N1a Collatz MacIntyre

Tucker MacIntyre

March 18th, 2019

1.
$$a_{i+1} = \begin{cases} -\mathbf{a}_i/2 & \text{if } a_i \text{ is even} \\ 3^*\mathbf{a}_i + 1 & \text{if } a_i \text{ is odd} \end{cases}$$

Start with Positive Integer. Seems to loop and reach 1 no matter the integer.

2.
$$a_{i+1} = \begin{cases} a_i/2 & \text{if } a_i \text{ is even} \\ (3^*a_i + 1)/2 & \text{if } a_i \text{ is odd} \end{cases}$$

Start with Positive Integer. Seems to loop and reach 1 no matter the integer.

3.
$$a_{i+1} = \begin{cases} (a_i + 2)/2 & \text{if } a_i \text{ is even} \\ 3*a_i + 1 & \text{if } a_i \text{ is odd} \end{cases}$$

Start with Positive Integer. Seems to loop one of the following loops: [6, 4, 3, 10, 6], [40, 21, 64, 33, 100, 51, 154, 78, 40], [22, 12, 7, 22], or if $a_0 = 2$ [2, 2, 2].

Proof for 1: That all positive integers work, while domain is all real numbers. Basis Step:

Case 1:(even) Let
$$n = a_i$$
, and $n = 2$
 $P(2) = 2/2 = 1$ (odd)

Case 2: (odd) Let
$$n = 1$$

P(1) = $3*1 + 1 = 4$ (Even)

Therefore, even integers create an odd integer, while odd integers create an even integer.

Induction: Now let n = k + 1

Case 1: (even)
$$k + 1 = (-k + 1) / 2$$
 while k is even (2q) $= (-2q + 1) / 2$, which is within the domain. So $n + 1$ will work in this scenario. (result odd)

Case 2: (odd)
$$k + 1 = (3 * (k+1) + 1), k = 3q+1$$

= $9q + 6$
= $3 (3q + 2)$ which is even and withen domain.

Therefore, both cases work and rebound back and forth from even and odd. Hence, Because n + 1 is true, by mathematical induction, a_0 is true for all Z^+

Note: With this being said, I am not quite sure how to show that this will eventually come back to 1 and loop as my program has shown.

Note: Also not sure if this proof by mathematical induction is empletely correct or the right way to go about this.