Lecture 6: Constraint Satisfaction

Davide Grossi

PART I Constraint-Satisfaction Problems

A map-coloring problem

Can you assign a color (blue, red or green) to every state in the map so that no two adjacent states have the same color?

▶ Variables: {WA, NT, Q, NSW, V, SA, T}

- Variables: {WA, NT, Q, NSW, V, SA, T}
- ► Domain: { red, green, blue } for all variables

- Variables: {WA, NT, Q, NSW, V, SA, T}
- Domain: { red, green, blue } for all variables

$$\begin{tabular}{ll} \hline & \textbf{Constraints:} & \begin{tabular}{ll} WA \neq NT & WA \neq SA & SA \neq NT \\ SA \neq Q & NT \neq Q & Q \neq NSW \\ NSW \neq V & \end{tabular}$$

A solution assigns a color to each variable in a way that satisfies the constraints

- ► SA = blue
- ▶ WA, Q, V = red
- ► NT, NSW, T = green

A cryptarithmetic problem

- Variables: {T, W, O, F, U, R, X1, X2, X3}
- ▶ Domains: T, W, O, F, U, $R \in \{0, ..., 9\}$; X1, X2, X3 ∈ $\{0, 1\}$

Constraints¹

- ► Alldiff(T,W,O,F,U,R), that is, all values should be different
- ► O+O = R + X1*10
- ► X1+W+W = U + X2*10
- ► X2+T+T = O + X3*10
- X3 = F

Constraint Satisfaction Problems: Definition

A Constraint Satisfaction Problem (CSP) consists of

- ▶ A finite set of variables $\{V_1, \ldots, V_n\}$
- ▶ A list of non-empty domains $(D_1, ..., D_n)$ for each variable
- ▶ A finite set of constraints C_1, \ldots, C_m .

Constraint Satisfaction Problems: Definition

A Constraint Satisfaction Problem (CSP) consists of

- ▶ A finite set of variables $\{V_1, ..., V_n\}$
- ▶ A list of non-empty domains $(D_1, ..., D_n)$ for each variable
- ▶ A finite set of constraints C_1, \ldots, C_m .

A **state** is an assignment of values to (some or all) variables V_i

- ▶ An assignment is **complete** if $V_i \in D_i$ for all i
- ▶ It is **consistent** (or legal) if it satisfies all constraints *C_i*
- A solution is a complete and legal assignment

The **constraint graph** represents variables as nodes and constraints as edges

Graphs can simplify the problem structure

The **constraint graph** represents variables as nodes and constraints as edges

- Graphs can simplify the problem structure
- ► QUESTION What feature of the problem does the graph make immediately explicit?

The **constraint graph** represents variables as nodes and constraints as edges

- Graphs can simplify the problem structure
- ► QUESTION What feature of the problem does the graph make immediately explicit?
- Tasmania is an independent subproblem

Constraints

- ► Alldiff(T,W,O,F,U,R)
- ightharpoonup O+O=R+X1*10
- \blacktriangleright X1+W+W = U + X2*10
- ► X2+T+T = O + X3*10
- ► X3 = F

Constraints

Constraints are of different types

- Unary constraints
 - e.g. X ≠ 0
- Binary constraints
 - ▶ e.g. *X* ≠ *Y*
- Higher-order constraints
 - e.g. X + Y = A + B

Constraints

Constraints are of different types

- Unary constraints
 - e.g. X ≠ 0
- Binary constraints
 - ▶ e.g. X ≠ Y
- Higher-order constraints
 - e.g. X + Y = A + B
- ► QUESTION What type of constraints did we handle in the map coloring problem?

► Discrete (for *n* variables)

- ► Discrete (for *n* variables)
 - Finite domains
 - ightharpoonup e.g. common domain of size d, d^n possible assignments
 - QUESTION What problem in propositional logic is of this type?

- ► Discrete (for *n* variables)
 - Finite domains
 - ightharpoonup e.g. common domain of size d, d^n possible assignments
 - QUESTION What problem in propositional logic is of this type? Satisfiability!

- ► Discrete (for *n* variables)
 - Finite domains
 - e.g. common domain of size *d*, *d*ⁿ possible assignments
 - QUESTION What problem in propositional logic is of this type? Satisfiability!
 - Infinite domains (integers)
 - e.g. job scheduling with integer job start times

- ► Discrete (for *n* variables)
 - Finite domains
 - e.g. common domain of size *d*, *d*ⁿ possible assignments
 - QUESTION What problem in propositional logic is of this type? Satisfiability!
 - Infinite domains (integers)
 - e.g. job scheduling with integer job start times
 - ► QUESTION What's the problem with infinite domains?

- ► Discrete (for *n* variables)
 - Finite domains
 - e.g. common domain of size *d*, *d*ⁿ possible assignments
 - QUESTION What problem in propositional logic is of this type? Satisfiability!
 - Infinite domains (integers)
 - e.g. job scheduling with integer job start times
 - ▶ QUESTION What's the problem with infinite domains?
 - We cannot possibly enumerate all solutions! We need a constraint language to describe them, e.g. StartJob₁ + 5 ≤ StartJob₂

- ► Discrete (for *n* variables)
 - Finite domains
 - \triangleright e.g. common domain of size d, d^n possible assignments
 - QUESTION What problem in propositional logic is of this type? Satisfiability!
 - Infinite domains (integers)
 - e.g. job scheduling with integer job start times
 - ▶ QUESTION What's the problem with infinite domains?
 - We cannot possibly enumerate all solutions! We need a constraint language to describe them, e.g. StartJob₁ + 5 ≤ StartJob₂
- Continuous variables

PART II Solving CSPs (backtracking)

Solving CSP: Search

A CSP can be expressed as a search problem

- Initial state: Empty assignment
- Actions: Assign a value to an unassigned variable so that no constraints are violated
- Goal test: Is the complete assignment a solution?

(Part of) the search tree for the map coloring problem

(Part of) the search tree for the map coloring problem

(Part of) the search tree for the map coloring problem

- Depth-first search is an option
- For a finite domain size d CSP, the top level has n ⋅ d successors
 - ▶ At depth k, there are $(n k) \cdot d$ successors
- ▶ In total, there are *n*!*d*ⁿ leaves

- Depth-first search is an option
- For a finite domain size d CSP, the top level has n ⋅ d successors
 - ▶ At depth k, there are $(n k) \cdot d$ successors
- ▶ In total, there are n!dⁿ leaves
 - ► QUESTION Is it a good idea to set up the search problem like this?

- Depth-first search is an option
- For a finite domain size d CSP, the top level has n ⋅ d successors
 - ▶ At depth k, there are $(n k) \cdot d$ successors
- ▶ In total, there are n!dⁿ leaves
 - ► QUESTION Is it a good idea to set up the search problem like this? There are only *d*ⁿ possible assignments!
- ► The order of assignment does not affect the outcome!

- Depth-first search is an option
- For a finite domain size d CSP, the top level has n ⋅ d successors
 - ▶ At depth k, there are $(n k) \cdot d$ successors
- ▶ In total, there are n!dⁿ leaves
 - ► QUESTION Is it a good idea to set up the search problem like this? There are only *d*ⁿ possible assignments!
- ► The order of assignment does not affect the outcome!
- e.g. In the map-coloring problem it does not matter whether I assign blue to WA before assigning red to SA

- Depth-first search is an option
- For a finite domain size d CSP, the top level has n ⋅ d successors
 - ▶ At depth k, there are $(n k) \cdot d$ successors
- ▶ In total, there are n!dⁿ leaves
 - ► QUESTION Is it a good idea to set up the search problem like this? There are only *d*ⁿ possible assignments!
- ► The order of assignment does not affect the outcome!
- e.g. In the map-coloring problem it does not matter whether I assign blue to WA before assigning red to SA
 - CSP search problems are said to be commutative

- Depth-first search is an option
- For a finite domain size d CSP, the top level has n ⋅ d successors
 - ▶ At depth k, there are $(n k) \cdot d$ successors
- ▶ In total, there are n!dⁿ leaves
 - ► QUESTION Is it a good idea to set up the search problem like this? There are only *d*ⁿ possible assignments!
- ► The order of assignment does not affect the outcome!
- e.g. In the map-coloring problem it does not matter whether I assign blue to WA before assigning red to SA
 - CSP search problems are said to be commutative QUESTION Have we already encountered commutative search problems?

- Depth-first search is an option
- For a finite domain size d CSP, the top level has n ⋅ d successors
 - ▶ At depth k, there are $(n k) \cdot d$ successors
- ▶ In total, there are *n*!*d*ⁿ leaves
 - ► QUESTION Is it a good idea to set up the search problem like this? There are only *d*ⁿ possible assignments!
- ▶ The order of assignment does not affect the outcome!
- e.g. In the map-coloring problem it does not matter whether I assign blue to WA before assigning red to SA
 - CSP search problems are said to be commutative QUESTION Have we already encountered commutative search problems? What kind of techniques did we use to solve them?

Backtracking search in CSP

► IDEA Exploiting commutativity, choose values for one variable at a time, and backtrack when a variable has no legal values to assign

Backtracking search in CSP

- ► IDEA Exploiting commutativity, choose values for one variable at a time, and backtrack when a variable has no legal values to assign
- ► = Depth First Search (DFS) with backtracking

Basic (naive) Backtracking Search in CSP: Pseudocode

```
function BACKTRACK (assignment, csp) returns solution

if assignment is complete then return assignment

var ← SELECTUNASSIGNEDVARIABLE (csp)

for each value in ORDERDOMAIN(var, assignment, csp) do

if value is consistent with assignment then

add {var = value} to assignment

result ← BACKTRACK(assignment, csp)

if result ≠ failure then return result

remove {var = value} from assignment

return failure
```


Basic (naive) Backtracking Search in CSP: Pseudocode

```
function BACKTRACK (assignment, csp) returns solution

if assignment is complete then return assignment

var ← SELECTUNASSIGNEDVARIABLE (csp)

for each value in ORDERDOMAIN(var, assignment, csp) do

if value is consistent with assignment then

add {var = value} to assignment

result ← BACKTRACK(assignment, csp)

if result ≠ failure then return result

remove {var = value} from assignment

return failure
```


Example: 4 Queens Problem

Example: 4 Queens Problem

Is this satisfactory?

Example: Sudoku

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
н	8			2		3			9
1			5		1		3		

Solving Sudoku by backtracking, sketch:

- Select an empty square
- Fill in a valid integer
- If no valid integer exists, backtrack
- Repeat until a solution is found

Example: Sudoku

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
н	8			2		3			9
1			5		1		3		

Solving Sudoku by backtracking, sketch:

- ► Select an empty square
- Fill in a valid integer
- If no valid integer exists, backtrack
- Repeat until a solution is found

PART III Solving CSPs (heuristics)

Backtracking efficiency

How can we increase the efficiency of backtracking? Three approaches:

Backtracking efficiency

How can we increase the efficiency of backtracking? Three approaches:

- What variable should be assigned first? var ← SELECT-UNASSIGNED-VARIABLE (csp)
- What value should be tried first? for each value in ORDERDOMAIN(var, assignment, csp)
- Can we detect failure that are inevitable earlier in the search process?

Variable selection: MRV heuristic

What variable should be assigned first?

Variable selection: MRV heuristic

- What variable should be assigned first?
- ► QUESTION Any ideas?

Variable selection: MRV heuristic

- What variable should be assigned first?
- ► QUESTION Any ideas?
- ► INTUITION 1 Choose the variable that has the fewest possible options
- Also known as the most constrained variable (MRV) heuristic

Minimum remaining values: example

1 456 9	7	1 4 6 9	1 456	8	1 2 4 5	3	1 2 5 9	1 45 9
2	1 69	1 4 6 9	1 3 4 5 6 7	1 456 7	1 3 4 5 7	1 5 6 9	1 5 9	8
3	1 6	1 4 8	တ	1 456	1 2 4 5	12 56	7	1 45
1 4 7 6	123	1 3 4 6	1 3 456 78	9	1 3 45 78	1 58	1 3	1 3
1 6 9	1 3 6 9	5	1 3 8	2	1 3 8	1 89	4	7
1 4 7 9	8	1 3 4 9	1 3 4 5 7	1 45 7	1 3 45 7	1 5 9	6	2
1 9	1 3 9	2	1 4 5 7	1 45 7	6	1 7 9	8	1 3 9
1 8	4	7	1 58	3	9	12	12	6
1 89	5	1 3 6 89	2	1 7	1 78	4	1 3 9	1 3

Variable selection: Degree heuristic

- What variable should be assigned first?
- ► QUESTION Any ideas?
- ► INTUITION 2 Select the variable that is involved in the largest number of constraints with unassigned variables

▶ What **value** should be tried first?

- What value should be tried first?
- ► QUESTION Any ideas?

- What value should be tried first?
- ► QUESTION Any ideas?
- ► IDEA Select the value that leaves the most values open for other unassigned variables (least constraining value, LCV)

- What value should be tried first?
- ► QUESTION Any ideas?
- ► IDEA Select the value that leaves the most values open for other unassigned variables (*least constraining value*, LCV) ... the one that leaves the most values open for other unassigned variables

- What value should be tried first?
- ► QUESTION Any ideas?
- IDEA Select the value that leaves the most values open for other unassigned variables (*least constraining value*, LCV) ... the one that leaves the most values open for other unassigned variables

Can we detect failures that are inevitable earlier in the search process?

- Can we detect failures that are inevitable earlier in the search process?
- Forward checking
 - Track remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values left

Initially, everything is possible

Assign red to WA

- NT can no longer be red
- SA can no longer be red

Assign green to Q

- NT can no longer be green
- NSW can no longer be green
- SA can no longer be green

Try now to assign blue to V

Forward checking detects that SA would have no valid values remaining (failure).

Try now to assign blue to V

Forward checking detects that SA would have no valid values remaining (failure).

In general, combining heuristics can lead to better performance

4 Queens Problem: Retake

Xi is the row number of the queen in column i

Four queens problem

Constraint propagation

- Forward checking (FC) propagates information from assigned to unassigned variables, but does not detect all future failures
 - Example: NT and SA are adjacent and cannot both be blue

Constraint propagation

- Forward checking (FC) propagates information from assigned to unassigned variables, but does not detect all future failures
 - Example: NT and SA are adjacent and cannot both be blue
 - Forward checking checks only constraints involving the current variable

Constraint propagation

- Forward checking (FC) propagates information from assigned to unassigned variables, but does not detect all future failures
 - Example: NT and SA are adjacent and cannot both be blue
 - Forward checking checks only constraints involving the current variable
- Constraint propagation iteratively enforces constraints

PART IV Solving CSPs (inference)

Backtracking search with inference (constraint propagation)

```
function Backtracking-Search (csp) returns solution
    return BACKTRACK({}, csp)
function BACKTRACK (assignment, csp) returns solution
    if assignment is complete then return assignment
    var ← Select-Unassigned-Variable (csp)
    for each value in DOMAIN(var, assignment, csp) do
        if value is consistent with assignment then
             add {var = value} to assignment
             inferences \leftarrow Inference(csp, var, value)
             if inferences ≠ failure then
                 add inferences to assignment
                 result ← BACKTRACK(assignment, csp)
                 if result ≠ failure then return result
             remove {var = value}, inferences from assignment
    return failure
```


Node consistency

- A variable X is **node consistent** iff each value of X satisfies all unary constraints on X
- Node consistency can be applied as a preprocessing step before starting search to remove all the node inconsistent values
 - \blacktriangleright Effectively changes the domain D_i of a variable X_i

- ► Arc consistency (AC) deals with binary constraints
- X is arc consistent w.r.t. Y iff
 - ▶ for every value $x \in D_X$, there exists some legal $y \in D_Y$

- Arc consistency (AC) deals with binary constraints
- X is arc consistent w.r.t. Y iff
 - ▶ for every value $x \in D_X$, there exists some legal $y \in D_Y$
- ► Example: two variables *X* and *Y*, both with digit domains
 - $D_X = D_Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Constraint: $Y = X^2$
 - ▶ It amounts to $(X, Y) \in \{(0,0), (1,1), (2,4), (3,9)\}$

- Arc consistency (AC) deals with binary constraints
- X is arc consistent w.r.t. Y iff
 - ▶ for every value $x \in D_X$, there exists some legal $y \in D_Y$
- ► Example: two variables *X* and *Y*, both with digit domains
 - $D_X = D_Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - ▶ Constraint: Y = X²
 - ▶ It amounts to $(X, Y) \in \{(0,0), (1,1), (2,4), (3,9)\}$
- So to make X arc consistent w.r.t. Y we reduce D_X to $\{0, 1, 2, 3\}$

- Arc consistency (AC) deals with binary constraints
- X is arc consistent w.r.t. Y iff
 - ▶ for every value $x \in D_X$, there exists some legal $y \in D_Y$
- ► Example: two variables *X* and *Y*, both with digit domains
 - $D_X = D_Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Constraint: $Y = X^2$
 - ▶ It amounts to $(X, Y) \in \{(0,0), (1,1), (2,4), (3,9)\}$
- So to make X arc consistent w.r.t. Y we reduce D_X to $\{0, 1, 2, 3\}$
- If we make X arc consistent w.r.t. Y and Y w.r.t. X, then $D_X = \{0, 1, 2, 3\}$ and $D_Y = \{0, 1, 4, 9\}$

- Arc consistency (AC) deals with binary constraints
- X is arc consistent w.r.t. Y iff
 - ▶ for every value $x \in D_X$, there exists some legal $y \in D_Y$
- ► Example: two variables *X* and *Y*, both with digit domains
 - $D_X = D_Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - ▶ Constraint: Y = X²
 - ▶ It amounts to $(X, Y) \in \{(0,0), (1,1), (2,4), (3,9)\}$
- So to make X arc consistent w.r.t. Y we reduce D_X to $\{0, 1, 2, 3\}$
- If we make X arc consistent w.r.t. Y and Y w.r.t. X, then $D_X = \{0, 1, 2, 3\}$ and $D_Y = \{0, 1, 4, 9\}$
- ► The constraint graph of a CSP is **arc consistent** if every variable is arc consistent w.r.t. any other variable

► Problem:

$$D_X = D_Y = D_Z = \{1, 2\}, X = Y, X \neq Z, Y > Z$$

- X is arc consistent w.r.t. Y iff
 - for every value x of X, there exists some legal y of Y
- ► QUESTION Is SA arc consistent w.r.t. NSW?

- X is arc consistent w.r.t. Y iff
 - for every value x of X, there exists some legal y of Y
- QUESTION Is SA arc consistent w.r.t. NSW?
 - ▶ if SA = blue, then NSW = red is a legal choice

- X is arc consistent w.r.t. Y iff
 - for every value x of X, there exists some legal y of Y
- ► QUESTION Is SA arc consistent w.r.t. NSW?
 - ▶ if SA = blue, then NSW = red is a legal choice
- ► QUESTION And vice-versa?

- X is arc consistent w.r.t. Y iff
 - for every value x of X, there exists some legal y of Y
- ► QUESTION Is SA arc consistent w.r.t. NSW?
 - ▶ if SA = blue, then NSW = red is a legal choice
- ► QUESTION And vice-versa?
 - ▶ if NSW = red, then SA = blue is a legal choice
 - ▶ if *NSW* = *blue*, then *SA* has no legal value

- X is arc consistent w.r.t. Y iff
 - for every value x of X, there exists some legal y of Y
- By removing blue from NSW, V becomes inconsistent w.r.t. NSW
 - ▶ if V = red, then NSW has no legal value

- X is arc consistent w.r.t. Y iff
 - for every value x of X, there exists some legal y of Y
- ► Inconsistency of SA w.r.t. NT and NT w.r.t. SA detects failure earlier than forward checking

Arc consistency: algorithm

```
function AC-3(csp) returns csp with inconsistencies removed
     inputs: csp, a binary CSP with components (X, D, C)
     local variables: queue, initially all the arcs in csp
     while queue is not empty do
          (X_i, X_i) \leftarrow \mathsf{REMOVE}\text{-}\mathsf{FIRST}(queue)
          if REVISE(csp, X_i, X_i) then
               for each X_k in X_i. NEIGHBORS - \{X_i\} do
               add(X_k, X_i) to queue
function REVISE(csp, X_i, X_i) returns true iff we revise D_{X_i}
     revised ← false
     for each x in D_i do
          if no value y in D_i results in legal (x, y) then
               delete x from D_i
               revised \leftarrow true
     return revised
```


Arc consistency is applied

- As a preprocessing step before the search
 - ► To reduce size of search tree
 - To identify inconsistencies
 - May solve the problem without search!

Arc consistency is applied

- As a preprocessing step before the search
 - To reduce size of search tree
 - To identify inconsistencies
 - May solve the problem without search!
- Or after an assignment, in order to do early failure detection, called MAC (Maintaining Arc Consistency)

- ▶ If a domain is empty, there is no solution
- If every domain has at least one legal value, then there may still be a solution

Is arc consistency enough?

- If a domain is empty, there is no solution
- If every domain has at least one legal value, then there may still be a solution
- However:

$$D_X = D_Y = D_Z = \{1,2\}, X \neq Y, Y \neq Z, X \neq Z$$

► QUESTION Is this problem arc consistent?

- ▶ If a domain is empty, there is no solution
- If every domain has at least one legal value, then there may still be a solution
- However:

$$D_X=D_Y=D_Z=\{1,2\}, X\neq Y, Y\neq Z, X\neq Z$$

- ▶ QUESTION Is this problem arc consistent?
- Yes

- ▶ If a domain is empty, there is no solution
- If every domain has at least one legal value, then there may still be a solution
- However:

$$D_X = D_Y = D_Z = \{1,2\}, X \neq Y, Y \neq Z, X \neq Z$$

- ► QUESTION Is this problem arc consistent?
- Yes
- ▶ QUESTION Does it have a solution?

- If a domain is empty, there is no solution
- If every domain has at least one legal value, then there may still be a solution
- However:

$$D_X = D_Y = D_Z = \{1, 2\}, X \neq Y, Y \neq Z, X \neq Z$$

- ▶ QUESTION Is this problem arc consistent?
- Yes
- ▶ QUESTION Does it have a solution?
- No

- Arc consistency does not detect all inconsistencies. The problem are inconsistencies which span more arcs
- K-consistency is a stronger form of constraint propagation

- Arc consistency does not detect all inconsistencies. The problem are inconsistencies which span more arcs
- K-consistency is a stronger form of constraint propagation
- A CSP is K-consistent if for all consistent assignments of any set of K − 1 variables, there exists a legal value for the K-th variable

- Arc consistency does not detect all inconsistencies. The problem are inconsistencies which span more arcs
- K-consistency is a stronger form of constraint propagation
- A CSP is K-consistent if for all consistent assignments of any set of K − 1 variables, there exists a legal value for the K-th variable
 - QUESTION What is 1-consistency?

- Arc consistency does not detect all inconsistencies. The problem are inconsistencies which span more arcs
- K-consistency is a stronger form of constraint propagation
- A CSP is K-consistent if for all consistent assignments of any set of K − 1 variables, there exists a legal value for the K-th variable
 - ▶ QUESTION What is 1-consistency?
 - It is the same as node consistency
 - ▶ QUESTION And 2-consistency?

- Arc consistency does not detect all inconsistencies. The problem are inconsistencies which span more arcs
- K-consistency is a stronger form of constraint propagation
- A CSP is K-consistent if for all consistent assignments of any set of K − 1 variables, there exists a legal value for the K-th variable
 - ▶ QUESTION What is 1-consistency?
 - It is the same as node consistency
 - ▶ QUESTION And 2-consistency?
 - It is the same as arc consistency

Strong *K*-consistency

A graph is **strongly** *K***-consistent** if

- ▶ the graph is K-consistent,
- the graph is (K-1)-consistent
- **...**
- the graph is 1-consistent

Strong K-consistency

A graph is **strongly** *K***-consistent** if

- the graph is K-consistent,
- the graph is (K-1)-consistent
- **.** . . .
- the graph is 1-consistent

Suppose we have a problem with *n* variables that is strongly *n*-consistent

- ► A solution can be found in $O(n^2d)$ time
 - ▶ Choose any value for X_1 (consistent since 1-consistent)
 - ▶ Choose a consistent value for X_2 (exists since 2-consistent)
 - etc.

Strong *K*-consistency

A graph is **strongly** K**-consistent** if

- the graph is K-consistent,
- the graph is (K-1)-consistent
- **.** . . .
- the graph is 1-consistent

Suppose we have a problem with *n* variables that is strongly *n*-consistent

- ► A solution can be found in $O(n^2d)$ time
 - ▶ Choose any value for X_1 (consistent since 1-consistent)
 - ightharpoonup Choose a consistent value for X_2 (exists since 2-consistent)
 - etc.
- ► However, establishing *n*-consistency takes exponential time in *n*, in the worst case

► Global constraints: *AllDiff(...)*

- ► Global constraints: *AllDiff(...)*
- ► QUESTION What kind of inferences can we draw from AllDiff?

- Global constraints: AllDiff(...)
- QUESTION What kind of inferences can we draw from AllDiff?
 - If there are fewer possible values than variables, inconsistency is detected

- Global constraints: AllDiff(...)
- QUESTION What kind of inferences can we draw from AllDiff?
 - If there are fewer possible values than variables, inconsistency is detected
 - IDEA
 - Remove variables with singleton domain and delete that value from the domains of the other variables
 - Repeat as long as there are variables with singleton domains. If an empty domain is produced, then there are more variables than distinct values in the domains

- Intelligent backtracking
 - Standard backtracking is chronological backtracking: change the latest assigned variable

- Intelligent backtracking
 - Standard backtracking is chronological backtracking: change the latest assigned variable
 - More intelligent backtracking: select a variable in the conflict set
 - Conflict set: All previously assigned variables connected to the current variable by at least one constraint
 - Backjumping: Backtrack to the most recently assigned variable that conflicts with the current variable

Assume assignment $\{Q=red, NSW=green, V=blue, T=red\}$ and a fixed variable ordering (Q, NSW, V, T, SA, WA, NT).

Assume assignment $\{Q=red, NSW=green, V=blue, T=red\}$ and a fixed variable ordering (Q, NSW, V, T, SA, WA, NT). And run the backtracking algorithm:

Assume assignment {Q=red, NSW=green, V=blue, T=red } and a fixed variable ordering (Q, NSW, V, T, SA, WA, NT). And run the backtracking algorithm:

- Failure is detected when trying to assign SA
- Backtracking to T is not useful, since changing the assignment of T will not solve an inconsistency
- Backjumping jumps to V instead

PART V Local Search for CSP

A different approach: Local search for CSP

- We have seen that CSP can be expressed as a tree search problem
- Local search techniques using complete-state representations are applicable
 - states are complete (possibly illegal!) assignments
 - actions reassign values to variables

A different approach: Local search for CSP

- We have seen that CSP can be expressed as a tree search problem
- Local search techniques using complete-state representations are applicable
 - states are complete (possibly illegal!) assignments
 - actions reassign values to variables
- Variable selection: any variable involved in a violated constraint
- Value selection: min-conflicts heuristic
 - Select the value that minimizes the number of variables in violated constraints

A different approach: Local search for CSP

- We have seen that CSP can be expressed as a tree search problem
- Local search techniques using complete-state representations are applicable
 - states are complete (possibly illegal!) assignments
 - actions reassign values to variables
- Variable selection: any variable involved in a violated constraint
- Value selection: min-conflicts heuristic
 - Select the value that minimizes the number of variables in violated constraints

Local search for CSP: Min-Conflicts Algorithm

```
function MIN-CONFLICTS (csp., maxSteps) returns solution
    inputs: csp, a constraint satisfaction problem
    maxSteps, the number of steps before giving up
    current ← an initial complete assignment for csp
    for i = 1 to maxSteps do
        if current solves csp then return current
         var ← random conflicted variable from csp. VARIABLES
         val ← minimizes Conflicts(var, val, current, csp)
        set var = value in current
    return failure
```


Local search for CSP: Example

- At each step, select a queen that violates a constraint
- Then move the queen to a spot that minimizes the number of conflicts

Problem structure

- The Australia map-coloring problem can be split into two independent subproblems
- Independent subproblems are represented as sets of constraints that use non-overlapping sets of variables
 - e.g. $X_1 + X_2 < 10, X_3 + X_4 > 20$

Problem structure

Splitting up the problem significantly improves performance

- Assume that some CSP consists of several smaller CSPs
 - Assume that each subproblem has c of the n variables (n/c subproblems)
- ▶ Worst-case performance is $O\left(\frac{n}{c} \cdot d^c\right)$
 - Suppose n = 80, c = 20, d = 2
 - ▶ Standard problem takes $2^{80} \approx 4$ billion years (1 million nodes/sec)
 - ▶ Split problem takes $4 \cdot 2^{20} \approx 0.4$ seconds (1 million nodes/sec)

Tree-structured CSP

If the constraint graph is a tree (any two variables are therefore connected by at most one path), the associated CSP can be solved in $O(nd^2)$.

Tree-structured CSP

If the constraint graph is a tree (any two variables are therefore connected by at most one path), the associated CSP can be solved in $O(nd^2)$. While in the general case worst case performance is $O(d^n)$.

Tree-structured CSP: Intuitions

- Choose a variable as root, order variables from root to leaves
- Apply arc-consistency on parent-child pairs
- Assign variables of child nodes consistent with parent nodes

Summary

- Definition of CSP
- Search in CSP (Backtracking search algorithm)
- ► Local search in CSP (Min-Conflicts algorithm)

