Imputation and Adjustment

Mark van der Loo, Statistics Netherlands

CBS, Department of Methodology

Complutense University of Madrid, Spring 2019

Content

Imputation

Model-based estimation of missing data.

Adjustment

Adjust (imputed) fields to satisfy linear (in)equality constraints.

Missing data

Missing data

Reasons

- nonresponse, data loss
- · Value is observed but deemed wrong and erased

Solutions

- Measure/observe again
- Ignore
- Take into account when estimating
- Impute

Missing data mechanisms

Missing comletely at Random (MCAR)

Missingness is totally random.

Missing at Random (MAR)

Missingness probability can be modeled by other variables

Not Missing at Random (NMAR)

Missingness probability depends on missing value.

You can't tell the mechanism from the data

NMAR can look like MCAR

Given Y, X independent. Remove all $y \ge y^*$. Observer 'sees' no correlation between missingness and values of X: MAR.

NMAR can look like MAR

Given Y, X with Cov(Y, X) > 0. Remove all $y \ge y^*$. Observer 'sees' that higher X correlates with more missings in Y: MCAR.

Dealing with missing data mechanisms

Missing comletely at Random (MCAR)

Model-based imputation

Missing at Random (MAR)

Model-based imputation

Not Missing at Random (NMAR)

No real solution.

Imputation methodology

Model based

Estimate a value based on observed variables.

Donor-imputation

Copy a value from a record that you did observe.

The simputation package

Provide

- a uniform interface,
- with consistent behaviour,
- across commonly used methodologies

To facilitate

- experimentation
- configuration for production

Assignment 1: Try the following code

Installation

```
install.packages("simputation", dependencies = TRUE)
```

Code to try

```
library(simputation); library(magrittr)
data(retailers,package="validate")
ret <- retailers[3:6]
ret %% impute_lm(other.rev ~ turnover) %>% head(3)
```


Assignment 1: Try the following code

```
library(simputation)
data(retailers,package="validate")
ret <- retailers[3:6]
ret %>% impute_lm(other.rev ~ turnover) %>% head(3)
```

```
## staff turnover other.rev total.rev
## 1 75 NA NA 1130
## 2 9 1607 5427.113 1607
## 3 NA 6886 -33.000 6919
```


Assignment 2: Try the following code

```
# note the 'rlm'!
ret %>% impute_rlm(other.rev ~ turnover) %>% head(3)
```


Assignment 2: Try the following code

```
# note the 'rlm'!
ret %>% impute_rlm(other.rev ~ turnover) %>% head(3)
```

```
## staff turnover other.rev total.rev
## 1 75 NA NA 1130
## 2 9 1607 17.25247 1607
## 3 NA 6886 -33.00000 6919
```


The simputation package

An imputation prodedure is specified by

- 1. The variable to impute
- 2. An imputation model
- 3. Predictor variables

The simputation interface

```
impute_<model>(data
  , <imputed vars> ~ <predictor vars>
  , [options])

formula

data

data

impute_<model>() → data'
```

Chaining methods

```
ret %>%
  impute_rlm(other.rev ~ turnover) %>%
  impute_rlm(other.rev ~ staff) %>% head(3)
```

```
## staff turnover other.rev total.rev

## 1 75 NA 64.88174 1130

## 2 9 1607 17.25247 1607

## 3 NA 6886 -33.00000 6919
```


Assignment 3

Expand this code so that turnover is also imputed, using on other.rev and staff as predictors.

```
ret %>%
  impute_rlm(other.rev ~ turnover) %>%
  impute_rlm(other.rev ~ staff) %>% head(3)
```


(One) solution

```
ret %>%
  impute_rlm(other.rev ~ turnover) %>%
  impute_rlm(other.rev ~ staff) %>%
  impute_rlm(turnover ~ staff + other.rev) %>% head(3)
```


Example: Multiple variables, same predictors

```
ret %>%
  impute_rlm(other.rev + total.rev ~ turnover)
ret %>%
  impute_rlm( . - turnover ~ turnover)
```


Example: grouping

```
retailers %>% impute_rlm(total.rev ~ turnover | size)

# or, using dplyr::group_by
retailers %>%
  group_by(size) %>%
  impute_rlm(total.rev ~ turnover)
```


Imputation and univariate distribution

Imputation and bivariate distribution

Adding a random residual

$$\hat{y}_i = \hat{f}(X_i) + \varepsilon_i$$

- \hat{y}_i estimated value for record i
- $\hat{f}(X_i)$ model value
- ε_i random perturbation
 - Either a residual from the model training
 - OR sampled from $N(0,\hat{\sigma})$
- + Better (multivariate) distribution
- Less reproducible

Adding a random residual

Adding a residual with simputation

Try the following code

```
ret %>%
  impute_rlm(other.rev ~ turnover
  , add_residual = "normal") %>% head(3)
```

Options

- add_residual = "none": (default)
- add_residual = "normal": from $N(0, \hat{\sigma})$
- add_residual = "observed": from observed residuals

Compute the variance of other.rev after each option.

Five minutes for ten models.

1. Impute a proxy

$$\hat{\mathbf{y}} = \mathbf{x} \text{ or } \mathbf{y} = f(\mathbf{x}),$$

where x is another (proxy) variable (e.g. VAT value for turnover), and f a user-defined (optional) transformation.

```
# simputation
impute_proxy()
```


2. Linear model

$$\hat{\pmb{y}} = \pmb{X}\hat{\pmb{eta}},$$

where

$$\hat{oldsymbol{eta}} = \arg\min_{oldsymbol{eta}} \sum_i \epsilon_i^2$$

simputation:

impute_lm()

3. Regularized linear model (elasticnet)

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}},$$

where

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \frac{1}{2} \sum_{i} \epsilon_{i}^{2} + \lambda \left[\frac{1-\alpha}{2} \|\boldsymbol{\beta}^{*}\|^{2} + \alpha \|\boldsymbol{\beta}^{*}\|_{1} \right]$$

- $\alpha = 0$ (Lasso) · · · $\alpha = 1$ (Ridge)
- β^* : β w/o intercept.

simputation:

impute_en()

4. *M*-estimator

where

$$\hat{\pmb{y}} = \pmb{X}\hat{\pmb{eta}},$$

$$\hat{oldsymbol{eta}} = rg \min_{oldsymbol{eta}} \sum_i
ho(\epsilon_i)$$

impute_rlm()

5. Classification and regression tree (CART)

$$\hat{\boldsymbol{y}} = T(\boldsymbol{X}),$$

where T represents a set of binary questions on variables in X. There are spare questions for when one of the predictors is missing.

```
# simputation:
impute_cart()

# simputation:

| 7,7 | 1,76 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1,776 | 1
```


6. Random forest

$$\hat{\boldsymbol{y}} = \frac{1}{|\text{Forest}|} \sum_{i \in \text{Forest}} T_i(\boldsymbol{X}),$$

where each T_i is a simple decision tree without spare questions. For categorical y, the majority vote is chosen.

```
# simputation
impute_rf()
```


7. Expectation-Maximization

Dataset $\boldsymbol{X} = \boldsymbol{X}_{obs} \cup \boldsymbol{X}_{mis}$. Assume $\boldsymbol{X} \sim P(\boldsymbol{\theta})$.

- 1 Choose a $\hat{\boldsymbol{\theta}}$
- 2. Repeat until convergence:
 - 2.1 $Q(\theta|\hat{\theta}) = \ell(\theta|\mathbf{X}_{obs}) + E_{mis}[\ell(\mathbf{X}_{mis}|\theta,\mathbf{X}_{obs})|\hat{\theta}]$ 2.2 $\hat{\theta} = \arg\max_{\theta} Q(\theta|\hat{\theta})$
- 3. $\hat{\boldsymbol{X}}_{mis} = \arg\max_{\boldsymbol{X}_{mis}} P(\boldsymbol{X}_{mis}|\hat{\boldsymbol{\theta}})$

```
# simputation (multivariate normal):
impute em()
```


8. missForest

Dataset $\boldsymbol{X} = \boldsymbol{X}_{obs} \cup \boldsymbol{X}_{mis}$.

- 1. Trivial imputation of X_{mis} (median for numeric variables, mode for categorical variables)
- 2. Repeat until convergence:
 - 2.1 Train random forest models on the completed data
 - 2.2 Re-impute based on these models.

```
# simputation:
```

```
impute_mf()
```


9.a Random hot deck

- 1. Split the data records into groups (optional)
- 2. Impute missing values by copying a value from a random record in the same group

```
# simputation
impute_rhd(data, imputed_variables ~ grouping_variables)
```


9.b Sequential hot-deck

- 1. Sort the dataset
- 2. For each row in the sorted dataset, impute missing values from the last observed.

```
# simputation
impute_shd(data, imputed_variables ~ sorting_variables)
```


9.c *k*-nearest neighbours

For each record with one or more missings:

- 1. Find the k nearest neighbours (Gower's distance) with observed values
- 2. Sample value(s) from the k records.

```
# simputation
impute_knn(data, imputed_variables ~ distance_variables)
```


10. Predictive mean matching

- 1. For each variable X_i with missing values, estimate a model \hat{f}_i .
- 2. Estimate all values, observed or not.
- 3. For each missing value, impute the observed value, of which the prediction is closest to the prediction of the missing value.

```
# simputation: (currently buggy!)
impute_pmm()
```


Satisfy restrictions after imputation

Successive projection algorithm

Idea

Alter (imputed) values in a record x as little as possible to satisfy all restrictions.

As little as possible?

The minimal Eucledian distance between the original x and the adjusted record x^* .

$$\mathbf{x}^* = \min_{\mathbf{x}} (\mathbf{x}^* - \mathbf{x})'(\mathbf{x}^* - \mathbf{x})$$

Successive Projection Algorithm (sketch)

Project x on each (in)equality restriction sequentially and iteratively until convergence

Extension: weighted distance

$$x^* = \min_{\mathbf{x}} (\mathbf{x}^* - \mathbf{x})' \mathbf{W} (\mathbf{x}^* - \mathbf{x})$$

Property

If $W_{ij} = \delta_{ij} x_i^{-1}$, then the ratios between altered variables are preserved to $\mathcal{O}(1)$.

Pannekoek & Zhang (2015) Survey Methodology 41 127–144; SDCR §10.11

Implementation: rspa

```
library(simputation); library(validate); library(errorlocate)
SBS2000 <- read.csv("SBS2000.csv", stringsAsFactors=FALSE)
rules <- validator(.file="ruleset.R")
rules
## Object of class 'validator' with 5 elements:
## V1: turnover >= 0
## V2: other rev >= 0
## V3: turnover + other.rev == total.rev
## V4: total.costs >= 0
## V5: turnover - total.costs == profit
## Localize errors (important!) and replace with missings
       <- replace errors(SBS2000, rules)
ers
## A silly imputation method
imp <- impute proxy(SBS2000</pre>
      , turnover + other.rev + total.rev + total.costs + profit ~ 0)
```


Implementation: rspa

```
all(confront(imp, rules, lin.eq.eps=0.01))
## [1] FALSE
library(rspa)
      <- match_restrictions(imp, rules, adjust=is.na(ers))</pre>
adi
all(confront(adj, rules, lin.eq.eps=0.01))
## [1] TRUE
                             rules, [fields, weights]
```

-|match rostrictions()|