Universidade Federal do Espírito Santo Centro Tecnológico Departamento Informática

Relatório do exercício sobre Aplicações de Problemas de Valor no Contorno em Equações do Calor Unidimensional Transientes

Daniel Ribeiro Favoreto

Implementação

Nessa primeira parte, concentramos na implementação dos esquemas explícito, implícito e Crank-Nicolson para a solução da Equação do Calor Unidimensional Transiente.

Como o exercício foi dividido em 3 testes diferentes, e foi dada a implementação dos esquemas para o teste 1, não será apresentada nessa seção a implementação a respeito do teste 1. Os códigos foram enviados como anexo do email.

O teste 2 assim como o teste 1 se trata da equação do calor com condutividade térmica constante e fonte de calor nula, mas a única diferença em relação ao teste 1 se dá pelo fornecimento de um fluxo prescrito ao invés de valor prescrito. Para tratar esse caso, no esquema explícito adicionou-se o tratamento de fluxo prescrito na linha 45:

```
lambda = Kappa*dt/(h*h);
34
35
36
    for k = 1:npassos-1
37
38
        u(1,k+1) = 100;
39
40
41
      for i = 2:(n-1)
          u(i,k+1) = u(i,k) + lambda * (u(i-1,k) - 2*u(i,k) + u(i+1,k));
42
43
      end
44
45
       u(n,k+1) = u(n,k) + lambda * (u(n-1,k) - 2*u(n,k) + u(n,k));
46
47 end
```

Para o esquema implícito, adicionaram-se o tratamento do fluxo prescrito nas linhas 43 e 47:

```
36
    for k = 1:npassos-1
37
38
          u(1,k+1) = 100;
39
    #
          u(n, k+1) = 50;
40
41
         A(1,1) = 1;
42
43
         A(n,n) = 1 + lambda;
44
45
         b(1) = 100;
46
47
         b(n) = u(n,k);
48
49 - \text{for i} = 2:(n-1)
         A(i,i-1) = -lambda;
50
51
         A(i,i) = (1 + 2*lambda);
52
         A(i,i+1) = -lambda;
53
54
         b(i) = u(i,k);
55
   end
```

Para o esquema Crank-Nicolson, o fluxo prescrito foi tratado nas linhas 41,42 e 45,46:

```
38 for k = 1:npassos-1
39
40
        A(1,1) = 1;
41
        A(n,n) = 1 + lambda;
42
        A(n,n-1) = -lambda;
43
44
        B(1,1) = 1;
45
        B(n,n) = 1 - lambda;
        B(n,n-1) = -lambda;
46
47 L
48 - \text{for i} = 2:(n-1)
49
        A(i,i-1) = -lambda;
50
        A(i,i) = (1 + 2*lambda);
51
        A(i,i+1) = -lambda;
52
53
        B(i,i-1) = lambda;
        B(i,i) = (1 - 2*lambda);
54
55
        B(i,i+1) = lambda;
56 end
```

Já para o teste 3, somou-se dt às respectivas atualizações do vetor u.

Testes e análises

Foram realizados os testes numéricos para os testes 1,2 e 3. Como foi solicitado no exercício, foram feitos testes numéricos para h=1 e h=0.1 considerando métodos de aproximação levando em conta 3 intervalos de tempo diferentes, sendo eles menores do que (h*h)/2*a, maiores do que (h*h)/2*a e iguais a (h*h)/2*a.

Para o teste 1, temos os seguintes gráficos :

Explícito

h = 1

$\Delta t1 < 0.59880$:

$\Delta t2 = 0.59880$:

$\Delta t2 = 0.0059880$:

<u>Implícito</u>

h = 1

$\Delta t1 < 0.59880$:

$\Delta t2 = 0.59880$:

$\Delta t2 = 0.0059880$:

h = 1

 $\Delta t2 = 0.59880$:

$\Delta t2 = 0.0059880$:

Para o teste 2, temos os seguintes gráficos de solução:

Explícito

h = 1

 $\Delta t1 < 0.59880$:

 $\Delta t2 = 0.59880$:

h = 0.1

 $\Delta t2 = 0.0059880$:

h = 1

 $\Delta t2 = 0.59880$:

h = 0.1

h = 1

 $\Delta t2 = 0.59880$:

h = 0.1

 $\Delta t2 = 0.0059880$:

Para o teste 3, temos os seguintes gráficos de solução:

Explícito

h = 1

 $\Delta t1 < 0.59880$:

 $\Delta t2 = 0.59880$:

$\Delta t2 = 0.0059880$:

<u>Implícito</u>

h = 1

 $\Delta t1 < 0.59880$:

 $\Delta t2 = 0.59880$:

$$h = 0.1$$

$\Delta t2 = 0.0059880$:

h = 1

$\Delta t2 = 0.59880$:

 $\Delta t2 = 0.0059880$:

Com base nos testes numéricos realizados, temos que se tratando do teste 1 foi constatado que a acuidade das soluções sofreram pouquíssimas diferenças entre os 3 esquemas tanto para h=1 quanto para h=0.1. Porém o esquema de crank-nicolson se mostrou mais lento durante as execuções de teste, enquanto que o esquema explícito apresentou maior rapidez. Foi constatado que a variação do tempo quando era igual a 0.59880 obteve-se resultados mais precisos na solução. E enquanto mais se afastava desse valor tanto para mais quanto para menos, pior a qualidade da solução ficava. A escolha de h=0.1, ou seja, um menor espaçamento entre os pontos impactou no tempo de execução dos esquemas, tornando-os mais lentos.

Durante o teste 2, onde se tinha fluxo prescrito, o esquema explícito apresentou uma qualidade de solução inferior em relação ao implícito e crank-nicolson, porém, o explícito conseguiu tempos de execução inferiores aos demais. Crank-nicolson levou mais tempo para terminar sua execução em todos os testes. A escolha de h = 1 fez com que os tempos de execução fossem muito baixos em relação a h = 0.1.

No teste 3, o esquema Crank-Nicolson surpreedentemente apresentou uma qualidade de solução consideravelmente superior em relação ao implícito e explícito. Desconsiderando erros de implementação, houve uma observação no tempo de execução dos esquemas e constatou-se que o implícito foi mais eficiente embora não apresentasse qualidade de solução maior que o Crank-Nicolson.

Por conseguinte, o esquema do método Explícito apresentou melhor custo benefício em relação a eficiência e qualidade de solução, logo, levando alguma vantagem em relação aos demais.