

Penyelesaian SPL menggunakan Metode Gauss Seidel

Program Studi: Teknik Informatika 2024/2025

Metode Gauss Seidel

Pada metode ini, nilai hasil perhitungan pada baris awal langsung digunakan untuk perhitungan nilai selanjutnya di dalam iterasi. Oleh sebab itu konvergensi akan tercapai lebih cepat. Jika diketahui persamaan lanjar:

Metode Gauss Seidel

Berikan nilai awal dari setiap x_i (i=1 s/d n) kemudian persamaan lanjar di atas dituliskan menjadi :

$$x_{1} = \frac{1}{a_{11}} (b_{1} - a_{12}x_{2} - a_{13}x_{3} - \dots - a_{1n}x_{n})$$

$$x_{2} = \frac{1}{a_{2}} (b_{2} - a_{21}x_{1} - a_{23}x_{3} - \dots - a_{2n}x_{n})$$

$$x_n = \frac{1}{a_{nn}} (b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{nn-1}x_{n-1})$$

Proses iterasi dihentikan bila selisih nilai x_i ($i=1\,$ s/d n) dengan nilai x_i pada iterasi sebelumnya kurang dari (mendekati) nilai toleransi error yang ditentukan.

Algoritma Gauss Seidel

- 1. Nyatakan matriks *A*, dan vektor *B* dan *n* sebagai ukuran / dimensinya
- 2. Buat batas iterasi maksimum yaitu max
- 3. Buat toleransi error ε
- 4. Buat nilai awal dari x_i , pada i = 1, ..., n
- 5. Simpan x_i dalam s_i , pada i = 1, ..., n
- 6. Pada i = 1, ..., n hitung $x_i = \frac{1}{a_{i,i}} \left(b_i \sum_{j \neq i} a_{i,j} x_j \right)$ dan $e_i = \left| x_i s_i \right|$
- 7. Ubah nilai iterasi dengan iterasi ← iterasi + 1
- 8. Jika iterasi sudah mendekati angka error atau n yang telah ditentukan, maka hentikan proses iterasi dan hasilnya adalah x_i pada i = 1 s/d n. Jika tidak, maka ulangi langkah (5)

Contoh:

$$2x_1 + x_2 = 10$$
$$x_1 + 4x_2 = 12$$

Carilah penyelesaian sistem persamaan lanjar berikut dengan nilai awal $x_1 = 1$ dan $x_2 = 1$ dengan error $\varepsilon = 0.0002$!

$$x_1 = (10 - x_2)/2$$

Buatlah persamaan diatas menjadi : $x_2 = (12 - x_1)/4$

(1)
$$x_1 = (10-1)/2 = 4.5$$
$$x_2 = \frac{1}{4}(12-4.5) = 1.875$$

$$x_1 = (10 - 1.875) / 2 = 4.0625$$

(2)
$$x_2 = \frac{1}{4}(12 - 4.0625) = 1.984375$$

(3)
$$x_1 = (10 - 1.984)/2 = 4.008$$

 $x_2 = \frac{1}{4}(12 - 4.008) = 1.998$

$$x_1 = (10 - 1.998) / 2 = 4.001$$

(4)
$$x_1 = (10 - 1.998) / 2 = 4.001$$
$$x_2 = \frac{1}{4} (12 - 4.001) = 1.99975$$

(5)
$$x_1 = \frac{(10 - 1.99975)}{2} = \frac{4.000125}{4.000125}$$
$$x_2 = \frac{1}{4} (12 - 4.000125) = 1.9999687$$

(6)
$$x_1 = (10 - 1.9999687)/2 = 4.000016$$
$$x_2 = \frac{1}{4}(12 - 4.000016) = 1.999996$$

Kesimpulan:

Terlihat bahwa nilai x_1 menuju nilai 4 dan x_2 menuju nilai 2.

Latihan Soal Gauss Seidel

1. Selesaikan sistem persamaan linear berikut dengan menggunakan metode Gauss Seidel dengan nilai awal x=2; y=2; z=1 dan nilai error $\varepsilon=0.01!$

$$2x - y + z = 10$$

$$x + 2y + z = 20$$

$$2x + y - 4z = 15$$

2. Selesaikan SPL berikut dengan metode iterasi Gauss Seidel dengan nilai awal x = y = z = 0!

$$10x - 5y - 2z = 3$$

$$4x - 10y + 3z = -3$$

$$x + 6y + 10z = 3$$

*Catatan: Selesaikan Latihan soal diatas menggunakan Excel