পরিশিউ

ত্রিভুজ অজ্কনের যত পদ্ধতি

সাধারণভাবে একটি ত্রিভুজ দুটি বাহু ও একটি কোণ (SAS), দুইটি কোণ ও অন্তর্ভুক্ত বাহু (ASA) অথবা তিনটি বাহু (SSS) দ্বারা নির্দিন্ট। কিন্তু এছাড়াও নানাভাবে ত্রিভুজ অঞ্চন করা যেতে পারে। এই পন্দতিগুলো তালিকাভুক্ত করার পূর্বে নিম্নের প্রতীকগুলো সংজ্ঞায়িত করি।

A,B,C: কোণ অথবা শীর্ষ বিন্দু

a, b, c. যথাক্রমে A, B, C শীর্ষের বিপরীত বাহুর দৈর্ঘ্য

 h_a, h_b, h_c : যথাক্রমে a, b, c বাহুর উপর বিপরীত শীর্ষ থেকে অঞ্জিত উচ্চতা

 m_a, m_b, m_c : যথাক্রমে a, b, c বাহুর উপর অঞ্জিত মধ্যমা

 l_a, l_b, l_c : যথাক্রমে A, B, C কোণের সমদ্বিখণ্ডক

 H_a, H_b, H_c : যথাক্রমে a, b, c বাহুর উপর বিপরীত শীর্ষ থেকে অঙ্কিত লম্বের পাদবিন্দু

 M_a, M_b, M_c : যথাক্রমে বাহুগুলোর মধ্যবিন্দু

L_a, L_b, L_c: যথাক্রমে a, b, c বাহুর উপর
বিপরীত শীর্ষ কোণের সমদ্বিখণ্ডকের
পাদবিন্দ্

O, R: পরিকেন্দ্র ও পরিবৃত্তের ব্যাসার্ধ

H: শীর্ষবিন্দু থেকে অঞ্চিত উচ্চতাসমূহের

ছেদবিন্দ্

G: ভরকেন্দ্র

া, r: যথাক্রমে অস্তঃবৃত্তের কেন্দ্র ও ব্যাসার্ধ

 I_a, I_b, I_c : $\triangle ABC$ ত্রিভুজের যেকোনো দুইবাহু α , b কে তাদের সাধারণ বিন্দুর বিপরীত দিকে বর্ধিত করলে যে রেখাদ্বয় তৈরি হয় তা এবং অন্য বাহু c যে বৃত্তের পর্শক তার কেন্দ্রকে I_a এবং ব্যাসার্ধকে r_a বলে। অন্য প্রতীকগুলো অনুরূপভাবে সংজ্ঞায়িত

p: অর্ধপরিসীমা = $\frac{(a+b+c)}{2}$

aa, bb, cc: যথাক্রমে a, b. c বাহুপুলোকে বর্ধিত করলে যে রেখাসমূহ হয়

S: ত্রিভুজের ক্ষেত্রফল

 S_a, S_b, S_c : যথাক্রমে A, B, C কোণের সমদ্বিখণ্ডকের সাপেক্ষে ওই বিন্দুসমূহ থেকে অঞ্চিত মধ্যমাগুলোর প্রতিসম সরলরেখাসমূহের পাদবিন্দু।

সূত	ত্র: http://www.cı	ut-the-knot.org,	triangle/
a, b, C (SAS)	A, B, c (ASA)	a, b, c (SSS)	$A, a, b \; (ASS)$
M_a, M_b, M_c	a, b, m_c	a, b, m_b	m_a, m_b, c
m_a, m_b, b	H_a, H_b, H_c	h_c, l_c, m_c	R, a, b
$R.h_a, a$	R, m_a, a	h_a, b, c	h_a, h_b, b
h_a, h_b, c	h_a, a, b	m_a, m_b, h_c	h_a, h_b, m_c
$A.h_b.h_c$	a, h_b, R	h_a . h_b , m_a	$A.h_a, m_a$
a, b, l_c	A, h_a, p	A, R, r	a, R, r
aa, H_b, H_c	h_a, h_b, h_c	A, a, h_a	A, a, m_a
a, h_b, l_c	A, B, h_c	A, h_a, l_a	A, a, r
A, a, R	A, B, p	a, b, A	A, B, l_c
m_a, h_a, m_b	a, h_a, m_a	a, h_a, m_b	a, h_b, m_a
a, h_b, m_b	a, h_b, m_c	A, h_a, h_b	$m_{a_1}m_{b_1}m_{c}$
l_a, l_b, l_c	a, l_a, h_a	A, O, H	A, B, G
a, m_a, l_a	A, B, H	A, B, I	O, H, I
m_a, h_a, h_b	m_a, h_b, h_c	m_a . h_a , l_a	R, a, m_a
A, a, b + c	A, b, a + c	A, a, b - c	$m_a, m_b, a/b$
R, a, m_b	A, a, l_a	h_a, l_a, b	$A, m_b. h_a$
A, r, m_a	$a, A, m_c/m_b$	a, r, h_a	A, r, c-a
A, r, ha	l_a, h_a, R	l_a, h_a, r	m_a, h_a, R
m_b, h_a, A	m_b, R, A	h_a, m_a, r	aa, bb, the Euler line
A, O, I	R, r, h_a		

আন্তর্জাতিক গণিত অলিম্পিয়াড

পৃথিবীর সকল দেশের ক্রীড়াবিদদের নিয়ে যেমন ক্রীড়ার প্রোষ্ঠ আসর অলিম্পিক খেলা হয় ঠিক একইভাবে সারা পৃথিবীর মেধাবী তরুণদের নিয়ে বিভিন্ন বিষয়ে অলিম্পিয়াড প্রতিযোগিতা অনুষ্ঠিত হয়। গণিত, পদার্থ বিজ্ঞান, রসায়ন শাস্ত্র, ইনফরমেটিক্স (কম্পিউটার প্রোগ্রামিং), জীববিজ্ঞান, দর্শন, ভূগোল ও মহাকাশ বিদ্যা এর মধ্যে অন্যতম। এই প্রতিযোগিতায় অংশগ্রহণের মাধ্যমে সকল দেশের ছেলেমেয়েদের মধ্যে যেমন বন্ধুত্বের সম্পর্ক স্থাপিত হয়, ঠিক তেমনি এই প্রতিযোগিতায় অংশগ্রহণের ফলে বিভিন্ন দেশের ছেলেমেয়েদের মধ্যে বিশ্বমানের দক্ষতাও তৈরি হয়। এই অলিম্পিয়াডগুলোর মধ্যে সর্বপ্রথম শুরু হয় আন্তর্জাতিক গণিত অলিম্পিয়াড (আইএমও)। এর প্রথম আসর বসে ১৯৫৯ সালে রুমানিয়ায়। ঠিক অলিম্পিক আসরের মতো এই প্রতিযোগিতা বিভিন্ন দেশে ঘুরে ঘুরে অনুষ্ঠিত হয়ে থাকে। আইএমওতে একটি দেশ থেকে সর্বোচ্চ ৬জন স্কুল-কলেজ পর্যায়ের ছাত্র/ছাত্রী অংশগ্রহণ করতে পারে। তাদের সঙ্গো একজন দলনেতা এবং উপদলনেতা থাকতে পারে। মেধার এই শ্রেষ্ঠ আসরে বাংলাদেশ সর্বপ্রথম ২০০৫ সালে অংশগ্রহণ করে। এযাবত এই প্রতিযোগিতা থেকে বাংলাদেশের প্রতিযোগীরা ৬টি রৌপ্য, ১৯টি রোঞ্জ এবং ২৫টি সম্মানসূচক উন্ধৃতি অর্জন করে প্রমাণ করেছে যে যত কঠিনই হোক না কেন আমাদের তরুণেরা দক্ষতার সঙ্গো চ্যালেঞ্জ মোকাবিলা করতে পারে। পৃথিবীর নামকরা বিশ্ববিদ্যালয়গুলো আইএমওতে সাফল্য অর্জনকারী ছাত্রদের পড়ালেখার জন্য আকৃষ্ট করে।

টেরেন্স টাও

গ্রিগরি পেরেলম্যান

মরিয়ম মিজা খানি

এই প্রতিযোগিতায় অংশগ্রহণ করে পরবর্তী জীবনে অনেকেই নামকরা বৈজ্ঞানিক হয়েছে। অনেকেই গণিতের নোবেল পুরস্কার খ্যাত ফিল্ডস মেডালসহ নানা গুরুত্বপূর্ণ স্বীকৃতি পেয়েছে। এর মধ্যে টেরেল টাও (সর্ব কনিষ্ঠ আইএমও রোঞ্জ, রৌপ্য, স্বর্ণ পদক ও ফিল্ডস মেডাল বিজয়ী এবং অতিপ্রজ গবেষক), গ্রিগরি পেরেলম্যান (১৯৮২ সালে আইএমওতে পূর্ণ নম্বর পেয়ে স্বর্ণ পদক পান, পয়েনকারে কনজেকচার প্রমাণ করার সুবাদে এক মিলিয়ন ডলারের পুরস্কার এবং ২০০৬ সালে ফিল্ডস মেডাল নিতে অস্বীকার

করেন), ফিল্ডস মেডাল বিজয়ী প্রথম মহিলা স্ট্যানফোর্ড বিশ্ববিদ্যালয়ের অধ্যাপক ইরানের মরিয়ম মির্জাখানি(১৯৯৫ সালে আইএমওতে পূর্ণ নম্বর পেয়ে স্বর্ণপদক পান এবং ২০১৭ সালে মাত্র ৪০ বছর বয়সে এই ক্ষণজন্মা গণিতজ্ঞ মৃত্যুবরণ করেন) উল্লেখযোগ্য।

সমাগ্ত