HT1621 LCD Controller & Display

Assignment #2

HT1621 LCD Controller

- HT1621 is a RAM-mapping LCD controller.
- Manufactured by Taiwanese company, Holtek.
 - Founded in 1998.
 - Main business in microcontrollers & peripherals.
- RAM size & organization : 32 × 4. The RAM stores the data to be displayed on a LCD.
- Serial communications protocol.
 - SPI subset?
- 4 signal lines are required to access the HT1621:
 - CS (Chip Select)
 - WR (Write)
 - RD (Read)
 - DATA.

HT1621 LCD Controller

CS397 (SU22)

3

LCD Display Memory Mapping

- Display memory is organized as a **32** × **4 array** of RAM.
- The RAM stores the data to be displayed to the LCD display.
- Contents of the RAM are mapped directly to the contents of the LCD.
- Contents of the RAM can be accessed through WRITE, READ, or READ-MODIFY-WRITE commands.

(D3, D2, D1, D0)

32 × 4 SRAM array

LCD Display Memory Mapping [1/2]

SEG0 to SEG11

ಣ
흦
O
ပ
0
ب
<u> </u>
≥
O
Ŭ

SEG	0	1	2	3	4	5	6	7	8	9	10	11
D0	DP1	OD	DP2	1D	DP3	2D	BAT1	3D	BAT2	4D	BAT3	5D
D1	0C	OE	1C	1E	2C	2E	3C	3E	4C	4E	5C	5E
D2	ОВ	0G	1B	1G	2B	1G	3B	3G	4B	4G	5B	5G
D3	OA	OF	1A	1F	2A	2F	3A	3F	4A	4F	5A	5F

DP1: The first decimal point starting from the right side

 $\label{eq:decimal} \mbox{DP2:} \mbox{The second decimal point starting from the right side}$

DP3: The third decimal point starting from the right side

BAT1: The battery icon and the bottom grid for the power

BAT2: the middle grid BAT3: the top grid

7-SEG DISPLAY

LCD Display Memory Mapping [2/2]

SEG	сомз	COM2	COM1	сомо	Addr (0x)
0	0A	0B	0C	DP1	0
1	OF	0G	0E	0D	1
2	1A	1B	1C	DP2	2
3	1F	1G	1E	1D	3
4	2A	2B	2C	DP3	4
5	2F	2G	2E	2D	5
6	3A	3B	3C	BAT1	6
7	3F	3G	3E	3D	7
8	4A	4B	3C	BAT2	8
9	4F	4G	4E	4D	9
10	5A	5B	5C	BAT3	A
11	5F	5G	5E	5D	В
Data	D3	D2	D1	D0	

LCD Connections to LaunchPad

- To test your LCD & connections:
 - Download the file 'HT1621 LCD.BIN' from Moodle.
 - Use the 'LM Flash Programmer' utility to download the BIN file to the Tiva LaunchPad (see next slide). The LCD should then display a running sequence of digits.
 - LCD display backlight should light up (even though the 'Backlight' pin is not connected as power to the Backlight is already connected on the LCD board.

NC = No Connect

You may change to other GPIO pins, if you wish.

LM Flash Programmer

- Communications with the HT1621 is through set of Command ID (3 bits) followed by the Command Codes (10 bits).
- Command ID determines the **Mode**: Data or Command.
- Example: To write data to the LCD display, we would issue a Command ID of 0b101 (Write), followed by 10 bits of Command Codes to identify the display RAM to write to:

0b101. A5A4A3A2A1A0. D3D2D1D0

Command ID Display RAM address (6 bits)

Display RAM data (4 bits)

Operation	Mode	ID
Read	Data	110
Write	Data	101
Read-Modify-Write	Data	1 0 1
Command	Command	100

Display memory organization

Writing to Display Memory of HT1621

- Communications with the HT1621 is through issuing Write commands to the CS, WR & DATA pins.
- CS signal initiates (CS going 'L') & terminates (CS going 'H') the Write cycle.
- WR signal serves as the Clock.
- Data at the DATA pin is clocked in at the rising clock edge of WR signal.

Name	ID	Command Code	D/C	Function	Def.
READ	110	A5A4A3A2A1A0D0D1D2D3	D	Read data from the RAM	
WRITE	101	A5A4A3A2A1A0D0D1D2D3	D	Write data to the RAM	
READ-MODIFY- WRITE	101	A5A4A3A2A1A0D0D1D2D3	D	READ and WRITE to the RAM	
SYS DIS	100	0000-0000-X	С	Turn off both system oscillator and LCD bias generator	Yes
SYS EN	100	0000-0001-X	С	Turn on system oscillator	
LCD OFF	100	0000-0010-X	С	Turn off LCD bias generator	Yes
LCD ON	100	0000-0011-X	С	Turn on LCD bias generator	
TIMER DIS	100	0000-0100-X	С	Disable time base output	
WDT DIS	100	0000-0101-X	С	Disable WDT time-out flag output	
TIMER EN	100	0000-0110-X	С	Enable time base output	
WDT EN	100	0000-0111-X	С	Enable WDT time-out flag output	

Note: X: Don't care

A5~A0: RAM addresses

D3~D0: RAM data

D/C: Data/command mode

Def.: Power on reset default

Arrows (→) indicate setting to be used

for Assignment #2.

	Name	ID	Command Code	D/C	Function	Def.
	TONE OFF	100	0000-1000-X	С	Turn off tone outputs	Yes
	TONE ON	100	0000-1001-X	С	Turn on tone outputs	
	CLR TIMER	100	0000-11XX-X	С	Clear the contents of time base generator	
	CLR WDT	100	0000-111X-X	С	Clear the contents of WDT stage	
	XTAL 32K	100	0001-01XX-X	С	System clock source, crystal oscillator	
→	RC 256K	100	0001-10XX-X	С	System clock source, on-chip RC oscillator	Yes
	EXT 256K	100	0001-11XX-X	С	System clock source, external clock source	
	BIAS 1/2	100	0010-abX0-X	С	LCD 1/2 bias option ab=00: 2 commons option ab=01: 3 commons option ab=10: 4 commons option	
→	BIAS 1/3	100	0010-abX1-X	С	LCD 1/3 bias option ab=00: 2 commons option ab=01: 3 commons option ab=10: 4 commons option	
	TONE 4K	100	010X-XXXX-X	С	Tone frequency, 4kHz	
	TONE 2K	100	011X-XXXX-X	С	Tone frequency, 2kHz	
	ĪRQ DIS	100	100X-0XXX-X	С	Disable IRQ output	Yes
	ĪRQ EN	100	100X-1XXX-X	С	Enable IRQ output	

Arrows () indicate setting to be used for Assignment #2.

CS397 (SU22)

Name	ID	Command Code	D/C	Function	Def.
F1	100	101X-X000-X	С	Time base/WDT clock output:1Hz The WDT time-out flag after: 4s	
F2	100	101X-X001-X	С	Time base/WDT clock output:2Hz The WDT time-out flag after: 2s	
F4	100	101X-X010-X	С	Time base/WDT clock output:4Hz The WDT time-out flag after: 1s	
F8	100	101X-X011-X	С	Time base/WDT clock output:8Hz The WDT time-out flag after: 1/2s	
F16	100	101X-X100-X	С	Time base/WDT clock output:16Hz The WDT time-out flag after: 1/4s	
F32	100	101X-X101-X	С	Time base/WDT clock output:32Hz The WDT time-out flag after: 1/8s	
F64	100	101X-X110-X	С	Time base/WDT clock output:64Hz The WDT time-out flag after: 1/16s	
F128	100	101X-X111-X	С	Time base/WDT clock output:128Hz The WDT time-out flag after: 1/32s	Yes
TEST	100	1110-0000-X	С	Test mode, user don't use.	
NORMAL	100	1110-0011-X	С	Normal mode	Yes

Sending a Command to HT1621

Assignment #2 Task

- As an embedded engineer working on a project, you are tasked to develop a program on the Tiva LaunchPad to control a LCD display to implement a simple digital clock.
- The LCD display is controlled by the HT1621 LCD driver.
- The LCD displays the current time.
 - Use the <u>SysTick Timer</u> to derive the time-base for the clock. Set SysTick interrupt interval to 1ms.
- The digital clock operates in two modes: <u>Time Display</u> & Seconds Display.
- **Time Display mode:** In this mode, the current time is displayed in format **HH.MM** in 24-hr format.
 - Toggle the 'dot' (DP3 slide 5) in HH.MM every second.
 - Sound the buzzer for 5ms at each crossing of Seconds back to 00.
- **Seconds Display mode:** This mode is entered when SW1 (LaunchPad) is held down & stays in this mode while SW1 is being held down.
 - Seconds data is displayed in format **.SS**. Toggle the 'dot' in .SS every second.
 - When SW1 is released, it exits this mode and returns to Time Display mode.
- Setting of the current Time is achieved through a Command sent through the Virtual Com Port (VCP). Set VCP to 115,200 bps, 8 data bits, 1 Stop bit & Even parity.
 - <u>Command format</u>: **STHHMMSS** or **stHHMMSS**, where 'ST' or 'st' denotes Set Time. (Assume a 24-hr time format).
 - Example: ST164105 = Set Time to 16:41:05.

Time Display

Seconds Display

- LCD screen:
 - The LCD is able to display up to 6 digits. For the Clock display, make use of the middle 4 digits (Digit 1 to Digit 4) [slide 5].
- HT1621 Initialization:
 - HT1621 needs to be initialized correctly to the following:
 - Use the internal RC oscillator (256 kHz): command ID 'RC 256K' [slide 11].
 - Set LCD to 1/3 & 4 COM pins: command ID 'BIAS 1/3' [slide 11].
- Make use of the <u>bit-band</u> feature of the ARM Cortex-M CPUs to make your code more efficient. *[see examples of usage in lecture slides].*
- Switch SW1 should be programmed to work in <u>Interrupt mode</u>.
- Have sufficient comments to explain & document your codes.
- Refer to the HT1621 datasheet for full details and explanation on use and programming of the IC.

Assignment #2 Notes: Generating Clock Signal to HT1621

[2/2]

- The WR pin on the HT1621 serves as the clock signal.
- Generate a clock signal to the HT1621 WR pin in the following manner:
 - Set Timer 0A to Periodic 16-bit mode.
 - At each Timer Time-Out interrupt, use program control to generate the signal waveforms for WR (clock) as well as for CS & DATA. *See example waveform below.*
 - Make use of the Digilent Analog Discovery to check your waveforms. It would be a good debugging tool.

CS397 (SU22)

Assignment #2 Submission:

- Assignment due a week after break:
 - End of Week 8, <u>3 Jul 22</u>, <u>Sun</u>, <u>23:59 hrs</u>.
 - Submit Zipped folder of your program.
 - Short video of your implementation.