Практика по алгоритмам #7: динамика

1. Домашнее задание

1.1. Обязательная часть

- 1. (3) Задача lzss за $\mathcal{O}(n^2)$. Дана строка из латинских букв длины n, нужно ее запаковать в максимально короткую, используя правило (n,i) повторить n символов начиная с i-й позиции. Например $s=xyabababababa \to xyab(8,2)z$. Другой пример: $s=xyaaaabaaaabaaaab \to xya(3,2)b(10,2)$, но это не оптимально. Оптимально xyaaaab(10,2)
- 2. (3) Задача folding за $\mathcal{O}(n^3)$. Дана строка из латинских букв длины n, нужно ее запаковать в максимально короткую, используя правило $n(S) = \underbrace{SS...S}$.

Например NEERCYESYESYESNEERCYESYESYES \rightarrow 2(NEERC3(YES)).

3. (4) Дан массив длины n, который мы хотим получить. Числа в массиве от 1 до C. Получить его из массива $[0,0,\ldots,0]$ минимальным числом операций «покраска отрезка». Решение за $\mathcal{O}(n^3C)$: 2 балла. Решение за $\mathcal{O}(n^3)$: еще 2 балла.

1.2. Дополнительная часть

- 1. (4) Посчитайте количество перестановок из n элементов с ровно k локальными минимумами. $\mathcal{O}(n^3)$: 2 балла. $\mathcal{O}(n^2)$: еще 2 балла.
- 2. (6) Посчитайте количество различных деревьев из n вершин с выделенным корнем. Изоморфные деревья считаются одинаковыми, при изоморфизме корень должен переходить в корень. Например, из 2 вершин есть 1 дерево, из 3 вершин 2 дерева, а из 4 вершин 4 дерева. $\mathcal{O}(polynom)$: 2 балла. $\mathcal{O}(n^4poly(log))$: еще 2 балла. $\mathcal{O}(n^3poly(log))$: еще 2 балла. P.S. Существует простое решение за $\mathcal{O}(n^2\log n)$.