Esercizio

 $B_5^l = 2$

 $B_5^s = 1 + 2 = 3$

 $B_5 = \min \{B_5^l, B_5^s\} = 2$

Calcolare i tempi di bloccaggio dei task, e verificarne la schedulabilità con Priority Inheritance.

NB: i valori in tabella sono fittizi.

(ms)	C _i	Ti	S ₁	S ₂	S ₃	S ₄
J_1	4	50	0	0	0	0
J ₂	2	50	0	0	0	0
J ₃	6	50	2	3	0	0
J ₄	5	50	0	0	2	2
J ₅	6	50	3	1	0	0
J_6	5	50	0	0	1	2
J ₇	1	50	0	0	0	0
J ₈	2	50	0	0	0	0
J ₉	3	50	0	0	0	0
J ₁₀	1	50	0	0	0	0

1) Calcolo dei tempi di bloccaggio

$$B_{1}^{l} = 3 + 2 + 3 + 2 = 10$$

$$B_{2}^{l} = 3 + 2 + 3 + 2 = 10$$

$$B_{3}^{s} = 0$$

$$B_{1} = \min \{B_{1}^{l}, B_{1}^{s}\} = 0$$

$$B_{2} = \min \{B_{2}^{l}, B_{2}^{s}\} = 0$$

$$B_{2} = \min \{B_{2}^{l}, B_{2}^{s}\} = 0$$

$$B_{3}^{l} = 2 + 3 + 2 = 7$$

$$B_{3}^{s} = 5 + 3 = 8$$

$$B_{4}^{s} = 3 + 1 + 1 + 2 = 7$$

$$B_{3} = \min \{B_{3}^{l}, B_{3}^{s}\} = 7$$

$$B_{4} = \min \{B_{4}^{l}, B_{4}^{s}\} = 5$$

Procedendo in maniera analoga, si trova che B_i = 0, 6 $\leq i \leq$ 10.

Dopo aver calcolato i tempi di bloccaggio, otteniamo la seguente situazione:

(ms)	C _i	T _i	S ₁	S ₂	S ₃	S ₄	B _i
J_1	4	50	0	0	0	0	0
J ₂	2	50	0	0	0	0	0
J ₃	6	50	2	3	0	0	7
J_4	5	50	0	0	2	2	5
J ₅	6	50	3	1	0	0	2
J ₆	5	50	0	0	1	2	0
J ₇	1	50	0	0	0	0	0
J ₈	2	50	0	0	0	0	0
J ₉	3	50	0	0	0	0	0
J ₁₀	1	50	0	0	0	0	0

2) Schedulabilità

L'insieme dei task è schedulabile se:

$$\forall i, \qquad 1 \le i \le n, \qquad \sum_{k=1}^{n} \frac{C_k}{T_k} + \frac{B_i}{T_i} \le i(2^{\frac{1}{i}} - 1)$$

Verifichiamo quindi questa condizione.

$$1. \frac{c_1}{T_1} = 0.08 \le 1$$

$$2. \frac{C_1}{T_1} + \frac{C_2}{T_2} = 0.12 \le 0.83$$

3.
$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{B_3}{T_3} = 0.38 \le 0.78$$

4.
$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{C_4}{T_4} + \frac{B_4}{T_4} = 0.48 \le 0.75$$

5.
$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{C_4}{T_4} + \frac{C_5}{T_5} + \frac{B_5}{T_5} = 0,56 \le 0,74$$

6.
$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{C_4}{T_4} + \frac{C_5}{T_5} + \frac{C_6}{T_6} = 0,56 \le 0,73$$

7. $\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{C_4}{T_4} + \frac{C_5}{T_5} + \frac{C_6}{T_6} + \frac{C_7}{T_7} = 0,58 \le 0,72$

8. $\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{C_4}{T_4} + \frac{C_5}{T_5} + \frac{C_6}{T_6} + \frac{C_7}{T_7} + \frac{C_8}{T_8} = 0,62 \le 0,724$

9. $\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{C_4}{T_4} + \frac{C_5}{T_5} + \frac{C_6}{T_6} + \frac{C_7}{T_7} + \frac{C_8}{T_8} + \frac{C_9}{T_9} = 0,68 \le 0,7205$

10. $\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{C_4}{T_4} + \frac{C_5}{T_5} + \frac{C_6}{T_6} + \frac{C_7}{T_7} + \frac{C_8}{T_8} + \frac{C_9}{T_9} + \frac{C_{10}}{T_{10}} = 0,7 \le 0,7177$

Dunque l'insieme dei task è schedulabile.