

FACTORACIÓN QR

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 11) 20.AGOSTO.2024

Definición

Un **proyector** es una matriz cuadrada $P \in \mathbb{R}^{n \times n}$ que satisface $P^2 = P$. También se suele llamar una matriz **idempotente**.

Comentario: Hay proyectores ortogonales y no ortogonales. Para evitar confusiones, usaremos el término *proyector oblicuo* para referir al caso no ortogonal.

El término proyector surge de la noción de que si uno ilumina el subespacio $\operatorname{Im} P$ desde la dirección correcta, entonces $P\mathbf{v}$ sería la sombra proyectada por el vector $\mathbf{v} \in \mathbb{R}^n$. Si $\mathbf{v} \in \operatorname{Im} P$, entonces se encuentra exactamente en su propia sombra, y la aplicación del proyector da como resultado \mathbf{v} en sí mismo.

Matemáticamente, tenemos $\mathbf{v} = P\mathbf{x}$, para algún $\mathbf{x} \in \mathbb{R}^n$, de modo que $P\mathbf{v} = P^2\mathbf{x} = P\mathbf{x} = \mathbf{v}$.

¿Desde qué dirección brilla la luz cuando $\mathbf{v} \neq P\mathbf{v}$? En general la respuesta depende de \mathbf{v} , pero para cualquier \mathbf{v} particular, se deduce como la recta de \mathbf{v} a $P\mathbf{v}$, esto es $P\mathbf{v} - \mathbf{v}$. Aplicar el proyector a este vector da un resultado cero: $P(P\mathbf{v} - \mathbf{v}) = P^2\mathbf{v} - P\mathbf{v} = \mathbf{0}$. Esto significa que $P\mathbf{v} - \mathbf{v} \in \operatorname{Ker} P$, y la dirección de la luz siempre se describe mediante un vector en $\operatorname{Ker} P$.

Proyectores complementos:

Si $P \in \mathbb{R}^{n \times n}$ es un proyector, entonces I-P también es proyector, pues $(I-P)^2 = (I-P)(I-P) = I-2P+P^2 = I-2P+P = I-P.$

I - P se llama el **proyector complemento** a P.

Propiedad

Todo proyector $P \in \mathbb{R}^{n \times n}$ satisface

$$Im(I-P) = Ker P,$$
 $y Ker(I-P) = Im P.$

Además, $Ker(I - P) \cap Ker P = \mathbf{o}$, de modo que se satisface

$$\operatorname{Im} P \cap \operatorname{Ker} P = \mathbf{0}$$
. \square

La propiedad anterior muestra que un proyector separa al espacio ambiente \mathbb{R}^n en dos espacios complementarios:

$$S_1 = \operatorname{Im} P$$
 y $S_2 = \operatorname{Ker} P$, con la propiedad $\mathbb{R}^n = \operatorname{Im} P \oplus \operatorname{Ker} P = S_1 \oplus S_2$.

Proyectores ortogonales:

Un proyector *ortogonal* es aquel cuyo espacio componentes $\operatorname{Im} P$ y $\operatorname{Ker} P$ son ortogonales, esto es $\operatorname{Ker} P = (\operatorname{Im} P)^{\perp}$ y $\operatorname{Im} P = (\operatorname{Ker} P)^{\perp}$. No debe confundirse con una matriz ortogonal P.

Teorema Un proyector $P \in \mathbb{R}^{n \times n}$ es ortogonal si, y sólo si, $P = P^T$.

Prueba: (\Leftarrow). Si $P = P^T$, entonces el producto entre un elemento $P\mathbf{x} \in \text{Im } P$ y otro $(I - P)\mathbf{y} \in \text{Ker } P$ es $\langle P\mathbf{x}, (I - P)\mathbf{v} \rangle = \mathbf{x}^T P^T (I - P)\mathbf{v} = \mathbf{x}^T P (I - P)\mathbf{v} = \mathbf{x}^T (P - P^2)\mathbf{v} = \mathbf{o}$.

para todo $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, de modo que Im P y Ker P son ortogonales.

(\Rightarrow) Suponga que P proyecta sobre $S_1 = \operatorname{Im} P$, a lo largo de $S_2 = \operatorname{Ker} P$, con $S_1 \perp S_2$. Construimos una descomposición SVD de P como sigue: sea $\{\mathbf{q}_1, \ldots, \mathbf{q}_n\}$ una base ortonormal de \mathbb{R}^n , donde $\{\mathbf{q}_1, \ldots, \mathbf{q}_m\}$ es base de $\operatorname{Im} P$, y $\{\mathbf{q}_{m+1}, \ldots, \mathbf{q}_n\}$ es base de $\operatorname{Ker} P$. Para $1 \leq j \leq m$, $P\mathbf{q}_j = \mathbf{q}_j$; y para $m < j \leq n$, $P\mathbf{q}_j = \mathbf{0}$. Si Q es la matriz $(\mathbf{q}_1 \ldots \mathbf{q}_n)$, entonces

$$PQ = \begin{bmatrix} q_1 & \cdots & q_n & 0 & \cdots \\ & \ddots & & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & & \ddots & & \end{bmatrix} = \Sigma,$$

Esto produce la descomposición $Q\Sigma Q^T=P$. Finalmente, esto muestra que $P^T=(Q\Sigma Q^T)^T=Q\Sigma Q^T=P$. \square

Proyección con base ortonormal:

Dado que un proyector ortogonal tiene algunos valores singulares iguales a cero (excepto en el caso trivial P=I), es natural eliminar las columnas nulas de Q, y uassr la SVD reducida en lugar de la completa. Obtenemos la expresión

$$P = \widehat{Q}\widehat{Q}^T, \tag{1}$$

donde las columnas de $\widehat{Q} \in \mathbb{R}^{n \times m}$ son ortonormales. En (1), la matriz \widehat{Q} no necesita provenir de una SVD. Sea $\{\mathbf{q}_1,\ldots,\mathbf{q}_m\}$ cualquier conjunto de m vectores ortonormales en \mathbb{R}^n , y sea \widehat{Q} la matriz con esas columnas. De las propiedades de la SVD sabemos que

$$\mathbf{v} = + \sum_{j=1}^m (\mathbf{q}_j \mathbf{q}_j^{\mathsf{T}}) \mathbf{v}$$

representa una descomposición de un vector $\mathbf{v} \in \mathbb{R}^n$ como suma de un componente en

el espacio columna de \widehat{Q} , más un componente en el espacio ortogonal. Por lo tanto, el mapa

$$\mathbf{v} \longrightarrow \sum_{j=1}^{m} (\mathbf{q}_{j} \mathbf{q}_{j}^{\mathsf{T}}) \mathbf{v}, \tag{2}$$

es un proyector ortogonal sobre $\operatorname{Im} \widehat{\mathbf{Q}}$, que en forma matricial es

Por tanto, cualquier producto $\widehat{Q}\widehat{Q}^T$ es siempre un proyector en el espacio columna de \widehat{Q} , independientemente de cómo se haya obtenido \widehat{Q} , siempre que sus columnas sean ortonormales.

Obs! El complemento de un proyector ortogonal, también es ortogonal.

Un caso especial importante es el de proyectores ortogonales de rango 1. Este proyector aísla el componente en una sola dirección $\mathbf{q} \in \mathbb{R}^n$, y puede ser escrito como

 $P_{\mathbf{q}} = \mathbf{q}\mathbf{q}^{T}. \tag{3}$

Estas son las piezas a partir de las cuales se pueden fabricar proyectores de rango superior, como en (2). Su complemento es un proyector ortogonales de rango n-1 que eliminar el componente en la dirección de **q**:

$$P_{\perp \mathbf{q}} = I - \mathbf{q} \mathbf{q}^{\mathsf{T}}.\tag{4}$$

Las ecuaciones (3) y (4) suponen que \mathbf{q} es un vector unitario. Para el caso general, si $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{a} \neq \mathbf{0}$, las fórmulas análogas son

$$P_{\mathbf{a}} = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}}$$
 y $P_{\perp \mathbf{a}} = I - \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}}$.

Sea $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Para muchas aplicaciones, nos interesan los espacios de columna de A. Estos son los espacios sucesivos de las columnas $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ de A

$$\langle \mathbf{a}_1 \rangle \subseteq \langle \mathbf{a}_1, \mathbf{a}_2 \rangle \subseteq \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle \subseteq \ldots \subseteq \langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n \rangle.$$

La idea de la factoración QR es la construcción de una secuencia de vectores ortonormales $\mathbf{q}_1, \mathbf{q}_2, \dots$ que generan estos espacios sucesivos.

Para ser precisos, supongamos que A es de rango completo n. Queremos que la secuencia $\mathbf{q}_1, \mathbf{q}_2, \ldots$ tenga la propiedad

$$\langle \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_j \rangle = \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_j \rangle,$$
 para todo $j = 1, 2, \dots, n.$ (5)

 $(\Rightarrow \log \mathbf{q}_i \text{ son combinaciones de los } \mathbf{a}_i, \text{ y los } \mathbf{a}_j \text{ son combinaciones de los } \mathbf{q}_i.)$ Además,

$$\langle \mathbf{q}_1 \rangle = \langle \mathbf{a}_1 \rangle$$
 $\mathbf{a}_1 = r_{11}\mathbf{q}_1,$ $\langle \mathbf{q}_1, \mathbf{q}_2 \rangle = \langle \mathbf{a}_1, \mathbf{a}_2 \rangle$ $\mathbf{a}_2 = r_{12}\mathbf{q}_1 + r_{22}\mathbf{q}_2,$ \Rightarrow ... $\mathbf{a}_n = r_{1n}\mathbf{q}_1 + r_{n2}\mathbf{q}_2 + \ldots + r_{nn}\mathbf{q}_n.$

Esto es

$$\left[\begin{array}{c|c} a_1 & a_2 & \cdots & a_n \end{array}\right] = \left[\begin{array}{c|c} q_1 & q_2 & \cdots & q_n \end{array}\right] \left[\begin{array}{ccc} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & & \vdots \\ & & \ddots & \vdots \\ & & & r_{nn} \end{array}\right],$$

En forma matricial, tenemos

$$A = \widehat{Q}\,\widehat{R},\tag{6}$$

donde $\widehat{Q} \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales, y $R \in \mathbb{R}^{n \times n}$ es triangular superior. Esta factoración se denomina **descomposición** QR **reducida** de A.

Extendemos las columnas de \widehat{Q} a una base ortonormal completa de \mathbb{R}^n , $\{\mathbf{q}_1,\ldots,\mathbf{q}_m\}$, agregando m-n vectores adicionales. La matriz extendida, $Q=(\mathbf{q}_1 \ldots \mathbf{q}_m)$ se convierte en una matriz ortogonal. (Esto es análogo al paso de la SVD reducida a la SVD completa). En el proceso, se añaden m-n filas de ceros a \widehat{R} para que se convierta en una matriz $R\in\mathbb{R}^{m\times n}$, todavía triangular superior. Obtenemos así la **descomposición** QR

completa de A

Las ecuaciones

$$egin{aligned} \mathbf{a_1} &=& r_{11} \mathbf{q_1}, \ \mathbf{a_2} &=& r_{12} \mathbf{q_1} + r_{22} \mathbf{q_2}, \ & \dots \end{aligned}$$

$$\mathbf{a}_n = r_{1n}\mathbf{q}_1 + r_{n2}\mathbf{q}_2 + \ldots + r_{nn}\mathbf{q}_n,$$

Dados $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ podemos construir los vectores $\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_n$ y las entradas r_{ij} mediante el proceso de ortogonalización sucesiva, o proceso de ortogonalización de GRAM-SCHMIDT.

El proceso funciona así. En el j-ésimo paso, deseamos encontrar un vector unitario $\mathbf{q}_j \in \langle \mathbf{a}_1, \dots, \mathbf{a}_j \rangle$ que es ortogonal a $\mathbf{q}_1, \dots, \mathbf{q}_{j-1}$. Podemos escribir esta relación usando proyecciones de rango 1: restamos todas las proyecciones ortogonales de \mathbf{a}_j hacia los espacios generados $\langle \mathbf{q}_i \rangle$, $i=1,2,\dots,j-1$

$$\mathbf{v}_i = \mathbf{a}_i - (\mathbf{q}_1 \mathbf{q}_1^T) \mathbf{a}_i - (\mathbf{q}_2 \mathbf{q}_2^T) \mathbf{a}_i - \ldots - (\mathbf{q}_{j-1} \mathbf{q}_{j-1}^T) \mathbf{a}_i. \tag{8}$$

El vector \mathbf{v}_i es un vector del tipo requerido, excepto que aún no está normalizado. Si dividimos por $||\mathbf{v}_i||_2$, el resultado es un vector unitario adecuado \mathbf{q}_i .

Con esto en mente, reescribamos el sistema de ecuaciones (7) en la forma

$$\mathbf{q}_{1} = \frac{\mathbf{q}_{1}}{r_{11}},
\mathbf{q}_{2} = \frac{\mathbf{a}_{2} - r_{12} \mathbf{q}_{1}}{r_{22}},
\mathbf{q}_{3} = \frac{\mathbf{a}_{3} - r_{13} \mathbf{q}_{1} - r_{23} \mathbf{q}_{2}}{r_{33}},
\dots
\mathbf{q}_{n} = \frac{\mathbf{a}_{n} - \sum_{i=1}^{n-1} r_{in} \mathbf{q}_{i}}{r_{22}}.$$
(9)

(la invertibilidad del sistema (7) garantiza que los $r_{ij} \neq 0$). Una definición apropiada para los r_{ij} es

$$r_{ij} = \langle \mathbf{q}_i, \mathbf{a}_j \rangle = \mathbf{q}_i^\mathsf{T} \mathbf{a}_j, \qquad i \neq j,$$
 (10)

mientras que los coeficientes r_{ii} pueden calcularse como

$$|r_{jj}| = \left| \left| \mathbf{a}_j - \sum_{i=1}^{j-1} r_{ij} \mathbf{q}_i \right| \right|_2. \tag{11}$$

Observe que el signo de r_{ii} no está determinado.

Arbitrariamente, podemos elegir $r_{jj} > o$, en cuyo caso terminaremos con una factoración $A = \widehat{Q} \widehat{R}$ en la que \widehat{R} tiene entradas positivas en la diagonal.

El algoritmo incorporado en (16)-(11) es la iteración de GRAM-SCHMIDT. En la práctica, resulta inestable debido a errores de redondeo.

```
Algoritmo: (Ortogonalización de Gram-Schmidt clásica) (inestable) Inputs: A \in \mathbb{R}^{m \times n}, m \geq n. Outputs: Q \in \mathbb{R}^{m \times n} con columnas ortogonales, R \in \mathbb{R}^{n \times n} triangular superior. for j=1 to n:

\mathbf{v}_j = \mathbf{a}_j,
 for i=1 to j-1:

r_{ij} = \langle \mathbf{q}_i, \mathbf{a}_j \rangle = \mathbf{q}_i^T \mathbf{a}_j,
 \mathbf{v}_j = \mathbf{v}_j - r_{ij} \mathbf{q}_i,
 r_{jj} = ||\mathbf{v}_j||_2,
 \mathbf{q}_i = \mathbf{v}_i/r_{ii}.
```

Teorema (Existencia QR)

Toda matriz $A \in \mathbb{R}^{m \times n}$, con $m \ge n$ posee una descomposición QR completa, y portanto también una descomposición QR reducida.

Prueba: La prueba la da el proceso de GRAM-SCHMIDT. Ver Trefethen Sección 7.

Teorema (Unicidad QR)

Cada matriz $A \in \mathbb{R}^{m \times n}$, con $m \ge n$, de rango completo, posee una única descomposición QR reducida, $A = \widehat{Q} \widehat{R}$, con $r_{jj} > 0$.

Presentamos la iteración de Gram-Schmidt nuevamente en otra manera, utilizando proyectores ortogonales. Sea $A \in \mathbb{R}^{m \times n}$, $m \ge n$, una matriz de rango completo con columnas $\{\mathbf{a}_i\}$. Consideramos ahora la secuencia de fórmulas

$$\mathbf{q}_1 = \frac{P_1 \mathbf{a}_1}{||P_1 \mathbf{a}_1||}, \quad \mathbf{q}_2 = \frac{P_2 \mathbf{a}_2}{||P_2 \mathbf{a}_2||}, \dots \mathbf{q}_n = \frac{P_n \mathbf{a}_n}{||P_n \mathbf{a}_n||}. \tag{12}$$

Aquí, cada P_j denota un proyector ortogonal. Específicamente, $P_j \in \mathbb{R}^{n \times n}$ es la matriz de rango m - (j - 1) que proyecta \mathbb{R}^n ortogonalmente sobre el espacio ortogonal a $\langle \mathbf{q}_1, \dots, \mathbf{q}_{j-1} \rangle$. (En el caso j = 1, esta prescripción se reduce a la identidad: $P_1 = I$.)

Ahora, por (12), observe que \mathbf{q}_j es ortogonal a $\mathbf{q}_1, \dots, \mathbf{q}_{j-1}$, se encuentra en el espacio $\langle \mathbf{a}_1, \dots, \mathbf{a}_{j-1} \rangle$ y tiene norma 1. Así, (12) es equivalente al método de Gram-Schmidt.

El proyector P_j puede representarse explícitamente. Si, $\widehat{Q}_{j_1} \in \mathbb{R}^{m \times (j-1)}$ es la matriz que contiene las primeras j-1 columnas de \widehat{Q}_j , entonces P_j está dada por

$$P_{j} = I - \widehat{Q}_{j-1} \widehat{Q}_{j-1}^{T}, \qquad j = 1, 2, ..., n.$$
 (13)

$$\hat{Q}_{j-1} = \left[egin{array}{c} q_1 & q_2 & \cdots & q_{j-1} \ \end{array}
ight].$$

(13) representa la misma ecuación que (8).

Ya mencionamos que el algoritmo de Gram-Schmidt clásico es numéricamente inestable. Afortunadamente, existe una modificación simple que mejora las cosas. Para cada valor de j, el algoritmo clásico de Gram-Schmidt calcula una sola proyección ortogonal de rango m-(j-1), $\mathbf{v}_i=P_i\mathbf{a}_i$. (14)

Por el contrario, el algoritmo de Gram-Schmidt modificado calcula el mismo resultado por una secuencia de j-1 proyecciones de rango m-1:

$$P_{j} = P_{\perp \mathbf{q}_{j-1}} \cdots P_{\perp \mathbf{q}_{2}} P_{\perp \mathbf{q}_{1}} \mathbf{a}_{j}. \tag{15}$$

De nuevo, $P_1 = I$. Así, (14) es equivalente a $P_j = P_{\perp \mathbf{q}_{j-1}} \cdots P_{\perp \mathbf{q}_2} P_{\perp \mathbf{q}_1} \mathbf{a}_j$.

Así,
$$\begin{aligned} \mathbf{v}_j^{(1)} &=& \mathbf{a}_1, \\ \mathbf{v}_j^{(i)} &=& P_{\perp \mathbf{q}_{i-1}} \mathbf{v}_j^{(i-1)} &=& \mathbf{v}_j^{(i-1)} - \mathbf{q}_{i-1} \mathbf{q}_{i-1}^T \mathbf{v}_j^{(i-1)}, \qquad i = 2, \dots, j. \end{aligned}$$

Algoritmo: (Ortogonalización de Gram-Schmidt modificada) $O(2mn^2)$ Inputs: $A \in \mathbb{R}^{m \times n}$, m > n.

Outputs: $Q \in \mathbb{R}^{m \times n}$ con columnas ortogonales, $R \in \mathbb{R}^{n \times n}$ triangular superior.

```
\begin{aligned} \mathbf{v}_i &= \mathbf{a}_i, \\ \text{for } i &= 1 \text{ to } n; \\ r_{ii} &= ||\mathbf{v}_i||, \\ \mathbf{q}_i &= \mathbf{v}_i/r_{ii}, \\ \text{for } j &= i + 1 \text{ to } n; \\ r_{ij} &= \langle \mathbf{q}_i, \mathbf{v}_j \rangle = \mathbf{q}_i^T \mathbf{v}_j, \\ \mathbf{v}_i &= \mathbf{v}_i - r_{ii} \mathbf{q}_i. \end{aligned}
```

for i = 1 to n:

Cada paso externo del algoritmo Gram-Schmidt modificado se puede interpretar como una multiplicación a la derecha por una matriz triangular superior cuadrada.

$$\left[\begin{array}{c|c} v_1 & v_2 & \cdots & v_n \end{array}\right] \left[\begin{array}{ccc} \frac{1}{r_{11}} & \frac{-r_{12}}{r_{11}} & \frac{-r_{13}}{r_{11}} & \cdots \\ & 1 & & \\ & & 1 & \\ & & & \ddots \end{array}\right] = \left[\begin{array}{c|c} q_1 & v_2^{(2)} & \cdots & v_h^{(2)} \end{array}\right].$$

En general, el paso i del algoritmo resta $\frac{r_{ij}}{r_{ii}}$ multiplicado por la columna i de la A actual A, y multiplica la columna i por $\frac{1}{r_{ii}}$. Corresponden a multiplicar por una matriz triangular superior R_i

Al final obtenemos $A \underbrace{R_1 R_2 \cdots R_n} = \widehat{Q}$.

La iteración de Gram-Schmidt aplica una secuencia de matrices triangulares elementales R_k a la derecha de A, de modo que la matriz resultante

$$A\underbrace{R_1R_2\cdots R_n}_{\widehat{R}^{-1}}=\widehat{Q},$$

tiene columnas ortogonales. El producto $\widehat{R} = R_n^{-1} \cdots R_2^{-1} \cdots R_1^{-1}$ es triangular superior y $A = \widehat{Q} \widehat{R}$ es una factorización QR reducida de A.

En contraste, el método Householder aplica una secuencia de matrices ortogonales Q_k a la izquierda de A, de modo que la matriz resultante

$$\underbrace{Q_n\cdots Q_2Q_1}_{Q^{-1}}A=R,$$

es triangular superior. El producto $Q=Q_{-1}Q_{2}^{-1}...Q_{n}^{-1}$ es también ortogonal y A=QR es una factorización QR completa de A.

El método de Househölder (1958) busca una forma ingeniosa de diseñar las matrices ortogonales Q_k , como sigue: la matriz Q_k se elige para introducir ceros debajo de la diagonal en la k-ésima columna conservando todos los ceros previamente introducidos.

$$\begin{bmatrix} \times \times \times \\ X & X & X \end{bmatrix} \xrightarrow{Q_1} \begin{bmatrix} \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} \end{bmatrix} \xrightarrow{Q_2} \begin{bmatrix} \times \times \times \\ \mathbf{X} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} \\ \mathbf{0} & \mathbf{X} \end{bmatrix} \xrightarrow{Q_3} \begin{bmatrix} \times \times \times \\ \times \times \\ \times & \mathbf{X} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Reflectores de Househölder: Para construir las matrices ortogonales Q_k , el enfoque estándar es el siguiente. Cada Q_k se elige para ser un matriz unitaria de la forma

$$Q_k = \begin{pmatrix} 1 & 0 \\ 0 & F \end{pmatrix},$$

donde $I \in \mathbb{R}^{(k-1)\times(k-1)}$ es la identidad, y $F \in \mathbb{R}^{(m-k+1)\times(m-k+1)}$ es ortogonal, y la multiplicación por F introduce ceros en la k-ésima columna.

El algoritmo Househölder elige F para ser una matriz particular llamada **reflector de Househölder**. Suponga, al comienzo del paso k, las entradas k, \ldots, m de la k-ésima columna están dadas por el vector $\mathbf{x} \in \mathbb{R}^{m-k+1}$. Para introducir los ceros, el reflector F debe efectuar

(Modificaremos esta idea con un signo \pm en un momento.) El reflector F reflejará al espacio \mathbb{R}^{Cm-k+1} respecto del hiperplano H ortogonal a $\mathbf{v} = ||\mathbf{x}||\mathbf{e}_1 - \mathbf{x}$. La fórmula para esta reflexión se deriva de la siguiente manera. Recordemos que para cualquier $\mathbf{y}\mathbb{R}^m$, el vector

 $P\mathbf{y} = \left(\mathbf{I} - rac{\mathbf{v}\mathbf{v}^T}{\mathbf{v}^T\mathbf{v}}
ight)\mathbf{y} = \mathbf{y} - rac{\mathbf{v}\mathbf{v}^T}{\mathbf{v}^T\mathbf{v}}\mathbf{y}$

es la proyección ortogonal de **y** sobre el espacio *H*. Para reflejar no debemos detenernos en este punto; debemos ir exactamente el doble de lejos en esa dirección. Por tanto, la reflexión *F***y** debería ser

$$\mathbf{F}\mathbf{y} = \left(\mathbf{I} - 2 \frac{\mathbf{v}\mathbf{v}^T}{\mathbf{v}^T\mathbf{v}}\right)\mathbf{y} = \mathbf{y} - 2 \frac{\mathbf{v}\mathbf{v}^T}{\mathbf{v}^T\mathbf{v}}\mathbf{y}$$

Por tanto, la matriz F es $F = I - 2 \frac{\mathbf{v} \mathbf{v}^T}{\mathbf{v}^T \mathbf{v}}$.

Existen muchos reflectores de Househölder que introducen los ceros requeridos. En el

caso real, hay dos alternativas, representadas por reflexiones a través de dos diferentes hiperplanos. H^+ v H^-

Matemáticamente, cualquier elección de signo es satisfactoria. Sin embargo, dado que nuestro objetivo es la estabilidad numérica, es deseable reflejar \mathbf{x} al vector $z||\mathbf{x}||\mathbf{e}_1$ que está más lejos de \mathbf{x} . Para ello, se elige $z=-sign(\mathbf{x}_1)$, de modo que el vector de reflexión se convierte en $\mathbf{v}=-sign(\mathbf{x}_1)||\mathbf{x}||\mathbf{e}_1$.

Algoritmo: (Triangularización de Househölder)

Inputs: $A \in \mathbb{R}^{m \times n}$, $m \ge n$.

Outputs: $Q \in \mathbb{R}^{m \times n}$ con columnas ortogonales, $R \in \mathbb{R}^{n \times n}$ triangular superior.

for k = 1 to n:

$$\mathbf{x} = A_{k:m,k},$$

 $\mathbf{v}_k = \operatorname{sign}(x_1)||\mathbf{x}||_2\mathbf{e}_1 + \mathbf{x},$

$$\mathbf{v}_k = \mathbf{v}_k/||\mathbf{v}_k||_2$$

$$A_{k:m,k:n} = A_{k:m,k:n} - 2\mathbf{V}_k \mathbf{V}_k^T A_{k:m,k:n}.$$

El algoritmo anterior devuelve la matriz triangular superior *R*, pero no construye explícitamente *Q*. Si se quiere construir *Q*, se debe aplicar

Algoritmo: (Cálculo implícito de Qx)

for
$$k = n$$
 downto 1:
 $\mathbf{x}_{k:m} = \mathbf{x}_{k:m} - 2\mathbf{v}_k \mathbf{v}_k^T \mathbf{x}_{k:m}$.

y se construye Q calculando cada una de sus columnas $Q\mathbf{e}_1, Q\mathbf{e}_2, \dots, Q\mathbf{e}_n$.

Método de Givens

Existe un tercer método para calcular la descomposición QR de una matriz A, llamado el método de GIVENS.

En este caso, se consideran las matrices ortogonales de 2 \times 2

$$F = \begin{pmatrix} -\cos\varphi & \sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}, \qquad J = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}.$$

La primera matriz tiene $\det F = -1$ y es un reflector, el caso especial de un reflector Househölder en dimensión 2. La segunda tiene $\det J = 1$ y efectúa una rotación en lugar de una reflexión. Tal matriz se llama una **rotación de Givens**.

El método de Givens tiene la ventaja de ser paralelizable.

