

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electrical Extra

Instructor: Dikun Yang Feb – May, 2020

Learn From YouTube

Electrical Resistivity Mapping to Evaluate a Sinkhole Collapse Feature

https://youtu.be/T9_EVjijNhE

Questions

- What are the geological problems at this site in Tennessee?
- What was the electrical survey layout? What is the line and electrode spacings?
- What are the three major geological units imaged by the survey? And what are their resistivity ranges?
- What is the approximate depth of investigation of this survey?
- How did the interpreter find the disappeared in-filled sands?
- How were the 3D resistivity models created?
- In addition to confirming the known sinkhole, what else did the interpreter find in the 3D models?

Long Electrode (Casing) Electrical Method

Use steel well casings as the electrodes: electrical probes at depth

Monitoring of Injected Fluid

Shale gas hydraulic fracturing

Waste water disposal

Enhanced Geothermal System

Shale Gas Hydraulic Fracturing

But where is **fluid**?

- Pumping schedule
- Groundwater contamination
- Induced seismicity

Alternatively Electrical?

Conductivity contrast

- Hydro-frac: brine, additives, treated proppant, etc.
- Wastewater: used frac fluid

Detectable signals

- Small perturbation (10¹ m) at a great depth (10³ m)
- Interference from metallic infrastructure
- Possible with **steel casings**

Difficulty: Simulation of Steel Casings

- Require 3D mesh generation and refinement
- Difficulty in modeling multiple wells and and pipelines
- Computing time not matching the temporal scales of injection (minutes)
- Not fast enough for real-time analysis

RESnet: A circuit perspective

3D earth model

Monitoring Injected Fracturing Fluid with Casings

High Resolution Imaging of Fracturing Fluid

• Simulate a number of examples for training

Electrical and Deep Learning Imaging Results

A resolution that regular surface methods can never achieve

Induced Polarization (IP)

IP Effect in DC Data

- 1) Voltage applied by transmitter
 - \rightarrow instantaneous (V_{σ}) increase due to ρ
- 2) Voltage increases as ions accumulate:

$$V_{off}(t) = V_s\,e^{-t/ au}$$

- 3) Saturation of ionic charges
 - \rightarrow DC voltage ($V_m = V_\sigma + V_s$)
- 4) Voltage from transmitter removed
 - \rightarrow instantaneous loss in secondary potential (equal to V_{σ})
- 5) IP voltage discharges during off-time

$$V_{on}(t) = V_{\sigma} + V_{s} \Big[1 - e^{-t/ au} \Big]$$

	Not chargeable	Chargeable
Source (Amps)		
Potential (Volts)		

Chargeability – Capability of Holding Charges

Type 1: Membrane polarization - ions accumulate at pore throat

Equilibrium State

Voltage Applied

Separation of +ve and -ve ions

Chargeability – Capability of Holding Charges

Type 2: Electrode polarization: Ions accumulate at metals

- Pore space is blocked by metallic particles
- Metallic particles become electrically charged and attract nearby ions
- This is why the waveform of dc survey switches polarity

Electric double layer

Hypothetical anomalous ion distribution near a solid-liquid interface. Net electric dipole moment

Chargeability – A Diagnostic Physical Property

Chargeability is not thoroughly understood in theory but it is often related to:

Clays

Pore-Water Salinity

Tortuosity

Use chargeability to characterize the earth:

- Environmental: Contamination, groundwater...
- Mining: Disseminated sulphides (porphyry)
- Oil/gas:

Time-domain IP Data

Intrinsic chargeability (dimensionless)

$$\eta = \frac{V_s}{V_m}$$

$$d_{IP} = rac{V_s(t)}{V_m}$$
 mV/V

Integrate over the decay (discharge period)

$$d_{IP}=rac{1}{V_m}\int_{t_1}^{t_2}V_s(t)dt$$
 (msec)

Frequency-domain IP Data

Percent frequency effect:

$$d_{IP} = PFE = 100 \left(\frac{\rho_{a2} - \rho_{a1}}{\rho_{a1}} \right)$$

Phase:

$$d_{IP} = \text{phase (mrad)}$$

IP Modeling

Chargeability: alter conductivity

$$\sigma = \sigma(1 - \eta)$$

$$\phi_{\eta} = \mathcal{F}_{dc}[\sigma(1 - \eta)]$$

Apparent chargeability

$$\eta_a = \frac{\phi_s}{\phi_{\eta}} = \frac{\phi_{\eta} - \phi_{\sigma}}{\phi_{\eta}}$$

$$\eta_a = \frac{\mathcal{F}_{dc}[\sigma(1-\eta)] - \mathcal{F}_{dc}[\sigma]}{\mathcal{F}_{dc}[\sigma(1-\eta)]}$$

Oldenburg, D. W., and Y. Li, 1994, Inversion of induced polarization data: Geophysics, 59, 1327-1341.

IP Data of Chargeable Blocks

IP Inversion for Chargeability

IP Inversion for Chargeability

IP Inversion for Chargeability

Mt. Isa Mineral Exploration

3D DC/IP Inversion

Apparent resistivity data (ho_a)

Resistivity model (ρ)

Integrated chargeability data (d_{IP})

Chargeability model (η)

Summary

- Long-electrode with steel casings
 - Novel application of old electrical methods
 - Novel simulation method equivalent resistor network
 - Al-based imaging (deep learning)
 - Applications: shale gas fracturing, wastewater disposal, etc.
- Induced polarization (IP) method
 - Data collected with DC resistivity
 - Another physical property: chargeability
 - IP data in time-domain and frequency-domain
 - IP data inversion
 - Applications: minerals, fluid (water, oil, gas), environmental