CS 294-8 Computational Biology for Computer Scientists

Spring 2003

Lecture 1: January 21

Lecturer: Gene Myers Scribe: Hao Chen

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 All Pairs Shortest Paths

The naive and obvious solution to All Pairs Shortest Path(APSP) problem is to run a Single Source Shortest Path algorithm from each starting vertex v. If the graph has arbitrary edge weights, it takes the Bellman-Ford algorithm $O(|E||V|^2)$ time to solve APSP. But there are better approaches.

1.1.1 Floyd-Warshall Algorithm: Dynamic Programming

Label the vertices 1, 2, ..., n. Define $d^{(k)}(i, j)$ to be the length of a shortest path from i to j, using intermediate vertices from $\{1, 2, ..., k\}$ only. Obviously, $d^{(n)}(i, j)$ is the full problem.

. . .

1.2 Transitive Closure

Our goal is to achieve running time $O(M(n)\log n)$ for APSP where M(n) is the time for $n\times n$ matrix multiplication. Let's see if we can achieve this for a simpler but related problem, namely *Transitive Closure*:

. . .

References

- [AGM97] N. Alon, Z. Galil and O. Margalit, On the Exponent of the All Pairs Shortest Path Problem, *Journal of Computer and System Sciences* **54** (1997), pp. 255–262.
 - [F76] M. L. Fredman, New Bounds on the Complexity of the Shortest Path Problem, SIAM Journal on Computing 5 (1976), pp. 83-89.