Section 8.2

The Inverse Trigonometric Functions (Continued)

Finding the Exact Value of an Expression Involving Inverse Trigonometric Functions

Find the exact value of:
$$\sin\left(\tan^{-1}\frac{1}{2}\right) = \sin\theta$$

Let
$$\theta = \tan^{-1} \frac{1}{2}$$
. Then $\tan \theta = \frac{1}{2}$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. We seek $\sin \theta$.

Since tangent is positive we draw a triangle in quadrant I and label sides so $\tan \theta = \frac{1}{2}$.

Use the Pythagorean Theorem to determine the hypotenuse.

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

Finding the Exact Value of an Expression Involving Inverse Trigonometric Functions

Find the exact value of:
$$\cos \left[\sin^{-1} \left(-\frac{1}{3} \right) \right] = \cos \theta$$

Let
$$\theta = \sin^{-1}\left(-\frac{1}{3}\right)$$
. Then $\sin \theta = -\frac{1}{3}$ and $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. We seek $\cos \theta$.

Since sine is negative we draw a triangle in quadrant IV and label sides so $\sin \theta = -\frac{1}{3}$. Use the Pythagorean Theorem to determine x.

$$x = \sqrt{3^2 - 1^2} = \sqrt{8} = 2\sqrt{2}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{2\sqrt{2}}{3}$$

Finding the Exact Value of an Expression Involving Inverse Trigonometric Functions

Find the exact value of: $\tan \left[\cos^{-1}\left(-\frac{1}{3}\right)\right] = \tan \theta$

Let
$$\theta = \cos^{-1}\left(-\frac{1}{3}\right)$$
. Then $\cos \theta = -\frac{1}{3}$ and $0 \le \theta \le \pi$. We seek $\tan \theta$.

Since cosine is negative we draw a triangle in quadrant II and label sides so $\cos \theta = -\frac{1}{3}$. Use the Pythagorean Theorem to determine y.

$$y = \sqrt{3^2 - 1^2} = \sqrt{8} = 2\sqrt{2}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{2\sqrt{2}}{-1} = -2\sqrt{2}$$

2 Define the Inverse Secant, Cosecant, and Cotangent Functions

$$y = \sec^{-1} x$$
 means $x = \sec y$
where $|x| \ge 1$ and $0 \le y \le \pi$, $y \ne \frac{\pi}{2}$

 $y = \sec x, -\infty < x < \infty, x \text{ not equal}$ to odd multiples of $\frac{\pi}{2}$, $|y| \ge 1$

rentice Hall.

$$y = \csc^{-1} x$$
 means $x = \csc y$
where $|x| \ge 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $y \ne 0^{\dagger}$

 $y=\csc x,\, -\infty < x < \infty,\, x$ not equal to integer multiples of $\pi,\, |y|\geq 1$

$$y = \cot^{-1} x$$
 means $x = \cot y$
where $-\infty < x < \infty$ and $0 < y < \pi$

 $y = \cot x, -\infty < x < \infty, x \text{ not equal to integer}$ multiples of $\pi, -\infty < y < \infty$

Finding the Exact Value of an Inverse Cosecant Function

Find the exact value of: $\csc^{-1} 2$

Let
$$\theta = \csc^{-1} 2$$
. We seek the angle $\theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \theta \ne 0$, whose cosecant equals 2 (or, equivalently, whose sine equals $\frac{1}{2}$).

The only angle
$$\theta$$
 in the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \theta \ne 0$, whose cosecant is $2 \left[\sin \theta = \frac{1}{2} \right] \text{ is } \frac{\pi}{6}, \text{ so } \csc^{-1} 2 = \frac{\pi}{6}.$

3 Use a Calculator to Evaluate $\sec^{-1} x$, $\csc^{-1} x$, and $\cot^{-1} x$

Approximating the Value of Inverse Trigonometric Functions

Use a calculator to approximate each expression in radians rounded to two decimal places.

(a)
$$\sec^{-1} 3$$

(b)
$$\csc^{-1}(-4)$$

(c)
$$\cot^{-1}\frac{1}{2}$$

(a)
$$\sec^{-1} 3$$
 (b) $\csc^{-1} (-4)$ (c) $\cot^{-1} \frac{1}{2}$ (d) $\cot^{-1} (-2)$

$$\sec^{-1} 3 = \theta = \cos^{-1} \frac{1}{3} \approx 1.23$$

$$\csc^{-1}(-4) = \theta = \sin^{-1}\left(-\frac{1}{4}\right) \approx -0.25$$

$$\cot^{-1}\frac{1}{2} = \theta = \cos^{-1}\left(\frac{1}{\sqrt{5}}\right) \approx 1.11$$

$$\cot^{-1}(-2) = \theta = \cos^{-1}\left(-\frac{2}{\sqrt{5}}\right) \approx 2.68$$

Copyright ⊌ 2012 rearson Education.

EXAMPLE Writing a Trigonometric Expression as an Algebraic Expression

Write $sin(tan^{-1} u)$ as an algebraic expression containing u.

Let
$$\theta = \tan^{-1}u$$
 so that $\tan \theta = u, -\frac{\pi}{2} < \theta < \frac{\pi}{2}, -\infty < u < \infty$.

$$\sin(\tan^{-1} u) = \sin \theta = \sin \theta \cdot \frac{\cos \theta}{\cos \theta} = \tan \theta \cos \theta$$

Multiply by 1:
$$\frac{\cos \theta}{\cos \theta}$$
. $\frac{\sin \theta}{\cos \theta} = \tan \theta$

$$= \frac{\tan \theta}{\sec \theta} = \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}} = \frac{u}{\sqrt{1 + u^2}}$$

$$\sec^2\theta = 1 + \tan^2\theta$$
$$\sec\theta > 0$$