# Oligopolio

## Organización Industrial

Licenciatura en Economía





#### Cournot

Modelo general Modelo n empresas

#### Bertrand

Equilibrio de Bertrand

Extensión: restricciones de capacidad

; Bertrand o Cournot?





#### Presentación

- Hasta ahora se vieron las formas extremas: muchas o una empresa
- ► En aquellas estructuras las decisiones de las empresas no tenían impacto sobre las restantes
- Oligopolio: estructura de mercado en la cual hay pocos oferentes pero muchos demandantes

Existe interdependencia estratégica de las acciones.

#### Cournot

Modelo general

Modelo n empresas

#### Rertranc

Equilibrio de Bertrand

Extensión: restricciones de capacidad

Bertrand o Cournot



### Supuestos

- 1. Las empresas venden bienes homogéneos
- 2. Juegan un juego en una etapa
- 3. Eligen en forma independiente y simultánea la cantidad que venden del producto
- 4. No enfrentan restricciones de capacidad
- 5. Tienen igual función de costos:  $CT_i = cq_i$  y no tienen costos fijos.

# Derivación geométrica

- ightharpoonup Empresas:  $\{1,2\}$
- Maximización de beneficios de la empresa 1,  $\pi_1$  que empresa 2 produce  $q_2$  dado
- ▶ Demanda q = a bp, con  $q = \sum_{i=1}^{2} q_i$
- ▶ La empresa 1 se enfrenta la demanda  $q' = q q_2$
- ▶ Solución de la empresa: IMg = CMg



# Gráfica





#### Casos

- ▶ Si  $q_2 = 0 \Rightarrow$  la reacción óptima es  $q_1(0) = q^M$
- ▶ Si  $q_2 = q^{CP} \Rightarrow$  entonces la demanda residual es siempre menor al  $CMg \Rightarrow q_1(q^c) = 0$
- Función de reacción: para cualquier  $q_2$  es el valor de  $q_1$  tal que  $\max_{q_1} \pi_1$

### Casos











#### Resultado

- 1. Resultado intermedio entre la CP y el monopolio
- No es de CP porque las empresas enfrentan demanda con pendiente negativa
- 3. No es el de monopolio porque no absorbe todo el impacto de su decisión

#### Cournot

Modelo general

Modelo n empresas

#### Rertrand

Equilibrio de Bertrand

Extensión: restricciones de capacidad

Bertrand o Cournot



### Modelo

- Las empresas deciden en forma simultánea la cantidad a producir  $q_1$  y  $q_2$
- ▶ El precio ajusta oferta y demanda:  $p(q_1 + q_2)$ ,
- ▶ p(q) es la función inversa de demanda y se cumple que  $p'(q) < 0 \ \forall q \geq 0$  y p(0) > c
- $\blacktriangleright$  Cada empresa decide su nivel de producto dado el nivel de producto de la otra  $\overline{q}_k$

# Óptimo

► El problema de maximización es:

$$\max_{q_j} p(q_j + \overline{q}_k) q_j - cq_j$$

- ► CPO  $p'(q_j + \overline{q}_k)q_j + p(q_j + \overline{q}_k) = c$ .
- Similares a las de monopolio: el productor de Cournot es un monopolista en el mercado residual que no atiende su rival

#### Cournot

Modelo general

Modelo n empresas

#### Bertrand

Equilibrio de Bertrand

Extensión: restricciones de capacidad

Bertrand o Cournot



### Solución

- Empresa  $i \max_i \pi_i(q_1, \ldots, q_n)$ ;  $\pi_i(q_1, \ldots, q_n) = (a bq c)q_i$
- ► CPO:  $\frac{\partial \pi_i}{\partial a_i} = 0 = (a bq_1 \ldots bq_n c) bq_i$  $\Rightarrow q_i = \frac{a-c}{2h} - \frac{\sum q_{-i}}{2} = R_i(q_{-i})$
- ► Eq. simétrico:  $\Rightarrow q_i = q_i = q_i^* = \frac{a-c}{2L} \frac{(n-1)q_i^*}{2}$

$$q_i^* = \frac{a-c}{b(n+1)} \Rightarrow q^* = nq_i^* = \frac{n(a-c)}{b(n+1)} \Rightarrow p^* = \frac{a+nc}{(n+1)}$$



# Propiedades del equilibrio

1. 
$$\lim_{n\to\infty}p^*=\lim_{n\to\infty}\frac{a}{n+1}+\frac{n}{n+1}c=c=p^{cp}$$

2. 
$$PS = \frac{(p^* - p^{cp})(q^{cp} - q^*)}{2} = \frac{\left[\left(\left(\frac{a + nc}{n+1}\right) - c\right)\left(\frac{a - c}{b} - \left(\frac{n(a - c)}{(n+1)b}\right)\right)\right]}{2} = \frac{(a - c)^2}{2b(n+1)^2} \Rightarrow \lim_{n \to \infty} PS = \lim_{n \to \infty} \frac{(a - c)^2}{2b(n+1)^2} = 0$$

3. Nota: mientras que el precio converge a la tasa n, la pérdida social disminuye a la tasa  $n^2$ 

4. 
$$EC = \frac{(a-p)q^*}{2} = \frac{n^2(a-c)^2}{2b(n+1)^2} \Rightarrow \frac{\partial EC}{\partial n} = \left(\frac{n(a-c)^2}{b(n+1)^3}\right) > 0$$

5. 
$$EP = \sum_{i=1}^{n} \pi_i = \frac{n(a-c)^2}{b(n+1)^2} \Rightarrow \frac{\partial EP}{\partial n} = \left(\frac{(1-n)(a-c)^2}{b(n+1)^3}\right) < 0; \forall n > 2$$







# Estimación de pérdida social

$$PS = 0 \Leftrightarrow n \to \infty$$

ightharpoonup ¿Escenario menos estricto? Ej.:  $PS^C = 5\% \, PS^M$ 

$$PS^{C}_{PSM} = \frac{\frac{(a-c)^{2}}{2b(n+1)^{2}}}{\frac{(a-c)^{2}}{8b}} = \frac{8b}{2b(n+1)^{2}} = \frac{4}{(n+1)^{2}} < 5\% \Leftrightarrow \frac{4}{0,05} < (n+1)^{2} \Leftrightarrow 80 < (n+1)^{2} \Leftrightarrow \sqrt{80} < (n+1) \iff n > 7,9$$



#### Cournot

Modelo general

Modelo n empresas

#### Bertrand

Equilibrio de Bertrand

Extensión: restricciones de capacidad

Bertrand o Cournot



### Supuestos

- 1. Empresas venden bienes homogéneos
- 2. Juegan un juego en una etapa
- Eligen en forma independiente y simultánea el precio al que venden del producto
- 4. No enfrentan restricciones de capacidad, pueden servir toda la demanda que reciban
- 5. Tienen igual función de costos:  $CT_i = cq$ ; no tienen costos fijos

### Demanda

▶ La demanda que enfrentan la empresa i es de la siguiente forma:

$$q_i^d(p_i, p_j) = \begin{cases} q(p_i) & si p_i < p_j \\ \frac{q(p_i)}{2} & si p_i = p_j \\ 0 & si p_i > p_j \end{cases}$$

Gráficamente:

# Demanda (gráfica)









# Beneficios







### Funciones de reacción

$$p_i^*(p_j) = \begin{cases} p^M & si \ p_j > p^M \\ p_j - \varepsilon & si \ c \le p_j \le p^M \\ c & si \ p_j \le c \end{cases}$$

# Funciones de reacción (gráfica)





#### Cournot

Modelo general

#### Bertrand

Equilibrio de Bertrand

Extensión: restricciones de capacidad

Bertrand o Cournot?



### **ENB**

#### **Teorema**

Equilibrio de Bertrand: el único precio de equilibrio de este juego está dado por  $p_i^*=p_j^*=c$ , con  $\pi_i(p_i^*,p_j^*)=\pi_j(p_i^*,p_j^*)=0$ .

# ENB (Demostración)

#### Demostración.

La demostración es en dos partes: 1-  $p_i^*=p_j^*=c$  es un equilibrio de Nash (EN); 2-  $p_i^*=p_j^*=c$  es el único EN.

1) Para que sea un EN, ninguna empresa debe tener incentivos a desviarse dado lo que jugó la otra.

Sea  $p_1^*=c$  ¿tiene incentivo la empresa 2 a fijar  $p_2\neq c$ ? Veamos: si  $p_2=c\Rightarrow \pi_2=0$ ; si  $p_2<c\Rightarrow \pi_2<0$  (tiene toda la demanda pero no cubre los costos); y si  $p_2>c\Rightarrow \pi_2=0$  (nadie le compra).  $\Rightarrow$  si  $p_1^*=c,\,p_2=c$ .

El mismo razonamiento es válido para la empresa 1 cuando la empresa 2 juega  $p_2=c$ .







# ENB (Demostración, cont.)

#### Demostración.

Por contradicción, supongamos que existe un precio de equilibrio diferente a  $(c,\,c)$ 

- (A)  $p_i^* < c \le p_j^*$  o  $p_i^* < p_j^* \le c$ . La empresa i está haciendo beneficios negativos, dado que toda la demanda recae sobre ella  $\Rightarrow$  puede llevar el precio a  $p_i^{'} = c$  y ahora  $\pi_i^{'} = o > \pi_i^* \Rightarrow$ no puede ser un EN.
- (B)  $p_i^*=c< p_j^*$ . La empresa i hace  $\pi_i^*=0\Rightarrow$  puede fijar un precio  $p_i^{'}=p_j^*-\varepsilon\Rightarrow\pi_i^{'}>0=\pi_i^*$ .  $\Rightarrow$  este no puede ser un EN.
- (C)  $c < p_{i}^{*} \leq p_{j}^{*}$ .  $\pi_{j}^{*} = 0 \Rightarrow$  fija  $p_{j}^{'} = p_{i}^{*} \varepsilon$  y gana toda la demanda,  $\Rightarrow \pi_{i}^{'} \geq \pi_{i}^{*} = 0. \Rightarrow$  este no puede ser un EN.





## ENB: interpretación

- ▶ Paradoja: precio igual al *CMg*, aún siendo 2 !!.
- ▶ No se sostiene si se levantan los supuestos
  - 1. Diferenciación de productos
  - 2. Competencia dinámica
  - 3. Restricciones de capacidad
  - 4. Costos asimétricos

#### Cournot

Modelo general

#### Bertrand

Equilibrio de Bertrand

Extensión: restricciones de capacidad

Bertrand o Cournot



#### Presentación

- ¿Se sostiene el resultado si las empresas enfrentan restricciones de capacidad?
- Modelo en dos etapas: t=1 las empresas eligen capacidad; t=2 compiten en precio
- ▶ Costos:  $C_i^1(q_i) = \frac{3}{4}q_i$  para el momento 1;  $\frac{3}{4}$  es el costo por unidad de capacidad  $q_i$
- ▶ Demanda de mercado  $q = 1 p \Rightarrow p = 1 q_1 q_2$



# Regla de racionamiento

- ▶ Regla de racionamiento eficiente: dos empresas con precios  $p_1 < p_2$
- $ightharpoonup \overline{q_1} < q(p_1);$  la empresa 1 no puede satisfacer toda la demanda al precio fijado
- La demanda residual de la empresa 2 es:

$$q_2^R(p_2) = \begin{cases} q(p_2) - \overline{q_1} & si\,q(p_2) > \overline{q_1} \\ 0 & \text{en otro caso} \end{cases}$$

# Regla de racionamiento (gráfico)





# Solución: previo

- lacktriangle Vamos a acotar los posibles valores de  $\overline{q_i}$
- $\begin{array}{l} \blacktriangleright \ \ \text{M\'aximos beneficios en } t=2 \ \pi^M \Rightarrow \pi=pq=p(1-p) \Rightarrow \frac{\partial \pi}{\partial p}=0=(1-p)-p \Rightarrow p=\frac{1}{2} \Rightarrow q=\frac{1}{2} \Rightarrow \pi=\frac{1}{4} \end{array}$
- Máximos beneficios en t=1 netos de costos de capacidad:

$$\frac{1}{4} - \frac{3}{4}\overline{q_i} \Rightarrow \overline{q_i} \le \frac{1}{3}$$

$$\Rightarrow \overline{q_1}, \overline{q_2} \in \left[0, \frac{1}{3}\right]$$

# Solución: etapa 2

- Solución:  $p^* = 1 (\overline{q_1} + \overline{q_2})$  único equilibrio
- 2.  $p_i > p^*$ ?
  - $\bullet$   $\pi_i = p_i q_i = p_i (1 p_i \overline{q_i})$ , incluye regla de racionamiento. Invirtiendo  $\pi_i = (1 - q_i(p_i) - \overline{q_i}) q_i(p_i); q_i(p_i)$  es la demanda residual de la empresa i por la regla de racionamiento  $\Rightarrow$  $q_i(p) < \overline{q_i}$ , debido a que  $p_i > p^*$
  - $\blacktriangleright \ \left. \frac{\partial \pi}{\partial q_i(p)} \right|_{q_i(p) = \overline{q_i}} = 1 2\overline{q_i} \overline{q_j}. \ \mathsf{Como} \ \overline{q_1}, \overline{q_2} \in \left[0, \, \frac{1}{3}\right],$  $\Rightarrow \frac{\partial \pi}{\partial q_i(p)}\Big|_{a:(n)=\overline{a_i}}>0$ , y la función  $\pi_i$  es cóncava  $\Rightarrow$  cualquier  $q_i(p_i) < \overline{q_i} \text{ implica } \pi_i(q_i(p)) < \pi_i(\overline{q_i}), \forall q_i(p) < \overline{q_i}. \Rightarrow \text{filar}$  $p_i > p^*$  no es óptimo





# Solución: etapa 1

- ▶ Beneficios  $\pi_i(\overline{q_i}, \overline{q_j}) = \left(p^* \frac{3}{4}\right)\overline{q_i} = \left(1 \overline{q_i} \overline{q_j} \frac{3}{4}\right)\overline{q_i}$
- Problema formalmente idéntico a Cournot
- Bertrand con restricciones de capacidad es un Cournot !

### Uso estratégico de la capacidad

La elección de la capacidad en t=1 relaja la competencia en t=2

#### Cournot

Modelo general

Modelo n empresas

#### Rertranc

Equilibrio de Bertrand

Extensión: restricciones de capacidad

¿Bertrand o Cournot?



# Variable estratégica relevante

- ► En modelos de oligopolio la competencia en precios o cantidades arroja resultados diferentes
- ¿Cuál es la restricción relevante en el largo plazo?
- ► Capacidad: ⇒ modelo de Cournot: acero, cemento, autos, productos agrícolas
- ▶ Precio: dado el precio de empresa j la empresa i abastece toda la demanda  $\Rightarrow$  modelo de Bertrand: seguros, programas de software, ebooks