(b)

Table 3: Ciphertext to plaintext mapping

Ciphertext	A	В	C	D	E	F	G	Н	I	J	K	L	M
	0	1	2	3	4	5	6	7	8	9	10	11	12
Plaintext	U	*	A	D	G	J	M	p	S	V	Y	В	F
	20	23	O	3	6	9	12	15	18	21	14	1	4
Ciphertext	N	O	P	Q	R	S	Т	U	V	W	X	Y	Z
	13	14	15	16	17	18	19	20	21	22	23	24	25
Plaintext	H	K	N	Q	T	W	2	C	F	I		Q	R
	7	10	13	16	19	22	15	2	5	8	11	14	17

(c) $(3C+20) \mod 26 = P$

(d)
$$(3f(x)+20) \mod 2b = x$$

$$= 3f(x)+20 = 2bk+x$$

$$= 7f(x) = 3^{-1}(2bk+x-20) \mod 2b$$

$$= 9(2bk+x-20) \mod 2b = (3x9) \mod 2b = (multiplicative inverse)$$

$$= (9x-140) \mod 2b$$

$$= (9x+2) \mod 2b$$

$$\alpha = 9, b=2$$

$$\alpha = 9, b=2$$

- (e) 26!. Yes, as the cost of trying all the permutations is too high.
- (f) Gemini: failed to decode. Below is the prompt and response:

can you give me the mapping based on frequency analysis?

While we can attempt a mapping based on frequency analysis, it's cruc understand that **this mapping is not guaranteed to be correct nor u** the limitations mentioned earlier. Here's a possible mapping based sole frequency analysis:

Ciphertext Letter	Frequency	Possible Mapping
Z	13	E (Most frequent letter in English)
М	12	T (Second most frequent)
Y	10	А
С	9	0
V	8	T
W	7	N
Р	6	S
Х	5	Н

2. (a) a must be co-prime with 30 and less than 30, while b is the number of shifts. #(a) = 8, #(b) = 30. Therefore, the key space is 8*30=240.

(b)
$$1^{-1} = 1$$
, $7^{-1} = 13$, $11^{-1} = 11$, $13^{-1} = 7$, $17^{-1} = 23$, $19^{-1} = 29$, $23^{-1} = 17$, $29^{-1} = 19$.

(c)

$$\begin{cases}
4a+b = 8 \pmod{30} \\
10a+b = 7 \pmod{30} \\
27a+b = 7 \pmod{30}
\end{cases}$$
=)
$$\begin{cases}
6\alpha = 18 \pmod{30} \\
17a = 11 \pmod{30}
\end{cases}$$
(17 has multiplicative inverse)
$$\alpha = (17^{-1} \times 11) \pmod{30}$$
= 13
$$b = 30 \times 2 + 8 - 13 \times 4 = 16$$

$$kenc = (13, 16)$$
#

$$y = (13 \times + 16) \mod 30$$

=> $y + 30k = 13 \times + 16$
=> $x = 13^{-1}(y + 30k - 16) \mod 30$
=> $x = (7y - 112) \mod 30$
=(7y + 8) mod 30
 $kdec = (7.8)$