Processamento de Fala 2012/13

3º Mini-teste

23 de Maio de 2013

Identifique o seu teste colocando o seu nome e número de aluno no espaço reservado na última página. Só são aceites respostas às questões de escolha múltipla assinaladas no local apropriado nessa página. As respostas erradas a perguntas de escolha múltipla serão penalizadas.

- 1. Diga se as seguintes afirmações são verdadeiras ou falsas:
 - (a) As técnicas de *crowd sourcing* são frequentemente utilizadas para treinar modelos acústicos, pedindose aos *Turkers* para fazer as transcrições fonéticas de segmentos de fala.
 - (b) A perplexidade de um dado modelo de língua é máxima quando todas as palavras são equiprováveis.
 - (c) Em reconhecimento do orador, as características perceptivas aprendidas são mais fáceis de extrair do que as físicas.
 - (d) Em modelos de Markov contínuos, adoptam-se frequentemente matrizes diagonais por forma a aumentar a velocidade do reconhecedor.
 - (e) Os coeficientes cepstrais usados em reconhecimento de fala incluem informação sobre a excitação.
 - (f) Os desvios da pronúncia canónica ocorrem sobretudo na rima.
- 2. Indique o nome dos coeficientes que representam uma filtragem temporal das trajectórias.
- 3. Como se chamam as figuras que mostram o desempenho de um sistema de detecção de palavras chave? quais os respectivos eixos?
- 4. Quais as etapas do algoritmo binary split?
- 5. Indique um método de aprendizagem automática frequentemente utilizado para modelar pronúncias alternativas.
- 6. Indique duas medidas de distância usadas em reconhecimento de fala, para além da distância euclidiana.
- 7. Considere um sistema de reconhecimento de fala contínua e vocabulário extenso, independente do orador aplicado à transcrição de notícias televisivas. Para uma dada notícia, a transcrição manual de 3 segmentos foi a seguinte:
 - a) No entanto, muitos alunos chegam ao fim do secundário sem sequer saber, afinal, o que é a Constituição.
 - b) O tempo dado à Constituição da República nos programas de História do oitavo e nono ano, não deixou
 - c) Nunca fui grande fã de História, por isso basicamente decorava o que isso era para esquecer no dia seguinte ao teste.
 - d) Está escrito onde?

A transcrição automática produzida pelo reconhecedor foi:

- a) No entanto, muitos alunos chegam ao fim do secundário. Sem sequer saber, afinal, o que é a Constituição.
- b) O tempo estava a Constituição da República nos programas de História do muito sabe nono ano, não deixo memória.
- c) Nunca fui grande fã de História, por isso curável que isso era para esquecer no dia seguinte o dez.
- d) E se a escrito onde.

Ignorando a pontuação e capitalização, complete os valores de H ("correct"), D ("deletions"), S ("substitutions"), I ("insertions"), N ("total"), %Corr, %Acc e %WER correspondentes para cada um dos segmentos. Diga também, para cada um dos segmentos, se correspondem a: fala preparada em ambiente limpo (L), fala preparada em ambiente ruidoso (R), ou fala espontânea em ambiente ruidoso (E).

8. Considere o corpus de treino composto pelas seguintes frases:

O Obelix gosta de javalis. O Asterix gosta mais da poção mágica. O Panoramix prepara a poção mágica. Os romanos conquistaram a Gália. O Obelix e o Asterix não gostam dos soldados romanos.

Considere a frase de teste:

Os soldados romanos não gostam da poção.

- (a) Calcule o número de unigramas, bigramas e trigramas do corpus de treino, e a dimensão do vocabulário.
- (b) Calcule a probabilidade da frase de teste usando um modelo de unigramas.
- (c) Calcule a probabilidade da frase de teste usando um modelo de bigramas sem alisamento.
- (d) Calcule a probabilidade da frase de teste usando um modelo de bigramas com alisamento do tipo addone.
- (e) Existe algum quadigrama no corpus de treino com mais que uma ocorrência? Se sim, indique-o e calcule a sua probabilidade.
- (f) Considere que existe uma classe sintática *gostar* constituída por todas as formas verbais deste verbo. Qual o número de bigramas diferentes?
- (g) Escreva uma frase o mais longa possível, cuja probabilidade de acordo com um modelo de bigramas seja não nula.

(Nota: Indique as frações correspondentes a cada n-grama, sem calcular o produto final.)

9. Pretende-se determinar a temperatura média de um dado lugar na terra num passado distante em que não existiam ainda termómetros. Para simplificar, consideraremos apenas duas temperaturas: quente (Q) e frio (F). A probabilidade de um ano quente se suceder a outro ano quente é de 0.7. A probabilidade de um ano frio se suceder a outro ano frio é de 0.6. A transição entre estados Q e F será modelada por um modelo de Markov, em que o próximo estado depende apenas do estado corrente. Como não existiam termómetros, estes estados não são directamente observáveis. Todavia, existe uma relação probabilística entre o tamanho dos aneis de crescimento das árvores (pequenos (P), médios (M) ou grandes (G)) e a temperatura, ilustrada pela matriz seguinte:

Suponha ainda que a distribuição inicial de estados é prob_inicial = $\{Q: 0.6, F: 0.4\}$

- (a) Determine qual a probabilidade da sequência de estados QQFF estar associada à sequência de observações (*P*, *M*, *P*, *G*).
- (b) Trata-se de um modelo de Markov de primeira ou segunda ordem?

(Exemplo adaptado de M. Stamp, A Revealing Introduction to Hidden Markov Models, 2012)

- 10. Considere um sistema de reconhecimento de palavras isoladas com vocabulário limitado (7 notas musicais).
 - (a) Desenhe a topologia de um modelo de Markov adequado que preveja saltos entre estados consecutivos.
 - (b) Diga quantas probabilidade de transição há que treinar para cada modelo.
 - (c) Suponha que para uma dada locução de teste, o sistema deu os seguintes valores de probabilidades para os 7 modelos: 0.4, 0.3, 0.3, 0.3, 0.8, 0.3, 0.5. Calcule a medida de confiança para a quinta palavra.

Re	sposta	as_											
	Nome	: :											
N	úmerc): 											
1. ([1,8 va	ıl.)											
	a		b	c		d	e	f	ļ				
2 a	6 (1 /	1,5	/2/1	/ 1,2 v	alores))							
2													
3													
4													
_													
5 6													
	1												
7. (3.0 va			T 1	N.T.	M C	04 1	64 11 11	ED	T /D /E	1		
1	H	D	S	I	N	% Corr	% Acc	2 % W	EK	L/R/E	-		
											-		
											1		
0	· 2 · 5	1 \											
8. (a)	(3,5 va	ıl.)											
(4)													
b)													
c)													
<u>d</u>)													
e)													
_													
f)													
g)													

9. (2 val.) e 10. (3 val.) Responder na página seguinte.

