TPO - Données Multimedia

Campedel - Juillet 2014 CES Data Scientist

Objectifs

savoir lire et écrire une image avec Python (et opencv) savoir visualiser une image à l'aide de Python

Ressources bibliographiques

Environnement : Anaconda + opency (wrapper python)

https://docs.python.org/2/tutorial/

http://docs.continuum.io/anaconda/index.html

http://opencv-python-tutroals.readthedocs.org/

http://www.packtpub.com/opencv-computer-vision-with-python/book?tag=

Qu'est-ce qu'une image (numérique) ?

Un tableau de pixels.

Un pixel = une position dans l'image (numéro de ligne, numéro de colonne) + valeur d'intensité

Il existe deux formats principaux de pixels pour les photographies (et les images d'une vidéo)

- Niveau de gris : 8 bits (=1 byte) par pixel pour coder l'intensité
- En couleur (BGR, Blue Green Red): 8 bits par canal de couleur, soit au total 24 bits (3 bytes).

Comment cela se traduit-il avec OpenCV?

OpenCV est une librairie C++ avec un wrapper Python (module cv2) . Elle est très complète et est devenue la référence pour le traitement des images.

La documentation en ligne est disponible ici : http://docs.opencv.org

- http://docs.opencv.org/opencv2refman
- https://opencv-python-tutroals.readthedocs.org/en/latest/py tutorials/py tutorials.html

Il existe également un livre (payant), contenant de nombreux exemples exploitant Python et OpenCV: <a href="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/book?tag="http://www.packtpub.com/opencv-computer-vision-with-python/opencv-computer-vision-with-python-with-

Type des images

Une image OpenCV est une numpy.array (array 2D ou 3D).

On peut accéder à la valeur d'intensité par une expression du type image[x,y] pour une image en niveau de gris. Dans le cas d'une image couleur, il faut ajouter l'indice du canal de couleur.

Exercice 1: manipulation simples

Créer une i*mage en niveaux de gris*, à l'aide d'un numpy.array, dont les valeurs seraient aléatoires. Puis créer une *image couleur* avec le même nombre de valeurs aléatoires. Sauvegarder cette image au format jpg,

indices (code pour la création d'image) :

```
import numpy
import cv2

randomByteArray = bytearray(os.urandom(120000))
flatNumpyArray = numpy.array(randomByteArray)
# Convert the array to make a 400x300 grayscale image.
grayImage = flatNumpyArray.reshape(300, 400)
bgrImage = flatNumpyArray.reshape(100, 400, 3)
```

Pour les fonctions d'écriture/lecture d'image : pensez à exploiter cv2 ! Consultez l'aide en ligne (cf ressources).

Pour vérifier que vos images ont bien été créées, vous pouvez utiliser xview sous Linux, ou une visionneuse d'images quelconque (dans le menu applications).

Exercice 2: Visualisation avec matplotlib

Compléter le code précédent pour visualiser vos deux images dans l'environnement Python.

Indices:

Pensez au module matplotlib.pyplot (fonction imshow) et attention que l'image créée en niveaux de gris ne doit pas apparaître en couleur !

```
import matplotlib.pyplot as plt

plt.figure
plt.subplot(2,1,1)
plt.imshow(bgrImage)
plt.title('image en couleur')
plt.subplot(2,1,2)
plt.imshow(grayImage) #attention il y a quelque chose à ajouter !
plt.title('image en niveau de gris')
```