

SKT AI Fellowship

AI 기반고 디지털 미디어 복원 기술 개발

김재엽, 김명훈, 최종인

Contents

1. Deep Learning Experience

2. Data Analysis, Dataset Preprocessing

3. Research Plan

Deep Learning Experience

Deep Learning Experience

Image Denoising

- 요약
 - 잡음이 존재하는 영상을 입력했을 때 딥 러닝 모델을 통해 잡음이 제거된 영상을 추출
- 연구 시 집중 요소
 - 저주파보다 고주파에서 잡음에 대한 영상 훼손이 심하여 이 문제점을 해결하는 것에 집중
- 최종 제안한 모델
 - 영상 훼손 정도가 적은 저주파 성분이 증폭된 영상을 이용한 네트워크 구성
 - 원본 영상에 대하여 잔차 학습을 수행하는 네트워크와 저주파 증폭 영상에 대하여 end-to-end 학습을 수행하는 이중 경로 네트워크

■ 최종 결과

■ 연구 시 집중 요소

- 잡음 제거 시 영상 내의 디테일이 흐려지거나 엣지가 뭉개지는 것을 해결하는 것에 집중
- 영상 내 특징을 추출 후 학습, 다양한 수용영역에서의 학습을 통해 영상 내 디테일 보존에 집중

■ 최종 제안한 모델

- 특징 추출 블록을 이용하여 잡음이 있는 영상에 대해 전체적 특징 추출
- 수용 영역이 다른 이중 경로 네트워크를 활용하여 서로 다른 특징을 가지는 두 네트워크의 학습 결과 를 공유하는 형태의 네트워크 구성

■ 최종결과

Deep Learning Experience

Depth Estimation

■ 프로젝트

• LG전자와 Depth Estimation 산학 협력 프로젝트 진행

요약

• RGB이미지를 입력했을 때 딥 러닝 모델을 통해 깊이 지도 추출

■ 연구 목표

- 실시간 깊이 지도 추출을 위해 20이상의 fps
- 측정 RMSE 수치 0.5 이하의 성능

■ 문제점의 해결

- 실시간 깊이 지도 추출을 위해 인코더-디코더 구조의 네트워크에서 인코더 단을 DenseNet-121 이용
- 성능 저하의 문제를 해결하기 위해 디코더 단의 마지막 부분에 입력 영상을 이용한 학습 추가

Image Deblurring

■ 챌린지

• NTIRE 2021 Image Deblurring Challenge 참가

요약

• 블러가 존재하는 영상을 입력했을 때 딥 러닝 모델을 통해 블러 제거 영상 추출

■ 연구 시 집중 요소

- 복원되는 영상에서 객체의 선명화를 위해 엣지를 함께 학습
- 가중되는 채널에 집중을 위해 채널 집중 블록 사용, ASPP 블록을 활용하여 다양한 수용영역에서의 특징 학습

블러가 존재하는 영상

네트워크를 통해 블러가 제거된 영상

RMSE ↓

0.509

0.496

0.465

0.416

0.461

FPS ↑

3.84

2.78

0.92

14.28

20.89

Data Analysis – TV Program

- 2000년대 초반과 최근 실제 방송 화면의 비교
 - SDTV가 상용되던 때 화질이 우수하지 않아 아티팩트가 존재하는 것을 확인
 - 확대했을 때 객체가 뚜렷하지 않고 블러와 같은 현상이 존재

2000년대 초반의 드라마

최근 방영된 드라마

원본 SD 영상

• 비교 분석한 결과 잡음, 윤곽선 블러, 업샘플링 아티팩트가 존재하는 것으로 확인

슈퍼노바 적용, 복원 영상

Data Analysis – Old Image Restoration

- 데이터 분석 실험
 - SD 영상 구현을 위해 다운샘플링-업샘플링, 잡음, 블러 열화 함수에 대하여 각각 실험 및 분석 수행

- 분석 결과 잡음수준 5, bilinear, σ =0.3 일 때 SD영상과 유사한 것을 확인
- 추후 제공되는 테스트 셋을 분석하여 복원될 영상에 맞게 적용 가능할 것으로 기대

Dataset Preprocessing

- 데이터셋 전처리
 - 데이터를 비교 및 분석한 결과를 바탕으로 영상을 열화하여 데이터셋 제작
 - 기존에 고화질 영상에 대해 다운샘플링을 진행한 후 노이즈와 블러를 추가 원본 영상 열화 영상

Data Analysis - Old Monochrome Image

- 오래된 사진 확대 및 분석
 - 70-80년대의 흑백 사진을 확인해본 결과 잡음, 블러와 함께 아티팩트가 존재
 - 글자, 엣지에 대한 선명함 복원에 집중할 필요가 있음

1970년대 명랑 운동회

Dataset Preprocessing

- 데이터셋 전처리 과정
 - 70-80년대의 흑백 영상 구현을 위해 원본영상을 그레이 스케일로 변환 후 다운샘플링-업샘플링, 잡음, 블러 열화 함수에 대하여 각각 실험 및 분석 수행

- 분석 결과 잡음수준 3, bilinear, σ =3 일 때 고 영상과 유사한 것을 확인
- 추후 제공되는 테스트 셋을 분석하여 복원될 영상에 맞게 적용 가능할 것으로 기대

Old Image Restoration – Model Architecture

- 연구 시 집중 요소
 - 영상 복원 시 많은 디테일 보존에 집중
 - 잡음과 블러, 아티팩트가 최소화된 깨끗한 고품질의 영상 복원에 집중
 - 딥 러닝 모델 경량화 연구 및 진행
- 엣지 추출 모듈
 - 엣지를 학습하며 추출하는 모듈을 설계
 - 엣지 정보가 추가되어 객체의 선명함과 디테일을 보존하는 것에 집중
- 채널 집중 블록
 - Pooling과 Convolution 연산으로 이루어져 있는 블록

- 채널 집중 블록의 장점
 - 간단한 연산을 통해 학습되는 채널에 대해 집중도 향상
 - 네트워크 내부에서 채널을 효과적으로 강조 및 억제
 - 다양한 딥 러닝 모델에 쉽게 적용 가능

■ 예상 딥 러닝 모델

- 엣지 모듈을 활용한 엣지 추출 및 엣지를 학습 데이터로 함께 사용하는 네트워크 구성
- 가중되는 채널에 대해 집중도를 향상시키는 채널 집중 블록을 기반으로 한 Unet을 구성

예상 네트워크의 구조

Unet의 구조

Old Monochrome Image Colorization – Model Architecture

- 연구 시 집중 요소
 - 색상을 복원하는 것에 집중하기 위해 R, G, B를 각각 출력하는 네트워크
 - 색상을 복원하는 것에 집중하기 위해 Y를 입력으로 주었을 때 U, V를 출력하는 네트워크
 - 색상에 집중할 수 있는 loss를 구현하여 정확한 색상 복원에 집중
- 밀집 블록의 장점
 - 이전에 학습된 데이터를 이용하기 때문에 학습의 경향성 유지

- 예상 딥 러닝 모델
 - 흑백 영상에 대해 R, G, B로 학습하는 네트워크

• 흑백 영상에 대해 U, V로 학습하는 네트워크

• 흑백 영상에 대해 R, G, B로 학습과 Histogram loss를 적용한 이중 경로 네트워크

Old Monochrome Image Colorization – Histogram loss

- 착안점
 - 딥 러닝을 이용한 영상 처리 실험 중 일부 복원 영상이 색 정보를 제대로 복원하지 못하는 문제점을 발견
- 아이디어
 - 학습할 때 사용되는 loss에 색 오차 정보를 추가
 - Colorization 연구 시 정확한 색 정보 예측에 도움이 될 것으로 예상
- MSE Loss

$$L_{MSE} = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} ||Y(i,j) - X(i,j)||^{2}$$

X_i: Given a set of high-resolution imagesY_i: Corresponding low-resolution images

Color Loss

$$L_{color} = \sum_{i=0}^{255} ||H(Y(i)) - H(X(i))||^{2}$$

H: Histogram function

Total Loss(Histogram Loss)

$$L_{total} = L_{MSE} + 1e^{-10}L_{color}$$

$$L_{total} = L_{MSE} + \frac{\lambda}{height * width * 255 * 3} L_{color}$$

■ 각 Loss 별 테스트 결과

Original

PSNR: 35.68

PSNR: 37.23

- EDSR 네트워크의 학습을 MSE loss로 수행할 때와 Histogram loss로 수행할 때의 결과
- BSD 100 데이터셋에 전체에 대한 테스트 결과, EDSR을 MSE로 학습할 때보다 0.13dB 높은 PSNR 기록
- 각 채널 별 Histogram 비교

• RGB 채널 별 Histogram 그래프를 비교했을 때, Histogram loss 사용 시 MSE loss를 사용한 결과보다 원본 영상과 유사한 경향의 Histogram을 가짐

Research Schedule

			6월				7월				8월(중간 발표)				9월				10월			
		1주	2주	3주	4주	1주	2주	3주	4주	1주	2주	3주	4주	1주	2주	3주	4주	1주	2주	3주	4주	-
1. 논문 및 관련 자료 사전 조사	초해상화 관련 논문 학습																					
	잡음 제거 관련 논문 학습																					
	색 복원 관련 논문 학습																					
	논문 학습 내용 공유 세미나																					
2. 데이터셋 분석	SD 고 영상 데이터셋 분석 및 제작																					
	흑백 고 영상 데이터셋 분석 및 제작																					
3. 딥러닝 네트워크 설계	데이터셋 전처리 및 각종 기능 구현																					
	SD 고 영상 복원 네트워크 구현																					
	흑백 고 영상 복원 네트워크 구현																					
	네트워크 구현 실황 공유 및 회의																					
	네트워크 성능 개선 추가 실험																					
6. 실험 및 분석	테스트 수행 결과에 대한 분석																					
	네트워크 성능 개선 방향 회의																					
7. 발표자료 및 보고서 작성	발표자료 작성																					
	보고서 작성																					

Thank You

Q&A