«Обнаружение разладки с помощью метода SSA»

Кононыхин Иван Александрович, группа 20.М03-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э. Рецензент: Лектор, Университет Кардиффа (Великобритания), Пепелышев А.Н.

Санкт-Петербург 2022г.

Однородный ряд — ряд с постоянной структурой. **Разладка** — нарушение структуры ряда.

Задача обнаружения разладки: Определить момент изменения структуры ряда. Структура — подпространство сигнала.

Метод: Превышение порога функцией обнаружения неоднородности, основанной на разнице структур скользящих отрезков ряда.

Временной ряд:

$$F_N=(f_1,\dots,f_N)$$
, где $f_n=egin{cases} C_1\sin(2\pi\omega_1n+\phi_1), & n< Q,\ C_2\sin(2\pi\omega_2n+\phi_2), & n\geq Q,\ Q$ — неизвестный момент возмущения.

Цель работы: Создание системы, которая:

- Определяет разладку, заданную изменением частоты.
- Автоматически выбирает порог срабатывания.
- Сообщает о моменте возмущения с заданным значением максимально допустимого запаздывания.

Параметры: L, B, T, r = 2.

 $\ensuremath{\mathsf{Индекс}}$ неоднородности (Golyandina, Nekrutkin, Zhigljavsky, Analysis of Time Series Structure — SSA and Related Techniques, 2001):

$$g(F^{(1)};F^{(2)}) = \frac{\sum\limits_{l=1}^{K_2} \mathrm{dist}^2(X_l^{(2)},\mathfrak{L}_r^{(1)})}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2}.$$

Введение: инструменты поиска неоднородности

Рис.: Матрица неоднородности

Рис.: Функции обнаружения неоднородности. B=T.

Обозначения функций обнаружения неоднородности:

• Строковая: $d_n^{(r)}$

2 Столбцовая: $d_n^{(c)}$

 $oldsymbol{3}$ Диагональная: $d_n^{(d)}$

lacktriangle Симметричная: $d_n^{(s)}$

Часть 1. Сравнение функций обнаружения

Задача: Сравнить функции обнаружения неоднородности для разных видов разладки.

Ряд:
$$F_N=(f_1,\ldots,f_N)$$
, где $f_n=egin{cases} C_1\sin(2\pi\omega_1n+\phi_1),&n< Q,\ C_2\sin(2\pi\omega_2n+\phi_2),&n\geq Q, \end{cases}$

Задание неоднородности ряда F_N :

- **1** Изменение частоты: $\omega_1 = \frac{1}{10}, \omega_2 = \frac{1}{5}, C_1 = C_2 = 1, \phi_1 = \phi_2 = 0.$
- ② Изменение амплитуды: $C_1=1, C_2=2, \omega_1=\omega_2=\frac{1}{10}, \phi_1=\phi_2=0.$
- $oldsymbol{eta}$ Фазовый сдвиг: $\phi_1=0, \phi_2=rac{\pi}{2}, \omega_1=\omega_2=rac{1}{10}, C_1=C_2=1.$
- **3** Выброс: $f_n = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n \neq Q, \\ 10 \cdot C_1, & n = Q. \end{cases}$

Параметры:

- 0 N = 700.
- **2** Q = 301.
- **3** L = 60.
- \bullet B = T = 100.

Часть 1. Сравнение функций обнаружения

N = 700, Q = 301, $\omega_1 = 0.1$, $\omega_2 = 0.2$, $C_1 = 1$, $C_2 = 2$, $\phi_1 = 0$, $\phi_2 = \frac{\pi}{2}$, L = 60, B = T = 100

Вывод: Лучшие — строковая $d_n^{(r)}$ и диагональная $d_n^{(d)}$ функции обнаружения.

Часть 2. Аппроксимация значения индекса неоднородности после переходного интервала

Ряд:
$$F_N=(f_1,\ldots,f_N)$$
, где $f_n=egin{cases} C_1\sin(2\pi\omega_1n+\phi_1), & n< Q, \\ C_2\sin(2\pi\omega_2n+\phi_2), & n\geq Q. \end{cases}$

Параметры ряда: $\omega_1 \neq \omega_2$, $C_1 = C_2 = 1$.

Задача: Аппроксимировать индекс неоднородности $g(F^{(1)};F^{(2)}),\ F^{(1)}$ лежит до $Q,\ F^{(2)}$ после.

Результат:

$$g(F^{(1)}; F^{(2)}) \approx g_a(\omega_1, \omega_2) = 1 - \frac{\left[\left(\frac{\sin(2\pi Lb)}{4\pi b} - \frac{\sin(2\pi La)}{4\pi a} \right)^2 + \left(\frac{\cos(2\pi Lb) - 1}{4\pi b} - \frac{\cos(2\pi La) - 1}{4\pi a} \right)^2 \right]}{\frac{L^2}{4}}$$

при больших L и K_2 , где $a=\omega_1+\omega_2$, $b=\omega_1-\omega_2$.

Часть 2. Точность аппроксимации

Часть 2. Аппроксимация переходного интервала

При достаточно маленьком значении L по отношению к T переходный интервал становится линейным.

Рис.: Линейность переходного интервала при большом значении T-L.

Часть 3. Система обнаружения момента возмущения

Задача: Обнаружить разладку на интервале от Q до Q+k, где Q- неизвестный момент возмущения, а k- максимально допустимое запаздывание.

Подход: $d_n^{(r)} > \gamma^* \to \mathsf{curhan}$ о разладке в момент \hat{Q} .

Ограничение: $\Delta_{min}: |\omega_1 - \omega_2| \geq \Delta_{min}$. Обозначим $\omega_{min} = \omega_1 + \Delta_{min}$.

Описание системы:

ullet Входные данные: F_N , k, Δ_{min} .

2 Результат: $\hat{Q} \in [Q, Q + k]$.

Как выбрать γ^* ? Значение в точке k аппроксимации переходного интервала функции $d_n^{(r)}$.

Часть 3. Оценка качества системы

Характеристики системы:

- ullet $\operatorname{FP}(\gamma^*)$ при $\hat{Q} < Q$.
- ullet $\mathrm{TP}(\gamma^*)$ при $\hat{Q} \in [Q,Q+k].$
- $\mathrm{FN}(\gamma^*)$ при $\hat{Q} > Q + k$.

Промоделируем $n_{iter}=200$ раз реализацию шума ϵ и на каждой итерации посчитаем характеристики системы.

Вероятности обнаружения:

•
$$\operatorname{FPR}(\gamma^*) = \frac{\sum\limits_{i=1}^{n_{iter}} \operatorname{FP}_i(\gamma^*)}{n_{iter}}.$$

• TPR(
$$\gamma^*$$
) = $\frac{\sum\limits_{i=1}^{n_{iter}} \text{TP}_i(\gamma^*)}{n_{iter}}$.

•
$$FNR(\gamma^*) = \frac{\sum\limits_{i=1}^{n_{iter}} FN_i(\gamma^*)}{n_{iter}}$$
.

Часть 3. Оценка системы: T-L

Рис.: Функция обнаружения неоднородности. T-L=10.

Рис.: Функция обнаружения неоднородности. T-L=70.

Часть 3. Оценка системы: параметр T-L

Рис.: Работы системы. Оценка, T-L=10.

Рис.: Работы системы. Оценка, T-L=70.

Часть 3. Результаты

Параметры тестирования:
$$N=800, Q=301, \omega_1=\frac{1}{10}, \Delta_{min}=\frac{1}{50}, \sigma=0.5, B=133, T=79, L=71, C_1=C_2=1, \phi_1=\phi_2=0.$$

Таблица: Результаты тестирования.

Таблица: k = 30

FNRFPRTPR ω_2 1/3 0.0 0.01 0.99 1/4 0.0 0.98 0.02 1/5 0.0 0.99 0.01 1/6 0.0 0.995 0.005 1/7 0.0 0.945 0.055 1/8 0.0 0.855 0.145 1/9 0.0 1.0 0.0

Таблица: k = 15

ω_2	FPR	TPR	FNR
1/3	0.040	0.745	0.215
1/4	0.040	0.745	0.215
1/5	0.040	0.720	0.240
1/6	0.040	0.820	0.140
1/7	0.040	0.340	0.660
1/8	0.040	0.920	0.040
1/9	0.050	0.950	0.000

Выводы: При большом k система работает хорошо, но аппроксимация нуждается в доработке.

