Introduction of ER Model

The ER data model specifies enterprise schema that represents the overall logical structure of a database graphically.

The Entity Relationship Diagram explains the relationship among the entities present in the database. ER models are used to model real-world objects like a person, a car, or a company and the relation between these real-world objects. In short, the ER Diagram is the structural format of the database.

Symbols Used in ER Model

Figures	Symbols	Represents
Rectangle		Entities in ER Model
Ellipse		Attributes in ER Model
Diamond	\Diamond	Relationships among Entities
Line		Attributes to Entities and Entity Sets with Other Relationship Types
Double Ellipse		Multi-Valued Attributes
Double Rectangle		Weak Entity

Components of ER Diagram

ER Model consists of Entities, Attributes, and Relationships among Entities in a Database System.

Entity

An Entity may be an object with a physical existence – a particular person, car, house, or employee – or it may be an object with a conceptual existence – a company, a job, or a university course.

Student

Entity Type

Entity

1. Strong Entity

A <u>Strong Entity</u> is a type of entity that has a key Attribute. Strong Entity does not depend on other Entity in the Schema. It has a primary key, that helps in identifying it uniquely, and it is represented by a rectangle. These are called Strong Entity Types.

2. Weak Entity

An Entity type has a key attribute that uniquely identifies each entity in the entity set. But some entity type exists for which key attributes can't be defined. These are called <u>Weak Entity types</u>.

For Example, A company may store the information of dependents (Parents, Children, Spouse) of an Employee. But the dependents can't exist without the employee. So Dependent will be a **Weak Entity Type** and Employee will be Identifying Entity type for Dependent, which means it is **Strong Entity Type**.

Entity

A weak entity type is represented by a Double Rectangle. The participation of weak entity types is always total. The relationship between the weak entity type and its identifying strong entity type is called identifying relationship and it is represented by a double diamond.

Attributes

<u>Attributes</u> are the properties that define the entity type. For example, Roll_No, Name, DOB, Age, Address, and Mobile_No are the attributes that define entity type Student. In ER diagram, the attribute is represented by an oval.

1. Key Attribute

The attribute which **uniquely identifies each entity** in the entity set is called the key attribute. For example, Roll_No will be unique for each student. In ER diagram, the key attribute is represented by an oval with underlying lines.

Attributes

2. Composite Attribute

An attribute **composed of many other attributes** is called a composite attribute. For example, the Address attribute of the student Entity type consists of Street, City, State, and Country. In ER diagram, the composite attribute is represented by an oval comprising of ovals.

Attributes

3. Multivalued Attribute

An attribute consisting of more than one value for a given entity. For example, Phone_No (can be more than one for a given student). In ER diagram, a multivalued attribute is represented by a double oval.

Attribute

4. Derived Attribute

An attribute that can be derived from other attributes of the entity type is known as a derived attribute. e.g.; Age (can be derived from DOB). In ER diagram, the derived attribute is represented by a dashed oval.

ER diagram

The Complete Entity Type Student with its Attributes can be represented as:

Relationship of ER diagram

A Relationship Type represents the association between entity types. For example, 'Enrolled in' is a relationship type that exists between entity type Student and Course. In ER diagram, the relationship type is represented by a diamond and connecting the entities with lines.

Cardinality of a Relationship

The number of times an entity of an entity set participates in a relationship set is known as <u>cardinality</u>. Cardinality can be of different types:

1. One-to-One: When each entity in each entity set can take part only once in the relationship, the cardinality is one-to-one. Let us assume that a male can marry one female and a female can marry one male. So the relationship will be one-to-one.

the total number of tables that can be used in this is 2.

2. One-to-Many: In one-to-many mapping as well where each entity can be related to more than one entity and the total number of tables that can be used in this is 2. Let us assume that one surgeon department can accommodate many doctors. So the Cardinality will be 1 to M. It means one department has many Doctors.

total number of tables that can used is 3.

3. Many-to-One: When entities in one entity set can take part only once in the relationship set and entities in other entity sets can take part more than once in the relationship set, cardinality is many to one. Let us assume that a student can take only one course but one course can be taken by many students. So the cardinality will be n to 1. It means that for one course there can be n students but for one student, there will be only one course.

The total number of tables that can be used in this is 3.

4. Many-to-Many: When entities in all entity sets can take part more than once in the relationship cardinality is many to many. Let us assume that a student can take more than one course and one course can be taken by many students. So the relationship will be many to many.

the total number of tables that can be used in this is 3.

Thank You