Course Code		18PYB103J Course Name			PHYSICS: SEMICONDUCTOR PHYSICS		cs	_	Course		В		Basic Sciences							\neg	L	T	Р	С		
							Ca	tegory	tegory									3	1	2	5					
Pre-requisite Courses Nil Co-requisite Courses Nil Progressive Courses Nil Course Offering Department Physics and Nanotechnology Data Book / Codes/Standards Nil																										
Course Learning Rationale (CLR): The purpose of learning this course is to: Learning Program Learning								ing Outcomes (PLO)																		
CLR-1 CLR-2 CLR-3 CLR-4	: Expla : Provi	ide an insight on s	camier trans semiconducto	port mechanism or optical transi	n in p-n and metal s tions and photovolta				(Bloom)	2	3 (%)		8.	2 3	4 Gesearch	5	6	7 Ajjigeui	8	ork co	10	11	12	13	14	15
CLR-5: Develop necessary skills for low dimensional semiconductor material processing and characterization CLR-6: Utilize the concepts in physics for the understanding of engineering and technology						rization		of Thinking	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Toblem Analysis	Design	ool Usag	긓	invironment & Sustainability	s	ndvidual & Team Work	Communication	roject Mgt. & Finance	de Long Learning	-1	-2	-3	
Course Learning Outcomes (CLO): At the end of this course, learners will be able to: CLO-1: Identify the energy band in solids and electron occupation probability							2	85 85	75	}		H Problem	Analysis	Modern	Society	- Envir	· Ethics	Mpul .	· Com	· Proje	. Life L	- PSO	- PSO	PSO .		
CLO-2: Analyze the working of optoelectronic devices CLO-3: Apply the knowledge to the development of new and novel optoelectronic devices						2	75 80	70 75	} F	H H	Н -	H	-	-	-	-	-	-	-	-	-	-	-			
CLO-4: Identify the working mechanism of electrical and optical measurements						2	75	70	┨	_	н .	 "	+-	+-	-	-	-	-	-	-	-	-	\exists			
CLO-5: Utilize the knowledge of the low dimensional semiconductor material fabrication and characterization.					2	80	70		Н	- I	-	-	-	-	-	-	-	-	-	-	-	-				
CLO-6: Apply the concepts of semiconductor physics in real time applications					2	80	70	1 [-		-	-	-	-	-	•	•	-	-	-	-	-				
																										\equiv
Duration (hour) 18 18 18			8	18 18																						
S-1	SLO-1	-1 Classical Free electron theory Intrinsic semiconductor Concept of optical transit semiconductors			nsitio	ıs in bu	bulk Concept of electrical measurements Density of states in 2D																			
Fermi level on corrier concentration and				optical absorption process Two-point probe technique Density of states in 1D and) and	and 0 D																
S-2			Concept of recombina	ation p	rocess	cess Four-point probe technique-linear method Introduction to low dimension			onal s	ysten	IS															
3-2	Fermi level on carrier-concentration and		Optical recombination	ptical recombination process Four-point probe technique-Van der Pauw method Quantum well																						
6.2			Explanation for spont	aneou	ous emission Significance of carrier density Quantum wire and d			nd do	lots																	
\$-3 \$LO-2		Kronig-Penney r	model		Explanation for stimulated emission				Significance of resistivity and Hall mobility				ilīty	Introduction to novel low dimensional systems												

Fermi's golden rule

Solving problem

Solving problem

(Forward Bias)

Characterization of pn junction diode

Joint density of states in semiconductor

Density of states for photons

Explanation of transition rates

Solving problem

Solving problem

Determine Particle Size of Semiconductor

Hot-point probe measurement

capacitance-voltage measurements

Extraction of parameters in a diode

I-V characteristics of a diode

Solving problem

Solving problem

Applications of CNT

Determine of efficiency of solar cell

CNT- properties and synthesis

Fabrication technique-CVD

Fabrication technique-PVD

SLO-1

SLO-1

SLO-2

SLO-1

SLO-1

5-6

S-7

S-8

Solving problems

Basics of experimentation

SLO-2 Solving problems

E-k diagram

SLO-2 Direct and Indirect band gap

Concept of phonons

SLO-2 Concept of Brillouin Zone

Solving problem

Solving problem

Study of I-V characteristics of a light

Carrier transport - diffusion and drift

Biasing concept in p-n junction

dependent resistor (LDR)

Continuity equation

p-n junction

S-9	SLO-1	Energy band structure of semiconductor- Brillouin zone	Metal-semiconductor junction -Ohmic contact	Concept of optical loss	Principle of Deep-level transient spectroscopy (DLTS)	Characterizations techniques for low dimensional systems		
3-3	SLO-2	Concept of effective mass	Metal-semiconductor junction - Schottky junction	Concept of optical gain	Instrumentation of DLTS	XRD-Powder method		
S-10	SLO-1	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem		
3-10	SLO-2	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem		
S 11-12	SLO-1 SLO-2	Determine Hall coefficient of Semiconductor material	Determine Band Gap of semiconductor- Four probe method	Repeat/Revision of experiments	Attenuation, propagation characteristic of optical fiber cable using laser source	Determine lattice parameters using powder XRD		
S-13	SLO-1	Classification of electronic materials	Semiconductor materials of interest for optoelectronic devices	Basic concepts of Photovoltaics	Significance of band gap in semiconductors	Principle of electron microscopy		
3-13	SLO-2	Fermi level	Photocurrent in a P-N junction diode	Photovoltaic effect	Concept of absorption and transmission	Scanning electron microscopy		
S-14	SLO-1	Probability of occupation	Light emitting diode	Applications of Photovoltaic effect	Fundamental laws of absorption	Transmission electron microscopy		
3-14	SLO-2	Influence of donors in semiconductor	Classification of Light emitting diode	Determination of efficiency of a PV cell	Instrumentation of UV-Vis spectroscopy	Atomic force microscope		
S-15	SLO-1	Influence of acceptors in semiconductor	Optoelectronic integrated circuits	Theory of Drude model	Determination of band gap by UV-Vis spectroscopy	Heterojunctions		
3-13	SLO-2	Non-equilibrium properties of carriers	Organic light emitting diodes	Determination of conductivity	Concept of Photoluminescence	Band diagrams of heterojunctions		
S-16	SLO-1	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem		
3-10	SLO-2	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem		
S 17-18		Determine Band Gap of semiconductor- Post Office Box method	Study of V-I and V-R characteristics of a solar cell	To verify Inverse square law of light using a photo cell.	Characteristic of p_n junction diode under reverse bias	Mini Project		

Learning 1. . Resources 2.

J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. 1995.
 B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., 2007.

3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley 2008.

4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York 2007.

Learning Assessment												
	Bloom's			Conti	Final Examination (50% weightage)							
	Level of Thinking	CLA - 1 (10%)		CLA – 2 (15%)		CLA -	3 (15%)	CLA - 4	(10%)#	Final Examination (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level I	Understand	20%					1370				1376	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	2076									2076	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
LEVEL 3	Create	1076	10%	13%		1376	1376	1376	1376	1376	1376	
·	Total	tal 100 % 100 %			100 %			0 %	100 %			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Dr. Vinay Gupta, National Physical Laboratory, guptavinay@nplindia.org	Prof. C. Vijayan, IITM, Chennai, cvijayan@iitm.ac.in	Dr. C. Preferencial Kala, SRMIST							
	Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	Dr. M. Krishnamohan, SRMIST							