Vrije proef voorbereiding

Mathias Meersschaut, Michail Ognyanov

March 2025

1 Beschrijving

1.1 Onderzoeksvraag

Wat is het verschil in brekingsindices van bepaalde birefringente materialen?

1.2 Wat is birefringence (citaat uit [1])

Birefringence means double refraction. It is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefringent or birefractive. The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.

1.3 Opstelling

De opstelling bestaat uit een laser, polarisatoren, eventueel spiegels, een sample en de fotodetector. Het laserlicht wordt initieel gepolariseerd, waarna het op het sample invalt. Vervolgens wordt het licht nogmaals gepolariseerd en tot slot geabsorbeerd door de detector. Het sample is gemonteerd op een mechanisme om het sample 360 graden te draaien rond de as van de lichtstraal. Spiegels worden gebruikt om het licht te routen. De opstelling is schematisch weergegeven in Figure 1.

1.4 Theorie

De genormaliseerde intensiteit na de tweede polarisator is:

$$I = 1 - \frac{1}{2}(1 - \cos(\Delta\phi))\sin^2(2\theta). \tag{1}$$

Hier is $\Delta \phi = 2\pi L/\lambda \cdot |n_1 - n_2|$ het faseverschil tussen de parallelle en loodrechte straal. Door te fitten naar $\Delta \phi$ kan $|n_1 - n_2|$ bepaald worden indien de dikte van de sample L gekend is.

2 Materialen

Wij zouden graag de volgende materialen aanvragen:

- Digitale fotodetector
- Birefringente materialen: liefst meerdere materialen van de lijst te zien in Figure 2. Andere beschikbare birefringent materialen zijn zeker ook welkom.
- laser (of tak)
- donkere kamer met een opstellingstafel
- polarisatoren
- enkele mirrors
- houder om de sample te kunnen roteren rond een horizontale as

Figuur 1: De opstelling: Links is de bron van de laser, P1 en P2 zijn polarisatoren, S is het sample dat kan draaien in de as van de beam en 00 is de detector. Spiegels zijn niet weergegeven omdat deze gebruikt worden voor routing van de laser.

3 Stappenplan

- 1. Lijn de proef op zodat het licht door: de polarisator, het sample en de tweede polarisator gaat vooraleer het op de detector invalt.
- 2. De polarisoren uitlijnen door licht door de twee polarisatoren te sturen en een maximum in de intensiteit te zoeken.
- 3. Het sample moet in een roterende houder zitten in de lijn van de beam.
- 4. Meet de intensiteit voor een bepaalde staat van rotatie van het sample.

Uniaxial crystals, at 590 nm ^[9]						Biaxial (crystals, at 590	nm ^[9]		
Material +	Crystal system	n ₀ +	n _e +	Δn	•	Material +	Crystal system	n _α ÷	<i>n</i> _β \$	n _γ ÷
barium borate BaB ₂ O ₄	Trigonal	1.6776	1.5534	-0.1242		borax Na ₂ (B ₄ O ₅) (OH) ₄ ·8H ₂ O	Monoclinic	1.447	1.469	1.472
beryl Be ₃ Al ₂ (SiO ₃) ₆	Hexagonal	1.602	1.557	-0.045		epsom salt MgSO ₄ ·7H ₂ O	Monoclinic	1.433	1.455	1.461
calcite CaCO ₃	Trigonal	1.658	1.486	-0.172		mica, biotite K(Mg,Fe) ₃ (AlSi ₃ O ₁₀)	Monoclinic	1.595	1.640	1.640
ice H ₂ O	Hexagonal	1.3090	1.3104	+0.0014 ^{[13}	3]					
lithium niobate LiNbO ₃	Trigonal	2.272	2.187	-0.085		(F,OH) ₂ mica, muscovite KAl ₂ (AlSi ₃ O ₁₀)(F,OH) ₂	Monoclinic	1.563	1.596	1.601
magnesium fluoride MgF ₂	Tetragonal	1.380	1.385	+0.006		olivine (Mg,Fe) ₂ SiO ₄	Orthorhombic	1.640	1.660	1.680
quartz SiO ₂	Trigonal	1.544	1.553	+0.009		perovskite CaTiO ₃	Orthorhombic	2.300	2.340	2.380
ruby Al ₂ O ₃	Trigonal	1.770	1.762	-0.008		topaz Al ₂ SiO ₄ (F,OH) ₂	Orthorhombic	1.618	1.620	1.627
rutile TiO ₂	Tetragonal	2.616	2.903	+0.287		ulexite NaCaB ₅ O ₆ (OH) ₆ ·5H ₂ O	Triclinic	1.490	1.510	1.520
sapphire Al ₂ O ₃	Trigonal	1.768	1.760	-0.008						
silicon carbide SiC	Hexagonal	2.647	2.693	+0.046						
tourmaline (complex silicate)	Trigonal	1.669	1.638	-0.031						
zircon, high ZrSiO ₄	Tetragonal	1.960	2.015	+0.055						
zircon, low ZrSiO ₄	Tetragonal	1.920	1.967	+0.047						

Figuur 2: lijst met birefringente materialen uit [1].

- 5. Draai de tweede polarisator 90deg en herhaal de metingen.
- 6. Herhaal dit proces voor een 5 deg grotere hoek van de sample in de houder.
- 7. Herhaal het hele proces met een ander materiaal als sample.

Referenties

[1] Wikipedia contributors, "Birefringence — Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Birefringence&oldid=1276980122, 2025. [Online; accessed 19-March-2025].