Motivation
Time series segmentation
Outlier Visualization for Barium
Other project ideas
Discussion

Statistical Analysis of Surface Water Data Time series segmentation and Outlier visualization

- Motivation
- Time series segmentation
 - Barium Dataset
 - Sulphate Dataset
- Outlier Visualization for Barium
- Other project ideas
- Discussion

- Motivation
- 2 Time series segmentation
 - Barium Dataset
 - Sulphate Dataset
- Outlier Visualization for Barium
- Other project ideas
- Discussion

Surface Water Data

- It includes *irregularly* spaced time series of Barium and Sulphate concentrations at approx. 80 PA counties from 1921-2015
- Deciphering spatial and temporal correlations may provide important insights about water quality deterioration due to energy extraction processes
- Challenges: spatial and temporal "sparsity"
- Our current work:
 - Naive spatial clustering using k-means
 - Time series segmentation

Surface Water Data

- It includes irregularly spaced time series of Barium and Sulphate concentrations at approx. 80 PA counties from 1921-2015
- Deciphering spatial and temporal correlations may provide important insights about water quality deterioration due to energy extraction processes
- Challenges: spatial and temporal "sparsity"
- Our current work:
 - Naive spatial clustering using k-means
 - Time series segmentation

- Motivation
- Time series segmentation
 - Barium Dataset
 - Sulphate Dataset
- Outlier Visualization for Barium
- Other project ideas
- Discussion

Model and Goals

Time series segmentation

- Assumption: There are m breakpoints.
- Model¹:

$$\begin{aligned} \mathsf{Ba}_i(\mathsf{Su}_i) &= \mathsf{Time}_i\beta_1 + u_i \quad (i = 1, ..., T_1) \\ &\vdots \\ \mathsf{Ba}_i(\mathsf{Su}_i) &= \mathsf{Time}_i\beta_m + u_i \quad (i = T_{m+1}, ..., T) \end{aligned}$$

- Goals:
 - Point estimate of breakpoints.
 - Interval estimate of breakpoints.

¹Bai, Jushan, and Pierre Perron. "Computation and analysis of multiple structural change models." Journal of applied econometrics 18.1 (2003):

Methodology

Time series segmentation

- Notation:
 - h: Minimum segment length.
 - SSR $_{t_1:t_2}^r$: Sum of squared residuals for the time segment t_1 - t_2 with r breakpoints.
- Recursive problem:

$$\mathsf{SSR}_{1:T} = \min_{mh \leq j \leq T-h} \left[\mathsf{SSR}_{1:j}^{m-1} + \mathsf{SSR}_{(j+1):T}^{0} \right]$$

- Construction of triangular matrix of sums of squared residuals.
- Time Complexity: $O(T^2)$

Confidence intervals for breakpoints

Asymptotic distribution of breakpoint estimate:

$$A_T(\hat{T}_i - T_i) \xrightarrow{d}$$
 some Wiener process

where A_T is a normalization constant.

• Using above asymptotic distribution function of the breakpoint.², 95% confidence intervals for point estimates $\hat{T}_1,...,\hat{T}_m$ can be created.

²Bai, Jushan. "Estimation of a change point in multiple regression models." Review of Economics and Statistics 79.4-(1997): 551-563. ▶

Choosing the number of segments

Bayesian Information Criterion (BIC):

$$\mathsf{BIC} = -2\log(\hat{L}) + k\log(n)$$

- Limitation in our case: n >> k condition not satisfied by Barium data for some clusters
- Residual sum of squares:
 - Always decreases and so can't be used for choosing segmentation.

- Motivation
- 2 Time series segmentation
 - Barium Dataset
 - Sulphate Dataset
- Outlier Visualization for Barium
- Other project ideas
- Discussion

Full time series

Figure: Full time series for Barium dataset

Dense time series

Figure: Dense time series for Barium dataset

BIC and RSS

BIC and Residual Sum of Squares

Figure: BIC and RSS plot for dense part of Barium dataset

Time segmentation for dense part

Figure: Time segmentation for dense part of Barium dataset with 18 breakpoints

- Motivation
- 2 Time series segmentation
 - Barium Dataset
 - Sulphate Dataset
- Outlier Visualization for Barium
- Other project ideas
- Discussion

Full time series

Figure: Full time series for Sulphate dataset

Dense time series

Figure: Dense time series for Sulphate dataset

- Motivation
- 2 Time series segmentation
 - Barium Dataset
 - Sulphate Dataset
- Outlier Visualization for Barium
- Other project ideas
- Discussion

Outlier map for Barium dataset

Figure: Outlier map for Barium dataset

- Motivation
- 2 Time series segmentation
 - Barium Dataset
 - Sulphate Dataset
- Outlier Visualization for Barium
- Other project ideas
- Discussion

Other project ideas

- Bedrock zone spatial clustering and time series segmentation.
- Analyzing river system networks:
 - Yearly correlation networks.
 - Identifying the community of outliers.
- High dimensional tests
 - Simultaneous testing for methane concentrations in 1000 wells before and after drilling.
 - False discovery rate to control the type I error.

- Motivation
- 2 Time series segmentation
 - Barium Dataset
 - Sulphate Dataset
- Outlier Visualization for Barium
- Other project ideas
- Discussion

Discussion

Summary of current works:

- Time series segmentation for dense regions
- Interactive Shiny app

Future works

- Robust estimation of breakpoints.
 - $SAR_{t_1:t_2}^r$: Sum of absolute residuals for the time segment t_1 - t_2 with r breakpoints.

$$SAR_{1:T} = \min_{mh \le j \le T-h} \left[SAR_{1:j}^{m-1} + SAR_{(j+1):T}^{0} \right]$$

Agglomerative clustering and Spatial segmentation based on trend

Discussion

Summary of current works:

- Time series segmentation for dense regions
- Interactive Shiny app

Future works:

- Robust estimation of breakpoints.
 - SAR $_{t_1:t_2}^r$: Sum of absolute residuals for the time segment t_1 - t_2 with r breakpoints.

$$\mathsf{SAR}_{1:T} = \min_{mh \leq j \leq T-h} \left[\mathsf{SAR}_{1:j}^{m-1} + \mathsf{SAR}_{(j+1):T}^{0} \right]$$

 Agglomerative clustering and Spatial segmentation based on trend