Stochastic Markov Disease Modelling

Learn Imagine Adapt decided to apply advanced modelling methods to predict a suitable infection rate for our app users. Using historical past data, coupled with real time updated data from our users, our embedded model can predict a certain infection rate for each user.

The **Stochastic Markov Disease Model** or SMDM is designed so that when information is fed in, the model can easily update its parameters to account for random noise or a sudden surge in disease spread. Our model's algorithms are developed by blending traditional **Markov Chain Modeling**, **Bayesian Modelling** and **Reinforcement Learning** algorithms.

To make the model more cohesive, we have split it into 3 parts:

- 1. Predicting the infection rate from real-time and historical data
- 2. Predicting a person's travel patterns from historical data
- 3. Predicting how an infectious disease will spread using real-time data.

By splitting it up into 3 sections, the model can easily learn its parameters and become more accurate, hence making it a reinforcement learning model.

Mathematical Underpinnings

The model's mathematical algorithm consists of a blend of the 3 algorithms as mentioned before.

1. The prediction of the infection rate:

$$f(A, \mu_A, \sigma_A) = \frac{1}{\sigma_A \sqrt{2\pi}} e^{-\frac{1}{2\sigma_A^2} (A - \mu_A)^2}$$

$$C = g(A, \mu_A, \sigma_A, \lambda_m) = \lambda_m \frac{f(A, \mu_A, \sigma_A)}{f(\mu_A, \mu_A, \sigma_A)}$$

$$L = 1 - l = C_L$$

$$h(C, n) = C^T J_n (J_n - I_n)$$

$$q(C, n) = CI_n + \frac{(1 - C)h(C, n)}{\sum_{row} h(C, n)}$$

$$P_t = \prod_{k=1}^d q(C_k, n)$$

$$MD_t = [MD_{t-1} + (\lambda_{mb} MB_t - MD_t)] \times P_t$$

$$AR_t = CDF \left(\frac{MD_t}{Sus_t}\right)$$

$$[S \to I]_t(\lambda_{ir}) = \lambda_{ir} I_n A R_t \frac{e^{\frac{Inf_t}{Population}} - 1}{e - 1}$$

2. The prediction of people's travel patterns:

$$TR = Road_{ratio} + Water_{ratio} + Air_{ratio} (1.6, 0.4, 0.1)$$

$$\begin{split} ga(G, M_t, \lambda_g) &= \lambda_g \frac{M_t}{\mathbb{E} + \sum_{row} G} \\ R_t &= mg(G, M_t, \lambda_g) = M_t + ga(G, M_t, \lambda_g) - \frac{G[[1 - G]]}{\sum_{row} [[1 - G]]} \sum_{row} ga(G, M_t, \lambda_g) \end{split}$$

$$[S \to S]_t = (I_n - [S \to I]_t) R_t$$

3. The prediction of infectious disease spread:

$$S_t = [S_{t-1} + (\lambda_b B_t - D_t)] \times P_t$$

$$MSIR_t = \begin{bmatrix} [S \rightarrow S]_t & [S \rightarrow I]_t & 0 \\ 0 & [I \rightarrow I]_t & [I \rightarrow R]_t \\ 0 & 0 & [R \rightarrow R]_t \end{bmatrix}$$

$$SIR_t = [SIR_{t-1} + (\lambda_b SIRB_t - SIRD_t)] \times MSIR_t$$

Parameter Bayesian Updating

As you can see from the mathematical algorithms, there exists some parameters that are allowed in **green**. These are the parameters that were learnt from historical and real-time data.

After applying machine learning models using **DataRobot** and other methods, we discovered the following interesting trends:

Variable	Data Source	Model	Rationale
	(data	Parameter	
	transformed)	Importance	
Train Congestion	Open Transport	+15.183	We found that as train congestion
Rate	Data - OPAL		increased, the infection rate
			suddenly increased. This is clearly
			due to the fact that people are closer
			together in trains, and thus spreading
			of diseases is most optimal there.

Bus Congestion	Open Transport	+10.233	Likewise, fascinatingly enough, as
Rate	Data – Bus		bus congestion increased, so did the
	Network		infection rate. This mirrors the train
			congestion trend, as clearly, as bus
			passengers are increased, more
			diseases are easily spread.
Population	ABS and ATO	+9.123	We noticed as the connections to
Proximity	data		one city or suburb increases, so does
Movement Rate	HERE Maps train,		the infection rate. We also noticed
	road		that larger population areas tend to
	connections data		have more movement of people, and
			thus it can cause an increase again in
			infection rates.
Time of Day	ALL DATA	+8.963	We noticed that at the peak hours,
			the infection rate is booming. This is
			so, as the time of day is directly
			correlated and related to train and
			bus congestion, and thus it is
			reasonable to conclude that peak
			hours harbor more disease spreading
			potential.
Air Quality Index	NSW Air Quality	+7.343	We found as the air quality degraded,
	Index data		the infection rate increased by an
			amount. We noticed that this was
			because people become weaker as
			the air quality is a direct causer of
			poor health. As the AQI increases (or
			AQ worsens), the infection rate
			increases.

Standardized	ABS Income data	+5.234	We also found that as your income
Capital and Total			increases, you tend to develop a
Income			lower chance of getting a disease.
			This is so, as we noticed that this was
			correlated with the health status of
			people. HOWEVER, we also found
			that very high-income people might
			develop a higher change of getting a
			disease. We noticed that these
			people tend to travel in public
			transport more often, and this could
			be a reason for this trend.

Model results

Let us inspect Blacktown's infection rate over the month of February 2017:

Clearly, you can see a stochastic trend. You can see the dips and increases which symbolize the onset of nights and day cycles. A sharp increase is seen in the midday.

Richmond's infection rate pattern is different:

This was since Richmond is further away from the city, and so spreading to there is lower (hence average rate of only 0.15%)

To confirm our suspicions, let's check Liverpool:

As you can see, Liverpool's average is around 0.225, but a more cyclical trend is seen.

Our team Learn Imagine Adapt thanks you!