

возможно, самый понятный канал по математике

Прямоугольный треугольник

Задачи к вебинару 29.09.2022

Задание 1

Найдите гипотенузу прямоугольного треугольника с острым уголом 15°, если известно, что высота треугольника, опущенная на гипотенузу, равна 1.

Задание 2

Через основание биссектрисы AD равнобедренного треугольника ABC с вершиной B проведен перпендикуляр к этой биссектрисе, пересекающий прямую AC в точке E. Найдите отрезок AE, если известно, что CD=4.

Задание 3

Медиана прямоугольного треугольника, проведенная к гипотенузе, разбивает его на два треугольника с периметрами 8 и 9. Найдите стороны треугольника.

Задание 4

Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу в отношении 1:3. Найдите острые углы треугольника.

Задание 5

Точка D — середина AB прямоугольного треугольника ABC. Окружность, вписанная в треугольник ACD, касается отрезка CD в его середине. Найдите острые углы треугольника ABC.

Задание 6

В прямоугольном треугольнике ABC из вершины прямого угла C проведены биссектриса CL и медиана CM. Найдите площадь треугольника ABC, если LM=a, CM=b.

Задание 7

Вне треугольного треугольника ABC на его катетах AC и BC построены квадраты ACDE и BCFG. Продолжение медианы CM треугольника ABC пересекает прямую DF в точке N. Найдите отрезок CN, если его катеты равны 1 и 4.

Задание 8

Диагональ равнобедренной трапеции перпендикулярна боковой стороне, а угол при основании трапеции равен 120°.

- а) Докажите, что одно из оснований трапеции вдвое больше другого.
- б) Найдите стороны трапеции, если ее диагональ равна $2\sqrt{3}$.

Задание 9

Точка E - середина гипотенузы ML прямоугольного треугольника с углом 30° при вершине A. Окружность, вписанная в треугольник KLE, касается катета KL в точке B. а) Докажите, что KE = AB.

б) В каком отношении точка касания большей из этих окружностей делит гипотенузу?

Задание 10

На катетах AC и BC прямоугольного треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M – середина гипотенузы AB, H – точка пересечения прямых CM и DK.

- а) Докажите, что $CM \perp DK$.
- б) Найдите MH, если катеты треугольника ABC равны 30 и 40.

Задание 11

Точка P – основание высоты BP равнобедренного треугольника ABC, опущенной на боковую сторону AC. Точки E и F середины основания BC и AB боковой стороны соответственно.

- а) Докажите, что в четырехугольник BEPF можно вписать окружность.
- б) Найдите ее радиус, если BC = 12 и AB = AC = 10.

Задание 12

Точка A расположена вне квадрата KLMN с центром O, причем треугольник KAN прямоугольный (угол $A = 90^{\circ}$) и AK = 2AN. Точка B – середина стороны KN.

- а) Докажите, что $BM\|AN$
- б) Прямая AO пересекает сторону ML квадрата в точке P. Найдите отношение LP:PM.

Домашнее задание

Основная часть

Задание 1

В трапеции ABCD с основаниями AD и BC известно, что $AB = BC = CD = \frac{1}{2}AD$.

- а) Докажите, что $AC \perp CD$.
- б) Найдите углы трапеции.

Задание 2

Точка M - середина гипотенузы AB прямоугольного треугольника ABC с углом 30° при вершине A. Окружность, вписанная в треугольник BMC, касается его сторон BC и BM в точках P и Q.

- а) Докажите, что $PQ \parallel CM$.
- б) Найдите PQ, если AB = 8.

Задание 3

На катетах KL и ML прямоугольного треугольника KLM вне треугольника построены квадраты ABKL и CDLM, LP - высота треугольника ADL.

- а) Докажите, что прямая PL проходит через середину E гипотенузы KM.
- б) Найдите EP, если катеты треугольника KLM равны 10 и 24.

Задание 4

Из вершины C тупого угла треугольника ABC проведена высота CH. Точку H соединили с серединами M и N сторон AC и BC.

- а) Докажите, что в четырехугольник CMHN можно вписать окружность.
- б) Найдите ее радиус, если сумма сторон AC и BC равна 20 и площадь треугольника ABC равна 24.

Задание 5

Точка E расположена вне квадрата ABCD с центром O, причем треугольник BEC прямоугольный (угол $E=90^\circ$) и неравнобедренный. Точка M - середина стороны BC. а) Докажите, что треугольник OME равнобедренный.

б) Прямая EO пересекает сторону AD квадрата в точке K. Найдите отношение AK:KD, если угол $CBE=30^{\circ}$.

Дополнительная часть

Задание 1

Гипотенуза прямоугольного треугольника равна 4. Найдите радиус описанной окружности.

Задание 2

Медиана, проведенная к гипотенузе прямоугольного треугольника, равна m и делит прямой угол в отношении 1:2. Найдите стороны треугольника.

Задание 3

В треугольнике ABC к стороне AC проведены высота BK и медиана MB, причем AM = BM. Найдите косинус угла KBM, если AB = 1, BC = 2.

Задание 4

Две стороны треугольника равны 6 и 5, площадь треугольника равна 9. Медиана, проведенная к его третьей стороне, больше ее половины.

- а) Докажите, что треугольник остроугольный.
- б) Найдите его наибольшую высоту.

Задание 5

Продолжения высот PP_1 и QQ_1 треугольника PQR с тупым углом при вершине R пересекаются в точке H. Точки A и B середины отрезков PQ и RH соответственно.

- а) Докажите, что $P_1Q_1 \perp AB$.
- б) Найдите диагонали четырехугольника AP_1BQ_1 , если PQ=10, RH=6 и AM=3BM, где M точка пересечения диагоналей.

Задание 6

Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M, причём $BB_1 \perp CC_1$.

- а) Докажите, что из отрезков A_1M , A_1B_1 и A_1C_1 можно построить треугольник.
- б) Найдите площадь этого треугольника, если $BB_1 = 18$ и $CC_1 = 9$.

Задание 7

Высота AH и медиана AM треугольника ABC делят угол BAC треугольника ABC на три равные части, причем точка H лежит между B и M. Из точки M опущен перпендикуляр MK на сторону AC.

- а) Докажите, что MK = BH.
- б) Найдите углы треугольника ABC.

Задание 8

Медианы AM и BN треугольника ABC перпендикулярны и пересекаются в точке P.

- а) Докажите, что CP = AB.
- б) Найдите площадь треугольника ABC, если AC = 3 и BC = 4.

Ответы

Задачи к вебинару

- 1. 1;
- 2. 8;
- 3. 3; 4; 5;
- 4. $30^{\circ}, 60^{\circ};$
- 5. $30^{\circ}, 60^{\circ};$
- 6. $\frac{b^2(b^2-a^2)}{a^2+b^2}$;
- 7. $\frac{4}{\sqrt{17}}$;
- 8. 2, 2, 2, 4;
- 9. 1 : 3, считая от точки L;
- 10. 49;
- 11. $\frac{24}{\sqrt{12}}$;
- $12. \ 1:2.$

Домашнее задание

Основная часть

- 1. 60° , 60° , 120° , 120° ;
- 2. 2;
- $3. \frac{289}{13};$
- 4. 1,2;
- 5. $\sqrt{3}:3$.

Дополнительная часть

- 1. 2;
- 2. $2m, m, m\sqrt{3};$
- 3. $\frac{4}{5}$;
- 4. $\frac{18}{\sqrt{13}}$;
- 5. $4\sqrt{2}$, $2\sqrt{7}$;
- 6. 27;
- 7. 30° , 60° , 90° ;
- 8. $\sqrt{11}$.