Semantics and Verification

Lecture 7

- bisimulation as a fixed point
- Hennessy-Milner logic with recursively defined variables
- game semantics and temporal properties of reactive systems
- characteristic property

Tarski's Fixed Point Theorem – Summary

Let (D, \sqsubseteq) be a complete lattice and let $f: D \to D$ be a monotonic function.

Tarski's Fixed Point Theorem

Then f has a unique largest fixed point z_{max} and a unique least fixed point z_{min} given by:

$$z_{max} \stackrel{\mathrm{def}}{=} \sqcup \{x \in D \mid x \sqsubseteq f(x)\}$$

$$z_{min} \stackrel{\mathrm{def}}{=} \sqcap \{x \in D \mid f(x) \sqsubseteq x\}$$

Computing Fixed Points in Finite Lattices

If D is a finite set then there exist integers M, m > 0 such that

•
$$z_{max} = f^M(\top)$$

•
$$z_{min} = f^m(\bot)$$

Definition of Strong Bisimulation

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Strong Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$:

- if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s', t') \in R$
- if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in R$.

Two processes $p, q \in Proc$ are strongly bisimilar $(p \sim q)$ iff there exists a strong bisimulation R such that $(p, q) \in R$.

$$\sim = \bigcup \{R \mid R \text{ is a strong bisimulation}\}$$

Strong Bisimulation as a Greatest Fixed Point

Function $\mathcal{F}: 2^{(Proc \times Proc)} \rightarrow 2^{(Proc \times Proc)}$

Let $S \subseteq Proc \times Proc$. Then we define $\mathcal{F}(S)$ as follows:

 $(s,t) \in \mathcal{F}(S)$ if and only if for each $a \in Act$:

- if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in S$
- if $t \stackrel{a}{\longrightarrow} t'$ then $s \stackrel{a}{\longrightarrow} s'$ for some s' such that $(s', t') \in S$.

Observations

- $(2^{(Proc \times Proc)}, \subseteq)$ is a complete lattice and \mathcal{F} is monotonic
- S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimilarity is the Greatest Fixed Point of ${\mathcal F}$

$$\sim = \bigcup \{ S \in 2^{(Proc \times Proc)} \mid S \subseteq \mathcal{F}(S) \}$$

HML with One Recursively Defined Variable

Syntax of Formulae

Formulae are given by the following abstract syntax

$$F ::= X \mid tt \mid ff \mid F_1 \bigcirc F_1 \lor F_2 \mid \langle a \rangle F \mid [a]F$$

where $a \in Act$ and X is a distinguished variable with a definition

•
$$X \stackrel{\min}{=} F_X$$
, or $X \stackrel{\max}{=} F_X$

such that F_X is a formula of the logic (can contain X).

How to Define Semantics?

For every formula F we define a function $O_F: 2^{Proc} \rightarrow 2^{Proc}$ s.t.

- ullet if S is the set of processes that satisfy X then
- $O_F(S)$ is the set of processes that satisfy F.

Definition of $O_F: 2^{Proc} \rightarrow 2^{Proc}$ (let $S \subseteq Proc$)

$$O_{X}(S) = S$$

$$O_{tt}(S) = Proc$$

$$O_{ff}(S) = \emptyset$$

$$O_{F_{1} \land F_{2}}(S) = O_{F_{1}}(S) \cap O_{F_{2}}(S)$$

$$O_{F_{1} \lor F_{2}}(S) = O_{F_{1}}(S) \cup O_{F_{2}}(S)$$

$$O_{\langle a \rangle F}(S) = \langle \cdot a \cdot \rangle O_{F}(S)$$

$$O_{[a]F}(S) = [\cdot a \cdot] O_{F}(S)$$

O_F is monotonic for every formula F

$$S_1 \subseteq S_2 \Rightarrow O_F(S_1) \subseteq O_F(S_2)$$

Proof: easy (structural induction on the structure of F).

Semantics

Observation

We know that $(2^{Proc}, \subseteq)$ is a complete lattice and O_F is monotonic, so O_F has a unique greatest and least fixed points.

Semantics of the Variable X

• If $X \stackrel{\text{max}}{=} F_X$ then

$$\llbracket X \rrbracket = \bigcup \{ S \subseteq Proc \mid S \subseteq O_{F_X}(S) \}.$$

• If $X \stackrel{\min}{=} F_X$ then

$$\llbracket X \rrbracket = \bigcap \{ S \subseteq Proc \mid O_{F_X}(S) \subseteq S \}.$$

Syntax

Game Characterization

Intuition: the attacker claims $s \not\models F$, the defender claims $s \models F$.

Configurations of the game are of the form (s, F)

• (s, tt) and (s, ff) have no successors

- (s, X) has one successor (s, F_X)
- $(s, F_1 \land F_2)$ has two successors (s, F_1) and (s, F_2) (selected by the attacker)
- $(s, F_1 \vee F_2)$ has two successors (s, F_1) and (s, F_2) (selected by the defender)
- (s, [a]F) has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$ (selected by the attacker)
- $(s, \langle a \rangle F)$ has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$ (selected by the defender)

Who is the Winner?

Play is a maximal sequence of configurations formed according to the rules given on the previous slide.

Finite Play

- The attacker is the winner of a finite play if the defender gets stuck or the players reach a configuration (s, ff).
- The defender is the winner of a finite play if the attacker gets stuck or the players reach a configuration (s, tt).

Infinite Play

- The attacker is the winner of an infinite play if X is defined as $X \stackrel{\min}{=} F_X$.
- The defender is the winner of an infinite play if X is defined as $X \stackrel{\text{max}}{=} F_X$.

Game Characterization

Theorem

- $s \models F$ if and only if the defender has a universal winning strategy from (s, F)
- $s \not\models F$ if and only if the attacker has a universal winning strategy from (s, F)

Selection of Temporal Properties

- Inv(F): $X \stackrel{\text{max}}{=} F \wedge [Act]X$
- Pos(F): $X \stackrel{\min}{=} F \vee \langle Act \rangle X$
- Safe(F): $X \stackrel{\text{max}}{=} F \wedge ([Act]ff \vee \langle Act \rangle X)$
- Even(F): $X \stackrel{\min}{=} F \lor (\langle Act \rangle tt \land [Act] X$
- $F \mathcal{U}^w G$: $X \stackrel{\text{max}}{=} G \vee (F \wedge [Act]X)$

• $F U^s G$: $X \stackrel{\min}{=} G \vee (F \wedge \langle Act \rangle tt \wedge [Act] X)$

Using until we can express e.g. Inv(F) and Even(F):

$$Inv(F) \equiv F \mathcal{U}^w \text{ ff}$$
 Even $(F) \equiv tt \mathcal{U}^s F$

Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

$$X \stackrel{\min}{=} Y \vee \langle Act \rangle X$$

$$Y \stackrel{\text{max}}{=} \langle a \rangle tt \wedge \langle Act \rangle Y$$

Solution: compute first [Y] and then [X].

Mutually Recursive Definitions

$$X \stackrel{\text{max}}{=} [a] Y$$

$$Y \stackrel{\text{max}}{=} \langle a \rangle X$$

Solution: consider a complete lattice $(2^{Proc} \times 2^{Proc}, \sqsubseteq)$ where $(S_1, S_2) \sqsubseteq (S_1', S_2')$ iff $S_1 \subseteq S_1'$ and $S_2 \subseteq S_2'$.

Theorem (Characteristic Property for Finite-State Processes)

Let s be a process with finitely many reachable states. There exists a property X_s s.t. for all processes t: $s \sim t$ if and only if $t \in [X_s]$.