工程數學(一) 報告 F74091247 歐長諺

主題: 利用灰色理論來預測股市指數

(一) 背景介紹:

在工程數學這門學科裡教授了許多的知識和理論,像是有常微分方程、傅立葉分析、向量分析、偏微分方程、複變函數等等,其中在各領域最常用到的就是傅立葉分析,舉凡通訊工程、金融工程、軟體工程幾乎都可以看到傅立葉分析實際的應用,在通訊工程中,會利用傅立葉轉換來分析一個訊號,並將其作濾波(去掉雜訊)或者是改變訊號的組成等等,那在軟體工程之中常見的做法就是拿來做影像處理,舉反任何一種圖片都可以用傅立葉級數來表示,像是人臉輪廓等就是比較低頻的訊號,皺紋就是用高頻的訊號來表示,所以像現在流行的濾鏡就是將那些高頻的部分去除掉在做轉換,此外還有很多的應用。

那有關金融工程的應用就是會用在股市分析了,但也不是所有的金融專家都會利用傅立葉分析來分析股市的情況,在股市價格的預測主要有兩大派,一派認為股市是無法預測,因為股市本身就是人類自己制定出來的一個虛擬市場,所以有人為操作的空間,目前任何的數學理論還沒有辦法去計算人心,另外一派則是認為股市的價格是可以預測,因為只要交易量足夠大,價格的走勢就可以透過數學裡的迴歸分析來處理,股市分析的手段有很多種,有基本面、技術面、籌碼面等等,我就從技術面的方向來分析,指涉及到利用過去的數據來預測未來的價格。

(二) 問題描述:

最近看到新聞發現台股一直在漲,像上個月有破一萬八,這幾天又破一萬 七,這讓我思考說這些情形有沒有辦法利用數學分析來進行預測。剛好找到有 幾篇論文就有說到如何利用傅立葉轉換來做選擇權交易,不過因為選擇權交易 的情形比較複雜,所以我換個想法,能不能來預測未來的台股指數。

主要目的:預測接下來五天的台股指數的收盤價。

(三) 解決方法:

首先這邊我要先講到一個概念就是灰色理論,灰色理論的全名叫灰色系統理論,是有關於訊息的不完全或不確定,在控制理論中我們常用黑色和白色,訊息完全不明確的系統稱為黑色系統,相反的完全明確的就叫做白色系統,灰色

系統就是介於這兩者之間,屬於部分訊息明確、部分不明確的系統。

我接下來所要使用的數學模型是 GM(1,1),它是一種一階線性的灰色預測模型,可以對現有的數據進行預測,好處是製需要幾點的數據就能做預測,大大降低計算的複雜度,缺點是只能對中短期的數據進行預測,用來進行長期的預測會失準。

以下是 GM(1,1)的五大特點

- 1. 預測所需數據少
- 2. 計算步驟不複雜
- 3. 可簡化資料蒐集工作
- 4. 適用中、短期的預測

以下會用到的數學概念:

- 最小平方法:

找不到可解析解,所以只能找到最靠近解析解的近似解

- 傅立葉級數:

透過它來修正找出來的近似解

- 一階常微分方程:

將數列通式的給找出

我選擇的實驗對象是台股指數,理由有下:

- (1) 為各公司的加權指,人為操控的因素較小。
- (2) 交易單量的基數夠大,某些行為會趨近於某種自然規律(函數)。
- (3) 值得分析的一種指數,可以用來進行選擇權交易的參考

以下是計算過程:

令 X⁽⁰⁾= { X⁽⁰⁾(1), X⁽⁰⁾(2), _, X⁽⁰⁾(n) } 為一初始非負資料 數列, 经 一次 AGO後 得 X(1) (1) X(1) (2) (1) (1) 定義 $\gamma^{(1)}(k) = \sum_{k=1}^{k} \chi^{(0)}(i)$ $\therefore \chi^{(0)}(1) = \chi^{(1)}(1)$ 由於數列 X⁽¹⁾ 是经由X⁽⁰⁾ 累加得到的,X⁽¹⁾可 视 為 具 有 指 数 的 行 為 , M 以 可 以 用 一 個 一 階 ODE 來近似數列X⁽¹⁾的行為 可求得交色的差分方程: $\frac{d x^{(1)}}{d x^{(1)}} + \alpha x^{(1)} = b \quad (a, b \in \mathbb{R})$ 解此级分方程得: $\hat{\chi}^{(i)}$ 表示 $\chi^{(i)}$ 的 預 別 值 , If $C = [\alpha, b]^T$ (的最佳解為 C=(B^TB)^{-'}B^TY $Y = \left[\chi^{(0)}(z), \chi^{(0)}(3), \ldots, \chi^{(0)}(n) \right]^{T}$ $B = \begin{cases} -\frac{1}{2} (\chi^{(1)}(2) + \chi^{(1)}(1)) & 1 \\ -\frac{1}{2} (\chi^{(1)}(3) + \chi^{(1)}(2)) & 1 \end{cases}$

 $\frac{1}{2} \quad \cos\left(\frac{1\times27\times n}{T_0}\right) \quad \sin\left(\frac{1\times27\times n}{T_0}\right) \quad \cos\left(\frac{\kappa_0\cdot27\times n}{T_0}\right)$ (a = (ao, a1, b1 a2 b2 ... , axa , bxa) $T\alpha = n-1$ $Ka = \frac{n-1}{2} - 1$ 其中 $\frac{n-1}{2}$ 取整飲 49 $Ca = (Pa^T Pa)^{-1} Pa^T Ea$ 1t $\lambda Ea (i)$ 此為須修正的預測誤差。並求得修正後預測值 $\hat{\chi}_{0}^{(0)}(j) = \hat{\chi}^{(0)}(j) - \text{Eaci}, j = 2, 3, 4, ..., n$ 其中 $\hat{\chi}_{\alpha}^{(0)}(1) = \hat{\chi}_{\alpha}^{(0)}(1)$. $\hat{\chi}_{\alpha}^{(0)}(1)$ 為傅立葉 穆 差 修正 的預測值 根據學解生參數人學列的參數估計值人代入 En (1) = \frac{1}{2} ao + \frac{ka}{ka} \left(ai cos \left(\frac{2\tau_i}{\tau_i} \right) + bi \sin \left(\frac{2\tau_i}{\tau_i} \right) \right] 當需預測下 m 點的 对差時, 产數列可往下近伸 $\Rightarrow \hat{E}(n+m) = \frac{1}{2}a_0 + \sum_{i=1}^{K_0} \left(a_i \cos\left(\frac{2\pi i}{T_0}(n+m)\right) + b_i \sin\left(\frac{2\pi i}{T_0}(n+m)\right)\right)$ 傅立葉級數可以預測建模點的發差值與預測未來 未知的残差值、运将全加回预测数列分的就可得 GM (171)|10博立案醒差修正的到测版和 菜(10) $\hat{\chi}^{(0)}(k+1) = \hat{\chi}^{(0)}(k+1) + \hat{\xi}(k+1) \quad k = 2,3..., n, n+1, n+m$

```
MATLAB 程式碼:
data = xlsread('Test.xlsx')
data = xlsread('Test.xlsx', 'A2:A21')
X = 0;
X1 = 0;
Xs = 0;
Xs1 = 0;
C = 0;
B = 0;
Y = 0;
for i=1:20
    X(i) = data(i);
    if i == 1
        X1(i) = data(i);
    else
        X1(i) = X1(i-1) + data(i);
    end
end
for n=2:20
    B(n-1,1) = -(1/2)*(X1(n) + X1(n-1));
    B(n-1,2) = 1;
    Y(n-1,1) = X(n);
end
C = inv(transpose(B)*B)*transpose(B)*Y;
Xs1 = X(1);
Xs = X(1);
```

```
B(n-1,1) = -(1/2)*(X1(n) + X1(n-1));
B(n-1,2) = 1;
Y(n-1,1) = X(n);
end
C = inv(transpose(B)*B)*transpose(B)*Y;
Xs1 = X(1);
Xs = X(1);
for k=1:25
Xs1(k+1) = (X(1) - C(2,1)/C(1,1))*exp(-C(1,1)*k) + C(2,1)/C(1,1);
Xs(k+1) = Xs1(k+1) - Xs1(k);
end
E = 0;
E = 0;
for j=2:20
E(j-1,1) = Xs(j-1) - X(j-1);
end
```

```
Pa = 0;
Ps = 0;
for i=2:20
    Pa(i-1,1) = 1/2;
    for j=1:9
        Pa(i-1,2*j) = cos((j*2*pi*i)/19);
        Pa(i-1,2*j+1) = sin((j*2*pi*i)/19);
    end
end
for m=21:26
    Ps(m-20,1) = 1/2;
    for j=1:9
        Ps(m-20,2*j) = cos((j*2*pi*i)*m/19);
        Ps(m-20,2*j+1) = sin((j*2*pi*i)*m/19);
    end
end
Ca = inv(transpose(Pa)*Pa)*transpose(Pa)*E;
Result = X(1);
for n=2:26
   if n <= 20
    Result(n) = Xs(n) + sum(Pa(n-1,:).*transpose(Ca));
   else
    Result(n) = Xs(n) + sum(Ps(n-20,:).*transpose(Ca));
   end
end
```

MATLAB 實際運算過程:

(四) 結果與討論

實驗數據: 原始資料: 台股指數每日的收盤價

日期	原始資料	預測值	誤差值 1	修正值	誤差值 2
110/08/02	17503.28	17503.28	0	17503.28	0
110/08/03	17553.76	17512.72	-41.0445	17512.72	-41.0445
110/08/04	17623.89	17463.7	-160.191	17422.65	-201.236
110/08/05	17603.12	17414.82	-188.301	17254.63	-348.493
110/08/06	17526.28	17366.08	-160.204	17177.77	-348.505
110/08/09	17485.15	17317.47	-167.681	17157.26	-327.885
110/08/10	17323.64	17269	-54.6413	17101.32	-222.322
110/08/11	17227.18	17220.66	-6.51615	17166.02	-61.1575
110/08/12	17219.94	17172.46	-47.4757	17165.95	-53.9919
110/08/13	16982.11	17124.4	142.2896	17076.92	94.81393
110/08/16	16858.77	17076.47	217.6995	17218.76	359.9892
110/08/17	16661.36	17028.67	367.3135	17246.37	585.0131
110/08/18	16826.27	16981.01	154.7414	17348.32	522.0549
110/08/19	16375.4	16933.48	558.0826	17088.22	712.8239
110/08/20	16341.94	16886.09	544.1468	17444.17	1102.229
110/08/23	16741.84	16838.82	96.98372	17382.97	641.1305
110/08/24	16818.73	16791.69	-27.0371	16888.68	69.94662
110/08/25	17045.86	16744.69	-301.166	16717.66	-328.203
110/08/26	17066.96	16697.83	-369.133	16396.66	-670.299
110/08/27	17209.93	16651.09	-558.84	16281.96	-927.973
110/08/30		16604.49		16604.49	
110/08/31		16558.01		16516.97	
110/09/01		16511.67		16351.47	
110/08/02		16465.45		16277.15	
110/09/03		16419.36		16259.16	
110/09/06		16373.41		16205.73	

註:8/30 以後的為預測的數據

圖表:

分析:

因為是用線性回歸的方式來處理,所以找出的預測值畫出來是一條直線, 不過這條直線可以看出數據的趨勢,修正過後的數值,圖形和原始資料有相似 性,但修正值和預測值相較起來會發現誤差較大,以下是我個人推測的原因

(1) 數據取的樣本數不夠多:

雖然這個模型適合做中短期的分析,但還是至少需要 2 個月的資料量(60 個以上的數據),但由於我從 8 月初才開始做,時間不夠我收集那麼多的資料,也因為七月時有八大官股在護盤,所以我認為取七月的數據會不夠準確。

(2) 計算過程出錯:

有這個可能性,但我反覆測試的結果都差不多。

(3) 方法的不準確性:

這個方法的數學模型較為簡單,所以誤差比其他的數學模型還要來的大。

(4) 人為操控:

股市之中的三大法人和一些大戶可以控制台股指數,黑天鵝事件很難在數學模型內展現。

改善的方式:

- (1) 收集更多的資料輸入模型內。
- (2) 採取非線性的回歸方法。
- (3) 採取其他更佳的修正方法。

結論:

就技術面來說,推測股市的價格有許多的不確定性,單靠數學分析還是會存在極大的風險,理論計算出來的結果和實際狀況不盡相同,若貿然跑去投資台指期,輸掉 100 多點是非常嚴重的事,想要穩操勝券的話還是得老實的從基本面去做功課,分析各家公司的財報和經營狀況,但還是可以以數學分析為輔來做投資參考。總而言之,不管是哪種投資都一定有風險,事前做好充足的功課是非常重要的,沒做任何功課做跳入茫茫的股海中就跟賭博是一樣的。

(五) 參考文獻

(1) 臺灣證券交易所

https://www.twse.com.tw/zh/page/trading/indices/MI 5MINS HIST.html

(2) ScienceDirect

https://www.sciencedirect.com/science/article/pii/S0307904X13000243

(3)Hindawi

https://www.hindawi.com/journals/complexity/2020/6514236/

(4)MBA 智庫百科

https://wiki.mbalib.com/zh-

tw/%E7%81%B0%E8%89%B2%E9%A2%84%E6%B5%8B%E6%B3%95

備註:

組員有一個退選,另外一個連絡不到,所以全部都是我獨立完成的。