Understanding Parallelism

Parallelism

To find parallelism in a computation, we have to look at:

- Task decomposition based on processing to be done
- Data decomposition based on the data to be processed

The decomposition determines the **potential parallelism**.

Task dependency graph

We represent the decomposition of a computation as a directed acyclic graph (DAG).

- Node represents a task
 - Its weight represents the amount of work to be done by that task
- Edge represents a dependence

Execution time

 T_P represents the execution time of the computation using P identical processors.

A **sequential** execution takes $T_1 = \sum_{i=i}^{nodes} work_done_i$.

The **critical path** is the longest series of tasks that HAVE to be done sequentially due to depedencies.

If we have infinite resources, $T_{\infty} = \sum_{i \in critical path} work_done_i$

Computing the parallelism

 $Parallelism = rac{T_1}{T_{\infty}}$ and tells us how fast the computation would be if we had sufficient processors.

 P_{min} is the minimum number of processors necessary to achieve Parallelism.

Example

Granularity

The **granularity** of a decomposition is determined by the size of each node in the graph.

Fine-grained vs coarse-grained tasks ⇒ Trade-off between more parallelism or less overhead It may determine performance bounds.

Speed-up

Speed-up on P processors is $S_P=rac{T_1}{T_P}.$

Lower bounds:

- $T_P \ge \frac{T_1}{P}$ $T_P \ge T_{\infty}$

Speed-up vs efficiency

Relative reduction in execution time when using P procesors with respect to the sequential execution.

Efficiency: a measure of the fraction of time for which a processing unit is usefully employed.

$$Eff_P=rac{T_1}{T_P imes P}=rac{S_P}{P}$$

Strong vs weak scalability

Strong scalability: increase the number of processors *P* with constant problem size.

Weak scaling: increase the number of processors P with problem size proportional to P.

Amdahl's Law

The **performace improvement** to be gained from using some faster mode of execution is limited by the **fraction** of the time the faster mode can be used.

Parallel fraction: $arphi=rac{T_{par}}{T_1}$

We have that $T_P = (1-arphi) imes T_1 + (arphi imes T_1/P)$, hence

$$S_P = rac{T_1}{T_P} = rac{T_1}{(1-arphi) imes T_1 + (arphi imes T_1/P)} = rac{1}{((1-arphi) + arphi/P)}$$

Special cases:

- $\varphi = 0 \rightarrow S_P = 1$
- ullet $arphi=1
 ightarrow S_P=P$
- $P o \infty, S_P o rac{1}{1-\omega}$

Overhead

Parallel computing is **not free**, we should account overheads.

Sources of overhead:

- Task creation
- Task synchronisation
- Data sharing
- Idleness: threads cannot find useful work to do
- **Computation:** extra work added to obtain parallel algorithm
- Memory
- **Contention:** competition for the access to shared resources

Amdahl's Law with constant overhead:

$$S_P = rac{T_1}{(1-arphi) imes T_1 + (arphi imes T_1/P) + overhead}$$

Amdahl's Law with linear overhead:

$$S_P = rac{T_1}{(1-arphi) imes T_1 + (arphi imes T_1/P) + overhead(P)}$$

Scalability for different parallel fractions. Linear overhead 0.0005

Data sharing modeling

Each processor P_i has its **own memory**, interconnected with the other processors'.

Processors access local data with zero overhead.

Processors can access remote data using message-passsing model.

- 1. Start-up: time spent preparing the remote access (t_s)
- 2. Transfer: time spent transfering the message (m bytes, t_{w} time per byte)

$$T_{access} = t_s + m \times t_w$$

At any given moment, a processor P_i can at most execute a remote memory access to P_j and serve a memory access to P_k .