Introducción al curso – Electrónica Digital y Microcontroladores

Universidad de Santiago de Chile

Josué Meneses Díaz

20-03-2024

Contenido

- Objetivo del curso
- Introducción
 - ¿Qué es la electrónica digital?
 - Diferencia entre digital analógico
 - Ejemplo
 - Historia
- Programa del curso
 - Planificación
 - Diferencias

- Programas utilizados
- Evaluación
- Bibliografía
- Preguntas finales

Objetivos del curso

- Comprender los conceptos fundamentales que rigen la Electrónica digital.
- Aprender a analizar y diseñar circuitos digitales:
 - Diseño de circuitos combinacionales.
 - Diseño de circuitos secuenciales.
- Conocer las características generales de los microcontroladores (MCU).
 - Arquitectura
 - Como programar un MCU
- Programar e implementar MCU para la solución de problemas ingenieriles.

INTRODUCCIÓN

Introducción

¿Qué es la electrónica digital?

Es el **análisis y diseño** de circuitos electrónicos que permiten llevar a cabo un o varias operaciones necesarias para completar una **decisión lógica**. Se trabaja con señales digitales, i.e., señales que varían entre dos posibles estados: 1 y 0 (de ahí su naturaleza **binaria**).

FIGURE 1–1 Graph of an analog quantity (temperature versus time).

FIGURE 1–2 Sampled-value representation (quantization) of the analog quantity in Figure 1–1. Each value represented by a dot can be digitized by representing it as a digital

Floyd, Thomas L. Fundamentos de sistemas digitales. Prentice Hall, 2006.

FIGURE 1–3 A basic audio public address system.

FIGURE 1-4 Basic block diagram of a CD player. Only one channel is shown.

Floyd, Thomas L. Fundamentos de sistemas digitales. Prentice Hall, 2006.

FIGURA 1-1 Diagrama de bloques de un sistema digital de precisión para control de temperatura.

Ronald, J., Widmer Tocci, S. Neal, y Gregory L. Moss. *Sistemas digitales: principios y aplicaciones .* Pearson Educacion, 2007.

Ventajas

- Curva de aprendizaje rápida, diseños fáciles.
- Mayor precisión y posibilidad de programación.
- Se elimina el ruido entre los datos enviados.
 - Posibilidad de realizar copias exactas de datos, imágenes, música, etc.
 - Mejora considerablemente el traspaso de información desde dos medios de comunicación.
- Sus salidas por lo general son invariantes en el tiempo.
- Almacenamiento de la Información
 - Reproducibilidad y procesamiento

Desventajas

- Los parámetros físicos generalmente son analógicos. Se necesita de una etapa de conversión A/D y posterior D/A.
 - Encarecimiento de los sistemas
 - Se requiere tiempo de procesamiento
- Perdida de información al digitalizar medidas

Introducción - Historia

- <1938 Máquinas analógicas
- 1847 George Booles publica **"The mathematical analysis of logic"** y posteriormente **"An Investigation of the Laws of Thought (1854)".**
- 1938 Claude Shannon publica su tesis "A symbolic analysis of relay and switching circuits"

Esquema funcionamiento Rele

Postulates

1.	$a. 0 \cdot 0 = 0$	A closed circuit in parallel with a closed circuit is a closed circuit.	
	b. 1 + 1 = 1	An open circuit in series with an open circuit is an open circuit.	
2.	a. 1 + 0 = 0 + 1 = 1	An open circuit in series with a closed circuit in either order (i.e., whether the open circuit is to the right or left of the closed circuit) is an open circuit.	
	$b. 0 \cdot 1 = 1 \cdot 0 = 0$	A closed circuit in parallel with an open circuit in either order is a closed circuit.	
3.	a. 0 + 0 = 0	A closed circuit in series with a closed circuit is a closed circuit.	
	$b. 1 \cdot 1 = 1$	An open circuit in parallel with an open circuit is an open circuit.	
4.	At any given time either X	= 0 or X = 1.	

Shannon, Claude E. «A symbolic analysis of relay and switching circuits». *Electrical Engineering* 57, n.º 12 (diciembre de 1938): 713-23. https://doi.org/10.1109/EE.1938.6431064.

Introducción - Historia

- <1938 Máquinas analógicas
- 1847 George Booles publica **"The mathematical analysis of logic"** y posteriormente **"An Investigation of the Laws of Thought (1854)".**
- 1938 Claude Shannon publica su tesis "A symbolic analysis of relay and switching circuits"
- 1939 George Stibitz construye la primera computadora utilizando relés electromecánicos en los laboratorios Bell.

George Stibitz junto con su Complex Number
Calculato

PROGRAMA DEL CURSO

Programa del Curso

- 1) Conceptos lógicos básicos
- Señal digital
- Niveles lógicos
- Puertas lógicas y tablas de verdad
- 2) Sistemas numéricos
- Sistema decimal
- Sistema binario
- Sistema Hexadecimal
- Conversión ente sistemas

- 3) Lógica Combinacional
- Funciones lógicas
- Teoremas booleanos
- Minitérminos y Maxitérminos
- Mapas de Karnaugh
- Aplicaciones Fundamentales
- 4) Lógica secuencial
- Latch y Flip-Flops
- Tablas de estados
- Máquinas de estados finitas
- Aplicaciones

- 5) Microcontroladores
- Componentes internos
- Programación
- Uso de Periféricos

- 6) Otros temas
- Osciladores
- Multivibradores
- Conversores AD y DA
- Tipos de Memorias

Programación del semestre

Electrónica Digital y Microcontroladores				
01 2024				
SEMANA	FECHA CLASE	CONTENIDOS		
1	miércoles 20 de marzo de 2024	Introducción al curso		
		Sistemas numéricos		
		Lab 1. Uso de osciloscopio. Oscilador 555		
2	miércoles 27 de marzo de 2024	Puertas lógicas		
		Lab 2. Puertas lógicas		
3	miércoles 3 de abril de 2024	Algebra booleana		
		Lab 3. Logica combinacional		
		Sumador		
		Sumador con acarreo		
		Sumador con cascada		
4	miércoles 10 de abril de 2024	Presentación amplicaciones		
		Lab 4. Binario a BCD. D7S		
5	miércoles 17 de abril de 2024	Lógica secuencial		
		Lab. 5 Armado de flipflop		
6	miércoles 24 de abril de 2024	Análisis y diseño secuencial		
		Lab. 6 Diseño secuencial		
7	miércoles 1 de mayo de 2024	Feriado		
8	miércoles 8 de mayo de 2024	Introducción a microcontroladores		
		Lab. 7.Cronómetro simple con D7S		
9	miércoles 15 de mayo de 2024	Semana de receso		
10	miércoles 22 de mayo de 2024	Conversor analogo-digital		
		Lab 8. Medición análoga		
11	miércoles 29 de mayo de 2024	Conversor digital-análoga		
		Lab 9. Generación de funciones		
12	miércoles 5 de junio de 2024	Uso de interrupciones		
13	miércoles 12 de junio de 2024	Lab 10. Cronometro 2		
14	miércoles 19 de junio de 2024	Proyecto final - Presentación de ideas		
15	miércoles 26 de junio de 2024			
16	miércoles 3 de julio de 2024			
17	miércoles 10 de julio de 2024	Presentación Proyecto		

SOFTWARE

Logisim-evolutionLT-SpiceSimulideProteusMultisim

- Folk de <u>Logisim</u> (2014)
- Software libre, multiplataforma.
- Características
 - Fácil diseño de circuitos lógicos.
 - Cronograma
 - Simulación en tiempo real
 - VHDL
 - TCL/TK
 - Elementos como LED, TTLs, switches, etc.

Fig. Diseño de CPU (pc) utilizando Logisim-evolution.

<u>logisim-evolucion - Github</u>

Logisim-evolution

LT-Spice

Simullde

Proteus

Multisim

- Software gratuito, de la empresa AnalogDevice
- Utiliza el lenguaje **Spice**
 - Simulación de circuitos analógicos y digitales.
- Diferentes tipos de estudios:
 - AC, DC,
 - Transiente,
 - Freq, etc.

LT-Spice - Analog Devices

Logisim-evolution LT-Spice Simulide Proteus Multisim

- Gratuito, Software libre, multiplataforma
- Permite simulación de:
 - Sistemas digitales
 - Microcontroladores
 - Arduino
 - PIC

<u>Simulide - official Page</u>

Logisim-evolution LT-Spice Simulide **Proteus** Multisim

- Programa Propietario
- También basado en Spice
- Gran número de elementos digitales para simulación
- Permite diseño de PCB
- Posee una amplia librería para la simulación de Microcontroladores (MCU)

<u>Proteus - official Page</u>

Logisim-evolution LT-Spice Simulide Proteus **Multisim**

- Programa Propietario
 - NI (National Instrument)
- También basado en Spice
- Permite simular circuitos analógicos y digitales
- Permite diseño de PCB

NI – Official Page

Softwares - Microcontroladores

MPLAB

Arduino IDE

Microchip Studio

- Programa propietario, con versión gratuito
- Permite programar y grabar en los microcontroladores PIC y Atmel.
 - Necesita compilador XC8.
- Permite programar en Ensamblador y C (mod)

MPLAB IDE – OfficialPage MPLAB XC8

Softwares - Microcontroladores

MPLAB

Arduino IDE

Microchip Studio

- Programa Opensource de código abierto
- Plataforma de desarrollo para las placas de desarrollo Arduino
 - MCU ATmega328
- Permite programar en C (mod)

<u>Arduino - Official Page</u>

Softwares - Microcontroladores

MPLAB

Arduino IDE

Microchip Studio

- Programa propietario, con versión gratuito.
- Permite programar y grabar en los microcontroladores AVR (Arduino).
- Permite programar en Ensamblador y C (mod).

<u>Microchip Studio – OfficialPage</u>

Evaluaciones

2h - 8:15 a 9:35

2h -09:50 a 11:10

Laboratorios (70%)

- Reportes de Laboratorio
- Presentaciones
- Simulaciones

Proyecto final (30%)

- Informe
- Presentación

El curso no contempla Examen

Plataforma Moodle

Moodle - Uvirtual

Bibliografía

- Horowitz, P. and W. Hill (2015). The Art of Electronics. Cambridge Univ. Press.
- Bignell, J. W., R. L. Donovan, and G. Urbina Medel (1997). Electrónica Digital.
- Mano, M. M. (2003). Diseño Digital. Pearson Educación.
- Mano, M. M. (2017). Digital Logic and Computer Design. Pearson Education India.
- Karris, S. T. (2007). Digital Circuit Analysis and Design with Simulink Modeling and Introduction to CPLDs and FPGAs. Orchard Publications.
- Angulo Usategui, J. M. and I. Angulo Martínez (2003). "Microcontroladores PIC: Diseño Practico de Aplicaciones".
- Schilling, D. L. and C. Belove (1993). "Circuitos Electrónicos: Discretos e Integrados".
- Floyd, T. L. (2006). Fundamentos de Sistemas Digitales. Prentice Hall.
- logisim-evolution (2020). Logisim-Evolution.
- LTspice | Design Center | Analog Devices LTspice | Design Center | Analog Devices.

LAB. 1: OSCILOSCOPIO Y CIRCUITO OSCILADOR