Question 3 Graphs and Max-Heap Trees

Part 1 Consider the following weighted directed graph (with 7 vertices and 16 edges):

(a) Calculate the **shortest path** from A to G using the Dijkstra's algorithm. ("Shortest" means the path with the lowest total weight.) [10 marks]

You are expected to show your work using a table of the following form and also list the shortest path (e.g. A - >B - >C) and and specify the resulting weight:

Α	В	С	D	Е	F	G	Finished
0,A	∞ ,B	∞ , C	∞ ,D	∞ ,E	∞ ,F	∞ , G	
O,AV	3,A	6,A	R.D	ON E	2,A	8	Α
0.A~	3,A	GA	P.D	9.F	2.4	S	F
0,AV	3,A V	6.A	13,B	9,F	2,AV	S	${oldsymbol{\mathcal{B}}}$
140	3,9~	6.AV	13,8	9.F	2,AV	∞ G	C
0.1/	3,A V	๘ ฅ✓	12,E	9,50	2,A~	18 F	E
0,AV	3,A~	6,9√	12.EV	9FV	2 AV	17.7	P

Total Weight: 17
Shortest Path:

A >F->E-D-7
G