FONCTIONS CIRCULAIRES (JE SAIS FAIRE)

- Vrai ou faux? Justifier.
 - 1) $\forall x, y \in \mathbb{R}$, $x \equiv y \ [2\pi]$ \Longrightarrow $x \equiv y \ [\pi]$.
 - 2) $\forall x, y \in \mathbb{R}$, $x \equiv y [\pi]$ \Longrightarrow $x \equiv y [2\pi]$.
 - 3) $\forall x, y \in \mathbb{R}$, $2x \equiv 2y [2\pi] \implies x \equiv y [\pi]$.
 - 4) $\forall x, y \in \mathbb{R}$, $x \equiv y [\pi]$ \Longrightarrow $2x \equiv 2y [\pi]$.
 - 5) $\forall x, y \in \mathbb{R}$, $2x \equiv 2y [\pi] \implies x \equiv y [\pi]$.

1 FONCTIONS sin, cos ET tan

Substitute des graphes des fonctions sin, cos et tan et je connais par cœur les valeurs usuelles de ces fonctions, y compris pour tan.

Déterminer de tête les valeurs de : $\sin \frac{7\pi}{2}$, $\cos \frac{5\pi}{6}$, $\sin \frac{3\pi}{4}$, $\cos \left(-\frac{8\pi}{3}\right)$ et $\tan \left(-\frac{\pi}{6}\right)$.

Sur Je sais dériver les fonctions sin, cos et tan. Je sais que la formule de dérivation de tan permet de calculer une tangente à partir d'un cosinus et vice versa.

 \bigcirc Je sais résoudre les équations : $\sin x = \sin y$, $\cos x = \cos y$ et $\tan x = \tan y$, et je sais visualiser sur une figure pourquoi le résultat est vrai.

Résoudre les équations suivantes d'inconnue $x \in [0, 2\pi[: \sin(2x) = \sin(3x)]$ et $\cos(2x) = -\frac{1}{2}$.

Solution Je sais retrouver de tête, mais sur un dessin, les formes simplifiées des expressions du genre : $\sin(x+\pi)$, $\cos\left(x+\frac{\pi}{2}\right)$, $\sin(\pi-x)$...

- On peut résumer la 2π -périodicité du (co)sinus en disant que « la fonction $x \mapsto x + 2\pi$ préserve le (co)sinus ». Quelle autre transformation importante préserve le cosinus ? le sinus ? Quelle transformation importante transforme le sinus en cosinus et vice versa ?
- Simplifier pour tous $x \in \mathbb{R}$ et $n \in \mathbb{Z}$: $\cos(x + 17\pi)$ et $\sin(x + n(n+1)\pi)$.

 \odot Je sais par cœur les développements : $\sin(x \pm y)$, $\tan(x \pm y)$... Je sais retrouver très rapidement les développements correspondants pour : $\sin x \cos y$, $\cos x \cos y$... Je sais enfin par cœur les formules de duplication.

```
\bigcirc Je sais transformer : a\cos\theta + b\sin\theta en : c\cos(\theta + \varphi) ou c\sin(\theta + \varphi).
```

Proposer des valeurs de c et φ pour lesquelles pour tout $\theta \in \mathbb{R}$: $3\cos\theta - \sqrt{3}\sin\theta = c\sin(\theta + \varphi)$.

2 FONCTIONS Arcsin, Arccos ET Arctan

Su Je sais définir les fonctions Arcsin, Arccos et Arctan. J'ai compris l'importance du domaine de référence grâce auquel chacune de ces fonctions est définie.

- Pour quelles valeurs de x les relations : Arcsin $\sin x = x$ et $\sin \operatorname{Arcsin} x = x$ sont-elles vraies ? Même question avec les fonctions $\cos \operatorname{Arccos} x = x$
- Simplifier: Arccos $\cos \frac{29\pi}{6}$ et Arcsin $\sin \frac{17\pi}{6}$.
 - Je sais tracer l'allure des graphes des fonctions Arcsin, Arccos et Arctan.
 - Se Je sais dériver les fonctions Arcsin, Arccos et Arctan et je sais sur quels domaines elles sont dérivables.

CORRECTION DES EXERCICES

- 1
- 1) Vrai. Si $x = y + 2k\pi$ pour un certain $k \in \mathbb{Z}$, alors $x = y + k'\pi$ avec k' = 2k et k' est bien un entier.
- **2)** Faux. Si $x = y + k\pi$ pour un certain $k \in \mathbb{Z}$, rien ne garantit que k est pair. Par exemple : $0 \equiv \pi [\pi]$ mais : $0 \not\equiv \pi \left[2\pi \right].$
- 3) Vrai. Si $2x = 2y + 2k\pi$ pour un certain $k \in \mathbb{Z}$, alors $x = y + k\pi$, tout simplement!
- 4) Vrai. Si $x = y + k\pi$ pour un certain $k \in \mathbb{Z}$, alors $2x = 2y + 2k\pi = 2y + k'\pi$ avec k' = 2k et k' est bien un entier.
- 5) Faux. Si $2x = 2y + k\pi$ pour un certain $k \in \mathbb{Z}$, rien ne garantit que k est pair. Par exemple : $2 \times \frac{\pi}{2} \equiv 2 \times 0 \ [\pi]$ mais: $\frac{\pi}{2} \not\equiv 0 \ [\pi]$.

$$\frac{1}{2} \sin \frac{7\pi}{2} = -1, \quad \cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2}, \quad \sin \frac{3\pi}{4} = \frac{1}{\sqrt{2}}, \quad \cos \left(-\frac{8\pi}{3}\right) = -\frac{1}{2} \quad \text{et} \quad \tan \left(-\frac{\pi}{6}\right) = -\frac{1}{\sqrt{3}}.$$

- Pour tout $x \in [0, 2\pi[$: $\cos(2x) = -\frac{1}{2}$ \iff $\cos(2x) = \cos\frac{2\pi}{3}$

$$\Leftrightarrow 2x \equiv \frac{2\pi}{3} [2\pi] \text{ ou } 2x \equiv -\frac{2\pi}{3} [2\pi]$$

$$\Leftrightarrow x = \frac{\pi}{3} [\pi] \text{ ou } x = \frac{\pi}{3} [\pi]$$

$$\iff$$
 $x \equiv \frac{\pi}{3} [\pi]$ ou $x \equiv -\frac{\pi}{3} [\pi]$

$$\iff x \in \left\{\frac{\pi}{3}, \frac{4\pi}{3}\right\} \text{ ou } x \in \left\{\frac{2\pi}{3}, \frac{5\pi}{3}\right\} \qquad \iff x \in \left\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\right\}$$

et:

$$\sin(2x) = \sin(3x)$$
 \iff $2x \equiv 3x [2\pi]$ ou $2x \equiv \pi - 3x [2\pi]$

$$\iff$$
 $x \equiv 0 [2\pi]$ ou $x \equiv \frac{\pi}{5} \left[\frac{2\pi}{5} \right]$

$$\overset{x \in [0,2\pi[}{\iff} \quad x = 0 \quad \text{ou} \quad x \in \left\{ \frac{\pi}{5}, \frac{3\pi}{5}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5} \right\} \quad \iff \quad x \in \left\{ 0, \frac{\pi}{5}, \frac{3\pi}{5}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5} \right\}.$$

- La fonction $x \mapsto -x$ préserve le cosinus par parité : $\forall x \in \mathbb{R}$, $\cos(-x) = \cos x$.

La fonction $x \mapsto \pi - x$ préserve quant à elle le sinus : $\forall x \in \mathbb{R}$, $\sin(\pi - x) = \sin x$.

La fonction $x \mapsto \frac{\pi}{2} - x$ transforme les sinus en cosinus et vice versa :

$$\forall x \in \mathbb{R}, \quad \sin\left(\frac{\pi}{2} - x\right) = \cos x \quad \text{et} \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x.$$

- - Pour tous $x \in \mathbb{R}$ et $n \in \mathbb{Z}$: $\cos(x+17\pi) = -\cos x$ et $\sin(x+n(n+1)\pi) = \sin x$ car n(n+1), produit de deux entiers consécutifs, est pair.

Pour tout $\theta \in \mathbb{R}$: $3\cos\theta - \sqrt{3}\sin\theta = 2\sqrt{3}\left(\frac{\sqrt{3}}{2}\cos\theta - \frac{1}{2}\sin\theta\right) = 2\sqrt{3}\left(\sin\frac{2\pi}{3}\cos\theta + \cos\frac{2\pi}{3}\sin\theta\right) = 2\sqrt{3}\sin\left(\theta + \frac{2\pi}{3}\right)$.

- - Pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$: Arcsin $\sin x = x$ et pour tout $x \in [-1, 1]$: $\sin \operatorname{Arcsin} x = x$.

Pour tout $x \in [0, \pi]$: Arccos $\cos x = x$ et pour tout $x \in [-1, 1]$: $\cos \operatorname{Arccos} x = x$.

Pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$: Arctan $\tan x = x$ et pour tout $x \in \mathbb{R}$: $\tan \operatorname{Arctan} x = x$.

Arccos $\cos \frac{29\pi}{6} = \text{Arccos } \cos \frac{5\pi}{6} = \frac{\frac{5\pi}{6} \in [0,\pi]}{6} = \frac{5\pi}{6}$

Arcsin $\sin \frac{17\pi}{6}$ = Arcsin $\sin \frac{5\pi}{6}$ = Arcsin $\sin \left(\pi - \frac{5\pi}{6}\right)$ = Arcsin $\sin \frac{\pi}{6}$ = $\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \frac{\pi}{6}$