Decentralized SGD and Average-direction SAM are Asymptotically Equivalent

Embracing Decentralization for Improved Communication Efficiency, Privacy, and Generalization

Tongtian Zhu¹, Fengxiang He^{2, 3 \square}, Kaixuan Chen¹, Mingli Song¹, Dacheng Tao⁴

- l Zhejiang University, 2 JD Explore Academy, JD.com, Inc,
- 3 AIAI, School of Informatics, University of Edinburgh, 4 The University of Sydney

Is it possible to improve communication efficiency, privacy, and generalizability all at once ??

Our paper shows that decentralized training might be the answer!

Problem

Training objective: $\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{m} \sum_{j=1}^m \mathbb{E}_{z_i \sim \tilde{\mathcal{D}}_i} [L(\mathbf{w}; z_j)]$

Centralized SGD:
$$\mathbf{w}_{a}(t+1) = \mathbf{w}_{a}(t) - \eta \underbrace{\frac{1}{m} \sum_{j=1}^{m} \cdot \underbrace{\nabla L^{\mu_{j}(t)}(\mathbf{w}_{a}(t))}_{\text{average gradients on server}}^{\text{gradient computation}}.$$

Decentralized SGD:
$$\mathbf{w}_{j}(t+1) = \sum_{k=1}^{\infty} \mathbf{P}_{j,k} \mathbf{w}_{k}(t) - \eta \cdot \nabla L^{\mu_{j}(t)}(\mathbf{w}_{j}(t))$$
,

where P characterizes the communication topology \mathcal{G} .

Research gap

Bad news: Existing theories claim that decentralization invariably undermines generalization.

Generalization error $\leq \mathcal{O}(\frac{1}{\sqrt{NT}})$ +extra error from decentralization.

Some phenomena in decentralized learning are not well explained! D-SGD can generalize better than SGD in large-batch scenarios.

Non-negligible gap between theory and experiments exists. Important characteristics of decentralization might be underexamined!

Question: what are the inductive biases of decentralization?

Main Results

Decentralized SGD "magically" performs sharpness-aware minimization in an implicit way.

Decentralized training with D-SGD

Sharpness-aware Minimization

Contact Information

Fengxiang He:

F.He@ed.ac.uk

Tongtian Zhu:

raiden@zju.edu.cn

Main theorem. Given the objective L is continuous and has fourth-order partial derivatives. The mean iterate of the global averaged model of D-SGD can be written as follows:

$$\mathbb{E}_{\mu(t)} \big[\mathbf{w}_a(t+1) \big] = \mathbf{w}_a(t) - \eta \underbrace{\mathbb{E}_{\epsilon \sim \mathcal{N}(0,\Xi(t))} \big[\nabla L_{\mathbf{w}_a(t)+\epsilon} \big]}_{\text{asymptotic descent direction}} \\ + \mathcal{O} \big(\eta \, \mathbb{E}_{\epsilon \sim \mathcal{N}(0,\Xi(t))} \big\| \epsilon \big\|_2^3 + \frac{\eta}{m} \sum_{j=1}^m \big\| \mathbf{w}_j(t) - \mathbf{w}_a(t) \big\|_2^3 \big), \\ \\ \text{higher-order residual terms}$$

where
$$\Xi(t) = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{w}_j(t) - \mathbf{w}_a(t)) (\mathbf{w}_j(t) - \mathbf{w}_a(t))^{\top}$$
.

• Sharpness regularization.

$$\mathbb{E}_{\mu(t)}[L_{\mathbf{w}}^{\text{D-SGD}}] \approx \underbrace{L_{\mathbf{w}}}_{original\ loss} + \underbrace{\mathbb{E}_{\epsilon \sim \mathcal{N}(0,\Xi(t))}[L_{\mathbf{w}+\epsilon} - L_{\mathbf{w}}]}_{sharpness-aware\ regularizer}$$

• Regularization-optimization trade-off.

consensus distance $\uparrow \Rightarrow$ sharpness regularization \uparrow optimization \downarrow consensus distance $\downarrow \Rightarrow$ sharpness regularization \downarrow optimization \uparrow

• $\Xi(t)$, the empirical covariance matrix of $\mathbf{w}_{j}(t)$, implicitly estimate Σ_q , the intractable posterior covariance of weights,

$$\Xi(t) = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{w}_j(t) - \mathbf{w}_a(t)) (\mathbf{w}_j(t) - \mathbf{w}_a(t))^{\top} \approx \Sigma_q.$$

Proof idea

• D-SGD iterate \Rightarrow SGD iterate + noise:

$$\underline{\mathbf{w}_{a}}^{(t+1)} = \underline{\mathbf{w}_{a}}^{(t)} - \eta \nabla L_{\underline{\mathbf{w}_{a}}(t)}^{\mu(t)} + \eta \underbrace{\frac{1}{m} \sum_{j=1}^{m} (\nabla L_{\underline{\mathbf{w}_{j}}(t)}^{\mu_{j}(t)} - \nabla L_{\underline{\mathbf{w}_{a}}(t)}^{\mu_{j}(t)})}_{\textit{noise form decentralization}}.$$

• Characterize the unique noise in decentralization via a high order Taylor expansion on $\frac{1}{m} \sum_{j=1}^{m} \nabla L_{\mathbf{w}_{i}(t)}^{\mu_{j}(t)}$ around $\mathbf{w}_{a}(t)$.