Curso de: Investigación de Operaciones

PROGRAMACION ENTERA

EJERCICIO Nº 1

Se están evaluando cinco proyectos a lo largo de un horizonte de planeación de 3 años. La siguiente tabla presenta los rendimientos esperados y los gastos anuales que conllevan.

	Gast	os (\$ millones		
Proyecto	1	2	3	Rendimientos (\$ millones)
1	5	1	8	20
2	4	7	10	40
3	3	9	2	20
4	7	4	1	15
5	8	6	10	30
Fondos disponibles (\$ millones)	25	25	25	

[¿]Cuáles proyectos deben seleccionarse a lo largo del periodo de 3 años?

EJERCICIO Nº 2

El condado de Washington incluye seis poblaciones que necesitan el servicio de ambul cias de emergencia. Debido a la proximidad de algunas poblaciones, una sola estación puede atender a más de una comunidad. La estipulación es que la estación debe estar como máximo a 15 minutos de tiempo de manejo de la población que atiende. La siguiente tabla muestra los tiempos de manejo en minutos entre las seis poblaciones.

	Tiempos en minutos de i a j					
i j	1	2	3	4	5	6
1	0	23	14	18	10	32
2	23	0	24	13	22	11
3	14	24	0	60	19	20
4	18	13	60	0	55	17
5	10	22	19	55	0	12
6	32	11	20	17	12	0

Formule un PLE cuya solución produzca el número mínimo de estaciones y sus ubicaciones. Determine la solución óptima.

EJERCICIO N° 3

Tres compañías telefónicas me ofrecen suscribirme a su servicio de larga distancia en Estados Unidos. MaBell cobra una cuota fija de \$16 por mes más \$.25 por minuto. PaBell cobra \$25 por mes pero reduce el costo por minuto a \$.21. En cuanto a BabyBell, la cuota fija mensual es de \$18, y el costo por minuto es de \$.22. Usualmente ocupo un promedio de 200 minutos de llamadas de larga distancia al mes. Suponiendo que no tenga que pagar la cuota fija mensual a menos que realice llamadas y que pueda repartirlas entre las tres compañías como me plazca, ¿cómo debería utilizar las tres compañías para minimizar mi recibo telefónico mensual?

Curso de: Investigación de Operaciones

EJERCICIO Nº 4

Jobco planea producir al menos 2000 artefactos con tres máquinas. El tamaño mínimo del lote es de 500 artefactos. La siguiente tabla ofrece los datos pertinentes de la situación.

Máquina	Costo de preparación (\$)	Costo de producción/unidad (\$)	Capacidad (unidades)
1	300	2	600
2	100	10	800
3	200	5	1200

Formule el problema como un PLE y halle la solución óptima.