Лекции ИУ7. Методы Вычислений. Семестр 2

Власов П. А.*

30 мая 2016 г.

Содержание

1	Одномерная оптимизация					
	вные понятия одномерной оптимизации	2				
		1.1.1	Минимум функции	2		
		1.1.2	Унимодальные функции	3		
		1.1.3	Выпуклые функции	4		
		1.1.4	Липшицевы функции	5		
	1.2 Методы одномерной оптимизации					
		1.2.1	Классический метод	6		
		1.2.2	Методы перебора и поразрядного поиска	7		
		1.2.3	Методы исключения отрезков	9		
		1.2.4	Метод парабол	15		
		1.2.5	Метод бисекции и хорд	17		
		1.2.6	Метод Ньютона	21		
		1.2.7	Метод перебора	24		
		1.2.8	Метод ломаных	26		
2	Без	безусловная минимизация функций нескольких переменных				
	2.1	Основ	ные определения	30		
	2.2	Выпуклые функции				
	2.3	3 Квадратичные функции		35		
2.4 Общие принципы многомерной оптимизации		е принципы многомерной оптимизации	35			
3	3 Методы безусловной минимизации ФНП					
	3.1	3.1 Метод деформируемого симплекса		39		
		3.1.1	Метод правильного симплекса	40		
		3.1.2	Метод деформируемого симплекса	41		
	3.2 Метод покоординатного спуска		ц покоординатного спуска	41		
	3.3	Метод	ц Хука-Дживса	42		
		3.3.1	Алгоритм исследующего поиска	42		
		3.3.2	Алгоритм Хука-Дживса	43		

^{*}Законспектировано Абакумкиным А. В.

3.4	Метод случайного поиска		
	3.4.1	Случайный поиск с возвратом при неудачном шаге	. 44
	3.4.2	Случайный поиск с выбором наилучшей пробы	4.5

Основные понятия

Типовая задача оптимизации имеет следующий вид

$$\begin{cases} f(x) \to \min \\ x \in G \end{cases} \tag{1}$$

Замечание:

- 1. Если требуется задачу максимизации, то обычно вместо функции f(x) рассматривают функцию g(x) = -f(x) и решают задачу минимизации для G.
- 2. В прошлом семестре мы рассматривали задачу (1) для:
 - (a) случая, когда G конечно или счетно
 - (b) случая, когда f линейна, а G выпуклый многоугольник в пространстве \mathbb{R}^n . (B этом случае задачу (1) называют задачей исследования операций)
- 3. В этом семестре будем рассматривать задачу (1) для
 - (a) произвольной (не обязательно скалярной) функции f и
 - (b) для произвольного множества $G \subseteq \mathbb{R}^n$.

Используется следующая терминология:

Φ ункция f	Mножество G	Название задачи
$f:G\to\mathbb{R}$	$[a;b] \subset \mathbb{R}$	Задача одномерной оптимизации
$f:G\to\mathbb{R}$	$G = \mathbb{R}^n, n \geqslant 2$	Задача многомерной безусловной оптимизации
$f:G\to\mathbb{R}$	$G \subset \mathbb{R}^n, n \geqslant 2$	Задача многомерной условной оптимизации
$f:G\to\mathbb{R}^m, m\geqslant 2$	$G \subseteq \mathbb{R}^n$	Задача многокритериальной оптимизации

1. Одномерная оптимизация

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases} \tag{2}$$

1.1. Основные понятия одномерной оптимизации

1.1.1. Минимум функции

Пусть $f:G\to\mathbb{R}^n,G\subseteq\mathbb{R}$

Определение: Точка $x^* \in G$ называется точкой глобального минимума функции f на множестве $\forall x \in G \quad f\left(x^*\right) \leqslant f\left(x\right)$.

При этом число f^* называется $\mathit{минимум}$ (глобальным) функции f на G и обозначается $f^* = \min_{x \in G} f(x)$.

Замечание: Обозначим множество всех точек глобальных минимумов f на G, как

$$G^* = \left\{ x^* \in G : f\left(x^*\right) = \min_{x \in G} f\left(x\right) \right\}$$

<u>Определение:</u> Точка $\tilde{x} \in G$ называется *точкой локального минимума* функции на множестве G,

$$\exists \varepsilon > 0 \quad \forall x \in u_{\varepsilon}(\tilde{x}) \cap G \quad f(\tilde{x}) \leqslant f(x),$$

где
$$u_{\varepsilon}\left(\tilde{x}\right)=\left\{ x:\left|\tilde{x}-x\right|<\varepsilon\right\} .$$

Замечание:

- 1. Точка глобального минимума является точкой локального минимума. Обратное неверное.
- 2. Задача (2) имеет решение тогда и только тогда, когда $G^* \neq 0$
- 3. Согласно теореме Вейерштрасса, всякая функция, непрерывная на замкнутом ограниченном множестве, достигает на этом множестве своих inf и sup (которые являются в этом случае минимум и максимумом этой функции на этом множестве). Таким образом задача (2) всегда имеет решение в случае непрерывной функции f.

1.1.2. Унимодальные функции

Пусть $f:[a;b] \to \mathbb{R}$

Определение: f называется унимодальной на отрезке [a;b], если $\exists a_1,b_1 \in \mathbb{R}$:

- 1. $a \leqslant a_1 \leqslant b_1 \leqslant b$
- 2. Если $a < a_1$, то f монотонно убывает на $[a; a_1]$
- 3. Если $b_1 < b$, то f монотонно возрастает на $[b_1; b]$.
- 4. $\forall \tilde{x} \in [a_1; b_1]$ $f(\tilde{x}) = \min_{x \in G} f(x)$

Свойства унимодальных функций

- $1^{\rm o}$ Каждая точка локального минимума унимодальной функции является одновременно точкой её глобального минимума.
- **2º** Если f унимодально на [a;b], то f унимодально и на любом отрезке $[a_1,b_1]\subset [a;b]$.
- **3**° Пусть:
 - 1. f унимодальна на отрезке [a;b]
 - 2. $a \le x_1 < x_2 \le b$
 - 3. x^* точка минимума функции f.

Тогда

- 1. Если $f(x_1) \leqslant f(x_2)$, то $x^* \in [a; x_2]$
- 2. Если $f(x_1) > f(x_2)$, то $x^* \in [x_1; b]$

1.1.3. Выпуклые функции

Пусть $f:[a;b] \to \mathbb{R}$

Определение: Функция f называется ϵ ыпуклой, если

$$\forall \forall x_1, x_2 \in [a; b] \quad \forall \alpha \in [0; 1]$$

$$f(\alpha x_1 + (1 - \alpha) x_2) \le \alpha f(x_1) + (1 - \alpha) f(x_2)$$
 (3)

Замечание:

- 1. Неравенство (3) означает, что для любой хорды графика функции f(x), которая соединяет точки $(x_1, f(x_1))$ и $(x_2, f(x_2))$, график функции f(x) на отрезке, соединяющий x_1 и x_2 , лежит не выше этой хорды.
- 2. В классическом математическом анализе такие функции называются выпуклыми вниз. Функции, которые в классическом математическом анализе являются выпуклыми вверх, мы не будем считать выпуклыми (так как они не удовлетворяют нашему определению). Эта «дискриминация» связана с тем, что в дальнейшем будем рассматривать только задачу минимизации.

Свойства выпуклых функций

Через $C^{(k)}\left[a;b\right]$ будем обозначать функции, которые непрерывны на отрезке $\left[a;b\right]$ и имеют на $\left[a;b\right]$ непрерывные производные до порядка k включительно.

1° Пусть $f \in C^{(1)}[a;b]$

Тогда f выпукла тогда и только тогда, когда f'(x) не убывает на [a;b]

 $\mathbf{2}^{\mathbf{o}}$ Пусть $f \in C^{(2)}\left[a;b\right]$, тогда f выпукла на $\left[a;b\right] \Leftrightarrow f''\left(x\right) \geqslant 0, \quad x \in \left[a;b\right]$

3° Пусть $f \in C^{(3)}[a;b]$, тогда f выпукла $\Leftrightarrow \forall x_0 \in [a;b]$ касательная к графику функции f(x) в точке x_0 лежит не выше графика f(x).

4° Пусть

- 1. $f \in C^{(1)}[a;b]$
- 2. f выпукла на [a;b]
- 3. $f'(x^*) = 0$, $x^* \in [a; b]$

Тогда x^* — точка глобального минимума $f(x), x \in [a; b]$.

5°
$$C[a;b] = C^0[a;b]$$

Пусть

- 1. $f \in C[a; b]$
- $2. \, f$ выпукло на [a;b]

Тогда f унимодальна на [a;b]

Замечание:

- 1. Многие методы минимизации разработанны для унимодальных функций. При этом эти методы хорошо сходятся, если f выпукла.
- 2. На практике проверку выпуклости целевой функции осуществляют не с помощью использования определения, а с использованием свойств 1-3 или физических соображений.

1.1.4. Липшицевы функции

Пусть $f:[a;b] \to \mathbb{R}$

<u>Определение:</u> Говорят, что f удовлетворяет на отрезке [a;b] удовлетворяет условию Липшица (является липшицевой), если

$$\exists L \geqslant 0 \quad \forall \forall x_1, x_2 \in [a; b]$$

$$|f(x_1) - f(x_2)| \le L \cdot |x_1 - x_2|$$

При этом L называется константой Липшица для f на [a;b].

Замечание: Для дифференцируемой на [a;b] функции условие Липшица означает, что для любой точки $\tilde{x} \in [a;b]$ угловой коэффициент касательной к графику f(x) в этой точке по абсолютной величине не превосходит L.

$$\forall \tilde{x} \quad |\operatorname{tg}\alpha\left(\tilde{x}\right)| \leqslant L$$

Свойства липшицевых функции

- ${f 1}^{f o}$ Если f удовлетворяет условию Липшеца с констанотой L, то f удовлетворяет условию и с любой константой $L_1>L.$
- 2° Если f липшицева на [a;b], то f является липшицевой и на любом отрезке $[a_1,b_1]\subseteq [a,b]$.
- **3°** Если $f \in C^{(1)}[a;b]$, то
 - 1. f липшицева на [a; b]
 - 2. константа Липшица для f на [a;b] может быть выбрана

$$L = \max_{x \in [a,b]} |f'(x)|.$$

$4^{\rm o}$ Пусть

- 1. $x_0 < x_1 < \cdots < x_n$
- 2. f является липшицевой на $[x_{i-1}, x_i]$ с константой L_i , $i = \overline{1; n}$.

Тогда f является липшицвой на $[x_0; x_n]$ с константой

$$L = \max_{i=\overline{1:n}} L_i.$$

 5° Если f липшицева на [a;b], то она непрерывна на [a;b].

Пример:

- 1. $f(x) = \sin x$ является липшицевой на любом отрезке [a;b], так как она непрерывно дифференцируема на [a;b]
- 2. $f(x) = \sqrt{x}$ не является липшицевой на [0;a], a>0. Если бы f была липшицевой, то угловые коэффициенты касательных к графику были бы ограничены некоторой константой. Для \sqrt{x} на [0;a] это не так.

1.2. Методы одномерной оптимизации

1.2.1. Классический метод

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

Из курса математического анализа известно:

- 1. Если
 - (a) f(x) дифференцируемая в точке x^* ,
 - (b) f(x) имеет локальный экстремум в точке x^* ,

то
$$f'(x) = 0$$

- 2. Если
 - (a) f(x) дифференцируемая в окрестности x^* ,
 - (b) $f'(x^*) = 0$,

то

- (a) Если f(x)при переходе через x^* меняет знак с «-» на «+», то x^* точка локального минимума
- (b) Если f(x)при переходе через x^* меняет знак с «+» на «-», то x^* точка локального
- 3. Если
 - (a) f(x) n раз дифференцируемая в точке x^* ,
 - (b) $f'(x) = f^{(n-1)}(x^*) = 0$,
 - (c) $f^{(n)}(x^*) \neq 0$,

то

- (a) если n нечетно, то f(x) не имеет локального экстремума в точке x^* ,
- (b) если n четно, а $f^{(n)}(x^*) > 0$, то x^* точка локального минимума,
- (c) если n четно и $f^{(n)}(x^*) < 0$, то x^* точка локального максимума.

Классический метод

1. Вычисляем $f'(x), x \in (a; b)$, решаем уравнение

$$f'(x) = 0 (4)$$

Пусть x_1, \ldots, x_n — его решения

- 2. Для каждой точки x_k , $k = \overline{1,n}$ проверяем условие 2 или 3 и отбираем точки $\tilde{x}_1, \dots, \tilde{x}_p$, которые отвечают условию локального минимума.
- 3. Полагаем

$$f^* = \min \left\{ f\left(\tilde{x}_1\right), \dots f\left(\tilde{x}_p\right), f\left(a\right), f\left(b\right) \right\}$$

Замечание: На практике для применения этого метода затруднительно по следующим причинам

- 1. Для практически интересных(?) функций аналитическое решение (4) часто затруднительно
- 2. Функция может быть известна из наблюдений, что ведет к тому, что невозможно получить аналитическое представление для f'(x)
- 3. Проверка достижимости условий затруднительна

Эти трудности привели к появлению численных методов.

Их делят

- 1. Прямые методы
 - методы перебора и поразрядного поиска
 - методы исключения отрезков
 - метод парабол
- 2. Методы использующие производные целевой функции
 - метод бисекций
 - метод хорд и Ньютона

1 и 2 используются для унимодальных функций

- 3. Для минимизации многомодальных функций:
 - метод перебора
 - метод ломаных

Замечание: *Прямыми* называются методы, которы используют только значения целевой функции и не используют значения её производных.

1.2.2. Методы перебора и поразрядного поиска

Всегда предполагаем, что функция является унимодальной

I метод перебора

- 1. Разобьем [a,b] системой точек $x_i=a+i\Delta,\,i=\overline{0,n},$ где $\Delta=\frac{b-a}{n}$
- 2. Затем вычислим $f(x_i)$, где $i = \overline{0, n}$
- 3. Выбираем точки $x_m, m \in \{0, \dots, n\}$ так, чтобы $f(x_m) = \min_{i=\overline{0,n}} f(x_i)$. Положим $x^* = x_m, f^* = f(x_m)$

Замечание:

1. Погрешность нахождения x^* с использованием этого метода

$$\varepsilon_n \leqslant \frac{b-a}{n}$$

2. Если принять $n\gg 1$, то $\frac{1}{n}\approx \frac{1}{n+1}$ поэтому точность $\varepsilon(N)$, которую обеспечивает этот метод для N кратного вычисления(?) целевой функции

$$\varepsilon(N) \approx \frac{b-a}{N}$$

II метод поразрядного поиска

Этот метод является усовершенствованием метода перебора с целью уменьшения количества значений целевой функции f, которое необходимо найти для достижения заданной точности.

Замечание:

1. Если в методе перебора $f\left(x_{i+1}\right)\geqslant f\left(x_{i}\right)$, то $x^{*}\in\left[a,x_{i+1}\right]$ и следовательно $f\left(x_{i+2}\right),f\left(x_{i+3}\right),\dots$ можно не вычислять.

Пример:

2. Целесообразно сперва найти приближенное (грубо) значение x^* , а затем уточнить это значение, используя более точный шаг.

Пусть ε — требуемая точность нахождения x^* (глобальный минимум). При реализации, обычно, сперва фиксируют $\Delta > \varepsilon$, вычисляют $f_i = f(x_i)$, $x_i = a + i\Delta$, до тех пор,пока не будет выполнено условие $f_{i+1} \geqslant f_i$.

При выполнении этого условия шаг Δ уменьшается (как правило в четыре раза, а процесс поиска запускается в обратную сторону).

Пусть ε — искомая точность.

Метод поразрядного поиска

1.2.3. Методы исключения отрезков

Один из подходов к построению основан на использовании следующих свойств. Если $x_1 < x_2$, то

1. Если $f(x_1) \leqslant f(x_2)$, то $x^* \in [a, x_2]$

2. Если $f(x_1) > f(x_2)$, то $x^* \in [x_1, b]$

При построении соответствующих методов выбираем две произвольные точки x_1, x_2 :

$$a < x_1 < x_2 < b$$

Далее проверяем условия 1-2 и по результатам этой проверки отбрасываем часть отрезка [a,b].

Вычисления продолжаются до тех пор, пока длина текущего отрезка не станет меньше ε .

Пробные точки x_1, x_2 выбирают обычно симметричными от середины отрезка. Это делается для того, чтобы отношение длины нового отрезка к длине предыдущего не зависело от того, кака часть (правая или левая) отбрасывается.

Способ выбора пробных точек x_1 и x_2 определяет конкретный метод поиска минимума.

I Метод дихотомии

Выбираем достаточно малое $\delta > 0$ и положим $x_1 = \frac{a+b}{2} - \frac{\delta}{2}, x_2 = \frac{a+b}{2} + \frac{\delta}{2}$.

В этом случае отношение длины нового отрезка к длине предыдущего:

$$\tau = \frac{b - x_1}{b - a} = \frac{x_1 - a}{b - a} \approx \frac{1}{2}$$

Вычисления прекращаются, когда для очередного отрезка его длина

$$b - a < 2\varepsilon \tag{5}$$

Использование ослабленного неравенства (5) связано с тем, что в алгоритме принимается $x^* = \frac{a+b}{2}$

Замечание:

1. О выборе δ :

- (a) Чем меньше δ , тем метод лучше сходится
- (b) При слишком малых значениях δ значения $f(x_1) \approx f(x_2)$, если эти значения содержат ошибки измерений или вычислений, то возможно выполнение «не того» неравенства.

2. Число n итераций метода дихотомии необходимое для достижения заданной точности ε , определяется условием

$$n \geqslant \log_2 \frac{b - a - \delta}{2\varepsilon - \delta}$$

Доказательство

Пусть $\Delta_0 = b - a$ — длина искомого отрезка. Тогда длина искомого отрезка после первой итерации метода:

$$\Delta_1 = \frac{\Delta_0}{r} + \frac{\delta}{2}$$

Длина отрезка после второй итерации:

$$\Delta_2 = \frac{\Delta_1}{2} + \frac{\delta}{2} = \frac{\Delta_0}{4} + \delta \left(\frac{1}{2} + \frac{1}{4}\right)$$

Длина отрезка после третей итерации:

$$\Delta_3 = \frac{\Delta_2}{2} + \frac{\delta}{2} = \frac{\Delta_0}{8} + \delta \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right)$$

. . .

После n итераций:

$$\Delta_n = \frac{\Delta_0}{2^n} + \delta\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}\right) = \frac{\Delta_0}{2^n} + \delta\left(1 - \frac{1}{2^n}\right)$$

Уловие окончания: $\Delta_n \leqslant 2\varepsilon$

Тогда

$$\frac{b-a-\delta}{2^n} + \delta \leqslant 2\varepsilon$$

$$\frac{b-a-\delta}{2^n} \leqslant 2\varepsilon - \delta$$

$$2^n \geqslant \frac{b-a-\delta}{2\varepsilon - \delta}$$

$$n \geqslant \log_2 \frac{b-a-\delta}{2\varepsilon - \delta}$$

3. Так как δ обычно выбирают достаточно малым, то точность ε_n , которая обеспечивается после выполнения n итераций алгоритма,

$$n \approx \log_2 \frac{b - a - \delta}{2\varepsilon_n} \Rightarrow \varepsilon_n \approx \frac{b - a}{2^{n+1}}$$

Поскольку для выполнения n итераций алгоритма требуется N=2n вычислений значений целевой функции f, то точность $\varepsilon(N)$, которая будет гарантированно после N вычислений значений функции

$$\varepsilon(N) = \varepsilon_{\frac{N}{2}} = \frac{b-a}{2^{N/2+1}}$$

II Метод золотого сечения

Для уменьшения количества значений целевой функции, которые приходится вычислять в ходе реализации алгоритма постараемся выбрать пробные точки x_1 и x_2 внутри отрезка [a;b] так, чтобы при переходе к очередному отрезку одна из этих точек стала новой пробной точкой.

При этом будем считать, что отношение длины нового отрезка к длине текущего отрезка не зависит от номера итерации и равно τ . Так же будем считать, что x_1 и x_2 располагаются симметрично относительно середины отрезка [a;b].

$$\tau = \frac{b' - a'}{b - a}$$

1.

$$x_2 = a + \tau (b - a)$$
$$x_1 = b - \tau (b - a)$$

2. Отношение длины отрезка $[a', x_2']$ к длине отрезка [a', b'] должны быть равны τ :

Дл
$$([a', x'_2]) =$$
 Дл $([a; x_1]) = x_1 - a = b - a - \tau (b - a)$

$$Д\pi([a',b']) = Д\pi([a,x_2]) = x_2 - a = \tau(b-a)$$

Таким образом

$$\frac{b-a-\tau\,(b-a)}{\tau\,(b-a)} = \tau \Rightarrow \frac{1-\tau}{\tau} = \tau \Rightarrow \tau^2 + \tau - 1 = 0$$
$$\tau = \frac{-1+\sqrt{1+4}}{2} = \frac{\sqrt{5}+1}{2} \approx 0.6183$$

отрицательное решение не рассматриваем.

Таким образом

$$\tau = 0.6183$$

$$x_1 = b - \tau (b - a)$$

$$x_2 = a + \tau (b - a)$$

Замечание:

1. Каждая из точек x_1 и x_2 , используемых в рассматриваемом методе, делит отрезок [a;b] на неравные части так, что

длина отрезка
$$[a;b]$$
 длина большей части отрезка $[a;b]$ длина большей части отрезка $[a;b]$ длина меньшей части отрезка $[a;b]$

Про такие точки говорят, что они реализуют золотое сечение отрезка [a;b].

2. На каждой итерации длина отрезка уменьшается в $\tau = \frac{\sqrt{5}-1}{2}$ раз. Поэтому после n итераций длина соответствующего отрезка равна

$$\frac{1}{2}\tau^n \left(b-a\right)$$

так как в конце берем $x^* = \frac{a+b}{2}$

3. Число n итераций, необходимых для достижения заданной точности ε , составляет

$$\frac{1}{2}\tau^{n} (b-a) \leqslant \varepsilon \Rightarrow \tau^{n} \leqslant \frac{2\varepsilon}{b-a} \Rightarrow$$

$$n \geqslant \log_{\tau} \frac{2\varepsilon}{b-a} = \frac{\ln \frac{2\varepsilon}{b-a}}{\ln \tau} \approx -2.1 \cdot \ln \frac{2\varepsilon}{b-a} = 2.1 \ln \frac{b-a}{2\varepsilon}$$

4. Для выполнения первой итерации необходимо вычисление двух значений целевой функции f. Для выполнения второй, третей, . . . итераций необходимо вычисление одного значения функции. Поэтому для выполнения n итераций необходимо вычислить N+1 значений функции. Поэтому

$$\varepsilon(N) = \varepsilon_n \Big|_{n=N-1} = \frac{1}{2} \tau^{N-1} (b-a) \approx \tau^{N-2} (b-a)$$

1.2.4. Метод парабол

Метод парабол является представителем группы методов, основанных на аппроксимации целевой функции некоторой более простой функцией (как правило полиномом), минимум которой можно легко найти. Точка минимума этой аппроксимируещей функции и принимается за очередное приближение точки минимума целевой функции.

Пусть

- 1. f унимодальна на [a; b]
- 2. f достигает минимума во внутренней точке отрезка [a;b]

Выберем три точки $x_1, x_2, x_3 \in [a; b)$, так чтобы (*):

- 1. $x_1 < x_2 < x_3$
- 2. $f(x_1) \geqslant f(x_2) \leqslant f(x_3)$ принимает по крайне мере одно неравенство строгое

Тогда в силу унимодальности функции f точка минимума $x^* \in [x_1, x_3]$.

Аппроксимируем целевую функцию параболой, проходящей через точки (x_1, f_1) , (x_2, f_2) , (x_3, f_3) , где $f_i = f(x_i)$, $i = \overline{1;3}$.

В силу условий (*) ветви параболы направленны вверх. Это значит, что точка \overline{x} минимума этой параболы также принадлежит отрезку $[x_1, x_3]$.

Точка \overline{x} принимается за очередное приближение точки x^* .

Пусть $q(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$ — уравнение параболы.

Можно показать, что условия $q\left(x_{i}\right)=f_{i},\,i=\overline{1;3},$ приводят к (**):

$$a_0 = f_1$$

$$a_1 = \frac{f_2 - f_1}{x_2 - x_1}$$

$$a_2 = \frac{1}{x_3 - x_2} \left[\frac{f_3 - f_1}{x_3 - x_1} - \frac{f_2 - f_1}{x_2 - x_1} \right]$$

$$\overline{x} = \frac{1}{2} \left[x_1 + x_2 - \frac{a_1}{a_2} \right]$$

Метод парабол

Замечание:

1. В качестве критерия окончания вычислений используется условие $|\overline{x}-\overline{x}'|<\varepsilon$, означающее близость друг к другу двух последовательных приближений точки x^* . Вообще говоря, выполнение этого условия не гарантирует близость этих точек к x^* . Однако на практике такое условие удовлетворительно работает. Дополнительно точность текущего приближения можно оценивать (если получится) с использованием длины отрезка $[x_1, x_3]$.

- 2. О выборе точек x_1, x_2, x_3
 - (a) На первой итерации для выбора точек x_1, x_2, x_3 обычно достаточно использование нескольких пробных точек. Если это не получается за разумное время, можно выполнить несколько итераций метода золотого сечения до тех пор, пока пробные точки этого метода и одна из граничных точек текущего отрезка не будут удовлетворять условиям (*).
 - (b) На второй и последующих итерациях на отрезке $[x_1, x_3]$ рассматриваются две пробные точки x_2 и \overline{x} , для которых используется метод исключения отрезков. В новом отрезке $[x_1', x_3']$ в качестве x_2' выбирается та точка из x_2 и \overline{x} , которая оказалась внутри.
- 3. На каждой итерации метода парабол, кроме первой, вычисляется только одно значение целевой функции: \overline{f} .

1.2.5. Метод бисекции и хорд

Согласно сформулированным в п. 1 свойствам для дифференцируемой выпуклой (а значит и унимодальной) функции f условие:

$$f'(x) = 0$$

является не только необходимым, но и достаточным условием точки минимума.

Метод бисекции поиска минимума функции f(x)

Является методом решения уравнения $f'\left(x\right)=0.$

Замечание: Метод бисекции решения уравнения $g\left(x\right)=0$

Пусть

1. g(x) имеет единственный корень на [a;b]

2.
$$g(a)g(b) < 0$$

В качестве очередного приближения корня x^* в методе бисекции принимают значение

$$\overline{x} = \frac{a+b}{2}$$

Далее:

если
$$g(\overline{x}) g(a) < 0 \Rightarrow b := \overline{x};$$

если
$$g\left(\overline{x}\right)g\left(a\right) > 0 \Rightarrow a := \overline{x}.$$

Вычисления останавливают, когда

$$|b-a| < 2\varepsilon$$

и полагают

$$x^* = \frac{x+b}{2}$$

Конец замечания

Метод бисекции решения задачи

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

< !!! БЛОК СХЕМА>

Замечание:

1. Так как мы используем метод бисекции для минимизации именно выпуклой функции, то

$$\begin{cases} f'(a) < 0 \\ f'(b) > 0 \end{cases}$$

2. На каждой итерации отрезок уменьшается вдвое, следовательно после n итераций будет достигнута точность

$$\varepsilon_n = \frac{b-a}{2^{n+1}}$$

Для достижения заданной точности ε необходимо сделать определенное число шагов, которое можно посчитать заранее:

$$n \geqslant \log_2 \frac{(b-a)}{\varepsilon} - 1$$

Метод хорд

Метод хорд решения задачи минимизации

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

является методом хорд решения уравнения f'(x) = 0

Замечание: Метод хорд решения уравнения g(x) = 0.

В методе хорд предполагается, что

1. g(x) имеет единственный корень на [a;b],

2.
$$g(a)g(b) < 0$$
.

В качестве очередного приближения \overline{x} корня x^* используется точка пересечения с осью Ox хорды, соединяющей точки (a, g(a)), (b, g(b)).

В качестве условия окончания вычислений используется

либо $|\overline{x}-\overline{x}'|\leqslant \varepsilon$, где \overline{x}' — приближение x^* с предыдущей итерации

либо $|g\left(\overline{x}\right)| < \varepsilon$

Получим расчетное соотношение метода хорд.

$$\begin{pmatrix} a,g\left(a\right) \end{pmatrix} \\ (b,g\left(b\right))$$

Уравнение хорды:

$$\frac{x-a}{b-a} = \frac{y-g\left(a\right)}{g\left(b\right)-g\left(a\right)}$$

Пересечение с Ox:

$$y = 0$$

$$x = \frac{b - a}{g(b) - g(a)} \cdot (-g(a)) + a$$

Метод хорд

Решение задачи

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

< !!! БЛОК СХЕМА>

<u>Замечание:</u> На каждой итерации, кроме первой, необходимо вычислять только одно значение функции $f'(\overline{x})$.

1.2.6. Метод Ньютона

Пусть

1.
$$f \in C^2[a;b]$$

2.
$$f''(x) > 0$$

Из условия 2 вытекает, что f выпукла на [a;b]. Совместно с условием 1 это значит, что f унимодальна.

Метод Ньютона поиска минимума функции f(x) является метод касательных (Ньютона) решения уравнения f'(x) = 0.

Замечание: Метод касательных решения g(x) = 0.

Пусть g'(x)имеет постоянный знак на [a;b],

В качестве очередного приближения неизвестного корня x^* используется точка \overline{x} пересечения касательной к графику функции g(x) в точке \overline{x}' , где x' — текущее приближение известного корня.

Условием окончания итераций служит:

либо
$$|\overline{x}' - \overline{x}| \leqslant \varepsilon$$
,

либо
$$|g(\overline{x})| \leqslant \varepsilon$$
.

Замечание: Метод Ньютона обладает высокой точностью и скоростью сходимости, только в том случае, когда начальное приближение x_0 достаточно близкого x^* . В случае неудачного выбора x_0 метод может расходится. Как правило, чем больше значения функции g'(x) в окрестности x^* , тем лучше сходится метод.

Расчетное соотношения метода Ньютона:

1. Уравнение касательной в точке точке \overline{x}' :

$$y = g'(\overline{x}') \cdot (x - \overline{x}) + g(\overline{x}')$$

2. Пересечение с Ox

 $\underline{\text{Замечание:}}$ Иногда, когда вычисление g'(x) очень трудоемко, используют модификацию метода Ньютона, которая называется «Методом одной касательной».

В качестве очередного приближения \overline{x} неизвестного корня x^* используют точку пересечения Ox прямой, проходящей через точку $(\overline{x}', g(\overline{x}'))$, где \overline{x}' — текущее приближение, параллельное касательной к графику g(x) в точке x_0, x_0 — начальное приближение.

Метод Ньютона решения задачи

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

Замечание:

1. Формулу $x_{k+1} := x_k - \frac{f'(x_k)}{f''(x_k)}$, с помощью которой вычисляется очередное приближение точки x^* , так же можно получить из следующих соображений. Рассмотрим квадратный трехчлен.

$$q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

Точка минимума трехчлена q(x):

$$\overline{x} = x_k + " - \frac{b}{2a}" = x_k + \frac{-f'(x_k)}{2 \cdot \frac{1}{2} \cdot f''(x_k)} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Так как функция f выпукла и дважды дифференцируемая то её график в окрестности точки x_k «похожа» на параболу и, следовательно, парабола хорошо аппроксимирует f. Поэтому точка x_{k+1} миндимиума функции q(x) близка к точке x^* функции f(x), если x_k выбрана удачно.

2. Можно показать, что погрешность k-ой итерации метода Ньютона

$$|x_{k+1} - x^*| \leqslant C \cdot q^{2^k},$$

где $C>0,\ q\in (0;1),$ но только в случае, если начальные x_0 выбраны удачно. Константы $C,\ q$ зависят от f и от выбора $x_0.$

3. Если метод Ньютона расходится, то можно выполнить несколько некоторых итераций какогонибудь другого метода, например метода золотого сечения.

1.2.7. Метод перебора

Метод был описан выше. Отрезок [a;b] разбивается на n равных частей n+1 точками:

$$\begin{array}{rcl} x_i & = & a+i\Delta; & & i=\overline{0;n} \\ \Delta & = & \dfrac{b-a}{n} \end{array}$$

В качестве точки x^* принимается точка x_m , для которой

$$f\left(x_{m}\right) = \min_{i=\overline{0:n}} \left\{f\left(x_{i}\right)\right\}$$

Ранее была доказана сходимость этого метода для унимодальных на [a;b] функций.

Оказывается этот метод сходится и для многомодальных функций, если дополнительно потребовать липшецевость целевой функции.

Теорема: Пусть

1. Функция f удовлетворяет на отрезке [a;b] условию Липшица с константой L

2. $x^* := x_m$ — точка минимума, найденная методом перебора

3.
$$f^* := f(x^*)$$

Тогда

$$\delta_n \leqslant L \cdot \frac{b-a}{2n},$$

где n — число отрезков разбиения $[a;b], \, \delta_n = |f^* - f^*_{\text{точн}}|.$

- 1. Так как f непрерывна на отрезке [a;b], то f достигает на [a;b] своей точки минимума (?), тогда $\exists \min_{x \in [a;b]} f(x) = f^*_{\text{точн}}$
- 2. Пусть x^* точка глобального минимума f(x) на [a;b]

Очевидно, что среди точек $x_i, i = \overline{0;n}$, найдется точка x_k такая, что

$$|x_k - x^*_{\text{точн}}| \leqslant \frac{\Delta}{2} = \frac{b-a}{2n}$$

Тогда

$$0 \leqslant f\left(x_{m}\right) - f_{\text{точн}}^{*} \leqslant f\left(x_{k}\right) - f_{\text{точн}}^{*} \leqslant L \cdot |x_{k} - x_{\text{точн}}^{*}| \leqslant L \cdot \frac{b - a}{2n}$$

Ввиду того, что $f(x_k) \geqslant f(x_m)$

_

Замечание:

1. Из доказанной теоремы вытекает, что вычисления n значений целевой функции гарантирует точность

$$\delta(N) \leqslant L \cdot \frac{(b-a)}{2(N-1)}$$

2. Для обеспечения заданной точности δ необходимо вычислить

$$N\geqslant\frac{L\left(b-a\right)}{2\delta}+1$$

3. Может получится так, что значение f^* найдено с заданной точностью $\delta,$ но точка минимума $x^* = x_m$ далека от $x^*_{\text{точн}}$

1.2.8. Метод ломаных

Метод ломаных также является прямым методом минимизации многомодальных функций. Пусть

- 1. f удовлетворяет на [a;b] условию Липшеца с константой L
- 2. $\overline{x} \in [a; b]$
- 3. Введем в рассмотрение вспомогательную функцию

$$g(\overline{x}, x) = f(\overline{x}) - L|x - \overline{x}|$$

 $\overline{x} = const$
 $x = var$

 $\underline{\text{Замечание:}}$ График $g\left(\overline{x},x\right)$ располагается ниже графика $f\left(x\right)$ так как L — константа Липшеца для f.

Идея метода ломаных заключается в аппроксимации целевой функции f кусочно-линейной функцией, звенья которой имеют угловые коэффициенты $\pm L$. В качестве минимального значения функции f принимается минимальное значение функции, графиком которой является эта ломанная.

<u>Обозначим:</u> $p_k\left(x\right),\,k=0,1,2,\ldots$ кусочно-линейная функция, построенная на k-ой итерации.

#0 Рассмотрим прямые

$$y = f(a) - L(x - a)$$

$$y = f(b) - L(x - b)$$

Эти прямые пересекаются в точке с координатами

$$x_0 = \frac{1}{2L} [f(a) - f(b) + L(a+b)]$$

 $y_0 = \frac{1}{2} [f(a) - f(b) + L(a-b)]$

Примем

$$p_{0}\left(x\right) = \begin{cases} f\left(a\right) - L\left(x - a\right), & a \leqslant x \leqslant x_{0} \\ f\left(b\right) + L\left(x - b\right), & x_{0} \leqslant x \leqslant b \end{cases}$$

#1 Построим $p_1(x)$.

Функция $p_0\left(x\right)$ имеет единственную точку глобального минимума $x_0^*=x_0$. Положим

$$p_1(x) = \max \{p_0(x), g(x_0^*, x)\}\$$

 $p_{1}\left(x\right)$ в отличие от $p_{0}\left(x\right)$ вместо одной точки x_{0}^{*} глобального минимума имеет две точки x_{1}^{\prime} и $x_{1}^{\prime\prime}$ локального минимума.

Прим этом

$$x'_{1} = x_{0}^{*} - \Delta_{1}$$

$$x''_{1} = x_{0}^{*} + \Delta_{1}$$

$$\Delta_{1} = \frac{1}{2L} [f(x_{0}^{*}) - p_{0}^{*}]$$

#2Опишем построение функции $p_{2}\left(x\right)$.

Выберем произвольную точку x_1^* , в которой $p_1(x)$ имеет глобальный минимум (в нашем случае таких точек две: x_1' и x_1'' , выберем $x_1^* = x_1'$).

$$p_2(x) = \max \{p_1(x), g(x_1^*, x)\}$$

 По сравнению с $p_{1}\left(x\right)$ функция $p_{2}\left(x\right)$ вместо точки x_{1}^{*} глобального минимума имеет две точки x_2' и x_2'' локального минимума

$$x_{2}' = x_{1} - \Delta_{2}$$

$$x_{2}'' = x_{1} + \Delta_{2}$$

$$\Delta_{2} = \frac{1}{2} [f(x_{1}^{*}) - p_{1}^{*}]$$

Причем

 $p_{2}\left(x_{2}'\right)=p_{2}\left(x_{2}''\right)=\frac{1}{2}\left[f\left(x_{1}^{*}\right)+p_{1}^{*}\right]$

#k Пусть построена функция $p_{k-1}(x)$. Опишем построение $p_k(x)$. Пусть x_{k-1}^* — точка глобального минимума функции $p_{k-1}(x)$, $p_{k-1}^* = p_{k-1}(x_{k-1}^*)$. Положим

$$p_k(x) = \max \{p_{k-1}(x), g(x_{k-1}^*, x)\}.$$

Функция $p_k\left(x\right)$ по сравнению с $p_{k-1}\left(x\right)$ будет иметь две точки x_k' и x_k'' локального минимума вместо одной точки x_{k-1}^* глобального минимума. При этом

$$x'_{k} = x_{k-1}^{*} - \Delta_{k}$$

$$x''_{k} = x_{k-1}^{*} + \Delta_{k}$$

$$\Delta_{k} = \frac{1}{2L} \left[f\left(x_{k-1}^{*}\right) - p_{k-1}^{*} \right]$$

Причем

$$p_k(x'_k) = p_k(x''_k) = \frac{1}{2} [f(x^*_{k-1}) + p^*_{k-1}]$$

Свойства функций $p_k(x)$

- 1. $p_k\left(x\right)$ непрерывная кусочно-линейная функция, каждое звено которой имеет угловой коэффициент +L или -L.
- 2. $p_{k}\left(x\right)$ имеет ровно k+1 точку локального минимума.
- 3. $p_{k-1}(x) \leq p_k(x) \leq f(x), x \in [a; b]$
- 4. Ломанные $p_k\left(x\right)$ при $k\to\infty$ приближаются снизу к графику функции $f\left(x\right)$ в окрестностях точек её глобального минимума

Основное достоинство метода ломаных заключается в том, что минимум кусочно-линейной функции искать существенно проще, чем минимум f(x). При этом на каждом шаге (кроме нулевого) метода ломанных требуется вычисление лишь одного значения целевой функции.

Теорема: Пусть

- 1. f(x) удовлетворяет условию Липшеца на [a;b] с константной L.
- 2. $p_{k}\left(x\right),\,k=0,1,2,\ldots$ последовательность ломаных, построенных по указному методу.

3. x_{k}^{*} — точка глобального минимума функции $p_{k}\left(x\right)$

Тогда

- 1. $\lim_{k \to \infty} p_k(x_k^*) = f(x^*) = \min_{x \in [a;b]} f(x)$
- 2. Если точка x^* глобальный минимум функции $f\left(x\right)$ единственна на [a;b], то $x_k^*\underset{k\to\infty}{\to}x^*$
- 3. Оценка погрешности

$$\delta_k = 2L\Delta_k$$

где
$$\delta_k = f(x_k^*) - f^*$$

Замечание:

- 1. Последняя оценка погрешности используется в качестве критерия для остановки вычислений.
- 2. Если f(x) имеет несколько глобальных мимиумов на [a;b], то есть $|G^*| \geqslant 2$, то пункт 2 теоремы можно сформулировать таким образом

$$\lim_{k \to \infty} \rho_k = 0,$$

где ho_k — расстояние от x_k^* до ближайшей ей точки из G^* .

< БЛОК СХЕМА !!! >

Замечание: об определении константы L

- 1. Если получится, то можно оценить производную $|f'(x)| \leq A$ и принять L = A.
- 2. Найти угловые коэффициенты k_1, \ldots, k_l некоторого количества хорд графика функции f(x). Эти значения являются нижними оценками для постоянной Липшеца, тогда можно принять

$$L = \max_{i=\overline{1;l}} \{k_i\} + \{$$
некоторая величина $\}$

Если {некоторую велчину} выбрать слишком большой, то метод будет долго сходится. Если {некоторую велчину} выбрать слишком малой, так, что полученное значение L не будет постоянной Липшица для f, то метод может разойтись.

2. Безусловная минимизация функций нескольких переменных

$$\begin{cases} f\left(x\right) \to extr \\ x \in \mathbb{R}^n \end{cases}$$

2.1. Основные определения

Пусть $f: \mathbb{R}^n \to \mathbb{R}$

Определение: Точка $x^* \in \mathbb{R}^n$ называется точкой глобального минимума функции, если $\forall x \in \mathbb{R}^n$ $f(x^*) \leq f(x)$.

Величина $f^* = f(x^*)$ называется глобальным минимум функции f(x).

Замечание:

- 1. Множество всех точек глобальных минимумов функции на множестве $G \subseteq \mathbb{R}^n$ через G^*
- 2. Если $G^* = \emptyset$, то иногда рассмотрим вместо минимума функции f(x) её ТНТ(?)

$$f_* = \inf_{x \in G} f(x)$$

Определение: Точка $\tilde{x} \in \mathbb{R}^n$ называется точкой локального минимума функции f(x), если

$$\exists \varepsilon > 0 \quad \forall x \in U_{\varepsilon}(\tilde{x}) \quad f(\tilde{x}) \leqslant f(x),$$

где

$$U_{arepsilon}(ilde{x}) = \{x \in \mathbb{R}^n : |x - ilde{x}| < arepsilon\},$$
 $|a - b| = \rho(a, b) = \sqrt{(a_1 - b_1)^2 + \dots + (a_n - b_n)^2}$ — расстояние между a и b $a = (a_1, \dots, a_n) \in \mathbb{R}^n$ $b = (b_1, \dots, b_n) \in \mathbb{R}^n$

Пусть $f: \mathbb{R}^n \to \mathbb{R}$

<u>Определение:</u> Функция f называется $\partial u \phi \phi e penuupye moй в точке <math>x^0 = (x_1^0, \dots, x_n^0)$, если её приращение в этой точке можно представить в виде

$$\Delta f|_{x^0} (\Delta x) = A_1 \Delta x_1 + \dots A_n \Delta x_n + o(|\Delta x|),$$

где

$$\Delta x = (\Delta x_1, \dots, \Delta x_n)$$

$$|\Delta x| = \rho(\Delta x, o) = \sqrt{(\Delta x_1)^2 + \dots + (\Delta x_n)^2}$$

$$\Delta f|_{x^0}(\Delta x) = f(x^0 + \Delta x) - f(x^0)$$

$$A = const, \quad j = \overline{1, n}$$

Если f дифференцируемая в x^0 , то

$$\exists \frac{\partial f}{\partial x_i}|_{x^0} = A_j, \qquad j = \overline{1, n}$$

При этом выражение

$$df|_{x^0}(\Delta x) = \frac{\partial f}{\partial x_1}|_{x^0} \Delta x_1 + \dots + \frac{\partial f}{\partial x_n}|_{x^0} \Delta x_n$$

называется дифференциалом функции f(x) в точке x^0 .

Определение: Производной функции f(x) в точке x^0 называется матрица

$$f'\left(x^{0}\right) = \left(\frac{df}{dx_{1}}|_{x^{0}}, \dots, \frac{\partial f}{\partial x_{n}}|_{x^{0}}\right)$$

называется ϕy нкцией \mathcal{A} коби.

Определение: Градиентом функции f в точке x^0 называется вектор

$$\operatorname{grad} f|_{x^0} = \frac{\partial f}{\partial x_1}|_{x^0} \cdot e_1 + \dots + \frac{\partial f}{\partial x_n}|_{x^0}, \cdot e_n$$

где

$$e_1 = (1, 0, \dots, 0)$$

$$e_n = (0, \dots, 0, 1)$$

векторы стандартного базиса.

Замечание:

- 1. Координаты вектора $\operatorname{grad} f|_{x^0}$ относительно стандартного базиса совпадают со строкой $f'\left(x^0\right)$.
- 2. $\operatorname{grad} f|_{x^0}$ перпендикулярен касательной в точке x^0 к линии уровня функции f, которая проходит через x^0 .

3. $\operatorname{grad} f|_{x^0}$ показывает направление наибыстрейшего возрастания функции f точке x^0 , то есть:

$$\max_{\overrightarrow{l}} \frac{\partial f}{\partial l}|_{x^0}$$

достигается на $\overrightarrow{l} \uparrow \uparrow \operatorname{grad} f|_{x^0}$.

4. $df|_{x^0}(\Delta x) = (f'(x^0), \Delta x) = f'(x^0) \Delta x^{\downarrow}$

$$a = (a_1, \dots, a_n) \Rightarrow a^{\downarrow} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

$$a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \Rightarrow a^{\downarrow} = a$$

Таким образом для дифферецнируемой в точке x^0 функции f

$$\Delta f|_{x^0} (\Delta x) = (f'(x^0), \Delta x) + o(|\Delta x|).$$

<u>Определение:</u> Матрицей Гессе (матрицей вторых производных) функции f в точке x^0 называется матрица

$$f''\left(x^{0}\right) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}|_{x^{0}} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}|_{x^{0}} \\ \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}|_{x^{0}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}}|_{x^{0}} \end{bmatrix}$$

<u>Определение:</u> Вторым дифференциалом функции f в точке x^0 называется дифференциал от дифференциала первого порядка этой функции:

$$d^{2}f|_{x^{0}}\left(\Delta x\right) = d\left(df|_{x^{0}}\left(\Delta x\right)\right)|_{x^{0}}\left(\Delta x\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}|_{x^{0}} \Delta x_{i}\Delta x_{j}$$

Замечание:

- 1. $d^2 f|_{x^0} (\Delta x) = \overrightarrow{\Delta x} f''(x^0) \Delta x^{\downarrow} = (f''(x^0 \Delta x^{\downarrow}), \Delta x)$
- 2. Таким образом дважды дифференцируемой в x^0 функции

$$\Delta f|_{x^0}(\Delta x) = df|_{x^0}(\Delta x) + \frac{1}{2}d^2f|_{x^0}(\Delta x) + o(|\Delta x|^2).$$

Теорема: Необходимое условие локального экстремума

Пусть

- 1. f дифференцируемая в точке x^0
- $2. \ x^0$ является точкой локального минимума функции f

Тогда $f'(x^0) = O = (0, \dots, 0)$

Теорема 2: Достаточное условие локального минимума

Пусть

- 1. f(x) дважды дифференцируемая в x^0
- 2. $f'(x^0) = O$
- 3. $d^2f|_{x^0}\left(\Delta x\right)$ является положительной квадратичной формой (или матрица $f''\left(x^0\right)$ положительно определена)

Тогда x^0 — точка локального минимума функции f(x).

<u>Замечание:</u> Исследовать положительную определенность матрицы $A=(a_{ij})_{ij=\overline{1;n}}$ можно использовать критерий Сильвестра

$$A > 0 \Rightarrow \begin{cases} \Delta_1 > 0 \\ \Delta_2 > 0 \\ \vdots \\ \Delta_n > 0 \end{cases},$$

где

$$\Delta_1 = a_{11}$$

$$\Delta_2 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\vdots$$

$$\Delta_n = \det A$$

называются главными минорами.

Теорема 1 и теорема 2 лежат в основе классического метода безусловной оптимизации ФНП:

1. Вычисляем частные производные функции f и находим все решения a^1, \dots, a^m системы

$$\begin{cases} \frac{\partial f}{\partial x_1} = 0\\ \vdots\\ \frac{\partial f}{\partial x_n} = 0 \end{cases}$$

- 2. Для каждой точки $a^j,\,j=1,\,j=\overline{1,m}$. Из найденных точек выбираем ту, которая доставляет функции наименьшее значение.
- 3. Из найденых в п. 2 точек выбираем ту, которая доставляет функции наименьшее значение

2.2. Выпуклые функции

Наличие нескольких локальных экстремумов функции f существенно осложняет поиск её глобального минимума, поэтому в методах оптимизации большое значение имеют функции, которые имеют один локальный минимум. В частности таковыми являются (строго) выпуклые функции.

Пусть $G \subseteq \mathbb{R}^n$ — выпуклое множество.

$$f: G \to \mathbb{R}^n$$

Определение: Функция f называется выпуклой на G, если $\forall \forall x,y \in G, \forall \alpha \in [0,1]: f(\alpha x + (1-\alpha)y) \leqslant \alpha f(x) + (1-\alpha)f(y) - (*)$

<u>Определение:</u> Функция f называется $cmporo\ выпуклой$ на множестве G, если неравенство (*) выполняется в строгой форме

$$\forall \forall x, y \in G, \quad \forall \alpha \in (0, 1)$$

Определение: Функция $f: \mathbb{R}^n \to \mathbb{R}$ называется сильно выпуклой, если $\exists l>0$

$$\forall \forall x, y \in G, \quad \forall \alpha \in (0, 1): \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y) - \alpha (1 - \alpha)l \cdot |x - y|^2$$

При этом l называется константой строгой выпуклости.

Замечание:

- 1. Иллюстрация для n=1
- 2. Иллюстрация для n=2

Если выпуклая функция f дифференцируемая в G, то строгая выпуклость означает, что для любой точки $x^0 \in G$ график функции лежит не ниже касательной плоскости к графику в точке x^0 (x^0 является единственной общей точкой графика и касательной плоскости). Это равносильно выполнению неравенства

$$f(x) \ge f(x^{0}) + (f'(x^{0}), x - x^{0}), \quad x, x^{0} \in G, x \ne x^{0}$$

Если сильно выпуклая функция f дифференцируемая в G, то её график должен содержаться внутри некого параболоида вращения с вершиной в токе $(x^*, f(x^*))$, где x^* — точка глобального минимума $f(x), x \in \mathbb{R}^n$ (сильная выпуклость функции всегда имеет единственную точку глобального минимума).

Свойства выпуклых функций

 1^0 Пусть

- 1. $G \subseteq \mathbb{R}^n$ выпуклое множество
- 2. Функции $f_1(x), \dots, f_m(x)$ выпуклы на G.
- 3. $\lambda_i \geqslant 0, i = \overline{1;m}$

Тогда

$$f\left(x\right)=\sum_{i=1}^{m}\lambda_{i}f_{i}\left(x\right)$$
выпукла на $G.$

 2^0 Пусть

- 1. G выпуклое множество
- $2. \ f$ выпукла на G
- 3. $b \in \mathbb{R}$

4.
$$G(b) = \{x \in G : f(x) \leq b\}$$

Тогда G(b)— выпуклое множество

 3^0 Пусть

- 1. $f \in C^{2}(G)$ дважды дифференцируемая на G, которое выпукло
- 2. f''(x) > 0 (матрица положительно определена), $x \in G$

Тогда f — строго выпукла на G.

 4^0 Пусть

- 1. $f \in C^2(\mathbb{R}^n)$
- 2. $\exists l>0,\,f^{\prime\prime}\left(x\right)-lE>0,\,x\in\mathbb{R}^{n}.\,E$ единичная матрица.

Тогда f — сильно выпуклая.

 5^0 Пусть

- 1. G выпуклое множество
- $2. \ f$ выпукла на G
- 3. $x^0 \in G$ точка локального минимума f(x)

Тогда x^0 — точка глобального минимума f на G.

 6^0 Пусть

- $1. \, \, G$ выпукло
- $2.\ f$ строго выпукла на G

3. x^0 — точка глобального минимума f на G

Тогда x^0 — единственная точка глобального минимума функции f на G.

 7^0 Пусть $f:\mathbb{R}^n o \mathbb{R}$ — сильно выпуклая функция.

Тогда функция f имеет единственную точку глобального минимума.

 8^0 Пусть

- 1. G выпукло
- 2. $f \in C(G)$
- $3. \ f$ выпукло на G
- 4. $f'(x^0) = 0$

Тогда x^0 — точка глобального минимума f на G.

То есть для выпуклой дифференцируемой функции необходимое условие локального минимума является одновременно достаточным условием.

2.3. Квадратичные функции

Определение: Квадратичной функцией называется функция вида

$$f(x) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j + \sum_{j=1}^{n} b_j x_j + c,$$

где $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

Замечание:

1. Всегда можно считать, что $a_{ij} = a_{ji}$.

$$a_{ij}x_ix_j + \dots + a_{ji}x_jx_i = 2 \cdot \frac{a_{ij} + a_{ij}}{2}x_ix_j = \alpha_{ij}x_ix_j + \alpha_{ji}x_jx_i$$

Если это не так, то всегда можно рассмотреть $\alpha_{ij} = \alpha_{ji} = \frac{a_{ij} + a_{ji}}{2}$. Тогда

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i x_j.$$

2. Введем в рассмотрение $A=(a_{ij})_{i,j=\overline{1;n}}$ — симметричную матрицу и вектор $b=(b_1,\ldots,b_n)\in\mathbb{R}^n$. Тогда

$$f(x) = \frac{1}{2} \overrightarrow{x} A x^{\downarrow} + b x^{\downarrow} + c = \frac{1}{2} (Ax, x) + (b, x) + c$$

$$\tag{6}$$

Свойства квадратичной функции $f\left(x\right)$

$$1^{0} f'(x) = \left[Ax^{\downarrow} + b^{\downarrow}\right]^{T}$$

$$2^{0} f''(x) = A$$

 3^0 Если A>0, то $f\left(x\right)$ — сильно выпуклая функция, а значит единственную точку глобального минимума.

2.4. Общие принципы многомерной оптимизации

I Рассмотрим задачу

$$\begin{cases} f\left(x\right) \to min \\ x \in \mathbb{R}^n \end{cases}$$

Обычно при численном решении это задачи строят последовательность $x^0, x^1, \dots, x^k, \dots \in \mathbb{R}^n$ по следующему правилу:

$$x^{k+1} = \varphi_k(x^k, x^{k-1}, \dots, x^0)$$

 $x^j \in \mathbb{R}^n, j \in \mathbb{N}_0.$

При выполнении определенных условий эта последовательность сходится к точке x^* глобального минимума функции f.

Определение: Пусть $x^0, x^1, \dots, x^k, \dots$ называется минимизируещей для функции f если

$$\lim_{k\to\infty} f\left(x^{k}\right) = \begin{cases} f^{*} = \min_{x\in\mathbb{R}^{n}} f\left(x\right), & G^{*} \neq \emptyset\\ f_{*} = \inf_{x\in\mathbb{R}^{n}} f\left(x\right), & G^{*} = \emptyset \end{cases},$$

где G^* — множество точек глобального минимума функции $f(x), G = \mathbb{R}^n$.

Пример:

1. n = 1

(a)
$$f(x)=\left|x^2-x\right|,\,G=\mathbb{R}^1$$
 $x^k=\frac{1}{k},\,k=1,2,\ldots$ $G^*=\{0,1\},\,x^k\to 0\in G^*\Rightarrow x^k$ — минимизирующая последовательность.

(b)
$$f(x)=e^{-|x|}$$
 $G=\mathbb{R}$ $G^*=\emptyset$ $f_*=\inf_{x\in G}f(x)=0$ $x^k=k,\,k\in\mathbb{N}_0$ — минимизирующая для $f.$ $f\left(x^k\right)\to 0=f_*$

(c)
$$f(x) = \frac{|x|}{1+x^2}$$
 $G = \mathbb{R}$ $G^* = \{0\}$ $x^k = k, k \in \mathbb{N}$ — минимизирующая последовательность, хоть и не сходится к точке минимизирую x^*

II Скорость сходимости

Пусть последовательность $x^k \underset{k \to \infty}{\to} x^*$.

<u>Определение:</u> Говорят, что сходимость последовательности $(x^k)_{k=1}^{\infty}$ к x^* является линейной, если

$$\exists q \in (0,1): \quad \rho\left(x^{k}, x^{*}\right) \leqslant q\rho\left(x^{k-1}, x^{*}\right),$$

или что тоже самое

$$\exists q \in (0,1): \quad \rho\left(x^k, x^*\right) \leqslant q^k \rho\left(x^0, x^*\right),$$

где $\rho\left(a,b\right)=\left|a-b\right|$ — расстояние между a и b.

<u>Определение:</u> Говорят. что сходимость последовательности $(x^k)_{k=0}^{\infty}$ к x^* является сверхлинейной, если

1. Существует бесконечная малая последовательность $q_1, q_2, \ldots, q_k > 0$, для которой

2.
$$\rho\left(x^{k}, x^{*}\right) \leqslant q_{k}\rho\left(x^{k-1}, x^{*}\right), k \in \mathbb{N}$$

<u>Определение:</u> Говорят, что сходимость последовательности $(x^k)_{k=1}^{\infty}$ к x^* является квадратичной, если

$$\exists c > 0: \quad \rho\left(x^{k}, x^{*}\right) \leqslant \left[c \cdot \rho\left(x^{k-1}, x^{*}\right)\right]^{2}, \quad k \in \mathbb{N}$$

или что то же самое

$$\rho\left(x^k, x^*\right) \leqslant q^{2^k},$$

где
$$q = c \cdot \rho(x^0, x^*)$$
.

III Критерии окончания итерационных процессов

Как правило, для практически интересных функций последовательность x^k , определяемая процессом

$$x^{k+1} = \varphi_k(x^k, x^{k-1}, \dots, x^0),$$

является бесконечной. Поэтому необходимо использовать некоторые критерии окончания итерационного процесса. Как правило используют следующие условия:

$$\rho\left(x^{k+1}, x^{k}\right) < \varepsilon
\left|f\left(x^{k+1}\right) - f\left(x^{k}\right)\right| < \varepsilon
\left|\operatorname{grad} f\right|_{x^{k+1}} < \varepsilon$$

или их комбинации

IV Многие алгоритмы минимизации основаны на итерационном процессе вида

$$x^{k+1} = x^k + \alpha_k p^k, \tag{7}$$

где $p^k \in \mathbb{R}^n$ называется направлением спуска, $\alpha_k \in \mathbb{R}$ — величиной шага.

Конкретный алгоритм минимизации определяется p^k , α_k .

<u>Определение:</u> Говорят, что в итерационном процессе (7) используется *исчерпывающий спуск*, если на каждом шаге для выбранного значения p^k значение α_k определяется решением задачи

$$\Phi\left(\alpha\right) = f\left(x^k + \alpha p^k\right) \to \min_{\alpha \in \mathbb{R}}.$$
(8)

Замечание:

- 1. Для исчерпывающего спуска при заданном направлении p^k максимально используется возможность уменьшить значение целевой функции.
- 2. Задачу (8) можно решать с использованием методов одномерной оптимизации.

Теорема: Пусть

- 1. f дифференцируемая в \mathbb{R}^n ,
- 2. $x^{k+1} = x^k + \alpha_k p^k, k \in \mathbb{N}_0$
- 3. при выборе $\alpha_k, k \in \mathbb{N}_0$ используется исчерпывающий спуск.

Тогда

$$\left(\operatorname{grad} f|_{x^{k+1}}; p^k\right) = 0$$

 \neg

$$\Phi\left(\alpha\right) = f\left(x^k + \alpha p^k\right) \to \min_{\alpha}$$

Если значение $\alpha = \alpha_k$ выбрано из условия исчерпывающего спуска, то $\Phi(\alpha)$ в точке $\alpha = \alpha_k$ имеет локальный минимум. Так как f дифференцируемая, то Φ дифференцируемая, тогда в точке $\alpha = \alpha_k$ для $\Phi(\alpha)$ выполняется необходимое условие экстремума:

$$\frac{\mathrm{d}\Phi}{\mathrm{d}\alpha}|_{\alpha=\alpha_k}=0$$

$$\Phi(\alpha) = f(x_1(\alpha), \dots, x_n(\alpha))$$

где $x_j\left(\alpha\right) = x_j^k + \alpha p_j^k, \ j = \overline{1;n}$

$$\frac{\mathrm{d}\Phi}{\mathrm{d}\alpha} = \sum_{j=1}^{n} \frac{\partial f}{\partial x_1} \cdot \frac{\mathrm{d}x_j}{\mathrm{d}\alpha}$$

$$\frac{\mathrm{d}x_j}{\mathrm{d}\alpha} = p_j^k$$

$$\frac{\mathrm{d}\Phi}{\mathrm{d}\alpha} = \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} p_{j}^{k}$$

$$\frac{\mathrm{d}\Phi}{\mathrm{d}\alpha}|_{\alpha=\alpha_{k}} = \sum_{j=1}^{n} \frac{\partial f\left(x^{k} + \alpha_{k} p^{k}\right)}{\partial x_{j}} \cdot p_{j}^{k} = \left(\mathrm{grad}f|_{x^{k+1}}, p^{k}\right) = 0$$

Замечание: С геометрической точки зрения исчерпывающий спуск означает, что на направлении, задаваемом вектором p^k , точка x^{k+1} выбирается таким образом, чтобы $\operatorname{grad} f|_{x^{k+1}} \bot p^k$ или, что то же самое, прямая проходящая через x^k с направлением вектором p^k , была касательной к линии уровня, проходящую через точку x^{k+1} .

Теорема: Пусть

1. $f(x) = \frac{1}{2}(Ax, x) + (b, x) + c$ — квадратичная функция.

$$2. x^k \in \mathbb{R}^n$$

Тогда в исчерпывающем спуске в направлении p^k

$$\alpha_k = -\frac{(\operatorname{grad} f|_{x^k}, p^k)}{(Ap^k, p^k)} = -\frac{(Ax^k + b, p^k)}{(Ap^k, p^k)}$$

$$x^{k+1} = x^k + \alpha_k p^k$$

Умножим на матрицу A слева, а потом добавим b

$$Ax^{k+1} + b = Ax^k + b + \alpha_k Ap^k$$

$$Ax^{k+1} + b = \text{grad}f|_{x^{k+1}}, Ax^k + b = \text{grad}f|_{x^k}$$

При исчерпывающем спуске для α_k должно выполнятся условие

$$(\operatorname{grad} f|_{x^{k+1}}, p^k) = 0$$
$$(Ax^k + b + \alpha_k A p^k, p^k) = 0$$
$$(\operatorname{grad} f|_{x^k}, p^k) + \alpha_k (Ap^k, p^k) = 0$$

$$\alpha_k = -\frac{\left(\operatorname{grad} f|_{x^k}, p^k\right)}{\left(Ap^k, p^k\right)} = -\frac{\left(Ax^k + b, p^k\right)}{\left(Ap^k, p^k\right)}$$

<u>Определение:</u> Говорят, что вектор p^k задает направление убыванию функции f в точке x^k , если $\exists \alpha_0 > 0$

$$\forall \alpha \in (0, \alpha_0): f(x^k + \alpha p^k) < f(x^k)$$

Теорема: Пусть

1. f дифференцируемая в точке x^{k} ,

2.
$$(\operatorname{grad} f|_{x^k}, p^k) < 0$$
.

Тогда p^k — направление убывания для f.

Ранее было показано, что для дифференцируемой функции f

$$\Delta f|_{x^k} (\Delta x) = (\operatorname{grad} f|_{x^k}, \Delta x) + o(|\Delta x|)$$

$$\Delta x = (\Delta x_1, \dots, \Delta x_n)$$

Положим $\Delta x = \alpha p^k$. Тогда

$$f(x^{k} + \alpha p^{k}) - f(x^{k}) = (\operatorname{grad} f|_{x^{k}}, \alpha p^{k})$$

$$f(x^{k} + \alpha p^{k}) - f(x^{k}) = \alpha (\operatorname{grad} f|_{x^{k}}, p^{k}) + o(\alpha \cdot |p^{k}|)$$

$$(\operatorname{grad} f|_{x^{k}}, p^{k}) = c < 0$$

$$o(\alpha \cdot |p^{k}|) = o(\alpha)$$

$$f(x^{k} + \alpha p^{k}) - f(x^{k}) = \alpha \left\{ c + \frac{o(\alpha)}{\alpha} \right\}$$

Так как $\frac{o(\alpha)}{\alpha} \xrightarrow[\alpha \to 0]{} o$, то для всех достаточно малых $\alpha \ c + \frac{o(\alpha)}{\alpha} < 0$, то для этих $\alpha \ f\left(x^k + \alpha p^k\right) - f\left(x^k\right) < 0$

3. Методы безусловной минимизации ФНП

Как и методы одномерной минимизации методы оптимизации ФНП делят на:

- 1. Прямые методы, в которых используются только значения функции в некоторых точках и не используются значения производных.
- 2. Методы, использующие производные целевой функции. При этом наивысший порядок используемой в методе производной называется *порядком метода* соответствующего метода.

Мы будем изучать методы:

- 1. Простые
 - (а) Метод деформируемого симплекса (метод Нелдера-Мида);
 - (b) Метод покоординатаного спуска;
 - (с) Метода Хука-Дживса;
 - (d) Метод случайного поиска;
- 2. Методы использующие производные
 - (а) Метод градиентного спуска;
 - (b) Метод наискорейшего спуска;
 - (с) Метод Ньютона и его модификация;
 - (d) Метод сопряженных направлений;

3.1. Метод деформируемого симплекса

Определение: Правильным симплексом в пространстве \mathbb{R}^n называется набор из n+1 точки

$$x^0, x^1, \ldots, x^n$$

 $x \in \mathbb{R}^n$, $j = \overline{0; n}$, каждая из которых равноудалена от всех остальных.

Замечание:

- 1. Отрезок, соединяющий две точки симплекса, называется *ребром* этого симплекса. Точки, образующие симплекс, называются его *вершинами*.
- 2. Можно ввести понятие симплекса (необязательно правильного): cumnлексом в \mathbb{R}^n называется совокупность из n+1 точки x^0, x^1, \ldots, x^n , таких, что векторы $x^0x^1, \ldots, x^0x^n \Pi H 3$.

Определение: гиперплоскость, в n-мерном аффинном пространстве, называется подпространство (плоскость), размерность которой n-1.

<u>Замечание:</u> если $x^0 \in \mathbb{R}^n$ — некоторая точка, a > 0 — фиксированное число, то координаты остальных вершин одного из правильных симплексов с длиной ребра a и имеющего x^0 своей вершиной, можно найти по следующим формулам:

$$x^{1} = (x_{1}^{0} + d_{2}, x_{2}^{0} + d_{1}, \dots, x_{n}^{0} + d_{1}),$$

$$x^{2} = (x_{1}^{0} + d_{1}, x_{2}^{0} + d_{2}, x_{3}^{0} + d_{1}, \dots, x_{n}^{0} + d_{1})$$

$$\dots$$

$$x^{n} = (x_{1}^{0}d_{1}, \dots, x_{n-1}^{0} + d_{1}, x_{n}^{0} + d_{2}),$$

где

$$d_{1} = a \frac{\sqrt{n+1}-1}{n\sqrt{2}},$$

$$d_{2} = a \frac{\sqrt{n+1}+n-1}{n\sqrt{2}}.$$

При этом, вершину x^0 будем называть *базовой* для построенного симплекса.

3.1.1. Метод правильного симплекса

Предположим, что в \mathbb{R}^n выбран правильный симплекс x^0, \dots, x^n .

1. Рассмотрим преобразование этого симплекса — отражение вершины x^k относительно центра тяжести остальных вершин.

При этом x_k и её отражение \hat{x}_k должны быть связаны соотношением

$$\frac{x_k + \hat{x}_k}{2} = x^c \Rightarrow \hat{x}_k = 2x^c - x^k$$

2.

$$x^c = \frac{1}{n} \sum_{i=0, i \neq k}^n x^i$$

3. Заменим в симплексе $x^0, \dots, x^k, \dots, x^n$ вершину x^k точкой \hat{x}^k . Тогда симплекс $x^0, \dots, \hat{x}^k, \dots x^n$ так же будет правильным.

Метод правильных симплексов для минимизации ФНП

- 1. Выбирают начальный правильный симплекс x^0, x^1, \dots, x^n (например, выбираем $x^0 \in \mathbb{R}^n$ и строим x^1, \dots, x^n по формулам выше).
- 2. Вычисляют $f(x^0), \ldots, f(x^n)$.
- 3. Упорядочивают точки x^0, x^1, \dots, x^n так, чтобы значения функции не убывали:

$$f(x^0) \leqslant f(x^1) \leqslant \cdots \leqslant f(x^n)$$
.

- 4. Отражают x^n относительно центра тяжести остальных точек. Получают \hat{x}^n .
- 5. Если значение $f\left(\hat{x}^{n}\right) < f\left(x^{n}\right)$, то $x^{n} := \hat{x}^{n}$. Далее на шаг 3. Иначе отражают x^{n-1} , строя \hat{x}^{n-1} . Если $f\left(\hat{x}^{n-1}\right) < f\left(x^{n}\right) \Rightarrow x^{n-1} := \hat{x}^{n-1}$. Далее на шаг 3. Иначе шаг 6.
- 6. Если ребро симплекса мало, то полагая $x^* = x^0 \Rightarrow$ конец работы алгоритма. Иначе уменьшаем ребро симплекса (например вдове). Строим правильный симплекс с новым значением ребра и базовой точкой x^0 , далее на шаг 2. Или $x^i := \frac{x^0 + x^i}{2}$, $i = \overline{1; n}$.

Другое условие остановки метода:

$$\frac{1}{n}\sum_{i=1}^{n} (f(x^{i}) - f(x^{0}))^{2} < \varepsilon^{2}$$

Замечание: Метод правильного симплекса неэффективен, если целевая функция имеет «овражистую» структуру.

Правильный симплекс с большой длиной ребра не будет адекватно отражать структуру линии уровня. При использовании правильного симплекс с малой длиной ребра приведет к длительной работе метода.

Для исправления этих недостатков разработан метод деформируемого симплекса.

3.1.2. Метод деформируемого симплекса

Основная идея метода заключается в том, что на шаге 4 вычисляются значения целевой функции в четырех точках:

$$\begin{split} z^1 &= x^c + \alpha \left(x^c - x^n \right) \\ z^2 &= x^c - \alpha \left(x^c - x^n \right), \qquad \alpha \in (0;1) \\ z^3 &= x^c + \beta \left(x^c - x^n \right), \qquad \beta \approx 1 \\ z^4 &= x^c + \gamma \left(x^c - x^n \right), \qquad \gamma > 1 \end{split}$$

Далее выбирают наименьшую из точек по значению функции вместо x^n .

Замечание:

1. Так как в рассматриваемом методе симплекс не является правильным, то и начальный симплекс не обязательно строить правильным. Например, для фиксированной точки x^0 , начальный симплекс можно построить по следующему правилу:

$$x^i = x^0 + ae^i,$$

где $e^i = (0, \dots, i, 0, \dots 0)$ — *i*-ый вектор базиса.

2. Как правило, используют $\alpha = 1/2, \beta = 1, \gamma = 2.$

<!!! БЛОК СХЕМА >

Замечание: Часто в процессе работы алгоритма текущий симплекс сильно деформируется, поэтому в метод иногда добавляют процедуру восстановления симплекса: после выполнения каждых N шагов строят новый симплекс (правильный или с использованием базисных векторов) для базовой точкой x^0 текущего симплекса.

3.2. Метод покоординатного спуска

Метод покоординатного спуска является представителем семейства методов, в которых итерационный процесс строится на основе соотношения

$$x^{k+1} = x^k + \alpha_k p^k,$$

где p^k — направление спуска на k-ом шаге, α_k — «длинна» шага.

Ранее мы говорили о том, что различные методы отличаются выбором вектора p^k и шага α_k .

В методе покоординатного спуска в качестве вектора p^k на очередном шаге выбирают либо e^j , либо $-e^j$, где

$$e^j = (0, \dots, 1, \dots, 0)$$

j-ый вектор стандартного базиса пространства \mathbb{R}^n .

Метод покоординатного спуска

<!!! БЛОК СХЕМА >

- 1. Выбрать:
 - (a) $x \in \mathbb{R}^n$ начальное приближение;
 - (b) Критерий $k(\varepsilon)$ окончания вычислений;
 - (c) Параметр точности ε .
- 2. $f_0 := f(x)$
- 3. j := 1
- 4. Решить задачу $\Phi\left(\alpha\right)=f\left(x+\alpha e^{j}\right)\to \min_{\alpha}$ $\left(\alpha^{*}-\text{решениe}\right)$
- 5. $\hat{x} := x + \alpha^* e^j$ $\hat{f} := f(\hat{x})$
- 6. Если j = n
- 7. Если $k\left(\varepsilon\right)$
- 8. $x^* := \hat{x}$ $f^* := \hat{f}$
- 9. Вывод x^*, f^*
- 10. Иначе (7) $x := \hat{x}, f_0 := \hat{f}$ переход к 3
- 11. Иначе (6)j := j+1 $x := \hat{x}$ $f_0 := \hat{f}$ переход к 4

Замечание:

1. В качестве критерия $k\left(\varepsilon\right)$ используют

$$k(\varepsilon) = \{|x - \hat{x}| < \varepsilon\}$$

или

$$k(\varepsilon) = \{ |f(x) - f(\hat{x})| < \varepsilon \}$$

2. Для приближенного решения вспомогательной задачи $\Phi\left(x\right) \to min$ обычно используют метод поразрядного поиска.

3.3. Метод Хука-Дживса

Метод Хука-Дживса является модификацией метода покоординатного спуска. Каждый шаг этого метода состоит из двух основных этапов:

- 1. исследующего поиска в окрестности текущего приближения x^k для определения направления спуска;
- 2. перемещении в выбранном направлении.

3.3.1. Алгоритм исследующего поиска

- 1. Выбрать (или получить)
 - (a) текущую точку $x \in \mathbb{R}^n$;
 - (b) вектор $\Delta = (\Delta_1, \dots, \Delta_n)$ приращений переменных.
- $2. \ j := 1$
- 3. $\overline{x} := x$

- 4. $y := \overline{x} \Delta_i e^j$
- 5. Если $f(y) \geqslant f(x)$
- 6. $y := \overline{x} + \Delta_i e^j$
- 7. Если $f(y) \geqslant f(x)$
- 8. Если j=n
- 9. Вывести \overline{x}
- 10. Иначе (8) j := j + 1
- 11. Перейти к шагу 6
- 12. Иначе (7) Перейти к шагу 13
- 13. Иначе (5) $\bar{x} := y$
- 14. Перейти к шагу 8

Замечание: В результате исследующего поиска мы получаем точку \overline{x} такую, что $f(\overline{x}) \leqslant f(x)$. Если $\overline{f(\overline{x})} \leqslant f(x)$, то вектор $p = x\overline{x}$ задает направление убывание функции f. Если $\overline{x} = x$, то следует уменьшить вектор Δ приращений переменных.

3.3.2. Алгоритм Хука-Дживса

- 1. Выбрать (или получить)
 - (a) $x \in \mathbb{R}^n$ начальное приближение;
 - (b) ε параметр точности;
 - (c) Δ вектор приращений переменных ($|\Delta| > \varepsilon$);
 - (d) $\gamma > 1$ коэффициент уменьшения вектора Δ ;
- 2. Провести исследующий поиск в точке x (\overline{x} его результат)
- 3. Если $\overline{x} = x$
- 4. Если $|\Delta| < \varepsilon$
- 5. $x^* := x$ $f^* := f(x^*)$
- 6. Вывод x^*, f^*
- 7. Иначе (4)
- 8. $\Delta = \frac{1}{\gamma}\Delta$ Перейти к шагу 2
- 9. Иначе (3)
- 10. $p := \overline{x} x$
- 11. Решить задачу $\Phi\left(\alpha\right)=f\left(x+\alpha p\right)\to \min_{\alpha}$ $\left(\alpha^{*}-\text{решениe}\right)$
- 12. $x := x + \alpha^* p$ Перейти к шагу 2

Замечание: В некоторых модификациях алгоритма не решают вспомогательную задачу $\Phi\left(x\right)
ightarrow min$, принимая всегда $\alpha^*=2$.

3.4. Метод случайного поиска

Так называемый метод случайного поиска объединяет группу методов, в которых очередное приближение точки минимума находят по правилу

$$x^{k+1} = x^k + \alpha_k p^k,$$

где $p^k=rac{1}{|arepsilon|}\xi$, где $\xi=(\xi_1,\dots,\xi_n)-n$ -мерный случайный вектор, $\alpha_k>0$ — величина шага.

Замечание:

1. Обычно в качестве случайной велчины ξ_1, \dots, ξ_n выбирают независимые случайные величины

$$\xi_i \sim R[-1;1], \qquad i = \overline{1;n}.$$

- 2. Алгоритмы случайного поиска могут использоваться как самостоятельно, так и в составе других алгоритмов, например для исследующего поиска в алгоритме Хука-Дживса.
- 3. В работе этих алгоритмов обычно используется:

 $\alpha > 0$ — начальная величина шага;

 $\gamma > 1$ — коэффициент уменьшения шага;

N — максимальное число неудачных попыток.

3.4.1. Случайный поиск с возвратом при неудачном шаге

- 1. Выбрать (или получить)
 - (a) $\alpha > 0$;
 - (b) $\gamma > 1$;
 - (c) N;
 - (d) ε параметр точности;
 - (e) $x \in \mathbb{R}^n$ начальное приближение.
- 2. $f_x := f(x)$
- 3. j := 1
- 4. Получить реализацию случайного вектора ξ . (*)
- 5. $y := x + \alpha \cdot \xi \cdot \frac{1}{|\xi|} (*)$
- 6. $f_y := f(y)$ (*)
- 7. Если $f_y < f_x$
- 8. x := y

 $f_x := f_y$

Перейти к шагу 5.

- 9. Иначе (7)
- 10. Если j = N
- 11. Если $\alpha < \varepsilon$
- 12. $x^* := x$

$$f^* := f_x$$

- 13. Вывод x^* , f^*
- 14. Иначе (11)

$$\alpha := \frac{1}{\gamma} \alpha$$

Переход к шагу 3

- 15. Иначе (10)
- 16. j := j + 1

Переход к шагу 4

Замечание: На практике обычно выбирают N=3n, где n — число переменных функции f.

3.4.2. Случайный поиск с выбором наилучшей пробы

Этот алгоритм отличается от предыдущего в части блока (*):

- 1. Получить mреализаций вектора $\xi\colon\xi^1,\dots,\xi^m$
- $2.\ y^i:=x+\alpha\xi^i/\left|\xi^i\right|,\,i=\overline{1;m}$
- 3. Выбрать y из условия $f\left(y\right)=\underset{j=\overline{1};m}{\min}f\left(y^{i}\right)$
- $4. \ f_y := f(y)$