H T W

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

Gaussian Process

Daniel Dold HTWG Konstanz Institute for Optical Systems

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Motivation

Hochschule Konstanz 14.06.2021 1

^{*1:} Wilson, A. G., & Izmailov, P. (2020). Bayesian Deep Learning and a Probabilistic Perspective of Generalization.
*2: van Amersfoort, J., Smith, L., Jesson, A., Key, O., & Gal, Y. (2021). Improving Deterministic Uncertainty Estimation in Deep Learning for Classification and Regression

Motivation

Its all about correlations

Number of Tools on Islands

- Total number of tools T_i of island i
- Simple Model
 - $T_i \sim Poisson(\lambda_i)$
 - $-\lambda_i = \alpha P_i^{\beta}$
 - P is log population

Neglects Spatial Autocorrelation / Neighboring Islands do trade

Islands - Taking the spatial correlation into account

Number of Tools on Islands

- Total number of tools T_i of island i
- Simple Model
 - $T_i \sim Poisson(\lambda_i)$
 - $\lambda_i = \alpha P_i^{\beta}$
 - P is log population

Distances in thousands km

	Μl	Ti	sc	Ya	Fi	Tr	Ch	Mn	То	На
Malekula	0.0	0.5	0.6	4.4	1.2	2.0	3.2	2.8	1.9	5.7
Tikopia	0.5	0.0	0.3	4.2	1.2	2.0	2.9	2.7	2.0	5.3
Santa Cruz	0.6	0.3	0.0	3.9	1.6	1.7	2.6	2.4	2.3	5.4
Yap	4.4	4.2	3.9	0.0	5.4	2.5	1.6	1.6	6.1	7.2
Lau Fiji	1.2	1.2	1.6	5.4	0.0	3.2	4.0	3.9	0.8	4.9
Trobriand	2.0	2.0	1.7	2.5	3.2	0.0	1.8	0.8	3.9	6.7
Chuuk	3.2	2.9	2.6	1.6	4.0	1.8	0.0	1.2	4.8	5.8
Manus	2.8	2.7	2.4	1.6	3.9	0.8	1.2	0.0	4.6	6.7
Tonga	1.9	2.0	2.3	6.1	0.8	3.9	4.8	4.6	0.0	5.0
Hawaii	5.7	5.3	5.4	7.2	4.9	6.7	5.8	6.7	5.0	0.0

Neglects Spatial Autocorrelation / Neighboring Islands do trade

Islands - Taking the spatial correlation into account

- First Model i = 1, 2, ..., 10 for the 10 islands
 - $T_i \sim Poisson(\lambda_i)$
 - $\lambda_i = \alpha P_i^{\beta}$
- Taking

•
$$\lambda_i = \exp(f_i) \alpha P_i^{\beta}$$

- f_i works like a correction
 - $f_i = 0$ $\exp(0) = 1$
 - $f_i = -0.5$ $\exp(-0.5) = 0.6$
 - $f_i = 0.25$ $\exp(-0.25) = 1.3$

as expected

60% of expected

130% of expected

- Neighboring islands should have similar values of f
- How to model that ???

Definition of Gaussian Process (GP)

- Gaussian Process (GP) is a stochastic process (Collection of random variables)
- A GP is a distribution over functions of f(x) if for any finite selection of points** $x_1, x_2, ..., x_N$ the pdf $p(f(x_1), f(x_2), ..., f(x_N))$ is a multivariate Gaussian.*
- MVGaussian are defined via mean and covariance matrix of f

$$f \sim N(\mu, \Sigma)$$

Interpretation of f as a collection of random variables

We are interested in predicting the function values for 10 different x values from [","] without knowing about training points.

The covariance matrix is created by pairwise evaluation of the kernel function resulting in a 10-dimensional distribution.

Sampling from this distribution results in a 10-dimensional vector where each entry represents one function value.

Definition of Gaussian Process (GP)

- Use the GP to determine the parameters μ , Σ of the Multivariate Normal distribution $N(\mu, \Sigma)$
- GP thus defined by 2 functions
 - -m(x) the mean function produces the mean for every finite subset
 - $k(x, x_*)$ the Kernel function produces the covariance matrix for every finite subset
- New datapoint → increase dimension of Multivariate Normal distribution
 - → We need a function to create parameters

$$f(x_*) \sim GP(m(x), k(x, x_*))$$
 $m(x)$ is $k(x, x_*)$
usually zero (We can add such offsets)

$$f \sim N(0, [K(X, X)])$$

$$K(X, X) = \begin{bmatrix} k(x_1, x_1) & \cdots & k(x_n, x_1) \\ \vdots & \ddots & \vdots \\ k(x_1, x_n) & \cdots & k(x_n, x_n) \end{bmatrix}$$

Samples from prior

- Prior p(f|X)
- With rbf-kernel

Hochschule Konstanz

14.06.2021

Kernel/ covariance function

- Linear kernel $k(x, x_*) = \langle x, x_* \rangle$
- Polynomial kernel $k(x, x_*) = \langle x, x_* \rangle^d$
- Radial basis function kernel

$$k(x, x_*) = \sigma_f^2 \cdot e^{\left(-\frac{\|x - x_*\|^2}{2l^2}\right)}$$

■ RBF □ Periodic □ Linear

Effect of kernel parameters

$$k(x, x_*) = \sigma^2 \exp\left(-\frac{1}{2}(x - x_*)^T L(x - x_*)\right)$$

Conditioning and Marginalization

A bivariate normal distribution in the center. On the left you can see the result of marginalizing this distribution for Y, akin to integrating along the X axis. On the right you can see the distribution conditioned on a given X, which is similar to a cut through the original distribution. The Gaussian distribution and the conditioned variable can be changed by dragging the handles.

Posterior samples/ Conditioning

$$p(f, f_*) \sim N\left(0, \begin{bmatrix} K_{XX} & K_{XX_*} \\ K_{XX_*}^T & K_{X_*X_*} \end{bmatrix}\right)$$

$$p(f_*|f) = \frac{p(f_*,f)}{p(f)}$$

$$p(f_*|x_*,X,f) \sim N(\bar{f}_*,cov(f_*))$$
Cond: liening

Algorithms

- MCMC (Neal 1997; Christensen et al. 2006)
- variational (Girolami and Rogers 2006; Opper and Archambeau 2009)
- expectation propagation (Kuss and Rasmussen 2005; Nickisch and Rasmussen 2008)
- Gaussian approximation (Rasmussen 2006)
- Analytic

Hochschule Konstanz

14.06.2021

Use MCMC to solve GP

Full Bayes

Define prior:

- ρ ~InvGamma(3,1)
- $\sigma_f \sim N(0,1)$

Define GP

• $f \sim \text{multivariate normal} \left(0, K(x|\sigma_f, \rho)\right)$

```
data {
  int<lower=1> N;
  real x[N];
  vector[N] f;
transformed data {
  vector[N] mu = rep vector(0, N);
parameters {
  real<lower=0> rho:
  real<lower=0> sigma f;
model {
  matrix[N, N] L K;
  matrix[N, N] K = cov exp quad(x, sigma f, rho);
 L_K = \text{cholesky\_decompose}(K); \qquad O(N^3)
  rho \sim inv gamma(3, 1);
  sigma f ~ std normal();
  f ~ multi normal cholesky(mu, L K);
```

Use MCMC to solve GP with (noisy) observations

Define prior:

```
\rho \sim \text{InvGamma}(3,1)

\sigma_f \sim N(0,1)

\sigma_n \sim N(0,0.1)
```

Define GP

```
f \sim \text{multivariate normal} \left(0, K(x|\sigma_f, \rho)\right)
```

Define likelihood

$$y_i \sim N(f_i, \sigma_n) \forall i \in \{1, ..., N\}^*$$

```
int<lower=1> N:
 real x[N];
 vector[N] y;
transformed data
 real delta = 1e-9;
parameters {
 real<lower=0> rho;
 real<lower=0> sigma f;
 real<lower=0> sigma n;
 vector[N] eta;
model {
  vector[N] f;
    matrix[N, N] L K;
    matrix[N, N] K = cov exp quad(x, sigma f, rho);
    for (n in 1:N) // diagonal elements
       K[n, n] = K[n, n] + delta;
    L K = cholesky decompose(K);
    f = L K * eta;
  rho \sim inv gamma(3, 1);
  sigma f ~ std normal();
  sigma n ~ normal(0,0.1);
  eta ~ std normal();
  y ~ normal(f, sigma n);
```

Inference with MCMC $p(f_*|x_*, X, f)$

```
data {
 int<lower=1> N1;
 real x1[N1];
 vector[N1] v1;
 int<lower=1> N2;
 real x2[N2];
transformed data {
 real delta = 1e-9;
 int<lower=1> N = N1 + N2;
 real x[N];
transformed parameters {
   f = L K * eta;
model {
 rho \sim inv gamma(3, 1);
  sigma f ~ std normal();
  sigma n ~ normal(0,0.1);
  eta ~ std normal();
  y1 \sim normal(f[1:N1], sigma n);
generated quantities { < O(N2)
  vector[N2] y2;
  for (n2 in 1:N2)
    y2[n2] = normal rng(f[N1 + n2], sigma n);
```


Complexity:

- Create Samples: $O(\#S \cdot N1^3)$

- Prediction: $O(\#S \cdot N2)^*$

14.06.2021

17

Islands - Advantage of MCMC

Can model:

- Prior-distributions on hyperparameters
- Any kind of likelihood function

```
T_i \sim \text{Poisson}(\lambda_i)
                       int<lower=1> N:
                       matrix D[N,N];
                       vector[N] T;
                                                                    \lambda_i = \exp(k_{\text{SOCIETY}[i]}) \alpha P_i^{\beta} / \gamma
                       vector[N] P;}
                     transformed data {
                                                                     \mathbf{K} \sim \text{MVNormal}((0, \dots, 0), \mathbf{K})
                       real delta = 1e-9;}
                     parameters {
                                                                   K_{ij} = \eta^2 \exp(-\rho^2 D_{ii}^2) + \delta_{ij}(0.01)
                       real<lower=0> rho;
                       real<lower=0> sigma f;
                                                                     \alpha \sim \text{Exponential}(1)
                       real<lower=0> alpha;
                       real<lower=0> beta;
                                                                     \beta \sim \text{Exponential}(1)
                       vector[N] eta;}
                     model {
                                                                    \eta^2 \sim \text{Exponential}(2)
                        vector[N] lambda;{
                                                                    \rho^2 \sim \text{Exponential}(0.5)
                          matrix[N, N] L K;
                           for (i in 1: (N - 1)) {
                             K[i, i] = 1 + delta;
                                for (j in (i + 1):N) {
                              K[i, j] = sigma f * exp(-square(rho*D[i,j));
                                   K[i, i] = K[i, i]; \}
                           K[N, N] = 1 + delta;
                           f = cholesky decompose(K) * eta;
                          lambda = exp(f) *alpha*pow(P,beta)
                        alpha ~ exponential(1);
                        beta ~ exponential(1);
                        rho ~ exponential(0.5);
                        sigma_f ~ exponential(2);
(; helihad T ~ poisson (lambda);
```

Hochschule Konstanz

GP with non-Gaussian likelihood

No prior-distribution for hyper-parameters

Compute a posterior predictive dist (with the approximated posterior)

sterior)
$$p(f_*|x_*, X, y) = \int p(f_*|x_*, X, y, f) \cdot p(f|X, y) df$$
 if all Gaussian = $N(K_{X_*X}K_{XX}^{-1}f, K_{X_*X_*} - K_{X_*X}K_{XX}^{-1}K_{XX_*})$

2. (Marginalize out f_* to produce a probabilistic prediction)

$$p(y_*|x_*,X,y) = \int inv_link(f_*)p(f_*|x_*,X,y)df_*$$

Variational Gaussian Process

- Compared to MCMC we "move" the data into a variational distribution $q(f) \sim N(\mu, \Sigma)$
 - We don't have to create new samples for new predictions
- Algo:

 $p(f_*|X_*,X,y) = \int p(f_*|X_*,X,f) \cdot q(f)df$

- Replace $p(f|X,y) \approx q(f) \sim N(\mu, \Sigma)$
 - Variational parameters e.g., $\{\mu, \Sigma, \rho, \sigma_f\}$
- Minimize KL[q(f)||p(f|X,y)]
 - Maximize $ELBO^* \int \log(p(y|f))q(f)df KL[q(f)||p(f)]$ N single-dimensional integration analytic $p(x) = p(x) \log(x)$ L $p(x) \log(x)$ L $p(x) \log(x)$

Spares variational Gaussian Process (SVGP)

- Reduce K_{XX}^{-1} inversion complexity O(N) to $O(N_u)$
- Add inducing points u and define var dist $q(f_u) \sim N(\mu, \Sigma)$

$$p(f|f_u)q(f_u) = q(f,f_u) \sim N\left(0, \begin{bmatrix} K_{XX} & K_{XX_u} \\ K_{X_uX} & K_{X_uX_u} \end{bmatrix}\right)$$

Maximize ELBO

$$\int \log(p(y|f)) \int q(f, f_u) df_u df - KL[q(f_u)||p(f_u)]$$

Prediction

$$p(f_*|x_*,X,y) = \int p(f_*|x_*,X,f_u) \cdot q(f_u)df_u$$

$$\begin{bmatrix} f \\ f_u \\ f_* \end{bmatrix} \sim N \left(0, \begin{bmatrix} K_{XX} & K_{XX_u} & K_{XX_*} \\ K_{XX_u}^T & K_{X_uX_u} & K_{X_uX_*} \\ K_{XX_*}^T & K_{X_uX_*}^T & K_{X_*X_*} \end{bmatrix} \right)$$

21

Spares variational Gaussian Process (SVGP)

Figure from: Sparse and Variational Gaussian Process (SVGP)—What To Do When Data is Large | by Wei Yi | Towards Data Science. (o. J.). Abgerufen 9. Juni 2021, von https://towardsdatascience.com/sparse-and-variational-gaussian-process-what-to-do-when-data-is-large-2d3959f430e7

Spares variational Gaussian Process (SVGP)

^{*1:} Hensman, J., Matthews, A., & Ghahramani, Z. (2015). Scalable Variational Gaussian Process Classification. Artificial Intelligence and Statistics, 351–360. http://proceedings.mlr.press/v38/hensman15.html *2: van Amersfoort, J., Smith, L., Jesson, A., Key, O., & Gal, Y. (2021). Improving Deterministic Uncertainty Estimation in Deep Learning for Classification and Regression. http://arxiv.org/abs/2102.11409

GPC (Gaussian / Laplace approximation)

No prior-distribution for hyper-parameters

$$p(f_*|x_*,X,y) = \int p(f_*|x_*,X,f) \cdot q(f|X,y)df, \qquad q(f|X,y) \sim N(f|\hat{f},A^{-1})w$$

$$q(\mathbf{f}|X,\mathbf{y}) = \mathcal{N}(\mathbf{f}|\hat{\mathbf{f}},A^{-1}) \propto \exp\left(-\frac{1}{2}(\mathbf{f}-\hat{\mathbf{f}})^{\top}A(\mathbf{f}-\hat{\mathbf{f}})\right),$$

where $\hat{\mathbf{f}} = \operatorname{argmax}_{\mathbf{f}} p(\mathbf{f}|X, \mathbf{y})$ and $A = -\nabla \nabla \log p(\mathbf{f}|X, \mathbf{y})|_{\mathbf{f} = \hat{\mathbf{f}}}$ is the Hessian of

Gaussian Process analytic

No prior distributions

All distributions are Gaussian

$$\begin{bmatrix} y \\ f_* \end{bmatrix} = N \left(0, \begin{bmatrix} K(X, X) + \sigma_n I & K(X, X_*) \\ K(X_*, X) & K(X_*, X_*) \end{bmatrix} \right)$$

Conditioning

$$p(f_*|x_*, X, y) \sim N(\bar{f}_*, cov(f_*)), \quad y \sim N(f(x), \sigma_n)$$

$$\bar{f}_* \triangleq \mathbb{E}[f_*|x_*, X, y] = K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1} y$$

$$cov(f_*) = K(X_*, X_*) - K(K_*, X)[K(X, X) + \sigma_n^2 I]^{-1} K(X, X_*)$$

Hochschule Konstanz

Kernel parameters estimation

$$k(\mathbf{x}_p, \mathbf{x}_q) = \sigma_f^2 \exp\left(-\frac{1}{2}(\mathbf{x}_p - \mathbf{x}_q)^{\top} M(\mathbf{x}_p - \mathbf{x}_q)\right) + \sigma_n^2 \delta_{pq},$$

Optimize θ with marginal likelihood, $\theta = \{\rho, \sigma_f^2, \sigma_n^2, M\}$

$$p(f|X, y, \theta) = \frac{p(y|f, X, \theta)p(f|X, \theta)}{\int p(y|f, X, \theta)p(f|X, \theta)df}$$
$$\log p(\mathbf{y}|X, \theta) = -\frac{1}{2}\mathbf{y}^{\top}K_{y}^{-1}\mathbf{y} - \frac{1}{2}\log|K_{y}| - \frac{n}{2}\log 2\pi$$

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

Thanks for your attention

Hochschule Konstanz

GPR with **GPytorch**

- GP Model
- 2. Likelihood
- 3. Prior mean
- 4. Kernel/ Prior covariance
- 5. MultivariateNormal Distribution

```
# We will use the simplest form of GP model, exact inference
class ExactGPModel(gpytorch.models.ExactGP):
    def __init__(self, train_x, train_y, likelihood):
        super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
        self.mean_module = qpytorch.means.ZeroMean()
        self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
    def forward(self, x):
        mean_x = self.mean_module(x)
        covar_x = self.covar_module(x)
        return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
likelihood = gpytorch.likelihoods.GaussianLikelihood()
model = ExactGPModel(xt_train, yt_train, likelihood)
```

Empirical priors

Full Bayes

In Sec. 4.6.5.2, we discussed hierarchical Bayes as a way to infer parameters from data. Unfortunately, posterior inference in such models can be computationally challenging. In this section, we discuss a computationally convenient approximation, in which we first compute a point estimate of the hyperparameters, $\hat{\phi}$, and then compute the conditional posterior, $p(\theta|\hat{\phi},\mathcal{D})$, rather than the joint posterior, $p(\boldsymbol{\theta}, \boldsymbol{\phi}|\mathcal{D})$.

To estimate the hyper-parameters, we can maximize the marginal likelihood:

$$\hat{\boldsymbol{\phi}}_{\mathrm{mml}}(\mathcal{D}) = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} p(\mathcal{D}|\boldsymbol{\phi}) = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \int p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\boldsymbol{\phi}) d\boldsymbol{\theta}$$
(4.197)

This technique is known as **type II maximum likelihood**, since we are optimizing the hyperparameters, rather than the parameters. Once we have estimated ϕ , we compute the posterior $p(\theta|\phi,\mathcal{D})$ in the usual way.

Since we are estimating the prior parameters from data, this approach is **empirical Bayes** (EB) [CL96]. This violates the principle that the prior should be chosen independently of the data. However, we can view it as a computationally cheap approximation to inference in the full hierarchical Bayesian model, just as we viewed MAP estimation as an approximation to inference in the one level model $\theta \to \mathcal{D}$. In fact, we can construct a hierarchy in which the more integrals one performs, the "more Bayesian" one becomes, as shown below.

 $p(\boldsymbol{\theta}, \boldsymbol{\phi}|\mathcal{D}) \propto p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{\phi})p(\boldsymbol{\phi})$