UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

DIPLOMOVÁ PRÁCE

2021 Michal Struna

Univerzita Pardubice Fakulta elektrotechniky a informatiky

Detekce a analýza exoplanet s využitím distribuovaných výpočtů a umělé inteligence

Michal Struna

Diplomová práce

Univerzita Pardubice Fakulta elektrotechniky a informatiky Akademický rok: 2018/2019

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Michal Struna

Osobní číslo: I16144

Studijní program: B2646 Informační technologie

Studijní obor: Informační technologie

Název tématu: Webový 3D simulátor těles ve vesmíru

Zadávající katedra: Katedra informačních technologií

Zásady pro vypracování:

Práce se zabývá tvorbou webové typescriptové aplikace pro 3D vizualizaci těles ve vesmíru. V rámci práce je kladen důraz na dynamický obsah, na kterém se mohou všichni uživatelé po úspěšné autentifikaci podílet. Data jsou ukládána do databáze na serveru. Pro práci s databází je využito REST API. Cílem bakalářské práce je vytvořit webovou aplikaci v jazyce Type-Script, jejímž obsahem je 3D simulátor těles ve vesmíru v reálném čase. Aplikace se skládá z klientské a serverové části. Klientská část zahrnuje: - Uživatelské rozhraní v Reactu a ostylované v SASS umožňující uživatelům autentifikaci, zobrazení a úpravu obsahu a písemnou komunikaci s ostatními uživateli. - 3D simulátor využívající knihovnu THREE.js zobrazující tělesa v reálném čase. Průběh času je možné zrychlovat, zpomalovat či vracet. Serverová část obsahuje: - Serverová aplikace napsaná v Node.js poskytující REST API pro práci s daty. - Data budou uložená v MongoDB databázi, se kterou se bude pracovat za využití knihovny Mongoose. - Dokumentace REST API pomocí nástroje Swagger. Výstupem práce je aplikace, kterou je po nainstalování závislostí pomocí balíčkovacího systému npm a transpilaci TypeScriptu do JavaScriptu možné okamžitě spustit.

Rozsah grafických prací:

Rozsah pracovní zprávy: min. 30 s.,dop. rozsah 40 s.

Forma zpracování bakalářské práce: tištěná

Seznam odborné literatury:

KLECZEK, Josip. Velká encyklopedie vesmíru. Praha: Academia, 2002s., 48s. barev. obr. příl. ISBN 80-200-0906-x

REES, Martin J, ed. Vesmír: [obrazová encyklopedie]. Přeložil Pavel

PŘÍHODA. V Praze: Knižní klub, 2006. ISBN 80-242-1668-x

JPL Solar System Dynamics. JPL Solar System Dynamics [online]. Dostupné z: https://ssd.jpl.nasa.gov

MARDAN, Azat. Practical Node.js: building real-world scalable web apps. Berkeley, California: Apress, [2014]. Expert's voice in Web development. ISBN 978-1-4302-6595-5

MARDAN, Azat. Practical Node.js: building real-world scalable web apps. Berkeley, California: Apress, [2014]. Expert's voice in Web development. ISBN 978-1-4302-6595-5

Vedoucí bakalářské práce: Ing. Monika Borkovcová, Ph.D.

Katedra informačních technologií

Datum zadání bakalářské práce: 31. října 2018
Termín odevzdání bakalářské práce: 12. května 2019

Ing. Zdeněk Němec, Ph.D. děkan

Ing. Lukáš Čekan, Ph.D. pověřený vedením katedry

Prohlášení autora

Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré literární prameny a informace, které jsem v práci využil, jsou uvedeny v seznamu použité literatury.

Byl jsem seznámen s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorský zákon, zejména se skutečností, že Univerzita Pardubice má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Pardubice oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše.

Beru na vědomí, že v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, a směrnicí Univerzity Pardubice č. 9/2012, bude práce zveřejněna v Univerzitní knihovně a prostřednictvím Digitální knihovny Univerzity Pardubice.

V Pardubicích dne 9.5.2021

Michal Struna

Poděkování

...

ANOTACE ...

KLÍČOVÁ SLOVA

exoplanety, extrasolární planety, kepler, umělá inteligence, python

TITLE

Artificial intelligence for exoplanet detection from transit data

ANNOTATION

. . .

KEYWORDS

exoplanet, extrasolar planets, kepler, artificial intelligence, python

OBSAH

Se	znan	n obrázků	11		
Se	Seznam tabulek 13				
Se	Seznam zdrojových kódů 14				
Se	znan	n vzorců	15		
Se	znan	n obrázků	16		
Ú	vod		17		
1	Hle	dání exoplanet	18		
	1.1	Tranzitní metoda	21		
		1.1.1 Target pixel file	22		
		1.1.2 Světelná křivka hvězdy	22		
		1.1.3 Vyřazení false positives	24		
		1.1.4 Výpočet vlastností planety	25		
		1.1.5 Výpočet hmotnosti planety	26		
	1.2	Metoda radiálních rychlostí	27		
		1.2.1 Měření vlnové délky záření hvězdy	28		
		1.2.2 Výpočet radiální rychlosti hvězdy	28		
		1.2.3 Výpočet hmotnosti planety	30		
	1.3	Astrometrická metoda	31		
	1.4	Gravitační mikročočky	32		
	1.5	Přímé zobrazení	33		
	1.6	Časování transitů	33		
	1.7	Časování pulsarů	33		
2	Um	ělá inteligence	35		
	2.1	Umělé neuronové sítě	35		
	2.2	Evoluční algoritmy	35		
		2.2.1 Genetický algoritmus	35		

		2.2.2 Algoritmus diferenciální evoluce	5
	2.3	Fuzzy systémy	5
	2.4	Expertní systémy	5
3	\mathbf{Um}	ělé neuronové sítě 30	6
	3.1	Neuron	6
		3.1.1 Vstupy neuronu	7
		3.1.2 Váhy spojení	7
		3.1.3 Práh neuronu	8
		3.1.4 Agregační funkce	8
		3.1.5 Aktivační funkce	8
	3.2	Typy neuronových sítí	9
		3.2.1 Jednoduchý perceptron	9
		3.2.2 Dopředná vícevrstvá umělá neuronová sít	0
		3.2.3 Konvoluční neuronová sít	1
	3.3	Typy vrstev neuronových sítí	3
		3.3.1 Plně propojená vrstva	3
		3.3.2 Konvoluční vrstva	3
		3.3.3 Vrstva Max-Pooling	5
		3.3.4 Vrstva Flatten	6
		3.3.5 Vrstva Dropout	6
	3.4	Učení umělé neuronové sítě	7
		3.4.1 Algoritmus zpětného šíření chyby	7
4	Pro	jekty pro hledání exoplanet 49	9
	4.1	Planet Hunters	9
	4.2	Astronet	9
5	Pou	žité technologie 50	0
	5.1	TypeScript	0
		5.1.1 React	
		5.1.2 Styled Components	
		5.1.3 NPM	
	5.2	Python	

		5.2.1 Flask
		5.2.2 Astropy
		5.2.3 LightKurve
		5.2.4 TensorFlow
		5.2.5 Pip
	5.3	MongoDB
	5.4	Socket.io
	5.5	Git
6	Náv	vrh a vývoj aplikace 5
	6.1	Server
		6.1.1 REST API
		6.1.2 Socket.io API
	6.2	Webová aplikace
	6.3	Klientská aplikace
	6.4	Neuronová sít
	6.5	Databáze
	6.6	Datasety
		6.6.1 Target pixel files
		6.6.2 Světelné křivky hvězd
		6.6.3 Radiální rychlosti hvězd
		6.6.4 Hvězdy
		6.6.5 Planety
		6.6.6 Názvy
7	Roz	zvržení aplikace 5
	7.1	Přehled
	7.2	Databáze
	7.3	Detail systému
	7.4	Objevování
	7.5	Nápověda
	7.6	Autentizace

60

Závěr

Použitá literatura	60
Seznam příloh	63

SEZNAM OBRÁZKŮ

Obrázek 1	Cetnost objevů exoplanet v jednotlivých letech	18
Obrázek 2	Počty objevených exoplanet jednotlivými metodami	19
Obrázek 3	Známé exoplanety dle jejich vlastností a metody objevení	19
Obrázek 4	Počty objevených exoplanet dle jejich typu	20
Obrázek 5	Přechod planety přes kotouč hvězdy	21
Obrázek 6	Target pixel file hvězdy Kepler-10	22
Obrázek 7	Světelná křivka soustavy Kepler-13	23
Obrázek 8	Dvojhvězda KIC 8262223	24
Obrázek 9	Cefeida KIC 3733346	24
Obrázek 10	Proměnná hvězda KIC 9832227	24
Obrázek 11	Kataklizmická proměnná hvězda KIC 9406652	24
Obrázek 12	Světelná křivka Kepler-10	24
Obrázek 13	Složená světelná křivka	24
Obrázek 14	Globální pohled na tranzit Kepler-10 c	25
Obrázek 15	Lokální pohled na tranzit Kepler-10 c	25
Obrázek 16	Metoda radiálních vzdáleností	27
Obrázek 17	Spektrum slunečního záření	28
Obrázek 18	Radiální rychlost hvězdy 51 Pegasi	29
Obrázek 19	Astrometrická metoda	31
Obrázek 20	Kolísání hvězdy Gliese 876 s planetou	31
Obrázek 21	Princip gravitační čočky	32
Obrázek 22	Ilustrace gravitační mikročočky OGLE 2003-BLG-235	33
Obrázek 23	Ilustrace pulsaru s obíhající planetou	34
Obrázek 24	Model formálního neuronu	37
Obrázek 25	Příklady aktivačních funkcí neuronu	39
Obrázek 26	Lineárně separovatelná (vlevo) a neseparovatelná (v pravo) úloha	39
Obrázek 27	Zapojení neuronů	40
Obrázek 28	Architektura dopředné vícevrstvé umělé neuronové sítě	40
Obrázek 29	Ručně psané číslice 9	41
Obrázek 30	Vztah mezi počítačovým viděním, strojovým učením a konvoluční sítí	41

Obrázek 31	Příklad konvoluční sítě pro ropoznávání ručně psaných číslic 42
Obrázek 32	Postupné posouvání konvolučního filtru přes vstup
Obrázek 33	Příklad aplikace konvolučního filtru na vstup
Obrázek 34	Příklad operace Max-Pooling
Obrázek 35	Příklad fungování vrsty Flatten
Obrázek 36	Příklad fungování vrstvy Dropout
Obrázek 37	Příklad algoritmu zpětného šíření chyby
Obrázek 38	Komponenty projektu a jejich komunikace
Obrázek 39	Architektura serveru
Obrázek 40	Architektura webové aplikace
Obrázek 41	Stavy procesů a přechody mezi nimi
Obrázek 42	Trénovací množina
Obrázek 43	Část datasetu s vlastnostmi hvězd
Obrázek 44	Část datasetu s vlastnostmi planet

SEZNAM TABULEK

Tabulka 1	Známé typy exoplanet	20
Tabulka 2	Fáze oběhu tranzitující exoplanety	23
Tabulka 3	Veličiny tranzitu	23
Tabulka 4	Příklady výpočtu hmotnosti planet	30
Tabulka 5	Komponenty formálního neuronu	36
Tabulka 6	Parametry plně propojené vrstvy	43
Tabulka 7	Parametry konvoluční vrstvy	44
Tabulka 8	Parametry vrstvy Max-Pooling	45
Tabulka 9	Parametry vrstvy Dropout	46
Tabulka 10	Údaje o hvězdách ukládané do databáze	56
Tabulka 11	Údaje o planetách ukládané do databáze	57
Tabulka 12	Pojmenování soustavy Kepler-10 v různých katalozích	58

SEZNAM ZDROJOVÝCH KÓDŮ

Zdrojový kód 1	Vytvoření modelů v REST API	52
Zdrojový kód 2	Vytvoření koncového bodu v REST API	52
Zdrojový kód 3	Ukázka komunikace pomocí socket.io	53

SEZNAM VZORCŮ

1	Pravděpodobnost zpozorování tranzitu planety přes hvězdu	22
2	Výpočet velké poloosy dráhy planety	25
3	Výpočet poloměru planety	26
4	Odhad průměrné rychlosti oběhu planety	26
5	Výpočet inklinace dráhy	26
6	Radiální rychlost na základě změny vlnové délky	29
7	Radiální rychlost	30
8	Obecný vztah vstupu neuronu a jeho váhy	37
9	Lineární vztah vstupu neuronu a jeho váhy	38
10	Agregační funkce neuronu	38
11	Hyperbolicko-tangenciální aktivační funkce	38
12	Sigmoidální aktivační funkce	38
13	Gaussova aktivační funkce	38
14	Provádění konvoluce pro výřez vstupu a filtr	44
15	Výpočet chyby pro jeden vzor u algoritmu zpětného šíření chyby	47
16	Přírustek váhy u algoritmu zpětného šíření chyby	47
17	Výpočet lokálního gradientu neuronu	48

SEZNAM ZKRATEK

CNN Convolutional neural network

csv Comma-separated values

FC Fully-connected layer

FFNN Feed-forward neural network

fits Flexible image transport system

ly Light year

au Astronomical unit

ÚVOD

V naší sluneční soustavě se nachází celkem 8 dosud objevených planet včetně Země. Mimo ni ale v pozorovatelném vesmíru existují odhadem stovky miliard galaxií a v každé z nich v průměru stovky miliard hvězd. Z toho, co o vzniku a fungování hvězdných soustav víme je pravděpodobné, že většinu těchto hvězd bude obíhat jedna nebo více planet, tzv. extrasolárních planet nebo také exoplanet. [9]

První potvrzená exoplaneta byla objevena již roku 1992, ale výzkum exoplanet se dostal do oblasti širokého zájmu až během posledního desetiletí. Stalo se tak především kvůli vesmírnému teleskopu Kepler, který má na svém kontě od roku 2009 přes 2 500 objevených exoplanet. [10, 13]

K dnešnímu dni je známo více jak 4 000 potvrzených exoplanet. Toto číslo se s nejvyšší pravděpodobností bude rychle zvyšovat, protože roku 2018 byl vypuštěn nástupce Kepleru – satelit TESS – od něhož je očekáván objev 20 000 exoplanet. [15]

Planety u jiných hvězd většinou nelze pozorovat přímo. Proto je nepřímými metodami zkoumáno jejich působení na své mateřské hvězdy, které už pozorovat lze. Výstupem z takovýchto pozorování jsou často stovky GiB fyzikálních a statistických dat, jež je následně nutno zpracovat. [9]

Cílem této diplomové práce je vytvořit aplikaci umožňující uživatelům poskytovat výpočetní výkon svých počítačů pro analýzu právě těchto dat. Projekt sestává z klientského programu, webové aplikace a serveru. Klientský program provádí potřebné distribuovatelné výpočty na počítači uživatele. Tento program je možné ovládat z rozhraní webové aplikace, jež zároveň poskytuje přehled o všech aktivitách, uživatelích a datech. Rozdělování výpočetních úloh mezi klienty a ukládání dat do databáze pak řeší server.

Díky distribuovaným výpočtům se do výzkumu exoplanet bude moci bez vysokého úsilí, znalosti či technického vybavení zapojit i široká veřejnost. To může urychlit vývoj a zároveň zvýšit povědomí o této vědní disciplíně.

V projektu jsou využity některé techniky spadající pod umělou inteligenci, v důsledku čehož je zpracovávání dat zcela automatizované. Platí však, že umělá inteligence je v současnosti stále intenzivně se rozvíjející oblastí, a proto výsledky nemusí být natolik vypovídající ve srovnání s tím, kdy by výzkum prováděli lidé manuálně, byť by to trvalo nesrovnatelně déle.

1 HLEDÁNÍ EXOPLANET

Pouhým zkoumáním planet v naší sluneční soustavě se omezujeme na velice specifické podmínky existující v okolí našeho Slunce. Pro hlubší pochopení fungování planetárních systémů je nutné rozšířit oblast zájmu i na planety v okolí jiných hvězd – tzv. exoplanety. Můžeme se tak přiblížit odpovědím na otázky jako "Jak vzácné jsou podmínky pro život ve vesmíru?" nebo "Jak vznikla a jak se vyvíjela naše planeta?" [9]

Na počátku 90. let minulého století byla objevena první exoplaneta v okolí pulsaru a v roce 1995 první exoplaneta v okolí hvězdy podobné Slunci. Od té doby frekvence objevů planet v průměru neustále stoupá. [9, 13]

Obrázek 1: Četnost objevů exoplanet v jednotlivých letech 1

Cestovat k jiným hvězdám a posílat sondy k exoplanetám je však naprosto mimo možnosti naší současné technologie. Dokonce i přímé pozorování exoplanet teleskopem je ve většině případů nemožné. Téměř veškerá pozorování se tak provádí skrze nepřímé metody. Ty využívají skutečnosti, že i když není možné spatřit exoplanetu samotnou, je možné detekovat její působení na své okolí (např. na mateřskou hvězdu).

Jednotlivé metody budou popsány v následujících podkapitolách. Zdaleka nejvýznamnější je tranzitní metoda, kterou byla objevena většina exoplanet. Velké množství planet bylo objeveno taktéž metodou radiálních rychlostí. [13]

¹ Vytvořeno autorem, zdroj dat: [13].

Obrázek 2: Počty objevených exoplanet jednotlivými metodami $^{\rm 1}$

Dá se říci, že každá metoda je vhodnější pro objevování různých typů planet. Málo hmotné planety byly objevovány častěji tranzitní metodou, zatímco hmotnější planety spíše metodou radiálních rychlostí. Pro planety vzdálené od své mateřské hvězdy se nejlépe osvědčila metoda přímého zobrazení. [13]

Obrázek 3: Známé exoplanety dle jejich vlastností a metody objevení $^{\rm 1}$

¹ Vytvořeno autorem, zdroj dat: [13].

Na základě známých charakteristik můžeme jednotlivé planety zařadit do jedné z následujících kategorií:

Тур	Popis	V naší soustavě
Podobná Merkuru	Malé kamenné planety. Vzhledem k zanedbatelnému působení těchto planet na okolí je velice těžké je detekovat.	Merkur, Mars
Exo-Země	Kamenné planety velikostně podobné Zemi. V žádném případě se nejedná o planety s garantovanými podmínkami pro život. Přesto však ze všech typů planet představují nejvyšší šanci na naleznutí těchto podmínek.	Země, Venuše
Podobná Neptunu	Planety, jejichž atmosféra je tvořena převážně vodíkem a heliem s jádrem z těžkých kovů. Velikostně podobné Neptunu.	Neptun, Uran
Plynný obr	Velké plynné planety podobně velké nebo i větší než Jupiter.	Jupiter, Saturn
Superzemě	Planety větší než Země, ale menší než Neptun. Dosahují až 10násobku hmotnosti Země. Může se jednat jak o kamenné planety, tak o vodní či ledové světy nebo i plynné útvary. Ty se označují jako sub-Neptun nebo mini-Neptun.	Neexistuje
Horký Jupiter	Zvláštní typ plynných obrů, které narozdíl od těch v naší soustavě obíhají v těsné blízkosti své hvězdy. Jsou rozpálené na tisíce K a mohou významně působit na svou hvězdu. Díky tomu jsou první objevené exoplanety právě horké Jupitery.	Neexistuje

Tabulka 1: Známé typy exoplanet 1

Nejvíce objevených exoplanet spadá do kategorie plynných obrů, které kvůli vysoké hmotnosti i velikosti značně ovlivňují svou hvězdu. Detekovat působení malých kamenných planet je náročnější, a proto je těchto exoplanet objeveno naopak nejméně.

Obrázek 4: Počty objevených exoplanet dle jejich typu $^{\rm 1}$

20

¹ Vytvořeno autorem, zdroj dat: [13].

1.1 Tranzitní metoda

Někdy se planeta při obíhání dostane mezi svou hvězdu a Zemi. Tento jev se pro pozorovatele na Zemi projeví jako mírný pokles jasu hvězdy (obvykle ve zlomku procenta). Při dlouhodobém pozorování je možné v těchto změnách jasu hvězdy odhalit opakující se složku. To by mohlo indikovat přítomnost planety v blízkosti této hvězdy. [9, 7]

Obrázek 5: Přechod planety přes kotouč hvězdy $^{\rm 1}$

Tyto změny však nemusí být na první pohled viditelné, protože v soustavě může být více planet, které svou hvězdu zastiňují různou měrou a obíhají kolem ní s různou periodou. Navíc i v situaci, kdy je ve změnách jasu hvězdy objevena periodická složka nemusí jít vždy o obíhající planetu. Hvězda může být např. sama o sobě proměnlivá nebo se může jednat o dvojhvězdu, jejíž složky se vzájmně zastiňují. [10]

Tranzitní metoda vzbuzuje velký zájem především kvůli možnosti objevovat i malé planety podobné Zemi – takové planety by mohly spíše splňovat podmínky pro život. Nevýhodou je, že většina exoplanet obíhá svou hvězdu v takové rovině, v jaké pozorovatel na Zemi nemůže transit spatřit. Odhadem 99 % všech potenciálních exoplanet podobných Zemi nemůže být tranzitní metodou nikdy zachyceno. [12, 7]

¹ Vytvořeno autorem v https://www.draw.io a GIMP.

$$P = \frac{d_s}{a} \tag{1}$$

Vzorec 1: Pravděpodobnost zpozorování tranzitu planety přes hvězdu $d_s = \text{průměr hvězdy} \quad \text{a} = \text{vzdálenost exoplanety od hvězdy}$

1.1.1 Target pixel file

Prvním krokem v analýze hvězdy tranzitní metodou je její fyzické pozorování. Teleskop obvykle pozoruje část oblohy po dobu několika měsíců, přičemž každých několik desítek minut vytvoří snímek dané části oblohy. Z výsledných fotografií se následně vyextrahují jednotlivé hvězdy, čímž vzniknou tzv. target pixel files.

TPF obsahuje část oblohy o velikosti několika pixelů, na které se v původní fotografii nacházela zkoumaná hvězda a její okolí. Barva pixelů je určena jasem.

Obrázek 6: Target pixel file hvězdy Kepler-10 ¹

1.1.2 Světelná křivka hvězdy

Po složení všech TPF do časové řady a vypočítání jejich jasu dostaneme světelnou křivku. Na obrázku 5 je světelná křivka hvězdy Kepler-13 očištěná od dlouhodobého trendu, šumu a extrémních hodnot. Křivka vykazuje velice výraznou periodickou složku s periodou 1,763 dne. Ve většině případů ale vliv planety není takto výrazný a detekovat planetu je obtížnější.

¹ Vytvořeno autorem, zdroj dat: [13].

Obrázek 7: Světelná křivka soustavy Kepler-13 $^{\rm 1}$

Na obrázku 6 jsou čisly označeny jednotlivé fáze dále popsané v tabulce 2:

	Fáze	Co vidí pozorovatel na Zemi
1	Planeta je za hvězdou (sekundární zákryt).	Hvězda
2	Planeta je vedle hvězdy.	Hvězda + osvětlená část planety
3	Planeta je vedle hvězdy.	Hvězda + neosvětelná část planety
4	Planeta je před hvězdou (tranzit).	Hvězda – planeta

Tabulka 2: Fáze oběhu tranzitující exoplanety

Dále jsou na stejném obrázku písmeny označeny důležité veličiny:

	Veličina	Popis
A	Perioda	Perioda tranzitu udává periodu oběhu planety kolem hvězdy.
В	Hloubka	Čím větší je hloubka tranzitu, tím je planeta vůči hvězdě větší.
С	Trvání	Čím je trvání delší, tím delší trajektorii přes hvězdu planeta má.
D	Trvání minima	Závisí na úhlu mezi rovinou oběhu planety vůči pozorovateli
Е	Trvání nástupu	Zavisi na umu mezi rovinou obenu pianety vuci pozorovaten

Tabulka 3: Veličiny tranzitu

TODO: Transit types image.

¹ Vytvořeno autorem, zdroj dat: [13].

1.1.3 Vyřazení false positives

Většina periodických složek ve světelných křivkách hvězd jsou false positive – patří jiným jevům, než je obíhající planeta. Tyto případy je třeba odfiltrovat, což byla až donedávna především manuální práce lidí – vědců či dobrovolníků. Protože ale tranzit planety vykazuje specifický průběh popsaný v předchozí kapitole, je možné ho s určitou úspěšností rozpoznat pomocí naučené umělé neuronové sítě automaticky. [10]

Je třeba aby vstupní data do neuronové sítě měla stejné rozměry i formát. Vzhledem k různorodosti světelných křivek je nutno provést několik kroků, abychom dosáhli standardizovaného formátu. Prvním krokem je složení časové řady do jedné periody, čímž dojde k posílení viditelnosti transitu (pokud zde nějaký je), nebo naopak k jeho vyrušení (pokud zde žádný není). [10]

¹ Vytvořeno autorem, zdroj dat: [13].

Na obrázku 12 je uprostřed slabě patrný transit. Má malou šířku, protože trvá pouze 0,25 dne, zatímco celá perioda je dlouhá 45,3 dne. Z této složené časové řady se vytvoří dva pohledy, které budou vstupem do neuronové sítě:

- Globální pohled (obr. 13) Šířka periody a počet bodů v časové řadě jsou fixní.
 Nevýhodou je, že u planet s dlouhou periodou bude tranzit velice nepatrný, proto pouze globální pohled nestačí. [10]
- Lokální pohled (obr. 14) Šířka tranzitu a počet bodů v časové řadě jsou fixní.
 Nevýhodou je, že není viditelný celý průběh světelné křivky. Naproti tomu je ale zřetelný tranzit. [10]

Fixní počet bodů lze zajistit nahrazením každých $\frac{\alpha}{\beta}$ sousedních bodů (α – současný počet bodů, β – požadovaný počet bodů) jediným, který bude reprezentovat jejich medián. Pro potřeby neuronové sítě je nutno oba pohledy taktéž normalizovat tak, aby platilo $H = \langle 1; -1 \rangle$. U případů, které neuronová sít vyhodnotí jako planety, je možné pokračovat výpočtem dalších informací o planetě. [10]

1.1.4 Výpočet vlastností planety

Velkou poloosu dráhy planety lze vypočítat, pokud známe hmotnost hvězdy a periodu oběhu z třetího Keplerova zákona. [8]

$$a = \sqrt[3]{\frac{GMP^2}{4\pi^2}} \tag{2}$$

Vzorec 2: Výpočet velké poloosy dráhy planety

a = velká poloosa G = gravitační konstanta M = hmotnost hvězdy <math>P = perioda oběhu planety

Ze světelné křivky a poloměru hvězdy lze vypočítat poloměr tranzitující planety po vyjádření z následující rovnice [7, 8]:

¹ Vytvořeno autorem, zdroj dat: https://exoplanetarchive.ipac.caltech.edu.

$$\frac{r^2}{R^2} = \frac{\Delta F}{F} \tag{3}$$

Vzorec 3: Výpočet poloměru planety

r = poloměr planety R = poloměr hvězdy F = jas hvězdy $\Delta F =$ změna jasu

Dále je možno odhadnout i průměrnou rychlost pohybu planety po oběžné dráze. Skutečná průměrná rychlost však může být jiná, protože se nepočítá s excentricitou dráhy [8]:

$$v \approx \frac{2\pi a}{T} \tag{4}$$

Vzorec 4: Odhad průměrné rychlosti oběhu planety

v = rychlost oběhu planety a = velká poloosa dráhy planety <math>T = perioda oběhu planety

Další z důležitých charakteristik orbity je inklinace (sklon), která nám řekne, jaký úhel svírají roviny pozorovatele a oběhu exoplanety. Bohužel lze zjistit minimální úhel sklonu dráhy a nikoliv jeho přesnou hodnotu. Inkinace se bude zpravidla blížit 90°. [8]

$$\cos i \le \frac{R+r}{a} \tag{5}$$

Vzorec 5: Výpočet inklinace dráhy

i = inklinace R = poloměr hvězdy r = poloměr planety a = velká poloosa dráhy planety

1.1.5 Výpočet hmotnosti planety

Hmotnost planety z tranzitní metody nelze vypočítat. Avšak z empirických dat je možné ji odhadnout na základě kombinace jiných veličin pomocí umělé neuronové sítě. TODO. [11]

1.2 Metoda radiálních rychlostí

Stejně jako hvězda ovlivňuje obíhající planetu, tak i planeta gravitačně ovlivňuje svou hvězdu a obě tělesa obíhají kolem společného těžiště. Tento pohyb se může projevit jako opakované přibližování a vzdálování hvězdy vůči pozorovateli na Zemi. Právě pojem radiální rychlost označuje rychlost pohybu ve směru přímky k pozorovateli. [12]

Pokud se zdroj elektromagnetického záření (hvězda) přibližuje vůči pozorovateli, záření má menší vlnovou délku a jeví se více do modra, protože právě modrá (a fialová) barva má z viditelného spektra nejmenší vlnovou délku. Obdobná situace nastává při vzdálování se zdroje vlnění od pozorovatele. Vlnová délka se zvětšuje a barva jde do červena. Tomuto efektu se říká červený (resp. modrý) posuv. [12]

Obrázek 16: Metoda radiálních vzdáleností ¹

Příčinou červeného/modrého posuvu je v tomto případě Dopplerův jev, který lze uplatnit i pro jiné druhy vlnění, než to elektromagnetické – zvuk. Pokud se k nám zdroj zvuku přibližuje (např. siréna na jedoucím autě), zvuk zpravidla vnímáme vyšším tónem, protože má menší vlnovou délku (vyšší frekvenci). Při vzdalování zdroje má zvuk větší vlnovou délku a je vnímán hlubším tónem. [5]

¹ Vytvořeno autorem v https://www.draw.io a GIMP.

Periodicky se opakující změny ve vlnové délce záření hvězdy tak mohou být důsledkem existence tělesa v této soustavě. [12]

1.2.1 Měření vlnové délky záření hvězdy

Hvězdy nevyzařují světlo pouze jedné jediné vlnové délky, nýbrž celé spektrum. Tento efekt lze vidět u duhy v zemské atmosféře, kdy jsou jednotlivé složky slunečního světla odděleny. Záření z hvězd se dokonce neomezuje pouze na viditelné světlo, ale pokrývá značnou část celého elektromagnetického spektra. Jak velká část záření přísluší jednotlivým vlnovým délkám lze měřit pomocí spektrometru. [5, 14]

Obrázek 17: Spektrum slunečního záření ¹

Změna vlnové délky záření se projevuje jako horizontální posun barevného spektra hvězdy. Nutno podotknout, že zemská atmosféra některé vlnové délky pohlcuje. Proto i přesto, že Slunce má barvu spíše do zelena vidíme tuto hvězdu ze Země žlutě. [TODO]

1.2.2 Výpočet radiální rychlosti hvězdy

Poté, co teleskop sesbírá dostatečně velkou časovou řadu vlnových délek záření hvězdy může dojít k vypočítání změn radiální rychlosti v čase. Lze tak učinit dle vzorce 3. Platí,

¹ Vytvořeno autorem, zdroj dat: [14].

že radiální rychlost je kladná, pokud se zdroj od pozorovatele vzdaluje a záporná pokud se přibližuje. [12]

$$v = c * \frac{\Delta \lambda}{\lambda_0}$$
 Vzorec 6: Radiální rychlost na základě změny vlnové délky

Vzorec 6: Radiální rychlost na základě změny vlnové délky $\Delta \lambda = \text{změna vlnové délky} \quad \lambda_0 = \text{klidová vlnová délka} \quad \text{v} = \text{radiální rychlost}$

Graf znázorňující radiální rychlost hvězdy 51 Pegasi může vypadat takto:

Obrázek 18: Radiální rychlost hvězdy 51 Pegasi ¹

Na první pohled je patrná jedna periodická složka s periodou 4,23 dne a amplitudou $56,04 \frac{m}{s}$, která značí, že kolem této hvězdy obíhá jedna planeta. Pokud zde jsou přítomna i jiná tělesa, důvodů, proč je metoda radiálních rychlostí neodhalila může být několik:

- Hmotnost tělesa je vůči hmotnosti hvězdy zanedbatelná,
- Perioda oběhu tělesa je příliš velká (desítky let a více), a proto se ji nepodařilo zachytit na tak krátkém časovém úseku,
- Těleso obíhá po dráze, jejíž rovina je kolmá k přímce směrem k pozorovateli (k
 Zemi). To vede k tomu, že je hvězda vychylována takovým směrem, který nemá vliv na radiální rychlost hvězdy vůči Zemi.

¹ Vytvořeno autorem, zdroj dat: [6].

1.2.3 Výpočet hmotnosti planety

Hlavní výhodou metody radiálních rychlostí oproti tranzitní metodě je možnost spočítat hmotnost exoplanety. Její přesnou hodnodu však lze odvodit pouze se znalostí sklony dráhy exoplanety vůči pozorovateli. V opačném případě lze vypočítat pouze dolní mez hmotnosti planety, a to zejména kvůli $M_p * sin(i)$ ve vzorci 5. [12]

$$\Delta v_{max} = \sqrt[3]{\frac{2\pi G}{T}} * \frac{M_p * sin(i)}{\sqrt[3]{(M_p + M_s)^2}} * \frac{1}{\sqrt{1 - e^2}}$$
 (7)

Vzorec 7: Radiální rychlost

 $\Delta v_{max}=$ amplituda změny rychlosti $M_s=$ hmotnost hvězdy $M_p=$ hmotnost planety sin(i) = sklon dráhy vůči pozorovateli e = excentricita dráhy T = oběžná doba

V tabulce 4 jsou uvedeny příklady výpočtu hmotnosti některých planet.

Těleso	Hvězda	$\Delta v_{max} \left[\frac{m}{s} \right]$	M_p [kg]	sin(i)	e	T [r]	M_s [kg]
Země		0,089			0,017	1	$5,97*10^{24}$
Jupiter	Slunce	12,4	$2*10^{30}$		0,048	11,86	$1,9*10^{27}$
Pluto		0,00003		1	0,247	247,41	$1,3*10^{22}$
α Cen Bb	α Cen B	0,51	$1,8*10^{30}$		0	0,0089	$6,75*10^{24}$
51 Pegasi b	51 Pegasi	55,9	$2,22*10^{30}$		0,013	0,0116	$0,88*10^{27}$

Tabulka 4: Příklady výpočtu hmotnosti planet ¹

 $[\]overline{\ ^{1}}$ Vytvořeno autorem, zdroj dat: [5, 6, 12, 13].

1.3 Astrometrická metoda

Astrometrická metoda využívá stejné vlastnosti vzájemného působení těles jako metoda radiálních rychlostí. Namísto zkoumání vlnové délky záření se však zaměřuje na polohu hvězdy. Hvězda, kolem níž obíhá dostatečně hmotné těleso, se bude v důsledku působení tělesa nepatrně vychylovat ze své pozice – bude obíhat kolem těžiště soustavy. [12]

Obrázek 19: Astrometrická metoda $^{\rm 1}$

Pohyb hvězdy tak není přímočarý, ale vlnitý. Kolísání hvězdy je však pro pozorovatele na Zemi často pouze v řádu stovek úhlových mikrovteřin až jednotek milivteřin. [12] Z tohoto důvodu byla astrometrickou metodou dosud objevena pouze jediná exoplaneta. [13]

Obrázek 20: Kolísání hvězdy Gliese 876 s planetou $^{\rm 1}$

¹ Vytvořeno autorem v https://www.draw.io a GIMP.

Dá se však očekávat, že se zlepšující se technikou bude tato metoda úspěšnější.

1.4 Gravitační mikročočky

Světlo má obvykle tendenci se pohybovat prázdným prostorem po přímé trajektorii. Avšak dle obecné teorie relativity, hmotná tělesa zakřivují časoprostor kolem sebe. V blízkosti takových těles tak tuto přímou trajektorii vnímáme jako zakřivenou. [12]

V případě, kdy se nějaké hmotné těleso (např. galaxie nebo černá díra) nachází mezi pozorovatelem a zdrojem světla (např. jinou galaxií), mluvíme o tzv. gravitační čočce – zdroj světla bude vidět vícekrát na různých místech, nebo bude naopak zdeformovaný. [12]

Obrázek 21: Princip gravitační čočky ¹

Pokud je čočkujícím tělesem pouze hvězda, jedná se o gravitační mikročočku. V tomto případě dochází často ke splynutí čočky a skrytého tělesa do jednoho útvaru se zvýšeným jasem. A zde nachází uplatnění metoda pro hledání exoplanet. Za předpokladu, že čočkujícím tělesem je hvězda s obíhající exoplanetou, budeme pozorovat pozvolné zvyšování jasu způsobené hvězdou a zároveň v nějakém krátkém časovém intervalu strmý nárůst jasu způsobený exoplanetou. [12]

¹ Vytvořeno autorem, fotografie gravitační čočky převzata od NASA (https://apod.nasa.gov/apod/image/1112/lensshoe_hubble_3235.jpg), oříznuto a zdeformováno

Obrázek 22: Ilustrace gravitační mikročočky OGLE 2003-BLG-235 $^{\rm 1}$

1.5 Přímé zobrazení

1.6 Časování transitů

TODO [1]

1.7 Časování pulsarů

Pulsary jsou rychle rotující neutronové hvězdy – pozůstatky po zhrouceném jádře hmotných hvězd. Během procesu hroucení hvězda zmenšuje svůj poloměr a pro zachování momentu hybnosti zvyšuje svou rotační rychlost. [12]

Vedle toho, pulsar podél své magnetické osy emituje silný elektromagnetický paprsek. V případě, kdy je magnetická osa pulsaru natočena k Zemi (paprsek směřuje k Zemi), můžeme zpozorovat náhlý nárůst jasu hvězdy. Tyto pulzy je pak možné sledovat ve velice pravidelných intervalech (často řádově jednotky milisekund až sekund). [12]

Pokud je v těchto pulzech zpozorována nepravidelnost, může to znamenat, že pulsar mění svou vzdálenost od Země. Jinými slovy, stejně jako v případě metody radiálních

¹ Vytvořeno autorem, zdroj dat: [13].

rychlostí, pulsar společně s dalším tělesem (např. planetou) obíhá kolem společného těžiště. [12]

Nutno podotknout, že nás nezajímá rychlost pulzaru tak, jako u metody radiálních rychlostí. Nepravidelnosti pulzů jsou způsobeny pouze polohou pulsaru, nikoliv jeho rychlostí. Pulzy (elektromagnetické záření) se ve vakuu pohybují vždy konstantní rychlostí bez ohledu na rychlost pulzaru samotného (rychlosti se nesčítají).

Obrázek 23: Ilustrace pulsaru s obíhající planetou ¹

 $^{^{1}}$ Vytvořeno autorem v https://www.draw.io a GIMP.

2 UMĚLÁ INTELIGENCE

- 2.1 Umělé neuronové sítě
- 2.2 Evoluční algoritmy
- 2.2.1 Genetický algoritmus
- 2.2.2 Algoritmus diferenciální evoluce
- 2.3 Fuzzy systémy
- 2.4 Expertní systémy

3 UMĚLÉ NEURONOVÉ SÍTĚ

Jednou z oblastí patřících do oboru umělé inteligence jsou umělé neuronové sítě, jež se inspirovaly biologickými neuronovými sítěmi. Jejich použití je vhodné na problémy, u kterých neexistuje přesný matematický popis řešení nebo sice existuje, ale jeho realizace by byla příliš složitá. Hlavními oblastmi, kde se neuronové sítě využívají, jsou např.:

- Predikce (předpověď počasí, vývoj cen akcií na burze, ...),
- Rozpoznávání vzorů (rozpoznávání ručně psaného textu, detekce tranzitu planety ve světelné křivce hvězdy, ...),
- Analýza nebo transformace signálů (odstranění šumu ze signálu, komprese, převod psaného textu na mluvený signál, ...),
- Řízení v dynamicky se měnících podmínkách (autopilot, ...). [3]

3.1 Neuron

Základním stavebním prvkem umělé neuronové sítě je umělý neuron, který reprezentuje zjednodušenou biologickou nervovou buňku. Nejpoužívanějším typem umělého neuronu je tzv. formální neuron. Ten se skládá z následujících částí:

Komponenta	Popis	Příklad
Vstupy x_{1R}	Jeden nebo více vstupů.	[0.23, 0.58, -0.15]
Váhy spojení (vstupů) w_{1R}	Každý vstup má svou váhu.	[0.01, 0.56, 0.12]
Práh neuronu w_0	Přičte se ke vstupu do aktivační funkce.	0.17
Agregační funkce \sum	Vstupy a váhy transformuje na jednu hodnotu – potenciál y_a .	$y_a = w_0 + \sum_{n=1}^R x_i w_i$
Aktivační funkce	Převede hodnotu vstupního potenciálu y_a na výstup neuronu y .	$y = y_a$ $y = \tanh y_a$

Tabulka 5: Komponenty formálního neuronu ¹

Jednotlivé neurony se umisťují do vrstev a vrstvy pak tvoří neuronovou síť. Způsob zapojení neuronů, počet neuronů, počet vrstev a stejně tak volba agregační a aktivační funkce závisí na typu problému, pro který má být neuronová síť použita.

¹ Zdroj: [3]

Obrázek 24: Model formálního neuronu ¹

3.1.1 Vstupy neuronu

Každý neuron může mít jeden nebo více vstupů. I když vstupy nemusí být nutně číselné, my to v této práci budeme předpokládat. Vstupy mohou být dvojího druhu:

- Výstup jiného neuronu,
- Vstup z vnějšího prostředí (např. od uživatele).

Všechny vstupy neuronu můžeme reprezentovat vektorem $X = [x_1, x_2, ..., x_R]$. Hodnoty v X pak mohou být v:

- **Kvantitativní** formě, kdy vstup vyjadřuje *ano* nebo *ne* a nabývá tak binárních hodnot (např. 0 nebo 1),
- Kvalitativní formě, kdy vstup vyjadřuje konkrétní hodnotu nějaké veličiny, často normalizované na interval [0;1] nebo [-1;1].

3.1.2 Váhy spojení

Každý vstup neuronu x_i je ohodnocen číselnou vahou w_i . Čím vyšší váha vstupu je, tím citlivěji bude výstup neuronu reagovat, pokud se daný vstup změní (tím "důležitější" vstup bude). Váhy jsou z počátku většinou pouze náhodné hodnoty a teprv během procesu učení neuronové sítě dochází k jejich úpravě tak, aby síť byla schopna řešit předložený problém co nejlépe. Vztah vstupu a jeho váhy se obecně označuje operátorem konfluence. [3]

$$z_i = x_i \oplus w_i \tag{8}$$

Vzorec 8: Obecný vztah vstupu neuronu a jeho váhy

Formální neuron pak využívá lineární hodnotu tohoto operátoru, který je tak možné nahradit prostým součinem. [3]

¹ Převzato z: [3].

$$z_i = x_i w_i \tag{9}$$

Vzorec 9: Lineární vztah vstupu neuronu a jeho váhy

3.1.3 Práh neuronu

Prahem umělého neuronu w_0 se rozumí bariéra vstupu do neuronu z vnějšího okolí (nikoliv z jiného neuronu). Vedle váhy je to další parametr, který se mění při procesu učení sítě. [3]

3.1.4 Agregační funkce

Protože neuron může mít více vstupů, ale vždy pouze jediný výstup, je třeba všechny vstupy nějakým způsobem sloučit do jedné hodnoty. Právě toho se snaží docílit agregační funkce neuronu. V případě formálního neuronu se nejčastěji používá prostá suma součinů vstupů s váhami. Výstupem agregační funkce je potenciál y_a . [3]

$$y_a = \sum_{i=0}^{R} z_i = \sum_{i=0}^{R} w_i \oplus x_i = \sum_{i=0}^{R} w_i x_i$$
 (10)

Vzorec 10: Agregační funkce neuronu

3.1.5 Aktivační funkce

Ještě než je potenciál y_a přiveden na výstup neuronu, je na něj aplikována aktivační funkce. Tato funkce je závislá na typu řešeného problému a stejně tak i na poloze neuronu v síti. Je běžné, že pro výstupní neurony se pouažívají jiné aktivační funkce, než pro neurony ve skrytých vrstvách. Funkce mohou být lineární, nelineární, spojité i diskrétní. [3]

$$y = \tanh y_a \tag{11}$$

Vzorec 11: Hyperbolicko-tangenciální aktivační funkce

$$y = \frac{e^x}{1 + e^x} \tag{12}$$

Vzorec 12: Sigmoidální aktivační funkce

$$y = e^{-y_a^2} \tag{13}$$

Vzorec 13: Gaussova aktivační funkce

Obrázek 25: Příklady aktivačních funkcí neuronu $^{\rm 1}$

3.2 Typy neuronových sítí

V této kapitole budou zmíněny některé typy neuronových sítí. Uvedený výčet však v žádném případě není kompletní. Vedle zmíněných typů existují např. rekurentní neuronové sítě nebo samoorganizující se neuronové sítě.

3.2.1 Jednoduchý perceptron

Jednoduchý perceptron je neuronová síť tvořená jediným neuronem. Jedná se o neuronovou síť s lineárně váženou agregační funkcí, učením s učitelem a skalárním výstupem nabývajícím binárních (1, 0) nebo bipolárních (1, -1) hodnot. [3]

Obrázek 26: Lineárně separovatelná (vlevo) a neseparovatelná (vpravo) úloha ¹

Tento typ neuronové sítě lze použít pouze pro řešení úloh, které jsou lineárně separovatelné. Pro složitější úlohy je třeba využít vícevrstvý perceptron. [3]

¹ Převzato z: [3].

3.2.2 Dopředná vícevrstvá umělá neuronová síť

Dopředná vícevrstvá umělá neuronová sít (dále jen FFNN, někdy také vícevrstvý perceptron) je díky své univerzálnosti jedním z nejpoužívanějších typů sítě. Skládá se z neuronů, které jsou umístěny do jednotlivých vrstev. Existuje zde minimálně vrstva vstupní a vrstva výstupní. Dle povahy řešeného problému zde ale může být i libovolný počet dalších, tzv. skrytých vrstev. [3]

Obrázek 27: Zapojení neuronů ¹

Spojení existují pouze mezi neurony sousedních vrstev. Ani neurony stejné vrstvy, ani neurony nesousedících vrstev nejsou přímo propojeny. Orientace těchto spojů je navíc směrem pouze od vstupů k výstupu sítě (proto dopředná) – výstupy neuronů v předešlé vrstvě jsou vstupem do všech neuronů v následující vrstvě. [3]

Obrázek 28: Architektura dopředné vícevrstvé umělé neuronové sítě ¹

Pro vytváření architektury neuronové sítě neexistuje analytický postup, který by vedl k nejefektivnějšímu návrhu. Při řešení úlohy je třeba buď inspirovat se již nějakou existující neuronovou sítí, s jejíž pomocí někdo podobný problém řešil v minulosti, nebo postupovat experimentálně a "zkoušet", jaká architektura povede k nejmenší chybě. V tomto případě je možno postupovat dvěma způsoby. Buď začneme s triviální sítí, do které postupně budeme přidávat nové neurony a vrstvy, až dokud bude úspěšnost sítě při řešení úkolu

¹ Vytvořeno autorem v https://www.draw.io.

stoupat, nebo naopak začneme s komplexní neuronovou sítí, ze které budeme neurony a vrstvy postupně odebírat. [3]

3.2.3 Konvoluční neuronová síť

Zpracování vícedimenzionálních dat o velkých rozměrech by s použitím klasické FFNN bylo velice problematické. Uvažujme např. rozpoznávání psaných číslic z obrázku. Číslice se v obrázku může nacházet na různých místech, může být různě velká, natočená či barevná a také způsob psaní se u každého člověka může lišit.

Pro člověka je jednoduché rozpoznat, že všechny útvary na obrázku 25 jsou číslice 9 i přesto, že každá vypadá jinak. Sestrojit algoritmus, který by to dokázal také, už ale triviální úkol rozhodně není. Obecně, získáváním informací z obrázku se zabývá obor

Zásadní myšlenkou počítačového vidění je nesnažit se rozpoznávat celý objekt, ale nejdříve extrahovat fragmenty (vlastnosti), ze kterých se daný objekt skládá. U číslice 9 by těmito vlastnostmi mohly být např. elipsa a z ní vycházející křivka či úsečka. K extrakci vlastností z obrázku lze přistupovat dvěma způsoby založenými na:

- Manuálním inženýrství (např. histogram orientovaných gradientů),
- Strojovém učení (např. konvoluční neuronová sít). [4]

Obrázek 30: Vztah mezi počítačovým viděním, strojovým učením a konvoluční sítí ²

My se zde budeme zabývat pouze konvoluční neuronovou sítí (CNN). Tu můžeme chápat jako klasickou FFNN, jejíž vstupy jsou ovšem nejdříve modifikovány tak, aby

počítačového vidění. [4]

¹ Převzato z: MNIST dataset.

² Vytvořeno autorem v https://www.draw.io.

z nich byly vyextrahovány výše zmíněné vlastnosti. Tato extrakce je prováděna pomocí konvoluční vrstvy, jejíž způsob fungování je detailněji popsán v kapitole 4.3.2.

Dále je třeba brát v úvahu velikost obrázku. Full HD obrázek (1 920 * 1 080) se skládá z více jak 2 milionů pixelů. V případě RGB obrázku se množství informací zvýší až na 6 milionů (3 složky pro každý pixel). Posílat takové množství hodnot do FFNN, která se skládá z plně propojených vrstev, kde jsou neurony v sousedních vrstvách propojeny způsobem "každý z každým", by bylo problematické. Z tohoto důvodu existuje tzv. pooling vrstva popsaná v kapitole 4.3.3, která umožňuje zmenšit velikost vstupu a přitom zachovat vzory charakteristické pro vstup.

Obrázek 31: Příklad konvoluční sítě pro ropoznávání ručně psaných číslic ¹

Nutno podotknout, že použití CNN se neomezuje pouze na dvourozměrné obrázky. Stejně vhodné jsou i na rozpoznávání vzorů v 1D útvarech (např. světelná křivka hvězdy nebo jiné druhy časových řad) nebo i ve vícerozměrných strukturách. [4]

¹ Vytvořeno autorem v https://www.draw.io a GIMP.

3.3 Typy vrstev neuronových sítí

3.3.1 Plně propojená vrstva

Plně propojená vrstva (FC, Fully connected nebo Dense layer) je vrstva, pro jejíž každý neuron platí, že na jeho vstup jsou přivedeny výstupy všech neuronů v předchozí vrstvě. Neurony sousedních vrstev FC jsou tak mezi sebou propojeny stylem "každý s každým".

Parametr	Popis
Počet neuronů	Je určen složitostí a typem řešeného problému a určuje velikost výstupu vrstvy.

Tabulka 6: Parametry plně propojené vrstvy ¹

Počet neuronů se volí dle řešeného problému. Pokud bude počet neuronů příliš nízký, neuronová síť nemusí mít kapacitu pro to, aby byla schopna se naučit řešit daný problém. Pokud bude počet neuronů příliš vysoký, síť se až příliš dobře naučí řešit problém na trénovací množině a nebude schopna generalizace (snadno se tzv. přetrénuje).

3.3.2 Konvoluční vrstva

Konvoluční vrstva sestává z filtrů, které jsou aplikovány na vstup a provádí operaci "konvoluce". Filtrem můžeme chápat vzor, jenž je vyhledáván ve vstupu a který zastupuje nějakou vlastnost vstupního objektu (např. obrázku).

Obrázek 32: Postupné posouvání konvolučního filtru přes vstup ²

¹ Zdroj: [16]

² Vytvořeno autorem v https://www.draw.io.

Pro výřez ze vstupu a filtr v konvoluční vrstvě se hodnoty na stejných pozicích ve výřezu i filtru vynásobí a tyto součiny se následně sečtou.

$$y = \sum_{i=1}^{sy} \sum_{j=1}^{sx} v_{ij} f_{ij} \tag{14}$$

Vzorec 14: Provádění konvoluce pro výřez vstupu a filtr

y = výstup
$$\mid sx, sy =$$
 horizontální/vertikální velikost filtru \mid v = výřez vstupu \mid f = filtr

Výřez se postupně posouvá (*stride*) v rámci vstupu a pro každou kombinaci výřezu a daného filtru se výsledek uloží do výstupního tenzoru na odpovídající místo vzhledem ke vstupu. Výsledkem je tak tenzor (*feature map*) stejně velký nebo menší, než vstup – v závislosti na vyplnění/oříznutí okrajů (*padding*).

Obrázek 33: Příklad aplikace konvolučního filtru na vstup ¹

Na obrázku 29 je znázorněno rozpoznávání diagonály. Ve výstupu jsou v oblastech, kde jsou ve vstupu diagonály (v pravém horním i dolním rohu), vyšší čiselné hodnoty než tam, kde ve vstupu diagonály nejsou. Celý tento postup se opakuje pro všechny filtry, jimiž konvoluční vrstva disponuje. Výstupem vrstvy je tak jedna nebo více feature maps. [4]

Parametr	Popis
Počet filtrů	Čím více filtrů, tím více vlastností ve vstupu lze vyhledávat.
Velikost filtrů (kernel)	Čím větší filtr, tím složitější vzory lze ve vstupu vyhledávat. Filtr může mít v každém svém rozměru jinou velikost (v případě 2D to nemusí být čtverec, ale i obdélník).
Posun filtrů (stride)	Posunutí filtru v každé fázi konvoluce.
Okraj (padding)	Způsob zpracování okrajů vstupu, které se ve výstupu buď useknou, nebo vyplní nějakou hodnotou.

Tabulka 7: Parametry konvoluční vrstvy ²

¹ Vytvořeno autorem v https://www.draw.io.

² Zdroj: [16]

3.3.3 Vrstva Max-Pooling

Vrstva Max-Pooling si klade za cíl zmenšit velikost vstupu a zároveň zachovat co nejvíce důležitých informací, které se v něm nachází. Podobně jako v konvoluční vrstvě i zde se posouvá okno o určité velikosti (kernel) o určitý počet polí (stride). Na výstup se však dostane maximální hodnota, která je v aktuálním výřezu vstupu. [4, 16]

Obrázek 34: Příklad operace Max-Pooling ¹

Na obrázku 30 je ukázána aplikace operace Max-Pooling na vstup, který byl výstupem v minulé kapitole – feature map ukazující umístění diagonál v původním obrázku. Jak je vidět, velikost struktury se zmenšila na čtvrtinu, a přesto v ní zůstaly všechny důležité informace. V pravém dolním i horním rohu máme stále vysoké číselné hodnoty indikující přítomnost diagonály.

Parametr	Popis
Velikost okna (kernel)	Velikost okna, ze kterého se vybírá maximum.
Stride okna (stride)	Posunutí okna v každé fázi operace Max-Pooling.
Okraj (padding)	Způsob zpracování okrajů vstupu, které se ve výstupu buď useknou nebo vyplní nějakou hodnotou.

Tabulka 8: Parametry vrstvy Max-Pooling ²

Obdobně k vrstvě Max-Pooling existuje např. i Min-Pooling nebo Average-Pooling. Jejich fungování je stejné s tím rozdílem, že na výstup předávají místo maximální hodnoty tu minimální, resp. průměrnou. Jejich použití je opět závislé na typu řešeného problému (např. zda vstupní obrázek ma světlé pozadí a tmavé popředí či naopak). [16]

¹ Vytvořeno autorem v https://www.draw.io.

² Zdroj: [16]

3.3.4 Vrstva Flatten

Konvoluční vrstvy umí pracovat s vícerozměrnými vstupy, vrstvy typu FC však očekávají pouze jednorozměrný vektor vstupních hodnot. Protože např. v konvolučních sítích je třeba oba typy vrstev kombinovat, je nutné nějakým způsobem převést n-rozměrný tenzor na vektor. Právě k tomu slouží vrstva Flatten. [16]

Obrázek 35: Příklad fungování vrsty Flatten $^{\rm 1}$

3.3.5 Vrstva Dropout

Pro snížení pravděpodobnosti, že se neuronová síť přetrénuje, je možné využít vrstvu Dropout. Ta při procesu trénování zahazuje vstupy (na výstup místo nich posílá hodnotu 0). Tím v trénovací množině vniká náhodný šum, což způsobí, že síť nebude trénovat pouze na stále stejných vstupech, ale trénovací množina bude vždy nepatrně odlišná – různorodější. [16]

Obrázek 36: Příklad fungování vrstvy Dropout ¹

Parametr	Popis
Rate	Frekvence zahazování vstupů.

Tabulka 9: Parametry vrstvy Dropout ²

¹ Vytvořeno autorem v https://www.draw.io a GIMP.

² Zdroj: [16]

3.4 Učení umělé neuronové sítě

Vytvořená neuronová síť dle předchozích kapitol nebude umět řešit žádný problém – je to pouze množina neuronů a dalších parametrů poskládaných k sobě. Je potřeba ji daný problém nejdříve naučit řešit. Učení je proces, při kterém síť upravuje nastavitelné parametry (např. váhy vstupů neuronů) za účelem zvýšení úspěšnosti řešení předkládané úlohy. Učení může být:

- S učitelem Síti je předložen vstup z trénovací množiny a ta pro tento vstup stanoví odezvu (výstup), který je porovnán s požadovaným výstupem. Na základě chyby mezi skutečným a požadovaným výstupem pak síť za využití tzv. učícího algoritmu upraví váhy mezi neurony tak, aby minimalizovala chybovou funkci.
- Bez učitele Neuronová sít na základě schopnosti rozeznávat ve svých vstupech
 podobné vlastnosti a podle těchto vlastností třídit vstupy dokáže řešit určité problémy i bez znalosti požadovaných výstupů. [3]

3.4.1 Algoritmus zpětného šíření chyby

Algoritmus zpětného šíření chyby je učící algoritmus určený pro FFNN s diferencovatelnými spojitými aktivačními funkcemi. Neuronové síti je předložen vzor, pro který sít stanoví odezvu. Chyba pro jeden vzor je definována dle vzorce 15. [3]

$$E = \sum_{i=1}^{Q} (t_i - y_i)^2 = \sum_{i=1}^{Q} e_i^2$$
(15)

Vzorec 15: Výpočet chyby pro jeden vzor u algoritmu zpětného šíření chyby

E = chyba jednoho vzoru
$$y_i$$
 = Skutečná hodnota i-tého výstupu e_i = Chyba i-tého výstupu Q = počet výstupů NN t_i = Očekávaná hodnota i-tého výstupu

Následně je ke každé váze připočten přírustek Δw_{ij}^k (při online učení – rychlejší) nebo se přírustek kumuluje a přičte se až na konci epochy (při offline učení – stabilnější). [3]

$$\Delta w_{ij}^k = \frac{\partial E}{\partial w_{ij}^k} \implies \Delta w_{ij}^k = \alpha \delta_j^k y_i^{k-1} \tag{16}$$

Vzorec 16: Přírustek váhy u algoritmu zpětného šíření chyby

$$w_{ij}^k=$$
 Váha spoje mezi i-tým a j-tým neuronem v k-té vrstvě
$$\begin{aligned} & \alpha=\text{rychlost učení} \\ & \delta_j^k=\text{lokální gradient neuronu aktualizované váhy} \\ & y_i^{k-1}=\text{výstup j-tého neuronu v }k-1. \text{ vrstvě} \end{aligned}$$

Přičemž lokální gradient neuronu je vypočítán dle vzorce 17.

$$\delta_j^k = \begin{cases} \phi^k(y_{aj}^k) \sum_l \delta_l^{k+1} w_{jl}^{k+1}, & \text{pro neurony ve skrytých vrstvách} \\ e_j \phi^k(y_{aj}^k), & \text{pro neurony ve výstupní vrstvě} \end{cases}$$
(17)

Vzorec 17: Výpočet lokálního gradientu neuronu

$$\delta_l^{k+1}=$$
lokální gradient l-tého neuronu $k+1$. vrstvy $e_j=$ chyba výstupu j-tého neuronu $y_{aj}^k=$ vstupní potenciál j-tého neuronu k-té vrstvy $w_{ij}^k=$ váha spoje mezi i-tým a j-tým neuronem k-té vrstvy

Tento postup je opakován pro všechny vzory v trénovací množině – této iteraci se říká epocha. Učení sestává z jedné nebo více epoch a může skončit:

- Po pevném počtu epoch,
- Po neurčitém počtu epoch, až chyba učení na klesne na určitou hodnotu. [3]

Obrázek 37: Příklad algoritmu zpětného šíření chyby ¹

Počáteční hodnoty vah spojů mezi neurony mohou být nastaveny např. náhodně za použití rovnoměrného nebo normálního rozdělění s nulovou střední hodnotou. Rychlost učení α určuje rychlost, s jakou se váhy spojů mezi neurony upravují dle chyby při trénování. Obvykle nabývá hodnot jako 0,1, 0,01, 0,001, apod. [3]

Čím vyšší rychlost učení je, tím rychleji bude sít natrénovaná, ale tím pravděpodobněji trénování skončí v nějakém lokálním minimu chybové funkce a nebude dosaženo tak dobrého výsledku. [4]

¹ Vytvořeno autorem v https://www.draw.io.

4 PROJEKTY PRO HLEDÁNÍ EXOPLANET

4.1 Planet Hunters

TODO

4.2 Astronet

TODO: [10]

5 POUŽITÉ TECHNOLOGIE

- 5.1 TypeScript
- 5.1.1 React
- 5.1.2 Styled Components
- 5.1.3 NPM
- 5.2 Python
- **5.2.1** Flask
- 5.2.2 Astropy
- 5.2.3 LightKurve
- 5.2.4 TensorFlow
- 5.2.5 Pip
- 5.3 MongoDB
- 5.4 Socket.io
- 5.5 Git

6 NÁVRH A VÝVOJ APLIKACE

Obrázek 38: Komponenty projektu a jejich komunikace ¹

6.1 Server

Úkolem serveru je přidělování výpočetních úloh připojeným klientským aplikacím, ukládání persistentních dat do databáze a komunikace s uživatelem skrze webovou aplikaci. Je naprogramován ve webovém frameworku Flask v jazyce Python a jeho adresářová struktura se dělí na následující moduly:

Obrázek 39: Architektura serveru ¹

• api – Definice REST a Socket API a zpracování příchozích požadavků. To zahrnuje autentizaci a autorizaci odesílatele a následné provedení operace v servisní vrstvě.

¹ Vytvořeno autorem v https://www.draw.io.

- config Konfigurace serveru (např. připojení k databázi). Základním konfiguračním souborem je base.cfg, který je použit automaticky. Bez nutnosti tento soubor měnit je možné vytvořit nový soubor (např. test.cfg) s novou konfigurací a pomocí argumentu při spuštění serveru nastavit, aby se použila tato konfigurace (./src/main.py --env test). [TODO]
- constants Veškeré konstantní položky, ať už technického či fyzikálního typu.
- service Servisní vrstva obsahující logiku serveru a manipulaci s databází.
- utils Pomocné třídy uchovávající specifickou funkcionalitu.

6.1.1 REST API

K vytvoření rozhraní je nejdříve třeba nadefinovat příslušné struktury, které rozhraní bude očekávat nebo naopak vracet. Modul fields umožňuje určit složky jednotlivých struktur a taktéž pro ně nastavit pravidla jako např. maximální délka, datový typ nebo seznam povolených hodnot.

```
credentials = api.model("Credentials", {
    "email": fields.String(required=True, max_length=50),
    "password": fields.String(required=True, max_length=100)
})

user = api.model("User", {
    "name": fields.String(required=True, max_length=30),
    "role": fields.Integer(required=True, enum=UserRole.values())
})
```

Zdrojový kód 1: Vytvoření modelů v REST API.

Následně může dojit k nadefinování koncových bodů rozhraní. Koncovým bodem jsou metody jakékoliv třídy, jež je potomkem Resource, přičemž názvy metod třídy odpovídají názvům metod HTTP.

```
@api.route("/login")
class Login(Resource):
    @api.response(HttpStatus.OK, user)
    @api.response(HttpStatus.BAD_REQUEST, "Invalid credentials.")
    @api.expect(credentials)
```

```
def post(self, credentials):
    return user_service.auhenticate(credentials)
```

Zdrojový kód 2: Vytvoření koncového bodu v REST API.

Veškeré vstupní parametry od uživatele jsou automaticky parsovány, při nesprávnosti vstupních parametrů je odeslána chybová odpověď a díky anotacím je také automaticky generována dokumentace REST API v nástroji Swagger UI dostupná na adrese exoplanets.now.sh/api-docs. Ukázka dokumentace REST API je umístěna v příloze [TODO] na konci dokumentu.

6.1.2 Socket.io API

Protože je třeba v reálném čase synchronizovat webovou a klientskou aplikaci a umožnit serveru iniciovat s těmito aplikacemi komunikaci, server kromě rozhraní HTTP poskytuje také rozhraní Socket.io.

```
# Client:
@socketio.event
def process(task):
    print(f"Data processing from address {task['url']}...")

# Server:
task = {type: "LIGHT_CURVE", "url": "http://exoplanetarchive.ipac"}
socketio.emit("process", task)
```

Zdrojový kód 3: Ukázka komunikace pomocí socket.io.

6.2 Webová aplikace

Obrázek 40: Architektura webové aplikace $^{\rm 1}$

6.3 Klientská aplikace

 $\frac{\rm Obr\'{a}zek~41:~St}{\rm avy~proces\'u~a~p\'rechody~mezi~nimi}~^1$ Vytvořeno autorem v https://www.draw.io.

6.4 Neuronová síť

TODO: Odebrat osy a popisky z obrázku.

6.5 Databáze

6.6 Datasety

Většina dat se do databáze nevkládá manuálně, jelikož je třeba pracovat se stovkami tisíc či miliony datových položkek. Namísto toho administrátor pouze definuje přístupový bod k nějakému datasetu dostupnému přes webové rozhraní a následně dojde k automatickému zpracování datasetu a všech položek v něm. Některé typy datasetů jsou určeny k jednorázovému uložení do databáze a není nutno je nijak dál zpracovávat. Zpracování jiných je naopak výpočetně náročné a připojené klientské aplikace tak činí postupně položku po položce. Jednotlivé typy datasetů jsou popsány níže.

U všech typů datasetů je také vyřešena situace, kdy by se jedna a ta samá položka (např. hvězda) nacházela ve dvou datasetech zároveň. V takovém případě dojde k uložení obou hodnot a uživatel v aplikaci pak bude vidět údaje dané položky z obou datasetů vedle sebe.

¹ Vytvořeno autorem v https://www.draw.io.

- 6.6.1 Target pixel files
- 6.6.2 Světelné křivky hvězd
- 6.6.3 Radiální rychlosti hvězd

6.6.4 Hvězdy

Informace o vlastnostech hvězd nejsou pro hledání exoplanet nutné, avšak pro spočítání dalších údajů o nalezené exoplanetě je třeba je zahrnout do výpočtů. Datasety tohoto typu jsou k dostání přes webová rozhraní nejčastěji ve formátu csv.

```
G
               exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=q1 q17 dr25 stellar
kepid, teff, radius, mass, dist
10000785,5333,0.650,0.6350,762.28
10000797,6289,1.195,0.9680,864.11
10000800,5692,0.866,0.9650,1027.65
10000823,6580,1.169,1.1910,1627.39
10000827,5648,0.841,0.9390,768.58
10000876,5249,0.953,0.8490,620.31
10000939,4312,0.579,0.5640,453.57
10000941,5115,0.854,0.7980,371.42
10000962,5496,0.776,0.8690,588.12
10000976,5629,0.870,0.9720,701.77
10000981,5107,2.706,0.8250,879.92
10001000,5009,0.801,0.7680,644.18
10001002,6409,1.092,0.9970,649.11
```

Obrázek 43: Část datasetu s vlastnostmi hvězd ¹

Tyto datasety neobnáší žádné další složité výpočty, pouze jsou společně s dopočítanými údaji jednorázově uloženy do databáze. Základními údaji, které jsou pro každou hvězdu třeba, jsou (šedou barvou jsou dopočítané údaje):

Název	Zdánlivá magnituda	Rovníkový průměr	Spektrální typ
Vzdálenost od Země	Hmotnost	Absolutní magnituda	Povrchová gravitace
Metalicita	Povrchová teplota	Průměrná hustota	Obyvatelná zóna

Tabulka 10: Údaje o hvězdách ukládané do databáze

Aplikace je postavena flexibilně a umožňuje libovolně namapovat sloupce z datasetů do sloupců v databázi. Datasety tak mohou mít pořadí i názvy jednotlivých sloupců libovolné.

¹ Dataset pochází ze stránek https://exoplanetarchive.ipac.caltech.edu.

6.6.5 Planety

Datasety s planetami nejsou pro běh aplikace taktéž nutné, protože veškeré informace o exoplanách jsou vypočítány z jiných datasetů. Platí však, že čím více nezávislých zdrojů se na údajích o exoplanetě shodne, tím spíše budou tyto údaje platné. Proto je umožněno ukládat do databáze i datasety s údaji o planetách – mohou potvrdit nebo vyvrátit údaje vypočtené v rámci aplikace.

```
C
                exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets&s
pl_hostname,pl_letter,pl_controvflag,pl_pnum,pl_orbper,pl_orbperlim,pl_orbpern,pl_orbsm
 radj,pl radjlim,pl radn,pl dens,pl denslim,pl densn,pl facility
HD 10180, f, 0, 6, 122.74400000, 0, 2, 0.492900, 0, 2, 0.119000, 0, 2, ,, 1, 0.07220, 0, 2, Msini, ,, 0, ,, 0
HD 10180,g,0,6,604.67000000,0,2,1.427000,0,2,0.263000,0,2,,,1,0.07320,0,2,Msini,,,0,,,0
HD 10180,h,0,6,2205.00000000,0,2,3.381000,0,2,0.095000,0,2,,,1,0.20660,0,2,Msini,,,0,,,
HD 10442,b,0,1,1032.30000000,0,4,2.010000,0,4,0.132000,0,4,,,0,1.48700,0,4,Msini,,,0,,,
HD 10647,b,0,1,989.20000000,0,2,2.015000,0,2,0.150000,0,2,,,0,0.94000,0,2,Msini,,,0,,,0
HD 10697,b,0,1,1075.69000000,0,3,2.140000,0,3,0.104300,0,3,,,0,6.38300,0,3,Msini,,,0,,,
HD 11506,b,0,2,1622.10000000,0,5,2.900000,0,5,0.374300,0,5,,,0,4.83000,0,5,Msini,,,0,,,
HD 11506,c,0,2,223.41000000,0,3,0.774000,0,3,0.193000,0,3,,,0,0.40800,0,3,Msini,,,0,,,0
HD 11977,b,0,1,711.00000000,0,2,1.930000,0,3,0.400000,0,2,,,0,6.54000,0,3,Msini,,,0,,,0
HD 11964,b,0,2,1945.00000000,0,3,3.160000,0,2,0.041000,0,3,,,0,0.62200,0,3,Msini,,,0,,,
HD 11964,c,0,2,37.91000000,0,1,0.229000,0,1,0.300000,0,1,,,0,0.07880,0,1,Msini,,,0,,,0, HD 12661,b,0,2,262.70862000,0,5,0.840000,0,5,0.380000,0,5,,,0,2.43000,0,5,Msini,,,0,,,0
                         Obrázek 44: Část datasetu s vlastnostmi planet <sup>1</sup>
```

Opět se jedná o datasety nejčastěji ve formátu csv, které není nutno nijak složitě zpracovávat, pouze uložit do databáze.

Název	Povrchová teplota	Excentricita dráhy	Rovníkový průměr
Velká poloosa	Тур	Hmotnost	Perioda oběhu
Tranzit přes hvězdu	Průměrná hustota	Rychlost oběhu	Podmínky pro život

Tabulka 11: Údaje o planetách ukládané do databáze

6.6.6 Názvy

Často se stává, že jedno a to samé těleso je v různých datasetech pod různým označením.

K zamezení toho, aby byly tyto položky vedeny jako dvě různé soustavy je nutno aplikaci poskytnout informace o používaných názvech jednotlivých objektů. Právě k tomu slouží tento typ datasetů.

¹ Zdoj: https://exoplanetarchive.ipac.caltech.edu.

² Zdroj dat: http://simbad.u-strasbg.fr/simbad/sim-id?Ident=Kepler-10.

Katalog	Účel	Označení Kepler-10
KIC (Kepler Input Catalog)	Hledání exoplanet (Kepler)	KIC 11904151
KOI (Kepler Object of Interest)	Výběr z KIC	KOI-72
Kepler	Potvrzené exoplanety z KOI	Kepler-10
2MASS (2 Micron All-Sky Survey)	Infra. průzkum oblohy	2MASS J19024305+5014286
GSC (Guide Star Catalog)	Pozorování hvězd (Hubble)	GSC 03549-00354
Gaia DR (Gaia Data Release)	Měření polohy hvězd (Gaia)	Gaia DR2 2132155017099178624
USNO-B1.0	Pozorování hvězd a galaxií	USNO-B1.0 1402-00324696
UCAC3	Pozorování hvězd	UCAC3 281-142262

Tabulka 12: Pojmenování soustavy Kepler-10 v různých katalozích $^{2}\,$

7 ROZVRŽENÍ APLIKACE

7.1 Přehled

7.2 Databáze

7.3 Detail systému

Na jediné stránce jsou shrnuty všechny známé informace o systému. Kromě hodnot veličin hvězdy a případných planet jsou zde zaznamenána všechna pozorování, vizuální porovnání velikostí a vzdáleností oproti sluneční soustavě, seznam referencí a v neposlední řadě také interaktivní 3D model systému.

7.4 Objevování

7.5 Nápověda

7.6 Autentizace

ZÁVĚR

TODO: Verifikace výsledků.

POUŽITÁ LITERATURA

- [1] CARPINTERO D. D. MELITA M. D. An alternative stable solution for the Kepler-419 system, obtained with the use of a genetic algorithm. *Astronomy & Astrophysics* 620(A88). [online]. 2018. [cit. 22. 11. 2020]. Dostupné z: https://arxiv.org/abs/1810.06769
- [2] DATTIO, Anne. Identifying Exoplanets with Deep Learning. II. Two New Super-Earths Uncovered by a Neural Network in K2 Data. *The Astronomical Journal* 157(5). [online]. 9. 4. 2019. [cit. 23. 10. 2020]. Dostupné z: https://iopscience.iop.org/article/10.3847/1538-3881/ab0e12
- [3] DOLEŽEL, Petr. Úvod do umělých neuronových sítí. *Univerzita Pardubice, Fakulta elektrotechniky a informatiky.* 2016. [cit. 9. 10. 2020]. ISBN 978-80-7560-022-6
- [4] KHAN, Salman. A Guide to Convolutional Neural Networks for Computer Vision.

 Morgan & Claypool. 2018. [cit. 26. 10. 2020]. ISBN 781681730226
- [5] LOVIS, Christophe, FISCHER, Debra A. Radial Velocity Techniques for Exoplanets. University of Arizona Press. [online]. 2011. [cit. 25. 12. 2019]. Dostupné z: https://www.researchgate.net/publication/253789798_Radial_Velocity_Techniques_for_Exoplanets
- [6] MARCY, Geoffrey. The planet around 51 Pegasi. The astrophysical journal 481(2).
 [online]. 1997. [cit. 29. 12. 2019]. Dostupné z: https://iopscience.iop.org/article/10.1086/304088
- [7] MOUTOU, Claire, PONT, Frédéric. Detection and characterization of extrasolar planets: the transit method. Strasbourg: Observatoire astronomique de Strasbourg et Société Française d'Astronomie et d'Astrophysique. [online]. 2006. [cit. 8. 10. 2020]. Dostupné z: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125. 4155&rep=rep1&type=pdf
- [8] OGBUEFI, Kalvin. Photometry Analysis of Exoplanets WASP-80b & HD 189733b.
 Baylor University. [online]. 2013. [cit. 23. 10. 2020]. Dostupné z: https://www.baylor.edu/content/services/document.php/208057.pdf

- [9] PERRYMAN, Michael. Extra-solar planets. Reports on Progress in Physics 63(8).
 [online]. 31. 5. 2000. [cit. 8. 10. 2020]. Dostupné z: https://arxiv.org/abs/astro-ph/0005602
- [10] SHALLUE, Christopher, VANDERBURG, Andrew. Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90. The Astronomical Journal 155(2). [online]. 30. 1. 2018. [cit. 8. 10. 2020]. Dostupné z: https://iopscience.iop.org/article/10.3847/1538-3881/aa9e09
- [11] TASKER, Elizabeth, LANEUVILLE, Matthieu, GUTTENBERG, Nicholas. Estimating Planetary Mass with Deep Learning. The Astronomical Journal 159(2). [online].
 25. 11. 2019. [cit. 9. 10. 2020]. Dostupné z: https://arxiv.org/abs/1911.11035
- [12] Metody objevování planet. *Astronomia*. [online]. 23. 1. 2013. [cit. 23. 12. 2019]. Dostupné z: http://hvezdy.astro.cz/exoplanety/51-metody-objevovani-planet
- [13] NASA Exoplanet Archive. NASA Exoplanet Science Institute. [online]. 12. 8. 2019.
 [cit. 25. 12. 2019]. Dostupné z: https://exoplanetarchive.ipac.caltech.edu/docs/API exoplanet columns.html
- [14] Reference Solar Spectral Irradiance: ASTM G-173. nrel. [online]. ??. ?. ????. [cit. 27. 12. 2019]. Dostupné z: https://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
- [15] TESS Exoplanet Mission. NASA. [online]. 24. 8. 2020. [cit. 8. 10. 2020]. Dostupné z: https://www.nasa.gov/content/about-tess
- [16] Keras API reference. Keras. [online]. 2020. [cit. 29. 10. 2020]. Dostupné z: https://keras.io/api

Exoplanets data http://exoplanets.org/detail/alpha_Cen_B_b
Wavelength http://spiff.rit.edu/classes/phys240/lectures/expand/expand.html
TODO: Doplnit reference ze zadání diplomové práce.

SEZNAM PŘÍLOH

Příloha A Architektura neuronové sítě	
---------------------------------------	--

PŘÍLOHA A – ARCHITEKTURA NEURON. SÍTĚ

Conv1D		Input: 1001x1	
Filters: 16	Kernel: 3		Output: 1001x1
Stride: 1		Α	ctivation: ReLu

MaxPool1D		Input: 1001x1
Pool: 2	Stride: 1	Output: 999x16

Conv1D		Input: 1001x1	
Filters: 16	Kernel: 3		Output: 1001x1
Stride: 1		Α	ctivation: ReLu

MaxPool1D		Input: 1001x1
Pool: 2	Stride: 1	Output: 999x16

Conv1D		Input: 1001x1	
Filters: 16	Kernel: 3		Output: 1001x1
Stride: 1		Α	ctivation: ReLu

MaxPool1D		Input: 1001x1
Pool: 2	Stride: 1	Output: 999x16

Flatten	Input: 1001x1
riatten	Output: 1001

Perioda

Conv1D			Input: 1001x1
Filters: 16	Kernel: 3		Output: 1001x1
Stride: 1		Α	ctivation: ReLu

MaxPool1D		Input: 1001x1
Pool: 2	Stride: 1	Output: 999x16

Conv1D			Input: 1001x1
Filters: 16	Kernel: 3		Output: 1001x1
Stride: 1		Α	ctivation: ReLu

MaxPool1D		Input: 1001x1
Pool: 2	Stride: 1	Output: 999x16

Conv1D		Input: 1001x1	
Filters: 16	Kernel: 3		Output: 1001x1
Stride: 1		Α	ctivation: ReLu

MaxPool1D		Input: 1001x1
Pool: 2	Stride: 1	Output: 999x16

Flatten	Input: 1001x1
riallen	Output: 1001

Input: 1001x1

Output: 1001

Dense Input: 1001x1

Dropout

Concatenate

-1,0 -0,50

Neurons: 16 Activ.: Tanh Output: 999x16 Input: 1001x1

Dense Input: 1001x1 Neurons: 16 Activ.: Tanh Output: 999x16

Output: 1001

PŘÍLOHA B – ARCHITEKTURA DATABÁZE

