Minimum Spanning Trees

Mohammad Asad Abbasi Lecture 15

Introduction

- Greedy algorithm is a technique for solving problems with the following properties:
 - The problem is an optimization problem, to find the solution that minimizes or maximizes some value (cost/profit)
 - The solution can be constructed in a sequence of steps/choices
 - For each choice point:
 - The choice must be feasible
 - The choice looks good or better than alternatives (Cost)
 - The choice cannot be revoked

Example

A cable company want to connect five villages to their network which currently extends to the market town. What is the minimum length of cable needed?

Example

➤ We model the situation as a network, then the problem is to find the minimum connector for the network

Spanning Trees

> Spanning Trees: A subgraph of a undirected graph is a spanning tree if it is a tree and contains every vertex of given graph

Minimum Spanning Trees

- A minimum spanning tree (MST) for a graph G = (V, E) is a **sub graph** G1 = (V1, E1) of G contains **all the vertices** of G
- ➤ If a graph G is **not** a **connected** graph, then it cannot have any spanning tree
- A minimum spanning tree (MST) for a weighted graph is a spanning tree with **minimum weight**. All the vertices in the weighted graph will be connected with minimum edge with **minimum weights**

What Makes A Spanning Tree The Minimum?

> MST Criterion:

 When the sum of the edge weights in a spanning tree is the minimum over all spanning trees of a graph

Applications of Minimum-Cost Spanning Trees

- > Building cable networks that join n locations with minimum cost
- Building a road network that joins n cities with minimum cost
- Obtaining an independent set of circuit equations for an electrical network

Prim's Algorithm

- Finds a minimum spanning tree for a connected weighted undirected graph
- ➤ It finds a subset of the edges that forms a tree that includes **every vertex**, where the total weight of all the edges in the tree is **minimized**

- 1) Select **any vertex**
- 2) Select the **shortest** edge connected to that vertex
- 3) Select the shortest edge connected to any vertex already connected
- 4) Repeat step 3 until all vertices have been connected

Connected graph

Step 0

$$S=\{a\}$$

$$V \setminus S = \{b,c,d,e,f,g\}$$

lightest edge = $\{a,b\}$

Step 1.1 before $S=\{a\}$ $V \setminus S = \{b,c,d,e,f,g\}$ $A=\{\}$ lightest edge = $\{a,b\}$

Step 1.1 after $S=\{a,b\}$ $V \setminus S = \{c,d,e,f,g\}$ $A=\{\{a,b\}\}$ lightest edge = \{b,d\}, \{a,c\}

Step 1.2 before $S=\{a,b\}$ $V \setminus S = \{c,d,e,f,g\}$ $A=\{\{a,b\}\}$ lightest edge = $\{b,d\}$, $\{a,c\}$

Step 1.2 after $S=\{a,b,d\}$ $V \setminus S = \{c,e,f,g\}$ $A=\{\{a,b\},\{b,d\}\}$ lightest edge = $\{d,c\}$

Step 1.3 before $S=\{a,b,d\}$ $V \setminus S = \{c,e,f,g\}$ $A=\{\{a,b\},\{b,d\}\}$ lightest edge = $\{d,c\}$

Step 1.3 after $S=\{a,b,c,d\}$ $V \setminus S = \{e,f,g\}$ $A=\{\{a,b\},\{b,d\},\{c,d\}\}$ lightest edge = $\{c,f\}$

Step 1.4 before

$$S=\{a,b,c,d\}$$

$$V \setminus S = \{e,f,g\}$$

$$A = \{\{a,b\},\{b,d\},\{c,d\}\}$$

lightest edge = $\{c,f\}$

Step 1.4 after

$$S=\{a,b,c,d,f\}$$

$$V \setminus S = \{e,g\}$$

$$A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\}\}$$

lightest edge = $\{f,g\}$

Step 1.5 after $S=\{a,b,c,d,f,g\}$ $V \setminus S = \{e\}$ $A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\},\{f,g\}\}$

 $lightest edge = \{f,e\}$

Step 1.6 after

S={a,b,c,d,e,f,g}

V\S={}

A={{a,b},{b,d},{c,d},{c,f},
{f,g},{f,e}}

MST completed

Dijkstra's Algorithm

- Finds shortest (minimum weight) path between a particular pair of vertices in a weighted directed graph with nonnegative edge weights
 - solves the "one vertex, shortest path" problem
- Works on both directed and undirected graphs. However, all edges must have nonnegative weights.
- ➤ Input: Weighted graph G={E,V} and source vertex v∈V, such that all edge weights are nonnegative
- ➤ Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex v∈V to all other vertices

Dijkstra's Algorithm

- ➤ It starts by assigning some initial values for the distances from node s and to every other node in the network
- ➤ It operates in steps, where at each step the algorithm improves the distance values
- At each step, the shortest distance from node s to another node is determined

Dijkstra's algorithm - Pseudocode

```
dist[s] \leftarrow o
                                           (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                           (set all other distances to infinity)
S←Ø
                                           (S, the set of visited vertices is initially empty)
O←V
                                           (Q, the queue initially contains all
vertices)
while Q ≠Ø
                                           (while the queue is not empty)
do u \leftarrow mindistance(Q,dist)
                                           (select the element of Q with the min. distance)
                                           (add u to list of visited vertices)
    S \leftarrow S \cup \{u\}
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v)
                                                                (if new shortest path found)
                then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                     (if desired, add traceback code)
return dist
```


S: { A, C }

At the last iteration, $z \ge S$ and L(z) = 7. We conclude that the cheapest path from a to z has a **cost of 7**.

S	L(a)	L(b)	L(c)	L(d)	L(e)	L(z)
Ø	0	∞	∞	∞	∞	∞
$\{a\}$		2	3	∞	∞	∞
$\{a,b\}$		_	3	7	5	∞
$\{a,b,c\}$			_	7	4	∞
$\{a,b,c,e\}$				5	<u> </u>	8
$\{a,b,c,e,d\}$						7
$\{a,b,c,e,d,z\}$						