This manuscript has been accepted for publication in IET Networks.

Table 2: Conventional supervised ML approaches in SDN paradigm

		2: Conventional supervised ML ap	
Reference	Supervised ML approach	Task	Findings
Chen and Yu [101]	NN	Collaborative intrusion prevention	Outperformed [102]. Also it achieved a low overhead due to its parallel and simple computational capabilities.
He et al. [103]	NN	Solving weighted controller placement problem	Outperformed decision tree and logistic regression.
Alvizu et al. [104]	NN	Off-line prediction of traffic demands	Reduced the optimality gap below 0.2% (virtual wavelength path-hourly)
Abubakar et al. [105]	NN	in a mobile network operator Intrusion detection	and 0.45% (wavelength path-hourly). An accuracy of 97.3% using NSL-KDD dataset.
Chen-Xiao and			Compared to [107] and static Round Robin strategy, NN achieved
Ya-Bin [106]	NN	Load balancing	better performance and 19.3% decreasing of network latency.
Sabbeh et al. [108]	NN	Predicting the performance of SDN	Achieved low mean squared error (MSE).
Bendriss et al. [109,110]	NN	SLA enforcement in SDN and NFV	Showed less robust in compared with LSTM.
Mestres et al. [111] Mihai-Gabriel	NN	Routing in an overlay network	Mean squared error(MSE) reached 1%.
and Victor-Valeriu [112]	NN + biological danger theory	Mitigating DDoS attacks in SDNs	Proposal without simulated proof of applicability.
Kokila et al. [113]	RBF-SVM	DDoS attack detection	An accuracy of 95.11% and false positive rate of 0.01%.
Phan et al. [114]	Multiple Linear SVM	DDoS attack detection	Reduction of the consumption of SDN's resources.
Wang et al. [115]	RBF-SVM	DDoS attack detection	An accuracy of 97.60%.
Boero et al. [116]	RBF-SVM	Malware Detection	A detection rate of 80% for malware 95% for normal traffic. False positive rate of 5.4% for malware 18.5% for normal traffic.
Phan et al. [117]	Multiple Linear SVM + SOM	DDoS attack detection	An accuracy of 97.6% and false positive rate of 3.85%.
FloodDefender Shang et al. [118]	SVM	DoS attack detection	Attack detection rate of 96% with less than 5% of false-positive rate.
FADM	SVM	DDoS attack detection	High detection rate when attack rate is higher than
Hu et al. [119]			3000 packets per second.
Latah and Toker [120]	RBF-SVM	DoS attack detection	An accuracy of 96.25% with false positive rate of 0.26%.
Rego et al. [121] Bouacida et al. [122]	SVM Linear-SVM	Traffic classification Detecting long-term load on SDNs	SVM was able to detect critical traffic with an accuracy of 77%. SVM outperformed k-NN and Naive Bayes.
Li et al. [123]	C4.5	Application identification	An average accuracy of 99%.
Li et al. [125]	C4.5	Application identification	An accuracy of 98%. outperformed Naive Bayes, Naive Bayes Kernel
Pasca et al. [124]	C4.5	Application identification	Estimation, Bayesian Network and SVM.
Le et al. [125]	C4.5	Intrusion detection and prevention	High precision, recall with low false positive rate.
Nagarathna and	ID3	Mitigating host location hijacking	Less overhead in terms of CPI and memory
Shalinie [126]		attacks on SDN controllers	consumption compared to authentication method.
Tariq and Baig [127]	C4.5	Botnet detection Fine-grained and scalable	An accuracy of 80%.
Qazi et al. [128]	C5.0	application classification	An average accuracy of 94%.
Leng et al. [129]	C4.5	Solving the problem of flow table congestion	High compression with large number of flow entries and reduced the flow matching cost.
Nanda et al. [130]	C4.5	Prediction of potential vulnerable hosts	Outperformed NB and decision table. The best results, however, achieved by bayesian network.
Stimpfling et al. [131]	Extensions for DTs	New extensions for DTs for better packet classification and lower memory access	Better packet classification for larger rules, reducing the number of memory access by a factor of 3, and decreasing the size of
			data structure 45% over EffiCuts.
Tang et al. [132]	Enhanced C4.5	Detection of elephant flows	Improve the accuracy of C4.5 up to 12%, recall rate 88.3%, false positive rate less than 2.13%.
Jain et al. [133]	M5Rules	Prediction of QoS violations	Discover different types of correlations.
			An overall accuracy of 93.3% and detection rate
Van et al. [134]	J48-tree	Intrusion detection on OF switches	of 91.81% with low false alarm rates 0.55%.
Wijesinghe et al. [135]	DT	Botnet detection	DT showed better results for detecting P2P Botnets whereas SVM and Bayesian networks showed effectiveness in detecting C&C Botnets.
Latah and Toker [136]	Comparing different supervised ML algorithms	SDN-based intrusion detection	DT achieved the best level of accuracy over other supervised ML approaches. However, ensemble methods achieved the best false positive rate.
Stadler et al. [137]	RF	Estimating service-level metrics	Outperformed regression tree (RT) in terms of estimation accuracy.
Song et al. [138]	RF	Intrusion detection	However, RF is 3x longer than RT in terms computation time. An accuracy of 0.99% on KDD99
_		Automatic identification and	
Miettinen et al. [139]	RF	security enforcement for IoT devices	An accuracy of 0.815% and low execution time (<1 ms).
Abar et al. [140]	RF	QoE prediction	Outperformed k-NN, NN and DT. RF achieved competitive results with the stochastic
Amaral et al. [141]	RF	Traffic classification	gradient boosting and extreme.
Zago et al. [142]	RF	Cyber threat detection	Outperformed k-NN, naive bayes and logistic regression. Outperformed k-NN, naive bayes, bagged-trees
Ajaeiya et al. [143]	RF	Cyber threat detection	and logistic regression in terms of F1-score.
Anand et al. [144]	RF	Detecting compromised controller	Outperformed Naive Bayes, SVM, MLP and AdaBoost.
Hussein et al. [145]	RF	Intrusion detection	Outperformed SVM, k-NN, DT, NN and DNN.
Su et al. [146]	RF	Botnet detection	An average accuracy of 99.77% Outperformed RF, GBDT and SVM in
Chen et al. [147]	XGBOS	DDoS attack detection	terms of accuracy and false positive rate.
Choudhury et al. [148]	RF and Gradient boosted regression trees.	Prediction of traffic matrix and performance of optical path.	Outperformed rigde regression, LASSO regression, LASSO with quadratic features, MLP, Guassian process regression, gradiant boosted regression trees.

able to exactly identify and locate the compromised controller when multiple physical controllers are included.

Hussein et al. [145] designed two architectures for building a general solution to defend and enhance the security of communication networks. The first architecture is distributed extraction, centralized processing, and centralized management. The second one is distributed extraction, distributed processing and centralized management. Then the authors introduced a two-stage detection technique. The first stage includes detecting whether an attack happened or not, whereas the second