## 2022 届高三冲刺题

- 1. 已知函数  $f(x) = \log_a x + x b(a > 0$  且  $a \neq 1$ ). 当 2 < a < 3 < b < 4 时, 函数 f(x) 的零点  $x_0 \in (n, n+1), n \in \mathbb{N}^*, 则 n = _____.$
- 2. 设实数 a, b, c 满足:  $ac \neq 0$  且  $a \neq c$ , 集合  $A = \{y | y = ax^2 + bx + c, x \in \mathbf{R}\}, B = \{y | y = cx^2 + bx + a\}, 以下 结论一定正确的是 ( ).$

A.  $A \subseteq B$ 

B.  $B \subseteq A$ 

C.  $A \cup B = \mathbf{R}$ 

D.  $A \cap B \neq \emptyset$ 

- 3. 对于无穷数列  $\{a_n\}$ , 定义数列  $b_n=|a_{n+1}-a_n|$ , 记  $\{b_n\}$  的前 n 项和为  $S_n$ , 若  $\lim_{n\to\infty}S_n$  存在, 则称数列  $\{a_n\}$  为 "好数列".
  - (1) 若  $a_n = \frac{1}{n}$ , 判断数列  $\{a_n\}$  是否为 "好数列"? 并说明理由;
  - (2) 若数列  $\{a_n\}$  满足  $a_1 = 1$ ,  $a_{n+1} = qa_n \ (q \neq 0)$ , 且  $\{a_n\}$  是 "好数列", 求 q 的取值范围;
  - (3) 若递增数列  $\{a_n\}$  的前 n 项和为  $\{T_n\}$ , 则 " $\{a_n\}$  为 '好数列" 是 " $\{T_n\}$  为 '好数列" 的什么条件? 判断并说明理由.
- 4. 函数  $f(x) = \sin x$ , 对于  $x_1 < x_2 < x_3 < \dots < x_n$  且  $x_1, x_2, \dots, x_n \in [0, 8\pi]$   $(n \ge 10, n \in \mathbb{N})$ , 记  $M = |f(x_1) f(x_2)| + |f(x_2) f(x_3)| + |f(x_3) f(x_4)| + \dots + |f(x_{n-1}) f(x_n)|$ , 则 M 的最大值等于\_\_\_\_\_\_.
- 5. 设  $\alpha_1, \alpha_2 \in \mathbf{R}$ , 且  $\frac{1}{2 + \sin \alpha_1} + \frac{1}{2 + \sin(2\alpha_2)} = 2$ , 则  $|10\pi \alpha_1 \alpha_2|$  的最小值等于\_\_\_\_\_\_.
- 6. 正四棱锥 V-ABCD 的表面积为 12, AB=2, N 为棱 CD 的中点, 直线 AB 在平面  $\alpha$  内. 将该正四棱锥 绕直线 AB 任意旋转, 旋转过程中, 设 V 在  $\alpha$  内的射影为 O, 则线段 ON 长的最大值为\_\_\_\_\_\_\_.



- 7. 已知 a,b 为空间两条互相垂直的直线,等腰  $\operatorname{Rt}\triangle ABC$  的直角边 AC 所在直线与 a,b 都垂直,斜边 AB 以直线 AC 为旋转轴旋转.有下列结论:① 当直线 AB 与 a 所成的角为  $60^\circ$  时,AB 与 b 所成的角为  $30^\circ$ ;② 直线 AB 与 a 所成角的最小值为  $45^\circ$ ;③ 直线 AB 与 a 所成角的最大值为  $60^\circ$ .其中所有真命题的序号为
- 8. 已知数列  $\{a_n\}$  满足: ①  $a_1=0$ ; ② 对任意的  $n\in \mathbb{N}^*$ , 都有  $a_{n+1}>a_n$  成立. 函数  $f_n(x)=|\sin\frac{1}{n}(x-a_n)|, \ x\in [a_n,a_{n+1}]$  满足: 对于任意的实数  $m\in [0,1), \ f_n(x)=m$  总是有且仅有两个不同的根, 求  $\{a_n\}$  的通项公式.
- 9. 设  $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  是平面上的向量, $|\overrightarrow{a}|=1$ ,  $|\overrightarrow{b}|=3$ ,  $|\overrightarrow{c}|=4$ , 且  $\overrightarrow{b}\cdot\overrightarrow{c}=0$ , 实数  $\lambda$  满足  $0\leq\lambda\leq1$ . 若  $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  及  $\lambda$ , 使得  $s=|\overrightarrow{a}-\lambda\overrightarrow{b}-(1-\lambda)\overrightarrow{c}|$  是正整数, 则 s 的值的集合是\_\_\_\_\_\_.

10. 如图, 在平面内,  $l_1, l_2$  是两条平行直线, 它们之间的距离为 2, 点 P 位于  $l_1, l_2$  的下方, 它到  $l_1$  的距离为 1, 动 点 N, M 分别在  $l_1, l_2$  上, 满足  $|\overrightarrow{PM} + \overrightarrow{PN}| = 6$ , 则  $\overrightarrow{PM} \cdot \overrightarrow{PN}$  的最大值为 ( ).

A. 6

B. 8

C. 12

D. 15



- 11. 已知过原点 O 的直线与椭圆  $C: \frac{x^2}{4} + y^2 = 1$  交于 A, B 两点, 点 A 到 y 轴的距离 d 满足  $d \in [1,2)$ , 点 D 在椭圆 C 上, 且  $AD \perp AB$ , 直线 BD 与 x 轴、y 轴分别交于 M, N 两点.
  - (1) 设直线 BD, AM 的斜率分别为  $k_1, k_2$ , 求  $k_1 \cdot k_2$  的取值范围;
  - (2) 求  $\triangle OMN$  面积的最大值.
- 12. 已知点  $A(0,\frac{2}{n}), B(0,-\frac{2}{n}), C(4+\frac{2}{n},0),$  其中 n 为正整数, 设  $S_n$  表示  $\triangle ABC$  外接圆的面积, 则  $\lim_{n\to\infty} S_n =$ \_\_\_\_\_\_.
- 13. 如图所示: 矩形  $A_nB_nP_nQ_n$  的一边  $A_nB_n$  在 x 轴上, 另两个顶点  $P_n,Q_n$  在函数  $f(x)=\frac{2x}{1+x^2}$  的图像上 (其中点  $B_n$  的坐标为 (n,0)  $(n\geq 2,\ n\in {\bf N}^*)$ ), 矩形  $A_nB_nP_nQ_n$  的面积记为  $S_n$ , 则  $\lim_{n\to\infty}S_n=$ \_\_\_\_\_.

