Capítulo 2: Camada de aplicação

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- 2.1 Princípios de aplicações de rede
- □ 2.2 A Web e o HTTP
- □ 2.3 FTP
- 2.4 Correio eletrônicoSMTP, POP3, IMAP
- 2.5 DNS

- 2.6 Aplicações P2P
- 2.7 Programação de sockets com UDP
- □ 2.8 Programação de sockets com TCP

DNS: Domain Name System

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

pessoas: muitos identificadores:

* CPF, nome, passaporte

hospedeiros da Internet, roteadores:

- endereço IP (32 bits) usado para endereçar datagramas
- "nome", p. e., ww.yahoo.com - usado pelos humanos
- P: Como mapear entre endereço IP e nome?

Domain Name System:

- banco de dados distribuído implementado na hierarquia de muitos servidores de nomes
- protocolo em nível de aplicação hospedeiro, roteadores, servidores de nomes se comunicam para resolver nomes (tradução endereço/nome)
 - Nota: função básica da Internet, implementada como protocolo em nível de aplicação
 - complexidade na "borda" da rede

DNS

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Serviços de DNS

- tradução nome de hospedeiro -> endereço IP
- Apelidos (aliases) de hospedeiro
 - * nomes canônicos
- apelidos de servidor de correio
- distribuição de carga
 - servidores Web replicados: conjunto de endereços IP para um nome canônico

Por que não centralizar o DNS?

- único ponto de falha
- volume de tráfego
- banco de dados centralizado distante
- manutenção

Não é escalável!

Cliente quer IP para www.amazon.com; 1a aprox:

- cliente consulta serv. raiz para achar servidor DNS com
- cliente consulta serv. DNS com para obter serv. DNS amazon.com
- cliente consulta serv. DNS amazon.com para obter endereço IP para www.amazon.com

DNS: Servidores de nomes raiz

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- contactados por servidores de nomes locais que não conseguem traduzir nome
- servidores de nomes raiz:
 - contacta servidor de nomes com autoridade se o mapeamento não for conhecido
 - obtém mapeamento
 - retorna mapeamento ao servidor de nomes local

13 servidores de nomes raiz no mundo

-> http://www.root-servers.org/

TLD e servidores com autoridade

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

■ servidores de domínio de alto nível (TLD):

- responsáveis por com, org, net, edu etc. e todos os domínios de país de alto nível: br, uk, fr, ca, jp.
- A Network Solutions mantém servidores para TLD com
- * Educause para TLD edu

servidores DNS com autoridade:

- servidores DNS da organização, provendo nome de hospedeiro com autoridade a mapeamentos IP para os servidores da organização (p. e., Web, correio).
- podem ser mantidos pela organização ou provedor de serviços

Servidor de nomes local -Servidor de Autoridade

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- □ não pertence estritamente à hierarquia
- cada ISP (ISP residencial, empresa, universidade) tem um.
 - * também chamado "servidor de nomes default"
- quando hospedeiro faz consulta ao DNS, consulta é enviada ao seu servidor DNS local
 - atua como proxy, encaminha consulta para hierarquia

Exemplo de resolução de nome DNS

 hospedeiro em cis.poly.edu quer endereço IP para gaia.cs.umass.edu

consulta iterativa:

- servidor contactado responde com nome do servidor a contactar
- não conheço esse nome, mas pergunte a este servidor"

REDES DE

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

consulta recursiva:

 coloca peso da resolução de nome sobre o servidor de nomes contactado

carga pesada?

serv. DNS raiz Uma Abordagem Top-Down 3 serv. DNS TLD serv. DNS local dns.poly.edu serv. DN5 com autoridade dns.cs.umass.edu hospedeiro

hospedeiro solicitante cis.poly.edu

gaia.cs.umass.edu

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

DNS: caching e atualização de registros

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- quando (qualquer) servidores de nomes descobre o mapeamento, ele o mantém em cache
 - entradas de cache esgotam um tempo limite (desaparecem) após algum tempo
 - servidores TLD normalmente são mantidos em caches nos servidores de nomes locais
 - Assim, os servidores de nomes raiz não são consultados com frequência
- mecanismos de atualização/notificação em projeto na IETF
 - * RFC 2136
 - http://www.ietf.org/html.charters/dnsext-charter.html

Registros de DNS

REDES DE COMPUTADORES EAINTERNET 5ª edição

Uma Abordagem Top-Down

DNS: BD distribuído contendo registros de recursos (RR)

formato do RR: (nome, valor, tipo, ttl)

- \Box Tipo = A
 - nome é o "hostname"
 - * valor é o endereço IP
- □ Tipo = NS
 - * nome é o domínio (p. e. foo.com)
 - * valor é o "hostname" do Tipo = MX servidor de nomes com autoridade para este domínio

- Tipo = CNAME
 - nome é apelido para algum nome "canônico" (real) www.ibm.com é na realidade servereast.backup2.ibm.com
 - * valor é o nome canônico
 - - * valor é o nome do servidor de correio associado ao nome

Protocolo DNS, mensagens

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

protocolo DNS: mensagens de consulta/query e resposta, ambas com algum formato de mensagem

cabeçalho da mensagem

identificação: # de 16bits para consulta;resposta usa mesmo #

□ flags:

- consulta ou resposta
- * recursão desejada
- recursão disponível
- resposta é com autoridade

Identificação	Flags	
Número de perguntas	Número de RRs de resposta	– 12 bytes
Número de RRs com autoridade	Número de RRs adicionais	
Perguntas (número variável de perguntas)		
Respostas (número variável de registros de recursos)		
Autoridade (número variável de registros de recursos)		
Informação adicional (número variável de registros de recursos)		

Protocolo DNS, mensagens

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

campos de nome e tipo para uma consulta RRs na resposta

à consulta

registros para servidores com autoridade

informação adicional "útil" que pode ser usada

Inserindo registros no DNS

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- exemplo: nova empresa "Network Utopia"
- registre o nome networkuptopia.com na *entidade registradora de DNS* (p. e., Network Solutions)
 - * oferece nomes, endereços IP do servidor de nomes com autoridade (primário e secundário)
 - * entidade insere dois RRs no servidor TLD com:

(networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)

- crie registro Tipo A do servidor com autoridade para www.networkuptopia.com; registro Tipo MX para networkutopia.com
- □ Como as pessoas obtêm o endereço IP do seu site?

Atacando o DNS

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Ataques DDoS

- Bombardear servidores raiz com tráfego (2002)
 - Não obteve sucesso
 - Filtragem de Tráfego
 - Servidores DNS Locais guarda em cache os Ips dos Servidores TLD
- Bombardearservidores TLD
 - Potencialmente mais perigoso

Ataques de Redirecionamento

- □ Man-in-middle
 - Intercepta consultas
- DNS poisoning (envenamento)
 - Envio de respostas falsas para o servidor DNS, que a armazenará em cache

Exploração do DNS para DDoS

- Envio de consultas com endereço de origem falsificado (spoofed): IP do alvo
- Requer Amplificação

© 2010 Pearson Prentice Hall. Todos os direitos reservados.