

# Modular Solvers for Partially Continuous Abstract Markov Decision Processes



Noah Carver, Dr. Cynthia Matuszek, John Winder

Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County

#### Goal & Motivation

A Formal Structure for the creation and solving of Partially Continuous Abstract Markov Decision Processes.

- Higher level reasoning for continuous problems needs not be continuous.
- More efficient than forcing all subtasks to be solved continuously

We introduce: **Modular Solvers for AMDPs**, a formal way of allowing discrete higher level planning on a continuous metric space.

### Background

- Markov Decision Processes (MDPs) Phrase problems in ways that reinforcement learners can understand:  $\langle \mathcal{S}, \mathcal{A}, T, R, \mathcal{E} \rangle$
- Abstract Markov Decision Processes (AMDPs) Split problems into a graph of simpler sub-problems as seen in (b):  $\langle \bar{S}, \bar{A}, \bar{T}, \bar{R}, \bar{\mathcal{E}}, \phi \rangle$
- Continuous vs Discrete
- **Discrete:** Like a chessboard. AMDP's are efficient.
- Continuous: Like if Chess had no grid and pieces could go anywhere. AMDP's are not efficient.



#### (a) Continuous Domain visualization

#### **Contact Information**

Email: {cmat, jwinder1, ncarver1}@umbc.edu Web: http://maple.cs.umbc.edu/

# Partially Continuous AMDPs with Modular Solvers

- Each sub-AMDP may be either Continuous or Discrete, so the planner needs to be able to produce policies for both.
- The domain pictured in (a) is a Continuous Taxi domain and was used for all tests.
- Hence, A solver type can be added to  $\langle \bar{\mathcal{S}}, \bar{\mathcal{A}}, \bar{\mathcal{T}}, \bar{\mathcal{R}}, \bar{\mathcal{E}}, \phi, \bar{\Pi} \rangle$ , where  $\bar{\Pi}$  is the solver for each AMDP.



#### Results



(c) Continuous (modular solvers) vs Discrete time steps per episode on standard Taxi

### Cumulative reward over episodes



(d) Continuous (modular solvers) vs Discrete reward Per episode on standard Taxi

#### Conclusion & Future Work

- Initial performance of solvers on continuous subtasks is lacking
- Possible cause: Complexity difference
- It takes much longer for the continuous subtask to be solved.
- This de-sync might be the cause of the jagged episode length.
- Transfer learning may allow Learner to 'focus' on learning continuous subtasks

## Acknowledgements

This material is supported by the National Science Foundation under Grant No. IIS-1426452.

#### References

- [1] Thomas G. Dietterich
- Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.
- [2] Neville Mehta.
- Hierarchical structure discovery and transfer in sequential decision problems. PhD thesis, Oregon State University, 2011.
- [3] Richard S. Sutton, Doina Precup, and Satinder Singh.
  Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning.
- Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211, 1999.
- Lawson L.S. Wong.
  Planning with abstract Markov decision processes.

[4] Nakul Gopalan, Marie des Jardins, Michael L. Littman, James MacGlashan, Shawn Squire, Stefanie Tellex, John Winder, and

In 27th International Conference on Automated Planning and Scheduling, 2017.