CTFT Analysis Equation

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \tag{1}$$

DTFT Analysis Equation

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (2)

CTFT Synthesis Equation

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \tag{3}$$

DTFT Synthesis Equation

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \tag{4}$$

Fourier Series to Transform

If the Fourier series of x(t) is

$$x(t) = \sum_{k = -\infty}^{\infty} a_k e^{jk\omega_0 t} \tag{5}$$

then the Fourier transform is

$$X(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0).$$
 (6)

Symmetry Properties

If x(t) is real, then $|X(j\omega)|$ is even and $\angle X(j\omega)$ is odd. Moreover, if x(t) is real and even, then $X(j\omega)$ must be purely real and even, and if x(t) is real and odd, $X(j\omega)$ is purely imaginary and odd.

Duality Property

$$\mathcal{F}\left\{X(t)\right\} = 2\pi x(-\omega). \tag{7}$$

Modulation Property

$$x(t)\cos(\omega_0 t) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{2} \left(X(j(\omega - \omega_0)) + X(j(\omega - \omega_0)) \right)$$
 (8)

LTI System Invertibility Criterion

An LTI system with frequency response $H(j\omega)$ (CT) or $H(e^{j\omega})$ (DT) is invertible if and only if $H(j\omega) \neq 0$ for all ω (CT) or $H(e^{j\omega}) \neq 0$ for all $\omega \in [-\pi, \pi]$ (DT).

Table 1: Properties of Fourier Transforms

Property	CT Time Domain	CT Frequency Domain	DT Time Domain	DT Frequency Domain
Linearity	$Ax_1(t) + Bx_2(t)$	$AX_1(j\omega) + BX_2(j\omega)$	$Ax_1[n] + Bx_2[n]$	$AX_1(e^{j\omega}) + BX_2(e^{j\omega})$
Time Shifting	$x(t-t_0)$	$X(j\omega)e^{-j\omega t_0}$	$x[n-n_0]$	$X(e^{j\omega})e^{-j\omega n_0}$
Frequency Shifting	$x(t)e^{j\omega_0t}$	$X(j(\omega-\omega_0))$	$x[n]e^{j\omega_0n}$	$X(e^{j(\omega-\omega_0)})$
Time Scaling	$x(at), a \neq 0$	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$	_	_
Time Reversal	x(-t)	$X(-j\omega)$	x[-n]	$X(e^{-j\omega})$
Conjugation	$x^*(t)$	$X^*(-j\omega)$	$x^*[n]$	$X^*(e^{-j\omega})$
Differentiation	$\frac{d^n}{dt^n}x(t)$	$(j\omega)^n X(j\omega)$	_	_
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{X(j\omega)}{j\omega} + \pi X(0)\delta(\omega)$	_	_
Differencing	_		x[n] - x[n-1]	$(1 - e^{-j\omega})X(e^{j\omega})$
Accumulation	_	_	$\sum_{k=-\infty}^{n} x[k]$	$\frac{X(e^{j\omega})}{1 - e^{-j\omega}} + \pi X(e^{j0}) \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$
Convolution	$(x_1 * x_2)(t)$	$X_1(j\omega)X_2(j\omega)$	$(x_1 * x_2)[n]$	$X_1(e^{j\omega})X_2(e^{j\omega})$
Multiplication	$x_1(t)x_2(t)$	$\frac{1}{2\pi}(X_1*X_2)(j\omega)$	$x_1[n]x_2[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$
Parseval's Theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$	$\sum_{n=-\infty}^{\infty} x[n] ^2$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$

Table 2: Common Fourier Transform Pairs

CT Time Domain $x(t)$	CT Fourier Transform $X(j\omega)$	$\mathbf{DT} \ \mathbf{Time} \ \mathbf{Domain} \ x[n]$	DT Fourier Transform $X(e^{j\omega})$
$\delta(t)$	1	$\delta[n]$	1
1	$2\pi \delta(\omega)$	1	$2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$
u(t)	$\pi \delta(\omega) + rac{1}{j\omega}$	u[n]	$\frac{1}{1-e^{-j\omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$
$e^{-at}u(t), \Re(a) > 0$	$\frac{1}{a+j\omega}$	$a^n u[n], a < 1$	$\frac{1}{1 - ae^{-j\omega}}$
$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$	$\cos(\omega_0 n)$	$\pi \sum_{k=-\infty}^{\infty} \left[\delta(\omega - \omega_0 - 2\pi k) + \delta(\omega + \omega_0 - 2\pi k) \right]$
$\sin(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$ $\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$	$\sin(\omega_0 n)$	$\pi \sum_{k=-\infty}^{\infty} \left[\delta(\omega - \omega_0 - 2\pi k) + \delta(\omega + \omega_0 - 2\pi k) \right]$ $\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \left[\delta(\omega - \omega_0 - 2\pi k) - \delta(\omega + \omega_0 - 2\pi k) \right]$
$\mathrm{rect}(t/T)$	$T\operatorname{sinc}\left(\frac{\omega T}{2\pi}\right)$	$\mathrm{rect}\Big(\frac{n}{N}\Big)$	$\frac{\sin\left(\omega(N+1)/2\right)}{\sin\left(\omega/2\right)} e^{-j\omega N/2}$