Dual Fractional Integer Programming

Instructor: Kwei-Long Huang

Course No: 546 U6110

Agenda – Part 1

- Beale Tableau
- The Basic Approach
- The Form of the Gomory cut
- Illustrations

- This tableau is often used in ILP algorithms.
- The tableau represents the following system of equations

$$x_{i} = \overline{b}_{i} + \sum_{j=m+1}^{n} \overline{a}_{ij} \left(-x_{j}\right), \qquad i = 1, ..., m,$$

$$(-z) = -\overline{z} + \sum_{j=m+1}^{n} \overline{c}_{j} \left(-x_{j}\right).$$

• In addition to the above equations, the Beale tableau displays the following equations:

$$x_i = -(-x_i), i = m+1, ..., n.$$

All variable	Constant values	$(-x_{m+1})$	•••	$(-x_{m+j})$	•••	$(-x_n)$
(-z)	$(-\overline{z})$	\overline{c}_{m+1}	•••	\overline{c}_{m+j}	•••	\overline{c}_n
x_{m+1}	0	-1	•••	0	•••	0
:	:	:		:		:
x_{m+j}	0	0	•••	-1	•••	0
:	:	:		:		:
x_n	0	0	•••	0	•••	-1
x_1	\overline{b}_1	$\bar{a}_{1,m+1}$	•••	$\bar{a}_{1,m+j}$	•••	$\bar{a}_{1,n}$
x_2	\overline{b}_2	$\bar{a}_{2,m+1}$	•••	$\bar{a}_{2,m+j}$	•••	$\bar{a}_{2,n}$
•••	•••	:		:		:
x_r	\overline{b}_r	$\bar{a}_{r,m+1}$	•••	$\bar{a}_{r,m+j}$	•••	$\bar{a}_{r,n}$
•••	•••	:	•••	:	•••	:
x_m	\overline{b}_m	$\bar{a}_{m,m+1}$	•••	$\bar{a}_{m,m+j}$	•••	$\bar{a}_{m,n}$

$$\alpha_j = \begin{pmatrix} \overline{c}_{m+j} \\ 0 \\ \dots \\ -1 \\ 0 \\ \overline{a}_{1,m+j} \\ \dots \\ \overline{a}_{m,m+j} \end{pmatrix} \qquad \text{m elements} \quad -1 \text{ in } j^{th} \text{ row} \\ \alpha_0 = \begin{pmatrix} -\overline{z} \\ 0 \\ \dots \\ 0 \\ \overline{b}_1 \\ \dots \\ \overline{b}_m \end{pmatrix}$$

The Beale tableau represents the following equations:

$${\binom{-z}{x}} = \alpha_0 + \sum_{j=1}^{n-m} \alpha_j (-x_{m+j})$$
where $x = (x_{m+1} \ x_{m+2} \cdots x_n \ x_1 \cdots x_m)^T$.

Lexicographic Dual Simplex Method (LDS)

- The dual lexicographic simplex method requires lexicographic primal optimality, i.e., $\alpha_j \succ 0$, j = 1,...,n-m, where $x \prec y$ if the first nonzero term of x-y is negative. (vector x is lexicographically smaller than vector y)
- The pivot row satisfies $\overline{b}_r = \min_{\overline{b}_i < 0} \overline{b}_i$.
- Using lexicographic ordering, the pivot column k satisfies $\frac{\alpha_k}{|\bar{a}_{r,m+k}|} < \frac{\alpha_j}{|\bar{a}_{r,m+j}|}, \text{ for all j such that } \bar{a}_{r,m+j} < 0.$

LDS Method

- This selection of the pivot column prevents cycling, because column zero (α_0) is guaranteed to lexicographically decrease at each iteration ,even though the objective function value (\overline{z}) remains unchanged when degeneracy occurs.
- This selection rule also maintains the lexicographic primal optimality of the tableaus $\alpha_i > 0$, j=1,...,n-m.

LDS Method

- Pivot rules:
 - List basic variables: basic variable x_r is replaced by x_{m+k} .
 - Update all columns α_j by $\hat{\alpha}_j$:

$$\hat{\alpha}_{0} = \alpha_{0} - \frac{\overline{b}_{r}}{\overline{a}_{r,m+k}} \alpha_{k},$$

$$\hat{\alpha}_{k} = \frac{-1}{\overline{a}_{r,m+k}} \alpha_{k},$$

$$\hat{\alpha}_{j} = \alpha_{j} - \frac{\overline{a}_{r,m+j}}{\overline{a}_{r,m+j}} \alpha_{k}, \quad j = 1, ..., m, j \neq k.$$

Example (1/3)

min
$$z = x_1 + 4x_2 + 3x_4$$

s.t. $-x_1 - 2x_2 + x_3 - x_4 + x_5 = -3$,
 $2x_1 + x_2 - 4x_3 - x_4 + x_6 = -2$,
 $x_j \ge 0, \forall j$

		α_0	α_1	α_2	α_3	α_4
			$-x_1$	$-x_2$	$-x_3$	$-x_4$
	(-z)	0	1	4	0	3
	x_1	0	-1	0	0	0
x_N	x_2	0	0	-1	0	0
	x_3	0	0	0	-1	0
	x_4	0	0	0	0	-1
	x_5	-3	(-1)	-2	1	-1
	x_6	-2	2	1	-4	-1

$$min\left\{\frac{1}{1}, \frac{4}{2}, \frac{3}{1}\right\} = 1$$

$$\implies x_1 \text{ becomes basic}$$

Example (2/3)

	α_0	α_1	α_2	α_3	α_4
		$-x_5$	$-x_2$	$-x_3$	$-x_4$
(-z)	-3	1	2	1	2
x_1	3	-1	2	-1	1
x_2	0	0	-1	0	0
x_3	0	0	0	-1	0
x_4	0	0	0	0	-1
x_5	0	-1	0	0	0
x_6	-8	2	-3	(-2)	-3

$$min\left\{\frac{2}{3}, \frac{1}{2}, \frac{2}{3}\right\} = \frac{1}{2}$$

$$\implies x_3 \text{ becomes basic}$$

Example (3/3)

	α_0	α_1	α_2	α_3	α_4
		$-x_5$	$-x_2$	$-x_6$	$-x_4$
(-z)	-7	2	1/2	1/2	1/2
x_1	7	-2	7/2	-1/2	5/2
x_2	0	0	-1	0	0
x_3	4	-1	3/2	-1/2	3/2
x_4	0	0	0	0	-1
x_5	0	-1	0	0	0
x_6	0	0	0	-1	0

Optimal solution:

$$x_1^* = 7$$
 $x_3^* = 4$
 $z^* = 7$

Agenda – Part 1

- Beale Tableau
- The Basic Approach
- The Form of the Gomory cut
- Illustrations

Procedures

The there main steps are:

- Solve the LP relaxation with the simplex method. If the problem is an ILP ,start with an all-integer tableau (or with tableau of rational numbers). If the problem is infeasible or has an integer solution, stop. Otherwise, go to step 2.
- Whenever the solution is noninteger, the integrality constraints imply new additional constraints (or "cuts"), which cut off the current optimal point. Add a new constraint to the tableau, which will produce primal infeasibility.
- Re-optimize with the lexicographic dual simplex (LDS) method. If the new problem is infeasible or has an integer solution, stop. Otherwise, go to 2.

Concept of cuts

• ABCDE is the feasible region

Variables	values	Non-basic variables					
	1	$(-x_1)$	•••	$(-x_j)$	•••	$(-x_n)$	
$x_0 =$	a_{00}	a_{01}	•••	a_{0j}	•••	a_{0n}	
$x_1 =$	0	-1					≥ 0
:	:		٠.				:
$x_j =$	0			-1			≥ 0
:	:				٠.		:
$x_n =$	0					-1	≥ 0
$x_{n+1} =$	$a_{n+1,0}$	$a_{n+1,1}$	•••	$a_{n+1,j}$	•••	$a_{n+1,n}$	≥ 0
:	:	:		•		•	:
$x_{n+m} =$	$a_{n+m,0}$	$a_{n+m,1}$	•••	$a_{n+m,j}$	•••	$a_{n+m,n}$	≥ 0

Notation

• Notation:

$$x_0 = z$$
,
 $a_{0,0} = 0$,
 $c = (c_j) = (-a_{0j})$,
 $b = (b_j) = (a_{n+i,0})$,
 $A = (a_{i,j})$, $a_{ij} (\text{in } A)$ $a_{n+i,j} (\text{in tableau})$.

New notation: J = set containing the indices of the current nonbasic variables,

 $J(j) = j^{\text{th}}$ element is set J (the index of the j^{th} nonbasic variable).

LDS in Beale Tableau

• The LDS method will product an optimal tableau such that

$$\alpha_{j} > 0, j = 1, ..., n$$

 $\Rightarrow a_{0,j} \ge 0, j = 1, ..., n,$
 $a_{i,0} \ge 0, i = 1, ..., n + m.$

• In addition, if a_{i0} is integer, i=1,...,n+m, the ILP is solved

$$z^* = a_{0,0}, x_i^* = a_{i,0}, i = 1, ..., n + m.$$

Agenda – Part 1

- Beale Tableau
- The Basic Approach
- The Form of the Gomory cut
- Illustrations

Form of a Gomory Cut

There is a row ν ,

$$x_v = a_{v,0} + \sum_{j=1}^{n} a_{v,j} (-x_{J(j)})$$
, with $a_{v,0}$ fractional

 k^{th} Gomory cut,

$$x_{n+m+k} = -f_{v,0} + \sum_{j=1}^{n} (-f_{v,j}) (-x_{J(j)}) \ge 0$$
, (Gomory,1958)

where x_{n+m+k} is the Gomory slack variables,

$$f_{v,j} = a_{v,j} - \lfloor a_{v,j} \rfloor, j = 0, ... n.$$

Note that $0 \le f_{v,j} < 1, j = 0, ..., n, 0 < f_{v,0} < 1$.

Agenda – Part 1

- Beale Tableau
- The Basic Approach
- The Form of the Gomory cut
- Illustrations

Example 1 (1/6)

Primal

Maximize
$$-4x_1 - 5x_2 = x_0$$

subject to $-x_1 - 4x_2 \le -5$,
 $-3x_1 - 2x_2 \le -7$,
and $x_1, x_2 \ge 0$, integer.

Dual

Minimize
$$-5w_1 - 7w_2 = w_0$$

subject to $-w_1 - 3w_2 \ge -4$ (w_{,1}),
 $-4w_1 - 2w_2 \ge -5$ (w_{,2}),
and w₁, w₂ ≥ 0;

Example 1 (2/6)

#1	1	$(-x_1)$	$(-x_2)$	• $x_1 = x_2 = 0$
x_0	0	4	5	• Pivot row selection:
x_1	0	-1	0	$Min\{-5, -7\} = -7,$
x_2	0	0	- 1	or x_4 becomes nonbasic,
x_3	- 5	-1	- 4	• Pivot column selection:
x_4	- 7	$\overline{\left(-3\right)}$	- 2	$Min\{4/ -3 ,5/ -2 \}=4/3,$
	'			or x_1 becomes basic.

Example 1 (3/6)

#2	1	$(-x_4)$	$(-x_2)$	$(x_1 = 7/3, x_2 = 0)$
x_0	-28/3	4/3	7/3	
x_1	7/3	-1/3	2/3	
x_2	0	0	- 1	
x_3	-8/3	-1/3	(-10/3)	
x_4	0	-1	0	

Pivot column selection:

Min $\{(4/3)/|-1/3|, (7/3)/|-10/3|\} = 0.7$, or x_2 becomes basic.

Example 1 (4/6)

#3	1	$(-x_4)$	$(-x_3)$
x_0	-112/10	11/10	7/10
$\rightarrow x_1$	18/10	-4/10	2/10
x_2	8/10	1/10	-3/10
x_3	0	0	-1
x_4	0	-1	0

Example 1 (5/6)

```
#4
       1 (-x_5) (-x_3)
      -76/6 11/6 2/6
 x_0
       14/6 -4/6 2/6
 x_1
       4/6 1/6 -2/6 (x_1 = 14/6, x_2 = 4/6)
\rightarrow x_2
          0
            0
                  -1
 x_3
        8/6 -10/6 2/6
 \chi_4
          0
               -1 0
 x_5
```

#5	1	$(-x_5)$	$(-x_6)$	
$\rightarrow x_0$	-13	7/4	2/4	
x_1	2	-3/4	2/4	
x_2	1	1/4	-2/4	(x - 2 x - 1)
x_3	1	1/4	-6/4	$(x_1 = 2, x_2 = 1)$ Optimal tableau
x_4	1	-7/4	2/4	Ориннаг саргеац
x_5	0	-1	0	
x_6	0	0	-1	

Example 1 (6/6)

Example 2 (1/4)

```
maximize z = 2x_1 + x_2,

subject to x_1 + x_2 + x_3 = 5, (*)

-x_1 + x_2 + x_4 = 0, (**)

6x_1 + 2x_2 + x_5 = 21, (***)

x_i \ge 0, integer, j = 1, ..., 5.
```

Example 2 (2/4)

We obtain the following solution by solving the LP relaxation:

		$(-x_3)$	$(-x_5)$
x_0	31/4	1/2	1/4
x_1	11/4	-1/2	1/4
x_2	9/4	-3/2	-1/4
x_3	0	-1	0
x_4	1/2	-2	1/2
<i>x</i> ₅	0	0	-1

$$-\frac{3}{4} + \frac{1}{2}x_3 + \frac{1}{4}x_5 \ge 0 \quad (0)$$

$$-\frac{3}{4} + \frac{1}{2}x_3 + \frac{1}{4}x_5 \ge 0 \quad (1)$$

$$-\frac{1}{4} + \frac{1}{2}x_3 + \frac{3}{4}x_5 \ge 0 \quad (2)$$

$$-\frac{1}{2} + \frac{1}{2}x_5 \ge 0 \quad (4)$$

Possible cuts

$$-\frac{1}{2} + \frac{1}{2}x_5 \ge 0 \tag{4}$$

Cuts (0) and (1) are the same.

Example 2 (3/4)

		$(-x_3)$	$(-x_5)$
x_0	30/4	1/2	1/4
x_1	11/4	-1/2	1/4
x_2	9/4	3/2	-1/4
x_3	0	-1	0
x_4	1/2	-2	1/2
x_5	0	0	-1
<i>x</i> ₆	-1/2	0	$(-\frac{1}{2})$

		$(-x_3)$	$(-x_6)$
x_0	30/4	1/2	1/2
x_1	10/4	-1/2	1/2
x_2	10/4	3/2	-1/2
x_3	0	-1	0
x_4	0	-2	1
x_5	1	0	-2
x_6	0	0	-1

Possible cuts $-\frac{1}{2} + \frac{1}{2}x_3 + \frac{1}{2}x_6 \ge 0 \text{ (0')}$ $-\frac{1}{2} + \frac{1}{2}x_3 + \frac{1}{2}x_6 \ge 0 \text{ (1')}$ $-\frac{1}{2} + \frac{1}{2}x_3 + \frac{1}{2}x_6 \ge 0 \text{ (2')}$

Example 2 (4/4)

		$(-x_3)$	$(-x_6)$
x_0	30/4	1/2	1/2
x_1	10/4	-1/2	1/2
x_2	10/4	3/2	-1/2
x_3	0	-1	0
x_4	0	-2	1
x_5	1	0	-2
x_6	0	0	-1
<i>x</i> ₇	-1/2	$(-\frac{1}{2})$	-1/2

		$(-x_3)$	$(-x_6)$
x_0	7	1	0
x_1	3	-1	1
x_2	1	3	-2
x_3	1	-2	1
x_4	2	-4	3
<i>x</i> ₅	1	0	-2
x_6	0	0	-1
x_7	0	-1	0

This table produces primal and Dual(optimal) feasible and integer solutions.

$$x_1^* = 3,$$
 $x_2^* = 1,$
 $x_3^* = 1,$
 $x_4^* = 2,$
 $x_5^* = 1,$
 $z^* = 7,$

Agenda – Part 2

- The Derivation of the Cut
- Some Properties of the Cuts
- Algorithm Strategies
- Finiteness
- Dantzig Cut

Congruence

- **Definition:** x is congruent to y module k, i.e., $x \equiv y \pmod{k}$, if there exist an integer I Such that $x-y \equiv k$ I
- Examples: $3 \equiv 8 \pmod{5}$, and $4 \equiv -2 \pmod{3}$.
- $x \equiv y \pmod{1}$ if and only if x-y ______.

Properties of Congruence

- i) $x \equiv x \pmod{K}$.
- *ii*) If $x \equiv y \pmod{K}$ and $y \equiv z \pmod{K}$, then $x \equiv z \pmod{K}$.
- *iii*) If $x \equiv y \pmod{K}$, then $y \equiv x \pmod{K}$.
- *iv*) If $x \equiv y \pmod{K}$ and z is an integer, then $xz \equiv yz \pmod{K}$.
- v) If $x \equiv y \pmod{K}$ and $x' \equiv y' \pmod{K}$, then $x + x' \equiv y + y'$. (mod K). Further, if x and y' are integers, then $xx' \equiv yy' \pmod{K}$.

Derivation (1/5)

• Assume we want to generate a cut from equation

$$x_{v} = a_{v,0} + \sum_{j=1}^{n} a_{v,j} \left(-x_{J(j)}\right),$$

where $a_{v,0} > 0$.

$$x_{v}$$
 integer \Leftrightarrow $0 \equiv x_{v} \pmod{1}$, \Leftrightarrow $0 \equiv a_{v,0} + \sum_{j=1}^{n} a_{v,j} \left(-x_{J(j)}\right) \pmod{1}$,

Derivation (2/5)

• Adding and subtracting integer amounts does not destroy the congruence relationship.

$$x_{v} \text{ integer} \qquad \Leftrightarrow \qquad 0 \equiv f_{v,0} + \sum_{j=1}^{n} a_{v,j} \left(-x_{J(j)} \right) \pmod{1},$$
 where $f_{v,0} = a_{v,0} - \left| a_{v,0} \right|$, and $0 < f_{v,0} < 1$

Derivation (3/5)

• The same operations on variables $x_{I(i)}$

$$x_{J(j)}$$
 integer \Leftrightarrow $0 \equiv f_{v,0} + \sum_{j=1}^{n} f_{v,j} \left(-x_{J(j)}\right) \pmod{1},$

where
$$f_{v,j} = a_{v,j} - \lfloor a_{v,j} \rfloor$$
, $j = 1, ..., n$.

and
$$0 \le f_{v,j} < 1, j = 1, ..., n$$
.

Which is equivalent to

$$f_{v,0} \equiv$$

Derivation (4/5)

$$\left. \begin{array}{l} 0 < f_{v,0} < 1 \\ \sum_{j=1}^{n} f_{v,j} x_{J(j)} > 0 \end{array} \right\} \Rightarrow \sum_{j=1}^{n} f_{v,j} x_{J(j)} = f_{v,0}, f_{v,0} + 1, f_{v,0} + 2, f_{v,0} + 3, \dots$$

$$\Rightarrow f_{v,0} \le \sum_{i=1}^{n} f_{v,j} x_{J(j)}$$

Derivation (5/5)

• The Gomory cut is

$$x_{n+m+1} = -f_{v,0} + \sum_{j=1}^{n} (-f_{v,j})(-x_{J(j)}) \ge 0,$$

where x_{n+m+1} is the Gomory slack variable, which is integer.

Example

#3	1	$(-x_4)$	$(-x_3)$		
~	-112/10	11/10	7/10	The source row is $x_1 =$	$= 18/10 - (4/10)(-x_4) + (2/10)(-x_3)$
x_0	-112/10	11/10	//10	Since $x_1 \equiv 0$, we have	$0 = 18/10 - (4/10)(-x_4) + (2/10)(-x_3).$
$\rightarrow x_1$	18/10	-4/10	2/10	subtracting	$0 \equiv 1$
20	8/10	1/10	-3/10	yields	$0 = 8/10 - (4/10)(-x_4) + (2/10)(-x_3);$
x_2	0/10	1/10	-3/10	adding	$0 \equiv 1(-x_4)$
x_3	0	0	-1	gives	$0 = 8/10 + (6/10)(-x_4) + (2/10)(-x_3).$
x_4	0	– 1	0	Or	$8/10 = (6/10)x_4 + (2/10)x_3,$
	<u> </u>			which means that	$8/10 \le (6/10)x_4 + (2/10)x_3$.
x_5	-8/10	(-6/10)	-2/10		

Agenda – Part 2

- The Derivation of the Cut
- Some Properties of the Cuts
- Algorithm Strategies
- Finiteness
- Dantzig Cut

Integer Inequality

- Each added inequality becomes an all-integer inequality when expressed in terms of the original nonbasic variables.
- Example: in tableau #3 (in page 24)

$$x_5 = -\frac{8}{10} + \frac{6}{10}x_4 + \frac{2}{10}x_3 \ge 0$$

where $x_3 = -5 + x_1 + 4x_2$ and $x_4 = -7 + 3x_1 + 2x_2$

Integer inequality

• The same reasoning for the second cut

#4	1	$(-x_5)$	$(-x_3)$
x_0	-76/6	11/6	2/6
x_1	14/6	-4/6	2/6
$\rightarrow x_2$	4/6	1/6	-2/6
x_3	0	0	-1
x_4	8/6	-10/6	2/6
x_5	0	-1	0
$\overline{x_6}$	-4/6	-1/6	<u>-4/6</u>

Properties

- After integer optimality is achieved ,we may continue to add cuts (derived from rows containing fractions) to obtain all-integer optimal tableau.
- If the hyperplane corresponding to an added inequality goes through an integer point, it goes through an infinite number of integer points.
 - $2x_1+3x_2=5$, given an integer point, (1, 1).
 - We can obtain other integer points, k is integer.

Example (1/6)

max
$$3x_1 - x_2$$

S.t.
 $3x_1 - 2x_2 \le 3$
 $-5x_1 - 4x_2 \le -10$
 $2x_1 + x_2 \le 5$
 $x_1, x_2 \ge 0$, integer

Example (2/6)

#1	1	$(-x_1)$	$(-x_2)$	#2	1	(-s)	$(-x_2)$
x_0	0	-3	0	x_0	15	3	4
x_1	0	-1	0	x_1	5	1	1
x_2	0	0	-1	x_2	0	0	-1
x_3	3	3	-2	$\rightarrow x_3$	-12	-3	$\overline{-5}$
x_4	-10	-5	-4	x_4	15	5	1
x_5	5	2	1	x_5	-5	-2	-1
\rightarrow s	5	\bigcirc 1) 1	S	0	-1	0

Example (3/6)

#3	1	(-s)	$(-x_3)$	#4	1	$(-x_5)$	$(-x_3)$
x_0	27/5	3/5	4/5	x_0	30/7	3/7	5/7
x_1	13/5	2/5	1/5	x_1	13/7	2/7	1/7
x_2	12/5	3/5	-1/5	x_2	9/7	3/7	-2/7
x_3	0	0	-1	x_3	0	0	-1
x_4	63/5	22/5	1/5	x_4	31/7	22/7	-3/7
$\rightarrow x_5$	-13/5	$\left(-7/5\right)$) -1/5	x_5	0	-1	0
S	0	-1	0	·	,		

Example (4/6)

• Suppose use x_1 as a source row,

$$x_1 = \frac{13}{7} + \frac{2}{7}(-x_5) + \frac{1}{7}(-x_3)$$

• The cut

$$x_6' = -\frac{6}{7} - \frac{1}{7}(-x_3) - \frac{2}{7}(-x_5) \ge 0$$
, $x_3 = 3 - 3x_1 + 2x_2$ and $x_5 = 5 - 2x_1 - x_2$

• In terms of non-basic variables

$$2-2x_1 \ge 0$$

Example (5/6)

• Suppose use $2x_1$ as a source row,

$$2x_1 = \frac{26}{7} + \frac{4}{7}(-x_5) + \frac{2}{7}(-x_3)$$

• The cut

$$x_6'' = -\frac{5}{7} - \frac{2}{7}(-x_3) - \frac{4}{7}(-x_5) \ge 0$$
, $x_3 = 3 - 3x_1 + 2x_2$ and $x_5 = 5 - 2x_1 - x_2$

• In terms of non-basic variables

$$3 - 2x_1 \ge 0$$

Example (6/6)

Example 2

Agenda – Part 2

- The Derivation of the Cut
- Some Properties of the Cuts
- Algorithm Strategies
- Finiteness
- Dantzig Cut

Rules to Choose the Source Row

Let
$$\sum_{j=1}^{n} f_j x_{J(j)} = f_0$$

be the hyperplane defined by the cut in the nonnegative region of the

$$(X_{J(j)},....,X_{J(n)})$$
 space.

The intersection of the hyperplane with the $X_{J(j)}$ axis, j=1,...,n, occurs at

• The larger the value of ______, the stronger the cut.

Rules to Choose the Source Row

- **Rule 1:** Generate the cut from the row with the largest f_0 value. If f_0 is large, hopefully f_0/f_j the ratio will also be large.
- **Rule 2:** Choose the first row with a fractional constant f_0 .
- **Rule 3:** Add several cuts and let the simplex method choose one. For example, the one that produces the largest decrease in the objective function.

Rule for Dropping Inequalities

• When an inequality is introduced, it is immediately used as pivot row and the slack variable becomes nonbasic. If it becomes basic again, the inequality can be dropped.

Agenda – Part 2

- The Derivation of the Cut
- Some Properties of the Cuts
- Algorithm Strategies
- Finiteness
- Dantzig Cut

Converge of the Algorithm

- **Theorem:** The algorithm converges to an optimal integer solution after a finite number of iterations (cuts) if
- i) There exists a lower bound M for the value of x_0 .
- ii) The first row with a fractional constant component is selected as the source row (every finite number of iterations).

Proof (1/6)

• **Proof:** (By contradiction) assume the algorithm is not finite.

⇒ There exists a sequence of LDS tableaus such that

$$\alpha_0^k \stackrel{\ell}{\succ} \alpha_0^{k+1} \stackrel{\ell}{\succ} \alpha_0^{k+2}$$
 ... etc.

$$\Rightarrow \qquad \alpha_{0,0}^{k} \succ \alpha_{0,0}^{k+1} \succ \alpha_{0,0}^{k+2} \quad \dots \text{ etc.}$$

Proof (2/6)

• We will show now the a_{00} will eventually remain fixed at some integer value. Assume that row 0 generates the cut

$$x' = -f_{0,0} + \sum_{j=1}^{n} \left(-f_{0,j}\right) \left(-x_{J(j)}\right) \ge 0$$
, where x is the new slack variable.

The cut is used as a pivot row. If *p* is the pivot column, then

$$a_{0,0}' = a_{0,0} - \frac{a_{0,p} f_{0,0}}{f_{0,p}},$$

where $f_{0,p} > 0$ is the negative value of the pivot element, and $a'_{0,0}$ is the new $a_{0,0}$. Note that $a_{0,p} \ge 0$, but since its fractional part $f_{0,p} \ne 0$, $a_{0,p}$ must be positive $(a_{0,p} > 0)$.

Proof (3/6)

$$a_{0,p} = \lfloor a_{0,p} \rfloor + f_{0,p} \ge f_{0,p}$$
 or $\frac{a_{0,p}}{f_{0,p}} \ge 1$
 $a'_{0,0} \le a_{0,0} - f_{0,0} = \lfloor a_{0,0} \rfloor$

 $a_{0,0}$ is decreased at least to the next integer.

 $a_{0,0}$ can have a fractional part for only a finite number of tableaus because it has a lower bound M.

Let k, be the iteration at which $a_{0,0}$ is fixed.

Then, for $k \ge k' + 1$, $a_{1,0}$ remains non-increasing due to the lexicographic decrease of α_0 .

Proof (4/6)

In addition, $a_{1,0}$ is bounded from below by 0. Using a contradictory argument, note that

If $a_{1,0} < 0$ at certain iteration, row 1 becomes the pivot row and, if p is the pivot column, then

$$a_{0,0}' = a_{0,0} - \frac{a_{0,p}a_{1,0}}{a_{1,p}}.$$

Proof (5/6)

Since $a_{1,0} < 0$ and the pivot element $a_{1,p} < 0$, $\frac{a_{1,0}}{a_{1,p}} > 0$. But then $a_{0,p}$ must be 0 since ,by assumption, $a'_{0,0} = a_{0,0}$. This contradicts the lexicographic positivity of a_p ($a_{0,p} = 0$ and $a_{1,p} < 0$).

Therefore, $a_{1,0}$ is bounded from below by 0 for all $k \ge k' + 1$.

Proof (6/6)

Now, using similar arguments, we can show that there exists $k'' \ge k' + 1$ such that $a_{1,0}$ remains fixed at a nonnegative integer value.

Then, we can repeat the same argument for each of the other m+n+1 original variables.

Thus, at the end, we will have all-integer a_0 .

Agenda – Part 2

- The Derivation of the Cut
- Some Properties of the Cuts
- Algorithm Strategies
- Finiteness
- Dantzig Cut

Dantzig Cut

• **Argument:** If the primal optimal solution is not integer, then at least one of the nonbasic Variables $\mathbf{x}_{J(j)}$ must be positive.

Thus,
$$\sum_{j=1}^{n} x_{J(j)} \ge 1$$
, (Dantzig, 1959)
 $\Leftrightarrow x' = -1 + \sum_{j=1}^{n} (-1)(-x_{J(j)}) \ge 0$.

Dantzig Cut

- In general, these cuts do not yield a finite algorithm.
- It can be shown that a necessary, but not sufficient condition for the algorithm to be finite is that the optimal solution be on an edge (a line joining two adjacent extreme points) of the constraint set.
- There are improved versions of the Dantzig cut for which a finite algorithm exists.

Dantzig Cut

Improved version of the cut with respect to a row v:

Strengthened Danzig cut:
$$\sum_{\substack{j=1\\a_{v,j}\neq 0}}^n x_{J(j)} \ge 1. \text{ (Charnes and Cooper, 1969)}$$

Double strengthened Danzig cut:
$$\sum_{j=1}^{n} x_{J(j)} \ge 1.$$
 (Bowman and Nemhauser, 1969)

• The details of the finite versions of these cutting plane algorithms are unimportant, because it is unlikely they will generate better cuts than the Gomory cut.

Example

$$x_v = \frac{1}{2} + 2(-x_1) - \frac{1}{2}(-x_2) + 0(-x_3) - \frac{1}{4}(-x_4).$$

Danzig cut:

$$x_1 + x_2 + x_3 + x_4 \ge 1$$
,

Charnes and Cooper cut:

$$x_1 + x_2 + x_4 \ge 1,$$

Bowman and Nemhauser cut:

$$x_2 + x_4 \ge 1$$
.

Questions

• Please download HW2 on Ceiba (due on 3/30).