5

10

15

20

What is claimed is:

- 1. A fender formed from a rubber composition, wherein said rubber composition has a rate of change of compressibility R_{-30}/R_{23} of not more than 1.3 (where R_{-30} denotes a maximum reaction force at -30° C as determined by compressive test and R_{23} denotes a maximum reaction force at 23°C as determined by compressive test) and/or a rate of change of compressibility R_{60}/R_{23} of more than 0.90 (where R_{23} denotes the maximum reaction force at 23°C and R_{60} denotes a maximum reaction force at 60°C).
- The fender according to claim 1, wherein said rubber composition has the rate of change of compressibility R_{-30}/R_{23} of not more than 1.3 (where R_{-30} denotes the maximum reaction force at $-30\,^{\circ}$ C as determined by compressive test and R_{23} denotes the maximum reaction force at 23 $^{\circ}$ C as determined by compressive test), thus imparting the fender with a sufficient compressive energy absorptivity for functioning as a shock absorber in a low-temperature range.
- 3. The fender according to claim 2, wherein said rubber composition has:
- (i) a rate of change of rigidity modulus $G_{-30}/G_{23}<1.38$ and tan $\delta<0.07$ as determined by dynamic shearing test (where

15

25

 G_{-30} and G_{23} denote dynamic moduli of rigidity at -30° C and at 23° C, respectively, as measured under the conditions of a frequency at 0.3Hz and a displacement of 2.5mm); and

- 5 (ii) a rate of change of elasticity modulus $E*_{-30}/E*_{23}<2.3$ and $\tan\delta<0.10$ as determined by dynamic tensile test (where $E*_{-30}$ and $E*_{23}$ denote dynamic moduli of elasticity in tension at -30° C and at 23°C, respectively, as measured under the conditions of a frequency at 10Hz and a displacement of $50\mu\text{m}$).
 - 4. The fender according to claim 1, wherein said rubber composition has the rate of change of compressibility R_{60}/R_{23} of more than 0.90 (where R_{23} denotes the maximum reaction force at 23°C and R_{60} denotes the maximum reaction force at 60°C), thus imparting the fender with a sufficient compressive energy absorptivity for functioning as a shock absorber in a high-temperature range.
- 20 5. The fender according to claim 4, wherein said rubber composition has:
 - (i) a rate of change of rigidity modulus $G_{60}/G_{23}>0.9$ and $\tan\delta<0.11$ as determined by dynamic shearing test (where G_{60} and G_{23} denote dynamic moduli of rigidity at $60^{\circ}C$ and at $23^{\circ}C$, respectively, as measured under the conditions

15

7.

5

of a frequency at 0.3Hz and a displacement of 2.5mm); and

- (ii) a rate of change of elasticity modulus $E*_{60}/E*_{23}>0.7$ and $\tan \delta < 0.14$ as determined by dynamic tensile test (where E*60 and E*23 denote dynamic moduli of elasticity in tension at 60°C and at 23°C, respectively, as measured under the conditions of a frequency at 10Hz and a displacement of $50\mu m$).
- 10 6. The fender according to claim 1, wherein said rubber composition contains 20 to 80 parts by weight of carbon black and 0 to 20 parts by weight of softener based on 100 parts by weight of base rubber material.
- A method for producing a fender from a rubber composition as a base material, wherein the rubber composition is prepared as an elastic base material and has a rate of change of compressibility $R_{\text{-30}}/R_{\text{23}}$ of not more than 1.3 (where R_{-30} denotes a maximum reaction force at $-30\,^{\circ}\text{C}$ as determined by compressive test and R_{23} denotes 20 a maximum reaction force at 23°C as determined by compressive test) and a rate of change of compressibility R_{60}/R_{23} of more than 0.90 (where R_{23} denotes the maximum reaction force at 23° C and R_{60} denotes a maximum reaction 25 force at 60°C).