UNIVERSITAT ROVIRA I VIRGILI (URV) Y UNIVERSITAT OBERTA DE CATALUNYA (UOC)

Computational Engineering and Mathematics

Master's Thesis
Area: Artificial Intelligence

Underwater Species Detection in Images and Videos

Author: Ricard Fos Serdà

Consultant teacher: Antonio Burguera Burguera

Submission date: 01/06/2022

Introduction

• Deep Learning:

- Classify images
- Detect Objects
- Natural Language Processing
- Motion Planning
- More...

• Underwater Species:

- Identify
- Count
- Study
- Follow

Work Planning

Convolutional Neural Networks (CNN)

• Image Classification:

- 1. Convolutional Layers
- 2. Pooling Layers
- 3. Flatten
- 4. Classify

Two-Stage Object Detection

- Bounding Boxes
 - [xmin, ymin, xmax, ymax]
- Class label
- Confidence

Region-Based CNN (R-CNN)

- 1. Region proposals
 - Selective Search
- 2. CNN Backbone
- 3. Classify
- 4. Box regression
- 5. Non-Max Suppresion

Fast R-CNN

- CNN backbone used once
- Region proposals
 - Selective Search
 - Feature Map
- Region of Interest Pooling
 - Fixed-Size ROIs

Faster R-CNN

- Region Proposal Network (RPN)
 - Anchor Boxes
 - Objectness score
 - Generate Region Proposals

Evaluation Metrics for Object Detection

Intersection over Union (IoU)

- Precision $Precision(c) = \frac{TPc}{TPc + FPc}$
- Recall $Recall(c) = \frac{TPc}{TPc + FNc}$
- Mean Average Precision (mAP)
 - Area under the Precision-Recall Curve

Image	Detection	Confidence	IoU	Ground Truth	TP/FP	Acc TP	Acc FP	Precision	Recall
Image 2	P4	98%	> 0.5	GB	TP	1	0	1	0.33
Image 2	P3	88%	> 0.5	GB	FP	1	1	0.5	0.33
Image 1	P1	78%	> 0.5	GA	TP	2	1	0.67	0.67
Image 1	P2	60%	< 0.5	-	FP	2	2	0,5	0.67

Faster R-CNN Results

- Pytorch Library
- Transfer Learning
- 7.5 average FPS
- 61.6 mAP

Mask R-CNN

- Instance Segmentation
- Segmentation CNN
- Feature Pyramid Networks
- ROI Align

Mask R-CNN Results

- Mask data
- Pytorch Library
- Transfer Learning
- 7 average FPS
- 61.3 mAP

One stage detection

- Two-Stage detection is slow
 - 7 fps achieved
 - Want 30 fps minimum
- Avoid Region Proposal Stage

You Only Look Once (YOLO)

- Divide image in 7x7 grid cells
 - 1 Class predicted per cell
 - 2 boxes predicted per cell
- No anchor boxes
- No Region Proposals
- 45 FPS

YOLOv2 and YOLOv3

- Small improvements
- Anchor Boxes
- Darknet-53 backbone

Feature Pyramid Networks (FPN)

	Type	Filters	Size	Output	
	Convolutional	32	3×3	256×256	
	Convolutional	64	$3 \times 3/2$	128×128	
	Convolutional	32	1 x 1		
1x	Convolutional	64	3×3		
	Residual			128 × 128	
	Convolutional	128	$3 \times 3/2$	64 × 64	
	Convolutional	64	1 x 1		
2x	Convolutional	128	3×3		
	Residual			64×64	
	Convolutional	256	3×3/2	32 × 32	
	Convolutional	128	1 x 1		
8×	Convolutional	256	3×3		
	Residual			32 × 32	
	Convolutional	512	3×3/2	16 × 16	
	Convolutional	256	1 x 1		
8×	Convolutional	512	3×3		
	Residual			16 × 16	
	Convolutional	1024	3×3/2	8 × 8	
	Convolutional	512	1 x 1		
4x	Convolutional	1024	3×3		
	Residual			8 × 8	
	Avgpool		Global		
	Connected		1000		
	Softmax				

YOLOv4

- Complex network
- Regularization
 - Data augmentation
 - DropBlock
- Modified FPN

YOLOv5

- YOLOv4 with improvements
- Managed by a company
- Continuous development
- Multiple model size options
- User-Friendly

41 MB_{ED16}

8.2 ms_{v100}

45.2 mAP coco

89 MB_{FP16}

10.1 ms_{v100}

48.8 mAP_{coco}

166 MB_{ED16}

12.1 ms_{v100}

50.7 mAP coco

 $4~\mathrm{MB}_{\mathrm{FP16}}$

6.3 ms_{V100}

28.4 mAP coco

14 MB_{FP16}

6.4 ms_{v100}

37.2 mAP_{coco}

YOLOv5 Results

- Text input format
- YOLOv5 Github
- Small size option
- 47.3 average FPS
- 63.4 mAP

Object Tracking

- Used on top of Detection models
- Track through frames
- IOU tracking
- Hungarian Algorithm
- Kalman Filters
- SORT

Tracking Results

- YOLOv5 detection
- Simple SORT
- No Kalman Filters
- 23.6 average FPS

Conclusions

- YOLOv5 Achieves precise real-time detection
- Detection can be used for tracking and other purposes
- Deep Learning is replacing traditional computer vision
- New solutions will probably appear each year