TRIGONOMETRY Chapter 24

Ángulos coterminales

HELICO-MOTIVACIÓN

ÁNGULOS COTERMINALES

Son aquellos ángulos trigonométricos que tienen el mismo lado inicial, vértice y lado final (terminal). Solo se diferencian en su medida.

De la figura: $\theta y \omega$ son las medidas de dos ángulos coterminales.

iMuy bien!

ÁNGULOS COTERMINALES

Siendo $\alpha y \beta$ las medidas de dos ángulos coterminales, se verifica lo siguiente:

$$\bigcirc_{\uparrow} \alpha - \beta = 360^{\circ} \text{ n; } \mathbf{n} \in \mathbf{Z}$$

$$\mathbb{R}. T. (\alpha) = \mathbb{R}. T. (\beta)$$

© Es decir:

$$sen\alpha = sen\beta$$
 $cos\alpha = cos\beta$
 $tan\alpha = tan\beta$
 $cot\alpha = cot\beta$
 $sec\alpha = sec\beta$

 $csc\alpha = csc\beta$

iMuy bien!

Indique cuáles de los siguientes ángulos son coterminales.

- l. 200° y 160°
- II. 540° y -120°
- III. 480° y -240°

Recuerda:

 α y β son ángulos coterminales, entonces: α - β = 360° n; $n \in \mathbb{Z}$

Resolución:

 $1200^{\circ} - 160^{\circ} = 40^{\circ}$ (no es múltiplo de 360°)

II 540° - (-120°)=660° (no es múltiplo de 360°)

III 480° - (-240°) = 720° (si es múltiplo de 360°)

Rpta: 480° y -240° ángulos coterminales

Calcule un ángulo coterminal del ángulo -250°

Resolución:

$$\alpha$$
 - (-250°) = 360°(n)
Si n = 1
 α + 250° = 360° (1)
 α + 250° = 360°
 α = 110°

110° es un ángulo coterminal de -250°

Recuerda:

 α y β son ángulos coterminales, entonces: α - β =360° n; $n \in \mathbb{Z}$

Renato compró un terreno en forma de rectángulo, tal como se muestra en la figura.

$$b = (20 \cos \alpha) \,\mathrm{m}$$

Si α y 60° son ángulos coterminales, ¿cuál es el área de dicho terreno?

Resolución

Por propiedad de ángulos coterminales $RT(\alpha) = RT(\beta)$

Entonces:

$$\cos \alpha = \cos 60^{\circ} = 1/2$$

$$tan\alpha = tan60^{\circ} = \sqrt{3}$$

Reemplazar:

$$b = 20\cos\alpha$$
 $h = 3\sqrt{3}\tan\alpha$

b = 20(1/2)
$$h = 3\sqrt{3}.\sqrt{3}$$

$$b = 10m$$
 $h = 9 m$

$$S = (10 \text{ m})(9 \text{ m})$$
 $S = 90 \text{ m}^2$

ángulos Siendo θ y 30° coterminales, efectúe $E = csc^2\theta + tan^2\theta$

Resolución:

$$csc\theta = csc30^{\circ} = 2$$

$$\tan\theta = \tan 30^{\circ} = \frac{\sqrt{3}}{3}$$

Reemplazar en E:

$$E = \csc^2\theta + \tan^2\theta$$

$$E = 2^2 + \left(\frac{\sqrt{3}}{3}\right)^2$$

$$E = 4 + \frac{3}{9}$$

$$E = 4 + \frac{3}{9}$$
 $E = 4 + \frac{1}{3}$

$$E = \frac{12+1}{3}$$

$$\mathsf{E} = \frac{13}{3}$$

Del gráfico

Reduzca

$$\mathbf{M} = \frac{5csc\beta}{csc\alpha} - \frac{2tan\alpha}{tan\beta}$$

$$\mathbf{M} = \frac{5\csc\beta}{\csc\alpha} - \frac{2\tan\alpha}{\tan\beta}$$

Recuerda:

 $csc\alpha = csc\beta$ $tan\alpha = tan\beta$

• Reemplazamos

$$\mathbf{M} = \frac{5\csc\beta}{\csc\beta} - \frac{2\tan\alpha}{\tan\alpha}$$

$$M = 5(1) - 2(1)$$

$$M = 5 - 2$$

iMuy bien!

Del gráfico

Efectúe

$$P = \sqrt{2} \csc\theta + 3 \tan\theta$$

Resolución:

$$P = \sqrt{2}csc\theta + 3tan\theta$$

Reemplazamos:

$$P = \sqrt{2}\csc 45^{\circ} + 3\tan 45^{\circ}$$

$$P = \sqrt{2} (\sqrt{2}) + 3 (1)$$

$$P = 2 + 3$$

$$csc\theta = csc45^{\circ}$$

$$tan\theta = tan45^{\circ}$$

Si α y θ son ángulos coterminales, tal que tan α = 4; efectúe

$$N = 3\tan\alpha - \frac{\tan\theta}{2}$$

$$tan\alpha = tan\theta = 4$$

iMuy bien!

Resolución:

$$N = 3\tan\alpha - \frac{\tan\theta}{2}$$

$$N = 3\tan\alpha - \frac{\tan\alpha}{2}$$

$$N = 3(4) - \frac{(4)}{2}$$

$$N = 12 - 2$$

N = 10

Siendo α y β ángulos coterminales, tal que

$$\cot \alpha + \cot \beta = -6 \land \beta \in IIC$$

Calcule: 9tana

$$\cot \alpha = \cot \beta$$

Propiedad recíproca

$$\tan\alpha = \frac{1}{\cot\alpha}$$

$$\cot \alpha + \cot \beta = -6$$

$$\cot \alpha + \cot \alpha = -6$$

$$2\cot\alpha = -6$$

$$\cot \alpha = -3 \longrightarrow \tan \alpha = -\frac{1}{3}$$

Piden:

$$9\tan\alpha = 8\left(-\frac{1}{3}\right)$$

 $9\tan\alpha = -3$

MUCHAS GRACIAS POR TUATENCIÓN

Tu curso amigo TRIGONOMETRÍA