MINIS NOT REGISERANTE

Plan

2

Radiographie

- Principe
- Source Gamma
- Qualité et position des I.Q.I
- Identification des films
- Technique de prise de vues
- Temps de pose
- Traitement du film
- Volet pratique (O.C.P)
- Conclusion

Principe

Source Gamma

Activité de source

loi de décroissance de l'activité est du type

$$A = A_0 e^{-kt}$$

1 Ci =
$$3,7.10^{10}$$
 Bq

Radioélément		Pério de
Iridium 192	¹⁹² Ir	74 jours
Cobalt 60	⁶⁰ Co	5,27 ans
Césium 137	¹³⁷ Cs	30 ans
Thulium 170	¹⁷⁰ Tm	127 jours

Principaux radioéléments utilisés

Présentation de la source

Capsule

Porte source

Composition de l'appareil de gammagraphie

Collimateur

le projecteur

La télécommande

La gaine d'éjection

Collimateur:
aide à diminuer
des
rayonnements

1-Càble de téléco
2-Gaine de téléco
3-Verrou de porte
4-Bouchon de tra
5-signalisation à
6-Porte source
7-Massif de prote

La gaine d'éjec conduit sou destiné à guic porte sour

COLLIMATEUR

Position de l'IQI Q.I IQI 5 mm mm Film οσιστια ποππο παπφαιοσ 12,5 mm à 50 mm Indicateurs de qualité d'image à gradins de forme hexagonale Indicateur rect

Identification des films

Technique de prise de vues

Technique de panoramique

Temps de pose

Traitement du film

Volet pratique

CHAUDIERE

Vapeur **SCH 80**

11.60 mm

219.10 mm (8 pouces)

Chaudière

Procédure de contrôle

1-Balisage

la constante spécifique du radioélément correspondant au débit de dose à 1m

la distance entre la limite

de zone et la source radioactive

ZONE CONTROLEE

D = 75 m

le débit de dose maximal admissible en limites de zones

-Interdite : 25 µSv/h

-Contrôlée : 7,5 µSv/h

-Surveillée : 2,5 µSv/h

ge

2-Nomenclature

Préparation de nomenclature avec des chiffres et des lettres en Plomb

3-Identification

Identification des soudures

Construire le repère puis le collé sur le film

Film

5- I.Q.I

Choisir l'IQI convenable à la soudure

IQI: 10 ISO 16 (Ep = 12 mm)

6 - Référence

Cette étape consiste à marquer sur la soudure une référence (le zéro) qui indique le point de départ et le sens de placement des films

7 - bande chiffrée

La mise en place de la 'bande chiffrée' qu'on place en dessus de la soudure de tel sorte que le début de la bande soit au même niveau que la référence

8 – Position du film

Placement du film (40×10 cm) sur la soudure et la bande chiffrée, puis on décale le film par 5 cm par rapport à la référence c'est ce qu'on l'appelle <u>'le recouvrement'</u>, et cette opération se répète à chaque placement du film

9 – Embout de la source

Placement de l'embout de la source de tel sorte qu'il soit de l'autre côté de la soudure et en face avec elle juste au milieu, cette méthode on l'appelle <u>'tirage par contact'</u>

10 – Temps de pose

calcule de temps de pose pour s'y faire on utilise la règle

Graduation du temps

Graduation distance film-source

Graduation d'activité de source

de t = 2,5 min

Graduation l'épaisseur

11 – Source en marche

mettre la source en marche tout en l'ouvrant avec l'obturateur puis on tournant la télécommande 13 tours

Traitement des films

Le traitement des films s'est déroulé dans les conditions opératoires suivantes

- Température = entre 18° et 24°
- Durée de la révélation = 5 min
- Durée de rinçage = 2 à 4 min
- Durée de fixation = 20 min
- Durée de lavage = 5 à 10 min

Interprétation

L'interprétation est confiée à un technicien compétant ayant une expérience dans ce domaine et suivant des normes

Les défauts

Après l'interprétation on a trouvé les défauts suivants

Mauvaise reprise

Mynangueledeépuétration

Conclusion

Le contrôle par radiographie reste toujours l'un des plus favoris comme méthode de contrôle car il présente les avantages suivants :

- -Contrôle volumique
- -Archivage des images
- -Interprétation plus facile que pour les

Ultrasons

-Bonne définition des défauts

Mais malgré les avantages que présente la radiographie, il y a des inconvénients

- -Coûts élevés des contrôles
- -Pénétration limitée
- -Pas de localisation en profondeur
- -Radioprotection
- -Interprétation difficile