

Provable Weak-to-Strong Generalization via Benign Overfitting

ICLR 2025 (Submitted) David X. Wu, Anant Sahai

Preliminaries

Model

- $f_w \in \mathbb{R}^{d_w}$: Train on n datapoints using weak features and ground-truth labels.
- $f_{w2s} \in \mathbb{R}^{d_s}$: Train on $m \gg n$ datapoints using strong features and pseudo-labels from f_w .

Feature and Label

- i.i.d. Gaussian features $x_i \sim N(0, \Sigma)$: $\Sigma = U\Lambda U^{\top}$, where $\Sigma, U, \Lambda \in \mathbb{R}^d$.
- x_i : Linear transformation of the $g_i \sim N(0, I_D)$.
- Label $y = sgn(\langle \boldsymbol{g}, \boldsymbol{v}^* \rangle)$ for unknown unit-norm direction \boldsymbol{v}^* .

Assumption

• (1-sparse assumption) v^* is aligned with a top eigenvector, i.e., $v^* = e_1$.

Bi-Level Ensemble

Bi-Level Ensemble

Bi-level ensemble parameterizes $\Lambda = \Lambda(p,q,r)$, where p > 1, $0 \le r < 1$, and 0 < q < (p-r). The number of features(d), the number of spiked directions(s), the degree of favoring(a) all scale with the number of training points(n) as follows:

$$d = \lfloor n^p \rfloor, s = \lfloor n^r \rfloor, a = n^{-q}$$

Then $\lambda = diag(\lambda_i)_{i \in [d]}$, where

$$\lambda_j = \begin{cases} \frac{ad}{s} := \lambda_F, & 1 \leq j \leq s; \\ \frac{(1-a)d}{d-s} := \lambda_U, & \text{otherwise}. \end{cases}$$

Observations

- \blacksquare $\sum_{j} \lambda_j = d$, where and $\sum_{j \in [s]} \lambda_j = ad$ and $\sum_{j \neq [s]} \lambda_j = (1-a)d$.
- Total features $d = n^p \gg n$, while the spiked features $s = n^r \ll n$.
- $\lambda_F = n^{p-(q+r)} >$

Weak-to-Strong Subset Ensemble

Weak-to-Strong Subset Ensemble

Let $\Lambda = \Lambda(p,q,r) \in \mathbb{R}^{d \times d}$ denote the strong eigenvalues and $\Lambda_w = \Lambda_w(p_w,q_w,r_w) \in \mathbb{R}^{d_w \times d_w}$ denote the weak eigenvalues, both drawn from the bi-level ensemble. Let U be any distinguished eigenbasis of Σ where $\boldsymbol{v}^* = \boldsymbol{e}_1$. The weak and strong features in the basis U are related as follows:

- 1. Strong feature: $x_s \sim N(0, \Lambda)$, where $\Lambda = \lambda_F I_{[s]} + \lambda_U I_{[d]\setminus [s]}$.
- 2. Weak feature: There exists subsets of coordinates $S \in [s], T \in [d] \setminus [s]$, such that

$$\boldsymbol{x}_w \sim N(0, \lambda_{F,w} \boldsymbol{I}_S + \lambda_{U,w} \boldsymbol{I}_T),$$

where $1 \in S$ and $|S| = s_w$.

