Biostatistics Week III

Ege Ülgen, MD, PhD

20 October 2022

The Big Picture

Exploratory Data Analysis (EDA)

- Examining Distributions exploring data one variable at a time
- Examining Relationships exploring data two variables at a time

Contingency table/Cross tabulation/Crosstab

Tables in which two categorical variables are investigated together

	Male	Female		
No education	4	10		
Primary school	3	5		
High school	2	8		
Bachelor's degree	7	9		

Scatter Plots

	Age (X)	Distance (Y)				
Driver 1	18	510				
Driver 2	32	410				
Driver 3	55	420				
Driver 4	23	510				
Driver 30	82	360				

Interpreting Scatter Plots

Correlation

- Correlation is a bivariate analysis that measures the strength of association between two variables and the direction of the relationships
- In terms of the strength of relationship, the value of the correlation coefficient varies between +1 and -1
- Correlation does not mean causation

Correlation does not mean causation

Correlation does not mean causation

Correlation Coefficient

A statistic that measures the relationship between two variables

- Pearson's r
 - Measures linear relationship
 - Both variables have to be normally distributed
- Spearman's ρ
 - Measures monotonic relationship
 - Based on rank non-parametric

Pearson Correlation Coefficient

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

- A measure of the linear correlation between two variables X and Y
- takes values between -1 and 1
- unitless
- $r_{X,Y} = r_{Y,X}$
- r_{X,Y} = 0 means no linear relationship

Pearson Correlation Coefficient

Cohen's (1988) conventions to interpret effect size:

- -|r| = 0.10 0.29: Weak
- -|r| = 0.30 0.49: Moderate
- *-* |r| ≥ 0.50: Strong

https://en.wikipedia.org/wiki/Correlation_and_dependence

Spearman Rank Correlation

- It assesses how well the relationship between two variables can be described using a monotonic function
- It does not carry any assumptions about the distribution of the data and is the appropriate correlation analysis when the variables are measured on a scale that is at least ordinal

Spearman Rank Correlation

Spearman Rank Correlation

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

- d_i := the difference between the ranks of corresponding variables (i.e., $d = X_i Y_i$)
- n := number of observations

TABLE 1. Sample data: Caloric consumption versus weight change

Patient	(X) Mean Caloric Consumption/Day	(Y) Weight Change/ Month			
1	1,200	0.0			
2	1,500	0.5			
3	1,800	0.5			
4	2,000	1.5			
5	2,500	4.0			
6	1,800	1.0			
7	2,500	3.0			
8	2,000	2.0			

FIGURE 1. Scatter diagram for sample data given in Table 1 (caloric consumption vs weight change).

There is a strong positive relationship between mean caloric consumption/day and weight change/month

$$r = 0.94 \text{ or}$$

 $\rho = 0.97$

Brief Summary

- The relationship between two continuous variables can be visualized using scatter plots
- The relationship between two variables can be assessed using correlation
 - Pearson
 - Spearman

Probability

$$P(A) = \lim_{n \to \infty} \frac{n(A)}{n}$$

- P(A): probability of event A
- *n(A)*: frequency of event A out of n trials
- n: number of trials

Olasılık

© Randy Glasbergen www.glasbergen.com

"Heads, you get a quadruple bypass.
Tails, you take a baby aspirin."

Probability - Definitions

- Experiment: a process that produces an outcome/outcomes Sample Space (Ω) : the set of all possible outcomes from an experiment
- Event: any set of outcomes of an experiment

Probability - Definitions

- Experiment: flipping a coin and rolling a die at the same time
- Sample Space:

```
\Omega = \{(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6), \}
```

• Event:

A: {rolling an even number} P(A) = 6 / 12

B: {getting heads and an odd number} P(B) = 3 / 12

Probability - Properties

•
$$P(\Omega) = 1$$

- $0 \le P(A) \le 1$
- $P(A^c) = 1 P(A)$

• If A ∩ B is an empty set (i.e., if A and B do not occur at the same time), A and B are called disjoint (mutually-exclusive)

Random Variable

 A random variable (RV) is a variable whose possible values are numerical outcomes of a random phenomenon

- There are two types of random variables:
 - Discrete flipping a coin, rolling a die, number of pancreatic cancer cases in a year ...
 - **Continuous** systolic blood pressures of hypertensive patients, progression-free survival time of glioblastoma patients, expression level of a certain gene

...

Normal Distribution

• The distributions of many variables follow a "normal distribution"

 The bell-shape indicates that values closer to the mean are more likely, and it becomes increasingly unlikely to take values far from the mean in either direction

Normal Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty, -\infty < \mu < \infty, \sigma^2 > 0$$

- Mean = Median = Mode= μ
- Variance = σ^2

Standard Normal Distribution

- Normal distribution for which $\mu = 0$ and $\sigma^2 = 1$
- Usually denoted with Z

STANDARD NORMAL PROBABILITIES

Table entry for z is the area under the standard normal curve to theleft of z.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177

Standardization

$$X \sim N(\mu, \sigma^2) \implies \mathbf{Z} = \frac{\mathbf{X} - \boldsymbol{\mu}}{\boldsymbol{\sigma}} \sim N(0, 1)$$

Normal Distribution - Example

- In a hospital, the systolic blood pressures of patients follow a normal distribution with mean = 15, variance = 9 $X \sim N(15,9)$
- For a randomly selected patient, what is the probability that their SBP is:
 - a) Smaller than 11?
 - b) Larger than 12?
 - c) Between 9 and 16?

$$P(X \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{11 - 15}{3}\right) = P(Z \le -1.33) = P(Z \ge 1.33) = 0.0918$$

b) > 12

$$P(X > x) = P\left(Z > \frac{x - \mu}{\sigma}\right) = P\left(Z > \frac{12 - 15}{3}\right) = P(Z > -1) = 0.8413$$

c) Between 9 and 16

$$P(9 < X < 16) = P\left(\frac{9 - 15}{3} < Z < \frac{16 - 15}{3}\right) = P(-2 < Z < 0.33) = P(Z < 0.33) - P(Z \le -2) = 0.6065$$

(Student's) t Distribution

