On how to prove that two sets are equal

On how to prove set equality

A = B means:

- (1) every ω in A is also in B (in notation, $A \subseteq B$), and
- (2) every ω in B is also in A (in notation, B \subseteq A).

To prove set equality it suffices to show that each set is a subset of the other.

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

First verify that $A \cup (B \cap C)$ is a subset of $(A \cup B) \cap (A \cup C)$.

- Suppose ω is in $A \cup (B \cap C)$.
- Then ω is in A or ω is in B \cap C.
 - If ω is in A then ω lies in both $A \cup B$ and $A \cup C$.
 - If ω is in B \cap C then ω lies in both B and C and, again, it must lie in both A \cup B and A \cup C.
- Then ω is in both $A \cup B$ and $A \cup C$.
- And hence ω is in $(A \cup B) \cap (A \cup C)$.

As every ω in $A \cup (B \cap C)$ is also in $(A \cup B) \cap (A \cup C)$, it follows that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

First verify that $A \cup (B \cap C)$ is a subset of $(A \cup B) \cap (A \cup C)$.

- Suppose ω is in $A \cup (B \cap C)$.
- Then ω is in A or ω is in B \cap C.
 - If ω is in A then ω lies in both $A \cup B$ and $A \cup C$.
 - If ω is in B ∩ C then ω lies in both B and C and, again, it must lie in both $A \cup B$ and $A \cup C$.
- Then ω is in both $A \cup B$ and $A \cup C$.
- And hence ω is in $(A \cup B) \cap (A \cup C)$.

As every ω in $A \cup (B \cap C)$ is also in $(A \cup B) \cap (A \cup C)$, it follows that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

Next verify that $(A \cup B) \cap (A \cup C)$ is a subset of $A \cup (B \cap C)$ by working the argument in reverse.

- Suppose ω is in $(A \cup B) \cap (A \cup C)$.
- Then ω is in both $A \cup B$ and $A \cup C$.
- Hence ω is in A or ω is in both B and C, that is to say, in B \cap C.
 - If ω is in A then ω certainly lies in A \cup (B \cap C).
 - If ω is in B ∩ C then, again, it must lie in A ∪ (B ∩ C).
- In either case it follows that ω is in $A \cup (B \cap C)$.

As every ω in $(A \cup B) \cap (A \cup C)$ is also in $A \cup (B \cap C)$, it follows that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

First verify that $A \cup (B \cap C)$ is a subset of $(A \cup B) \cap (A \cup C)$.

- Suppose ω is in $A \cup (B \cap C)$.
- Then ω is in A or ω is in B \cap C.
 - If ω is in A then ω lies in both $A \cup B$ and $A \cup C$.
 - If ω is in B ∩ C then ω lies in both B and C and, again, it must lie in both $A \cup B$ and $A \cup C$.
- Then ω is in both $A \cup B$ and $A \cup C$.
- And hence ω is in $(A \cup B) \cap (A \cup C)$.

As every ω in $A \cup (B \cap C)$ is also in $(A \cup B) \cap (A \cup C)$, it follows that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

Next verify that $(A \cup B) \cap (A \cup C)$ is a subset of $A \cup (B \cap C)$ by working the argument in reverse.

- Suppose ω is in $(A \cup B) \cap (A \cup C)$.
- Then ω is in both $A \cup B$ and $A \cup C$.
- Hence ω is in A or ω is in both B and C, that is to say, in B \cap C.
 - If ω is in A then ω certainly lies in A \cup (B \cap C).
 - − If ω is in B ∩ C then, again, it must lie in A \cup (B ∩ C).
- In either case it follows that ω is in $A \cup (B \cap C)$.

As every ω in $(A \cup B) \cap (A \cup C)$ is also in $A \cup (B \cap C)$, it follows that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.