

Intelligent Thresholding

Alban Siffer November 20, 2018

CONTENTS

Context

Providing better thresholds

Finding anomalies in streams

Application to intrusion detection

In a nutshell

Context

→ Massive usage of the Internet

- → Massive usage of the Internet
 - More and more vulnerabilities

Hackers Infect Over 200,000 MikroTik Routers With Crypto Mining Malware

- → Massive usage of the Internet
 - · More and more vulnerabilities
 - · More and more threats

Hackers Infect Over 200,000 MikroTik Routers With Crypto Mining Malware

- → Massive usage of the Internet
 - More and more vulnerabilities
 - · More and more threats
- → Awareness of the sensitive data and infrastructures

Hackers Infect Over 200,000 MikroTik Routers With Crypto Mining Malware

- → Massive usage of the Internet
 - More and more vulnerabilities
 - · More and more threats
- → Awareness of the sensitive data and infrastructures
- Network security :a major concern

A SOLUTION

- → IDS (Intrusion Detection System)
 - Monitor traffic
 - Detect attacks

A SOLUTION

- → IDS (Intrusion Detection System)
 - · Monitor traffic
 - Detect attacks
- Current methods : rule-based
 - · Work fine on common and well-known attacks
 - · Cannot detect new attacks

A SOLUTION

- → IDS (Intrusion Detection System)
 - Monitor traffic
 - Detect attacks
- Current methods : rule-based
 - · Work fine on common and well-known attacks
 - · Cannot detect new attacks
- → Emerging methods : anomaly-based
 - · Use the network data to estimate a normal behavior
 - · Apply algorithms to detect abnormal events (\rightarrow attacks)

OVERVIEW

- Overall design machine learning/data mining techniques for intrusion detection

OVERVIEW

- Overall design machine learning/data mining techniques for intrusion detection

→ All "standard" algorithms have been tested ...

OVERVIEW

- Overall design machine learning/data mining techniques for intrusion detection

- → All "standard" algorithms have been tested ...
- \multimap ... mostly on KDD99 dataset
 - not really representative
 - encourage supervised algorithms

BEHIND MAGIC

- → Algorithms are not magic
 - They give some information about data (scores)

BEHIND MAGIC

- → Algorithms are not magic
 - They give some information about data (scores)
 - · But the decision often rely on a human choice

BEHIND MAGIC

- → Algorithms are not magic
 - They give some information about data (scores)
 - · But the decision often rely on a human choice

 \multimap Two points are often not tackled

- → Two points are often not tackled
 - · How to set the threshold?
 - · What does this threshold mean?

- → Two points are often not tackled
 - · How to set the threshold?
 - · What does this threshold mean?
- → Common approaches to set it

- → Two points are often not tackled
 - · How to set the threshold?
 - · What does this threshold mean?
- → Common approaches to set it

- → Two points are often not tackled
 - · How to set the threshold?
 - · What does this threshold mean?
- → Common approaches to set it

RECENT EXAMPLES

- GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training ¹
 → Hard-coded
- Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications 2 \rightarrow Hard-coded
- — Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection ³
 → Distribution assumption (log-normal)

¹Akcay, Samet, Amir Atapour-Abarghouei, and Toby P. Breckon. arXiv preprint (2018)

²Xu, Haowen, et al. Proceedings of the 2018 World Wide Web Conference on World Wide Web

³Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai (NDSS'18)

Providing better thresholds

MY PROBLEM

MY PROBLEM

→ How to set z_q such that $\mathbb{P}(X \in z_q) < q$?

SOLUTION 1: EMPIRICAL APPROACH

SOLUTION 1: EMPIRICAL APPROACH

SOLUTION 1: EMPIRICAL APPROACH

→ Drawbacks: stuck in the interval, poor resolution

→ Drawbacks: manual step, distribution assumption

REALITIES

REALITIES

→ Different behaviours, temporal drift

RESULTS

PROPERTIES	Empirical quantile	Standard model
statistical guarantees	Yes	Yes
easy to adapt	Yes	No
high resolution	No	Yes

INSPECTION OF EXTREME EVENTS

INSPECTION OF EXTREME EVENTS

EXTREME VALUE THEORY

EXTREME VALUE THEORY

→ Main result (Fisher-Tippett-Gnedenko, 1928)

The extreme values of any distribution have nearly the same distribution (called Extreme Value Distribution)

EXTREME VALUE THEORY

→ Main result (Fisher-Tippett-Gnedenko, 1928)

The extreme values of any distribution have nearly the same distribution (called Extreme Value Distribution)

 \multimap Get some data $X_1, X_2 ... X_n$

- \multimap Get some data $X_1, X_2 ... X_n$
- \multimap Estimate the most appropriate tail

- \multimap Get some data $X_1, X_2 ... X_n$
- → Estimate the most appropriate tail
- \multimap Compute z_q such as $\mathbb{P}(X > z_q) < q$

- \multimap Get some data $X_1, X_2 ... X_n$
- → Estimate the most appropriate tail
- \multimap Compute z_q such as $\mathbb{P}(X > z_q) < q$

Finding anomalies in streams

(initial batch)

 $X_1, X_2 \dots X_n$

(stream)
$$X_{i>n}$$

Application to intrusion detection

ABOUT THE DATA

 $\multimap\,$ Lack of relevant public datasets to test the algorithms ...

ABOUT THE DATA

- → Lack of relevant public datasets to test the algorithms ...
- \multimap KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]

ABOUT THE DATA

- → Lack of relevant public datasets to test the algorithms ...
- → KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]
- → We rather use MAWI¹
 - 15 min a day of real traffic (.pcap file)
 - Anomaly patterns given by the MAWILab [Fontugne *et al.* 2010] with taxonomy [Mazel et al. 2014]

¹http://www.fukuda-lab.org/mawilab/

AN EXAMPLE TO DETECT NETWORK SYN SCAN

─ The ratio of SYN packets : relevant feature to detect network scan [Fernandes & Owezarski 2009]

AN EXAMPLE TO DETECT NETWORK SYN SCAN

─ The ratio of SYN packets : relevant feature to detect network scan [Fernandes & Owezarski 2009]

AN EXAMPLE TO DETECT NETWORK SYN SCAN

─ The ratio of SYN packets : relevant feature to detect network scan [Fernandes & Owezarski 2009]

→ Goal: find peaks

SPOT RESULTS

 \rightarrow Parameters : $q = 10^{-4}, n = 2000$ (from the previous day record)

SPOT RESULTS

 \rightarrow Parameters : $q = 10^{-4}, n = 2000$ (from the previous day record)

Do we really flag scan attacks?

 \multimap The main parameter q: a False Positive regulator

DO WE REALLY FLAG SCAN ATTACKS?

 \rightarrow The main parameter q: a False Positive regulator

DO WE REALLY FLAG SCAN ATTACKS?

 \rightarrow The main parameter q: a False Positive regulator

→ 86% of scan flows detected with less than 4% of FP

In a nutshell

SPOT SPECIFICATIONS FOR AUTOMATIC THRESHOLDING

- \rightarrow A single main parameter q
 - With a probabilistic meaning $\to \mathbb{P}(X > z_q) < q$
 - False Positive regulator

SPOT SPECIFICATIONS FOR AUTOMATIC THRESHOLDING

- \rightarrow A single main parameter q
 - With a probabilistic meaning $\to \mathbb{P}(X > z_q) < q$
 - · False Positive regulator
- → Stream capable
 - Incremental learning
 - Online detection
 - Fast (current C++ library: libspot, >100000 values/s)
 - Low memory usage (only the excesses)

SPOT SPECIFICATIONS FOR AUTOMATIC THRESHOLDING

- → A single main parameter q
 - With a probabilistic meaning $\to \mathbb{P}(X > z_q) < q$
 - False Positive regulator
- → Stream capable
 - · Incremental learning
 - · Online detection
 - Fast (current C++ library: libspot, >100000 values/s)
 - · Low memory usage (only the excesses)
- → Wide number of applications
 - Back-end of scoring methods
 - \cdot drifting contexts (with an additional parameter) o DSPOT

 <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms

- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- Problem: Decision thresholds rely on either distribution assumption or expertise

- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- → <u>Problem</u>: Decision thresholds rely on either distribution assumption or expertise
- → <u>Our solution</u>: Building dynamic threshold with a probabilistic meaning

- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- Problem: Decision thresholds rely on either distribution assumption or expertise
- → <u>Our solution</u>: Building dynamic threshold with a probabilistic meaning
 - Application to detect network anomalies

- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- Problem: Decision thresholds rely on either distribution assumption or expertise
- Our solution: Building dynamic threshold with a probabilistic meaning
 - Application to detect network anomalies
 - · But a general tool to monitor online time series in a blind way