Incidence Geometries

Definition 1 (Incidence Geometry). Let $\mathcal{P} = (P, L)$ be an incidence structure. We say \mathcal{P} is an incidence geometry if the following properties are satisfied.

- IG1. If $x, y \in P$ are distinct points, then there is a unique line $\ell \in L$ such that $x, y \in \ell$. We denote this line \overleftarrow{xy} .
- IG2. If $\ell \in L$ is a line, then there are at least two distinct points $x, y \in \ell$.
- IG3. There is a set of three distinct points which is noncollinear.

Proposition 1. Let $\mathcal{P} = (P, L)$ be an incidence geometry.

- 1. If $x, y \in P$, then $\overrightarrow{xy} = \overrightarrow{yx}$.
- 2. If $x, y, z \in P$, then the set $\{x, y, z\}$ is collinear if and only if $z \in \overrightarrow{xy}$.
- 3. If $z \in \overrightarrow{xy}$, then $\overrightarrow{xz} = \overrightarrow{xy}$.

Examples

- 2^P If P is a nonempty set, then the trivial incidence structure 2^P is *not* an incidence geometry since it includes lines with only one point.
- \mathbb{R}^2 The Cartesian Plane is an incidence geometry, as we show.
 - IG1. Let $A, B \in \mathbb{R}^2$ be distinct points; we need to show that there is exactly one line containing A and B. First note that $A, B \in \ell_{A,B}$ (since A = A + 0(B A) and B = A 1(B A)), so there is at least one such line. Suppose that $\ell = \ell_{P,Q}$ is a line such that $A, B \in \ell$; say $A = P + t_A(Q P)$ and $B = P + t_B(Q P)$. (Since A and B are distinct, we have $t_A \neq t_B$.) We claim that $\ell_{A,B} = \ell_{P,Q}$. To this end, if $X \in \ell_{A,B}$, say with X = A + t(B A), then we have

$$X = A + t(B - A) = P + (t_A + t(t_B - t_A))(Q - P) \in \ell_{P,Q}$$

Thus we have $\ell_{A,B} \subseteq \ell_{P,Q}$. Now suppose $X \in \ell_{P,Q}$; say X = P + t(Q - P). We have

$$A + \frac{t - t_A}{t_B - t_A}(B - A) = X,$$

so that $X \in \ell_{A,B}$ as needed. So we have $\ell_{A,B} = \ell_{P,Q}$; in particular, any line containing A and B is equal to $\ell_{A,B}$.

- IG2. By definition, since A = A + 0(B A), $B = A + 1(B A) \in \ell_{A,B}$.
- IG3. The point (0,1) is not on $\ell_{(0,0),(1,0)}$.
- \mathbb{D} The Unit Disk is an incidence geometry; to show this, use the fact that \mathbb{R}^2 is an incidence geometry.

- \mathbb{Q}^2 The Rational Plane is an incidence geometry; the proof of this is similar to that for \mathbb{R}^2 .
- \mathbb{R}^3 Three Space is an incidence geometry; the proof of this is similar to that for \mathbb{R}^2 .

Intersecting Lines

Proposition 2. Let $\mathcal{P} = (P, L)$ be an incidence geometry, with $\ell_1, \ell_2 \in L$ lines. Then exactly one of the following holds.

- $\ell_1 = \ell_2$,
- $\ell_1 \cap \ell_2 = \emptyset$, and
- $\bullet \ \ell_1 \cap \ell_2 = \{p\}.$

Proof. Suppose $\ell_1 \cap \ell_2$ contains at least two points, say x and y. Then in fact $\ell_1 = \overrightarrow{xy} = \ell_2$. So $\ell_1 \cap \ell_2$ contains either exactly one or zero points.

Corollary 3. In an incidence geometry, three points x, y, and z are not collinear if and only if $\overrightarrow{xy} \cap \overrightarrow{xz} = \{x\}$.

Examples

In \mathbb{R}^2 , we have a nice criterion which detects pairs of lines which intersect at a single point.

Proposition 4. Let $A = (a_1, a_2)$, $B = (b_1, b_2)$, $C = (c_1, c_2)$, and $D = (d_1, d_2)$ be points in the Cartesian Plane with $A \neq B$ and $C \neq D$. Then $\overrightarrow{AB} \cap \overrightarrow{CD} = \{p\}$ is a singleton if and only if

$$\det \begin{bmatrix} b_1 - a_1 & d_1 - c_1 \\ b_2 - a_2 & d_2 - c_2 \end{bmatrix} \neq 0.$$

Proof. Note that

$$\overleftrightarrow{AB}\cap \overleftrightarrow{CD}=\{p\}$$

$$\Leftrightarrow$$
 $A + t(B - A) = C + u(D - C)$ has a unique solution (t, u)

$$\Leftrightarrow$$
 $(B-A)t-(D-C)u=C-A$ has a unique solution (t,u)

$$\Leftrightarrow \begin{bmatrix} b_1 - a_1 & d_1 - c_1 \\ b_2 - a_2 & d_2 - c_2 \end{bmatrix} \begin{bmatrix} t \\ -u \end{bmatrix} = \begin{bmatrix} c_1 - a_1 \\ c_2 - a_2 \end{bmatrix} \text{ has a unique solution } (t, u)$$

$$\Leftrightarrow \ \det \begin{bmatrix} b_1-a_1 & d_1-c_1 \\ b_2-a_2 & d_2-c_2 \end{bmatrix} \neq 0.$$

Corollary 5. In \mathbb{R}^2 , three points A, B, and C are not collinear if and only if

$$\det \begin{bmatrix} b_1 - a_1 & c_1 - a_1 \\ b_2 - a_2 & c_2 - a_2 \end{bmatrix} \neq 0.$$

Corollary 6. This statement is also true in the Rational Plane, \mathbb{Q}^2 .