

Importance of Normalization

School of Information Studies
Syracuse University

Importance of Normalization

Different examples/vectors might differ greatly in length.

Example: For text documents, the vector lengths of long documents are much greater than short documents.

An Example of Normalization in Information Retrieval

			against				galle			husban	d	images	imagine	d
\	music.1	13	0	3	_	0		0	0		Û	0		0
\	music.2	18	0	7		0		0	2		0	0	(0
	music.3	33	0	2		0		3	1		0	0	(0
1	music.4	28	0	11		0		0	1		0	0	(0
	music.5	10	0	0		0		1	0		0	0	(0
	art.1	20	0	3		2		0	0		1	0	(0
	art.2	51	0	9		1		4	0		0	2	:	1
	art.3	55	1	6		11		1	0		2	8	(0
	art.4	64	2	7		0		0	0		0	0	:	2
- 1	art.5	11	1	1		0		0	0		0	2	(0
Ļ														
		ins	struments		Lody	new	old	pho	otogi	raphs p	ho	tograph	y songs	wife
	music.1		3	3	1	0	0			0			0 0	0
	music.2		C)	0	1	1			0			0 0	0
	music.3		C)	0	2	1			0			0 3	0
	music.4		C)	0	2	0			0			0 0	1
	music.5		C)	1	2	1			0			0 1	0
	art.1		C)	0	1				0			1 0	1
	art.2		C)	0	3	3			1			4 0	1
	art.3		1		0	5	2			0			3 0	2
	art.4		C)	0	1	0			0			0 0	2
	art.5		C)	0	0	0			1			1 0	0
	"music",	and	g-of-words l five class ows a sele	sified	l as '	"art"	(but	no	t mu					

http://www.stat.cmu.edu/~cshalizi/350/lectures/01/lecture-01.pdf

Longer Documents Tend to Be Far Away From Short Ones Based on Raw Euclidean Distance

	a	against	but	came	ra	galle	ery	hit	husband	images	imagined	
music.1	13	0	3		0		0	0	0	0	0	
music.2	18	0	7		0		0	2	0	0	0	
music.3	33	0	2		0		3	1	0	0	0	
music.4	28	0	11		0		0	1	0	0	0	
music.5	10	0	0		0		1	0	0	0	0	
art.1	20	0	3		2		0	0	1	0	0	
art.2	51	0	9		1		4	0	0	2	1	
art.3	55	1	6		11		1	0	2	8	0	
art.4	64	2	7		0		0	0	0	0	2	
art.5	11	1	1		0		0	0	0	2	0	
	ins	struments	s mel	Lody	new	old	pho	otogi	raphs ph	otograpl	ny songs	wife
music.1		3	3	1	0	0			0		0 0	0
music.2		()	0	1	_			0		0 0	0
music.3		()	0	2	1			0		0 3	0
music.4		()	0	2	0			0		0 0	1
music.5		()	1	2	1			0		0 1	0
art.1		()	0	1	0			0		1 0	1
art.2		()	0	3	3			1		4 0	1
		1	l	0	5	2			0		3 0	2
art.3									^		0 0	0
art.3 art.4		()	0	1	. 0			U		0 0	2

Table 2: Bag-of-words vectors for five randomly selected stories classified as "music", and five classified as "art" (but not music), from the *Times* corpus. The table shows a selection of the 700 features.

http://www.stat.cmu.edu/~cshalizi/350/lectures/01/lecture-01.pdf

Normalization by Document Length (L-1)

2.1 Normalization

Just looking at the Euclidean distances between document vectors doesn't work, at least if the documents are at all different in size. Instead, we need to **nor-malize** by document size, so that we can fairly compare short texts with long ones. There are (at least) two ways of doing this.

Document length normalization Divide the word counts by the total number of words in the document. In symbols,

$$\vec{x} \mapsto \frac{\vec{x}}{\sum_{i=1}^{p} (x_i)}$$

Notice that all the entries in the normalized vector are non-negative fractions, which sum to 1. The ith component is thus the probability that if we pick a word out of the bag at random, it's the ith entry in the lexicon.

Normalization by Euclidean Length (L-2)

Euclidean length normalization Divide the word counts by the Euclidean length of the document vector:

For search, normalization by Euclidean length tends to work a bit better than normalization by word-count, apparently because the former de-emphasizes words which are rare in the document.

Cosine "distance" is actually a similarity measure, not a distance:

$$d_{\cos} \vec{x}, \vec{y} = \frac{\sum_{i} x_i y_i}{\|\vec{x}\| \|\vec{y}\|}$$

It's the cosine of the angle between the vectors \vec{x} and \vec{y} .

Compare Results With/Without Normalization

		Best match	n by similarity measure	1	2
	Euclidean	Euclidean	word-count Euclidean length		4
music.1	art.5	art.4	art.4		
music.2	art.1	music.4	music.4		
music.3	music.4	music.4	art.3		
music.4	music.2	art.1	art.3		
music.5	art.5	music.3	music.3		
art.1	music.1	art.4	art.3		
art.2	music.4	art.4	art.4		
art.3	art.4	art.4	art.4		
art.4	art.3	art.3	art.3		
art.5	music.1	art.3	art.3		
error cour	nt 6	2			

Table 3: Closest matches for the ten documents, as measured by the distances between bag-of-words vectors, and the total error count (number of documents whose nearest neighbor is in the other class).