Exercise 1.

a. The projection u_1 is longer than v compared to the first one.

- **a.** The projection u_1 is going the opposite direction of v.
- d) $Proj_v(au)$ would equal $a \cdot proj_v(u)$. $proj_{au}(u) = proj_v(u)$ since the length of v does not affect the projection of u.

Exercise 2.

Exercise 3.

Exercise 4.

a) Domain: $(x^2+y^2\neq 0)$

Exercise 5.

a. It looks similar to a plane away from 0, because the term $(1/(x^2+y^2))$ approaches 0 as it moves further away from (0,0), which makes the whole function look like the plane f(x,y) = y.

Exercise 6.

