Контрольные вопросы к защите первой задачи ДЗ

<u>1. МВТУ 2015 г.</u>

1.Знать единицы измерения и уметь определять размерности (в системе СИ) важнейших физических величин по теме (скорость, ускорение, сила, импульс, мощность, энергия, работа и др.). Знать закономерные соотношения между этими величинами.

Скорость -L/T - [m/c]

Ускорение $-L/T^2 - [m/c^2]$

Сила – ML/T^2 – [H] **F**=m**a**;

Мощность – ML^2/T^3 – [Вт] N=Fv;

Энергия – ML^2/T^2 – [Дж]

Работа – ML^2/T^2 – [Дж (H*м)] A=FS; A=int(N,dt)-интеграл от N по dt

Импульс – $ML/T - [\kappa \Gamma^* M/c]$ **p**=mv;

Поступательное движение		Вращательное движение	
Путь	S	Угол поворота	φ
Скорость	$v = \frac{\mathrm{d}S}{\mathrm{d}t}$	Угловая ско- рость	$\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t}$
Ускорение	$a = \frac{\mathrm{d}v}{\mathrm{d}t}$	Угловое уско- рение	$\varepsilon = \frac{\mathrm{d}\omega}{\mathrm{d}t}$
	$v = v_0 \pm at$		$\omega = \omega_0 \pm \varepsilon t$
	$S = v_0 t \pm \frac{at^2}{2}$		$\varphi = \omega_0 t \pm \frac{\varepsilon t^2}{2}$
	$S = \int_{0}^{t} v dt$		$\varphi = \int_{0}^{t} \omega dt$
Основное уравнение динамики по- ступательного движения	$\frac{d\vec{p}}{dt} = \vec{F}$ $m\vec{a} = \vec{F}$	Основное уравнение динамики вращательного движения	$\frac{d\vec{L}}{dt} = \vec{M}$ $I\vec{\epsilon} = \vec{M}$
Импульс	$\vec{p} = m\vec{v}$	Момент им- пульса	$\vec{L} = I\vec{\omega}_{40}$

Закон сохра-		Закон сохране-			
нения им-	$m\vec{v} = \text{const}$	ния момента	$I\vec{\omega} = \text{const}$		
пульса		импульса			
Работа	$A = F \cdot S$	Работа враще- ния	$A = M \cdot \varphi$		
Кинетическая энергия	$K = \frac{mv^2}{2}$	Кинетическая энергия вра- щающегося тела	$K_{\rm Bp.} = \frac{I\omega^2}{2}$		
Полная энергия тела, катящегося с высоты h					
$mgh = \frac{mv^2}{2} + \frac{I\omega^2}{2}$					

Формулы для энергии

E=K+U

 $K = mv^2/2 = p^2/2m$

 $U=kx^2/2$ – потенциальная энергия для пружины

F=-dU/dr

2.В какой системе тел выполняется закон сохранения импульса? Векторная диаграмма АУУ при соударении движущегося и неподвижного шаров, движущегося шара и подвижной массивной стенки.

Закон сохранения импульса выполняется в замкнутой системе тел (сумма внешних сил равна 0)

3.Каково значение импульса для соударяющихся тел в системе их центра масс? Что такое приведенная масса? Формула для ее определения.

$$\vec{\mathbf{V}}_{c} = \dot{\vec{r}}_{c} = \frac{m_{1}\dot{\vec{r}}_{1} + m_{2}\dot{\vec{r}}_{2}}{m_{1} + m_{2}} = \frac{\vec{p}}{m_{1} + m_{2}}$$

$$\vec{\mathbf{p}} \Longrightarrow m \vec{\mathbf{V}}_{C},$$

Уравнение движения ЦМ:

$$m \frac{\mathrm{d} \vec{\mathbf{V}}_C}{\mathrm{d} t} = \vec{\mathbf{F}}_{\mathrm{BHem}},$$

Приведенная масса – условная масса, кинетическая энергия которой равна сумме кинетической энергий частей, входящих в нее

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

4.В каких случаях при соударении движущихся тел выполняется закон сохранения импульса, а в каких закон сохранения кинетической энергии? При АУУ, НУУ, АНУУ выполняется закон сохранения импульса При АУУ выполняется закон сохранения энергии.

5.Закон сохранения импульса — это проявление какого вида симметрии и симметрии чего? Какие законы сохранения Вы еще знаете и в чем причина их действия по теореме Эмми Нётер?

В основе закона сохранения импульса лежит однородность пространства, т.е. одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат).

Законы сохранения и причина их действия по теореме Э. Нётер

Энергии	Однородность времени
Импульса	Однородность пространства
Момента импульса	Изотропность пространства
Электрического заряда	Симметрия П-В к градиентным преобразованиям

6.Как соблюдается закон сохранения импульса в движении ракет? Чему равна реактивная сила?

$$\vec{F} = -\frac{\Delta m}{\Delta t} \vec{v}$$
 где dm/dt- расход топлива за единицу времени

Согласно закону сохранения импульса суммарный импульс ракеты и газа в этой системе отсчета остался равным нулю.

7. Уравнение Мещерского и формула Циолковского для реактивного движения. Эффективнее ли для ракеты будет одновременный выброс всей массы топлива?

Уравнение Мещерского:
$$\vec{F}^{\it GHeuuh} = \frac{\mathrm{d}m}{\mathrm{d}t} \cdot \vec{u} + \frac{m \mathrm{d}\vec{\mathrm{v}}}{\mathrm{d}t}$$

Формула Циолковского:
$$v = u \ln \frac{m_0}{m}$$

При большей массе ракеты, она более инерциальна и способна преодолевать наибольшие расстояния

8.Законы Ньютона. Чему равна потенциальная энергия тела в поле гравитации? Теорема о вириале. Почему происходит увеличение скорости космического корабля при возвращении на Землю?

Законы:

- 1. Тело покоится или равномерно движется, если на тело не действуют сторонние силы
- 2. **F**=m**a**
- 3. $\mathbf{F}_{12} = -\mathbf{F}_{21}$

U=mgh (потенциальная энергия для силы тяжести)

 $U=-G*m_1m_2/R$ (потенциальная энергия для силы гравитационного взаимодействия)

Теорема о вириале: Средняя кинетическая энергия материальной точки, совершающей простариственно ограниченное движение под действием сил притяжения, равна половине ее средней потенциальной энергии с обратным знаком.

$$\frac{1}{2}$$
 * m< v^2 >=- $\frac{1}{2}$

Согласно законам механики Ньютона, тело, находящееся в состоянии свободного падения, должно двигаться равноускоренно, поскольку на него действует ничем не уравновешенная сила земного притяжения

9.Приведите значения первой, второй и третьей космических скоростей. Каков их смысл? Из каких условий они определяются? Каково соотношение между первой и второй космическими скоростями?

$$v_1 = \sqrt{gR} = \sqrt{9,8 \cdot 6,37 \cdot 10^6} = 7,9 \cdot 10^5$$
 м/с. (2) -эллипс $v_2 = \sqrt{2gR}$, -парабола $v_2 = v_1\sqrt{2}$.

$$v_{\rm s} = \sqrt{\left(\sqrt{2} - 1\right)^2 v^2 + v_{\rm s}^2}$$
, -гипербола

Первая космическая скорость: $V^1 = 7,9$ км/с Вторая космическая скорость: $V^2 = 11,2 \text{ км/c}$ Третья космическая скорость: $V^3 = 16,6 \text{ км/c}$

10.Причины приливных явлений на Земле, свойства приливов.

Прилив и отлив — периодические колебания уровня океана или моря, являющиеся результатом воздействия приливных сил Луны и Солнца.

Притяжение Луны настолько сильно, что под его воздействием вода Мирового океана выгибается ей навстречу, но Луна вращается, «затягивая» за собой воду.