

Synergistic, selective antimicrobial preparation useful for treating acne and seborrheic dermatitis or as deodorant contains antiadhesive agent, e.g. ceramide, and antimicrobial agent**Patent number:** DE19841794**Also published as:****Publication date:** 2000-03-16

EP0995424 (A2)

Inventor: WOLF FLORIAN (DE); BUENGER JOACHIM (DE); TRAUPE BERND (DE); SCHREIBER JOERG (DE); TEICHMANN STEFAN (DE)

EP0995424 (A3)

Applicant: BEIERSDORF AG (DE)**Classification:****- International:** A61K8/02; A61K8/68; A61Q1/06; A61Q5/00;
A61Q5/02; A61Q5/06; A61Q9/02; A61Q15/00;
A61Q19/10; A61K8/02; A61K8/30; A61Q1/02;
A61Q5/00; A61Q5/02; A61Q5/06; A61Q9/02;
A61Q15/00; A61Q19/10; (IPC1-7): A61K7/00; A61K7/32**- european:** A61K8/02F; A61K8/68; A61Q1/06; A61Q5/00;
A61Q5/02; A61Q5/06; A61Q9/02; A61Q15/00;
A61Q19/10**Application number:** DE19981041794 19980912[Report a data error here](#)**Abstract of DE19841794**

A preparation (I), preferably for topical cosmetic or dermatological use, contains a combination of at least one anti-adhesive agent (A) and at least one antimicrobial agent (B). An Independent claim is included for combinations of (A) and (B).

Data supplied from the esp@cenet database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift
⑯ DE 198 41 794 A 1

⑮ Int. Cl.⁷:
A 61 K 7/00
A 61 K 7/32

DE 198 41 794 A 1

⑯ Aktenzeichen: 198 41 794.2
⑯ Anmeldetag: 12. 9. 1998
⑯ Offenlegungstag: 16. 3. 2000

⑯ Anmelder: Beiersdorf AG, 20253 Hamburg, DE	DE 195 40 465 A1 DE 195 40 464 A1 DE 195 40 463 A1 DE 195 40 462 A1 DE 43 28 828 A1 DE 41 30 915 A1 DE 33 20 304 A1 DE 28 41 346 A1 US 55 49 901 US 50 79 239 US 39 31 403 EP 05 87 374 A2 WO 98 17 282 A1 WO 95 31 966 A1
⑯ Erfinder: Wolf, Florian, Dr., 20251 Hamburg, DE; Bünger, Joachim, Dr., 64823 Groß-Umstadt, DE; Traupe, Bernd, 22457 Hamburg, DE; Schreiber, Jörg, Dr., 22087 Hamburg, DE; Teichmann, Stefan, Dr., 22607 Hamburg, DE	
⑯ Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften: DE 196 43 586 A1 DE 196 43 585 A1 DE 196 34 021 A1 DE 196 34 019 A1 DE 196 15 575 A1 DE 196 02 111 A1 DE 196 02 110 A1 DE 196 02 108 A1 DE 195 41 967 A1	

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑯ Kombinationen von Antiadhäsiva (Ceramide und Sphingosine und Derivate) und Mikrobiziden

⑯ Gegenstand der Erfindung sind Zubereitungen, insbesondere kosmetische oder dermatologische, insbesondere topische Zubereitungen mit einem Gehalt an einer Kombination von
(A) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antiadhäsv wirkenden Wirkstoffe (Anti-Adhäsiva), kombiniert mit
(B) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antimikrobiell wirkenden Wirkstoffe oder Wirksysteme (Mikrobizide).

DE 198 41 794 A 1

DE 198 41 794 A 1

Beschreibung

Der gesunde warmblütige Organismus, insbesondere die gesunde menschliche Haut, ist mit einer Vielzahl nichtpathogener Mikroorganismen besiedelt. Diese sogenannte Mikroflora der Haut ist nicht nur unschädlich, sie stellt einen wichtigen Schutz zur Abwehr opportunistischer oder pathogener Keime dar.

5 Bakterien gehören zu den prokaryotischen Einzellern. Sie können grob nach ihrer Form (Kugel, Zylinder, gekrümmter Zylinder) sowie nach dem Aufbau ihrer Zellwand (grampositiv, gramnegativ) unterschieden werden. Feinere Unterteilungen tragen auch der Physiologie der Organismen Rechnung. So existieren aerobe, anaerobe sowie fakultativ anaerobe Bakterien. Manche Organismen sind in ihrer Eigenschaft als pathogene Keime von medizinischer Bedeutung, andere wiederum sind vollkommen unschädlich.

10 Gegen Bakterien wirksame Substanzen sind seit geraumer Zeit bekannt. Der Begriff "Antibiotika" beispielsweise, der nicht auf alle antimikrobiell wirksamen Substanzen anwendbar ist, läßt sich auf das Jahr 1941 datieren, obwohl die ersten Erkenntnisse zum Penicillin bereits im Jahre 1929 gefunden wurden. Antibiotika im heutigen Sinne sind nicht für alle medizinischen, schon gar nicht kosmetische Anwendungen geeignet, da häufig auch der warmblütige Organismus, also etwa der erkrankte Patient, bei Anwendung auf irgendeine Weise in seinen Stoffwechselreaktionen beeinträchtigt wird.

15 Eine Aufgabe der vorliegenden Erfindung war also, den Stand der Technik in dieser Richtung zu bereichern, insbesondere also, Substanzen zur Verfügung zu stellen, welche gegen grampositive und/oder gramnegative Bakterien wirksam sind, ohne daß mit der Anwendung der Substanzen eine unvertretbare Beeinträchtigung der Gesundheit des Anwenders verbunden wäre.

20 Gramnegative Keime sind beispielsweise Escherichia coli, Pseudomonas-Arten sowie Enterobacteriaceen, wie etwa Citrobacter.

Auch grampositive Keime spielen in Kosmetik und Dermatologie eine Rolle. Bei der unreinen Haut beispielsweise sind neben anderen Einflüssen bakterielle Sekundärinfektionen von ätiologischer Bedeutung. Einer der wichtigsten Mikroorganismen, der in Zusammenhang mit unreiner Haut steht, ist das Propionibacterium acnes.

25 Unreine Haut und/oder Komedonen beeinträchtigen das Wohlbefinden der Betroffenen aber selbst in leichten Fällen. Da praktisch jeder oder jede Jugendliche von unreiner Haut irgendeiner Ausprägung betroffen ist, besteht bei vielen Personen Bedarf, diesem Zustand abzuholen.

Eine besondere Aufgabe der vorliegenden Erfindung war es also, einen gegen unreine Haut bzw. Propionibacterium acnes wirksamen Wirkstoff zu finden.

30 Die vorliegende Erfindung betrifft in einer weiteren Ausführungsform kosmetische Desodorantien. Solche Formulierungen dienen dazu, Körpergeruch zu beseitigen, der entsteht, wenn der an sich geruchlose frische Schweiß durch insbesondere grampositive Mikroorganismen zersetzt wird. Den üblichen kosmetischen Desodorantien liegen unterschiedliche Wirkprinzipien zugrunde.

35 Bekannt und gebräuchlich sind sowohl flüssige Desodorantien, beispielsweise Aerosolsprays, Roll-ons und dergleichen als auch feste Zubereitungen, beispielsweise Deo-Stifte ("Sticks"), Puder, Pudersprays, Intimreinigungsmittel usw.

In sogenannten Antitranspirantien kann durch Adstringentien – vorwiegend Aluminiumsalze wie Aluminiumhydroxychlorid (Aluchlorhydrat) – die Entstehung des Schweißes unterbunden werden. Abgesehen von der Denaturierung der Hautproteine greifen die dafür verwendeten Stoffe aber, abhängig von ihrer Dosierung, drastisch in den Wärmehaushalt der Achselregion ein und sollten allenfalls in Ausnahmefällen angewandt werden.

40 Durch die Verwendung antimikrobieller Stoffe in kosmetischen Desodorantien kann die Bakterienflora auf der Haut reduziert werden. Dabei sollten im Idealfalle nur die Geruch verursachenden Mikroorganismen wirksam reduziert werden. In der Praxis hat sich aber herausgestellt, daß die gesamte Mikroflora der Haut beeinträchtigt werden kann.

Der Schweißfluß selbst wird dadurch nicht beeinflußt, im Idealfalle wird nur die mikrobielle Zersetzung des Schweißes zeitweilig gestoppt.

45 Auch die Kombination von Adstringentien mit antimikrobiell wirksamen Stoffen in ein und derselben Zusammensetzung ist gebräuchlich. Die Nachteile beider Wirkstoffklassen lassen sich auf diesem Wege jedoch nicht vollständig be seitigen.

Schließlich kann Körpergeruch auch durch Duftstoffe überdeckt werden, eine Methode, die am wenigsten den ästhetischen Bedürfnissen des Verbrauchers gerecht wird, da die Mischung aus Körpergeruch und Parfümduft eher unange nehmlich riecht.

50 Allerdings werden die meisten kosmetischen Desodorantien, wie auch die meisten Kosmetika insgesamt, parfümiert, selbst wenn sie desodorierende Wirkstoffe beinhalten. Parfümierung kann auch dazu dienen, die Verbraucherakzeptanz eines kosmetischen Produktes zu erhöhen oder einem Produkt ein bestimmtes Flair zu geben.

Die Parfümierung wirkstoffhaltiger kosmetischer Mittel, insbesondere kosmetischer Desodorantien, ist allerdings nicht selten problematisch, weil Wirkstoffe und Parfümbestandteile gelegentlich miteinander reagieren und einander unwirksam machen können.

55 Desodorantien sollen folgende Bedingungen erfüllen:

- 1) Sie sollen eine zuverlässige Desodorierung bewirken.
- 2) Die natürlichen biologischen Vorgänge der Haut dürfen nicht durch die Desodorantien beeinträchtigt werden.
- 3) Die Desodorantien müssen bei Überdosierung oder sonstiger nicht bestimmungsgemäßer Anwendung unschädlich sein.
- 4) Sie sollen sich nach wiederholter Anwendung nicht auf der Haut anreichern.
- 5) Sie sollen sich gut in übliche kosmetische Formulierungen einarbeiten lassen.

60 Eine weitere Aufgabe der vorliegenden Erfindung war es also, kosmetische Desodorantien zu entwickeln, die die Nachteile des Standes der Technik nicht aufweisen. Insbesondere sollten die Desodorantien die Mikroflora der Haut weitgehend schonen, die Zahl der Mikroorganismen aber, die für den Körpergeruch verantwortlich sind, selektiv reduzieren.

DE 198 41 794 A 1

zieren.

Weiterhin war es eine Aufgabe der Erfindung, kosmetische Desodorantien zu entwickeln, die sich durch gute Hautverträglichkeit auszeichnen. Auf keinen Fall sollten die desodorierenden Wirkprinzipien sich auf der Haut anreichern.

Eine weitere Aufgabe war, kosmetische Desodorantien zu entwickeln, welche mit einer möglichst großen Vielzahl an üblichen kosmetischen Hilfs- und Zusatzstoffen harmonieren, insbesondere mit den gerade in desodorierend oder anti-transpirierend wirkenden Formulierungen bedeutenden Parfümbestandteilen.

Noch eine weitere Aufgabe der Erfindung war, kosmetische Desodorantien zur Verfügung zu stellen, welche über einen längeren Zeitraum, und zwar in der Größenordnung von mindestens einem halben Tag, wirksam sind, ohne daß ihre Wirkung spürbar nachläßt.

Schließlich war eine Aufgabe der vorliegenden Erfindung, desodorierende kosmetische Prinzipien zu entwickeln, die möglichst universell in die verschiedensten Darreichungsformen kosmetischer Desodorantien eingearbeitet werden können, ohne auf eine oder wenige spezielle Darreichungsformen festgelegt zu sein.

Pilze, auch Fungi [fungus = lat. Pilz], Mycota [mukhζ = grch. Pilz] oder Mycobionten genannt, zählen im Gegensatz zu den Bakterien zu den Eucaryonten. Eucaryonten sind Lebewesen, deren Zellen (Eucyten) im Gegensatz zu denen der sogenannten Prokaryonten (Procyten) über einen durch eine Kermembran vom restlichen Cytoplasma abgegrenzten Zellkern verfügen. Der Zellkern enthält die Erbinformation in Chromosomen gespeichert.

Zu Vertretern der Mycobionten zählen beispielsweise Hefen (Protoascomycetes), Schimmelpilze (Plectomycetes), Mehltau (Pyrenomyces), der falsche Mehltau (Phycomycetes) und die Ständerpilze (Basidiomycetes).

Pilze, auch nicht die Basidiomyceten, sind keine pflanzlichen Organismen, haben aber wie diese eine Zellwand, zellsaftgefüllte Vakuolen und eine mikroskopisch gut sichtbare Plasmapräzession. Sie enthalten keine photosynthetischen Pigmente und sind kohlenstoff-heterotroph. Sie wachsen unter aeroben Bedingungen und gewinnen Energie durch Oxidation organischer Substanzen. Einige Vertreter, beispielsweise Hefen, sind allerdings fakultative Anaerobier und zur Energiegewinnung durch Gärungsprozesse befähigt.

Dermatomycosen sind Krankheiten, bei der gewisse Pilzarten, insbesondere Dermatophyten, in die Haut und Haarfollikel eindringen. Die Symptome von Dermatomycosen sind beispielsweise Bläschen, Exfoliation, Rhabaden und Erosion, meist verbunden mit Juckreiz oder allergischem Ekzem.

Dermatomycosen können im wesentlichen in folgende vier Gruppen unterteilt werden: Dermatophyten (z. B. Epidermophytie, Favus, Mikrosporie, Trichophytie), Hefemycosen (z. B. Pityriasis und andere Pityrosporum-bedingte Mycosen, Candida-Infektionen, Blastomycose, Busse-Buschke-Krankheit, Torulose, Piedra alba, Torulopsisose, Trichosporose), Schimmelmycosen (z. B. Aspergillose, Kephalosporidose, Phycomycose und Skopulariopsidose), Systemmycosen (z. B. Chromomycose, Coccidiomycose, Histoplasmose).

Zu den pathogenen und fakultativ pathogenen Keimen gehören beispielsweise aus der Gruppe der Hefen Candida-Arten (z. B. Candida albicans) und solche der Familie Pityrosporum. Pityrosporum-Arten, insbesondere Pityrosporum ovale, sind für Hauterkrankungen wie Pityriasis versicolor, Seborrhoe in den Formen Seborrhoea oleosa und Seborrhoea sicca, welche sich vor allem als Seborrhoea capitis (= Kopfschuppen) äußern, seborrhoisches Ekzem und Pityrosporum-Follikulitis verantwortlich zu machen. Eine Beteiligung von Pityrosporum ovale an der Entstehung von Psoriasis wird von der Fachwelt diskutiert.

Alle Bereiche der menschlichen Haut können von Dermatomycosen befallen werden. Dermatophyten befallen fast ausschließlich Haut, Haare und Nägel. Hefemycosen können auch Schleimhäute und innere Organe befallen, Systemmycosen erstrecken sich regelmäßig auf ganze Organsysteme.

Besonders häufig sind die Körperbereiche betroffen, auf welchen sich durch Kleidung, Schmuck oder Schuhwerk Feuchtigkeit und Wärme stauen können. So gehört der Fußpilz zu den bekanntesten und am weitesten verbreiteten Dermatomycosen. Besonders unangenehm sind weiterhin Pilzerkrankungen der Finger- und Fußnägelbereiche (Onychomycosen).

Ferner sind Superinfektionen der Haut durch Pilze und Bakterien nicht selten.

Bei bestehendem Primärinfekt, d. h. der normalen Keimbesiedelung der Haut, eintretender Neuinfektion mit hohen Keimzahlen eines oder mehrerer oft physiologischer Erreger, beispielsweise Staphylokokken, oft aber auch unphysiologischer Erreger, beispielsweise Candida albicans, kann bei Zusammentreffen ungünstiger Einflüsse eine "Superinfektion" der befallenen Haut auftreten. Die normale Mikroflora der Haut (oder eines anderen Körperorgans) wird dabei von dem Sekundärerreger regelrecht überwuchert.

Solche Superinfektionen können sich, in Abhängigkeit vom betreffenden Keim, in günstig verlaufenden Fällen in unangenehmen Hauterscheinungen (Juckreiz, unschönes äußeres Erscheinungsbild) äußern. In ungünstig verlaufenden Fällen können sie aber zu großflächiger Zerstörung der Haut führen, im schlimmsten Falle sogar im Tode des Patienten gipfeln.

Superinfektionen der vorab geschilderten Art sind z. B. beim Vollbild von AIDS häufig auftretende Sekundärerkrankungen. An sich – jedenfalls in geringen Keimdichten – unschädliche, aber unter Umständen auch ausgesprochen pathogene Keime überwuchern auf diese Weise die gesunde Hautflora. Bei AIDS allerdings sind auch andere Körperorgane von Superinfektionen betroffen.

Ebenso werden derartige Superinfektionen bei einer Vielzahl dermatologischer Erkrankungen, z. B. atopischem Ekzem, Neurodermitis, Akne, seborrhoischer Dermatitis oder Psoriasis beobachtet. Auch viele medizinische und therapeutische Maßnahmen, z. B. die Radio- oder Chemotherapie von Tumorerkrankungen, als Nebenwirkung hervorgerufene, medikamentös induzierte Immunsuppression oder aber systemische Antibiotikabehandlung, ebenso wie externe chemische oder physikalische Einflüsse (z. B. Umweltverschmutzung, Smog), fördern das Auftreten von Superinfektionen der äußeren und inneren Organe, insbesondere der Haut und der Schleimhäute.

Zwar ist es im Einzelfalle ohne weiteres möglich, Superinfektionen mit Antibiotika zu bekämpfen, meistens haben solche Substanzen aber den Nachteil unangenehmer Nebenwirkungen. Oft sind Patienten beispielsweise gegen Penicilline allergisch, weswegen eine entsprechende Behandlung sich in einem solchen Falle verbieten würde.

Ferner haben topisch verabreichte Antibiotika den Nachteil, daß sie die Hautflora nicht nur vom Sekundärerreger be-

DE 198 41 794 A 1

freien, sondern auch die an sich physiologische Hautflora stark beeinträchtigen und der natürliche Heilungsprozeß auf diese Weise wieder gebremst wird.

Aufgabe der vorliegenden Erfindung war, die Nachteile des Standes der Technik zu beseitigen und Substanzen und Zubereitungen, solche Substanzen enthaltend, zur Verfügung zu stellen, durch deren Verwendung Superinfektionen geheilt werden können, wobei die physiologische Hautflora keine nennenswerte Einbußen erleidet.

5 Protozoen sind parasitisch lebende Einzeller mit klar abgegrenztem Zellkern, die sich ungeschlechtlich fortpflanzen (durch Teilung sowie Knospung), oder aber geschlechtlich (Gameto-, Gamonto- und Autogamie). Die Nahrungsaufnahme aus der Umgebung erfolgt durch Permeation sowie durch Pino- oder Phagozytose. Die meisten Protozoen können neben vegetativen, meist beweglichen Zustandsformen (sogenannten Trophozolen) unter ungünstigen Umständen auch 10 Zysten als Dauerformen ausbilden.

10 Je nach Fortbewegungsart und -apparat werden Protozoen in vier verschiedene Gruppen unterteilt:

- (a) Mastigophora (Flagellaten mit Geißeln)
- (b) Sarcodina/Rhizopoda (amöboides Bewegungsmuster durch Plasmaausstülpungen)
- 15 (c) Sporozoa (schlängelndes oder gleitendes Bewegungsmuster)
- (d) Ciliata/Ciliophora (Bewimpelung oder Begeißelung)

Parasitisch lebende Protozoen werden in subtropischen und tropischen Gebieten häufig durch stechende und saugende Insekten, aber auch Schmutz- und Schmierinfektion sowie durch die Nahrungskette übertragen.

20 Einige medizinisch und dermatologisch relevante Protozoenosen sind: Trichomoniasis (verursacht von Trichomonas vaginalis), Lamblienruhr (verursacht durch *Lamblia intestinalis*), viszerale sowie kutane und Schleimhaut-Leishmaniose (verursacht beispielsweise durch *Leishmania donovani*, *L. tropica*, *L. brasiliensis*, *L. mexicana*, *L. diffusa* oder *L. pifanoi*), Trypanosomiasis (verursacht durch verschiedene *Trypanosoma* Arten), Amöbenruhr und Amöbiasis (verursacht beispielsweise durch verschiedene *Entamoeba*-Arten, *Jodamoeba butschlii* oder *Naegleria fowleri*), Kokzidiose (durch *Iso-spora belli*) und Balantidenruhr (verursacht durch *Balantidium coli*).

25 Durch Protozoenosen hervorgerufene medizinische und dermatologische Phänomene beeinträchtigen, zum Teil erheblich, das menschliche Wohlbefinden. Es besteht daher bei den betroffenen Personen ein erheblicher Bedarf, diesem Zustand abzuholen. Eine Aufgabe der vorliegenden Erfindung war es also, gegen Protozoen wirksame Wirkprinzipien zu finden.

30 Parasiten sind ein- oder mehrzellige Pflanzen oder Tiere, die sich auf (= Ektoparasiten) oder in (= Endoparasiten) anderem Lebewesen auf deren Kosten ernähren, und zwar mit (= Pathogene Parasiten) oder ohne (Apathogene Parasiten) Verursachung von Krankheitserscheinungen. Die Lebensweise ist entweder auch aphytisch oder aber rein parasitär, eventuell nur als periodischer, temporärer oder stationärer Parasit. Die Entwicklung von Parasiten ist an einen oder mehrere verschiedene Wirtsorganismen gebunden, wobei der Mensch Zwischenwirt oder Endwirt sein kann.

35 Medizinisch und dermatologisch bedeutsame Parasiten sind beispielsweise die Trematoden, die sich wiederum in Trematodae, Cestodae und Nematodae untergliedern. Das menschliche Wohlbefinden beeinträchtigende Trematoden sind beispielsweise Bilharziose, (verursacht durch *Schistosoma*-Arten), Bandwurmbefall vom Darm und anderen inneren Organen (verursacht durch beispielsweise *Taenia*-Arten und *Echinococcus*-Arten), Ascariasis (verursacht durch *Ascaris lumbricoides*), Enterobiasis (verursacht durch *Enterobius vermicularis*), Paragonimiasis (verursacht durch *Paragonimus*-Arten), Filariose (verursacht beispielsweise durch *Wuchereria bancrofti*) sowie anderer Nematodenbefall (beispielsweise verursacht durch *Trichuris trichura* oder *Trichinella spiralis*).

40 Darüberhinaus bestehen eine Vielzahl auf bzw. in Mensch und Tier parasitisch lebender Insektenarten bzw. Spinnentieren, die medizinische und dermatologische Veränderungen der Wirtsorganismen hervorrufen. In dieser Hinsicht für die Beeinträchtigung des menschlichen Wohlbefindens verantwortliche Parasiten sind beispielsweise Accrodermatitis (verursacht durch Getreidemilben, beispielsweise *Pediculoides ventricosus*), Skabies (verursacht durch *Sarcoptes scabiei*), Fliegen- und/oder Fliegenlarvenbefall (verursacht beispielsweise durch *Glossina*-, *Stomoxys*-, *Tabanus*-, *Chrysops*-, *Lucilia*-, *Chrysomya*-, *Cochliomyia*-, *Wohlfartia*-, *Cordylobia*- oder *Dermatobia*-Arten), Mücken- und/oder Mückenlarvenbefall (verursacht beispielsweise durch *Aedes*-, *Culex*-, *Anopheles*-, *Phlebotomus*- *Culicoides*-, *Sumilium*- oder *Haemagoges*-Arten), Zeckenbefall (verursacht beispielsweise durch *Argas persicus* und andere *Argas*-Arten, *Ornithodoros erraticus* und andere *Ornithodoros*-Arten, *Oribius-Rhiphocephalus*-, *Dermacentor*-, *Haemaphysalis*-, *Amblyomma*-, *Ixodes*-Arten), Porocephalose (verursacht durch *Porocephalus*-Arten), Flohbefall (verursacht durch beispielsweise *Pulex irritans*, *Ctenocephalides canis*, *Xenopsylla cheopsis*, *Nosophyllus fasciatus* oder *Sarcopsylla penetrans*), Läusebefall (verursacht beispielsweise durch *Phthirus pubis*, *Pediculus humanus* oder *Pediculus capti*), Wanzenbefall (verursacht beispielsweise durch *Cimex lectularius*, *Cimex hemipterus*, *Panstrongylus megistus*, *Rhodnius prolixus*, *Triatoma dimidiata*, *Triatoma infestans*, *Triatoma sordida* oder *Triatoma brasiliensis*) sowie Milbenbefall (verursacht beispielsweise durch *Demodex folliculorum* und andere *Demodex*-Arten sowie durch *Dermamyskus*-Arten *Glyciphagus domesticus*, *Pyemotes*-Arten, *Sarcoptes*-Arten oder *Trombicula*-Arten).

50 Dabei ist von zusätzlicher Bedeutung, daß die auf oder im menschlichen Organismus lebenden Parasiten ihrerseits wieder Überträger von Bakterien, Mycota, Protozoen und Viren sein können, die Gesundheit und Wohlbefinden des Wirtsorganismus, beispielsweise des Menschen, nachhaltig beeinträchtigen können. Es bestand daher der Bedarf, gegen Parasiten wirksame Wirkprinzipien zu finden, welche das medizinische oder dermatologische Erscheinungsbild zu verbessern imstande sind. Diesen Bedarf zu stillen, war daher eine weitere Aufgabe der vorliegenden Erfindung.

55 Im Gegensatz zu den prokaryotischen und eukaryotischen zellulären Organismen sind Viren [virus = lat. Gift] biologische Strukturen, welche zur Biosynthese eine Wirtszelle benötigen. Extrazelluläre Viren (auch "Virionen" genannt) bestehen aus einer ein- oder doppelsträngigen Nukleinsäuresequenz (DNA oder RNA) und einem Proteinmantel (Capsid genannt), gegebenenfalls einer zusätzlichen lipidhaltigen Hülle (Envelope) umgeben. Die Gesamtheit aus Nukleinsäure und Capsid wird auch Nucleocapsid genannt. Die Klassifikation der Viren erfolgte klassisch nach klinischen Kriterien, heutzutage allerdings zumeist nach ihrer Struktur, ihrer Morphologie, insbesondere aber nach der Nukleinsäuresequenz.

DE 198 41 794 A 1

Medizinisch wichtige Virengattungen sind beispielsweise Influenzaviren (Familie der Orthomyxoviridae), Lyssaviren (z. B. Tollwut, Familie der Rhabdoviren) Enteroviren (z. B. Hepatitis-A, Familie der Picornaviridae), Hepadnaviren (z. B. Hepatitis-B, Familie der Hepadnaviridae).

Viruzide, also Viren abtötende Substanzen im eigentlichen Sinne gibt es nicht, da Viren nicht über einen eigenen Stoffwechsel verfügen. Es wurde aus diesem Grunde auch diskutiert, ob Viren als Lebewesen eingeordnet werden sollten. Pharmakologische Eingriffe ohne Schädigung der nicht befallenen Zellen sind jedenfalls schwierig. Mögliche Wirkmechanismen im Kampf gegen die Viren sind in erster Linie die Störung deren Replikation, z. B. durch Blockieren der für die Replikation wichtigen Enzyme, die in der Wirtszelle vorliegen. Ferner kann das Freisetzen der viralen Nukleinsäuren in die Wirtszelle verhindert werden. Im Rahmen der hiermit vorgelegten Offenbarung wird unter Begriffen wie "antiviral" oder "gegen Viren wirksam", "viruzid" oder ähnlichen, die Eigenschaft einer Substanz verstanden, einen ein- oder mehrzelligen Organismus vor schädlichen Folgen einer Virusinfektion, sei es prophylaktisch oder therapeutisch, zu schützen, ungeachtet dessen, was der tatsächliche Wirkmechanismus der Substanz im Einzelfalle sei.

Dem Stande der Technik mangelt es jedoch an gegen Viren wirksamen Substanzen, welche zudem den Wirtsorganismus nicht oder nicht in vertretbarem Maße schädigen.

Eine Aufgabe der vorliegenden Erfindung war also, diesen Nachteilen abzuhelpfen, also Substanzen zu finden, welche wirksam einen ein- oder mehrzelligen Organismus vor schädlichen Folgen einer Virusinfektion, sei es prophylaktisch oder therapeutisch, schützen.

Die erfundungsgemäßen Wirkstoffkombinationen und Zubereitungen damit können prophylaktisch verwendet werden und bewirken, daß sich nur noch geringen und keine störenden Ansammlungen von Mikroorganismen, Viren, Parasiten und Protozoen ausbilden, oder sie beseitigen auch bereits vorhandene Mikroorganismen, Viren, Parasiten und Protozoen und verringern so deren Anzahl.

Alle vorstehend und nachstehend genannten Aufgaben werden erfundungsgemäß gelöst. Die erfundungsgemäßen Wirkstoffkombinationen haben die erfundungsgemäßen, genannten Wirkungen auf Mikroorganismen, Viren, Parasiten und Protozoen und sind zur Behandlung der genannten Störungen und Krankheiten geeignet.

Mikroorganismen der Haut und die durch diese Organismen hervorgerufenen kosmetischen, dermatologischen und medizinischen Phänomene (z. B. Achselgeruch, Fußgeruch, Körpergeruch, Kopfschuppen, Akne, Superinfektionen bei atopischem Ekzem, Psoriasis oder allgemein schlechtem Immunzustand, aber auch Wundinfektionen) werden bislang im wesentlichen durch Anwendung von mehr oder weniger breitbandig wirkenden Mikrobiziden bekämpft. Die Nachteile der antimikrobiellen Therapie sind dabei die größtenteils mangelhafte Selektivität der eingesetzten Wirksysteme, Nebenreaktionen, Unverträglichkeiten und insbesondere die Ausbildung von Multiresistenzen, die eine alleinige antimikrobielle Therapie der o. a. Phänomene in naher Zukunft obsolet erscheinen lassen.

Mikroorganismen adhärieren über verschiedene Rezeptorsysteme an definierte Oberflächenstrukturen lebender und toter Zellen der menschlichen Haut. Dabei erkennen verschiedene Organismen unterschiedliche Motive und benutzen diese gezielt zur Anheftung. Es wurde erfundungsgemäß gefunden, daß im adhärierten Zustand Mikroorganismen eine deutlich geringere Sensitivität gegenüber Mikrobiziden als in Lösung bzw. Suspension zeigen, hier also eine höhere Sensitivität besitzen. Die molekularen Mechanismen, die eine derartige Sensitivitätsänderung beim Übergang vom adhärierten in den suspendierten Zustand bewirken, sind unbekannt. Es wird angenommen, daß insbesondere diese Änderung die Grundlage für den überraschenden erfundungsgemäßen Effekt bildet.

Aufgabe der Erfindung war es z. B., die genannten Nachteile des Standes der Technik zu vermeiden und mildere, hautfreundlichere Produkte zur Bekämpfung von Bakterien, Mykota, Viren, Parasiten und Protozoen zu schaffen.

Alle genannten Aufgaben wurden erfundungsgemäß gelöst und die genannten oder angestrebten Wirkungen wurden erhalten.

Gegenstand der Erfindung sind Zubereitungen, insbesondere kosmetische oder dermatologische, insbesondere topische Zubereitungen mit einem Gehalt an einer Kombination von

(A) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antiadhäsiv wirkenden Wirkstoffe (Anti-Adhäsiva),

kombiniert mit

(B) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antimikrobiell wirkenden Wirkstoffe oder Wirksysteme (Mikrobizide).

Gegenstand der Erfindung ist auch die Verwendung, insbesondere in Zubereitungen, insbesondere in kosmetischen oder dermatologischen, insbesondere topischen Zubereitungen, einer Kombination von

(A) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antiadhäsiven wirkenden Wirkstoffe (Anti-Adhäsiva),

kombiniert mit

(B) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antimikrobiell wirkenden Wirkstoffe oder Wirksysteme (Mikrobizide),

zur Bekämpfung von Bakterien, Mykota, Parasiten und Protozoen und zu der Behandlung der mit dem insbesondere kutanen Auftreten dieser Mikroorganismen verbundenen kosmetischen, dermatologischen und medizinischen Phänomene, z. B. Achselgeruch, Körpergeruch, Fußgeruch, Kopfgeruch, Akne, seborrhoische Dermatitis, mikrobielle Superinfektionen bei atopischem Ekzem, Psoriasis und Immunsuppression, sowie zur Konservierung oder bei Wundinfektionen.

DE 198 41 794 A 1

Die Verwendung zur Konservierung oder als Konservierungsmittel betrifft insbesondere Kosmetika, Dermatika und Lebensmittel.

Gegenstand der Erfindung ist auch die Kombination der Wirkstoffe von (A) und (B).

Unter Ausnutzung der anti-adhäsenen Wirksamkeit verschiedener kosmetischer Rohstoffe konnte gefunden werden, daß die Anwendung von Kombinationen aus Anti-Adhäsa und Mikrobiziden eine synergistische Steigerung der Wirksamkeit dieser Mikrobizide insbesondere gegenüber kosmetisch, dermatologisch und medizinisch relevanten Mikroorganismen bewirkt. Die Vorteile der Anwendung derartiger Wirkstoff-Kombinationen gegenüber dem Stand der Technik liegen in der bei Anwesenheit von Anti-Adhäsa deutlich gesteigerten Wirksamkeit gleicher Konzentrationen an Mikrobizid, bzw. in der in Anwesenheit von Anti-Adhäsa deutlich geringeren notwendigen Konzentration an Mikrobizid, um eine vergleichbare Wirkung zu erzielen. Dies ermöglicht die Entwicklung von milderen, hautfreundlicheren Produkten.

Darüber hinaus kann die Wirksamkeit der Kombination durch geschickte Auswahl des Anti Adhäsvums maßgeschneidert werden, indem ein selektiv gegen einen bestimmten Mikroorganismus gerichtetes Anti-Adhäsum mit einer geringen Dosis an antimikrobiellem Mittel kombiniert wird, welche per se gegen kutane Mikroorganismen nur wenig oder gar nicht wirksam ist. Durch die selektive Wirksamkeit des Anti-Adhäsvums wird nunmehr ein definierter Mikroorganismus von der Hautoberfläche abgelöst und damit einhergehend die Sensitivität gegenüber dem Mikrobizid deutlich erhöht. Folglich reichen bereits sehr geringe Dosen an antimikrobiellen Mittel aus, um in Anwesenheit von Anti-Adhäsa selektiv von der Hautoberfläche abgelöste Organismen abzutöten.

Erfnungsgemäß bevorzugte Antiadhäsa (A) sind beispielsweise die folgenden Antiadhäsa:

A₁ natürliche Ceramide und Sphingosine pflanzlichen und tierischen Ursprungs, pflanzliche und tierische Rohstoffe dieselben enthaltend, sowie synthetisch hergestellte Ceramide und Sphingosine (z. B. Acyl-Ceramide, Questamide oder Pseudoceramide), aber auch durch chemische oder biologische Transformation aus natürlichen oder synthetischen Ceramiden und Sphingosinen sowie geeigneten pflanzlichen und tierischen Rohstoffen hergestellte Produkte.

Nachstehend werden einige Beispiele für die Wirksysteme angegeben:

A₂ Sphingosin; N-Monoalkylierte Sphingosine; N,N-Dialkylierte Sphingosine; Sphingosin-1-Phosphat; Sphingosin-1-Sulfat; Psychosin (Sphingosin-β-D-Galactopyranosid); Sphingosylphosphorylcholin; Lysosulfatide (Sphingosylgalactosylsulfat; Lysocerebrosidsulfat); Lecithin; Sphingomyelin; Sphinganin
A₃ humane Ceramide 1–7, humane Ceramide A und B
A₄ synthetische Analoga: Acyl-Ceramide, Questamide oder Pseudoceramide
A₅ Globotriaosylceramid; Globotetraosylceramid, Globopentaosylceramid; Forssmann-Glycolipid und Analoga
A₆ Glycrocerebroside (e. g. Glucocerebroside, Galactocerebroside, Lactocerebroside), N Alkanoylcerebroside (z. B. N-Palmitoylcerebroside, N-Stearoylcerebroside), N-Alkenoylcerebroside (e. g. N-Nervonoylcerebosid, N-Oleoylcerebroside), Cerebrosidsulfat
A₇ Ganglioside (e. g. Typen 1 bis 5, Asialogangliosid GM1, Asialogangliosid GM2, Asialogangliosid GM3, Monosialogangliosid GM1, Monosialogangliosid GM2, Monosialogangliosid GM3, Disialogangliosid GD1a, Disialogangliosid GD1b, Disialogangliosid GD2, Disialogangliosid GD3, Trisialogangliosid GT1b, Tetrasialogangliosid GQ1b)
A₈ kosmetische Rohstoffe, e. g. Ceramides GSL, Sphingoceryl LS, Sphingoceryl-Wachs LS 2958 und Sphingosomes AL (alle von Laboratoire Serobiologiques), Sphingolipid CB-1 (Nikko), GlycoCer, GlycoCer-HA und -HALA (alle von Intergen), Glycoderm, Liposomes CLR und Thiosome (alle von Kurt Richter), Glycosome (Pentapharm), Phospholipids FPA und FPT (beide von Bioiberica)

40 Bevorzugt werden die folgenden kommerziell erhältlichen kosmetischen Rohstoffe:

	Handelsname	Lieferant
45	AFR LS	Serobiologiques
	Ceramides LS	Serobiologiques
	Dermatein GSL	Hormel
	Lipodermol	Serobiologiques
	Sphingoceryl LS	Serobiologiques
	Sphingoceryl LS Powder	Serobiologiques
50	Sphingoceryl Wax LS 2958 B	Serobiologiques
	Sphingosomes AL	Serobiologiques
	Sphingolipid CB-1	Nikko
	GlycoCer.	Intergen
	GlycoCer.HA	Intergen
55	GlycoCer.HALA	Intergen
	Glycoderm	Kurt Richter
	Glycosome	Pentapharm
	Liposomes CLR	Kurt Richter
	Phospholipids FPA	Bioiberica
60	Phospholipids FPT	Bioiberica
	Thiosome	Kurt Richter

Es können z. B. auch Zweifach-, Dreifach- oder Vierfachgemische der Wirksysteme oder Wirkstoffe (A) verwendet werden.

65 Erfnungsgemäß geeignet sind alle Mikrobizide. Bevorzugt werden die folgenden antimikrobiellen Wirksysteme oder Wirkstoffe (B):

B₁ unverzweigte oder ein und mehrfach alkylverzweigte gesättigte oder ein bis fünffach ungesättigte (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Fettalkohole, -aldehyde und -säuren der Kettenlän-

DE 198 41 794 A 1

gen C2 bis C40

B₂ Aryl- oder Aryloxy-substituierte unverzweigte oder ein und mehrfach alkylverzweigte gesättigte oder ein bis fünfach ungesättigte (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Fettalkohole, -aldehyde und -säuren der Kettenlängen C2 bis C40

5

B₃ Mono- und Oligoglyceride (bis 4 Glycerin-Einheiten) unverzweigter oder ein und mehrfach alkylverzweigter gesättigter oder ein bis fünfach ungesättiger (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Fettalkohole (\Rightarrow Mono- und Oligoglycerinmonoalkylether) und Fettsäuren (\Rightarrow Mono- und Oligoglycerinmonoalkylester) der Kettenlängen C2 bis C40

10

B₄ Mono- und Oligoglyceride (bis 4 Glycerin-Einheiten) Aryl- oder Aryloxy-substituierter unverzweigter oder ein und mehrfach alkylverzweigter gesättigter oder ein bis fünfach ungesättiger (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Fettalkohole (\Rightarrow Mono- und Oligoglycerinmonoalkylether) und Fettsäuren (\Rightarrow Mono- und Oligoglycerinmonoalkylester) der Kettenlängen C2 bis C40

15

B₅ pflanzliche und tierische Fettsäureschnitte, enthaltend unverzweigte oder ein und mehrfach alkylverzweigte gesättigte oder ein bis fünfach ungesättigte (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Fettalkohole, -aldehyde und -säuren der Kettenlängen C2 bis C40 (z. B. Kokosfettsäuren, Palmkernfettsäuren, Wollwachssäuren)

15

B₅ unverzweigte oder ein und mehrfach alkylverzweigte gesättigte oder ein bis fünfach ungesättigte (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Alkandiole, Dialdehyd und Dicarbonsäuren der Kettenlängen C2 bis C40

20

B₇ Aryl- oder Aryloxy-substituierte unverzweigte oder ein und mehrfach alkylverzweigte gesättigte oder ein bis fünfach ungesättigte (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Alkandiole, Dialdehyd und Dicarbonsäuren der Kettenlängen C2 bis C40

25

B₈ Mono- und Oligoglyceride (bis 4 Glycerin-Einheiten) unverzweigter oder ein und mehrfach alkylverzweigter gesättigter oder ein bis fünfach ungesättiger (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Alkandiole (\Rightarrow Mono- und Oligoglycerinmonoalkylether; Bis(mono-/oligoglyceryl)alkyldiether) und Dicarbonsäuren (\Rightarrow Mono- und Oligoglycerinmonoalkylester; Bis(mono-/oligoglyceryl)alkyldiester) der Kettenlängen C2 bis C40

30

B₉ Mono- und Oligoglyceride (bis 4 Glycerin-Einheiten) Aryl- oder Aryloxy-substituierter unverzweigter oder ein und mehrfach alkylverzweigter gesättigter oder ein bis fünfach ungesättiger (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Alkandiole (\Rightarrow Mono- und Oligoglycerinmonoalkylether; Bis(mono-/oligoglyceryl)alkyldiether) und Dicarbonsäuren (\Rightarrow Mono- und Oligoglycerinmonoalkylester; Bis(mono-/oligoglyceryl)-alkyldiester) der Kettenlängen C2 bis C40

35

B₁₀ pflanzliche und tierische Fettsäureschnitte, enthaltend unverzweigte oder ein und mehrfach alkylverzweigte gesättigte oder ein bis fünfach ungesättigte (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Alkandiole, Dialdehyd und Dicarbonsäuren der Kettenlängen C2 bis C40

40

B₁₁ Fettsäureester unverzweigter oder ein und mehrfach alkylverzweigter gesättigter oder ein bis fünfach ungesättiger (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen), ggf. auch Aryl- oder Aryloxy-substituierter Carbonsäuren der Kettenlängen C2 bis C40 mit unverzweigten oder ein und mehrfach alkylverzweigten gesättigten oder ein bis fünfach ungesättigten (bis zu fünf Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen), ggf. auch Aryl- oder Aryloxy-substituierten ein- bis sechswertigen Fettalkoholen der Kettenlängen C2 bis C40

B₁₂ Ein- und mehrfach halogenierte Nitrile, Dinitrile, Trinitrile oder Tetranitrite der Struktur

Z

45

|

(CH₂)_p

|

Y-C-(CH)_kCN

50

| |

X Q

55

wobei Q ein Halogen- oder Wasserstoffatom darstellt und wobei X, Y und Z unabhängig voneinander gewählt werden aus der Gruppe Q, -CN, -H, verzweigter oder unverzweigter Methyl- bis Octadecyl-Rest, p = 0–10 und k = 0–18.

55

B₁₃ Phenylverbindungen der Struktur

A

60

|

Phenyl_{Rn1}-O_y-(CH₂)_q-(-C)_m-CH₂OH

65

|

(OH)_x

65

mit R₁ = H, Methyl, Methoxy oder Amino, und wobei bis zu fünf gleiche oder verschiedene Reste R₁ bzw. beliebige Kombinationen gleicher und verschiedener solcher Reste innerhalb eines Moleküls auftreten können, entsprechend n = 1

DE 198 41 794 A 1

bis 5, wobei A darstellen kann: H, Methyl, Ethyl, mit q = 1 bis 10, m = 1 bis 10, y = 0 oder 1 und x = 0 oder 1, und wobei innerhalb eines Moleküls, wenn m > 1, für einzelne Kohlenstoffatome x identische, aber auch unterschiedliche Werte annehmen kann.

5 B₁₄ Mono- und Oligohydroxyfettsäuren der Kettenlängen C₂ bis C₂₄ (z. B. Milchsäure, 2-Hydroxypalmitinsäure), deren Oligo- und/oder Polymere sowie pflanzliche und tierische Rohstoffe, dieselben enthaltend

B₁₅ unsubstituierte und Alkylsubstituierte Hydrochinone sowie Pflanzenextrakte, dieselben enthaltend (z. B. Salbeiextrakt, Rosmarinextrakt)

B₁₆ Terpene

10

Acyclische Terpene: Terpenkohlenwasserstoffe (z. B. Ocimen, Myrcen), Terpenalkohole (z. B. Geraniol, Linalool, Citronellol), Terpenaldehyde und -ketone (z. B. Citral, Pseudoionon, β -Ionon); Monozyklische Terpene: Terpenkohlenwasserstoffe (z. B. Terpinen, Terpinolen Limonen), Terpenalkohole (z. B. Terpineol, Thymol, Methylol), Terpenketone (z. B. Pulegon, Carvon) Bizyklische Terpene: Terpenkohlenwasserstoffe (z. B. Caran, Pinan, Bornan), Terpenalkohole (z. B. Borneol, Isoborneol), Terpenketone (z. B. Campher), Sesquiterpene: Acyclische Sesquiterpene (z. B. Farnesol, Nerolidol), Monocyclische Sesquiterpene (z. B. Bisabolol), Bicyclische Sesquiterpene (z. B. Cadinene, Sehnen Vетивазулен, Guajazulen), Tricyclische Sesquiterpene (z. B. Santalen), Diterpene (z. B. Phytol), Tricyclische Diterpene (z. B. Abietinsäure), Triterpene (Squalenoide; z. B. Squalen), Tetraterpene

15 B₁₇ Halogenierte aromatische Verbindungen (z. B. Trichlorocarbonilid, Hexachlorophen, Triclosan, Dichlorphenylether etc.)

20 B₁₈ klassische Konservierungsmittel (z. B. Formaldehyd, Glutardialdehyd, Mezetroniumethylsulfat), Parabene (z. B. Methyl-, Ethyl-, Propyl- und Butylparaben), Sorbit, Dibromdicyanobutan, Imidazolidinylharnstoffe ("Germal"), Diazolidinylharnstoff, Isothiazolinone ("Kathon"), Methylchlorothiazolidin, Methylthiazolidin, organische Säuren (z. B. Benzoësäure, Sorbinsäure, Salicylsäure) sowie deren Ester, Glycole (z. B. Propylenglycol, 1,2-Dihydroxyalkane), pflanzliche Konservierungshelfer und Flavonoide (z. B. Lantadin A, Caryophyllen, Hesperidin, Diosmin, Phellandren, Apigenin, Quercetin, Hypericin, Aucubin, Diosgenin, Plumbagin, Corilagin etc.) sowie deren glycosyierte Derivate (z. B. Glycosylinrutin)

25 B₁₉ Ethoxylierte, propoxylierte oder gemischt ethoxylierte/propxoylierte kosmetische Fettalkohole, Fettsäuren und Fett säureester der Kettenlängen C₂ bis C₄₀ mit 1 bis 150 EO- und/oder PO-Einheiten

30 B₂₀ antimikrobielle Peptide und Proteine mit einer Aminosäurezahl von 4 bis 200, z. B. Magainine, Magainin-Amide, PGLA, PYLA, PGSa, Xenopsin, Xenopsin Precursor Fragments [XPFs], Caerulein, Caerulein Precursor Fragments [CPFs], Caeridine, Brevinine, Esculentine, Bombinine, Dermaseptine, Tachyplesine, Polypheusine, Lantibiotika [z. B. Epidermin, Gallidermin, Nisin, Subtilin, Pep5, Pediocine, Plantaricine, Leucocine, Cinnamycin, Duramycin, Ancovenin, Colicine, Pyocine, Bacteriocine, Microcine, Lactococcine, Lactacine, Mersacidine, Actagardine, Lacticine, Streptococcine, Salivarine, Carnocine, Lactocine, Lanthiopeptine etc.], Skin Antimicrobial Peptides (SAPs), Lingual Antimicrobial Peptides (LAPs), humane β -Defensine (insbes. h-BD1 und h-BD2), Tracheal Antimicrobial Peptide (TAPs), Defensine, Neutrophil-Peptide [z. B. NP-1 bis NP-5; HNP-1 bis HNP-4; GPNP; Cryptidin; RatNP-1 bis RatNP-4, Sapecine, Drosocine, Cecropine, Andropine, Attacine, Sarcotoxine, Diptericine, Coelopterine, Apidaecine, Abaecine, Hymenoptaecine, Melittine, Aedes aegyptii-Defensine, Cathepsin D, Azurocidine, Lactoferrine und deren Hydrolysate sowie daraus

35 gewonnene Peptide, Bactericidal/Permeability Increasing Proteins [BPIs], Elastasen, Cationic Microbial Proteins [CAPs], Lysozym, Serprocidine, Myeloperoxidase, Ondolicidin; Major Basic Proteins [MBPs], Eosinophil Cationic Proteins [ECPs]; Bactenecine; Macrophage Cationic Peptides [MCPs], Histatin, Amoebapore, Thionine, Cysteinreiche antimikrobielle Peptide aus Pflanzen (z. B. Mj-AMPs, Ac-AMPs, Rs-APPs, Rs-nsLTPs, Rs-25) und deren synthetische Analoga enthaltend L- und/oder D-Aminosäuren (z. B. MSI-78)

45

B₂₁ Kohlenhydrate und Kohlenhydrat-Derivate

50 Gut geeignete Kohlenhydrate oder "Kohlenhydrat-Derivate", die sprachlich kurzgefaßt auch unter die Bezeichnung "Kohlenhydrate" fallen sollen, sind Zucker und substituierte Zucker oder Zuckerreste enthaltende Verbindungen. Zu den Zuckern zählen insbesondere auch jeweils die Desoxy- und Didesoxy-Formen.

Nachstehend werden einige Beispiele für die Wirksysteme angegeben:

B₂₂ Monosaccharide

55 Gut geeignete Monosaccharide sind z. B. Tetrosen, Pentosen, Hexosen und Heptosen. Bevorzugt werden Pentosen und Hexosen. Die Ringstrukturen umfassen Furanosen und Pyranosen, umfaßt sind sowohl D- als auch L-Isomere, ebenso wie α - und β -Anomere. Geeignet sind auch die Desoxy- und Didesoxy-Formen.

B₂₃ Disaccharide

60

Gut geeignete Disaccharide sind z. B. die durch binäre Verknüpfungen obiger Monosaccharide gebildeten Disaccharide. Verknüpfung kann als α - oder β -glycosidische Bindung zwischen den beiden Untereinheiten erfolgen.

Saccharose, Maltose, Actobiase werden bevorzugt. Ebenso geeignet sind N-Acetyl-Galactosamin- und N-Acetyl-Glucosamin-Derivate sowie Silalinsäuresubstituierte Derivate.

65

B₂₄ Oligosaccharide (natürlichen und synthetischen Ursprungs)

Gut geeignete Oligosaccharide bestehen aus mehreren, z. B. 2-7 Zuckereinheiten, vorzugsweise der unter Mono- und

DE 198 41 794 A 1

Disaccharide beschriebenen Zucker, insbesondere aus 2 bis 5 Einheiten in den bekannten, durch Kondensation entstandenen Bindungsformen und wie vorstehend genannt. Besonders bevorzugte Oligosaccharide sind neben den Disacchariden die Tri- und Tetrasaccharide. Ebenso geeignet sind N-Acetyl-Galactosamin- und N-Acetyl-Glucosamin-Derivate sowie Silalinsäuresubstituierte Derivate.

5

B₂₅ Aminozucker

Gut geeignet sind Mono-, Di- und Oligosaccharide, insbesondere wie vorstehend beschrieben, mit einer oder mehreren Aminogruppen, die acyliert, insbesondere acetyliert sein können. Bevorzugt werden Ribosylamin; N-Acetylglucosamin und N-Galactosylamin sowie Silalinsäure-substituierte Derivate.

10

B₂₆ Zuckerester

Weiterhin werden Zuckerester von organischen oder anorganischen Säuren vorteilhaft verwendet, beispielsweise Zuckerkphosphate, Zuckerester mit Carbonsäuren oder sulfatierte Zucker, insbesondere Ester der vorstehend beschriebenen Zucker.

15

B₂₇ Zuckerester anorganischer Säuren

Bevorzugte Zuckerester der Phosphorsäure sind Glucose-1-phosphat; Fructose-1-phosphat, Glucose-6-phosphat oder Mannose-6-phosphat.

20

B₂₈ Zuckerester organischer Säuren

Bevorzugte Ester aus Zuckern und Carbonsäuren werden mit Carbonsäuren der Kettenlänge C₁ bis C₂₄, z. B. erhalten, zum Beispiel Cetearylglucosid (Fa. Seppic: Montanol 68); Caprylyl/Caprylglicosid (Fa. Seppic: Oramix CG-110); Decylglucosid (Fa. Seppic: Oramix NS-10), Sucroselaurat und -myristat (Fa. Ryoto Sugar), Sucrose Cocoat (Fa. Croda) insbesondere aber auch die Zuckeracetate, bevorzugt der vorstehenden Zucker.

25

B₂₉ Zuckerether

30

Bevorzugt werden auch die Zuckerether aus Zuckern, insbesondere der vorstehenden Zucker, mit ein- und mehrwertigen Alkoholen der Kettenlänge C₁ bis C₂₄, z. B. Plantaren^R 1200 (Fa. Henkel) oder Plantaren^R 2000 (Fa. Henkel) (auch bekannt als Plantacare 1200 und Plantacare 2000)).

Weiterhin sind z. B. die Umsetzungsprodukte von Zuckern mit Ethylenoxid und/oder Propylenoxid geeignet, vorzugsweise mit den vorstehenden Zuckern. Geeignet sind E/O- bzw. P/O-Grade von einer bis 40 Ethereinheiten.

35

B₃₀ Glykolipide (natürlichen und synthetischen Ursprungs)

40

Bevorzugte Glykolipide sind neben Glycosylglycerolen, Monoacylglycosylglycerolen und Diacylglycosylglycerolen Glykosphingolipide, insbesondere Ceramide, Cerebroside, Ganglioside und Sulfatide (z. B. Globotriaosylceramid; Globotetraosylceramid, Globopentaosylceramid; Forssmann-Glycolipid und Analoga); Glycocerebroside (e. g. Glucocerebroside, Galactocerebroside, Lactocerebroside), N-Alkanoylcerebroside (z. B. N-Palmitoylcerebracid, N-Stearoylcerebracid), N-Alkenoylcerebroside (e. g. N-Nervonoylcerebracid, N-Oleoylcerebracid), Cerebracidsulfat sowie Ganglioside (e. g. Typen 1 bis 5, Asialogangliosid GM1, Asialogangliosid GM2, Asialogangliosid GM3, Monosialogangliosid GM1, Monosialogangliosid GM2, Monosialogangliosid GM3, Disialogangliosid GD1a, Disialogangliosid GD1b, Disialogangliosid GD2, Disialogangliosid GD3, Trisialogangliosid GT1b, Tetralsialogangliosid Q1b) sowie Tenside auf Chitinbasis

45

B₃₁ Polysaccharide (natürlichen und synthetischen Ursprungs)

50

Die Polysaccharide können unverzweigt oder verzweigt sein und es sind sowohl die Homopolysaccharide als auch die Hetero-Polysaccharide, jeweils insbesondere mit solchen Zuckern, wie oben beschrieben, geeignet. Bevorzugte Polysaccharide sind Stärke, Glykogen, Cellulose, Dextran, Tunicin, Inulin, Chitin, insbesondere Chitosane, Chitinhydrolysate, Alginsäure und Alginate, Pflanzengumme, Körperschleime, Pektine, Mannane, Galactane, Xylane, Araban, Polyosen, Chondroitinsulfate, Heparin, Hyaluronsäure und Glycosaminoglykane, Hemicellulosen, substituierte Cellulose und substituierte Stärke, insbesondere jeweils die hydroxyalkylsubstituierten Polysaccharide.

55

Besonders geeignet sind Amylose Amylopektin, Xanthan, α -, β - und γ -Dextrin.

Die Polysaccharide können z. B. aus 4 bis 1.000.000, insbesondere 10 bis 100.000 Monosacchariden bestehen. Vorrangig werden jeweils solche Kettenlängen gewählt, die gewährleisten, daß der Wirkstoff in der jeweiligen Zubereitung löslich oder in sie einzuarbeiten ist.

60

Die erfundungsgemäßen Wirkstoffe können einzeln eingesetzt werden. Es ist aber auch möglich, zwei, drei oder auch mehrere Wirkstoffe zusammen zu verwenden.

Inbesondere können Monosaccharide und Oligosaccharide kombiniert werden, wobei jeweils ein Saccharid aber auch zwei oder drei oder mehrere Zucker gewählt werden können. Zusammen mit den vorstehend genannten Zuckern oder deren Kombinationen können vorteilhaft ein Polysaccharid oder auch mehrere Polysaccharide verwendet werden.

65

Fucose, Galactose, Sialinsäure, N-Acetyl-Galactosamin und N-Acetyl-Glucosamin werden besonders bevorzugt.

Bevorzugt werden die folgenden Kombinationen und Zubereitungen damit und deren Verwendungen.

DE 198 41 794 A 1

Bevorzugt werden Wirkstoffkombinationen mit mindestens drei Wirkstoffen, ausgewählt aus der Gruppe enthaltend:

5 – Aldopentosen und Ketopentosen und
 – Aldohexosen und Keto hexosen und
 – Aldoheptosen und Ketoheptosen.

Die genannten Zucker können insbesondere auch in ihrer Desoxy- und Didesoxy-Form und insbesondere auch in der Form der erfindungsgemäßen Derivate vorliegen.

Dies gilt auch für die folgenden bevorzugten Kombinationen.

10 Besonders bevorzugt werden Kombinationen, insbesondere Kombinationen von mindestens drei Wirkstoffen, die mindestens einen Desoxy- oder Didesoxy-Zucker oder mindestens ein Desoxy- oder Didesoxy-Zucker-Derivat oder mindestens ein Disaccharid oder mindestens ein Trisaccharid oder mindestens ein Tetrasaccharid enthalten, wobei diese auch jeweils in der Form der erfindungsgemäßen Derivate oder auch in der Desoxy- oder Didesoxy-Form vorliegen können. Weiterhin werden Kombinationen, insbesondere Kombinationen von mindestens drei Wirkstoffen bevorzugt, die 15 Fucose, Galactose, Sialinsäure, N-Acetyl-Galactosamin und N-Acetyl-Glucosamin enthalten, wobei diese auch jeweils in der Form der erfindungsgemäßen Derivate vorliegen können.

Besonders bevorzugt werden die folgenden Wirkstoffkombinationen a)–f):

20 a) Fucose, Raffinose und Galactose
 b) Glucose-6-phosphat, Mannose-6-phosphat und Mannose
 c) Raffinose, N-Acetyl-glucosamin, und Fucose
 d) Mannose, Rhamnose und Fucose
 e) Galactose, N-Acetyl-glucosamin und Fucose
 f) Mannose, Raffinose und Galactose.

25 Bevorzugt werden auch die jeweiligen Einzelkomponenten der Kombinationen und die mit jeweils zwei Komponenten zu bildenden Zweier-Kombinationen aus den drei Wirkstoffen jeweils einer Dreier-Kombination.

Vorteilhaft können auch jeweils mit einem Zucker oder mehreren Zuckern aus der Gruppe der Monosaccharide und/oder der Oligosaccharide ein oder mehrere Zucker aus der Gruppe der Zuckerphosphate und/oder der Aminozucker und Acetylaminozucker kombiniert werden.

30 In den Unterkombinationen der Kohlenhydrate können die Wirkstoffe z. B. mit gleichen Gewichtsmengen oder auch z. B. im Gewichtsverhältnis von 1 : 1000 bis 1000 : 1, vorzugsweise 1 : 10 bis 10 : 1 verwendet werden, jeweils bezogen auf eine andere Komponente oder mehrere andere Komponenten.

35 B₃₂ natürliche Sterole und Sterol-Derivate pflanzlichen, pilzlichen und tierischen Ursprungs, pflanzliche, pilzliche und tierische Rohstoffe, dieselben oder Vorstufen dazu enthaltend, synthetische Sterole und Sterol-Derivate sowie semi-synthetisch entweder durch biologische oder chemische Transformation natürlicher und synthetischer Substanzen erhaltene Sterole und Sterol-Derivate.

Nachstehend werden einige Beispiele für die beanspruchten Sterole und Sterol-Derivate angegeben (ohne Anspruch auf Vollständigkeit):

40 B₃₃ Gonan, Cholestan, Cholestanol, Ergosterol (aus Hefen und Pilzen), Stigmasterol (aus Sojabohnen), Gallensäuren (z. B. Cholansäure, Cholsäure, Desoxycholsäure, Chenodesoxycholsäure oder Lithocholsäure) sowie deren Salze

B₃₄ Cholesterin; Cholesterylether resp. -ester gesättigter sowie ein und mehrfach (bis n = 4) unverzweigte oder ein und mehrfach alkylverzweigter, gesättigter oder ein bis vierfach ungesättigter (bis zu vier Doppel- oder Dreifachbindungen, auch gemischte En-In-Verbindungen) Fettalkohole resp. Fettsäuren der Kettenlängen C2 bis C40 (z. B. Cholesterylhydroxystearat, Fa. Nissin Oil Mills;

Cholesterylisostearat, Fa. Kao); ethoxylierte und propoxylierte Cholesterole (z. B. Choleth-20, Fa. Nikko; Choleth-24, Fa. Fanning); Dihydrocholesterol und seine Derivate (z. B. Dihydrocholesteryloctadecanoat, Dihydrocholeth-20 und -30, alle Fa. Nikko)

B₃₅ Phytosterole (z. B. Soya Sterol) und Phytosteryl-Derivate (z. B. PEG-5-Soya Sterol, PEG-40-Soya Sterol, PEG-25-Phytosterol, Soya Sterol Esters) sowie Dihydrophytosterol und -Derivate (z. B. Dihydrophytosteryloctadecanoat, Fa. Nikko)

B₃₆ Lanosterol Fa. Croda oder Fa. Nikko), Sitosterol, Koprosterol und deren Derivate (z. B. β-Sitosterylacetat, Fa. Variati; Dinatrium Sitostereth-14 Sulfosuccinat, Fa. Rewo)

B₃₇ Lanolin, Lanolinalkohol (z. B. Eucerit, Fa. Beiersdorf) und Lanolinsäure (z. B. Fa. Croda) sowie deren ethoxylierte und/oder propoxylierte Derivate (z. B. Laneth-5, Laneth-50, Laneth-10-acetat, alle Fa. Croda; PEG-75-Lanolin, Fa. Westbrook; PEG-100-Lanolin, Fa. Croda; PPG-5-Lanolin Wax, Fa. Henkel; PPG-12-PEG-50-Lanolin, PPG-12-PEG-65-Lanolin Oil, alle Fa. Croda; PPG-2-Lanolin Alkohol Ether, PPG-10-Lanolin Alkohol Ether und PPG-30-Lanolin Alkohol Ether, alle Fa. Amerchol); Mono- und Oligoglyceride des Lanolins, von Lanolinalkoholen und Lanolinsäuren (z. B. Glyceryl Lanolat, Fa. Brooks; Neocerit, Fa. Beiersdorf)

60 B₃₈ Sterole aus Tallöl sowie deren ethoxylierte und/oder propoxylierte Derivate (z. B. PEG-5-Tallöl Sterol Ether)

B₃₉ Glycyrrhezinäure (Fa. Ichimaru Pharmacos) und Derivate (z. B. Glycyrrhetinyl Stearate; Fa. Maruzen oder Fa. Ichimaru Pharmacos)

B₄₀ B₄₁ Steroidhormone natürlichen und synthetischen Ursprungs (z. B. Androgene, Östrogene, Gestagene, Corticoide, Mineralocorticoide oder Ecdyson)

B₄₂ natürliche und synthetische Cardenolide (z. B. Digitoxin, Dogoxin, Digoxigenin, Gitoxygenin, Strophanthin und Strophantidin)

B₄₃ natürliche und synthetische Bufadienolide (z. B. Scillaren A, Scillarenin und Bufotalin)

DE 198 41 794 A 1

B₄₄ Sapogenine und Steroid-Sapogenine (z. B. Amyrine, Oleanolsäure, Digitonin, Gitogenin, Tigogenin und Diosgenin)
 B₄₅ Steroid-Alkaloide pflanzlichen und tierischen Ursprungs (z. B. Tomatidin, Solanin, Solanidin, Conessin, Batrachotoxin und Homobatrachotoxin)

Bevorzugt werden die nachstehenden kommerziell erhältlichen Rohstoffe:

<u>Substanz</u>	<u>Handelsname</u>	<u>Lieferant</u>	5
Beta-Sitosterol			10
Beta-Sitosterylacetat	Sitostearyl Complex	Variati	
Cholecalciferol	Epiderm-Complex O		15
Cosmetochem			
Cholesterol	Cholesterol USP/NF	Croda	20
Cholesteryl Hydroxystearat	Estemol CHS	beide	25
Nissin	Salacos HS	Oil Mills	
			30
Cholesteryl Isostearat	IS-CE	Kao	
Corp.			35
Cholet-20	Nikkol Aquosome EC-5	Nikko	
Cholet-24	Fancol CH-24	Fanning	40
Dihydrocholesterol			45
Dihydrocholesteryl Octyldecanoat	Nikkol DCIS	Nikko	
Dihydrocholeth-15	Nikkol DHC-15	Nikko	50
Dihydrocholeth-20	Nikkol DHC-20	Nikko	55
Dihydrocholeth-30	Nikkol DHC-30	Nikko	60
			65

DE 198 41 794 A 1

<u>Substanz</u>	<u>Handelsname</u>	<u>Lieferant</u>
5 Dihydrolanosterol	Isocholesterol EX	Nikko
10 Dihydrophytosteryl Octyldecanoat	Nikkol DPIS	Nikko
15 Disodium Sitostereth-14 Sulfosuccinat Chem.	Rewoderm SPS	Rewo
20 Ergocalciferol		
25 Glyceryl Lanolat	Ivarlan 3360	Brooks
	Neocerit	BDF
30 Glycyrhettinsäure	18 β -Glycyrheticinic acid	Ichimaru Pharmacos
35 Glycyrhetinyl Stearat	Ghetinol-O	beide
	SGS	Maruzen
40 Laneth-5	Polychol-5	Croda
45 Laneth-10	Polychol-10	Croda
50 Laneth-15	Polychol-15	Croda
55 Laneth-20	Polychol-20	Croda
60 Laneth-25	Soluan 25	Amerchol
65 Laneth-50	Sterol LN 50	Auschem
60 Laneth-10 Acetat	Lipolan 98	Lipo

DE 198 41 794 A 1

<u>Substanz</u>	<u>Handelsname</u>	<u>Lieferant</u>	
Lanosterol	Lanosterol	Croda	5
	Isocholesterol EX	Nikko	
PEG-5-Lanolat	Agnosol 5	Croda	10
PEG-10-Lanolat	Sklirate 10	Croda	
PEG-20-Lanolat	Sklirate 20	Croda	15
PEG-10-Lanolin	Nikkol TW-10	Nikko	
PEG-20-Lanolin	Solan 20	Croda	
PEG-30-Lanolin	Nikkol TW-30	Nikko	25
PEG-40-Lanolin	Solan 40	Croda	30
PEG-75-Lanolin	Aqualose L75	Westbrook L.	
			35
PEG-100-Lanolin	Aqualose L100	Westbrook L.	
			40
PEG-150-Lanolin	Solan X	Croda	
PEG-25-Phytosterol			45
PEG-5-Soya Sterol			50
PEG-10-Soya Sterol			
PEG-25-Soya Sterol			55
			60
			65

DE 198 41 794 A 1

<u>Substanz</u>	<u>Handelsname</u>	<u>Lieferant</u>
5 PEG-40-Soya Sterol		
10 PEG-5 Tall Oil Sterol Ether		
15 PPG-2 Lanolin Alcohol Ether	Soluan PB-2	Amerchol
20 PPG-5-Lanolin Alcohol Ether	Soluan PB-5	Amerchol
25 PPG-10-Lanolin Alcohol Ether	Soluan PB-10	Amerchol
30 PPG-20-Lanolin Alcohol Ether	Soluan PB-20	Amerchol
35 PPG-30-Lanolin Alcohol Ether	Soluan PB-30	Amerchol
40 PPG-5-Lanolin Wax	Propoxyl 1695	Henkel
45 Stearyl Glycyrrhetinate	Co-Grhetinol ST-Glycyrrhetinate	Maruzen Ichimaru Ph.
50 Soy Sterol		
55 Soy Sterol Acetate		
60 Tall Oil Sterol		
65 C10 -C30 Cholesterol/Lanosterol Ester		
	Bevorzugte Antiadhäsiva (A) sind die Stoffe der Stoffgruppen A ₂ , A ₅ , A ₇ und A ₈ . Besonders bevorzugte Antiadhäsiva sind die Stoffe der Stoffgruppen A ₇ und A ₈ , insbesondere die dort genannten Einzelverbindungen.	
	Bevorzugte antimikrobielle Wirksysteme oder Wirkstoffe (B) sind die Stoffe der Stoffgruppen B ₁ , B ₂ , B ₃ , B ₄ , B ₆ , B ₇ , B ₈ , B ₉ , B ₁₀ und B ₁₁ . Besonders bevorzugte antimikrobielle Wirkstoffe (B) sind die Stoffe der Stoffgruppen B ₃ , B ₄ , B ₈ und B ₉ , insbesondere die dort genannten Einzelverbindungen.	
	Bevorzugt werden erfundungsgemäße Kombinationen von (A) und (B), die von Stoffen der bevorzugten Antiadhäsiva	

DE 198 41 794 A 1

(A) und bevorzugten antimikrobiellen Wirkstoffen (B) gebildet werden, insbesondere von den dort jeweils genannten Einzelverbindungen und jeweils die Zubereitungen damit.

Auch die Verwendung der vorstehenden Stoffe und Kombinationen wird bevorzugt.

Bevorzugt werden die in den Beispielen genannten Wirkstoffe (A) oder (B). Bevorzugt werden auch Kombinationen der Wirkstoffe (A) und (B), die in den Beispielen genannt sind. Besonders bevorzugt werden Kombinationen der jeweils in einem Beispiel genannten Wirkstoffe (A) und (B).

Vorzugswise beträgt die Menge der erfundungsgemäßen Antiadhäsiva (A) in den Zubereitungen, insbesondere topischen Zubereitungen, 0,2 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen.

Vorzugswise beträgt die Menge der erfundungsgemäßen Mikrobizide (B) in den Zubereitungen, insbesondere topischen Zubereitungen, 0,05 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen.

Vorzugswise ist die Gewichtsmenge der Antiadhäsiva (A) gleich der Gewichtsmenge oder größer als die Gewichtsmenge der Mikrobizide (B), und sie kann insbesondere bis zum Zehnfachen der Mikrobizidmenge betragen.

Besonders bevorzugt werden Gewichtsmengen der Antiadhäsiva (A), die bis zum Fünffachen der Gewichtsmenge von (B) betragen, insbesondere aber z. B. das Zweifache, Dreifache oder Vierfache betragen.

Auch die Verwendung der vorstehenden Stoffe und Kombinationen wird bevorzugt.

Die Aufbereitung der erfundungsgemäßen Wirkstoffe erfolgt nach den dem Fachmann geläufigen, üblichen Methoden. Erfundungsgemäße Wirkstoffe sind im Handel erhältlich oder bekannt oder können nach bekannten Verfahren erhalten werden.

Die Wirkstoffkombinationen sind gegenüber, insbesondere den vorstehend genannten Mikroorganismen, Viren, Parasiten und Protozoen hervorragend wirksam und zur Behandlung der genannten Krankheiten und Zustände geeignet.

Die erfundungsgemäßen Wirkstoffkombinationen wirken insbesondere im Sinne von desinfizierenden Wirkstoffen, z. B. einer die Mikroorganismen, Viren, Parasiten und Protozoen abtötenden Wirkung oder z. B. in einer Wachstumshemmung für diese. Diese Wirkprinzipien werden insbesondere auch mit den Begriffen antimikrobielle, antivirale, anti-parasitäre und gegenüber Protozoen antiparasitäre Wirkung gegenüber Mikroorganismen, Viren, Parasiten und Protozoen bezeichnet und sollen in gleicher Weise auch für diese Wirkstoffkombinationen gelten.

Es hat sich in erstaunlicher Weise herausgestellt, daß die erfundungsgemäßen Wirkstoffkombinationen das Wachstum von grampositiven und grammnegativen Bakterien, Mycobionten, Protozoen, Parasiten sowie Viren verhindern. Dabei wirken die erfundungsgemäßen Wirkstoffe in synergistischer Weise, also überadditiv in bezug auf die Einzelkomponenten (A) oder (B).

Insbesondere sind die erfundungsgemäßen Wirkstoffkombinationen befähigt, das Wachstum von Hefen, insbesondere der Pityrosporum-Arten, namentlich Pityrosporum ovale, zu verhindern.

Es hat sich ferner herausgestellt, daß die erfundungsgemäßen Wirkstoffkombinationen die Bildung von seborrhoischen Erscheinungen, insbesondere Kopfschuppen, verhindern sowie bereits vorhandene seborrhoische Erscheinungen, insbesondere Kopfschuppen, beseitigen.

Die erfundungsgemäßen Wirkstoffkombinationen eignen sich darüberhinaus gut für die Verwendung als desodorierender Wirkstoff in kosmetischen Desodorantien sowie gegen unreine Haut, leichte Formen der Akne bzw. Propionibakterium acnes.

Schließlich hat sich herausgestellt, daß die erfundungsgemäßen Wirkstoffkombinationen den Verderb organischer Substanz, insbesondere kosmetischer und dermatologischer Zubereitungen, durch den Befall mit grampositiven und grammnegativen Bakterien, Mycobionten, Protozoen, Parasiten und Viren verhindern können, wenn sie diesen Zubereitungen zugesetzt werden.

Erfundungsgemäß sind somit auch ein Verfahren zur Bekämpfung von Mycobionten, dadurch gekennzeichnet, daß die erfundungsgemäßen Wirkstoffkombinationen gegebenenfalls in einem geeigneten kosmetischen oder dermatologischen Träger, mit dem durch Mycobionten kontaminierten Bereich in Kontakt gebracht werden, sowie ein Verfahren zum Schutze organischer Produkte vor dem Befall mit Mycobionten, dadurch gekennzeichnet, daß diesen organischen Produkten die erfundungsgemäßen Wirkstoffkombinationen in wirksamer Menge zugegeben werden.

Der Stand der Technik lieferte folglich nicht den geringsten Hinweis auf die erfundungsgemäße Verwendung als antimycotisches Wirkprinzip.

Ferner war erstaunlich, daß die erfundungsgemäßen Wirkstoffkombinationen besonders gut wirksam sind gegen den für das Entstehen von Kopfschuppen verantwortlichen Keim Pityrosporum ovale und verwandte Keime. Eine bevorzugte Ausführungsform der vorliegenden Erfindung sind mithin gegen Kopfschuppen anzuwendende Formulierungen, beispielsweise Anti-Schuppen-Schampoos.

Die Anwendung der Wirkstoffkombinationen kann topisch, perkutan, transdermal, parenteral, oral oder auch intravasal erfolgen.

Zubereitungen, die erfundungsgemäße Wirkstoffkombinationen enthalten, können topische Zubereitungen sein, beispielsweise kosmetische und dermatologische topische Zubereitungen oder aber auch übliche Arzneimittel-Darreichungsformen. Bevorzugt werden Desodorantien oder desodorierende Körperreinigungsprodukte oder Körperpflegeprodukte. Die Wirkstoffkombinationen können aber auch in Desinfektionsmitteln und/oder Reinigungsmitteln enthalten sein, die nicht nur zur Behandlung des Körpers oder der Haut bestimmt sind, sondern auch zum Reinigen und Desinfizieren von harten Oberflächen, medizinischen Materialien, Geräten, Instrumenten, Mobiliar und Wänden.

Für den Körper bestimmte Reinigungsmittel, Desinfektionsmittel und Spülmittel können ebenfalls zur Behandlung der Haut verwendet werden, wie schon die topischen Zubereitungen. Sie dienen aber vorzugsweise zur Behandlung von Körperhöhlen, Wunden und auch des Mund- und Rachenraumes sowie der Nase.

Die erfundungsgemäßen Wirkstoffkombinationen lassen sich ohne Schwierigkeiten in gängige kosmetische oder dermatologische Formulierungen einarbeiten, vorteilhaft in Pumpsprays, Aerosolsprays, Cremes, Salben, Tinkturen, Lotions, Nagelpflegeprodukte (z. B. Nagellacke, Nagellackentferner, Nagelbalsame) und dergleichen.

Es ist auch möglich und gegebenenfalls vorteilhaft, die erfundungsgemäßen Wirkstoffkombinationen mit anderen Wirkstoffen zu kombinieren, beispielsweise mit anderen antimikrobiell, antimycotisch bzw. antiviral wirksamen Stoffen.

5

10

15

20

25

30

35

40

45

50

55

60

65

DE 198 41 794 A 1

Es ist vorteilhaft, die erfundungsgemäßen Zusammensetzungen abzupuffern. Vorteilhaft ist ein pH-Bereich von 3,5–7,5. Besonders günstig ist es, den pH-Wert in einem Bereich von 4,0–6,5 zu wählen.

Die erfundungsgemäßen kosmetischen und/oder dermatologischen Formulierungen können wie üblich zusammengesetzt sein und zur Behandlung der Haut und/oder der Haare im Sinne einer dermatologischen Behandlung oder einer Behandlung im Sinne der pflegenden Kosmetik dienen. Sie können aber auch in Schminkprodukten in der dekorativen Kosmetik eingesetzt werden.

Zur Anwendung werden die erfundungsgemäßen kosmetischen und/oder dermatologischen Formulierungen in der für Kosmetika und Dermatika üblichen Weise auf die Haut und/oder die Haare in ausreichender Menge aufgebracht.

Vorteilhaft sind solche kosmetische und dermatologische Zubereitungen, die in der Form eines Sonnenschutzmittels vorliegen. Vorteilhaft enthalten diese zusätzlich mindestens einen UVA-Filter und/oder mindestens einen UVB-Filter und/oder mindestens ein anorganisches Pigment.

Kosmetische Zubereitungen gemäß der Erfindung zum Schutz der Haut vor UV-Strahlen können in verschiedenen Formen vorliegen, wie sie z. B. üblicherweise für diesen Typ von Zubereitungen eingesetzt werden. So können sie z. B. eine Lösung, eine Emulsion vom Typ Wasser-in-Öl (W/O) oder vom Typ Öl-in-Wasser (O/W), oder eine multiple Emulsion, beispielsweise vom Typ Wasser-in-Öl-in-Wasser (W/O/W), ein Gel, eine Hydrodispersion, einen festen Stift oder auch ein Aerosol darstellen.

Die erfundungsgemäßen kosmetischen Zubereitungen können kosmetische Hilfsstoffe enthalten, wie sie üblicherweise in solchen Zubereitungen verwendet werden, z. B. Konservierungsmittel, Bakterizide, Antioxidantien, Parfüme, Mittel zum Verhindern des Schäumens, Farbstoffe, Pigmente, die eine färbende Wirkung haben, Verdickungsmittel, oberflächenaktive Substanzen, Emulgatoren, weichmachende Substanzen, anfeuchtende und/oder feuchthalrende Substanzen, Fette, Öle, Wachse oder andere übliche Bestandteile einer kosmetischen Formulierung wie Alkohole, Polyole, Polymere, Schaumstabilisatoren, Elektrolyte, organische Lösungsmittel oder Silikonderivate.

Sofern die kosmetische oder dermatologische Zubereitung eine Lösung oder Lotion darstellt, können als Lösungsmittel verwendet werden:

25 – Wasser oder wässrige Lösungen,
 – Öle, wie Triglyceride der Caprin- oder der Caprylsäure, vorzugsweise aber Rizinusöl,
 – Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z. B. mit Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkanäuren niedriger C-Zahl oder mit Fettsäuren,
30 – Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl-, -monoethyl- oder -monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte.

35 Insbesondere werden Gemische der vorstehend genannten Lösungsmittel verwendet. Bei alkoholischen Lösungsmitteln kann Wasser ein weiterer Bestandteil sein.

Die erfundungsgemäßen Zubereitungen können auch Antioxidantien enthalten.

Erfundungsgemäß können als günstige Antioxidantien alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.

40 Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Carotine (z. B. α -Carotin, β -Carotin, Lycopin) und deren Derivate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Aurofhioglucose, Propylthiouracil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ -Linoleyl-, Cholesteryl – und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocystein-sulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z. B. pmol bis μ mol/kg), ferner (Metall)-Chelatoren (z. B. α -Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α -Hydroxysäuren (z. B. Zitronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. γ -Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin E-acetat), Vitamin A und Derivate (Vitamin A-palmitat) sowie Koniferylbenzoat des Benzoearzes, Rutinsäure und deren Derivate, Ferulasäure und deren Derivate, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaresäure, Trihydroxybutyrophenon, Hamsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z. B. ZnO, ZnSO₄) Selen und dessen Derivate (z. B. Selenmethionin), Stilbene und deren Derivate (z. B. Stilbenoxid, Trans-Stilbenoxid) und die erfundungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

60 Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05–20 Gew.-%, insbesondere 1–10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001–10,0 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

65 Sofern Vitamin A, bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001–10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

DE 198 41 794 A 1

Erfnungsgemäße Emulsionen sind vorteilhaft und enthalten z. B. die genannten Fette, Öle, Wachse und anderen Fettkörper, sowie Wasser und einen Emulgator, wie er üblicherweise für einen solchen Typ der Formulierung verwendet wird.

Gele gemäß der Erfindung enthalten üblicherweise Alkohole niedriger C-Zahl, z. B. Ethanol, Isopropanol, 1,2-Propanediol, Glycerin und Wasser bzw. ein vorstehend genanntes Öl in Gegenwart eines Verdickungsmittels, das bei ölig-alcoholischen Gelen vorzugsweise Siliciumdioxid oder ein Aluminiumsilikat, bei wäßrig-alcoholischen oder alkoholischen Gelen vorzugsweise ein Polyacrylat ist. 5

Feste Stifte gemäß der Erfindung enthalten z. B. natürliche oder synthetische Wachse, Fettalkohole oder Fettsäureester. Bevorzugt werden Lippenpflegestifte sowie desodorierende Stifte ("Deo-Sticks").

Als Treibmittel für erfungsgemäße, aus Aerosolbehältern versprühbare kosmetische oder dermatologische Zubereitungen sind die üblichen bekannten leichtflüchtigen, verflüssigten Treibmittel, z. B. Kohlenwasserstoffe (Propan, Butan, Isobutan) geeignet, die allein oder in Mischung miteinander eingesetzt werden können. Auch Druckluft ist vorteilhaft zu verwenden. 10

Natürlich weiß der Fachmann, daß es an sich nichttoxische Treibgase gibt, die grundsätzlich für die vorliegende Erfindung geeignet wären, auf die aber dennoch wegen bedenklicher Wirkung auf die Umwelt oder sonstiger Begleitumstände verzichtet werden sollte, insbesondere Fluorkohlenwasserstoffe und Fluorchlorkohlenwasserstoffe (FCKW). 15

Bevorzugt können die erfungsgemäßen Zubereitungen zudem Substanzen enthalten, die UV-Strahlung im UVB-Bereich absorbieren, wobei die Gesamtmenge der Filtersubstanzen z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, insbesondere 1 bis 6 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zubereitung, um kosmetische Zubereitungen zur Verfügung zu stellen, die die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenschutzmittel dienen. 20

Die UVB-Filter können Öl-löslich oder wasserlöslich sein. Als Öl-lösliche Substanzen sind z. B. zu nennen:

- 3-Benzylidencampher und dessen Derivate, z. B. 3-(4-Methylbenzyliden)campher,
- 4-Aminobenzoësäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoësäure(2-ethylhexyl)ester, 4-(Dimethylamino)benzoësäureamylester;
- Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester, 4-Methoxyzimtsäureisopentylester;
- Ester der Salicylsäure, vorzugsweise Salicylsäure(2-ethylhexyl)ester, Salicylsäure-(4-isopropylbenzyl)ester, Salicylsäurehomomenthylester;
- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzalmalonsäuredi(2-ethyl-hexyl)ester;
- 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin

30

Als wasserlösliche Substanzen sind vorteilhaft:

- 2-Phenylbenzimidazol-5-sulfonsäure und deren Salze, z. B. Natrium-, Kalium- oder Triethanolammonium-Salze,
- Sulfonsäure-Derivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze;
- Sulfonsäure-Derivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und ihre Salze.

40

Die Liste der genannten UVB-Filter, die erfungsgemäß Verwendung finden können, soll selbstverständlich nicht limitierend sein.

Es kann auch von Vorteil sein, in erfungsgemäßen Zubereitungen UVA-Filter einzusetzen, die üblicherweise in kosmetischen und/oder dermatologischen Zubereitungen enthalten sind. Bei solchen Substanzen handelt es sich vorzugsweise um Derivate des Dibenzoylmethans, insbesondere um 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion und um 1-Phenyl-3-(4'-isopropylphenyl)propan-1,3-dion. Auch Zubereitungen, die diese Kombinationen enthalten, sind Gegenstand der Erfindung. Es können die gleichen Mengen an UVA-Filtersubstanzen verwendet werden, welche für UVB-Filtersubstanzen genannt wurden. 45

Erfungsgemäße kosmetische und/oder dermatologische Zubereitungen können auch anorganische Pigmente enthalten, die üblicherweise in der Kosmetik zum Schutz der Haut vor UV-Strahlen verwendet werden. Dabei handelt es sich um Oxide des Titans, Zinks, Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums, Cers und Mischungen davon, sowie Abwandlungen, bei denen die Oxide die aktiven Agentien sind. Besonders bevorzugt handelt es sich um Pigmente auf der Basis von Titandioxid. Es können die für die vorstehenden Kombinationen genannten Mengen verwendet werden. 55

Bei kosmetischen Zubereitungen zur Pflege der Haare handelt es sich beispielsweise um Shampooierungsmittel, Zubereitungen, die beim Spülen der Haare vor oder nach der Shampooierung, vor oder nach der Dauerwellbehandlung, vor oder nach der Färbung oder Entfärbung der Haare angewendet werden, um Zubereitungen zum Fönen oder Einlegen der Haare, Zubereitungen zum Färben oder Entfärben, um eine Frisier- und Behandlungslotion, einen Haarlack oder um Dauerwellmittel. 60

Die kosmetischen Zubereitungen enthalten Wirkstoffe und Hilfsstoffe, wie sie üblicherweise für diesen Typ von Zubereitungen zur Haarpflege und Haarbehandlung verwendet werden.

Als Hilfsstoffe dienen Konservierungsmittel, oberflächenaktive Substanzen, Substanzen zum Verhindern des Schämens, Emulgatoren, Verdickungsmittel, Fette, Öle, Wachse, organische Lösungsmittel, Bakterizide, Parfüme, Farbstoffe oder Pigmente, deren Aufgabe es ist, die Haare oder die Zubereitung selbst zu färben, Elektrolyte, Zubereitungen gegen das Fetten der Haare. 65

Kosmetische Zubereitungen, die ein Shampooierungsmittel oder eine Wasch-, Dusch- oder Badezubereitung darstellen:

DE 198 41 794 A 1

len, enthalten vorzugsweise mindestens eine anionische, nicht-ionische oder amphotere oberflächenaktive Substanz oder Gemische daraus, erfundungsgemäß Wirkstoffe und Hilfsmittel, wie sie üblicherweise dafür verwendet werden.

Beispiele für oberflächen-aktive Substanzen, die erfundungsgemäß vorteilhaft verwendet werden können, sind herkömmliche Seifen, z. B. Fettsäuresalze des Natriums, Alkylsulfate, Alkylethersulfate, Alkan- und Alkylbenzolsulfonate, Sulfoacetate, Sulfobetaine, Sarcosinate, Amidosulfobetaine, Sulfosuccinate, Suifobernsteinsäurehalbester, Alkylethercarboxylate, Eiweiß-Fettsäure-Kondensate, Alkylbetaine und Amidobetaine, Fettsäurealkanolamide, Polyglycoether Derivate.

Die oberflächenaktive Substanz kann in einer Konzentration zwischen 1 Gew.-% und 50 Gew.-% in dem Shampooierungsmittel, bzw. der Wasch-, Dusch- oder Badezubereitung, vorliegen.

10 Liegt die kosmetische oder dermatologische Zubereitung in Form einer Lotion vor, die ausgespült und z. B. vor oder nach der Entfärbung, vor oder nach der Shampooierung, zwischen zwei Shampooierungsschritten, vor oder nach der Dauerwellbehandlung angewendet wird, so handelt es sich dabei z. B. um wäßrige oder wäßrig-alkoholische Lösungen, die gegebenenfalls oberflächenaktive Substanzen enthalten, bevorzugt nichtionische oder kationische oberflächenaktive Substanzen, deren Konzentration zwischen 0,1 und 10 Gew.-%, vorzugsweise zwischen 0,2 und 5 Gew.-%, liegen kann.

15 Diese kosmetische oder dermatologische Zubereitung kann auch ein Aerosol mit den üblicherweise dafür verwendeten Hilfsmitteln darstellen.

Eine kosmetische Zubereitung in Form einer Lotion, die nicht ausgespült wird, insbesondere eine Lotion zum Einlegen der Haare, eine Lotion, die beim Fönen der Haare verwendet wird, eine Frisier- und Behandlungslotion, stellt im allgemeinen eine wäßrige, alkoholische oder wäßrig-alkoholische Lösung dar und enthält mindestens ein kationisches, anionisches, nicht-ionisches oder amphoteres Polymer oder auch Gemische davon, sowie erfundungsgemäße Wirkstoffe. Die Menge der verwendeten erfundungsgemäßen Wirkstoffe liegt z. B. zwischen 0,1 und 10 Gew.-%, bevorzugt zwischen 0,1 und 3 Gew.-%.

Kosmetische und dermatologische Zubereitungen zur Behandlung und Pflege der Haare, die die erfundungsgemäßen Wirkstoffe enthalten, können als Emulsionen vorliegen, die vom nicht-ionischen oder anionischen Typ sind. Nicht-ionische Emulsionen enthalten neben Wasser Öle oder Fettalkohole, die beispielsweise polyethoxyliert oder polypropoxyliert sein können, oder auch Gemische aus den beiden organischen Komponenten. Diese Emulsionen enthalten gegebenenfalls kationische oberflächenaktive Substanzen. Anionische Emulsionen sind vorzugsweise vom Typ einer Seife und enthalten mindestens eine erfundungsgemäße ethoxylierte oder propoxylierte organische Verbindung mit anionischem oder nicht-ionischem Charakter.

30 Kosmetische und dermatologische Zubereitungen zur Behandlung und Pflege der Haare können als Gele vorliegen, die neben erfundungsgemäßen Wirkstoffen und dafür üblicherweise verwendeten Lösungsmitteln noch organische Verdickungsmittel, z. B. Gummiarabikum, Xanthangummi, Natriumalginat, Cellulose-Derivate, vorzugsweise Methylcellulose, Hydroxymethylcellulose, Hydroxyethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose oder anorganische Verdickungsmittel, z. B. Aluminiumsilikate wie beispielsweise Bentonite, oder ein Gemisch aus Polycetylenglykol und Polyethylenglykolstearat oder -distearat, enthalten. Das Verdickungsmittel ist im Gel z. B. in einer Menge zwischen 0,1 und 30 Gew.-%, bevorzugt zwischen 0,5 und 15 Gew.-%, enthalten.

Vorzugsweise beträgt die Menge der erfundungsgemäßen Wirkstoffe in einem für die Haare bestimmten Mittel 0,01 Gew.-% bis 10 Gew.-%, insbesondere 0,5 Gew.-% bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

40 Soweit nicht anders angegeben, beziehen sich Mengenangaben, Prozentangaben und Teile auf das Gewicht, insbesondere auf das Gesamtgewicht der jeweiligen Mischung oder Zubereitung.

Die folgenden Beispiele sollen die Verkörperungen der vorliegenden Erfindungen verdeutlichen. Die Angaben beziehen sich stets auf Gewichts-%, sofern nicht andere Angaben gemacht werden.

45 Beispiel 1

W/O-Crème

50	Paraffinöl	10,00
	Ozokerit	4,00
	Vaseline	4,00
	pflanzliches Öl	10,00
	Wollwachsalcohol	2,00
	Aluminiumstearat	0,40
55	Lecithin	5,00
	Laurylalkohol	1,00
	Parfum, Konservierungsstoffe	q. s.
	Wasser, VES (voll entsalzt)	ad 100,00

60

Beispiel 2

W/O-Lotion

65	Paraffinöl	25,00
	Siliconöl	2,00
	Ceresin	1,50

DE 198 41 794 A 1

Wollwachsalkohol	0,50	
Glucosesesquiisostearat	2,50	
Ceramid 3	1,00	
Myristylalkohol	1,00	
Parfum, Konservierungsstoffe	q. s.	5
Wasser, VES	ad 100,00	

Beispiel 3

O/W-Lotion	10
------------	----

Paraffinöl	5,00	
Isopropylpalmitat	5,00	
Cetylalkohol	2,00	
Bienenwachs	2,00	
Ceteareth-20	2,00	
PEG-20-Glycerylstearat	1,50	
Glycerin	3,00	
Acyl-Ceramid C ₂	2,00	
Ölsäure	0,50	
Parfum, Konservierungsstoffe	q. s.	20
Wasser, VES	ad 100,00	

Beispiel 4	25
------------	----

O/W-Crème

Pflanzliches Öl	10,00	
Cetylalkohol	2,00	
Glycerinmonostearat	1,50	
PEG-30-Glycerylstearat	2,00	
Glycerin	3,00	
Isopropylpalmitat	5,00	
Carbopol 980 (neutralisiert)	0,30	
Sphingoceryl LS	2,00	
GML	1,00	
Parfum, Konservierungsstoffe	q. s.	
Wasser, VES	ad 100,00	40

Beispiel 5

Salbe	45
-------	----

Vaseline	36,00	
Ceresin	10,00	
Zinkoxid	4,00	
Pflanzliches Öl	20,00	
Sphingosomeg AL	3,50	
Wollwachssäure	0,25	
Parfum, Konservierungsstoffe	q. s.	
Paraffinöl	ad 100,00	50

Beispiel 6	55
------------	----

Hautöl

Cetylpalmitat	3,00	
C ₁₂₋₁₅ -Alkylbenzoat	2,00	
Polyisobuten	10,00	
Squalan	2,00	
Glucocerebroside	1,00	
GMCy	0,50	
Parfum, Konservierungsstoffe	q. s.	
Paraffinöl	ad 100,00	65

DE 198 41 794 A 1

Beispiel 7

Badeöl

5	Paraffinöl	20,00
	PEG-40-hydriertes Rizinusöl	5,00
	Lecithin	5,00
	1,2-Dihydroxyhexan	1,00
10	Parfum, Konservierungsstoffe	q. s.
	Sojaöl	ad 100,00

Beispiel 8

Lippenstift

15	Ceresin	8,00
	Bienenwachs	4,00
	Carnaubawachs	2,00
20	Vaseline	40,00
	Hydriertes Rizinusöl	4,00
	Sphingoceryl Wax LS 2958B	2,00
	DMC	0,70
25	Parfum, Konservierungsstoffe	q. s.
	Paraffinöl	ad 100,00

Beispiel 9

Pflegemaske

30	PEG-50 Lanolin	0,50
	Glycerylstearat	2,00
	Sonnenblumenkernöl	3,00
35	Bentonit	8,00
	Kaolin	35,00
	Zinkoxid	5,00
	Ceramid 5	1,00
	Azelainsäure	3,0
40	Parfum, Konservierungsstoffe	q. s.
	Wasser, VES	ad 100,00

Beispiel 10

Liposomenhaltiges Gel

45	Lecithin	6,00
	Pflanzliches Öl	12,50
50	Hydrolysiertes Kollagen	2,00
	Xanthan Gum	1,40
	Butylenglycol	3,00
	Liposomes CLR	1,00
	Palmitoleinsäure	0,20
55	Parfum, Konservierungsstoffe	q. s.
	Wasser, VES	ad 100,00

Beispiel 11

Duschpräparat mit Rückfetter

60	Cocoamidodiacetat	10,00
	Natriumlaurylsulfat	25,00
65	Kalium Cocyl Hydrolysiertes Kollagen	5,00
	Macadamianußöl	5,00
	Natriumchlorid	0,60

DE 198 41 794 A 1

Dermatein GSL	4,00	
Phenoxyethanol	0,20	
Parfum, Konservierungsstoffe	q.s.	
Wasser, VES	ad 100,00	

5

Beispiel 12

Seifenstück

Na-Salz aus Talgfettsäuren	60,00	
Na-Salz aus Kokosöl	28,00	
Natriumchlorid	0,50	
Glycoderm	5,00	
Kokosfettsäure	5,00	
Parfum, Konservierungsstoffe	q.s.	
Wasser, VES	ad 100,00	

10

Beispiel 13

Syndetseife

Natriumlaurylsulfat	30,00	
Natriumsulfosuccinat	10,00	
Kaliumcocoyl hydrolysiertes Kollagen	2,00	
Dimethicon Copolyol	2,00	
Paraffin	2,00	
Maisstärke	10,00	
Talcum	10,00	
Glycerin	3,00	
Glycoker	5,00	
Glycerinisolaurat	1,50	
Parfum, Konservierungsstoffe	q.s.	
Wasser, VES	ad 100,00	

25

30

35

Beispiel 14

Haarpflegemittel

TEA-Cocoyl hydrolysiertes Kollagen	30,00	
Monoethanolaminlaurylsulfat	25,00	
Mandelöl	2,00	
Natriumchlorid	1,00	
Glycoker MALA	2,50	
Pelargonsäure	0,20	
Parfum, Konservierungsstoffe	q.s.	
Wasser, VES	ad 100,00	

40

45

50

Beispiel 15

Pflegeshampoo

Dinatriumlaurylsulfosuccinat	6,00	
Cocoamidopropylbetaein	10,00	
Glycoldistearat	5,00	
Globotriaosylceramid	0,50	
Ölsäuremonoglycerid	0,40	
Parfum, Konservierungsstoffe	q.s.	
Wasser, VES	ad 100,00	

55

60

65

DE 198 41 794 A 1

Beispiel 16

Haarkur

5	Cetylalkohol	5,00
	Caprylic/Capric Triglyceride	3,00
	Petrolatum	2,00
	Sphingosin	0,50
10	2-Butyloctansäure	0,20
	Glycerylanolat	3,50
	Parfum, Konservierungsstoffe	q. s.
	Wasser, VES	ad 100,00

Beispiel 17

Haarspülung

20	Cocoamidopropylbetaein	5,00
	Cetylalkohol	2,00
	Propylenglycol	2,00
	Citronensäure	0,30
	Sphingosin-1-sulfat	5,00
25	Δ^9 -Pentadecinsäure	0,10
	Parfum, Konservierungsstoffe	q. s.
	Wasser, VES	ad 100,00

Beispiel 18

Haarfestiger

30	Polyvinylpyrrolidon/Vinylacetat/	5,00
	Vinylpropionat-Copolymer	
35	Ethanol	45,00
	Pseudoceramid	2,00
	Dimethylphenylethylcarbinol	0,20
	Parfum, Konservierungsstoffe	q. s.
40	Wasser, VES	ad 100,00

Beispiel 19

Frisiercrème

45	Vaseline	4,00
	Cetearylalkohol	4,00
	PEG-40-hydriertes Rizinusöl	2,00
	Isopropylpalmitat	5,00
50	Citronensäure	1,00
	Lecithin	2,00
	Anisalkohol	0,05
	Parfum, Konservierungsstoffe	q. s.
	Wasser, VES	ad 100,00

Beispiel 20

Rasierschaum

60	Stearinsäure	7,00
	Natriumlaurylsulfat	3,00
	Stearylalkohol	1,00
	Glycerin	5,00
65	Triethanolamin	3,60
	Cerebrosidsulfat	1,00
	Anisaldehyd	0,05

DE 198 41 794 A 1

Parfum, Konservierungsstoffe
Wasser, VES

q. s.
ad 100,00

Beispiel 21

5

Fußcrème

Soluan 5	2,00	
Methylsalicylat	5,00	
Caprylic/Capric Triglyceride	10,00	10
Stearinsäure	5,00	
Cetylalkohol	1,00	
Glycerin	2,00	
Dimethicon	1,00	
Carbopol 984	0,50	15
Triethanolamin	1,50	
Phospholipids FPA	1,50	
2-Butyloctansäure	0,30	
Parfum, Konservierungsstoffe	q. s.	
Wasser, VES	ad 100,00	20

Beispiel 22

25

Aerosolspray

Octyldodecanol	0,50	
Sphingosin	1,50	
DMC	0,70	
Parfum, Konservierungsstoffe	q. s.	30
Ethanol	ad 100,00	

Die durch Zusammenmischung der jeweiligen Bestandteile erhaltene flüssige Phase wird zusammen mit einem Propan-Butan-Gemisch (2 : 7) im Verhältnis 39 : 61 in Aerosolbehälter abgefüllt.

35

Beispiel 23

40

Pumpspray

PEG-40-Hydriertes Rizinusöl	2,00	
Glycerin	1,00	
Lecithin	2,00	
GMC	0,70	
Parfum, Konservierungsstoffe	q. s.	45
Wasser, VES	ad 100,00	

Beispiel 24

50

Roll-on-Gel

1,3-Butylenglycol	2,00	
PEG-40-Hydriertes Rizinusöl	2,00	
Hydroxyethylcellulose	0,50	55
Ceramid 2	1,00	
TML	1,00	
Parfum, Konservierungsstoffe	q. s.	
Wasser, VES	ad 100,00	60

Beispiel 25

65

Roll-on-Emulsion

Tricetearethphosphat	0,30	
Octyldodecanol	2,00	

DE 198 41 794 A 1

C ₁₂₋₁₅ -Alkylbenzoat	2,00
C ₁₀₋₃₀ -Alkylacrylat	0,15
Ceramid 4	1,00
Glycerinisolaurat	1,50
5 Parfum, Konservierungsstoffe	q. s.
Wasser, VES	ad 100,00

Beispiel 26

10	Wachsstift
15	
Hydriertes Rizinusöl	5,00
Bienenwachs	6,00
Ceresin	30,00
C ₁₂₋₁₅ -Alkylbenzoat	17,00
Ceramid GSL	7,50
Wollwachssäure	2,50
Parfum, Konservierungsstoffe	q. s.
Octyldodecanol	ad 100,00
20	

Beispiel 27

25	Kapseln
Kapseln, welche die nachstehend angegebenen Bestandteile enthalten, werden nach bekannten Arbeitsweisen hergestellt. Diese sind für die Behandlung der vorstehenden Zwecke in Dosierungsmengen von jeweils einer Kapsel einmal oder mehrmals täglich geeignet:	
30	Lecithin 0,50 g; oder Globotetraosylceramid 0,50 g
	in Kombination mit
35	Linolensäure 0,10 g; oder GML 0,10 g

40 Die Zahlenangaben in den vorstehenden und folgenden Beispielen sind Gew.-%.

Die erfundungsgemäßen Wirkstoffe können besonders vorteilhaft in O/W-bikontinuierlichen und W/O-Mikroemulsio nen verwendet werden. Kosmetische und dermatologische Zubereitungen gemäß der Erfindung können besonders vor teilhaft als

45 a) unverdickte,
 b) klassisch, z. B. durch Zusatz von Polyoxameren, Pluronics, Carragenanen oder Pflanzengummien verdickte
 c) durch Zusatz von A-B-A-Triblockcopolymeren (z. B. PEG-150-Distearat, Fa. Akto Nobel) oder alpha-, omega- bis-polyethoxylierte Silane oder Silikone) verdickte,
 50 d) durch Zusatz von Sternpolymeren (z. B. PEG-300-Pentaerythrityl-tetrastearat oder hydrophob modifizierte Tetraakis-polyethoxylierte Silane und Silikone) verdickte,
 e) durch Zusatz von A-B-A-B-Multiblock-Copolymeren, Starburst-Polymeren, Dendrimeren und anderen supra molekularen Vernetzern (z. B. Rheodol TWIS 399, Fa. KAO, oder PEG-120-Methylglucose-dioleat) verdickte Öl in-Wasser- (O/W-), bikontinuierliche oder Wasser-in-Öl- (W/O-) Mikroemulsionen Verwendung finden.

55

Beispiel 28

60	1,3-Di-(2-ethylhexyl)-cyclohexan	35,00
	Lecithin	5,00
	DML	2,50
	Sorbitanmonolaurat	10,00
	Wasser (+ Zitronensäure bis pH5,5)	ad 100,00

65

DE 198 41 794 A 1

Beispiel 29

1,3-Di-(2-ethylhexyl)-cyclohexan	33,00	
Lysosulfatide	5,00	
Ölsäuremonoglycerid	1,50	5
Sorbitanmonolaurat	10,00	
PEG-150-Distearat	2,00	
Wasser (+Zitronensäure bis pH5,5)	ad 100,00	

Beispiel 30

Steareth-15	4,80	
Glycerin-monostearat	2,40	
Sphingosin	2,50	15
DMC	1,00	
Cyclomethicon	3,30	
Cetearylctanoat	1,70	
Wasser	ad 100,00	

Beispiel 31

Steareth-15	4,80	
Glycerin-monostearat	2,40	
Psychosin	2,50	25
GMcy	0,80	
Cyclomethicon	3,30	
Cetearylctanoat	17,00	
PEG-150-Distearat	2,00	30
Wasser	ad 100,00	

Patentansprüche

1. Zubereitungen, insbesondere kosmetische oder dermatologische, insbesondere topische Zubereitungen mit einem Gehalt an einer Kombination von
 (A) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antiadhäsv wirkenden Wirkstoffe (Anti-Adhäsiva), kombiniert mit
 (B) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antimikrobiell wirkenden Wirkstoffe oder Wirksysteme (Mikrobizide).

2. Kombination von Wirkstoffen (A) und (B) gemäß Anspruch 1.

3. Verwendung, insbesondere in Zubereitungen, insbesondere in kosmetischen oder dermatologischen, insbesondere topischen Zubereitungen, einer Kombination von
 (A) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antiadhäsv wirkenden Wirkstoffe (Anti-Adhäsiva), kombiniert mit
 (B) einem Wirkstoff oder mehreren Wirkstoffen, ausgewählt aus der Gruppe der antimikrobiell wirkenden Wirkstoffe oder Wirksysteme (Mikrobizide), zur Bekämpfung von Bakterien, Mykota, Viren, Parasiten und Protozoen und zu der Behandlung der mit dem insbesondere kutanen Auftreten dieser Mikroorganismen verbundenen kosmetischen, dermatologischen und medizinischen Phänomene, z. B. Achselgeruch, Körpergeruch, Fußgeruch, Kopfgeruch, Akne, seborrhoische Dermatitis, mikrobielle Superinfektionen bei atopischem Ekzem, Psoriasis und Immunsuppression, sowie zur Konservierung oder bei Wundinfektionen.

4. Zubereitungen, Kombinationen und Verwendung gemäß den Ansprüchen 1–3, dadurch gekennzeichnet, daß die Antiadhäsiva (A) natürliche Ceramide und Sphingosine pflanzlichen und tierischen Ursprungs, pflanzliche und tierische Rohstoffe dieselben enthaltend, sowie synthetisch hergestellte Ceramide und Sphingosine (z. B. Acyl-Ceramide, Questamide oder Pseudoceramide), aber auch durch chemische oder biologische Transformation aus natürlichen oder

5. Zubereitungen gemäß den Ansprüchen 1, 3 und 4, dadurch gekennzeichnet, daß die Zubereitungen topische Zubereitungen sind.

6. Verwendung der Kombinationen oder Zubereitungen gemäß den Ansprüchen 1–5 als Desodorantien.

7. Zubereitungen gemäß den vorstehenden Ansprüchen, dadurch gekennzeichnet, daß die Menge der Antiadhäsiva (A) in den Zubereitungen, insbesondere topischen Zubereitungen, 0,2 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, und die Menge der Mikrobizide (B) in den Zubereitungen, insbesondere topischen Zubereitungen, 0,05 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, beträgt.

- Leerseite -