

SRv6 uSID: Measurement Analytics & Path Tracing

Clarence Filsfils, Pablo Camarillo, Ahmed Abdelsalam, Rakesh Gandhi, Sonia Ben Ayed

Service Creation

- End-to-End Policy from host to Internet through DC, Access, Metro, Core, Cloud
- Solves Any Requirement VPN, FRR, TE, NFV
- We want to understand the SLA provided to customers: How do we measure the service?

How do we measure the service?

- External probing appliances
- x86 hardware not optimized for probing
- Commodity testing: L3 TWAMP Light generation and reflection; L2 Service OAM

How do we measure the service?

- Complex to deploy (requires physical installation)
- Complex to operate (often require proprietary orchestrator for provisioning)
- Port consumption on PE devices to connect monitoring appliances
- Extra power consumption ~90W (+ SFP)
- Limited monitoring (blind end-to-end; no Routing/CP knowledge; no visibility into underlay fabric)
- Limited analytics (providing min, max, avg doesn't help analyzing issues)
- Extremely expensive: "For each 1\$ spent on routers, we spend an additional 1\$ on probing appliances."

How about integrating it in the Hardware?

How about integrating it in the Hardware?

- Leverage router HW capabilities for probe generation/ingestion natively
- CAPEX savings:
 - No need to spend \$ on external boxes
 - No PE port consumption
- OPEX savings:
 - Already integrated in your router. No physical deployment required; no cost involved in maintenance; same orchestration
 - No additional power consumption
- Richer functionality with routing awareness
 - FlexAlgo, DSCP, ECMP, ...

Are we performant?

- Dedicated HW engine generates probes at high rate
 - Silicon One (Q200) delivers > 14 Million Probes Per Second
 - For free: no impact on service creation
- Dedicated HW engine ingest probes, measures and aggregates data:
 - Granular statistics: No more {min, avg, max}
 - Latency histogram!

The importance of granular statistics – 5 bins

The importance of granular statistics – 10 bins

The importance of granular statistics – 30 bins

Service Measurement: 3L Probing

- End-to-end measurement of Latency, Loss and Liveness
 - From iPE to ePE
 - Single probe for everything
- Synthetic probing
 - Simulates end-user experience
 - Allows to detect problems before users do
- We monitor the shared transport AND the service forwarding path on PEs
- We monitor all ECMP paths from iPE to ePE
- Digging billions of Performance Measurements
 - Pushed through telemetry to network-wide analytics engine
 - Analytics allow to Correlating with Current and Past Routing Data

Network-wide Analytics

Network-wide analytics with SR Services App

• Single pane of glass visibility for network status

Network-wide analytics with SR Services App

- Single pane of glass visibility for network status
- Intelligent data
 - No point in plotting 40k graphs with latency
 - We process raw/brute data and correlate it with routing to obtain intelligent data
 - Automatically drawing your attention to what matters
- Analytics allows to identify suspected troublemakers and trigger further troubleshooting

≡ Cisco 3L Loss

≡ Cisco 3L Loss

_ _ _ _

≡ Cisco 3L Loss

Last period Last stable topology

Suspected links for ongoing issues:

1.- Sacramento-HundredGigE0/0/0/1: Load(97%)

Test

2.- NewOrleans-HundredGigE0/0/0/2:

Correlation

Test

3.- Atlanta-HundredGigE0/0/3:

Load 92%

Test

Historical Troublemakers:

- NewOrleans-HundredGigE0/0/0/2: Correlation Test

Path Tracing: unleashing underlay visibility

How did the packet arrive from A to F?

- 3 possible "valid" ECMP paths
 - Any drop?
 - End-to-End Latency homogeneity?
- An invalid path is possible
 - Routing or FIB corruptions
- 40-year-old unsolved IP problem

Stamping Trajectory in PT Header

- Each transit router records in PT header:
 - Outgoing interface ID
 - Timestamp (with 60µs accuracy)
 - Egress Queue Load
- Highly compressed for low MTU overhead
 - Only 3 bytes per hop!
- Implemented at linerate: Reports true packet experience
- Native interworking with legacy nodes
 - Seamless deployment
- Hardware/XR feature with analytics app

Mature Eco-System

- PT Midpoint Shipping IOS XR 7.8.1
 - Cisco 8000 (Silicon One Q200; native SDK)
 - NCS5700 (DNX2 J2; native SDK)
 - ASR9000 (LS)
- Rich Eco-system
 - Cisco, Broadcom, Marvell, +others
 - Linux, FD.io VPP, P4, Wireshark, TCPDUMP
 - SAI/SONiC in progress
- Ongoing standardization
 - draft-filsfils-spring-path-tracing

ECMP Analytics

- Detects
 - Blackholing paths
 - An ECMP path that is not expected (routing/dataplane corruption)
 - Incoherent latency between ECMP paths
- EDM measures
 - End-to-end latency of each path (60μsec in WAN, 200ns in DC)
- Current technique of sending probes from anywhere to anywhere without any PT data requires AI processing of huge data sets

Demo available

NFV: Latency Analytics and Proof of Transit

- Deterministic confirmation of NFV processing
- Deterministic latency measurement of the NFV processing
 - And/or the detour to the DC to get the NFV processing (e.g., MUP use-case)

Jitter Analytics

- ECMP Analytics probing created an extensive dataset
 - Dataplane Timestamps at each hop
 - 60μs accuracy in the WAN (200nsec in DC)
- Jitter Analytics studies this dataset on a per-node/per-intf
 - Jitter introduced by that node and egress interface
 - Min, Avg, Per50, Per80, Per90...
 - Across different queues
 - Al-based Alerts
- Per-Interface Jitter at 60µsec in live network has never been done before

PT ECMP Analytics Demo

PT Demo use case 1: Blackholing paths

Corruption causing blackholes

- Hardware corruption on DEN
 - Traffic to NYC via CHI is dropped.

ECMP Analytics SFO -> NYC

25% of ECMP paths are blackholing.

PT Demo use case 2: Non-expected / Wrong path

Corruption causing non-expected path

- Hardware/FIB corruption on DAL.
 - Traffic to NYC is taking a wrong path.

ECMP Analytics SFO -> NYC

PT Demo use case 3: Non-homogeneous latency

Path Tracing

Conclusion

Conclusion

- SRv6 uSID integrated solution
 - End-to-end service creation
 - Measurements
 - Analytics
- Un-matched measurements hardware capability:
 - Un-matched performance
 - Un-matched accuracy
 - Un-matched economics (Silicon integration)
 - Un-matched coverage (per ECMP)
 - Un-matched visibility of the underlay fabric (per hop)
- Un-matched analytics:
 - Intelligent data. No point in raw/brute data.
 - Data correlated with routing information

The bridge to possible