```
pip install pandas
```

Requirement already satisfied: pandas in /usr/local/lib/python3.12/dist-packa Requirement already satisfied: numpy>=1.26.0 in /usr/local/lib/python3.12/dis Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/pytho Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.12/dist Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.12/di Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-pac

import pandas as pd

```
data = {
    "Employee_ID": [101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113
    "Name": ["Amit", "Sneha", "Ravi", "Priya", "Arjun", "Neha", "Karan", "Isha", "V
    "Department": ["HR", "Finance", "IT", "IT", "Sales", "HR", "Finance", "IT", "Sa
    "Experience_Years": [2, 5, 3, 8, 4, 1, 6, 7, 5, 4, 2, 9, 10, 3, 1],
    "Salary": [35000, 55000, 48000, 80000, 60000, 32000, 70000, 75000, 65000, 58000]
}
```

df=pd.DataFrame(data)
df

	Employee_ID	Name	Department	Experience_Years	Salary
0	101	Amit	HR	2	35000
1	102	Sneha	Finance	5	55000
2	103	Ravi	IT	3	48000
3	104	Priya	IT	8	80000
4	105	Arjun	Sales	4	60000
5	106	Neha	HR	1	32000
6	107	Karan	Finance	6	70000
7	108	Isha	IT	7	75000
8	109	Vikram	Sales	5	65000
9	110	Tanya	Finance	4	58000
10	111	Rohit	HR	2	36000
11	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000
14	115	Nikhil	HR	1	33000

Next steps: Generate code with df

New interactive sheet

#Show first 5 rows.

df.head()

	Employee_ID	Name	Department	Experience_Years	Salary
0	101	Amit	HR	2	35000
1	102	Sneha	Finance	5	55000
2	103	Ravi	IT	3	48000
3	104	Priya	IT	8	80000
4	105	Arjun	Sales	4	60000

#Show last 5 rows:

df.tail()

	Employee_ID	Name	Department	Experience_Years	Salary
10	111	Rohit	HR	2	36000
11	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000
14	115	Nikhil	HR	1	33000

#Show first 2 rows
df.head(2)

	Employee_ID	Name	Department	Experience_Years	Salary
C	101	Amit	HR	2	35000
1	102	Sneha	Finance	5	55000

#Show last 3 rows

df.tail(3)

	Employee_ID	Name	Department	Experience_Years	Salary
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000
14	115	Nikhil	HR	1	33000

#Show data type of rows
df.dtypes

Employee_ID int64
Name object
Department object
Experience_Years int64
Salary int64

dtype: object

#Show the number of rows and columns.
df.shape
(15, 5)

#Show stats for the data
df.describe()

	Employee_ID	Experience_Years	Salary
count	15.000000	15.000000	15.000000
mean	108.000000	4.666667	58800.000000
std	4.472136	2.845213	20424.774872
min	101.000000	1.000000	32000.000000
25%	104.500000	2.500000	42000.000000
50%	108.000000	4.000000	58000.000000
75%	111.500000	6.500000	72500.000000
max	115.000000	10.000000	95000.000000

#Find out mean of experience years or Find out the avg experience years.

Exp_mean=df['Experience_Years'].mean()
Exp_mean

np.float64(4.66666666666667)

#Find the median and mode also.

Exp_median=df['Experience_Years'].mode()
Exp_median

Experie	Experience_Years	
0	1	
1	2	
2	3	
3	4	
4	5	
dtype: int64		

```
Exp_mode=df["Experience_Years"].mode()
Exp_mode

Fxperience Years
```

Experienc	e_vears
0	1
1	2
2	3
3	4
4	5

dtype: int64

```
#Find average salary given.
Salary_mean=df['Salary'].mean()
Salary_mean
np.float64(58800.0)
```

```
#Show all column names

df.columns

Index(['Employee_ID', 'Name', 'Department', 'Experience_Years', 'Salary'],
    dtype='object')
```

```
[107, 'Karan', 'Finance', 6, 70000],
       [108, 'Isha', 'IT', 7, 75000],
       [109, 'Vikram', 'Sales', 5, 65000],
       [110, 'Tanya', 'Finance', 4, 58000],
       [111, 'Rohit', 'HR', 2, 36000],
       [112, 'Simran', 'IT', 9, 90000],
       [113, 'Raj', 'Sales', 10, 95000],
       [114, 'Pooja', 'Finance', 3, 50000],
       [115, 'Nikhil', 'HR', 1, 33000]], dtype=object)
#Show the data briefly (summary/content)
#Display information of dataframe.
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15 entries, 0 to 14
Data columns (total 5 columns):
    Column
                      Non-Null Count Dtype
     ____
0 Employee_ID
                      15 non-null
                                       int64
                                       object
 1
    Name
                       15 non-null
2 Department 15 non-null
                                       object
3
     Experience_Years 15 non-null
                                       int64
4
     Salary
                      15 non-null
                                       int64
dtypes: int64(3), object(2)
memory usage: 732.0+ bytes
#Access info with integer index.
df.iloc[5,1]
'Neha'
#Access info with column label.
df.loc[0,'Name']
'Amit'
#Access info about Neha.
df.loc[5,'Name']
'HR'
df.iloc[5,1]
'Neha'
```

[105, 'Arjun', 'Sales', 4, 60000], [106, 'Neha', 'HR', 1, 32000],

#Filter the rows for experience years more than 2.

Filter_exp=df.query('Experience_Years > 2')
Filter_exp

	Employee_ID	Name	Department	Experience_Years	Salary
1	102	Sneha	Finance	5	55000
2	103	Ravi	IT	3	48000
3	104	Priya	IT	8	80000
4	105	Arjun	Sales	4	60000
6	107	Karan	Finance	6	70000
7	108	Isha	IT	7	75000
8	109	Vikram	Sales	5	65000
9	110	Tanya	Finance	4	58000
11	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000

#Filter for salary >35,000.

Filter_salary=df.query('Salary > 35000')
Filter_salary

	Employee_ID	Name	Department	Experience_Years	Salary
1	102	Sneha	Finance	5	55000
2	103	Ravi	IT	3	48000
3	104	Priya	IT	8	80000
4	105	Arjun	Sales	4	60000
6	107	Karan	Finance	6	70000
7	108	Isha	IT	7	75000
8	109	Vikram	Sales	5	65000
9	110	Tanya	Finance	4	58000
10	111	Rohit	HR	2	36000
11	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000

#Remove employee id column AND name together

drop_id=df.drop(columns=['Employee_ID'] and ['Name'])
drop_id

	Employee_ID	Department	Experience_Years	Salary
0	101	HR	2	35000
1	102	Finance	5	55000
2	103	IT	3	48000
3	104	IT	8	80000
4	105	Sales	4	60000
5	106	HR	1	32000
6	107	Finance	6	70000
7	108	IT	7	75000
8	109	Sales	5	65000
9	110	Finance	4	58000
10	111	HR	2	36000
1	112	IT	9	90000
1:	113	Sales	10	95000
13	3 114	Finance	3	50000
14	115	HR	1	33000

#df.drop(columns=['Age'], inplace=True) , this will permanently drop the age column

```
#Change Experience_Years to Years of work.
```

Rename_Exp=df.rename(columns={'Experience_Years' : 'Years of work'})
Rename_Exp

	Employee_ID	Name	Department	Years of work	Salary
0	101	Amit	HR	2	35000
1	102	Sneha	Finance	5	55000
2	103	Ravi	IT	3	48000
3	104	Priya	IT	8	80000
4	105	Arjun	Sales	4	60000
5	106	Neha	HR	1	32000
6	107	Karan	Finance	6	70000
7	108	Isha	IT	7	75000
8	109	Vikram	Sales	5	65000
9	110	Tanya	Finance	4	58000
10	111	Rohit	HR	2	36000
11	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000
14	115	Nikhil	HR	1	33000

```
#Same goes for rename: to permanently rename the column name,
#use df_renamed = df.rename(columns={'Name': 'Full Name'}, inplace=True
```

```
#Sort out the experience years of employees in ascending order. #Sort is used for making things in ascending order.
```

```
Sort_exp= df.sort_values(by='Experience_Years')
Sort_exp
```

	Employee_ID	Name	Department	Experience_Years	Salary
5	106	Neha	HR	1	32000
14	115	Nikhil	HR	1	33000
10	111	Rohit	HR	2	36000
0	101	Amit	HR	2	35000
2	103	Ravi	IT	3	48000
13	114	Pooja	Finance	3	50000
9	110	Tanya	Finance	4	58000
4	105	Arjun	Sales	4	60000
8	109	Vikram	Sales	5	65000
1	102	Sneha	Finance	5	55000
6	107	Karan	Finance	6	70000
7	108	Isha	IT	7	75000
3	104	Priya	IT	8	80000
1	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Fillna_0=df.fillna(0) Fillna_0

	Employee_ID	Name	Department	Experience_Years	Salary
0	101	Amit	HR	2	35000
1	102	Sneha	Finance	5	55000
2	103	Ravi	IT	3	48000
3	104	Priya	IT	8	80000
4	105	Arjun	Sales	4	60000
5	106	Neha	HR	1	32000
6	107	Karan	Finance	6	70000
7	108	Isha	IT	7	75000
8	109	Vikram	Sales	5	65000
9	110	Tanya	Finance	4	58000
10	111	Rohit	HR	2	36000
11	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000
14	115	Nikhil	HR	1	33000

 $\# Remove \ duplicate \ objects \ if \ any.$

Drop_dupl=df.drop_duplicates()
Drop_dupl

	Employee_ID	Name	Department	Experience_Years	Salary
0	101	Amit	HR	2	35000
1	102	Sneha	Finance	5	55000
2	103	Ravi	IT	3	48000
3	104	Priya	IT	8	80000
4	105	Arjun	Sales	4	60000
5	106	Neha	HR	1	32000
6	107	Karan	Finance	6	70000
7	108	Isha	IT	7	75000
8	109	Vikram	Sales	5	65000
9	110	Tanya	Finance	4	58000
10	111	Rohit	HR	2	36000
11	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000
14	115	Nikhil	HR	1	33000

```
#Replace and rename have a difference:
#Rename: to change label, ex: City to location.
#Replace: to change value, ex: David to davidoff.

#Replace Neha with Nehita in the dataset.

Replace_Neha=df.replace({'Neha' : 'Nehita'})
Replace_Neha
```

	Employee_ID	Name	Department	Experience_Years	Salary
0	101	Amit	HR	2	35000
1	102	Sneha	Finance	5	55000
2	103	Ravi	IT	3	48000
3	104	Priya	IT	8	80000
4	105	Arjun	Sales	4	60000
5	106	Nehita	HR	1	32000
6	107	Karan	Finance	6	70000
7	108	Isha	IT	7	75000
8	109	Vikram	Sales	5	65000
9	110	Tanya	Finance	4	58000
10	111	Rohit	HR	2	36000
11	112	Simran	IT	9	90000
12	113	Raj	Sales	10	95000
13	114	Pooja	Finance	3	50000
14	115	Nikhil	HR	1	33000

#Use group by for Salary and Name:

Group_df=df.groupby('Name')['Salary'].sum()
Group_df

	Salary		
Name			
Amit	35000		
Arjun	60000		
Isha	75000		
Karan	70000		
Neha	32000		
Nikhil	33000		
Pooja	50000		
Priya	80000		
Raj	95000		
Ravi	48000		
Rohit	36000		
Simran	90000		
Sneha	55000		
Tanya	58000		
Vikram	65000		
dtype: int64			

#Now write upto 5 names in grouped data.

Group_df.head(5)

Salary Name Amit 35000 Arjun 60000 60000 Isha 75000 Karan 70000 Neha 32000 dtype: int64

```
#Find out aggregate for salary with names.
Agg_df=df.groupby('Name').agg({'Salary':'mean'})
Agg_df
        Salary
  Name
 Amit
        35000.0
 Arjun
        60000.0
 Isha
        75000.0
 Karan
        70000.0
 Neha
        32000.0
 Nikhil
        33000.0
 Pooja
        50000.0
 Priya
        80000.0
        95000.0
  Raj
 Ravi
        48000.0
 Rohit
        36000.0
Simran 90000.0
Sneha 55000.0
 Tanya 58000.0
Vikram 65000.0
#Find mean of salary.(Avg)
```

```
#Find mean of salary.(Avg)
a = df.agg({'Salary':'mean'})
a

O
Salary 58800.0

dtype: float64
```

```
#Use print for the same.
#(The table doesn't appear using print)
print(a)
```

Salary 58800.0 dtype: float64

#Counting non null values.

Count=df.grouphv('Name')['Salarv'].count()