20 settembre 2019

Nome:	Cognome:	Matricola:

Esercizio 1

Si consideri la relazione che segue contenente informazioni relative alle prenotazioni di un albergo.

Prenotazioni (NumStanza, CategoriaStanza, NumPianoStanza, NumLettiStanza, ServiziStanza, CostoStanza, NomeCliente, CognomeCliente, CodFiscaleCliente, RecapitoCliente, DataChiamata, OraChiamata, IDPrenotazione, NumOspitiPrenotazione, DataInizioPrenotazione, DataFinePrenotazione, TipoStagione)

Una prenotazione può riguardare più stanze. Ogni categoria di stanza ha un insieme di servizi associati che però variano a seconda della stagione. Ogni stanza può contenere un diverso numero di persone a seconda della prenotazione. Il costo di una stanza dipende dalla categoria, dal tipo del periodo e dal numero di persone presenti nella stanza (L'attributo TipoStagione può avere valore Alto, Basso, Medio, Altissimo). Il TipoStagione dipende dalla data finale della prenotazione.

a) Individuare la chiave e tutte le dipendenze funzionali non banali

NumStanza → CategoriaStanza, NumPianoStanza, NumLettiStanza

CategoriaStanza, TipoStagione → ServiziStanza

CodFiscaleCliente → NomeCliente, CognomeCliente, RecapitoCliente

CategoriaStanza, TipoStagione, NumOspitiPrenotazione → CostoStanza

IDPrenotazione, NumStanza → NumOspitiPrenotazione

IDPrenotazione → DataChiamata, OraChiamata, DataInizioPrenotazione, DataFinePrenotazione,

CodFiscaleCliente

DataFinePrenotazione → TipoStagione

K= IDPrenotazione, NumStanza

b) Verificare se Prenotazioni è in terza forma normale e, se non lo è, portarla in terza forma normale.

Prenotazioni non è in 3NF

DescrizioneStanza (NumStanza, CategoriaStanza, NumPianoStanza, NumLettiStanza)

Servizi(CategoriaStanza, TipoStagione, ServiziStanza)

Clienti(CodFiscaleCliente, NomeCliente, CognomeCliente, RecapitoCliente)

Costi(CategoriaStanza, TipoStagione, NumOspitiPrenotazione, CostoStanza)

OccupazioneStanze(IDPrenotazione, NumStanza, NumOspitiPrenotazione)

Prenotazioni(IDPrenotazione, DataChiamata, OraChiamata, DataInizioPrenotazione,

DataFinePrenotazione, CodFiscaleCliente)

Stagioni(DataFinePrenotazione, TipoStagione)

K è già contenuta in OccupazioneStanze

20 settembre 2019

Esercizio 2

Considerare la seguente base di dati:

```
ATTORE (<u>CodAttore</u>, NomeAttore, CognomeAttore, AnnoNascita, NazioneNascitaA); INTERPETAZIONE (<u>CodAttore</u>, <u>CodFilm</u>)
FILM (<u>CodFilm</u>, Titolo, CasaProduzione, NomeProduttore, CognomeProduttore, AnnoProduzione, LuogoProduzione, NomeRegista, CognomeRegista, Genere, CostoFinale, IncassoTotale)
REGISTA(<u>NomeRegista</u>, <u>CognomeRegista</u>, NazioneNascitaR)
NAZIONE (<u>Nazione</u>, Continente, <u>Città</u>)
PRODUZIONE( <u>NomeCasaProduzione</u>, <u>NomeAgente</u>, <u>CognomeAgente</u>, Sede, Capitale)
```

a) Scrivere un'espressione in algebra relazionale che elenchi i nomi e cognomi degli attori che non hanno mai interpretato film di genere "romantico" nè film in cui recitava anche Brad Pitt.

```
\begin{split} &\Pi_{NA,CA} \, \big( \\ & \big( \Pi_{CF} \, \big( Film \big) - \Pi_{CF} \, \big( \, \sigma_{A=2018 \, \wedge \, G= \, `Romantico'} \big( Film \big) \, \big) \, \big) - \\ & \Pi_{CF} \, \big( Interpretazione \, \rhd \lhd \, \Pi_{CodA} \, \big( \sigma_{NA=\, `Brad' \, \wedge \, CA= \, `Pitt'} \, \big( Attore \big) \big) \, \big) \\ & \big) \, \rhd \lhd \\ & \Pi_{CodA,NA,CA} \, \big( Attore \big) \, \rhd \lhd \, Interpretazione \, \big) \end{split}
```

b) Definire la query del punto precedente nel calcolo dei domini.

```
{NA:na, CA:ca | Attore (CodA:coda, NA:na, CA:ca,...) ∧ ¬∃ cf, coda',na', ca', g, ... Film (CF:cf, G:g,..) ∧ (Interpretazione(CF:cf, CodA:coda) ∧ (g='Romantico' ∨ (Interpretazione(CF:cf, CodA:coda') ∧ Attore (CodA:coda', NA:na', CA:ca',...) ∧ coda≠coda' ∧ na='Brad' ∧ ca='Pitt') }
```

Esercizio 3

Considerare i seguenti schedule e dire se sono conflict serializzabili o view serializzabili o non serializzabili, nei primi due casi indicare uno schedule seriale equivalente.

```
a) w2(x), r3(x), r2(y), w1(x), w2(y), w3(x), r3(y), r3(z), r1(z), w3(z)
```

```
b) w2(x), r2(x), w1(x), r2(y), w3(x), r3(z), r3(y), r1(z), w2(y), w3(z)
```

a) non è CS perchè il suo grafo dei conflitti è ciclico, ma è VS

b) non è CS perchè il suo grafo dei conflitti è ciclico, e non è VS a causa della relazione legge-da tra r3(y) e w2(y) che contrasta con la scrittuta finale su x che in b) è fatta da w3