Second definition of the finite and infinite

Richard Dedekind

9th March 1889

First published in the second edition (1893) of the text "Was sind und was sollen die Zahlen?", page XVII, in the form:

A system S is called finite if it can be mapped into itself in such a way that no proper part of S is mapped into itself; in the opposite case, S is called an infinite system.

Pursuing this definition of a finite system S without using the natural numbers.

Let φ be a mapping of S into itself, which maps no proper part of S into itself. Small Latin letters $a, b \dots z$ always mean *elements* of S, capital Latin letters $A, B \dots Z$ mean *parts* of S. The images of a, A generated by φ are respectively denoted by a', A'.

That A is part of B is expressed by $A \subseteq B$. The system consisting of the elements a, b, c is denoted by $[a, b, c \ldots]$.

This gives

$$(1) S' \subseteq S$$

and

(2) from
$$A' \subseteq A$$
 it follows that $A = S$.

1 Theorem. S' = S.

 \triangleright Every element of S is an image of (at least) one element r of S. Because from (1) it follows $(S')' \subseteq S'$, hence by (2), our proposition.

Every system [s] consisting of a single element is finite because it has no proper part and is mapped into itself by the identity function. This case is *excluded* in the following; S means a finite system that does *not* consist of a single element.

2 Theorem. Every element s is different from its image s', in symbols: $s \neq s'$.

 \triangleright Because if s = s', then $[s]' = [s'] = [s] \subseteq [s]$, so according to ((2)), also [s] = S in contradiction to our assumption about S.

What are numbers, and what is their purpose?

A 'part' may not be empty.

The definition of finiteness.

- **3 Definition.** If s is a certain element of S, then H_s shall denote any part of S that satisfies the following two conditions:
 - I. s is element of H_s , so $[s] \subseteq H_s$, also

$$[s] + H_s = H_s.$$

- II. If h is an element of H_s different from s, then h' is also an element of H_s . So if $H \subseteq H_s$, but s is not contained in H, then $H' \subseteq H_s$.
- **4 Theorem.** S and [s] are special systems H_s , and [s] is the *common* of all systems H_s corresponding to the element s. \triangleright Obvious.

`Gemeinheit'

- **5 Theorem.** $H_s = S$ or H_s is a *proper* part of S, depending on whether s' lies in H_s or not.
- \triangleright For if s' lies in H_s , then it follows from II in 3. that $H'_s \subseteq H_s$, therefore (by 2) that $H_s = S$. Conversely, if H = S, then s' also lies in H_s .
- **6 Theorem.** If H_s is a *proper* part of S, then s' is the only element of H'_s that lies outside H_s .
- \triangleright This is because every element k of H'_s is the image h' of at least one element h in H. If k=h' is different from s', then h is also different from s, and consequently (by II in 3.) k=h' lies in H_s , while the element s' of H'_s (by 5) lies outside H_s .
- **7 Theorem.** Every system H'_s is a system $H_{s'}$, that is (by definition 3.):
 - I'. s' is element of H'_s
 - II'. If k is an element of H'_s that is different from s', then k' also lies in H'_s .
- \triangleright The first follows from the fact that s lies in H_s , the second from the fact that k lies in H_s (by 6).
- **8 Theorem.** If $A, B, C \dots$ are special systems H_s corresponding to the same s, then their intersection H is also a system H_s .
- \triangleright Because according to 3.I. s is a common element of A, B, C, \ldots , and therefore also an element of H.

Furthermore, if h is an element of H that is different from s, then, by II of (3), the image h' is an element of A, of B, of C, ..., and therefore also of H. H therefore fulfills the two conditions I and II in definition (3) that are characteristic of every H_s .

9 Definition. If a, b are certain elements of S, then the symbol ab should mean the intersection of all those systems H_b which (such as S) contain the element a (section ab).

'Strecke ab'

- **10 Theorem.** a is an element of ab, i.e. $[a] \subseteq ab$.
- \triangleright This is because ab is the intersection of all systems H_b in which a lies. (So a is the *start* of ab.)
- **11 Theorem.** ab is a system H_b , i.e. $[b] \subseteq ab$, and if s is an element of ab different from b, then $[s'] \subseteq ab$.
 - \triangleright This follows from (8).

So b is an element (the end) of ab. If $H \subseteq ab$ but b is not contained in H, then $H' \subseteq ab$.

- **12 Theorem.** From $[a] \subseteq H_b$, follows from $ab \subseteq H_b$.
 - \triangleright Immediate consequence of definition (9).
- **13 Theorem.** aa = [a].

 \triangleright This follows from (4), because aa is the intersection of all 'Durchschnitt' H_a that contain the element a (according to 3.I).

- **14 Theorem.** If b' is an element of ab, then ab = S.
 - \triangleright This follows from (11) and (5).
- 15 Theorem. b'b = S.
 - \triangleright This follows from (14) and (10).
- **16 Theorem.** If c is an element of ab, then $cb \subseteq ab$.
- ightharpoonup This follows from (12), since ab is an H (by 11) which contains the element c.
- 17 Theorem. If A+B means the system composed of A, B, then

$$a'b + b'aS$$
.

 \triangleright Because if s is an element of ab, then s' is contained in b'a or a'b, depending on s=b or different from b (according to (10) or (11) and 3. II), and likewise if s is an element of b'a, then s' is contained in a'b or b'a; therefore $(ab+b'a)' \subseteq a'b+b'a$. This leads to the theorem according to (2).

- **18 Theorem.** If a is different from b, then ab = [a] + a'b.
- \triangleright For since a is an element of ab different from b, then a' is an element of ab (by 10, 11), and consequently (by 16) $ab \subseteq ab$; since furthermore (by 10) we also have $[a] \subseteq ab$, therefore

$$[a] + a'b \subseteq ab.$$

Furthermore: every element s of [a] + a'b that is different from b is either = a or an element of a'b that is different from b, in both cases s' is (by 10, 11) an element of a'b, therefore also from [a] + a'b, and since (by 11) also $[b] \subseteq [a] + a'b$, then [a] + a'b is a system H_b .

Finally, since $[a] \subseteq [a] + a'b$, so (by 12)

$$ab \subseteq [a] + a'b$$
.

The theorem follows from the comparison of both results.