1

Bonus Problem

Debolena Basak PhD Artificial Intelligence Roll No.: AI20RESCH11003

Abstract—This is a problem to prove that a set of orthogonal vectors are linearly independent.

Download all the latex-tikz codes from

https://github.com/Debolena/EE5609/blob/master/challenge%20problems/latex

1 Problem

Suppose that a non-zero set of vectors $v_1, v_2,, v_n$ are mutually orthogonal, i.e,

$$\mathbf{v_i}'\mathbf{v_j} = 0 \tag{1.0.1}$$

for $i \neq j$. Prove that these vectors are also linearly independent.

2 Solution

Here, $v_1, v_2, ..., v_n$ are a set of mutually orthogonal vectors.

We are to show that they are linearly independent. Let us consider scalars $a_1, a_2,, a_n$.

$$a_{1}\mathbf{v_{1}} + a_{2}\mathbf{v_{2}} + \dots + a_{j}\mathbf{v_{j}} + \dots + a_{n}\mathbf{v_{n}} = 0$$

$$(2.0.1)$$

$$\Rightarrow \mathbf{v_{j}}'(a_{1}\mathbf{v_{1}} + a_{2}\mathbf{v_{2}} + \dots + a_{j}\mathbf{v_{j}} + \dots + a_{n}\mathbf{v_{n}}) = \mathbf{v_{j}}'.\mathbf{0} = 0$$

$$(2.0.2)$$

$$\Rightarrow a_{j}.\mathbf{v_{j}}'\mathbf{v_{j}} = 0 \quad \because \mathbf{v_{j}}'.\mathbf{v_{i}} = 0, \forall i \neq j$$

$$(2.0.3)$$

$$\Rightarrow a_{j} = 0, \quad \forall j \quad \because \mathbf{v_{j}}'.\mathbf{v_{j}} > 0$$

$$(2.0.4)$$

Hence, $v_1, v_2, ..., v_n$ are a set of linearly independent vectors.