Question

Consider a quantum system made of one qubit. The system is in the initial state $|\psi\rangle = |0\rangle$. The quantum gate Pauli X is applied on $|\psi\rangle$. Can you describe the action of this gate on the system? Can you give a graphical representation of the circuit? What is the final state of the system?

Answer 1

Yes, I can certainly help you with that!

The Pauli X gate is also known as the NOT gate, and it is one of the most fundamental quantum gates. It is a single-qubit gate that flips the state of a qubit from $|0\rangle$ to $|1\rangle$, or vice versa. So, if the Pauli X gate is applied to the initial state $|\psi\rangle = |0\rangle$, the final state of the system will be $|1\rangle$.

Graphically, the circuit for the Pauli X gate looks like:

where the $|0\rangle$ represents the initial state, X represents the Pauli X gate, and $|1\rangle$ represents the final state.

To summarize, the action of the Pauli X gate on the initial state $|0\rangle$ is to flip it to the final state $|1\rangle$.

Answer 2

The Pauli X gate is a single-qubit gate that performs a bit-flip operation, effectively exchanging the $|0\rangle$ and $|1\rangle$ states. In the computational basis, the action of the Pauli X gate is described as follows:

$$|0\rangle \rightarrow |1\rangle$$

$$|1\rangle \rightarrow |0\rangle$$

Thus, applying the Pauli X gate on the initial state $|0\rangle$, we get:

$$X|0\rangle = |1\rangle$$

Graphically, the circuit for this operation can be represented as:

$$|0\rangle$$
 --X---> $|1\rangle$

Therefore, the final state of the system after applying the Pauli X gate is $|1\rangle$.

Answer 3

The Pauli X gate, also known as the NOT gate, is a fundamental quantum gate that operates on a single qubit. It flips the state of the qubit, effectively interchanging the basis states $|0\rangle$ and $|1\rangle$.

In this case, the initial state of the system is $|\psi\rangle = |0\rangle$. When the Pauli X gate is applied to this state, it transforms the qubit as follows:

$$X|0\rangle = |1\rangle$$

Graphically, the circuit representation of the operation would be as follows:

$$|0\rangle$$
 --[X]-- $|1\rangle$

Here, the qubit state $|0\rangle$ is input to the Pauli X gate, and the resulting state $|1\rangle$ is output.

Therefore, the final state of the system after applying the Pauli X gate to the initial state $|\psi\rangle = |0\rangle$ is $|\psi\rangle = |1\rangle$.