课程名称:工程数学基础

课程编号: S131A035

学院名称: ______ 教学班 ___ 学号:_____ 姓名: ____

Ī	题号	1	2	3	4	5	6	7	8	9	成绩
	得分										

一. 判断 (10分)

- 1. 设X是数域K上的线性空间, M_1,M_2 是X的子空间,则 $M_1 \cap M_2$ 是X的 线性子空间. ()
- 2. $\forall A \in C^{n \times n}, A$ 相似于对角阵的充分必要条件是其特征多项式无重零点.
- 3. 设 是[a,b]上以 $a \le x_0 < x_1 < \cdots < x_n \le b$ 为节点的 Lagrange 插值基函

数,则
$$\sum_{k=0}^{n} l_k(x) = 1$$
. ()

- 4. 解线性方程组 Ax = b,若 A 是正定矩阵,则 G-S 迭代格式收敛。()
- 5. 设 $x \in (X, \|\bullet\|)$, 当 $x \neq 0$ 时, 必有 $\|x\| > 0$.
- 6. 差商与所含节点的排列顺序无关. ()
- 7 对任意 $A \in \mathbb{C}^{n \times n}$, e^A 可逆. ()
- 8. 若 Jacobi 迭代格式收敛,则 Seidel 迭代格式收敛.(
- 9. $\forall \mathbf{x}, \mathbf{y} \in (\mathbf{X}, \langle \cdot \rangle)$, $\mathbb{M} \langle x, y \rangle = 0 \Leftrightarrow x = 0$, $\exists y = 0$.

10.设 $A \in C^{3\times3}$ 的 Jordan 标准形 $J = \begin{bmatrix} 2 & & \\ 1 & 2 & \\ & & 2 \end{bmatrix}$,则 A 的最小多项式为

 $(\lambda-2)^2$. ()

二. 填空(10分)

1. 设
$$A = \begin{bmatrix} 2 & 0 & 1 \\ & 3 & 6 \\ & & -1 \end{bmatrix}$$
, 则 A 的 Jordan 标准型为______.

2. 具有n+1个不同求积节点的插值型求积公式,至少具有 次代

3. 设
$$A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
,则 $Cond_{\infty}(A) =$ _____.

- 4. Cotes 求积系数 $C_k^{(n)}$ 满足 $\sum_{k=0}^{n} C_k^{(n)} =$ _______。
- 5. $f(x) = 2x^2 1$, $\bigcup f[2^0, 2^1, 2^2, 2^3] = \underline{\hspace{1cm}}$

三.(12 分) 设
$$A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix}$$
,求 A 的 Jordan 标准形 J .和有理标准形 四.(14 分) 设 $A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$,(1)求 A 的最小多项式 $\varphi(\lambda)$;(2)求 e^{At} .

C

课程名称: **工程数学基础** 课程编号: <u>S131A035</u>

五.(12 分) 已知线性方程组为 $\begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -8 \\ 2 \end{bmatrix}$

(1) 写出 Jacob 迭代格式和 Seidel 迭代格式, (2) 判断迭代格式收敛性.

六 .(12 分) 已知下列插值条件

x	76	77	78	79	80	81
f(x)	2. 83267	2. 90256	2. 97857	3. 06173	3. 25530	3. 36987

(1)用 3 次 Newton 插值多项式计算 f(78.60) 的近似值(结果保留到小数点后 第5位)。

七 . (14 分) 对积分 $\int_0^1 \frac{1}{1+x^3} dx$,用 Romberg 方法计算积分的近似值,并将结果填入下表(结果保留至小数点后第五位).

k	T_{2^k}	$S_{2^{k-1}}$	$C_{2^{k-2}}$	$R_{2^{k-3}}$
0				
1				
2				
3				
4				

八.
$$(8 分)$$
 已知 $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}$, 求 A 的谱半径 $\rho(A)$ 和 $||A||_1$, $||A||_{\infty}$.

九. $(8\, eta)$ 设 $\|\cdot\|$ 是 $C^{n\times n}$ 上的范数, $S\in C^{n\times n}$ 是可逆矩阵。若对任意 $A\in C^{n\times n}$,定义: $\|A\|_S=\|S^{-1}AS\|$,试证明: $\|\cdot\|_S$ 也是 $C^{n\times n}$ 上的范数。