u8. 1. Fr $\sum_{n=1}^{\infty} (-1)^{n-1} \tan(\frac{1}{n})$ kow.? (tan z > x tá x e (o, $\frac{\pi}{2}$))

Lat $b_n = tan(\frac{1}{\ln})$. Vit have $b_n > \frac{1}{\ln}$ $\forall n \in \mathbb{N}$, og $\sum \frac{1}{\ln}$ er divergent, so rekkjan er ikki absolut konvergent per 4.26(ii).

Furktisnin tan(x) er vaksandi á $(o, \overline{2})$ un frant at vera positiv. Fyri $x \Rightarrow 0$ vil $tan(x) \Rightarrow 0$, so fylgjan $b_n \Rightarrow 0$ tá $n \Rightarrow \infty$. Harafturet er b_n monotont fallandi og positiv $\forall n \in \mathbb{N}$. Per 4.38 er $\sum (-1)^n tan(\frac{1}{\ln})$ tí ein konvergent rekkja, soleiðis er han altso treytæð konvergent.

- 2. Hvat fyri rehlja hevur eina majorantrehljn? Nær er konvergett majorantrehlja?
 - (i) | + 2 + 22 + 23 + ... x = R.

Vit heva $\sum_{n=0}^{\infty} x^n$, men fyri val av k_n finst $x \in \mathbb{R}$, s_n at $k_n < |x^n|$. Tiskil finst eingin majorant relibja.

(ii) 1+x+x2+x3+... (x/4)

Nú er $\sum_{n=0}^{\infty} z^n$ konvergent. Fyri $|z^n|$ við |z| < 1 er supremum 1, so at $|z^n| \le k_n$ $\forall z \in (-1,1)$ við $k_n = 1$ $\forall n \in \mathbb{N}$. Majorant rehkjan er $\sum_{n=1}^{\infty} 1$, sum er divergent.

(iii) $\sum_{n=0}^{\infty} x^n , |x| < 0,99.$

 $N\tilde{u}$ er $\sum_{n=0}^{\infty} 0,99^n$ ein konvergent majorant reklija.

(iv) $\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots , \quad x \in \mathbb{R}.$

 $\sum_{n=1}^{\infty} \frac{\sin((2n-1)x)}{2n-1}$ herur majorantreldign $\sum_{n=1}^{\infty} \frac{1}{2n-1}$. Vit f \tilde{a} a onea konvergenta majorantreldign, ti $\sup_{x \in \mathbb{R}} \left\{ \sin((2n-1)x) \right\} = 1$, og $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ er divergent $\left(\frac{4 \cdot 20 \cdot i}{2} \cdot i \right) \cdot \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2n-1}$

 $(\vee) \qquad f(x) = \frac{\sin x}{l^2} + \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} + \cdots \quad , \quad x \in \mathbb{R}.$

Vit hava konvergenta majorantrehlijn $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^n}$. Stamfuletiónin hjá f er við 5.34 givin við g(x):

$$\int_{\frac{\pi}{2}}^{x} f(t) dt = g(x), \quad so \quad g'(x) = f(x).$$

3. Via, at
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{x^n}{4n!}\right)$$
 er uniformt konvergent á [-1,1]. (Isin yl \(\frac{1}{2} \) \(\frac^

Á intervollinum [-1,1] er

$$\left| \frac{1}{n} \operatorname{Sin} \left(\frac{x^n}{4n!} \right) \right| \leq \left| \frac{1}{n} \cdot \frac{x^n}{4n!} \right| \leq \frac{1}{n^{\frac{3}{2}}}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}} \quad \text{er} \quad \text{konverget} \quad \text{majorant relibja} \quad \text{hjá} \quad \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{x^n}{4n}\right) \quad \text{fyri} \quad z \in [-1,1].$$

Fundationin $\frac{1}{n} \sin\left(\frac{x^2}{m^2}\right)$ er kontinuert $\forall n \in \mathbb{N}$ fyri $z \in [-1, 1]$ so per 5.33 er religion $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{x^2}{m^2}\right)$ uniformit konvergent viol kontinuerta sumfulction.

4.(i) Vis, et
$$\sum_{n=0}^{\infty} \frac{1}{3^n} \cos(2^n x)$$
 er konvergent $\forall x \in \mathbb{R}$.

$$\left|\frac{1}{3^n}\cos(2^nx)\right| \stackrel{L}{=} \frac{1}{3^n} \quad \forall n \in \mathbb{N},$$

So $\sum_{n=0}^{\infty} \frac{1}{3^n} \cos(2^n z)$ herur konvergenta majorantrekkju $\sum_{n=0}^{\infty} \frac{1}{3^n}$ fyri $\varphi(1)$ $z \in \mathbb{R}$. So vit have uniformen konvergens, t_i $\frac{1}{3^n} \cos(2^n z)$ er kontinuert à \mathbb{R} fyri $\varphi(1)$ $n \in \mathbb{N}$.

(ii) Definera
$$f_{CM} = \sum_{n=0}^{\infty} \frac{1}{3^n} \cos(R^n x)$$
, $z \in \mathbb{R}$.
Vis, at f er kontinuert.

$$\frac{d}{dx}\left(\frac{1}{3^n}\cos\left(2^nx\right)\right) = -\frac{2^n}{3^n}\sin\left(2^nx\right).$$

Her er $\left|-\frac{2^n}{3^n}\sin{(2^nz)}\right| \stackrel{\mathcal{L}}{=} \left(\frac{2}{3}\right)^n$, so $\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$ er ein konvergent majorantrehlija. Per 5.35 er $\int_{n=0}^{\infty} -\frac{2^n}{3^n}\sin{(2^nz)}$ við $x \in \mathbb{R}$.

(iv) Find
$$f'(0)$$
.
$$f'(0) = \sum_{n=1}^{\infty} -\frac{2^n}{3^n} \sin(2^n \cdot 0) = 0.$$

5. Rehljan $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \times^{n+1}$ konvergerar insti $\ln(x+1)$ $\forall x \in (-1,1]$. Á intervallinum er sumfunktionin kontinuert og differentiabul. Vís, at eingin konverged majorantrehldja er á (-1,1]. Set fyri, at $\sum_{n=0}^{\infty} k_n$ er ein konverged majorantrehldja hjá $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \times^{n+1}$ á (-1,1]. Fyri x=1, So er $\left|\frac{(-1)^n}{n+1} \times^{n+1}\right| = \frac{1}{n+1} \leq k_n$ $\forall n \in \mathbb{N}$.

Av tí at $\sum_{n=0}^{\infty} \frac{1}{n+1}$ er divergent, so er $\sum_{n=0}^{\infty} \frac{1}{k}$ n divergent per 4.20(ii). Tískil herur $\sum_{n=0}^{\infty} \frac{f(1)^n}{n+1} \times^{n+1}$ onga konvergenta majorant relikju á (-1,1].

b.(i) Vís, at $\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ er konvergent fyn ell |x| < 1, og at sumfunktionin f er kontinuert \tilde{a} (-1,1).

Vit hava, at $\left|\frac{z^n}{n^2}\right| \leq \frac{1}{n^2}$ $\forall n \in \mathbb{N}$ to |z| < 1 og $\frac{z^n}{n^2}$ er kontinuert $\forall n \in \mathbb{N}$, so við 5.33 er $\sum_{n=1}^{\infty} \frac{1}{n^2} z^n$ uniformt konvergent, ti $\sum_{n=1}^{\infty} \frac{1}{n^2}$ er ein konvergent majorantrehkja. Harafturat fylgir, at f er kontinuert á (-1,1).

(ii) Vis, at f er differentiabul á (-1,1).

Vit $f_{\delta a} = \frac{d}{dz} \left(\frac{1}{n^2} x^n \right) = \frac{1}{n} x^{n-1}$. Fyri eithwort $r \in [0,1]$ so herur $\sum_{n=1}^{\infty} \frac{1}{n} x^{n-1}$ eina homergenta majorantrekkju $\sum_{n=1}^{\infty} \frac{1}{n} r^{n-1}$, ella bara $\sum_{n=1}^{\infty} r^{n-1}$, \bar{a} (-r,r). Per 5.35 er f differentiabul \bar{a} (-1,1) og at $f^{\dagger}(x) = \sum_{n=1}^{\infty} \frac{1}{n} x^{n-1}$, $x \in (-1,1)$.

(iii) Finn einen forskrift fyni f'(x).

1 5. er givið, at $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = \ln(x+1)$ fyri $x \in (-1,1)$. Vit fág sostatt, at $\int_{-\infty}^{1} (x_1) = \sum_{n=1}^{\infty} \frac{1}{n} x^{n-1} = \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n} x^n = \frac{1}{x} \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}$ $= -\frac{1}{x} \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (-x)^{n+1} = -\frac{1}{x} \ln(1-x), \quad x \in (-1,1) \setminus \{0\}.$

Vit $\int da$ to $\int (0) = \sum_{n=1}^{\infty} \frac{1}{n} \cdot 0^n = 0$.