- 1. ¿Cuál de las siguientes afirmaciones describe mejor el propósito de usar gRPC en un sistema de microservicios como el del proyecto de consultas médicas?
- a) gRPC se utiliza exclusivamente para encriptar datos sensibles entre el frontend y el backend.
- b) gRPC permite la comunicación eficiente y tipada entre microservicios mediante un protocolo basado en HTTP/2.
- c) gRPC reemplaza completamente las bases de datos relacionales en microservicios.
- d) gRPC es un protocolo de mensajería para enviar correos electrónicos entre servicios.
- 2. ¿Cuáles de las siguientes ventajas ofrece la replicación de bases de datos en un sistema de microservicios como el del proyecto? (Selecciona todas las que apliquen)
- a) Mejora la disponibilidad de los datos al tener copias en múltiples nodos.
- b) Reduce la latencia al permitir que los microservicios consulten réplicas locales.
- c) Elimina la necesidad de usar HTTP o gRPC para la comunicación entre servicios.
- d) Facilita la recuperación ante fallos al mantener copias sincronizadas.
- 3. En un sistema de microservicios que usa HTTP y gRPC, como el del proyecto de consultas médicas, cada microservicio debe tener su propia base de datos para mantener la independencia.
- a) Verdadero
- b) Falso
- 4. Complete la siguiente afirmación sobre la interacción entre aplicaciones frontend y sistemas de microservicios:

En una aplicación web que consi	ume microservicios, el frontend realiza una solicitud HTTP
para obtener datos de un micros	ervicio, los cuales pueden estar sincronizados con otros
microservicios mediante	de base de datos para garantizar consistencia.

a) GET, replicación

- b) POST, encriptación
- c) PUT, serialización
- d) DELETE, autenticación
- 5. ¿Qué problemas pueden surgir al implementar microservicios con gRPC y replicación de base de datos, como en el proyecto de consultas médicas? (Selecciona todas las que apliquen)
- a) Latencia en la comunicación si el servicio gRPC no está corriendo, como el error "No se puede establecer una conexión" en localhost:7299.
- b) Inconsistencia de datos si la replicación de la base de datos no está bien configurada.

- c) Complejidad reducida en la arquitectura debido a la estandarización de gRPC.
- d) Errores de validación en el frontend si los datos enviados en un POST no cumplen con las reglas del backend.
 - 6. ¿Cuál de las siguientes afirmaciones sobre gRPC es CORRECTA?
 - A) gRPC utiliza JSON como formato principal para la serialización de datos
 - B) gRPC es un framework RPC (Remote Procedure Call) desarrollado por Microsoft
 - C) gRPC utiliza Protocol Buffers como mecanismo de serialización por defecto
 - D) gRPC solo permite comunicación unidireccional del cliente al servidor
 - E) gRPC funciona exclusivamente con el lenguaje de programación Go
 - 7. ¿Qué transparencia es más difícil de mantener cuando se escala horizontalmente un sistema distribuido?
 - a) Transparencia de localización
 - b) Transparencia de concurrencia
 - c) Transparencia de fallos
 - d) Transparencia de rendimiento
 - 8. ¿Qué arquitectura distribuida requiere equilibrar más cuidadosamente la autonomía local con la integridad global?
 - a) Clusters homogéneos
 - b) Gestión de datos distribuida
 - c) Presentación remota
 - d) SOA basada en SOAP
 - 9. En un sistema distribuido con datos replicados, ¿qué propiedades presenta el mayor conflicto inherente?
 - a) Disponibilidad y rendimiento
 - b) Consistencia y disponibilidad
 - c) Escalabilidad y seguridad
 - d) Transparencia y modularidad
 - 10. ¿Qué característica NO es una ventaja intrínseca de las aplicaciones P2P frente a una arquitectura Cliente-Servidor tradicional?

- a) Eliminación de puntos únicos de fallo
- b) Mayor escalabilidad horizontal
- c) Mejor gestión de consistencia transaccional
- d) Aprovechamiento de recursos ociosos
- 11. ¿Para qué se utiliza gRPC en una arquitectura de microservicios?
- A) Para almacenar archivos de gran tamaño en la nube
- B) Para autenticar usuarios de forma segura
- C) Para permitir la comunicación eficiente entre microservicios con alto rendimiento
- D) Para diseñar interfaces gráficas
- 12. ¿Cuál es el propósito principal de la replicación de bases de datos en un sistema distribuido?
- A) Reducir el uso de memoria RAM
- B) Sincronizar datos entre servidores y mejorar la disponibilidad del sistema
- C) Ejecutar scripts automáticamente
- D) Aumentar el tamaño máximo de una tabla
- 13. ¿Qué ventaja ofrece una arquitectura de microservicios sobre una arquitectura monolítica?
- A) Facilita la centralización de todos los datos en un solo componente
- B) Mejora la eficiencia del código usando una única base de datos
- C) Permite escalar y desplegar servicios de forma independiente
- D) Reduce el uso de servicios web
- 14. ¿Para qué sirve un API Gateway en una arquitectura de microservicios?
- A) Para almacenar datos replicados en caché
- B) Para exponer una única entrada de acceso a los servicios internos
- C) Para reemplazar el backend por completo

D) Para alojar la base de datos principal

15. ¿Cuál es el objetivo principal de usar herramientas como Swagger en el desarrollo backend?

A) Proteger los microservicios con firewalls

B) Documentar y probar las APIs de forma clara y accesible

- C) Mejorar el rendimiento de las consultas SQL
- D) Crear migraciones de base de datos

16. Selección múltiple - ¿Cuáles de las siguientes son ventajas de los sistemas distribuidos frente a los centralizados?

- a) Mayor simplicidad en el mantenimiento
- b) Menor latencia en todas las operaciones
- c) Centralización del control
- d) Escalabilidad horizontal
- e) Distribución de carga de trabajo

17. Completar

En APIs RESTful, el protocolo más utilizado es ______, mientras que en gRPC se emplea _____ como transporte.

HTTP (o HTTPS) ---- HTTP/2

18. Enlazar

<mark>3 → c</mark>

Relaciona cada componente del modelo Cliente-Servidor con su responsabilidad:

Componente Responsabilidad
1. Cliente a) Procesar solicitudes y enviar respuestas
2. Servidor b) Iniciar peticiones y mostrar resultados
3. Socket c) Canal de comunicación bidireccional
1 → b
2 → a

19. Selección múltiple - Sobre comunicación asíncrona en sistemas distribuidos:

- a) REST es ideal para mensajería asíncrona.
- b) gRPC es exclusivamente síncrono.
- c) Los Message Queues (MQ) solo funcionan en entornos monolíticos.
- d) Apache Kafka usa un modelo de publicación/suscripción.
- e) RabbitMQ garantiza entrega ordenada de mensajes.

20. Verdadero/Falso

En Peer-to-Peer (P2P), todos los nodos tienen igual jerarquía y capacidades.

- a) Verdadero
- b) Falso
- 1. ¿Qué tecnología se recomienda para la comunicación asíncrona entre microservicios?
 - a) RESTful APIs exclusivamente.
 - b) Herramientas como RabbitMQ o Kafka.
 - c) Replicación directa de bases de datos.
 - d) Protocolo FTP.
 - 2. ¿Cuál es la función principal del API Gateway en este sistema?
 - a) Almacenar réplicas de las bases de datos locales.
- b) Gestionar las solicitudes entre el frontend y los microservicios, enrutándolas adecuadamente.
 - c) Ejecutar pruebas de integración automáticas.
 - d) Reemplazar la replicación de MariaDB.
- 3. ¿Cuál es el propósito principal de configurar la replicación unidireccional en las bases de datos de los centros médicos?
- a) Permitir que cada hospital modifique los datos centralizados de médicos y empleados.
 - b) Sincronizar automáticamente las consultas médicas entre todos los hospitales.
- c) Almacenar consultas médicas localmente en cada hospital, pero consultar datos centralizados (empleados, médicos) desde la base de datos principal.
 - d) Eliminar la necesidad de una base de datos central.

- 4. ¿Qué ventaja clave ofrece la arquitectura de microservicios frente a una monolítica en este sistema hospitalario?
 - a) Menor complejidad en el despliegue inicial.
 - b) Elimina la necesidad de bases de datos distribuidas.
- c) Permite escalar componentes individuales (ej: servicio de consultas) sin afectar otros módulos.
 - d) Reduce la cantidad de código a documentar.
- 5. ¿Las pruebas de integración solo deben validar el funcionamiento individual de cada microservicio, sin verificar la comunicación entre ellos?

Verdadero

Falso

- 1. ¿Qué es un SOA (Arquitectura Orientada a Servicios)?
- a) Un enfoque de diseño de software basado en la integración de servicios independientes que interactúan entre sí.
- b) Un tipo de base de datos no estructurada que almacena datos en archivos planos.
- c) Un sistema operativo especializado en servicios en la nube.
- d) Un lenguaje de programación para desarrollo web.

Respuesta correcta: a)

- 2. ¿Cuál es una ventaja clave de los microservicios frente a la arquitectura monolítica?
- a) Todos los procesos están estrechamente acoplados, lo que simplifica el mantenimiento.
- b) Cada servicio puede escalarse de forma independiente según la demanda.
- c) Reduce la necesidad de usar APIs para la comunicación entre componentes.
- d) Disminuye la libertad tecnológica al estandarizar herramientas.

Respuesta correcta: b)

3. Según el texto, ¿qué característica define a los microservicios como "autónomos"?
a) Comparten código y dependencias con otros servicios para mayor eficiencia.
b) Cada servicio puede desarrollarse, implementarse y escalarse sin afectar a otros.
c) Todos los servicios deben usar el mismo lenguaje de programación.
d) Dependen de una base de datos centralizada para su funcionamiento.
Respuesta correcta: b)
4. ¿Qué caracteriza a un sistema distribuido?
a) Todos sus componentes deben ejecutarse en una sola computadora para garantizar consistencia.
b) Sus funcionalidades están fraccionadas en componentes que trabajan de manera coordinada, dando la apariencia de un sistema único.
c) No requiere sincronización entre sus partes, ya que cada componente opera de forma independiente.
d) La distribución de componentes siempre es visible para el usuario final.
Respuesta correcta: b)
5. ¿Cuál es el objetivo principal del middleware en sistemas distribuidos?
a) Aumentar la complejidad de la programación para mejorar el control.
b) Eliminar la transparencia en la comunicación entre servicios.
c) Facilitar la distribución de datos y procesos de manera transparente.
d) Limitar el uso de APIs para garantizar seguridad.
Respuesta correcta: c)

1. ¿Qué hace que dos servicios se consideren microservicios?
a. Que se comuniquen entre sí
b. Que estén escritos en diferentes lenguajes
c. Que estén desacoplados y realicen funciones específicas
d. Que se desplieguen en el mismo servidor
Respuesta c
2. ¿Cómo suelen comunicarse los microservicios?
a. Por llamadas directas a métodos
b. Mediante archivos compartidos
c. A través de APIs (REST o gRPC)
d. Por medio de la base de datos
Respuesta c
3. ¿Qué función cumple un API Gateway en una arquitectura de microservicios?
a. Ejecutar pruebas automatizadas
b. Controlar el acceso y dirigir las solicitudes a los servicios correspondientes
c. Crear bases de datos para los microservicios
d. Traducir código de un lenguaje a otro
Respuesta b

4. ¿Qué característica describe mejor a los microservicios?
a. Gran dependencia entre módulos
b. Una sola base de datos compartida
c. Cada servicio tiene su propia lógica y puede funcionar de manera autónoma
d. Todos los servicios deben estar en el mismo lenguaje
Respuesta c
5. ¿Qué es una API?
a. Un lenguaje de programación
b. Una herramienta para editar código
c. Una interfaz que permite la comunicación entre sistemas
d. Un tipo de base de datos
Respuesta c