March Data Crunch Madness 2022

Fordham Sports Analytics Society Team 1

Presented By: Adrian Crisostomo, Paul Gomes, Peter Majors, and Matthew Reese

Part 1: First Steps

First Steps - Provided Data Sources

- Examined Provided Data Frame and Sample Code (2002 2021 MM Games)
- Which Fields Did We Think Were The Most Important?
 - Basic Percentage-Based Statistics
 - Offensive and Defensive Efficiencies
 - Coaching /Team History (Regular Season & March Madness)

Sporte Analytics Society

First Steps - Provided Data Sources

- Sample Code:
 - **Pythagorean Win**% = $(adjoe)^{11.5} / ((adjoe)^{11.5} + (adjoe)^{11.5})$
 - Probability Of Team Winning Based On Quality Of Play

- team1_log5 = (pythag_team1 * (pythag_team1 * pythag_team2)) / (
 pythag_team1 + pythag_team2 (2 * pythag_team1 * pythag_team2))
 - Probability of Team Winning Based On Competing Pythags

Part 2: Exploratory Analysis

Exploratory Analysis - Mean Differences

Exploratory Analysis - Correlation Matrix

Exploratory Analysis - Initial Tests

Initial Logistic Regression Model Testing											
Inputs	Accuracy	Precision	Recall	F1	Log Loss						
seed_diff	0.67	0.64	0.71	0.67	0.606						
team1_log5	0.68	0.66	0.71	0.68	0.581						
team1_log5, seed_diff	0.68	0.66	0.7	0.68	0.592						

Team 1 Wins Seed Difference: **3.67**

Team 1 Loses Seed Difference: -3.42

Team1 Log5 & Seed Difference Correlation: -.91

Part 3: Applying Our Basketball Knowledge!

Basketball Knowledge - External Data

- Utilized kenpom.com, College Basketball's Foremost Data Analytics Resource
- Pulled Data From 2007 to 2021 (Excl. Covid-Cancelled 2020)
 - Reduced March Madness Games From 1246 to 916 (24.6% Decrease)

- Team Continuity
- Team Experience
- Strength of Bench
- Offensive Rating by Position
- Defensive Rating by Position
- Points Per Game by Position

- Height by Position
- Size by Position
- Home Court Advantage Rating
- Points Favored at Home Court
- Elevation of Home Court
- Other Home Court Metrics ...

Basketball Knowledge - Position Size & Exp

Basketball Knowledge - Position Size & Exp

Basketball Knowledge - Position Skill

Basketball Knowledge - Position Skill

Basketball Knowledge - Improper Seeding

- Seeding Is A Contentious Part of March Madness
 - Can We Assign A Value To The "Over/Underratedness" of a Team Based On Their Seed and a Singular Performance Metric?
- Seed Region Rank minus Adj EM Region Rank (Each Team)
 - Higher = Over Inflated Seeding, Lower = Under Inflated Seeding
- Found Differences Between Team 1 and Team 2 (Each Matchup)
 - Higher = Winning Team Seed Inflated, Lower = Winning Team Seed Deflated
 - 'adjemrank_regionalrank_diff'

Basketball Knowledge - Seeding & HCA

Exploratory Analysis - Correlation Matrix

Part 4: XGBoost

XGBoost - Data Preparation

- Utilized **54** Features
 - Focussed On Team Skill Differences, Intangibles, Uncontrollable Factors
- Test Train Split: **70/30**
- Training Rows: **641** / Testing Rows: **275**

XGBoost - Summary

- Fit An XGBoost Model To Determine Which Features Mattered The Most
- Assigned A "Binary: Logistic" Objective and Evaluated On "Log Loss"
- Utilized GridSearchCV For Hyperparameter Tuning
 - Number of Jobs = 4
 - Cross Validation = 3
 - Early Stopping = **5**

XGBoost - Tuned Hyperparameters

```
#Build The Model
xgb model = xgb.XGBClassifier(objective="binary:logistic",
                             random state = 42,
                             eta = .04,
                             max depth = 6,
                             min child weight = 3,
                             n = 50,
                             gamma = .6,
                             reg lambda = .2,
                             subsample = 1,
                             colsample bytree = .99)
```


XGBoost - Results On Test Data

- Log Loss: **.31**7
- Accuracy: **84**%
- Precision: **84**%
- Recall: **86**%
- F1 Score: **85**%

Part 5: Reflections

- 1 Seeds Greatly Undervalued
- Highly Confident In Many Predictions, Not Many ~ 50%
 - Log Loss Hurt By Decisiveness
- Performance Drastically Improves As Games Become More Tightly Contested
- Strength of Schedule Seems To Be Lacking in Model

Team	Current Logloss				
Syntax_Error	0.61				
Databuster	0.63				
MACS	0.64				
985GHR Institute	0.64				
Data_Drafters	0.64				
unofficial_intelligence	0.65				
pink lemonade	0.66				
Apollo_League	0.66				
Excelsior	0.67				
Petabyte	0.67				
Class Median	0.68				
Bracket_Busters	0.68				
Dio's Bakery	0.7				
GoalDiggers	0.89				
fsas_team_1	0.92				
New York Suspects	0.92				
Phoenix	0.98				
The_deep_drivers	1.01				
Team_Stats	1.04				
Data Analysis King	1.08				
test_submission	1.16				

Reflections - Higher Seed Winning Prob

Reflections - Performance by Seed Diff

- Better Performance With Tighter Seed Differentials (First 43 Games)
 - Performs Best When Human Intuition is More Uncertain
 - Obvious Pitfalls When Games Seem More Certain

FSAS Team 1 Performance Prediction 2022 March Madness By Seed Differential															
Seed Differential	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fraction Correct	4/6		3/5		4/6		2/5		5/9		1/4		2/4		0/4
Percent Correct	67%		60%		67%		40%		56%		25%		50%		0%

Potential Changes For Future Years

- Scale Metrics from Winners & Losers Using Ratios, Not Differences
 - Or Utilize StandardScaler()
- Reduce The Number Of Features In XGBoost
- Fit an XGBoost Model For Ranges of Seed Differentials
- Include More Opponent-Specific Metrics (Conf, SoS, NCSoS)
- Be More Keen On Overfitting

Thank You! Any Questions?

