大学物理实验报告

实验名称:

干涉法测固体的线胀系数

学院: 理学院 专业: 应用物理学 班级: 应物 1601

学号: 20161413 姓名: 谢尘竹 电话: 18640451671

实验日期: 2019 年 7 月 8 日

第<u>十九</u>周星期<u>一</u> 第<u>一</u>节

实验室房间号: 415 实验组号: 2

成绩	指导教师	批阅日期
	赵国俭	<u>2019</u> 年 <u>7</u> 月 <u>8</u> 日

1	实验目	的.
ㅗ.	ヘ処ロ	HJ.

- ①.掌握线胀系数的测量原理,学会用干涉法测量 金属的线胀系数;
 - ②.进一步掌握用逐差法处理数据;
- ③.进一步学习、巩固迈克耳孙干涉仪的使用方法 及其在实际中的应用。

2. 实验器材:

名称	编号	型号	精度
迈克耳孙干涉仪			
He-Ne 激光器			
温差电偶			
数字毫伏表			
热源装置			

3. 实验原理(请用自己的语音简明扼要地叙述,注意原理图需要画出,测试公式需要写明)

升温时,一般固体由于原子的热运动加剧而发生膨胀,但在温度变化不太大范围内,线胀系数是常量,与温度无关。

设固体材料温度由 T_0 变化到T。长度由 L_0 变化到L,其 线胀系数可表示为 $\alpha(T_0)=\lim_{\Delta T \to 0} \frac{\Delta L/L_0}{\Delta T}=\frac{dL/L_0}{dT}$;

为测量线胀系数,要将材料做成杆状。测出温度为 T_0 时的杆长 L_0 、受热后温度达到 T 时的伸长量 $\triangle L$ 以及温差 $\triangle T$,就可以测出某一温度 T_0 附近的线胀系数 $\alpha(T_0)$ 。

测量 α 所面临的主要问题是如何测量 \triangle L的问题,本实验采用光学干涉法测量:将被测固体杆与干涉仪的动镜 M_2 连在一起,根据干涉原理,伸长量 \triangle L与所移过的条纹数N的关系为 \triangle L= $N\cdot \frac{\lambda}{2}$ 。

其中, λ 为所用激光的波长,本实验为 632.8nm; N 为温度升高导致金属杆膨胀推动 M_2 移动,导致光程差改变,以至于缩入或冒出的条纹数量。

4. 实验内容与步骤

- ①.用游标卡尺测量待测金属杆长度L₀=47.6mm;
- ②.将待测金属杆插入作为热源的金属块中,将金属块放在迈克尔逊干涉仪的水平导轨上;使金属杆一端顶在平面镜 M₂上,另一端顶在与丝杠相连的滑块上;

- ③.调节干涉仪,直到在屏幕上看到清晰的干涉图样,向位置读数减小的方向旋转手轮,直到观察到干涉圆环的缩入现象,消除传动系统的空程差;
- ④.接通电源,记录数据,利用万用表测量温度,温度每 升高3°C,记录一次干涉图样移动的条纹数,至少测量16组 数据。

5. 实验记录(注意:单位、有效数字、列表)

一.经计算后的数据

干涉法测量金属线胀系数数据记录表

 L_0 =47.6mm; λ =632.8nm

		,			
温度 T/ ℃	26	29	32	35	38
移动环个数 N/个	0	1	2	5	10
伸长量 △L/mm	0	0.0003164	0.0006328	0.0015820	0.0031640
金属杆长 L/mm	47.6		47.6006328	47.6015820	47.6031640
温度 T/℃	41	44	47	50	53
移动环个数 N/个	15	20	24	29	33
伸长量 △L/mm	0.0047460	0.0063280	0.0075936	0.0091756	0.0104412
金属杆长 L/mm	47.6047460	47.6063280	47.6075936	47.6091756	47.6104412
温度 T/℃	56	59	62	65	68
移动环个数 N/个	38	43	48	52	57
伸长量 △L/mm	0.0120232	0.0136052	0.0151872	0.0164528	0.0180348
金属杆长 L/mm	47.6120232	47.6136052	47.6151872	47.6164528	47.6180348
温度 T/℃	71	74	77	80	
移动环个数 N/个	62	67	71	76	
伸长量			0.0004644	0.0240464	
件以里 △L/mm	0.0196168	0.0211988	0.0224644	0.0240464	

二.原始数据

×lo	x0.02 =				7	於	26.
(4). Lo = 47.	6mm	λ	=632.8>	3 m		数。	
T/° 29	32	35	38	41	44	47	50
N/ 1	2	5	10	15	20	24	27
& L/nm 316.4						7583.6	9175
L/mm							
T/°c 53	56	59	62	65	68	71	74
N7 33		43	48	52	57	62	6
AL/m lottl.				16452-8	18034.8	19616.8	21198
2/mm							
7/2 77	80	83	86	89	92	95	99
N/7 71		1					
D2/1/m 22464		5.4					
L/mm							
T/°C 101	104			-			
N/T							
14/pm							
L/mm							

6. 数据处理及误差分析

A.逐差法

由于我们一共记录了19组数据,但19是奇数,所以用逐差法处理这些数据时,无法全用上这19组数据,最多只能用其中的18组数据(又是偶数,又得尽可能全用上)。

这样就需要舍去其中一组数据,以使得数据总数变为偶数个;为了使得误差最小,理应舍去正中间的那组数据,即第10组数据: T=53℃的那组数据。

舍去之后,
$$\alpha(T_0) = \frac{\sum_{i=1}^{9} \alpha(T_i)}{9} = \frac{\sum_{i=1}^{9} \frac{\triangle L/L_i}{\triangle T}}{9} = \frac{1}{9} \sum_{i=1}^{9} \frac{(L_{i+10}-L_i)/L_i}{T_{i+10}-T_i}$$

$$= \frac{1}{9} \sum_{i=1}^{9} \frac{\frac{\mathbf{L}_{i+10}}{\mathbf{L}_{i}} - 1}{\mathbf{T}_{i+10} - \mathbf{T}_{i}} =$$

$$\frac{1}{9} \left(\frac{\frac{47.6120232}{47.6} - 1}{56 - 26} + \frac{\frac{47.6136052}{47.6003164} - 1}{59 - 29} + \frac{\frac{47.6151872}{47.6006328} - 1}{62 - 32} + \frac{\frac{47.6164528}{47.6015820} - 1}{65 - 35} + \frac{\frac{47.6180348}{47.6031640} - 1}{68 - 38} + \right.$$

$$\frac{\frac{47.6196168}{47.6047460}-1}{71-41}+\frac{\frac{47.6211988}{47.6063280}-1}{74-44}+\frac{\frac{47.6224644}{47.6075936}-1}{77-47}+\frac{\frac{47.6240464}{47.6091756}-1}{80-50})$$

 $\frac{1}{9}(8.419608 + 9.305820 + 10.192021 + 10.413379 + 10.413033 + 10.412687 + 10.412341 + 10.412064 + 10.411718) <math>\times 10^{-6}$

$$=10.043630 \times 10^{-6} (/^{\circ}C)_{\circ}$$

也就是说, 逐差法得出的金属线胀系数

$$=1.0043630 \times 10^{-5} (/^{\circ}C)$$

B.图解法

T	26	29	32	35	38	41	44	47	50
L(T)	47.6	47.60032	47.60063	47.60158	47.60316	47.60475	47.60633	47.60759	47.60918
53	56	59	62	65	68	71	74	77	80
47.61044	47.61202	47.61361	47.61519	47.61645	47.61803	47.61962	47.6212	47.62246	47.62405
	47.6	5		0					+
	47.6	4				y = 0.000	05x + 47.582		Y
	47.6	3				A TO THE PARTY OF			
	47.6				AND OF THE SERVICE				
	47.6			S. R. B. B. B. B.				0	
	47.5								
	47,5								
0	-20	0	20	40	60	80	100	120	

如图所示, T=60℃时, 曲线 L(T)-T 的斜率为

$$\frac{dL(T)}{dT}$$
|_{T=60℃}=0.0005, 因此温度 60 ℃ 时, 金属的线胀系数为

$$rac{1}{L(60\ensuremath{ au})} rac{dL(T)}{dT} ig|_{T=60\ensuremath{ au}}$$
, 而其中 $L(60\ensuremath{ au})$ $pprox = rac{L(62\ensuremath{ au}) - L(59\ensuremath{ au})}{3} +$

$$L(59^{\circ}C) = \frac{47.6151872 - 47.6136052}{3} + 47.6136052$$

=47.6141325(mm), 代入即有
$$\alpha$$
(60°C)= $\frac{1}{47.6141325}$ ×

$$0.0005 = \frac{1}{47.6141325} \times 0.0005 = 1.0501084 \times 10^{-5} (/^{\circ}C)$$

该结果与"逐差法"所得结果非常接近,说明实验数据 及其处理均是正确的。

7. 思考题及实验小结

- ①.可以用光杠杆法替代干涉法来测量固体的线胀系数。
- ②.不可以用迈克尔孙干涉仪自带的读数显微镜测量,因为金属棒在受热膨胀的过程中,并不会导致滑块的位移,而是滑块不动,金属棒顶着动镜M2位移;而滑块的位置才是迈克尔孙干涉仪自带的读数显微镜的读数,所以在金属棒膨胀过程中,自带的读数显微镜的读数是没变的。
 - ③.不过可以用另外一个读数显微镜测量其微小伸长量。

以下内容为报告保留内容,请勿填写或删除,否则影响实验成绩

上课时间:
上课地点:
任课教师:
报告得分:
教师留言:
操作得分:
教师留言:
预习得分:
预习情况: