Sprawozdanie Geostatystyka Natalia Gadocha 304165 WGGiOŚ Geoinformatyka II INTENSYWNOŚĆ PROCESU PUNKTOWEGO

1

data(murchison\$gold)
gold = murchison\$gold
 summary(gold)
lam = 255/(1.32497e+11)

murchison\$gold

2
 data(murchison)
 3
plot(murchison\$gold)

murchison\$gold

murchison\$gold

0 10.2	0 10.2	0 10.2	8 1≰0.2	498 102
-3.2		-3.2 ∞ €		8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 10.2	0 10.2	9 10.2	69° 10.2	23 10.2
		8	\$00°8°	4
2 010.2 -2.6	1.8	-2.9	24 10.2	0 10.2 -3.2
-3.2	0.25	o 4.3	2 10.2 -2.6	-3.2
0 10.2 -3.2	0 10.2 -3.2	21 90.2	5 10.2 -1.6	0 10.2 -3.2

Ę

p-value wynosi <2.2e-16, co powoduje, że możemy odrzucić hipotezę zerową. Czyli odrzucamy hipotezę dotyczącą całkowicie losowego rozmieszczenia punktów. Możemy zauważyć powyżej również, że wiele z mniejszych prostokątów zawiera tą podobne lub takie same wartości.

plot(density(murchison\$gold))
plot(murchison\$gold, add =TRUE)

density(murchison\$gold)

6
contour(density(murchison\$gold))

density(murchison\$gold)

IV
plot(murchison\$faults)

murchison\$faults

