

Fundamental Aeronautics Program

Subsonic Rotary Wing Project

Overview of progress in SRW/Engine research effort

Dr. Gerard E. Welch, GRC/RTT
SRW/Engines Technical Lead

2012 Technical Conference
March 13-15, 2012

Research team

GRC in-house

- ARL-VTD / G. Skoch, D. Thurman ARL
- NASA RTT / E. Braunscheidel, S. Kulkarni, B. Lucci, A. McVetta, Dr. G. Welch
- NASA RTM / C. Snyder
- NASA RXN / Dr. S. Howard
- NASA DER / M. Stevens
- ASRC Aerospace/ Dr. P. Giel
- U. Toledo / Dr. W. To
- Ohio State U. / Dr. A. Ameri
- Coyote Hollow Corporation / T. Beach

NRA partner

**United Technologies
Research Center**

Drs. A. Shabbir, W. Cousins,
E. Lurie, P. Van Slooten

RTAPS contracts

Rolls-Royce

A. Ford, M. Bloxham, E. Turner, S.
Gegg, B. King, C. Harris, M. Bell, E.
Clemens, C. Nordstrom, D. Eames

Williams International

M. Suchezky, G. S. Cruzen

Research on engines for LCTR variable-speed capability reflects ...

Sensitivity of vehicle GTOW and fuel burn to engine weight & SFC – drives high efficiency / power density

- High OPR, T_3 , T_4
- High component η
- Compact

} **Gas generator research**

- Aerodynamics of low-corrected flows
- Compressor exit temperatures at high OPR
- Impact of variable-speed PT shaft sizes on LP/HP turbomachinery aero

Sensitivity of LCTR propulsive efficiency to main-rotor speed change

} **Variable speed power turbine research (VSPT)**

- Aerodynamics
- Rotordynamics

Content

Gas Generator & VSPT research efforts

- Technical Challenges
- Research agenda
- Progress on research elements
- Next steps

GAS GENERATOR RESEARCH

Technical Challenge – Aft-stage HPC aero

- 7,500 SHP-class engines for the LCTR2 concept vehicle
 - OPR > 35:1
 - Physical flow of 25 to 30 lb_m/s
- Small aft-stage blading at exit-corrected flows of $\approx 1 \text{ lb}_m/\text{s}$

Technology challenge: Improve efficiency of low-exit-corrected flow centrifugal compressors with compact diffusers

Gas generator research agenda

- **NASA/UTRC High Efficiency Centrifugal Compressor (HECC) – 3 yr. NRA cost-share contract**
 - ID key technical barriers & research
 - Design, fab, assembly, test
 - CFD – performance / flow physics
- **HECC component testing**
 - Aero mapping / clearance sensitivities
 - Impeller / diffuser / EGV rating
 - Unsteady pressure fields
- **In-house CFD effort – SOA grids for centrifugals & URANS computations**
- **Multistage HPC – axial, transition duct, centrifugal**
 - Industry consensus tech challenges
 - Research needs
 - Component experiment (2A + 1C)

Metric	Intent (rig scale)	CFD*
Exit-corr. flow	$2.1 < W_{c,ex} < 3.1 \text{ lb}_m/\text{s}$	2.98
Work factor	$0.60 < \Delta H_0/U_{tip}^2 < 0.75$	0.68
η_{TT} (poly)	≥ 0.88	0.888
Diam. ratio	$D_{max} / D_{tip} \leq 1.45$	1.45
Design SM	13%	12%
M_{exit}	0.15	0.15
α_{exit}	15°	14°

HECC stage 3-D URANS computation (UTRC)*

*Lurie, E. A. et al., "AHS Int. Forum 67, May 2011.

Progress

- **High Efficiency Centrifugal Compressor (HECC)**
 - Completed design / fab / assembly
 - Completed test cell readiness
 - Mechanical checkout – **Mar 2012**
- **Documentation of CC3 centrifugal compressor** underway – historical data & 2010 re-baseline
- **High-response (4 BPF) p_0 Kulite-probe development** – impeller exit $p_0(t)$ and $\alpha(t)$
- **NASA computational work**
 - Multiblock grid gen. for centrifugal compressor geometries
 - CC3 vaneless & vaneless stages w/ data
 - HECC stage – test predictions

United Technologies Research Center

HECC impeller
(15 main/splitter)

Diffuser (20 main/splitter)

Kulite probe (Lepicovsky)

Flow angle from high-response p_0 probe data (E. Braunscheidel / J. Lepicovsky)

In-house HECC grid generation and TURBO phase-lagged URANS simulations

Performance predictions from **UTRC*** (WAND/LEO) and **NASA (TGS/TURBO)**

*Lurie, E. A. et al., AHS Int. Forum 67, May 2011.

(S. Kulkarni, T. Beach)

Contours of computed axial velocity and total pressure at exit rating plane (FLA) – time-averaged URANS results.

Next steps

- **HECC**
 - Aero performance (Apr-Jul, 2012)
 - Map compressor / clearance-sensitivities
 - Acquire unsteady pressures
 - UTRC CFD analyses & final report (Sept 2012)
 - Impeller and diffuser rating (FY13)
- **NASA CFD**
 - CC3 & HECC predictions & experimental support
 - HTML user's guide for TGS grid-generation python modules
- **HPC axi-centrifugal**
 - Industry RFI/conversations (FY12) → consensus technical challenges
 - Coordinate w/ **FAP/SFW** & **Turbomachinery TWG** on low $\dot{m}_{c,ex}$ aero challenges
 - FY15/16 – next-step experimental effort on axi-centrifugal – **path?**

HECC installed in CE-18

VARIABLE-SPEED POWER TURBINE

Key technical challenges for VSPT

- Aerodynamics
 - Efficiency at **high cruise work factor**
 - $\Delta h_0 = \Delta(u_\theta \cdot r\Omega) \approx \text{const.}$ at cruise and take-off
 - $\Delta h_0/U^2$ cruise is 3.5 x takeoff
 - 40° to 60° **incidence swings** with speed change
 - Operation at low Re – **transitional flow**
- Rotordynamics – Avoidance / management of shaft modes through speed range

VSPT research agenda

- Conceptual aero-design / analysis
- Incidence-tolerant blade development
 - 3-D design
 - Experiments – in-house / external
- Computational tools – multistage / transitional-flows
- Rotordynamics
- VSPT component testing - in-house & external paths

Progress – aero-design / analysis

- Documented conceptual designs
 - In-house* & external thru 3 RTAPS contracts**
 - 3- & 4-stage solutions w/ fixed geometry
- 3-D blade design / analyses

*NASA, AHS Int. Forum 67, 2011; NASA/TM-2011-217124

**Rolls-Royce, NASA/CR—2012-217016 & 217423

**Williams Int., NASA/CR—2012-217424

Progress (cont.) – impact of unsteadiness

Computed contours of entropy at blade-row exit planes from
LEO** RANS/mixing-plane time-averaged, average passage
URANS calculations at design point (54% N^* , 28 k-ft cruise)

Linear cascade experiments – in-house

- Modified NASA GRC transonic linear cascade for VSPT negative incidence levels
- Test entries (over Re_2 , M_2 range)
 - Inlet hotwire characterization (T_u , ε)
 - E^3 tip-section blading – completed*
($-10^\circ < \beta_1 < +59^\circ$)
 - Incidence-tolerant blade – Q2FY12
($-12^\circ < \beta_1 < +55^\circ$)

Modified tunnel, showing new lead-out duct

*A. McVetta, P. Giel – AIAA JPC 2012 paper

Linear cascade experiments – UND / NDSU

- Space Act Agreement with U. North Dakota – to extend NASA incidence-tolerant blade set to lower Re
 - Match M_2 and incidence angles
 - $40k < Re_2 < 400k$
 - p_0 surveys / heat transfer / PSP data
- 3-yr NASA EPSCoR* grant (FY12 start) to U. North Dakota and North Dakota State U.
- CFD element (North Dakota State U.)
 - 3-D URANS-SST and SAS-SST
 - γ - Re_θ transition model

U. North Dakota transonic linear turbine cascade test facility

Incidence-tolerant blade section

Computational work – W-L turbulence model for transitional flows in LPTs

- Walters-Leylek model implemented in NASA's GlennHT
- Assessed using NASA CW-22 data sets
 - Heat transfer using GE2 industrial PT blade (Giel *et al.*, 2004)
 - Aerodynamics using EEE tip-section blading / generation of loss bucket data

Comparison of computed & measured Nusselt number of GE2 blading at $Re_2 = 375k$.

Multistage URANS simulation capability

- TURBO code (J.P. Chen, OSU)
- Applied to 1.5-stage low-speed turbine (S1/R1/S2)
- Newly coded W-L model

Rotordynamics for 50% shaft-speed range

- Rotordynamics model (DyRoBeS) for LCTR with 50% speed range*
 - Modeled HP, LP, & VSPT rotors
 - Critical-speed, stability, & unbalance-response analyses

Campbell diagram for three rotors of LCTR concept engine*

- Rotordynamics assessment in RTAPS contracts – **viable engines**
 - Rolls-Royce – growth AE1107C
 - Williams Int. – aft-drive

Aft-drive engine configuration for LCTR with VSPT directly coupled to the reduction drive gearbox**

*A. Howard, AHS Int. Forum 68, May 2012

**M. Suchezky & G. S. Cruzen, NASA/CR—2012-217424

Progress toward VSPT component test

- Assessment of in-house VSPT test capability*
 - T700-700 engine in the NASA ECRL
 - NASA GRC single-spool turbine facility (W-6)
- RTAPS study contracts
 - Williams International
 - 4-stage VSPT in W-6
 - Match mission Re
 - Rolls-Royce NAT
 - Growth AE1107C
 - 3.5-stage VSPT/EGV in W-6
 - Match mission Re

*G. Skoch, M. Stevens, et al., NASA/TM—2012-217422

**M. Suchezky et al., NASA/CR—2012-217424

**Williams Int. 4-stage LCTR VSPT component in NASA GRC W-6 single-spool facility

Next steps for VSPT

- Complete CW-22 aero testing of incidence-tolerant blading
 - Reports at AIAA JPC 2012 & ASME IGTI 2013
 - Heat-transfer experiments with incidence-tolerant blade pack
- Computational analysis
 - Report W-L / heat-transfer work at IGTI 2012
 - Support CW-22 experimental data synthesis
 - Apply TURBO with W-L model to high-speed multistage LPT
- Rotordynamics – **done**
 - Report at AHS Int. Forum 68
- U.S. Army Aviation Applied Technology Directorate (AATD) partnership efforts
 - 6.3 FATE engine program, NASA-\$ VSPT option (FY12 start)
 - 6.2 VSPT component test, NASA-\$ award (FY12 award & start)

