COMS 4771 Lecture 22

1. Markov models

A sequence model (or time series model) is a family of probability distributions for (possibly infinite) sequences of random variables $\{X_t\}_{t\in\mathcal{T}}$.

▶ $\{X_t\}_{t \in \mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).

- ▶ $\{X_t\}_{t \in \mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).
- Special emphasis is placed on the linear ordering of T.

- ▶ $\{X_t\}_{t \in \mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).
- ightharpoonup Special emphasis is placed on the linear ordering of \mathcal{T} .

```
If t \in \mathcal{T} is the "current time", then X_t is the "current state"; X_{\tau} for \tau < t are "past states"; and X_{\tau} for \tau > t are "future states".
```

- ▶ $\{X_t\}_{t \in \mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).
- ightharpoonup Special emphasis is placed on the linear ordering of \mathcal{T} .

```
If t \in \mathcal{T} is the "current time", then X_t is the "current state"; X_{\tau} for \tau < t are "past states"; and X_{\tau} for \tau > t are "future states". (May interchange "state" and "observation"—no distinction for now.)
```

A sequence model (or time series model) is a family of probability distributions for (possibly infinite) sequences of random variables $\{X_t\}_{t\in\mathcal{T}}$.

- ▶ $\{X_t\}_{t \in \mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).
- ▶ Special emphasis is placed on the linear ordering of T.

```
If t \in \mathcal{T} is the "current time", then X_t is the "current state"; X_{\tau} for \tau < t are "past states"; and X_{\tau} for \tau > t are "future states". (May interchange "state" and "observation"—no distinction for now.)
```

Sequence / time series modeling is an entire subfield in statistics, largely due to the plethora of sequence / time series data in applications:

- ► Economic / financial data over time
- ▶ Climate science
- ► Genomic sequences
- ► Speech and natural language
- **>** ...

A stochastic process $\{X_t\}_{t\in\mathbb{N}}$ has the **Markov property** if the conditional distribution of the next state X_{t+1} given all previous states $\{X_\tau: \tau \leq t\}$ only depends on the value of the current state X_t .

A stochastic process $\{X_t\}_{t\in\mathbb{N}}$ has the **Markov property** if the conditional distribution of the next state X_{t+1} given all previous states $\{X_\tau: \tau \leq t\}$ only depends on the value of the current state X_t .

If the X_t are discrete-valued, then the Markov property means that

$$\Pr(X_{t+1} = x_{t+1} \mid X_1 = x_1, \dots, X_t = x_t) = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t).$$

$$\cdots \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow X_{t+1} \longrightarrow \cdots$$

A stochastic process $\{X_t\}_{t\in\mathbb{N}}$ has the **Markov property** if the conditional distribution of the next state X_{t+1} given all previous states $\{X_\tau: \tau \leq t\}$ only depends on the value of the current state X_t .

If the X_t are discrete-valued, then the Markov property means that

$$\Pr(X_{t+1} = x_{t+1} \mid X_1 = x_1, \dots, X_t = x_t) = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t).$$

$$\cdots \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow X_{t+1} \longrightarrow \cdots$$

A stochastic process with the Markov property is called a Markov chain.

MARKOV MODELS

A stochastic process $\{X_t\}_{t\in\mathbb{N}}$ has the **Markov property** if the conditional distribution of the next state X_{t+1} given all previous states $\{X_\tau: \tau \leq t\}$ only depends on the value of the current state X_t .

If the X_t are discrete-valued, then the Markov property means that

$$\Pr(X_{t+1} = x_{t+1} \mid X_1 = x_1, \dots, X_t = x_t) = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t).$$

$$\cdots \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow X_{t+1} \longrightarrow \cdots$$

A stochastic process with the Markov property is called a Markov chain.

A sequence model for a Markov chain is called a Markov model.

Markov Chain distributions

To specify a Markov chain (MC):

- ightharpoonup Specify the distribution of the initial state X_1 .
- ▶ Specify a transition kernel: $\Pr(X_{t+1} = x' \mid X_t = x)$ for all (x, x'). (Nothing to do with *kernels* as in SVMs/kernel trick/RKHS.)

MARKOV CHAIN DISTRIBUTIONS

To specify a Markov chain (MC):

- ▶ Specify the distribution of the initial state X_1 .
- ▶ Specify a transition kernel: $\Pr(X_{t+1} = x' \mid X_t = x)$ for all (x, x'). (Nothing to do with *kernels* as in SVMs/kernel trick/RKHS.)

We focus on MCs where the **state space** (possible values for each X_t) is finite. For simplicity, we'll assume the state space is $[d] := \{1, 2, \dots, d\}$.

MARKOV CHAIN DISTRIBUTIONS

To specify a Markov chain (MC):

- ▶ Specify the distribution of the initial state X_1 .
- ▶ Specify a transition kernel: $\Pr(X_{t+1} = x' \mid X_t = x)$ for all (x, x'). (Nothing to do with *kernels* as in SVMs/kernel trick/RKHS.)

We focus on MCs where the **state space** (possible values for each X_t) is finite. For simplicity, we'll assume the state space is $[d] := \{1, 2, \dots, d\}$.

lacktriangle Initial state distribution given by a d-dimensional probability vector $m{\pi}$

$$\pi_i = \Pr(X_1 = i).$$

Markov Chain distributions

To specify a Markov chain (MC):

- ightharpoonup Specify the distribution of the initial state X_1 .
- ▶ Specify a transition kernel: $Pr(X_{t+1} = x' | X_t = x)$ for all (x, x').

(Nothing to do with kernels as in SVMs/kernel trick/RKHS.)

We focus on MCs where the **state space** (possible values for each X_t) is finite. For simplicity, we'll assume the state space is $[d] := \{1, 2, \dots, d\}$.

lacktriangle Initial state distribution given by a d-dimensional probability vector $oldsymbol{\pi}$

$$\pi_i = \Pr(X_1 = i).$$

▶ Transition kernel can be written as a $d \times d$ matrix A

Great!!!

$$A_{i,j} = \Pr(X_{t+1} = j | X_t = i)$$

(rows of A are probability vectors).

Also called a transition matrix or (right) stochastic matrix.

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

State space: $\{1,2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $A_{1,1}$ $A_{2,1}$

A random state sequence drawn from this MC:

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, \quad m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$ $m{A}_{2,1}$

A random state sequence drawn from this MC:

What is the probability of this sequence?

 π_2

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, \quad m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, \quad m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, \quad m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,1} m{A}_{1,2} m{A}_{2,1} m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1} \times A_{1,2}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, \quad m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1} \times A_{1,2} \times A_{2,2}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, \quad m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1} \times A_{1,2} \times A_{2,2} \times A_{2,1}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

finite machine

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1} \times A_{1,2} \times A_{2,2} \times A_{2,1} = 0.00435456$$

EXAMPLE: RANDOM WALK ON A DIRECTED GRAPH

Consider a directed graph G=(V,E) over $\vert V \vert = d$ vertices (self-loops ok).

EXAMPLE: RANDOM WALK ON A DIRECTED GRAPH

Consider a directed graph G = (V, E) over |V| = d vertices (self-loops ok).

MC for random walk on G:

$$\pi_i = \mathbb{1}\{\text{start vertex is } i\}, \quad A_{i,j} = \frac{\mathbb{1}\{(i,j) \in E\}}{\operatorname{out degree}(i)}.$$

	state 1	state 2	state 3	state 4	state 5
state 1	0	0.5	0	0.5	0
state 2	0	0	0.5	0.5	0
state 3	0	0	0.5	0	0.5
state 4	0	0	0	0.5	0.5
state 5	0.5	0	0	0	0.5

Example: Random Walk on a directed graph

Consider a directed graph G = (V, E) over |V| = d vertices (self-loops ok).

MC for random walk on G:

$$\pi_i = \mathbb{1}\{\text{start vertex is } i\}, \quad A_{i,j} = \frac{\mathbb{1}\{(i,j) \in E\}}{\operatorname{out degree}(i)}.$$

? is there are weight difference on each edge?

The non-zero pattern of A gives the adjacency structure of G (vertices = states).

Web graph G = (V, E):

Vertices are webpages, directed edges are hyperlinks between webpages.

Adjacency matrix of the web graph for 500 web pages.

Web graph G = (V, E):

Vertices are webpages, directed edges are hyperlinks between webpages.

Adjacency matrix of the web graph for 500 web pages.

How popular is webpage i?

Web graph G = (V, E):

Vertices are webpages, directed edges are hyperlinks between webpages.

Adjacency matrix of the web graph for 500 web pages.

How popular is webpage i?

Possible answer: probability that random walk ends at i after many steps.

Web graph G = (V, E):

Vertices are webpages, directed edges are hyperlinks between webpages.

Adjacency matrix of the web graph for 500 web pages.

How popular is webpage i?

Possible answer: probability that random walk ends at i after many steps.

$$\Pr(X_t = i)$$
 for large t . may converge

Markov Chain State distributions

What is the marginal distribution of X_2 in terms of π and A?

What is the marginal distribution of X_2 in terms of π and A?

$$\Pr(X_2 = j)$$

What is the marginal distribution of X_2 in terms of π and A?

$$\Pr(X_2 = j) = \sum_{i=1}^d \Pr(X_1 = i, X_2 = j)$$

What is the marginal distribution of X_2 in terms of π and A?

$$Pr(X_{2} = j) = \sum_{i=1}^{d} Pr(X_{1} = i, X_{2} = j)$$
$$= \sum_{i=1}^{d} Pr(X_{1} = i) \cdot Pr(X_{2} = j | X_{1} = i)$$

What is the marginal distribution of X_2 in terms of π and A?

$$\Pr(X_{2} = j) = \sum_{i=1}^{d} \Pr(X_{1} = i, X_{2} = j)$$

$$= \sum_{i=1}^{d} \Pr(X_{1} = i) \cdot \Pr(X_{2} = j \mid X_{1} = i)$$

$$= \sum_{i=1}^{d} \pi_{i} \cdot A_{i,j}$$

What is the marginal distribution of X_2 in terms of π and A?

$$\begin{split} \Pr(X_2 = j) &= \sum_{i=1}^d \Pr(X_1 = i, \ X_2 = j) \\ &= \sum_{i=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \\ &= \sum_{i=1}^d \pi_i \cdot A_{i,j} & \text{Great thinking!!!} \\ &= j\text{-th entry of } \boldsymbol{\pi}^\top \boldsymbol{A}. \end{split}$$

What is the marginal distribution of X_3 in terms of π and A?

What is the marginal distribution of X_3 in terms of ${m \pi}$ and ${m A}$? For each $k \in [d]$,

$$Pr(X_3 = k) = \sum_{i=1}^{d} \sum_{j=1}^{d} Pr(X_1 = i, X_2 = j, X_3 = k)$$

What is the marginal distribution of X_3 in terms of ${m \pi}$ and ${m A}$? For each $k \in [d]$,

$$\Pr(X_3 = k) = \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i, X_2 = j, X_3 = k)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_1 = i, X_2 = j)$$

What is the marginal distribution of X_3 in terms of π and A? For each $k \in [d]$,

$$Pr(X_3 = k) = \sum_{i=1}^{d} \sum_{j=1}^{d} Pr(X_1 = i, X_2 = j, X_3 = k)$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} Pr(X_1 = i) \cdot Pr(X_2 = j \mid X_1 = i) \cdot Pr(X_3 = k \mid X_1 = i, X_2 = j)$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} Pr(X_1 = i) \cdot Pr(X_2 = j \mid X_1 = i) \cdot Pr(X_3 = k \mid X_2 = j)$$

What is the marginal distribution of X_3 in terms of π and A? For each $k \in [d]$,

$$\Pr(X_3 = k) = \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i, X_2 = j, X_3 = k)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_1 = i, X_2 = j)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_2 = j)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \pi_i \cdot A_{i,j} \cdot A_{j,k}$$

What is the marginal distribution of X_3 in terms of π and A? For each $k \in [d]$,

$$\begin{split} \Pr(X_3 = k) &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i, \ X_2 = j, \ X_3 = k) \\ &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_1 = i, \ X_2 = j) \\ &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_2 = j) \\ &= \sum_{i=1}^d \sum_{j=1}^d \pi_i \cdot A_{i,j} \cdot A_{j,k} \\ &= k\text{-th entry of } \boldsymbol{\pi}^\top \boldsymbol{A} \boldsymbol{A}. \end{split}$$

= k-th entry of $\boldsymbol{\pi}^{\top} \boldsymbol{A} \boldsymbol{A}$.

What is the marginal distribution of X_3 in terms of π and A? For each $k \in [d]$,

$$\Pr(X_{3} = k) = \sum_{i=1}^{d} \sum_{j=1}^{d} \Pr(X_{1} = i, X_{2} = j, X_{3} = k)$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} \Pr(X_{1} = i) \cdot \Pr(X_{2} = j \mid X_{1} = i) \cdot \Pr(X_{3} = k \mid X_{1} = i, X_{2} = j)$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} \Pr(X_{1} = i) \cdot \Pr(X_{2} = j \mid X_{1} = i) \cdot \Pr(X_{3} = k \mid X_{2} = j)$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} \pi_{i} \cdot A_{i,j} \cdot A_{j,k}$$
magic matrix!!!

It's great!

For any $t \in \mathbb{N}$, the marginal distribution of X_t in terms of π and A is

$$\Pr(X_t = k) = k$$
-th entry of $\boldsymbol{\pi}^{\top} \underbrace{\boldsymbol{A} \boldsymbol{A} \cdots \boldsymbol{A}}_{t-1 \text{ times}}$.

POWERS OF THE TRANSITION MATRIX

The
$$(i,j)$$
-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p -step transition matrix
$$\left[{m A}^p \right]_{i,j} \ = \ \Pr(X_{t+p} = j \, | \, X_t = i).$$

POWERS OF THE TRANSITION MATRIX

The
$$(i,j)$$
-th entry of ${\pmb A}^p = \underbrace{{\pmb A}{\pmb A}\cdots{\pmb A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}$, $\boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

The (i,j)-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p-step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}$, $\boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

The (i,j)-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p-step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

The
$$(i,j)$$
-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{100} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

The
$$(i,j)$$
-th entry of ${\pmb A}^p = \underbrace{{\pmb A}{\pmb A}\cdots{\pmb A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{100} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{1000} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

The (i,j)-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p-step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{100} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top}\boldsymbol{A}^{1000} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

Convergence?

The
$$(i,j)$$
-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p -step transition matrix powerful and beautiful!

$$[\mathbf{A}^p]_{i,j} = \Pr(X_{t+p} = j \mid X_t = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix} \quad \begin{array}{l} \text{beautiful!} \\ \boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix} \\ \boldsymbol{\pi}^{\top} \boldsymbol{A}^{100} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} \\ \boldsymbol{\pi}^{\top} \boldsymbol{A}^{1000} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix}$$

Convergence? Doesn't even seem to matter what π is!

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

 $\lim_{p o\infty} oldsymbol{A}^p = ext{stochastic matrix with identical rows}$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p = ext{stochastic matrix with identical rows} =: egin{pmatrix} m{-} & m{q}^{ op} & m{-} \ m{-} & m{q}^{ op} & m{-} \ m{\cdot} & m{\cdot} \ m{-} & m{q}^{ op} & m{-} \end{pmatrix}$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p = ext{stochastic matrix with identical rows} =: egin{pmatrix} m{-} & m{q}^{ op} & m{-} \ m{-} & m{q}^{ op} & m{-} \ m{\cdot} & m{\cdot} \ m{-} & m{q}^{ op} & m{-} \end{pmatrix}$$

What can we say about q?

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p = ext{stochastic matrix with identical rows} =: egin{pmatrix} m{-} & m{q}^{ op} & m{-} \ m{-} & m{q}^{ op} & m{-} \ m{\cdot} & m{\cdot} \ m{-} & m{q}^{ op} & m{-} \end{pmatrix}$$

What can we say about q? For such ${m A}$,

$$\lim_{p \to \infty} A^p$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p = ext{stochastic matrix with identical rows} =: egin{pmatrix} m{-} & m{q}^{ op} & m{-} \ m{-} & m{q}^{ op} & m{-} \ m{\cdot} & m{\cdot} \ m{-} & m{q}^{ op} & m{-} \end{pmatrix}$$

What can we say about q? For such A,

$$\lim_{p\to\infty} \boldsymbol{A}^p = \left(\lim_{p\to\infty} \boldsymbol{A}^{p-1}\right) \boldsymbol{A}$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p \ = \ ext{stochastic matrix with identical rows} \ =: egin{pmatrix} m{-} & m{q}^ op & m{-} \ m{q}^ op & m{-} \ m{\vdots} \ m{-} & m{q}^ op & m{-} \end{pmatrix}$$

What can we say about q? For such A,

$$\lim_{p o\infty} oldsymbol{A}^p \ = \ \left(\lim_{p o\infty} oldsymbol{A}^{p-1}
ight) oldsymbol{A} \ = \ \left(egin{matrix} & oldsymbol{q}^ op & oldsymbol{Q}^ op$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} oldsymbol{A}^p \ = \ ext{stochastic matrix with identical rows} \ =: egin{pmatrix} egin{pmatrix} oldsymbol{q}^ op & oldsymbol{q}^$$

What can we say about q? For such A,

$$\lim_{p o\infty} oldsymbol{A}^p = \left(\lim_{p o\infty} oldsymbol{A}^{p-1}
ight) oldsymbol{A} = \left(egin{matrix} & oldsymbol{q}^ op & oldsymbol{q}^ op & oldsymbol{q}^ op & oldsymbol{Q} \ & dots & oldsymbol{Q}^ op & oldsymbol{q}^ op & oldsymbol{Q} \ & dots & oldsymbol{q}^ op & oldsymbol{Q} \ & dots & oldsymbol{q}^ op & oldsymbol{Q} \ \end{pmatrix}$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p \;=\; ext{stochastic matrix with identical rows} \;=:\; egin{pmatrix} m{-} & m{q}^ op & m{-} \ m{q}^ op & m{-} \ m{\vdots} \ m{-} & m{q}^ op & m{-} \end{pmatrix}$$

What can we say about q? For such A,

$$\lim_{p o\infty} oldsymbol{A}^p \ = \ igg(\lim_{p o\infty} oldsymbol{A}^{p-1}igg)oldsymbol{A} \ = \ egin{pmatrix} --- & oldsymbol{q}^ op & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- & --- \ --- & --- & --- & --- \ --- & --- & --- \ --- & --- & --- & --- \ --- & --- & --$$

i.e.,

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}. \tag{\star}$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

What can we say about q? For such A,

$$\lim_{p \to \infty} \boldsymbol{A}^p = \begin{bmatrix} \lim_{p \to \infty} \boldsymbol{A}^{p-1} \end{bmatrix} \boldsymbol{A} = \begin{bmatrix} - & \boldsymbol{q}^\top & - \\ - & \boldsymbol{q}^\top & - \\ \vdots & \vdots & - \\ - & \boldsymbol{q}^\top & - \end{bmatrix} \boldsymbol{A} = \begin{bmatrix} - & \boldsymbol{q}^\top & - \\ - & \boldsymbol{q}^\top & - \\ \vdots & \vdots & - \\ - & \boldsymbol{q}^\top & - \end{bmatrix}$$
try to find out the q!!!

i.e.,

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}. \tag{\star}$$

A solution q to (\star) , is called a **stationary distribution**.

Suppose a MC has a unique stationary distribution ${m q}=(q_1,q_2,\ldots,q_d).$

Suppose a MC has a unique stationary distribution $q = (q_1, q_2, \dots, q_d)$.

▶ For any $\varepsilon > 0$,

$$\lim_{n\to 0} \Pr\left(\left|\frac{1}{n}\sum_{t=1}^n \mathbb{1}\{X_t = i\} - q_i\right| > \varepsilon\right) \to 0.$$

Law of Large Numbers for MCs.

Suppose a MC has a unique stationary distribution $q = (q_1, q_2, \dots, q_d)$.

▶ For any $\varepsilon > 0$,

$$\lim_{n \to 0} \Pr\left(\left| \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\{X_t = i\} - q_i \right| > \varepsilon \right) \to 0.$$

Law of Large Numbers for MCs.

▶ However, rate of convergence not the same as in the iid case.

Suppose a MC has a unique stationary distribution $q = (q_1, q_2, \dots, q_d)$.

▶ For any $\varepsilon > 0$,

$$\lim_{n \to 0} \Pr\left(\left| \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\{X_t = i\} - q_i \right| > \varepsilon \right) \to 0.$$

Law of Large Numbers for MCs.

▶ However, rate of convergence not the same as in the iid case. Critically depends on how quickly $\Pr(X_t = \cdot) \to q$ (mixing rate).

Suppose a MC has a unique stationary distribution $q = (q_1, q_2, \dots, q_d)$.

▶ For any $\varepsilon > 0$,

 $\lim_{n\to 0} \Pr\left(\left|\frac{1}{n}\sum_{t=1}^n \mathbb{1}\{X_t=i\} - q_i\right| > \varepsilon\right) \xrightarrow[]{\text{up, the emprical apperance is getting close to qi}} \to 0.$

Law of Large Numbers for MCs.

not like cherf

as the size of n growing

However, rate of convergence not the same as in the iid case. Critically depends on how quickly $\Pr(X_t = \cdot) \to q$ (mixing rate).

When does a MC even have a unique stationary distribution?

WHAT CAN GO WRONG

1. Directed graph underlying A has more than one strongly connected component "sinks" \longrightarrow stationary distribution may not be unique.

What can go wrong

1. Directed graph underlying A has more than one strongly connected component "sinks" \longrightarrow stationary distribution may not be unique.

Markov chains with only one strongly connected component are called **irreducible**.

What can go wrong

2. Oscillation among two or more states \longrightarrow limit does not exist.

WHAT CAN GO WRONG

2. Oscillation among two or more states \longrightarrow limit does not exist.

Example:

If start at state $\mathbf{1}$, then never at state $\mathbf{1}$ on even time steps.

WHAT CAN GO WRONG

2. Oscillation among two or more states \longrightarrow limit does not exist.

Example:

If start at state 1, then never at state 1 on even time steps.

Markov chains without such oscillation are called aperiodic.

(Formally: there exists p_0 s.t. for all $p \geq p_0$, $[{m A}^p]_{i,i} > 0$ for all $i \in [d]$.)

What can go wrong

Example:

2. Oscillation among two or more states \longrightarrow limit does not exist.

If start at state 1, then never at state 1 on even time steps.

Markov chains without such oscillation are called aperiodic.

(Formally: here exists p_0 s.t. for all $p \geq p_0$, $[{m A}^p]_{i,j} > 0$ for all $i \in [d]$.)

If every state $i \in [d]$ has $A_{n,n} > 0$, then aperiodicity is guaranteed.

CONDITIONS FOR UNIQUE STATIONARY DISTRIBUTION

Theorem: If MC with transition matrix A is *irreducible* and *aperiodic*, then

lacktriangle There is a unique stationary distribution q (which satisfies $q^ op A = q^ op$).

$$lackbox{igspace}{egin{array}{ll} \displaystyle \lim_{p o\infty} oldsymbol{A}^p &= egin{pmatrix} --- & oldsymbol{q}^ op & --- \ & dots \ --- & oldsymbol{q}^ op & --- \end{pmatrix}}.$$

For irreducible and aperiodic MCs, the $oldsymbol{q}$ that satisfies

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}$$

is unique.

For irreducible and aperiodic MCs, the $oldsymbol{q}$ that satisfies

$$\boldsymbol{q}^{\mathsf{T}}\boldsymbol{A} = \boldsymbol{q}^{\mathsf{T}}$$

is unique. Therefore, suffices to find *left eigenvector* of A with eigenvalue 1.

For irreducible and aperiodic MCs, the ${\it q}$ that satisfies

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}$$

is unique. Therefore, suffices to find *left eigenvector* of A with eigenvalue 1. In fact, A has no other eigenvalue of larger modulus!

For irreducible and aperiodic MCs, the $oldsymbol{q}$ that satisfies

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}$$

is unique. Therefore, suffices to find *left eigenvector* of A with eigenvalue 1. In fact, A has no other eigenvalue of larger modulus!

Direct method: Find any vector in *left null space* of A-I

$$q^{\top}(A-I) = 0,$$

and properly normalize it to be a state distribution.

For irreducible and aperiodic MCs, the ${\it q}$ that satisfies

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}$$

is unique. Therefore, suffices to find *left eigenvector* of A with ligenvalue 1. In fact, A has no other eigenvalue of larger modulus!

Direct method: Find any vector in *left null space* of A-I

$$\boldsymbol{q}^{\top}(\boldsymbol{A}-\boldsymbol{I}) = \boldsymbol{0},$$

and properly normalize it to be a state distribution.

Power method:

initialize q arbitrarily. repeat $q^\top := q^\top A$. A is usually sparse until bored. return q.

Random walk on web graph:

- definitely not irreducible,
 (some pages have no links to other pages);
- probably not aperiodic.

Random walk on web graph:

- definitely not irreducible,
 (some pages have no links to other pages);
- probably not aperiodic.

Modification:

$$\widetilde{\boldsymbol{A}} := (1-\alpha)\boldsymbol{A} + \frac{\alpha}{d} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

New MC (with \widetilde{A}) is both irreducible and aperiodic.

Random walk on web graph:

- definitely not irreducible.
 (some pages have no links to other pages);
- probably not aperiodic.

Modification:

$$\widetilde{\boldsymbol{A}} := (1-\alpha)\boldsymbol{A} + \frac{\alpha}{d} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

too many sinks~

New MC (with \widetilde{A}) is both irreducible and aperiodic.

 ${\sf PageRank\ scores} = {\sf stationary\ distribution\ of\ this\ new\ MC}.$

PageRank distribution.

(From K. Murphy, "Machine Learning", MIT Press 2012.)

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

 $\label{eq:main question: How to take advantage of U?}$

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

[Zhu, Ghahramani, and Lafferty, 2003]

▶ Construct weighted similarity graph G = (V, W) over all data.

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

[Zhu, Ghahramani, and Lafferty, 2003]

lacktriangle Construct weighted similarity graph G=(V,W) over all data.

For example:

- $V = \{1, 2, \dots, m+n\}.$
- Weight $W_{i,j} = \exp\left(-\frac{1}{2}\operatorname{dist}(x_i, x_j)^2\right)$.

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

[Zhu, Ghahramani, and Lafferty, 2003]

lacktriangle Construct weighted similarity graph G=(V,W) over all data.

For example:

- $V = \{1, 2, \dots, m+n\}.$
- Weight $W_{i,j} = \exp\left(-\frac{1}{2}\operatorname{dist}(x_i, x_j)^2\right)$.
- ▶ Weighted random walk MC:

$$A_{i,j} = \frac{W_{i,j}}{\sum_{k=1}^{m+n} W_{i,k}}.$$

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

U : unlabel data

[Zhu, Ghahramani, and Lafferty, 2003]

lacktriangle Construct weighted similarity graph G=(V,W) over all data.

For example:

- $V = \{1, 2, \dots, m+n\}.$
- Weight $W_{i,j} = \exp\left(-\frac{1}{2}\operatorname{dist}(x_i, x_j)^2\right)$.
- ► Weighted random walk MC:

$$A_{i,j} = \frac{W_{i,j}}{\sum_{k=1}^{m+n} W_{i,k}}. \label{eq:Ai,j}$$
 normalize (equal to 0)

the large the distance, the smaller the weight

Start weighted random walk starting from unlabeled point x_{m+i} . If first labeled point reached has label $y \in \{\pm 1\}$, then use $\hat{y}_{m+i} := y$ as the label for x_{m+i} .

(Can actually compute, in closed form, the probabilities of $\hat{y}_{m+i} = y$ for each y.)

Example: Semi-supervised learning

RECAP

- Markov property: past and future are conditionally independent given the present.
- ► Transition matrix: the conditional next-state distributions for each state.
- Random walk on graphs: extremely important process, very well-studied, many applications (including in ML, statistics, etc).
- Irreducible and aperiodic Markov chains have limiting behavior: doesn't matter where you start, eventually marginal state distribution is the stationary distribution.
 - Some qualities similar to iid processes, some rather different.
 - Related to eigenvectors/eigenvalues, computation via power method.
- ► Forms the basis of PageRank.