Performer

Attention: Recap

Attention

Attention (cont.)

$$A = \begin{pmatrix} Q & K^{\top} \\ i & & & \\ j & & & \\ \beta_{L,L} & \cdots & \beta_{L,1} \end{pmatrix} \qquad \bar{A} = \operatorname{Softmax} \begin{pmatrix} Q & K^{\top} \\ i & & & \\ j & & & \\ \alpha_{L,1} & \cdots & \alpha_{L,L} \end{pmatrix}$$

$$eta_{i,j} = rac{lpha_{i,j}}{\sum_{\ell} lpha_{i,\ell}} \quad oldsymbol{ar{A}} = D^{-1}A \qquad D = egin{pmatrix} \sum_{\ell} eta_{1,\ell} & & & & \\ & \ddots & & & \\ & & \sum_{\ell} eta_{L,\ell} & & \end{pmatrix} \ D = A \mathbf{1}_L = Q K^ op \mathbf{1}_L$$

Attention (cont.)

$$= \bar{A}V = D^{-1}AV$$

Computation complexity: $O(L^2d)$

(prohibitive for long sequences)

space complexity: $O(L^2)$

Efficient transformers

Figure 2: Taxonomy of Efficient Transformer Architectures.

Performer

main idea: use random features to construct

Performer (cont.)

computational and space savings

Computation complexity: $O(Lr^2)$

space complexity: O(Lr)

Random Features

$$k(x,y) = \exp(x^{ op}y)$$

Kernel/similarity function

$$A_{i,j} = \exp(q_i^ op k_j) = k(q_i, k_j)$$

Construction for r=1

Amplification (r>1)

draw $w_1,\ldots,w_r \sim \mathcal{N}(0,I)$

Lemma

$$\mathbb{E}[\phi_w(x)^\top \phi_w(y)] = \exp(x^\top y)$$

 $ilde{K}$

draw
$$w_1,\dots,w_r \sim \mathcal{N}(0,I)$$
 $r = ilde{\Theta}(d/\epsilon^2)$

$$x \mid \frac{\phi}{\sqrt{r}}(\phi_{w_1}(x),\ldots,\phi_{w_r}(x))$$

Theorem

W.h.p. for all x,y (simulataneously)

$$|\phi(x)^{ op}\phi(y)-k(x,y)|\leq\epsilon$$

$$\phi(k_1)$$
 $\phi(k_1)$ $\phi(k_1)$ $\phi(k_2)$ $\phi(k_1)$ $\phi(k_2)$ $\phi(k_2)$ $\phi(k_3)$ $\phi(k_4)$ ϕ

Random Features: Proof

$$k(x,y) = \exp(x^{ op}y)$$
 Kernel/similarity function

draw
$$w_1, \dots, w_r \sim \mathcal{N}(0, I)$$

$$x \mid \stackrel{\phi_w}{\longrightarrow} \exp\left(w^ op x - \|x\|^2/2
ight)$$

Lemma

$$\mathbb{E}[\phi_w(x)^ op\phi_w(y)] = \exp(x^ op y)$$

Proof sketch

$$egin{aligned} \mathbb{E}_w[\phi_w(x)^ op \phi_w(y)] &pprox \int_w \phi_w(x) \phi_w(y) \exp(-\|w\|^2/2) \ dw \ &= \int_w \exp(-\|x\|^2/2) \ \exp(-\|y\|^2/2) \ \exp(w^ op (x+y)) \exp(-\|w\|^2/2) \ dw \ &= \int_w \exp(\|w-(x+y)\|^2) \ \exp(x^ op y) \ dw \ &= \exp(x^ op y) \underbrace{\int_w \exp(\|w-(x+y)\|^2)}_{xy} \ dw \end{aligned}$$

Experiments

TrEMBL: predicting interactions among groups of proteins by concatenating protein sequences

