Multi-Model Based Incident Prediction and Risk Assessment in Dynamic Cybersecurity Protection for Industrial Control Systems

Zhang Qi qiqi@hust.edu.cn

October 10, 2015

Automation School, Huazhong University of Science and Technology, Wuhan.

Outlines

Dynamic Risk Assessment

Decouple of Incident Consequences

Classification of Incident Consequences

Quantification of Incident Consequences

Calculation of Dynamic Risk

Dynamic Risk Assessment

for each incident e_i , analyze its consequence and generate a consequence set

$$\boldsymbol{c}_i = (c_1, c_2, \cdots, c_n).$$

The meaning of c_i is that the occurring of the incident e_i will threaten the elements in consequence set c_i .

For example, the incident e_i is an explosion of a reactor, which may cause worker casualties, air pollution, facilities damages, and products loss. The consequence set of e_i is

 $c_i = (workers, air, facilities, products).$

For each $c'_j \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in \mathit{C}$, where $c_j' \subseteq c_i$.

For each $c_j' \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_i' \in C'$, we can find the incident set

$$\boldsymbol{e}_j=(e_{i_1},e_{i_2},\cdots,e_{i_n}).$$

For each $c'_j \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_i' \in C'$, we can find the incident set

$$\boldsymbol{e}_j=(e_{i_1},e_{i_2},\cdots,e_{i_n}).$$

For each incident e_k of the incident set e_j , the corresponding consequence set c_k satisfies the following condition:

$$c'_j \subseteq c_k$$
.

For each $c'_j \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_i' \in C'$, we can find the incident set

$$\boldsymbol{e}_j=(e_{i_1},e_{i_2},\cdots,e_{i_n}).$$

For each incident e_k of the incident set e_j , the corresponding consequence set c_k satisfies the following condition:

$$c'_j \subseteq c_k$$
.

Therefore, the parent nodes of the auxiliary node x_j are incident nodes $e_{i_1}, e_{i_2}, \dots, e_{i_n}$.

For each auxiliary node x_j , generate a conditional probability table. A typical conditional probability table of auxiliary node x_j is shown as following table.

$H(e_{i_1})$	Т	T	Т		F	F	F
$H(e_{i_2})$	Т	T	T		F	F	F
$H(e_{i_3})$	Т	T	Т	• • •	F	F	F
÷	:	:	:	٠٠.	:	:	÷
$H(e_{i_{n-2}})$	T	T	T		F	F	F
$H(e_{i_{n-1}})$	Т	T	F		T	F	F
$H(e_{i_n})$	Т	F	F		F	T	F
$H(x_j)$	1	1	1		1	1	0
$\overline{H}(x_j)$	0	0	0		0	0	1

Harm to Humans

Environmental Pollution

Property Loss

Quantification of Property Loss

Calculation of Dynamic Risk

