Weight Structure of Low/High-Rate Polar Codes and Its Applications

Mohammad Rowshan[†], Vlad-Florin Drăgoi[‡], Jinhong Yuan[†]

[†]The University of New South Wales, Sydney Australia [‡]Aurel Vlaicu University, Arad, Romania

IEEE Int'l Symposium on Information Theory July 7-12, 2024, Athens, Greece

Outline

Basic Concepts and Notations

- A **monomial** f is a product of some distinct variables $f = \prod_{i \in J} x_i$, where J is the *support* of f; ind(f).
- The set of all monomials of m variables is denoted by \mathcal{M}_m .
- Any monomial set $\mathcal{I} \subseteq \mathcal{M}_m$ can be divided into subsets based on the degree of monomials as $\mathcal{I} = \bigcup_{j=0}^m \mathcal{I}_j$, where $\mathcal{I}_i = \{ f \in \mathcal{I} \mid \deg(f) = j \}$.
- For every row \mathbf{g}_i of generator matrix \mathbf{G} where $i \in [0, k-1]$ there exists a monomial $f \in \mathcal{I}$ satisfying $\mathrm{ev}(f) = \mathbf{g}_i$.

Bijection b/w row indices and monomials for m = 2

i bin(i)	$supp(bin(i))^c$	f		$\mathbf{z} = (z_0 \ z_1)$:	: 11	01	10	00
0 (0,0)	{0,1}	<i>x</i> ₀ <i>x</i> ₁	\mathbf{g}_0	$\operatorname{ev}(x_0x_1)$	1	0	0	0
1(1,0)	$\{1\}$	x_1	\mathbf{g}_1	$\operatorname{ev}(x_1)$	1	1	0	0
2(0,1)	{0}	x_0	\mathbf{g}_2	$\operatorname{ev}(x_0)$	1	0	1	0
3 (1,1)	Ø	1		ev(1)	1	1	1	1

Reliability-based Partial Order \leq

Definition

Let m be a positive integer and $f,g \in \mathcal{M}_m$. Then:

- $f \leq_w g$ if and only if f|g, i.e., $\operatorname{ind}(f) \subseteq \operatorname{ind}(g)$.
- When $\deg(f) = \deg(g) = s$ we say that $f \leq_{sh} g$ if $\forall 1 \leq \ell \leq s$ we have $i_{\ell} \leq j_{\ell}$, where $f = x_{i_1} \dots x_{i_s}$, $g = x_{j_1} \dots x_{j_s}$.

Definition

A set $\mathcal{I} \subseteq \mathcal{M}_m$ is *decreasing* if and only if $(f \in \mathcal{I} \text{ and } g \leq f)$ implies $g \in \mathcal{I}$.

Partial Order: A Chain Relation

Permutation Group

- A bijective affine transformation over \mathbb{F}_2^m is represented by a pair $(\mathbf{B}, \varepsilon)$ where $\mathbf{B} = (b_{i,j})$ is an invertible matrix lying in the general linear group $\mathrm{GL}(m,2)$ and ε in \mathbb{F}_2^m .
- For decreasing monomial codes, a lower triangular affine transformation denoted by LTA(m,2) is employed where $\mathbf{B} \in GL(m,2)$ is a lower triangular binary matrix with $b_{i,i}=1$ and $b_{i,j}=0$ whenever j>i.

$$z \rightarrow Bz + \varepsilon$$
,

Example

Let
$$m = 3$$
, $g = x_0x_2$ and $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, $\varepsilon = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ We have $(\mathbf{B}, \varepsilon) \cdot g = (x_0 + 1)(x_2 + x_1)$

Orbits

Orbit:

$$LTA(m,2) \cdot f = \{ (\mathbf{B}, \varepsilon) \cdot f \mid (\mathbf{B}, \varepsilon) \in LTA(m,2) \}.$$

• $W_{w_{\min}} = \bigcup_{\deg(f)=r} LTA(m,2) \cdot f$ (r degree max)

Minimum Weight Codewords

• The degree of freedom on x_i :

$$\lambda_f(x_i) = |\{j \in [0, i) \mid j \notin \operatorname{ind}(f)\}|.$$

- $|\lambda_f(f)| = \sum_{i \in \text{ind}(f)} \lambda_f(x_i)$, (or simply $|\lambda_f|$).
- $|\mathrm{LTA}(m,2)\cdot g|=2^{|\lambda_g|+\deg(g)}$.

f ind(f)	x }	$\{x_0x_1x_2x_3, 0, 1, 2, 3\}$	x	$x_1x_2x_4$, 1, 2, 4}	$\begin{vmatrix} x_0 \\ \{0, \end{cases}$	$x_1 x_2 x_5$ 1, 2, 5}	$\begin{cases} x_0 \\ \{0, \end{cases}$	$x_1 x_3 x_4$ 1, 3, 4}
λ_{f}	(0	0, 0, 0, 0)	(1	,0,0,0)	(2,	0,0,0)	(1,	1,0,0)
$ LTA(m,2)_f \cdot t $	F	2 ⁴		2 ⁵		2 ⁶		2 ⁶
$\overline{ W_{w_{min}} }$ or $A_{w_{min}}$	in			1	76			

Structure of Weights less than $2w_{\min}$

Theorem

Let r < m and $P \in \mathbf{R}_m$ be such that $\deg(P) \le r$ with $0 < w(\operatorname{ev}(P)) < 2^{m+1-r}$. Then P is affine equivalent to one of the forms 1

- **1 Type I**: $P = y_1 \dots y_{r-\mu} (y_{r-\mu+1} \dots y_r + y_{r+1} \dots y_{r+\mu})$ where $m \ge r + \mu, r \ge \mu \ge 3$
- **2 Type II**: $P = y_1 \dots y_{r-2} (y_{r-1}y_r + \dots + y_{r+2\mu-3}y_{r+2\mu-2})$ where $m r + 2 \ge 2\mu, 2\mu \ge 2$.

In both cases y_i are linear independent forms and $w(ev(P)) = 2^{m+1-r} - 2^{m+1-r-\mu}$.

¹T. Kasami and N. Tokura, "On the weight structure of Reed-Muller codes," *Trans. Inf. Theory*, vol. 16, no. 6, pp. 752-759, Nov. 1970.

The Weight Structure in terms of LTA(m, 2)

Theorem

Let r < m and $P \in \mathbf{R}_m$ be such that $\deg(P) \le r$ with $0 < w(ev(P)) < 2^{m+1-r}$. Then

- **1 Type I:** for $m \ge r + \mu, r \ge \mu \ge 3$ $P = y_1 \dots y_{r-\mu} (y_{r-\mu+1} \dots y_r + y_{r+1} \dots y_{r+\mu})$ $P \in LTA(m, 2) \cdot f + LTA(m, 2) \cdot g \text{ with } f, g \in \mathcal{M}_m \text{ having } \deg(f) = \deg(g) = r.$
- **2 Type II:** for $m r + 2 \ge 2\mu \ge 2$ $P = y_1 \dots y_{r-2}(y_{r-1}y_r + \dots + y_{r+2\mu-3}y_{r+2\mu-2})$ $P \in \sum_{i=1}^{\mu} LTA(m,2) \cdot f_i$ with $f_i \in \mathcal{M}_m$ satisfying $\deg(f_i) = r$.

In both cases, y_i are linear independent forms and $w(ev(P)) = 2^{m+1-r} - 2^{m+1-r-\mu}$.

Codeword Weight

Given $w_{\min}=2^{m-r}$, the weight of the codewords based on μ is: $w(ev(P))=2^{m+1-r}-2^{m+1-r-\mu}=\left(2-\frac{1}{2^{\mu-1}}\right)w_{\min}$.

$$\mu \quad \text{w(ev}(P))$$
1 $\text{w}_{\text{min}}^{1}$
2 $1.5 \text{w}_{\text{min}}$
3 $1.75 \text{w}_{\text{min}}$
 $\vdots \quad \vdots$

Example

R(2,7):

- $w_{min} = 2^5 = 32$: $x_i x_j$
- $1.5 \text{ w}_{\text{min}} = 2^6 2^4 = 48 \Rightarrow \mu = 2$: $x_0 x_1 + x_2 x_3$
- $1.75 \,\mathrm{w_{min}} = 2^6 2^8 = 56 \Rightarrow \mu = 3$: $x_0 x_1 + x_2 x_3 + x_4 x_5$
- $2 w_{min} = 2^6 = 64$

Our Previous Work: 1.5 w_{min}-weight Codewords ^{1,2}

Theorem

Let $\mathcal{C}(\mathcal{I})$ be a DMC, with $r = \max_{f \in \mathcal{I}} \deg(f)$. Any codeword of weight $1.5 \, w_{\min}$ in $\mathcal{C}(\mathcal{I})$ is the evaluation of a polynomial $P \in \mathrm{LTA}(m,2)_h \cdot h \cdot \left(\mathrm{LTA}(m,2)_f \cdot \frac{f}{h} + \mathrm{LTA}(m,2)_g \cdot \frac{g}{h}\right)$, with $f,g \in \mathcal{I}_r, h = \gcd(f,g)$, and $\deg(h) = r - 2$.

¹M. Rowshan, V-F Drăgoi, J. Yuan, "On the Closed-form Weight Enumeration of Polar Codes: 1.5d-weight Codewords", May, 2023, arXiv:2305.02921.

²V.-F. Drägoi, M. Rowshan, and J. Yuan, "On the closed-form weight enumeration of polar codes: 1.5 d-weight codewords," *IEEE Trans. on Communications*, 2024. Dol: 10.1109/ TCOMM.2024.3394749.

 $^{^3}$ Z. Ye, Y. Li, H. Zhang, J. Wang, G. Yan, Z. Ma, "On the Distribution of Weights Less than $2w_{\min}$ in Polar Codes", August, 2023, arXiv:2308.10024.

Main challenges

A complete characterization of codewords in terms of orbits (LTA(m, 2))

- Minkowski sums of orbits are much harder to characterize than simple orbits
- We give a closed formula for the size of a Minkowski orbit (count collisions, much harder than w_{min})
- The Minkowski sums of two distinct pairs (f, g) and (f^*, g^*) are disjoints
- Reunite all properties under a complete counting and charcterisation theorem

Generalise these properties to a finite sum of orbits!

Type II Structure

Generalisation: Any Type II codeword of a DMC resides within the sum of μ orbits of monomials from \mathcal{I}_r .

Theorem (Characterisation)

Let $\mathcal{C}(\mathcal{I})$ be a DMC with $r = \max_{f \in \mathcal{I}} \deg(f)$. Any Type II codeword of weight $2^{m+1-r} - 2^{m+1-r-\mu}$ with $m-r+2 \geq 2\mu \geq 2$ belongs to

$$LTA(m,2)_h \cdot h \cdot \sum_{i=1}^{\mu} LTA(m,2)_{f_i} \cdot \frac{f_i}{h}$$

where $\forall i, f_i \in \mathcal{I}_r$, $h = \gcd(f_i, f_j)$, for all $i, j \in [1, \mu]$ $(i \neq j)$ and $\deg(h) = r - 2$.

$$\mu = 2$$
 codewords: $w = 1.5 \, w_{min}$

$$\operatorname{ev}(f) = \boldsymbol{c}_1 =$$

$$\operatorname{ev}(g) = c_2 =$$

$\mu = 2$ codewords: $w = 1.5 \, w_{min}$

$\mu = 2$ codewords: $w = 1.5 \, w_{min}$

$\mu = 2$ codewords: $w = 1.5 \, w_{min}$

$$\operatorname{ev}(x_0x_1)=oldsymbol{c}_1=$$

$$\operatorname{ev}(x_2x_3) = \mathbf{c}_2 =$$

$$ev(x_4x_5) = c_3 =$$

$$ev(x_0x_1) = c_1 =$$

$$ev(x_2x_3) = c_2 =$$

$$ev(x_4x_5) = c_3 =$$

$$\frac{9}{16} w_{min} + \frac{1}{16} w_{min} + \frac{9}{16} w_{min} + \frac{9}{16} w_{min} = \frac{7}{4} w_{min}$$

Enumeration for $\mu=2$

Minkowski sum of orbits P+Q $LTA(m,2) \cdot f$ $LTA(m,2) \cdot f + LTA(m,2) \cdot g$ $h = \gcd(f,g), \deg(h) = r - 2$

Enumeration for $\mu = 2$

Enumeration for $\mu = 2$

Enumeration for $\mu = 2$

Collision

Challenge

While we know how to find the cardinality of orbits (# of polynomials representing codewords), the Minkowski sum of orbits may produce redundant polynomials due to collision.

Definition

Let $f = x_{i_2}x_{i_1}$ and $g = x_{j_2}x_{j_1}$ with gcd(f,g) = 1 and $i_2 > j_2$. The degree of collision of f and g is

$$\alpha_{f,g} = \begin{cases} 0 & i_2 > i_1 > j_2 > j_1 \\ 1 & i_2 > j_2 > i_1 > j_1 \\ 2 & i_2 > j_2 > j_1 > i_1 \end{cases}.$$

Collision

Example

Suppose $f = x_2x_6$ and $g = x_3x_5$ hence $\alpha_{f,g} = 2$. Map every x_i into a "new variable" (y_i) , where $y_i = x_i + \sum_{j=0, j \notin \text{ind}(f)}^{i-1} b_{i,j}x_j$. - $P_1 = y_1y_2 = (x_2)(x_6 + x_3)$ and $Q_1 = y_3y_4 = (x_3 + x_2)(x_5)$. - $P_2 = y_1y_2 = (x_2)(x_6 + x_5)$ and $Q_2 = y_3y_4 = (x_3)(x_5 + x_2)$. Observe that

$$P_1 + Q_1 = x_6x_2 + x_3x_2 + x_5x_3 + x_5x_2$$

$$P_2 + Q_2 = x_6 x_2 + x_5 x_2 + x_5 x_3 + x_3 x_2.$$

where we have $P_1 + Q_1 = P_2 + Q_2$.

Enumeration of Type II codewords - Single Combination

Proposition (Size of μ -Minkowski sum)

Let \mathcal{I} be a DMSet with $r = \max_{f \in \mathcal{I}} \deg(f)$ and $\mu \geq 2$. Also, let $f_i \in \mathcal{I}_r$ for $i \in [1, \mu]$ with $\gcd(f_i, f_j) = h$ for any pair $(i, j) \in [1, \mu] \times [1, \mu]$ with $i \neq j$, and $\deg(h) = r - 2$. Then

$$\left| \text{LTA}(m,2)_h \cdot h \cdot \sum_{i=1}^{\mu} \text{LTA}(m,2)_{f_i} \cdot \frac{f_i}{h} \right| =$$

$$\left| \text{LTA}(m,2)_h \cdot h \right| \times \frac{\prod\limits_{i=1}^{\mu} \left| \text{LTA}(m,2)_{f_i} \cdot \frac{f_i}{h} \right|}{2^{\sum\limits_{i \neq j} \alpha_{f_i} \cdot \frac{f_i}{h} \cdot \frac{f_i}{h}}} \quad (1)$$

Constructive Formula for Type II codewords - Total

Theorem

Let $\mathcal I$ be a DMSet and $r=\max_{f\in\mathcal I}\deg(f)$. Let $w_\mu=2^{m+1-r}-2^{m+1-r-\mu}$ with $2\leq 2\mu\leq m-r+2$. The number of weight w_μ codewords of Type II is

$$|W_{\mathsf{W}_{\mu}}(\mathcal{I})| = \sum_{\substack{1 \leq i \leq \mu, \ f_i \in \mathcal{I}_r \\ h = \mathsf{gcd}(f_i, f_j) \in \mathcal{I}_{r-2}}} \frac{2^{\frac{r-2+2\mu+|\lambda_h| + \sum\limits_{i=1}^{\mu}|\lambda_{f_i}(\frac{f_i}{h})|}{\sum\limits_{2^{(f_i, f_j)}}^{\sum\limits_{n} \frac{f_i}{h}, \frac{f_i}{h}}}}{2^{(f_i, f_j)}^{\frac{r}{n}}}.$$

2w_{min}-weight Codewords

Lemma

Let $P \in \mathbf{R}_m$ with $\deg(P) = 2$. Then $\operatorname{w}(\operatorname{ev}(P)) = 2^{m-1}$ if and only if P is affine equivalent to $x_1x_2 + \cdots + x_{2l-1}x_{2l} + x_{2l+1}$ for $0 \le l \le (m-1)/2$, where x_i 's are mutually independent 1.

Any polynomial $Q \in LTA(m, 2) \cdot x_i$ satisfying $w(ev(Q)) = 2^{m-1}$ represents the x_{2l+1} term.

Observe that $2 w_{min}$ are thus expressed as linear combinations of a 2^{m-1} -weight codeword and w_{min} -weight codewords.

¹T. Kasami and N. Tokura, "On the weight structure of Reed-Muller codes," *Trans. Inf. Theory*, vol. 16, no. 6, pp. 752-759, Nov. 1970.

The complete weight distribution of Subcodes of $\mathcal{R}(2, m)$

$ W_{w} $	w
$\frac{1}{\sum\limits_{f\in\mathcal{I}_2}2^{2+ \lambda_f }}$	$w = 0, w = 2^m$ $w = 2^{m-2}, 2^m - 2^{m-2}$
$\sum_{\substack{1 \leq i \leq \mu, \ f_i \in \mathcal{I}_2 \\ \gcd(f_i, f_j) = 1}} \frac{2^{\mu + \sum\limits_{i=1}^{\mu} \lambda_{f_i} }}{\sum\limits_{\substack{f_i \in \mathcal{I}_2 \\ \gcd(f_i, f_j) = 1}}} \alpha_{f_i, f_j}$	$w = 2^{m-1} \pm 2^{m-1-\mu}$
$\sum_{l=0}^{\frac{m-1}{2}} \sum_{\substack{1 \leq i \leq l, \ f_i \in \mathcal{I}_2 \\ \gcd(x_j, f_i) = 1 \\ \gcd(f_i, f_j) = 1}} \frac{2^{2\mu + \sum\limits_{i=1}^{l} \lambda_{f_i} + 1 + \lambda_{f_1f_j}(x_j) }}{\sum\limits_{\substack{C \\ (f_i, f_j)}} \alpha_{f_i, f_j}}$	$w = 2^{m-1} = 2 w_{\min}$

Table Complete weight distribution for decreasing monomial code $\mathcal{C}(\mathcal{I})$ satisfying $\mathcal{R}(1,m)\subseteq\mathcal{C}(\mathcal{I})\subseteq\mathcal{R}(2,m)$.

High-rate Weight Distribution

Use the MacWilliams identities on the weight enumerator polynomial of $\mathcal{C}(\mathcal{I})$ and its dual $\mathcal{C}(\mathcal{I})^{\perp 2}$, to compute the weight distribution of the dual code.

$$\sum_{j=0}^{n-\nu} \binom{n-j}{\nu} |W_j(\mathcal{C})| = 2^{k-\nu} \sum_{j=0}^{\nu} \binom{n-j}{n-\nu} |W_j(\mathcal{C}^{\perp})|, \quad (2)$$

for $\nu = 0, 1, \dots, n$. Furthermore, the following holds:

$$\mathcal{R}(1,m) \subseteq \mathcal{C}(\mathcal{I}) \subseteq \mathcal{R}(2,m)$$

 $\mathcal{R}(m-2,m) \supseteq \mathcal{C}(\mathcal{I})^{\perp} \supseteq \mathcal{R}(m-3,m).$

Note that the weight distribution of $\mathcal{C}(\mathcal{I})^{\perp}$ is also symmetric.

² J. Macwilliams, "A theorem on the distribution of weights in a systematic code," The Bell System Technical Journal, vol. 42, no. 1, pp. 79-94, 1963.

Introducing a new Partial Order

Given a generating set \mathcal{I} , we can have PARTIAL ORDERs:

- based on channel reliability (known)
- based on weight contribution (new)

Definition

Let $\mathcal{C}(\mathcal{I}), \mathcal{C}(\mathcal{J})$ be two decreasing monomial codes. Let $w \in [0, 2^m]$ and define^a

$$\begin{split} \mathcal{C}(\mathcal{I}) \preccurlyeq_{\mathsf{w}} \mathcal{C}(\mathcal{J}) \text{ if } |W_{\mathsf{w}}(\mathcal{J})| &\leq |W_{\mathsf{w}}(\mathcal{I})|. \\ \mathcal{C}(\mathcal{I}) \preccurlyeq_{[\mathsf{w}_1, \mathsf{w}_2]} \mathcal{C}(\mathcal{J}) \text{ if } \forall \mathsf{w} \in [\mathsf{w}_1, \mathsf{w}_2] \ \mathcal{C}(\mathcal{I}) \preccurlyeq_{\mathsf{w}} \mathcal{C}(\mathcal{J}). \end{split}$$

 $^{^{\}text{a}}\text{We}$ use the symbol \preccurlyeq instead of \preceq to distinguish it from the partial order of reliability.

Introducing a new Partial Order

We extend the definition $\leq_{\mathbf{w}}$ to monomials as follows.

Definition

Let r be the maximum-degree of monomials and $f,g\in\mathcal{I}_r$. Then, we have $f\preccurlyeq_{\mathsf{W}_{\min}} g$ if and only if $|\lambda_f|<|\lambda_g|$.

Recall: $|\lambda_f|$ is the total number of free variables on all x_i in f:

$$|\lambda_f| = \sum_{i \in \operatorname{ind}(f)} \lambda_f(x_i),$$

$$|\mathrm{LTA}(m,2)\cdot f|=2^{|\lambda_f|+\deg(f)}.$$

To each degree r, one can associate the partial order set (poset) of \mathcal{I}_r defined by \leq and $\leq_{\mathsf{w}_{\min}}$.

Symmetric property and non-comparable elements

The order $\preccurlyeq_{w_{min}}$ adds more restrictions and hence reduces the number of non-comparable elements.

Lemma

Let $S_{\ell} = \{ f \in \mathcal{I}_2 : |\lambda_f| = \ell \}$. Then, for all $\ell \in [0, m-2]$, we have

- *Symmetry*: $|S_{\ell}| = |S_{m-2+\ell}|$,
- Cardinality: $|S_I| = \lfloor \frac{\ell+2}{2} \rfloor$.

Hence, the sequence S_ℓ is not only **symmetric**, but also **uni-modal**, with a maximum at $|S_{m-2}|=m-2$ where we have $|S_{m-2}|=\lfloor \frac{m}{2} \rfloor$.

Example: For m=6, the sequence 1,1,2,2,3,2,2,1,1 gives $|S_{\ell}|=|\{f\in\mathcal{I}_2: |\lambda_f|=\ell\}|.$

The monomials in \mathcal{I} (bold brown) are defined by $f \leq x_1x_4, f \leq x_0x_5$ and $f \leq x_2x_4$. Each level gives $|\lambda_f|$.

Black lines for \preceq , black/violet lines for $\preccurlyeq_{w_{mjn}}$. Elements at the same level S_ℓ have an identical weight contribution, thus defining different codes with the same weight distribution.

Example: m=7, selecting 19 monomials from \mathcal{I}'

 $\mathcal{I}' = \{ f : f \leq x_3 x_4, f \leq x_2 x_6 \}.$

Note that the monomial 1 is not included in the figure.

Red-enclosed monomials:

$$\mathcal{I} = \{ f \mid f \leq x_0 x_6, f \leq x_1 x_5, f \leq x_2 x_3 \}$$

 $\mathcal{I} = \{ f \mid f \leq x_0 x_6, f \leq x_1 x_5, f \leq x_2 x_3 \}.$ $W(\mathcal{I}, X) = 1 + 556 X^{32} + 21312 X^{48} + 36864 X^{56} + 406822 X^{64}.$

Green-enclosed monomials:

$$\mathcal{I} = \{ f : f \leq x_2 x_4, f \leq x_1 x_5, f \leq x_6 \}.$$

 $W(\mathcal{I}, X) = 1 + 556X^{32} + 21312X^{48} + 36864X^{56} + 406822X^{64}$

Brown-enclosed monomials:

$$\mathcal{I} = \{ f : f \leq x_2 x_4, f \leq x_0 x_5, f \leq x_6 \}.$$

$$W(\mathcal{I}, X) = 1 + 556X^{32} + 21312X^{48} + 36864X^{56} + 406822X^{64}$$

Example: m = 7, selecting 19 monomials from \mathcal{I}'

$$\begin{split} \mathcal{T}' &= \{f: f \preceq x_3x_4, f \preceq x_2x_6\}. \\ \text{Note that the monomial 1 is not included in the figure.} \\ \text{Yellow line:} \\ \mathcal{I} &= \{f: f \preceq x_1x_6, f \preceq x_0x_5, f \preceq x_6\}. \\ W(\mathcal{I}, X) &= 1 + 684X^{32} + 22848X^{48} + 28672x^{56} + 419878X^{64}. \\ \text{Blue line:} \\ \mathcal{I} &= \{f: f \preceq x_1x_6\}. \\ W(\mathcal{I}, X) &= 1 + 748X^{32} + 29760X^{48} + 463270X^{64}. \end{split}$$

Ordering Procedure

For the subcodes of $\mathcal{R}(2,m)$ with $1+m < K < 1+m+{m \choose 2}$:

- 1 Based on $\preccurlyeq_{\mathsf{w}_{\mathsf{min}}}$, select the monomials on the first $\ell-1$ levels, where $1+m+\sum\limits_{j=0}^{\ell-1}\lfloor\frac{j+2}{2}\rfloor\leq K<1+m+\sum\limits_{j=0}^{\ell}\lfloor\frac{j+2}{2}\rfloor.$
- The remaining monomials, all from level / will be selected based on the reliability rule, where the reliability can be calculated using different methods such has beta-expansion.

Permutation Group

While two permutation equivalent codes will have an identical weight distribution, the converse is not always true ³.

Example

Let us consider the codes in the previous example with m=6. The three codes have different permutation groups and thus are not equivalent.

$$\mathcal{C}(\mathcal{I}\setminus\{x_0x_5\})$$
 has a group of order $2^{30}\times 3^2$, $\mathcal{C}(\mathcal{I}\setminus\{x_1x_4\})$ has a group of order $2^{28}\times 3^3\times 7$, $\mathcal{C}(\mathcal{I}\setminus\{x_2x_3\})$ has a group of order $2^{28}\times 3\times 7$.

³E. Cheon, "Equivalence of linear codes with the same weight enumerator," Scientiae Mathematicae Japonicae, vol. 64, no. 1, p. 163, 2006.

Potential future directions and Further Resources

Open Problems:

- Finding formulas for higher wieight codewords,
- Extending the formulas to the variants of polar codes,
- Discovering more propeties of the introduced partial order and further investigation on how to used them in code construction,

MATLAB script and Slides:

 https://github.com/mohammad-rowshan/closed-formweight-enumeration-of-polar-codes

Feel free to get in touch:

m.rowshan@unsw.edu.au