

TC 2000

Page 1 of 4

FORM PTO-1449		SERIAL NO. 09/753,503	ATTORNEY DOCKET NO. 2807.2.14.6
LIST OF PATENTS AND PUBLICATIONS FOR APPLICANT'S INFORMATION DISCLOSURE STATEMENT (use several sheets if necessary)		FILING DATE December 27, 2000	GROUP ART UNIT 2874
		APPLICANT(S): John N. Hait	

REFERENCE DESIGNATION

U.S. PATENT DOCUMENTS

EXAMINER INITIAL		DOCUMENT NUMBER	DATE	NAME	CLASS/ SUBCLASS	FILING DATE
cl	A1	6,111,679	08/29/2000	Fishman	359/173	04/21/98
cl	A2	5,938,309	08/17/1999	Taylor	357/124	03/18/97
cl	A3	5,894,362	04/13/1999	Onaka et al.	359/124	08/19/96
cl	A4	5,784,184	07/21/1998	Alexander et al.	359/125	06/24/96
cl	A5	5,754,322	05/19/1998	Ishikawa et al.	359/135	01/08/97
cl	A6	5,726,784	03/10/1998	Alexander et al.	359/125	03/29/96
cl	A7	5,691,832	11/25/1997	Liedenbaum et al.	359/115	08/01/94
cl	A8	5,644,665	07/01/1997	Burns et al.	385/3	07/27/95
cl	A9	5,553,098	09/03/1996	Cochran et al.	375/324	04/12/94
cl	A10	5,504,609	04/02/1996	Alexander et al.	359/125	05/11/95
cl	A11	5,301,058	04/05/1994	Olshansky	359/188	12/31/90
cl	A12	5,301,052	04/05/1994	Audouin et al.	359/124	01/24/92
cl	A13	5,247,491	09/21/1993	Kwiatkowski	368/79	07/30/92
cl	A14	5,168,534	12/01/1992	McBrien et al.	385/3	12/09/91
cl	A15	5,101,450	03/31/1992	Olshansky	385/3	01/23/91
cl	A16	4,989,200	01/29/1991	Olshansky et al.	370/3	12/22/88
cl	A17	4,959,826	09/25/1990	Smith	370/1	06/26/87
cl	A18	4,956,834	09/11/1990	Coleman	370/1	01/12/89
cl	A19	4,882,775	11/21/1989	Coleman	455/617	07/22/88
cl	A20	4,860,279	08/22/1989	Falk et al.	370/1	11/30/88
cl	A21	4,807,227	02/21/1989	Fujiwara et al.	370/3	10/15/87

EXAMINER	DATE CONSIDERED
Christina Yohung	2-17-04

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant(s).

Page 2 of 4

NON-PATENT DOCUMENTS

EXAMINER INITIAL		DOCUMENT (Including Author, Title, Source, and Pertinent Pages)
CJ	A22	Demonstration of hybrid coherence multiplexing/WDM customer access network, Cahill, et al., OFC '97 <i>Technical Digest</i> , Tuesday Afternoon, pages 58-59.
CJ	A23	Increasing the Transmission Capacity of Coherence Multiplexed Communication Systems by Using Differential Detection, Pendock, et al.; <i>IEEE Photonics Technology Letters</i> , Vol. 7., No. 12, December 1995, pages 1504-1506.
CJ	A24	Photonic CDMA by Coherent Matched Filtering Using Time-Addressed Coding in Optical Ladder Networks, Sampson, et al., <i>IEEE Journal of Lightwave Technology</i> , Vol. 12, No. 11, November 1994, pages 2001-2010.
CJ	A25	Optical Code-Division-Multiplexed Systems Based on Spectral Encoding of Noncoherence Sources, Kavehrad, et al.; <i>IEEE Journal of Lightwave Technology</i> , Vol 13., No. 3, March 1995, pages 534-545.
CJ	A26	Coherence Coding for Photonic Code-Division Multiple Access Networks, Griffin, et al.; <i>IEEE Journal of Lightwave Technology</i> , Vol 13, No. 9, September 1995, pages 1826-1837.
CJ	A27	Path Length Mismatches in a Coherence Multiplexed Fiber-Optic Subcarrier Transmission System, Uehara, et al.; 1997 <i>IEEE publication 0-7803-3905-3/97</i> ; pages 210-213.
CJ	A28	Capacity bounding of coherence multiplexed local area networks due to interferometric noise, Gupta, et al.; <i>IEEE Proc. Optoelectron</i> , Vol 144., No. 2, April 1997, pages 69-74.
CJ	A29	Polarization Independent Bidirectional Fiber Link Using Coherence Multi-Demultiplexing LiNbO ₃ Integrated Electrooptical Circuits, Hauden, et al.; <i>IEEE Journal of Lightwave Technology</i> , Vol. 14., No. 7, July 1996, pages 1630-1638.
CJ	A30	Linear Phase Tracking in a Coherence Modulation Electrical Sensor System Using Integrated LiNbO ₃ Modulator/Demodulator, Porte, et al.; <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , Vol. 2., No. 2, June 1996, pages 319-325.
CJ	A31	Multigigabit/s Demultiplexing in Optical Domain Using Coherence Properties of Pulse Trains from multiple, asynchronous mode-locked Lasers, Griffin, et al.; <i>Electronics Letters</i> , Vol. 28, No. 13, June 18, 1992, pages 1202-1203.
CJ	A32	Multiplexage en communication optique par interferometrie a grande difference de marche en lumiere blancheh, Cielo, et al.; <i>Can J. Phys.</i> Vol. 54, 1976, pages 2322-2331.

EXAMINER	Christina Yaneva	DATE CONSIDERED	2-17-04
----------	------------------	-----------------	---------

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant(s).

TC 2000
RECEIVED
JULY 2001

Page 3 of 4

	A33	Coherent Optical Systems Implemented for Business Traffic Routing and Access: The RACE COBRA Project, Bachus, et al.; <i>IEEE Journal of Lightwave Technology</i> , Vol 14., No. 6, June 1996, pages 1309-1319.
	A34	Detection Scheme of Coherence Multiplexed Sensor Signals by Using Optical Loop Incorporating Frequency Shifter, liyama, et al.; <i>Electronics Letters</i> , Vol 28, No. 2, January 16, 1992, pages 169-171.
	A35	Coherence and Noise Properties of Gain-Switched Fabry-Perot Semiconductor Lasers, Griffin et al.; <i>IEEE Jounal of Selected Topics in Quantum Electronics</i> , Vol. 1, No. 2, June 1995, pages 569-576.
	A36	Hybrid Coherence Multiplexing/Coarse Wavelength-Division Multiplexing Passive Optical Network for Customer Access, Cahill, et al.; <i>IEEE Photonics Technology Letters</i> , Vol. 9, No. 7, July 1997, pp. 1032-1034.
	A37	Low Coherence Optical CDMA for LAN, Gupta, et al.; <i>Conference Paper</i> , No. ON2.6, pages 122-123.
	A38	Optical coherence multiplexing for interprocessor communications, Chu, et al.; <i>Optical Engineering</i> , March 1991, Vol. 30, No. 3, pages 337-344.
	A39	Fiber Optic Subcarrier Transmission Systems Using Coherence Multiplexing Techniques for Broad-Band Distribution Networks, Uehara, et al.; <i>IEICE Trans. Commun.</i> , Vol E80-B., No. 7, July 1997, pages 1027-1034.
	A40	Polarization-Independent Transmission on a Single Mode Fiber Using Coherence Modulation of Light; Goedgebuer, et al.; <i>IEEE Journal of Quantum Electronics</i> , Vol. 27, No. 8, August 1991, pages 1963-1967.
	A41	Coherence Multiplexing of Fiber-Optic Interferometric Sensors, Brooks et al.; <i>IEEE Journal of Lightwave Technology</i> , Vol. Lt-3, No. 5, October 1985, pages 1062-1071.
	A42	Demonstration of Data Transmission Using Coherent Correlation to Reconstruct a Coded Pulse Sequence, Griffin et al.; <i>IEEE Photonics Technology Letters</i> , Vol. 4, No. 5, May 1992, pages 513-515.
	A43	Combining code division multiplexing and coherence multiplexing for private communications in optical fiber multiple access networks, Karafolas et al.; <i>Elsevier Science B.V. Optics Communication</i> , January 15, 1996, pages 11-18.
	A44	Two TV Channel multimode Fibre Link Using a Single Multilongitudinal Mode Laser Diode (820nm) and Path-Difference Mutliplexing, Porte, et al.; <i>Electronics Letters</i> , October 23, 1986, Vol. 22, No. 22, pages 1189-1191.
	A45	Security Vulnerability in Coherence Modulation Communication Systems, Wacogne, et al.; <i>IEEE Photonics Technology Letters</i> , Vol 8, No. 3, March 1996, pages 470-472.

EXAMINER

Christina Y. Young

DATE CONSIDERED

2-17-04

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant(s).

<i>cl</i>	A46	Enhanced Security in a Coherence Modulation System Using Optical Path Difference Corruption, Wacogne, et al.; <i>IEEE Photonics Technology Letters</i> ; Vol. 8, No. 7, July 1996, pages 947-949.
<i>cl</i>	A47	Full Bi-directional Fiber Transmission Using Coherence-Modulated Lightwaves; Goedgebuer, et al.; <i>IEEE Journal of Quantum Electronics</i> ; Vol. 28, No. 12, December 1992, pages 2685-2691.
<i>cl</i>	A48	Coherence Multiplexing Using a Parallel Array of Electrooptical Modulators and Multimode Semiconductor Lasers, Goedgebuer, et al.; <i>IEEE Journal of Quantum Electronics</i> Vol QE- 23, No. 12, December 1987, pages 2224-2237.
<i>cl</i>	A49	Demonstration of a single source bidirectional fibre link using polarization insensitive LiNbO ₃ integrated coherence modulators, Hauden, et al.; <i>Electronics Letters</i> , Vol. 32, No. 8, April 11, 1996, pages 751-752.
<i>cl</i>	A50	Secrecy improvement in confidential coherence modulation by means of a new keying structure, Wacogne, et al.; 1998 Elsevier Science B.V.; <i>Optics Communications</i> 154, September 15, 1998, pages 350-358.
<i>cl</i>	A51	Highly unbalanced GaA1As-GaAs integrated Mach = Zehnder interferometer for coherence modulation at 1.3 μm, Khalfallah, et al.; Elsevier Science B.V., <i>Optics Communications</i> 176 (1999), pages 67-76, August 15, 1999.
<i>cl</i>	A52	Electrooptic Modulation of Multilongitudinal mode Laser Diodes: Demonstration at 850 nm with Simultaneous Data Transmission by Coherence Multiplexing, Goedgebuer, et al.; <i>IEEE Journal of Quantum Electronics</i> , Vol QE-23, No. 7, July 1987, pages 1135-1344.
<i>cl</i>	A53	Choosing Relative Optical Path Delays in Series-Topology Interferometric Sensor Arrays, Blotekjaer, et al.; <i>IEEE Journal of Lightwave Technology</i> , Vol. Lt-5, No. 2, Feb 1987, pages 229-234.
<i>cl</i>	A54	Quasi-Polarization-Independent Mach-Zehnder Coherence Modulator/Demodulator integrated in Z-Propagating Lithium Niobate, Hauden, et al.; <i>IEEE Journal of Quantum Electronics</i> , Vol 30, No. 10, October 1994, pages 2325-2331.
<i>cl</i>	A55	A GaA1As-GaAs Integrated Coherence Modulator, Khalfallah, et al.; <i>IEEE Journal of Lightwave Technology</i> , Vol 17., No. 1, January 1999, pages 103-107.
<i>cl</i>	A56	Non-quantum Cryptography for Secure Optical Communications; <i>International Trends in Optics and Photonics</i> ICO IV, pages 183-198.
<i>cl</i>	A57	Dispersion Compensation in Coherence Domain Multiplexed Communications Systems, Purchase, et al.; a white paper from a conference, pages 196-197.
<i>cl</i>	A58	Fiber Optic Hybrid Coherence Multiplexed/Subcarrier Multiplexing (CM/SCM) System for Microcellular Mobile Communications, Uehara, et al.; <i>IEEE publication</i> 0-7803-3250-4/96, pages 175-179
<i>cl</i>	A59	Coherence Multiplexing/Subcarrier FDM Transmission System with Bus Configuration, Uehara, et al.; <i>IEEE publication reprint</i> 0-7803-2553-2-95, pages 550-553.

EXAMINER

Christina Young

DATE CONSIDERED

2-17-04