Machine Learning Assignment 1 Linear Models & Kernel Methods

Submission deadline: October 26, 2024

1 Problem 1. Ridge Regression (10 points)

In a regression task, we have vectors $\mathbf{x} \in \mathbb{R}^D$, target values $y \in \mathbb{R}$ associated with them, and some model $f(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}$ to predict the target values for arbitrary vectors in \mathbb{R}^D .

Suppose we have a training dataset $\{\Phi, \mathbf{t}\}$, where $\Phi \in \mathbb{R}^{N \times D}$ is the design matrix in which each row is a feature vector $\phi(\mathbf{x})$ of a training point \mathbf{x} , and $\mathbf{t} \in \mathbb{R}^{N \times 1}$ is the vector with target values for the training points. N is the number of points in the training dataset, and D is the dimensionality of the feature space. Suppose that each entry in the last column of Φ is equal to 1. Your task is to derive the closed form solution for the optimal parameters of a ridge regression model.

- State the equation of a ridge regression model and identify the model parameters
- State the equation for the loss function (mean squared error) with an ℓ_2 regularization weighted by λ
- State which condition should be met in order to find the model parameters
- Find the ideal model parameters under the proposed loss function.

Note: You can use $\|\cdot\|$ as the Euclidean norm of a vector; $\phi(\mathbf{x}_n)$ and t_n are the *n*-th rows of Φ and \mathbf{t} respectively.

2 Problem 2. Feature Engineering (10 points) and Basic Concepts (10 points)

Suppose you have the following set S of 2D points, $S_n = (x_n^{(1)}, x_n^{(2)})$.

Figure 1: Color denotes the class attribution of a point: blue points belong to the class C_1 , yellow points belong to the class C_2 .

- Explain in detail 2 classification algorithms that could solve the problem. Discuss advantages and disadvantages of each.
- Propose new features for points in S based on $x^{(1)}$ and $x^{(2)}$. In this new feature space, classes C_1 and C_2 should be linearly separable. Come up with 2 different solutions meeting the stated criteria.

Problem 3. Kernel Functions (10 points)

Consider the following function $f: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$:

$$f(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{x})(\mathbf{x}^T \mathbf{y})(\mathbf{y}^T \mathbf{y})$$

Prove that f is a valid kernel or prove the opposite.

The only rules allowed to use without proof are the following:

- Kernel functions are *linear* and positive.
- Kernel functions can be expressed as an inner product
- A kernel function of 2 inputs can be expressed as another kernel of a transformation of those inputs (into a potentially different space).

Begin by formalizing those rules and apply them to prove or disprove the statement.

Problem 4. SVM (10 points)

Consider the following training data:

Class	x_1	x_2
+	1	1
+	2	2
+	0	2
_	1	-1
_	-1	0
_	0	0

- 1. Plot the six training points. Are the classes $\{+, -\}$ linearly separable?
- 2. Construct the weight vector of the maximum margin hyperplane by inspection and identify the support vectors.
- 3. If you remove one of the support vectors, does the size of the optimal margin decrease, stay the same, or increase?
- 4. Is your answer to (3) also true for any dataset? Provide a counterexample or give a short proof.