To run this code, the users first have to install "Eigen" which is a C++ package. For Ubuntu users it can be easily done by running the following command: sudo apt-get install libeigen3-dev

Add the include path of Eigen. You can do this by running the following command: sudo In -s /usr/include/eigen3/Eigen /usr/local/include/Eigen or

sudo mv /usr/include/eigen3/Eigen /usr/local/include/Eigen

To speed up the code, we use "openmp" for parallel computing. You need to run the following command to generate the executable file.

g++ -fopenmp COX_L21_main_strong.cpp -o name_executable

Now you are ready to run the experiment, this algorithm has 13 arguments:

- file name of the training dataset in source domain.
- file name of the training dataset in target domain.
- file name of the testing dataset in target domain.
- number of instances of the training dataset in source domain.
- number of instances of the training dataset in target domain.
- number of instances of the testing dataset in target domain.
- number of features
- maximum iteration
- weight of target dataset
- multiplier of L2 norm
- number of \lambda you want to search
- m: the smallest searching \lambda 's multiplier ($\lambda_{min} = m \times \lambda_{max}$)

Note: The training and testing files are both in ".csv" format. Where each instance is represented as a row in file and the last two columns are survival times and censored indicators, respectively. Please refer to "Source_train.csv" to check the format.

You can run the command code as a toy example:

./name_executable Source_train.csv Target_train.csv Target_test.csv 76 76 39 552 100 2 0 0.0001 100 0.05

And the prediction results are stored in "Source_train.csv_record_new.txt" is generated by running the above command code. In "Source_train.csv_record_new.txt", each column corresponds to a \lambda, and each column has 56 elements:

Row.1	lambda
Row.2	The value of objective function
Row.3	The value of the smooth part of the objective function
Row.4	Number of features left after run the strong rule
Row.5	C-index

Row.6	Number of non-zero coefficients
Row.7—56	The index of top 50 selected features