REFERENCE SOLUTIONS

A Preprint

Taojun Hu * Department of Biostatistics Peking University

2011110158@stu.pku.edu.cn

November 9, 2021

Abstract

1 Homework

- chapter 2: page 244, 3(2); page 246 4; page 247 3(1) and page 248 4(1)
- chapter 3: page $249 \ 3(1)(2)(4)$
- chapter 4: page 254 3(3)(4); page 256 3(1)(4)
- chapter 5: page 258 1; page 258 2, 3

2 Reference solutions

```
# please first library the following packages: tidyverse, ggpubr
# if (! require(pacman)) install.packages("pacman")
# pacman::p_load(tidyverse, ggpubr)
```

2.1 Solutions for chapter 2

1. (Page 244 3(2))

```
get.per <- function(lower, upper){
  pnorm(upper, mean = 146, sd = 8) - pnorm(lower, mean = 146, sd = 8)}
get.per(138, 154)</pre>
```

[1] 0.6826895

```
get.per(130, 162)
```

[1] 0.9544997

2. (Page 246 4)

^{*}If you find any errors including typos, it's welcomed to contact me by email

Standard survival rate for hospital A: 0.6774508

```
cat('Standard survival rate for hospital B: ', b_std_surv, '\n')
```

Standard survival rate for hospital B: 0.5698832

According to standard survival rate, we can't assert that hospital B has a higher survival rate than hospital A.

3. (Page 247 3(1))

Omitted.

4. (Page 248 4(1))

The number of patients with acute myocardial infarction between 1964 and 1968

The fatality ratio of patients with acute myocardial infarction between 1964 and 1968

2.2 Solutions for chapter 3

1. (Page 249 3(1))

```
conf.d <- function(mu, sd, n) qt(.975, df = n-1)*c(-1, 1)*sd/sqrt(n) + mu cat('Confidence interval for 1st sample\n')
```

Confidence interval for 1st sample

```
conf.d(6.39, 2.24, 20)
```

[1] 5.341648 7.438352

```
cat('confidence interval for 2nd sample\n')
```

confidence interval for 2nd sample

```
conf.d(6.45, 2.51, 93)
```

[1] 5.933072 6.966928

Sample 2 has a shorter confidence interval compared with sample 1. Sample 1 is more reliable because of larger sample size, shorter confidence interval.

2. (Page 249 3(2))

[1] 4.482972e-09

The p-value is less than 0.05, suggesting that there is significant difference.

Caution: this is a one-side hypothesis!

```
3. (Page 249 3(4))
```

```
barx <- c(11.6, 6.9)
sdx <- c(7.3, 2.7)
varx <- sdx**2
n <- 40
cat('p-value for equal variance testing\n')</pre>
```

p-value for equal variance testing

```
pf(varx[1]/varx[2], df1 = n-1, df2 = n-1, lower.tail = FALSE)
```

```
## [1] 4.333099e-09
```

We can't reckon that two samples have identical variance. We use Satterthwaite approximation to test mean level, where under H_0 , $T = \frac{\bar{X} - \bar{Y}}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \approx t(m^*)$ with $m^* = (S_1^2/n_1 + S_2^2/n_2)^2/[\frac{1}{n_1-1}(S_1^2/n_1)^2 + \frac{1}{n_2-1}(S_2^2/n_2)^2]$.

```
m <- ( (sum(varx)/n)**2/(1/(n - 1)*sum((varx/n)**2)) )%>%round()
t.stat <- (barx[1] - barx[2])/sqrt(sum(varx/n))
cat('p-value is\n')</pre>
```

p-value is

```
2*pt(t.stat, df = m, lower.tail = FALSE)
```

```
## [1] 0.0003773703
```

There is significant difference between two groups as p-value less than 0.05.

2.3 Solutions for chapter 4

```
1. (Page 254, 3(3))
```

```
p.0 <- 0.2

n.0 <- 400

x_lower <- qnorm(0.95)*sqrt(n.0*p.0*(1 - p.0)) + n.0*p.0

x_lower %>% ceiling()
```

```
## [1] 94
```

The above code uses normal approximation, while the following code calculates exact p-value

```
qbinom(0.95, 400, prob = 0.2) %>% ceiling()
```

[1] 93

Caution: it is a one-side hypothesis testing with $H_0: p > 0.2$

```
2. (Page 254, 3(1))
```

```
poisson.test(225, r = 100*2, alternative = 'greater')
```

```
##
## Exact Poisson test
##
## data: 225 time base: 1
## number of events = 225, time base = 1, p-value = 0.04361
## alternative hypothesis: true event rate is greater than 200
## 95 percent confidence interval:
## 200.9087
                  Tnf
## sample estimates:
## event rate
          225
With a p-value less than 0.05, we reject the null hypothesis and conclude that the water is unqualified.
Caution: sum of two independent poisson distribution does also follow a poisson distribution;
it's also a one-side hypothesis testing
    3. (Page 256, 3(1))
data.drug \leftarrow matrix(c(28, 18, 10, 9, 20, 24), nrow = 3)
chisq.test(data.drug, correct = FALSE)
##
##
   Pearson's Chi-squared test
##
## data: data.drug
## X-squared = 15.556, df = 2, p-value = 0.0004189
Significant difference.
    4. (Page 256, 3(4))
data.co \leftarrow matrix(c(120*0.35, 120*(0.6 - 0.35),
                     120*(0.5 - 0.35), 120*(1 - 0.35 - 0.25 - 0.15)),
mcnemar.test(data.co)
##
##
   McNemar's Chi-squared test with continuity correction
##
## data: data.co
## McNemar's chi-squared = 2.5208, df = 1, p-value = 0.1124
No significant differences.
2.4 Solutions for chapter 5
    1. (Page 258, 1)
data.thyroid <- data.frame(group = c(rep('high', 9), rep('mid', 8), rep('low', 7)) %>% factor(),
                            thyroid = c(34, 45, 49, 55, 58, 59, 60, 72, 86, 8, 25, 36,
                                         40, 42, 53, 65, 74, 5, 8, 18, 32, 45, 47, 65))
bartlett.test(thyroid ~ group, data = data.thyroid)
##
   Bartlett test of homogeneity of variances
##
## data: thyroid by group
## Bartlett's K-squared = 1.1653, df = 2, p-value = 0.5584
```

```
fit.thyroid <- aov(thyroid ~ group, data = data.thyroid)</pre>
summary(fit.thyroid)
               Df Sum Sq Mean Sq F value Pr(>F)
## group
               2 2744 1372.1 3.623 0.0445 *
## Residuals
               21
                   7953
                          378.7
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
cat("No difference in variance. Significant difference in average
   level for each group.")
## No difference in variance. Significant difference in average
       level for each group.
    2. (Page 258, 2)
data.rat <- data.frame(type = rep(c('A', 'B', 'C'), each = 5) %>% factor(),
                       group = rep(1:5, 3) %>% factor(),
                       hours = c(1.16, 2.11, 1.82, 1.41, 0.51, 1.30, 3.28, 4.98,
                                 2.59, 0.59, 3.36, 5.28, 4.81, 2.04, 5.05))
fit.rat <- aov(hours ~ type + group, data= data.rat)</pre>
summary(fit.rat)
##
               Df Sum Sq Mean Sq F value Pr(>F)
                2 18.45
                           9.224
                                   7.204 0.0162 *
## type
                4 10.72
## group
                          2.680
                                   2.093 0.1736
## Residuals
               8 10.24 1.280
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
cat("No significant difference for each group but there is significant
   difference for various types of drug. ")
## No significant difference for each group but there is significant
       difference for various types of drug.
    3. (Page 258, 3)
dummy \leftarrow data.frame(before = c(4, 3.5, 3.2, 3.2, 3.3, 3.4, 2.7, 4.8, 4.5, 3.8),
                    after = c(5.4, 4.7, 5.2, 4.8, 4.6, 4.9, 3.8, 6.1, 5.9, 4.9))
dummy_diff <- with(dummy, after - before)</pre>
pills \leftarrow data.frame(before = c(3.5, 3.3, 3.2, 4.5, 4.3, 3.2, 4.2, 5., 4.3, 3.6),
                    after = c(4.7, 4.4, 4., 5.2, 5., 4.3, 5.1, 6.5, 4., 4.7))
pills_diff <- with(pills, after - before)</pre>
dt.combined <- data.frame(dummy = dummy_diff, pills = pills_diff) %>%
   pivot_longer(cols = everything(), names_to = "group", values_to = "hours") %>%
    mutate(group = factor(group))
bartlett.test(hours ~ group, data = dt.combined)
## Bartlett test of homogeneity of variances
##
## data: hours by group
## Bartlett's K-squared = 2.7758, df = 1, p-value = 0.0957
```

```
t.test(dummy_diff, pills_diff, var.equal = TRUE)
```

```
##
## Two Sample t-test
##
## data: dummy_diff and pills_diff
## t = 2.9203, df = 18, p-value = 0.009137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1430897 0.8769103
## sample estimates:
## mean of x mean of y
## 1.39 0.88
```

cat("No difference in variance. By t-test we can conclude that there is significant
 different between the effect of pills and that of placebo.")

No difference in variance. By t-test we can conclude that there is significant
different between the effect of pills and that of placebo.

2.5 Solutions for chapter 6

1. (Page 260 1)

(1)

```
## 'geom_smooth()' using formula 'y ~ x'
```

Scatterplot between Height and Front Arm Length

with(data.cstu, cor(height, frontarm))

[1] 0.8227162

```
with(data.cstu, cor.test(height, frontarm))
```

```
##
## Pearson's product-moment correlation
##
## data: height and frontarm
## t = 4.0936, df = 8, p-value = 0.003468
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4006045 0.9567450
## sample estimates:
## cor
## 0.8227162
```

Figure shows they are jointly normal distributed. We use Pearson's test for correlation (P < 0.01). The results show that Height and Length of front arm are correlated, with Pearson's correlation coefficient as 0.82.

(2)

```
mod.xy <- lm(height ~ frontarm, data = data.cstu)
summary(mod.xy)</pre>
```

```
##
## Call:
## lm(formula = height ~ frontarm, data = data.cstu)
```

```
##
## Residuals:
##
      Min
                1Q Median
                               3Q
  -8.4643 -3.8036 -0.9643 1.9018 10.3010
##
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                                     1.300 0.22993
## (Intercept)
               41.6276
                          32.0311
## frontarm
                 2.8827
                           0.7042
                                     4.094 0.00347 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 6.235 on 8 degrees of freedom
## Multiple R-squared: 0.6769, Adjusted R-squared: 0.6365
## F-statistic: 16.76 on 1 and 8 DF, p-value: 0.003468
```

residualPlot(mod.xy, id = TRUE)

aov(mod.xy)

The residual plot shows the residuals follow the linear assumption, and the estimated coefficient is significantly different with 0.

```
mod.yx <- lm(frontarm ~ height, data = data.cstu)
summary(mod.yx)</pre>
```

```
##
## Call:
## lm(formula = frontarm ~ height, data = data.cstu)
##
## Residuals:
## Min    1Q Median    3Q Max
## -3.5174 -0.5519    0.2478    1.3521    1.8390
##
## Coefficients:
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.89610 9.91053 0.494 0.63456
## height 0.23481 0.05736 4.094 0.00347 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.78 on 8 degrees of freedom
## Multiple R-squared: 0.6769, Adjusted R-squared: 0.6365
## F-statistic: 16.76 on 1 and 8 DF, p-value: 0.003468
```

residualPlot(mod.yx)

aov(mod.yx)

The residual plot shows the residuals don't follow linear assumption, we should make transformation to variables.

2. (Page 260 3(1))

Omitted.

3 Remarks

Here lists several notes that might be forgotten

3.1 chapter 2: Numerical variables, categorical variables and corresponding descriptive tables and figures

- CV(coefficient variation) is the ratio of sample standard deviation with sample mean ($\frac{S}{X} \times 100\%$)
- To test the normality of data, use qqnorm(x); qqline(x) for figuring and shapiro.test(x) for numerical testing
- When comparing two groups of different total numbers, please standardize them implicitly(SMR) or explicitly
- Ubiquitous statistical figures include barplot, pie, lines, hist, stem and boxplot, .etc
- Statistical figures with standard errors can be plotted with arrows(x0 = x, y0 = y sd, x1 = x, y1 = y +sd, angle = , length =)

3.2 chapter 3: Estimation and hypothesis testing for overall mean

- Standard error: the standard deviation of sample mean, denoted by $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$
- Estimation: moment estimation and maximizing the likelihood(mle)
- General methods for deriving interval estimation: (1) find out a random variable $f(X_1, \ldots, X_n, \theta)$ with a given distribution having nothing with θ , denoted as F(x); (2) find out a, b so that $F(b) F(a) = 1 \alpha$; (3) transform $f(X_1, \ldots, X_n, \theta) \in (a, b]$ into the form of θ that $\theta \in (\theta_1, \theta_2)$
- Summarize the basic approaches of interval estimation: (1) if σ is given, then z-distribution; (2) if σ is not given, then t-distribution
- Hypothesis testing. For variance testing, (1) $H_0: \sigma = \sigma_0$, use χ^2 -test; (2) $H_0: \sigma_1^2 = \sigma_2^2$, use F-test. For sample mean, similar with interval estimation in single sample testing. For two samples, (1) paired, use t.test(x, y, paired = TRUE); (2) assuming equal variance, use t.test(x, y, var.equal = TRUE); else use t.test(x, y, var.equal = FALSE)
- Understand two type errors. (Under fixed type 1 error, we can reduce type 2 error by putting on samples)
- Non-parametric testing for sample median: Rank-sum test, use wilcox.test(x, y).

3.3 chapter 4: Binomial, Poisson distribution and hypothesis testing for categorical variables

- Hypothesis testing for poisson distributed samples: (1) single sample, use normal approximation $\frac{X-\lambda_0}{\sqrt{\lambda_0}} \sim N(0,1)$; (2) two samples, under $H_0: \lambda_1 = \lambda_2$ if $X_1 \sim \text{Pois}(n_1\lambda_1)$ and $X_2 \sim \text{Pois}(n_2\lambda_2)$, then $(X_1/n_1 X_2/n_2)/\sqrt{X_1/n_1^2 + X_2/n_2^2} \approx N(0,1)$
- In following situations χ^2 -test works, (1) Goodness-of-fit, chisq.test(x, p =); (2) test for non-correlation, chisq.test(xmatrix, correct =); or u can use fisher exact testing, fisher.test(data, alternative =); (3) paired design, mcnemar.test(data)

3.4 chapter 5: Analysis of variance

- Major goal: compare the mean between two or more groups
- Basic assumptions: (1) within each group, samples follow normal distribution with identical variance (2) independence
- R code for anova: (1) testing the homoscedasticity, barlett.test(score ~ group, data =); (2) anova, score.aov = aov(score ~ group, data =); summary(score.aov); (3) randomized-block design, aov(score ~ blocknum + group, data =) %>% summary(); (4) analysis of covariance, fit <- aov(score ~ age + group, data =); summary(fit); to show group effects, library(effects); effect("group", fit); to pairwise compare, library(multcomp); res.vsl = glht(fit, linfct = mcp(group = c("a -b = 0", "b c = 0", "a c = 0"))); summary(res.vsl, test = adjusted("bonferroni"))

• For a pairwise comparison, we can use a post hoc test with adjust p-value, pairwise.t.test(group, score, p.adjust.method = "holm")

3.5 chapter 6: regression analysis

- Compute the correlations. (1) when data follows joint normal distribution, then use pearson correlation cor(x, y, method = 'pearson'); cor.test(..); (draw figures to verify the joint normality first) (2) when data does not follow normal distribution, then use spearman's correlation, cor(x, y, method = "spearman")
- Statistical inference in linear regression model. (1) t-test for coefficients, confint(model, level = .95); (2) for fitting and prediction, the interval estimations are not identical, predict(model, newdata = data.frame(var =), interval = c('prediction', 'confidence'), level = .95).
- Life table (Omitted)

4 Suggestions for advanced R or statistics

For more advanced usages of R code, you can refer to

- A tutorial written by Dongfeng Li, Peking University, attached link: https://www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/index.html
- R Cookbook, 2nd Edition
- R Graphics Cookbook, 2nd Edition (for making figures)

To obtain more knowledge on statistics, u are welcomed to take the course hosted by Dr. Jia on next semester, namely *Statistical modeling*!