Raport - praca domowa 3

Aleks Kapich

13 listopada 2022

1 Wstęp

Celem przeprowadzonego w ramach pracy domowej eksperymentu było zbadanie, jaki wpływ na odczytywanie danych mają osie wykresów.

Eksperyment polegał na zaprezentowaniu dwóm różnym grupom badawczym zestawienia dwóch wykresów słupkowych. Badani proszeni byli o odczytanie informacji z wykresów i udzielenie odpowiedzi na pytanie dotyczące przedstawionych im danych.

Pierwszej grupie przedstawione zostały wykresy stworzone w poprawny sposób. Druga grupa z kolei została poproszona o udzielenie odpowiedzi patrząc na wykresy, gdzie osie były zmanipulowane - poprzez dobranie nieodpowiedniej skali lub rozpoczęcie osi w ustalonym punkcie różnym od zera.

2 Przygotowanie eksperymentu

2.1 Opis danych

Dane użyte w eksperymencie dotyczą statystyk trzech zawodników angielskiej Premier League osiągniętych w obecnym sezonie. Zostały one zwizualizowane na parach wykresów słupkowych, gdzie pierwszy wykres z pary dotyczył "bramek oczekiwanych" (Expected Goals), czyli dorobku bramkowego zawodnika oszacowanego z użyciem modelu matematycznego. Drugi wykres w parze przedstawiał realną liczbę goli zdobytą przez danego gracza. Źródłem danych jest firma Opta, udostępnione zostały poprzez witrynę FBref.

Ponadto, użyte dane zostały wybrane w taki sposób, aby nie dotyczyły zawodników cieszących się dużą popularnością. Dzięki temu minimalizowane jest prawdopodobieństwo zajścia sytuacji, w której odpowiadający zamiast odczytać informacje z wykresu, kieruje się sympatią podczas udzielania odpowiedzi.

Gracz	Bramki	Oczekiwane bramki
M.Almirón	8	4.5
L.Trossard	7	4.2
W.Zaha	6	3.8

Tabela 1: Statystyki przedstawione na wykresach.

2.2 Wykresy prawidłowe

W poprawnym zestawie wykresów, na obydwu z nich zastosowane zostały te same granice osi, aby nie utrudniać odczytywania danych. W wypadku wizualizacji przedstawionej poniżej na rysunku 1 decyzja ta może wzbudzać kontrowersje, bowiem prowadzi do spłaszczenia wykresu, jednakże w obliczu konieczności porównywania dwóch wykresów uznałem, że zabieg ten ułatwi zrozumienie danych. Ponadto, osie na wykresach zaczynają się od wartości 0, aby nie zniekształcać proporcji między poszczególnymi słupkami.

Rysunek 1: Prawidłowy wykres przedstawiający oczekiwane bramki.

Rysunek 2: Prawidłowy wykres przedstawiający zdobyte bramki.

2.3 Wykresy nieprawidłowe

Na wykresach nieprawidłowych osie dobrane są tak, by zmienić postrzeganie przedstawionych danych. Wykres "Expected Goals" zaczyna się od punktu 3.5, przez co wydawać się może, że różnica w wartościach bramek oczekiwanych dla poszczególnych zawodników jest relatywnie wysoka. Na wykresie przedstawiającym bramki, oś Y bez wyraźnej potrzeby kończy się na wartości 1.5 razy większej niż maksymalna wartość z wykresu, co daje wrażenie "spłaszczenia" danych - wartości wydają się być bardziej zbliżone do siebie niż w rzeczywistości.

Rysunek 3: Nieprawidłowy wykres przedstawiający oczekiwane bramki.

Rysunek 4: Nieprawidłowy wykres przedstawiający zdobyte bramki.

3 Przeprowadzenie eksperymentu

Osoby partycypujące w eksperymencie nie zostały poinformowane dokładnie, jaki jest jego cel, aby w sposób sztuczny nie zwrócić ich uwagi na manipulację wykresami. Partycypanci po zapoznaniu się z wizualizacjami oraz ich dokładnymi opisami zostali poproszeni o odpowiedź na jedno nieskomplikowane pytanie:

Na podstawie wykresów odczytaj, który zawodnik prezentuje się najlepiej względem oczekiwań?

Obydwie części badania przeprowadzane były do momentu uzyskania 30 odpowiedzi.

4 Wyniki

Różnicę między zdobytymi bramkami a ich oczekiwaną liczbą obrazuje poniższa tabela:

Gracz	Różnica
M.Almirón	+3.5
L.Trossard	+2.8
W.Zaha	+2.2

Tabela 2: Który zawodnik prezentuje się najlepiej?

Poprawna odpowiedź na zadane w badaniu pytanie to M.Almirón, bowiem strzelił on najwięcej bramek ponad oczekiwania sposród piłkarzy w zestawieniu.

W grupie I, zdecydowana większość odczytała informacje z wykresu w sposób poprawny:

Rysunek 5: Odpowiedzi badanych z I grupy.

26 osób z 30 nie miało problemów z wskazaniem prawidłowej odpowiedzi, jest to aż 87% pytanych. Powodem pomyłki u pozostałych 13% być może okazał się brak zrozumienia pytania (szczególnie u osoby, która wskazała Wilfrieda Zahę) bądź też pobieżne odczytanie danych z wykresów (u osób, które wskazały opcję środkową, Leandro Trossarda).

W II grupie znaczna liczba ankietowanych dała się nabrać na manipulację z użyciem osi i udzieliła odpowiedzi patrząc jedynie na wysokość słupków.

Rysunek 6: Odpowiedzi badanych z II grupy.

Z 30 osób jedynie 7 (23% respondentów) poprawnie odczytało, że najlepsze wyniki osiąga obecnie M.Almirón. Spośród pozostałych 23 osób aż 19 wskazało Wilfrieda Zahę, najprawdopodobniej ponieważ w jego wypadku różnica wysokości słupków była najbardziej wyraźna. W przypadku pozostałych 4 osób, tak jak w I grupie, prawdopodobnym jest brak zrozumienia pytania bądź niedbała odpowiedź na zadane pytanie.

5 Podsumowanie

Rezultat eksperymentu nie stanowi dużego zaskoczenia - zgodnie z przypuszczeniami, manipulowanie osiami wykresu negatywnie wpływa na łatwość odczytywania danych. Większość ludzi natrafiając na wizualizacje danych w przestrzeni internetowej bądź innych mediach nie poświęca na ich analizę więcej niż kilka sekund, co często prowadzić może do wyciągania złych wniosków z wykresów. Proste zabiegi, takie jak zmiana granic osi, diametralnie mogą zmienić odbiór wykresu, tak jak miało to miejsce wśród respondentów z grupy II.

Pewne wątpliwości odnośnie tego, czy pytanie w eksperymencie zostało postawione klarownie, wzbudzają osoby, które wskazały Leandro Trossarda (odpowiednio 3 i 4 w I oraz II grupie). Zarówno podejście do zadania w sposób adekwatny, czyli odczytanie danych z wykresu z użyciem osi, jak też podejście do zadania w sposób "wzrokowy", czyli porównanie wielkości słupków, nie powinny wiązać się z udzieleniem tejże odpowiedzi.

Głównym wnioskiem płynącym z eksperymentu jest istotność dbałości o osie wykresów. Tworząc diagramy kolumnowe należy zadbać o spójność skali na powiązanych ze sobą wykresach oraz starać się zachowywać odpowiednie proporcje między słupkami, ustalając wartość 0 jako granicę osi. Wtedy znacząco zwiększymy szanse na to, że nawet nieuważne oko poprawnie odczyta dane z wykresu.