Propriété 1. L'équation de la tangente à la courbe représentative de f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a)$$

Dans chaque cas, déterminez l'équation réduite de la tangente à la courbe représentative de f au point d'abscisse a.

**a.** 
$$f(2) = 1$$
 et  $f'(2) = 3$  pour  $a = 2$ .

**b.** 
$$f(-3) = 2$$
 et  $f'(-3) = 4$  pour  $a = -3$ .

c. 
$$f(6) = 5$$
 et  $f'(6) = -1$  pour  $a = 6$ .

**d.** 
$$f(\frac{1}{2}) = 3$$
 et  $f'(\frac{1}{2}) = 2$  pour  $a = \frac{1}{2}$ .

## Fonction dérivée

**Définition 1.** Dire que f est dérivable sur Isignifie que  $f^{\prime}(x)$  existe pour tout x de I. La fonction qui à x associe f'(x) est appelée fonction dérivée de f et est notée f'.

Soit f la fonction qui à x associe  $x^2+3x-7$ . On admettra que f'(x)=2x+3. Déterminez l'équation réduite de la tangente à la courbe représentative de f au point d'abscisse :

**b.** -1

c. 3

Propriété 2. Les fonctions suivantes sont dérivables sur  $\mathbb{R}$ .

| f(x)             | f'(x) |
|------------------|-------|
| m                | 0     |
| $\boldsymbol{x}$ | 1     |

| <br>   |       |
|--------|-------|
| f(x)   | f'(x) |
| mx     | m     |
| mx + p | m     |

| f(x)  | f'(x)  |
|-------|--------|
| $x^2$ | 2x     |
| $x^3$ | $3x^2$ |

Calculez les nombres dérivés des fonctions suivantes en 3 et en -2.

$$f_1(x)=3$$
  $f_2(x)=2x+1$   $f_3(x)=x^2$ 

lacksquare On considère la fonction f définie par  $f(x) = x^2$ . Déterminez l'équation réduite de la tangente à la courbe représentative de f au point d'abscisse a.

a=5

a=-2

a=3

a=-4

E5 On considère la fonction f définie par  $f(x)=x^3$ . Déterminez l'équation réduite de la tangente à la courbe représentative de f au point d'abscisse a.

a = 5

a = -2

a = 3

a=-4

lacksquare On considère la fonction f définie par  $f(x)=x^2$ . Dans un repère d'unités graphiques 1pour 1cm sur l'axe des abscisses et 2 pour 1cm sur l'axe des ordonnées, tracez la tangente à la courbe représentative de f au point d'abscisse :

a=-3

a = -1

a=2

 $\blacksquare$  On considère la fonction f définie par  $f(x)=x^3$ . Dans un repère d'unités graphiques 1pour  $1\,\mathrm{cm}$  sur l'axe des abscisses et 10 pour  $1\,\mathrm{cm}$ sur l'axe des ordonnées, tracez la tangente à la courbe représentative de f au point d'abscisse : a = -1a=2

## Fonctions dérivées et opérations

**Propriété 3.** Soit u une fonction dérivable sur un intervalle I et k un réel, alors :  $(ku)' = k \times u'$ 

E8 Calculez les fonctions dérivées.

 $\overline{f_1(x)} = 3x^2 \quad f_2(x) = 2x^3 \quad f_3(x) = -5x^2 \quad f_4(x) = -4x^3 \quad$ 

 $f_5(x) = 7x^2$  $f_6(x) = -5x^3$ 

Calculez les fonctions dérivées. 
$$f_1(x)=rac{1}{4}x^2$$
  $f_2(x)=-rac{2}{3}x^3$   $f_3(x)=rac{5x^2}{6}$   $f_4(x)=-rac{4x^3}{6}$ 

**Propriété 4.** Soit u et v deux fonctions dérivables sur un intervalle I et k une constante, alors:

$$(u+v)' = u' + v'$$
 et  $(u-v)' = u' - v'$ 

E10 Calculez les fonctions dérivées.

 $f_1(x) = 4x^2 + 2x$   $f_2(x) = 9x^2 - 5$   $f_3(x) = 7x^3 + 3x^2$ 

 $f_4(x) = -6x^3 + 2x$  $f_5(x) = -3x^2 + 2x$ 

Ell Calculez les fonctions dérivées.

 $f_2(x) = -3x^3 + 4x^2 - 5$  $f_1(x) = x^3 - 2x + 7$ 

 $f_3(x) = 2x^3 - 3x^2 + 4x$  $f_4(x) = -5x^3 + 3x - 4$ 

 $f_5(x) = 7x^3 - 2x^2 + 5$  $f_6(x) = -4x^3 + 4x^2 - 9x$ 

## Application de la dérivation

**Propriété 5.** Soit f une fonction dérivable sur un intervalle I. Si sur I, f est :

- ullet croissante, alors f' est positive sur I ;
- ullet décroissante, alors f' est négative sur I.

E12 Dans chaque cas, recopiez et complétez le signe de la fonction dérivée  $f^\prime$  de la fonction f ; puis écrire les valeurs connues de f.

а.



