Neural Networks (2)

Geena Kim

Binary Threshold (Step function)

$$f(x) = egin{cases} 1 & ext{if } w \cdot x + b > 0 \ 0 & ext{otherwise} \end{cases}$$

Activation functions

Binary Threshold (Step function)

Sigmoid

Tanh

What can a perceptron do?

- Boolean tasks
- Update the weights whenever the perceptron output is wrong
- Proved convergence for linearly separable classes

Learning in perceptron

- Perceptron rule
- Delta rule (Gradient Descent)

Perceptron rule

Perceptron algorithm

- Cycle through the training instances
- Only update W on misclassified instances
- If instance misclassified:
 - If instance is positive class (positive misclassified as negative)

$$W = W + X_i$$

If instance is negative class (negative misclassified as positive)

$$W = W - X_i$$

$$y_{7} = 1$$
 $y_{7} = 1$
 $y_{7} = -1$
 $y_{7} = -1$
 $y_{7} = -1$
 $y_{7} = -1$
 $y_{7} = +1$

Perceptron algorithm

Perceptron algorithm

Updated weight vector

Misclassified positive instance, add it to W

Perceptron algorithm

Perceptron algorithm

Perceptron algorithm

Misclassified negative instance, subtract it from W

Perceptron algorithm

Delta rule (Gradient Descent)

dient Descent)
$$\mathcal{L}(\omega_{j}, \chi_{j})$$

$$\omega_{j} \leftarrow \omega_{j} = \alpha \frac{\partial \mathcal{L}}{\partial \omega_{j}}$$

$$\mathcal{L} = \frac{1}{2}(\hat{y}_{i} \rightarrow y_{i})^{2}_{\omega}$$

$$\hat{y}_{i} = \sum_{j} \omega_{j} X_{ij}$$

$$\mathcal{L}(\omega_{j}, \chi_{j})$$

$$\mathcal{L}(y - (\psi_{k} + b))^{2}$$

$$(y - (\psi_{k} + b)) - (-\chi)$$

$$\omega_j \leftarrow \omega_j - \alpha(\hat{y}_i - y_i)X_{ij}$$

No solution for XOR! Not universal!

Minsky and Papert, 1968

How do we handle linearly inseparable cases?

Neural networks are universal function approximator

We can make an arbitrary shape decision boundary

Can now be composed into "networks" to compute arbitrary classification "boundaries"

Boolean over real numbers

Boolean over real numbers

Boolean over real numbers

Boolean over real numbers

Boolean over real numbers

Boolean over real numbers

Neural networks can be used for regression tasks

Multi-layer Perceptron (Neural network)

Design Parameters

- Architecture
- Compared of layers
- Number of neurons in a layer
- Activation functions

Effect of depth in network architecture

Theorem 5

A certain class of functions \mathcal{F} of n inputs can be represented using a deep network with $\mathcal{O}(n)$ units, whereas it would require $\mathcal{O}(2^{\sqrt{n}})$ units for a shallow network.

Theorem 6

For a certain class of functions G of n inputs, the deep sum-product network with depth k can be represented with O(nk) units, whereas it would require $O((n-1)^k)$ units for a shallow network.

Shallow vs. Deep Sum Product Networks

Olivier Delalleau

Department of Computer Science and Operation Research Université de Montréal delallea@iro.umontreal.ca

Yoshua Bengio

Department of Computer Science and Operation Research
Université de Montréal
yoshua.bengio@umontreal.ca

Next time: How Neural Network Training Works

Next time: More on Weight Update in deep neural nets

$$W_{ij} \leftarrow W_{ij} - \alpha \frac{\partial \mathcal{L}}{\partial W_{ij}}$$

Weight Update Rule

Loss Function

Gradient (Chain Rule)

Back Propagation

Play with Neural network training!

You can change the model architecture, model hyper parameters, train hyperparameters. See what happens when you make each change.

https://colab.research.google.com/drive/1IctSzyugG9YLJKhg7WAlRtGi0nElxy9y