# QISKIT FALL FEST 2025 @ CUA (10/27 - 10/29)

# **FULL SCHEDULE**



| https://qff25cua.github.io                      |            |                                                        |                             |
|-------------------------------------------------|------------|--------------------------------------------------------|-----------------------------|
| Day                                             | Time (EST) | Lecture Title                                          | Speaker                     |
| <b>Day 1</b> Mon. Oct. 27th (In-Person/ Online) | 2PM-3PM    | Intro. to IBM Quantum and Qiskit                       | Nick Bronn                  |
|                                                 | 3PM-4PM    | Fundamental Quantum Algorithms                         | Natalie Lee                 |
| <b>Day 2</b><br>Tue.<br>Oct. 28th<br>(Online)   | 10AM-11AM  | Q&A: High Performance Computing in the Quantum Era     | Juan Guillermo<br>Lalinde   |
|                                                 | 11AM-12PM  | Intro. to Quantum Dynamic Circuits                     | Alberto<br>Maldonado        |
|                                                 | 2PM-3PM    | Transforming Tech Knowledge to Policy Design           | Avanti Joshi                |
|                                                 | 3PM-4PM    | Quantum Optimization                                   | Jorge Saavedra<br>Benavides |
| <b>Day 3</b> Wed. Oct. 29th (In-Person/ Online) | 2PM-3PM    | Qiskit Beginner Coding Session                         | Natalie Lee                 |
|                                                 | 3PM-4PM    | Hackathon Prompt Review<br>Code Submissions Due: 10/31 | Natalie Lee                 |







**QISKIT FALL FEST 2025 @ CUA** 

(10/27 - 10/29)

# GUEST SPEAKERS



**Nick Bronn** Global Strategic Research Development Lead @ IBM Quantum



Founder of Apolo Scientific Computing Center



Quantum Computational Scientist @ IBM Quantum



**Avanti Joshi** Congressional Innovation Fellow @ TechCongress



Jorge Saavedra Benavides Graduate Student @ the Center for Computing Research of the Instituto Politécnico Nacional



https://qff25cua.github.io/

**Check Out the Event** and Register Here!

THE **CATHOLIC UNIVERSITY** of AMERICA



RIFT IBM Quantum

## QISKIT FALL FEST 2025 @ CUA (10/27 - 10/29)

# **GUEST SPEAKER LECTURES**



https://qff25cua.github.io/

#### DAY 1 - MON. OCT. 27TH



## **Nick Bronn**

#### Introduction to IBM Quantum and Qiskit

In this opening Fall Fest presentation, I'll provide an overview of what quantum computers are and how they work. Then we will consider the types of problems quantum computers are expected to solve better than the standard (classical) computers we are familiar with. Lastly, I will detail how you can use the open source Qiskit framework to access actual quantum computers hosted by IBM Quantum on the cloud.

#### DAY 2 - TUES. OCT. 28TH



## Juan Guillermo Lalinde

# **Q&A Session:**High Performance Computing in the Quantum Era

In this interactive session, we'll explore how quantum technologies are transforming the landscape of high-performance computing. We'll discuss how quantum and classical systems can work together to solve complex problems faster and more efficiently. Bring your questions and curiosity as we dive into the challenges, opportunities, and future of computing in the quantum era.



## Alberto Maldonado

## Introduction to Quantum Dynamic Circuits

In this talk, we will explore the relevance and growing importance of dynamic quantum circuits, a new paradigm that allows quantum computations to adapt and evolve in real time. Unlike static circuits, dynamic quantum circuits enable midcircuit measurements and conditional operations, making it possible to implement more efficient and flexible algorithms. These capabilities open the door to new experimental techniques and improved control over quantum systems.



# **Avanti Joshi**

#### Transforming Tech Knowledge to Policy Design

This session will break down policy considerations that accompany the growth and emergence of fields like quantum computing. How can policy makers encourage innovation while assessing risks? How can technologists inform policy?



# Jorge Saavedra Benavides

#### **Quantum Optimization**

Recent global efforts have brought the theory behind the nanoscale world closer to practical computational applications. While the path forward is not entirely smooth, one of the most promising near-term applications of current quantum hardware is in solving combinatorial optimization problems. In this talk, we will explore the fundamental concepts of quantum optimization to provide a general overview of the current state of the field.



