* Chp. 5 Eigen-stuff

When T: V -> V is a lin. trans. Def: and we find a specific vector REV such that x 70 and $T(\bar{x}) = c\bar{x}$ for some then we call \vec{x} an [eigenvector]

with [eigenvalue] c (often use c=2) (if T is just multiplying every vector by a constant, then every vector in V is an eigenvector, with that constant 2 its eigenvalue.) However, most lin, trans. T: V > V have only certain eigenvectors and eigenvalues, Find them! Steps: 1) We work with $A = [T]_R^3$ 2) Let $A\vec{x} = \lambda \vec{z}$ $(\vec{x} \neq \vec{0})$ then $\Rightarrow A\vec{x} = (\lambda \vec{I})\vec{x}$ $(\lambda \vec{I} = \begin{bmatrix} \lambda & 0 & 0 & 0 & 0 \\ 0 & \lambda & \lambda & 0 & 0 \\ 0 & 0 & 0 & \lambda & 0 \end{bmatrix}$ $\Rightarrow A\vec{x} - (\lambda \vec{I})\vec{x} = \vec{0}$ $\Rightarrow (A - \lambda I) \vec{\lambda} = \vec{0}$ So $\vec{x} \neq \vec{o}$ and $\vec{x} \in N(A-\lambda I)$ => de+(A-)I)=0 3) this gives us an algebraic equation to solve for 2. Then plug back in to find 2.

	ex) Let $T: \mathcal{P}^2 \to \mathcal{P}^2$				
	be given by $T(f(x)) = 2xf'(x) + 3xf''(x)$				
	Find the eigenvalues and their corresponding				
	eigenvectors for Ti				
	2 8	6.1	1 - 511	1 -12	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	e; € 6	f(x)	f"(x)	1(e,	<i>i</i>)
		0	0 0 2	0	
	×	.)	0	2×	
	\times^2	2×	2	4 x 2	+ 6 X
	7	3	7 (2)	1	77 [000]
1)	A = [T]	£ = [0	$\int_{\mathcal{E}} (2x)_{\mathcal{E}}$	[4x2+6x	[]= 026
	$A = [T]_{\varepsilon}^{\varepsilon} = \left[(0)_{\varepsilon} \left[2x \right]_{\varepsilon} \left[4x^{2} + 6x \right]_{\varepsilon} \right] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 4 \end{bmatrix}$ $\det (A - \lambda I) = \det \left[\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 2 \\ 0 & 0 & \lambda \end{bmatrix} \right] = 0$				
2)	der (A-)	I) = de :	f 0 2 6	- 0 X	2)=0
	$= det \begin{pmatrix} -\lambda & 0 & 0 \\ 0 & 2-\lambda & 6 \end{pmatrix} = 0$ $= -\lambda (2-\lambda)(4-\lambda) = 0 \leftarrow \text{ (alled the contraction)}$ $= \lambda = 0 2 4$				
	10 6 4-2/ This is the				
	$= -\lambda (2-\lambda) (4-\lambda) = 0 $				
	$= -\lambda(2-\lambda)(4-\lambda) = 0$ $= \lambda = 0, 2, 4$ $= \lambda = 0, 2, 4$ $= \frac{\lambda = 0, 2, 4}{2}$				
3)	Solve $(A-\lambda I)\vec{x}=\vec{o}$				
	$\lambda = 0$ $\lambda = 2$ $\lambda = 4$				
	0 6 0 0		-2 0 0	0	T-4 0 0 0
	0 0 4	0	002	0	[0000]
~	000	67	[0 0	0]	V [0 0 0 0]
	001	0]	0 0 1	6	[0000]
	(x,=x, fr	ce	$(x_i=0)$		(x,=0
	$\chi_1 = 0$		$X_2 = X_2$		$\begin{cases} x_2 = 3x_3 \end{cases}$
	(× ₃ = 0		$(x_3 = 0)$		$(x_3 = x_3)$
	₹ E Span {	6/2	x E span { ($\bar{\chi} \in Span \left\{ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \right\}$
	= Span {	3	= Span {x	}	= Span $\{3x + x^2\}$

Note that the eigen vectors are found as spans. Indeed, for each eigen value hour get a subspace of dom (T) called the [eigenspace | Ex. We find a basis for E_{λ_0} , so $E_{\lambda_0} = span\{\vec{x}_1, \vec{\chi}_2, ..., \vec{\chi}_k\}$. → We define the Igeometric multiplicity of 2.

as the dimension (number of busis vectors) k

of Elo. There is also the [algebraic multiplicity] of low which is the power pon the factor (2,-2) in the characteristic polynomial det (A-2I). We can prove that for similar matrices A and B, B = P'AP, the eigenvalues are the same for both. - That's the for [T] and [T]e, two matrices for the same lin. trans. T: V -> V using two different bases, B and C. T is [diagonalizable] if there is a basis B such that [T] is a diagonal matrix (any entry not on the main diagonal is zero). - Note that for a diagonal matrix, the eigenvalues are the diagonal entries.

Theorem: For T:V -V eigen volves 2, , 2, ..., 2; the algebraic multiplicity of each is equal to the corresponding geometric multiplicity of that it and the sum of those multiplicaties totals to n, iff T is diagonalizable, that is, there is a basis B such that [T] is Liagonal. Moreover, the diagonal entries of [T] & are the eigenvalues of T, with deplicates according to their algebraic multiplicities. The basis B is the set of eigenvectors found by listing all the bases of the eigenspaces Ex: together. ex) T(f(x)) = 2xf'(x) + 3xf''(x) $\lambda = 0$, alg.mult. = 1 = geom. mult. 2=2, alg. mult, = 1 = geom, mult. 23 = 4, alg. mult = 1 = geom. mult. diagonalizable! $B = \{1, x, 3x + x^2\}, [T]_{3}^{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

```
Note: if 1=0 is an eigenvalue of T
     then N(T) $ 0, and Tis not 1-1;
     not onto, and de+([T]_p^B) = 0
ex) T: \mathbb{R}^2 \rightarrow \mathbb{R}^2
    given by T(x) = \begin{pmatrix} 3x + y \\ 3y \end{pmatrix}
diagonalizable?
A = \begin{bmatrix} T \end{bmatrix}_{\varepsilon}^{\varepsilon} = \begin{bmatrix} 3(1) + 0 & 3(0) + 1 \\ 3(0) & 3(1) \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}
\det (A - \lambda I) = \det \left( \begin{bmatrix} 3 - \lambda \\ 0 \end{bmatrix} \right) = 0
                       = (3-\lambda)(3-\lambda) = 0
                     = (3-\lambda)^2 = 0
\lambda = 3

    power p = 2
Find eigenspace for \lambda = 3; Solve (A - \lambda I)\vec{x} = \vec{0}.
              3-3 1 0 ~ 0 1 0 7
\exists \begin{cases} x, = x, \text{ free} \\ \chi_2 = 0 \end{cases} \vec{\chi} = \chi_1(1)
 That is E3 = Span { (o) } basis
So alg. mult. of \lambda = 3 is 2
      geom mult. of \lambda = 3 is
> Not diagonalizable.
```