Linear Models

Nice and interpretable but can't learn "difficult" nonlinear patterns

So, are linear models useless for such problems?

Linear Models for Nonlinear Problems!

Consider the following one-dimensional inputs from two classes

Can't separate using a linear hyperplane

Linear Models for Nonlinear Problems!

Consider mapping each x to two-dimensions as $x \to z = [z_1, z_2] = [x, x^2]$

Data now becomes linearly separable in the two-dimensional space

Linear Models for Nonlinear Problems!

Essentially, can use some function φ to map/transform inputs to a "nice" space

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt(2)x_1x_2, x_2^2)$$

- .. and then happily apply a linear model in the new space!
- Linear in the new space but nonlinear in the original space!

Not Every Mapping is Helpful

- Not every mapping helps in learning nonlinear patterns. Must at least be nonlinear!
- For the nonlinear classification problem we saw earlier, consider some possible mappings

How to get these "good" (nonlinear) mappings?

- Can try to learn the mapping from the data itself (e.g., using deep learning later)
- There are also pre-defined "good" mappings (e.g., provided by kernel functions today's topic)

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2}) x_1 x_2, x_2^2)$$

- Looks like I have to compute these mapping using φ . That would be quite expensive!
- Thankfully, not always. For example, when using kernels, you get these for (almost) free
 - A kernel defines an "implicit" mapping for the data

Some Examples of Kernel Functions

Linear (trivial) Kernel:

$$k(x,z) = x^{T}z$$
 (mapping function φ is identity)

Quadratic Kernel:

$$k(x,z) = (x^{T}z)^{2}$$
 or $(1 + x^{T}z)^{2}$

Polynomial Kernel (of degree *d*):

$$k(x, z) = (x^{T}z)^{d}$$
 or $(1 + x^{T}z)^{d}$

Radial Basis Function (RBF) of "Gaussian" Kernel:

$$k(x,z) = \exp[-v||x-z||^2]$$

- v is a hyperparameter (also called the kernel bandwidth)
- The RBF kernel corresponds to an infinite dimensional feature space F (i.e., you can't actually write down or store the map $\varphi(x)$ explicitly)
- Also called "stationary kernel": only depends on the distance between x and z (translating both by the same amount won't change the value of k(x, z))
- Kernel hyperparameters (e.g., d, γ) need to be chosen via cross-validation

The Kernel Matrix

- The kernel function *k* defines the Kernel Matrix **K** over the data Given
- N examples $\{x_1, \dots, x_N\}$, the (i, j)-th entry of **K** is defined as:

$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i)^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_j)$$

- K_{ij} : Similarity between the i -th and j-th example in the feature space F
- **K**: $N \times N$ matrix of pairwise similarities between examples in F space

- K is a symmetric and positive definite matrix
- For a P.D. matrix: $\mathbf{z}^{\mathsf{T}}\mathbf{K}\mathbf{z} > 0$, $\forall \mathbf{z} \in \mathbb{R}^{N}$ (also, all eigenvalues positive)
- The Kernel Matrix **K** is also known as the Gram Matrix

Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Recall: Kernel k(x, z) represents a dot product in some high dimensional feature space F
- Any learning model in which, during training and test, inputs only appear as dot products $(\mathbf{x}^{\mathsf{T}}_{i} \mathbf{x}_{j})$ can be kernelized (i.e., non-linearlized)
 - .. by replacing the $\mathbf{x}_{i}^{T} \mathbf{x}_{i}$ terms by $\mathbf{\varphi}(\mathbf{x}_{i})^{T} \mathbf{\varphi}(\mathbf{x}_{i}) = k(\mathbf{x}_{i}, \mathbf{x}_{i})$
- Most learning algorithms can be easily kernelized
 - Distance based methods, Perceptron, SVM, linear regression, etc.
 - Many of the unsupervised learning algorithms too can be kernelized (e.g., K -means clustering, Principal Component Analysis, etc. - will see later)
 - Let's look at two examples: Kernelized SVM and Kernelized Ridge Regression

Hyperplane-based Classification

Basic idea: Learn to separate by a hyperplane $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$

- Fredict the label of a test input x *as: $\hat{y}_* = \text{sign}(\mathbf{w}^T \mathbf{x} * + \mathbf{b})$
- The hyperplane may be "implied" by the model, or learned directly
 - Implied: Prototype-based classification, nearest neighbors, generative classification, etc.
 - Directly learned: Logistic regression, Perceptron, Support Vector Machine, etc.
- The "direct" approach defines a model with parameters w (and optionally b) and learns them by minimizing a suitable loss function (and doesn't model x, i.e., purely discriminative)
- The hyperplane need not be linear (e.g., can be made nonlinear using kernel methods next class)

Lack of Margins

Learns a hyperplane (of many possible) that separates the classes

- The one learned will depend on the initial w
- Doesn't guarantee any "margin" around the hyperplane Note: Possible to
- "artificially" introduce a margin
 - Support Vector Machine (SVM) does this directly by learning the maximum margin hyperplane

Hyperplanes and Margin

Support Vector Machine (SVM)

- SVM is a hyperplane based (linear) classifier that ensures a large margin around the hyperplane Note:
- We will assume the hyperplane to be of the form $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ (will keep the bias term b)

- Fig. Note: SVMs can also learn nonlinear decision boundaries using kernel methods (will seelater)
- Reason behind the name "Support Vector Machine"?
 - SVM optimization discovers the most important examples (called "support vectors") in training data
 - These examples act as "balancing" the margin boundaries (hence called "support")

Hard-Margin SVM

■ Hard-Margin: Every training example has to fulfil the margin condition $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$

- \P Also want to maximize the margin $\gamma \propto \frac{1}{||w||}$. Equivalent to minimizing $||w||^2$ or $\frac{||w||^2}{2}$
- The objective for hard-margin SVM

$$\min_{\mathbf{w},b} f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$
subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, $n = 1, ..., N$

Constrained optimization with N inequality constraints (note: function and constraints are convex)

Soft-Margin SVM

Allow some training examples to fall within the margin region, or be even misclassified (i.e., fall on the wrong side). Preferable if training data is noisy

- Each training example (x_n, y_n) given a "slack" $\xi_n \ge 0$ (distance by which it "violates" the margin). If $\xi_n > 1$ then x_n is totally on the wrong side
 - Basically, we want a soft-margin condition: $y_n(w^T x_n + b) \ge 1 \xi_n$, $\xi_n \ge 0$

One-Class Classification

- Can we learn from examples of just one class, say positive examples?
- May be desirable if there are many types of negative examples

"Outlier/Novelty Detection" problems can also be formulated like this

SVM: Some Notes

- A hugely (perhaps the most!) popular classification algorithm
- Reasonably mature, highly optimized SVM softwares freely available (perhaps the reason why it is more popular than various other competing algorithms)
 - Some popular ones: libSVM, LIBLINEAR, sklearn also provides SVM
- Lots of work on scaling up SVMs[†] (both large N and large D)
- Extensions beyond binary classification (e.g., multiclass, structured outputs)
- Can even be used for regression problems (Support Vector Regression)
- Nonlinear extensions possible via kernels