Propagation des incertitudes aux hydrogrammes

Ce document décrit comment les erreurs provenant de la courbe de tarage (erreurs paramétriques et erreurs structurelles) et celles provenant du limnigramme (erreurs non-systématiques et erreurs systématiques) sont propagées aux hydrogrammes par BaRatin.

L'estimation d'une courbe de tarage par BaRatin conduit en fait à 500 courbes de tarage, chacune correspondant à un jeu de paramètres possible (les paramètres sont ceux de l'équation de la courbe de tarage, θ , ainsi que γ_1 et γ_2 qui permettent de définir l'écart-type de la loi normale selon laquelle l'erreur structurelle (restante) est échantillonnée). Le limnigramme est une série temporelle de hauteurs d'eau mesurées $\tilde{h}(t)$. Les écart-types σ_A^h et σ_B^h (qui correspondent respectivement aux erreurs non-systématiques et systématiques affectant le limnigramme) permettent de générer 500 limnigramme. La méthode est décrite ci-dessous pour une courbe de tarage i (un jeu de paramètres) estimée par BaRatin :

- (1) Pour chaque pas de temps t, une erreur $\varepsilon_i^h(t)$ est échantillonnée selon la loi normale $N(0, \sigma_A^h)$. Celle-ci est ensuite ajoutée au limnigramme mesuré $(\tilde{h}(t))$.
- (2) Pour chaque période où l'erreur systématique affectant le limnigramme est supposée constante, une erreur δ_i^h est échantillonnée selon la loi normale $N(0, \sigma_B^h)$. Celle-ci est ensuite ajoutée au limnigramme mesuré déjà affecté des erreurs non-systématiques. On a alors un limnigramme i pouvant s'écrire : $h_i(t) = \tilde{h}(t) + \varepsilon_i^h(t) + \delta_i^h$
- (3) Pour chaque pas de temps t, un débit $\tilde{Q}_i(t)$ est calculé à partir de la série de hauteurs d'eau $h_i(t)$, de l'équation de la courbe de tarage f et du jeu de paramètres θ_i .
- (4) Pour chaque pas de temps t, une erreur structurelle (ou restante) $\varepsilon_i^f(t)$ est ensuite ajoutée au débit calculé $\tilde{Q}_i(t)$. Cette erreur est échantillonée selon la loi normale $N\left(0, \gamma_{1,i} + \gamma_{2,i}\tilde{Q}_i(t)\right)$.

L'équation synthétisant ces différentes étapes est présentée ci-dessous

$$Q_i(t) = \underbrace{f\left(\overbrace{\tilde{h}(t) + \varepsilon_i^h(t) + \delta_i^h}^{h_i(t)} \mid \boldsymbol{\theta_i}\right)}_{\tilde{Q}_i(t)} + \varepsilon_i^f(t)$$
 Où

 $\tilde{h}(t)$: hauteur d'eau mesurée

 $\varepsilon_i^h(t)$: erreur non-systématique associée à la mesure de hauteur d'eau

 δ_i^h : erreur systématique associée à la mesure de hauteur d'eau

 $\varepsilon_i^f(t) \sim N\left(0, \gamma_{1,i} + \gamma_{2,i}\tilde{Q}_i(t)\right)$: erreur structurelle associée à la courbe de tarage.

La Figure 1 est proposée afin d'illustrer et de résumer les différentes étapes présentées ci-dessus.

Pour l'obtention de l'hydrogramme MaxPost (le plus probable), toutes les erreurs sont ignorées : $Q_{MP}(t) = f(\tilde{h}(t) | \theta_{MP})$ où θ_{MP} correspond au jeu de paramètre de la courbe de tarage MaxPost.

Figure 1: Principe de la méthode d'échantillonnage considérant deux jeux de paramètres (θ_{i_1} (en rouge) et θ_{i_2} (en bleu)): depuis le limnigramme mesuré jusqu'aux deux hydrogrammes (chacun correspondant à un jeu de paramètres, i.e. à une courbe de tarage possible et à 1 limnigramme possible)