GATE 2023 - EC 50

EE23BTECH11220 - R.V.S.S Varun

QUESTION

Let $x_1(t)$ and $x_2(t)$ be two band-limited signals having bandwidth B = $4\pi \times 10^3$ rad/s each. In the figure below, the Nyquist sampling frequency, in rad/s, required to sample y(t), is $\cos(4\pi \times 10^3 t)$

- (a) $20\pi \times 10^3$
- (b) $40\pi \times 10^3$
- (c) $8\pi \times 10^3$
- (*d*) $32\pi \times 10^3$

(GATE EC 50) From question figure,

$$y(t) = x_1(t) \times cos(4\pi \times 10^3 t) + x_2(t) \times cos(12\pi \times 10^3 t)$$
 (1)

Symbol	Description	Value
f_1	Frequency of $\cos(4\pi \times 10^3)$	2×10^{3}
f_2	Frequency of $\cos(12\pi \times 10^3)$	6×10^{3}
f_m	Maximum frequency of the output signal	-
ω_m	-	$2\pi f_m$
ω_s	Nyquist sampling rate	$2\omega_m$
TABLE 0		

TABLE OF PARAMETERS

$$y(t) = y_1(t) + y_2(t)$$
 (2)

$$Y(f) = Y_1(f) + Y_2(f)$$
 (3)

$$Y_1(f) = X_1(f) * \frac{1}{2} [\delta(f - f_1) + \delta(f + f_1)]$$
 (4)

$$= \frac{1}{2} [X_1 (f - f_1) + X_1 (f + f_1)]$$
 (5)

$$Y_{2}(f) = X_{2}(f) * \frac{1}{2} [\delta(f - f_{2}) + \delta(f + f_{2})]$$

$$= \frac{1}{2} [X_{2}(f - f_{2}) + X_{2}(f + f_{2})]$$
(6)
(7)

From (3):

From table,

$$\omega_m = 16\pi \times 10^3 rad/sec. \tag{8}$$

$$\omega_s = 2\omega_m = 32\pi \times 10^3 rad/sec. \tag{9}$$