Digital Signal Processing for Music Part 1: Organizational

alexander lerch

contact info

- alexander lerch
 - email: mailto:alexander.lerch@gatech.edu
 - www: www.audiocontentanalysis.org
 - office: Couch 205B
 - office hours: by appointment: https://www.calendly.com/alexanderlerch

classes

- Mon, Wed 3:00–4:15pm in WV163
- additional tutorial group: TBD

class resources

- canvas
 - syllabus, grades, slides: www.canvas.gatech.edu

contact info

- alexander lerch
 - email: mailto:alexander.lerch@gatech.edu
 - www: www.audiocontentanalysis.org
 - office: Couch 205B
 - office hours: by appointment: https://www.calendly.com/alexanderlerch

classes

- Mon, Wed 3:00–4:15pm in WV163
- additional tutorial group: TBD

class resources

- canvas
 - syllabus, grades, slides: www.canvas.gatech.edu

Georgia Center for Music Tech College of Design

contact info

- alexander lerch
 - email: mailto:alexander.lerch@gatech.edu
 - www: www.audiocontentanalysis.org
 - office: Couch 205B
 - office hours: by appointment: https://www.calendly.com/alexanderlerch

classes

- Mon, Wed 3:00–4:15pm in WV163
- additional tutorial group: TBD

class resources

- canvas:
 - syllabus, grades, slides: www.canvas.gatech.edu

organizational goals & requirements

Georgia Center for Music Tech Tech College (Design

goals

- ability to comprehend typical representations of digital systems such as block diagrams and difference equations,
- understanding of typical transforms in DSP such as the Fourier transform or the Z-transform,
- ability to use this understanding to design audio processing systems such as audio effects, and
- ability to implement such designs in a programming language such as Matlab.

requirements

- math
- rudimentary programming skills, familiarity with Matlab

organizational goals & requirements

goals

- ability to comprehend typical representations of digital systems such as block diagrams and difference equations,
- ② understanding of typical transforms in DSP such as the Fourier transform or the Z-transform,
- ability to use this understanding to design audio processing systems such as audio effects, and
- ability to implement such designs in a programming language such as Matlab.

requirements

- math
- rudimentary programming skills, familiarity with Matlab

exercise

assignment

notes

organizational				
outline				
date	topics			

01/07	introduction, signals, periodicity, random pro-	correlation		
	cesses, pdf, moments, correlation			
01/14	convolution, power spectral density	FIR filter	filter & convolution	
01/21	Fourier series & Fourier transform	DFT	Fourier analysis	MLK Hldy.
01/28	Fourier transform, sampling, quantization,	quantization	_	
, l	SNR, number formats			
02/04	oversampling, dither, noise-shaping, non-		dither, ns	
<i>'</i>	linear quant.			
02/11	z-transform, digital audio filters, FIR/IIR,	biquad		midterm I
<i>'</i>	FFT filtering			
02/18	sample rate conversion, real-time systems	resampling		
02/25	delay-based FX and reverb	vibrato	mod. fx	
03/04	dynamics processing	PPM	limiter	guthman
03/11	time-segment processing (OLA)	ola		midterm II
03/18	,			spring
′				break
03/25	phase-vocoder		phase voc	
04/01	source coding: LPC, ADPCM		·	
04/08	source coding: Huffman, AAC			
04/15	denoising			
04/22	competition results			

- roughly based on:
 - Zölzer, Udo (2008): Digital Audio Signal Processing, Wiley
 - additional reading
 - Lyon, Richard (2011): Understanding Digital Signal Processing, Prentice Hall
 - Zölzer, Udo (2011): DAFX: Digital Audio Effects, Wiley
- additional additional reading:
 - Pohlmann, Ken (2000): Principles of Digital Audio, 4th, McGraw-Hill
 - Watkinson, John (2001): The Art of Digital Audio, Focal Press
- software
 - Matlab: www.matlab.gatech.edu
 - github.com etc

organizational course materials

Georgia Center for Music Tech Techology

- roughly based on:
 - Zölzer, Udo (2008): Digital Audio Signal Processing, Wiley
- additional reading:
 - Lyon, Richard (2011): Understanding Digital Signal Processing, Prentice Hall
 - Zölzer, Udo (2011): DAFX: Digital Audio Effects, Wiley
- additional additional reading;
 - Pohlmann, Ken (2000): Principles of Digital Audio, 4th, McGraw-Hill
 - Watkinson, John (2001): The Art of Digital Audio, Focal Press
- software
 - Matlab: www.matlab.gatech.edu
 - github.com etc

organizational course materials

Georgia Center for Music Tech Technology

- roughly based on:
 - Zölzer, Udo (2008): Digital Audio Signal Processing, Wiley
- additional reading:
 - Lyon, Richard (2011): Understanding Digital Signal Processing, Prentice Hall
 - Zölzer, Udo (2011): DAFX: Digital Audio Effects, Wiley
- additional additional reading:
 - Pohlmann, Ken (2000): Principles of Digital Audio, 4th, McGraw-Hill
 - Watkinson, John (2001): The Art of Digital Audio, Focal Press
- software
 - Matlab: www.matlab.gatech.edu
 - github.com etc

- roughly based on:
 - Zölzer, Udo (2008): Digital Audio Signal Processing, Wiley
- additional reading:
 - Lyon, Richard (2011): Understanding Digital Signal Processing, Prentice Hall
 - Zölzer, Udo (2011): DAFX: Digital Audio Effects, Wiley
- additional additional reading:
 - Pohlmann, Ken (2000): Principles of Digital Audio, 4th, McGraw-Hill
 - Watkinson, John (2001): The Art of Digital Audio, Focal Press
- software:
 - Matlab: www.matlab.gatech.edu
 - github.com etc

Georgia Center for Music Tech Tech College of Design

- 40%: assignments (equally weighted): projected deadlines see syllabus
 - convolution and FIR filters
 - Fourier analysis
 - Dither & Noise Shaping
 - modulated audio effects
 - compressor & limiter
 - (phase vocoder)
- 10%: mid-term exam I
- 10%: mid-term exam II
- 5%: participation
- 15%: quizzes
 - every week?!
- 20% codec competition

organizational to do

Georgia Center for Music Tech Technology
College of Design

- install Matlab (Octave/Freemat)
- brush up your math and DSP

organizational to do

Georgia Center for Music Tech Techology
College of Design

- install Matlab (Octave/Freemat)
- Obrush up your math and DSP

organizational to do

Georgia Center for Music Tech Technology
College of Design

- install Matlab (Octave/Freemat)
- brush up your math and DSP