Lecture 7

February 6, 2019

Anders Sundheim asundheim@wisc.edu

Theorem 1

Let $R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ be a closed box Let $f : R \to \mathbb{R}$ be a continuous function. Then $[\max \text{ of } R \text{ in } f \text{ and } \min \text{ of } R \text{ in } f \text{ exist}]$

Remarks

- ① In single variable calculus, If $f: [a, b] \to R$ continuous, then $\min_{[a,b]} f$ and $\max_{[a,b]} f$ exist
- (2) If we replace by a non-closed interval, then the conclusion might fail. Ex. $f(x) = \frac{1}{x}$ for $x \in (0,1]$ max f does not exist

Proof for n=2

Proof. We claim f is bounded in $R = [a_1, b_1] \times [a_2, b_2]$ Proof by contradiction, assume f is not bounded from above in R(that is f takes values going to $+\infty$ on R) We divide the boxes in an inductive manner as following

- First, divide R into 4 equal sized boxes since f is not bounded from above in R, f must not be bounded from above in one sub-box $R_1, R_2 = [a_1^1, b_1^1] \times [a_2^1, b_2^1]$
- Then take R_1 , divide it into 4 equal sub-boxes and repeat as above \Rightarrow we find R_2
- Keep doing so indefinitely, we find boxes

$$\begin{cases} R \supset R_1 \supset R_2 \supset \cdots \supset R_k \\ R_k = [a_1^k, b_1^k] \times [a_2^k, b_2^k], b_1^k - a_1^k = \frac{b_1 - a_1}{2^k} \\ f \text{ is not bounded from above in any of } R_k \end{cases}$$

Observations

(1)

 $\{a_1^k\}$ increasing in k

 $\{b_1^k\}$ decreasing in k

(2)

$$b_1^k - a_1^k = \frac{b_1 - a_1}{2^k} \xrightarrow{k \to \infty} 0$$

 $\Rightarrow \{a_1^k\}, \{b_1^k\}$ converge to the same limit,

$$\lim_{k \to \infty} a_1^k = \lim_{k \to \infty} b_1^k = \bar{a}$$

Similarly,

$$\lim_{k\to\infty}a_2^k=\lim_{k\to\infty}b_2^k=\bar{b}$$

$$\Rightarrow \bigcap_{k \in \mathbb{N}} R_k = \left\{ (\bar{a}, \bar{b}) \right\}$$

In words, $\{R_k\}$ shrinks to exactly one point, (\bar{a}, \bar{b}) , which contradicts as $f((\bar{a}, \bar{b})) \in \mathbb{R}$, and is not $+\infty$

Now that we have f is bounded in R, we show $\max_{R} f$ exists

as
$$f$$
 is bounded in $R \Rightarrow \sup_{R} f, \inf_{R} f$ exist

 $\sup_{V} \text{ is a generalization of } \overline{\max_{V}}$

(in fact, if \max_{V} exists, it's clear that $\sup_{V} = \max_{V}$)

However, in many cases, \max_{V} does not exist

Ex.
$$V=(0,1)\subset\mathbb{R}, \min_V, \max_V$$
 DNE, $\inf_V=0, \sup_V=1$
$$W=\left\{\frac{1}{n}:n\in\mathbb{N}\right\}\subset\mathbb{R}, \max_W=\sup_W=1, \min_W$$
 DNE, $\inf_W=0$

What remains now is to show that $\max_R f$ exists, and equals $\sup_R f$

$$\sup_R f = M \in \mathbb{R}$$

Repeat exactly all step 1, and note

$$\sup_{R_k} f = M$$

Remember that $\{R_k\}$ shrinks to exactly one point,

$$(\bar{a}, \bar{b}) \Rightarrow f((\bar{a}, \bar{b})) = M$$

Theorem 2

 $R = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n, f : R \to \mathbb{R}$ is continuous Then for any fixed $\epsilon > 0$, we can divide R into 2^m sub-boxes $R_1, R_2, ..., R_{2^m}$ so that

$$\max_{R_k} - \min_{R_k} < \epsilon \forall k$$

(f is uniformly continuous on R)