CHAPTER 5: Linear Programming

Maximising or minimising a linear function $b_1x_1 + b_2x_2 + b_3x_3 + \cdots + b_nx_n$ with the b's the coefficients and the x's the variables.

Example 1

Method 1: The geometric solution method

Model Type					
	L	GL	Available hours		
Assembling time	25	50	1100		
Finishing-off time	35	30	1050		
Number of units	х	у			

- Let x be the number of units for model L and y be the number of units for model GL produced per day.
- The profit (in R1000) for model L is 10 and model GL it is 15.
- Select x and y such that the profit is maximised. Profit function: 10x + 15y.

Restrictions:

$$25x + 50y \le 1100$$
$$35x + 30y \le 1050$$
$$x, y \ge 0$$

Note: $x, y \ge 0$ means that both x and y are greater than or equal to 0, i.e. $x \ge 0$ and $y \ge 0$.

Feasible solution area:

For 25x + 50y = 1100 at x = 0 we get $y = \frac{1100}{50} = 22$ and at y = 0 we get $x = \frac{1100}{25} = 44$. Therefore, we have the coordinates: (0, 22) and (44, 0).

For 35x + 30y = 1050 at x = 0 we get $y = \frac{1050}{30} = 35$ and at y = 0 we get $x = \frac{1050}{35} = 30$. Therefore, we have the coordinates: (0, 35) and (30, 0).

Graphical representation:

Objective function: Maximise 10x + 15y

- Set the profit function equal to any constant (10x + 15y = c). Then $y = \frac{c}{15} \frac{10}{15}x$ (see the dotted line on the graph).
- To maximise the profit function, move the function away from the origin.
- Note: If we wanted to minimise the function, we'd move the function nearer to the origin.

Calculate the co-ordinates of point C using Cramer's rule:

$$25x + 50y = 1100$$
$$35x + 30y = 1050$$

Matrix notation:
$$AX = B$$
 with $A = \begin{pmatrix} 25 & 50 \\ 35 & 30 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ and $B = \begin{pmatrix} 1100 \\ 1050 \end{pmatrix}$.

$$|A| = \begin{vmatrix} 25 & 50 \\ 35 & 30 \end{vmatrix} = (25)(30) - (35)(50) = -1000$$

$$x = \frac{\begin{vmatrix} 1100 & 50 \\ 1050 & 30 \end{vmatrix}}{-1000} = 19.5$$
 and $y = \frac{\begin{vmatrix} 25 & 1100 \\ 35 & 1050 \end{vmatrix}}{-1000} = 12.25.$

Hence the profit is maximised at x = 19.5 and y = 12.25.

- Profit: 10x + 15y = 10(19.5) + 15(12.25) = 378.75.
- Assembly time: 25x + 50y = 25(19.5) + 50(12.25) = 1100.
- Finishing-off time: 35x + 30y = 35(19.5) + 30(12.25) = 1050.

Note the assembly and finishing-off time is optimally used.

Method 2: The extreme point method

- The corners of the feasible region are known as the **extreme points**.
- The solution of the linear equations can **always** be found in at least one of the extreme points.
- If two points C and D give both an optimal solution then all the points on \overline{CD} will give the optimal solutions.
- Method
- Determine the corners of the feasible region.
- Calculate the values of the objective function.
- Identify the co-ordinates that give the optimal solution.

Extreme points	Coordinates	Profit function
	(x, y)	10x + 15y
A	(0, 0)	10(0) + 15(0) = 0
В	(0, 22)	10(0) + 15(22) = 330
С	(19.5, 12.25)	10(19.5) + 15(12.25) = 378.75
D	(30, 0)	10(30) + 15(0) = 300

The profit function has a maximum of R378.75 (in 1000) at x = 19.5 and y = 12.25.

Example 2

Method 1: The geometric solution method

Question:

Minimise the cost function: $3x_1 + 5x_2$

Subject to:

$$x_1 + 2x_2 \ge 16$$

$$x_1+x_2\geq 10$$

$$x_1, x_2 \ge 0$$

Answer:

Obtain the region of feasible solutions.

For $x_1 + 2x_2 = 16$ at $x_1 = 0$ we get $x_2 = 8$ and at $x_2 = 0$ we get $x_1 = 16$. Therefore, we have the coordinates: (0, 8) and (16, 0).

For $x_1 + x_2 = 10$ at $x_1 = 0$ we get $x_2 = 10$ and at $x_2 = 0$ we get $x_1 = 10$. Therefore, we have the coordinates: (0, 10) and (10, 0).

Set $3x_1 + 5x_2 = c$ and we find $x_2 = \frac{c}{5} - \frac{3}{5}x_1$.

The objective function will be a minimum at point B.

The coordinates of point B can be found using Cramer's Rule as (4, 6).

Therefore, the minimum cost is 3(4) + 5(6) = 42.

Method 2: The extreme point method

Extreme points	Coordinates	Cost function
	(x_1, x_2)	$3x_1 + 5x_2$
A	(0, 10)	3(0) + 5(10) = 50
В	(4, 6)	3(4) + 5(6) = 42
С	(16, 0)	3(16) + 5(0) = 48

The cost function has a maximum of R42 at $x_1 = 4$ and $x_2 = 6$.

Note on Example 2: To obtain the coordinate (4, 6) it is necessary to solve the following system of linear equations:

$$x_1 + 2x_2 = 16$$

$$x_1 + x_2 = 10$$

Use Cramer's rule to solve this system of linear equations.

Matrix notation:
$$AX = B$$
 with $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $B = \begin{pmatrix} 16 \\ 10 \end{pmatrix}$.

You will find the answers to be $x_1 = 4$ and $x_2 = 6$ (try this on your own using Cramer's rule).

Example 3

Question:

Maximise 5x + 3y subject to

 $x \leq 5$

 $y \le 10$

 $x, y \ge 0$

by using the geometric solution method.

Answer:

Set
$$5x + 3y = c$$
 so that $y = \frac{c}{3} - \frac{5}{3}x$.

Answer = Point C. Therefore, x = 5 and y = 10. The maximum is 5(5) + (3)(10) = 55.

Example 4

A construction company has two teams, namely team A and team B. Each team consists of at least 1 builder. Each builder in team A works 9 hours per day and gets paid R84. Each builder in team B works 12 hours per day and gets paid R60. The budget for daily wages for the company is R840. Suppose that on a given day there are 108 man-hours available. The profit for the construction company on work done by a builder in team A and B is respectively R40 and R70.

Let x denote the number of builders in team A and let y denote the number of builders in team B.

Hint: A question of this format is easier to answer if you construct a table:

Table:

	Team A	Team B	Total
Hours	9	12	108
Pay	84	60	840

Question

The objective function is given by: **Maximise** 40x + 70y

Question

The constraints that lead to the region of feasible solutions are:

$$84x + 60y \le 840$$

 $9x + 12y \le 108$
 $x, y \ge 1$

Question (Note: We can only ask for one constraint at a time)

The time (in hours) constraint for the LP problem is: $9x + 12y \le 108$

Question (Note: We can only ask for one constraint at a time)

The payment (in Rand) constraint for the LP problem is: $84x + 60y \le 840$

Example 5

Find the constraints to the following LP problem:

Answer

The first constraint can easily be obtained from the horizontal line intersecting the *y*-axis at y = 1. The constraint: $0 \le y \le 1$.

For the second constraint we need to find the equation of the straight line intersecting the y-axis at y = 2 and the x-axis at x = 4. We have two coordinates:

 $(x_1, y_1) = (4, 0)$ and $(x_2, y_2) = (0, 2)$. We substitute these coordinates into the equation of a straight line:

$$y = y_2 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_2)$$

$$y = 2 + \frac{2 - 0}{0 - 4}(x - 0)$$

$$y = 2 - \frac{1}{2}x$$

Therefore, the constraints are:

$$0 \le y \le 1$$
$$y + \frac{1}{2}x \le 2$$
$$x \ge 0$$

The Excel for Linear Programming is self-study: See the Assignment Book

Typical exam questions:

Question 1 is based on the following information:

Consider the following LP-problem:

Maximise x + y subject to constraints:

$$x \le 4$$

$$x + y \le 6$$

$$\frac{1}{2}x + y \le 5$$

$$x, y \ge 0$$

Question 1:

The point or line segment that maximises the objection function is:

Answer 1:

For x + y = 6: Set x = 0 and find y = 6. Set y = 0 and find x = 6. Coordinates (0, 6) and (6, 0).

For 0.5x + y = 5: Set x = 0 and find y = 5. Set y = 0 and find x = 10. Coordinates (0, 5) and (10, 0).

Using the objective function (Maximise x + y) we set x + y = c so that y = c - x.

9

Any point on the line segment \overline{CD} will give a maximum.

Question 2 is based on the following information:

Consider the following LP-problem:

Minimise x + y subject to

$$2x + y \ge 4$$

$$\frac{1}{2}x + y \ge 2$$

$$x, y \ge 0$$

The region of feasible solutions is indicated by the shaded area ABC.

Question 2:

The objective function will reach a minimum solution at the point B. The value of the *y* co-ordinate at the point B is:

(A) 4	(B) 0
(C) 2	(D) 0.8
(E) 1.3	

Answer 2:

To obtain the coordinate of point B it is necessary to solve the following system of linear equations:

$$2x + y = 4$$
$$\frac{1}{2}x + y = 2$$

Use Cramer's rule to solve this system of linear equations.

Matrix notation:
$$AX = B$$
 with $A = \begin{pmatrix} 2 & 1 \\ 0.5 & 1 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ and $B = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.

You will find the answers to be $x = 1.\dot{3}$ and $y = 1.\dot{3}$ (try this on your own using Cramer's rule). Answer = E

10