

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/30, C07K 14/44, C12N 15/62, G01N 33/569, C12Q 1/68, C07K 16/20, A61K 39/018		A1	(11) International Publication Number: WO 00/60090 (43) International Publication Date: 12 October 2000 (12.10.00)
(21) International Application Number: PCT/US00/09136 (22) International Filing Date: 5 April 2000 (05.04.00)		(74) Agents: MAKI, David, J.; Seed Intellectual Property Law Group Plc, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 (US) et al.	
(30) Priority Data: 09/286,488 5 April 1999 (05.04.99) 09/528,784 17 March 2000 (17.03.00)		US	(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(71) Applicant (for all designated States except US): CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): REED, Steven, G. [US/US]; 2843 - 122nd Place NE, Bellevue, WA 98005 (US). LODES, Michael, J. [US/US]; 9223 - 36th Avenue SW, Seattle, WA 98126 (US). HOUGHTON, Raymond, L. [US/US]; 2636 - 242nd Place Southeast, Bothell, WA 98021 (US). SLEATH, Paul, R. [GB/US]; 1623 Eight Avenue West, Seattle, WA 98119 (US). MCNEILL, Patricia, D. [US/US]; 1421 S. 248th Street, Des Moines, WA 98198 (US).		Published <i>With international search report.</i>	
(54) Title: COMPOUNDS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF <i>B. MICROTTI</i> INFECTION			
(57) Abstract			
<p>Compounds and methods for the diagnosis and treatment of <i>B. microti</i> infection are disclosed. The compounds provided include polypeptides that contain at least one antigenic portion of a <i>B. microti</i> antigen and DNA sequences encoding such polypeptides. Antigenic epitopes of such antigens are also provided, together with pharmaceutical compositions and vaccines comprising such polypeptides, DNA sequences or antigenic epitopes. Diagnostic kits containing such polypeptides, DNA sequences or antigenic epitopes and a suitable detection reagent may be used for the detection of <i>B. microti</i> infection in patients and biological samples. Antibodies directed against such polypeptides and antigenic epitopes are also provided.</p>			

THIS PAGE BLANK (USPTO)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	NL	Netherlands	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NO	Norway	VN	Viet Nam
CG	Congo	KE	Kenya	NZ	New Zealand	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	PL	Poland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PT	Portugal		
CM	Cameroon	KR	Republic of Korea	RO	Romania		
CN	China	KZ	Kazakhstan	RU	Russian Federation		
CU	Cuba	LC	Saint Lucia	SD	Sudan		
CZ	Czech Republic	LI	Liechtenstein	SE	Sweden		
DE	Germany	LK	Sri Lanka	SG	Singapore		
DK	Denmark	LR	Liberia				
EE	Estonia						

COMPOUNDS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF *B. MICROTI* INFECTION

TECHNICAL FIELD

The present invention relates generally to the detection of *Babesia microti* infection. In particular, the invention is related to polypeptides comprising a *B. microti* antigen; to antigenic epitopes of such an antigen and the use of such polypeptides and antigenic epitopes for the serodiagnosis and treatment of *B. microti* infection.

BACKGROUND OF THE INVENTION

Babesiosis is a malaria-like illness caused by the rodent parasite *Babesia microti* (*B. microti*) which is generally transmitted to humans by the same tick that is responsible for the transmission of Lyme disease and ehrlichiosis, thereby leading to the possibility of co-infection with babesiosis, Lyme disease and ehrlichiosis from a single tick bite. While the number of reported cases of *B. microti* infection in the United States is increasing rapidly, infection with *B. microti*, including co-infection with Lyme disease, often remains undetected for extended periods of time. Babesiosis is potentially fatal, particularly in the elderly and in patients with suppressed immune systems. Patients infected with both Lyme disease and babesiosis have more severe symptoms and prolonged illness compared to those with either infection alone.

The preferred treatments for Lyme disease, ehrlichiosis and babesiosis are different, with penicillins, such as doxycycline and amoxicillin, being most effective in treating Lyme disease, tetracycline being preferred for the treatment of ehrlichiosis, and anti-malarial drugs, such as quinine and clindamycin, being most effective in the treatment of babesiosis. Accurate and early diagnosis of *B. microti* infection is thus critical but methods currently employed for diagnosis are problematic.

All three tick-borne illnesses share the same flu-like symptoms of muscle aches, fever, headaches and fatigue, thus making clinical diagnosis difficult. Microscopic analysis of blood samples may provide false-negative results when patients

are first seen in the clinic. Indirect fluorescent antibody staining methods for total immunoglobulins to *B. microti* may be used to diagnose babesiosis infection, but such methods are time-consuming and expensive. There thus remains a need in the art for improved methods for the detection of *B. microti* infection.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods for the diagnosis and treatment of *B. microti* infection. In one aspect, polypeptides are provided comprising an immunogenic portion of a *B. microti* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment, the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of (a) sequences recited in SEQ ID NO: 1-17, 37, 40, 42, 45, 50 and 51; (b) the complements of said sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

In another aspect, the present invention provides an antigenic epitope of a *B. microti* antigen comprising the amino acid sequence -X₁-X₂-X₃-X₄-X₅-Ser- (SEQ ID NO: 35), wherein X₁ is Glu or Gly, X₂ is Ala or Thr, X₃ is Gly or Val, X₄ is Trp or Gly and X₅ is Pro or Ser. In one embodiment of this aspect, X₁ is Glu, X₂ is Ala and X₃ is Gly. In a second embodiment X₁ is Gly, X₂ is Thr and X₅ is Pro. The present invention further provides polypeptides comprising at least two of the above antigenic epitopes, the epitopes being contiguous.

In yet another aspect, the present invention provides an antigenic epitope of a *B. microti* antigen comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 36 and 39, together with polypeptides comprising at least two such antigenic epitopes, the epitopes being contiguous.

In a related aspect, polynucleotides encoding the above polypeptides, recombinant expression vectors comprising these polynucleotides and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising either a first and a second inventive polypeptide, a first and a second inventive antigenic epitope, or, alternatively, an inventive polypeptide and an inventive

antigenic epitope. In specific embodiments, fusion proteins comprising an amino acid sequence of SEQ ID NO: 85 or 87 are provided.

In further aspects of the subject invention, methods and diagnostic kits are provided for detecting *B. microti* infection in a patient. In one embodiment, the method comprises: (a) contacting a biological sample with at least one polypeptide comprising an immunogenic portion of a *B. microti* antigen; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide, thereby detecting *B. microti* infection in the biological sample. In other embodiments, the methods comprise: (a) contacting a biological sample with at least one of the above polypeptides or antigenic epitopes; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide or antigenic epitope. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. The diagnostic kits comprise one or more of the above polypeptides or antigenic epitopes in combination with a detection reagent.

The present invention also provides methods for detecting *B. microti* infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In one embodiment, the oligonucleotide primer comprises at least about 10 contiguous nucleotides of a DNA sequence encoding the above polypeptides.

In a further aspect, the present invention provides a method for detecting *B. microti* infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. In one embodiment of this aspect, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA sequence encoding the above polypeptides.

In yet another aspect, the present invention provides antibodies, both polyclonal and monoclonal, that bind to the polypeptides described above, as well as methods for their use in the detection of *B. microti* infection.

Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more of the above polypeptides or antigenic epitopes, or a polynucleotide encoding such polypeptides, and a physiologically acceptable carrier. The invention also provides vaccines comprising one or more of the inventive polypeptides or antigenic epitopes and a non-specific immune response enhancer, together with vaccines comprising one or more polynucleotides encoding such polypeptides and a non-specific immune response enhancer.

In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above pharmaceutical compositions or vaccines.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the genomic sequence of the *B. microti* antigen BMNI-3 (SEQ ID NO: 3) including a translation of the putative open reading frame (SEQ ID NO: 49). An internal six amino acid repeat sequence (SEQ ID NO: 35) is indicated by vertical lines within the open reading frame:

Fig. 2a shows the reactivity of the *B. microti* antigens BMNI-3 and BMNI-6, and the peptides BABS-1 and BABS-4 with sera from *B. microti*-infected individuals and from normal donors as determined by ELISA. Fig. 2b shows the reactivity of the *B. microti* antigens BMNI-4 and BMNI-15 with sera from *B. microti*-infected individuals and from normal donors as determined by ELISA.

Fig. 3 shows the reactivity of the *B. microti* antigens MN-10 and BMNI-20 with sera from *B. microti*-infected patients and from normal donors as determined by ELISA.

Fig. 4 shows the results of Western blot analysis of representative *B. microti* antigens of the present invention.

Fig. 5 shows the reactivity of purified recombinant *B. microti* antigen BMNI-3 with sera from *B. microti*-infected patients, Lyme disease-infected patients, ehrlichiosis-infected patients and normal donors as determined by Western blot analysis.

Fig. 6 shows an alignment of the repeat region of different homologues of the *B. microti* antigen BMNI-6, illustrating the geographic variation in the number and location of the repeats.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the diagnosis and treatment of *B. microti* infection. In one aspect, the compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a *B. microti* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications.

As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (*i.e.*, antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the above antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native *B. microti* antigen or may be heterologous, and such sequences may (but need not) be immunogenic.

An "immunogenic portion" of an antigen is a portion that is capable of reacting with sera obtained from a *B. microti*-infected individual (*i.e.*, generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). Polypeptides comprising at least an immunogenic portion of one or more *B. microti* antigens as described herein may generally be used, alone or in combination, to detect *B. microti* in a patient.

Polynucleotides encoding the inventive polypeptides are also provided. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotides. Such variants include, but are not limited to, naturally occurring allelic variants of the inventive sequences.

A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion, or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described below) to the identified polypeptides.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For

example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A polynucleotide "variant" is a sequence that differs from the recited polynucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (*DNA*, 2:183, 1983). Polynucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant polynucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity (determined as described below) to the recited sequence.

Two nucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins - Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990)

Unified Approach to Alignment and Phylogenies pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer *CABIOS* 5:151-153; Myers, E.W. and Müller W. (1988) Optimal alignments in linear space *CABIOS* 4:11-17; Robinson, E.D. (1971) *Comb. Theor* 11:105; Santou, N. Nes, M. (1987) The neighbor joining method. A new method for reconstructing phylogenetic trees *Mol. Biol. Evol.* 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy - the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Rapid similarity searches of nucleic acid and protein data banks *Proc. Natl. Acad. Sci. USA* 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

In specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a *B. microti* antigen (or a variant of such an antigen), that comprises one or more of the amino acid sequences encoded by (a) a DNA sequence selected from the group consisting of SEQ ID NO: 1-17, 37, 40, 42, 45 50, 51 and 56-67, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence of (a) or (b).

The *B. microti* antigens provided by the present invention include variants that are encoded by polynucleotides which are substantially homologous to one or more of the polynucleotides specifically recited herein. "Substantial homology," as used herein, refers to polynucleotides that are capable of hybridizing under moderately

stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Such hybridizing polynucleotides are also within the scope of this invention, as are polynucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing polynucleotide.

In general, *B. microti* antigens, and polynucleotides encoding such antigens, may be prepared using any of a variety of procedures. For example, polynucleotides encoding *B. microti* antigens may be isolated from a *B. microti* genomic or cDNA expression library by screening with sera from *B. microti*-infected individuals as described below in Example 1, and sequenced using techniques well known to those of skill in the art. Polynucleotides encoding *B. microti* antigens may also be isolated by screening an appropriate *B. microti* expression library with anti-sera (e.g., rabbit) raised specifically against *B. microti* antigens.

Antigens may be induced from such clones and evaluated for a desired property, such as the ability to react with sera obtained from a *B. microti*-infected individual as described herein. Alternatively, antigens may be produced recombinantly, as described below, by inserting a polynucleotide that encodes the antigen into an expression vector and expressing the antigen in an appropriate host. Antigens may be partially sequenced using, for example, traditional Edman chemistry. See Edman and Berg, *Eur. J. Biochem.* 80:116-132, 1967.

Polynucleotides encoding antigens may also be obtained by screening an appropriate *B. microti* cDNA or genomic DNA library for polynucleotides that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated antigens. Degenerate oligonucleotides for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods

well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division, Foster City, CA, and may be operated according to the manufacturer's instructions.

Immunogenic portions of *B. microti* antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties. The representative ELISAs described herein may generally be employed in these screens. An immunogenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other words, an immunogenic portion of a *B. microti* antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.

Portions and other variants of *B. microti* antigens may be generated by synthetic or recombinant means. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a polynucleotide encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant

protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO. The polynucleotides expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In another aspect, the present invention provides epitope repeat sequences, or antigenic epitopes, of a *B. microti* antigen, together with polypeptides comprising at least two such contiguous antigenic epitopes. As used herein an "epitope" is a portion of an antigen that reacts with sera from *B. microti*-infected individuals (i.e. an epitope is specifically bound by one or more antibodies present in such sera). As discussed above, epitopes of the antigens described in the present application may be generally identified using techniques well known to those of skill in the art.

In one embodiment, antigenic epitopes of the present invention comprise the amino acid sequence -X₁-X₂-X₃-X₄-X₅-Ser- (SEQ ID NO: 35), wherein X₁ is Glu or Gly, X₂ is Ala or Thr, X₃ is Gly or Val, X₄ is Trp or Gly, and X₅ is Pro or Ser. In another embodiment, the antigenic epitopes of the present invention comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 36 and 39. As discussed in more detail below, antigenic epitopes provided herein may be employed in the diagnosis and treatment of *B. microti* infection, either alone or in combination with other *B. microti* antigens or antigenic epitopes. Antigenic epitopes and polypeptides

comprising such epitopes may be prepared by synthetic means, as described generally above and in detail in Example 2.

In general, regardless of the method of preparation, the polypeptides, polynucleotides and antigenic epitopes disclosed herein are prepared in an isolated, substantially pure, form. Preferably, the polypeptides and antigenic epitopes are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure.

In a further aspect, the present invention provides fusion proteins comprising either a first and a second inventive polypeptide, a first and a second inventive antigenic epitope or an inventive polypeptide and an antigenic epitope of the present invention, together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the polypeptides or antigenic epitopes.

A polynucleotide encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate polynucleotides encoding, for example, the first and second polypeptides into an appropriate expression vector. The 3' end of a polynucleotide encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a polynucleotide encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two polynucleotides into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the

linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene* 40:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA* 83:8258-8562, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric hindrance.

In another aspect, the present invention provides methods for using polypeptides comprising an immunogenic portion of a *B. microti* antigen and/or the antigenic epitopes described above to diagnose babesiosis. In this aspect, methods are provided for detecting *B. microti* infection in a biological sample, using one or more of the above polypeptides and antigenic epitopes, alone or in combination. For clarity, the term "polypeptide" will be used when describing specific embodiments of the inventive diagnostic methods. However, it will be clear to one of skill in the art that the antigenic epitopes of the present invention may also be employed in such methods.

As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More preferably, the sample is a blood, serum or plasma sample obtained from a patient. The polypeptides are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to *B. microti* antigens which may be indicative of babesiosis.

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (*i.e.*, one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with *B. microti*. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more

polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested.

A variety of assay formats are known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate, or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies

with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 μ g, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin (BSA) or Tween 20TM (Sigma Chemical Co., St. Louis, MO) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is that period of time that is sufficient to detect the presence of antibody within a *B. microti*-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill

in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, CA, and Pierce, Rockford, IL).

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of anti-*B. microti* antibodies in the sample, the signal detected from the reporter group that remains bound to the solid

support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for babesiosis. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for babesiosis.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (*e.g.*, protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-*B. microti* antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of

such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 μ g, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (*e.g.*, one drop) of patient serum or blood.

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides and antigenic epitopes of the present invention. The above descriptions are intended to be exemplary only.

In yet another aspect, the present invention provides antibodies to the polypeptides and antigenic epitopes of the present invention. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, *e.g.*, Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988. In one such technique, an immunogen comprising the antigenic polypeptide or epitope is initially injected into any of a wide variety of mammals (*e.g.*, mice, rats, rabbits, sheep and goats). The polypeptides and antigenic epitopes of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide or antigenic epitope may then be purified from such antisera by, for example, affinity chromatography using the polypeptide or antigenic epitope coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide or epitope of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide or antigenic epitope of

interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide or antigenic epitope. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides or antigenic epitopes of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used in diagnostic tests to detect the presence of *B. microti* antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting *B. microti* infection in a patient.

Diagnostic reagents of the present invention may also comprise oligonucleotides encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify *B. microti*-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (i.e. hybridizes to) a polynucleotide encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that

specifically hybridize to a polynucleotide encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding an inventive polypeptide that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes will hybridize to a polynucleotide encoding a polypeptide disclosed herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a polynucleotide of the present invention. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al., *Cold Spring Harbor Symp. Quant. Biol.*, 51:263, 1987; Erlich ed., *PCR Technology*, Stockton Press, NY, 1989).

One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an uninfected individual. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-infected sample is typically considered positive.

Primers or probes may thus be used to detect *B. microti*-specific sequences in biological samples, preferably sputum, blood, serum, saliva, cerebrospinal fluid or urine. Oligonucleotide primers and probes may be used alone or in combination with each other.

In another aspect, the present invention provides methods for using one or more of the above polypeptides, antigenic epitopes or fusion proteins (or polynucleotides encoding such polypeptides) to induce protective immunity against *B. microti* infection in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat babesiosis.

In this aspect, the polypeptide, antigenic epitope, fusion protein or polynucleotide is generally present within a pharmaceutical composition or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may comprise one or more of the above polypeptides and a non-specific immune response enhancer, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other *B. microti* antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.

Alternatively, a vaccine may contain a polynucleotide encoding one or more polypeptides, antigenic epitopes or fusion proteins as described above, such that the polypeptide is generated *in situ*. In such vaccines, the polynucleotide may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the polynucleotide may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating polynucleotides into such expression systems are well known to those of ordinary skill in the art. The polynucleotide may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749,

1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

In a related aspect, a DNA vaccine, as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known *B. microti* antigen. For example, administration of a polynucleotide encoding a polypeptide of the present invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.

Routes and frequency of administration, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or polynucleotide that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from *B. microti* infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced *in situ* by the polynucleotide in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 μ g. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed.

Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of adjuvants may be employed in the vaccines of this invention to nonspecifically enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis*. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Freund's Complete Adjuvant (Difco Laboratories, Detroit, MI) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ). Other suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A and quill A.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLE 1

ISOLATION OF DNA SEQUENCES ENCODING *B. MICROTI* ANTIGENS

This example illustrates the preparation of DNA sequences encoding *B. microti* antigens by screening a *B. microti* expression library with sera obtained from patients infected with *B. microti*.

B. microti genomic DNA was isolated from infected hamsters and sheared by sonication. The resulting randomly sheared DNA was used to construct a *B. microti* genomic expression library (approximately 0.5 - 4.0 kbp inserts) with EcoRI adaptors and a Lambda ZAP II/EcoRI/CIAP vector (Stratagene, La Jolla, CA). The unamplified library (1.2×10^6 /ml) was screened with an *E. coli* lysate-absorbed *B. microti* patient serum pool, as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Positive plaques were visualized and purified with goat-anti-human alkaline phosphatase. Phagemid from the plaques was rescued and DNA sequence for positive

clones was obtained using forward, reverse, and specific internal primers on a Perkin Elmer/Applied Biosystems Inc. Automated Sequencer Model 373A (Foster City, CA).

Seventeen antigens (hereinafter referred to as BMNI-1 - BMNI-17) were purified and three were possibly redundant. The determined DNA sequences for BMNI-1 - BMNI-17 are shown in SEQ ID NO: 1-17, respectively. The deduced amino acid sequences for BMNI-1 - BMNI-6, BMNI-8 and BMNI-10 - BMNI-17 are shown in SEQ ID NO: 18-32, respectively, with the predicted 5' and 3' protein sequences for BMNI-9 being shown in SEQ ID NO: 33 and 34, respectively.

The isolated DNA sequences were compared to known sequences in the gene bank using the DNA STAR system. Nine of the seventeen antigens (BMNI-1, BMNI-2, BMNI-3, BMNI-5, BMNI-6, BMNI-7, BMNI-12, BMNI-13 and BMNI-16) share some homology, with BMNI-1 and BMNI-16 being partial clones of BMNI-3. All of these nine antigens contain a degenerate repeat of six amino acids (SEQ ID NO: 35), with between nine to twenty-two repeats occurring in each antigen. The repeat portion of the sequences was found to bear some similarity to a *Plasmodium falciparum* merozoite surface antigen (MSA-2 gene). Fig. 1 shows the genomic sequence of BMNI-3 including a translation of the putative open reading frame, with the internal six amino acid repeat sequence being indicated by vertical lines within the open reading frame.

A second group of five antigens bear some homology to each other but do not show homology to any previously identified sequences (BMNI-4, BMNI-8, BMNI-9, BMNI-10 and BMNI-11). These antigens may belong to a family of genes or may represent parts of a repetitive sequence. BMNI-17 contains a novel degenerate repeat of 32 amino acids (SEQ ID NO: 36). Similarly, the reverse complement of BMNI-17 (SEQ ID NO: 37) contains an open reading frame that encodes an amino acid sequence (SEQ ID NO: 38) having a degenerate 32 amino acid repeat (SEQ ID NO: 39).

The reverse complement of BMNI-3 (SEQ ID NO: 40) has an open reading frame which shows homology with the BMNI-4-like genes. The predicted amino acid sequence encoded by this open reading frame is shown in SEQ ID NO: 41. The reverse complement of BMNI-5 (SEQ ID NO: 42) contains a partial copy of a

BMNI-3-like sequence and also an open reading frame with some homology to two yeast genes (*S. cerevisiae* G9365 ORF gene, and *S. cerevisiae* accession no. U18922). The predicted 5' and 3' amino acid sequences encoded by this open reading frame are shown in SEQ ID NO: 43 and 44, respectively. The reverse complement of BMNI-7 (SEQ ID NO: 45) contains an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 46.

A telomeric repeat sequence, which is conserved over a wide range of organisms, was found in five antigens (BMNI-2, BMNI-5, BMNI-6, BMNI-7 and BMNI-16), indicating that many of the isolated genes may have a telomere-proximal location in the genome. BMNI-10 appears to include a double insert, the 3'-most segment having some homology to *E. coli* aminopeptidase N. In addition, BMNI-7 contains apparently random insertions of hamster DNA. One such insertion has characteristics of a transposable element (i.e. poly A tail and flanked by a direct repeat).

In subsequent studies, two additional *B. microti* antigens were isolated by screening the *B. microti* genomic DNA expression library described above with a serum pool from *B. microti* infected patients that showed low reactivity with recombinant proteins generated from clones BMNI-2 - BMNI-17. The determined DNA sequences for these two clones, hereinafter referred to as MN-10 and BMNI-20, are provided in SEQ ID NO: 50 and 51, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 52 and 53. MN-10 was found to extend the sequence of BMNI-4 in the 3' direction and BMNI-20 was found to extend the sequence of BMNI-17 in the 5' direction.

EXAMPLE 2

SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugating or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

This procedure was used to synthesize two peptides (hereinafter referred to as BABS-1 and BABS-4) made to the repeat region of the isolated *B. microti* antigen BMNI-3. The sequences of BABS-1 and BABS-4 are shown in SEQ ID NO: 47 and 48, respectively.

EXAMPLE 3

USE OF REPRESENTATIVE ANTIGENS AND PEPTIDES FOR
SERODIAGNOSIS OF *B. MICROTI* INFECTIONA. Diagnostic Properties of Representative Antigens and Peptides as determined by
ELISA

The diagnostic properties of recombinant BMNI-3, BMNI-4, BMNI-6, BMNI-15, MN-10 and BMNI-20, and the BABS-1 and BABS-4 peptides were determined as follows.

Assays were performed in 96 well plates coated overnight at 4 °C with 200 ng antigen/well added in 50 µl of carbonate coating buffer. The plate contents were then removed and the wells were blocked for 2 hours with 200 µl of PBS/1% BSA. After the blocking step, the wells were washed six times with PBS/0.1% Tween 20™. Fifty microliters of sera, diluted 1:100 in PBS/0.1% Tween 20™/0.1% BSA, was then added to each well and incubated for 30 minutes at room temperature. The plates were then washed six times with PBS/0.1 % Tween 20™.

The enzyme conjugate (horseradish peroxidase-Protein A, Zymed, San Francisco, CA) was then diluted 1:20,000 in PBS/0.1% Tween 20™/0.1% BSA, and 50 µl of the diluted conjugate was added to each well and incubated for 30 minutes at room temperature. Following incubation, the wells were washed six times with PBS/0.1% Tween 20™. 100 µl of tetramethylbenzidine peroxidase substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was added, undiluted, and incubated for 15 minutes. The reaction was stopped by the addition of 100 µl of 1N H₂SO₄ to each well and the plates were read at 450 nm.

Fig. 2a shows the reactivity of the recombinant BMNI-3 and BMNI-6 antigens and the two peptides BABS-1 and BABS-4 in the ELISA assay. The recombinant antigens and the two peptides were negative in ELISA with all seven samples from normal (*B. microti* negative) individuals. In contrast, both BMNI-3 and BMNI-6 detected six of the nine *B. microti*-infected samples, as compared to two out of the nine for the BABS-1 and BABS-4 peptides. This would suggest that BMNI-3 and BMNI-6 may contain other antigenic epitopes in addition to those present in the repeat

epitopes in BABS-1 and BABS-4, or that an insufficient number of repeats are available in the peptides to fully express the antigenic epitopes present in the recombinant antigens BMNI-3 and BMNI-6.

Fig. 2b shows the ELISA reactivity of the recombinant antigens BMNI-4 and BMNI-15. Both recombinants were negative with all fifteen samples from normal individuals. BMNI-4 detected four out of nine *B. microti*-infected samples and BMNI-15 detected six out of nine *B. microti*-infected samples. Both BMNI-4 and BMNI-15 detected a *B. microti*-infected sample which was not detected by BMNI-3 or BMNI-6, suggesting that BMNI-4 and BMNI-15 might be complementary to BMNI-3 and BMNI-6 in the ELISA test described herein.

The ELISA reactivity of recombinant MN-10 and BMNI-20 with sera from *B. microti*-infected patients and from normal donors is shown in Fig. 3. MN-10 and BMNI-20 were found to be reactive with *B. microti*-infected sera that were not reactive with recombinant BMNI-2 through BMNI-17. Therefore, MN-10 and BMNI-20 may be usefully employed in combination with other *B. microti* antigens of the present invention for the detection of *B. microti* infection.

Table 1 shows the reactivity of the recombinant *B. microti* antigens BMNI-2, BMNI-17, MN-10 and a combination of BMNI-17 and MN-10, as determined by ELISA, with *Babesia*-positive sera, sera positive for both *Babesia* and *Ehrlichia*, sera positive only for *Ehrlichia*, Lyme disease sera and sera from normal donors. The data indicate a sensitivity of approximately 93% and a specificity in normal donors in excess of 98%. These results indicate that a combination of BMNI-17 and MN-10 is particularly effective in the diagnosis of *B. microti* infection.

TABLE 1

Antigen	<i>Babesia</i>	<i>Babesia/Ehrlichia</i>	<i>Ehrlichia</i>	Lyme	Normal donors
BMNI-2	27/50	2/3	1/4	0/10	1/73
BMNI-17	35/50	3/3	0/4	0/10	0/86
MN-10	37/49	3/3	0/4	1/10	1/98
BMNI-17/ MN-10	46/50	3/3	0/4	1/10	1/98

B. Diagnostic Properties of Representative Antigens and Peptides as determined by Western Analysis

Western blot analyses were performed on representative *B. microti* antigens as follows.

Antigens were induced as pBluescript SK- constructs (Stratagene), with 2 mM IPTG for three hours (T3), after which the resulting proteins from time 0 (T0) and T3 were separated by SDS-PAGE on 15% gels. Separated proteins were then transferred to nitrocellulose and blocked for 1 hr in 0.1% Tween 20TM/PBS. Blots were then washed 3 times in 0.1% Tween 20TM/PBS and incubated with a *B. microti* patient serum pool (1:200) for a period of 2 hours. After washing blots in 0.1% Tween 20TM/PBS 3 times, immunocomplexes were detected by the addition of Protein A conjugated to ¹²⁵I (1/25000; NEN-Dupont, Billerica, MA) followed by exposure to X-ray film (Kodak XAR 5; Eastman Kodak Co., Rochester, NY) at -70 °C for 1 day.

As shown in Fig. 4, resulting bands of reactivity with serum antibody were seen at 43 kDa for BMNI-1, 38 kDa for BMNI-2, 45 kDa for BMNI-3, 37 kDa for BMNI-4, 18 and 20 kDa for BMNI-5, 35 and 43 kDa for BMNI-7, 32 kDa for BMNI-9, 38 kDa for BMNI-11, 30 kDa for BMNI-12, 45 kDa for BMNI-15, and 43 kDa for BMNI-17 (not shown). Antigen BMNI-6, after reengineering as a pET 17b construct (Novagen, Madison, WI) showed a band of reactivity at 33 kDa (data not shown). Protein size standards, in kDa (Gibco BRL, Gaithersburg, MD), are shown to the left of the blots.

Western blots were performed on purified BMNI-3, BMNI-2, BMNI-15, BMNI-17 and MN-10 recombinant antigen with a series of patient sera from *B. microti* patients and from patients with either Lyme disease or ehrlichiosis. Specifically, purified recombinant antigen (4 µg) was separated by SDS-PAGE on 12% gels. Protein was then transferred to nitrocellulose membrane for immunoblot analysis. The membrane was first blocked with PBS containing 1% Tween 20TM for 2 hours. Membranes were then cut into strips and incubated with individual sera (1/500) for two hours. The strips were washed 3 times in PBS/0.1% Tween 20TM containing 0.5 M NaCl prior to incubating with Protein A-horseradish peroxidase conjugate (1/20,000) in PBS/0.1% Tween 20TM/0.5 M NaCl for 45 minutes. After further washing three times

in PBS/0.1% Tween 20TM/0.5 M NaCl, ECL chemiluminescent substrate (Amersham, Arlington Heights, IL) was added for 1 min. Strips were then reassembled and exposed to Hyperfilm ECL (Amersham) for 5-30 seconds.

Lanes 1-9 of Fig. 5 show the reactivity of purified recombinant BMNI-3 with sera from nine *B. microti*-infected patients, of which five were clearly positive and a further two were low positives detectable at higher exposure to the hyperfilm ECL. This correlates with the reactivity as determined by ELISA. In contrast, no immunoreactivity was seen with sera from patients with either ehrlichiosis (lanes 10 and 11) or Lyme disease (lanes 12-14), or with sera from normal individuals (lanes 15-20). A major reactive band appeared at 45 kDa and a small break down band was seen at approximately 25 kDa.

Table 2, below, summarizes the reactivity of the recombinant antigens BMNI-2, BMNI-15, BMNI-17 and MN-10 with *B. microti* positive sera. No reactivity was seen with Lyme or *Ehrlichia*-infected sera, with little or no reactivity being seen with normal sera.

TABLE 2

Sample ID	BMNI-2	BMNI-15	BMNI-17	MN-10
BM8	++	++	+++++	-
BM21	++	-	+++	+++
COR4	±	+++	+++	+
COR5	±	++	+	-
252	++++	++++	+++++	+++

- indicates no reactivity

EXAMPLE 4

ANALYSIS OF GEOGRAPHIC VARIATION WITHIN ANTIGENS

The reactivity of the inventive antigens with sera from *B. microti* patients, as determined by Western blot, was found to vary with the U.S. location of the patients. Accordingly, geographic variation within the gene encoding the exemplary antigen BMNI-6 was examined as follows.

Two PCR primers, referred to as BMNI-6/5' and BMNI-6/3' (SEQ ID NOS: 54 and 55, respectively) were designed based on the region flanking the six amino acid degenerate repeat region of BMNI-6 (SEQ ID NO: 6). These primers were employed to amplify genomic DNA from whole blood obtained from twelve *B. microti*-infected patients and genomic DNA from whole blood from *P. leucopus* and hamsters in a Perkin Elmer 480 thermal cycler using the manufacturer's protocol. PCR products were evaluated for size on 2% agarose gels and then Southern blotted and probed with a DIG-labeled oligonucleotide. Positive clones were sequenced using an Applied Biosystems Model 373A or 377 sequencer. RT-PCR was performed on Trizol LS extracted *B. microti*-infected hamster whole blood RNA using the primers described above, and the resulting clones were sequenced as described above.

These studies resulted in the isolation of twelve BMNI-6 homologues, referred to hereinafter as BI254, BI1053, BI2227, BI2259, BI2253, BI2018, RIFS, MN1HAM, MN2, MN1PAT, MN3 and MRT with MN1HAM being obtained from hamster and the other eleven from patients. The determined DNA sequences of these clones are provided in SEQ ID NO: 56-67, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 68-79, respectively. Isolates from hamsters had the same sequences as found in the corresponding human blood, suggesting that genetic variation of BMNI-6 does not occur during passage. However, clones from different patients often showed variation in the number and location of the degenerate repeat found within BMNI-6. An alignment of the repeat regions from each of the twelve clones is provided in Figure 6. Furthermore, strains that were closely related geographically were also closely related at the sequence level. For example, three patients from Nantucket Island, MA, harbored clones (BI2253, BI2259 and BI2227) that were indistinguishable from each other but distinct from those

found in other northeastern or upper midwestern strains. These results suggest that considerable antigenic diversity exists among isolates of *B. microti* from the U.S. and that geographic clustering of subtypes exists.

EXAMPLE 5

PREPARATION AND CHARACTERIZATION OF *B. MICROTI* FUSION PROTEINS

A. PREPARATION OF A FUSION PROTEIN CONTAINING MN-10 AND BMNI-17

A fusion protein containing the *B. microti* antigens MN-10 and BMNI-17, referred to as BaF-3, was prepared as follows.

MN-10 and BMNI-17 DNA was used to perform PCR using the primers PDM-285 and PDM-286 (SEQ ID NO: 80 and 81); and PDM-283 and PDM-284 (SEQ ID NO: 82 and 83), respectively. In both cases, the DNA amplification was performed using 10 µl of 10x Pfu buffer (Stratagene), 1 µl of 10 mM dNTPs, 2 µl each of the PCR primers at 10 µM concentration, 83 µl water, 1.5 µl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 µl DNA at 50 ng/µl. Denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 20 sec, 59°C for 15 sec and 72°C for 3 min, and lastly by 72°C for 4 min. The MN-10 and BMNI-17 PCR products were digested with SspI and then ligated using a ligation kit from Panvera (Madison, WI). The resulting BaF-3 fusion was PCR amplified using primers PDM 285 and PDM-284 and the same conditions as listed above. This PCR product was then digested with Scal and EcoRI, and cloned into a modified pET28 vector. The fusion construct was confirmed by sequencing. The expression construct was transformed into BL21 (DE3) CodonPlus cells (Novagen, Madison, WI) for induction and expression. The protein came out in the inclusion body pellet. This pellet was washed three times with a 0.5% CHAPS wash in 20 mM Tris (8.0) and 300 mM NaCl. The pellet was then solubilized in 8 M urea, 20 mM Tris (8.0), 300 mM NaCl and batch bound to Nickel NTA resin (Qiagen). The nickel resin was washed with 100 ml 8 M urea, 20 mM Tris (9.0), 300 mM NaCl, 1% DOC. A second wash was performed as described for the first wash, but with the omission of DOC. The protein was first eluted with 8 M urea, 20 mM Tris (9.0), 100 mM NaCl and 500 mM imidazole. In a second elution, the imidazole was increased to 1 M. The elutions were run on a 4-20 SDS-PAGE gel and the fractions containing the protein of interest were pooled and dialyzed against 1 mM Tris (8.).

The determined cDNA sequence of coding region for the BaF-3 fusion protein is provided in SEQ ID NO: 84, with the corresponding amino acid sequence being provided in SEQ ID NO: 85.

B. PREPARATION OF A FUSION PROTEIN CONTAINING BMNI-15, MN-10 and BMNI-17

A fusion protein containing the *B. microti* antigens BMNI-15, MN-10 and BMNI-17, referred to as BaF-4, was prepared as follows.

BMNI-15 DNA was used to perform PCR using the primers PDM-349 and PDM-363 (SEQ ID NO: 88 and 89). DNA amplification was performed using 10 µl of 10x Pfu buffer (Stratagene), 1 µl of 10 mM dNTPs, 2 µl each of the PCR primers at 10 µM concentration, 83 µl water, 1.5 µl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 µl DNA at 50 ng/µl. Denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 20 sec, 61°C for 15 sec and 72°C for 3 min, and lastly by one cycle of 72°C for 4 min. The PCR product was digested with Pvull and EcoRI, and cloned into a modified pET28 vector, which had been cut with Eco72I and EcoRI. The construct was confirmed to be correct by sequencing. MN-10/BMNI-17 DNA from BaF-3, described above, was used to perform PCR using the primers PDM-364 and PDM-284 (SEQ ID NO: 90 and 83, respectively). DNA amplification was performed using 10 µl of 10x Pfu buffer (Stratagene), 1 µl of 10 mM dNTPs, 2 µl each of the PCR primers at 10 µM concentration, 83 µl water, 1.5 µl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 µl DNA at 50 ng/µl. Denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 20 sec, 60°C for 15 sec and 72°C for 6 min, and lastly by 72°C for 4 min. The PCR product was cut with BamHI and EcoRI, and cloned into the pPDM BMNI-15 construct at the BamHI and EcoRI sites. The resulting construct was found by sequence analysis to have a single base pair deletion 419 bp in from the stop codon. This base pair deletion was corrected by digesting the pPDM BaF4B-6 clone with KpnI and SphI, and purifying the 2.6 kb insert plus 5' vector. This band was then cloned into pPDM Trx2H BaF3-10 that was digested with the same enzymes and contained the 3' end of BMNI-17 plus most of the pPDM vector. The correct sequence was confirmed by sequence analysis and then transformed into the BL21 CodonPlus expression host (Novagen).

The determined cDNA sequence of the coding region of the BaF-4 fusion protein is provided in SEQ ID NO: 86, with the corresponding amino acid sequence being provided in SEQ ID NO: 87.

One of skill in the art will appreciate that the order of the individual antigens within the fusion protein may be changed and that comparable or enhanced activity could be expected provided each of the epitopes is still functionally available. In addition, truncated forms of the proteins containing active epitopes may be used in the construction of fusion proteins.

Although the present invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.

CLAIMS

1. An isolated polypeptide comprising an immunogenic portion of a *B. microti* antigen or a variant thereof, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-17, 37, 40, 42, 45, 50 and 51; (b) the complements of said sequences; and (c) DNA sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.
2. An isolated antigenic epitope of a *B. microti* antigen comprising the amino acid sequence -X₁-X₂-X₃-X₄-X₅-Ser-, wherein X₁ is Glu or Gly, X₂ is Ala or Thr, X₃ is Gly or Val, X₄ is Trp or Gly and X₅ is Pro or Ser.
3. An isolated antigenic epitope according to claim 2 wherein X₁ is Glu, X₂ is Ala and X₃ is Gly.
4. An isolated antigenic epitope according to claim 2 wherein X₁ is Gly, X₂ is Thr and X₅ is Pro.
5. An isolated polypeptide comprising at least two contiguous antigenic epitopes according to claim 2.
6. An isolated antigenic epitope of a *B. microti* antigen comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 36 and 39.
7. An isolated polypeptide comprising at least two contiguous antigenic epitopes according to claim 6.
8. An isolated polynucleotide comprising a DNA sequence encoding a polypeptide according to any one of claims 1, 5 and 7.
9. A recombinant expression vector comprising a polynucleotide

according to claim 8.

10. A host cell transformed with an expression vector according to claim 9.

11. The host cell of claim 10 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.

12. A fusion protein comprising at least two polypeptides according to any one of claims 1, 5 and 7.

13. A fusion protein comprising a polypeptide having an amino acid sequence of SEQ ID NO: 32.

14. The fusion protein of claim 13 further comprising a polypeptide having an amino acid sequence of SEQ ID NO: 52.

15. A fusion protein comprising two or more antigenic epitopes according to claims 2 or 6.

16. A fusion protein comprising at least one polypeptide according to any one of claims 1, 5 and 7, and at least one antigenic epitope according to any one of claims 2 and 6.

17. A method for detecting *B. microti* infection in a patient, comprising:

- (a) obtaining a sample from the patient;
- (b) contacting the sample with at least one polypeptide comprising an immunogenic portion of a *B. microti* antigen; and
- (c) detecting the presence of antibodies that bind to the polypeptide.

18. A method for detecting *B. microti* infection in a patient, comprising:

- (a) obtaining a sample from the patient;
- (b) contacting the sample with at least one antigenic epitope according to any one of claims 2 and 6; and
- (c) detecting the presence of antibodies that bind to the antigenic epitope.

19. The method of claim 18 wherein the antigenic epitope is bound to a solid support.

20. The method of claim 19 wherein the solid support comprises nitrocellulose, latex or a plastic material.

21. A method for detecting *B. microti* infection in a patient, comprising:

- (a) obtaining a sample from the patient;
- (b) contacting the sample with at least one polypeptide according to any one of claims 1, 5 and 7; and
- (c) detecting the presence of antibodies that bind to the polypeptide.

22. A method for detecting *B. microti* infection in a patient, comprising:

- (a) obtaining a sample from the patient;
- (b) contacting the sample with at least one polypeptide according to any one of claims 1, 5 and 7, and at least one antigenic epitope according to any one of claims 2 and 6; and
- (c) detecting the presence of antibodies that bind to the polypeptide or antigenic epitope.

23. A method for detecting *B. microti* infection in a patient, comprising:

- (a) obtaining a sample from the patient;
- (b) contacting the sample with a fusion protein according to any one of claims 12-16 and 67; and
- (c) detecting the presence of antibodies that bind to the fusion protein.

24. The method of claims 17, 18, 21, 22 or 23 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.

25. The method of claim 24 wherein the biological sample is whole blood.

26. A method for detecting *B. microti* infection in a biological sample, comprising:

- (a) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotide primers is specific for a DNA molecule according to claim 8; and
- (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers.

27. The method of claim 26 wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule according to claim 8.

28. A method for detecting *B. microti* infection in a biological sample, comprising:

- (a) contacting the sample with one or more oligonucleotide probes specific for a DNA molecule according to claim 8; and
- (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe.

29. The method of claim 28 wherein the probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 8.

30. The method of claims 26 or 28 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.

31. A method for detecting *B. microti* infection in a biological sample, comprising:

- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide comprising an immunogenic portion of a *B. microti* antigen; and
- (b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting *B. microti* infection in the biological sample.

32. A method for detecting *B. microti* infection in a biological sample, comprising:

- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide according to any one of claims 1, 5 and 7; and
- (b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting *B. microti* infection in the biological sample.

33. A method of detecting *B. microti* infection in a biological sample, comprising:

- (a) contacting the biological sample with a binding agent which is capable of binding to an antigenic epitope according to any one of claims 2 and 6; and
- (b) detecting in the sample an antigenic epitope that binds to the binding agent, thereby detecting *B. microti* infection in the biological sample.

34. A method of detecting *B. microti* infection in a biological sample, comprising:

- (a) contacting the biological sample with a first binding agent which is capable of binding to a polypeptide according to any one of claims 1, 5 and 7, and a second binding agent which is capable of binding to an antigenic epitope according to any one of claims 2 and 6; and
- (b) detecting in the sample a polypeptide that binds to the first binding agent or an antigenic epitope that binds to the second binding agent, thereby detecting *B. microti* infection in the biological sample.

35. A method of detecting *B. microti* infection in a biological sample, comprising:

- (a) contacting the biological sample with a binding agent which is capable of binding to a fusion protein according to any one of claims 12-16 and 67; and
- (b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting *B. microti* infection in the biological sample.

36. The method of claims 32, 33, 34 or 35 wherein the binding agent is a monoclonal antibody.

37. The method of claims 32, 33, 34 or 35 wherein the binding agent is a polyclonal antibody.

38. A diagnostic kit comprising:

- (a) at least one polypeptide comprising an immunogenic portion of a *B. microti* antigen; and

- (b) a detection reagent.

39. A diagnostic kit comprising

- (a) at least one polypeptide according to any one of claims 1, 5 and 7; and
- (b) a detection reagent.

40. The kit of any one of claims 38 and 39 wherein the polypeptide is immobilized on a solid support.

41. The kit of claim 40 wherein the solid support is selected from the group consisting of nitrocellulose, latex, and plastic materials.

42. A diagnostic kit comprising:

- (a) at least one antigenic epitope according to any one of claims 2 and 6; and
- (b) a detection reagent.

43. The kit of claim 42 wherein the antigenic epitope is immobilized on a solid support.

44. The kit of claim 43 wherein the solid support is selected from the group consisting of nitrocellulose, latex, and plastic materials.

45. A diagnostic kit comprising:

- (a) at least one antigenic epitope according to any one of claims 2 and 6;
- (b) at least one polypeptide according to any one of claims 1, 5 and 7; and

(c) a detection reagent.

46. A diagnostic kit comprising:

(a) at least one fusion protein according to any one of claims 12-16 and 67; and

(b) a detection reagent.

47. The kit of any one of claims 38, 39, 42, 45 and 46 wherein the detection reagent comprises a reporter group conjugated to a binding agent.

48. The kit of claim 47 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.

49. The kit of claim 47 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.

50. A diagnostic kit comprising at least one polymerase chain reaction primer, the primer being specific for a DNA molecule according to claim 8.

51. The kit of claim 50 wherein the polymerase chain reaction primer comprises at least about 10 contiguous nucleotides of a DNA molecule according to claim 8.

52. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe being specific for a DNA molecule according to claim 8.

53. The kit of claim 52 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 8.

54. A monoclonal antibody that binds to a polypeptide according to any one of claims 1, 5 and 7.

55. A monoclonal antibody that binds to an antigenic epitope according to any one of claims 2 and 6.

56. A polyclonal antibody that binds to a polypeptide according to any one of claims 1, 5 and 7.

57. A polyclonal antibody that binds to an antigenic epitope according to any one of claims 2 and 6.

58. A pharmaceutical composition comprising at least one polypeptide according to any one of claims 1, 5 and 7, and a physiologically acceptable carrier.

59. A pharmaceutical composition comprising at least one DNA molecule according to claim 8 and a physiologically acceptable carrier.

60. A pharmaceutical composition comprising at least one antigenic epitope according to any one of claims 2 and 6, and a physiologically acceptable carrier.

61. A vaccine comprising at least one polypeptide according to any one of claims 1, 5 and 7, and a non-specific immune response enhancer.

62. A vaccine comprising at least one DNA molecule according to claim 8 and a non-specific immune response enhancer.

63. A vaccine comprising at least one antigenic epitope according to any one of claims 2 and 6, and a non-specific immune response enhancer.

64. The vaccine of any one of claims 61-63 wherein the non-specific immune response enhancer is an adjuvant.

65. A method for inducing protective immunity in a patient, comprising administering to a patient a pharmaceutical composition according to any

one of claims 58-60.

66. A method for inducing protective immunity in a patient, comprising administering to a patient a vaccine according to any one of claims 61-63.

67. A fusion protein comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 85 and 87;

1/9

AACTAGATGCACCAACACAATCACTACCGTACCAATCATACCAATAATGACTAATAATGACCAATAACTATGGTTATAAAGATGGTGTCAATTAAATCAATATTAGTCCTTATATTA 125

M V S F K S I L V P Y I

CACTCTTTAAATGAGGGTGCTGCTTGCAGTGATACCGATCCCAAGCTGGTGGGCCCTAGTGAGCTGGTGGGCCCTAGTGGAACTGTTGGGCCAGTGAACCTGGTGGGCCAGTGAACCT 250

Repeat Sequences

T L F L M S G A V F A S D T D P E A G G P S E A G G P S G T V G P S E A G G P S E A 375

GGTGGGCCCTAGTGGAACTGGTGGCTAGTGAGCTGGTGGGCCCTAGTGAGCTGGTGGGCCCTAGTGAGCTGGTGGGCCCTAGTGGAACCTGGTGGGCCCTAGTGGAACCTGGTGGGCCCTAGTGGAAC 375

Repeat Sequences

G G P S G T G W P S E A G G P S E A G G P S E A G G P S G T G W P S G T 500

TGGTTGGCCCTAGTGAAAGCTGGTGGCTAGTGAGCTGGTGGCTAGTGAGCTGGTGGGCCCTAGTGAGCTGGTGGGCCCTAGTGGAACCTGGTGGGCCCTAGTGGAACCTGGTGGGCCCTAGTGGAAC 500

Repeat Sequences

G W P S E A G W S S E R F G Y O L L P Y S R R I V I F N E V C L S Y I Y K H S V W 625

TATTGGAAACGAGATAAGGTGAAACGATGGTCATAAACACTACATTGAAGAAAAACCAAGGAGAAAATAATTGAAAAAAAGATTGGAAAAATGTTTCCTGAAACAATAATTCCCTTATGAAGAAA 625

I L E R D R V N D G H K D Y I E E K T K E K N K L K K E L E K C F P E Q Y S L W K K 750

GAAGAATTGGCTAGAAATATTGATAATGCATCCTATCTCTCAAATATAAGTTATTGGTCTGAAATATCAAAACAGGCTATGGTACATTGGAAAGGTCAGCTGATAATTGGACCA 750

E E L A R I F D N A S T I S S K Y K L L V D E I S N K A Y G T L E G P A A D N F D H 875

TTTCCGTAATATGGAGCTATTGACTTAAAGATATGTTATATATTGACTTATTACACATTAAATCTATAATTCTATTGACAATACCGTTAATGATAATCAAGAAAATTG 875

F R N I W K S I V L K D M F I Y C D L L L Q H L I Y K F Y Y D N T V N D I K K N F 1000

ACGAATCCAATCTAAAGCTTACTTGGGATAAGATCACTAAAACGATGGACATTATAACACTCATTTGAGGACATGATTAAGGAGTTGAATAGTGAGCAGAGAATTAAATAATTG 1000

D E S K S K A L V L R D K I T K K D G D Y N T H F E D M I K E L N S A A E E F N K I 1125

GTTGACATCATGATTCCAACATTGGGATTATGATGAGTATGACAGTTGCAAGTTCAAAACATTCTTCAATGATCACCGAAATCACTAAAATCACCAAGTTCTAATGATAATTCC 1125

V D I M I S N I G D Y D E Y D S I A S F K P F L S N I T E I T K I T K V S N V I I P 1250

TGGAATTAAAGCCTAACTTAAACGTTTTAAATATTACAAATAGTAAATCCAGATGTATACATTATTATATTACAAATTTACACATTATTGATGAACGAACGAACAT 1250

G I K A L T L T V F L I F I T K

Fig. 1A
RECTIFIED SHEET

2/9

CTCAGTCCTAAATGAAGAAATTGGATAAAATGGAATAGATTAAGCTAACATGAGAAGATGAATATAATTTAGAAATTTAACAGAAATAAATGAAGTAAAGAGTGTATTTGT	1375
<u>ATAAATTATAATAAATTAGTACATGATTATACAGATGACTATTGATTGTATCAATTAAATATTGATTATTAATGATATCATATATGTATATGTTAATGATTGATTGTTATACGT</u>	1500
TGTGAATATGTTATATAATGACATACATAATAATTAAATATAATGAGAGATTTTTTAATASTATTAAATGAATTATAGTATAATTAAATAATGAGATAAAAATGACATTAAATT	1625
<u>GAATGTTAAATTGAAATGTATGAAAAATGTATTATAATCTGAATTGATTAATAATAATTCTACAATTAAATTGTTAATTATAATAATTGATTATAATATCTTTGAAATT</u>	1750
<u>ATAAATAATATTAACTTCATTAATTATTCACATAAAATTCCAAATTATTATCCCTTATCTTAATGTTATCCAATTTCACACATCTTCATTACAATTTCCTACTAATGCTGTATGC</u>	1875
<u>TCATATTCAATTCTTAACTAACGAAATTACATGTAACCTGCCACTACAAGTAACCTACATCAATAATAATAATGAATACCATTGTCGGTATATTCTTATATTTTTATC</u>	2000
<u>ATATTTTATTGTTGATTATTCATTCTTGTATCAATTCAATGAGAGAAATAAGCAGAAAGATCTTATAGAAACATAAAATTCAATTAAACTGGATTATTATGTTGCAAGTATA</u>	2125
<u>GATGTTAAATCAAAACACTACCGTGGTAATTAGCATTGTCATCAAATTCAATTATAATCAGAAATTGATTATCAATTATTCCGATGTGATAATTATTGTTCTGATTCA</u>	2250
<u>CGATCATGTTACAAATACTATTGTTAAAGGTCCCTATCCTTATAATTAAAGTGGCCAATAAGATTGGCTTAATTACATTAGTAGTGTTGTTAATAGTACATTAGTGGTACTGACA</u>	2375
<u>GTTGTTAGGTTGATTCCATAATGAAACATCAATTTCACACATACA</u>	2430

Fig. 1B

3/9

Fig. 2A

4/9

Fig. 2B

5/9

6/9

Fig. 4

7/9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 5

8/9

BI254AGDTDREA GGPGTVGP.
BI1053GDTDREA GGPGTVGP.
BI2227AGDTDREA GGPGTVGP. SEAGGPSEA
BI2259AGDTDREA GGPGTVGP. SEAGGPSEA
BI2253	EA GGPGTVGP. SEAGGPSEA
GRAC,S	GDTDREA GGPGTVGP. SEAGG PSEAGGPSEA
FISH,S	AGDTDREA GGPGTVGPS	SAGGPSEAGG PSEAGGPSEA
MN1HAM	AGDTDREA GGPGTVGP. SEA
MN2	AGDTDREA GGPGTVGP.
MN1PAT	AGDTDREA GGPGTVGP. SEA
Bmni-6	YITLFLMSGA VFAGDTDREA GGPGTVGP. SEA
MN3	AGDTDREA GGPGTVGP. SEAGGPSEA
MR.T	AGDTDREA GGPGTVGP. SEAGGPSEA
	51		100
BI254	...SEAGGPS EAGGPSGTVG	PSEAGGPSEA GGPGTGWPS	EAGGPSGTVG
BI1053	...SEAGGPS EAGGPSGTVG	PSEAGGPSEA GGPGTGWPS	EAGGPSGTVG
BI2227	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSEAGW
BI2259	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSEAGW
BI2253	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSEAGW
GRAC,S	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSEAGW
FISH,S	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSEAGW
MN1HAM	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSGTGW
MN2	...SEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSGTGW
MN1PAT	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSGTGW
Bmni-6	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSHAGGPS	EAGGPSGTGW
MN3	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSGTGW
MR.T	GGPSEAGGPS EAGGPSEAGG	PSEAGGPSEA GGPSEAGGPS	EAGGPSGTGW
	101		150
BI254	PSEAGGP...	S EAGGPSGTGW PSGTGWPS EV GWP SERFGYQ	
BI1053	PSEAGGP...	S EAGGPSGTGW PSGTGWPS EV GWP SERFGYQ	
BI2227	PSEAGWPSEA GGPGTGWPS	EAGWPSEAGW PSEAGWPSEA GW
BI2259	PSEAGWPSEA GGPGTGWPS	EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	
BI2253	PSEAGWPSEA GGPGTGWPS	EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	
GRAC,S	PSEAGWPSEA GGPGTGWPS	EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	
FISH,S	PSEAGWPSEA GGPGTGWPS	EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	
MN1HAM	PSEAGWP...	S EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	
MN2	PSEAGWP...	S EAGWPSEAGW PSEAGWPSEA GW
MN1PAT	PSEAGWP...	S EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	
Bmni-6	PSEAGWP...	S EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	
MN3	PSEAGWP...	S EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	
MR.T	PSEAGWP...	S EAGWPSEAGW PSEAGWPSEA GWP SERFGYQ	

9/9

	151	177
BI254	LLWYSRRIVI	
BI1053	LLWYSRRIVI	
BI2227	
BI2259	LLWYSRRIVI	
BI2253	
GRAC,S	LLWYS.....	
FISH,S	
MN1HAM	LLWYSRRIVI	
MN2	
MN1PAT	LLWYS.....	
Bmn1-6	LLWYSRRIVI FNEIYLSHIY EHSVAMIL	
MN3	LLWYSR.....	
MR.T	LLWYSR.....	

Fig. 6B

SEQUENCE LISTING

<110> Corixa Corporation et al.

<120> COMPOUNDS AND METHODS FOR THE DIAGNOSIS
AND TREATMENT OF B. MICROTI INFECTION

<130> 210121.42602PC

<140> PCT

<141> 2000-04-05

<160> 90

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 792

<212> DNA

<213> Babesia microti

<400> 1

cactttttt	aatgagcggt	gctgtcttg	caagtatac	cgatccgaa	gctgggtggc	60
ctagtgaagc	tggggggcct	agtggactg	ttgggcccag	tgaagctgg	gggccttagtg	120
aagctggtg	gcctagtgg	actggttggc	ctagtgaagc	tgggtggcct	agtgaagctg	180
gtgggcctag	tgaagctgg	gggccttagtg	aagctggtg	gcctagtgg	actggttggc	240
ctagtggAAC	tggggccct	agtgaagctg	gttggcttag	tgaacgattt	ggatatcagc	300
ttttccgtt	ttctagaaga	atagttat	ttaatgaagt	ttgttttatct	tatatacaca	360
aacatagtgt	tatgatattt	gaacgagata	gggtgaacga	tggtcataaa	gaatcacattt	420
aagaaaaaaac	caaggagaaag	aataaatttg	aaaagaattt	ggaaaaatgt	tttcctgaac	480
aatattccct	tatgaagaaaa	gaagaatttg	ctagaatatt	tgataatgca	tccactatct	540
cttccaaata	taagttattt	gttgatgaaa	tatcaaacaa	ggcctatgg	acattggaaag	600
gtccagctgc	tgataatttt	gaccatttcc	gtaatatatg	gaagtctatt	gtacttaaag	660
atatgtttat	atattgtgac	ttattattac	aacatttaat	ctataaattt	tattatgaca	720
ataccgttaa	tgatatcaag	aaaaattttt	acgaatccaa	atctaaagct	ttagtttga	780
gggataagat	ca					792

<210> 2

<211> 2732

<212> DNA

<213> Babesia microti

<400> 2

aaacccctaaa	ccctaaaccc	taaaccctaa	accctaaacc	cctaaaccct	aaaccctaaa	60
ccctaaaccc	taaaccctaa	aaccctaaac	cctaaaccct	aaaccctaaa	ccctaaaccc	120
taaaccctaa	accctaaacc	ctaaacccta	aaccctaaac	cctaaaccct	aaaccctaaa	180
ccctaaaccc	taaaccctaa	accctaaacc	ctaaaccct	aaaccctaaa	ccctaaaccc	240
taaaccctaa	accctaaacc	ctaaacccta	aaccctaaac	cctaaaccct	aaaccctaaa	300
ccctaaaccc	taaaccctaa	accctaaacc	ctaaaccct	aaaccctaaa	ccctaaaccc	360
taaaccctaa	accctaaacc	cctaaaccct	aaaccctaaa	ccctaaaccc	taaaccctaa	420
accctaaac	cctaaacccc	taaaccctaa	accctaaacc	cctaaaccct	aaaccctaaa	480
cctaaaccct	aaaccctaaa	ccctaaaccc	taaaccctaa	aaccctaaac	cctaaaccct	540
aaaccctaaa	ccctaaaccc	taaaccctaa	accctaaacc	taaccctaac	cctaaaccct	600
accctagcctt	cattgacgtc	tatccccat	tttagaaaaa	tcttcaatc	gattctagaa	660

acccctaaac cctaaacccc taaaccctaa accctaaacc ctaaaccccta aaccctaaac	480
cctaaaccct aaaccctaaa ccctaaaccc taaaccctaa aaccctaaac cctaaaccct	540
aaaccctaaa ccctaaaccc taaaccctaa accctaacc taaccctaaac cctaaaccct	600
acctaggcatt cattgacgtc tatccccat cttagaaaaa tcttcaaattc gattctagaa	660
taactggaaa caattatcag aaatttgtata actgcttatt agcttattag cttattagtt	720
aggatgtatg cacattgtatg acaactatgat gcagcacccac aatcaactacc acgtaccaat	780
catataccaa taatgtacta ataatgtacc aataactatg gtttataaag atgggtgtcat	840
ttaaatcaat attagttcct tatattacac tcttttaat gagcgggtct gtctttgcaa	900
gtgataccga tcccgaagct ggtggcccta gtgaagctgg tgggcctagt ggaactgttg	960
ggcccgagtga agctgggtgg cctagtgaaag ctgggtggcc tagtgaact gttggccca	1020
gtgaagctgg tgggcctagt gaagctggg ggcctagttgg aactgtttgg cctagtgaaag	1080
ctgggtggcc tagtgaagct ggtggcccta gtggaaactgt tgggcctagt gaagctggg	1140
ggcctagtgaa agctgggtgg cctagtgaaag ctgggtggcc tagtgaagct ggtggcccta	1200
gtgaagctgg tgggcctagt gaagctggg ggcctagtgaa agctgggtgg cctagtgaaag	1260
ctgggtggcc tagtggaaact ggtggcccta gtgaagctgg tgggcctagt gaacgatttg	1320
gatatcagct tcttcgtat tctagaagaa tagttatatt taatgaagtt tgtttatctt	1380
atataatacaa acatagtgtt atgatattgg aacgagatag ggtgaacgat ggtcataaaag	1440
actacattgtaa agaaaaaacc aaggagaaga ataaattgaa aaaagaattt gaaaaatgtt	1500
ttcctgaaca atattccctt atgaagaaag aagaatttggc tagaatattt gataatgcatt	1560
ccactatctc ttcaaaaatat aagttattgg ttgatgaaat atcaaaacaag gcctatggta	1620
cattggaaagg tccagctgct gataattttt accatttccg taatatatgg aagtctattt	1680
tacttaaaga tatgtttata tattgtact tattattaca acatttaatc tataaattct	1740
attatgacaa taccgttataat gatataaga aaaattttga cgaatccctgg acacagacat	1800
taaaagaata agcctgctt ggggtttctg ggcattctt catgagtgc agtcacacaa	1860
ctcttcgttg agccttctac aataaggact ttgtgtgctt cgatattttt ttagactaaaa	1920
gtgaactctc tccctccaccc ttggcctcag ttagttttt caaatggcaaa aagttattaa	1980
aaattccagt gtggaaactg gcttaaccaa caggaaaggg gttttgaggt cgcattacta	2040
agcatcaagt ttaacaccaa catgcctgga ggattggctt agccggttgc tagggcaggc	2100
ctgtggcagg gttcttattcc cagctattaa cgctcccttc ccactcttcc aagtccctgca	2160
agtcctggat acagtgaat gtaattgcatt atcccatatc ctttgcattt atcaaatggaa	2220
taaaacccaa aatggagtca taccataatgat ttcattgtat acaataacctg aatagtcttg	2280
aactgtatca ctgttagata gtatgcattt acttccatc tattcatagt gtgcctctgc	2340
acagtgtatgg aaaagaggag cactggggga gtcgggtttt caaggacaa aggagaataa	2400
gacacacaaa gaaatccaag gtagagcaga gaaaggatgg agacacagaa gttttgcagg	2460
aacaggaagc gaaggatgct ccagtctgag ggggaggggg aagagacccct cttgagtagc	2520
cagcacctga acttggcttg gaagcttggtt ggataaggca ggataaaaggaa ggtgtggcct	2580
ctttggatcc ctcccattgtaa taaaggagct ccctgaccct tcactagacc atcatcagtc	2640
ctatggttct tagaccaata gaacacaatg gaattgattt gttccacttt ccaggttaag	2700
acttacagtc agggaaagttt gttttcttg cc	2732

<210> 3

<211> 2430

<212> DNA

<213> Babesia microti

<400> 3

aactagatgc agcaccacaa tcactaccac gtaccaatca tataccaata atgtactaat	60
aatgtaccaa taactatggt ttataaagat ggtgtcattt aaatcaatata tagttccctta	120
tattacactc tttttatgtt ggggtgtgtt ctttgcattt gataccgatc cccaaagctgg	180
tgggcctagt gaagctggg ggcctagttgg aactgttggg cccaggtaag ctgggtggcc	240
tagtgaagct ggtggcccta gtggaaactgg tggcctagt gaagctggg ggcctagtgaa	300
agctgggtgg ccttagtgaag ctgggtggcc tagtgaagct ggtggcccta gtggaaactgg	360
ttggcctagt ggaactggg ggcctagtgaa agctgggtgg tcttagtgaac gatttggata	420
tcagcttctt ccgtatttca gaagaatagt tatatttaat gaagttgtt tatcttataat	480
atacaaaatc agtgttatgttatttgc agatagggtt aacgatggtc ataaagacta	540

cattgaagaa aaaaccaagg agaagaataa attgaaaaaa gaattggaaa aatgtttcc 600
tgaacaatat tcccttatga agaaagaaga attggctaga atatttgata atgcacccac 660
tatctttca aaatataagt tattgggtga taaaaatatac aacaaggcct atggcacatt 720
ggaaggtcca gctgctgata attttgacca ttccgtaat atatgaaagt ctattgtact 780
taaagatatg ttatataatt gtgacttatt attacaacat ttaatctata aattctatta 840
tgacaatacc gtaatgata tcaagaaaaa ttttgacgaa tccaaatcta aagcttttagt 900
tttgagggat aagatcacta aaaaggatgg agattataac actcattttg aggacatgat 960
taaggagttg aatagtgcag cagaagaatt taataaaatt gttgacatca tgatccaa 1020
cattggggat tatgatgagt atgacagtat tgcaagtttca aaccatttc ttcaatgat 1080
caccggaaatc actaaaatca ccaaagtttca taatgtataa attcctggaa ttaaggcact 1140
aactttaacc gttttttaa tatttattaa aaaaatagatg taataccaga tgtatcacatt 1200
attatataattt acaaaatttta cacattttt atgtatgaaac gaacgaacat ctcagtttta 1260
aatgaagaaa ttgggataaa tatggaaata gattaaagta acatgagaaa gatgaatata 1320
atattagaat atgaaatttta acagaaataa atgaaagtaa aagagtgtat ttgtataataa 1380
tttataataa attagtatac aatgattata ttacagatga ctattgatta ttgtatcaat 1440
taaatattga ttataatga tatcatatat gtatatgtt atgattgatt ttgtatcaat 1500
tgtgaatatg ttatataatg acatactata ataattaaata taatgttagag gatattttt 1560
ttaatagtat ttaatgataa ttatagttat aattataata atgtagataa aaatgacatt 1620
aatttgaatg tttaaatttga aatgtatgtt aaaaatgttca tttataatctt gaattgatta 1680
ataatataat attctacaat taatttattt ttaatttataa ataaatttgc atattaatctt 1740
ttgaatttttataaataa ttataacttca tttaatttattt tcacataaaat ttccaaattha 1800
ttatccctta tttaatgtt atccaaattttt acacatctt cttcattaca atattttttt 1860
actaatctg tatgctcata ttcatattctt tttagaaatata aacgaaaattt agatgtact 1920
tcgcccactta caagttaaact accatcaataa taataataat gaataccatt catgtccogta 1980
tattttttat atatttttatac atatttttattt ttgtgattat tccattttt tgatcattta 2040
ttcaatgaga gaaataatag cagaagatc cttctataga aacataaaat tcaatataa 2100
ctggattattt atgtttgcaa gtatagatgt ttaatcaat aacactacca gtggtaatt 2160
tagcattgtc atcaaatttca attatataat cagaatattttt gattttatca attttttgc 2220
gatgtgataa ttatattttgt tctgattcat cgatcatgttatacaatactt atgtttaaag 2280
gttccctatc ttataatataa aagtggccaa taagattggc attaatttaca tttagtgc 2340
gtgtatattgtt aatagtatac tttagtgcgatc gatcgatgtt ataggtttt gattttccata 2400
atgaaacatc atttttatctt acacaataca 2430

<210> 4

<211> 1991

<212> DNA

<213> Babesia microti

<400> 4

aatgtacaag atcaaattt ctgatttat attgaaattt gatgacaatg ctaaatttacc 60
aactgataat gttattggta tatccatcta tacttgtaa cacaataatc cagtattat 120
tgaattttat gtttctaaaa aaggatcaat ctgctattat ttctactcaa tgaataatgaa 180
tacaaataaa tggataatc aaaaaataaa atatgacaaa agatttatg aacataactgaa 240
catgaatggt attcattattt attatattgtt tgtagttaa cttgcgagtg gcaagttac 300
atctaattttt ctttatattt ctaaagaataa tgaatatgag catacagaat tagcaaaaga 360
gcatttgcag aaagaaaaat gtgtatgtt ggataacattt gaggataata attgaaaaat 420
atatgcggaa cagtttaat ctgttagttac tactccagct gatgtgcgg gtgtgtcaga 480
tggattttt atacgtggcc aaaaatcttgg tgctgtgggc agtgttaatg aacaacctaa 540
tacttgttgc atgatgttgc aacaatttcat caagaacgag ctttattttt ttgtatgaa 600
aatttatcat acaatatcta gtcaaatcag taatttttc ttaataatgaa tgcgtatgc 660
aattgtttaaa catgataactt atattttaaa aaaaagggat gaaaggctgtg aacaaatcta 720
caattatgag gaatttataatg aaaaaggatggg ggggtgcata agtgggggaaataatgtt 780
tcaggaagct ctgataaggt tttagaatgc tagtagtggaa gaaatgggtt atgctgcag 840
ttatctatcc gcccctt tcagatataa ggaatttgc gatgaattat tcaaaaaggc 900
caacgataat ttggacgcg atgatggata tgatttgtt tatataaata caaagaaaaga 960

gttagttata cttgccagtg tggatgg tttggattta ataatggAAC gtttgatecgA	1020
aaatttcagt gatgtcaata atacagatga tattaAGAAg gcatttgacg aatgcaaATC	1080
taatgtctatt atattGAAGA aaaagataact tgacaatgt gaagattata agattaattt	1140
tagggAAatg gtGAatgtGAAG taACatgtgc AAACACAAA tttGAAGCCC taaatgattt	1200
gataatttcc gactgtgaga AAAAGGTAT taAGATAAAc AGAGATgtGA tttCAAGCTA	1260
caaattgttt cttccacAA tcACCTATA tttGGAGCT ggAGTGAAG ctgtAACTGT	1320
tagtgtgtct gctACATCTA atggAACTGA atctGGTGGt gctGGTAGTG GAACtGGAAc	1380
tagtgtgtct gctACATCTA ctttaACTGG taaatGGTGGt ACTGAATCTG GTGGAAcAGC	1440
tggAACTACT acgtCTAGTg GAACtGGTT tggAAATGA AAAATTAGCT CTAGAAACAC	1500
tttattgtta attttAAAC ACCTATTGAA AAATCAGATT GtAAAACATA ATTCCACTTC	1560
taaccatgct atgatTTAAc TAATCAGGAC AAAAGAAAG CATAATCAAC ATTATTCTT	1620
cagtGATGGT gACATAATTG AGAGAAATGTG GCAATTGCCT CTTGAAGACE AGAGTCCAT	1680
ccACAGGACC CACATGGTT AAGGAGAGAG CTAACtCCtG AAAGTGTCC TCTGACTAAC	1740
acATTCAACT ttGAGTGTc TCATTATGT GttGGCTT GtCTAATGTG GGAAATCAT	1800
taaggGCTCT taaatCAGAT CCTCATTCTC TCTATTAAATA AACTATGTGA TAACATCCTT	1860
cagCTATGAA AATGTcAGGA GAGAGTCAGG AAAATGGAAg ATATTGTTCA GGACTTAACT	1920
aggTGGTGGC ACACAGTCC TTTACACAGA TtCCTCAGGA CAAGTTTGT GTGAGGTTT	1980
gatCTATCCT G	1991

<210> 5

<211> 1271

<212> DNA

<213> Babesia microti

<400> 5

tTCactAGGc CAACCAgCtt CACTAGGCCA ACCAGCTtCA CTagGCCAAC CAGCTTCACT	60
AGGCCAACCA GCTTCACTAG GCCAACCCAGC TTCACTAGGC CAACCAgTtC CACTAGGCC	120
ACCAGCTtCA CTAGGCCAC CAGCTTCACT AGGCCACCA GCTTCACTAG GCCAACCCAGT	180
TCCACTAGGC CCACCAgCtt CACTAGGCC ACCAGCTtCA CTagGCCAC CAGCTTCACT	240
AGGCCACCA GtTCACTAG GCCAACCCAGC TTCACTAGGC CCACCAgCtt CACTAGGCC	300
ACCAGCTtCA CTAGGCCAC CAGCTTCACT AGGCCACCA GtTCACTAG GCCAACCCAGC	360
TTCGCGATCG GtATCACCTG CAAAGACAGC ACCGCTCATT AAAAGAGTG TAATATAAGG	420
AACAAATATT GATTTAAATG ACACCATTT TATAAACCAT AGTTATTGt ACATTATTAG	480
TACATTATTG GtATATGATT GGTACGTGt AGTGTATTGt GTGCTGATC TAGTTGTcat	540
CAATGTGATC ACATCCTAAC TAATAAGCTA ATAAGCTAAT AAGCAGTT ATCAATTCTG	600
ATAATTGCTT CCAGTTATTG TAGAATCGAT TTGAAGATT TtCTAAGATT GGGGATAGAC	660
GtCAATGAAG GCTAGGTTAG GGTAGGGTT AGGGTTAGGG TTAGGTTA GGGTTAGGG	720
TttAGGTTT AGGGTTAGG GtTAGGGTTT AGGGTTAGG GtTAGGGTT TAGGCTCCCA	780
AGTTGCCCCG TgAAAGGGCC GtGCTTTGA TAAATTTGC CGTCCTGTAC GtTCCCTTC	840
TAGAAATGCAC AAAAACAAAGA ATTTGGCAGC TAGAAACATE GtTAATCACC TCTTGGTGA	900
GAATTTCGTT GATTGCGTGT AAACGTTGA TAGCCTTCTT CTCTTCACG CCATAATAACA	960
CCTGCTCCA GGGCACAGGC CTAAGTGGC TGCCAAAGTA GAAAAGCCCT CGGTCTAGAT	1020
TAACAGTGTG AAATCTAGCC ACgtCTTGT AGTTGGAAg CGTGGCCGAT AGACCAACtA	1080
GCCTTACGCG TTGCGGCCtC TGACTCAGGC GGGCCACAAt AGCCTCCAGC ACTGGACCC	1140
TAGTGTCTATG GAGTAGGTGT ATTTCATCAA TTATAACCAA TCTAAGCCGC TCAAGCAGGG	1200
GCTATTGCC TGTtTAAGT GtAACTACGT CAAACTCTC TGGCGTAGTT ACAATTATAT	1260
CGCTTTCTC A	1271

<210> 6

<211> 1821

<212> DNA

<213> Babesia microti

<400> 6

taaacccctaa acccctaaac cctaaaccct aaaccctaaa ccctaaaccc taaaccccta	60
--	----

aaccctaaac cctaaaccct aaaccctaaa ccctaaccct aaaccctaaa ccctaaccct 120
 taaaccctaa accctaaccct taaccctaaac cctaaccctta accttagcctt cattgacgtc 180
 tatcccaat cttagaaaaaa tcttcaaatac gattctagaa taactggaag caattatcag 240
 aaattgtata actgttattt agcttattag ctatttagt aggatgtatg cacattgatg 300
 acaactagat gcagcaccac aatcactacc acgttaccaat catataccaa taatgtacta 360
 ataatgtacc aataactatg gtttataaag atggtgtcat ttaaataatcaat attagtccct 420
 tatattacac tcttttaat gagcgggtgcgt gtccttgcag gtgataccga tcgcgaagct 480
 ggtggcccta gtggactgt tggccctagt gaagctggtg ggcctagtga agctgggggg 540
 cctagtgtaaag ctggggccctaa tagtgaagct ggtggcccta gtgaaagctgg tggtggccctagt 600
 gaagctggtg ggcctagtga agctggggg cctagtgtaaag ctgggtggccctaa tagtggaaact 660
 ggttggcccta gtgaagctgg ttggccctagt gaagctggtt ggcctagtga agctgggtgg 720
 cctagtgtaaag ctgggtggccctaa tagtgaagct ggtggcccta gtgaaacgatt tggatatacg 780
 cttcttttgtt attctagaag aataggtaata ttaatgaaa ttattttatc tcataatac 840
 gaacatagtgtt atatgatatt ggaacgagat agggtgaaacg atggtcataa agactacatt 900
 gaagaaaaaa ccaaggagaa gaataaaattt aaaaagaat tggaaaaatg tttccctgaa 960
 caatattccc ttatgaagaa agaagaattt getagaataa ttgataatgc atccactatc 1020
 tcttccaaat ataagttattt ggttgcataa atatccaaca aagcctatgg tacattggaa 1080
 ggtccagctg ctgatgattt tgaccatttc cgtaatataat ggaagtcataat tgcataatgg 1140
 aatatgttcc tatattgtga cttattatta aaacattttaa tccgtaaattt ctattgtgac 1200
 aataccatta atgatatacaaa gaaaaattttt gacgacatag agaaattggg ctgtttcaaa 1260
 gctagaagct tcctccctgt taactaatgtt attcatggtg ccagaaggtg ctatgcaggt 1320
 tgctaggaa tcaaattcat caatagtctt gcccacagat agtgcataat tggcgggtgc 1380
 aagatgtgcc ctttgatgca gtagtggcat gcttgcattt ggggtaaaccc agtgcatttct 1440
 gattgaggc tactccacag gagaaataga tacctgttcc tgcataatgtt gtcacaaactt 1500
 atgactgcac atgaagacac agtggaaaag acctgtaaaac acacacgggg tcaggactga 1560
 ggaagacagg gttatgtatta gagagatttggggaaaaaa gagttacaa atatagatg 1620
 tgatagtcta atggggggat gaatgtatc aaaatgaattt atttatatgtt ataaaaactga 1680
 caattttta attgtgaaa ggaatgtcaat ccgacccatc tggggaaattt ctatgtac 1740
 tcagtgagag aagaggcaag gtgttagaa atcgtgcata acatgcata ccaggctta 1800
 ttctccatt tacatctaga g 1821

<210> 7

<211> 4223

<212> DNA

<213> Babesia microti

<400> 7

catcacaattt attggctgtt acatcaactat agtgcgttat gtaaaaaattt ataaagtgtg 60
 acatcattat aatgcataat gacatcacaa ttatatactg tgacttcact atcttcact 120
 ttaacatcac aattatacatc tgcacatca atatactgca ctatgcacatc acgattattt 180
 actgtgacat caatacatcc tctatgaaca cagttataca ctctgcacatc actagcttgc 240
 actgtgacat gacaattaaa aactgtgaca tcaatataat ggactgtgac ctacaattat 300
 tcactgtgaa accacaacac tgcaattgtg tataattggg atgggtactg atctgctgccc 360
 cgaggctcaa tagattaccc aggcctccctc actgcacaccc acattcaggg ggttttgatc 420
 agtccccatga tggattccca ggctgtatgcc tgggattccaa gagttacat ttgtctggc 480
 agcttttctt gggggtaaaa cggattaaat gtttataaa taatgtacaa tataaaaaaca 540
 tatttttagg tacaatagac ttccatataat tacggaaatgt gtcaaaatca tcagcagctg 600
 gaccttccaa tgcattatag gctttgtgg atatttcatac aaccaataac ttatattttg 660
 aagagatagt ggtatgtacca tcaattatcc tagccaaatcc ttctttcttcc ataaaggaaat 720
 attgttcagg aaaacatttt tccaaatttctt tttcaattt attcttccttcc ttgggtttttt 780
 cttaatgtta gtcattatgtt ccattgttca ccctatctcg ttcaatatac ataaacactat 840
 gttcgatatac atgagataaa taaatttcat taaatataac tattcttca taatgtacta 900
 gaagctgata tccaaatgtt tcactaggcc aaccagcttc actaggccaa ccagcttcac 960
 taggccaacc agtttacta ggcacccaccc cttcaactagg ccaaccagct tcactaggcc 1020
 aaccagcttc actaggccca ccagcttcac taggcccacc agtttacta ggcacccaccc 1080

cttcactagg cccaacagtt ccactaggcc caccagcttc actaggccc ccagcttcac	1140
taggcccacc agcttcacta ggcccaccag ctgcactagg cccaccagct tcactaggcc	1200
caccagcttc actaggccc ccagcttcac taggcccac acgttccacta ggcccaccag	1260
cttcgcgtc ggtatcacct gcaaaagacag caccgctcat taaaaagagt gtaataataag	1320
gaactaatat tgatTTaaat gacaccatct ttataaaacca tagttattgg tacattatta	1380
gtacattatt ggtatATGAT tggtaacgtgg tagtgattgt ggtgctgcat cttagtgtca	1440
tcaatgtgca tacatcctaa ctaataagct aataagctaa taagcagtta tacaatttct	1500
gataattgct tccagttatt ctagaatcgta ttgaagatt ttctaaagat tggggataga	1560
cgtcaatgaa ggcttaggtt gggtaggtt tagggtagg gtttaggtttt agggtttagg	1620
gtttagggtt tagggTTAG ggttagggtt tagggTTAG ggttagggtt tagggTTAG	1680
ggggTTAG gtttagggtt tagggTTAG ggttagggtt tagggTTAG ggttagggtt tagggTTAG	1740
agaaccactg accttagactt tccaaagactt tgcatctt tgacttgcg gtgcctcg	1800
ttctccacac agcaacctat gttctctttt attacagttt ctgtggaca tgcacatgtt	1860
ccagcttcga gaatggaaac ctattgtctt aatgggtgaa caaagtggc ccattcatta	1920
atcacagact aatccaaaag gaaatgtgac acctgaccta agtccgacca ataggagcca	1980
ggaaagctca ttctgtttt tgcacttagt atatcacggg tgcatacaga ctcttttcc	2040
tgctgaaaca aatggtgagg acctgtccac ctttgtggg agcttgcagt gtaagattct	2100
aatccatatt gggaaataa ggctgagaag agagagttcc aggcttgc acagaatcta	2160
atccctggat aaagtctctc tttttacaaa gaacatcagt gttcaagct ccaaattcct	2220
gttcttactt tcttgactt gttttttttt tgcataaccc aaagcacttt aactgacaca	2280
gctgtgaagt gagaatattt catagaaatc ctattgtttt gatgtcttct aaaaaagaaa	2340
aaaagcaatg atctgtaaac ttttttaact taaaataatta gattgattta atgtacatca	2400
aaacatctgg aaaatgggtt ggacacaaaat tcactagaga gccatatttt ttgctaacta	2460
attgagaaat taatcactgg caagtctttt gtaaaaagtat cacctcagtc atgatctct	2520
ctgccttcat gacattttcc tcattgtgt gaggatgctt ttctgttttct tatgtgacca	2580
ggaaatagtg ctgtcttcg tctagttatg atttaggtt tacaccaggt tttcacat	2640
gttccctaac gtctgttaga ggaccaggga ctgggtggct tcaagggtttt ggtatgggtt	2700
acctaagtc attcatgtac aggaactcat ttgagatgat aggaatggaa gtgaaagatt	2760
ttcttgcccc tggtaagtaa gataaaaagg attgttatga tggggcagga gcagatctat	2820
ttccaataaa cagaatttga agtgtttgtg tgcatttcg ataccttcat gtcatttgc	2880
tgaattactc ctgtctcag tgaagatgtc taagctycaa ataagaaaatg gagagcgctg	2940
tcagaagtca gatggaaattt agaatagggg ctgtgtgtca atctgtggag actgcctaaa	3000
gcagcttagat aagaaacttag cagctgggg gagaagatc gaatttagtc ggctgtttt	3060
atattttctt ataaaaataa actgtttcga aatgtttgag aagataggagg caatggcag	3120
aaagttgttc cttaaatcag ttatagaatg aacacataca cgggcactca gatcaagcca	3180
tgctgagctt gagacacccg gtgacgcgtg acttgcattt tcccaggctg caaaggagag	3240
taaatgaagt aacgggaaagg cccgggtgtt taggcacact cctgcctggc accatctgt	3300
gtttttgtcc ctgttactcc ttgttccctt ccctccctt ctccctccctt ccctccctcc	3360
ctctctccct ctttcacact tctgtttttt tttccctctg ggagtttaattt ggtggtagcc	3420
cctctgtgtct gttttttccgg ggggtccctt aatttcgaca atacaatgcc atccatgggg	3480
gcattttata tacagtaata attgtcattt atgtggccat aaggtaattt ttgtggtaac	3540
ccttcgttcaa cagaacagac acagaaggcc gtgcgtgcgt gcgtgcgtgc gtgcgtgcgt	3600
gcgtgtgtcc gtgtgtgcgt gcgtgtgtcc gtgtgtgcgt gcgtgcgtgt gtgcgtgcgt	3660
gcgtgtgtcc gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt	3720
atgggggtgg gggcgttgcgt ttcctacttg ttgttaggggtt atgaggttt atatgtctg	3780
tttctgagac agttacaaa tccagctggg ttactttttt ttgtttttt tatgagacag	3840
ggtttctctg tattgtttt gaggctgtcg gtccagectg gtctcgaact cacagagatc	3900
cgcctgcctc tgcctcccgaa gtgcgtggat taaagggtgtg cgccaccacc gcccggcccc	3960
agctgggtta ctatcactc agtggatctt tctttttct ttgttaagaag aactttgcatt	4020
tgtgggtcgat catggaaagaa cactggaaa ggtaccctt ctgccccacc cggttattga	4080
atgagtcttt tttttttttt attaaatagc agaactttgg gggaaagattt agaaaaggcc	4140
cttttcataat tataatacga ggtataggat gtttaagat aagagacttt ttgttagctg	4200
ttatcgttgc agaaaggcac gag	4223

<211> 2287

<212> DNA

<213> Babesia microti

<400> 8

ttataaacat	atctaaaatat	tttaataata	atgatgaaat	ttaacataga	taagataata	60
ttaatcaatt	taatagtatt	attgaatcga	aatgtatgtt	attgtgtgga	tacaaataat	120
agttcattaa	ttgaatcaca	accagtaaca	actaacattt	acactgataa	tacaattaca	180
acaataataat	acactggta	tataattaat	gccaatattt	ttgagtagcc	tgaatttgag	240
gatgaacctt	taacaatagg	gtttagatac	actatagata	aatcacaaca	aaataaatta	300
tcacatccaa	ataaaatttga	taaaatcaa	tttctgatt	atataattga	atttgatgac	360
aatgctaaat	taccaactga	taatgttatt	tgtatatcca	tctatacttg	caagcataat	420
aatccagtt	taatttagatt	ctcatgttct	atagaaaaat	attactacca	ttacttctac	480
tcaatgaata	atgatacaaa	taaatttggaa	aatcacaaat	taaaatatga	taaaacatac	540
aatgaatata	ctgacaataa	tggtgtttaat	tattataaaa	tctattatag	tgataaaacag	600
aattcccccta	ctaattggaaa	tgaatatgag	gatgttagcat	tagcaagaat	acattgtat	660
gaagaaagat	gtgcaaatgt	aaaggtagat	aaaattaaat	ataagaattt	ggaaatttat	720
gtgaaacagt	taggtactat	aattaatgcc	aatattgtt	agtaccttg	atttgaggat	780
gaacctttaa	caatagggtt	tagataact	atagataaaat	cacaacaaaa	tgaattatca	840
catccaaata	aaatttataa	aatcaaattt	tctgattata	taatttgaatt	tgatgtat	900
gctaaattaa	caacaatttgg	tactgttga	gatataacca	tctatacttg	caagcataat	960
aatccagtt	taatttagatt	ctcatgttct	atagaaaaat	attactacta	ttacttctac	1020
tcaatgaata	ataatacaaa	taaatttggaa	aatcacaaact	taaaatatga	taatagattc	1080
aaagaacata	gtgacaagaa	tggttattaa	tattatgaaa	tctcagctt	caaattggagt	1140
ttctcttgg	ttttcgtaa	taaatatgag	cataaaagaat	tagcaagaat	acattgtat	1200
gaagaaagat	gtgcaaatgt	aaaggtagat	aaaattaaat	ataagaattt	ggaaatttat	1260
gtgaaacagt	taggtactat	aattaatgcc	aatattgtt	agtaccttg	atttgaggat	1320
gaacctttaa	caatagggtt	tagataact	atagataaaat	cacaacaaaa	tgaattatca	1380
catccaaata	aaatttataa	aatcaaattt	tctgattata	taatttgaatt	tgatgtat	1440
gctaaattaa	caacaatttgg	tactgttga	gatataacca	tctatacttg	caagcataat	1500
aatccagtt	taatttagatt	ctcatgttct	atagaaaaat	attactacta	ttacttctac	1560
tcaatgaata	ataatacaaa	taaatttggaa	aatcacaaact	taaaatatga	taatagattc	1620
aaagaacata	gtgacaagaa	tggttattaa	tattatgaaa	tctcagctt	caaattggagt	1680
ttctcttgg	ttttcgtaa	taaatatgag	cataaaagaat	tagcaagaat	acattgtat	1740
gaagaaaaat	gtgtaaatgt	aaaggtagat	acattgggg	ataaaaattt	ggaaatttat	1800
gtgaaataat	ttaatgaagt	ataatattat	ttataataat	tcaaagatta	atataattaa	1860
ttattataat	tacaaaaata	attaattgtt	gaatatttata	ttattaatca	attcagatta	1920
taaatacata	ttttcacata	cattcaatt	taaacattca	aattaatgtc	atttttatct	1980
acattattat	aattataact	ataatattca	ttaataacta	tttaaaaaaa	tatcctctac	2040
attatataa	tcaatataat	atacaattat	ataatataatt	cacaatgtat	aacaatcaac	2100
cctaacatgt	acatacataa	tatcattact	aatcaatatt	taattaataa	aatatttaat	2160
agtcatctgt	aatataatca	ttgtatacta	atttattata	aattattaca	aaatacactc	2220
tttacttca	ttttatttct	gttaaatttc	atattctaat	attatattca	tctttctcat	2280
gttactt						2287

<210> 9

<211> 2784

<212> DNA

<213> Babesia microti

<400> 9

cactgcttcc	gcagcgtttc	ttgctttgg	gaatatctca	cctgtacttt	ctgctgggg	60
taggggtt	aatgggtgta	atgggtgg	tcatcaagag	caaaataatg	ctaatgtat	120
tagtaatccc	accggagccg	gtggacaacc	caataacgaa	agtaagaaaa	aggcagtaaa	180
acttgacttg	gacctcatga	aagaacaaa	gaatgtttgc	accactgtt	atactaaact	240

agtcggaaaa gcaaagagca aattaaacaa attagaaggt gaatcccata aggagtatgt 300
 agctgagaaa acgaaggaga tagatgagaa aaataagaaa tttaacgaga atcttgtaa 360
 aatagagaaa aagaagaaaa ttaaggtcc tgccgatact ggtgcgtgaag tggatgctgt 420
 tgatgatggt gttcggggtg cactatecga ttatcctcc gatatctccg ctatthaagac 480
 tctcacccac gatgtatccg agaaggttc taaaacttgg aagatgtg aggccagtgc 540
 aacagaacac actgatataa aagaaaaagc caccctgctt caagagtctt gcaacggaa 600
 tggcaactc ctagataagt tggccgaata tttaaataat gatacaactc aaaatataa 660
 gaaagaattt gatgaacgca agaagaatct caccttttgg aagacaagg tagaaaataa 720
 ggtatgatgat tttttttttt ttatcatgac atcaaaaaca gatctgatataactgttt 780
 aacttgcaca aacgatgcac acggactgtt tgatccgaa tcgaagagct tgataaaaca 840
 aacccaaaaa ttgaggtcca aagatgaagg tgaactctgc taatttatgat tttagatggg 900
 ccatgtatataat gttaaacagc aagattcatac ttatagaaaag cagtttgatc gataacttca 960
 cttggataa tccatccgca tacggaaattt tacgcgtttc ttataactca aatgaatttc 1020
 aagtacaato accgcagaaac attaacaatg aatggaaatc ttcaacgcggc gaatccaata 1080
 tcatttgggt tttttttttt gatgttataa taaaagggtt caactgtaaa aatcgcaaat 1140
 ctctcagttac tcatttactc actgaaaatg atattctcaaa gtttggccgt atagaactct 1200
 ctgtttaatg tataattatg ggcgcaggta tcactgcate tgatcttaat ctaaaggat 1260
 tgggtttat tagtccagat aaacaatcaa ctaatgtatg taacttattt gaagatatgc 1320
 atgaatctt tcatattttt gatacacaaaa gggcctcgaa ttgtgtatca gatgtatggc 1380
 ctgtatattga tataatccaaat ttgcacatgg tccaaagacgg taacataaaat tctgttgacg 1440
 ctgttctga aacatgtatg gcaactctg gcgttaacggt caataataact gaaaatgtta 1500
 gtaatagtga gaaaaatggaa aataaaaat cattggtaag caccaccact cctttgtgcc 1560
 gtatttgcct gtgtgggtgaa tcagaccctg gccactgtt aaccccttgc aatttgcagg 1620
 ggtccctaaa ttatgtccat cttgaatgcc taaggacttgg gattaaagggg cggttgtca 1680
 ttgtgaagga tgatgtatg tcccttttctt gaaaaggatc atcatgttagt ctatgcggg 1740
 agccgtatcc atccgttccca caagtatgtt atacagagac taatggatgt gatataaaaa 1800
 aaccggatgc accatatgtt gtattggaaa tgatgtcaaa ttctgtgtatg ggggtttcg 1860
 ttgtttctgt agctaaaaat aaggcgatgg tggacgggg gcatggaaatg gacgtttaggt 1920
 tgatgtatg ttcgtgtca cgaatgcgtt cttttttggaa attggatgtt ggaaaaggatg 1980
 tgatacatga ccagcaatct aagtttggta cactcgatgg gccaaagcg cctttttca 2040
 tgcctataaa gggccccatc tgcctacagg taagcattttt cttttgttcaat ttgaaaatata 2100
 ctactcatag tctaaccatg gagagggggca tggaaacatgt cttttctaa tatttccaaa 2160
 aaggatctat gcctgataac cttggatttgg aaggtggctt tctcaagtg agacattcca 2220
 tttctgtgtt tggagctatc tcatctgagg ttagtggctt ggttaaacatt cctagaaaaac 2280
 tcataaagca gaaatctgtg tgcataactaa attgcacaga gaactccacg tgcgtgtctag 2340
 acttcacaga gaactctgtg tgcgtgtctaa actgcataca gaagaaatgtt ttgagtgcat 2400
 catgggttagt gggaaattgtt ttatataaaaa gattttttt ccttaaggtaa cttaggatta 2460
 attttctga aagcttagtt ttgggtggca caattgtgtat cttttttctt cagatggctg 2520
 ggaaggcaatc cccagaaaagc aggtggatc acactacact gcatgtaca ctctgttagac 2580
 taggatgtatc gttttcacac ttatgtaaaata gtcaccatgc tgggcacaaa tatctttta 2640
 tacaccatat attgttcatg ttcagggtccaa catttcaattt tgatgtgaa aagcattccgg 2700
 ggctgtctga taaaacacata gaaatgaagg aacagtgtt tgtaactgaa gccttcagtc 2760
 ctttgcattt tctttgtattc tttagt 2784

<210> 10

<211> 3701

<212> DNA

<213> Babesia microti

<400> 10

acctattttat aatatagtat attactggtt tttttttttttaat cggaaaaatgttattt 60
 aagaatgaaa ttatattttt atcatgatta tcatattttctt aaatattttt atctgtatgtt 120
 ggtgcgttgc atattttttt aaattatgtt tagttagtattt aaaaatgtttt atatataatgtt 180
 agtgcgttgc atcatcatat gtaatattgtt ataaatattt atgtttttttt ggcgtactac 240
 aattaatcaa caattttttt atatcgatgtt agataattttt aataaataat tagataatgtt 300

cttaaggatt	aatgacgaa	tttagaatga	tataataatca	tcataggcat	ttgttataat	360
atcattaatt	atattcatgt	ggttataatt	ataaaagtat	atatagttt	gtattgtaa	420
tgatataaaa	ttagaacaga	tataattaat	aattcaaata	ttatattaat	tttattatat	480
atgattatta	ttgatattta	tataattaca	tattgttatt	gtatcattta	atgattatat	540
atcaatatcc	atataatat	ataataattg	aattataatt	aaattaattg	gcattatca	600
tttataataa	tatattatta	gtcaatatga	catcatattta	tattatccat	cattgattgtg	660
aatgtacta	gaacattgat	tattatatta	aatcacatata	taatactgat	tataataata	720
tcattgataa	tctaataata	tagtattatc	tctaataata	ttgttattatc	tctaataata	780
tggtataata	gatactgtga	aaataaattc	aactggagat	aaggaaacca	ttttgtatag	840
atattttata	caaatttata	tgaaataata	taaataaata	acaaaaaattc	gattatacaa	900
atcacattaa	tgacaaacaa	acttgtatac	atattattgt	taacattaca	aaactaaatt	960
ataatattta	gattgataat	tgttataata	cttaacaata	ttctactttt	taatataatt	1020
ttttattcaa	taatataactc	tttcatattt	tgtaacttattt	tatataatca	tatataattat	1080
ataattatat	atatttgata	attgaatata	tcaataatga	tgatatacat	gaatatgcata	1140
atataccccca	tataatgtta	ttatatttt	tgcttacatt	attaattata	aatatattta	1200
aataattaaa	taataatgaa	aattaacata	gacaatataa	tattatcaa	tttgataata	1260
ttattgaatc	gtaatgtat	atattgtgt	gataaaaaatg	atgtttcatt	atggaaatca	1320
aaacctataa	caactgtcag	taccactaat	gatacttata	caaataaata	cactagtact	1380
gtaattaaatg	ccaattttgc	tagtaccgt	gaatttgagg	atagggacc	tttaacaata	1440
ggatttgaat	acatgatcga	taaattcacaa	caagataaaat	tatcacatcc	aaataaaaatt	1500
gataaaaatca	aaatttctga	ttatataatt	gaatttgatg	acaatgctaa	attaccaact	1560
ggtagtgtta	atgatataatc	catcattact	tgcaagcata	ataatccagt	attaaatttga	1620
ttctcatgtt	taatagaagg	atctatctgc	tattatttct	acttattyaa	taatgataca	1680
aataatggaa	ataatcaca	attaaaat	gataaaaacat	acaatgaaaca	tactgacaat	1740
aatggtatta	attattataa	aatcgattat	agtgaatcta	cagaacctac	taccgaatct	1800
actacctgtt	tttggtttcg	caaaaaaaaaat	cataaatctg	agcgtaaaga	attagaaaaat	1860
tataaatatg	agggtacaga	attagcaaga	atacattgtt	ataaaaggaa	atgtgtaaaa	1920
ttgggtgaca	ttaagataaa	ggataagaat	ttggaaattt	atgtgaaaca	gttaatgtct	1980
gtaaataactc	cagtaaattt	tgacaacccct	acatcgattt	atctaccaac	tgtcagttact	2040
accaatgata	ctattacaa	taaatacact	ggtactataa	ttaatgccaa	tattgttgag	2100
tactgtgaat	ttgaggatga	acctttaaca	atagggttta	gatacactat	agataaaatca	2160
caacaaaata	aattatcaca	tccaaataaa	attgataaaa	tcaaaattttt	tgattatata	2220
attgaatttt	atgatgatgt	taaattacca	acaattggta	ctgtcaatat	tatataatata	2280
tataacttgcg	agcataataa	tccagtatta	gttgaattt	tagttctat	agaagaatct	2340
tactacttt	acttctactc	aatgaataat	aatacaaata	aatggataaa	tcacaaatta	2400
aaatatgata	aaagattcaa	aaaatatact	agaatggta	ttaattgtt	tgaatatgtt	2460
cttcgttaat	gcagttctt	tactcgtaaa	aatgaatatg	agcataaaaga	attagcääaga	2520
atacattgtt	atgaagaaaa	atgtttaat	gttttttttt	ataacattga	gaaaaagaat	2580
ttggaaattt	atgtaaaaata	atttaacgaa	gtgttatatg	taaaaatagtt	taatgaaagta	2640
taatattatt	taaaataatt	caaaatttca	gaaattaata	taattatatt	ttataaataac	2700
aaaataatta	attacaaatg	tgttatgtt	gttattttcag	attgttaata	catattttac	2760
atacattttt	ataaaaactt	tcaaaatttaat	attttcattt	ttataaagcat	tattataatt	2820
atatactata	attatcagtc	atcaaataat	atccaaagtt	atcctctaca	ttatataat	2880
catacagtt	acaatttat	aaaatattaa	caacatataa	caaccaacat	taatataatac	2940
ataatatctt	tattaatcaa	tatttaatca	atacaataat	taatagttaa	cttaactatac	3000
acatagtgtt	tactaaatta	ttataaatta	tatgttataa	ttacaaaaac	gtcattttact	3060
tattttttt	cagttatgtt	tcatactcta	attttagattt	ggtgaaacgc	atctggctga	3120
tgtgtggtg	agcaaggagt	tccacgaagc	aaacaatatg	actgtatgcgc	tgccggcgct	3180
ttctggcg	gttgcgcac	agctgcctt	ccgtgacg	ctgatgcagg	agtagcagcga	3240
caagtggcat	cagaacggtc	ttgtgatgga	taaatggttt	atccgcag	ccaccagccc	3300
ggccggcgaat	gtgctggaga	cggtgcgcgg	cctgttgcag	catacgtcat	ttaccatgag	3360
caaccccgaa	ccgtattcgt	tcgttgcattt	gcccgtttgc	gggcagcaat	ccggcagcgt	3420
tccatgccga	agatggcagc	ggttacctgt	ttctggtgaa	aatgcttacc	gaccccaaca	3480
gcccgtaccc	gcaggtggct	tcaactgt	ttgaaaccgc	gattgcctg	aaacgttacg	3540
atgccaacgc	tcaggagaaa	atgcgcgcgg	cgctgaaaca	gttggaaagg	ctggaaaatc	3600

tctctggcga tctgtacgag aagataacta aagcaactggc ttgataaata accgaatggc 3660
 ggcaatagcg ccgcattcg gggattac ccctgtttt c 3701

<210> 11
 <211> 1287
 <212> DNA
 <213> Babesia microti

<400> 11
 ctctgtccgc tcgtgccat tattataaat atttagttga tgaatatagt ttcctccagg 60
 agggaaagaga atttagcaaga gtacattgtt atgaagaaaa atgtgtaaaa ttggatggca 120
 ttaatgtttaa ggataagaat ttggaaattt atgtgaaaca gttaatgtct gtaaatactc 180
 cagttgtatt tgacaacaat acattgatta atccaacttag cagcagtggt gccactgtat 240
 acataaacata tgaattatcg gtggaatcac aacctgtacc aactaacattt gacacaggta 300
 ataatattac aacaaataca tcaaataata atctaattaa agctaaattt ctttataatt 360
 ttaatctcc tggtaaacct tcaacaggac tatttgaata cactatagat aaatcagaac 420
 aaaataaattt atcacatcca aataaaattt gtaaaatcaa attttctgt tatataattt 480
 aatttgatga tgatgttcaa ttaccaacaa ttggtaactgt caatattata tccatcatta 540
 ctttgcacaa taataatcca gtatttagtt aatttataat ttctacagaa atatattgt 600
 actacaattt ctttctactca atgaataata atacaataaa atggataat cacaattaa 660
 aatatgataa aagatataaa gaagaatata cagatgataa tggtaataat tattataatt 720
 taaaatgtatag tgaacctact gaatctacag atatctactac ctgtttttgt tttcgaaaa 780
 aaaatcataa atatgaaaat gagcgtacag cattagcaaa agaacattgc aatgaagaaaa 840
 gatgtgtaaa ggtagataac attaaggata ataaatttgg aatttatcta aataatttt 900
 acgaagtata atattattta taataattca aattttcaga aattaatata attaattatt 960
 ataaaataca aataattaaat tacaatgtt tatttttagt tatttcatgt tggaaataca 1020
 tattttacat acattttat taaaacttc aatattataat tttcattttt ataagcatta 1080
 ttataattat atactataat tatttttttcat ctttttttataat ctttttttataat 1140
 atatcaatca tacagtataac aattatataa aatattaaca acatataaca accaacattt 1200
 atatatacat aatatttttta ttaatcaata ttaatcaat acaataat aatgttaact 1260
 aactatacac atagtgtata cttaattt 1287

<210> 12
 <211> 572
 <212> DNA
 <213> Babesia microti

<400> 12
 cttcatttgc gtcttatcccc aatcttagaa aatcttcaa atcgattcta gaataactgg 60
 aaacaattat cagaaaattgt ataaactgtt attagtttat tagtttata gtaggtgt 120
 atgcacatgt atgacaacta gatgcacac cacaatcaact accaacttacc aatcatatac 180
 caataatgtt ctaataatgtt accaataactt atggtttata aagatgtgtt cattttaaatc 240
 aatattttttt cttttttttt aatggatgtt gctgtttttt caagtgtatcc 300
 cgatccccaa gctggggcctt ctagtgaage tggggccctt aatggatgtt gctgtttttt 360
 tggaaactgtt gggcccagtg aagctgggtgg gccttagtggaa gctggggcctt ctagtggaaac 420
 tggggccctt aatggatgtt gttttttttt aatggatgtt gggccctt aatggatgtt gaaactgggtgg 480
 gccttagtggaa gctgggtt gttttttttt aatggatgtt ctagtggaaac 540
 aagaatagttt acatttaatg aatggatgtt at 572

<210> 13
 <211> 2338
 <212> DNA
 <213> Babesia microti

<400> 13

ctcgccga atcttagaaa aatctcaaa tcgattctag aataactgga aacaattatc	60
agaaattgt a taactgctt ttagcttatt agcttattag ttaggatgt tgacacattga	120
tgacaactag atgcagcacc acaatcaacta ccacgtacca atcatatacc aataatgtac	180
taataatgt a ccaataacta tggttataa agatgggtc atttaaatca atattagttc	240
cttatattac actcttttta atgagcggtg ctgtcttgc aagtgatacc gatcccgaag	300
ctggggcc tagtggact gttggccca gtgaagctgg tggcctagt gaagctgg	360
ggcctagtgg aactgggtgg cctagtgaag ctggggcc tagtgaagct gggtggccctt	420
gtggaaactgg ttggcctagt gaagctggt ggtctagtga acgatttgg tatcagcttc	480
ttccgtattc tagaagaata gttacattta atgaagttt tttatctt atatacaaac	540
atagtgttat gatattggaa cgagataggg tgaacgatgg tcataaagac tacattgaag	600
aaaaaaaccaa ggagaagaat aaattggaaa aagaattggaa aaaatgttt cctgaacaat	660
attcccttattt gaagaaagaa gaattggcta gaatatttga taatgcattt actatcttt	720
caaataataa gttattgggt gatgaaatat caaaacaaggc ctatggtaca ttggaaaggc	780
cagctgctga taattttgc catttccgtt atatatggaa gtctattgtt cttaaagata	840
tgtttatata ttgtgactt ttattacaac atttaatctt taaattctt atgacaata	900
ccattaatgt a tatcaagaaa aattttgacg aatccaaatc taaagctttt gttttgaggg	960
ataagatcac taaaaaaggac gtgtatgtaa atgatcaactt aacgggctcc acatatctt	1020
tactgggtt gatattataa gttatggata agtaaattt tggcgatagaa ttccaaacaaa	1080
tttgggtt gtagcgacaa tgattatggc tagtgtgtgg agtactttagt agtgaatgtat	1140
tgttagtggtg gctagcagt gatatagtt ggttaatccctt acacacccat tttaaataaaga	1200
tgcaaatagc atttaaattt acatataattt tttgtatgtt cacgttattt gctttccat	1260
gacgtatctg ctgagggtgt tcttgtgtt ctaagtgccca gacacacgcac tttaaattgtt	1320
atggcatgtt cgtatggatgt taaagggtttt tacactccaa aggcaatgtt ttcgtctagg	1380
gaaacgaggg acaagttcga ttttgcataa caaagcaagt ttcactccctt ggacttttaca	1440
ctggatgact ttgatataagg tgcattcgtt gtaaacctca aaatttactt agggcgatgg	1500
tgcccatggg caggtttttt tggcaaggga acgacgtacc ggttttattt gctgtttaaa	1560
atgcattttt aaatcacaac ttgtgaagta attgcataat aatcacacag aaatggacag	1620
gaagctattt tcaagcggga aatcaattt caccggcattt tgagacatcc aaacatagca	1680
tggatgtac atatttatttcc agcttgtata cctggttcac tagccctact atgatattca	1740
tagtgcattt aatggcgatc tatttaattt tatgtcaaaa catggccaac	1800
tgcatttgcattt aagggtatca gatgtatcattt atatttacat agaattttgt tgcatttgcattt	1860
ttggccattt agaagctgcc acgacaaacg catagcgcac ttggatattt aaccagtaag	1920
gttctatgtt acagaggaga atatattttt ggaccatgaa aacagggtt aattggcgga	1980
ctttggattt tctgcacaca tagggcattt gtaccgcattt aacggagtgc tcatcatcgt	2040
ggcacgcattt gtaacacgcattt attwatggca gattattggt ctccggagca gtgtgccaat	2100
catttgggtt tgggggtt gatggggag tttatgtt gaaacatgtt aatggcgatc	2160
ggcatattttt cagttgaattt gtttattttt taccctccat ttggatctt tactgaagag	2220
cccaacaatgt tgattatgtt gagaatccac acttaccactt ggacaaaaca tttttttt	2280
tctattacgc agatttttt gatgttgcattt aatgttgcattt gacgcctt gacgcctt	2338

<210> 14

<211> 729

<212> DNA

<213> Babesia microti

<400> 14

ttgcctggac cttctctgtc ctagaatttac aggaattctt ttatactgtt taataaaaa	60
cacttggaaat aatttccatca attgcatatg aacatggaa tccaaagagac caaaattttaa	120
aaccttggaaa tagaaggact tatgccaata tggaaattt ctttagtgcag tgatccaaag	180
tactgttttgc gtcagaagac atcaccagggtt cactagctgg ccttagtgcacc tgatgttttgc	240
tggaaatgtt tttttatgtt gagaacatgtt aggaaggactt attgaggtttt gttttatgtt	300
tagattatgtt tagaaggccaa ctgagacccaa gaaatgttgc gtaggtttt gttttatgtt	360
tgggtggatca ttgcattttttt gttttatgtt gttttatgtt gttttatgtt gttttatgtt	420
cttggggcat gactatgtttt gttttatgtt gttttatgtt gttttatgtt gttttatgtt	480
ctaaatgggg gatgttgcattt tttttatgtt gttttatgtt gttttatgtt gttttatgtt	540

agctattgaa taagagcatc tatatccctt gcttcttggc tatggatgtt atgtgactag	600
tcatctctta gtcttacctt caccattata acaagatttt ctagaacttt gggttaaatt	660
aaatccctta ttccctcacgt tgctgtctta gttactttcc tggctttg ataaaggcatt	720
ctggccaag	729

<210> 15

<211> 1448

<212> DNA

<213> Babesia microti

<400> 15

acatgttgac ttttggaaat atacgttttc ataataaaaa tttccacca ttttcttgg	60
gcataattca ctgcattacg gtagaaaaagg cgattaactc tgaagatttt gacggaatac	120
aaacactttt acaagtgtct atcattgcta gttacggtcc atctggcgat tacagtagtt	180
tttgttccac tccagttgta acagcagaca ccaacgtttt ttacaaatta gagacggatt	240
tcaaacttga tggtgatgtt attactaaga catcaactaga attgcccaca agtggccctg	300
gcttcacta caccgaaact atttaccaag gcacagaatt gtcaaaaattt agcaaggcctc	360
agtgc当地 act taacgatctt cctattacaa caggatcggg gttgcaata atacatgtat	420
gtttgaataa ttgcacaattt ataaaccaaca aagaagttaa tggatggaa acagatttag	480
tttttttga attgctccctt ccattccatg gcattccca' cttgc当地 aaatttatttc	540
ccgtccctgaa atcaattcca atgatatcta ccggggttaa tgaattactg ttggaaagtac	600
tcggagaaccc ctcttcctt agtgc当地tta gcaatttacac cggactgaca ggccgactta	660
acaaaattact tacagttttt gacggattttt ttgatagcgc cattagtgat aagactacag	720
aaactgtccc tgacgacgca gaaacttcta ttcttcattt gaaatcattt gataaaaggca	780
tacgagataa tattactacc actcgaaacg aagttaccaa agatgtatgtt tatgc当地tta	840
agaaggccctt cacttgc当地tta acgacacacc taatataatca ttcaaaaatgat gatggatata	900
cattcgacat gctggaaaca caaaaaaaa aatctagccc actaggcaag atcgjgaaacgt	960
ctatggacga tattatagcc atgttttgc当地tta atccccatat gtatcttgc当地tta aagggtggcgt	1020
acttgc当地tta cattgaacac attttctca tatcaaccaa atacaatgtat atatttgc当地tta	1080
acaccattga ttttagttaa cgtaagacta ctgattctgg atcatttacc gatataattgc当地tta	1140
tcggaaacaa ggtgaaggaa tctttgtcat ttatttgc当地tta gatggatggg tttgatttgc当地tta gacataaaaat	1200
ctcaactcatt gaaagctggg gttacaggag gtagatcaag ttcatcatta ttgtatgaa	1260
tcttc当地tta gttaaatttt gatcaagcaa caatttgc当地tta ctttgc当地tta ccatttgc当地tta	1320
ggccacttat ctcagacaaa agcctccacc cttcactgaa gatgggtgtt gtcctgccc当地tta	1380
gattttcat agttcccttaa taacatgaca ttccatagtc cttcactgaa tgatgacaag	1440
acggtgaa	1448

<210> 16

<211> 1350

<212> DNA

<213> Babesia microti

<400> 16

gcctaagccc aaatgggatt taagcaggag gggataaaaac agatgacctc caccatgcc	60
tactaactct aagctaagga aatccagccct gctggctatt tacctgtttt cttcgaagtg	120
aaaggccaga gtcacccccc atcttccca aaagattgaa gtcactctctt ccatgcccggc	180
aaaggttagat ggtgc当地tta gggatccatgaa tattcataag gtagtagaca attttactct	240
ggatgttagtc ctggactctg ttgaccagaa atctctggcc tacattaatc accttgc当地tta	300
agacagatcc cttaggacaga gtagaaaaagag caattttatg gtcagaaaat ctgaaaacttag	360
gagttgtggca agcaaggggg caaggttccatc agcaccttagt gacaatccca gcaacttagaa	420
ggcttagctg gaaggggctt aggtttgacc ctgactcaag acaaaatgaaac atatgaaaag	480
tatggggaga atgatcttgc当地tta tatttgc当地tta tagggccatca tcagcttattc cttctctccc	540
tgtc当地tta gatccatgccc atctctgtcc gaatttgc当地tta cgagctcgat cccggccatc	600
ccctaaacc ctaaaaccctt aaccctaaac cctaaaccctt aaaccctaaac ccctaaacc	660
taaaccctaa accctaaaccc ccctaaaccctt taaaaccctaa accctaaacc ctaaaaccctt	720

aaccctaacc ctaaccctaa ccctaaccct aacctagcct tcattgacgt ctatccccaa 780
 tcttagaaga atcttcaaata cgattctaga ataactggaa acaattatca gaaattgtat 840
 aactgcttat tagtttatta gcttattatg taggatgtat gcacattgtat gacaactaga 900
 tgcagcacca caatcaactac cacgtacccaa tcatatacca ataatgtact aataatgtac 960
 caataactat gtttataaaa gatgggtgtca tttaaatcaa tattagttcc ttatattaca 1020
 ctcttttaa tgagcgggtgc tgctttgc agtgataccg atcccgaagc tggtgggcct 1080
 agtgaagctg gtgggcctag tggaaactgtt gggcccagtg aagctggtgg gcctagtgaa 1140
 gctgggtggc ctatgtggac tgggtggcct agtgaagctg gtgggcctag tgaagctgg 1200
 gggccctagtg aagctggtgg gcctagtgaa gctgggtggc ctatgtggac tgggtggcct 1260
 agtggaaactg gttggcctag tgaagctggt gggtcttagtg aacgatttgg atatcagctt 1320
 cttccgttatt ctagaagaat agttatattt 1350

<210> 17

<211> 1820

<212> DNA

<213> Babesia microti

<400> 17

ggaaaggcctt aaacatgcattt gggaaaataatg aaatagtaaa aattgcagcc atggcaatgt 60
 aataatgagt gatatgttca gtcttggggc ttcttaacaa gagtgttgto ttgttgttcaa 120
 agacaaaatgtt attcgcatg ccgcatttcgc agccaccatc atcatcaggc gacgacgggt 180
 ctcttcattt atcctcgggc ttattattgc aaccatgaca cccttcctta caaaagtctt 240
 ttttttcag cggtgtctga gtattatgcg attttattcc agccttccca ctitttattct 300
 tatttagattt gccatgtct tcttcattgag cgtcaattgtt ttccctgcgt gtctgagttat 360
 catacgattt tattccagca ttccactttt tattcttattt gattttgca tgcccttcctt 420
 cacactcttc acatatttct tgcgttgtct gatgtatcatg cgattttctt tcagccttct 480
 cacttttattt cgtatttattt ttgtcatgcc cttcttcattt agcgtcaattt gtttccctgcg 540
 gtgtctgagt atcatacgat ttatccatg catttccactt ttattcttta ttgattttgtt 600
 catgcccattt ttcacactt tcacatattt ttgcgttgtt ctgagttatca tacgattttt 660
 ttccagcattt tccacttttta ttcttattga ttgttgcattt cccttcatttca cacttttac 720
 atatttcttgc cgttgcatttgc gtatcatgcg atttttttccatg agccttctca cttttatttgc 780
 tattgggtttt gccatgcctt tcttcattgc ctcatatattt ttcttgcctt gtttgttca 840
 gtaagttgtc aagcttccatgatatttccatg ggggtgtctg agtacatgc gattttttttt 900
 cagtttttccatc acttttatttgc tatttgcatttgc ttcttcatttgc tcgtcaatttgc 960
 ttcttgcgc cgttagtctc attaaggatgtt caagcttccatc atcatcttgc atcatcttgc 1020
 gagctgtatc ttcccaagggtt ggttgcatttgc ttgttgcatttgc gccgatttttta aatgtatgtt 1080
 cttecatcattt tatatcatttgc gccatgtctg agtgggtgcctt taatcttgc aatgtatgtt 1140
 gtaccccttc atccaaactt tcggcaaca ccctggatc agaatttccatg ttttgcgtgc 1200
 gtcactatc gcaaggcttgc ttttgcatttgc ttgttgcatttgc tcaacatgtatc 1260
 cagattctga atcccgatggaa ttttgcatttgc aatgtatgtt gtttgcatttgc 1320
 aagtatcattt ttcatcttgc atctgttgcatttgc ttgttgcatttgc aatgtatgtt 1380
 ggtgtcttctt ttcccaacat aatatcttgc aatgtatgttgc aatgtatgtt 1440
 accagacatgc atccggatc ttttgcatttgc ttgttgcatttgc aatgtatgtt 1500
 agtccaaggatc ttttgcatttgc ttgttgcatttgc aatgtatgtt 1560
 aacatcttgc actgtatgttgc gcatgtatc ttcttgcatttgc ttgttgcatttgc 1620
 agcccttgcata caaggcttgc ttccacttgc aatgtatgttgc ttttgcatttgc 1680
 gatgtcttgc ttcccaacat aatgtatgttgc ttttgcatttgc ttgttgcatttgc 1740
 tggagccaaa attggaggtt ccatttgcatttgc ttgttgcatttgc ttgttgcatttgc 1800
 ggtggggctt actcgtgcctt 1820

<210> 18

<211> 263

<212> PRT

<213> Babesia microti

<400> 18

Leu Phe Leu Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp Pro Glu
 1 5 10 15
 Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro
 20 25 30
 Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly
 35 40 45
 Trp Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu
 50 55 60
 Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro
 65 70 75 80
 Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Ser Ser Glu Arg Phe
 85 90 95
 Gly Tyr Gln Leu Leu Pro Tyr Ser Arg Arg Ile Val Ile Phe Asn Glu
 100 105 110
 Val Cys Leu Ser Tyr Ile Tyr Lys His Ser Val Met Ile Leu Glu Arg
 115 120 125
 Asp Arg Val Asn Asp Gly His Lys Asp Tyr Ile Glu Glu Lys Thr Lys
 130 135 140
 Glu Lys Asn Lys Leu Lys Lys Glu Leu Glu Lys Cys Phe Pro Glu Gln
 145 150 155 160
 Tyr Ser Leu Met Lys Lys Glu Glu Leu Ala Arg Ile Phe Asp Asn Ala
 165 170 175
 Ser Thr Ile Ser Ser Lys Tyr Lys Leu Leu Val Asp Glu Ile Ser Asn
 180 185 190
 Lys Ala Tyr Gly Thr Leu Glu Gly Pro Ala Ala Asp Asn Phe Asp His
 195 200 205
 Phe Arg Asn Ile Trp Lys Ser Ile Val Leu Lys Asp Met Phe Ile Tyr
 210 215 220
 Cys Asp Leu Leu Leu Gln His Leu Ile Tyr Lys Phe Tyr Tyr Asp Asn
 225 230 235 240
 Thr Val Asn Asp Ile Lys Lys Asn Phe Asp Glu Ser Lys Ser Lys Ala
 245 250 255
 Leu Val Leu Arg Asp Lys Ile
 260

<210> 19

<211> 310

<212> PRT

<213> Babesia microti

<400> 19

Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp Pro Glu Ala Gly Gly
 1 5 10 15
 Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala
 20 25 30
 Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser
 35 40 45
 Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp
 50 55 60
 Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr
 65 70 75 80
 Val Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser
 85 90 95
 Gly Thr Gly Trp Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly

100	105	110
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr		
115	120	125
Gly Trp Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Ser Ser		
130	135	140
Glu Arg Phe Gly Tyr Gln Leu Leu Pro Tyr Ser Arg Arg Ile Val Ile		
145	150	155
Phe Asn Glu Val Cys Leu Ser Tyr Ile Tyr Lys His Ser Val Met Ile		
165	170	175
Leu Glu Arg Asp Arg Val Asn Asp Gly His Lys Asp Tyr Ile Glu Glu		
180	185	190
Lys Thr Lys Glu Lys Asn Lys Leu Lys Lys Glu Leu Glu Lys Cys Phe		
195	200	205
Pro Glu Gln Tyr Ser Leu Met Lys Lys Glu Glu Leu Ala Arg Ile Phe		
210	215	220
Asp Asn Ala Ser Thr Ile Ser Ser Lys Tyr Lys Leu Leu Val Asp Glu		
225	230	235
Ile Ser Asn Lys Ala Tyr Gly Thr Leu Glu Gly Pro Ala Ala Asp Asn		
245	250	255
Phe Asp His Phe Arg Asn Ile Trp Lys Ser Ile Val Leu Lys Asp Met		
260	265	270
Phe Ile Tyr Cys Asp Leu Leu Leu Gln His Leu Ile Tyr Lys Phe Tyr		
275	280	285
Tyr Asp Asn Thr Val Asn Asp Ile Lys Lys Asn Phe Asp Glu Ser Trp		
290	295	300
Thr Gln Thr Leu Lys Glu		
305	310	

<210> 20

<211> 367

<212> PRT

<213> Babesia microti

<400> 20

Leu Trp Phe Ile Lys Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr		
1	5	10
Ile Thr Leu Phe Leu Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp		
20	25	30
Pro Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Val		
35	40	45
Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly		
50	55	60
Thr Gly Trp Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro		
65	70	75
Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly		
85	90	95
Trp Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Ser Ser Glu		
100	105	110
Arg Phe Gly Tyr Gln Leu Leu Pro Tyr Ser Arg Arg Ile Val Ile Phe		
115	120	125
Asn Glu Val Cys Leu Ser Tyr Ile Tyr Lys His Ser Val Met Ile Leu		
130	135	140
Glu Arg Asp Arg Val Asn Asp Gly His Lys Asp Tyr Ile Glu Glu Lys		
145	150	155
Thr Lys Glu Lys Asn Lys Leu Lys Glu Leu Glu Lys Cys Phe Pro		

165	170	175
Glu Gln Tyr Ser Leu Met Lys Lys	Glu Glu Leu Ala Arg Ile Phe Asp	
180	185	190
Asn Ala Ser Thr Ile Ser Ser Lys Tyr Lys	Leu Leu Val Asp Glu Ile	
195	200	205
Ser Asn Lys Ala Tyr Gly Thr	Leu Glu Gly Pro Ala Ala Asp Asn Phe	
210	215	220
Asp His Phe Arg Asn Ile Trp Lys Ser Ile	Val Leu Lys Asp Met Phe	
225	230	235
Ile Tyr Cys Asp Leu Leu Gln His	Leu Ile Tyr Lys Phe Tyr Tyr	
245	250	255
Asp Asn Thr Val Asn Asp Ile Lys Lys Asn Phe Asp Glu Ser Lys Ser		
260	265	270
Lys Ala Leu Val Leu Arg Asp Lys Ile Thr Lys Lys Asp Gly Asp Tyr		
275	280	285
Asn Thr His Phe Glu Asp Met Ile Lys Glu Leu Asn Ser Ala Ala Glu		
290	295	300
Glu Phe Asn Lys Ile Val Asp Ile Met Ile Ser Asn Ile Gly Asp Tyr		
305	310	315
Asp Glu Tyr Asp Ser Ile Ala Ser Phe Lys Pro Phe Leu Ser Met Ile		
325	330	335
Thr Glu Ile Thr Lys Ile Thr Lys Val Ser Asn Val Ile Ile Pro Gly		
340	345	350
Ile Lys Ala Leu Thr Leu Thr Val Phe Leu Ile Phe Ile Thr Lys		
355	360	365

<210> 21

<211> 492

<212> PRT

<213> Babesia microti

<400> 21

Met Tyr Lys Ile Lys Ile Ser Asp Tyr Ile Ile Glu Phe Asp Asp Asn		
1	5	10
Ala Lys Leu Pro Thr Asp Asn Val Ile Gly Ile Ser Ile Tyr Thr Cys		
20	25	30
Glu His Asn Asn Pro Val Leu Ile Glu Phe Tyr Val Ser Lys Lys Gly		
35	40	45
Ser Ile Cys Tyr Tyr Phe Tyr Ser Met Asn Asn Asp Thr Asn Lys Trp		
50	55	60
Asn Asn His Ile Lys Tyr Asp Lys Arg Phe Asn Glu His Thr Asp		
65	70	75
80		
Met Asn Gly Ile His Tyr Tyr Tyr Ile Asp Gly Ser Leu Leu Ala Ser		
85	90	95
Gly Glu Val Thr Ser Asn Phe Arg Tyr Ile Ser Lys Glu Tyr Glu Tyr		
100	105	110
Glu His Thr Glu Leu Ala Lys Glu His Cys Lys Lys Glu Lys Cys Val		
115	120	125
Asn Val Asp Asn Ile Glu Asp Asn Asn Leu Lys Ile Tyr Ala Lys Gln		
130	135	140
Phe Lys Ser Val Val Thr Thr Pro Ala Asp Val Ala Gly Val Ser Asp		
145	150	155
Gly Phe Phe Ile Arg Gly Gln Asn Leu Gly Ala Val Gly Ser Val Asn		
165	170	175
Glu Gln Pro Asn Thr Val Gly Met Ser Leu Glu Gln Phe Ile Lys Asn		

180	185	190
Glu Leu Tyr Ser Phe Ser Asn Glu Ile Tyr His Thr Ile Ser Ser Gln		
195	200	205
Ile Ser Asn Ser Phe Leu Ile Met Met Ser Asp Ala Ile Val Lys His		
210	215	220
Asp Asn Tyr Ile Leu Lys Lys Glu Gly Glu Gly Cys Glu Gln Ile Tyr		
225	230	235
Asn Tyr Glu Glu Phe Ile Glu Lys Leu Arg Gly Ala Arg Ser Glu Gly		
240	245	250
Asn Asn Met Phe Gln Glu Ala Leu Ile Arg Phe Arg Asn Ala Ser Ser		
255	260	265
Glu Glu Met Val Asn Ala Ala Ser Tyr Leu Ser Ala Ala Leu Phe Arg		
270	275	280
Tyr Lys Glu Phe Asp Asp Glu Leu Phe Lys Lys Ala Asn Asp Asn Phe		
285	290	295
Gly Arg Asp Asp Gly Tyr Asp Phe Asp Tyr Ile Asn Thr Lys Lys Glu		
300	305	310
Leu Val Ile Leu Ala Ser Val Leu Asp Gly Leu Asp Leu Ile Met Glu		
315	320	325
Arg Leu Ile Glu Asn Phe Ser Asp Val Asn Asn Thr Asp Asp Ile Lys		
330	335	340
Lys Ala Phe Asp Glu Cys Lys Ser Asn Ala Ile Ile Leu Lys Lys Lys		
345	350	355
Ile Leu Asp Asn Asp Glu Asp Tyr Lys Ile Asn Phe Arg Glu Met Val		
360	365	370
Asn Glu Val Thr Cys Ala Asn Thr Lys Phe Glu Ala Leu Asn Asp Leu		
375	380	385
Ile Ile Ser Asp Cys Glu Lys Lys Gly Ile Lys Ile Asn Arg Asp Val		
390	395	400
405	410	415
Ile Ser Ser Tyr Lys Leu Leu Ser Thr Ile Thr Tyr Ile Val Gly		
420	425	430
Ala Gly Val Glu Ala Val Thr Val Ser Val Ser Ala Thr Ser Asn Gly		
435	440	445
Thr Glu Ser Gly Gly Ala Gly Ser Gly Thr Gly Thr Ser Val Ser Ala		
450	455	460
Thr Ser Thr Leu Thr Gly Asn Gly Gly Thr Glu Ser Gly Gly Thr Ala		
465	470	475
Gly Thr Thr Ser Ser Gly Thr Trp Phe Gly Lys		
480	485	490

<210> 22

<211> 138

<212> PRT

<213> Babesia microti

<400> 22

Ser Leu Gly Gln Pro Ala Ser Leu Gly Gln Pro Ala Ser Leu Gly Gln

1 5 10 15

Pro Ala Ser Leu Gly Gln Pro Ala Ser Leu Gly Gln Pro Ala Ser Leu

20 25 30

Gly Gln Pro Val Pro Leu Gly Pro Pro Ala Ser Leu Gly Pro Pro Ala

35 40 45

Ser Leu Gly Pro Pro Ala Ser Leu Gly Gln Pro Val Pro Leu Gly Pro

50 55 60

Pro Ala Ser Leu Gly Pro Pro Ala Ser Leu Gly Pro Pro Ala Ser Leu

65	70	75	80
Gly Pro Pro Ala Ser Leu Gly Pro Pro Ala Ser Leu Gly Pro Pro Ala			
85	90	95	
Ser Leu Gly Pro Pro Ala Ser Leu Gly Pro Pro Ala Ser Leu Gly Pro			
100	105	110	
Thr Val Pro Leu Gly Pro Pro Ala Ser Arg Ser Val Ser Pro Ala Lys			
115	120	125	
Thr Ala Pro Leu Ile Lys Lys Ser Val Ile			
130	135		
<210> 23			
<211> 303			
<212> PRT			
<213> Babesia microti			
<400> 23			
Leu Trp Phe Ile Lys Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr			
1	5	10	15
Ile Thr Leu Phe Leu Met Ser Gly Ala Val Phe Ala Gly Asp Thr Asp			
20	25	30	
Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala Gly			
35	40	45	
Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu			
50	55	60	
Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro			
65	70	75	80
Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly			
85	90	95	
Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu			
100	105	110	
Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro			
115	120	125	
Ser Glu Arg Phe Gly Tyr Gln Leu Leu Trp Tyr Ser Arg Arg Ile Val			
130	135	140	
Ile Phe Asn Glu Ile Tyr Leu Ser His Ile Tyr Glu His Ser Val Met			
145	150	155	160
Ile Leu Glu Arg Asp Arg Val Asn Asp Gly His Lys Asp Tyr Ile Glu			
165	170	175	
Glu Lys Thr Lys Glu Lys Asn Lys Leu Lys Lys Glu Leu Glu Lys Cys			
180	185	190	
Phe Pro Glu Gln Tyr Ser Leu Met Lys Lys Glu Glu Leu Ala Arg Ile			
195	200	205	
Ile Asp Asn Ala Ser Thr Ile Ser Ser Lys Tyr Lys Leu Leu Val Asp			
210	215	220	
Glu Ile Ser Asn Lys Ala Tyr Gly Thr Leu Glu Gly Pro Ala Ala Asp			
225	230	235	240
Asp Phe Asp His Phe Arg Asn Ile Trp Lys Ser Ile Val Pro Lys Asn			
245	250	255	
Met Phe Leu Tyr Cys Asp Leu Leu Leu Lys His Leu Ile Arg Lys Phe			
260	265	270	
Tyr Cys Asp Asn Thr Ile Asn Asp Ile Lys Lys Asn Phe Asp Asp Ile			
275	280	285	
Glu Lys Leu Gly Cys Phe Gln Ala Arg Ser Phe Leu Pro Val Asn			
290	295	300	

<210> 24

<211> 592

<212> PRT

<213> Babesia microti

<400> 24

Met Met Lys Phe Asn Ile Asp Lys Ile Ile Leu Ile Asn Leu Ile Val
1 5 10 15
Leu Leu Asn Arg Asn Val Val Tyr Cys Val Asp Thr Asn Asn Ser Ser
20 25 30
Leu Ile Glu Ser Gln Pro Val Thr Thr Asn Ile Asp Thr Asp Asn Thr
35 40 45
Ile Thr Thr Asn Lys Tyr Thr Gly Thr Ile Ile Asn Ala Asn Ile Val
50 55 60
Glu Tyr Arg Glu Phe Glu Asp Glu Pro Leu Thr Ile Gly Phe Arg Tyr
65 70 75 80
Thr Ile Asp Lys Ser Gln Gln Asn Lys Leu Ser His Pro Asn Lys Ile
85 90 95
Asp Lys Ile Lys Phe Ser Asp Tyr Ile Ile Glu Phe Asp Asp Asn Ala
100 105 110
Lys Leu Pro Thr Asp Asn Val Ile Cys Ile Ser Ile Tyr Thr Cys Lys
115 120 125
His Asn Asn Pro Val Leu Ile Arg Phe Ser Cys Ser Ile Glu Lys Tyr
130 135 140
Tyr Tyr His Tyr Phe Tyr Ser Met Asn Asn Asp Thr Asn Lys Trp Asn
145 150 155 160
Asn His Lys Leu Lys Tyr Asp Lys Thr Tyr Asn Glu Tyr Thr Asp Asn
165 170 175
Asn Gly Val Asn Tyr Tyr Lys Ile Tyr Tyr Ser Asp Lys Gln Asn Ser
180 185 190
Pro Thr Asn Gly Asn Glu Tyr Glu Asp Val Ala Leu Ala Arg Ile His
195 200 205
Cys Asn Glu Glu Arg Cys Ala Asn Val Lys Val Asp Lys Ile Lys Tyr
210 215 220
Lys Asn Leu Glu Ile Tyr Val Lys Gln Leu Gly Thr Ile Ile Asn Ala
225 230 235 240
Asn Ile Val Glu Tyr Leu Val Phe Glu Asp Glu Pro Leu Thr Ile Gly
245 250 255
Phe Arg Tyr Thr Ile Asp Lys Ser Gln Gln Asn Glu Leu Ser His Pro
260 265 270
Asn Lys Ile Tyr Lys Ile Lys Phe Ser Asp Tyr Ile Ile Glu Phe Asp
275 280 285
Asp Asp Ala Lys Leu Thr Thr Ile Gly Thr Val Glu Asp Ile Thr Ile
290 295 300
Tyr Thr Cys Lys His Asn Asn Pro Val Leu Ile Arg Phe Ser Cys Ser
305 310 315 320
Ile Glu Lys Tyr Tyr Tyr Tyr Phe Tyr Ser Met Asn Asn Asn Thr
325 330 335
Asn Lys Trp Asn Asn His Asn Leu Lys Tyr Asp Asn Arg Phe Lys Glu
340 345 350
His Ser Asp Lys Asn Gly Ile Asn Tyr Tyr Glu Ile Ser Ala Phe Lys
355 360 365
Trp Ser Phe Ser Cys Phe Phe Val Asn Lys Tyr Glu His Lys Glu Leu
370 375 380
Ala Arg Ile His Cys Asn Glu Glu Arg Cys Ala Asn Val Lys Val Asp

385	390	395	400
Lys Ile Lys Tyr Lys Asn Leu Glu Ile Tyr Val Lys Gln Leu Gly Thr			
405	410	415	
Ile Ile Asn Ala Asn Ile Val Glu Tyr Leu Val Phe Glu Asp Glu Pro			
420	425	430	
Leu Thr Ile Gly Phe Arg Tyr Thr Ile Asp Lys Ser Gln Gln Asn Glu			
435	440	445	
Leu Ser His Pro Asn Lys Ile Tyr Lys Ile Lys Phe Ser Asp Tyr Ile			
450	455	460	
Ile Glu Phe Asp Asp Asp Ala Lys Leu Thr Thr Ile Gly Thr Val Glu			
465	470	475	480
Asp Ile Thr Ile Tyr Thr Cys Lys His Asn Asn Pro Val Leu Ile Arg			
485	490	495	
Phe Ser Cys Ser Ile Glu Lys Tyr Tyr Tyr Tyr Phe Tyr Ser Met			
500	505	510	
Asn Asn Asn Thr Asn Lys Trp Asn Asn His Asn Leu Lys Tyr Asp Asn			
515	520	525	
Arg Phe Lys Glu His Ser Asp Lys Asn Gly Ile Asn Tyr Tyr Glu Ile			
530	535	540	
Ser Ala Phe Lys Trp Ser Phe Ser Cys Phe Phe Val Asn Lys Tyr Glu			
545	550	555	560
His Lys Glu Leu Ala Arg Ile His Cys Asn Glu Glu Lys Cys Val Asn			
565	570	575	
Val Lys Val Asp Asn Ile Gly Asn Lys Asn Leu Glu Ile Tyr Val Lys			
580	585	590	

<210> 25

<211> 463

<212> PRT

<213> Babesia microti

<400> 25

Ile Ile Met Lys Ile Asn Ile Asp Asn Ile Ile Leu Ile Asn Leu Ile			
1	5	10	15
Ile Leu Leu Asn Arg Asn Val Val Tyr Cys Val Asp Lys Asn Asp Val			
20	25	30	
Ser Leu Trp Lys Ser Lys Pro Ile Thr Thr Val Ser Thr Thr Asn Asp			
35	40	45	
Thr Ile Thr Asn Lys Tyr Thr Ser Thr Val Ile Asn Ala Asn Phe Ala			
50	55	60	
Ser Tyr Arg Glu Phe Glu Asp Arg Glu Pro Leu Thr Ile Gly Phe Glu			
65	70	75	80
Tyr Met Ile Asp Lys Ser Gln Gln Asp Lys Leu Ser His Pro Asn Lys			
85	90	95	
Ile Asp Lys Ile Lys Ile Ser Asp Tyr Ile Ile Glu Phe Asp Asp Asn			
100	105	110	
Ala Lys Leu Pro Thr Gly Ser Val Asn Asp Ile Ser Ile Ile Thr Cys			
115	120	125	
Lys His Asn Asn Pro Val Leu Ile Arg Phe Ser Cys Leu Ile Glu Gly			
130	135	140	
Ser Ile Cys Tyr Tyr Phe Tyr Leu Leu Asn Asn Asp Thr Asn Lys Trp			
145	150	155	160
Asn Asn His Lys Leu Lys Tyr Asp Lys Thr Tyr Asn Glu His Thr Asp			
165	170	175	
Asn Asn Gly Ile Asn Tyr Tyr Lys Ile Asp Tyr Ser Glu Ser Thr Glu			

180	185	190
Pro Thr Thr Glu Ser Thr Thr Cys Phe Cys	Phe Arg Lys Lys Asn His	
195	200	205
Lys Ser Glu Arg Lys Glu Leu Glu Asn Tyr Lys Tyr	Glu Gly Thr Glu	
210	215	220
Leu Ala Arg Ile His Cys Asn Lys Gly Lys Cys Val	Lys Leu Gly Asp	
225	230	235
Ile Lys Ile Lys Asp Lys Asn Leu Glu Ile Tyr Val	Lys Gln Leu Met	
245	250	255
Ser Val Asn Thr Pro Val Asn Phe Asp Asn Pro Thr Ser	Ile Asn Leu	
260	265	270
Pro Thr Val Ser Thr Thr Asn Asp Thr Ile Thr Asn Lys	Tyr Thr Gly	
275	280	285
Thr Ile Ile Asn Ala Asn Ile Val Glu Tyr Cys Glu	Phe Glu Asp Glu	
290	295	300
Pro Leu Thr Ile Gly Phe Arg Tyr Thr Ile Asp Lys Ser	Gln Gln Asn	
305	310	315
Lys Leu Ser His Pro Asn Lys Ile Asp Lys Ile Lys	Phe Phe Asp Tyr	
325	330	335
Ile Ile Glu Phe Asp Asp Asp Val Lys Leu Pro Thr Ile	Gly Thr Val	
340	345	350
Asn Ile Ile Tyr Ile Tyr Thr Cys Glu His Asn Asn Pro	Val Leu Val	
355	360	365
Glu Phe Ile Val Ser Ile Glu Glu Ser Tyr Tyr Phe	Tyr Phe Tyr Ser	
370	375	380
Met Asn Asn Asn Thr Asn Lys Trp Asn Asn His Lys	Leu Lys Tyr Asp	
385	390	395
Lys Arg Phe Lys Lys Tyr Thr Lys Asn Gly Ile Asn Cys	Tyr Glu Tyr	
405	410	415
Val Leu Arg Lys Cys Ser Ser Tyr Thr Arg Lys Asn Glu	Tyr Glu His	
420	425	430
Lys Glu Leu Ala Arg Ile His Cys Asn Glu Glu Lys Cys	Val Asn Val	
435	440	445
Lys Val Asp Asn Ile Glu Lys Lys Asn Leu Glu Ile	Tyr Val Lys	
450	455	460

<210> 26

<211> 297

<212> PRT

<213> Babesia microti

<400> 26

Arg Ala Ala Arg Ala Asp Tyr Tyr Lys Tyr	Leu Val Asp Glu Tyr Ser		
1	5	10	15
Ser Pro Arg Glu Glu Arg Glu Leu Ala Arg Val His	Cys Asn Glu Glu		
20	25	30	
Lys Cys Val Lys Leu Asp Gly Ile Lys Phe Lys Asp	Lys Asn Leu Glu		
35	40	45	
Ile Tyr Val Lys Gln Leu Met Ser Val Asn Thr Pro	Val Val Phe Asp		
50	55	60	
Asn Asn Thr Leu Ile Asn Pro Thr Ser Ser Ser Gly	Ala Thr Asp Asp		
65	70	75	80
Ile Thr Tyr Glu Leu Ser Val Glu Ser Gln Pro Val	Pro Thr Asn Ile		
85	90	95	
Asp Thr Gly Asn Asn Ile Thr Thr Asn Thr Ser Asn	Asn Leu Ile		

100	105	110
Lys Ala Lys Phe Leu Tyr Asn Phe Asn Leu Pro Gly Lys Pro Ser Thr		
115	120	125
Gly Leu Phe Glu Tyr Thr Ile Asp Lys Ser Glu Gln Asn Lys Leu Ser		
130	135	140
His Pro Asn Lys Ile Asp Lys Ile Lys Phe Ser Asp Tyr Ile Ile Glu		
145	150	155
Phe Asp Asp Asp Ala Lys Leu Pro Thr Ile Gly Thr Val Asn Ile Ile		
165	170	175
Ser Ile Ile Thr Cys Lys His Asn Asn Pro Val Leu Val Glu Phe Ile		
180	185	190
Val Ser Thr Glu Ile Tyr Cys Tyr Tyr Asn Tyr Phe Tyr Ser Met Asn		
195	200	205
Asn Asn Thr Asn Lys Trp Asn Asn His Lys Leu Lys Tyr Asp Lys Arg		
210	215	220
Tyr Lys Glu Glu Tyr Thr Asp Asp Asn Gly Ile Asn Tyr Tyr Lys Leu		
225	230	235
Asn Asp Ser Glu Pro Thr Glu Ser Thr Glu Ser Thr Thr Cys Phe Cys		
245	250	255
Phe Arg Lys Lys Asn His Lys Tyr Glu Asn Glu Arg Thr Ala Leu Ala		
260	265	270
Lys Glu His Cys Asn Glu Glu Arg Cys Val Lys Val Asp Asn Ile Lys		
275	280	285
Asp Asn Asn Leu Glu Ile Tyr Leu Lys		
290	295	
<210> 27		
<211> 121		
<212> PRT		
<213> Babesia microti		
<400> 27		
Leu Trp Phe Ile Lys Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr		
1	5	10
Ile Thr Leu Phe Leu Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp		
20	25	30
Pro Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly		
35	40	45
Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu		
50	55	60
Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Gly Pro		
65	70	75
Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly		
85	90	95
Trp Ser Ser Glu Arg Phe Gly Tyr Gln Leu Leu Pro Tyr Ser Arg Arg		
100	105	110
Ile Val Thr Phe Asn Glu Val Cys Leu		
115	120	
<210> 28		
<211> 267		
<212> PRT		
<213> Babesia microti		
<400> 28		

Leu Trp Phe Ile Lys Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr
 1 5 10 15
 Ile Thr Leu Phe Leu Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp
 20 25 30
 Pro Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala Gly
 35 40 45
 Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu
 50 55 60
 Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro
 65 70 75 80
 Ser Glu Ala Gly Trp Ser Ser Glu Arg Phe Gly Tyr Gln Leu Leu Pro
 85 90 95
 Tyr Ser Arg Arg Ile Val Thr Phe Asn Glu Val Cys Leu Ser Tyr Ile
 100 105 110
 Tyr Lys His Ser Val Met Ile Leu Glu Arg Asp Arg Val Asn Asp Gly
 115 120 125
 His Lys Asp Tyr Ile Glu Glu Lys Thr Lys Glu Lys Asn Lys Leu Lys
 130 135 140
 Lys Glu Leu Glu Lys Cys Phe Pro Glu Gln Tyr Ser Leu Met Lys Lys
 145 150 155 160
 Glu Glu Leu Ala Arg Ile Phe Asp Asn Ala Ser Thr Ile Ser Ser Lys
 165 170 175
 Tyr Lys Leu Leu Val Asp Glu Ile Ser Asn Lys Ala Tyr Gly Thr Leu
 180 185 190
 Glu Gly Pro Ala Ala Asp Asn Phe Asp His Phe Arg Asn Ile Trp Lys
 195 200 205
 Ser Ile Val Leu Lys Asp Met Phe Ile Tyr Cys Asp Leu Leu Gln
 210 215 220
 His Leu Ile Tyr Lys Phe Tyr Tyr Asp Asn Thr Ile Asn Asp Ile Lys
 225 230 235 240
 Lys Asn Phe Asp Glu Ser Lys Ser Lys Ala Leu Val Leu Arg Asp Lys
 245 250 255
 Ile Thr Lys Lys Asp Val Tyr Val Asn Asp His
 260 265

<210> 29

<211> 16

<212> PRT

<213> Babesia microti

<400> 29

Ala Trp Thr Phe Ser Val Leu Glu Leu Gln Glu Phe Ser Tyr Thr Val
 1 5 10 15

<210> 30

<211> 465

<212> PRT

<213> Babesia microti

<400> 30

Met Leu Thr Phe Gly Asn Ile Arg Phe His Asn Ile Asn Leu Pro Pro
 1 5 10 15
 Phe Ser Leu Gly Ile Ile His Ser Ile Thr Val Glu Lys Ala Ile Asn
 20 25 30
 Ser Glu Asp Phe Asp Gly Ile Gln Thr Leu Leu Gln Val Ser Ile Ile

35	40	45
Ala Ser Tyr Gly Pro Ser Gly Asp Tyr Ser Ser Phe Val	Phe Thr Pro	
50	55	60
Val Val Thr Ala Asp Thr Asn Val Phe Tyr Lys Leu	Glu Thr Asp Phe	
65	70	75
Lys Leu Asp Val Asp Val Ile Thr Lys Thr Ser Leu	Glu Leu Pro Thr	
85	90	95
Ser Val Pro Gly Phe His Tyr Thr Glu Thr Ile Tyr Gln	Gly Thr Glu	
100	105	110
Leu Ser Lys Phe Ser Lys Pro Gln Cys Lys Leu Asn Asp	Pro Pro Ile	
115	120	125
Thr Thr Gly Ser Gly Leu Gln Ile Ile His Asp Gly Leu	Asn Asn Ser	
130	135	140
Thr Ile Ile Thr Asn Lys Glu Val Asn Val Asp Gly	Thr Asp Leu Val	
145	150	155
Phe Phe Glu Leu Leu Pro Pro Ser Asp Gly Ile Pro Thr	Leu Arg Ser	
165	170	175
Lys Leu Phe Pro Val Leu Lys Ser Ile Pro Met Ile Ser	Thr Gly Val	
180	185	190
Asn Glu Leu Leu Leu Glu Val Leu Glu Asn Pro Ser	Phe Pro Ser Ala	
195	200	205
Ile Ser Asn Tyr Thr Gly Leu Thr Gly Arg Leu Asn Lys	Leu Leu Thr	
210	215	220
Val Leu Asp Gly Ile Val Asp Ser Ala Ile Ser Val Lys	Thr Thr Glu	
225	230	235
Thr Val Pro Asp Asp Ala Glu Thr Ser Ile Ser Ser	Leu Lys Ser Leu	
245	250	255
Ile Lys Ala Ile Arg Asp Asn Ile Thr Thr Thr Arg Asn	Glu Val Thr	
260	265	270
Lys Asp Asp Val Tyr Ala Leu Lys Lys Ala Leu Thr	Cys Leu Thr Thr	
275	280	285
His Leu Ile Tyr His Ser Lys Val Asp Gly Ile Ser Phe	Asp Met Leu	
290	295	300
Gly Thr Gln Lys Asn Lys Ser Ser Pro Leu Gly Lys Ile	Gly Thr Ser	
305	310	315
Met Asp Asp Ile Ile Ala Met Phe Ser Asn Pro Asn Met	Tyr Leu Val	
325	330	335
Lys Val Ala Tyr Leu Gln Ala Ile Glu His Ile Phe Leu	Ile Ser Thr	
340	345	350
Lys Tyr Asn Asp Ile Phe Asp Tyr Thr Ile Asp Phe Ser	Lys Arg Glu	
355	360	365
Ala Thr Asp Ser Gly Ser Phe Thr Asp Ile Leu Leu	Gly Asn Lys Val	
370	375	380
Lys Glu Ser Leu Ser Phe Ile Glu Gly Leu Ile Ser Asp	Ile Lys Ser	
385	390	395
His Ser Leu Lys Ala Gly Val Thr Gly Gly Ile Ser Ser	Ser Ser Leu	
405	410	415
Phe Asp Glu Ile Phe Asp Glu Leu Asn Leu Asp Gln	Ala Thr Ile Arg	
420	425	430
Thr Leu Val Ala Pro Leu Asp Trp Pro Leu Ile Ser Asp	Lys Ser Leu	
435	440	445
His Pro Ser Leu Lys Met Val Val Leu Pro Gly Phe Phe	Ile Val	
450	455	460
Pro		
465		

<210> 31

<211> 128

<212>, PRT

<213> Babesia microti

<400> 31

Leu Trp Phe Ile Lys Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr
 1 5 10 15
 Ile Thr Leu Phe Leu Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp
 20 25 30
 Pro Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Val
 35 40 45
 Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly
 50 55 60
 Thr Gly Trp Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro
 65 70 75 80
 Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly
 85 90 95
 Trp Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Ser Ser Glu
 100 105 110
 Arg Phe Gly Tyr Gln Leu Leu Pro Tyr Ser Arg Arg Ile Val Ile Phe
 115 120 125

<210>.32

<211> 245

<212> PRT

<213> Babesia microti

<400> 32

Gln	Glu	Cys	Cys	Leu	Val	Val	Lys	Asp	Lys	Val	Ile	Arg	His	Ala	Ala
1				5						10					15
Phe	Ala	Ala	Thr	Ile	Ile	Ile	Arg	Arg	Arg	Arg	Val	Ser	Phe	Ile	Ile
			20					25						30	
Leu	Gly	Leu	Ile	Ile	Ala	Thr	Met	Thr	Pro	Phe	Phe	Thr	Lys	Val	Phe
					35			40					45		
Phe	Phe	Gln	Arg	Cys	Leu	Ser	Ile	Met	Arg	Phe	Tyr	Ser	Ser	Leu	Pro
					50			55				60			
Thr	Phe	Ile	Leu	Ile	Glu	Ile	Ala	Met	Leu	Phe	Phe	Met	Ser	Val	Thr
					65			70			75				80
Cys	Phe	Leu	Arg	Cys	Leu	Ser	Ile	Ile	Arg	Phe	Tyr	Ser	Ser	Ile	Ser
					85				90				95		
Thr	Phe	Ile	Leu	Ile	Asp	Phe	Val	Met	Pro	Phe	Phe	Thr	Leu	Phe	Thr
					100			105					110		
Tyr	Phe	Leu	Arg	Cys	Leu	Ser	Ile	Met	Arg	Phe	Ser	Phe	Ser	Leu	Leu
					115			120				125			
Thr	Phe	Ile	Arg	Ile	Asp	Phe	Val	Met	Pro	Phe	Phe	Met	Ser	Val	Thr
					130			135			140				
Cys	Phe	Leu	Arg	Cys	Leu	Ser	Ile	Ile	Arg	Phe	Tyr	Ser	Ser	Ile	Ser
					145			150			155				160
Thr	Phe	Ile	Leu	Ile	Asp	Phe	Val	Met	Pro	Phe	Phe	Thr	Leu	Phe	Thr
					165				170				175		
Tyr	Phe	Leu	Arg	Cys	Leu	Ser	Ile	Ile	Arg	Phe	Tyr	Ser	Ser	Ile	Ser
					180				185				190		
Thr	Phe	Ile	Leu	Ile	Asp	Phe	Val	Met	Pro	Phe	Phe	Thr	Leu	Phe	Thr

	195	200	205													
Tyr	Phe	Leu	Arg	Cys	Leu	Ser	Ile	Met	Arg	Phe	Ser	Phe	Ser	Leu	Leu	
210							215							220		
Thr	Phe	Ile	Arg	Ile	Gly	Phe	Ala	Met	Pro	Phe	Phe	Thr	Leu	Phe	Ile	
225					230							235			240	
Tyr	Phe	Leu	Cys	Arg												
				245												
<210> 33																
<211> 293																
<212> PRT																
<213> Babesia microti																
<400> 33																
Thr	Ala	Phe	Ala	Ala	Phe	Leu	Ala	Phe	Gly	Asn	Ile	Ser	Pro	Val	Leu	
1								10						15		
Ser	Ala	Gly	Gly	Ser	Gly	Gly	Asn	Gly	Gly	Asn	Gly	Gly	Gly	His	Gln	
		20						25						30		
Glu	Gln	Asn	Asn	Ala	Asn	Asp	Ser	Ser	Asn	Pro	Thr	Gly	Ala	Gly	Gly	
		35						40						45		
Gln	Pro	Asn	Asn	Glu	Ser	Lys	Lys	Lys	Ala	Val	Lys	Leu	Asp	Leu	Asp	
		50						55						60		
Leu	Met	Lys	Glu	Thr	Lys	Asn	Val	Cys	Thr	Thr	Val	Asn	Thr	Lys	Leu	
65							70				75			80		
Val	Gly	Lys	Ala	Lys	Ser	Lys	Leu	Asn	Lys	Leu	Glu	Gly	Glu	Ser	His	
							85				90			95		
Lys	Glu	Tyr	Val	Ala	Glu	Lys	Thr	Lys	Glu	Ile	Asp	Glu	Lys	Asn	Lys	
							100				105			110		
Lys	Phe	Asn	Glu	Asn	Leu	Val	Lys	Ile	Glu	Lys	Lys	Lys	Ile	Lys		
							115				120			125		
Val	Pro	Ala	Asp	Thr	Gly	Ala	Glu	Val	Asp	Ala	Val	Asp	Asp	Gly	Val	
							130				135			140		
Ala	Gly	Ala	Leu	Ser	Asp	Leu	Ser	Ser	Asp	Ile	Ser	Ala	Ile	Lys	Thr	
145								150				155			160	
Leu	Thr	Asp	Asp	Val	Ser	Glu	Lys	Val	Ser	Glu	Asn	Leu	Lys	Asp	Asp	
							165				170			175		
Glu	Ala	Ser	Ala	Thr	Glu	His	Thr	Asp	Ile	Lys	Glu	Lys	Ala	Thr	Leu	
							180				185			190		
Leu	Gln	Glu	Ser	Cys	Asn	Gly	Ile	Gly	Thr	Ile	Leu	Asp	Lys	Leu	Ala	
							195				200			205		
Glu	Tyr	Leu	Asn	Asn	Asp	Thr	Thr	Gln	Asn	Ile	Lys	Lys	Glu	Phe	Asp	
							210				215			220		
Glu	Arg	Lys	Lys	Asn	Leu	Thr	Ser	Leu	Lys	Thr	Lys	Val	Glu	Asn	Lys	
225								230				235			240	
Asp	Glu	Asp	Tyr	Val	Asp	Val	Thr	Met	Thr	Ser	Lys	Thr	Asp	Leu	Ile	
								245				250			255	
Ile	His	Cys	Leu	Thr	Cys	Thr	Asn	Asp	Ala	His	Gly	Leu	Phe	Asp	Phe	
								260				265			270	
Glu	Ser	Lys	Ser	Leu	Ile	Lys	Gln	Thr	Phe	Lys	Leu	Arg	Ser	Lys	Asp	
							275				280			285		
Glu	Gly	Glu	Leu	Cys												
				290												
<210> 34																
<211> 431																

<212> PRT

<213> Babesia microti

<400> 34

Gly Pro Lys Met Lys Val Asn Ser Ala Asn Leu Asp Phe Arg Trp Ala
 1 5 10 15
 Met Tyr Met Leu Asn Ser Lys Ile His Leu Ile Glu Ser Ser Leu Ile
 20 25 30
 Asp Asn Phe Thr Leu Asp Asn Pro Ser Ala Tyr Glu Ile Leu Arg Val
 35 40 45
 Ser Tyr Asn Ser Asn Glu Phe Gln Val Gln Ser Pro Gln Asn Ile Asn
 50 55 60
 Asn Glu Met Glu Ser Ser Thr Pro Glu Ser Asn Ile Ile Trp Val Val
 65 70 75 80
 His Ser Asp Val Ile Met Lys Arg Phe Asn Cys Lys Asn Arg Lys Ser
 85 90 95
 Leu Ser Thr His Ser Leu Thr Glu Asn Asp Ile Leu Lys Phe Gly Arg
 100 105 110
 Ile Glu Leu Ser Val Lys Cys Ile Ile Met Gly Ala Gly Ile Thr Ala
 115 120 125
 Ser Asp Leu Asn Leu Lys Gly Leu Gly Phe Ile Ser Pro Asp Lys Gln
 130 135 140
 Ser Thr Asn Val Cys Asn Tyr Phe Glu Asp Met His Glu Ser Tyr His
 145 150 155 160
 Ile Leu Asp Thr Gln Arg Ala Ser Asp Cys Val Ser Asp Asp Gly Ala
 165 170 175
 Asp Ile Asp Ile Ser Asn Phe Asp Met Val Gln Asp Gly Asn Ile Asn
 180 185 190
 Ser Val Asp Ala Asp Ser Glu Thr Cys Met Ala Asn Ser Gly Val Thr
 195 200 205
 Val Asn Asn Thr Glu Asn Val Ser Asn Ser Glu Asn Phe Gly Lys Leu
 210 215 220
 Lys Ser Leu Val Ser Thr Thr Pro Leu Cys Arg Ile Cys Leu Cys
 225 230 235 240
 Gly Glu Ser Asp Pro Gly Pro Leu Val Thr Pro Cys Asn Cys Lys Gly
 245 250 255
 Ser Leu Asn Tyr Val His Leu Glu Cys Leu Arg Thr Trp Ile Lys Gly
 260 265 270
 Arg Leu Ser Ile Val Lys Asp Asp Asp Ala Ser Phe Phe Trp Lys Glu
 275 280 285
 Leu Ser Cys Glu Leu Cys Gly Lys Pro Tyr Pro Ser Val Leu Gln Val
 290 295 300
 Asp Asp Thr Glu Thr Asn Leu Met Asp Ile Lys Pro Asp Ala Pro
 305 310 315 320
 Tyr Val Val Leu Glu Met Arg Ser Asn Ser Gly Asp Gly Cys Phe Val
 325 330 335
 Val Ser Val Ala Lys Asn Lys Ala Ile Ile Gly Arg Gly His Glu Ser
 340 345 350
 Asp Val Arg Leu Ser Asp Ile Ser Val Ser Arg Met His Ala Ser Leu
 355 360 365
 Glu Leu Asp Gly Gly Lys Val Val Ile His Asp Gln Gln Ser Lys Phe
 370 375 380
 Gly Thr Leu Val Arg Ala Lys Ala Pro Phe Ser Met Pro Ile Lys Gly
 385 390 395 400
 Pro Ile Cys Leu Gln Val Ser Ile Phe Phe Leu Asn Leu Lys Ile Ser

405 410 415
Thr His Ser Leu Thr Met Glu Arg Gly Met Glu His Val Leu Leu
420 425 430

<210> 35
<211> 6
<212> PRT
<213> Babesia microti

<220>
<221> VARIANT
<222> (1)...(1)
<223> Xaa = Glutamic Acid or Glycine

<221> VARIANT
<222> (2)...(2)
<223> Xaa = Alanine or Threonine

<221> VARIANT
<222> (3)...(3)
<223> Xaa = Glycine or Valine

<221> VARIANT
<222> (4)...(4)
<223> Xaa = Tryptophan or Glycine

<221> VARIANT
<222> (5)...(5)
<223> Xaa = Proline or Serine

<400> 35
Xaa Xaa Xaa Xaa Xaa Ser
1 5

<210> 36
<211> 32
<212> PRT
<213> Babesia microti

<220>
<221> VARIANT
<222> (6)...(6)
<223> Xaa = Methionine or Isoleucine

<221> VARIANT
<222> (9)...(9)
<223> Xaa = Tyrosine or Serine

<221> VARIANT
<222> (10)...(10)
<223> Xaa = Serine or Phenylalanine

<221> VARIANT
<222> (12)...(12)
<223> Xaa = Leucine or Isoleucine

<221> VARIANT
<222> (13)...(13)
<223> Xaa = Proline, Serine or Leucine

<221> VARIANT
<222> (17)...(17)
<223> Xaa = Leucine or Arginine

<221> VARIANT
<222> (19)...(19)
<223> Xaa = Glutamic Acid, Aspartic Acid or Glycine

<221> VARIANT
<222> (20)...(20)
<223> Xaa = Isoleucine or Phenylalanine

<221> VARIANT
<222> (21)...(21)
<223> Xaa = Alanine or Valine

<221> VARIANT
<222> (23)...(23)
<223> Xaa = Leucine or Proline

<221> VARIANT
<222> (26)...(26)
<223> Xaa = Methionine or Threonine

<221> VARIANT
<222> (27)...(27)
<223> Xaa = Serine or Leucine

<221> VARIANT
<222> (28)...(28)
<223> Xaa = Valine or Phenylalanine

<221> VARIANT
<222> (29)...(29)
<223> Xaa = Threonine or Isoleucine

<221> VARIANT
<222> (30)...(30)
<223> Xaa = Cysteine or Tyrosine

<400> 36

Arg	Cys	Leu	Ser	Ile	Xaa	Arg	Phe	Xaa	Xaa	Ser	Xaa	Xaa	Thr	Phe	Ile
1					5					10				15	
Xaa	Ile	Xaa	Xaa	Xaa	Met	Xaa	Phe	Phe	Xaa	Xaa	Xaa	Xaa	Xaa	Phe	Leu
					20				25				30		

<210> 37

<211> 1820

<212> DNA

<213> Babesia microti

<400> 37

cggcacgagt	agccccccacc	atctttgca	ttcatttcaa	gtttctccaa	atctcgatgg	60
gacccaat	tttggctcca	ccacaacaaa	gtctgacata	ttgagaaaa	catattgatt	120
taatttaag	aacagacatc	tggccattca	tgctaagagg	tctcttcatt	gttgagtggg	180
aacagccttgc	tatacgggct	tacaacacaa	tggaaaaaaca	cctttagaa	gagatcatgc	240
ttcactcagt	gttagatgtt	gatgccagtg	atttgcttgg	ggttagtaagc	cagtactaga	300
atacaggatg	cacttggact	ggcaaacaga	atacacctgt	tgcctgaata	gaaactcaca	360
gagacccgat	gctgtctgg	accaacaagg	ttctgcttct	gggaagaatt	tacagatatt	420
atgttggaa	aagagacacc	ctgtatgtgt	agaaacaaag	aagcacagat	cttagatgaa	480
ttaatataag	aatgatactt	ctctagaaaac	aatatgttagt	accaactata	ttccagaacc	540
caatcgccat	tcagaatctg	tacatgttga	aatccaggaa	catgataaca	tcaatccaca	600
agacgcttgc	gatagtgagc	cgctogaaca	aatggattct	gataccaggg	tgttgcgg	660
aagtttggat	gagggggtagc	cacaccaatt	ctctagatta	gggcaccact	cagacatggc	720
atctgatata	aatgatgaag	aaccatcatt	taaaatccggc	gagaatgaca	taattcaacc	780
accctggaa	gatacagctc	cataccattc	aatagatgt	gaagagctt	acaacttaat	840
gagactaacg	gchgcaagaaa	caagtgcg	tcatgaagaa	gggaatggca	aactcaatac	900
gaataaaaatg	gagaagactg	aaagaaaatc	gcatgatact	cagacaccgc	aagaaatata	960
tgaagaatctt	gacaacttac	tgagaatcac	ggcacaagaa	atatataatg	agcgtaaaga	1020
agggcatggc	aaacccata	cgaataaaaag	tgagaaggct	gaaagaaaat	cgcataat	1080
tcagacaaacg	caagaaatat	gtgaagagtg	tgaagaaagg	catgacaaaa	tcaataagaa	1140
taaaatgttga	aatgctggaa	taaaatcgta	tgataactcg	acaacgcag	aaatatgtga	1200
agagtgtgaa	gaagggcatg	acaaaatcaa	taagaataaa	agtggaaatg	ctggataaaa	1260
atcgatgtat	actcagacac	cgcaggaaac	aagtgcgc	catgaagaag	ggcatgataa	1320
aatcaataacg	aataaaaatg	agaaggctga	agaaaaatcg	catgataactc	agacaacgc	1380
agaaatatgt	gaagagtgt	aagaaggc	tgacaaaatc	aataagaata	aaagtggaaa	1440
tgctggata	aatcgtatg	atactcagac	accgcaggaa	acaagtgc	ctcatgaaga	1500
agagcatggc	aatctcaata	agaataaaaag	tgggaggct	gaaataaaaat	cgcataat	1560
tcagacaccc	ctgaaaaaaaaa	aagactttt	taaagaagg	tgtcatgg	gcaataat	1620
gcccaggat	aatgaaaagag	acccgtcg	gcctgtatgt	gatgggg	gcaatgcgg	1680
catgacgaaat	cactttgt	ttgactacaa	gacaacactc	ttgttaaaga	gcctcaagac	1740
tgaacatcc	actcattt	acattgc	ggctgcaatt	tttactattt	cattattccc	1800
atgcatttt	aaggctttc					1820

<210> 38

<211> 445

<212> PRT

<213> Babesia microti

<400> 38

Tyr	Lys	Asn	Asp	Thr	Ser	Leu	Glu	Thr	Asn	Val	Val	Thr	Asn	Tyr	Ile
1						5				10					15
Pro	Glu	Pro	Asn	Ala	Asp	Ser	Glu	Ser	Val	His	Val	Glu	Ile	Gln	Glu
							20			25					30
His	Asp	Asn	Ile	Asn	Pro	Gln	Asp	Ala	Cys	Asp	Ser	Glu	Pro	Leu	Glu
						35			40						45
Gln	Met	Asp	Ser	Asp	Thr	Arg	Val	Leu	Pro	Glu	Ser	Leu	Asp	Glu	Gly
						50			55						60
Val	Pro	His	Gln	Phe	Ser	Arg	Leu	Gly	His	His	Ser	Asp	Met	Ala	Ser
						65			70						80
Asp	Ile	Asn	Asp	Glu	Glu	Pro	Ser	Phe	Lys	Ile	Gly	Glu	Asn	Asp	Ile
						85			90						95
Ile	Gln	Pro	Pro	Trp	Glu	Asp	Thr	Ala	Pro	Tyr	His	Ser	Ile	Asp	Asp
						100			105						110
Glu	Glu	Leu	Asp	Asn	Leu	Met	Arg	Leu	Thr	Ala	Gln	Glu	Thr	Ser	Asp

115	120	125
Asp His Glu Glu Gly Asn Gly Lys Leu Asn Thr Asn Lys Ser Glu Lys		
130	135	140
Thr Glu Arg Lys Ser His Asp Thr Gln Thr Pro Gln Glu Ile Tyr Glu		
145	150	155
Glu Leu Asp Asn Leu Leu Arg Leu Thr Ala Gln Glu Ile Tyr Glu Glu		
165	170	175
Arg Lys Glu Gly His Gly Lys Pro Asn Thr Asn Lys Ser Glu Lys Ala		
180	185	190
Glu Arg Lys Ser His Asp Thr Gln Thr Thr Gln Glu Ile Cys Glu Glu		
195	200	205
Cys Glu Glu Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala		
210	215	220
Gly Ile Lys Ser Tyr Asp Thr Gln Thr Thr Gln Glu Ile Cys Glu Glu		
225	230	235
Cys Glu Glu Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala		
245	250	255
Gly Ile Lys Ser Tyr Asp Thr Gln Thr Pro Gln Glu Thr Ser Asp Ala		
260	265	270
His Glu Glu Gly His Asp Lys Ile Asn Thr Asn Lys Ser Glu Lys Ala		
275	280	285
Glu Arg Lys Ser His Asp Thr Gln Thr Gln Glu Ile Cys Glu Glu		
290	295	300
Cys Glu Glu Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala		
305	310	315
Gly Ile Lys Ser Tyr Asp Thr Gln Thr Pro Gln Glu Thr Ser Asp Ala		
325	330	335
His Glu Glu Glu His Gly Asn Leu Asn Lys Asn Lys Ser Gly Lys Ala		
340	345	350
Gly Ile Lys Ser His Asn Thr Gln Thr Pro Leu Lys Lys Lys Asp Phe		
355	360	365
Cys Lys Glu Gly Cys His Gly Cys Asn Asn Lys Pro Glu Asp Asn Glu		
370	375	380
Arg Asp Pro Ser Ser Pro Asp Asp Asp Gly Gly Cys Glu Cys Gly Met		
385	390	395
Thr Asn His Phe Val Phe Asp Tyr Lys Thr Thr Leu Leu Leu Lys Ser		
405	410	415
Leu Lys Thr Glu Thr Ser Thr His Tyr Tyr Ile Ala Met Ala Ala Ile		
420	425	430
Phe Thr Ile Ser Leu Phe Pro Cys Met Phe Lys Ala Phe		
435	440	445

<210> 39

<211> 32

<212> PRT

<213> Babesia microti

<220>

<221> VARIANT

<222> (3)...(3)

<223> Xaa = Glycine or Aspartic Acid

<221> VARIANT

<222> (5)...(5)

<223> Xaa = Proline or Isoleucine

<221> VARIANT

<222> (7)...(7)

<223> Xaa = Lysine or Threonine

<221> VARIANT

<222> (11)...(11)

<223> Xaa = Glutamic Acid or Glycine

<221> VARIANT

<222> (12)...(12)

<223> Xaa = Lysine or Asparagine

<221> VARIANT

<222> (14)...(14)

<223> Xaa = Glutamic Acid or Glycine

<221> VARIANT

<222> (15)...(15)

<223> Xaa = Isoleucine or Arginine

<221> VARIANT

<222> (18)...(18)

<223> Xaa = Histidine or Tyrosine

<221> VARIANT

<222> (23)...(23)

<223> Xaa = Threonine or Proline

<221> VARIANT

<222> (26)...(26)

<223> Xaa = Isoleucine or Threonine

<221> VARIANT

<222> (27)...(27)

<223> Xaa = Cysteine or Serine

<221> VARIANT

<222> (28)...(28)

<223> Xaa = Aspartic Acid or Glutamic Acid

<221> VARIANT

<222> (29)...(29)

<223> Xaa = Glutamic Acid or Alanine

<221> VARIANT

<222> (30)...(30)

<223> Xaa = Cysteine or Histidine

<400> 39

Gly His Xaa Lys Xaa Asn Xaa Asn Lys Ser Xaa Xaa Ala Xaa Xaa Lys . . .

1

5

10

15

Ser Xaa Asp Thr Gln Thr Xaa Gln Glu Xaa Xaa Xaa Xaa Glu Glu . . .

20

25

30

<210> 40
 <211> 2430
 <212> DNA
 <213> Babesia microti

<400> 40

tgtattgtgt	agataaaaaat	gatgtttcat	tatggaaatc	aaaacctata	acaactgtca	60
gtaccactaa	tgatactatt	acaaatacac	acactactaa	tgtaattaat	gccaatctta	120
ttggccactt	taattataag	gatagggAAC	ctttaacaat	agtatttgta	tacatgatcg	180
atgaatcaga	acaaaataaa	ttatcacatc	cgaataaaat	tgataaaatc	aaaatttctg	240
attatataat	tgaatttgat	gacaatgcta	aattaccaac	tggttagtgtt	attgatttaa	300
acatctatac	ttgcaaacat	aataatccag	tattaattga	attttatgtt	tctatagaag	360
gatcttcgt	ctattatttc	tctcattgaa	taatgataca	aatgaatgga	ataatcacaa	420
aataaaaatat	gataaaaaat	ataaaagaata	tacggcacatg	aatggatttc	attattattaa	480
tattgatggt	agtttacttg	taagtggcga	agttacatct	aatttcgtt	atatttctaa	540
agaatatgaa	tatgagcata	caggattagt	aaaaaaaaat	tgtaatgaag	aaagatgtgt	600
aaaattggat	aacattaaga	taaaggataa	taatttggaa	atttatgtga	aataattttaa	660
tgaagtataa	tattatttataa	aataattcaa	agattaatat	aatcaattat	tataattaca	720
aaaataatta	attgtagaat	attatattat	taatcaattc	agattataaa	tacatatttt	780
tacatacatt	tcaatttaaa	cattcaaatt	aatgtcattt	ttatctacat	tattataatt	840
ataactataa	tattcattaa	atactattaa	aaaaaaatatc	ctctacattt	tattaattat	900
tatagtatgt	cattatataa	catattcaca	acgtataaca	aatcaatcat	taacatataac	960
atatatgata	tcattaataa	tcaatattta	attgatacaa	taatcaatag	tcatctgtaa	1020
tataatcatt	gtatactaatt	ttattataaa	ttattacaaa	atacacttt	ttacttcatt	1080
ttatttctgt	taaatttcat	attctaataat	tatattcatt	tttctcatgt	tactttaatc	1140
tatttccata	tttattccaa	tttcttcatt	taagactgag	atgttcgttc	gttcatacat	1200
aaataatgtg	taaattttgt	aatatataat	aatgtataca	tctggattt	catttatttt	1260
gtaataaaata	ttaaaaaaaac	ggttaaagtt	agtgcccaa	ttccaggaat	tattacatta	1320
gaaactttgg	tgattttagt	gatcccgtg	atcattgaaa	gaaatgttt	gaaacttgca	1380
atactgtcat	actcattcata	atccccatg	ttggaaatca	tgatgtcaac	aattttatta	1440
aattttctcg	ctgcactatt	caactccta	atcatgtct	aaaaatgagt	gttataatct	1500
ccatcccttt	tagtgcattt	atccctcaa	actaaagctt	tagatttga	ttcgtcaaaa	1560
tttttcttga	tatcattaac	ggtattgtca	taatagaatt	tatagattaa	atgttgaat	1620
aataagtca	aatatataaa	catatctta	agtacaatag	acttccatat	attacggaaa	1680
tggtcaaaat	tatcagcagc	tggacccccc	aatgtaccat	aggcctgtt	tgatatttca	1740
tcaaccaata	acttatattt	tgaagagata	gtggatgcatt	tatcaaataat	tctagccaat	1800
tcttcttct	tcataaggga	atattgtca	ggaaaacatt	tttccaaatc	tttttcaat	1860
ttatttcttct	ccttgggttt	tttccaaatg	tagtctttat	gaccatcgat	caccctatct	1920
cgttccaaata	tcataacact	atgtttgtat	atataagata	aacaaacttc	attaaatata	1980
actattcttc	tagataacgg	aagaagctga	tatccaaatc	gttcaactaga	ccaaccagct	2040
tcactaggcc	aaccaggccc	actaggccaa	coagttccac	taggcccacc	agttcaacta	2100
ggcccccacag	tttcaactagg	cccaccagct	tcactaggcc	caccagcttc	actaggccaa	2160
ccaggccac	tagggccacc	agttcaacta	ggcccccacag	tttcaactgg	cccaacagtt	2220
ccactaggcc	caccagcttc	actaggccca	coagttccgg	gatcggtatc	acttgcaaag	2280
acagcaccgc	tcattaaaaaa	gagtgtataa	taaggaacta	atattgattt	aatgacacc	2340
atcttataa	accatagtta	ttggtagtatt	attagtacat	tattggata	tgattggtagtac	2400
gtggtagtga	ttgtggtagtgc	gtatcttagtt				2430

<210> 41
 <211> 128
 <212> PRT
 <213> Babesia microti

<400> 41

Tyr Cys Val Asp Lys Asn Asp Val Ser Leu Trp Lys Ser Lys Pro Ile

1	5	10	15
Thr	Thr	Val	Ser
Thr	Thr	Asn	Asp
Thr	Asn	Ile	Thr
Asn	Ile	Leu	Gly
Asn	Ala	Asn	Tyr
Asn	Leu	Ile	Lys
Asn	Arg		
20	25	30	
Asn	Val	Ile	Asn
Asn	Ala	Asn	Phe
Asn	Leu	Ile	Asn
Asn	Gly	His	Tyr
Asn	Asp	Asp	Lys
Asn	Arg		
35	40	45	
Glu	Pro	Leu	Thr
Ile	Val	Phe	Val
Tyr	Met	Ile	Asp
Ile	Asp	Glu	Ser
Glu		Gln	
50	55	60	
Asn	Lys	Leu	Ser
Asn	His	Pro	Asn
Asn	Lys	Ile	Asp
Asn	Ile	Lys	Ile
Asn	Ser	Asp	
65	70	75	80
Tyr	Ile	Ile	Glu
Glu	Phe	Asp	Asp
Asn	Asn	Ala	Lys
Asn	Leu	Pro	Thr
Asn	Gly	Ser	Val
85	90	95	
Ile	Asp	Leu	Asn
Ile	Tyr	Thr	Cys
Cys	His	Asn	Asn
Asn	Asn	Pro	Val
Asn	Leu	Ile	
100	105	110	
Glu	Phe	Tyr	Val
Val	Ser	Ile	Glu
Gly	Ser	Phe	Cys
Tyr	Tyr	Phe	Ser
His			
115	120	125	

<210> 42

<211> 1271

<212> DNA

<213> Babesia microti

<400> 42

tgagaaaaacg	catataattt	taactacgcc	agagaagttt	gacgttagtt	cacgtaaaaac	60
aggcaatgag	ccccctgctt	agcggcttag	attggttata	attgtatggaa	tacaccctact	120
ccatgacact	aggggtccag	tgctggaggc	tattgtggcc	cgcctgagtc	agaggcccga	180
acgcgtaagg	ctagttggc	tatcgccac	gcttccaaac	tacgaagacg	tggcttagatt	240
tctcaactgtt	aatctagacc	gagggttttt	ctactttggc	agccacttta	ggcctgtgcc	300
cttggagccag	gtgttattat	gctgttggaa	gaagaaggct	atcaaacgtt	tcaacgcaat	360
caacaaattt	ctcttaccaag	aggtgattaa	cgatgtttct	agctgccaaa	ttcttgtttt	420
tgtgcattct	agaaaaggaaa	cgtacaggac	ggccaaaattt	atcaaagaca	cggccctttc	480
aacggacaac	tttggagctt	aaaccctaaa	ccctaaaccc	taaaccctaa	ccctaaaccc	540
taaaccctaa	accctaaacc	ctaaacccta	accctaacc	taaccctaa	cctaaccctag	600
ccttcattga	cgtctatccc	caatcttaga	aaaatcttca	aatcgattct	agaataactg	660
gaagcaatta	tcagaaattt	tataactgtt	ttagctta	ttagcttatt	agtaggatg	720
tatgcacatt	gatgacaact	agatgcagca	ccacaatcac	taccacgtac	caatcatata	780
ccaaataatgt	actaataatg	taccaataac	tatggtttat	aaagatggtg	tcatttaat	840
caatattatgt	tccttattatt	acacttttt	taatgagcgg	tgtgtcttt	gcaggtgata	900
cegatcgca	agctgggtgg	cctagtggaa	ctgttggc	tagtgaagct	ggtggcccta	960
gtgaagctgg	tgggctagt	gaagctgggt	gcctagtgt	agctgggtgg	cctagtgtt	1020
ctgggtggcc	tagtgaagct	ggtggcccta	gtgaagctgg	tgggctagt	gaagctgggt	1080
ggcctagtgg	aactgggtgg	cctagtgtt	ctgggtggc	tagtgaagct	ggtggcccta	1140
gtgaagctgg	tgggctagt	gaaactgggtt	ggcctagtgt	agctgggtgg	cctagtgtt	1200
ctgggtggcc	tagtgaagct	ggttggcccta	gtgaagctgg	tgggctagt	gaagctgggtt	1260
ggcctagtgtt	a					1271

<210> 43

<211> 166

<212> PRT

<213> Babesia microti

<400> 43

Glu Lys Thr His Ile Ile Val Thr Pro Glu Lys Phe Asp Val Val

1 5 10 15

Thr Arg Lys Thr Gly Asn Glu Pro Leu Leu Glu Arg Leu Arg Leu Val

20 25 30

Ile Ile Asp Glu Ile His Leu Leu His Asp Thr Arg Gly Pro Val Leu
 35 40 45

Glu Ala Ile Val Ala Arg Leu Ser Gln Arg Pro Glu Arg Val Arg Leu
 50 55 60

Val Gly Leu Ser Ala Thr Leu Pro Asn Tyr Glu Asp Val Ala Arg Phe
 65 70 75 80

Leu Thr Val Asn Leu Asp Arg Gly Leu Phe Tyr Phe Gly Ser His Phe
 85 90 95

Arg Pro Val Pro Leu Glu Gln Val Tyr Tyr Gly Val Lys Glu Lys Lys
 100 105 110

Ala Ile Lys Arg Phe Asn Ala Ile Asn Glu Ile Leu Tyr Gln Glu Val
 115 120 125

Ile Asn Asp Val Ser Ser Cys Gln Ile Leu Val Phe Val His Ser Arg
 130 135 140

Lys Glu Thr Tyr Arg Thr Ala Lys Phe Ile Lys Asp Thr Ala Leu Ser
 145 150 155 160

Arg Asp Asn Leu Gly Ala
 165

<210> 44

<211> 154

<212> PRT

<213> Babesia microti

<400> 44

Leu Trp Phe Ile Lys Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr
 1 5 10 15

Ile Thr Leu Phe Leu Met Ser Gly Ala Val Phe Ala Gly Asp Thr Asp
 20 25 30

Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala Gly
 35 40 45

Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu
 50 55 60

Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro
 65 70 75 80

Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly
 85 90 95

Trp Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu
 100 105 110

Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Pro
 115 120 125

Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly
 130 135 140

Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu
 145 150

<210> 45

<211> 4223

<212> DNA

<213> Babesia microti

<400> 45

ctcggtgcctt tctcaactga taacagctaa caaaaaagtct cttatcttaa accatcctat 60

acccgtatt ataatatgaa aaggcccttt tctaaatctt tccccaaagt tctgttattt 120

aattaaaaaaaa aaaaaagact cattcaataa acgggtgggg cagaaagggt acctttccaa 180

gtgttcttcc atgacgaccc acaatgcaaa gttcttctta caaagaaaaag agaaagatcc	240
actgagtgtat aagtaaccca gctggggccg ggcgggtggtg gcgcacaccc ttaatcccag	300
cactcgggag gcagaggcgag gcgatctct gtgagttcga gaccaggctg gaccgacagc	360
ctccaaaaca atacagagaaa accctgtctc ataaaaaacc aaaaaaaaaag taaccacgt	420
ggatttggta actgtctcag aaacagactataaaaaaccc catcacccta caacaagtag	480
gaagctagcg ctccccaccc catccaaaca cacacacaca cacacacaca cacacacaca	540
cacacacaca cacgcacaca cgcacgcacg cacacacgc cgcacgcaca cgcacacaca	600
cgcacgcaca cacgcacaca cgcacgcacg cacgcacgc cgcacgcacg cgcacgcacg	660
tgtgtctgtt ctgttcaaga agggttaccac aaaaaaagtac cttatggcca catcaatgac	720
aattattact gtatataaaa tgccccatg gatggcattt tattgtcgaa attaaaggca	780
cccccaaag aacagcacag agggctacc accaattaac tcccaggagg aaataaaagac	840
agaagtgtga aggagggaga gagggaggga ggaaggaggag gaaaaaaggaa gggaaaggaa	900
caaggatcaa cagggacaaa agcagcagat ggtgccaggc aggagtgtgc ctaccacacc	960
gggccttcccc ttacttcat ttacttcct ttgcagcctg ggaataaaaca agtcacgcgt	1020
caccctgggt ctcaagctca gcatggctt atctgagtgc cctgttatgt gtcattctca	1080
taactgattt aaggaacaac tttctgtctca ttgcctctat cttctcaaacc atttcaagc	1140
agttatTTT tataaaaaa tataaaacag gcccactaa ttgcatttt ctctccccag	1200
ctgctagttt ctatctagc tgctttaggc agtctccaca gattgcagcc agccccctat	1260
tctcaattcc atctgacttc tgacagcgct ctccattct tatggcagcc tttagacatct	1320
tcactgagag caggagtaat tcattcaaat gacaatgagg tatctgaata tcacacaaac	1380
acttcaaatt ctgtttattt gaaatagatc tgctctgc ccatacataac aatccctttt	1440
atcttactta acaggggcaaa gaaaatcttt cacttcattt ctatcatct caaatgagtt	1500
cctgtacatg aatgacttaa ggttaaccata tccaacaact tgaagccaaac cagtccctgg	1560
tcctactaca gacgttaggg aacatatgtg aaaaacctggt gtacaaccta aatcataact	1620
agacagaaga cagcactatt tcctggtcac atagaaggca gaatagcata ctcacacccaa	1680
tgagggaaat gtcataaggc caggagagat catgactgag gtgatacttt taccaaaaagac	1740
ttggcagtga ttaatttctc aatttagttt caaaaaatat ggctctctag tgaatttgg	1800
tccacaccat ttccagatg tttgtatgtc acttaaatca atctaattat ttaagttaaa	1860
aaatgttaca gatcattgtt tttttcttt tttagaagac atcaaaccac taggatttct	1920
atgaaatatt ctcacttcac agtctgtca gttaaagtgc ttgggttat acataaagaa	1980
aacagactca agaaagtaag aacaggaatt tggagcttgc aacactgtat ttctttgtaa	2040
aaagagagac ttatccagg gattagattc tgcatacagg cctggaaactc tctcttctca	2100
gccttatttc cccaaatatgg attagaatct tacactgcaaa gcttccacca agggtgacca	2160
ggtcctcacc atttgttca gcaggaaaaa gagtctgtat gcatccgtga tatctaagtc	2220
acaattccag aagttagctt tcctggctcc tattggctgg acttaggtca ggtgtcacat	2280
ttcctttgg attagtctgt gattaatgaa tggggccact ttgcctcaccc attaagacaa	2340
taggcttcca ttctcgaaac tggaaagcatg acatgtcccc cagaaactgt aataagagag	2400
aacatagtt gctgtgtgaa gaaacgaggc aaccggcaag tcataagatc acaaagtctt	2460
ggaaagtcta agtcagtgt tctcagcctt ccctaaaccc taaaccctaa accctaaacc	2520
ctaaaccctaa accctaaac ccctaaaccc taaaccctaa accctaaacc ctaaaccctaa	2580
accctaaacc ctaaaccctaa accctaaac ccctaaaccctt accctaaacc ctaaaccctaa	2640
ccctaaaccc gccttcatg acgtctatcc ccaatcttag aaaaatcttc aatcgattc	2700
tagataact ggaagcaatt atcagaaatt gtataactgc ttattagctt attagctt	2760
tagttaggt gtatgcacat tgatgacaac tagatgcagg accacaatca ctaccacgt	2820
ccaaatcatat accaataatg tactaataat gtaccaataa ctatgttt taaagatgg	2880
gtcattttaa tcaatattag ttcttctat tacactttt ttaatgagcg gtgtgtctt	2940
tgcagggtat accgatcgcg aagctgggtgg gcctagtgaa actgtgggc ctatgtaaac	3000
tggggccct agtgaagctg gtggccctag tgaagctggt gggcttagtg aagctgggtgg	3060
gcctagtgaa gctgggtggc ctatgtaaac tggtggccct agtgaagctg gtggccctag	3120
tggaaactgtt gggccctagtg aagctgggtgg gcctagtgaa gctgggtggc ctatgtaaac	3180
tggggccct agtgaagctg gtggccctag tgaagctggt tggcttagtg aagctgggtgg	3240
gcctagtgaa gctgggtggc ctatgtaaac tggtggccct agtgaagctg gtggccctag	3300
tgaacgattt ggatatacgc ttctttggta ttctagaaga atagtatatt ttaatgaaat	3360
ttatTTTatct catatatacgt aacatagttt tatgtatattt gaacgagata ggtgtacacga	3420
tggtcataaa gactacattt aagaaaaaac caaggagaag aataaatttg aaaaagaatt	3480

gaaaaatgt ttccctgaac aatattccct tatgaagaaa gaagaattgg ctagaataat	3540
tgataatgca tccactatct cttcaaaata taagtttattt gttgatgaaa tatccaacaa	3600
agcctatggt acattggaa gtccagctgc tgatgatccc gaccattcc gtaatatatgt	3660
gaagtctatt gtacctaaaa atatgtttct atattgtgac ttattattaa aacatttaat	3720
ccgtttaacc cccagaaaaga gctgaccaga caaaggtaa ctcttgaatc ccaggcatca	3780
gcctggaaat ccatcatggg actgatcaag acccccgtgaa tgggggtgc agtgaggagg	3840
ccttagttaat ctattgagcc tcgggcagca gatcagtacc catcccaatt atacacaatt	3900
gcagtgttgt ggttcacag tgaataattg taggtcacag tccattatata ttagtgcaca	3960
gttttaattt gtcatgtcac agtgcagct agtgcataa ctgtgttcat	4020
agagaatgtt ttgatgtcac agtcaataat cgtgatgtca tagtgcagta tattgtgtc	4080
acaatgtata attgtgtatgt taaagtgcataa gatagtgaag tcacagtata taattgtgat	4140
gtcatattgc attataatgt tgcacactt atataatttt tacatcacgc actatagtga	4200
tgttaacagcc aataattgtg atg	4223
<210> 46	
<211> 294	
<212> PRT	
<213> Babesia microti	
<400> 46	
Leu Trp Phe Ile Lys Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr	
1 5 10 15	
Ile Thr Leu Phe Leu Met Ser Gly Ala Val Phe Ala Gly Asp Thr Asp	
20 25 30	
Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala Gly	
35 40 45	
Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu	
50 55 60	
Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro	
65 70 75 80	
Ser Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala Gly	
85 90 95	
Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu	
100 105 110	
Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro	
115 120 125	
Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly	
130 135 140	
Trp Pro Ser Glu Arg Phe Gly Tyr Gln Leu Leu Trp Tyr Ser Arg Arg	
145 150 155 160	
Ile Val Ile Phe Asn Glu Ile Tyr Leu Ser His Ile Tyr Glu His Ser	
165 170 175	
Val Met Ile Leu Glu Arg Asp Arg Val Asn Asp Gly His Lys Asp Tyr	
180 185 190	
Ile Glu Glu Lys Thr Lys Glu Lys Asn Lys Leu Lys Lys Glu Leu Glu	
195 200 205	
Lys Cys Phe Pro Glu Gln Tyr Ser Leu Met Lys Lys Glu Glu Leu Ala	
210 215 220	
Arg Ile Ile Asp Asn Ala Ser Thr Ile Ser Ser Lys Tyr Lys Leu Leu	
225 230 235 240	
Val Asp Glu Ile Ser Asn Lys Ala Tyr Gly Thr Leu Glu Gly Pro Ala	
245 250 255	
Ala Asp Asp Phe Asp His Phe Arg Asn Ile Trp Lys Ser Ile Val Pro	
260 265 270	
Lys Asn Asn Phe Leu Tyr Cys Asp Leu Leu Lys His Leu Ile Arg	

275 280 285

Leu Thr Pro Arg Lys Ser
290

<210> 47
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide of repeat region of antigen
BMNI-3 (SEQ ID NO:3)

<400> 47

Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly
1 5 10 15

Trp Thr Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Ser
20 25 30

<210> 48
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide of repeat region of antigen
BMNI-3 (SEQ ID NO:3)

<400> 48

Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Gly Thr Gly Trp
1 5 10 15

Pro Ser Glu Ala Gly Trp Gly Ser Glu Ala Gly Trp Ser Ser
20 25 30

<210> 49
<211> 367
<212> PRT
<213> Babesia microti

<400> 49

Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr Ile Thr Leu Phe Leu
1 5 10 15

Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp Pro Glu Ala Gly Gly
20 25 30

Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala
35 40 45

Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser
50 55 60

Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly
65 70 75 80

Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Ser Glu Ala Gly Gly
85 90 95

Trp Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Ser Ser Glu
100 105 110

Arg Phe Gly Tyr Gln Leu Leu Pro Tyr Ser Arg Arg Ile Val Ile Phe

115	120	125
Asn Glu Val Cys Leu Ser Tyr Ile Tyr Lys His Ser Val Met Ile Leu		
130	135	140
Glu Arg Asp Arg Val Asn Asp Gly His Lys Asp Tyr Ile Glu Glu Lys		
145	150	155
Thr Lys Glu Lys Asn Lys Leu Lys Lys Glu Leu Glu Lys Cys Phe Pro		160
165	170	175
Glu Gln Tyr Ser Leu Met Lys Lys Glu Glu Leu Ala Arg Ile Phe Asp	185	190
Asn Ala Ser Thr Ile Ser Ser Lys Tyr Lys Leu Leu Val Asp Glu Ile		
195	200	205
Ser Asn Lys Ala Tyr Gly Thr Leu Glu Gly Pro Ala Ala Asp Asn Phe		
210	215	220
Asp His Phe Arg Asn Ile Trp Lys Ser Ile Val Leu Lys Asp Met Phe		
225	230	235
Ile Tyr Cys Asp Leu Leu Leu Gln His Leu Ile Tyr Lys Phe Tyr Tyr		240
245	250	255
Asp Asn Thr Val Asn Asp Ile Lys Lys Asn Phe Asp Glu Ser Lys Ser		
260	265	270
Lys Ala Leu Val Leu Arg Asp Lys Ile Thr Lys Lys Asp Gly Asp Tyr		
275	280	285
Asn Thr His Phe Glu Asp Met Ile Lys Glu Leu Asn Ser Ala Ala Glu		
290	295	300
Glu Phe Asn Lys Ile Val Asp Ile Met Ile Ser Asn Ile Gly Asp Tyr		
305	310	315
Asp Glu Tyr Asp Ser Ile Ala Ser Phe Lys Pro Phe Leu Ser Met Ile		320
325	330	335
Thr Glu Ile Thr Lys Ile Thr Lys Val Ser Asn Val Ile Ile Pro Gly		
340	345	350
Ile Lys Ala Leu Thr Leu Thr Val Phe Leu Ile Phe Ile Thr Lys		
355	360	365

<210> 50

<211> 1908

<212> DNA

<213> Babesia microti

<400> 50

aaaagattta atgaacatac tgacatgaat ggtattcatt attattatat tcatggtagt	60
ttacttgcga gtggcgaagt tacatctaattttcggtata ttctaaaga atatgaatat	120
gaggatatacg aatttagcaaa agagcattgc aagaaagaaa aatgtgtaaa tggtgataac	180
attgaggata ataatttgaa aatatatgcg aaacagttta aatctgttagt tactactcca	240
gctgtatgttagt cgggtgtgtc agatggattt ttatatacgtagt gccaaaatct tggtgctgtg	300
ggcagtgtaa atgaacaacc taatactgtt ggtatgagtt tagaacaatt catcaagaac	360
gagctttattt ctttttagtaa tgaaatttat catacaataat ctgtcaaat cagaattct	420
ttcttaataa tgatgtctga tgcaattgtt aaacatgata actatatttt aaaaaaagaa	480
ggtaaggct gtgaacaaat ctacaattat gaggaattta tagaaaaagtt gaggggtgct	540
agaagtggagg ggaataatat gtttcaggaa gctctgataa ggtaggaa tgcttagttagt	600
gaagaaatgg ttaatgtgc aagttatcta tccgcgcgcc ttttcagata taaggaattt	660
gatgtgaat tattcaaaaa gccaacgat aattttggac gcatgtatgg atatgatttt	720
gattatataa atacaagaa agagtttagtt atacttgcca gtgtgttggta tggtttggat	780
ttaataatgg aacgtttgtat cgaaaatttc agtgtatgtca ataatacaga tgatattaag	840
aaggcatttg acgaatgcaatctaatgtct attatattgt agaaaaagat acttgacaat	900
gatgaagatt ataagattaa ttttagggaa atggtaatgg aagtaacatg tgcaaacaca	960
aaatttgaag ccctaaatga tttgataatt tccgactgtg agaaaaagg tattaagata	1020

aacagagatg tgatttcaag ctacaatttgc cttctttcca caatcaccta tattgttgaa	1080
gctggagttt aagctgttaac tgtagtgtg tctgctacat ctaatggAAC tgaatctgggt	1140
ggagctggta gtggacttgg aactagtgtg tctgctacat ctaactttaaac tgtaatgggt	1200
ggaactgaat ctgggtggaaac agctggaaact actacgtctc tggtggactga agctgggtggaa	1260
actagtggaa ctactacgtc tagtggagct gctagtggta aagctggaaac tggaacagct	1320
ggaactacta cgtctagtga aggtgtgggt agtgataaaag ctggactgg aactagtggaa	1380
actactacgt ctatgtggaaac ttgggtgtggta ggagctggta gtggggacc tagtggacat	1440
gcttctaatg caaaattcc tggataatg acactaactt tatttgcatt attaacattt	1500
attgtaaattt gaatgaaaca catgatttat acattattat atattacaaa attacacat	1560
tatttatgtt tgaacgaaac aacatcttgc tcttaataaa agaaatttgag atatatatgg	1620
aaatagatta aagtaacatg agaaagatgaa atataatatt agaatatgaa atttaacaga	1680
aataaaatgaa agtaaaagag tgtagttgt aataattttt aataaatttag tatacatgaa	1740
ttatattaca aatggcttattt aaatattttt ttaattttt attgattttt aatgatattt	1800
tgtatgtaca tgtaggggtt gattttataa cattgtgaat atattatataa attgtatattt	1860
atattgattt atataatgtt gaggatattt tttttttttt attttttttt	1908

<210> 51

<211> 1460

<212> DNA

<213> Babesia microti

<400> 51

aatccaaacat ctagcttagt tagtataat aggttaatat cacattatacg attatcttttg	60
gatgatttgggtt tattatataa catgtcgctg aatgacgatt attttgcgtt ataataatataac	120
tacccgtgtat tctgaggacc tacattaaag agaataatgg acatatctac cagaatcagt	180
tccaaattttat gtatTTTAAAG gctaatttact actcgaaaaac tacgggtggaa atggaaaaaac	240
aagtggaaac tgtagtgcgtt ggaaagtccac tacattttat gtggggcaat ttaataatcc	300
taaataactat gtttttgcgtt ttaaaaagcg aaaaacacac tttatgcac attttacat	360
catctgtata atataatataat cagcgttggaa atcatatggc aaaggtataa aagcgttaca	420
ttttggcgaa ataaaggcac atatgcaaaac gtatgaaagcc ttgtatattt gtggattttt	480
attatgttagt taatTTGTA ttaataatgg caatattttt atacaatataat tcgagcgccc	540
tattatatgc atgcacataa ttaatcacaa actcttcataat catggggccgg tttcgccccat	600
cataaaacatt actgttagca ctctggtaga ttagcatggt gaatctctcg atacctggc	660
tactgttgc ttccgcataat tccttaaatt ctgcaagtgc gggggatgtt tatgagat	720
cttctggtaa tccacccgac atagagccaa catctacttc tctagaaaaca aatgttagtta	780
ccaaactataat tccagaaccc aatgcggatt cagaatctgt acatgttggaa atccagggaaac	840
atgataacat caatccacaa gacgcttgcgtt atagtggcc gctcgaaacaa atggattctg	900
ataccagggtt gttggccaa agttttggatg aggggggtacc acaccaatttcttgc tcttagattag	960
ggcaccactc agacatggca tctgtatataa atgtatgaa accatcattt aaaaatcgccg	1020
agaatgacat aattcaacca ccctggaaatg atacagctcc ataccattca atagatgttgc	1080
aagagcttgcgtt caacttaatg agactaacgg cgcaagaaac aagtgcgtt catgaaagaa	1140
ggaatggccaa actcaatacg aataaaatgtt agaagactgaa aagaaaaatcg catgataactc	1200
agacaccgcgaa agaaatataat gaagagcttgcgtt acaacttact gagactaaacg gcacaagaaa	1260
tataatgttgcgtt gctgtttttttt gggcatggca aacccaaatc gaataaaatgtt gagaaggctg	1320
aaagaaaaatc gcatgataact cagacaaacgc aagaaatatgtt tgaagagcttgcgtt gagaaggcc	1380
atgacaaaaat caataagaat aaaaatgttgcgtt acaacttact gataactcaga	1440
caccccgacggaa aacaagtgcgtt	1460

<210> 52

<211> 503

<212> PRT

<213> Babesia microti

<400> 52

Lys Arg Phe Asn Glu His Thr Asp Met Asn Gly Ile His Tyr Tyr Tyr

1	5	10	15
Ile Asp Gly Ser Leu Leu Ala Ser Gly Glu Val Thr Ser Asn Phe Arg			
20	25	30	
Tyr Ile Ser Lys Glu Tyr Glu Tyr Glu His Thr Glu Leu Ala Lys Glu			
35	40	45	
His Cys Lys Lys Glu Lys Cys Val Asn Val Asp Asn Ile Glu Asp Asn			
50	55	60	
Asn Leu Lys Ile Tyr Ala Lys Gln Phe Lys Ser Val Val Thr Thr Pro			
65	70	75	80
Ala Asp Val Ala Gly Val Ser Asp Gly Phe Phe Ile Arg Gly Gln Asn			
85	90	95	
Leu Gly Ala Val Gly Ser Val Asn Glu Gln Pro Asn Thr Val Gly Met			
100	105	110	
Ser Leu Glu Gln Phe Ile Lys Asn Glu Leu Tyr Ser Phe Ser Asn Glu			
115	120	125	
Ile Tyr His Thr Ile Ser Ser Gln Ile Ser Asn Ser Phe Leu Ile Met			
130	135	140	
Met Ser Asp Ala Ile Val Lys His Asp Asn Tyr Ile Leu Lys Lys Glu			
145	150	155	160
Gly Glu Gly Cys Glu Gln Ile Tyr Asn Tyr Glu Glu Phe Ile Glu Lys			
165	170	175	
Leu Arg Gly Ala Arg Ser Glu Gly Asn Asn Met Phe Gln Glu Ala Leu			
180	185	190	
Ile Arg Phe Arg Asn Ala Ser Ser Glu Glu Met Val Asn Ala Ala Ser			
195	200	205	
Tyr Leu Ser Ala Ala Leu Phe Arg Tyr Lys Glu Phe Asp Asp Glu Leu			
210	215	220	
Phe Lys Lys Ala Asn Asp Asn Phe Gly Arg Asp Asp Gly Tyr Asp Phe			
225	230	235	240
Asp Tyr Ile Asn Thr Lys Lys Glu Leu Val Ile Leu Ala Ser Val Leu			
245	250	255	
Asp Gly Leu Asp Leu Ile Met Glu Arg Leu Ile Glu Asn Phe Ser Asp			
260	265	270	
Val Asn Asn Thr Asp Asp Ile Lys Lys Ala Phe Asp Glu Cys Lys Ser			
275	280	285	
Asn Ala Ile Ile Leu Lys Lys Ile Leu Asp Asn Asp Glu Asp Tyr			
290	295	300	
Lys Ile Asn Phe Arg Glu Met Val Asn Glu Val Thr Cys Ala Asn Thr			
305	310	315	320
Lys Phe Glu Ala Leu Asn Asp Leu Ile Ile Ser Asp Cys Glu Lys Lys			
325	330	335	
Gly Ile Lys Ile Asn Arg Asp Val Ile Ser Ser Tyr Lys Leu Leu Leu			
340	345	350	
Ser Thr Ile Thr Tyr Ile Val Gly Ala Gly Val Glu Ala Val Thr Val			
355	360	365	
Ser Val Ser Ala Thr Ser Asn Gly Thr Glu Ser Gly Gly Ala Gly Ser			
370	375	380	
Gly Thr Gly Thr Ser Val Ser Ala Thr Ser Thr Leu Thr Gly Asn Gly			
385	390	395	400
Gly Thr Glu Ser Gly Gly Thr Ala Gly Thr Thr Thr Ser Ser Gly Thr			
405	410	415	
Glu Ala Gly Gly Thr Ser Gly Thr Thr Ser Ser Gly Ala Ala Ser			
420	425	430	
Gly Lys Ala Gly Thr Gly Thr Ala Gly Thr Thr Ser Ser Glu Gly			
435	440	445	

Ala Gly Ser Asp Lys Ala Gly Thr Gly Thr Ser Gly Thr Thr Ser
 450 455 460
 Ser Gly Thr Gly Ala Gly Gly Ala Gly Ser Gly Gly Pro Ser Gly His
 465 470 475 480
 Ala Ser Asn Ala Lys Ile Pro Gly Ile Met Thr Leu Thr Leu Phe Ala
 485 490 495
 Leu Leu Thr Phe Ile Val Asn
 500

<210> 53
 <211> 275
 <212> PRT
 <213> Babesia microti

<400> 53
 Met Val Asn Leu Ser Ile Pro Gly Leu Leu Leu Ser Ala Tyr Ser
 1 5 10 15
 Leu Asn Ser Ala Ser Ala Gly Asp Val Tyr Glu Ile Ser Ser Gly Asn
 20 25 30
 Pro Pro Asp Ile Glu Pro Thr Ser Thr Ser Leu Glu Thr Asn Val Val
 35 40 45
 Thr Asn Tyr Ile Pro Glu Pro Asn Ala Asp Ser Glu Ser Val His Val
 50 55 60
 Glu Ile Gln Glu His Asp Asn Ile Asn Pro Gln Asp Ala Cys Asp Ser
 65 70 75 80
 Glu Pro Leu Glu Gln Met Asp Ser Asp Thr Arg Val Leu Pro Glu Ser
 85 90 95
 Leu Asp Glu Gly Val Pro His Gln Phe Ser Arg Leu Gly His His Ser
 100 105 110
 Asp Met Ala Ser Asp Ile Asn Asp Glu Glu Pro Ser Phe Lys Ile Gly
 115 120 125
 Glu Asn Asp Ile Ile Gln Pro Arg Trp Glu Asp Thr Ala Pro Tyr His
 130 135 140
 Ser Ile Asp Asp Glu Glu Leu Asp Asn Leu Met Arg Leu Thr Ala Gln
 145 150 155 160
 Glu Thr Ser Asp Asp His Glu Glu Gly Asn Gly Lys Leu Asn Thr Asn
 165 170 175
 Lys Ser Glu Lys Thr Glu Arg Lys Ser His Asp Thr Gln Thr Pro Gln
 180 185 190
 Glu Ile Tyr Glu Glu Leu Asp Asn Leu Leu Arg Leu Thr Ala Gln Glu
 195 200 205
 Ile Tyr Glu Glu Arg Lys Glu Gly His Gly Lys Pro Asn Thr Asn Lys
 210 215 220
 Ser Glu Lys Ala Glu Arg Lys Ser His Asp Thr Gln Thr Thr Gln Glu
 225 230 235 240
 Ile Cys Glu Glu Cys Glu Glu Gly His Asp Lys Ile Asn Lys Asn Lys
 245 250 255
 Ser Gly Asn Ala Gly Ile Lys Ser Tyr Asp Thr Gln Thr Pro Gln Glu
 260 265 270
 Thr Ser Asp
 275

<210> 54
 <211> 22
 <212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 54

tttgagggtg ataccgatcg cg

22

<210> 55

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 55

tggattctta gaagaatagt tata

24

<210> 56

<211> 306

<212> DNA

<213> Babesia microti

<400> 56

ttgcaggta taccgatcgc	gaagctggtg	ggcctagtgg	aactgttggg	cccagtgaag	60
ctggggcc	tagtgaagct	ggtggcccta	gtggaaactgt	tgggcccagt	120
ggcctagtga	agctggtggg	cctagtggaa	ctgggtggcc	tagtgaagct	180
gtggaaactgt	tgggcccagt	gaagctggtg	ggcctagtga	agctggtggg	240
ctgggtggcc	tagtggaaact	ggtggcccta	gtgaagttgg	tgggcccatt	300
gatatc				gaaccatttg	306

<210> 57

<211> 318

<212> DNA

<213> Babesia microti

<400> 57

ttgcaggta taccgatcgc	gaagctggtg	ggcctagtgg	aactgttggg	cccagtgaag	60
ctggggcc	tagtgaagct	ggtggcccta	gtggaaactgt	tgggcccagt	120
ggcctagtga	agctggtggg	cctagtggaa	ctgggtggcc	tagtgaagct	180
gtggaaactgt	tgggcccagt	gaagctggtg	ggcctagtga	agctggtggg	240
ctgggtggcc	tagtggaaact	ggtggcccta	gtgaagttgg	tgggccaat	300
gatatcacct	tcttttgtt			gaaccatttg	318

<210> 58

<211> 358

<212> DNA

<213> Babesia microti

<400> 58

ttgcaggta taccgatcgc	gaagctggtg	ggcctagtgg	aactgttggg	cctagtgaag	60
ctggggcc	tagtgaagct	ggtggcccta	gtgaagctgg	tgggcttagt	120
ggcctagtga	agctggtggg	cctagtgaag	ctgggtggcc	tagtgaagct	180
gtgaagctgg	tgggcttagt	gaagctggtg	ggcctagtga	agctggtggg	240

ctgggtggcc tagtgaagct ggtgggccta gtggaactgg ttggcctagt gaagctggtt 300
 ggcctagtga agctgggtgg cctagtgaag ctgggtggcc tagtgaagct gggtggcc 358

<210> 59
 <211> 409
 <212> DNA
 <213> Babesia microti

<400> 59
 tgcaaggat accgatcgac aagctgggtgg gcctagtggaa actgttgggc ctagtgaagc 60
 tgggtggcct agtgaagctg gtgggcctag tgaagctggg gggcctagtga aagctgggtgg 120
 gcctagtgaag cttgggtggcc ctagtgaagc tgggtggcct agtgaagctg gtgggcctag 180
 tgaagctggg gggcctagtga aagctgggtgg gcctagtgaag cttgggtggcc ctagtgaagc 240
 tgggtggcct agtgaagctg gtgggcctag tggaaactggg tggcctagtga aagctgggtgg 300
 gcctagtgaag cttgggtggcc ctagtgaagc tgggtggcct agtgaagctg gtgggcctag 360
 tgaacgattt ggatatcage ttctttggta ttctagaaga atagttata 409

<210> 60
 <211> 351
 <212> DNA
 <213> Babesia microti

<400> 60
 gtgaagctgg tgggcctagt ggaactgttg ggcctagtga agctgggtgg cctagtgaag 60
 ctgggtggcct tagtgaagct ggtgggccta gtgaagctgg tgggcctagt gaagctgggtgg 120
 ggcctagtga agctgggtgg cctagtgaag cttgggtggcc tagtgaagct ggtgggccta 180
 gtgaagctgg tgggcctagt gaagctgggtgg cctagtgaagc agctgggtgg cctagtgaag 240
 ctgggtggcct tagtgaagct ggtgggccta gtgaagctgg tggcctagt gaaagctgggtgg 300
 ggcctagtga agctgggtgg cctagtgaag cttgggtggcc tagtgaacgat 351

<210> 61
 <211> 410
 <212> DNA
 <213> Babesia microti

<400> 61
 aggtgataacc gatcgcaag ctgggtggcc tagtggaaact gttggccta gtgaagctgg 60
 tggcctagt gaagctgggtgg ggcctagtga agctgggtgg cctagtgaag ctgggtggcct 120
 tagtgaagct ggtgggccta gtgaagctgg tggcctagt gaagctgggtgg ggcctagtga 180
 agctgggtgg cctagtgaag cttgggtggcc tagtgaagct ggtgggccta gtgaagctgg 240
 tggcctagt gaagctgggtgg ggcctagtga agctgggtgg cctagtggaa ctgggtggcc 300
 tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctgggtgg ggcctagtga 360
 agctgggtgg cctagtgaac gattggata tcagcttctt tggattctt 410

<210> 62
 <211> 416
 <212> DNA
 <213> Babesia microti

<400> 62
 ttgcaggatcga taccgatcgc gaagctgggtgg aactgttggg cctagtgaag 60
 ctgggtggcct tagtgaagct ggtgggccta gtgaagctgg tggcctagt gaagctgggtgg 120
 ggcctagtga agctgggtgg cctagtgaag cttgggtggcc tagtgaagct ggtgggccta 180
 gtgaagctgg tggcctagt gaagctgggtgg cctagtgaagc agctgggtgg cctagtgaag 240
 ctgggtggcct tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctgggtgg 300

ggcctagtgg aactggttgg cctagtgaag ctggttggcc tagtgaagct gggtggccta	360
gtgaagctgg ttggcctagt gaagctggtt ggcctagtga acgatttgg a tata	416
<210> 63	
<211> 356	
<212> DNA	
<213> Babesia microti	
<400> 63	
ttgcaggta taccgatcg c gaagctggg ggcctagtgg aactggttgg cctagtgaag	60
ctggggcc tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctggg	120
ggcctagtga agctgggtgg cctagtgaag ctgggtggcc tagtgaagct ggtggccta	180
gtgaagctgg tggcctagt ggaactggtt ggcctagtga agctgggtgg cctagtgaag	240
ctgggtggcc tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctggg	300
ggcctagtga acgatttgg a tata	356
<210> 64	
<211> 285	
<212> DNA	
<213> Babesia microti	
<400> 64	
ttgcaggta taccgatcg c gaagctggg ggcctagtgg aactggttgg cctagtgaag	60
ctggggcc tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctggg	120
ggcctagtga agctgggtgg cctagtgaag ctgggtggcc tagtgaagct ggtggccta	180
gtggaaactgg tggcctagt gaagctggtt ggcctagtga agctgggtgg cctagtgaag	240
ctgggtggcc tagtgaagct ggtggccta gtgaagctgg tggc	285
<210> 65	
<211> 342	
<212> DNA	
<213> Babesia microti	
<400> 65	
ttgcaggta taccgatcg c gaagctggg ggcctagtgg aactggttgg cctagtgaag	60
ctggggcc tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctggg	120
ggcctagtga agctgggtgg cctagtgaag ctgggtggcc tagtgaagct ggtggccta	180
gtgaagctgg tggcctagt ggaactggtt ggcctagtga agctgggtgg cctagtgaag	240
ctgggtggcc tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctggg	300
ggcctagtga acgatttgg a tata	342
<210> 66	
<211> 363	
<212> DNA	
<213> Babesia microti	
<400> 66	
ttgcaggta taccgatcg c gaagctggg ggcctagtgg aactggttgg cctagtgaag	60
ctggggcc tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctggg	120
ggcctagtga agctgggtgg cctagtgaag ctgggtggcc tagtgaagct ggtggccta	180
gtgaagctgg tggcctagt gaagctggg ggcctagtgg aactgggtgg cctagtgaag	240
ctgggtggcc tagtgaagct ggtggccta gtgaagctgg tggcctagt gaagctggg	300
ggcctagtga agctgggtgg cctagtgaac gattggata tcagtttt ttttttata	360
gaa	363

<210> 67
<211> 363
<212> DNA
<213> Babesia microti

<400> 67

ttgcaggta taccgategc	gaagctggtg	ggcctagtgg	aactgttggg	cctagtgaag	60
ctgggtggcc	tagtgaagct	ggtgggccta	gtgaagctgg	tggcctagt	120
ggcctagtga	agctggtggg	cctagtgaag	ctgggtggcc	tagtgaagct	180
gtgaagctgg	tggcctagt	gaagctggtg	ggcctagtgg	aactgttgg	240
ctgggtggcc	tagtgaagct	ggtggccta	gtgaagctgg	tggcctagt	300
ggcctagtga	agctggtgg	cctagtgaac	gatttgata	tcagtttctt	360
gaa					363

<210> 68
<211> 101
<212> PRT
<213> Babesia microti

<400> 68

Ala	Gly	Asp	Thr	Asp	Arg	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr	Val	Gly		
1							5			10			15				
Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr		
														20	25	30	
Val	Gly	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser		
														35	40	45	
Gly	Thr	Gly	Trp	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr	Val	Gly		
														50	55	60	
Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr		
														65	70	75	80
Gly	Trp	Pro	Ser	Gly	Thr	Gly	Trp	Pro	Ser	Glu	Val	Gly	Trp	Pro	Ile		
														85	90	95	
Glu	Pro	Phe	Gly	Tyr													
															100		

<210> 69
<211> 105
<212> PRT
<213> Babesia microti

<400> 69

Ala	Gly	Asp	Thr	Asp	Arg	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr	Val	Gly		
1							5			10			15				
Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr		
														20	25	30	
Val	Gly	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser		
														35	40	45	
Gly	Thr	Gly	Trp	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr	Val	Gly		
														50	55	60	
Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr		
														65	70	75	80
Gly	Trp	Pro	Ser	Gly	Thr	Gly	Trp	Pro	Ser	Glu	Val	Gly	Trp	Pro	Asn		
														85	90	95	
Glu	Pro	Phe	Gly	Tyr	His	Leu	Leu	Trp									
														100	105		

<210> 70
<211> 118
<212> PRT
<213> Babesia microti

<400> 70
Ala Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly
1 5 10 15
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala
20 25 30
Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser
35 40 45
Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly
50 55 60
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala
65 70 75 80
Gly Trp Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser
85 90 95
Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp
100 105 110
Pro Ser Glu Ala Gly Trp
115

<210> 71
<211> 136
<212> PRT
<213> Babesia microti

<400> 71
Ala Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly
1 5 10 15
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala
20 25 30
Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser
35 40 45
Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly
50 55 60
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala
65 70 75 80
Gly Trp Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser
85 90 95
Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp
100 105 110
Pro Ser Glu Ala Gly Trp Pro Ser Glu Arg Phe Gly Tyr Gln Leu Leu
115 120 125
Trp Tyr Ser Arg Arg Ile Val Ile
130 135

<210> 72
<211> 116
<212> PRT
<213> Babesia microti

<400> 72

Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala Gly Gly
 1 5 10 15
 Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala
 20 25 30
 Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser
 35 40 45
 Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly
 50 55 60
 Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala
 65 70 75 80
 Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser
 85 90 95
 Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp
 100 105 110
 Pro Ser Glu Arg
 115

<210> 73

<211> 136

<212> PRT

<213> Babesia microti

<400> 73

Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro
 1 5 10 15
 Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly
 20 25 30
 Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu
 35 40 45
 Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro
 50 55 60
 Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly
 65 70 75 80
 Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Gly Pro Ser Gly
 85 90 95
 Thr Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro
 100 105 110
 Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Arg Phe
 115 120 125
 Gly Tyr Gln Leu Leu Trp Tyr Ser
 130 135

<210> 74

<211> 138

<212> PRT

<213> Babesia microti

<400> 74

Ala Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly
 1 5 10 15
 Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala
 20 25 30
 Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser
 35 40 45
 Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly

50	55	60
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly	Pro Ser Glu Ala	
65	70	75
Gly Gly Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser		80
85	90	95
Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp		
100	105	110
Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala		
115	120	125
Gly Trp Pro Ser Glu Arg Phe Gly Tyr Gln		
130	135	

<210> 75

<211> 118

<212> PRT

<213> Babesia microti

<400> 75		
Ala Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly		
1	5	10
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala		15
20	25	30
Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser		
35	40	45
Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly		
50	55	60
Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala		
65	70	75
Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser		80
85	90	95
Glu Ala Gly Trp Pro Ser Glu Arg Phe Gly Tyr Gln Leu Leu Trp Tyr		
100	105	110

Ser Arg Arg Ile Val Ile
115

<210> 76

<211> 94

<212> PRT

<213> Babesia microti

<400> 76		
Ala Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly		
1	5	10
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala		15
20	25	30
Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser		
35	40	45
Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp		
50	55	60
Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala		
65	70	75
Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp		80
85	90	

<210> 77

<211> 113

<212> PRT

<213> Babesia microti

<400> 77

Ala Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly
1 5 10 15
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala
20 25 30
Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser
35 40 45
Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly
50 55 60
Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala
65 70 75 80
Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser
85 90 95
Glu Ala Gly Trp Pro Ser Glu Arg Phe Gly Tyr Gln Leu Leu Trp Tyr
100 105 110
Ser

<210> 78

<211> 120

<212> PRT

<213> Babesia microti

<400> 78

Ala Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly
1 5 10 15
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala
20 25 30
Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser
35 40 45
Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly
50 55 60
Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala
65 70 75 80
Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser
85 90 95
Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Arg Phe Gly
100 105 110
Tyr Gln Leu Leu Trp Tyr Ser Arg
115 120

<210> 79

<211> 120

<212> PRT

<213> Babesia microti

<400> 79

Ala Gly Asp Thr Asp Arg Glu Ala Gly Gly Pro Ser Gly Thr Val Gly
1 5 10 15
Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala
20 25 30

Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser
35 40 45

Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly
50 55 60

Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala
65 70 75 80

Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser
85 90 95

Glu Ala Gly Trp Pro Ser Glu Ala Gly Trp Pro Ser Glu Arg Phe Gly
100 105 110

Tyr Gln Leu Leu Trp Tyr Ser Arg
115 120

<210> 80

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 80

cagaggcgtat ctgatgtatata taagaaggc 29

<210> 81

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 81

caatatgaat tcagtgaata tttacaataa atgttaataa tgc 43

<210> 82

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 82

cataacaata ttccagaacc caatgcggat tc 32

<210> 83

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 83

cgttagaatt cattagaaag ccttaaacat gc

32

<210> 84

<211> 2001

<212> DNA

<213> Babesia

<400> 84

atgcgcatc accaccatca ccacactgtat gataattaaga aggcatggta cgaatgcaaa 60
tctaatgcta ttatattgaa gaaaaagata cttgacaatg atgaagatata taagattaat 120
tttagggaaa tggtaatgt agtaacatgt gcaaacacaa aatttgaagc cctaaatgtat 180
ttgataatcc cgactgtga gaaaaaaggta attaagataaa acagagatgt gattcaagc 240
tacaaatgc ttcttccac aatcacctat attgttggag ctggagttga agctgttaact 300
gttagtgtgt ctgctacatc taatggact gaatctggtg gagctggtag tggaactgga 360
actagtgtgt ctgctacatc tacttaact ggtaatggtg gaactgaatc tggtgaaaca 420
gctggacta ctacgtctag tggaaactgaa gctgggtgaa ctatgttggaa tactacgtct 480
agtggagctg ctatgtgtttaa ggtgacttggta gtgataaaagc tggaaactgga actagtggaa 540
ggtgctggta gtgataaaagc tggaaactgga actagtggaa ctactacgtc tagtggaaact 600
ggtgctggtg gagctggtag tggtggacact agtggacatg cttctaattgc aaaaattcc 660
ggaataatga cactaactct atttgcattttaa ttaacatTTTttgtttaatatt tccagaaccc 720
aatcggtt cagaatctgt acatgttggaa atccaggaac atgataacat caatccacaa 780
gacgcttgcg atagtggatc gtcgaacaa atggattctg ataccagggt gttggccgaa 840
agtttggatg agggggtacc acaccaatttc tctagattttggc ggjaccactc agacatggca 900
tctgtatataa atgtatgttggaa ataccattca atagatgtatg aagagcttga caacttaatg 1020
ccctggaaag atacagctcc aagtgcgttcatgatgatg aagatggcaaa actcaatacg 1080
agactaacgg cgcaagaaac aagttggatg catgatgttggaaatcg catgataactc agacaccgca 1140
aataaaatgtt agaagactgtt aagaaatcgatgatgttggaaatcg catgataactc agaaatatat 1200
gaagagcttggc acaacttact gagactaactg gcacaaagaaa tatatgttggaaatcg gctgttggaa 1260
gggcatggca aaccaatac gaataaaaatgtt gagaaggctg aaagaaaatcgatgatgttggaaatcg 1320
cagacaacgc aagaaatatgtt tgaagatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1380
aaaatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1440
gagttgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1500
tcgttatgtataa atccatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1560
atcaatacgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1620
gaaatatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1680
gctggataaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1740
gagcatggca atctcaataa gaataaaaatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1800
cagacaccgc tggaaaaaaaatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1860
cccggaggata atgaaagagaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1920
atgacgaatc actttgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 1980
gaaacatcca ctcatttatttgcatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 2040
tgcatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcgatgatgttggaaatcg 2100

<210> 85

<211> 667

<212> PRT

<213> Babesia

<400> 85

Met Gln His His His His His Thr Asp Asp Ile Lys Lys Ala Phe

5

10

15

Asp Glu Cys Lys Ser Asn Ala Ile Ile Leu Lys Lys Lys Ile Leu Asp

-20-

25

30

Asn Asp Glu Asp Tyr Lys Ile Asn Phe Arg Glu Met Val Asn Glu Val
 35 40 45

Thr Cys Ala Asn Thr Lys Phe Glu Ala Leu Asn Asp Leu Ile Ile Ser
 50 55 60

Asp Cys Glu Lys Lys Gly Ile Lys Ile Asn Arg Asp Val Ile Ser Ser
 65 70 75 80

Tyr Lys Leu Leu Leu Ser Thr Ile Thr Tyr Ile Val Gly Ala Gly Val
 85 90 95

Glu Ala Val Thr Val Ser Val Ser Ala Thr Ser Asn Gly Thr Glu Ser,
 100 105 110

Gly Gly Ala Gly Ser Gly Thr Gly Thr Ser Val Ser Ala Thr Ser Thr
 115 120 125

Leu Thr Gly Asn Gly Gly Thr Glu Ser Gly Gly Thr Ala Gly Thr Thr
 130 135 140

Thr Ser Ser Gly Thr Glu Ala Gly Gly Thr Ser Gly Thr Thr Thr Ser
 145 150 155 160

Ser Gly Ala Ala Ser Gly Lys Ala Gly Thr Gly Thr Ala Gly Thr Thr
 165 170 175

Thr Ser Ser Glu Gly Ala Gly Ser Asp Lys Ala Gly Thr Gly Thr Ser.
 180 185 190

Gly Thr Thr Thr Ser Ser Gly Thr Gly Ala Gly Gly Ala Gly Ser Gly
 195 200 205

Gly Pro Ser Gly His Ala Ser Asn Ala Lys Ile Pro Gly Ile Met Thr
 210 215 220

Leu Thr Leu Phe Ala Leu Leu Thr Phe Ile Val Asn Ile Pro Glu Pro
 225 230 235 240

Asn Ala Asp Ser Glu Ser Val His Val Glu Ile Gln Glu His Asp Asn
 245 250 255

Ile Asn Pro Gln Asp Ala Cys Asp Ser Glu Pro Leu Glu Gln Met Asp
 260 265 270

Ser Asp Thr Arg Val Leu Pro Glu Ser Leu Asp Glu Gly Val Pro His
 275 280 285

Gln Phe Ser Arg Leu Gly His His Ser Asp Met Ala Ser Asp Ile Asn
 290 295 300

Asp Glu Glu Pro Ser Phe Lys Ile Gly Glu Asn Asp Ile Ile Gln Pro
 305 310 315 320

Pro Trp Glu Asp Thr Ala Pro Tyr His Ser Ile Asp Asp Glu Glu Leu

325 330 335

Asp Asn Leu Met Arg Leu Thr Ala Gln Glu Thr Ser Asp Asp His Glu
340 345 350

Glu Gly Asn Gly Lys Leu Asn Thr Asn Lys Ser Glu Lys Thr Glu Arg
355 360 365

Lys Ser His Asp Thr Gln Thr Pro Gln Glu Ile Tyr Glu Glu Leu Asp
370 375 380

Asn Leu Leu Arg Leu Thr Ala Gln Glu Ile Tyr Glu Glu Arg Lys Glu
385 390 395 400

Gly His Gly Lys Pro Asn Thr Asn Lys Ser Glu Lys Ala Glu Arg Lys
405 410 415

Ser His Asp Thr Gln Thr Gln Glu Ile Cys Glu Glu Cys Glu Glu
420 425 430

Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala Gly Ile Lys
435 440 445

Ser Tyr Asp Thr Gln Thr Gln Glu Ile Cys Glu Glu Cys Glu Glu
450 455 460

Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala Gly Ile Lys
465 470 475 480

Ser Tyr Asp Thr Gln Thr Pro Gln Glu Thr Ser Asp Ala His Glu Glu
485 490 495

Gly His Asp Lys Ile Asn Thr Asn Lys Ser Glu Lys Ala Glu Arg Lys
500 505 510

Ser His Asp Thr Gln Thr Gln Glu Ile Cys Glu Glu Cys Glu Glu
515 520 525

Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala Gly Ile Lys
530 535 540

Ser Tyr Asp Thr Gln Thr Pro Gln Glu Thr Ser Asp Ala His Glu Glu
545 550 555 560

Glu His Gly Asn Leu Asn Lys Asn Lys Ser Gly Lys Ala Gly Ile Lys
565 570 575

Ser His Asn Thr Gln Thr Pro Leu Lys Lys Asp Phe Cys Lys Glu
580 585 590

Gly Cys His Gly Cys Asn Asn Lys Pro Glu Asp Asn Glu Arg Asp Pro
595 600 605

Ser Ser Pro Asp Asp Gly Gly Cys Glu Cys Gly Met Thr Asn His
610 615 620

Phe Val Phe Asp Tyr Lys Thr Thr Leu Leu Leu Lys Ser Leu Lys Thr
 625 630 635 640

Glu Thr Ser Thr His Tyr Tyr Ile Ala Met Ala Ala Ile Phe Thr Ile
 645 650 655

Ser Leu Phe Pro Cys Met Phe Lys Ala Phe
 660 665

<210> 86

<211> 3402

<212> DNA

<213> Babesia

<400> 86

atgcagcatc accaccatca ccacttgact tttggaaata tacgtttca taatataaat 60
 ctcccacat ttcattggg cataattcac tcgattacgg tagaaaaaggc gattaactct 120
 gaagattttg acgaaataca aacacttta caagtgtcta tcattgctag ttacggtcca 180
 tctggcgatt acagtagttt tgtgttcaact ccagttgtaa cagcagacac caacgtttt 240
 tacaatttag agacggattt caaacttgat gttgatgtta ttactaagac atcactagaa 300
 ttgccacaa gtgttcctgg ctttcaactac accgaaacta ttaccaagg cacagaattg 360
 tcaaaaattta gcaagcctca gtgcaaactt aacgatcctc ctattacaac aggatcgggg 420
 ttgcaaataa tacatgatgg tttgaataat tgcacaattta taaccaacaa agaagttaat 480
 gtggatggaa cagatttagt ttttttggaa ttgtccctc catcgatgg cattccacc 540
 ttgcgatcaa aattatttcc cgccctgaaa tcaattccaa tgatatctac cggggtaat 600
 gaattactgt tggaaagtact cgagaacccc tctttcccta gtgcaatttag caattacacc 660
 ggactgacag gccgacttaa caaattactt acagtttagt acggattgt tgatagcgcc 720
 attagtgtca agactacaga aactgtccct gacgacgcag aaacttctat ttcttcattg 780
 aaatcattga taaaggcaat acgagataat attactacca ctgcggacg agttaccaa 840
 gatgatgtt atgcattgaa gaaggccctc acttgtctaa cgacacacat aatatatcat 900
 tcaaaaatgt atggatatac attcgacatg ctgggaacac aaaaaataaa atctagcccc 960
 ctaggaaga tcggAACGTC tatggacgat attatagccca tggatcgaa tcccaatatg 1020
 tatcttgtga aggtggcgta cttgcacgatc attgaacaca ttttctcat atcaaccaa 1080
 tacaatgata tatttgattt caccattgtat ttttagtaagc gtgaagctac tgattctgaa 1140
 tcatttacccg atatattgtt cggaaacaag gtgaaggaat tttgtcatt tattgagggt 1200
 ttgatttctg acataaaatc tcactcattt aaagctgggg ttacaggagg tataatcaagt 1260
 tcacattat ttgatgaaat cttgcacgatc ttttatttttgg atcaagcaac aattagaacc 1320
 ctttgtgcac cattagattt gccacttatac tcagacaaaa gcctccaccc ttcaactgaag 1380
 atgggtgtgg tcctgccagg attttcata gttccctgat ccactgtatc tattaagaag 1440
 gcatttgacg aatgcacatc taatgttattt atattgaaga aaaagatact tgacaatgtat 1500
 gaagattata agattaattt tagggaaatg gtgaatgttgc taacatgtgc aaacacaaaa 1560
 tttgaagccc taaaatgattt gataatttcc gactgtgaga aaaaaggat taaaatgttgc 1620
 agagatgtga tttcaagctt caaattgtttt ctttccacaa tcaccttat tttttttttt 1680
 ggagttgaag ctgttaactgt tagtgtgtct gctacatctt atggaaactgt atctgggtgg 1740
 gctggtagtg gaactggaaac tagtgtgtct gctacatctt ctttaactgg taatgggtgg 1800
 actgaatctg gtggaaacacg tggaaactact acgtcttagt gaaactgttgc tgggtggact 1860
 agtggaaacta ctacgtctag tggagctgtt agtggtaaaag ctggaaactgg aacagctgg 1920
 actactacgt cttagtgaagg tgctggtagt gataaaatgtt gaaactggaaac tagtggact 1980
 actacgtctt gtggaaactgg tgctgggtgg gctggtagtg gtggacactt tagtggact 2040
 tctaattgttca aatatttccatc aataatgttca ctaactctat ttgcatttattt aacattttt 2100
 gtaaaatatttccatc cagaacccaa tggggatttca gatgttgcac atgttggaaat ccagggacat 2160
 gataacatca atccacaaga cgcttgcgtt agtgagccgc tcgaacaaat ggattctgtat 2220
 accaggggtt tgcccgaaat tttggatgtt ggggttaccac accaattctc tagatttaggg 2280
 caccactcag acatggcattt tttttttttt gatgtataat gatgttgcac catcattttttt aatcgccgag 2340

aatgacataa ttcaaccacc ctggaaagat acagctccat accattcaat agatgatgaa 2400
 gagcttaca acttaatgag actaacgcgc caagaaacaa gtgacgatca tgaagaaggg 2460
 aatggcaaac tcaatacga aaaaagttag aagactgaaa gaaaatcgca tgataactcg 2520
 acaccgcgaag aaatatatga agagcttgc aacttactga gactaacggc acaagaaata 2580
 tatgaagagc gtaaaagaagg gcatggcaaa cccaaatacga ataaaagtga gaaggctgaa 2640
 agaaaatcgc atgatactca gacaacgcaa gaaatatgtg aagagtgtga agaagggcat 2700
 gacaaaatca ataagaataa aagtggaaat gctggaataa aatcgatga tactcagaca 2760
 acgcaagaaa tatgtgaaga gtgtgaagaa gggcatgaca aaatcaataa gaataaaaagt 2820
 gaaaatctg gaataaaaatc gtatgatact cagacaccgc aggaaacaag tgacgctcat 2880
 gaagaagggc atgacaaaat caatacgaat aaaagtgaga aggctgaaag aaaatcgcat 2940
 gatactcaga caacgcaga aatatgtgaa gagtgtgaag aagggcatga caaaatcaat 3000
 aagaataaaa gtggaaatgc tggataaaaa tcgtatgata ctcagacacc gcaggaaaca 3060
 agtgacgctc atgaagaaga gcatggcaat ctcaataaga ataaaagtgg gaaggctgga 3120
 ataaaatcgc ataatactca gacaccgctg aaaaaaaaaag acttttgtaa agaagggtgt 3180
 catggttgca ataataagcc cgaggataat gaaagagacc cgtcgtcgcc tgatgatgat 3240
 ggtggctgctg aatgcggcat gacgaatcac tttgttttg actacaagac aacactctt 3300
 ttaaagagcc tcaagactga aacatccact cattattaca ttgccatggc tgcaattttt 3360
 actatttcat tattccatg catgtttaag gctttctaat ga 3402

<210> 8713111

<211> 1134

<212> PRT

<213> Babesia

<400> 87

Met Gln His His His His His Leu Thr Phe Gly Asn Ile Arg Phe
 5 10 15

His Asn Ile Asn Leu Pro Pro Phe Ser Leu Gly Ile Ile His Ser Ile
 20 25 30

Thr Val Glu Lys Ala Ile Asn Ser Glu Asp Phe Asp Gly Ile Gln Thr
 35 40 45

Leu Leu Gln Val Ser Ile Ile Ala Ser Tyr Gly Pro Ser Gly Asp Tyr
 50 55 60

Ser Ser Phe Val Phe Thr Pro Val Val Thr Ala Asp Thr Asn Val Phe
 65 70 75 80

Tyr Lys Leu Glu Thr Asp Phe Lys Leu Asp Val Asp Val Ile Thr Lys
 85 90 95

Thr Ser Leu Glu Leu Pro Thr Ser Val Pro Gly Phe His Tyr Thr Glu
 100 105 110

Thr Ile Tyr Gln Gly Thr Glu Leu Ser Lys Phe Ser Lys Pro Gln Cys
 115 120 125

Lys Leu Asn Asp Pro Pro Ile Thr Thr Gly Ser Gly Leu Gln Ile Ile
 130 135 140

His Asp Gly Leu Asn Asn Ser Thr Ile Ile Thr Asn Lys Glu Val Asn
 145 150 155 160

Val Asp Gly Thr Asp Leu Val Phe Phe Glu Leu Leu Pro Pro Ser Asp
 165 170 175

Gly Ile Pro Thr Leu Arg Ser Lys Leu Phe Pro Val Leu Lys Ser Ile
 180 185 190

Pro Met Ile Ser Thr Gly Val Asn Glu Leu Leu Glu Val Leu Glu
 195 200 205

Asn Pro Ser Phe Pro Ser Ala Ile Ser Asn Tyr Thr Gly Leu Thr Gly
 210 215 220

Arg Leu Asn Lys Leu Leu Thr Val Leu Asp Gly Ile Val Asp Ser Ala
 225 230 235 240

Ile Ser Val Lys Thr Thr Glu Thr Val Pro Asp Asp Ala Glu Thr Ser
 245 250 255

Ile Ser Ser Leu Lys Ser Leu Ile Lys Ala Ile Arg Asp Asn Ile Thr
 260 265 270

Thr Thr Arg Asn Glu Val Thr Lys Asp Asp Val Tyr Ala Leu Lys Lys
 275 280 285

Ala Leu Thr Cys Leu Thr Thr His Leu Ile Tyr His Ser Lys Val Asp
 290 295 300

Gly Ile Ser Phe Asp Met Leu Gly Thr Gln Lys Asn Lys Ser Ser Pro
 305 310 315 320

Leu Gly Lys Ile Gly Thr Ser Met Asp Asp Ile Ile Ala Met Phe Ser
 325 330 335

Asn Pro Asn Met Tyr Leu Val Lys Val Ala Tyr Leu Gln Ala Ile Glu
 340 345 350

His Ile Phe Leu Ile Ser Thr Lys Tyr Asn Asp Ile Phe Asp Tyr Thr
 355 360 365

Ile Asp Phe Ser Lys Arg Glu Ala Thr Asp Ser Gly Ser Phe Thr Asp
 370 375 380

Ile Leu Leu Gly Asn Lys Val Lys Glu Ser Leu Ser Phe Ile Glu Gly
 385 390 395 400

Leu Ile Ser Asp Ile Lys Ser His Ser Leu Lys Ala Gly Val Thr Gly
 405 410 415

Gly Ile Ser Ser Ser Ser Leu Phe Asp Glu Ile Phe Asp Glu Leu Asn
 420 425 430

Leu Asp Gln Ala Thr Ile Arg Thr Leu Val Ala Pro Leu Asp Trp Pro
 435 440 445

Leu Ile Ser Asp Lys Ser Leu His Pro Ser Leu Lys Met Val Val Val

450 455 460
Leu Pro Gly Phe Phe Ile Val Pro Gly Ser Thr Asp Asp Ile Lys Lys
465 470 475 480
Ala Phe Asp Glu Cys Lys Ser Asn Ala Ile Ile Leu Lys Lys Ile
485 490 495
Leu Asp Asn Asp Glu Asp Tyr Lys Ile Asn Phe Arg Glu Met Val Asn
500 505 510
Glu Val Thr Cys Ala Asn Thr Lys Phe Glu Ala Leu Asn Asp Leu Ile
515 520 525
Ile Ser Asp Cys Glu Lys Lys Gly Ile Lys Ile Asn Arg Asp Val Ile
530 535 540
Ser Ser Tyr Lys Leu Leu Ser Thr Ile Thr Tyr Ile Val Gly Ala
545 550 555 560
Gly Val Glu Ala Val Thr Val Ser Val Ser Ala Thr Ser Asn Gly Thr
565 570 575
Glu Ser Gly Gly Ala Gly Ser Gly Thr Gly Thr Ser Val Ser Ala Thr
580 585 590
Ser Thr Leu Thr Gly Asn Gly Gly Thr Glu Ser Gly Gly Thr Ala Gly
595 600 605
Thr Thr Thr Ser Ser Gly Thr Glu Ala Gly Gly Thr Ser Gly Thr Thr
610 615 620
Thr Ser Ser Gly Ala Ala Ser Gly Lys Ala Gly Thr Gly Thr Ala Gly
625 630 635 640
Thr Thr Thr Ser Ser Glu Gly Ala Gly Ser Asp Lys Ala Gly Thr Gly
645 650 655
Thr Ser Gly Thr Thr Ser Ser Gly Thr Gly Ala Gly Gly Ala Gly
660 665 670
Ser Gly Gly Pro Ser Gly His Ala Ser Asn Ala Lys Ile Pro Gly Ile
675 680 685
Met Thr Leu Thr Leu Phe Ala Leu Leu Thr Phe Ile Val Asn Ile Pro
690 695 700
Glu Pro Asn Ala Asp Ser Glu Ser Val His Val Glu Ile Gln Glu His
705 710 715 720
Asp Asn Ile Asn Pro Gln Asp Ala Cys Asp Ser Glu Pro Leu Glu Gln
725 730 735
Met Asp Ser Asp Thr Arg Val Leu Pro Glu Ser Leu Asp Glu Gly Val
740 745 750

Pro His Gln Phe Ser Arg Leu Gly His His Ser Asp Met Ala Ser Asp
755 760 765

Ile Asn Asp Glu Glu Pro Ser Phe Lys Ile Gly Glu Asn Asp Ile Ile
770 775 780

Gln Pro Pro Trp Glu Asp Thr Ala Pro Tyr His Ser Ile Asp Asp Glu
785 790 795 800

Glu Leu Asp Asn Leu Met Arg Leu Thr Ala Gln Glu Thr Ser Asp Asp
805 810 815

His Glu Glu Gly Asn Gly Lys Leu Asn Thr Asn Lys Ser Glu Lys Thr
820 825 830

Glu Arg Lys Ser His Asp Thr Gln Thr Pro Gln Glu Ile Tyr Glu Glu
835 840 845

Leu Asp Asn Leu Leu Arg Leu Thr Ala Gln Glu Ile Tyr Glu Glu Arg
850 855 860

Lys Glu Gly His Gly Lys Pro Asn Thr Asn Lys Ser Glu Lys Ala Glu
865 870 875 880

Arg Lys Ser His Asp Thr Gln Thr Thr Gln Glu Ile Cys Glu Glu Cys
885 890 895

Glu Glu Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala Gly
900 905 910

Ile Lys Ser Tyr Asp Thr Gln Thr Thr Gln Glu Ile Cys Glu Glu Cys
915 920 925

Glu Glu Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala Gly
930 935 940

Ile Lys Ser Tyr Asp Thr Gln Thr Pro Gln Glu Thr Ser Asp Ala His
945 950 955 960

Glu Glu Gly His Asp Lys Ile Asn Thr Asn Lys Ser Glu Lys Ala Glu
965 970 975

Arg Lys Ser His Asp Thr Gln Thr Thr Gln Glu Ile Cys Glu Glu Cys
980 985 990

Glu Glu Gly His Asp Lys Ile Asn Lys Asn Lys Ser Gly Asn Ala Gly
995 1000 1005

Ile Lys Ser Tyr Asp Thr Gln Thr Pro Gln Glu Thr Ser Asp Ala His
1010 1015 1020

Glu Glu Glu His Gly Asn Leu Asn Lys Asn Lys Ser Gly Lys Ala Gly
1025 1030 1035 1040

Ile Lys Ser His Asn Thr Gln Thr Pro Leu Lys Lys Lys Asp Phe Cys
1045 1050 1055

Lys Glu Gly Cys His Gly Cys Asn Asn Lys Pro Glu Asp Asn Glu Arg
1060 1065 1070

Asp Pro Ser Ser Pro Asp Asp Asp Gly Gly Cys Glu Cys Gly Met Thr
1075 1080 1085

Asn His Phe Val Phe Asp Tyr Lys Thr Thr Leu Leu Leu Lys Ser Leu
1090 1095 1100

Lys Thr Glu Thr Ser Thr His Tyr Tyr Ile Ala Met Ala Ala Ile Phe
1105 1110 1115 1120

Thr Ile Ser Leu Phe Pro Cys Met Phe Lys Ala Phe
1125 1130

<210> 88

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 88

ccgtcgccgc tgacttttgg aaatatacg

29

<210> 89

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 89

ctagaattca taggatccag gaactatgaa aaatcc

36

<210> 90

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 90

cgtggatcca ctgatgatat taagaag

27

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/09136

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/30	C07K14/44	C12N15/62	G01N33/569	C12Q1/68
C07K16/20	A61K39/018			

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C07K C12Q G01N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, PAJ, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, L	EP 0 834 567 A (CORIXA CORP) 8 April 1998 (1998-04-08) the whole document L: priority	1-67
P, X, L	WO 99 29869 A (CORIXA CORP ;MAYO FOUNDATION (US)) 17 June 1999 (1999-06-17) the whole document L: priority	1-67

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

18 July 2000

Date of mailing of the international search report

24/07/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Lejeune, R

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 00/09136

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0834567 A	08-04-1998	NONE	
WO 9929869 A	17-06-1999	AU 1820499 A	28-06-1999

PATENT COOPERATION TREATY

RECEIVED

JUL 11 2002

PCT

SEED INTELLECTUAL PROPERTY
LAW GROUP PLLC

INVITATION TO PAY ADDITIONAL FEES

(PCT Article 17(3)(a) and Rule 40.1)

From the INTERNATIONAL SEARCHING AUTHORITY

To:
**SEED INTELLECTUAL PROPERTY LAW
GROUP PLLC**
 Attn. Potter, Jane E.R.
 Suite 6300
 701 Fifth Avenue
 Seattle, WA 98104-7092
 UNITED STATES OF AMERICA
 SUPP. 105.
 JULY 11 2002
 EXCLUDED FROM PCT

RECOMMANDEE

426C2 (426C10) (426C11) (-426C3) (-426C4) (-426C5) (-426C6) (-426C7)	Date of mailing (day/month/year) 05/07/2002 PAYMENT DUE within 45 X XX days/days from the above date of mailing International filing date (day/month/year) 09/05/2001 Applicant CORIXA CORPORATION et al. <i>PCT - ADD. FEES AVG. 19, 2002 EXCLUDED FROM PCT</i>
---	---

1. This International Searching Authority

- (i) considers that there are 28 (number of) inventions claimed in the international application covered by the claims indicated ~~below~~ on the extra sheet:

and it considers that the international application does not comply with the requirements of unity of invention (Rules 13.1, 13.2 and 13.3) for the reasons indicated ~~below~~ on the extra sheet:

426C3 - SF
 426C5 - SC
 426C8 - SF
 426C9 - SF
 426C10 - SF
 426C11 - SF
 426C12 - SF

- (ii) has carried out a partial international search (see Annex) will establish the international search report on those parts of the international application which relate to the invention first mentioned in claims Nos.: **in part 1-34, 36 (all as far as possible)**

- (iii) will establish the international search report on the other parts of the international application only if, and to the extent to which, additional fees are paid

2. The applicant is hereby invited, within the time limit indicated above, to pay the amount indicated below:

EUR 945,00 x 27 = EUR 25.515,00
 Fee per additional invention number of additional inventions total amount of additional fees

Or, _____ x _____ = _____

The applicant is informed that, according to Rule 40.2(c), the payment of any additional fee may be made under protest, i.e., a reasoned statement to the effect that the international application complies with the requirement of unity of invention or that the amount of the required additional fee is excessive.

3. Claim(s) Nos. further info have been found to be unsearchable under Article 17(2)(b) because of defects under Article 17(2)(a) and therefore have not been included with any invention.

Name and mailing address of the International Searching Authority European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Henriëtte Huysing-Solles
---	---

THIS PAGE BLANK (USPTO)

Annex to Form PCT/ISA/206
COMMUNICATION RELATING TO THE RESULTS
OF THE PARTIAL INTERNATIONAL SEARCH

International Application No

PCT/US 01/15192

1. The present communication is an Annex to the invitation to pay additional fees (Form PCT/ISA/206). It shows the results of the international search established on the parts of the international application which relate to the invention first mentioned in claims Nos.:

see 'Invitation to pay additional fees'
2. This communication is not the international search report which will be established according to Article 18 and Rule 43.
3. If the applicant does not pay any additional search fees, the information appearing in this communication will be considered as the result of the international search and will be included as such in the international search report.
4. If the applicant pays additional fees, the international search report will contain both the information appearing in this communication and the results of the international search on other parts of the international application for which such fees will have been paid.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
V,X,L	EP 0 834 567 A (CORIXA CORP) 8 April 1998 (1998-04-08) (L: Priority) the whole document ----	1-34,36
P,X, L	WO 00 60090 A (CORIXA CORP ;REED STEVEN G (US); SLEATH PAUL R (US); LODES MICHAEL) 12 October 2000 (2000-10-12) (L: Priority) the whole document ----	1-34,36
V,X,L	WO 99 29869 A (CORIXA CORP ;MAYO FOUNDATION (US)) 17 June 1999 (1999-06-17) (L: Priority) the whole document -----	1-34,36

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more others such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

THIS PAGE BLANK (USPTO)

Patent Family Ann x

Information on patent family members

International Application No

PCT/US 01/15192

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0834567	A 08-04-1998	US US EP US US	6306396 B1 6183976 B1 0834567 A2 2001029295 A1 6214971 B1	23-10-2001 06-02-2001 08-04-1998 11-10-2001 10-04-2001
WO 0060090	A 12-10-2000	AU EP WO US	4204700 A 1169455 A1 0060090 A1 2001029295 A1	23-10-2000 09-01-2002 12-10-2000 11-10-2001
WO 9929869	A 17-06-1999	US AU WO US	6214971 B1 1820499 A 9929869 A1 2001029295 A1	10-04-2001 28-06-1999 17-06-1999 11-10-2001

THIS PAGE BLANK (USPTO)