Assignment 3

Aakash Shah G28771600

April 5, 2018

1 Pen-and-paper

1.1

Read the proof of Theorem 7.2 given in Module 8. (The theorem was stated in Module 7 but the proof is in Module 8.) What can you conclude about nullspace(A) and nullspace(A^TA)? Then, use this and Theorem 8.3 to prove that rank(A)=rank(A^TA) even if rank(A) is less than the number of columns.

The proof of Theorem 7.2 in module 8 proves that $\operatorname{nullspace}(A) = \operatorname{nullspace}(A^T A)$. \therefore this shows that $\operatorname{nullspace}(A)$ is a subset of $\operatorname{nullspace}(A^T A)$. We can say that A and $A^T A$ will have the same column space and row space.

Assume, $x \in null(A)$, then AX = 0. Multiplying by A^T on both sides

we have $A^TAx = 0$ which means $x \in null(A^TA)$

$$\therefore \text{null}(A) \subset \text{null}(A^T A)$$

Proof:

Let $x \in N(A)$ where N(A) is the nullspace of A.

$$A \mathbf{x} = 0$$

$$\Rightarrow A^T A \mathbf{x} = 0$$

$$\Rightarrow x \in N(A^T A)$$

Hence
$$N(A) \subset N(A^T A)$$

Again let, $x \in N(A^T A)$

$$A^{T}Ax = 0$$

$$x^{T}A^{T}Ax = 0$$

$$(Ax^{T})(Ax) = 0$$

$$(Ax) = 0$$

$$x \in N(A)$$

Hence $N(A^T A)N(A) \subset N(A)$ Therefore,

$$egin{aligned} N(A^TA) &= N(A) \ \dim(N(A^TA)) &= \dim(N(A)) \ \operatorname{rank}(A^TA) &= \operatorname{rank}(N(A)) \end{aligned}$$