CdL Fisica - Meccanica - (prof. Spurio) 07/01/2020

Esercizio A

Una pallina sferica piena di raggio R= 5.0~cm e massa M= 100.0~g scende lungo un piano inclinato di lunghezza L= 1.5~m e con angolo di inclinazione rispetto al suolo di α = 30° . La pallina parte dalla sommità del piano inclinato da ferma e rotola senza strisciare lungo tutto il percorso. Alla fine del piano inclinato la pallina cade verso il suolo liscio (privo d'attrito) da un'altezza h_0 = 1.0~m.

Dopo aver disegnato il sistema, si calcoli:

- 1) la velocità angolare della pallina quando si stacca dal piano inclinato iniziando a cadere verso il suolo e
- 2) la sua energia cinetica totale in quell'istante;
- 3) la posizione dove la pallina urta il suolo e
- 4) l'energia cinetica totale in quell'istante;
- 5) assumendo l'urto col suolo quasi istantaneo, l'energia meccanica persa nell'urto se la pallina rimbalzando risale a un'altezza massima h_1 = 0.80 m rispetto al suolo.

Il momento d'inerzia di una sfera di raggio R e massa M è: I=2/5 MR².

[Si trascurino l'attrito dell'aria, l'attrito volvente dovuto a corpi non perfettamente elastici e l'effetto del "bordo" alla fine del piano inclinato]

Esercizio B

Come mostrato in figura, un oggetto che può essere considerato puntiforme di massa m=0.50~kg è appoggiato su una superficie orizzontale scabra con coefficiente di attrito dinamico $\mu=0.30$. All'istante iniziale, t=0~s, si osserva che l'oggetto si trova a distanza d=30~cm dall'estremo B di un'asta e si muove verso tale punto con velocità di modulo 4.0~m/s. L'asta è omogenea, di lunghezza L, massa M=m e dimensioni trasversali trascurabili; essa è libera di ruotare attorno all'estremo O. L'asta ha lunghezza L=2.0~m. Si trascuri ogni attrito sull'asse di rotazione dell'asta.

Ad un certo istante, l'oggetto urta l'asta in B e l'urto è tale che immediatamente dopo l'urto i due corpi hanno un'energia cinetica uguale a 4/5 dell'energia cinetica posseduta dall'oggetto immediatamente prima dell'urto. Determinare:

- 1. La velocità con la quale l'oggetto arriva nel punto B.
- 2. Determinare la velocità dell'oggetto dopo l'urto e la velocità angolare dell'asta;
- 3. si discuta quale delle due soluzioni ottenute è fisicamente possibile.
- 4. Si dica se l'urto fra i due corpi è elastico, parzialmente anelastico o completamente anelastico
- 5. Si determini a quale angolo massimo θ_{max} arriva l'asta a seguito dell'urto

A1	64.8 rad/s	B1	3.77 m/s
A2	0.735 J	B2	V=2.41 m/s, ω= 2.05 rad/s
А3	0.89 m (asse x)		oppure
A4	1.72 J		V=3.25 m/s, ω= 0.78 rad/s
A5	0.33 J	В3	E' fisicamente possibile solo
			la prima soluzione
		B5	0.77 rad