

Faculty of Applied Sciences

Faculty of Applied Sciences

Ralaraia University of Str Lanks

Ralaraia University of Str Lanks

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. General Degree in Applied Sciences
Second Year- Semester I Examination- October/November 2015

MAP 2203 - Differential Equations II

Answer FOUR Questions only

Time: Two hours

1.

a) Define ordinary point and singular point of the differential equation,

 $P_0(x)y'' + P_1(x)y' + P_2(x)y = 0$. Where the P's are polynomial in x.

b) Following statements are true or false, justify your answers?

i. For the equation $x^2y'' + (x^2 - x)y' + 2y = 0$, x = 0 is singular point.

ii. For the equation (1 + x)y'' + 2xy' - 3y = 0, x = -1 is singular point.

iii. For the equation $x^3y'' + x^2y' + y = 0$, x = 0 is singular point.

c) Solve y'' + (x-1)y' + y = 0 in powers of (x-2).

2.

a) Discuss the Frobenius method for solving a second order linear differential equation given , with the usual notations, as

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$

b) Show that the differential equation $2x^2y'' - xy' + (1+x)y = 0$ has a regular singular point at the origin.

c) Find the general solution of the above differential equation by using Frobenius method.

3.

a) Show that $\lambda = 2$ is a triple root of the characteristic equation for the system

$$\dot{x} = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix} x \text{ and find three linearly independent solutions.}$$

b) Show that the fundamental matrix solution of the system $\dot{x} = Ax$, where

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 5 \end{pmatrix} \text{ is } X(t) = \begin{pmatrix} e^{t} & e^{3t} & e^{5t} \\ 0 & 2e^{3t} & 2e^{5t} \\ 0 & 0 & 2e^{5t} \end{pmatrix}.$$

Hence find e^{At} .

4.

a) Solve the first order ordinary differential equation,

$$\frac{dy}{dx} + 2xy^2 = 0$$
, given that $y = 1$ when $x = 0$

Hence find the value of y when x = 0.1

b) Use Picard's iteration method to find the approximate solutions $y_1(x)$, $y_2(x)$ and $y_3(x)$ of the above differential equation in part a).

Use $y_3(x)$ to estimate the value of y when x = 0.1.

c) Compare the two results obtained in the above parts for y , when x=0.1 .

5.

a. Form a partial differential equation by eliminating arbitrary constants a and b from the following equations:

i.
$$z = a(x+y) + b$$

ii.
$$z = axe^y + (1/2)a^2e^y + b$$

b. Form a partial differential equation by eliminating the arbitrary functions f and F from the following equations:

i.
$$z = f(x+iy) + F(x-iy)$$
 where $i^2 = -1$

ii.
$$y = f(x - at) + F(x + at)$$

c. Solve the following partial differential equations, given with the usual notations:

i.
$$p \tan x + q \tan y = \tan z$$

ii.
$$xyp + y^2q = zxy - 2x^2$$