

Introducción y conceptos generales

Investigación de Operaciones 1
Ing. Eduardo López Sandoval
elopez@ulima.edu.pe

¿Qué es la investigación de operaciones (I.O.)?

- Disciplina que se ocupa de la aplicación de métodos matemáticos y analíticos para ayudar a tomar mejores decisiones.
- Dichos métodos, permite obtener una solución óptima –o casi óptima – en problemas de toma de decisiones complejas.
- La I.O. hace uso de <u>modelos</u> <u>matemáticos de optimización</u>.

¿Qué es un modelo matemático, y qué característica tiene un modelo matemático de optimización?

- Representación simplificada de una realidad, por medio de una serie de expresiones lógico – matemáticas.
 - Sistemas de ecuaciones.
 - Fórmulas matemáticas.
 - Funciones matemáticas, etc.

Modelo matemático

- Aquellos que buscan maximizar o minimizar una función objetivo.
- Poseen infinitas soluciones, pero una de ellas es la mejor de todas: Solución óptima.

Modelo matemático de optimización

Hay muchas soluciones... ¡Pero una de ellas es la mejor de todas!

Si un monopolista produce X unidades de un producto, los clientes pagarán por unidad (1200 – 10X) US\$

Sabiendo que todo lo que produce lo va a vender, ¿Cuántas unidades debe producir con el fin de maximizar su ingreso total?

Algunas empresas peruanas que aplican Investigación de Operaciones.

Kimberly-Clark

AJEGROUP

Principales técnicas que emplea la investigación de operaciones

- Programación Lineal.
- Programación no lineal.
- Programación dinámica.
- Análisis de decisiones.
- Técnica de Montecarlo.
- Simulación de procesos.
- Teoría de juegos.
- Procesos de decisión de Markov.
- Teoría de colas.
- Teoría de inventarios.
- Metaheurística.
- Analítica.

$$egin{array}{llll} \textit{Max} & (\textit{Min}) \ \textit{Z} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \\ \textit{Sujeto} \ \textit{a}: & & & & & & & & & \\ a_{11} x_1 & + a_{12} x_2 & \dots & + a_{1n} x_n & \leq & b_1 \\ a_{21} x_1 & + a_{22} x_2 & \dots & + a_{2n} x_n & \leq & b_2 \\ & \vdots & & \vdots & \dots & \vdots & \vdots & \vdots \\ a_{m1} x_1 & + a_{m2} x_2 & \dots & + a_{mn} x_n & \leq & b_m \\ x_1, & x_2, & \dots & x_n & \geq & 0 \\ \end{array}$$

¿Qué es la programación lineal?

• Es una técnica de optimización matemática que busca maximizar o minimizar una función objetivo sujeta a ciertas restricciones; cuyas expresiones matemáticas son de 1° grado.

Ejemplo:

- Una empresa puede producir 3 tipos de alimentos balanceados: Para perros, para gatos y para conejos. El proceso productivo consiste en 3 actividades: Mezclado, Peletizado y Envasado.
- Las horas requeridas por lote en cada actividad del proceso productivo, depende del tipo de alimento que se esté produciendo.
- Sabiendo que todo lo que produzca lo va a vender,

¿Cuántos lotes de cada tipo de alimento debe producir?

$$Max Z = 3000x_1 + 4000x_2 + 5000x_3$$

Sujeto a:

$$2x_1 + 5x_2 + 7x_3 \le 300$$

$$4x_1 + 3x_2 + 6x_3 \le 400$$

$$3x_1 + 6x_2 + 5x_3 \le 500$$

$$x_1, x_2, x_3 \ge 0$$

Hay muchas soluciones...

$$\begin{bmatrix} x_1 = 20 \\ x_2 = 20 \\ x_3 = 20 \end{bmatrix} \begin{bmatrix} x_1 = 0 \\ x_2 = 0 \\ x_3 = 40 \end{bmatrix} \begin{bmatrix} x_1 = 20 \\ x_2 = 30 \\ x_3 = 10 \end{bmatrix} \begin{bmatrix} x_1 = 30 \\ x_2 = 20 \\ x_3 = 10 \end{bmatrix} \begin{bmatrix} x_1 = 30 \\ x_2 = 20 \\ x_3 = 20 \end{bmatrix} \begin{bmatrix} x_1 = 100 \\ x_2 = 0 \\ x_3 = 20 \end{bmatrix}$$

 $|x_1 = 0| |x_1 = 10| |x_1 = 30| |x_1 = 10| |x_1 = 40| |x_1 = 50|$

 $|x_2 = 60| |x_2 = 40| |x_2 = 30| |x_2 = 40| |x_2 = 10| |x_2 = 10|$

 $|x_3 = 0| |x_3 = 0| |x_3 = 10| |x_3 = 10| |x_3 = 10| |x_3 = 10|$

etc., etc., etc.,...

Pero solo una es la mejor: <u>Solución óptima</u>

Reporte en LINGO de la solución óptima

Utilidad óptima: **\$ 350 000** Plan óptimo de producción (en lotes)

Producto	Producción
Alimento para perros	78.57
Alimento para gatos	28.57
Alimento para conejos	0

Informe administrativo de la solución óptima

¿Por qué se llama programación lineal?

Programación:

 Porque la solución es precisamente un programa o un plan (plan de producción, plan de inventarios, plan de contratos y despidos, etc.)

Lineal:

 Porque las expresiones matemáticas de la función objetivo y de las restricciones son lineales (de grado 1). Elementos de un modelo de programación lineal (PL)

Variables de decisión

 Incógnitas que componen la decisión, cuyos valores deben determinarse resolviendo el modelo.

Función objetivo

• Expresión matemática del criterio para elegir la mejor decisión.

Restricciones

 Ecuaciones o inecuaciones matemáticas que expresan las limitaciones de los recursos y de las variables de decisión.

Elementos de un modelo de PL

$$Max Z = 3000x_1 + 4000x_2 + 5000x_3$$

Sujeto a:

$$2x_1 + 5x_2 + 7x_3 \le 300$$

$$4x_1 + 3x_2 + 6x_3 \le 400$$

$$3x_1 + 6x_2 + 5x_3 \le 500$$

$$x_1, x_2, x_3 \geq 0$$

Función Objetivo

Restricciones

Restricciones de signo

Elementos de un modelo de PL

$$Max Z = 3000x_1 + 4000x_2 + 5000x_3$$

Sujeto a:

$$2x_1 + 5x_2 + 7x_3 \le 300$$

 $4x_1 + 3x_2 + 6x_3 \le 400$
 $3x_1 + 6x_2 + 5x_3 \le 500$
 $x_1, x_2, x_3 \ge 0$

Elementos de un modelo de PL

Principios de la programación lineal

Proporcionalidad:

Aditividad:

Divisibilidad:

Certeza:

La contribución de cada variable de decisión en la F.O. y en las restricciones es proporcional al valor de la variable. La contribución de cada variable de decisión en la F.O. y en las restricciones se realiza de manera independiente.

Las variables de decisión pueden tomar valores fraccionarios.

Los parámetros del modelo son conocidos y son determinísticos; es decir, no son aleatorios.