Molecular Biology

Rogier van Wijck

29-5-2018

Internal Medicine, ErasmusMC

Inside the human body

- Different tissues/cell types
 - All cells have the same DNA
 - 46 chromosomes
 - 23 from your mother
 - 23 from your father
 - Yet different cell types
 - Unique cell environment
 - Gene expression profiles

17

16

Central Dogma of molecular biology

- DNA (~23,000)
 - Harbours the genetic information
 - Coded blueprint for all processes essential for life
- RNA (~100,000)
 - Derivative of DNA
 - Different forms of RNA with different functions
 - Gene Expression Profiles
- Protein (~1,000,000)
 - Molecules that perform the processes
 - Each protein has a function or multiple functions
 - Protein Expression Profile

DNA

- Four buildingblocks
 - Adenosine (A), Thymine (T), Guanine (G), Cytosine (C)
- Built of two strands
 - Two strands are complementary
 - If A on the one strand, T on the other
 - If C on the one strand, G on the other
 - Combination of AT/CG is called a base pair
- The sequence of these is the genetic information
 - ~3 billion base pairs
 - Unique for each individual
 - ~150,000 differences between random persons

The Genome

- The collection of all basepairs (AT/GC) is called the genome
 - Non-coding (~98%)
 - Regulation
 - Coding part (~1.5%)
 - Genes
 - Chromosomal location
 - DNA that gives rise to all proteins
 - One gene gives rise to one protein

Methylation

- Molecules added on DNA
- Involved in gene expression regulation
 - Methylated: gene switched off
 - Unmethylated: gene switched on

Methylation

- Methylated
 - The pilar is above ground so cars are blocked
 - You can not reach your destination (gene)

- Unmethylated
 - The pilar is below ground so cars can pass
 - You can reach your destination (gene)

THE CENTRAL DOGMA

RNA

- Similar to DNA, but only one strand
- Four building blocks
 - Adenosine (A), Uracil (U), Guanine (G), Cytosine (C)
 - U is basically the T
- DNA to RNA (Transcription)
 - DNA is 'copied' to RNA (Only the coding part)
 - A on DNA becomes U on RNA
 - T on DNA becomes A on RNA
 - C on DNA becomes G on RNA
 - G on DNA becomes C on RNA

Proteins

- Decoded from RNA (Translation)
 - Three letters correspond to aminoacid
 - Same aminoacids with different combination
 - Proteins are sequences of aminoacids

Proteins play the most important role in all processes

• Regulation on DNA, RNA, Proteins

Positive regulation		Negative regulation	
Activator	Transcription	Repr	Pessor + No transcription
Promoter Operator		Promoter Ope	erator
Activator- binding site	No transcription	Activator- binding site	Transcription
Promoter Operator		Promoter Ope	erator
(No activator)		(No repressor)	

Central Dogma to the Omics

What can you measure?

What data will you get at the hackathon?

Omics – What we do

- Because DNA, RNA and Protein are related
 - you see changes in each omic seperately
 - you can follow a gene through the omics

Omics – What we want

Omics – Integration

Genomics

- Focusses on DNA itself
 - Base Pairs
 - The amount of DNA

Genomics – Base pairs

- Changes in base pair
 - Mutation
 - Not all mutations will give rise to disease
 - Dependent on function of a gene
 - Can alter gene expression
 - Can change protein function

Genomics – Gene Expression

Changes in gene expression

Genomics – Protein function

- Big changes in protein function
 - Dependent on severity of mutation
 - Dependent on function of gene
 - Proto-oncogene
 - Activates cell division/cell survival
 - Tumor suppressor gene
 - Inhibits cell division/cell survival

Genomics – Amount of DNA

- Copy Number Variation (CNV)
 - Normal at every position two copies
 - One each from your mother and father
 - Small aberrations
 - Deletions
 - Amplifications
 - Chromosomal aberrations
 - Deletions
 - Acute Myeloid Leukemia
 - Monosomy 7
 - Amplifications
 - Down Syndrome
 - Trisomy 21

Epigenomics

- Focusses on what is happening on the DNA
 - Methylation

Methylation

- Molecules added on DNA
- Involved in gene expression regulation
 - Methylated: gene switched off
 - Unmethylated: gene switched on

Transcriptomics

- Focusses on RNA
 - Gene expression
 - miRNA

Transcriptomics – Gene Expression

- DNA get copied in RNA
 - Gene Expression looks at mRNA
 - Type of RNA that is copied from the genes
 - Quantification of the processes happening in the cell

Transcriptomics – miRNA

- Another RNA is miRNA
 - Regulation of processes
 - Especially regulates mRNA
 - Degradation of mRNA
 - Stabilization of mRNA

Proteomics

Focusses on proteins

Proteomics

- Protein expression
 - Processes in a cell
 - Most complex
- Technically not posible to measure all proteins

THE CENTRAL DOGMA

Relationship of the Omics

- Gene Expression Regulation
 - Genomics
 - SNPs/Mutations
 - Copy Number
 - Epigenomics
 - Methylation
 - Transcriptomics
 - miRNA
 - Proteomics
 - Proteins

- Protein Function
 - Genomics
 - Mutations

Omics Integration Necessary

