RICERCA OPERATIVA - PARTE I

ESERCIZIO 1. (11 punti) Sia dato il seguente problema di PL

$$\begin{aligned} & -x_1 \\ & -x_1 + x_2 \leq 2 \\ & -x_1 - x_2 \leq -1 \\ & x_1, x_2 \geq 0 \end{aligned}$$

Si eseguano i seguenti punti:

- si risolva il problema per via grafica;
- lo si trasformi in forma standard e si scriva il duale del problema in forma standard;
- si risolva il duale per via grafica;
- si risolva il problema primale in forma standard con il metodo due fasi, visualizzando graficamente a ogni iterazione dove ci si trova sia per quanto riguarda il primale che per quanto riguarda il duale una volta che si è entrati nella regione ammissibile del primale;
- \bullet si esegua l'analisi di sensitività sui coefficienti di x_1 nel primo e secondo vincolo.

ESERCIZIO 2. (8 punti) Sia dato il seguente problema di PL

$$\max \quad \alpha x_1 + (\alpha - 2)x_2$$

$$x_1 + x_2 + x_3 = \alpha + 1$$

$$x_1 - x_2 + x_4 = \alpha$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Lo si risolva spiegando come varia la soluzione al variare di α limitandosi ai valori $\alpha \leq 1$.

ESERCIZIO 3. (5 punti) Dato un problema di programmazione lineare in forma standard, si dimostri che se esso ha obiettivo illimitato, allora il suo duale ha regione ammissibile vuota.

ESERCIZIO 4. (5 punti) Si dia la definizione di raggio della regione ammissibile S_a di un problema di PL. Data la funzione obiettivo $\mathbf{c}^T\mathbf{x}$ del problema di PL, si dica (*e si dimostri*) come deve essere il prodotto scalare del vettore \mathbf{c} con un generico raggio \mathbf{r} di S_a nel caso in cui $S_{ott} \neq \emptyset$.