Look-out for New Laws

Classical Equations:

1. Particle
$$\vec{F} = m \frac{d^2 \vec{r}}{dt^2}$$

2. Wave
$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2}$$

Superposition of Waves

- We know that electromagnetic waves even of different wavelengths superimpose.
- If we say that the wave equation is the wave governing the electromagnetic waves it implies that superposition should also be allowed by the wave equation.

- If ψ_1 and ψ_2 are solutions of the wave equation, $\psi_1 + \psi_2$ is also a solution of the wave equation.
- Let us verify it as this is key for interference, formation of wave packet etc.

If ψ_1 and ψ_2 are solutions of the wave equation.

$$\frac{\partial^2 \psi_1}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \psi_1}{\partial t^2}$$

$$\frac{\partial^2 \psi_2}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \psi_2}{\partial t^2}$$

$$\frac{\partial^2 \psi_1}{\partial x^2} + \frac{\partial^2 \psi_2}{\partial x^2} = \frac{1}{c^2} \left(\frac{\partial^2 \psi_1}{\partial t^2} + \frac{\partial^2 \psi_2}{\partial t^2} \right)$$
$$\frac{\partial^2 (\psi_1 + \psi_2)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 (\psi_1 + \psi_2)}{\partial t^2}$$

We see that $\psi_1 + \psi_2$ is also a solution of the wave equation. But note here **c** is same for both the waves

Superposition of Particle Wave?

- A particle can travel with any speed.
- •In fact the wavelength of the particle depends on speed.

- If we take two particle waves, corresponding to same type of particle (e.g. electron), with different wavelengths, they would not superimpose, if the standard wave equation was governing it.
- So can we form a wave packet?
- We probably need another equation.

How to Solve the Problem?

•If the constant appearing in the wave equation was not dependent on dynamical properties like speed, momentum or energy, the superposition could have been valid. • Initially consider a non-relativistic free particle. For this particle we have the following relationship.

$$K = \frac{p^2}{2m}$$

•Momentum can be related to wave vector k, while energy to ω.

If second derivative with x was related to the first derivative with t, things could be different. Why not try the following.

$$\frac{\partial^2 \psi}{\partial \mathbf{x}^2} = \gamma \frac{\partial \psi}{\partial t}$$

But are the standard displacement equation given by a pure trigonometric equation a solution of it?

Traditionally we take the solution of the following form.

$$\psi = Ae^{i(kx-\omega t)}$$

$$\psi = Ae^{i(kx-\omega t)}$$

$$\frac{\partial \psi}{\partial t} = -Ai\omega e^{i(kx-\omega t)}$$

$$\frac{\partial \psi}{\partial x} = Aike^{i(kx-\omega t)}$$

$$\frac{\partial^2 \psi}{\partial x^2} = -Ak^2 e^{i(kx-\omega t)}$$

$$-Ak^{2}e^{i(kx-\omega t)} = \gamma \left(-Ai\omega e^{i(kx-\omega t)}\right)$$
$$\gamma = \frac{k^{2}}{i\omega}$$
$$= \frac{2m\hbar^{2}k^{2}}{2m\hbar i\hbar \omega}$$
$$= \frac{2m}{i\hbar}$$

Note: We have taken

$$p = \hbar k$$
; $K = \hbar \omega$

One set of argument is to put

$$E = \hbar \omega = K + m_o c^2$$

Then express the constant rest mass energy factor as a phase

$$\psi = Ae^{i(kx-\omega t)}$$

$$= Ae^{\frac{i}{\hbar}(px-(K+m_oc^2)t)}$$

$$= Ae^{\frac{i}{\hbar}(px-Kt)}e^{-(\frac{i}{\hbar}m_oc^2t)}$$

Going back to our old equation, we get the following

$$\frac{\partial^2 \psi}{\partial x^2} = \gamma \frac{\partial \psi}{\partial t}$$
$$\frac{\partial^2 \psi}{\partial x^2} = \frac{2m}{i\hbar} \frac{\partial \psi}{\partial t}$$
$$\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} = i\hbar \frac{\partial \psi}{\partial t}$$

We shall use in QM, K as the kinetic energy and E is the total non-relativistic energy, not including rest mass energy.

Notes

- The value of γ indeed turned out to independent of dynamical variables, but depend on m.
- We could have also used for a wave travelling in +x direction.

$$\psi = Ae^{-i(kx-\omega t)}$$

Notes (Cond.)

- •In that case the value of γ would have changed sign. No Physics would have changed.
- Conventionally we use only the following.

$$\psi = Ae^{i(kx-\omega t)}$$

- The wave function turns out to be complex. But that shall not pose any problem so long the observables turn out to be real.
- We shall later see the physical interpretation of the wave function.

Operators

- Abstract but an essential component of OM
- Are defined to maintain consistency with classical mechanics.

Momentum operator is defined the following way.

$$\hat{\rho}_{x} \equiv -i\hbar \frac{\partial}{\partial x}$$

This implies that

$$\hat{\rho}_{\mathsf{X}}\psi(\mathsf{X},t)\equiv-i\hbar\frac{\partial\psi(\mathsf{X},t)}{\partial\mathsf{X}}$$

Energy Operator

Energy operator is defined as

$$\hat{E} \equiv i\hbar \frac{\partial}{\partial t}$$

Like before this implies that

$$\hat{E}\psi(x,t)\equiv i\hbar\frac{\partial\psi(x,t)}{\partial t}$$

Relook at the Old Equation

$$-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\psi(x,t)}{\partial x^{2}} = i\hbar\frac{\partial\psi(x,t)}{\partial t}$$

$$\frac{1}{2m}\left[-i\hbar\frac{\partial}{\partial x}\right]\left[-i\hbar\frac{\partial}{\partial x}\right]\psi(x,t) = \left[i\hbar\frac{\partial}{\partial t}\right]\psi(x,t)$$

$$\frac{1}{2m}\left[\hat{p}_{x}\right]\left[\hat{p}_{x}\right]\psi(x,t) = \left[\hat{E}\right]\psi(x,t)$$

$$\frac{\hat{p}_{x}^{2}}{2m}\psi(x,t) = \hat{E}\psi(x,t)$$