STAT 401A - Statistical Methods for Research Workers One-way ANOVA

Jarad Niemi (Dr. J)

Iowa State University

last updated: September 30, 2014

Lifetime (months) of mice on different diets

One-way ANOVA model/assumptions

$$Y_{ij} \stackrel{ind}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$$

for $j=1,\ldots,J$ and $i=1,\ldots,n_j$. $(n_j$ means there can be different # of observations in each group)

Assumptions:

- Normality
 - Not skewed
 - Not heavy-tailed
- Common variance for all groups
- Independence
 - No cluster effects
 - No serial effects
 - No spatial effects

ANOVA assumptions graphically

What if you want to compare two groups?

We may still be interested in comparing two groups.

Statistical hypothesis: Is there a difference in mean lifetimes between the mice in two groups, e.g. NP and N/N85?

Statistical question: What is the difference in mean lifetimes between the mice in two groups, e.g. NP and N/N85?

Two-group analysis

Begin with the two group (equal variance) model:

$$Y_{ij} \stackrel{ind}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$$

with j=1,2 and $i=1,\ldots,n_j$

To perform a hypothesis test or a CI for the difference in means, the relevant quantities are:

- $\overline{Y}_2 \overline{Y}_1$
- $SE(\overline{Y}_2 \overline{Y}_1) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
- t distribution with $n_1 + n_2 2$ degrees of freedom

where

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

What if you have more than two groups?

Multi-group analysis

The multi-group (equal variance) model:

$$Y_{ij} \stackrel{ind}{\sim} N\left(\mu_{j}, \sigma^{2}\right)$$

but now j = 1, ..., J and $i = 1, ..., n_j$ (n_j means there can be different # of observations in each group)

To perform a hypothesis test or a CI for the difference in means, the relevant quantities are:

- $\overline{Y}_2 \overline{Y}_1$
- $SE(\overline{Y}_2 \overline{Y}_1) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
- t distribution with $n_1 + n_2 + \cdots + n_J J$ degrees of freedom

where

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_J - 1)s_J^2}{n_1 + n_2 + \dots + n_J - J}$$

Hypothesis test for comparison of two means (in multi-group data)

If $Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$ for $j = 1, \dots, J$ and we want to test the hypothesis

- $H_0: \mu_1 = \mu_2$
- $H_1: \mu_1 \neq \mu_2$

then we compute:

$$t = \frac{\overline{Y}_1 - \overline{Y}_2}{SE(\overline{Y}_1 - \overline{Y}_2)}$$

where

$$SE(\overline{Y}_1 - \overline{Y}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

and

$$s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2 + \cdots + (n_J-1)s_J^2}{n_1 + n_2 + \cdots + n_J - J}.$$

Then we compare t to a t distribution with $n_1 + n_2 + \cdots + n_J - J$ degrees of freedom.

Diet effect on mice lifetime

Table : Summary statistics for mice lifetime (months) on different diets

	Diet	n	mean	sd
1	N/N85	57	32.7	5.1
2	N/R40	60	45.1	6.7
3	N/R50	71	42.3	7.8
4	NP	49	27.4	6.1
5	R/R50	56	42.9	6.7
6	lopro	56	39.7	7.0

Test for difference in mean lifetime between NP and N/N85, i.e.

$$H_0: \mu_4 = \mu_1 \text{ vs } H_1: \mu_4 \neq \mu_1.$$

Showing work

$$\overline{Y}_{1} - \overline{Y}_{4} = 32.7 - 27.4 = 5.3$$

$$df = 57 + 60 + 71 + 49 + 56 + 56 - 6 = 343$$

$$s_{p}^{2} = \frac{(57 - 1)5.1^{2} + (60 - 1)6.7^{2} + (71 - 1)7.8^{2} + (49 - 1)6.1^{2} + (56 - 1)6.7^{2} + (56 - 1)7.0^{2}}{57 + 60 + 71 + 49 + 56 + 56 - 6}$$

$$= \frac{15314}{343} = 44.6$$

$$s_{p} = \sqrt{s_{p}^{2}} = \sqrt{44.6} = 6.7$$

$$SE(\overline{Y}_{1} - \overline{Y}_{4}) = s_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{4}}} = 6.7\sqrt{\frac{1}{57} + \frac{1}{49}} = 1.3$$

$$t = \frac{\overline{Y}_{1} - \overline{Y}_{4}}{SE(\overline{Y}_{1} - \overline{Y}_{4})} = \frac{5.3}{1.2} = 4.1$$

$$p = 2P(t_{243} < -|t|) = 2P(t_{343} < -4.1) = 0.000052$$

So we reject the null hypothesis that there is no difference between mean lifetime of mice on the NP and N/N85 diets.

Confidence interval for the difference of two means (in multi-group data)

If $Y_{ii} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$ for $j = 1, \dots, J$, a $100(1 - \alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is

$$\overline{Y}_1 - \overline{Y}_2 \pm t_{n_1+n_2+\cdots+n_J-J}(1-\alpha/2)SE(\overline{Y}_1 - \overline{Y}_2)$$

where the t critical value, $t_{n_1+n_2+\cdots+n_d-1}(1-\alpha/2)$, needs to be calculated using a statistical software.

A 95% confidence interval for the difference in mean lifetime for N/N85 minus NP $(\mu_1 - \mu_4)$ is

$$5.3 \pm 1.96 \times 1.3 = (2.8, 7.8).$$

The statistical conclusion would be

In this study, mice on the N/N85 diet lived an average of 5.3 months longer than mice on the NP diet (95% CI (2.8,7.8)).

```
DATA mice;
   INFILE 'case0501.csv' DSD FIRSTOBS=2;
   INPUT lifetime diet $;

PROC GLM DATA=mice;
   CLASS diet;
   MODEL lifetime = diet;
   LSMEANS diet / ADJUST=T CL;
   RUN;
```

The GLM Procedure Least Squares Means

diet	lifetime LSMEAN	LSMEAN Number
N/N85 N/R40 N/R50 NP R/R50	32.6912281 45.1166667 42.2971831 27.4020408 42.8857143	1 2 3 4 5
lopro	39.6857143	6

Least Squares Means for effect diet Pr > |t| for HO: LSMean(i)=LSMean(j)

Dependent Variable: lifetime

i/j	1	2	3	4	5	6
1		<.0001	<.0001	<.0001	<.0001	<.0001
2	<.0001		0.0166	<.0001	0.0731	<.0001
3	<.0001	0.0166		<.0001	0.6223	0.0293
4	<.0001	<.0001	<.0001		<.0001	<.0001
5	< 0001	0.0731	0.6223	< 0001		0.0117

QEV Confidence Limits

lifetime

diat

diet	LOTILAN	35% CONTINEN	ce Limits
N/N85	32.691228	30.951394	34.431062
N/R40	45.116667	43.420886	46.812447
N/R50	42.297183	40.738291	43.856075
NP	27.402041	25.525547	29.278535
R/R50	42.885714	41.130415	44.641014
lopro	39.685714	37.930415	41.441014

Least Squares Means for Effect diet

Difference

ICMEAN

		Between	95% Confidence	
i	j	Means	LSMean(i)-I	_SMean(J)
1	2	-12.425439	-14.854984	-9.995893
1	3	-9.605955	-11.942013	-7.269897
1	4	5.289187	2.730232	7.848142
1	5	-10.194486	-12.665943	-7.723030
1	6	-6.994486	-9.465943	-4.523030
2	3	2.819484	0.516048	5.122919
2	4	17.714626	15.185417	20.243835
2	5	2.230952	-0.209692	4.671597
2	6	5.430952	2.990308	7.871597
3	4	14.895142	12.455599	17.334686
3	5	-0.588531	-2.936130	1.759068
3	6	2.611469	0.263870	4.959068
4	5	-15.483673	-18.053169	-12.914178
4	6	-12.283673	-14.853169	-9.714178
5	6	3.200000	0.717632	5.682368

One-way ANOVA F-test

Are any of the means different?

Hypotheses in English:

 H_0 : all the means are the same

 H_1 : at least one of the means is different

Statistical hypotheses:

$$H_0: \quad \mu_j = \mu \text{ for all } i$$
 $Y_{ij} \stackrel{iid}{\sim} N(\mu, \sigma^2)$ $H_1: \quad \mu_j \neq \mu_{j'} \text{ for some } j \text{ and } j'$ $Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$

An ANOVA table organizes the relevant quantities for this test and computes the pvalue.

ANOVA table

A start of an ANOVA table:

Source of variation	Sum of squares	d.f.	Mean square
Factor A (Between groups)		J-1	J-1
	$SSE = \sum_{j=1}^{J} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2$		$\frac{SSE}{n-J}$ $(=s_p^2)$
Total	$SST = \sum_{j=1}^{J} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y})^2$	n-1	

where

- J is the number of groups,
- n_j is the number of observations in group j,
- $n = \sum_{i=1}^{J} n_i$ (total observations),
- $\overline{Y}_j = \frac{1}{n_i} \sum_{i=1}^{n_j} Y_{ij}$ (average in group j),
- and $\overline{Y} = \frac{1}{n} \sum_{i=1}^{J} \sum_{i=1}^{n_j} Y_{ij}$ (overall average).

ANOVA table

An easier to remember ANOVA table:

Source of variation	Sum of squares	df	Mean square	F-statistic	p-value
Factor A (between groups)	SSA	J-1	MSA = SSA/J - 1	MSA/MSE	(see below)
Error (within groups)	SSE	n — J	MSE = SSE/n - J		
Total	SST=SSA+SSE	n - 1			

Under H_0 ,

- the quantity MSA/MSE has an F-distribution with J-1 numerator and n-J denominator degrees of freedom,
- larger values of MSA/MSE indicate evidence against H_0 , and
- the p-value is determined by $P(F_{J-1,n-J} > MSA/MSE)$.

F-distribution

One-way ANOVA F-test (by hand)

Table : Summary statistics for mice lifetime (months) on different diets

	Diet	n	mean	sd
1	N/N85	57	32.7	5.1
2	N/R40	60	45.1	6.7
3	N/R50	71	42.3	7.8
4	NP	49	27.4	6.1
5	R/R50	56	42.9	6.7
6	lopro	56	39.7	7.0
7	Total	349	38.8	

So

SAS code and output for one-way ANOVA

```
DATA mice;

INFILE 'case0501.csv' DSD FIRSTOBS=2;

INPUT lifetime diet $;

PROC GLM DATA=mice;

CLASS diet;

MODEL lifetime = diet;

RUN;
```

The GLM Procedure

Dependent Variable: lifetime

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	12733.94181	2546.78836	57.10	<.0001
Error	343	15297.41532	44.59888		
Corrected Total	348	28031.35713			

R code and output for one-way ANOVA

Simple vs Composite Hypotheses

Suppose

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

for i = 1, ..., 3 then a simple hypothesis is

- $H_0: \mu_1 = \mu_2$
- $H_1: \mu_1 \neq \mu_2$

and a composite hypothesis is

- $H_0: \mu_1 = \mu_2 = \mu_3$
- $H_1: \mu_i \neq \mu_i$ for some $i \neq j$

since there are four possibilities under H_1

- $\mu_1 = \mu_2 \neq \mu_3$
- $\mu_2 = \mu_3 \neq \mu_1$
- $\mu_3 = \mu_1 \neq \mu_2$
- $\mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_1$

Testing Composite hypotheses

If $Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$ for $i = 1, \dots, J$ and we want to test the composite hypothesis

- $H_0: \mu_i = \mu_j$
- $H_1: \mu_i \neq \mu_j$ for some $i \neq j$

think about this as two models:

- $H_0: Y_{ij} \stackrel{ind}{\sim} N(\mu, \sigma^2)$ (reduced)
- $H_1: Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$ (full)

We can use an F-test to calculate a p-value for tests of this type.

Full vs reduced model

Model	Full	Reduced
Assumption	$H_1: Y_{ij} \stackrel{ind}{\sim} N\left(\mu_j, \sigma^2\right)$	$H_0: Y_{ij} \stackrel{iid}{\sim} N(\mu, \sigma^2)$
Mean	$\hat{\mu}_j = \overline{Y}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} Y_{ij}$	$\hat{\mu} = \overline{Y} = \frac{1}{n} \sum_{j=1}^{J} \sum_{i=1}^{n_j} Y_{ij}$
Residual	$r_{ij} = Y_{ij} - \hat{\mu}_j = Y_{ij} - \overline{Y}_j$	$r_{ij} = Y_{ij} - \hat{\mu} = Y_{ij} - \overline{Y}$
SSE	$\sum_{j=1}^{J} \sum_{i=1}^{n_j} r_{ij}^2$	$\sum_{j=1}^{J} \sum_{i=1}^{n_j} r_{ij}^2$

F-tests

Do the following

1. Calculate

2. Calculate

Extra degrees of freedom = # of mean parameters (full) - # of mean parameters (reduced)

3. Calculate

$$\text{F-statistic} = \frac{\text{Extra sum of squares} \; / \; \text{Extra degrees of freedom}}{\hat{\sigma}_{\textit{full}}^2}$$

- 4. Compare this to an F-distribution with
 - numerator degrees of freedom = Extra degrees of freedom
 - denominator degrees of freedom = n # of mean parameters (full)

Example

Recall the mice data set. Consider the hypothesis that all diets except NP have a common mean and this mean is different from the NP.

Let

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

with i = 1 being the NP group then the hypotheses are

- $H_0: \mu_i = \mu$ for $i \neq 1$
- $H_1: \mu_i \neq \mu_i$ for $i \neq j$ and $i, j = 2, \ldots, 6$

As models:

- $H_0: Y_{1i} \sim N(\mu_1, \sigma^2)$ and $Y_{ii} \sim N(\mu, \sigma^2)$ for $i \neq 1$
- $H_1: Y_{ii} \sim N(\mu_i, \sigma^2)$

```
DATA mice;
  INFILE 'case0501.csv' DSD FIRSTOBS=2;
  INPUT lifetime diet $;
  IF diet='NP' THEN group=1; ELSE group=0;
PROC PRINT DATA=mice; RUN;
TITLE 'Full Model';
PROC GLM DATA=mice;
  CLASS diet;
  MODEL lifetime = diet:
  RUN:
TITLE 'Reduced Model':
PROC GLM DATA=mice;
  MODEL lifetime = group;
  RUN;
```

Full Model

The GLM Procedure

Dependent Variable: lifetime

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	12733.94181	2546.78836	57.10	<.0001
Error	343	15297.41532	44.59888		
Corrected Total	348	28031.35713			

Reduced Model

The GLM Procedure

Dependent Variable: lifetime

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	1	7401.77817	7401.77817	124.50	<.0001
Error	347	20629.57896	59.45124		
Corrected Total	348	28031 35713			

General F-test calculations

ESS =
$$20629.57896 - 15297.41532 = 5332.164$$

Edf = $5 - 1 = 4$
F = $(ESS/Edf)/\hat{\sigma}_{full}^2 = (5332.164/4)/44.59888 = 29.88956$

Finally, we calculate the pvalue:

$$P(F > F_{4,343}) < 0.0001$$

Since this is very small, we reject the null hypothesis that the reduced model is adequate. So there is evidence that the mean is not the same for all the non-NP groups.

15297.41532

28031 35713

Type III SS

7256.758693

5332.163640

Making SAS do the calculations

```
INFILE 'case0501.csv' DSD FIRSTOBS=2;
 INPUT lifetime diet $:
 IF diet='NP' THEN group=1; ELSE group=0;
PROC GLM DATA=mice:
 CLASS diet group:
 MODEL lifetime = group diet(group);
 RUN:
                                        The GLM Procedure
Dependent Variable: lifetime
                                               Sum of
      Source
                                  DF
                                              Squares
                                                          Mean Square
      Model
                                          12733 94181
                                                           2546, 78836
```

343

348

DF

1

DATA mice;

Error

Source

group

diet(group)

Corrected Total

Pr > F

< .0001

Pr > F

< .0001

< .0001

F Value

F Value

162.71

29.89

44.59888

Mean Square

7256.758693

1333.040910

57.10

Making R do the calculations

Summary

- Use t-tests for simple hypothesis tests and CIs
- Use F-tests for composite hypothesis tests
- Think about tests as comparing models
- For F-test, fit both models and compute the pvalue