Self-Driving Cars

Lecture 4 - Reinforcement Learning

Benjamin Coors

Autonomous Vision Group MPI-IS / University of Tübingen

November 22, 2018

Agenda

Date	Lecture (Thursday)	Date	Exercise (Friday)
18.10.	01 - Introduction to Self-Driving Cars	19.10.	00 - Introduction Pytorch & OpenAl Gym
25.10.	02 - DNNs, ConvNets, Imitation Learning	26.10.	01 - Intro: Imitation Learning
1.11.	none (Allerheiligen)	2.11.	
8.11.	03 - Direct Perception	9.11.	01 - Q&A
15.11.	none (CVPR Deadline)	16.11.	
22.11.	04 - Reinforcement Learning	23.11.	01 - Discussion & 02 - Intro: Reinforcement Learning
29.11.	05 - Vehicle Dynamics & Control	30.11.	
6.12.	06 - Localization & Visual Odometry	7.12.	02 - Q&A
13.12.	07 - Simultaneous Localization and Mapping (J. Stückler)	14.12.	
20.12.	08 - Road and Lane Detection	21.12.	02 - Discussion & 03 - Intro: Modular Pipeline
10.1.	09 - Reconstruction and Motion Estimation	11.1.	
17.1.	10 - Object Detection & Tracking	18.1.	
24.1.	11 - Scene Understanding	25.1.	03 - Q&A
31.1.	12 - Planning	1.2.	03 - Discussion & Announcement of Winners
7.2.	13 - Winner's Presentations and Exam Q&A	8.2.	

Approaches to Self-Driving

Direct Perception

Idea of Direct Perception:

- ► Learn to predict interpretable low-dimensional intermediate representation
- Exploit classical controllers and finite state machines
- ► Hybrid model between imitation learning and modular pipelines

Conditional Affordance Learning

Affordances: [Gibson, 1966]

► Attributes of the environment which limit the space of allowed actions

Conditional Affordance Learning: Affordances

Affordances:

- ▶ Distance to centerline
- ► Relative angle to road
- ▶ Distance to lead vehicle

- ► Speed signs
- ► Traffic lights
- Hazard stop

Reinforcement Learning

So far:

- Supervised learning, lots of data-label pairs required
- ► Use of auxiliary, short-term loss functions
 - ► Imitation learning: per-frame loss on action
 - ► Direct perception: per-frame loss on affordance indicators

Now:

- ▶ Learning of models based on the loss that we actually care about, e.g.:
 - Minimize time to target location
 - ► Minimize number of collisions
 - ► Minimize risk
 - ► Maximize comfort
 - ► etc.

Types of Learning

Supervised Learning:

- ▶ Dataset: $\{(x_i, y_i)\}$ $(x_i = \text{data}, y_i = \text{label})$ Goal: Learn mapping $x \mapsto y$
- ► Examples: Classification, regression, imitation learning, affordance learning, etc.

Unsupervised Learning:

- ▶ Dataset: $\{(x_i)\}$ (x_i = data) Goal: Discover structure underlying data
- ► Examples: Clustering, dimensionality reduction, feature learning, etc.

Reinforcement Learning:

- ► Agent interacting with environment which provides numeric reward signals
- ► Goal: Learn how to take actions in order to maximize reward
- ► Examples: Learning of manipulation or control tasks (everything that interacts)

Reinforcement Learning

Introduction

Reinforcement Learning Overview

- lacktriangle Agent oberserves environment state s_t at time t
- ightharpoonup Agent sends action a_t at time t to the environment
- lacktriangle Environment returns the reward r_t and its new state s_{t+1} to the agent

Reinforcement Learning Overview

Sequential decision making:

- ► Goal: Select actions to maximize total future reward
- ► Actions may have long term consequences
- ► Reward may be delayed, not instantaneous
- ▶ It may be better to sacrifice immediate reward to gain more long-term reward
- ► Examples:
 - ► Financial investment (may take months to mature)
 - ► Refuelling a helicopter (might prevent crash in several hours)
 - ► Blocking opponent moves (might help winning chances in the future)

Example: Pole-Balancing

- ► Objective: Balance pole on moving cart
- ► **State:** Angle, angular vel., position, vel.
- ► Action: Horizontal force applied to cart
- **Reward:** 1 if pole is upright at time t

Example: Robot Locomotion

http://blog.openai.com/roboschool/

- ► **Objective:** Make robot move forward
- ► **State:** Position and angle of joints
- ► Action: Torques applied on joints
- ► **Reward:** 1 if upright and forward moving

Example: Atari Games

http://blog.openai.com/gym-retro/

► Objective: Maximize score

► State: Raw pixels of screen (210x160)

► Action: Left, right, up, down

► **Reward:** Score increase/decrease at t

Example: Go

www.deepmind.com/research/alphago/

► **Objective:** Win the game!

► State: Position of all pieces

► Action: Location of next piece

► **Reward:** 1 if game won, 0 otherwise

Reinforcement Learning: Overview

► How can we mathematically formalize the RL problem?

Markov Decision Process

Markov Decision Process (MDP) defined by tuple:

$$(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$$

- $ightharpoonup \mathcal{S}$: set of possible states
- $ightharpoonup \mathcal{A}$: set of possible actions
- $ightharpoonup \mathcal{R}$: distribution of reward given (state,action) pair
- ► P: distribution over next state given (state,action) pair
- $ightharpoonup \gamma$: discount factor

Almost all reinforcement learning problems can be formalized as MDPs

Markov Decision Process

Markov property: Current state completely characterizes state of the world

ightharpoonup A state s_t is *Markov* if and only if

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_1, ..., s_t)$$

- ▶ "The future is independent of the past given the present"
- ► The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- ▶ i.e. the state is a sufficient statistic of the future

Markov Decision Process

Reinforcement learning interaction loop:

- ightharpoonup At time t=0:
 - ▶ Environment samples initial state $s_0 \sim P(s_0)$
- ▶ Then, for t = 0 until done:
 - ightharpoonup Agent selects action a_t
 - ► Environment samples reward $r_t \sim \mathcal{R}(\cdot|s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(\cdot|s_t, a_t)$
 - ► Agent receives reward r_t and next state s_{t+1}

How do we select an action?

Policy

A **policy** π is a function from S to A that specifies what action to take in each state:

- ► A policy fully defines the behavior of an agent
- ▶ Deterministic policy: $a = \pi(s)$
- ► Stochastic policy: $\pi(a|s) = P(a_t = a|s_t = s)$
- ► MDP policies depend on the current state (not the history)

Policy

How do we learn a policy?

Imitation Learning: Learn a policy from expert demonstrations

- Expert demonstrations are provided
- ► Supervised learning problem

Reinforcement Learning: Learn a policy through *trial-and-error*

- ▶ No expert demonstrations given
- Agent has to discover itself which actions maximize its reward
 - ► The agent interacts with the environment and obtains reward
 - lacktriangle The agent discovers good actions and improves its policy π
- ► Goal: Learn a policy which maximizes the total future reward

Exploration and Exploitation

How do we discover good actions?

Answer: We need to explore the action space

- **Exploration:** Try a novel action a in state s , observe reward r_t
 - Discovers more information about the environment
 - ► Game-playing example: Play a novel experimental move
- \blacktriangleright **Exploitation:** Use a previously discovered good action a
 - Exploits known information to maximize reward
 - ► Game-playing example: Play the move you believe is best

Trade-off: It is usually important to explore as well as exploit

Exploration and Exploitation

How to balance exploration and exploitation?

ϵ -greedy exploration algorithm:

- lacktriangle All m actions are tried with non-zero probability
- ightharpoonup With probability ϵ choose an action at random (**exploration**)
- ▶ With probability 1ϵ choose the greedy action (**exploitation**)
- Greedy action is defined as best action which was discovered so far
- $ightharpoonup \epsilon$ is gradually annealed over time

Value Functions

How good is a state?

The **state-value function** V^{π} at state s_t is the expected cumulative discounted reward $(r_t \sim \mathcal{R}(\cdot|s_t, a_t))$ when following the policy π from state s_t :

$$V^{\pi}(s_t) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t, \pi]$$
$$= \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t \middle| s_t, \pi\right]$$

- \blacktriangleright The discount $\gamma \in [0,1]$ is the present value of future rewards
 - Weights immediate reward higher than future reward
 - ► Determines agent's far/short-sightedness
 - Avoids infinite returns in cyclic Markov processes

Value Functions

How good is a state-action pair?

The **action-value function** Q^{π} at state s_t and action a_t is the expected cumulative discounted reward from taking action a_t in state s_t and then following the policy π :

$$Q^{\pi}(s_t, a_t) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t \middle| s_t, a_t, \pi\right]$$

- ▶ The discount $\gamma \in [0,1]$ is the present value of future rewards
 - ► Weights immediate reward higher than future reward
 - ► Determines agent's far/short-sightedness
 - Avoids infinite returns in cyclic Markov processes

Optimal Value Functions

The **optimal state-value function** $V^*(s_t)$ is the best $V^{\pi}(s_t)$ over all policies π :

$$V^*(s_t) = \max_{\pi} V^{\pi}(s_t) \qquad V^{\pi}(s_t) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t \middle| s_t, \pi\right]$$

The **optimal action-value function** $Q^*(s_t, a_t)$ is the best $Q^{\pi}(s_t, a_t)$ over all policies π :

$$Q^*(s_t, a_t) = \max_{\pi} Q^{\pi}(s_t, a_t) \qquad \qquad Q^{\pi}(s_t, a_t) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t \middle| s_t, a_t, \pi\right]$$

- ► The optimal value functions specify the best possible performance in the MDP
- lacktriangle However, optimizing over all possible policies π is computationally intractable

Optimal Policy

An **optimal policy** can be found by maximizing over $Q^*(s_t, a_t)$:

$$\pi^*(a_t|s_t) = \begin{cases} 1 & \text{if } a_t = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} \ Q^*(s_t, a') \\ 0 & \text{otherwise} \end{cases}$$

► The optimal policy is better than or equal to all other policies:

$$\pi^* \geq \pi, \ \forall \pi$$

where $\pi \geq \pi'$ if $V^{\pi}(s_t) \geq V^{\pi'}(s_t)$ for all $s_t \in \mathcal{S}$

A Simple Grid World Example

```
actions = {
    1. right →
    2. left ←
    3. up ↑
    4. down ↓
}
```

* *

states

Objective: Reach one of terminal states (marked by a \star) in least number of actions

A Simple Grid World Example

Random Policy

Optimal Policy

Bellman Optimality Equation

The **Bellman optimality equation** decomposes Q^* into two parts:

$$Q^*(s_t, a_t) = \mathbb{E}\left[r_t + \gamma r_{t+1} + \dots + \gamma^n r_n | s_t, a_t\right]$$

$$\stackrel{BOE}{=} \mathbb{E}\left[r_t + \gamma \max_{a' \in \mathcal{A}} Q^*(s_{t+1}, a') \middle| s_t, a_t\right]$$

Recursive formulation comprises:

- ightharpoonup Current reward: r_t
- ▶ Discounted optimal action-value of successor: $\gamma \max_{a' \in \mathcal{A}} Q^*(s_{t+1}, a')$

Solving the Bellman optimality equation:

- ► Bellman Optimality Equation is non-linear
- ► No closed form solution (in general)
- Many iterative solution methods

Q-learning

Q-learning algorithm: Iteratively solve for Q^*

$$Q_{i+1}(s_t, a_t) = \mathbb{E}\left[r_t + \gamma \max_{a' \in \mathcal{A}} Q_i(s_{t+1}, a') \middle| s_t, a_t\right]$$

► Approximate the expectation with a single-sample iterative update:

$$Q_{i+1}(s_t, a_t) \leftarrow Q_i(s_t, a_t) + \alpha \underbrace{\left(r_t + \gamma \max_{a' \in \mathcal{A}} Q_i(s_{t+1}, a') - \underbrace{Q_i(s_t, a_t)}\right)}_{\text{temporal difference (TD) error}} - \underbrace{Q_i(s_t, a_t)}_{\text{prediction}}$$

with learning rate α

▶ Q_i will converge to Q^* as $i \to \infty$

Q-learning

Implementation:

- ► Initialize a Q-table with all zero entries
- ► Repeat:
 - Observe state s_t , choose action a_t according to ϵ -greedy strategy
 - ▶ Observe reward r_t and next state s_{t+1}
 - ightharpoonup Compute TD error: $r_t + \gamma \max_{a' \in A} Q_i(s_{t+1}, a') Q_i(s_t, a_t)$
 - ► Update *Q*-table

What's the problem with using Q-tables?

Not scalable: Q-tables don't scale to high dimensional state or action spaces

Solution: Use a function approximator to estimate Q(s, a), e.g. a neural network!

Deep Reinforcement Learning

Deep Q-Learning

Use a **deep neural network** with weights θ as function approximator to estimate Q:

$$Q(s, a; \theta) \approx Q^*(s, a)$$

Deep Q-Learning

Forward Pass:

Loss function is the mean-squared error in Q-values:

$$L_i(\theta_i) = \mathbb{E}\left[\left(\left(r + \gamma \max_{a'} Q(s', a'; \theta_i)\right) - Q(s, a; \theta_i)\right)^2\right]$$

Backward Pass:

Gradient update with respect to Q-function parameters θ :

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_i) - Q(s, a; \theta_i)\right) \nabla_{\theta_i} Q(s, a; \theta_i)\right]$$

Optimize objective end-to-end with stochastic gradient descent (SGD) using $\nabla_{\theta_i} L_i(\theta_i)$

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

Q-network Architecture

 $Q(s, a; \theta)$: Neural network with weights θ

FC-Out (Q-values)

Output: Q-values for all 4-18 Atari actions

FC-256

32 4x4 conv, stride 2

16 8x8 conv, stride 2

Input: $84 \times 84 \times 4$ stack of last 4 frames (after RGB to grayscale, downsampling, cropping)

Efficient: A single forward pass computes the *Q*-values for all actions!

Training the Q-network: Loss Function (from before)

Forward Pass:

Loss function is the mean-squared error in Q-values:

$$L_i(\theta_i) = \mathbb{E}\left[\left((r + \gamma \max_{a'} Q(s', a'; \theta_i)) - Q(s, a; \theta_i)\right)^2\right]$$

Backward Pass:

Gradient update with respect to Q-function parameters θ :

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_i) - Q(s, a; \theta_i)\right) \nabla_{\theta_i} Q(s, a; \theta_i)\right]$$

Optimize objective end-to-end with stochastic gradient descent (SGD) using $\nabla_{\theta_i} L_i(\theta_i)$

Training the Q-network: Experience Replay

Unlike in standard Q-learning, we now train on **mini-batches**:

- ▶ Problem: Learning from consecutive samples is inefficient
- ► Reason: Strong correlations between consecutive samples

Experience replay stores agent's experiences at each time-step

- lacktriangle Continually update a **replay memory** D with new experiences $e_t = (s_t, a_t, r_t, s_{t+1})$
- ▶ Train on samples $(s, a, r, s') \sim U(D)$ drawn uniformly at random from D
- ► Breaks correlations between samples
- ► Improves data efficiency as each sample can be used multiple times

In practice, a circular replay memory of finite memory size N is used

Training the Q-network: Fixed Q-targets

Challenge: Non-stationary targets

- \blacktriangleright As the policy changes, so do our targets: $r + \gamma \max_{a'} Q(s',a';\theta_i)$
- ► This may lead to oscillation or divergence

Fixed Q-targets are used to stabilize the training:

▶ A second target network \hat{Q} with weights θ^- is used to generate the targets:

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} \hat{\mathbf{Q}}(s', a'; \boldsymbol{\theta}_i^-) - Q(s, a; \boldsymbol{\theta}_i) \right)^2 \right]$$

- lacktriangle Target network \hat{Q} is only updated every C steps by cloning the Q-network
- lacktriangle Adds a delay between updating Q and updating the targets
- ► Effect: Oscillations or divergence of the policy is reduced

Putting it together: Deep Q-Learning with Experience Replay

Training a deep Q-network using experience replay and fixed Q-targets

- ▶ Take action a_t according to ϵ -greedy policy
- ► Store transition (s_t, a_t, r_t, s_{t+1}) in replay memory D
- ► Sample random mini-batch of transitions (s, a, r, s') from D
- lacktriangle Compute Q-learning targets w.r.t. old, fixed parameters $heta^-$
- ▶ Optimize MSE between Q-network predictions and Q-learning targets:

$$L_i(\theta_i) = \mathbb{E}_{s,a,r,s' \sim D_i} \left[\left(r + \gamma \max_{a'} \hat{Q}(s', a'; \theta_i^-) - Q(s, a; \theta_i) \right)^2 \right]$$

using a variant of stochastic gradient descent

Deep Q-Learning: Breakout

Deep Q-Learning Shortcomings

There are several **poinst for improvement** in the initial deep Q-learning approach:

- ► Long training times
- ► Action space is limited to a discrete set of actions
- ▶ Uniform sampling from experience replay gives equal importance to all transitions
- ► Simplistic exploration strategy
- Overestimation of action-values
- ► Relies on fully-observable states

Continuous Control with Deep Reinforcement Learning

Use two networks: an actor and a critic

Continuous Control with Deep Reinforcement Learning

Use two networks: an actor and a critic

- ▶ **Actor** network with weights θ^{μ} estimates agent's deterministic policy $\mu(s; \theta^{\mu})$
 - lacktriangle Update policy in direction that most improves Q
 - ► i.e. backpropagate critic through actor:

$$\nabla_{\theta^{\mu}} J_{i} \approx \mathbb{E}_{s_{i}} [\nabla_{\theta^{\mu}} Q(s, a; \theta_{i}^{Q})]$$

$$= \mathbb{E}_{s_{i}} [\nabla_{a} Q(s, a; \theta_{i}^{Q}) \nabla_{\theta^{\mu}} \mu(s; \theta_{i}^{\mu})]$$

- ► **Critic** estimates value of current policy $Q(s, a; \theta^Q)$
 - ► Learned using the Bellman optimality equation as in Q-learning:

$$L_i(\theta_i^Q) = \mathbb{E}_{(s,a,r,s')}[(r + \gamma Q'(s, \mu'(s; \theta_i^{\mu'}); \theta_i^{Q'}) - Q(s,a; \theta_i^Q))^2]$$

Continuous Control with Deep Reinforcement Learning

Experience replay and **target networks** are again used to stabilize the training:

- ▶ Replay memory D again stores transition tuples (s_t, a_t, r_t, s_{t+1})
- ► Target networks are updated using "soft" target updates
 - ► Weights are not directly copied but slowly adapted:

$$\begin{array}{lcl} \theta^{Q'} & \leftarrow & \tau \theta^Q + (1 - \tau) \theta^{Q'} \\ \theta^{\mu'} & \leftarrow & \tau \theta^\mu + (1 - \tau) \theta^{\mu'} \end{array}$$

where $0 < \tau << 1$ controls the tradeoff between speed and stability of learning

Exploration is performed by adding temporally correlated noise \mathcal{O} to $\mu(s)$:

$$\mu'(s_t) = \mu(s_t; \theta_t^{\mu}) + \epsilon \mathcal{O}$$

Prioritized Experience Replay

Prioritize experience to replay important transitions more frequently

ightharpoonup Priority δ is measured by magnitude of temporal difference (TD) error:

$$\delta = |r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i)|$$

- ► TD error measures how 'surprising' or unexpected the transition is
- Stochastic prioritization avoids overfitting due to lack of diversity
- ► Enables learning speed-up by a factor of 2 on Atari benchmarks

Faulty Reward Functions

https://blog.openai.com/faulty-reward-functions/

Further Readings

- ▶ Sutton and Barto: Reinforcement Learning: An Introduction. MIT Press, 2017.
- Watkins and Dayan: Technical Note Q-Learning. Machine Learning, 1992.
- ▶ Mnih et al.: Human-level control through deep reinforcement learning. Nature, 2015.
- ► Lillicrap et al.: Continuous Control with Deep Reinforcement Learning. ICLR, 2016.

Next Time:

Vehicle Dynamics & Control

