Machine Learning Regularization - Ridge

Mostafa S. Ibrahim
Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Regularization

- Regularizations are techniques to prevent ML models from overfitting
- Weights Regularization
 - Our modeling bias is: smaller weights are better!
 - Change the optimization function to penalize the large weights and encourage weights shrinkage
 - 2 popular choices: Ridge and Lasso
- Deep Learning Regularization
 - Dropout (cancels the role of some weights randomly during from one iteration to another)
 - The weights fail to collaborate on **memorizing**
 - Batchnorm (has some regularization effect)

- Below is our irregularized version of the cost function
- Add a single term that encourages the weights to be smaller

$$cost(W) = \frac{1}{2N} \sum_{n=1}^{N} (y(X^n, W) - t^n)^2$$

Ridge Regression

- Simply add a penalty of w² for every weight w
- But, how much should we shrink the weights?
- It depends on the dataset! In some datasets, a small weight is good, however, a very tiny weight might be better for other datasets
- So, we need a hyperparameter to control this
 - Let's call it lambda: It controls the strength of the penalty
- Simply for every weight w, add a penalty of λw²
 - Logically, λ is a non-negative term [0 infinity]

Ridge Regression

$$cost(W) = \frac{1}{2N} \sum_{n=1}^{N} (y(X^n, W) - t^n)^2 + \sum_{i=1}^{M} \frac{\lambda}{2} W_i^2$$

- Recall that we have N examples and M weights. We divide by 2 for easy derivatives
- Given one of the weights Wj, what is the partial derivative of W relative to this variable?!

$$\frac{\partial cost(W)}{\partial W_j} = \frac{1}{N} \sum_{n=1}^{N} (y(X^n, W) - t^n) * X_j^n + \lambda W_j$$

Ridge Regression (Aka L2 regularization)

• We also call it L2 regularization (squared L2 norm)

$$L2 - norm : ||W||_2 = \sqrt{W_1^2 + \dots + W_M^2}$$

$$SquaredL2 - norm : ||W||_2^2 = W_1^2 + ... + W_M^2$$

minimize
$$\frac{1}{2N} ||XW - t||_2^2 + \frac{\lambda}{2} ||W||_2^2$$

$$cost(W) = \frac{1}{2N} \sum_{n=1}^{N} (y(X^n, W) - t^n)^2 + \sum_{i=1}^{M} \frac{\lambda}{2} W_i^2$$

Intuition

W1	W2	gt - predici ²	w1 + w2	gt - predici ² + w1 + w2
1	3	15	4	19
4	2	10	6	16
7	5	300	12	312
150	-25	25	175	200
10	210	20	220	240
100	200	200	300	500
250	300	15	550	565
1000	350	10	1350	1360
2000	3000	0	5000	5000

$$cost(W) = \frac{1}{2N} \sum_{n=1}^{N} (y(X^n, W) - t^n)^2 \qquad cost(W) = \frac{1}{2N} \sum_{n=1}^{N} (y(X^n, W) - t^n)^2 + \sum_{i=1}^{M} \frac{\lambda}{2} W_i^2$$

Multi-loss components: Detection YOLO example

loss

$$\begin{aligned} & \text{Regression} \\ & \text{loss} \\ & & + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ & + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \end{aligned}$$

loss

$$\begin{array}{c} \textbf{Confidence} \\ \textbf{loss} \\ \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \end{array}$$

loss

$$\frac{\text{Classification}}{\text{loss}} \left[+ \sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \right]$$

Should we penalize the Y-intercept?

- Observe in the L2 regularization, we start from i = 1
 - This means we do NOT penalize the intercept at W0
- **Intuitively**, we give complete **flexibility** for the line's intercept
- Recall: from the closed-form solution: c = average(y) slope * average(x)
- Assume that we standardize all the data
 - Then average(x) = 0 and c = constant = average(y)
 - As a result, c doesn't depend on the slope or xs!
 - Then the intercept does not play a role in the overfitting. It is just relevant to the data
 - Therefore, we don't need to penalize the intercept, and its original optimal formula should be used
- Tip: If you have prior belief that the intercept should be zero, then penalize it.

Fine-Tuning hyperparameter λ

• What $\lambda = 0$ does imply?

 $cost(W) = \frac{1}{2N} \sum_{n=1}^{N} (y(X^n, W) - t^n)^2 + \sum_{i=1}^{M} \frac{\lambda}{2} W_i^2$

- No regularization!
- What does $\lambda = \infty$ (e.g. 1000000000) imply ?
- Even with a very small weight like 0.001, the penalty is 10000000 for a single weight. The optimizer will decide the optimal W = 0 to avoid such high penalty
- The optimal λ is somewhere in the middle. Use Cross-validation and experiment with several values to find the optimal one
 - o Consider the values: [100, 10, 1, 0.5, 0.1, 0.01, 0.001, 0.0001]

Hyperparameter λ and bias-variance tradeoff

- A higher λ value
 - increases the amount of regularization
 - more shrinkage of the coefficients
 - lower variance but potentially higher bias
 - Use when the training data is limited, noisy, or when there is a high risk of overfitting
- A lower λ value
 - reduces the amount of regularization
 - allowing the model to fit the training data more closely
 - lower bias but higher variance
 - when the dataset is larger, cleaner, or when the underlying relationships are complex and require a more flexible model
- Practically; use cross-validation

Figure 1.8 Graph of the root-mean-square error (1.3) versus $\ln \lambda$ for the M=9 polynomial.

- Assume with degree M=9, our model without regularization has train error = 0
- Tip: Instead of visualizing large values
 We can use the log function to scale to smaller values
- ERMS = sqrt(MSE)

• Assuming we have N (x, y) points and we trained a ridge regression model (mx + c) using a value of $\lambda = \infty$, what are the potential lines that could be found?

- The ridge penalizes the 'm' NOT the 'c'
- As the penalty is so high, the 'm' = 0: a horizontal line
- What is the best horizontal line for N points?
- c = average(ys)

$$cost(W) = \frac{1}{2N} \sum_{n=1}^{N} (y(X^n, W) - t^n)^2 + \sum_{i=1}^{M} \frac{\lambda}{2} W_i^2$$

- We can derive the normal equations without regularization
- Do you think we can derive closed-form for the optimal regularized weights?
- Yes, it is still a quadratic equation. Just put derivative = 0 and <u>derive</u> it
 - \circ Eventually, just a new term λ is added, aka the ridge
- In 'Machine Learning A Probabilistic Perspective' book, ch 7.5, you can find math to make the computations numerically stable in O(DN²)
 - An advantage over the linear regression solution (X^TX might be (nearly) singular)

$$(X^TX + \lambda I)^{-1}X^Ty$$

- True or False:
- Recall that: MST ridge has extra error term!
- The train MSE error of linear regression <= train MSE of ridge regression?
- False: The performance of linear regression and ridge regression depends
 on various factors, including the specific dataset, the amount of noise, and
 the relationship between variables
 - General Tip: this is valid answer for many train/test error comparisons
 - General Tip: errors can increase and decrease in most of curves (not strictly inc/dec)

Brute Forcing the hyperparameters

- So far, we've encountered three hyperparameters: the learning rate, the regularization penalty (λ), and the polynomial degree
 - Additionally, we must consider whether or not the line has an intercept
- Assume you want to try all combinations of the following:
 - Learning rates: {0.1, 0.01, 0.001}
 - Lambda: {1, 0.5, 0.2, 0.002}
- How many combinations do we have?
- $3 \times 4 = 12$
- We can simply write 2 nested loops to try all of them
 - For each combination, do k-fold cross validation
- However, some algorithms have several hyperparameters
 - Then writing the code might be annoying
 - Our search space could become extremely large!

Grid Search

- Grid search is a tuning technique that searches exhaustively through the specified combinations of hyperparameters
- Let's imagine we are considering a Ridge Regressor model and searching through all its provided parameters
 - Practically speaking: alpha and fit intercept
 - SKlean uses <u>Conjugate gradient method</u> to compute Ridge, that is why there are more parameters (e.g. max_iter and tolerance (precision))
 - Understanding these advanced parameters requires more mathematical knowledge

class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=None, tol=0.0001, solver='auto', positive=False, random_state=None)

Grid Search: Ridge

```
x, t = get data()
grid = \{\}
grid['alpha'] = np.array([0.1, 1, 0.01])
grid['fit intercept'] = np.array([False, True])
kf = KFold(n splits=4, random state=35, shuffle=True)
search = GridSearchCV(Ridge(), grid,
                       scoring='neg mean squared error', cv=kf)
search.fit(x, t)
                                                       You can actually use the trained model
                                                      with the best parameters
for key, value in search.cv results .items():
                                                           model = search.best_estimator
    print(key, value)
print('Best Parameters:', search.best params )
# Best Parameters: {'alpha': 1.0, 'fit intercept': False}
model = Ridge(**search.best params )
evalaute(x, t, model, 'Ridge')
```

```
mean_fit_time [0.00050253 0.00057536 0.00043631 0.00047773 0.00041288 0.00050682]
std_fit_time [1.04919397e-04 3.60084579e-05 3.91130021e-05 3.60971457e-05
3.16986333e-05 7.32345609e-05]
mean_score_time [0.00022078 0.00022292 0.00022113 0.00021088 0.00021589 0.00027454]
std_score_time [2.52177665e-05 2.71603658e-05 2.79766196e-05 1.55086658e-05
2.81235407e-05 9.38183168e-05]
param_alpha [0.1 0.1 1.0 1.0 0.01 0.01]
param fit intercept [False True False True]
```

params [{'alpha': 0.1, 'fit_intercept': False}, {'alpha': 0.1, 'fit_intercept': True}, {'alph
'fit intercept': True}, {'alpha': 0.01, 'fit intercept': False}, {'alpha': 0.01, 'fit intercept'

rank_test_score [2 5 1 3 4 6]
Best Parameters: {'alpha': 1.0, 'fit_intercept': False}
Ridge: MSE 0.028
0.0
0.1595279945658918

Grid Search with pipeline

- Assume we have a pipeline, for example:
 - MinMaxScaler followed by Ridge Regressor
- Assume we want to try different values of alphas
- If we use make_pipeline, the code will fail because alpha is passed to MinMaxScaler which doesn't expect it
- Instead, we use the Pipeline object as follows:
 - pipeline = Pipeline(steps=[("scaler", preprocessor), ('somemodel', Ridge())])
 - o In other words: we have list of items, each item has a name to match object with parameter
- In order to specify that the alpha parameter only applies to 'somemodel':
 - Use <u>ourmodel</u> as a prefix (and so on)
 - o grid = {'somemodel__alpha': alphas}

Handling Large Search Space

- The major challenge here is we might want to try several hyperparameters and for each hyperparameter a wide range
 - This might be **hundreds/thousands** of trials
- This is not an easy concern and requires smart thinking / art / experience
 - Try to start with key variables. For each variable test a few potential values for each
 - E.g. For lambda: {10, 5, 1, 0.1, 0.01, 0.001, 0.0001} or even a fewer
 - Say you found lambda = 0.01 is a good one. Now, you might try values around it
 - You might fix all parameters except one only and explore it. But be careful the chosen value can be bad when we try changing the other variables
 - Consider early filtering using <u>RandomizedSearchCV</u> where random values (maybe according to a give distribution) are tried first. Use the insights to guide on next trials
 - If there are common numbers in the literature for your problems, try them first
 - E.g. learning rates: 0.01 and 0.001

Model Selection and Hyperparameters

- In order to select the best model, we first wanted to try different models (e.g. SVM, Linear Regression) and use cross-validation to compute the average performance of each model.
 - Then comparing the models can help us select the best one!
- We learned that we can use grid search and cross-validation to select the best hyperparameters for each model
- So overall:
 - For each model: select its best hyperparameters (grid search + CV)
 - Compare the models and select the best one
- There is a potential for selection bias
- Can you find it?

Model Selection and Hyperparameters

- Process:
 - For each model: select its best hyperparameters (grid search + CV)
 - Compare the models and select the best one
- There is a potential for selection bias when we use the same dataset for both model selection and hyperparameter selection
 - The issue is that the hyperparameters are optimized to maximize performance on the validation set, which can lead to overfitting to the **specific** characteristics of that data.
 - Consequently, the selected hyperparameters may not generalize well to unseen data, resulting in poor performance when the model is applied in real-world scenarios
- Solutions:
 - o In theory: use one dataset to determine the hyperparameters, and another to select the model
 - One way to achieve this is through nested cross-validation

About Dataset Size

- When working with small datasets, it can be difficult to achieve satisfactory performance
- In many cases small datasets don't provide satisfactory performance for the customers, unless you have domain experience or fine-tuning in deep learning
- With medium to large datasets, it is often possible to use a train/test split without the need for extensive k-fold cross-validation.
- We can easily have multiple sub-datasets for different purposes (e.g. model selection, hyperparameters)
- In industry, many of the success stories rely on large datasets
- Collecting large datasets is expensive, hard or impossible for many problems

Handling Overfitting

- Remember, when we examined the weights, we identified that there was overfitting
- How can we prevent this?
 - Reduce the complexity of your model
 - Use regularization strategically to avoid underfitting or overfitting
 - Increase the amount of training data
 - Utilize data-augmentation techniques or add noise to the data
 - Proper Early stop
 - Don't keep training if getting very slight improvements

- Your trained model has 100% training accuracy and 99% test accuracy
- What are your thoughts?
- If this is an easy dataset, this may happen
- However, in real datasets a high training accuracy could be a sign of overfitting
- A high test accuracy maybe due to:
 - Simple test set or limited diversity in the test data
 - Data leakage from test to train
 - A mistake in the machine learning experimentation process
- Tip: It is important to investigate and understand the reasons for high performance before reporting it

Related Materials

- Ridge: <u>StatQuest</u>, <u>StatQuest</u>
- Nested-cross validation:
 - This <u>Paper</u> (published in 2010) discusses the selection bias we mentioned empirically
 - N-CV <u>Video/Article</u> -<u>Article</u> -<u>Article</u> -<u>Article</u> -<u>Article</u> -

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."