2-Phase Stepper Motor Unipolar Driver ICs

■Absolute Maximum Ratings

(Ta=25°C)

Parameter	Symbol		Units		
Parameter		SLA7027MU	SLA7024M	SLA7026M	Units
Motor supply voltage	Vcc	46			V
FET Drain-Source voltage	VDSS		V		
Control supply voltage	Vs		V		
TTL input voltage	Vin	7			V
Reference voltage	V _{REF}	2			V
Output current	lo	1	1.5	3	Α
Power dissipation P _{D1}			W		
rowei dissipation	P _{D2}		W		
Channel temperature	Tch	+150 °C			°C
Storage temperature	T _{stg}	-40 to +150 °C			

■Electrical Characteristics

							Ratings						
Parameter		Symbol	SLA7027MU		SLA7024M		SLA7026M		Units				
			min	typ	max	min	typ	max	min	typ	max	1	
	Control supply current	ls		10	15		10	15		10	15		
		Condition		Vs=44V			Vs=44V			Vs=44V		mA	
	Control supply voltage	Vs	10	24	44	10	24	44	10	24	44	V	
	FET Drain-Source voltage	Voss	100			100			100			V	
		Condition	Vs=	44V, loss=25	0μΑ	Vs=	44V, Idss=25	0μΑ	Vs=44V, Ibss=250μA		0μΑ	7 V	
	FET ON voltage	VDS			0.85			0.6			0.85	V	
		Condition	ΙD	=1A, AVs=14	V	Ic	=1A, Vs=14	V	I	=3A, Vs=14	V	v	
	FET drain leakage current	IDSS			4			4			4		
'n	FET drain leakage current	Condition	V _{DS}	s=100V, Vs=	44V	Vos	s=100V, Vs=	44V	VDS	s=100V, Vs=	44V	mA	
FET diod	FET diode forward voltage	Vsp			1.2			1.1			2.3	V	
	T L T Glode forward voltage	Condition		l⊳=1A			I⊳=1A			l⊳=3A			
rac		Iн			40			40			40	μΑ	
DC characteristics	TTL input current	Condition	VIII	=2.4V, Vs=4	4V	Vı⊦	=2.4V, Vs=4	.4V, Vs=44V V _{IH} =2.4V, Vs=44V		4V	μΑ		
		lı∟			-0.8			-0.8			-0.8	mA	
_		Condition	Vıı	=0.4V, Vs=4	4V		=0.4V, Vs=4	4V		=0.4V, Vs=4	4V	IIIA	
	TTL input voltage (Active High)	VIH	2			2			2				
		Condition		l⊳=1A			ID=1A			ID=3A		\Box \lor	
		VIL			0.8			0.8			0.8		
		Condition		V _{DSS} =100V			V _{DSS} =100V			Voss=100V			
	TTL input voltage (Active Low)	Vін	2			2			2			_	
		Condition		VDSS=100V			V _{DSS} =100V			Voss=100V		V	
		VIL			0.8			0.8			0.8	`	
		Condition		l⊳=1A			ID=1A			l⊳=3A			
AC characteristics	Switching time	Tr		0.5			0.5			0.5		_	
		Condition	V	=24V, ID=0.8	BA	\	/s=24V, I _D =1	A	\	/s=24V, I _D =1	A	_	
		Tstg		0.7			0.7			0.7		μs	
		Condition	V	s=24V, ID=0.8	BA	\	/s=24V, I _D =1	A	V	/s=24V, I _D =1	A	μδ	
		Tf		0.1			0.1			0.1			
		Condition	V:	s=24V, Id=0.8	3A	\	/s=24V, l _D =1.	A	\	/s=24V, ID=1	A		

■Internal Block Diagram

■Diagram of Standard External Circuit(Recommended Circuit Constants)

■External Dimensions (Unit: mm)

Application Notes

■Determining the Output Current

Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value of the output current (Io) based on this waveform is shown below.

(Parameters for determining the output current lo)

V_b: Reference supply voltage

r₁,r₂: Voltage-divider resistors for the reference supply voltage

Rs: Current sense resistor

(1) Normal rotation mode

lo is determined as follows when current flows at the maximum level during motor rotation. (See Fig.2.)

$$I_0 \cong \frac{r_2}{r_1 + r_2} \bullet \frac{V_b}{R_S} \tag{1}$$

(2) Power down mode

The circuit in Fig.3 (rx and Tr) is added in order to decrease the coil current. lo is then determined as follows.

$$lopd \cong \frac{1}{1+\frac{r_1(r_2+r_X)}{r_2 \bullet r_X}} \bullet \frac{V_b}{Rs}$$
 (2)

Equation (2) can be modified to obtain equation to determine rx.

$$rx = \frac{1}{\frac{1}{r_1} \left(\frac{V_b}{R_s \bullet l_{OPD}} - 1 \right) - \frac{1}{r_2}}$$

Fig. 4 and 5 show the graphs of equations (1) and (2) respectively.

(NOTE)

Ringing noise is produced in the current sense resistor Rs when the MOSFET is switched ON and OFF by chopping. This noise is also generated in feedback signals from Rs which may therefore cause the comparator to malfunction. To prevent chopping malfunctions, $r_5(r_6)$ and $C_3(C_4)$ are added to act as a noise filter. However, when the values of these constants are increased, the response from Rs to the comparator becomes slow. Hence the value of the output current lo is somewhat higher than the calculated value.

■Determining the chopper frequency

Determining Toff

The SLA7000M series are self-excited choppers. The chopping OFF time T_{OFF} is fixed by r_3/C_1 and r_4/C_2 connected to terminal Td.

Toff can be calculated using the following formula:

$$\mathsf{Toff} \widetilde{=} - r_3 \bullet C_1 \ell_n \big(1 - \frac{2}{V_b} = - r_4 \bullet C_2 \ell_n \big(1 - \frac{2}{V_b} \big)$$

The circuit constants and the Toff value shown below are recommended.

Toff = $12\mu s$ at $r_3=47k\Omega$, $C_1=500pF$, $V_b=5V$

■Chopper frequency vs. Supply voltage

■Chopper frequency vs. Output current

■Thermal Design

An outline of the method for calculating heat dissipation is shown below.

- (1) Obtain the value of PH that corresponds to the motor coil current Io from Fig. 7 "Heat dissipation per phase PH vs. Output current Io."
- (2) The power dissipation Pdiss is obtained using the following formula. 2-phase excitation: $P_{diss} \cong 2P_H+0.015 \times V_S$ (W)
 - 1-2 phase excitation: $P_{diss} \cong \frac{3}{2} P_{H} + 0.015 \times V_{S}$ (W)
- (3) Obtain the temperature rise that corresponds to the calculated value of Pdiss from Fig. 8 "Temperature rise."

Thermal characteristics

■Supply Voltage Vcc vs. Supply Current Icc

■Note

The excitation input signals of the SLA7027MU, SLA7024M and SLA7026M can be used as either Active High or Active Low. Note, however, that the corresponding output (OUT) changes depending on the input (IN).

Active High

Input	Corresponding output
IN _A (pin6)	OUT _A (pin1)
IN⊼ (pin5)	OUT⊼ (pin8)
IN _B (pin17)	OUT _B (pin11)
IN _B (pin16)	OUT _B (pin18)

Active Low

Input	Corresponding output		
IN _A (pin6)	OUT _A (pin8)		
IN⊼ (pin5)	OUT⊼ (pin1)		
IN _B (pin17)	OUT _B (pin18)		
IN _B (pin16)	OUT _B (pin11)		