Speech Translation An Introduction

Ian Neidel (ian.neidel@yale.edu)
CS 677: Advanced Natural Language Processing
Dr. Dragomir Radev
November 4, 2021

Why Speech Translation

- Videos
 - Internet: e.g. Youtube, Facebook
 - Television shows or movies
 - Lectures
- Real life
 - Telephone calls or meetings
 - Tourist interactions
 - Medical care
 - Use with authorities or international crisis response

Why Speech Translation

- Integration of ASR, MT, TTS for cascaded systems
- Interesting concepts for end-to-end Speech Translation
 - Corpus augmentation, unique representations, etc.
- Challenges
 - Disfluencies, segmentation, simultaneous translation, etc.

Overview

- Background
- Cascaded Speech Translation
- End-to-end Speech Translation
- Comparison
- Papers
 - Translatotron for speech -> speech
 - Fine-tuning pretrained models for speech->text
 - Translatotron 2.0 if time

Problem Varieties

- Sequence
 - Consecutive translation
 - Simultaneous translation
- Number of speakers
 - Single (presentation)
 - Multiple (meeting)
- Output
 - Text
 - Audio
- Model use
 - Online, offline, device capabilities, etc.

Problem Varieties

- Difficulty:
 - Audio quality
 - Speed requirements
 - Domain size
 - Resource availability
 - Speaker variety

- Combination of several models
 - Automatic Speech Recognition (ASR)
 - Machine Translation (MT)
 - Text-to-Speech (TTS)

- Combination of several models
 - Automatic Speech Recognition (ASR)
 - Machine Translation (MT)
 - Text-to-Speech (TTS)

- Combination of several models
 - Automatic Speech Recognition (ASR)
 - Segmentation
 - Machine Translation (MT)
 - Text-to-Speech (TTS)

- Combination of several models
 - Automatic Speech Recognition (ASR)
 - Segmentation
 - Machine Translation (MT)
 - Text-to-Speech (TTS)

- Advantages:
 - Modularity
 - Quantity of data for each part
 - Easy to incorporate new cutting-edge systems

- Issues:
 - Error Propagation
 - Ignore the errors
 - Test options (n-best lists; lattices)
 - Create more robust systems (e.g. train with noise)

- Shown to be possible to learn audio source -> target text
 - Duong et al. 2016
- As of 2018, worse performance although great promise
- As of 2021, the gap has been closed for some languages

- Challenges
 - Audio signal input
 - Long sequences, different dependencies
 - May have to use ASR techniques
 - Very little data
 - Mapping is less straightforward
 - Use source transcript as intermediate during training?

- Approaches
 - Synthetic data
 - TTS of parallel corpora for audio
 - Multitasking
 - Allow network to produce many outputs
 - e.g. as a MT, ASR system
 - Pre-training
 - Train encoder with ASR, train new encoder for ST

- Other options
 - Stack decoders that attend to source language hidden states
 - Shared context vectors

- Challenges:
 - Data efficiency
 - Small datasets

- Importance of segmentation:
 - Audio is continuous
 - Out of the box MT at sentence+ level
 - No explicit punctuation in audio
 - Semantic differences
 - "I love cooking, my cats, and my dogs" | "I love cooking my cats and my dogs"
 - "I'm sorry. I love you." | "I'm sorry I love you"
 - Can be done after ASR, as part of MT, after MT

- Simultaneous translation:
 - Reducing latency improves experience => translate as soon as possible
 - Context improves accuracy of ASR and MT => wait as much as possible
- How to deal with different word orders?
 - e.g. SOV, VSO, VOS

German	Ich	melde	mich	zur	Konferenz	an
Gloss		Register/ cancel	Myself	То	Conference	
English		?				

- Simultaneous translation:
 - Train models to optimally segmenting input
 - Loss with segment length and quality metrics
 - Stream decoding
 - Output word or wait for next
 - Use a decision model or fixed schedule
 - Update translations on the go

- Spontaneous speech:
 - Disfluencies
 - Filled pauses e.g. "She was, uh, certain about it"
 - Repetition e.g. "He he really wanted to go"
 - Insertion e.g. "He wanted really wanted to go"
 - Trailing off e.g. "And then..."
 - Error e.g. "They misunderestimated me"
 - Filler words, etc.
 - Where to deal with disfluencies?
 - Special model/MT/...

History

- 80's: proof of concept with restricted domain, controlled speaking style
- 90's: spontaneous ST systems
- 2003-6: open domain ST systems and new languages e.g. Zh, Ar
- 2005: first ST corpora
- 2006: simultaneous ST
- 2016: first E2E ST models
- 2018-19: E2E 8.7—1.6 BLEU pts below cascade ST for En-De
- 2020: 0.2 BLEU pts above cascade ST for En-De

End-to-end benefits

- Prevent error propagation
- Preserve information e.g. through prosody

Speech transcription	those are their expectations of who you are not yours		
Target reference	那 是 他们 所期望的 你的 样子 而不是 你自己的 期望 that is they expected your appearance not yourself expectation		
Cascade-ASR	those are there expectations to do you are not yours		
Cascade-Translation	那些 都是 希望 做到的 , 你 不是 你的 。 those are expect achievement you not yours		
FAT-ST	这些是 他们对你的 期望,而不是你的 期望。 these are they to your expectation not your expectation		

End-to-end benefits

- Prevent error propagation
- Preserve information e.g. through prosody

English	Japanese					
	kochira wa suekko no lucy desu					
this is my niece, lucy	こちら は 姪っ子 の ルーシー です 。					
	lucy, kono ko ga watashi no suekko desu					
this is my niece, lucy	ルーシー 、 この 子 が 私 の 姪っ子 です 。					
	chiizu toka jamu toka, dore ni shimasu ka					
will you have /cheese or /jam	チーズ とか ジャム とか、 どれ に します か ?					
	chiizu ka jamu, docchi ni shimasu ka					
will you have /cheese or \jam	チーズ か ジャム、 どっち に します か ?					

Discussion Questions

• Should having access to the original audio improve translation? How? When?

Discussion Questions

- Should having access to the original audio improve translation? How? When?
- Does end-to-end speech translation avoid error propagation? How can we compare error propagation between E2E and cascaded models?

Input

- Use sampling or windowing
- Mel-Frequency Cepstral Coefficients (MFCC)
- Log mel-filterbank features (FBANK)
- Sequence length issues:
 - IWSLT test set 2020
 - Segments: 1804
 - Words: 33,795
 - Characters: 149.053
 - Features: 1,471,035

Output

- Words
- Byte Pair Encodings (BPE)
- Characters

Datasets

Dataset	Paper	Languages and Duration	Domain
(no name)	(Tohyama et al., 2005)	En↔Jp 182hrs	simult. interpret.
(no name)	(Paulik and Waibel, 2009)	En→Es 111 Es→En 105hrs	simult. interpret.
Fisher-CALLHOME	(Post et al. 2013)	Es→En 160hrs	phone conversations
STC	(Shimizu et al. 2014)	En↔Jp 22hrs	simult. interpret.
How2	(Sanabria et al. 2018)	En→Pt 300hrs	instructional videos
IWSLT 2018	(Niehues et al. 2018)	En→De 273hrs	TED talks
LIBRI-TRANS	(Kocabiyikoglu et al. 2018)	En→Fr 236hrs	read audiobooks
MuST-C	(Cattoni et al. 2021)	En→ 14 lang. (237-504hrs)	TED talks
CoVoST	(Wang et al. 2020)	En→15 lang. (929hrs), 21 lang.→En (30-311hrs)	read, Common Voice
<u>Europarl-ST</u>	(Iranzo-Sanchez et al. 2020)	9 lang. (72 dir., 10-90hrs)	EP proceedings
<u>LibriVoxDeEn</u>	(Beilharz et al. 2020)	De→En 100hrs	read audiobooks
<u>MaSS</u>	(Boito et al. 2020)	8 lang. (56 dir.) 20hrs	Bible readings
BSTC	(Baidu, 2020)	Zh→En 50hrs	simult. interpret.
Multilingual TEDx	(Salesky et al. 2021)	8 lang. →6 lang. 11-69hrs	TED talks

Data Augmentation

- From ASR:
 - Noise injection
 - Speed perturbation
 - Time masking
 - Frequency masking

Paper (): Direct speech-to-speech translation with a sequence-to-sequence model

Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey, Melvin Johnson, Zhifeng Chen, Yonghui Wu (Google; Interspeech 2019)

https://arxiv.org/abs/1904.06037

Outline

- Translatotron
 - First end-to-end speech-speech model
 - No intermediate text representation
 - Many-to-many speaker configurations
 - Similar to Tacotron 2 TTS
 - Performs worse than cascaded but is proof of concept and demonstrates benefits

S2S Translation Model

S2S Translation Model

- Separately trained components
 - Attention-based sequenceto-sequence network
 - Vocoder
 - Optional speaker encoder

S2S Translation Model

- S2S encoder
 - Stack maps 80-channel log-mel spectrogram input features into hidden states
 - Passed through an attention based alignment mechanism to condition an autoregressive decoder
 - Predicts 1025-dim log spectrogram frames corresponding to the translated speech
 - Auxiliary decoders, each with their own attention components, predict source and target phoneme sequences

Training

- Multitask training
 - Auxiliary decoder networks to predict phoneme sequences for source/target speech
 - Predict source/target transcripts
- English-Spanish conversational dataset
 - Parallel text and read speech
- English-Spanish Fisher Dataset
 - From telephone conversations

Evaluation

- Run ASR on the output audio
- BLEU score with reference transcription
- This acts a lower bound on performance
- Mean opinion score on speech naturalness and voice transfer

Example

Listen to Results

- https://ai.googleblog.com/2019/05/introducing-translatotron-end-to-end.html
- https://google-research.github.io/lingvo-lab/translatotron/

Qualitative results

- Can reproduce disfluencies
- Reproduces sounds much better
 - Preserves Guillermo rather than William
 - However, preserves some Spanish sounds e.g. in Dan
 - May have a bias for cognates "pasejos" -> "passages" not "tickets"

Quantitative Results

Auxiliary loss	dev1	dev2	test
None	0.4	0.6	0.6
Source	7.4	8.0	7.2
Target	20.2	21.4	20.8
Source + Target	24.8	26.5	25.6
Source + Target (1-head attention)	23.0	24.2	23.4
Source + Target (encoder pre-training)	30.1	31.5	31.1
ST [19] → TTS cascade	39.4	41.2	41.4
Ground truth	82.8	83.8	85.3

Auxiliary loss	BLEU	Source PER	Target PER
None	0.4	-	-
Source	42.2	5.0	-
Target	42.6	-	20.9
Source + Target	42.7	5.1	20.8
ST [21] → TTS cascade	48.7	-	_
Ground truth	74.7	-	

Speaker Emb	BLEU	MOS-naturalness	MOS-similarity
Source	33.6	3.07 ± 0.08	1.85 ± 0.06
Target	36.2	3.15 ± 0.08	3.30 ± 0.09
Random target	35.4	3.08 ± 0.08	3.24 ± 0.08
Ground truth	59.9	4.10 ± 0.06	-

Takeaways

- Auxiliary loss required
 - Without them it can synthesize simple words/phrases, but mostly synthesizes plausible sounds
 - Issues attending to input, demonstrates the difficulty of S2ST
 - Transcripts improve speech translation training, not needed during inference
 - Auxiliary loss for phonemes improves attention

Discussion Questions

• Does using multitask learning reduce the benefits of an end-to-end system?

Discussion Questions

- Does using multitask learning reduce the benefits of an end-to-end system?
- What kind of (cross-lingual?) voice transfer would we want?

Translatotron 2.0

Ye Jia, Michelle Tadmor Ramanovich, Tal Remez, Roi Pomerantz of Google, 2021 https://arxiv.org/abs/2107.08661

- Changes
 - the output from the auxiliary target phoneme decoder is used as an input to the spectrogram synthesizer
 - the spectrogram synthesizer is duration-based, while still keeping the benefits of the attention mechanism
 - Removed target voice transferral
- Large improvement on Translatotron 1.0; on par with cascaded models

Translatotron 2.0

Ye Jia, Michelle Tadmor Ramanovich, Tal Remez, Roi Pomerantz of Google, 2021

Paper 1: Multilingual Speech Translation with Efficient Finetuning of Pretrained Models

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing Tang, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli (Facebook AI team; ACL 2021)

https://aclanthology.org/2021.acl-long.68.pdf

Overview

- Fine tune pre-trained modules to improve data efficiency
- Can achieve zero-shot learning, significantly lowering costs
- Achieves SOTA for 34 translation directions, surpasses cascaded ST in 23
- Creates a many-many multilingual model

Pretrained Modules

wav2vec 2.0

mBART

Finetune LayerNorm and Attention

- wav2vec 2.0
- Learned to create high quality speech representations from unlabelled audio data
 - Feature encoder built from temporal convolution layers
 - Transformer based context encoder encoder
 - Trained on masked speech input and must solve a contrastive task

mBART

- Sequence-to-sequence generative pretraining scheme or a denoising autoencoder
- For text x that is "noised" to be g(x), it reconstructs x for monolingual data for many languages (or across languages)
- g does random span masking, order permutation

- Length adaptor
 - Aligns two modules due to their different modalities
 - Projection and downsampling using 1d convolutional layers to shrink speech sequence (encoder output)

- LNA finetuning
 - Fine tune only layer normalization and multi-head attention parameters
 - Attention was pre-trained on text-totext so must be adapted to ST

Data

- Uses CoVoST 2.0
- Speech to text translations from English into 15 languages
- Speech to text translations from 21 languages into English
- e.g. Tamil, Chinese, Catalan, Arabic
- 2,880 hours of speech across 78K speakers

Data

- CoVoST 2.0 is a good testbed for different resource levels
 - 4 X-En languages with 10-20hrs
 - 11 with <4hrs of data
- Uses EuroParl ST as it has non-English language pairs
 - de, en, es, fr, it, pt
 - Can assess zero-shot performance

Training

- Cross-Modal Efficient Finetuning
- Encoder initialized with word2vec 2.0 pretrained on unlabelled English
- mBART pretrained with monolingual data for 50 languages
 - Further trained with Bitext for 49 X-EN, 49 En-X languages
- LNA fine-tuning to encoder, decoder, both using X-En, En-X
- Joint training
 - Last 12 layers of wav2vec encoder replaced with 12 mBART encoder layers

- Comparing fine-tuning all parameters and just LNA-Minimalist (69M)
- LNA-Minimalist generalizes better and improves training efficiency

- Source-side results (speech)
 - Achieves SOTA on Portuguese

					Train				Zero-shot
	Enc	Dec	Params.	Fr	De	Es	Ca	It	Pt
LNA-E,D	LN+SA	LN+EA	170.7M	32.4	24.9	31.6	28.6	24.0	8.2
LNA-D	All	LN+EA	384.8M	31.6	23.7	31.0	27.8	23.2	7.6
Finetune All	All	All	793.0M	27.1	17.7	27.8	21.7	18.9	5.1
ASRPT+Multi					15.3	21.2	19.9	14.9	4.4
Supervised (Multi) SOTA (Wang et al., 2020b)					17.6	27.0	23.1	18.5	6.3

- Target-side results (text)
 - 1.3 off of SOTA for Japanese

					Tr	Zero-shot		
	Enc	Dec	Params.	De	Fa	Tr	Zh	Ja
LNA-E,D	LN	LN+EA	69.4M	22.1	17.7	13.4	29.2	22.9
LNA-E,D	LN+SA	LN+EA	170.7M	23.8	19.2	14.2	30.6	29.2
LNA-D	All	LN+EA	384.8M	24.9	19.8	15.2	32.7	30.6
LNA-E	LN+SA	All	477.6M	22.0	18.1	14.2	29.5	0.8
Finetune All	All	All	793.0M	24.1	19.6	15.6	32.4	0.4
	AS	9.5	10.9	6.8	23.5	0.0		
Supervised (Multi) SOTA (Wang et al., 2020b) 17.3 14.5 10.7 28.2								31.9

- Multilingual results
 - Often achieves E2E SOTA in most languages
 - Surpasses cascaded SOTA in 8/10 languages
 - LNA-D is best performing

	High Resource				Low Resource					
\rightarrow En	Fr	De	Es	Ca	It	Ru	Pt	Nl	Sl	Sv
Train Hours	264	184	113	136	44	18	10	7	2	2
Scratch-BL	24.3	8.4	12.0	14.4	0.2	1.2	0.5	0.3	0.3	0.2
+ ASR PT	26.3	17.1	23.0	18.8	11.3	14.8	6.1	3.0	3.0	2.7
+ Multi.	26.5	17.5	27.0	23.1	18.5	4.7	6.3	5.0	0.7	0.5
+mBART	28.1	19.7	28.1	24.0	19.9	2.7	6.2	8.1	0.5	1.4
LNA-E,D (170.7M)	33.8*	26.7*	34.0*	29.5*	26.1*	21.1	19.2	14.1*	4.6	<u>5.9</u>
LNA-D (384.8M)	35.0*	28.2*	35.2*	<u>31.1*</u>	27.6*	22.8	<u>24.1*</u>	14.2*	5.0	5.0
Finetune All (793.0M)	33.0*	24.5*	33.6*	28.0*	25.2*	20.2	19.5	9.4	4.6	4.8
Joint Training (1.05B)	33.5*	28.6*	33.5*	30.6*	26.6*	17.6	12.0	<u>15.0*</u>	3.9	2.6
+ Extra MT Data	34.4*	<u>29.6*</u>	34.4*	30.6*	<u>27.7*</u>	<u>27.7*</u>	14.6	14.5*	<u>5.2</u>	3.4
Prev. E2E SOTA	27.0	18.9	28.0	24.0	11.3	14.8	6.1	8.4	3.0	2.7
Cascade SOTA	29.1	23.2	31.1	27.2	22.9	25.0	22.7	10.4	7.0	11.9

\rightarrow En	Fa	Zh	Tr	Et	Mn	Ar	Lv	Су	Ta	Ja	Id	Avg.
Train Hours	49	10	4	3	3	2	2	2	2	1	1	
ASR (WER)	62.4	45.0	51.2	65.7	65.2	63.3	51.8	72.8	80.8	77.1	63.2	
Baseline	1.9	1.4	0.7	0.1	0.1	0.3	0.1	0.3	0.3	0.3	0.4	
+ ASR PT	3.7	5.8	3.6	0.1	0.2	4.3	2.5	2.7	0.3	1.5	2.5	
+ Multi.	2.4	5.9	2.3	0.6	0.1	0.4	0.6	1.9	0.1	0.1	0.3	7.0
+ mBART	3.3	5.4	2.4	0.7	0.2	0.5	0.6	1.4	0.1	0.2	0.2	7.3
LNA-E,D (170.7M)	4.0	6.2	<u>5.5</u>	1.3	<u>1.0</u>	3.7	4.6	2.8	0.7	1.7	2.9	12.5
LNA-D (384.8M)	3.6	6.0	4.8	<u>1.5</u>	0.9	2.8	<u>4.9</u>	2.3	<u>0.8</u>	1.7	<u>3.7</u>	12.6
Finetune All (793.0M)	3.7	<u>6.5</u>	4.0	1.4	1.0	3.3	4.9	2.1	0.5	<u>2.1</u>	3.4	11.2
Joint Training (1.05B)	<u>6.1*</u>	5.4	3.3	0.7	0.2	0.8	2.7	1.0	0.1	0.3	0.5	10.7
+ Extra MT Data	5.0	6.2	4.0	0.8	0.3	1.0	3.6	1.1	0.2	0.5	0.5	11.7
Prev. SOTA	3.7	5.9	3.7	0.9	0.2	4.3	2.5	3.3	0.3	1.5	2.5	
Cascade	5.8	11.4	9.3	3.8	1.0	12.3	7.2	7.4	0.4	3.8	11.8	

- For very high resource languages (18+hrs, 1m+ sentences), joint training improves singly trained model
- Performs well on zero-shot Europarl translation

		Target								
		De	En	Es	Fr	It	Pt			
	De		12.8/ 20.6	10.2/13.8	11.6/ 14.9	6.6/ 8.6	10.4/ 13.0			
-	En	13.1/ 22.5 *		23.1/ 32.3 *	22.1/ 30.0 *	14.9/ 21.5	20.7/ 28.4			
5	Es	9.2/ 12.1	18.9/ 26.0		19.0/ 21.8	13.3/ 15.4	20.0/21.9			
Source	Fr	9.8/ 13.6	19.8/ 27.9 *	18.6/ 21.7		13.8/ 15.2	19.7/ 21.4			
S	It	10.1/ 11.9	19.8/ 25.6	18.8/ 20.8	19.1/ 20.0*		19.8/19.2			
	Pt	9.0/ 11.4	19.0/ 24.1	19.8/19.6	18.1/ 18.6	15.6/ 16.1				

Takeaways

- Combined two large pre-trained single-modality models
- Fine-tuning can be very parameter efficient (10-20% fine-tuned)
- Achieved E2E SOTA and SOTA over cascaded models in some cases
- Can provide strong zero-shot results

Discussion Questions

• What advantages and disadvantages does this have compared to other E2E models?

Discussion Questions

- What advantages and disadvantages does this have compared to other E2E models?
- Could this be adapted for speech-speech translation?

Conclusions

- Complicated, exciting research area
- Trade offs between data efficiency and modeling power
- To get around lack of data for E2E, we may undercut the benefits of E2E
- Future research
 - Low-resource models
 - Simultaneous models
 - Multilingual models
 - Extracting more from the audio

Resources

- https://st-tutorial.github.io/overview/
- https://pythonrepo.com/repo/dqqcasia-awesomespeech-translation-python-natural-languageprocessing
- https://iwslt.org/
- Many demos of cascaded ST: e.g. https://translator.microsoft.com/chatroom/

Citations

- Assets:
- Sound waveform by Oleksandr Panasovskyi from the Noun Project
- Diagrams inspired by and/or remade from Jan Niehues: Spoken Language Translation; Interspeech 2019
- All non-explicitly cited screenshots from the respective paper the section is about
- Invaluable resources to making this presentation:
- Introduction following content in Jan Niehues: Spoken Language Translation; Interspeech 2019
- Other content from ST Tutorial: https://st-tutorial.github.io/materials/

mBART

• Diagram from https://arxiv.org/pdf/2001.08210.pdf

Multilingual Denoising Pre-Training (mBART)

Fine-tuning on Machine Translation

Paper 2: Fused Acoustic and Text Encoding for Multimodal

Bilingual Pretraining and Speech Translation

Renjie Zheng, Junkun Chen, Mingbo Ma, Liang Huang (Baidu Research; 2021)

https://arxiv.org/abs/2102.05766