

# **L** Core Project OT2OD030544

#### O Details

| Projects          | Name                    | Award          | Publications    | Repositories   | Analytics    |
|-------------------|-------------------------|----------------|-----------------|----------------|--------------|
| 3OT2OD030544-01S4 | Biomedical Data Commons | \$3,229,346.00 | 59 publications | 0 repositories | 0 properties |
| 3OT2OD030544-01S2 | Workbench (BDCW)        |                |                 |                |              |
| 1OT2OD030544-01   |                         |                |                 |                |              |
| 3OT2OD030544-01S3 |                         |                |                 |                |              |
| 3OT2OD030544-01S1 |                         |                |                 |                |              |

#### Publications

Published works associated with this project.

| ID                  | Title                                                                                             | Authors                                                           | R<br>C<br>R   | SJ<br>R        | Cit<br>ati<br>ons | Cit.<br>/ye<br>ar | Journal     | Pub<br>lish<br>ed | Upd<br>ated                         |
|---------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|----------------|-------------------|-------------------|-------------|-------------------|-------------------------------------|
| 39143213 🗹<br>DOI 🗹 | Mitochondrial complex I promotes<br>kidney cancer metastasis.                                     | Bezwada,<br>Divya<br>36<br>more<br>DeBerardi<br>nis, Ralph<br>J   | 9.<br>21<br>1 | 18.<br>28<br>8 | 36                | 36                | Nature      | 202<br>4          | Aug<br>23,<br>2025<br>(just<br>now) |
| 38844817 🖸<br>DOI 🗗 | Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunos | Scolaro,<br>Tommaso<br>36<br>more<br>Mazzone,<br>Massimili<br>ano | 6.<br>60<br>5 | 0              | 25                | 25                | Nat Cancer  | 202<br>4          | Aug<br>23,<br>2025<br>(just<br>now) |
| 34862502 🗗<br>DOI 🗗 | GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser.           | Petras, Daniel33 more Wang, Mingxun                               | 5.<br>65<br>2 | 0              | 48                | 16                | Nat Methods | 202<br>2          | Aug<br>23,<br>2025<br>(just<br>now) |

| 38636516 <b>♂</b><br>DOI <b>♂</b> | Mannose controls mesoderm specification and symmetry breaking in mouse gastruloids.                     | Dingare,<br>Chaitanya<br>3<br>more<br>Steventon<br>,<br>Benjamin | 4.<br>22<br>9 | 0 | 16 | 16 | Dev Cell   | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|---|----|----|------------|----------|-------------------------------------|
| 37798473 🖸<br>DOI 🖸               | Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate       | Miller,<br>Anne<br>7<br>more<br>Yellen,<br>Gary                  | 4.<br>00<br>6 | 0 | 24 | 12 | Nat Metab  | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |
| 38165806 <b>♂</b><br>DOI <b>♂</b> | Metabolic reprogramming by histone deacetylase inhibition preferentially targets NRF2-activated t       | Karagiann<br>is,<br>Dimitris<br>11<br>more<br>Lu, Chao           | 3.<br>74<br>1 | 0 | 12 | 12 | Cell Rep   | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 37349305 🗗                        | Defining diurnal fluctuations in<br>mouse choroid plexus and CSF at<br>high molecular, spatial, and tem | Fame,<br>Ryann M<br>21<br>more<br>Lehtinen,<br>Maria K           | 3.<br>62<br>4 | 0 | 22 | 11 | Nat Commun | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |

| 38286827 <b>♂</b><br>DOI <b>♂</b> | Loss of Pip4k2c confers liver-<br>metastatic organotropism through<br>insulin-dependent PI3K-AKT<br>pathway | Rogava,<br>Meri<br>43<br>more<br>Izar,<br>Benjamin     | 3.<br>29<br>9 | 0 | 12 | 12 | Nat Cancer | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|---|----|----|------------|----------|-------------------------------------|
| 39420002 <b>~</b><br>DOI <b>~</b> | Methionine-SAM metabolism-<br>dependent ubiquinone synthesis is<br>crucial for ROS accumulation in<br>ferro | Xia,<br>Chaoyi<br>13<br>more<br>Wang,<br>Yang          | 2.<br>90<br>1 | 0 | 9  | 9  | Nat Commun | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 39305905 🗷<br>DOI 🗹               | DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-sig           | Kong, Shuyao10 more Roeder, Adrienne H K               | 2.<br>50<br>8 | 0 | 8  | 8  | Dev Cell   | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 38172157 <b>亿</b><br>DOI <b>亿</b> | Deficiency of the lipid flippase<br>ATP10A causes diet-induced<br>dyslipidemia in female mice.              | Norris,<br>Adriana C<br>7<br>more<br>Graham,<br>Todd R | 2.<br>38<br>4 | 0 | 7  | 7  | Sci Rep    | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |

| 37452018 🗹<br>DOI 🗹 | Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis.                         | Takata,<br>Nozomu<br>16<br>more<br>Oliver,<br>Guillermo        | 2.<br>14<br>3 | 0 | 17 | 8.5      | Nat Commun           | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |
|---------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|---|----|----------|----------------------|----------|-------------------------------------|
| 37441265 🗹<br>DOI 🗹 | Contribution of Circulating Host and<br>Microbial Tryptophan Metabolites<br>Toward Ah Receptor Activation. | Morgan,<br>Ethan W<br>12<br>more<br>Perdew,<br>Gary H          | 2.<br>00<br>4 | 0 | 12 | 6        | Int J Tryptophan Res | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |
| 39206133 ♂<br>DOI ♂ | Phosphate availability conditions caspofungin tolerance, capsule attachment and titan cell format          | Qu,<br>Xianya<br>7<br>more<br>Kronstad,<br>James W             | 1.<br>83<br>7 | 0 | 5  | 5        | Front Fungal Biol    | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 34721400 ♂<br>DOI ♂ | Immune Response in Severe and<br>Non-Severe Coronavirus Disease<br>2019 (COVID-19) Infection: A<br>Mechani | Mukund,<br>Kavitha<br>6<br>more<br>Subrama<br>niam,<br>Shankar | 1.<br>78<br>7 | 0 | 31 | 7.7<br>5 | Front Immunol        | 202<br>1 | Aug<br>23,<br>2025<br>(just<br>now) |

| 38714664 🗹<br>DOI 🗹               | FGFR inhibition blocks NF-κB-<br>dependent glucose metabolism and<br>confers metabolic vulnerabilities i | Zhen,<br>Yuanli<br>11<br>more<br>Bardeesy,<br>Nabeel   | 1.<br>63<br>4 | 0 | 5  | 5   | Nat Commun | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
|-----------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|---|----|-----|------------|----------|-------------------------------------|
| 39535921 🖸                        | Cancer-associated fibroblasts<br>maintain critical pancreatic cancer<br>cell lipid homeostasis in the t  | Han, Xu<br>13<br>more<br>Simon, M<br>Celeste           | 1.<br>62<br>4 | 0 | 6  | 6   | Cell Rep   | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 38813868 <b>♂</b><br>DOI <b>♂</b> | Fetal growth delay caused by loss of non-canonical imprinting is resolved late in pregnancy and c        | Oberin,<br>Ruby<br>14<br>more<br>Western,<br>Patrick S | 1.<br>43<br>7 | 0 | 5  | 5   | Elife      | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 37815914 🗗<br>DOI 🗗               | MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate can        | Crowell, Preston D23 more Goldstein, Andrew S          | 1.<br>24<br>6 | 0 | 11 | 5.5 | Cell Rep   | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |

| 38161977 <b>2</b><br>DOI <b>2</b> | Gut microbiota and metabolites in estrus cycle and their changes in a menopausal transition rat m  | Dai, Ruoxi<br>5<br>more<br>Sun, Yan                               | 1.<br>12<br>2 | 0 | 5 | 2.5 | Front Endocrinol<br>(Lausanne) | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |
|-----------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|---|---|-----|--------------------------------|----------|-------------------------------------|
| 38001239 <b>♂</b><br>DOI <b>♂</b> | IL-1β-mediated adaptive reprogramming of endogenous human cardiac fibroblasts to cells with immun  | Siamwala,<br>Jamila H<br>11<br>more<br>Gilbert,<br>Richard J      | 0.<br>72<br>1 | 0 | 5 | 2.5 | Commun Biol                    | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |
| 37515770 🗗<br>DOI 🗗               | The stability of the myelinating oligodendrocyte transcriptome is regulated by the nuclear lamina. | Pruvost,<br>Mathilde<br>16<br>more<br>Casaccia,<br>Patrizia       | 0.<br>69<br>5 | 0 | 6 | 3   | Cell Rep                       | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |
| 35448980 <b>2</b><br>DOI <b>2</b> | Modular and mechanistic changes across stages of colorectal cancer.                                | Rahiminej<br>ad, Sara<br>2<br>more<br>Subrama<br>niam,<br>Shankar | 0.<br>47<br>7 | 0 | 6 | 2   | BMC Cancer                     | 202<br>2 | Aug<br>23,<br>2025<br>(just<br>now) |

| 37849634 <b>乙</b><br>DOI <b>乙</b> | Endotype Characterization Reveals<br>Mechanistic Differences Across<br>Brain Regions in Sporadic Alzhei | Patel, Ashay O2 more Subrama niam, Shankar                            | 0.<br>29<br>1 | 0 | 2 | 1         | J Alzheimers Dis Rep | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|---|---|-----------|----------------------|----------|-------------------------------------|
| 37983749 <b>♂</b><br>DOI <b>♂</b> | MetGENE: gene-centric<br>metabolomics information retrieval<br>tool.                                    | Srinivasa<br>n,<br>Sumana<br>3<br>more<br>Subrama<br>niam,<br>Shankar | 0.<br>16<br>8 | 0 | 2 | 0.6<br>67 | Gigascience          | 202      | Aug<br>23,<br>2025<br>(just<br>now) |
| 37398141 🖸<br>DOI 🗗               | Deficiency of the lipid flippase<br>ATP10A causes diet-induced<br>dyslipidemia in female mice.          | Norris,<br>Adriana C<br>7<br>more<br>Graham,<br>Todd R                | 0.<br>15<br>8 | 0 | 1 | 0.5       | bioRxiv              | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |

| 37546759 🗗<br>DOI 🗗 | Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate       | Miller,<br>Anne<br>7<br>more<br>Yellen,<br>Gary        | 0 | 0         | 0 | 0 | Res Sq                                                                | 202<br>3 | Aug<br>23,<br>2025<br>(just<br>now) |
|---------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---|-----------|---|---|-----------------------------------------------------------------------|----------|-------------------------------------|
| 38313293 ☑<br>DOI ☑ | Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers.              | Alina,<br>Maloyan<br>4<br>more<br>Kumar,<br>Sushil     | 0 | 0         | 0 | 0 | Res Sq                                                                | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 38226418 🗗          | Fatty acid metabolism promotes<br>TRPV4 activity in lung microvascular<br>endothelial cells in pulmonar | Philip,<br>Nicolas<br>20<br>more<br>Suresh,<br>Karthik | 0 | 0         | 2 | 2 | Am J Physiol Lung<br>Cell Mol Physiol                                 | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 39707873 🗗<br>DOI 🗗 | Salivary Metabolomic Signatures in<br>Pediatric Eosinophilic Esophagitis.                               | Hiremath,<br>Girish<br>6<br>more<br>Locke,<br>Andrea   | 0 | 3.6<br>22 | 2 | 2 | Allergy: European<br>Journal of Allergy<br>and Clinical<br>Immunology | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |

| 39754192 <b>♂</b><br>DOI <b>♂</b> | Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familia | Valdes,<br>Phoebe<br>9<br>more<br>Subrama<br>niam,<br>Shankar | 0 | 0 | 1 | 1 | Alzheimers Res Ther | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |
|-----------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---|---|---|---|---------------------|----------|-------------------------------------|
| 38926365 ☑<br>DOI ☑               | METTL3-mediated chromatin contacts promote stress granule phase separation through metabolic repr | Wang,<br>Chen<br>17<br>more<br>Zhang,<br>Rugang               | 0 | 0 | 2 | 2 | Nat Commun          | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 39257804 ℃<br>DOI ♂               | Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp | Tamir, Tigist Y15 more White, Forest M                        | 0 | 0 | 0 | 0 | bioRxiv             | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 40502162 🗗                        | OGDHL regulates nucleotide metabolism, tumor growth, and neuroendocrine marker expression in pros | Bernard,<br>Matthew J<br>19<br>more<br>Goldstein,<br>Andrew S | 0 | 0 | 0 | 0 | bioRxiv             | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |

| 40600951 ☑<br>DOI ☑               | Histidine decarboxylase inhibition attenuates cancer-associated muscle wasting.                        | Dasgupta,<br>Aneesha<br>11<br>more<br>Doles,<br>Jason D   | 0 | 0         | 0 | 0 | J Exp Med    | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |
|-----------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---|-----------|---|---|--------------|----------|-------------------------------------|
| 39328933 <b>♂</b><br>DOI <b>♂</b> | Deletion of <i>Kcnj16</i> altered<br>transcriptomic and metabolomic<br>profiles of Dahl salt-sensitive | Xu, Biyang4 more Starusche nko, Alexander                 | 0 | 1.3<br>63 | 1 | 1 | iScience     | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 38651675 <b>♂</b><br>DOI <b>♂</b> | A nested case-control study of untargeted plasma metabolomics and lung cancer among neversmoking       | Rahman,<br>Mohamm<br>ad L<br>12<br>more<br>Lan, Qing      | 0 | 0         | 3 | 3 | Int J Cancer | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 40052831 ☑<br>DOI ☑               | Human adenovirus serotype 5 infection dysregulates cysteine, purine, and unsaturated fatty acid m      | Sanchez,<br>Bailey-J C<br>1<br>more<br>Grasis,<br>Juris A | 0 | 0         | 1 | 1 | FASEB J      | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |

| 40308032 <b>②</b> DOI <b>②</b> | Integrated Multiomics Analyses of<br>the Molecular Landscape of<br>Sarcopenia in Alcohol-Related Liver<br>  | Welch, Nicole13 more Dasarathy , Srinivasa n                      | 0 | 0 | 0 | 0 | J Cachexia<br>Sarcopenia Muscle  | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |
|--------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---|---|---|---|----------------------------------|----------|-------------------------------------|
| 40166866 🗹                     | Severe Cognitive Decline in Long-<br>term Care Is Related to Gut<br>Microbiome Production of<br>Metabolites | Shoubrid<br>ge,<br>Andrew P<br>17<br>more<br>Rogers,<br>Geraint B | 0 | 0 | 0 | 0 | J Gerontol A Biol Sci<br>Med Sci | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |
| 39307306 ☑<br>DOI ☑            | Integrated multi-omics unveil the impact of H-phosphinic analogs of glutamate and α-ketoglutarate           | Giovanne<br>rcole,<br>Fabio<br>4<br>more<br>De Biase,<br>Daniela  | 0 | 0 | 1 | 1 | J Biol Chem                      | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |

| 38102827 <b>♂</b><br>DOI <b>♂</b> | Modeling transcriptional regulation of the cell cycle using a novel cybernetic-inspired approach.            | Raja,<br>Rubesh<br>5<br>more<br>Ramkrish<br>na,<br>Doraiswa<br>mi         | 0 | 0 | 0 | 0 | Biophys J      | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|---|---|---|----------------|----------|-------------------------------------|
| 38018851 <b>乙</b><br>DOI <b>乙</b> | Lipidomic Analysis Reveals<br>Differences in the Extent of<br>Remyelination in the Brain and<br>Spinal Cord. | De Silva<br>Mohotti,<br>Nishama<br>5<br>more<br>Hartley,<br>Meredith<br>D | 0 | 0 | 2 | 2 | J Proteome Res | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 38761133 🗗<br>DOI 🗗               | Differential impact of sex on regulation of skeletal muscle mitochondrial function and protein ho            | Welch, Nicole14 more Dasarathy , Srinivasa                                | 0 | 0 | 3 | 3 | J Physiol      | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |

| Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can          | Rahiminej<br>ad, Sara<br>2<br>more<br>Subrama<br>niam,<br>Shankar                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Res Sq                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aug<br>23,<br>2025<br>(just<br>now)                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ketogenic diet suppresses<br>colorectal cancer through the gut<br>microbiome long chain fatty acid<br>stea | Tsenkova,<br>Mina<br>22<br>more<br>Letellier,<br>Elisabeth                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nat Commun                                                                                                                                                                                                                                                                                                                                                                                         | 202<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aug<br>23,<br>2025<br>(just<br>now)                                                                                                                                                                                                                                                                                                                                                                              |
| Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp          | Tamir, Tigist Y15 more White, Forest M                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mol Cell                                                                                                                                                                                                                                                                                                                                                                                           | 202<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aug<br>23,<br>2025<br>(just<br>now)                                                                                                                                                                                                                                                                                                                                                                              |
| Matrix Linear Models for connecting metabolite composition to individual characteristics.                  | Farage,<br>Gregory<br>5<br>more<br>Sen,<br>Śaunak                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bioRxiv                                                                                                                                                                                                                                                                                                                                                                                            | 202<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aug<br>23,<br>2025<br>(just<br>now)                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                            | stage- and side-specificity of gene modules in colorectal can  Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stea  Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp  Matrix Linear Models for connecting metabolite composition | Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can  Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stea  Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp  Matrix Linear Models for connecting metabolite composition to individual characteristics.  ad, Sara2 more Subrama niam, Shankar  Tsenkova, Mina22 more Letellier, Elisabeth  Tamir, Tigist Y15 more White, Forest M  Farage, Gregory5 more Sen, | Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can  Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stea  Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp  Matrix Linear Models for connecting metabolite composition to individual characteristics.  ad, Sara2  more  Subrama niam, Shankar  Tsenkova, Mina22  more  Letellier, Elisabeth  Tamir, Tigist Y15 more White, Forest M  Farage, Gregory5 more Sen, | Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can  Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stea  Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp  Matrix Linear Models for connecting metabolite composition to individual characteristics.  ad, Sara22 more  Tsenkova, Mina22 more Letellier, Elisabeth  Tamir, Tigist Y15 more White, Forest M  Farage, Gregory5 more Sen, | Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can  Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stea  Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp  Matrix Linear Models for connecting metabolite composition to individual characteristics.  ad, Sara2 2  more  Subrama niam, Shankar  Tsenkova, Mina22  more  Letellier, Elisabeth  Tamir, Tigist Y15  more  White, Forest M  Farage, Gregory5  more  Sen, | Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can  Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stea  Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp  Matrix Linear Models for connecting metabolite composition to individual characteristics. | Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can  Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stea  Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp  Matrix Linear Models for connecting metabolite composition to individual characteristics.  ad, Sara2 more 20 0 0 0 0 0 Res Sq  Mina2 | Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can  Ketogenic diet suppresses colorectal cancer through the gut microbiome long chain fatty acid stea  Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp  Matrix Linear Models for connecting metabolite composition to individual characteristics.  add, Sara  D |

| Notes                   |                    | and metabolic pi                                                | omes in male |                                                                                                                                                                                                                                                     | Kymberly<br>M                                                        |             |                   |          |        |         |             |          | now)                                |
|-------------------------|--------------------|-----------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|-------------------|----------|--------|---------|-------------|----------|-------------------------------------|
| 3854428<br>DOI [2]      | <b>کا</b> <u>5</u> | wood smoke alte                                                 |              | O                                                                                                                                                                                                                                                   | moreN.o d<br>Gowdy,                                                  | lata 0      | 0                 | 0        | 0      | Toxic   | ol Sci      | 202<br>4 | 2025<br>(just                       |
| Name                    | Tags               | Last Commit                                                     | Avg Issue    | Avg PR                                                                                                                                                                                                                                              | Langu                                                                | ages        | Lice              | nse      | Readn  | ne C    | ontributing | Dependo  | encies                              |
|                         |                    |                                                                 |              |                                                                                                                                                                                                                                                     | Cochran,                                                             |             |                   |          |        |         |             |          |                                     |
|                         |                    |                                                                 |              |                                                                                                                                                                                                                                                     | Timothy 2                                                            | lata        |                   |          |        |         |             |          | now)                                |
| Name                    | De                 | escription                                                      | Stars        | Watch                                                                                                                                                                                                                                               | ers                                                                  | Forks       |                   | Issues   | I      | PRs     | Commits     | Con      | trib.                               |
| 3897576                 | 4 <b>Γ</b> ላ       | Taurine modulat                                                 |              | -                                                                                                                                                                                                                                                   | <b>Weis</b> sans,<br>Mandy D<br>5                                    | ociated     | with <sup>1</sup> | this pro | oject. | -       |             | 202      | Aug<br>23,                          |
| 3893764<br>DOI <b>7</b> | <u>7</u> 🗗         | Metabolic abnor bone marrow cell offspring born to obesity.     | ls of young  | </td <td>Phillips,<br/>Elysse A<br/>4<br/>more<br/>Malogan,<br/>Alina</td> <td>o<br/>ositor</td> <td>o<br/>ies</td> <td>3</td> <td>3</td> <td>Int J C</td> <td>Obes (Lond)</td> <td>202<br/>4</td> <td>Aug<br/>23,<br/>2025<br/>(just<br/>now)</td> | Phillips,<br>Elysse A<br>4<br>more<br>Malogan,<br>Alina              | o<br>ositor | o<br>ies          | 3        | 3      | Int J C | Obes (Lond) | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 3831833<br>DOI <b>[</b> | <u>7</u> 🗗         | Exploring the intrunning exercise diversity, and try metabolism | s, microbial | n                                                                                                                                                                                                                                                   | Vazquez-<br>Medina,<br>Alejandra<br>6<br>more<br>Chorna,<br>Nataliya | 0           | 0                 | 4        | 4      | Front   | Microbiol   | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |

| Repository  | For storing, tracking changes to, and collaborating on a piece of software.                                                                                                                                                                                                                                            |                                     |  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|--|
| PR          | "Pull request", a draft change (new feature, bug fix, etc.) to a repo.                                                                                                                                                                                                                                                 |                                     |  |  |  |  |  |  |
| Closed/Open | Resolved/unresolved.                                                                                                                                                                                                                                                                                                   |                                     |  |  |  |  |  |  |
| DOHA        | Average time issues/pull requests stay operator before being closed.  Gut symbiont-derived sphingosine Xiaomei  Adefault branches considered for metrics like # of commits. 0 1 1 Nat Commun  4  Acies is totaled with all manifests in repo, direct and transitive, e.g. package.json + package-lock.json.  Zou, Zhen | Aug<br>23,<br>2025<br>(just<br>now) |  |  |  |  |  |  |

### Analytics

Traffic metrics of websites associated with this project.

#### **Notes**

Active Users <u>Distinct users who visited the website</u> **?**.

New Users <u>Users who visited the website for the first time</u> **.** 

"Top" metrics are measured by number of engaged sessions.

Built on Aug 23, 2025

Developed with support from NIH Award U54 OD036472

James D

now)

| 39824876 🖸<br>DOI 🖸 | Unveiling cellular changes in leukaemia cell lines after cannabidiol treatment through lipidomics. | Chamoso-<br>Sanchez,<br>David<br>6<br>more<br>Pellati,<br>Federica | 0 | 0 | 0 | 0 | Sci Rep     | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |
|---------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---|---|---|---|-------------|----------|-------------------------------------|
| 39702518 🗗          | Proteomic and metabolomic analyses of the human adult myocardium reveal ventriclespecific regula   | Hunter,<br>Benjamin<br>11<br>more<br>Lal, Sean                     | 0 | 0 | 2 | 2 | Commun Biol | 202<br>4 | Aug<br>23,<br>2025<br>(just<br>now) |
| 40312501 ☑<br>DOI ☑ | Synaptic vesicle-omics in mice captures signatures of aging and synucleinopathy.                   | Gao,<br>Virginia<br>14<br>more<br>Burré,<br>Jacqueline             | 0 | 0 | 0 | 0 | Nat Commun  | 202<br>5 | Aug<br>23,<br>2025<br>(just<br>now) |

## Notes

RCR Relative Citation Ratio

SJR Scimago Journal Rank

