SISTEMA DE POSICIONAMIENTO EN INTERIORES BASADO EN WIFI

Javier Bueno López

Antonio Cañas Vargas

INDICE UNIVERSIDAD DE GRANADA · DEPARTAMENTO DE ARQUITECTURA Y TECNOLOGÍA DE COMPUTADORES

1. INTRODUCCIÓN

2. OBJETIVOS

3. ESTADO DEL ARTE

4. METODOLOGÍA

7. BIBLIOGRAFÍA

INTRODUCCIÓN

Métodos lentos e ineficaces

Aprovechamiento de la infraestructura

Modernización de los sistemas actuales

OBJETIVOS

LOCALIZACIÓN EN INTERIORES

Desarrollo de un sistema para localizar dispositivos en interiores

INTUITIVO

La interfaz debe ser sencilla y clara

EXTENSIBLE

Se debe permitir la adición de nuevos centros

LIBRE

Cualquiera pueda participar en el desarrollo

RESTRINGIDO POR CENTRO

Cada usuario solo podrá buscar a otros usuarios de su mismo centro

SEGURO

Se debe garantizar que no se almacenarán las ubicaciones de cada usuario con otros fines

ESTADO DEL ARTE INFRAESTRUCTURA

Cisco Aironet 1100

Cisco Aironet 1230

- 2.4 GHz y 5 GHz
- No implementa FTM 802.11mc
- Alta velocidad
- Cubren grandes áreas
- Mínimo 2 por planta

ESTADO DEL ARTE TECNOLOGÍAS DISPONIBLES

NFC/NTF/QR	BLUETOOTH	LIFI	WIFI RTT	WIFI FSPL
Etiquetas	Balizas	Bombillas	Rúters	Rúters
Modifica el entorno	Modifica el entorno	Modifica el entorno	No modifica el entorno	No modifica el entorno
Bajo coste	Coste medio	Coste medio	Bajo coste	Bajo coste
Precisión alta en zonas	Precisión media	Precisión media	Precisión alta	Precisión media
Cámara	Adaptador Bluetooth	Cámara	Adaptador de red y FTM 802.11mc	Adaptador de red

METODOLOGÍA

PROPUESTA FÓRMULA DE LA ITU

$$L_{bf} = 27,55 + 20log(f) + 20log(d)$$

$$d = 10^{\left(L_b f - 27,55 - 20 \log(f)\right)/20}$$

L_{bf}: Pérdida básica de transmisión en el espacio libre (dB)

f: Frecuencia (GHz)

d: Distancia (m)

P.525-4 Enlaces punto a punto

Tanto la pérdida de transmisión como la frecuencia se pueden calcular desde un dispositivo Android solicitando los permisos adecuados.

La distancia obtenida no será totalmente precisa ya que por lo general existen obstáculos entre un usuario y un rúter.

PROPUESTA PRIMER PROTOTIPO

INDOOR POSITIONING

Se aplica la fórmula de atenuación en espacio libre y se obtiene la distancia a cada rúter. Se necesitan permisos de localización y tener en wifi activado.

PROPUESTA RECOPILACIÓN DE DATOS

PROPUESTA SEGUNDO PROTOTIPO

MAC LOCATION

Se desarrolla un microservicio que garantiza CRUD con Flask que se despliega en Heroku y que hace uso de una base de datos Mongo hosteada en Atlas con un Tier gratuito.

La intención es realizar peticiones desde Android a esta API para conocer la ubicación de cada MAC y poder así simular el entorno de la aplicación final.

PROPUESTA MÓDULO FINAL

SWADroid

Se desarrollan funciones en la API de SWAD similares a cómo se hicieron en el anterior prototipo. De forma paralela se implementa la funcionalidad del primer prototipo en SWADroid. Finalmente se realizan las peticiones desde el cliente de SWAD al servidor tanto para obtener como enviar la ubicación.

PROPUESTA MÓDULO FINAL

SOAP

SWAD hace uso de SOAP que es un protocolo de intercambio de datos en XML.

Para probar las peticiones primero se realizaron con Postman y después se implementaron en SWADroid.

DEMO

CONCLUSIONES Y TRABAJO FUTURO

BIBLIOGRAFÍA

- [1] Trilateración Wikipedia https://es.wikipedia.org/wiki/Trilateración
- [2] RTT Wikipedia https://en.wikipedia.org/wiki/Round-trip_delay
- [3] API SWAD OPENSWAD https://openswad.org/api/
- [4] CISCO AIRONET -

https://www.gammasolutions.com/wp-content/uploads/pdf/product_data_sheet0900 aecd801b9068.pdf

[5] INFRAESTRUCTURA UGR - CSIRC

https://www.rediris.es/cert/doc/reuniones/fs2006/archivo/fs2006-UGR.pdf

- [6] FSPL Wikipedia https://en.wikipedia.org/wiki/Free-space_path_loss
- [7] ITU P525 ITU https://www.itu.int/rec/R-REC-P.525/es

GRACIAS POR SU ATENCIÓN

→ Demo

https://youtu.be/a7NT0t4hgQs

Repositorios

IndoorPositioning - https://github.com/JaviBL8/IndoorPositioning
MacLocation - https://github.com/JaviBL8/MacLocation
SWADroid - https://github.com/JaviBL8/swadroid

