

Hi3796M V100 Hardware Design

FAQs

Issue 00B02

Date 2015-05-15

Copyright © HiSilicon Technologies Co., Ltd. 2015. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of HiSilicon Technologies Co., Ltd.

Trademarks and Permissions

HISILICON, and other HiSilicon icons are trademarks of HiSilicon Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between HiSilicon and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

HiSilicon Technologies Co., Ltd.

Address: Huawei Industrial Base

> Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://www.hisilicon.com

Email: support@hisilicon.com

i

About This Document

Purpose

This document describes the solutions to frequently asked questions (FAQs) for the hardware design of Hi3796M V100.

Related Version

The following table lists the product version related to this document.

Product Name	Version
Hi3796M	V1XX

Intended Audience

This document is intended for:

- Technical support personnel
- Hardware development engineers

Change History

Changes between document issues are cumulative. Therefore, the latest document issue contains all changes made in previous issues.

Issue 00B02 (2015-05-15)

This issue is the second draft release, which incorporates the following change:

Chapter 2 "Small System" is added.

Issue 00B01 (2015-01-20)

This issue is the first draft release.

Contents

About This Document	i
1 Peripherals	1
1.1 How Do I Optimize the Electrical Specifications of the SCI Circuit?	
2 Small System	1
2.1 How Do I Design the 2-Layer PCB with Two 16-Bit DDR SDRAMs?	
2.2 How Do I Design the 4-Layer PCB with Four 8-Bit DDR SDRAMs?	5

Figures

Figure 1-1 SCI circuit with optimized electrical performance	. 2
Figure 2-1 Schematic diagram for the 2-layer PCB with two DDRs	. 2
Figure 2-2 Top side of the 2-layer PCB (DDR layout)	. 3
Figure 2-3 Bottom side of the 2-layer PCB (DDR layout)	. 4
Figure 2-4 Schematic diagram for the 4-layer PCB with four DDRs	. 6
Figure 2-5 Top side of the 4-layer PCB (DDR layout)	. 7
Figure 2-6 Bottom side of the 4-layer PCB (DDR layout)	. 8

1 Peripherals

1.1 How Do I Optimize the Electrical Specifications of the SCI Circuit?

Problem Description

The SCI circuit of the Hi3716C V200 CA solution for a customer fails the electrical specifications certification test. The SCI circuit of Hi3796MDMO1A is the same, and the issue persists.

Solution

- Connect SIM_PWREN to a 10 k Ω (instead of 2.2 k Ω) pull-up resistor and then to 5V MOS (instead of 3V3 MOS).
- Change the pull-down resistor for SIM0_CLK_OUT from 2.2 k Ω to 10 k Ω , and connect SIM0_CLK_OUT to a 100 Ω resistor in series.
- Modify the SIM0_DATA circuit, as shown in Figure 1-1.

Figure 1-1 SCI circuit with optimized electrical performance

2 Small System

2.1 How Do I Design the 2-Layer PCB with Two 16-Bit DDR SDRAMs?

Problem Description

HiSilicon provides reference design only for the 4-layer PCB with two 16-bit DDR SDRAMs. How do I design the 2-layer PCB with two 16-bit DDR SDRAMs?

Solution

Reference design for the schematic diagram and PCB

For details about the schematic diagram, see the Hi3798MDMO1B hardware release package. Ensure that the signal names are consistent with those of the Hi3798MDMO1B. For the DQ and ADDR pins, select the names in the **2 DDR3 2 Layers** column, as shown in Figure 2-1.

Figure 2-1 Schematic diagram for the 2-layer PCB with two DDRs

			2 DDR3	2 DDR3	4 DDR3
		(2 Layers	4 Layers	4 Layers
	DDR DQ0	H4	DDR3 DQ0	DDD2 DO0	DDB3 DO0
\geq	DDR_DQ1	N1	DDR3 DQ1	DDR3_DQ0 DDR3_DQ1	DDR3_DQ0 DDR3_DQ9
>	DDR DQ2	H1	DDR3 DQ2	DDR3_DQ1 DDR3 DQ2	DDR3_DQ3
	DDR_DQ3	P3	DDR3 DQ3	DDR3_DQ2 DDR3 DQ3	DDR3_DQ2 DDR3 DQ15
\geq	DDR_DQ4	H5	DDR3 DQ4	DDR3_DQ3 DDR3_DQ4	DDR3_DQ13
\geq	DDR DQ5	R3	DDR3_DQ5	DDR3_DQ4 DDR3_DQ5	DDR3_DQ13
>	DDR DQ6	H2	DDR3 DQ6	DDR3_DQ6	DDR3_DQ6
\geq	DDR DQ7	P2	DDR3_DQ7	DDR3 DQ7	DDR3 DQ11
\geq	DDR DQ8	M4	DDR3 DQ8	DDR3 DQ8	DDR3 DQ8
<u> </u>	DDR DQ9	K2	DDR3_DQ9	DDR3_DQ9	DDR3_DQ4
—	DDR DQ10	M5	DDR3 DQ10	DDR3_DQ10	DDR3 DQ14
<hr/>	DDR DQ11	J3	DDR3 DQ11	DDR3 DQ11	DDR3 DQ5
\geq	DDR DQ12	N4	DDR3 DQ12	DDR3 DQ12	DDR3 DQ10
\geq	DDR DQ13	J4	DDR3 DQ13	DDR3_DQ13	DDR3_DQ3
\geq	DDR DQ14	P4	DDR3 DQ14	DDR3 DQ14	DDR3 DQ12
<u> </u>	DDR DQ15	J5	DDR3 DQ15	DDR3 DQ15	DDR3_DQ12
\geq	DDR DQ16	T5	DDR3 DQ16	DDR3_DQ16	DDR3_DQ7
—	DDR DQ17	AA5	DDR3 DQ17	DDR3_DQ17	DDR3_DQ25
—	DDR DQ18	T2	DDR3 DQ18	DDR3 DQ18	DDR3 DQ18
<hr/>	DDR DQ19	AB5	DDR3 DQ19	DDR3 DQ19	DDR3 DQ27
\geq	DDR DQ20	R5	DDR3 DQ20	DDR3 DQ20	DDR3 DQ22
\geq	DDR DQ21	AC6	DDR3 DQ21	DDR3 DQ21	DDR3 DQ29
\geq	DDR DQ22	T3	DDR3 DQ22	DDR3 DQ22	DDR3 DQ17
\sim	DDR DQ23	AA6	DDR3 DQ23	DDR3 DQ23	DDR3 DQ31
	DDR DQ24	AA4	DDR3 DQ24	DDR3 DQ24	DDR3 DQ28
$\langle -$	DDR DQ25	U1	DDR3 DQ25	DDR3 DQ25	DDR3 DQ16
\langle	DDR DQ26	AB3	DDR3 DQ26	DDR3 DQ26	DDR3 DQ30
\langle	DDR DQ27	U3	DDR3_DQ27	DDR3 DQ27	DDR3 DQ19
\leftarrow	DDR DQ28	AC2	DDR3_DQ28	DDR3 DQ28	DDR3 DQ26
\leftarrow	DDR DQ29	T4	DDR3_DQ29	DDR3 DQ29	DDR3 DQ23
	DDR DQ30	AB2	DDR3_DQ30	DDR3 DQ30	DDR3 DQ24
	DDR_DQ31	Ψ4	DDR3_DQ31	DDR3_DQ31	DDR3 DQ21
				_	
			2 DDR3	2 DDR3	4 DDR3
			2 Layers		
	DDR ADDRO	AC14	-	4 Layers	4 Layers
	DDR ADDR1	Y10	DDR3_A0	DDR3_A3	DDR3_A3
	DDR ADDR2	W14	DDR3_A1	DDR3_A12	DDR3_A12
	DDR ADDR3	AB14	DDR3_A2	DDR3_A2	DDR3_A2
	DDR ADDR4	W10	DDR3_A3	DDR3_A7	DDR3_A7
	DDR ADDR5	Y16	DDR3_A4	DDR3_A15	DDR3_A15
	DDR ADDR6	AA10	DDR3_A5	DDR3_A9	DDR3_A9
	DDR ADDR7	AA16	DDR3_A6	DDR3_A6	DDR3_A6
	DDR ADDR9	AB11	DDR3_A7	DDR3_A13	DDR3_A13
	DDR ADDR9	AA12	DDR3_A8	DDR3_A8	DDR3_A8
	DDR ADDR10	Y8	DDR3_A9	DDR3_A0	DDR3_A0
	DDR ADDR11	Y11	DDR3_A10	DDR3_A10	DDR3_A10
	DDR ADDR12	AB9	DDR3_A11	DDR3_A1	DDR3_A1
	DDR ADDR13	Y15	DDR3_A12	DDR3_A11	DDR3_A11
	DDR ADDR14	AA11	DDR3_A13	DDR3_A5	DDR3_A5
	DDR ADDR15	W12	DDR3_A14	DDR3_A14	DDR3_A14
			DDR3_A15	DDR3_A4	DDR3_A4

Compared with the Hi3798M V100 BGA package, Hi3796M V100 has two more GND pins (AH2 and AG2) in the lower left corner of the DDR pin map, and the DDR pin map

is shifted rightwards by one ball on the bottom side. You can copy the PCB design of the Hi3798MDMO1B DDR part for Hi3796M V100 and modify the copper plane in the positions of the two additional GND pins.

The modifications are described as follows, as shown in Figure 2-2 and Figure 2-3:

- Copy the trace routing design for Hi3798MDMO1B, including the trace width, air gap between traces, and air gap between traces and GND, power trace routing, and trace length.
- Shift the ADDR signal trace under the master chip rightwards by one ball (compared with the Hi3798MDMO1B DDR) and fine-tune the ADDR trace length. Adjust the surrounding copper plane of the signal (except the area under the BGA chip) to ensure that the width of the copper plane is greater than or equal to the via outer diameter.
- Ensure that the surrounding GND of signals connects to the master chip end and the GND under the BGA chip. See the ellipses and rectangle in yellow in Figure 2-2 and Figure 2-3.

Figure 2-2 Top side of the 2-layer PCB (DDR layout)

Figure 2-3 Bottom side of the 2-layer PCB (DDR layout)

Fastboot configuration table

The fastboot configuration table is $hi3796mv100_ddr3_1gbyte_16bitx2_2layers.xlsm$ in the SDK.

Configure the pin multiplexing relationship in the table based on actual application and set unused I/O pins to GPIO mode.

CAUTION

- Verify the DDR stability carefully if the board uses a new DDR solution.
- Ensure that the schematic diagram and PCB are reviewed by HiSilicon FAEs before populating the PCB.

2.2 How Do I Design the 4-Layer PCB with Four 8-Bit DDR SDRAMs?

Problem Description

HiSilicon provides reference design only for the 4-layer PCB with two 16-bit DDR SDRAMs. How do I design the 4-layer PCB with four 8-bit DDR SDRAMs?

Solution

Reference design for the schematic diagram and PCB
 For details about the schematic diagram, see the Hi3798MDMO1D hardware release package. Ensure that the signal names are consistent with those of the Hi3798MDMO1D. For the DQ and ADDR pins, select the names in the 4 DDR3 4 Layers column, as shown in Figure 2-4.

Figure 2-4 Schematic diagram for the 4-layer PCB with four DDRs

		0		
		2 DDR3	2 DDR3	4 DDR3
	200	2 Layers	4 Layers	4 Layers
DDR		DDR3 DQ0	DDR3 DQ0	DDR3 DQ0
DDR		DDR3_DQ1	DDR3 DQ1	DDR3 DQ9
DDR		DDR3 DQ2	DDR3 DQ2	DDR3 DQ2
DDR		DDR3_DQ3	DDR3 DQ3	DDR3 DQ15
DDR		DDR3 DQ4	DDR3 DQ4	DDR3 DQ1
DDR		DDR3 DQ5	DDR3 DQ5	DDR3 DQ13
DDR		DDR3 DQ6	DDR3 DQ6	DDR3 DQ6
DDR		DDR3 DQ7	DDR3_DQ7	DDR3 DQ11
DDR		DDR3 DQ8	DDR3 DQ8	DDR3 DQ8
DDR		DDR3 DQ9	DDR3 DQ9	DDR3 DQ4
<	DQ10 M5	DDR3 DQ10	DDR3_DQ10	DDR3 DQ14
<	DQ11 J3	DDR3 DQ11	DDR3 DQ11	DDR3 DQ5
<	DQ12 N4	DDR3 DQ12	DDR3 DQ12	DDR3 DQ10
<	DQ13 J4	DDR3 DQ13	DDR3 DQ13	DDR3 DQ3
<	DQ14 P4	DDR3 DQ14	DDR3 DQ14	DDR3 DQ12
	DQ15 J5	DDR3 DQ15	DDR3 DQ15	DDR3 DQ7
	DQ16 T5	DDR3 DQ16	DDR3 DQ16	DDR3 DQ20
<	DQ17 AA5	DDR3 DQ17	DDR3 DQ17	DDR3_DQ25
	DQ18 T2	DDR3 DQ18	DDR3 DQ18	DDR3 DQ18
<	DQ19 AB5	DDR3 DQ19	DDR3 DQ19	DDR3 DQ27
	DQ20 R5	DDR3 DQ20	DDR3 DQ20	DDR3 DQ22
	DQ21 AC6	DDR3 DQ21	DDR3 DQ21	DDR3 DQ29
	DQ22 T3	DDR3 DQ22	DDR3 DQ22	DDR3 DQ17
	DQ23 AA6	DDR3_DQ23	DDR3 DQ23	DDR3 DQ31
	DQ24 AA4	DDR3_DQ24	DDR3 DQ24	DDR3 DQ28
	DQ25 U1	DDR3 DQ25	DDR3 DQ25	DDR3 DQ16
	DQ26 AB3	DDR3 DQ26	DDR3 DQ26	DDR3 DQ30
	DQ27 U3	DDR3_DQ27	DDR3 DQ27	DDR3 DQ19
-	DQ28 AC2	DDR3_DQ28	DDR3 DQ28	DDR3 DQ26
	DQ29 T4	DDR3_DQ29	DDR3 DQ29	DDR3 DQ23
	DQ30 AB2	DDR3_DQ30	DDR3 DQ30	DDR3 DQ24
DDR	DQ31 U4	DDR3_DQ31	DDR3 DQ31	DDR3 DQ21
		2 DDR3	2 DDR3	4 DDD2
		2 Layers		4 DDR3
	ADDRO AC14	2 Layers	4 Layers	4 Layers
	ADDR0 AC14 ADDR1 Y10	DDR3_A0	DDR3_A3	DDR3_A3
<	ADDR1 110 ADDR2 W14	DDR3_A1	DDR3_A12	DDR3_A12
	ADDR3 AB14	DDR3_A2	DDR3_A2	DDR3_A2
	ADDR3 AB14 ADDR4 W10	DDR3_A3	DDR3_A7	DDR3_A7
	ADDR5 Y16	DDR3_A4	DDR3_A15	DDR3_A15
	ADDRS AA10	DDR3_A5	DDR3_A9	DDR3_A9
	ADDRO AA16	DDR3_A6	DDR3_A6	DDR3_A6
	ADDR9 AB11	DDR3_A7	DDR3_A13	DDR3_A13
<	ADDR9 AA12	DDR3_A8	DDR3_A8	DDR3_A8
	ADDR10 Y8	DDR3_A9	DDR3_A0	DDR3_A0
	ADDRIO 16	DDR3_A10	DDR3_A10	DDR3_A10
<	ADDR11 HI	DDR3_A11	DDR3_A1	DDR3_A1
	ADDR13 Y15	DDR3_A12	DDR3_A11	DDR3_A11
<	ADDR14 AA11	DDR3_A13	DDR3_A5	DDR3_A5
	ADDR15 W12	DDR3_A14	DDR3_A14	DDR3_A14
<u> </u>		DDR3_A15	DDR3_A4	DDR3_A4

The modifications are described as follows, as shown in Figure 2-5 and Figure 2-6:

- Copy the trace routing design for Hi3798MDMO1D, including the trace width, air gap between traces, air gap between traces and GND, power trace routing, and trace length.
- Shift the ADDR signal trace at the master chip end rightwards by one ball (compared with the Hi3798MDMO1D DDR) and fine-tune the ADDR trace length. Ensure that the air gap between traces is greater than 10 mils.

Figure 2-5 Top side of the 4-layer PCB (DDR layout)

R1Q1

Figure 2-6 Bottom side of the 4-layer PCB (DDR layout)

Fastboot configuration table

The fastboot configuration table is $hi3796mv100_ddr3_2gbyte_8bitx4_4layers.xlsm$ in the SDK.

Configure the pin multiplexing relationship in the table based on actual application and set unused I/O pins to GPIO mode.

CAUTION

- Verify the DDR stability carefully if the board uses a new DDR solution.
- Ensure that the schematic diagram and PCB are reviewed by HiSilicon FAEs before populating the PCB.