$11n_{25} (K11n_{25})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -78512077u^{27} - 145372804u^{26} + \dots + 67221149b - 176175,$$

$$-62468877u^{27} - 129722654u^{26} + \dots + 67221149a + 343854265, \ u^{28} + 2u^{27} + \dots - 5u + 1 \rangle$$

$$I_2^u = \langle u^4 + u^3 - u^2 + b - u, \ u^4 + u^3 - 2u^2 + a - u + 1, \ u^5 + u^4 - 2u^3 - u^2 + u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -7.85 \times 10^7 u^{27} - 1.45 \times 10^8 u^{26} + \dots + 6.72 \times 10^7 b - 1.76 \times 10^5, \ -6.25 \times 10^7 u^{27} - 1.30 \times 10^8 u^{26} + \dots + 6.72 \times 10^7 a + 3.44 \times 10^8, \ u^{28} + 2u^{27} + \dots - 5u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.929304u^{27} + 1.92979u^{26} + \dots + 11.1441u - 5.11527 \\ 1.16797u^{27} + 2.16261u^{26} + \dots + 2.86935u + 0.00262083 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.01767u^{27} + 2.01755u^{26} + \dots + 12.4640u - 4.97118 \\ 0.885451u^{27} + 1.93727u^{26} + \dots + 3.16598u - 0.0228994 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.929304u^{27} + 1.92979u^{26} + \dots + 11.1441u - 5.11527 \\ 1.40015u^{27} + 2.23327u^{26} + \dots + 3.44274u + 0.0738023 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.823260u^{27} + 0.824473u^{26} + \dots + 0.360292u + 0.711827 \\ -2.02865u^{27} - 1.42566u^{26} + \dots + 4.66019u - 0.824392 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.43559u^{27} - 1.43578u^{26} + \dots + 3.66414u - 1.71740 \\ 1.00626u^{27} + 1.00303u^{26} + \dots - 0.736587u + 0.00303364 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2.44185u^{27} - 2.43882u^{26} + \dots + 4.40073u - 1.72043 \\ 1.00626u^{27} + 1.00303u^{26} + \dots - 0.736587u + 0.00303364 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2.44185u^{27} - 2.43882u^{26} + \dots + 4.40073u - 1.72043 \\ 1.00626u^{27} + 1.00303u^{26} + \dots - 0.736587u + 0.00303364 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2.44185u^{27} - 2.43882u^{26} + \dots + 4.40073u - 1.72043 \\ 1.00626u^{27} + 1.00303u^{26} + \dots - 0.736587u + 0.00303364 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{337541215}{67221149}u^{27} - \frac{737621299}{67221149}u^{26} + \dots - \frac{124989334}{67221149}u - \frac{310642967}{67221149}u^{26} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{28} - 6u^{27} + \dots + 5u - 1$
c_2	$u^{28} + 6u^{27} + \dots + 17u + 1$
c_{3}, c_{7}	$u^{28} + 3u^{27} + \dots + 128u + 32$
<i>C</i> ₅	$u^{28} - 6u^{27} + \dots - 3079u - 1609$
c_6, c_{10}	$u^{28} - 2u^{27} + \dots + u - 1$
c_8, c_9, c_{11}	$u^{28} - 2u^{27} + \dots + 5u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{28} - 6y^{27} + \dots - 17y + 1$
c_2	$y^{28} + 38y^{27} + \dots - 17y + 1$
c_3, c_7	$y^{28} - 33y^{27} + \dots - 14848y + 1024$
<i>C</i> ₅	$y^{28} + 22y^{27} + \dots + 19658749y + 2588881$
c_6, c_{10}	$y^{28} + 6y^{27} + \dots + 5y + 1$
c_8, c_9, c_{11}	$y^{28} - 22y^{27} + \dots + 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.078918 + 0.962099I		
a = -2.18951 + 0.08530I	7.91461 - 7.14026I	-1.25171 + 4.70902I
b = -2.13157 + 0.38039I		
u = 0.078918 - 0.962099I		
a = -2.18951 - 0.08530I	7.91461 + 7.14026I	-1.25171 - 4.70902I
b = -2.13157 - 0.38039I		
u = 1.062800 + 0.195424I		
a = -0.155091 - 0.173758I	-2.13241 - 0.82619I	-5.35184 - 1.04773I
b = 0.944249 + 0.890794I		
u = 1.062800 - 0.195424I		
a = -0.155091 + 0.173758I	-2.13241 + 0.82619I	-5.35184 + 1.04773I
b = 0.944249 - 0.890794I		
u = -0.064858 + 0.917024I		
a = 2.10546 - 0.51061I	8.51104 + 0.29713I	-0.154356 - 0.088934I
b = 1.81015 - 0.32496I		
u = -0.064858 - 0.917024I		
a = 2.10546 + 0.51061I	8.51104 - 0.29713I	-0.154356 + 0.088934I
b = 1.81015 + 0.32496I		
u = 1.08514		
a = -1.05851	-3.64067	25.0750
b = -3.52629		
u = -1.206550 + 0.074740I		
a = 1.56629 - 0.83850I	-5.80044 + 1.71298I	-12.51650 - 3.41779I
b = 0.209734 + 0.919216I		
u = -1.206550 - 0.074740I		
a = 1.56629 + 0.83850I	-5.80044 - 1.71298I	-12.51650 + 3.41779I
b = 0.209734 - 0.919216I		
u = -1.184170 + 0.243247I		
a = -0.333050 - 1.009550I	-2.65368 + 4.42550I	-6.50791 - 7.50568I
b = 0.117217 + 0.500518I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.184170 - 0.243247I		
a = -0.333050 + 1.009550I	-2.65368 - 4.42550I	-6.50791 + 7.50568I
b = 0.117217 - 0.500518I		
u = 0.429683 + 0.631440I		
a = -0.286291 - 0.034580I	-0.69638 - 1.96456I	-1.12748 + 4.70329I
b = 0.231084 + 0.498413I		
u = 0.429683 - 0.631440I		
a = -0.286291 + 0.034580I	-0.69638 + 1.96456I	-1.12748 - 4.70329I
b = 0.231084 - 0.498413I		
u = 1.29906		
a = -0.104420	-2.76755	-1.63490
b = 0.740536		
u = -1.238710 + 0.461764I		
a = -1.08774 + 1.05934I	4.88950 + 4.61956I	-3.15122 - 3.64430I
b = -1.71542 - 0.63051I		
u = -1.238710 - 0.461764I		
a = -1.08774 - 1.05934I	4.88950 - 4.61956I	-3.15122 + 3.64430I
b = -1.71542 + 0.63051I		
u = 1.236490 + 0.512229I	4 050 45 . 4 045 40 7	0 1 100
a = 0.561715 + 1.232250I	4.35345 + 1.91548I	-3.75065 - 1.71492I
b = 2.01617 - 0.03791I		
u = 1.236490 - 0.512229I	4 95945 1 015407	2.75005 + 1.714027
a = 0.561715 - 1.232250I	4.35345 - 1.91548I	-3.75065 + 1.71492I
b = 2.01617 + 0.03791I $u = 1.338030 + 0.423130I$		
	/ 1160/ E 00/01/	2 00004 + 2 077007
a = -0.503580 - 1.252560I	4.11604 - 5.09421I	-3.90084 + 3.07789I
b = -1.76982 - 0.03806I $u = 1.338030 - 0.423130I$		
	4 11604 + E 00401 T	2 00004 2 077907
a = -0.503580 + 1.252560I	4.11604 + 5.09421I	-3.90084 - 3.07789I
b = -1.76982 + 0.03806I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.35468 + 0.45041I		
a = 0.88989 - 1.31460I	3.42542 + 12.18300I	-4.89577 - 7.01706I
b = 2.05008 + 0.73045I		
u = -1.35468 - 0.45041I		
a = 0.88989 + 1.31460I	3.42542 - 12.18300I	-4.89577 + 7.01706I
b = 2.05008 - 0.73045I		
u = -0.018893 + 0.524896I		
a = -0.530824 - 0.538417I	0.76347 - 1.52310I	1.12747 + 4.03193I
b = -0.574926 + 0.352337I		
u = -0.018893 - 0.524896I		
a = -0.530824 + 0.538417I	0.76347 + 1.52310I	1.12747 - 4.03193I
b = -0.574926 - 0.352337I		
u = -1.46446 + 0.20354I		
a = 0.333881 - 0.215100I	-6.89024 + 4.97150I	-3.93501 - 6.51666I
b = -0.390847 + 0.079026I		
u = -1.46446 - 0.20354I		
a = 0.333881 + 0.215100I	-6.89024 - 4.97150I	-3.93501 + 6.51666I
b = -0.390847 - 0.079026I		
u = 0.194298 + 0.209673I		
a = -3.28968 + 1.85114I	-1.90419 - 0.70187I	-5.30439 - 2.49815I
b = 0.596766 + 1.022050I		
u = 0.194298 - 0.209673I		
a = -3.28968 - 1.85114I	-1.90419 + 0.70187I	-5.30439 + 2.49815I
b = 0.596766 - 1.022050I		

$$I_2^u = \langle u^4 + u^3 - u^2 + b - u, \ u^4 + u^3 - 2u^2 + a - u + 1, \ u^5 + u^4 - 2u^3 - u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} - u^{3} + 2u^{2} + u - 1 \\ -u^{4} - u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{4} - u^{3} + 2u^{2} + u - 1 \\ -u^{4} - u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} - u^{3} + 2u^{2} + u - 1 \\ -u^{4} - u^{3} + u^{2} + 2u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^4 5u^3 + 2u^2 + 8u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^5$
c_2, c_4	$(u+1)^5$
c_{3}, c_{7}	u^5
c_5	$u^5 - 3u^4 + 4u^3 - u^2 - u + 1$
c_6	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
c_8, c_9	$u^5 + u^4 - 2u^3 - u^2 + u - 1$
c_{10}	$u^5 + u^4 + 2u^3 + u^2 + u + 1$
c_{11}	$u^5 - u^4 - 2u^3 + u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_{3}, c_{7}	y^5
<i>C</i> ₅	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$
c_6, c_{10}	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_8, c_9, c_{11}	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.21774		
a = -0.821196	-4.04602	-10.7190
b = -1.30408		
u = 0.309916 + 0.549911I		
a = -0.77780 + 1.38013I	-1.97403 - 1.53058I	-6.52924 + 5.40154I
b = 0.428550 + 1.039280I		
u = 0.309916 - 0.549911I		
a = -0.77780 - 1.38013I	-1.97403 + 1.53058I	-6.52924 - 5.40154I
b = 0.428550 - 1.039280I		
u = -1.41878 + 0.21917I		
a = 0.688402 + 0.106340I	-7.51750 + 4.40083I	-11.11126 - 1.16747I
b = -0.276511 + 0.728237I		
u = -1.41878 - 0.21917I		
a = 0.688402 - 0.106340I	-7.51750 - 4.40083I	-11.11126 + 1.16747I
b = -0.276511 - 0.728237I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{28} - 6u^{27} + \dots + 5u - 1)$
c_2	$((u+1)^5)(u^{28}+6u^{27}+\cdots+17u+1)$
c_3, c_7	$u^5(u^{28} + 3u^{27} + \dots + 128u + 32)$
c_4	$((u+1)^5)(u^{28}-6u^{27}+\cdots+5u-1)$
<i>C</i> 5	$ (u^5 - 3u^4 + 4u^3 - u^2 - u + 1)(u^{28} - 6u^{27} + \dots - 3079u - 1609) $
c_6	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)(u^{28} - 2u^{27} + \dots + u - 1)$
c_8,c_9	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)(u^{28} - 2u^{27} + \dots + 5u + 1)$
c_{10}	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)(u^{28} - 2u^{27} + \dots + u - 1)$
c_{11}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)(u^{28} - 2u^{27} + \dots + 5u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^5)(y^{28} - 6y^{27} + \dots - 17y + 1)$
c_2	$((y-1)^5)(y^{28} + 38y^{27} + \dots - 17y + 1)$
c_3, c_7	$y^5(y^{28} - 33y^{27} + \dots - 14848y + 1024)$
c_5	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)$ $\cdot (y^{28} + 22y^{27} + \dots + 19658749y + 2588881)$
c_6, c_{10}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)(y^{28} + 6y^{27} + \dots + 5y + 1)$
c_8, c_9, c_{11}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)(y^{28} - 22y^{27} + \dots + 5y + 1)$