Supplementary Document for BNB

Bryan Hooi, Christos Falousos

(2.6)

(2.10)

Proof of Theorem 6.1

Preliminaries Given a tree \mathcal{T}_k , the tree partitions the data space, mapping each data point X_t into a leaf of \mathcal{T}_k : let leaf (X_t) map X_t to its leaf. Define \mathcal{X} as the set of leaves, and d(x,y) as the shortest path distance (in terms of number of graph hops) between leaves x and y.

Lemma 1.1. (\mathcal{X}, d) is a metric space.

Separation Depth 1.2

Theorem 1.1. The separation depth $s_{k,t}$ can be rewritten in terms of distances in this metric space:

$$(1.1) \quad s_{k,t} = d_{lim} - \frac{1}{2} \underset{x \in L, y \in R}{\min} d(\mathit{leaf}(x), \mathit{leaf}(y)) + 1$$

Proof. Consider the pair of points $x \in L$ and $y \in R$ minimizing Eq. (6.2). Their shortest path distance is $d(\operatorname{leaf}(x), \operatorname{leaf}(y))$, so their deepest common ancestor (call it z) must be $d(\operatorname{leaf}(x), \operatorname{leaf}(y))/2$ steps above them. Since leaf(x) and leaf(y) are at depth d_{lim} , thus z is at depth $d_{lim} - d(leaf(x), leaf(y))/2$. Moreover, since x and y were the closest pair of points, z must be the deepest node with descendants in both L and R. Thus, L and R are fully separated exactly at depth $d_{lim} - d(\operatorname{leaf}(x), \operatorname{leaf}(y))/2 + 1$, but not at any lower depth (due to node z).

2 Proof of Theorem 6.2

Theorem 2.1. For any $\lambda > 0$, letting $p_{\lambda} = 2^{\lambda-1}$, we $have^1$:

(2.2)
$$P(s_{k,t} \le \lambda) \le (1/2)^{w-p_{\lambda}}$$
.

Proof. Fix an arbitrary ordering < on the data space (e.g. lexicographic ordering), and let X^1, \dots, X^{2w} be the original data points (X_1, \dots, X_{2w}) sorted according to the order <. Since the data points X_1, \dots, X_{2w} are i.i.d., if we condition on X^1, \dots, X^{2w} , by symmetry, the conditional probability that the original data is mapped to X^1, \dots, X^{2w} by any particular permutation is equal, which is 1/(2w)!.

Define Z_i as a 0-1 random variable, taking value 0 if X^i is one of X_1, \dots, X_w , and 1 otherwise. Then exactly w of the random variables Z_1, \dots, Z_{2w} are 1, and since we earlier showed that every permutation of the X^1, \dots, X^{2w} is equally likely, thus now each assignments of 0s and 1s to Z_1, \dots, Z_{2w} with exactly w 1s is also equally likely. Thus, by symmetry, each such assignment has probability $1/\binom{2w}{w}$.

For any λ , $P(s_{k,t} \leq \lambda)$ is the probability that the sets L and R were fully separated by the time the tree reached level λ . Note that at level λ , our tree partitions the data space into $p_{\lambda} = 2^{\lambda-1}$ parts. The number of assignments to the Z variables for which L and R are fully separated is then at most $2^{p_{\lambda}}$, since each of the p_{λ} parts we have to choose to assign either 0 or 1 to all variables in that part. Moreover, we earlier showed that each of the $\binom{2w}{w}$ assignments has the same probability. Thus, the probability that L and R are fully separated at level λ is at most

(2.3)
$$P(s_{k,t} \le \lambda) \le \frac{2^{p_{\lambda}}}{\binom{2w}{w}}$$
(2.4)
$$= \frac{2^{p_{\lambda}}(1)\dots(w)}{(w+1)\dots(2w)}$$
(2.5)
$$\le 2^{p_{\lambda}}(1/2)^{w}$$

In fact, this can be tightened significantly by using

stronger bounds for central binomial coefficients: it is known that $\binom{2w}{w} \geq 4^w/\sqrt{4w}$ for any positive integer w [1]. Substituting this instead gives

 $\leq (1/2)^{w-p_{\lambda}}.$

(2.7)
$$P(s_{k,t} \le \lambda) \le \frac{2^{p_{\lambda}}}{\binom{2w}{w}}$$
(2.8)
$$\le \frac{2^{p_{\lambda}}\sqrt{4w}}{4^{w}}$$
(2.9)
$$= 2^{p_{\lambda}-1-2w}\sqrt{w}$$
(2.10)
$$= (1/2)^{2w-1-p_{\lambda}}\sqrt{w}.$$

¹Note that some theorem statements have been amended from their previous versions. We will correct this fully in the final version of the paper.

3 Proof of Theorem 6.3

The next theorem concerns our final change score c_t . For any error threshold $\varepsilon > 0$, we have:

Theorem 3.1.

(3.11)

$$P(c_t \ge d_{lim} + 1 - \log(1 + \log\frac{\varepsilon}{N} + w)) \le N(1/2)^{w - p_{\lambda}}$$

Proof. Applying union bound on the (weaker) result of the previous theorem gives

$$(3.12) \quad P(s_{k,t} \le \lambda) \le N(1/2)^{w-p_{\lambda}} \ \forall \ k \in \{1, \dots, N\}$$

Recalling that $c_t = d_{lim} + 1 - \frac{1}{N} \sum_{j=1}^{N} s_{j,t}$, substituting this gives:

(3.13)
$$P(c_t \ge d_{lim} + 1 - \lambda) \le N(1/2)^{w - p_{\lambda}}$$

Finally, if $p_{\lambda} = \log \frac{\varepsilon}{N} + w$, then $N(1/2)^{w-p_{\lambda}} \leq \varepsilon$. Substituting this into (3.13) (and using the fact that $\lambda = \log p_{\lambda} + 1$) gives the result.

References

[1] N. D. Kazarinoff. Analytic inequalities. Courier Corporation, 2014.