

CSC3100 Data Structures Lecture 17: Heap

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- Heap
 - Motivation
 - Priority queue
 - Binary heap
- Insert & delete & build
- HeapSort

- Have you ever been jammed by a huge job while you are waiting for just one-page printout?
 - This is a typical situation for a first-in first-out (FIFO) queue
- Other applications
 - Scheduling CPU jobs
 - Emergency room admission processing
- Practical requirements
 - Short jobs may go first
 - Most urgent cases should go first
 - Task with highest priority/lowest priority should go first

Priority queue operations

- Priority queue property:
 - For two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y

Simple implementations

- Multiple possibilities for the implementation
 - Singly linked list (Suggestion 1)
 - Insert at the front in O(1)
 - Delete minimum in O(N)
 - Sorted array (Suggestion 2)
 - Insert in O(N)
 - Delete minimum in O(N)
 - Binary heap (Suggestion 3)
 - Insert in O(log M)
 - Delete minimum in O(logN)
 - Two properties: structure property & heap order property

- ▶ (A) Structure property
 - A heap is a complete binary tree
 - A binary tree that is completely filled, except at the bottom level, which is filled from left to right
 - A complete binary tree of height h has between 2^h and 2^{h+1}
 - 1 nodes
 - The height of a complete binary tree = Llog N
 - round down, e.g., $\lfloor 2.7 \rfloor = 2$

Binary heap: example

A complete binary tree can be represented in an array

- The root is at position 1 (reserve position 0 for the implementation purpose)
- For an element at position i,
 - its left child is at position 2 i
 - its right child at 2*i*+1; its parent is at floor \(\frac{i}{2} \)

- ▶ (B) Heap order property
 - The value at any node should be smaller than (or equal to) all of its descendants (guarantee that the node with the minimum value is at the root)

A binary search tree

A binary heap

Notice the difference in node ordering!!

Class skeleton for Elements

```
class ElementType {
   int priority;
    String data;
    public ElementType(int priority, String data) {
           this.priority = priority;
           this.data = data:
    public boolean isHigherPriorityThan(ElementType e) {
           return priority < e.priority;
```


Definition and constructor of priority queue

```
public class BinaryHeap {
    private int currentSize;  // Number of elements in heap
    private ElementType arr[]; // The heap array

public BinaryHeap (int capacity) {
        currentSize = 0;
        arr = new ElementType[capacity + 1];
    }
}
```


Binary heap: insert

Attempt to insert 14:

(1) creating the hole, and (2) bubbling the hole up

The remaining two steps to insert 14 in previous heap

- To insert an element X,
 - Create a hole in the next available location
 - If X can be placed in the hole without violating heap order, insertion is complete
 - Otherwise slide the element that is in the hole's parent node into the hole, i.e., bubbling the hole up towards the root
 - Continue this process until X can be placed in the hole (a percolating up process)

Attention!

Worst case running time is $O(\log N)$ - the new element is percolating up all the way to the root

Binary heap: insert

```
public void insert(ElementType x) throws Exception {
        if (isFull())
                throw new Exception("Overflow");
        // Percolate up
        int hole = ++currentSize:
        while(hole > 1 && x.isHigherPriorityThan(arr[hole/2])) {
                arr[hole] = array[hole / 2];
                hole /= 2:
                                                                  13
        arr[hole] = x;
                                                          21
                                                                         16
                                                                      19
                                                                31
```


Binary heap: deleteMin

Creation of the hole at the root

🚜 Binary heap: deleteMin

Next two steps in DeleteMin

Binary heap: deleteMin

- The element at the root (position 1) is to be removed, and a hole is created
- Fill the root with the last node X
- Percolate X down (switch X with the smaller child) until the heap order property is satisfied
- Note that
 - Some node may have only one child (be careful when coding!)
 - Worst case running time is O (log M)

Binary heap: deleteMin

```
public String deleteMin() {
    if (isEmpty())
        return null;

    String data = arr[1].data;
    arr[1] = arr[currentSize--];

    percolateDown(1);
    return data;
}
```


Binary heap: percolateDown

```
private void percolateDown(int hole) {
       int child:
       ElementType tmp = arr[hole];
       while (hole * 2 <= currentSize) {
              child = hole * 2;
              if (child != currentSize &&
                      arr[child +1].isHigherPriorityThan(arr[child]))
                      child++;
              if (arr[child].isHigherPriorityThan(tmp))
                      arr[hole] = array[child];
              else
                      break;
              hole = child;
       arr[hole] = tmp;
```


Given a binary heap as shown below, show the procedure of deletion on the heap step by step

Complexity analysis

- Given a heap with n elements
 - The height/depth of the heap is $O(\log n)$
 - · Why?
 - During insertion/deletion, the worst-case time complexity depends linearly to the height/depth of the heap
- Heap insertion
 - $\circ O(\log n)$
- Heap deletion
 - $\circ O(\log n)$

Binary heap construction

A naïve algorithm to build the binary heap is to repeatedly insert nodes one by one, which completes in O(nlogn) time

A faster algorithm to build the binary heap:

- Nsuccessive appends at the end of the array, each taking O (1), so the tree is unordered
- for (i = N/2; i > 0; i--)
 percolateDown (i);

Note: Each dashed line corresponds to two comparisons: one to find the smaller child, and one to compare the smaller child with the node.

Binary heap construction

After percolateDown (6)

After percolateDown (5)

After percolateDown (4)

After percolateDown (3)

After percolateDown (2)

After percolateDown (1)

Complexity of buildHeap?

Analysis

- percolateDown for n/2 keys
- Each key takes up to O(logn) cost
- Is this upper bound tight?
- Thus, the total cost of BuildHeap is O(nlogn)

Notice

 At most n/4 percolate down 1 level at most n/8 percolate down 2 levels at most n/16 percolate down 3 levels

$$1\frac{n}{4} + 2\frac{n}{8} + 3\frac{n}{16} + \dots = \sum_{i=1}^{\log n} i \frac{n}{2^{i+1}} =$$

$$\frac{n}{2} \sum_{i=1}^{\log n} \frac{i}{2^{i}} \approx \frac{n}{2}(2) = n$$
Conclusion: O(n)

Variants of heap

Min-heap

- The key present at the root node must be less than or equal among the keys present at all of its children
- The same property must be recursively true for all sub-trees

Max-heap

- The key present at the root node must be larger than or equal among the keys present at all of its children
- The same property must be recursively true for all sub-trees

- Sorting using a max-heap
 - \circ To sort an array arr, we first create a max-heap H with a capacity of arr.length+1
 - Then, we repeatedly delete from the max-heap until the max-heap becomes empty

4 5 8 9 10 12 22 33 58

10 classic sorting algorithms

Sorting algorithm	Stability	Time cost			Extra space
		Best	Average	Worst	cost
Bubble sort	$\sqrt{}$	O(n)	$O(n^2)$	$O(n^2)$	O(1)
Insertion sort	$\sqrt{}$	O(n)	O(n ²)	$O(n^2)$	O(1)
Selection sort	×	O(n)	$O(n^2)$	$O(n^2)$	O(1)
MergeSort	$\sqrt{}$	O(nlogn)	O(nlogn)	O(nlogn)	O(n)
HeapSort	×	O(nlogn)	O(nlogn)	O(nlogn)	O(1)
QuickSort	×	O(nlogn)	O(nlogn)	$O(n^2)$	O(1)
ShellSort	×	O(n)	$O(n^{1.3})$	$O(n^2)$	O(1)
CountingSort	$\sqrt{}$	O(n+k)	O(n+k)	O(n+k)	O(k)
BucketSort	$\sqrt{}$	O(n)	O(n+k)	$O(n^2)$	O(k)
RadixSort	$\sqrt{}$	O(nk)	O(nk)	O(nk)	O(n)

Stable sorting: if two objects with equal keys appear in the same order in sorted output, as they appear in the input array

- Sort an array A[1...8] = [4, 1, 3, 2, 16, 9, 10, 14] in ascending order by HeapSort
 - \circ Show the contents of A in the sorting process step by step
- Write the codes of HeapSort

Recommended reading

- Reading
 - Chapters 6&12, textbook
- Next lecture
 - Hashing, Chapters 11.1-11.4 of textbook