

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 3: Condutores Elétricos -Dimensionamento e Instalação - Aula 05

Instalações Elétricas I Engenharia Elétrica

- Condutor Elétrico: é todo material que possui a propriedade de conduzir ou transportar energia elétrica, ou ainda, transmitir sinais elétricos.
- Devem ser analisados sobre os seguintes aspectos:
 - Material utilizado como condutor;
 - Forma geométrica;
 - Isolação e isolamento;
 - Seção Nominal.
- Material:
 - Alta resistividade
 - Transformação de energia elétrica em térmica. Exemplo: Chuveiro, ferros elétricos;
 - Transformação de energia elétrica em luminosa. Exemplo: Filamento de tungstênio;

Material:

- Alta condutividade
 - Destinam-se a aplicações em que a corrente elétrica deve circular com as menores perdas possíveis;
 - Os materiais mais utilizados como condutores nas instalações elétricas são: Cobre e Alumínio.
- Comparação entre cobre e alumínio
 - Considerando duas seções de ambos os materiais, com mesma resistência e comprimento:

$$R_{cu} = \rho_{cu} \frac{\ell}{S_{cu}} = R_{al} = \rho_{ai} \frac{\ell}{S_{al}}$$
$$\rho_{cu}.S_{al} = \rho_{al}.S_{cu}$$

$$\frac{S_{al}}{S_{cu}} = \frac{\rho_{al}}{\rho_{cu}} = \frac{0,0290}{0,0175} = 1,65$$

$$\frac{\frac{\phi_{al}}{\phi_{cu}}}{\frac{M_{cu}}{M_{al}}} = \frac{3,32}{1,65} \cong 2$$

Para o transporte de uma mesma corrente, o condutor de alumínio deve ter um diâmetro 28% maior que o de cobre, porém com metade da massa.

- Quanto a forma geométrica, os condutores elétricos podem ser classificados como:
 - Fio (Redondo Sólido): Formado por um único fio de metal sólido, sendo sua construção limitada até seções de 16 mm²;
 - Cabo: É um condutor constituído por vários fios encordoados, isolados uns dos outros ou não. Para seções de até 10 mm² é denominado condutor flexível.
 - Os cabos podem ser:
 - Unipolares: quando constituídos por um condutor de fios trançados com cobertura protetora;
 - Multipolares: quando constituídos de dois ou mais condutores isolados protegidos por uma camada protetora de cobertura comum.

Exemplos de Condutores Elétricos

- Observações importantes segundo a NBR5410/2004:
 - Nas Instalações Elétricas Residenciais: somente podem ser empregados condutores de cobre, exceto condutores de aterramento elétrico e proteção elétrica;
 - Nas Instalações Elétricas Comerciais: é permitido o uso de condutores de alumínio, desde que a seção seja maior ou igual a 50mm².
 - Nas Instalações Elétricas Industriais: é permitido o uso de condutores de alumínio, desde que sejam atendidas as seguintes condições:
 - a seção seja maior ou igual a 16mm²;
 - a carga instalada seja maior ou igual a 50kW;
 - instalações com manutenção qualificada.

Isolação:

- Trata-se de um conjunto de materiais isolantes aplicados sobre o condutor, cuja finalidade é isolá-lo eletricamente do meio ambiente que o circunda. Além disso, protege o condutor contra ações mecânicas.
- Os materiais utilizados como isolação devem possuir elevada resistividade e alta rigidez dielétrica.

Isolantes Sólidos	Termoplásticos	Cloreto de Polivinila (PVC)Polietileno (PE ou PET)PolipropilenoPolivinil Antiflam		
(Extrudados)	Termofixos (Vulcanizados)	 Polietileno reticulado (XLPE) Borracha etileno Propileno (EPR) Borracha de Silicone 		
Estratificados	- Papel impregnado com massa - Papel impregnado com óleo fluido sob pressão			
Outros Materiais	- Fibra de vidro - Verniz			

Isolantes termoplásticos amolecem com o aumento de temperatura, enquanto os termofixos não.

- Não se deve confundir isolação com isolamento!
 - Isolação define o aspecto qualitativo, como por exemplo isolação de PVC, polivinil antiflam, etc.
 - Isolamento se refere ao aspecto quantitativo, ou seja, condutor com tensão de isolamento para 750 V, resistência de isolamento $12M\Omega$.
- A isolação dos condutores é sempre para uma determinada "classe de isolamento", relacionada a espessura da isolação e características da instalação.

• Características quanto a variação de temperatura dos diversos materiais usados na isolação de condutores.

Tipo de Material	Temperatura de operação em regime contínuo (°C)	Temperatura de sobrecarga (°C)	Temperatura de curto-circuito (°C)
Policloreto de Vinila (PVC) até 300 mm²	70	100	160
Policloreto de Vinila (PVC) maior que 300 mm²	70	100	140
Borracha - etileno - propileno (EPR)	90	130	250
Polietileno reticulado (XLPE)	90	130	250

- A temperatura máxima para serviço contínuo é a máxima temperatura admitida para operação normal.
- A temperatura limite de sobrecarga não deve atingir 100 horas durante 12 meses consecutivos, nem 500 horas durante a vida do cabo.
- A temperatura limite de curto-circuito é a temperatura máxima que a isolação pode atingir durante um curto-circuito que não ultrapasse 5 segundos.

• As seções nominais de fios e cabos são dados em milímetros quadrado (mm²), de acordo com uma série definida pela IEC, aceita internacionalmente.

Seções métricas IEC (seções nominais em mm²).

0,5	16	185
0,75	25	240
1	35	300
1,5	50	400
2,5	70	500
4	95	630
6	120	800
10	150	1000

3.2- Seções Mínimas dos Condutores Elétricos

- A NBR 5410:2004 estabelece os seguintes critérios com relação as seções mínimas para os condutores:
 - Fase;
 - Neutro;
 - Condutor de proteção (PE).
- A seguir serão apresentadas as seções mínimas de cada condutor.
- Tais seções referem-se aos condutores dos circuitos terminais.

3.2.1- Seção Mínima dos Condutores Fase

• A seção dos condutores fase, em circuitos CA, e dos condutores vivos, em circuitos CC, não devem ser inferiores a:

Tipo d	le linha	Utilização do circuito	Seção mínima do condutor mm² - material
Condutores e cabos isolados Instalações fixas em geral Condutores nus	Circuitos de iluminação	1,5 Cu 16 Al	
	Circuitos de força ²⁾	2,5 Cu 16 Al	
		Circuitos de sinalização e circuitos de controle	0,5 Cu ³⁾
	Condutores nue	Circuitos de força	10Cu 16 Al
	Condutores nus	Circuitos de sinalização e circuitos de controle	4 Cu

Seções mínimas ditadas por razões mecânicas

Os circuitos de tomadas de corrente são considerados circuitos de força.

Em circuitos de sinalização e controle destinados a equipamentos eletrônicos é admitida uma seção mínima de 0,1 mm².

3.2.2- Seção do Condutor Neutro

- O condutor neutro, em um sistema elétrico de BT (Baixa Tensão) tem por finalidade o equilíbrio e a proteção do sistema elétrico.
- A NBR 5410/2004 define que:
 - O condutor neutro não pode ser comum a mais de um circuito e deve ter a mesma seção do condutor fase (circuito monofásico);
 - Em circuitos trifásicos com neutro, caso os condutores fase sejam superiores a 25 mm², a seção do condutor neutro pode ser inferior à dos condutores de fase, quando observada as seguintes condições:
 - O circuito for presumidamente equilibrado em serviço normal;
 - A corrente das fases não deve ter uma taxa de terceira harmônica e múltiplos superior a 15%;
 - O condutor neutro for protegido contra sobrecorrentes.

Seção do Condutor Neutro

• Respeitando os três critérios citados anteriormente, a seção do condutor neutro em um circuito trifásico pode ser dimensionado da seguinte forma:

Seção dos condutores de fase mm²	Seção reduzida do condutor neutro mm ²
S ≤ 25	s
35	25
50	25
70	35
95	50
120	70
150	70
185	95
240	120
300	150
400	185

3.2.3- Seção do Condutor de Proteção

• O condutor de proteção deve ser dimensionado a partir da seguinte tabela:

Seção dos condutores fase (mm²)	Seção mínima do condutor PE (mm²)			
1,5 a 25	a mesma seção do condutor fase			
25	16			
35	16			
50	25			
70	35			
95	50			
120	70			
150	95			
185	95			
240	120			
300	150			

Um condutor de proteção pode ser comum a vários circuitos

3.2.4- Identificação dos Condutores

- A NBR 5410/2004 define que as linhas elétricas devem ser dispostas ou marcadas de modo a permitir a sua identificação quando da realização de verificações, ensaios, reparos na instalação.
 - Condutor neutro: Deve ser identificado pela cor azul-claro;
 - Condutor de proteção (PE): Deve ser identificado com dupla coloração, verde-amarelo ou a cor verde;
 - Condutor com a função PEN: Deve ser identificado com a cor azul-claro, com anilhas verde-amarelo nos pontos visíveis e acessíveis;
 - Condutor Fase e Retorno: Pode ser identificado com qualquer cor, observadas as restrições das cores dos condutores neutro, PE e PEN.

3.3- Dimensionamento de Condutores Elétricos

- É um procedimento para definir a seção mais adequada que seja capaz de permitir a corrente elétrica, sem aquecimento excessivo e que a queda de tensão seja mantida dentro dos valores normalizados.
- A seção dos condutores deve ser determinada de forma que sejam atendidos, no mínimo, todos os seguintes critérios:
 - A capacidade de condução de corrente dos condutores deve ser igual ou superior a corrente de projeto do circuito;
 - Proteção de sobrecarga, curto-circuito e solicitação térmica;
 - Proteção contra choques elétricos por seccionamento automático da alimentação em esquemas TN, TT e IT;
 - Os limites de queda de tensão;
 - As seções mínimas indicadas.

3.3- Dimensionamento de Condutores Elétricos

- Neste capítulo os condutores elétricos serão dimensionados pelos seguintes critérios:
 - Seção Mínima (NBR 5410/2004, só para circuitos terminais);
 - Capacidade de Condução de Corrente (Ampacidade);
 - Queda de Tensão (Método da queda de tensão unitária).
- Na etapa de dimensionamento dos dispositivos de proteção (Unidade 4), será verificada a capacidade dos condutores com relação a sobrecarga e curto-circuito.
- A proteção contra choque elétrico, por seccionamento automático, será analisada na Unidade 7.

3.3.1- Critério da Capacidade de Condução de Corrente

- Um condutor ao ser submetido a uma tensão, faz surgir em suas extremidades uma corrente elétrica. Essa corrente, ao passar pelo condutor, produz uma determinada quantidade de calor, que segundo a Lei de Joule (P=Ri²) tende a elevar a temperatura do condutor.
- A dissipação térmica do calor produzido pelo condutor depende da natureza dos materiais constituintes e do meio (maneira de instalar o condutor).
- Deve ser tomado cuidado para evitar que o calor eleve a temperatura a níveis que possam danificar a isolação e outras partes próximas.
- Os condutores com isolação de PVC são os mais comuns em instalações elétricas prediais.

Maneira de Instalar- Seleção e Instalação de Linhas Elétricas

- Em uma instalação elétrica é necessário definir a maneira como os condutores elétricos serão instalados, como exemplo:
 - Eletrodutos embutidos ou aparentes;
 - Canaletas, bandejas e eletrocalhas;
 - Leito;
 - Diretamente enterrados ou ao ar livre;
 - Outras formas.
- A maneira de instalar exerce certa influência no que se refere a capacidade de troca térmica entre os condutores e o ambiente, e em consequência, na sua capacidade de corrente elétrica.
- Dessa forma a NBR 5410/2004 prevê inúmeras possibilidades (mais de 75) para a instalação de condutores elétricos. A seguir serão ilustradas algumas formas de instalação.

Maneira de Instalar- Seleção e Instalação de Linhas Elétricas

Eletroduto flexível

Eletroduto de PVC rígido

Canaleta

Eletrocalha

Leito

Maneira de Instalar- Seleção e Instalação de Linhas Elétricas

Método de instalação número	Esquema ilustrativo	Descrição	Método de referência ¹⁾
1	Face interna	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em parede termicamente isolante ²⁾	A1
7		Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria	B1
12		Cabos unipolares ou cabo multipolar em bandeja não-perfurada, perfilado ou prateleira ³⁾	С
16		Cabos unipolares ou cabo multipolar em leito	E (multipolar) F (unipolares)
61A		Cabos unipolares em eletroduto(de seção não-circular ou não) ou em canaleta não-ventilada enterrado(a) ⁸⁾	D

Para outros métodos de referência de instalação, definidos pela NBR 5410, consultar o livro texto.

Corrente Nominal ou Corrente de Projeto (I_p)

- É a corrente que os condutores de um circuito de distribuição ou circuito terminal devem suportar, levando-se em consideração as suas características nominais
- Revisão de Circuitos Elétricos:

Circuitos Monofásicos F + N	Resistivos (Lâmpadas incandescentes e resistências)	$I_{p} = \frac{P_{n}}{v}$	ou $I_p = \frac{P_n}{V}$
F+F	Indutivos (Reatores e motores)	$I_{p} = \frac{P_{n}}{v \cdot \cos \phi \cdot \eta}$	$I_{p} = \frac{P_{n}}{V \cdot \cos \phi \cdot \eta}$

- I_p Corrente de projeto do circuito, em ampères, (A)
- P_n Potência elétrica nominal do circuito, em watts (W)
- v Tensão elétrica entre fase e neutro (127V)
- V Tensão elétrica entre fases (220V)
- n Rendimento
- cos φ Fator de potência

Número de Condutores Carregados

- Entende-se por condutor carregado aquele que efetivamente é percorrido pela corrente elétrica no funcionamento normal do circuito.
- O número de condutores carregados a ser considerado é indicado na Tabela a seguir.

Esquema de Condutores Vivos do Circuito	ivos do Circuito Carregados a ser Adotado			
Monofásico a dois condutores	2	Circuitos de distribuição (Iluminação, tomadas, etc.)		
Monofásico a três condutores	2	Circuitos alimentadores de transformadores monofásicos com tap (derivação) central no secundário		
Duas fases sem neutro 2		Circuitos de distribuição de aparelhos de ar condicionados, chuveiros elétricos, ligados entre F-F=220V		
Duas fases com neutro	3	Alimentadores gerais de quadros bifásicos		
Trifásico sem neutro	3	Circuitos de distribuição para banco de capacitores, motores trifásicos, etc.		
Trifásico com neutro	3 ou 4 ⁽¹⁾	Alimentadores gerais de quadros trifásicos		

Definindo a Seção do Condutor

- Sendo conhecido os seguintes itens anteriores:
 - Tipo de isolação;
 - Maneira de instalar o circuito;
 - Corrente de projeto (I_p);
 - Numero de condutores carregados.
- Consultar as Tabelas 36 a 39 da NBR 5410/2004 (ou o livro texto Instalações Elétricas Prediais Geraldo Cavalin).
- Na coluna correspondente com os dados obtidos anteriormente, encontraremos a seção do condutor, que deve ser aquela que, por excesso, atenda ao valor de corrente, em função das características de instalação do circuito.

Dimensionamento de Condutores: Capacidade de Condução de Corrente

- •Condutores de cobre com Isolação em PVC, Temperatura no condutor de 70°C.
- •Temperaturas de referência do ambiente: 30°C (ar), 20°C (solo)

								Evomo	lo:					
	Seções					dos de re		Exemp	NO.					
	nominais	A	1	/ A	2		31	 Circuito Fase-Neutro -PE(127V), 			27V), ∦			
	mm ²	2	3	2	3	Número 2	ae conau		. Candi	utom do .	b # -	•		
) 3			2	5		• Condu	itor de (cobre			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		 Isolaç 	ão de P	VC			
			()	. ,	(-)		obre		T		l- ! 4	- 000 0		
	0,5	7	7	7	7	9	8		• rempe	eratura	ambient	e 30 C	'	
	0,75	9	9	9	9	11	10		• Condu	utor isol	ado em	seção		
	1	1	10	11	10	14	12				do em p	-		
	1,5	14,5	13,5	14	13	17,5	15,5				isolante			
	2,5	19,5	18	18,5	17,5	24	21	•S=2000VA, I _p =15,75 A						
ī	4	26	24	25	23	32	28							
I _c	6	34	31	32	29	41	36		98					
Ū	10	ogo, o c	ondutor	noro o		39 57 50 5 Método de		52	46	63	57	63	52	
		rcuito er		•								Método de		
		eção de				talação imero	Esquema	Esquema ilustrativo Descrição			referência ¹⁾			
		-		•	9	anioro .								
	70	itério da	Ampac	nuaue.	13			\triangleleft	Conduto	res isolado	s ou cabos	unipolare	es em	
	95	182	164	167	15	1	$ \mathcal{A} $	Face	eletrodut	o de seção	circular e	mbutido e		A1
	120	210	188	192	17			interna	parede te	ermicamer	nte isolante	(2)		
	150	240	216	219	190	309	2/5	200	230	344	299	2/8	230	
	185	273	245	248	223	353	314	300	268	392	341	312	258	
	240	321	286	291	261	415	370	351	313	461	403	361	297	
	300	367	328	334	298	477	426	401	358	530	464	408	336	

Fatores de Correção para Dimensionamento de Condutores

• As tabelas para definição da seção dos condutores referem-se apenas a determinadas situações, o que faz com que ajustes precisem ser feitos em função de determinadas condições de instalação.

- São dividas em três grupos:
 - Fator de Correção de Temperatura (FCT): Se a temperatura ambiente, ou do solo, for diferente da qual as tabelas foram estabelecidas (solo 20°C e ambiente 30°C), aplica-se este fator, sendo FCT <1 se a temperatura for maior e FCT >1 se menor;
 - Fator de Correção da Resistividade Térmica do Solo (FCR): Os valores de capacidade de corrente somente são válidos para linhas subterrâneas (20°C), com uma resistividade térmica do solo de 2,5K.m/W. Para diferentes tipos de solos deve-se aplicar um fator FCR;
 - Fator de Correção de Agrupamento (FCA): Aplicável quando existem mais de 3 condutores carregados, aplicados aos métodos de referência de instalação definidos pela NBR 5410.

Fatores de Correção para Dimensionamento de Condutores

• Deste modo:

$$I_Z \ge I_P \tag{1}$$

$$I_Z = I_C \times FCT \times FCR \times FCA \tag{2}$$

Substituindo (2) em (1):

$$I_C \ge \frac{I_P}{FCT \times FCR \times FCA}$$

- I_Z Capacidade de condução de corrente dos condutores corrigida, aplicando-se os fatores de correção.
- I_C- Capacidade de condução de corrente dos condutores, conforme Tabela da NBR 5410/2004.
- FCT Fator de Correção de Temperatura.
- FCR Fator de Correção de Resistência Térmica do solo.
- FCA Fator de Correção de Agrupamento.

Fator de Correção de Temperatura (FCT)

T		Isola	ação	
Temperatura °C	PVC	EPR ou XLPE	PVC	EPR ou XLPE
		Ambiente		do Solo
10	1,22	1,15	1,10	1,07
15	1,17	1,12	1,05	1,04
20	1,12	1,08	1	-
25	1,06	1,04	0,95	0,96
30	-	-	0,89	0,93
35	0,94	0,96	0,84	0,89
40	0,87	0,91	0,77	0,85
45	0,79	0,87	0,71	0,80
50	0,71	0,82	0,63	0,76
55	0,61	0,76	0,55	0,71
60	0,50	0,71	0,45	0,65
65	-	0,65	-	0,60
70	-	0,58	-	0,53
75	-	0,50	-	0,46
80	-	0,41	-	0,38

Fatores de Correção

Resistividade Térmica do Solo (FCR)

Resistividade térmica Km/W	1	1,5	2	3
Fator de Correção	1,18	1,1	1,05	0,96
Tipo de solo	Alagado	Muito úmido	Úmido	Seco

Fator de Correção de Agrupamento (FCA)

Ref.	Forma de agrupamento dos condutores	Número de circuitos ou de cabos multipolares												Tabelas dos
		1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥20	métodos de referência
1	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	36 a 39 (métodos A a F)
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70				36 e 37 (método C)
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61				
4	Camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72				38 e 39
5	Camada única sobre leito, suporte etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78		0,78			(métodos E e F)