Real Analysis 605 MT Review

Hui Sun

October 6, 2024

Contents

1 Definitions 3

Chapter 1

Definitions

Definition 1.1 (sequence of sets). Let $\{E_k\} \subset \mathbb{R}^n$ be a sequence of sets is said to increase to $\bigcup_k E_k$ if $E_k \subset E_{k+1}$ for all k, and decrease to $\bigcap_k E_k$ if $E_k \supset E_{k+1}$ for all k.

Definition 1.2 (limsup, liminf of sets). Let $\{E_k\}_{k=1}^{\infty}$ be a sequence of sets, we define

$$\limsup E_k = \bigcap_{j=1}^{\infty} \left(\bigcup_{k=j}^{\infty} E_k \right), \quad \liminf E_k = \bigcup_{j=1}^{\infty} \left(\bigcap_{k=j}^{\infty} E_k \right)$$

Definition 1.3 (metric). Let d be a metric on \mathbb{R}^n , let $x, y \in \mathbb{R}^n$, then

- 1. d(x, y) = d(y, x)
- 2. $d(x,y) \ge 0$, and d(x,y) = 0 if and only if x = y.
- 3. $d(x,y) \le d(x,z) + d(y,z)$.

Definition 1.4 (limsup, liminf of sequences). Let $\{a_k\}$ be a sequence of points in \mathbb{R} , then

$$\limsup_{k \to \infty} a_k := \lim_{j \to \infty} \{ \sup_{k \ge j} a_k \}$$

and

$$\liminf_{k \to \infty} a_k := \lim_{j \to \infty} \{\inf_{k \ge j} a_k\}$$

Definition 1.5 (distance between sets). Let $E_1, E_2 \subset \mathbb{R}^n$, then the distance between E_1 and E_2 is defined as

$$d(E_1, E_2) = \inf\{|x - y| : x \in E_1, y \in E_2\}$$

Definition 1.6 (open set). Let $E \subset \mathbb{R}^n$, then E is called open if for each $x \in E$, there exists δ such that $B_{\delta}(x) \subset E$.

A subset E_1 of E is said to be relatively open with respect to E if it can be written as $E_1 = E \cap G$ for some open set G.

Definition 1.7 (A_{δ} , A_{σ} sets). A set A is said to be of type A_{δ} if it can be written as a countable intersection of sets and to be of type A_{σ} if it can be written as a countable union of sets. Then G_{δ} implies a countable intersection of open sets, and F_{σ} implies the countable union of closed sets.

Definition 1.8 (perfect set). C is called a perfect set if it is a closed set such that every point in C is a limit point.

Definition 1.9 (compact set). A set *E* is compact if and only if every open cover of *E* has a finite subcover.

Definition 1.10 (monotone function). A function f defined on $I \subset \mathbb{R}$ is monotone increasing if $f(x) \leq f(y)$ whenever x < y. Similarly defined for monotonically decreasing.

Definition 1.11 (continuous). Let f be defined on a neighborhood of x_0 , then f is said to be continuous at x_0 if $f(x_0)$ is finite and $\lim_{x\to x_0} f(x) = f(x_0)$.

Definition 1.12 (continuous relative to a set). Let f be defined in only a set E containing x_0 , f is said to be continuous at x_0 relative to E if $f(x_0)$ is finite and either x_0 is an isolated point of E or x_0 is a limit point of E and for $x \in E$.

$$\lim_{x \to x_0} f(x) = f(x_0)$$

If $E_1 \subset E$, a function is continuous in E_1 relative to E if it is continuous relative to E at every point in E_1 .

Definition 1.13 (uniform convergence). A sequence $\{f_k\}$ defined on E is said to uniformly convergence on E to a finite f if given $\varepsilon > 0$, there exists K such that for all $k \ge K$, $x \in E$,

$$|f_k(x) - f(x)| < \epsilon$$

Definition 1.14 (Riemann integral). Let f be bounded on an interval I, partition I into a finite collection Γ of nonoverlapping intervals, denote $|\Gamma| = \max_k diam(I_k)$, select points $\xi_k \in I_k$, let

$$R_{\Gamma} = \sum_{k=1}^{N} f(\xi_k) |I_k|$$

and

$$U_{\Gamma} = \sum_{k=1}^{N} (\sup_{x \in I_k} f(x))|I_k|, \quad L_{\Gamma} = \sum_{k=1}^{N} (\inf_{x \in I_k} f(x))|I_k|$$

The Riemann integral exists if $\lim_{|\Gamma|\to 0} R_{\Gamma}$ exists and the limit A is the Riemann integral. That is, given $\varepsilon>0$, there exists $\delta>0$ such that if $|\Gamma|<\delta$, we have $|A-R_{\Gamma}|<\varepsilon$ for any Γ and any chosen $\{\xi_k\}$. This is equivalent to the statement:

$$\inf_{\Gamma} U_{\Gamma} = \sup_{\Gamma} L_{\Gamma} = A$$

We begin chapter 2.

Definition 1.15 (variation). Let f be defined on [a,b], the variation of f over [a,b] is

$$V(f) = \sup_{\Gamma} \sum_{i=1}^{m} |f(x_i) - f(x_{i-1})|$$

where Γ is any partition $\{x_0, x_1, \ldots, x_m\}$ of [a, b].

Definition 1.16 (Lipschitz). Let f be defined on [a,b], then f is said to be Lipschitz if there exists an absolute constant C such that

$$|f(x) - f(y)| \le C|x - y|$$

for all $x, y \in [a, b]$.

Definition 1.17 (splitting). For any $x \in \mathbb{R}$, we can write

$$x^+ = \begin{cases} x, x > 0 \\ 0, x \le 0 \end{cases}$$

$$x^{-} = \begin{cases} 0, x > 0 \\ -x, x \le 0 \end{cases}$$

then $|x| = x^+ + x^-, x = x^+ - x^-.$

Definition 1.18 (P_{Γ} , N_{Γ}). For any f and any partition Γ, define

$$P_{\Gamma} = \sum_{i=1}^{m} [f(x_i) - f(x_{i-1})]^{+}$$

and

$$N_{\Gamma} = \sum_{i=1}^{m} [f(x_i) - f(x_{i-1})]^{-}$$

similarly, we define

$$P = \sup_{\Gamma} P_{\Gamma}, N = \sup_{\Gamma} N_{\Gamma}$$

Definition 1.19 (rectifiable curve). Let *C* be a curve, i.e.

$$C: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

Let Γ be any partition, define

$$L = \sup_{\Gamma} \sum_{i=1}^{m} ((\phi(t_i) - \phi(t_{i-1}))^2 + (\psi(t_i) - \psi(t_{i-1}))^2)^{1/2}$$

then C is rectifiable if $L < +\infty$.

Definition 1.20 (Riemann-Stieltjes integral). Let f, ϕ be finite on an interval [a, b], let $\Gamma = \{a = x_0 = \dots < x_m = b\}$ be any partition, define

$$R_{\Gamma} = \sum_{i=1}^{m} f(\xi_i) \left[\phi(x_i) - \phi(x_{i-1}) \right]$$

If $\lim_{|\Gamma|\to 0} R_{\Gamma}$ exists, then we call this the Riemann-Stieltjes integral. That is, given any $\varepsilon>0$, there is $\delta>0$ such that when $|\Gamma|<\delta$ we have $|I-R_{\Gamma}|<\varepsilon$. We denote it as

$$I = \int_{a}^{b} f(x)d\phi(x) = \int_{a}^{b} fd\phi$$

Definition 1.21 (upper, lower R-S sum). Let f be bounded and ϕ be monotonically increasing. Let

$$m_i = \inf_{[x_{i-1}, x_i]} f(x), M_i = \sup_{[x_{i-1}, x_i]} f(x)$$

then we define the lower and upper Riemann-Stieltjes sums L_{Γ} , U_{Γ} as follows:

$$L_{\Gamma} = \sum_{i=1}^{m} m_i [\phi(x_i) - \phi(x_{i-1})], U_{\Gamma} = \sum_{i=1}^{m} M_i [\phi(x_i) - \phi(x_{i-1})]$$

Definition 1.22 (Lebesgue outer measure). For let S be a collection of n-dimensional intervals that cover E, then the Lebesgue outer measure of E is given by

$$|E|_e = \inf \sigma(S)$$

where $\sigma(S) = \sum_{I_k \in S} |I_k|$.

Definition 1.23 (Lebesgue measurable). A subset E of \mathbb{R}^n is called Lebesgue measurable if and only if given any $\varepsilon > 0$, there exists an open set G such that

$$E \subset G, |G - E|_e < \varepsilon$$

If E is measurable, then $|E| = |E|_e$.

Definition 1.24 (σ -algebra). A σ -algebra is a collection of sets that is closed under taking complement, countable union, and countable intersection.

The σ -algebra generated by containing all the open sets is called the Borel σ -algebra.

Definition 1.25 (Lebesgue measurable functions). Let E be a measurable set in \mathbb{R}^n , f is a measurable function if for all finite a, the set

$$\{x \in E : f(x) > a\}$$

is measuarble.

Definition 1.26 (upper,lower semicontinuous). Let f be defined on E, then f is use at x_0 if for every $M > f(x_0)$, there exists $\delta > 0$ such that when $|x - x_0| < \delta$, we have f(x) < M. f is called use relative to E if it is use at every limit point of E.

Definition 1.27 (convergence in measure). Let f, $\{f_k\}$ be defined and a.e. on E, then $f_k \to f$ in measure if for every $\varepsilon > 0$,

$$\lim_{k \to \infty} |\{x \in E : |f(x) - f_k(x)| > \varepsilon\} = 0$$