

Explainable AI in Finance

R. Shyaam Prasadh Ph.D. Feb 11, 2023

Agenda

- Need for XAI
- Explainability: What, Why, What For and How?
- Interpretability Methods in Machine Learning
- Explainable AI Models in Finance

Author: Unknown

Fear of the unknown

What is the current state of art?

- Black-box statistical predictions are inadequate
- Explanations must be understandable to non-specialist

Trade off

Expert system:

Good for explanations, not so good for accuracy

How do we get the best of both worlds?

DEEP NEURAL NETWORK

Neural nets:

Good for accuracy, not so good for explanations

neuralnetworksanddeeplearning.com - Michael Nielsen, Yoshua Bengio, Ian Goodfellow, and Aaron Courville, 2016.

What is Interpretability?

• Defn: Ability to explain or to present in understandable terms to a human

Interpretability vs. Accuracy

Trend report

Interpretable Artificial Intelligence - Explainable Artificial Intelligence

Post-hoc explainability approaches

Different post-hoc explainability approaches available for a ML model M Φ (Arrieta, Del Ser et al; 2019)

Global, Cohort and Local Model Explainability

Explainability across the ML lifecycle

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

The LIME Algorithm

Locally approximating black-box classifier with interpretable classifier

LIME: General framework

Intrinsically Interpretable Risk Models

- The Probability of Payment (POP) model is a risk scoring model that calculates a POP estimate for each contract /loan at origination
- POP values are used to predict expected defaults and expected credit loss (ECL) of the banks

To build an xNN that pursue a good balance between POP prediction accuracy and model interpretability

Methodology

• Generalized additive index model (GAIM) is used in POP prediction. The relationship between raw features $x \in \mathbb{R}^p$ and the response y is represented by

$$g[E[y/x]] = u + \sum_{j=1}^{M} h_j(w_j^T x)$$
 -----(1)

g is a pre-specified link function, u is the intercept, and M is the number of additive functional components.

- GAIM is estimated using back fitting algorithm, iteratively estimates a pair of $\{w_i, h_i\}$ at a time, with other pairs fixed
- Nonparametric regression (ex: smoothing splines) is used to fit the shape functions in (1)
- GAIM includes both main effects and interaction effects between individual features for performance improvement
- In addition to neural network parametrization, the interpretability of (1) is enhanced with below three constraints:

Sparsity: Prune the trivial main/interaction effects

$$D(h_j) = \frac{1}{n-1} \sum_{j \in S_1} h^2_j(x_j)$$

$$D(f_{j,k}) = \frac{1}{n-1} \sum_{j \in S_1} f^2_{jk} (x_j x_k)$$

Main effects (h(x))Interaction effect $(f(x_i, x_k))$ **Heredity: Atleast one main effect is significant**

$$\forall$$
(j; k) \in S₂: j \in S₁ or k \in S₁

 S_1, S_2 – List of main & interaction effects

Marginal: Separate main and interaction effect

$$\Phi(h_j, f_{j,k}) = \left| \frac{1}{n} \sum_{i \in S_1} h_j(x_j) f_{j,k}(x_j, x_k) \right|$$

Smaller the value of orthogonality $\Phi(h_j, f_{j,k})$, clearly marginal effect hj is separated from child interaction fjk

Network Architecture

Proposed xNN is formulated as follows:

$$g[E[y/x]] = u + \sum_{j \in S_1} h_j(x_j) + \sum_{(j,k) \in S_2} f_{j,k}(x_j, x_k)$$
(2)

- The main effects (h(x)) are first fitted
- Top-K ranked pairwise interactions ($f(x_i, x_k)$) are selected & fitted to the residuals, subject to heredity constraint
- The dashed arrows to Σ nodes denote the sparsity constraints, the trivial subnetworks are pruned
- Finally, the marginal clarity is imposed for regularizing pairwise interactions

Hyperparameters and Interpretability

- Maximal number of pairwise interactions is set to K = 30
- Subnetwork is configured with 5 ReLU hidden layers each with 40 nodes
- Subnetwork weights are initialized using the Gaussian orthogonal initializer
- Initial learning rate of the Adam optimizer is set to 0.0001
- Mini-batch sample size is determined according to the sample sizes of different datasets
- A 20% validation set is split for early stopping, and the early stopping threshold is set to be 50 epochs
- The tolerance threshold is set to be 1% of the minimal validation loss.
- The marginal clarity regularization strength can be empirically selected from 0.0001 to 1

Importance Ratio (IR):

Contribution of each individual variable to the overall prediction is measured by following:

Main effects:
$$IR[j] = \frac{D(h_j)}{T}$$
 Interaction effects: $f_{j,k}[j,k] = \frac{D(f_{j,k})}{T}$ where $T = \sum_{j \in S_1} D(h_j) + \sum_{(j,k) \in S_2} D(f_{j,k})$

Results: Credit risk models

Top 10 Main effects

Top 5 Interaction effects

Results: Bank Marketing dataset Vs. Bike Sharing Hour Dataset

Conclusion

Image source: Interpretable Machine Learning (C. Molnar)

Thank you