1 回路設計

設計した回路について選定の理由や仕様について以下に示す.また使用する部品の一覧を1.1に示す.

1.1 マイコンの選定

設計した回路を 3, 4 に示す.マイコンとして「Raspberry Pi3 Model B (以下 RPi)」と「Arduino uno R3 (以下 Arduino)」を使用する.それぞれが,統合・画像処理・モータ制御,センサ処理,を行う.RPi では複雑な処理を行う上で,LinuxOS の支援を受けることができ有利である.さらに,処理速度が CPU $1.2[\mathrm{GHz}]$,メモリ $1[\mathrm{GB}]$ と Arduino の $16[\mathrm{MHz}]$ ・ $32[\mathrm{KB}]$ と比べても大きく優れている.これは,並列処理 や高速な画像処理に適している.このような理由から RPi を採用した.

また ,RPi はアナログ I/O ポートを持っておらず,アナログ電圧出力を行うセンサ類の処理が困難である.そこで,アナログ・ディジタル I/O ポートを持つ Arduino にセンサ類の処理を担わせることとした.

1.2 モータドライバ

モータドライバは「MD10C R3」1 を両輪駆動用として 2 つ使用し,TA7291P」をアーム用として使用する.各仕様を下に示す.[MD10C R3](駆動用)

● モータ電源電圧: DC 5[V] ~ 25[V]

● モータ最大電流: 13[A]

• ロジック用電源:モータ用より供給

• ロジック電圧: DC 5[V] or 3.3[V]

[TA7291P](アーム用)

● モータ電源電圧: DC 0[V] ~ 20[V]

● モータ最大電流: 1.0[A]

● ロジック電圧: DC 4.5[V] ~ 20[V]

☑ 1: MD10C R3

1.3 I^2C 通信

今回,我々のロボットには測距センサを始めとする複数のセンサが搭載されている.これらの殆どがアナログ出力であるが,Arduinoのアナログ I/O ポートは 6 つしかなく,要求を満たしていない.

そこで, I^2C 通信を用いることとする.これは, I^2C 通信がパーティライン構成が可能となっており、1 つのマスタで複数のスレーブデバイスと通信することが可能であるからである.概要を以下に示す.

- (1) マスタ側 (Arduino) とスレーブ側 (n 個のセンサ等) を明確に分け, 各スレーブに異なるアドレスを割り振る.
- (2) マスタ側が、Start Condition を出力し続いてアドレスと Read/Write 要求を出力する.
- (3) 全スレーブがこの時の SCL のクロックを元に SDA のデータを受信し、SSPADD レジスタに セットされたアドレスと一致したデバイスだけが、その後の送受信を 継続する.
- (4) 受信した側がデータを受信完了すると自動的に ACK ビットを返送し、同時に SSP 割込みを発生する.
- (5) これをマスタが Stop Condition を出力するまで続ける.

1.4 センサ仕様

1.4.1 赤外線測距センサ

測距センサは本体周囲に中距離用を 7 つ ,前方に近距離用を 3 つ搭載する.これは自律行動の際に ,周 辺環境 ,特に各種ポールを把握するために用いる. センサの仕様については実験を行ったので?? に示す. また ,各測距センサには信号のノイズを吸収し安定化させるために $0.1[\mu F]$ のセラミックコンデンサを接続する.

1.4.2 3 軸加速度・ジャイロセンサモジュール

加速度センサは [x, y, z] 軸におけるロボットの加速度を測定するものである.

ジャイロセンサは [x, y, z] 軸まわりの各加速度を測定するものである.

我々はこれらをロボットの自己位置推定に用いる、特にジャイロセンサについては,ロボット本体の直進走行制御に使用する、詳細は??において説明する.

図 2: 3 軸加速度・ジャイロセンサモジュール

1.5 電源回路

電源回路は各回路図の左上に示している.

バッテリーはひとつしか搭載しないが, RPi と $\mathrm{Arduino}$ では定格電流値が異なるために同一の電源は使用できない.そこで,それぞれに降圧レギュレータとして DCDC コンバータを用いてバッテリーからの供給電源を分電することとした.各仕様を下に示す.

[LR8697](RPi・モータ用)

● 電源電圧: DC 6.0[V] ~ 42.0[V]]

● 出力電圧: DC 5.0[V]]

● 出力電流: 2.5[A]

[BTD05-05S200D](Arduino・センサ用)

● 電源電圧: 4.5-9.0[V]

● 出力電圧: 5.0[V]

● 出力電流: 2000[mA]

表 1.1: 回路用部品表

タイプ	部品名	数	用途
マイコン	Raspberry Pi3	1	統括・画像処理・モータ制御
	Arduino uno R3	1	センサ類の処理
DC モータ	AO-8014	2	駆動用
	TAMIYA ミニモータ	1	アーム用
モータドライバ	MD10C-R3	2	タイヤ用
	TA7291P	1	アーム用
赤外線測距センサ	GP2Y0A02YK	6	中距離センサ
	GP2Y0E03	3	近距離センサ
カメラモジュール	P5V04A	1	画像処理
3軸加速度センサ	KXR94-2050	1	自己位置推定
3 軸ジャイロセンサ	BGD20	1	自己位置推定
DCDC コンバータ	LT8697	1	7.2[V] 5.0[v]2500[mA] 降圧レギュレータ
	BTD05-05S200D	1	7.2[V] 5.0[V]2000[mA] 降圧レギュレータ
コンデンサ	電解コンデンサ 47[µF]	2	電源安定化
	セラミックコンデンサ $0.1[\mu \mathrm{F}]$	9	センサ信号安定化
バッテリー	POWER MAX 4000 Ni-MH	1	電源バッテリー 7.2[V]4200[mAh]

図 3: Raspberry Pi3 接続回路図

図 4: Arduino unoR3 接続回路図