

A. Let H be the set of all points (x,ylin R² s.t. x² +xy+3y²=3. Show that H is closed subset of R² (considered with the Eaclidean Metric).

15 H bounded?

H= { (x,y) | x2 + xy + 3y 2=3}

Now we let (x_n, y_n) be $-7(x_iy)$ and $(y_n, y_n) \in H$ s.t. $x_n^2 + x_n y_n + 3y_n^2 = 3$. Now we fore it as a limit: $\lim_{n\to\infty} (x_n^2 + x_n y_n + 3y_n^2) = 3 = 3$ $(x_iy) \in H$

To check i) it's 60 anded: (asing math (ogiclisty) + 3y 2 = 3 => \frac{7}{2}x^2 + \frac{7}{2}(x + y)^2 + \frac{5}{2}y^2 = 3/2 x^2 + (x + y)^2 + 5y^2 = 6

 $x^2 \le 6$ and $5y^2 \le 6$ =7 |x| < \sqrt{x} and $|y| \le \sqrt{\frac{6}{5}}$

which means (x, y) & [-V6, V6] x, [-V6] x, [-V6] -> thise

from which we conclude that AEM.

[xn, yn] -> (x, y) (=> xn-7 x N yn-7 y)

Now we prove:

 $|x_n - x| \leq \sqrt{(x_n - x)^2 + (y_n - y)^2}$ < of which means that $= 1 \lim_{n \to \infty} x_1 = x$

hwl Zhivvo Stoincher 85221056

B. Given a metric space 14 with metric d, verily that

any E-ball is an open set.

- Let point a & M.

From the E-Gall det, we have

Be(a) = {xeM|d(x, a) < E}, or Be(d)(a).

From taxing E* as follows: 2

E* = E - dly, a)

und xeBE(y)

we get d(x,y)<E*

From A-inequality, we get.

 $d(x,a) = d(x,y) + d(y,a) = \mathcal{E} - d(y,a), \text{ which is equal to } \mathcal{E}^*$ $d(x,a) = d(x,y) + d(y,a) < \mathcal{E}^* + d(y,a), \qquad || \qquad \qquad \text{to } \mathcal{E}$ or $d(x,a) < \mathcal{E}$

From the above we get that Be (3) a is open ball. We also have that BE (4) = 13 c (6) (a).

With this, from the open set det, we have that Decelar is open set, which means that

-any E-ball is an open set.

C. Show that a set in R² is open in the Euclidean metric =7 it is open in the max metric.

Hin t: As asual, there are two directions to

Hin t: As asual, there are two directions to prove in an Er. The sicture on p73 of the notes may be helpful.

Let A be a set, and thoint a EA, for Ezo,
there is & such that dzo. And, we apply the
ded. for open sets, where we choose de E. fram
which we get da (a 1 6 | ed = 7 dz (a 1 6 | e &)

prove that these metrices definet the same open set

then Boladol B

The now, the dela, bled, a, bl, then Be la, Ele B, la, Sl.

If A is an open set in de, for tack, deon Ezo,

Bela, Ele A => B, la, Sle A.

Which means A is open set

has Zhivro Stoimcher 85221056.

By knowing that Lis the set of acc. points of a seq. in A, we have that

AUL contains all the points ar. and AUL contains the limit of seq. in A. Because HUL centains all limit soints of A, we conclude that AVL is closed.

at sequences in A.

By letting a E # A lfor our example lowe have on EA, which is the same as a EAIA.

Since as A is trivial, we work with a EA lA, and we get that a # A and a EA.

And because A doesn't contain limit points, we conclude that a is a limit of point of A, where a EL So, from a EA and a EL, we conclude that

A CAUL.

hws Thivro Stoimcher 83221056

E. Show that both R and R2 may be covered by countably many open balls

We have Q= U{Vn}

In = (Vn-1, Vn +1), where Thea

Uln=R s.t. => ln SR n Ulnch

(going backwards)

(X=) X=R 5.6. = 1 (X-\frac{1}{3}, X+\frac{1}{3}) nQ \frac{1}{3} o, where \(\tau\) is the cross-scction! which means that $\exists \nabla x \in \mathbb{Q}$ and $\nabla x \in (x-\frac{1}{3}, x+\frac{1}{3})$.

where = 7 XE(VX-1, VX fil for some VX.

Because of UX -x/2 21, we have that RCUIN

Q = U {(x, ya)}

In = B(Vn, yn)

= 77 = { (x, y) | V(x-x)2 + (y-yn)2 < 1}

Uln=R2

(going backwards)

(= | We now let (xxy) ER2, and get

B(x,y)(3 = { x, y) | d(x, y2, (x,y)) = 3 }

B(x,y)(3) n 02 =0

From which we can conclude lasing math logic that: 1:

[Z1, Z1) E Q and V(x-Z)2 (y-Z2)2 < 3 < 7

to have at last 2 ((x,y), (Za,Zz) <1 which nears that tx (x,y) = |