Presenter: Aeren

May 31, 2021

• Randomness is an important computational resource.

- Randomness is an important computational resource.
- Many computational problems are known to have much more efficient randomized algorithms than the deterministic ones.

- Randomness is an important computational resource.
- Many computational problems are known to have much more efficient randomized algorithms than the deterministic ones.
- Thus it is natural to attempt to reduce the amount of "randomness", i.e. the number of completely random bits used.

• Let  $n \ll N$ . A **pseudorandom generator** accepts a bitstring of length n generated by the n truly random bits, called the **seed**, and yields, in polynomial time, a bitstring of length N, which must be indistinguishable from N truly random bits for any polynomial time algorithm.



• Unfortunately, they're only known to exist under the assumption that one-way functions exist, which is even stronger assumption than  $P \neq NP$ .

- Unfortunately, they're only known to exist under the assumption that one-way functions exist, which is even stronger assumption than  $P \neq NP$ .
- Therefore we restrict our interest into some subclass of algorithms, such as space-bounded ones.

- Unfortunately, they're only known to exist under the assumption that one-way functions exist, which is even stronger assumption than  $P \neq NP$ .
- Therefore we restrict our interest into some subclass of algorithms, such as space-bounded ones.
- As an example, it is known that we only need  $O(\log^2 N)$  truly random bits to construct a pseudorandom generator producing O(poly(N)) bits in  $SPACE(\log(N))$

- Unfortunately, they're only known to exist under the assumption that one-way functions exist, which is even stronger assumption than  $P \neq NP$ .
- Therefore we restrict our interest into some subclass of algorithms, such as space-bounded ones.
- As an example, it is known that we only need  $O(\log^2 N)$  truly random bits to construct a pseudorandom generator producing O(poly(N)) bits in  $SPACE(\log(N))$
- Constructing a pseudorandom generator for a class of algorithms is called the derandomization problem.

#### **DEFINITION**

A branching program with n variables  $x_1, \dots, x_n$  is a directed acyclic multigraph where

- 1. one of the node is marked as an **input node**,
- 2. outdegree of each nodes is either 2, called an internal node, or 0, called a terminal,
- 3. each outward edges of an internal node are labelled 0 and 1 respectively,
- 4. each internal nodes are labelled with one of the  $x_i$ , and
- 5. each terminals are marked as accepting or rejecting.

#### **DEFINITION**

A branching program with n variables  $x_1, \dots, x_n$  is a directed acyclic multigraph where

- 1. one of the node is marked as an **input node**,
- 2. outdegree of each nodes is either 2, called an internal node, or 0, called a terminal,
- 3. each outward edges of an internal node are labelled 0 and 1 respectively,
- 4. each internal nodes are labelled with one of the  $x_i$ , and
- 5. each terminals are marked as accepting or rejecting.

A branching program **accepts** the bitstring  $S \in \{0,1\}^n$  if the terminal reachable by following the edge labelled  $S_i$  for each internal nodes with label  $x_i$  is accepting. Otherwise, it **rejects** the bitstring.



Figure: Branching program for  $f(x_1, x_2, x_3) = (\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2) \lor (x_2 \land x_3)$ 



Figure: Branching program for  $f(x_1, x_2, x_3) = (\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2) \lor (x_2 \land x_3)$ 



Figure: Rejects 010



Figure: Branching program for  $f(x_1, x_2, x_3) = (\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2) \lor (x_2 \land x_3)$ 



Figure: Rejects 010



Figure: Accepts 110

 It is known that it's suffice to find the construction of a pseudorandom generator for polynomial size read-once branching programs in order to solve the derandomization problem for space bounded computations.

- It is known that it's suffice to find the construction of a pseudorandom generator for polynomial size read-once branching programs in order to solve the derandomization problem for space bounded computations.
- This paper proves that the Impagliazzo-Nisan-Wigderson generator(INW generator) solves this problem for a subclass of branching programs, called permutation branching programs.

#### **DEFINITION**

A **permutation branching program** with n variables  $x_1, \dots, x_n$  of width k is a branching program such that

- 1. nodes are divided into levels  $0, 1, \dots, n$ , each containing k vertices numbered  $1, 2, \dots, k$ , such that level  $0 \le i < n$  nodes are labelled  $x_{i+1}$ ,
- 2. one of the level 0 node is marked as an input vertex and level n nodes are terminals, and
- 3. edges are divided into levels  $0, 1, \dots, n-1$  such that level i edges of label  $b \in \{0, 1\}$  forms a permutation from level i nodes to level i+1 nodes.



• Without the loss of generality, we may renumber each nodes so that each edges labelled 0 maps a node numbered *i* to a node numbered *i* (on the subsequent level).

- Without the loss of generality, we may renumber each nodes so that each edges labelled 0 maps a node numbered *i* to a node numbered *i* (on the subsequent level).
- Consider the problem of finding a pseudorandom generator such that for every fixed permutation  $\pi \in S_k$  and every  $1 \le i \le k$ , it approximates the probability that a random input with input node i reaches the terminal  $\pi(i)$  for a fixed read-once permutation branching program.

- Without the loss of generality, we may renumber each nodes so that each edges labelled 0 maps a node numbered *i* to a node numbered *i* (on the subsequent level).
- Consider the problem of finding a pseudorandom generator such that for every fixed permutation  $\pi \in S_k$  and every  $1 \le i \le k$ , it approximates the probability that a random input with input node i reaches the terminal  $\pi(i)$  for a fixed read-once permutation branching program.
- Note that each permutation given in each level by edges labelled 1 are just an element of  $S_k$ .

- Without the loss of generality, we may renumber each nodes so that each edges labelled 0 maps a node numbered *i* to a node numbered *i* (on the subsequent level).
- Consider the problem of finding a pseudorandom generator such that for every fixed permutation  $\pi \in S_k$  and every  $1 \le i \le k$ , it approximates the probability that a random input with input node i reaches the terminal  $\pi(i)$  for a fixed read-once permutation branching program.
- Note that each permutation given in each level by edges labelled 1 are just an element of  $S_k$ .
- Now we may attempt to restate the problem using finite groups.

• Let *G* be a finite group.

- Let G be a finite group.
- A string  $w = (g_1, \dots, g_n)$  of elements of G is called a **group word**.

- Let G be a finite group.
- A string  $w = (g_1, \dots, g_n)$  of elements of G is called a **group word**.
- Given a group word  $w=(g_1,\cdots,g_n)$ , we define the probability distribution  $\mathrm{Rnd}^w$  on G as

$$\mathrm{Rnd}^{w}(g) = \frac{1}{2^{n}} |\{(x_{1}, \cdots, x_{n}) \in \{0, 1\}^{n} : g = g_{1}^{x_{1}} \cdots g_{n}^{x_{n}}\}|$$

.

- Let G be a finite group.
- A string  $w = (g_1, \dots, g_n)$  of elements of G is called a **group word**.
- Given a group word  $w=(g_1,\cdots,g_n)$ , we define the probability distribution  $\operatorname{Rnd}^w$  on G as

$$\mathrm{Rnd}^{w}(g) = \frac{1}{2^{n}} |\{(x_{1}, \cdots, x_{n}) \in \{0, 1\}^{n} : g = g_{1}^{x_{1}} \cdots g_{n}^{x_{n}}\}|$$

.

• It's not hard to see that the derandomization problem for  $\operatorname{Rnd}^w$  is equivalent to that of the permutation branching program.

#### **DEFINITION**

An  $(N, M, \lambda)$ -expander is an undirected M-regular multigraph on N vertices whose second largest absolute value of eigenvalues of its normalized adjacency matrix is at most  $\lambda$ .

#### **DEFINITION**

An  $(N, M, \lambda)$ -expander is an undirected M-regular multigraph on N vertices whose second largest absolute value of eigenvalues of its normalized adjacency matrix is at most  $\lambda$ .

Recall that an expander graph has property that each "small" subset of vertices has "large" boundary.

• Given a  $2^d$ -regular multigraph, we may label (u, e), for each vertex u and an edge e incident to u so that the labels of (u, e) forms a permutation of  $\{0, 1\}^d$  for u.

- Given a  $2^d$ -regular multigraph, we may label (u, e), for each vertex u and an edge e incident to u so that the labels of (u, e) forms a permutation of  $\{0, 1\}^d$  for u.
- For  $y \in \{0,1\}^r$  and  $y' \in \{0,1\}^d$ , let  $\nu(y,y')$  be a neighbor of y reachable by the edge e where (y,e) is labelled y'.

- Given a  $2^d$ -regular multigraph, we may label (u, e), for each vertex u and an edge e incident to u so that the labels of (u, e) forms a permutation of  $\{0, 1\}^d$  for u.
- For  $y \in \{0,1\}^r$  and  $y' \in \{0,1\}^d$ , let  $\nu(y,y')$  be a neighbor of y reachable by the edge e where (y,e) is labelled y'.

#### **DEFINITION**

Let  $\Gamma_1, \Gamma_2 : \{0,1\}^r \to \{0,1\}^n$  be functions and F be a  $2^d$ -regular multigraph with vertex set  $\{0,1\}^r$ . The **expander product** of  $\Gamma_1$  and  $\Gamma_2$  by F is the function  $\Gamma_1 \otimes_F \Gamma_2 : \{0,1\}^{r+d} \to \{0,1\}^{2n}$  defined by

$$(\Gamma_1 \otimes_F \Gamma_2)(y,y') = (\Gamma_1(y),\Gamma_2(\nu(y,y')))$$

30 / 59

• The INW generator is obtained by recursively applying the expander product with a family of expanders of increasing sizes of vertices.

- The INW generator is obtained by recursively applying the expander product with a family of expanders of increasing sizes of vertices.
- In order to construct such family, we'll first look at some basic operations on expander graphs.

#### **DEFINITION**

For a D-regular undirected graph G, the **rotation map**  $\operatorname{Rot}_G : [N] \times [D] \to [N] \times [D]$  is defined as follows:  $\operatorname{Rot}_G(v,i) = (w,j)$  if the i-th edge incident to v leads to w and this edge is the j-th edge incident to w.



Figure:  $Rot_G(v, i) = (w, j), Rot_G(w, j) = (v, i)$ 

#### First Operation(Power)

Let G be a D-regular multigraph on [N]. The t-th power of G is the  $D^t$ -regular multigraph  $G^t$  whose rotation map is given by  $\mathrm{Rot}_{G^t}(v_0,(k_1,\cdots,k_t))=(v_t,(l_t,\cdots,l_1))$  where these values are computed via the rule  $\mathrm{Rot}_G(v_{i-1},k_i)=(v_i,l_i)$ .

#### First Operation(Power)

Let G be a D-regular multigraph on [N]. The t-th power of G is the  $D^t$ -regular multigraph  $G^t$  whose rotation map is given by  $\mathrm{Rot}_{G^t}(v_0,(k_1,\cdots,k_t))=(v_t,(l_t,\cdots,l_1))$  where these values are computed via the rule  $\mathrm{Rot}_G(v_{i-1},k_i)=(v_i,l_i)$ .

The t-th power is just the graph whose normalized adjacency matrix is the t-th power of the normalized adjacency matrix of the operand.

Since the t-th power of a matrix has eigenvalues powered by t, the following is immediate:

Since the t-th power of a matrix has eigenvalues powered by t, the following is immediate:

#### **THEOREM**

If G is an  $(N, D, \lambda)$ -expander, then  $G^t$  is an  $(N, D^t, \lambda^t)$ -expander. Moreover,  $Rot_{G^t}$  is computable in time  $poly(\log N, \log D, t)$  with t oracle queries to  $Rot_G$ .

#### Second Operation(Tensor Product)

Let  $G_1$  be a  $D_1$ -regular multigraph on  $[N_1]$  and  $G_2$  a  $D_2$ -regular multigraph on  $[N_2]$ . The **tensor product**  $G_1 \otimes G_2$  is the  $D_1 \cdot D_2$ -regular multigraph on  $[N_1] \times [N_2]$  given by  $\operatorname{Rot}_{G_1 \otimes G_2}((v,w),(i,j)) = ((v',w'),(i',j'))$  where  $\operatorname{Rot}_{G_1}(v,i) = (v',i')$  and  $\operatorname{Rot}_{G_2}(w,j) = (w',j')$ .

#### Second Operation(Tensor Product)

Let  $G_1$  be a  $D_1$ -regular multigraph on  $[N_1]$  and  $G_2$  a  $D_2$ -regular multigraph on  $[N_2]$ . The **tensor product**  $G_1 \otimes G_2$  is the  $D_1 \cdot D_2$ -regular multigraph on  $[N_1] \times [N_2]$  given by  $\operatorname{Rot}_{G_1 \otimes G_2}((v, w), (i, j)) = ((v', w'), (i', j'))$  where  $\operatorname{Rot}_{G_1}(v, i) = (v', i')$  and  $\operatorname{Rot}_{G_2}(w, j) = (w', j')$ .

The tensor product is just the graph whose normalized adjacency matrix is the product of the respective normalized adjacency matrices of operands.

Tensor product of matrices has a nice property that its eigenvalues are the multiset of pairwise products of respective eigenvalues of operands. Therefore, the largest eigenvalue  $1 \cdot 1 = 1$  and the second largest is  $\max(\lambda_1 \cdot 1, 1 \cdot \lambda_2)$ . Therefore, the following holds:

Tensor product of matrices has a nice property that its eigenvalues are the multiset of pairwise products of respective eigenvalues of operands. Therefore, the largest eigenvalue  $1 \cdot 1 = 1$  and the second largest is  $\max(\lambda_1 \cdot 1, 1 \cdot \lambda_2)$ . Therefore, the following holds:

#### **THEOREM**

If  $G_1$  is an  $(N_1, D_1, \lambda_1)$ -expander and  $G_2$  is an  $(N_2, D_2, \lambda_2)$ -expander, then  $G_1 \otimes G_2$  is an  $(N_1 \cdot N_2, D_1 \cdot D_2, \max(\lambda_1, \lambda_2))$ -expander. Moreover,  $\mathrm{Rot}_{G_1 \otimes G_2}$  is computable in time  $\mathrm{poly}(\log N_1 N_2, \log D_1 D_2)$  with one oracle queries to each  $\mathrm{Rot}_{G_1}$  and  $\mathrm{Rot}_{G_2}$ .

#### Third Operation(Zig-zag Product)

If  $G_1$  is a  $D_1$ -regular graph on [N] and  $G_2$  is a  $D_2$ -regular graph on  $[D_1]$ , then their **zig-zag product**  $G_1(z)G_2$  is a  $D_2^2$ -regular graph on  $[N] \times [D_1]$  whose rotation map is as follows:  $Rot_{G_1}(z)_{G_2}((v,k),(i,j))$ :

- 1. Let  $(k', i') = \text{Rot}_{G_2}(k, i)$ .
- 2. Let  $(w, l') = Rot_{G_1}(v, k')$ .
- 3. Let  $(I, j') = Rot_{G_2}(I', j)$ .
- 4. Output ((w, l), (j', i')).

#### **THEOREM**

Let H be a  $(D^8, D, \lambda)$ -expander for some D and  $\lambda$ . For  $t \ge 1$ , we define a  $(D^{8t}, D^2, \lambda_t)$ -expander  $G_t$  as follows:

- 1.  $G_1 = H^2$ .
- 2.  $G_2 = H \otimes H$ .
- 3. For t > 3,

$$G_t = \left(G_{\lceil \frac{t-1}{2} \rceil} \otimes G_{\lceil \frac{t-1}{2} \rceil}\right)^2 \odot H$$

.

#### **THEOREM**

For every  $t \geq 1$ ,  $G_t$  is an  $(D^{8t}, D^2, \lambda_t)$ -expander with  $\lambda_t \in \lambda + O(\lambda^2)$ . Moreover,  $\operatorname{Rot}_{G_t}$  can be computed in time  $\operatorname{poly}(t, \log D)$  with  $\operatorname{poly}(t)$  oracle queries to  $\operatorname{Rot}_H$ .

#### **THEOREM**

For every  $t \geq 1$ ,  $G_t$  is an  $(D^{8t}, D^2, \lambda_t)$ -expander with  $\lambda_t \in \lambda + O(\lambda^2)$ . Moreover,  $\operatorname{Rot}_{G_t}$  can be computed in time  $\operatorname{poly}(t, \log D)$  with  $\operatorname{poly}(t)$  oracle queries to  $\operatorname{Rot}_H$ .

#### **THEOREM**

For every  $t \ge 1$ ,  $G_t$  is an  $(D^{8t}, D^2, \lambda_t)$ -expander with  $\lambda_t \in \lambda + O(\lambda^2)$ . Moreover,  $\operatorname{Rot}_{G_t}$  can be computed in time  $\operatorname{poly}(t, \log D)$  with  $\operatorname{poly}(t)$  oracle queries to  $\operatorname{Rot}_H$ .

#### PROOF)

• The number of vertices and degree can be shown with a straightforward induction.

#### **THEOREM**

For every  $t \geq 1$ ,  $G_t$  is an  $(D^{8t}, D^2, \lambda_t)$ -expander with  $\lambda_t \in \lambda + O(\lambda^2)$ . Moreover,  $\operatorname{Rot}_{G_t}$  can be computed in time  $\operatorname{poly}(t, \log D)$  with  $\operatorname{poly}(t)$  oracle queries to  $\operatorname{Rot}_H$ .

- The number of vertices and degree can be shown with a straightforward induction.
- To analyze the eigenvalue, let  $\mu_t = \max\{\lambda_1, \cdots, \lambda_t\}$ .

#### **THEOREM**

For every  $t \ge 1$ ,  $G_t$  is an  $(D^{8t}, D^2, \lambda_t)$ -expander with  $\lambda_t \in \lambda + O(\lambda^2)$ . Moreover,  $\operatorname{Rot}_{G_t}$  can be computed in time  $\operatorname{poly}(t, \log D)$  with  $\operatorname{poly}(t)$  oracle queries to  $\operatorname{Rot}_H$ .

- The number of vertices and degree can be shown with a straightforward induction.
- To analyze the eigenvalue, let  $\mu_t = \max\{\lambda_1, \dots, \lambda_t\}$ .
- Then we have  $\mu_t \leq \max\{\mu_{t-1}, \mu_{t-1}^2 + \lambda + \lambda^2\}$  for all  $t \geq 2$ .

#### **THEOREM**

For every  $t \geq 1$ ,  $G_t$  is an  $(D^{8t}, D^2, \lambda_t)$ -expander with  $\lambda_t \in \lambda + O(\lambda^2)$ . Moreover,  $\operatorname{Rot}_{G_t}$  can be computed in time  $\operatorname{poly}(t, \log D)$  with  $\operatorname{poly}(t)$  oracle queries to  $\operatorname{Rot}_H$ .

- The number of vertices and degree can be shown with a straightforward induction.
- To analyze the eigenvalue, let  $\mu_t = \max\{\lambda_1, \dots, \lambda_t\}$ .
- Then we have  $\mu_t \leq \max\{\mu_{t-1}, \mu_{t-1}^2 + \lambda + \lambda^2\}$  for all  $t \geq 2$ .
- Solving this recurrence gives  $\mu_t \leq \lambda + O(\lambda^2)$  for all t.

#### **THEOREM**

For every  $t \geq 1$ ,  $G_t$  is an  $(D^{8t}, D^2, \lambda_t)$ -expander with  $\lambda_t \in \lambda + O(\lambda^2)$ . Moreover,  $\operatorname{Rot}_{G_t}$  can be computed in time  $\operatorname{poly}(t, \log D)$  with  $\operatorname{poly}(t)$  oracle queries to  $\operatorname{Rot}_H$ .

- The number of vertices and degree can be shown with a straightforward induction.
- To analyze the eigenvalue, let  $\mu_t = \max\{\lambda_1, \dots, \lambda_t\}$ .
- Then we have  $\mu_t \leq \max\{\mu_{t-1}, \mu_{t-1}^2 + \lambda + \lambda^2\}$  for all  $t \geq 2$ .
- Solving this recurrence gives  $\mu_t \leq \lambda + O(\lambda^2)$  for all t.
- For the time complexity, note that the depth of the recursion is  $\log t$  and evaluation of  $\operatorname{Rot}_{G_t}$  requires 4 evaluations of rotation maps for smaller graphs.

#### **THEOREM**

For every  $t \geq 1$ ,  $G_t$  is an  $(D^{8t}, D^2, \lambda_t)$ -expander with  $\lambda_t \in \lambda + O(\lambda^2)$ . Moreover,  $\operatorname{Rot}_{G_t}$  can be computed in time  $\operatorname{poly}(t, \log D)$  with  $\operatorname{poly}(t)$  oracle queries to  $\operatorname{Rot}_H$ .

- The number of vertices and degree can be shown with a straightforward induction.
- To analyze the eigenvalue, let  $\mu_t = \max\{\lambda_1, \dots, \lambda_t\}$ .
- Then we have  $\mu_t \leq \max\{\mu_{t-1}, \mu_{t-1}^2 + \lambda + \lambda^2\}$  for all  $t \geq 2$ .
- Solving this recurrence gives  $\mu_t \leq \lambda + O(\lambda^2)$  for all t.
- For the time complexity, note that the depth of the recursion is  $\log t$  and evaluation of  $\operatorname{Rot}_{G_t}$  requires 4 evaluations of rotation maps for smaller graphs.
- Therefore, total number of recursive calls is at most  $4^{\log t} = t^2$ .

#### Corollary

There is a universal constant  $c_0 > 0$  such that for every constant  $0 < \lambda < 1$  and  $d = c_0 \lceil \log 1/\lambda \rceil$ , there exists a sequence  $F_m$  of  $(2^{d \cdot m}, 2^d, \lambda)$ -expanders, where neighbors in  $F_m$  are computable in  $O(d \cdot m)$  space and  $\operatorname{poly}(d \cdot m)$  time.

We're now ready to present the construction of INW generator.

- For  $0 < \lambda < 1$  and an integer  $n \ge 1$ ,  $(\lambda, n)$ -INW generator is obtained recursively as follows.
- Let  $\Gamma_0: \{0,1\}^d \to \{0,1\}^d$  be the identity mapping.
- Then  $\Gamma_{i+1} = \Gamma_i \otimes_{F_i} \Gamma_i$  where  $F_i$  is the  $(2^{d(i+1)}, 2^d, \lambda)$ -expander from the previous corollary.
- This gives  $(\lambda, n)$ -INW generator for every  $n = d2^k$  where k > 0.
- We obtain the generator for arbitrary n by taking first n bit from  $(\lambda, n')$ -INW generator where  $n' = d2^k \ge n$  is taken to be the smallest.
- Hence,  $(\lambda, n)$ -INW generator giving n bits of output has seed length  $O(\log n \cdot \log 1/\lambda)$ .

Recall that we're trying to approximate the distribution  $\operatorname{Rnd}^{w}$ .

Recall that we're trying to approximate the distribution  $\operatorname{Rnd}^w$ . With the INW generator  $\Gamma$ , we have the distribution

$$D_{\Gamma}^{w}(g) = \frac{1}{2^{r}} |\{y \in \{0,1\}^{r} | g = g_{1}^{\Gamma(y)_{1}} \cdots g_{n}^{\Gamma(y)_{n}}\}|$$

.

Recall that we're trying to approximate the distribution  $\operatorname{Rnd}^w$ . With the INW generator  $\Gamma$ , we have the distribution

$$D_{\Gamma}^{w}(g) = \frac{1}{2^{r}} |\{y \in \{0,1\}^{r} | g = g_{1}^{\Gamma(y)_{1}} \cdots g_{n}^{\Gamma(y)_{n}}\}|$$

#### THEOREM

Let G be any finite group of size at least 4 and  $0 < \delta < 1$ . Let  $\lambda = \delta/(2^{c_1|G|^{12}} \cdot \sqrt{|G|})$  where  $c_1$  is the universal constant from the corollary. Then  $(\lambda, n)$ -INW generator  $\Gamma$  uses seeds of length  $O(\log n \cdot (|G|^{12} + \log 1/\delta))$  to product n bits such that for every group word w of length n,

$$\|\operatorname{Rnd}^{w} - D_{\Gamma}^{w}\| \leq \delta$$

. Moreover, the output of the generator is computable in space linear in the seed length.

### Conclusion

- The author mentions that he didn't try to optimize the constant factor involved in the construction.
- The general derandomization problem for branching programs remains open.

# The End