一、 实验目的和要求

(1) 掌握幅度调制的原理和实现方法 (2) 对调幅波信号的时域、频域特性进行测量分析 (3) 掌握包络检波、同步检波的实现方法 (4) 对解调输出信号进行测量分析

二、 实验电路分析

AM、DSB 调制实验电路如图 3.6. 3 所示。使用芯片 MC1496 实现两输入信号的乘法功能,JP3 端口输入高频载波信号,JP2 端输入音频调制信号。AM 幅度调制信号从 JP4 端输出,通过 J3 跳线可以选取正向或负相已调信号的输出。在 JP3 端输入高频载波信号,调节定位器 WR1,使 JP4 端输出的载波信号幅度最小,再在 JP2 端输入音频调制信号,则 JP4 端输出抑制载波的幅度调制信号 DSB。

图 1: AM、DSB 调制电路

包络检波实验电路如图 3.6. 4 所示。输入信号由外部信号源在 JP4 端提供,接通跳线 J5,将信号送到检波电路中。为避免实验板上其它部分电路对包络检波电路的影响,跳线 J3、J4 要断开。在 TP8 端口可以观察包络检波输出。另外,通过改变 J1 的跳线方式,选择不同的直流电阻阻值,改变滤波电路的时间常数,可在TP8 端观察惰性失真情况;通过改变 J2 的跳线方式,改变音频交流负载的阻抗值,在 TP10 端可观察负峰切割失真情况。

图 2: 包络检波电路

同步相干解调实验电路如图 3.6. 5 所示,使用调制、解调芯片 MC1496 实现两输入信号的乘法功能。本地载波信号与幅度调制时的载波信号是同一个信号,接通跳线 J4,幅度调制信号直接从电路板调制电路中获得。此时,为避免电路间的干扰,跳线 J5 要断开。经过滤波后的解调输出信号从 JP6 端输出。

图 3: 包络检波电路

三、 实验数据与结果分析

1. 幅度调制实验

1.1 普通幅度调制 (AM)

JP3 端由高频信号源输入频率为 465kHz, 大小为 0dBm 的正弦波作为载波信号输入; JP2 端由信号源输入频率为 1kHz, 大小为 0dBm 的正弦波作为调制信号; 接通跳线 J3 的 1、2 端或者 2、3 端; 将平衡调节电位器 WR1 逆时针或顺时针旋到底。

此次实验我们采用时域法调制度测量。

用示波器观察调制输出信号波形(注意,示波器观察时将频谱分析仪的电缆从 JP4 脱开,避免信号被衰减):双通道观测,以 JP2 端输入的调制信号为示波器的触发源,观察调制输出 TP4 波形,测量其调制度。改变调制信号幅度,或调节平衡调节电位器 WR1,分别将调制度调整到 30%、50% 和 100%,记录相应波形。

1.2 双边带调制 (DSB)

在普通幅度调制的基础上,调节电位器 WR1,同时观察信号频谱,直到频谱中载波分量降到最低,这就实现抑制载波幅度调制 (DSB)。用示波器观察并记录调制输出信号的波形(注意,将频谱分析仪的电缆从 JP4 脱开)。

2. 同步相干解调实验

2.1 AM 同步解调

调整 WR1, 使调制电路产生 AM 调制信号,用示波器观测同步解调输出信号。改变 JP2 端调制信号幅度,从而改变已调波信号的调制度,观察同步解调输出信号的幅度变化。

2.2 DSB 同步解调

调整 WR1, 使调制电路产生 DSB 调制信号, 用示波器观测同步解调输出信号。改变 JP2 端调制信号幅度, 观察同步解调输出信号的幅度变化。

3. 包络检波实验

3.1 包络检波信号的测量

由高频信号源从 JP4 端输入载波频率为 465kHz,大小为 10dBm(即 2Vp-p),调制信号频率为 1kHz 的正弦波,调制度为 30% 的 AM 调幅信号。

- (1) 改变跳线 J1,选择不同的时间常数,用示波器在测试点 TP8 观察检波输出信号的惰性失真情况。
- (2) 改变跳线 J2, 选择不同的交流阻抗, 用示波器在测试点 TP10 观察检波输出信号的负峰切割失真情况。
- (3) 在无失真的情况下,改变输入信号的调制度,观察对输出信号的影响(何时出现失真)?

四、 思考题

- 1. AM、DSB 调制有何区别,它们分别是如何实现的
- 2. 已调波信号的调制度与什么因素有关系?
- 3. 包络检波输出信号产生惰性失真和负峰切割失真的原因分别是什么?如何改善失真情况?
- 4. DSB 调制信号是否可以通过包络检波方式进行解调?