PROIECT SAE

Nume: Mateeșescu Niki

Grupa: 1301B

Profesor coordonator: Prof.dr.ing. Alexandru Onea

Anul universitar: 2021-2022

Enunțul problemei :

Fiind data instalația de laborator *rezervor cu traductor pe nivel*, să se proiecteze un regulator numeric astfel încât sistemul în buclă închisă să satisfacă următoarele preferințe :

- → Eroare staționară nulă
- → Suprareglare < 5%
- → Durata regimului tranzitoriu < 10s
- → Amortizarea 0.707

Proiectarea se va face prin două metode :

- A. Alocare poli
- B. Metoda proiectării directe în domeniul timpului

Etapele de proiectare

- 1. Determinarea răspunsului indicial al procesului
- 2. Determinarea funcției de transfer a părții fixate
- 3. Alegerea perioadei de eșantionare
- 4. Discretizarea funcției de transfer a părții fixate
- 5. Verificarea prin simulare a modelului obținut
- 6. Proiectarea regulatorului pe baza modelului părții fixate și a funcției de transfer în buclă închisă determinat pe baza performanței impuse
- 7. Verificarea prin simulare numerică a sistemului în buclă închisă
- 8. Verificarea sistemului în bucla închisă în timpul real pe instalația de laborator

CUPRINS

A.Metoda alocării polilor	5
B. Metoda proiectării directe în domeniul timpului	13
1. Determinarea răspunsului indicial al procesului	3
2. Determinarea funcției de transfer a părții fixate	4
3. Alegerea perioadei de eșantionare	7
4. Discretizarea funcției de transfer a părții fixate	7
5. Verificarea prin simulare a modelului obținut	9
6. Proiectarea regulatorului pe baza modelului părți	i
fixate și a funcției de transfer în buclă închisă	
determinat pe baza performanței impuse	10
7. Verificarea prin simulare numerică a sistemului îi	า
buclă închisă	10
8. Verificarea sistemului în bucla închisă în timpul r	eal
pe instalația de laborator	11
9. Concluzii	19

1. Determinarea răspunsului indicial al procesului

Având următorul model Simulink(Fig.1), am simulat procesul, semnalul de intrare fiind un semnal de treaptă la care s-a modificat Final Value.

Fig.1 În urma simulării, am obținut următorul grafic (Fig.2) :

Fig.2

Semnalul cu culoare galbenă reprezintă intrarea, iar cea cu violet reprezintă ieșirea.

2. Determinarea funcției de transfer a părții fixate

Am luat 3 intervale de pe urma graficului obținut, având factorul de amplificare k = 1.3147, Y staționar yst = 1.3147, eroarea de 5%, durata regimului, perioada T = 10.6667, iar G2 :

$$G_2 = \frac{1.315}{10.67 * s + 1}$$

Graficul din matlab al funcției G2(s) este (Fig.3):

Fig. 3

În urma verificării, am obținut graficul(Fig.4):

Fig. 4

A. Metoda alocării polilor

Având amortizarea egală cu 0.707, durata regimului tranzitoriu de 9s, calculăm suprareglarea :

$$sup = \frac{4}{zeta*tt} = 0.6286$$

Apoi calculăm G0(s):

```
%fct de transfer in bucla inchisa G0
zeta=0.707;
t_t=9;
sup=4/(t_t*zeta);
num0= sup^2;
den0=[1 2*((sup)*(zeta)) sup^2];
G0_s=tf(num0,den0);
G0_s
```

$$G_0(s) = \frac{0.3952}{s^2 + 0.8889 * s + 0.3952}$$

Graficul funcției de transfer G0(s) în buclă închisă (Fig.5) :

Fig. 5

3. Alegerea perioadei de eșantionare

Datorită perioadei regimului tranzitoriu per = [1/25*T,1/10*T] = [0.4267,1.0667], am dedus că perioada de eșantionare este egală cu 1/T = 1.0667, pe care o vom aproxima la 1.

$$T_s = 1$$

4. Discretizarea funcției de transfer a părții fixate

Funcția de transfer discretă se obține prin G2_z = c2d(G2,Ts, 'zoh'), 'zoh' reprezentând alegerea metodei prin reținerea de ordine zero a intrărilor.

Astfel obţinem valoarea:

$$G_2(z) = \frac{0.1177}{z - 0.9105}$$

Fig. 6

Discretizarea funcției de transfer în buclă închisă se obține prin G0_z=c2d(G0_s,Ts, 'zoh').

Se obține :

$$G_0(z) = \frac{0.1455 * z + 0.1079}{z^2 - 1.158 * z + 0.4111}$$

5. Verificarea prin simulare a modelului obținut

Am folosit schema Simulink(Fig.8):

Fig. 8

Rezultatul din scope este figura 9 :

Fig. 9

6. Proiectarea regulatorului pe baza modelului părții fixate și a funcției de transfer în buclă închisă determinat pe baza performanței impuse

Funcția de transfer a regulatorului :

```
%functia de transfer a regulatorului Gr
Gr_z=(1/G2_z)*G0_z/(1-G0_z);
Gr_z=minreal(Gr_z);
[numr denr]=tfdata(Gr_z,'v');
```

$$G_r(z) = \frac{1.236 * z^2 - 0.2084 * z - 0.8353}{z^2 - 1.303 * z + 0.3032}$$

7. Verificarea prin simulare numerică a sistemului în buclă închisă

Fig. 10

8. Verificarea sistemului în bucla închisă în timpul real pe instalația de laborator

Modelul Simulink utilizat este figura 11:

Fig. 11 Am obţinut următoarea figura 12(a,b):

Fig. 12.a

Fig. 12.b

Semnalul cu culoare galbenă reprezintă ieșirea teoretică, iar cea cu violet reprezintă ieșirea de pe instalație.

B. Metoda proiectării directe în domeniul timpului

Avem următoarele valori ale răspunsului sistemului de reglare :

```
%puncte alese
y0 = 0;
y1 = 0.426;
y2 = 0.871;
y3 = 1.01;
y4 = 1.04;
y5 = 1;
```

Coeficienții numărătorului funcției de transfer G0d z sunt :

```
%coeficienti
p1 = y1;
p2 = y2 - y1;
p3 = y3 - y2;
p4 = y4 - y3;
p5 = 1 - y4;
```

Atunci avem:

Pe baza acestor valori, G0d_z este(fig.13):

$$G_0 d(z) = \frac{0.426 * z^4 + 0.445 * z^3 + 0.139 * z^2 + 0.03 * z - 0.04}{z^5}$$

Fig. 13

Am ales perioada de eşantionare Tsd = 2.

$$G_0 d(z) = \frac{G_2 * G_r d}{1 + G_2 * G_r d} \Rightarrow G_r d = \frac{1}{G_2} * \frac{G_0 d}{1 - G_0 d}$$

```
%functia de transfer in deadbeat
Tsd = 2;
p = [p1 p2 p3 p4 p5];
numd = p;
dend = [1 0 0 0 0 0];
GOd_z = tf(numd,dend,Tsd);
GOd z
figure (6)
step(GOd_z); title('Functia de transfer dis in deadbeat'); grid on;
%functia de transfer discreta in deadbeat
G2d z=c2d(G2,Tsd, 'zoh');
[num2d,den2d] = tfdata(G2d_z,'v');
%functia de transfer a regulatorului Grd
Grd = G0d_z/(G2d_z*(1-G0d_z));
% Grd
Grd z = minreal(Grd);
[numrdz,denrdz] = tfdata(Grd_z,'v');
```

Astfel, funcția de transfer a regulatorului în deadbeat este :

$$G_r d(z) = \frac{1.895 * z^5 + 0.4086 * z^4 - 1.023 * z^3 - 0.3792 * z^2 - 0.2886 * z + 0.1475}{-z^5 - 0.426 * z^4 - 0.445 * z^3 - 0.139 * z^2 - 0.03 * z + 0.04}$$

Schema Simulink utilizată pe instalație este (fig.14) :

Fig. 14

După simulare am obținut figura 15(a,b,c):

Fig. 15.a

Fig. 15.b

Fig. 15.c

Semnalul cu culoare galbenă reprezintă ieșirea teoretică, iar cea cu violet reprezintă ieșirea de pe instalație.

9. Concluzii

Am folosit cele două metode (alocarea polilor și cea a proiectării directe în domeniul timpului), iar în urma proiectării regulatoarelor am obținut două grafice cu eroare ≤ 5%.

În concluzie, am obținut rezultate care satisfac enunțul problemei.

<u>Anexă</u>

Codul folosit în Matlab a fost :

clear all
close all
clc

load iesiresitreapta;
s=iesiresitreapta(:,2);

t=0:1:98;

step1=s(104:202)-s(104);
step2=s(203:301)-s(203);
step3=s(302:400)-s(302);
step4=s(403:501)-s(403);

yst1=step1(end);
yst2=step2(end);
yst3=step3(end);
yst4=step4(end);

```
yst=(yst1+yst2+yst3+yst4)/4;
ymax1=max(step1);
ymax2=max(step2);
ymax3=max(step3);
ymax4=max(step4);
pause on
figure(1)
plot(t,step1,'-r');hold on;grid on;
plot(t,step2,'-m');grid on;
plot(t,step3,'-b');grid on;
plot(t,step4,'-g');grid on;hold off;title('Raspuns indicial');
% legend('step1', 'step2', 'step3', 'step4');
pause
k=yst;
t1=12;
%durata in regim tranzitoriu
t5=0;
t95=0;
for i=1:98
if(step1(i)>0.05*step1(end) && t5==0)
t5=t(i);
end
if(step1(i)>0.95*step1(end) && t95==0)
t95=t(i);
end
end
% Metoda alocarii polilor
```

```
tc=t95-t5;
T=tc/3;
per=[1/25*T,1/10*T];
Ts=1; % perioada de esantionare
%fct de transfer
num=k;
den=[T 1];
G2=tf(num,den)
figure(2)
step(t,G2);title('Functie de transfer');grid on;
pause
%discretizare
G2 z=c2d(G2,Ts, 'zoh') %functia discreta
[num2z den2z]=tfdata(G2_z,'v');
figure(3)
step(t,G2_z);title('Functia de transfer discretizata'); grid on;
pause
%fct de transfer in bucla inchisa G0
zeta=0.707:
t t=9;
sup=4/(t_t*zeta);
num0 = sup^2;
den0=[1 2*((sup)*(zeta)) sup^2];
G0 s=tf(num0,den0);
G0 s
figure(4)
step(t,G0_s);title('Functia de transfer in bucla inchisa');grid on;
pause
```

```
%discretizare G0 s --> G0 z
      G0 z=c2d(G0 s,Ts, 'zoh')
      figure(5)
      step(t,G0 z);title('Functia de transfer in bucla inchisa
discretizata');grid on;
      %pause
     pause off
     [numz denz]=tfdata(G0_z,'v');
      %functia de transfer a regulatorului Gr
      Gr_z = (1/G2_z)*G0_z/(1-G0_z);
      Gr_z=minreal(Gr_z);
      [numr denr]=tfdata(Gr z,'v');
      %figure(7)
      %step(t,Gr z);title('Functia de transfer a regulatorului');grid on;
      %pause off
      % Metoda directa în domeniul timp
      %puncte alese
     y0 = 0;
     y1 = 0.426;
     y2 = 0.871;
     y3 = 1.01;
     y4 = 1.04;
     y5 = 1;
      %coeficienti
     p1 = y1;
     p2 = y2 - y1;
     p3 = y3 - y2;
```

```
p4 = y4 - y3;
p5 = 1 - y4;
%functia de transfer in deadbeat
Tsd = 2;
p = [p1 \ p2 \ p3 \ p4 \ p5];
numd = p;
dend = [1 0 0 0 0 0];
G0d z = tf(numd, dend, Tsd);
G0d z
figure(6)
step(G0d z); title('Functia de transfer dis in deadbeat'); grid on;
%functia de transfer discreta in deadbeat
G2d z=c2d(G2,Tsd, 'zoh');
[num2d,den2d] = tfdata(G2d_z,'v');
%functia de transfer a regulatorului Grd
Grd = G0d_z/(G2d_z^*(1-G0d_z));
% Grd
Grd z = minreal(Grd);
[numrdz,denrdz] = tfdata(Grd_z,'v');
```