	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^+lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	τ ₁ - α
$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{k^2(2r_1+r_5)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{i}{\sqrt{2} (k+k^3) (2r_1+r_5)}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6 k^2 (2r_1+r_5)+t_1}{2 (k+k^3)^2 (2r_1+r_5)t_1}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$-\frac{i}{\sqrt{2} (k+k^3) (2r_1+r_5)}$	$-\frac{i\left(6k^{2}(2r_{1}+r_{5})+t_{1}\right)}{2k\left(1+k^{2}\right)^{2}\left(2r_{1}+r_{5}\right)t_{1}}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_1^{\sharp_1} \dagger^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2} k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_1^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{#1}{}_{lpha}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{#1} \dagger^{\alpha\beta}$	$k^2 (2r_1 + r_5) + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	<u>i kt</u> 1 3	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}kt_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_{1}^{\#1}$ † lpha	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-i k t ₁	0	0	0

Total #:	$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} = 0$	$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\sigma_{0^{-}}^{\#1} == 0$	SO(3) irreps	Source constraints
17	5	ω	ω	ω	1	1	1	#	

Added source term: $\int f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$	$\frac{8}{3}r_1 \partial^{\beta} \omega_{\lambda}^{\ \lambda \alpha} \partial_{\lambda} \omega_{\alpha\beta}^{\ \ \prime} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \ \theta} \partial^{\lambda} \omega^{\theta\kappa}_{\ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^{\lambda} \omega^{\theta\kappa}_{\ \kappa}$	$\frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^{\beta} \omega_{\alpha}^{\alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\prime\prime} -$	$\frac{1}{3} t_1 \partial_{\kappa} f_{\theta}^{\ \lambda} \partial^{\kappa} f_{\lambda}^{\ \theta} + \frac{2}{3} t_1 \partial_{\kappa} f^{\lambda}_{\ \theta} \partial^{\kappa} f_{\lambda}^{\ \theta} - t_1 \partial^{\alpha} f^{\lambda}_{\ \alpha} \partial^{\kappa} f_{\lambda \kappa} +$	$\frac{2}{3}t_1\;\omega_{\theta\kappa_l}\;\partial^\kappa f^{l\theta}-t_1\;\omega_{l\alpha}^{ \alpha}\;\partial^\kappa f^l_{ \kappa}-t_1\;\omega_{l\lambda}^{ \lambda}\;\partial^\kappa f^l_{ \kappa}+\frac{1}{3}t_1\;\partial^\alpha f^\lambda_{ \kappa}\partial^\kappa f_{\lambda\alpha}+$	$t_1 \partial_\kappa f^\lambda_{\ \lambda} \partial^\kappa f'_{\ \prime} + \tfrac{1}{3} t_1 \omega_{\prime\theta\kappa} \partial^\kappa f'^\theta + \tfrac{4}{3} t_1 \omega_{\prime\kappa\theta} \partial^\kappa f'^\theta - \tfrac{1}{3} t_1 \omega_{\theta\prime\kappa} \partial^\kappa f'^\theta +$	$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda}+t_1\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{,}+t_1\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{,}+2t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{,}-$	$2r_5\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-\tfrac{1}{3}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\theta}-\tfrac{2}{3}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta}-$	$r_5 \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} + r_5 \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$	$\frac{2}{3}r_1 \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} - \frac{2}{3}r_1 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} + \frac{2}{3}r_1 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\theta \alpha \beta} -$	$-t_1\;\omega_{,}^{\;lpha_{!}}\;\omega_{\kappalpha}^{\;\;\kappa}-rac{1}{3}t_1\;\omega_{,\kappa}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+rac{1}{3}t_1\;\omega_{\kappa\lambda}^{\;\;\prime}\;\omega_{,}^{\kappa\lambda}-r_5\;\partial_{,}\omega_{\kappa\lambda}^{\kappa\lambda}\;\partial_{,}\omega_{\lambda}^{\;\;lpha}-$	Lagrangian density
--	--	---	---	--	--	---	--	---	--	---	--------------------

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\sharp 1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	Massive particl	e
? $J^P = 2^{-/}$	Pole residue:	$-\frac{1}{r_1} > 0$
?	Polarisations:	5
k^{μ}	Square mass:	$-\frac{t_1}{2r_1} > 0$
?	Spin:	2
·	Parity:	Odd

Unitarity conditions $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$