Departamento de Engenharia Aeronáutica – SAA/EESC/USP SAA0168 – Sistemas de Controle de Aeronaves I

1.a Lista de Exercícios

 Um acelerômetro mecânico é mostrado no diagrama abaixo. A posição y da massa M, em relação à caixa do acelerômetro, é proporcional à aceleração da caixa.

Determine:

- a) A Função de Transferência entre a aceleração de entrada $A\left(a=\frac{d^2x}{dt^2}\right)$ e a saída Y;
- b) O modelo em Espaço de Estados;
- c) O diagrama de Blocos da função.
- 2. A equação diferencial que descreve a operação dinâmica de um giroscópio com um grau de libredade é

$$J\frac{d^2\theta}{dt^2} + B\frac{d\theta}{dt} + K\theta = H\omega$$

Onde ω é a velocidade angular do giroscópio em torno do eixo de entrada, θ a posição angular do eixo de rotação – a saída medida do giroscópio, H o momento angular armazenado na roda girante, J a inércia da roda em torno do eixo de saída, B o coeficiente de atrito viscoso em torno do eixo de saída e K a constante da mola de retensão ligada ao eixo de rotação.

Determine:

- a) A função de transferêncai relacionando as transformadas de Laplace de ω e θ ;
- b) O modelo em espaço de estados;
- c) O diagrama de Blocos da Função
- d) Considerando o sistema sem a mola de retenção (K=0), refaça os itens a) a c).

3. Dado o modelo abaixo

Determine:

- a) Todas as funções de transferência possíveis, tendo as forças f_{i1} e f_{i2} como entrada e os deslocamentos x₁ e x₂ como saída
- b) O modelo em espeço de estaos para esse sistema
- c) O diagrama de blocos para esse sistema

4. Dado o modelo abaixo

Determine:

- a) A função de transferência $\frac{X_2}{F}$
- b) O modelo em espeço de estaos para esse sistema
- c) O diagrama de blocos para esse sistema

5. Dado o modelo abaixo

Determine:

- a) As funções de transferência $\frac{\Theta_1}{M_1}$ e $\frac{\Theta_2}{M_2}$
- b) O modelo em espeço de estaos para esse sistema
- c) O diagrama de blocos para esse sistema
- 6. Simplifique os Diagramas de Bloco a seguir, até encontrar sua Função de Transferência Global

a)

