Содержание

1	Введение							
	.1 Мотивация	. 2						
	.2 Отличие от работы СLEО	. 2						
	.3 Модели и теоретические предсказания							
2	Экспериментальная установка	3						
	.1 Коллайдер KEK	. 3						
	2.2 Детектор Belle	. 3						
3	Методы измерения	5						
	8.1 SVD	. 5						
	3.2 Система идентификации заряженных адронов	. 5						
	5.3 ECL (CsI)	. 6						
	3.4 KLM	. 6						
4	Каналов тагирования	7						
	.1 Тагирование Λ_c	7						
	.2 Критерии отбора							
5	5 Поиск Λ_c							
\mathbf{A}	oendix 1: Метод вычисления формфактора	10						
\mathbf{A}	pendix 2: Алгоритм фита в массу потеряной частици	11						
6	6 Литература							

1. Введение

1.1. Мотивация

Предпосылки открытия очарованного бариона Λ_c появились в 1975 году, когда в результате наблюдения аномалии в распаде $e^+e^- \to e^+ + \mu^- + E_{miss}$ (см. [PhysRevLett1975]) было высказано предположение о существовании заряженного лёгкого очарованного бариона. Открытие на достаточном уровне значимости произошло более чем 10 лет спустя на коллайдере SPEAR (см. [Avery1988]) по распаду $\Lambda_c \to pK^-\pi^+$.

 Λ_c , будучи самым лёгким из очарованных барионов, распадается исключительно посредством слабого взаимодействия, что позволяет изолировать и исследовать вклад этого взаимодействия в барионных системах. В частности, канал $\Lambda_c \to \Lambda l \nu_l$, где $l=e,\mu$, а распад с продуктом $l=\tau$ подавлен в силу закона сохранения 4-импульса:

$$m_{\Lambda_c} = 2.28646\,\mathrm{GeV} < 2.89261\,\mathrm{GeV} = 1.77693\,\mathrm{GeV} + 1.11568\,\mathrm{GeV} = m_\tau + m_\Lambda.$$

Бранчинговые отношения для полулептонных распадов $\Lambda_c \to \Lambda l \nu_l$, где $l = e, \mu$, были измерены в нескольких работах. Для канала $\Lambda_c \to \Lambda e \nu_e$ измеренное бранчинговое отношение составляет $B(\Lambda_c \to \Lambda e \nu_e) = 3.56 \pm 0.13\%$, как указано в статье [CLEO2023]. Для канала $\Lambda_c \to \Lambda \mu \nu_\mu$ измеренное бранчинговое отношение равно $B(\Lambda_c \to \Lambda \mu \nu_\mu) = 3.48 \pm 0.17\%$ согласно [CLEO2023].

Полулентонные распады Λ_c являются удобным и относительно простым случаем для исследования переходов тяжелого кварка в лёгкий, что позволяет точнее проверять предсказания теоретических моделей, таких как эффективная теория тяжёлых кварков (HQET) и квантовая хромодинамика на решётке (LQCD). Проверка этих моделей с помощью экспериментов может не только подтвердить их верность, но и выявить отклонения от стандартной модели, что потенциально указывает на существование новой физики, включая новые взаимодействия или экзотические частицы.

1.2. Отличие от работы CLEO

Измерение форм-фактора $\Lambda_c \to \Lambda l \nu_l$ важно для проверки результатов предыдущего эксперимента [CLEO2023], в котором был измерен форм-фактор $\Lambda_c \to \Lambda e \nu_e$. Важно сравнить методологические и экспериментальные аспекты текущего исследования с работой команды CLEO.

Прежде всего, команда СLEO сделала предположение о том, что спин бариона Λ равномерно распределён. Это предположение оказывает влияние на значение спиральности, которое напрямую входит в уравнение для формфактора. В данной работе предлагается более точное измерение распределения направлений спина, основанное на анализе распада в канале $\Lambda_c^+ \to \Lambda \pi^+$. Этот подход позволяет уменьшить систематические ошибки и повысить точность вычислений.

Второе важное отличие заключается в использовании независимого источника данных. В то время как команда СLEO использовала данные, собранные с детектора "CLEO"на Корнельском электронном накопительном кольце (Cornell Electron Storage Ring), в настоящей работе анализ проводился на детекторе "Belle установленном на ускорителе "КЕК". Это не только обеспечивает независимую проверку результатов, но и позволяет уточнить их с учётом различий в экспериментальных установках.

Наконец, команда CLEO не проводила анализа полулептонного распада $\Lambda_c \to \Lambda \mu \nu_\mu$, что является существенным упущением. В данном исследовании этот канал был тщательно изучен, что позволяет расширить понимание полулептонных распадов и улучшить тесты на универсальность лептонов.

Таким образом, данная работа вносит вклад в дальнейшее изучение свойств бариона Λ_c и уточнение результатов, полученных в предыдущих исследованиях.

1.3. Модели и теоретические предсказания

Как уже было сказано выше, на данный момент существуют численные методы вычисления форм-факторов, основанные на различных приближениях или моделях. Все они дают различные результаты (см. таблицу 1). Поскольку сильное взаимодействие сложно поддаётся теоретическим расчётам из-за отсутствия малого параметра, результаты могут быть проверены только экспериментально.

Таблица 1. Форм-факторы полудентонных распадов $\Lambda_c \to \Lambda$ для $q^2 = 0$.

racinique 1. 1 opin quartophi nonjinombin pachagob 112 - 11 gim q - 0.							
Form Factor	$\mathfrak{F}_1^V(0)$	$\mathfrak{F}_2^V(0)$	$\mathfrak{F}_3^V(0)$	$\mathfrak{F}_1^A(0)$	$_{2}^{A}(0)$	$\frac{A}{3}(0)$	
[QCD2021]	0.687(138)	0.486(117)	0.164(80)	0.539(101)	-0.388(100)	-0.359(283)	
[BagModel1989]	0.35	0.09	0.25	0.61	-0.04	-0.11	
[RQM2016]	1.14	0.072	0.252	0.517	-0.697	-0.471	
[QSR2009]	0.665	0.285	_	0.665	-0.285	_	
[LFCQM2018]	0.468	0.222	_	0.407	-0.035	_	

Введение

2. Экспериментальная установка

2.1. Коллайдер КЕК

Ускоритель КЕКВ является электрон-позитронным коллайдером, состоящим из двух колец, пересекающихся в одной точке под углом 22 mrad, что позволяет измерять CP-асимметрию. Пучки электронов и позитронов сталкиваются с энергией 8 GeV и 3.5 GeV соответственно. Пучки рождаются на фотонной фабрике и, проходя через линейный ускоритель, где разгоняются до скорости, близкой к скорости света, передаются в основные кольца. В режиме накопления пучка подача происходит непрерывно, а в нормальном режиме сбора данных - периодически, раз в несколько миллисекунд точное значение времени подачи можно уточнить.

Основной целью было производство большого количества В-мезонов. Работа ускорителя началась в декабре 1998 года и закончилась в конце июня 2010 года. За это время КЕКВ установил мировой рекорд по светимости - $2.11 \times 10^{34} cm^{-2} s^{-1}$, который на сегодняшний день был превзойдён только на коллайдере SuperKEKB - усовершенствованной версии, собранной на основе КЕКВ.

ссылка на KEK digital accelerator и список литературы

Рис. 1. Ускорительный комплекс КЕКВ

2.2. Детектор Belle

Детектор Belle охватывал весь азимутальный угол, а также перекрывал часть полярного угла от 17° до 150° , что соответствует 0.74 полного телесного угла. Установка окружала точку взаимодействия и состояла из вершинного кремниевого детектора (SVD), центральной дрейфовой камеры (CDC) из 50 цилиндрических слоёв, массива аэрогелевых черенковских счётчиков (ACC), системы измерения времени пролёта (TOF) из сцинтилляционных счётчиков, электромагнитного калориметра (ECL), изготовленного из кристалов йодида цезия (CsI), и переднего калориметра (EFC), расположенных внутри сверхпроводящего соленоида, обеспечивающего магнитное поле величной 1.5Tl. В железном ярме электромагнита был расположен детектор K_L^0 мезонов и μ (KLM), составленный из

стеклянных резистивных плоских камер. Общий вид детектора Belle показан на рис. 2. Подробно о поддетекорах и востановлении события в ссылка на аппендикс.

Рис. 2. Декткор Belle в сечении

3. Методы измерения

3.1. SVD

Кремниевый вершинный детектор (рис. 3), расположенный непосредственно у точки взаимодействия, служит для определения её точного местоположения. Он состоит из тонких слоёв, охватывающих угловой диапазон от 23° до 139°, расположенных внахлёст и разделённых на секции, в которых при пролёте частиц образуются электронно-дырочные пары. Благодаря большому сечению взаимодействия, высокой плотности материала и низкой энергии взаимодействия, полупроводниковые детекторы обладают высокой точностью при измерении широкого диапазона энергий частиц. Это позволяет определять точку взаимодействия с точностью до $100 \mu m$. Однако, несмотря на значительно более высокую точность по сравнению с газовыми детекторами, монтаж большого количества слоёв усложнён из-за возможных сильных отклонений трека в результате много-

Рис. 3. Схематическое изображение SVD.

кратного взаимодействия с плотными кристаллами кремния.

3.2. Система идентификации заряженных адронов

Система включает в себя три основные детектора: CDC, TOF и ACC.

ССС (центральная дрейфовая камера) представляет собой вытянутый цилиндр, слегка деформированный для эффективного охвата полярного угла от 17° до 150° . Камера заполнена смесью газов He и C_2H_6 , что минимизирует влияние на трек частицы и обеспечивает максимальную эффективность ионизации. Высвобождающиеся электроны движутся к тонким алюминиевым проволокам, натянутым внутри объёма ССС (рис. 4). На проволоки подаётся напряжение порядка 20kV/cm. При достижении электронами проволок происходит лавинное умножение электронов, что фиксируется системой. Вся камера находится в магнитном поле с индукцией около 1.5T, что позволяет измерять импульс частицы по кривизне её трека. Также потери энергии на ионизацию позволяют оценить массу частицы, что, в свою очередь, помогает в идентификации заряженных частин.

Рис. 5. Детектор черенковского излучения (АСС).

Рис. 4. Конфигурация слоёв проволок в центральной дрейфовой камере (CDC).

АСС (детектор черенковского излучения) состоит из отдельных модулей размером $12 \times 12 \times 12$ см, расположенных цилиндрически и разделённых на 240, 240 и 360 модулей, ориентированных под различными углами для эффективного захвата частиц. Дополнительно имеется 228 счётчиков, установленных на торцевой стороне для учёта частиц, движущихся в определённом направлении из-за особенностей распределения импульса. Частицы, пролетающие через арогелевые среды, заполняющие модули АСС, возбуждают фотоны, длина волны которых зависит от заряда, импульса и массы частицы.

ТОF (времяпролётный детектор) — это система пластиковых сцинтилляционных счётчиков, расположенных вдоль всей системы, предназначенная для разделения каонов и пионов при импульсах менее 1.2 GeV. Такое разделение основано на принципе работы: отклик в 128 сцинтилляционных счётчиках сравнивается с длиной трека, рассчитанной путём экстраполяции из тре-

ковой системы.

Рис. 6. Полная система идентификации заряженных частиц (ACC, CDC и TOF).

Следующий абзац применим для всех подсистем Belle не только для ACC, CDC и TOF, но входе идетефикации заряженных адронов эти при играют наибольшую роль и пример разобран них. На основе данных ACC, CDC и TOF, вычисляются значения правдоподобия трека, классификации его как конкретной частици, для каждого детектора: $L_{ACC}(p,a)$ для ACC, $L_{TOF}(p,a)$ для TOF и $L_{CDC}(p,a)$ для CDC, где p это гипотеза о типе частицы, a — трек. (аналогичные значения правдоподобия формируют все под системы Belle). Общая функция правдоподобия рассчитывается как произведение отдельных функций $L(p,a) = L_{ACC}(p,a) \cdot L_{TOF}(p,a) \cdot L_{CDC}(p,a)$. Затем для двух гипотез о типе частицы вычисляется показатель PID (отношение правдоподобий):

$$\mathfrak{L}(a)_{p_1/p_2} = \frac{L(p_1, a)}{L(p_1, a) + L(p_2, a)}, \tag{3.1}$$

где p_1 и p_2 — два возможных типа частицы, a — трек.

Рис. 7. Рапределение PID для K - синие кресты и π - красные окружности

3.3. ECL (CsI)

Электромагнитный калориметр ссотои из сегментов направленных в к точке взаимодействия. Система создана для идентефикации и измерения энергий фотононов и электронов рождаемых в большом количестве входе электроно позитронноый анигиляции. Принцип работы основан на рождении электромагнитного ливня в ходе ракции $e^- \to \gamma e^- \to 2e^- e^+ \to \dots$ В силу своего раположения и устройства исправно идентефицируются частици с импульсом более 0.6 GeV, так как до этого частицу необходимо преодотеть SVD, CDC, TOF, ACC и слои металла отделяющих их.

3.4. KLM

Наиболее далеко от точки взаимодействия установлен KLM. Его главной задачей является идентификация мюонов, которые пролетают калориметр без развития ливня, что уменьшает различия от заряженных адронов и затрудняет идентификацию. Дектектор состоит из 14 железных слоев, K_L мезоны проходя через слои металла порождают ливни инов. При этом частици идентефицируются по глубине прникнования в слои металла. Аналогично как для ECL эффективно идетефицировать KLM способен частици с импульсами более 1Gev.

4. Каналов тагирования

4.1. Тагирование Λ_c

Для восстановления распадов Λ_c -барионов и определения импульса недетектируемого нейтрино применяется тагирование по заряду, аромату и барионному числу. Будем предполагать, что Λ_c образуется из \bar{c} -кварка и подхваченных из вакуума недостающих кварков. В таком случае будем называть систему центромасс c-кварка X_c , то есть неизвестная очарованная частица, которая фактически может быть не одной, а несколькими частицами сразу.

Для того чтобы определить состав X_c , необходимо, чтобы соблюдались законы сохранения барионного числа, аромата, заряда, а также 4-импульса. Такая технология называется тагированием ссылка на работу. В результате получим, что в X_c будет входить хотя бы один барион и кварки ucd, а также любые пары $q\bar{q}$. В итоге возможны следующие варианты X_c . Также важно понимать, что чем больше частиц содержит X_c , тем менее вероятно событие с такой комбинацией, так как новые частицы требуют дополнительных кварковых пар, создание которых требует больше энергии. Кроме того, при добавлении новых частиц время работы программы увеличивается экспоненциально, так как сложность алгоритма $\mathcal{O}(\prod_n N_n)$ (где N_n количестов задетектированных частиц типа n в событии).

В работе рассматриваются $X_c \to \Lambda_c^{tag}$; $\Lambda_c^{tag}\pi^-\pi^-$; $\Lambda_c^{tag}\pi^+\pi^-\pi^+\pi^-$; D^0p ; $D^+p\pi^-$; $D^{*0}p$; $D^*p\pi^-$, чтобы отличать Λ_c котрую тагируемую от тагирующей (той что является продуктом X_c), вторую обозначаим как Λ_c^{tag} . Каналы распада прочих частиц будем импользовать заведомо изветные самые эффективные каналы, согласно [**PDGTablesBar**] для барионов и [**PDGTablesMes**] для мезонов.

Particle	Channels
D^0	$K^{-}\pi^{+}; K^{-}\pi^{+}\pi^{+}\pi^{-}; K^{-}K^{+}; K_{s}^{0}\pi^{+}\pi^{+}; K_{s}^{0}\pi^{0}; K^{+}K^{-}K_{s}^{0}$
D^{+}	$K^{-}\pi^{+}\pi^{+}; K_{s}^{0}; K_{s}^{0}\pi^{+}\pi^{+}\pi^{-}; K^{+}K^{-}\pi^{+}$
Λ_c^{tag}	$pK^{-}\pi^{+}; \Lambda^{0}\pi^{+}; \Lambda^{0}\pi^{+}\pi^{0}; pK_{s}^{0}\pi^{0}$
D^{*+}	$D^0\pi^0;D^0\gamma$
$D*^+$	$D^{+}\pi^{0}; D^{0}\pi^{+}$
π^0	$\gamma\gamma$
K_s^0	$\pi^+\pi^-$

4.2. Критерии отбора

В данном разделе изложены критерии отбора, принятые на основании работы [BelleDetector2002] и описанном в 3. Имея на набор треков и их параметров, надо их классифицировать по типу частици оставившей этот трек.

- \bullet Фотоны классифицированы, но используемые при реконструкции событий, наложим дополнительное ограничение $E_{\gamma} > 50$ MeV, поскольку фотоны с меньшей энергией трудно отличимы тормозных или индуцированных в сичтеме токов, что может привести к ошибочной интерпретации их как сигнальных фотонов.
 - Идентификация частиц по (PID):

Как уже известно для треков формируется значение правдоподобия L(p,a) и в поледствии PID значение $\mathfrak{L}_{p_1/p_2}(a)$, поэтому на треки котрые хотим идентифицировать как частицу p наложим следующие ограничения:

Гипотеза	Критекрий
p	$\mathfrak{L}_{p/K} < 0.6; \mathfrak{L}_{p/\pi} > 0.6$
K	$\mathfrak{L}_{p/K} < 0.4; \mathfrak{L}_{K/\pi} > 0.6$
π^{\pm}	все заряженные треки, не прошедшие идентификацию по вышеуказанным критериям

• K^0_s -мезоны реконструируются по распаду $K^0_s \to \pi^+\pi^-$ из кандидатов, отобранных с помощью стандартного инструмента V0finder и собранных в таблице MdstVee2. Критерии отбора следующие:

$$\left| M_{K_s^0} - M_{K_s^0}^{real} \right| < 30 \text{ MeV}; \ \rho_{K_s^0} > 1 \text{ mm}; \ z_{K_s^0} > 1 \text{ cm}; \ \cos\theta_{K_s^0} > 0.99$$

где $M_{K_s^0}^{real}$ = 497.611 MeV, $M_{K_s^0}$ — инвариантная масса пионов $(\pi^+\pi^-)$, собранных в K_s^0 -мезон, $z_{K_s^0}$ и $\rho_{K_s^0}$ — цилиндрические координаты реконструированной вершины распада K_s^0 -мезона в лабораторной системе отсчёта, а $\cos\theta_{K_s^0}$ — азимутальный угол между импульсом K_s^0 и направлением на его вершину распада.

 \bullet π^0 -мезоны восстанавливались в распаде на два фотона, которые в свою очередь реконструировались по кластерам энерговыделения в ECL. Критерии отбора:

$$\left| M_{\pi^0} - M_{\pi^0}^{real} \right| < 15 MeV$$

После отбора стандартно были установлены погрешности для импульсов фотонов и выполнены фиты в вершину и массу.

 \bullet Отбор D -мезонов:

$$\begin{array}{c|c} D^0 & | & M_{D^0} - M_{D^0}^{real}| < 15 MeV \\ D^{\pm} & | & M_{D^{\pm}} - M_{D^{\pm}}^{real}| < 15 MeV \\ D*^{\pm} & | & M_{D*^{\pm}} - M_{D*^{\pm}}^{real}| < 3 MeV \\ D*^{0} & | & M_{D*^0} - M_{D*^0}^{real}| < 3 MeV \end{array}$$

Где $M_{D^\pm}^{real} = 1864.83 MeV; M_{D^0}^{real} = 1869.65 MeV; M_{D\star^\pm}^{real} = 2010.26; M_{D\star^0}^{real} = 2006.85 MeV.$

5. Поиск Λ_c

На основе выбранных нами каналов X_c писанных в предыдущем разделе обираем события в котрых выполняется условие

$$|p_{e^+} + p_{e^-} - p_{X_c}|^2 \le 3GeV \tag{5.1}$$

Так как в идельных условиях эта влечина должна быть равна квадрату $M_{\Lambda_c}^{real}$ = 2226.46MeV, таким образом мы откинем множетво событий котрые затагировали возбужденные состояния Λ_c или поряли трек.

В отобранных событиях мы будем собирать Λ_c барионы. По каналам $\Lambda_c^+ \to \Lambda \pi^+; \Lambda \nu_e e^+; \Lambda \nu_\mu \mu^+$.

• Для отбора $\Lambda \to p\pi$ требуем

$$\left| M_{\Lambda_c} - M_{\Lambda_c}^{real} \right| < 30 \text{ MeV}; \ \rho_{\Lambda_c} > 1 \text{ mm}; \ z_{\Lambda_c} > 1 \text{ cm}; \ \cos \theta_{\Lambda_c} > 0.99; \ \mathfrak{L}_{p/K} > 0.6$$

- Для отбора e^{\pm} требем $p_{e^{\pm}} \ge 0.6 GeV$, чтобы долетел до SVD детектора где он в ходе $e^{-} \to \gamma e^{-} \to 2 e^{-} e^{+}$ распадается электронн-фотонным ливнем, что позволяет его олично индетефицировать, поэтому критерий на L(e) > 0.1 не такой строгий.
- Аналогично отбора μ^{\pm} требем $p_{\mu^{\pm}} \geqslant 0.6 GeV$, чтобы долетел до KLM, где идентификация мюнов еще лучше поэтому требуем $L(\mu) > 0.01$
 - Комбинируем Λ_c с массовым окном 50 MeV.
- Независимо от работы [BelleDetector2002], среди моножетва $\{d_n\}$, идентифицированных как кандидаты на дочерние продукты распада ξ частици, можно использовать знание о том, что импульсы продуктов распада должны исходить из вершины распада. Это позволяет откорректировать измеренные импульсы с учётом погрешностей, чтобы они соответствовали данной гипотезе (в дальнейшем это будет называться "фит в вершину"). Аналогично, на основании инвариантной массы, известной для ξ , можно корректировать величины импульсов дочерних частиц так, чтобы $M_p = \sqrt{\sum_n \left(p_n\right)_\gamma \left(p_n\right)^\gamma}$ совпадала с M_ξ^{real} , где $p_n 4$ -импульс сответствующий d_n из $\{d_n\}$. Этот метод будет называться "фит в массу". Были использованы алгоритмы для фита в вершину и в массу принятые в коллаборации КЕК, и описанные в [Krohn2021].

По итогу делаем фиты в вершину, а после в массу для всех собранных частиц это $\Lambda_c, D^{\pm}, D^0, D^{*\pm}, D^{*0}, \Lambda, K_s^0$.

ullet Для импульс X_c фитируем так чтобы $\left|p_{e^+} + p_{e^-} - p_{X_c}\right|^2 = M_{\Lambda_c}^2$, подробно алгоритм описан в Appendix 2.

Поиск Λ_c

Appendix 1: Метод вычисления формфактора

 Λ_c барион состит из ucd кварков, в ходе распараспада $\Lambda_c \to \Lambda l \nu_l$ проискходит переход $c \to s$ посредством испускания W^+ бозона тоесть правиьно будет записвть $c \to sW^+$, W^+ распадается на $W^+ \to l^+ \nu_l$, в итоге оставшиеся кварки uds формируются в Λ барион. Таким образом получим следующую феймановскую диаграмму.

Переход $\Lambda_c \to \Lambda$ индуцирется слабым током j_μ , котрый можно разложить по аксиальной и векторной части: $j_\mu = j_\mu^A + j_\mu^V$. Обозначим волновые функции частиц $B_{\Lambda_c}\left(p_{\Lambda_c}, M_{\Lambda_c}\right) \to B_{\Lambda}\left(p_{\Lambda}, M_{\Lambda}\right) + l\left(p_l, m_l\right) + \nu_l\left(p_\nu, m = 0\right)$. Форм факторы выражаются как:

$$\langle B_{\Lambda_c} \left(p_{\Lambda_c}, M_{\Lambda_c} \right) | j_{\nu}^V | B_{\Lambda} \left(p_{\Lambda}, M_{\Lambda} \right) \rangle = u_2^{\dagger} \left(\mathfrak{F}_1^V \left(q^2 \right) \gamma_{\nu} + \frac{\mathfrak{F}_2^V}{M_{\Lambda_c}} \left(q^2 \right) \sigma_{\mu\nu} q^{\nu} + \frac{\mathfrak{F}_3^V}{M_{\Lambda_c}} \left(q^2 \right) q_{\mu} \right) u_1 \tag{5.2}$$

$$\langle B_{\Lambda_c} \left(p_{\Lambda_c}, M_{\Lambda_c} \right) | j_{\nu}^A | B_{\Lambda} \left(p_{\Lambda}, M_{\Lambda} \right) \rangle = u_2^{\dagger} \left(\mathfrak{F}_1^A \left(q^2 \right) \gamma_{\nu} + \frac{\mathfrak{F}_2^A}{M_{\Lambda_c}} \left(q^2 \right) \sigma_{\mu\nu} q^{\nu} + \frac{\mathfrak{F}_3^V}{M_{\Lambda_c}} \left(q^2 \right) q_{\mu} \right) \gamma_5 u_1 \tag{5.3}$$

Где γ_μ - матрци Диррака, q_μ - 4-импульс W^+ бозона, $\sigma_{\mu\nu}=\frac{1}{2}(\gamma_\mu\gamma_\nu-\gamma_\nu\gamma_\mu)$. Дописать вывод связи форм фактора и спиральности

Поиск Λ_c

Appendix 2: Алгоритм фита в массу потеряной частици

Рис. 8. Схема распада.

Дано: p_1, p_2, p_3 — это 4-импульсы продуктов распада (тагирующих выбранную частицу), представленных на рис. 8. Также известны матрицы ковариаций компонент 3-импульса Ξ_1, Ξ_2, Ξ_3 для соответствующих частиц. p_{beam} — это 4-импульс системы (p_{beam}), а M_{rec} — это масса недостающей (тагируемой) частицы.

Для поиска оптимального решения используется метод множителей Лагранжа. Поскольку мы минимизируем изменения импульсов с учётом их ошибок, применяем следующую функцию:

$$\chi^2 = \sum_n (p_n)_i (\Xi_n^{-1})_{ij} (p_n)_j$$
 (5.4)

Функция Лагранжа с наложением ограничения имеет вид:

$$M_{\text{rec}}^2 - (p_{\text{beam}} - \sum_n p_n)_{\mu} (p_{\text{beam}} - \sum_n p_n)^{\mu} = 0$$
 (5.5)

Полная функция Лагранжа с множителем Лагранжа λ записывается следующим образом:

$$\mathcal{L}(p_n, \lambda) = sum_n (p_n)_i (\Xi_n^{-1})_{ij} (p_n)_j + \lambda \left(M_{\text{rec}}^2 - (p_{\text{beam}} - \sum_n p_n)_{\mu} (p_{\text{beam}} - \sum_n p_n)^{\mu} \right)$$
 (5.6)

Для минимизации используется метод Ньютона-Рафсона. На каждом шаге вычисляются градиент (первая производная) и гессиан (матрица вторых производных) функции Лагранжа:

$$\nabla \mathcal{L}(x_n) = c_n, \Delta \otimes \Delta \mathcal{L}(x_n) = \hat{A}_n \tag{5.7}$$

где x_n — это вектор параметров на n-м шаге. Затем на каждом шаге решается система уравнений для обновления параметров:

11

$$\hat{A}_n \,\delta x_{n+1} = -c_n \tag{5.8}$$

После чего параметры обновляются:

$$x_{n+1} = x_n + \delta x_{n+1}. (5.9)$$

 Π оиск Λ_c

6. Литература

Список литературы

- [1] Avery P., Blanco R., Liu K., et al. Observation of the Charmed Baryon Λ_c^+ at SPEAR // Phys. Rev. Lett. 1988. V. 50. P. 747-750. DOI: 10.1103/PhysRevLett.50.747.
- [2] Perl M. L., Abrams G. S., Boyarski A. M., et al. Evidence for Anomalous Lepton Production in e^+e^- Annihilation // Phys. Rev. Lett. 1975. V. 35. P. 1129-1132. DOI: 10.1103/PhysRevLett.35.1129.
- [3] Eisenstein B. I., Alexander J. P., Berkelman K. Study of the Semileptonic Decay $\Lambda_c \to \Lambda e \nu_e$ // Physical Review D. 2022. V. 105. P. 012007. DOI: 10.1103/PhysRevD.105.012007.
- [4] Dobbs S., Metreveli Z., Seth K. K. Study of $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$ and test of lepton flavor universality with $\Lambda_c^+ \to \Lambda l^+ \nu_l$ decays // Physical Review D. 2023. V. 106. P. 032005. DOI: 10.1103/PhysRevD.106.032005.
- [5] Perez-Marcial R., Huerta R., Garcia A., Avila-Aoki M. Predictions for semileptonic decays of charm baryons. 2. Nonrelativistic and MIT bag quark models // Phys. Rev. D. 1989. V. 40. P. 2955. DOI: 10.1103/PhysRevD.40.2955.
- [6] Faustov R. N., Galkin V. O. Semileptonic decays of Λ_c baryons in the relativistic quark model // Eur. Phys. J. C. 2016. V. 76. P. 628. DOI: 10.1140/epjc/s10052-016-4492-z.
- [7] Liu Y. L., Huang M. Q., Wang D. W. Improved analysis on the semi-leptonic decay $\Lambda_c \to \Lambda l \nu$ from QCD light-cone sum rules // Phys. Rev. D. 2009. V. 80. P. 074011. DOI: 10.1103/PhysRevD.80.074011.
- [8] Zhao Z. X. Weak decays of heavy baryons in the light-front approach // Chin. Phys. C. 2018. V. 42. P. 093101. DOI: 10.1088/1674-1137/42/9/093101.
- [9] Geng C. Q., Liu C. W., Tsai T. H. Semileptonic weak decays of antitriplet charmed baryons in the light-front formalism // Phys. Rev. D. 2021. V. 103. P. 054018. DOI: 10.1103/PhysRevD.103.054018.
- [10] Gutsche T., Ivanov M. A., Korner J. G., Lyubovitskij V. E., Santorelli P. Semileptonic decays $\Lambda_c \to \Lambda \ell \nu$ in the covariant quark model // Phys. Rev. D. 2016. V. 93. P. 034008. DOI: 10.1103/PhysRevD.93.034008.
- [11] Bahtiyar H., Can K. U., Oka M., Takahashi T. T. $\Lambda_c \to \Lambda$ Form Factors in Lattice QCD // Phys. Rev. D. 2021. V. 102. P. 114505. DOI: 10.1103/PhysRevD.102.114505.
- [12] Navas S., et al. (Particle Data Group). Review of Particle Physics // Phys. Rev. D. 2024. V. 110. 3. P. 030001.(2024)
- [13] Navas S. et al. (Particle Data Group). Review of Particle Physics // Phys. Rev. D. 2024. V. 110. \mathbb{N}_2 3. P. 030001. (2024)
- [14] Abashian A. et al. The Belle Detector // Nuclear Instruments and Methods in Physics Research A. 2002. V. 479. P. 117–232.
- [15] Krohn J.-F., Urquijo P., Abudinén F., et al. Global Decay Chain Vertex Fitting at B-Factories // Nuclear Instruments and Methods in Physics Research A. 2021. V. 988. P. 164891.