Memo No Mo Tu We Th Fr Sa Su Date / /
Lec15. Topics tor Exam 2, 2025, 1. 15
- functions of several several variables
contour plots.
- Partial derivatives $f_x = 3f$
- Gradient: $7f = \langle f_x, f_y, f_{\pm} \rangle$
Approximation: $\Delta f = f_X \Delta_X + f_y \Delta_Y + f_{\geq \Delta = 0}$
$= \nabla f \cdot \Delta r$
tangent plane -> normal veetor = Vf
Partial differential equations.
- minimum/maximum: Gritical problems
itial points all partial derivative =0
second derivative test to boundary
point
- least squares approximation
$\int_{0}^{\infty} \sum_{i=1}^{N} (i - i - i)^{2} $
- Differentials.
df = txdx + tydy + fx dx

Ö	×		R				
Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			_
Date	1	1	

I chain rule, if
$$X = X(u, v)$$
 $y = y(u, v)$, $z = \frac{1}{2}(u, v)$
 $\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial X}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial z}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u}$ chagges variables

- Non-independent variable
$$g(x,y,\pm) = c$$

O substitude constraint

$$\Rightarrow Q = \frac{min/max}{max} \text{ problems: } |agrange \text{ multipliers}|$$

$$\Rightarrow Qf = \Lambda Qg \quad \{f_x = \Lambda g_x \\ f_y = \Lambda g_y + g = c$$

$$\{f_z = \Lambda g_z \}$$

-> constrained partial derivatives;

f(x,y, \tau) where $g(x,y,\tau) = C$ To find $(3t)_y + y$ is constant, t varies, t = x(y,t)Rate of change of t with respect to t = t?

I) use differentials:

 $dt = t_X d_X + t_Y d_Y + t_Z d_Z \qquad \forall d_Y = 0 , d_X = ()d_Z$ $dg = g_X d_X + g_X d_Y + g_Z d_Z = 0 \Rightarrow d_Z d_X = -\frac{g_Z}{g_X} d_Z$ $plug \text{ in to } df \Rightarrow df = t_X, (-\frac{g_Z}{g_{ZX}})d_Z + t_Z d_Z$ $\Rightarrow (\frac{\partial t}{\partial z})_y = \infty$

102 20 20	\times	Z		R				
	Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			
Date	/	1	

2) using dhain rule:
$\left(\frac{\partial f}{\partial z}\right)_{y} = \frac{\partial f}{\partial x}\left(\frac{\partial x}{\partial z}\right)_{y} + \left(\frac{\partial x}{\partial z}\right)_{y} \frac{\partial f}{\partial x}$
+ 号(学), →1
$0 = (\frac{39}{32})_{y} = \frac{3y}{39}(\frac{3x}{3y})_{y} + \frac{3y}{39}(\frac{3x}{32})_{y} + \frac{3y}{39}(\frac{3x}{32})_{y}$
$\Rightarrow o = \frac{\partial g}{\partial x} \left(\frac{\partial x}{\partial z} \right)_{y} + \frac{\partial g}{\partial z} \left(\frac{\partial z}{\partial z} \right)_{y}$
$\exists \left(\frac{\partial x}{\partial z}\right)_{y} = -\frac{g_{z}}{g_{x}}$

$$\frac{df}{ds} | \hat{u} = \nabla f \cdot \hat{u}$$