Blücherstr. 17 | 76185 Karlsruhe https://statistik.econ.kit.edu/christopher.buelte@student.kit.edu

# Probabilistic data-driven weather forecasting

Christopher Bülte, Nina Horat, Sebastian Lerch, Julian Quinting

#### Motivation

- Physical weather models (NWP) vs new data-driven weather models
- Focus of developments so far mostly on deterministic predictions → Need to incorporate uncertainty

#### Data

- Use FourCastNet model [3] trained on ERA5 data to explore different approaches for incorporating probabilistic forecasts
- Analyze different methods on ECMWF European grid for the year 2022

### Uncertainty quantification in data-driven weather models

## Post-hoc approaches



## **Initial-condition based approaches**

#### Gaussian perturbations (baseline):

Create initial conditions using Gaussian random noise

#### Physics-based initial conditions (PICS):

Use advanced initial conditions from numerical model

#### Random Field perturbations (RFP):

Use differences of past observations:

$$d_{noise} = \alpha \frac{a_{d1} - a_{d2}}{\|a_{d1} - a_{d2}\|_{Etot}},$$

with state vectors *a* corresponding to the date  $d_i$  and tuning parameter  $\alpha$  [2].

#### EasyUQ:

Post-hoc approaches

Generate predictive distribution based on isotonic distributional regression [1]. For a given pair of model output and outcome  $(x_i, y_i)$  prediction is given as:

$$\hat{F}_{x_j}(y) = \min_{k=1,...,j} \max_{l=j,...,n} \frac{1}{l-k+1} \sum_{i=k}^{l} \mathbf{1}\{y_i \leq y\}, \quad j=1,...,n,$$

#### DRN:

Use a Distributional regression network (DRN) to map the model output to the parameters of a distribution [4].

## Results

#### CDDS (nor load time) for surface temperature



 Gaussian
 PICS
 RFP
 EasyUQ
 DRN
 NWP

 u10 (CPRS)
 1.338
 1.507
 1.290
 1.354
 1.345
 1.037

 t2m (CRPS)
 1.037
 1.323
 0.992
 0.996
 0.970
 0.808

## Summary

- Improved approaches useful and outperform baseline
- Performance varies depending on variable and timescale
- Both approaches can be incorporated into the workflow of a data-driven weather forecasting model

#### References

- [1] Alexander Henzi, Johanna F. Ziegel, and Tilmann Gneiting. "Isotonic Distributional Regression". In: *Journal of the Royal Statistical Society Series B: Statistical Methodology* 83.5 (Aug. 2021), pp. 963–993.
- [2] Linus Magnusson, Jonas Nycander, and Erland Källén. "Flow-dependent versus flow-independent initial perturbations for ensemble prediction". In: *Tellus A* 61.2 (2009), pp. 194–209.
- [3] Jaideep Pathak et al. FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators. 2022.
- [4] Stephan Rasp and Sebastian Lerch. "Neural Networks for Postprocessing Ensemble Weather Forecasts". In: *Monthly Weather Review* 146.11 (2018), pp. 3885–3900.