User-Centered Design and Development

Instructor: Franz J. Kurfess

Computer Science Dept.

Cal Poly San Luis Obispo

Copyright Notice

- These slides are a revised version of the originals provided with the book "Interaction Design" by Jennifer Preece, Yvonne Rogers, and Helen Sharp, Wiley, 2002.
- I added some material, made some minor modifications, and created a custom show to select a subset.
 - Slides added or modified by me are marked with my initials (FJK), unless I forgot it ...

www.id-book.com FJK 2005 Copyright © 2002

484-W09 Quarter

- The slides I use in class are in the Custom Show "484-W09". It is a subset of the whole collection in this file.
 - -To view them, select "Slide Show => Custom Shows", then the quarter, then "Show"

Chapter 2

Understanding User Interaction

www.id-book.com

Chapter Overview

- Problem space
- Conceptual models
- Interface metaphors
- Interaction paradigms
- Conceptual models and physical design

Motivation

- Good intentions are not sufficient to develop good user interfaces.
- It is important to understand the background, tasks, mind set, and experiences of users.
- Carefully considering the interactions of the user with the system before they are committed to code offers the flexibility to discard ideas and approaches that don't work.

Objectives

- Understand the terms problem space and conceptual model.
- Use them to develop abstract descriptions of interactions.
- Identify mappings between the abstract descriptions and the methods and techniques available for implementation.
- Evaluate advantages and problems of various approaches to such mappings.

Understanding and conceptualizing interaction

Recap

- HCI has moved beyond designing interfaces for desktop machines
- About extending and supporting all manner of human activities in all manner of places
- Facilitating user experiences through designing interactions
 - Make work effective, efficient and safer
 - Improve and enhance learning and training
 - Provide enjoyable and exciting entertainment
 - Enhance communication and understanding
 - Support new forms of creativity and expression

Understanding the problem space

- What do you want to create?
- What are your assumptions?
- Will it achieve what you hope it will?

A framework for analysing the problem space

- Are there problems with an existing product?
- Why do you think there are problems?
- Why do you think your proposed ideas might be useful?
- How would you see people using it with their current way of doing things?
- How will it support people in their activities?
- Will it really help them?

Activity Theme: TV Gourmet

- Only watch shows you are really interested in
- Critical user needs
 - aspects that are important to all or most users
- Constraints
 - conceptual
 - technological
 - environment

An example

 What were the assumptions made by cell phone companies when developing WAP services?

 Was it a solution looking for a problem?

Assumptions: realistic or wish-list?

- People want to be kept informed of up-to-date news wherever they are - reasonable
- People want to interact with information on the move
 reasonable
- People are happy using a very small display and using an extremely restricted interface - not reasonable
- People will be happy doing things on a cell phone that they normally do on their PCs (e.g. surf the web, read email, shop, bet, play video games) - reasonable only for a very select bunch of users

From problem space to design space

- Having a good understanding of the problem space can help inform the design space
 - e.g. what kind of interface, behavior, functionality to provide
- But before deciding upon these it is important to develop a conceptual model

Conceptual model

- How will the system appear to users?
 - Internalized understanding of how the system works.
 - May not correspond to the actual design of the system.
- A conceptual model is a high level description of:
 - "the proposed system in terms of a set of integrated ideas and concepts about what it should do, behave and look like, that will be understandable by the users in the manner intended"

Activity: Conceptual Model

- What is your conceptual model of a video recorder (not video player)?
 - Do you believe it is close to the actual design of such a system?
 - Do you know people who have an "interesting" conceptual model of a video recorder?

Activity: Mis-Conceptual Model

- Do you know examples of systems or devices for which some people have incorrect conceptual models?
 - This does not necessarily mean that those people are stupid!
 - Conceptual models should be largely independent of the actual technology used in the implementation of the system.

First steps in formulating a conceptual model

- What will the users be doing when carrying out their tasks?
- How will the system support these?
- What kind of interface metaphor, if any, will be appropriate?
- What kinds of interaction modes and styles to use?

Always keep in mind when making design decisions how the user will understand the underlying conceptual model

Conceptual models

- Many kinds and ways of classifying them
- Here we describe them in terms of core activities and objects
- Also in terms of interface metaphors

Conceptual models based on activities

- Giving instructions
 - issuing commands using keyboard and function keys and selecting options via menus
- Conversing
 - interacting with the system as if having a conversation
- Manipulating and navigating
 - acting on objects and interacting with virtual objects
- Exploring and browsing
 - finding out and learning things

1. Giving instructions

- Where users instruct the system and tell it what to do
 - e.g. tell the time, print a file, save a file
- Very common conceptual model, underlying a diversity of devices and systems
 - e.g. CAD, word processors, VCRs, vending machines
- Main benefit is that instructing supports quick and efficient interaction
 - good for repetitive kinds of actions performed on multiple objects

2. Conversing

- Underlying model of having a conversation with another human
- Range from simple voice recognition menu-driven systems to more complex 'natural language' dialogues
- Examples include timetables, search engines, advice-giving systems, help systems
- Recently, much interest in virtual agents
 - Conversation with the user as interface,
 - e.g. Microsoft's Bob and Clippy, chatbots

Pros and cons of conversational model

- Allows users, especially novices and technophobes, to interact with the system in a way that is familiar
 - makes them feel comfortable, at ease and less scared
- Misunderstandings can arise when the system does not know how to parse what the user says
 - e.g. child types into a search engine, that uses natural language the question:

"How many legs does a centipede have?" and the system responds:

You asked: How many legs does a centipede have?

Jeeves knows these answers:

Where can I find a definition for the math term leg?

Ask!

Where can I find a concise encyclopedia article on ? centipedes?

Where can I see an image of the human appendix?

Ask!

Why does my leg or other limb fall asleep?

Where can I find advice on controlling the garden pest ? millipedes and centipedes?

Where can I find resources from Britannica.com on leg?

Ask

3. Manipulating and navigating

- Involves dragging, selecting, opening, closing and zooming actions on virtual objects
- Exploit's users' knowledge of how they move and manipulate in the physical world
- Exemplified by
 - what you see is what you get (WYSIWYG)
 - the direct manipulation approach (DM)
 - Shneiderman (1983) coined the term DM
 - came from his fascination with computer games at the time

Core principles of DM

- Continuous representation of objects and actions of interest
 - Objects don't pop up and disappear frequently
- Physical actions and button pressing
 - instead of issuing commands with complex syntax
- Rapid reversible actions
 - immediate feedback on object of interest

Why are DM interfaces so enjoyable?

- Novices can learn the basic functionality quickly
- Experienced users can work extremely rapidly
 - carry out a wide range of tasks
 - defining new functions
- Intermittent users can retain operational concepts over time
- Error messages less rarely needed
- Users can immediately see if their actions are furthering their goals and if not do something else
- Users experience less anxiety
- Users gain confidence and mastery and feel in control

What are the disadvantages with DM?

- Some people take the metaphor of direct manipulation too literally
- Not all tasks can be described by objects and not all actions can be done directly
- Some tasks are better achieved through delegating
 - e.g. spell checking
- Can become screen space 'gobblers'
- Moving a mouse around the screen can be slower than pressing function keys to do same actions
- Some tasks are more efficiently done in some other way

4. Exploring and browsing

- Similar to how people browse information with existing media
 - e.g. newspapers, magazines, libraries, pamphlets
- Information is structured for flexible search
 - multiple ways for a user to find information
 - e.g. multimedia, web

Conceptual models based on objects

- Usually based on an analogy with something in the physical world
 - Examples: books, tools, vehicles
- Classic: Xerox Star Interface based on office

objects

Johnson et al (1989)

Lookahead: Metaphors

 What are commonly used metaphors associated with this type of computer interface?

Lookahead: Metaphors

- What are commonly used metaphors associated with this type of computer interface?
 - Desktop
 - Window
 - Folder
 - Garbage can

www.id-book.com

Another classic: the spreadsheet (Bricklin)

- Analogous to ledger sheet
- Interactive and computational
- Easy to understand
- Greatly extending what accountants and others could do

www.bricklin.com/history/refcards.htm

www.id-book.com

Which conceptual model is best?

- Direct manipulation
 - good for 'doing' types of tasks
 - designing, drawing, flying, driving, sizing windows
- Issuing instructions
 - good for repetitive tasks
 - spell-checking, file management
- Having a conversation
 - good for children, computer-phobic, disabled users and specialised applications
 - phone services

Hybrid conceptual models

- different ways of carrying out the same actions is supported at the interface
 - accommodates novices as well as experienced users
 - can take longer to learn
 - can be confusing
 - there may be subtle differences between the different ways of performing an action
 - may inhibit the formation of a conceptual model

Activity: Conceptual Model Showdown

- Compare different conceptual models for reading email
 - command-based
 - conversational
 - direct manipulation
 - user agent

Evaluation of Models

- Identify critical activities involved
- Formulate a set of scenarios
- Extract user needs, requirements
- Specify evaluation criteria
- Compare the different models

Interface metaphors

- Interface designed to be similar to a physical entity
 - e.g. desktop metaphor, web portals
 - the interface also has its own properties
- Can be based on activity, object or a combination of both
- Exploit user's familiar knowledge
 - helping them to understand 'the unfamiliar'
- Conjures up the essence of the unfamiliar activity
 - enabling users to to understand more aspects of the unfamiliar functionality

Benefits of interface metaphors

- Makes learning new systems easier
- Helps users understand the underlying conceptual model
- Can be very innovative
 - the realm of computers and their applications can become more accessible to a greater diversity of users

Problems with interface metaphors

- Break conventional and cultural rules
 - e.g. recycle bin placed on desktop
- Can constrain designers in the way they conceptualize a problem space
- Conflict with design principles
- Forces users to only understand the system in terms of the metaphor
- Designers can inadvertently use bad existing designs and transfer the bad parts over
- Limits designers' imagination in coming up with new conceptual models

Activity: Metaphors beyond the Desktop

 What are some metaphors unrelated to the "desktop" that are frequently used in computer interfaces?

Metaphors vs. Icons

- What is the difference between metaphors and icons?
 - -e.g. "trash can" as metaphor, vs. "trash can" icon

Conceptual models: from interaction mode to style

Interaction mode:

 what the user is doing when interacting with a system, e.g. instructing, talking, browsing or other

Interaction style:

 the kind of interface used to support the mode, e.g. speech, menu-based, gesture

Many kinds of interaction styles available...

- Command
- Speech
- Data-entry
- Form fill-in
- Query
- Graphical
- Web
- Pen
- Augmented reality
- Gesture

Interacting via GPRS enabled cell phone...

- Drawing an elephant by walking round the streets of a city (or other mode of transport) and entering data points along the way via the cell phone
- Example: Brighton and Hove (UK)

 J. Wood by foot, track length 11.2km (see www.gpsdrawing.com fo

Making art by recording where walking in a city

Which interaction style to choose?

- Need to determine requirements and user needs
- Take the budget and other constraints into account
- Also will depend on suitability of technology for activity being supported
- This topic will be covered more later when discuss how to actually design conceptual models

Interaction paradigms

 Another form of inspiration for conceptual models

From the desktop to ubiquitous

computing (embedded in the environment)

www.id-book.com

Examples of new paradigms

- Ubiquitous computing (mother of them all)
- Pervasive computing
- Wearable computing
- Tangible bits, augmented reality
- Attentive environments
- Transparent computing
 - and many more....

Two examples: BlueEyes (IBM) and Cooltown (HP)

 Visionary approaches for developing novel conceptual paradigms

Almalden.ibm.com/cs/blueeyes/

cooltown.hp.com/mpulse/backissues/0601/0601-cooltown.asp

Activity: TV Gourmet

- select only the best programs to view
- facets:
 - paper-based TV listings ("TV Guide")
 - video recorder (not player)

Paper TV Guide

- Describe the conceptual model that underlies the design of a paper-based TV program listing.
 - e.g. TV Guide, or the little booklets that come with newspapers
- What are the main tasks, activities, and objects?
- What are the metaphors used in their design?
- What is the underlying conceptual model?
- What are the main interaction styles?

Video Recorder

- Describe the conceptual model for a video cassette recorder (VCR).
 - mainly the recording aspect, not the playing of prerecorded tapes
- What are the main tasks, activities, and objects?
- What are the metaphors used in their design?
- What is the underlying conceptual model?
- What are the main interaction styles?

Intelligent Video Recorder

- Give an outline of the interaction design and user interface for a combination of program guide and a VCR.
 - conceptual model
 - tasks, activities, objects
 - metaphors
 - conceptual model
 - interaction styles

Activity: From Video Player to Music Player

- assume that we have developed a conceptual model of a computer-based video player with the following functionalities
 - keyword search (title, director, actor, ...)
 - similarity-based search (genres, other users with similar preferences)
 - favorites (most often viewed)
- you've done usability testing on prototypes, and the users really like it

Activity cont.: Re-using Conceptual Models

- your boss is ecstatic, and suggests to use the same interface for a music player
- do you think that is a good idea?
 - if so, why; if not, what are the problems?

Summary points

- Important to have a good understanding of the problem space
- Fundamental aspect of interaction design is to develop a conceptual model
- Interaction modes and interface metaphors provide a structure for thinking about which kind of conceptual model to develop
- Interaction styles are specific kinds of interfaces that are instantiated as part of the conceptual model
- Interaction paradigms can also be used to inform the design of the conceptual model