Bayesian Approaches to Inverse Problems in Astrophysics and Cosmology

lecture 1

Dr. Prashin Jethwa Institut für Astrophysik

What is a Bayesian Inverse Problem?

- What is an inverse problem?
 - Forward model: how to go from unknown model parameters to observed data
 - Inverse problem: how to go from observed data to unknown model parameters
- Bayesian approach:
 - Encode the model as a probability distribution over the unknown model parameters and observed data
 - Inverse problem becomes a problem of probabilistic inference:
 - i.e. what is the probability distribution of unknown parameters given the observed data?

Probabilistic Programming Languages (PPLs)

Wikipedia:

"Probabilistic programming is a programming paradigm in which probabilistic models are specified and inference for these models is performed automatically"

- sometimes standalone languages, sometimes packages within other languages e.g. in Python
- take advantage of modern hardware (e.g. GPUs) and software (e.g. automatic differentiation)
- allow you to perform statistical inference on larger and more complex models than was possible previously

Goals of the next three lectures

- Understand PPLs
- Be able to apply these to scientific modelling problems

For this course, we will use *numpyro*

Lecture outline

- Recap of Bayesian statistics
- Generative Models
- Bayesian Networks / Directed Acyclic Graphs
- Example: hierarchical linear regression in numpyro

By the end of this lecture you should be able to:

- Read and write probabilistic notation
- Define the concept of a generative model
- Communicate generative models via Bayesian Networks
- Describe the concept of partial pooling in hierarchical models

Recap on Bayesian statistics

Probability

- Probability theory, we assign probabilities to events in sets
- There are some familiar axioms, e.g.

$$\circ \quad \mathbb{P}(A^{C}) = 1 - \mathbb{P}(A)$$

Probability

- Probability theory, we assign probabilities to events in sets
- There are some familiar axioms, e.g.

- Practically, for modelling, we never start with abstract set
- It's more convenient to start with a probability distribution function

Probability distribution functions

- Think of these as ready-made, useful assignments of probability over familiar, useful sets
- p(x) is a function over elements x in a domain X such that:
 - ∘ $p(x) \ge 0$ for all $x \in X$
 - $\circ \int_X p(x) dx = 1$
- the support is the subset of the domain where p(x) > 0
- If the domain X is:
 - Continuous
 - p(x) called a probability density function
 - evaluate probabilities by integrating
 - Discrete
 - p(x) called a probability mass function
 - evaluate probabilities directly

i.e.
$$\mathbb{P}(a < x < b) = \int_a^b p(x) dx$$

i.e.
$$P(x=a) = p(a)$$

Probability distribution functions: notation

- Parameters
 - \circ often pdfs depend on parameter(s) θ
 - we use the following notational convention:
 - **p**(x; θ) if the parameter θ known/fixed, put it after a semicolon;
 - lacktriangledown no semicolon if the parameter is unknown i.e. this is the joint distribution on x and θ
- Sampling
 - $\circ \qquad x \sim p(x)$
 - x is sampled from p(x)
- some common distributions have their own symbols/abbreviations e.g.
 - o U Uniform
 - o N Normal
 - o Binom Binomial
 - Poiss
 Poisson

Probability distribution functions: example

Uniform distribution

- Parameters:
 - o a, b: the start and end
- Domain:
 - real numbers
- Support:
 - a < real numbers < b
- Notation:
 - U(a, b)
- ← represents the distribution
 - U(x ; a, b)
- ← represents the distribution function
- x ~ U(a,b)
- ← sampling

Exercise: notation

Write an expression for "the probability distribution of x conditional on y and N with a fixed parameters a and b"

Exercise: notation

Write an expression for "the probability distribution of x conditional on y and N with a fixed parameters a and b"

Solution: p(x | y, N ; a, b)

Multivariate distributions

• Given two variables $x \in X$ and $y \in Y$ we can define a multivariate distribution function over both variables:

```
\circ p(x, y) = the joint distribution over x and y
```

 Given a joint distribution, if we are only interested in one of the variables, we can marginalise over the others:

• If we know the value of one variable y then the distribution of x conditional on y is

```
o p(x|y) = ... or ... the distribution of x given y
o = p(x, y) / p(y) = the conditional is the joint divided by the marginal
```

Conditional Probability

- p(x | y) = p(x, y) / p(y)
 - where does this come from?
- Easier to see with a concrete example:
 - we roll two dice, numbered 1 to 6
 - what is the probability that the first roll equals 1 given that the total of both rolls equals 7?

roll 1

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Conditional Probability

- - o where does this come from?

- we roll two dice, numbered 1 to 6
- what is the probability that the first roll equals 1 given that the total of both rolls equals 7?

Solution:

- conditional = joint / marginal
- P(first roll = 1 | total = 7)
 = P(first roll = 1 and total = 7) / P(total = 7)
 = (1/36)/(6/36)
 = 1/6

roll 1

	1	2	3	4	5	6	
1	2	3	4	5	6	7	
2	3	4	5	6	7	8	
3	4	5	6	7	8	9	
4	5	6	7	8	9	10	
5	6	7	8	9	10	11	
6	7	8	9	10	11	12	

Conditional Independence

- A variable x is independent of another variable y if knowing the value of y
 gives us no extra information about x
- In other words:
 - \circ p(x|y) = p(x) the conditional distribution is equal to the marginal distribution
- **Question:** if x is independent of y, is y independent of x...?

Conditional Independence

- A variable x is independent of another variable y if knowing the value of y
 gives us no extra information about x
- In other words:
 - \circ p(x|y) = p(x) the conditional distribution is equal to the marginal distribution
- **Question:** if x is independent of y, is y independent of x...?
 - Yes!
 - So we can say x and y are independent
 - The proof comes from...

Bayes' Theorem

- Two ways to express the joint pdf:
 - p(x, y) = p(x | y) p(y)
 - $p(x, y) = p(y \mid x) p(x)$
- Equate the two:
 - $p(x \mid y) p(y) = p(y \mid x) p(x)$
- and rearrange:
 - o $p(x \mid y) = p(y \mid x) p(x) / p(y)$ \leftarrow Bayes' theorem

- if x is independent of y
 - $p(x \mid y) = p(x)$
 - $o \rightarrow p(y \mid x) = p(y)$
 - \circ \rightarrow y is independent of x
 - i.e. being independent is symmetric

Portrait purportedly of Bayes used in a 1936 book,^[1] but it is doubtful whether the portrait is actually of him.^[2] No earlier portrait or claimed portrait survives.

Interpretation of Bayes' theorem

For inference problems we interpret Bayes' theorem as follows:

- θ = model parameters
 - y =observed data

$$p(\theta \mid y) = p(y \mid \theta) p(\theta) / p(y)$$

Posterior

probability of parameters given some observed data i.e. what we are interested in

Likelihood

probability of the data given some parameters

Prior

our belief - encoded in a probability distribution - about the parameters *before* observing any data

Marginal Likelihood / Model Evidence

the probability of the data? Easier to interpret if we write the un-marginalised version:

$$p(y) = \int_{Y} p(y \mid \theta) p(\theta) d\theta$$

Think of it as a normalising factor which that the posterior integrates to 1.

Often possible to ignore it

Independent and identically distributed (iid) data

Say we have N data points

$$y = (y_1, y_2, ..., y_N)$$

If they are independent then the likelihood can be factorised as,

$$p(\mathbf{y} \mid \theta) = p_1(y_1 \mid \theta) p_2(y_2 \mid \theta) \dots p_N(y_N \mid \theta)$$

If they are also identically distributed, then all of the factors are identical,

$$p(\boldsymbol{y} \mid \theta) = \prod_{i=1, ..., N} p(y_i \mid \theta)$$

Generative Models

What is a model?

Wikipedia:

A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process.

Example: Linear Regression

- Say some observations give us datapoints: (x_i, y_i) for i = 1, ..., Nwith a known observational error σ
- How can we infer the true linear relation?

Linear Regression - the standard description

• Find gradient m and intercept c which that minimize χ^2 difference between data and line i.e. find

$$\underset{(m,c)}{\operatorname{argmin}} \left(\frac{(mx_i + c) - y_i}{\sigma} \right)^2$$

- Can be solved using standard techniques: linear least squares regression
- What is the associated generative model?

Linear Regression - the generative model

- What is the data generating process for linear regression?
- There is a gradient m, intercept c and set of fixed x positions x;
- ullet Noise free y-values are $\hat{y}_i = mx_i + c$
- Assuming a normal distribution for the noise model, the observed y-values are samples $y_i \sim \mathcal{N}(\hat{y}_i, \sigma)$

Example: linear regression in numpyro

Generative model

- A set of instructions for how to generate observed data according to a probabilistic model
- The instructions tell us how to combine unknown parameters to the generate observed data
- Often represented graphically using Bayesian Network
- Useful framework for building and communicating complex models

A Bayesian network representing a generative model from <u>Hawkins et al 2017</u> paper: *Red clump stars and Gaia: Calibration of the standard candle using a hierarchical probabilistic model*

Bayesian Networks / Directed Acyclic Graphs (DAG)

- A Bayesian network is a graphical representation of a generative model
- A graph is a collection of nodes and edges
 - nodes represent variables
 - edges represent dependencies between variables

- A Bayesian network is a graphical representation of a generative model
- A graph is a collection of nodes and edges
 - nodes represent variables
 - edges represent dependencies between variables
- Bayesian networks are a specific type of graph: directed acyclic graphs (DAGs)

- A Bayesian network is a graphical representation of a generative model
- A graph is a collection of nodes and edges
 - nodes represent variables
 - edges represent dependencies between variables
- Bayesian networks are a specific type of graph: directed acyclic graphs (DAGs)
 - Directed
 - edges have direction
 - parent node points to child node
 - for generative models a→b often means "a causes b" or "a depends on b"

- A Bayesian network is a graphical representation of a generative model
- A graph is a collection of nodes and edges
 - nodes represent variables
 - edges represent dependencies between variables
- Bayesian networks are a specific type of graph: directed acyclic graphs (DAGs)
 - Directed
 - edges have direction
 - parent node points to child node
 - for generative models a→b often means "a causes b" or "a depends on b"
 - Acyclic
 - no cycles i.e. closed loops

- A Bayesian network is a graphical representation of a generative model
- A graph is a collection of nodes and edges
 - nodes represent variables
 - edges represent dependencies between variables
- Bayesian networks are a specific type of graph: directed acyclic graphs (DAGs)
 - Directed
 - edges have direction
 - parent node points to child node
 - for generative models a→b often means "a causes b" or "a depends on b"
 - Acyclic
 - no cycles i.e. closed loops

- A Bayesian network is a graphical representation of a generative model
- A graph is a collection of nodes and edges
 - nodes represent variables
 - edges represent dependencies between variables
- Bayesian networks are a specific type of graph: directed acyclic graphs (DAGs)
 - Directed
 - edges have direction
 - parent node points to child node
 - for generative models a→b often means "a causes b" or "a depends on b"
 - Acyclic
 - no cycles i.e. closed loops

Bayesian Network: wet grass example

Three True/False variables:

R - is it raining?

S - is the sprinkler on?

G - is the grass wet?

Draw the edges: which variable influences which others?

R: Raining?

S: Sprinkler on?

Bayesian Network: wet grass example

Three True/False variables:

R - is it raining?

S - is the sprinkler on?

G - is the grass wet?

Draw the edges: which variable influences which others?

 See <u>Wikipedia</u> for more details about this example

Bayesian Networks: hierarchical models

- Hierarchical models have multiple layers
- Root nodes have no parent
- Intermediate nodes
- Leaf nodes have no children

$$p(a, b, c, d, e) = ...?$$

$$p(a, b, c, d, e) = p(d | c) ...$$

p(a, b, c, d, e) = p(d|c) p(e|c, b) ...

p(a, b, c, d, e) = p(d|c) p(e|c, b) p(c|a, b) ...

p(a, b, c, d, e) = p(d|c) p(e|c, b) p(c|a, b) p(a) p(b)

Plate notation is used for iid variables

the box is called a plate

Fixed variables are represented by dots

e.g. if we are treating σ as a fixed rather than an unknown parameter, then ...

Deterministic nodes are dashed

if a variable is related to others deterministically rather than probabilistically, it is given a dashed line

e.g.

 $a \sim p(a)$

 $b \sim p(b)$

c = a + b

Observed values

- Variables which are observed (i.e. data) are shaded in
- The graph no longer represents the joint distribution, but the conditional distribution given the observed values

p(a, b | c , d, e)

Exercise 1: write the factorised joint distribution corresponding to this Bayesian network

Exercise 1: write the factorised joint distribution corresponding to this Bayesian network

$$p(a,b,c,d,e) = \\ p(d|a) p(e|c,b) p(c|b) p(b|a) p(a)$$

Defining a generative models

- Identify the variables of interest needed to generate the observed data
- 2. Draw the Bayesian showing dependencies between variables and the observed data
- 3. For each factor in the network, specify a probability distribution or deterministic function

Example notebook: hierarchical linear regression in numpyro

Hierarchical Models

- Useful for modelling heterogeneity in your data
- Say data y was collected in K different contexts
- We may expect data in different contexts to have different parameters θ_k
- Population parameters mean $\hat{\mu}$ and scale τ control the distribution of per-context parameters θ_{ν}
- Limits:
 - \circ $\tau \to 0$: no variation allowed between contexts
 - \circ $\tau \rightarrow infty$: large variations allowed

 $\theta_k \sim \text{normal}(\mu, \tau)$.

Hierarchical Models Allow *Partial Pooling* of Information between Contexts

Complete Pooling:
all contexts share parameters
Ignores heterogeneity between contexts

Partial Pooling:

per-context parameters related via population parameters - information shared between contexts allowing for heterogeneity

No Pooling:

each context treated independently ignores similarity between contexts

References

- Michael Betancourt's (STAN developer) blog:
 - https://betanalpha.github.io/writing/
 - For today:
 - Foundations of Probability Theory and Conditional Probability Theory
 - Product Placement, especially Section 4
- Bishop, C. M. (2006). Pattern recognition and machine learning
 - For Bayesian networks
- Astronomy papers with Bayesian networks:
 - Red clump stars and Gaia: Calibration of the standard candle using a hierarchical probabilistic model - Hawkins+17
 - Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys -Leistedt + 16
 - Approximate inference for constructing astronomical catalogs from images Regier + 19
 - o Improved constraints on cosmological parameters from Type Ia supernova data March +11

Exercises

- Run the notebooks for linear regression and hierarchical linear regression
 - install numpyro
- A few more examples with Bayesian Networks...

Exercise 2: write the factorised joint distribution corresponding to this Bayesian network

Exercise 3: draw a Bayesian network corresponding to this factorisation of a joint probability function

$$p(a, b, c, d; \theta) = p(a | b, c) p(b | c; \theta) p(d | c) p(c)$$