

Санкт-Петербургский государственный университет

Brute force solutions. Competitive Programming: Core Skills

Artur Riazanov

Outline

瓣 СП6ГУ

- Intuitive solutions
- Search space

Backtracking

Sometimes the first solution you come up with is the correct one.

瓣 СП6ГУ

- Sometimes the first solution you come up with is the correct one.
- But sometimes it's not.

- Sometimes the first solution you come up with is the correct one.
- But sometimes it's not.
- In this lesson we are going to develop a method for designing solutions which are **always correct.**

- Sometimes the first solution you come up with is the correct one.
- But sometimes it's not.
- In this lesson we are going to develop a method for designing solutions which are **always correct.**
- The catch is they are going to be slow.

Digits ordering

Largest number

Input: list of digits. **Output:** the largest number that can be made of the digits.

Digits ordering

Largest number

Input: list of digits.

Output: the largest number that can be made of the digits.

Sample

Input: 3, 7, 5
Output: 735

Digits ordering

Largest number

Input: list of digits.

Output: the largest number that can be made of the digits.

Sample

Input: 3, 7, 5

Output: 735

the biggestone to the smallest one. The solution is to order the digits from

10

(aka knapsack problem) Robber's problem

🕌 СП6ГУ

Robber's problem

Input: a list of items with weights (kg) and costs (\$) as well as the capacity of a bag (kg).

Output the maximum total cost of items that fit in the bag.

Ħ

Robber's problem: tempting approach

It's natural to process items in order of decreasing \$ per kg.

- It's natural to process items in order of decreasing \$ per kg.
- Let's calculate utility $\frac{\cos t}{\text{weight}}$ for each item.

- It's natural to process items in order of decreasing \$ per kg.
- Let's calculate utility $\frac{\cos t}{\text{weight}}$ for each item.
- The better the utility the better the item.

- It's natural to process items in order of decreasing \$ per kg.
- Let's calculate utility $\frac{\cos t}{\text{weight}}$ for each item.

The better the utility the better the item.

- Therefore we should try to put items with maximum utility first.

- It's natural to process items in order of decreasing \$ per kg.
- Let's calculate utility $\frac{\cos t}{\text{weight}}$ for each item.
- The better the utility the better the item.
- Therefore we should try to put items with maximum utility first.
- Nice and easy. But, unfortunately, wrong.

The Best

🗱 СП6ГУ

🔆 СП6ГУ

The Best

5 kg

ω kg

\$2

\$6

ω|Ν

51/0

The total cost is \$0

🔆 СП6ГУ

The Best

But the third item doesn't fit to the knapsack.

💸 СП6ГУ

The Best

ω kg

\$2

ω|Ν

💸 СП6ГУ

The Best

\$2

\$6

We got total cost \$5.

🔆 СП6ГУ

- We got total cost \$5.
- But we could do better with the third item only:

\$6

Thus, the initial intuitive idea turned out to be wrong.

- Thus, the initial intuitive idea turned out to be wrong.
- Then how to convince yourself that your approach is correct?

- Thus, the initial intuitive idea turned out to be wrong.
- Then how to convince yourself that your approach is correct?
- The simplest thing to do is to check your algorithm with pen

and paper against sample tests.

- Thus, the initial intuitive idea turned out to be wrong.

Then how to convince yourself that your approach is correct?

- The simplest thing to do is to check your algorithm with pen and paper against sample tests.
- But what to do if your solution got "wrong answer" verdict from the grader?

- Thus, the initial intuitive idea turned out to be wrong.

Then how to convince yourself that your approach is correct?

- The simplest thing to do is to check your algorithm with pen and paper against sample tests.
- But what to do if your solution got "wrong answer" verdict from the grader?
- It'd be good to have a solution which is always conceptually correct.

- Thus, the initial intuitive idea turned out to be wrong.
- Then how to convince yourself that your approach is correct?
- The simplest thing to do is to check your algorithm with pen and paper against sample tests.
- But what to do if your solution got "wrong answer" verdict from the grader?
- It'd be good to have a solution which is always conceptually correct.
- And that's what we'll do!

Outline

- Intuitive solutions
- Search space
- Backtracking

In this video we will develop very powerful technique to solve problems, which works in almost all cases.

- In this video we will develop very powerful technique to solve problems, which works in almost all cases.
- The approach yields slow solutions but it's **conceptually correct by definition.**

- In this video we will develop very powerful technique to solve problems, which works in almost all cases.
- The approach yields slow solutions but it's **conceptually correct by definition.**
- Therefore it could be used to verify correctness of faster solutions for the same problem.

Search space

Almost every combinatorial problem falls in one of the following categories.

1 Find an element of a set A satisfying some property (or a number of such elements).

Search space

Almost every combinatorial problem falls in one of the following categories.

- 1 Find an element of a set A satisfying some property (or a number of such elements).
- 2 Find an element of a set A such that some objective function is minimized/maximized.

Search space

Almost every combinatorial problem falls in one of the following categories.

- 1 Find an element of a set A satisfying some property (or a number of such elements).
- 2 Find an element of a set A such that some objective function is minimized/maximized.

We will call the set A search space.

Superstring

Superstring

Input: m strings s_1, \ldots, s_m consisting of letters "a" and "b" only and an integer n.

Output: a string s of length n containing each s_i (for all $1 \le i \le m$) as a substring.

Superstring

Superstring

Input: m strings s_1, \ldots, s_m consisting of letters "a" and "b" only and an integer n.

Output: a string s of length n containing each s_i (for all $1 \le i \le m$) as a substring.

Sample

Input: m = 2; n = 3; $s_1 = ab$, $s_2 = ba$

Output: aba (aba, aba)

(another valid output is bab).

Superstring: solution

One way to solve a problem is to simply go through all possible candidate solutions. For the superstring problem, the search space consists of all strings of length n over the alphabet $\{a;b\}$. For each such string, we check whether it is indeed a superstring of s_1, \ldots, s_m

Superstring: solution

- One way to solve a problem is to simply go through all possible candidate solutions. For the superstring problem, the search space consists of all strings of length n over the alphabet $\{a;b\}$. For each such string, we check whether it is indeed a superstring of s_1, \ldots, s_m
- Let's consider another testcase: n = 4, $s_1 = bab$, $s_2 = abb$.

Superstring: solution

- One way to solve a problem is to simply go through all possible candidate solutions. For the superstring problem, the search space consists of all strings of length n over the alphabet $\{a;b\}$. For each such string, we check whether it is indeed a superstring of s_1, \ldots, s_m
- Let's consider another testcase: n = 4, $s_1 = bab$, $s_2 = abb$.
- There are only $2^4 = 16$ strings of four letters "a" and "b".

Superstring: search space

Candidate	bab	abb	Candidate	bab	abb
aaaa	×	×	baaa	×	×
aaab	×	×	baab	×	×
aaba	×	×	baba	bab a	×
aabb	×	a abb	babb	bab b	b abb
abaa	×	×	bbaa	×	×
abab	a bab	×	bbab	b bab	×
abba	×	×	abba	×	×
abbb	×	abb b	bbbb	×	×

Maximum subarray problem

Maximum subarray problem

Input: an array a_1, \ldots, a_n .

Output the largest possible sum $a_l + a_{l+1} + \ldots + a_{r-1} + a_r$ for $1 \le l \le r \le n$. Note that a_i could be negative.

Sample

Input: a = (4, 1, -2, 3, -10, 5)

Output: the best subarray is (4, 1, -2, 3, -10, 5) and the sum is 4 + 1 + (-2) + 3 = 6.

🕸 СП6ГУ

Maximum subarray problem: search space

Search space for the maximum subarray problem is the set of all subarrays of the array *a*.

🐐 СП6ГУ

Maximum subarray problem: search space

- Search space for the maximum subarray problem is the set of all subarrays of the array *a*.
- Subarray is determined by its first and last elements: I and r.

Maximum subarray problem: search space

- Search space for the maximum subarray problem is the set of all subarrays of the array *a*.
- Subarray is determined by its first and last elements: *I* and *r*.
- For this problem understanding what the search space is instantly provides us with the solution.

Maximum subarray problem: search space

- Search space for the maximum subarray problem is the set of all subarrays of the array a.
- Subarray is determined by its first and last elements: *I* and *r*.
- For this problem understanding what the search space is instantly provides us with the solution.
- Enumerate all pairs (l, r) such that $l \leq r$, for each pair compute the sum $a_1 + \ldots + a_r$, and take the maximum.

Robber's problem

Robber's problem

Input: n items with given weights w_1, \ldots, w_n and costs c_1, \ldots, c_n .

Output the largest total cost of the set of items whose total weight does not exceed W.

Robber's problem

Robber's problem

Input: n items with given weights w_1, \ldots, w_n and costs c_1, \ldots, c_n .

Output the largest total cost of the set of items whose total weight does not exceed W.

Sample

Input: W = 5; n = 3

$$W_1 = 3 W_2 = 2 W_3 = 5$$

 $C_1 = 2 C_2 = 3 C_3 = 6$

Output: The best solution is to put the last item to the knapsack and get the total cost 6.

• What is the search space for the robber's problem?

- What is the search space for the robber's problem?
- It's all sets of items.

- What is the search space for the robber's problem?
- It's all sets of items.
- For the given example, possible sets are the following: Ø, {1}, {2}, {3}, {1;2}, {1;3}, {2;3}, {1;2;3}.

- What is the search space for the robber's problem?
- It's all sets of items.
- For the given example, possible sets are the following: Ø, {1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}.
- whether it exceeds the capacity of the backpack. Not all of these sets fit into the backpack, but it's easy to check: compute the total weight of the set and check

- What is the search space for the robber's problem?
- It's all sets of items.
- For the given example, possible sets are the following: Ø, {1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}.
- whether it exceeds the capacity of the backpack Not all of these sets fit into the backpack, but it's easy to check: compute the total weight of the set and check

Search space: summary

Superstring	Problem
strings consisting of letters "a"and "b"	Problem Search space

Search space: summary

Problem	Problem Search space
Superstring	strings consisting of letters "a"and "b"
Robber's problem	all possible sets of items

Search space: summary

Problem	Problem Search space
Superstring	strings consisting of letters "a"and "b"
Robber's problem	all possible sets of items
Maximum subarray	pairs (l, r) such that $l \le r$

For the maximum subarray problem the search space gives us the solution instantly.

- For the maximum subarray problem the search space gives us the solution instantly.
- We can try all possible pairs with two nested for cycles.

- For the maximum subarray problem the search space gives us the solution instantly.
- We can try all possible pairs with two nested for cycles.
- For the substring problem we want to try all possible strings of n symbols.

- For the maximum subarray problem the search space gives us the solution instantly.
- We can try all possible pairs with two nested for cycles.
- For the substring problem we want to try all possible strings of n symbols.
- It'd be good to have n nested for cycles iterating through letters "a" and "b".

Implementation

for the superstring problem: Your pseudo-Python code will look like this

```
for x[0] in ['a', 'b']:
for x[1] in ['a', 'b']:
                                    #...

for x [n-1] in ['a', 'b']:

# check if x contains
# all strings
# s[1], . . . s[m]
```

Outline

🕌 СП6ГУ

- Intuitive solutions
- Search space
- Backtracking

Introduction

In this video we will finally understand how to write basic solution for combinatorial problems with backtracking.

Introduction

- with backtracking. In this video we will finally understand how to write basic solution for combinatorial problems
- Backtracking is roughly the way how to write n nested for cycles.

Enumerating all strings x over $\{a, b\}$ of length n:

```
for x[0] in ['a', 'b']:
    for x[1] in ['a', 'b']:
        # . . .
    for x [ n-1] in ['a', 'b']:
        # do some thing with x
```

Enumerating all strings x over {a, b} of length n:

```
for x[0] in ['a', 'b']:
    for x[1] in ['a', 'b']:
        # . . .
    for x [ n-1] in ['a', 'b']:
        # do some thing with x
```

The simplest possible way to simulate this "code" with an actual code is via recursion.

The key idea is to look at n nested for cycles like this:

for \times [0] in ['a', 'b']: # remaining n-1 for cycles

The key idea is to look at n nested for cycles like this:

for \times [0] in ['a', 'b']: # remaining n-1 for cycles

So we can implement the function recursively.

СП6ГУ

Three for cycles

Let's first do it for three nested for cycles.

```
def threeFors (n, x):
    for x [0] in ['a', 'b']:
        twoFors (n, x)
```


Three for cycles

Let's first do it for three nested for cycles.

```
def threeFors (n, x):
    for x [0] in ['a', 'b']:
        twoFors (n, x)
    def twoFors (n, x):
    for x [1] in ['a', 'b']:
        oneFors (n, x)
```


Three for cycles

Let's first do it for three nested for cycles.

```
def threeFors (n, x):
    for x [0] in ['a', 'b']:
        twoFors (n, x)
    def twoFors (n, x):
        for x [1] in ['a', 'b']:
            oneFors (n, x):
        for x [2] in ['a', 'b']:
        print (n, x)
```


Three for cycles

Let's first do it for three nested for cycles.

def threeFors (n, x):
 for x [0] in ['a', 'b']:
 twoFors (n, x)
 def twoFors (n, x):
 for x [1] in ['a', 'b']:
 oneFors (n, x):
 for x [2] in ['a', 'b']:
 print (n, x)

similar

Three for cycles

Let's first do it for three nested for cycles.

def threeFors (n, x):
 for x [0] in ['a', 'b']:
 twoFors (n, x)
 def twoFors (n, x):
 for x [1] in ['a', 'b']:
 oneFors (n, x):
 def oneFors (n, x):
 for x [2] in ['a', 'b']:
 print (n, x)

similar

Outer call: threeFors (n, ["]*3).

Recursion

We will write the function nestedFors with additional parameter firstFor and it'll behave like:

ω	2	Ь	0	firstFor
print (x)	oneFor	twoFors	threeFors	Behaviour

Recursion

We will write the function nestedFors with additional parameter firstFor and it'll behave like:

ω	2	L	0	firstFor
print (x)	oneFor	twoFors	threeFors	Behaviour

```
def nestedFors (n, firstFor, x):
                                             if firstFor < n:
    for x [firstFor] in ['a', 'b']:
        nestedFors (n, firstFor + 1, x)</pre>
print (x)
```


Recursion

We will write the function nestedFors with additional parameter firstFor and it'll behave like:

thre one	
threeFors twoFors oneFor print (x)	0

```
def nestedFors (n, firstFor, x):
                                                 if firstFor < n:
    for x [firstFor] in ['a', 'b']:
        nestedFors (n, firstFor + 1, x)</pre>
print (x)
```

This function simulates for cycles with numbers firstFor, firstFor +1, ..., n-1.

📸 СП6ГУ

Robber's problem

🔆 СП6ГУ

 Search space for the robber's problem is the set of all sets of items.

Robber's problem

- Search space for the robber's problem is the set of all sets of items.
- How to enumerate all sets of n items?

Robber's problem

- Search space for the robber's problem is the set of all sets of items.
- How to enumerate all sets of n items?
- Basically, it is the same as enumerating all strings over $\{0, 1\}$ of length n!

Set to string

{1, 2, 3}	{2, 3}	{1, 3}	{3}	{1, 2}	{2}	{1}	0	firstFor
\vdash	0	Н	0	Н	0	Н	0	—
\vdash	Н	0	0	ш	ш	1 0 0	0	Items 1 2 3
Н	Н	Н	Н	0	0	0	0	S

Robber's problem: search space

3+2+6=11	2+3+5=10	{1, 2, 3}	1 1 1
3+6=8	2 + 5 = 7	{2, 3}	0 1 1
2+6=8	3+5=8	{1, 3}	1 0 1
6	U	{3}	0 0 1
2 + 3 = 5	2 + 3 = 5	{1, 2}	1 1 0
ω	2	{2}	0 1 0
2	ω	{1 }	1 0 0
0	0	0	0 0 0
Cost	Weight	Set	Items 123

Recall our example:
$$n = 3$$
; $W = 5$ and $w_1 = 3$ $w_2 = 2$ $w_3 = 5$ $c_1 = 2$ $c_2 = 3$ $c_3 = 6$

🗱 СП6ГУ

Robber's problem: solution

nested for cycles! Therefore we reduced robber's problem to the same n 113

Search space

Designing a brute force solution:

Designing a brute force solution:

1 Identify the search space.

Designing a brute force solution:

- 1 Identify the search space.
- 2 Design a way of enumerating all its elements.

Designing a brute force solution:

- 1 Identify the search space.
- 2 Design a way of enumerating all its elements.
- 3 Turn it into a solution.

Designing a brute force solution:

- 1 Identify the search space.
- 2 Design a way of enumerating all its elements.
- 3 Turn it into a solution.

The resulting solution is usually slow, but it is clearlycorrect and can be used for debugging.

