NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

UNMANNED AERIAL VEHICLE/REMOTELY PILOTED AIRCRAFT DESIGN SELECTION BASED ON SERVICE-STATED METEOROLOGICAL/OCEANOGRAPHIC REQUIREMENTS

by

Robert J. Stanton

March 1999

Thesis Advisor:

Second Reader:

Philip A. Durkee Carlyle H. Wash

Approved for public release; distribution is unlimited.

19990423 083

REPORT	DOCUMENTATIO	N PAGE	Form Approved OMB No. 0704-0188
gathering and maintaining the data needed, a	nd completing and reviewing the collecti ons for reducing this burden to Washington	on of information. Send comments regard n Headquarters Services, Directorate for it	reviewing instructions, searching existing sources, ing this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson oject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE AND DATES COV	ERED
	March 1999	Mass	ter's Thesis
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
UNMANNED AERIAL VEH DESIGN SELECTION BASE METEOROLOGICAL/OCE	D ON SERVICE-STATED		
6. AUTHOR(S)			
LCDR Robert J. Stanton			
7. PERFOMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Naval Postgraduate School Monterey, CA 93943-5000			
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
of Defense or the U.S. Government	nent	do not reflect the official po	licy or position of the Department
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public release; di	stribution is unlimited.		
13. ABSTRACT (Maximum 200 word	ls)		
Meteorological/Oceanographic Structured Query Language) Measurement, a subset of a lar full. Successful aircraft perfor shipboard) launches and recove propeller or rotor wash. A sam are included, in database form,	(METOC) data collection is links RPA flight perform ger Joint Service METOC Re rmance parameters include veries, atmospheric profiling of pling of existing (or planned	s presented. A Microsoft A mance parameters to indiverguirements database table, property for a controllability/programmers capabilities, hover ability, long	emotely piloted aircraft (RPA) for Access database query (written in idualized METOC Elements of resented elsewhere in the thesis in lability ranges, flexible (including g endurance and airframes free of atation, their ranges and accuracies
14. SUBJECT TERMS Unmanned aerial vehicle, UAV	, remotely piloted aircraft, R	PA, meteorological instrumer	15. NUMBER OF PAGES
Meteorological/Oceanographic			16. PRICE CODE N/A
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT: OF ABSTRACT	
Unclassified	Unclassified	Unclassified	UL
NSN 7540-01-280-5500			Standard Form 298 (Pey 2-89)

Approved for public release; distribution is unlimited

UNMANNED AERIAL VEHICLE/REMOTELY PILOTED AIRCRAFT DESIGN SELECTION BASED ON SERVICE-STATED METEOROLOGICAL/OCEANOGRAPHIC, REQUIREMENTS

Robert J. Stanton Lieutenant Commander, United States Navy B.S., University of Mary, 1984

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY AND PHYSICAL OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL

March 1999

Author:

Robert J. Stanton

Approved by:

Philip A. Durkee, Thesis Advisor

Carlyle H. Wash, Second Reader and Chairman,

Department of Meteorology

ABSTRACT

A decision tool for choosing most efficient unmanned aerial vehicles (UAV's)/remotely piloted aircraft (RPA) for Meteorological/Oceanographic (METOC) data collection is presented. A Microsoft Access database query (written in Structured Query Language) links RPA flight performance parameters to individualized METOC Elements of Measurement, a subset of a larger Joint Service METOC Requirements database table, presented elsewhere in the thesis in full. Successful aircraft performance parameters include vast controllability/programmability ranges, flexible (including shipboard) launches and recoveries, atmospheric profiling capabilities, hover ability, long endurance and airframes free of propeller or rotor wash. A sampling of existing (or planned) airborne METOC instrumentation, their ranges and accuracies are included, in database form, for further reference.

DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at risk of the user.

TABLE OF CONTENTS

	INTRODUCTION	
II.	DATABASE TABLE CONSTRUCTION	7
	A. JOINT METOC REQUIREMENT TABLE	
	B. RPA DETAIL TABLE	9
	C. AIRBORNE INSTRUMENTATION TABLE	9
III.	PROCEDURES AND DATA 1	1
IV.	RESULTS 7	3
	CONCLUSIONS 8	
	OF REFERENCES 8	
INITI	IAL DISTRIBUTION LIST 8	7

LIST OF TABLES

Table \	3.1	Joint Requirements Table	14
Table	3.2	Horizontal Scale Table (H1)	
Table	3.3	Horizontal Land/Ocean Table (H2)	
Table	3.4	Vertical Scale Table (V)	39
Table	3.5	Measurement Duration Table (T1)	40
Table	3.6	Measurement Refresh Table (T2)	40
Table	3.7	Unperturbed Air Stream Requirement/Delivery	
Potent	ial T		40
Table	3.8	Joint METOC Element Table	40
Table	3.9	Selected data from the RPA Table; spatial,	
			45
		SQL Code linking RPA and Joint METOC Element	
		assignments (Tables 3.8 and 3.9)	52
		Selected data from the Airborne Equipment	
			54
Table	3.12		59
Table	3.13		59
			62
Table	3.15	Federal Agency legend	63
			63
Table	3.17	Element1 legend	64
Table	3.18		66
Table	3 19	Accuracy1 legend	67
Table	3 20	Element2 legend	68
Table	3 21		68
Table	3 22	Accuracy2 legend	69
Table	2 22	Element3 legend	69
Table	3.23	Paras lagard	
Table	3.24		70
Table	3.45		70
Table	3.26		70
Table	3.27	Range4 legend	71
Table	3.28		71
Table	3.29	Element5 legend	71
Table	3.30	Range5 legend	72
Table	3.31	Accuracy5 legend	72
Table	4.1	Most successful RPA	73
Table	4.2	Most successful RPA possible	73
Table	4.3	"4 1 2 1 1 1" Unmeasured METOC Elements	74
Table	4.4	Extremely successful RPA's	75
Table	4.5	Extremely successful RPA's	
Table		Highly successful RPA's	
Table			77
Table		the control of the co	79
Table		Tropical Storm sub-Elements	

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Philip A. Durkee, Department of Meteorology, second reader Dr. Carlyle H. Wash, Chairman of the Department of Meteorology and SQL guru Dr. Daniel R. Dolk, Department of Information Technology Management, Naval Postgraduate School, for their guidance and support during the development of this perhaps somewhat unusual thesis. Additionally, I owe Mr. Tom Knopp of the Fleet Numerical Meteorology/Oceanography Center a debt of gratitude for his support and patience in getting me started with Microsoft Access as well as for the kernel of the column assignment idea.

My most sincere thank you, however, is to my wife Barb and children Mitchell, Elizabeth and Summer. Without their understanding and patience over the years (toward a husband and father forever buried in homework) this project could have never been contemplated. Hang on guys, Daddy's almost got his evenings and weekends back.

I. INTRODUCTION

The initial and perhaps most profound assumption motivating this thesis is that the collection of Joint Service (Air Force, Army, Marines, Navy) Meteorological and Oceanographic (METOC) operational measurement deficiencies could and will warrant dedicated Unmanned Aerial Vehicle (UAV)/Remotely Piloted Aircraft (RPA) missions in the near future. We believe this assumption is inevitable due to the process of education by example, aided by scientific and technological advances.

The following anecdotal description of the events surrounding Operation Eagle Claw amply illustrates a case where UAV/RPA's could have been employed to great advantage (Bates and Fuller, 1986). On April 24, 1979 (dusk), eight U.S. Navy RH-53D Sea Stallion helicopters disembarked from the USS *Nimitz* (in the Gulf of Oman) en route Desert One (in Iran). Six helicopters were essential for the hostage rescue attempt. Shortly after landfall one helicopter aborted due to mechanical difficulties. The remaining seven ran into several walls of suspended (unforecast) dust outside Bam, Iran. Eventually, while still flying through dust clouds, a second helicopter aborted due to multiple navigational and flight instrument failures and followed the first back to the *Nimitz*. The remaining (minimum set) six helicopters touched down safely at Desert One where yet a third helicopter experienced a mission-ending hydraulic problem. Operation Eagle Claw was aborted.

While aborting, thirty-six engines of (already present) C-130s and the RH-53Ds caused further visibility problems. Attempting to refuel, a helicopter crashed into the nose of a C-130 refueler when the helicopter pilot lost vision in his own rotor bladegenerated dust clouds. Both aircraft burned and eight crewmembers died.

Upon examining the Air Weather Service (AWS) operational support, an initial white paper concluded that the forecasts (for the entire operational area) had been accurate except for predicting the dust. An independent study group (of distinguished

AWS alumni) concluded that its forecasts had been as accurate as data and technology would permit. C-130 weather reconnaissance aircraft had been used neither in their reconnaissance nor pathfinder roles due to tight security surrounding the mission. Furthermore, the Defense Meteorological Satellite Program (DMSP) orbiting satellite could not spot low dust clouds at night. Ultimately, the RH-53D pilots never suspected suspended dust as a flight hazard and therefore never prepared for it (Bates and Fuller, 1986). A third inquiry (of senior-ranking officers) concluded that a high helicopter failure rate and (unforecast) en route low visibility flight conditions led to mission failure for Operation Eagle Claw.

Properly designed, outfitted and programmed, a squadron of remotely piloted aircraft (with today's technology) could have selectively meteorologically sampled the entire theater of military operations. They could have collected measurements such as temperature and relative humidity (fog avoidance), flight-level winds and atmospheric contaminants (inflight hazard avoidance and fuel planning) or the progression of solar shadow zones behind high-relief topography (stealthy approach of low flying aircraft). The extremely short counter detection ranges of these impressively capable air vehicles would have made them an excellent choice for the reconnaissance and planning of Operation Eagle Claw.

The world has since experienced an explosion of UAV/RPV-friendly METOC airframes and sensors. One example is the 21 August 1998 successful trans-Atlantic flight of Environmental Systems and Services' autonomous aerosonde "Laima." The 13 kg unmanned aircraft flew from Bell Island Airport, Newfoundland to DERA Benbecula Range, Outer Hebrides maintaining an average fuel economy of 1380 mile/US gallon. Laima flew completely autonomously (i.e. no radio communications) for 25 h 38 min of its mission. (Aerosonde Project, 1998) See Figure 1.1

Laima logged Global Positioning System (GPS) locations and altitudes and wind directions and speeds along its entire track. Although the Operational Phase I Aerosonde

has the capacity to carry three Vaisala RSSS901 dropwindsondes to measure temperature, pressure and humidity, none were deployed on this flight. Figure 1.2 shows the wind direction (blue) and speed (red) the Aerosonde measured. The heavy lines are en route winds predicted by the National Center for Environmental Prediction (NCEP) Aviation Model.

Figure 1.1. Flight track of Aerosonde "Laima."

(http://www.bom.gov.au/bmrc/meso/New/Aerosonde/laima.htm Aerosonde Project, 1998)

Figure 1.2. Aerosonde measured winds (light lines) vs. NCEP Aviation Model forecast winds (heavy lines). (http://www.bom.gov.au/bmrc/meso/New/Aerosonde/laima.htm Aerosonde Project, 1998)

Development efforts for the microminiaturization of multiply capable weather stations have been no less impressive. Space Computer Corporation's Micro Weather Station (MWS) is shown in Figures 1.3 and 1.4.

Figure 1.3. Space Computer Corporation's Micro Weather Station (MWS). (http://www.spacecomputer.com/mmw.html Space Computer Corporation, 1998)

Measuring approximately $1.5" \times 2.5" \times 6.5"$, the MWS is designed to collect meteorological and other environmental data in littoral areas. The MWS fits within the

(Air Force and Navy) military standard ALE-47 chaff/flare dispenser. When ruggedized the MWS will withstand the high g-forces associated with aircraft ejection and parachute landing. It will also be outfitted with a miniaturized microwave transmitter to allow the utilization of commercial satellites to provide near-real-time data transmission.

Figure 1.4. Space Computer Corporation's Micro Weather Station (MWS), wiring diagram.

(http://www.spacecomputer.com/mmw.html Space Computer Corporation, 1998)

As with RPA airframes and sensors, operating radii, communicability and interoperability of these air vehicles have greatly improved. Spotlighting seamless interoperability was the June 1996 flight of a Predator RPA when it was handed-off to pilots and payload operators embarked in the torpedo control room of the USS *Chicago* (SSN 721) in support of a Special Operations Forces exercise. Multiple, in-flight handoffs of the Predator were accomplished between the afloat (littoral water) fast-attack submarine and a shore-based Ground Control Station with and without coordinating voice communication (the remote Ground Control Station conducted the launches and recoveries). This event realized the achievable goal of a submarine, on-scene tactical commander having direct, real-time control of a remotely-piloted aircraft, greatly extending his "eyes" and "ears" beyond that of a traditional periscope. The Naval Research Laboratory has addressed potential mission-threatening RPA enroute weather avoidance (Naval Research Laboratory, 1993).

Research Laboratory has addressed potential mission-threatening RPA enroute weather avoidance (Naval Research Laboratory, 1993).

Implied in the initial assumption of METOC missions warranting their own dedicated RPA flights is the expectation RPA operators would be as opportunistic as possible in the collection of diverse METOC parameters (maybe not affecting their present mission). Of course they would have to possess knowledge of those more diverse requirements

The objectives of this thesis are twofold:

- Present three separate and distinct (upgradeable, updateable) database tables;
 - (1) remotely piloted aircraft performance parameters, (tblUAV (flat file) table)
 - (2) airborne meteorological instrument measurement capabilities, (tblAirInstrCaps table)
 - (3) Joint Service METOC requirements (tbl1Joint (flat file) table).
- Determine optimal RPA performance parameters to most efficiently capture Service-stated METOC requirements by linking the *tblUAV* (*flat file*) to a subset of the *tbl1Joint* (*flat file*) table.

Chapter II describes construction of the database tables. Chapter III outlines procedures and data, Chapter IV the results obtained therefrom. Chapter V discusses final conclusions and recommendations.

II. DATABASE TABLE CONSTRUCTION

Following the initial assumption of METOC missions warranting their own dedicated RPA flights, more practical assumptions lead to designing optimal operational RPA prototypes for the capture of Joint METOC requirements. Following is a list of additional assumptions and philosophies used in the study:

- Payload capacity of an RPA was not considered in the consideration of meteorological equipment. Embedded in this assumption is the belief that microminiaturization technology will ultimately enable extremely wide ranges of METOC sensors to be carried on any one RPA,
- RPA's were considered merely as flying chassis, with no predetermined meteorological measuring abilities. Spatial, temporal and unperturbed air stream classifications were assigned from an overall view of each RPA,
- Service METOC Requirement Elements of measurement, e.g. absolute humidity, barometric pressure (surface, profile, upper air), dew point, relative humidity (surface, profile, upper air), temperature (surface, profile, upper air), wind (surface, profile, upper air), etc., were all ranked equal. The purpose was to find the broadest range of METOC Elements measurable by a particular (or group of) remotely piloted aircraft,
- No database interrelationships were established to indicate the existence of an instrument to measure a specific METOC Element or to monitor whether a particular instrument would satisfy METOC Element accuracy requirements.

A. JOINT METOC REQUIREMENT TABLE

The Joint METOC Requirement Table fields were constructed as a merger of Navy/Marine and Air Force/Army stated requirements. The Chief of Naval Operations' Oceanographer of the Navy (CNO N096) provided databases of ten separate Navy/Marine Corps Warfare Area Requirements, very recently collected (circa 1998) directly from those Warfare Areas: Anti-air Warfare (AAW), Amphibious Warfare (AMW), Anti-Surface Warfare/Over the Horizon Targeting (ASUWOTHT), Logistics and Sealift, including Joint Logistics Over the Shore - JLOTS (LOGSEA), Mine Countermeasures/Mine Warfare (MCMMIW), Operations Other than War (OOTW), Special Operations (SPECWAR), Strike Warfare (STW), Space, Information Warfare, Communications, Command and Control Warfare (SIWCC), and Undersea Warfare (USW) (Chief of Naval Operations Oceanographer of the Navy, 1998). An analogous Air Force/Army construction, the Theater Battle Management (TBM) Gridded Data Matrix of 21 February 1997, was converted to database form and merged with the aforementioned Navy/Marine Corps databases.

The Navy/Marine Corps-merged Warfare METOC requirements were compared against the CNO N096 prioritized list of METOC Oceanography Requirements Status Reports (ORSR's) Priorities I and II to ensure general conformity. The Air Force/Army Gridded Data Matrix was compared against the Air Force Weather Mission Support Plan-97, Air Force Weather Development Plan, and the Air Force Weather Strategic Plan (1 August 1997). Some elements had to be added to round out the field (e.g. Barometric Pressure was an element. Added fields were Barometric Pressure (surface), Barometric Pressure (profile) and Barometric Pressure (UA)).

The "Element" column of the table was then extracted and configured to consist of unique METOC Elements. Each Element was further assigned spatial, temporal and air stream attributes (by a panel of experts) to facilitate relationships with the RPA Table. This table was seen as the "driver" to generate a "top-down" design philosophy, i.e. the desired RPA performance parameters generated would be exclusively defined by Joint Service

METOC Requirements. The Joint METOC Requirement Table is included, in its entirety (before Element column extraction and modification), in script form in Chapter III.

B. RPA DETAIL TABLE

The RPA detail table fields were primarily filled with information obtained from Jane's Unmanned Aerial Vehicles and Targets 09, 1997 (Jane's Information Group, 1997) and other open source material (e.g. Aviation Week and Space Report, etc.). All airframe types that had some payload capacity were considered, including, for example; remotely controlled balloons, helicopters, aerial targets, artillery targets, monoplanes, etc. For relational concerns each RPA was considered as a flying chassis, imbued with no particular METOC requirement-gathering advantage except its general proximity to potentially gather requirements (e.g. surface, surface and upper atmosphere or upper atmosphere). As with the Joint METOC Elements, spatial (horizontal and vertical), temporal and air stream attributes were assigned based on the individual character of each RPA.

C. AIRBORNE INSTRUMENTATION TABLE

The Airborne Instrumentation table field framework (and some airborne equipment entries) was taken from the December 1995 Federal Directory of Mobile Meteorological Equipment and Capabilities (FCM-I5-1995).(U.S. Department of Commerce, 1995) The directory (no longer maintained) "...objectively catalogs mobile meteorological equipment, software, and capabilities possessed by Federal departments and agencies for the express purpose of facilitating interagency cooperation in the use and acquisition of these capabilities." Using the directory format as a shell, airborne meteorological equipment from selected research agencies such as the Naval Postgraduate School's Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), Atmospheric Radiation Measurement Unmanned Aerospace Vehicle (ARM-UAV) and the National Center for Atmospheric Research (NCAR) were included. This

table is not linked to the RPA Table or the Joint METOC Element Table. It is presented solely as an aid to the airborne instrument designer/planner who has selected an optimal RPA frame for the METOC Elements he/she wants measured and wants to research existing instrumentation.

The present database table design encourages new entries, i.e. any updated, modified or new fields will easily be accommodated and available for immediate query. Users are encouraged to "pull" the database from the World Wide Web site at www.met.nps.navy.mil/thesis/rstanton and experiment with their own assignment entries.

III. PROCEDURES AND DATA

The Joint METOC Requirements Table, as mentioned and described in Chapter II, is presented in it's entirety (422 rows, Table 3.1). If an entry in the Joint METOC Requirements Table's Element column is listed more than once, the entries came from multiple Service sources or different warfare areas within Services. Every duplicate entry in this column will be different somewhere among the remaining columns (e.g. an Army Infantry vs. Navy SEAL entry for Moisture Profile; critical values, update requirements, spatial coverages differ). The Joint METOC Requirements Table's Element column is then categorized, modified and presented in Table 3.8 (185 rows) as the Joint METOC Element Table. Each entry in Table 3.8 is further assigned spatial, temporal and air stream scales (Tables 3.2 & 3.3, 3.4, 3.5 & 3.6, 3.7) according to the following protocol.

Table 3.2 (H1) reflects the magnitude or scale of horizontal space coverage necessary to adequately measure a METOC Element and Table 3.3 (H2) refines where the measurement is required including land, coastal, water or combination thereof. Table 3.4 (V) accounts for the vertical character of METOC Elements, ranging from ocean bottom to upper atmosphere. Table 3.5 (T1) reflects how long it would take to adequately measure a METOC Element and Table 3.6 (T2) further determines maximum elapsed time between measurements. Table 3.7 (UAS) reflects whether a stated METOC Element requires an unperturbed air stream to conduct its measurement.

Subsections of the RPA Table (Table 3.9) illustrate existing or planned remotely piloted aircraft throughout the world today; remotely-piloted helicopters, dirigibles, artillery and towed targets, monoplanes, etc. Assigned to each type of RPA airframe are the same spatial, temporal and undisturbed air stream scales, (Tables 3.2 & 3.3, 3.4, 3.5 & 3.6, 3.7) as were assigned to the Joint METOC Elements, with the following additions: In Table 3.3, a land-based RPA was considered a 1, or COMBINE, if it possessed greater than eight hours endurance and was not limited to a 150 kilometer or less mission radius

(datalink range, fuel consumption, etc.). A land-based RPA was assigned a 2, or LAND, if it possessed a mission radius less than or equal to 30 kilometers. A land-based RPA was assigned a 3, or LAND/LITTORAL if it's mission radius extended anywhere from 30 km to 150 km.

In Table 3.5, an RPA could only achieve a 1, HIGH AMOUNT OF TIME (>1min.) if it could hover. An assignment of 3, MEDIUM AMOUNT OF TIME (1sec. - 1 min.) was assigned to the Insitu Aerosonde, which due its size and maneuverability can perform tight, spiraling profiles. Therefore the minimum volume of air an Aerosonde occupies during one spiraling profile defines the MEDIUM assignment. The assignment of 2, LOW AMOUNT OF TIME (<1 sec.) was made to all other (non-hovering, non-tightly spiraling) airframes.

Additionally, in Table 3.6, an RPA was assigned a 1, or HIGH REFRESH RATE (<1 hr.) if it possessed endurance of greater than or equal to 6 hours (non-hovering airframe) or greater than or equal to 8 hours (hovering airframe). This is admittedly the most arbitrary assignment throughout the thesis. A researcher would have to further consider a cost/benefit analysis of operating a squadron of candidate UAV's, etc., before determining the airframe's capability to meet desired areal or volumetric coverage. An RPA was assigned a 3, or MED REFRESH RATE (1hr. - diurnal) if it possessed endurance of 3 to 6 hours (non-hovering airframe) or 3 to 8 hours (hovering airframe).

Table 3.7 indicates a Joint METOC Element/RPA's requirement for/provision of unperturbed air stream measurements.

Table 3.9 is the Structured Query Language (SQL) query written in Microsoft Access linking the RPA Table to the Joint METOC Element Table in terms of spatial, temporal and air stream attributes. Its coding is the decisive element in interrelating the static, otherwise individual database Tables into dynamic subsets of useable data to multiple audiences. It is the fulcrum of the thesis.

Next, portions of the Airborne Instrumentation Table are displayed (Tables 3.10 through 3.30), indicating operational, research and development or transitional air vehicle

compatible METOC measuring instruments and/or equipment, their ranges and accuracies.

Table 3.1. Joint Requirements Table. (Chief of Naval Operations Oceanographer of the Navy (CNO N096) and Air Force Theater Battle Management (TBM) Gridded Data Matrix, 21 February 1997).

Element						
	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Absolute Humidity	5 %					
Aerosols	concen. of particles	.5 micron	near real time			daily
	>2.0 microns	particles				
Aerosols	concen. of particles	.5 micron		12 hr	50 km ²	
	>2.0 microns	particles				
Air Turbulence	55 kt or 10 diff.	±1 wind shear	near real time			daily
	across front	category				
Air Turbulence	55 kt or 10 diff.	±1 category		2 hr	100 km²	
	across front					
Ambient Noise	TBD					
Anchorages	in OPAREA	±10 m	2 yr			annually
Anchorages	within 5 km of IUSS	±10 m	2 yr			annually
	sensor					•
Aquaculture Areas	occurrence in	no	yearly			ou
	OPAREA					
Archeological	occurrence in	±10 m	2 yr			yes
Sites/Wrecks	OPAREA					
Atmospheric Contaminants	TBD					
Atmospheric	TBD					
Transmissivity						
Atmospheric Visual Range	TBD					
B-Field	high mag. field at DC- 100 Hz in OPAREA	±0.1 nT	72 hr	72 hr	100 km²	none
Barometric Pressure	<1000 mb	yes	3 hr		•	continuous
Barometric Pressure	qm 096>	yes	15 min			continuous
Barometric Pressure	qm 096>	yes	3 hr			continuous

Table 3.1. Joint Requirements Table, continued.

Floment Cuities!	Cuitien	Curront	IIndoto	Undata	Dofwork	Spotial Coverage
	Volue/Threshold	0	Dogniromont	Capability	Doguirement	Spatial Coverage
Barometric Pressure	TRD	Capability	Wedam cancar	Capability	Wedan ement	
(profile)						
Barometric Pressure (UA)	TBD					
Beach Characteristics	composition; features	±1/8 mm type,	seasonal			remote sensing
7		3125, 71 111 1511.			,	
Beach Characteristics	composition; features	$\pm 1/8$ mm type, size; >1 m vert.		annual	50 km²	
Beach Slope	>5	±.25 angle	annual	annual	10 km ²	remote sensing
Biological Noise	high AN within 50 km of OPAREA	±10 dB	12 hr			limited
Biological Noise	occurrence in OPAREA	±10 dB	12.hr			limited
Bioluminescence	condition that allows visible detection at <10 ft depth	#1 m	monthly			on demand
Bioluminescence	condition that allows visible detection at <10 ft depth	±1 m, Near-Real Time for Requested Areas	24 hr	24 hr	50 km²	on demand
Bottom Composition	75% burial in mud; or rocky	±1/8 mm	seasonally			annual
Bottom Composition	±1/8 mm, type, size, etc.	±1/8 mm		yearly	250 km²	
Bottom Currents	>0.8 kt	±0.5 m/sec	12 hr			10% globe/yr
Bottom Gradient	>\$	data sparse	annual			0.02 globe/yr
Bottom Loss	>3 dB	±3 dB	seasonal			0.2 globe/yr
Bottom Loss	>3 dB	±3 dB	2 yr			0.2 globe/yr
Bottom Reverb. (active)	±3 dB	∓10 dB	12 hr			none
Bottom Roughness	>10% RMS roughness	DBDB .5	annual			0.05 globe/yr
Breaker Direction	>5 fluctuation	yes	6 hr	6 hr	individual beaches	remote sensing
Breaker Direction	>5 fluctuation	yes	3 hr			remote sensing

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Breaker Height	>1 m	±0.5 m	3 hr	3 hr	individual beaches	remote sensing
Breaker Interval	<15 sec.	±1 sec	3 hr	3 hr	individual beaches	remote sensing
Breaker Type	spill, plunge, collapse, surge	yes	3 hr			remote sensing
Breaker Type	spill, plunge, collapse,	±.25 m; ±.1 sec;		12 hr	50 km ²	
	surge	±.0.5				
Bright/Faint Star Positions	20 m/arc-sec.	10 m/arc-sec.	daily			yearly
Ceiling Height	<= 1000 ft, ±100 ft; 5000-10000 ft ±500 ft					
Ceiling Layers		<5000 ft. ±100 ft:	2 hr			3 hr
•	intervals	5000-12000 ft,	1			
		±200 ft				
Ceiling Layers	presence at 1000 ft	<5000 ft, ±100 ft;	3 hr			3 hr
	intervals	5000-12000 ft,				
	0 000	7,000 0 1000				
Celling Layers	presence at 1000 ft intervals	<5000 ft, ±100 ft; 5000-12000 ft.	daily			3 hr
		±200 ft				
Ceiling Layers	presence at 1000 ft	<5000 ft, ±100 ft;	1 hr			3 hr
	intervals	5000-12000 ft,				
		±200 ft				
Ceiling Layers	presence at 1000 ft	<5000 ft, ±100 ft;	30 min			3 hr
	intervals	5000-12000 ft,				
Ceiling Lavers	nresence at 1000 ft	<5000 ft +100 ft·	8 hr			2 12
	intervals	5000-12000 ft.	III o			3 III
		±200 ft				
Ceiling Layers	presence at 1000 ft intervals	±50 ft		8 hr	250 km²	
Ceiling Layers	presence at 1000 ft	<5000 ft, ±100 ft;		8 hr	500 km ²	
	intervals	5000-12000 ft, +200 ft				
		-200 11			i estantin	

Table 3.1. Joint Requirements Table, continued.

7			7 4 11	1 1 1		
Element	Critical	Carrent	Opuate	Obnate	Keiresn	Spatial Coverage
	Value/Threshold	Capability,	Requirement	Capability	Requirement	
Cloud Amount - Total	1/8 %					
Cloud Base	<= 1000 ft, ±100 ft;					
	5000-10000 ft, ±500					
	ft					
Cloud Cover	>4/8 over OPAREA	yes	2 hr			yes
Cloud Cover	>4/8 over OPAREA	yes	1 hr			yes
Cloud Cover	>4/8 over OPAREA	yes	30 min			yes
Cloud Cover	>4/8 over OPAREA	yes	3 hr			yes
Cloud Cover	>4/8 over OPAREA	yes	4 hr			yes
Cloud Cover	>4/8 over OPAREA	yes		8 hr	250 km²	
Cloud Top	<= 1000 ft, ±100 ft;					
	5000-10000 ft, ±500					
	ft	***				
Cloud Type	<= 1000 ft, ±100 ft;					
	5000-10000 ft, ±500					
	Ħ					
Cloud Type	char/alt	cloud type	continuous			3 hr
Clouds	TBD					
Commercial Towing	occurrence in	±1 km; no	daily			annual
	OPAREA	database				
Conductivity (sediments)	<20, >40 mho/m	yes	seasonal			0.01 globe/yr
Conductivity (sediments)	>40 mho/m	±1 k - 10 k	2 yr			0.01 globe/yr
		mhos/cm				
Conductivity (water)	<20, >40 mho/m	yes	seasonal			0.20 globe/yr
Conductivity (water)	>40 mho/m	±1 k - 10 k mbos/cm	2 yr			0.2 globe/yr
Controil	arocono accontin	modolod	2 hr			romoto
Comman	presence, potential	moranomi	2 111			Telliote
Contrails - 3	1 unit (code)	-				
Engines/Persistence						
Contrails - Base	1000 feet					
Contrails - Top	1000 feet					

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Convergence Zone	within 1 kyd	1 kyd at 1 CZ	6 hr			3 hr
	>0.1 C depression	0.2 C, point	30 min			3 hr
		source				
	>0.1 C depression	0.2 C, point	3 hr			3 hr
		source				
	>0.2 C depression	0.2 C, point	1 hr			3 hr
		source				
	>0.2 C depression	0.2 C, point	30 min			3 hr
		source				
	>0.2 C depression	0.2 C, point	3 hr			3 hr
		source				
	<2 depression	0.2 C, point		1 hr	50 km ²	
		source				
Dew Point Depression	2 deg C					
	TBD					
Dredging Operations	within 5 km of flight	±1 km	weekly			monthly
	path		•			•
Dredging Operations	occurrence in	±1 km	biannual			monthly
	OPAREA					
Dredging Operations	within 5 km of OPAREA	±1 km	biannual			monthly
Drilling Operations	occurrence in OPAREA	±10 m	yearly			monthly
Drilling Operations	within 5 km of flight path	±10 m	yearly			monthly
	height, thickness, persistence	modeling	3 hr	The sale spirit and		yes
	height, thickness, persistence	modeling	60 min			yes
	height, thickness,	modeling	1 hr			yes
	persioner					

Table 3.1. Joint Requirements Table, continued.

7	, , , , , ,		Tradata	Timboto	Defeesh	Crostin Course
Figurent			Opuate	Opuale	Well call	Spatial Coverage
	Value/Threshold	Capability	Kequirement	Capability	Kequirement	
Ducting	height, thickness,	modeling	6 hr	6 hr	50 km ²	yes
	persistence,					
	occurrence in					
	OFAREA					1.1
Dumping Operations	occurrence in OPAREA	±10 m - 2 km	biannual			Diannual
Dumping Operations	within 5 km of IUSS	±10 m - 2 km	biannual			biannual
	sensor					
E-Field	high e-field in	±50 nV	30 days	30 days	OPAREA	0.01 globe/yr
	OPAREA					
E-Field	high e-field in	∓50 nV	2 yr			0.01 globe/yr
	OPAREA					
Endangered Species	presence in OPAREA	yes, variable	annual			yes, variable
Endangered Species	habitats and migration	yes, variable	annual			yes, variable
	routes in OPAREA					
Extinction Coefficient	TBD					
Extreme Maximum Tidal	>15 C	ou	12 hr			none
Current Temp.						
Extreme Maximum Tidal	>15 C	yes		24 hr	50 km ²	
Current Temp.						
Extreme Minimum Tidal	<15 C	ou	12 hr			none
Current Temp.						
Extreme Minimum Tidal	<15 C	yes		24 hr	50 km ²	
Current Temp.						
Fog	visibility <1 nm	measured	2 hr			modeled for 12 hr
Fog	visibility <1 nm	measured	15 min			modeled for 12 hr
Fog	visibility <1 nm	measured	1 hr			modeled for 12 hr
Fog	visibility <1 nm	±100 m		1 hr	50 km²	
Freezing Level	50 m					
Freezing Precipitation (H2O eqv)	0.1 in					
*						

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Freezing Precipitation	0.1 in					
Accumulation/Ice					,	
Accretion						
Frost Depth/Thaw Depth	1 in					
Geomagnetic Field	occurrence			continual	50 km ²	
Geopotential Height	10 m					
Hail Size	.2 in					
Haze	visibility <1 nm	no	2 hr	2 hr	50 km ²	none
High Seas Warning	I meter					
High water	>2 ft diff. Between	±5 cm; 1 hr; 100	4 hr	4 hr	50 km ²	6 hr modeling
	high/low water	km ²				
Humidity	>62%	±2% relative;	3 hr			3 hr modeling
The state of the s		point source				
Humidity	<20%, >90% relative	±2% relative;	12 hr			3 hr modeling
		point source				
Humidity	%56<	±2% relative;	5 min			3 hr modeling
		point source				
Humidity	<20%, >90% relative	±2% relative;	3 hr			3 hr modeling
		point source				
Humidity	>95%	±2% relative;	30 min			3 hr modeling
		point source				
Humidity	>95%	±2% relative;	4 hr			3 hr modeling
		point source				
Humidity	>6<	±2% relative;	1 hr	1 hr	100 km ²	3 hr modeling
		point source				
Humidity	>62%	±2%, point source		4 hr	50 km ²	
Humidity Profile	5-100%	±2%, point source		6 hr	50 km ²	
Ice Edge	1 km	1 km	weekly			daily remote
Ice Edge	1 km	1 km	bi-weekly			daily remote
lcing (sea surface)	pancake or denser	no automated,	30 min			daily remote
		human observed				

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Icing (sea surface)	pancake or denser	no automated, human observed	3 hr			daily remote
Icing (sea surface)	pancake or denser	no automated, human observed	3 hr	3 hr	100 km²	daily remote
Icing (sea surface)	pancake or denser	no automated, human observed	daily			daily remote
Icing Base	<= 1000 ft, ±100 ft; 5000-10000 ft, ±500 ft					
Icing Top	<= 1000 ft, ±100 ft; 5000-10000 ft, ±500 ft					
Icing Type/Intensity	1 unit (code)					
Illumination	10(3)					
Inversion Layer Top Height AGL	50 feet			,		
Inversion Rate	lapse conditions	modeled w/o topography	l hr			6 hr
Ionospheric Scintillation	occurrence in OPAREA	modeled	2 hr			3 hr
Ionospheric scintillation	occurrence in OPAREA	modeled	3 hr			3 hr
Ionospheric Scintillation	any significant occurrence in OPAREA	modeled	24 hr			3 hr
Lightning	within 10 km of OPAREA	forecast conditions favoring lightning	3 hr			ou
		GG. G	2 1			
Lightning	within 18 km of OPAREA	torecast conditions	3 nr			no
		favoring lightning				

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Lightning	any occurrence	forecast conditions favoring lightning	1 hr			Ou
Lightning	within 20 km of flight path	forecast conditions favoring lightning	4 hr			ou
Lightning	within 10 km of OPAREA	forecast conditions favoring lightning	4 hr			no
Lightning	1 (mile)					
Lightning	within 10 km of OPAREA	Forecast conditions favoring lightning		l hr	50 km²	
Liquid Water (vertical integration)	TBD					
Littoral Current Speed	1 m/s					
Littoral Current Speed	5 m/s					
Lunar Visibility	20 yd increments at 20 min.	<5 km: .4 km, 5- 24 km: 1.6 km.	30 min			yes
		>24 km: 8 km				,
Lunar visibility	20 yd increments at 20 min.	<5 km: .4 km, 5- 24 km: 1.6 km, >24 km: 8 km	3 hr			yes
Lunar visibility	20 yd increments at 20 min.	<5 km: .4 km, 5- 24 km: 1.6 km, >24 km: 8 km	24 hr	24 hr	250 km²	yes
Lunar Visibility	100 yd increments at 20 min.	<5 km: .4 km, 5- 24 km: 1.6 km, >24 km: 8 km	12 hr			yes
Magnetic Anomalies	occurrence	±6 nT (rms)				ou

continued.
Table,
Requirements
Joint
3.1.
Table

Element Chitical	Cuitical	Curront	Undate	Indate	Refresh	Snatial Coverage
Element			Opuate	Conchilter	Doguinoment	0
	Value/Threshold	Capability	Keduirement	Capability	Keduirement	
Marine Mammals	presence in OPAREA	seasonal	2 yr			seasonal
Marine Mammals	habitats and migration	seasonal	2 yr			seasonal
Marine Sanctuaries	occurrence in	±10 m	2 yr			yes
Mean Daily Minimum	<15 C	ОП	12 hr			none
Tidal Current Temp.						
Mean Daily Minimum Tidal Current Temp.				24 hr	50 km²	
Mean Daily Minimum Tidal Current Temp.				24 hr	150 km²	
Moisture Profile	any type >0.5 in/hr	±2%, point source	3 hr			5 min
Moisture Profile	any type >0.5 in/hr	±2%, point source	1 hr			5 min
Moisture Profile	5-100%	±2%, point source	3 hr			5 min
Moisture Profile	5-100%	±2%, point source	5 min			5 min
Moisture Profile	any precipitation	±2%, point source	4 hr			5 min
	occurrence					
Moisture Profile	5-100%	±2%, point source	2 hr			5 min
Moisture Profile	5-100%	±2%, point source	30 min			5 min
Moisture Profile	any type >0.5 in/hr	±2%, point source	4 hr			5 min
Moisture Profile	5-100%	±2%, point source	1 hr			5 min
Moisture Profile	5-100%	±2%, point source	6 hr			5 min
Moisture Profile	5-100%	±2%, point source	4 hr			5 min
Moisture Profile	2% humidity at 100 m	±0.25 in, point		1 hr	50 km ²	
	increments	source				
Moisture Profile	2% humidity at 100 m	±0.25 in, point		1 hr	100 km²	
	increments	source				
Moon Phases	phase, ±10% illumination	modeled with global	24 hr			yes
		observations				

Table 3.1. Joint Requirements Table, continued.

Element Critical	Critical	Current	Undate	Undate	Refrach	Spatial Coverage
	Value/Threshold	0	Requirement	Capability	Requirement	Spatial Coverage
Moon Phases	1/10th increments	modeled with	24 hr	24 hr	250 km ²	yes
		global				,
		observations				
Moon Rise/Set	±1 min	modeled	24 hr	24 hr	OPAREA	yes
Ordnance Test Ranges	locations within 100 yds of OPAREA	±10 m	2 yr			monthly
Precip. Noise	±10 dB	modeling	4 hr			40% accuracy
Precipitation Accumulation	TBD					Company
(nzo Equivalent)						
Precipitation Rate (H2O Equivalent)	.2 in/hr					
Precise Time	hr/min/sec	1 micro sec.	continual			ves
Present Weather	TBD					
QPF (6hr)	20%					
Radiation (background)						
Radiation - Longwave	TBD					
Radiation - Shortwave	TBD					
Radio (quasar positions)						
Rain (freezing)	occurrence in OPAREA	30% accuracy in modeling	30 min			3 hr
Rain (freezing)	occurrence in OPAREA	30% accuracy in modeling	1 hr			5 min
Rain (freezing)	occurrence in OPAREA	30% accuracy in modeling	1 hr			3 hr
Rain (freezing)	occurrence in OPAREA	.1 inches, point source		1 hr	50 km ²	
Rain (freezing)	occurrence in	.1 inches, point		1 hr	150 km ² ; 0-40000	
Rain Accumulation	0.1 in				11	
Rainfall Rate	>.5 in/hr	measured	2 hr			40% accuracy
			T			

Table 3.1. Joint Requirements Table, continued.

Flement Critical	Critical	Current	Undate	Indata	Refresh	Spotial Coverage
	Value/Threshold	0	Requirement	Capability	Requirement	
Rainfall Rate	>.5 in/hr	measured	4 hr			40% accuracy
						over 3 hr
Rainfall Rate	>.5 in/hr	measured	5 min		,	40% accuracy over 3 hr
Rainfall Rate	>.5 in/hr	measured	1 hr			40% accuracy over 3 hr
Rainfall Rate	>.5 in/hr	.1 inches, point source		l hr	100 km²	
Reefs	in OPAREA	±10 m	5 yr	5 yrs	50 km ²	yes
Refraction	occurrence in OPAREA	6 hr	yes			
Refraction	<5 km	6 hr	2 hr			
Refraction	Any Ducting in OPAREA	Dm/Dz trapping		3 hours	150 km²	
Refractive Units (M)	nearest whole unit profiles	Dm/Dz trapping	3 hr			12 hr
Refractive Units (M)	profiles, nearest whole unit	Dm/Dz trapping		3 hours	150 km²	
Relative Humidity	2 %					
Relative Humidity	20 %					
Relative Humidity (Average 1000/500mb)	20%					
Relative Humidity (UA)	TBD					
Relative Humidity Profile	TBD					
Salinity	>0.1 ppt	±0.1 ppt, if measured	24 hr		:	remote
Salinity	±0.1 ppt	±0.1 ppt		24 hr	OPAREA	
Sea Ice	within 50 km of OPAREA	±24 hr	24 hr	daily	50 km²	remote
Sea Ice Noise	occurrence in OPAREA	±10 dB	4 hr			2 hr, modeled

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Sea Ice Thickness	.5 in					
Sea Level Pressure (SLP)	4 mb					
Sea Spray	best accuracy in size	modeled	24 hr			4 hr
	(mm); gm/cm³ (vol.)					
Sea Spray	>2 m	modeled	3 hr			4 hr
Sea Spray	gm/cm3 size (mm) best	modeled	24 hr	24 hr	50 km ²	4 hr
	accuracy					
Sea State (Wind Wave)	5 Degrees/.3 m					
Sea State (Wind Wave)	30 Deg/1 m					
Sea-Level Pressure	4 mb					
Shipping Density	distro./type/direct.	HITS database	4 hr			remotely sensed
	Within 100 km of OPAREA					•
Shipping Noise	AN >3 dB or units in	modeled +5 dB	12 hr			::
	OPAREA		1			uany
Shipping Noise	occurrence in	modeled ±5 dB	4 hr			daily
	OPAREA					
Snow Accumulation	0.5 in					
Snow Cover	>5 in	±2 in, 12 hrs, 80	1 hr	1 hr	10 km²	12 hr
		km²				
Snow Cover	>13 cm	±2 in, 12 hrs, 80 km ²		1 hr	10 km²	
Snow Cover	>5 in	±2 in, 12 hrs, 80			10 km²	
		km²				
Snow Depth	2 in					
Snow Depth	.5 in					
Snow Depth (H20 equivalent)	.01 in					
Snow Drift Depth	6 in					
Snow Metamorphic State	TBD					

continued.
Table,
Requirements
Joint]
ble 3.1.
In

Dlowood	Cuitical		IIndoto	Ilmdoto	Dofesch	Spotial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	opanai corciago
Snowfall Rate	>0.25 in/hr	0.5 in/hr	1 hr			3 hr, 30% confidence
Snowfall Rate	>0.25 in/hr	0.5 in/hr	2 hr			3 hr, 30% confidence
Snowfall Rate	>0.25 in/hr	0.5 in/hr	5 min			3 hr, 30% confidence
Snowfall Rate	>0.25 in/hr	0.5 in/hr	3.hr			3 hr, 30% confidence
Snowfall Rate	>.5 in/hr	±.01 in/hr; point source		1 hr	50 km²	
Soil Moisture 0-10 cm	10%					
Soil Moisture 0-6 inches	2%					
Soil Moisture 10-30 cm	10%					
Soil Moisture 12-18 inches	5 %					
Soil Moisture 18-24 inches	5 %					
Soil Moisture 24-36 inches	2 %					
Soil Moisture 30-80 cm	10%					
Soil Moisture 6-12 inches	5%					
Soil Temperature	1 deg C					
Solar Flares	any occurrence	observed	3 hr			statistical model
Solar Flux	±5 x 10-5 WM-2	observed	24 hr			statistical model
Solar Radiation	any occurrence	observed	3 hr			statistical model
Solar Shadow Zones	any occurrence	observed	3 hr			statistical model
Sound Speed Profile	change >1 m/s w/in 5% of water depth	s/m £ +	12 hr			2 hr, modeled
	(point source)					
Sound Speed Profile	±3 m/s	±10 dB	12 hr			2 hr, modeled
Sound Speed Profile	±1 m/s	±1 m/s measured	hourly			2 hr, modeled
Standing Water/Pooling	TBD					
Sub-Bottom Profiles	composition &	measured and	yearly			0.05 globe/yr
	Toughiness	datadase				

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Undate	Undate	Refresh	Snatial Coverage
	Value/Threshold	U	Requirement	Capability	Requirement	Sur Consul
Sub-Bottom Profiles	composition; vel. at	measured and	yearly			0.05 globe/yr
	±10 m/s; density	database				
	gm/cm ²					
	size/intensity	observed	3 hr			statistical model
	size/intensity	observed	12 hr			statistical model
Sunrise/Sunset	±1 min	observed and	24 hr		OPAREA	
		modeled				
Surf (Height/Direction)	$\pm 0.5 \text{ m;} > 5 \text{ fluc.}$	±0.5 m	3 hr			6 hr
Surf (Height/Direction)	±0.5 m; >5 fluc.	±0.5 m; ±5 fluc.	3 hr			6 hr
	±1 ft/±5 /plunge, break,	±0.5 m	6 hr			remote
(Height/Direction/Type)	surge, spill					
	±0.5 m; >5 fluc.					
(Height/Direction/Type)						
Surf Breaker Line	±0.5 m	modeled, not verifiable	3 hr			6 hr modeling
Surf Breaker Line	Distance from Shore	±1m, Near-Real		3 hr	individual beaches	
		Time for				
		Requested Areas				
Surf Direction	>5 fluctuation	Not verifiable, 6		3 hr	individual beaches	
		hr, 100m-1km				
Surf Height	±0.5 m	±0.5 m		3 hr	individual beaches	
Surf Height (Breakers)	1 ft					
Surf Plunge Point	distance from shore	modeled, not verifiable	3 hr	3 hr	individual beaches	6 hr modeling
Surf Zone Length	±20 m	±5 m, remote	3 hr			6 hr modeled
Surf Zone Length		±1m, Near-Real		3 hr	individual beaches	
		Time for				
		Requested Areas				
Surf Zone Width	±20 m	±1m, Near-Real	3 hr	3 hr	individual beaches	6 hr modeled
		Time for				
		Requested Areas				

Table 3.1. Joint Requirements Table, continued.

	nent Critical	Current	Undate	Undate	Refresh	Spatial Coverage
	Value/Threshold	0	Requirement	Capability	Requirement	
Surface Currents	>2 m/sec	measured, modeled with 50% confidence	24 hr			4 hr modeled
Surface Currents	>2 m/sec	measured, modeled with 50% confidence	8 hr			4 hr modeled
Surface Currents	>1.5 m/sec	measured, modeled with 50% confidence	12 hr			4 hr modeled
Surface Currents	>1.5 m/sec	±0.5 m/sec		12 hr	50 km²	
Surface Film/Foam	concen. of surfactants	none	24 hr			none
Surface Reverb. (active)	>5 dB	modeled ±5 dB; measured ±1 dB	4 hr			3 hr
Surface Temperature	<32 F; >90 F; >100 F	remotely sensed	4 hr	,		continuous
Surface Temperature	<32 F; >90 F; >100 F	remotely sensed	12 hr			continuous
Surface Temperature	<32 F; >90 F; >100 F	remotely sensed	1 hr			continuous
Surface Temperature	2 deg C					
Surface Temperature, Inland Water Bodies	2 deg C					
Surface Temperature, Inland Water Bodies	1 deg C					
Surge	occurrence in OPAREA			6 hr	50 km²	
Swell (height/direction)	>3.5 ft	modeled or remote	6 hr			modeled 4 hr; remote >12 hr
Swell (height/direction)	>1.5 m; >5 fluc.	modeled or remote	4 hr			modeled 4 hr; remote >12 hr

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Update	Undate	Refresh	Snatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Swell (height/direction)	sea state >1; >1 m; >5 fluc.	modeled or remote	4 hr			modeled 4 hr; remote > 12 hr
Swell (height/direction)	>SS 3; >5 fluc.	modeled or remote	4 hr	4 hr	100 km²	modeled 4 hr; remote > 12 hr
Swell Wave Direction	1 deg		-			
Swell Wave Height	1 meter					
Swell Wave Period	1 sec					
Swell Wave Period	1 s					
Temperature (air at	<32 F; >90 F	±1 F, point		3 hr	50 km ²	
surface)		source				
Temperature (air at surface)	<32 F; >90 F	±1 F, point source		2 hr	50 km ²	
Temperature (air at water surface)	±1 C, >0 <140 F	±2 C	2 hr			no; COAMPS ±2 C at 60%
						confidence
Temperature (air at water	<0 C.;>35 C	±2 C	2 hr			no; COAMPS ±2
surface)						C at 60% confidence
Temperature (air at water	<32 F; >90 F	±2 C	2 hr			no; COAMPS ±2
surface)						C at 60% confidence
Temperature (air profile)	0.5 C at 100 m	±1.0 C modeled	1 min			12 hr modeled
	intervals	at 70% confidence				
Temperature (air profile)	0.5 C at 100 m	±1.0 C modeled	1 hr			12 hr modeled
	intervals	at 70% confidence			•	
Temperature (air profile)	0.5 C at 100 m	±1.0 C modeled	2 hr			12 hr modeled
	intervals	at 70% confidence				
Temperature (air profile)	0.5 C at 100 m	±1.0 C modeled	6 hr			12 hr modeled
	intervals	at 70% confidence				

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Temperature (air profile)	0.5 C at 100 m intervals	±1.0 C modeled at 70% confidence	4 hr			12 hr modeled
Temperature (air profile)	0.5 C at 100 m intervals	±0.5 C		4 hr	50 km²	
Temperature (air profile)	0.5 C at 100 m intervals	±0.5 C		4 hr	100 km²; 0-5000 ft	
Temperature (horiz. Var.)	modeled ±2 over	±0.1 C measured; ±2 C modeled	2 hr			4 hr modeled
Temperature (horiz. Var.)	modeled ±2 over water	±0.1 C measured; ±2 C modeled	1 hr			4 hr modeled
Temperature (horiz. Var.)	2 F variations	±1 F, point source		3 hr	50 km²	
Temperature (sea surface)	>15 C	0.2 C; point source	12 hr			4 hr modeled
Temperature (sea surface)	>15 C	0.2 C; point source	24 hr			4 hr modeled
Temperature (sea surface)	0.5 C at 100 m resolution	±.1; point source		24 hr	100 km²	
Temperature (UA)	TBD					
Temperature (water column)	0.5 C at 100 m intervals 0-1000 m; 1.0 C at 20 m intervals	±1.0 C modeled at 60% confidence	4 hr			modeled 4 hr; 0.10 globe/yr
Temperature (water column)	0.5 C at 100 m intervals	±0.5 C		4 hr	50 km²	
Temperature Sea Surface	1 deg C					
Temperature Sea Surface	2 deg C					
Temperature Wet Bulb Globe Index	1 deg C					

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Current	Undate	Undate	Refrech	Snatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	Sura Commando
Thunderstorm Activity	within 10 km of	observed/modeled	2 hr			12 hr modeled
	OPAREA					with 35%
Thunderstorm Activity	within 5 km of	observed/modeled	3 hr			12 hr modeled
	OPAREA					with 35%
						confidence
Thunderstorm Activity	occurrence in	yes		2 hr	50 km²	
F	OFAKEA					
I hunderstorms - Coverage	10 %					
Thunderstorms - Maximum	2500 feet					
dor						
Tidal Amplitude	>1 m in 0.1 m	±0.3 m, temporal	6 hr			4 hr modeling
	increments	as required				
Tidal Amplitude	>1 m in 0.1 m	±0.3 m, temporal	4 hr	4 hr	50 km ²	4 hr modeling
	increments	as required)
Tidal Currents	>1.5 m/sec	measured ±0.15	6 hr	de la companya de la		direct observation
		m/sec				only
Tidal Currents	>1.5 m/sec	measured ±0.15	12 hr	12 hr	20 km²	direct observation
		m/sec				only
Tidal Currents	>1.5 m/sec	measured ±0.15	3 hr	3 hr	entire area of	direct observation
		m/sec			operation	only
Tidal Period	half hour accuracy	Yes	12 hr	12 hr	entire area of	6 hr
T: 3-1 D: -1 4:					operation	
I idal Period (times, phases,	±5 min of peak phase	direct observation	4 hr			variable; weather
heights)	(hi/low); ±0.5 m					and asset site
						dependent
Tidal Surge	±5; ±1 m/s; ±0.5 m	remote/direct	12 hr			no, >12 hrs
	vert.	observation				repeatability
Time Interval	1 micro/sec	GPS availability	continuous			continuous
Synchronization	-					
Topography	±5 m	yes	once			annual
Topography	±5 m	yes	daily			annual

Table 3.1. Joint Requirements Table, continued.

Flement	Critical	Current	Indate	Undate	Refresh	Snatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	0
Topography	±5 m	yes	24 hr			annual
Topography	100 m elev. at 30 m	>1 m vert.		daily	50 km²	
	resolution					
Tops and Bases	<5000 ft in 100 ft		3 hr			4 hr
	intervals, 5-10000 ft in					
	500 ft intervals,					
	>10000 ft in 1000ft					
	intervals					
Tornado	1 mile					
Total Precipitation	nearest 0.25 in.	0.1 in measured	2 hr			modeled ±1 in, 4 hr
Total Precipitation	>.2 in/hr	.01 inches, point source		2 hr	150 km²	
Trafficability						
Transmission Loss	±2 dB	±3 dB	12 hr	•		modeled
						continuously;
						measured
						tactically
Transmission Loss	high TL within 100	±3 dB, Seasonal,	24 hr			modeled
	km2 of OPAREA	30-arc-minute				continuously;
		grid				measured
٠						tactically
Transmission Loss	>2 dB	±3 dB	12 hr			modeled
						continuously;
						measured
						tactically
Transmission Loss	>2 dB per 10 km	±3 dB, Seasonal,	24 hr	24 hr	150 km²	modeled
		30-arc-minute				continuously;
		grid				measured
						tactically

Table 3.1. Joint Requirements Table, continued.

Element Critical Critical	Critical Critical	Current	IIndate	lindata	Dofrech	Chotial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	Spatial Coverage
Trawling Areas	occurrence in OPAREA	±2 to ±10 km	2 yr			remotely sensed
Trawling Areas	occurrence in OPAREA	±2 to ±10 km	annual			remotely sensed
Tropical Storms	25 miles					
Turbidity	in OPAREA	±10 km	annual			no
Turbidity	visibility <20 m horiz.	±10 m	24 hr			no
Turbulence Base	<= 1000 ft, ±100 ft;					
	ft					
Turbulence Intensity	1 unit (code)					
Turbulence Top	<= 1000 ft, ±100 ft;					
	5000-10000 ft, ±500					
	ft					
Type (precip.)	name any type	measured 0.1 in.	2 hr			4 hr; modeled 1.0
	occurring					ii.
Type (precip.)	name any type	yes		2 hr	50 km²	
Vertical Velocities	TERE					
(Omega)	Ogi					
Visibility	500 m					
Volume Reverb. (active)	>3 dB	±15 dB	12 hr			statistical/diurnal
Volume Reverb. (active)	occurrence in	±15 dB	12 hr			statistical/diurnal
	OPAREA					
Vorticity (Absolute)	TBD					
Water Clarity	<1 m, <10 m, >20 m	±1 m observed	12 hr			remote, >12 hr repeatability
Water Clarity	<1 m, <10 m, >20 m	±2 dB per 5 sector		24 hr	50 km²	4
			A			

Table 3.1. Joint Requirements Table, continued.

Tomone to	Cuiting		Tindata	Ilmdoto	Dofwooh	Spotial Coveredo
Element	Critical	Current	Opuate	Oparic	Keiresii	Spatial Coverage
	Value/Threshold	Capability	Requirement	Capability	Requirement	
Water Column Currents	>0.5 kt at 100 m	±0.5 m/sec	12 hr	12 hr	50 km²	modeled
	intervals	measured	b-			seasonally; 10%
						globe/yr
Water Depth	±2 ft	±10 m (vert.);	annual		,	0.05 globe/yr
		±300 m (horiz.)				
Water Depth	±2 ft	±10 m (vert.);	seasonal			0.05 globe/yr
		±300 m (horiz.)				
Water Depth	<2.5 m contours	±10 m linear error	annual			0.05 globe/yr
Water Depth	<100 m depth	±10 m (vert.);	annual			0.05 globe/yr
		±300 m (horiz.)				
Water Depth	<8 ft depth	±10 m (vert.);	annual			0.05 globe/yr
		±300 m (horiz.)				
Water Depth	<2.5 m contours	±10 m (vert.);	annual			0.05 globe/yr
		±300 m (horiz.)				
Water Depth	100 m contours	±10 m (vert.);	annual			0.05 globe/yr
		±300 m (horiz.)				
Water Depth	±.5 psi	±.5 psi	12 hr			0.05 globe/yr
Water Depth	high bottom roughness	$\pm 10 \text{ m (vert.)};$		1 mos	100 km ²	
	in approach and	±300 m (horiz.)				
	landing zone					
Water Droplet Size	TBD					
Water Quality	TBD					
Water Vapor	TBD					
Wave Direction	>5 fluc.	±5 fluc.	6 hr			4 hr modeling
Wave Direction	>5 fluc.	±5 fluc.	4 hr			4 hr modeling
Wave Direction	>5 fluc.	±5 fluc.	30 min			4 hr modeling
Wave Direction	>10 fluc.	±5 fluc.	4 hr			4 hr modeling
Wave Direction	>5 fluc.	±5 fluc.	3 hr			4 hr modeling
Wave Direction	>5 fluc.	±1 sea state; 3		2 hr	50 km²	
17.00.000		tluc.				
Wave Direction	1 deg		•			

Table 3.1. Joint Requirements Table, continued.

Element	Critical	Curront	Lindata	Ilmdata	D. C I	
	Value/Threshold	Canability	Pequirement Bequirement	Opdale	Degningment	Spatial Coverage
Wave Height	>SS 3	±0.5 m, 12 hr, 8-	4 hr	Capabine	wed an ement	4 hr modeled
		25 km				
Wave Height	>SS 3	±1 SS	3 hr			4 hr modeled
Wave Height	>SS 3	±1 SS	5 min			4 hr modeled
Wave Height	>SS 3	±1 SS	4 hr			4 hr modeled
Wave Height	1 meter					
Wave Height	>SS 3	±1 sea state; 3 fluc.		2 hr	50 km ²	
Wave Noise	SS >3	±10 dB	4 hr			4 hr measured
Wave Period	>8 sec., ±1 sec.	remote measured	30 min			remotely, >12 hr
						repeatability
wave Period	>8 sec., ±1 sec.	remote measured	12 hr			remotely, >12 hr
Wave Period	>8 sec., ±1 sec.	remote measured	3 hr			remotely, >12 hr
						repeatability
Wave Period	1 sec					
Wave Period	>8 sec.	not verifiable		1 hr	25 km²	
Wind (flight level) (direction/speed)	>10 fluc.; >40 kt	5, 5 kt, modeled	3 hr			6 hr
Wind (flight level) (direction/speed)	>10 fluc.; >40 kt	5, 5 kt, modeled	1 hr			6 hr
Wind (flight level)	>10 fluc.; >40 kt	5, 20 knots		1 hr	50 km²	
(direction/speed)	C. C. C.					
wind (temperature/ direction - profile)	TBD					
Wind (U/V)	5 Deg/3 mps					
Wind (U/V)	10 Deg/5 mps					
Wind (U/V)	5 Deg/5 mps					
Wind (U/V)	5 Deg/10 mps					
Wind (U/V)	5 Deg/13 mps					

continued.
Table,
uirements
oint Req
le 3.1. J
Tabl

Flement Critical	Critical	Current	Undate	Undate	Refresh	Snatial Coverage
	Value/Threshold	0	Requirement	Capability	Requirement	
Wind Aloft (direction/ speed)	>10 fluc.; >40 kt	5, 5 kt, modeled	3 hr			6 hr
Wind Aloft (direction/ speed)	>10 fluc.; >40 kt	5, 9 kph, point source		1 hr	50 km²	
Wind Gust Speed	1 m/s					
Wind Shear	occurrence	measured	6 hr			6 hr
		tactically; ±20% speed; ±5 fluc.				
Wind Shear	>20 kt; >10 fluc.	±20% speed		15 min	50 km²	
Wind Surface (direction/	>10 fluc.; >20 kt, >63	±5 kt; ±5 fluc.	6 hr			modeled 6 hr;
speed)	kt					50% confidence
Wind Surface (direction/	>10 fluc.	±5 kt; ±5 fluc.	6 hr			modeled 6 hr;
speed)	-					50% confidence
Wind Surface (direction/	>10 fluc.; >1 kt	±5 kt; ±5 fluc.	2 hr			modeled 6 hr;
(peads						50% confidence
Wind Surface (direction/	>10 fluc;;>20 kt,>63	±5 kt; ±5 fluc.	4 hr			modeled 6 hr;
speed)	kt					50% confidence
Wind Surface (direction/	>10 fluc.	±5 kt; ±5 fluc.	4 hr			modeled 6 hr;
sbeed)						50% confidence
Wind Surface (direction/	sea state >1; >5 fluc.;	±5 kt; ±5 fluc.	4 hr			modeled 6 hr;
sbeed)	>10 kph					50% confidence
Wind Surface (direction/	>10 fluc.; >1 kt	±5 kt; ±5 fluc.	1 hr			modeled 6 hr;
speed)						50% confidence
Wind Surface (direction/	>10 fluc.; >1 kt	±5 kt; ±5 fluc.	4 hr	-		modeled 6 hr;
sbeed)						50% confidence
Wind Surface (direction/	>10 fluc.; >20 kt, >63	±5 kt; ±5 fluc.	1 hr			modeled 6 hr;
speed)	kt					50% confidence
Wind Surface (direction/	>10 fluc.; >20 kt, >63	±5 kt; ±5 fluc.	1 min			modeled 6 hr;
sbeed)	kt					50% confidence
Wind Surface (direction/	>10 fluc.; >20 kt, >63	±5 kt; ±5 fluc.	2 hr			modeled 6 hr;
speed	Kt					20/8 communica

Table 3.1. Joint Requirements Table, continued.

*	,					
Element	Critical	Current	Update	Update	Refresh	Spatial Coverage
	Value/Threshold	Capability	Requirement Capability	Capability	Requirement	D
Wind Surface (direction/	>10 fluc; >20 kt, >63	0 kt, >63 ±1, point source		4 hr	10 km²	
sbeed)	kt	•				
Wind Warning	10 m/s					
Wind Warning	5 m/s					
Windchill	1 deg C					

Table 3.2. Horizontal Scale Table (H1).

H1	Horizontall Domain
1	MICROSCALE (<1 km)
2	MESOSCALE (10 km - <400 km)
3	MICRO/MESOSCALE (<1 km - <=400 km)
4	SYNOPTIC SCALE (>400 km)
5	MESOSCALE II (1km - 10km)

Table 3.3. Horizontal Land/Ocean Table (H2).

H2	Horizontal2 Domain
1	COMBINE (2,3,4,5,6)
2	LAND
3	LAND/LITTORAL
4	OPEN OCEAN
5	LITTORAL/OPEN OCEAN
6	POLAR

Table 3.4. Vertical Scale Table (V).

V	Vertical Domain	
1	SURFACE	
2	SFC/UA (PROFILE) (LAND OR OCEAN) (SFC > 1000m)	
3	UPPER ATMOSPHERE (LAND OR OCEAN) (>1000m)	
4	BOUNDARY LAYER (LAND OR OCEAN) (SFC - 1000m)	
6	OCEAN BOTTOM	
7	OCEAN DEEP WATER	
. 8	OCEANIC MIXED LAYER	
9 .	OCEAN SURFACE/DEEP WATER (PROFILE)	

Table 3.5. Measurement Duration Table (T1).

T1	Time1 Domain
1	HIGH AMOUNT OF TIME (>1 min.)
2	LOW AMOUNT OF TIME (<1 sec.)
3	MEDIUM AMOUNT OF TIME (1 sec 1 min.)

Table 3.6. Measurement Refresh Table (T2).

T2	Time2 Domain
1	HIGH REFRESH RATE (<1 hr.)
2	LOW REFRESH RATE (> diurnal)
3	MED REFRESH RATE (1 hr diurnal)

Table 3.7. Unperturbed Air Stream Requirement/Delivery Potential Table (UAS).

UAS	UAS required/provided
1	YES
2	NO

Table 3.8. Joint METOC Element Table.

Joint METOC Element	H1	H2	V	T1	T2	UAS
Absolute Humidity (Boundary Layer)	3	1	4	2	3	1
Aerosols (Boundary Layer)	3	1	4	1	3	1
Aerosols (profile)	3	1	2	1	3	1
Aerosols (UA)	2	1	3	1	3	1
Ambient Noise	3	5	9	3	3	2
Anchorages	1	3	1	2	2	2
Aquaculture Areas	1	3	9	3	2	2
Archeological Sites/Wrecks	1	5	6	1	2	2
Atmospheric Contaminants (Boundary Layer)	3	1	4	1	3	1
Atmospheric Contaminants (profile)	1	1	2	1	1	1
Atmospheric Contaminants (UA)	2	1	3	1	3	1
Atmospheric Transmissivity (Boundary Layer)	3	1	4	1	3	2
Atmospheric Transmissivity (profile)	3	1	2	1	1	2
Atmospheric Transmissivity (UA)	2	1	3	1	2	2
Atmospheric Visual Range (Boundary Layer)	3	1	4	1	3	2
Atmospheric Visual Range (profile)	3	1	2	1	1	2
Atmospheric Visual Range (UA)	2	1	3	1	2	2
Barometric Pressure (Boundary Layer)	3	1	4	2	3	1
Barometric Pressure (profile)	1	1	2	2	1	1
Barometric Pressure (surface)	1	1	1	2	3	1
Barometric Pressure (UA)	4	1	3	3	2	1
Beach Characteristics	1	3	1	1	2	2
Beach Slope	1	3	1	3	3	2
B-Field	4	1	2	1	2	2
Biological Noise	3	5	9	3	3	2

Table 3.8. Joint METOC Element Table, continued.

Joint METOC Element	H1	H2	V	T1	T2	UAS
Bioluminescence	1	5	8	2	3	2
Bottom Composition	3	5	6	1	2	2
Bottom Currents	3	5	6	1	2	2
Bottom Gradient	3	5	6	1	2	2
Bottom Loss	2	5	6	1	2	2
Bottom Reverb. (active)	2	5	6	1	2	2
Bottom Roughness	3	5	6	1	2	2
Breaker Direction	1	3	1	3	3	2
Breaker Height	1	3	1	3	3	2
Breaker Interval	1	3	1	3	3	2
Breaker Type	1	3	1	3	3	2
Ceiling Height	1	1	2	2	1	2
Ceiling Layers	3	1	2	3	1	2
Cloud Amount - Total	3	1	2	3	3	2
Cloud Amount - Total (Boundary Layer)	3	1	4	3	3	2
Cloud Base	1	1	2	2	1	2
Cloud Top	1	1	2	2	1	2
Cloud Type	3	1	2	3	3	2
Commercial Towing	3	5	1	3	1	2
Conductivity (sediments)	3	5	1	1	2	2
Conductivity (water)	1	5	9	3	3	2
Contrail	3	1	3	2	3	2
Contrails - 3 Engines/Persistence	3	1	3	2	3	2
Contrails - Base	3	1	3	3	3	2
Contrails - Top	3	1	3	3	3	2
Convergence Zone	3	4	9	3	3	2
Dew Point	1	1	1	2	3	1
Dew Point Depression	1	1	1	2	3	1
Dew Point Profile (Boundary Layer)	1	1	2	3	3	1
Dredging Operations	1	3	8	3	3	2
Drilling Operations	1	5	9	3	2	2
Ducting	3	1	2	3	3	1
Ducting (Boundary Layer)	3	1	4	3	3	1
Dumping Operations	1	3	1	3	3	2
E-Field	3	1	2	3	3	2
Endangered Species	4	1	1	1	2	2
Extinction Coefficient	3	1	2	1	3	1
Extreme Maximum Tidal Current Temp.	1	3	1	1	3	2
Extreme Minimum Tidal Current Temp.	1	3	1	1	3	2

Table 3.8. Joint METOC Element Table, continued.

Joint METOC Element	H1	H2	V	T1	T2	UAS
Freezing Level	3	1	2	3	2	1
Freezing Precipitation (H2O eqv)	3	1	1	3	1	2
Freezing Precipitation Accumulation/Ice Accretion	3	1	1	3	3	2
Frost Depth/Thaw Depth	3	2	1	1	2	2
Hail Size	1	1	1	3	1	2
High water	1	2	1	1	3	2
Humidity	3	1	2	2	3	1
Humidity (profile, Boundary Layer)	1	1	4	3	3	1
Ice Accumulation	1	1	2	3	3	2
Ice Edge	3	6	1	1	2	2
Icing (sea surface)	3	5	1	1	3	2
Icing Base	3	1	2	3	3	2
Icing Top	3	1	2	3	3	2
Icing Type/Intensity	3	1	2	3	3	2
Imagery, Visual	1	3	1	3	2	2
Inversion Layer Top Height AGL (Boundary Layer)	3	1	4	3	3	1
Inversion Rate	3	1	4	3	3	2
Lightning	3	1	2	2	1	2
Liquid Water (vertical integration)	3	1	2	3	3	1
Littoral Current Speed	3	3	9	1	2	2
Magnetic Anomalies	1	4	1	2	1	2
Marine Mammals	3	5	9	1	2	2
Mean Daily Minimum Tidal Current Temp.	1	3	1	3	3	2
Precip. Noise	3	5	1	2	1	2
Precipitation Accumulation (H2O Equivalent)	1	1	1	3	1	1
Precipitation Rate (H2O Equivalent)	1	1	1	1	1	1
Precipitation Rate (H2O Equivalent) (Boundary Layer)	1	1	1	1	1	1
Radiation - Longwave	3	1	1	1	2	2
Radiation - Longwave (Boundary Layer)	3	1	4	1	2	2
Radiation - Shortwave	3	1	1	1	2	2
Radiation - Shortwave (Boundary Layer)	3	1	4	1	2	2
Radiation (background)	3	1	1	1	2	2
Radiation (background) (Boundary layer)	3	1	4	1	2	2
Reefs	1	3	9	3	2	2
Refraction	3	1	2	3	3	1
Refractive Units (M)	3	1	2	3	3	1
Relative Humidity (Average 1000/500mb)	3	1	2	2	3	1
Relative Humidity (Boundary Layer)	3	1	4	3	3	1
Relative Humidity (UA)	3	1	3	2	3	1

Table 3.8. Joint METOC Element Table, continued.

Joint METOC Element	H1	H2	V	T1	T2	UAS
Salinity	3	5	9	3	2	2
Sea Ice	3	6	1	3	2	2
Sea Ice Noise	3	6	9	3	1	2
Sea Ice Thickness	3	6	1	1	2	2
Sea Level Pressure (SLP)	3	1	1	2	3	1
Sea Spray (Boundary Layer)	1	4	4	3	3	2
Sea State (Wind Wave)	3	5	1	3	3	2
Shipping Density	3	5	1	1	2	2
Shipping Noise	3	5	9	1	2	2
Snow Accumulation	3	2	1	1	3	2
Snow Cover	3	2	1	3	3	2
Snow Depth	3	2	1	1	3	2
Snow Depth (H20 equivalent)	3	2	1	1	3	2
Snow Drift Depth	3	2	1	1	3	2
Snow Metamorphic State	3	2	1	1	3	2
Snowfall Rate (Boundary Layer)	3	2	1	3	3	1
Soil Moisture	3	2	1	3	2	2
Soil Temperature	3	2	1	2	3	2
Sound Speed Profile	1	5	9	3	3	2
Standing Water/Pooling	1	2	1	1	3	2
Sub-Bottom Profiles	3	5	6	1	2	2
Surf (Height/Direction)	1	3	1	3	3	2
Surf (Height/Direction/Type)	1	3	1	1	3	2
Surf Breaker Line	1	3	1	3	3	2
Surf Direction	1	3	1	2	3	2
Surf Height	1	3	1	3	3	2
Surf Height (Breakers)	1	3	1	3	3	2
Surf Plunge Point	1	3	1	3	3	2
Surf Zone Length	1	3	1	3	3	2
Surf Zone Width	1	3	1	3	3	2
Surface Currents	3	5	1	1	2	2
Surface Film/Foam	1	3	1	2	3	2
Surface Reverb. (active)	3	4	9	1	3	2
Surface Temperature, Inland Water Bodies	1	2	1	3	3	2
Surface Temperature, Ocean	3	5	1	3	3	2
Surge	1	3	1	3	1	2
Swell (height/direction)	3	5	1	3	3	2
Swell Wave Direction	3	5	1	3	3	2
Swell Wave Height	3	5	1	3	3	2

Table 3.8. Joint METOC Element Table, continued.

Joint METOC Element	H1	H2	V	T1	T2	UAS
Swell Wave Period	3	5	1	3	3	2
Temperature (air at surface)	3	2	1	2	3	1
Temperature (air at water surface)	3	5	1	2	3	1
Temperature (air profile)	3	1	2	2	3	1
Temperature (air profile) (Boundary Layer)	3	1	4	2	3	1
Temperature (horiz. Var.)	3	1	1	2	3	1
Temperature (UA)	3	1	3	2	3	1
Temperature (water column)	1	5	9	3	3	2
Temperature Wet Bulb Globe Index	3	1	2	2	3	1
Thunderstorm Activity	3	1	2	3	1	2
Thunderstorms - Coverage	3	2	2	3	1	2
Thunderstorms - Maximum Top	3	2	2	3	1	2
Tidal Amplitude	3	3	1	3	3	2
Tidal Currents	3	3	1	3	3	2
Tidal Period	3	3	1	3	5	2
Tidal Period (times, phases, heights)	3	3	1	1	3	2
Tidal Surge	3	3	1	3	1	2
Tornado	1	1	2	2	1	2
Trafficability	3	2	1	1	3	2
Transmission Loss	3	5	9	1	3	2
Trawling Areas	1	5	1	3	3	2
Tropical Storms	4	1	2	1	1	2
Turbulence Base	1	1	3	1	1	1
Turbulence Base (Boundary Layer)	1	1	2	1	1	1
Turbulence Intensity	1	1	2	1	1	1
Turbulence Intensity (Boundary Layer)	1	1	4	1	1	1
Turbulence Top	1	1	2	1	1	1
Turbulence Top (Boundary Layer)	1	1	4	1	1	1
Vertical Velocities (Omega)	3	1	2	1	3	1
Visibility	3	1	4	1	3	2
Volume Reverb. (active)	3	5	9	1	2	2
Water Clarity	1	3	8	3	1	2
Water Column Currents	1	5	8	1	2	2
Water Depth	3	1	9	3	2	2
Water Droplet Size	3	1	2	3	3	2
Water Quality	1	2	1	1	1	2
Wave Direction	3	5	1	3	3	2
Wave Height	3	5	1	3	3	2
Wave Noise	3	5	1	3	3	2

Table 3.8. Joint METOC Element Table, continued.

Joint METOC Element	H1	H2	V	T1	T2	UAS
Wave Period	3	5	1	3	3	2
Wind (Boundary Layer)	3	1	4	3	3	2
Wind (flight level) (direction/speed)	3	1	3	3	3	2
Wind Surface (direction/speed)	3	1	1	2	3	2

Table 3.9. Selected data from the RPA Table; spatial, temporal and air stream

assignments.

COUNTRY	NAME	H1	H2	V	T1	T2	UAS
AUSTRALIA	JINDIVIK Mk4A	4	1	2	2	3	1
AUSTRIA	CAMCOPTER	3	3	2	1	3	2
BELGIUM	EPERVIER	3	3	2	2	3	1
BELGIUM	ULTIMA 14/255	3	1	4	2	3	1
BRAZIL	K1 AM	2	3	2	2	3	1
BRAZIL	AM 03089	2	1	3	2	3	1
BULGARIA	PELICAN AM4/E	3	2	2	2	3	1
BULGARIA	YASTREB-2MB	3	2	2	2	3	1
BULGARIA	YASTREB-2S	3	2	2	2	3	1
CANADA	MILKCAN						
CANADA	POP-UP HELICOPTER	1	2	1	3	1	1
CANADA	CL-227 SENTINEL	3	1	2	3	1	2
CANADA	CL-327 GUARDIAN	3	1	2	1	1	2
CANADA	CL-427	3	1	2	1	1	2
CANADA	CL-89	3	2	2	2	3	1
CANADA	HIND-D	5	1	2	1	3	1
CANADA	HOKUM-X	3	3	2	1	3	2
CANADA	ROBOT 9	5	2	2	2	3	1
CANADA	ROBOT-X	3	1	2	2	3	1
CANADA	TATS 102/103	3	3	2	2	3	1
CANADA	VAMPIRE	4	1	2	2	3	1
CANADA	VINDICATOR II	2	3	2	2	3	1
CANADA	BLACK BRANT BB10 MOD 1	4	1	3	2	2	1
CANADA	BLACK BRANT BB5	4	1	3	2	2	1
CANADA	BLACK BRANT BB9 MOD 1	4	1	3	2	2	1
CANADA	EXCALIBUR 1B	2	3	3	2	2	1
CANADA	LEAP	5	3	4	2	3	1
CANADA	TATS 1	5	3	4	2	3	1
CANADA	TATS 50	5	1	4	2	3	1
CHINA	ASN-104	3	3	2	2	3	1

Table 3.9. Selected data from the RPA Table; spatial, temporal and air stream assignments, continued.

country	NAME	H1	H2	V	T1	T2	UAS
CHINA	ASN-105	3	3	2	2	3	1
CHINA	ASN-12	3	3	2	2	3	1
CHINA	ASN-206	3	3	2	2	3	1
CHINA	ASN-7	3	3	2	2	3	1
CHINA	ASN-9	3	1	2	2	3	1
CHINA	BJ7104	3	3	2	2	3	1
CHINA	BJ7104 B-2B	3	3	2	2	3	1
CHINA	CHANG KONG CK1C	4	1	2	2	3	1
CHINA	CHANG KONG CK1E	4	1	2	2	3	1
CHINA	D-4 RD	3	3	2	2	3	1
CHINA	SHEN ZHOU-1	5	2	2	2.	3	1
CHINA	SHEN ZHOU-2	5	2	2	2	3	1
CHINA	TYPE 130/TQ-4 FIREFLY	3	3	2	2	3	1
CHINA	CHANG HONG 1	4	1	3	2	3	1
CHINA	FK-11	3	2	4	2	3	1
CHINA	FK-12	3	2	4	2	3	1
CHINA	NRIST YK-7	5	2	4	2	3	1
CHINA	OBSERVER 1	5	1	4	2	3	1
CZECH	SOJKA III	3	3	2	2	3	1
REPUBLIC							
EGYPT	TN-1B	5	2	2	2	3	1
FINLAND	AT 85	3	1	4	2	3	1
FINLAND	AT 97	3	1	4	2	3	1
FRANCE	C22L	4	1	2	2	3	1
FRANCE	CHACAL	4	1	2	2	3	1
FRANCE	CRECERELLE	3	3	2	2	1	1
FRANCE	CRECERELLE-SCALA	3	3	2	2	1	1
FRANCE	DRAGON	3	3	2	2	1	1
FRANCE	DRAGON FLY HELIOT	3	1	2	1	3	2
FRANCE	E-C 22	4	1	2	2	3	1
FRANCE	ECLIPSE T2	3	1	2	2	2	1
FRANCE	FOX AT1	3	1	2	2	3	1
FRANCE	FOX AT2	3	1	2	2	3	1
FRANCE	FOX TS3	3	3	2	2	3	1
FRANCE	FOX TX	3	3	2	2	1	1
FRANCE	MARULA	4	1	2	2	3	1
FRANCE	S-MART	3	3	2	2	1	1
FRANCE	SPERWER, UGGLAN	3	3	2	2	1	1

Table 3.9. Selected data from the RPA Table; spatial, temporal and air stream

assignments, continued.

FRANCE VIGILANT F2000 3 1 2 1 3 2 FRANCE BOUCANIERE 5 3 4 2 3 1 FRANCE HUSSARD 2 5 2 4 2 3 1 FRANCE HUSSARD 2 5 2 4 2 3 1 FRANCE MART MK II 3 3 3 4 2 3 1 GERMANY MK-105 FLASH 3 3 3 2 2 3 1 GERMANY SK10	assignments, co		TT4	III	V	701	T2	UAS
FRANCE BOUCANIERE 5 3 4 2 3 1 FRANCE HUSSARD 2 5 2 4 2 3 1 FRANCE MART MK II 3 3 3 4 2 3 1 GERMANY MK-105 FLASH 3 3 3 2 3 1 GERMANY MK-106 HIT C 3 3 3 2 2 3 1 GERMANY SK10								
FRANCE HUSSARD 2			_			_	1	
FRANCE MART MK II 3 3 3 4 2 3 1 GERMANY MK-105 FLASH 3 3 3 2 3 1 GERMANY MK-106 HIT C 3 3 3 2 2 3 1 GERMANY SK10 GERMANY SK6 GERMANY DAR 3 3 2 2 3 1 GERMANY SEAMOS LV 3 1 2 1 3 2 GERMANY TAIFUN (ATTACK) AND MUCKE (ECM) GERMANY LOTTE 3 3 3 2 1 2 3 1 GREECE IRIS 3 2 1 2 3 1 GREECE F-16 SCALE TARGET 5 1 2 2 3 1 RNDIA NISHANT 3 3 2 2 3 1 RNDIA NISHANT 3 3 2 2 3 1 RNDIA LAKSHYA 3 3 2 2 3 1 RNDIA ULKA 3 1 2 2 3 1 RNDIA ULKA 3 1 2 2 3 1 RNTER- NATIONAL INTER- ROBOCOPTER 300 KFIR-C2 SCALE TARGET ISRAEL CROW 3 3 3 2 2 1 1 I 1 1 I 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I 1 3 2 2 1 1 I I 1 3 2 2 1 I I 1 3 2 2 1 I I 1 3 2 2 1 I I I 3 3 2 1 I I I I I I I I I I I I I I I I I I						-		
GERMANY MK-105 FLASH 3 3 3 2 3 1 GERMANY MK-106 HIT C 3 3 3 2 3 1 GERMANY SK10 GERMANY SK6 GERMANY DAR 3 3 2 2 3 1 GERMANY SEAMOS LV 3 1 2 1 3 2 GERMANY TAIFUN (ATTACK) AND MUCKE (ECM) GERMANY LOTTE 3 3 3 2 1 2 3 1 GREECE IRIS 3 2 1 2 3 1 GREECE ALKYON 3 3 2 2 3 1 GREECE F-16 SCALE TARGET 5 1 2 2 3 1 RECECE NEARCHOS 3 3 2 2 1 1 INDIA NISHANT 3 3 2 2 1 1 INDIA KAPOTHAKA 3 2 2 2 3 1 INDIA LAKSHYA 3 3 2 2 2 3 1 INDIA LAKSHYA 3 3 2 2 2 3 1 INDIA LAKSHYA 3 1 2 2 3 1 INTER- NATIONAL	FRANCE						-	
GERMANY MK-106 HIT C	FRANCE	MART MK II			4			
GERMANY SK10 GERMANY SK6 GERMANY DAR GERMANY SEAMOS LV GERMANY TAIFUN (ATTACK) AND MUCKE (ECM) GERMANY LOTTE 3 GRECE IRIS GRECE IRIS GRECE ALKYON GRECE F-16 SCALE TARGET TNDIA NISHANT INDIA KAPOTHAKA INDIA LAKSHYA INDIA ULKA INTER- NATIONAL BREVEL NATIONAL INTER- NATIONAL INTE	GERMANY	MK-105 FLASH						
GERMANY SK6	GERMANY	MK-106 HIT C	3	3		2	3	1
GERMANY DAR 3 3 2 2 3 1 GERMANY SEAMOS LV 3 1 2 1 3 2 GERMANY TAIFUN (ATTACK) AND MUCKE (ECM) 3 3 2 2 3 1 GERMANY LOTTE 3 3 3 4 2 3 1 GREECE IRIS 3 2 1 2 3 1 GREECE IRIS 3 2 1 2 3 1 GREECE F-16 SCALE TARGET 5 1 2 2 3 1 GREECE NEARCHOS 3 3 2 2 1 1 GREECE NEARCHOS 3 3 2 2 1 1 INDIA NISHANT 3 3 2 2 3 1 INDIA LAKSHYA 3 3 2 2 3 1	GERMANY	SK10						
GERMANY SEAMOS LV 3 1 2 1 3 2 GERMANY TAIFUN (ATTACK) AND MUCKE (ECM) 3 3 2 2 3 1 GERMANY LOTTE 3 3 3 4 2 3 1 GREECE IRIS 3 2 1 2 3 1 GREECE ALKYON 3 3 2 2 3 1 GREECE ALKYON 3 3 2 2 3 1 GREECE F-16 SCALE TARGET 5 1 2 2 3 1 GREECE NEARCHOS 3 3 2 2 1 1 INDIA NISHANT 3 3 2 2 1 1 INDIA KAPOTHAKA 3 3 2 2 2 3 1 INTER-NATIONAL BQM-155A E-Hunter 3 1 2 2 1	GERMANY	SK6						
GERMANY TAIFUN (ATTACK) AND MUCKE (ECM) 3 3 2 2 3 1 GERMANY LOTTE 3 3 3 4 2 3 1 GREECE IRIS 3 2 1 2 3 1 GREECE ALKYON 3 3 2 2 3 1 GREECE F-16 SCALE TARGET 5 1 2 2 3 1 GREECE NEARCHOS 3 3 2 2 1 1 INDIA NISHANT 3 3 2 2 1 1 INDIA KAPOTHAKA 3 3 2 2 3 1 INDIA LAKSHYA 3 3 2 2 3 1 INTER- BQM-155A E-Hunter 3 1 2 2 1 1 INTER- BREVEL 3 3 2 2 3 1	GERMANY	DAR		3	2	2	_	
GERMANY LOTTE 3	GERMANY	SEAMOS LV	3	1	2	1	3	2
GERMANY LOTTE 3 3 3 4 2 3 1 GREECE IRIS 3 2 1 2 3 1 GREECE ALKYON 3 3 2 2 3 1 GREECE F-16 SCALE TARGET 5 1 2 2 3 1 GREECE NEARCHOS 3 3 2 2 3 1 INDIA NISHANT 3 3 2 2 3 1 INDIA KAPOTHAKA 3 2 2 2 3 1 INDIA KAPOTHAKA 3 3 2 2 3 1 INDIA LAKSHYA 3 3 2 2 3 1 INTER- BQM-155A E-Hunter 3 1 2 2 1 1 INTER-NATIONAL RQ-2A PIONEER OPTION 2+ 3 3 2 2 3 1	GERMANY	TAIFUN (ATTACK) AND MUCKE	3	3	2	2	3	1
GREECE IRIS 3 2 1 2 3 1 GREECE ALKYON 3 3 3 2 2 3 1 GREECE F-16 SCALE TARGET 5 1 2 2 3 1 GREECE NEARCHOS 3 3 2 2 1 1 INDIA NISHANT 3 3 2 2 2 3 1 INDIA KAPOTHAKA 3 2 2 2 3 1 INDIA LAKSHYA 3 3 2 2 2 3 1 INDIA ULKA 3 1 2 2 3 1 INTER- NATIONAL INTER- NATIONA		(ECM)						
GREECE ALKYON 3 3 2 2 3 1 GREECE F-16 SCALE TARGET 5 1 2 2 3 1 GREECE NEARCHOS 3 3 2 2 1 1 INDIA NISHANT 3 3 2 2 3 1 INDIA KAPOTHAKA 3 2 2 2 3 1 INDIA LAKSHYA 3 3 2 2 3 1 INDIA ULKA 3 1 2 2 3 1 INTER- NATIONAL INTER- RQ-2A PIONEER OPTION 2+ NATIONAL INTER- NATIONAL INTER- CL-289 3 3 4 2 3 1 INTER- ROBOCOPTER 300 3 3 2 2 1 1 INTER- ROBOCOPTER 300 3 3 2 2 1 1 INTER- RAQ KFIR-C2 SCALE TARGET ISRAEL CROW 3 3 3 2 2 1 1	GERMANY	LOTTE 3	3	3	4	2	3	1
GREECE F-16 SCALE TARGET 5 1 2 2 3 1 GREECE NEARCHOS 3 3 2 2 1 1 INDIA NISHANT 3 3 2 2 3 1 INDIA KAPOTHAKA 3 2 2 2 3 1 INDIA LAKSHYA 3 3 2 2 3 1 INDIA ULKA 3 1 2 2 3 1 INTER- NATIONAL BREVEL 3 1 2 2 1 1 INTER- NATIONAL BREVEL 3 3 2 2 3 1 INTER- NATIONAL INTER- N	GREECE	IRIS	3	2	1	2	3	1
GREECE NEARCHOS 3 3 2 2 1 1 INDIA NISHANT 3 3 3 2 2 3 1 INDIA KAPOTHAKA 3 2 2 2 3 1 INDIA LAKSHYA 3 3 2 2 3 1 INDIA ULKA 3 1 2 2 3 1 INTER- NATIONAL BQM-155A E-Hunter 3 1 2 2 1 1 INTER- NATIONAL BREVEL 3 3 2 2 3 1 INTER- NATIONAL INTER- N	GREECE	ALKYON	3	3	2	2	3	1
INDIA	GREECE	F-16 SCALE TARGET	5	1	2	2	3	1
INDIA	GREECE	NEARCHOS	3	3	2	2	1	1
INDIA	INDIA	NISHANT	3	3		2	3	1
INDIA ULKA 3 1 2 2 3 1 INTER-NATIONAL BQM-155A E-Hunter 3 1 2 2 1 1 INTER-NATIONAL BREVEL 3 3 2 2 3 1 INTER-NATIONAL RQ-2A PIONEER OPTION 2+ NATIONAL 3 1 2 2 3 1 INTER-NATIONAL SIVA 3 3 2 2 1 1 INTER-NATIONAL CL-289 3 3 4 2 3 1 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 INTER-NATIONAL 3 3 4	INDIA	KAPOTHAKA	3	2	2	2	3	1
INTER-	INDIA	LAKSHYA	3	3	2	2	3	1
NATIONAL BQM-155A Hunter 3 1 2 2 1 1 INTER-NATIONAL BREVEL 3 3 2 2 3 1 INTER-NATIONAL RQ-2A PIONEER OPTION 2+ NATIONAL 3 1 2 2 3 1 INTER-NATIONAL SIVA 3 3 2 2 1 1 INTER-NATIONAL CL-289 3 3 4 2 3 1 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 IRAQ KFIR-C2 SCALE TARGET 3 3 2 2 1 1 ISRAEL CROW 3 3 2 2 1 1	INDIA	ULKA	3	1	2	2	3	1
INTER-NATIONAL BQM-155A Hunter 3	INTER-	BQM-155A E-Hunter	3	1	2	2	1	1
NATIONAL SPECIAL SPE	NATIONAL							
INTER-NATIONAL BREVEL 3 3 2 2 3 1 INTER-NATIONAL RQ-2A PIONEER OPTION 2+ 3 1 2 2 3 1 INTER-NATIONAL SIVA 3 3 2 2 1 1 INTER-NATIONAL CL-289 3 3 4 2 3 1 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 IRAQ KFIR-C2 SCALE TARGET ISRAEL CROW 3 3 2 2 1 1	INTER-	BQM-155A Hunter	3	1	2	2	1	1
NATIONAL RQ-2A PIONEER OPTION 2+ 3 1 2 2 3 1 INTER-NATIONAL SIVA 3 3 2 2 1 1 INTER-NATIONAL CL-289 3 3 4 2 3 1 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 IRAQ KFIR-C2 SCALE TARGET ISRAEL CROW 3 3 2 2 1 1	NATIONAL				ĺ			
INTER-NATIONAL RQ-2A PIONEER OPTION 2+ 3 1 2 2 3 1	INTER-	BREVEL	3	3	2	2	3	1
NATIONAL SIVA 3 3 2 2 1 1 INTER-NATIONAL CL-289 3 3 4 2 3 1 NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 NATIONAL RAQ KFIR-C2 SCALE TARGET 5 5 5 1 1 ISRAEL CROW 3 3 2 2 1 1	NATIONAL							
INTER-NATIONAL SIVA 3 3 2 2 1 1 INTER-NATIONAL CL-289 3 3 4 2 3 1 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 NATIONAL IRAQ KFIR-C2 SCALE TARGET 5 5 1 1 ISRAEL CROW 3 3 2 2 1 1	INTER-	RQ-2A PIONEER OPTION 2+	3	1	2	2	3	1
NATIONAL INTER- INTER- NATIONAL CL-289 3 3 4 2 3 1 INTER- NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 IRAQ KFIR-C2 SCALE TARGET ISRAEL CROW 3 3 2 2 1 1	NATIONAL							
INTER-NATIONAL CL-289 3 3 4 2 3 1 INTER-NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 NATIONAL IRAQ KFIR-C2 SCALE TARGET 5 5 5 1 1 ISRAEL CROW 3 3 2 2 1 1	INTER-	SIVA	3	3	2	2	1	1
NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 NATIONAL IRAQ KFIR-C2 SCALE TARGET ISRAEL CROW 3 3 2 2 1 1	NATIONAL							į
INTER- NATIONAL ROBOCOPTER 300 3 3 4 1 3 2 IRAQ KFIR-C2 SCALE TARGET <	INTER-	CL-289	3	3	4	2	3	1
NATIONAL	NATIONAL							
IRAQ KFIR-C2 SCALE TARGET ISRAEL	INTER-	ROBOCOPTER 300	3	3	4	1	3	2
ISRAEL CROW 3 3 2 2 1 1	NATIONAL							
ISRAEL CROW 3 3 2 2 1 1	IRAQ	KFIR-C2 SCALE TARGET						
ISRAEL DARTER 3 3 2 2 1 1	ISRAEL	CROW	3	3	2	2	1	1
	ISRAEL	DARTER	3	3	2	2	1	1

Table 3.9. Selected data from the RPA Table; spatial, temporal and air stream assignments, continued.

COUNTRY	NAME	H1	H2	V	T1	T2	UAS
ISRAEL	DELILAH	3	1	2	2	3	1
ISRAEL	EYE VIEW A	3	3	2	2	1	1
ISRAEL	EYE VIEW B	3	3	2	2	1	1
ISRAEL	FIREBIRD 2001	3	3	2	2	1	1
ISRAEL	FIREFLY	3	3	2	2	3	1
ISRAEL	HARPY	3	3	2	2	3	1
ISRAEL	HAWK	3	3	2	2	1	1
ISRAEL	HERMES 1500	3	2	2	2	1	1
ISRAEL	HERMES 450	3	1	2	2	1	1
ISRAEL	HERMES 450S	3	1	2	2	1	1
ISRAEL	HERON	4	1	2	2	1	1
ISRAEL	HERON SHORT WING	4	1	2	2	1	1
ISRAEL	HERON TURBOPROP	4	1	2	2	1	1
ISRAEL	ITALD	3	1	2	2	3	1
ISRAEL	MICRO-V	3	3	2	2	3	1
ISRAEL	SAMSON	3	3	2	2	3	1
ISRAEL	SCOUT	3	3	2	2	1	1
ISRAEL	SEARCHER	3	1	2	2	1	1
ISRAEL	SNOOPER	5	3	2	2	3	1
ISRAEL	TALD	3	1	2	2	3	1
ISRAEL	VANGUARD	3	3	2	2	1	1
ISRAEL	COLIBRI 62A	3	3	4	2	3	1
ISRAEL	COLIBRI 62B	3	3	4	2	3	1
ISRAEL	MIG-27 SCALE TARGET	5	2	4	2	3	1
ISRAEL	TM-105 EDO	5	1	4	2	3	1
ITALY	MIRACH 10	3	1	2	2	3	1
ITALY	MIRACH 100	3	1	2	2	3	1
ITALY	MIRACH 100 RECCE	4	1	2	2	3	1
ITALY	MIRACH 150	3	1	2	2	3	1
ITALY	MIRACH 26	3	1	2	2	1	1
ITALY	MIRACH 70	3	1	2	2	3	1
JAPAN	J/AQM-1	3	1	2	2	3	1
JAPAN	MAMBOW 4	5	2	4	2	3	1
JAPAN	R-50	1	2	4	1	3	1
JAPAN	R-MAX	1	2	4	1	3	1
JAPAN	RPH-2	3	3	4	1	3	2
NORWAY	DOLPINE	3	1	2	2	3	1
NORWAY	PRS DELTA	3	1	2	2	3	1

Table 3.9. Selected data from the RPA Table; spatial, temporal and air stream assignments, continued.

COUNTRY	NAME	H1	H2	V	T1	T2	UAS
PAKISTAN	ABABEEL	5	1	4	2	3	1
PAKISTAN	BAAZ	5	2	4	2	3	1
PORTUGAL	ARMOR X7	. 3	1	2	2	1	1
ROMANIA	ATS 01-01	3	2	2	2	3	1
RUSSIA	3M20M3	3	3	2	2	3	1
RUSSIA	DAN	3	3	2	2	3	1
RUSSIA	E85	3	3	2	2	3	1
RUSSIA	E95	5	3	2	2	3	1
RUSSIA	KA-137	4	1	2	1	3	2
RUSSIA	KA-37	5	3	2	1	3	1
RUSSIA	R90	3	1	2	2	3	1
RUSSIA	SHMEL-1	3	2	2	2	3	1
RUSSIA	SHMEL-2	3	3	2	2	3	1
RUSSIA	TU-141 STRIZH	4	1	2	2	1	1
RUSSIA	TU-143, -243, -300	3	2	2	2	3	1
RUSSIA	RD-1.5	3	2	4	2	3	1
SOUTH	LARK	3	1		2	3	1
AFRICA							
SOUTH	BUZZARD 3	3	3	2	2	3	1
AFRICA							
SOUTH	RPV-2 SEEKER	3	3	2	2	1	1
AFRICA							
SOUTH	SKUA	3	1	2	2	3	1
AFRICA							
SOUTH	VULTURE	3	3	2	2	3	1
AFRICA							
SOUTH	LOCATS	5	2	4	2	3	1
AFRICA							
SOUTH	ARCH-50	5	2	4	1	3	1
KOREA							
SPAIN	ALO	3	3	2	2	3	1
SPAIN	ALBA	5	2	4	2	3	1
SWEDEN	MIDGET RPG	3	1	2	1	3	2
SWEDEN	RIPAN	1	1	4	2	3	1
SWITZER-	ADS 95 RANGER	3	3	2	2	3	1
LAND							
SWITZER-	TOPAZ	5	2	2	2	3	1
LAND							

Table 3.9. Selected data from the RPA Table; spatial, temporal and air stream assignments, continued.

COUNTRY	NAME	H1	H2	V	T1	T2	UAS
TAIWAN	T-10 & T-20	5	1	2	2	3	1
TAIWAN	THUNDER TIGER T-60	3	3	2	2	3	1
TURKEY	TAI TARGET DRONE	3	2	2	2	3	1
TURKEY	UAV-X1	4	3	2	2	1	1
UK	ARIEL						
UK	HISAT						
UK	MINI						
UK	AGT-30, -40	3	2	2	2	3	1
UK	BTT-1 IMP	5	1	2	2	3	1
UK	BTT-3 BANSHEE	3	1	2	2	3	1
UK	FALCONET	5	3	2	3	3	1
UK	MGT-15	5	2	2	2	3	1
UK	MGT-20	5	2	2	2	3	1
UK	MMT-100	3	3	2	2	3	1
UK	PETREL	3	1	2	2	3	1
UK	PHANTOM	3	3	2	2	3	1
UK	PHOENIX	3	3	2	2	3	1
UK	RAVEN	3	3	2	2	3	1
UK	SAGT-50, -60	3	3	2	2	3	1
UK	SKEET	5	1	2	2	3	1
UK	SPECTRE	3	3	2	2	3	1
UK	MRTT	3	1	3	2	3	1
UK	DRAGONFLY	5	1	4	2	3	1
UK	GT-10	5	1	4	3	3	1
UK	PIG SERIES	5	3	4	2	3	1
USA	AN/ALE-50						
USA	BLAZER						
USA	FLYRT						
USA	HUTTS						
USA	IRTT						
USA	RADAR TOW TARGETS						
	(MEGGITT)						
USA	SGT-20						
USA	TDK-39						
USA	TDU-34/A						
USA	TLX-1						
USA	23F & 60F	5	2	2	1	3	1
USA	32M & 71M	3	1	2	2	1	1

Table 3.9. Selected data from the RPA Table; spatial, temporal and air stream assignments, continued.

COUNTRY	NAME	H1	H2	V	T1	T2	UAS
USA	ACRW (AIRCRAFT WITH	3	1	2	2	3	1
	CIRCULAR ROTATING WING)						
USA	AEROSONDE	4	1	2	3	1	1
USA	ALTUS	4	1	2	2	1	1
USA	APEX	3	3	2	2	3	1
USA	ARROW	4	1	2	2	1	1
USA	AURA	4	1	2	2	1	1
USA	BQM-34 FIREBEE I	4	1	2	2	3	1
USA	BQM-74C RECCE	4	1	2	2	3	1
USA	CANARD/ROTOR WING	4	1	2	1	3	2
USA	CENTURION	3	3	2	2	3	1
USA	CHUKAR BQM-74/MQM-74	4	1	2	2	. 3	1
USA	CYPHER	3	3	2	1	3	1
USA	DRAGON	3	1	2	2	3	1
USA	EAGLE EYE	3	1	2	1	1	1
USA	EXDRONE	3	1	2	2	3	1
USA	GNAT 750	4	1	2	2	1	1
USA	HORNET	4	3	2	2	1	1
USA	I-GNAT	4	1	2	2	1	1
USA	MALD	4	1	2	2	3	1
USA	MODEL 410	4	1	2	2	1	1
USA	MQM-107 STREAKER	3	3	2	2	3	1
USA	OUTRIDER	3	1	2	2	3	1
USA	PARADACTYL AND PARAKEET	3	3	2	2	3	1
USA	PATHFINDER	3	1	2	2	1	1
USA	PENETRATOR-T	4	3	2	2	3	1
USA	PERSEUS A & B	4	3	2	2	1	1
USA	PROWLER	3	3	2	2	1	1
USA	QF-106	4	3	2	2	1	1
USA	QF-4	4	1	2	2	3	1
USA	QMIG-21	4	3	2	2	3	1
USA	R4E SKYEYE	3	3	2	2	1	1
USA	RDAE BTT & MQM-33/36	3	1	2	2	3	1
USA	RPB-35 WASP	3	3	2	2	3	1
USA	RQ-1A PREDATOR	4	1	2	2	1	1
USA	RQ-3A DARKSTAR (TIER III-)	4	1	2	2	1	1
USA	RQ-4A GLOBAL HAWK (TIER II+)	4	1	2	2	1	1

Table 3.9. Selected data from the RPA Table; spatial, temporal and air stream

assignments, continued.

assignments, c	NAME	H1	H2	V	T1	T2	UAS
COUNTRY		3		<u> </u>			
USA	SCALE TARGETS (E.G. A-7, A-10,		1	2	2	3	1
	MIG-27, SU-17, ETC.)	-		_		1	
USA	SCALE TARGETS (RS SYSTEMS)	5	1	2	2	3	1
USA	SCARAB	4	1	2	2	1	1
USA	SEA FERRET	4	1	2	2	3	1
USA	SHADOW	4	1	2	2	1	1
USA	SHADOW 200	3	3	2	2	1	1
USA	SHADOW 600	3	1	2	2	1	1
USA	STARBIRD	3	3	2	2	1	1
USA	STF-9	3	1	2	1	3	1
USA	STM5B(1) SENTRY	3	3	2	2	1	1
USA	SWALLOW	3	3	2	2	3	1
USA	TERN	3	3	2	2	3	1
USA	THESEUS	4	1	2	2	1	1
USA	TILT-BODY	3	3	2	3	3	1
USA	TRUCK	3	3	2	2	3	1
USA	VIXEN AND HELLFOX	3	1	2	2	3	1
USA	W570A		1	2	2	1	1
USA	X-36	3	3	2	2	3	1
USA	AQM-37	3	1	3	2	3	1
USA	TMX & TRX-12	3	1	3	2	3	1
USA	DRAGONFLY DP4	3	2	4	1	3	2
USA	JAVELIN	5	1	4	2	3	1
USA	SENDER	3	3	4	2	3	1
YUGO-			1	2	2	1	1
SLAVIA							
YUGO-	PRM-200	3	3	3	2	3	1
SLAVIA							
YUGO-	M-2M	3	3	4	2	3	1
SLAVIA							

Table 3.10. SQL Code linking RPA and Joint METOC Element Tables with assignments (Tables 3.8 and 3.9).

SELECT [tbl1Joint Element]. Element, [tblUAV (flat file)]. COUNTRY, [tblUAV (flat file)]. NAME, [tblUAV (flat file)]. TYPE FROM [tbl1Joint Element], [tblUAV (flat file)]

Table 3.10. SQL Code linking RPA and Joint METOC Element Tables with assignments (Tables 3.8 and 3.9), continued.

```
WHERE ([tbl1Joint Element].H1=[tblUAV (flat file)].H1 OR [tblUAV (flat file)].H1=4
OR
        ([tbl1Joint Element].H1 IN (1,2,5) AND [tblUAV (flat file)].H1=3)) AND
        ([tbl1]Joint Element].H2 = [tblUAV (flat file)].H2 OR [tblUAV (flat
file)].H2=1 OR [tbl1Joint Element].H2=1 OR
        ([tbl1]Joint Element].H2 IN (2,3) AND [tblUAV (flat file)].H2 IN (2,3) OR
        ([tbl1Joint Element].H2 IN (4,5) AND [tblUAV (flat file)].H2 IN (4,5) )))
AND
         ([tbl1Joint Element].V=[tblUAV (flat file)].V OR
         ([tblUAV (flat file)].V = 2 AND [tbl1Joint Element].V IN (1,3,4)) OR
         ([tblUAV (flat file)].H2 IN (1,4,5) AND [tbl1Joint Element].V IN (7,8,9))
OR
         ([tblUAV (flat file)].H2 IN (1,3,5) AND [tbl1Joint Element].V = 8)) AND
        ([tbl1Joint Element].T1=[tblUAV (flat file)].T1 OR [tblUAV (flat file)].T1=1
OR
        ([tbl1Joint Element].T1 IN (2,3) AND [tblUAV (flat file)].T1=3)) AND
        ([tbl1Joint Element].T2=[tblUAV (flat file)].T2 OR [tblUAV (flat file)].T2=1
OR
        ([tbl1Joint Element].T2 IN (2,3) AND [tblUAV (flat file)].T2=3)) AND
        ([tbl1]Joint Element].UAS=[tblUAV (flat file)].UAS OR [tblUAV (flat
file)].UAS=1);
```

Table 3.11. Selected data from the Airborne Equipment Table.

	_	1	_	. -		_					_	T	1		Т.	_	τ	_	1	т		_	_		
A5	-	_		_	1	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	_		-	-
RS	1	-		-	-		-		-	-	L	-			-	4		-		_	_	_	-	1	_
E5	2	1	1	1			1		1	_	7	1	1	1		9		-	1	1		1			1
A4																4									_
R4 /							F																		
	-	-		-	-	7	F	F	1	-		1	_	1		4	_			_	_		_		1
E4	9	7	-	1	-	-	-	_		-	4	_	-	-		10	-	-	-		_	_	1	-	
A3	1	-		1		1	-		-	-	1		8		1	9	-	1	_	1	_		-	-	3
R3	_		-	1	-	-	_	_	-	_			7			9		1	1	ī	1	-	_	_	4
8		_																							
E3	14	14	-	-	-	-	-	-	-	-	5	6	3	-	-	4	-	-	-	-	-	-	-		16
12 A2	-	_	-	_	_	_	_	1	-	_	-		5		-	7		_	-	-		9	_	-	4
	1	_	1	_	-	1	_	-		-	-	10	9	_		4		1	-		-		-	1	5
E2	20	20	19	1	_		1	1	_	1	3	25	17	1	1	3	1	1	1		1	15	-	4	14
A1			_	1	8	9	1	1	1	1	1	1	10	1	_	3	1	_	_	1	1	7	_	1	11
RI	1	-	_	-	7	13	30	_	25	1	1	12	3	9	1	14	1			21	1	1		1	15
E1	16	16	57	13	10	26	2	32	54	43	30	24	3	2	34	28	55	7	09	39	44	63	5	69	29
	2	2	2	2	7	1	3	2	3	2	1	1			2	8		3	2	3	2		2		2
Q		2	2	2	1	3	-1	2			3	3	4		2	1	7	1	2	1	5	4			
AC	23	22	21	6	4	3	10	1	1	1	30	26	19		9	29		1	15	_	_		1	_	1
Name		2					7	8	6							16	17	18		20	21	22	23	24	25

A5 RS S ES **A4 R4 E4 A3** S R3 ∞ Table 3.11. Selected data from the Airborne Equipment Table, continued. A2 ∞ **E**2 **A1** RI E1 23 9 67 69 64 7 2 AC Name

Table 3.11. Selected data from the Airborne Equipment Table, continued.

10	Τ	Τ	Τ	Τ	T	Τ	Τ	T	Τ	Γ	Τ	Γ	Γ	Τ	Τ	Π	T				Π	Γ				Π
A5		-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	1	-	-	-	1	-
R 5	-	-	1	-	-	-	-			-	-	-	1	-	-	-	_	_	-	-	-	-	-	-		-
E5	_					_		-		_	-	1	1		1	1	_	-	-	1	_	-	1	1	-	
A4						_	_	_	_							1	-	_	1					1		1
R4																										
F																										
E4	-	_		-	_	-	_	1		_	1	_	-		-	_	_	-	_	1	1	1	-	-	_	-
A3	_	_	_	1	1	_	1	1	1	1		_	_	_	_	_	1	_	1	_	-		1			
R3					_		1	1	_			_		1	1								1	_		
			 														-									-
E3	-	-			_			1	15			_		_	_		1	_	_	_	-	_		_	-	1
A2		-	-	7	-	-	-	1	-		-			-	-	-	1	-	-	-			1	-	1	-
R	1		1	1	1	2	1	1	_	_		-	1	_	-	1	_	_		1	-		-		-	1
E2 R2 A2 E3	1	1	1		1	11	8	1	23	1		1	1	21	1	1	1	1	1			1			I	1
A1						13	1		1	1						1		1	1						1	
RI		2				-							8									23	10		76	0
	-	(1		_		63	_	-		4	1	1		1	1	1	1	1	1	_	∞	2	_	6	7	7
D A E1 R1 A1	99	40	=	45	12	79	21	1	64	2	9	22	2	61	27	46	46	46	58	46	2	7	19	18	18	38
A	2	_	2	2	2	4	3	3	2	3	2	3	3	2	2	2	2	2	2	2	3	3	3	3	3	3
O	2	3	2	2	2	4	1	1	2	1	2	-	1	2	7	2	2	2	2	2	1	1	1	-	-	_
C	8	7	1	1	1	16	1	1	_	1	11			24		1		1	_		_				_	1
ıme		-			,		0.5																			
ž	52	53	54	55	56	57	58	59	9	61	62	63	64	65	99	67	89	69	2	7	72	73	74	75	76	77

A5 RS E5 **A4 R**4 **E**4 **A3 R3** Table 3.11. Selected data from the Airborne Equipment Table, continued. E3 A2 ∞ **E**2 28 28 A1 R1 E1 78 47 5 5 5 36 36 15 8 2 2 3 ⋖ S ~ ~ AC Name 88 68 8 6 2 8 8

Table 3.11. Selected data from the Ai	.11. S	elect	ed dat	a irom the	AILD	ome r	arborne Equipment Table, continued	IL Lau	-	mmaca.								
Name	AC	Ω	A	E1	RI	A1	E2	R2 A2 E3	A2	E3	R3	R3 A3 E4	E4	R4	R4 A4 E5	ES	R5 A5	A5
104	-	2	2	5		_	1		1		-	-	1	-		1		-
105	1	1	3	8	-	_	1	-		-	1	_	1	-	-	1	-	-
106	17	2	2	74	1	-	13	-	-	∞	-	-	_	-		1	1	
107	1	1	3	62	1	-	22	1	_	2	-		1		_	1	1	1
108	1	2	2	35		_		-	-	-		_	_	_	-		-	_

Table 3.12. Column heading legend.

Column Heading	Acronym
Equipment Name	Name
Acronym	AC
Department	D
Agency	A
Element1	E1
Range1	R1
Accuracy1	A1
Element2	E2
Range2	R2
Accuracy2	A2
Element3	E3
Range3	R3
Accuracy3	A3
Element4	E4
Range4	R4
Accuracy4	A4
Element5	E5
Range5	R5
Accuracy5	A5

Table 3.13. Name legend.

Name	Airborne Equipment
1	2 CHANNEL SELECTED ION CHEMICAL IONIZATION MASS
	SPECTROMETER)
2	4 CHANNEL SELECTED ION CHEMICAL IONIZATION MASS
	SPECTROMETER)
3	AIRBORNE DIODE LASER SPECTOMETER
4	AIRBORNE IMAGING MICROWAVE SPECTROMETER
5	AN/GMQ-33 TRANSPORTABLE CLOUD HEIGHT DETECTOR
6	ATMOSPHERIC EMITTED RADIANCE INTERFEROMETER
7	AUTOMATED CLASSIFIED AEROSOL DETECTOR
8	CARTRIDGE SAMPLER
9	CCN SPECTROMETER
10	CCN/IN COUNTER
11	CHEMICAL TACTICAL DROPSONDE
12	CLOUD DETECTION LIDAR
13	CLOUD DROPLET VIDEOSPECTROMETER
14	CLOUD, AEROSOL AND PRECIPITATION SPECTROMETER

Table 3.13. Name legend, continued.

Name	Airborne Equipment
15	COMMUNITY AIR INLET
16	COMPACT METEOR AND OCEAN DRIFTER (AN/WSQ-6)
	SERIES
17	CONDENSATION NUCLEI DETECTOR TS-3760
18	COUNTERFLOW VIRTUAL IMPACTOR (CIRPAS)
19	COUNTERFLOW VIRTUAL IMPACTOR (NCAR)
20	DEW POINT TEMPERATURE
21	DIFFERENTIAL MOBILITY ANALYZER WITH TSI-SMPS
	SOFTWARE
22	DUAL CHANNEL MICROWAVE RADIOMETER
23	EG&G MODEL 137 HYGROMETER
24	ELDORA .
25	EYESAFE VISIOCEILOMETER
26	FILTER SAMPLING SYSTEM
27	FROST POINT HYGROMETER
28	FSSP - 100X
29	FTIR
30	GENERAL EASTERN MODEL 1011B
31	GPS TACTICAL DROPSONDE
32	HEIMANN KT19.85 IR RADIOMETER
33	HEMISPHERICAL OPTIMIZED NET RADIOMETER
34	HIGH ALTITUDE DROPSONDE
35	HIGH ALTITUDE METEOROLOGICAL DROPSONDE
36	HIGH RESOLUTION WATER VAPOR PROBE
37	HONEYWELL LASEREF INERTIAL REFERENCE SYSTEM
38	HOT WIRE LIQUID WATER CONTENT PROBE
39	HUMIDIGRAPH
40	ICE PARTICLE SAMPLER
41	INTERMITTENT SAMPLER
42	KING PROBE (HOTWIRE)
43	LIDAR, 360 DEG FOV
44	MANUAL OBSERVING SYSTEM
45	METEOROLOGICAL MEASURING SET (AN/TMQ-34) AF
46	METEOROLOGICAL MEASURING SET (AN/TMQ-34) ARMY
47	MICRO WEATHER STATION
48	MICROWAVE RADIOMETER
49	MOUDI CASCADE IMPACTOR
50	MULTI-WAVELENGTH INTEGRATING NEPHELOMETER

Table 3.13. Name legend, continued.

Name	Airborne Equipment
52	MULTICHANNEL CLOUD RADIOMETER
53	MULTISPECTRAL PUSHBROOM IMAGING RADIOMETER
54	NCAR-MODIFIED EPPLEY PIR PYRGEOMETER
55	NCAR-MODIFIED EPPLEY PSP PYRANOMETER
56	NCAR-MODIFIED EPPLEY TUVR PYRANOMETER
57	NOAA OZONE AIRBORNE LIDAR
58	NON-DIRECTIONAL WAVE BUOY
59	NOVATEL DIFFERENTIAL GPS
60	NOx, NOy, O3 (CL)
61	OAP 260X
62	OPHIR III
63	PARTICLE MASS SPECTROMETER
64	PCASP - 100X
65	PEROXY RADICAL MASS SPECTROMETER
66	PMS - PCASP 100
67	PMS-FSSP-100
68	PMS-FSSP-260-X
69	PMS-FSSP-2D-C
70	PMS-FSSP-2D-D
71	PMS-FSSP-300
72	PP-2D PROBE
73	RADIOMETER, HYPER-SPECTRAL
74	RADIOMETER, INFRARED
75	RADIOMETER, PARTIAL SOLAR
76	RADIOMETER, TOTAL SOLAR
77	RADIOMETER, TUVR
78	RAF RADOME/IRS WIND GUST SYSTEM
79	REMOTE TACTICAL AREA PRESENT WEATHER SYSTEM
80	RING-DOWN CAVITY SPECTROMETER
81	ROSEMOUNT 102CV, 102DB
82	ROSEMOUNT 102E2AL
83	ROSEMOUNT ICING DETECTOR (MODEL 871FA212SC1)
84	ROSEMOUNT MODEL 1201F1 ABSOLUTE PRESSURE
	TRANSDUCER
85	ROSEMOUNT MODEL 1501 ABSOLUTE PRESSURE
	TRANSDUCER
86	SABL AEROSOL BACKSCATTER LIDAR
87	SOLAR SPECTRAL FLUX RADIOMETER
88	SOOT PHOTOMETER

Table 3.13. Name legend, continued.

Name	Airborne Equipment
89	SPANNING ACTINIC FLUX SPECTRORADIOMETERS
90	STABILIZED VIDEO IMAGING SYSTEM
91	SVR-SPECTRAL VEGETATION
92	TACTICAL DROPSONDE
93	TACTICAL PRESENT WEATHER SENSOR
94	TANS VECTOR
95	TEMPERATURE
96	TETHERED BALLOON
97	TETHERED BALLOON AIR SAMPLING PACKAGE
98	TOTAL ACTINIC FLUX
99	TRACE GAS MASS SPECTROMETER
100	TRIMBLE TRANS-III GPS RECEIVER
101	TURBULENCE, BAT SYSTEM
102	ULTRAFINE CN COUNTER
103	ULTRAFINE CONDENSATION PARTICLE COUNTER
104	UV
105	VARIABLE CUT IMPACTOR
106	WHOLE AIR SAMPLER
107	WIND, 5 HOLE PROBE
108	WINN ELECTRIC FIELD METERS

Table 3.14. Acronym legend.

AC	Acronym
1	(blank)
2	HONER
3	UAV AERI
4	TCHD
5	MWR
6	CAI
7	MPIR
8	MCR
9	AIMR
10	ACADS
11	OPHIR III
12	IS
13	VISP
14	MASP
15	CVI

Table 3.14. Acronym legend, continued.

AC	Acronym
16	NOAL
17	WAS (GCMS)
18	FTIR
19	CDVS
20	MWS
21	TDL
22	SI/CIMS-4
23	SI/CIMS-2
24	HO2 CIMS
25	SPFR
26	CDL
27	TAC PW
28	PWS
29	CMOD
30	CHEMSONDE
31	MOS
32	GPS-TDROP
33	HIMETSONDE
34	TMOS

Table 3.15. Federal Agency legend.

A	Federal Agency
1	(blank)
2	UCAR, NCAR/ATD
3	US NAVY (CIRPAS)
4	NOAA/ERL/ETL
5	US ARMY
6	NOAA/ATMOSPHERIC SCIENCES CENTER
7	US AIR FORCE
8	US NAVY

Table 3.16. Federal Agency's Department legend.

D	Agency Department	
1	(blank)	
2	UCAR, NCAR/ATD	
3	US NAVY (CIRPAS)	
4	NOAA/ERL/ETL	
5	US ARMY	

Table 3.16. Federal Agency's Department legend, continued.

D	Agency Department
6	NOAA/ATMOSPHERIC SCIENCES CENTER
7	US AIR FORCE
8	US NAVY

Table 3.17. Element llegend.

E1	Element1
1	GPS WITH DIFFERENTIAL CORRECTION
2	PARTICLE SIZE DISTRIBUTION
3	DROPLETS
4	ATMOSPHERIC RADIATION (UPWARD VIEWING)
5	H2O
6	AMBIENT AIR TEMPERATURE
7	(blank)
8	COLLECTOR OF PARTICLES LARGER THAN
	SPECIFIED SIZE
9	FLUX
10	CLOUD BASES
11	HEMISPHERIC IR RADIATION
12	HEMISPHERIC UV RADIATION
13	MICROWAVE EMISSION
14	COLLECTOR OF SIZE CLASSIFIED PARTICLES
15	BAROMETRIC PRESSURE
16	НО
17	BACKSCATTER AND 7-170 DEG INTEGRAL
	SCATTER
18	PYRANOMETER
19	PYRGEOMETER
20	GPS POSITION, SPEED AND ALTITUDE
21	WAVE HEIGHT
22	AEROSOL PARTICLE SIZE AND COMPOSITION
23	VISUAL RANGE
24	AEROSOL PROFILING (100uJ/PULSE 5 kHz LASER)
25	LIQUID WATER VAPOR
26	UPWELLING OR DOWNWELLING ATMOSPHERIC
	RADIATION
27	AEROSOL SPECTRUM
28	BARO PRESSURE
29	VISIBILITY
4)	VIOIDILII I

Table 3.17. Element1 legend, continued.

E1	Element1
30	ATMOSPHERIC PRESSURE
31	WIND SPEED
32	TRACE GAS
33	WATER VAPOR CONCENTRATION
34	AEROSOLS
35	AMBIENT ELECTRICAL FIELD
36	TEMPERATURE
37	NET DIFFERENCE BETWEEN UPWELLING AND
	DOWNWELLING ATMOSPHERIC FLUXES
38	TOTAL ULTRAVIOLET RADIOMETER
39	CHILLED MIRROR DEVICE
40	COVERAGE OF UPWELLING ATMOSPHERIC
	RADIATION (NINE BANDS) TO STUDY CLOUD
	WATER/VAPOR
41	VISUAL IMAGERY
42	ACTINIC FLUX
43	CCN/IN COUNTER
44	CN PARTICLE DISTRIBUTION
45	HEMISPHERIC VISIBLE RADIATION
46	CLOUD DROPLET SPECTRUM
47	OH+OTHER SPECIES
48	CLOUD PARTICLE PROPERTIES
49	CLOUD LIQUID WATER
50	AEROSOL SIZE AND NUMBER
51	SPECTRAL VEGETATION INDEX
52	N2O, NO, NO2, HNO3
53	AEROSOL MASS AND COMPOSITION
54	CLOUD CONDENSATION NUCLEI
55	CN COUNTER
56	AIR TEMPERATURE
57	CO
58	HYDROMETEOROLOGICAL SPECTRUM
59	ULTRAFINE CN COUNTER
60	CLOUD DROPLET RESIDUALS AND CONDENSED
	WATER CONTENT
61	HO2
62	TAS
63	WATER VAPOR
64	NOx
O F	ITOA

Table 3.17. Element1 legend, continued.

E1	Element1
65	CLOUD WATER PHASE
66	CLOUD RADIATION
67	INTEGRAL SCATTER AT LOW AND HIGH
	HUMIDITY
68	3D POSITION
69	PRECIPITATION
70	TOTAL TEMPERATURE
71	AEROSOL BACKSCATTER
72	3-D WIND AND TEMPERATURE FLUCTUATIONS
73	SURFACE TEMPERATURE
74	CFCs, HCFCs, HFCS, CH4, C2-C5 ALKANES
75	DIFFERENTIAL FILTER TRANSMISSIVITY
76	ICE ACCUMULATION
77	TIME
78	AIR MOTION
79	OZONE
80	PARTICLE CONCENTRATION

Table 3.18. Rangel legend.

R1	Range1
1	(blank)
2	0.5 - 47.0μm
3	2-100μm
4	10 - 620μm
5	22GHz & 37GHz
6	0.3μm - 1.6mm
7	100 TO 3000 FT
8	200μm - 12.4mm
9	0.715 - 2.800μm
10	>4.0µm
11	10 M TO 75 KM
12	DIVERGENCE 53μrad WAVELENGTH 1.05μm
13	3-25μm (SPECTRAL)
14	850 TO 1054 MB
15	O TO 2 KM
16	0 TO 87.9 KTS
17	-50 TO 55 DEG C
18	0.1 - 3.0μm

Table 3.18. Range1 legend, continued.

R1	Range1
19	0.3-4μm (SHORTWAVE) 4-50μm (LONGWAVE)
20	0.295 - 0.385μm
21	-50 TO +50C
22	0.62-0.67, 0.86-0.90, 1.36-1.39, 1.58-1.64, 2.11-2.22, 3.55-
	3.93, 6.54-6.99, 8.40-8.70, 10.30-11.30 μm
23	0.3 <lambda<13μm 610="" channels<="" in="" td=""></lambda<13μm>
24	10 TO 150 KM
25	0.1% <sc<2.0%< td=""></sc<2.0%<>
26	0.285 - 2.800μm
27	0 TO 55 KTS
28	300nm-2500nm SPECTRAL RANGE
29	f<40 Hz
30	0.003 TO 0.2μm
31	0.2 TO 3.5 KM
32	Dp>0.003μm

Table 3.19. Accuracy1 legend.

A1	Accuracy1
1	(blank)
2	2 TO 10 %
3	+- 1 MB
4	+- 3 %
5	3%, >170 degree FOV UPWARD AND DOWNWARD
6	0.5/cm (SPECTRAL) 1-10km (SPATIAL) UPWELLING
	OR DOWNWELLING
7	+- 0.8 mm
8	+- 100 FT
9	+- 2 kts
10	+- 0.5um
11	+- 30 %
12	5-10m RESOLUTION IN RADIANCE OR IRRADIANCE
	MODES
13	+- 10PPbv
14	+- 0.5 DEG C

Table 3.20. Element2 legend.

E2	Element2
1	(blank)
2	WIND SPEED
3	TEMPERATURE
4	WINDFIELDS
5	WIND DIRECTION
6	SKY TEMPERATURE
7	RAIN RATE
8	WAVE PERIOD
9	WINDS
10	3D POSITION
11	AERO. BACKSCAT
12	ALTITUDE
13	C1-C2 CHLOROCARBONS, HALONS, METHYL
	HALIDES
14	CLOUD HEIGHT
15	CLOUD LIQUID
16	CO, O3, F-11, F-12
17	FLOW RATE
18	GROUND TEMPERATURE
19	H2O
20	H2SO4
21	HO2+R02
22	MEAN WIND
23	NOy
24	OPTICAL DEPTH
25	OPTICALLY THIN CLOUD PROFILING (COAXIAL
	CCD CAMERA)
26	PRECIP TYPE
27	PRESSURE
28	PRESSURE ALTITUDE

Table 3.21. Range2 legend.

R2	Range2	
1	(blank)	
2	0.2 TO 3.5 KM	
3	(COMMENTS)	
4	-30 TO 46 DEG C	
5	500M TO 9.6 KM	

Table 3.21. Range2 legend, continued.

R2	Range2
6	0-20Cm 3 /SEC
7	-30 TO 50 DEG C
8	0 TO 10"/HR
9	0 TO 50 KTS
10	ROTATABLE IN FLIGHT FOR ZENITH OR NADIR VIEWING
11	0 TO 360 DEG

Table 3.22. Accuracy2 legend.

A2	Accuracy2
1	(blank)
2	+- 2 KTS
3	+- 5 DEG
4	+- 15%
5	+- 1 Cm 3 /SEC
6	+- 10 %
7	+2 DEG C
8	+- 1 DEG C

Table 3.23. Element3 legend.

E3	Element3
1	(blank)
2	SLIP AND ATTACK ANGLES
3	TEMPERATURE
4	SEA SFC TEMP
5	RELATIVE HUMIDITY
6	WIND DIRECTION
7	BARO PRESSURE
8	BR, CL-METHANES, ALKYL NITRATES
9	CLOUD TOP OR BASE OF OPTICALLY THICK
	CLOUDS
10	DEW POINT
11	GROUND SPEED
12	HCL, JF, HCN, COS, SO2, CH4, C2H6
13	HIGH RESOLUTION TURBULENCE
14	MSA
15	O3

Table 3.23. Element3 legend, continued.

E3	Element3	
16	OBSCURANT	
17	PARTICLE SIZE	
18	PRECIP AMOUNT	
19	PRESENT WX	

Table 3.24. Range3 legend.

R3	Range3
1	(blank)
2	0 TO 360 DEG
3	640 TO 1060 MB
4	0 TO 2 KM
5	SNOW,RAIN,FOG
6	-5 TO 35 DEG C
7	-50 TO 45 DEG C
8	-50 TO 50 DEG C
9	0 TO 10"

Table 3.25. Accuracy3 legend.

A3	Accuracy3	
1	(blank)	
2	+- 2 DEG C	
3	+- 5 %	
4	+- 10 %	
5	+- 5 DEG	
6	+2 DEG C	
7	+7 MB	
8	+- 1 C DEG	<u> </u>

Table 3.26. Element4 legend.

E4	Element4	
1	(blank)	
2	WIND	
3	TEMPERATURE	
4	WINDS	
5	BARO PRESSURE	
6	DMSO	
7	HNO3	

Table 3.26. Element4 legend, continued.

E 4	Element4	
8	LIQUID/ICE WATER PATH	
9	PRECIP INTENSE	
10	SUB SFC TEMP	

Table 3.27. Range4 legend.

R4	Range4	
1	(blank)	
2	140 TO 1060 MB	
3	600 TO 1100 MB	
4	-9 TO 35 DEG C	
5	LIGHT,MOD,HEAVY	
6	-51 TO 55 DEG C	

Table 3.28. Accuracy4 legend.

A4	Accuracy4	
1	(blank)	
2	+5 DEG C	
3	+5 MB	
4	+2 DEG C	
5	+7 MB	

Table 3.29. Element5 legend.

E5	Element5
1	(blank)
2	DMSO2
3	LIQUID/ICE WATER CONTENT
4	DEW POINT TEMP
5	RAIN AMOUNT
6	AMBIENT NOISE
7	CHEMICALS (DETECT, CLASSIFY, QUANTIFY)

Table 3.30. Range5 legend.

1	(blank)	
2	-51 TO 55 DEG C	
3	0 TO 4 "	
4	5 HZ TO 5 KHZ	
5	-40 TO 55 DEG C	

Table 3.31. Accuracy 5 legend.

A5	Accuracy5	
1	(blank)	
2	+05 "	
3	+- 1 %	
4	+-1 TO 8 DEG C	

IV. RESULTS

After performing the query (Table 3.10) on the spatial and temporal scale-assigned RPA Table (Table 3.9) and Joint METOC Element Table (Table 3.8), the results may be used to rank RPA's according to their efficiency in collecting disparate, multiple METOC Elements (total possible of 185). Herein, "successful" is defined as the ability to collect several different, non-prioritized METOC Elements.

As currently assigned and queried, the Bell Eagle Eye (most successful RPA), could potentially (depending on instrumentation) position itself spatially and temporally in the unperturbed air stream to collect more METOC Elements than any other RPA listed. It's "H1 H2 V T1 T2 UAS" assignment reflects its "MICRO/MESOSCALE (<1 km - <400 km)" operating radius, "COMBINE"d operation over land or ocean, "SFC/UA" profiling ability, "HIGH AMOUNT OF TIME" spendable in one location (hover), "HIGH REFRESH RATE (<1 hr.)" indicating high endurance and METOC Elements measurable outside of propeller or rotor/perturbed air stream. See Table 4.1.

Table 4.1. Most successful RPA (refer to RPA Table for complete details).

H 1	H2	V	T1	T2	UAS	COUNTRY	NAME	TYPE
3	1	2	1	1	1	USA	BELL EAGLE	TILT-ROTOR
							EYE	

The best possible "H1 H2 V T1 T2 UAS" ranking would be "4 1 2 1 1 1," which would potentially measure 177 out of 185 METOC Elements, depending on instrumentation. See Table 4.2.

Table 4.2. Most successful RPA possible.

H1	H2	V	T1	T2	UAS	COUNTRY	NAME	TYPE
4	1	2	1	1	1	XXX	BEST	FUTURISTIC
							POSSIBLE	

The Bell Eagle Eye (success rating "3 1 2 1 1 1") with a slightly larger control radius would reach "best possible" status. Thus modified, such an airframe could potentially measure every stated atmospheric METOC requirement and most oceanographic METOC requirements as well, with air-dropped oceanographic profiling insturments. Table 4.3 lists METOC Elements determined not generally measurable from RPA aircraft.

Table 4.3. "4 1 2 1 1 1" Unmeasured METOC Elements.

Archeological Sites/Wrecks

Bottom Composition

Bottom Currents

Bottom Gradient

Bottom Loss

Bottom Reverb. (active)

Bottom Roughness

Sub-Bottom Profiles

The CL-327 and -427 (Table 4.4) have a less capable "H1 H2 V T1 T2 UAS" assignment than the Bell Eagle Eye due to the location of the payload bay underneath the propellers. This position would continuously subject the payload to a perturbed air stream in the propeller wash. This situation could perhaps be avoided by the adoption of a construction employed by the Sikorsky Cypher which elevates the payload away from (and above) the propellers. The Insitu Aerosonde differs from Best possible in this study only due to its inability to hover. The Daedalus STF-9 resides in this category due to its limited endurance prohibiting a higher (T2) Refresh Rate assignment.

Table 4.4. Extremely successful RPA's (refer to RPA Table for complete details).

H1	H2	V	T1	T2	UAS	COUNTRY	NAME	TYPE
3	1	2	1	1	2	CANADA	CL-427	MULTIROLE VTOL
3	1	2	1	1	2	CANADA	CL-327 GUARDIAN	MULTIROLE VTOL
4	1	2	3	1	1	USA	INSITU AEROSONDE	LONG-RANGE/ ENDURANCE
3	1	2	1	3	1	USA	DAEDALUS STF-9	V/STOL

The predominant "H1 H2 V T1 T2 UAS" assignment in the extremely successful RPA category (Table 4.5) is "3 1 2 1 3 2." The limiting success factor in this category is the inability of the payload to escape propeller wash. A notable exception to this general limitation of the category is the Sikorsky Cypher. The Russian Kamov Ka-137 and USA Boeing Canard Rotor/Wing, in addition to their payloads' inability to escape rotor wash, suffer in the success ratings due to their slightly reduced endurance (a "3" entry in the "T2" column).

Table 4.5. Extremely successful RPA's (refer to RPA Table for complete details).

H1	H2	V	T1	T2	UAS	COUNTRY	NAME	TYPE
3	1	2	1	3	2	FRANCE	CAC	MULTI-MISSION
							SYSTEMES	OPTIONALLY
							DRAGON	PILOTED
							FLY HELIOT	HELICOPTER
3	1	2	1	3	2	FRANCE	TECHNO	SMALL CLOSE
							SUD	RANGE
							VIGILANT	OBSERVATION
							F2000	

Table 4.5. Extremely successful RPA's, continued.

H1	H2	V	T1	T2	UAS	COUNTRY	NAME	TYPE
3	1	2	1	3	2	GERMANY	DORNIER	MARITIME
							SEAMOS LV	RECONN AND
					ļ			TARGET
								ACQUISITION
3	1	2	1	3	2	SWEDEN	TECHMENT	CLOSE RANGE
							MIDGET RPG	OBSERVATION/
								SURVEILLANCE
3	3	2	1	3	1	USA	SIKORSKY	VTOL, CLOSE
							CYPHER	RANGE
4	1	2	1	3	2	RUSSIA	KAMOV KA-	MULTI-PURPOSE
							137	HELICOPTER
4	1	2	1	3	2	USA	BOEING	VTOL RECONN
							CANARD	AND SURV
							ROTOR/	
							WING	

Table 4.6. Highly successful RPA's (refer to RPA Table for complete details).

H1	H2	V	T1	T2	UAS	COUNTRY	NAME	TYPE
3	3	2	1	3	2	AUSTRIA	SCHIEBEL	UNMANNED
			}				CAMCOPTER	HELICOPTER
3	3	2	1	3	1	CANADA	BRISTOL	MANNED AND
					ļ		AEROSPACE	UNMANNED
							HOKUM-X	FULL-SCALE
								AERIAL TARGET
3	1	2	3	1	2	CANADA	CL-227	RECOVERABLE
}							SENTINEL	VTOL MULTI-
								APPLICATION
3	3	2	3	3	1	USA	FREEWING	EXPERIMENTAL
							TILT-BODY	MULTI-ROLE

All RPA entries in the Moderately successful category (Table 4.7) have "H1 H2 V T1 T2 UAS' assignments of "4 1 2 2 1 1" or "3 1 2 2 1 1." The only factor limiting this category's success is the relatively "LOW AMOUNT OF TIME (<1 sec.)" they can spend on any one measurement in space (no hover or extremely tight turning ability). This is the most successful non-hovering aircraft category for prosecution of diverse METOC Elements.

Table 4.7. Moderately successful RPA's (refer to RPA Table for complete details).

H1	H2	V	T1	T2	UAS	COUNTRY	NAME	TYPE
3	1	2	2	1	1	INTER-	TRW/IAI	SHORT RANGE
						NATIONAL	BQM-155A	RECONN, SURV
							Hunter	AND TGT ACQ
3	1	2	2	1	1	INTER-	TRW/IAI	SHORT RANGE
						NATIONAL	BQM-155A	RECONN, SURV
							E-Hunter	AND TGT ACQ
3	1	2	2	1	1	ISRAEL	SILVER	HIGH-ALTITUDE,
							ARROW	LONG-
							HERMES	ENDURANCE
							450	
4	1	2	2	1	1	ISRAEL	IAI HERON	HIGH ALTITUDE
2	1						SHORT	LONG
							WING	RANGE/LONG
								ENDURANCE
4	1	2	2	1	1	ISRAEL	IAI HERON	HIGH ALTITUDE
							TURBO	LONG
							PROP	RANGE/LONG
								ENDURANCE
3	1	2	2	1	1	ISRAEL	IAI	LONG-
							SEARCHER	ENDURANCE
								MULTI-ROLE
3	1	2	2	1	1	ITALY	METEOR	CLOSE-RANGE
							MIRACH 26	TACTICAL
3	1	2	2	1	1	PORTUGAL	IST/OGMA	CIVIL
							ARMOR X7	RESEARCH

Table 4.7. Moderately successful RPA's, continued.

						COUNTRY		TYPE			
H1	H2	V	T1	T2	UAS	COUNTRY	NAME	ITPE			
4	1	2	2	1	1	RUSSIA	TUPOLEV	RECONN/SURV,			
							TU-141	JET POWERED			
							STRIZH	LONG RANGE			
3	1	2	2	1	1	USA	TCOM 32M	HELIUM-FILLED,			
							AND 71M	NON-RIGID			
				,				AEROSTATS			
4	1	2	2	1	1	USA	AEROMET	SURROGATE			
7	1	2	2	*	1	OSIL	AURA	UAV,			
							Tiord1	OPTIONALLY			
								MANNED			
3	1	2	2	1	1	USA	AEROVIR-	SOLAR-			
3	1	2	2	1	1	USA	ONMENT	POWERED			
		}					PATH	EXPERIMENTAL			
							FINDER	EAFERINIENTAL			
3	1	2	2	1	1	USA	AAI	MULTI-ROLE			
3	1	~	2	1	1	USA	SHADOW	WOLTI-KOLE			
							600				
4	1	2	2	1	1	USA	AURORA	HIGH-ALTITUDE			
•	-	_			-	00.1	FLIGHT	LONG			
							SCIENCES	ENDURANCE			
							THESEUS	ATMOSPHERIC			
								RESEARCH			
4	1	2	2	1	1	USA	GENERAL	HIGH-ALTITUDE			
							ATOMICS	SCIENTIFIC			
							ALTUS	RESEARCH			
·4	1	2	2	1	1	USA	GENERAL	ALL-ALTITUDE,			
							ATOMICS	MULTIMISSION,			
							GNAT 750	LONG			
								ENDURANCE			
4	1	2	2	1	1	USA	GENERAL	MEDIUM			
							ATOMICS	ALTITUDE,			
							RQ-1A	TACTICAL			
							PREDATOR	ENDURANCE			
4	1	2	2	1	1	USA	GENERAL	ALL-ALTITUDE,			
							ATOMICS I-	MULTIMISSION,			
							GNAT	LONG			
			ĺ					ENDURANCE			

Table 4.7. Moderately successful RPA's, continued.

H1	H2	V	T1	T2	UAS	COUNTRY	NAME	TYPE
4	1	2	2	1	1	USA	LOCKHEED	LOW
		1					MARTIN/	OBSERVABLE,
	1						BOEING	HIGH ALTITUDE
							RQ-3A	ENDURANCE
			,				DARKSTAR	TACTICAL
							(TIER III-)	
4	1	2	2	1	1	USA	TELEDYNE	MULTIROLE
							RYAN	
							MODEL 410	
4	1	2	2	1	1	USA	TELEDYNE	HIGH ALTITUDE
							RYAN RQ-	ENDURANCE
							4A	SURV
							GLOBAL	
							HAWK	
							(TIER II+)	
4	1	2	2	1	1	USA	TELEDYNE	RECONN,
							RYAN	TACTICAL
							SCARAB	
4	1	2	2	1	1	USA	FRONTIER	HIGH-ALTITUDE
							SYSTEMS	ENDURANCE
							ARROW	
4	1	2	2	1	1	USA	FRONTIER	HIGH-ALTITUDE
							SYSTEMS	ENDURANCE
							SHADOW	
4	1	2	2	1	1	USA	FRONTIER	HIGH-ALTITUDE
							SYSTEMS	ENDURANCE
		ļ					W570A	
4	1	2	2	1	1	YUGOSLAVIA	SDPR VBL-	MULTIROLE
							2000	

Tropical Storms, as presently assigned and queried, bears the most restrictive collective METOC assignment "H1 H2 V T1 T2 UAS" possible, "4 1 2 1 1 1."

Table 4.8. Most difficult METOC Element to prosecute.

Element	H1	H2	V	T1	T2	UAS
Tropical Storms	4	1	2	1	1	1

As has been demonstrated, no RPA in existence will measure this METOC Element. For scientific researchers and military operators alike, upon encountering similar problems using these databases the suggested steps to follow are the same: Break the METOC Element down into (presumably less restrictive) sub-Elements, then requery. The following METOC sub-Elements and their less restrictive rankings, when entered into the tbl1Joint Element database table, will generate candidate RPA's for their measurement, as illustrated in Table 4.9.

Table 4.9. Tropical Storm sub-Elements.

Element	H1	H2	V	T1	T2	UAS
Tropical Storm Wind Speed/Direction	2	5	2	3	3	1
Tropical Storm Temperature	2	4	2	2	3	1
Tropical Storm Moisture	2	4	2	3	3	1
Tropical Storm Stratospheric Temperature	2	5	3	2	3	1
Tropical Storm Stratospheric Wind/Direction	2	1.	3	3	3	1

Although some Tropical Storms sub-Elements have several RPA's listed capable enough to complete their measurement, three candidate RPA's appear in common for all five sub-Elements; the Bell Eagle Eye, the Daedalus STF-9 and the Insitu Aerosonde. The interested user would refer to the tblUAV (flat file) for specifics on RPA airframes of interest. The further the METOC Element is broken down the more candidate RPA's the query will produce.

If the interested user instead brings forth a range of METOC Elements of interest, the query results obtained could again be used either for optimal RPA choice, combinations or lowest operating cost. One method to accomplish this would be to run the query, enter the "Advanced Filter/Sort" function of Microsoft Access and insert the "Element" column of "qryMATCHES" into the "Field" position of the filter. The entry format for the "Criteria" field would look, for example, like the following (providing these entries already existed in the tbl1Joint Element table): ' "Tropical Storm Wind Speed/Direction" Or "Tropical Storm Temperature" Or "Tropical Storm Stratospheric

Wind/Direction" Or "Tropical Storm Stratospheric Temperature" Or "Tropical Storm Moisture".'

V. CONCLUSIONS

This thesis, along with its accompanying databases (available at www.met.nps.navy.mil/thesis/rstanton), takes what at first may resemble an interesting thought-experiment and demonstrates its practicality for meteorological/oceanographic instrument designers, remotely piloted aircraft designers and mission planners/operators. METOC instrument designers can identify at a glance what airborne instruments exist or are in planning stages and judge their ranges of measurement and accuracies. The first complete Joint METOC Requirements Database (Army, Air Force, Navy, Marine) exists in a separate database. RPA designers can query proposed changes to aircraft design and know how a modification would affect METOC Element-gathering success before the physical modification took place.

Original systematic biases may be modified, eliminated or enhanced according to individual preferences simply by overwriting spatial, temporal and air stream assignments and re-querying the data. The databases are easily expandable: Autonomous Underwater Vehicles (and further classes of autonomous vehicles) could easily be included in a retitled "Robotics" Table, METOC Elements will continue to be refined (easily incorporated), production of more capable (and smaller) airborne instruments will require continual updating of that database.

The RPA's that fared most successfully in their ability to prosecute diverse Joint METOC Elements have several general characteristics in common:

- They possess at least over-the-horizon controllability/programmability and generally extend to great operating ranges
 - Launches and recoveries are very flexible, not precluding ship operations,
 - Flight characteristics include an ability to conduct atmospheric profiles,
 - The RPA's can dwell near a point in space longer than their competitors,

- The RPA's can revisit a datum several times based on their excellent endurance.
- Meteorological/Oceanographic data collected by such instrument-carrying RPA's is not subject to deleterious effects of propeller or rotor wash due to RPA design.

The Category I Bell Eagle Eye's "H1(Horizontal1) H2(Horizontal2) V(Vertical) T1(Time1) T2(Time2) UAS(Unperturbed Air Stream)" assignment (Table 4.1) reflects its "MICRO/MESOSCALE (<1 km - <400 km)" operating radius, "COMBINE"d operation over land or ocean, "SFC/UA" profiling ability, "HIGH AMOUNT OF TIME" available to dwell in one location (hover), "HIGH REFRESH RATE (<1 hr.)" indicating high endurance and METOC Elements measurable outside of propeller or rotor/perturbed air stream. As presently assigned and queried, it is the most "successful" remotely piloted aircraft in existence (defined as the ability to collect the most amount of disparate, unranked METOC Elements of Measurement (e.g. Absolute Humidity, Temperature, Dew Point, Beach Characteristics, etc)). Category V, Moderately Successful RPA's is the first large category to deal with non-hovering aircraft.

Conversely, Tropical Storms (Table 4.8) is the most restrictive METOC Element listed (or possible). No single RPA exists to fully measure them..The thesis demonstrates two separate methods of describing Tropical Storm measurement with RPA's (or any other difficult METOC Element), one dealing with breaking the METOC Element into sub-Elements (database additions) and the other demonstrating how to query a set of outside Elements (query design).

The next logical step for this research would be to include all classes of autonomous vehicles able to collect METOC Elements of Measurement. Secondly, the METOC Elements should be prioritized in concert with the Services. Thirdly, instrumentation compatibility with individual RPA's should be addressed. Completing these steps will enable ever more subtle and powerful queries.

LIST OF REFERENCES

- Aerosonde Project, "Aerosonde 'Laima' Conquers North Atlantic."

 [http://www.bom.gov.au/bmrc/meso/New/Aerosonde/laima.htm]. September 1998.
- Atmospheric Radiation Measurement Unmanned Aerospace Vehicle (ARM-UAV). [http://www.arm.gov/uav/index.html]. 1999.
- Bates, C.C. and Fuller, J.F., *America's Weather Warriors 1814-1985*, 1st ed, pp. 240-245, Texas A&M University Press, 1986.
- Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS), "A Navy organization providing UAV flight services, dedicated to customer support during the development, testing, and evaluation of UAV technologies, associated payloads and UAV system operational capabilities."

 [http://web.nps.navy.mil/~cirpas/]. 1998.
- Ellingson, R. and Tooman, T., editors, "Atmospheric Radiation Measurement Unmanned Aerospace Vehicle Science and Experiment Plan, Fall 1997 Flight Series." [http://www.arm.gov/uav/docs/uav_scie.pdf] 1998.
- Jane's Unmanned Aerial Vehicles and Targets, 9th ed., Jane's Information Group, 1997.
- National Center for Atmospheric Research, "NCAR Airborne Instrumentation List." [http://www.atd.ucar.edu/dir_off/airborne/index.html]. 1998.
- Naval Environmental Prediction Research Facility Contractor Report CR 89-13, HALE Aircraft as Sources of Environmental Data Supporting Battle Group Operations: A Feasibility Study, by D. Ross, October 1989.
- Naval Research Laboratory NRL/MR/7543--93-7206, Weather and Unmanned Aerial Vehicles, by R.A. Siquig, April 1993.
- Space Computer Corporation, "The SCC-built Microminiaturized Weather Station (MWS)." [http://www.spacecomputer.com/mmw.html]. 1998.
- U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Federal Directory of Mobile Meteorological Equipment and Capabilities, Government Printing Office, 1995.

- U.S. Department of Defense, Program Executive Office Cruise Missiles and Joint Unmanned Aerial Vehicles PEO(CU), 1997 Tactical Unmanned Aerial Vehicles Overview, Government Printing Office, 1997.
- U.S. Department of Defense, Defense Airborne Reconnaissance Office, *UAV Annual Report FY 1997*, Government Printing Office, 1997.
- U. S. Department of the Air Force, Headquarters Air Force Directorate of Weather (AF/XOW), Air Force Weather Mission Support Plan-97, Government Printing Office, Washington, D.C., 1997.
- U. S. Department of the Air Force, Headquarters Air Force Weather Agency (AFWA/XPP), Air Force Weather Development Plan, Government Printing Office, Washington, D.C., 1998.
- U. S. Department of the Navy, Naval Meteorology and Oceanography Command, *Strategic Plan*, Government Printing Office, Washington, D.C., 1997.
- U. S. Department of the Navy, Oceanographer of the Navy (CNO N096), Oceanography Requirements Status Reports, 1998.
- Vigliotti, V., "Demonstration of Submarine Control of an Unmanned Aerial Vehicle," Johns Hopkins APL TECHNICAL DIGEST, 40th Anniversary Edition (October-December 1998), Volume19, Number 4, pp. 501-512.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center 8725 John J. Kingman Road, Ste 0944 Ft. Belvoir, Virginia 22060-6218	• • • •	2
2.	Dudley Knox Library	• • • •	2
3.	Chairman, Code MR	• • • •	4
4.	Professor Philip A. Durkee (Code MR/DE) Department of Meteorology Naval Postgraduate School Monterey, California 93943-5002	• • • •	4
5.	Professor Daniel R. Dolk (Code SM/Dk) Department of Systems Management Naval Postgraduate School Monterey, California 93943-5002		2
6.	LCDR Robert J. Stanton	• • • •	2