ХХХІЛ БЕПЛЕЧІКНЯ СТЯТЕНТСКА ОЛИМПИАДА ПО ПРОГРАМИРАНЕ14 МАЙ 2022 - РУСЕНСКИ УНИВЕРСИТЕТ "АНГЕЛ КЪНЧЕВ"

Задача В. УЧИЛИЩНИ АВТОБУСИ

От известно време насам Кюшо размишлявал как може да разшири бизнеса си. Гледайки как племенникът му играе някаква странна игра с летящ автобус, стигнал до блестящата идея да закупи всички училищни автобуси (само те останали независими от неговата компания). Така отървал училищата от грижата за тяхната поддръжка, но се натоварил с тежката задача да изготви маршрути, по които да се движат.

В областта има общо N селища, номерирани с числата от 1 до N, които са свързани с M еднопосочни директни шосета, като всяко шосе свързва двойка различни селища. С 1 е означена станцията, от която автобусите тръгват, а с N – столицата, до която трябва да закарат учениците. Всяко селище е достижимо от станцията и от всяко селище може да се стигне до столицата.

Маршрутът на всеки автобус представлява последователност от селища, между всеки две поредни от които има шосе в съответната посока. Всеки маршрут започва от станцията и завършва в столицата. Не е задължително да не се връща в селища, през които вече е преминал, важното е през всяко селище да е минал поне един автобус.

За да намали разноските по пътуването, Кюшо иска да използва възможно най-малко от автобусите. Наскоро разбрал, че има отворени места за задачи на Републиканската студентска олимпиада по програмиране и решил да се възползва от случая, като възложи на Вас да напишете програма, която да намира този минимален брой по зададена пътна мрежа на областта.

Вход

От първия ред на стандартния вход се въвежда числото T – броят тестове, които Вашата програма ще трябва да обработи. За всеки тест се въвеждат естествените числа N и M – броят на селищата и еднопосочните шосета. От следващите M реда се въвеждат по две числа X и Y, задаващи пътна отсечка между селищата X и Y в посока от X към Y.

Изход

За всеки тест на отделен ред на стандартния изход отпечатайте търсеният минимален брой автобуси.

Ограничения

1≤T≤20

3<N<3 000

2≤M≤50 000

 $1 \le X, Y \le N$ и $X \ne Y$ за всяка пътна отсечка

ХХХІИ РЕПУБЛИКАНСКА СТУДЕНТСКА ОЛИМПИАДА ПО ПРОГРАМИРАНЕ14 МАЙ 2022 - РУСЕНСКИ УНИВЕРСИТЕТ "АНГЕЛ КЪНЧЕВ"

Пример

Вход	Изход	Пояснение
1 8 12 1 2 2 3 3 1 1 4 3 5 2 5 4 6 4 7 3 7 5 8 6 8 7 8	3	Маршрут на първия автобус: $1 \to 2 \to 3 \to 1 \to 4 \to 7 \to 8$ Маршрут на втория автобус: $1 \to 2 \to 5 \to 8$ Маршрут на третия автобус: $1 \to 4 \to 6 \to 8$