Bài giảng 11b: So sánh 2 tỉ lệ bằng odds ratio

Nguyễn Văn Tuấn

Garvan Institute of Medical Research, Australia Đại học Tôn Đức Thắng, Việt Nam

Khái niệm "risk" và "odds"

Định nghĩa *risk*

- Xác suất một biến cố bất lợi xảy ra trong một thời gian nhất định
- Ba yếu tố:
 - xác suất
 - biến cố bất lợi (adverse event)
 - thời gian

Định nghĩa odds

- The odds of an event is the number of times that the event has occurred over the the number of times that the event has not occured
- Odds của một biến cố là tỉ số của số lần biến cố đó xảy ra trên số lần biến cố đó không xảy ra.

So sánh giữa *risk* và *odds*

Một nhóm bệnh nhân gồm **100** người được điều trị. Trong thời gian 3 năm sau đó, có 5 người tử vong

Nguy cơ (risk) tử vong:

$$p = 5 / 100 = 0.05$$

Odds tử vong:

odds =
$$5 / 95 = 0.053$$

Odds ratio

Jerome Cornfield

- Nhà thống kê học, Johns Hopkins Univ
- Chủ tịch American Statistical Association (1974)
- R A Lecturer (1973)
- Phát kiến khái niệm odds ratio

J Cornfield (1912-1979)

Nguy cơ tử vong của 2 nhóm

- Nghiên cứu lâm sàng đối chứng ngẫu nhiên (Randomized controlled trial)
- Hai nhóm bệnh nhân, theo dõi 3 năm
- Tiêu chí đánh giá: tử vong

	Placebo	Rx
Số bệnh nhân	1062	1065
Tử vong	141	101

Nguy co

	Rx	Placebo
Số bệnh nhân	1065	1062
Tử vong	101	141
Sống sót	964	921
Nguy cơ tử vong	0.095	0.133
Odds tử vong	0.105	0.153

- Câu hỏi nghiên cứu: Thuốc có hiệu quả giảm tử vong?
- Câu hỏi thống kê: nguy cơ tử vong khác nhau?

Trường hợp chung

	Rx	Control
Bệnh	а	b
Không bệnh	C	d
Cỡ mẫu	N ₁	N_2

Nguy cơ

$$p_1 = \frac{a}{N_1}$$

$$p_2 = \frac{b}{N_2}$$

Odds

$$O_1 = \frac{a}{c}$$

$$O_2 = \frac{b}{d}$$

Hai cách để so sánh

Hiệu số (absolute risk difference)

$$d = p_1 - p_2$$

• Tỉ số hai odds (Odds Ratio)

$$OR = \frac{O_1}{O_2}$$

Ý nghĩa của OR

 O₁: odds nhóm được điều trị, O₂ odds nhóm không điều trị

$$OR = O_1 / O_2$$

- Ý nghĩa:
 - Nếu OR = 1, hai nhóm có hiệu quả như nhau
 - Nếu OR > 1, thuốc có hại
 - Nếu OR < 1, thuốc có lợi

Ước tính khoảng tin cậy 95% của OR

- Nhưng OR chỉ là số trung bình
- Nếu lặp lại nghiên cứu, OR có thể khác
- Lặp lại lần nữa, OR lại khác
- Nếu lặp lại 100 lần, và nếu tất cả hay 95% OR đều dưới 1 thì đó là chứng cứ khoa học
- Vấn đề: làm sao ước tính khoảng tin cậy 95%?

Qui trình ước tính khoảng tin cậy

- Cần phải ước tính phương sai của OR
- Sau đó, ước tính độ lệch chuẩn (căn số bậc 2 của phương sai)
- Áp dụng lí thuyết phân bố chuẩn: khoảng tin cậy 95% bằng

trung bình + 1.96xđộ lệch chuẩn

Ước tính phương sai của OR

- OR là một tỉ số
- Rất khó ước tính phương sai của một tỉ số!

Tính phương sai của log(OR)

Cách tính "gián tiếp" hay "vòng"

- 1. Hoán chuyển OR sang log(OR)
- 2. Tính phương sai (và độ lệch chuẩn) của log(OR)
- 3. Tính khoảng tin cậy 95% của log(OR)
- 4. Hoán chuyển khoảng tin cậy log(OR) sang OR

Ví dụ cách tính khoảng tin cậy 95%

	Rx	Control
B ệnh	а	b
Không bệnh	C	d
Cỡ mẫu	N ₁	N ₂

Odds

$$O_1 = \frac{a}{c}$$

$$O_2 = \frac{b}{d}$$

• OR =
$$O_1 / O_2$$

• L =
$$log(OR) = log(O_1) - log(O_2)$$

Ví dụ cách tính khoảng tin cậy 95%

	Rx	Control
Bệnh	а	b
Không bệnh	C	d
Cỡ mẫu	N ₁	N ₂

Odds

$$O_1 = \frac{a}{c}$$

$$O_2 = \frac{b}{d}$$

• OR =
$$O_1 / O_2$$

• L =
$$log(OR) = log(O_1) - log(O_2)$$

$$V = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

Ví dụ cách tính khoảng tin cậy 95%

- OR = O_1 / O_2
- L = $log(OR) = log(O_1) log(O_2)$
- Phương sai của L:

$$V = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

- Đô lệch chuẩn của L: S = V^{1/2}
- Khoảng tin cậy 95% của L: L + 1.96xS
- Khoảng tin cậy 95% của OR:

exp(L-1.96xS) đến exp(L+1.96xS)

Phân tích OR với R

Tính toán "thủ công"

	Rx	Placebo
Tử vong	101	141
Sống sót	964	921

- OR = odds1 / odds2 = (101*921)/ (141*964)
- L = log(OR)
- V = 1/101+1/964+1/141+1/921
- S = căn số bậc 2 của V
- KTC95: L-1.96S đến L+1.96S
- KTC95% RR: exp(L-1.96S) đến exp(L+1.96S)

```
a=101; b=141; c=964; d=921
OR = (a*d) / (b*c)
L = log(OR)
S = sqrt(1/a+1/b+1/c+1/d)
L95 = exp(L-1.96*S)
U95 = exp(L+1.96*S)
cbind(OR, L95, U95)
```

Kết quả tính toán thủ công

```
> cbind(OR, L95, U95)

OR L95 U95

[1,] 0.6843604 0.5219082 0.8973784
```

Dùng package epitools

```
library(epitools)
data = matrix(c(101, 964, 141, 921), byrow=T,
nrow=2)
oddsratio(data, rev="c")
```

Dùng package epitools

```
> oddsratio(data, rev="c")
             Outcome
Predictor Disease2 Disease1 Total
 Exposed1
               964
                        101
                             1065
 Exposed2
           921 141 1062
                                         Tai sao OR = 1.46?
          1885 242 2127
 Total
                                         (Trước đó RR = 0.68)
$measure
         odds ratio with 95% C.I.
Predictor estimate
                      lower
                             upper
 Exposed1 1.000000
                         NA
                                 NA
 Exposed2 1.460349 1.114874 1.919114
$p.value
         two-sided
Predictor
           midp.exact fisher.exact chi.square
 Exposed1
                   NA
                               NA
                                           NA
 Exposed2 0.005904708 0.006268449 0.005874976
```

Tóm lược

- OR = odds ratio (tỉ số odds)
- Một chỉ số đo lường độ ảnh hưởng (hay liên quan)
- Thường được sử dụng trong nghiên cứu bệnh chứng