P3 de Álgebra Linear I -2009.2

Data: 19 de novembro de 2009.

Nome:	Matrícula:
Assinatura:	Turma:

Caderno de Respostas

Preencha CORRETA e COMPLETAMENTE todos os campos acima (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota ZERO.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Respostas a caneta. Respostas a lápis não serão corrigidas e terão nota <u>ZERO</u>.

Duração: 1 hora 50 minutos

Q	1	2.a	2.b	3.a	3.b	3.c	4.a	4. b	4.c	soma
\mathbf{V}	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10.0
N										
\mathbf{R}										

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas e resoluções.
- Escreva de forma clara, ordenada e legível.
- Somente serão aceitas respostas devidamente <u>JUSTIFICADAS</u>.

Respostas a lápis não serão corrigidas e terão nota ZERO.

Questão 1)

Ache a inversa da matriz abaixo:

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & -1 & 1 \\ 1 & 3 & 2 \end{pmatrix}.$$

Atenção: 1 erro na matriz inversa, perde 0.5 pto.; 2 erros perde 1 pto.; 3 ou mais erros zera a questão.

Resposta:

$$A^{-1} =$$

Questão 2)

Considere a transformação linear S cuja matriz na base canônica é

$$\begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}.$$

- (a) A transformação S é diagonalizável? Justifique.
- (b) Ache, se possível, uma base $\mathcal B$ de $\mathbb R^2$ na qual a matriz de S é

$$\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}.$$

Res	nost	26.
Tres	uosu	as.

1		١
1	ฉ	1
1	а	,
١,		/

(\mathbf{p})	(b)
----------------	---	---	---

')				

Questão 3)

Decida se as afirmações abaixo são falsas ou verdadeiras.

- (a) Para quaisquer matrizes ortogonais M e N tem-se que M+N é ortogonal.
- (b) Toda matriz triangular é diagonalizável.
- (c) Toda matriz Anão-nula tal que $A^2=A$ possui um autovalor $\lambda=1.$

Respostas:		
(a)		
(b)		
(c)		

Questão 4)

Considere a matriz

$$M = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Sabendo que $\lambda_1=2$ é um autovalor de M:

- (a) Ache os outros autovalores λ_2 e λ_3 .
- (b) Ache (explicitamente) uma base ortonormal de autovetores de M.
- (b) Ache (explicitamente) uma matriz diagonal D e uma matriz ortogonal P tais que $M = PDP^t$.

Respostas:

(a)
$$\lambda_2 = \lambda_3 =$$

