Word Embeddings

Training Pipeline

The iPhone X is the huge leap forward

One Hot Encoding

Bag of words

```
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0]
```

Ortogonal vectors

Dimension = len(vocabulary)

Similarity

Vector Norms

TF-IDF

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF

Term x within document y

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

TF-IDF

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF

Term x within document y

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

text1	0	0	0	0	0.47	0	0.23	0
text2	0	0.68	0	0	0.32	0	0	0
text3	0.11	0	0.19	0	0	0	0	0

Co-occurrence Matrix

$$X \approx \hat{X} = U \Sigma V^T$$

Computational expensive

Co-occurrence Vectors

«You shall know a word by the company it keeps» — Firth, 1957

Corpus sentences

He also found five fish swimming in murky water in an old **bathtub**.

We do abhor dust and dirt, and stains on the **bathtub**, and any kind of filth.

Above At the far end of the garden room a **bathtub** has been planted with herbs for the winter.

They had been drinking Cisco, a fruity, wine-based fluid that smells and tastes like a mixture of cough syrup and **bathtub** gin.

Science finds that a surface tension on the water can draw the boats together, like toy boats in a **bathtub**.

In fact, the godfather of gloom comes up with a plot that takes in Windsor Davies (the ghost of sitcoms past), a **bathtub** and a big box of concentrated jelly.

'I'll tell him,' said the Dean from the bathroom above the sound of bathwater falling from a great height into the ample Edwardian <u>bathtub</u>.

Co-occurrence Matrix

words

words

Co-occurrence Matrix

words

words

$$ext{pmi}(x;y) \equiv \log rac{p(x,y)}{p(x)p(y)} = \log rac{p(x|y)}{p(x)} = \log rac{p(y|x)}{p(y)}$$

ppmi = max(pmi, 0)

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Source Text	Training Samples
The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The quick brown fox jumps over the lazy dog. \longrightarrow	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

Output weights for "car"

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^W \exp\left(v'_w^\top v_{w_I}\right)}$$

Word Vector Lookup Table!

Skipgrams

Predict context ("outside") words (position independent) given center word

Better for rare words

CBOW

Predict center word from (bag of) context words

Faster

CBOW

Predict center word from (bag of) context words

Visualization

https://projector.tensorflow.org/

BERT Embedding Projector

Visualization

Частотность слова

🗸 Высокая 🗸 Средняя 🗌 Низкая

НКРЯ и Wikipedia

- 1. англия рапри 0.58
- +
- 2. европа РВОРН 0.54
- 3. великобритания рапор 0.52
- 4. страна моим 0.48

франция _{РВОРN} 0.47

Visualization

Some vector close to queen

word2vec(king) - word2vec(man) + word2vec(woman) = word2vec (queen)

Fasttext OOV

Subword information

where

=

<wh + whe + her + ere + re>

3 — 6 char n-gram length

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^W \exp\left(v'_w^\top v_{w_I}\right)}$$

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^W \exp\left(v'_w^\top v_{w_I}\right)}$$

Computational expensive

- Hierarchical softmax
- Naive softmax

- $p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v'_w^\top v_{w_I}\right)}$
- Subset of vocabulary
- Negative sampling
 - Binary classification

Negative sampling

$$J_{neg-sample}(\boldsymbol{o},\boldsymbol{v}_c,\boldsymbol{U}) = -\log(\sigma(\boldsymbol{u}_o^{\top}\boldsymbol{v}_c)) - \sum_{k=1}^{K}\log(\sigma(-\boldsymbol{u}_k^{\top}\boldsymbol{v}_c))$$

Negative sampling

$$J_{neg-sample}(oldsymbol{o}, oldsymbol{v}_c, oldsymbol{U}) = -\log(\sigma(oldsymbol{u}_o^ op oldsymbol{v}_c)) - \sum_{k=1}^K \log(\sigma(-oldsymbol{u}_k^ op oldsymbol{v}_c))$$

Sampling negatives

Subsampling frequent words

$$P(w_i) = \frac{10^{-3}}{p_i} \left(\sqrt{10^3 p_i} + 1 \right)$$

Removing pairs

GloVe

Less influence of rare words

GloVe

nearest neighbors of frog	Litoria	Leptodactylidae	Rana	Eleutherodactylus
Pictures				

How to choose embeddings?

DAN

DAN

