CS720

Logical Foundations of Computer Science

Lecture 8: Logical connectives in Coq

Tiago Cogumbreiro

Today we will...

- Recall the difference between value, type, Type, evidence, proposition, Prop
- Logical connectives in Coq

$$op \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \exists x.P$$

Why are we learning this?

• The building blocks of any interesting property

Logic.v

Due Thursday, October 4, 11:59 EST

Recall product, conjunction

```
Inductive prod (A B : Type) : Type := | pair : A \rightarrow B \rightarrow prod A B.

Inductive and (P Q : Prop) : Prop := | conj : P \rightarrow Q \rightarrow and P Q.
```


Recall product, conjunction

```
Inductive prod (A B : Type) : Type := 
| pair : A \rightarrow B \rightarrow prod A B.

Inductive and (P Q : Prop) : Prop := 
| conj : P \rightarrow Q \rightarrow and P Q.
```

- P, Q are propositions (instances of Prop)
- A, B, and nat are types (instances of Type)
- A value is any instance of an instance of a Type (eg, 3 is a *value*)
- An evidence is any instance of an instance of a Prop (eg, if H:P and P:Prop, then H is an evidence)
- pair is a constructor (function) that builds values; conj is a constructor (function) that builds evidence

Recall a proof state

```
1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P
______(1/1)
1 = 2 /\ P
```

- All hypothesis are variables of a specific type, Type, or proposition
- Goals are (usually) propositions
- Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod? Can a proposition mention conj, the constructor of and?

Recall a proof state

```
1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P
______(1/1)
1 = 2 /\ P
```

- All hypothesis are variables of a specific type, Type, or proposition
- Goals are (usually) propositions
- Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod? Can a proposition mention conj, the constructor of and? Yes and no, respectively.

Where do constructors of propositions appear?

```
Theorem and_conj: forall P Q:Prop,
  P → Q → P /\ Q.
Proof.
  intros P Q H1 H2.
  apply conj.
  - apply H1.
  - apply H2.
Qed.
```


Theorems are expressions too

```
Theorem and_conj: forall P Q:Prop,
  P → Q → P /\ Q.
Proof.
  intros P Q H1 H2.
  apply (conj H1 H2).
Qed.
```

Proposition-constructors and theorems are functions whose parameters are evidences.

Truth

Truth

Truth can be encoded in Coq as a proposition that always holds, which can be described as a proposition type with a single constructor with 0-arity.

```
Inductive True : Prop := I : Truth.
```

You will note that proposition True is not a very useful one.

Truth example

Goal True.

(Done in class.)

Falsehood

So far we only seen results that are provable (eg, plus is commutative, equals is transitive)

How to encode falsehood in Coq?

Falsehood

Falsehood in Coq is represented by an **empty** type.

```
Inductive False : Prop :=.
```

- The only way to reach it is by using the exploding principle
- No constructors available. Thus, no way to build an inhabitant of False.

Example:


```
Goal 1 = 2 \rightarrow \text{False}.
```

Goal False \rightarrow 1 = 2.

Goal False.

(Done in class.)

Negation

 $\neg P$

Negation

The negation of a proposition $\neg P$ is defined as

```
(* As defined in Coq's stdlib *)

Definition not (H:Prop) := H \rightarrow False.

Goal not (1 = 2).
```

Outputs:

```
1 subgoal
_____(1/1)
1 <> 2
```

(Done in class.)

Negation-related notations

- ullet not P is the same as ullet P, typeset as eg P
- not (x = y) is the same as x <> y, typeset as $x \neq y$

Can we rewrite **not** with an inductive proposition?

Equivalence

$$P \iff Q$$

Logical equivalence

```
Definition iff A B : Prop = (A \rightarrow B) / (B \rightarrow A).

(* Notation \leftrightarrow *)

Goal (1 = 1 \leftrightarrow True).
```

Tactics rewrite, reflexivity, and symmetry all handle equivalence as well.

Can we rewrite **iff** with an inductive proposition?

Equivalence exercise

```
Theorem mult_0 :
    forall n m, n * m = 0 ←> n = 0 \/ m = 0.

Theorem or_assoc :
    forall P Q R : Prop, P \/ (Q \/ R) ←> (P \/ Q) \/ R.

Theorem mult_0_3 :
    forall n m p, n * m * p = 0 ←> n = 0 \/ m = 0 \/ p = 0.
```

Existential quantification

 $\exists x.P$

Existential quantification

Notation:

```
exists x:A, P x
```

- To conclude a goal exists x:A, P x we can use tactics exist x. which yields P x. Alternatively, we can use apply ex_intro.
- To use a hypothesis of type H:exists x:A, P x, you can use destruct H as (x,H), or inversion H

Equality

X = Y

Equality

Even equality is defined as an inductive proposition

```
Inductive eq (A : Type): A → A → Prop :=
| eq_refl :
  forall x:A,
  eq x x.
```

Hide notations to see eq in action.

Programming with propositions

List membership

Example

Goal In 4 [1; 2; 3; 4; 5].

Example 3 stars

Takes as arguments two properties of numbers, Podd and Peven, and it should return a property P such that P n is equivalent to Podd n when n is odd and equivalent to Peven n otherwise.

```
Definition combine_odd_even (Podd Peven : nat → Prop) : nat → Prop
Theorem combine_odd_even_intro :
  forall (Podd Peven : nat \rightarrow Prop) (n : nat),
    (oddb n = true \rightarrow Podd n) \rightarrow
    (oddb n = false \rightarrow Peven n) \rightarrow
    combine_odd_even Podd Peven n.
Theorem combine_odd_even_elim_odd :
  forall (Podd Peven : nat \rightarrow Prop) (n : nat),
    combine odd even Podd Peven n →
    oddb n = true \rightarrow
    Podd n.
```


Example 3 starts (contd)

```
Theorem combine_odd_even_elim_even :
  forall (Podd Peven : nat → Prop) (n : nat),
    combine_odd_even Podd Peven n →
    oddb n = false →
    Peven n.
```