Congratulations! You passed!

Next Item

1/1 point

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, Selecting Reignay actors by in Spacifically you will try to geometrically see which vectors of a linear (100%) Practice and other metrons are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}2&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}2\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}0\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Selecting eigenvectors by inspection practice This, eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in the same direction but doubl

	0
	1

Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

Un-selected is correct

1/1 point

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, Selection rectors of a linear transformation, an eigenvector is a vector which, after applying the transformation, Selection rectors of a linear (100%) Praction and the selection of the

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}3&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}3\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}0\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Correct

This eigenvector has eigenvalue 3, which means that it stays in the same direction but triples in size.

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Selec**បារមួយថ្ងៃ។បេខ**tors by inspection

Practice Quiz, 6 questions

6/6 points (100%)

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

None of the above.

Un-selected is correct

1/1 point

3.

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, Selecting reignay actions by in spection you will try to geometrically see which vectors of a linear (100%) Practice anistor mention are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}1\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\1\end{bmatrix}$ and the orange vector $\begin{bmatrix}2\\1\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Well done! This eigenvector has eigenvalue 1 - which means that it is unchanged by this transformation.

Practice (Quiz, 6	question
------------	---------	----------

	0
	1

Un-selected is correct

None of the above.

Un-selected is correct

1/1 point

4

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, Selecting leign yeactors by in specifically you will try to geometrically see which vectors of a linear (100%) Practice and or metrom are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}0&-1\\1&0\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}0\\1\end{bmatrix}$, the magenta vector $\begin{bmatrix}-1\\1\end{bmatrix}$ and the orange vector $\begin{bmatrix}-1\\0\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T? Select all correct answers.

Un-selected is correct

Un-selected is correct

Un-selected is correct

None of the above.

Correct

None of the three original vectors remain on the same span after the linear transformation. In fact, this linear transformation has no eigenvectors in the plane.

1/1 point

5.

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, Selecting reignay actions by in specifically you will try to geometrically see which vectors of a linear (100%) Practice and or mention are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Correct

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Selectives eigenvectors by inspection Practice d_{ij} eigenvector has eigenvalue -1, which means that it reverses direction but has the same size points (100%)

Correct

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

Un-selected is correct

1/1 point

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, Selection rectors of a linear transformation, an eigenvector is a vector which, after applying the transformation, Selection rectors of a linear (100%) Praction and the selection of the

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}2&1\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}1\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Selecting eigenvectors by inspection Practice Quiz, 6 questions

6/6 points (100%)

Practice	Quiz,	O	quest	Ю

Un-selected is correct

Un-selected is correct

