Syntaks og semantik

Lektion 3

12 februar 2008

Forord

- Endelige automater
- Regulære sprog
 - Lukningsegenskaber ved regulære sprog

- tilstande + transitioner
- $(Q, \Sigma, \delta, q_0, F)$: tilstande, (input)alfabetet, transitionsfunktionen, starttilstand, accepttilstande
- $\delta: Q \times \Sigma \rightarrow Q$
- deterministisk: givet en tilstand og et inputsymbol, kender vi næste tilstand
- accepterer et ord $w \in \Sigma^*$ hvis der findes $w_1, w_2, \ldots, w_n \in \Sigma$ og $r_0, r_1, \ldots, r_n \in Q$ således at $w = w_1 w_2 \ldots w_n$ og
 - $0 r_0 = q_0,$
 - 2 $r_{i+1} = \delta(r_i, w_{i+1})$ for alle i = 0, 1, ..., n-1, og
 - \circ $r_n \in F$.
- genkender sproget $\llbracket M \rrbracket = \{ w \mid M \text{ accepterer } w \}$

- Definition: Et sprog siges at være regulært hvis der findes en endelig automat der genkender det.
- Vigtig, hidtil ubevist Sætning: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.
- Ligeså vigtig, også hidtil ubevist Sætning: Der findes sprog der ikke er regulære.

Lad Σ være et alfabet og $A_1, A_2 \subseteq \Sigma^*$. Hvis A_1 og A_2 er regulære sprog, da er også følgende sprog regulære:

• $A_1 \cup A_2$

v

• $A_1 \cap A_2$

√

• $\overline{A}_1 = \Sigma^* \setminus A_1$

• $A_1 \circ A_2$

A₁*

Lad Σ være et alfabet og $A_1, A_2 \subseteq \Sigma^*$. Hvis A_1 og A_2 er regulære sprog, da er også følgende sprog regulære:

- \bullet $A_1 \cup A_2$
- $\bullet \ A_1 \cap A_2 \qquad \qquad \checkmark$
- $\overline{A}_1 = \Sigma^* \setminus A_1$ Lad $M = (Q, \Sigma, \delta, q_0, F)$ være en endelig automat med $\llbracket M \rrbracket = A_1$. Lad $F' = Q \setminus F$ og $M' = (Q, \Sigma, \delta, q_0, F')$, da er $\llbracket M' \rrbracket = \overline{A}_1$.
- $A_1 \circ A_2$? Problem: Flertydigheder i sammensætninger. F.eks. ved $A_1 = \{a, ab\}, A_2 = \{ba\}$: $A_1 \circ A_2 = \{aba, abba\}$
- A₁*

Non-determinisme

- Motivation
- Non-deterministiske endelige automater
- At genkende sprog
 - Nondeterminisme er ligegyldig (?)
- Lukningsegenskaber ved regulære sprog
 - Regulære udtryk genererer regulære sprog

Ønske: Givet endelige automater M_1 og M_2 , konstruér en "sammensat" automat M således at $[\![M]\!] = [\![M_1]\!] \circ [\![M_2]\!]$.

$$\longrightarrow \bigcirc \longrightarrow \cdots \longrightarrow \bigcirc$$

Ønske: Givet endelige automater M_1 og M_2 , konstruér en "sammensat" automat M således at $||M|| = ||M_1|| \circ ||M_2||$.

Problem: Hvis M_1 har transitioner mellem accepttilstande, bliver transitionsfunktionen uspecificeret.

Eksempel, med $[\![M_1]\!] = \{a, ab\}, [\![M_2]\!] = \{ba\}$:

Ønske: Givet endelige automater M_1 og M_2 , konstruér en "sammensat" automat M således at $[\![M]\!] = [\![M_1]\!] \circ [\![M_2]\!]$.

Problem: Hvis M_1 har transitioner mellem accepttilstande, bliver transitionsfunktionen uspecificeret.

Eksempel, med $[\![M_1]\!] = \{a, ab\}, [\![M_2]\!] = \{ba\}$:

ldé: Tillad hvad vi ikke kan undgå!

- tillad at der er flere end én transition med samme label fra en tilstand
- tillad at der er ingen transitioner med et bestemt label fra en tilstand
- tillad transitioner der ikke læser input-symboler

- ved flere end én mulige transitioner: gå til alle mulige tilstande samtidigt
- hvis ingen mulige transitioner: dø
- ved ε-transitioner: bliv i tilstanden, men gå også hen til den anden
- acceptér hvis en accept-tilstand kan nås

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet

- **③** δ : \mathbf{Q} × (Σ ∪ { ε }) → \mathcal{P} (\mathbf{Q}) : transitions-funktionen
- $q_0 \in Q$: starttilstanden
- $F \subseteq Q$: mængden af accepttilstande

Transitions-funktionen:

- deterministisk automat (fra sidste lektion): $\delta: Q \times \Sigma \rightarrow Q$ input: tilstand + tegn output: ny tilstand
- nondeterministisk automat: $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ *input:* tilstand + tegn eller ε output: en mængde af nye tilstande
- $\mathcal{P}(Q)$: potensmængden af Q; mængden af alle delmængder af $Q: \mathcal{P}(Q) = \{S \mid S \subseteq Q\}$

Eksempel 1.38:

$$\begin{aligned} Q &= \{q_1, q_2, q_3, q_4\} & \Sigma &= \{0, 1\} \\ q_0 &= q_1 & F &= \{q_4\} \end{aligned}$$

$$\frac{\delta \quad 0 \quad 1 \quad \varepsilon}{q_1 \quad \{q_1\} \quad \{q_1, q_2\} \quad \emptyset} \\ q_2 \quad \{q_3\} \quad \emptyset \quad \{q_3\} \\ q_3 \quad \emptyset \quad \{q_4\} \quad \emptyset} \\ q_4 \quad \{q_4\} \quad \{q_4\} \quad \emptyset$$

Terminologi: Fra nu af:

- deterministisk endelig automat (DFA): dem fra sidste lektion med $\delta: Q \times \Sigma \rightarrow Q$
- nondeterministisk endelig automat (NFA): dem med $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$
- $\Sigma \cup \{\varepsilon\}$ skrives også Σ_{ε}
- Husk: $\mathcal{P}(Q) = \text{potensmængden ("power set")}$ af Q: $\mathcal{P}(Q) = \{S \mid S \subseteq Q\}$
- enhver DFA er også en NFA
- og enhver NFA kan laves om til en DFA! (bevis kommer lige om lidt)

Definition: Lad $M=(Q,\Sigma,\delta,q_0,F)$ være en endelig automat og $w\in\Sigma^*$. Da siges M at acceptere w hvis der findes $m\in\mathbb{N}$ og $y_1,y_2,\ldots,y_m\in\Sigma_{\varepsilon}$ (!) og $r_0,r_1,\ldots,r_m\in Q$ således at $w=y_1y_2\ldots y_m$ og

- $0 r_0 = q_0,$
- ② $r_{i+1} \in \delta(r_i, y_{i+1})$ for alle i = 0, 1, ..., m-1, og
- $oldsymbol{0}$ $r_m \in F$.

Sproget som genkendes af M er

$$[\![M]\!] = L(M) = \{w \mid M \text{ accepterer } w\}$$

Eksempel 1.33:

Motivation

- $w = 00 = \varepsilon 00$:
- $q_0 \to \{q_{20}, q_{30}\} \to \{q_{21}, q_{31}\} \to \{q_{20}, q_{32}\} \quad \Rightarrow \mathsf{Jep}.$
- $W = 000 = \varepsilon 000$:

$$q_0 \to \{q_{20}, q_{30}\} \to \{q_{21}, q_{31}\} \to \{q_{20}, q_{32}\} \to \{q_{21}, q_{30}\} \Rightarrow \mathsf{Jep}.$$

• $w = 0000 = \varepsilon 0000$:

$$q_0 \rightarrow q_{20} \rightarrow q_{21} \rightarrow q_{20} \rightarrow q_{21} \rightarrow q_{20} \Rightarrow \text{Jep.}$$

(Nok med ét accepterende run.)

•
$$w = 00000 = \varepsilon 00000$$
:
 $q_0 \to \{q_{20}, q_{30}\} \to \{q_{21}, q_{31}\} \to \{q_{20}, q_{32}\} \to \{q_{21}, q_{30}\} \to \{q_{20}, q_{31}\} \to \{q_{21}, q_{32}\} \to \text{Nej.}$
(Alle runs er ikke-accepterende.)

Vigtig sætning 1.39: Til enhver NFA N findes der en DFA M med $\llbracket M \rrbracket = \llbracket N \rrbracket.$

Eller: Til enhver NFA findes der en DFA der genkender samme sprog.

Eller: Til enhver NFA findes der en ækvivalent DFA. (Hvis vi siger at to maskiner er ækvivalente hvis de genkender samme sprog.)

Eller: Enhver NFA kan determiniseres.

Vigtig sætning 1.39: Til enhver NFA N findes der en DFA M med $[\![M]\!] = [\![N]\!]$.

Bevisidé: Når vi ser efter om vores NFA N accepterer et ord, skal vi holde styr på mængder af tilstande.

Dvs. vi skal konstruere en DFA M der holder styr på mængder af tilstande i N. \Rightarrow Tilstandene i M afspejler mængder af tilstande i N.

Vigtig sætning 1.39: Til enhver NFA N findes der en DFA M med $[\![M]\!] = [\![N]\!]$.

Bevis: Skriv $N = (Q, \Sigma, \delta, q_0, F)$. Vi konstruerer en DFA $M = (Q', \Sigma, \delta', q'_0, F')$:

- $Q' = \mathcal{P}(Q)$ tilstande i M er mængder af tilstande i N
- $F' = \{R \subseteq Q \mid R \cap F \neq \emptyset\}$ vi accepterer hvis én af Ns tilstande er accepterende

Transitionsfunktionen: første forsøg: $\delta'(R, a) = \{\delta(r, a) \mid r \in R\}$

Virker ikke helt: mangler at tage ε -transitioner: $\delta'(R, a)$ skal være den mængde af tilstande vi kan nå fra tilstande i R ved at læse et a, plus alle de tilstande vi så kan nå via ε -transitioner!

Hovsa! der er også problemer med q_0' : q_0' skal bestå af alle de tilstande i N der kan nås fra q_0 via ε -transitioner.

Vigtig sætning 1.39: Til enhver NFA N findes der en DFA M med $\llbracket M \rrbracket = \llbracket N \rrbracket.$

Bevis: Skriv $N = (Q, \Sigma, \delta, q_0, F)$. Vi konstruerer en DFA $M = (Q', \Sigma, \delta', q'_0, F')$:

- $Q' = \mathcal{P}(Q)$
- $F' = \{R \subset Q \mid R \cap F \neq \emptyset\}$

For enhver delmængde $R \subseteq Q$ lad

$$E(R) = \{q \in Q \mid q \text{ kan nås fra } R \text{ ved 0 eller flere } \varepsilon\text{-transitioner}\}$$

- $-\varepsilon$ -aflukningen af R.
 - $q_0' = E(\{q_0\})$
 - $\delta'(R, a) = \{ q \in Q \mid q \in E(\{\delta(r, a)\}) \text{ for et } r \in R \}$ $= \bigcup_{r \in R} E(\{\delta(r, a)\})$

For at vise at $\llbracket M \rrbracket = \llbracket N \rrbracket$, skal vi vise at

- ethvert $w \in [N]$ accepteres af M, og at
- ethvert $w \in [M]$ accepteres af N.

Sætning 1.45: (havde vi allerede, men nu med nyt bevis!) Hvis A_1 og A_2 er regulære sprog over et alfabet Σ , da er også $A_1 \cup A_2$ et regulært sprog over Σ .

Bevis: Lad N_1 og N_2 være NFAs med $[\![N_1]\!] = A_1$ og $[\![N_2]\!] = A_2$. Skriv $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, og konstruér en ny NFA $N = (Q, \Sigma, \delta, q_0, F)$ ved

•
$$Q = Q_1 \cup Q_2 \cup \{q_0\}$$
, (en ekstra *ny* starttilstand)

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{hvis } q \in Q_1 \\ \delta_2(q,a) & \text{hvis } q \in Q_2 \\ \{q_1,q_2\} & \text{hvis } q = q_0 \text{ og } a = \varepsilon \\ \emptyset & \text{hvis } q = q_0 \text{ og } a \neq \varepsilon \end{cases}$$

Da er $[\![N]\!] = A_1 \cup A_2$.

Sætning 1.45: (havde vi allerede, men nu med nyt bevis!) Hvis A_1 og A_2 er regulære sprog over et alfabet Σ , da er også $A_1 \cup A_2$ et regulært sprog over Σ .

Bevis: Lad N_1 og N_2 være NFAs med $[N_1] = A_1$ og $[N_2] = A_2$. Skriv $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2),$ og konstruér en ny NFA $N = (Q, \Sigma, \delta, q_0, F)$ ved

•
$$Q = Q_1 \cup Q_2 \cup \{q_0\}$$
, (en ekstra *ny* starttilstand)

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{hvis } q \in Q_1 \\ \delta_2(q,a) & \text{hvis } q \in Q_2 \\ \{q_1,q_2\} & \text{hvis } q = q_0 \text{ og } a = \varepsilon \\ \emptyset & \text{hvis } q = q_0 \text{ og } a \neq \varepsilon \end{cases}$$

Da er $\llbracket N \rrbracket = A_1 \cup A_2$.

Intuitivt!

Sætning 1.47: Hvis A_1 og A_2 er regulære sprog over et alfabet Σ , da er også $A_1 \circ A_2$ et regulært sprog over Σ .

Bevis: Lad N_1 og N_2 være NFAs med $[\![N_1]\!] = A_1$ og $[\![N_2]\!] = A_2$. Skriv $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, og konstruér en ny NFA $N = (Q, \Sigma, \delta, q_1, F_2)$ ved

 $Q = Q_1 \cup Q_2$

Motivation

• (starttilstanden er q_1 , accepttilstandene er F_2)

Da er $\llbracket N \rrbracket = A_1 \circ A_2$.

Sætning 1.47: Hvis A_1 og A_2 er regulære sprog over et alfabet Σ , da er også $A_1 \circ A_2$ et regulært sprog over Σ .

Bevis: Lad N_1 og N_2 være NFAs med $[N_1] = A_1$ og $[N_2] = A_2$. Skriv $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2),$ og konstruér en ny NFA $N = (Q, \Sigma, \delta, q_1, F_2)$ ved

- $Q = Q_1 \cup Q_2$
- (starttilstanden er q_1 , accepttilstandene er F_2)

Da er $\llbracket N \rrbracket = A_1 \circ A_2$.

Sætning 1.49: Hvis A er et regulært sprog over et alfabet Σ , da er også A^* et regulært sprog over Σ .

Bevis: Lad $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en NFA med $[N_1] = A$. Konstruér en ny NFA $N = (Q, \Sigma, \delta, q_0, F)$ ved

•
$$Q = Q_1 \cup \{q_0\},$$

•
$$F = F_1 \cup \{q_0\}$$
 og

Sætning 1.49: Hvis A er et regulært sprog over et alfabet Σ , da er også A^* et regulært sprog over Σ .

Bevis: Lad $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en NFA med $[N_1] = A$. Konstruér en ny NFA $N = (Q, \Sigma, \delta, q_0, F)$ ved

$$\begin{array}{c} \bullet \ \ Q = Q_1 \cup \{q_0\}, \\ \bullet \ \ F = F_1 \cup \{q_0\} \ \text{og} \\ \delta(q,a) = \begin{cases} \delta_1(q,a) & \text{hvis } q \in Q_1 \ \text{og } q \notin F_1 \\ \delta_1(q,a) & \text{hvis } q \in F_1 \ \text{og } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & \text{hvis } q \in F_1 \ \text{og } a = \varepsilon \\ \{q_1\} & \text{hvis } q = q_0 \ \text{og } a \neq \varepsilon \end{cases}$$

Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.

Eller: Givet et alfabet Σ og $L \subseteq \Sigma^*$, da er L et regulært sprog hvis og kun hvis der findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

(Bevis til første halvdel nu, til anden halvdel næste gang.)

Lemma 1.55: Givet et alfabet Σ og et sprog $L \subseteq \Sigma^*$. Hvis der findes et regulært udtryk R over Σ med $[\![R]\!] = L$, da er L regulært.

Bevis (ved strukturel induktion):

- Hvis L = [a] for et $a \in \Sigma$: Lad $M = \longrightarrow a$, da er $[M] = \{a\} = L$.
- ② Hvis $L = \llbracket \varepsilon \rrbracket$: Lad $M = \longrightarrow \bigcirc$, da er $\llbracket M \rrbracket = \{ \varepsilon \} = L$.
- **1** Wris $L = [\![\emptyset]\!]$: Lad $M = \longrightarrow$, da er $[\![M]\!] = \emptyset = L$.
- 4 Hvis $L = [R_1 \cup R_2]$: Ved induktionsantagelsen har vi NFAs M_1 og M_2 således at $[M_1] = [R_1]$ og $[M_2] = [R_2]$. Derfor er $[R_1]$ og $[R_2]$ regulære sprog, med sætning 1.45 altså også $[R_1] \cup [R_2] = [R_1 \cup R_2] = L$.
- Hvis $L = [R_1 \circ R_2]$ eller $L = [R_1^*]$: Analogt til tilfælde 4, bortset fra at sætning 1.47 hhv. 1.49 skal benyttes.

Eksempel 1.56: Konvertér $(ab \cup a)^*$ til en NFA.

