TRƯỜNG ĐH CÔNG NGHỆ THÔNG TIN

Số tiết lý thuyết: 45

Số tiết thực hành: 30

Tài Liệu Tham Khảo

- Trần Hạnh Nhi, Dương Anh Đức. Giáo trình Cấu Trúc Dữ Liệu 1, ĐHQG Tp. HCM, 2000.
- Robert Sedgewick. Câm nang thuật toán (bản dịch của nhóm tác giả ĐH KHTN), NXB Khoa học kỹ thuật, 1994.
- P. S. Deshpande, O. G. Kakde. C & Data Structures,2004.
- ☐ Dr. Dobb's. *Algorithms and Data Structures*, 1999
- A.V. Aho, J.E Hopcroft, J.D Ullman. *Data structures* and *Algorithms*, Addison Wesley, 1983.

Nội Dung Chương Trình

- □ <u>Buổi 1</u>: Tổng quan về Giải thuật và Cấu trúc dữ liệu.
- <u>Buổi 2</u>: Nhu cầu tìm kiếm, sắp xếp dữ liệu.
 Các giải thuật tìm kiếm nội.
- Buổi 3: Các giải thuật sắp xếp nội: định nghĩa bài toán, một số phương pháp thông dụng như Selection Sort, Insertion Sort.
- Buổi 4: Các giải thuật sắp xếp nội: Interchange Sort, Bubble Sort, Heap Sort, Shell Sort.
- Buối 5: Các giải thuật sắp xếp nội: Quick Sort,
 Merge Sort, Radix Sort.

Nội Dung Chương Trình

- □ <u>Buổi 6</u>: Giới thiệu Cấu trúc dữ liệu động.
- □ <u>Buổi 7</u>: Danh sách liên kết đơn.
- Buổi 8: Các cấu trúc đặc biệt của danh sách đơn, danh sách liên kết kép, hàng đợi hai đầu, danh sách liên kết có thứ tự.
- Buối 9: Danh sách liên kết vòng, danh sách có nhiều mối liên kết, danh sách tổng quát.
- *□ <u>Buổi 10</u>: Giớ*i thiệu cấu trúc cây, cây nhị phân.

Nội Dung Chương Trình

- Buổi 11: Cây nhị phân tìm kiếm, cây nhị phân cân bằng, cây nhị phân cân bằng hoàn toàn.
- <u>Buối 12</u>: Cây B-Tree, cây tìm kiếm nhiều nhánh, cây nhiều nhánh cân bằng.
- □ Buối 13: Cây đỏ đen.
- *□ <u>Buối 14</u>: Bảng băm (Hash Table).*
- <u>Buổi 15</u>: Giới thiệu một số kỹ thuật nâng cao hiệu quả thuật toán. Ôn tập.

Hình Thức Đánh Giá

- ☐ Thi thực hành: 30%
- ☐ Thi lý thuyết giữa kỳ: **15%**
- ☐ Bài tập cá nhân: **15%**
- ☐ Thi lý thuyết cuối kỳ: 40%

TỔNG QUAN VỀ CTDL VÀ THUẬT TOÁN

Nội Dung

- □ Tổng quan về CTDL và thuật toán
- ☐ Các tiêu chuẩn của CTDL
- Vai trò của CTDL
- Dộ phức tạp của thuật toán
- Thực hiện và hiệu chỉnh chương trình
- ☐ Tiêu chuẩn của chương trình

A Control of the Cont

Khái Niệm Về CTDL Và Thuật Toán

☐ Niklaus Wirth:

CTDL + Thuật toán = Chương trình

Cần nghiên cứu về thuật toán và CTDL!

Sự Cần Thiết Của Thuật Toán

- □ Tại sao sử dụng máy tính để xử lý dữ liệu?
 - Nhanh hơn.
 - Nhiều hơn.
 - Giải quyết những bài toán mà con người không thể hoàn thành được.
- Làm sao đạt được những mục tiêu đó?
 - Nhờ vào sự tiến bộ của kỹ thuật: tăng cấu hình máy ⇒ chi phí cao
 - Nhờ vào các thuật toán hiệu quả: thông minh và chi phí thấp ©

"Một máy tính siêu hạng vẫn không thể cứu vãn một thuật toán tồi!"

Thuật Toán

- Thuật toán: Một dãy hữu hạn các chỉ thị có thế thi hành để đạt mục tiêu đề ra nào đó.
- Ví dụ: Thuật toán tính tổng tất cả các số nguyên dương nhỏ hơn n gồm các bước sau:

```
<u>Bước 1</u>: S=0, i=1;
```

Bước 2: nếu i<n thì s=s+i;

Ngược lại: qua bước 4;

Bước 3:

$$i=i+1$$
;

Quay lại bước 2;

Bước 4: Tổng cần tìm là S.

Các Tiêu Chuẩn Của Thuật Toán

- ☐ Xác định
- Hữu hạn
- Dúng
- Tính hiệu quả
- ☐ Tính tổng quát

Biểu Diễn Thuật Toán

- Dạng ngôn ngữ tự nhiên
- Dạng lưu đồ (sơ đồ khối)
- Dạng mã giả
- Ngôn ngữ lập trình

Biểu Diễn Bằng Ngôn Ngữ Tự Nhiên

- NN tự nhiên thông qua các bước được tuần tự liệt kê để biểu diễn thuật toán.
- □ Ưu điểm:
 - Đơn giản, không cần kiến thức về về cách biểu diễn (mã giả, lưu đồ,...)
- □ Nhược điểm:
 - Dài dòng, không cấu trúc.
 - Đôi lúc khó hiểu, không diễn đạt được thuật toán.

Lưu Đồ

Là hệ thống các nút, cung hình dạng khác nhau thể hiện các chức năng khác nhau.

Biểu Diễn Bằng Lưu Đồ

- □ Ngôn ngữ tựa ngôn ngữ lập trình:
 - Dùng cấu trúc chuẩn hóa, chẳng hạn tựa Pascal, C.
 - Dùng các ký hiệu toán học, biến, hàm.
- □ Ưu điểm:
 - Đỡ cồng kềnh hơn lưu đồ khối.
- Nhược điểm:
 - Không trực quan bằng lưu đồ khối.

■ Một số quy ước

- 1. Các biểu thức toán học
- 2. Lệnh gán: "=" (A□B)
- 3. So sánh: "==", "!="
- 4. Khai báo hàm (thuật toán)

```
Thuật toán <tên TT> (<tham số>)
```

Input: <dữ liệu vào>

Output: <dữ liệu ra>

<Các câu lệnh>

End


```
5. Các cấu trúc:
     Cấu trúc chon:
           if ... then ... [else ...] fi
     Vòng lặp:
           while ... do
           do ... while (...)
           for ... do ... od
6. Một số câu lệnh khác:
     Trả giá trị về: return [giá trị]
     Lời gọi hàm: <Tên>(tham số)
```


Ví dụ: Tìm phần tử lớn nhất trong mảng một chiều.

```
a<sub>max</sub> = a<sub>0</sub>;
i=1;
while (i<n)
  if (a<sub>max</sub> < a<sub>i</sub>) a<sub>max</sub> = a<sub>i</sub>;
  i++;
end while;
```


Biểu Diễn Bằng Ngôn Ngữ Lập Trình

- Dùng ngôn ngữ máy tính (C, Pascal,...) để diễn tả thuật toán, CTDL thành câu lệnh.
- Kỹ năng lập trình đòi hỏi cần học tập và thực hành (nhiều).
- Dùng phương pháp tinh chế từng bước đế chuyển hoá bài toán sang mã chương trình cụ thể.

Độ Phức Tạp Của Thuật Toán

- Một thuật toán hiệu quả:
 - Chi phí cần sử dụng tài nguyên thấp: Bộ nhớ, thời gian sử dụng CPU, ...
- Phân tích độ phức tạp thuật toán:
 - N là khối lượng dữ liệu cần xử lý.
 - Mô tả độ phức tạp thuật toán qua một hàm f(N).
 - Hai phương pháp đánh giá độ phức tạp của thuật toán:
 - Phương pháp thực nghiệm.
 - Phương pháp xấp xỉ toán học.

Phương Pháp Thực Nghiệm

- Cài thuật toán rồi chọn các bộ dữ liệu thử nghiệm.
- Thống kê các thông số nhận được khi chạy các bộ dữ liệu đó.
- *□ <u>Ưu điếm</u>:* Dễ thực hiện.
- ☐ Nhược điểm:
 - Chịu sự hạn chế của ngôn ngữ lập trình.
 - Ånh hưởng bởi trình độ của người lập trình.
 - Chọn được các bộ dữ liệu thử đặc trưng cho tất cả tập các dữ liệu vào của thuật toán: khó khăn và tốn nhiều chi phí.
 - Phụ thuộc vào phần cứng.

Phương Pháp Xấp Xỉ

- Dánh giá giá thuật toán theo hướng tiệm xấp xỉ tiệm cận qua các khái niệm O().
- <u>Uu điểm</u>: Ít phụ thuộc môi trường cũng như phần cứng hơn.
- *□ <u>Nhươc điểm</u>:* Phức tạp.
- Các trường hợp độ phức tạp quan tâm:
 - Trường hợp tốt nhất (phân tích chính xác)
 - □ Trường hợp xấu nhất (phân tích chính xác)
 - □ Trường hợp trung bình (mang tích dự đoán)

Sự Phân Lớp Theo Độ Phức Tạp Của Thuật Toán

- Sử dụng ký hiệu BigO
 - ☐ Hằng số : O(c)
 - $\square \log N : O(\log N)$
 - \square N : O(N)
 - \square NlogN : O(NlogN)

 - $\square \quad 2^{N} \qquad : O(2^{N)}$
 - □ N! :O(N!)

Độ phức tạp tăng dần

Dữ Liệu

- Theo từ điển Tiếng Việt: số liệu, tư liệu đã có, được dựa vào để giải quyết vấn đề
- ☐ Tin học: Biểu diễn các thông tin cần thiết cho bài toán.

Cấu Trúc Dữ Liệu

- Cách tố chức lưu trữ dữ liệu.
- Các tiêu chuẩn của CTDL:
 - Phải biểu diễn đầy đủ thông tin.
 - Phải phù hợp với các thao tác trên đó.
 - Phù hợp với điều kiện cho phép của NNLT.
 - Tiết kiệm tài nguyên hệ thống.

Vai Trò Của Cấu Trúc Dữ Liệu

- Cấu trúc dữ liệu đóng vai trò quan trọng trong việc kết hợp và đưa ra cách giải quyết bài toán.
- CTDL hỗ trợ cho các thuật toán thao tác trên đối tượng được hiệu quả hơn

Thực Hiện Và Hiệu Chỉnh Chương Trình

- Chạy thử.
- □ Lỗi và cách sửa:
 - Lỗi thuật toán.
 - Lỗi trình tư.
 - Lỗi cú pháp.
- ☐ Xây dựng bộ test.
- Cập nhật, thay đổi chương trình theo yêu cầu (mới).

Tiêu Chuẩn Của Một Chương Trình

- □ Tính tin cậy
 - Giải thuật + Kiểm tra cài đặt
- □ Tính uyển chuyển
 - Đáp ứng quy trình làm phần mềm.
- □ Tính trong sáng
 - Dễ hiểu và dễ chỉnh sửa
- Tính hữu hiệu.
 - Tài nguyên + giải thuật

Quy Trình Làm Phần Mềm

- □ <u>Bước 0</u>: Ý tưởng (concept).
- Bước 1: Xác định yêu cầu (Requirements Specification).
- ☐ Bước 2: Phân tích (Analysis).
- □ <u>Bước 3</u>: Thiết kế (Design).
- □ <u>Bước 4</u>: Cài đặt (Implementation).
- □ <u>Bước 5</u>: Thử nghiệm (Testing).
- Bước 6: Vận hành, theo dõi và bảo dưỡng
 (Operation, follow-up and Maintenance).

Câu Hỏi và Bài Tập

- 1. Trình bày tầm quan trọng của CTDL>?
- 2. Các tiêu chuẩn để đánh giá CTDL>?
- 3. Khi xây dựng giải thuật có cần quan tâm tới CTDL không? Tại sao?
- 4. Sử dụng các kiểu dữ liệu cở bản trong C, xây dựng CTDL để lưu trữ đa thức có bậc tự nhiên n $(0 \le n \le 100)$ trên trường số thực $(a_i, x \in \mathbb{R})$

$$fn(\mathbf{x}) = \sum_{i=0}^{n} a_i x^i$$

Với CTDL đã được xây dựng, trình bày thuật toán và cài đặt chương trình để thực hiện các công việc sau:

Câu Hỏi và Bài Tập

- Nhập xuất đa thức.
 - Tính giá trị của đa thức tại x_0 nào đó.
 - Tính tổng tích của 2 đa thức.
- 5. Tương tự như bài tập 4, nhưng đa thức trong trường số hữu tỷ Q (các số a_i và x là các phân số có tử số và mẫu số là các số nguyên).
- 6. Sử dụng kiểu dữ liệu cấu trúc trong C, xây dựng CTDL để lưu trữ trạng thái của các cột đèn giao thông (có 3 đèn: xanh, đỏ, vàng). Với CTDL đã được xây dựng, trình bày thuật toán và cài đặt chương trình để minh họa hoạt động của 2 cột đèn trên 2 tuyến đường giao nhau tại một ngã tư.