GIF-2000

ÉLECTRONIQUE POUR INGÉNIEURS INFORMATICIENS

EXAMEN PARTIEL

Le 1er mars 2018 De 14h30 à 16h20 Local PLT-2765

Document autorisé	- Une feuille format lettre (8.5 po. x 11 po.) manuscrite recto-verso
Remarques	- Écrivez proprement et lisiblement - La démarche de votre solution doit être clairement expliquée - Les tensions et les courants doivent être bien identifiés sur les schémas - Les courbes doivent être faites avec soins

Problème no. 1 (25 points)

a) Soit le circuit montré dans la figure suivante.

Déterminer les courants I_1 , I_2 et les tensions V_A , V_B en utilisant le modèle à V_F constante pour les diodes. (12 points)

b) Soit le circuit montré dans la figure suivante.

- En utilisant le modèle à V_F constante pour les LEDs, déterminer et tracer en fonction du temps la tension de sortie v_o. (7 points)
- **Déterminer** et **tracer** en fonction du temps les courants I_{D1} et I_{D2} dans les LEDs. (6 points)

Problème no. 2 (25 points)

Soit le circuit suivant.

Le signal v_s(t) est un train d'impulsions de fréquence 400 Hz et d'amplitude 5 V.

- a) **Déterminer** et **tracer** en fonction du temps le courant $i_B(t)$, le courant $i_C(t)$ et la tension $v_C(t)$. (10 points)
- b) **Déterminer** la valeur moyenne du courant i_C(t). (5 points)
- c) Une LED rouge C503B-RAS/RAN est connectée en parallèle avec le transistor T₁.

Déterminer et **tracer** en fonction du temps la tension $v_C(t)$, le courant $i_C(t)$ et le courant $i_D(t)$. (7 points) **Calculer** la valeur moyenne du courant $i_D(t)$ dans la LED rouge. (3 points)

Problème no. 3 (25 points)

Considérons l'amplificateur à MOSFET unique suivant.

- a) Faire l'analyse DC du montage pour déterminer le point de fonctionnement (I_D , V_{DS}) du MOSFET. (10 points)
- b) Calculer la transconductance g_m du MOSFET (à I_D = valeur DC calculée dans la question a) *(5 points)*
- c) À l'aide d'un circuit équivalent petit signal de l'amplificateur, **calculer** la résistance d'entrée R_{in} , la résistance de sortie R_o et le gain en tension (sans charge) $A_{vo} = \frac{v_o}{v_{in}}$ de l'amplificateur. (10 points)

Problème no. 4 (25 points)

a) Soit le circuit suivant.

- Le potentiomètre est ajusté à la position 40%. Calculer le gain en tension $A_v = \frac{V_o}{V_s}$ pour ce cas. (7 points)
- Tracer en fonction du temps le signal de sortie v_o(t) pour ce cas. (3 points)
- b) Soit le circuit suivant.

- **Déterminer** le taux de rétroaction β. (3 points)
- Calculer le gain en tension $A_v = \frac{v_o}{v_i}$, la résistance d'entrée R_i et la résistance de sortie R_o de l'amplificateur.

(9 points)

- **Déterminer** la largeur de bande de l'amplificateur. (3 points)