial.cyclotomic, 221
sage.rings.polynomial.ideal, 199
sage.rings.polynomial.infinite_polynomial_element,465
sage.rings.polynomial.infinite_polynomial_ring,455
sage.rings.polynomial.laurent polynomial, 442
sage.rings.polynomial.laurent_polynomial_ring,435
sage.rings.polynomial.multi_polynomial, 250
sage.rings.polynomial.multi polynomial element, 268
sage.rings.polynomial.multi_polynomial_ideal, 282
sage.rings.polynomial.multi_polynomial_ideal_libsingular, 368
sage.rings.polynomial.multi polynomial libsingular, 337
sage.rings.polynomial.multi polynomial ring, 263
sage.rings.polynomial.multi_polynomial_ring_generic, 242
sage.rings.polynomial.multi_polynomial_sequence, 323
sage.rings.polynomial.padics.polynomial_padic, 159
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense, 161
sage.rings.polynomial.padics.polynomial_padic_flat, 166
sage.rings.polynomial.pbori,489
sage.rings.polynomial.plural,547
sage.rings.polynomial.polydict, 369
sage.rings.polynomial.polynomial_compiled, 219
sage.rings.polvnomial.polvnomial element, 32
sage.rings.polynomial.polynomial element generic, 96
sage.rings.polynomial.polynomial_fateman, 220
sage.rings.polynomial.polynomial_gf2x, 103
sage.rings.polynomial.polynomial integer dense flint, 110
sage.rings.polynomial.polynomial_integer_dense_ntl, 120
sage.rings.polynomial.polynomial_modn_dense_ntl, 145
sage.rings.polynomial.polynomial_number_field, 106
```

```
sage.rings.polynomial.polynomial_quotient_ring, 199
sage.rings.polynomial.polynomial_quotient_ring_element, 215
sage.rings.polynomial.polynomial_rational_flint, 125
sage.rings.polynomial_polynomial_real_mpfr_dense, 154
sage.rings.polynomial.polynomial_ring,9
sage.rings.polynomial.polynomial_ring_constructor, 1
sage.rings.polynomial.polynomial_ring_homomorphism, 32
sage.rings.polynomial.polynomial_singular_interface, 158
sage.rings.polynomial.polynomial_zmod_flint, 137
sage.rings.polynomial.polynomial_zz_pex, 166
sage.rings.polynomial.real_roots, 170
sage.rings.polynomial.refine root, 198
sage.rings.polynomial.symmetric_ideal,473
sage.rings.polynomial.symmetric_reduction, 482
sage.rings.polynomial.term_order, 225
sage.rings.polynomial.toy_buchberger, 406
sage.rings.polynomial.toy_d_basis,414
sage.rings.polynomial.toy_variety,411
```

574 Python Module Index

## Symbols

```
add () (sage.rings.polynomial.polynomial element.Polynomial method), 33
_add_() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 110
_add_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 149
add () (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 125
_add_() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_zmod_flint method), 140
_lmul_() (sage.rings.polynomial.polynomial_element.Polynomial method), 33
_lmul_() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 111
lmul () (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense modn ntl zz method), 150
_lmul_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 125
_lmul_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 140
mul () (sage.rings.polynomial.polynomial element.Polynomial method), 34
mul () (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 111
_mul_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 150
_mul_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 126
mul () (sage.rings.polynomial.polynomial zmod flint.Polynomial zmod flint method), 141
_mul_trunc_() (sage.rings.polynomial.polynomial_element.Polynomial method), 34
_mul_trunc_() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 111
_mul_trunc_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 150
mul trunc () (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 126
_mul_trunc_() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_zmod_flint method), 141
_rmul_() (sage.rings.polynomial.polynomial_element.Polynomial method), 34
rmul () (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 111
_rmul_() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 150
_rmul_() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 126
_rmul_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 140
sub () (sage.rings.polynomial.polynomial element.Polynomial method), 33
_sub_() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 110
_sub_() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 150
_sub_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 125
sub () (sage.rings.polynomial.polynomial zmod flint.Polynomial zmod flint method), 140
Α
abc_pd (class in sage.rings.polynomial_polynomial_compiled), 219
add as you wish() (sage.rings.polynomial.pbori.GroebnerStrategy method), 531
add bigoh() (sage.rings.polynomial.polynomial element.Polynomial method), 35
```

add\_generator() (sage.rings.polynomial.pbori.GroebnerStrategy method), 531

```
add generator() (sage.rings.polynomial.pbori.ReductionStrategy method), 536
add_generator() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 484
add generator delayed() (sage.rings.polynomial.pbori.GroebnerStrategy method), 532
add m mul q() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 345
add_pd (class in sage.rings.polynomial.polynomial_compiled), 219
add_up_polynomials() (in module sage.rings.polynomial.pbori), 538
algebraic dependence() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method),
AlgebraicForm (class in sage.rings.invariant_theory), 378
all done() (sage.rings.polynomial.real roots.ocean method), 187
all_generators() (sage.rings.polynomial.pbori.GroebnerStrategy method), 532
all_spolys_in_next_degree() (sage.rings.polynomial.pbori.GroebnerStrategy method), 532
ambient() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing generic method), 208
any_root() (sage.rings.polynomial.polynomial_element.Polynomial method), 35
append() (sage.rings.polynomial.pbori.BooleanPolynomialVector method), 530
approx bp() (sage.rings.polynomial.real roots.ocean method), 188
args() (sage.rings.polynomial.multi polynomial.MPolynomial method), 250
args() (sage.rings.polynomial.polynomial_element.Polynomial method), 36
as float() (sage.rings.polynomial.real roots.interval bernstein polynomial float method), 180
as float() (sage.rings.polynomial.real roots.interval bernstein polynomial integer method), 181
as QuadraticForm() (sage.rings.invariant theory.QuadraticForm method), 390
associated_primes() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 300
base_extend() (sage.rings.polynomial.polynomial_element.Polynomial method), 36
base extend() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 23
base_field() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_field method), 204
base ring() (sage.rings.fraction field.FractionField generic method), 421
base ring() (sage.rings.polynomial.polynomial element.Polynomial method), 37
base ring() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_generic method), 208
basis (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal attribute), 286
basis is groebner() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 300
bateman bound() (in module sage.rings.polynomial.cyclotomic), 221
bernstein_down() (in module sage.rings.polynomial.real_roots), 170
bernstein expand() (in module sage.rings.polynomial.real roots), 171
bernstein polynomial() (sage.rings.polynomial.real roots.bernstein polynomial factory ar method), 171
bernstein_polynomial() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist method), 172
bernstein_polynomial() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ratlist method), 173
bernstein polynomial factory (class in sage.rings.polynomial.real roots), 171
bernstein polynomial factory ar (class in sage.rings.polynomial.real roots), 171
bernstein_polynomial_factory_intlist (class in sage.rings.polynomial.real_roots), 172
bernstein_polynomial_factory_ratlist (class in sage.rings.polynomial.real_roots), 173
bernstein up() (in module sage.rings.polynomial.real roots), 173
binary pd (class in sage.rings.polynomial.polynomial compiled), 219
binary_quadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 385
binary_quartic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 386
BinaryQuartic (class in sage.rings.invariant theory), 381
bitsize_doctest() (in module sage.rings.polynomial.real_roots), 173
blocks() (sage.rings.polynomial.term_order.TermOrder method), 230
BooleanMonomial (class in sage.rings.polynomial.pbori), 498
```

```
BooleanMonomialIterator (class in sage.rings.polynomial.pbori), 502
BooleanMonomialMonoid (class in sage.rings.polynomial.pbori), 502
BooleanMonomialVariableIterator (class in sage.rings.polynomial.pbori), 503
BooleanMulAction (class in sage.rings.polynomial.pbori), 503
BooleanPolynomial (class in sage.rings.polynomial.pbori), 503
BooleanPolynomialEntry (class in sage.rings.polynomial.pbori), 518
BooleanPolynomialIdeal (class in sage.rings.polynomial.pbori), 518
BooleanPolynomialIterator (class in sage.rings.polynomial.pbori), 522
BooleanPolynomialRing (class in sage.rings.polynomial.pbori), 522
BooleanPolynomialRing constructor() (in module sage.rings.polynomial.polynomial ring constructor), 1
BooleanPolynomialVector (class in sage.rings.polynomial.pbori), 530
BooleanPolynomialVectorIterator (class in sage.rings.polynomial.pbori), 530
BooleConstant (class in sage.rings.polynomial.pbori), 491
BooleSet (class in sage.rings.polynomial.pbori), 492
BooleSetIterator (class in sage.rings.polynomial.pbori), 498
bp_done() (sage.rings.polynomial.real_roots.island method), 184
buchberger() (in module sage.rings.polynomial.toy_buchberger), 408
buchberger improved() (in module sage.rings.polynomial.toy buchberger), 409
C
can convert to singular() (in module sage.rings.polynomial.polynomial singular interface), 159
can_rewrite() (sage.rings.polynomial.pbori.ReductionStrategy method), 536
cardinality() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_generic method), 208
cartesian_product() (sage.rings.polynomial.pbori.BooleSet method), 493
CCuddNavigator (class in sage.rings.polynomial.pbori), 530
change() (sage.rings.polynomial.pbori.BooleSet method), 493
change ring() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 448
change_ring() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 438
change ring() (sage.rings.polynomial.multi polynomial.MPolynomial method), 250
change ring() (sage.rings.polynomial.multi polynomial element.MPolynomial element method), 268
change ring() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal method), 286
change_ring() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 242
change_ring() (sage.rings.polynomial.polynomial_element.Polynomial method), 37
change ring() (sage.rings.polynomial.polynomial real mpfr dense.PolynomialRealDense method), 155
change_ring() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
change var() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 23
change variable name() (sage.rings.polynomial.polynomial element.Polynomial method), 37
characteristic() (sage.rings.fraction field.FractionField generic method), 421
characteristic() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 462
characteristic() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 438
characteristic() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 243
characteristic() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 208
characteristic() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
charpoly() (sage.rings.polynomial_polynomial_quotient_ring_element.PolynomialQuotientRingElement method),
cheap reductions() (sage.rings.polynomial.pbori.ReductionStrategy method), 536
cl_maximum_root() (in module sage.rings.polynomial.real_roots), 173
cl_maximum_root_first_lambda() (in module sage.rings.polynomial.real_roots), 174
cl maximum root local max() (in module sage.rings.polynomial.real roots), 174
class_group() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_generic method), 209
```

```
class number() (sage.rings.fraction field.FractionField 1poly field method), 420
clean_top_by_chain_criterion() (sage.rings.polynomial.pbori.GroebnerStrategy method), 532
clone() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 523
coeff pd (class in sage.rings.polynomial.polynomial compiled), 219
coefficient() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 468
coefficient() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 442
coefficient() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 268
coefficient() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 345
coefficient() (sage.rings.polynomial.plural.NCPolynomial plural method), 556
coefficient() (sage.rings.polynomial.polydict.PolyDict method), 373
coefficient matrix() (in module sage.rings.polynomial.toy variety), 411
coefficient matrix() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 328
coefficients() (sage.rings.invariant theory.AlgebraicForm method), 379
coefficients() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 443
coefficients() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 449
coefficients() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 250
coefficients() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 346
coefficients() (sage.rings.polynomial.polydict.PolyDict method), 373
coefficients() (sage.rings.polynomial.polynomial element.Polynomial method), 37
coefficients() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse method), 98
coeffs() (sage.rings.invariant theory.BinaryOuartic method), 382
coeffs() (sage.rings.invariant theory.QuadraticForm method), 391
coeffs() (sage.rings.invariant_theory.TernaryCubic method), 396
coeffs() (sage.rings.invariant theory.TernaryOuadratic method), 398
coeffs() (sage.rings.polynomial.polynomial_element.Polynomial method), 37
coeffs bitsize() (sage.rings.polynomial.real roots.bernstein polynomial factory ar method), 172
coeffs_bitsize() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist method), 172
coeffs_bitsize() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ratlist method), 173
combine to positives() (sage.rings.polynomial.polydict.ETuple method), 370
common nonzero positions() (sage.rings.polynomial.polydict.ETuple method), 370
compare() (sage.rings.polynomial.polydict.PolyDict method), 373
compare tuples block() (sage.rings.polynomial.term order.TermOrder method), 230
compare tuples deglex() (sage.rings.polynomial.term order.TermOrder method), 231
compare_tuples_degneglex() (sage.rings.polynomial.term_order.TermOrder method), 231
compare tuples degrevlex() (sage.rings.polynomial.term order.TermOrder method), 231
compare_tuples_invlex() (sage.rings.polynomial.term_order.TermOrder method), 231
compare_tuples_lex() (sage.rings.polynomial.term_order.TermOrder method), 232
compare tuples matrix() (sage.rings.polynomial.term order.TermOrder method), 232
compare_tuples_negdeglex() (sage.rings.polynomial.term_order.TermOrder method), 232
compare tuples negdegrevlex() (sage.rings.polynomial.term order.TermOrder method), 232
compare tuples neglex() (sage.rings.polynomial.term order.TermOrder method), 233
compare tuples negwdeglex() (sage.rings.polynomial.term order.TermOrder method), 233
compare_tuples_negwdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 233
compare tuples wdeglex() (sage.rings.polynomial.term order.TermOrder method), 233
compare_tuples_wdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 234
CompiledPolynomialFunction (class in sage.rings.polynomial.polynomial compiled), 219
complete_primary_decomposition() (sage.rings.polynomial.multi_polynomial_ideal_MPolynomialIdeal_singular_repr
         method), 301
completion() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 438
completion() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 243
```

```
completion() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 23
complex_embeddings() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_field method),
complex roots() (in module sage.rings.polynomial.complex roots), 196
complex roots() (sage.rings.polynomial.polynomial element.Polynomial method), 38
connected_components() (sage.rings.polynomial.multi_polynomial_sequence_PolynomialSequence_generic method),
         328
connection_graph() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 329
constant() (sage.rings.polynomial.pbori.BooleanPolynomial method), 504
constant() (sage.rings.polynomial.pbori.CCuddNavigator method), 530
constant coefficient() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 443
constant coefficient() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 449
constant coefficient() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 269
constant coefficient() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 347
constant_coefficient() (sage.rings.polynomial.pbori.BooleanPolynomial method), 504
constant coefficient() (sage.rings.polynomial.plural.NCPolynomial plural method), 557
constant coefficient() (sage.rings.polynomial.polynomial element.Polynomial method), 38
constant_coefficient() (sage.rings.polynomial_polynomial_element.Polynomial_generic_dense method), 93
ConstantPolynomialSection (class in sage.rings.polynomial.polynomial element), 32
construction() (sage.rings.fraction_field.FractionField_generic method), 421
construction() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing dense method), 460
construction() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 462
construction() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 439
construction() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 243
construction() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing generic method), 210
construction() (sage.rings.polynomial_polynomial_ring.PolynomialRing_general method), 24
contained_vars() (in module sage.rings.polynomial.pbori), 538
contains one() (sage.rings.polynomial.pbori.GroebnerStrategy method), 532
content() (sage.rings.polynomial.multi polynomial.MPolynomial method), 250
content() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative dense
         method), 161
content() (sage.rings.polynomial.polynomial_element.Polynomial method), 38
content() (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 111
content() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 120
context (class in sage.rings.polynomial.real_roots), 174
convolution() (in module sage.rings.polynomial.convolution), 220
covariant conic() (sage.rings.invariant theory.TernaryQuadratic method), 398
cover ring() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 524
cover ring() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing generic method), 210
create key() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRingFactory method), 459
create key and extra args() (sage.rings.polynomial.plural.G AlgFactory method), 549
create object() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRingFactory method), 460
create_object() (sage.rings.polynomial.plural.G_AlgFactory method), 549
cyclotomic_coeffs() (in module sage.rings.polynomial.cyclotomic), 221
cyclotomic polynomial() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 24
cyclotomic_value() (in module sage.rings.polynomial.cyclotomic), 222
D
d_basis() (in module sage.rings.polynomial.toy_d_basis), 416
```

de casteljau() (sage.rings.polynomial.real roots.interval bernstein polynomial float method), 180

```
de casteljau() (sage.rings.polynomial.real roots.interval bernstein polynomial integer method), 181
de_casteljau_doublevec() (in module sage.rings.polynomial.real_roots), 174
de casteljau intvec() (in module sage.rings.polynomial.real roots), 175
defining ideal() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 524
deg() (sage.rings.polynomial.pbori.BooleanMonomial method), 499
deg() (sage.rings.polynomial.pbori.BooleanPolynomial method), 504
deg() (sage.rings.polynomial.pbori.BooleConstant method), 491
degree() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 443
degree() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 449
degree() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 270
degree() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 347
degree() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative dense
         method), 162
degree() (sage.rings.polynomial.pbori.BooleanMonomial method), 499
degree() (sage.rings.polynomial.pbori.BooleanPolynomial method), 504
degree() (sage.rings.polynomial.plural.NCPolynomial plural method), 558
degree() (sage.rings.polynomial.polydict.PolyDict method), 373
degree() (sage.rings.polynomial_polynomial_element.Polynomial method), 38
degree() (sage.rings.polynomial.polynomial element.Polynomial generic dense method), 94
degree() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse method), 98
degree() (sage.rings.polynomial.polynomial gf2x.Polynomial template method), 105
degree() (sage.rings.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 112
degree() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 120
degree() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense mod n method), 145
degree() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense modn ntl ZZ method), 148
degree() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 150
degree() (sage.rings.polynomial.polynomial quotient ring.PolynomialOuotientRing generic method), 210
degree() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 126
degree() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 156
degree() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_template method), 138
degree() (sage.rings.polynomial.polynomial zz pex.Polynomial template method), 168
degree_lowest_rational_function() (in module sage.rings.polynomial.multi_polynomial_element), 282
degree_of_semi_regularity() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 287
degree reduction next size() (in module sage.rings.polynomial.real roots), 176
degrees() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 271
degrees() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 348
degrees() (sage.rings.polynomial.plural.NCPolynomial_plural method), 558
Delta invariant() (sage.rings.invariant theory.TwoQuaternaryQuadratics method), 401
Delta invariant() (sage.rings.invariant theory.TwoTernaryQuadratics method), 404
Delta_prime_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 401
Delta_prime_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 404
denom() (sage.rings.fraction field FpT.FpTElement method), 427
denominator() (sage.rings.fraction_field_element.FractionFieldElement method), 424
denominator() (sage.rings.fraction_field_FpT.FpTElement method), 427
denominator() (sage.rings.polynomial.multi polynomial.MPolynomial method), 251
denominator() (sage.rings.polynomial.polynomial element.Polynomial method), 39
denominator() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 127
derivative() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 443
derivative() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 449
derivative() (sage.rings.polynomial.multi polynomial.MPolynomial method), 252
```

```
derivative() (sage.rings.polynomial.polynomial element.Polynomial method), 40
dict() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 444
dict() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 450
dict() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 271
dict() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 349
dict() (sage.rings.polynomial.plural.NCPolynomial_plural method), 558
dict() (sage.rings.polynomial.polydict.PolyDict method), 374
dict() (sage.rings.polynomial.polynomial element.Polynomial method), 40
dict() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse method), 99
diff() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 444
diff() (sage.rings.polynomial.pbori.BooleSet method), 493
diff() (sage.rings.polynomial.polynomial element.Polynomial method), 41
differentiate() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 444
differentiate() (sage.rings.polynomial.polynomial element.Polynomial method), 41
dimension() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 303
dimension() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 518
disc() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 162
disc() (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 112
disc() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 127
discriminant() (sage.rings.invariant theory.QuadraticForm method), 391
discriminant() (sage.rings.polynomial_multi_polynomial_libsingular.MPolynomial_libsingular method), 349
discriminant() (sage.rings.polynomial.polynomial_element.Polynomial method), 42
discriminant() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 113
discriminant() (sage.rings.polynomial_polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 120
discriminant() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 147
discriminant() (sage.rings.polynomial.polynomial quotient ring.PolynomialOuotientRing generic method), 211
discriminant() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 128
divide() (sage.rings.polynomial.pbori.BooleSet method), 494
divided_difference() (sage.rings.polynomial.polynomial_ring.PolynomialRing_field method), 19
divisors() (sage.rings.polynomial.pbori.BooleanMonomial method), 499
divisors_of() (sage.rings.polynomial.pbori.BooleSet method), 494
done() (sage.rings.polynomial.real_roots.island method), 185
down degree() (sage.rings.polynomial.real roots.interval bernstein polynomial integer method), 182
down degree iter() (sage.rings.polynomial.real roots.interval bernstein polynomial integer method), 182
downscale() (sage.rings.polynomial.real roots.interval bernstein polynomial integer method), 183
dprod_imatrow_vec() (in module sage.rings.polynomial.real_roots), 176
dual() (sage.rings.invariant theory.QuadraticForm method), 391
dummy pd (class in sage.rings.polynomial.polynomial compiled), 220
Ε
eadd() (sage.rings.polynomial.polydict.ETuple method), 370
eadd p() (sage.rings.polynomial.polydict.ETuple method), 371
easy linear factors() (in module sage.rings.polynomial.pbori), 538
EisensteinD() (sage.rings.invariant_theory.BinaryQuartic method), 381
EisensteinE() (sage.rings.invariant theory.BinaryOuartic method), 382
Element (sage.rings.polynomial.multi polynomial libsingular.MPolynomialRing libsingular attribute), 341
Element (sage.rings.polynomial_quotient_ring.PolynomialQuotientRing_generic attribute), 206
element() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 268
elength() (sage.rings.polynomial.pbori.BooleanPolynomial method), 505
```

```
elim pol() (in module sage.rings.polynomial.toy variety), 412
eliminate_linear_variables() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2 method),
elimination ideal() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 303
else branch() (sage.rings.polynomial.pbori.CCuddNavigator method), 530
emax() (sage.rings.polynomial.polydict.ETuple method), 371
emin() (sage.rings.polynomial.polydict.ETuple method), 371
empty() (sage.rings.polynomial.pbori.BooleSet method), 494
emul() (sage.rings.polynomial.polydict.ETuple method), 371
esub() (sage.rings.polynomial.polydict.ETuple method), 372
ETuple (class in sage.rings.polynomial.polydict), 370
ETupleIter (class in sage.rings.polynomial.polydict), 373
euclidean degree() (sage.rings.polynomial.polynomial element.Polynomial method), 43
exponents() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 444
exponents() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 450
exponents() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 271
exponents() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 349
exponents() (sage.rings.polynomial.plural.NCPolynomial_plural method), 559
exponents() (sage.rings.polynomial.polydict.PolyDict method), 374
exponents() (sage.rings.polynomial.polynomial element.Polynomial method), 44
exponents() (sage.rings.polynomial.polynomial element generic.Polynomial generic sparse method), 99
extend_variables() (sage.rings.polynomial_polynomial_ring.PolynomialRing_general method), 24
ExteriorAlgebra() (in module sage.rings.polynomial.plural), 548
ExteriorAlgebra plural (class in sage.rings.polynomial.plural), 549
F_covariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 405
factor() (sage.rings.fraction field FpT.FpTElement method), 428
factor() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial mpair method), 445
factor() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 450
factor() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 272
factor() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular_method), 350
factor() (sage.rings.polynomial.padics.polynomial padic.Polynomial padic method), 159
factor() (sage.rings.polynomial.polynomial_element.Polynomial method), 44
factor() (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 113
factor() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 121
factor() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_zmod_flint method), 141
factor_mod() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 162
factor mod() (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 113
factor mod() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 121
factor_mod() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 129
factor_padic() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 114
factor padic() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 121
factor_padic() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 129
faugere_step_dense() (sage.rings.polynomial.pbori.GroebnerStrategy method), 533
fcp() (sage.rings.polynomial.polynomial quotient ring element.PolynomialQuotientRingElement method), 216
FGLMStrategy (class in sage.rings.polynomial.pbori), 530
field extension() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing domain method), 202
                       (sage,rings.polynomial.polynomial quotient ring element.PolynomialQuotientRingElement
field extension()
```

```
method), 216
find_roots() (sage.rings.polynomial.real_roots.ocean method), 188
first() (sage.rings.invariant theory.TwoAlgebraicForms method), 400
first term() (sage.rings.polynomial.pbori.BooleanPolynomial method), 505
footprint() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 468
form() (sage.rings.invariant_theory.AlgebraicForm method), 380
FormsBase (class in sage.rings.invariant theory), 384
Fp FpT coerce (class in sage.rings.fraction field FpT), 431
FpT (class in sage.rings.fraction_field_FpT), 427
FpT Fp section (class in sage.rings.fraction field FpT), 430
FpT iter (class in sage.rings.fraction field FpT), 431
FpT Polyring section (class in sage.rings.fraction field FpT), 430
FpTElement (class in sage.rings.fraction field FpT), 427
fraction field() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 439
fraction field() (sage.rings.polynomial.polynomial ring.PolynomialRing field method), 20
FractionField() (in module sage.rings.fraction_field), 419
FractionField_1poly_field (class in sage.rings.fraction_field), 420
FractionField generic (class in sage.rings.fraction field), 421
FractionFieldElement (class in sage.rings.fraction field element), 423
FractionFieldElement_1poly_field (class in sage.rings.fraction_field_element), 426
from ocean() (sage.rings.polynomial.real roots.linear map method), 185
from ocean() (sage.rings.polynomial.real roots.warp map method), 195
G
G AlgFactory (class in sage.rings.polynomial.plural), 549
g covariant() (sage.rings.invariant theory.BinaryQuartic method), 382
galois group() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 130
gauss_on_polys() (in module sage.rings.polynomial.pbori), 538
gcd() (sage.rings.polynomial.infinite polynomial element.InfinitePolynomial sparse method), 469
gcd() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 450
gcd() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 353
gcd() (sage.rings.polynomial.pbori.BooleanMonomial method), 499
gcd() (sage.rings.polynomial.polynomial_element.Polynomial method), 49
gcd() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse method), 99
gcd() (sage.rings.polynomial_polynomial_gf2x.Polynomial_template method), 105
gcd() (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 114
gcd() (sage,rings,polynomial,polynomial integer dense ntl.Polynomial integer dense ntl method), 122
gcd() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense mod p method), 147
gcd() (sage.rings.polynomial_polynomial_number_field.Polynomial_absolute_number_field_dense method), 108
gcd() (sage.rings.polynomial.polynomial number field.Polynomial relative number field dense method), 109
gcd() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 131
gcd() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 138
gcd() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 168
gen() (sage.rings.fraction field.FractionField generic method), 421
gen() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 462
gen() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 439
gen() (sage.rings.polynomial.multi polynomial libsingular.MPolynomialRing libsingular method), 341
gen() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 244
gen() (sage.rings.polynomial.pbori.BooleanMonomialMonoid method), 503
gen() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 524
```

```
gen() (sage.rings.polynomial.plural.NCPolynomialRing plural method), 550
gen() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 211
gen() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 25
GenDictWithBasering (class in sage.rings.polynomial.infinite polynomial ring), 458
generic_pd (class in sage.rings.polynomial.polynomial_compiled), 220
gens() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 288
gens() (sage.rings.polynomial.pbori.BooleanMonomialMonoid method), 503
gens() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 524
gens() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 484
gens_dict() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 462
gens dict() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 25
genus() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 304
get base order code() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 525
get be log() (sage.rings.polynomial.real roots.context method), 174
get cparent() (sage.rings.polynomial.polynomial gf2x.Polynomial template method), 105
get_cparent() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_template method), 138
get_cparent() (sage.rings.polynomial_polynomial_zz_pex.Polynomial_template method), 169
get dc log() (sage.rings.polynomial.real roots.context method), 174
get form() (sage.rings.invariant theory.SeveralAlgebraicForms method), 393
get_msb_bit() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 180
get msb bit() (sage.rings.polynomial.real roots.interval bernstein polynomial integer method), 183
get order code() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 525
get_realfield_rndu() (in module sage.rings.polynomial.real_roots), 176
get_var_mapping() (in module sage.rings.polynomial.pbori), 539
GF2X_BuildIrred_list() (in module sage.rings.polynomial.polynomial_gf2x), 103
GF2X BuildRandomIrred list() (in module sage.rings.polynomial.polynomial gf2x), 103
GF2X_BuildSparseIrred_list() (in module sage.rings.polynomial.polynomial_gf2x), 103
gpol() (in module sage.rings.polynomial.toy_d_basis), 416
graded part() (sage.rings.polynomial.pbori.BooleanPolynomial method), 505
gradient() (sage.rings.polynomial.multi polynomial.MPolynomial method), 253
gradient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 354
greater tuple block() (sage.rings.polynomial.term order.TermOrder method), 234
greater tuple deglex() (sage.rings.polynomial.term order.TermOrder method), 234
greater_tuple_degneglex() (sage.rings.polynomial.term_order.TermOrder method), 235
greater tuple degrevlex() (sage.rings.polynomial.term order.TermOrder method), 235
greater_tuple_invlex() (sage.rings.polynomial.term_order.TermOrder method), 235
greater_tuple_lex() (sage.rings.polynomial.term_order.TermOrder method), 235
greater tuple matrix() (sage.rings.polynomial.term order.TermOrder method), 236
greater_tuple_negdeglex() (sage.rings.polynomial.term_order.TermOrder method), 236
greater_tuple_negdegrevlex() (sage.rings.polynomial.term order.TermOrder method), 236
greater tuple neglex() (sage.rings.polynomial.term order.TermOrder method), 237
greater_tuple_negwdeglex() (sage.rings.polynomial.term_order.TermOrder method), 237
greater_tuple_negwdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 237
greater tuple wdeglex() (sage.rings.polynomial.term order.TermOrder method), 238
greater_tuple_wdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 238
groebner_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 288
groebner_basis() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 329
groebner_basis() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 518
groebner basis() (sage.rings.polynomial.symmetric ideal.SymmetricIdeal method), 475
groebner_fan() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 292
```

GroebnerStrategy (class in sage.rings.polynomial.pbori), 531

## Η

```
h covariant() (sage.rings.invariant theory.BinaryQuartic method), 383
hamming weight() (sage.rings.polynomial.polynomial element.Polynomial method), 50
has any inverse() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 445
has_constant_part() (sage.rings.polynomial.pbori.BooleanPolynomial method), 506
has constant part() (sage.rings.polynomial.pbori.BooleConstant method), 491
has degree order() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 525
has_inverse_of() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 445
has_root() (sage.rings.polynomial.real_roots.island method), 185
head normal form() (sage.rings.polynomial.pbori.ReductionStrategy method), 537
hensel lift() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative dense
         method), 162
hensel lift() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 131
Hessian() (sage.rings.invariant_theory.TernaryCubic method), 395
hilbert_numerator() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 304
hilbert polynomial() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 305
hilbert_series() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 305
homogenize() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 253
homogenize() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal method), 293
homogenize() (sage.rings.polynomial.polydict.PolyDict method), 374
homogenize() (sage.rings.polynomial.polynomial_element.Polynomial method), 50
homogenized() (sage.rings.invariant theory.AlgebraicForm method), 380
homogenized() (sage.rings.invariant_theory.SeveralAlgebraicForms method), 394
id() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 525
ideal() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 439
ideal() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 341
ideal() (sage.rings.polynomial.multi polynomial ring.MPolynomialRing polydict domain method), 264
ideal() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 329
ideal() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 526
ideal() (sage.rings.polynomial.plural.NCPolynomialRing plural method), 550
Ideal_1poly_field (class in sage.rings.polynomial.ideal), 199
if_then_else() (in module sage.rings.polynomial.pbori), 539
implications() (sage.rings.polynomial.pbori.GroebnerStrategy method), 533
include divisors() (sage.rings.polynomial.pbori.BooleSet method), 495
increase_precision() (sage.rings.polynomial.real_roots.ocean method), 188
index() (sage.rings.polynomial.pbori.BooleanMonomial method), 500
InfiniteGenDict (class in sage.rings.polynomial.infinite polynomial ring), 458
InfinitePolynomial() (in module sage.rings.polynomial.infinite_polynomial_element), 466
InfinitePolynomial_dense (class in sage.rings.polynomial.infinite_polynomial_element), 467
InfinitePolynomial_sparse (class in sage.rings.polynomial.infinite_polynomial_element), 467
InfinitePolynomialGen (class in sage.rings.polynomial.infinite polynomial ring), 459
InfinitePolynomialRing_dense (class in sage.rings.polynomial.infinite_polynomial_ring), 460
InfinitePolynomialRing_sparse (class in sage.rings.polynomial.infinite_polynomial_ring), 461
InfinitePolynomialRingFactory (class in sage.rings.polynomial.infinite polynomial ring), 459
inhomogeneous quadratic form() (sage.rings.invariant theory.InvariantTheoryFactory method), 386
int_list() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 145
```

```
int list() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense modn ntl zz method), 151
integral() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 450
integral() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 273
integral() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 354
integral() (sage.rings.polynomial.polynomial_element.Polynomial method), 51
integral() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse method), 99
integral() (sage.rings.polynomial.polynomial real mpfr dense.PolynomialRealDense method), 156
integral closure() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 306
inter_reduction() (in module sage.rings.polynomial.toy_buchberger), 409
interpolate() (in module sage.rings.polynomial.pbori), 540
interpolate smallest lex() (in module sage.rings.polynomial.pbori), 540
interpolation polynomial() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 526
interred libsingular() (in module sage.rings.polynomial.multi polynomial ideal libsingular), 368
interreduced basis() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 306
interreduced basis() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 520
interreduced_basis() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 478
interreduction() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 478
intersect() (sage.rings.polynomial.pbori.BooleSet method), 495
intersection() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 307
interval_bernstein_polynomial (class in sage.rings.polynomial.real_roots), 176
interval bernstein polynomial float (class in sage.rings.polynomial.real roots), 179
interval bernstein polynomial integer (class in sage.rings.polynomial.real roots), 181
interval_roots() (in module sage.rings.polynomial.complex_roots), 198
intervals disjoint() (in module sage.rings.polynomial.complex roots), 198
intvec_to_doublevec() (in module sage.rings.polynomial.real_roots), 183
InvariantTheoryFactory (class in sage.rings.invariant theory), 385
inverse_mod() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 254
inverse_mod() (sage.rings.polynomial.polynomial_element.Polynomial method), 53
inverse_of_unit() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 451
inverse of unit() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 273
inverse of unit() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 355
inverse of unit() (sage.rings.polynomial.polynomial element.Polynomial method), 54
inverse series trunc() (sage.rings.polynomial.polynomial element.Polynomial method), 54
inverse series trunc()
                            (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint
         method), 114
inverse_series_trunc() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 132
irreducible_element() (sage.rings.polynomial_ring.PolynomialRing_dense_finite_field method), 13
irreducible element() (sage.rings.polynomial.polynomial ring.PolynomialRing dense mod p method), 15
irrelevant ideal() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 244
is_block_order() (sage.rings.polynomial.term_order.TermOrder method), 238
is commutative() (sage.rings.polynomial.plural.NCPolynomialRing plural method), 551
is constant() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 451
is_constant() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 273
is_constant() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 355
is constant() (sage.rings.polynomial.pbori.BooleanPolynomial method), 506
is_constant() (sage.rings.polynomial.pbori.BooleConstant method), 492
is constant() (sage.rings.polynomial.plural.NCPolynomial plural method), 559
is constant() (sage.rings.polynomial.polynomial element.Polynomial method), 55
is cyclotomic() (sage.rings.polynomial.polynomial element.Polynomial method), 55
is cyclotomic product() (sage.rings.polynomial.polynomial element.Polynomial method), 57
```

```
is equal() (sage.rings.polynomial.pbori.BooleanPolynomial method), 506
is_exact() (sage.rings.fraction_field.FractionField_generic method), 422
is exact() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 439
is exact() (sage.rings.polynomial.multi polynomial ring.MPolynomialRing macaulay2 repr method), 264
is_exact() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 25
is_field() (sage.rings.fraction_field.FractionField_generic method), 422
is field() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 463
is field() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 439
is_field() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method), 264
is field() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 244
is field() (sage.rings.polynomial.plural.NCPolynomialRing plural method), 551
is field() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing generic method), 211
is field() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 25
is finite() (sage.rings.fraction field.FractionField generic method), 422
is finite() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 440
is_finite() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 244
is_finite() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain method), 203
is_finite() (sage.rings.polynomial.polynomial_ring.PolynomialRing general method), 25
is FractionField() (in module sage.rings.fraction field), 423
is FractionFieldElement() (in module sage.rings.fraction field element), 426
is gen() (sage.rings.polynomial.polynomial element.Polynomial method), 57
is gen() (sage.rings.polynomial.polynomial gf2x.Polynomial template method), 105
is_gen() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ method), 148
is_gen() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 151
is_gen() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_template method), 138
is gen() (sage.rings.polynomial.polynomial zz pex.Polynomial template method), 169
is_generator() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 255
is_generator() (sage.rings.polynomial_multi_polynomial_element.MPolynomial_polydict method), 274
is global() (sage.rings.polynomial.term order.TermOrder method), 238
is groebner() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 329
is homogeneous() (sage.rings.invariant theory.FormsBase method), 384
is homogeneous() (sage.rings.polynomial.multi polynomial.MPolynomial method), 255
is homogeneous() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 274
is_homogeneous() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 293
is homogeneous() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 356
is_homogeneous() (sage.rings.polynomial.pbori.BooleanPolynomial method), 506
is_homogeneous() (sage.rings.polynomial.plural.NCPolynomial plural method), 559
is homogeneous() (sage.rings.polynomial.polydict.PolyDict method), 374
is_homogeneous() (sage.rings.polynomial_polynomial_element.Polynomial method), 58
is integral() (sage.rings.fraction field element.FractionFieldElement 1poly field method), 426
is integral domain() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 463
is_integral_domain() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 440
is_integral_domain() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method),
         264
is_integral_domain() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method),
         244
is integral domain() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 25
is_irreducible() (sage.rings.polynomial.polynomial_element.Polynomial method), 58
is_irreducible() (sage.rings.polynomial_polynomial_gf2x.Polynomial_GF2X method), 104
is irreducible() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 133
```

```
is irreducible() (sage.rings.polynomial.polynomial zmod flint.Polynomial zmod flint method), 141
is_irreducible() (sage.rings.polynomial_polynomial_zz_pex.Polynomial_ZZ_pEX method), 167
is LaurentPolynomialRing() (in module sage.rings.polynomial.laurent polynomial ring), 441
is linearly dependent() (in module sage.rings.polynomial.toy variety), 412
is_local() (sage.rings.polynomial.term_order.TermOrder method), 239
is_maximal() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 479
is monic() (sage.rings.polynomial.polynomial element.Polynomial method), 59
is monomial() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 445
is_monomial() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 451
is_monomial() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 274
is monomial() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 356
is monomial() (sage.rings.polynomial.plural.NCPolynomial plural method), 560
is monomial() (sage.rings.polynomial.polynomial element.Polynomial method), 59
is MPolynomial() (in module sage.rings.polynomial.multi polynomial), 263
is MPolynomial() (in module sage.rings.polynomial.multi polynomial element), 282
is_MPolynomialIdeal() (in module sage.rings.polynomial.multi_polynomial_ideal), 322
is_MPolynomialRing() (in module sage.rings.polynomial.multi_polynomial_ring_generic), 249
is nilpotent() (sage.rings.polynomial.polynomial element.Polynomial method), 60
is noetherian() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 463
is_noetherian() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 440
is_noetherian() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 244
is noetherian() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 26
is_one() (sage.rings.fraction_field_element.FractionFieldElement method), 424
is one() (sage.rings.polynomial.pbori.BooleanPolynomial method), 507
is_one() (sage.rings.polynomial.pbori.BooleConstant method), 492
is one() (sage.rings.polynomial.polynomial element.Polynomial method), 60
is_one() (sage.rings.polynomial_polynomial_gf2x.Polynomial_template method), 105
is_one() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 133
is one() (sage.rings.polynomial.polynomial zmod flint.Polynomial template method), 138
is one() (sage.rings.polynomial.polynomial zz pex.Polynomial template method), 169
is pair() (sage.rings.polynomial.pbori.BooleanPolynomial method), 507
is Polynomial() (in module sage.rings.polynomial.polynomial element), 95
is PolynomialQuotientRing() (in module sage.rings.polynomial.polynomial quotient ring), 215
is_PolynomialRing() (in module sage.rings.polynomial.polynomial_ring), 30
is PolynomialSequence() (in module sage.rings.polynomial.multi polynomial sequence), 337
is_prime() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 307
is primitive() (sage.rings.polynomial.polynomial element.Polynomial method), 60
is singleton() (sage.rings.polynomial.pbori.BooleanPolynomial method), 507
is_singleton_or_pair() (sage.rings.polynomial.pbori.BooleanPolynomial method), 508
is_sparse() (sage.rings.polynomial.polynomial_ring.PolynomialRing general method), 26
is square() (sage.rings.fraction field element.FractionFieldElement method), 424
is square() (sage.rings.fraction field FpT.FpTElement method), 428
is_square() (sage.rings.polynomial.polynomial_element.Polynomial method), 62
is squarefree() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 356
is_squarefree() (sage.rings.polynomial_polynomial_element.Polynomial method), 63
is term() (sage,rings,polynomial.multi polynomial element.MPolynomial polydict method), 275
is_term() (sage.rings.polynomial.polynomial_element.Polynomial method), 65
is triangular() (in module sage.rings.polynomial.toy variety), 412
is_unique_factorization_domain() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 26
is_unit() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 469
```

```
is unit() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 446
is_unit() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 452
is unit() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 275
is unit() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 356
is_unit() (sage.rings.polynomial.pbori.BooleanPolynomial method), 509
is_unit() (sage.rings.polynomial.polynomial_element.Polynomial method), 65
is unit() (sage.rings.polynomial.polynomial element generic.Polynomial generic domain method), 97
is unit() (sage.rings.polynomial.polynomial quotient ring element.PolynomialQuotientRingElement method), 217
is_univariate() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 446
is_univariate() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 275
is univariate() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 357
is univariate() (sage.rings.polynomial.pbori.BooleanPolynomial method), 509
is_weighted_degree_order() (sage.rings.polynomial.term_order.TermOrder method), 239
is zero() (sage.rings.fraction field element.FractionFieldElement method), 425
is zero() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 452
is_zero() (sage.rings.polynomial_multi_polynomial_libsingular.MPolynomial_libsingular method), 357
is_zero() (sage.rings.polynomial.pbori.BooleanPolynomial method), 509
is zero() (sage.rings.polynomial.pbori.BooleConstant method), 492
is zero() (sage.rings.polynomial.plural.NCPolynomial plural method), 560
is_zero() (sage.rings.polynomial.polynomial_element.Polynomial method), 65
is zero() (sage.rings.polynomial.polynomial gf2x.Polynomial template method), 105
is zero() (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 115
is_zero() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 133
is_zero() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 139
is_zero() (sage.rings.polynomial_polynomial_zz_pex.Polynomial_template method), 169
island (class in sage.rings.polynomial.real roots), 183
iter() (sage.rings.fraction_field_FpT.FpT method), 427
iterindex() (sage.rings.polynomial.pbori.BooleanMonomial method), 500
J
J covariant() (sage.rings.invariant theory.TernaryCubic method), 395
J covariant() (sage.rings.invariant theory.TwoQuaternaryQuadratics method), 401
J_covariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 405
jacobian ideal() (sage.rings.polynomial.multi polynomial.MPolynomial method), 255
K
karatsuba threshold() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 26
kbase_libsingular() (in module sage.rings.polynomial.multi_polynomial_ideal_libsingular), 369
krull_dimension() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 463
krull dimension() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 440
krull dimension() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 244
krull dimension() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing generic method), 211
krull_dimension() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 26
lagrange polynomial() (sage.rings.polynomial.polynomial ring.PolynomialRing field method), 20
latex() (sage.rings.polynomial.polydict.PolyDict method), 374
LaurentPolynomial_generic (class in sage.rings.polynomial.laurent_polynomial), 442
LaurentPolynomial_mpair (class in sage.rings.polynomial.laurent_polynomial), 442
LaurentPolynomial univariate (class in sage.rings.polynomial.laurent polynomial), 448
```

```
LaurentPolynomialRing() (in module sage.rings.polynomial.laurent polynomial ring), 435
LaurentPolynomialRing_generic (class in sage.rings.polynomial.laurent_polynomial_ring), 438
LaurentPolynomialRing mpair (class in sage.rings.polynomial.laurent polynomial ring), 441
LaurentPolynomialRing univariate (class in sage.rings.polynomial.laurent polynomial ring), 441
LC() (in module sage.rings.polynomial.toy_d_basis), 416
lc() (sage.rings.polynomial_infinite_polynomial_element.InfinitePolynomial_sparse method), 469
lc() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 276
lc() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 357
lc() (sage.rings.polynomial.plural.NCPolynomial plural method), 560
LCM() (in module sage.rings.polynomial.toy buchberger), 408
lcm() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 357
lcm() (sage.rings.polynomial.polynomial element.Polynomial method), 66
lcm() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 115
lcm() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 122
lcm() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 134
lcmt() (sage.rings.polynomial.polydict.PolyDict method), 374
lead() (sage.rings.polynomial.pbori.BooleanPolynomial method), 509
lead() (sage.rings.polynomial.pbori.PolynomialConstruct method), 535
lead() (sage.rings.polynomial.pbori.PolynomialFactory method), 536
lead_deg() (sage.rings.polynomial.pbori.BooleanPolynomial method), 510
lead divisors() (sage.rings.polynomial.pbori.BooleanPolynomial method), 510
leading coefficient() (sage.rings.polynomial.polynomial element.Polynomial method), 66
less_bits() (sage.rings.polynomial.real_roots.island method), 185
lex_lead() (sage.rings.polynomial.pbori.BooleanPolynomial method), 510
lex_lead_deg() (sage.rings.polynomial.pbori.BooleanPolynomial method), 510
lift() (sage.rings.polynomial.multi polynomial.MPolynomial method), 256
lift() (sage.rings.polynomial_multi_polynomial_element.MPolynomial_polydict method), 276
lift() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 358
lift() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative dense
         method), 162
lift() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_generic method), 211
lift() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 218
linear_map (class in sage.rings.polynomial.real_roots), 185
linear representation() (in module sage.rings.polynomial.toy variety), 413
list() (sage.rings.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 162
list() (sage.rings.polynomial.polydict.PolyDict method), 375
list() (sage.rings.polynomial.polynomial_element.Polynomial method), 66
list() (sage.rings.polynomial.polynomial element.Polynomial generic dense method), 94
list() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse method), 100
list() (sage.rings.polynomial_polynomial_gf2x.Polynomial_template method), 105
list() (sage,rings,polynomial,polynomial integer dense flint,Polynomial integer dense flint method), 115
list() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 122
list() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense mod n method), 145
list() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense modn ntl ZZ method), 148
list() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 218
list() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 134
list() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 156
list() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_template method), 139
list() (sage.rings.polynomial.polynomial zz pex.Polynomial template method), 169
```

```
list() (sage.rings.polynomial.polynomial zz pex.Polynomial ZZ pEX method), 167
ll_red_nf_noredsb() (in module sage.rings.polynomial.pbori), 541
ll_red_nf_noredsb_single_recursive_call() (in module sage.rings.polynomial.pbori), 541
ll red nf redsb() (in module sage.rings.polynomial.pbori), 542
ll_reduce_all() (sage.rings.polynomial.pbori.GroebnerStrategy method), 533
LM() (in module sage.rings.polynomial.toy_buchberger), 408
LM() (in module sage.rings.polynomial.toy d basis), 416
lm() (sage.rings.polynomial.infinite polynomial element.InfinitePolynomial sparse method), 469
lm() (sage.rings.polynomial_multi_polynomial_element.MPolynomial_polydict method), 276
lm() (sage,rings,polynomial.multi polynomial libsingular.MPolynomial libsingular method), 359
lm() (sage.rings.polynomial.pbori.BooleanPolynomial method), 511
lm() (sage.rings.polynomial.plural.NCPolynomial plural method), 560
lshift_coeffs() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 162
lsign() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory method), 171
LT() (in module sage.rings.polynomial.toy buchberger), 408
lt() (sage.rings.polynomial.infinite polynomial element.InfinitePolynomial sparse method), 470
lt() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 276
lt() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 359
lt() (sage.rings.polynomial.pbori.BooleanPolynomial method), 511
lt() (sage.rings.polynomial.plural.NCPolynomial plural method), 561
M
macaulay2 str() (sage.rings.polynomial.term order.TermOrder method), 239
macaulay_resultant() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 256
macaulay_resultant() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method),
         244
magma str() (sage.rings.polynomial.term order.TermOrder method), 239
main() (sage.rings.polynomial.pbori.FGLMStrategy method), 530
make element() (in module sage.rings.fraction field element), 426
make_element() (in module sage.rings.polynomial.polynomial_gf2x), 106
make_element() (in module sage.rings.polynomial.polynomial_modn_dense_ntl), 152
make element() (in module sage.rings.polynomial.polynomial zmod flint), 144
make_element() (in module sage.rings.polynomial.polynomial_zz_pex), 170
make_element_old() (in module sage.rings.fraction_field_element), 426
make_ETuple() (in module sage.rings.polynomial.polydict), 377
make generic polynomial() (in module sage.rings.polynomial.polynomial element), 96
make padic poly() (in module sage.rings.polynomial.padics.polynomial padic capped relative dense), 166
make_PolyDict() (in module sage.rings.polynomial.polydict), 377
make PolynomialRealDense() (in module sage.rings.polynomial.polynomial real mpfr dense), 158
map coefficients() (sage.rings.polynomial.multi polynomial.MPolynomial method), 258
map_coefficients() (sage.rings.polynomial_polynomial_element.Polynomial method), 66
map_every_x_to_x_plus_one() (in module sage.rings.polynomial.pbori), 542
map every x to x plus one() (sage.rings.polynomial.pbori.BooleanPolynomial method), 511
matrix() (sage.rings.invariant_theory.QuadraticForm method), 392
matrix() (sage.rings.polynomial_polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 218
matrix() (sage.rings.polynomial.term_order.TermOrder method), 240
max abs doublevec() (in module sage.rings.polynomial.real roots), 185
max bitsize intvec doctest() (in module sage.rings.polynomial.real roots), 185
max_exp() (sage.rings.polynomial.polydict.PolyDict method), 375
```

```
max index() (sage.rings.polynomial.infinite polynomial element.InfinitePolynomial sparse method), 470
maximal_degree() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 330
maximal order() (sage.rings.fraction field.FractionField 1poly field method), 420
maximum root first lambda() (in module sage.rings.polynomial.real roots), 185
maximum_root_local_max() (in module sage.rings.polynomial.real_roots), 186
min_exp() (sage.rings.polynomial.polydict.PolyDict method), 375
min max delta intvec() (in module sage.rings.polynomial.real roots), 186
min max diff doublevec() (in module sage.rings.polynomial.real roots), 186
min_max_diff_intvec() (in module sage.rings.polynomial.real_roots), 186
                                 (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr
minimal associated primes()
         method), 308
minimal_elements() (sage.rings.polynomial.pbori.BooleSet method), 495
minimalize() (sage.rings.polynomial.pbori.GroebnerStrategy method), 533
minimalize_and_tail_reduce() (sage.rings.polynomial.pbori.GroebnerStrategy method), 533
minpoly() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 218
mk context() (in module sage.rings.polynomial.real roots), 186
mk ibpf() (in module sage.rings.polynomial.real roots), 187
mk_ibpi() (in module sage.rings.polynomial.real_roots), 187
mod() (sage.rings.polynomial.polynomial element.Polynomial method), 67
mod mon set() (in module sage.rings.polynomial.pbori), 542
mod var set() (in module sage.rings.polynomial.pbori), 542
modular_composition() (sage.rings.polynomial_polynomial_gf2x.Polynomial_GF2X method), 104
modulus() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_generic method), 212
modulus() (sage.rings.polynomial.polynomial ring.PolynomialRing dense mod n method), 14
monic() (sage.rings.polynomial.polynomial element.Polynomial method), 67
monic() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_zmod_flint method), 142
monics() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 26
monomial() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 246
monomial_all_divisors()
                              (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular
         method), 342
monomial all divisors()
                               (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain
         method), 264
monomial_all_divisors() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 551
monomial coefficient() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 446
monomial_coefficient() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 277
monomial_coefficient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 359
monomial coefficient() (sage.rings.polynomial.pbori.BooleanPolynomial method), 511
monomial coefficient() (sage.rings.polynomial.plural.NCPolynomial plural method), 561
monomial coefficient() (sage.rings.polynomial.polydict.PolyDict method), 375
monomial divides() (sage.rings.polynomial.multi polynomial libsingular.MPolynomialRing libsingular method),
         342
monomial_divides() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method),
         265
monomial divides() (sage.rings.polynomial.plural.NCPolynomialRing plural method), 551
monomial_lcm() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 342
monomial_lcm() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method), 265
monomial lcm() (sage.rings.polynomial.plural.NCPolynomialRing plural method), 552
monomial_pairwise_prime()
                              (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular
         method), 343
monomial_pairwise_prime()
                               (sage.rings.polynomial.multi polynomial ring.MPolynomialRing polydict domain
```

```
method), 266
monomial_pairwise_prime() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 553
monomial_quotient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method),
monomial quotient() (sage.rings.polynomial.multi polynomial ring.MPolynomialRing polydict domain method),
         266
monomial_quotient() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 553
monomial_reduce() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method),
         344
monomial_reduce() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method),
         267
monomial reduce() (sage.rings.polynomial.plural.NCPolynomialRing plural method), 555
MonomialConstruct (class in sage.rings.polynomial.pbori), 535
MonomialFactory (class in sage.rings.polynomial.pbori), 535
monomials() (in module sage.rings.monomials), 377
monomials() (sage.rings.invariant theory.BinaryQuartic method), 383
monomials() (sage.rings.invariant theory.QuadraticForm method), 393
monomials() (sage.rings.invariant_theory.TernaryCubic method), 396
monomials() (sage.rings.invariant theory.TernaryQuadratic method), 399
monomials() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 447
monomials() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 278
monomials() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 360
monomials() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 330
monomials() (sage.rings.polynomial.pbori.BooleanPolynomial method), 512
monomials() (sage.rings.polynomial.plural.NCPolynomial_plural method), 562
more bits() (sage.rings.polynomial.real roots.island method), 185
MPolynomial (class in sage.rings.polynomial.multi polynomial), 250
MPolynomial_element (class in sage.rings.polynomial.multi_polynomial_element), 268
MPolynomial_libsingular (class in sage.rings.polynomial.multi_polynomial_libsingular), 345
MPolynomial polydict (class in sage.rings.polynomial.multi polynomial element), 268
MPolynomialIdeal (class in sage.rings.polynomial.multi polynomial ideal), 286
MPolynomialIdeal_macaulay2_repr (class in sage.rings.polynomial.multi_polynomial_ideal), 299
MPolynomialIdeal_magma_repr (class in sage.rings.polynomial.multi_polynomial_ideal), 299
MPolynomialIdeal_singular_base_repr (class in sage.rings.polynomial.multi_polynomial_ideal), 299
MPolynomialIdeal singular repr (class in sage.rings.polynomial.multi polynomial ideal), 300
MPolynomialRing_generic (class in sage.rings.polynomial.multi_polynomial_ring_generic), 242
MPolynomialRing libsingular (class in sage.rings.polynomial.multi polynomial libsingular), 340
MPolynomialRing macaulay2 repr (class in sage.rings.polynomial.multi polynomial ring), 264
MPolynomialRing_polydict (class in sage.rings.polynomial.multi_polynomial_ring), 264
MPolynomialRing polydict domain (class in sage.rings.polynomial.multi polynomial ring), 264
mul_pd (class in sage.rings.polynomial.polynomial_compiled), 220
mult_fact_sim_C() (in module sage.rings.polynomial.pbori), 542
multiples() (sage.rings.polynomial.pbori.BooleanMonomial method), 500
multiples_of() (sage.rings.polynomial.pbori.BooleSet method), 495
my cmp() (in module sage.rings.polynomial.cyclotomic), 223
N
n_forms() (sage.rings.invariant_theory.SeveralAlgebraicForms method), 394
n_nodes() (sage.rings.polynomial.pbori.BooleanPolynomial method), 512
n nodes() (sage.rings.polynomial.pbori.BooleSet method), 496
```

```
n variables() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 527
n_vars() (sage.rings.polynomial.pbori.BooleanPolynomial method), 512
name() (sage.rings.polynomial.term order.TermOrder method), 240
navigation() (sage.rings.polynomial.pbori.BooleanMonomial method), 501
navigation() (sage.rings.polynomial.pbori.BooleanPolynomial method), 513
navigation() (sage.rings.polynomial.pbori.BooleSet method), 496
NCPolynomial plural (class in sage.rings.polynomial.plural), 556
NCPolynomialIdeal (class in sage.rings.polynomial.multi polynomial ideal), 319
NCPolynomialRing_plural (class in sage.rings.polynomial.plural), 550
new CRing() (in module sage.rings.polynomial.plural), 565
new NRing() (in module sage.rings.polynomial.plural), 565
new Ring() (in module sage.rings.polynomial.plural), 566
newton_polygon() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 163
newton_polytope() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 258
newton raphson() (sage.rings.polynomial.polynomial element.Polynomial method), 68
newton_slopes() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 163
newton_slopes() (sage.rings.polynomial.polynomial_element.Polynomial method), 68
next() (sage.rings.fraction_field_FpT.FpT_iter method), 431
next() (sage.rings.fraction_field_FpT.FpTElement method), 428
next() (sage.rings.polynomial.infinite polynomial ring.GenDictWithBasering method), 458
next() (sage.rings.polynomial.pbori.BooleanMonomialIterator method), 502
next() (sage.rings.polynomial.pbori.BooleanMonomialVariableIterator method), 503
next() (sage.rings.polynomial.pbori.BooleanPolynomialIterator method), 522
next() (sage.rings.polynomial.pbori.BooleanPolynomialVectorIterator method), 530
next() (sage.rings.polynomial.pbori.BooleSetIterator method), 498
next() (sage.rings.polynomial.polydict.ETupleIter method), 373
next_spoly() (sage.rings.polynomial.pbori.GroebnerStrategy method), 533
nf() (sage.rings.polynomial.pbori.GroebnerStrategy method), 533
nf() (sage.rings.polynomial.pbori.ReductionStrategy method), 537
nf3() (in module sage.rings.polynomial.pbori), 542
ngens() (sage.rings.fraction field.FractionField generic method), 422
ngens() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 464
ngens() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 440
ngens() (sage.rings.polynomial.multi polynomial libsingular.MPolynomialRing libsingular method), 345
ngens() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 246
ngens() (sage.rings.polynomial.pbori.BooleanMonomialMonoid method), 503
ngens() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 527
ngens() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 555
ngens() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 212
ngens() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 27
nmonomials() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 330
nonzero positions() (sage.rings.polynomial.polydict.ETuple method), 372
nonzero values() (sage.rings.polynomial.polydict.ETuple method), 372
norm() (sage.rings.polynomial.polynomial_element.Polynomial method), 69
norm() (sage.rings.polynomial.polynomial quotient ring element.PolynomialQuotientRingElement method), 219
normal_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 308
normalisation() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 480
npairs() (sage.rings.polynomial.pbori.GroebnerStrategy method), 534
```

```
nparts() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 330
ntl_set_directly() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 146
ntl set directly()
                  (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method),
         151
ntl ZZ pX() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense mod n method), 145
number_field() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 212
numer() (sage.rings.fraction field FpT.FpTElement method), 429
numerator() (sage.rings.fraction field element.FractionFieldElement method), 425
numerator() (sage.rings.fraction_field_FpT.FpTElement method), 429
numerator() (sage.rings.polynomial.multi polynomial.MPolynomial method), 259
numerator() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 361
numerator() (sage.rings.polynomial.polynomial_element.Polynomial method), 69
numerator() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 134
nvariables() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 278
nvariables() (sage.rings.polynomial_multi_polynomial_libsingular.MPolynomial_libsingular method), 361
nvariables() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 330
nvariables() (sage.rings.polynomial.pbori.BooleanPolynomial method), 513
O
ocean (class in sage.rings.polynomial.real_roots), 187
one() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 464
one() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 527
ord() (sage.rings.polynomial.polynomial element.Polynomial method), 70
order() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 464
order() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 212
Р
p (sage.rings.polynomial.pbori.BooleanPolynomialEntry attribute), 518
padded list() (sage.rings.polynomial.polynomial element.Polynomial method), 70
parallel_reduce() (in module sage.rings.polynomial.pbori), 543
parameter() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 27
part() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 331
parts() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 331
Phi_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 402
plot() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal method), 293
plot() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 309
plot() (sage.rings.polynomial.polynomial element.Polynomial method), 71
polar_conic() (sage.rings.invariant_theory.TernaryCubic method), 397
poly repr() (sage.rings.polynomial.polydict.PolyDict method), 375
PolyDict (class in sage.rings.polynomial.polydict), 373
polygen() (in module sage.rings.polynomial.polynomial_ring), 31
polygens() (in module sage.rings.polynomial.polynomial ring), 31
Polynomial (class in sage.rings.polynomial.polynomial element), 33
polynomial() (sage.rings.invariant_theory.AlgebraicForm method), 380
polynomial() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 470
polynomial() (sage.rings.polynomial.multi polynomial.MPolynomial method), 260
polynomial() (sage.rings.polynomial.polynomial_element.Polynomial method), 71
Polynomial absolute number field dense (class in sage,rings,polynomial,polynomial number field), 107
polynomial_coefficient() (sage.rings.polynomial.polydict.PolyDict method), 376
polynomial construction() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial univariate method), 452
```

```
polynomial default category() (in module sage.rings.polynomial.polynomial ring constructor), 8
Polynomial_dense_mod_n (class in sage.rings.polynomial.polynomial_modn_dense_ntl), 145
Polynomial_dense_mod_p (class in sage.rings.polynomial.polynomial_modn_dense_ntl), 147
Polynomial dense modn ntl ZZ (class in sage.rings.polynomial.polynomial modn dense ntl), 148
Polynomial_dense_modn_ntl_zz (class in sage.rings.polynomial.polynomial_modn_dense_ntl), 149
Polynomial_generic_dense (class in sage.rings.polynomial.polynomial_element), 93
Polynomial generic dense field (class in sage.rings.polynomial.polynomial element generic), 97
Polynomial generic domain (class in sage.rings.polynomial.polynomial element generic), 97
Polynomial_generic_field (class in sage.rings.polynomial_polynomial_element_generic), 97
Polynomial generic sparse (class in sage.rings.polynomial.polynomial element generic), 98
Polynomial generic sparse field (class in sage.rings.polynomial.polynomial element generic), 102
Polynomial GF2X (class in sage.rings.polynomial.polynomial gf2x), 103
Polynomial integer dense flint (class in sage.rings.polynomial.polynomial integer dense flint), 110
Polynomial integer dense ntl (class in sage.rings.polynomial.polynomial integer dense ntl), 120
Polynomial padic (class in sage.rings.polynomial.padics.polynomial padic), 159
Polynomial_padic_capped_relative_dense (class in sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense),
Polynomial_padic_flat (class in sage.rings.polynomial.padics.polynomial_padic_flat), 166
Polynomial rational flint (class in sage.rings.polynomial.polynomial rational flint), 125
Polynomial relative number field dense (class in sage.rings.polynomial.polynomial number field), 109
polynomial ring() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing dense method), 460
polynomial_ring() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 440
polynomial_ring() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 212
Polynomial singular repr (class in sage.rings.polynomial.polynomial singular interface), 159
Polynomial template (class in sage.rings.polynomial.polynomial gf2x), 104
Polynomial_template (class in sage.rings.polynomial.polynomial_zmod_flint), 138
Polynomial template (class in sage.rings.polynomial.polynomial zz pex), 168
Polynomial zmod flint (class in sage.rings.polynomial.polynomial zmod flint), 140
Polynomial_ZZ_pEX (class in sage.rings.polynomial_polynomial_zz_pex), 166
Polynomial_ZZ_pX (class in sage.rings.polynomial.polynomial_zz_pex), 168
PolynomialBaseringInjection (class in sage.rings.polynomial.polynomial element), 92
PolynomialConstruct (class in sage.rings.polynomial.pbori), 535
PolynomialFactory (class in sage.rings.polynomial.pbori), 535
PolynomialQuotientRing() (in module sage.rings.polynomial.polynomial quotient ring), 200
PolynomialQuotientRing domain (class in sage.rings.polynomial.polynomial quotient ring), 201
PolynomialOuotientRing field (class in sage.rings.polynomial.polynomial quotient ring), 203
PolynomialQuotientRing_generic (class in sage.rings.polynomial.polynomial_quotient_ring), 204
PolynomialQuotientRingElement (class in sage.rings.polynomial.polynomial quotient ring element), 216
PolynomialRealDense (class in sage.rings.polynomial.polynomial real mpfr dense), 155
PolynomialRing() (in module sage.rings.polynomial_polynomial_ring_constructor), 2
PolynomialRing_commutative (class in sage.rings.polynomial.polynomial_ring), 11
PolynomialRing dense finite field (class in sage.rings.polynomial.polynomial ring), 12
PolynomialRing_dense_mod_n (class in sage.rings.polynomial.polynomial_ring), 13
PolynomialRing_dense_mod_p (class in sage.rings.polynomial.polynomial_ring), 14
PolynomialRing dense padic field capped relative (class in sage.rings.polynomial.polynomial ring), 16
PolynomialRing_dense_padic_field_generic (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing dense padic field lazy (class in sage.rings.polynomial.polynomial ring), 17
PolynomialRing_dense_padic_ring_capped_absolute (class in sage.rings.polynomial_polynomial_ring), 17
PolynomialRing dense padic ring capped relative (class in sage.rings.polynomial.polynomial ring), 17
PolynomialRing dense padic ring fixed mod (class in sage.rings.polynomial.polynomial ring), 18
```

```
PolynomialRing dense padic ring generic (class in sage.rings.polynomial.polynomial ring), 18
PolynomialRing_dense_padic_ring_lazy (class in sage.rings.polynomial.polynomial_ring), 18
PolynomialRing_field (class in sage.rings.polynomial.polynomial_ring), 19
PolynomialRing general (class in sage.rings.polynomial.polynomial ring), 22
PolynomialRing_integral_domain (class in sage.rings.polynomial.polynomial_ring), 30
PolynomialRing_singular_repr (class in sage.rings.polynomial_polynomial_singular_interface), 158
PolynomialRingHomomorphism from base (class in sage.rings.polynomial.polynomial ring homomorphism), 32
polynomials() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 27
PolynomialSequence() (in module sage.rings.polynomial.multi_polynomial_sequence), 325
PolynomialSequence_generic (class in sage.rings.polynomial.multi_polynomial_sequence), 326
PolynomialSequence gf2 (class in sage.rings.polynomial.multi polynomial sequence), 333
PolynomialSequence gf2e (class in sage.rings.polynomial.multi polynomial sequence), 336
Polyring_FpT_coerce (class in sage.rings.fraction_field_FpT), 432
pow pd (class in sage.rings.polynomial.polynomial compiled), 220
prec() (sage.rings.polynomial.polynomial element.Polynomial method), 72
prec_degree() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 164
precision_absolute() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense.
         method), 164
precision_relative() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 164
PrecisionError, 170
precompute degree reduction cache() (in module sage.rings.polynomial.real roots), 189
primary_decomposition() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method),
         309
primary decomposition complete() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr
         method), 310
pseudo_divrem() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method),
pseudo quo rem() (sage.rings.polynomial.polynomial element.Polynomial method), 72
pseudoinverse() (in module sage.rings.polynomial.real_roots), 190
Q
quadratic form() (sage.rings.invariant theory.InvariantTheoryFactory method), 386
OuadraticForm (class in sage.rings.invariant theory), 390
quaternary biquadratic() (sage.rings.invariant theory.InvariantTheoryFactory method), 387
quaternary quadratic() (sage.rings.invariant theory.InvariantTheoryFactory method), 388
quo_rem() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 453
quo_rem() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 278
quo rem() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 362
quo rem() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative dense
         method), 164
quo rem() (sage.rings.polynomial.polynomial element.Polynomial generic dense method), 94
quo_rem() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_field method), 97
quo_rem() (sage.rings.polynomial_polynomial_element_generic_Polynomial_generic_sparse method), 100
quo rem() (sage.rings.polynomial.polynomial gf2x.Polynomial template method), 106
quo_rem() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 116
quo_rem() (sage.rings.polynomial_polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 122
quo rem() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense mod n method), 146
quo_rem() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ method), 148
```

```
quo rem() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense modn ntl zz method), 151
quo_rem() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 134
quo_rem() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 156
quo rem() (sage.rings.polynomial.polynomial zmod flint.Polynomial template method), 139
quo_rem() (sage.rings.polynomial_polynomial_zz_pex.Polynomial_template method), 169
quotient() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 311
quotient by principal ideal() (sage.rings.polynomial.polynomial ring.PolynomialRing commutative method), 12
R
radical() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 312
radical() (sage.rings.polynomial.polynomial_element.Polynomial method), 72
random element() (sage.rings.fraction field.FractionField generic method), 422
random_element() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 441
random_element() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 294
random element() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 247
random element() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 527
random element() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing generic method), 213
random_element() (sage.rings.polynomial_polynomial_ring.PolynomialRing_general method), 28
random set() (in module sage.rings.polynomial.pbori), 543
rational reconstruct() (sage.rings.polynomial.polynomial zmod flint.Polynomial zmod flint method), 142
rational_root_bounds() (in module sage.rings.polynomial.real_roots), 190
real_root_intervals()
                            (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint
         method), 117
real root intervals() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method),
real_root_intervals() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 134
real roots() (in module sage.rings.polynomial.real roots), 190
real_roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 73
recursively insert() (in module sage.rings.polynomial.pbori), 543
red tail() (in module sage.rings.polynomial.pbori), 543
reduce() (sage.rings.fraction_field_element.FractionFieldElement method), 425
reduce() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 470
reduce() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 278
reduce() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 295
reduce() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 319
reduce() (sage.rings.polynomial_multi_polynomial_libsingular.MPolynomial_libsingular method), 362
reduce() (sage.rings.polynomial.pbori.BooleanPolynomial method), 513
reduce() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 520
reduce() (sage.rings.polynomial.plural.NCPolynomial_plural method), 563
reduce() (sage.rings.polynomial.symmetric ideal.SymmetricIdeal method), 480
reduce() (sage.rings.polynomial.symmetric reduction.SymmetricReductionStrategy method), 485
reduced() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 331
reduced() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2 method), 335
reduced normal form() (sage.rings.polynomial.pbori.ReductionStrategy method), 537
reducible_by() (sage.rings.polynomial.pbori.BooleanMonomial method), 501
reducible_by() (sage.rings.polynomial.pbori.BooleanPolynomial method), 514
reduction_strategy (sage.rings.polynomial.pbori.GroebnerStrategy attribute), 534
ReductionStrategy (class in sage.rings.polynomial.pbori), 536
refine() (sage.rings.polynomial.real roots.island method), 185
refine_all() (sage.rings.polynomial.real_roots.ocean method), 188
```

```
refine recurse() (sage.rings.polynomial.real roots.island method), 185
refine_root() (in module sage.rings.polynomial.refine_root), 198
region() (sage.rings.polynomial.real roots.interval bernstein polynomial method), 178
region() (sage.rings.polynomial.real roots.rr gap method), 194
region_width() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 178
relations() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 556
relative bounds() (in module sage.rings.polynomial.real roots), 192
remove var() (sage.rings.polynomial.laurent polynomial ring.LaurentPolynomialRing generic method), 441
remove_var() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 248
remove var() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 528
repr long() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 248
require field (in module sage.rings.polynomial.multi polynomial ideal), 322
RequireField (class in sage.rings.polynomial.multi polynomial ideal), 322
res() (sage.rings.polynomial.multi polynomial ideal.NCPolynomialIdeal method), 320
rescale() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative dense
         method), 164
reset() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 485
reset_root_width() (sage.rings.polynomial.real_roots.island method), 185
reset root width() (sage.rings.polynomial.real roots.ocean method), 189
residue() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 453
residue class degree() (sage.rings.polynomial.ideal.Ideal 1poly field method), 199
residue_field() (sage.rings.polynomial.ideal.Ideal_1poly_field method), 199
residue_field() (sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n method), 14
resultant() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 279
resultant() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 363
resultant() (sage.rings.polynomial.polynomial_element.Polynomial method), 73
resultant() (sage.rings.polynomial.polynomial integer dense flint.Polynomial integer dense flint method), 117
resultant() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 123
resultant() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 147
resultant() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 135
resultant() (sage.rings.polynomial.polynomial zmod flint.Polynomial zmod flint method), 142
resultant() (sage.rings.polynomial_polynomial_zz_pex.Polynomial_ZZ_pEX method), 167
retract() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_generic method), 213
reverse() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 164
reverse() (sage.rings.polynomial.polynomial element.Polynomial method), 75
reverse() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse method), 101
reverse() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 117
reverse() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense modn ntl ZZ method), 148
reverse() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 151
reverse() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 135
reverse() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 157
reverse() (sage.rings.polynomial.polynomial zmod flint.Polynomial zmod flint method), 143
reverse intvec() (in module sage.rings.polynomial.real roots), 193
reversed() (sage.rings.polynomial.polydict.ETuple method), 372
revert_series() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118
revert series() (sage.rings.polynomial.polynomial rational flint.Polynomial rational flint method), 136
revert_series() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_zmod_flint method), 144
ring() (sage.rings.fraction_field.FractionField_generic method), 422
ring() (sage.rings.invariant theory.FormsBase method), 385
```

```
ring() (sage.rings.polynomial.infinite polynomial element.InfinitePolynomial sparse method), 471
ring() (sage.rings.polynomial.multi_polynomial_sequence_PolynomialSequence_generic method), 332
ring() (sage.rings.polynomial.pbori.BooleanMonomial method), 501
ring() (sage.rings.polynomial.pbori.BooleanPolynomial method), 514
ring() (sage.rings.polynomial.pbori.BooleSet method), 496
ring_of_integers() (sage.rings.fraction_field.FractionField_1poly_field method), 420
root bounds() (in module sage.rings.polynomial.real roots), 193
root field() (sage.rings.polynomial.polynomial element.Polynomial method), 75
roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 76
roots() (sage.rings.polynomial.real roots.ocean method), 189
rr gap (class in sage.rings.polynomial.real roots), 193
rshift coeffs() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative dense
         method), 165
S
S_class_group() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_generic method), 206
S invariant() (sage.rings.invariant theory.TernaryCubic method), 395
S units() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing generic method), 207
sage.rings.fraction field (module), 419
sage.rings.fraction_field_element (module), 423
sage.rings.fraction field FpT (module), 427
sage.rings.invariant theory (module), 377
sage.rings.monomials (module), 377
sage.rings.polynomial.complex roots (module), 196
sage.rings.polynomial.convolution (module), 220
sage.rings.polynomial.cyclotomic (module), 221
sage.rings.polynomial.ideal (module), 199
sage.rings.polynomial.infinite polynomial element (module), 465
sage.rings.polynomial.infinite polynomial ring (module), 455
sage.rings.polynomial.laurent polynomial (module), 442
sage.rings.polynomial.laurent_polynomial_ring (module), 435
sage.rings.polynomial.multi polynomial (module), 250
sage.rings.polynomial.multi polynomial element (module), 268
sage.rings.polynomial.multi_polynomial_ideal (module), 282
sage.rings.polynomial.multi_polynomial_ideal_libsingular (module), 368
sage.rings.polynomial.multi polynomial libsingular (module), 337
sage.rings.polynomial.multi_polynomial_ring (module), 263
sage.rings.polynomial.multi_polynomial_ring_generic (module), 242
sage.rings.polynomial.multi polynomial sequence (module), 323
sage.rings.polynomial.padics.polynomial padic (module), 159
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense (module), 161
sage.rings.polynomial.padics.polynomial_padic_flat (module), 166
sage.rings.polynomial.pbori (module), 489
sage.rings.polynomial.plural (module), 547
sage.rings.polynomial.polydict (module), 369
sage.rings.polynomial.polynomial compiled (module), 219
sage.rings.polynomial.polynomial element (module), 32
sage.rings.polynomial.polynomial_element_generic (module), 96
sage.rings.polynomial.polynomial fateman (module), 220
sage.rings.polynomial_polynomial_gf2x (module), 103
```

```
sage.rings.polynomial.polynomial integer dense flint (module), 110
sage.rings.polynomial.polynomial_integer_dense_ntl (module), 120
sage.rings.polynomial.polynomial modn dense ntl (module), 145
sage.rings.polynomial.polynomial number field (module), 106
sage.rings.polynomial_polynomial_quotient_ring (module), 199
sage.rings.polynomial.polynomial_quotient_ring_element (module), 215
sage.rings.polynomial.polynomial rational flint (module), 125
sage.rings.polynomial.polynomial real mpfr dense (module), 154
sage.rings.polynomial_ring (module), 9
sage.rings.polynomial.polynomial ring constructor (module), 1
sage.rings.polynomial.polynomial ring homomorphism (module), 32
sage.rings.polynomial.polynomial singular interface (module), 158
sage.rings.polynomial_polynomial_zmod_flint (module), 137
sage.rings.polynomial.polynomial zz pex (module), 166
sage.rings.polynomial.real roots (module), 170
sage.rings.polynomial.refine_root (module), 198
sage.rings.polynomial.symmetric_ideal (module), 473
sage.rings.polynomial.symmetric reduction (module), 482
sage.rings.polynomial.term order (module), 225
sage.rings.polynomial.toy_buchberger (module), 406
sage.rings.polynomial.toy_d_basis (module), 414
sage.rings.polynomial.toy variety (module), 411
saturation() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 312
SCA() (in module sage.rings.polynomial.plural), 564
scalar_lmult() (sage.rings.polynomial.polydict.PolyDict method), 376
scalar rmult() (sage.rings.polynomial.polydict.PolyDict method), 376
scale_intvec_var() (in module sage.rings.polynomial.real_roots), 194
scaled_coeffs() (sage.rings.invariant_theory.BinaryQuartic method), 384
scaled coeffs() (sage.rings.invariant theory.QuadraticForm method), 393
scaled coeffs() (sage.rings.invariant theory.TernaryCubic method), 397
scaled coeffs() (sage.rings.invariant theory.TernaryQuadratic method), 399
second() (sage.rings.invariant theory.TwoAlgebraicForms method), 400
section() (sage.rings.fraction field FpT.Fp FpT coerce method), 431
section() (sage.rings.fraction_field_FpT.Polyring_FpT_coerce method), 432
section() (sage.rings.fraction field FpT.ZZ FpT coerce method), 433
section() (sage.rings.polynomial.polynomial_element.PolynomialBaseringInjection method), 93
select() (in module sage.rings.polynomial.toy_buchberger), 410
select() (in module sage.rings.polynomial.toy d basis), 416
select() (sage.rings.polynomial.pbori.GroebnerStrategy method), 534
selmer group() (sage.rings.polynomial.polynomial quotient ring.PolynomialQuotientRing generic method), 213
set() (sage.rings.polynomial.pbori.BooleanMonomial method), 501
set() (sage.rings.polynomial.pbori.BooleanPolynomial method), 514
set() (sage.rings.polynomial.pbori.BooleSet method), 496
set karatsuba threshold() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 29
set_random_seed() (in module sage.rings.polynomial.pbori), 543
setgens() (sage.rings.polynomial.symmetric reduction.SymmetricReductionStrategy method), 486
SeveralAlgebraicForms (class in sage.rings.invariant_theory), 393
shift() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 453
shift() (sage.rings.polynomial.polynomial element.Polynomial method), 84
shift() (sage.rings.polynomial_polynomial_element.Polynomial_generic_dense method), 94
```

```
shift() (sage.rings.polynomial.polynomial element generic.Polynomial generic sparse method), 101
shift() (sage.rings.polynomial_polynomial_gf2x.Polynomial_template method), 106
shift() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense mod n method), 146
shift() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense modn ntl ZZ method), 149
shift() (sage.rings.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 151
shift() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 157
shift() (sage.rings.polynomial.polynomial zmod flint.Polynomial template method), 139
shift() (sage.rings.polynomial.polynomial zz pex.Polynomial template method), 169
shift() (sage.rings.polynomial_polynomial_zz_pex.Polynomial_ZZ_pEX method), 168
shrink bp() (sage.rings.polynomial.real roots.island method), 185
singular moreblocks() (sage.rings.polynomial.term order.TermOrder method), 240
singular str() (sage.rings.polynomial.term order.TermOrder method), 240
size_double() (sage.rings.polynomial.pbori.BooleSet method), 497
slimgb libsingular() (in module sage.rings.polynomial.multi polynomial ideal libsingular), 369
slope range() (sage.rings.polynomial.real roots.interval bernstein polynomial float method), 180
slope_range() (sage.rings.polynomial_real_roots.interval_bernstein_polynomial_integer method), 183
small_roots() (in module sage.rings.polynomial.polynomial_modn_dense_ntl), 152
small roots() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense mod n method), 147
small roots() (sage.rings.polynomial.polynomial zmod flint.Polynomial zmod flint method), 144
small_spolys_in_next_degree() (sage.rings.polynomial.pbori.GroebnerStrategy method), 534
solve() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2 method), 335
some elements() (sage.rings.polynomial.polynomial ring.PolynomialRing general method), 30
some_spolys_in_next_degree() (sage.rings.polynomial.pbori.GroebnerStrategy method), 534
sparse_iter() (sage.rings.polynomial.polydict.ETuple method), 372
split_for_targets() (in module sage.rings.polynomial.real_roots), 194
splitting field() (sage.rings.polynomial.polynomial element.Polynomial method), 85
spol() (in module sage.rings.polynomial.toy_buchberger), 410
spol() (in module sage.rings.polynomial.toy_d_basis), 417
spoly() (sage.rings.polynomial.pbori.BooleanPolynomial method), 515
sqr pd (class in sage.rings.polynomial.polynomial compiled), 220
sqrt() (sage.rings.fraction field FpT.FpTElement method), 429
square() (sage.rings.polynomial.polynomial element.Polynomial method), 87
squarefree decomposition() (sage.rings.polynomial.polynomial element.Polynomial method), 88
squarefree_decomposition() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint
         method), 118
squarefree_decomposition()
                              (sage.rings.polynomial_polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl
         method), 124
squarefree_decomposition() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_zmod_flint method), 144
squeezed() (sage.rings.polynomial.infinite polynomial element.InfinitePolynomial sparse method), 471
squeezed() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 481
stable_hash() (sage.rings.polynomial.pbori.BooleanMonomial method), 502
stable_hash() (sage.rings.polynomial.pbori.BooleanPolynomial method), 515
stable hash() (sage.rings.polynomial.pbori.BooleSet method), 497
std() (sage.rings.polynomial.multi polynomial ideal.NCPolynomialIdeal method), 320
std libsingular() (in module sage.rings.polynomial.multi polynomial ideal libsingular), 369
stretch() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 472
sub m mul q() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 364
subs() (sage.rings.fraction field FpT.FpTElement method), 430
subs() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 447
subs() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 280
```

```
subs() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal method), 296
subs() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 364
subs() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 332
subs() (sage.rings.polynomial.pbori.BooleanPolynomial method), 515
subs() (sage.rings.polynomial.polynomial_element.Polynomial method), 88
subsample_vec_doctest() (in module sage.rings.polynomial.real_roots), 194
subset0() (sage.rings.polynomial.pbori.BooleSet method), 497
subset1() (sage.rings.polynomial.pbori.BooleSet method), 497
substitute() (sage.rings.polynomial_polynomial_element.Polynomial method), 88
substitute variables() (in module sage.rings.polynomial.pbori), 543
suggest plugin variable() (sage.rings.polynomial.pbori.GroebnerStrategy method), 534
support() (sage.rings.fraction field element.FractionFieldElement 1poly field method), 426
sylvester_matrix() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 260
sylvester_matrix() (sage.rings.polynomial.polynomial_element.Polynomial method), 89
symmetric basis() (sage.rings.polynomial.symmetric ideal.SymmetricIdeal method), 481
symmetric cancellation order()
                                    (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse
         method), 472
SymmetricIdeal (class in sage.rings.polynomial.symmetric_ideal), 474
Symmetric ReductionStrategy (class in sage.rings.polynomial.symmetric reduction), 483
symmetrisation() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 481
symmGB F2() (sage.rings.polynomial.pbori.GroebnerStrategy method), 534
syzygy() (sage.rings.invariant_theory.TernaryCubic method), 397
syzygy() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 403
syzygy() (sage.rings.invariant theory.TwoTernaryQuadratics method), 405
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr method),
         299
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 313
syzygy module() (sage.rings.polynomial.multi polynomial ideal.NCPolynomialIdeal method), 321
Т
T_covariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 402
T_invariant() (sage.rings.invariant_theory.TernaryCubic method), 395
T prime covariant() (sage.rings.invariant theory.TwoQuaternaryQuadratics method), 402
tail() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 473
tailreduce() (sage.rings.polynomial.symmetric reduction.SymmetricReductionStrategy method), 486
taylor_shift1_intvec() (in module sage.rings.polynomial.real_roots), 194
tensor_with_ring() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense method), 461
tensor with ring() (sage.rings.polynomial.infinite polynomial ring,InfinitePolynomialRing sparse method), 464
term_order() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 441
term order() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 249
term order() (sage.rings.polynomial.plural.NCPolynomialRing plural method), 556
terminal_one() (sage.rings.polynomial.pbori.CCuddNavigator method), 530
TermOrder (class in sage.rings.polynomial.term_order), 230
TermOrder from pb order() (in module sage.rings.polynomial.pbori), 538
termorder_from_singular() (in module sage.rings.polynomial.term_order), 241
terms() (sage.rings.polynomial.pbori.BooleanPolynomial method), 516
ternary_biquadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 388
ternary cubic() (sage.rings.invariant theory.InvariantTheoryFactory method), 389
ternary quadratic() (sage.rings.invariant theory.InvariantTheoryFactory method), 389
TernaryCubic (class in sage.rings.invariant theory), 394
```

```
TernaryOuadratic (class in sage.rings.invariant theory), 398
then_branch() (sage.rings.polynomial.pbori.CCuddNavigator method), 530
Theta_covariant() (sage.rings.invariant_theory.TernaryCubic method), 396
Theta invariant() (sage.rings.invariant theory.TwoQuaternaryQuadratics method), 403
Theta_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 405
Theta_prime_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 403
Theta prime invariant() (sage.rings.invariant theory.TwoTernaryQuadratics method), 405
to bernstein() (in module sage.rings.polynomial.real roots), 195
to_bernstein_warp() (in module sage.rings.polynomial.real_roots), 195
to ocean() (sage.rings.polynomial.real roots.linear map method), 185
to ocean() (sage.rings.polynomial.real roots.warp map method), 195
top index() (in module sage.rings.polynomial.pbori), 544
top_sugar() (sage.rings.polynomial.pbori.GroebnerStrategy method), 535
total degree() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 280
total degree() (sage.rings.polynomial.multi polynomial libsingular.MPolynomial libsingular method), 366
total_degree() (sage.rings.polynomial.pbori.BooleanPolynomial method), 516
total_degree() (sage.rings.polynomial.plural.NCPolynomial_plural method), 563
total degree() (sage.rings.polynomial.polydict.PolyDict method), 377
trace() (sage.rings.polynomial.polynomial quotient ring element.PolynomialQuotientRingElement method), 219
transformed() (sage.rings.invariant_theory.AlgebraicForm method), 381
transformed basis() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 313
triangular decomposition()
                                  (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr
         method), 314
triangular factorization() (in module sage.rings.polynomial.toy variety), 413
truncate() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 453
truncate() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 262
truncate() (sage.rings.polynomial.polynomial element.Polynomial method), 90
truncate() (sage.rings.polynomial.polynomial element.Polynomial generic dense method), 95
truncate() (sage.rings.polynomial_polynomial_element_generic.Polynomial_generic_sparse method), 102
truncate() (sage.rings.polynomial_polynomial_gf2x.Polynomial_template method), 106
truncate() (sage.rings.polynomial.polynomial modn dense ntl.Polynomial dense modn ntl ZZ method), 149
truncate() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 152
truncate() (sage.rings.polynomial_polynomial_rational_flint.Polynomial_rational_flint method), 136
truncate() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 157
truncate() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 139
truncate() (sage.rings.polynomial_polynomial_zz_pex.Polynomial_template method), 169
truncate_abs() (sage.rings.polynomial_polynomial_real_mpfr_dense.PolynomialRealDense method), 158
try rand split() (sage.rings.polynomial.real roots.interval bernstein polynomial method), 178
try split() (sage.rings.polynomial.real roots.interval bernstein polynomial method), 178
tuple_weight() (sage.rings.polynomial.term_order.TermOrder method), 241
TwoAlgebraicForms (class in sage.rings.invariant_theory), 399
TwoQuaternaryQuadratics (class in sage.rings.invariant theory), 400
twostd() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 322
TwoTernaryQuadratics (class in sage.rings.invariant_theory), 404
U
unary pd (class in sage.rings.polynomial.polynomial compiled), 220
union() (sage.rings.polynomial.pbori.BooleSet method), 498
units() (sage.rings.polynomial_polynomial_quotient_ring.PolynomialQuotientRing_generic method), 214
univar_pd (class in sage.rings.polynomial.polynomial_compiled), 220
```

```
univariate polynomial() (sage.rings.polynomial.laurent polynomial.LaurentPolynomial mpair method), 447
univariate_polynomial() (sage.rings.polynomial_multi_polynomial_element.MPolynomial_polydict method), 281
univariate_polynomial() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method),
         366
univariate polynomial() (sage.rings.polynomial.pbori.BooleanPolynomial method), 516
univariate_ring() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 249
universal discriminant() (in module sage.rings.polynomial.polynomial element), 96
universe() (sage.rings.polynomial.multi polynomial sequence.PolynomialSequence generic method), 332
unpickle_BooleanPolynomial() (in module sage.rings.polynomial.pbori), 544
unpickle BooleanPolynomial0() (in module sage.rings.polynomial.pbori), 544
unpickle_BooleanPolynomialRing() (in module sage.rings.polynomial.pbori), 544
unpickle_FpT_element() (in module sage.rings.fraction_field_FpT), 433
unpickle MPolynomial libsingular() (in module sage.rings.polynomial.multi polynomial libsingular), 367
unpickle_MPolynomialRing_generic() (in module sage.rings.polynomial.multi_polynomial_ring_generic), 249
unpickle_MPolynomialRing_generic_v1() (in module sage.rings.polynomial.multi_polynomial_ring_generic), 249
unpickle MPolynomialRing libsingular() (in module sage.rings.polynomial.multi polynomial libsingular), 367
unpickle NCPolynomial plural() (in module sage.rings.polynomial.plural), 567
update() (in module sage.rings.polynomial.toy_buchberger), 410
update() (in module sage.rings.polynomial.toy d basis), 417
usign() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory method), 171
V
valuation() (sage.rings.fraction_field_element.FractionFieldElement method), 425
valuation() (sage.rings.fraction field FpT.FpTElement method), 430
valuation() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 453
valuation() (sage.rings.polynomial_padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
         method), 165
valuation() (sage.rings.polynomial.polydict.PolyDict method), 377
valuation() (sage.rings.polynomial.polynomial element.Polynomial method), 91
valuation() (sage.rings.polynomial.polynomial element generic.Polynomial generic sparse method), 102
valuation() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ method), 149
valuation() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 152
valuation of coefficient() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative
         method), 165
value() (sage.rings.polynomial.pbori.CCuddNavigator method), 530
var pd (class in sage.rings.polynomial.polynomial compiled), 220
variable() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 281
variable() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 367
variable() (sage.rings.polynomial.pbori.BooleanPolynomial method), 516
variable() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 529
variable_has_value() (sage.rings.polynomial.pbori.GroebnerStrategy method), 535
variable_name() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 454
variable_name() (sage.rings.polynomial.polynomial_element.Polynomial method), 91
variable names recursive()
                                (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic
         method), 249
variable_names_recursive() (sage.rings.polynomial_polynomial_ring.PolynomialRing_general method), 30
VariableBlock (class in sage.rings.polynomial.pbori), 538
VariableConstruct (class in sage.rings.polynomial.pbori), 538
VariableFactory (class in sage.rings.polynomial.pbori), 538
variables() (sage.rings.invariant theory.FormsBase method), 385
```

```
variables() (sage.rings.polynomial.infinite polynomial element.InfinitePolynomial sparse method), 473
variables() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 448
variables() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 454
variables() (sage.rings.polynomial.multi polynomial element.MPolynomial polydict method), 281
variables() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 367
variables() (sage.rings.polynomial.multi_polynomial_sequence_PolynomialSequence_generic method), 333
variables() (sage.rings.polynomial.pbori.BooleanMonomial method), 502
variables() (sage.rings.polynomial.pbori.BooleanPolynomial method), 517
variables() (sage.rings.polynomial.pbori.BooleConstant method), 492
variables() (sage.rings.polynomial.polynomial element.Polynomial method), 91
variations() (sage.rings.polynomial.real roots.interval bernstein polynomial method), 179
variety() (sage.rings.polynomial.multi polynomial ideal.MPolynomialIdeal singular repr method), 315
variety() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 521
varname cmp() (sage.rings.polynomial.infinite polynomial ring.InfinitePolynomialRing sparse method), 465
vars() (sage.rings.polynomial.pbori.BooleSet method), 498
vars_as_monomial() (sage.rings.polynomial.pbori.BooleanPolynomial method), 517
vector_space_dimension()
                                 (sage.rings.polynomial.multi\_polynomial\_ideal.MPolynomialIdeal\_singular\_repr
         method), 318
W
warp map (class in sage.rings.polynomial.real roots), 195
weighted degree() (sage.rings.polynomial.multi polynomial.MPolynomial method), 262
weights() (sage.rings.polynomial.term_order.TermOrder method), 241
weil_restriction() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 297
weil_restriction() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2e method), 336
weyl algebra() (sage.rings.polynomial.multi polynomial ring generic.MPolynomialRing generic method), 249
weyl algebra() (sage.rings.polynomial.polynomial ring.PolynomialRing commutative method), 12
wordsize_rational() (in module sage.rings.polynomial.real_roots), 195
X
xgcd() (sage.rings.polynomial.padics.polynomial padic capped relative dense.Polynomial padic capped relative dense
         method), 165
xgcd() (sage.rings.polynomial.polynomial element.Polynomial method), 91
xgcd() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 106
xgcd() (sage.rings.polynomial_polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 119
xgcd() (sage.rings.polynomial.polynomial integer dense ntl.Polynomial integer dense ntl method), 124
xgcd() (sage.rings.polynomial_polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 147
xgcd() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 137
xgcd() (sage.rings.polynomial_polynomial_zmod_flint.Polynomial_template method), 139
xgcd() (sage.rings.polynomial.polynomial zz pex.Polynomial template method), 170
zero() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 529
zeros() (in module sage.rings.polynomial.pbori), 545
zeros in() (sage.rings.polynomial.pbori.BooleanPolynomial method), 517
ZZ_FpT_coerce (class in sage.rings.fraction_field_FpT), 433
```