Московский государственный технический университет имени Н. Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Программное обеспечение ЭВМ и информационные технологии

Дисциплина: Функциональное и логическое программирование

Лабораторная работа №2

Выполнили: Никичкин А. С., Фокеев А. И.

Группа: ИУ7-61

1 Для указанных выражений составить диаграмму вычисления

Задание 1.1 $(equal\ 3\ (abs\ -3))$

- 1. $3 \to 3$;
- 2. (abs 3):
 - (a) $-3 \to -3$;
 - (b) применение abs к -3;
 - (с) результат: 3;
- 3. применение $equal \times 3, 3$
- 4. результат: Т.

Задание 1.2 (equal (+12) 3)

- 1. (+12):
 - (a) $1 \to 1$;
 - (b) $2 \to 2$;
 - (c) применение «+» к 1, 2;
 - (d) результат: 3;
- 2. $3 \to 3$;
- 3. применение equal к 3, 3;
- 4. результат: Т.

Задание 1.3 (equal (* 4 7) 21)

- 1. (* 47):
 - (a) $4 \to 4$;
 - (b) $7 \rightarrow 7$;
 - (c) применение «*» к 4, 7;
 - (d) результат: 28;
- $2. 21 \rightarrow 21;$
- 3. применение *equal* к 28, 21;
- 4. результат: NIL.

Задание 1.4 (equal (*23) (+72))

- 1. (* 2 3):
 - (a) $2 \to 2$;
 - (b) $3 \to 3$;
 - (c) применение «*» к 2, 3;
 - (d) результат: 6;
- 2. (+72):
 - (a) $7 \rightarrow 7$;
 - (b) $2 \to 2$;
 - (c) применение «+» к 7, 2;
 - (d) результат: 9;
- 3. применение equal к 6,9;
- 4. результат: NIL.

Задание 1.5 (equal (-73) (*32))

- 1. (-73):
 - (a) $7 \rightarrow 7$;
 - (b) $3 \to 3$;
 - (c) применение «-» к 7, 3;
 - (d) результат: 4;
- 2. (* 3 2):
 - (a) $3 \rightarrow 3$;
 - (b) $2 \to 2$;
 - (c) применение «*» к 3, 2;
 - (d) результат: 2;
- 3. применение equal к 4,6;
- 4. результат: NIL.

Задание 1.6 $\left(equal \left(abs (-2 4)\right) 3\right)$

- 1. (abs (-24)):
 - (a) (-24):
 - i. $2 \rightarrow 2$;
 - ii. $4 \rightarrow 4$;
 - ііі. применение «-» к 2,4;
 - iv. результат: -2;

- (b) применение abs к -2;
- (с) результат: 2;
- 2. $3 \to 3$;
- 3. применение equal к 2,3;
- 4. результат: NIL.

2 Написать функцию и составить для неё диаграмму вычисления

Задание 2.1 Функция вычисляет гипотенузу прямоугольного треугольника по заданным катетам.

$$\Big(sqrt \; \big(+ \; (* \; arg1 \; arg1) \; (* \; arg2 \; arg2) \big) \Big)$$

- 1. (+ (* arg1 arg1) (* arg2 arg2)):
 - (a) (*arg1 arg1):
 - i. $arg1 \rightarrow arg1$;
 - ii. $arg1 \rightarrow arg1$;
 - ііі. применение «*» к arg1, arg1;
 - iv. результат: $(arq1)^2$.
 - (b) (*arg2 arg2):
 - i. $arg2 \rightarrow arg2$;
 - ii. $arg2 \rightarrow arg2$;
 - ііі. применение «*» к arg2, arg2;
 - iv. результат: $(arg2)^2$.
 - (c) применение «+» к $(arq1)^2$, $(arq2)^2$;
 - (d) результат: $(arg1)^2 + (arg2)^2$.
- 2. применение sqrt к $(arg1)^2 + (arg2)^2$;
- 3. результат: $\sqrt{(arg1)^2 + (arg2)^2}$.

Задание 2.2 Функция вычисляет объём прямоугольного параллелепипеда по 3-м его сторонам.

```
1 (defun volume-rect-parallepiped (arg1 arg2 arg3)
2 (* arg1 arg2 arg3))
```

- \longrightarrow (volume-rect-parallepiped q w e);
 - $q \rightarrow q$;
 - $w \to w$;
 - $e \rightarrow e$;
- \implies применение volume-rect-parallepiped к q,w,e:
 - $arg1 \rightarrow q$;
 - $arg2 \rightarrow w$;
 - $arg3 \rightarrow e$;
 - \longrightarrow (* $arg1 \ arg2 \ arg3$):
 - $arg1 \rightarrow q$;
 - $arg2 \rightarrow w$;
 - $arg3 \rightarrow e$;
 - \implies применение «*» к arg1, arg2, arg3;
 - \implies результат: $q \cdot w \cdot e$.
- \implies результат: $q \cdot w \cdot e$.

Задание 2.3 Функция по заданной гипотенузе и катету, вычисляет другой катет прямоугольного треугольника.

- $\bullet q \rightarrow q$;
- $w \to w$;
- \longrightarrow (problem-2-3 q w):
 - $leq \rightarrow q$;
 - $hypotenuse \rightarrow w$;
 - $\longrightarrow \Big(sqrt \; \big(\; (*\; hypotenuse\; hypotenuse) \; (*\; leg\; leg) \big) \Big) :$
 - $\longrightarrow \big(\ (*\ hypotenuse\ hypotenuse)\ (*\ leg\ leg) \big) :$

```
\longrightarrow (* hypotenuse hypotenuse):
     • hypotenuse \rightarrow hypotenuse;
```

- $hypotenuse \rightarrow hypotenuse$;
- \implies применение «*» к hypotenuse, hypotenuse;
- \implies результат: $(hypotenuse)^2$.
- \longrightarrow (* leq leq):
 - $leg \rightarrow leg$;
 - $leg \rightarrow leg$;
 - \implies применение «*» к leg, leg;
 - \implies результат: $(leq)^2$.
- \implies применение «-» к $(hypotenuse)^2, (leg)^2;$
- \implies результат: $(hypotenuse)^2 (leg)^2$.
- \implies применение sqrt к $(hypotenuse)^2 (leg)^2$;
- \implies результат: $\sqrt{(hypotenuse)^2 (leg)^2}$.
- \implies применение problem-2-3 к q, w;
- \implies результат: $\sqrt{q^2 w^2}$.

3 Вычислить результаты выражений

Задание 3.1

 $(list 'a 'b c) \Rightarrow Unbound variable C$

Задание 3.2

(cons 'a (b c)) => Unbound variable C

Задание 3.3

$$(\mathbf{cons} \ 'a \ '(b \ c)) \Rightarrow (A \ B \ C)$$

Задание 3.4

 $(caddr '(1 2 3 4 5)) \Rightarrow 3$

Задание 3.5

(cons 'a 'b 'c) => Too many arguments

Задание 3.6

 $(list 'a (b c)) \Rightarrow Unbound variable C$

Задание 3.7

 $(list \ a \ '(b \ c)) \Rightarrow Unbound \ variable \ A$

Задание 3.8

$$(list (+ 1 (length '(1 2 3)))) \Rightarrow (4)$$

Задание 3.9

$$(\cos 3 (list 5 6)) \Rightarrow (3 5 6)$$

Задание 3.10

$$(list 3 'from 9 'gives (- 9 3)) \Rightarrow (3 FROM 9 GIVES 6)$$

Задание 3.11

$$(+ (length '(1 foo 2 too)) (car '(21 22 23))) \Rightarrow 25$$

Задание 3.12

Задание 3.13

Задание 3.14

$$(\cos 3 \ '(list 5 6)) \Rightarrow (3 LIST 5 6)$$

Задание 3.15

$$(car (list 'one 'tow)) \Rightarrow ONE$$

Задание 3.16

$$(list 'cons t NIL) \Rightarrow (CONST T NIL)$$

Задание 3.17

Задание 3.18

$$(apply \#'cons '(t NIL)) \Rightarrow (T)$$

Задание 3.19

$$(list 'eval NIL) \Rightarrow (EVAL NIL)$$

Задание 3.20

```
(eval (list 'cons t nil)) \Rightarrow (T)
```

Задание 3.21

```
(eval NIL) \Rightarrow NIL
```

Задание 3.22

```
(eval (list 'eval NIL)) => NIL
```

4 Написать функцию

Задание 4.1 Функция от двух списков-аргументов, которая возвращает T, если первый аргумент имеет большую длину.

```
1 (defun longer-then (arg1 arg2)
2 (>
3 (length arg1)
4 (length arg2)))
```

Задание 4.2 Функция переводит температуру из системы Фаренгейта в температуру по Цельсию.

```
1 (defun f-to-c (temp)
2 (*
3 (/ 5 9)
4 (- temp 32.0)))
```

5 Исследование функции

Имеется следующая функция

```
1 (defun mystery (x)
2 (list
3 (second x)
4 (first x)))
```

Необходимо вычислить результаты выражений.

Задание 5.1

```
(mystery '(one two)) => (TWO ONE)
```

Задание 5.2

```
(mystery 'free) => value FREE is not LIST
```

Задание 5.3

(mystery (last 'one 'two)) => no list for LAST

Задание 5.4

(mystery 'one 'two) => too many arguments