### University of Warwick Department of Computer Science

# CS131

## Mathematics for Computer Scientists II



Cem Yilmaz January 11, 2022

#### 1 Number System

#### 1.1 Binary

#### **Definition 1.1.** Binary number system

The binary number system uses the digits 0,1 to express itself. In particular the positive integers are represented as:

$$\sum_{i=0}^{n} a2^{i} \tag{1}$$

where  $a \in \mathbb{B}$  and  $\mathbb{B} = \{0, 1\}$ . Different number systems are usually expressed with subscripts. E.g.  $100101_{two}$ .

#### **1.2** Converting to base n

We can utilise the division algorithm to achieve this. That is, for some base n to convert from base 10 we divide by n to get remainders.

#### Example 1.1. Division of binary

$$19 \div 2 = 9R1 \tag{2}$$

$$9 \div 2 = 4R1\tag{3}$$

$$4 \div 2 = 2R0 \tag{4}$$

$$2 \div 2 = 1R0 \tag{5}$$

$$1 \div 2 = 0R1 \tag{6}$$

#### 1.3 The division algorithm

#### **Theorem 1.1.** The division algorithm

Given any integers  $a,b\in\mathbb{Z}$  and  $b\neq 0$ , there are unique integers  $q,r\in\mathbb{Z}$  such that a=qb+r and  $0\leq r<|b|$ .

#### 1.4 The Euclidean algorithm

The euclidean algorithm utilises the division algorithm to find gcd(m,n) = b where  $m,n,b \in \mathbb{Z}$ .

#### **Definition 1.2.** Greatest Common Divisor

The greatest common divisors of two numbers m, n where  $m, n \in \mathbb{Z}$  is the greatest number  $\zeta$  such that  $\zeta \mid m$  and  $\zeta \mid n$ . It is denoted as gcd(m, n).

Then, through division, observe that n=mb+r In particular, the key observation would be  $\gcd(r,m)=\gcd(n,m)=b$ . Repeat this process until one of the numbers reaches 0.