EE236: Experiment No. 7 MOS Capacitor C-V Characterstics

Narne Avinash Chowdary, 200070047 October 15, 2022

1 Overview of the experiment

1.1 Aim of the experiment

- Determining the capacitance of MOS capacitor as voltage varied.
- To determine the thickness of the oxide layer and deplection thickness.
- Finding Debye capacitance, Debye length, Flat band capacitance.

1.2 Methods

- Preparing a summer circuit to produce amplified sine wave with a DC offset
- Making an Amplifier circuit using capacitors in circuit.
- Integrating the summer and amplifier circuit that input from summer circuit will be provided to amplifier using the MOS capacitor as the input capacitor.

2 Design

Figure 1: Summer circuit.

Figure 2: Amplifier circuit

Figure 3: Circuit with mos capacitor is used in amplifier capacitor.

2.1 Experimental results

C-V characterstics of mos capacitor

measuring Vdc and Gain.

finding the value of capacitor using the gain obtained

$$gain = Cdut/Cfb * (1/sqrt(1 + (1/(wRfbCfb)2)))$$
 (1)

Cox(pF) tox (nm) Cs tdep(nm) 1243 250.8125503 291.3088381 1412.838488

Cfb Cdebey Ldebey(nm) Na 742.3360337 1843 223 33795000000

	Α	В	С	D	Е
1	Vdc	VDUT	Vout	AC gain	Cdut(pF)
2					
3					0
4				#DIV/0!	#DIV/0!
5	5	110	258	2.345454545	235.8620053
6	4.5	110	260	2.363636364	237.690393
7	4	110	274	2.490909091	250.4891064
8	3.5	110	298	2.709090909	272.4297581
9	3	110	304	2.763636364	277.914921
10	2.5	110	316	2.872727273	288.8852468
11	2	110	332	3.018181818	303.5123479
12	1.5	110	350	3.181818182	319.9678367
13	1	110	376	3.418181818	343.736876
14	0.6	110	398	3.618181818	363.84914
15	0	110	408	3.709090909	372.9910782
16	-0.5	110	440	4	402.2452804
17	-0.8	110	472	4.290909091	431.4994826
18	-1	110	520	4.727272727	475.3807859
19	-1.3	110	570	5.181818182	521.0904769
20	-1.5	110	752	6.836363636	687.473752
21	-1.7	110	1110	10.09090909	1014.755139
22	-2	110	1240	11.27272727	1133.600336
23	-2.3	110	1260	11.45454545	1151.884212
24	-2.7	110	1340	12.18181818	1225.019718
25	-3	110	1360	12.36363636	1243.303594
26	-3.3	110	1360	12.36363636	1243.303594
27	-4	110	1360	12.36363636	1243.303594
28	-4.5	110	1360	12.36363636	1243.303594
29	-5	110	1360	12.36363636	1243.303594

Figure 4: values obtained

Figure 5: plot of voltage and capacitance