MECE 6397: Project 2

Syam Evani 07/31/2025

Introduction

Table of Contents

- 1. Part 1: Timer Illustration
- 2. Data Analysis
- 3. Conclusion

My code for this project is included in three ways:

- Embedded in portions with relevant discussion
- Uploaded as part of this deliverable on Canvas
- Available on a public github here: https://github.com/Sam-v6/mece-6397-doe/tree/main/project2

Part 1: Timer Illustration

I have packaged the provided code and ran it below to illustrate the use of the timer. Note it takes only 0.27 seconds to perform the sample code routine. Timers are excellent for gauging the computational efficienis (or inefficiencies) as new features are added during a model's implementation. Note, I also have simply packaged this into a timer.py file as requested.

```
In []: # Standard imports
    import os
    import time

# Additional imports
    import pandas as pd
    import numpy as np
    import itertools
    from sklearn.datasets import load_iris
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    from itertools import combinations

# Local imports
# None
```

```
# Timing examples
#-----
class TimerError(Exception):
    """A custom exception used to report errors in use of Timer class"""
## Illustration of a Class Function Measure Time Performance
class Timer:
   def __init__(self):
       self._start_time = None
   def start(self):
       """Start a new timer"""
       if self. start time is not None:
           raise TimerError(f"Timer is running. Use .stop() to stop it")
       self._start_time = time.perf_counter()
   def stop(self):
       """Stop the timer, and report the elapsed time"""
       if self. start time is None:
           raise TimerError(f"Timer is not running. Use .start() to start it")
       elapsed_time = time.perf_counter() - self._start_time
       elapsed_time_min = (time.perf_counter() - self._start_time)/60
       self._start_time = None
       print(f"Elapsed time: {elapsed_time:0.4f} seconds")
       print(f"Elapsed time: {elapsed_time_min:0.4f} minutes")
#-----
# Create design
# Define the factors and levels
factors = {
   'n_estimators': ['-', '+'],
    'max_depth': ['-', '+']
}
# Create a full factorial design
def full_factorial_design(factors):
   import itertools
   levels = list(factors.values())
   design = list(itertools.product(*levels))
   return pd.DataFrame(design, columns=factors.keys())
# Generate the design matrix
design_matrix = full_factorial_design(factors)
print(design_matrix)
                 _____
# Run experiment
# Import the time library
t = Timer()
t.start()
```

```
# Load the Iris dataset
 X, y = load iris(return X y=True)
 # Split the dataset into training and testing sets
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
 # Define the experiment configurations (2^2 design)
 configurations = [
     {'n_estimators': 100, 'max_depth': 2},
     {'n_estimators': 100, 'max_depth': 10},
     {'n_estimators': 200, 'max_depth': 2},
     {'n_estimators': 200, 'max_depth': 10},
 results = []
 # Run the experiments
 for config in configurations:
     clf = RandomForestClassifier(n_estimators=config['n_estimators'], max_depth=con
     clf.fit(X_train, y_train)
     predictions = clf.predict(X_test)
     accuracy = accuracy_score(y_test, predictions)
     # Store the results
     results.append({
         'n_estimators': config['n_estimators'],
         'max_depth': config['max_depth'],
         'accuracy': accuracy
     })
 t.stop() # A few seconds later
 # Convert results to a DataFrame for analysis
 results_df = pd.DataFrame(results)
 # Display the results
 print(results_df)
 n estimators max depth
1
2
             +
Elapsed time: 0.2649 seconds
Elapsed time: 0.0044 minutes
  n_estimators max_depth accuracy
0
           100
                         2
                                 1.0
1
           100
                        10
                                 1.0
2
           200
                        2
                                 1.0
3
            200
                        10
                                 1.0
```

Part 2: Creating five factor and two level DOE implementation

I've adjusted the provided code to include the 5 factors identified as well as tie them to the provided lower and higher levels. Note, some additional data was also provided but for now I'll use the original factor data to generate the combinations. In total we see 32 combinations between our 5 factors, each with 2 levels.

```
In [ ]: # Standard imports
        import os
        import time
        # Additional imports
        import pandas as pd
        import numpy as np
        import itertools
        from sklearn.datasets import load_iris
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import accuracy_score
        from itertools import combinations
        # Local imports
        # None
        # Design matrix creation
        #-----
        # Define the factors and levels
        # Provided values (yields accuracy 1.0 for all combos)
        factors = {
            'n estimators': [50, 100],
            'max_depth': [1, 20],
            'min_samples_split': [2, 6],
            'min_samples_leaf': [1, 5],
            'max_samples': [0.5, 0.8]
        # New factors (yields accuracy 0.3 to 1.0)
        # factors = {
              'n_estimators': [5, 50],
              'max_depth': [1, 10],
              'min_samples_split': [2, 10],
              'min samples leaf': [1, 10],
              'max_samples': [0.1, 0.9]
        # }
        # Create a full factorial design
        def full_factorial_design(factors):
            levels = list(factors.values())
            design = list(itertools.product(*levels))
```

```
return pd.DataFrame(design, columns=factors.keys())

# Generate the design matrix
design_matrix = full_factorial_design(factors)
print(design_matrix)
```

	n_estimators	max_depth	min_samples_split	min_samples_leaf	max_samples
0	50	1	2	1	0.5
1	50	1	2	1	0.8
2	50	1	2	5	0.5
3	50	1	2	5	0.8
4	50	1	6	1	0.5
5	50	1	6	1	0.8
6	50	1	6	5	0.5
7	50	1	6	5	0.8
8	50	20	2	1	0.5
9	50	20	2	1	0.8
10	50	20	2	5	0.5
11	50	20	2	5	0.8
12	50	20	6	1	0.5
13	50	20	6	1	0.8
14	50	20	6	5	0.5
15	50	20	6	5	0.8
16	100	1	2	1	0.5
17	100	1	2	1	0.8
18	100	1	2	5	0.5
19	100	1	2	5	0.8
20	100	1	6	1	0.5
21	100	1	6	1	0.8
22	100	1	6	5	0.5
23	100	1	6	5	0.8
24	100	20	2	1	0.5
25	100	20	2	1	0.8
26	100	20	2	5	0.5
27	100	20	2	5	0.8
28	100	20	6	1	0.5
29	100	20	6	1	0.8
30	100	20	6	5	0.5
31	100	20	6	5	0.8

A full table of our design can be found below:

n_estimators	max_depth	min_samples_split	min_samples_leaf	max_samples
50	1	2	1	0.5
50	1	2	1	0.8
50	1	2	5	0.5
50	1	2	5	0.8
50	1	6	1	0.5
50	1	6	1	0.8
50	1	6	5	0.5

n_estimators	max_depth	min_samples_split	min_samples_leaf	max_samples
50	1	6	5	0.8
50	20	2	1	0.5
50	20	2	1	0.8
50	20	2	5	0.5
50	20	2	5	0.8
50	20	6	1	0.5
50	20	6	1	0.8
50	20	6	5	0.5
50	20	6	5	0.8
100	1	2	1	0.5
100	1	2	1	0.8
100	1	2	5	0.5
100	1	2	5	0.8
100	1	6	1	0.5
100	1	6	1	0.8
100	1	6	5	0.5
100	1	6	5	0.8
100	20	2	1	0.5
100	20	2	1	0.8
100	20	2	5	0.5
100	20	2	5	0.8
100	20	6	1	0.5
100	20	6	1	0.8
100	20	6	5	0.5
100	20	6	5	0.8

Part 3: Modifying full factorial design to output a dictionary

I've modified the original full_factorial_design function and converted it to generate_full_factorial_design . The main changes are I now iterate through the

items in design (a list itself) and create a small dictionary that has the keys and value pairs. I continue to do this until I have all combinations saved and return a list. The output is printed to give an illustration of what this looks like.

As an example use of our return (design_matrix), if we wanted the number of estimators for the first combination we could access this like design_matrix[0]["n_estimators"]

```
In [ ]: # Standard imports
        import os
        import time
        # Additional imports
        import pandas as pd
        import numpy as np
        import itertools
        from sklearn.datasets import load_iris
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.model selection import train test split
        from sklearn.metrics import accuracy_score
        from itertools import combinations
        # Local imports
        # None
        # Design matrix creation
        # Define the factors and levels
        # Provided values (yields accuracy 1.0 for all combos)
        factors = {
            'n_estimators': [50, 100],
            'max_depth': [1, 20],
             'min_samples_split': [2, 6],
             'min_samples_leaf': [1, 5],
             'max_samples': [0.5, 0.8]
        # New factors (yields accuracy 0.3 to 1.0)
        # factors = {
              'n_estimators': [5, 50],
              'max_depth': [1, 10],
              'min_samples_split': [2, 10],
              'min_samples_leaf': [1, 10],
              'max_samples': [0.1, 0.9]
        # }
        # Create a full factorial design
        def generate_full_factorial_design(factors):
            levels = list(factors.values())
            design = list(itertools.product(*levels))
            # Convert each combination into a dictionary
            design_matrix = []
```

```
for combo in design:
    single_design = {}
    for i, factor in enumerate(factors.keys()):
        single_design[factor] = combo[i]
    design_matrix.append(single_design)

# Return list that has dicts inside
    return design_matrix

# Generate the design matrix
design_matrix = generate_full_factorial_design(factors)
print(design_matrix)
```

[{'n_estimators': 50, 'max_depth': 1, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_samples': 0.5}, {'n_estimators': 50, 'max_depth': 1, 'min_samples_split': 2, 'm in_samples_leaf': 1, 'max_samples': 0.8}, {'n_estimators': 50, 'max_depth': 1, 'min_ samples_split': 2, 'min_samples_leaf': 5, 'max_samples': 0.5}, {'n_estimators': 50, 'max_depth': 1, 'min_samples_split': 2, 'min_samples_leaf': 5, 'max_samples': 0.8}, {'n_estimators': 50, 'max_depth': 1, 'min_samples_split': 6, 'min_samples_leaf': 1, 'max_samples': 0.5}, {'n_estimators': 50, 'max_depth': 1, 'min_samples_split': 6, 'm in_samples_leaf': 1, 'max_samples': 0.8}, {'n_estimators': 50, 'max_depth': 1, 'min_ samples_split': 6, 'min_samples_leaf': 5, 'max_samples': 0.5}, {'n_estimators': 50, 'max_depth': 1, 'min_samples_split': 6, 'min_samples_leaf': 5, 'max_samples': 0.8}, {'n_estimators': 50, 'max_depth': 20, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_samples': 0.5}, {'n_estimators': 50, 'max_depth': 20, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_samples': 0.8}, {'n_estimators': 50, 'max_depth': 20, 'm in_samples_split': 2, 'min_samples_leaf': 5, 'max_samples': 0.5}, {'n_estimators': 5 0, 'max depth': 20, 'min samples split': 2, 'min samples leaf': 5, 'max samples': 0. 8}, {'n_estimators': 50, 'max_depth': 20, 'min_samples_split': 6, 'min_samples_lea f': 1, 'max_samples': 0.5}, {'n_estimators': 50, 'max_depth': 20, 'min_samples_spli t': 6, 'min_samples_leaf': 1, 'max_samples': 0.8}, {'n_estimators': 50, 'max_depth': 20, 'min_samples_split': 6, 'min_samples_leaf': 5, 'max_samples': 0.5}, {'n_estimato rs': 50, 'max_depth': 20, 'min_samples_split': 6, 'min_samples_leaf': 5, 'max_sample s': 0.8}, {'n_estimators': 100, 'max_depth': 1, 'min_samples_split': 2, 'min_samples _leaf': 1, 'max_samples': 0.5}, {'n_estimators': 100, 'max_depth': 1, 'min_samples_s plit': 2, 'min_samples_leaf': 1, 'max_samples': 0.8}, {'n_estimators': 100, 'max_dep th': 1, 'min_samples_split': 2, 'min_samples_leaf': 5, 'max_samples': 0.5}, {'n_esti mators': 100, 'max_depth': 1, 'min_samples_split': 2, 'min_samples_leaf': 5, 'max_sa mples': 0.8}, {'n_estimators': 100, 'max_depth': 1, 'min_samples_split': 6, 'min_sam ples_leaf': 1, 'max_samples': 0.5}, {'n_estimators': 100, 'max_depth': 1, 'min_sampl es_split': 6, 'min_samples_leaf': 1, 'max_samples': 0.8}, {'n_estimators': 100, 'max _depth': 1, 'min_samples_split': 6, 'min_samples_leaf': 5, 'max_samples': 0.5}, {'n_ estimators': 100, 'max_depth': 1, 'min_samples_split': 6, 'min_samples_leaf': 5, 'ma x_samples': 0.8}, {'n_estimators': 100, 'max_depth': 20, 'min_samples_split': 2, 'mi n_samples_leaf': 1, 'max_samples': 0.5}, {'n_estimators': 100, 'max_depth': 20, 'min _samples_split': 2, 'min_samples_leaf': 1, 'max_samples': 0.8}, {'n_estimators': 10 0, 'max_depth': 20, 'min_samples_split': 2, 'min_samples_leaf': 5, 'max_samples': 0. 5}, {'n_estimators': 100, 'max_depth': 20, 'min_samples_split': 2, 'min_samples_lea f': 5, 'max_samples': 0.8}, {'n_estimators': 100, 'max_depth': 20, 'min_samples_spli t': 6, 'min_samples_leaf': 1, 'max_samples': 0.5}, {'n_estimators': 100, 'max_dept h': 20, 'min_samples_split': 6, 'min_samples_leaf': 1, 'max_samples': 0.8}, {'n_esti mators': 100, 'max depth': 20, 'min samples split': 6, 'min samples leaf': 5, 'max s amples': 0.5}, {'n_estimators': 100, 'max_depth': 20, 'min_samples_split': 6, 'min_s amples_leaf': 5, 'max_samples': 0.8}]

Part 4: Updating the Random Forest Optimization Model

With some simple edits of adding our additional factors we can use the random forest optimization model to assess the different factors.

```
In [ ]: #-----
        # Run experiment
        #-----
        # Import the time library
        t = Timer()
        t.start()
        # Load the Iris dataset
        X, y = load_iris(return_X_y=True)
        # Split the dataset into training and testing sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
        results = []
        # Run the experiments
        for config in design_matrix:
            clf = RandomForestClassifier(n_estimators=config['n_estimators'], max_depth=con
            clf.fit(X_train, y_train)
            predictions = clf.predict(X_test)
            accuracy = accuracy_score(y_test, predictions)
            # Store the results
            results.append({
                'n_estimators': config['n_estimators'],
                'max_depth': config['max_depth'],
                'min_samples_split': config['min_samples_split'],
                'min samples_leaf': config['min_samples_leaf'],
                'max_samples': config['max_samples'],
                'accuracy': accuracy
            })
        t.stop() # A few seconds later
        # Convert results to a DataFrame for analysis
        results_df = pd.DataFrame(results)
        print(results_df)
```

Elapsed time: 1.0591 seconds Elapsed time: 0.0177 minutes

	-poco. c=c. 0.0	_,,			
	n_estimators	max_depth	<pre>min_samples_split</pre>	min_samples_leaf	<pre>max_samples \</pre>
0	50	1	2	1	0.5
1	50	1	2	1	0.8
2	50	1	2	5	0.5
3	50	1	2	5	0.8
4	50	1	6	1	0.5
5	50	1	6	1	0.8
6	50	1	6	5	0.5
7	50	1	6	5	0.8
8	50	20	2	1	0.5
9	50	20	2	1	0.8
10	50	20	2	5	0.5
11	50	20	2	5	0.8
12	50	20	6	1	0.5
13	50	20	6	1	0.8
14	50	20	6	5	0.5
15	50	20	6	5	0.8
16	100	1	2	1	0.5
17	100	1	2	1	0.8
18	100	1	2	5	0.5
19	100	1	2	5	0.8
20	100	1	6	1	0.5
21	100	1	6	1	0.8
22	100	1	6	5	0.5
23	100	1	6	5	0.8
24	100	20	2	1	0.5
25	100	20	2	1	0.8
26	100	20	2	5	0.5
27	100	20	2	5	0.8
28	100	20	6	1	0.5
29	100	20	6	1	0.8
30	100	20	6	5	0.5
31	100	20	6	5	0.8

	accuracy
0	1.0
1	1.0
2	1.0
3	1.0
4	1.0
5	1.0
6	1.0
7	1.0
8	1.0
9	1.0
10	1.0
11	1.0
12	1.0
13	1.0
14	1.0
15	1.0
16	1.0
17	1.0
18	1.0

1.0 19 1.0 20 21 1.0 22 1.0 23 1.0 1.0 25 1.0 26 1.0 27 1.0 28 1.0 29 1.0 30 1.0 1.0 31

A picture of our results are provided below. Notice that with default values the accuracy for all combos is 100%

_	11 5					
F	ull Factorial De					
	n_estimators		min_samples_split			accuracy
0	5	1	2	1	0.1	
1	5	1	2	1	0.9	0.633333
2	5	1	2	10	0.1	0.333333
3	5	1	2	10	0.9	0.633333
4	5	1	10	1	0.1	0.900000
5	5	1	10	1	0.9	0.633333
6	5	1	10	10	0.1	0.333333
7	5	1	10	10	0.9	0.633333
8	5	10	2	1	0.1	0.966667
9	5	10	2	1	0.9	0.966667
10		10	2	10	0.1	
1:		10	2	10	0.9	1.000000
1.		10	10	1	0.1	
1.		10	10	1	0.9	0.966667
14		10	10	10	0.1	
1		10	10	10	0.9	1.000000
10		1	2	1	0.1	0.966667
1		1	2	1	0.9	0.966667
18		1	2	10	0.1	0.366667
19		1	2	10	0.9	0.966667
20		1	10	1	0.1	0.966667
2:		1	10	1	0.9	0.966667
2		1	10	10	0.1	0.366667
2		1	10	10	0.9	0.966667
24		10	2	1	0.1	1.000000
2!		10	2	1	0.9	1.000000
20		10	2	10	0.1	0.366667
2		10	2	10	0.9	1.000000
2		10	10	1	0.1	
29		10	10	1	0.9	1.000000
30		10	10	10	0.1	
3:	L 50	10	10	10	0.9	1.000000
			•			

Part 5: Analysis & Recommendations

To asssess the impact of different factors on the accuracy of combinations I did a few things:

 I adjusted the factors to those that were recommended in a follow up announcement, these new low and high values for each factor create more variance in accuracy to better see interactions and imapets of effects

- I evaluted the impact of the main factors independently
- I evaluted the impact of different combinations of factors and calculated the contrast (the difference between the associated low level mean and high level mean which signifies the directional accuracy impact of a combination)

```
In [ ]:
        Purpose: Project 2 - Analysze methods for determining a 5 factor, 2 level model wit
        Author: Syam Evani
        # Standard imports
        import os
        import time
        # Additional imports
        import pandas as pd
        import numpy as np
        import itertools
        from sklearn.datasets import load iris
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import accuracy_score
        from itertools import combinations
        # Local imports
        # None
        # Timing examples
        # Illustration of a Class Function for Error Exception
        class TimerError(Exception):
            """A custom exception used to report errors in use of Timer class"""
        ## Illustration of a Class Function Measure Time Performance
        class Timer:
            def __init__(self):
                 self. start time = None
            def start(self):
                 """Start a new timer"""
                 if self._start_time is not None:
                     raise TimerError(f"Timer is running. Use .stop() to stop it")
                 self._start_time = time.perf_counter()
            def stop(self):
                 """Stop the timer, and report the elapsed time"""
                if self._start_time is None:
                     raise TimerError(f"Timer is not running. Use .start() to start it")
```

```
elapsed_time = time.perf_counter() - self._start_time
       elapsed_time_min = (time.perf_counter() - self._start_time)/60
       self._start_time = None
       print(f"Elapsed time: {elapsed_time:0.4f} seconds")
       print(f"Elapsed time: {elapsed_time_min:0.4f} minutes")
# Design matrix creation
#-----
# Define the factors and levels
# Provided values (yields accuracy 1.0 for all combos)
# factors = {
     'n estimators': [50, 100],
     'max_depth': [1, 20],
     'min_samples_split': [2, 6],
     'min_samples_leaf': [1, 5],
     'max_samples': [0.5, 0.8]
# }
# New factors (yields accuracy 0.3 to 1.0)
factors = {
   'n estimators': [5, 50],
    'max_depth': [1, 10],
   'min samples split': [2, 10],
    'min_samples_leaf': [1, 10],
    'max_samples': [0.1, 0.9]
}
# Create a full factorial design
def generate_full_factorial_design(factors):
   levels = list(factors.values())
   design = list(itertools.product(*levels))
   # Convert each combination into a dictionary
   design matrix = []
   for combo in design:
       single_design = {}
       for i, factor in enumerate(factors.keys()):
           single_design[factor] = combo[i]
       design_matrix.append(single_design)
   # Return list that has dicts inside
   return design_matrix
# Generate the design matrix
design_matrix = generate_full_factorial_design(factors)
# Run experiment
#-----
# Import the time library
t = Timer()
t.start()
```

```
# Load the Iris dataset
X, y = load_iris(return_X_y=True)
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
results = []
# Run the experiments
for config in design matrix:
   clf = RandomForestClassifier(n_estimators=config['n_estimators'], max_depth=con
   clf.fit(X_train, y_train)
   predictions = clf.predict(X_test)
   accuracy = accuracy_score(y_test, predictions)
   # Store the results
   results.append({
       'n_estimators': config['n_estimators'],
       'max_depth': config['max_depth'],
       'min_samples_split': config['min_samples_split'],
       'min_samples_leaf': config['min_samples_leaf'],
       'max_samples': config['max_samples'],
       'accuracy': accuracy
   })
t.stop() # A few seconds later
# Convert results to a DataFrame for analysis
results_df = pd.DataFrame(results)
# Assess the impact of main factors
#-----
main_effects = {}
for factor in factors.keys():
   main_effects[factor] = results_df.groupby(factor)['accuracy'].mean()
# Assess the impact of interactions
#-----
# Calculate interaction effects
interaction_effects = {}
factor_names = list(factors.keys())
for r in range(2, len(factor_names) + 1):
   for combo in combinations(factor names, r):
       interaction_term = ' x '.join(combo)
       interaction_effects[interaction_term] = results_df.groupby(list(combo))['ac
# Generate contrast Output
contrast_output = pd.DataFrame(columns=['Factor/Interaction', 'Low Level Mean', 'Hi
contrast_rows = []
# Calculate contrast for main effects
for factor in factors.keys():
   low level mean = main effects[factor].iloc[0]
```

```
high_level_mean = main_effects[factor].iloc[1]
    effect = high_level_mean - low_level_mean
    contrast rows.append({
        'Factor/Interaction': factor,
        'Low Level Mean': low_level_mean,
        'High Level Mean': high_level_mean,
        'Effect': effect
    })
# Calculate contrast for interaction effects
for interaction_term, interaction_data in interaction_effects.items():
    for idx, (level, row) in enumerate(interaction_data.iterrows()):
        low_level_mean = row.iloc[0]
        high_level_mean = row.iloc[1]
        effect = high level mean - low level mean
        contrast rows.append({
            'Factor/Interaction': f'{interaction_term} (Level {level})',
            'Low Level Mean': low_level_mean,
            'High Level Mean': high_level_mean,
            'Effect': effect
        })
# Save contrast and sort from highest to lowest
contrast_output = pd.DataFrame(contrast_rows)
contrast_output = contrast_output.sort_values(by='Effect', ascending=False)
# Print design, main effects contrast, and overall constrast rankings
# Print design
print("Accuracy Report:")
print(results_df)
# Print main effects constrast
print("\nMain Effects:")
for factor, effects in main_effects.items():
    print(f"\n{factor}:")
    print(effects)
# Save contrast to text file for interactions
with open(os.path.join(os.getenv('USERPROFILE'), "repos", "mece-6397-doe", "project2",
    file.write(contrast_output.to_string(index=False))
# Print overall rankings
with open(os.path.join(os.getenv('USERPROFILE'), "repos", "mece-6397-doe", "project2",
    contents = file.read()
print(contents)
```

```
Elapsed time: 0.4008 seconds
Elapsed time: 0.0067 minutes
Main Effects:
n estimators:
n_estimators
5
     0.716667
50
     0.827083
Name: accuracy, dtype: float64
max_depth:
max_depth
1
     0.720833
      0.822917
10
Name: accuracy, dtype: float64
min_samples_split:
min_samples_split
     0.77500
     0.76875
10
Name: accuracy, dtype: float64
min_samples_leaf:
min samples leaf
1
     0.91875
10
     0.62500
Name: accuracy, dtype: float64
max_samples:
max samples
0.1
      0.647917
0.9
      0.895833
Name: accuracy, dtype: float64
Factor/Interaction Low Level Mean High Level Mean
                                                       Effect
                         n_estimators x max_depth x min_samples_leaf x max_samples
                                            1.000000 0.666667
(Level (5, 10, 10))
                           0.333333
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Leve
1 (5, 10, 10, 10))
                          0.333333
                                           1.000000 0.666667
 n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Lev
el (5, 10, 2, 10))
                          0.333333
                                           1.000000 0.666667
                                           max_depth x min_samples_leaf x max_sample
                                           1.000000 0.650000
s (Level (10, 10))
                          0.350000
                   max_depth x min_samples_split x min_samples_leaf x max_samples (L
                                           1.000000 0.650000
                          0.350000
evel (10, 10, 10))
                    max_depth x min_samples_split x min_samples_leaf x max_samples
(Level (10, 2, 10))
                           0.350000
                                            1.000000 0.650000
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Leve
                                           1.000000 0.633333
1 (50, 10, 2, 10))
                          0.366667
                        n_estimators x max_depth x min_samples_leaf x max_samples (L
                          0.366667
                                           1.000000 0.633333
evel (50, 10, 10))
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level
(50, 10, 10, 10))
                         0.366667
                                          1.000000 0.633333
                                        n_estimators x min_samples_leaf x max_sample
s (Level (50, 10))
                                           0.983333 0.616667
                          0.366667
```

```
n_estimators x min_samples_split x min_samples_leaf x max_samples (L
evel (50, 10, 10))
                          0.366667
                                           0.983333 0.616667
                 n estimators x min samples split x min samples leaf x max samples
(Level (50, 2, 10))
                           0.366667
                                            0.983333 0.616667
                         n_estimators x max_depth x min_samples_leaf x max_samples
(Level (50, 1, 10))
                           0.366667
                                            0.966667 0.600000
 n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Leve
                                           0.966667 0.600000
1 (50, 1, 10, 10))
                          0.366667
 n estimators x max depth x min samples split x min samples leaf x max samples (Lev
el (50, 1, 2, 10))
                          0.366667
                                           0.966667 0.600000
                                   min_samples_split x min_samples_leaf x max_sample
s (Level (10, 10))
                          0.350000
                                           0.900000 0.550000
                                    min_samples_split x min_samples_leaf x max_sampl
es (Level (2, 10))
                          0.350000
                                           0.900000 0.550000
                                                             min samples leaf x max
samples (Level 10)
                                           0.900000 0.550000
                          0.350000
                  n_estimators x min_samples_split x min_samples_leaf x max_samples
                                           0.816667 0.483333
(Level (5, 2, 10))
                          0.333333
                 n_estimators x min_samples_split x min_samples_leaf x max_samples
(Level (5, 10, 10))
                           0.333333
                                            0.816667 0.483333
                                         n_estimators x min_samples_leaf x max_sampl
es (Level (5, 10))
                                           0.816667 0.483333
                          0.333333
                   max_depth x min_samples_split x min_samples_leaf x max_samples
(Level (1, 10, 10))
                           0.350000
                                            0.800000 0.450000
                     max_depth x min_samples_split x min_samples_leaf x max_samples
(Level (1, 2, 10))
                          0.350000
                                           0.800000 0.450000
                                            max_depth x min_samples_leaf x max_sampl
                                           0.800000 0.450000
es (Level (1, 10))
                          0.350000
                        n_estimators x max_depth x min_samples_split x max_samples
(Level (5, 10, 10))
                          0.616667
                                            0.983333 0.366667
                                                n estimators x max depth x max sampl
es (Level (5, 10))
                          0.633333
                                           0.983333 0.350000
                                          max_depth x min_samples_split x max_sample
s (Level (10, 10))
                                           0.991667 0.350000
                          0.641667
                                                                    max_depth x max_
samples (Level 10)
                                           0.991667 0.337500
                          0.654167
                         n_estimators x max_depth x min_samples_split x max_samples
(Level (5, 10, 2))
                          0.650000
                                           0.983333 0.333333
                       n_estimators x max_depth x min_samples_split x max_samples (L
evel (50, 10, 10))
                          0.666667
                                           1.000000 0.333333
                                               n_estimators x max_depth x max_sample
s (Level (50, 10))
                          0.675000
                                           1.000000 0.325000
                                           max_depth x min_samples_split x max_sampl
es (Level (10, 2))
                                           0.991667 0.325000
                          0.666667
                                       n_estimators x min_samples_split x max_sample
s (Level (50, 10))
                                           0.983333 0.316667
                          0.666667
                        n_estimators x max_depth x min_samples_split x max_samples
(Level (50, 10, 2))
                           0.683333
                                            1.000000 0.316667
                                                                 n_estimators x max_
samples (Level 50)
                          0.670833
                                           0.983333 0.312500
                                        n_estimators x min_samples_split x max_sampl
                                           0.983333 0.308333
es (Level (50, 2))
                          0.675000
                        n_estimators x max_depth x min_samples_split x max_samples
(Level (50, 1, 10))
                                            0.966667 0.300000
                           0.666667
                                                n_estimators x max_depth x max_sampl
                                           0.966667 0.300000
es (Level (50, 1))
                          0.666667
```

```
n_estimators x max_depth x min_samples_split x max_samples
                                          0.966667 0.300000
(Level (50, 1, 2))
                         0.666667
   n estimators x max depth x min samples split x min samples leaf x max samples (Le
vel (5, 1, 2, 10))
                         0.333333
                                          0.633333 0.300000
 n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Lev
                                          0.633333 0.300000
el (5, 1, 10, 10))
                         0.333333
                          n_estimators x max_depth x min_samples_leaf x max_samples
                                          0.633333 0.300000
(Level (5, 1, 10))
                         0.333333
                                                           min samples split x max
samples (Level 10)
                         0.641667
                                          0.895833 0.254167
                  0.647917
                                   0.895833 0.247917
max samples
                                                            min_samples_split x max
_samples (Level 2)
                         0.654167
                                          0.895833 0.241667
                                        n estimators x min samples split x max sampl
                                          0.808333 0.191667
es (Level (5, 10))
                         0.616667
                                                                   n_estimators x m
ax_depth (Level 5)
                                          0.808333 0.183333
                         0.625000
                                                                 n estimators x max
_samples (Level 5)
                         0.625000
                                          0.808333 0.183333
                                         n_estimators x min_samples_split x max_samp
                                          0.808333 0.175000
les (Level (5, 2))
                         0.633333
                                                                    max_depth x max
_samples (Level 1)
                                          0.800000 0.158333
                         0.641667
                                           max_depth x min_samples_split x max_sampl
es (Level (1, 10))
                         0.641667
                                          0.800000 0.158333
                                           max_depth x min_samples_split x max_samp
les (Level (1, 2))
                         0.641667
                                          0.800000 0.158333
n_estimators
                   0.716667
                                    0.827083 0.110417
max depth
                0.720833
                                 0.822917 0.102083
  n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Lev
                                          0.966667 0.066667
el (5, 10, 10, 1))
                         0.900000
                   max_depth x min_samples_split x min_samples_leaf x max_samples
                                           0.983333 0.050000
(Level (10, 10, 1))
                          0.933333
n estimators x max depth x min samples split x min samples leaf x max samples (Leve
                                          1.000000 0.033333
1 (50, 10, 10, 1))
                         0.966667
                          n_estimators x max_depth x min_samples_leaf x max_samples
(Level (5, 10, 1))
                         0.933333
                                          0.966667 0.033333
                                           max_depth x min_samples_leaf x max_sampl
es (Level (10, 1))
                         0.958333
                                          0.983333 0.025000
                                                                  n_estimators x ma
x depth (Level 50)
                         0.816667
                                          0.837500 0.020833
                 n_estimators x min_samples_split x min_samples_leaf x max_samples
                          0.966667
                                           0.983333 0.016667
(Level (50, 10, 1))
                                                 n_estimators x max_depth x max_samp
les (Level (5, 1))
                         0.616667
                                          0.633333 0.016667
                         n_estimators x max_depth x min_samples_leaf x max_samples
(Level (50, 10, 1))
                                           1.000000 0.016667
                          0.983333
                         n_estimators x max_depth x min_samples_split x max_samples
                                         0.633333 0.016667
(Level (5, 1, 2))
                         0.616667
                         n_estimators x max_depth x min_samples_split x max_samples
(Level (5, 1, 10))
                         0.616667
                                          0.633333 0.016667
                                         n_estimators x min_samples_leaf x max_sampl
es (Level (50, 1))
                                           0.983333 0.008333
                         0.975000
```

```
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Lev
                          1.000000
el (50, 10, 2, 1))
                                           1.000000 0.000000
                                           n estimators x max depth x min samples sp
lit (Level (5, 1))
                          0.625000
                                           0.625000 0.000000
                     max_depth x min_samples_split x min_samples_leaf x max_samples
(Level (10, 2, 1))
                                           0.983333 0.000000
                          0.983333
                                                               max_depth x min_sampl
es_split (Level 1)
                          0.720833
                                           0.720833 0.000000
                  n estimators x min samples split x min samples leaf x max samples
                          0.983333
                                           0.983333 0.000000
(Level (50, 2, 1))
                          n_estimators x max_depth x min_samples_leaf x max_samples
                                           0.966667 0.000000
(Level (50, 1, 1))
                          0.966667
   n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Le
                          0.966667
                                           0.966667 0.000000
vel (50, 1, 2, 1))
   n estimators x max depth x min samples split x min samples leaf x max samples (Le
vel (5, 10, 2, 1))
                          0.966667
                                           0.966667 0.000000
  n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Lev
                          0.966667
                                           0.966667 0.000000
el (50, 1, 10, 1))
                                          n_estimators x max_depth x min_samples_spl
it (Level (50, 1))
                          0.816667
                                           0.816667 0.000000
                                                           n_estimators x min_sample
                                           0.825000 -0.004167
s split (Level 50)
                          0.829167
min_samples_split
                         0.775000
                                          0.768750 -0.006250
                                                            n estimators x min sampl
es split (Level 5)
                          0.720833
                                           0.712500 -0.008333
                                         n_estimators x max_depth x min_samples_spli
t (Level (50, 10))
                          0.841667
                                           0.833333 -0.008333
                                                              max_depth x min_sample
s_split (Level 10)
                          0.829167
                                           0.816667 -0.012500
                                          n estimators x max depth x min samples spl
it (Level (5, 10))
                          0.816667
                                           0.800000 -0.016667
                                    min_samples_split x min_samples_leaf x max_sampl
es (Level (10, 1))
                          0.933333
                                           0.891667 -0.041667
                                                              min_samples_leaf x max
_samples (Level 1)
                                           0.891667 -0.054167
                          0.945833
                                     min samples split x min samples leaf x max samp
les (Level (2, 1))
                                           0.891667 -0.066667
                          0.958333
                  n_estimators x min_samples_split x min_samples_leaf x max_samples
(Level (5, 10, 1))
                          0.900000
                                           0.800000 -0.100000
                                          n_estimators x min_samples_leaf x max_samp
les (Level (5, 1))
                          0.916667
                                           0.800000 -0.116667
                                             max_depth x min_samples_leaf x max_samp
les (Level (1, 1))
                                           0.800000 -0.133333
                          0.933333
                   n_estimators x min_samples_split x min_samples_leaf x max_samples
(Level (5, 2, 1))
                                          0.800000 -0.133333
                         0.933333
                      max_depth x min_samples_split x min_samples_leaf x max_samples
(Level (1, 2, 1))
                         0.933333
                                          0.800000 -0.133333
                     max_depth x min_samples_split x min_samples_leaf x max_samples
(Level (1, 10, 1))
                                           0.800000 -0.133333
                          0.933333
                           n_estimators x max_depth x min_samples_leaf x max_samples
                         0.900000
                                          0.633333 -0.266667
(Level (5, 1, 1))
   n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Le
                          0.900000
                                           0.633333 -0.266667
vel (5, 1, 10, 1))
                   n_estimators x max_depth x min_samples_split x min_samples_leaf
                                            0.666667 -0.266667
(Level (5, 10, 10))
                           0.933333
```

n_estimators x evel (5, 1, 2, 1))		_samples_split x min_samples_leaf x max_samples (L 0.633333 -0.266667
(5, -, -, -, -,	0.70000	<pre>n_estimators x min_samples_split x min_samples_le</pre>
af (Level (5, 10))	0.850000	0.575000 -0.275000
	n_estimators >	<pre>x max_depth x min_samples_split x min_samples_leaf</pre>
(Level (5, 1, 2))	0.766667	0.483333 -0.283333
	n estimators x	<pre>max_depth x min_samples_split x min_samples_leaf</pre>
(Level (5, 1, 10))		0.483333 -0.283333
(2002 (3) 1) 10//	01700007	<pre>max_depth x min_samples_split x min_samples_lea</pre>
f (Lovel (10 10))	0.958333	0.675000 -0.283333
f (Level (10, 10))	0.936333	
		<pre>n_estimators x max_depth x min_samples_1</pre>
eaf (Level (5, 1))	0.766667	0.483333 -0.283333
		<pre>n_estimators x max_depth x min_samples_le</pre>
af (Level (5, 10))	0.950000	0.666667 -0.283333
		n_estimators x min_samp
<pre>les_leaf (Level 5)</pre>	0.858333	0.575000 -0.283333
		<pre>min_samples_split x min_sampl</pre>
es leaf (Level 10)	0.912500	0.625000 -0.287500
es_lear (Level 10)	0.912300	
		max_depth x min_samp
<pre>les_leaf (Level 1)</pre>	0.866667	0.575000 -0.291667
		<pre>max_depth x min_samples_split x min_samples_le</pre>
af (Level (1, 10))	0.866667	0.575000 -0.291667
		<pre>max_depth x min_samples_split x min_samples_l</pre>
eaf (Level (1, 2))	0.866667	0.575000 -0.291667
(() //		<pre>n_estimators x min_samples_split x min_samples_1</pre>
eaf (Level (5, 2))	0.866667	0.575000 -0.291667
ear (Level (3, 2))	0.800007	0.373000 -0.231007
	0.010750	0.635000 0.303750
min_samples_leaf	0.918750	0.625000 -0.293750
		<pre>max_depth x min_sampl</pre>
es_leaf (Level 10)		
	0.970833	<pre>max_depth x min_sampl</pre>
es_leaf (Level 10)	0.970833 r	<pre>max_depth x min_sampl 0.675000 -0.295833</pre>
	0.970833 r	<pre>max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000</pre>
es_leaf (Level 10) f (Level (50, 10))	0.970833 r 0.975000	<pre>max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le</pre>
es_leaf (Level 10)	0.970833 r 0.975000	<pre>max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000</pre>
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1))	0.970833 0.975000 0.966667	<pre>max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000</pre>
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2)	0.970833 r 0.975000 0.966667 0.925000	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L 0.683333 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x 0.966667	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x n	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L 0.683333 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x n	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x 0.966667	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L 0.683333 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 nax_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 nax_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 nax_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x 0.966667	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10) es_leaf (Level 50)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x m 0.966667 n_estimators x m 0.966667	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L 0.683333 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 nax_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 n_estimators x min_samples_leaf 0.675000 -0.304167 n_estimators x max_depth x min_samples_lea
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x m 0.966667 n_estimators x m 0.966667	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L 0.683333 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 n_estimators x min_sample 0.675000 -0.304167 n_estimators x max_depth x min_samples_lea
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10) es_leaf (Level 50)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x m 0.966667 n_estimators x m 0.966667	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L 0.683333 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 n_estimators x min_sample 0.675000 -0.304167 n_estimators x max_depth x min_samples_lea
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10) es_leaf (Level 50) f (Level (50, 10))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x 0.966667 n_estimators x m 0.966667 0.966667	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10) es_leaf (Level 50)	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x 0.966667 n_estimators x m 0.966667 0.966667	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10) es_leaf (Level 50) f (Level (50, 10)) af (Level (10, 2))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x n 0.966667 n_estimators x n 0.966667 0.979167 0.991667 0.983333	max_depth x min_sampl 0.675000 -0.295833 n_estimators x min_samples_split x min_samples_lea 0.675000 -0.300000 n_estimators x max_depth x min_samples_le 0.666667 -0.300000 min_samples_split x min_samp 0.625000 -0.300000 ax_depth x min_samples_split x min_samples_leaf (L 0.683333 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 max_depth x min_samples_split x min_samples_leaf 0.666667 -0.300000 n_estimators x min_sample 0.675000 -0.304167 n_estimators x max_depth x min_samples_lea 0.683333 -0.308333 max_depth x min_samples_split x min_samples_le 0.675000 -0.308333 n_estimators x min_samples_split x min_samples_le 0.675000 -0.308333 n_estimators x min_samples_split x min_samples_le
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10) es_leaf (Level 50) f (Level (50, 10))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x r 0.966667 n_estimators x r 0.966667 0.979167 0.979167 0.983333 0.983333	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10) es_leaf (Level 50) f (Level (50, 10)) af (Level (50, 2))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x r 0.966667 n_estimators x r 0.966667 0.979167 0.979167 0.983333 0.983333 n_estimators x r	max_depth x min_sampl
es_leaf (Level 10) f (Level (50, 10)) af (Level (50, 1)) les_leaf (Level 2) evel (50, 10, 10)) (Level (5, 10, 2)) (Level (50, 1, 2)) (Level (50, 1, 10) es_leaf (Level 50) f (Level (50, 10)) af (Level (10, 2))	0.970833 0.975000 0.966667 0.925000 n_estimators x ma 0.983333 n_estimators x 0.966667 n_estimators x material of the serial of the se	max_depth x min_sampl

Firstly, our new accuracy report with these updated factor value yields the image below. Note the factors that yield the highest accuracy (1.0) are the following and are combos I would suggest for best accuracy:

- number of estimators: 5, max depth: 10, minimum samples split: 2, minimum samples leaf: 10, maximum samples: 0.9
- number of estimators: 5, max depth: 10, minimum samples split: 10, minimum samples leaf: 10, maximum samples: 0.9
- number of estimators: 50, max depth: 10, minimum samples split: 2, minimum samples leaf: 10, maximum samples: 0.1
- number of estimators: 50, max depth: 10, minimum samples split: 2, minimum samples leaf: 10, maximum samples: 0.9
- number of estimators: 50, max depth: 10, minimum samples split: 10, minimum samples leaf: 1, maximum samples: 0.9
- number of estimators: 50, max depth: 10, minimum samples split: 10, minimum samples leaf: 10, maximum samples: 0.9

Acc	uracy Report:					
	n_estimators	max_depth	min_samples_split	min_samples_leaf	max_samples	accuracy
0	5	1	2	1	0.1	0.900000
1	5	1	2	1	0.9	0.633333
2	5	1	2	10	0.1	0.333333
3	5	1	2	10	0.9	0.633333
4	5	1	10	1	0.1	0.900000
5	5	1	10	1	0.9	0.633333
6	5	1	10	10	0.1	0.333333
7	5	1	10	10	0.9	0.633333
8	5	10	2	1	0.1	0.966667
9	5	10	2	1	0.9	0.966667
10	5	10	2	10	0.1	0.333333
11	5	10	2	10	0.9	1.000000
12	5	10	10	1	0.1	0.900000
13	5	10	10	1	0.9	0.966667
14	5	10	10	10	0.1	0.333333
15	5	10	10	10	0.9	1.000000
16	50	1	2	1	0.1	0.966667
17	50	1	2	1	0.9	0.966667
18	50	1	2	10	0.1	0.366667
19	50	1	2	10	0.9	0.966667
20	50	1	10	1	0.1	0.966667
21	50	1	10	1	0.9	0.966667
22	50	1	10	10	0.1	0.366667
23	50	1	10	10	0.9	0.966667
24	50	10	2	1	0.1	1.000000
25	50	10	2	1	0.9	1.000000
26	50	10	2	10	0.1	0.366667
27	50	10	2	10	0.9	1.000000
28	50	10	10	1	0.1	0.966667
29	50	10	10	1	0.9	1.000000
30	50	10	10	10	0.1	0.366667
31	50	10	10	10	0.9	1.000000

The complete interaction and contrast report is provided below. Perhaps the most clear takeway is increasing maximum samples has a strong impact on increasing accuracy.

Following that, several complex relationships exist, most notably those combos of factors that combine to form a perfect accuracy.

Factor/Interaction	Low Level Mean	High Level Mean	Effect
n_estimators x max_depth x min_samples_leaf x max_samples (Level (5, 10, 10))	0.333333	1.000000	0.666667
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level (5, 10, 10, 10))	0.333333	1.000000	0.666667
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level (5, 10, 2, 10))	0.333333	1.000000	0.666667
max_depth x min_samples_leaf x max_samples (Level (10, 10))	0.350000	1.000000	0.650000
max_depth x min_samples_split x min_samples_leaf x max_samples (Level (10, 10, 10))	0.350000	1.000000	0.650000
max_depth x min_samples_split x min_samples_leaf x max_samples (Level (10, 2, 10))	0.350000	1.000000	0.650000
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level (50, 10, 2, 10))	0.366667	1.000000	0.633333
n_estimators x max_depth x min_samples_leaf x max_samples (Level (50, 10, 10))	0.366667	1.000000	0.633333
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level (50, 10, 10, 10))	0.366667	1.000000	0.633333
n_estimators x min_samples_leaf x max_samples (Level (50, 10))	0.366667	0.983333	0.616667
n_estimators x min_samples_split x min_samples_leaf x max_samples (Level (50, 10, 10))	0.366667	0.983333	0.616667
n_estimators x min_samples_split x min_samples_leaf x max_samples (Level (50, 2, 10))	0.366667	0.983333	0.616667
n_estimators x max_depth x min_samples_leaf x max_samples (Level (50, 1, 10))	0.366667	0.966667	0.600000
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level (50, 1, 10, 10))	0.366667	0.966667	0.600000
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level (50, 1, 2, 10))	0.366667	0.966667	0.600000
min_samples_split x min_samples_leaf x max_samples (Level (10, 10))	0.350000	0.900000	0.550000
min_samples_split x min_samples_leaf x max_samples (Level (2, 10))	0.350000	0.900000	0.550000
min_samples_leaf x max_samples (Level 10)	0.350000	0.900000	0.550000

Factor/Interaction	Low Level Mean	High Level Mean	Effect
n_estimators x min_samples_split x min_samples_leaf x max_samples (Level (5, 2, 10))	0.333333	0.816667	0.483333
n_estimators x min_samples_split x min_samples_leaf x max_samples (Level (5, 10, 10))	0.333333	0.816667	0.483333
n_estimators x min_samples_leaf x max_samples (Level (5, 10))	0.333333	0.816667	0.483333
max_depth x min_samples_split x min_samples_leaf x max_samples (Level (1, 10, 10))	0.350000	0.800000	0.450000
max_depth x min_samples_split x min_samples_leaf x max_samples (Level (1, 2, 10))	0.350000	0.800000	0.450000
max_depth x min_samples_leaf x max_samples (Level (1, 10))	0.350000	0.800000	0.450000
n_estimators x max_depth x min_samples_split x max_samples (Level (5, 10, 10))	0.616667	0.983333	0.366667
n_estimators x max_depth x max_samples (Level (5, 10))	0.633333	0.983333	0.350000
max_depth x min_samples_split x max_samples (Level (10, 10))	0.641667	0.991667	0.350000
max_depth x max_samples (Level 10)	0.654167	0.991667	0.337500
n_estimators x max_depth x min_samples_split x max_samples (Level (5, 10, 2))	0.650000	0.983333	0.333333
n_estimators x max_depth x min_samples_split x max_samples (Level (50, 10, 10))	0.666667	1.000000	0.333333
n_estimators x max_depth x max_samples (Level (50, 10))	0.675000	1.000000	0.325000
max_depth x min_samples_split x max_samples (Level (10, 2))	0.666667	0.991667	0.325000
n_estimators x min_samples_split x max_samples (Level (50, 10))	0.666667	0.983333	0.316667
n_estimators x max_depth x min_samples_split x max_samples (Level (50, 10, 2))	0.683333	1.000000	0.316667
n_estimators x max_samples (Level 50)	0.670833	0.983333	0.312500
n_estimators x min_samples_split x max_samples (Level (50, 2))	0.675000	0.983333	0.308333
n_estimators x max_depth x min_samples_split x max_samples (Level (50, 1, 10))	0.666667	0.966667	0.300000
n_estimators x max_depth x max_samples (Level (50, 1))	0.666667	0.966667	0.300000
n_estimators x max_depth x min_samples_split x	0.666667	0.966667	0.300000

Factor/Interaction	Low Level Mean	High Level Mean	Effect
max_samples (Level (50, 1, 2))			
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level (5, 1, 2, 10))	0.333333	0.633333	0.300000
n_estimators x max_depth x min_samples_split x min_samples_leaf x max_samples (Level (5, 1, 10, 10))	0.333333	0.633333	0.300000
n_estimators x max_depth x min_samples_leaf x max_samples (Level (5, 1, 10))	0.333333	0.633333	0.300000
min_samples_split x max_samples (Level 10)	0.641667	0.895833	0.254167
max_samples	0.647917	0.895833	0.247917
min_samples_split x max_samples (Level 2)	0.654167	0.895833	0.241667
n_estimators x min_samples_split x max_samples (Level (5, 10))	0.616667	0.808333	0.191667
n_estimators x min_samples_split x max_samples (Level (5, 2))	0.616667	0.808333	0.191667
max_depth x min_samples_split x max_samples (Level (1, 10))	0.650000	0.825000	0.175000
max_depth x max_samples (Level 1)	0.654167	0.825000	0.170833
max_depth x min_samples_split x max_samples (Level (1, 2))	0.666667	0.825000	0.158333
min_samples_split x max_samples (Level 1)	0.670833	0.820833	0.150000
max_depth (Level 1)	0.658333	0.791667	0.133333
n_estimators (Level 5)	0.633333	0.750000	0.116667
n_estimators x max_depth (Level 50)	0.670833	0.766667	0.095833
n_estimators (Level 50)	0.670833	0.750000	0.079167
max_depth (Level 10)	0.658333	0.716667	0.058333
n_estimators x max_depth (Level 1)	0.666667	0.716667	0.050000
min_samples_split (Level 1)	0.662500	0.700000	0.037500
n_estimators (Level 1)	0.670833	0.691667	0.020833
min_samples_split (Level 10)	0.658333	0.675000	0.016667
min_samples_split (Level 2)	0.662500	0.675000	0.012500