LIST OF DEFINITIONS

```
*1·01.
                p \supset q
                                                                            *13·03.
                                                                                             x = y = z
 *2·33.
                                                                            *14·01.
                                                                                             [((\imath x))(\phi x)] \cdot \psi((\imath x))(\phi x)
                p \lor q \lor r
 *3·01.
                                                                            *14·02.
                                                                                             E!((\imath x))(\phi x)
                p \cdot q
 *3·02.
                p \supset q \supset r
                                                                            *14·03.
                                                                                             [((\imath x))(\phi x),((\imath x))(\psi x)] \cdot f\{((\imath x))(\phi x),
 *4·01.
                                                                                                 ((\imath x))(\psi x)
               p \equiv q
                                                                                             [((\imath x))(\psi x)] \cdot f\{((\imath x))(\phi x), ((\imath x))(\psi x)\}
 *4·02.
                p \equiv q \equiv r
                                                                            *14·04.
                                                                            *20·01.
 *4·34.
                                                                                             f\{\hat{z}(\psi z)\}
                p \cdot q \cdot r
 *9·01.
              \sim \{((x)) \cdot \phi x\}
                                                                            *20·02.
                                                                                             x \in \phi!\hat{z}
 *9.011. \sim ((x)) \cdot \phi x
                                                                            *20·03.
                                                                                             Cl
 *9·02.
                \sim \{((\exists x)) \cdot \phi x\}
                                                                            *20·04.
                                                                                             x, y \in \alpha
 *9.021. \sim ((\exists x)) \cdot \phi x
                                                                            *20·05.
                                                                                             x, y, z \in \alpha
 *9·03.
                ((x)) \cdot \phi x \vee p
                                                                            *20·06.
                                                                                             x \sim \epsilon \alpha
 *9·04.
                p \lor ((x)) \cdot \phi x
                                                                            *20·07.
                                                                                             ((\alpha)) f\alpha
 *9·05.
                ((\exists x)) \cdot \phi x \vee p
                                                                            *20·071.
                                                                                             ((\exists \alpha)) \cdot f \alpha
 *9·06.
                p \lor ((\exists x)) \cdot \phi x
                                                                            *20·072.
                                                                                             [((\imath\alpha))(\phi\alpha)] \cdot f((\imath\alpha))(\phi\alpha)
 *9·07.
                ((x)) \phi x \lor ((\pi x)) \phi x
                                                                                             f\{\hat{\alpha}(\psi\alpha)\}
                                                                            *20·08.
*9·08.
                ((\exists x)) \phi x \lor ((x)) \phi x
                                                                            *20.081. \alpha \epsilon \psi! \hat{z}
*10·01.
                ((\exists x)) \cdot \phi x
                                                                                             f\{\hat{x}\hat{y}\phi(x,y)\}
                                                                            *21·01.
*10·02.
                \phi x \supset_x \psi x
                                                                            *21·02.
                                                                                             a\{\phi!(\hat{x},\hat{y})\}b
*10·03.
                \phi x \equiv_x \psi x
                                                                            *21·03.
                                                                                             Rel
                ((x,y)) \cdot \phi(x,y)
*11·01.
                                                                            *21·07.
                                                                                             ((R)) fR
                ((x,y,z)) \cdot \phi(x,y,z)
*11.02.
                                                                            *21·071.
                                                                                            ((\exists R)) \cdot fR
                                                                                            [((\imath R))(\phi R)] , f((\imath R))(\phi R)
*11.03.
                ((\exists x, y)) \cdot \phi(x, y)
                                                                            *21·072.
                                                                                             f\{\hat{R}\hat{S}\psi(R,S)\}
                ((\exists x, y, z)) \cdot \phi(x, y, z)
*11·04.
                                                                            *21·08.
                                                                           *21.081. P\{\phi!(\hat{R},\hat{S})\}Q
               \phi(x,y) \supset_{x,y} \psi(x,y)
*11·05.
               \phi(x,y) \equiv_{x,y} \psi(x,y)
                                                                           *21.082. f\{\hat{R}(\psi R)\}
*11·06.
                                                                            *21.083. R \in \psi! \hat{R}
*13·01.
                x = y
*13·02.
                x \neq y
                                                                            *22·01.
                                                                                             \alpha \epsilon \beta
                                                                            *22·02.
                                                                                             \alpha \cap \beta
```

- *22.03. $\alpha \cup \beta$
- *22.04. $-\alpha$
- *22.05. $\alpha \beta$
- *22.53. $\alpha \cap \beta \cap \gamma$
- *22.71. $\alpha \cup \beta \cup \gamma$
- *23.01. $R \subseteq S$
- *23.02. $R \dot{S}$
- *23.03. $R \cup S$
- *****23**•**04. *∸R*
- *23.05. R S
- *23.53. $R \dot{\wedge} S \dot{\wedge} T$
- *23.71. $R \cup S \cup T$
- *24.01. V
- *****24**·**02. Λ
- *****24**·**03. ∃ ! α
- *25.01. V
- *25.02. Å
- *30.01. R'y
- *30.02. R'S'y
- *31.01. Cnv
- *31·02. *P*
- *32.01. R
- *32·02. $\stackrel{\leftarrow}{R}$
- *32.03. sg
- *32.04. gs
- *33·01. D
- *33.02. CI
- *33·03. C
- *33.04. F
- *34.01. R | S
- *34.02. R^2

- *34.03. R^3
- *35.01. $\alpha \mid R$
- *35.02. $R \upharpoonright \beta$
- *35.03. $\alpha \upharpoonright R \upharpoonright \beta$
- *35.04. $\alpha \uparrow \beta$
- *35.05. $R'x \uparrow \beta$
- *35.24. $\alpha \mid R \mid S$
- *35·25. $P \upharpoonright \alpha$
- *36.01. $R \mid \beta \mid$
- *37.01. *R*'\beta
- *37.02. R_{ϵ}
- *37.03. \tilde{R}_{ϵ}
- *37.04. $R'''\kappa$
- *37.05. $E!! R''\beta$
- *38.01. x q
- *38.02. Qx
- *38.03. $\alpha \circ y$
- *****40**·**01. *p*'κ
- *40.02. $s'\kappa$
- *41.01. $\dot{p}^{i}\lambda$
- *41.02. $\dot{s}^{*}\lambda$
- *43.01. R || S
- *50·01. I
- *50·02. J
- *****51**·**01. ι
- *****52**·**01. 1
- *****54**·**01. 0
- *****54**·**02. 2
- *55.01. $x \downarrow y$
- *55.02. $R'x \downarrow y$
- *56.01. 2
- *56.02. 2_r

- *56.03. 0_r
- *60.01. Cl
- *60.02. Cl ex
- *60.03. Cls²
- *60.04. Cls³
- *61.01. Rl
- *61.02. Rl ex
- *61.03. Rel²
- *61.04. Rel³
- *62.01. ϵ
- *****63**·**01. *t*'*x*
- *63.011. t_1 'x
- *63.02. t^{0} α
- *63.03. t^{1} κ
- *63.04. t_2 ' κ
- *63.041. t_3 ' κ
- *63.05. t^{2} κ
- *63.051. t^{3} κ
- *64.01. t^{00} α
- *****64**·**011. t_{11} **'**x
- *64.012. t_{12} 'x
- *64.013. *t*₂₁.**x*
- *64.014. t₂₂.4x
- *64.02. t^{01} α
- *64.021. t^{10} α
- *64.022. t^{11} α
- *64.03. ${}^{0}t_{1}$ ' α
- *64.031. ${}^{1}t_{1}$ 6.4
- *64.04. t_1^{0} α
- *64.041. t_1^{1} α
- *65.01. α_x
- *65.02. $\alpha(x)$

- *65.03. R_x
- *65.04. R(x)
- *65·1. $R_{(x,y)}$
- *65·11. $R(x_u)$
- *65·12. R(x,y)
- *70.01. $\alpha \rightarrow \beta$
- *73.01. $\alpha \overline{\text{sm}} \beta$
- *73.02. sm
- *80.01. P_{Δ}
- *84.01. Cls² excl
- *84.02. Clexcl ' γ
- *84.03. Cls ex² excl
- *85.5. $P \downarrow y$
- *88.01. Rel Mult
- *88.02. Cls² Mult
- *****88**·**03. Mult ax
- *90.01. R_*
- *90.02. \ddot{R}_*
- *91.01. $R_{\rm st}$
- *91.02. $R_{\rm ts}$
- *91.03. Pot'R
- *91.04. Potid'R
- *91.05. R_{po}
- *93·01. B
- *93.02. \min_{P}
- *93.021. max_P
- *93.03. gen'P
- *95.01. *P***Q*
- *96.01. I_R 'x
- *96.02. J_R 'x
- *97.01. $\overset{\leftrightarrow}{R}$ 'x
- *100.01. Nc