Terceira Lista de Preparação para a XLVIII IMO e XXII Olimpíada Ibero-americana de Matemática

Nível III

▶PROBLEMA 1

Seja N>1 e sejam $\alpha_1,\alpha_2,\ldots,\alpha_N$ números reais não negativos cuja soma é no máximo 500. Prove que existe um inteiro $k\geqslant 1$ e inteiros $1=n_0< n_1<\ldots< n_k=N$ tais que

$$\sum_{i=1}^{k} n_i a_{n_{i-1}} < 2007$$

▶PROBLEMA 2

Esmeralda constrói uma pilha sobrepondo camadas de dimensões 10×11 formadas por 55 dominós, cada um de dimensões 2×1 . A pilha é rígida, ou seja, cada ponto da base da pilha está coberto por algum dominó em alguma camada, com exceção dos vértices do quadriculado 10×11 . Qual é a menor quantidade de camadas que Esmeralda precisa fazer para construir uma pilha rígida?

▶PROBLEMA 3

Seja k um inteiro positivo e n=4k+1. Seja A o conjunto dos números da forma x^2+ny^2 , sendo x e y inteiros. Prove que existem inteiros x e y tais que $x^n+y^n\in A$ e $x+y\notin A$.

▶PROBLEMA 4

Seja x_1, x_2, x_3, \ldots a seqüência definida por

$$x_1 = 1$$
 e $x_{n+1} = x_n + \frac{1}{2x_n}, n \geqslant 1$

Prove que

$$0\leqslant x_n-\sqrt{n}<\frac{1}{8\sqrt{n}}H_n,$$

sendo

$$H_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$$

▶PROBLEMA 5

Seja ABC um triângulo acutângulo com AB \neq AC. Seja D a interseção de BC e da altura de ABC relativa a A e Γ o circuncírculo do triângulo ABC. Sejam Γ_1 o círculo tangente aos segmentos AD e BD e a Γ e Γ_2 o círculo tangente aos segmentos AD e CD e a Γ . Seja ℓ a tangente comum interna a Γ_1 e Γ_2 que não é AD.

Prove que ℓ passa pelo ponto médio de BC se, e somente se, 2BC = AB + AC.

▶PROBLEMA 6

Dado um inteiro positivo a, seja S_a o conjunto dos primos satisfazendo a seguinte condição: Para qualquer $p \in S_a$, existe um inteiro ímpar b tal que $(2^{2^a})^b - 1$ é divisível por p.

Prove que, para todo inteiro positivo a, existem infinitos primos que não pertencem a S_a .

▶PROBLEMA 7

No hexágono convexo ABCDEF, os três triângulos ABC, CDE e EFA são semelhantes. Isto é:

$$\angle BAC = \angle DCE = \angle FEA$$
 e $\angle BCA = \angle DEC = \angle FAE$.

Encontre condições sobre os três triângulos de tal modo que valha a seguinte equivalência:

△ACE é um triângulo equilátero se, e somente se, △BDF é um triângulo equilátero

▶PROBLEMA 8

Considere n pontos no plano de modo que não haja três alinhados. Todo subconjunto E destes pontos que forma um polígono convexo sem pontos em seu interior é chamado conjunto polido. Denote c_k o número de conjuntos polidos formados por exatamente k pontos. Mostre que a seguinte soma depende de n, mas não depende da configuração dos pontos:

$$\sum_{i=3}^{n} (-1)^i c_i$$