Modelling of Complex Systems

Complex networks

Internet

World Wide Web

Brain

Biological networks

Transportation networks

Social networks (facebook, twitter, ...)

207.205.230.184

Internet

Brain neuronal networks

Biological networks

ECOLOGICAL PRINCIPLES AS THEY APPLY TO PEST MANAGEMENT

Twitter

Some essentials

Node (or vertex):

Links (or edges):

undirected

directed

Network (or graph):

Distance between two nodes is defined as the number of links of the shortest path.

Real Networks

- WWW (2022): Size $N\sim2\times10^9$ webpages, Number of links $L\sim10^{11}$.
- Internet (2015): Size $N \sim 10^8$ servers, Number of connections $L \sim 10^9$.
- Brain: Size $N \sim 10^{11}$ neurons, Number of connections $L \sim 10^{14}$.

Small-world experiment

- In the 1960's, Stanley Milgram and Jeffrey Travers designed an experiment based on Pool and Kochen's work:
 - ➤ A single "target" in Boston.
 - > 300 initial "senders" in Omaha and Wichita.
 - ➤ Each sender asked to forward a packet to a friend who was "closer" to the target.
 - > The friends got the same instruction.
- Out of 300 "letter chains", 64 reached the target.
- Found that typical chain length was 6.
- Led to the famous phrase "six-degrees of separation".

How "Small" is the World?

"Six degrees of separation between us and everyone else on this planet" – John Guare, 1990

First mentioned in 1920's by Frigyes Karinthy.

1950's Pool and Kochen first posed it as a math problem involving network structure.

First became famous in 1960's as a result of Milgram's ingenious experiment.

Seven Bridges of Königsberg

Probably the first problem in graph theory: Is there a path that crosses each bridge once and only once?

Seven Bridges of Königsberg

Is there a path that crosses each bridge once and only once? In 1736 Euler proved that there is no such path. Euler's solution to this problem laid the foundations of graph theory.

$$q_A = 3$$
 $q_B = 5$
 $q_C = 3$
 $q_D = 3$

Watts and Strogatz's small-world networks (1998)

Three basic network types

Watts and Strogatz's small-world networks (1998)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

Some more essentials

Degree q_i of node i is the number of connections to his nearest neighbours.

 $q_1 = 3$, $q_2 = 2$, $q_3 = 3$, $q_4 = 2$, $q_5 = 0$, $q_6 = 3$, $q_7 = 1$, $q_8 = 1$, $q_9 = 1$, $q_{10} = 0$.

Some more essentials

Take a network which consists of N nodes of degrees $q_1, q_2, q_3, \dots, q_N$.

Let us denote as N(q) the number of nodes with a given degree q.

We introduce the so-called **degree distribution**: $P(q) = \frac{N(q)}{N}$. This is the probability that a randomly chosen node has degree q.

Normalization:

$$\sum_{q=0}^{q_{max}} P(q) = 1$$

Mean degree:

$$\langle q \rangle = \frac{1}{N} \sum_{i=1}^{N} q_i = \sum_{q=0}^{q_{max}} P(q)q.$$

Some more essentials

Sparse networks:

Mean degree $\langle q \rangle$ is finite, so the number of edges is proportional to N.

$$L = \frac{1}{2} \sum_{i=1}^{N} q_i = \frac{N}{2} \frac{1}{N} \sum_{i=1}^{N} q_i = \frac{1}{2} N \langle q \rangle$$

Dense networks:

The number of edges grows super-linearly with N; $\langle q \rangle$ diverges with $N \to \infty$. For example for complete graphs (all-to-all connections):

$$L = \frac{1}{2}N(N-1) \propto O(N^2)$$

Some more essentials

A simple graph is fully defined by its adjacency matrix, whose entries are

$$A_{ij} = \begin{cases} 1, & \text{if there is an edge between } i \text{ and } j, \\ 0, & \text{otherwise.} \end{cases}$$

For undirected graphs the adjacency matrix is symmetric $A_{ij} = A_{ji}$. By definition, the diagonal entries $A_{ii} = 0$.

$$q_i = \sum_{j} A_{ij}$$

$$\langle q \rangle = \frac{1}{N} \sum_{i} q_i = \frac{1}{N} \sum_{i} \sum_{j} A_{ij}$$

Taking powers of the adjacency matrix A^l gives the number of paths of length l between each pair of nodes.