CS 83: Computer Vision Winter 2024 $Quiz\ 4 - 02/07/2024$ $Prof.\ Pediredla \qquad Student:\ Amittai\ Siavava$

Credit Statement

I discussed solution ideas with:

- 1. Ivy (Aiwei) Zhang
- 2. Angelic McPherson

However, all typed work is my own, with reference to class notes especially on homographies and transformations. I also referred to some of my earlier notes on linear algebra (from **MATH 22**) on the interpretations of matrices and their null-spaces, column-spaces, and row-spaces.

Problem 1.

(i) Prove that there exists a homography ${\bf H}$ that satisfies

$$\mathbf{x}_1 \equiv \mathbf{H}\mathbf{x}_2 \tag{1.1}$$

between the 2D points (in homogeneous coordinates) \mathbf{x}_1 and \mathbf{x}_2 in the images of a plane Π captured by two 3×4 camera projection matrices \mathbf{P}_1 and \mathbf{P}_2 respectively. The \equiv symbol is equality up to scale. Note: A degenerate case happens when the plane Π contains both cameras' centers, in which case there are infinite choices of \mathbf{H} satisfying the above equation. You can ignore this special case in your answer.

- (ii) Prove that there exists a homography \mathbf{H} that satisfies equation 1.1 given two cameras separated by a pure rotation. That is, for camera 1, $\mathbf{x}_1 = \mathbf{K}_1 \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X}$, and for camera 2, $\mathbf{x}_2 = \mathbf{K}_2 \begin{bmatrix} \mathbf{R} & \mathbf{0} \end{bmatrix} \mathbf{X}$. Note that \mathbf{K}_1 and \mathbf{K}_2 are the 3 × 3 intrinsic matrices of the two cameras and are different. \mathbf{I} is the 3 × 3 identity matrix, $\mathbf{0}$ is the 3 × 1 zero vector, and \mathbf{X} is a point in 3D space. \mathbf{R} is the 3 × 3 rotation matrix of the camera.
- (iii) Suppose that a camera is rotating about its center C, keeping the intrinsic parameters K constant. Let H be the homography that maps the view from one camera orientation to the view at a second orientation. Let θ be the angle of rotation between the two orientations. Show that H^2 is the homography corresponding to a rotation of 2θ .

Problem 2.

In class, we say that a camera matrix satisfies the equation $\mathbf{x}_i = \mathbf{P}\mathbf{X}_i$, and that six 3D-2D matches $\mathbf{x} \leftrightarrow \mathbf{X}$ are sufficient to recover \mathbf{P} using a linear (non-iterative) algorithm.

Find a linear algorithm for computing the camera matrix \mathbf{P} in the special case when the camera location (but not orientation) is known. Ignoring degenerate configurations, how many 2D-3D matches are required for there to be a unique solution? Justify your answer.