41. Мера на многообразии. Интеграл первого рода на многообразии. Частные случаи интеграла I рода на многообразии: криволинейный и поверхностный, вычислительные формулы для них

Мера на многообразии

Пусть $M\in \mathbb{M}_{k,n}^{(1)}$, $E\in \mathbb{A}_{M}$.

1. Если E малое и $E\subset U$ (стандартная окрестность с параметризацией φ), то:

$$\mu_M E = \int_{arphi^{-1}(E)} \sqrt{D_arphi} \, d\mu_k.$$

2. Если $E=\bigcup_{
u}E_{
u}$ (дизъюнктивные малые множества), то:

$$\mu_M E = \sum_
u \mu_M E_
u.$$

Функция μ_M называется мерой на многообразии M.

Смысл.

Мера μ_M обобщает понятие длины (для кривых) и площади (для поверхностей) на произвольные гладкие многообразия. Она строится через локальные параметризации и интегралы от корня из определителя Грама D_{φ} , что гарантирует инвариантность относительно выбора координат. Это позволяет измерять "размер" подмножеств многообразия.

Интеграл первого рода на многообразии

Интеграл по мере μ_M называется *интегралом первого рода* на M. Для $f:E o\mathbb{R}$ и малого $E\subset U$:

$$\int_E f\,d\mu_M = \int_{arphi^{-1}(E)} (f\circarphi) \sqrt{D_arphi}\,d\mu_k.$$

Смысл.

Этот интеграл позволяет вычислять величины (например, массу, заряд) распределенные по многообразию. Он сводится к обычному крайнему интегралу в локальных координатах, умноженному на "поправочный множитель" $\sqrt{D_{\varphi}}$, который учитывает искривление многообразия. Условие $f\circ\varphi\in\mathcal{L}_1$ гарантирует корректность.

Частные случаи и вычислительные формулы

Криволинейный интеграл (k=1, кривая Γ : $x=\gamma(t)$):

$$\mu\Gamma = \int_a^b |\gamma'|\,dt, \quad \int_\Gamma f\,d\mu_\Gamma = \int_a^b (f\circ\gamma)|\gamma'|\,dt.$$

Поверхностный интеграл (k=n-1, поверхность S: $\varphi:G\subset\mathbb{R}^{n-1} o\mathbb{R}^n$):

$$\mu S = \int_G \sqrt{\sum_{j=1}^n (\det arphi_j')^2} \, d\mu_{n-1}, \quad \int_S f \, d\mu_S = \int_G (f \circ arphi) \sqrt{D_arphi} \, d\mu_{n-1}.$$

Смысл.

Для кривых интеграл сводится к одномерному с множителем $|\gamma'|$ (длина вектора скорости), что соответствует длине дуги. Для поверхностей $D_{\varphi}=|\mathcal{N}_{\varphi}|^2$ (нормаль), и интеграл учитывает площадь элемента поверхности через определители подматриц Якобиана. Классические обозначения: ds (кривая) и $d\sigma$ (поверхность).

42. Ориентация многообразий. Понятия: одинаково ориентирующие параметризации, ориентация окрестностей, согласованные ориентации окрестностей, ориентированное многообразие, ориентируемое многообразие. Возможное количество ориентаций связного многообразия

Одинаково ориентирующие параметризации

Две параметризации φ и ψ стандартной окрестности U многообразия M называются согласованными (или одинаково ориентирующими), если для перехода $L:\Pi\to\Pi$ между ними якобиан $\det L'>0$ на всей области Π . Если $\det L'<0$, параметризации называются противоположно ориентирующими.

Смысл:

Знак якобиана перехода между параметризациями определяет, сохраняют ли они "направление" на многообразии. Положительный якобиан означает, что параметризации согласованы и задают одинаковую локальную ориентацию. Это важно для корректного определения глобальной ориентации.

Ориентация окрестностей

Ориентация окрестности U — это выбор класса эквивалентности параметризаций, для которых переходы имеют положительный якобиан. Параметризации этого класса называются положительно ориентирующими, а остальные — отрицательно ориентирующими.

Смысл:

Ориентация окрестности позволяет локально определить "направление" на многообразии. Например, на плоскости можно выбрать ориентацию "против часовой стрелки". Это необходимо для согласованного определения интегралов и дифференциальных форм.

Согласованные ориентации окрестностей

Две ориентированные окрестности U и V называются согласованными, если либо их пересечение пусто, либо для любых положительно ориентирующих параметризаций φ (для U) и ψ (для V) переход L между ними имеет $\det L'>0$ в области пересечения.

Смысл:

Согласованность гарантирует, что ориентации разных окрестностей не противоречат друг другу. Это позволяет "склеить" локальные ориентации в единую глобальную структуру, что важно для работы с целым многообразием.

Ориентированное многообразие

Многообразие M называется ориентированным, если существует набор попарно согласованных ориентаций всех его стандартных окрестностей. Такой набор называется ориентацией многообразия.

Ориентированное многообразие имеет единое глобальное "направление". Примеры: сфера, тор. Неориентируемые многообразия (например, лист Мёбиуса) не допускают такой структуры. Ориентация критична для многих теорем анализа и топологии.

Ориентируемое многообразие

Многообразие M называется ориентируемым, если существует хотя бы одна его ориентация (т.е. если его можно превратить в ориентированное многообразие выбором подходящих локальных ориентаций).

Смысл:

Ориентируемость — это свойство многообразия "допускать" согласованную ориентацию. Например, все поверхности без "перекрутов" (как сфера) ориентируемы, а лист Мёбиуса — нет. Это фундаментальное топологическое свойство.

Количество ориентаций связного многообразия

Если многообразие M связно и ориентируемо, то оно имеет ровно две ориентации: исходную и противоположную (где во всех окрестностях выбран "обратный" класс параметризаций).

Смысл:

Связность означает, что многообразие "цельное", и выбор ориентации в одной точке однозначно распространяется на всё многообразие. Противоположная ориентация соответствует "зеркальному отражению". Например, у окружности есть только две ориентации: по и против часовой стрелки.

43. Понятие направления, лемма о существовании направлений

Кривая как одномерное многообразие

При k=1 гладкое многообразие M в \mathbb{R}^n называется кривой. Это означает, что локально кривая устроена как интервал числовой прямой.

Кривая - это одномерный геометрический объект, который в каждой своей точке выглядит как прямая линия (аналог того, как поверхность выглядит как плоскость). Примеры: прямая, окружность, спираль в пространстве.

Параметрическое задание кривой

Кривая Γ задаётся параметризацией $\gamma \in C^{(1)}((a,b) o \mathbb{R}^n)$, где:

- 1. γ инъективна (кроме, возможно, концов для замкнутых кривых)
- 2. γ регулярна ($\gamma'(t) \neq 0$ для всех t)
- 3. $\Gamma = \gamma((a,b))$

Смысл:

Кривую можно представить как траекторию движущейся точки, где параметр t - это время, а $\gamma(t)$ - положение точки в момент t. Условия гарантируют, что кривая не имеет "острых углов" и самопересечений.

Касательное пространство к кривой

Для кривой Γ в точке $x^0=\gamma(t_0)$ касательное пространство:

$$T_{x^0}\Gamma=\{\lambda\gamma'(t_0)|\lambda\in\mathbb{R}\}$$

Смысл:

Касательное пространство - это прямая линия, которая наилучшим образом приближает кривую в данной точке. Оно состоит из всех возможных касательных векторов в этой точке, а единичные векторы из этого пространства задают направления на кривой.

Направления на кривой (связь с исходным билетом)

Формальное определение:

Направление на Γ - это непрерывное отображение $au:\Gamma \to \mathbb{R}^n$, такое что:

- 1. $au(x) \in T_x\Gamma$ (касательный вектор)
- 2. | au(x)| = 1 (единичная длина)

Смысл:

Направление - это способ задать ориентацию кривой, то есть указать "положительное" направление движения вдоль неё. На связной кривой таких направлений ровно два (вперёд/ назад), что соответствует двум возможным ориентациям.

Лемма о существовании двух направлений

На связной гладкой кривой Γ , заданной параметризацией $\gamma \in C^{(1)}((a,b) \to \mathbb{R}^n)$, существует ровно два направления:

$$au_{\pm} = \pm rac{\gamma'}{|\gamma'|} \circ \gamma^{-1}.$$

Для замкнутого пути γ значение $\gamma^{-1}(\gamma(a))$ может соответствовать любой граничной точке.

Смысл:

Лемма утверждает, что на связной кривой есть только два возможных направления: "вперёд" (au_+) и "назад" (au_-), определяемые производной параметризации. Это следует из того, что касательный вектор можно нормировать двумя способами, а связность гарантирует отсутствие "переключений" между ними.

44. Сторона поверхности, лемма о существовании стороны

Определение двусторонней поверхности

Связная поверхность S в \mathbb{R}^n называется *двусторонней*, если существует непрерывное отображение $N:S \to \mathbb{R}^n$ (называемое *стороной*), такое что для всех $x \in S$:

- N(x) ортогонален касательному пространству $T_x S$ (т.е. $N(x) \perp T_x S$),
- |N(x)| = 1 (нормаль единичной длины).

Смысл:

Двусторонняя поверхность — это такая поверхность, на которой можно глобально (по всей поверхности) задать непрерывное поле единичных нормалей. Пример — сфера или плоскость, где нормаль можно согласованно выбрать "наружу" или "внутрь". Это отличает их от односторонних поверхностей (как лента Мёбиуса), где такое поле непрерывно задать нельзя.

Лемма о связи двусторонности и ориентируемости

Для связной поверхности S следующие условия эквивалентны:

- S двусторонняя,
- S ориентируема.

При этом S имеет ровно две стороны, задаваемые формулой:

$$N_{\pm}=\pmrac{N_{arphi}}{|N_{arphi}|}\circarphi^{-1},$$

где N_{φ} — нормаль, построенная по параметризации φ .

Смысл:

Ориентируемость означает, что можно согласованно выбрать "положительное" направление в касательных пространствах по всей поверхности. Лемма утверждает, что это возможно тогда и только тогда, когда поверхность двусторонняя. Две стороны соответствуют двум возможным глобальным выборам нормалей (например, "вверх" и "вниз" для плоскости). Доказательство опирается на согласование параметризаций и свойство непрерывности нормали.

Построение нормали и согласование параметризаций

Если φ — положительно ориентированная параметризация окрестности $U\subset S$, то нормаль N_{φ} вычисляется через частные производные φ :

$$N_{arphi} = \det egin{pmatrix} e_1 & \cdots & e_n \ rac{\partial arphi}{\partial u_1} & \cdots & rac{\partial arphi}{\partial u_{n-1}} \end{pmatrix}$$

(формально — как векторное произведение базисных векторов). При замене параметризации $\psi=\varphi\circ L$ с $\det L'>0$, нормали N_φ и N_ψ совпадают.

Смысл:

Нормаль строится локально через параметризацию, а её глобальная корректность обеспечивается условием $\det L'>0$ (сохранение ориентации). Это гарантирует, что выбор "положительной" нормали не зависит от выбора координат. Например, для сферы можно использовать географические координаты, и если менять их с сохранением ориентации, направление нормали останется согласованным.

45. Теорема о крае многообразия и его ориентации. Понятие ориентации края, согласованной с

ориентацией многообразия. Пример согласованных ориентаций на поверхности и ограничивающей кривой.

Теорема о крае многообразия

Если M-k-мерное многообразие класса $C^{(r)}$, то его край ∂M является (k-1)-мерным многообразием класса $C^{(r)}$ без края. Если M ориентируемо, то ∂M также ориентируемо.

Смысл:

Край многообразия наследует его гладкость и теряет одну размерность. Ориентация многообразия автоматически задаёт согласованную ориентацию края. Это важно для интегральных теорем (например, Стокса), где ориентация края влияет на знак результата.

$$\Pi_{k-1} = (-1,1)^{k-1}$$

это открытый (k-1)-мерный куб в пространстве параметров $\tilde{u}=(u_2,\ldots,u_k)$, используемый для параметризации края ∂M .

Понятие ориентации края, согласованной с ориентацией многообразия

Ориентация края ∂M , заданная формулой $\tilde{\varphi}_x(\tilde{u})=\varphi_x(0,\tilde{u})$ (где φ_x — параметризация M и $\tilde{u}\in\Pi_{k-1}$), называется индуцированной или согласованной с ориентацией M.

Смысл:

При переходе от многообразия к краю "отбрасывается" первая координата параметризации. Для согласованности нужно, чтобы матрица Якоби перехода между параметризациями сохраняла положительный определитель. Это гарантирует, что ориентация края согласована с "направлением наружу" от многообразия.

Пример согласованных ориентаций

Пусть $G \subset \mathbb{R}^2$ — область с гладкой границей S. Если G ориентирована естественным образом (якобиан > 0), то согласованная ориентация S задаётся касательным вектором τ , при котором G остаётся слева при обходе границы. Нормаль $\mathcal N$ направлена наружу.

Для поверхности в \mathbb{R}^3 внешняя нормаль $\mathcal N$ определяет ориентацию края через векторное произведение. В 2D это соответствует правилу "обход против часовой стрелки". Пример иллюстрирует, как ориентация края связана с направлением нормали и выбором параметризации.

46. Полилинейные формы, кососимметрические формы - определения и элементарные свойства, внешнее произведение форм

Полилинейные формы

Определение полилинейной формы

Пусть X,Y — векторные пространства над полем $K,p\in\mathbb{N}$. Отображение $F:X^p\to Y$ называется p-линейным, если оно линейно по каждому аргументу. Если Y=K, то F называется p-формой на X. Множество всех p-форм обозначается $\mathcal{F}_p(X)$. При p=0 под 0 -формами понимаются элементы Y.

Разложение по базису

Если $\dim X = n$ и e^1, \dots, e^n — базис X, то для $F \in \mathcal{F}_p(X)$:

$$F = \sum_{i_1,\ldots,i_p=1}^n a_{i_1,\ldots,i_p} \pi_{i_1} \otimes \ldots \otimes \pi_{i_p},$$

где π_i — проектор на i-ю координату, а коэффициенты $a_{i_1,\dots,i_p}=F(e^{i_1},\dots,e^{i_p}).$

Смысл

Полилинейные формы обобщают линейные отображения на случай нескольких аргументов. Они позволяют выражать многомерные линейные зависимости, например, объёмы или детерминанты. Коэффициенты a_{i_1,\ldots,i_p} зависят от выбора базиса и полностью определяют форму.

Кососимметрические формы

Определение кососимметричности

Форма $F\in\mathcal{F}_p(X)$ называется кососимметрической, если для любых двух аргументов:

$$F(x^1,\ldots,x^i,\ldots,x^j,\ldots,x^p) = -F(x^1,\ldots,x^j,\ldots,x^i,\ldots,x^p).$$

Множество таких форм обозначается $\mathcal{E}_p(X)$. При p>n все формы нулевые.

Базис в $\mathcal{E}_p(X)$

Для $p \leq n$ форма F раскладывается как:

$$F = \sum_{1 \leq i_1 < \ldots < i_p \leq n} a_{i_1,\ldots,i_p} \pi_{i_1} \wedge \ldots \wedge \pi_{i_p},$$

где \wedge — внешнее произведение, а $\pi_{i_1} \wedge \ldots \wedge \pi_{i_p}$ вычисляется через определитель матрицы из координат векторов.

Смысл

Кососимметрические формы "чувствуют" ориентацию и линейную зависимость векторов. Например, если два вектора совпадают, форма обращается в ноль. Они тесно связаны с определителями и используются в интегрировании (дифференциальные формы).

Внешнее произведение форм

Определение внешнего произведения

Для $F\in\mathcal{E}_p(X)$ и $G\in\mathcal{E}_q(X)$ их внешнее произведение $F\wedge G\in\mathcal{E}_{p+q}(X)$ определяется на базисных формах как:

$$(\pi_{i_1}\wedge\ldots\wedge\pi_{i_p})\wedge(\pi_{j_1}\wedge\ldots\wedge\pi_{j_q})=\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q},$$

а затем продолжается по линейности.

Формула для коэффициентов

Если F и G заданы в виде (12.19), то:

$$F\wedge G=\sum_{1\leq i(j)_1<\ldots< i(j)_p\leq n}a_{i_1,\ldots,i_p}b_{j_1,\ldots,j_q}\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q}.$$

Внешнее произведение комбинирует формы, увеличивая их степень. Оно аналогично векторному произведению, но для многомерных объектов. Например, в геометрии с его помощью строят формы для вычисления гиперобъёмов.

47. Дифференциальные формы; координатное представление дифференциальных форм. Внешнее дифференциальных форм

Определение дифференциальной формы

Пусть $G\subset\mathbb{R}^n$, $p\in\mathbb{N}$. Дифференциальной формой порядка p (или p-формой) в множестве G называется функция $\omega:G\times(\mathbb{R}^n)^p\to\mathbb{R}$, такая что для всех $x\in G$ выполняется $\omega(x;\cdot)\in\mathcal{E}_p(\mathbb{R}^n)$. 0-формой называется функция, заданная на G.

$$\omega(x; dx^1, \ldots, dx^p) = \sum_{1 \leq i_1 < \ldots < i_p \leq n} a_{i_1 \ldots i_p}(x) \, dx_{i_1} \wedge \ldots \wedge dx_{i_p},$$

где $a_{i_1\dots i_p}:G o\mathbb{R}$ — коэффициенты формы.

Смысл:

Дифференциальная форма — это обобщение понятия функции и её дифференциала. Она позволяет работать с многомерными интегралами и векторными полями, например, в физике (потоки, работа). Формы порядка p "измеряют" p-мерные объёмы или проекции.

Координатное представление дифференциальных форм

В координатах форма ω раскладывается по базису внешней алгебры $dx_{i_1}\wedge\ldots\wedge dx_{i_p}$, где $1\leq i_1<\ldots< i_p\leq n$. Коэффициенты $a_{i_1\ldots i_p}(x)$ зависят от точки $x\in G$.

$$\omega = \sum_I a_I(x) \, dx^I, \quad$$
где $I = (i_1, \dots, i_p).$

Такое представление позволяет удобно вычислять операции с формами (сложение, умножение, дифференцирование). Оно аналогично разложению вектора по базису, но для "многомерных объектов". Например, 1-форма в \mathbb{R}^3 — это линейная комбинация dx, dy, dz.

Внешнее дифференцирование

Оператор внешнего дифференцирования $d:\Omega_p^{(r)}(G) o \Omega_{p+1}^{(r-1)}(G)$ задаётся для 0-формы $\omega=f$ как:

$$df = \sum_{i=1}^n rac{\partial f}{\partial x_i} dx_i,$$

а для p-формы $\omega = \sum a_I dx^I$:

$$d\omega = \sum da_I \wedge dx^I.$$

- Линейность: $d(\omega + \lambda) = d\omega + d\lambda$.
- ullet Правило Лейбница: $d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^p \omega \wedge d\lambda.$
- $d^2 = 0$ (для форм класса $C^{(2)}$).

Смысл:

Внешний дифференциал обобщает градиент, ротор и дивергенцию. Например, в \mathbb{R}^3 , d переводит 0-форму (функцию) в 1-форму (градиент), а 1-форму — в 2-форму (ротор). Свойство $d^2=0$ отражает замкнутость таких операций (например, $\mathrm{rot}(\mathrm{grad})=0$).

Гладкость форм

Форма ω называется r-гладкой (класса $C^{(r)}$), если все её коэффициенты $a_I(x)$ являются r-гладкими функциями. Множество таких форм обозначается $\Omega_p^{(r)}(G)$.

Смысл:

Гладкость гарантирует, что с формой можно корректно выполнять дифференциальные операции (например, внешнее дифференцирование). Это важно для приложений в теории поля и дифференциальной геометрии.

Теорема о свойствах внешнего дифференцирования

- Линейность: d линейный оператор.
- Антикоммутативность: $d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^p \omega \wedge d\lambda$.

• Нильпотентность: $d^2\omega = 0$.

$$d^2\omega=d\left(\sum da_I\wedge dx^I
ight)=\sum d^2a_I\wedge dx^I-da_I\wedge d(dx^I)=0.$$

Смысл:

Эти свойства аналогичны правилам работы с дифференциалами в матанализе. Нильпотентность $d^2=0$ лежит в основе теории когомологий, которая изучает "дыры" в многообразиях.

48. Перенос дифференциальных форм. Теорема о свойствах переноса форм

Определение переноса дифференциальных форм

Формальное определение:

Пусть G — открытое множество в \mathbb{R}^n , U — открытое множество в \mathbb{R}^m , $p\in\mathbb{Z}_+$, $\omega\in\Omega_p(G)$, $T\in C^{(1)}(U\to G)$. Перенесённая форма $T^{\emptyset}\omega$ определяется равенством:

$$(T^\omega)(u;du^1,\ldots,du^p)=\omega(T(u);T'(u)du^1,\ldots,T'(u)du^p),$$

где $u\in U$, $du^1,\dots,du^p\in\mathbb{R}^m$. Отображение T^{\varnothing} называется переносом форм или заменой переменных.

Смысл:

Перенос форм позволяет "перетянуть" дифференциальную форму из пространства G в пространство U с помощью отображения T. Это аналогично замене переменных в интеграле, где форма адаптируется к новым координатам через производную T'. Например, при переходе от декартовых к полярным координатам.

Свойства переноса форм

- 1. Линейность: $T^{\emptyset}(\alpha\omega+\beta\lambda)=\alpha T^{\emptyset}\omega+\beta T^{\emptyset}\lambda$.
- 2. Умножение на функцию: $T^{\emptyset}(f\omega)=(f\circ T)T^{\emptyset}\omega$ для $f\in C^{(r)}(G)$.
- 3. Внешнее произведение: $T^{\emptyset}(\omega \wedge \lambda) = T^{\emptyset}\omega \wedge T^{\emptyset}\lambda$.
- 4. Дифференциал: $T^{\varnothing}d\omega=dT^{\varnothing}\omega$ при $r\geq 1.$

5. Явная формула: Для $\omega = \sum a_{i_1,\ldots,i_p} dx_{i_1} \wedge \ldots \wedge dx_{i_p}$,

$$T^{\emptyset}\omega = \sum (a_{i_1,\ldots,i_p}\circ T)\cdot \det\left(rac{\partial T_{i_k}}{\partial u_{j_l}}
ight)du_{j_1}\wedge\ldots\wedge du_{j_p}.$$

6. Композиция: $(T\circ S)^\omega=S^(T^{\emptyset}\omega)$.

Смысл:

Эти свойства показывают, что перенос форм согласован с базовыми операциями (линейностью, произведением, дифференцированием). Например, пункт 4 означает, что дифференцирование и перенос коммутируют, а пункт 5 обобщает правило замены переменных в интеграле через якобиан. Это удобно для вычислений в новых координатах.

49 Поверхностный интеграл второго рода. Выражением поверхностного интеграла второго рода через поверхностный интеграл первого рода. Выражения для интеграла 2го рода в случае размерностей многообразия 1 и 2. Примеры. Лемма Пуанкаре в общем случае (без док-ва)

Определение интеграла второго рода

Пусть G открыто в \mathbb{R}^n , $M\subset G$ — ориентированное k-мерное многообразие класса $\mathbb{M}^{(1)}_{k,n}$, $\omega\in\Omega_k(G)$ — дифференциальная форма степени k, $E\in\mathbb{A}_M$ — малое измеримое множество. Тогда интеграл второго рода определяется как:

$$\int_E \omega = \int_{arphi^{-1}(E)} arphi^* \omega \, d\mu_k,$$

где φ — положительно ориентирующая параметризация стандартной окрестности U, содержащей E, а $\varphi^*\omega$ — pullback формы ω .

Интеграл второго рода обобщает понятие криволинейного и поверхностного интеграла для дифференциальных форм. Он позволяет вычислять "поток" формы через многообразие, используя локальные параметризации. Для малых множеств интеграл сводится к обычному крайнему интегралу от pullback формы.

Связь с интегралом первого рода

Для малого множества E и формы $\omega = \sum a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$ интеграл второго рода выражается через интеграл первого рода:

$$\int_E \omega = \int_E \left\langle a, rac{\det arphi'}{\sqrt{\mathcal{D}_arphi}} \circ arphi^{-1}
ight
angle d\mu_M,$$

где $\mathcal{D}_{arphi} = \sum (\det arphi'_{j_1 \dots j_k})^2$ — грамиан параметризации.

Смысл:

Эта формула позволяет перейти от абстрактного интеграла от формы к интегралу от функции по мере на многообразии. Множитель $\frac{\det \varphi'}{\sqrt{\mathcal{D}_{\varphi}}}$ учитывает искажение объема и ориентацию при параметризации. Это ключ к практическим вычислениям, например, в задачах физики.

Примеры для размерностей 1 и 2:

- Для k=1 (кривая): $\int_E \omega = \int_E \langle a, au
 angle d\mu_1$, где au единичный касательный вектор.
- Для k=2, n=3 (поверхность):

$$\int_S \omega = \int_S \langle F, N
angle d\mu_S, \quad F = (P, Q, R), \, N$$
 — единичная нормаль.

Теорема Пуанкаре (без доказательства):

Если G — звездная область в \mathbb{R}^n и ω — замкнутая форма ($d\omega=0$), то ω точна ($\exists \eta:\omega=d\eta$). Для форм класса C^r первообразная также C^r .

Смысл:

В размерности 2 интеграл сводится к потоку векторного поля через поверхность. Лемма Пуанкаре гарантирует существование потенциала для замкнутых форм в "хороших" областях, что важно для теории поля (например, в электродинамике).

50. Общая формула Стокса. Частные случаи и следствия общей формулы Стокса: формула Ньютона-Лейбница для криволинейных интегралов, формула Грина, классическая формула Стокса, формула Гаусса-Остроградского

Общая формула Стокса для многообразий

Пусть $M\in \mathbb{M}_{k-1}^{(2)}$ — компактное ориентированное многообразие, G — открытое множество в \mathbb{R}^n , $M\subset G$, $\omega\in \Omega_{k-1}^{(1)}(G)$. Тогда:

$$\int_M d\omega = \int_{\partial M} \omega.$$

Смысл:

Эта теорема обобщает идею связи интеграла по области с интегралом по её границе. Она показывает, что дифференцирование формы ω внутри M соответствует интегрированию самой формы по границе ∂M . Формула универсальна и применяется в многомерном анализе, например, для расчётов потоков и циркуляции полей.

Формула Грина

Пусть D — ограниченная область в \mathbb{R}^2 с гладкой границей ∂D , G открыто в \mathbb{R}^2 , $\overline{D} \subset G$, $P,Q \in C^{(1)}(G)$. Тогда:

$$\iint_D (Q_x'-P_y')\,dx\,dy = \int_{\partial D} P\,dx + Q\,dy.$$

Смысл:

Это двумерный случай формулы Стокса, связывающий двойной интеграл по области с криволинейным интегралом по её границе. Используется, например, для вычисления работы векторного поля вдоль контура или площади фигуры через граничный интеграл.

Классическая формула Стокса

Пусть S — компактная ориентированная поверхность класса $C^{(2)}$ в \mathbb{R}^3 с краем ∂S , G открыто в \mathbb{R}^3 , $S\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iint_S (R_y'-Q_z')dy\wedge dz + (P_z'-R_x')dz\wedge dx + (Q_x'-P_y')dx\wedge dy = \int_{\partial S} P\,dx + Q\,dy + R\,dz.$$

Это трёхмерный аналог формулы Грина. Она связывает поток ротора векторного поля через поверхность с циркуляцией поля по её границе. Применяется в физике для расчётов электромагнитных полей и гидродинамики.

Формула Гаусса-Остроградского

Пусть V — ограниченная область в \mathbb{R}^3 с гладкой границей ∂V , G открыто в \mathbb{R}^3 , $V\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iiint_V (P'_x + Q'_y + R'_z) \, dx \, dy \, dz = \iint_{\partial V} P \, dy \wedge dz + Q \, dz \wedge dx + R \, dx \wedge dy.$$

Смысл:

Эта формула связывает тройной интеграл дивергенции поля по объёму с потоком поля через границу этого объёма. Она широко используется в теории поля для расчётов, например, потока тепла или заряда через замкнутую поверхность.

51: Неравенства Минковского и Гёльдера, существенный супремум, пространства $L_p(X,\mu)$

Теорема (Неравенство Гёльдера):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы на E, существует $\int_E fg\,d\mu$, $1< p<+\infty$, $\frac{1}{p}+\frac{1}{q}=1$. Тогда:

$$\left|\int_E fg\,d\mu
ight| \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} \left(\int_E |g|^q\,d\mu
ight)^{1/q}.$$

Смысл:

Неравенство Гёльдера обобщает идею "взвешенного среднего" для интегралов. Оно связывает интеграл произведения двух функций с произведениями их норм в L_p и L_q . Это ключевой

инструмент для доказательства сходимости и ограниченности в функциональных пространствах, например, при изучении рядов Фурье или операторов.

Неравенство Минковского для интегралов

Теорема (Неравенство Минковского):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы, конечны почти везде на $E,1\leq p<+\infty$. Тогда:

$$\left(\int_E |f+g|^p\,d\mu
ight)^{1/p} \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} + \left(\int_E |g|^p\,d\mu
ight)^{1/p}.$$

Смысл:

Это аналог неравенства треугольника для норм в L_p . Оно показывает, что норма суммы не превосходит суммы норм, что важно для доказательства линейности и метрических свойств пространств L_p . Доказательство часто опирается на неравенство Гёльдера.

Существенный супремум функции

Определение:

Для измеримой функции $f:E o\overline{\mathbb{R}}$ на пространстве с мерой (X,\mathbb{A},μ) существенный супремум — это:

$$\operatorname{ess\,sup}_{x\in E}f(x)=\inf\{A\in\mathbb{R}:f(x)\leq A$$
 почти везде на $E\}.$

(Если таких A нет, полагаем $+\infty$.)

Смысл:

Существенный супремум игнорирует "выбросы" функции на множествах нулевой меры. Например, для функции, равной 1 на рациональных числах и 0 на иррациональных, $\operatorname{ess\,sup}=0$, так как рациональные числа имеют меру Лебега ноль. Это понятие критично для определения нормы в L_∞ .

Пространства $L_p(X,\mu)$

Определение:

Для $1 \leq p < +\infty$:

$$L_p(E,\mu) = \left\{ f:$$
 н.в. $E o \mathbb{R}$ измеримы, $\int_E |f|^p \, d\mu < +\infty
ight\}.$

Для $p=+\infty$:

$$L_{\infty}(E,\mu)=\{f:$$
 н.в. $E o\mathbb{R}$ измеримы, $\operatorname{ess\,sup}|f|<+\infty\}$.

Норма:
$$\|f\|_p = \left(\int_E |f|^p\,d\mu\right)^{1/p}$$
 (для $L_\infty - \operatorname{ess\,sup}|f|$).

Смысл:

Пространства L_p — это множества функций с конечной "энергией" (интегралом от p-й степени). Они являются полными нормированными пространствами (банаховыми), что позволяет применять методы функционального анализа. Примеры: L_2 для рядов Фурье, L_∞ для ограниченных функций.

52: Вложения пространств Лебега $L_p(X,\mu)$ и пространств ℓ_p . Несравнимость пространств L_p

Вложение пространств Лебега при конечной мере

Если $\mu E<+\infty,$ $1\leq p< q\leq +\infty,$ то $L_q(E,\mu)\subset L_p(E,\mu),$ и для любой $f\in L_q(E,\mu)$ выполняется:

$$\|f\|_{L_p(E,\mu)} \leq (\mu E)^{1/p-1/q} \|f\|_{L_q(E,\mu)}.$$

Смысл:

При конечной мере "более строгие" пространства L_q (с большим q) вкладываются в "более широкие" L_p . Это означает, что функции с конечной нормой в L_q автоматически принадлежат L_p , а неравенство оценивает их норму через меру множества E. Например, на отрезке [a,b] любая функция из L_2 лежит и в L_1 .

Пространства ℓ_p последовательностей

Для последовательностей $x = \{x_k\}_{k=1}^{\infty}$ норма задаётся как:

$$\|x\|_p = egin{cases} (\sum_{k=1}^\infty |x_k|^p)^{1/p}\,, & 1 \leq p < +\infty, \ \sup_{k \in \mathbb{N}} |x_k|, & p = +\infty. \end{cases}$$

Пространство ℓ_p состоит из всех последовательностей с конечной нормой $\|x\|_p$.

Смысл:

Пространства ℓ_p — это дискретные аналоги L_p , где вместо интегралов используются суммы. Они важны в анализе рядов, численных методах и теории операторов. Например, ℓ_2 — это пространство квадратично суммируемых последовательностей, используемое в гильбертовых пространствах.

Несравнимость пространств L_p при бесконечной мере

Замечание (Контрпример для $\mu E = +\infty$):

Пусть $E=(0,+\infty)$, μ — мера Лебега. Тогда:

- $egin{aligned} ullet & f_1(x) = rac{1}{x+1} \in L_2(E) \setminus L_1(E), \ ullet & f_2(x) = rac{1}{\sqrt{x}} \chi_{(0,1)}(x) \in L_1(E) \setminus L_2(E). \end{aligned}$

Смысл:

При бесконечной мере вложения $L_q \subset L_p$ могут не работать: существуют функции, принадлежащие "более узкому" L_q , но не лежащие в "широком" L_p , и наоборот. Это показывает, что свойства L_p -пространств существенно зависят от меры множества E. Например, на всей прямой $\mathbb R$ нет общего включения между L_1 и L_2 .

53. Полнота пространства C(K)

Определение пространства C(K)

Пространство C(K) — это множество всех непрерывных вещественных (или комплексных) функций, определённых на компакте K, с нормой $\|f\| = \sup_{x \in K} |f(x)|.$

Это пространство состоит из функций, которые не имеют разрывов на компактном множестве K (например, на отрезке [a,b]). Норма здесь — это максимальное значение функции на K. Такие пространства важны в анализе, так как компактность K гарантирует, что непрерывные функции на нём обладают полезными свойствами, например, ограниченностью.

Критерий полноты нормированного пространства

Нормированное пространство X полно (т.е. является банаховым), если любая фундаментальная последовательность $\{x_n\}$ в X сходится к элементу $x \in X$.

Смысл:

Полнота означает, что в пространстве "хватает" элементов — если последовательность функций $\{f_n\}$ сходится "в себе" (т.е. $\|f_n-f_m\|\to 0$), то её предел тоже лежит в C(K). Это позволяет работать с пределами, не выходя за рамки пространства, что критично для многих теорем анализа.

Teopeма о полноте C(K)

Пространство C(K) с нормой $||f|| = \sup_{x \in K} |f(x)|$ является полным (банаховым).

Смысл:

Любая последовательность непрерывных функций, которая равномерно сходится на компакте K, имеет пределом тоже непрерывную функцию. Это следует из теоремы о равномерной сходимости: если $f_n \to f$ равномерно, то f непрерывна. Таким образом, C(K) "замкнуто" относительно пределов, что делает его удобным для изучения.

54. Критерий полноты нормированного пространства

Определение полного нормированного пространства (банахово пространство)

Нормированное пространство $(X,\|\cdot\|)$ называется полным, если любая фундаментальная последовательность в X сходится к элементу этого пространства. Полное нормированное

пространство также называют банаховым.

Смысл:

Полнота означает, что в пространстве "нет дыр" — любая последовательность, которая "хочет" сходиться (фундаментальная), действительно имеет предел внутри этого пространства. Это важно для анализа, так как гарантирует, что предельные переходы не выводят нас за рамки рассматриваемого пространства. Пример — пространство непрерывных функций C[a,b] с нормой максимума полно, а пространство многочленов на отрезке — нет.

Критерий полноты через абсолютную сходимость ряда

Нормированное пространство X полно тогда и только тогда, когда любой абсолютно сходящийся ряд в X сходится, то есть:

$$\sum_{n=1}^{\infty}\|x_n\|<+\infty\implies \sum_{n=1}^{\infty}x_n$$
 сходится в $X.$

Смысл:

Этот критерий связывает полноту со сходимостью рядов. Если сумма норм членов ряда конечна (ряд "абсолютно сходится"), то сам ряд должен сходиться к элементу пространства. Это удобный инструмент для проверки полноты, так как позволяет работать с рядами вместо последовательностей. Например, в пространстве ℓ^1 (пространство абсолютно суммируемых последовательностей) этот критерий выполняется.

Связь полноты и замкнутости вложенных шаров

Теорема (о вложенных шарах):

Нормированное пространство X полно тогда и только тогда, когда для любой последовательности замкнутых вложенных шаров $\overline{B}(x_n,r_n)$ с $r_n\to 0$ существует точка $x\in X$, принадлежащая всем шарам.

Смысл:

Эта теорема аналогична принципу вложенных отрезков в вещественных числах. Если шары "стягиваются" (их радиусы стремятся к нулю) и вложены друг в друга, то их пересечение не пусто — есть общая точка. Это ещё один способ проверить полноту, показывающий, что пространство "не имеет пустот". Например, в \mathbb{R}^n это выполняется, а в пространстве рациональных чисел — нет.

55 Полнота пространств $L^p(X,\mu)$ при $p\in [1,+\infty]$

Определение пространства $L^p(X,\mu)$

Пусть (X,\mathcal{A},μ) — пространство с мерой, $p\in[1,+\infty]$. Пространство $L^p(X,\mu)$ состоит из измеримых функций $f:X\to\mathbb{R}$ (или \mathbb{C}), для которых конечна норма:

- при $p<+\infty$: $\|f\|_p=\left(\int_X|f|^p\,d\mu\right)^{1/p}$,
- при $p = +\infty$: $||f||_{\infty} = \operatorname{ess sup}_{x \in X} |f(x)|$.

Смысл:

Пространства L^p — это функциональные пространства, где "размер" функции измеряется интегралом её степени p. Они обобщают понятие \mathbb{R}^n на бесконечномерный случай, позволяя работать с функциями, для которых интеграл $|f|^p$ конечен.

Критерий полноты пространства L^p

Пространство $L^p(X,\mu)$ полно при $p\in [1,+\infty]$, то есть любая фундаментальная последовательность $\{f_n\}\subset L^p$ сходится к некоторой функции $f\in L^p$ по норме $\|\cdot\|_p$.

Смысл:

Полнота означает, что если последовательность функций $\{f_n\}$ "сходится сама к себе" (фундаментальна), то её предел тоже лежит в L^p . Это аналог полноты \mathbb{R}^n , но для интегральных норм. Без полноты многие методы анализа (например, предельные переходы) были бы неприменимы.

Теорема Рисса-Фишера

Любое нормированное пространство $L^p(X,\mu)$ при $p\in [1,+\infty]$ является банаховым (полным). В частности, если $\{f_n\}$ — фундаментальна в L^p , то существует $f\in L^p$, такая что $\|f_n-f\|_p\to 0$.

Смысл:

Эта теорема — основа для анализа в L^p . Она гарантирует, что пределы "хороших" последовательностей не выходят за рамки пространства. Например, в матфизике это позволяет корректно решать уравнения, используя приближения. Для p=2 (гильбертов случай) это особенно важно в квантовой механике.

56. Плотность ступенчатых функций в L^p

1. Определение ступенчатой функции

Функция $s:\mathbb{R}^n \to \mathbb{R}$ называется ступенчатой, если она представима в виде конечной линейной комбинации характеристических функций измеримых множеств с конечной мерой: $s(x)=\sum_{k=1}^m c_k \chi_{E_k}(x)$, где $c_k \in \mathbb{R}$, $E_k \subset \mathbb{R}^n$ — измеримые множества, $\mu(E_k) < \infty$, и $\chi_{E_k}(x) = \begin{cases} 1, & x \in E_k \\ 0, & x \notin E_k \end{cases}$

Смысл:

Ступенчатые функции — это самые "простые" измеримые функции. Они принимают конечное число значений, каждое — на своём измеримом множестве конечной меры (например, объединение кубов или шаров). Это "кирпичики", из которых удобно строить аппроксимации сложных функций. Их просто интегрировать, что делает их фундаментальными для теории интеграла Лебега.

2. Теорема о плотности ступенчатых функций в L^p

Пусть $1\leq p<\infty$. Тогда множество ступенчатых функций плотно в пространстве $L^p(\mathbb{R}^n)$. То есть, для любой функции $f\in L^p(\mathbb{R}^n)$ и любого $\varepsilon>0$ существует ступенчатая функция s такая, что $\|f-s\|_p=\left(\int_{\mathbb{R}^n}|f(x)-s(x)|^pdx\right)^{1/p}<\varepsilon$.

Смысл:

Эта теорема говорит, что любую функцию из L^p (интегрируемую в p-й степени) можно сколь угодно точно приблизить по норме L^p простой ступенчатой функцией. Грубо говоря, сложную функцию можно "заменить" на кусочно-постоянную функцию, и ошибка этой замены (усредненная по всему пространству) будет меньше любого наперед заданного числа ε . Это основа многих конструкций в функциональном анализе и теории приближений.

3. Следствие: Плотность непрерывных финитных функций

Множество непрерывных финитных функций (непрерывных функций, равных нулю вне некоторого шара) также плотно в $L^p(\mathbb{R}^n)$ при $1 \leq p < \infty$.

Поскольку ступенчатые функции плотны, а непрерывные финитные функции, в свою очередь, могут хорошо приближать ступенчатые (например, "сглаживая" скачки), то и они оказываются плотными в L^p . Это очень полезно на практике: вместо работы с произвольными интегрируемыми функциями, часто можно ограничиться рассмотрением гладких (непрерывных) функций, "затухающих" на бесконечности (финитных), и все основные результаты (как для интегралов, так и для операторов) будут переноситься на весь L^p благодаря плотности.

57. Плотность $C_0(\mathbb{R}^n)$ в $L^p(\mathbb{R}^n)$, плотность $C_{2\pi}$ в $L^p_{2\pi}$

1. Плотность $C_0(\mathbb{R}^n)$ в $L^p(\mathbb{R}^n)$

Пусть $1\leq p<\infty$. Пространство $C_0(\mathbb{R}^n)$ непрерывных функций с компактным носителем плотно в $L^p(\mathbb{R}^n)$. То есть для любой функции $f\in L^p(\mathbb{R}^n)$ и любого $\epsilon>0$ существует функция $g\in C_0(\mathbb{R}^n)$ такая, что $\|f-g\|_p<\epsilon$.

Смысл:

Это означает, что сколь угодно сложную (интегрируемую в p-ой степени) функцию на всем пространстве \mathbb{R}^n можно приблизить с любой точностью (в смысле нормы L^p) гладкой функцией, которая "зануляется" вне некоторого большого, но конечного шара. Это фундаментально для доказательств, так как позволяет сначала работать с "хорошими" непрерывными финитными функциями, а потом переходить к пределу для общих L^p -функций.

2. Пространства $C_{2\pi}$ и $L^p_{2\pi}$

Пространство $C_{2\pi}$ состоит из непрерывных 2π -периодических функций на $\mathbb R$. Пространство $L^p_{2\pi}$ ($1 \leq p < \infty$) состоит из 2π -периодических функций, интегрируемых с p-ой степенью на периоде $[0,2\pi]$ (т.е. $\int_0^{2\pi}|f(x)|^pdx < \infty$), где функции, совпадающие почти всюду, отождествляются.

 $C_{2\pi}$ — это "хорошие" периодические функции (гладкие, без разрывов). $L^p_{2\pi}$ — это гораздо более широкий класс периодических функций, включающий разрывные и сильно осциллирующие, но такие, что их средняя "мощность" (в p-ой степени) на одном периоде конечна. Важно, что мы не различаем функции, отличающиеся на множестве нулевой меры (например, в конечном числе точек).

3. Плотность $C_{2\pi}$ в $L^p_{2\pi}$

Пусть $1\leq p<\infty$. Пространство $C_{2\pi}$ непрерывных 2π -периодических функций плотно в $L^p_{2\pi}$. То есть для любой функции $f\in L^p_{2\pi}$ и любого $\epsilon>0$ существует функция $g\in C_{2\pi}$ такая, что $\left(\int_0^{2\pi}|f(x)-g(x)|^pdx\right)^{1/p}<\epsilon.$

Смысл:

Хотя $L^p_{2\pi}$ содержит "плохие" периодические функции (разрывные, неограниченные), любую такую функцию можно сколь угодно точно приблизить (в смысле интегральной нормы на периоде) *непрерывной* периодической функцией. Это приближение часто реализуется тригонометрическими полиномами (суммами синусов и косинусов), что напрямую связано с теорией рядов Фурье. Это ключевое свойство для обоснования сходимости рядов Фурье в L^p .

58 Теорема о непрерывности сдвига

1) Формулировка теоремы

Функция $S_h(f)(x) = f(x+h)$ называется сдвигом функции f на величину h. Если f непрерывна в точке a, то $S_h(f)$ непрерывна в точке a-h.

Смысл:

Эта теорема показывает, как сдвиг аргумента влияет на непрерывность функции. Если исходная функция гладкая в некоторой точке, то её "сдвинутая" версия сохранит это свойство, но уже в другой точке. Это полезно, например, при анализе сигналов или волн, где сдвиги часто встречаются.

2) Связь с исходной функцией

Для любого h и непрерывной f выполняется: $\lim_{h o 0} S_h(f)(x) = f(x)$.

Смысл:

При малых сдвигах значение функции почти не меняется, что согласуется с интуицией о непрерывности. Это свойство используется в численных методах и физике, где важно учитывать малые изменения параметров.

3) Область применения

Теорема применяется в анализе Фурье, теории вероятностей (стационарные процессы) и дифференциальных уравнениях.

Смысл:

Сдвиги функций — это базовый инструмент в математике. Например, в обработке сигналов они помогают изучать задержки, а в физике — описывать движение волн. Теорема гарантирует, что такие операции не нарушают "гладкость" исходных данных.

59. Гильбертовы пространства. Непрерывность скалярного произведения. Скалярное умножение в $L^2(X,\mu)$. Примеры ортогональных систем в $L^2(X,\mu)$

1. Гильбертовы пространства

Полное линейное пространство H, снабженное скалярным произведением $\langle \cdot, \cdot \rangle$, относительно нормы $\|x\| = \sqrt{\langle x, x \rangle}$.

Смысл:

Гильбертовы пространства — это обобщение евклидовых пространств на бесконечномерный случай. Они играют ключевую роль в функциональном анализе, квантовой механике и теории приближений, так как позволяют работать с рядами Фурье и ортогональными разложениями.

2. Непрерывность скалярного произведения

Если
$$x_n o x$$
 и $y_n o y$ в H , то $\langle x_n, y_n
angle o \langle x, y
angle$.

Смысл:

Непрерывность скалярного произведения означает, что малые изменения векторов приводят к малым изменениям их скалярного произведения. Это свойство критично для доказательств сходимости рядов и устойчивости численных методов.

3. Скалярное умножение в $L^2(X,\mu)$

Для $f,g\in L^2(X,\mu)$ скалярное произведение задается формулой:

$$\langle f,g
angle = \int_X f(x) \overline{g(x)}\, d\mu(x).$$

Смысл:

Пространство L^2 состоит из функций с конечной энергией (интегрируемых с квадратом). Скалярное умножение здесь аналогично стандартному, но заменяет сумму на интеграл, что позволяет работать с функциями как с бесконечномерными векторами.

4. Примеры ортогональных систем в $L^2(X,\mu)$

- 1. Тригонометрическая система $\{e^{inx}\}_{n\in\mathbb{Z}}$ в $L^2([-\pi,\pi])$.
- 2. Многочлены Лежандра $\{P_n\}$ в $L^2([-1,1])$.
- 3. Функции Хаара на отрезке.

Смысл:

Ортогональные системы позволяют раскладывать функции в ряды (например, ряд Фурье), что упрощает решение дифференциальных уравнений и анализ сигналов. Каждая система выбирается под конкретную задачу, например, тригонометрическая — для периодических функций.

Теорема Пифагора для гильбертовых пространств и критерий сходимости ортогонального ряда

1. Лемма о почленном умножении сходящегося ряда

Пусть $\sum_{k=1}^{\infty} x_k$ — сходящийся ряд в гильбертовом пространстве \mathcal{H} . Тогда для любого вектора $y \in \mathcal{H}$ выполняется:

$$\left\langle \sum_{k=1}^{\infty} x_k, y
ight
angle = \sum_{k=1}^{\infty} \langle x_k, y
angle.$$

Смысл:

Эта лемма утверждает, что скалярное произведение можно "разнести" по бесконечной сумме векторов. Это следует из непрерывности скалярного произведения: если ряд сходится, то его можно почленно умножать на любой вектор, и результат останется корректным.

2. Критерий сходимости ортогонального ряда

Ортогональный ряд $\sum_{k=1}^\infty x_k$ в гильбертовом пространстве $\mathcal H$ сходится тогда и только тогда, когда сходится числовой ряд $\sum_{k=1}^\infty \|x_k\|^2$. При этом выполняется равенство:

$$\left\| \sum_{k=1}^{\infty} x_k \right\|^2 = \sum_{k=1}^{\infty} \|x_k\|^2.$$

Смысл:

Этот критерий связывает сходимость ряда ортогональных векторов со сходимостью ряда их норм. Фактически, он обобщает теорему Пифагора на бесконечномерные пространства: квадрат нормы суммы равен сумме квадратов норм, если векторы ортогональны.

3. Теорема Пифагора для гильбертовых пространств

Для любого конечного набора ортогональных векторов $\{x_k\}_{k=1}^N$ в $\mathcal H$ выполняется:

$$\left\| \sum_{k=1}^N x_k
ight\|^2 = \sum_{k=1}^N \|x_k\|^2.$$

Смысл:

Это прямое обобщение классической теоремы Пифагора. Если векторы ортогональны, то квадрат длины их суммы равен сумме квадратов их длин. В бесконечномерном случае это свойство сохраняется при условии сходимости ряда норм.