Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises Part II Chapters V to VIII

by

Bernard Carrette

Contents

7	Rela	ative tensors, ideas of volume, Green-Stokes theorems.	4
	7.1	p279 - Exercise 5	5
	7.2	p279 - Exercise 6	8

List of Figures

Relative tensors, ideas of volume, Green-Stokes theorems.

7.1 p279 - Exercise 5

Determine the tensor character of the cofactors in the determinants formed by the components of

- (a) a mixed absolute tensor
- (b) a relative contravaraint tensor of weight 1.

(a)

Let's put $b \doteq |b_n^m|$. We have (see **2.202**)

$$b_r^m \Delta^{ms} = \delta_r^s b \tag{1}$$

where Δ^{ms} is the cofactor associated with element b_s^m . Note that, for the moment being, the position of the indexes does not imply any tensor characteristics of this object. δ_r^s is a mixed absolute tensor of order 2 (see page 243). Also b is a relative invariant of weight 2 (see **7.202**).

So we have the following transformation rules

$$\begin{cases}
\delta'_{r}^{s} = \delta_{v}^{u} \frac{\partial x'^{s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}} \\
b' = J^{2}b \\
b'_{r}^{m} = b_{v}^{u} \frac{\partial x'^{m}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}}
\end{cases}$$
(2)

Using (1)

$$b_r^{'m} \Delta^{'ms} = \delta_r^{'s} b^{'} \tag{3}$$

Substituting with (2)

$$b_{v}^{u} \frac{\partial x^{'m}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x^{'r}} \Delta^{'ms} = \delta_{v}^{u} \frac{\partial x^{'s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x^{'r}} J^{2} b \tag{4}$$

$$b_v^u \frac{\partial x^{'m}}{\partial x^u} \frac{\partial x^v}{\partial x^{'r}} \Delta^{'ms} = \frac{\partial x^{'s}}{\partial x^u} \frac{\partial x^v}{\partial x^{'r}} J^2 b_v^m \Delta^{mu}$$
 (5)

$$\times \frac{\partial x^{'r}}{\partial x^{p}} \qquad \qquad b_{p}^{u} \frac{\partial x^{'m}}{\partial x^{u}} \Delta^{'ms} = J^{2} b_{p}^{m} \Delta^{mu} \frac{\partial x^{'s}}{\partial x^{u}} \tag{6}$$

This is a system of N^2 linear equations in N^2 unknowns $\Delta^{'ms}$. We claim that $\Delta^{'ms} = J^2 \Delta^{ij} \frac{\partial x^i}{\partial x^{'m}} \frac{\partial x^i}{\partial x^j}$ is a solution of that system.

Substituting this candidate solution in the left side of (6) gives

$$b_p^u \frac{\partial x^{'m}}{\partial x^u} J^2 \Delta^{ij} \frac{\partial x^i}{\partial x^{'m}} \frac{\partial x^{'s}}{\partial x^j} = J^2 b_p^u \delta_u^i \Delta^{ij} \frac{\partial x^{'s}}{\partial x^j}$$
 (7)

$$=J^2 b_p^m \Delta^{mu} \frac{\partial x'^s}{\partial x^u} \tag{8}$$

proving that our candidate solution is indeed the solution for (6), provided of course the usual conditions on the solvability of a system of linear equations.

We rewrite the cofactor as Δ_m^s which transform as

$$\Delta_m^s = J^2 \Delta_j^i \frac{\partial x^i}{\partial x'^m} \frac{\partial x'^s}{\partial x^j}$$

and conclude that the cofactor is a relative mixed tensor of weight 2.

 \Diamond

(b) Let's put $b \doteq |b^{mn}|$. We have (see 2.202)

$$b^{mr}\Delta^{ms} = \delta^s_r b \tag{9}$$

where Δ^{ms} is the cofactor associated with element b^{ms} . Note that, for the moment being, the position of the indexes does not imply any tensor characteristics of this object. δ_r^s is a mixed absolute tensor of order 2 (see page 243). Also b is a relative invariant of weight 2 (see 7.202).

So we have the following transformation rules

$$\begin{cases}
\delta'_{r}^{s} = \delta_{v}^{u} \frac{\partial x'^{s}}{\partial x^{u}} \frac{\partial x^{v}}{\partial x'^{r}} \\
b' = J^{2}b \\
b'^{mr} = Jb^{uv} \frac{\partial x'^{m}}{\partial x^{u}} \frac{\partial x'^{r}}{\partial x^{v}}
\end{cases} (10)$$

Using (1)

$$b^{'mr}\Delta^{'ms} = \delta_r^{'s}b^{'} \tag{11}$$

Substituting with (2)

$$Jb^{uv}\frac{\partial x^{'m}}{\partial x^{u}}\frac{\partial x^{'r}}{\partial x^{v}}\Delta^{'ms} = \delta^{u}_{v}\frac{\partial x^{'s}}{\partial x^{u}}\frac{\partial x^{v}}{\partial x^{'r}}J^{2}b$$
(12)

$$Jb^{uv}\frac{\partial x^{'m}}{\partial x^{u}}\frac{\partial x^{'r}}{\partial x^{v}}\Delta^{'ms} = \frac{\partial x^{'s}}{\partial x^{u}}\frac{\partial x^{v}}{\partial x^{'r}}J^{2}b^{mv}\Delta^{mu}$$
(13)

$$Jb^{uv}\frac{\partial x^{'m}}{\partial x^{u}}\frac{\partial x^{'r}}{\partial x^{v}}\Delta^{'ms} = \frac{\partial x^{'s}}{\partial x^{u}}\frac{\partial x^{v}}{\partial x^{'r}}J^{2}b^{mv}\Delta^{mu}$$

$$\times \frac{\partial x^{p}}{\partial x^{'r}} \qquad b^{up}\frac{\partial x^{'m}}{\partial x^{u}}\Delta^{'ms} = Jb^{mp}\Delta^{mu}\frac{\partial x^{'s}}{\partial x^{u}}$$

$$(13)$$

This is a system of N^2 linear equations in N^2 unknowns $\Delta^{'ms}$. We claim that $\Delta^{'ms} = J\Delta^{ij} \frac{\partial x^i}{\partial x'^m} \frac{\partial x^i}{\partial x^j}$ is a solution of that system.

Substituting this candidate solution in the left side of (6) gives

$$b^{up} \frac{\partial x^{'m}}{\partial x^{u}} J \Delta^{ij} \frac{\partial x^{i}}{\partial x^{'m}} \frac{\partial x^{'s}}{\partial x^{j}} = J b^{up} \delta^{i}_{u} \Delta^{ij} \frac{\partial x^{'s}}{\partial x^{j}}$$

$$\tag{15}$$

$$= Jb^{mp} \Delta^{mu} \frac{\partial x'^{s}}{\partial x^{u}} \tag{16}$$

proving that our candidate solution is indeed the solution for (6), provided of course the usual conditions on the solvability of a system of linear equations.

We rewrite the cofactor as Δ_m^s which transform as

$$\Delta_{m}^{s} = J \Delta_{j}^{i} \frac{\partial x^{i}}{\partial x'^{m}} \frac{\partial x'^{s}}{\partial x^{j}}$$

and conclude that the cofactor is a relative mixed tensor of weight 1.

♦

7.2 p279 - Exercise 6

♦