Задача 2.

Рассмотрим зависимость моментов сил, действующих на стержень, от угла его отклонения от вертикали α . (Понятно, что из-за симметрии задачи достаточно рассмотреть один стержень). Для опрокидывания стержня необходимо, чтобы момент силы тяжести

$$M_{I} = mgl\sin\alpha \tag{1}$$

превышал момент силы упругости

$$M_2 = k(2l\sin\alpha - 2a)l\cos\alpha$$
 (2)

при любом положении стержня. Таким образом, неравенство

$$mgl\sin\alpha > k(2l\sin\alpha - 2a)l\cos\alpha$$
 (3)

должно выполняться при любом значении угла α в диапазоне от 0 до $\pi/2$. Так как в этом диапазоне $\sin\alpha>0$, то неравенство (3) можно перепмсать в виде

$$m > \frac{2kl}{g} \cdot \frac{\left(\sin\alpha - \xi\right)\cos\alpha}{\sin\alpha},$$
 (4)

где обозначено $\xi = \frac{a}{l}$. Найдем максимум функции

$$f(\alpha) = \frac{(\sin \alpha - \xi)\cos \alpha}{\sin \alpha} = \cos \alpha - \xi \operatorname{ctg} \alpha. \tag{5}$$

Вычисляя производную

$$f'(\alpha) = -\sin\alpha + \frac{\xi}{\sin^2\alpha}$$

и приравнивая ее к нулю, получаем значение угла α^* , при котором функция (5) принимает максимальное значение

$$\sin \alpha^* = \sqrt[3]{\xi} \ . \tag{6}$$

Найдем косинус этого угла

$$\cos\alpha^* = \sqrt{1 - \sin^2\alpha^*} = \sqrt{1 - \xi^{2/3}}$$

и подставим в неравенство (4)

$$m > \frac{2kl}{g} \cdot \frac{\left(\sin\alpha^* - \xi\right)\cos\alpha^*}{\sin\alpha^*} = \frac{2kl}{g} \left(1 - \frac{\xi}{\sin\alpha^*}\right)\cos\alpha^* = \frac{2kl}{g} \left(1 - \xi^{2/3}\right)^{3/2}$$

Итак, окончательный ответ задачи имеет вид: стержни опрокинутся при

$$m > \frac{2kl}{g} \left(1 - \left(\frac{a}{l} \right)^{2/3} \right)^{3/2}.$$

Комментарии к задаче.

1. Представим графически зависимости моментов сил (1),(2) от угла α . На

рисунке показан предельный случай, соответствующий найденному решению задачи. График построен при $\xi=0.5$. Отрицательные значения момента силы упругости в области малых углов соответствуют сжатию резинки.

2. Покажем также график исследованной функции $f(\alpha)$, показывающий, что найденное значение α^* действительно соответствует точке максимума.

3. Возможно также решение данной задачи на основании анализа зависимости потенциальной энергии системы от угла отклонения при различных значениях масс грузов

$$U = 2mgl\cos\alpha + \frac{k}{2}(2l\sin\alpha - 2a)^{2} =$$

$$= 2kl^{2}\left(\frac{mg}{kl}\cos\alpha - (\sin\alpha - \xi)^{2}\right)$$

Если потенциальная кривая имеет минимум в диапазоне $[0,\pi/2]$, то стержни могут оставаться в положении равновесия выше горизонтали, при исчезновении этого минимума система такого положения равновесия не

имеет.

Рисунок показывает изменение зависимости потенциальной энергии от угла α при возрастании увеличении массы грузов (в порядке возрастания номеров кривых), который и демонстрирует этот эффект - так на кривой 4, соответствующей найденному граничному значению массы), минимум отсутствует.

Схема оценивания.

Пункт	Содержание	Баллы	Примечания
2.1	Выражения для моментов сил	4	
1	- необходимость сравнения моментов		1
	- момент силы тяжести		1
	- момент силы упругости		2
2.2	Исследование зависимостей моментов	5	
	от угла отклонения		
	- необходимость анализа		1
	- поиск максимума		1
	- найден максимум		2
2.3	Оформление	1	
	ОЛОТИ	10	