杭州市酸雨污染现状及成因分析

林丰妹, 焦 荔,盛 侃,吴意跃 (杭州市环境监测中心站,浙江 杭州 310007)

摘 要: 对杭州市 1998 年—2002 年的降水监测数据进行了统计分析。结果表明。2002 年杭州市区酸雨频率为73.6 %,降水 pH 均值为 4.68 临安酸雨频率高达 97.5%,降水 pH 均值为 4.04,其余几个县(市)降水酸度均< 5.60。杭州市有82.1% 面积属重酸雨区。指出,杭州市气象条件不利于大气中 SO_2 、 NO_3 的扩散,土壤扬尘不能对酸雨的形成起有效的缓冲作用,因此只有通过调整能源结构,从源头控制煤质(含硫量),严格控制机动车尾气污染,以减少 SO_2 、 NO_3 排放量。

关键词:酸雨;污染;成因;杭州市

中图分类号: X517

文献标识码:B

文章编号: 1006-2009(2004)03-0017-04

Acid Rain Pollution and Its Origin of Hangzhou

LIN Feng-mei, JIAO Li, SHENG Kan, WU Yi-yue (Hangzhou Environmental Monitoring Center, Hangzhou, Zhejiang 310007, China)

Abstract: Statistic was done for the precipitation monitoring data of Hangzhou from 1998 to 2002. In 2002, the frequency of acid rain was 73.6%, pH was 4.68. In Linan, the frequency was up to 97.5%, pH was 4.04. In other region, pH was less 5.60. There are 82.1% area of Hangzhou was heavy pollution area of acid rain. The meteorological condition of Hangzhou was bad for the dispersion of SO₂, NO_x in atmosphere. It must adjust energy structure, control the sulfur content in coal, and control the emission pollution of motor vehicle, to decrease the emission of SO₂, NO_x.

Key words: Acid rain; Ppollution; Origin; Hangzhou

杭州是我国著名的旅游城市,近年来,酸雨污染日趋严重,在国家环保总局《2001年度环境质量报告书》公布的酸雨污染的34个城市中,杭州市酸雨污染程度位居第五(前四位分别是河池地区、宁波、长沙、温州)。因此调查杭州市酸雨污染现状,分析其污染特征和成因,对管理部门采取对症的防治措施具有重要意义。

1 监测方法

杭州市下辖杭州市区和萧山市、余杭市、临安市、建德市、淳安县、富阳市、桐庐县等7个县(市)。 萧山和余杭于2002年划入杭州市区,为使监测数据具有可比性和连续性,2002年的监测数据是未划入前的统计结果。

共设降水监测点位 12 个,分别是:杭州市环境 监测中心站、浙江省环境监测中心站、留下、淳安环 境监测站、富阳气象站、富阳环境监测站、建德气象 站、临安环境监测站、桐庐环境监测站、高桥新村、 萧山环境监测站和余杭环境监测站。 按国家降水 监测的有关技术规定和要求, 逢雨必测 pH 值, SO_4^{2-} 、 NO_3^- 、 $C\Gamma$ 、 NH_4^+ 、 K^+ 、 Na^+ 、Ca、Ca 、 Mg^{2+} 项目每月监测一次。 样品的采集、运输、保存及实验室分析全过程质量保证参照《浙江省环境监测质量保证技术规范》执行。

2 监测结果

共采集降水样本总数 921 个,酸雨样本总数 675 个。监测结果表明,2002 年杭州市区酸雨频率为 73.6 %,降水 pH 均值为 4.68,临安酸雨频率达 97.5 %,降水 pH 均值为 4.04,其余几个县(市)降

收稿日期:2003-08-1;修订日期:2004-03-02

作者简介: 林丰妹(1976—), 女, 福建南平人, 工程师, 硕士, 从事环境监测工作。

水 pH 值均< 5.60。

酸雨污染程度等级见表 1。

表 1 酸雨污染程度等级

等级	质量状况	pH 均值	酸雨频率 f/%
I	非酸雨区	> 5.60	0~20
II	轻度酸雨区	5. 30 ~ 5. 60	10~40
III	中度酸雨区	5. 00 ~ 5. 30	30 ~ 60
IV	较重酸雨区	4. 70 ~ 5. 00	50 ~ 80
V	重酸雨区	< 4.70	70 ~ 100

根据表 1 及降水监测结果分析, 2002 年杭州市被酸雨区所覆盖。重酸雨区覆盖面积达13 625 km², 占全市总面积82.1 %, 这些地区为杭州市区、桐庐、淳安、余杭、临安、建德; 较重酸雨区(萧山)覆盖面积达1163 km², 占全市总面积7%;

富阳属中度酸雨区,占全市总面积10.9%。

3 污染特征

3.1 时间分布特征

1998年一2002年杭州市酸雨频率为 43.9% ~73.3%,呈逐年上升趋势。杭州市区和萧山的酸雨频率在 70.0%附近波动,临安酸雨频率一直处于较高水平,富阳的酸雨频率有所回落,其余县(市)的酸雨污染随着经济的发展而日趋严重。以建德和淳安为例,5年中建德酸雨频率从 28.7% 上升到 74.6%,淳安酸雨频率从 58.3%上升到 88.0%。

3.2 空间分布特征

1998年-2002年杭州市区及萧山等7县(市) 酸雨污染程度评价结果见表2。

由表 2 可见, 杭州市酸雨污染程度呈不断加重

表 2 1998 年-2002 年杭州市区及萧山等 7县(市)酸雨污染程度评价结果

年份	轻度酸雨区	中度酸雨区	较重酸雨区	重酸雨区
1998	_	萧山、富阳、建德	余杭、淳安	杭州市区、桐庐、临安
1999	建德	富阳	余杭、杭州市区、桐庐、淳安	萧山、临安
2000	_	余杭	萧山、富阳、建德	杭州市区、桐庐、临安、淳安
2001	_	_	萧山、富阳、余杭	杭州市区、桐庐、临安、建德、淳安
2002	_	富阳	萧山	杭州市区、桐庐、临安、余杭、淳安、建德

的趋势, 重酸雨区的面积在不断扩大, 从 1998 年的 5586.85 km^2 增至 2002 年的 13625 km^2 , 从 3 个县(市)增至 6 个。

杭州市区、桐庐、临安的酸雨污染一直较为严重,临安近 5 年的工业总产值和 SO_2 排放量分别为富阳和余杭的 70%和 60%左右,但酸雨频率却约为两者的 1. 9 倍。2001 年临安的 pH 年均值为 3. 18, 富阳为 4. 98, 余杭为 5. 01。

4 成因分析

4.1 降水化学成分

杭州市区和建德降水中阴、阳离子质量浓度值统计见表 3。

 SO_4^2 和 NO_3 是降水中阴离子的主要成分,两者质量浓度值占总阴离子质量浓度值的 90% 左右。降水酸度主要受 SO_4^{2-} 和 NO_3 前体物 SO_2 和 NO_X 的影响。1998 年—2002 年杭州市区 SO_4^{2-}

表 3 杭州市区和建德降水中阴、阳离子质量浓度值统计 ①

区域	年份	$\rho(A)/(mg^{\circ}L^{-1})$	ρ(B)/(mg°L ⁻¹)	ρ(A)/ρ(B)	ρ(C)/ρ(B)
杭州市区	1998	2. 41	4. 57	0. 53	0. 93
	1999	4. 29	8. 83	0.49	0.95
	2000	2. 51	4. 47	0. 56	0. 89
	2001	4.00	7. 65	0. 52	0.91
	2002	3.57	7. 92	0. 45	0.93
建德	1998	0. 68	5. 73	0. 12	0. 90
	1999	3. 11	7. 82	0.40	0.94
	2000	2. 50	8. 46	0.30	0.95
	2001	1.72	5. 41	0. 32	0. 94
	2002	1. 63	10. 26	0. 16	0. 94

① A 表示总阳离子; B 表示总阴离子; C 表示 SO_4^{2-} 和 NO_3^{-} .

与 NO_3 质量浓度比值为 3.74~2.33, 建德为3.21~4.50, SO_4 对降水酸性贡献值较 NO_3 大。

1998 年一2002 年,杭州市区和余杭降水中 $SO_4^{2^-}$ 与 NO_3^- 质量浓度比值呈下降趋势, $SO_4^{2^-}$ 对降水酸性的贡献值已渐渐变小。主要是由于杭州市 机 动 车 拥 有 量 逐 年 上 升(5 年 增 幅 达 392.8 %),导致 NO_x 排放量增加,降水中 NO_3^- 质量浓度值逐渐上升。建德 $SO_4^{2^-}$ 与 NO_3^- 质量浓度比值呈缓慢上升势头。

4.2 SO2排放量

燃煤和燃油是杭州市的主要工业能源,占全市总能源消耗量的 $31\% \sim 37\%$ 。煤和油燃烧产生的 SO_2 是导致"九五"期间降水呈酸性的主要因素,称之为"酸雨前体物"。1998 年-2002 年各地区 SO_2 排放量见表 4。

对杭州市区和萧山等 7县(市)1998年—2002年的 SO_2 排放量与酸雨频率、pH 值进行一元线性回归分析,采用 F 检验法(设置信度为 0.95)检验各相关系数的显著性。杭州市区和萧山等 7县(市) SO_2 排放量与酸雨频率、pH 值的相关性检验结果见表 5。

由表 5 可见,除淳安外,杭州市区和其余县 (市)SO₂ 排放量与酸雨频率、pH 值的相关性不显著。从而推测杭州市 SO₂ 排放量可能不是酸雨形成的主导因素。另据研究,上海市排入大气中的 SO₂ 会不断地向周边地区扩散,即所谓的"酸雨前体物中远距离传输"。冬春季节,在北到东北的主导风向下,对浙江省北部地区如杭州的酸雨形成产生叠加作用[1],外来酸雨前体物可能是造成酸雨污染的一个不可忽视的因素。这或许是为何近几年监测到的近地面(自动监测系统的高度约为 15 m ~ 20 m)空气中 SO₂ 含量逐渐下降,而酸雨污染却逐年加重的原因。

表 4 1998 年 - 2002 年各地区 SO₂ 排放量

表 4	1998 年—200	2 年各地区 SO_2 排放量
年份	地区	m (SO ₂)/ t
1998	杭州市区	45 687. 00
1999		36 453. 25
2000		34 631. 82
2001		66 138. 17
2002		26 101. 68
1998	余杭	14 522. 00
1999		11 820. 08
2000		7 584. 35
2001		7 277. 90
2002		8 240. 76
1998	萧山	27 720. 00
1999		40 496. 54
2000		27 766. 54
2001		30 237. 48
2002		30 872. 22
1998	淳安	1 513. 00
1999		1 255. 92
2000		1 116. 15
2001		835. 12
2002		713. 37
1998	桐庐	992. 00
1999		1 447. 36
2000		867. 83
2001		1 129. 58
2002		1 609. 22
1998	富阳	8 793. 00
1999		10 681. 50
2000		8 289. 70
2001		8 199. 71
2002		8 286. 51
1998	临安	6 843. 00
1999		6 889. 35
2000		6 620. 95
2001		4 817. 82
2002		7 245. 43

表 5 杭州市区和萧山等 7县(市)SO2 排放量与酸雨频率、pH 值的相关性检验结果

区域		杭州市区	余杭	萧山	桐庐	富阳	临安	建德	淳安
SO ₂ 排放量	相关系数	0. 472 2	0.3564	0. 735 1	0.536 8	0. 187 4	0.3804	0.692 5	0.908 7
与酸雨频率	显著性	不显著	不显著	不显著	不显著	不显著	不显著	不显著	显著
SO ₂ 排放量	相关系数	0. 701 6	0.037 4	0.6096	0. 103 9	0. 233 7	0.8107	0. 6012	0.6626
与 pH 值	显著性	不显著	不显著	不显著	不显著	不显著	不显著	不显著	不显著

4.3 气象条件

降水酸化是一个复杂的大气变化过程, 它不仅

与大气中致酸前体物含量有关,还与当地的气象条件有关。杭州市属亚热带季风气候区,城市上空大

气层结构稳定^[2],多年平均风速为2.02 m/s,静风频率为 $10 \% \sim 30 \%$,因此气象条件不利于大气中 $SO_2 \sim NO_x$ 的扩散,酸雨前体物在大气中停留时间长,容易产生酸沉降。

研究表明,杭州市区不同季节的大气稳定度有所不同,夏季A-C类出现频率较冬季高,E-F类较冬季低,春秋季介于中间。不同季节逆温现象差异十分明显,夏季大气层逆温频率低,强度弱,逆温层厚度小,冬季正好相反。因此,夏季扩散条件好于春秋两季,冬季最差。若不考虑春冬两季煤消耗量大等其他因素,春冬季扩散条件差是春、冬两季酸雨污染程度较夏、秋两季严重的一个重要的外因。

4.4 空气颗粒物的影响

空气颗粒物的酸碱性和化学性质对酸雨形成也起着重要的作用。有研究表明,虽然我国北方煤的消耗量远大于南方,但北方酸雨污染程度却轻于南方。主要原因是北方的土壤主要为碱性土壤,加之气候干燥,沙尘暴发生频繁,大气中飘浮的碱性颗粒对降水中的酸性成分有很强的中和作用,因此酸雨发生的频率大大降低^{2,3}。与北方相比,杭州市空气中总悬浮颗粒物浓度值较低,而且其土壤以水稻土为主,表层土壤的 pH 值约为 5.74, 土壤扬

尘不能对降水的酸化过程起有效的缓冲作用。

5 结语

2002年杭州市有82.1%面积属重酸雨区,且酸雨污染程度不断加重,重酸雨区覆盖面积不断扩大。1998年—2002年,除富阳和萧山外,其余县(市)酸雨频率则呈上升态势。

杭州市源排放的 $SO_2 \ NO_x$ 可能不是酸雨形成的主导因素, 外来的"酸雨前体物"高空传输作用不可忽视。杭州市气象条件不利于大气中 $SO_2 \ NO_x$ 的扩散, 土壤扬尘不能对酸雨的形成起有效的缓冲作用, 因此只有通过调整能源结构, 从源头控制煤质(含硫量), 严格控制机 动车尾气污染, 以减少 $SO_2 \ NO_x$ 排放量。

「参考文献

- [1] HUANG DF. Look at Environment Impacts of Regional Energy Consumption from acid Deposition [C]. WREC, 1996, 1086

 -1089.
- [2] 樊邦棠. 环境化学[M]. 浙江:浙江大学出版社, 1995.
- [3] TERADA H, WANG TF. Trend of acid rain and neutralization by yellow and in east Asia a numerical study [J]. Atmospheric Environment, 2002, 36: 503 - 509.

。简讯。

南水北调东线江苏段 2004 年 3 月水质状况

2004年3月,按照《地表水环境质量标准》(GB 3838-2002) III类标准进行评价(自该月起监测项目由5个改为6个),江苏省南水北调13个水质监控断面中,有7个断面水质符合III类标准。扬州三垛西大桥、淮安老山乡和五叉河口、徐州单集闸等4个断面水质为劣V类,超III类标准的项目为高锰酸盐指数、五日生化需氧量、氨氮和石油类;徐州张楼断面水质为V类,超III类标准的项目为高锰酸盐指数、氨氮和石油类。徐州李集桥断面为IV类,超III类标准的项目为高锰酸盐指数、五日生化需氧量、氨氮和石油类。与去年同期相比,6个断面水质持平,3个断面水质好转,1个断面水质下降。(2003年有3个断面没有监测)。

摘自江苏省环境监测中心《环境监测工作通讯》2004年第3期

启东市环境监测站环境影响评价创新意

启东市环境监测站以《中华人民共和国环境影响评价法》正式颁布为契机,改变过去"就工艺谈工艺、就污染谈治理"的老路子,实现从项目管理向综合型管理的转变,探索出环境影响评价要实现"三个结合"的新路子。一是实现环评与清洁生产相结合,二是实现环评与 ISO 14001 环境管理体系标准相结合,三是实现环评与实施区域循环经济相结合。

摘自江苏省环境监测中心《环境监测工作通讯》2004年第4期