

基于AT-TPC的¹²Be(p,p)¹²Be实验数据分析

报告人:卢奋华

指导老师: 陈洁、柳卫平

2024.11

活性靶时间投影室

CATALOGUE

- 1 研究背景
- 2 ¹²Be数据分析
- 3 效率模拟
- 4 总结

原子核的传统图像为核子在平均场中的独立粒子运动,并按照壳层结构排布。然而在远离稳定线时,一些奇异现象被观测到:中子晕、集团结构、新幻数等。

丰中子奇特核:轨道的闯入会破坏传统的幻数!

集团现象与核力性质紧密联系,现在对集团结构的成因尚缺少确切的解释!

研究背景

直接核反应: 逆运动学

¹²Be (¹H, ¹H)¹²Be

弹性散射:不稳定的弱束缚核光学势一验证与发展 非弹性散射的激发模式是单粒子激发或集体激发

在转动模型中,利用实验角分布和DWBA计算的对比,可以提取原子核的形变参量,研究集团结构。

$$\delta = \beta R = \beta r_0 A^{1/3}$$

对集团结构现象的研究有助于更加系统 地认识核力,特别是弱束缚体系的性质!

研究反应: 12Be (1H,1H)12Be

探测出射质子的信息!

12Be的能谱信息 (基态、激发态)

实验装置

¹²Be (¹H, ¹H)¹²Be

FRIB装置示意图

AT-TPC示意图

活性靶时间投影室: 充当反应靶场所,并可同时进行三维径迹的运动学测量。

实验设置

初级東: ¹⁴C 初级靶: ³Be

● 入射粒子: 12.8 AMeV ¹²Be

● 工作气体: 600 Torr H₂

● 磁场: 2.85 T

■ TPC工作原理

读出pad点火位置确定X、Y坐标

磁场:鉴别粒子Bp-dE、 E~p

CATALOGUE

- 1 研究背景
- 2 ¹²Be数据分析
- 3 效率模拟
- 4 总结

信号处理

Remove peaks from baselines and replace with average

电信号—重建物理信息:能量、位置、时间、电荷

bases: np.ndarray = traces.copy()
for row in bases:
 mean = np.mean(row)
 sigma = np.std(row)
 mask = row - mean > sigma * 1.5
 row[mask] = np.mean(row[~mask])

Create the filter
window = np.arange(-256.0, 256.0, 1.0)
fil = np.fft.ifftshift(np.sinc(window / baseline_window_scale))
transformed = np.fft.fft2(bases, axes=(1,))
result = np.real(
 np.fft.ifft2(transformed * fil, axes=(1,))
) # Apply the filter -> multiply in Fourier = convolve in normal
return traces - result

有效解决了基线震荡问题!

确定低通滤波函数频带

计算基线先扣除信号的影响 大于1.5*sigma的值设为均值

当信号幅度较大时,均值会偏高(信号基线会被高估)

采样窗口512个点,由 Nyquist采样定理,可将信 号频域范围设为了window =256,然后设置<mark>信号带宽</mark> baseline_window_scale 最后将原始基线数据与Sinc函数使用快速傅里叶变换至频域进行卷积。最后反卷积回时域得到基线。由于信号基线容易高估,因此应该减少信号带宽,使低频通带更窄:baseline_window_scale

参数优化

1.2

cm/ms

Drift velocity

0.2

200

径迹重建

hydrogen_600Torr_293K.gas

电子漂移速度曲线

Electric field V/cm

工作电场与漂移速度:

Z坐标重建参数:

micromegas_time_bucket=26.0,
window_time_bucket=336.0,
get_frequency=3.125, #160ns 320ns

根据实验数据刻度漂移时间

1000

Garfield++模拟验证、修正

模拟的电子漂移速度与3.125 MHz的采样频率对应的320 ns采样间隔算出的电子漂移 时间可相互印证。

信息重建

拟合得到Bp、反应顶点

计算能量损失信息 一激发函数

ATIMA is a program developed at GSI which

- energy-loss straggling
- · angular straggling
- range straggling
- mean projectile charge

重构或移植ATIMA软件到至数据分析代码

¹²Be的能谱信息 (基态、

¹²Be Spectrum

次级粒子鉴别

运动学曲线

在100 pps的¹²Be東流强度下,3天时间同时完成了¹²Be (p,p)、¹²Be (p,d)、¹²Be (p,t) 3个反应道的数据测量。

CATALOGUE

- 1 研究背景
- 2 ¹²Be数据分析
- 3 效率模拟
- 4 总结

探测器探测效率、算法重建效率!

attpc_engine蒙卡模拟过程

参数需要通过Garfield软件模拟获取!

工作气体属性 (扩散、平 均电离能、法诺因子)

[ExcitationGaussian(0.0, 0.001)], # No width to ground state [PolarUniform 0.0, np.pi)], # Full angular range 0 deg to 180 deg beam_energy=184.131, # MeV target_material=KinematicsTargetMaterial(material=target, z_range=(0.0, 1.0), rho_sigma=0.007

```
detector = DetectorParams(
    length=1.0,
    efield=45000.0.
    bfield=2.85.
    mpgd_gain=175000,
    gas_target=gas,
    diffusion=0.277,
    fano factor=0.2.
    w_value=34.0,
electronics = ElectronicsParams(
    clock_freq=6.25,
    amp_gain=900,
    shaping_time=1000,
    micromegas_edge=10,
    windows_edge=560,
    adc_threshold=40.
```

etector = DetectorParams(length=1.0, efield=55000.0, bfield=2.85, mpgd gain=175000, gas target=gas, diffusion=0.0277, fano_factor=0.34, w value=36.5, #eV electronics = ElectronicsParams(clock freq=3.125, amp_gain=900, shaping_time=1000, micromegas_edge=26, windows edge=336, adc_threshold=40,

电子漂移速度由实际实验 的time bucket决定,并 设置ADC 3.125 Mhz的采 样频率。

模拟结果

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

粒子鉴别图

hex 50000 Entries 781287 -0.01521 Std Dev 0.7544 40000 5596 / 7 Constant 4.318e+04 ± 1.180e+02 30000 0.0265 ± 0.0001 20000 10000 1 2 3 4 5 6 7 8 Excitation Energy [MeV]

Be-12 激发能谱

基态 质心系下不同 极角的重建效率!

激发态 质心系下不 同极角的重建效率!

实验结果 (初步)

微分截面:基态

微分截面:第一激发态2.1 MeV

结论: 原子核¹²Be存在较大的形变,可进一步与理论计算结果对比,验证讨论¹²Be的集团结构!

总结

Cathode voltage feedthrough

- ¹²Be传统幻数的消失、集团结构
- 实验装置—ATTPC的工作原理

- 微分截面—原子核存在较大形变

THANKS

南方科技大学

Department of Physics SUSTech

XREFs	J [™]		_, _		Ι(γ) ☑	M(γ)			Fir	Final Lev	
	E(level) (keV)	XREF	J ^{II} (level)	T _{1/2} (level)	Ε(γ) (keV)	Ι(γ)	М(ү)	Final Le	vels		
	0	AB DEF IJKLM OPQRSTU	0+	21.46 ms 5 % $\beta^- = 100$ % $\beta^- n = 0.50$ 3							
	2109 1	AB D F IJKL OP RST	2+	0.957 ps 19 % IT = 100	2109 1	100	E2	0	0+		
	2251 1	в в ІЈ О	0+	230 ns 8 % IT = 100	142 <i>2</i> 2251	17.7	E2 E0	2109 0	2+ 0+		
	2715 15	AB D J L OP RST	1-	1.3 fs 4 % IT = 100	2715 <i>2</i>	100	E1	0	0+		
	4412 16 ?	G	(2-)	634 keV 60 % n > 0							
	4580 <i>5</i>	A F JK OP	(2+,3-)	101 keV 17							
	5724 <i>6</i>	A FHJK OP	(4+,2+,3-)	85 keV 15							