INTRODUÇÃO AO PROCESSAMENTO DE DADOS

Tiago Oliveira Instituto de Matemática e Estatística Departamento de Ciência da Computação Universidade Federal da Bahia

Unidades de Medidas Computacionais

QUANTIFICAÇÃO DE DADOS

Dados e Informações

Como nós representamos?

- Texto: Nome ou Endereço?
- Letras de Alfabeto + Símbolos e Pontuação;
- Número: Valor ou Quantidade?
- Numeração Decimal;
- Pixel: Cor?
- Conjunto de cores visíveis;
- Som: Frequência?
- 20Hz ~ 20.000Hz;

Dados e Informações

Como o computador representa o menor dado?

- Bit.
- O que é um Bit?
- É o menor dado ou informação existente no computador (binary digit, ou dígito binário).
- Como representar um Bit?
- O Bit pode possuir apenas 1 entre 2 possíveis estados, algumas formas:
- 0 e 1;
- Verdadeiro e Falso;
- Ligado e Desligado;

Bits

No sistema decimal, trabalhamos com números de 0 a 9;

- Para representar números maiores que 9, passamos a agrupar dígitos decimais: 10, 11, 12
- No sistema binário trabalhamos com números de 0 a 1;
- Para representar números maiores que 1, passamos a agrupar dígitos binários: 10, 11, 100

Byte

Por ser uma máquina e para obter velocidades maiores, um computador costuma agrupar bits de 8 em 8 bits. Cada agrupamento de 8 bits é chamado de byte.

Os bytes são as unidades de medidas mais utilizadas na computação, servem para referenciar tamanho de arquivos ou espaço em memória.

Em nosso dia-a-dia utilizamos diversas abreviações, principalmente com números, para encurtar a pronúncia ou escrita:

- 1000 gramas: 1 Kg
- 100000 metros: 100 Km
- Na computação também possuímos tal abreviação, mas esta é feita de modo particular.

Como a base numérica humana é decimal, costumamos dividir os números de 10 em 10.

- $Ex: 1Km = 1m \times 10 3$, logo = 1000m
- Como a base numérica computacional é binária, na computação costumamos dividir os números na base 2.
- $Ex: 1KB = 1B \times 2 \cdot 10$, logo = 1024 B

Medidas (Múltiplos)

A base "2" surge devido ao sistema binário

8 bits	(2^0)	1 byte (B)
1.024 bytes	(2^10)	1 kilobyte (KB)
1.024 kilobytes	(2^20)	1 megabyte (MB)
1.024 megabytes	(2^30)	1 gigabyte (GB)
1.024 gigabytes	(2^40)	1 terabyte (TB)
1.024 terabytes	(2^50)	1 petabyte (PB)
1.024 petabytes	(2^60)	1 exabyte (EB)
1.024 exabytes	(2^70)	1 zettabyte (ZB)
1.024 zettabytes	(2^80)	1 yottabyte (YB)

Vendedores de Discos Rígidos e alguns outros dispositivos de armazenamento tratam cada 1.000 bytes como 1KB, ao invés de 1024.

- O tamanho da letra "B" diferencia entre bit e Byte, lembre que a razão entre eles é 8.
- Dispositivos de comunicação geralmente informam velocidade em bits,
 e não bytes.

REPRESENTAÇÃO DE DADOS

Bits

Uma solução: o uso de dispositivos eletrônicos baseados na tecnologia dos semicondutores, como os transistores.

- O transistor: é um dispositivo usado para controlar o fluxo de corrente. Ele tem duas características importantes:
- 1- é capaz de amplificar um sinal elétrico.
- 2- é capaz de chavear (comutar) entre ligado e desligado (ou fechado e aberto), deixando corrente passar através dele ou bloqueando-a.

Representação de Dados

É possível utilizar os bytes para representar qualquer tipo de dado;

- Para isso, geralmente existe algum meio de transformar um byte na representação adequada;
- Essa transformação pode ser feita através de tabelas ou equações matemáticas.

Representando Texto

A representação mais comum em um computador, depois dos números, é a do texto;

- Os textos são estabelecidos como a união de diversos caracteres;
- Caracteres são, em geral, traduzidos por:
- Tabela ASCII; ou
- Padrão Unicode.

A Tabela ASCII

É um modelo antigo e um pouco defasado, mas ainda utilizado em alguns sistemas;

Sua defasagem está na ausência de representação para letras de escritas em algumas outras línguas, principalmente orientais;

Cada letra, pontuação ou símbolo, é representado por um conjunto de 8 bits, ou seja, 1 Byte.

A Tabela ASCII

Binário	Decimal	Glifo
0100 0001	65	Α
0100 0010	66	В
0110 0001	97	а
0110 0010	98	b
0011 0001	49	1
0011 0010	50	2

Padrão Unicode

Permite ao computador representar texto em qualquer sistema de escrita existente;

- Mais de 107 mil caracteres comportados;
- É composto por um conjunto de diagramas de códigos e metodologias de codificação;
- · É desenvolvido e mantido por um consórcio sem fins lucrativos chamado Unicode Consortium que é mantido por diversas universidades e grandes empresas;

Padrão Unicode

Este padrão surgiu principalmente com base na necessidade de troca mundial de informações;

- Impulsionado pela globalização e pela internet;
- Também pode ser representado por tabelas mais complexas: <u>Tabela</u>

Padrão Unicode

Faça esse experimento:

Abra o Bloco de Notas e insira a frase: Introdução ao processamento de dados!

Salve o arquivo no disco com o nome de MAT115.txt

Utilize o Explorer e veja o tamanho do arquivo.

Você irá descobrir que o arquivo ocupa um espaço de ____ bytes, __ byte(s) para cada caractere.

Adicione seu nome ao final da sentença e salve novamente, o tamanho do arquivo irá subir para o número referente de____ bytes.

CONVERSÃO ENTRE BASES NUMÉRICAS

Binária:

- **1010 (2)**
- Decimal:
- -10(10)
- Octal:
- -12(8)
- Hexadecimal:
- -A(16)

Como só existem dois números no sistema binário (0 e 1) temos a seguinte correspondência:

0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000

A conversão de números do sistema decimal para outro sistema de numeração processa-se através de operações de divisão.

29 Decimal = 11101 Binário

A conversão de números do sistema binário para decimal é feito através de multiplicações.

0	0	0 1 0 0 1		1	1	0	
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
0*128	0*64	1*32	0*16	0*8	1*4	1*2	0*1

$$38_{(10)} = 00100110_{(2)}$$

Números binários negativos

Os computadores lidam com números positivos e números negativos, sendo necessário encontrar uma representação para números com sinal **negativo**. Existe uma grande variedade de opções, das quais nesta seção serão apresentadas apenas três para representar valores negativos:

- sinal e amplitude/magnitude (S+M)
- complemento de 1
- complemento de 2

Sinal magnitude

Como o próprio nome indica, a representação sinal e magnitude utiliza um bit para representar o sinal, o bit mais à esquerda: 0 para indicar um valor positivo, 1 para indicar um valor negativo.

$$+10_{10} = 01010_2$$
 $-10_{10} = 11010_2$

Na representação em complemento de 1 inverte-se todos os bits de um número para representar o seu complementar: assim, se converte um valor positivo para um negativo, e vice-versa. Quando o bit mais à esquerda é 0, esse valor é positivo; se for 1, então é negativo.

$$100_{10} = 01100100_2$$
 (com 8 bits)

O problema desta representação é que existem 2 padrões de bits para o 0, havendo assim desperdício de representação:

$$0_{10} = 000000000_2 = 111111111_2$$

A solução encontrada consiste em representar os números em complemento de 2. Para determinar o negativo de um número, inverte-se todos os seus bits e soma-se uma unidade.

$$101_{10} = 01100101_2$$
 (com 8 bits)
 10011010_2
 $10011010_2 + 1 = 10011011_2 = -101_{10}$

A representação em complemento para 2 tem as seguintes características:

- O bit da esquerda indica o sinal;
- Possui processo para converter um número de positivo para negativo e de negativo para positivo;
- O 0 tem uma representação única: todos os bits a 0;
- A gama de valores que é possível representar com **n** bits é -2ⁿ⁻¹ ... 2ⁿ⁻¹-1.

Qual o número representado por 11100100₂ (com 8 bits)? Como o bit da esquerda é 1 este número é negativo. Invertendo todos os bits -> Somando uma unidade:

$$00011011_2 + 1 = 00011100_2 = 28_{10}$$

$$11100100_2 = -28_{10}$$

- (a) Converta 99₍₁₀₎ em binário
- (b) Converta 325₍₁₀₎ em binário
- (c) Converta 7858₍₁₀₎ em binário
- (d) Converta 28591₍₁₀₎ em binário
- (e) Converta 101010₍₂₎ em decimal
- (f) Converta $11001100_{(2)}$ em decimal
- (g) Converta $111011010001_{(2)}$ em decimal
- (i) Converta Converta sua idade para binário.

OPERAÇÕES LÓGICAS

Operações lógicas para realizar com números binários;

Estas operações estão relacionadas à lógica proposicional;

- Por definição, assuma:
- Dígito binário 0 = Falso;
- Dígito binário 1 = Verdadeiro;

As Principais Operações lógicas são:

Português	Inglês
Não	NOT
E	AND
OU	OR
OU exclusivo	XOR

Numa operação matemática, recebemos dois valores e geramos um terceiro valor. Exemplo:

$$2 + 3 = 5$$

 Não é muito diferente na operação lógica, contudo, não iremos fazer operações básicas aritméticas, mas sim lógicas. Exemplo:

Operador lógico NÃO.

Inverte o valor lógico de um único digito:

- Verdadeiro passa a ser Falso (1 -> 0)
- Falso passa a ser Verdadeiro (0 -> 1)

Operador lógico E.

Escrita: a E b

Tabela Verdade:

а	b	a E b
1	1	1
1	0	0
0	1	0
0	0	0

```
1.1101<sub>(2)</sub> E 101<sub>(2)</sub>

2. 111<sub>(2)</sub> E 7_{(10)}

3. 50_{(10)} E 100_{(10)}

4. 32_{(10)} E 63_{(10)}

5. 7_{(10)} E 15_{(10)}
```

Operador lógico **OU**.

Escrita: a OU b

Tabela Verdade:

а	b	a OU b
1	1	1
1	0	1
0	1	1
0	0	0

1. 101 ₍₂₎	OU	101 ₍₂₎
2. 111 ₍₂₎	OU	8 ₍₁₀₎
3. 40 ₍₁₀₎	OU	101 ₍₁₀₎
4. 31 ₍₁₀₎	OU	33 ₍₁₀₎
5. 333 ₍₁₀₎	OU	555 ₍₁₀₎

Operador lógico XOU.

Escrita: a XOU b

Tabela Verdade:

а	b	a XOU b
1	1	0
1	0	1
0	1	1
0	0	0

1.1101 ₍₂₎	XOU	101 ₍₂₎
2. 111 ₍₂₎	XOU	9 ₍₁₀₎
3. 60 ₍₁₀₎	XOU	121 ₍₁₀₎
4. 41 ₍₁₀₎	XOU	23 ₍₁₀₎
5. 22 ₍₁₀₎	XOU	44 ₍₁₀₎

Meio Somador

Meio Somador de 1-bit

ASCII TABLE

			Decirio	Hex	Char	_I Decimal	Hex	Char	_I Decimal	пех	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	g
	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	(HORIZONTAL TAB)	41	29)	73	49	1	105	69	1
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
	C	(FORM FEED)	44	2C	,	76	4C	L	108	6C	1
	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	(SUBSTITUTE)	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Bibliografia

ALVES, William Pereira. "Informática fundamental: introdução ao processamento de dados." Editora Érica, 1a. Edição (2010).

Capron, Harriet L., and J. A. Johnson. Introdução à informática. Vol. 8. No. 0. Pearson Prentice Hall, 2006.

POLLONI, ENRICO GIULIO FRANCO, and RICARDO DANIEL FEDELI. Introdução à ciência da computação.

Cengage Learning Editores, 2010.

BROOKSHEAR, J. G., Ciência da Computação, Uma Visão Abrangente. 5a ed. Bookman

Companhia Editora, 2000.

MARILYN M.; ROBERTA B. & PFAFFENBERGER, B., Nosso Futuro e o Computador. 3a ed.

Bookman, 2000.

NORTON, PETER, Introdução à Informática, Editora Makron Books, 1997.

O'BRIEN, J. A., Sistemas de Informação e as decisões gerenciais na era da Internet. Ed.

Saraiva, 2001.

WHITE, R., Como Funciona o Computador, 8a ed. Editora QUARK, 1998.

Apostilas. Páginas na Web. Vídeos na Web

Contatos: tiagocompuesc@gmail.com

