

2. Encuentre el volumen del sólido generado por la rotación de la región delimitada por $y=x^2$ y x=2 alrededor del eje x.

Reyion: g(x,y): $0 \le x \le 2$, $0 \le y \le x^2$ of $f(x) = x^2$ of g(x) = 0 of x = 0 o

 $f(x) = x^{2}$ ec1 : x = 0 ec2 : x = 2 g(x) = 0 $h(x) = -x^{2}$ +

3. Calcule el volumen del sólido obtenido al rotar $y = \sqrt{x}$ en [0,4] alrededor del eje x.

Región: $q(x,y): 0 \le x \le 4, 0 \le y \le \sqrt{x}$ $p(x) = 0 \quad x_1 = 0 \quad x_2 = 4$ $y = 11 \quad x^2 = 911$

1. Use integración para demostrar la fórmula del área de un círculo.

$$x^{2}+y^{2}=n^{2}$$

$$y=\sqrt{r^{2}-x^{2}}$$

$$A_{0}=4\int y$$

$$Sen^{2}(x)+Cos^{2}(x)=1$$

$$\frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}}$$
 $\frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}}$
 $\frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} \frac{$

$$A = 4 \int_{0}^{\infty} r^{2} - x^{2} dx$$

$$A = 4 \int_{0}^{\infty} r^{2} (1 - 5cr^{2} lu) \cdot r (cs lu) du$$

$$Cos^{2} lu$$

$$A = 4r^{2} \int_{0}^{2} \cos^{2} u du \qquad (05^{2} (u) = \frac{11(05 \cdot 2u)}{2}$$

$$A = 4r^{2} \left[\frac{1}{2} \left(\int_{0}^{2} du + \int_{0}^{2} (05 \cdot 2u) du \right) \right]$$

$$A = 2r^{2} \left[u + \frac{1}{2} \int_{0}^{2} \sin(2u) du \right]$$

$$A = 2r^{2} \left[u + \frac{1}{2} \int_{0}^{2} \sin(2u) du \right]$$

$$A = 2r^{2} \left[u + \frac{1}{2} Son(2u) \right]$$

$$Son(\pi) = 0 \quad Son(\pi) = 0$$

$$A = 2r^{2} \left[u + \frac{1}{2} Son(2u) \right]$$

$$Son(2\pi) = 0$$

$$Son(2\pi) = 0$$

$$A = 2n^2 \left((0 + \frac{\pi}{2})_2 \right) + \frac{1}{2} \sec \left(\frac{\pi}{2}, 0 \right) - \frac{1}{2} \sec \left(\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$\int_{1}^{0} \frac{dx}{x^{2}} = \lim_{b \to 0} \int_{1}^{b} x^{-2} = \lim_{b \to 0} \left[\frac{1}{x} \right]_{1}^{1} = \lim_{b \to 0} \left[\frac{1}{b} \right]_{1}^{1} = \lim_{b \to 0} \left[\frac{1}{$$

$$Sen2(x) + (os2(x) = 1$$

$$(os2(x) = 1 - Sen2(x) \quad Ambos \quad ados \quad gor \quad r2$$

$$(r(os(x))2 = r2 - (r Sen(x))2$$

$$r^{2}(os^{2}(x) = r^{2}(1 - Sen^{2}(x))$$

$$x = r \cos(u)$$
 $x_2 = r \cos(u)$
 $si x_1 = 0$ $si x_2 = r$
 $0 = \cos(u)$ $r = r \cos(u)$
 $u = -\pi r \cos(u)$

