Ex./CSE/T/214/18/2013

BACHELOR OF COMPUTER SCIENCE & Engineering Examination, 2013

(2nd Year, 1st Semester)

DIGITAL CIRCUITS

Full Ma	arks: 100 Time: Three Hours
	Answer any five questions.
1. (a)	Explain the operation of a positive logic AND gate using Diodes.
(b)	Has can this be modified to implement a universal logic gate?
(c)	Explain the operation of the same. 6
(d)	From the transfer characteristics estimate the Noise Margins of the same at 25°C.
2. (a)	What do you understand by the Transfer characteristics of a logic family?
(b)	Draw and explain the Transfer characteristics of a TTL Not gate.
3. (a)	How can an Inverter be implemented by using MOSFET. Explain its operation. 6 [Turn over]

	(b)	Estimate the voltage rise time in an MOSFET inverter
		in terms of the circuit parameters. 6
	(c)	Calculate t_r ; when c_L = $6p_f\!,~k_L$ = $16\muA/v^2$ and v_f = $12V\!.$
	(d)	Realise $X = \overline{(A + B)C + D.E}$ using a single Mos gate.
		4
4.	(a)	What are the various building blocks of a PLL? Explain
		their operations. 12
	(b)	How does a PLL track an input frequency. 4
	(c)	How can an input frequency be multiplied by π ? 4
5.	(a)	Explain the operation of a 3tr/cell MOS memory cell.
		8
	(b)	How can the stored information be retained in such a
		Memory cell ? 8
	(c)	How does it differ from a 1tr/cell RAM. 4
6.	(a)	Explain the operation of a buffered weighted register type
		DAC. 8
	(b)	How can offsets be introduced in such converters? 4
	(c)	How can a 3 bit signed binary number in 1's
		complement representation be converted to analog
		voltages ? 8

(a) Explain the operation of a 3 bit direct comparison type		
ADC.	8	
(b) Design the encoder circuit.	4	
(c) How can a 6 bit ADC be implemented by using about	ve	
mentioned converters.	6	
(d) What are its advantages and disadvantages ?	2	
8. Write notes on <i>any four</i> of the following:	×4	
(a) HTL gates;		
(b) Tristate gates ;		
(c) C MOS gates;		
(d) Square wave generation;		
(e) Implementation of Non-Volatile RAM;		
(f) Over-driven Emitter follower switches for DAC's;		
(g) Dual Slope ADC;		
(h) Sample and Hold circuits.		