Visión Artificial

VAI92-1

Maria Constanza Torres Madroñero

Contenido del curso

1. INTRODUCCIÓN A LA VISIÓN ARTIFICIAL

- Introducción
- Matlab
- Procesamiento básico de imágenes

2. Transformación de intensidad y filtros espaciales

- Procesamiento del histograma
- Filtrado en el dominio del espacio
- Modelos de espacio de color

3. Morfología

4. SEGMENTACIÓN DE IMÁGENES

- Detección de bordes
- Detección y manipulación de líneas y contornos

5. PROCESAMIENTO DE VIDEO

6. PROYECTO FINAL

Teoría de Probabilidades

- Teoría que describe y predice las salidas de un experimento inexacto que se repite varias veces
- La base del análisis de probabilidades es la estimación de la probabilidad de que cierto evento ocurra
- Una vez se realiza la estimación, se emplean los axiomas de la teoría de probabilidad para derivar la probabilidad de otro evento de interés

Estimación Predicción

Teoría de Probabilidades

- P() es la función de probabilidad que le proporciona a cada evento del experimento un número real.
- Propiedades de P()
 - $P(A) \ge 0$ para todo evento $A \in F$
 - P(Ω) = 1
 - Para dos eventos, A y B, mutualmente exclusivos:

$$P(A \cup B) = P(A) + P(B)$$

- $P(A) = 1 P(\bar{A})$
- P(Φ) = 0
- $P(A \cup B) = P(A) + P(B)$
- Si B esta dentro de A, entonces P(B) ≤ P(A)

Variables Aleatorias

- Una variable aleatoria representa las salidas de un experimento como un número real
- Las variables aleatorias representan una cantidad de interés que no se conoce es su totalidad
 - Ejemplo:
 - Intensidad de un pixel
- Las variables aleatorias pueden ser continuas, discretas y mixtas.

Variables Aleatorias - caracterización

- Caracterización completa
 - Función de probabilidad de masa
 - Función de densidad de probabilidad
 - Función de distribución acumulativa
- Caracterización parcial
 - Estadisticas

Variables Aleatorias - caracterización

 La función de probabilidad de masa es una caracterización completa de una variable aleatoria discreta

$$P_X(x) = P(X = x) = P(\{s \in \Omega | X(s) = x\})$$

Nota:

$$P_X(x) \ge 0$$
 for $-\infty < x < \infty$

$$\sum_{X=-\infty}^{\infty} P_X(x) = 1$$

Variables Aleatorias - caracterización

 La función de densidad es una caracterización completa de una variable aleatoria continua.

$$f_X(x) \ge 0$$
 for $-\infty < x < \infty$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Variables Aleatorias - caracterización

 La función de distribución acumulativa es una caracterización completa de una variable aleatoria continua o discreta.

$$F_X(x) = P(X \le x) = P(\{s \in \Omega | X(s) \le x\})$$

Esta relacionada a la función de densidad como:

$$f_X(x) = \frac{dF_X(x)}{dx}$$

$$F_X(x) = \int_{-\infty}^x f_x(x) dx$$

Variables Aleatorias - caracterización

- Caracterización completa
 - Función de probabilidad de masa
 - · Función de densidad de probabilidad
 - Función de distribución acumulativa
- Caracterización parcial
 - Estadistica

Variables Aleatorias - caracterización estadística

Valor esperado – valor medio – primer momento:

V.A. Continua:

$$\eta_{x} = E[X] = \int_{-\infty}^{\infty} x f_{X}(x) dx$$

V.A. Discreta:

$$\eta_X = E[X] = \sum_{-\infty}^{\infty} x P_X(x)$$

Variables Aleatorias - caracterización estadística

Varianza y desviación estándar:

Varianza of X:

$$\sigma^2 = E\{(X - \eta_x)^2\} = E\{X^2\} - (\eta_x)^2$$

Desviación estándar de X

$$\sigma = \sqrt{\sigma^2}$$

Variables Aleatorias - caracterización estadística

Momentos de alto orden

Momento k-th:

$$m_k = E\{X^k\} = \int_{-\infty}^{\infty} x^k f(x) dx$$

Momento central k-th:

$$\mu_k = E\{(X - \eta_x)^k\} = \int_{-\infty}^{\infty} (x - \eta_x)^k f(x) dx$$

Variables Aleatorias - ejemplos

 Una variable aleatoria X es uniformemente distribuida entre a y b si tiene una función de densidad:

Caracterización parcial:

$$\eta_x = (x_1 + x_2)/2$$

$$\sigma^2 = (x_2 - x_1)^2/12$$

Variables Aleatorias - ejemplos

 Una variable aleatoria X tiene una distribución normal si:

$$p_X(x) = \frac{1}{2\pi\sigma} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Caracterización parcial:

$$\eta_x = \mu$$

$$\sigma^2 = \sigma^2$$

Histograma de una imagen

- Para una imagen con niveles de grises en el rango [0 L-1], el histograma es una estimación de la probabilidad de ocurrencia de un nivel de gris r_k .
- Se describe por la función discreta

$$h(r_k) = n_k$$

donde:

- r_k es el nivel de gris en el rango [0 L-1]
- n_k es el número de pixeles en la imagen con el nivel de gris r_k

Histograma de una imagen

106	97	109	143	161	135	84	47	48	40	38	44	50	51	56	63
111	118	137	155	144	106	68	51	54	44	39	42	44	45	51	60
119	135	153	152	126	94	77	75	61	49	38	37	38	39	45	54
104	127	147	147	130	113	100	92	73	57	43	40	40	38	41	46
67	97	127	142	147	143	125	105	86	68	52	47	46	40	38	39
61	80	102	116	128	136	134	126	94	86	71	56	49	49	45	40
55	71	87	95	102	111	115	114	103	90	73	64	64	65	56	45
51	62	72	72	72	80	91	98	104	90	76	78	88	92	81	68
52	60	65	62	57	60	72	83	92	84	84	96	111	114	108	102
56	61	64	62	54	52	60	69	81	83	96	115	125	124	122	125

$$h(60) = 4$$

 $h(147) = 3$

Histograma normalizado

 Es común normalizar el histograma dividiendo cada uno de sus valores por el número de pixeles n en la imagen.

$$p(r_k) = n_k/n$$

• La suma de los valores de $p(r_k)$ es 1.

Histograma - aplicaciones

- Realce de imágenes (estudiada en esta sección)
- Compresión de imágenes
- Segmentación
- Procesamiento de imágenes en tiempo real

Propiedades

- El histograma proporciona una descripción global de la apariencia de una imagen
- La imagen no se puede deducir del histograma
- Dos imágenes diferentes pueden tener asociado el mismo histograma
- Los histogramas no contienen información espacial

Ecualización del Histograma

Método para mejorar el aspecto de una imagen

 Consiste en una transformación T() tal que los niveles de grises en la imagen ecualizada tengan una distribución uniforme.

Ecualización del Histograma

Paso 1: Para una imagen escala de grises calcule:

$$p(r_k) = n_k/n$$

 n_k es el número de pixeles en la imagen con el nivel de gris r_k

n: número de pixeles en la imagen

k: nivel de gris [0 L-1]

Paso 2: Calcule la transformación:

$$s_k = T(r_k) = \sum_{j=0}^k p(r_j)$$

Ecualización del Histograma

Paso 3: Calcule el valor del nuevo pixel:

$$\hat{k} = \lfloor (L-1)S_k \rfloor$$

Ecualización del Histograma-Example

Considere una imagen de 64x64 pixeles en escala de

gris con 8 niveles.

k	n _k
0	790
1	1023
2	850
3	656
4	329
5	245
6	122
7	81

Calcule:

- Histograma normalizado
- Ecualización del histograma

Ecualización del Histograma-Example

Histograma normalizado

k	n _k	p(r _k)
0	790	0,19
1	1023	0,25
2	850	0,21
3	656	0,16
4	329	0,08
5	245	0,06
6	122	0,03
7	81	0,02

Ecualización del Histograma-Example

Ecualización del histograma

	\boldsymbol{k}
$s_k = T(r_k)$	$=\sum_{j=0}p(r_j)$

k	n _k	p(r _k)	s _k
0	790	0,19	0,19
1	1023	0,25	0,44
2	850	0,21	0,65
3	656	0,16	0,81
4	329	0,08	0,89
5	245	0,06	0,95
6	122	0,03	0,98
7	81	0,02	1

Ecualización del Histograma-Example

Ecualización del histograma

$$\hat{k} = \lfloor (L-1)S_k \rfloor$$

k	n _k	p(r _k)	s _k	k	p(s _k)
0	790	0,19	0,19	1	0,19
1	1023	0,25	0,44	3	0,25
2	850	0,21	0,65	5	0,21
3	656	0,16	0,81	6	
4	329	0,08	0,89	6	0,24
5	245	0,06	0,95	7	
6	122	0,03	0,98	7	0,11
7	81	0,02	1	7	

Ecualización del Histograma-Example

Ecualización del Histograma-Example

Ecualización del Histograma-Example

Especificación del histograma

- La ecualización del histograma obtiene una imagen cuyos pixeles están uniformemente (en teoría) distribuidos entre todos los niveles de grises.
- Sin embargo, a veces se desea transformar a una imagen con un histograma pre-definido.

Especificación del histograma

Especificación del histograma

- Dada una imagen en escala de grises y un histograma predefinido, la especificación del histograma busca una transformación tal que la imagen de salida tenga un histograma similar al pre-definido.
- Información de entrada:
 - Imagen
 - Histograma deseado

Especificación del histograma

Paso 1: Para una imagen escala de grises calcule:

$$p(r_k) = n_k/n$$

 n_k es el número de pixeles en la imagen con el nivel de gris r_k

n: número de pixeles en la imagen

k: nivel de gris [0 L-1]

• Paso 2: Calcule la transformación:

$$s_k = T(r_k) = \sum_{j=0}^k p(r_j)$$

Especificación del histograma

• Paso 3: Basado en el histograma deseado $p_{out}(r_k)$, calcule:

$$v_k = G(z_k) = \sum_{j=0}^k p_{out}(z_j) = s_k$$

• Para cada pixel en la imagen original, si el valor del pixel es r_k , calcule el correspondiente s_k , y seleccione el valor final z_k

Especificación del histograma-Example

Considere la imagen 64x64:

k	n _k	p(r _k)
0	790	0,19
1	1023	0,25
2	850	0,21
3	656	0,16
4	329	0,08
5	245	0,06
6	122	0,03
7	81	0,02

Especificación del histograma-Example

Se desea transformar la imagen en una nueva, con el histograma $p_{out}(z_k)$

k	z _k	$p_{out}(z_k)$
0	0	0,00
1	1	0,00
2	2	0,00
3	3	0,15
4	4	0,20
5	5	0,30
6	6	0,20
7	7	0,15

Especificación del histograma-Example

• Paso 1 y 2:

k	n _k	p(r _k)	s _k
0	790	0,19	0,19
1	1023	0,25	0,44
2	850	0,21	0,65
3	656	0,16	0,81
4	329	0,08	0,89
5	245	0,06	0,95
6	122	0,03	0,98
7	81	0,02	1

Especificación del histograma-Example

• Paso 3:

k	z _k	$p(z_k)$	G(z _k)
0	0	0,00	0,00
1	1	0,00	0,00
2	2	0,00	0,00
3	3	0,15	0,15
4	4	0,20	0,35
5	5	0,30	0,65
6	6	0,20	0,85
7	7	0,15	1

Especificación del histograma-

• Para cada pixel en la imagen original, si el valor del pixel es r_k , calcule el correspondiente s_k , y seleccione el valor final z_k

k	s _k	$G(z_k)$	Z_k
0	0,19	0,15	3
1	0,44	0,35	4
2	0,65	0,65	5
3	0,81	0,81	6
4	0,89	0,81	6
5	0,95	1	7
6	0,98	1	7
7	1	1	7

Especificación del histograma-Example

Para la imagen de salida tenemos:

k	n _k	$p(r_k)$	$p_{out}(z_k)$
0	0	0	0,00
1	0	0	0,00
2	0	0	0,00
3	790	0,19	0,15
4	1023	0,25	0,20
5	850	0,21	0,30
6	985	0,25	0,20
7	448	0,11	0,15

