

CE3512

Sistemas Digitais para Ciência da Computação ATIVIDADE 1 DE EXERCÍCIO DE PROJETO

Importante:

- A Lista de Exercícios 1 está disponível no Moodle!!!
- A lista pode ser realizada em <u>duplas</u>, sendo <u>apenas um dos alunos</u> deve postar a atividade no Moodle.
- A entrega deve ser realizada com um arquivo PDF (no formato do <u>CADERNO</u> <u>DE RESPOSTAS</u>) até a data especificada no Moodle.
- Os exercícios estão vinculados aos cinco últimos dígitos dos números de matrícula dos dois alunos. Só serão aceitos os exercícios que estiverem de acordo com o número de matrícula dos alunos.
- As respostas no <u>CADERNO DE RESPOSTAS</u> devem ser completadas <u>nos</u> <u>quadros reservados para as mesmas</u>.

1

2

(2021)

Subsistemas Contadores

Aula 16 5

☐Módulo de um Contador Binário

O **módulo** de um contador é o **número de estados** que o mesmo percorre em cada ciclo completo de contagem antes de reciclar ao estado inicial.

OBS: A sequência de contagem não precisa ser necessariamente crescente, ou decrescente, nem precisa ser de um em um.

Exemplos de diagramas de estados de contadores:

5

centro universitário E3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

(2021)

Aula 16

Subsistemas Contadores - Projetos

□Projeto de Contadores Síncronos de Qualquer Sequência

Um contador síncrono pode ser projetado de modo personalizado para gerar qualquer sequência desejada (diferente da sequência binária normal), sem a necessidade de entradas de controle assíncronas.

O projeto de circuitos sequenciais consiste na definição da lógica de controle síncrona das entradas de cada estágio do contador, de modo que as transições de estado evoluam conforme o desejado.

Procedimento de Projeto:

- 1. Determinar o número de bits (número de FF's) necessários;
- 2. Desenhar o **Diagrama de Estados**, representando todos os estados possíveis, inclusive aqueles que não são parte da sequência desejada;
- 3. Elaborar a **Tabela de Transição de Estados**, indicando o estado atual e estado futuro desejado (para todos os estados) ;
- 4. Acrescentar uma coluna para cada entrada do FF utilizado, indicando o estado necessário em função da **Tabela de Transição do FF**;
- Determinar a equação lógica de cada entrada (Mapas de Karnaugh);
- 6. Representar os circuitos lógicos (**Diagramas Esquemático-lógicos**) a partir das equações lógicas.

6

(2021)

Subsistemas Contadores - ProjetosAula 16
7

□Projeto de Contadores Síncronos de Qualquer Sequência

Exemplo: Deseja-se projetar um contador síncrono que execute a seguinte sequência de contagem: 0 - 1 - 2 - 3 - 4 - 0 (contador módulo 5).

Este contador deve ser um contador autocorretor (qualquer estado fora dessa sequência deve retornar à sequência normal), sendo que neste caso os estados fora de sequência devem levar ao estado 0 (zero).

Utilizar um conjunto de FF's JK para a implementação do circuito.

Procedimento de Projeto:

- Número de bits do contador: 3
 ⇒ São necessários 3 FF's JK
- 2. Diagrama de Estados do contador:

7

8

--

□ Exercício 1: Projetar um contador síncrono que execute a seguinte sequência de contagem: 0 - 1 - 2 - 3 - 4 - 0 (contador módulo 5).

Este contador deve ser um **contador não autocorretor** (**estados fora dessa sequência são considerados irrelevantes**). Para garantir o início da sequência deve ser utilizado um sinal de início assíncrono para o estado **0** (zero). Utilizar um conjunto de **FF's JK** para a implementação do circuito.

Procedimento de Projeto:

- 1. Determinar número de bits do contador;
- 2. Elaborar o **Diagrama de Estados** do contador;
- 3. Elaborar a Tabela de Transição de Estados;
- 4. Acrescentar colunas considerando a Tabela de Transição do FF JK;
- 5. Determinar a equação lógica das entradas dos FF (Mapas de Karnaugh);
- 6. Representar o circuito lógico resultante (Diagrama Esquemático-Lógico).

12

(2021)

Aula 16 13

Subsistemas Contadores - Projetos

☐ Exercício 1: Projetar um contador síncrono que execute a seguinte sequência de contagem: 0 - 1 - 2 - 3 - 4 - 0 (contador módulo 5).

Este contador deve ser um contador não autocorretor (estados fora dessa sequência são considerados irrelevantes). Para garantir o início da sequência deve ser utilizado um sinal de início assíncrono para o estado **0** (zero). Utilizar um conjunto de **FF's JK** para a implementação do circuito.

Procedimento de Projeto:

- Número de bits do contador:
- 2. Diagrama de Estados do contador:

13

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

Subsistemas Contadores - Projetos

(2021) Aula 16

☐ Exercício 1: Projetar um contador síncrono: 0-1-2-3-4-0.. (não autocorretor). Procedimento de Projeto:

- 3. Elaborar a Tabela de Transição de Estados.
- 4. Acrescentar colunas para as entradas do FF considerando a Tabela de Transição do FF JK:

Diagrama de Estados do Contador

Tabela de Transição de **Estados do Contador**

Tabela de Transição do FF JK

Estado Atual			Estado Futuro			Entradas do FF JK					
C	В	A	C*	B *	A *	J_{C}	K_{C}	J_{B}	K _B	J_A	K
0	0	0									
0	0	1									
0	1	0									
0	1	1									
1	0	0									
1	0	1									
1	1	0									
1	1	1									

J	K	$Q_n \rightarrow Q_{n+1}$
		$0 \rightarrow 0$
		$0 \rightarrow 1$
		$1 \rightarrow 0$
		$1 \rightarrow 1$

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

(2021)

16

Subsistemas Contadores - Projetos

(2021) Aula 16 18

☐ Exercício 2: Projetar um contador síncrono que execute a seguinte sequência de contagem: 0-1-2-3-4-0.. (contador módulo 5).

Este contador deve ser um contador autocorretor, sendo que neste caso os estados fora de sequência devem levar ao estado 0 (zero).

Utilizar um conjunto de **FF's D** para a implementação do circuito.

Procedimento de Projeto:

- 1. Determinar **número de bits** do contador;
- 2. Elaborar o **Diagrama de Estados** do contador;
- 3. Elaborar a Tabela de Transição de Estados;
- 4. Acrescentar colunas considerando a **Tabela de Transição do FF D**;
- 5. Determinar a equação lógica das entradas dos FF (Mapas de Karnaugh);
- Representar o circuito lógico resultante (Diagrama Esquemático-Lógico).

18

(2021)

Aula 16 19

Subsistemas Contadores - Projetos

☐ Exercício 2: Projetar um contador síncrono que execute a seguinte sequência de contagem: 0-1-2-3-4-0.. (contador módulo 5).

Este contador deve ser um contador autocorretor, sendo que neste caso os estados fora de sequência devem levar ao estado 0 (zero).

Utilizar um conjunto de **FF's D** para a implementação do circuito.

Procedimento de Projeto:

- 1. Número de bits do contador:
- 2. Diagrama de Estados do contador:

19

Subsistemas Contadores - Projetos

(2021)

Aula 16

☐ Exercício 2: Projetar um contador síncrono que execute a seguinte sequência de contagem: 0-1-2-3-4-0.. (com FF's D).

Procedimento de Projeto:

- Elaborar a Tabela de Transição de Estados.
- 4. Acrescentar colunas para cada entrada do FF considerando a Tabela de Transição do FF D:

Diagrama de Estados do Contador

Tabela de Transição de **Estados do Contador**

_	stad Atua		_	stac utu		Entradas do FF D			
C	В	A	C*	B *	A *	$\mathbf{D}_{\mathbf{C}}$	$\mathbf{D}_{\mathbf{B}}$	\mathbf{D}_{A}	
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

Tabela de Transição do FF D

D	$Q_n \rightarrow Q_{n+1}$
	$0 \rightarrow 0$
	$0 \rightarrow 1$
	$1 \rightarrow 0$
	$1 \rightarrow 1$

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

(2021)

22