GRAPH CONCEPTS AND TERMINOLOGY

GRAPH CONCEPTS

 A Graph is a collection of distinct vertices and distinct edges

A subgraph is a portion of a graph

GRAPH PATHS

Path

A sequence of edges between two vertices

Simple Path

Does not pass through any vertex more than one time

Provincetown

GRAPH PATHS

Path

A sequence of edges between two vertices

Simple Path

Does not pass through any vertex more than one time

Provincetown

DIRECTED GRAPHS

- Directed Graph (digraph)
 - Graph with directed edges
- Directed Path
 - Path in a directed graph
 - Must consider edge directions

Provincetown

GRAPH CYCLES

- Cycle
 - Path that begins and ends at the same vertex
- Simple Cycle
 - Cycle that passes through other vertices only once
- Acyclic Graph
 - A graph with no cycles

Provincetown

GRAPH CYCLES

- Cycle
 - Path that begins and ends at the same vertex
- Simple Cycle
 - Cycle that passes through other vertices only once
- Acyclic Graph
 - A graph with no cycles

Provincetown

Truro

Undirected Graph

WEIGHTED GRAPHS

Weighted Graph

Graph that has values (weights) assigned to the edges

Weighted Path

Path through a weighted graph

Provincetown

 Adjacent Vertices (neighbors) Provincetown Vertices joined by an edge in an undirected graph Truro In a directed graph, vertex i f distinct vertices is adjacent to vertex j if a directed edge begins at j and ends at i. Sandwich Orleans €d Barnstable Falmouth Hyannis

- Adjacent Vertices (neighbors)
 - Vertices joined by an edge in an undirected graph
- Connected Graph
 - Has a path between every pair of distinct vertices
- Disconnected Graph
 - No path from certain vertices to others

Provincetown

- Adjacent Vertices (neighbors)
 - Vertices joined by an edge in an undirected graph
- Connected Graph
 - Has a path between every pair of distinct vertices
- Disconnected Graph
 - No path from certain vertices to others

Provincetown

 Complete Graph Provincetown Every pair of vertices is connected A graph with n vertices, can have at most Truro • n(n-1)/2 edges if the graph is undirected • n(n-1) edges if the graph is directed Sandwich Orleans A dense graph Falmouth Hyannis

- Complete Graph
 - Every pair of vertices is connected
- A graph with n vertices, can have at most
 - n(n-1)/2 edges if the graph is undirected
 - n(n-1) edges if the graph is directed

Provincetown

REPRESENTING ADJACENCY

REPRESENTING VERTEX

RELATIONSHIPS

- Edges connect vertices
- Connections represent relationship among vertices
- Adjacency Matrix
 - Two-dimensional array
- Adjacency List
 - List of lists

Directed Graph

THE ADJACENCY MATRIX

is connected to

		0	1	2	3	4	5	6	7	8
		A	В	С	D	E	F	G	H	I
0	A		1		1	1				
1	В					1				
2	C		1							
3	D							1		
4	E						1		1	
5	F			1					1	
6	G								1	
7	H									1
8	I						1			

Directed Graph

Vertex

THE ADJACENCY MATRIX

is connected to

	В	0
X	С	0
+	D	0
	E	0
	F	0
	G	0

	A	В	С	D	E	F	G	H	I
A	Contract of the second	3	∞	3	5	∞	∞	∞	8
В	∞	00	∞	∞	7	∞	8	∞	8
C	∞	2	00	∞	8	∞	8	∞	8
D	∞	∞	∞	00	8	8	4	∞	8
E	∞	∞	∞	∞	00	1	8	4	8
F	∞	∞	3	∞	8	∞	8	6	8
G	∞	∞	∞	∞	∞	∞	8	2	8
H	∞	∞	∞	∞	∞	∞	8	∞	3
I	∞	∞	∞	∞	8	5	8	8	∞

Weighted Directed Graph

THE ADJACENCY MATRIX

is connected to

X
O
+
0
>

Undirected Graph

ADJACENCY MATRIX OPERATIONS

- Determining existence of an edge
 - O(1)
- Determining weight of an edge
 - O(1)
- Determining all neighbors of a vertex
 - \circ O(n)
- Requires storage for n² values

THE ADJACENCY LIST

Directed Graph

THE ADJACENCY LIST

Weighted Directed Graph

THE ADJACENCY LIST

Undirected Graph

ADJACENCY LIST OPERATIONS

- Determining existence of an edge
 - O(n) or O(logn) (implementation dependent)
- Determining weight of an edge
 - O(n) or O(logn) (implementation dependent)
 - Determining all neighbors of a vertex
 - $\circ O(n)$

Requires storage proportional to the

Pearson ber of edges