ECE 50024 Homework 1

Parth Sagar Hasabnis

phasabni@purdue.edu

Exercise 1:

Mean of the distribution is: 0.026005414594233493.

Standard Deviation of the distribution is: 0.9907009680534483.

Exercise

b) v) The histogram with 4 bins does not represent the data very well, as the number of bins is too less. It does not provide adequate information about the mean or the variance of the data.

Likewise, loop is far too many bins for the given data. Even though we can obtain some information about the mean and variance, the plot appears to be noisy, and a trend in the data is not discernable

Optimal number of bins = 15

Exercise 2:

a)

$f_{X}(x) = \frac{1}{\sqrt{(2\pi)^{2} \Sigma }} \exp\left\{-\frac{1}{2}(x-u)^{T} \Sigma^{-1}(x-u)^{T}\right\}$
$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \chi = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} \mathcal{M} = \begin{bmatrix} \chi_1 \\ \chi_1 \end{bmatrix} \mathcal{M} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} \mathcal{M} = \begin{bmatrix} \chi_1 \\ \chi_1 \end{bmatrix} M$
: (x-u) \(\frac{7}{\infty} - 1\)
$= \begin{bmatrix} \chi_{1} - 2 & \chi_{2} - 6 \end{bmatrix} \times 1 \begin{bmatrix} 2 & -1 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} \chi_{1} - 2 \\ \chi_{2} - 6 \end{bmatrix}$
$= \frac{1}{3} \left[2(\chi_{1}-2)-1(\chi_{-6}) -1(\chi_{1}-2)+2(\chi_{2}-6) \right] \left[\chi_{1}-2 -2 \right] \left[\chi_{2}-6 \right]$
$= -2 \left[(\chi_1 - 2)(\chi_2 - 6) - (\chi_1 - 2) - (\chi_2 - 6) \right]$
$= -2 \left[-\chi_{1}^{2} - \chi_{2}^{2} + \chi_{1} \chi_{2} - 2\chi_{1} + 16\chi_{2} - 28 \right]$

(b)	ii) $X \sim N(0, I)$: $\mathcal{M}_{x} = \overrightarrow{0}$ $\Sigma_{x} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
	$\sum_{\chi} = 100$
	$Y = A \times + b$
	: IE [Yn] = [E \(\sum_{\text{ank}} \text{Xk+bn} \)
	N IF
	$= \sum_{k=1}^{N} a_{nk} \left[\left[X_k \right] + b_n \right]$
	C =
_	
_	[[]] = Z _{k=1} Q ₂
	[E[Yn] \(\Sigma_{k=1}^{N}\) ank [E[Xk] +bn]
	[[[]] [Zk=1 ank IL [NR] TON]
	$= \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Q21 Q22 Q2N [E L N2] 7 B2
	ann [E[Xn]] bn
	ani anz ann [[ELAN]] LON
	∧ ¬ + h
	$= A\overrightarrow{o} + b$
	$\mathcal{M}_{y} = b$

$$\sum_{x} = IE \left[(y - M_{y})(y - M_{y})^{T} \right]$$

$$= IE \left[(A \times b - b)(A \times + b - b)^{T} \right]$$

$$= IE \left[(A \times)(A \times)^{T} \right]$$

$$= IE \left[A \times x^{T} A^{T} \right]$$

$$= A IE \left[X \times T \right] A^{T}$$

$$A_{S} M_{X} = 0 \quad IE \left[X \times T \right]$$

$$= IE \left[(X - M_{X})(X - M_{X})^{T} \right]$$

$$= \sum_{X}$$

$$\therefore \sum_{Y} = A \sum_{X} A^{T}$$

Consider an element Zi, of Zy ii) Zi, = Cov (Yi, Yi), Zj, = Cov (Yj, Yi) As covariance is commutative Cov (Yi, Yj) = Cov(Yj, Yi) .. Σί; = Σj;i .. Σγ is a symmetric matrix For a matrix to be positive semi-definite, VT Z,V 20 + VER YT SYV = VT E $V^{T} \sum_{y} V = V^{T} A A^{T} V T$ $= (V^{T} A)(V^{T} A)$ $= (V^{T} A) \cdot (V^{T} A)$ = || VTA||, The Lz norm of a matrix is always greather than or equal to 0. . . Zy is a symmetric positive semi definite matrix

Citi For Zy to be positive definite: VT ZVV >O YXER'-{BNXI} :. YT Zy V = 0 implies V = ONXI $V^{T} \left(A A^{T} \right) V = 0$ $\left(V^{T} A \right) \left(A^{T} V \right) = 0$ $\left(V^{T} A \right) \left(V^{T} A \right)^{T} = 0$ $(v^{T}A) \cdot (v^{T}A) = 0$ $||v^{T}A||_{2} = 0$, v^{T} For the L2 horm of VTA to be zero when v=0, A needs to have full rank i. For Zy to be positive definite, A needs to have full rank, which implies that A needs to be invertible

YNN (My, Ev)
$M_{Y} = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \qquad \qquad \sum_{Y'=1}^{2} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
6 1 2
· A Day A Para Comment
$Y = A \times + b$ $X = N(0, I)$
deally toll months is
We know that Uv+b
b= [2]
6
is neitle appearance of the electron of the
Consider the eigen decomposition of Ex
Σy- λ I=O O=I/- 3
2-2 1 (=0
1 2-5
$(2-\lambda)^2 - 1 = 0$ $(2-\lambda)^2 = 1$
$\lambda = 1 / 3$ $(A - \lambda_i) V_i = 0$
$\lambda_1 = 1$ 1 1 $V_{11} = 0$
1 1 V12
$V_{11}+V_{12}=0 \qquad V_{1}=-V_{2}$
711 - VI - VI - VI
V ₁ = [1]
-1

$$\lambda_{3} = 3 \qquad \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} V_{21} \\ V_{22} \end{bmatrix}$$

$$-V_{21} + V_{22} = 0 \qquad V_{21} = V_{22}$$

$$-V_{22} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\vdots \qquad \text{The matrix } \Sigma_{Y} \text{ has eigen values } \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\vdots \qquad \text{Corresponding to eigenvectors } \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Sigma_{Y} \text{ can be written as:}$$

$$\Sigma_{Y} = V \wedge V^{-1}$$

$$\text{where } V = \begin{bmatrix} V_{1} & V_{2} \\ V_{1} & V_{2} \end{bmatrix}$$

$$V_{13} \text{ a matrix whose coloms give the eigen vectors of } \Sigma_{Y}$$

$$\wedge = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}$$

$$\wedge \text{ is a diagonal matrix whose elements are eigenvalues of } \Sigma_{Y}$$

The results from parts (c)(i) and (ii) are in line with the theoritical findings. The plot of (c)(ii) represents a 2D transformed gaussian quite effectively. Similarly, the A matrix calculated from the transformed samples matches with its hand-calculated counterpart.

Exercise 3:

a) Scatter plot of data

	Exe	rcise	3
b)	₿ <u>=</u>	arg	min y - XB ,
	y F	given	olumn vector whose elements using the following equation yn = Bol + B. L. (xn) + B. L. (xn) + B. L. (xn) + E. L. (xn) + E L. (xn)
		50×	
	β =	β ₀ β ₁ β ₂ β ₃	B is a column vector consisting of multiplicatine coefficients
		β ₄] 5	XI

B = -0.001 & 30000 1 0 0.01 0.01 0.01 0.01 0.01 0.01	
0.01 0/55X pl ninger	
1.5 grando saliza robay amolas salt si	
1.5 solia voltav amola sit	
with the following equation	
14	
X is the data matrix whose Im rou	J
X is the data matrix whose it rouse is given by the it Legendre polynomicalculated over 2	nial
calculated over 2	
3 7 (0) 14 14 1	1
X = [[(21)] [(21)] [(21)] [(21)]	
1 Lo (x2) Li (x2) - 1x02. L4 (x2)	
As to include o leix IN : ax	
att or storing trantzibisps	
1 (X50)	_
50 (XSS) 1 [NSC XSS)	¥ 5
I K OZ	75

The training loss for this linear regression problem is giren by:

$$\mathcal{E}_{\text{train}}(\beta) = \|y - \chi \beta\|^2$$

taking the gradient with respect to B

equating it to zero,

$$X^T X \beta = X^T Y$$

$$\therefore \beta = (X^T X)^{-1} X^T Y$$

c) Least squares solution

d) Presence of Outliers

Observation: The existence of outliers has severely impacted the performance of Least Square regression. The fitted curve has experienced a positive offset, and no longer is representative of the data.

e)	Linear	Programming	Problem
----	--------	--------------------	---------

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \|y - x\beta\|_{1}$$

we denote
$$U_n = |y_n - \chi_n | |g|$$

Subject to
$$U_n = |y_n - \chi_n T_B|$$

The expression $U_n = |y_n - \chi_n T_B|$
(an be written as:

$$U_n \ge -(y_n - \chi_n T_B)$$
 $\downarrow U_n \ge (y_n - \chi_n T_B)$

: Our problem can now be defined
minimize Os Iso B
subject to X - I B & Y -X - I U -Y
It is of the form: minimize CTX x
subject to Ax <b< td=""></b<>
$C = \begin{bmatrix} O_5 \\ I_{50} \end{bmatrix} \chi = \begin{bmatrix} \beta \\ U \end{bmatrix}$ $A = \begin{bmatrix} X - I \\ -X - I \end{bmatrix} b = \begin{bmatrix} Y \\ -Y \end{bmatrix}$
$A = \begin{bmatrix} X & -I & b = & Y \\ -X & -I & & -Y \end{bmatrix}$

