Linux disztribúciók

Arch

Az Arch módon filozófia lényege, hogy hagyjuk meg egyszerűnek. Az Arch Linux alaprendszer egy minimális, de mégis működő GNU/Linux környezet. Megtalálható benne a Linux kernel, a GNU eszközök és rengeteg hasznos extra alkalmazás, mint például a links vagy vi. Ebből a letisztult és egyszerű kiindulási pontból pedig a felhasználó az igényeinek megfelelő rendszert építhet. Az Arch egyszerű init rendszerét a különböző BSD-változatok ihlették. A felhasználó egyetlen konfigurációs állomány (etc/rc.conf) segítségével végezheti el a beállításait. A rendszer konfigurálása így egyetlen szöveges fájl szerkesztésével végezhető.

Debian

Aki régebben kezdte a PC-s pályafutását, az már 1993-ból is emlékezhet a **Debian** nevére. A projekt több mint 20 éve létezik, és a mai napig érkeznek belőle új verziók, még ha sokkalta lassabban is, mint az olyan, mára népszerűbb variánsokhoz, mint az Ubuntu vagy a Linux Mint. Persze azért van előnye is a Debiannak, amely éppen emiatt jobban megfelel a nagyon konzervatív ízlésnek, és meglehetősen stabil környezet is egyben. Anno ebből kezdett el építkezni az Ubuntu is.

Fedora

A **Fedora** az ingyenes szoftverekre koncentrál, méghozzá az eddigiektől eltérő formában. Itt nincsen saját asztali környezet, mint az Ubuntuban, nincsenek extra szoftverek, csak upstream szoftverek. Mindez azt jelenti, hogy a programokat a saját egyedi eszközeik vagy javításaik nélkül integrálják a rendszerbe, alapesetben GNOME 3 asztali környezettel szállítva. A Fedora kiadásai nem rendelkeznek hosszabb távú támogatással.

Mandriva

A Mandriva a francia fejlesztésű, 1998 -ban megjelent Mandrake utódja. A Fedorához hasonlóan igyekszik kerülni a nem nyílt megoldásokat. Csomagkezelője az *rpmdrake*.

A Mandriva évek óta pénzügyi gondokkal küzd, ezért egyes fejlesztői létrehozták a Mageia forkot.

UBUNTU

A Debianra épült rendszer rengeteg szoftverrel kiegészítve érkezik, egyedi technológiákkal, GNOME 2 helyett pedig Unity asztali környezettel. A rendszert a Canonical félévente frissíti, a stabil, hosszútávú támogatással rendelkező verziók (LTS) pedig kétévente jelennek meg. Egy ideje az Ubuntu **már okostelefonon és tableten is használható**.

KUBUNTU

A **Kubuntu** az Ubuntu Linux-disztribúció hivatalos változata, csak GNOME helyett KDE grafikus környezetet használ. Az Ubuntu projekt része és ugyanazon a rendszeren alapul. A Kubuntu és az Ubuntu képesek egymás mellett működni az *ubuntu-desktop* és a *kubuntu-desktop* csomagok telepítésével. A Kubuntuban lévő összes csomag az Ubuntu csomagforrásokat használja. A Kubuntu projekt tartalmazza az Ubuntu szolgáltatásait. Rendszeresen jelenik meg, egy időben az Ubuntu kiadásával.

XUBUNTU

A **Xubuntu** az Ubuntu hivatalos származéka. **Xfce** grafikus környezetet használ. Az Xubuntut azon felhasználóknak szánják, akik kisebb számítógépes ismerettel rendelkeznek vagy azoknak, akik egy hatékony grafikus környezetben és egy gyors rendszeren szeretnének dolgozni. Főként GTK+ alkalmazásokat tartalmaz. Rendszerigénye jóval kisebb az Ubuntu vagy Kubuntu kiadásoknál megszokottól, így régebbi számítógépeken is használható.

OpenSUSE

A rendszer a Novellnek hála született, amely 2003-ban megvásárolta a SuSE Linuxot, azóta pedig továbbra is biztosítja a SUSE Linux Enterprise kiadást az üzleti felhasználók számára. Régen a SUSE volt talán a legbarátságosabb és legjobban ajánlott Linux-disztribúció, de az idő múlásával az Ubuntu ezeket a jelzőket és címeket elhódította tőle, hiszen jobban alkalmazkodott a felhasználók igényeihez.

Red Hat

A Red Hat Linuxot elsősorban szerverek, vagy vállalati számítógépek operációs rendszereként fejlesztették ki. Népszerű a szerverfarmot üzemeltető vállalatok körében. A Red Hat Linux grafikus telepítővel rendelkezik, amit *Anacondá*-nak hívnak. Ez a könnyű használatot tette lehetővé kezdők számára is. Rendelkezik egy beépített segédeszközzel is, amit *Lokkit*-nek hívnak és a tűzfal konfigurációjára használhatjuk.

Slackware

A Slackware a legidősebb linux disztribúció (1993 óta fejlesztik). Alapértelmezett asztali környezete a KDE. Kezelhetőségét tekintve nem nagyon változtattak rajta a fejlesztők, ezért konzervatív disztribúciónak tekinthető. A Slackware csomagok gzippel tömörített tarballok, amelyek előre lefordított szoftvereket tartalmaznak, a csomag kiterjesztése pedig ".tgz". A Slackware a 13.0-s kiadással hivatalosan támogatott architektúrává tette az x86-64-et.

Mint

A Linux Mint érdekessége, hogy valójában az Ubuntura építkezik, és ugyanazt a szoftveres hátteret alkalmazza. Eredetileg azért lett belőle siker, mert olyan médiakodekeket és szoftvereket is biztosított, amelyek az Ubuntuból gyárilag kimaradtak. Mára a Linux Mint önálló lett, a Unity felület helyett pedig a hagyományosabb Cinnamon vagy MATE asztal áll a rendelkezésünkre. A frissítések kevésbé sűrűek, a kritikus frissítések pedig nem települnek automatikusan.

JOGOSULTSÁGOK

- minden állománynak van tulajdonosa, csoportja és mindenki más
- mindezekhez tartozik olvasási (r), írási (w) és futtatási (x) jog
- a fájl(ok) futtatásához rx kell és a mappa megnyitáshoz is szintén rx kell

Ezek a betűk, pontosabban az rwx trió, mind mind egy-egy angol szónak a betűi, és mivel olvasásról, írásról és futtatásról beszélünk, így ezeknek a betűknek az angol megfelelője Read, Write, eXecute.

Kilistázás

Parancssori utasítás: ls -la

```
root@ubuntu−server:~# ls −la
ltotal 36
drwxr–xr–x <mark>5 hallgato hallgato 4096 aug</mark>
                                        30 12:22
drwxr–xr–x 3 root
                     root
                              4096 aug
                                        30 12:17
-rw————— 1 hallgato hallgato  142 aug
                                        30 12:22 .bash_history
–rw–r––r−– 1 hallgato hallgato 220 aug
                                        30 12:17 .bash_logout
-rw–r––r–– 1 hallgato hallgato 3771 aug - 30 12:17 .bashrc
drwx–––– <mark>3 hallgato hallgato 4096 aug</mark>
                                        30 12:20 .cache
drwx----- 3 root
                     root
                              4096 aug
                                        30 12:20 .config
drwx----- 3 root
                                         30 12:20 .local
                     root
                              4096 aug
-rw-r--r-- 1 hallgato hallgato 655 aug 30 12:17 .profile
<u>-rw-r--r--</u>1 hallgato hallgato 0 aug 30 12:18 .sudo<u>as_admin_</u>successful
root@ustuntu−server:~#
```

Jogosultsági tábla

Jogosultsági tábla

Jogosultság – <i>chmod parancs</i>				
Engedélyek	Tulajdonos	Csoport	Mindenki más	
Olvasás	r	r	r	
Írás	W	w	W	
Futtatás	X	X	X	
Összegezve:	rwx	rwx	1WX	

Jogosultsági példa

Ha egy fájlnak a jogosultsága "-rw-r-r-" akkor a következőképpen értelmezzük:

Ezt az utolsó 9 karaktert "rw-r-r-" 3 részre oszthatjuk fel, pontosabban:

- a fájl tulajdonosa: rw-
- azok a felhasználók, akik abba a csoportba tartoznak amiben a fájl is van: r-
- és azok a felhasználók, akik se nem tulajdonosai a fájlnak és se nem tartoznak abba a csoportba amibe a fájl tartozik: r-

Láthatjuk, hogy

- a fájl tulajdonosa (rw-) olvashatja, írhatja, de nem futtathatja a fájl
- ▶ a fájl csoportjába tartozó felhasználók (r-) csak olvashatják a fájlt, írni és futtatni már nincs joguk
- az összes többi felhasználó (r-) akik nem a fájl tulajdonosai és nem is tartoznak a fájl csoportjába, azok is szintén csak olvashatják a fájlt

Jogosultság beállítás

A jogosultságokat a "chmod" paranccsal tudjuk elvégezni.

- + Hozzáad egy engedélyt.
- Elvesz egy engedélyt.
- = Beállítja az engedélyt.
- r Olvasási engedély hozzáadása.
- w Írási engedély hozzáadása.
- x Végrehajtási / Futtatási engedély hozzáadása.
- u Engedélyek beállítása a fájl, könyvtár tulajdonosának.
- g Engedélyek beállítása a csoport számára.
- o Engedélyek beállítása mindenki más számára.
- a Engedélyek beállítása minden felhasználó számára. (tulaj, csoport, mindenki más)
- -R A fájlok jogosultságait az alkönyvtárban is módosítja (rekurzív módon).

Példa

chmod u+x gyakorlas.txt

Futtatási jogosultságot ad a fájl tulajdonosának.

chmod go-rx gyakorlas.txt

Visszavonja az olvasási és futtatási jogosultságot a csoport tagjaitól és mindenki mástól.

chmod a=r gyakorlas.txt

A fájl jogosultságait csak olvashatóra állítja minden felhasználó számára

Jogosultság számokkal

Jogosultság – <i>chmod parancs</i>				
Engedélyek	Tulajdonos	Csoport	Mindenki más	
Olvasás	4	4	4	
Írás	2	2	2	
Futtatás	1	1	1	
Összegezve:	7	7	7	

Nézzük meg megint, hogy ha egy állománynak **644** a jogosultsága, akkor az mit is takarhat. Most meg fogunk lepődni, hiszen ha ránézünk a két táblázatra, ez ugyanazt jelenti mint az előbb említett rw-r-r-, azaz:

- a fájl tulajdonosa (4+2=6) olvashatja, írhatja, de nem futtathatja a fájl
- a fájl csoportjába tartozó felhasználók (4+0=4) csak olvashatják a fájlt, írni és futtatni már nincs joguk
- az összes többi felhasználó (4+0=4) akik nem a fájl tulajdonosai és nem is tartoznak a fájl csoportjába, azok is szintén csak olvashatják a fájlt

IP alapok

(Ismétlés)

IP címek IPv4

4 db decimális szám ponttal elválasztva

X

.

X

.

X

•

Χ

1db decimális szám 8 biten ábrázolva bináris számrendszerben

$$2^7$$

 2^{6}

 2^5

 2^4

 2^3

1

 2^1

 2^0

PI:
$$181 = 128 + 32 + {}^{128}_{16} + 4 + {}^{64}_{1}$$

32

16

8

4

2

1

 2^6 2^5 2^4 2^3 2^2

128

 2^7

64

32

16

8

4

2

 2^1

IP címek osztályozása

A osztály

0.... • ... • ... • ...

IP címek osztályozása

B osztály

10.... • ... • ... • ...

IP címek osztályozása

C osztály

```
1 1 0.... • ... • ...
```

D és E osztályok

"D" osztály - 224.0.0.0 - 239.255.255.255
 1110 ...
 Multicasting céljaira fenntartva.
 A tartomány több blokkra van osztva
 Nincs hálózati maszk
 ld. RFC 5771

"E" osztály - 240.0.0.0 - 255.255.255.255
 1111 ...
 Kísérleti céllal fenntartott címek, nincs hálózati maszk

Hálózati maszk

Az a szám, amely meghatározza, hogy az IP-cím mely része **hálózat**i, és mely része **állomáscím**.

Az alhálózati maszk (subnet mask) segítségével a rendszergazdák a helyi hálózatban egymástól elkülönülő **alhálózatokat** tudnak létrehozni.

IP-cím: 196.225.15.5

Alhálózati maszk: 255.255.255.0

Kettes számrendszerben:

IP-cím: 11000100 11100001 00001111 00000101

Alh.maszk: 11111111 11111111 1111111 00000000

A két szám bitenkénti ÉS (AND) műveletet elvégezve megkapjuk a hálózat címét:

11000100 11100001 00001111 00000000

Jelöl	Címek	Alháló maszk d.	Alháló maszk bin.
/8	16777216	255.0.0.0	11111111.00000000.00000000.00000000
/9	128x65536	255.128.0.0	11111111.10000000.00000000.00000000
/10	64x65536	255.192.0.0	11111111.11000000.00000000.00000000
/11	32x65536	255.224.0.0	11111111.11100000.00000000.00000000
/12	16x65536	255.240.0.0	1111111111110000.00000000.00000000
/13	8x65536	255.248.0.0	1111111111111000.00000000.00000000
/14	4x65536	255.252.0.0	1111111111111100.00000000.00000000
/15	2x65536	255.254.0.0	1111111111111110.000000000.00000000
/16	1x65536	255.255.0.0	11111111111111111100000000.00000000
/17	128x256	255.255.128.0	11111111111111111111110000000.00000000
/18	64x256	255.255.192.0	1111111111111111111111000000.00000000
/19	32x256	255.255.224.0	11111111111111111111100000.00000000
/20	16x256	255.255.240.0	11111111111111111111110000.00000000
/21	8x256	255.255.248.0	1111111111111111111111000.00000000

Jelöl	Címek	Alháló maszk d.	Alháló maszk bin.
/22	4x256	255.255.252.0	11111111111111111111100.00000000
/23	2x256	255.255.254.0	111111111111111111111110.00000000
/24	1x256	255.255.255.0	11111111111111111111111111100000000
/25	128x1	255.255.255.128	111111111111111111111111111111111111111
/26	64x1	255.255.255.192	111111111111111111111111111111111111111
/27	32x1	255.255.255.224	1111111111111111111111111111100000
/28	16x1	255.255.255.240	11111111111111111111111111110000
/29	8x1	255.255.255.248	11111111.11111111.11111111111000
/30	4x1	255.255.255.252	11111111.11111111.111111111100
/31	2x1	255.255.255.254	111111111111111111111111111111111111111
/32	1x1	255.255.255.255	11111111.11111111.111111111111111111111

Hatókör szerint

Nyilvános

► Magánhálózati

► Automatikus konfigurációnál használt

Magánhálózati címtartományok

►A 10.0.0.0 - 10.255.255.255

►B 172.16.0.0 - 172.31.255.255

►C 192.168.1.0 – 192.168.255.255

Megoldások az IPv4 címek kis száma miatti problémára

► CIDR, VLSM (alhálózatok számítása maszkokkal)

► NAT

► IPv6

DHCP

DHCP üzenetek

ттС/1 ———	DHCP discover	— V:~-~1~414
Úgyfél —	Szórt üzenet	→ Kiszolgáló
	255.255.255	
ÜαC/1 4	DHCP offer	V:~1~414
Ugyfél ←	Szórt üzenet	— Kiszolgáló
	255.255.255	
іїf/.1 —	DHCP request	→ Vianalaálá
Ügyfél —	Szórt üzenet	→ Kiszolgáló
	255.255.255	
TT C/1 4	DHCP ack	TZ' 1 /1/
Ügyfél ←	Szórt üzenet	— Kiszolgáló
	255.255.255	
	/var/log/me	essages

Mit kap az ügyfél?

- ► IP cím
- Átjáró címe (forgalomirányító)
- ▶ DNS kiszolgálók címei
- ► DNS tartománynév, keresési tartományok
- ► Alhálózati maszk
- ▶ Bérleti időtartam
- ► WINS csomóponttípus
- ► WINS kiszolgálók címei

Kiszolgáló telepítése

- \$ sudo apt-get update
- \$ sudo apt-get install isc-dhcp-server

Fontosabb állományok szerver oldalon

- /etc/dhcp/dhcpd.conf
- /etc/default/isc-dhcp-server
- /var/lib/dhcp/dhcpd.leases

/etc/dhcp/dhcpd.conf

```
authoritative;
ddns-update-style none;
option domain-name "gamf.hu";
option domain-name-servers 10.1.51.23, 10.1.51.25;
option broadcast-address 192.168.1.255;
option routers 192.168.1.254;
option subnet-mask 255.255.255.0;
default-lease-time 600; # 10 perc
max-lease-time 7200; # 2 óra
```

/etc/dhcp/dhcpd.conf

```
host belzebub
{ hardware ethernet 08:00:27:e4:f3:45;
 fixed-address 192.168.1.5;
 option host-name belzebub;
subnet 192.168.1.0 netmask 255.255.255.0{
 range 192.168.1.10 192.168.1.250;
```

Hova szolgáltasson?

Mely interfész(ek)en szolgáltasson?

- \$ sudo nano /etc/default/isc-dhcp-server
- ► INTERFACES="eth1"

Indítás

- \$ sudo service isc-dhcp-server restart
- \$ sudo service isc-dhcp-server status

Kliensen

▶ \$ sudo dhclient

Kliensen

/var/lib/dhcp/dhclient-xxxx-ethx.lease (Desktop)
/var/lib/dhcp/dhclient.eth0.leases (Server)

```
dhclient-9~th0.lease
                            505/505
lease {
 interface "eth0";
 fixed-address 192.168.175.153;
 option subnet-mask 255.255.255.0;
 option routers 192.168.175.2;
 option dhcp-lease-time 1800;
 option dhcp-message-type 5;
 option domain-name-servers 192.168.175.2;
  option dhcp-server-identifier 192.168.175.254;
 option broadcast-address 192.168.175.255;
 option netbios-name-servers 192.168.175.2;
  option domain-name "localdomain";
 renew 4 2013/08/22 21:45:14;
 rebind 4 2013/08/22 21:56:31;
 expire 4 2013/08/22 22:00:16;
```

Kliens konfiguráció

/etc/dhcp/dhclient.conf

```
request subnet-mask, broadcast-address, time-offset, routers, domain-name, #domain-name-servers, #domain-search, host-name, netbios-name-servers, netbios-scope, interface-mtu, rfc3442-classless-static-routes, ntp-servers, dhcp6.domain-search, dhcp6.fqdn, dhcp6.name-servers, dhcp6.name-servers, dhcp6.sntp-servers;
```