Prüfungsteilnehmer	Prüfungstermin	Einzelprüfungsnummer	
Kennwort:	Frühjahr	46113	
Arbeitsplatz-Nr.:	2012		
Erste Staatsprüf	ung für ein Lehramt an öf — Prüfungsaufgaben —		
Fach: Informatil	(Unterrichtsfach)		
Einzelprüfung: Theoretisc	he Informatik		
Anzahl der gestellten Themen (A	Aufgaben): 2		
Anzahl der Druckseiten dieser V	Vorlage: 4		

Bitte wenden!

Thema Nr. 1

1. Binärzahlen mit Prüfziffer

Sei $\Sigma = \{0,1\}$. Eine Binärzahl mit Prüfziffer ist ein Wort der Sprache

$$\mathcal{L}_p = \{b_0 \dots b_n b_c \mid n \ge 0 \land b_c = \begin{cases} 0, & \text{falls die Anzahl der 1en in } b_0 \dots b_n \\ & \text{gerade ist} \\ 1, & \text{sonst} \end{cases}$$

- (a) Zeigen Sie durch Angabe einer Grammatik, dass \mathcal{L}_p regulär ist.
- (b) Geben Sie die Äquivalenzklassen der Sprache \mathcal{L}_p (bzgl. des Satzes von Myhill/Nerode) an.
- (c) Zeigen Sie mit dem Pumping-Lemma: Die Sprache

$$\mathcal{L}_{P'} = \{b_0 \dots b_n b_c \mid n \ge 0 \land b_c = \begin{cases} 0, & \text{falls die Anzahl der 1en in } b_0 \dots b_n \\ & \text{kleiner als die der 0en ist} \end{cases} \}$$

$$1, & \text{sonst}$$

ist nicht regulär.

(d) Zeigen Sie: Die Sprache $\mathcal{L}_{P'}$ ist kontextfrei.

2. Endliche Automaten

(a) Sei $\Sigma = \{a, b\}$. Gegeben sei der folgende nichtdeterministische endliche Automat A über Σ :

Geben Sie die Sprache $\mathcal{L}(A)$ des Automaten an.

- (b) Konstruieren Sie mittels der Potenzmengenkonstruktion einen deterministischen endlichen Automaten A' mit $\mathcal{L}(A') = \mathcal{L}(A)$.
- (c) Minimieren Sie den Automaten A' oder zeigen Sie, dass dieser bereits minimal ist.

Thema Nr. 2

Annahmen:

Sie dürfen als bekannt und bewiesen voraussetzen:

Die Sprache $\{a^n b^n \mid n \ge 1\}$ ist nicht regulär.

Die Sprache $\{a^n b^n c^n \mid n \ge 1\}$ ist nicht kontextfrei.

Um zu zeigen, dass eine Sprache L regulär (kontextfrei) ist, reicht die Angabe einer entsprechenden Beschreibung (Automat, Grammatik, Ausdruck).

Sie müssen nicht mehr zeigen, dass Ihre Beschreibung korrekt ist und genau die vorgegebene Sprache beschreibt.

Aufgabe 1: reguläre Mengen

Sei L die Menge aller Worte über dem Alphabet {a, b}, bei denen das erste, dritte und das zweitletzte Zeichen gleich sind.

Beschreiben Sie L

- a) durch einen regulären Ausdruck.
- b) durch einen deterministischen endlichen Automaten A.

Beachten Sie auch die kurzen Worte!

Aufgabe 2: regulär oder nicht

L besteht aus der Menge aller Binärzahlen ohne führende Nullen über dem Alphabet {0,1}, die durch 3 oder durch 8 teilbar sind.

Ist die Sprache L regulär oder nicht?

Begründen Sie Ihre Antwort durch die Angabe einer passenden Beschreibung für L oder den Nachweis, dass L nicht regulär sein kann.

Aufgabe 3: Abschlusseigenschaften

Für zwei Sprachen X und Y sei $X \otimes Y = \{w \mid (w \in X \text{ und } w \in Y) \text{ oder } (w \notin X \text{ und } w \notin Y).$

Begründen Sie, dass X⊗Y regulär ist, wenn X und Y regulär sind.

Aufgabe 4: Minimierung von deterministischen endlichen Automaten

Minimieren Sie den DFA $A = (Q, \{a,b\}, \delta, 0, F)$ mit $Q = \{0,1,2,3,4,5\}, F = \{1,2,3\}$ und δ mit nachfolgender Tabelle

	0	1	2	3	4	5
a	1	2	3	1	4	5
b	4	3	1	2	5	4

Aufgabe 5:

Gegeben sei die Sprache L mit der Menge aller Worte über $\{a\}^* \{b\}^* \{a\}^*$, bei denen die Anzahl der a's gleich der Anzahl der b's ist.

- a) Zeigen Sie, dass L kontextfrei ist.
- b) Zeigen Sie, dass L nicht regulär ist.

Aufgabe 6:

a) Konstruieren Sie eine Turingmaschine M für die Sprache

$$L = \{w c w^R c w \mid w \in \{a, b\}^+\}$$

Dabei ist w^R die Spiegelung von w (w wird rückwärts gelesen).

b) Welche Zeit-Komplexität hat Ihre Turingmaschine M?

Aufgabe 7:

- a) Definieren/Beschreiben Sie, wann ein Problem (eine Sprache) NP-vollständig ist.
- b) Beschreiben Sie ein NP-vollständiges Problem.

Die Beschreibung kann etwa so aussehen:

Das Kürzeste-Wege-Problem:

Gegeben ist ein Graph G mit Längen auf den Kanten, einem Startknoten s und einem Zielknoten t und eine Zahl k.

Frage/Problem: Gibt es einen Weg von s nach t der Länge $\leq k$?

Hinweis: Das Kürzeste-Wege-Problem ist nicht NP-vollständig.