

CSE541 Computer Vision

Object detection techniques in case of small objects on

AU Drone dataset

- 1. Paridhi Jain AU2120226
- 2. Kathan Dave AU2140113
- 3. Saahil Doshi AU2140108
- 4. Jash Parikh AU2140106

Problem Statement

- Small Object Detection
- Deep Learning Models
- Performance metrics will be mAP@0.5, mAP@0.75, mAP@0.95, and confusion matrix.

SAHI (Slicing Aided Hyper Inference)

Advantages of Sliced Inference

- Reduced Computational Burden
- Preserved Detection Quality
- Enhanced Scalability

Yolov8 without SAHI vs with SAHI

SAHI hyperparameter tuning

```
...
predict(
  model type="yolov8",
model path="/content/drive/MyDrive/CV Project/runs/detect/train12/weights/best.pt",
  model device="cuda", # or 'cuda:0'
  model confidence threshold=0.4,
  source="/content/drive/MyDrive/CV Project/data/smallTest/images",
  slice height=512,
  slice width=512,
  overlap height ratio=0.1,
  overlap width ratio=0.1,
```


Efficient DET

- Challenge: Improve EfficientDet accuracy while maintaining efficiency(compared to YOLOv8).
- Current Status: EfficientDet has lower mAP (mean Average Precision) than YOLOv8.
- Exploration: Investigate techniques to enhance EfficientDet's accuracy.
- EfficientDet Architecture: EfficientDet architecture uses different compound scaling methods, investigating BiFPN+ improvements.

Efficient DET

1	Architecture	mAP@50	GPU Latency
	YOLOv8	0.62	1.3ms
	EfficientDet	0.47	-

