

CURSO TÉCNICO EM INFORMÁTICA DISCIPLINA: FUNDAMENTOS DE REDES E CONECTIVIDADE PLANO DE ENSINO

INFORMAÇÕES GERAIS

Modalidade: Presencial

Carga horária: 43hrs, sendo destas 11,05 hrs não presenciais

Requisitos: nenhum

Observação ao professor: esta disciplina deve contemplar o embasamento teórico da área de redes. A aplicação prática se dará através das disciplinas de Servidores e Sistema Operacional. Nesta disciplina o foco é desenvolver um projeto de redes.

Para a aula de confecção de cabos, a escola deve fornecer ao professor material conforme norma 040, e cada aluno deve trazer seu cabo e conector RJ45.

COMPETÊNCIAS

- Aplicar conhecimentos teóricos e práticos de redes de computadores
- Analisar os meios físicos de conexão e as suas características, bem como as técnicas de transmissão digitais e analógicas para proporcionar a melhor alternativa de conectividade para a empresa.
- Conhecer os protocolos de rede e as tecnologias de conectividade a fim de interligar dispositivos.

BASES TECNOLÓGICAS

- Arquitetura de redes
- Topologia
- Protocolos
- Pontes, roteadores, hubs
- Máscara de rede, gateway, etc.
- Tecnologias para conexão sem fio
- Conexão em dispositivos móveis

CONTEÚDO PROGRAMÁTICO

Aula 1

- Histórico
- Conceitos, Importância, Aplicação/utilização
- Introdução aos componentes de uma rede básica
 - Nó de rede
 - Meio de comunicação
 - Hardware de rede (nó central)
 - Adaptador de rede
 - Recursos de rede (serviços)
 - Protocolos de comunicação
 - Usuário
- Classificação de rede
 - LAN, MAN, WAN, WLAN, VLAN, VPN
- Intranet, internet e extranet
- Transmissão de dados: Simplex, Half-duplex, Full-duplex

Aula 2

- Tipos de redes e suas características
 - Cliente/servidor, Ponto a ponto
- Classificação de servidores
 - Dedicados/Não dedicados
- Tipos de servidores
 - Impressão (Windows/Linux)
 - Arquivos (Windows/Linux)
 - Autenticação (Windows/Linux)
 - E-mail (Windows/Linux)
 - Conexão (Windows/Linux)
 - Web (Windows/Linux)
 - Aplicação (Windows/Linux)
 - Firewall (Windows/Linux)

CURSO TÉCNICO EM INFORMÁTICA DISCIPLINA: FUNDAMENTOS DE REDES E CONECTIVIDADE

PLANO DE ENSINO

- DHCP (Windows/Linux)
- Redundante (Windows/Linux)

Aula 3

- Topologia de Redes
 - Estrela (arquitetura aplicável ethernet)
 - Barramento (arquitetura aplicável ethernet)
 - Anel (arquitetura aplicável token ring)
 - Outros
- Apresentação dos componentes de Rede Estruturada
 - Adaptador de rede
 - Cabo de transmissão de dados (STP/UTP/coaxial/fibra óptica)
 - Conectores
 - Jack, RJ45, RJ11 e USB
 - Hub
 - Switch
 - Repetidor
 - Transceiver
 - Roteador
 - Patch panel
 - Ponte (token ring)
 - Modens
- Cascateamento x empilhamento

Aula 4

- Fundamentos de Protocolos
 - Modelo OSI (resumidamente)
- Tipos de protocolos
 - TCP/IP, IPX/SPX, NetBEUI
- Configuração de protocolos
 - Classes de IP
 - Máscara de Rede
 - Gateway/DNS
 - DHCP
 - Broadcast
 - Endereços lógicos
 - Endereços físicos (MAC Address)

Aula 5

- Revisão Geral
- Avaliação N1

Aula 6

- Conexão de dispositivos móveis
 - Wireless
 - Protocolos utilizados: Radio/Wi-fi, Infrared, Blutooth, 3G/4G/GPRS
- Início do projeto de redes (*)
- Apresentação de software para projeto de redes
- Simbologia para projeto de redes
- Diagrama de rede
- (*) Verificar disponibilidade de laboratório ou recurso multimídia

Aula 7

• Estrutura de cabeamento para aplicação no projeto

CURSO TÉCNICO EM INFORMÁTICA DISCIPLINA: FUNDAMENTOS DE REDES E CONECTIVIDADE PLANO DE ENSINO

- Planejamento
- Tomadas
- Passagem de cabos
- Canaletas
- Cabos padrão T568A e T568B
- Tipos de cabos
 - Coaxial, Par trançado, Patch cord/cable, Cross-over, Fibra óptica
- Confecção de cabos par trançado.

Aula 8

- Revisão Geral
- Avaliação N2 apresentação do projeto de redes

Aula 9

- Correção e discussão sobre a avaliação N2
- Encerramento da disciplina
- Avaliação de Substituição
- Conselho de classe

METODOLOGIA DE ENSINO

- Aulas explicativas/expositivas com participação ativa dos alunos.
- Leituras de textos e elaborações de reflexões e questões.
- Correções das atividades de forma colaborativa e dinâmica.
- Acompanhamento do instrutor no desenvolvimento da aprendizagem do aluno
- Trabalhos em grupo visando desenvolvimento da aprendizagem colaborativa
- Trabalhos individuais visando a aprendizagem construtiva
- Recursos didático-pedagógicos de acordo com o conteúdo da disciplina
- Atividades para prática dos conteúdos
- Avaliações

PROCEDIMENTOS DE AVALIAÇÃO

Instrumentos:

• Trabalhos (em grupo e individuais), avaliações, tarefas, participação, entre outros.

Etapa	Descrição	Pontuação
N1	Avaliações	9,0
	Aspectos Comportamentais	1,0
N2	Avaliações	9,0
	Aspectos Comportamentais	1,0

Média Final:		
N1(10,0) + N2 (10,0)		
2		

Critérios:

- Aprendizagem ativa e significativa dos conteúdos propostos
- Assimilação dos conceitos e aplicação prática dos mesmos
- Acompanhamento da participação dos alunos nas atividades propostas

Resultado final:

- Para efeito de aprovação o aluno deve obter média igual ou superior a 6,0 ao final da disciplina e ter frequência mínima de 75%.
- Caso o aluno não atingir a média e tiver frequência mínima de 75% deverá realizar uma prova de substituição, que substituirá a nota da menor média (N1 ou N2).

REFERÊNCIAS

TANENBAUM, Andrew s; Wetherall, David J. Redes de Computadores. Prentice Hall Brasil, 2011. TORRES, Gabriel. Redes de Computadores. Novaterra, 2009.