Assignment 2 Michael McAllister Student Number:

OUESTION 1.

```
mysql> DESCRIBE Movie;
+----+
| Field | Type | Null | Key | Default | Extra
+----+
| text | YES | NULL
| title
| director | text | YES | NULL
+----+
4 rows in set (0.00 sec)
```

```
mysql> DESCRIBE Reviewer;
+----+
| Field | Type | Null | Key | Default | Extra
+----+---+----
| rID | int | NO | PRI | NULL | auto_increment |
| name | text | YES | NULL |
+----+---
2 rows in set (0.01 sec)
| Field | Type | Null | Key | Default | Extra
| int | NO | MUL | NULL
| mID
| stars | int | YES | NULL | ratingDate | date | YES | curdate() | DEFAULT_GENERATED |
```

nysgl> SHOW CREATE TABLE Movie;

4 rows in set (0.00 sec)

+----+-

```
| Movie | CREATE TABLE `Movie` (
 `mID` int NOT NULL AUTO INCREMENT,
 `title` text,
 `year` int DEFAULT NULL,
 `director` text,
 PRIMARY KEY (`mID`),
 CONSTRAINT `Movie chk 1` CHECK ((`year` < 2017))
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4 0900 ai ci |
```

```
QUESTION 2
```

1.

2.

3.

4.

5.

6.

7.

```
mysql> UPDATE hiking
               -> SET distance=10.50, est time =10.50
               -> WHERE trail='East Mesa Loop';
         mysgl> INSERT INTO hiking(trail,distance) VALUES
         -> ('Oak Canyon', 3.00);
mysal> UPDATE hikina
    -> SET area = 'Mission Trails Regional Park', est time = 2.00
    -> WHERE trail = 'Oak Canyon';
Query OK, 0 rows affected (0.00 sec)
            mysql> DELETE FROM hiking WHERE distance >5;
            Query OK, 1 row affected (0.03 sec)
                 mysql> CREATE TABLE rating
                     -> (trail CHAR(50),
                     -> difficulty INT);
                 Query OK, 0 rows affected (0.30 sec)
       mysgl> ALTER TABLE hiking
           -> ADD COLUMN trailID FLOAT NOT NULL PRIMARY KEY;
       Query OK, 0 rows affected (0.36 sec)
      mysql> ALTER TABLE rating
          -> ADD COLUMN trailID FLOAT;
      Ouerv OK, 0 rows affected (0.10 sec)
      Records: 0 Duplicates: 0 Warnings: 0
      mysql> ALTER TABLE rating
           -> ADD CONSTRAINT FK trailID
          -> FOREIGN KEY (trailID) REFERENCES hiking(trailID);
                      mysgl> DROP TABLE rating:
```

QUESTION 3

2.

- L SELECT Orders.order_no, Orders.purch_amt, Customer.cust_name, Customer.city
- 2 FROM Customer, Orders
- 3 WHERE Customer.customerID = Orders.customerID AND Orders.purch_amt BETWEEN 500 and 2000

#	order_no	purch_am	cust_name	city
1	70007	948.5	Graham Zusi	California
2	70010	1983.43	Fabian Johns	Paris

3.

SELECT Customer.cust_name AS "Customer Name", Salesman.name AS "Salesman"
 FROM Customer

INNER JOIN Salesman

ON Customer.salesmanID = Salesman.salesmanID;

#	Customer Nam	Salesman
1	Nick Rimando	James Hoog
2	Graham Zusi	Nail Knite
3	Brad Guzan	Pit Alex
4	Fabian Johns	Mc Lyon
5	Brad Davis	James Hoog
6	Geoff Camero	Lauson Hen
7	Julian Green	Nail Knite
8	Jozy Altidor	Paul Adam

```
SELECT Customer.cust_name,
       Salesman.name,
       Salesman.commission
  FROM Customer
  INNER JOIN Salesman
    ON Customer.salesmanID = Salesman.salesmanID
  WHERE Salesman.commission > 0.12;
#
    cust_name
                 name
                            commission
1
    Nick Rimando James Hoog 0.15
2
    Graham Zusi Nail Knite
                            0.13
    Fabian Johns Mc Lyon
                            0.14
    Brad Davis James Hoog 0.15
4
5
    Julian Green Nail Knite
                            0.13
    Jozy Altidor Paul Adam 0.13
```

5.

#	cust_name	name	commission		
1	Graham Zusi	Nail Knite	0.13		
2	Julian Green	Nail Knite	0.13		
3	Jozy Altidor	Paul Adam	0.13		

```
SELECT Orders.order_no,
      Orders.ord date,
      Orders.purch amt,
      Customer.cust_name AS "Customer Name",
      Salesman.name AS "Salesman",
      Salesman.commission
 FROM Orders
 INNER JOIN Customer
   ON Orders.customerID=Customer.customerID
 INNER JOIN Salesman
   ON Orders.salesmanID=Salesman.salesmanID;
    order no ord date | purch am | Customer Nam | Salesman | commission
1
    70013
            2012-04-25 3045.6
                                Nick Rimando
                                              James Hoog 0.15
2
    70008 2012-09-10 5760
                                Nick Rimando
                                              James Hoog 0.15
3
                                Nick Rimando
    70002 2012-10-05 65.26
                                              James Hoog 0.15
                                Graham Zusi
   70007 2012-09-10 948.5
                                              Nail Knite
4
                                                        0.13
5
           2012-10-05 150.5
                                Graham Zusi
                                              Nail Knite
   70001
                                                         0.13
6
    70009 2012-09-10 270.65
                                Brad Guzan
                                              Pit Alex
                                                        0.11
7
   70010 2012-10-10 1983.43
                                Fabian Johns
                                              Mc Lyon
                                                        0.14
   70005 2012-07-27 2400.6
                                Brad Davis
                                              James Hoog 0.15
9
   70003 2012-10-10 2480.4
                                Geoff Camero
                                              Lauson Hen 0.12
```

7.
• SELECT *
FROM Orders
NATURAL JOIN Salesman
NATURAL JOIN Customer;

10 70004 2012-08-17 110.5

11 70012 2012-06-27 250.45

12 70011 2012-08-17 75.29

6.

#	salesmanII	customerII	city	order_no	purch_am	ord_date	name	commission	cust_name	grade
1	5005	3001	London	70009	270.65	2012-09-10	Pit Alex	0.11	Brad Guzan	NULL
2	5001	3002	New York	70002	65.26	2012-10-05	James Hoog	0.15	Nick Rimando	100
3	5001	3007	New York	70005	2400.6	2012-07-27	James Hoog	0.15	Brad Davis	200
4	5001	3002	New York	70008	5760	2012-09-10	James Hoog	0.15	Nick Rimando	100
5	5006	3004	Paris	70010	1983.43	2012-10-10	Mc Lyon	0.14	Fabian Johns	300
6	5001	3002	New York	70013	3045.6	2012-04-25	James Hoog	0.15	Nick Rimando	100

Geoff Camero

Iulian Green

Jozy Altidor

Lauson Hen 0.12

Paul Adam 0.13

0.13

Nail Knite

Question 4.

The schema likely has the following four foreign keys:

- the attribute SSN of relation ENROLL that references relation STUDENT
- the attribute Course# in relation ENROLL that references relation COURSE
- the attribute Course# in relation BOOK_ADOPTION that references relation COURSE
- the attribute Book_ISBN of relation BOOK_ADOPTION that references relation TEXT.

For all 'possible' Foreign Keys depending on the nature of the schema there are more possible answers. A foreign key has to be the same domin as the referencing primary key. From the schema it appears there are 3 primary keys: Ssn, Course#, Book_isbn (it is also possible that Ssn and Bdate is a composite primary key in the Student table, but theoretically any of the integer fields can be a primary key as long as they don't break the uniquess constraint.

All 3 primary keys appear to have a numeric(integer) domain so can only be the referenced column for other foreign key numeric domain attributes, these possible integer numeric domains appear 7 times. We can therefore take all possible permutations of these 7 attributes as 'possible' foreign keys and possible primary keys. This is under the assumption that all the other attributes are not numeric and the primary keys are integers.

$$P(n,r) = P(7,2)$$

$$= \frac{7!}{(7-2)!}$$
= 42