Problem Set 4 CSCI 688

Problem 1 Let $X \in \mathbb{R}^{N \times P}$ be our design matrix and $Y \in \mathbb{R}^N$ be our response variables. Let \widetilde{X} and \widetilde{Y} be augmented versions of X and Y where

$$\widetilde{X} = \begin{bmatrix} X \\ \sqrt{\lambda} I_P \end{bmatrix}$$

adds P rows to X each with values $\sqrt{\lambda}$ and

$$\widetilde{Y} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$$

adds P zeros on to the end of Y. Show that the coefficients $\hat{\beta}$ associated with regressing \widetilde{Y} onto \widetilde{X} is equivalent to the coefficients found from fitting a Ridge regression estimator of Y onto X. This can be interpreted as shrinking our estimate of $\hat{\beta}$ by adding hints into our data that, for many of our data points, the coefficient is zero. Hint: if

$$C_1 = \begin{bmatrix} A_1 \\ B_1 \end{bmatrix}$$
 and $C_2 = \begin{bmatrix} A_2 \\ B_2 \end{bmatrix}$

are block matrices then

$$C_1^T C_2 = A_1^T A_2 + B_1^T B_2$$

Problem 2 Suppose we estimate the regression coefficients in a linear regression model by minimizing

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{i=1}^{p} \beta_j x_{ij})^2$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \le s$$
.

for a particular value of s. For parts (a) through (d), indicate which of i. through v. is correct.

- (a) As we increase s from 0, the training RSS will:
 - i. Increase initially, and then eventually start decreasing in an inverted U shape.
 - ii. Decrease initially, and then eventually start increasing in a U shape.
 - iii. Steadily increase.
 - iv. Steadily decrease.
 - v. Remain constant.
- (b) Repeat (a) for test RSS.
- (c) Repeat (a) for variance.
- (d) Repeat (a) for (squared) bias.

- **Problem 3** In this exercise, we will look at gene expression data from prostate tumors. The dataset is called **prostate** and can be found in the spls package using the command data(prostate).
 - (a) Get the matrix of gene expressions prostate\$x. Split off the first column as a new variable y = prostate\$x[,1] to predict from the remaining columns. Now split the data set into a training set and a test set.
 - (b) Fit a linear model using least squares on the training set. Does this model make sense?
 - (c) Suppose I wanted to do forward step-wise variable selection. If I wanted to compare all models including one covariate X how many linear models would I have to fit?
 - (d) Fit a ridge regression model on the training set, with λ chosen by cross-validation. Report the test error obtained.
 - (e) Fit a lasso model on the training set, with λ chosen by cross-validation. Report the test error obtained, along with the number of non-zero coefficient estimates.
 - (f) Fit an elastic-net model with $\alpha=0.5$ on the training set, with λ chosen by cross-validation. Report the test error obtained, along with the number of non-zero coefficient estimates.
 - (g) Fit a PCR (PCA Regression) model on the training set. How many PCs do you choose? Report the test error obtained.
 - (h) Comment on the results obtained.