ENGSCI 711

QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS

(...and other dynamical systems)
Oliver Maclaren
oliver.maclaren@auckland.ac.nz

MODULE OVERVIEW

Qualitative analysis of differential equations (*Oliver Maclaren*) [~16-17 lectures/tutorials]

1. Basic concepts [3 lectures/tutorials]

Basic concepts and (boring) definitions: state/phase space, solutions, integral curves, flows, orbits and vector fields. Key qualitative features of interest. Overview of basic analysis procedures. Computer-based analysis.

2. Phase plane analysis, stability, linearisation and classification [5-6 lectures/tutorials]

General linear systems. Linearisation of nonlinear systems. Analysis of two-dimensional systems - stability and classification of fixed points, periodic orbits. Geometry (invariant manifolds).

MODULE OVERVIEW

3. Introduction to bifurcation theory [4 lectures/tutorials]

Hyperbolic vs non-hyperbolic systems and structural instability. Various types of bifurcations. Bifurcation diagrams.

4. Centre manifold theory and putting it all together

[4 lectures/tutorials]

Putting everything together - asymptotic stability, structural stability and bifurcation using the geometric perspective. In particular: centre manifold theorem and reduction principle.

LECTURE 5

Geometry

- Geometry of linear systems
- Geometry of nonlinear systems
- Connecting the geometry of linear and nonlinear systems

GEOMETRY OF LINEAR SYSTEMS

Let's return to general linear systems in \mathbb{R}^n for a moment to give the following geometric definitions of three key invariant manifolds/subspaces for linear systems.

The flow in the full phase space is then given by a linear supposition of motion on these three subspaces.

These subspaces *also have nonlinear counterparts* (but we will need to consider some aspects more carefully, e.g. superposition fails)

TERMINOLOGY: LINEAR SUBSPACES AND SPANS

A linear subspace of \mathbb{R}^n is a subset E of \mathbb{R}^n which contains the zero vector $0 \in \mathbb{R}^n$ and which is closed under vector addition u+v, where $u,v\in \mathbb{R}^n$, and scalar multiplication cu, where $c\in \mathbb{R}$, $u\in \mathbb{R}^n$.

The *span* of a set of vectors is the set generated by *all linear* combinations of those vectors i.e.

$$span\{u, v, ...\} = \{x \in \mathbb{R}^n \mid x = au + bv + ..., a, b \in \mathbb{R}, u, v ... \in \mathbb{R}^n\}$$

TERMINOLOGY: WHAT'S A MANIFOLD?

For our purposes it suffices to think of a *manifold* embedded in \mathbb{R}^n as a subset of \mathbb{R}^n , each point of which satisfies $m \le n$ constraints.

This means that, given regularity conditions, a manifold is an (n-m)-dimensional object embedded in n dimensional space.

Example: a circle is a 1-dimensional manifold which is embedded in \mathbb{R}^2 and satisfies one constraint. So, the unit circle can be thought of as e.g. $\{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$.

TERMINOLOGY: WHAT'S A MANIFOLD?

A key property is that locally an (n-m)-dimensional manifold embedded in n-dimensional space 'looks like' a small 'open ball' of dimension $\mathbb{R}^{(n-m)}$.

E.g. a curve embedded in \mathbb{R}^2 can be considered as 'pieced together' from small segments of \mathbb{R} , a sphere in \mathbb{R}^3 can be considered as 'pieced together' from small 'patches' of \mathbb{R}^2

The more general definition throws away the 'background' space and works with the 'intrinsic' (n-m)-dimensional object itself.

GEOMETRY OF LINEAR SYSTEMS - STABLE MANIFOLD

Suppose $x \in \mathbb{R}^n$ is a stationary solution to the linear system $\dot{x} = Ax$.

The *stable manifold* (or subspace/generalised eigenspace) of the origin is then denoted by $E^s(0)$ and is the *span* of the eigenvectors/generalised eigenvectors corresponding to the eigenvalues of A with *real*, *negative part*.

GEOMETRY OF LINEAR SYSTEMS - UNSTABLE MANIFOLD

Similarly:

The *unstable manifold* (or subspace/generalised eigenspace) of the origin is then denoted by $E^u(0)$ and is the *span* of the eigenvectors/generalised eigenvectors corresponding to the eigenvalues of A with *real*, *positive part*.

GEOMETRY OF LINEAR SYSTEMS

Finally:

The *centre manifold* (or subspace/generalised eigenspace) of the origin is then denoted by $E^c(0)$ and is the *span* of the eigenvectors/generalised eigenvectors corresponding to the eigenvalues of A with *zero real part*.

RECALL: HARTMAN-GROBMAN

We have previously considered how the *existence and* stability of hyperbolic fixed points are preserved during linearisation.

We now want consider the differences in local dynamics between a nonlinear system and its linearisation in more detail.

We'll look at how to do this using the *stable manifold theorem* and then using series expansions to approximate local stable/unstable manifolds.

GEOMETRY: STABLE AND UNSTABLE MANIFOLDS

Above we defined the *stable and unstable manifolds for linear systems*. (For non-hyperbolic there is also a centre manifold)

Now we want to give the definitions for *nonlinear hyperbolic fixed points*.

GEOMETRY: STABLE MANIFOLD (LOCAL)

Given some neighbourhood U of a stationary point x, the local stable manifold on U for a nonlinear system $W^{\ s}_{loc}(x)$ is defined by

 $\{y \in U \mid \phi(y,t) \Rightarrow x \text{ as } t \Rightarrow \infty, \phi(y,t) \in U \text{ for all } t \ge 0\}$ Picture?

GEOMETRY: UNSTABLE MANIFOLD (LOCAL)

Similarly, given some neighbourhood U of a stationary point x, the *local unstable manifold* on U for a nonlinear system $W^u_{loc}(x)$ is defined by

 $\{y \in U \mid \phi(y,t) \ni x \text{ as } t \ni -\infty, \phi(y,t) \in U \text{ for all } t \le 0\}$ Picture?

GLOBAL MANIFOLDS

Note that if we want *global* versions then we can '*glue*' together all the flows starting at points in the local stable/unstable manifolds. That is,

$$W^s(0) = \bigcup_{t \ge 0} \phi(W^s_{loc}(0), t)$$

$$W^{u}(0) = \bigcup_{t < 0} \phi(W^{u}_{loc}(0), t)$$

STABLE MANIFOLD THEOREM

What's the connection between these linear and nonlinear stable/unstable manifolds? We have the following theorem (for local manifolds).

Suppose the origin is a *hyperbolic fixed point* for $\dot{x} = f(x)$ in \mathbb{R}^n and that $E^s(0)$ and $E^u(0)$ are the stable and unstable manifolds of the linearised system $\dot{x} = Df(0)x$.

Then...

STABLE MANIFOLD THEOREM

...there exist local stable and unstable manifolds $W_{loc}^{\ s}(0)$ and $W_{loc}^{\ u}(0)$ of the same dimension as $E^s(0)$ and $E^u(0)$, respectively, and which are (respectively) tangent to E^s and E^u at the origin.

These manifolds are equally smooth/unsmooth as the original function f.

STABLE MANIFOLD THEOREM

Picture?

POWER SERIES EXPANSIONS IN TWO-DIMENSIONS

Even on small neighbourhoods U of our fixed points, our manifolds are no-longer straight lines (or hyperplanes etc in higher dims) as in the linear case - they are curves (or surfaces in higher-dimensions).

We can, however, use the information from the previous theorem to (try to) *compute local expressions for these curves*.

POWER SERIES EXPANSIONS FOR ONE-DIMENSIONAL MANIFOLDS

Assume a stable/unstable manifold of interest can be described by a curve y = h(x) (or x = g(y)).

We can try to approximate this by a *local series expansion* of the form

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

POWER SERIES: STEPS

- Assume the manifold can be described by y = h(x) (or the other way around).
- Substitute y = h(x) into our x and y equations to give $\dot{x} = f_1(x, h(x))$ and $\dot{y} = f_2(x, h(x))$.
- Use y = h(x) again, along with the chain rule for our y (say) equation $\dot{y} = f_2(x, y)$, to relate \dot{x} and \dot{y} giving (e.g.) $\dot{y} = \frac{dh}{dx}\dot{x}$.

POWER SERIES: STEPS

- Use the above relationships along with an assumed *power* series expansion such as $h(x) = \sum_{n=0}^{\infty} a_n x^n$ to obtain *two* expressions in x for \dot{y}
- *Equate* powers of *x* to determine the unknown coefficients.
- Make sure to use the fact that the stable/unstable
 manifold passes through the fixed point and is tangent to
 the linearised stable/unstable manifold to determine the
 first two terms of the series.

EXAMPLES

Example 4.2 from Glendinning.

Tutorial sheet/assignment coming soon!