CS303T Theory of Computation

R. Kabaleeshwaran

August 9, 2022

Outline

- Course Logistics
- Introduction
- Why to study Automata Theory
- Course Overview
- Introduction to Automata Theory
- 6 Language
- Deterministic Finite Automata

Course Logistics

- Minors 15 Marks (each)
- Final Exam 50 Marks
- Assignments/Presentation 10 Marks
- Quiz/Scribe/Interaction/Surprise Test 10 Marks
- Total 100 Marks

Introduction

- ★ Study of abstract computing devices
- * 1930 (Alan Turing) An abstract machine (Turing machines) that had all the capabilities of today's computers
 - Boundary of a computing machine
 - What a computing machine could do and what it could not do
- ★ 1940-1950 Finite Automata originally proposed to model brain functions
- * 1950 (Noam Chomsky) study of formal grammars
- ★ 1969 (Stephen Cook) extended Turing's study of what could and what could not be computed
 - Tractable problems that can be solved efficiently by a computer
 - Intractable or NP-hard

"The theoretical developments bear directly on what computer scientists do today"

Why to Study Automata Theory

- Finite automata are a useful model for many important kinds of hardware and software
 - Software for designing and checking the behavior of digital circuits
 - ► The first phase of a typical compiler is "lexical analyzer" which breaks the input text into logical units (such as keywords, identifiers, punctuation)
 - Test processing software
 - (Secure) Communications protocols
- Automata are essential for the study of the limits of computation.
 Two important issues
 - What can a computer do at all?
 - ★ This study is called decidability.
 - ★ The problem that can be solved by computer are called Decidable.
 - What can a computer do efficiently?
 - ★ This study is called intractability
 - * The problem that can be solved by computer using 'slowly growing function' are called tractable.

Course Overview

- Deterministing Finite Automata (DFA)
- Non-deterministing Finite Automata (NFA)
- Regular Expression (RE)
- Regular Grammer (RG)
- Context free Grammer (CFG)
- Pushdown Automata (PDA)
- Turing Machine (TM)
- (Un)Decidable Problems

Introduction to Automata Theory

- \bullet An alphabet is a finite, nonempty set of symbols. Conventional symbol Σ
 - Ex: $\Sigma = \{0, 1\}, \Sigma = \{a, b, ..., z\}$
- A string (or sometimes word) is a finite sequence of symbols chosen from some alphabet
 - Ex: 0101100 is a string from Σ^* , where $\Sigma = \{0, 1\}$
- Length of a string is the number of symbols in the string
 - ► |010101| = 6
- \bullet Empty string ϵ (the string with zero occurrences of symbols)
- Σ^k set of strings of length k, each symbols is from Σ
 - $\Sigma = \{0, 1\}, \Sigma^2 = \{00, 01, 10, 11\}, \text{ and so on}$
 - ho $\Sigma^0 = \{\epsilon\}$ and $|\epsilon| = 0$
- $\bullet \ \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$
- $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots$

Concatenation

- Concatenation of x and y is denoted as xy, where x, y are strings
 - ► Ex: x = 011 and y = 010, then xy = 011010 and yx = 010011
- ullet is the identity for concatenation
 - For any string w, then $\epsilon w = w \epsilon = w$ hold

Language

- ullet A set of strings all of which are chosen from some Σ^* is called a Language
- If Σ is an alphabet and $L \subseteq \Sigma^*$, then L is a language over Σ
- Observation:
 - \blacktriangleright Notice that a language over Σ need not include strings with all the symbols of Σ
 - Languages can be viewed as sets of strings
- Σ^* is a language for any alphabet Σ
- \emptyset Empty Language over any alphabet Σ (No string)
- ullet $\{\epsilon\}$ a language containing an empty string over any alphabet Σ
- Observation: $\emptyset \neq \{\epsilon\}$

Examples

- $L_1 = \{w | w \text{ consists of an equal number of 0's and 1's}\}$
 - ▶ $0110 \in L_1$, $01101 \notin L_1$
- $L_2 = \{w | w \text{ is a binary integer that is prime}\}$
 - ▶ $011 \in L_2$ (as $011_2 = 3$ a prime),
 - ▶ $1100 \notin L_2$ (as $1100_2 = 12$ not a prime)
- $L_3 = \{w | w \text{ is a syntactically correct C program}\}$
- $L_4 = \{0^n 1^n | n \ge 0\}$
 - ▶ $0011 \in L_4$, $011 \notin L_4$
- $L_5 = \{0^m 1^n 0^m | n \ge 0, m \ge 1\}$
 - ▶ $00100 \in L_5$, $0100 \notin L_5$

