Introduction to Problem

Social Media Polarization

Previously....

- Literature Survey
- Abstract of 3 excel sheets

All papers to filter through

All models in paper

Extensions of Voter model

- Choice of Voter model implementation
- Implementation of basic voter model as pseudo code.

Where we stand now: Choice of 4 new models to implement:

- Voter Model
- Q Voter Model
- Majority Voter Model
- Q Voter Independence Model
- Sznajd Model

Q voter (affected by 1 neighbour)

Q voter Model (affected by more than one neighbours)

Q Voter Independence Model

Majority Voter Model

• Similar to Q voter.

 When not unanimous, opinion goes towards majority.

All neighbours are chosen and tested for.

Sznajd Model

Random.py

Random.py

Algorithms	Lobby (q)	epsilon	Nsteps	Viz step	Based on Majority Votes	Probability of Independence
Basic voter model	1	-	1000	100	ā	t ≡ si
Q-voter model	7	0.25	1000	100	5	: -
Majority	2	_	1000	100	yes	(23)
Independence	15 to	#T:	1000	100	yes	Randomly generated(0.2)
Sznajd	92.7	12.7	1000	100	2	201 201

Random Network

Classical Voter Model (Bifurcation Diagram)

Directed Graph (Instagram)

Bifurcation Diagram

Real Life Network(Facebook) **Annotated Data(+1,-1)**

Specific.py

(Facebook Dataset)

Algorithms	lobby(q)	Nstep	Viz step	Sum of majority	р
Basic voter	1	1000	100	5.0	838
Q-voter model	7	1000	100		(-)
Majority	27	1000	100	yes	10 7 18
independen ce	i -	1000	100	yes	K=1
Sznajd	Œ	1000	100	8 5 8	828

Classical Voter Model (Bifurcation Diagram)

Conclusions

- 1. Compared algorithms
- 2. Real world dataset

Conclusions

Future scope

1) All opinions 0 ,1,-1

We can deal with opinions from 0 to 10

Annotations self designed. Aims for the dataset with annotations or working with raw data

2) Communities