

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: HOPWOOD, JOHN JOSEPH; SCOTT, HAMISH STEELE;
WEBER, BIRGIT; BLANCH, LIANNE; ANSON, DONALD STEWART

(ii) TITLE OF INVENTION: SYNTHETIC MAMMALIAN
 α -N-ACETYLGLUCOSAMINIDASE AND GENETIC SEQUENCES ENCODING SAME

(iii) NUMBER OF SEQUENCES: 6

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: NIXON PEABODY LLP
- (B) STREET: 990 STEWART AVENUE
- (C) CITY: GARDEN CITY
- (D) STATE: NEW YORK
- (E) COUNTRY: UNITED STATES
- (F) ZIP: 11530

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: 09/077,354
- (B) FILING DATE: 22-APRIL-1999

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: PCT/US96/00747
- (B) FILING DATE: 22-NOV-1996

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: POKALSKY, ANN R.
- (B) REGISTRATION NUMBER: 34,697
- (C) REFERENCE/DOCKET NUMBER: 2249/104

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 516 742 4343
- (B) TELEFAX: 516 742 4366

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2575 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*
(F) TISSUE TYPE: Peripheral Blood
(G) CELL TYPE: Leukocyte

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 102.2330

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CCCAGGGCTTA GCCTTCGGGT CCACGTGGCC GGAGGGCGGC AGCTGATTGG ACGCGGGGCC 60

CCCCACCCCC TGGCCGTCGC GGGACCCGCA GGACTGAGAC C ATG GAG GCG GTG 113
Met Glu Ala Val
1

GCG GTG GCC GCG GCG GTG GGG GTC CTT CTC CTG GCC GGG GCC GGG GGC 161
 Ala Val Ala Ala Ala Val Gly Val Leu Leu Leu Ala Gly Ala Gly Gly
 5 10 15 20

GCC CGG CTG CTG GGG CCA GGC CCC GCG GCC GAC TTC TCC GTG TCG GTG 257
 Ala Arg Leu Leu Gly Pro Gly Pro Ala Ala Asp Phe Ser Val Val Ser Val
 40 45 50

GAG CGC GCT CTG GCT GCC AAG CCG GGC TTG GAC ACC TAC AGC CTG GGC 305
 Glu Arg Ala Leu Ala Ala Lys Pro Gly Leu Asp Thr Tyr Ser Leu Gly
 55 60 65

GGC GGC GGC GCG GCG CGC GTG CGG GTG CGC GGC TCC ACG GGC GTG GCG 353
 Gly Gly Gly Ala Ala Arg Val Arg Val Arg Gly Ser Thr Gly Val Ala
 70 75 80

GCC GCC GCG GGG CTG CAC CGC TAC CTG CGC GAC TTC TGT GGC TGC CAC 401
 Ala Ala Ala Gly Leu His Arg Tyr Leu Arg Asp Phe Cys Gly Cys His
 85 90 95 100

GTG GCC TGG TCC GGC TCT CAG CTG CGC CTG CCG CGG CCA CTG CCA GCC 449
 Val Ala Trp Ser Gly Ser Gln Leu Arg Leu Pro Arg Pro Leu Pro Ala
 105 110 115

GTG CCG GGG GAG CTG ACC GAG GCC ACG CCC AAC AGG TAC CGC TAT TAC 497
 Val Pro Gly Glu Leu Thr Glu Ala Thr Pro Asn Arg Tyr Arg Tyr Tyr
 120 125 130

CAG AAT GTG TGC ACG CAA AGC TAC TCC TTC GTG TGG TGG GAC TGG GCC
 Gln Asn Val Cys Thr Gln Ser Tyr Ser Phe Val Trp Trp Asp Trp Ala
 135 140 145

CGC TGG GAG CGA GAG ATA GAC TGG ATG GCG CTG AAT GGC ATC AAC CTG 593
 Arg Trp Glu Arg Glu Ile Asp Trp Met Ala Leu Asn Gly Ile Asn Leu
 150 155 160

GCA CTG GCC TGG AGC GGC CAG GAG GCC ATC TGG CAG CGG GTG TAC CTG Ala Leu Ala Trp Ser Gly Gln Glu Ala Ile Trp Gln Arg Val Tyr Leu 165 170 175 180	641
GCC TTG GGC CTG ACC CAG GCA GAG ATC AAT GAG TTC TTT ACT GGT CCT Ala Leu Gly Leu Thr Gln Ala Glu Ile Asn Glu Phe Phe Thr Gly Pro 185 190 195	689
GCC TTC CTG GCC TGG GGG CGA ATG GGC AAC CTG CAC ACC TGG GAT GGC Ala Phe Leu Ala Trp Gly Arg Met Gly Asn Leu His Thr Trp Asp Gly 200 205 210	737
CCC CTG CCC CCC TCC TGG CAC ATC AAG CAG CTT TAC CTG CAG CAC CGG Pro Leu Pro Pro Ser Trp His Ile Lys Gln Leu Tyr Leu Gln His Arg 215 220 225	785
GTC CTG GAC CAG ATG CGC TCC TTC GGC ATG ACC CCA GTG CTG CCT GCA Val Leu Asp Gln Met Arg Ser Phe Gly Met Thr Pro Val Leu Pro Ala 230 235 240	833
TTC GCG GGG CAT GTT CCC GAG GCT GTC ACC AGG GTG TTC CCT CAG GTC Phe Ala Gly His Val Pro Glu Ala Val Thr Arg Val Phe Pro Gln Val 245 250 255 260	881
AAT GTC ACG AAG ATG GGC AGT TGG GGC CAC TTT AAC TGT TCC TAC TCC Asn Val Thr Lys Met Gly Ser Trp Gly His Phe Asn Cys Ser Tyr Ser 265 270 275	929
TGC TCC TTC CTT CTG GCT CCG GAA GAC CCC ATA TTC CCC ATC ATC GGG Cys Ser Phe Leu Ala Pro Glu Asp Pro Ile Phe Pro Ile Ile Gly 280 285 290	977
AGC CTC TTC CTG CGA GAG CTG ATC AAA GAG TTT GGC ACA GAC CAC ATC Ser Leu Phe Leu Arg Glu Leu Ile Lys Glu Phe Gly Thr Asp His Ile 295 300 305	1025
TAT GGG GCC GAC ACT TTC AAT GAG ATG CAG CCA CCT TCC TCA GAG CCC Tyr Gly Ala Asp Thr Phe Asn Glu Met Gln Pro Pro Ser Ser Glu Pro 310 315 320	1073
TCC TAC CTT GCC GCA GCC ACC ACT GCC GTC TAT GAG GCC ATG ACT GCA Ser Tyr Leu Ala Ala Thr Thr Ala Val Tyr Glu Ala Met Thr Ala 325 330 335 340	1121
GTG GAT ACT GAG GCT GTG TGG CTC CAA GGC TGG CTC TTC CAG CAC Val Asp Thr Glu Ala Val Trp Leu Leu Gln Gly Trp Leu Phe Gln His 345 350 355	1169
CAG CCG CAG TTC TGG GGG CCC GCC CAG ATC AGG GCT GTG CTG GGA GCT Gln Pro Gln Phe Trp Gly Pro Ala Gln Ile Arg Ala Val Leu Gly Ala 360 365 370	1217
GTG CCC CGT GGC CGC CTC CTG GTT CTG GAC CTG TTT GCT GAG AGC CAG Val Pro Arg Gly Arg Leu Leu Val Leu Asp Leu Phe Ala Glu Ser Gln 375 380 385	1265

CCT GTG TAT ACC CGC ACT GCC TCC TTC CAG GGC CAG CCC TTC ATC TGG	1313		
Pro Val Tyr Thr Arg Thr Ala Ser Phe Gln Gly Gln Pro Phe Ile Trp			
390	395	400	
TGC ATG CTG CAC AAC TTT GGG GGA AAC CAT GGT CTT TTT GGA GCC CTA	1361		
Cys Met Leu His Asn Phe Gly Gly Asn His Gly Leu Phe Gly Ala Leu			
405	410	415	420
GAG GCT GTG AAC GGA GGC CCA GAA GCT GCC CGC CTC TTC CCC AAC TCC	1409		
Glu Ala Val Asn Gly Gly Pro Glu Ala Ala Arg Leu Phe Pro Asn Ser			
425	430	435	
ACC ATG GTA GGC ACG GGC ATG GCC CCC GAG GGC ATC AGC CAG AAC GAA	1457		
Thr Met Val Gly Thr Gly Met Ala Pro Glu Gly Ile Ser Gln Asn Glu			
440	445	450	
GTG GTC TAT TCC CTC ATG GCT GAG CTG GGC TGG CGA AAG GAC CCA GTG	1505		
Val Val Tyr Ser Leu Met Ala Glu Leu Gly Trp Arg Lys Asp Pro Val			
455	460	465	
CCA GAT TTG GCA GCC TGG GTG ACC AGC TTT GCC GCC CGG CGG TAT GGG	1553		
Pro Asp Leu Ala Ala Trp Val Thr Ser Phe Ala Ala Arg Arg Tyr Gly			
470	475	480	
GTC TCC CAC CCG GAC GCA GGG GCA GCG TGG AGG CTA CTG CTC CGG AGT	1601		
Val Ser His Pro Asp Ala Gly Ala Ala Trp Arg Leu Leu Leu Arg Ser			
485	490	495	500

GTG TAC AAC TGC TCC GGG GAG GCC TGC AGG GGC CAC AAT CGT AGC CCG Val Tyr Asn Cys Ser Gly Glu Ala Cys Arg Gly His Asn Arg Ser Pro	505	510	515	1649	
CTG GTC AGG CGG CCG TCC CTA CAG ATG AAT ACC AGC ATC TGG TAC AAC Leu Val Arg Arg Pro Ser Leu Gln Met Asn Thr Ser Ile Trp Tyr Asn	520	525	530	1697	
CGA TCT GAT GTG TTT GAG GCC TGG CGG CTG CTG CTC ACA TCT GCT CCC Arg Ser Asp Val Phe Glu Ala Trp Arg Leu Leu Thr Ser Ala Pro	535	540	545	1745	
TCC CTG GCC ACC AGC CCC GCC TTC CGC TAC GAC CTG CTG GAC CTC ACT Ser Leu Ala Thr Ser Pro Ala Phe Arg Tyr Asp Leu Leu Asp Leu Thr	550	555	560	1793	
CGG CAG GCA GTG CAG GAG CTG GTC AGC TTG TAC TAT GAG GAG GCA AGA Arg Gln Ala Val Gln Glu Leu Val Ser Leu Tyr Tyr Glu Glu Ala Arg	565	570	575	580	1841
AGC GCC TAC CTG AGC AAG GAG CTG GCC TCC CTG TTG AGG GCT GGA GGC Ser Ala Tyr Leu Ser Lys Glu Leu Ala Ser Leu Leu Arg Ala Gly Gly	585	590	595	1889	
GTC CTG GCC TAT GAG CTG CTG CCG GCA CTG GAC GAG GTG CTG GCT AGT Val Leu Ala Tyr Glu Leu Leu Pro Ala Leu Asp Glu Val Leu Ala Ser	600	605	610	1937	
GAC AGC CGC TTC TTG CTG GGC AGC TGG CTA GAG CAG GCC CGA GCA GCG Asp Ser Arg Phe Leu Leu Gly Ser Trp Leu Glu Gln Ala Arg Ala Ala	615	620	625	1985	
GCA GTC AGT GAG GCC GAG GCC GAT TTC TAC GAG CAG AAC AGC CGC TAC Ala Val Ser Glu Ala Glu Ala Asp Phe Tyr Glu Gln Asn Ser Arg Tyr	630	635	640	2033	
CAG CTG ACC TTG TGG GGG CCA GAA GGC AAC ATC CTG GAC TAT GCC AAC Gln Leu Thr Leu Trp Gly Pro Glu Gly Asn Ile Leu Asp Tyr Ala Asn	645	650	655	660	2081
AAG CAG CTG GCG GGG TTG GTG GCC AAC TAC TAC ACC CCT CGC TGG CGG Lys Gln Leu Ala Gly Leu Val Ala Asn Tyr Tyr Thr Pro Arg Trp Arg	665	670	675	2129	
CTT TTC CTG GAG GCG CTG GTT GAC AGT GTG GCC CAG GGC ATC CCT TTC Leu Phe Leu Glu Ala Leu Val Asp Ser Val Ala Gln Gly Ile Pro Phe	680	685	690	2177	
CAA CAG CAC CAG TTT GAC AAA AAT GTC TTC CAA CTG GAG CAG GCC TTC Gln Gln His Gln Phe Asp Lys Asn Val Phe Gln Leu Glu Gln Ala Phe	695	700	705	2225	
GTT CTC AGC AAG CAG AGG TAC CCC AGC CAG CCG CGA GGA GAC ACT GTG Val Leu Ser Lys Gln Arg Tyr Pro Ser Gln Pro Arg Gly Asp Thr Val	710	715	720	2273	

- 50 -

GAC CTG GCC AAG AAG ATC TTC CTC AAA TAT TAC CCC GGC TGG GTG GCC	2321
Asp Leu Ala Lys Lys Ile Phe Leu Lys Tyr Tyr Pro Gly Trp Val Ala	
725 730 735 740	
GGC TCT TGG TGATAGATT GCACCAC TG GCCTTGT TT TCCGCTAATT	2370
Gly Ser Trp	
CCAGGGCAGA TTCCAGGGCC CAGAGCTGGA CAGACATCAC AGGATAACCC AGGCCTGGGA	2430
GGAGGCCCA CGGCCTGCTG GTGGGGTCTG ACCTGGGGGG ATTGGAGGGA AATGACCTGC	2490
CCTCCACCAC CACCCAAAGT GTGGGATTAA AGTACTGTTT TCTTTCCACT TAAAAAAA	2550
AAAAAAAGTCG AGCGGCCGCG AATTC	2575

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 743 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 261
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 272
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 435
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 503
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 513
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 526
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 532
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Glu Ala Val Ala Val Ala Ala Val Gly Val Leu Leu Leu Ala
1 5 10 15

Gly Ala Gly Gly Ala Ala Gly Asp Glu Ala Arg Glu Ala Ala Ala Val
20 25 30

Arg Ala Leu Val Ala Arg Leu Leu Gly Pro Gly Pro Ala Ala Asp Phe
35 40 45

Ser Val Ser Val Glu Arg Ala Leu Ala Ala Lys Pro Gly Leu Asp Thr
50 55 60

Tyr Ser Leu Gly Gly Gly Ala Ala Arg Val Arg Val Arg Gly Ser
65 70 75 80

Thr Gly Val Ala Ala Ala Gly Leu His Arg Tyr Leu Arg Asp Phe
85 90 95

Cys Gly Cys His Val Ala Trp Ser Gly Ser Gln Leu Arg Leu Pro Arg
100 105 110

Pro Leu Pro Ala Val Pro Gly Glu Leu Thr Glu Ala Thr Pro Asn Arg
115 120 125

Tyr Arg Tyr Tyr Gln Asn Val Cys Thr Gln Ser Tyr Ser Phe Val Trp
130 135 140

Trp Asp Trp Ala Arg Trp Glu Arg Glu Ile Asp Trp Met Ala Leu Asn
145 150 155 160

Gly Ile Asn Leu Ala Leu Ala Trp Ser Gly Gln Glu Ala Ile Trp Gln
165 170 175

Arg Val Tyr Leu Ala Leu Gly Leu Thr Gln Ala Glu Ile Asn Glu Phe
180 185 190

Phe Thr Gly Pro Ala Phe Leu Ala Trp Gly Arg Met Gly Asn Leu His
195 200 205

Thr Trp Asp Gly Pro Leu Pro Pro Ser Trp His Ile Lys Gln Leu Tyr
210 215 220

Leu Gln His Arg Val Leu Asp Gln Met Arg Ser Phe Gly Met Thr Pro
225 230 235 240

Val Leu Pro Ala Phe Ala Gly His Val Pro Glu Ala Val Thr Arg Val
245 250 255

Phe Pro Gln Val Asn Val Thr Lys Met Gly Ser Trp Gly His Phe Asn
260 265 270

Cys Ser Tyr Ser Cys Ser Phe Leu Leu Ala Pro Glu Asp Pro Ile Phe
275 280 285

Pro Ile Ile Gly Ser Leu Phe Leu Arg Glu Leu Ile Lys Glu Phe Gly
290 295 300

Thr Asp His Ile Tyr Gly Ala Asp Thr Phe Asn Glu Met Gln Pro Pro
305 310 315 320

Ser Ser Glu Pro Ser Tyr Leu Ala Ala Ala Thr Thr Ala Val Tyr Glu
325 330 335

Ala Met Thr Ala Val Asp Thr Glu Ala Val Trp Leu Leu Gln Gly Trp
340 345 350

Leu Phe Gln His Gln Pro Gln Phe Trp Gly Pro Ala Gln Ile Arg Ala
355 360 365

Val Leu Gly Ala Val Pro Arg Gly Arg Leu Leu Val Leu Asp Leu Phe
370 375 380

Ala Glu Ser Gln Pro Val Tyr Thr Arg Thr Ala Ser Phe Gln Gly Gln
385 390 395 400

Pro Phe Ile Trp Cys Met Leu His Asn Phe Gly Gly Asn His Gly Leu
405 410 415

Phe Gly Ala Leu Glu Ala Val Asn Gly Gly Pro Glu Ala Ala Arg Leu
420 425 430

Phe Pro Asn Ser Thr Met Val Gly Thr Gly Met Ala Pro Glu Gly Ile
435 440 445

Ser Gln Asn Glu Val Val Tyr Ser Leu Met Ala Glu Leu Gly Trp Arg
450 455 460

Lys Asp Pro Val Pro Asp Leu Ala Ala Trp Val Thr Ser Phe Ala Ala
465 470 475 480

Arg Arg Tyr Gly Val Ser His Pro Asp Ala Gly Ala Ala Trp Arg Leu
485 490 495

Leu Leu Arg Ser Val Tyr Asn Cys Ser Gly Glu Ala Cys Arg Gly His
500 505 510

Asn Arg Ser Pro Leu Val Arg Arg Pro Ser Leu Gln Met Asn Thr Ser
515 520 525

Ile Trp Tyr Asn Arg Ser Asp Val Phe Glu Ala Trp Arg Leu Leu Leu
530 535 540

Thr Ser Ala Pro Ser Leu Ala Thr Ser Pro Ala Phe Arg Tyr Asp Leu
545 550 555 560

Leu Asp Leu Thr Arg Gln Ala Val Gln Glu Leu Val Ser Leu Tyr Tyr
565 570 575

Glu Glu Ala Arg Ser Ala Tyr Leu Ser Lys Glu Leu Ala Ser Leu Leu
580 585 590

Arg Ala Gly Gly Val Leu Ala Tyr Glu Leu Leu Pro Ala Leu Asp Glu
595 600 605

Val Leu Ala Ser Asp Ser Arg Phe Leu Leu Gly Ser Trp Leu Glu Gln
610 615 620

Ala Arg Ala Ala Ala Val Ser Glu Ala Glu Ala Asp Phe Tyr Glu Gln
625 630 635 640

Asn Ser Arg Tyr Gln Leu Thr Leu Trp Gly Pro Glu Gly Asn Ile Leu
645 650 655

Asp Tyr Ala Asn Lys Gln Leu Ala Gly Leu Val Ala Asn Tyr Tyr Thr
660 665 670

Pro Arg Trp Arg Leu Phe Leu Glu Ala Leu Val Asp Ser Val Ala Gln
675 680 685

Gly Ile Pro Phe Gln Gln His Gln Phe Asp Lys Asn Val Phe Gln Leu
690 695 700

Glu Gln Ala Phe Val Leu Ser Lys Gln Arg Tyr Pro Ser Gln Pro Arg
705 710 715 720

Gly Asp Thr Val Asp Leu Ala Lys Ile Phe Leu Lys Tyr Tyr Pro
725 730 735

Gly Trp Val Ala Gly Ser Trp
740

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (viii) POSITION IN GENOME:
 - (A) CHROMOSOME SEGMENT: Chromosome 17
- (ix) FEATURE:
 - (A) NAME/KEY: exon 1
 - (B) LOCATION: 990..1372
- (ix) FEATURE:
 - (A) NAME/KEY: exon 2
 - (B) LOCATION: 2115..2262

(ix) FEATURE:

- (A) NAME/KEY: exon 3
- (B) LOCATION: 3056..3202

(ix) FEATURE:

- (A) NAME/KEY: exon 4
- (B) LOCATION: 3387..3472

(ix) FEATURE:

- (A) NAME/KEY: exon 5
- (B) LOCATION: 5667..5923

(ix) FEATURE:

- (A) NAME/KEY: exon 6
- (B) LOCATION: 7745..8955

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATAATGAGCA GTGAGGACGA TCAGAGGTCA CCTTCCTGTC TTGGTTTGG CAGGTTTGA 60
CCAGTTTCTT TGCTGCATTC TGTTTATCA GCGGGGTCTT GTGACCTTT ATCTTGTGCT 120
GACCTCCTGT CTCATCCTGT GACGAAGGCC TAACCTCCTG GGAATTCAAGC CCAGCAGGTC 180
TCTGCCTCAT TTTACCCAGC CCCTGTTCAA GATGGAGTCG CTCTGGTTGG AAACTTCTGA 240
CAAAATGACA GCTCCTGTTA TGTTGCTGCT GCTGCCGCCA ATGGACAGCC TTTAACGTGC 300
CCGCCAGCCC TGCTCCACCG CGGGCCTGGG CTCACATGGC CCCATCCCTC CTCGAACCTC 360
CTAGCCTGTT AGTTACTCAA ATCTGCAAGC TCTCTGCCTT CTCAGGGCCT TCAATAATG 420
CATTTCCTCT GTCTGGAAGG CTCTTCCTTT CCCTCTTCTA GCCAATTCCCT ATTCACTCCCT 480
GAGTTTCAGA TTAAAAGTCA CTTCCCTTGG AACACCTACT TCGCTACTTC GCTACTTACT 540
GCACTACTTC GCAGCATCAC AACTATGATG GAAATCCTTA CTTACGTTAA ATATCTGGTT 600
TCTAGGTACAC CTCCCTGACG GGGACGGTAG GGACCGTCTT CTCGTTCATC AGTAGGGAAAG 660
TAGCTATGGC AGTGCCTGAT ACAAAATAAA CTCCAAATGT GTATTTATTA GATGGTTGGA 720
TGGAAGTTAT TTGCGTGTGA AAGCGCGTT TACCCGAAGG CGCTCTGTGA GGGCCAGCGG 780
GTCCCCCTTCG GCCCTGGAGC CGGGGTACACA CGCTCCCCAC CGCGTGCAGGT CACGAGACGC 840
CCCCAAGGGA GTATCCTGGT ACCCGGAAGC CGCGACTCCT GGCCCTGAGC CCGGGCTTAG 900
CCTTCGGGTC CACGTGGCCG GAGCCGGCAG CTGATTGGAC GCAGGGCCGCC CCACCCCCCTG 960
GCCGTCGCGG GACCCGCAGG ACTGAGACCA TGGAGGCGGT GGCGGTGGCC GCGGCGGTGG 1020
GGGTCCCTCT CCTGGCCGGG GCCGGGGCG CGGCAGGCAG CGAGGCCCGG GAGGCAGCGG 1080
CCGTGCGGGC GCTCGTGGCC CGGCTGCTGG GGCCAGGCC CGCGGCCGAC TTCTCCGTGT 1140

CGGTGGAGCG CGCTCTGGCT GCCAAGCCGG GCTTGGACAC CTACAGCCTG GGCGGCAGCG 1200
GCGCGCGCG CGTGCGGGTG CGCGGCTCCA CGGGCGTGGC GGCGGCCGCG GGGCTGCACC 1260
GCTACCTGCG CGACTTCTGT GGCTGCCACG TGGCCTGGTC CGGCTCTCAG CTGCGCCTGC 1320
CGCGGCCACT GCCAGCCGTG CCGGGGGAGC TGACCGAGGC CACGCCAAC AGGTACCGCC 1380
CCGAAGCTTC CCCCGTCCG CCCGAGGCAGC TTACCCCCCTC CGGGAGCCGC TGCCACCAA 1440
ATCGGGAGGC TGAGCGGGGA GCGCTGGCCG GAAGGCCAG CTGCGCCGCC TCCAGCAGCT 1500
GTGTGGCCTT GAGCCAGCCA CTCTGCCTTT CAGAGCCTCG GCTGGCCAC CTGAAAAACG 1560
GAAAGAAGAC GCCTACCGTG CAGTGTATT GTGAGGATT GCACGATGAT GGGCATAGAA 1620
TTTGTGGTGC ACAATTGGTG ATGAGTGAAT TTTCTTGCT TCCTCCCCCA CCTTCTCTTT 1680
GAACCTGCGG ACTGAGGAAG GACGCCTCCA TCCCCCACCC TACAGGCCTG TGTTCCAGCG 1740
CCTGCCACAC TATGGAGTGA TGTGTTACCA CAGCTGTCCT CCCCTGCCCA TCTGTTAGAC 1800
TGTGGGGGCA GGGATTCCCC GTTCCAGGAA AACACCGTGC AGAGGAGGGG CTCTGGCAGT 1860
GTGGCATGAA AGTGGAAATAT GCCACCCAAA TACCCGCCAG GCTAGAGGGC CCTGGGAGAG 1920
TGCAGGGGAC GAGTGCCTCA GAAGCCCAGC CCCGGTACCT GGTCTCAGCT CCACCTGGGG 1980
TGGGTCCCAG TGTGCAGCAG AAGGGCCGAG TTTGGAGCCC CTCCCTCTC CTCTAGGTGG 2040
GGGATGGGGG ATTTGTTCCA GGGCCGTGGA CCCTCCAGGG TGGGATGCCG CCCTGCTCAT 2100
GACACTGCCGC GCAGGTACCG CTATTACCAAG AATGTGTGCA CGCAAAGCTA CTCCTCGTG 2160
TGGTGGGACT GGGCCCGCTG GGAGCGAGAG ATAGACTGGA TGGCGCTGAA TGGCATCAAC 2220
CTGGCACTGG CCTGGAGCGG CCAGGAGGCC ATCTGGCAGC GGGTGCCTGC CCACTGTCCC 2280
TTCCCCACCC TCCTCTATGG CGGGAGCCAC CGTAGGTGTT TTCACCCGCC CCCCAGCATG 2340
GGCGCAGTGT CTCTCTCTAG AAGTGCTTTC AGCGTGCACA GTGGCTGGG CCTCCTAAAA 2400
ACTGAGGCTT CCGGCCGGGC GCGGTGGCTC ACGCCTGTCA TCCCAGCACT TCGGGAGGCC 2460
TAGGCAGGGCG GATCAGGAGT TCAGGAGATC GAGACCATCC TGGCCAACAT TGTGAAACCC 2520
CGTCTCTACT AAAATACAAA GAAATAGCAA CCTGGGCAAC AGAGCGAGAC TCTGTCTAAA 2580
AAAAAAAAAAA AAAAAAAACTG AGGCTTCCAG TTTGAGGAGT GGGGCTCCTT CCCCCATCTC 2640
CCCTATGCAG CCAATCACCT GGTCCCTTGG ATCCAACTCA TGGGCAGCTC TAGATCTGCC 2700
TCCCTGGAAG CTTCTGTGCT GCAATGGCTG CTCCAGGCTC TGCTTAAGCT CTTCACACAG 2760
TTGCCCTGCC CTTCCATCTG GCACTCTTGC TCCATGAAGC CTTCTAAGGC CTTCTGTTG 2820

GGGGAAAGCC CCTTGTGCC CCATCTCCTC ACCCATGCGA CAAAGGCAAC ACAGTGAACT 2880
CACCTACTCA CAGGTCTCTT TCCTCTGGC TGTGGGCTCC TTGATGGCAG CGTCGGATT 2940
TTGTCTCAGT AGCCCTAGCA CCCAGCACAA AGAAGCAATG AGTGAATGGT TGTTGAATGA 3000
ATGAATGAAT GAATGAAGAT GAATATATTT CTATGTGTGG GCCCTTCTTC CTCAGGTGTA 3060
CCTGGCCTTG GGCGTGACCC AGGCAGAGAT CAATGAGTTC TTTACTGGTC CTGCCTTCCT 3120
GGCCTGGGG CGAATGGCA ACCTGCACAC CTGGGATGGC CCCCTGCC CTCCTGGCA 3180
CATCAAGCAG CTTTACCTGC AGGTAAAAGG ATGGAAAAGG GAAGGGCAG AATCGGTGAT 3240
AGATGGTCAT GGGCCCAGGA AGGGTGGTAT TAGGCCGGCC CCAGGGCTCT TAACTGAGGC 3300
GGGGGGCTGC GTGTATCCTG GGAGATGAGG GCCTTCTCAT AGGACAGCAG TGGCCATGCT 3360
CACCACCCCTT CCTTCTGTTC CTCCAGCACC GGGCCTGGA CCAGATGCGC TCCTTCGGCA 3420
TGACCCCCAGT GCTGCCTGCA TTCGCGGGGC ATGTTCCCGA GGCTGTCACC AGGTGAGGTT 3480
CCGCTCACCC CCTCCACTTA GCTCAGAGAG GGAATTCTAT TCCCTTCTAG AACATGACTT 3540
AAAAAACTTAA GCTCTGGGCC GGGCGCAGTG GCTCACGCCT GTAATCCCAG CACTTTGGGA 3600
GCCCGAGTTG GGCGGATCAC CTGAGGTCAG GAGTCGAGA CCAGCCTGGC CAACATGGTG 3660
AAACCCCTGTC TCTACTAAAA ATATAAAAAT TAGCTGGCA TGGTGGCACG CGCCTGTAAT 3720
CCCATCTACT TAGGAGGCTG AGACAGGAGA ATTGCTTAAA CCTGGGAGGC AGACGTTGCA 3780
GTGAGTCAAG ATCACGCCAT TGCACCTCAG CCTGGGTGAC GAGCGAAACT CTGTCTCAA 3840
CAAACAAACA AGCTCTGGAC GTAGGCCTGG GTTTGATTTC TGACTCTGCT ACTAATTAGC 3900
TGTGTGACTT CGGGCAGATG ACATGACTGC TCTGTGCCTC AGTTCCCTTA CTTGTAAAAT 3960
GGGATCTCTA CCCACTTCGC TGTAGGGTTT GTAATTATCT CTCGATCTAT CTGTGACTTT 4020
GCACAGAGTG CTAGCAAATG GCAGCCCTTG GGAGTGGCAG CAGGGGTGCT CCAGTGTCCC 4080
TTGTCCCTCC TGTTCCCTTG TGCTTCCCAG CCATCCTCTC ACATGTGGTT GGGAAAAGTC 4140
TTCAAGGCTC ACCTGAGACC TCCCCTCCTT CAGGAAGCCT TGCTAGTGCC CCGCATGACC 4200
TCCTTGACAC CTGCTAATGT CTGGCTCCA TACTCTCGTA GGACTTAATG CATGCCAGTG 4260
GCCTCCCTGC CCGCCTCTT GCCCCCCATCA CCAGGTGGCA GGAAACTCAC TCATTCATT 4320
AATAAACTTG GTCCAGCTGT CTGAGGCTGC CAGAACTGGC TGTGCTGGGT CCTGGGAGGC 4380
GGCAAGAAAG GTGCCAAGG GCTTACCCCT GATAAGGAGAG ATATGTTGGC TGAAGGATAC 4440
AATGTGGGGA CAAGGACAGG AATATATGTG GGTTCCGCTC TCCTCTGCCG GGAGAGAGGG 4500

GCAGGAAGGG CTCAGGGCAG AGCCCAGCCT TGAAAAATGA GTGTTGCTTG GACGGACGCT 4560
TGGCTAATGC TTGTAATCCT AGCGTTTGG GAGGCTGAGG CGTATGGATC ACCTGCGGTC 4620
AGGAGTTAAA GACCAGCCTG GCCAACATGG CGAAACCCCA TCTCTACTAA AAGTACAAA 4680
ATTAGCCAGG CGTGGTGGCG GGCTCCTGTA ATCCCAGCTA CTCGGTAGGC TGAGGCATGA 4740
GAATCTCTTG AAGCCAGGGG CCAGAGACTG CAGTGAGCCG AGATCACACC ACTTCACTCC 4800
AGCCTGGGTG ACAGAGTGAG ACTCCGTCTC AAAAAAAAAG AAAAAAAAAG GAAAGAAAAT 4860
TAAACACCTC ATGTTCTCAC TCATAGTGGG AGTTGAACAA TGAGAACAAAC ATGGACACAG 4920
GAAGGGGAAC ATCACACACC GGGGCCTTTC GCGGTGTGGG GGTCAAGGGG AGGAGTAGCA 4980
TTGGGACAGA TACTTAATGC ATGCGGGCT GAAAACCTAG ATGATGGTT GATGGGTGCA 5040
GCAAACCACC ATGGCACATG TATACTATG CAACAAACCT GCATGTTCTG CACAGAACTG 5100
AACTGAAAGT ATAATTAAAAA AAAAAAAAAG AAGCTGGGTG CGGTGGCCCA CACCTGTAAT 5160
CCCAGCACTT TGGGAGGCCG AGACGGGCGG ATCACAAGGT CAGCAGATCG AGACCACCT 5220
GGCTAACACA GTGAAACTCA GTCTCTACTA AAAATACAAA AAATTAGCCG GGTGTGGTGG 5280
CGGGCACCTG TAGTCCCAGC TACTAGGGAG GCTGAGGCAG GAGAATGGCA TGAACCTGGG 5340
AGGCAGAGCT TGCAGTGAGC TGAGAATGCG CCACTGCACT CCAGCCTGGG GGACAGAGTG 5400
AGACTCTGCC TCAAAAAAAA AAAAAAAAAG AAAGAAAAAG GAGCGTTGCT TGTTTCAGGC 5460
CACAGGAAGG GGAGAGATAG TGAAAGTTT TCAGAGAAGG TGGCCAGGGA AGGAGAAGAA 5520
AGGACTGTAG GCAGAGAGCA TAGCCTGTAC AAAGCCATAG AGGCAAGAGA ACCAGGAGC 5580
TGTAGAGAAG TTGGCAAGGC TGTTGAACAC TATGGTGAAC ACTATGGCGG CTTCCATGAA 5640
ATATCTGAGC TTTGCTCCC CACTAGGGTG TTCCCTCAGG TCAATGTCAC GAAGATGGGC 5700
AGTTGGGGCC ACTTTAACTG TTCCTACTCC TGCTCCTTCC TTCTGGCTCC GGAAGACCCC 5760
ATATTCCCCA TCATCGGGAG CCTCTTCCTG CGAGAGCTGA TCAAAGAGTT TGGCACAGAC 5820
CACATCTATG GGGCCGACAC TTTCAATGAG ATGCAGGCCAC CTTCCTCAGA GCCCTCCTAC 5880
CTTGGCGCAG CCACCACTGC CGTCTATGAG GCCATGACTG CAGGTACAGT GCCTGGGTGG 5940
GGTGGGAGAG CCCCCCAGAC CCTAAAAAG AAGGGAGTAG CAGATGTCAG TAGGGTAGG 6000
CAGAGGGACT GGAATAATGC CTCGCCATAA CACACAGTAC TTTATAGTTT ACCAAGCACG 6060
TGTACACATG CGTTGTCTCA GTGAATCCA CTGTGGTTGA GAGGTGAGCT CTGGAAGCCA 6120
ACAACCTGGG TCACACCTCG CGCTCCTATT TCCTGGCCGT GTGACTTATG ACTCATGACC 6180

TCCCTCCCAG TGTCTCGTTT GCTTTTCCTG TAAACTGGGA CTACCTCATA GGTAGAATAA 6240
CGCCTGGCCC AGAGCAAAGG CCACTAAGAG CTAGCTATGA ACAAGGATT TGTTTCATCT 6300
CTGCGTGGTT GCTGAAGTAG GCACTCAGG CAGGAGGTGA GTGGATGTGC CTAAAGGCAC 6360
TAAGTGCGCA TCCTGCTACA AAACTGTGAA GCCAGGGCTC CTTCCTGCCA CTTAAAGGAG 6420
GAGTGGAGCA GAGGGCGCCC AAGTCAGGAA TGACTTAGTG GAGAGGCGTC TGTGTTGGCC 6480
AGGAAGGGAA CAGATCAGCT CAGCCTTCT TGAGCAGTAC TGCTCCAAGT GTGACCCAAA 6540
ACCAGCAGCA GCAGCAGCAG CAGCCGAGC TGTGAGATGG CAAATTCTCA GGCCCTACCC 6600
AAGACCTGAA GGAGAAAGCTA CATTTTTTT TTTTTGAGA CAGATTCAC TCTGTTGCTG 6660
AGGCTGGAGC ACAGTGGCAC AATCTCATCT CACTGCAACC TTCGTCTCCT AGGTTCAAGC 6720
GATTCTCCTG CCTCAGCCTC CCGAGTAGCT GGGACTATAG GCACCCGCCA CCACGCCCGG 6780
CAATTTTGT TTGTTTGAG ATAGAGTCTC GCTCTGTCAC CCAGGCTGGA GTGCAGTGGC 6840
ACGATCTCAG TTCACTGCAA CCTCTGCTTC CTGAGTTCAA GCGATTCTCC TGCCTCAGCC 6900
TCCTGAGTAG CTGGGATTAC AGGCGCCCCC CAACCACACT CGGCTAATT TTGTATTTT 6960
AGTAGAGACG GGGTTTCGCT ATGTAGGTCA AGCTGGTTTC AAACCTCTGA CCTCAAATGA 7020
TTCGCCCACT TCAGCCTCCC AAAGTGCTGG GATTACAGGT GTGAGCCACC TTGCCTGGCC 7080
AATTTTGTGTA TTTTTAGTAG AAACAGGTTT CACCATGGTG GCCAGACTGG TCTCAAACTC 7140
CTGACCTCAG GTGAAC TGCC CACCTCAGCC TCCCAAAGTA CTGGTATTAC AGGCGTGATC 7200
CACTGCGACT GGCCTTGATT TTGTTTTGA GACAGAATCT TACTCTGTCG CCCAGACTGG 7260
AGTGCAGTGG CACAATCTCA GCTCACTGCA ACTTCTGCCT CATGGGTTCA AGTGATTCTT 7320
GTGCCTCTAC CTCCCGAGTA GCCGGGATTA CAGGCACCTG CCATTACGCT AGGCTAATT 7380
TTGTATTTT AGTATAGACA GGGTTTCCCC ACATTGCCA GGCTGGTCTG GAACTCCTGG 7440
GCTCAAGTGA TCCACCTGCT TCAGCCCTC AGAGTACTGG GATTATAGGT GTGGGCCACC 7500
ACGCCCATTC AGAACCTCC ATGTTTAAG GAGCCCTCTG GGTAACCTCTC ATGTTCACCC 7560
AAGCTGCTGA ACCCTGCTCT GGAGTTTCA GAGGGACGCG TATGTGCCAC AGAGCGTCCC 7620
GCTGGTGGGG GTCATGGAA GCCATGACCT GGGATAGACA GTCGTCTGTA GAGTGGGTG 7680
AACATTCCCT GGGCCCTCTG TTTCATCACT CCTCTTCTCT GTTCCCCCTA CCTCCTGTCC 7740
ACAGTGGATA CTGAGGCTGT GTGGCTGCTC CAAGGCTGGC TCTTCCAGCA CCAGCCGCAG 7800
TTCTGGGGGC CCGCCCAGAT CAGGGCTGTG CTGGGAGCTG TGCCCCGTGG CCGCCTCCTG 7860

GTTCTGGACC TGTTGCTGA GAGCCAGCCT GTGTATAACCC GCACTGCCTC CTTCCAGGGC 7920
CAGCCCTTCA TCTGGTGCAT GCTGCACAAC TTTGGGGAA ACCATGGTCT TTTTGGAGCC 7980
CTAGAGGCTG TGAACGGAGG CCCAGAACGCT GCCCGCCTCT TCCCCAACTC CACCATGGTA 8040
GGCACGGGCA TGGCCCCCGA GGGCATCAGC CAGAACGAAG TGGTCTATTG CCTCATGGCT 8100
GAGCTGGGCT GGCGAAAGGA CCCAGTGCCA GATTTGGCAG CCTGGGTGAC CAGCTTGCC 8160
GCCCGGCGGT ATGGGGTCTC CCACCCGGAC GCAGGGCAG CGTGGAGGCT ACTGCTCCGG 8220
AGTGTGTACA ACTGCTCCGG GGAGGCCTGC AGGGGCCACA ATCGTAGCCC GCTGGTCAGG 8280
CGGCCGTCCC TACAGATGAA TACCAAGCATC TGGTACAACC GATCTGATGT GTTTGAGGCC 8340
TGGCGGCTGC TGCTCACATC TGCTCCCTCC CTGGCCACCA GCCCCGCCTT CCGCTACGAC 8400
CTGCTGGACC TCACTCGGCA GGCAGTGCAG GAGCTGGTCA GCTTGTACTA TGAGGAGGCA 8460
AGAAGCGCCT ACCTGAGCAA GGAGCTGGCC TCCCTGTTGA GGGCTGGAGG CGTCCTGGCC 8520
TATGAGCTGC TGCCGGCACT GGACGAGGTG CTGGCTAGTG ACAGCCGCTT CTTGCTGGC 8580
AGCTGGCTAG AGCAGGCCCG AGCAGCGGCA GTCAGTGAGG CCGAGGCCGA TTTCTACGAG 8640
CAGAACAGCC GCTACCAGCT GACCTTGCGG GGGCCAGAAC GCAACATCCT GGACTATGCC 8700
AACAAAGCAGC TGGCGGGGTT GGTGGCAAC TACTACACCC CTCGCTGGCG GCTTTCCCTG 8760
GAGGCGCTGG TTGACAGTGT GGCCCAGGGC ATCCCTTCC AACAGCACCA GTTTGACAAA 8820
AATGTCTTCC AACTGGAGCA GGCTTCGTT CTCAGCAAGC AGAGGTACCC CAGCCAGCCG 8880
CGAGGAGACA CTGTGGACCT GGCAAGAAC ATCTTCCTCA AATATTACCC CGGCTGGGTG 8940
GCCGGCTCTT GGTGATAGAT TCGCCACAC TGGGCCTTGT TTTCCGCTAA TTCCAGGGCA 9000
GATTCCAGGG CCCAGAGCTG GACAGACATC ACAGGATAAC CCAGGCCTGG GAGGAGGCC 9060
CACGGCCTGC TGGTGGGGTC TGACCTGGGG GGATTGGAGG GAAATGACCT GCCCTCCACC 9120
ACCACCCAAA GTGTGGGATT AAAGTACTGT TTTCTTCCA CTTAAACTGA TGAGTCCCCT 9180
GGGTCTGTCA AAATGAGAAC GTCACTGCTG CCACGCTTGG GAGGACTCAG GGCTATAGCA 9240
TGGCCCTGGG GTGGGACCTG TTCTCCCATC CTTGCCTCA CGTCCCTGTT TTTGTTGTT 9300
TGTTTGTGTT TGACGGAGCC TTGGTCTGTT GCCCAGGCTT GAGTACAATG GCACAGTCTC 9360
GGCTCACTGC AACCTCCGCC TCCTGGGTTA AAGCAATTCT TGTGCCTCAG CCTCCCCGGT 9420
AGCTGGGACT ATAGGCATGC ACCACACAC CAGGCTAATT TTTTTTTTC CAAGATGGAG 9480
TCTTGCTCTG TCGCCCAGGT TGGAGTTAG TGGCACCATA TTGGTTTACT GCAACCTCTG 9540

CCTCCCGGGT TCAAGCAATT CTCCTGCCTC AGTCTACCAG GGAGTTAGGA CTACGGGCCT 9600
GTGCCATCAC GCCTGGCTAA TTTTGTTATT TTTCATAGAG ATAAGGTTTC ACCATGTTGG 9660
CCAGGCTGGT CTTTAACCTCC TGAACTCAAG TGATCCACCT GCCTCGGCCT TCCAAAGTGC 9720
TGGGATTACA GGAGTGAGCC ACCGTGCCCG GCCATGTCTC TCTTTTAAC ACTAATGTTA 9780
CCCTGACCTT TGAACGTAGA ATGCCCTTCT GTTGCAGGAA AACCTTTTT CAAACCATGT 9840
TTGTCCTTG CTGGCATGCC ACAGCAACAG TCACCAACAC AGAAGACTTC TGTGACCAAA 9900
TATTTGGAGG ATTTTCCCCA CACACACCAA GCAGCAGACA TCAGCTGGGT GTCCTCCAAT 9960
TCAGTTCAA TGTAATCAAC CAGAGACAGC ATCAGATCCC ACAGGGTTAG GGTGCAGATC 10020
CATGAGACCA CCCCTCCTT CCCAACGGTT ACAAGTCCTG ATCCCTGGAA CTTCTGACTA 10080
ACTGGCTTCA AGTTGGAGTT CCCATGACCC CCTTCCCTC TTTGGAGTCA ACTCATTGTC 10140
GACAGTGACC CACGAAACAC AGGGAAACCC TTATTATGTT TATTGCTTTA TTACAGAGGA 10200
AAAAAAATTT TTTCTTCTT TTTGAGACA GGGTCTCACT CTGTCATCCA GAATGACTGC 10260
AGTGGCAGGA TCTGGCTCCG TCACCCAGGC TGGAGTGCAG TGGCATGATC TCGGCTCACT 10320
ACAGCCTCCA TCCCCCCCAA ACCCCACGCC TCAGCGCCCC ACCCCGCAAG TGGCTGGGAC 10380

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(ix) FEATURE:

(A) NAME/KEY: Modified-site
(B) LOCATION: 10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Asp Glu Ala Arg Glu Ala Ala Ala Val Arg Ala Leu Val Ala Arg
1 5 10 15

Leu Leu Gly Pro Gly
20

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(ix) FEATURE:

(A) NAME/KEY: Modified-site, glycosylated or
phosphorylated, wherein Xaa may be any
amino acid residue, preferably Arg.
(B) LOCATION: 16

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Lys Pro Gly Leu Asp Thr Tyr Ser Leu Gly Gly Gly Gly Ala Ala Xaa Val
1 5 10 15

Arg

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(ix) FEATURE:

(A) NAME/KEY: Modified-site, glycosylated or
phosphorylated, wherein Xaa may be any
amino acid residue, preferably Ala

(B) LOCATION: 12

(ix) FEATURE:

(A) NAME/KEY: Modified-site, glycosylated or
phosphorylated, wherein Xaa may be any
amino acid residue, preferably Ser

(B) LOCATION: 14

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Trp Arg Leu Leu Leu Thr Ser Ala Pro Ser Leu Xaa Thr Xaa Pro
1 5 10 15