About Feature Scaling and Normalization (sebastianraschka.com)

How and why to Standardize your data: A python tutorial | Towards Data Science

desvio padrão = variância¹/₂

desvio = diferença em módulo de cada termo com a média

variância = média dos quadrados dos desvios

Normalização

O objetivo da normalização é transformar características para estar em uma escala semelhante.

Standard Scaler

Scaling to a range

Scaling to a range significa converter valores de características de ponto flutuante de sua faixa natural (por exemplo, 100 a 900) em uma faixa padrão (por exemplo, 0 a 1 ou -1 a +1). Assim ajudará o modelo a compreender melhor o peso de cada recurso, não dando "valor maior" para aquele recurso que estiver "mais distante" de outros. (idade 2 anos não tem menos valor que a idade 80, porem nao seria ideal utilizar em dados que representam a renda)

$$x' = (x - x_{min})/(x_{max} - x_{min})$$

O Scaling to a range é uma boa escolha quando ambas as seguintes condições são atendidas:

- Você conhece os limites superiores e inferiores aproximados em seus dados com poucos ou nenhum outliers.
- Seus dados são aproximadamente distribuídos uniformemente através desse intervalo.

Standard Scaler

Padronizar os recursos removendo a média e escalonando para a variância da unidade. O standard score de uma amostra X é calculado como:

z=(x-u)/s

onde **u** é a média das amostras de treinamento e **s** é o desvio padrão.

$$\mu = rac{1}{N} \sum_{i=1}^N (x_i) \hspace{0.3cm} \sigma = \sqrt{rac{1}{N} \sum_{i=1}^N \left(x_i - \mu
ight)^2}$$

 StandardScaler remove a média e dimensiona cada característica/variável para variância unitária. Esta operação é realizada em termos de características de forma independente. StandardScaler pode ser influenciado por outliers (se existirem no conjunto de dados) uma vez que envolve a estimativa da média empírica e desvio padrão de cada recurso.

Numpy.log

Log Scaling

A escala de log calcula o log de seus valores para comprimir uma ampla faixa em uma faixa estreita.

$$x' = log(x)$$

É indicado usar quando alguns dados tem muito valores enquanto a maioria não.

Numpy.log

O numpy.log é uma função matemática que calcula o logaritmo natural de um elemento da matriz de entrada.

Clipping

Se o conjunto de dados contiver outliers extremos, você pode tentar o recorte de recursos, que limita todos os valores de recurso acima (ou abaixo) de um determinado valor ao valor fixo.

Z-score

Z-score é uma variação de scaling que representa o número de desvios padrão longe da média. Você usaria z-score para garantir que suas distribuições de recursos tenham mean = 0 e std = 1. É útil quando há alguns outliers, mas não tão extremo que você precisa de clipping.

A fórmula para calcular a pontuação z de um ponto, x,é a seguinte:

$$x'=(x-\mu)/\sigma$$
 -> μ é a média e σ é o desvio padrão.

Técnica	Fórmula	Quando Usar
Linear Scaling	x' = (x-x_min)/(x_max-x_min)	Quando os dados são mais ou menos uniformemente distribuído em uma faixa fixa
Clipping	se x>max, então x'=max. se x <min, então="" x'="min</td"><td>Quando os dados contém alguns outliers extremos</td></min,>	Quando os dados contém alguns outliers extremos
Log Scaling	x'=log(x)	Quando os dados estão de acordo com a "lei da energia" (uns muitos maioria poucos)
Z-score	x'=(x-u)/s	Quando a distribuição dos dados não contém outliers extremos