# HH ABACUS.AI Synthetic Benchmarks for Scientific Research in Explainable Machine Learning

Yang Liu Abacus.Al Sujay Khandagale Abacus.Al Colin White Abacus.Al Willie Neiswanger Stanford University

#### Introduction

- · Machine learning models are growing more complex.
- Their applications become more high-stakes.
   credit scoring, loan approval, criminal recidivism.
- · Many types of explainers have been proposed.
- Local feature attribution is one of the most popular type.
   SHAP, LIME, SHAPR, MAPLE.
- We propose a synthetic benchmark suite to evaluate local feature attribution explainers and simulate real datasets.
- · We evaluate six popular explainers and identify their failure modes.





Model





Data

Examples:
real data,
synthetic data

Examples: multilayer perceptron, decision tree, linear regression

Explainer

Examples:
SHAP, SHAPR,
MAPLE, LIME, L2X,

Metrics

Examples:
shapley, roar
faithfulness,
monotonicity

## **Evaluation Metrics**

Datapoint  $oldsymbol{x} \sim 1$ 

 $oldsymbol{x} \sim \mathcal{D}$ 

Feature set

 $S\subseteq\{1,\cdots,D\}$ 

Feature weights  $~m{w}$  A set of i least important features  $~S^-(m{w},i)$ 

$$\begin{split} p\left(\boldsymbol{x}' \sim \mathcal{D}\left(\boldsymbol{x}_S\right)\right) &= p\left(\boldsymbol{x}' \sim \mathcal{D} \mid \boldsymbol{x}_i' = \boldsymbol{x}_i \text{ for all } i \in S\right) \\ \text{faith} &= \text{Pearson}\left(\left|\mathbb{E}_{\boldsymbol{x}' \sim \mathcal{D}\left(\boldsymbol{x}_{F \mid i}\right)}[f(\boldsymbol{x}')] - f(\boldsymbol{x})\right|_{1 \leq i \leq D}, [w_i]_{1 \leq i \leq D}\right) \\ \delta_i^- &= \mathbb{E}_{\boldsymbol{x}' \sim \mathcal{D}\left(\boldsymbol{x}_{S - (\boldsymbol{w}, i + 1)}\right)}[f(\boldsymbol{x}')] - \mathbb{E}_{\boldsymbol{x}' \sim \mathcal{D}\left(\boldsymbol{x}_{S - (\boldsymbol{w}, i)}\right)}[f(\boldsymbol{x}')], \\ \text{mono} &= \frac{1}{D - 1} \sum_{i = 0}^{D - 2} \mathbb{I}_{|\delta_i^-| \leq |\delta_{i + 1}^-|} \end{split}$$

#### Summary of 10 evaluation metrics.

| Metric        | Type        | Model evaluations | Retrain | Linearity |  |
|---------------|-------------|-------------------|---------|-----------|--|
| faith+/-      | correlation | $\Theta(D)$       |         | _         |  |
| mono+/-       | ranking     | $\Theta(D)$       |         | ✓         |  |
| roar-faith+/- | correlation | $\Theta(D)$       | ✓       | ✓         |  |
| roar-mono+/-  | ranking     | $\Theta(D)$       | ✓       | ✓         |  |
| shapley-mse   | accuracy    | $\Theta(2^D)$     |         |           |  |
| shapley-corr  | correlation | $\Theta(2^D)$     |         |           |  |

## Synthetic Datasets

- Conditional expectations are needed to compute metrics.
- . They are hard to compute for real-world datasets
- Synthetic datasets enable accurate sampling of conditional distributions.
- · We implement 2 feature types:
  - Multivariate Gaussian and Mixture of Gaussians
- Three dataset types:
  - oLinear, Nonlinear Additive, Piecewise Constant

## **Experimental Results**

Multivariate Gaussian Dataset with Piecewise Constant Labels, Decision Tree model (p=0).

|                 | RANDOM               | SHAP                | BF-SHAP             | SHAPR               | LIME                | MAPLE                | L2X                  |
|-----------------|----------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|
| faith+(↑)       | $-0.028_{\pm 0.022}$ | $0.922_{\pm 0.020}$ | $0.887_{\pm 0.031}$ | $0.918_{\pm 0.039}$ | $0.859_{\pm 0.035}$ | $0.626_{\pm 0.050}$  | $-0.004_{\pm 0.100}$ |
| faith-(†)       | $-0.022_{\pm 0.023}$ | $0.970_{\pm 0.006}$ | $0.937_{\pm 0.017}$ | $0.977_{\pm 0.004}$ | $0.918_{\pm 0.010}$ | $0.647_{\pm 0.045}$  | $0.002_{\pm 0.080}$  |
| mono+(†)        | $0.538_{\pm0.012}$   | $0.720_{\pm 0.018}$ | $0.676_{\pm 0.027}$ | $0.719_{\pm 0.019}$ | $0.667_{\pm 0.032}$ | $0.712_{\pm 0.008}$  | $0.562_{\pm 0.024}$  |
| mono-(†)        | $0.467_{\pm 0.006}$  | $0.433_{\pm 0.019}$ | $0.449_{\pm 0.027}$ | $0.435_{\pm 0.012}$ | $0.428_{\pm 0.014}$ | $0.440_{\pm 0.017}$  | $0.430_{\pm 0.040}$  |
| roar-faith+(†)  | $0.003_{\pm 0.028}$  | $0.461_{\pm 0.095}$ | $0.496_{\pm 0.016}$ | $0.468_{\pm 0.082}$ | $0.585_{\pm 0.046}$ | $-0.429_{\pm 0.018}$ | $0.045_{\pm 0.060}$  |
| roar-faith-(†)  | $0.008_{\pm 0.049}$  | $0.581_{\pm 0.024}$ | $0.535_{\pm 0.067}$ | $0.559_{\pm 0.026}$ | $0.621_{\pm 0.019}$ | $-0.339_{\pm 0.013}$ | $0.052_{\pm 0.038}$  |
| roar-mono+(†)   | $0.474_{\pm 0.016}$  | $0.747_{\pm 0.028}$ | $0.771_{\pm 0.015}$ | $0.730_{\pm 0.022}$ | $0.707_{\pm 0.024}$ | $0.425_{\pm 0.009}$  | $0.500_{\pm 0.027}$  |
| roar-mono-(†)   | $0.492_{\pm 0.019}$  | $0.721_{\pm 0.032}$ | $0.683_{\pm 0.038}$ | $0.713_{\pm 0.044}$ | $0.745_{\pm 0.020}$ | $0.471_{\pm 0.016}$  | $0.451_{\pm 0.041}$  |
| shapley-corr(†) | $0.001_{\pm 0.014}$  | $0.992_{\pm 0.005}$ | $0.956_{\pm 0.007}$ | $0.998_{\pm 0.001}$ | $0.955_{\pm 0.009}$ | $0.735_{\pm 0.038}$  | $0.073_{\pm 0.084}$  |
| shapley-mse(↓)  | $1.134_{\pm 0.040}$  | $0.003_{\pm 0.001}$ | $0.008_{\pm 0.001}$ | $0.000_{\pm 0.000}$ | $0.026_{\pm 0.001}$ | $0.071_{\pm 0.007}$  | $0.188_{\pm 0.022}$  |

- No single explainer outperforms the rest consistently across metrics and ML models
- · Explainers are generally more effective in explaining linear models
- · Explainer performance drop as features become more correlated
- MAPLE failed on faith- with both decision tree and MLP models by often predicting important features as least important



Explanation faith- for three types of ML models: linear regression, decision tree, MLP

### Real-world Dataset Simulation

- Wine dataset:
  - o11 continuous features, 1 categorical output, ~5000 data points.
- Simulation process:
  - Compute empirical covariance matrix
  - Use the covariance matrix to generate features
  - OUse a k-nearest neighbor model to generate labels
- Validation process:
- o Compute Jensen-Shannon distance between real and synthetic datasets
- oTrain ML models on either real or simulated wine dataset
- I rain ML models on either real or simulated wine dataset
   Generate explanations for ML models trained on real data, simulated data
- Compute mean squared error between the two sets of explanations

Mean squared error between explanations for predictions of models trained on real and simulated wine dataset.

| Model  | SHAP              | LIME              | MAPLE             | L2X                 | Random            |
|--------|-------------------|-------------------|-------------------|---------------------|-------------------|
| Linear | $0.028 \pm 0.009$ | $0.047 \pm 0.016$ | $0.027 \pm 0.009$ | $0.0009 \pm 0.0001$ |                   |
| Tree   | $0.047 \pm 0.003$ | $0.009 \pm 0.001$ | $0.052 \pm 0.012$ | $0.0008 \pm 0.0001$ | $1.988 \pm 0.001$ |
| MLP    | $0.028\pm0.003$   | $0.037\pm0.008$   | $0.040\pm0.002$   | $0.0008 \pm 0.0001$ |                   |

Explainer performance on simulated wine dataset across metrics

|                  | RANDOM              | SHAP                | LIME                | MAPLE                | L2X                  |
|------------------|---------------------|---------------------|---------------------|----------------------|----------------------|
| faith- (†)       | $0.012_{\pm 0.011}$ | $0.461_{\pm 0.034}$ | $0.237_{\pm 0.031}$ | $-0.007_{\pm 0.036}$ | $-0.010_{\pm 0.032}$ |
| faith+ (†)       | $0.025_{\pm 0.038}$ | $0.488_{\pm 0.023}$ | $0.595_{\pm 0.022}$ | $0.556_{\pm0.021}$   | $0.055_{\pm 0.035}$  |
| mono- (†)        | $0.490_{\pm 0.004}$ | $0.502_{\pm 0.010}$ | $0.500_{\pm 0.013}$ | $0.506_{\pm 0.011}$  | $0.492_{\pm 0.001}$  |
| mono+ (†)        | $0.523_{\pm 0.010}$ | $0.556_{\pm 0.012}$ | $0.539_{\pm 0.005}$ | $0.513_{\pm 0.008}$  | $0.522_{\pm 0.008}$  |
| shapley-corr (†) | $0.011_{\pm 0.027}$ | $0.815_{\pm 0.024}$ | $0.692_{\pm 0.019}$ | $0.669_{\pm 0.007}$  | $0.035_{\pm 0.055}$  |
| shapley-mse (↓)  | $1.032_{\pm 0.022}$ | $0.014_{\pm 0.003}$ | $0.032_{\pm 0.005}$ | $0.041_{\pm 0.001}$  | $0.055_{\pm 0.001}$  |

#### Conclusions

- Synthetic datasets enable:
- Quantitative evaluation of feature attribution methods
- oSimulation of real datasets and benchmark explainers
- The best choice of explainer depends on metrics, ML model, and dataset type
- · Some explainers fail in unexpected ways
- GitHub: https://github.com/abacusai/xai-bench
- Full workshop paper: <a href="https://arxiv.org/abs/2106.12543">https://arxiv.org/abs/2106.12543</a>