WHAT IS CLAIMED IS:

1. A method for attracting insects, said method comprising offering to said insects for ingestion an effective attractant amount of a compound having the formula:

$$\begin{array}{c|c}
R_2 & R_1 \\
R_4 & N \\
R_{11} & X
\end{array}$$

$$\begin{array}{c|c}
R_{13} & & & \\
\end{array}$$
(I)

wherein:

25

R₁ is CN or methyl;

 R_2 is $-S(O)_nR_3$;

R₃ is alkyl or haloalkyl;

 R_4 is hydrogen, halogen, -NR5R6, -S(O)_mR7, alkyl, haloalkyl, -OR8 or -N=C(R9)(R10);

each of R_5 and R_6 , which are the same or different, is hydrogen, alkyl, haloalkyl, -C(O)alkyl or $-S(O)_rCF_3$; or R_5 and R_6 together form a divalent lower alkylene radical which is optionally interrupted by one or more heteroatoms selected from O, S and N;

R₇ is alkyl or haloalkyl;

R₈ is alkyl, haloalkyl or hydrogen;

R₉ is hydrogen or alkyl;

R₁₀ is phenyl or heteroaryl, each of which is unsubstituted or is substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -O-alkyl, -S-alkyl, cyano and alkyl;

each of R_{11} and R_{12} , which are the same or different, is halogen or hydrogen; R_{13} is halogen, haloalkyl, haloalkoxy, $-S(O)_qCF_3$ or $-SF_5$;

each of m, n, q and r, which are the same or different, is 0, 1 or 2; and X is nitrogen or $C-R_{12}$;

provided that when R_1 is methyl, R_3 is haloalkyl, R_4 is NH_2 , R_{11} is Cl, R_{13} is CF_3 , and X is N.

5

10

- 2. A method according to Claim 1, having at least one feature selected from the group consisting of:
 - (a) R_1 is CN;
 - (b) R₃ is haloalkyl;
 - (c) R_4 is NH_2 ;
- $\mbox{(d)} \qquad \mbox{each of R_{11} and R_{12}, which are the same or different, is halogen; and} \label{eq:R11}$
 - (e) R₁₃ is haloalkyl.

15

3. A method according to Claim 1, wherein the compound of formula (I) has the formula:

R₁₄S(O)_n CN (Ia)

20

25

30

wherein:

R₁₄ is alkyl or haloalkyl;

R₁₅ is alkyl, haloalkyl, amino, alkylamino or dialkylamino;

each of R_{16} and R_{17} , which are the same or different, is hydrogen or halogen;

R₁₈ is halogen, haloalkyl, haloalkoxy or SF₅ and n is 0, 1 or 2.

- 4. A method according to Claim 3, wherein at least one of R_{16} and R_{17} is halogen.
 - 5. A method according to Claim-4, wherein each of R_{16} and R_{17} is halogen, R_{18} is haloalkyl, R_{14} is lower haloalkyl and R_{15} is amino.
- 10 6. A method according to Claim 5, wherein the compound of formula (Ia) is 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethyl)phenyl-4-trifluoromethylsulfinylpyrazole.
- A method according to Claim 1, wherein said insects are insects which are able to enter or inhabit buildings.
 - A method according to Claim 7; wherein said compound of formula (I) is offered to said insects as an alternative food source at a locus which is in or near an area in which other food is present.
- A method according to Claim 8, wherein the food source comprising said compound of formula (I) is in solid, liquid or gel form.
- A method according to Claim, wherein said solid, liquid or gel form is a solid, liquid or gel bait.
 - A method according to Claim 1, wherein said insects belong to the family Blatidae or Formacidae.
- 30 12. A method according to Claim 8, wherein said insects are cockroaches.

10

15

A method according to Claim 1, wherein said insects are American cockroaches (*Periplanipa americana*) or German cockroaches (*Blatella germanica*).

A method according to Claim 10, wherein said insects are American cockroaches (*Periplanipa americana*) or German cockroaches (*Blatella germanica*).

A method according to Claim 8, wherein said compound of formula (I) is offered in an amount of from about 0.00001 g to about 20 g per 100 square meters.

A method according to Claim 15, wherein said compound of formula

(I) is offered in an amount of from about 0.001 g to about 1 g per 100 square meters.

A method according to Claim 8, wherein the food source comprising said compound of formula (I) comprises from about 0.001 to about 15 % w/w of compound of formula (I).

A method according to Claim 17, wherein the food source comprising said compound of formula (I) comprises from about 0.1 to about 6 % w/w of compound of formula (I).

A method for attracting and killing insects comprising offering to said

(I)

5

10

15

20

25

30

R₂ R₁ R₁

R₁₃

insects for ingestion a compound having the formula:

wherein:

R₁ is CN or methyl;

 R_2 is $-S(O)_nR_3$;

R₃ is alkyl or haloalkyl;

 R_4 is hydrogen, halogen, -NR₅R₆, -S(O)_mR₇, alkyl, haloalkyl, -OR₈ or -N=C(R₉)(R₁₀);

each of R_5 and R_6 , which are the same or different, is hydrogen, alkyl, haloalkyl, -C(O)alkyl or $-S(O)_rCF_3$; or R_5 and R_6 together form a divalent lower alkylene radical which is optionally interrupted by one or more heteroatoms selected from O, S and N;

R₇ is alkyl or haloalkyl;

R₈ is alkyl, haloalkyl or hydrogen;

R₀ is hydrogen or alkyl;

 R_{10} is phenyl or heteroaryl, each of which is unsubstituted or is substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -O-alkyl, -S-alkyl, cyano and alkyl;

each of R_{11} and R_{12} , which are the same or different, is halogen or hydrogen; R_{13} is halogen, haloalkyl, haloalkoxy, $-S(O)_qCF_3$ or $-SF_5$; each of m, n, q and r, which are the same or different, is 0, 1 or 2; and

USPTOOBYZIIZA .IOIOSG

X is nitrogen or C-R₁₂;

provided that when R_1 is methyl, R_3 is haloalkyl, R_4 is NH_2 , R_{11} is Cl, R_{13} is CF_3 , and X is N;

wherein said compound of formula (I) is offered in an amount which is effective both as an attractant and as an insecticide.

A method according to Claim 19, having at least one feature selected from the group consisting of:

- (a) R_1 is CN;
- (b) R₃ is haloalkyl;
- (c) R_4 is NH_2 ;
- $\mbox{(d)} \qquad \mbox{each of R_{11} and R_{12}, which are the same or different, is halogen; and} \label{eq:R11}$
 - (e) R₁₃ is haloalkyl.

21. A method according to Claim 19, wherein the compound of formula (I) has the formula:

20

5

10

15

25

wherein:

R₁₄ is alkyl or haloalkyl;

R₁₅ is alkyl, haloalkyl, amino, alkylamino or dialkylamino; each of R_{16} and R_{17} , which are the same or different, is hydrogen or halogen;

R₁₈ is halogen, haloalkyl, haloalkoxy or SP₅; and n is 0, 1 or 2.

- 22. A method according to Claim 21, wherein at least one of R_{16} and R_{17} 5 is halogen.
 - 23. A method according to Claim 22, wherein each of R_{16} and R_{17} is halogen, R_{18} is haloalkyl, R_{14} is lower haloalkyl and R_{15} is amino.
- 24. A method according to Claim 23, wherein the compound of formula (Ia) is 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethyl)phenyl-4-trifluoromethylsulfinylpyrazole.
- A method according to Claim 19, wherein said compound of formula

 (I) is offered to said insects as an alternative food source at a locus which is in or near an area in which other food is offered.
 - 26. A method according to Claim 25, wherein the food source comprising said compound of formula (I) is in solid, liquid or gel form.
 - A method according to Claim 26, wherein said solid, liquid or gel form is a solid, liquid or gel bait.
- 28. A method according to Claim 19, wherein said insects belong to the family Blatidae or Formacidae.
 - 29. A method according to Claim 25, wherein said insects are cockroaches.
- A method according to Claim 19, wherein said insects are American cockroaches (Periplanipa americana) or German cockroaches (Blatella germanica).

15

20

A method according to Claim 27, wherein said insects are American cockroaches (*Periplanipa americana*) or German cockroaches (*Blatella germanica*).

A method according to Claim 19, wherein said compound of formula

(I) is offered in combination with a carrier or surface-active agent.

A method according to Claim 19, wherein said compound of formula

(I) is offered in combination with another pesticide.

A method according to Claim wherein said compound of formula

(I) is offered in an amount of from about 0.00001 g to about 20 g per 100 square meters.

A method according to Claim 34, wherein said compound of formula

(I) is offered in an amount of from about 0.001 g to about 1 g per 100 square meters.

A method according to Claim 25, wherein the food source comprising said compound of formula (I) comprises from about 0.001 to about 15 % w/w of compound of formula (I).

A method according to Claim 36, wherein the food source comprising said compound of formula (I) comprises from about 0.1 to about 6 % w/w of compound of formula (I).

A method for controlling a population of insects at a locus which is in or near a food storage, preparation, serving or eating area, said method comprising offering to said insects as an alternative food source an amount of a compound having the formula:

$$R_{2}$$
 R_{4}
 N
 N
 R_{11}
 X
 R_{13}
 (I)

15 wherein:

20

 R_1 is CN or methyl;

 R_2 is $-S(O)_nR_3$;

R₃ is alkyl or haloalkyl;

 R_4 is hydrogen, halogen, -NR5R6, -S(O)_mR7, alkyl, haloalkyl, -OR8 or -N=C(R9)(R10);

each of R_5 and R_6 , which are the same or different, is hydrogen, alkyl, haloalkyl, -C(O)alkyl or $-S(O)_rCF_3$; or R_5 and R_6 together form a divalent lower alkylene radical which is optionally interrupted by one or more heteroatoms selected from O, S and N;

25 R₇ is alkyl or haloalkyl;

R₈ is alkyl, haloalkyl or hydrogen;

R₉ is hydrogen or alkyl;

 R_{10} is phenyl or heteroaryl, each of which is unsubstituted or is substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -O-alkyl, -S-alkyl, cyano and alkyl;

each of R₁₁ and R₁₂, which are the same or different, is halogen or hydrogen;

19

 R_{13} is halogen, haloalkyl, haloalkoxy, $-S(O)_qCF_3$ or $-SF_5$; each of m, n, q and r, which are the same or different, is 0, 1 or 2; and X is nitrogen or $C-R_{12}$;

provided that when R_1 is methyl, R_3 is haloalkyl, R_4 is NH_2 , R_{11} is Cl, R_{13} 5 is CF_3 , and X is N;

which is effective both as an attractant and as an insecticide.

A method according to Claim 38, having at least one feature selected from the group consisting of:

10

- (a) R_1 is CN;
- (b) R₃ is haloalkyl;
- (c) R_4 is NH_2 ;
- (d) each of R_{11} and R_{12} , which are the same or different, is
- (e) R₁₃ is haloalkyl.

halogen; and

40. A method according to Claim 39, wherein the compound of formula (I) has the formula:

20

R₁₄S(O)_n CN (Ia)

25

wherein:

30

R₁₄ is alkyl or haloalkyl;

R₁₅ is alkyl, haloalkyl, amino, alkylamino or dialkylamino;

20

25

each of R_{16} and R_{17} , which are the same or different, is hydrogen or halogen; R_{18} is halogen, haloalkyl, haloalkoxy or SF_5 ; and n is 0, 1 or 2.

- 5 41. A method according to Claim 40, wherein at least one of R_{16} and R_{17} is halogen.
 - 42. A method according to Claim 41, wherein each of R_{16} and R_{17} is halogen, R_{18} is haloalkyl, R_{14} is lower haloalkyl and R_{15} is amino.
 - 43. A method according to Claim 42, wherein the compound of formula (Ia) is 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethyl)phenyl-4-trifluoromethylsulfinylpyrazole.
- A method according to Claim 38, wherein the food source comprising said compound of formula (I) is in solid form.
 - As: A method according to Claim 44, wherein said solid form is a solid bait.

34
A method according to Claim 38, wherein said insects are cockroaches.

A method according to Claim 38, wherein said compound of formula

(I) is offered in an amount of from about 0.00001 g to about 20 g per 100 square meters.

48. A method according to Claim 47 wherein said compound of formula

(I) is offered in an amount of from about 0.001 g to about 1 g per 100 square meters.