in.

The application claims the benefit of US Provisional Application No. 60/214,415 filed June 28, 2000.

MATERIAL AND METHOD FOR MAKING AN ELECTROCONDUCTIVE PATTERN

FIELD OF THE INVENTION

5 The present invention relates to a material and a method for making an electroconductive pattern.

BACKGROUND OF THE INVENTION

- 10 For the fabrication of flexible LC displays, electrolumin-escent devices and photovoltaic cells transparent ITO (indium-tin oxide) electrodes are used. These electrodes are made by vacuum sputtering of ITO onto a substrate. This method involves high temperatures, up to 250°C, and therefore glass substrates are generally used. The range of potential applications is limited, because of the high fabrication costs, the low flexibility (pliability) and stretchability as a consequence of the brittleness of the ITO layer and the glass substrate. Therefore the interest is growing in allorganic devices, comprising plastic resins as a substrate and
- 20 organic electroconductive polymer layers as electrodes. Such plastic electronics allow the realization of low cost devices with new properties (Physics World, March 1999, p.25-39). Flexible plastic substrates can be provided with an electroconductive polymer layer by continuous roller coating methods (compared to batch process such as sputtering) and the resulting organic electrodes enable the fabrication of electronic devices
- characterised by a higher flexibility and a lower weight.

 The production and the use of electroconductive polymers such
 as polypyrrole, polyaniline, polyacetylene, polyparaphenylene,
- 30 polythiophene, polyphenylenevinylene, polythienylenevinylene and polyphenylenesulphide are known in the art.

EP-A 440 957 discloses dispersions of polythiophenes, constructed from structural units of formula (I):

 35 in which R^1 and R^2 independently of one another represent hydrogen or a $C_{1\text{-}4}\text{-}alkyl$ group or together form an optionally substituted

 C_{1-4} -alkylene residue, in the presence of polyanions. Furthermore, EP-A-686 662 discloses mixtures of A) neutral polythiophenes with the repeating structural unit of formula (I),

s in which R¹ and R² independently of one another represent hydrogen or a C1-C4 alkyl group or together represent an optionally substituted C1-C4 alkylene residue, preferably an optionally with alkyl group substituted methylene, an optionally with C1-C12-alkyl or phenyl group substituted 1,2-ethylene residue or a 1,2-

10 cyclohexene residue, and B) a di- or polyhydroxy- and/or carboxy groups or amide or lactam group containing organic compound; and conductive coatings therefrom which are tempered at elevated temperature, preferably between 100 and 250 °C, during preferably 1 to 90 seconds to increase their resistance preferably to < 300 15 ohm/square.</p>

EP-A 614 123 discloses a water-soluble electrically conductive composition of matter comprising a polyacid and a polymer comprising at least one conjugated region composed of repeating units which contain a conjugated basic atom. However, as water-soluble electrically conductive polymer comprising at least one conjugated region composed of repeating units which contain a conjugated basic atom, only polyaniline and substituted polyanilines are exemplified.

EP-A 382 046 discloses an electrically conductive resist 25 material, essentially comprising at least one ionic radiation-sensitive polymer and a soluble electrically conductive oligomer or a soluble electrically conductive polymer. Polymers of substituted thiophenes are exemplified, but no specific ionic radiation-sensitive polymers.

EP-A 338 786 discloses a negative working, photosensitive, overlay color proofing film which comprises, in order: (i) a transparent substrate; (ii) a photosensitive layer on the substrate, which photosensitive layer comprises a light sensitive, negative working, polymeric diazonium compound which is the polycondensation product of 3-methoxy-4-diazodiphenylamine sulfate and 4,4'-bis-methoxymethyl diphenyl ether precipitated as the

chloride salt, which diazonium compound is present in sufficient amount to photosensitize the layer; and a water insoluble, water swellable binder resin in sufficient amount to bind the layer components in a uniform film; and at least one colorant in sufficient amount to uniformly color the layer; wherein upon imagewise exposure of the photosensitive layer to sufficient actinic radiation the film is capable of being developed with water alone.

Coated layers of organic electroconductive polymers can be
structured into patterns using known microlithography techniques.
In WO-A-97 18944 a process is described wherein a positive or
negative photoresist is applied on top of a coated layer of an
organic electroconductive polymer, and after the steps of
selectively exposing the photoresist to UV light, developing the
15 photoresist, etching the electroconductive polymer layer and
finally stripping the non-developed photoresist with an organic
solvent, a patterned layer is obtained. A similar technique has
been described in 1988 in Synthetic Metals, volume 22, pages 265271 for the design of an all-organic thin-film transistor. Such
methods are cumbersome as they involve many steps and require the
use of hazardous chemicals.

OBJECTS OF THE INVENTION

It is an aspect of the present invention to provide a material having a outermost layer that can be processed to an electroconductive pattern by a simple, convenient method which involves a low number of steps and which does not require the use of hazardous chemicals.

SUMMARY OF THE INVENTION

An electroconductive pattern can be realized with the materials of the present invention, which are optionally 35 conductivity enhanced, by pattern-wise exposure, with or without a subsequent single wet processing step, and optional conductivity enhancement. No etching liquids or organic solvents are required.

The aspects of the present invention are realized by a material for making an electroconductive pattern, the material 40 comprising a support and a light-exposure differentiable element, characterized in that the light-exposure differentiable element comprises an outermost layer containing a polyanion and a polymer

or copolymer of a substituted or unsubstituted thiophene, and optionally a second layer contiguous with the outermost layer; and wherein the outermost layer and/or the optional second layer contains a light-sensitive component capable upon exposure of 5 changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer.

These objects are also realized by a method of making an electroconductive pattern on a support comprising the steps of: - providing a material as disclosed above;

image-wise exposing the material thereby obtaining a differentiation of the removability, optionally with a developer, of the exposed and the non-exposed areas of the outermost layer;
 processing the material, optionally with the developer, thereby removing areas of the outermost layer; and
 optionally treating the material to increase the

electroconductivity of the non-removed areas of the outermost layer.

These objects are also realized by a method of making an electroconductive pattern on a support without a removal step 20 comprising the steps of:

- providing a material for making an electroconductive pattern, said material comprising a support and a light-exposure differentiable element, characterized in that said light-exposure differentiable element comprises an outermost layer containing a polyanion and a polymer or copolymer of a substituted or unsubstituted thiophene having a surface resistivity lower than 10^6 Ω/square , and optionally a second layer contiguous with the outermost layer; and wherein the outermost layer and/or said optional second layer contains a bis(aryl diazosulfcnate) compound according to formula (I):

$MO_3S-N=N-Ar-L-Ar-N=N-SO_3M$ (I)

where Ar is a substituted or unsubstituted aryl group, L is a

35 divalent linking group, and M is a cation; capable upon exposure of
changing the removability of the exposed parts of the outermost
layer relative to the unexposed parts of the outermost layer; and
image-wise exposing the material thereby obtaining reduction in
the conductivity of the exposed areas relative to non-exposed

40 areas, optionally with a developer.

Further advantages and embodiments of the present invention will become apparent from the following description.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

The term "support" means a "self-supporting material" so as to distinguish it from a "layer" which may be coated on a support, but which is itself not self-supporting. It also includes any treatment necessary for, or layer applied to aid, adhesion to the light-exposure differentiable element.

The term electroconductive means having a surface resistivity below $10^6~\Omega/\text{square}$. Antistatic materials have surface resistivities in the range from $10^6~\text{to}~10^{11}~\Omega/\text{square}$ and cannot be used as an electrode.

The term electroconductive pattern means a pattern made up by the non-removed areas of the outermost layer, according to the present invention, which are electroconductive or can be made electroconductive by post-treatment.

Conductivity enhancement refers to a process in which the conductivity is enhanced e.g. by contact with high boiling point liquids such as di- or polyhydroxy- and/or carboxy groups or amide or lactam group containing organic compound optionally followed by heating at elevated temperature, preferably between 100 and 250 °C, during preferably 1 to 90 seconds, results in conductivity increase. Alternatively in the case of aprotic compounds with a 25 dielectric constant ≥ 15, e.g. N-methyl-pyrrolidinone, temperatures below 100°C can be used. Such conductivity enhancement is observed with polythiophenes and can take place during the preparation of the outermost layer or subsequently. Particularly preferred liquids for such treatment are N-methyl-pyrrolidinone and diethylene glycol such as disclosed in EP-A 686 662 and EP-A 1 003 179.

The term removability as used in the description and claims of the present invention means mechanically removable in the absence of a liquid or removable with the application of a liquid with or without the simultaneous or subsequent use of rubbing or other mechanical removal means. The application of liquid can dissolve, swell or disperse the outermost layer according to the present invention such that removal is realized or enabled.

The term light-exposure differentiable element means an 40 element which upon light exposure produces changes in the properties or composition of the exposed parts of the element with

respect to the properties or composition of the unexposed parts of the element.

The term multidiazonium salt includes all compounds with at least two groups with two nitrogen atoms bonded together with a s double or triple bond, such groups including $-N=N^-$ and -N=N-R groups e.g. -N=N-SOM groups.

The term resin comprising a diazonium salt means a resin with groups with two nitrogen atoms bonded together with a double or triple bond, such groups including ¬N≡N* and ¬N=N-R groups e.g.

10 ¬N=N-SO,M groups.

In the case of removal of parts (areas) of the outermost layer after pattern-wise exposure, the term surface resistivity ratio means the ratio of the surface resistivity of the parts (areas) of the light-exposure differentiable element from which parts (areas) of the outermost layer, according to the invention, have been removed to that of the parts (areas) of the light-exposure differentiable element from which no parts (areas) of the outermost layer, according to the invention, have been removed, after treatment to enhance the conductivity of the non-removed parts (areas) of the outermost layer if this is required to increase (enhance) the conductivity of the non-removed parts (areas) of the outermost layer.

In the case of non-removal of parts (areas) of the outermost layer after pattern-wise exposure, the term surface resistivity 25 ratio means the ratio of the surface resistivity of the exposed parts (areas) of the outermost layer to that of the non-exposed parts (areas) of the outermost layer.

Material for making an electroconductive pattern

The material for making an electroconductive pattern, according to the present invention, need not itself be electroconductive as long as patterns produced with such a material can be rendered electroconductive by a post-treatment process, such as a conductivity enhancement process. Furthermore, no material need be removed from the outermost layer containing a polymer or copolymer of a substituted or unsubstituted thiophene, according to the present invention, in order to realize an electroconductive pattern, after optional processing to remove the residual light-

subsequent to exposure is feasible. In this case the lightsensitive component present is capable upon exposure of realizing

40 sensitive component, as long as differential removability

TONGTO'S CASTONSI

35

this effect as well as changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer. The optional second layer must be between the outermost layer and the support as it cannot be the outermost layer.

Electroconductive

The term "electroconductive" is related to the electric resistivity of the material. The electric resistivity of a layer is generally expressed in terms of surface resistivity R_s (unit Ω_i often specified as $\Omega/square$). Alternatively, the electroconductivity may be expressed in terms of volume resistivity $R_v=R_s\cdot d$, wherein d is the thickness of the layer, volume conductivity $k_v=1$ $1/R_v$ [unit: S(iemens)/cm] or surface conductivity $k_s=1/R_s$ [unit: S(iemens).square].

All values of electric resistivity presented herein are measured according to one of the following methods. In the first method the support coated with the electroconductive outermost 20 layer is cut to obtain a strip having a length of 27.5 cm and a width of 35 mm and strip electrodes are applied over its width at a distance of 10 cm perpendicular to the edge of the strip. The electrodes are made of an electroconductive polymer, ECCOCOAT CC-2 available from Emerson & Cumming Speciality polymers. Over the 25 electrode a constant potential is applied and the current flowing through the circuit is measured on a pico-amperometer KEITHLEY 485. From the potential and the current, taking into account the geometry of the area between the electrodes, the surface resistivity in Ω/square is calculated.

In the second method, the surface resistivity was measured by contacting the outermost layer with parallel copper electrodes each 35 mm long and 35 mm apart capable of forming line contacts, the electrodes being separated by a teflon insulator. This enables a direct measurement of the surface resistivity.

Support

Supports for use according to the present invention include polymeric films, silicon, ceramics, oxides, glass, polymeric film reinforced glass, glass/plastic laminates, metal/plastic laminates, paper and laminated paper, optionally treated, provided with a subbing layer or other adhesion promoting means to aid adhesion to

the light-exposure differentiable element. Suitable polymeric films are poly(ethylene terephthalate), poly(ethylene naphthalate), polystyrene, polyethersulphone, polycarbonate, polyacrylate, polyamide, polyimides, cellulosetriacetate, polyolefins and 5 polyvinylchloride, optionally treated by corona discharge or glow discharge or provided with a subbing layer.

In the case of the realization of an electroconductive pattern via removal of exposed or non-exposed areas such treatment or subbing layer should not hinder complete removal, whereas if the electroconductive pattern can be realized without removal of exposed or non-exposed areas such treatment should make removal of non-exposed or exposed areas more difficult.

In a first embodiment of the material according to the present invention the support is treated with a corona discharge or a glow 15 discharge. Both corona discharge and glow discharge enable the use of polymeric films as a support without a subbing layer. Such materials can be developed, optionally while softly rubbing, and still yield an excellent conductivity ratio between exposed and non-exposed areas.

Light-exposure differentiable element

A light-exposure differentiable element, according to the present invention, is an element which upon light exposure produces changes in the properties or composition of the exposed parts of the element with respect to the properties or composition of the unexposed parts of the element. Examples of such changes are exposure-induced crosslinking; exposure-induced increase or decrease of solubility; and exposure-induced increase or decrease of adhesion to the support.

According to the present invention, these changes in the properties or composition of the light-exposure differentiable element are due to the presence of a light-sensitive component in the outermost layer and/or the second layer, which enables either the exposed or unexposed parts of the outermost layer to be removed, optionally with the assistance of a developer, i.e. the removability can either be rendered more (positive working) or less (negative working) removable by a developer upon exposure to light.

In a second embodiment of the material according to the 40 present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost

layer is a multidiazonium salt or a resin comprising a diazonium salt, which reduces the removability of exposed parts of the outermost layer. Combinations of resins comprising a diazonium salt can also be used. If the light-sensitive component is a 5 multidiazonium salt or a resin comprising a diazonium salt, increasing the pH of the coating dispersions and solutions used in preparing the light-exposure differentiable element has been found to improve the shelf-life, i.e. retention of properties upon storage, of materials according to the present invention. pH's 10 between 2.5 and 9 are preferred, with pH's between 3 and 6 being particularly preferred. Such pH's can, for example, be realized by adding ammonium hydroxide.

In a third embodiment of the material according to the present invention the light-sensitive component capable upon exposure of 15 changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a quinone diazide compound, which increases the removability of exposed parts of the outermost layer.

In a fourth embodiment of the material according to the 20 present invention the outermost layer has a surface resistivity lower than $10^6~\Omega/\text{square}.$

In a fifth embodiment of the material according to the present invention the outermost layer has a surface resistivity lower than $10^4\ \Omega/{\rm square}.$

In a sixth embodiment of the material according to the present invention the outermost layer has a surface resistivity capable of being lower than $10^6~\Omega/\text{square}$ after treatment in a so-called conductivity enhancement process.

Polymer or copolymer of a substituted or unsubstituted thiophene

In a seventh embodiment of the material according to the present invention the polymer of a substituted or unsubstituted thiophene corresponds to the formula (II):

35

in which n is larger than 1 and each of R^1 and R^2 independently represents hydrogen or an optionally substituted C_{1-4} alkyl group or together represent an optionally substituted C_{1-4} alkylene group or 5 an optionally substituted cycloalkylene group, preferably an ethylene group, an optionally alkyl-substituted methylene group, an optionally C_{1-12} alkyl- or phenyl-substituted ethylene group, a 1,3-propylene group or a 1,2-cyclohexylene group.

The preparation of such a polythiophene and of aqueous

10 dispersions containing such a polythiophene and a polyanion is

described in EP-A-40 957 and corresponding US-P-5 300 575.

Basically the preparation of polythiophene proceeds in the presence
of polymeric polyanion compounds by oxidative polymerisation of
3,4-dialkoxythiophenes or 3,4-alkylenedioxythiophenes according to

15 the following formula:

$$R^1 \longrightarrow O \longrightarrow R$$

wherein R^1 and R^2 are as defined above.

Stable aqueous polythiophene dispersions having a solids content of 0.05 to 55% by weight and preferably of 0.1 to 10% by 20 weight can be obtained by dissolving thiophenes corresponding to the formula above, a polyacid and an oxidising agent in an organic solvent or preferably in water, optionally containing a certain amount of organic solvent, and then stirring the resulting solution or emulsion at 0°C to 100°C until the polymerisation reaction is 25 completed. The polythiophenes formed by the oxidative polymerisation are positively charged, the location and number of such positive charges being not determinable with certainty and therefore not mentioned in the general formula of the repeating units of the polythiophene polymer.

The oxidising agents are those which are typically used for the oxidative polymerisation of pyrrole as described in for example J. Am. Soc. 85, 454 (1963). Preferred inexpensive and easy-to-handle oxidising agents are iron(III) salts, e.g. FeCl3, Fe(Cl04)3 and the iron(III) salts of organic acids and inorganic acids containing organic residues. Other suitable oxidising agents are H2O2, K2Cr2O7, alkali or ammonium persulphates, alkali perborates, potassium permanganate and copper salts such as copper tetrafluoroborate. Air or oxygen can also be used as oxidising

agents. Theoretically, 2.25 equivalents of oxidising agent per mol of thiophene are required for the oxidative polymerisation thereof (J. Polym. Sci. Part A, Polymer Chemistry, Vol. 26, p.1287, 1988). In practice, however, the oxidising agent is used in excess, for sample, in excess of 0.1 to 2 equivalents per mol of thiophene.

Polvanion

The polyacid forms a polyanion or, alternatively, the

polyanion can be added as a salt of the corresponding polyacids,
e.g. an alkali salt. Preferred polyacids or salts thereof are
polymeric carboxylic acids such as poly(acrylic acid),
poly((meth)acrylic acid) and poly(maleic acid) or polymeric
sulphonic acids such as poly(styrene sulphonic acid) or poly(vinyl
sulphonic acid). Alternatively, copolymers of such carboxylic
and/or sulphonic acids and of other polymerizable monomers such as
styrene or acrylates can be used.

In an eighth embodiment of the material according to the present invention the polyanion is poly(styrene sulphonate).

The molecular weight of these polyanion forming polyacids is preferably between 1000 and 2x10⁶, more preferably between 2000 and 5x10⁵. These polyacids or their alkali salts are commercially available and can be prepared according to the known methods, e.g. as described in Houben-Weyl, Methoden der Organische Chemie, Bd. 25 E20 Makromolekulare Stoffe, Teil 2, (1987), pp. 1141.

Dispersion of a polyanion and a polymer or copolymer of a substituted or unsubstituted thiophene

- The coating dispersion or solution of a polyanion and a polymer or copolymer of a substituted or unsubstituted thiophene can also comprise additional ingredients, such as one or more binders, one or more surfactants, spacing particles, UV-acutance compounds or IR-absorbers.
- Anionic and non-ionic surfactants are preferred. Suitable surfactants include ZONYLTM FSN 100 and ZONYLTM FSO 100, an ethoxylated non-ionic fluoro-surfactant with the structure: $F(CF_2CF_2)_yCH_2CH_2O\left(CH_2CH_2O\right)_xH, \text{ where } x=0 \text{ to ca. 15 and } y=1 \text{ to ca. } 7, \text{ both from Du Pont.}$

20 as resorcinol.

The coating dispersion or solution of a polyanion and a polymer or copolymer of a substituted or unsubstituted thiophene preferably also comprises an organic compound that is: a linear, branched or cyclic aliphatic C_{2-20} hydrocarbon or an optionally $_{5}$ substituted aromatic C_{6-14} hydrocarbon or a pyran or a furan, the organic compound comprising at least two hydroxy groups or at least one -COX or -CONYZ group wherein X denotes -OH and Y and Z independently of one another represent H or alkyl; or a heterocyclic compound containing at least one lactam group. 10 Examples of such organic compounds are e.g. N-methyl-2pyrrolidinone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidone, N,N,N',N'-tetramethylurea, formamide, dimethylformamide, and N,Ndimethylacetamide. Preferred examples are sugar or sugar derivatives such as arabinose, saccharose, glucose, fructose and 15 lactose, or di- or polyalcohols such as sorbitol, xylitol, mannitol, mannose, galactose, sorbose, gluconic acid, ethylene glycol, di- or tri(ethylene glycol), 1,1,1-trimethylol-propane, 1,3-propanediol, 1,5-pentanediol, 1,2,3-propantricl, 1,2,4butantriol, 1,2,6-hexantriol, or aromatic di- or polyalcohols such

Multidiazonium salts

A multidiazonium salt is a salt with at least two groups with 25 two nitrogen atoms bonded together with a double or triple bond, such groups including $-N\!\equiv\!N^{\scriptscriptstyle +}$ and $-N\!=\!N\!-\!R$ groups, e.g. $-N\!=\!N\!-\!SO_3M$ groups e.g. bisdiazonium salts, trisdiazonium salts, tetrakisdiazonium salts, bis(aryldiazosulphonate) salts, tris(aryldiazosulphonate) salt and terakis(bis(aryldiazosulphonate) salts.

Upon exposure the light-exposure differentiable element containing a multidiazonium salt is converted from water removable to water unremovable (due to the destruction of the diazonium groups) and additionally the photolysis products of the diazo may increase the level of crosslinking of the polymeric binder or resin 35 comprising a multidiazonium salt if present, thereby selectively converting the surface, into an image pattern, from removable to unremovable. The unexposed areas remain unchanged, i.e. removable. Combinations of multidiazonium salts can also be used.

Bisdiazonium salts for use in the present invention include: 40 benzidine tetrazoniumchloride, 3,3'-dimethylbenzidine tetrazoniumchloride, 3,3'-dimethoxybenzidine tetrazoniumchloride, 4,4'-diaminodiphenylamine tetrazoniumchloride,

3,3'-diethylbenzidine tetrazoniumsulphate, 4-aminodiphenylamine diazoniumsulphate, 4-aminodiphenylamine diazoniumchloride, 4-piperidino aniline diazoniumsulphate, 4-diethylamino aniline diazoniumsulphate and oligomeric condensation products of 5 diazodiphenylamine and formaldehyde.

In a ninth embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a bis(aryldiazosulphonate) salt, a tris(aryldiazosulphonate) salt or a tetrakis(aryldiazosulphonate) salt, which reduces the removability of exposed parts of the outermost layer.

In an tenth embodiment of the material according to the present invention the light-sensitive component capable upon sexposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a bis(aryldiazosulphonate) salt, which reduces the removability of exposed parts of the outermost layer, according to formula (I):

 $MO_3S-N=N-Ar-L-Ar-N=N-SO_3M$ (I)

where Ar is a substituted or unsubstituted aryl group, L is a divalent linking group, and M is a cation. L preferably represents a substituted or unsubstituted divalent aryl group or a substituted or unsubstituted at unsubstituted action and a substituted saturated alkylene group, whose chain is optionally substituted with at least one of an oxygen atom, a sulphur atom or a nitrogen atom. Ar preferably represents an unsubstituted phenyl group or a phenyl group substituted with one or more alkyl groups, aryl groups, alkoxy groups, aryloxy groups or amino groups. M preferably represents a cation such as NH₄⁺ or a metal ion such as a cation of Al, Cu, Zn, an alkaline earth metal or alkali metal.

Particularly suitable bis(aryldiazosulphonate) salts, 35 according to the present invention, are:

	,		
	λ_{max}	absorption	
	[nm]	of a 25ppm	
		solution	
		in water	
BADS01	308	0.785	$\begin{array}{c} \text{CH}_3 & \text{O} = \begin{array}{c} \text{O} \\ \text{S} = \text{OH} \end{array}$
			HO—S—O CH ₃
BADS02	308	1.568	$\begin{array}{c} \text{HO} \\ \text{Na} \end{array} \Big]_2$
BADS03		-	О = S — ОН N N N N N N N N N N N N N N N N N N N

In an eleventh embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a bis(aryldiazosulphonate) salt, which reduces the removability of exposed parts of the outermost layer, is selected from the group consisting of BADS01, BADS02 and BADS03.

In a first embodiment of the method of making an 10 electroconductive pattern on a support without a removal step,

15

according to the present invention, the aryldiazosulfonate according to formula (I) is selected from the group consisting of BADS01, BADS02 and BADS03.

Resins comprising a diazonium salt

The term resin comprising a diazonium salt means a resin with groups with two nitrogen atoms bonded together with a double or triple bond, such groups including -N=N+ and -N=N-R groups e.g. 10 -N=N-SO3M groups. Suitable resins comprising a diazonium salt, according to the present invention, include polymers or copolymers of an aryldiazosulphonate and condensation products of an aromatic diazonium salt. Such condensation products are described, for example, in DE-P-1 214 086.

Upon exposure the light-exposure differentiable element containing resins comprising a diazonium salt are converted from removable to unremovable (due to the destruction of the diazonium groups) and additionally the photolysis products of the diazo may increase the level of crosslinking of the polymeric binder or resin 20 comprising a diazonium salt, thereby selectively converting the surface, into an image pattern, from removable to unremovable. The unexposed areas remain unchanged, i.e. removable.

In a twelfth embodiment of the material according to the present invention the light-sensitive component capable upon 25 exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a polymer or copolymer of an aryldiazosulphonate, which reduces the removability of exposed parts of the outermost layer.

In a thirteenth embodiment of the material according to the 30 present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a polymer or copolymer of an aryldiazosulphonate, which reduces the removability of exposed parts of the outermost layer, 35 represented by formula (III):

$$R^2$$
 $(L)_n$ $A-N=N-SO_3M$ R^1 R^0

wherein R^0 , R^1 and R^2 each independently represent hydrogen, an alkyl group, a nitrile or a halogen, e.g. Cl, L represents a divalent linking group, n represents 0 or 1, A represents an aryl group and M represents a cation. L preferably represents divalent 5 linking group selected from the group consisting of: -(X)+-CONR3-. $-(X)_t$ -COO-, -X- and $-(X)_t$ -CO-, wherein t represents 0 or 1; R^3 represents hydrogen, an alkyl group or an aryl group; X represents an alkylene group, an arylene group, an alkylenoxy group, an arylenoxy group, an alkylenethio group, an arylenethio group, an 10 alkylenamino group, an arylenamino group, oxygen, sulphur or an aminogroup. A preferably represents an unsubstituted aryl group, e.g. an unsubstituted phenyl group or an aryl group, e.g. phenyl, substituted with one or more alkyl groups, aryl groups, alkoxy groups, aryloxy groups or amino groups. M preferably represents a 15 cation such as $\mathrm{NH_4}^+$ or a metal ion such as a cation of Al, Cu, Zn, an alkaline earth metal or alkali metal.

Polymers and copolymers of an aryldiazosulphonate can be prepared by homo- or copolymerization of aryldiazosulphonate monomers with other aryldiazosulphonate monomers and/or with vinyl monomers such as (meth)acrylic acid or esters thereof, (meth)acrylamide, acrylonitrile, vinylacetate, vinylchloride, vinylidene chloride, styrene, alpha-methyl styrene etc. A particularly preferred comonomer is hydroxyethylmethacrylate. Suitable aryldiazosulphonate monomers for preparing such polymers and copolymers of an aryldiazosulphonate, as used in the present invention, are:

ADS-MONOMER 03	CH ₂ Na HO S O
ADS-MONOMER 04	N N S OH
ADS-MONOMER 05	HN HN HO — S = O
ADS-MONOMER 06	HN Na

Specific examples of suitable aryldiazosulphonate polymers are described in ${\tt EP-A-771}$ 645.

Suitable resins comprising a diazonium salt, according to the 5 present invention, are given below. In the case of polymers and copolymers of an aryldiazosulphonate, the respective monomer ratios are expressed as percentages by weight.

NDP01	=	Negalux N18, a diphenylamine diazonium resin from PCAS
NDP02	=	diazo resin No.8 from FAIRMOUNT CHEMICAL
NDP03	=	methyl methacrylate, ADS-MONOMER 01 (82/18) copolymer
1		homopolymer of ADS-MONOMER 01
NDP05	=	hydroxyethylacrylate, ADS-MONOMER 01 (80/20) copolymer
NDP06	=	methyl methacrylate, ADS-MONOMER 01 (80/20) copolymer
NDP07	=	N-isopropyl-acrylamide, ADS-MONOMER 01 (80/20) copolymer
		N-isopropyl-acrylamide, ADS-MONOMER 01 (85/15) copolymer
NDP09	=	N-t-butyl-acrylamide, ADS-MONOMER 01 (75/25) copolymer
NDP10	=	N-t-butyl-acrylamide, ADS-MONOMER 01 (70/30) copolymer
NDP11	=	hydroxyethyl methacrylate, 2-propenoic acid, 2-methyl-,2-
		[{[(2-nitrophenyl)methoxy]carbonyl}amino]ethyl ester, ADS-
		MONOMER 01 (85/10/5) terpolymer
NDP12	=	hydroxyethyl methacrylate, ADS-MONOMER 01 (95/5) copolymer
NDP13	=	hydroxyethyl methacrylate, ADS-MONOMER 01 (97/3) copolymer
		hydroxyethyl methacrylate, ADS-MONOMER 01 (90/10) copolymer
NDP15	=	hydroxyethyl methacrylate, ADS-MONOMER 01 (80/20) copolymer
NDP16	=	methyl methacrylate, ADS-MONOMER 01 (40/60) copolymer
1		methyl methacrylate, ADS-MONOMER 01 (60/40) copolymer
		phenyl methacrylate, ADS-MONOMER 01 (40/60) copolymer
		3-methacryloxypropyltriisopropylsilane, methyl
		methacrylate, ADS-MONOMER 01 (10/70/20) copolymer

	_	
NDP20	=	2-propenoic acid 2-phosphonooxy)ethyl ester, methyl
		methacrylate, ADS-MONOMER 01 (2/80/18) copolymer
NDP21	=	acrylic acid, ADS-MONOMER 01 (80/20) copolymer
NDP22	=	4-(2-acryloyloxyethoxy)phenyl 2-hydroxy-2-propyl ketone,
		methyl methacrylate, ADS-MONOMER 01 (10/70/20) copolymer
NDP23	=	acrylonitrile, methyl methacrylate, ADS-MONOMER 01
		(10/70/20) copolymer
NDP24	=	ADS-MONOMER 06, methyl methacrylate, ADS-MONOMER 01
		(5/80/15) copolymer
NDP25	=	ADS-MONOMER 07, methyl methacrylate, ADS-MONOMER 01
		(3/82/15) copolymer
NDP26	=	methyl methacrylate, ADS-MONOMER 02 (80/20) copolymer
NDP27	=	methyl methacrylate, ADS-MONOMER 03 (80/20) copolymer
NDP28	=	methyl methacrylate, ADS-MONOMER 05 (75/25) copolymer
NDP29	=	methyl methacrylate, ADS-MONOMER 04 (80/20) copolymer
NDP30	=	methyl methacrylate, ADS-MONOMER 01 (ammonium salt) (80/20)
		copolymer
NDP31	=	methyl methacrylate, ADS-MONOMER 01 (tetramethylammonium
		salt) (80/20) copolymer
NDP32	=	methyl methacrylate, ADS-MONOMER 01 (tetraethylammonium
		salt) (80/20) copolymer
NDP33	=	hydroxyethyl methacrylate, ADS-MONOMER 01 (85/15) copolymer
NDP34	=	condensation product of 4-diazodiphenylamine sulphate and
	L	formaldehyde
NDP35	=	condensation product of 4-diazodiphenylamine toluene
		sulphonate and formaldehyde
NDP36	=	condensation product of 4-diazodiphenylamine
		tetrafluoroborate and formaldehyde

In a fourteenth embodiment of the material according to the present invention in the light-exposure differentiable element the weight ratio of the polymer or copolymer of an aryldiazosulphonate 5 to the polymer or copolymer of a substituted or unsubstituted thiophene is between 10:200 and 400:200.

Combination of a multidiazonium salt and a resin comprising a diazonium salt

In a fifteenth embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the

3.5

outermost layer relative to the unexposed parts of the outermost layer is a combination of a resin comprising an aryldiazosulphonate, which reduces the removability of exposed parts of the outermost layer, and a bis(aryldiazosulphonate) salt, 5 which reduces the removability of exposed parts of the outermost layer.

In a sixteenth embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a combination of a resin comprising an aryldiazosulphonate, which reduces the removability of exposed parts of the outermost layer, and a bis(aryldiazosulphonate) salt, which reduces the removability of exposed parts of the outermost layer, in the weight percentage ratio range of 60%/40% to 10%/90%.

In a seventeenth embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost 20 layer is a combination of a resin comprising an aryldiazosulphonate, which reduces the removability of exposed parts of the outermost layer, and a bis(aryldiazosulphonate) salt, which reduces the removability of exposed parts of the outermost layer, in the weight percentage ratio range of 50%/50% to 20%/80%. In an eighteenth embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a combination of a copolymer of hydroxyethylmethacrylate 30 and sodium-4-methacryloyl-aminophenyl-diazo-sulphonate, which reduces the removability of exposed parts of the outermost layer, and an bis(aryldiazosulphonate) salt, which reduces the removability of exposed parts of the outermost layer.

Quinone diazide compounds

In a nineteenth embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is a quinonediazide compound, which increases the removability of exposed parts of the outermost layer.

In a twentieth embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost sayer is an o-quinone-diazide compound (NQD), which increases the removability of exposed parts of the outermost layer.

Particularly preferred o-quinone-diazide compounds are onaphthoquinonediazidosulphonic acid esters or o-naphthoquinone diazidocarboxylic acid esters of various hydroxyl compounds and onaphthoquinonediazidosulphonic acid amides or o-naphthoquinonediazidocarboxylic acid amides of various aromatic amine compounds.

Two variants of NQD systems can be used : one-component systems and two-component systems. In the former case, the sulphonic or carboxyl acid group is linked directly to the phenolic 15 hydroxy group of a water insoluble, alkali soluble or swellable resin having a phenolic hydroxy group. It is preferred that some phenolic hydroxy groups remain unsubstituted. Examples of such compounds include phenol, cresol, resorcinol and pyrogallol. Examples of preferred water insoluble, alkali soluble or swellable 20 resins having a phenolic hydroxy group include phenol-formaldehyde resin, cresol-formaldehyde resin, pyrogallol-acetone resin and resorcinol-benzaldehyde resin. Typical examples include esters of napthoquinone-(1,2)-diazidosulphonic acid and phenol-formaldehyde resin or cresol-formaldehyde resin, esters of naphthoguinone-(1,2)-25 diazido-(2)-5-sulphonic acid and pyrogallol-acetone resin as disclosed in US 3,635,709 and esters of naphthoguinone-(1,2)diazido-(2)-5-sulphonic acid and resorcinol-pyrogallol-acetone copolycondensates as disclosed in JP KOKAI No. Sho 55-76346.

Examples of other useful compounds are polyesters having
30 hydroxyl groups at their termini esterified with o-naphthoquinonediazidesulphonyl chloride as disclosed in JP KOKAI No. Sho 50117503; homopolymers of p-hydroxystyrene or copolymers thereof with
other copolymerizable monomers esterified with o-naphthoquinonediazidosulphonyl chloride as disclosed in JP KOKAI No. Sho 5035 113305; condensates of alkyl acrylate-acryloyloxyalkyl carbonatehydroxyalkyl acrylate copolymers with o-naphthoquinonediazidosulphonyl chloride as disclosed in US 3,859,099; amides of
copolymers of p-aminostyrene and monomers copolymerizable therewith
and o-naphthoquinonediazido-sulphonic acid or o-naphthoquinonedo diazidocarboxylic acid as disclosed in US 3,759,711; as well as
ester compounds of polyhydroxybenzophenone and o-naphthoquinonediazidosulphonyl chloride.

In a twenty-first embodiment of the material according to the present invention the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost slayer is an o-quinone-diazide compound (PQD), which increases the removability of exposed parts of the outermost layer, and the light-exposure differentiable element further contains an alkali soluble resin.

Particularly suitable quinonediazide compounds according to to the present invention are:

PQD01	=	AZ 7217, a positive working photoresist from CLARIANT
PQD02	=_	2-diazo-1-naphthol-5-sulfonic acid sodium salt
PQD03	=_	1-diazo-2-naphthol-4-sulfonic acid sodium salt
PQD04	=	2-diazo-1-naphthol-5-(4'-methyl-phenylsulphonate)
PQD05	=	2-diazo-1-naphtho1-5-phenylsulphonate
PQD06	=	bis(6'-diazo-5'-oxy-5'-sulphonate naphthalene)-2,4- benzophenone
PQD07	=	2-diazo-1-oxy-(2'-benzotriazolyl-4'-methyl-phenyl)-5- sulphonate naphthalene
PQD08	H :	partial esterification product of 1,2-naphthoquinone (2) diazide-5-sulfonyl chloride and a p-t-butylphenol- formaldehyde copolymer
PQD09	=	partial esterification product of 1,2-naphthoquinone diazide-5-sulfonyl chloride and a cresol formaldehyde polymer
PQD10	=	partial esterification product of 1,2-naphthoquinone (2) diazide-5-sulfonylchloride and a p-cresol-formaldehyde resin
PQD11	=	partial esterification product of 1,2-naphthoquinone (2) diazide-5-sulfonyl chloride and a p-t-butylphenol- formaldehyde copolymer

Binders

In the materials for making an electroconductive pattern, according to the present invention, the light-exposure differentiable element contains a binder.

In a twenty-second embodiment of the material according to the present invention the outermost layer contains a binder, e.g. 20 polyvinyl alcohol and a vinylidene chloride, methyl methacrylate,

itaconic acid (88/10/2) terpolymer, if the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is present in the outermost layer.

In a twenty-third embodiment of the material according to the present invention the optional second layer contains a binder, e.g. polyvinyl alcohol and a hydroxyethyl methacrylate copolymer, if the light-sensitive component capable upon exposure of changing the removability of the exposed parts of the outermost layer relative to the unexposed parts of the outermost layer is present in the second layer.

Suitable binders for use in the present invention are described in EP-A 564 911 and include water-soluble polymers, such as poly(vinyl alcohol), water-soluble homo- and co-polymers of acrylic acid and homo- and co-polymers of methacrylic acid, and polymer latexes. Preferred binders include poly(vinyl alcohol) and homo- and co-polymers of hydroxyethyl methacrylate and copolymers of 2-propenoic acid 2-phosphonooxy)ethyl ester, copolymers of 2-methyl-2-propenoic acid 2-phosphonooxy)ethyl ester. Such binders 20 may be treated with a hardening agent, e.g. an epoxysilane such as 3-glycidyloxypropyltrimethoxysilane as described in EP-A 564 911, which is especially suitable when coating on a glass substrate.

In the application of NQD as two-component systems various low-molecular NOD sulphonic or carboxvl acid derivatives are 25 dissolved mainly in certain water insoluble, alkali soluble or swellable resins; the latter acts as polymeric binder for NOD. Preferably the 4- or 5- sulphonyl or carboxyl substituted 1,2 naphthoguinonediazides are esters of 1,2 naphthoguinonediazides-4or -5-sulphonic or carboxylic acids with a phenolic compound having 30 at least two phenolic hydroxy groups, more preferably with a phenolic compound having at least three phenolic hydroxy groups. Further suitable 1,2 naphthoguinone-2-diazides are disclosed in GB-A 739654 and in US 4,266,001. Preferred water insoluble, alkali soluble or swellable resins are resins, which comprise phenolic 35 hydroxy groups, oxime groups or sulphonamido groups. More preferred are resins having phenolic hydroxy groups, and chenolic hydroxy functionalized derivatives of poly(meth)acrylates, which can be synthesised starting from e.g. hydroxyethyl(meth)acrylate. Most preferred are synthetic novolac resins and typical examples thereof 40 are phenolformaldehyde resin, cresol-formaldehyde resin, and phenol-cresol-formaldehyde copolycondensed resins as disclosed in JP KOKAI No. Sho 55-57841.

Exposure process

The material of the present invention can be image-wise exposed to ultraviolet light optionally in combination with blue 5 light in the wavelength range of 250 to 500 nm or infrared light. Upon image-wise exposure, a differentiation of the removability with a developer of the exposed and non-exposed areas is induced. Useful exposures ources are high or medium pressure halogen mercury vapour lamps, e.g. of 1000 W or lasers having an emission wavelength in the range from about 700 to about 1500 nm, such as a semiconductor laser diode, a Nd:YAG laser or a Nd:YIF laser.

Development process

After the image-wise exposure the material is developed in a developer which can be deionized water or is preferably waterbased. During development the exposed (positive working) or nonexposed (negative working) areas together with the electroconductive polymer are removed and an electroconductive 20 pattern is thereby obtained. Suitable aqueous developers are deionized water, AZ303 (Clariant) or EN232 (AGFA-GEVAERT N.V.). When a subbing layer (also called substrate layer) is present on the support the material is preferably rubbed thoroughly with a tissue during development to avoid residual conductivity. The 25 rubbing can be done in the processing fluid or in a separate water bath after the development stage. Equal results can be obtained by applying a high pressure water jet after the development stage, thereby avoiding contact with the conductive areas. Alternatively, if conductivity enhancement is necessary, the developer can contain 30 the conductivity enhancement agent, thereby combining the steps of development and contact with the conductivity enhancement agent.

While the present invention will hereinafter be described in connection with preferred embodiments thereof, it will be 35 understood that it is not intended to limit the invention to those embodiments. All percentages given in the EXAMPLES are percentages by weight unless otherwise stated.

EXAMPLES

Ingredients used in the light-exposure differentiable element which are not mentioned above:

PEDOT = poly(3,4-ethylenedioxythiophene) PSS = poly(styrene sulphonic acid) LATEX01 = vinylidene chloride, methyl methacrylate, itaconic acid (88/10/2) terpolymer, available as 30% aqueous dispersion = 3-glycidoxypropyltrimethoxysilane from DOW CORNING 7.6040 ZONYLTM FSO 100 = an ethoxylated non-ionic fluoro-surfactant with

the structure: $F(CF_2CF_2)_yCH_2CH_2O(CH_2CH_2O)_xH$, where x

= 0 to ca. 15 and y = 1 to ca. 7 from Du Pont

Ingredients used in the subbing layers:

= a copolyester of 26.5 mol% terephthalic acid, 20 TATEX 02 mol% isophthalic acid, 3.5 mol% 5sulphoisophthalic acid and 50 mol% ethylene glycol available as a 20% aqueous dispersion; = a copolymer of 80% ethyl acrylate and 20% LATEX03 methacrylic acid available as a 27% aqueous dispersion:

LATEX04 = a copolymer of 49% methyl methacrylate, 49% of butadiene and 2% itaconic acid;

KIESELSOL 100F = a colloid silica from BAYER, available as a 30%

aqueous dispersion;

KIESELSOL 300F = a colloidal silica from BAYER, available as a 30% aqueous dispersion;

ARKOPONTM T = a sodium salt of N-methyl-N-2-sulfoethyloleylamide by HOECHST a surfactant from HOECHST, supplied as a 40% concentrate;

MERSOLATTMH76 = a sodium pentadecylsulfonate by BAYER, supplied as a 76% concentrate;

ULTRAVONTM W = a sodium arylsulfonate from CIBA-GEIGY, supplied as a 75-85% concentrate;

ARKOPALTM N060 = a nonylphenylpolyethylene-glycol from HOECHST;

HORDAMERTM PE02 = polyethylene from HOECHST, available as a 40% aqueous dispersion;

PAREZ RESINTM = melamine-formaldehyde resin from AMERICAN CYANAMID 613 available as 80% solids;

The following supports based on 100 µm polyethylene terephthalate film were used in the EXAMPLES:

<u></u>	
Support nr.	Composition
01	subbing layer consisting of 79.1% LATEX01; 18.6%
	KIESELSOL™100F; 0.5% MERSOLAT™H; and 1.9% ULTRAVON™W
02	surface treated with a corona discharge
03	surface treated with an glow discharge
04	subbing layer consisting of a first layer of 79.1%
	LATEX01; 18.6% KIESELSOL™100F; 0.5% MERSOLAT™H; and
	1.9% ULTRAVONTMW; and an outermost layer consisting of
	49% gelatin, 44% KIESELSOLTM300F, 1.72% ULTRAVONTMW,
	0.86% ARKOPAL™N060, 2.86% hexylene g1ycol, 1.43%
	trimethylol propane and 0.13% polymethyl methacylate, a
	3μm matting agent.
05	subbing layer consisting of 77.2% of LATEX02; 5.8% of
	LATEX03; 1.3% HORDAMER™ PE02 and 14.6% PAREZ RESIN™
	613.
06	subbing layer consisting of a first layer of 85.6% of
	LATEX01, 9.5% of KIESELSOL™100F, 2.5% of PEDOT/PSS,
	0.5% of MERSOLATTM76H and 1.9% ULTRAVONTMW; and an
	outermost layer consisting of 49% gelatin, 44%
	KIESELSOL™300F, 1.72% ULTRAVON™W, 0.86% ARKOPAL™N060,
	2.86% 2-methyl-2,4-pentanediol, 1.43% trimethylol
	propane and 0.13% polymethyl methacylate 3 µm matting
	agent.
07	subbing layer consisting of 79.8% LATEX02; 19.9%
	KIESELSOLTM100F; and 0.3% ARKOPONTMT
0.8	subbing layer consisting of 75.0% LATEX01, 9.0% LATEX03
	and 16.0% KIESELSOLTM100F

For the corona discharge treatment of polyethylene terephthalate film in air, an AHLBRANDTTM corona treater type 53-02 was used 5 consisting of 2 quartz electrodes, a grounded treater roll and a 15 kHz generator. The air gap between the electrode and film was 1.2 mm and the film was endowed with optimal adhesion properties by transporting it at a speed of 10 m/min under the corona treater at a watt density of 400 Wmin/m².

The glow discharge treatment of polyethylene terephthalate film was carried out in a vacuum system consisting of a reactor vessel, vacuum pumps, a gas inlet, a DC power source and a titanium glow cathode. The operating conditions used were a transport speed

of 40m/min, an air pressure of 10^{-2} mbar and a power density of 40 Wmin/m² and a distance between the cathode and film of 100 mm.

The aqueous dispersions of PEDOT/PSS in a weight ratio of 1:2.4 used in the EXAMPLES were prepared according to the method described in EP-A-1 079 397. The particle size of the PEDOT/PSS 10 latex was determined by CPS disc centrifuge measurements to be narrow with a maximum at 25 nm with an average particle size of 30-50 nm.

EXAMPLE 1

DALERTI DE

In EXAMPLE 1, a negative working light-sensitive compound was used for patterning a polythiophene outermost layer. Support nr. 1 was coated on the subbed side with 40mL/m² (40µm wet thickness) of the coating dispersion given in Table 1. The compositions of the dried outermost layers are also given in Table 1.

Table 1:

			SAMI	PLE			
INGREDIENT [g]	I(COMP)	II	III	IV	V	VI	VII
1.2% aqueous dispersion of PEDOT/PSS	417	417	417	417	417	417	417
0.25% aqueous solution of NDP01	-	100	250	500	-	_	
0.25% aqueous solution of NDP02	-		-	-	100	250	500
LATEX01	8.3	-	-				
2% aqueous solution of ZONYL™FSO 100	10	10	10	10	10	10	10
N-methyl-pyrrolidinone	50	50	50	50	50	50	50
deionized water	514.7	423	273	23	423	423	423
COVERAGE [mg/m ²]							
PEDOT/PSS	200	200	200	200	200	200	200
NDP01	-	10	25	50	-	-	-
NDP02	-	-	-	-	10	25	50
LATEX01	100	-	-	-	-	-	-
ZONYL™ FSO 100	8	8	8	8	8	8	8

25 The Samples were exposed through a mask on a PRINTON™ CDL 15021 UV contact exposure unit (from AGFA-GEVABRT N.V.) for 30-75s at 2 mW/cm² (= exposure of 0.06-0.15 J/cm²) and processed with deionized water. The results are given in Table 2.

Table 2:

	SAMPLE								
PROPERTY	I(COMP)	II	III	IV	V	VI	VII		
R _s differentiation between exposed and non-exposed areas after processing	no	yes	yes	yes	yes	yes	yes		
R_{s} (Ω/square) of coated layer before patterning	730	760	650	980	490	620	1500		
R_s (Ω /square) of the non-exposed areas after exposure and processing	-	10 ⁴	10 ⁴	10 ⁴	10 ⁴		5 x 10 ⁴		
$R_{\rm S}~(\Omega/{\rm square})$ of the non-exposed areas after exposure and thorough rubbing during processing	-	>10 ¹⁰							
R_s (Ω /square) of the exposed areas after exposure and processing	730	850	650	960	480	630	1500		

The results in Table 2 show that for the samples II to VII s according to the invention, structured conducting PEDOT/PSS-containing outermost layers were obtained and that the patterning method of exposure and developing does not substantially affect the conductivity of the outermost layer. After processing the surface resistivity of the non-exposed areas was above $10^4~\Omega/\mathrm{square}$. A surface resistivity in the non-exposed areas above $10^{10}~\Omega/\mathrm{square}$ could be obtained when the material was rubbed thoroughly with a tissue during processing.

EXAMPLE 2

15

In EXAMPLE 2, a negative working light-sensitive compound was used for patterning a polythiophene outermost layer. Support nr. 1 was coated on the subbed side $% \frac{1}{2}$ with $40mL/m^{2}$ (40µm wet thickness) of the coating dispersions given in Table 3 and dried giving the

20 compositions given in Table 3.

Table 3: composition of the coating dispersions

	SAMPLE							
INGREDIENT [g]	VIII(COMP)	IX	Х	XI	XII	XIII	XIV	
1.2% aq. PEDOT/PSS dispersion	417	417	417	417	417	417	417	
17% solution of NDP03 in isopropanol/water (60/40)	_	1.5	3.7	7.1	14.2	28.4	56.8	
LATEX01	8.3		-	_	-		-	
2% aq. sol. ZONYL™ FSO 100	10	10	10	10	10	10	10	
N-methyl-pyrrolidinone	50	50	50	50	50	50	50	
deionized water	514.7	522	519	516	509	495	466	
COVERAGE								
PEDOT/PSS [mg/m ²]	200	200	200	200	200	200	200	
NDP03 [mg/m ²]	_	10	25	50	100	200	400	
LATEX01 [mg/m ²]	100	-		_	_			
ZONYLTM FSO 100	8	8	8	8	8	8	8	

The samples were exposed through a mask on a PRINTONTM CDL 1502i UV 5 contact exposure unit (from AGFA-GEVAERT N.V.) for 250s at 2 mW/cm² (= exposure of 0.5 $\rm J/cm^2$) and processed in water while rubbing with a tissue under water and the results are presented in Table 4.

Table 4:

0

property	VIII(COMP)	IX	Х	XI	XII	XIII	XIV
Rs differentiation between	no	yes	yes	yes	yes	yes	yes
exposed and non-exposed	1						
areas after processing							
R_s (Ω /square) of coated	760	689	739	790	1100	1600	5500
layer before patterning							
R_s (Ω /square) of the non-	-	>10 ⁵	>105	>105	>105	>105	>105
exposed areas after		-					
exposure and processing							
R_s (Ω /square) of the non-	-	>1010	>1010	>1010	>1010	>1010	>10 10
exposed areas after	l						
exposure and thorough				İ			
rubbing during processing							
R_s (Ω /square) of exposed	760	1344	1375	1360	2100	2400	22000
areas after exposure and							
processing							

The results in Table 4 show that in the samples IX to XIV according to the invention structured conducting PEDOT/PSS-containing outermost layers were obtained. After processing the surface 15 resistivity of the non-exposed areas was above 10^5 Ω/square . A

surface resistivity in the non-exposed areas above $10^{10}~\Omega/\text{square}$ could be obtained when the material was rubbed thoroughly with a tissue during processing.

5 EXAMPLE 3

In EXAMPLE 3, NDP04, a homopolymer of ADS-MONOMER 01 was incorporated into the PEDOT/PSS-containing outermost layer to realize patterning of a polythiophene outermost layer. Samples XV to XXIV were produced by coating 40mL/m² of the dispersions given in Table 5 on Support nr. 1 to 8 to a wet thickness of 40µm. After drying the Samples XV to XXIV had the compositions also given in Table 5.

15 Table 5: composition of the coating dispersions

					SAM	PLE				
INGREDIENT [g]	XV	XVI	XVII	XVIII	XIX	XX	XXI	XXII	XXIII	XXIV
Support nr.	1	1	1	2	3	4	5	6	7	8
1.2% aqueous dispersion of PEDOT/PSS	417	417	417	417	417	417	417	417	417	417
17.8% aq. sol. of NDP04	7	14	21	14	14	14	14	14	14	14
2% aqueous solution of ZONYL TM FSO 100	10	10	10	10	10	10	10	10	10	10
N-methyl-pyrrolidinone	50	50	50	50	50	50	50	50	50	50
deionized water	516	509	502	509	509	509	509	509	509	509
COVERAGE										
PEDOT/PSS [mg/m ²]	200	200	200	200	200	200	200	200	200	200
NDP04 [mg/m ²]	50	100	150	100	100	100	100	100	100	100
ZONYL FSO 100 [mg/m ²]	8	8	8	8	8	8	8	8	8	8

The Samples were exposed through a mask on a PRINTONTM CDL 1502i UV contact exposure unit (from AGPA-GEVAERT N.V.) for 200s at 2 mW/cm 2 20 (= exposure of 0.4 J/cm 2) and processed in water (softly rubbing with a tissue under water). The results are given in Table 6.

Table 6:

		SAMPLE								
PROPERTY	XV	XVI	XVII	XVIII	XIX	XX	XXI	XXII	XXIII	XXIV
Support nr	1	1	1	2	3	4	5	6	7	8
R_s (Ω /square) of	1.7	5.2	1.5	3.8	3.8	1.8	4.1	2.5	4.0	9.7
coated layer before patterning	x 10 ³	x 10 ³	x 10 ⁴	x 10 ³	x 10 ³	x 10 ⁵	x 10 ³	x 10 ⁵	x 10 ³	x 10 ³
R_s (Ω /square) of	2.4	4.2	6.3	6.5	6.2	9.9	3.8	9.0	9.6	1.1
non-exposed areas after exposure and processing	x 10 ⁵	x 10 ⁵	x 10 ⁵	x 10 ¹²	x 10 ¹²	x 10 ⁸	x 10 ¹²	10 ⁶	x 10 ⁵	x 10 ⁵
R_s (Ω /square) of exposed areas after exposure	-	7.2 x 10 ³	-	5.6 x 10 ³	6.1 x 10 ³	2.4 x 10 ⁵	6.1 x 10 ³	3.4 x 10 ⁵	6.9 x 10 ³	2.2 x 10 ⁴
R _s (Ω/square) of exposed areas after exposure and processing	4.8 x 10 ⁴	1.6 × 10 ⁴	1.5 x 10 ⁵	1.2 x 10 ⁴	1.2 x 10 ⁴	1.0 x 10 ⁶	1.1 x 10 ⁴	1.2 x 10 ⁶	4.8 x	5.1 x 10 ⁴
R _s ratio non-ex- posed/exposed areas	5	26.3	4.2	5 x 10 ⁸	5 x 10 ⁸	990	4 x 10 ⁸	7.5	2.0	2.2

The results given in Table 6 indicate that the concentration of NDP04 in the PEDOT/PSS-containing outermost layer had a considerable effect on the resistance ratio non-exposed/exposed areas observed i.e. on the differentiation after processing between exposed and non-exposed areas, varying in the case of Support nr. 1 from 4 to 26.3.

The results given in Table 6 also indicate that the particular support used had a crucial effect on the resistance ratio non-exposed/exposed areas, i.e. on the differentiation after processing between exposed and non-exposed areas, varying from 2 to 5 x 10⁸. Particularly high resistance ratios of > 10⁸ were observed in the cases of Support nr. 2, 3 and 5 i.e. with supports treated with a corona discharge or a glow discharge or a support in which the particular subbing layer of Support nr. 5 was used. In the cases of samples XV, XVI and XVII coated on Support nr. 1, surface resistivities >10⁷ \(\Omega / \text{square} \) could be obtained by rubbing thoroughly with a tissue during processing (results not shown in Table 6).

The mask used for exposing the above samples consisted of alternating lines of high and low density, the lines having width down to 6 µm. These lines were reproduced very well in the patterned material, which showed conducting lines and non-25 conducting spaces of similar width.

EXAMPLE 4

In EXAMPLE 4, various copolymers incorporating ADS-MONOMER 01 were incorporated into the PEDCT/PSS-containing outermost layer to 5 realize patterning of a polythiophene outermost layer. Samples XXV to XXX were produced by coating 50mL/m² of the dispersions given in Table 7 on Support nr. 3, a polyethylene terephthalate film treated with a glow discharge to a wet thickness of 50µm.

10 Table 7:

	SAMPLE						
INGREDIENT [g]	XXV	XXV XXVI XXVII XXVIII XXIX XX					
1.2% ag. PEDOT/PSS dispersion		16.7	16.7	16.7	16.7	16.7	
2% aq. sol.of ZONYLTM FSO 100	0.50	0.50	0.50	0.50	0.50	0.50	
N-methyl-pyrrolidinone	2.50	2.50	2.50	2.50	2.50	2.50	
2.5% aqueous NH4OH solution	0.45	0.45	0.45	0.45	0.45	0.45	
15.16% aq. solution of NDP06	0.66		-	-			
17.03% aq. solution of NDP07*	-	0.59	-	-	_	-	
18.34% aq. solution of NDP08*	-		0.54	-	-		
16.8% aq. solution of NDP09*	-	-	-	0.59	-	-	
17.39% aq. solution of NDP10*	-	-	_	-	0.57	-	
16.63% aq. solution of NDP11*	-	_	-	-	-	0.60	
deionized_water	29.19	29.26	29.31	29.26	29.28	29.25	
COVERAGE							
PEDOT/PSS [mg/m ²]	200	200	200	200	200	200	
NDP06 [mg/m²]	100	-	_	-	-	-	
NDP07 [mg/m ²]	_	100	-	_	-	-	
NDP08 [mg/m ²]	-	-	100	-	_	-	
NDP09 [mg/m ²]	-	-	-	100	-	-	
NDP10 [mg/m ²]	-	-	-	-	100	-	
NDP11 [mg/m ²]		-	-	-	-	100	
ZONYL FSO 100 [mg/m ²]	8	8	8	8	8	8	

^{*} solution in water/isopropanol 40/60 by volume

The Samples were exposed through a mask on a PRINTON CDL 15021 UV contact exposure unit (from AGFA-GEVAERT N.V.) for 200s at 4 mW/cm² (= exposure of 0.8 $\rm J/cm^2$) and processed in water (softly rubbing with a tissue under water). The results are given in Table 8.

The results in Table 8 show that Samples XXV to XXX exhibited surface resistivity ratios of non-exposed to exposed areas after 20 processing of greater than 2200.

Table 8:

	SAMPLE						
PROPERTY	XXV	XXVI	XXVII	XXVIII	XXIX	XXX	
R_s (Ω /square) of coated layer before patterning		4.5 x 10 ³	3.4 x 10 ³	3.8 x 10 ³	3.2 x 10 ³	2.9 x 10 ³	
R_s (Ω /square) of non- exposed areas after exposure and processing	>4.0 x 10 ⁷						
R_s (Ω/square) of exposed areas after exposure and processing	1.5 x 10 ⁴	1.8 x 104	1.5 x 10 ⁴	1.5 x 10 ⁴	1.0 x 10 ⁴	1.2 x 10 ⁴	
R _s ratio non-exposed/ exposed areas	>2700	>2200	>2700	>2700	>4000	>3300	

EXAMPLE 5

In EXAMPLE 5, Samples XXX1 to XXXIV were prepared by first preparing the dispersions given in Table 9 by adding a solution of a copolymer incorporating ADS-MONOMER 01 and N-methyl-pyrrolidinone to an aqueous PEDOT/PSS-dispersion. 50mL/m² of these dispersions was then coated onto Support nr. 3, a polyethylene terephthalate film treated with a glow discharge, to a wet thickness of 50µm and dried to the compositions given in Table 9.

Table 9: composition of the coating dispersions

	SAMPLE					
INGREDIENT	XXX1	XXXII	XXXIII	XXXIV		
1.2% ag. dispersion of PEDOT/PSS	16.7	16.7	16.7	16.7		
2% aq. solution of ZONYL™ FSO 100	0.50	0.50	0.50	0.50		
N-methyl-pyrrolidinone	2.50	2.50	2.50	2.50		
2.5% aqueous NH4OH solution	0.45	0.45	0.45	0.45		
15.16% aq. solution of NDP06	0.66	-	-	-		
15.9% ag. solution of NDP12*	-	0.63	-	-		
15.9% ag. solution of NDP13*	-	-	0.63	-		
15.9% ag. solution of NDP14*	-	-	-	0.63		
deionized water	29.19	29.22	29.22	29.22		
COVERAGE						
PEDOT/PSS [mg/m ²]	200	200	200	200		
NDP06 [mg/m ²]	100	-	-	-		
NDP12 [mg/m ²]	-	100	-	-		
NDP13 [mg/m ²]	_	_	100	-		
NDP14 [mg/m ²]	-	_	-	100		
ZONYL FSO 100 [mg/m ²]	8	8	8.	8		

1

* solution in water/isopropanol 40/60 by volume

Since the conductivity-enhancing liquid N-methyl-pyrrolidinone is present in the coating dispersions conductivity enhancement takes place during the coating process resulting in PEDOT/PSS-outermost layers with a lower surface resistivity than such outermost layers prepared in the absence of N-methyl-pyrrolidinone, as taught in EP-A 686 662 and EP-A 1 003 179.

The Samples were exposed through a mask on a PRINTON $^{\rm M}$ CDL 10 15021 UV contact exposure unit (from AGFA-GEVARRT N.V.) for 200s at 4 mW/cm 2 (= exposure of 0.8 J/cm 2) and processed in water (softly rubbing with a tissue under water) and the results are given in Table 10.

The results in Table 10 show that Samples XXXI to XXXIV is exhibited surface resistivity ratios of non-exposed to exposed areas after processing of greater than 9000.

Table 10:

	SAMPLE					
PROPERTY	XXXI	XXXII	XXXIII	XXXIV		
R_s (Ω /square) of coated layer before patterning	2.8×10^{3}	1.9 x 10 ³		1.8×10^{3}		
R _s (Ω/square) of non- exposed areas after exposure and processing	>4.0 x 10 ⁷	>4.0 x 10 ⁷	>4.0 x 10 ⁷	1.6 x 10 ⁸		
$R_{\rm s}$ ($\Omega/{\rm square}$) of exposed areas after exposure and processing		3.6×10^3	4.5×10^3	4.2×10^3		
Resistance ratio non- exposed/exposed areas	>4 x 10 ³	>1.1 x 10 ⁴	>9 x 10 ³	3.8 x 10 ⁴		
Optical resolution of lines [µm]	8	4	40	4		
Optical resolution of spaces [µm]	>70	6	6	6		

20

EXAMPLE 6

In EXAMPLE 6, Samples XXXV to XL were prepared by first preparing the dispersions given in Table 11 by adding a solution of a 25 copolymer incorporating ADS-MONOMER 01 to an aqueous PEDOT/PSS-dispersion. 40mL/m² of these dispersions was then coated onto Support nr. 3, a polyethylene terephthalate film treated with a

glow discharge to a wet thickness of 40µm and dried. Since no conductivity-enhancing liquid is present in the coating dispersions, no conductivity enhancement takes place during the coating process resulting in PEDOT/PSS-containing outermost layers 5 with a higher surface resistivity than would otherwise have been the case.

Table 11: composition of the coating dispersions

	SAMPLE						
INGREDIENT [g]	VXXV	XXXVI	XXXVII	XXXVIII	XXXIX	XL	
1.2% aq. PEDOT/PSS dispersion	16.7	16.7	16.7	16.7	16.7	16.7	
2% aq. sol. ZONYLTM FSO 100	0.50	0.50	0.50	0.50	0.50	0.50	
2.5% aqueous NH4OH solution	0.50	0.50	0.50	0.50	0.50	0.50	
15.9% solution of NDP15*	0.63		-	-	-	-	
17.6% solution of NDP20*	-	0.57	-			-	
17.4% solution of NDP21*	-		0.58	_			
14.02% solution of NDP23*	-		_	0.72	-	-	
14.36% solution of NDP27*	_		-	-	0.70	-	
18.81% solution of NDP32*		-		-	-	0.53	
deionized water	31.67	31.73	31.72	31.58	31.60	31.77	
COVERAGE							
PEDOT/PSS [mg/m ²]	200	200	200	200	200	200	
NDP15 [mg/m ²]	100	-		-	-	-	
NDP20 [mg/m ²]	-	100		-	_	-	
NDP21 [mg/m ²]	-		100		-	_	
NDP23 [mg/m ²]	_	-	-	100	-	-	
NDP27 [mg/m ²]	-	_	-		100	_	
NDP32 [mg/m ²]	_			-	-	100	
ZONYL FSO 100 [mg/m ²]	8	8	8	8	8	8	

^{10 *} solution in water/isopropanol 40/60 by volume

The Samples were exposed through a mask on a PRINTON™ CDL 1502i UV contact exposure unit (from AGFA-GEVAERT N.V.) for 100s at 4 mW/cm² (= exposure of 0.4 J/cm²) and processed by dipping and moving 15 gently in water (processing liquid A) or a 2.5% by weight aqueous ammonia solution at 25°C water (processing liquid B), rinsing with deionized water and dried at 50°C for 4 minutes. The results are given in Table 12.

The samples were then subjected to conductivity enhancement by 20 treatment for 1 minute in a 10% aqueous solution of diethylene glycol, a conductivity enhancing liquid, at 25°C followed by drying at 110°C for 20 minutes. The surface resistivity of the exposed

and unexposed areas were then remeasured. The enhanced surface resistivity values are given in Table 12.

Table 12:

	SAMPLE					
PROPERTY	XXXV	XXXVI	XXXVII	IIIVXXX	XXXIX	XL
processing liquid	В	В	В	A	A	A
R_s (Ω/square) of coated layer before patterning	7.5 x 10 ⁶	3.4 x	1.9 x 10 ⁶	4.5 x 10 ⁶	6.5 x 10 ⁶	8.0 x 10 ⁶
R_s (Ω /square) of non- exposed areas after exposure and processing	>4.0 x 10 ⁷	>4.0 x 10 ⁷	8.6 x 10 ⁶	>4.0 x 10 ⁷	>4.0 x 10 ⁷	>4.0 x 10 ⁷
R_s (Ω /square) of exposed areas after exposure and processing		2.1 x 10 ⁶	8.2 x 10 ⁶	5.7 x 10 ⁶	2.7 x 10 ⁶	4.0 x 10 ⁶
R _s ratio non-exposed/ exposed areas	>8.9	>19.0	1.0	>7.0	>14.8	>10
Optical resolution of lines [µm]	4	4	4	4	4	4
Optical resolution of spaces [µm]	6	6	6	6	6	4
$R_{\rm s}$ (Ω /square) of non- exposed areas after processing and enhancement	9.0 x 10 ⁸	1.2 x 109	1.1 x 10 ⁷	4.3 x 10 ¹²	5.4 x 10 ¹⁰	4.5 x 10 ¹²
$R_{\rm s}$ (Ω /square) of exposed areas after exposure, processing and enhancement	9.1 x 10 ³	9.5 x 10 ³	2.7 x 10 ⁴	3.8 x 10 ⁴	4.0 x 10 ³	5.9 x 10 ³
R _s ratio non- exposed/exposed areas after enhancement	9.9 x 10 ⁴	1.3 x 10 ⁵	400	1.13 x 10 ⁸	1.35 x 10 ⁷	7.6 x 10 ⁸

EXAMPLE 6 showed that similar resistance ratio of non-exposed/
exposed areas can be achieved starting from non-conductivity
enhanced PEDOT/PSS-containing outermost layers as from conductivity
onhanced PEDOT/PSS-containing outermost layers (see EXAMPLE 5),
provided that the structured outermost layers are post-treated with
a conductivity enhancing liquid followed by drying/tempering at an
appropriate temperature. It should be, however, pointed out that
post-treatment with a conductivity enhancing liquid will also
senhance the conductivity of any PEDOT/PSS remaining in the nonexposed areas should the removal be incomplete.

EXAMPLE 7

Samples VIII, IX, X, XI and XII of EXAMPLE 2 were image-wise exposed in heat-mode with a NdYAG laser (1064 nm) having a spot s size of 22 µm, a pitch of 11 µm and a scan speed of 2 m/s. The image plane power was set at 100 mW. The exposed samples were processed in water (softly rubbing with a tissue under water).

For the samples IX, X, XI and XII structured PEDOT/PSScontaining outermost layers s were obtained having a similar 10 surface resistivity as in EXAMPLE 2. For sample VIII (comparative example) no structured conducting PEDOT/PSS-containing outermost layer was obtained, since the PEDOT/PSS-containing outermost layer was removed in the non-exposed as well as in the exposed areas. The surface resistivity of the non-exposed areas was above 104 $_{15}$ Ω/square . A surface resistivity in the non-exposed areas above 10 10 Ω /square could be obtained when the material was rubbed thoroughly with a tissue during processing.

EXAMPLE 8

20

Samples VIII, IX, X, XI and XII of EXAMPLE 2 were image-wise exposed in heat-mode with a diode laser (830nm) having a spot size of 11 μ m, a pitch of 6 μ m and a scan speed of 2 m/s. The image plane power was set at 81 mW. The exposed samples were processed in 25 water (softly rubbing with a tissue under water). The results were similar to those obtained in EXAMPLE 7.

EXAMPLE 9

30 EXAMPLE 9, a positive working light-sensitive compound was used for patterning a polythiophene outermost layer. Support nr. 1 was first coated with a solution of PQD01 in methylethylketone (1:2 volume:volume) (15µm wet thickness). Samples XLI and XLII were prepared by coating this PQD01 layer with the PEDOT/SS-containing 35 dispersions given in Table 13 to a 67 μm wet thickness and drying. The PEDOT/PSS-containing outermost layers of Samples XLI and XLII contained 100 and 400 of PEDOT/PSS respectively.

Table 13: composition of PEDOT/PSS-containing coating dispersions

	SAM	IPLE
INGREDIENT [g]	XLI	XLII
1.2% aqueous dispersion of PEDOT/PSS	125	500
Z6040	1.0	1.0
2% aqueous solution of ZONYL™ FSO 100	1.5	1.5
N-methyl-pyrrolidinone	50	50
deionized water	825	450
COVERAGE [mg/m ²]		
PEDOT/PSS	100	400
ZONYLTM FSO 100	2	8

Sample XLI was exposed from the PEDOT/PSS-containing layer side of the support and Sample XLII from the uncoated side of the support each through a mask with a PRINTON CDL 15021 UV contact exposure unit for 80s at 4 mW/cm² (= exposure of 0.32 J/cm²) and processed with A2303 (CLARIANT) for 80s. Image-wise structured conducting PEDOT/PSS-containing outermost layers were obtained. The patterning method of exposure and developing did not affect the conductivity of the outermost layer. The surface resistivity of the non-exposed areas was 1.6 x 10⁴ Ω /square in the case of Sample XLII and 1.2 x 10³ Ω /square in the case of Sample XLII. A surface resistivity in the exposed areas above 10¹⁰ Ω /square could be obtained when the material was rubbed thoroughly with a tissue during processing. Resolutions of 20 μ m and 50 μ m were obtained with Samples XLI and XLII respectively.

EXAMPLE 10

20

25

In EXAMPLE 10, a positive photo-sensitive compound and the electroconductive polymer were present in the same layer. Support nr. 1 was coated with $50 \mathrm{mL/m^2}$ of the following coating dispersion (Table 14) (50 $\mathrm{\mu m}$ wet thickness).

Table 14: composition of the coating dispersions

	SAMPLE
INGREDIENT	XLIII
1.2% aqueous dispersion of PEDOT/PSS	300
PQD01	100
1% aqueous solution of ZONYLTM FSO 100	40
N-methyl-pyrrolidinone	560

The samples were exposed through a mask on a PRINTON CDL 1502i UV contact exposure unit (from AGFA-GEVAERT N.V.) for 60s at 4 mW/cm² (= exposure of 0.24 J/cm²) and processed with AZ351B (CLARIANT). Image-wise structured conducting PEDOT/PSS-containing outermost layers were obtained. The surface resistivity of the non-exposed areas after development was 10^4 Ω/square . A surface resistivity in the exposed areas above 10^{10} Ω/square could be obtained when the material was rubbed thoroughly with a tissue or through a high pressure jet. A resolution of 6 μm was obtained.

EXAMPLE 11:

In EXAMPLE 11, BADS01 and BADS02, negative working light-sensitive bis(aryldiazosulphonate) salts, were used for patterning the light-15 exposure differentiable elements. Samples XLIV to L were prepared by coating Support nr. 3 with 40mL/m² (40µm wet thickness) of the coating dispersions given in Table 15, which did not contain a conductivity enhancing liquid.

20 Table 15:

				SAMPLE			
INGREDIENT [g]	XLIV	XLV	XLVI	XLVII	XLVIII	XLIX	L
1,2% aqueous dispersion of PEDOT/PSS	41.7	41.7	41.7	41.7	41.7	41.7	41.7
2% aqueous solution of ZONYL™ FSO 100	1	1	1	1	1	1	1
N-methyl-pyrrolidinone	-			_			
BADS01	-	0.125	0.25	0.25	0.375	0.50	-
BADS02	-		-				0.25
deionized water	57.30	57.18	57.05	57.05	56.93	56.80	57.05
COVERAGE							
PEDOT/PSS [mg/m ²]	200	200	200	200	200	200	200
BADS01 [mg/m ²]	-	50	100	100	150	200	100
% by weight of BADS01 w.r.t. PEDOT/PSS	0	25	50	50	75	100	-
ZONYL™ FSO 100 [mg/m²]	8	8	8	8	8	8	8

The samples were exposed through a mask on a PRINTON™ CDL 1502i UV contact exposure unit (from AGFA-GEVAERT N.V.) for 400s at 4 25 mW/cm² (= exposure of 1.6 J/cm²) and rinsed with deionized water and dried at 50°C for 4 minutes. The surface resistivities of the non-exposed and exposed areas of the light-exposure differentiable

element before and after rinsing with water and drying are given in Table 16.

Table 16:

				SAMPLE			
	XLIV	XLV	XLVI	XLVII	XLVIII	XLIX	L
BADS01 [mg/m ²]		50	100	100	150	200	-
R_s of non-exposed layer untreated with water $[\Omega/\text{square}]$	3.3 x 10 ⁶	1.5 x 10 ⁶	6.2 x 10 ⁴	4.5 x 10 ⁴	6.9 x 10 ³	1.1 x 104	2.7 x 10 ⁶
$_{ m R_s}$ of non-exposed layer rinsed with water $[\Omega/{ m square}]$	4.7 x 10 ⁸	1.1 x 10°	1 x 10 ¹² / 1.3 x 10 ¹⁴	5.0 x 10 ¹² / 7.3 x 10 ¹³	1.0 × 10 ¹³	1.4 x 10 ¹⁴	2.5 x 10 ¹⁴
R_s of exposed layer untreated with water $[\Omega/\text{square}]$	3.0 x 10 ⁶	1.1 x 10 ⁶	1.7 x 10 ⁵	9.0 x 10 ⁴	2.6 x 10 ⁴	3.7 x 10 ⁴	1.0 x 10 ⁷
R_s of exposed layer rinsed with water $[\Omega/square]$	3.5 x 10 ⁸	9.7 x 10 ⁵	1.5 x 10 ⁵	9.9 x 10 ⁴	4.1 x 10 ⁴	4.1 x 10 ⁴	3.6 x 10 ⁸
ratio of exposed layer to unexposed layer after rinsing with water	1.3	1134	7 x 10 ⁶ / 9 x 10 ⁸	5 x 10 ⁷ / 7.3 x 10 ⁹	2.4 × 10 ⁸	3.4 x 10 ⁹	6.9 x 10 ⁶
R_s of exposed layer after rinsing with water $[\Omega/square]$ and conductivity enhancement	-	1.4 x 10 ³	1.6 x 10 ³	1.7 x 10 ³	3.3 x 10 ³	2.7 x 10 ³	1.0 × 10 ⁶

It was notable that a low surface resistivity was achieved with all the Samples containing BADS01, without the use of a conductivity enhancement treatment. No rubbing was necessary to remove the unexposed areas.

The results in Table 16 show that Samples XLIV to XLIX exhibited differential surface resistivity between the exposed and unexposed areas of the surface of light-differentiable element containing BADS01 prior to conductivity enhancement with surface resistivity ratios of exposed to unexposed areas, which vary with BADS01 concentration. The highest surface conductivity ratio prior to conductivity enhancement of 3.4 x 10⁹ was observed for 100% by weight of BADS01 with respect to PEDOT/PSS (200 mg/m² BADS01).

Conductivity enhancement reduced the surface resistivity of the exposed areas by up to a factor of 700, the amount of enhancement decreasing with increasing BADS01 concentration indicating the conductivity enhancing properties of BADS01.

The differential surface conductivity realized with Sample L, whose light-differentiable element containing BADSO2 was comparable with that achieved with Samples XLV to XLIX, but the conductivity enhancement with Sample L was markedly lower than for Samples XLV to XLIX.

EXAMPLE 12:

10

EXAMPLE 12 differed from EXAMPLE 11 in that ammonia was incorporated to improve the stability of the PEDOT/PSS-containing is outermost layer. Support nr. 3 was coated with 40mL/m^2 (40\mu m wet thickness) of the coating dispersions given in Table 17.

Table 17:

	SAMPLE					
INGREDIENT [g]	LI (COMP)	LII	LIII			
1,2% ag. PEDOT/PSS dispersion	41.7	41.7	41.7			
2% aq. sol. of ZONYL™ FSO 100	1	1	1			
N-methyl-pyrrolidinone	-					
BADS01	-	0.125	0.25			
2.5% aqueous NH4OH solution	2.28	2.48	2.33			
deionized water	55.02	54.70	54.72			
COVERAGE						
PEDOT/PSS [mg/m ²]	200	200	200			
BADS01 [mg/m ²]	-	50	100			
ZONYLFM FSO 100 [mg/m²]	8	8	8			

20

The samples were exposed through a mask on a PRINTONTM CDL 1502i UV contact exposure unit (from AGFA-GEVAERT N.V.) for 250s at 4 mW/cm² (= exposure of 1.0 $\rm J/cm^2)$ and rinsed with deionized water and dried at 50°C for 4 minutes. The surface resistivities of the non-

25 exposed and exposed areas of the light-exposure differentiable element before and after rinsing with water and drying are given in Table 18.

The results in Table 18 show that Samples LII and LIII exhibited differential surface resistivity between the exposed and $_{30}$ unexposed areas of the surface of light-differentiable element

containing BADS01 prior to conductivity enhancement with surface resistivity ratios of exposed to unexposed areas, which vary with BADS01 concentration. The highest surface conductivity ratio prior to conductivity enhancement of 4.4×10^8 was observed for 100 mg/m² 5 BADS01.

Conductivity enhancement reduced the surface conductivity of the exposed areas by up to a factor of 700, the amount of enhancement decreasing with increasing BADS01 concentration indicating the conductivity enhancing properties of BADS01.

Table 18:

		SAMPLE					
	LI (COMP)	LII	LIII				
R_s of non-exposed layer unrinsed with water $[\Omega/\text{square}]$		1.4 × 10 ⁶					
R_s of non-exposed layer rinsed with water $[\Omega/ ext{square}]$			2.0 x 10 ¹⁴				
R_s of exposed layer unrinsed with water $[\Omega/\text{square}]$		4.8 × 10 ⁶					
R_s of exposed layer rinsed with water $[\Omega/\text{square}]$	7.9 x 10 ^{14*}						
R_{s} ratio for exposed layer to unex-posed layer after rinsing with water	_	3.6 x 10 ⁵	4.4 × 10 ⁸				
Optical resolution [µm]	none	4-6	4-6				
bubbles in surface of large exposed areas	-	yes	yes				
surface resistivity of exposed layer treated with water $[\Omega/square]$ and conductivity enhanced	-	1.4 x 10 ³	2.1 x 10 ³				

^{*} exposed layer removed

15 EXAMPLE 13:

In EXAMPLE 13, NDP33, a negative working light-sensitive copolymer, was combined with BADS01 or BADS03, a negative working bis(aryldiazosulphonate) salt, and BADS03 alone were used for patterning a polythiophene outermost layer. Samples LIV to LVII were prepared by coating Support nr. 3 coated with 50mL/m² (50µm wet thickness) of the coating dispersions given in Table 19, which did not contain a conductivity enhancing liquid.

Table 19: composition of the coating dispersions

[SAMPLE					
INGREDIENT [g]	LIV	LV	LVI	LVII		
1.2% aq. dispersion of PEDOT/PSS	16.7	16.7	16.7	16.7		
1% solution of BADS01	7.5	-	_	-		
1% solution of BADS03	-	7.5	9.0	10.0		
2.5% aqueous NH4OH solution	1.1	1.0	0.8	1.0		
15.9% solution of NDP33 in	0.16	0.16	0.38	-		
water/isopropanol 40/60 by volume						
2% ag. solution of ZONYL™ FSO 100	0.5	0.5	0.5	0.5		
N-methyl-pyrrolidinone				-		
deionized water	24.04	24.14	22.63	21.8		
На	3.71	3.85	3.65	3.67		
COVERAGE [mg/m ²]						
PEDOT/PSS	200	200	200	200		
BADS01	75					
BADS03		75	90	100		
NDP33	25	25	60	_		
ZONYL FSO 100	10	10	10	10		

The samples were exposed through a mask on a PRINTON™ CDL 1502i UV 5 contact exposure unit (from AGFA-GEVAERT N.V.) for 150s at 4 mW/cm² (= exposure of 0.6 J/cm²) and processed by dipping and moving gently in a 2.5% by weight aqueous ammonia solution at 25°C water, rinsing with deionized water, drying at 50°C for 4 minutes, treating with a 10% aqueous diethylene glycol solution for 1 minute thereby upgrading the conductivity and finally drying for 10 minutes at 110°C. The results are given in Table 20.

The results in Table 20 show that in the samples LIV to LVII according to the invention structured conducting PEDOT/PSS-containing outermost layers were obtained. The surface resistivity of the non-exposed areas was below $10^5~\Omega/\text{square}$ and that of the non-exposed areas was > $10^{13}~\Omega/\text{square}$. The highest R_s ratio non-exposed/exposed areas after conductivity upgrading was observed for Sample LVI and LVII with a combination of BADS03 and NPD33; and only BADS03 respectively.

Unlike EXAMPLES 11 and 12 in which excellent $R_{\rm S}$ ratio non-exposed/exposed areas were also observed after conductivity upgrading with BADS01 but bubbles were observed in the exposed areas, the use of a combination of the ADS-MONOMER 01-copolymer NDP33 and BADS01 produced no bubbles in the exposed areas. This is

attributed to the use of a combination of BADS01 and a ADS-MONOMER 01.

Table 20:

	SAMPLE				
PROPERTY	LIV	LV	LVI	LVII	
Differentiation after processing between exposed and non-exposed areas	YES	YES	YES	YES	
$\mathtt{R_s}$ (Ω/\mathtt{square}) of coated layer before patterning	9.3 x 10 ⁶	1.3 ×	1.5 x 10 ⁷	1.6 x 10 ⁷	
R_{s} (Ω /square) of large non-exposed areas after conductivity upgrading	3.1 x 10 ¹³	4.0 x 10 ¹³	5.0 x 10 ¹⁴	5.0 x 10 ¹⁴	
R_s ($\Omega/square$) of large exposed areas after exposure, processing and conductivity upgrading	3.3 x 10 ³	5.5 x 10 ³	4.1 x 10 ³	3.3 x 10 ³	
R _s ratio non-exposed/exposed areas after conductivity upgrading	9.4 x 10 ⁹	7.3 x 10 ⁹	1.2 x 10 ¹¹	1.5 x 10 ¹¹	
optical resolution	4 μm	4 μm	4 μm	4 µm	

EXAMPLE 14

In EXAMPLE 14, NDP15, a negative working light-sensitive copolymer, 10 was combined with BADS01, a negative working bis(aryldiazosulphonate) compound, was used for patterning the light-exposure differentiable element. Samples LVIII to LXII were prepared by coating Support nr. 3 with 40mL/m² (40µm wet thickness) of the coating dispersions given in Table 21, which did not contain a 15 conductivity enhancing liquid.

Table 21: composition of the coating dispersions

	SAMPLE				
INGREDIENT [g]	LVIII	LIX	LX	LXI	LXII
1.2% aq. dispersion of PEDOT/PSS	41.7	41.7	41.7	41.7	41.7
2% aq. solution of ZONYL™ FSO 100	1	1	1	1	1
BADS01	0.125	0.15	0.175	0.2	0.225
15.9% sol. of NDP15 in water/	7.86	6.3	4.7	3.14	1.471
isopropanol (40/60 by volume)					
N-methyl-pyrrolidinone	-	_		-	-
2.5% aqueous NH4OH solution	1.24	1.24	1.24	1.24	1.24
deionized water	48.08	49.16	51.19	52.72	54.36
Нq	3.25	3.34	3.38	3.1	3.28

COVERAGE [mg/m ²]					
PEDOT/PSS	200	200	200	200	200
BADS01	50	60	70	80	90
NDP15	50	40	30	20	9
ZONVI EGO 100	8	8	8	8	Q

The samples were exposed through a mask on a PRINTONTM CDL 15021 UV contact exposure unit (from AGFA-GEVAERT N.V.) for 400s at 4 mW/cm² (= exposure of 1.6 J/cm^2) and processed by dipping and moving

s gently in a 2.5% by weight aqueous ammonia solution at 25°C water, rinsing with deionized water, drying at 50°C for 4 minutes, treating with a 10% aqueous diethylene glycol solution for 1 minute thereby upgrading the conductivity and finally drying for 10 minutes at 110°C. The results are given in Table 22.

Table 22:

	SAMPLE				
PROPERTY	LVIII	LIX	LX	LXI	LXII
Differentiation after processing between exposed and non-exposed areas	YES	YES	YES	YES	YES
$R_{ m s}$ ($\Omega/{ m square}$) of coated layer before patterning	1.3 x 10 ⁷	1.1 x 10 ⁷	4.1 x 10 ⁶	4.1 x 10 ⁶	9.1 x 10 ⁵
$R_{ m s}$ ($\Omega/{ m square}$) of large non-exposed areas after conductivity upgrading	5.2 x 10 ¹⁵	2.6 x 10 ¹⁵	1.5 x 10 ¹⁵	2.0 x 10 ¹⁵	5.8 x 10 ¹⁵
R_s (Ω /square) of exposed areas after exposure, processing and conductivity upgrading	1.8 x 10 ³	3.2 x 10 ³	1.4 x 10 ³	1.9 x 10 ³	3.6 x 10 ³
R _s ratio non-exposed/exposed areas after conductivity upgrading	2.9 x 10 ¹²	8.1 x 10 ¹¹	1.1 x 10 ¹²	1.1 x 10 ¹²	1.6 x 10 ¹²
bubbles in large areas?	no	no	no	yes	yes

The results in Table 22 show that in the samples LVIII to LXII according to the invention structured conducting PEDOT/PSS-containing outermost layers were obtained. The surface resistivity of the non-exposed areas was below $10^4~\Omega/\mathrm{square}$ and that of the non-exposed areas was > $10^{15}~\Omega/\mathrm{square}$. The highest R_s ratio non-exposed/exposed areas after conductivity upgrading, 2.9 x 10^{12} , was 20 observed for Sample LVIII.

As with EXAMPLE 13 in which excellent R_s ratio nonexposed/exposed areas were also observed after conductivity upgrading with a combination of an ADS-MONOMER 01-copolymer and 5

15

BADS01, no bubbles were observed in large exposed areas for certain of the Samples: Samples LVIII, LIX and LX.

EXAMPLE 15

In EXAMPLE 15, NDP15, a negative working light-sensitive copolymer, was combined with BADS01, a negative working bis(aryldiazo-sulphonate) compound, was used for patterning the light-exposure differentiable element. Samples LXIII to LXVII were prepared by coating Support nr. 3 with 50mL/m² (50µm wet thickness) of the coating dispersions given in Table 23, which did not contain a conductivity enhancing liquid.

Table 23: composition of the coating dispersions

	SAMPLE				
INGREDIENT [g]	LXIII	LXIV	LXV	LXVI	LXVII
1.2% aq. dispersion of PEDOT/PSS	16.7	16.7	16.7	16.7	16.7
2% ag. solution of ZONYL™ FSO 100	0.5	0.5	0.5	0.5	0.5
2.5% aqueous NH4OH solution	0.5	0.5	0.5	0.5	0.5
1% aq. solution of BADS01	-	2.5	5.0	7.5	10.0
15.9% solution of NDP15	0.63	0.47	0.32	0.16	-
water/isopropanol 40/60 by volume					
N-methyl-pyrrolidinone			-	-	
deionized water	31.7	29.3	27.0	24.6	22.3
рН	3.3	3.3	3.3	3.3	3.3
COVERAGE [mg/m ²]					
PEDOT/PSS	200	200	200	200	200
BADS01	0	25	50	75	100
NDP15	100	75	50	25	0
ZONYL FSO 100	10	10	10	10	10

The samples were exposed through a mask on a PRINTONTM CDL 1502i UV contact exposure unit (from AGFA-GEVAERT N.V.) at 4 mW/cm² for the exposure times given in Table 24 and processed by dipping and 20 moving gently in a 2.5% by weight aqueous ammonia solution at 25°C water, rinsing with deionized water, drying at 50°C for 4 minutes, treating with a 10% aqueous diethylene glycol solution for 1 minute thereby upgrading the conductivity and finally drying for 10 minutes at 110°C. The results are given in Table 24.

25

Table 24:

	SAMPLE						
PROPERTY	LXIII	LXIV	LXV	LXVI	LXVII		
Exposure time [s]	100	100	100	100	300		
Differentiation after processing between exposed and non-exposed areas	YES	YES	YES	YES	YES		
R_s (Ω /square) of coated layer before patterning	9.0 x 10 ⁶	1.1 x 10 ⁷	1.4 × 10 ⁷	9.0 x 10 ⁶	1.0 x 106		
R_s (Ω /square) of large non-exposed areas after processing and conductivity upgrading	1.7 x 10 ⁷	1.5 x 10 ⁶	1.2 x 10 ⁵	5.5 x 10 ¹⁴	3.5 x 10 ¹⁴		
R_s (Ω /square) of exposed areas after exposure, processing and conductivity upgrading	1.4× 104	8.2 x 10 ³	5.5 x 10 ³	7.4 x 10 ³	7.8 x 10 ³		
R _s ratio non-exposed/exposed areas after conductivity upgrading	1.2 x 10 ³	1.8 x 10 ²	1.1 x 10 ²	7.4 x 10 ¹⁰	4.5 x 10 ¹⁰		
Optical resolution of lines [µ]	4	4	4	4	4		
Optical resolution of spaces [µ]	4	4	4	4	4		
bubbles in large areas?	no	no	no	no	yes		

The results in Table 24 show that in the samples LXIII to 5 LXVII according to the invention structured conducting PEDOT/PSS-containing outermost layers were obtained. The surface resistivity of the non-exposed areas was below 2 x 10 4 $\Omega/\rm square$ and that of the non-exposed areas varied considerably from 10 5 to 10 7 $\Omega/\rm square$ for Samples LXVII to LXV to >10 14 $\Omega/\rm square$ for Samples LXVII to LXV to >10 14 $\Omega/\rm square$ for Samples LXVI and LXVII. The highest $R_{\rm s}$ ratio non-exposed/exposed areas after conductivity upgrading, 7.4 x 10 10 , was observed for Sample LXVI.

Only in the case of Sample LXVII were bubbles observed in large exposed areas.

15 EXAMPLE 16:

EXAMPLE 16, discloses the negative patterning performance of different layer configurations on Support nr. 1 and Support nr. 3. The compositions of the layers are given in Table 25.

Table 25:

				SAMPL	E		
	LXVIII	LXIX	LXX	LXXI	LXXII	LXXIII	LXXIV
Support nr.	1	1	1	1	3	3	3
LAYER 1							
NDP04 [mg/m ²]	100	100	100	100	100	100	100
OUTERMOST LAYER 2 [mg/m ²]							
PEDOT/PSS	200	200	200	200	200	200	200
Z6040	200	70	-	-	200	70	_
NDP04	-	-		100			100
N-methyl-pyrrolidinone	2500	2500	2500	-	2500	2500	2500

The samples were exposed through a mask on a PRINTONTM CDL 1502i UV 5 contact exposure unit (from AGFA-GEVAERT N.V.) at 4 mW/cm² for the times given in Table 26 and processed by rinsing with deionized water. The surface resistivities of the non-exposed and exposed areas of the light-exposure differentiable element before and after rinsing with deionized water are given in Table 26. Only in the case of Sample LXXI was rubbing with a soft tissue under water unnecessary.

Table 26:

				SAMPL	Е		
	LXVIII	LXIX	LXX	LXXI	LXXII	LXXIII	LXXIV
Support nr.	1	1	1	1	3	3	3
Exposure times [s]	100	150	150	100	100	150	150
R_s of non-exposed areas unrinsed with water $[\Omega/\text{square}]$	1.2 x 10 ⁴	4.2 x 10 ³		2.6 x 10 ⁷	1.5 x 10 ⁴	3.0 x 10 ³	3.2 x 10 ⁵
R_s of non-exposed areas rinsed with water $[\Omega/square]$	6.2 x 10 ¹²	>4.0 × 10 ⁷	>4.0 x 10 ⁷	3.2 x 10 ¹³		>4.0 x 10 ⁷	1.2 x 10 ¹³
R_s of exposed areas rinsed with water [Ω /square]	1.1 x 10 ⁵	2.7 x 10 ⁴	3.0 x 10 ⁴	1.13 x 10 ⁷	1.5 x 10 ⁵	2.1 x 10 ³	1.0 x 10 ⁵
R _s ratio of exposed areas to unexposed areas after rinsing with water	5.6 x 10 ⁷	>1.5 x 10 ³	>1.3 x 10 ³	2.8 x 10 ⁶	3.1 x 10 ⁷	>1.9 x	1.2 x 10 ⁸
Resolution [µm]		6		6	10	<u> </u>	6

Despite Samples LXVIII, LXIX, LXX, LXXII and LXXIII only having ADS-MONOMER 01 homopolymer in the underlayer and the PEDOT/PSS-containing outermost layer being conductivity-enhanced as a result of the presence of N-methyl-pyrrolidinone, moderate 5 differential surface resistivities were observed with Samples LXIX, LXX and LXXIII and considerable differential surface resistivities with Samples LXVIII and LXXII. This shows that structuring of a PEDOT/PSS-containing outermost layer is possible with UV-exposure of resins comprising arylazosulphonate group in an adjacent layer.

Samples LXXI and LXXIV with the ADS-MONOMER 01 homopolymer in both the underlayer and the PEDOT/PSS-containing outermost layer adjacent thereto exhibits considerable differential surface conductivities, whether or not the PEDOT/PSS-containing outermost layer is coated with the conductivity enhancing agent N-methyl-15 pyrrolidinone.

EXAMPLE 17:

EXAMPLE 17, discloses the negative patterning performance of $_{20}$ different layer configurations on Support nr. 1 and Support nr. 3. The support used and the compositions of the layers are given in Table 27. Layers 1 and 2 were both coated to thicknesses of $50\,\mu\mathrm{m}.$

Table 27:

25

			SAM	PLE		
	LXXV	LXXVI	LXXVII	LXXVIII	LXXIX	LXXX
Support nr.	1	1	1	3	3	3
LAYER 1 [g]						
15.9% sol. NDP14 in water/	0.63	0.63	0.63	0.63	0.63	0.63
isopropanol (40/60 by vol.)				Į.		
2% aq. sol. ZONYL FSO 100	0.5	0.5	0.5	0.5	0.5	0.5
deionized water	48.87	48.87	48.87	48.87	48.87	48.87
OUTERMOST LAYER 2 [g]						
1.2% aq. PEDOT/PSS disp.	16.7	16.7	16.7	16.7	16.7	16.7
2% ag. sol. ZONYL FSO 100	0.5	0.5	0.5	0.5	0.5	0.5
2.5% aqueous NH4OH	0.4	0.4	0.4	0.4	0.4	0.4
26040	0.07	-	-	0.07	-	
15.9% sol. NDP14 in water/	-	0.63	0.63	-	0.63	0.63
isopropanol (40/60 by vol.)						
N-methyl-pyrrolidinone	2.5		2.5	2.5		2.5
deionized water	29.83	31.77	29.27	29.83	31.77	29.27
рН	3.4	3.4	3.4	3.4	3.4	3.4

COVERAGE [mg/m ²]						
LAYER 1	~-					
NDP14	100	100	100	100	100	100
ZONYL FSO 100	10	10	10	10	10	10
OUTERMOST LAYER 2 [mg/m²]					l	
PEDOT/PSS	200	200	200	200	200	200
3-glycidoxypropyl- trimethoxysilane	70	-	-	70	-	-
NDP14	-	100	100	-	100	100
ZONYL FSO 100	10	10	10	10	10	10

The samples were exposed through a mask on a PRINTON™ CDL 1502i UV contact exposure unit (from AGFA-GEVAERT N.V.) for 100s at 4 mW/cm² (= exposure of 0.4 J/cm²) and processed by rinsing with deionized 5 water. No rubbing was for Samples LXXVI and LXXIX and soft rubbing was required for Samples LXXVII and LXXX. The surface resistivities of the non-exposed and exposed areas of the light-exposure differentiable element before and after rinsing with deionized water are given in Table 28.

Conductivity enhancement was then carried out on Samples LXXVI and LXXIX by dipping the developed materials in a 10% aqueous N-methyl-pyrrolidinone solution for 1 minute and then drying for 10 minutes at 50°C . The surface resistivities of the non-exposed and exposed areas after conductivity enhancement are given in Table 28.

Table 28:

15

Į			SAM	PLE		
	LXXV	LXXVI	LXXVII	LXXVIII	LXXIX	LXXX
Support nr.	1	1	1	3	3	3 '
R_s of non-exposed areas unrinsed with water $[\Omega/\text{square}]$	4.5 x 10 ³	1.7 x 10 ⁷	5.3 x 10 ³	4.9 x 10 ³	1.3 x 10 ⁷	4.0 x 10 ³
R_s of non-exposed areas rinsed with water $[\Omega/square]$	3.7 x 10 ⁵	>4.0 x	6.3 x 10 ⁶	1.2 x 10 ¹³	>4.0 x 10 ⁷	1.55 × 10 ¹³
R_s of exposed areas rinsed with water $[\Omega/s coursel]$	8.5 x 10 ³	3.4 × 10 ⁶	2.2 x 10 ⁴	3.0 x 10 ⁴	3.3 x 10 ⁶	1.3 x 10 ⁴
R _s ratio of exposed areas to unexposed areas after processing with water	43.5	>11.8	2.9	4.0 x 10 ⁸	>12.1	1.2 x 10 ⁹

, i			SAM	PLE		
	LXXV	LXXVI	LXXVII	TXXAIII	TXXIX	LXXX
R_s (Ω /square) of large non-exposed areas after total processing including conductivity upgrading	-	8.5 x 10 ¹²	_	-	1.38 x 10 ¹³	-
R_s (Ω /square) of exposed areas after exposure, processing and conductivity upgrading	-	2.9 x 10 ⁴	-	-	4.5 × 10 ⁴	-
R _s ratio of exposed areas to unexposed areas after processing and conductivity upgrading	-	2.9 x 10 ⁸	_	-	3.1 x 10 ⁸	-
Optical resolution [µm]	_	6	6	-	6	6

The results in Table 28 clearly show that for materials with outermost layers coated from PEDOT/PSS-dispersions containing N-methyl-pyrrolidinone, a conductivity enhancing agent, Support nr. 3 3, glow discharge-treated polyethylene terephthalate film, gave a much higher Rs ratio of exposed areas to unexposed areas after processing than materials coated on Support nr. 1. For Samples LXXVI and LXXIX with NDP14, a ADS-MONOMER 01 hydroxyethyl methacrylate copolymer, in both the underlayer and the PEDOT/PSS-containing outermost layer and with the PEDOT/PSS-containing outermost layer and with the PEDOT/PSS-containing outermost layers coated from PEDOT/PSS-dispersions not containing a conductivity-enhancing agent, this effect was negligible after conductivity enhancement with N-methyl-pyrrolidinone.

Materials coated on Support nr. 3 all showed very high $R_{\rm s}$ ratios of exposed areas to unexposed areas of at least 4 x 10^8 for materials with outermost layers coated from PEDOT/PSS-dispersions containing N-methyl-pyrrolidinone whether NDP14, a ADS-MONOMER 01 hydroxyethyl methacrylate copolymer, was present in both the underlayer and the PEDOT/PSS-containing outermost layer or just in the underlayer. Furthermore Samples LXXVI and LXXIX with NDP14 in both the underlayer and the PEDOT/PSS-containing outermost layers and with PEDOT/PSS-containing outermost layers cated with PEDOT/PSS-dispersions not containing a conductivity-enhancing agent N-methyl-pyrrolidinone exhibited very high $R_{\rm s}$ ratios of exposed areas to unexposed areas of ca. 3 x 10^8 after conductivity

upgrading with the conductivity enhancement agent N-methyl-pyrrolidinone.

This example showed that copolymers of an ADS-MONOMER were just as effective as light-sensitive components capable upon sexposure of changing the removability of the exposed parts of the PEDOT/PSS-containing outermost layer relative to the unexposed parts of this outermost layer when incorporated in an adjacent layer to the PEDOT/PSS-containing outermost layer.

10 EXAMPLE 18:

In EXAMPLE 18, different concentrations of BADS02, a negative working light-sensitive bis(aryldiazosulphonate) salt, were used in the PEDOT/PSS-containing outermost layer for patterning a polythiophene outermost layer. Support nr. 1 was coated with $40\,\mathrm{mL/m^2}$ ($40\,\mathrm{pm}$ wet thickness) of the coating dispersions given in Table 29.

Table 29:

				SAI	MPLE			
INGREDIENT [g]	LXXXI (COMP)	LXXXII	LXXXIII	PXXXIA	LXXXV	LXXXVI	LXXXVII	TXXXAIII
1,2% aq. PEDOT/PSS dispersion	41.7	41.7	41.7	41.7	41.7	41.7	41.7	41.7
2% aq. solution of ZONYL™ FSO 100	1	1	1	1	1	1	1	1
N-methyl- pyrrolidinone	5	5	5	5	5	5	5	5
BADS02	0	0.025	0.0625	0.125	-	0.25	0.25	0.5
1% ag. sol. BADS02	-		-	-	21.8		-	-
deionized water	51.02	51.00	50.96	50.90	21.5	50.99	51.15	51.12
2.5% aqueous NH4OH	1.28	1.28	1.28	1.28	9.0	1.06	0.9	0.68
рн	3.41	3.3	3.17	3.45	3.26	3.53	2.6- 2.8	3.55
COVERAGE [mg/m ²]								
PEDOT/PSS	200	200	200	200	200	200	200	200
BADS02	0	10	25	50	87×	100	100	200
ZONYL™ FSO 100	8	8	8	8	8	8	8	8

^{*} $2.0 \times 10^{-4} \text{ mol/m}^2$

The samples were exposed through a mask on a PRINTON $^{\text{TM}}$ CDL 1502i UV contact exposure unit above the glass filter (from AGFA-GEVAERT

N.V.) for 400s at 4 mW/cm 2 (= exposure of 1.6 J/cm 2) and processed by rinsing with deionized water. However, almost no difference was observed in the surface resistivities whether exposure times of 100s or 400s were used, as long as subsequent rinsing with water 5 was carried out. The degradation process appears to continue if the material is contacted with water.

The surface resistivities of the non-exposed and exposed areas of the light-exposure differentiable element before and after rinsing with water are given in Table 30.

Table 30:

				SAM	PLE			
	LXXXI (COMP)	LXXXII	PXXXIII	TXXXIA	LXXXV	LXXXVI	LXXXVİI	LXXXVIII
BADS02 [mg/m ²]	0	10	25	50	87	100	100	200
R_s of exposed layer unrinsed with water $[\Omega/square]$	2.2 x 10 ³	1.9 x 10 ⁴	1.5 x 10 ⁵	1.5 x 10 ⁶	5.3 x 10 ⁶	7.3 x	1.0 x 10 ⁷	2.0 x 10 ⁷
R_s of exposed areas rinsed with water $[\Omega/square]$	2.9 x 10 ³	3.4 × 10 ⁴	4.9 x 10 ⁵	7.2 x 10 ⁶	6.7 x 10 ⁷	1.1 x 108	1.5 x 10 ⁸	1.1 x 108
R_s of non-exposed areas un- rinsed with H_2O [Ω /square]	2.1 x 10 ³	2.5 x 10 ³	3.3 x 10 ³	5.9 x 10 ³	6.2 x 10 ³	1.2 x 10 ⁴	1.3 x 10 ⁴	6.5 x 10 ⁴
R_s of non-exposed areas rinsing with water $[\Omega/\text{square}]$		3.8 x 10 ³	5.1 x 10 ³	1.1 × 10 ⁴	6.2 x 10 ³	2.1 x 10 ⁴	1.8 x 10 ⁴	1.4 x 10 ⁵
R _s ratio of exposed areas to unexposed areas after rinsing with water	1.1	8.95	96.1	654.5	10806	5238	8333	785.7

The results in Table 30 show differential surface resistivity 15 between the exposed and unexposed areas of the surface of light-differentiable element containing BADS02 with surface resistivity ratios of exposed to unexposed areas, which vary with BADS02 concentration without removal of the non-exposed areas. The

highest surface conductivity ratio of 10^4 was observed for 87 mg/m² BADS02 (2.0 x 10^{-4} mol/m²).

When the light-exposure differentiable elements of Samples LXXXII to LXXXVIII were then rubbed softly water-moistened tissues, the non-exposed areas were removed thereby increasing the surface resistivity of the unexposed areas to ca. $10^6~\Omega/\text{square}$. Stronger rubbing increased the surface resistivity of the unexposed areas to $10^{10}~\Omega/\text{square}$.

10 EXAMPLE 19:

In EXAMPLE 19, BADS01, BADS02 and BADS03, negative working light-sensitive bis(aryldiazosulphonate) salts, were used for patterning a polythiophene outermost layer. Samples LXXXIX to LCIII were 15 prepared by coating Support nr. 1 with 40mL/m² (40µm wet thickness) of the coating dispersions given in Table 31 followed by drying at 50°C for 5 minutes except in the case of dispersions containing diethylene glycol which were dried at 110°C for 5 minutes.

20 Table 31:

			SAMPLE		
INGEDIENT [g]	LXXXIX	XC	XCI	XCII	XCIII_
1,2% ag. PEDOT/PSS dispersion	41.7	41.7	41.7	41.7	41.7
2% ag. sol. of ZONYL™ FSO 100	1	1	1	1	1
N-methyl-pyrrolidinone	5	_	5	-	5
diethylene glycol	-		-	5	-
BADS01	0.25	-	-	-	
BADS02	-	0.25	0.25	0.25	-
1% ag. solution of BADS03	-	-	-	-	25
deionized water	51.15	57.0	52.05	52.05	26.4
2.5% aqueous NH4OH	0.9	_	-		0.9
рН	2.6-2.8	-	-		2.31
COVERAGE					
PEDOT/PSS [mg/m ²]	200	200	200	200	200
BADS01 [mg/m ²]	100	-	-		-
BADS02 [mg/m ²]	_	100	100	100	_
BADS03 [mg/m ²]		_		-	100
ZONYL™ FSO 100 [mg/m²]	8	8	8	8	8

The samples were exposed through a mask on a PRINTON™ CDL 15021 UV contact exposure unit above the glass filter (from AGFA-GEVAERT 25 N.V.) for 400s at 4 mW/cm² (= exposure of 1.6 J/cm²) and processed

in a 2.5% aqueous NH_4OH solution and rinsed with deionized. The surface resistivities of the non-exposed and exposed areas of the light-exposure differentiable element before and after rinsing with water and drying at $50^{\circ}C$ for 4 minutes are given in Table 32.

The results in Table 32 show differential surface resistivity between the exposed and unexposed areas of the surface of light-differentiable element containing BADO1, BADS02 and BADS03 with surface resistivity ratios of exposed to unexposed areas. The highest surface conductivity ratio of 16,666 was observed for 10 BADS02.

When the light-exposure differentiable elements of Samples LXXXIX to XCIII were then rubbed softly water-moistened tissues, the non-exposed areas were removed thereby increasing the surface resistivity of the unexposed areas to ca. $10^6~\Omega/\text{square}$. Stronger rubbing increased the surface resistivity of the unexposed areas to $10^{10}~\Omega/\text{square}$.

Table 32:

			SAMPLE		
	LXXXIX	XC	XCI	XCII	XCIII
R_s of exposed layer untreated with water $[\Omega/\text{square}]$	1.6 x	8.6 x	4.6 x	2.1 x	3.7 x
	10 ⁵	10 ⁶	10 ⁵	10 ⁵	10 ⁵
R_s of exposed layer rinsed with water [Ω /square]	6.1 x	2.5 x	2.0 x	4.6 x	2.6 x
	10 ⁵	10 ^{14*}	10 ⁸	10 ⁶	10 ⁶
R_s of non-exposed layer unrinsed with water $[\Omega/square]$	1.2 x	9.2 x	5.3 x	2.9 x	1.4 x
	10 ⁴	10 ⁵	10 ³	10 ⁵	10 ⁴
R_s of non-exposed layer rinsed with water $[\Omega/\text{square}]$	1.6 x	2.5 x	1.2 x	2.1 x	2.3 x
	104	10 ^{14*}	10 ⁴	10 ⁶	10 ⁴
$R_{\rm s}$ ratio of exposed layer to unexposed layer after rinsing with water	38	1.0	16,666	2.2	113

 $_{20}$ * layer is completely removed when surface resistivity 1s 10^{14} Ω/square

The present invention may include any feature or combination of 25 features disclosed herein either implicitly or explicitly or any generalisation thereof irrespective of whether it relates to the presently claimed invention. In view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention.