```
abs(-100)
                 # 100
int(3.1416)
                 # 3
round(3.1416,2) # 3.14 #rounds the result to 2 decimal places
pow(2,10)
                 # 1024
                          (power function: 2^10 = 1024)
     1024
abs(-100)
                 # 100
     100
int(3.1416)
                 # 3
     3
round(3.1416,2)
                # 3.14
     3.14
pow(2,10)
                 # 1024
     1024
x = [7, 3, 3, 5, 3, 4, 6, 0, 5, 8, 3, 3, 5, 3, 4, 3, 3, 5, 3, 4]
len(x) # 20
     20
import math
math.sqrt(829921) # 911.0
math.ceil(73.27)
                   # 74
math.floor(73.27) # 73
math.pow(2,10)
                   # 1024
     1024.0
math.sqrt(829921) # 911.0
     911.0
Start coding or generate with AI.
math.ceil(73.27)
                   # 74
     74
Start coding or generate with AI.
math.floor(73.27) # 73
     73
```

```
Start coding or generate with AI.
                    # 1024
math.pow(2,10)
     1024.0
import datetime
now = datetime.datetime.now()
print ("Current date and time : ")
print (now.strftime("%Y-%m-%d %H:%M:%S"))
#>> Current date and time :
#>> 2021-11-16 01:02:32
     Current date and time :
     2024-03-25 05:10:46
import time
s = time.time()
print(s)
#>> 1637004821.3311868
     1711343454.8496904
# Import seaborn library.
# refer: https://seaborn.pydata.org/
import seaborn as sb
# Read the iris data file using the load_dataset method of the seaborn library. Save it in the pandas DataFra
pdf = sb.load_dataset('iris')
# check the data type of 'pdf'.
type(pdf)
      pandas.core.frame.DataFrame
      def __init__(data=None, index: Axes | None=None, columns: Axes | None=None,
```

```
# Descriptive statistics for numeric data -
# central tendencies, dispersion etc, excluding 'NaN' (non-null) values
pdf.describe()
```

	sepal_length	sepal_width	petal_length	petal_width	\blacksquare
count	150.000000	150.000000	150.000000	150.000000	ılı
mean	5.843333	3.057333	3.758000	1.199333	
std	0.828066	0.435866	1.765298	0.762238	
min	4.300000	2.000000	1.000000	0.100000	
25%	5.100000	2.800000	1.600000	0.300000	
50%	5.800000	3.000000	4.350000	1.300000	
75%	6.400000	3.300000	5.100000	1.800000	
max	7.900000	4.400000	6.900000	2.500000	

print the first two rows
pdf.head(2) #print the first 2 rows of the DataFrame

	sepal_length	sepal_width	petal_length	petal_width	species	===
0	5.1	3.5	1.4	0.2	setosa	th
1	4.9	3.0	1.4	0.2	setosa	

Next steps: Generate code with pdf View recommended plots

print the last two rows
pdf.tail(2) #print the last 2 rows of the DataFrame

	sepal_length	sepal_width	petal_length	petal_width	species	
148	6.2	3.4	5.4	2.3	virginica	ılı
149	5.9	3.0	5.1	1.8	virginica	

pdf.species # access the column species; same as pdf['species']
pdf['species'] # access the column species; same as pdf.species

```
0
         setosa
1
         setosa
2
         setosa
3
         setosa
4
         setosa
145
      virginica
146
      virginica
147
      virginica
148
      virginica
149
      virginica
```

Name: species, Length: 150, dtype: object

Print a summary of the DataFrame - columns, data types, non-null counts
pdf.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
Column Non-Null Count Dtype

0 sepal_length 150 non-null float64

```
sepal_width 150 non-null
                                         float64
         petal_length 150 non-null
                                         float64
      3 petal_width 150 non-null
4 species 150 non-null
                                         float64
                                         object
     dtypes: float64(4), object(1)
     memory usage: 6.0+ KB
# filter-1: bool
pdf.species == 'setosa'
     0
             True
     1
             True
     2
             True
     3
             True
     4
             True
     145
            False
     146
            False
     147
            False
     148
            False
     149
            False
     Name: species, Length: 150, dtype: bool
```

pdf[pdf.species == 'setosa']

filter-2: selection of a set of rows based on a logical condition

	sepal_length	sepal_width	petal_length	petal_width	species	=
0	5.1	3.5	1.4	0.2	setosa	11.
1	4.9	3.0	1.4	0.2	setosa	
2	4.7	3.2	1.3	0.2	setosa	
3	4.6	3.1	1.5	0.2	setosa	
4	5.0	3.6	1.4	0.2	setosa	
5	5.4	3.9	1.7	0.4	setosa	
6	4.6	3.4	1.4	0.3	setosa	
7	5.0	3.4	1.5	0.2	setosa	
8	4.4	2.9	1.4	0.2	setosa	
9	4.9	3.1	1.5	0.1	setosa	
10	5.4	3.7	1.5	0.2	setosa	
11	4.8	3.4	1.6	0.2	setosa	
12	4.8	3.0	1.4	0.1	setosa	
13	4.3	3.0	1.1	0.1	setosa	
14	5.8	4.0	1.2	0.2	setosa	
15	5.7	4.4	1.5	0.4	setosa	
16	5.4	3.9	1.3	0.4	setosa	
17	5.1	3.5	1.4	0.3	setosa	
18	5.7	3.8	1.7	0.3	setosa	
19	5.1	3.8	1.5	0.3	setosa	
20	5.4	3.4	1.7	0.2	setosa	
21	5.1	3.7	1.5	0.4	setosa	
22	4.6	3.6	1.0	0.2	setosa	
23	5.1	3.3	1.7	0.5	setosa	
24	4.8	3.4	1.9	0.2	setosa	
25	5.0	3.0	1.6	0.2	setosa	
26	5.0	3.4	1.6	0.4	setosa	
27	5.2	3.5	1.5	0.2	setosa	
28	5.2	3.4	1.4	0.2	setosa	
29	4.7	3.2	1.6	0.2	setosa	
30	4.8	3.1	1.6	0.2	setosa	

filter-4: selection of a set of rows based on a multiple conditions
get all rows for species setosa or versicolor
pdf[(pdf['species']=='setosa') | (pdf['species']=='versicolor')]

	sepal_length	sepal_width	petal_length	petal_width	species	
0	5.1	3.5	1.4	0.2	setosa	ılı
1	4.9	3.0	1.4	0.2	setosa	
2	4.7	3.2	1.3	0.2	setosa	
3	4.6	3.1	1.5	0.2	setosa	
4	5.0	3.6	1.4	0.2	setosa	
95	5.7	3.0	4.2	1.2	versicolor	
96	5.7	2.9	4.2	1.3	versicolor	
97	6.2	2.9	4.3	1.3	versicolor	
98	5.1	2.5	3.0	1.1	versicolor	
99	5.7	2.8	4.1	1.3	versicolor	
400						

100 rows × 5 columns

filter-5: selecting a set of rows based on an inequality condition
pdf[pdf.sepal_length > 7.5]

	sepal_length	sepal_width	petal_length	petal_width	species	
105	7.6	3.0	6.6	2.1	virginica	ıl.
117	7.7	3.8	6.7	2.2	virginica	
118	7.7	2.6	6.9	2.3	virginica	
122	7.7	2.8	6.7	2.0	virginica	
131	7.9	3.8	6.4	2.0	virginica	
135	7.7	3.0	6.1	2.3	virginica	

pandas correlation, rounded to 2 decimals
round(pdf.corr(),2)

<ipython-input-31-2e3952c51d49>:2: FutureWarning: The default value of numeric_only
round(pdf.corr(),2)

**					
	sepal_length	sepal_width	petal_length	petal_width	#
sepal_length	1.00	-0.12	0.87	0.82	ıl.
sepal_width	-0.12	1.00	-0.43	-0.37	
petal_length	0.87	-0.43	1.00	0.96	
petal_width	0.82	-0.37	0.96	1.00	

```
# sorting can be ascending or descending, with multiple sort keys
pdf.sort_values('species',ascending=False)
pdf.sort_values(['species','sepal_length'],ascending=False)
pdf.sort_values(['species','sepal_length','sepal_width'],ascending=True)
```

	sepal_length	sepal_width	petal_length	petal_width	species	E
13	4.3	3.0	1.1	0.1	setosa	
8	4.4	2.9	1.4	0.2	setosa	
38	4.4	3.0	1.3	0.2	setosa	
42	4.4	3.2	1.3	0.2	setosa	
41	4.5	2.3	1.3	0.3	setosa	
118	7.7	2.6	6.9	2.3	virginica	
122	7.7	2.8	6.7	2.0	virginica	
135	7.7	3.0	6.1	2.3	virginica	
117	7.7	3.8	6.7	2.2	virginica	
131	7.9	3.8	6.4	2.0	virginica	

150 rows × 5 columns

```
# get one random decimal in the range 0 to 1
import numpy as np
np.random.rand() # 0.44117932776647417
```

create a random integer array of 3*5
x = np.random.randint(100, size=(3, 5))
print(x)

```
[[79 79 56 99 84]
[39 0 81 68 80]
[45 91 5 36 88]]
```

 $[\]mbox{\tt\#}$ get one random integer in the range 0 to 100

np.random.randint(100) # 62

create a random integer array of 3*5

```
import numpy as np
a1 = np.array(['a','b','c',1,2.5,True])
          # dtype('U32')
a1.dtype
# items in 'a1' are stored as unicode strings with size < = 32 characters</pre>
a1.ndim # 1 # 1-dimension
a1.shape
          # (6,)
                     # 6 rows
     (6,)
import numpy as np
np.ones(5) #([1., 1., 1., 1., 1.])
     array([1., 1., 1., 1., 1.])
import numpy as np
a2 = np.array([[1,2,3,4,5], [6,7,8,9,10], ['a','b','c','d','e']])
a2[0, 4] # 5 (element in the cell row:0, column 4)
a2[2, 0] # a (element in the cell row:3, column 1)
a2[1:3,] # select all the elements of row-1 and row-2
    a3[2:4] # ['c' 'd']
     array(['c', 'd'], dtype='<U1')</pre>
print(a3[:5])
print(a3[:99])
     ['a' 'b' 'c' 'd' 'e']
     ['a' 'b' 'c' 'd' 'e']
import numpy as np
a3 =
              np.array(['a','b','c','d','e'])
print(a3[:5])
print(a3[:99])
     ['a' 'b' 'c' 'd' 'e']
['a' 'b' 'c' 'd' 'e']
a4 = np.array([1, 2, 3, 4, 5])
Start coding or generate with AI.
a4 = np.array([1, 2, 3, 4, 5])
y = a4.copy()
a4[0] = 666
У
     array([1, 2, 3, 4, 5])
```