1. a) Man prüft nach, \vec{u} ob Eigenwert von B ist, indem man einfach $B \circ \vec{u}$ ausrechnet und dabei mehrere Male verwendet, daß $A \circ \vec{u} = \lambda \vec{u}$ ist:

$$\begin{split} B \circ \vec{u} &= (A^2 + 3A + 5E) \circ \vec{u} &= (A^2) \circ \vec{u} + 3A \circ \vec{u} + 5E \circ \vec{u} \\ &= A \circ A \circ \vec{u} + 3\lambda \vec{u} + 5\vec{u} \\ &= A \circ \lambda \vec{u} + 3\lambda \vec{u} + 5\vec{u} \\ &= \lambda A \circ \vec{u} + 3\lambda \vec{u} + 5\vec{u} \\ &= \lambda^2 \vec{u} + 3\lambda \vec{u} + 5\vec{u} \quad \text{jetzt } \vec{u} \text{ ausklammern!} \\ &= (\lambda^2 + 3\lambda + 5)\vec{u} \end{split}$$

Damit ist gezeigt: \vec{u} ist Eigenvektor von B zum Eigenwert $\mu = \lambda^2 + 3\lambda + 5$.

b) Das charakteristische Polynom von A lautet

$$\det(A - tE) = t^2 - 9$$

Die beiden Nullstellen hiervon und damit zwei Eigenwerte von A sind $\lambda_1 = 3$ und $\lambda_2 = -3$. Um einen Eigenvektor zu $\lambda_1 = 3$ zu finden, ist das homogene Gleichungssystem

$$(A - 3E) \circ \vec{x} = \begin{pmatrix} -33 - 3 & 12 \\ -90 & 33 - 3 \end{pmatrix} \circ \vec{x} = \begin{pmatrix} -36 & 12 \\ -90 & 30 \end{pmatrix} \circ \vec{x} = 0$$

zu lösen. Man erhält als eine Lösung $\vec{u} = (1,3)^t$.

Nach dem ersten Teil der Aufgabe ist \vec{u} auch Eigenvektor zu B und zwar zum Eigenwert

$$\mu = \lambda_1^2 + 3\lambda_1 + 5 = 3^2 + 3 \cdot 3 + 5 = 23$$

2. <u>Lösung</u>: Zunächst ergibt sich, daß 3 ein gemeinsamer Teiler von m und $n_1 \cdot n_2$ ist, denn nach Aufgabenstellung ist 3 Teiler von m sowie von n_2 und damit auch von $n_1 \cdot n_2$. Zu zeigen bleibt, daß 3 sogar der $gr\ddot{o}\beta te$ gemeinsame Teiler von m und $n_1 \cdot n_2$ ist.

Mit Hilfe des erweiterten Euklidischen Algorithmus findet man dazu Darstellungen

$$a_1 \cdot m + b_1 \cdot n_1 = 1$$

 $a_2 \cdot m + b_2 \cdot n_2 = 3$ mit $a_1, a_2, b_1, b_2 \in \mathbb{Z}$

Multipliziert man diese beiden Gleichungen miteinander, faßt dabei die durch m teilbaren Summanden zusammen und klammert bei diesen m aus, so erhält man

$$(a_1 \cdot a_2 \cdot m + a_1 \cdot b_2 \cdot n_2 + a_2 \cdot b_1 \cdot n_1) \cdot m + b_1 \cdot b_2 \cdot (n_1 \cdot n_2) = 3$$

Jeder gemeinsame Teiler $d \in \mathbb{N}$ von m und $n_1 \cdot n_2$ ist daher auch ein Teiler von 3. Dafür gibt es nur die Möglichkeit d = 1 und d = 3. Da 3 in der Tat ein gemeinsamer Teiler von m und $n_1 \cdot n_2$ ist, ist 3 sogar deren größter gemeinsamer Teiler.

3. <u>Lösung</u>: Der Euklidische Algorithmus zeigt, daß die beiden Zahlen 1990 und 479 teilerfremd sind. Der Chinesische Restsatz kann daher (mit den Bezeichnungen des Skriptes) auf die Zahlen $m=1990,\ n=479$ sowie $u=r_1=235,\ v=r_2=333$ angewandt werden. Nimmt man Teilungen mit Rest von u durch m bzw. von v durch n vor, so liefern diese offentlichtlich: $235=0\cdot 1990+235$ sowie $333=0\cdot 479+333$. Aufgrund des Chinesischen Restsatzes erhält man nun ein $w\in \mathbb{Z}$ mit

$$w = q_1 \cdot 1990 + 235$$

$$w = q_2 \cdot 479 + 333$$
(1)

Zu dessen Berechnung wendet man zunächst den erweiterten Euklidischen Algorithmus an; dieser liefert:

$$1 = 123 \cdot 1990 - 511 \cdot 479$$

Wie in der Vorlesung bzw. im Skript beim Beweis des Chinesischen Restsatzes gezeigt, erhält man damit ein $w \in \mathbb{Z}$ mit (1) durch

$$w = 333 \cdot 123 \cdot 1990 - 235 \cdot 511 \cdot 479 = 23987695$$

Ändert man w um ein Vielfaches von $1990 \cdot 479$ ab:

$$w + k \cdot (1990 \cdot 479)$$

so erhält man weitere Zahlen, die (1) erfüllen. Insbesondere sind diese für hinreichend große k sicher positiv. Die kleinste positive Zahl w_0 mit (1) liefert die Teilung mit Rest von w durch $1990 \cdot 479 = 953210$:

$$w = q \cdot (1990 \cdot 479) + 157445 \implies w_0 = 157445$$

4. Lösung: Der erweiterte euklidische Algorithmus liefert $u, v \in \mathbb{Z}$ mit

$$d = ggT(a, b) = u \cdot a + v \cdot b$$

Unter Verwendung von $a_1 = a/d$ und $b_1 = b/d$ bzw. $a = d \cdot a_1$ und $b = d \cdot b_1$ wird das zu

$$d = u \cdot d \cdot a_1 + v \cdot b = d \cdot b_1$$

Teilung beider Seiten durch d liefert

$$1 = u \cdot a_1 + v \cdot b_1 \tag{2}$$

Ist jetzt $c \in \mathbb{N}$ ein gemeinsamer Teiler von a_1 und b_1 , so ist c wegen (2) auch ein Teiler von 1. Dann bleibt aber nur die Möglichkeit c = 1. Somit muß $ggT(a_1, b_1) = 1$ sein.

5. Lösung: Aus der Definition der Gruppe ergibt sich sofort, daß sie die die Einheitsmatrix

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{3}$$

als neutrales Element enthält. Das Assoziativgesetz ist bekanntlich für die Matrizenmultiplikation gültig. Damit ist es insbesondere auch für die hier betrachteten Matrizen gültig. Die Multiplikation zweier solcher Matrizen liefert

$$\begin{pmatrix} 1 & 0 & x_1 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 0 & y_1 \\ 0 & 1 & y_2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & x_1 + y_1 \\ 0 & 1 & x_2 + y_2 \\ 0 & 0 & 1 \end{pmatrix} \tag{4}$$

Anhand von (4) erkennt man:

- Die Produkt zweier solcher Matrizen ist wieder eine Matrix dieser Gestalt. Die Gruppe ist damit bezüglich der Matrixmultiplikation "o" abgeschlossen.
- Zur Matrix aus \mathcal{G} mit den Werten x_1 , x_2 in der letzten Spalte erhält man die inverse Matrix, indem man die Werte x_1 , x_2 durch $-x_1$ und $-x_2$ ersetzt. Die Inverse liegt damit ebenfalls in \mathcal{G} .
- Da die Multiplikation zweier Matrizen der Addition der Elemente x_1, x_2 bzw. y_1, y_2 entspricht und diese Addition von der Reihenfolge unabhängig ist, hängt auch die Multiplikation nicht von der Reihenfolge ab und ist damit kommutativ.

6. Lösung:

(a) Sei \mathcal{G} eine beliebige Gruppe mit 7 Elementen. Ist $a \in \mathcal{G}$, so gilt nach Vorlesung bzw. Skript

$$\operatorname{ord}(a) \mid \operatorname{ord}(\mathcal{G}) = 7$$

Da 7 eine Primzahl ist, kommen für ord(a) nur die Werte 1 und 7 in Frage.

(b) Sei wieder \mathcal{G} eine beliebige Gruppe mit 7 Elementen, und sei $a \in \mathcal{G} \setminus \{1\}$. Nach Teil (a) der Aufgabe ist dann $\operatorname{ord}(a) = 7$. Dann sind aber die Potenzen

$$1 = a^0, a, a^2, a^3, a^4, a^5, a^6 (5)$$

alle verschieden. Die sieben Elemente (5) stellen somit die gesamte Gruppe \mathcal{G} dar. Da es sich hierbei um Potenzen von a handelt, erzeugen diese Potenzen die Gruppe \mathcal{G} , die damit zyklisch mit erzeugendem Element a ist.

Bemerkung: Wie man erkennen konnte, kann hier jedes Element $a \in \mathcal{G}$, $a \neq 1$ als erzeugendes Element für \mathcal{G} genommen werden. Dieser Sachverhalt trifft für alle Gruppen zu, deren Ordnung eine Primzahl ist.