Leptogenesis in non-standard cosmologies

Mehran Dehpour

Department of Physics, Shahid Beheshti University PO Box 19839-63113, Tehran, Iran

Oral Defence in Partial Fulfillment of Master of Science in Particle Physics January 9, 2024

Outline

Introduction

Thermal leptogenesis in nonextensive cosmology Nonextensive cosmology Modified thermal leptogenesis Numerical results

Thermal leptogenesis in anisotropic cosmology Anisotropic Bianchi type-I cosmology Modified thermal leptogenesis Numerical results

Conclusion

Baryon Asymmetry of Universe

$$Y_B^{
m obs} \equiv \left. rac{n_B - \overline{n}_B}{s} \right|_0 = (8.73 \pm 0.35) \times 10^{-11}$$

V. Simha et al., JCAP 06 (2008) 016

Sakharov's conditions

- 1. violation of baryon number conservation,
- 2. C and CP violation,
- 3. and the presence of out-of-equilibrium dynamics.

Searching Beyond Standard Model

The Standard Model has all the basic ingredients, but cannot produce the desired baryon asymmetry!

M.B. Gavela et al., Nucl.Phys.B 430 (1994) 345-381, 345-426

Thermal leptogenesis

Through extension of the standard model by adding at least two right-handed neutrinos.

M.A. Luty, Phys.Rev.D 45 (1992) 455-465

Right-Handed Neutrinos

The seesaw mechanism introduces these new particles.

P. Minkowski, Nucl. Phys. B 67 (1977) 421-428

Free parameters of theory

M_1/GeV	$M_3/{ m GeV}$	$M_3/{ m GeV}$
10 ¹¹	$10^{11.6}$	10^{12}

In the seesaw type-1 framework, Yukawa coupling parameterized as Casas-Ibarra formalism

$$y = -iU\sqrt{D_m}R^T(z_1, z_2, z_3)\sqrt{D_M}\frac{\sqrt{2}}{v}$$

m/GeV	$x_1/^\circ$	$y_1/^\circ$	$x_2/^\circ$	<i>y</i> ₂ /°	$x_3/^\circ$	<i>y</i> ₃ /°
10^{-11}	12	51.4	33	11.4	180	11

Right-Handed Neutrino decay

By considering k=1 and summation on j, one can calculate the tree-level decay rates as

$$\Gamma_1 = \overline{\Gamma}_1 = \frac{M_1}{16\pi} (yy^{\dagger})_{11},$$

where M_1 is mass of N_1 , and y is Yukawa coupling matrix.

CP violation

$$\epsilon_1 \equiv \frac{\Gamma_1 - \overline{\Gamma}_1}{\Gamma_1 + \overline{\Gamma}_1}$$

$$N_k \longrightarrow N_m \longrightarrow \overline{\phi}$$

$$\epsilon_{1} = \sum_{k \neq 1} \frac{1}{8\pi} \frac{\Im(yy^{\dagger})_{1k}^{2}}{(yy^{\dagger})_{11}} \left[f\left(\frac{M_{k}^{2}}{M_{1}^{2}}\right) + \frac{M_{1}M_{k}}{M_{1}^{2} - M_{k}^{2}} \right]$$

Dynamics of the $Y_{B-L}=(\overline{n}_l-n_l)/s^q$ and $Y_{N_1}\equiv n_{N_1}/s^q$

$$egin{align} rac{dY_{N_1}}{dz} &= -D_1 \left(Y_{N_1} - Y_{N_1}^{
m eq}
ight) \ rac{dY_{B-L}}{dz} &= -\epsilon_1 D_1 \left(Y_{N_1} - Y_{N_1}^{
m eq}
ight) - W_1 Y_{B-L} \ D_1 &\equiv rac{2 \langle \Gamma_1
angle}{H_Z}, \quad W_1 &\equiv rac{1}{2} rac{Y_{N_1}^{
m eq}}{Y_{
m eq}^{
m eq}} D_1 \ \end{split}$$

$$Y_{N_1}^{
m eq} = rac{45}{4\pi^4} rac{g_{N_1}}{g_{\star}} z^2 K_2(z), \quad Y_I^{
m eq} \simeq rac{45}{4\pi^4} rac{g_I}{g_{\star}} rac{3}{2} \zeta(3)$$

Relation between Y_{B-L} and the baryon asymmetry

$$Y_B = \frac{28}{79} Y_{B-L}.$$

Davidson-Ibarra bound

 $M_1>10^9~{
m GeV}$

S. Davidson et al., Phys.Lett.B 535 (2002) 25-32

Thermal leptogenesis in nonextensive cosmology

Modified distribution function

The generalized distribution function is parameterized by a real number $q \in [0, 2]$ known as the Tsallis parameter

$$f^{q} = \left[\frac{1}{e_{q}^{-(\frac{E-\mu}{T})}} + \xi\right]^{-1}$$

$$e_q^x \equiv [1 + (q - 1)x]^{\frac{1}{1 - q}}$$

C. Tsallis, J.Statist.Phys. 52 (1988) 479-487

Modified Hubble expansion rate

$$H^q = rac{1.66}{M_{
m Pl}} (g_{\star}^q)^{1/2} T^2$$

$$egin{aligned} g_{\star}^q &= \left[rac{15}{\pi^4}\int_0^{\infty}d\gamma\gamma^3\left(rac{1}{e_q^{-\gamma}}-1
ight)^{-q}
ight]\sum_b g_b \ &+ \left[rac{15}{\pi^4}\int_0^{\infty}d\gamma\gamma^3\left(rac{1}{e_q^{-\gamma}}+1
ight)^{-q}
ight]\sum_f g_f \end{aligned}$$

M.E. Pessah et al., Physica A 297 (2001) 164-200

Modified entropy density

$$s^q = \frac{2\pi^2}{45} g^q_{\star,s} T^3$$

$$g_{\star,s}^{q} = \left[\frac{45}{4\pi^4} \int_{1}^{\infty} d\gamma \left(\frac{4}{3} \gamma^3 + \frac{\sqrt{\gamma^2 - 1}}{3} \right) \left(\frac{1}{e_q^{-\gamma}} - 1 \right)^{-q} \right] \sum_{b} g_b$$
$$+ \left[\frac{45}{4\pi^4} \int_{1}^{\infty} d\gamma \left(\frac{4}{3} \gamma^3 + \frac{\sqrt{\gamma^2 - 1}}{3} \right) \left(\frac{1}{e_q^{-\gamma}} + 1 \right)^{-q} \right] \sum_{f} g_f$$

M.E. Pessah et al., Physica A 297 (2001) 164-200

Modified quilibrium amount of particles

$$n_{\chi}^{\mathrm{eq},q} = g_{\chi} \int \frac{d^3p}{(2\pi)^3} f_{\chi}^{\mathrm{eq},q},$$

$$Y_{\chi}^{\mathrm{eq},q} = rac{45}{4\pi^4} rac{g_{\chi}}{g_{\star,s}^q} rac{z^3}{M_1^3} \int_0^{\infty} dp \ p^2 \left[rac{1}{e_{\sigma}^{-(rac{E_{\chi}z}{M_1})}} + \xi_{\chi}
ight]^{-1}.$$

Modified decay parameter

$$D_1^q \equiv \frac{2 \langle \Gamma_1 \rangle}{H^q z}$$

Modified washout parameter

$$W_1^q \equiv \frac{1}{2} \frac{Y_{N_1}^{\mathrm{eq},q}}{Y_I^{\mathrm{eq},q}} D_1^q,$$

Numerical results I

Numerical results II

Thermal leptogenesis in anisotropic cosmology

Bianchi type-I metric and Friedmann equation

$$ds^{2} = -dt^{2} + a_{1}^{2}(t)dx^{2} + a_{2}^{2}(t)dy^{2} + a_{3}^{2}(t)dz^{2}$$

$$H^{2} = \frac{8\pi G}{3}\epsilon_{r} + \frac{1}{3}\sigma^{2}$$

$$a \equiv (a_{1}a_{2}a_{3})^{1/3}, \quad H \equiv \dot{a}/a = \frac{1}{2}(H_{1} + H_{2} + H_{3})$$

$$\sigma^2 \equiv \frac{1}{6} \left[(H_1 - H_2)^2 + (H_2 - H_3)^2 + (H_3 - H_1)^2 \right]$$

E. Russell et al., Mon.Not.Roy.Astron.Soc. 442 (2014) 3

Modified Hubble expansion rate

$$H = rac{1.66}{M_{
m Pl}} (g_{\star})^{1/2} T^2 \sqrt{1 + rac{g_{\star}}{g_{\star}^e} rac{T^2}{T_e^2}},$$

M. Kamionkowski et al., Phys. Rev. D 42 (1990) 3310

Modified decay parameter

$$D_1 \equiv \frac{2 \langle \Gamma_1 \rangle}{Hz}$$

Modified washout parameter

$$W_1 \equiv \frac{1}{2} \frac{Y_{N_1}^{\mathrm{eq}}}{Y_I^{\mathrm{eq}}} D_1,$$

Numerical results I

Numerical results II

Numerical results III

Conclusion

In this study, by referring to nonstandard cosmologies, we attempt to reach low-scale leptogenesis through two methods:

- Modifying standard statistical mechanics to nonextensive statistical mechanics
- 2. Neglecting the isotropic cosmological principle with Bianchi type-I metric in the early universe

Thanks for your attention!

Backup slides

PMNS matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

NuFIT 5.2 (2022)

$$\begin{split} |U|_{3\sigma}^{\text{w/o SK-atm}} &= \begin{pmatrix} 0.803 \rightarrow 0.845 & 0.514 \rightarrow 0.578 & 0.142 \rightarrow 0.155 \\ 0.233 \rightarrow 0.505 & 0.460 \rightarrow 0.693 & 0.630 \rightarrow 0.779 \\ 0.262 \rightarrow 0.525 & 0.473 \rightarrow 0.702 & 0.610 \rightarrow 0.762 \end{pmatrix} \\ |U|_{3\sigma}^{\text{with SK-atm}} &= \begin{pmatrix} 0.803 \rightarrow 0.845 & 0.514 \rightarrow 0.578 & 0.143 \rightarrow 0.155 \\ 0.244 \rightarrow 0.498 & 0.502 \rightarrow 0.693 & 0.632 \rightarrow 0.768 \\ 0.272 \rightarrow 0.517 & 0.473 \rightarrow 0.672 & 0.623 \rightarrow 0.761 \end{pmatrix} \end{split}$$

R matrix

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{z_1} & s_{z_1} \\ 0 & -s_{z_1} & c_{z_1} \end{pmatrix} \begin{pmatrix} c_{z_2} & 0 & s_{z_2} \\ 0 & 1 & 0 \\ -s_{z_2} & 0 & c_{z_2} \end{pmatrix} \begin{pmatrix} c_{z_3} & s_{z_3} & 0 \\ -s_{z_3} & c_{z_3} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

CP violation

$$\epsilon_1 = \sum_{k \neq 1} \frac{1}{8\pi} \frac{\Im\left(yy^{\dagger}\right)_{1k}^2}{\left(yy^{\dagger}\right)_{11}} \left[f\left(\frac{M_k^2}{M_1^2}\right) + \frac{M_1 M_k}{M_1^2 - M_k^2} \right]$$
$$f(x) = \sqrt{x} \left[1 - (1+x) \ln\left(\frac{1+x}{x}\right) \right]$$

Equilibrium conditions

$$\mu_{q_{iL}} + \mu_{\phi} - \mu_{u_{jR}} = 0$$
 $\mu_{q_{iL}} - \mu_{\phi} - \mu_{d_{jR}} = 0$
 $\mu_{I_{iL}} - \mu_{\phi} - \mu_{e_{jR}} = 0$

$$\sum_{i} (2\mu_{q_{iL}} - \mu_{u_{iR}} - \mu_{d_{iR}}) = 0$$
$$\sum_{i} (3\mu_{q_{iL}} + \mu_{l_{iL}}) = 0$$

$$\sum_{i} \left(\mu_{q_{iL}} + 2\mu_{u_{iR}} - \mu_{d_{iR}} - \mu_{I_{iL}} - \mu_{e_{iR}} + \frac{2}{3}\mu_{\phi} \right) = 0$$

Gravitino overproduction problem

The thermal production of RHN requires a $T_{\rm reh}$ larger than M_1 . A typical value might be $T_{\rm reh} \sim 10 M_1$. So according to Davidson-Ibarra bound required $T_{\rm reh}$ is

$$T_{\rm reh} > 10^{10}~{\rm GeV}$$

While gravitino production upper bound on T_{reh} is

$$T_{\rm reh} < 10^9 - 10^{12}~{
m GeV}$$

High and low energy cutoff

We would define $e_q^{\chi} \equiv 0$ in two cases of

- 1. q<1 and x<1/(q-1): interpreted as a cutoff distribution function at high energies $E\geq \mu-T/(q-1)$,
- 2. q>1 and $x\geq 1/(q-1)$: interpreted as a cutoff distribution function at low energies $E\leq \mu-T/(q-1)$.

Equilibrium amount of particles I

Equilibrium amount of particles II

Decay parameter

$$D_{1}^{q} \equiv \frac{2\langle 1_{1} \rangle}{H^{q}z}$$

$$D_{1}^{q} = \frac{2}{H^{q}z} \frac{\int_{0}^{\infty} \frac{dp \ p^{2}}{E} \left[\frac{1}{\frac{1}{e_{q}} - (\frac{E_{N_{1}}^{2}}{M_{1}})} \right]^{-1}}{\int_{0}^{\infty} dp \ p^{2} \left[\frac{1}{\frac{1}{e_{q}} - (\frac{E_{N_{1}}^{2}}{M_{1}})} \right]^{-1}} \frac{M_{1}^{2}}{16\pi} (yy^{\dagger})_{11}.$$

Shear versus radiation

By useful relation $\dot{H}_i - \dot{H}_j = -3H(H_i - H_j)$ which is equivalent to $H_i - H_j \propto a^{-3}$, one can obtain the square of the shear scalar dependence on effective scale factor $\sigma^2 \propto a^{-6}$. Therefore, the square of the shear scalar falls off faster than the radiation energy density.

Definition of T_e

We define the temperature at which $8\pi G\epsilon_r = \sigma^2$ to be T_e .

- ▶ For $T\gg T_e$ the universe is shear dominated: $H\propto a^{-3}$ and $a\propto t^{1/3}$ then H=1/3t;
- ▶ for $T \ll T_e$ the universe is radiation dominated: $H \propto a^{-2}$ and $a \propto t^{1/2}$ then H = 1/2t.

As we did not see any signature of anisotropy in BBN, we want that anisotropy does not affect it. So, we have a constraint as $T_e\gg 2.5~{\rm MeV}.$

Constraints on a Bianchi type-I

Ö. Akarsu et al., Phys. Rev. D 100 (2019) 023532

Modification of Boltzmann Eqs.

The Liouville operator is affected which in the relativistic form is given by

$$\mathbf{L} = \mathbf{p}^{\alpha} \frac{\partial}{\partial x^{\alpha}} - \Gamma^{\alpha}_{\beta\gamma} \mathbf{p}^{\beta} \mathbf{p}^{\gamma} \frac{\partial}{\partial \mathbf{p}^{\alpha}},$$

where $\Gamma^{\alpha}_{\beta\gamma}$ are Christoffel symbols of the related metric. For BI metric, nonzero Christoffel symbols are equal to

$$\Gamma^{1}_{01} = \Gamma^{1}_{10} = \frac{\dot{a_{1}}}{a_{1}}, \quad \Gamma^{2}_{02} = \Gamma^{2}_{20} = \frac{\dot{a_{2}}}{a_{2}}, \quad \Gamma^{3}_{03} = \Gamma^{3}_{30} = \frac{\dot{a_{3}}}{a_{3}},$$

$$\Gamma^{0}_{11} = a_{1}\dot{a_{1}}, \quad \Gamma^{0}_{22} = a_{2}\dot{a_{2}}, \quad \Gamma^{0}_{33} = a_{3}\dot{a_{3}}.$$