Project #1 Report

Table of contents

```
Introduction
Data Structures
Algorithm Implementation
   Bit masking
      Introduction
      Operations
      Examples
   Top-Down Approach (Recursive + Memoization)
      Key components
      Recurrence relation
      Handling Cases Where No Hamiltonian Path Exists
      Time Complexity Analysis
   Bottom-Up Approach (Iterative Dynamic Programming)
      DP Transition
      Example
      Complexity analysis
   Advantages and Disadvantages
Result
   case 1
   case 2
   case 3
   case 4
   case 5
   case 6
   case 7
Conclusion
```

Introduction

This report analyzes the C++ implementation of the **Traveling Salesman Problem (TSP)**. The program reads an input file containing weighted edges between cities, constructs a graph representation, and uses **dynamic programming** to find the shortest possible route that visits all cities exactly once before returning to the starting city.

The answer for this case is:

Optimal Path:

 $v1 \rightarrow v6 \rightarrow v4 \rightarrow v3 \rightarrow v5 \rightarrow v2 \rightarrow v1$

Total Distance: 16

Data Structures

- 1. map<int, vector<pair<int, int>>> Nodes
- A mapping of each node to its list of adjacent nodes along with edge weights.
- e.g. The vertices in case 1 will be stored as

```
for (const auto &kv : Nodes) {
  cout << "Node " << kv.first << " has neighbors: ";
  for (const auto &neighbor : kv.second) {
     cout << "(" << neighbor.first << ", weigth = " << neighbor.second << ") ";
  }
  cout << endl;
}</pre>
```

```
Node 0 has neighbors: (1, weigth = 1) (4, weigth = 4) (5, weigth = 2)

Node 1 has neighbors: (0, weigth = 1) (4, weigth = 5) (3, weigth = 8)

Node 2 has neighbors: (5, weigth = 6) (3, weigth = 1) (4, weigth = 5)

Node 3 has neighbors: (5, weigth = 2) (2, weigth = 1) (1, weigth = 8)

Node 4 has neighbors: (0, weigth = 4) (1, weigth = 5) (5, weigth = 3) (2, weigth = 5)

Node 5 has neighbors: (0, weigth = 2) (4, weigth = 3) (3, weigth = 2) (2, weigth = 6)
```

* Node 0 is v1, Node 1 is v2, ..., and so on.

2. vector<vector> cities

- A matrix representation of the graph where cities[i] iii holds the weight of the edge between node i and node j. If no edge exists, the value is set to a large constant (INF).
- e.g. The adjacency matrix of case 1.
 Node 1 → Node 3 cost 8

	0	1	2
0	INF	1	INF
1	1	INF	INF
2	INF	INF	INF
3	INF	8	1
4	4	5	5
5	2	INF	6

Algorithm Implementation

Bit masking

Introduction

mask is an integer, but it is essentially a **binary number (bitmask)** where each bit represents whether a city has been visited or not.

- For example, if there are 4 cities (labeled as 0, 1, 2, 3), the mask will be a 4-bit number, with each bit corresponding to a city:
 - o Bit 0 (least significant bit): City 0, Bit 1: City 1, Bit 2: City 2, Bit 3: City 3
- If a bit is 1, it means the city has been visited; if it is 0, the city has not been visited.

Examples

Binary Representation	Decimal Value	Meaning
0001	1	Only City 0 has been visited
0011	3	Cities 0 and 1 have been visited
0101	5	Cities 0 and 2 have been visited
1111	15	All cities (0, 1, 2, 3) have been visited

Operations

Operation	Description	Method
Check if city is visited	Check if the i-th bit is 0 (not visited)	Use the bitwise & operator
Mark city i as visited	Set the i-th bit to 1 (mark as visited)	Use the bitwise operator
Check if all cities are visited	Check if all n bits are 1 (all cities visited)	Compare (==) with n bits of 1

Coding examples

```
// Check if city i is visited
if (!(mask & (1 << i))) {
    // City i has not been visited
}

// Mark city i as visited
int newMask = mask | (1 << i);

// Check if all cities have been visited
if (mask == (1 << n) - 1) {
    // All cities have been visited
}</pre>
```

- 1<<!: Shift 1 to the left by | positions, resulting in a number where only the | th bit is 1.
- mask & (1 << i): If the result is 0, it means city i has not been visited.
- mask | (1 << i): Set the i th bit of mask to 1.
- (1<< n) -1: Shift 1 to the left by n positions, resulting in a 1 followed by n zeros, then subtract 1 resulting in a number with n bits all set to 1.

Examples

Initial State

• mask = 0001 (decimal value 1), meaning only City 0 has been visited.

Visit City 2

- · Check if City 2 has been visited:
 - o 1 << 2 results in 0100.
 - mask & 0100 results in 0000, meaning City 2 has not been visited.
- · Mark City 2 as visited:
 - o mask 0100 results in 0101 (decimal value 5).

Check if all cities have been visited

- Check if mask equals (1 << n) -1:
 - o 1<< 4 results in 10000.
 - (1 << 4) 1 results in 1111 (decimal value 15).
 - mask!= 1111, meaning not all cities have been visited.

Top-Down Approach (Recursive + Memoization)

The top-down approach employs **recursive function calls with memoization** to solve TSP efficiently. The recursion explores different paths and stores previously computed results in a memoization table to avoid redundant calculations.

Key components

- TSP_TopDown::TSP(int mask, int now_city, const vector<vector<int>>& cost) is the main recursive function.
- memo[mask][now_city]: A memorization table used for dynamic programming to store already computed costs. Stores the minimum cost from now_city with a given mask representing visited cities.
- parent[mask][now_city] records the best next city for path reconstruction. Used to store the best preceding node in the optimal path.

Recurrence relation

Define TSP(mask, now_city) as: The minimum cost to travel from the current city now_city, visit all unvisited cities in mask, and finally return to the starting city.

$$TSP(mask, now_city) = \begin{cases} cost[now_city][0] & \text{if all cities are visited} \\ \min_{i \notin mask} \left(cost[now_city][i] + TSP(mask \mid (1 \ll i), i) \right) & \text{otherwise} \end{cases}$$

1. Base Case

• If mask == (1 << n) - 1, it means all cities have been visited. In this case, return the cost to travel from now_city back to the starting city, which is cost[now_city][0].

2. Recursive Case

- For each unvisited city | (i.e., | is not in mask), calculate the cost to travel from now_city to | (cost[now_city][i]), and recursively compute the minimum cost to visit the remaining cities starting from | (TSP(mask | (1<<i), i)).
- Choose the minimum cost among all possible next cities 1.

Handling Cases Where No Hamiltonian Path Exists

A Hamiltonian path (tour) exists if there is a way to visit all cities and return to the starting city. If no such path is possible, the algorithm must correctly identify and return an indication of failure.

- In TSP_TopDown::TSP(), if there is no edge from now_city to the next city, the cost remains INF.
- If no valid path is found after iterating through all cities, minCost remains INF, meaning that a Hamiltonian path cannot be formed.
- In TSP_TopDown::Solve(), if MinCost >= INF, the function outputs "Unable to form Hamilton path (tour path)."

This ensures that the algorithm correctly handles cases where the input graph is disconnected or lacks the required edges.

Time Complexity Analysis

- There are 2ⁿ possible subsets (mask values) and possible cities to be at.
- Each state involves iterating over n cities.
- Total complexity: O(n^2 * 2^n), which is much more efficient than a brute-force O(n!) approach.

Bottom-Up Approach (Iterative Dynamic Programming)

This approach uses a table-based iterative method to build solutions for increasing subsets of cities.

- dp[mask][i] stores the minimum cost to visit all cities in mask and end at city i.
- The table is filled iteratively by checking feasible transitions from [to].
- · Once all subsets are processed, the shortest path is determined by adding the return cost to the starting city.

DP Transition

- Initialization: dp[1][0]=0
 - $\circ~$ This means starting at city 0, with only city 0 visited, the cost is 0.
- · State Transition
 - For each state dp[mask][i], try to extend to an unvisited city j, and update dp[mask | (1 << j)][j]</pre>.

$$dp[mask \mid (1 \ll j)][j] = \min\left(dp[mask \mid (1 \ll j)][j], \, dp[mask][i] + cost[i][j]\right)$$

Example

Suppose there are 4 cities (labeled as 0, 1, 2, 3), and the distance matrix cost is as follows:

	0	1	2
0	0	10	15
1	10	0	35
2	15	35	0
3	20	25	30

Step 1: Initialization

• dp[0001][0] = 0 (only city 0 is visited, and we are at city 0).

Step 2: State Transitions

```
• From mask = 0001 :
• Visit city 1:
• newMask = 0001 | 0010 = 0011.
                                                    • From mask = 0101 :
• dp[0011][1] = dp[0001][0]+cost[0][1] = 0+10 =
                                                    Visit city 1:
                                                    • newMask = 0101 | 0010 = 0111.
10.
Visit city 2:
                                                    • dp[0111][1] = dp[0101][2]+cost[2][1] = 15+35 =
■ newMask = 0001 | 0100 = 0101.
                                                   50.
• dp[0101][2] = dp[0001][0]+cost[0][2] = 0+15 =
                                                   Visit city 3:
                                                    • newMask = 0101 | 1000 = 1101.
Visit city 3:
                                                    • dp[1101][3] = dp[0101][2] + cost[2][3] = 15 + 30 =
■ newMask = 0001 | 1000 = 1001.
• dp[1001][3] = dp[0001][0] + cost[0][3] = 0 + 20 =
• From mask = 0011 :
                                                    • From mask = 1001 :
Visit city 2:
                                                    Visit city 1:
• newMask = 0011 | 0100 = 0111.
                                                    • newMask = 1001 | 0010 = 1011.
dp[0111][2] = dp[0011][1]+cost[1][2] = 10+35 =
                                                    dp[1011][1] = dp[1001][3]+cost[3][1] = 20+25 =
Visit city 3:
                                                    Visit city 2:
• newMask = 0011 | 1000 = 1011.
                                                    • newMask = 1001 | 0100 = 1101.
dp[1011][3] = dp[0011][1]+cost[1][3] = 10+25 =
                                                    dp[1101][2] = dp[1001][3]+cost[3][2] = 20+30 =
```

Continue computing transitions until reaching the final state (mask = 1111)...

Step 3: Compute the Shortest Path

- For the final state mask = 1111, compute the cost to return to the starting city from each city:
 - From city 1: dp[1111][1] + cost[1][0] = ? + 10 = a.
 - From city 2: dp[1111][2] + cost[2][0] = ? + 15 = b.
 - From city 3: dp[1111][3] + cost[3][0] = ? + 20 = c.
- Compare a, b, and c, and the minimum cost is the final answer.

Complexity analysis

Time Complexity

- States: 2^n×n (all subsets of cities × current city).
- Transitions: n (try all unvisited cities).
- Total: **O(2^n×n2)**.

Space Complexity

• DP Table: **O(2^n×n)**.

Advantages and Disadvantages

Approach	Pros	Cons
Top-Down (Recursive + Memoization)	Intuitive, easy to implement, only computes necessary states	High recursive overhead, may lead to stack overflow for large
Bottom-Up (DP Table)	Avoids recursion overhead, generally faster due to explicit iteration	Requires a large DP table in memory

Result

case 1

Total Distance: 16

Optimal Path: $v1 \rightarrow v2 \rightarrow v5 \rightarrow v3 \rightarrow v4 \rightarrow v6 \rightarrow v1$

Execution Time (Top-Down): 1.58e-05 seconds Execution Time (Bottom-Up): 2.52e-05 seconds

case 2

e1 9 v1 v2 e2 3 v1 v5

e3 5 v1 v6

e4 5 v2 v3

e5 4 v2 v6

e6 2 v3 v4

e7 8 v3 v6

e8 1 v4 v5

e9 7 v4 v6

e10 5 v5 v6

Figure 5.3 An example traveling salesman problem instance.

Total Distance: 20

Optimal Path: $v1 \rightarrow v5 \rightarrow v4 \rightarrow v3 \rightarrow v2 \rightarrow v6 \rightarrow v1$

Execution Time (Top-Down): 4.98e-05 seconds Execution Time (Bottom-Up): 7.99e-05 seconds

e1 1 v1 v2

e2 4 v1 v5

e3 5 v2 v5

e4 2 v1 v6

e5 3 v6 v5

e6 2 v6 v4

e7 6 v6 v3

e8 1 v3 v4

e9 5 v5 v3

e10 8 v4 v2 e11 3 v7 v8

case 3

e12 4 v6 v7 e13 2 v7 v9

e14 1 v7 v1

e15 2 v7 v5

e16 10 v8 v1

e17 4 v8 v3

e18 2 v8 v6

e20 3 v9 v1

e21 4 v8 v2

e22 2 v9 v3

e23 8 v9 v5

Number of cities: 9

Total Distance: 20

Optimal Path: v1 \Rightarrow v2 \Rightarrow v8 \Rightarrow v6 \Rightarrow v4 \Rightarrow v3 \Rightarrow v9 \Rightarrow v7 \Rightarrow v5 \Rightarrow v1

Execution Time (Top-Down): 7.61e-05 seconds Execution Time (Bottom-Up): 0.0001033 seconds

0

case 4

e1 1 v1 v2 e2 4 v1 v5 e3 5 v2 v5 e4 2 v1 v6 e5 3 v6 v5 e6 2 v6 v4 e7 6 v6 v3 e8 1 v3 v4 e9 5 v5 v3 e10 8 v4 v2 e11 3 v7 v8 e12 4 v6 v7 e13 2 v7 v9 e14 1 v7 v1 e15 2 v7 v5

e16 10 v8 v1

e17 4 v8 v3 e18 2 v8 v6 e20 3 v9 v1 e21 4 v8 v2 e22 2 v9 v3 e23 8 v9 v5 e24 1 v10 v1 e25 2 v10 v3 e26 13 v10 v6 e27 3 v10 v5 e28 4 v10 v8 e29 3 v11 v2 e30 4 v11 v4 e31 5 v11 v6 e32 6 v11 v8 e33 1 v7 v2

Number of cities: 11

Total Distance: 25

Optimal Path: v1 \rightarrow v2 \rightarrow v11 \rightarrow v4 \rightarrow v3 \rightarrow v9 \rightarrow v7 \rightarrow v5 \rightarrow v6 \rightarrow v8 \rightarrow v10 \rightarrow v1

Execution Time (Top-Down): 0.0003232 seconds Execution Time (Bottom-Up): 0.0004446 seconds

case 5

e1 1 v1 v2 e2 4 v1 v5 e3 5 v2 v5 e4 2 v1 v6 e5 3 v6 v5 e6 2 v6 v4 e7 6 v6 v3 e8 1 v3 v4 e9 5 v5 v3 e10 8 v4 v2 e11 3 v7 v8 e12 4 v6 v7 e13 2 v7 v9 e14 1 v7 v1 e15 2 v7 v5 e16 10 v8 v1 e17 4 v8 v3 e18 2 v8 v6

e20 3 v9 v1

e21 4 v8 v2

e22 2 v9 v3 e23 8 v9 v5 e24 1 v10 v1 e25 2 v10 v3 e26 13 v10 v6 e27 3 v10 v5 e28 4 v10 v8 e29 3 v11 v3 e30 4 v11 v4 e31 5 v11 v9 e32 6 v11 v8 e33 1 v7 v2 e34 4 v12 v1 e35 3 v12 v2 e36 10 v12 v11 e37 7 v12 v9 e38 3 v12 v8 e39 1 v12 v5 e40 2 v12 v7 e41 9 v7 v3

Number of cities: 12

Total Distance: 25

Optimal Path: v1 \rightarrow v2 \rightarrow v7 \rightarrow v9 \rightarrow v3 \rightarrow v11 \rightarrow v4 \rightarrow v6 \rightarrow v8 \rightarrow v12 \rightarrow v5 \rightarrow v10 \rightarrow v1

Execution Time (Top-Down): 0.0006999 seconds Execution Time (Bottom-Up): 0.0009176 seconds

The following is the case we set, mainly used to test the situation where **Hamilton cycle** cannot be generated.

case 6 e1 3 v1 v2 e2 2 v2 v3 e3 1 v3 v4 e4 2 v5 v1 e5 2 v5 v2

Unable to form Hamilton cycle (tour path).

Execution Time (Top-Down): 1.16e-05 seconds Execution Time (Bottom-Up): 1.2e-05 seconds

Unable to form Hamilton cycle (tour path).

Execution Time (Top-Down): 1.39e-05 seconds Execution Time (Bottom-Up): 1.61e-05 seconds

Conclusion

This implementation efficiently solves the TSP using **dynamic programming** and **bit masking**, ensuring an optimal route is found. The use of memoization and backtracking allows for significant performance improvements over brute force methods. The program is well-structured and correctly handles input parsing, graph representation, and TSP computation.