

Coreset Construction for Quantum Data Science

Dr. Muhammad Usman

The University of Melbourne

Proof-of-concept Data

Real-world Data

Loading of Classical Data in a Quantum Computer

Typically, data science involve large data sets

How do we define a large data set?

One way of thinking:

Processing becomes very hard for algorithms with cost function $O(n^2)$, where n is the size of data

Big Question: How do we load a large data set into a quantum computer without losing potential quantum advantage?

Possible Alternatives – Classical Pre-processing of Data

In NISQ era, where capabilities of quantum devices are limited i.e., a few qubits, noise, connectivity, etc.

One possible answer is: data size reduction by classical pre-processing.

Coreset construction – useful for machine learning such as k-means clustering, Bayesian inference, Saddle-point approximation.

Image reduction by subpooling – Quantum convolutional neural network

A second possible answer is: Hybrid classical/quantum approaches such as quantum-classical convolutional neural network.

Can the classical data science community help?

Coreset Construction for Data Reduction

Main Idea: $X \rightarrow (X^c, w)$, where the weighted data set X^c sufficiently summarizes the original data

Here X^c is a coreset of X if $\sum_{x \in X} f(x) \approx \sum_{x \in X^c} f(x)$, where f(x) is the function to be evaluated on dataset.

Coreset Construction for Data Reduction

Here X^c is a coreset of X if $\sum_{x \in X} f(x) \approx \sum_{x \in X^c} f(x)$, where f(x) is the function to be evaluated on dataset.

Question: what is a good coreset?

A good coreset is an ϵ -coreset such that

 $|Cost(f(X)) - Cost(f(X^c, w))| \le \epsilon |Cost(f(X))|$

Classical Processor generates a Coreset

Quantum processor solves algorithm on coreset

Classical Processor
uses quantum
processor output to
build a Coreset

Quantum processor solves algorithm on coreset

- Types of Coresets:
- o Non-adaptive coresets, applications for k-means clustering, max-cut, maximum likelihood estimation
- o Adaptive coresets, applications are Bayesian inference, Saddle-point optimisation

2-means Clustering problem

To demonstrate the working of the coreset technique, we will look at a very simple problem -2-means clustering

Problem Statement:

Input : A data set $x_1, ..., x_n \in \mathbb{R}^d$

Output : Cluster centers $\mu_{-1},...,\mu_{+1}$ which approximately minimize

$$\sum_{i \in [n]} \min_{j \in \{\mu_{-1}, \mu_{+1}\}} \|x_i - \mu_j\|^2$$

For 2-means clustering problem, we will have only two cluster centers μ_{+1} and μ_{-1}

The problem can be redefined as partitioning the data set into two subsets S_{-1} and S_{+1} , such that it minimizes the squared-distance to the closest cluster centers:

$$\sum_{i \in S_{-1}} \|\boldsymbol{x}_i - \boldsymbol{\mu}_{-1}\|^2 + \sum_{i \in S_{+1}} \|\boldsymbol{x}_i - \boldsymbol{\mu}_{+1}\|^2$$

Selection of Coreset Data Points

Generally, the size of coreset is a variable and it is optimized to make a best selection

However, due to limited number of qubits, we can keep the coreset size fixed, where each data point in coreset is represented by a qubit

For example: Coreset size = 3 can be implemented using 3 qubits

Methods to construct coresets:

- Random sampling
- o Braverman method (arXiv:1612.00889, 2016)

$$X = \text{Full Data}$$
 w, $X^c = \text{Coreset}(X)$

For 2-means clustering problem:

$$(\mu_{-1}, \mu_{+1}) = Cluster(X)$$

$$(\mu_{-1}, \mu_{+1}) = Cluster(X^c, w)$$

$$Cost = \sum_{x \in X \text{ or } x \in X^c} \min(|x - \mu_{-1}|^2, |x - \mu_{+1}|^2)$$

Construction of Coresets

How do we compute X^c ?

Case of k-Clustering

Algorithm 1 D^p -Sampling

Require: data set \mathcal{X} , k, p

1: Uniformly sample $x \in \mathcal{X}$ and set $B = \{x\}$.

2: **for** $i \leftarrow 2, 3, ..., k$ **do**

3: Sample $x \in \mathcal{X}$ with probability $\frac{d(x,B)^p}{\sum_{x' \in \mathcal{X}} d(x',B)^p}$ and add it to B.

4: return B

Step 2: Calculation of Coreset Points

Step 1: Calculation of Centroids using K-Means++

Algorithm 2: Coreset (P, w, \mathcal{B}, m)

Input: A weighted set (P, w) where $P \subseteq X$ and (D, X) is a ρ -metric space,

 (α, β) -approximation $\mathcal{B}: P \to B$,

and sample size $m \geq 1$.

Output: A pair (S, u) that satisfies Theorem 6.6.

1 for each $b \in B$ do

$$\mathbf{2} \quad | \quad \mathbf{Set} \ P_b \leftarrow \{ p \in P \mid \mathcal{B}(p) = b \}$$

3 for each $b \in B$ and $p \in P_b$ do

Set
$$\operatorname{Prob}(p) \leftarrow \frac{w(p)D(p,\mathcal{B}(p))}{2\sum_{q\in P}w(q)D(q,\mathcal{B}(q))} + \frac{w(p)}{2|B|\sum_{q\in P_b}w(q)}.$$

4 Pick a sample S of at least m points from P such that for each $q \in S$ and $p \in P$ we have q = p with probability Prob(p).

*/

- 5 for each $p \in P$ do
- 6 Set $u(p) \leftarrow \frac{w(p)}{|S| \cdot \operatorname{Prob}(p)}$.
- 7 Set $u(p) \leftarrow 0$ for each $p \in P \setminus S$. /* Used only in the analysis.
- 9 return (S, u)

An example: 2-Means Clustering Problem on Iris dataset

Implementation on a quantum computer

Cost Function:
$$\sum\nolimits_{i \in S_{-1}} \! w_i |x_i - \mu_{-1}|^2 + \sum\nolimits_{i \in S_{+1}} \! w_i |x_i - \mu_{+1}|^2$$

$$\mu_{-1} = \frac{\sum_{i \in S_{-1}} w_i x_i}{W_{-1}}$$

$$\mu_{+1} = \frac{\sum_{i \in S_{+1}} w_i x_i}{W_{+1}}$$

Minimizing the above equation is in fact same as maximizing:

$$W_{+1}W_{-1}\|\mu_{+1}-\mu_{-1}\|^2 \qquad \qquad \text{If } W_{-1}=W_{+1} \qquad \qquad \sum_{i\in S_{-1}j\in S_{+1}}-w_iw_j\,x_i.\,x_j$$

This problem is easy to interpret in terms of quantum optimisation problem (for a coreset size m=5):

Implementation on Quantum Approximate Optimisation Algorithm (QAOA)

$$H = \sum_{i \neq j} J_{ij} Z_i Z_j + \sum_i B_i Z_i$$

For every Z term in the Hamiltonian:

$$H = \dots + B_i Z_i + \dots$$
$$\theta_i = -\frac{B_i \alpha}{2}$$

For every ZZ term in the Hamiltonian:

$$H = \dots + J_{ij} Z_i Z_j + \dots$$
$$\theta_{ij} = -\frac{J_{ij} \alpha}{2}$$

Angles all proportional to their term in the Hamiltonian.

Implementation on Quantum Approximate Optimisation Algorithm (QAOA)

Each term's sequence can be placed consecutively. Order of terms does not matter.

Each term in the cost function gets a gate sequence.

Each rotation angle is proportional to the energy term.

$$\theta_1 = -\frac{\alpha}{2}$$

Implementation on Quantum Approximate Optimisation Algorithm (QAOA)

Initialisation 1st iteration

Implementation on QAOA

$$H_{max-cut} = \sum_{i < j} w_i w_j \, x_i \, x_j Z_i Z_j \quad \longrightarrow \quad H = 511802775.7 \, \text{ZZI} + 7699359.5 \, \text{ZIZ} + 8773443.4 \, \text{IZZ}$$

Open Questions

- How to find efficient coresets for a given dataset with non-trivial distribution?
- Adaptive coreset construction (quantum/classical)?
- o Coresets for other machine learning applications?
- Noise mitigation for quantum computing implementation?