Assignment #1 ENEL469

1. Consider the following circuit where V_{CC} = 6V, V_{EE} = - 6V, α = 0.9917356, R_C = 1 $k\Omega$, R_B = 120 $k\Omega$, R_E = 1.2 $k\Omega$, $V_{CE(Sat)}$ = 0.2V, V_A = 150V, and $|V_{BE(on)}|$ = 0.7V. Determine I_C and V_{CE} .

2. Consider the following circuit where V_{CC} = 10V, β = 140, R_C = 1k Ω , R_B = 80k Ω , and R_E = 1k Ω , R_L = 2k Ω , $V_{CE(Sat)}$ = 0.2V, V_A = 150V, and $|V_{BE(on)}|$ = 0.7V. Determine I_C and V_{CE} .

3. Consider the following circuit where V_{CC} = 14V, β = 60, R_C = 1k Ω , R_1 = 60k Ω , R_2 = 5k Ω , R_E = 0.5k Ω , $V_{CE(Sat)}$ = 0.2V, V_A = 150V, and $|V_{BE(on)}|$ = 0.7V. Determine I_C and V_{CE} .

4. Consider the following circuit where V_{CC} = 8V, β = 150, R_C = 4k Ω , R_1 = 68k Ω , R_2 = 8k Ω , $V_{CE(Sat)}$ = 0.2V, V_A = 200V, and $|V_{BE(on)}|$ = 0.7V. Determine I_C and V_{CE} .

- 5. Consider the following circuit where $V_{CC}=12V$, $\beta=60$, $R_C=2k\Omega$, $R_1=45k\Omega$, $R_2=4k\Omega$, $V_{CE(Sat)}=0.2V$, $V_A=200V$, and $\left|V_{BE(on)}\right|=0.7V$. Assume that the maximum and minimum base currents are $I_{B(max)}=150\mu A$ and $I_{B(min)}=5\mu A$. Determine:
 - a) The maximum and minimum values of R_C, which satisfies the base current limits. Assume all other values remain unchanged
 - b) The maximum and minimum values of R_2 , which satisfies the base current limits. Assume all other values remain unchanged
 - c) The maximum and minimum values of R₁, which satisfies the base current limits. Assume all other values remain unchanged

6. Consider the following circuit where V_{CC} = 20V, β = 100, $V_{CE(Sat)}$ = 0.2V, V_A = 230V, $|V_{BE(on)}|$ = 0.7V. Design the circuit (Determine R_1 , R_2 , R_C , and R_E) so that the transistor operates at V_{CE} = 6V and I_C = 2.5mA. Given that R_C = R_E and I_{R2} = 2 I_B .

7. Design the following circuit so that the transistors operate at $I_{C1} = 2mA$, $I_{C2} = 2mA$, $I_{C3} = 4mA$, $V_1 = 2V$, $V_2 = -3V$, and $V_3 = 0V$. Also given that $V_{CC} = 10V$, $V_{EE} = -10V$, $S_{EC} = 0.2V$, $S_{CE} = 0.2V$, $S_{$

