

Data Structure

Lab Session 3: Recursion Algorithms

U Kang
Seoul National University

Goals

- Learn how to write recursive functions
 - Find a base case (or terminate condition)
 - Find recurrence relations
- Implement two recursion algorithms
 - Greatest Common Divisor (recursive version)
 - Pascal's Triangle (recursive version)

Notice

- After implementing each algorithm, you have to check if your program works well.
 - Download sample input and output from the eTL.
 - Make a jar file and test your program by using it.
 - See the slides from the 1st lab session to check how to make a jar file
- Please raise your hand and ask to the T.A.s if you have a problem while implementing it.
- You need to stay for at least an hour.

Java Version

- We will grade your future programming assignments with only Java 11.0.4
 - Normally all versions starting with 11 are compatible with Java 11.0.4 but double check your jar file using a computer with Java 11.0.4 installed to be sure
 - Ex) Java 11.0.2, Java 11.0.3
- You can check your java version using the following command in the terminal(cmd)
 - □ java --version

```
→ java --version
java 11.0.4 2019-07-16 LTS
Java(TM) SE Runtime Environment 18.9 (build 11.0.4+10-LTS)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.4+10-LTS, mixed mode)
```


Import projects

- Download the skeleton projects for each algorithm from the eTL
- Extract the project, and import it into IntelliJ
 - See the slides of 1st lab session to check how to import the project in IntelliJ.

Greatest Common Divisor (GCD)

- GCD of two or more natural numbers is the largest positive integer that divides the integers without remainder.
 - □ For example, the GCD of 8 and 12 is 4.
- The Euclidean algorithm is a simple algorithm to calculate the GCD of two natural numbers:
 - $\gcd(a,0) = a$
 - $\gcd(a,b) = \gcd(b,a \bmod b)$

I/O Specification (GCD)

Input form	Output form
(a) (b)	GCD<(a), (b)> = (GCD of a and b)

Description

- (a) and (b) are the natural numbers and divided by a space.
- Print the GCD of given numbers for each input.

Example Input	Example Output
8 20	GCD<8, 20> = 4

Sample Input and Output (GCD)

Sample input

7 9

4 24

3 9

48 132

169 156

Sample output

GCD<7, 9> = 1

GCD<4, 24> = 4

GCD<3, 9> = 3

GCD<48, 132> = 12

GCD<169, 156> = 13

Pascal's Triangle (1)

 Pascal's triangle is a triangular array of the binomial coefficients.

```
0
1
2
3
4
1
1
1
1
1
2
1
2
1
1
2
1
2
1
2
3
4
4
6
4
1
```

■ The entry in n-th row and k-th column of the triangle is denoted by $\binom{n}{k}$.

Pascal's Triangle (2)

There is a recurrence relation between entries in the triangle:

 Each entry in the triangle is the sum of the two entries above.

I/O Specification (Pascal's Triangle)

binomial

Input form	Output form
binomial (n) (k)	<pre>nCk = (the entry in (n, k))</pre>
Description	

Description

- Given $n \ge k \ge 0$, print $\binom{n}{k}$.
- You don't need to check range of *n* and *k*.

Example Input	Example Output
binomial 5 3	5C3 = 10

I/O Specification (Pascal's Triangle)

draw

Input form	Output form
draw (n)	Pascal's Triangle ((n)) (draw the triangle)
Description	

Given $n \geq 0$, print the Pascal's triangle with n + 1 rows

Example Input	Example Output
draw 2	Pascal's Triangle (2) 1 1 1 1 2 1

Sample Input and Output (Pascal's Triangle)

Sample input

binomial 7 3
binomial 4 2
draw 4

Sample output

```
7C3 = 35

4C2 = 6

Pascal Triangle (4)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
```


Execute Jar File

Lab 01

□ java -classpath <jarFileName.jar> com.datalab.Main

This session

- java -classpath <jarFileName.jar> Main
- /com and /datalab directories does not exist in the /src

Questions?

Course Information

- T.A.
 - Office 301-B119
 - Huiwen Xu
 - E-mail: <u>xuhuiwen33@snu.ac.kr</u>
 - Office hour: Wed 13:00 14:00
 - Junghoon Kim
 - E-mail: joseph.junghoon.kim@gmail.com
 - Office hour: Thu 16:00 17:00
 - Seungcheol Park
 - E-mail: ant6si@snu.ac.kr
 - Office hour: Thu 14:00 15:00
 - Chaeheum Park (Lead T.A. for this session)
 - E-mail: <u>chaeheum@snu.ac.kr</u>
 - Office hour: Tue 14:00 15:00