Lineare Algebra

Serie 8

Abgabe: 26. April 2018

- 1. Man beweise direkt, dass die durch die Matrix $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ repräsentierte Bilinearform genau dann positiv definit ist, wenn a>0 und $ad-b^2>0$ erfüllt sind.
- 2. Sei $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Man finde eine Orthonormalbasis von \mathbb{R}^2 bezüglich der durch A definierten Bilinearform X^tAY .
- 3. Man finde Orthogonalbasen für die durch die folgenden Matrizen definierten Bilinearformen auf \mathbb{R}^2 bzw. \mathbb{R}^3 .
 - a) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 - b) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 4. Man ergänze den Vektor $X_1=(1,1,1)^t/\sqrt{3}$ zu einer Orthonormalbasis für \mathbb{R}^3 mit dem Standardskalarprodukt.