

Pieces of Organics Puzzle

1970 Viking landers detect chloromethane and dichloromethane

2008 Phoenix detects perchlorate on Mars

2015 Curiosity's SAM detects chlorobenzene

Today
Did Viking detect
chlorobenzene?

Abundance Average of 8.368 to 8.381 min.: 05230729.D\data.ms (-) 16000 14000 12000 10000 8000 4000 29 33 37³⁹41 47 49 5355 60 69717375 020 25 30 35 40 45 50 55 60 65 70 75 80

Typical GCMS data

- Mass spectra
- Chromatograms

VIKING GCMS

ORIGINAL DATASET

TABLE 1. Acquisition Sites and Analysis Conditions for the Four Martian Samples

Identifica- tion Number*	Date of Analysis	Oven Temper- ature, °C	Mode	Oven Purge Gas	Time Column Held at 200°, min	Oven	
VL-1 Sample 1 (Subsurface), Acquired on Sol 8							
10015	sol 17	200	hydrous	13CO2	18	1	
10018	sol 23	500	anhydrous	13CO ₂	36	1	
VL-1 Sample 2 (Surface), Acquired on Sol 31							
10023	sol 32	350	hydrous	13CO ₂	54	2	
10024	sol 37	500	hydrous	¹³ CO ₂	54	2	
10025	sol 43	500	hydrous	13CO ₂	36	2	
VL-2 Sample 1 (Bonneville Duracrust), Acquired on Sol 21							
10032	sol 24	200	hydrous	H ₂	36	2	
10033	sol 26	350	hydrous	H_2	36	2	
10034	sol 35	500	hydrous	H_2	36	2	
10035	sol 37	500	hydrous	18CO ₂	36	2	
VL-2 Sample 2 (Under Badger Rock), Acquired on Sol 37							
10036	sol 41	50	hydrous	H_2	36	3	
10037	sol 43	200	hydrous	H_2	36	3	
10038	sol 45	350	hydrous	H_2	36	3 3 3	
10039	sol 47	500	hydrous	H ₂	36	3	
10041	sol 61	500	hydrous	13CO ₂	36	3	

VIKING GCMS DATASET TODAY

IMAGE NOT AVAILABLE

IBM-COMPATIBLE TAPES

Raw form, just as they were received by the Viking experimenters from the telemetry program output. Unlikely to be usable by anyone not very familiar with the mission operations and instrument design.

MICROFILM

Data presented as bar graphs on 16-mm microfilm. Each frame contains one complete graph of all masses detected. A second graph starting at about mass 45 showing heavier elements at a more appropriate scale.

39 58 43 3e-84 5a 62 ee-ee 5d 56 c9-f1 58 4d 74 99 58 60 3a-bf 55 40 39-c2 57 5f 5e-49 57 54 7e 94 59 66 5c-68 58 40 b4-5e 5a 00 00-00 00 4a 86 8c 56 77 f1-e5 56 59 74-5f 57 66 5c-68 58 77 4e a7 5a 49 45-68 59 5f 5e-49 57 4e 87-18 57 54 7e 94 59 73 d4-8c 5d 5e d4-53 5a 43 d9-e1 5f 49 45 68 59 66 5c-68 58 77 f1-e5 56 77 f1-e5 56 77 f1 e5 56 00 00-00 00 42 61-67 59 40 b4-5e 5a 61 bd ed 5a 5f 5e-49 57 49 45-68 59 49 17-0a 58 00 00 00 00 42 61-67 59 41 9d-a3 5c 5f fc-ca 5f 66 5c 68 58 61 bd-ed 5a 4d 74-99 58 58 79-07 59 7b 21 3f 5a 4d 74-99 58 61 bd-ed 5a 77 ea-39 58 60 c8 0b 59 49 45-68 59 43 3e-84 5a 7c 6d-7e 59 4a 89 05 5e 73 e8-09 5e 69 b8-29 62 73 d4-8c 5d 73 e8 09 5e 54 aa-cb 60 70 61-bd 5f 6c c0-16 5d 4f 48 bd 5c 54 80-38 5d 66 2b-78 5e 54 7e-94 59 66 5c 68 58 6e 1b-be 59 77 76-aa 5c 4b 23-7a 5a 4a 89 05 5e 7b 5f-25 5d 7c 6d-7e 59 41 92-ae 5b 57 18 1c 5b 77 4e-a7 5a 4f 3b-69 5b 53 65-1a 5a 41 92 ae 5b 59 f1-80 5c 54 80-38 5d 66 09-3f 5c 73 d4 8c 5d 5f bc-87 5b 7b 35-d2 5b 70 4e-d9 5e 63 10 1c 5f 4f 70-99 5f 62 ee-ee 5d 5a 00-a2 5d 5a 2d e1 60 54 9c-8f 5f 43 f0-a3 61 5d 6f-39 66 6c f6

DIGITAL DATA IN BINARY

Data is stored in 32 files in binary form. The data is split between four folders: two folders include all sampling data while two folders include reduced versions of that same data.

Microfilm

- (a), (b), (g) ID numbers
- (c), (e), (h), (j) ion intensity

- (d), (i) effluent divider status
- (f), (k) spectra peaks

Digital data decoding

- We have linked "MIT ID number" in microfilm and digital data
- 94-2737 in HEX is equal to 148-10039 in DECIMAL

Digitization of microfilm

m/z	ion intensity (arb/u.)		
47	58.95380432		
48	8.296565231		
49	10.46864835		
50	34.14775061		
51	18.91677034		
52	2.989858967		
53	2.996805928		
54	9.281103972		
55	4.453352069		
56	3.305559747		
58	2.164714386		
60	2.463433706		
61	2.184011499		
62	2.193274114		
63	2.63556396		
64	2.20948369		