Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E 2650.000 2600.000 2550.000 Radiell fart m/s 2500.000 2450.000 2400.000 2350.000 2300.000 200 400 600 1000 800 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 1.20e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) det finnes noe jern i kjernen

STJERNE B) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE C) kjernen består av helium og er degenerert

STJERNE D) massen til stjerna er 0.2 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) det finnes karbon i et skall rundt kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 6.193e+06 kg/m3̂ og temperatur 31 millioner K.

Kjernen i stjerne B har massetet
thet 7.073e+06 kg/m3̂ og temperatur 36 millioner K.

Kjernen i stjerne C har massetet
thet $4.644\mathrm{e}{+06~\mathrm{kg/m}}\hat{3}$ og temperatur 27 millioner K.

Kjernen i stjerne D har massetet
thet 7.329e+06 kg/m3̂ og temperatur 16 millioner K.

Kjernen i stjerne E har massetet
thet 2.404e+06 kg/m3̂ og temperatur 16 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig mindre enn den tilsynelatende størrelseklassen i rødt filter

Påstand 2: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: denne stjerna er lengst vekk

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 4.292e+05 kg/m3̂ og temperatur 19.70 millioner K.

Kjernen i stjerne B har massetet
thet 3.240e+05 kg/m3̂ og temperatur 17.21 millioner K.

Kjernen i stjerne C har massetet
thet 1.236e+05 kg/m3̂ og temperatur 21.93

millioner K.

Kjernen i stjerne D har massetet
thet 1.044e+05 kg/m3̂ og temperatur 33.65 millioner K.

Kjernen i stjerne E har massetet
thet 4.988e+05 kg/m3̂ og temperatur 27.72 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

44.19 39.28 y-posisjon (10⁻⁶ buesekunder) 34.37 29.46 24.55 19.64 14.73 9.82 4.91 0.00 + 0.00 4.91 9.82 14.73 19.64 24.55 29.46 34.37 39.28 44.19

x-posisjon (10⁻⁶ buesekunder)

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.94 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Lillehammer som ligger i en avstand av 350 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 98.45450 km/t.

Filen 3E.txt

Tog1 veier 55100.00000 kg og tog2 veier 68500.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 462 km/s.

Filen 4E.txt

Massen til gassklumpene er 2200000.00 kg.

Hastigheten til G1 i x-retning er 38400.00 km/s.

Hastigheten til G2 i x-retning er 41820.00 km/s.

Filen 4G.txt

Massen til stjerna er 54.60 solmasser og radien er 3.14 solradier.