Fisica Computazionale: Esercitazione 8

- 1. usa il teorema del viriale per calcolare la pressione del sistema in funzione della densitá e ricava il grafico dell'equazione di stato $P = P(\rho)$ a temperatura (adimensionale) $\hat{T} = 1.1$ sul range di densitá usato nell'esercitazione precedente. Riporta i risultati in termini del rapporto $P/(k_BT)$.
- 2. A lezione abbiamo visto che la funzione di distribuzione radiale puó essere scritta come

$$g(r) = \frac{1}{\rho} \lim_{\delta r \to 0} \frac{N(r, \delta r)}{V(r, \delta r)} \tag{1}$$

dove $\rho = N/V$ é la densitá media del sistema, $N(r, \delta r)$ il numero di particella ad una distanza $x \in [r - \delta r/2, r + \delta r/2]$ da una particella fissata e $V(r, \delta r)$ il volume del guscio sferico fra $r - \delta r/2$ e $r + \delta r/2$. Per stimare g(r) possiamo prendere un δr finito e fare un istogramma centrato con $M = (L/2)/\delta r$ su M intervalli di larghezza δr e centrati in $r_k = (2k+1)\delta r/2$ con $k \in \{0, \ldots, M-1\}$.

Nota che per fare in modo che questo istogramma sia normlizzato correttemante quando δr non é zero, invece di usare il volume infinitesimo

$$V(r,\delta r) = 4\pi r^2 \delta r \; ,$$

risulta piú conveniente usare il valore esatto

$$V(r,\delta r) = \frac{4}{3}\pi \left(r + \frac{\delta r}{2}\right)^3 - \frac{4}{3}\pi \left(r + \frac{\delta r}{2}\right)^3 \ . \label{eq:V}$$

- (a) implementa il calcolo della funzione di distribuzione radiale g(r) e ottieni il suo grafico in ciascuna delle tre fasi del fluido di Lennard-Jones. Quanto grande devi prendere la scatola di simulazione per avere $g(r) \approx 1$ nel liquido e nel gas?
- (b) [BONUS] usa la g(r) calcolata prima per trovare la correzione all'energia compatibile con la modifica del potenziale che avete fatto