Electrical Power Systems

Space System Design, MAE 342, Princeton University Robert Stengel

- Elements of the System
- Solar Cell Arrays
- Batteries
- RadioisotopeThermoelectric Generators
- Primary Power
- Secondary Power
- Management, Distribution, and Control
- Power Budget

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Preliminary Design Process for Power System

Step	Information Required	Derived Requirements	References	
Identify Requirements	Top-level requirements, mission type (LEO, GEO), spacecraft configuration, mission life, payload definition	Design requirements, spacecraft electrical power profile (average and peak)	Secs. 10.1, 10.2	
Select and Size Power Source	e Power configuration, average type of sola		Secs. 10.1, 10.2 Table 10-9 Sec. 11,4.1 Table 11-34	
Select and Size Energy Storage	Mission orbital parameters, average and peak load requirements for electrical power	Eclipse and load-leveling energy storage requirement (battery capacity requirement), battery mass and volume, battery type	Sec. 11.4.2 Tables 11-3, 11-4, 11-38, 11-39, 11-40 Fig. 11-11	
4. Identify Power Regulation and Control Power-source selection, mission life, requirements for regulating mission load, and thermal-control requirements		Peak-power tracker or direct-energy-transfer system, thermal-control requirements, bus- voltage quality, power control algorithms	Sec. 11.4.4	

McDermott; Larson & Wertz, 1999

Effects of System Level Parameters

Parameter	Effects on Design		
Average Electrical Power Requirement	Sizes the power-generation system (e.g., number of solar cells, primary battery size) and possibly the energy-storage system given the eclipse period and depth of discharge		
Peak Electrical Power Required	Sizes the energy-storage system (e.g., number of batteries, capacitor bank size) and the power-processing and distribution equipment		
Mission Life	Longer mission life (> 7 yr) implies extra redundancy design, independent battery charging, larger capacity batteries, and larger arrays		
Orbital Parameters	Defines incident solar energy, eclipse/Sun periods, and radiation environment		
Spacecraft Configuration	Spinner typically implies body-mounted solar cells; 3-axis stabilized typically implies body-fixed and deployable solar panels		

McDermott; Larson & Wertz, 1999

.

Typical Electrical Power Requirements

- Generate electrical power for s/c systems
- Store power for "fill-in" when shadowed from Sun
- Distribute power to loads
- Condition power (e.g., voltage regulation)
- Protect power bus from faults
- Provide clean, reliable, uninterrupted power

Power System Analysis

- Power budget
 - Payload, bus, and charge loads
 - Error margins
- Energy balance
 - Dynamic simulation over multiple duty cycles
- Stability Analysis
 - Small-signal AC stability
 - Bus impedance
 - Bus ripple
 - Transient response

Б

Power System Sizing

- Power system must
 - Support the spacecraft through entire mission
 - Recharge batteries after longest eclipse
 - Accommodate electric propulsion/attitude control
 - Accommodate failures to assure reliability
 - Account for margins and contingencies
- Factors affecting size include
 - Satellite orbit
 - Seasonal variation
 - Life degradation
 - Total eclipse load
 - Number of discharges

Power Management and Distribution

- Solar array control
- Battery charge control
- Battery discharge control
- Power distribution and protection
- Bus voltage regulation and conditioning
- Power switching
- Power telemetry
- Requirements driven by power system architecture, bus voltage, and power levels

Power System Tradeoffs

9

Selection of Power System Type

Functional Blocks of Electrical Power System

- Energy generation
- Energy storage
- Power management and distribution

11

Functional Blocks of Solar Cell/ Battery Electrical Power System

Fortescue

Power System Architectures

- **Unregulated (battery**dominated) bus
 - Bus voltage determined by battery voltage
- Sunlight regulated bus
 - Bus voltage regulated during sunlit period
 - Bus voltage determined by battery voltage during eclipse
- Fully regulated bus
 - Bus voltage regulated in sunlight and eclipse
 - Power converter boosts variable battery voltage to bus voltage

13

Solar Cells and Arrays

Solar Cells

- · Silver, palladium, titanium, silicon "sandwich"
- [p-n junction]
- Photons hit panel
- Electrons are excited, generating heat or traveling through material, e.g., boron or phosphorus, generating a current

15

Theoretical Single-Junction Solar Cell Efficiency

- <u>Bandgap</u>: Energy Range in which no electron states can exist
- Photon energy must exceed bandgap for current to flow across p-n junction

Rauschenbach; Fortescue, 2011

Multi-Junction Solar Cells

Material-dependent relationship between wavelength and bandgap

17

Current-Voltage-Power Characteristics of Typical Solar Cells

Solar Cell "I vs. V" and "P vs. V" Curves

- Silicon (Efficiency 15%)
- Gallium Arsenide (GaAs)
 - Dual Junction (~22%)
 - Triple Junction (~28%)
 - Quad Junction (>30%)

21

Solar Arrays

- Generate power during sunlit periods for
 - Payload
 - Operation of power bus
 - Charging batteries
- Typical power output: 2kW 15kW

MAVEN Solar Array Deployment https://www.youtube.com/watch?v=oxxUUO4tgWs

Solar Array Design

- Each solar cell produces
 - < 2 W
 - -0.7 3 V
- Series arrangement to produce voltage
- Parallel arrangement to produce current

23

Solar Cells Don't Function During Eclipse

Larson & Wertz, 1999

Eclipse Duration

Orbit-Angle Segment of Eclipse

$$\Phi = 2\cos^{-1}\left(\frac{\cos\rho}{\cos\beta_S}\right)$$
$$= 2\cos^{-1}\left(\frac{\cos\rho}{\sin\beta_S'}\right), \text{ rad}$$

Duration of Eclipse

$$T_{eclipse} = \frac{\Phi}{2\pi} P_{orbit}$$
, min

 $ho = ext{Spherical angle of Earth disk, rad}$ $ho = ext{Spherical angle of Sun above the orbit plane, rad}$ $ho = ext{Spherical angle of eclipse, rad}$ $ho = ext{Comparison}$ $ho = ext{Comparison}$ ho = ext

Secondary power required during the eclipse

Larson & Wertz, 1999

25

Batteries

- Nickel Cadmium (NiCd)
 - Heavier, older tech
 - Lower volume
- Nickel Hydrogen (NiH2)
 - High # of charging cycles
 - Pressurized vessels
- Lithium Ion (Li Ion)
 - State of the art
 - 1/2 the mass, 1/3 the volume of NiH2
 - Extra care required in charging

https://en.wikipedia.org/wiki/ List_of_battery_types

Batteries

- Nickel Cadmium (NiCd)
 - Heavier, older tech
 - Lower volume
- Nickel Hydrogen (NiH2)
 - High # of charging cycles
 - Pressurized vessels

27

Lithium-Ion Battery Modules

Battery Comparison

Performance of Spacecraft Batteries

Table 10.6 Performance of battery technologies for space use [23]

Туре	Specific energy (W h/kg)	Mission examples		
Ni-Cd	28-34	Sampex		
Ni-H ₂	30-54	Odyssey		
Ag-Zn	100	Pathfinder		
Li-Ion	90	MER Rover		
Li-SO ₂	90-150	Galileo		
Li-SOCL ₂	200-250	Sojourner		

Fortescue

https://en.wikipedia.org/wiki/ List_of_spacecraft_powered_by_non-rechargeable_batteries

Three Spacecraft Examples

Table 10.7 Hubble space telescope (HST), Intelsat VII and Eurostar 3000 battery summary

Parameter	HST	Intelsat VII	Eurostar 3000
Technology	Ni-H ₂	Ni-H ₂	Li-ion
Specific energy (W h/kg)	57.14	61.26	175
Capacity (A-h)	96	91.5	50
Cell dimensions:			
Diameter (cm)	9.03	8.89	5.3
Length (cm)	23.62	23.67	25.0
Cell mass (kg)	2.1	1.867	1.1

Fortescue

31

Definitions

- Capacity: fully charged amount of energy
- State of Charge (SOC): How much charge remains in battery
- Depth of Discharge: How much charge is taken out of battery
- Charge Rate: Rate (current) at which charge (Ah) is put into battery
- Charge Efficiency: How much charge energy is stored
- Charge/Discharge Ratio: Charge required to restore beginning SOC following discharge
- Self Discharge: Low-level leakage
- Trickle Charge: Continuing charge to counter self-discharge
- Balancing: Equalizing the SOC of each cell in a battery

Fuel Cell

Produces electricity from hydrogen and oxygen Water is a by-product

33

Proton Exchange Membrane Fuel Cell

Gemini Fuel Cell

47 x 37.5 x 63.5cm

Reformed Methanol Fuel Cell

- · Methanol: source of hydrogen
 - Partial oxidation (hydrogen-rich gas)
 - Autothermal reforming (steam treatment)
 - Water-gas-shift ("water gas")
 - Preferential oxidation (removal of CO, which "poisons" the fuel cell catalyst)

35

Thermoelectric Power Generation

Radioactive Isotope Thermoelectric Generator (Cassini Spacecraft)

GPHS-RTG

37

Radioactive Isotope Thermoelectric Generator

- (c =	No. of the Control of	Electrical	Heat	77.00	Max fuel	No. of A	Power/Mass
Name	Used on (# of RTGs)	Output (W)	Output (W)	Radioisotope	used (kg)	Mass (kg)	(W/kg)
MMRTG	MSL/Curiosity rover	~110	~2000	238Pu	~4	<45	2.4
	Cassini (3), New Horizons (1),						
GPHS-RTG	Galileo (2), Ulysses (1)	300	4400	238Pu	7.8	55.9-57.8	5.2-5.4
	LES-8/9, Voyager 1 (3),						
MHW-RTG	Voyager 2 (3)	160	2400	238Pu	~4.5	37.7	4.2
SNAP-3B	Transit-4A (1)	2.7	52.5	238Pu	?	2.1	1.3
SNAP-9A	Transit 5BN1/2 (1)	25	525	238Pu	~1	12.3	2
	Nimbus-3 (2), Pioneer 10 (4),						
SNAP-19	Pioneer 11 (4)	40.3	525	238Pu	~1	13.6	2.9
SNAP-19	The second of th						
(modified)	Viking 1 (2), Viking 2 (2)	42.7	525	238Pu	~1	15.2	2.8
SNAP-27	Apollo 12-17 ALSEP (1)	73	1,480	238Pu	3.8	20	3.65
Buk (BES-5)	US-As (1)	3000	100.000	235U	30	~1000	3
		2277	20070	Enriched		2012	157
SNAP-10A	SNAP-10A (1)	600	30.000	uranium		431	1.4

The 87-year half-life of Pu-238 results in 96% of the original heat output even after five years

New Horizons Electrical Power System

39

Stirling Cycle Radioactive Isotope Thermoelectric Generator

Next Time: Thermal Control Systems

41

Supplemental Material

Power Management and Distribution

43

Power System Layout

Current-Voltage Characteristic of a Typical Solar Cell

