Designação (Naming)

Nomes (Names)

- Os nomes são usados para nos referirmos a entidades num sistema distribuído.
- Para operar sobre uma entidade, é necessário aceder através de um ponto de acesso (access point).
- Os pontos de acesso são entidades designadas através de um endereço.

Endereços (addresses)

- Endereço é um nome utilizado para nos referirmos ao ponto de acesso de uma entidade.
 - Exemplo: endereço de um servidor é o seu IP, Protocolo e Porta
- Uma entidade pode ter múltiplos pontos de acesso e endereços
 - Exemplo: uma pessoa possui múltiplos números de telefone
- Uma entidade pode mudar os seus pontos de acesso
 - Exemplo: alteração de morada

Identificadores (Identifiers)

- Um identificador é um nome desprovido de significado; uma string random.
- Os nomes puros só podem ser utilizados para comparações.
- Propriedades
 - Um identificador refere-se no máximo a uma entidade
 - Cada entidade é referida por no máximo um identificador.
 - Um identificador refere-se sempre à mesma entidade (não pode ser reutilizado)

Sistemas de Nomes (Naming Systems)

- Um sistema de nomes mantém a relação nome-endereço e resolve nomes em endereços
 - Num Sistema distribuído, a implementação destes sistemas ocorre através de várias máquinas
- Os principais sistemas de nomes são:
 - Nomes planos (Flat Naming)
 - Nomes estruturados (Structured Naming)

Flat Naming

- Nestes sistemas, a cada entidade é atribuído um identificador que unicamente identifica uma entidade.
- Os identificadores são *strings* de tamanho fixo, às quais damos o nomes de **nomes planos** (flat names) ou **não estruturados.**
 - Nomes planos podem ser manipulados eficientemente por máquinas
 - Ex. endereços IP, endereços Ethernet, UUID's

Broadcasting

- Anunciar um ID, esperar uma resposta da entidade com o seu endereço actual.
 - Não escala para lá da rede local
 - Necessita que todos processos ouçam pedidos
- Exemplo:
 - ARP Address Resolution Protocol

Forwarding Pointers

- Quando um entidade se move, deixar uma referência à sua nova localização.
- Exemplo:
 - MobileIP

Mobile IP

Distributed Hash Tables (DHT)

• Chord

- Cada nó tem um identificador random com m-bit's
- Cada entidade tem uma chave única com m-bit's
- A entidade com chave k fica sob a jurisdição do nó com o id menor tal que id >= k
- Cada nó p mantem uma Finger Table com máximo de m entradas
- Pesquisar a chave k, nó p encaminha o pedido para o nó com índice j que satisfaça:

$$q = FT[j] \le k < FT[j+1]$$

Explorar a proximidade de rede

- Atribuição de nós com base na topologia: Quando se atribui um ID a um nó, assegurar que nós perto no domínio do ID estão também perto na topologia da rede.
- Roteamento de proximidade: Manter mais do que um sucessor, e encaminhar para o mais perto.
- Selecção do vizinho por proximidade: Quando existe uma escolha de qual será o vizinho, escolher o mais próximo.

Hierarchical Location Services (HLS)

HLS: Organização da árvore e Pesquisa

HLS: Inserção

Nomes estruturados (Structured Naming)

- Os nomes planos são dificeis de fixar para os humanos.
- Os nomes estruturados são compostos por diversas partes, estas são human-friendly
 - Ex: nomes de ficheiros, nomes de servidores na internet

Structured Naming

Implementação de um Name Space

Requisitos de um Name Space

Item	Global	Administrational	Managerial
Geographical scale of network	Worldwide	Organization	Department
Total number of nodes	Few	Many	Vast numbers
Responsiveness to lookups	Seconds	Miliseconds	Immediate
Update propagation	Lazy	Immediate	Immediate
Number of replicas	Many	None or few	None
Is cliente-side caching applied?	Yes	Yes	Sometimes

Resolução de nomes iterativa

Resolução de nomes recursiva

Internet Domain Name System (DNS)

SOA	Zone	Informação sobre a zona representada
Α	Host	Endereço IP do host que o nó representa
MX	Domain	Servidor de eMail para o nó
SRV	Domain	Servidor que lida com um dado serviço
NS	Zone	Servidor de nomes para a zona representada
CNAME	Node	Apontador simbólico
PTR	Host	Nome canónico de um host
HINFO	Host	Informação sobre o host
TXT	Any Kind	Qualquer Informação considerada útil

Attribute-based naming - LDAP

LDAP

- Directory Information Base: coleção de todas as entradas de diretórios num serviço LDAP
- Cada record é designado univocamente pela sequência de atributos de nome (Relative Distinguished Name), para que possa ser pesquisado.
- **Directory Information Tree**: grafo de nomes de um diretório se serviço LDAP, cada nó representa uma entrada de diretório.

Exemplo pesquisa

- search("(C=NL)(O=VU University)(OU=*)(CN=Main server)")
- Microsoft Active Directory
 - Implements LDAP + extensions
 - Forest of LDAP domains
 - Index by Global Catalog
 - Root of an LDAP tree is the domain controller
 - Published in DNS with appropriate SRV record

Sumário

- Nomes permitem-nos referir a entidades
- 3 tipos de nomes: endereços (address), identificadores (identifier, nomes comuns (human-friendly name)
- Resolução de nomes em endereços:
 - Broadcast/Multicast
 - Forwarding Points
 - Home Anchors
 - P2P estruturado + protocolo de routing
 - Arvore de pesquisa hierárquica

Sumário

- Nomes estruturados são facilmente organizados em grafos
- Resolução de nomes é o processo de atravessar o grafo
- Aproximações hierárquicas permitem ao grafo tornar-se uma árvore
- Sistemas de nomes baseados em atríbutos permitem maior flexibilidade à custa de maior complexidade no algoritmo de resolução.

