Métodos de Aprendizaje NO Supervisado

TP4 Sistemas de Inteligencia Artificial ler Cuatrimestre 2021

Grupo 3: Gonzalo Hirsch - 59089 Florencia Petrikovich - 58637 Juan Martin Oliva - 58664

01

Resumen

Resumen del trabajo realizado durante el TP

02

Enfoque

Descripción de cómo se construyó el código y cómo enfocamos el trabajo

03

Resultados

Resultados obtenidos en diferentes pruebas

04

0

Conclusiones

Conclusiones a partir de los resultados

O1 Resumen

Resumen del Trabajo

Implementación

Implementar diferentes tipos de redes que usan aprendizaje NO supervisado.

Problemas

Se buscó resolver problemas relacionados a componentes principales, asociaciones por similitudes y búsqueda de patrones.

O2 Enfoque

Enfoque del Trabajo

Guías Principales

- Separar los problemas en conjuntos de código diferentes
- Aprovechar operaciones vectorizadas de librerías
- Reusar estructura de TPs anteriores para acelerar desarrollo
- Pruebas con ejemplos de la clase

O3 Resultados

FORMULAS

$$radius(t) = rac{1 - (k imes \sqrt{2})}{iterations} imes t + (k imes \sqrt{2})$$

$$\eta(t) = \begin{cases} \frac{1}{iterations} & \text{if } t \leq \text{iterations} * 0.25 \\ \frac{1}{iterations} & \text{otherwise.} \end{cases}$$

$$\eta'(distance, radius, \eta) = e^{rac{-1 imes distance}{radius}} imes \eta$$

Mapa 2x2 - Agregación

+

Agregación durante las 1.200 epochs

4

Mapa 2x2 - Última Época

Mapa 2x2 - Agrupaciones

+

Bulgaria Czech Republic Croatia Ireland Estonia Slovenia Hungary Latvia Spain Lithuania Poland Slovakia Ukraine 0 Austria Finland Belgium Greece Portugal Denmark Germany United Iceland Kingdom Italy Luxembourg Netherlands Norway Sweden Switzerland 0

Mapa 2x2 - Agrupaciones

+

Mapa 3x3 - Agregación

+

Agregación durante las 2.700 epochs

+

Mapa 3x3 - Última Época

Mapa 3x3 - Agrupaciones

2	Germany Slovenia	Italy	Bulgaria Estonia Hungary Latvia Lithuania Ukraine
1		Slovakia	Croatia Greece Poland Spain
0	Austria Denmark Iceland Ireland Luxembourg Netherlands Portugal	Belgium Norway Sweden Switzerland	Czech Republic Finland United Kingdom
	0	1	2

Mapa 3x3 - Agrupaciones

+

Mapa 4x4 - Agregación

+

Agregación durante las 4.800 epochs

4

Mapa 4x4 - Última Época

Mapa 4x4 - Agrupaciones

2	Sweden	Bulgaria Hungary Latvia Lithuania Ukraine Czech Republic	Estonia	Belgium Slovenia Finland Greece
1	Ireland Italy Spain	Poland		Portugal
0	Iceland Luxembourg Switzerland	Austria Croatia Netherlands	Germany Norway United Kingdom	
	0	1	2	3

Mapa 5x5 - Agregación

+

Agregación durante las 7.500 epochs

4

Mapa 5x5 - Última Época

Mapa 5x5 - Agrupaciones

4			Lithuania Poland	Czech Republic Hungary	Bulgaria Ukraine United Kingdom	
3	Spain	Germany Slovakia	Greece		Portugal	
2		Austria	Estonia	Norway	Luxembourg	
1		Croatia	Latvia Slovenia	Finland	Belgium Denmark	
0			Iceland		Ireland Italy Netherlands Sweden Switzerland	
	0	1	2	3	4	

Error Promedio vs Epochs

Dejar fijo el learning rate (0.005) y cambiar las epochs límite

Error = suma de las diferencias entre cada componente

Menor error y desvío con epochs = 10.000 +

Error Promedio vs Learning Rate

Dejar fijas las epochs límite (10.000) y variar el learning rate

Errores MUY chicos en todos los casos

Error Promedio vs Learning Rate (Con Zoom)

Resultado		

	Area	GDP	Inflation	Life.expect	Military	Pop.growth	Unemployment
Cálculo de PCA	0.124874	-0.500506	0.406518	-0.482873	0.188112	-0.475704	0.271656
Cálculo de Oja	0.124924	-0.500499	0.406551	-0.482874	0.188077	-0.475703	0.271621

Diferencias del orden de 10⁻³ o 10⁻⁴ en general

Separa en áreas grandes, países con Inflación y Desempleo, y en países con buen PBI, Expectativa de Vida y Crecimiento Poblacional

Patrones

+

```
[ -1 1 1 -1 -1 ] [ * * * ]
[ 1 -1 -1 1 1 -1 ] [ * * * ]
[ 1 -1 -1 1 1 -1 ] --> [ * * ]
[ -1 1 1 1 -1 -1 ] [ * * * ]
[ -1 -1 -1 1 1 -1 ] [ * * ]
```

Letra Q

Letra V

```
[1 -1 -1 1 -1] [* * ]
[1 -1 1 -1 -1] [* * ]
[1 1 -1 -1 -1] [-> [* * ]
[1 -1 1 -1 -1] [* * ]
[1 -1 1 -1 1 -1] [* * ]
```

Letra K

Letra T

	Letra Q	Letra K	Letra V	Letra T
Letra Q	-	3	1	1
Letra K	3	-	-1	3
Letra V	1	-1	-	1
Letra T	1	3	1	-

Ortogonalidad entre patrones para ver si son adecuados, post análisis entre todas las letras

Variación de Ruido

Aumentar el error para ver la capacidad de la red

Estados representados como números para poder visualizar bien

Ejemplo de Corrida

```
NEW TEST CASE
+ Step 0
   Step 1
   Step 2
   Step 3
   STABLE, PATTERN FOUND, MATCHES INPUT 3
```

Patrón T, con 5 puntos de ruido

Patrón K, con 7 puntos de ruido

```
NEW TEST CASE
Step 0
Step 1
            -1 -1
Step 2
STABLE, PATTERN FOUND, MATCHES INPUT 0
```

Patrón Espúreo

```
[ 1 1 -1 1 -1 ] [ 1 1 1 1 -1 ]

[ -1 -1 -1 -1 -1 ] [ 1 -1 1 -1 -1 ]

[ 1 1 1 -1 -1 ] --> [ 1 -1 -1 -1 -1 ]

[ -1 1 1 -1 -1 ] [ -1 -1 1 -1 -1 ]

[ 1 -1 1 1 -1 ] [ -1 -1 1 -1 ]
```

Patrones muy ruidosos

Estados espúreos alcanzados _

Conclusiones

Conclusiones + Alcanzadas

Convergencia de Kohonen

Puede dar agrupaciones muy interesantes, pero cambia mucho entre corridas

Convergencia de Oja

Puede converger rápidamente y además tener un error muy chico

Capacidad de Hopfield

Tiene una gran capacidad para identificar patrones aún habiendo ruido

NO Supervisión

Todos estos métodos en conjunto permiten sacar buenas conclusiones sin supervisión

1

¡Gracias!

¿Preguntas?

ghirsch@itba.edu.ar fpetrikovich@itba.edu.ar juoliva@itba.edu.ar

