Лабораторная работа № 8

Темы:

- 1. Изучение аффинных преобразований в пространстве.
- 2. Изучение принципов построения 3D изображений.
- з. Изучение метода удаления невидимых граней с помощью их сортировки по глубине (алгоритм художника).

Задание.

Реализовать класс **class CPlot3D** для изображения поверхности, которая может быть описана однозначной функцией двух переменных

$$z = f(x, y)$$

Использовать аксонометрическая проекцию фигуры на картинную плоскость.

Изображения строятся в режиме MM_TEXT.

Создать приложение Windows для изображения поверхностей второго порядка.

1. Эллиптический параболоид

$$z = x^2 + y^2$$
, $x = [-5, 5]$; $y = [-5, 5]$; $\Delta x = 0.25$; $\Delta y = 0.25$

2. Гиперболический параболоид

$$z = x^2 - y^2$$
, $x [-5; 5]$; $y [-5; 5]$; $\Delta x = 0.25$; $\Delta y = 0.25$

3. Верхняя полусфера, z=0

$$x^{2} + y^{2} + z^{2} = 9$$
 x [-3; 3]; y [-3; 3]; $\Delta x = 0.25$; $\Delta y = 0.25$

Значения функции, описывающей полусферу, рассчитываются в *декартовых* координатах.

Положение камеры (наблюдателя) задаётся в мировой сферической системе координат (r, φ, θ) при выборе соответствующего пункта меню. Для ввода данных использовать чтение их из текстового файла или из окна диалога. Новые координаты камеры должны автоматически применяться к текущей фигуре.

Начальные значения координат камеры $(r, \varphi, \theta) = (10, 45^{\circ}, 45^{\circ})$ определяются в конструкторе по умолчанию и в дальнейшем изменяются только значения (φ, θ) .

Каждое из изображений фигуры появляется на экране при выборе соответствующего пункта меню (рис. 1)

Рис. 1

После запуска приложения на экране появляется пустое окно.

В левом верхнем углу окна выводятся текущие сферические координаты (ϕ,θ) камеры в градусах.

Каждая из поверхностей должна отображаться при выборе соответствующего пункта меню.