2.1 Method of Moments

Steven Cheung 26 January 2022

 X_1, \ldots, X_n - soem random variables, all have the same distribution.

 P_{θ} - a collection of probability distribution

Each collection, called <u>parametric family</u> is indexed by a parameter (or a vectors or parameters) .e.g:

for normal distributions the parameter is $\theta = (M, \Sigma)$

M - the measure of cetral tendency Σ - measure of variance

for Poisson Distributions the parameter is θ is Λ

set of all possible vaules of the parameter - parametric space, Ω_{θ}

For a particular realisation, when $\theta = \theta$, the distribution of oberservations is denoted by P_{θ} and expectation E_{θ}

If value of the parameter \rightarrow propose a model, or a finally of models.

Let X = observed data obtained from a sample, $\chi = X$

The members $P_{\theta}(x) = f_{\chi}(X, \theta)$ of the parametric family are distributions over the space χ , where $\theta \in \Omega_{\theta}$ is unknown.

Statistic is the estimation $\hat{\theta}$ that can be calculated from the sampling X, e.g sampling mean and sampling variance etc.

Definition:

The problem of point estimator is to determine statistics $g_i(X_1, \ldots, X_n)$, $i = 1, \ldots, k$ (where k is the dimension of θ), which can be used to eliminate the value of each of the parameters $\theta = (\theta_1, \ldots, \theta_k)$ based on observed sample data from the population.

These statistics are called estimators $\hat{\theta}_i$ for the parameters, where $\hat{\theta}_i = g_i(X_1, \dots, X_n), i = 1, \dots, k$

The values calculated from these statistics using particular sample data values are called **estimates** for the parameters.

the estimators are random variable

Three methods of estimation (most popular):

- the method of moments,
- the method of maximum liklihood,
- Baye's method

Criteria for choosing a desired point estimator:

- unbiasedness
- efficiency (minimal variance)
- sufficiency
- consistency

Definition:

Let W be any random variable with $p.d.f f_W(w)$. For any positive integer;

1. The r-th moment of W about the origin, μr , is given by

$$\mu r = E(W^r),$$

provided $\int_{-\infty}^{\infty} |w|^r \times fw(w)dw < \infty$.

(When r = 1, the subscript is usually omitted, i.e. $\mu r = \mu$)

2. The r-th moment of W about the mean, $\mu'r$, is given by

$$\mu'r = E((W - \mu)^r),$$

provided fitness conditions of part 1 hold.

3. The r-th standardized moment, $\tilde{\mu_r}$, is a moment that is normalised, typically by the normal standard deviation σ^r

$$\tilde{\mu_r} = \frac{E((W-\mu)^r)}{\sigma^r}$$