Supervised Capstone

Google Play Store
App: Regression &
Classification
Analysis

Arun Nair
Thinkful Data Science Immersive

Overview: Google Play Store Dataset.

Features:

• Apps, category, ratings, reviews, price etc.

Challenges:

- Web Scraping tough compared to other Datasets.
- Cleaning dirty data.
- Converting data to numeric and finding tangible correlation.

Goals (Research Topic):

- To accurately predict ratings against Play Store parameters.
- Classify apps based on ratings vs. categorical parameters.

Exploratory Data Analysis

• Ratings

- Long-tailed Distribution.
- Rating Score: 1-5.

• <u>Central Tendency</u> <u>Measures:</u>

• Mean: 4.19

• Median: 4.3

• Mode: 4.4

Exploratory Data Analysis

• Reviews

- Long-tailed Distribution.
- Reviews: 1-5.
- <u>Central Tendency</u> <u>Measures:</u>

• Mean: 4.44152+05

• Median: 5930.5

• Mode: 2

Correlations

- Highest correlation between Installs and Reviews.
- Negative correlation between Price and most variables.

Rating	1	0.068	0.051	0.04	-0.022	0.00093	-0.035	0.8
Reviews	0.068	1	0.64	-0.043	-0.0098	0.061	0.00088	
Installs	0.051	0.64	1	-0.053	-0.012	0.029	0.023	0.4
Туре	0.04	-0.043	-0.053	1	0.22	-0.035	0.023	0.0
Price	-0.022	-0.0098	-0.012	0.22	1	-0.016	-0.013	-0.4
content_rating	0.00093	0.061	0.029	-0.035	-0.016	1	-0.12	0.4
category_code	-0.035	0.00088	0.023	0.023	-0.013	-0.12	1	-0.8
	Rating	Reviews	Installs	Туре	Price	content_rating	category_code	-

Feature Engineering

- Feature Selection: Reviews, Installs, Type, Price, Category, Content Rating.
- Pre-modeling for Classification and Regression:
 - Classification: Converting continuous x parameters to categorical data type.
 - Regression: To apply logistic regression, we binarize ratings as being above or below the median.

Modeling - Regression

- features = ['Reviews', 'Installs', 'Type', 'Price', 'category_code', 'content_rating']
- X = google_scaled[features]
- y = google_scaled[['Rating']]
- Training the Model:
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)

Linear Regression

Training Evaluation:

• Intercept: 0.80417688

• Coefficients:

'Reviews': 0.17311278

'Installs': 0.02341905

'Type': 0.02615527

• 'Price': -0.09135575

'category_code': -0.01950176

'content_rating': 0.00222041

Testing Evaluation:

- Mean Squared Error = 0.08931495536371267
- Mean Absolute Error = 0.016007898366191792
- Root Mean Squared = 0.12652232358833673

Ridge Regression

- The r^2 value is = 0.008564418905254056
- Coefficients:
 - 'Reviews': 0.1618027
 - 'Installs': 0.02650054
 - 'Type': 0.02595659
 - 'Price': -0.08714568
 - 'category_code': -0.01947737
 - 'content_rating': 0.00234455

Now we transform the original input data to add polynomial features up to degree 2 (quadratic)

Addition of many polynomial features often leads to overfitting, so we often use polynomial features in combination with regression that has a regularization penalty, like ridge regression.

```
(poly deg 2 + ridge) linear model coeff (w):
[[ 0.00000000e+00  2.78950506e-01  2.16420903e-01  6.63800203e-03
    -3.40277212e-02  5.28231530e-02  -1.86844155e-02  -1.56101414e-01
    -1.54042240e-01  3.61885309e-03  4.40025691e-05  1.12582907e-01
    2.39671586e-02  -2.62963228e-01  2.17005644e-03  1.88825852e-05
    5.51066201e-02  -2.02420052e-02  6.63800203e-03  -3.40277212e-02
    1.85762907e-02  6.29007300e-02  -1.33086994e-03  -5.11846340e-02
    1.17069304e-02  -7.25191588e-02  1.25360705e-01  -1.13356854e-01]]
(poly deg 2 + ridge) linear model intercept (b): [0.79159375]
(poly deg 2 + ridge) R-squared score (training): 0.022443572637663722
(poly deg 2 + ridge) R-squared score (test): 0.024319713337627835
```

Modeling - Classification

```
y_train_binary = (y_train >
y_train.median()).astype(np.
int)
y_train_binary.head(3)
```

Rating	
558	1
1891	1
5626	0

Logistic Regression

		precision	recall	f1-score	support	
	0	0.58	0.94	0.72	1595	
	1	0.57	0.10	0.16	1215	
micro	avg	0.58	0.58	0.58	2810	
macro		0.57	0.52	0.44	2810	
weighted		0.58	0.58	0.48	2810	

Decision Tree

Random Forest

		precision	recall	f1-score	support
	0	0.72	0.74	0.73	1595
	1	0.65	0.62	0.63	1215
micro	avg	0.69	0.69	0.69	2810
macro		0.68	0.68	0.68	2810
weighted		0.69	0.69	0.69	2810

Conclusion

- R² is low in regression analyses.
- Polynomial features improve the performance, but overall score remains low.
- Random Forest had best result with 68% average accuracy.
- Continue to work on variables and manipulate feature parameters.