Facial Beauty Prediction

Speaker: Cheng Ping Hsieh (bo4901020@ntu.edu.tw)

Advisor: Prof. Winston H. Hsu

Outline

- Dataset
- Proposed Method
- Evaluation
- Experiment Result
- Discussion
- Conclusion
- Live Demo
- Reference

Dataset

- Dataset : SCUT-FBP5500^[1]
- Image number: 5500; Labelers: 60
- Face Property : Asian/Caucasian; Male/Female
- Extreme values and Median values have small variance

Proposed Method

- Pre-trained ImageNet Models
- Earth Mover Distance-based Loss^{[2][3]}
 - Distribution of beauty score
 - Consider Class Relationship
- Mean Square Error
 - Mean value of beauty score
 - Regression
- Multi-BinaryCrossEntropyLoss
 - Distribution of beauty score

• Classification
$$-\frac{1}{C} * \sum_i y[i] * \log((1 + \exp(-x[i]))^{-1}) + (1 - y[i]) * \log\left(\frac{\exp(-x[i])}{(1 + \exp(-x[i]))}\right)$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Evaluation

- Metrics 5 Cross Validation (80% train and 20% test)
 - Pearson correlation coefficient (PC)
 - Mean absolute error (MAE)
 - Root mean square error (RMSE)

PC	1	2	3	4	5	Average
AlexNet	0.8667	0.8645	0.8615	0.8678	0.8566	0.8634
ResNet-18	0.8847	0.8792	0.8929	0.8932	0.9004	0.89
ResNeXt-50	0.8985	0.8932	0.9016	0.899	0.9064	0.8997
MAE	1	2	3	4	5	Average
AlexNet	0.2633	0.2605	0.2681	0.2609	0.2728	0.2651
ResNet-18	0.248	0.2459	0.243	0.2383	0.2383	0.2419
ResNeXt-50	0.2306	0.2285	0.226	0.2349	0.2258	0.2291
RMSE	1	2	3	4	5	Average
AlexNet	0.3408	0.3449	0.3538	0.3438	0.3576	0.3481
ResNet-18	0.3258	0.3286	0.3184	0.3107	0.2994	0.3166
ResNeXt-50	0.3025	0.3084	0.3016	0.3044	0.2918	0.3017

- Complexed model has higher performance
- EMD Loss has the highest performance with overall metrics
- Squeeze Net for future application

EMD > MSE > CE > Base

CV x 5	Model	Baseline	EMD Loss	MSE Loss	BCE Loss
PC ↑	Alex	0.8634	0.88852	0.85924	0.8668
	Squeeze		0.89904	0.89992	0.88144
	Resnet18	0.89	0.91668	0.92044	0.91554
	Resnet50	0.8997	0.9203	0.92082	0.9168
MAE ↓	Alex	0.2651	0.23992	0.27066	0.26294
	Squeeze		0.22752	0.22962	0.24772
	Resnet18	0.2419	0.2072	0.20742	0.2094
	Resnet50	0.2291	0.20268	0.20434	0.21368
RMSE ↓	Alex	0.3481	0.3172	0.35268	0.34856
	Squeeze		0.3012	0.30126	0.32792
	Resnet18	0.3166	0.27728	0.27352	0.27836
	Resnet50	0.3017	0.2698	0.26888	0.28184

- Easily predict high frequency mean score
- Model performance in different frequency

- Easily predict high frequency std score
- CE Loss has higher standard deviation

Discussion

Conclusion

- EMD Loss has higher performance
- Complexed Model has higher performance
- Model is sensitive to light and skin color (data augmentation)
- Model has tendency to predict high frequency value

Reference

- [1] Liang, Lingyu, et al. "SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction." *arXiv preprint arXiv:1801.06345* (2018).
- [2] Talebi, Hossein, and Peyman Milanfar. "Nima: Neural image assessment." *IEEE Transactions on Image Processing* 27.8 (2018): 3998-4011.
- [3] Hou, Le, Chen-Ping Yu, and Dimitris Samaras. "Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks." *arXiv preprint arXiv:1611.05916* (2016).