Exercise Package 2:

Semiconductor Materials and Diode v-I relationship:

- 1. In your own words explain the majority carrier and minority carrier in n-type semiconductor materials.
- 2. What is the difference between p-type and n-type semiconductor materials?
- 3. What is the band gap energy level of a material to be considered insulator?
- 4. What is the band gap energy level of Si crystal?
- 5. For GaAs, the band gap energy level is E_g=?
- 6. Reverse saturation current of a P-N junction is modeled by equation: $I_S = T^{(3+\frac{\gamma}{2})}e^{(-\frac{E_g}{kT})}$ where T is operation temperature in Kelvins, k=1.38x10⁻²³ (J/K) Boltzmann constant, E_g is the bandgap energy level of a semiconductor material (eV). γ is a modeling constant.
 - a. Given a silicon diode with typical reverse saturation current I_s =100pA at 25°C, find the value of modeling constant γ .
 - b. Find the reverse saturation current I_S of the above diode at operation temperatures $-2^{\circ}C$ and $55^{\circ}C$ respectively.
 - c. Find the corresponding (operation temperatures in -2° C, 25° C, and 55° C) forward biased current using Shockley equation: $I_D = I_S(e^{V_D/nV_T}-1)$ where n=2, $V_D=0.7V$ and thermal voltage $V_T=kT/q$ (q=1.6x10⁻¹⁹ (C) is elementary charge unit).
 - d. Estimate the dynamic resistor values of a forward biased, $V_D=0.7V$, silicon diode at following operation temperatures ($-2^{\circ}C$, $25^{\circ}C$, and $55^{\circ}C$), $r_d=dV_D/dI_D\approx nV_T/I_D$ for n=2.
 - e. Using the above results to explain "negative temperature coefficient" of semiconductor.
- 7. Estimate the resistor values of a forward biased silicon diode at operation temperatures 300K: $r_d \approx nV_T/I_D$ where n=1 and the operation currents I_D =10mA, 15mA and 100mA respectively.
- 8. For a silicon diode with $\gamma=1$ and n=2, determine the forward biased voltage V_D such that $I_D=5mA$ is maintained at operation temperatures, $-20^{\circ}C$, $27^{\circ}C$, and $55^{\circ}C$ respectively.

Diode specification sheet (posted on pilot):

- 9. Find the typical junction capacitor of the diode 1N4001 at reverse biased of 20V. Explain why we only care about the junction capacitor values under reverse biased condition.
- 10. Find the reverse saturation currents of 1N4004 when reverse biased at 160V at operation temperatures of 25°C, 100°C, and 125°C respectively.
- 11. What is the maximum forward current rating if the diode 1N4001 is operated at 100°C?