Non-parametric methods for doubly robust estimation of continuous treatment effects by Kennedy, Ma, McHugh, and Small (2017)

Hyemin Yeon

Department of Statistics Iowa State University

April 5, 2023

1/39

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023

Contents

- Introduction
- Background
- Main results
- Simulation study
- 6 Application
- Oiscussion

Prediscussion

- Examples of continuous treatments
- General ideas

- Theoretical accomplishments/limitations
- Practical advantages/issues
- Potential future directions

Hyemin Yeon (ISU)

Contents

- Introduction
- 2 Background
- Main results
- 4 Simulation study
- 6 Application
- Discussion

Continuous treatments

- E.g., dose, duration, frequency, ...
- Main example: Hospital readmisisons reduction program
 - Treatment: average nursing hours per patent day (levels of nurse staffing)
 - Outcome: chance of readmission penalty
 - Covariates: skilled nursing facility, teaching intensity, urban location, number of beds, ...
- Existing methods
 - are not flexible due to parametric model assumptions for does-response regression, or
 - rely on correct model specification, e.g., of conditional treatment density or of conditional mean outcome (not doubly robust)

Overview

- Causal Inference + Nonparametric Regression
- Theory & Methods > Computation
 - Will have brief discussion of proofs

- Theory (Connection to ISU STAT courses)
 - Asymptotic theory in nonparametric regression: Fan (1993), Fan and Gijbel (1996), STAT546
 - Semiparametric theory: Tsiatis (2006), STAT621 in 2023 Spring
 - Empirical process theory: van der Waart and Wellner (1996)

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023 6/39

Contents

- Introduction
- 2 Background
- Main results
- 4 Simulation study
- 6 Application
- Discussion

Notation

• Z = (L, A, Y) has support $Z = L \times A \times Y$.

L: covariates

A: (continuous) treatment/exposure

Y: outcome/response

 Y^a : potential outcome under treatment $a \in A$.

- p(z) = p(y|I, a)p(a|I)p(I) $\mu(I, a) \equiv E[Y|L = I, A = a]$ $\pi(a|I) \equiv \partial P(A \le a|L = I)/\partial a$ $\omega(a) \equiv \partial P(A \le a)/\partial a$
- Goal: estimate $\theta(a) \equiv E[Y^a]$.

Hyemin Yeon (ISU)

Potential outcome and continuous treatment

- We cannot observe Y_i , instead we can observe Y_i^a if $A_i = a$.
- A direct application of the standard nonparametric regression of $\{A_i\}_{i=1}^n$ on $\{Y_i^{A_i}\}_{i=1}^n$ does not make sense.
- General idea:
 - to find pseudo-outcome \hat{Y}_i , and
 - to regress $\{A_i\}_{i=1}^n$ on $\{\hat{Y}_i\}_{i=1}^n$ through the nonparametric regression

←□ → ←□ → ←□ → □ → ○ へ ○ □ → ←□ → ←□ → ←□ → □ → □ → ○

April 5, 2023

9/39

Assumptions for identification

(A1) Consistency (or SUTVA):

$$A = a \implies Y = Y^a$$

(A2) Positivity:

$$\pi(a|I) \ge \pi_{\min} > 0, \quad \forall I \in \mathcal{L}$$

(A3) Ignorability (or no unmeasured confounders):

$$\mathsf{E}[Y^a|\mathbf{L},A] = \mathsf{E}[Y^a|\mathbf{L}]$$

Hyemin Yeon (ISU)

Causal effect curve

•
$$\theta(a) \equiv \mathsf{E}[Y^a] = \mathsf{E}[\mu(\boldsymbol{L},a)] = \int_{\mathcal{L}} \mu(\boldsymbol{I},a) d\mathsf{P}(\boldsymbol{I})$$

$$\mu(\mathbf{I}, a) = \mathbb{E}[Y|\mathbf{L} = \mathbf{I}, A = a]$$

$$= \mathbb{E}[Y^{a}|\mathbf{L} = \mathbf{I}, A = a]$$

$$= \mathbb{E}[Y^{a}|\mathbf{L} = \mathbf{I}]$$

$$\Rightarrow \theta(a) \equiv \mathbb{E}[Y^{a}] = \mathbb{E}[\mathbb{E}[Y^{a}|L]] = \mathbb{E}[\mu(L, a)]$$

11 / 39

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023

Contents

- Introduction
- 2 Background
- Main results
- 4 Simulation study
- 6 Application
- Discussion

Idea 1

• Find $\xi = \xi(\cdot; \pi, \mu) : \mathcal{Z} \to \mathbb{R}$ such that

$$\mathsf{E}[\xi(\boldsymbol{Z};\pi,\mu)|A=a]=\theta(a)$$

if either $\pi = \pi_0$ or $\mu = \mu_0$.

• Use any non-parametric regression method to estimate $\theta(a)$ by regressing $\xi(\mathbf{Z}; \hat{\pi}, \hat{\mu})$ on treatment A

Hyemin Yeon (ISU)

13 / 39

Idea 2

Use semiparametric theory

$$\begin{split} \mathsf{E}[\xi(\boldsymbol{Z};\pi,\mu)] &= \mathsf{E}[\mathsf{E}[\xi(\boldsymbol{Z};\pi,\mu)|A]] = \mathsf{E}[\theta(A)] = \mathsf{E}[\mu(L,A)] \\ &= \int_{\mathcal{A}} \int_{\mathcal{L}} \mu(I,a) \omega(a) d\mathsf{P}(\boldsymbol{I}) d(a) \equiv \psi \end{split}$$

• Candidate for ξ : influence function ϕ for ψ

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023 14/39

Theorem 1

Theorem 1

Under a non-parametric model, the efficient influence function ϕ for $\psi \equiv \int_A \int_C \mu(I,a)\omega(a)dP(I)d(a)$ is

$$\xi(\mathbf{Z};\pi,\mu) - \psi + \int_{\mathcal{A}} \left\{ \mu(\mathbf{L},\mathbf{a}) - \int_{\mathcal{L}} \mu(\mathbf{I},\mathbf{a}) d\mathsf{P}(\mathbf{I}) \right\} \omega(\mathbf{a}) d\mathbf{a},$$

where

$$\xi(\boldsymbol{Z};\pi,\mu) \equiv rac{Y - \mu(\boldsymbol{L},A)}{\pi(A|\boldsymbol{L})} \int_{\mathcal{L}} \pi(A|\boldsymbol{I}) dP(\boldsymbol{I}) + \int_{\mathcal{L}} \mu(\boldsymbol{I},A) dP(\boldsymbol{I}).$$

• Then, $E[\xi(\mathbf{Z}; \mu, \pi)|A = a] = \theta(a)$ if either $\pi = \pi_0$ or $\mu = \mu_0$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

15/39

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023

Sketch of proof (Theorem 1)

- $p(z; \varepsilon)$: a parametric submodel with parameter $\varepsilon \in \mathbb{R}$
- $\psi(\varepsilon) = \int_{\mathcal{W}} \theta(\mathbf{a}; \varepsilon) \omega(\mathbf{a}; \varepsilon) d\mathbf{a}$
- The efficient influence function for ψ is the unique function $\phi(\mathbf{Z})$ that satisfies

$$\mathsf{E}\left[\phi(\boldsymbol{Z})\frac{\partial\log p(\boldsymbol{Z};\varepsilon)}{\partial\varepsilon}\Big|_{\varepsilon=0}\right] = \frac{\partial\psi(\varepsilon)}{\partial\varepsilon}\Big|_{\varepsilon=0}.\tag{1}$$

- Compute RHS of (1).
- Compute LHS of (1) for $\phi(\mathbf{Z})$ in Theorem 1.
- Check if both are equal.
- Manipulating (conditional) densities/expectations/log-likelihoods.
- Related to Theorems 3.2, 4.2, 4.4 of Tsiatis (2006).

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

General estimation procedure

• Estimated pseudo-outcomes: $\{\hat{\xi}(\mathbf{Z}_i; \hat{\pi}, \hat{\mu})\}_{i=1}^n$, where

$$\hat{\xi}(\mathbf{Z}_{i}; \hat{\pi}, \hat{\mu}) \equiv \frac{Y_{i} - \hat{\mu}(\mathbf{L}_{i}, A_{i})}{\hat{\pi}(A_{i}|\mathbf{L})} \left\{ n^{-1} \sum_{i'=1}^{n} \hat{\pi}(A_{i}|L_{i'}) \right\} + n^{-1} \sum_{i'=1}^{n} \mu(L_{i'}, A_{i})$$

- Step 1: Estimate the nuisance functions π and μ by $\hat{\pi}$ and $\hat{\mu}$
 - E.g., logistic regression, super learner
- Step 2: Regress the estimated pseudo-outcomes $\{\hat{\xi}(\mathbf{Z}_i; \hat{\pi}, \hat{\mu})\}_{i=1}^n$ on treatments $\{A_i\}_{i=1}^n$ by using any nonparametric regression methods
 - E.g., kernel-based smoothing, targeted maximum likelihood estimator (TMLE), any machine learning methods

4 D > 4 B > 4 B > 4 B > 9 Q P

Local linear estimator

 $oldsymbol{eta}_h(a) = oldsymbol{g}_{ha}(a)^{ op} \hat{eta}_h(a)$, where $oldsymbol{g}_{ha}(t) = egin{bmatrix} 1 & (t-a)/h \end{bmatrix}^{ op}$ and

$$\hat{\boldsymbol{\beta}}_h(a) = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^2} n^{-1} \sum_{i=1}^n K_{ha}(A_i) \left\{ \hat{\boldsymbol{\xi}}(\boldsymbol{Z}_i; \hat{\boldsymbol{\pi}}, \hat{\boldsymbol{\mu}}) - \boldsymbol{g}_{ha}(A_i)^\top \boldsymbol{\beta} \right\}^2$$

for
$$K_{ha}(t) = h^{-1}K((t-a)/h)$$

- K: a kernel function
- h: a (scalar) bandwidth parameter

18 / 39

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023

Review of local polynomial regression

• Figure 4.2 of the lecture note of STAT546 offered by Professor Kris De Brabanter

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023 19/39

Assumptions

- $\|\hat{\pi} \pi\|_{\sup} = o_{\mathsf{P}}(1)$ and $\|\hat{\mu} \mu\|_{\sup} = o_{\mathsf{P}}(1)$.
- (a) (Double robustness) Either $\pi = \pi_0$ or $\mu = \mu_0$.
- (b) (Bandwidth) $h \to 0$ and $nh^3 \to \infty$ as $n \to \infty$.
- (c) (Kernel) K is a continuous symmetric probability density with support [-1,1].
- (d) (Continuity) $\theta \in C^2(\mathcal{A}), \ \omega \in C^0(\mathcal{A}), \ \partial P(\xi(\mathbf{Z}; \boldsymbol{\pi}, \boldsymbol{\mu}) \leq z)/\partial a \in C^0(\mathcal{A}).$
- (e) (Class of bounded functions) $\hat{\pi}, \hat{\mu}, 1/\hat{\pi}, 1/\hat{\mu}, \pi, \mu \text{ are uniformly bounded.}$ $\hat{\pi}, \hat{\mu}, \pi, \mu \in \mathcal{F} \text{ with } \mathcal{F} \text{ having finite uniform entropy integrals.}$

 Hyemin Yeon (ISU)
 NonparaContTrt
 April 5, 2023
 20 / 39

Consistency

Theorem 2

Under some assumptions, we have

$$|\hat{ heta}_h(a) - heta(a)| = O_{\mathsf{P}}\left((nh)^{-1/2} + h^2 + r_n(a)s_n(a)\right)$$

where

$$\sup_{t:|t-a|\leq h} \left\{ \int_{\mathcal{L}} \{\hat{\pi}(t|\boldsymbol{I}) - \pi(t|\boldsymbol{I})\}^2 d\mathsf{P}(\boldsymbol{I}) \right\}^{1/2} = O_{\mathsf{P}}(r_n(a)),$$

$$\sup_{t:|t-a|\leq h} \left\{ \int_{\mathcal{L}} \{\hat{\mu}(\boldsymbol{I},t) - \mu(\boldsymbol{I},t)\}^2 d\mathsf{P}(\boldsymbol{I}) \right\}^{1/2} = O_{\mathsf{P}}(s_n(a))$$

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023 21/39

Comments on consistency

- (1) $(nh)^{-1/2} + h^2$.
 - To balance two terms, $h \sim n^{-1/5}$ and $(nh)^{-1/2} \sim h^2 \sim n^{-2/5}$.
 - Optimal rate of convergence for standard non-parametric regression

- (2) $r_n(a)s_n(a)$
 - Product of "local" rates of convergence
 - $-r_n(a) = o(1), s_n(a) = O(1) \implies r_n(a)s_n(a) = o(1)$
 - $-r_n(a) = n^{-2/5}, s_n(a) = n^{-1/10} \implies r_n(a)s_n(a) = O(n^{-1/2}) = o(n^{-2/5})$

Hyemin Yeon (ISU)

Asymptotic normality

Theorem 3

Under Theorem 2 assumptions, if $r_n(a)s_n(a) = o_P((nh)^{-1/2})$, then

$$\sqrt{nh}\{\hat{\theta}_h(a) - \theta(a) - b_h(a)\} \xrightarrow{d} N\left(0, m_0(K^2)\frac{\sigma^2(a)}{\omega_0(a)}\right)$$

- $b_h(a) = \theta''(a)m_2(K)h^2/2 + o(h^2)$
- $\sigma^2(a) \equiv \text{var}[\xi(\mathbf{Z}; \pi, \mu)|A = a]$ $= \mathbb{E}\left[\frac{\text{var}[Y|\mathbf{L}, A = a] + \{\mu_0(\mathbf{L}, a) - \mu(\mathbf{L}, a)\}^2}{\{\pi(a|\mathbf{L})/\mathbb{E}[\pi(a|\mathbf{L})]\}^2 / \{\pi(a|\mathbf{L})/\omega_0(a)\}^2}\right] - \{\theta(a) - \mathbb{E}[\mu(\mathbf{L}, a)]\}^2$
- $m_j(K^k) = \int u^j K(u)^k du$
- Same form as non-causal nonparametric regression

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023 23 / 39

Comments on asymptotic normality

bias correction vs undersmoothing

(US)
$$h = o(n^{-1/5}) \implies b_h(a) = o((nh)^{-1/2})$$

 \implies negligible bias through undersmoothing
(BC) Or, bias correction by estimating $b_h(a)$ by $\hat{b}_h(a)$

- Need to estimate $\sigma^2(a)$ by $\hat{\sigma}^2(a)$
- Confidence intervals:

$$CI_{\text{us}} = \left[\hat{\theta}_h(a) - z_{1-\alpha/2} \frac{\hat{\sigma}(a)}{\sqrt{nh}}, \hat{\theta}_h(a) + z_{1-\alpha/2} \frac{\hat{\sigma}(a)}{\sqrt{nh}}\right]$$

$$CI_{\text{bc}} = \left[\hat{\theta}_h(a) - \hat{b}_h(a) - z_{1-\alpha/2} \frac{\hat{\sigma}(a)}{\sqrt{nh}}, \hat{\theta}_h(a) - \hat{b}_h(a) + z_{1-\alpha/2} \frac{\hat{\sigma}(a)}{\sqrt{nh}}\right]$$

 Hyemin Yeon (ISU)
 NonparaContTrt
 April 5, 2023
 24 / 39

Sketch of proof (Theorems 2-3)

Decomposition:

$$\hat{\theta}_h(a) - \theta(a) = \tilde{\theta}_h(a) - \theta(a) + R_{1n} + R_{2n}$$

where $\tilde{\theta}_h(a)$ is the local linear estimator based on $\{\xi(Z_i;\pi,\mu)\}_{i=1}^n$

- $\tilde{\theta}_h(a) \theta(a)$: from the standard non-parametric regression
- R_{1n} : from $\hat{P}_n P$ by empirical process theory, $\hat{P}_n(A) = n^{-1} \sum_{i=1}^n \mathbb{I}(X_i \in A)$
- R_{2n} : from $\|\hat{\pi} \pi\|_{\text{sup}}$, $\|\hat{\mu} \mu\|_{\text{sup}}$, and $\hat{P}_n P$

- (ロ) (個) (重) (重) (重) のQで

Data-driven bandwidth selection

Leave-one-out cross-validation:

$$\hat{h}_{\mathrm{opt}} = \operatorname*{argmin}_{h \in \mathcal{H}} \sum_{i=1}^{n} \left\{ rac{\hat{\xi}(\boldsymbol{Z}_{i}; \hat{\pi}, \hat{\mu}) - \hat{\theta}_{h}(A_{i})}{1 - \hat{W}_{h}(A_{i})}
ight\}^{2},$$

where $\hat{W}_h(A_i)$ is the *i*-th diagonal of the smoothing or hat matrix.

• Treat the pseudo-outcomes $\{\hat{\xi}(\mathbf{Z}_i; \hat{\pi}, \hat{\mu})\}_{i=1}^n$ as real outcomes

 Hyemin Yeon (ISU)
 NonparaContTrt
 April 5, 2023
 26 / 39

Contents

- Introduction
- 2 Background
- Main results
- Simulation study
- 6 Application
- Discussion

Hyemin Yeon (ISU)

27 / 39

Set-ups

$$\bullet \ \mathbf{L} = \begin{bmatrix} L_1 & L_2 & L_3 & L_4 \end{bmatrix}^\top \sim \mathsf{N}(0, I_4)$$

•
$$(A/20)|L \sim \text{Beta}(\lambda(L), 1 - (\lambda(L)))$$

 $\text{logit}(\lambda(L) = -0.8 + 0.1L_1 + 0.1L_2 - 0.1L_3 + 0.2L_4)$

• $Y|L, A \sim \text{Ber}(\mu(L, A))$ $logit(\mu(L, A)) =$ $1 + \begin{bmatrix} 0.2 & 0.2 & 0.3 & -0.1 \end{bmatrix} L + A(0.1 - 0.1L_1 + 0.1L_3 - 0.13^2A^2)$

Hyemin Yeon (ISU)

Fig. 2. Plot of effect curve $\theta(a)$ induced by the simulation set-up (——) with treatment and outcome data (O) from one simulated data set with n = 1000

Hyemin Yeon (ISU) NonparaContTrt April

29 / 39

Methods

- (1) Plug-in regression: $\hat{m}(a) = n^{-1} \sum_{i=1}^{n} \hat{\mu}(L_i, a)$
- (2) Inverse-probability-weighted (IPW) approach by Rubin and van der Laan (2006) only use $\hat{\pi}$ with $\hat{\mu}=0$
- (3) The proposed doubly robust approach use both $\hat{\pi}$ and $\hat{\mu}$
 - $\hat{\pi}$, $\hat{\mu}$: using logistic regression
 - bandwidth selection
 - LOOCV
 - oracle choice: $\operatorname{argmin}_{h \in \mathcal{H}} n^{-1} \sum_{i=1}^n \{\hat{\theta}_h(A_i) \theta(A_i)\}^2$

Integrated mean bias and root-mean-squared error (in parentheses) after 500 simulations

				Results when correct model is as follows:			
	Neither	Treatment	Outcome	Both			
	2.67 (5.54)	2.67 (5.54)	0.62 (5.25)	0.62 (5.25)			
				1.64 (8.57) 1.58 (7.37)			
1 2				1.10 (6.50)			
	2.12 (5.48)	1.00 (5.36)		1.02 (5.65)			
	2.62 (3.07)	2.62 (3.07)	0.06 (1.53)	0.06(1.53)			
erse probability weighted	2.38 (3.97)	0.86 (2.94)	2.38 (3.97)	0.86 (2.94)			
erse probability weighted†	2.11 (3.44)	0.70(2.34)	2.11 (3.44)	0.70(2.34)			
ably robust	2.03 (3.11)	0.75(2.39)	0.74(2.53)	0.68(2.25)			
ıbly robust†	1.84 (2.67)	0.64(1.88)	0.61 (1.78)	0.58 (1.78)			
ression	2.65 (2.70)	2.65 (2.70)	0.02(0.47)	0.02 (0.47)			
erse probability weighted	2.36 (3.42)	0.33 (1.09)	2.36 (3.42)	0.33 (1.09)			
erse probability weighted†	2.24 (3.28)	0.35(0.85)	2.24 (3.28)	0.35(0.85)			
ibly robust	1.81 (2.35)	0.26(0.86)	0.20(1.21)	0.25 (0.78)			
ıbly robust†	1.76 (2.27)	0.31 (0.68)	0.24 (1.10)	0.29 (0.64)			
	ression erse probability weighted erse probability weighted† ubly robust ubly robust† ression erse probability weighted† ubly robust ubly robust ubly robust† ression erse probability weighted† ubly robust ubly robust† ression erse probability weighted erse probability weighted† ubly robust ubly robust ubly robust	ression 2.67 (5.54) erse probability weighted 2.26 (8.49) erse probability weighted† 2.26 (6.27) ably robust† 2.12 (5.48) erse probability weighted 2.38 (3.97) erse probability weighted† 2.38 (3.97) erse probability weighted† 2.03 (3.11) ably robust† 1.84 (2.67) erse probability weighted 2.36 (3.42) erse probability weighted 2.36 (3.42) erse probability weighted† 2.24 (3.28) ably robust 1.81 (2.35)	ression 2.67 (5.54) 2.67 (5.54) erse probability weighted 2.26 (8.49) 1.64 (8.57) 2.58 (7.36) 1.58 (7.37) 2.23 (6.27) 1.01 (6.28) 2.12 (5.48) 1.00 (5.36) 2.12 (5.48) 1.00 (5.36) 2.12 (5.48) 1.00 (5.36) 2.12 (5.48) 1.00 (5.36) 2.13 (3.07) 2.62 (3.07) 2.62 (3.07) 2.62 (3.07) 2.62 (3.07) 2.62 (3.07) 2.62 (3.07) 2.63 (3.11) 0.75 (2.39) 2.11 (3.44) 0.70 (2.34) 2.11 (3.44) 0.70 (2.34) 2.11 (3.44) 0.70 (2.34) 2.11 (3.44) 0.75 (2.39) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 0.75 (2.34) 2.11 (3.44) 2.11 (3.	ression 2.67 (5.54) 2.67 (5.54) 0.62 (5.25) 2.26 (8.49) 1.64 (8.57) 2.26 (8.49) 2.96 (8.49) 1.58 (7.37) 2.26 (7.36) 2.96 (6.27) 1.01 (6.28) 1.12 (5.92) 2.12 (5.48) 1.00 (5.36) 1.03 (5.08) 2.12 (5.48) 1.00 (5.36) 1.03 (5.08) 2.99 (5.23) 2.88 (3.97) 2.62 (3.07) 0.06 (1.53) 2.38 (3.97) 0.86 (2.94) 2.38 (3.97) 2.99 (2.94) 2.38 (3.97) 2.99 (2.94) 2.39 (3.11) 0.75 (2.39) 0.74 (2.53) 2.99 (2.94			

†Uses the oracle bandwidth.

Contents

- Introduction
- 2 Background
- Main results
- 4 Simulation study
- Application
- Discussion

32 / 39

Real data application

- nurse staffing \rightarrow hospital readmissions penalties
- A: nurse staffing hours
- Y: whether the hospital was penalized because of excess readmissions
- \bullet $\theta(a)$: proportion of hospitals that would have been penalized if all hospitals had changed their nurse staffing hours to level a
- $\pi(a|I)$: $A = \lambda(L) + \gamma(L)\varepsilon$, $\varepsilon \sim (0,1)$, use the Super Learner for λ, γ and KDE for the density of ε
- $\mu(a, I)$: use the Super Learner

April 5, 2023

33 / 39

Hyemin Yeon (ISU) NonparaContTrt

Contents

- Introduction
- 2 Background
- Main results
- 4 Simulation study
- 6 Application
- Oiscussion

35 / 39

Future directions

• What if θ is not (pathwise) differentiable?

• Is there an uniform distributional convergence?

• Hypothesis testing for θ ?

36 / 39

Hyemin Yeon (ISU) NonparaContTrt

Continuous variables in Causal Inference

- Kennedy, Ma, McHugh, and Small (2017)
 Local linear regression on continuous treatment
- Kennedy, Lorch, and Small (2019)
 Continuous instrument variables
- Westling, Gilbert, and Carone (2020)
 Isotonic regression on continuous treatment
- Westling (2022) Hypothesis testing with continuous treatment H_0 : the causal effect curve is flat $(\theta(a) = constant)$

 Hyemin Yeon (ISU)
 NonparaContTrt
 April 5, 2023
 37 / 39

•

_

w

•

•

38 / 39

The End

THANK YOU

39 / 39

Hyemin Yeon (ISU) NonparaContTrt April 5, 2023