Solución Ejercicio 1:

La hipótesis nula es que los datos proceden de una Normal (110, 10), mientras que la hipótesis alternativa es que no siguen esa distribución Normal. Como la variable es continua, y la hipótesis nula especifica totalmente la distribución utilizaremos el test de Kolmogorov-Smirnov.

Los cálculos del estadístico se especifican en la siguiente tabla:

Xį	87	98	104	109	112	115	116	118	123
Z _i	-2,3	-1,2	-0,6	-0,1	0,2	0,5	0,6	0,8	1,3
Fn	0,0107	0,1151	0,2743	0,4602	0,5793	0,6915	0,7257	0,7881	0,9032
M_n	0,1111	0,2222	0,3333	0,4444	0,5556	0,6667	0,7778	0,8889	1
$ F_n-M_n $	0,1004	0,1071	0,059	0,0158	0,0237	0,0248	0,0521	0,1008	0,0968

Buscando en las tablas del test Kolmogorov-Smirnov para n=9 el valor crítico para un nivel de confianza del 95% se obtiene 0.43001. Como el valor del estadístico 0.1071 es menor que el valor crítico se acepta la hipótesis nula y, por lo tanto, no hay evidencia en contra de que el tiempo de reacción siga una distribución N(110, 10) con un nivel de confianza del 95%.

Solución Ejercicio 2:

Tomamos como referencia la variable aleatoria X: tiempo (en minutos) hasta que termina la clase. Debemos contrastar si sigue una distribución uniforme en el intervalo [2,3]. Así, la hipótesis nula es

$$H_0: X \sim U(2,3).$$

Realizamos el contraste de Kolmogorov-Smirnov ya que el contraste de la χ^2 no se puede utilizar porque tenemos menos de 30 observaciones. La función de distribución de una uniforme en el intervalo [a, b] es

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx = \int_{-\infty}^{x} \frac{1}{b-a} dx = \frac{x-a}{b-a}$$

si $a \le x \le b$.

Por lo tanto, sustituyendo los valores de a y b tenemos que la función de distribución teórica es F(x) = x - 2. Se obtiene la siguiente tabla.

x_h	$F_n(x_h)$	$F(x_h)$	$ F_n(x_h) - F(x_h) $	$ F_n(x_{h-1}) - F(x_h) $	$D_{10}(x_h)$
2.11	$\frac{1}{10} = 0.1$	0.11	0.01	0.11	0.11
2.13	0.2	0.13	0.07	0.03	0.07
2.24	0.3	0.24	0.06	0.04	0.06
2.49	0.5	0.49	0.01	0.19	0.19
2.58	0.7	0.58	0.12	0.08	0.12
2.67	0.8	0.67	0.13	0.03	0.13
2.7	0.9	0.7	0.2	0.1	0.2
2.82	1	0.82	0.18	0.08	0.18

donde
$$D_{10}(x_h) = \{|F_n(x_h) - F(x_h)|, |F_n(x_{h-1}) - F(x_h)|\} = 0.2.$$

Buscando en la tabla de Kolmogorov-Smirnov, $D_{10,0.05}$ =0.4093. Como 0.2 <0.4093, no existe evidencia para rechazar la distribución uniforme, con un nivel de significación del 5 %.

Solución Ejercicio 3:

La hipótesis nula será que el dado es homogéneo, esto implica que la distribución de los números es uniforme, es decir que los cuatro números tienen una probabilidad de aparecer de 0.25. La hipótesis alternativa será que la distribución no es uniforme.

Como la variable es discreta utilizaremos el test χ^2 de bondad de ajuste a una distribución. En la tabla siguiente se han realizado todos los cálculos necesarios, obteniéndose el valor 4.36 para el estadístico de contraste.

Xį	n_i	$\mathbf{p}_{\mathbf{i}}$	Np_i	n_i - np_i	$(n_i-np_i)^2$	$(n_i-np_i)^2/np_i$
1	60	0,25	50	10	100	2
2	45	0,25	50	-5	25	0,5
3	38	0,25	50	-12	144	2,88
4	57	0,25	50	7	49	0,98
	200					4,36

Como el estadístico tenía 4 sumandos, buscamos en las tablas de la χ^2 con 3 grados de libertad el valor que deja por debajo una probabilidad de 0,95 y obtenemos que el valor crítico es 7.81. Como el valor del estadístico es inferior al valor crítico, aceptamos la hipótesis nula y, por lo tanto, el dado es homogéneo.

Solución Ejercicio 4:

Debemos realizar un contraste de independencia entre la edad y el rendimiento, si esto es así (independencia) no existirá relación entre ambas, luego:

H₀: Existe independencia entre edad y rendimiento

Para realizarlo construimos las tablas de contingencias que incluya frecuencias observadas y las frecuencias esperadas a través de la expresión $E_{ij} = \frac{n_i n_j}{N}$:

Frecuencias observadas

rendimiento/edad	menores de 45	mayores de 45	
óptimo	12	30	42
medio	18	40	58
	30	70	100

Frecuencias esperadas

rendimiento/edad	menores de 45	mayores de 45	
óptimo	12.6	29.4	
medio	17.4	50.6	

Calculamos la medida de discrepancia

$$d = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(0_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \frac{(12 - 12,6)^{2}}{12,6} + \frac{(30 - 29,4)^{2}}{29,4} + \frac{(18 - 17,4)^{2}}{17,4} + \frac{(40 - 50,6)^{2}}{50,6} = 2,282$$

Mirando las tablas de la χ^2 con $(k-1)\times(r-1)=1\times1=1$ grados de libertad, tenemos que $\chi^2_{1,0.06}=3,614$. Dado que el valor de la discrepancia 2,282 es menor que 3,614, no rechazamos la hipótesis de independencia entre edad y rendimiento.

Solución Ejercicio 5:

Debemos realizar un contraste de independencia entre la antigüedad y los salarios, si esto es así (independencia) no existirá relación entre ambas, luego:

H₀: Existe independencia entre la antigüedad y los salarios

Para realizarlo construimos las tablas de contingencias que incluya frecuencias observadas y las frecuencias esperadas a través de la expresión $E_{ij} = \frac{n_i n_{,j}}{N}$:

Frecuencias observadas

Antigüedad/salarios	poca	media	mucha	
bajos	62	10	2	74
medios	14	38	12	64
altos	2	9	51	62
	78	57	65	200

Frecuencias esperadas

Antigüedad/salarios	poca	media	mucha
bajos	28,86	24,05	24,05
medios	24,96	18,24	20,8
altos	24,28	17,67	20,15

Calculamos la medida de discrepancia

$$d = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\left(o_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \frac{(62 - 28,86)^{2}}{28,86} + \frac{(10 - 24,05)^{2}}{24,05} + \dots + \frac{(51 - 20,15)^{2}}{20,15} = 168,35$$

Mirando las tablas de la χ^2 con $(k-1)\times(r-1)=2\times2=4$ grados de libertad, tenemos que $\chi^2_{4,0.01}=13.28$. Dado que el valor de la discrepancia 168,35 es mayor que 13.28, rechazamos la hipótesis de independencia la antigüedad y los salarios.

Solución Ejercicio 6:

Debemos realizar un contraste de independencia entre el sexo y el tipo sanguíneo, si esto es así (independencia) no existirá relación entre ambas, luego:

H₀: Existe independencia entre el sexo y el tipo sanguíneo

Para realizarlo construimos las tablas de contingencias que incluya frecuencias observadas y las frecuencias esperadas a través de la expresión $E_{ij}=\frac{n_i n_{.j}}{N}$:

Frecuencia observada

Sexo/Tipo sanguíneo	Tipo A	Tipo B	Tipo 0	
Hombres	2400	1900	700	5000
Mujeres	3100	2700	1200	7000
	5500	4600	1900	12000
Frecuencia esperada				
Sexo/Tipo sanguíneo	Tino A	Tino B	Tino 0	

1917

2683

792 1.108

2292

3208

Calculamos la medida de discrepancia

Hombres

Mujeres

$$d = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{\left(o_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \frac{(2400 - 2292)^{2}}{2292} + \dots + \frac{(1200 - 1108)^{2}}{1108} = 27.309$$

Calculamos el p-valor consultando la tabla de la χ^2 en la fila con $(k-1)\times(r-1)=1\times 2=2$ grados de libertad, tenemos que todos los elementos de la fila son menores que 27.309. Dado que el p-valor es menor que 0.01, rechazamos la hipótesis de independencia entre el sexo y el tipo sanguineo.