

Image Processing with MATLAB®

Claire Chuang

Application Engineer

Why should you use MATLAB for image processing?

Since...

Image data is formed by matrix

which is specific suitable for MATLAB doing vector/matrix arithmetic operation

Great environment for developing algorithm to work interactively with your image/video data

- Workspace
- Visualization
- GUI Tool (APP)

Easy Way of Programming

- Abundant functions with verified and trusted algorithms
- Fewer low-level details required to manage than C/C++
- Without compilation step for debugging

Workflow: Image and Video Processing

- Multiple file formats
- Large data sets

- Custom visualizations
- Create and modify algorithms
- Labor intensive, repetitive analyses

Share results

Outlines

- **Images in MATLAB**
- **Image Enhancement**
- **Edge and Line Detection**
- **Segmentation & Feature Extraction**

Images in MATLAB

Supported Image Files

- >> docsearch('Supported File Formats')
- >> edit Image in matlab.m

Basic Knowledge of Image

• Resolution (dpi)

Image is Formed by Matrix

Basic Knowledge of Image

Grayscale(Intensity) Images

Reference:

http://www.mathworks.com/matlabcentral/fileexchange/28111-gray2rgb http://stackoverflow.com/questions/2619668/how-to-convert-a-grayscale-matrix-to-an-rgb-matrix-in-matlab http://www.mathworks.com/matlabcentral/fileexchange/8214-gray-image-to-color-image-conversion

Indexed Images

>>edit im_indexed

The Advantages of Indexed Images

Importing Indexed Images

```
>> imfinfo('cell indexed1.png')
                 Extra output variable needed
>> [I2, map2] = imread('cell indexed1.png');
>> imshow(12, map2)
```


Exploring Images Using Image Tool

>> imtool('canoe.tif')

Images Type Summary

Binary	Matrix of 0s and 1s	$ \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} $
Grayscale	Matrix of integers or floating-point numbers	21 0 55 44 92 126 80 200 153
Indexed	Matrix of numbers with integer values that point to a colormap entry	$\begin{bmatrix} 1 & 4 & 5 \\ 4 & 2 & 2 \\ 4 & 2 & 3 \end{bmatrix} \xrightarrow{\begin{array}{c} R & G \\ 0.01 & 0.251 & 0.455 \\ 0.026 & 0.004 & 0.651 \\ 0.22 & 0.31 & 0.54 \\ 0.25 & 0.53 & 0.55 \\ 0.217 & 0.334 & 0.591 \\ 0.673 & 0.238 & 0.951 \\ \end{bmatrix}$
Truecolor	3-D array of numbers of size <i>m</i> -by- <i>n</i> -by-3	B [10 85 46] G [35 2 5] R [21 0 55] 44 92 126] 80 200 153]

Exporting Images

Test Your Knowledge

- 1. Which function provides information about the type of an image (truecolor, indexed, grayscale, etc.)?
- 2. (Select all that apply) Which of the following syntaxes can be used to import an image foo.tif?
- A. I = imread('foo.tif');
- B. [I,map] = imread('foo.tif');
- C. I = import('foo.tif');
- D. None of the above

Image Enhancement

Image Enhancement

Adjusting Image Contrast

- One of the most basic ways to enhance an image is to change its brightness and its contrast. This can be done by
 - Stretching the color distribution
 - Equalizing the distribution of colors to use the full range (histeq)
 - Adaptive Histogram Equalization (adapthisteq)
 - Adjusting the scaling of the colors (imadjust)

Histogram Equalization

Histogram Adjustment

- >> cd <PATH TO Example Folder>/2 Enhancement
- >> edit ContrastAdjustment.m

Exercise: Intensity Adjustment

- Can you see what the image is of? Enhance the picture by adjusting the image intensity.
 - Load the image darkimage.jpg.
 - Convert the image to an intensity image (grayscale).
 - 3. Determine the range for the intensity adjustment.
 - Adjust the image intensity. 4.

Solution: Intensity Adjustment

```
%% Load and convert image
jpg = imread('darkimage.jpg');
I = rgb2gray(jpg);
imshow(I)
%% Compute mean and std
mu = mean2(I)
sigma = std2(I)
low in = (mu-sigma)/255;
if low in < 0, low in = 0; end
high in = (mu+sigma)/255;
if high in > 1, high in = 1; end
%% Adjust image
J = imadjust(I, ...
   [low in high in], [0 1]);
figure, imshow(J)
```


Remnant of a stain glass in Budapest, Hungary.

>> image intensity

Filtering Applications

Many filtering techniques can be used to solve problems with or enhance images

- Common filtering image tasks:
 - Removing or reducing noise from images
 - Smoothing images
 - Sharpening images
 - Detecting edges

Linear Filtering

>> edit FilterTechniques.m

Computing Linear Filter Output

$$1 \times 8 + 8 \times 1 + 15 \times 6 + 7 \times 3 + 14 \times 5 + 16 \times 7 + 19 \times 4 + 20 \times 9 + 22 \times 2 = 609$$

Filter kernel

$$\begin{bmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{bmatrix}$$

17	24	1* ⁸	8* ¹	15* ⁶
23	5	7* ³	14*5	16* ⁷
4	6	19* ⁴	20*9	22* ²
10	12	19	21	3
11	18	25	2	9

Example: Noise and Removing Noise

>> avg_filt

Nonlinear Filtering

Assign median value: 1,7,8,14,15,16,19,20,22

17	24	1	8/	15
23	5	7	14	16
4	6	19	20	22
10	12	19	21	3
11	18	25	2	9

Example: Median Filter

Edge and Line Detection

Course Example: Identifying Dead Worms

Original Image

Edge Detection

- Edges are often associated with the boundaries of objects in a scene.
- Applicable Method: Sobel, Prewitt, LoG, Canny, ...

>> BW = edge(I, 'sobel');

>> cd <PATH_TO_Example_Folder>/3_EdgeLine

>> edit edgeworm.m

Edge Detection with the Sobel Method

Edge Detection on Binary Images

Tracing Object Boundaries

Image Skeletonization

>> wormSkel = bwmorph(worms,'skel',Inf);

Extracting Line Segments Using Hough Transform

Classifying Worms Images

These worms are dead

median length = 69.34

These worms are alive

median length = 46.57

median length > 58 📄 dead

>> edit judgeworms.m

Segmentation & Feature Extraction

Segmentation

- Divide image into objects and background
- Thresholding method

Transform methods

Color-based method

• Texture methods

Image Thresholding

>> edit Otsu_segmentation

Using the Image Segmenter App

Color-Based Segmentation

- Various approaches for performing color-based segmentation use different techniques such as:
 - K-means clustering
 - Neural networks
 - Taking Euclidean distances between colors

>>color_segment

Image Segmentation Using the Color Thesholder App

Morphology and Segmentation

- Morphological techniques can help to identify and segment objects in images
 - Morphology technique used for processing image based on shapes.
 - Segmentation the process used for identifying objects in an image.

Example Problem: Morphology

 We are assigned to locate all the rectangular chips on a black and white integrated circuit image, but how?

>> circuit_morph

Image Region Analyzer APP

- App for analyzing the properties of each foreground object
- Only consider measurable properties, such as Area, Axis length, etc.

Watershed Segmentation

- Used to segment images with touching objects.
- Image is considered as topological surface.

Local minima correspond to catchment basins (objects).

>>watershed_marker

Exercise: How Many Dimes?

 Count the number of dimes in the coins.png image by using the preprocessed binary image (bw_coins.png).

Solution: How Many Dimes?

- Label the connected components of the image bwlabel or bwconncomp
- Find the area and centroid of the of the coins regionprops
- Use the area information to count the dimes

