Statistiek

Powerpoint op toledo

Legende:

Definities: geel gekleurd

Oefeningen: blauw gekleurd

Introductie

Big Data: 1 of meer datasets die te groot zijn voor reguliere databasemanagementsystemen

Populatie: verzameling van eenheden die we bestuderen

Steekproef: deelverzameling van eenheden van de populatie

Kwantitatief: gegevens waarmee we kunnen rekenen en het zinvol is om met te rekenen

- Continu: alle waarden in een bepaald interval mogelijk
- Discreet: bepaald aantal waarden mogelijk

Kwalitatief: gegevens waarmee we niet kunnen rekenen of het niet zinvol is te rekenen

Oefening Kwalitatief - Kwantitatief:

- a) 2
- b) 1C
- -1 2
- ر دا
- e) 1D

- f) 2
- g) 2
- h) 1D
- i) 2
- j) In score: 1DZonder score: 2
- k) 2
- l) 1C

Opdracht:

- a) Mensen in een republiek.
- b) Kwalitatief
- c) 2000 Inwoners
- d) Neen, niet iedereen heeft een telefoon

Gemiddelde: alle waarden delen door de hoeveelheid waarden

Wanneer uiterste gegevens uitzonderlijk verschillen zal het gemiddelde beïnvloed worden!

Mediaan: middelste waarde van een reeks

Modus: Meest voorkomende waarde

Opdrachten:

- a) 40.85
- b) 40.85
- c) Geen
- A. 8.375, 8.5
- B. 8.25, 8
- C. 6.25, 5.5
- a. Gemiddelde: 7.8125 (alle gemiddelden maal de grootte van hun steekproef delen door de totale steekproef)
- b. Mediaan: Geen snelle manier, alle gegevens samen zetten en zien

Bereik: verschil tussen grootste en kleinste gegeven

Interkwartielafstand: gegevens in 4 gelijke groepen verdelen, lengte tussen eerste en derde kwartiel (Q1 en Q3)

Standaarddeviatie:

i	X_i	$X_i - \mu$
1	10	3
2	9	2
3	7	0
4	6	-1
5	6	-1
6	6	-1
7	5	-2
8	8	1
9	8	1
10	7	0
11	2	-5
12	10	3
13	5	-2
14	7	0
15	9	2

Deviaties: verschil tussen elke waarde en het gemiddelde Variantie: gemiddelde van kwadraten van de deviaties Standaarddeviatie σ: vierkantswortel van de variatie

Indien steekproef kleiner is als 30 (indien volledige populatie niet toepassen):

$$s^{2} = \frac{\sum (X_{i} - \overline{x})^{2}}{n - 1}$$
$$s = \sqrt{\frac{\sum (X_{i} - \overline{x})^{2}}{n - 1}}$$

Opdrachten:

- a) 49.6
- b) 49
- c) 50
- d) 31
- e) 76.93333
- f) 8.771165
- g) 6
- h) 37 45 49 51 68
- A. B, gegevens liggen verder uit elkaar
- B. Juist, want de standaardafwijking is altijd kleiner als het bereik
- 1. 12,13 11,14 10,15 12.5,12.5 etc.

Correlatie en Regressie

Correlatie: een maat voor de sterkte van een verband tussen twee grootheden

Gemiddelde van alle x-waarden is μ_x/μ_y

Correlatiecoëfficiënt R: Indien deze 1 or -1 is, is er volledige correlatie

$$R(x,y) = \frac{Cov(x,y)}{\sigma_x \cdot \sigma_y}$$

$$Cov(x,y) = \frac{\sum_{i=1}^{n} \left(x_i - \mu_x\right) \cdot \left(y_i - \mu_y\right)}{n}$$

Berekening zie opdracht 1 voor uitwerking:

- 1. Berekening gemiddeldes x- en y-waarden
- 2. Berekening deviaties x- en y-waarden
- 3. Berekening van de producten van de deviaties $(x_i \mu_x) (y_i \mu_y)$
- 4. Berekening gemiddelde van deze producten
- 5. Eindproduct delen door product standaardafwijkingen

Opdracht 1 en eigen voorbeeld om als uitleg: 0.935241

10	0	0	11	0.7	0.49		0
12	2	4	14	3.7	13.69		7.4
8	-2	4	9	-1.3	1.69		2.6
13	3	9	13	2.7	7.29		8.1
9	-1	1	9	-1.3	1.69		1.3
10	0	0	9	-1.3	1.69		0
7	-3	9	8	-2.3	5.29		6.9
14	4	16	14	3.7	13.69		14.8
11	1	1	10	-0.3	0.09		-0.3
6	-4	16	6	-4.3	18.49		17.2
10		60	10.3		64.1		5.8
		6	2.44949		6.41	2.531798	
						6.201613	0.935241
Waarden	Gem	Deviaties	kwadraat	Som	Variatie	Standaard	Deviatie
(xi - μx) (yi	- μγ)	Product σ	R(x,y)				

Opdracht 2: 0.7450994

Opdracht 3: 0.94

Regressielijn berekenen:

Voor de regressierechte y = ax + b door de punten $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ geldt:

$$a = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{s_{xy}}{s_x^2}$$

en
$$b = \overline{y} - a\overline{x}$$

Voorbeeld:

```
\begin{array}{l} \mu_x = (1+2+3+4+5) \ / \ 5 = 3.0 \\ \mu_y = (2+5+6+11+13) \ / \ 5 = 7.4 \\ S_{xx} = (1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 = 10.0 \\ S_{xy} = (2-7.4) \ (1-3) + (5-7.4) \ (2-3) + (6-7.4) \ (3-3) + (11-7.4) \ (4-3) + (13-7.4) \\ \text{De schattingen voor a en b worden dus:} \\ a = S_{xy} \ / \ S_{xx} = 28.0 \ / \ 10.0 = 2.8 \\ b = \mu_y - a \ . \ \mu_x = 7.4 - 2.8 \ ^* \ 3.0 = -1.0 \\ \text{De regressielijn wordt dus:} \\ y = 2.8x - 1.0 \end{array}
```

Regressiecoëfficiënt β = a

De regressielijn voorspeld ongeveer waar bepaalde punten zullen liggen

Opdracht 1:

- Y = 37.5704x + 5.495252
- 20.52341 mm²
- 0.678852 g

Opdracht 2: thuis doen