Project Design Phase-II Technology Stack (Architecture & Stack)

Date	03 October 2022
Team ID	PNT2022TMID52728
Project Name	Efficient Water Quality Analysis And Prediction Using Machine Learning
Maximum Marks	4 Marks

Technical Architecture:

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	The user get easy interaction through web based	HTML, CSS, Python
		water quality analysis (UI).	
2.	Application Logic-1	Logic for a process in the application based on	Python
		given water quality metrics.	
3.	Application Logic-2	Logic for prediction of water quality through	Python
		analysing with various parameters in the	
		application.	
4.	Application Logic-3	Logic for detection of water quality that confirming	Python
		with water quality index(Good, partially good, poor)	
		in the application	
5.	Database	Data format for processing	MySQL
6.	Cloud Database	Database Service on Cloud	IBM DB2
7.	File Storage	To store files/ data for the process	Local Filesystem
8.	Machine Learning Model	Classification and clustering are techniques used in	Clustering and classification Model.
		data mining to analyse collected data.	
		Classification is used to label data, while clustering	
		is used to group similar data instances together.	
9.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud	Local web server
		Local Server Configuration: built-in flask web	
		server	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Micro web framework written in python	Flask
2.	Security Implementations	Flask-Security allows you to quickly add common	Flask Security & Validation
		security mechanisms to your Flask application.	
		They include Session-based authentication, Role	
		management.	
3.	Scalable Architecture	Flask is also highly scalable as it can process a	Flask
		high number of requests each day. This micro	
		framework modularize the entire code and let	
		developers work on independent chunks and use	
		them as the code base grows.	
4.	Availability	High compatibility with the latest technologies and	Flask
		allows customization.	
5.	Performance	Integrated support for unit testing.	Flask
		 RESTful request dispatching. 	
		Uses Jinja templating.	
		Support for secure cookies	
		(client-side sessions) 100%	
		WSGI 1.0 compliant	