COMP 250 Assignment #2 - Winter 2017

Alex Hale

ID: 260672475

1)

- a) An array sorted in descending order will be the worst case because the swap code (i.e. inside the if condition) must run every loop.
- b) Line 1: $T_{assign} + T_{comp}$ (repeated n times) + $(T_{arith} + T_{assign})$ (repeated n-1 times) $\Rightarrow 1 + 1 * n + 2 * (n 1) = 3n 1$

Line 2: T_{assign} + T_{comp} (repeated n-i+1 times) + (T_{arith} + T_{assign}) (repeated n-i times)

$$\Rightarrow$$
 1+1*(n-1+1)+2*(n-i) = 2+3n-i

$$\Rightarrow \sum_{i=1}^{n-1} 2 + 3n - i = 2 + 3n - \sum_{i=1}^{n-1} i = 2 + \frac{7}{2}n - \frac{1}{2}n^2$$

Line 3: $T_{index} + T_{comp} + T_{arith} + T_{index} + T_{cond} = 5$

Line 4: $T_{index} + T_{assign} = 2$

Line 5: $T_{arith} + T_{index} + T_{assign} + T_{index} = 4$

Line 6: $T_{assign} + T_{arith} + T_{index} = 3$

Line 3 to 6: 14 (repeated n-i times)

$$\Rightarrow 14(n-i) = 14n - 14\sum_{i=1}^{n-1} i = 14n - 7(n^2 - n) = 21n - 7n^2$$

$$T(n) = 3n - 1 + 2 + \frac{7}{2}n - \frac{1}{2}n^2 + 21n - 7n^2 = -\frac{15}{2}n^2 + \frac{55}{2}n + 1$$

- c) $T(n) \le -\frac{15}{2}n^2 + \frac{55}{2}n^2 + n^2 = 21n^2 = cn^2$ $\Rightarrow T(n) \text{ is } O(n^2)$
- 2) a) given
 - b) T(n) is O(n)
 - c) T(n) is $O(n^2)$
 - d) T(n) is $O(\log_2 n)$
 - e) T(n) is O(1)

260672475 Alex Hay

Feb. 11/17

(cont.) 3) Prove 4 cn! for n > 9

base case: n = 9 $4^n = 4^9 = 262144 < n! = 9! = 362880$

induction step, assume 4" LK! is true, prove that 4 L (k+1)! is true

(k+1)! = (k+1) k! > (k+1) 4" => (k+1) 4" => (k+1) 4" => (k+1) 4"

Is we've proven our goal

: 42 cn! for all n 29

 $\frac{4}{T(n)} = \begin{cases} 1, & n=1 \\ 3T(n-1)+2, & n>1 \end{cases}$ such substitution approach

OT(n) = 3T(n-1) + 2T(n-1) = 3T(n-2) + 2

 $(3)T(n) = 3^{2}(3T(n-3)+2)+8 = 3T(n-3)+26 = 2(3+3+3)$ T(n-3) = 3T(n-4)+2 = 3(3+3+3) = 2(3+3+3) = 2(3+3+3) = 3(3

(k) $T(n) = 3^k T(n-k) + 3^k - 1$ Equess ext expression

Labore case: $n-k=1 = 3 \times (n-k) = T(1)$ Later $T(n) = 3^{n-1}T(1) + 3^{n-1} - 1 = 3^{n-1} + 3^{n-1} - 1 = 2 \cdot 3^{n-1} - 1 = T(n)$ Lachenk: T(1) = 1, T(3) = 5, T(3) = 17 5) 25n+5 is O(n) iff these exist an integer no and a real number c such that for all n≥no, 25n+5 Lc.n bive. In EN, JUEIR: Yn≥no, 25n+5 Lc.n

 $\frac{25n+5}{xn} = \frac{25n+5n}{x} = \frac{30n}{x} = cn = 0$

blet $n_0 = 1 \implies 25(1) + 5 = 30 = 30(1)$

: 25n+5 L cn for all n 21 where c=30

: 25 n + 5 is O(n)

6) $f(n) = (n+10)^{2.5} + n^2 + 1$ is $O(n^{2.5})$ iff there exist an integer n_0 and a real number c such that for all $n \ge n_0$, $f(n) \le c \cdot n^{2.5}$

 $(n+10)^{2.5} + n^2 + 1 \leq n + n + n = 3n^{2.5} = 2n^{2.5} = 2n^{2$

La let $n_0 = 20 = (20+10)^{2.5} + (20)^{2.5} + 1 = 5330 \times 5367 = 3(20)^{2.5}$

i (n+10) + n + 1 = un = for all n = 20 where u=3

in (n+10)2,5 + n2+1 is O(n2.5)

Feb. 12/17

7) (n+1) is not O(n) iff for any no and c, there exists an n > no such that (n+1) > c.n

$$\frac{\left(n+1\right)^{2}=n^{2}+2n+1>C\cdot n}{n^{2}+2n}=n+2>C$$

: if we choose n = c+2 => (n+1) = c+4c+4 > c+2c = c.n

in (n+1) is not O(n)

8) Announcement: "Some people have a blue fare" (=> at least, one person has a blue fo

Sifthere were only two people whole faces: Person A sees that Person B has a blue face For all A knows, B is the only one with a blue face. A also knows that, since they didn't see anybody else with a blue face, there are two possible cases:

OThere is one person w/ a blue face; person B

(2) There are two people of blue faces: Person A and Person B

Is B has the same thought process, with reversed roles. Therefore, nobody dies on the first night. The second day A sees that B is alive

1> see typed response on next page

Hilroy

- 8) Announcement = "Some people have a blue face" \Leftrightarrow At least one person has a blue face
 - if there had only been one person on the island with a blue face:
 - o day 1: Person A doesn't see anybody on the island with a blue face. There must be one person with a blue face, so they must be the one and only person with a blue face.
 - o night 1: person A dies
 - if there had been two people on the island with a blue face:
 - Day 1: Person A sees that Person B has a blue face, and nobody else. Since there is at least one person with a blue face, Person A knows that there are two cases: a) B is the one person with a blue face, or b) both A and B have blue faces. B undergoes the same logical process in reverse
 - Night 1: A and B do not know if they have a blue face. Nobody dies
 - Day 2: A sees that B is still alive. If B had not seen anybody else with a blue face on Day 1, then they would have died on Night 1. Therefore, A knows that case b) is true, and they have a blue face. B undergoes the same logical process
 - O Night 2: Person A and Person B die
 - if there had been k people on the island with a blue face:
 - by inductive reasoning:
 - one person with blue face => they would have died first night
 - two people with blue faces => they both would have died 2nd night
 - ..
 - k people with blue faces => they will all die the kth night
 - There are 10 people on the island with a blue face. They will each become certain of whether they have a blue face on the 10th day, because the 9 people they can see with blue faces will all be alive or all be dead. They all realize that they have blue faces on the 10th day, so they all die on the 10th night.