Proof:

- 1. First, prove the relation to be equivalent:
 - Reflective: $a \sim a \Rightarrow f(a) = f(a)$, TRUE.
 - Symmetric: $a \sim b \Rightarrow f(a) = f(b) \Rightarrow f(b) = f(a) \Rightarrow b \sim a$, TRUE.
 - transitive: $a \sim b, b \sim c \Rightarrow f(a) = f(b), f(b) = f(c) \Rightarrow f(a) = f(c) \Rightarrow a \sim c$, TRUE.
- 2. Then, prove its equivalence classes to be the fibers of f:

Let C be the set of equivalence classes of A under \sim , and let F be the set of fibers of f. We will show that C=F.

Take an arbitrary element $a \in A$. The equivalence class of $a \in A$ is:

$$\{x \in A \mid x \sim a\} = \{x \in A \mid f(x) = f(a)\}$$

$$= f^{-1}\{f(a)\}$$
(1)

which by definition is the fiber of f.

Since a was arbitrary, every equivalence class is a fiber of f, i.e. $C \subseteq F$.

Conversely, let F' be an arbitrary fiber of f for some $b \in B$. Then by definition,

$$F' = f^{-1}\{b\}$$
= $\{x \in A \mid f(x) = b\}$ (2)

.

Since f is surjective, $\exists a \in A \ s.t. \ f(a) = b$. Consider the equivalence class of a:

$$\{x \in A \mid x \sim a\} = \{x \in A \mid f(x) = f(a)\}\$$

$$= \{x \in A \mid f(x) = b\}\$$

$$= F'.$$
(3)

Since F' was arbitrary, every fiber of f is an equivalence class, i.e. $F \subseteq C$. Thus, C = F.

Prove by contradiction:

1. Consider an arbitrary **column** in the multiplication table of G. Suppose that the colum is *not* a permutation of G. Then there would be at least two identical elements in this column, which we denote as a. This implies that

$$\exists x, y \in G, x \neq y, s.t. \ xa = ya \tag{4}$$

Applying x^{-1} from right on both sides:

$$x^{-1}xa = x^{-1}ya$$

$$a = x^{-1}ya$$

$$\Rightarrow x^{-1}y = e.$$
(5)

Since inverse of an element is unique, y = x, which is a contradiction.

2. Similarly, consider arbitrary \mathbf{row} in the multiplication table of G . Suppose that this row is *not* a permutation of G, i.e. there are at least two repeating elements, denoted as b. This implies

$$\exists x, y \in G, x \neq y, s.t. \ xa = xb. \tag{6}$$

Applying a^{-1} from left on both sides:

$$xaa^{-1} = xba^{-1}$$

$$x = xba^{-1}$$

$$\Rightarrow ba^{-1} = e.$$
(7)

Since inverse of an element is unique, b = a, a contradiction.

3. Multiplication tables are special cases of Latin squares. In particular, they hold hold the property of associativity. This restricts the set of possible Latin squares, because:

The group operation must be associative, menaing for every single combinitation of three elements, $a, b, c \in G$, (ab)c = a(bc).

In a table, this means:

• let entry $(a,b) \coloneqq d$ and entry $(d,c) \coloneqq e$, then we must have entry (d,c) equal to entry (a,e).

This is a strong restriction on the possible arrangements of elements in a Latin square, and thus only a small subset of Latin squares can be multiplication tables of groups.

We check each axiom one by one:

Closure: Satisfied.

For any $a, b \in \mathbb{R}, a + b \in \mathbb{R}_{\text{ext}}$.

If at least one of the numbers is ∞ , the sum is $\infty \in \mathbb{R}_{ext}$.

associativity: Satisfied.

We want to show that for any $a,b,c\in\mathbb{R}_{\mathrm{ext}},(a+b)+c=a+(b+c)$. We have two cases:

- If all elements are real, then the sum is trivially associative.
- If at least one element is ∞ , then both sides equal ∞ .

Identity: Satisfied.

The identity element is $0 \in \mathbb{R}_{\mathrm{ext}}$. For any $a \in \mathbb{R}_{\mathrm{ext}}$, a+0=0+a=a.

Inverse: NOT satisfied.

Assume not, then for $\infty \in \mathbb{R}_{\mathrm{ext}}$, $\exists a \in \mathbb{R}_{\mathrm{ext}} s.t.a + \infty = 0$. This is a contradiction, since $a + \infty = \infty$ for any $a \in \mathbb{R}_{\mathrm{ext}}$.

Therefore, $(\mathbb{R}_{\mathrm{ext}},+)$ is not a group.

$$G = \{ z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+ \}$$
 (8)

a. Prove that G is a group under multiplication.

We check for each axiom:

Closure:

let $a,b\in G$, then $a^{n_1}=1,b^{n_2}=1$, for some $n_1,n_2\in\mathbb{Z}^+$. Need to show that $ab\in G\Leftrightarrow (ab)^k=1$ for some $k\in\mathbb{Z}^+$.

Take $k = n_1 n_2$, then

$$(ab)^k = a^{n_1 n_2} b^{n_1 n_2} = 1^{n_2} 1^{n_1} = 1. (9)$$

Exists such k, and so $ab \in G$, i.e. closure is satisfied.

Assoc.

Taivially satisfied, as $G \subset \mathbb{C}$, each element is a complex number, and multiplication of complex numbers is associative.

Identity.

Trivially satisfied, as $1 \in G$ (take n = 1), and for any $a \in G$, a1 = 1a = a.

Inverse.

Consider arbitrary $a \in G$. Exists $n \in \mathbb{Z}^+$ s.t. $a^n = 1$. Rewriting,

$$a^{n-1}a = 1 \Rightarrow a^{n-1} = a^{-1}. (10)$$

Since $(z^{n-1})^n = (z^n)^{n-1} = 1, z^{n-1} \in G$.

Therefore, (G, \times) is a group.

b. (G, +) is not a group.

Assume identity exists, then for any $a \in G$,

$$e + a = a + e = a. (11)$$

Since $a, e \in \mathbb{C}$, the identity must be 0. However, $0 \notin G$, since $0^n = 0$ for any $n \in \mathbb{Z}^+$, a contradiction. Thus the identity axiom is failed.

We check the four axioms:

Clousure:

As given in the problem, H is closed under \star .

Associativity:

Since $H \subset G$ and \star is associative on G, \star is also associative on H.

Inverse:

We are given that H is closed under inverse, and so the inverse axiom is satisfied.

Identity:

Since H is nonempty, take arbitrary $h \in H$. Since H is closed under inverse, $h^{-1} \in H$. Now, we have:

$$h \star h^{-1} = h^{-1} \star h := e. \tag{12}$$

This identity element must exist in H by closure of H under \star . Thus, the identity axiom is satisfied.

 (A,\star) and (B,\diamondsuit) are groups. $A\times B\coloneqq\{(a,b)\mid a\in A,b\in B\}$ with operation: $(a,b)(c,d)=(a\star c,b\diamondsuit d)$ for all $(a,b),(c,d)\in A\times B$.

1. Check group axioms:

Closure:

Take arbitrary (a_1, b_1) and $(a_2, b_2) \in A \times B$. Then,

$$(a_1, b_1)(a_2, b_2) = (a_1 \star a_2, b_1 \diamondsuit b_2). \tag{13}$$

Since A and B are groups, $a_1 \star a_2 \in A$ and $b_1 \diamondsuit b_2 \in B$. Thus, $(a_1 \star a_2, b_1 \diamondsuit b_2) \in A \times B$, i.e. closure is satisfied.

Associativity:

Take arbitrary $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in A \times B$. Then,

$$[(a_{1}, b_{1})(a_{2}, b_{2})](a_{3}, b_{3}) = (a_{1} \star a_{2}, b_{1} \diamondsuit b_{2})(a_{3}, b_{3})$$

$$= ((a_{1} \star a_{2}) \star a_{3}, (b_{1} \diamondsuit b_{2}) \diamondsuit b_{3})$$

$$= (a_{1} \star (a_{2} \star a_{3}), b_{1} \diamondsuit (b_{2} \diamondsuit b_{3}))$$

$$= (a_{1}, b_{1})(a_{2} \star a_{3}, b_{2} \diamondsuit b_{3})$$

$$= (a_{1}, b_{1})[(a_{2}, b_{2})(a_{3}, b_{3})].$$

$$(14)$$

and so associativity is satisfied.

Identity:

Take arbitrary $(a,b) \in A \times B$. Let e_A and e_B be the identity elements of A and B respectively. Then,

$$(a,b)(e_A,e_B) = (a \star e_A,b \diamondsuit e_B) = (a,b) \tag{15}$$

and similarly, $(e_A,e_B)(a,b)=(e_A\star a,e_B\diamondsuit b)=(a,b).$ Thus, the identity axiom is satisfied with identity element $(e_A,e_B).$

Inverse:

Take arbitrary $(a, b) \in A \times B$. Let a^{-1} and b^{-1} be the inverses of a and b in A and B respectively. Then,

$$(a,b)(a^{-1},b^{-1}) = (a \star a^{-1},b \diamondsuit b^{-1}) = (e_A,e_B). \tag{16}$$

Similarly, $(a^{-1}, b^{-1})(a, b) = (e_A, e_B)$ and so the inverse axiom is satisfied.

2. Prove that $A \times B$ is abelian iff both (A, \star) and (B, \diamondsuit) are abelian.

 \Longrightarrow : Assume $A \times B$ is abelian, then for any $a_1, a_2 \in A$ and $b_1, b_2 \in B$, we have:

$$(a_1, b_1)(a_2, b_2) = (a_2, b_2)(a_1, b_1). (17)$$

LHS:

$$(a_1,b_1)(a_2,b_2) = (a_1 \star a_2, b_1 \diamondsuit b_2). \tag{18}$$

RHS:

$$(a_2, b_2)(a_1, b_1) = (a_2 \star a_1, b_2 \diamondsuit b_1). \tag{19}$$

Thus $a_1 \star a_2 = a_2 \star a_1$ and $b_1 \diamondsuit b_2 = b_2 \diamondsuit b_1$, and so A and B are abelian.

 \Leftarrow : Assume both (A,\star) and (B,\diamondsuit) are abelian, then for any $a_1,a_2\in A$ and $b_1,b_2\in B$, we have:

$$(a_1,b_1)(a_2,b_2) = (a_1 \star a_2, b_1 \diamondsuit b_2) = (a_2 \star a_1, b_2 \diamondsuit b_1) = (a_2,b_2)(a_1,b_1). \tag{20}$$

This shows that $A \times B$ is abelian.

- **1. Prove that** xy = yx iff $y^{-1}xy = x$ iff $x^{-1}y^{-1}xy = 1$.
- Start from left.

Suppose xy = yx, applying y^{-1} on both sides gives $y^{-1}xy = y^{-1}yx = x$.

Conversely, suppose $y^{-1}xy = x$, then $yy^{-1}xy = yx \Rightarrow xy = yx$. The first equivalence is proved.

- Now suppose $y^{-1}xy = x$. Applying x^{-1} on both sides gives $x^{-1}y^{-1}xy = x^{-1}x = 1$. Conversely, suppose $x^{-1}y^{-1}xy = 1$. Applying x on both sides gives $xx^{-1}y^{-1}xy = x \Rightarrow y^{-1}xy = x$. The second equivalence is proved, thus completing the proof.
- **2. Prove further that** $|yxy^{-1}| = |x|$.

Let |x| = n and $|yxy^{-1} = m$

• First, prove that $m \le n$: Since $x^n = e$, expanding (yxy^{-1}) :

$$yxy^{-1}yxy^{-1}...yxy^{-1}(n \times) = yx^{n}y^{-1}$$

= yey^{-1}
= e (21)

And so m divides n, i.e. $m \leq n$.

• Then, prove that $n \leq m$: Since $(yxy^{-1})^m = e$, expanding $(yxy^{-1})^m$ in the same way gives

$$yx^{m}y^{-1} = e \Rightarrow y^{-1}x^{m}y^{-1}y = e \Rightarrow x^{m} = e$$
 (22)

and so n divides m, i.e. $n \leq m$.

Thus we have m = n, i.e. $|yxy^{-1}| = |x|$.

3. Prove that $|xy| = |yx| \ \forall x, y \in G$.

From part 2, we know that for any $g, h \in G$, $|g| = |hgh^{-1}|$. Now let g = xy and $h = x^{-1}$, then we can show:

$$|xy| = |x^{-1}(xy)(x^{-1})^{-1}| = |x^{-1}xyx| = |yx|$$
(23)

Thus $|xy| = |yx| \ \forall x, y \in G$.

As hinted, $t(G) = \{g \in G \mid g \neq g^{-1}\}$. Consider any $g \in t(G)$, then $g^{-1} \in t(G)$ as well. This implies that g and g^{-1} are distinct, and so t(G) is composed of pairs of elements, and so |t(G)| is even. Since |G| is also even, |G| - |t(G)| is even.

Now, G-t(G) is nonempty since the identity $e \notin t(G)$. Thus exists

$$a \neq e \ s.t. \ a \in G - t(G). \tag{24}$$

We choose $a \notin t(G)$, then $a = a^{-1}$ so that $a^2 = e, a \neq e$. This implies that a is an element of order 2.