Orders of Growth

Recurrence Relation	Time Complexity	Examples
$T(n) = T(n-1) + \theta(1)$	$\theta(n)$	linear search
$T(n) = T(n-1) + \theta(n)$	$\theta(n^2)$	selection/insertion/bubble sort
$T(n) = T(\frac{n}{2}) + \theta(1)$	$\theta(\log n)$	Binary search
$T(n) = T(\frac{n}{2}) + \theta(n)$	$\theta(n)$	Quickselect
$T(n) = 2T(\frac{n}{2}) + \theta(1)$	$\theta(n)$	tree traversal
$T(n) = 2T(\frac{n}{2}) + \theta(n)$	$\theta(n \log n)$	Merge sort
$T(n) = 2T(n-1) + \theta(1)$	$\theta(2^n)$	
$T(n) = T(n-1) + T(n-2) + \theta(1)$	$\theta(\phi^n) \approx \theta(1.62^n)$	Tree recursive fibonacci
$T(n) = T(\sqrt{n}) + \theta(1)$	$\theta(log(logn))$	N.A
$T(n) = \sqrt{n}T(\sqrt{n}) + \theta(\sqrt{n})$	$\theta(nlog(logn))$	Let $n = 2^k$ and Master's Theorem

In general,
$$T(n) = \theta(n^k) + T(n-1) \rightarrow T(n) = \theta(n^{k+1})$$

Master Theorem		
If $T(n) = aT(\frac{n}{b}) + f(n)$, $f(n) = n^k$, then		
ſ	n^k ,	$a < b^k$
T(n) =	$n^k \log_b n$,	$a = b^k$
Į	$n^{\log_b a}$	$a > b^k$

Function	Name
1	constant
log(logn)	double log
logn	log
log^2n	polylog
n	linear
nlogn	log-linear
$nlog^2n$	
n^2	polynomial
$n^2 log n$	
2^n	exponential
3^n	
2^{2n}	
n!	factorial
(n+1)!	

Sorting

Insertion Sort

for i in [i:len(A)]:
 key = A[i]
 j = i - 1
 # find correct position for key within
 A[i:j]
 while (j >= 0) and (A[j] > key):
 # move element to the right ('make space for key)
 A[j+1] = A[j]
 j -= 1
 # insert key here
 A[j+1] = key

Bubble Sort

repeat (until no swaps):
 for j in [0 : len(A)-1]:
 if (A[j] > A[j+1]):
 swap(A[j], A[j+1])

Merge Sort

if (len(A) <= 1):
 return
else:
 mid = len(A) // 2
 left = mergeSort(A[0:mid])
 right = mergeSort(A[mid:len(A)])
 return merge(left, right)</pre>

QuickSort

Algorithm	Stability	In-place	Invariant
Selection	×	1	At the end of iteration j: the j smallest items in the array are sorted.
Insertion	1	1	At the end of iteration j: the first j items in the array are in sorted order. The remaining elements are in their original order
Bubble	1	1	At the end of iteration j: the j largest items in the array are sorted.
Merge	1	×	If elements from different halves have been swapped, then the 2 halves have been mergeSorted & are in sorted order
Quick	×	,	 Pivot is in correct position at the end of partitioning. For all 1 < 1 < 10w, A[1] < pivot For all j >= high, A[j] > pivot

Time Complexity

Algorithm	Unsorted	Sorted	Reverse Sorted	Almost Sorted
Selection	$O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n^2)$
Insertion	$O(n^2)$	O(n)	$O(n^2)$	O(n)
Bubble	$O(n^2)$	O(n)	$O(n^2)$	$O(n^2)$
Merge	O(nlogn)	O(nlogn)	O(nlogn)	O(nlogn)
Quick	O(nlogn)	$O(n^2)$	$O(n^2)$	O(nlogn)

Swaps		
Algorithm	Best Case	Worst Case
Selection	0 (Sorted)	O(n)
Insertion	0 (Sorted)	$O(n^2)$ (Reverse)
Bubble	0 (Sorted)	$O(n^2)$ (Reverse)
Merge	0	0 (Only Copying)
Quick	O(nlogn)	$O(n^2)$ (Reverse)

Comparisons		
Algorithm	Best Case	Worst Case
Selection	$O(n^2)$	$O(n^2)$
Insertion	$0(n^2)$ (Sorted)	$O(n^2)$
Bubble	$0(n^2)$ (No Flag)	$O(n^2)$
Merge	O(nlogn)	O(nlogn)
Quick	O(nlogn)	$O(n^2)$

Space Complexity		
Algorithm Extra Memory		
Selection	O(1)	
Insertion	O(1)	
Bubble	O(1)	
Merge $O(nlogn)$		
Quick	O(n) (average: $O(logn)$)	

Binary Search

def search(A, key, begin, end):
if (begin > end): return -1
avoid integen overflow errors
mid = begin + (end-begin)/2
if (key < A[mid]):
eliminate right half
return search(A, key, begin, mid)
else if (key > A[mid]):
eliminate left half
return search(A, key, mid+1, end)
else: return mid

1. Given a function complicatedFunction(input) that is monotonic increasing

2. i.e. complicatedFunction(i) <
 complicatedFunction(i+1)</pre>

 Task: Find the minimum value j such that: complicatedFunction(j) > num

```
def bisectRight(A, key):
    # returns the index of the first value
    strictly greater than key
    low = 0, high = len(A) - 1
    if (A[high] < key): return -1
    while (low < high)
    mid = (low + high)/2
    if (A[mid] <= key): low = mid+1
    else if (A[mid] > key): high = mid
    return low
```

AVL Trees

- Weight: Number of nodes in the subtree rooted at the node.
- (a) weight(null) = 0
- (b) weight(leaf) = 1
- 2. Number of edges on the path from the node to the deepest leaf.
- (a) height(empty tree) = -1
- BST is balanced if h = O(logn), i.e. $c \cdot logn$, allowing all operations to run in O(logn) time
- A node u is said to be height-balanced if $|u.left.height u.right.height| \le 1$.
- BST is height-balanced if every node is height-balanced

Notes

- Height-balanced \Rightarrow Balanced
- Balanced
 ⇒ Height-balanced
- A height-balanced tree has height O(2logn) = O(logn)
- Define the balance factor of a node

 $\begin{array}{lll} balance(u) = u.left.height \\ - u.right.height. & When \\ |balance(u)| \geq 2, \quad rebalancing \\ is required. This must be done from the insertion/deletion point up to the root. \\ \end{array}$

Successor

if (u.right != null):
 return findMin(u.right)
else:
 p = u.parent
 # find an ancestor that is a left child
 while (p is a right child):
 go up the ancestry
 if (p == null): return null
 else: return parent

Case 2: node has no right child.

Rank & Select

The rank of an element is its position relative to the sorted order, i.e. the kth smallest item would have a rank of k. Select is the reverse of rank. Given a rank, return the value of the node with that rank.

```
# computes the rank of `u` within the subtree
getRank(u, root):
    if (u.key < root.key):
        return getRank(u, root.left)
    else if (u.key > root.key):
        return root.left.weight + 1 +
        getRank(u, root.right)
        return root.left.weight + 1
select(rank, root):
    # this is equivalent to calling
    qetRank(root, root)
    rankOfRootInSubTree = root.left.weight + 1
    if (rank < rankOfRootInSubTree):
        return select(rank, root.left)
    else if (rank > rankOfRootInSubTree):
        // eliminate the root and its right
        subtree
        return select(rank
        rankOfRootInSubTree, root.right)
    else:
        return root
```

Tries

Tries are useful for partial string operations:

- Prefix queries (find all words that start with 'pi')
- Longest prefix (find the longest word that is a prefix to 'pickling')
- Regex (find all words of the form 'pi??le')

Consider the following list of strings to construct Trie

Tradeoffs: Tries vs BST

- 1. Time
- O(L) vs O(h*L)
- Trie operations do not depend on text size or number of words
- 2. Space
- · Tries tend to use more space
- Both use O(textsize) space, but tries have more nodes and thus more overhead
- Array implementations waste space in storing children

Rotations

A node is **left-heavy** if its left subtree is **taller** than the right sub-tree, i.e. node.left.height > node.right.height.

- 1. If v is out of balance and left heavy:
- (a) v.left is balanced: rightRotate(v)
- (b) v.left is **left-heavy**: rightRotate(v)
- (c) v.left is right-heavy:
 leftRotate(v.left) and rightRotate(v)
- If v is out of balance and right heavy: Symmetrical cases, e.g. if v.right is balanced: rightRotate(v)

Notes

- Right rotations require a left child, left rotations require a right child
- The maximum number of rotations required upon insertion is 2, while for deletion it is $O(\log n)$

Interval Trees

- AVL Trees with max value augmentation
- Goal: searchInterval(x) finds an interval that contains x in O(logn) time
- Each node stores an interval
- Sorted by key left endpoint of the interval
- · Nodes augmented by max right-endpoint

```
# searches in root to find an interval
containing x
def searchInterval(x, root):
    # base cases
    if (root == null): return null;
    if (u.interval.contains(x)): return u

    if (u.left == null || x > u.left.max):
        return searchInterval(x, root.right)
    else:
        return searchInterval(x, root.left)
```

Searching: interval-search(22)

1D Range Searching

Goal: Find keys within <some interval>

- 1. Store data in the **leaves** only (build from bottom-up) O(nlogn)
- Internal nodes store the max of leaves in left subtree (Regular BST would work too)
- Insert/Delete/Rotate don't require modification

```
# find the highest node between l and h
def findSplitNode(1, h, root):
   if (root.key >= h):
       return findSplitNode(1, h, root.left)
   else if (root.key < 1):
       return findSplitNode(1, h, root.right)
    else: return root
def leftTraverse(1, root):
   if (1 <= root.key):
       # take everything in the right subtree
        enumerateAll(root.right)
       leftTraverse(1, root.left)
       leftTraverse(1, root.right)
def query(1, h):
    v = findSplitNode(1, h, root) # 0(logn)
   leftTraverse(1, v.left) # 0(k)
   rightTraverse(h, v.right) # symmetric
```


Max Value Augmentation

Each node u is augmented with: value, that specifies the value associated with that node, and max, the maximum value of all nodes in the subtree rooted at u

New Operations

v.value)

updateValue(key, newValue)

- Search the tree in the usual way for the specified key
- Assuming a node u was found, update u.value = newValue
- 3. Update the tree for every node v on the path from u to root, update

 v.max = max(v.left.max, v.right.max,

Maintenance

- When performing a rotation on u, only u and u.parent change. Let v = u.parent. After a rotation of u, set u.max = v.max, and update v.max
- v.right.value)
- When a node u is inserted:
 Set u.value = <initial> and
 u.max = <initial>
- · When a node u is deleted:
- if u is a leaf, we can just delete it. For every ancestor v of u, update v.max
- v.points)
- 2. if u has one child, then delete u, connecting u.parent to u.child. For every node v on the path from u to root, update v.max
- 3. node u has two children. Let v = successor(u). Delete v from the tree, and for every node w on the path from v to u, update w.max. Then replace u with v, and continue to update every node w on the path from v to the root.
- · Perform rotations to rebalance.

Total Count Augmentation

Each node ${\tt u}$ is augmented with: ${\tt value}$, that specifies the value associated with that node, and ${\tt total}$, the count of the number of special nodes in the subtree rooted at ${\tt u}$

New Operations

addToValue(key, val)

- Search the tree in the usual way for the specified key
- Assuming a node u was found, update u.value += val
- If isSpecial(u.value), update the tree for every node v on the path from u to root, update v.total += 1

Symmetrical for subtractFromValue searchSpecial()

- 1. Let v = root
- 2. Base Case: if isSpecial(v.value), return v
- 3. If v.total == 0, return null
- 4. Else if v.isLeaf(), return v
- 5. Else if v.left.total > 0, recurse on v.left
- 6. Else recurse on v.right

Note: Avoid NullPointerException Maintenance

Similar to **Max Value** augmentation, except that a node u is updated as follows:

u.total = u.left.total + u.right.total
+ isSpecial(u) ? 1 : 0

Hashing

- Goal: insert and search in O(1) time
- Idea: map $n=|{\cal U}|$ possible keys to m buckets via a hash function
- $h:U\to\{1\ldots m\}$
- time = cost(h) + cost(access)
- Assume cost(h) = O(1)

Direct Access Tables

- Maps every possible key to a single bucket i.e. $h:U\to \{1\dots n\}$
- Uses too much space O(n)

Chaining

- Maps n possible keys to m < n buckets
- By PHP, $\exists \ h(k_1) = h(k_2)$ i.e. **Collision**
- Uses linked lists to store colliding keys
- Insert O(1+1)
- Search O(n+1) (Worst Case)
- Search $O(\frac{n}{M} + 1)$ (SUHA)
- Optimal Size $\theta(n)$

Open Addressing e.g. Linear Probing

- If h(k, 1) hits a cluster, the cluster gets larger
- If table is $\frac{1}{4}$ full, there are clusters of size $\theta(logn)$
- In practice, still fast due to caching of nearby memory locations
- Avoid clusters by choosing h that satsifies UHA
- When table is full, cannot insert and search is slow

Desirable Properties for Hash Functions

- 1. h enumerates all possible buckets
- 2. Keys are equally likely to be mapped to any permutation (UHA)
- 3. Keys are equally likely to be mapped to any bucket (SUHA)
- $P(h(k) = m) = \frac{1}{M} = P(collision)$
- $E(collisions) = \frac{n}{M} = LoadFactor(\alpha)$