Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

12 de março de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão LFA
 - Autômatos Finitos Determinísticos
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Sumário

- Pensamento
- 2 Avisos
- Revisão LFA
 - Autômatos Finitos Determinísticos
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Pensamento

Pensamento

Frase

Machines take me by surprise with great frequency.

Quem?

Alan Turing (1912-54) Matemático, lógico, cientista da computação.

Sumário

- Pensamento
- 2 Avisos
- Revisão LFA
 - Autômatos Finitos Determinísticos
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Avisos

Avisos

Questão Avaliada 01 no Canvas

Prazo de máximo de submissão:

Hoje, até às 23h (sugerido por Ariel).

Sumário

- Pensamento
- 2 Avisos
- Revisão LFA
 - Autômatos Finitos Determinísticos
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Um autômato finito determinístico (AFD) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, de forma que

- $oldsymbol{Q}$ é um conjunto finito conhecido como os **estados**,
- 2 Σ é um conjunto finito chamado o **alfabeto**,
- **3** $\delta: Q \times \Sigma \rightarrow Q$ é a função de transição,
- **5** $F \subseteq Q$ é o conjunto de estados de aceitação.

Computação e Linguagem Regular

Computação

Seja M um autômato finito e $w = w_1 w_2 \dots w_n$ seja uma cadeia em que w_i é um membro do alfabeto Σ . Então M aceita w se existe uma sequência de estados r_0, r_1, \dots, r_n em Q com três condições:

- $0 r_0 = q_0$
- ② $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, 1, ..., n-1, e
- \circ $r_n \in F$.

Linguagem Regular (Definição 1.16)

Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Operações Regulares

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

- União: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$.
- Concatenação: $A \circ B = \{xy \mid x \in A \text{ e } y \in B\}.$
- Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e } x_i \in A\}.$

Operações Regulares

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

- União: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- Concatenação: $A \circ B = \{xy \mid x \in A \text{ e } y \in B\}.$
- Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e } x_i \in A\}.$

Teorema 1.25

A classe de linguagens regulares é **fechada** sob a operação de união.

Um autômato finito não-determinístico (AFN) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, de forma que

- Q é um conjunto finito estados,
- Σ é um alfabeto finito,
- $oldsymbol{\delta}: Q imes \Sigma_\epsilon o \mathcal{P}(Q)$ é a função de transição,
- $\mathbf{Q} q_0 \in Q$ é o estado inicial, e

Qual linguagem este AFN reconhece?

Computação em um AFN

Seja N um autômato finito não-determinístico e w uma cadeia sobre o alfabeto Σ . Então N aceita w se podemos escrever w como $w=y_1y_2\ldots y_m$, em que cada y_i é um membro de Σ_ϵ e existe uma sequência de estados r_0, r_1, \ldots, r_n em Q com três condições:

- $0 r_0 = q_0$
- ② $r_{i+1} \in \delta(r_i, y_{i+1})$, para i = 0, 1, ..., m-1, e
- \circ $r_m \in F$.

Qual linguagem este AFN reconhece?

Qual linguagem este AFN reconhece?

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Corolário 1.40

Uma linguagem é regular se e somente se algum autômato finito não-determinístico a reconhece.

Expressões Regulares

Digamos que R é uma expressão regular (ER) se R for:

- \bullet a, para algum $a \in \Sigma$,
- \mathbf{e}
- **3** Ø,
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares,

Exemplos de ER

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- $1*\emptyset = \emptyset$

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Estratégia

Utilizar para realizar a prova um autômato finito não-determinístico generalizado.

Autômato Finito Não-Determinístico Generalizado

Um autômato finito não-determinístico generalizado (AFNG) é uma 5-upla $(Q, \Sigma, \delta, q_{inicio}, q_{aceita})$, de forma que

- ① Q é um conjunto finito estados,
- Σ é um alfabeto finito,
- $\delta: (Q \{q_{aceita}\}) \times (Q \{q_{inicio}\}) \rightarrow R$ é a função de transição,
- $q_{inicio} \in Q$ é o estado inicial, e
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação.

Autômatos Finitos Não-Determinístico Generalizado

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n \ge 0\}.$

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n \ge 0\}.$

Lema do Bombeamento

Se A é uma linguagem regular, então existe um número p (o comprimento do bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes, s=xyz, satisfazendo as seguintes condições:

- ② |y| > 0, e
- $|xy| \leq p$

Lista de Exercícios 02

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 1.4 (a, d, g);
- 1.7 (a, d, g);
- 1.15;
- 1.31.

Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

12 de março de 2014

