СЪСТОЯНИЯ НА ПРОИЗВОДСТВЕНИТЕ И ОПЕРАЦИОННИТЕ СИСТЕМИ

- 1. Състояния на производствената и операционната система – надеждност и безопасност.
- 2. Класификация на отказите. Влияние на отказите в производствените и операционните системи по отношение на тяхната надеждност и безопасност
- 3. Основни характеристики и показатели за надеждност и тяхната взаимовръзка

Стратегическо значение на надеждността

Отказите има далечни последици за фирмените

- Процеси / Операции;
- Репутация;
- Рентабилност;
- Клиенти (Недоволни клиенти);
- Служители (Бездействащи служители);
- Печалбите стават загуби;
- Намалена стойност на инвестицията в машини и оборудване.

Надеждност и поддръжка

Според IEC 60300-1:2014: Надеждността <на елемент> е способността да изпълнява своите функции за даден интервал от време, при определени условия (Лекция 2)

- Тактики за подобряване на надеждността
 - Подобряване на отделните компоненти
 - Осигуряване на резервиране.

Надеждност и поддръжка

Според ІЕС 60300-1:2014: Надеждността <на елемент> е ...

- Поддръжка: дейности, свързани с поддържане на оборудването на системата в изправност
 - Тактики за поддръжка
 - Прилагане или подобряване на превантивната поддръжка
 - Увеличаване на възможностите за ремонт или скоростта на ремонтните дейности

Надеждност - пример

Надеждност на система R_s :

$$R_s = R_1 \times R_2 \times R_3 \times \dots \times R_n$$

където:

 R_1 = надеждност на компонент 1

 R_2 = надеждност на компонент 2

Надеждност - пример

Надеждността на системата е:

$$R_s = R_1 \times R_2 \times R_3 = 0.85 \times 0.92 \times 0.99 = 0.774$$
 или $R_s = 77.4\%$

Кога надеждността трябва да бъде "прилагана"?

Надеждността е основен и един от найважните компонент от управление на ПОС. Осигуряването на висока степен на надеждност съпътства целия жизнен цикъл на ПОС (елементите на ПОС) / продукта!

Надеждност - самоанализ

Опитайте се да формулирате отговорите на тези въпроси:

- ◆ Какви са функциите на вашата система / продукт?
- ◆ Какви са посочените условия на работа?
- ◆ Какво е времето (t), в което искате да оцените надеждността?
- ◆ Каква е надеждността? Знаете ли?
- ◆ Какво се очаква от потребителите?

◆ Надеждността може да се разглежда като "Качество във времето". Потребителите често използват термините "качество" и "надеждност". Трябва да разберем какво очакват.

◆ Измерването на надеждността е свързано с честотата на отказите, броя на отказите, разходите за гаранция и т.н. По този начин надеждността се изпитва от клиентите, когато използват продукта.

 ◆ Нивото на качеството се измерва по отношение на нивата на дефекти, когато продуктът е получен като нов.

 ◆ Качеството и надеждността могат да окажат значително влияние върху безопасността.

◆ Качествените дефекти и откази могат да повлияят неблагоприятно по отношение на безопасността на потребителите, страничните наблюдатели и оборудването.

 ◆ Някои качествени дефекти могат да доведат до ненадежден и / или опасен продукт.

- ◆ Някой примери за това как ненадеждността може да повлияе на безопасността:
- Неизправността на автомобилната кормилна система, спирачната система, и т.н. може да доведе до сериозни инциденти.
- Неизправност на предпазен клапан на система, в кято има високо налягане може да доведе до експлозия и др.

Надеждността на дадена система (елемент от нея)/ продукт се характеризира с отказите настъпили в нея [5].

Следователно,

Основно място в надеждността, а също така в и безопасността на производствената и операционната система заема именно отказът [5].

- Разглеждане на състоянията на системата в тяхната противоположност [5]
 - изправно/неизправно;
 - работоспособно/неработоспособно;
 - пределно.

Неизправно състояние, не означава неработоспособно състояние [5]

Отказ - дефиниции

Неспособността на деден елемент да функционира в рамките на определените/ установените граници [13].

Случайно събитие, в резултат на което обектът става неработоспособен, т.е., нарушава се поне едно негово съществено свойство [19].

Състояния на обекта в следствие на отказ [5]

Класификация на отказите

В по-голямата си част, класификациите се припокриват – насоката е към по-голяма широта. Така например, отказите се класифицират според [5]:

- характера на изменение на параметрите на обекта до възникване на отказ;
 - взаимовръзката с други откази;
- възможността за използване на обекта след възникване на отказ;
- Според характера на отстранение на отказа, и др.

Класификация на отказите

При използването на качествени характеристики – основен акцент [5]:

- Безотказност;
- Дълготрайност;
- Ремонтопригодност;
- Съхраняемост.

 Основна характеристика на надеждността е безотказната работа свързвайки я със система (с елемент от нея) или пък с даден продукт [5].

Основна характеристика на надеждността е безотказната работа свързвайки я със система (с елемент от нея) или пък с даден продукт [5].

Показатели за безотказност [5]:

- вероятност за безотказна работа в течение на определен период от време;
- средна отработка (време на работа) до първия отказ;
- средна отработка (време на работа) между откази;

- Показатели за безотказност [5]:...
 - честота на отказа;
 - интензивност на отказа;
 - параметър на потока на отказа.

Вероятност за безотказна работа (Reliability) P(t).

Вероятността за безотказна работа P(t) и вероятността за отказа Q(t) са двете противоположни събития, които образуват т. нар. пълна група от събития, т.е:

$$P_A + P_{\overline{A}} = 1$$

Вероятност за безотказна работа P(t).

Функцията на надеждността има вида:

$$P(t) = P(T > t) = \int_{t}^{\infty} f(t)dt = 1 - \int_{0}^{t} f(t)dt = 1 - F(t)$$

В практиката не винаги е необходимо да се извърши пълно изследване на функциите P(t) и Q(t), а често определянето на отделни техни числови параметри.

◆ Средна отработка до отказ на обекта (Mean time to failure (MTTF)) (Тср)

$$M[t] = T_{cp.} = \int_{-\infty}^{+\infty} t f(t) dt$$

◆ Средна отработка до отказ (Mean time to failure (MTTF)) (Tcp)...

 при използването статистически данни се извършва с помощта на равенството:

$$T_{cp} = \frac{t_1 + t_2 + \dots + t_{N_0}}{N_0}$$

където:

 t_i - време за безотказна работа на i —тия "технически елемент";

 N_o – бр. на изследваните "технически елементи".

◆ Средна отработка до отказ (Mean time to failure (MTTF)) (Tcp)...

В практиката обаче не винаги е възможно определянето на *ti* за всеки отделен елемент.

В този случай се използва равенството:

$$T_{cp} \approx \frac{t_1 + t_2 + \dots + t_{N_0} + (N_0 - n)\tau}{N_0}$$

където:

n – брой на отказващите "технически елементи";

 N_o — брой тествани "технически елементи".

 $\tau-$ интервал от време, където точките \mathbf{t}_1 до t се намират в интервала $t_i \in [\tau_{_1},\tau]$ $(i=1,\dots,N_{_0})$

◆ Средна отработка между откази

Средна отработка (време на работа) между откази представлява средната стойност на времето между съседни откази.

$$\bar{t}_{cp} = \frac{\sum_{i=1}^{n} t_{i}}{n}$$

където:

ti — време за изправна работа на "техническите елементи" между (i-1)-тия и i — тия отказ;

n — брой на отказите за време t.

◆ Честота на отказа

Честота на отказа f(t) представлява плътност на вероятността (или закон на разпределението) за времето на работа на системата до първия отказ.

Честота на отказа

Определянето на честотата на отказа при изполването на стистически данни се извършва по следната зависимост:

$$\bar{f}(t) = \frac{n(\Delta t)}{N_0 \Delta t}$$

където:

- брой на отказващите "технически елемента" в интервала $n(\Delta t)$

 N_{0} – общ брой "технически елементи" в началото на работата; $\left\lceil \frac{t-\Delta t}{2}; \frac{t+\Delta t}{2} \right\rceil$

◆ Интензивност на отказа (Failure rate)

Условна плътност на вероятността за отказ към момент от време t при условие, че до този момент отказ не е настъпил, т.е:

$$\lambda(t) = \frac{f(t)}{P(t)}$$

◆ Интензивност на отказа (Failure rate)...

Така например, ако на тестване са поставени N елемента и в интервал от време Δt отказват n елемента, то

$$\overline{\lambda}(t) = \frac{n(\Delta t)}{N_{cp}.\Delta t},$$

където:

 $N_{cp} = \frac{N_i + N_{i+1}}{2}$ среден брой на изправните "технически елементи" в интервала ;

 N_i — брой на изправните "технически елементи", изправно работещи в началото на интервала $\left\lceil \frac{t - \Delta t}{2}, \frac{t + \Delta t}{2} \right\rceil$

♦ Интензивност на отказа (Failure rate)

Кривата, описваща интензивността на отказите на система (както и различни нейни компоненти), има вида:

Параметър на потока на отказа

Отношение на броя на отказващите към броя на изпитваните ,,технически елементи" за единица време, в условия, при които излизащите от строя ,,технически елементи" се заменят с нов:

$$\bar{\omega}(t) = \frac{n_1(\Delta t)}{N_0 \Delta t}$$

където:

 $n_1^{(\Delta t)}$ - брой на отказващите "технически елементи" в интервал от време $\left\lceil \frac{t - \Delta t}{2}, \frac{t + \Delta t}{2} \right\rceil$, при условие, че отказващите

"технически елементи" са заменени с нови.