Homework #7

Table of Contents

Problems	. 1
Problem #1 : Lotka–Volterra predator-prey model NCM 7.16	1
Problem #2 : Trajectory of a spherical cannonball NCM 7.18	. 5
Problem #3 : Satellite Orbit	14

Ian Blackstone, Helena-Nikolai Fujishin
Math 365, Fall 2016

Problems

```
function hmwk1()
hmwk_problem(@prob1,'prob1');
hmwk_problem(@prob2,'prob2');
hmwk_problem(@prob3,'prob3');
end
function hmwk_problem(prob,msg)
try
  prob()
  fprintf('% s : Success!\n',msg);
catch me
  fprintf('% s : Something went wrong.\n',msg);
  fprintf('% s\n',me.message);
end
fprintf('\n');
end
```

Problem #1 : Lotka–Volterra predator-prey model NCM 7.16

```
function probl()
% For Nonmodified Predator versus prey model:
alpha = 0.01;

% Here we have our system where
% F(1) = dr/dt, Change in population of rabbits
% F(2) = df/dt, Change in population of foxes
% y(1) = population of rabbits and y(2) = population of foxes
F = @(t,y) [(2.*y(1))-alpha.*(y(1).*y(2)); alpha.*y(1).*y(2)-y(2)];
[t y] = ode45(F,[0 10],[300 150]);
% This is a plot of the population changes over time
figure
plot(t,y(:,1),'b',t,y(:,2),'r')
```

```
legend('Population of rabbits','Population of Foxes')
title('Unmodified Lotka-Volterra predator-prey model')
xlabel('Time Units')
ylabel('Population')
figure
plot(y(:,2),y(:,1),'g')
legend('Population of Foxes versus Rabbits')
title('Unmodified Lotka-Volterra predator-prey model')
xlabel('Fox Population')
ylabel('Rabbit Population')
% For Modified Predator versus prey model:
alpha = 0.01;
R = 400;
% Here we have our system where
% F(1) = dr/dt, Change in population of rabbits
% F(2) = df/dt, Change in population of foxes
% y(1) = population of rabbits and y(2) = population of foxes
F = @(t,y) [(2.*(1-(y(1)./R)).*y(1))-alpha.*(y(1).*y(2));
alpha.*y(1).*y(2)-y(2)];
[t y] = ode45(F,[0 10],[300 150]);
% This is a plot of the population changes over time
plot(t,y(:,1),'b',t,y(:,2),'r')
legend('Modified population of rabbits','Modified population of
Foxes')
title('Modified Lotka-Volterra predator-prey model')
xlabel('Time Units')
ylabel('Population')
figure
plot(y(:,2),y(:,1),'g')
legend('Population of Foxes versus Rabbits')
title('Modified Lotka-Volterra predator-prey model')
xlabel('Fox Population')
ylabel('Rabbit Population')
end
prob1 : Success!
```


Problem #2: Trajectory of a spherical cannon-ball NCM 7.18

```
function prob2()
% This problem uses several functions stored in external files.
% function f = cannonball0(t,u)
% % Declare constants.
% q = 9.81;
% m = 15;
% c = 0.02;
% p = 1.29;
% s = 0.25;
% % Return the derivative of the vector u.
% f = [u(3);u(4); -c*p*s/(2*m)*u(3)^2; -c*p*s/(2*m)*(u(4))^2-g];
% end
% function f = cannonballneg10(t,u)
% % Declare constants.
% q = 9.81;
% m = 15;
% c = 0.02;
% p = 1.29;
% s = 0.25;
% % Return the derivative of the vector u.
% f = [u(3);u(4); -c*p*s/(2*m)*(u(3)-(-10))^2; -c*p*s/(2*m)*(u(4))^2-
q];
% end
% function f = cannonballvar(t,u)
% % Declare constants.
% q = 9.81;
% m = 15;
% c = 0.02;
% p = 1.29;
% s = 0.25;
% % Set the wind to 10 if the time (rounded down) is even.
% if mod(floor(t),2) = = 0
    w = 10;
% else
% end
```

```
% % Return the derivative of the vector u.
% f = [u(3);u(4); -c*p*s/(2*m)*(u(3)-(w))^2; -c*p*s/(2*m)*(u(4))^2-q];
% end
% function f = cannonballrand(t,u)
% % Declare constants.
% q = 9.81;
% m = 15;
% c = 0.02;
% p = 1.29;
% s = 0.25;
% % Return the derivative of the vector u.
f = [u(3);u(4); -c*p*s/(2*m)*(u(3)-(10*randn))^2; -c*p*s/
(2*m)*(u(4))^2-q;
% end
% Declare the initial speed, timespan, and options for the ODE solver.
v = 50;
t1 = linspace(0,10);
opt = odeset('RelTol',10e-2,'event',@ground);
% For our cannon ball without wind:
% I'd like to set different colors to use for legend:
colors =
['y-' 'm.' 'c-' 'r.' 'g-' 'b.' 'k-' 'y.' 'm-' 'c.' 'r-' 'g.' 'b-' 'k.' 'y*' 'mx'
labels = []; % empty matrix for angles
impactspeed = []; % Create empty matrix for my impact speeds to go
 into
flighttime = []; % Empty matrix for flight times
distance = []; % Empty matrix for downrange distances
% Using my for loop to loop over 17 values of theta.
for i = 1:17
 % Determine theta for this loop.
 theta = i*(pi/36);
 [t u] = ode45(@cannonball0,t1,[0 , 0 , v*cos(theta) ,
 v*sin(theta)],opt); % Calling Ode with initials
 % Calculate the final speed and flight time for this loop.
 impactspeed(i) = sqrt(u(end,3)^2+u(end,4)^2);
 flighttime(i) = t(end);
 % Add the data for this loop to the plot.
 distance(i) = u(end,1);
 plot(u(:,1),u(:,2),colors(i))
 axis([0,250,0,140])
 title('Graph of CannonBall without wind (theta in degrees)')
```

```
ylabel('y position')
 xlabel('x position')
 legendInfo\{i\} = ['theta = 'num2str(i*(pi/36)*(180/pi))];
 labels{i} = ['theta(in degrees) = 'num2str(i*(pi/36)*(180/pi))];
 hold on
end
% Last, set my legend up:
legend(legendInfo)
% Report table of values:
impactspeed = impactspeed.';
xdistance = distance.';
flighttime = flighttime.';
InitialDegrees = labels.';
NoWind =
 table(impactspeed,xdistance ,flighttime,'RowNames',InitialDegrees)
figure % So we can start a new figure
% For our cannon ball with wind -10m/s:
labels = []; % empty matrix for angles
impactspeed = []; % Create empty matrix for my impact speeds to go
flighttime = []; % Empty matrix for flight times
distance = []; % Empty matrix for downrange distances
% Using my for loop to loop over 17 values of theta.
for i = 1:17
 % Set theta for this loop
 theta = i*(pi/36);
 [t u] = ode45(@cannonballneg10,t1,[0 , 0 , v*cos(theta) ,
 v*sin(theta)],opt); % Calling Ode with initials
 % Calculate the final speed and time of flight for this loop.
 impactspeed(i) = sqrt(u(end,3)^2+u(end,4)^2);
 flighttime(i) = t(end);
 % Add the data for this loop to the plot
 distance(i) = u(end,1);
 plot(u(:,1),u(:,2),colors(i))
 axis([0,250,0,140])
 title('Graph of CannonBall with wind -10m/s (theta in degrees)')
 ylabel('y position')
 xlabel('x position')
 legendInfo\{i\} = ['theta = 'num2str(i*(pi/36)*(180/pi))];
 labels{i} = ['theta(in degrees) = 'num2str(i*(pi/36)*(180/pi))];
 hold on
end
% Last, set my legend up:
legend(legendInfo)
```

```
% Report table of values:
impactspeed = impactspeed.';
xdistance = distance.';
flighttime = flighttime.';
InitialDegrees = labels.';
Wind10 =
table(impactspeed,xdistance ,flighttime,'RowNames',InitialDegrees)
figure % So we can start a new figure
% For our cannon ball with wind 10 m/s if the integer part of t is
even, and zero otherwise:
labels = []; % empty matrix for angles
impactspeed = []; % Create empty matrix for my impact speeds to go
flighttime = []; % Empty matrix for flight times
distance = []; % Empty matrix for downrange distances
% Using my for loop to loop over 17 values of theta.
for i = 1:17
 % Set theta for this loop
 theta = i*(pi/36);
 [t u] = ode45(@cannonballvar, t1, [0, 0, v*cos(theta),
 v*sin(theta)],opt); % Calling Ode with initials
 % Calculate the final speed and time of flight for this loop.
 impactspeed(i) = sqrt(u(end,3)^2+u(end,4)^2);
 flighttime(i) = t(end);
 % Add the data for this loop to the plot
 distance(i) = u(end,1);
 plot(u(:,1),u(:,2),colors(i))
 axis([0,250,0,140])
 title('Graph of CannonBall with Variable Wind (0 or 10m/s)(theta in
 degrees)')
 ylabel('y position')
 xlabel('x position')
 legendInfo\{i\} = ['theta = 'num2str(i*(pi/36)*(180/pi))];
 labels{i} = ['theta(in degrees) = 'num2str(i*(pi/36)*(180/pi))];
 hold on
end
% Last, set my legend up:
legend(legendInfo)
% Report table of values:
impactspeed = impactspeed.';
xdistance = distance.';
flighttime = flighttime.';
InitialDegrees = labels.';
VariableWind =
 table(impactspeed,xdistance ,flighttime,'RowNames',InitialDegrees)
```

```
figure % So we can start a new figure
% For our cannon ball with wind 10 m/s*randn:
labels = []; % empty matrix for angles
impactspeed = []; % Create empty matrix for my impact speeds to go
 into
flighttime = []; % Empty matrix for flight times
distance = []; % Empty matrix for downrange distances
% Using my for loop to loop over 17 values of theta.
for i = 1:17
 % Set theta for this loop
 theta = i*(pi/36);
 [t u] = ode45(@cannonballrand,t1,[0 , 0 , v*cos(theta) ,
 v*sin(theta)],opt); % Calling Ode with initials
 % Calculate the final speed and time of flight for this loop.
 impactspeed(i) = sqrt(u(end,3)^2+u(end,4)^2);
 flighttime(i) = t(end);
 % Add the data for this loop to the plot
 distance(i) = u(end,1);
 plot(u(:,1),u(:,2),colors(i))
 axis([0,250,0,140])
 title('Graph of CannonBall with Random Wind(theta in degrees)')
 ylabel('y position')
 xlabel('x position')
 legendInfo\{i\} = ['theta = 'num2str(i*(pi/36)*(180/pi))];
 labels{i} = ['theta(in degrees) = 'num2str(i*(pi/36)*(180/pi))];
 hold on
end
% Last, set my legend up:
legend(legendInfo)
% Report table of values:
impactspeed = impactspeed.';
xdistance = distance.';
flighttime = flighttime.';
InitialDegrees = labels.';
RandomWind =
 table(impactspeed,xdistance ,flighttime,'RowNames',InitialDegrees)
end
NoWind =
                              impactspeed
                                             xdistance
                                                           flighttime
    theta(in degrees) = 5
                                              44.038
                                                           0.88831
                              49.532
                              49.109
    theta(in degrees) = 10
                                              86.307
                                                            1.7691
```

theta(in degrees) = 15	48.759	125.56	2.6351
theta(in degrees) = 20	48.504	160.65	3.479
theta(in degrees) = 25	48.357	190.63	4.2941
theta(in degrees) = 30	48.318	214.67	5.0738
theta(in degrees) = 35	48.38	232.16	5.8121
theta(in degrees) = 40	48.525	242.66	6.5036
theta(in degrees) = 45	48.729	245.93	7.1433
theta(in degrees) = 50	48.969	241.93	7.7267
theta(in degrees) = 55	49.217	230.78	8.25
theta(in degrees) = 60	49.45	212.81	8.71
theta(in degrees) = 65	49.651	188.5	9.1036
theta(in degrees) = 70	49.807	158.51	9.4288
theta(in degrees) = 75	49.913	123.66	9.6835
theta(in degrees) = 80	49.973	84.885	9.8665
theta(in degrees) = 85	49.996	43.274	9.9766
Wind10 =			
	impactspeed	xdistance	flighttime
theta(in degrees) = 5	49.327	43.946	0.88831
theta(in degrees) = 10	48.715	85.95	1.7691
theta(in degrees) = 15	48.202	124.78	2.6351
theta(in degrees) = 20	47.818	159.35	3.479
theta(in degrees) = 25	47.578	188.72	4.2941
theta(in degrees) = 30	47.486	212.13	5.0738
theta(in degrees) = 35	47.533	229	5.8121
theta(in degrees) = 40	47.699	238.95	6.5036
theta(in degrees) = 45	47.957	241.77	7.1433
theta(in degrees) = 50	48.274	237.44	7.7267
theta(in degrees) = 55	48.618	226.13	8.25
theta(in degrees) = 60	48.959	208.17	8.71
theta(in degrees) = 65	49.271	184.07	9.1036
theta(in degrees) = 70	49.535	154.47	9.4288
theta(in degrees) = 75	49.74	120.17	9.6835
theta(in degrees) = 80	49.881	82.106	9.8665
theta(in degrees) = 85	49.964	41.315	9.9766
VariableWind =			
	impactspeed	xdistance	flighttime
theta(in degrees) = 5	49.682	44.113	0.88831
theta(in degrees) = 10	49.255	86.511	1.7691
theta(in degrees) = 15	49.046	125.94	2.6351
theta(in degrees) = 20	48.789	161.29	3.479
theta(in degrees) = 25	48.694	191.5	4.2941
theta(in degrees) = 30	48.694	215.83	5.0738
theta(in degrees) = 35	48.71	233.56	5.8121
theta(in degrees) = 40	48.876	244.26	6.5036

theta(in	degrees)	=	45	49.056	247.7	7.1433
theta(in	degrees)	=	50	49.228	243.75	7.7267
theta(in	degrees)	=	55	49.441	232.57	8.25
theta(in	degrees)	=	60	49.636	214.49	8.71
theta(in	degrees)	=	65	49.781	189.98	9.1036
theta(in	degrees)	=	70	49.886	159.71	9.4288
theta(in	degrees)	=	75	49.953	124.49	9.6835
theta(in	degrees)	=	80	49.986	85.286	9.8665
theta(in	degrees)	=	85	49.995	43.2	9.9766

RandomWind =

		impactspeed	xdistance	flighttime
				
theta(in degrees)	= 5	49.55	44.056	0.88831
theta(in degrees)	= 10	49.034	86.108	1.7691
theta(in degrees)	= 15	48.556	125.33	2.6351
theta(in degrees)	= 20	48.629	160.4	3.479
theta(in degrees)	= 25	47.91	190.17	4.2941
theta(in degrees)	= 30	48.5	215.18	5.0738
theta(in degrees)	= 35	48.268	231.76	5.8121
theta(in degrees)	= 40	47.963	241.07	6.5036
theta(in degrees)	= 45	48.432	243.69	7.1433
theta(in degrees)	= 50	48.886	242.34	7.7267
theta(in degrees)	= 55	49.037	229.01	8.25
theta(in degrees)	= 60	49.379	212.79	8.71
theta(in degrees)	= 65	49.65	188.81	9.1036
theta(in degrees)	= 70	49.739	158.06	9.4288
theta(in degrees)	= 75	49.879	122.86	9.6835
theta(in degrees)	= 80	49.953	84.411	9.8665
theta(in degrees)	= 85	49.979	42.307	9.9766

prob2 : Success!

Problem #3: Satellite Orbit

```
function prob3()
% Part a
% The following function is called from an external file.
% function f = Orbit(t,u)
mu = 0.012277471;
% mus = 1 - mu;
% D1 = ((u(1)+mu)^2 + u(2)^2)^(3/2);
% D2 = ((u(1)-mus)^2 + u(2)^2)^(3/2);
f = [u(3); u(4); u(1)+2*u(4)-mus*(u(1)+mu)/D1-mu*(u(1)-mus)/D2;
u(2)-2*u(3)-mus*u(2)/D1-mu*u(2)/D2];
% end
% Generate a list of time points for one full cycle.
b = 17.06521656015796;
t = linspace(0,b);
% Initial conditions
u0 = [0.994, 0, 0, -2.0015851063790825];
% Call the ODE solver using a given relative tolerance and output a
phase diagram.
figure
opt = odeset('RelTol',10e-2,'OutputFcn',@odephas2);
[t1,u1] = ode45(@Orbit,t,u0,opt);
title('Graph of satelite position, RelTol = 10E-2')
ylabel('y position')
xlabel('x position')
figure
opt = odeset('RelTol',10e-4,'OutputFcn',@odephas2);
[t2,u2] = ode45(@Orbit,t,u0,opt);
title('Graph of satelite position, RelTol = 10E-4')
ylabel('y position')
xlabel('x position')
figure
opt = odeset('RelTol',10e-6,'OutputFcn',@odephas2);
[t3,u3] = ode45(@Orbit,t,u0,opt);
title('Graph of satelite position, RelTol = 10E-6')
ylabel('y position')
xlabel('x position')
% Part b
% Run the ODE solver for 3 periods using the same relative tolerance.
```

```
figure
[t4,u4] = ode45(@Orbit,3*t,u0,opt);
title('Graph of satelite position for 3 orbital periods')
ylabel('y position')
xlabel('x position')
% These results show the satelite to precess in its orbit, which is
not the actual behavior.
% Changing this to a larger tolerance causes the orbit to be less
% Even the smallest possible tolerance (~2E-14) does not give accurate
results over three periods.
% Part c
% Run the 113 ODE solver.
figure
[t5,u5] = ode113(@Orbit,3*t,u0,opt);
title('Graph of satelite position using ODE113 solver')
ylabel('y position')
xlabel('x position')
% These results are much more accurate, though there is still
 innacuracy in the last portion of the third orbit.
end
prob3 : Success!
```


Published with MATLAB® R2016a