Tutorial Sheet-2

[Laser Technology and Applications, 16B1NPH533, Odd Semester 2020]

1. [CO 1] Calculate the frequency in Hz and wave numbers (cm⁻¹) and the energy in electron volts of a photon of wavelength $\lambda = 600$ nm in vacuum.

[Ans: 5x10¹⁴Hz, 1.66x10⁴cm⁻¹, 2.07eV]

- 2. [CO 1] Show that the Brightness of a diffraction-limited beam is given by $B=P(2/\pi\lambda)^2$.
- 3. [CO 1] The Brightness of probably the brightest lamp so far available (PEK Labs type 107/109, excited by 100W of electrical power) is about 95W/cm^2 sr in its most intense green line $\lambda = 546$ nm. Compare this brightness with that of a 1W Argon laser $\lambda = 514.5$ nm, which can be assumed to be diffraction limited.

[Ans: 1.53x10⁸ W/cm²Sr, 10⁶ times]

- 4. [CO 1] What is the temporal coherence length l_c of the following (a) a mercury vapour lamp with emission bandwidth of Δv =9x10⁸ Hz? and (b) He-Ne Laser with Δv =10⁶ Hz? [Ans: (a) 0.33m, (b) 300nm]
- 5. [CO 1] Laser produced plasma consisting of 50μm diameter ball radiates very strongly a wavelength of 100nm. Determine spatial coherence at a distance of 1 m from the source.

[Ans: 2 mm]

6. [CO 1] A He-Ne laser (633 nm, 20mW) light with beam diameter 2 mm passes through a lens of focal length 5mm and diameter 2.5 mm. Determine Intensity of laser beam at the focus point.

[Ans: 0.1 MW/cm²]

- 7. [CO 1] (a) Explain the role of factor hv/kT in Spontaneous emission and stimulated emission.
 - (b) Why Maser was first discovered instead of Laser, is there any technical role of frequency in the development of these devices?
 - (c) Is two level Laser possible? Explain your answer.
 - (d) Briefly describe the properties of laser. What is the difference between intensity and brightness of a Laser?
 - (e) What is population inversion? Is this necessary for Laser action.