

An Al Singapore Student Chapter

ML Bootcamp

Day 0

Scan to mark attendance

Scan the QR code to mark your attendance

Attendance

Breaks and Q&A

Several breaks every hour or so

Breaks will double as a Q&A session

Q&A session will also be present at the end of each day

If question isn't urgent, please wait till the allocated time slots to ask your questions

Pre-requisites

You should have:

Read technical setup instructions for setting up necessary applications used in this bootcamp

Completed the Introduction to Python course on DataCamp

Understand what is python, and uses of notebook environments

Understand basic programming concepts

Carry out basic python programming using python

Note: Today's session is focused solely on recapping the concepts

Python & Notebook Environments

Python is a popular programming language with simple easy-to-understand syntax

What is Python?

What is Python?

It can be used to:

Create web applications and workflows

Connect to database systems

Handle big data

Rapid Prototyping

Notebook Environments

Colab

Colab

Convenient to share with other people through Gmail

Can save files easily

Uses Google's computing power instead of your device

Free of charge

Variables

Variables are a reference to a value contained in them

What are Variables?

Variables

In mathematics, algebraic expressions contain a value

You can let various algebraic expressions contain different values by writing "let x = 4"

Same thing as variables in Python

(x) Variables Rules

A variable name...

Must start with a letter or underscore

Cannot start with a number

Can only contain alpha-numeric characters and underscore

Case-sensitive (age, Age and AGE are all different)

Allowed Variable Names

```
_John = 2
John = 4
A948 = 45
_John, John, A948

2, 4, 45
```


Not Allowed Variable Names

```
# Not Allowed
42RotiPrata = 42

File "<ipython-input-2-c83853ff5faa>", line 2
    42RotiPrata = 42
    ^
SyntaxError: invalid syntax
```

```
%RotiPrata = 3
UsageError: Line magic function `%RotiPrata` not found.
```


Case-Sensitive Variable Names

```
curry = 4
Curry = 5
curry, Curry
```


Knowledge Check

Variables

- Knowledge Check

Which of the following variable name is accepted?

- A. _HelloWorld
- B. SPAIBes+
- C. M4ng035
- D. &3rs0n

- ()- Knowledge Check

```
check1 = 4
check2 = 9

check1 + check2

>> What is the answer?
```

Printing & Comments

Printing what you want to see on your screen

What is Printing

Ways to print

You can...

Type print("my text")

Declare a variable and print the value of the variable

Ways to print

```
print("Hello World!")
Hello World!
```

```
wlc_msg = 'Welcome to SPAI Bootcamp!'
print(wlc_msg)
Welcome to SPAI Bootcamp!
```


Comments allows you to annotate a piece of code. This allows you or others to understand the code.

What are comments

... How to comment

You cannot comment in the middle of the code

```
print("Hello World!" #hello there)
  File "<ipython-input-6-57c74179e9b8>", line 1
   print("Hello World!" #hello there)
SyntaxError: unexpected EOF while parsing
```


Only at the end, top or bottom of the code

```
# Comment at the top
print('Hello World!') # At the end of the code
# Or at the bottom
Hello World
```

Knowledge Check

Printing & Commenting

- ()- Knowledge Check

```
b = "Your laptop costs ${:.2f}"
price = 1999.8749

print(b.format(price))

>> What is the output?
A. Your laptop costs 1999.8749
B. Your laptop costs 1999.874
C. Your laptop costs 1999.88
D. Your laptop costs 1999.87
```

- Knowledge Check

```
# Test print("Test Print")
        Test print
Β.
        print("Hello There!" # No)
        Hello There!
        print(#"Goodbye!")
        Goodbye!
        print("#Hello World!")
        #Hello World!
```

Practice Time!

5 Minutes

Please attempt Lab Exercise 1
We will go through the exercise later

ime's up

We will now go through the exercises

Break and Q&A 15 Minutes

Python Operators + - × ÷

Arithmetic Operators

Math

- Addition: +
- Subtraction: —
- Multiplication: X
- Division: ÷

Python

- Addition: +
- Subtraction: -
- Multiplication: *
- Division: /

Mod Operator

23 mod 7

23%7

127 mod 8

```
127<mark>%</mark>8
7
```

$$\begin{array}{r}
 03 \\
 7)\overline{23} \\
 -21 \\
 \hline
 R2
 \end{array}$$

 $\begin{array}{r}
015 \\
8)\overline{127} \\
-08 \\
\overline{47} \\
-40 \\
\overline{R7}
\end{array}$

Comparison Operator

- (C) - Knowledge Check

```
((4+5) * 2 > 18)

>> What is the answer?
A. True
B. 18
C. False
D. 14
```

Data Types

7 Data Types

Data Types

- Strings
- Integers
- Float
- Boolean
- Lists
- Tuple
- Dictionary

Representation

- str
- int
- float
- bool
- list
- tuple
- dict

Representation

```
"This is a string", "3" # Strings
1, 2, 3, 4 # Integers
2.4, 3.0, 1.9 # Floats
True, False # Boolean
# List, Tuples and Dictionaries will be covered later
```


Finding out Data types

Use "type" to get the data type of a variable

```
a = 4.0
type(a) # type(a) finds out data type of a variable
float
```


Use the data type with parentheses to change the data type

```
a = int(a) # int(a) converts variables to integers
type(a)
float
```

- Knowledge Check

```
type("hello"), type("3.0"), type(int(4.0)), type(2.9), type(False)

>> What is the answer?
A. str, float, float, bool
B. str, str, int, float, bool
C. str, int, int, float, bool
D. str, str, int, float, str
```


Practice Time!

8 Minutes

Please attempt Lab Exercise 2
We will go through the exercise later

Data Types List

List

List can contain different data types

```
grades = ['DIST', 'A', 'B+', 'B', 'C+', 'C']

type(grades)
list
```

```
gpa = [4.0, 4.0, 3.5, 3.0, 2.5, 2.0]
type(gpa)
list
```

List Indexing

All elements in a list have an assigned index starting with 0

4 Index Selection

Select a specific element in the list using its index encapsulated with square brackets

```
grades = ['DIST', 'A', 'B+', 'B', 'C+', 'C']

print(f'The 2nd element of the list is: {grades[1]}')
print(f'The 4nd element of the list is: {grades[3]}')

The 2nd element of the list is: A
The 4th element of the list is: B
```


- ()- Knowledge Check

```
fruits = ['apple', 'banana', 'kiwi', 'mango']
print(fruits[2])

>> What is the answer?
A. apple
B. banana
C. kiwi
D. mango
```

Data Types Tuples

Tuples function the same as lists.

They are however **immutable and unchangeable** while list are mutable

What are tuples

Properties of tuple

Tuples encloses its elements with parentheses => ()

Tuples are immutable (cannot be changed)

Creating Tuples

Similar to how lists are declared, just replace square brackets with parentheses

```
tuple1 = ('A+', 'A', 'B+', 'B', 'C+', 'C')
tuple2 = (4.0, 4.0, 3.5, 3.0, 2.5, 2.0)

print(tuple1, tuple2)
print("Type of tuple1:", type(tuple1))
print("Type of tuple2:", type(tuple2))

('A+', 'A', 'B+', 'B', 'C+', 'C') (4.0, 4.0, 3.5, 3.0, 2.5, 2.0)
Type of tuple1: <class 'tuple'>
Type of tuple2: <class 'tuple'>
```


4 Index Selection

Select a specific element in the tuple using its index encapsulated with square brackets

```
tuple1 = ('A+', 'A', 'B+', 'B', 'C+', 'C')
tuple2 = (4.0, 4.0, 3.5, 3.0, 2.5, 2.0)

print("First element of tuple1:", tuple1[0])
print("Last element of tuple2:", tuple2[-1])
print("Forth element of tuple2:", tuple2[3])

First element of tuple1: A+
Last element of tuple2: 2.0
Forth element of tuple2: 3.0
```

- Knowledge Check

Which statement is correct?

- A. Tuples are mutable
- B. Lists and tuples have the exact same properties
- C. Tuples encloses its elements with curly brackets, { }
- D. Tuples can be accessed by using indexing.

Data Types Dictionaries

Dictionaries are used to store data in key-value pairs

What are dictionaries

Creating Dictionaries

Enclose all key:value pairs with curly brackets

```
grades = {
    "DIST": 4.0, "A": 4.0, "B+": 3.5, "B": 3.0,
    "C+": 2.5, "C": 2.0, "D+": 1.5, "D": 1.0, "D-": 0.5
}
print(grades)
{'DIST': 4.0, 'A': 4.0, 'B+': 3.5, 'B': 3.0, 'C+': 2.5, 'C': 2.0, 'D+': 1.5, 'D': 1.0, 'D-': 0.5}
```


— Accessing Dictionaries

Accessing using .get() function

```
print(grades.get('A'))
4.0
```


Using key encapsulated with square brackets

```
print(grades['A'])
4.0
```


Editing Dictionaries

Reassign a key's value

```
print("Before:\n", grades)
grades["D-"] = 0
print("After:\n", grades)

Before:
{'DIST': 4.0, 'A': 4.0, 'B+': 3.5, 'B': 3.0, 'C+': 2.5, 'C': 2.0, 'D+': 1.5, 'D': 1.0, 'D-': 0.5}
After: {'DIST': 4.0, 'A': 4.0, 'B+': 3.5, 'B': 3.0, 'C+': 2.5, 'C': 2.0, 'D+': 1.5, 'D': 1.0, 'D-': 0}
```

Adding Values

Set a new key to a value

```
print("Before:\n", grades)
grades["F"] = 0
print("After:\n", grades)

Before: {'DIST': 4.0, 'A': 4.0, 'B+': 3.5, 'B': 3.0, 'C+': 2.5, 'C': 2.0, 'D+':
1.5, 'D': 1.0, 'D-': 0}
After: {'DIST': 4.0, 'A': 4.0, 'B+': 3.5, 'B': 3.0, 'C+': 2.5, 'C': 2.0, 'D+':
1.5, 'D': 1.0, 'D-': 0, 'F': 0}
```

- Knowledge Check

Practice Time!

15 Minutes

Please attempt Lab Exercises 3 and 4
We will go through the exercises later

ime's up

We will now go through the exercises

Lunch Time

1 Hour

Conditional Statements

Conditional statements

Acts as a standalone statement

Required in all conditional statements

Does not execute if criteria(s) not satisfied

if

If statement

```
burger = 2.50
burgerset = 5

if burgerset > burger:
    print("Burger set is more expensive than the burger!")
else:
    print("Burger set is cheaper than the burger!")

Burger set is more expensive than the burger!
```


Not compulsory

Stands for "else if"

Used for 2 or more conditions

elif

Elif statement

```
yourincome = 190000
if yourincome >= 320000:
   totaltax = 44550 + (yourincome - 320000) * 0.22
elif yourincome >= 280000:
   totaltax = 36550 + (yourincome - 280000) * 0.20
elif yourincome >= 240000:
   totaltax = 28750 + (yourincome - 240000) * 0.195
elif yourincome >= 200000:
   totaltax = 21150 + (yourincome - 200000) * 0.19
elif yourincome >= 160000:
   totaltax = 13950 + (yourincome - 160000) * 0.18
elif yourincome >= 120000:
   totaltax = 7950 + (yourincome - 120000) * 0.15
elif yourincome >= 80000:
   totaltax = 3350 + (yourincome - 80000) * 0.115
elif vourincome >= 40000:
   totaltax = 550 + (yourincome - 40000) * 0.07
elif yourincome >= 30000:
   totaltax = 200 + (yourincome - 30000) * 0.035
elif yourincome >= 20000:
   totaltax = (yourincome - 20000) * 0.02
else:
   totaltax = 0
print("You total chargeable income tax is $" + "{:.2f}".format(totaltax))
Your total chargeable income tax is $19350.00
```


Not compulsory

Used at the end of all other compulsory statements

Used to execute an alternative scenario when "if" criteria not met

else

Else statement

```
yourincome = 1000
if yourincome >= 320000:
   totaltax = 44550 + (yourincome - 320000) * 0.22
elif yourincome >= 280000:
   totaltax = 36550 + (yourincome - 280000) * 0.20
elif yourincome >= 240000:
   totaltax = 28750 + (yourincome - 240000) * 0.195
elif yourincome >= 200000:
   totaltax = 21150 + (yourincome - 200000) * 0.19
elif yourincome >= 160000:
   totaltax = 13950 + (yourincome - 160000) * 0.18
elif yourincome >= 120000:
   totaltax = 7950 + (yourincome - 120000) * 0.15
elif yourincome >= 80000:
   totaltax = 3350 + (yourincome - 80000) * 0.115
elif vourincome >= 40000:
   totaltax = 550 + (yourincome - 40000) * 0.07
elif yourincome >= 30000:
   totaltax = 200 + (yourincome - 30000) * 0.035
elif yourincome >= 20000:
   totaltax = (yourincome - 20000) * 0.02
else:
   totaltax = 0
print("You total chargeable income tax is $" + "{:.2f}".format(totaltax))
Your total chargeable income tax is $0.00
```

- Knowledge Check

```
yourincome = 180000
>> What is the answer?
A. $13950
                                  if yourincome >= 320000:
                                      totaltax = 44550 + (yourincome - 320000) * 0.22
B. $21150
                                  elif yourincome >= 280000:
C. $17550
                                      totaltax = 36550 + (yourincome - 280000) * 0.20
D. $10950
                                  elif yourincome >= 240000:
                                      totaltax = 28750 + (yourincome - 240000) * 0.195
                                  elif yourincome >= 200000:
                                      totaltax = 21150 + (yourincome - 200000) * 0.19
                                  elif yourincome >= 160000:
                                      totaltax = 13950 + (yourincome - 160000) * 0.18
                                  elif yourincome >= 120000:
                                      totaltax = 7950 + (yourincome - 120000) * 0.15
                                  elif yourincome >= 80000:
                                      totaltax = 3350 + (yourincome - 80000) * 0.115
                                  elif yourincome >= 40000:
                                      totaltax = 550 + (yourincome - 40000) * 0.07
                                  elif yourincome >= 30000:
                                      totaltax = 200 + (yourincome - 30000) * 0.035
                                  elif yourincome >= 20000:
                                      totaltax = (yourincome - 20000) * 0.02
                                  else:
                                      totaltax = 0
```

print("You total chargeable income tax is \$" + "{:.2f}".format(totaltax))

Practice Time!

8 Minutes

Please attempt Lab Exercises 5
We will go through the exercises later

imes up

We will now go through Lab Exercise 5

Loops For Loop

Sen()

```
gradeslist = ['DIST', 'A', 'B+', 'B', 'C+', 'C']
tuple2 = (4.0, 3.0, 3.5, 3.0, 2.5, 2.0)
gradesdict = {'DIST':4.0, 'A':4.0, 'B+':3.5, 'B':3.0, 'C+':2.5, 'C':2.0, 'D+':1.5
, 'D':1.0, 'D-':0.5}
test = "This is a string!"
print(f'This is the length of the list: {len(gradeslist)}')
print(f'This is the length of the tuple: {len(tuple2)}')
print(f'This is the length of the dictionary: {len(gradesdict)}')
print(f'This is the length of the string: {len(test)}')
This is the length of the list: 6
This is the length of the tuple: 6
This is the length of the dictionary: 9
This is the length of the string: 17
```

For Loop

```
fruits = ['apple', 'banana', 'cherry']
for x in fruits:
    print(x)
apple
banana
cherry
```

For Loop

```
fruits = ['apple', 'banana', 'cherry']
for x in range(len(fruits)):
    print(x, fruits[x])

1 apple
2 banana
3 cherry
```

Because "fruits" contains 3 elements, the loop repeats "for x in range(3)" times.

When using range, the number in the parentheses is a non-inclusive limit. Hence, x has the values 0, 1 and 2 and will stop at 2.

- ()- Knowledge Check

```
for i in range(9):
    if i % 2 != 0:
        print("Hello")

>> How many times will "Hello" be printed?
```

Loops While Loop

While condition

```
counter = 4
while counter > 0: #condition
   print(counter)
   counter -= 1

4
3
2
1
```

- Knowledge Check

```
subjects = ['Math', 'English', 'Physics', 'Biology', 'Chemistry']
while len(subjects) - 1 > 0:
    print(subjects[0])
    subjects = subjects[1:]

>> At which round of the loop will "Chemistry" be printed?
```

Practice Time!

20 Minutes

Please attempt Lab Exercises 6
We will go through the exercises later

ime's up

We will now go through Lab Exercise 6

Break and Q&A 15 Minutes

Functions and Inputs

Defining Functions

```
def greetings(name):
    print(f'Hello {name}')
greetings('Tony')
Hello Tony
```


Return Statements

```
def calculator(num1, num2, operand):
    operations = ['+', '-', '*', '/']
    for i in range(len(operations)):
        if operations[i] == operand:
            if operations[i] == '+':
                return(num1 + num2)
            elif operations[i] == '-':
                return(num1 - num2)
            elif operations[i] == '*':
                return(num1 * num2)
            elif operations[i] == '/':
                return(num1 / num2)
calculator(4, 3, '*')
12
```

```
def calculator(num1, num2, operand):
    operations = ['+', '-', '*', '/']
    for i in range(len(operations)):
        if operations[i] == operand:
            if operations[i] == '+':
                print(num1 + num2)
            elif operations[i] == '-':
                print(num1 - num2)
            elif operations[i] == '*':
                print(num1 * num2)
            elif operations[i] == '/':
                print(num1 / num2)
calculator(4, 3, '*')
12
```


Function Scope

```
def functionscope():
    print("Inside the function")

print("Outside the function")

Outside the function
```

The code inside the function will not run called upon. The print statement for "Outside the function" will run, as it is outside the function.

Input

```
input("What is your name?")
What is your name?
```

```
input("What is your name?")
What is your name?Tony
'Tony'
```


Input

```
answer = 'Yes'
while answer.lower() != 'no': # ".lower()" converts the whole string int
o lowercase letters.
    answer = input('Do you wish to continue? ')

Do you wish to continue? Yes
Do you wish to continue? yEs
Do you wish to continue? yeS
Do you wish to continue? No
```

Libraries

Libraries are a huge amount of prebuilt code prepared by others to perform an action.

What are libraries

Libraries

Convenient for coders as code is ready out of the box

Simply import libraries into code

Saves time

Libraries

```
from math import log
print(log(4, 5))
0.8613531161467861
```

With one argument, it returns the natural logarithm of x (to base e).

With two arguments, it returns the logarithm of x to the given base, calculated as log(x)/log(base).

Practice Time!

10 Minutes

Please attempt Lab Exercises 7
We will go through the exercises later

ime's up

We will now go through Lab Exercise 7

Practice Time!

10 Minutes

Please attempt Lab Exercises 8
We will go through the exercises later

ime's up

We will now go through Lab Exercise 8

Break and Q&A 15 Minutes

Practice Time!

8 Minutes

Please attempt Lab Exercises 9
We will go through the exercises later

ime's up

We will now go through Lab Exercise 9

Practice Time!

20 Minutes

Please attempt Lab Exercises 10
We will go through the exercises later

ime's up

We will now go through Lab Exercise 10

Scan the QR code to check out

