

Course > Unit 4: ... > Proble... > 4. Joint ...

4. Joint PMF

Problem Set due Feb 28, 2020 05:29 IST Completed

Problem 4. Joint PMF

5/5 points (graded)

The joint PMF, $p_{X,Y}\left(x,y\right)$, of the random variables X and Y is given by the following table:

y = 1	4c	0	2c	8c
y = 0	3c	2c	0	2c
y = -1	2c	0	c	4c
	x=-2	x = -1	x = 0	x = 1

1. Find the value of the constant c.

2. Find $p_X(1)$.

$$p_{X}\left(1
ight)= \boxed{ 1/2 }$$
 $ightharpoonup Answer: 0.5$

3. Consider the random variable $Z=X^2Y^3$. Find ${f E}\,[Z\mid Y=-1]$.

$$\mathbf{E}\left[Z\mid Y=-1
ight]= oxed{ ext{-12/7}}$$
 Answer: -1.71429

4. Conditioned on the event that Y
eq 0, are X and Y independent?

5. Find the conditional variance of Y given that X=0.

$$\mathsf{Var}(Y\mid X=0)= \boxed{\hspace{0.2cm} \mathsf{8/9} \hspace{0.2cm}}$$
 \checkmark Answer: 0.88889

Solution:

1. We find c by using the fact that the probability of the entire sample space must equal 1.

$$egin{array}{lll} 1 &=& \sum_{x=-2}^{1} \sum_{y=-1}^{1} p_{X,Y} \left(x,y
ight) \ &=& 2c + 3c + 4c + 2c + c + 2c + 4c + 2c + 8c \ &=& 28c. \end{array}$$

Therefore, $c = \frac{1}{28}$.

$$^{2.}p_{X}\left(1
ight) =\sum_{y=-1}^{1}p_{X,Y}\left(1,y
ight) =4c+2c+8c=14c=rac{1}{2}.$$

3.

$$\begin{split} \mathbf{E} \left[Z \mid Y = -1 \right] &= \mathbf{E} \left[X^2 Y^3 \mid Y = -1 \right] \\ &= \mathbf{E} \left[X^2 (-1)^3 \mid Y = -1 \right] \\ &= -\mathbf{E} \left[X^2 \mid Y = -1 \right] \end{split}$$

In order to calculate this conditional expectation, we need the conditional PMF of X given Y=-1:

$$p_{X|Y}\left(x\mid -1
ight) = rac{p_{X,Y}\left(x, -1
ight)}{p_{Y}\left(-1
ight)} \; = \; egin{dcases} rac{2c}{7c} = rac{2}{7}, & ext{ if } x = -2, \ rac{c}{7c} = rac{1}{7}, & ext{ if } x = 0, \ rac{4c}{7c} = rac{4}{7}, & ext{ if } x = 1, \ 0, & ext{ otherwise.} \end{cases}$$

Therefore,

$$egin{align} \mathbf{E}\left[Z\mid Y=-1
ight] &=& -\sum_{x=-2}^{1} x^2 p_{X\mid Y}\left(x\mid -1
ight) \ &=& -\left((-2)^2\cdotrac{2}{7}+1^2\cdotrac{4}{7}
ight) \ &=& -rac{12}{7}. \end{split}$$

4. Yes. Given $Y \neq 0$, the conditional distribution of Y given X = x is the same for all $x \in \{-2, -1, 0, 1\}$:

$$\mathbf{P}\left(Y=y\mid X=x,Y
eq0
ight)=\mathbf{P}\left(Y=y\mid Y
eq0
ight)$$
 , for all $x\in\{-2,-1,0,1\}$

For example,

$$\mathbf{P}(Y = 1 \mid X = -2, Y \neq 0) = \mathbf{P}(Y = 1 \mid X = 0, Y \neq 0)$$

$$= \mathbf{P}(Y = 1 \mid X = 1, Y \neq 0)$$

$$= \mathbf{P}(Y = 1 \mid Y \neq 0) = \frac{2}{3}.$$

5. We first find the conditional PMF of Y given X=0:

$$p_{Y\mid X}\left(y\mid 0
ight)=rac{p_{X,Y}\left(0,y
ight)}{p_{X}\left(0
ight)}=egin{cases} rac{c}{c+2c}=rac{1}{3}, & ext{if } y=-1,\ rac{2c}{c+2c}=rac{2}{3}, & ext{if } y=1,\ 0, & ext{otherwise}. \end{cases}$$

We can then calculate the conditional expectation:

$$\mathbf{E}\left[Y\mid X=0
ight] = \sum_{y=-1}^{1} y p_{Y\mid X}\left(y\mid 0
ight) = (-1)\cdotrac{1}{3} + (1)\cdotrac{2}{3} = rac{1}{3}.$$

Finally, the conditional variance can be calculated as

$$\begin{aligned} \mathsf{Var} \left(Y \mid X = 0 \right) &= \mathbf{E} \left[\left(Y - \mathbf{E} \left[Y \mid X = 0 \right] \right)^2 \mid X = 0 \right] \\ &= \mathbf{E} \left[\left(Y - \frac{1}{3} \right)^2 \mid X = 0 \right] \\ &= \sum_{y = -1}^{1} \left(y - \frac{1}{3} \right)^2 p_{Y \mid X} \left(y \mid 0 \right) \\ &= \left(-1 - \frac{1}{3} \right)^2 \cdot \left(\frac{1}{3} \right) + \left(1 - \frac{1}{3} \right)^2 \cdot \left(\frac{2}{3} \right) \\ &= \frac{8}{9}. \end{aligned}$$

Submit

You have used 5 of 5 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 4: Discrete random variables:Problem Set 4 / 4. Joint PMF

Sh	ow all posts	tivity 🗸
?	point4, contradictory intuition with independence of X and Y	6
?	<u>Is the grader for point 4 incorrect?</u> conditioning on Y not equals 0, if X and Y are independent. Under the conditioning, what about x=-1? I can't say much	11
?	Q4 independence answer seems wrong. If I understand correctly, test of independence for two variables X and Y should be as following PDF of X should be sam	3
∀	#5: weights/probs of values Hi, I am getting confused about calculating the conditional variance given that X=0. I find myself trying to make the p_yi	4
?	Q3: computation My understanding is that E[Z] is -1 * E[X^2]. Where am I going wrong?	<u>_</u> 6
?	Question 4 My approach for q4 is to check whether $p(x,y/y!=0) = p(x/y!=0) * p(y/y!=0)$, if the equality holds, then it is independent, oth	4

© All Rights Reserved

