Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0041 CALIBRATION DATE: 03-Nov-11

SBE GLIDER PAYLOAD CTD CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g = -9.813135e-001h = 1.508818e-001i = -4.163334e-004j = 5.300949e - 005 CPcor = -9.5700e-008CTcor = 3.2500e-006WBOTC = 1.9558e-007

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2556.35	0.0000	0.00000
1.0000	34.9969	2.98993	5142.94	2.98993	0.00000
4.5000	34.9763	3.29833	5338.44	3.29833	0.00000
15.0000	34.9321	4.28431	5919.56	4.28430	-0.00001
18.5000	34.9225	4.63093	6110.46	4.63092	-0.00001
24.0000	34.9116	5.19123	6406.72	5.19123	0.00000
29.0000	34.9049	5.71519	6671.53	5.71522	0.00003
32.5000	34.8999	6.08892	6853.93	6.08889	-0.00002

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductivity = $(g + hf^2 + if^3 + jf^4) / (1 + \delta t + \epsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

