

Automated Testing with Robot Framework

indythaitester@gmail.com

https://www.facebook.com/indythaitester

Assoc. Rangsit Sirirangsi www.indythaitester.com

About Me

- รศ. รังสิต ศิริรังษี
- Automated Testing Consult
- Automated Testing Trainer: QTP/UFT, Selenium, JMeter, Katalon Studio, Protractor, Puppeteer,
 Robot Framework, Playwright, Cypress
- Contact : Line ID: S.rangsit
 - Fan page : https://www.facebook.com/indythaitester/

Manual Testing

- ทคสอบการกรอกข้อมูลของ Web App ดังรูป
 - โหลดแบบฟอร์ม
 - กรอกและเลือกข้อมูลลงในฟอร์ม
 - ตรวจสอบแลพบันทึกผลลัพธ์ Pass/Fail
 - กรณี Fail ให้จับภาพหน้าจอไว้

What is Automation Testing

• Test automation เป็นการใช้ซอฟต์แวร์เพื่อควบคุมการประมวลผลการทดสอบ โดยเปรียบเทียบผลลัพธ์ที่เกิดขึ้นจริงกับผลลัพธ์ที่คาดไว้

Manual	Automated
Faster for quick tasks	Faster in the long run
Cheaper for quick tasks	Cheaper in the long run
Less	More
Performance tests	Visual aspects
Less	More
Less	More
More	Less
Unnecessary	Necessary
Easier	Difficult
Small	Constant
Unnecessary	Necessary
	Faster for quick tasks Cheaper for quick tasks Less Performance tests Less Less More Unnecessary Easier Small

Manual vs Automation Testing

Test Automation Process

Adv: Test Automation

- ข้อดีของการทคสอบแบบอัตโนมัติ
 - ความเร็ว (Fast) : การทดสอบแบบนี้สามารถในการรันได้เร็วกว่า
 - ความน่าเชื่อถือ (Reliable) : การทดสอบแบบนี้มีความน่าเชื่อถือสูง
 - การทำซ้ำ (Repeatable) : อาศัยการทำงานแบบซ้ำ ๆ ในการทดสอบ
 - ความสามารถโปรแกรม (Programmable) : สามารถโปรแกรมเพื่อช่วยคึงข้อมูลที่ถูกจัดเก็บไว้ มาใช้ร่วมกับการทดสอบได้
 - การนำกลับมาใช้ใหม่ (Reusable) : นักทดสอบสามารถนำข้อมูลทดสอบกลับมาใช้ใหม่ได้ แม้ว่าบางส่วนอาจมีการเปลี่ยนแปลงไปก็ตาม
 - กุณภาพดีขึ้น (Better Quality) : การทคสอบอัตโนมัติมีผลลัพธ์ที่มีความถูกต้องสูงถึง 99.9% ช่วยลดเวลาในการทคสอบตลอดจนลดจำนวนสมาชิกในทีมทคสอบลงได้

ROBOT FRAME WORK/

The limitations of test automation

- ค่าใช้จ่ายเริ่มต้นสูง ทั้งในส่วนของซอฟต์แวร์และค่าใช้จ่ายของบุคลากร
- เวลาในการสร้างสคริปต์ขึ้นอยู่กับความซับซ้อนของโปรแกรมภายใต้การทดสอบ
- ไม่สามารถนำมาใช้แทนการทดสอบด้วยมือได้ ในกรณีที่
 - การทดสอบที่รันนาน ๆ ครั้ง
 - การทคสอบซอฟต์แวร์ที่มีการประยุกต์ใช้งานด้านภาพและเสียงเป็นหลัก
 - การทดสอบที่รวมถึงการปฏิสัมพันธ์ทางกายภาพระหว่างผู้ใช้กับระบบ
- จำเป็นต้องแก้ไขสคริปต์ทุกครั้งที่มีการเปลี่ยนสภาพแวคล้อมในการทคสอบ
- เครื่องมือทคสอบอัตโนมัติทำงานตามที่ถูกกำหนดไว้เท่านั้น การปรับปรุงแก้ไขใด ๆ ขึ้นอยู่กับ ความสามารถของนักทคสอบเป็นหลัก

Automation Frameworks Evolution

• Automation Framework ที่ใช้ในการทคสอบปัจจุบันจะประกอบไปด้วยคุณสมบัติ ดังต่อไปนี้

Record & Playback

- บันทึก (record) ค่าอินพุตจากผู้ใช้ และการตอบสนองจากระบบให้อยู่ในรูปของ Test Script ที่ สามารถนำกลับมาเล่นย้อนกลับ (play back) ได้
- ข้อดี
 - สะควกรวดเร็วในการทำงาน ค่าใช้จ่ายในการคำเนินการต่ำ
- ข้อเสีย
 - สคริปต์มีลักษณะเป็น hard coded จำเป็นต้องอัพเดททุกครั้งที่มีการเปลี่ยนแปลงข้อมูล
 - การเปลี่ยนแปลงสคริปต์อาจต้องมีการบันทึกใหม่เสมอ ส่งผลทำให้ค่าใช้จ่ายสูงขึ้น
 - ในระหว่างการบันทึกหากมีข้อผิดพลาดใด ๆ เกิดขึ้นจะต้องบันทึกขั้นตอนทั้งหมดใหม่ทุกครั้ง
 - ไม่รองรับการทำงานที่มีความซับซ้อนสูง

Limitation...

- สคริปต์มีลักษณะเป็น hard coded นักทดสอบจำเป็นต้องอัพเดทสคริปต์ทุกครั้งที่มีการ
 เปลี่ยนแปลงข้อมูล
- สคริปต์เหล่านี้มีการกลไกในการจัดการกับความผิดพลาดที่เกิดขึ้นน้อยมาก บ่อยครั้งจะล้มเหลว เนื่องมาจากการเล่นย้อนกลับสำหรับเหตุการณ์ต่าง ๆ ที่เกิดขึ้น เช่น วินโดวส์ป็อปอัพ หรือ ข้อความเตือนแบบต่าง ๆ เป็นต้น
- การเปลี่ยนแปลงสคริปต์อาจต้องมีการบันทึกใหม่เสมอ ดังนั้นจึงส่งผลทำให้ค่าใช้จ่ายในการ บำรุงรักษาสคริปต์สูงขึ้น
- ในระหว่างการบันทึกหากมีข้อผิดพลาดใด ๆ เกิดขึ้นจะต้องบันทึกขั้นตอนทั้งหมดใหม่ทุกครั้ง
- สคริปต์สำหรับ Record/Playback จะทำงานได้ดีเฉพาะในกรณีที่โปรแกรมที่ถูกทดสอบได้ผ่าน การทำงานมาแล้วนั่นเอง
- ไม่รองรับการทำงานที่มีความซับซ้อนสูง

Data Driven Framework

- เป็นการแยกส่วน Test Data ออกจาก Test Script โดยจัดเก็บไว้ในแหล่งข้อมูลภายนอกเป็นหลัก
- ผู้ใช้สามารถแทนข้อมูลที่เป็น Hard Coded ลงในตัวแปรที่อยู่ภายใน Test Script เพื่ออ่านค่าจาก แหล่งข้อมูลที่อยู่ภายนอกได้ ดังนั้นจึงช่วยลดจำนวนสคริปต์ และง่ายต่อการบำรุงรักษา

Limitations: Data-Driven Methodology

- สคริปต์ทคสอบต้องเสร็จสมบูรณ์แล้วก่อนเริ่มต้นการทำงาน
- ต้องการความชำนาญในการสร้างสคริปต์ โดยขึ้นอยู่กับเครื่องมือที่ถูกเลือกใช้
- การทดสอบจะขึ้นอยู่กับ GUI เป็นหลัก ดังนั้นเมื่อ GUI มีการเปลี่ยนแปลง สคริปต์ทดสอบต้องมี การเปลี่ยนแปลงตามไปด้วย
- ต้องการพื้นที่จัดเก็บข้อมูลมากขึ้นสำหรับแต่ละ Test Case
- test script และ data files จำเป็นต้องมีการบำรุงรักษาอย่างมาก

Keyword-Driven Framework

- เป็นส่วนที่พัฒนาขึ้นเพื่อลดข้อจำกัดของ Data Driven Framework
- สคริปต์ทคสอบพัฒนาขึ้นจากทักษะทางโปรแกรมเป็นหลัก ส่งผลให้การบำรุงรักษาทำได้ง่าย สามารถนำกลับมาใช้ใหม่ได้
 - คีย์เวิร์ด (Keywords) ในรูปของ คำศัพท์พื้นฐานแทนการทำงานในการ ติดต่อกับผู้ใช้ เช่น "click", "enter", "select"
 - การกระทำ (Actions) ที่อยู่ในรูปของ โมคูลหรือฟังก์ชัน ซึ่งเป็นผลมาจาก การเรียกใช้คีย์เวิร์ดที่กำหนดไว้

Keyword Driven

- ข้อดีของเทคนิคการทคสอบแบบ Keyword Driven มีดังต่อไปนี้
 - สามารถสร้างสคริปต์ทคสอบไปพร้อม ๆ กับการพัฒนาโค้ด
 - นักทดสอบต้องเรียนรู้เฉพาะคีย์เวิร์ดที่ต้องการเท่านั้น ไม่จำเป็นต้องมีประสบการณ์การโปรแกรม
 - นักทดสอบสามารถน้ำคีย์เวิร์ด และ test cases ที่ได้ออกแบบไว้แล้วกลับมาใช้ใหม่ได้
 - การแก้ไขเพิ่มเติมโค้ดในส่วนที่เกี่ยวข้องกับ test cases น้อย
 - การบำรุงรักษาทำได้โดยง่าย การเปลี่ยนแปลงฟังก์ชันการทำงานต้องการเท่านั้น
- ข้อเสียของเทคนิคการทดสอบแบบ Keyword Driven มีดังต่อไปนี้
 - สคริปต์ที่ใช้ทดสอบมีลักษณะเฉพาะสูง จำเป็นต้องใช้นักทดสอบที่มีความเชี่ยวชาญใน เครื่องมือสร้างสคริปต์ในลักษณะดังกล่าวสูงตามไปด้วย
 - นักทดสอบต้องมีความเชี่ยวชาญในเครื่องมือที่ใช้ในกรณีที่ต้องการแก้ไขเพิ่มเติม Keyword
 - แต่ละเครื่องมือใช้โปรแกรมภาษาแตกต่างกัน เปลี่ยนเครื่องมือต้องเรียนรู้ใหม่เสมอ

Codeless Automation

- เป็นการทดสอบฟังก์ชันการทำงานอัตโนมัติที่มีการเขียนโค้ดน้อยที่สุด หรือ Model Based Testing
 - ไม่จำเป็นต้องสร้าง Automation Frameworks แบบซับเชื้อนขึ้นมาใหม่
 - Manual Tester/QA สามารถเข้าฝึกอบรมการใช้งานได้โดยง่าย
 - มีค่าใช้จ่ายเฉพาะเครื่องมือ ไม่รวมค่าใช้จ่ายในส่วนของนักทดสอบ
 - สนับสนุนวิธีการพัฒนาแบบใหม่ ๆ อาทิ Agile
 - สะดวกต่อการตั้งค่าโครงแบบ (Configuration)
 - สคริปต์สามารถทำความเข้าใจได้โดยง่าย

Automated Test Scripts

- เป็นโปรแกรมที่ถูกพัฒนาขึ้นตามเกณฑ์มาตรฐานเดียวกับการพัฒนาซอฟต์แวร์ เพื่อให้ได้ ผลลัพธ์ในการนำไปใช้ได้เป็นอย่างดี จำเป็นต้องมีการฝึกอบรมผู้ใช้ เช่นเดียวกับโปรแกรมเมอร์
- Test scripts ถูกเขียนขึ้นตามรูปแบบและวิธีการที่กำหนดไว้ในเครื่องมือทคสอบโดยเฉพาะ เช่น Unified Functional Testing (QTP), Rational Software, Selenium ใช้โปรแกรมภาษาที่แตกต่าง กันไป เช่น Basic, Java, Python หรือ JavaScript เป็นต้น

ROBOT FRAMI WORK

What is Robot Framework?

- โดย Pekka Klärck ใด้แนวคิดจากวิทยานิพนธ์ระดับปริญญาโท "Data-Driven and Keyword-Driven Test Automation Frameworks" ที่ Helsinki University Of Technology ในปี 2004
- การพัฒนา Robot Framework เวอร์ชั่นแรกเริ่มขึ้นที่ Nokia Networks เพื่อใช้เป็นเครื่องมือทคสอบ อัตโนมัติ ในปี 2005 โดยใช้โปรแกรมภาษา Python
- จากนั้นมีการปรับแก้และ Robot Framework 2.0 ได้ถูกเผยแพร่ออกมาภายใต้ Apache License เป็น ซอฟต์แวร์รหัสเปิดในปี 2008
- ใช้ Selenium เป็นพื้นฐานในการทำงานผ่านหลักการที่เรียกว่า Keyword-Driven Frameworks
- ปัจจุบัน Robot Framework พัฒนามาถึงเวอร์ชั่น 6.1

Why Robot Framework?

- เป็นซอฟต์แวร์รหัสเปิดที่มีข้อดีต่าง ๆ อาทิ ค่าใช้จ่าย มี community สนับสนุน
- เป็นเครื่องมือที่เป็นอิสระจาก platform และ application สำหรับการทคสอบ
- ใช้การสร้าง Keyword ที่มีรูปแบบง่ายต่อการใช้ตลอดจนการทำความเข้าใจ ดังนั้นจึงสะดวกต่อการ นำกลับไปใช้ใหม่ได้
- ดังนั้นจึงเป็นเครื่องมือทดสอบอัตโนมัติที่เหมาะสมกับผู้ที่ไม่มีประสบการณ์ด้านการโปรแกรม
- Library จำนวนมากที่พร้อมนำมาใช้ได้กับ Robot Framework อาทิ Android, database, etc. เพื่อใช้ ทคสอบ application ในทุก ๆ รูปแบบ
- นอกจากนี้ยังสามารถในการใช้ร่วมกับโปรแกรมภาษาต่าง ๆ อาทิ Python, Java

Robot Framework Architecture

ROBOT FRAMEWORK ARCHITECTURE Test Data Test Data Syntax Robot Framework Test Library API Test Libraries [Selenium, swing, etc.] Application Interfaces System Under Test

- เป็น Abstraction Layer ที่พัฒนาบน Test
 Library ต่าง ๆ
- คังนั้นจึงสามารถใช้ทคสอบได้ทั้ง web, desktop, mobile แอปพลิเคชัน รวมถึง RESTful และ SOAP-based services
- ส่วน Test Case สำหรับ Mobile สามารถ ทคสอบได้ทั้ง Android และ iOS app ส่วน การทคสอบบนเว็บสามารถรันได้ทั้ง
 Chrome, Firefox, Edges, IE และ Safari

Test Data Sections

• ใน Robot Framework ข้อมูลที่ใช้ในการทดสอบจะถูกแบ่งออกเป็น Section จำนวน 4 ส่วนหลัก ๆ ในรูปของตารางที่ประกอบไปด้วยสัญลักษณ์ *** พร้อมข้อความที่กำหนดไว้ดังต่อไปนี้

Section	Description
*** Settings ***	ใช้สำหรับระบุส่วนประกอบที่ต้องการใช้ร่วมกับการทดสอบ อาทิ libraries, resource ไฟล์, variable ไฟล์ เป็นต้น
*** Variables ***	ใช้สำหรับประกาศตัวแปรที่ต้องการใช้งานภายในสคริปต์
*** Test Cases ***	ใช้สำหรับการสร้าง test cases จากภาษาง่าย ๆ โดยผู้ที่ไม่มีความรู้ ทางด้านเทคนิคสามารถเข้าใจได้
*** Keywords ***	ใช้สร้างรายละเอียดของ Test Case จากคีย์เวิร์คที่มีอยู่แล้วหรือผู้ใช้สร้าง ขึ้นมาใหม่ เพื่อใช้ในการทดสอบ

Browser: Basic Keywords

• คีย์เวิร์ดใน Robot Framework ที่เกี่ยวข้องกับ Browser ที่ใช้มีการเรียกใช้งานบ่อย ๆ ได้แก่

Method	Purpose
Open Browser	เปิดบราวเซอร์ตาม Url และชนิดบราวเซอร์ที่ถูกระบุ
Close Browser	ปิดการทำงานของบราวเซอร์ปัจจุบัน
Maximize Browser Window	เปิดหน้าต่างบราวเซอร์เต็มหน้าจอ
Get Location	คืนค่า URL ของบราวเซอร์ปัจจุบัน
Get Title	คืนค่า title ของเพจปัจจุบัน
Sleep	หยุครอการประมวลผลการทคสอบตามเวลาที่ถูกระบุ

Space separated format

- การตรวจสอบคีย์เวิร์คหรือคำสั่งที่ใช้ในการทำงานของ Robot Framework จะทำงานโดยการแยก คำสั่งโดยใช้ space อย่างน้อยสอง spaces
- โดยแต่ละคีย์เวิร์ดตลอดจน Argument ต้องมีจำนวนช่องว่างตั้งแต่สองหรือมากกว่าขึ้นไปเสมอ ส่วนในกรณีของ Tab ต้องใช้ตั้งแต่หนึ่งหรือมากกว่าขึ้นไปเช่นเดียวกัน

USB warning in Window 10

 การประมวลผล Robot Framework ร่วมกับ Window 10 และบราวเซอร์ Chrome อาจมีข้อความแจ้ง เตือนการทำงานผิดพลาดร่วมกับ USB ได้ เช่น

DevTools listening on ws://127.0.0.1:57090/devtools/browser/8203a702-f81a-48a6-8174-6a4dcc319a1a [5888:5128:0529/094809.966:ERROR:device_event_log_impl.cc(214)] [09:48:09.961] USB: usb_device_handle_win.cc:ode connection: A device attached to the system is not functioning. (0x1F)

- ในทางปฏิบัติแล้วข้อความดังกล่าวไม่สงผลกระทบต่อการทดสอบการทำงานด้วย Robot Framework แต่อย่างใด
- แต่อย่างไรก็ตามหากต้องการแก้ไขเพื่อไม่ให้ระบบแสดงข้อความดังกล่าว ผู้ใช้สามารถทำได้โดย การกำหนด option ใน browser ดังนี้

open browser \${URL} Chrome options=add_experimental_option('excludeSwitches', ['enable-logging'])

Robot Framework : Output file

- การรัน Test Case ใน Robot Framework จะสร้างไฟล์ผลลัพธ์จากการทดสอบจำนวน 3 ไฟล์ได้แก่
 - Output.xml เป็นไฟล์ที่ประกอบด้วยรายละเอียดผลลัพธ์การทดสอบที่อยู่ในรูป XML format
 - Log.html ใช้สำหรับนำเสนอ Test Statistic รวมถึง Test Execution Log ที่ใช้นำเสนอ
 รายละเอียดการประมวลผลของแต่ละคีย์เวิร์ดที่ใช้ในการทดสอบ
 - Report.html ใช้สำหรับนำเสนอรายละเอียดสรุปผลการทดสอบต่าง ๆ ที่จำเป็นต่อการนำไปใช้
 ในการวิเคราะห์ต่อไป

Log file

 ประกอบด้วยรายละเอียดการประมวลผล Test Case ในรูปของ HTML format โดยนำเสนอ ตามลำดับชั้นจาก test suite, test case และรายละเอียดของ keyword

Report file

 ประกอบไปด้วยภาพรวมของการประมวลผลทดสอบในรูป HTML format จากการประมวลผล test suites และ test cases สามารถเชื่อมโยงข้อมูลไปยัง Log ไฟล์ได้ในกรณีที่ต้องการข้อมูลเพิ่มเติม

Browser	Report								LOG Generate 11 22:19:26 UTC+07:0 5 hours 42 minutes ag
Summary In	formation								
Status: Start Time: End Time: Elapsed Time: Log File:	All tests passed 20211011 22:19:17.291 20211011 22:19:26.408 00:00:09.117 log.html								
Test Statisti									
	CS Total Statistics	\$	Total \$	Pass \$	Fail	\$ Skip		Elapsed \$	Pass / Fail / Skip
		\$	Total \$	Pass \$	Fail	Skip 0	\$	Elapsed 	Pass / Fail / Skip
		\$			1000000	0		-	Pass / Fail / Skip
All Tests	Total Statistics		1	1	0	0		00:00:09	
Test Statisti All Tests No Tags	Total Statistics		1	1	0 Fail	0	\$	00:00:09	

Close Browser Automatically

- เนื่องจาก robotframework 6.0 และ robotframework-seleniumlibrary 6.0 มีการสั่งปิดบราวเซอร์ โดยอัตโนมัติหลังการทดสอบเสร็จสิ้น แม้ว่าจะไม่ใช้คำสั่ง Close Browser ก็ตาม
- ในกรณีที่ต้องการเปิดบราวเซอร์ค้างไว้หลังการทดสอบ ผู้ใช้สามารถกำหนด options ด้วยคำสั่ง ดังต่อไปนี้

open browser \${URL} \${BROWSER}
... options=add_experimental_option("detach", True)
maximize browser window