Temperature-driven rotation epitaxy of monolayer TaS₂ on bilayer graphene

Hsu-Kai Cheng^{1,5*}, David Mikolas², Akhil Dev Chemmayath¹, S. -J. Tang^{2,3,4}, Woei Wu Pai^{1,5}

¹Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan

²Center for Quantum Technology and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

³National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan

⁴Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

⁵Department of physics, National Taiwan University, Taipei106, Taiwan

* Presenting author: Hsu-Kai Cheng, email: kaicheng0108@gmail.com

Introduction

- •In our studies, we observed unexpected epitaxial rotation of monolayer H-phase TaS₂ on bilayer graphene as the growth temperature varies.
- •This is not an observation of coexistent orientations (often observed in TMD monolayers), but an observation that shows the preferred epitaxial orientation changes with the growth temperature.
- •What we observed is an uncommon large angle change of preferred epitaxial orientation.
- •A plausible explanation of the mechanism is the large differential thermal expansion.

Domain Identification

• Low Energy Electron Diffraction (LEED) – C3 symmetry

• Scanning Tunneling Microscopy (STM)

Rotation Epitaxy VS. Growth Temperature

- •At low temperature, TaS₂ prefers 30 degree growth.
- •At median temperature, TaS₂ adopts competing strength of 0 degree and 30 degree growth.
- •At high temperature, TaS₂ prefers 0 degree growth.

Intensity Fraction Evolution

- Intensity fraction is extracted through spot profile gaussian fitting.

A Possible Explanation

- •2D monolayer typically has a much larger linear thermal expansion coefficient (LTEC) than its bulk form
- •Graphene has a negative thermal expansion coefficient over a wide temperature range
- •Given the above, one can argue that a large temperature-driven thermal expansion difference will be present in cases of TMD monolayers grown on graphene.

- •Lattice coincidence matching
- two hexagonal lattices will form a coincidence if one superlattice matches the other superlattice by the following relation: $a_1^2(i^2 + ij + j^2) = a_2^2(k^2 + kl + l^2)$
- coincidence can be visualized after rotating the second lattice by: $\theta = \arctan 2\left(\frac{\sqrt{3}}{2}j, i + \frac{1}{2}j\right) \arctan 2\left(\frac{\sqrt{3}}{2}l, k + \frac{1}{2}l\right)$

•Issues

- We used WS₂ LTEC (no experimental data for TaS2 monolayers)
- a seemly inconsistency between the simulation and experimental observation: optimal matching does not fall exactly at 0 or 30 degrees. This may be amended if the assumed rigid lattice is allowed to relax

Contributions & Acknowledgements

H.K.C. performed MBE growth, LEED and STM measurements, and data analysis. D.M. performed data analysis and modeling. A.D.C. performed bilayer graphene preparation. W.W.P. and S.J.T. interpreted the data and led the project.

This work is supported by the Ministry of Science and Technology of Taiwan. Questions should be addressed to W.W. Pai at wpai@ntu.edu.tw