Probabilistic Models for PDEs with Random Coefficients

Birds-Eye View

Extraction Well

Critical Location

Injection We

Aleksei G. Sorokin 1,2 Aleksandra Pachalieva 1 Dan O'Malley 1 Mac Hyman 1 Fred J. Hickernell 2

Nick Hengartner¹

ILLINOIS INSTITUTE OF TECHNOLOGY

¹LANL. ²Illinois Institute of Technology, Department of Applied Mathematics. LA-UR 23-28107

Subsurface Diagram

Darcy's Equation

 $\nabla \cdot (G(x) \cdot \nabla p(E, G, x)) = f(E, x)$ models pressure in porous media

- G(x) a random Gaussian permeability field
- p(x) the **random** pressure solution

Following [4], we model the *flow rate* as

$$f(x, E) = \begin{cases} I, & x = x_{\text{injection}} \\ -E, & x = x_{\text{extraction}} \end{cases}.$$

- I, the fixed injection rate
- E, the variable extraction rate

Problem Outline

- Given critical location x_{critical} e.g. fault line
- Given pressure threshold \bar{p} at the critical location
- $p^c(E,G) := p(E,G,x_{\text{critical}})$, the critical pressure

Want **online** choice of smallest E which gives high confidence

$$P(p^c(E,G) \leq \bar{p})$$

in keeping low enough pressure at the critical location Challenges

- Must approximate $P(p^c(E,G) \leq \bar{p})$ for many different E values
- Approximating $P(p^c(E,G) \leq \bar{p})$ requires many samples of G(x)

Numerical Solution $p_{s,d}^c(E, \mathbf{Z})$

s, KL Dimension: $G(x) \approx \sum_{j=1}^{s} \sqrt{\lambda_j} Z_j \varphi_j(x)$ and $\mathbf{Z} \sim \mathcal{N}(0, I_s)$

d, Discretization Dimension: Mesh width 1/d in each physical dimension

Don't Approximate $P(p^c(E,G) \leq \bar{p})$ by $P(p^c_{s,d}(E,\mathbf{Z}) \leq \bar{p})$

- Estimating $P(p_{s,d}^c(E, \mathbf{Z}) \leq \bar{p})$ for many E requires large number of \mathbf{Z} samples
- Numerical solutions of $p_{s,d}^c(E, \mathbf{Z})$ are too expensive to compute online
- $P(p_{s,d}^c(E, \mathbf{Z}) \leq \bar{p}) \neq P(p^c(E, G) \leq \bar{p})$ generally

Use Data $\{p_{s,d}^c(E_i, \mathbf{Z}_i)\}_{i=1}^n$ to Build a Model for $p^c(E, G)$

- Can choose sampling nodes $(E_i, \mathbf{Z}_i)_{i=1}^n$ to explore the space well
- Numerical solutions $\{p_{s,d}^c(E_i, \mathbf{Z}_i)\}_{i=1}^n$ can be computed offline
- Surrogate model can be fit offline and evaluated quickly online
- \therefore Inexpensive to estimate confidence $P(p^c(E,G) \leq \bar{p})$ online using surrogate

Gaussian Processes as Probabilistic Surrogates for p_c

Assume $p_{s,d}^c = p^c + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \zeta_{s,d})$ numerical solution = solution + Gaussian noise

solution p^c , numerical solutions, approximate solution, uncertainty in solution

Structuring Nodes and Kernel Enables $O(n \log n)$ GP Scaling

- Want GP fit to large number of samples nodes e.g. n > 10,000
- Classic GPs cost $\mathcal{O}(n^3)$ to fit
- Quasi-random nodes with matching kernels produces nice kernel matrices [2, 3]
- Solving systems with these nice kernel matrices costs $\mathcal{O}(n \log n)$
- \mathcal{C} Can construct GPs with $\mathcal{O}(n \log n)$ cost when we have control over nodes

Calibrate GP Noise Variance $\zeta_{s,d}$ to Match Numerical Error

- Approximate upper bound $\zeta_{s,d}$ by tracking convergence as fidelity increases
- Decrease $\zeta_{s,d}$ starting at $\zeta_{s,d}$ to optimize Gaussian process likelihood
- Hyperparameter optimization also costs $\mathcal{O}(n \log n)$ for specially structured GPs

Estimate $P(p^c(E,G) \leq \bar{p})$ Online with Gaussian Process Surrogate

Takeaways

We fit a Probabilistic Model to a PDE with Random Coefficients

- Efficient GP construction in $\mathcal{O}(n \log n)$ instead of $\mathcal{O}(n^3)$ cost
- Error Aware GP noise calibrated to numerical error
- **Transferable** to other PDEs with random coefficients

References

- DPFEHM: A Differentiable Subsurface Physics Simulator. URL: https://github.com/OrchardLANL/DPFEHM.jl.
- [2] R. Jagadeeswaran and Fred J. Hickernell. "Fast automatic Bayesian cubature using lattice sampling". In: Statistics and Computing 29.6 (2019), pp. 1215–1229. ISSN: 1573-1375. DOI: 10.1007/s11222-019-09895-9. URL: http://dx.doi.org/10.1007/s11222-019-09895-9.
- Rathinavel Jagadeeswaran and Fred J Hickernell. "Fast Automatic Bayesian Cubature Using Sobol Sampling". In: Advances in Modeling and Simulation: Festschrift for Pierre L'Ecuyer. Springer, 2022, pp. 301–318.
- Aleksandra Pachalieva et al. "Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management". In: Scientific Reports 12.1 (2022), p. 18734.