#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

## 特開平5-112778

(43)公開日 平成5年(1993)5月7日

| (51)Int.Cl. <sup>5</sup> C 0 9 K 19/20 19/28 19/30 19/42 G 0 2 F 1/13 |                  | 庁内整理番号<br>6742-4H<br>6742-4H<br>6742-4H<br>6742-4H<br>8806-2K | F I     | 審査請求                                         | 未請求      | 技術表示箇所<br>請求項の数 5 (全 14 頁) |
|-----------------------------------------------------------------------|------------------|---------------------------------------------------------------|---------|----------------------------------------------|----------|----------------------------|
|                                                                       |                  |                                                               |         | # <b>#</b> # # # # # # # # # # # # # # # # # | NC#13-4- | masson of E 11 A)          |
| (21)出顯番号                                                              | 特顯平3-297883      | •                                                             | (71)出願人 | 00000004                                     | 14       |                            |
|                                                                       |                  |                                                               |         | 旭硝子株                                         |          |                            |
| (22)出願日                                                               | 平成3年(1991)10月18日 |                                                               |         | 東京都千代田区丸の内2丁目1番2号                            |          |                            |
|                                                                       |                  |                                                               | (71)出願人 | 00010803                                     | 30       |                            |
|                                                                       | ,                |                                                               |         | セイミケ                                         | ミカル杉     | 未式会社                       |
|                                                                       |                  |                                                               |         | 神奈川県                                         | 茅ケ崎市     | 市茅ケ崎 3丁目 2番10号             |
|                                                                       | *                |                                                               | (72)発明者 | 新谷 清                                         | 抬        |                            |
|                                                                       |                  |                                                               |         | 神奈川県                                         | 横浜市神     | 申奈川区羽沢町1150番地              |
|                                                                       |                  |                                                               |         | 旭硝子株                                         | 式会社中     | 中央研究所内                     |
|                                                                       |                  |                                                               | (72)発明者 | 前川 隆                                         | 茂        |                            |
|                                                                       |                  |                                                               |         | 神奈川県                                         | 横浜市神     | 中奈川区羽沢町1150番地              |
|                                                                       |                  |                                                               |         | 旭硝子株                                         | 式会社中     | 中央研究所内                     |
|                                                                       |                  |                                                               | (74)代理人 | 弁理士                                          | 泉名 勸     | 的                          |
|                                                                       |                  |                                                               |         |                                              |          | 最終頁に続く                     |
|                                                                       |                  |                                                               | 1       |                                              |          |                            |

## (54)【発明の名称】 液晶組成物及びそれを用いた液晶表示装置

(57)【要約】

(修正有)

【構成】一般式(1)

 $R^{1}-(A^{1})_{n}-Y^{1}-A^{2}-Z-CF_{2}-A^{3}-Y^{2}-(A^{4})_{n}-R^{2}$ 

 $(A^1 \sim A^4 \text{ id} h \ni 2 \times 2 - 1, 4$ - ジ置換シクロへキシレン基、 1, 4-ジ置換フェニレン基等、m 、n は 0または 1を示し、 $R^1$ - $(A^1)_a$ - $Y^1$ -が電子吸引性の基であり、 $R^2$ - $(A^4)_n$ - $Y^2$ -が電子供与性の基であり、 $Y^2$  が酸素原子または硫黄原子を示す)で表されるジフルオロメチレン化合物を含有してなることを特徴とする液晶組成物。具体例には式 (2) の化合物がある。

 $n-C_3H_7-CO$  -CO  $-CF_2$   $-C_3H_7$  (n) (2)

【効果】この化合物は、大きな誘電率異方性( $\Delta \epsilon$ )を有しており、時分割駆動特性に優れている。

## 【特許請求の範囲】

### 【請求項1】一般式(1)

 $R^{1}-(A^{1})_{m}-Y^{1}-A^{2}-Z-CF_{2}-A^{3}-Y^{2}-(A^{4})_{n}-R^{2}$ 

(a) R<sup>1</sup>-(A<sup>1</sup>)<sub>a</sub>-Y<sup>1</sup>-が電子吸引性の基であり、(b) R<sup>2</sup>-(A<sup>4</sup>)<sub>n</sub>-Y<sup>2</sup>-が電子供与性の基であり、(c) A<sup>1</sup>、A<sup>3</sup>、A<sup>4</sup>は 相互に独立してトランス-1,4- ジ置換シクロヘキシレン 基または1,4-ジ置換フェニレン基であり、Aºは1,4-ジ置 換フェニレン基であり、A1、A2は置換基として1個もし くは2個以上のハロゲン、シアノ基を有していてもよ く、A3、A4の基中に存在する1個もしくは2個以上のCH 10 基は窒素原子に置換されていてもよく、(d) Y1は-000-、-CO-または単結合であり、(e) Y<sup>2</sup>は-C≡C-、-CH=CH-、-CH<sub>2</sub> CH<sub>2</sub>-、-OCH<sub>2</sub>-、-CH<sub>2</sub> O-または単結合であり、(f) Z は酸素原子もしくは硫黄原子であり、(g) m 、n は 0または 1であり、(h) R1は1つ以上の水素原子がフッ 素原子に置換されていてもよい炭素数 1~10のアルキル 基、アルコキシ基、アシル基もしくはアルコキシカルボ ニル基、ハロゲンまたはシアノ基であり、その炭素ー炭 素結合の一部が二重結合にされていてもよく、また、炭 素-炭素結合間に酸素原子が挿入されていてもよく、 (i) R<sup>2</sup>は炭素数 1~10のアルキル基、アルコキシ基であ って、その炭素-炭素結合の一部が二重結合にされてい てもよく、また、炭素-炭素結合間に酸素原子が挿入さ れていてもよい、で表されるジフルオロメチレン化合物 を含有してなることを特徴とする液晶組成物。

【請求項2】請求項1の液晶組成物であって、RIがアシル基またはアルコキシカルボニル基であるか、YIが-CO-であるジフルオロメチレン化合物を含有してなることを特徴とする液晶組成物。

【請求項3】請求項1の液晶組成物であって、R<sup>1</sup>がその 30 1つ以上の水素原子をフッ素原子に置換した炭素数 1~ 10のアルキル基もしくはアルコキシ基、ハロゲンまたはシアノ基であるジフルオロメチレン化合物を含有してなることを特徴とする液晶組成物。

#### 【請求項4】一般式(1)

 $R^1-(A^1)_m-Y^1-A^2-Z-CF_2-A^3-Y^2-(A^4)_n-R^2$ 

(a) R²-(A¹)n-Y²-が電子供与性の基であり、(b) A¹、A³、A¹は相互に独立してトランス-1,4-ジ置換シクロへキシレン基または1,4-ジ置換フェニレン基であり、A²は置換基として1個もしくは2個以上のハロゲンまたはシ 40アノ基を有している1,4-ジ置換フェニレン基であり、A¹は置換基として1個もしくは2個以上のハロゲン、シアノ基を有していてもよく、A³、A⁴の基中に存在する1個もしくは2個以上のCH基は窒素原子に置換されていてもよく、(c) Y¹は-000-、-00-または単結合であり、(d) Y²は-C≡C-、-CH=CH-、-CH₂CH₂-、-OCH₂-、-CH₂O-または単結合であり、(e) Z は酸素原子もしくは硫黄原子であり、(f) m、n は 0または 1であり、(g) R¹は1つ以上の水素原子がフッ素原子に置換されていてもよい炭素数 1~10のアルキル基 アルコキシ基 アシル基もしく 50

はアルコキシカルボニル基、ハロゲンまたはシアノ基であり、その炭素-炭素結合の一部が二重結合にされていてもよく、また、炭素-炭素結合間に酸素原子が挿入されていてもよく、(h) R<sup>2</sup>は炭素数 1~10のアルキル基、アルコキシ基であって、その炭素-炭素結合の一部が二重結合にされていてもよく、また、炭素-炭素結合間に酸素原子が挿入されていてもよい、で表されるジフルオ

【請求項5】請求項1~4のいずれかの液晶組成物を、一対の電極付きの基板間に挟持して電圧を印加して時分割駆動することを特徴とする液晶表示装置。

ロメチレン化合物を含有してなることを特徴とする液晶

### 【発明の詳細な説明】

[0001]

組成物.

【産業上の利用分野】本発明は、ジフルオロメチレン化 合物を含有する液晶組成物及びそれを用いた液晶表示装 置に関するものである。

[0002]

【従来の技術】液晶表示素子は、時計,電卓をはじめ、近年では測定器、自動車用計器、複写器、カメラ、OA機器用表示装置、家電製品用表示装置等種々の用途に使用され始めており、広い動作温度範囲、低動作電圧、高速応答性、高コントラスト比、広視角、化学的安定性等の種々の性能要求がなされている。

【0003】しかし、現在のところ、これらの特性を単独の材料で全て満たす材料はなく、複数の液晶、及び非液晶の材料を混合して液晶組成物として要求性能を満たしている状態である。このため、各種特性のすべてではなく、一又は二以上の特性に優れた液晶又は非液晶の材料開発が望まれている。

## [0004]

【発明が解決しようとする課題】液晶を用いた表示素子分野においては、その性能向上が望まれており、低電圧駆動、高精細表示、高コントラスト比、広視角特性、低温応答特性、広動作温度範囲等が望まれており、これらはいずれかを向上させると他のいずれかが犠牲になるという傾向がある。このため、特性の異なる液晶化合物や非液晶化合物を混合して組成物とし、所望の特性を得るようにされている。

【0005】特に、時分割駆動を行うためには、誘電率 異方性(Δε)の大きな液晶組成物が望まれている。

[0006]

【課題を解決するための手段】本発明は前述の課題を解決すべく、新規な液晶組成物を提供するものであり、一般式(1)

 $R^1 - (A^1)_m - Y^1 - A^2 - Z - CF_2 - A^3 - Y^2 - (A^4)_n - R^2$ 

は単結合であり、(e) Z は酸素原子もしくは硫黄原子で (a) R¹-(A¹)a-Y¹-が電子吸引性の基であり、(b) R²-あり、(f) m、n は 0または 1であり、(g) R¹は1つ以 (A⁴)n-Y²-が電子供与性の基であり、(c) A¹、A³、A⁴は上の水素原子がフッ素原子に置換されていてもよい炭素 相互に独立してトランス-1,4-ジ置換シクロヘキシレン数 1~10のアルキル基、アルコキシ基、アシル基もしく 50 基または1,4-ジ置換フェニレン基であり、A²は1,4-ジ置

換フェニレン基であり、A¹、A²は置換基として1個もしくは2個以上のハロゲン、シアノ基を有していてもよく、A³、A⁴の基中に存在する1個もしくは2個以上のCH基は窒素原子に置換されていてもよく、(d) Y¹は-OCO-、-CO-または単結合であり、(e) Y²は-C≡C-、-CH=CH-、-CH2CH2-、-OCH2-、-CH2O-または単結合であり、(f) Z は酸素原子もしくは硫黄原子であり、(g) m、nは 0または1であり、(h) R¹は1つ以上の水素原子がフッ素原子に置換されていてもよい炭素数1~10のアルキル基、アルコキシ基、アシル基もしくはアルコキシカルボ 10ニル基、ハロゲンまたはシアノ基であり、その炭素一炭素結合の一部が二重結合にされていてもよく、また、炭素一炭素結合間に酸素原子が挿入されていてもよく、

(i) R<sup>2</sup>は炭素数 1~10のアルキル基、アルコキシ基であって、その炭素-炭素結合の一部が二重結合にされていてもよく、また、炭素-炭素結合間に酸素原子が挿入されていてもよい、で表されるジフルオロメチレン化合物を含有してなることを特徴とする液晶組成物を提供するものである。

【0007】また、そのR<sup>1</sup>がアシル基またはアルコキシ 20 カルボニル基であるか、Y<sup>1</sup>が-CO-であるジフルオロメチレン化合物か、または、R<sup>1</sup>がその1つ以上の水素原子をフッ素原子に置換した炭素数 1~10のアルキル基もしくはアルコキシ基、ハロゲンまたはシアノ基であるジフルオロメチレン化合物を含有してなることを特徴とする液晶組成物を提供するものである。

【0008】また、一般式(1)

 $R^{1}-(A^{1})_{m}-Y^{1}-A^{2}-Z-CF_{2}-A^{3}-Y^{2}-(A^{4})_{n}-R^{2}$ 

(a) R<sup>2</sup>-(A<sup>4</sup>)<sub>n</sub>-Y<sup>2</sup>-が電子供与性の基であり、(b) A<sup>1</sup>、 A<sup>3</sup>、A<sup>4</sup>は相互に独立してトランス-1,4- ジ置換シクロへ 30 キシレン基または1,4-ジ置換フェニレン基であり、A<sup>2</sup>は 置換基として1個もしくは2個以上のハロゲンまたはシ アノ基を有している1,4-ジ置換フェニレン基であり、A1 は置換基として1個もしくは2個以上のハロゲン、シア ノ基を有していてもよく、A3、A4の基中に存在する1個 もしくは2個以上のCH基は窒素原子に置換されていても よく、(c) Y<sup>1</sup>は-000-、-00-または単結合であり、(d)  $Y^2$ lt-C=C-、-CH=CH- 、-CH $_2$ CH $_2$ -、-OCH $_2$ -、-CH $_2$ O-また は単結合であり、(e) 2 は酸素原子もしくは硫黄原子で あり、(f) m、n は 0または 1であり、(g) R1は1つ以 40 上の水素原子がフッ素原子に置換されていてもよい炭素 数 1~10のアルキル基、アルコキシ基、アシル基もしく はアルコキシカルボニル基、ハロゲンまたはシアノ基で あり、その炭素-炭素結合の一部が二重結合にされてい てもよく、また、炭素ー炭素結合間に酸素原子が挿入さ れていてもよく、(h) R2は炭素数 1~10のアルキル基、 アルコキシ基であって、その炭素-炭素結合の一部が二 重結合にされていてもよく、また、炭素-炭素結合間に 酸素原子が挿入されていてもよい、で表されるジフルオ

組成物を提供するものである。

【0009】また、それらの液晶組成物を、一対の電極付きの基板間に挟持して電圧を印加して時分割駆動することを特徴とする液晶表示装置を提供するものである。 【0010】本発明の一般式(1)の化合物は、大きな誘電率異方性(Δε)を有しており、かつ、他の液晶又は非液晶との相溶性に優れ、化学的にも安定な安定な材料であるので、混合した液晶組成物の誘電率異方性を大きくすることができる。

【0012】この電子吸引性の基Q!-の電子吸引性は、A!の残りの水素原子が非置換であるトランス-1,4-ジ置換シクロヘキシレン基または1,4-ジ置換フェニレン基であり、Y!が単結合であり、R!が水素原子であるものに比して電子吸引性であることを意味する。

【0013】この電子吸引性の基Q!-は、-000-、-00-を有していたり、ハロゲンやシアノ基を有しているものが使用できる。具体的には、A!、A!が置換基として1個もしくは2個以上のハロゲン、シアノ基を有しているか、Y!が-000-、-00-であるか、R!がその1つ以上の水素原子をフッ素原子に置換した炭素数 1~10のアルキル基もしくはアルコキシ基、その1つ以上の水素原子をフッ素原子に置換してもよいアシル基もしくはアルコキシカルボニル基、ハロゲンまたはシアノ基であって、その炭素一炭素結合の一部が二重結合にされていてもよく、また、炭素一炭素結合間に酸素原子が挿入されていてもよく、この範囲内でかつ電子吸引性であれば使用できる

【0014】また、本発明では、 $A^2$ が置換基として1個もしくは2個以上のハロゲン、シアノ基を有している1、4-ジ置換フェニレン基である場合には、 $A^1$ 、 $A^2$ 、 $R^1$ 、 $Y^1$ が上記の範囲であればよく、 $Q^1$ - が電子吸引性の基でなくても、 $Q^1$ - が電子吸引性の基の場合と同等の効果を有する。

【0015】この電子供与性の基Q<sup>2</sup>- の電子供与性は、A<sup>4</sup>の残りの水素原子が非置換であるトランス-1,4- ジ置換シクロヘキシレン基または1,4-ジ置換フェニレン基であり、Y<sup>2</sup>が単結合であり、R<sup>2</sup>が水素原子であるものに比して電子供与性であることを意味する。

酸素原子が挿入されていてもよい、で表されるジフルオ 【0016】この電子供与性の基Q²-は、含窒素環を有ロメチレン化合物を含有してなることを特徴とする液晶 50 しているか、多重結合を含むものが使用できる。具体的

には、A\*がその基中に存在する1個もしくは2個以上の CH基を窒素原子に置換したものであるか、Y2が-C≡C-、 -CH=CH- 、-CH2CH2-、-OCH2-、-CH2O-であるか、R<sup>2</sup>が二 重結合またはその炭素炭素結合間に酸素原子を含んでい てもよい炭素数 1~10のアルキル基、アルコキシ基であ り、この範囲内でかつ電子供与性であるものが使用でき る。

【0017】本発明の化合物の具体的構造としては、主 な化合物として以下のような化合物がある。なお、2 は 前述の定義のように酸素原子または硫黄原子である。 [0018]

Q1- 側にカルボニル基-OD-を有する化合物。

 $R^3-CO-A^2-Z-CF_2-Q^2$ 

(2)

 $R^3-CO-A^1-A^2-Z-CF_2-Q^2$  (3)

 $R^1-A^1-CO-A^2-Z-CF_2-Q^2$  (4)

 $R^1 - A^1 - OCO - A^2 - Z - CF_2 - Q^2$ 

(5)

なお、R3は1つ以上の水素原子がフッ素原子に置換され ていてもよい炭素数 1~10のアルキル基、アルコキシ基 である。また、電子吸引性が維持されるならば、その中 に二重結合や、炭素-炭素結合間に酸素原子を含んでい 20 てもよい。

【0019】より具体的には、次のような化合物があ る。

 $R^3$ -CO-Ph-Z-CF<sub>2</sub>-Ph-R<sup>2</sup> (2A)

R3-CO-Ph-Z-CF2-Ph-Ph-R2 (2B)

 $R^3-CO-Ph-Z-CF_2-Ph-C \equiv C-Ph-R^2$ (2C)

 $R^3$ -CO-Ph-Z-CF<sub>2</sub>-Ph-CH=CH-Ph-R<sup>2</sup> (2D)

R3-CO-Ph-Z-CF2-Ph-CH2 CH2-R2 (2E)

R3-CO-Ph-Z-CF2-Ph-OCH2-Ph-R2 (2F)

R3-C0-Ph-Z-CF2-Ph-CH2O-Ph-R2 (2G)

[0020]

 $R^3$ -CO-Ph-Ph-Z-CF<sub>2</sub>-Ph-R<sup>2</sup> (3A)

 $R^3-CO-Ph-Ph-Z-CF_2-Ph-Ph-R^2$  (3B)

R3-CO-Ph-Ph-Z-CF2-Ph-CH2CH2-Ph-R2 (3C)

[0021]

 $R^1-Ph-CO-Ph-Z-CF_2-Ph-R^2$ (4A)

 $R^1$ -Ph-CO-Ph-Z-CF<sub>2</sub>-Ph-Ph-R<sup>2</sup> (4B)

R1-Ph-CO-Ph-Z-CF2-Ph-CH2CH2-Ph-R2 (4C)

 $R^1$ -Ph-OCO-Ph-Z-CF<sub>2</sub>-Ph-R<sup>2</sup>

 $R^1$ -Ph-OCO-Ph-Z-CF<sub>2</sub>-Ph-Ph-R<sup>2</sup> (5B)

【0022】さらに、この1、4-ジ置換フェニレン基をト ランス-1,4- ジ置換シクロヘキシレン基に置換した化合 物として、以下のようなものがある。

 $R^3-CO-Ph-Z-CF_2-Cy-R^2$ 

(2H)

 $R^3$ -CO-Ph-Z-CF<sub>2</sub>-Ph-Cy-R<sup>2</sup> (2I)

 $R^3-CO-Cy-Ph-Z-CF_2-Ph-R^2$ (3D)

 $R^3$ -CO-Ph-Ph-Z-CF<sub>2</sub>-Ph-Cy-R<sup>2</sup> (3E)

R1-Cy-CO-Ph-Z-CF2-Ph-R2 (4D)

 $R^1$ -Ph-CO-Ph-Z-CF<sub>2</sub>-Ph-Cy-R<sup>2</sup> (4E)

 $R^1$ -Cy-OCO-Ph-Z-CF<sub>2</sub>-Ph-R<sup>2</sup> (5C)

(5D)  $R^1$ -Ph-OCO-Ph-Z-CF<sub>2</sub>-Cy-R<sup>2</sup>

【0023】Q1- 側であるR1がフッ素原子を含むアルキ ル基、アルコキシ基、アシル基もしくはアルコキシカル ボニル基であるか、ハロゲンもしくはシアノ基である化 合物。

6

R4 -A2 -Z-CF2-Q2

(6)

 $R^4 - A^1 - Y^1 - A^2 - Z - CF_2 - Q^2$ 

(7)

なお、R<sup>4</sup>は、1つ以上の水素原子がフッ素原子に置換さ れた炭素数 1~10のアルキル基、アルコキシ基、アシル 基もしくはアルコキシカルボニル基である。また、電子 吸引性が維持されるならば、その中に2重結合を含んで いてもよいし、炭素-炭素結合間に酸素原子が挿入され ていてもよい。

【0024】より具体的には、次のような化合物があ る.

R4 -Ph-Z-CF2-Ph-R2

(6A)

R4 -Ph-Z-CF2-Ph-Ph-R2

(6B)

(7A)

R4 -Ph-Z-CF2-Ph-CH2CH2-Ph-R2

(6C)

R4 -Ph-Ph-Z-CF2 -Ph-R2

R4 -Ph-Ph-Z-CF<sub>2</sub>-Ph-Ph-R<sup>2</sup> (7B)

R4-Ph-CO-Ph-Z-CF2-Ph-R2

(7C)

 $R^4$  -Ph-OCO-Ph-Z-CF<sub>2</sub>-Ph-R<sup>2</sup> (7D)

[0025]

R4-Ph-Z-CF2-Cy-R2

(6D)

R4-Ph-Z-CF2-Ph-Cy-R2

(6E)

R4-Ph-Z-CF2-Cy-Ph-R2

R4 -Cy-Ph-Z-CF2-Ph-R2

(6F)

(6G)

R4-Ph-Z-CF2-Ph-CH2CH2-Cy-R2

(7F) (7G)

R4-Ph-Ph-Z-CF2-Ph-Cy-R2

30 R4-Cy-CO-Ph-Z-CF2-Ph-R2

(7H)

 $R^4$  -Cy-OCO-Ph-Z-CF<sub>2</sub>-Ph-R<sup>2</sup> (71)

【0026】A²が置換基として1個もしくは2個以上の ハロゲンもしくはシアノ基を有する化合物。

[0027]

【化1]

40

$$R' - CN$$
 $R' - CF_2 - CF_2$ 

【0028】本発明では、上記の例の他、上記の特徴を 2つ以上組み合わせた化合物も種々あり、R1-(A1)a-Y1-が電子吸引性の基であるか、A2が置換基として1個もし くは2個以上のハロゲンもしくはシアノ基を有するもの であり、R<sup>2</sup>-(A<sup>4</sup>)n-Y<sup>2</sup>-が電子供与性の基であれば使用で

【0029】本発明の式(1)の化合物は、他の液晶、非

液晶に、少なくとも1種を混合することにより液晶組成物として使用される。本発明の化合物と混合して液晶組成物にする物質としては、例えば以下のようなものがある。なお、以下の式でのRc、Roはアルキル基、アルコキシ基、ハロゲン原子、シアノ基等の基を表わす。

[0030] Rc-Cy-Cy-RD

Rc-Cy-Ph-Ro

Rc-Ph-Ph-Rp

Rc-Cy-COO-Ph-Ro

Rc-Ph-COO-Ph-Ro

Rc-Cy-CH=CH-Ph-RD

Rc-Ph-CH=CH-Ph-RD

Rc-Cy-CH<sub>2</sub>CH<sub>2</sub>-Ph-R<sub>D</sub>

Rc-Ph-CH<sub>2</sub> CH<sub>2</sub>-Ph-R<sub>D</sub>

Rc-Ph-N=N-Ph-Rp

Rc-Ph-NON-Ph-RD

Rc-Cy-COS-Ph-RD

[ O O 3 1 ] Rc-Cy-Ph-Ph-Rp

Rc-Cy-Ph-Ph-Cy-RD

Rc-Ph-Ph-Ph-Ro

Rc-Cy-COO-Ph-Ph-Ro

Rc-Cy-Ph-COO-Ph-RD

Rc-Cy-COO-Ph-COO-Ph-RD

Rc-Ph-COO-Ph-COO-Ph-RD

Rc-Ph-COO-Ph-OCO-Ph-RD

[0032]

【化2】

$$R_c \leftarrow 0 \rightarrow R_c$$

$$R_c \leftarrow N \leftarrow \bigcirc R_c$$

$$R_c \leftarrow \bigcirc_N^N \leftarrow \bigcirc R_D$$

【0033】なお、これらの化合物は単なる例示にすぎなく、環構造もしくは末端基の水素原子のハロゲン原子、シアノ基、メチル基等への置換、シクロヘキサン環、ベンゼン環の他の六員環、五員環等への置換、環の間の結合基の変更等が可能であり、所望の性能に合わせて種々の材料が選択使用されればよい。

【0034】本発明の液晶組成物は電極付の基板間に配され、ツイストネマチック方式、ゲスト・ホスト方式、動的散乱方式、フェーズチェンジ方式、DAP方式、二周波駆動方式、強誘電性液晶表示方式等種々のモードで使用することができる。特に、時分割駆動される液晶表示装置に使用した際に、そのメリットが大きい。

【0035】具体的には、次のようなものが代表的であ 50

8

る。プラスチック、ガラス等の基板上に、必要に応じてSiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub> 等のアンダーコート層やカラーフィルター層を形成し、In<sub>2</sub>O<sub>3</sub>-SnO<sub>2</sub> (ITO)、SnO<sub>2</sub>等の電極を設け、パターニングした後、必要に応じてボリイミド、ポリアミド、SiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub> 等のオーバーコート層を形成し、配向処理し、これにシール材を印刷し、電極面が相対向するように配して周辺をシールし、シール材を硬化して空セルを形成する。

【0036】この空セルに、本発明の液晶組成物を注入 10 し、注入口を封止剤で封止して液晶セルを構成する。こ の液晶セルに必要に応じて偏光板、カラー偏光板、光 源、カラーフィルター、半透過反射板、反射板、導光 板、紫外線カットフィルター等を積層する、文字、図形 等を印刷する、ノングレア加工する等して液晶表示素子 とする。

【0037】なお、上述の説明は、液晶表示素子の基本的な構成及び製法を示したにすぎなく、例えば2層電極を用いた基板、2層の液晶層を形成した2層液晶セル、TFT、MIM等の能動素子を形成したアクティブマト20 リクス基板を用いたアクティブマトリクス素子等、種々の構成のものが使用できる。

【0038】本発明の液晶組成物は時分割特性を向上させるので、時分割駆動する液晶表示装置に好適である。特に、高デューティ比の駆動を行った際にその効果が大きい。このため、近年注目されている高ツイスト角のスーパーツイスト(STN)型液晶表示素子にも好適である。

【0039】本発明で用いる一般式(1)の化合物は、例えば、次の方法に従って製造される。その際、一部一般 30 式(1)の化合物をQ<sup>3</sup>-Z-CF<sub>2</sub>-Q<sup>4</sup>と表記して説明する。Q<sup>3</sup>、は前述のQ<sup>1</sup>-A<sup>2</sup>、即ち、R<sup>1</sup>-(A<sup>1</sup>)n-Y<sup>1</sup>-A<sup>2</sup>である。Q<sup>4</sup>はQ<sup>2</sup>-A<sup>3</sup>、即ち、R<sup>2</sup>-(A<sup>4</sup>)n-Y<sup>2</sup>-A<sup>3</sup>である。

【0040】2 が酸素原子の場合、以下のような方法に 従って製造される。

| <b>6</b> <sub>9</sub> −0H   | (8)  |
|-----------------------------|------|
| † 64 -CH <sup>2</sup> X     | (9)  |
| <b>Q³0-</b> C⊞₂ - <b>Q⁴</b> | (10) |
| ↓ Cl₂                       | (11) |
| Q0 -0-CCl2 -Q4              | (12) |
| ↓ KF                        | (13) |
| Q8 -0-CF <sub>2</sub> -Q4   | (14) |

【0041】♀-OH で表される化合物(8) とハロゲン化合物(9) とを、アルカリ金属水酸化物等の塩基性条件下で反応させ、化合物(10)を得る。この化合物(10)を塩素ガス(11)と反応させて、ジクロロメチレン基含有化合物(12)とし、これを単離精製することなく、フッ化カリウム(13)と反応させて目的とする化合物(14)を得ることができる。

【0042】また、次のような製法もある。

【0043】即ち、エステル化合物(15)をチオカルボニ ル化剤である五硫化リン(16)と反応させて、チオエステ ル化合物(17)とする。これをフッ素化剤であるジエチル アミノサルファトリフロライド(DAST)(18)と反応させ て、ジフルオロエーテル化合物(14)を得ることができ る。

【0044】2が酸素原子または硫黄原子のいずれの場 合にも、 A. Haas et al., Chemical Berichte Vol. 121 pp. 1329 (1988年) 記載の次のような反応ルートも可能 である。

【0045】即ち、アルデヒド化合物(19)をDAST(20)で フッ素化し、ジフルオロメチル基含有化合物(21)とした 後、光臭素化により臭素(22)を置換させてブロモジフル オロ化合物(23)を得、塩基存在下で化合物(24)と反応さ せて、目的とする化合物(25)を得ることができる。

【0046】また、出発原料として、トリクロロメチル 基を有する化合物を用いて次のようにして製造すること もできる。

【0047】即ち、トリクロロメチル化合物(26)をフッ 酸(27)とピリジンと反応させ、クロロジフルオロメチル 化合物(28)を得、塩基存在下で化合物(29)と反応させ て、目的とする化合物(30)を得ることができる。

【0048】さらに、上記のような基本反応を用いて、 Q3A-Z-CF2-Q4A なる基本骨格(ただし、Q3A 、Q4A は、 夫々Q3、Q4と同じでもよいが、両末端に水素、水酸基、 ハロゲン等を有するような類似化合物の場合もある。) を合成してから、官能基変換することももちろん可能で ある。本発明で用いる化合物の内、上記基本反応中に変 化してしまうような官能基を含有する場合、基本反応の 後、目的とする官能基を導入する。具体的には、基本反 応の1番目の例のように塩素化反応を行った際に、塩素 に反応し得る有機基を含有する場合は、基本反応でQ3A-Z-CF2-QfA の化合物を合成し、その後目的とする官能基 50 が使用できる。以下に本発明の化合物を製造する方法を

10

を導入すればよい。

【0049】末端のR1をフッ素原子にする場合には、例 えば以下のようにすればよい。

C1-Ph-0-CF<sub>2</sub>-Ph-R<sup>2</sup> (31)  

$$\downarrow$$
 KF (32)  
F-Ph-0-CF<sub>2</sub>-Ph-R<sup>2</sup> (33)

【0050】Q®の末端のRIが塩素の化合物(31)を上記の ような基本反応で合成しておき、これに塩素のモル数の 2~20倍のフッ化カリウム(32)を用いて、フッ素化し目 的とするRI がフッ素原子の化合物(33)を得ることができ る。このフッ素化反応は、溶媒として、フッ化カリウム を比較的よく溶解するスルフォラン、ジメチルスルフォ キシドの如き非プロトン性極性溶媒を用いることが好ま しく、反応触媒としてリンもしくは窒素原子を含有する 相関移動触媒を用いることが好ましい。

【0051】末端のR2をアルキル基やアルケニル基に置 換する場合には、例えば以下のようにすればよい。

【0052】Qfの末端のR2が塩素の化合物(34)を上記の ような基本反応で合成しておき、これにエーテル、テト ラヒドロフラン等のエーテル系溶媒中アルキルグリニア ール試薬(35)と反応させて、目的とする化合物(36)を得 ることができる。(例えばBulletin of the Chemical S ociety of Japan, vol.49,1958-1969, 1967 年)。この 場合、ニッケル触媒としては、配位子としてホスフィン 類を有する2価の触媒が、好ましく用いられる。

【0053】ベンゼン環上へのオキシカルボニル基の導 入、即ち、Y1への-0C0- の導入は、例えばアルキル基を 末端に有する化合物を出発物質として用い、そのアルキ ル基を酸化することにより、フェノール性水酸基を末端 に有する化合物を製造する。この化合物をR2-Ph-CF2-O-Ph-COCI で表されるような酸塩化物と、塩基の存在下に 反応させることにより合成可能である。

【0054】ベンゼン環上にアシル基を導入する反応 は、例えばR<sup>2</sup>が水素である化合物に、R<sup>2</sup>-OOC1 やR<sup>2</sup>-Ph-ODCIで表されるような酸塩化物とフリーデル・クラフツ 反応させることにより得ることができる。

【0055】ベンゼン環上にシアノ基を導入する反応 は、例えばベンゼン環上にハロゲン原子を有する化合物 を合成し、ハロゲン原子をシアン化銅と反応させること により得ることができる。 (例えば M.S.Newman, Organ ic Synthesis vol.3, pp.631)。また、アミド基を有す る化合物を合成し、このアミド基を五塩化リン等の脱水 剤で脱水することによってもシアノ基を有する化合物を 合成できる。

【0056】なお、以上の製造法は単なる例示に過ぎな く、反応させる順序、組み合わせ等により種々の製造法

実施例を用いて説明するが、本発明はそれに限定される ものではない。

[0057] 【実施例】

#### 実施例1

還流管付500ml のガラス製三ツロフラスコに、p-クロロ ベンジルブロミド25.0g(0.12mol)と、フェノール12.2g (0.13mol)、炭酸カリウム18.5g(0.13mol)、アセトン100 ml を仕込み、 4時間還流させた。冷却後、無機塩を瀘 別し、沪液を500ml の水に投入した。有機層を分液し、 それを 5%NaHCO3水溶液で洗浄し、さらに水洗した後、 MgSO4 で乾燥した。沪過後、溶媒を留去し、得られた固 体をメチルアルコールから再結晶して、4-クロロベンジ ルフェニルエーテル(Ph-O-CH2-Ph-Cl)を23.1g (収率88 %) 得た。

【0058】次に、還流管及びガス吹込管付き100mlの ガラス製三ツロフラスコに4-クロロベンジル- フェニル エーテル21.9g(0.1mol) と五塩化リン3.51g を仕込み、 100℃に加熱した。ここへ塩素ガスを40g 、反応温度を 100~ 150℃に保ちながら 2時間かけて吹き込んだ。冷 20 却後、窒素ガスを30分吹き込んだ後、あらかじめ真空乾 燥したスプレードライフッ化カリウムを16g 添加した。 激しく撹拌しながら、180 ℃にて 5時間反応させた。冷 却後、塩化メチレンを加え、無機塩を沪別し、沪液を水 洗後、溶媒を留去して、得られた固体をメチルアルコー ルから再結晶して、4-クロロ-α,α-ジフルオロベン ジルフェニルエーテルを12.9g (0.051mol、収率51%、 全工程収率45%) 得た。H-Ph-O-CF2-Ph-Cl

【0059】本化合物の分析結果を以下に示す。

19F NMR(CDCl3)

 $-65.9ppm(-CF_2-0-,S)$ 

MS

m/e 254(M<sup>+</sup>)

I R

1205cm-1 (C-F)

【0060】アルゴン雰囲気下、還流管付きの100ml 三 ツロフラスコにMg 2.02g(0.083mol)、乾燥テトラヒドロ フラン(THF) 10mlを入れ、ここに1-ブロモプロパンを数 滴加えた。次いで、1-ブロモプロパン9.36g(0.076mol) を発熱が続く速度で滴下した。滴下終了後、さらに 1時 間還流を続けた後、室温まで放冷した。この溶液を、別 途、アルゴン雰囲気下、還流管付きの100ml 三ツロフラ スコ中に、上記のように合成した4-クロロ- $\alpha$ ,  $\alpha$ -ジ 40 フルオロベンジルフェニルエーテル10g(0.039mol) 及び 1,3-ビス(ジフェニルホスフィノ)プロパンジクロロニ ッケル [Ni Cl2 (dppp)] 1.0g を含む乾燥THF 溶液20ml に、滴下漏斗を用いて滴下した。

【0061】滴下後さらに24時間還流した後、室温まで 冷却し、水20mlを加える。さらに20%塩酸20mlを加えて 有機層を分離し、水洗、乾燥後、溶媒を留去する。得ら れた粗生成物をシリカゲルカラムクロマトグラフィにて 精製して、4-n-プロピル-α,α-ジフルオロベンジル フェニルエーテルを8.07g (収率79%)得た。

12

 $H-Ph-O-CF_2-Ph-C_3H_7(n)$ 

【0062】本化合物の分析結果を以下に示す。

19F NMR (CDCl3)

-67.0ppm ( $-CF_2-O-$ , S)

MS

m/e 262(M<sup>+</sup>)

I R

1205cm-1 (C-F)

【0063】アルゴン雰囲気下、還流管付きの300ml 三 ツロフラスコに塩化メチレン50ml、塩化アルミニウム4. 5g(0.035mol)、上記で合成した4-n-プロピル- α, α-ジフルオロベンジルフェニルエーテル6.6g(0.025mol)を いれ、OCに冷却した。ここに塩化メチレン25mlで希釈 した酪酸クロリド3.7g(0.035mol)を滴下した。15℃でさ らに 2時間反応させた後、水を加えて反応を停止した。 【0064】有機層を分離した後、水層を塩化メチレン で抽出し、有機層に加えた。有機層を 5%炭酸水素ナト リウム水溶液で洗浄後、硫酸マグネシウムで乾燥した。 有機層を濃縮後、ヘキサンを移動相とするシリカゲルカ ラムクロマトグラフィで精製し、4-n-プロピル- α, α - ジフルオロベンジル-4'-ブチリルフェニルエーテル6. 1g(0.0183mol、収率73%) を得た。

 $n-C_3H_7-CO-Ph-O-CF_2-Ph-C_3H_7(n)$ 

[0065]

【化3】

$$n-C_3H_7-CO$$
  $O-CF_2$   $O-C_3H_7$   $(n)$ 

【0066】本化合物の分析結果を以下に示す。

19F NMR (CDCl3)

-67.2ppm (-CF<sub>2</sub>-0-, S)

MS

 $m/e 332(M^+)$ 

ΙR

 $1200cm^{-1}$  (C-F),  $1680cm^{-1}$  (C=0)

30 【0067】実施例1と同様にして、次のような化合物 が合成できる。

CH3-CO-Ph-O-CF2-Ph-CH3

 $n-C_5H_{11}-CO-Ph-O-CF_2-Ph-C_5H_{11}(n)$ 

n-C<sub>8</sub> H<sub>17</sub>-CO-Ph-O-CF<sub>2</sub>-Ph-C<sub>8</sub> H<sub>17</sub> (n)

n-C3 H7-C0-Ph-O-CF2-Ph-C5 H11 (n)

 $n-C_3H_7-CO-Ph-O-CF_2-Cy-C_3H_7(n)$ 

【0068】実施例2

実施例1の4-クロロ- $\alpha$ ,  $\alpha$ - ジフルオロベンジルフェ ニルエーテルに用いる1-ブロモプロパンの代わりに、1-ブロモ- トランス-4-n- プロピルシクロヘキサンを用い て、α, α- ジフルオロ-4-(4'-n- プロピルシクロヘキ シル) ベンジルフェニルエーテルを得た。(収率54%) 【0069】これに実施例1と同様にして酪酸クロリド を反応させて、α, α- ジフルオロ-4-(4'-n- プロピル シクロヘキシル)ベンジル-4-n- ブチリルフェニルエー テルを得た。(収率64%)

 $n-C_3H_7-CO-Ph-O-CF_2-Ph-Cy-C_3H_7(n)$ 

[0070]

【化4】

13  $n-C_3H_7-CO$   $O-CF_2$   $H-C_3H_7$  (n)

【0071】本化合物の分析結果を以下に示す。

MS

m/e 414(M<sup>+</sup>)

.,,

 $1200cm^{-1}$  (C-F),  $1680cm^{-1}$  (C=0)

【0072】実施例2と同様にして、次のような化合物 が合成できる。

CH3-CO-Ph-O-CF2-Ph-Cy-CH3

 $n-C_5H_{11}-CO-Ph-O-CF_2-Ph-Cy-C_5H_{11}$  (n)

 $n-C_8H_{17}-CO-Ph-O-CF_2-Ph-Cy-C_8H_{17}$  (n)

 $n-C_3H_7-CO-Ph-O-CF_2-Ph-Cy-C_5H_{11}$  (n)

#### 【0073】 実施例3

実施例 1 の4-クロロ- $\alpha$ ,  $\alpha$ -3 ジフルオロベンジルフェニルエーテルに用いる1-ブロモプロパンの代わりに、 $\alpha$ -ブロモトルエンを用いて、 $\alpha$ ,  $\alpha$ -3 ジフルオロ-4-4-4 メチルフェニル)ベンジルフェニルエーテルを得た。(収率52%)これに実施例 1 と同様にして酪酸クロリド

を反応させて、α, α- ジフルオロ-4-(4'- メチルフェニル) ベンジル-4-n- ブチリルフェニルエーテルを得た。(収率57%)

n-C<sub>3</sub>H<sub>7</sub>-CO-Ph-O-CF<sub>2</sub>-Ph-Ph-CH<sub>3</sub>

[0074]

【化5】

n-C<sub>3</sub>H<sub>7</sub>-CO - O - CF<sub>2</sub> - O - CH<sub>3</sub>

【0075】本化合物の分析結果を以下に示す。

MS

m/e 380(M<sup>+</sup>)

ΙR

 $1200cm^{-1}$  (C-F),  $1680cm^{-1}$  (C=0)

【0076】実施例3と同様にして、次のような化合物が合成できる。

CH3-CO-Ph-O-CF2-Ph-Ph-CH3

 $n-C_3H_7-CO-Ph-O-CF_2-Ph-Ph-C_3H_7$  (n)

n-C5H11-C0-Ph-O-CF2-Ph-Ph-C5H11 (n)

 $n-C_8H_{17}-C_0-Ph-O-CF_2-Ph-Ph-C_8H_{17}$  (n)

n-C3H7-C0-Ph-O-CF2-Ph-Ph-C5H11 (n)

【0077】実施例4

\*実施例1の4-クロロ- α, α- ジフルオロベンジルフェニルエーテルに用いる1-ブロモプロパンの代わりに、3-ブロモ-1- プロペンを用いて、α, α- ジフルオロ-4-(2'- プロペニル) ベンジルフェニルエーテルを得た。 (収率61%) これに実施例1と同様にして酪酸クロリドを反応させて、4-(2''-n- プロペニル)-α, α- ジフル10 オロベンジル-4'-n-ブチリルフェニルエーテルを得た。

(収率60%) n-C3H7-CO-Ph-O-CF2-Ph-CH2CH=CH2

[0078]

【化6】

n-C<sub>3</sub>H<sub>7</sub>-CO O-CF<sub>2</sub> CH<sub>2</sub>CH=CH<sub>2</sub>

【0079】本化合物の分析結果を以下に示す。

MS

20

m√e 330(M<sup>+</sup>)

IR 1200cm<sup>-1</sup> (C-F), 1680cm<sup>-1</sup> (C=0)

【 0 0 8 0 】実施例4と同様にして、次のような化合物が合成できる。

CH3-CO-Ph-O-CF2-Ph-CH2CH=CH2

n-C<sub>5</sub> H<sub>1 1</sub> -CO-Ph-O-CF<sub>2</sub> -Ph-CH<sub>2</sub> CH=CH<sub>2</sub>

n-C<sub>8</sub> H<sub>1</sub> 7 -CO-Ph-O-CF<sub>2</sub> -Ph-CH<sub>2</sub> CH=CH<sub>2</sub>

n-C3 H7-CO-Ph-O-CF2-Ph-CH2 CH2 CH2 CH2 CH=CH2

【0081】実施例5

実施例1の4-n-プロピル- $\alpha$ ,  $\alpha$ -3ジフルオロベンジルフェニルエーテルに、トランス-2-ブテン酸クロリドを 反応させて、 $\alpha$ ,  $\alpha$ -3ジフルオロ-4-n-プロピルベンジル-4'-2-ブテリル)フェニルエーテルを得た。(収率 57%)

この化合物は、R<sup>1</sup>に二重結合が存在しているが、R<sup>1</sup>全体として電子吸引性の基であった。

(E)-CH<sub>3</sub> CH=CH-CO-Ph-O-CF<sub>2</sub>-Ph-C<sub>3</sub> H<sub>7</sub> (n)

[0082]

【化7】

(E) -CH<sub>3</sub>CH=CHCO-O-O-CF<sub>2</sub> -O-C<sub>8</sub>H<sub>7</sub> (n)

【0083】本化合物の分析結果を以下に示す。

MS

m/e 330(M<sup>+</sup>)

I R  $1200cm^{-1}$  (C-F),  $1680cm^{-1}$  (C=0)

【0084】実施例5と同様にして、次のような化合物が合成できる。

(E) -CH3 CH=CH-CO-Ph-O-CF2-Ph-CH3

(E)  $-CH_3$   $CH=CH-CO-Ph-O-CF_2-Ph-C_5$   $H_{1,1}$  (n)

(E)  $-CH_3$  CH=CH-CO-Ph-O-CF<sub>2</sub>-Ph-C<sub>8</sub> H<sub>17</sub> (n)

※【0085】実施例6

実施例1と同様にして、酪酸クロリドの代わりにp-n-プロピル安息香酸クロリドを用いて、α, α- ジフルオロ-4-n- プロピルベンジル-4'-(4''- プロピルベンゾイル) フェニルエーテルを得た。(収率65%)

n-C<sub>3</sub>H<sub>7</sub>-Ph-CO-Ph-O-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub> (n)

[0086]

《 【化8】

○ )-C<sub>3</sub>H<sub>7</sub> (n)

【0087】本化合物の分析結果を以下に示す。

MS

m/e 408(M<sup>+</sup>)

I R

 $1200cm^{-1}(C-F)$ ,  $1680cm^{-1}(C=0)$ 

【0088】実施例6と同様にして、次のような化合物 が合成できる。

CH3-Ph-CO-Ph-O-CF2-Ph-CH3

 $n-C_5H_{11}-Ph-CO-Ph-O-CF_2-Ph-C_5H_{11}$  (n)

 $n-C_3H_7-O-Ph-CO-Ph-O-CF_2-Ph-C_3H_7$  (n)

CH<sub>3</sub> -O-C<sub>2</sub> H<sub>5</sub> -Ph-CO-Ph-O-CF<sub>2</sub> -Ph-C<sub>3</sub> H<sub>7</sub> (n)

n-C3H7-Ph-C0-Ph-O-CF2-Ph-Ph-C3H7 (n)

【0091】本化合物の分析結果を以下に示す。

MS

m/e 414(M<sup>+</sup>)

I R  $1200cm^{-1}$  (C-F),  $1680cm^{-1}$  (C=O)

が合成できる。

CH3-Cy-CO-Ph-O-CF2-Ph-CH3

n-C5H11-Cy-CO-Ph-O-CF2-Ph-C5H11 (n)

 $n-C_3H_7-O-C_9-CO-Ph-O-CF_2-Ph-C_3H_7$  (n)

 $CH_3 - O - C_2 H_5 - Cy - CO - Ph - O - CF_2 - Ph - C_3 H_7 (n)$ 

 $n-C_3H_7-C_9-CO-Ph-O-CF_2-Ph-Ph-C_3H_7$  (n)

 $n-C_3H_7-C_9-C_0-Ph-O-CF_2-Ph-C_9-C_3H_7$  (n)

【0093】実施例8

4-n-プロピルフェニルアセチレンをジエチルエーテル中※

※ O℃で等量のブチルリチウムと反応させ、リチウム塩と した。これに実施例1の4-クロロ- $\alpha$ ,  $\alpha$ -ジフルオロ ベンジルフェニルエーテルと反応させて、α, α- ジフ 【0092】実施例7と同様にして、次のような化合物 20 ルオロ-4-[2-(4'-n-プロピルフェニル) エチニル] ベン ジルフェニルエーテルを得た。(収率35%) 【0094】これに実施例1と同様にして酪酸クロリド

16

実施例1と同様にして、酪酸クロリドの代わりにトラン

ス-4-n- プロピルシクロヘキサンカルボン酸クロリドを

用いて、α, α- ジフルオロ-4-n- プロピルベンジル-4'-( トランス-4''-プロピルシクロヘキサンカルボニ

 $*n-C_3H_7-Ph-CO-Ph-O-CF_2-Ph-Cy-C_3H_7(n)$ 

10 ル)フェニルエーテルを得た。(収率38%)

 $n-C_3H_7-C_9-CO-Ph-O-CF_2-Ph-C_3H_7$  (n)

【0089】 実施例7

[0090]

【化9】

を反応させて、α, α- ジフルオロ-4-[2-(4'-n-プロピ ルフェニル) エチニル] ベンジル-4''-n- ブチリルフェ ニルエーテルを得た。(収率43%)

 $n-C_3H_7-CO-Ph-O-CF_2-Ph-C \equiv C-Ph-C_3H_7 (n)$ 

[0095]

【化10】

【0096】本化合物の分析結果を以下に示す。

MS

m/e 432(M<sup>+</sup>)

ΙR

 $1200cm^{-1}$  (C-F),  $1680cm^{-1}$  (C=0),  $2120cm^{-1}$  (C=C)

【0097】実施例8と同様にして、次のような化合物 が合成できる。

 $CH_3-CO-Ph-O-CF_2-Ph-C\equiv C-Ph-C_3H_7$  (n)

 $n-C_5H_{11}-CO-Ph-O-CF_2-Ph-C \equiv C-Ph-C_3H_7$  (n)

 $n-C_8H_17-CO-Ph-O-CF_2-Ph-C \equiv C-Ph-C_3H_7(n)$ 

 $n-C_3H_7-C_0-Ph-O-CF_2-Ph-C \equiv C-Ph-C_5H_{1,1}(n)$ 

【0098】実施例9

トランス-2-(4-n-プロピルフェニル)-1-ブロモエテンを 乾燥THF 中-78℃で等量のブチルリチウムと反応させ、 リチウム塩とした。これに-50℃で実施例1の4-クロロ - α, α- ジフルオロベンジルフェニルエーテルと反応★ ★させて、α, α- ジフルオロ-4-(トランス-2-(4'-n- プ ロピルフェニル) エテニル) ベンジルフェニルエーテル を得た。(収率32%)

【0099】これに実施例1と同様にして酪酸クロリド

40 を反応させて、α, α- ジフルオロ-4-[2-(4'-n-プロピ ルフェニル) エテニル] ベンジル-4''-n- ブチリルフェ ニルエーテルを得た。(収率66%)

 $n-C_3H_7-CO-Ph-O-CF_2-Ph-CH=CH-Ph-C_3H_7$  (n)

[0100]

【化11】

【0101】本化合物の分析結果を以下に示す。

☆50 ☆ M S

m/e 434( $M^+$ )

I R  $1200cm^{-1}$  (C-F),  $1680cm^{-1}$  (C=0)

【01·02】実施例9と同様にして、次のような化合物が合成できる。

CH<sub>3</sub> -CO-Ph-O-CF<sub>2</sub> -Ph-CH=CH-Ph-C<sub>3</sub> H<sub>7</sub> (n)

n-C<sub>5</sub> H<sub>1 1</sub>-CO-Ph-O-CF<sub>2</sub>-Ph-CH=CH-Ph-C<sub>3</sub> H<sub>7</sub> (n)

n-C8H<sub>1</sub>7-CO-Ph-O-CF<sub>2</sub>-Ph-CH=CH-Ph-C3H<sub>7</sub> (n)

 $n-C_3H_7-CO-Ph-O-CF_2-Ph-CH=CH-Ph-C_5H_{11}$  (n)

【0103】実施例1~9と同様にして、以下のような 化合物も合成できる。

n-C3H7-C0-Ph-Ph-O-CF2-Ph-C3H7(n)

n-C<sub>3</sub>H<sub>7</sub>-C<sub>0</sub>-Ph-Ph-O-CF<sub>2</sub>-Ph-Ph-C<sub>3</sub>H<sub>7</sub>(n)

 $n-C_3H_7-C_0-Ph-C_y-0-CF_2-Ph-C_3H_7(n)$ 

 $n-C_3H_7-CO-Ph-O-CF_2-Cy-CH=CH-Ph-C_3H_7$  (n)

### 【0104】実施例10

実施例1のフェノールの代わりにp-フルオロフェノール を用いて、α,α- ジフルオロ-4- クロロベンジル-4'-フルオロフェニルエーテルを得た。(収率55%)

これに1-ブロモプロパンを反応させて、 $\alpha$ ,  $\alpha$ - ジフルオロ-4-n- プロピルベンジル-4'-フルオロフェニルエーテルを得た。(収率61%)

F-Ph-O-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub> (n)

[0105]

【化12】

$$F-C$$
  $O-CF_2$   $C_3H_7$  (n)

【0106】本化合物の分析結果を以下に示す。

MS

m/e 280(M<sup>+</sup>)

IR

1200cm-1 (C-F)

【0107】実施例10と同様にして、次のような化合 30 物が合成できる。

F-Ph-O-CF<sub>2</sub>-Ph-CH<sub>3</sub>

F-Ph-O-CF<sub>2</sub>-Ph-C<sub>5</sub>H<sub>1</sub>1 (n)

 $F-Ph-O-CF_2-Ph-C_8H_{17}(n)$ 

【0108】1-ブロモプロパンの代わりに、1-ブロモ-4-n-プロピルベンゼン、トランス-1-ブロモ-4-n-プロピルシクロヘキサン等を用いて以下のような化合物も合成できる。

F-Ph-O-CF2-Ph-Ph-C3H7 (n)

F-Ph-O-CF<sub>2</sub>-Ph-Cy-C<sub>3</sub>H<sub>7</sub> (n)

 $F-Ph-O-CF_2-Ph-CH_2CH_2-C_3H_7$  (n)

### 【0109】実施例11

実施例1のフェノールの代わりに4-(4'-7ルオロフェニル)フェノールを用いて、 $\alpha$ ,  $\alpha$ -3ジフルオロ4-4クロロベンジル-4'-4'-1フルオロフェニル)フェニルエーテルを得た。(収率58%)

これに1-ブロモプロパンを反応させて、 $\alpha$ ,  $\alpha$ - ジフルオロ-4-n- プロピルベンジル-4'-(4''- フルオロフェニル)フェニルエーテルを得た。(収率63%)

F-Ph-Ph-O-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub> (n)

18

【0110】 【化13】

$$F \longrightarrow O - CF_2 \longrightarrow C_3H_7 (n)$$

【0111】本化合物の分析結果を以下に示す。

MS

m/e 356(M<sup>+</sup>)

IR

1200cm<sup>-1</sup> (C-F)

【0112】実施例10と同様にして、次のような化合 10 物が合成できる。

F-Ph-Ph-O-CF<sub>2</sub>-Ph-CH<sub>3</sub>

F-Ph-Ph-O-CF<sub>2</sub>-Ph-C<sub>5</sub>H<sub>11</sub> (n)

F-Ph-Ph-O-CF<sub>2</sub>-Ph-C<sub>8</sub>H<sub>17</sub> (n)

【0113】1-ブロモプロパンの代わりに、1-ブロモ-4-n-プロピルベンゼン、トランス-1-ブロモ-4-n-プロピルシクロヘキサン等を用いて以下のような化合物も合成できる。

F-Ph-Ph-O-CF<sub>2</sub>-Ph-Ph-C<sub>3</sub>H<sub>7</sub> (n)

F-Ph-Ph-O-CF<sub>2</sub>-Ph-Cy-C<sub>3</sub>H<sub>7</sub>(n)

20 F-Ph-Ph-O-CF<sub>2</sub>-Ph-CH<sub>2</sub> CH<sub>2</sub>-C<sub>3</sub>H<sub>7</sub> (n)

## 【0114】実施例12

実施例1のフェノールの代わりにp-トリフルオロメチルフェノールを用いて、 $\alpha$ ,  $\alpha$ - ジフルオロ-4- クロロベンジル-4'-(4''- トリフルオロメチルフェニル)フェニルエーテルを得た。(収率53%)

これに1-ブロモプロパンを反応させて、 $\alpha$ ,  $\alpha$ - ジフルオロ-4-n- プロピルベンジル-4'-(4''- トリフルオロメチルフェニル)フェニルエーテルを得た。(収率57%)  $\text{CF}_3$ -Ph- $\text{O-CF}_2$ -Ph- $\text{C}_3$ H $_7$ (n)

【0115】

【化14】

【0116】本化合物の分析結果を以下に示す。

MS

m/e 330(M<sup>+</sup>)

ΙR

1200cm<sup>-1</sup> (C-F)

【0117】実施例13

実施例1のフェノールの代わりにp-トリフルオロメトキ 40 シフェノールを用いて、α,α- ジフルオロ-4- クロロベンジル-4'-(4''- トリフルオロメトキシフェニル)フェニルエーテルを得た。(収率53%)

これに1-ブロモプロパンを反応させて、α, α- ジフルオロ-4-n- プロピルベンジル-4'-(4''- トリフルオロメトキシフェニル) フェニルエーテルを得た。(収率51%)。

CF3O-Ph-O-CF2-Ph-C3H7 (n)

[0118]

【化15】

50

 $CF_3O$ O- $CF_2$ O- $C_3H_7$ (n)

【0119】本化合物の分析結果を以下に示す。

MS

m/e 346(M<sup>+</sup>)

I R

1200cm<sup>-1</sup> (C-F)

【0120】実施例12または13と同様にして、次のような化合物が合成できる。

CF3-Ph-Ph-O-CF2-Ph-CH3

CF3 O-Ph-Ph-O-CF2-Ph-CH3

CF3-Ph-Ph-O-CF2-Ph-C5H11 (n)

 $CF_3 O-Ph-Ph-O-CF_2-Ph-C_5 H_{11}$  (n)

 $CF_3 - CH_2 - Ph - Ph - O - CF_2 - Ph - C_5 H_{11}$  (n)

CF3-CH2-O-Ph-Ph-O-CF2-Ph-C5H11 (n)

【0121】1-ブロモプロパンの代わりに、1-ブロモ-4-n-プロピルベンゼン、トランス-1-ブロモ-4-n-プロピルシクロヘキサン等を用いて以下のような化合物も合成できる。

 $CF_3$ -Ph-Ph-O- $CF_2$ -Ph-Ph- $C_3H_7$  (n)

 $CF_3-Ph-Ph-O-CF_2-Ph-Cy-C_3H_7$  (n)

CF<sub>3</sub>-Ph-Ph-O-CF<sub>2</sub>-Ph-CH<sub>2</sub>CH<sub>2</sub>-C<sub>3</sub>H<sub>7</sub>(n)

CF<sub>3</sub> O-Ph-Ph-O-CF<sub>2</sub> -Ph-Ph-C<sub>3</sub> H<sub>7</sub> (n)

CF<sub>3</sub>O-Ph-Ph-O-CF<sub>2</sub>-Ph-Cy-C<sub>3</sub>H<sub>7</sub>(n)

CF<sub>3</sub>O-Ph-Ph-O-CF<sub>2</sub>-Ph-CH<sub>2</sub>CH<sub>2</sub>-C<sub>3</sub>H<sub>7</sub>(n)

【0122】実施例14

実施例1で合成した化合物4-n-プロピル-α,α-ジフルオロベンジル-4'-ブチリルフェニルエーテル 4g(0.01 2mol)、ベンゼン20mlを還流管付きの 200ml三ツロフラスコに入れ、ここに濃硫酸 3mlを加えた。ここにヒドラゾイックアシッド0.9gのベンゼン溶液22.5mlをゆっくり 30 加えながら40°Cで 1時間反応させた。

【0123】混合物を冷却後、ゆっくり水に注ぎ、エーテルで抽出した。エーテル層を中和後、乾燥、溶媒留去した後に得られた固形物を、再び還流管付きの100mlフラスコに移し、濃塩酸20ml加えて 2時間還流させた。内容物を水に注ぎ、エーテルで抽出した後、エーテル層を10%水酸化ナトリウム水溶液で洗浄した。乾燥後溶媒留去し、粗生成物を得た。ヘキサンから再結晶し、4-n-プロピル- α, α- ジフルオロベンジル-4'-アミノフェニルエーテル 1.0g(0.0036mol)を得た。(収率30%)H2N-Ph-O-CF2-Ph-C3H7(n)

【0124】得られた化合物全量を 100mlの反応器に移し、濃塩酸5ml,水10ml加え、40℃で、15分撹拌した後、0 ℃に冷却した。ここに亜硝酸ナトリウム0.34g の水溶液5gを系内温度が 4℃を越えないようにゆっくり滴下した。滴下終了後溶液を0℃で保存した。別の200ml 三ツロフラスコにシアン化カリウム1.4g、水酸化ナトリウム0.3g、水20ml、ベンゼン10mlを入れ、ここに、亜硝酸ニッケル1.6gの水溶液10mlを滴下した。この反応溶液に先に調製したジアゾニウム溶液を 5℃以下で滴下し

20 公母性した後 安温でつ

た。滴下後この温度で30分撹拌した後、室温で2時間反応させた。

【0125】ベンゼン層を分離し、水層をエーテルで抽出した。有機層を併せて水で洗浄、乾燥後溶媒留去した後、粗生成物をシリカゲルカラムクロマトグラフィ(移動相: ヘキサン/ジクロロメタン 5/1容量比)で精製し、目的化合物4-n-プロピルーα、α-ジフルオロベンジルー4'-シアノフェニルエーテル 0.4g(0.0014mol)を得た。(収率38%)

10 NC-Ph-O-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub> (n)

[0126]

【化16】

【0127】本化合物の分析結果を以下に示す。

MS

m/e 287(M<sup>+</sup>)

I R  $1205cm^{-1} (C-F), 2210cm^{-1} (C \equiv N)$ 

【0128】実施例14と同様にして、次のような化合 20 物が合成できる。

NC-Ph-O-CF2-Ph-CH3

 $NC-Ph-O-CF_2-Ph-C_5H_{1,1}$  (n)

 $NC-Ph-Ph-O-CF_2-Ph-C_3H_7$  (n)

 $NC-Ph-O-CF_2-Ph-Ph-C_3H_7$  (n)

 $NC-Ph-Ph-O-CF_2-Ph-Ph-C_3H_7$  (n)

【0129】実施例15

200mlハステロイオートクレーブに4-クロロベンゾトリクロリド100g(0.434mol)、フッ酸 (70wt%)/ピリジン(30wt%) 錯体49.6g を加えて80℃で 5時間反応させた。反応液を室温に冷却し、分液漏斗に移し、下層を集めた。下層をさらに5%炭酸水素ナトリウム水溶液で洗浄、減圧蒸留し、4-クロロ(クロロジフルオロメチル)ベンゼン47.4g(0.241mol)を得た。

CC1F2-Ph-C1

【0130】撹拌機、冷却管、滴下ロート、温度計を備えた1000mlの四ツロフラスコに、水素化ナトリウム (60%) 5.7g、N,N-ジメチルホルムアミド(DMF)100mlを入れ、窒素気流下、氷浴で5℃に冷却した。そこへ滴下ロートからp-(α,α,α-トリフルオロトルエン)チオール25.0g(0.14mol)のDMF 250ml 溶液を滴下した。滴下終了後、さらに室温で1時間撹拌した。

【0131】別途用意した撹拌機、冷却管、滴下ロート、温度計を備えた1000mlの四ツロフラスコに上記で合成した4-クロロークロロジフルオロメチルベンゼン19.5g(0.1mol)をDMF 75mlに溶解したものを加え、80℃に加熱した。ここへ先に調製したp-(α,α,α-トリフルオロトルエンチオール)ナトリウム塩の DMF溶液を加え、そのまま 3時間反応させた。水を加え、反応を停止させた後、有機層を分離した。水層を塩化メチレンで抽50出し、有機層とともに無水硫酸マグネシウムで乾燥し

た。

【0132】沪過後、溶媒を留去し、粗生成物をヘキサ ンを移動相とするシリカゲルカラムクロマトグラフィで 精製して、α, α- ジフルオロ-4- クロロベンジル-4'-\* \*トリフルオロメチルフェニルチオエーテル12.6g(0.0372 mol)を得た。(収率37%) CF3-Ph-S-CF2-Ph-C1

【0133】この化合物の分析結果を以下に示す。

<sup>19</sup>F NMR  $\delta$  ppm from CFCl<sub>3</sub> -71.9ppm(-SC-F<sub>2</sub>-,S)

-65.0ppm(CF<sub>3</sub>,S)

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ ppm from TMS

MS

m/e 338(M<sup>+</sup>)

I R

1205cm-1 (C-F)

【0134】アルゴン雰囲気下、還流管付きの100ml 三 10※F-Ph-S-CF2-Ph-CaH7(n) ツロフラスコにMg 0.3g(0.012mol)、乾燥THF 10mlを入 れた。次いで、1-ブロモプロパン1.2g(10mol) を発熱が 続く速度で滴下する。滴下終了後、さらに1時間還流を 続けた後、室温まで放冷する。この溶液を、別途、アル ゴン雰囲気下、還流管付きの 100回1三ツロフラスコ中に 上記で合成した $\alpha$ ,  $\alpha$ - ジフルオロ-4- クロロベンジル -4'-トリフルオロメチルフェニルチオエーテル2.4g(0.0 07mol)及び1,3-ビス (ジフェニルホスフィノ)プロパン ジクロロニッケル[NiCl2(dppp)] 0.15gを含む乾燥TIF 溶液20mlに、滴下漏斗を用いて滴下する。

【0135】滴下後さらに24時間還流した後、室温まで 冷却し、水20mlを加える。さらに20%塩酸20mlを加えて 有機層を分離し、水洗、乾燥後、溶媒を留去する。得ら れた粗生成物をシリカゲルカラムクロマトグラフィにて 精製して、α, α- ジフルオロ-4-n- プロピルベンジル -4'-トリフルオロメチルフェニルチオエーテル0.99gを 得た。(収率41%)

CF3-Ph-S-CF2-Ph-C3H7 (n)

[0136]

【化17】

$$CF_3$$
  $C_5$   $C_5$   $C_6$   $C_6$   $C_7$   $C_8$ 

【0137】本化合物の分析結果を以下に示す。 19 P NMR -72. Oppm(-S-CF<sub>2</sub>-, S)

-65. Oppm(CF<sub>1</sub>, S)

MS

m/e 346(M<sup>+</sup>)

I R 1205cm<sup>-1</sup> (C-F)

【0138】実施例15と同様にして、次のような化合 物が合成できる。

C<sub>2</sub>F<sub>5</sub>-Ph-S-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub> (n)

CF3-Ph-S-CF2-Ph-C5H11 (n)

CF3-Ph-S-CF2-Ph-Ph-C3H7 (n)

【0139】実施例16

実施例 $150p-(\alpha,\alpha,\alpha-$ トリフルオロトルエン) チオールの代わりに、p-フルオロベンゼンチオールを用 い、4-クロロ- クロロジフルオロメチルベンゼンの代わ りに、4-プロピルークロロジフルオロメチルベンゼンを 用いて、α, α- ジフルオロ-4-n- プロピルベンジル-4 - フルオロフェニルチオエーテルを得た。(収率55%) ※50 CF3 D-Ph-S-CF2 - Ph-C3 H7 (n)

7.  $18ppm \sim 7.53ppm(Ph, 8H, m)$ 

[0140]

【化18】

$$F \leftarrow O \rightarrow S - CF_2 \leftarrow O \rightarrow C_3H_7 (n)$$

【0141】本化合物の分析結果を以下に示す。

MS m/e 296(M<sup>+</sup>)

I R 1205cm-1 (C-F)

【0142】実施例17

20 実施例15のp-( $\alpha$ ,  $\alpha$ ,  $\alpha$ - トリフルオロトルエン) チオールの代わりに、p-フルオロフェニルベンゼンチオ ールを用い、4-クロロ- クロロジフルオロメチルベンゼ ンの代わりに、4-プロピル- クロロジフルオロメチルベ ンゼンを用いて、α, α- ジフルオロ-4-n- プロピルベ ンジル-4-(4'- フルオロフェニル) フェニルチオエーテ ルを得た。(収率60%)

F-Ph-Ph-S-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub>(n)

[0143]

【化19】

【0144】本化合物の分析結果を以下に示す。

MS

30

 $m/e 372(M^+)$ 

I R

1205cm<sup>-1</sup> (C-F)

【0145】実施例16または17と同様にして、次の ような化合物が合成できる。

 $F-Ph-S-CF_2-Ph-C_5H_{11}$  (n)

F-Ph-S-CF<sub>2</sub>-Ph-Ph-C<sub>3</sub>H<sub>7</sub>(n)

40 F-Ph-Ph-S-CF<sub>2</sub>-Ph-C<sub>5</sub>H<sub>11</sub> (n)

 $F-Ph-Ph-S-CF_2-Ph-Ph-C_3H_7(n)$ 

【0146】実施例18

実施例 $150p-(\alpha,\alpha,\alpha-$ トリフルオロトルエン) チオールの代わりに、トトリフルオロメトキシベンゼン チオールを用い、4-クロロ- クロロジフルオロメチルベ ンゼンの代わりに、4-プロピル- クロロジフルオロメチ ルペンゼンを用いて、α, α- ジフルオロ-4-n- プロピ ルベンジル-4- トリフルオロメトキシフェニルチオエー テルを得た。(収率63%)

【0147】 【化20】

$$CF_3O$$
  $C_3H_7$  (n)

【0148】本化合物の分析結果を以下に示す。

MS

m/e 362(M<sup>+</sup>)

I R

1205cm<sup>-1</sup> (C-F)

【0149】実施例18と同様にして、次のような化合物が合成できる。

C2F5O-Ph-S-CF2-Ph-C3H7(n)

 $C_3F_7O-Ph-S-CF_2-Ph-C_3H_7(n)$ 

【0150】実施例19

実施例15のα, α, α- トリフルオロトルエンチオールの代わりに、ベンゼンチオールを用いる以外は同様の反応条件で反応させ、化合物α, α- ジフルオロ-4- クロロベンジルーフェニルチオエーテルを合成した。(収率45%)

Ph-S-CF2-Ph-C1

【0151】さらにこの化合物から実施例15と同様の 20 プロピルマグネシウムプロミドのカップリング反応によ りα, α- ジフルオロ-4-n-プロピルベンジル-フェニ ルチオエーテルを得た。(収率61%) \*

<sup>19</sup>F NMR (CDCl<sub>3</sub>)  $\delta$  ppm from CFCl<sub>3</sub> -71.7ppm(-S-CF2-,S)

MS

m/e 348(M<sup>+</sup>)

ΙR

 $1205cm^{-1} (C-F), 1685cm^{-1} (C=0)$ 

【0156】実施例19と同様にして、次のような化合物が合成できる。

 $CH_3-CO-Ph-S-CF_2-Ph-C_3H_7$  (n)

 $n-C_3H_7-CO-Ph-S-CF_2-Ph-Ph-C_3H_7(n)$ 

 $n-C_3H_7-Ph-C_0-Ph-S-CF_2-Ph-C_3H_7$  (n)

【0157】実施例20

実施例 $150p-(\alpha,\alpha,\alpha-h)$ フルオロトルエン)チオールの代わりに、p-プロモベンゼンチオールを用い、4-クロロ-クロロジフルオロメチルベンゼンの代わりに、4-プロピル-クロロジフルオロメチルベンゼンを用いて、 $\alpha,\alpha-$ ジフルオロ-4-n-プロピルベンジル-4'-プロモフェニルチオエーテルを得た。(収率69%)

 $Br-Ph-S-CF_2-Ph-C_3H_7(n)$ 

[0158]

【化22】

$$Br \leftarrow S-CF_2 \leftarrow C_3H_7 (n)$$

【0159】本化合物の分析結果を以下に示す。

MS

 $m/e 356(M^+),358(M^+)$ 

ΙR

1205cm<sup>-1</sup> (C-F)

【0160】引き続き、撹拌機、冷却管、滴下ロート、 IR 1205cm 温度計を備えた100ml の四ツロフラスコに、先に調製し 【0164】実施例20 た液晶性化合物前駆体3.6g(0.01mol)、細かく粉砕した※50 な化合物が合成できる。

\* Ph-S-CF2-Ph-C3H7 (n)

【0152】アルゴン雰囲気下、還流管付きの 100ml三ツロフラスコに塩化メチレン20ml、塩化アルミニウム、上記で合成した化合物であるα,α-ジフルオロ-4-n-プロピルベンジル-フェニルチオエーテル2.8g(0.01mol)を入れ、0℃に冷却した。ここに塩化メチレンで希釈した酪酸クロリド1.6g(0.015mol)を滴下した。15℃でさらに 2時間反応させた後、水を加えて反応を停止した。

24

10 【0153】有機層を分離した後、水層を塩化メチレンで抽出し、有機層に加えた。有機層を 5%炭酸水素ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥した。有機層を濃縮後、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィで精製し、 α, α- ジフルオロ-4-1-プロピルベンジル-4'-ブチリルフェニルチオエーテル2.1gを得た。(収率60%)

 $n-C_3H_7-CO-Ph-S-CF_2-Ph-C_3H_7$  (n)

[0154]

【化21】

 $n-C_3H_7-CO$   $-C_3H_7$   $-C_3H_7$ 

【 0 1 5 5 】本化合物の分析結果を以下に示す。 1 7ccm(-S-CF2- S)

※シアン化銅1.8g(0.02mol) 、ピリジン10mlをこの順序で加えた。混合物を 150℃で10時間撹拌した後、80℃に冷却し、14%アンモニア水 8ml、トルエン10mlとを加え、

30 室温で30分間撹拌した。エーテル15mlを加え、反応混合物をグラスフィルターで沪過した。

【0161】 沪液を分液し、水層をエーテルで 2回抽出し、有機層合わせて 5%アンモニア水、水で洗浄した。有機層を硫酸マグネシウム上で乾燥した後、濃縮、シリカゲルカラムクロマトグラフィ(移動相へキサン/ジクロロメタン10/2容量比)で精製し、シアノ基を有する目的の化合物である α, α- ジフルオロ-4-n- プロピルベンジル-4'-シアノフェニルエーテル1.0gを得た。(収率33%)

40 NC-Ph-S-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub> (n)

[0162]

【化23】

$$NC \longrightarrow S-CF_2 \longrightarrow C_3H_7(n)$$

【0163】本化合物の分析結果を以下に示す。

MS

m/e 303(M<sup>+</sup>)

IR  $1205cm^{-1} (C-F), 2210cm^{-1} (C \equiv N)$ 

【0164】実施例20の前段と同様にして、次のような化合物が合成できる。

Br-Ph-S-CF2-Ph-C5H11 (n)

Br-Ph-S-CF2-Ph-Ph-C3H7(n)

Br-Ph-Ph-S-CF2-Ph-C3H7 (n)

Br-Ph-Ph-S-CF2-Ph-C5H11 (n)

Br-Ph-Ph-S-CF2-Ph-Ph-C3H7 (n)

【0165】実施例20と同様にして、次のような化合 物が合成できる。

25

 $NC-Ph-S-CF_2-Ph-C_5H_{11}$  (n)

NC-Ph-S-CF2-Ph-Ph-C3H7(n)

NC-Ph-Ph-S-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub>(n)

NC-Ph-Ph-S-CF2-Ph-C6H11 (n)

NC-Ph-Ph-S-CF<sub>2</sub>-Ph-Ph-C<sub>3</sub>H<sub>7</sub> (n)

\*【0166】実施例21

実施例 $150p-(\alpha,\alpha,\alpha-$ トリフルオロトルエン) チオールの代わりに、p-メルカプト安息香酸(4-n- プロ ビルフェニル) を用い、4-クロロ- クロロジフルオロメ チルベンゼンの代わりに、4-プロピル- クロロジフルオ ロメチルベンゼンを用いて、α, α- ジフルオロ-4-n-プロピルベンジル-4'-(4''-n- プロピルフェノキシカル ボニル)フェニルチオエーテルを得た。(収率78%)  $n-C_3H_7-Ph-OCO-Ph-S-CF_2-Ph-C_3H_7$  (n)

[0167] 【化24】

$$n-C_3H_7-O>0C0-O>-S-CF_2-O>-C_3H_7 (n)$$

【0168】本化合物の分析結果を以下に示す。

MS

m/e 440(M<sup>+</sup>)

I R

 $1205cm^{-1}$  (C-F),  $1690cm^{-1}$  (C=0)

【0169】実施例21と同様にして、次のような化合 物が合成できる。

 $CH_3-Ph-OCO-Ph-S-CF_2-Ph-C_3H_7(n)$ 

 $n-C_3H_7-Ph-OCO-Ph-S-CF_2-Ph-Ph-C_3H_7$  (n)

n-C<sub>3</sub>H<sub>7</sub>-Ph-CH<sub>2</sub>CH<sub>2</sub>-Ph-S-CF<sub>2</sub>-Ph-C<sub>3</sub>H<sub>7</sub>(n)

【0170】実施例22

メルク社製液晶組成物「ZLI-1565」97.5Wt%に、実施例 1~21で合成した化合物(実施例20の前段で合成の α, α- ジフルオロ-4-n- プロピルベンジル-4'-ブロモ フェニルチオエーテルも含めて22種類の化合物)をそ れぞれ 2.5wt%加えて、さらに光学活性物質を加えて2 2種類の液晶組成物とした。一対のポリイミド配向膜を 30 は、前記意味を持つ)で表されるジフルオロメチレン化 有するIT〇電極付きの基板を、電極面が相対向するよ うに配置して、周辺をシールして空セルを形成した。 【0171】この空セル内に上記液晶組成物を注入し、 液晶のねじれ角が 240°のSTNLCDを製造した。こ※

※の両面に偏光膜を配置して、電極に電圧を印加して、時 分割駆動を行った。この結果、いずれも高速応答が得ら れた。

【0172】比較例として、R1-(A1)a-Y1-が電子供与性 20 の基であり、R<sup>2</sup>-(A<sup>4</sup>)<sub>n</sub>-Y<sup>2</sup>-が電子吸引性の基である実施 例1と類似の化合物(n-C3H7-Ph-O-CF2-Ph-CO-C3H7(n)) を 2.5wt%加えた同様の液晶組成物を用いたSTNLC Dと比較した。その結果、本発明の実施例1の化合物(n -C3H7-C0-Ph-0-CF2-Ph-C3H7(n)) を用いたSTNLCD ものは、時分割駆動特性が優れていた。

[0173]

【発明の効果】本発明の一般式(1)

 $R^1 - (A^1)_m - Y^1 - A^2 - Z - CF_2 - A^3 - Y^2 - (A^4)_n - R^2$ 

(式中R<sup>1</sup>、R<sup>2</sup>、A<sup>1</sup>~A<sup>4</sup>、Y<sup>1</sup>、Y<sup>2</sup>、Z、m、nについて 合物を含有してなることを特徴とする液晶組成物は、誘 電率異方性( $\Delta \epsilon$ )が大きく、時分割駆動を行った際に その駆動特性を向上させることができる。

#### フロントページの続き

(72)発明者 宮島 隆

神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内

(72)発明者 高 英昌

神奈川県横浜市神奈川区羽沢町1160番地 株式会社旭硝子電子商品開発センター内

(72)発明者 町田 勝利

神奈川県高座郡寒川町岡田4-16-31