

Evaluacion final - Escenario 8 Primer Bloque- Teorico Elementos EN Teoria DE Computacion-[Grupo B01]

Elementos de Teoría de la Computación (Politécnico Grancolombiano)

Evaluacion final - Escenario 8

Fecha de entrega 14 de mayo en 23:55

Puntos 125

Preguntas 20

Disponible 8 de mayo en 0:00 - 14 de mayo en 23:55 7 días

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE,

quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningun inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- 4. Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- 6. El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- 7. Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- 10. Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- 11. Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades
- 12. Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

¡Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica! Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Volver a realizar el examen

Historial de intentos

	Intento	Hora	Puntaje
MÁS RECIENTE	Intento 1	8 minutos	118.75 de 125

1 Las respuestas correctas ya no están disponibles.

Puntaje para este intento: 118.75 de 125

Entregado el 10 de mayo en 19:09

Este intento tuvo una duración de 8 minutos.

Pregunta 1	6.25 / 6.25 pts
Estimación de números primos.	
¿Cuál es la cantidad apróximada de números prir iguales a 342243?	mos menores o
© 26856	
O 231132	
7880	
25565	

Pregunta 2	6.25 / 6.25 pts
Sobre la solución de la congruencia lineal	
$3x \equiv 5 \mod 14$	
es correcto afirmar:	

 $x \equiv 11 \mod 14$ $x \equiv 2 \mod 14$ $x \equiv 12 \mod 14$ $0 x \equiv 10 \mod 14$

Pregunta 3	6.25 / 6.25 pts
El inverso de	
$12 \mod 25$	
es:	
■ 23 mod 25	
\circ 2 mod 25	
\circ $-12 \mod 25$	
0 8 mod 25	

Pregunta 4

6.25 / 6.25 pts

Si se sabe que

$$11 \equiv x \mod 12$$

, entonces es correcto afirmar:

$$x^2 \equiv 0 \mod 12$$

$$3x - 1 \equiv 7 \mod 12$$

$$(x+1)^2 \equiv x \mod 12$$

Pregunta 5

6.25 / 6.25 pts

Sobre el conjunto

 $\mathbb{Z}/11\mathbb{Z}$

es correcto afirmar:

$$a^{10} \equiv 1 \mod 11$$

para todo

$$aot \equiv 0 \mod 11$$

Existe un elemento no nulo de

$$\mathbb{Z}/11\mathbb{Z}$$

que no tiene inverso.

La ecuación

$$ax \equiv 1 \mod 11$$

no tiene solución para

$$a \in \mathbb{Z}/11\mathbb{Z}$$

ono nulo.

Existen infinitos elementos en

 $\mathbb{Z}/11\mathbb{Z}$

Pregunta 6

6.25 / 6.25 pts

Si

$$7a \equiv 3 \mod 12$$

es correcto afirmar:

 $a^2 + 36 \equiv 9 \mod 12$

$$0.7a + 12 \equiv 15 \mod 12$$

$$9a \equiv 15 \mod 60$$

$$\bigcirc \ a^2 + 1 \equiv 9 \mod 12$$

Pregunta 7

6.25 / 6.25 pts

Si se sabe que

$$13 \equiv x \mod 14$$

, entonces es correcto afirmar:

$$x^2 + x \equiv 1 \mod 14$$

$$x^2 \equiv 0 \mod 14$$

$$0 3x - 1 \equiv 7 \mod 14$$

$$(x+1)^2 \equiv x-13 \mod 14$$

Pregunta 8

6.25 / 6.25 pts

Si

$$7x \equiv 4 \mod 13$$

, entonces es correcto afirmar:

$$4x \equiv 6 \mod 13$$

$$\bigcirc$$
 $2x \equiv 6 \mod 13$

$$-x \equiv 8 \mod 13$$

$$2x + 1 \equiv 7x - 1 \mod 13$$

Pregunta 9

6.25 / 6.25 pts

Si se sabe que

$$mcd(a,b)=12$$

У

$$mcm(a,b) = 36$$

, entonces es correcto afirmar:

$$left |ab|=432$$

\circ a $>$	· b	
○ 12 <i>n</i>	nid(a+b)	
	id72	

Pregunta 10		6.25 / 6.25 pts
Al calcular		
	$5^{1001} \mod 3$	
se obtiene:		
2		
O 0		
O 1		
O -2		

No tiene solución.

Su solución existe dado que

$$d = mcd(12, 18)$$

divide a

16

.

La solución es

$$x \equiv 2 \mod 18$$

.

Su solución es

$$x = \frac{4}{3}$$

.

Pregunta 12

6.25 / 6.25 pts

Sobre el número

16 $\mod 18$

es correcto afirmar:

- No tiene inverso, módulo 18.
- Su cuadrado es congruente con 3.
- Su opuesto es congruente con 3.

Si $\mod 18$ $c \equiv 16$, entonces el residuo de dividir \mathcal{C} entre 18 es 2.

Pregunta 13		6.25 / 6.25 pts
	mcd(4,8)	
es:		
4		
O 8		
O 2		
O 6		

6.25 / 6.25 pts Pregunta 14 Para determinar si un número nes primo se debe:

Comprobar que para todo

m

entero, con

, se tiene que

mmidn

Comprobar que para todo

m

entero, con

, se tiene que

mmidn

Comprobar que

nmidm

para todo entero

Comprobar que

n

ono es un número par.

Pregunta 15

6.25 / 6.25 pts

Si

$$a = 2^3 5^2 7^3$$

У

$$b = 2^4 7^2 11^3$$

, entonces es correcto afirmar:

$$mcd(a,b) = 2^37^2$$

у

$$mcm(a,b) = 2^45^27^311^3$$

$$mcd(a,b) = 2^37^2$$

У

$$mcm(a,b) = 2^47^3$$

$$mcd(a,b) = 2^35^27^2$$

У

$$mcm(a,b) = 2^45^27^311^3$$

$$mcd(a,b) = 2^35^27^2$$

У

$$mcm(a,b) = 2^47^311^3$$

Pregunta 16	6.25 / 6.25 pts
Estimación de números primos. ¿Cuál es la cantidad apróximada de número iguales a 324423?	os primos menores o
© 25565	
O 213312	
○ 7880	
O 26055	

Pregunta 17

6.25 / 6.25 pts

Si se sabe que

$$mcd(a,b)=7$$

con

, entonces es correcto afirmar:

left 7 | mcm(a,b)

a < 7

$$0 7 | (3a+b+9)$$

Si

 $d \mid a$

 $d \div b$

, entonces

0 d > 7

Pregunta 18

6.25 / 6.25 pts

Si

$$5 \mid 11x$$

, entonces es correcto afirmar:

 \circ 5 | x

$$011x = 5$$

$$\circ$$
 5 | $(11x - 11)$

$$5 \div 11x$$

es un número entero.

Incorrecto

Pregunta 19	0 / 6.25 pts
Solucionar el módulo usando el Teorema de Fermat.	
¿Cuál es resultado de	
$315^{61} \mod \ 13$	
?	
3	
O 1	
O 315	
0	

Pregunta 20	6.25 / 6.25 pts
Si	
	$\delta \mid x$
y 14	$0 \mid m$
	$2\mid x$
, entonces es correcto afirmar:	
left 60 x	
'	
	Oh Deer ee

\circ 7 x	
5 12	

Puntaje del examen: **118.75** de 125

×