Проблема Шпехта и Гипотеза Гельфанда

Воробьев Иван Евгеньевич

Научный руководитель, доктор физ.-мат. наук, профессор Алексей Яковлевич Канель-Белов

Со-руководитель, кандидат физ.-мат. наук, доцент Антон Сергеевич Хорошкин

Рецензент, доктор физ.-мат. наук, профессор Сергей Олегович Горчинский

18 июня 2024 г.

Strucure of the work

There are two non-trivial applications of PI-theory those will be presented:

- Non-linearity of free pro-p groups
- Gelfand's conjecture

Structure:

- Preliminaries for pro-p structures
- A brief historical review
- Problem statement (on non-linearity of free pro-p group over 2-by-2 matrices)
- Review of Zubkov's approach
- Review of Zelmanov, Ben-Ezra's approach
- **1** Modification of Zelmanov, Ben-Ezra's approach for $\mathrm{char}\Delta=4$
- Gelfand conjecture, statement and reformulation: whether some module is Noetherian
- Connection between Gelfand conjecture and PI-theory

Preliminaries

Definition

The inverse (projective) limit of the projective system of finite groups (rings) is called a profinite group (ring).

Definition

The inverse limit of the projective system of p-groups is called pro-p group.

Definition

Commutative Noetherian complete local ring Δ with a maximal ideal I is called pro-p ring if Δ/I is a finite field of characteristic p.

In that case:

$$\Delta = \varprojlim \Delta/I^n$$

Preliminaries

Definition

Let F be a free group generated by alphabet S. Consider the completion \widetilde{F}_p of F with respect to topology, defined by all normal subgroups of a finite index p^I , $\forall I \in \mathbb{N}$ which have almost all generators from S. Then \widetilde{F}_p is called a free pro-p-group.

Remark

Here and later the completion with respect to normal subgroups means the inverse limit of the system of factorgroups.

Let Δ be pro-p ring

$$GL_d^1(\Delta) = \ker \left(GL_d(\Delta) \xrightarrow{\Delta \to \Delta/I} GL_d(\Delta/I) \right)$$

is a pro-p-group.

Main problem

Conjecture

A non-abelian free pro-p group \widetilde{F}_p cannot be continuously embedded in $GL^1_d(\Delta)$ for any pro-p ring Δ .

Historical review

There are several partial results for certain $\widetilde{F}_p, \Delta, p$, that let us suppose that answer is positive for the general case:

- In 1987, A.N Zubkov ([3]) demonstrated that for $d=2, p \neq 2$ the conjecture holds true.
- In 1991, J.D. Dixon, A. Mann, M.P.F. du Sautoy, D. Segal ([6]) established the conjecture for $\Delta = \mathbb{Z}_p$,

$$GL^1_d(\mathbb{Z}_p) = \ker \left(GL_2(\mathbb{Z}_p) \xrightarrow{\mathbb{Z}_p \to \mathbb{F}_p} GL_2(\mathbb{F}_p) \right)$$

- In 1999, utilizing the profound results of Pink ([4]), Y. Barnea, M. Larsen ([5]) proved the conjecture for $\Delta = (\mathbb{Z}/p\mathbb{Z})[[t]]$
- In 2005, E. Zelmanov ([?]) announced that conjecture holds true for $p\gg d$.
- In 2020, D. Ben-Ezra, E. Zelmanov showed ([7]) that for d=2, p=2 and $\operatorname{char}(\Delta)=2$ the conjecture holds true.

Zubkov's approach

Theorem (Zubkov, 1987)

Let F be a free non-abelian pro-p group, Δ is a pro-p ring. F cannot be continuously embedded in $GL_2^1(\Delta)$, when p > 2.

The first non-trivial idea is to introduce the following definition:

Definition

Let F be a free pro-p group, and G be a pro-p group. Then every $1 \neq w \in F$ such that $w \in Ker(\varphi)$ for all continuous homomorphisms $\varphi : F \to G$ is called a pro-p identity of G.

Zubkov consider the natural homomorphism to algebra of generic matrices: Let $x,y\in \widetilde{F}_p$ — generators, $\pi:x\mapsto 1+x^*,y\mapsto 1+y^*$, where x^*,y^* are the generic matrices over \mathbb{Z}_p . And one can continue π to the completion $\langle\langle x,y\rangle\rangle$, and it will map on closure of $\langle 1+x^*,1+y^*\rangle$.

Zubkov's approach

Homomorphism π is called the universal representation, and that's why:

Lemma

Each $1 \neq z \in \ker \pi$ is a pro-p identity of $GL^1_d(\Delta)$ for all pro-p rings Δ .

This theorem can be proven with a standard commutative algebra approaches. And this implies that it would be enough to prove

Theorem

The universal representation of the degree 2 is not injective for $p \neq 2$.

So we need to construct the pro-p identity for generic matrices.

Zubkov's approach

Zubkov investigated the lower central series of Lie algebra of generic matrices.

And he encountered a contradiction with the classical Witt's formula:

Formula (Witt)

Rank of r-th factor of the lower central series of F_p (as a \mathbb{Z}_p – module):

$$\frac{1}{r}\sum_{m|r}\mu(m)\cdot 2^{\frac{r}{m}}$$

Ben-Ezra, Zelmanov's approach

Theorem (Ben-Ezra, Zelmanov, 2020)

Let F be a free non-abelian pro-2 group, Δ is a pro-2 ring. F cannot be continuously embedded in $GL_2^1(\Delta)$, when $\operatorname{char}\Delta=2$.

Ben-Ezra and Zelmanov modified Zubkov's universal representation for the case p=2: analogous homomorphism to generic matrices over $\mathbb{Z}/2\mathbb{Z}$ (instead of \mathbb{Z}_2).

Then the following lemma still holds and has a pretty simple proof:

Lemma

Each $1 \neq z \in \ker \pi$ is a pro-2 identity of $GL_2^1(\Delta)$ for all pro-2 rings Δ with $char \Delta = 2$.

And the last theorem has a very hard proof: authors investigated Lie algebra using PI-theory approaches:

Theorem

The universal representation of the degree 2 is not injective. (HSE)

 $char \Delta = 4$

Conjecture

Let F be a free non-abelian pro-2 group, Δ is a pro-2 ring. F cannot be continuously embedded in $GL_2^1(\Delta)$, when $\operatorname{char}\Delta=4$.

We intend to prove it using the similar approaches, and believe that one can prove it even for the case $\mathrm{char}\Delta=2^{I}.$

Furthermore, maybe the case ${\rm char}\Delta=0$ can be investigated if the above statement will be proved.

PI-theory, preliminaries

Let T be the endomorphism (substitution) semigroup of the free algebra $F = k\langle x_1, \ldots, x_i, \ldots \rangle$.

Definition

An endomorphism τ of F defined by the rule $x_i \mapsto g_i, g_i \in F$, is called a substitution of type $(x_1, \ldots, x_i, \ldots) \mapsto (g_1, \ldots, g_i, \ldots)$.

Definition

T-space in F is a vector subspace of F, that is closed under substitutions.

Definition

T-ideal in F is an ideal of F that is at the same time a T-space.

PI-theory, preliminaries

Following theorem (the special case of Shchigolev's [?]) is proved in author's last year coursework.

Theorem

Any T-space in algebra $k[x_1, \ldots, x_n]$ is finitely based.

Furthermore, one can prohibit some of the substitutions and show that T-spaces are finitely based using some $\widetilde{T} \subset T$ The main idea is to use substitutions:

$$f(x_1,\ldots,x_i,\ldots,x_n)\mapsto f(x_1,\ldots,1+\alpha_iP(x_i),\ldots,x_n)$$

And then we linearize it on α_i .

13 / 17

Gelfand conjecture

Conjecture (Gelfand, 1970, [?])

The homology of the Lie subalgebra of finite codimension in the Lie algebra of algebraic vector fields on an affine algebraic manifold are finite-dimensional in each homological degree.

We denote by W_n the Lie algebra of formal vector fields on an n-dimensional plane V.

$$\mathcal{W}_n \simeq \prod_{k=0}^{\infty} S^k V \otimes V^*$$

The subalgebras $\prod_{k=d}^{\infty} S^k V \otimes V^*$ of a finite codimension are denoted by $L_d(n)$.

Gelfand conjecture

Using the classical considerations of homological algebra, one can reduce Gelfand conjecture to the following lemma:

Lemma

Any finitely generated $L_d(n)$ -module is noetherian.

Then we will observe how to use Grishin's methods to prove this lemma.

15 / 17

Bibliography

I. Sanov, The property of one free group representation, Doklady Akademii Nauk USSR, vol. 57, no. 7, pp. 657–659, 1947.

A. Kanel-Belov, Local finite basability and local representability of varieties of associative rings, Doklady Akademii Nauk, vol. 432, no. 6, pp. 727–731, 2010.

A. Zubkov, Non-abelian free pro-p-groups cannot be represented by 2-by-2 matrices, Siberian Mathematical Journal, vol. 28, pp. 742–747, 1987.

R. Pink, Compact subgroups of linear algebraic groups, Journal of Algebra, vol. 206, pp. 438-504, 1998.

Y. Barnea and M. Larsen, A non-abelian free pro-p group is not linear over a local field, Journal of Algebra, vol. 214, pp. 338–341, 1999.

J. Dixon, A. Mann, M. du Sautoy, and D. Segal, Analytic pro-p-groups, London Mathematical Society Lecture Note Series, Cambridge University Press, 1991.

D. Ben-Ezra and E. Zelmanov, On Pro-2 Identities of 2×2 Linear Groups, arXiv:1910.05805v2, 2020.

E. Zelmanov, Infinite algebras and pro-p groups, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., vol. 248, pp. 403–413, 2005.

E. Zelmanov, Groups with identities, Note. Mat., vol. 36, pp. 101-113, 2016.

I.M. Gelfand, The cohomology of infinite dimensional Lie algebras; Some questions of integral geometry, Proceedings of ICM, vol. T.1, p. 106, 1970.

B. Feigin, A. Kanel-Belov, and A. Khoroshkin, On finite dimensionality of homology of subalgebras of vector fields, arXiv:2211.08510v1, 2022.

Библиография

L. Centrone, A. Kanel-Belov, A. Khoroshkin, and I. Vorobiov, Specht property for systems of commutative polynomials and Gelfand conjecture, https://www.researchgate.net/publication/355916110_Gelfand_conjecture_and_the_method_of_proof_of_Specht_problem, 2022.

A. Kemer, Finite basability of identities of associative algebras, Algebra and Logics, vol. 26, no. 5, pp. 597–641, 1987.

C. Procesi, The geometry of polynomial identities, Izv. Math., vol. 80, no. 5, pp. 910-953, 2016.

A. Grishin, On finitely based systems of generalized polynomials, Math. USSR-Izv., vol. 37, no. 2, pp. 243–272, 1991.

V. Shchigolev, Finite-basis property of T-spaces over fields of characteristic zero, Izv. Ross. Akad. Nauk, Ser. Mat., vol. 65, no. 5, pp. 1041–1071, 2001.

A. Lubotzky, Combinatorial group theory for PRO-p groups, Pure and Applied Algebra, vol. 25, pp. 311–325, 1982.

E. Aljadeff, A. Kanel-Belov, and Y. Karasik, Kemer's theorem for affine PI algebras over a field of characteristic zero, Pure and Applied Algebra, vol. 220, pp. 2771–2808, 2016.

A. Grishin, On finitely based systems of generalized polynomials, Math. USSR-Izv., vol. 37, no. 2, pp. 243–272, 1991.

A. Grishin and V. Shchigolev, *T-spaces and their applications, Math. Sci., New York*, vol. 134, no. 1, pp. 1799–1878, 2004.

I. Benediktovich and A. Zalesskii, T-ideals of free Lie algebras with polynomial growth of a sequence of codimensions, Proceedings of the National Academy of Sciences of Belarus. Series of Physical-Mathematical Sciences, vol. 3, pp. 5–10, 1980.

A. Vais and E. Zelmanov, Kemer's theorem for finitely generated Jordan algebras; Izv. Vyssh. Uchebra Zved. С (HSE) PI-theory 18 июня 2024 г. 17 / 17