Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	(МП 1 У И	м. н.э. Баумана)			
			УТВЕРЖДАЮ		
		Заведуюц	ций кафедрой <u>ИУ6</u>		
			А.В. Пролетарский		
		« <u> </u> >	»2022 г.		
интеллект		ЕМА РАСПРЕДЕЛЕН ЛЬНОМ КЛАСТЕРЕ			
	Технич	неское задание			
	j	Пистов 9			
	·	inered y			
Студент	ИУ6-43М		В.Д. Шульман		
•	(Группа)	(Подпись, дата)	(И.О. Фамилия)		
Руководитель			_ О.Ю. Ерёмин		
•		(Подпись, дата)	(И.О. Фамилия)		

1 ВВЕДЕНИЕ

Настоящее техническое задание распространяется на разработку программной системы «Интеллектуальная система распределения нагрузки в вычислительном кластере», используемой для балансировки нагрузки в высоконагруженных распределенных вычислительных системах и предназначенной для внедрения и эксплуатации в качестве подсистемы.

Область распределенных вычислительных систем в настоящее время характеризуется быстрыми темпами изменения идеологий и подходов. Прослеживается устойчивая тенденция к «утончению» клиента и усложнению серверной части, в том числе повышается степень её распределённости, чему в значительной мере способствует развитие технологий контейнеризации и виртуализации.

Существует множество технологий балансировки вычислительной нагрузки: Nginx, Crossroads, HAProxy и другие. Приведенные решения не являются интеллектуальными системами и нуждаются в регулярной ручной перенастройке системным администратором, особенно в случае изменяющейся конфигурации вычислительного кластера. Возникает потребность в разработке интеллектуальной системы распределения вычислительной нагрузки, способной адаптироваться к меняющимся условиям среды эксплуатации.

2 ОСНОВАНИЯ ДЛЯ РАЗРАБОТКИ

Интеллектуальная система распределения нагрузки в вычислительном кластере разрабатывается в соответствии с тематикой кафедры ИУ6 «Компьютерные системы и сети» факультета ИУ «Информатика и системы управления» МГТУ им. Баумана.

3 НАЗНАЧЕНИЕ РАЗРАБОТКИ

Основное назначение интеллектуальной системы распределения нагрузки в вычислительном кластере заключается в балансировке нагрузки в распределенных информационных системах между вычислительными узлами.

4 ИСХОДНЫЕ ДАННЫЕ, ЦЕЛИ И ЗАДАЧИ

- 4.1 Исходные данные
- 4.1.1 Исходными данными для разработки являются следующие материалы:
- 4.1.1.1 Перечень работ, содержащих исходные данные для разработки:
- Кондратьев Алексей Анатольевич Скрытые проблемы распределенных вычислений // Электротехнические и информационные комплексы и системы. 2015. №3. URL: https://cyberleninka.ru/article/n/skrytye-problemy-raspredelennyh-vychisleniy (дата обращения: 02.12.2021).
- Шамакина Анастасия Валерьевна Обзор технологий распределенных вычислений // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2014. №3. URL: https://cyberleninka.ru/article/n/obzor-tehnologiy-raspredelennyh-vychisleniy (дата обращения: 05.12.2021).
- Алексеев И.А., Егунов В.А., Панюлайтис С.В., Чекушкин А.А. МЕТОДЫ И СРЕДСТВА БАЛАНСИРОВКИ НАГРУЗКИ В НЕОДНОРОДНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ // ИВД. 2020. №11 (71). URL: https://cyberleninka.ru/article/n/metody-i-sredstva-balansirovki-nagruzki-v-neodnorodnyh-vychislitelnyh-sistemah (дата обращения: 10.12.2021).

4.1.1.2 Перечень прототипов:

- Голубева Яна Вадимовна Разработка и исследование алгоритмов балансировки нагрузки в параллельной реализации метода ветвей и границ // Современные информационные технологии и ИТ-образование. 2015. №11. URL: https://cyberleninka.ru/article/n/razrabotka-i-issledovanie-algoritmov-balansirovki-nagruzki-v-parallelnoy-realizatsii-metoda-vetvey-i-granits (дата обращения: 07.12.2021).
- Перепелкин Владислав Александрович, Сумбатянц Илья Ильич Стенд для отладки и тестирования качества работы локальных системных распределенных алгоритмов динамической балансировки нагрузки // Вестник ЮУрГУ. Серия: Вычислительная мате-

матика и информатика. 2015. №3. URL: https://cyberleninka.ru/article/n/stend-dlya-otladki-i-testirovaniya-kachestva-raboty-lokalnyh-sistemnyh-raspredelennyh-algoritmov-dinamicheskoy-balansirovki-nagruzki (дата обращения: 12.12.2021).

4.2 Цель работы

Целью работы является прототип интеллектуальной системы распределения нагрузки в вычислительном кластере для балансировки нагрузки в распределенных вычислительных системах.

4.3 Решаемые задачи

- 4.3.1 Выбор методов проектирования и технологий разработки системы.
- 4.3.2 Анализ требований технического задания с точки зрения выбранных технологий и уточнение требований к информационной системе.
- 4.3.3 Исследование предметной области разработка моделей, описывающих предметную область, постановка задачи и выбор методов её решения.
- 4.3.4 Определение архитектуры информационной системы: разработка ее структуры; определение набора программных компонентов.
- 4.3.5 Анализ требований технического задания и разработка спецификаций проектируемого программного обеспечения.
- 4.3.6 Разработка структуры программного обеспечения и определение спецификаций его компонентов.
 - 4.3.7 Проектирование компонентов программного продукта и баз данных.
- 4.3.8 Реализация компонентов с использованием выбранных средств и их автономное тестирование.
 - 4.3.9 Сборка программного обеспечения и его комплексное тестирование.
- 4.3.10 Оценочное, функциональное, интеграционное и нагрузочное тестирование программного обеспечения

5 ТРЕБОВАНИЯ К ПРОГРАММНОМУ ИЗДЕЛИЮ

5.1 Требования к функциональным характеристикам				
5.1.1 Выполняемые функции				
5.1.1.1 Для пользователя:				
• идентификация и аутентификация;				
• настройка системы;				
• конфигурация и/или загрузка модели кластера;				
• выбор алгоритма балансировки.				
• конфигурация тестовой нагрузки;				
• запуск задачи настройки алгоритма;				
• просмотр и выгрузка результатов выполнения задач.				
5.1.1.2 Для администратора системы (если он предусматривается):				
• идентификация и аутентификация;				
• настройка системы;				
• блокировка пользователей;				
• принудительное завершение задач.				
5.1.2 Исходные данные:				
• модель кластера.				
5.1.3 Результаты:				
• настройка алгоритма балансировки.				
5.2 Требования к надежности				
5.2.1 Предусмотреть контроль вводимой информации.				

5.2.2 Предусмотреть защиту от некорректных действий пользователя.

- 5.2.3 Обеспечить целостность информации в базе данных.
- 5.3 Условия эксплуатации
- 5.3.1 Условия эксплуатации в соответствие с СанПиН 2.2.2/2.4.1340-03.
- 5.4 Требования к составу и параметрам технических средств
- 5.4.1 Минимальная конфигурация технических средств:
- 5.4.2.1 Тип процессора
 Pentium.
- 5.5 Требования к информационной и программной совместимости
- 5.5.1 Программное обеспечение должно работать под управлением операционных систем семейства Linux.
 - 5.5.2 Входные данные должны быть представлены в формате JSON.
 - 5.5.3 Результаты должны быть представлены в формате JSON.
- 5.5.4 Система должна взаимодействовать с другим программным обеспечением и системами через протокол HTTP.
 - 5.6 Требования к маркировке и упаковке

Требования к маркировке и упаковке не предъявляются.

5.7 Требования к транспортированию и хранению

Требования к транспортировке и хранению не предъявляются.

5.8 Специальные требования

Сгенерировать установочную версию программного обеспечения.

6 ТРЕБОВАНИЯ К ПРОГРАММНОЙ ДОКУМЕНТАЦИИ

6.1 Разрабатываемые программные модули должны быть самодокументированы, т.е. тексты программ должны содержать все необходимые комментарии.

- 6.2 Разрабатываемое программное обеспечение должно включать справочную систему.
 - 6.3 В состав сопровождающей документации должны входить:
- 6.3.1 Расчетно-пояснительная записка на 95-105 листах формата A4 (без приложений).
 - 6.3.2 Техническое задание (Приложение А).
 - 6.3.3 Руководство пользователя (Приложение Б).
 - 6.3.4 Фрагмент исходного текста программного обеспечения (Приложение Γ).
- 6.4 Графическая часть должна быть выполнена на 10 листах формата A1 (копии формата A3/A4 включить в качестве приложений к расчетно-пояснительной записке):
 - 6.4.1 Схема структурная информационной системы.
 - 6.4.2 Схема функциональная программного обеспечения.
- 6.4.3 Схемы (модели) процессов (методов формирования результатов, механизмы выводов и т.п.).
 - 6.4.4 Диаграмма вариантов использования.
 - 6.4.5 Концептуальная модель предметной области.
- 6.4.6 Схемы структурные компонент, даталогическая и инфологическая схемы базы данных.
 - 6.4.7 Схема взаимодействия модулей.
 - 6.4.8 Граф (диаграмма) состояний интерфейса.
 - 6.4.9 Формы интерфейса.
- 6.4.10 Схема процесса разработки программного продукта (при различных технологиях, например, при структурном, объектном, нисходящем, восходящем подходах и т.п.).

7 ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

Выполнить технико-экономическое обоснование разработки.

8. СТАДИИ И ЭТАПЫ РАЗРАБОТКИ

№	Название этапа	Срок,	Отчетность
		даты, %	
1.	Разработка технического задания	2.02.2022 -	Утвержденное техни-
		28.02.2022	ческое задание и задание на
		5 %	выпускную квалификаци-
			онную работу
2.	Анализ требований и уточнение	1.03.2022 -	Спецификации про-
	спецификаций (эскизный проект)	7.03.2022	граммного обеспечения.
		5 %	
3.	Проектирование структуры про-	8.03.2022 -	Схема структурная си-
	граммного обеспечения, проектирова-	31.03.2022	стемы и спецификации
	ние компонентов (технический проект)	35 %	компонентов.
4.	Реализация компонентов и авто-	1.04.2022 -	Тексты программных
	номное тестирование компонентов.	30.04.2022	компонентов.
	Сборка и тестирование.	40 %	Тесты.
5.	Разработка документации.	1.05.2022 -	Расчетно-пояс-
		25.05.2022	нительная записка.
		8 %	
6.	Прохождение нормоконтроля, про-	25.05.2022-	Иллюстративный ма-
	верка на антиплагиат, получение ре-	5.06.2022	териал, доклад, рецензия,
	цензии, подготовка доклада и предза-	5 %	справки о нормоконтроле и
	щита.		проценте плагиата.
7.	Защита выпускной квалификаци-	6.06.2022-	
	онной работы.	04.07.2022	
		2 %	

9 ПОРЯДОК КОНТРОЛЯ И ПРИЕМКИ

9.1 Порядок контроля

Контроль выполнения осуществляется руководителем еженедельно.

9.2 Порядок защиты

Защита осуществляется перед государственной экзаменационной комиссией (ГЭК).

9.3 Срок защиты

Срок защиты определяется в соответствии с планом заседаний ГЭК.

10 ПРИМЕЧАНИЕ

В процессе выполнения работы возможно уточнение отдельных требований технического задания по взаимному согласованию руководителя и исполнителя.