全 1 矩阵(one)

时间限制: 1 Sec 内存限制: 128 MB

题目描述

给定一个只包含 01 的矩阵,如果可以无数次交换任意两行,求一个只包含 1 的子矩阵且满足面积最大,最大面积是多少?

输入

第一行两个整数 n 和 m 接下来 n 行,每行 m 个字符,为'0'或'1'。

输出

输出一行,表示最大全1面积。

样例

3 4	
1101	4
0110	
1100	

提示

对于 30%的数据, n 和 m 的范围[1,20];

对于 60%的数据, n 和 m 的范围[1,200];

对于 80%的数据, n 和 m 的范围[1,2000];

对于 100%的数据, n 和 m 的范围[1,3000];

日历(calendar)

时间限制: 1 Sec 内存限制: 512 MB

题目描述

红包由于 NOI 惨挂心情不好, 直到还剩下 n 周的时候他才开始写作业。

由于红包会"时间静止"大法,所以红包的一周有 m 天。

现在他把这 nxm 天排成 n 行 m 列的日历开始计划每天要写的作业量。

初始时每天要做的作业量都是 0。

接下来,红包会有 q 个行为,每次都会选择一个红包的形状,把红包内的每一天的作业量增加一个奇怪的组合数。

详细地说,每个行为可以用 v,u,k 表示: 对所有的 i,j,若满足 $0 \le i \le j$ 且 $j \ge k$ 则将第 v+i 周 第 u-i+j 天的作业量增加 C(j,i),即 j 个里面选 i 个的方案数(如果不存在这一天则不执行)。

在所有行为结束后, 红包就计划好了每天要做的作业量。

虽然能不能完成是另一回事,但是现在请帮红包算出每天计划要做的作业量。

输入

由于本题输入数据很大,所以采取在程序内生成数据的方式。

有一个随机数产生器,有个内部变量 x 初始时为 x0,每次产生随机数时它会将 x 变为 (100000005*x+20150823) mod 998244353,然后返回[x/100]。(a mod b 表示 a 除以 b 的余数,该运算的优先级高于加减法。 $|\alpha|$ 表示 α 向下取整后的结果。)

输入文件共一行,包含四个整数 n,m,q,x0。保证 n,m,q≥1,0≤x0<998244353。

每次, 你需要按顺序产生三个随机数 v1,u1,k1, 然后令 $v=v1 \mod n + 1$, $u=u1 \mod m + 1$, $k=k1 \mod (n+m-v-u+1)$, 表示一个行为。你需要重复该过程 q 次来获得所有行为的参数。

输出

共 n 行,每行 m 个整数,其中第 i 行第 j 个整数表示第 i 周第 j 天要做的作业量。你只用输出答案对 998244353 取模后的结果。

样例

3 2 2 1234	0 0
	11
10 10 20 5678	1 4
	000000000
	00000000
	000000001
	000000067
	0 0 0 0 0 0 16 22 30
	0 0 0 0 1 1 26 42 72 104
	0 1 2 3 4 30 56 126 198 1227
	0 1 4 7 27 58 170 296 1293 4522
	0 1 5 18 48 176 346 1153 5449 9971
	0 1 7 28 133 309 895 5480 10929 20908

提示

样例 1 解释: 两次操作分别为: (2,1,2) 和 (2,1,0)。

測试点 编号	n,m 的规模	q 的规模			
1	n,m≤10	q≤10			
2	n,m≤100	q≤100			
3	n,m≤30				
4	n,m≤100	q≤5×10 ⁶			
5					
6 7		q≤2×10 ⁶			
8 9 10	n,m≤300	q≤5×10 ⁶			

大样例输出的行末还有一个空格!

富有的 YummyJay(yummy)

时间限制: 1 Sec 内存限制: 256 MB

题目描述

公立学校经常处分学生。

每个被处分的学生都会被放在大屏幕上公示。公示时间可能不同,但是公示持续 p 天。同时公立又是很黑心的,每个学生要花钱才可以撤销处分。

由于所犯过错不同,不同的学生可能要花不同的钱撤消处分。

然而学生们很穷,都没钱==

众所周知,YummyJay 是个有钱人,并且他想帮助被处分的同学。但他很懒只打算去一次。对于不同的同学,YummyJay 帮他撤销处分后可以收获不同的开心值。

政教处有个规定:每次只可以撤销被公示的学生的处分。

现在 YummyJay 列出了一个清单:哪天他有空以及那天有多少钱。

对于清单上的每个询问,你需要算出如果在那天去撤消处分 YummyJay 最多可以收获的开心值。

输入

第一行两个整数 n,p,表示 n 个学生以及公示持续时间。

接下来 n 行每行 3 个整数 ci,hi,ti,表示撤销第 i 个学生要花费 ci 的钱撤销处分,帮助第 i 个学生 要花费 ci 的钱撤销处分,帮助第 i 个学生撤销处分可以收获的开心值,以及公示开始时间。

接下来一行一个整数 q,表示 YummyJay 列出的清单上询问的个数。

接下来 q 行每行两个整数 ai,bi,表示在第 ai 天去,带了 bi 的钱去。

输出

对于清单上的每个询问,你需要输出一个整数表示 YummyJay 最多可以收获的开心值。

样例

4 4	5
232	8
351	10
472	18
11 15 5	
4	
13	
25	
26	
5 14	

提示

样例 1 解释

Time Item	1	2	3	4	5	6	7	8	9
1		0	0	0	0				
2	0	0	0	0					
3		0	0	0	0				
4					0	0	0	0	

圆点表示学生被公示时间。

当 YummyJay 第 1 天带着 3 块去的时候,只可以帮助 2 撤销处分。所以开心值= 2。

第2天带着5块去时,帮助1和2,收获8的开心值。

第2天带着6块去时,帮助1和3,收获10的开心值。

第5天带着14块去时,帮助1和4,收获18的开心值。

测试点。	n ↔	p ø	bi & ci &hi∍	ai & ti ₽	q ø
1 .	<=50	<=500 .	<=500 -	<=500 -	<=500 ₽
2 0	<=50 .	<=500 -	<=500 -	<=500 -	<=500 ₽
3 🕫	<=10 .	<=10 .	<=4000	<=200 -	<=10 .
4 .	=1 .	<=10,000 -	<=4000	<=10,000 -	<=20,000
5 .	<=50 .	<=500 .	<=500 -	<=500 -	<=20,000 .
6 ₽	<=4000 .	=1 0	<=4000 .	<=10,000 .	<=20,000 .
7 .	<=4000 .	>max(ai,ti) -	<=4000	<=10,000 -	<=20,000
8 🕫	<=4000	<=10,000 -	<=4000	<=10,000 -	<=20,000
9 .	<=4000 .	<=10,000 -	<=4000 .	<=10,000 .	<=20,000 .
10 -	<=4000 .	<=10,000 -	<=4000	<=10,000 .	<=20,000 .

大样例满足第1个测试点。