

LM384 5W Audio Power Amplifier

Check for Samples: LM384

FEATURES

Wide Supply Voltage Range: 12V to 26V

Low Quiescent Power Drain Voltage Gain Fixed at 50

High Peak Current Capability: 1.3A

Input Referenced to GND

High Input Impedance: 150kΩ

Low Distortion: 0.25% ($P_O=4W$, $R_L=8\Omega$)

Quiescent Output Voltage is at One Half of the Supply Voltage

14-Pin PDIP Package

DESCRIPTION

The LM384 is a power audio amplifier for consumer applications. In order to hold system cost to a minimum, gain is internally fixed at 34 dB. A unique input stage allows ground referenced input signals. The output automatically self-centers to one-half the supply voltage.

The output is short-circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio and sound projector systems. See SNAA086 for circuit details.

Schematic Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

Supply Voltage		28V	
Peak Current	1.3A		
Power Dissipation ⁽³⁾⁽⁴⁾	1.67W		
Input Voltage		±0.5V	
Storage Temperature		−65°C to +150°C	
Operating Temperature		0°C to +70°C	
Lead Temperature (Soldering, 10 sec.)		260°C	
Thermal Resistance	θ_{JC}	30°C/W	
	θ_{JA}	79°C/W	

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (3) The maximum junction temperature of the LM384 is 150°C.
- (4) The package is to be derated at 15°C/W junction to heat sink pins.

Electrical Characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Z _{IN}	Input Resistance			150		kΩ
BIAS	Bias Current	Inputs Floating		100		nA
A _V	Gain		40	50	60	V/V
P _{OUT}	Output Power	THD = 10%, $R_L = 8\Omega$	5	5.5		W
I Q	Quiescent Supply Current			8.5	25	mA
V _{OUT Q}	Quiescent Output Voltage			11		V
BW	Bandwidth	$P_{OUT} = 2W, R_L = 8\Omega$		450		kHz
V ⁺	Supply Voltage		12		26	V
I _{SC}	Short Circuit Current ⁽²⁾			1.3		Α
PSRR _{RTO}	Power Supply Rejection Ratio (3)			31		dB
THD	Total Harmonic Distortion	$P_{OUT} = 4W, R_L = 8\Omega$		0.25	1.0	%

- (1) $V^+ = 22V$ and $T_A = 25^{\circ}C$ operating with a Staver V7 heat sink for 30 seconds.
- (2) Output is fully protected against a shorted speaker condition at all voltages up to 22V.
- (3) Rejection ratio referred to the output with $C_{BYPASS} = 5 \mu F$, freq = 120 Hz.

Submit Documentation Feedback

Heat Sink Dimensions

Staver Company 41 Saxon Ave. P.O. Drawer H Bay Shore, N.Y. Tel: (516) 666-8000

Figure 1. Staver "V7" Heat Sink

Typical Performance Characteristics

40 (88) 30 P_O = 2W

100k

FREQUENCY (Hz)
Figure 6.

1M

10M

Output Voltage Gain vs Frequency

Thermal Resistance vs Square Inches

90

80

70

60

30

1 2 3 4 5 6

SQUARE INCHES OF COPPER FOIL
P.C. BOARD HEAT SINK

Figure 3.

Figure 5.

Figure 7.

Submit Documentation Feedback

10k

1k

Typical Performance Characteristics (continued)

Block and Connection Diagrams

Note: Heatsink Pins

Figure 12. 14-Pin PDIP (Top View) See NFF0014A Package

Typical Applications

Figure 13. Typical 5W Amplifier

Figure 14. Bridge Amplifier

*For stability with high current loads

Figure 15. Intercom

Figure 16. Phase Shift Oscillator

REVISION HISTORY

Changes from Revision B (April 2013) to Revision C		Page
	Changed layout of National Data Sheet to TI format	7