

قم هنسة الطيران و الفضاء كلية الهندسة جامعة القاهرة المبيزة –جمهورية مصر العربية

AER408 Aerospace Guidance & Control Systems

Task (3) Airplane Simulator Part II

Before you go, please note the following:

- You do not have to use the equations presented in this document, consult the reference you prefer, equations presented here are for illustration
- All angles are in radians through this course!!

Task statement:

a) "Write a code that calculates the (Aerodynamic & Thrust) (Forces & Moments) acting on an Airplane due to pilots input signals ($\delta_{aileron}$, δ_{rudder} , $\delta_{elevator}$, δ_{thrust}) knowing its stability & control derivatives at nominal flight condition"

Figure 1. Airframe Model

Consult the following document (NASA CR-2144 AIRCRAFT HANDLING QUALITIES DATA) as a reference for the Airplanes' parameters including the (Stability derivatives, Mass, Inertias) at the Reference Flight conditions. Each team will be informed by their corresponding Airplane and Flight condition

b) "Combine the (Airframe Model) code with the (RBD solver) you built in the previous task in order to build the complete (Airplane Non-linear Flight Simulator)". The idea is to use the (Pilots inputs) to calculate the Aerodynamic & Thrust (Forces &

Moments) acting on the airplane, and then use these calculated Forces & Moments to solve the (RBD) equations to calculate the new states of he airplane in the next time step, and repeat this procedure at each time step

Note: do not forget to add the (Gravitational Forces) to the (Aerodynamic & Thrust Forces) before using them in the (RBD solver)

Airframe Model + RBD = Non-linear Simulator

Notes & Hints

Note 1:

The following set of equations represents the **change** in the Aerodynamic & thrust forces & moments, and they are a set of Linear equations function of:

- The stability derivatives
- The perturbation change in the states and the control surfaces deflections from their values at the trim condition

$$\Delta X = \frac{\partial X}{\partial u} \Delta u + \frac{\partial X}{\partial w} \Delta w + \frac{\partial X}{\partial \delta_{\epsilon}} \Delta \delta_{\epsilon} + \frac{\partial X}{\partial \delta_{T}} \Delta \delta_{T}$$

$$\Delta Y = \frac{\partial Y}{\partial v} \Delta v + \frac{\partial Y}{\partial p} \Delta p + \frac{\partial Y}{\partial r} \Delta r + \frac{\partial Y}{\partial \delta_{r}} \Delta \delta_{r}$$

$$\Delta Z = \frac{\partial Z}{\partial u} \Delta u + \frac{\partial Z}{\partial w} \Delta w + \frac{\partial Z}{\partial \dot{w}} \Delta \dot{w} + \frac{\partial Z}{\partial q} \Delta q + \frac{\partial Z}{\partial \delta_{\epsilon}} \Delta \delta_{\epsilon} + \frac{\partial Z}{\partial \delta_{T}} \Delta \delta_{T}$$

$$\Delta L = \frac{\partial L}{\partial v} \Delta v + \frac{\partial L}{\partial p} \Delta p + \frac{\partial L}{\partial r} \Delta r + \frac{\partial L}{\partial \delta_{r}} \Delta \delta_{r} + \frac{\partial L}{\partial \delta_{a}} \Delta \delta_{a}$$

$$\Delta M = \frac{\partial M}{\partial u} \Delta u + \frac{\partial M}{\partial w} \Delta w + \frac{\partial M}{\partial \dot{w}} \Delta \dot{w} + \frac{\partial M}{\partial q} \Delta q + \frac{\partial M}{\partial \delta_{\epsilon}} \Delta \delta_{\epsilon} + \frac{\partial M}{\partial \delta_{T}} \Delta \delta_{T}$$

$$\Delta N = \frac{\partial N}{\partial v} \Delta v + \frac{\partial N}{\partial p} \Delta p + \frac{\partial N}{\partial r} \Delta r + \frac{\partial N}{\partial \delta_{r}} \Delta \delta_{r} + \frac{\partial N}{\partial \delta_{a}} \Delta \delta_{a}$$

Note: $\Delta X \Delta Y \Delta Z \Delta L \Delta M \Delta N$ are the <u>change</u> in the forces & moments, i.e. these are not the absolute values of the forces and moments. They should be added to the reference values at the trim condition $X_o, Y_o, Z_o, L_o, M_o, N_o$ to calculate the absolute values X, Y, Z, L, M, N

Similarly, Δu , Δv , Δw ,... are the <u>change</u> in the states values from their values at the reference condition Δu =u-u0, Δv =v-v0, Δw =w-w0,

- inputs and outputs of the (Airframe Model) are perturbations from the reference values
- inputs and outputs of the (RBD are absolute values

So that: "Values perturbation values resulting from the (Airframe Model) should be added to the reference values before passing them to the (RBD) and the absolute values resulting from the (RBD) should be converted to perturbation values by subtracting the reference values from them"

The total forces acting on an airplane are the (Aerodynamic & Thrust forces +Gravity forces)

$$X - mg \sin \theta = m(\dot{u}^E + qw^E - rv^E)$$

$$Y + mg \cos \theta \sin \phi = m(\dot{v}^E + ru^E - pw^E)$$

$$Z + mg \cos \theta \cos \phi = m(\dot{w}^E + pv^E - qu^E)$$

And initially at the reference flight condition the airplane is in an equilibrium state Equilibrium means: $\sum Forces = 0$ & $\sum Moments = 0$

Which means

$$\begin{split} X_0 - mg \sin\theta_0 &= 0 \ \rightarrow X_0 = mg \sin\theta_0 \\ Y_0 - mg \cos\theta_0 \sin\theta_0 &= 0 \ \rightarrow Y_0 = -mg \cos\theta_0 \sin\theta_0 \\ Z_0 - mg \cos\theta_0 \cos\theta_0 &= 0 \ \rightarrow Z_0 = -mg \cos\theta_0 \cos\theta_0 \\ & \therefore X = X_0 + \Delta X = \Delta X + mg \sin\theta_0 \\ Y = Y_0 + \Delta Y = \Delta Y - mg \cos\theta_0 \sin\theta_0 \\ Z = Z_0 + \Delta Z = \Delta Z - mg \cos\theta_0 \cos\theta_0 \end{split}$$

And the total force acting on the airplane (this value is the input which you will give to the RBD)

$$\begin{split} F_x &= X - mg \sin\theta = \Delta X + mg \sin\theta_0 - mg \sin\theta \\ F_y &= Y + mg \cos\theta \sin\phi = \Delta Y - mg \cos\theta_0 \sin\phi_0 + mg \cos\theta \sin\phi \\ F_z &= Z + mg \cos\theta \cos\phi = \Delta Z - mg \cos\theta_0 \cos\phi_0 + mg \cos\theta \sin\phi \end{split}$$

Where $(\theta o \& \Phi o)$ are the pith and roll angles at the reference condition, and $(\theta \& \Phi)$ are their values at any time instant

Note 2:

Consult "Dynamics of Flight, Bernard Etkin" pages 101-103 to review the concept of the **Body axes** of the airplane and its types (principle axes, stability axes, body axes). You should note that the <u>stability derivatives & Inertias of an airplane have different values and symbols according to the type of the body axes they are represented in.</u>

Very important: Study the symbols and definitions stated in (NASA CR-2144) **appendices A&B**, then use the tables of the derivatives represented in the (**Body axes**) to extract the derivatives according to your flight condition

LONGITUDINAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

F/C #	1	2	3	4	5	6	7	8	9	10
н	SL	SL	SL	SL	20 K	20 K	20 K	40 K	40 K	40 <
۲	.198	.249	-450	.65C	.500	.650	.800	.700	.800	.900
XU *	0209	0108	00499	00777	00247	00280	00643	.00187	00276	0200
ZU *	202	150	0807	126	0679	0832	0941	0696	0650	0424
MU ◆	.000117	.000181	-000146	000199	-000247	.885E-4	000222	.000259	.000193	6238-4
XW	.122	-106	.0743	.0345	.0782	.0482	.0253	.0263	.0389	.0159
ZW	512	613	736	963	433	539	624	292	317	401
MW	00177	00193	00262	00239	00170	00190	00153	00101	00105	00190
ZWD	.0334	.0338	•0297	.0293	.0157	-0156	.0144	.00704	.00556	.00614
ZÇ	-6.22	-7.58	-10.4	8.51	-6.39	-8.09	-9.99	-4.32	-5.16	-6.71
MMD	000246	000240	000221	000228	000125	000155	000212	905E-4	000116	000160
MQ	357	437	699	925	421	535	653	284	339	401
XDE	.959	.971	1.18	0.	2.02	1.15	0.	1.93	1.44	.781
ZDE	-6.42	-9.73	-21.8	-32.4	-16.9	-26.4	-32.7	~15.1	-17.9	-18.6
MDE	378	574	-1.40	-2.07	-1.09	-1.69	-2.09	970	-1.16	-1.22
AT DX	-570E-4	.570E-4	•50 5E-4	.5058-4	.505E-4	.505E-4	.505E-4	.505E-4	.505E-4	.505E-4
ZDTH	249E-5	249E-5	220E-5	220L-5	220E-5	220E-5	220E-5	220 E-5	220E-5	220E-5
PD TH	.310 E-6	.3108-6	- 30 2E-6	.302E-6	-302E-6	.302E-6	-302F-6	.302E-6	-302E-6	• 30 2E - 6

LATERAL-DIRECTIONAL DIMENSIONAL DERIVATIVES

(BODY AXIS SYSTEM)

			•		•	•		•		
F/C *	1	2	3	4	5	6	7	8	9	10
н	S L.	SL	\$L	S L	20 K	20 K	20 K	40 K	40 K	40 K
M	-158	.249	.450	+65C	.500	.650	.800	.700	.800	.900
YV	0890	0997	143	197	0822	104	120	0488	0558	0606
YB	-19.7	-27.8	-71.7	-143.	-42.6	-70.4	-99.4	-33.1	-43.2	-52.A
L8*	-1.33	-1.63	-3.19	-5.45	-2.05	-2.96	-4.12	-1.45	-3.05	-1.32
Ns *	.168	.247	-810	1.82	.419	.923	1.62	.404	.598	971
LP'	975	-1.10	-1.12	-1.47	652	804	974	404	465	459
144	166	125	0706	0214	0701	0531	0157	0366	0318	.00284
LR*	.327	.198	.379	.256	.376	.317	.292	.312	.388	.280
NR *	217	229	246	344	140	193	232	0963	115	141
Y+CA	0.	0.	0.	0.	0.	с.	0.	0.	0.	0.
L'CA	.227	.318	.229	.372	.128	.210	.310	.0964	.143	.186
Nº GA	.0264	.0300	.0285	.0371	.0177	.0199	.0127	.00875	.00775	00611
Y# CR	.0148	.0182	.0226	.0213	.0131	.0142	.0124	.00777	.00729	.00464
L'CR	.0636	-110	.254 .	.318	.148	.211	.183	.115	.153	.100
Nº CR	151	233	614	970	391	010	922	331	-,475	442

Note 3:

The <u>Lateral-Directional derivatives</u> given in the table are (**dashed**), these are not the values need to be used in the (forces & moments equations), check the **appendix B** in the report to find the relation between the (dashed & undashed derivatives) to calculate the (undashed ones)

Lβ	=	$(L_{\beta} + I_{xz}N_{\beta}/I_{x})G$	1/sec ²
$\mathbf{L}_{\mathbf{p}}^{\mathbf{t}}$	=	$(I_p + I_{xz}N_p/I_x)G$	1/sec
L,	=	$(L_r + I_{XZ}N_r/I_X)G$	1/sec
$\mathtt{L}_{\delta_{\mathbf{r}}^{ \boldsymbol{\iota}}}$	=	$(I_{\delta_r} + I_{xz}N_{\delta_r}/I_x)G$	1/sec ²
L _{Så}	=	$(I_{\delta_{\mathbf{a}}} + I_{\mathbf{x}\mathbf{z}}N_{\delta_{\mathbf{a}}}/I_{\mathbf{x}})G$	1/sec ²
Nβ	=	$(N_{\beta} + I_{xz}L_{\beta}/I_{z})G$	1/sec ²
$N_{\mathbf{p}}^{1}$	==	$(N_p + I_{xz}I_p/I_z)G$	1/sec
N_r^1	=	$(N_r + I_{XZ}L_r/I_Z)G$	1/sec
No;	=	$(N_{\delta_{\mathbf{r}}} + I_{xz}I_{\delta_{\mathbf{r}}}/I_{z})G$	1/sec ²
$\mathtt{N}_{\delta_{\mathbf{a}}^{ \mathtt{t}}}$	=	$(N_{\delta_a} + I_{xz}I_{\delta_a}/I_z)G$	1/sec ²
G	=	1 2	
		$\frac{1}{1 - \frac{I_{xz}^2}{I_x I_z}}$	

Note 4:

Please do not put the value of $\Theta_0 = 0$,as the pitch angle is the summation of the angle of attack and the climb angle or flight path angle

$$\theta = \alpha + \gamma$$
$$\therefore \theta_0 = \alpha_0 + \gamma_0$$

You will find the values of α_0 & γ_0 in the tables in NASA report in the flight condition table. Also, the initial values of the velocities (u_0, v_0, w_0) should be calculated from the value of the total speed along with the angle of attack and the side slip angle

In the excel sheet these values are calculated and provided to you ready to be used

F/C #

H(FT)

M(-)

VTO(FPS)

VTO(KTAS)

VTO(KCAS)

W(LBS)

C.G.(MGC)

IX (SLUG-FT SQ)

IX (SLUG-FT SQ)

IXZ(SLUG-FT SQ)

EPSILCN(DEG)

Q(PSF)

ALPHA (DEG)

GAMMA (DEG)

LXP(FT)

LZP(FT)

ITH(DEG)

XI (DEG)

LTH(FT)

Angle of Attack Q

Longitudinal Axis

Flight path angle

Flight Path Vector

Note 5:

For the sake of validation, you should test your simulator against the "Benchmark test" in which certain maneuvers of the (Boeing 747 / flight condition 5) are performed, you are asked to run your simulator with the same data and publish the results in the same way as presented in the Benchmark test document

The following lines of code will make the plotting for you, copy them in your code

```
figure
plot3(x,-y,-z);
title('Trajectory')

figure
subplot(4,3,1)
plot(time_V,u)
title('u (ft/sec)')
xlabel('time (sec)')

subplot(4,3,2)
plot(time_V,beta_deg)
title('\beta (deg)')
xlabel('time (sec)')
```

```
subplot(4,3,3)
plot(time_V,alpha_deg)
title('\alpha (deg)')
xlabel('time (sec)')
subplot(4,3,4)
plot(time V,p deg)
title('p (deg/sec)')
xlabel('time (sec)')
subplot(4,3,5)
plot(time_V,q_deg)
title('q (deg/sec)')
xlabel('time (sec)')
subplot(4,3,6)
plot(time V,r deg)
title('r (deg/sec)')
xlabel('time (sec)')
subplot(4,3,7)
plot(time_V,phi_deg)
title('\phi (deg)')
xlabel('time (sec)')
subplot(4,3,8)
plot(time V,theta deg)
title('\theta (deg)')
xlabel('time (sec)')
subplot(4,3,9)
plot(time V,psi deg)
title('\psi (deg)')
xlabel('time (sec)')
subplot (4,3,10)
plot(time_V,P(1,:))
title('x (ft)')
xlabel('time (sec)')
subplot(4,3,11)
plot(time V, P(2,:))
title('y (ft)')
xlabel('time (sec)')
subplot (4,3,12)
plot(time V, P(3,:))
title('z (ft)')
xlabel('time (sec)')
```