

수학 계산력 강화

(1)두 직선의 위치관계

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2018-06-12

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

두 직선의 위치관계

1. 직선 y = mx + n, y = m'x + n'의 위치관계

두 직선의	Z 74	두 직선의	연립방정식의
위치 관계	조건	교점의 개수	해의 개수
평행하다.	$m = m',$ $n \neq n'$	없다.	해가 없다.
일치한다.	m=m',	무수히 많다.	해가 무수히
글시한다.	n = n'	구구의 많의.	많다.
한 점에서			한 쌍의 해 <u>를</u>
만난다.	$m \neq m'$	한 개	가진다.
수직이다.	mm' = -1		기엔닉.

2. 직선 ax+by+c=0, a'x+b'y+c'=0의 위치관계

두 직선의	조건	두 직선의	연립방정식의
위치 관계	조선	교점의 개수	해의 개수
평행하다.	$\frac{a}{a'} = \frac{b}{b'} \neq \frac{c}{c'}$	없다.	해가 없다.
일치한다.	$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$	무수히 많다.	해가 무수히 많다.
한 점에서 만난다.	$\frac{a}{a'} \neq \frac{b}{b'}$	한 개	한 쌍의 해를 가진다.
수직이다.	aa' + bb' = 0		1 - 1

☑ 점 P를 지나고 주어진 직선에 평행한 직선의 방정식 을 구하여라.

1.
$$P(2, 1), y+1=0$$

2. P(1,0),
$$2x+y+1=0$$

3.
$$P(2,-3), 2x-3y-1=0$$

4. P(1, 2),
$$2x-3y=0$$

5.
$$P(2,-1), 4x-5y+10=0$$

6.
$$P(1, 3), y=2x-1$$

7.
$$P(-2, 1), y = -3x + 2$$

8.
$$P(-1, 3), 4x-2y+3=0$$

9. P(3, 5),
$$y = 2x + 7$$

10.
$$P(10, -2), 2x - 5y + 3 = 0$$

11. P(5, 3),
$$y = \frac{1}{3}x + 1$$

☑ 점 ₽를 지나고 주어진 직선에 수직인 직선의 방정식 을 구하여라.

12.
$$P(0, 0), y = \frac{3}{4}x + \frac{1}{4}$$

13.
$$P(1, 2), y = 3x + 2$$

14.
$$P(-1, 1), y = -\frac{1}{2}x + 3$$

15.
$$P(-5, -3), y = \frac{1}{3}x - 2$$

16.
$$P(2,-1), y = \frac{1}{2}x + \frac{1}{2}$$

17.
$$P(-4, 0), 6x-3y+4=0$$

18.
$$P(1, 0), y=4x-2$$

19.
$$P(2, -1), x-3y+1=0$$

20.
$$P(4,2), 2x-3y+2=0$$

21.
$$P(1,-2), 2x-4y+3=0$$

22.
$$P(3, 2), 3x+y=0$$

23.
$$P(0, 4), x+2y-5=0$$

24.
$$P(2,-1)$$
, $4x-5y+10=0$

☑ 다음 두 직선이 수직일 때, 상수 k의 값을 구하여라.

25.
$$2x-3y+2=0$$
, $kx+4y+4=0$

26.
$$y = x+3, y = (k+1)x+2$$

27.
$$kx+3y-1=0$$
, $x-(k+4)y+1=0$

28.
$$(k-2)x+3y-1=0, y=kx+3$$

29.
$$x+(k-4)y+1=0, kx+3y-2=0$$

30.
$$y = 5x - 1, y = (2k - 1)x + 1$$

31.
$$-x+(k-1)y+1=0, (k-2)x-2y+k+2=0$$

32.
$$x+ky+1=0, kx+(k+2)y+2=0$$

33.
$$y = (k-2)x + k^2$$
, $y = \frac{3}{k}x - \frac{1}{k}$

34.
$$y = -kx - 3, y = (2 - k)x + 5$$

35.
$$x+ky-1=0, kx+(2k+3)y-3=0$$

36.
$$y = \frac{1}{2}x + 1$$
, $y = kx - 1$

37.
$$y=x-1$$
, $y=(k+2)x+3$

38.
$$3x + ky + 4 = 0$$
, $(k-3)x + 6y - 8 = 0$

39.
$$kx+y+1=0$$
, $y=4x-5$

☑ 다음 두 직선이 평행할 때, 상수 k의 값을 구하여라.

40.
$$y = (2k-1)x+1, y = (-k+3)x+4$$

41.
$$-x+(k-1)y+1=0, (k-2)x-2y+k+2=0$$

42.
$$y = (k-2)x + k^2$$
, $y = \frac{3}{k}x - \frac{1}{k}$

43.
$$7x+(k+4)y-2=0, (k-2)x+y+2=0$$

44.
$$kx+3y-1=0$$
, $x-(k+4)y+1=0$

45.
$$y = x+5, y = (k+1)x+4$$

46.
$$y = (-3k-1)x+3, y = (-k+3)x+2$$

47.
$$2x+y+1=0, kx+3y+6=0$$

48.
$$kx+6y+6=0, x-3y+3=0$$

49.
$$x + ky + 1 = 0$$
, $kx + (k+2)y + 2 = 0$

50.
$$2x-3y+1=0, kx+6y+5=0$$

51.
$$kx-2y-2=0, x+(1-k)y+2=0$$

52.
$$y = 3x - 2, y = (k+1)x + 2$$

53.
$$x+ky-1=0, kx+(2k+3)y-3=0$$

02 / 선분의 수직이등분선의 방정식

선분 AB의 수직이등분선을 *l*이라 하면 (1) 직선 *l*은 선분 AB의 중점을 지난다.

(2) 직선 l과 직선 AB는 수직이므로 두 직선의 기울기의 곱은 -1이다.

☑ 다음 두 점 A,B를 이은 선분 AB의 수직이등분선의 방정식을 구하여라.

54.
$$A(1, -3), B(-1, 3)$$

56.
$$A(-4, 0), B(0, 2)$$

57.
$$A(-1, 2)$$
, $B(3, 4)$

58.
$$A(-2, -3)$$
, $B(4, -1)$

59.
$$A(2, 3), B(0, -1)$$

60.
$$A(0,-1)$$
, $B(4, 3)$

61.
$$A(5, -3), B(-1, 3)$$

62.
$$A(-4, 0), B(2, 4)$$

63.
$$A(3, 2), B(-3, 4)$$

64.
$$A(-2, 3), B(2, 5)$$

65.
$$A(-4, 3), B(2, -1)$$

66.
$$A(1, 4), B(3, -2)$$

67.
$$A(-1, 1), B(3, 5)$$

68.
$$A(-1, 2), B(1, -4)$$

69.
$$A(-1,3), B(3,1)$$

70.
$$A(-4, 7), B(4, -1)$$

71.
$$A(-2,1), B(6,-3)$$

72.
$$A(-4, 2), B(2, 4)$$

정답 및 해설

- 1) y = 1
- $\Rightarrow y+1=0$ 에서 y=-1이 직선은 x축에 평행하므로 이 직선에 평행하고 점 (2,1)을 지나는 직선의 방정식은 y=1
- 2) y = -2x + 2
- $\Rightarrow 2x+y+1=0$ 에서 y=-2x-1이 직선에 평행한 직선의 기울기는 -2이고, 점 P (1,0)를 지나므로 구하는 직선의 방정식은 y-0 = -2(x-1) : y = -2x+2
- 3) $y = \frac{2}{3}x \frac{13}{3}$
- $\Rightarrow 2x-3y-1=0$ 에서 $y=\frac{2}{3}x-\frac{1}{3}$
 - 이 직선에 평행한 직선의 기울기는 $\frac{2}{3}$ 이므로 구하 는 직선의 방정식은

$$y-(-3) = \frac{2}{3}(x-2)$$
 $\therefore y = \frac{2}{3}x - \frac{13}{3}$

- 4) $y = \frac{2}{3}x + \frac{4}{3}$
- \Rightarrow 직선 2x-3y=0을 변형하면 $y=\frac{2}{3}x$ 기울기가 $\frac{2}{3}$ 이고, 점 (1,2)를 지나는 직선의 방정 $\therefore y = \frac{2}{3}x + \frac{4}{3}$ $y-2=\frac{2}{3}(x-1)$
- 5) $y = \frac{4}{5}x \frac{13}{5}$
- \Rightarrow 직선 4x-5y+10=0을 변형하면 $y=\frac{4}{5}x+2$ 기울기가 $\frac{4}{5}$ 이고, 점 (2,-1)을 지나는 직선의 방 정식을 구하면 $y-(-1) = \frac{4}{5}(x-2)$ $\therefore y = \frac{4}{5}x - \frac{13}{5}$
- 6) y = 2x + 1
- \Rightarrow 직선 y=2x-1에 평행한 직선의 기울기는 2이므 로 구하는 직선의 방정식은 y-3=2(x-1) : y=2x+1
- 7) y = -3x 5
- \Rightarrow 직선 y=-3x+2에 평행한 직선의 기울기는 -3이므로 구하는 직선의 방정식은 $y-1 = -3\{x-(-2)\}$: y = -3x-5
- 8) y = 2x + 5

- $\Rightarrow 4x 2y + 3 = 0$ 에서 $y = 2x + \frac{3}{2}$
 - 이 직선에 평행한 직선의 기울기는 2이므로 구하 는 직선의 방정식은

$$y-3=2\{x-(-1)\}$$
 : $y=2x+5$

- 9) y = 2x 1
- \Rightarrow 직선 y=2x+7의 기울기는 2이므로 기울기가 2 이고 점 (3,5)를 지나는 직선의 방정식은 y-5=2(x-3) : y=2x-1
- 10) $y = \frac{2}{5}x 6$
- $\Rightarrow 2x 5y + 3 = 0$ $\Rightarrow y = \frac{2}{5}x + \frac{3}{5}$
 - 이 직선과 평행한 직선의 기울기는 $\frac{2}{5}$ 이고, 지나 는 점이 P(10,-2)이므로 구하는 직선의 방정식 $\circ y - (-2) = \frac{2}{5}(x - 10)$ $\therefore y = \frac{2}{5}x - 6$
- 11) $y = \frac{1}{3}x + \frac{4}{3}$
- \Rightarrow 기울기가 $\frac{1}{3}$ 이고 점 (5,3)을 지나는 직선의 방정

$$y-3=\frac{1}{3}(x-5)$$
, $y-3=\frac{1}{3}x-\frac{5}{3}$ $\therefore y=\frac{1}{3}x+\frac{4}{3}$

- 12) $y = -\frac{4}{3}x$
- \Rightarrow 직선 l의 기울기는 $\frac{3}{4}$ 이므로 직선 l에 수직인 직 선의 기울기를 m이라고 하면 $\frac{3}{4} \times m = -1$ $\therefore m = -\frac{4}{3}$

따라서 구하는 직선의 방정식은
$$y = -\frac{4}{3}x$$

- 13) $y = -\frac{1}{3}x + \frac{7}{3}$
- \Rightarrow 직선 l의 기울기는 3이므로 직선 l에 수직인 직선 의 기울기를 m이라고 하면

$$3 \times m = -1 \qquad \therefore m = -\frac{1}{3}$$

따라서 구하는 직선의 방정식은

$$y-2 = -\frac{1}{3}(x-1)$$
 $\therefore y = -\frac{1}{3}x + \frac{7}{3}$

- 14) y = 2x + 3
- \Rightarrow 직선 $y=-\frac{1}{2}x+3$ 에 수직인 직선의 기울기는 2이 므로 구하는 직선의 방정식은 $y-1=2\{x-(-1)\}$ $\therefore y = 2x + 3$
- 15) y = -3x 18

- \Rightarrow 직선 $y = \frac{1}{3}x 2$ 에 수직인 직선의 기울기는 -3이 고, 점 P(-5, -3)를 지나므로 구하는 직선의 방 $y-(-3) = -3\{x-(-5)\}$ $\therefore y = -3x-18$
- 16) y = -2x + 3
- \Rightarrow 직선 l의 기울기는 $\frac{1}{2}$ 이므로 이 직선에 수직인 직 선의 기울기를 m이라고 하면 $\frac{1}{2} \times m = -1 \quad \therefore m = -2$ 따라서 구하는 직선의 방정식은 y-(-1) = -2(x-2) : y = -2x+3
- 17) $y = -\frac{1}{2}x 2$
- $\Rightarrow 6x 3y + 4 = 0$ 에서 $y = 2x + \frac{4}{3}$ 이 직선과 수직인 직선의 기울기는 $-\frac{1}{2}$ 이고, (-4,0)을 지나므로 구하는 직선의 방정식은 $y = -\frac{1}{2} \{x - (-4)\}$ $\therefore y = -\frac{1}{2}x - 2$
- 18) $y = -\frac{1}{4}x + \frac{1}{4}$
- \Rightarrow 직선 y=4x-2에 수직인 직선의 기울기는 $-\frac{1}{4}$ 이 므로 구하는 직선의 방정식은 $y-0 = -\frac{1}{4}(x-1)$: $y = -\frac{1}{4}x + \frac{1}{4}$
- 19) y = -3x + 5
- $\Rightarrow x 3y + 1 = 0$ oil $\Rightarrow y = \frac{1}{3}x + \frac{1}{3}$ 이 직선에 수직인 직선의 기울기는 -3이므로 구 하는 직선의 방정식은 y-(-1) = -3(x-2) : y = -3x+5
- 20) $y = -\frac{3}{2}x + 8$
- $\Rightarrow 2x 3y + 2 = 0$ of $y = \frac{2}{3}x + \frac{2}{3}$ 이 직선에 수직인 직선의 기울기는 $-\frac{3}{2}$ 이고, 점 P(4,2)를 지나므로 구하는 직선의 방정식은 $y-2 = -\frac{3}{2}(x-4)$ $\therefore y = -\frac{3}{2}x+8$
- 21) y = -2x
- $\implies 2x-4y+3=0 \text{ on } k \text{ } y=\frac{1}{2}x+\frac{3}{4}$ 이 직선에 수직인 직선의 기울기는 -2이므로 구 하는 직선의 방정식은 y-(-2) = -2(x-1) : y = -2x

- 22) $y = \frac{1}{3}x + 1$
- $\Rightarrow 3x + y = 0 \text{ on } k \text{ } y = -3x$ 이 직선에 수직인 직선의 기울기는 $\frac{1}{2}$ 이므로 구하 는 직선의 방정식은 $y-2=\frac{1}{3}(x-3)$: $y=\frac{1}{3}x+1$
- 23) y = 2x + 4
- \Rightarrow 직선 x+2y-5=0을 변형하면 $y=-\frac{1}{2}x+\frac{5}{2}$ 이 직선의 기울기는 $-\frac{1}{2}$ 이므로 이 직선에 수직인 직선의 기울기는 2이다. 기울기가 2이고 점 (0,4)를 지나는 직선의 방정식은 y=2x+4
- 24) $y = -\frac{5}{4}x + \frac{3}{2}$
- \Rightarrow 직선 4x 5y + 10 = 0을 변형하면 $y = \frac{4}{5}x + 2$ 이 직선의 기울기는 $\frac{4}{5}$ 이므로 이 직선에 수직인 직선의 기울기는 $-\frac{4}{5}$ 이다. 기울기가 $-\frac{4}{5}$ 이고 점 (2,-1)을 지나는 직선의 방정식은 $y-(-1) = -\frac{5}{4}(x-2)$ $\therefore y = -\frac{5}{4}x + \frac{3}{2}$
- ⇒ 두 직선이 수직이려면 $2 \cdot k + (-3) \cdot 4 = 0$: k = 6
- ⇨ 두 직선이 수직이려면 기울기의 곱이 -1이므로 $1 \times (k+1) = -1 : k = -2$
- 27) -6
- $\Rightarrow k \cdot 1 + 3\{-(k+4)\} = 0$ 에서 2k = -12 : k = -6
- 28) k=3 또는 k=-1
- $\Rightarrow (k-2)x+3y-1=0$ $\Rightarrow y=-\frac{k-2}{3}x+\frac{1}{3}$ 두 직선이 서로 수직이므로 $\left(-\frac{k-2}{3}\right) \times k = -1$ k(k-2) = 3 $k^2 - 2k - 3 = 0$ (k-3)(k+1) = 0 $\therefore k=3$ $\oplus k=-1$
- 29) k = 3
- ⇒ 두 직선이 서로 수직이므로 $1 \cdot k + (k-4) \cdot 3 = 0$ 4k = 12 : k = 3
- 30) $k = \frac{2}{5}$

- ⇒ 두 직선이 수직이려면 기울기의 곱이 -1이므로 $5 \times (2k-1) = -1$: $k = \frac{2}{5}$ $\therefore k = 1$
- 31) $\frac{4}{3}$
- $\Rightarrow (-1) \cdot (k-2) + (k-1) \cdot (-2) = 0 \circ] \ \, \Box \ \, \exists \ \,$ -k+2-2k+2=0-3k = -4 : $k = \frac{4}{2}$
- 32) 0 또는 -3
- ⇒ 두 직선이 수직이려면 $1 \cdot k + k \cdot (k+2) = 0, k^2 + 3k = 0, k(k+3) = 0$ $\therefore k=0$ 또는 k=-3
- 33) $\frac{3}{2}$
- $\Rightarrow (k-2) \times \frac{3}{k} = -1, 3k-6 = -k$ 4k = 6 : $k = \frac{3}{2}$
- 34) k = 1
- ⇨ 두 직선이 수직이려면 기울기의 곱이 -1이므로 $-k \times (2-k) = -1$ $k^2-2k+1=0$, $(k-1)^2=0$ $\therefore k = 1$
- 35) 0 또는 -2
- ⇒ 두 직선이 수직이려면 $1 \cdot k + k \cdot (2k+3) = 0, 2k^2 + 4k = 0$ 2k(k+2) = 0 : k=0 $\pm \frac{1}{2}$ k=-2
- ⇒ 두 직선이 수직이려면 기울기의 곱이 -1이어야 하므로 $\frac{1}{2} \cdot k = -1$ $\therefore k = -2$
- 37) -3
- ⇒ 두 직선이 수직이려면 기울기의 곱이 -1이어야 하므로 1·(k+2)=-1 ::k=-3
- ⇒ 두 직선이 수직이려면 $3 \cdot (k-3) + k \cdot 6 = 0$: k = 1
- 39) $\frac{1}{4}$
- $\Rightarrow kx+y+1=0$ 에서 y=-kx-1두 직선이 수직이려면 기울기의 곱이 -1이어야 하므로 $-k\cdot 4 = -1$: $k = \frac{1}{4}$

- 40) $\frac{4}{3}$
- ⇨ 두 직선이 평행하려면 기울기가 같아야 하므로 2k-1 = -k+3 : $k = \frac{4}{3}$
- 41) 3
- $\Rightarrow \frac{-1}{k-2} = \frac{k-1}{-2} \neq \frac{1}{k+2} \cdots \bigcirc$ $\frac{-1}{k-2} = \frac{k-1}{-2}$ of k = 2k(k-3) = 0 : k=0 $\pm \frac{1}{k}$ k=3이때, \bigcirc 을 만족하는 값은 k=3이다.
- 42) 3
- $\Rightarrow k-2=\frac{3}{k}\cdots \bigcirc , k^2\neq -\frac{1}{k}\cdots \bigcirc$ \bigcirc 에서 $k^2-2k-3=0$ (k+1)(k-3)=0 $\therefore k = -1 \quad \exists = k = 3$ ①에서 $k \neq -1$ 이므로 k=3
- 43) 3
- ⇒ 두 직선이 평행하려면 $\frac{7}{k-2} = \frac{k+4}{1} \neq \frac{-2}{2} \cdots \bigcirc$ $k^2 + 2k - 15 = 0, (k+5)(k-3) = 0$ ∴ k=-5 또는 k=3 \bigcirc 에서 $k \neq -5$ 이므로 k=3
- $\Rightarrow \frac{k}{1} = \frac{3}{-(k+4)} \neq \frac{-1}{1} \text{ oil } k^2 + 4k + 3 = 0, k \neq -1$ $(k+3)(k+1) = 0, k \neq -1$ $\therefore k = -3$
- 45) k = 0
- 가 같아야 하므로 1=k+1 $\therefore k=0$
- 46) k = -2
- 가 같아야 하므로 -3k-1 = -k+3 : k = -2
- \Rightarrow 두 직선이 평행하려면 $\frac{2}{k} = \frac{1}{3} \neq \frac{1}{6}$ $\therefore k = 6$
- \Rightarrow 두 직선이 평행하려면 $\frac{k}{1} = \frac{6}{-3} \neq \frac{6}{3}$ $\therefore k = -2$
- ⇒ 두 직선이 평행하려면

$$\begin{split} &\frac{1}{k} = \frac{k}{k+2} \neq \frac{1}{2} \quad \cdots \bigcirc \\ &k^2 - k - 2 = 0, (k+1)(k-2) = 0 \\ &\therefore k = -1 \quad \text{또는} \quad k = 2 \\ &\bigcirc \text{에서} \quad k \neq 2 \circ | \text{므로} \quad k = -1 \end{split}$$

50)
$$k = -4$$

$$\Rightarrow \frac{k}{2} = \frac{6}{-3} \neq \frac{5}{1}$$
$$-3k = 12 \quad \therefore k = -4$$

[다른 풀이]

$$2x - 3y + 1 = 0$$
에서 $y = \frac{2}{3}x + \frac{1}{3}$

$$kx + 6y + 5 = 0$$
에서 $y = -\frac{k}{6}x - \frac{5}{6}$

이 두 직선은 평행하므로

$$\frac{2}{3} = -\frac{k}{6}$$
 : $k = -4$

$$\Rightarrow \frac{k}{1} = \frac{-2}{1-k} \neq \frac{-2}{2} \cdots \bigcirc$$

$$k(1-k) = -2$$

$$k^2 - k - 2 = 0 , (k+1)(k-2) = 0$$

$$\therefore k = -1 \quad \text{E} \stackrel{\leftarrow}{=} \quad k = 2$$

(i)
$$k=-1$$
을 ③에 대입하면 $\frac{-1}{1}=\frac{-2}{2}=\frac{-2}{2}$

(ii)
$$k=2$$
를 \bigcirc 에 대입하면 $\frac{2}{1}=\frac{-2}{-1}\neq\frac{-2}{2}$

(i),(ii)에서 ○을 만족하는 값은 k=2이다.

- ⇒ 두 직선이 평행하려면 기울기가 같아야 하므로 3 = k+1 : k=2
- 53) -1
- ⇒ 두 직선이 평행하려면

$$\frac{1}{k} = \frac{k}{2k+3} \neq \frac{-1}{-3} \dots \bigcirc$$
$$k^2 - 2k - 3 = 0, (k+1)(k-3) = 0$$

 $\therefore k=-1$ 또는 k=3 \bigcirc 에서 $k \neq 3$ 이므로 k = -1

54)
$$y = \frac{1}{3}x$$

⇒
$$\overline{AB}$$
의 중점의 좌표는 $\left(\frac{1-1}{2}, \frac{-3+3}{2}\right)$. 즉 $(0,0)$
직선 AB 의 기울기는 $\frac{3-(-3)}{-1-1} = -3$
따라서 \overline{AB} 의 수직이등분선은 점 $(0,0)$ 을 지나고
기울기가 $\frac{1}{3}$ 인 직선이므로 방정식은 $y-0=\frac{1}{3}(x-0)$ $\therefore y=\frac{1}{3}x$

55)
$$y = -x + 7$$

- \Rightarrow \overline{AB} 의 중점의 좌표는 $\left(\frac{3+5}{2}, \frac{2+4}{2}\right)$, 즉 (4,3)직선 AB의 기울기가 $\frac{4-2}{5-3} = 1$ 이므로 직선 AB와 수직인 직선의 기울기는 -1이다. \overline{AB} 의 수직이등분선은 점 (4,3)을 지나고 기울기 가 -1인 직선이므로 방정식은 y-3 = -(x-4) : y = -x+7
- 56) y = -2x 3
- \Rightarrow \overline{AB} 의 중점의 좌표는 $\left(\frac{-4+0}{2}, \frac{0+2}{2}\right)$, -(-2,1)직선 AB의 기울기는 $\frac{2-0}{0-(-4)} = \frac{1}{2}$ 따라서 \overline{AB} 의 수직이등분선은 점 (-2,1)을 지나 고 기울기가 -2이므로 $y-1 = -2\{x-(-2)\}$: y = -2x-3
- 57) 2x+y-5=0
- \Rightarrow 직선 AB의 기울기는 $\frac{4-2}{3+1} = \frac{1}{2}$ AB의 수직이등분선의 기울기는 −2이고, AB의 중점 $\left(\frac{-1+3}{2}, \frac{2+4}{2}\right) = (1, 3)$ 을 지나므로 \overline{AB} 의 수직이등분선의 방정식은 y-3=-2(x-1) $\therefore 2x + y - 5 = 0$
- 58) y = -3x + 1
- \Rightarrow 직선 AB의 기울기는 $\frac{-1+3}{4+2} = \frac{1}{3}$ ∴ AB의 수직이등분선의 기울기는 -3이다. \overline{AB} 의 중점은 $(\frac{-2+4}{2}, \frac{-3-1}{2}) = (1, -2)$ 따라서 AB의 수직이등분선의 방정식은 기울기가 -3이고 점 (1, −2)를 지나는 직선이므로 y+2=-3(x-1) : y=-3x+1
- 59) $y = -\frac{1}{2}x + \frac{3}{2}$
- \Rightarrow $\overline{\rm AB}$ 의 중점의 좌표는 $\left(\frac{2+0}{2},\frac{3-1}{2}\right)$, 즉 (1,1)직선 AB의 기울기는 $\frac{-1-3}{0-2}=2$ 따라서 \overline{AB} 의 수직이등분선은 점 (1,1)을 지나고 기울기가 $-\frac{1}{2}$ 인 직선이므로 방정식은 $y-1 = -\frac{1}{2}(x-1)$: $y = -\frac{1}{2}x + \frac{3}{2}$
- 60) y = -x + 3
- 61) y = x 2

기는 $\frac{3-(-3)}{-1-5}$ =-1이므로 선분 AB의 수직이등 분선의 기울기는 1이다.

또, 선분 AB의 수직이등분선은 선분 AB의 중점 $\left(\frac{5-1}{2}, \frac{-3+3}{2}\right)$, 즉 (2,0)을 지난다.

따라서 선분 AB의 수직이등분선의 방정식은 y = x - 2이다.

62)
$$y = -\frac{3}{2}x + \frac{1}{2}$$

는 $\frac{4-0}{2-(-4)} = \frac{2}{3}$ 이므로 선분 AB의 수직이등분 선의 기울기는 $-\frac{3}{2}$ 이다.

또, 선분 AB의 수직이등분선은 선분 AB의 중점 $\left(\frac{-4+2}{2}, \frac{0+4}{2}\right)$, 즉 (-1,2)를 지난다. 따라서 선분 AB의 수직이등분선의 방정식은

$$y-2=-\frac{3}{2}(x+1)$$
 : $y=-\frac{3}{2}x+\frac{1}{2}$

63)
$$y = 3x + 3$$

$$\Rightarrow$$
 \overline{AB} 의 중점의 좌표는 $\left(\frac{3-3}{2},\frac{2+4}{2}\right)$. 즉 $(0,3)$ 직선 AB의 기울기는 $\frac{4-2}{-3-3}=-\frac{1}{3}$ 따라서 \overline{AB} 의 수직이동분성은 전 $(0,3)$ 을 지나

따라서 \overline{AB} 의 수직이등분선은 점 (0,3)을 지나고 기울기가 3인 직선이므로 방정식은 y-3=3(x-0) : y=3x+3

64)
$$y = -2x + 4$$

는 $\frac{5-3}{2-(-2)} = \frac{1}{2}$ 이므로 선분 AB의 수직이등분 선의 기울기는 -2이다.

또, 선분 AB의 수직이등분선은 선분 AB의 중점 $\left(\frac{-2+2}{2}, \frac{3+5}{2}\right) = (0,4)$ 를 지난다.

따라서 선분 AB의 수직이등분선의 방정식은 y-4 = -2(x-0) $\therefore y = -2x + 4$

65)
$$y = \frac{3}{2}x + \frac{5}{2}$$

다
$$\overline{AB}$$
의 중점의 좌표는 $\left(\frac{-4+2}{2}, \frac{3-1}{2}\right)$.즉 $(-1,1)$ 직선 AB의 기울기는 $\frac{-1-3}{2-(-4)} = -\frac{2}{3}$ 따라서 \overline{AB} 의 수직이등분선은 점 $(-1,1)$ 을 지나고 기울기가 $\frac{3}{2}$ 인 직선이므로 방정식은 $|y-1=\frac{3}{2}\{x-(-1)\}$ $\therefore y=\frac{3}{2}x+\frac{5}{2}$

66)
$$y = \frac{1}{3}x + \frac{1}{3}$$

는 $\frac{(-2)-4}{3-1}$ =-3이므로 선분 AB의 수직이등분 선의 기울기는 $\frac{1}{3}$ 이다.

또, 선분 AB의 수직이등분선은 선분 AB의 중점 $\left(\frac{1+3}{2},\frac{4-2}{2}\right)$, 즉 (2,1)을 지난다. 따라서 선분 AB의 수직이등분선의 방정식은 $y-1 = \frac{1}{3}(x-2)$ $\therefore y = \frac{1}{3}x + \frac{1}{3}$

67) y = -x + 4

 \Rightarrow \overline{AB} 의 중점의 좌표는 $\left(\frac{-1+3}{2},\frac{1+5}{2}\right)$, 즉 (1,3)직선 AB의 기울기는 $\frac{5-1}{3-(-1)}$ =1 따라서 \overline{AB} 의 수직이등분선은 점 (1,3)을 지나고 기울기가 -1이므로 y-3 = -(x-1) : y = -x+4

68)
$$y = \frac{1}{3}x - 1$$

 \Rightarrow \overline{AB} 의 중점의 좌표는 $\left(\frac{-1+1}{2}, \frac{2-4}{2}\right)$, 직선 AB의 기울기는 $\frac{-4-2}{1-(-1)} = -3$ 따라서 \overline{AB} 의 수직이등분선은 점 (0,-1)을 지나 고 기울기가 $\frac{1}{3}$ 인 직선이므로 방정식은 $y-(-1) = \frac{1}{3}(x-0)$ $\therefore y = \frac{1}{3}x-1$

69) 2x - y = 0

 \Rightarrow 직선 AB의 기울기는 $\frac{1-3}{3+1} = -\frac{1}{2}$ \overline{AB} 의 중점은 $(\frac{-1+3}{2}, \frac{3+1}{2}) = (1, 2)$ ∴ 선분 AB의 수직이등분선은 기울기가 2이고 점 (1, 2)를 지나는 직선이므로 y-2=2(x-1) $\therefore 2x - y = 0$

70) y = x + 3

기는 $\frac{-1-7}{4-(-4)}$ =-1이므로 선분 AB의 수직이등 분선의 기울기는 1이다. 또, 선분 AB의 수직이등분선은 선분 AB의 중점 $\left(\frac{-4+4}{2}, \frac{7-1}{2}\right)$, 즉 (0,3)을 지난다.

따라서 선분 AB의 수직이등분선의 방정식은 $y-3=x \qquad \therefore y=x+3$

- 71) y = 2x 5
- \Rightarrow 직선 AB의 기울기는 $\frac{-3-1}{6+2} = -\frac{1}{2}$ $\overline{\mathrm{AB}}$ 의 중점은 $(\frac{-2+6}{2},\ \frac{1-3}{2})$ = $(2,\ -1)$.. 선분 AB의 수직이등분선의 방정식은 기울기는 2이고 점 (2, -1)을 지나므로 y+1=2(x-2) $\therefore y = 2x - 5$
- 72) y = -3x
- \Rightarrow $\overline{\mathrm{AB}}$ 의 중점의 좌표는 $\left(\frac{-4+2}{2},\frac{2+4}{2}\right)$,즉 (-1,3)직선 AB의 기울기는 $\frac{4-2}{2-(-4)} = \frac{1}{3}$ 따라서 \overline{AB} 의 수직이등분선은 점 (-1,3)을 지나 고 기울기가 -3인 직선이므로 방정식은 $y-3 = -3\{x-(-1)\}$ $\therefore y = -3x$