Introduction
What are adversarial examples?
How can we generate adversarial examples?
How to defend against adversarial examples?
Conclusion
Reference

Adversarial Examples

BRENOT, DARGENT, GUYONVARCH, LE POGAM

M2 AIDN /University of Bretagne Sud, Vannes

03 Décembre 2019

Table of content

- Introduction
- 2 What are adversarial examples?
 - Definition
 - Application domain
- 3 How can we generate adversarial examples?
 - Fast Gradient Sign Method
 - 1 pixel attack
 - Label attack
- 4 How to defend against adversarial examples?
 - Detecting adversarial examples
 - Methods against adversarial examples
 - RNN-Ensemble
- Conclusion
- 6 References

What are adversarial examples?
How can we generate adversarial examples?
How to defend against adversarial examples?
Conclusion
References

Introduction

WHO WOULD WIN?

ONE NOISY BOI

What are adversarial examples?

Definition

- Input that makes the model predict erroneously
- ► M(I) = ytrue
- ▶ Looking for A, such as M(A)!= ytrue

Application domain

- Create an audio
- Facial recognition
- Spam
- Autonomous car

Application domain

- Create an audio
- Facial recognition
- Spam
- Autonomous car

Application domain

- Create an audio
- Facial recognition
- Spam
- Autonomous car

Targeted examples

A constructed noise is added to the sample that seems similar for a human, but causes a misclassification for the neural network.

Non targeted examples

We try to find any input that causes a misclassification for the neural network

White and Black Box

- White Box
 - We know how the classification algorithm works
- Black Box
 - An attack without the knowledge of the classification algorithm
 - An adversarial examples which works for one model, can work for an other model

Attack frequency

- ▶ One step attack : We optimize the adversarial example once
- Iterative attack : Take multiple times to improve the adversarial example
 - Adversarial examples more robust
 - Take more time to generate one example

How can we generate adversarial examples?

Fast Gradient Sign Method

- Fool an already trained model
- Create an image that maximises the loss

$$adv_{x} = x + \epsilon * sign(\nabla_{x}J(\theta, x, y))$$
 (1)

- ▶ adv_x : adversarial example
- x : original input image
- y : original input label
- $ightharpoonup \epsilon$: coefficient of the attack
- ightharpoonup : gradient
- $\triangleright \theta$: model parameters

Fast Gradient Sign Method

- ▶ Use the gradient of the neural network
- gradients are taken from the input image not from the model parameters
- for each pixel we want to know how much it contributes to the loss
- generation of perturbations as an image (noise)

Fast Gradient Sign Method - Example

- ▶ in a way it is a gradient ascent of the cost function
- hence it increases the model error

Fast Gradient Sign Method

► the architecture must be known to compute de classifier's gradient (White box type)

1-pixel attack

Similar to Counterfactual explanation

Describes the smallest change to the feature values that changes the prediction to a predefined output.

1-pixel attack

Aim: Modify one pixel and analyse what changes happend. We want to find the best adversarial example but also stay close from the original image.

1-pixel attack method

- Differencial Evolution
 - A group of candidats, each candidat is an evolution of the parent generation which represents a potential solution.
 - each candidat is a modification of one pixel of the image
 - Candidat representation is a vector containing the X and Y coordinates and the RGB value of the pixel.
 - Each child is generate following the formula :

$$x_i(g+1) = x_{r1}(g) + F.(x_{r2}(g) + x_{r3}(g))$$
 (2)

1-pixel example

Airplane	Automobile	Bird
Cat	Deer	Frog
Horse	Ship	Truck

Target classes

Label attack

Aim: Creation of one label which create an adversarial examples when it's put on an image. The label can be anything.

Label attack method

Method

- We select an image as a patch and apply random transformations.
- We test on different images.
- Patch Application Operator
 - Apply transformations on the patch and put it in the image.
 - We train the patch to optimize the probability to obtain the target class
- Universal transformation

Label attack examples

toaster cellular telephone, cellula mouse, computer mouse printer	0.00 0.00
iPod	0.00

Fast Gradient Sign Method 1 pixel attack Label attack

Examples

```
https://www.youtube.com/watch?v=piYnd_wYlT8 https://www.youtube.com/watch?v=i1sp4X57TL4&feature=youtu.be
```

How to defend against adversarial examples?

Types of Defenses

- Reactive: We detect adversarial examples once the neural network build.
- Proactive: We create a more robust neural network againt adversarial examples.

Statistical Sequence Irregularity Detection

- Adversarial examples are out-of-distribution samples
- This irregularity can be used to detect AE
 - Analyse the conditionnal probability between elements
 - Compute the maximum mean divergence
- Example :
 - In the case of network development, CreateSocket() always appears before CloseSocket()
 - In the case of a 1-pixel attack, one pixel will stand out, thus creating a high divergence

Sequence Squeezing

- ▶ Lower the dimensions of the input data
- ▶ If the distance between the squeezed, and non-squeezed output is above a given threshold, then it's an adversarial example
- Example :
 - In the case of an image, reduce the color data from 24 bits (RGB) to 8 bits (R, G, B or black white)
 - Blur the image

Nearest Neighbor

- ▶ Return the class of the training set's most similar sample
- Use Euclidean distance (other distances might result in a worse score than without defense)
- The larger your training set is, the longer it will take to compute

Adding adversarial examples to the train set

- ► For each class, consider adding multiple adversarial examples to the training set
- You will need (at least) twice as much data
- Risk of overtraining

$$\tilde{J}(\boldsymbol{\theta}, \boldsymbol{x}, y) = \alpha J(\boldsymbol{\theta}, \boldsymbol{x}, y) + (1 - \alpha) J(\boldsymbol{\theta}, \boldsymbol{x} + \epsilon \mathrm{sign} \left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y) \right).$$

Use a binary threshold

Aim: Remove the perturbations using a threshold

Use a binary threshold

Aim: Remove the perturbations using a threshold

Input reconstruction

Aim: Cleaning the data with an autoencoder

- Deep contractive autoencoder
 - Remove adversary perturbations
 - We use regularization to show what part of the image are important

RNN-Ensemble

- ▶ Use multiples classification models
- Each model can be trained individually
- ▶ The output is a combination of the output of each model

RNN-Ensemble - Model methods

- Regular method
 - Each model is trained with different initial weights
- Adversarial method
 - The models are trained on the same training set
 - We add to this training set, a set of adversarial examples
 - Each set of adversarial example is different from the others
- Subsequence method
 - For a given training set, each model is train on a sequence of this training set

RNN-Ensemble - Output methods

- ► For each model, the output is a probability of a class, or a set of probabilities of multiple classes
- Hard voting
 - The global output is the class that has the majority (just like the president elections)
- Soft voting
 - Sum up all probabilities for each class, and the golbal output will be the class with the higher sum

Why so many methods?

- Hard to defend against every type of attacks
- Each method has its pros and cons
- ► At the moment, there's no technique that has over 90-95% succes rate
- Defending against an adaptative attacker is a research field

Conclusion

Les gens alarmistes qui connaissent rien à l'IA et disent que les robots vont prendre le contrôle de la planète

Mon réseau de neurones artificiels :

References

- Generating Natural Adversarial Hyperspectral examples with a modified Wasserstein GAN -Jean-Christophe Burnel, Kilian Fatras, Nicolas Courty
- Adversarial example using FGSM https://www.tensorflow.org/tutorials/generative/adversarial_fgsm
- Adversarial Patch https://arxiv.org/pdf/1712.09665.pdf
- Adversarial Examples Christoph Molnar -https://christophm.github.io/interpretable-ml-book/adversarial.html
- One Pixel Attack for Fooling Deep Neural Networks https://arxiv.org/pdf/1710.08864.pdf
- Counterfactual Explanations Christoph Molnar https://christophm.github.io/interpretable-ml-book/counterfactual.html
- Deep Learning Papers review: Universal Adversarial Patch https://medium.com/ deep-dimension/deep-learning-papers-review-universal-adversarial-patch-a5ad222a62d2
- Adversarial Examples: Attacks and Defenses for Deep Learning Xiaoyong Yuan, Pan He, Qile Zhu, Xiaolin Li
- Tricking Neural Networks: Create your own Adversarial Examples https://medium.com/@ml.at.berkeley/tricking-neural-networks-create-your-own-adversarial-examples-a61eb7620fd8

References

- Detecting Adversarial Samples from Artifacts https://arxiv.org/pdf/1703.00410.pdf
- Defense Methods Against Adversarial Examples for Recurrent Neural Networks https://arxiv.org/pdf/1901.09963.pdf
- Attacking Machine Learning with Adversarial Examples https://openai.com/blog/adversarial-example-research/
- Explaining And Harnessing Adversarial Examples Ian J. Goodfellow, Jonathon Shlens Christian Szegedy