Package 'MODifieRDev'

April 2, 2019

```
Type Package
Title MODifieRDev
Version 0.1.2
Author Dirk de Weerd
Maintainer Dirk de Weerd <dirkdeweerd.work@gmail.com>
Description An implementation of a set of disease module inference methods bundled in one package.
Imports foreach,
     doParallel,
     Rcpp,
     dynamicTreeCut,
     flashClust,
     reticulate,
     limma,
     STRINGdb,
     MODA,
     AnnotationDbi,
     plyr,
     utils,
     stats,
     parallel,
     stackoverflow,
     RSQLite
Depends R (>= 3.1.0),
     igraph,
     org.Hs.eg.db,
     WGCNA
Suggests knitr,
     rmarkdown
License GNU Lesser General Public License
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
```

33

Index

LinkingTo Rcpp

SystemRequirements Python > 3, Anaconda

VignetteBuilder knitr

R topics documented:

build_clique_db
clique_sum_exact
clique_sum_permutation
correlation_adjust_cutoff
correlation_clique
correlation_set_module_size
create_custom_input_object
create_input
create_module_set
diamond
diamond_add_seed_genes
diamond_remove_seed_genes
diffcoex
diffcoex_split_module_by_color
entrez_to_symbol
expression_matrix
get_max_frequency
moda
moda_change_specific_threshold
modulediscoverer
mod_mcode
ppi_network
probe_annotation
recalculate_diff_genes
recalculate_expression
symbol_to_entrez
wgcna
wgcna_adjust_significance
wgcna_get_all_module_genes
wgcna_get_module_genes_by_sign
wgcna_set_module_size
wgcna_split_module_by_color

build_clique_db 3

build_clique_db	Create a sqlite database containing all maximal cliques from a network

Description

Create a sqlite database containing all maximal cliques from a network

Usage

```
build_clique_db(ppi_network, db_folder, db_name)
```

Arguments

ppi_network	A network as a dataframe where the first 2 columns are the interactions
db_folder	A directory where the database will be stored
db_name	The name of the database. File suffix ".sqlite" will be appended

Details

Creates a SQLite database containing all maximal cliques from the network in the folder db_folder with filename db_name.sqlite. This database can be used as in input to clique_sum_exact and clique_sum_permutation

clique_sum_exact	Clique Sum Exact	

Description

An implementation of the clique-based disease module inference method proposed by Barrenäs et al.

Usage

```
clique_sum_exact(MODifieR_input, db, clique_significance = 0.01,
  deg_cutoff = 0.05, min_clique_size = 5, min_deg_in_clique = 3,
  multiple_cores = T, n_cores = 4, dataset_name = NULL)
```

Arguments

MODifieR_input A MODifieR input object produced by create_input function

db A clique database created by build_clique_db

clique_significance

p-value for cliques to be considered significant

deg_cutoff p-value cutoff for differentialy expressed genes

min_clique_size

Minimal size for cliques

min_deg_in_clique

Minimum number of DEGs to be present in a clique

multiple_cores Parallel process using multiple cores?

n_cores Number of cores to use if parallel processing

dataset_name Optional name for the input object that will be stored in the settings object.

Default is the variable name of the input object

Details

Clique_sum_exact finds cliques of at least size min_clique_size that are significantly enriched with DEGs. The union of maximal cliques with a Fisher-exact test p-value below clique_significance and at least min_deg_in_clique is the final disease module.

Value

clique_sum_exact returns an object of class "MODifieR_module" with subclass "Clique_Sum_exact". This object is a named list containing the following components:

module_genes A character vector containing the genes in the final module

settings A named list containing the parameters used in generating the object

References

Barrenäs F, Chavali S, Alves AC, et al. Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms. Genome Biology. 2012;13(6):R46. doi:10.1186/gb-2012-13-6-r46.

clique_sum_permutation

Clique Sum

Description

An implementation of the clique-based disease module inference method proposed by Gustafsson et al.

Usage

```
clique_sum_permutation(MODifieR_input, db, n_iterations = 10000,
  clique_significance = 0.01, min_clique_size = 5,
  multiple_cores = T, n_cores = 4, dataset_name = NULL)
```

Arguments

MODifieR_input A MODifieR input object produced by create_input function

db A clique database created by build_clique_db

n_iterations
Number of iterations to be performed for the permutation based p-value

clique_significance

p-value for cliques to be considered significant

min_clique_size

Minimal size for cliques

multiple_cores Parallel process using multiple cores?

n_cores Number of cores to use if parallel processing

dataset_name Optional name for the input object that will be stored in the settings object.

Default is the variable name of the input object

Details

Clique_sum_permutation finds cliques of at least size min_clique_size that are significantly enriched with DEGs. For every clique size, a null distribution is created using the summed -log 10 p-values. The union of maximal cliques with a summed -log 10 p-value below clique_significance and at least min_deg_in_clique is the final disease module.

Value

clique_sum_permutation returns an object of class "MODifieR_module" with subclass "Clique_Sum_permutation". This object is a named list containing the following components:

module_genes A character vector containing the genes in the final module

settings A named list containing the parameters used in generating the object

References

Gustafsson, M., Edström, M., Gawel, D., Nestor, C. E., Wang, H., Zhang, H., ... Benson, M. (2014). Integrated genomic and prospective clinical studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and treatment. Genome Medicine, 6(2), 17. https://doi.org/10.1186/gm534

6 correlation_clique

Description

```
correlation adjust cutoff
```

Usage

```
correlation_adjust_cutoff(frequency_cutoff, correlation_module)
```

Arguments

```
frequency_cutoff
```

Fraction of the number of times a gene should be present in it iterations. Default is 0.5, meaning 50 procent of all iterations

correlation_module

Module object that has been produced by correlation_clique function

Details

This function allows to adjust the frequency cutoff for a correlation_clique module object

Value

```
correlation_clique module object
```

See Also

```
correlation_clique
```

correlation_clique

Clique_correlation

Description

A clique based method to find a disease module from correlated gene expression

Usage

```
correlation_clique(MODifieR_input, ppi_network, frequency_cutoff = 0.5,
  fraction_of_interactions = 0.4, iteration = 50,
  clique_significance = 0.01, deg_cutoff = 0.05, multiple_cores = F,
  n_cores = 3, tempfolder = NULL, dataset_name = NULL)
```

correlation_clique 7

Arguments

MODifieR_input A MODifieR input object produced by create_input function

ppi_network A network as a dataframe where the first 2 columns are the interactions

frequency_cutoff

Fraction of the number of times a gene should be present in it iterations. Default

is 0.5, meaning 50 procent of all iterations

fraction_of_interactions

Fraction of interactions from the original network that will be used in each iter-

ation

iteration Number of iterations to be performed

clique_significance

Cutoff for Fisher exact test for cliques

deg_cutoff p-value cutoff for differentialy expressed genes

multiple_cores parallelize iterations using number of cores on system -1?

n_cores Number of cores to use if parallel processing

tempfolder Folder where temporary files are stored

dataset_name Optional name for the input object that will be stored in the settings object.

Default is the variable name of the input object

Details

The correlation clique is a clique-based algorithm using consensus clustering. The algorithm starts with calculating a correlation score between each interaction in the PPi network. The correlation score is obtained by subtracting the Pearson correlation p-value:

$$correlations core = 1 - Pears on p - value \\$$

Subsequently, the correlation score is multiplied by the correlation confidence and scaled with the scale factor to get the edge score:

$$edgescore = \sqrt{(correlationscore*confidencescore)*scale_factor}$$

When the edge scores are calculated the iterative part of the algorithm commences: All edge scores are compared to random variables from the uniform distribution between (0,1) only interactions where the edge score is higher than the random variable are used to construct a new PPi network. Then, maximal cliques are inferred from this new network. The cliques are tested for significant enrichment of DEGs by Fisher's exact test and the union of significant cliques is the disease module for this iteration The final disease module will consist of genes that have been present in at least frequency_cutoff iterations

Value

correlation_clique returns an object of class "MODifieR_module" with subclass "Correlation_clique". This object is a named list containing the following components:

module_genes A character vector containing the genes in the final module

frequency_table

A table containing the fraction of times the genes were present in an iteration

module

settings A named list containing the parameters used in generating the object

correlation_set_module_size

correlation_set_module_size

Description

Returns a correlation_clique module closest to size

Usage

```
correlation_set_module_size(size, correlation_module)
```

Arguments

size Module object that has been produced by correlation_clique function correlation_module

Module object that has been produced by correlation_clique function

Details

The function will find the the frequency cutoff for that will result in a correlation_clique module object closest to size

Value

correlation_clique module object

See Also

correlation_clique

```
create_custom_input_object
```

Create a generic input object

Description

Create a generic input object

Usage

```
create_custom_input_object(diff_genes = NULL, limma_probe_table = NULL,
annotated_exprs_matrix = NULL, expression_matrix = NULL,
annotation_table = NULL, group1_indici = NULL,
group2_indici = NULL, group1_label = NULL, group2_label = NULL,
settings = NULL)
```

Arguments

diff_genes A 2 two column data.frame where the first column are genes and the second column are p-values

limma_probe_table

A data.frame from limma topTable with added gene annotation

annotated_exprs_matrix

A matrix where the rows are genes and the columns samples.

expression_matrix

Normalized expression matrix where the samples are columns and probes are rows

annotation_table

A dataframe providing annotation for the probes. The dataframe should have 3 columns:

- PROBEID: The probe id as it is in the expression matrix
- IDENTIFIER: The entrez id (if available) associated with the probe

group1_indici vector containing indici for samples belonging to group 1 (Column numbers)
group2_indici vector containing indici for samples belonging to group 2 (Column numbers)
group1_label Label for each group 1, for example "patient" or "control"
group2_label Label for each group 2, for example "patient" or "control"
settings Settings used to generate the object. Used only internally by package.

Details

This function allows the creation of a generic input object with the same class as objects created by create_input. This can be useful in the cases where you already have differentially expressed genes, an annotated expression matrix or both and want to wrap that into an input object to use in downstream analysis.

10 create_input

Value

The function returns an object of class "MODifieR_input". The object is a named list containing the following components:

diff_genes

A 2 two column data.frame where the first column are genes and the second column unadjusted p-values

limma_probe_table

A data.frame from limma topTable with added gene annotation

annotated_exprs_matrix

A matrix where the rows are genes and the columns samples. Probes have been collapsed into genes using collapse_method

expression_matrix

A matrix, the original input expression matrix

annotation_table

A data.frame, the original annotation table used to annotate the probes

group_indici

A named list containing 2 numeric vectors. The names are the group labels and the values are the group indici

See Also

create_input

create_input

Creates an input object for downstream analysis

Description

The MODifieR input object can be used in downstream analysis for the disease module inference methods included in this package.

Usage

```
create_input(expression_matrix, annotation_table, group1_indici,
  group2_indici, group1_label, group2_label, expression = T,
  differential_expression = T, method = "MaxMean",
  filter_expression = T, use_adjusted = T)
```

Arguments

expression_matrix

Normalized expression matrix where the samples are columns and probes are rows

annotation_table

A dataframe providing annotation for the probes. The dataframe should have 3 columns:

• PROBEID: The probe id as it is in the expression matrix

create_input 11

• IDENTIFIER: The entrez id (if available) associated with the probe

group1_indici vector containing indici for samples belonging to group 1 (Column numbers)

group2_indici vector containing indici for samples belonging to group 2 (Column numbers)

group1_label Label for each group 1, for example "patient" or "control" group2_label Label for each group 2, for example "patient" or "control"

expression boolean, calculate expression values?

differential_expression

boolean, calculate differentially expressed data?

method

character string for determining which method is used to choose a probe among exactly 2 corresponding rows or when connectivityBasedCollapsing=FALSE. These are the options: "MaxMean" (default) or "MinMean" = choose the row with the highest or lowest mean value, respectively. "maxRowVariance" = choose the row with the highest variance (across the columns of datET). "absMaxMean" or "absMinMean" = choose the row with the highest or lowest mean absolute value. "ME" = choose the eigenrow (first principal component of the rows in each group). Note that with this method option, connectivityBasedCollapsing is automatically set to FALSE. "Average" = for each column, take the average value of the rows in each group "function" = use this method for a userinput function (see the description of the argument "methodFunction"). Note: if method="ME", "Average" or "function", the output parameters "group2row" and "selectedRow" are not informative.

filter_expression

boolean, remove 50 percent of the genes with lowest variance?

use_adjusted boolean, use adjusted p value for differential expression analysis?

Details

The function creates an input object to be used in all disease module inference methods. Differentially expressed genes are calculated using linear models from the limma package. Probes are collapsed into genes using collapseRows from WGCNA

Value

The function returns an object of class "MODifieR_input". The object is a named list containing the following components:

diff_genes A 2 two column data.frame where the first column are genes and the second column unadjusted p-values obtained by differential expression analysis

limma_probe_table

A data.frame from limma topTable with added gene annotation

annotated_exprs_matrix

A matrix where the rows are genes and the columns samples. Probes have been collapsed into genes using collapse_method

expression_matrix

A matrix, the original input expression matrix

12 create_module_set

annotation_table

A data.frame, the original annotation table used to annotate the probes

group_indici A named list containing 2 numeric vectors. The names are the group labels and

the values are the group indici

See Also

collapseRows lmFit eBayes topTable

create_module_set

Consensus module

Description

Consensus module

Usage

```
create_module_set(min_frequency, module_list)
```

Arguments

min_frequency Minimal number of MODifieR modules that a gene should be present in in order

to include it in the final module

module list A list of MODifieR modules

Details

Get a consensus module that is composed of genes present in at least min_frequency genes. If the input module_list is unnamed, the subclasses of the MODifieR objects will be used. If there is more than 1 of a given subclass present in module_list, a number will be appended.

Value

Returns an object of class "MODifieR_module" with subclass "Module_set". This object is a named list containing the following components:

module_genes A character vector containing the genes in the final module module_gene_list

A named list containing the module genes from the original modules

gene_frequency Table containing all the genes present in the modules and their frequency

method_by_gene A named list where the elements are the modules the genes have been found in

and the names are the gene names

gene_by_method A table containing the gene frequencies by combination of methods settings A named list containing the parameters used in generating the object

diamond 13

|--|

Description

A seed gene based algorithm to identify disease module from differentially expressed genes

Usage

```
diamond(MODifieR_input, ppi_network, deg_cutoff = 0.05,
  n_output_genes = 200, seed_weight = 10, include_seed = FALSE,
  dataset_name = NULL)
```

Arguments

${\tt MODifieR_input}$	A MODifieR input object produced by create_input function
ppi_network	A network as a dataframe where the first 2 columns are the interactions
deg_cutoff	p-value cutoff for differentialy expressed genes
n_output_genes	maximum number of genes to be included in the final module
seed_weight	Numeric additional parameter to assign weight for the seed genes
include_seed	Logical TRUE/FALSE for inclusion of seed genes in the output module
dataset_name	Optional name for the input object that will be stored in the settings object. Default is the variable name of the input object

Details

A slightly modified version of the original DIAMOnD python script is called from within R. The only change to the original algorithm is the option to include the seed genes to the module. There are also function to add or remove the seed genes from the output object, namely: diamond_add_seed_genes and diamond_remove_seed_genes For a detailed description of how the algorithm works, please see the paper referenced below.

Value

diamond returns an object of class "MODifieR_module" with subclass "DIAMOnD". This object is a named list containing the following components:

module_genes	A character vector containing the genes in the final module
seed_genes	Character vector containing genes that have been used as seed genes in the algorithm
ignored_genes	Potential seed genes that are not in the PPi network
added_genes	A table containing information on all added genes. First column is the name of the gene, the second column is the degree of the node (gene). The third column is the number of +1 neighbors and the fourth column is the p-value.
settings	A named list containing the parameters used in generating the object

References

Ghiassian, S. D., Menche, J., & Barabási, A. L. (2015). A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome. PLoS Computational Biology, 11(4), 1–21. https://doi.org/10.1371/journal.pcbi.1004120

diamond_add_seed_genes

Add seed genes from a DIAMOnD MODifieR_module

Description

Add seed genes from a DIAMOnD MODifieR_module

Usage

diamond_add_seed_genes(diamond_module)

Arguments

diamond_module A MODifieR_input object created by diamond

Details

Adds seed genes from a DIAMOnD module

Value

An object of class "MODifieR_module" with subclass "DIAMOnD"

See Also

diamond

diamond_remove_seed_genes

Remove seed genes from a DIAMOnD MODifieR_module

Description

Remove seed genes from a DIAMOnD MODifieR_module

Usage

diamond_remove_seed_genes(diamond_module)

diffcoex 15

Arguments

diamond_module A MODifieR_input object created by diamond

Details

Removes seed genes from a DIAMOnD module

Value

An object of class "MODifieR_module" with subclass "DIAMOnD"

See Also

diamond

diffcoex

DiffCoEx

Description

An implementation of the DiffCoEx co-expression based algorithm

Usage

```
diffcoex(MODifieR_input, beta = NULL, cor_method = "spearman",
   cluster_method = "average", cuttree_method = "hybrid",
   cut_height = 0.996, deepSplit = 0, pamRespectsDendro = F,
   minClusterSize = 20, cutHeight = 0.2, pval_cutoff = 0.05,
   dataset_name = NULL, deg_cutoff = 0.05)
```

Arguments

MODifieR_input A MODifieR input object produced by create_input function beta User-defined soft thresholding power For method=="tree" it defaults to 0.99. For method=="hybrid" it defaults to 99 maximum of the joining heights on the dendrogram. cor_method a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated. the agglomeration method to be used. This should be (an unambiguous abbrevicluster_method ation of) one of "ward", "single", "complete", "average", "mcquitty", "median" or "centroid". This applies to hierachical clustering. cuttree_method Chooses the method to use. Recognized values are "hybrid" and "tree". cut_height Maximum joining heights that will be considered.

16 diffcoex

deepSplit For method "hybrid", can be either logical or integer in the range 0 to 4. For

method "tree", must be logical. In both cases, provides a rough control over sensitivity to cluster splitting. The higher the value (or if TRUE), the more and smaller clusters will be produced. For the "hybrid" method, a finer control can

be achieved via maxCoreScatter and minGap below.

pamRespectsDendro

Logical, only used for method "hybrid". If TRUE, the PAM stage will respect the dendrogram in the sense that objects and small clusters will only be assigned to clusters that belong to the same branch that the objects or small clusters being

assigned belong to.

minClusterSize Minimum cluster size.

cutHeight Maximum joining heights that will be considered. For method=="tree" it de-

faults to 0.99. For method=="hybrid" it defaults to 99% of the range between the 5th percentile and the maximum of the joining heights on the dendrogram.

pval_cutoff The p-value cutoff to be used for significant co-expression modules (colors)

dataset_name Optional name for the input object that will be stored in the settings object.

Default is the variable name of the input object

deg_cutoff p-value cutoff for differentialy expressed genes

Details

DiffCoEx is a method for identifying correlation pattern changes, which builds on the commonly used Weighted Gene Coexpression Network Analysis (WGCNA) framework for coexpression analysis.

Value

diffcoex returns an object of class "MODifieR_module" with subclass "DiffCoEx". This object is a named list containing the following components:

module_genes A character vector containing the genes in the final module

module_colors A character vector containing the colors that make up the final disease module color_vector A named character vector containing the genes as values and the color as name

settings A named list containing the parameters used in generating the object

References

Tesson, B. M., Breitling, R., & Jansen, R. C. (2010). DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinformatics, 11, 497. https://doi.org/10.1186/1471-2105-11-497

diffcoex_split_module_by_color

Returns new DiffCoEx module objects by color

Description

Returns new DiffCoEx module objects by color

Usage

```
diffcoex_split_module_by_color(diffcoex_module)
```

Arguments

diffcoex_module

Module object that has been produced by diffcoex function

Details

The DiffCoEx module object is split into a series of DiffCoEx objects by color. Eevery significant color in the module will be its own DiffCoEx module object

Value

A list of DiffCoEx module objects

See Also

diffcoex

entrez_to_symbol

Convert the module genes in a MODifieR_input object from ENTREZ gene IDs to official gene symbols

Description

Convert the module genes in a MODifieR_input object from ENTREZ gene IDs to official gene symbols

Usage

```
entrez_to_symbol(MODifieR_module)
```

Arguments

MODifieR_module

An object of class MODifieR_module

18 expression_matrix

Details

The function uses the org.Hs.egSYMBOL function from the package org.Hs.eg.db to convert official gene symbols to ENTREZ IDs

See Also

```
org.Hs.egSYMBOL
symbol_to_entrez
```

expression_matrix

Expression matrix

Description

An example dataset from GEO (accession number GSE4588) containing systemic lupus erythematosus patients and healthy controls

Usage

```
expression_matrix
```

Format

An object of class matrix with 52307 rows and 16 columns.

Details

The expression matrix contains 16 microarray samples. Columns 1:9 are healthy controls, columns 10:16 are SLE patients. There are 52307 probes in this dataset.

References

```
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4588.
```

See Also

```
probe_annotation
ppi_network
```

get_max_frequency 19

	get_max_frequency	Get maximal number of MODifieR modules that share at least one gene
--	-------------------	---

Description

Get maximal number of MODifieR modules that share at least one gene

Usage

```
get_max_frequency(module_list)
```

Arguments

```
module_list A list of MODifieR modules
```

Value

The function returns an integer that gives the maximal number of MODifieR objects in module_list that share at least one gene.

Description

An implementation of MODA co-expression based algorithm.

Usage

```
moda(MODifieR_input, cutmethod = "Density", specificTheta = 0.1,
  conservedTheta = 0.1, dataset_name = NULL, group_of_interest)
```

Arguments

MODifieR_input	A MODifieR input object produced by create_input function
cutmethod	cutting the dendrogram based on maximal average Density or Modularity
specificTheta	the threshold to define $\min(s)$ +specificTheta, less than which is considered as condition specific module. s is the sums of rows in Jaccard index matrix. See supplementary file.
conservedTheta	The threshold to define $\max(s)$ -conservedTheta, greater than which is considered as condition conserved module. s is the sums of rows in Jaccard index matrix. See supplementary file.
dataset_name	Optional name for the input object that will be stored in the settings object. Default is the variable name of the input object

```
group_of_interest
```

Numerical value denoting which group contains the condition of interest (1 or 2)

Details

This implementation follows a workflow as described in the MODA vignette. First, two separate networks are constructed, a background network containing expression data from all samples and a condition specific network consisting of all samples minus the condition specific samples. Then, hierarchical clustering is performed and cutting height estimated from either maximal average density or modularity

Condition specific co-expression modules are then extracted using the Jaccard index and specificTheta.

The final module will consist of the co-expression module that has the minimal Jaccard index complemented by co-expression modules that have a Jaccard index below this minimal + specificTheta

After analysis, the specificTheta and thereby the disease module can be adjusted using moda_change_specific_threshol

Value

moda returns an object of class "MODifieR_module" with subclass "MODA". This object is a named list containing the following components:

module_genes A character vector containing the genes in the final module
group1_modules A list containing all co-expression modules in the background network
group2_modules A list containing all co-expression modules in the condition specific network
jaccard_table A matrix with all Jaccard indexes for all co-expression modules
settings A named list containing the parameters used in generating the object

References

Li D, Brown JB, Orsini L, Pan Z, Hu G, He S (2016). MODA: MODA: MOdule Differential Analysis for weighted gene co-expression network. R package version 1.6.0

See Also

https://bioconductor.org/packages/release/bioc/vignettes/MODA/inst/doc/MODA.html

```
{\it moda\_change\_specific\_threshold} \\ {\it Change}
```

Description

Change

Usage

```
moda_change_specific_threshold(moda_module, specificTheta)
```

modulediscoverer 21

Arguments

moda_module A MODifieR_input object created by moda

specificTheta the threshold to define min(s)+specificTheta, less than which is considered as

condition specific module. s is the sums of rows in Jaccard index matrix. See

supplementary file.

modulediscoverer Module Discoverer

Description

A clique based algorithm by Vlaic et al. to produce disease module from Differentially Expressed Genes

Usage

```
modulediscoverer(MODifieR_input, ppi_network, permutations = 10000,
  deg_cutoff = 0.05, repeats = 15, clique_cutoff = 0.01,
  dataset_name = NULL)
```

Arguments

MODifieR_input A MODifieR input object produced by create_input function

ppi_network A network as a dataframe where the first 2 columns are the interactions permutations Number of permutations to perform to identify the community structure

deg_cutoff p-value cutoff for differentialy expressed genes repeats Number of times the algorithm is repeated

clique_cutoff cutoff pvalue for significant cliques

dataset_name Optional name for the input object that will be stored in the settings object.

Default is the variable name of the input object

Details

This is an implementation of the *single seed* Module Discoverer algorithm. The code has been adapted from the original code by Vlaic et al. For details, please see the paper referenced below

Value

modulediscoverer returns an object of class "MODifieR_module" with subclass "module_discoverer". This object is a named list containing the following components:

module_genes A character vector containing the genes in the final module

graph graph containing the disease module

settings A named list containing the parameters used in generating the object

22 mod_mcode

References

Vlaic, S., Tokarski-schnelle, C., Gustafsson, M., Dahmen, U., Guthke, R., & Schuster, S. (2017). ModuleDiscoverer: Identification of regulatory modules in protein-protein interaction networks., 1–17.

See Also

https://www.leibniz-hki.de/en/modulediscoverer.html

Description

A clique based algorithm to identify disease modules from differentially expressed genes originally by Bader et al

Usage

```
mod_mcode(MODifieR_input, ppi_network, hierarchy = 1, vwp = 0.5,
haircut = F, fluff = F, fdt = 0.8, loops = T,
deg_cutoff = 0.05, module_cutoff = 3.5, dataset_name = NULL)
```

Arguments

MODifieR_input	A MODifieR input object produced by create_input function
ppi_network	A network as a dataframe where the first 2 columns are the interactions
hierarchy	This parameter indicates how many hierarchy are included in the network, currently it can be 0 , 1 or 2 . Default value is 1 .
vwp	Vertex weight percentage. Default value is 0.5.
haircut	Boolean value, whether to remove singly-connected nodes from clusters (TRUE) or not (FALSE).
fluff	Boolean value, whether to spand cluster cores by one neighbour shell outwards (TRUE) or not (FALSE).
fdt	Cluster density cutoff. Default value is 0.8.
loops	Boolean value, whether to include self-loops (TRUE) or not (FALSE).
deg_cutoff	p-value cutoff for differentialy expressed genes
module_cutoff	Minimal score for a module to be returned
dataset_name	Optional name for the input object that will be stored in the settings object. Default is the variable name of the input object

Details

Much of the code an documentation has been taken from the now defunct package "ProNet"

ppi_network 23

Value

mcode returns a list of objects of class "MODifieR_module" with subclass "Mcode". The objects are named lists containing the following components:

module_genes A character vector containing the genes in the final module

module_scores A numeric value that denotes the score of the module. Higher is better settings A named list containing the parameters used in generating the object

References

Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4(1), 2. https://doi.org/10.1186/1471-2105-4-2

See Also

https://github.com/cran/ProNet

ppi_network

PPi network

Description

A Protein-Protein interaction network from STRING

Usage

```
ppi_network
```

Format

An object of class data. frame with 64672 rows and 3 columns.

Details

This PPi network from STRING is version 7.1 and filtered for interactions with a confidence score higher than 700. The identifiers for the genes are ENTREZ. There are 64672 interactions (rows) in the dataframe. Each row denotes an interaction; column 1 contains the first gene, column 2 the second. The third column is the confidence score.

References

```
https://string-db.org/
```

See Also

```
probe_annotation
expression_matrix
```

probe_annotation

Probe annotation

Description

Probe annotation for the example dataset expression_matrix. The annotation is taken from Bioconductor package hgu133plus2.db and contains 52307 probes.

Usage

```
probe_annotation
```

Format

An object of class data. frame with 52307 rows and 2 columns.

References

https://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.db.html

Carlson M (2016). hgu133plus2.db: Affymetrix Human Genome U133 Plus 2.0 Array annotation data (chip hgu133plus2). R package version 3.2.3.

See Also

```
expression_matrix
ppi_network
```

```
recalculate_diff_genes
```

Recalculate DEGs

Description

Recalculate DEGs

Usage

```
recalculate_diff_genes(MODifieR_input, use_adjusted)
```

Arguments

```
MODifieR_input A MODifieR input object produced by create_input function use_adjusted boolean, use adjusted p value for differential expression analysis?
```

25 recalculate_expression

Details

Recalculate DEGs to either use adjusted or unadjusted p values

Value

MODifieR_input object

See Also

create_input

recalculate_expression

Recalculate collapsing probes to genes

Description

Recalculate collapsing probes to genes

Usage

recalculate_expression(MODifieR_input, method)

Arguments

MODifieR_input A MODifieR input object produced by create_input function

method

character string for determining which method is used to choose a probe among exactly 2 corresponding rows or when connectivityBasedCollapsing=FALSE. These are the options: "MaxMean" (default) or "MinMean" = choose the row with the highest or lowest mean value, respectively. "maxRowVariance" = choose the row with the highest variance (across the columns of datET). "absMaxMean" or "absMinMean" = choose the row with the highest or lowest mean absolute value. "ME" = choose the eigenrow (first principal component of the rows in each group). Note that with this method option, connectivityBasedCollapsing is automatically set to FALSE. "Average" = for each column, take the average value of the rows in each group "function" = use this method for a userinput function (see the description of the argument "methodFunction"). Note: if method="ME", "Average" or "function", the output parameters "group2row" and "selectedRow" are not informative.

Details

Recalculate the collapsing of probes to genes using on the method options

Value

MODifieR_input object

26 wgcna

See Also

```
create_input
```

Description

Convert the module genes in a MODifieR_input object from official gene symbols to ENTREZ gene IDs

Usage

```
symbol_to_entrez(MODifieR_module)
```

Arguments

MODifieR_module

An object of class MODifieR_module

Details

The function uses the org.Hs.egSYMBOL function from the package org.Hs.eg.db to convert ENTREZ IDs to official gene symbols

See Also

```
org.Hs.egSYMBOL
entrez_to_symbol
```

wgcna

An implementation of WGCNA to correlate coexpression modules to disease

Description

An implementation of WGCNA to correlate coexpression modules to disease

Usage

```
wgcna(MODifieR_input, minModuleSize = 30, deepSplit = 2,
  pamRespectsDendro = F, mergeCutHeight = 0.1, numericLabels = T,
  pval_cutoff = 0.05, corType = "bicor", maxBlockSize = 5000,
  TOMType = "signed", saveTOMs = T, maxPOutliers = 0.1,
  deg_cutoff = 0.05,
  dataset_name = deparse(substitute(MODifieR_input)))
```

wgcna 27

Arguments

MODifieR_input A MODifieR input object produced by create_input function

minModuleSize minimum module size for module detection. See cutreeDynamic for more de-

tails.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive

module detection should be to module splitting, with 0 least and 4 most sensitive.

See cutreeDynamic for more details.

pamRespectsDendro

Logical, only used when pamStage is TRUE. If TRUE, the PAM stage will respect the dendrogram in the sense an object can be PAM-assigned only to clusters that lie below it on the branch that the object is merged into. See cutreeDynamic

for more details.

mergeCutHeight dendrogram cut height for module merging.

numericLabels logical: should the returned modules be labeled by colors (FALSE), or by num-

bers (TRUE)?

pval_cutoff The p-value cutoff to be used for significant co-expression modules (colors)

corType character string specifying the correlation to be used. Allowed values are (unique

abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-

weight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs

option.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks

above is non-NULL. Otherwise, if the number of genes in datExpr exceeds maxBlockSize, genes will be pre-clustered into blocks whose size should not

exceed maxBlockSize.

TOMType one of "none", "unsigned", "signed". If "none", adjacency will be used for

clustering. If "unsigned", the standard TOM will be used (more generally, TOM function will receive the adjacency as input). If "signed", TOM will

keep track of the sign of correlations between neighbors.

saveTOMs logical: should the consensus topological overlap matrices for each block be

saved and returned?

maxPOutliers only used for corType=="bicor". Specifies the maximum percentile of data

that can be considered outliers on either side of the median separately. For each side of the median, if higher percentile than maxPOutliers is considered an outlier by the weight function based on 9*mad(x), the width of the weight function is increased such that the percentile of outliers on that side of the median equals maxPOutliers. Using maxPOutliers=1 will effectively disable all weight function broadening; using maxPOutliers=0 will give results that are quite similar

(but not equal to) Pearson correlation.

deg_cutoff p-value cutoff for differentialy expressed genes

dataset_name Optional name for the input object that will be stored in the settings object.

Default is the variable name of the input object

28 wgcna

Details

wgcna is an implementation of WGCNA that associates co-expression modules (denoted by color) to a trait. Co-expression modules with an adjusted p-value < pval_cutoff will make up the final disease module.

The algorithm infers co-expression modules from combined expression dataset from both group1 and group2. Co-expression modules are then correlated to trait (group 1 ~ group 2).

After analysis there are some post-processing functions available:

- wgcna_get_all_module_genes Get a list with all genes sorted by module color
- wgcna_get_module_genes_by_sign Get a module with either only postively correlated genes or negatively correlated genes
- wgcna_adjust_significance Adjust p-value cutoff
- wgcna_split_module_by_color Get a list where each color is a separate module
- wgcna_set_module_size Get a module close to a specific size

Value

wgcna returns an object of class "MODifieR_module" with subclass "WGCNA". This object is a named list containing the following components:

References

Langfelder P and Horvath S, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9:559 doi:10.1186/1471-2105-9-559

Peter Langfelder, Steve Horvath (2012). Fast R Functions for Robust Correlations and Hierarchical Clustering. J ournal of Statistical Software, 46(11), 1-17. URL http://www.jstatsoft.org/v46/i11/

Description

```
wgcna_adjust_significance
```

Usage

```
wgcna_adjust_significance(pval_cutoff, wgcna_module, use_unadjusted = F)
```

Arguments

pval_cutoff The p-value cutoff to be used for significant co-expression modules (colors)
wgcna_module Module object that has been produced by wgcna function

 $use_unadjusted \ \ Boolean \ value \ to \ signify \ if \ the \ adjusted \ (TRUE) \ or \ unadjusted \ (FALSE) \ p \ value$

should be used to adjust significance

Details

This function allows to adjust the significance cutoff for a wgcna module object

Value

wgcna module object

See Also

wgcna

```
wgcna_get_all_module_genes
```

Generate a list of module colors with their respective genes.

Description

Generate a list of module colors with their respective genes.

Usage

```
wgcna_get_all_module_genes(wgcna_module)
```

Arguments

wgcna_module Module object that has been produced by wgcna function

Value

Returns a named list of module genes where the names are the module colors. Includes non-significant colors

See Also

wgcna

```
wgcna_get_module_genes_by_sign

Split WGCNA module in module containing only positive or negative correlation
```

Description

Split WGCNA module in module containing only positive or negative correlation

Usage

```
wgcna_get_module_genes_by_sign(wgcna_module, mode)
```

Arguments

wgcna_module Module object that has been produced by wgcna function

mode Character. "p" or "positive" for positive correlation, "n" or "negative" for nega-

tive correlation.

Details

The functions returns a new wgcna module object that only contains positively or negatively correlated colors

Value

wgcna_module object

See Also

wgcna

wgcna_set_module_size Returns a wgcna module closest to size

Description

Returns a wgcna module closest to size

Usage

```
wgcna_set_module_size(size, wgcna_module)
```

Arguments

size The desired size of the resulting module

wgcna_module Module object that has been produced by wgcna function

Details

The function starts with the co-expression module (color) with the lowest p-value and gradually adds more co-expression modules until the module will be as close as possible to size size

@return

wgcna module object

See Also

wgcna

```
wgcna_split_module_by_color
```

Returns new WGCNA module objects by color

Description

Returns new WGCNA module objects by color

Usage

```
wgcna_split_module_by_color(wgcna_module)
```

Arguments

wgcna_module Module object that has been produced by wgcna function

Details

The wgcna module object is split into a series of wgcna objects by color. Every significant color in the module will be its own wgcna module object

Value

A list of wgcna module objects

See Also

wgcna

Index

```
*Topic datasets
    expression_matrix, 18
    ppi_network, 23
    probe_annotation, 24
build_clique_db, 3, 4, 5
clique_sum_exact, 3, 3
clique_sum_permutation, 3, 4
collapseRows, 12
correlation_adjust_cutoff, 6
correlation_clique, 6, 6, 8
correlation_set_module_size, 8
create_custom_input_object, 9
create_input, 4, 5, 7, 9, 10, 10, 13, 15, 19,
        21, 22, 24–27
create_module_set, 12
cutreeDynamic, 27
diamond, 13, 14, 15
diamond_add_seed_genes, 13, 14
diamond_remove_seed_genes, 13, 14
diffcoex, 15, 17
diffcoex_split_module_by_color, 17
eBayes, 12
entrez_to_symbol, 17, 26
expression_matrix, 18, 23, 24
get_max_frequency, 19
igraph, 21
1mFit, 12
mod_mcode, 22
moda, 19, 21
moda_change_specific_threshold, 20, 20
modulediscoverer, 21
org.Hs.egSYMBOL, 18, 26
```

```
pickSoftThreshold, 28
ppi_network, 18, 23, 24
probe_annotation, 18, 23, 24
recalculate_diff_genes, 24
recalculate_expression, 25
symbol_to_entrez, 18, 26
topTable, 12
wgcna, 26, 29-32
wgcna_adjust_significance, 28, 29
wgcna_get_all_module_genes, 28, 29
wgcna_get_module_genes_by_sign, 28, 30
wgcna_set_module_size, 28, 31
wgcna_split_module_by_color, 28, 31
```