

Geometría

Semejanza

Intensivo UNI 2024 - III

1. Según el gráfico, ABCD es un paralelogramo. Si AB=6, BC=9 y AP=4, calcule PC.

- A) 8D) 9
- B) 7
- C) 6
- E) 11^AC
- Según el gráfico, A y B son puntos de tangencia. Si (EH)(EQ)=9 y EB=5, calcule x.

- A) 53°
- B) 60°
- C) 74°

D) 75°

- E) 37°
- 3. Sea ABC un triángulo isósceles con AB=AC=5 y BC=6. El punto D está en AC y P es un punto en BD, tal que $m \not< APC=90^\circ$.

Si m $\angle ABP = m \angle BCP$, calcule $\frac{AD}{DC}$.

- A) $\frac{1}{4}$
- B) $\frac{1}{2}$
- C) $\frac{1}{\sqrt{3}}$

D) $\frac{1}{\sqrt{2}}$

E) 1

- 4. Sea ABCDE un pentágono convexo, donde ABDE es un rombo y m∢ABC=m∢CDE=135°. Sean M y N los puntos de intersección de AC y EC con BD, respectivamente. Si BM=10 y ND=70. halle MN.
 - A) 7
- B) 9
- C) 12

D) 14

- E) 20
- 5. En un triángulo ABC, la circunferencia inscrita en dicho triángulo es tangente a \overline{AB} en P, a \overline{AC} en Q, a \overline{BC} en L, respectivamente. Si M es un punto del menor arco QL, de modo que las distancias de M a \overline{AB} y a \overline{AC} valen 2 cm y 6 cm, respectivamente, calcule el cuadrado de la distancia de M a \overline{PO} .
 - A) 10
- B) 9
- C) 12

D) 7

- E) 6
- **6.** En un triángulo ABC, la circunferencia inscrita es tangente a \overline{AB} , \overline{BC} y a \overline{CA} en Q, R y S, respectivamente. La recta RQ interseca a la prolongación del segmento CA en P. Calcule PR/PQ si QS=2 y RS=6.
 - A) 9
- B) 12
- C) 13

D) 3

- E) 4
- 7. Se sabe que ABCD es un rectángulo, P y Q son puntos de \overline{BC} y de \overline{AD} , respectivamente, de modo que ABPQ es un cuadrado de centro O, y los ángulos BDP y ODA son de igual medida. Si \overline{PD} interseca a \overline{OC} en S, calcule AB/PS.
 - A) $3\sqrt{2}$
- B) 8
- C) $2\sqrt{2}$

D) 1,2

E) 3

8. En un cuadrilátero ABCD, \overline{AB} y \overline{CD} son perpendiculares a \overline{AD} , L y S están en \overline{AB} y en \overline{CD} , respectivamente, de modo que CS=2, SD=3. Si \overline{BS} interseca a \overline{CL} en P y la distancia \overline{PQ} a \overline{AD} es 4 con Q en \overline{AD} , y \overline{LQ} es paralelo a \overline{BP} , calcule AL.

- B) 2
- C) 5
- D) 1,2
- E) 1,3
- 9. Según el gráfico, $AD = 3(CD) = 6\sqrt{2}$. Calcule BC.

11. En el gráfico, AB=6, BC=8 y AC=12. Calcule BD.

- A) 3
- B) 4
- C) 5
- D) 2
- E) 7
- **12.** Del gráfico, I es el incentro de la región triangular ABC. Si BI = 2(IQ) = 4, calcule AR.

- A) 1
- D) $2\sqrt{2}$
- B) 1,5

10. Según el gráfico, T es punto de tangencia. Si

- C) 2
- E) 4

- $\frac{5ENU/A}{B) 3\sqrt{2}}$
- C) 4

A) 3 D) $4\sqrt{2}$

E) 6

Q

BC=2 y AD=4, calcule TQ.

- A) $\frac{8}{3}$
- B) $\frac{15}{8}$
- C) $\frac{5}{2}$

D) 2

E) $\frac{4}{3}$

- **13.** En un triángulo ABC, se trazan las alturas AQ y CP. Si AC = 3(PQ) y AB = 12, calcule BQ.
 - A) 9
- B) 3
- C) 6

D) 4

- E) $2\sqrt{3}$
- **14.** Calcule la distancia del incentro al baricentro de una región triangular, cuyos lados son 6; 7 y 8.
 - A) $\frac{1}{3}$
- B) $\frac{2}{3}$
- C) $\frac{3}{5}$

D) 2

E) $\frac{1}{2}$

15. El triángulo rectángulo *ABC* ha sido dividido en un rectángulo y dos triángulos. El rectángulo y un triángulo tienen un área de 12 cm². ¿Cuál es el área del otro triángulo, en cm²?

- A) 1D) 2,5
- B) 1,5
- C) 2 E) 3
- **16.** En el gráfico se muestra dos cuadrados y una recta que pasa por sus centros. Si *AB*=8 y *CD*=18, calcule la longitud de *BC*.

- A) 1 D) 9
- B) 3
- C) 6
- E) 2
- 17. Si *T* es punto de tangencia, (*AO*)(*BO*)=*k*, halle el producto de las longitudes de los radios de las circunferencias mostradas.

- A) 2k
- B) 4k
- C) $k\sqrt{2}$

D) $\frac{k}{2}$

E) *k*

- **18.** En un cuadrilátero *ABCD*, inscrito en una circunferencia cuyo radio mide 6, \overline{AC} y \overline{BD} se intersecan en *P*, tal que 2(AP)=3(BP) y BC=4. Halle la \widehat{AD} .
 - A) 37°

- B) 45°
- C) 53° E) 74°

- D) 60°
- **19.** En el gráfico, (OT)(OQ) = 6(OP). Calcule x.

- A) 6
- B) 12
- C) 4 E) 3

- D) 8
- **20.** Sea 𝒞 la circunferencia inscrita en el triángulo rectángulo *ABC*, recto en *B*. Se trazan dos rectas tangentes a 𝒞 y perpendiculares a \overline{AC} en *M* y *N* (*A*−*M*−*N*−*C*). Si (*AM*)(*NC*)=16, halle el

radio de la circunferencia \mathscr{C} .

- A) 2
- B) $2\sqrt{2}$
- C) 4

D) $4\sqrt{2}$

- E) ³√2
- **21.** En un triángulo ABC, cuyo incentro es I, la prolongación de la bisectriz interior \overline{BD} interseca a la circunferencia circunscrita en E. Si BI = 3, DI = 2, halle DE.
 - A) 3
- B) 4
- C) 5/2

D) 6/5

- E) 2
- **22.** En un $\triangle ABC$, m $\blacktriangleleft ABC = 120^{\circ}$, AB = a y BC = b. Halle la longitud de la bisectriz interior \overline{BD} .
 - A) $\sqrt{a^2 + b^2 ab}$
- B) $\sqrt{a^2 + b^2 + ab}$
- C) $\frac{\sqrt{a^2+b^2}}{2}$
- D) $\frac{2ab}{a+b}$
- E) $\frac{ab}{a+b}$

- 23. En el gráfico, P y Q son puntos de tangencia, PB=10, MQ=7, QN=5. Si la $m \ll PAQ=74^\circ$, calcule MP.

- A) 2
- B) 3
- C) 4

D) 2,5

- E) 5
- **24.** En el triángulo rectángulo *ABC*, recto en *B*, si $a \cdot b \cdot c = 8$, calcule *h*.

- A) 1 D) $2\sqrt{2}$
- B) 2
- C) 4 E) ³√4

