ALGEBRA	LINEARE	- LEZION	E 27
Note Title			02/11/2018
FORMULA MISTERI	OSA PER VETTO	RI ORTOGONALI	
(* * *)			
A	_ _ _ _ _ _	, U3 W2 - U2 W3, U1 W2-	
\ \w_1 \w_2 \w_3 /	Det An	-Det A1,2 Det	A1,3
Dica alla il viettora	o scriffs a som	andicalors of CCT CA	(E.) a
a (wz, wz, wz)	e nouve e perp	reudicolare a (Uz, Uz,	03/ 6
(302 , 30 2) 50 3)			
Cousideriama Da	matrice		
/ U1 U2 U3			
U1 U2 U3	0 = Det = U	12. Det AIII - Uz. Det A	112 + U3 Det A1,3
\ wz wz w3 /	2 right Laplace		
	uguali ja niga		-)
		sodotto scalare tra c	
		vettore prodotto dalla	a formula
		.5000030	
Stessa i deutica c	oso se al posto	di xxx metto il v.	ethore ar.
	_ 0 _		
Allo stesso wood,	ad esempio in	IR4, posso produre a	u vettore
perpendicolone a	3 vettori dati		
* * * *	4		
1012	Ou vettore per	p. ai 3 vettori dat	i è
2 -1 3 4 5 1 2 7		1- 1. 7.0+ 1	x \
3 (4 +	(Del 41,1) - De	t A1,2, Det A1,3, - D	el 77 1,4)
Metodo autioni ir	upostano sistema	di 3 eq. iu 4 iuco	ouik
	0		

Dim. che CRAMER funciona)
Justiclians con C1,, on le colonne della matrice A. Sia (x1,, xn) ma sol. del mostro sistema, cioè
$\times_1 C_1 + \dots + \times_n C_n = b$
Considerians $A_i = (C_1 C_{i-1} b C_{i+1} C_m)$
Quiudi
$\Delta i = \begin{pmatrix} C_1 & \dots & \times_1 C_1 + \dots + \times_m C_m & \dots \\ & & & & & & & & & & & & & & & & &$
normali colonne di A
$= \times_1 \left(C_1 \left \dots \right C_1 \right \dots \right) + \times_2 \left(C_1 \left \dots \right C_2 \left \dots \right \right) + \dots$
Tutte que ste matrici sous uguali ovunque tranne de nella cdonna i- esima, quindi il lors Det è la sounua dei Det
(c'è di merro due il Det della trosposta è agnale a quello della matrice originaria)
Ma allora
Det (Ai) = x, Det (C1 C1) + x2 Det (C1 (C2) +
= xi Det (C, 1 (ci) = xi Det A
(tutti gei altri deferminanti sono nulli perché ci sono 2 colonne uguali)
Dividendo si ha la tesi

