Knuth-Bendix Completion for Program Optimization Thesis Proposal

Michael Schifferer

20.08.2025

What Kind of Program Optimization?

Rewrite rules:

R1:
$$0 + X \rightarrow X$$

R2:
$$X + 0 \rightarrow X$$

R3:
$$-X + X \rightarrow 0$$

R4:
$$(X + Y) + Z \rightarrow X + (Y + Z)$$

What's the Problem?

Rewrite rules:

R1: $0 + X \rightarrow X$

R2: $X + 0 \rightarrow X$

R3: $-X + X \to 0$

R4: $(X + Y) + Z \rightarrow X + (Y + Z)$

What's the Problem?

Rewrite rules:

R1:
$$0 + X \rightarrow X$$

R2:
$$X + 0 \rightarrow X$$

R3:
$$-X + X \rightarrow 0$$

R4:
$$(X + Y) + Z \rightarrow X + (Y + Z)$$

$$\overline{\qquad \qquad ?}$$

What's the Problem?

Rewrite rules:

R1: $0 + X \leftrightarrow X$

R2: $X + 0 \leftrightarrow X$

R3: $-X + X \leftrightarrow 0$

R4: $(X + Y) + Z \leftrightarrow X + (Y + Z)$

Turns our nice DAG into an infinite undirected graph

Equality Saturation

$$(--a+(-a))+a$$

to e-graph

roblem Description Background Hypotheses Practical Considerations Method Validation Improvements Summary

O O O O O

$$(X+Y)+Z\to X+(Y+Z)$$

Problem Description Background Hypotheses Practical Considerations Method Validation Improvements Summary

$$0+X \rightarrow X$$
 and $X+0 \rightarrow X$

roblem Description Background Hypotheses Practical Considerations Method Validation Improvements Summary

Equality Saturation

to e-graph

 $--\epsilon$

Rewrite rules:

R1:
$$0 + X \rightarrow X$$

R2:
$$X + 0 \rightarrow X$$

R3:
$$-X + X \to 0$$

R4:
$$(X + Y) + Z \rightarrow X + (Y + Z)$$

Knuth-Bendix Completion

Prove:

$$--a + ((-a) + a) = 0 + a$$

Rewrite rules:

R1:
$$0 + X \rightarrow X$$

R2:
$$X + 0 \rightarrow X$$

R3:
$$-X + X \rightarrow 0$$

R4:
$$(X + Y) + Z \rightarrow X + (Y + Z)$$

R1

Superposition

Rewrite rules:

R1: $0 + X \rightarrow X$

R2: $X + 0 \rightarrow X$

R3: $-X + X \rightarrow 0$

R4: $(X + Y) + Z \rightarrow X + (Y + Z)$

Superposition

Rewrite rules:

R1: $0 + X \rightarrow X$

R2: $X + 0 \rightarrow X$

R3: $-X + X \rightarrow 0$

R4: $(X + Y) + Z \to X + (Y + Z)$

R5: $-X + (X + Z) \rightarrow Z$

Superposition

Rewrite rules:

R1: $0 + X \rightarrow X$

R2: $X + 0 \rightarrow X$

R3: $-X + X \rightarrow 0$

R4: $(X + Y) + Z \rightarrow X + (Y + Z)$

R5: $-X + (X + Z) \rightarrow Z$

roblem Description Background Hypotheses Practical Considerations Method Validation Improvements Summary

Superposition

Rewrite rules:

R1: $0 + X \rightarrow X$

R2: $X + 0 \rightarrow X$

R3: $-X + X \rightarrow 0$

R4: $(X + Y) + Z \rightarrow X + (Y + Z)$

R5: $-X + (X + Z) \rightarrow Z$

R6: $-X \rightarrow X$

Knuth-Bendix Completion

Prove:

$$--a + ((-a) + a) = 0 + a$$

Rewrite rules:

R1:
$$0 + X \rightarrow X$$

R2:
$$X + 0 \rightarrow X$$

R3:
$$-X + X \rightarrow 0$$

R4:
$$(X + Y) + Z \rightarrow X + (Y + Z)$$

R5:
$$-X + (X + Z) \rightarrow Z$$

R6:
$$-X \rightarrow X$$

Problem Description Background Hypotheses Practical Considerations Method Validation Improvements Summary

Hypotheses

- H1: Extending rule sets by performing Knuth-Bendix Completion improves performance in terms of (a) saturation time and (b) quality of output for current implementations of Equality Saturation.
- H2: Greedy rewriting with KBC-extended rule sets is a viable alternative to Equality Saturation, in terms of output quality, when compile-time resources are limited.

Knuth-Bendix vs. Compiler Canonicalizations

VS.

Knuth-Bendix vs. Compiler Canonicalizations

What to do?

- Keep corresponding rules bidirectional
 - Causes e-graph growth
 - Only works for H1
- Introduce canonicalization step
 - Improves generalizability

Rule Selection

KBC is unlikely to terminate.

What to do?

- Limit rules based on
 - number
 - term size
- Interrupt KBC when no good rules are generated anymore(?)

Rule Selection

KBC is unlikely to terminate.

What to do?

- Limit rules based on
 - number → Bonus: How does the number impact performance?
 - term size
- Interrupt KBC when no good rules are generated anymore(?)

Example: KBC Transformation Revisited

Prove:

$$--a + ((-a) + a) = 0 + a$$

Rewrite rules:

R1:
$$0 + X \rightarrow X$$

R2:
$$X + 0 \rightarrow X$$

R3:
$$-X + X \rightarrow 0$$

R4:
$$(X + Y) + Z \rightarrow X + (Y + Z)$$

R5:
$$-X + (X + Z) \rightarrow Z$$

R6:
$$-X \rightarrow X$$

Basic Workflow

Tools

- egg (Equality saturation)
 - Easy to use
 - Has example rule sets
 - Used in practice
- Twee (KBC-based theorem prover)
 - Good for generating rule sets
 - Features for KBC termination
 - Simple implementation of Knuth-Bendix Ordering
 - Allows conditional rewrite rules

Validation

- Generate rule sets from egg example rules
- Test on arithmetic terms
- Use egg example rules as benchmark

Problem Description Background Hypotheses Practical Considerations Method Validation Improvements Summar OO OO OO OO OOO

Validation

- Generate rule sets from egg example rules
- Test on arithmetic terms
- Use egg example rules as benchmark

- ⇒ Accept H1 if KBC improves output quality and execution time
- ⇒ Accept H2 if output quality is not significantly worse

Possible Extensions

- Additional domains
 - Boolean algebra
 - Bitvector algebra
- Alternative equality saturation implementations
 - egglog
 - ægraphs
- Finding heuristics for rule selection

roblem Description Background Hypotheses Practical Considerations Method Validation Improvements **Summary**

Summary

- Extend rewrite rule systems with Knuth-Bendix Completion
- Evaluate with
 - equality saturation
 - greedy rewriting
- Expected contribution:
 - Semi-automated rule set generation for rewrite-based program optimization
 - Insights into the impact of rule set size on equality saturation
 - Enabling cheap optimization through greedy rewriting

