

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Academic year 2023-2024 (ODD Sem)

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

		11011 00	,111			-
	Date			Coulee	5	0
Course Code		9 th Jan 2024	Maximum N		90	Min
	Sem	IS233AI	Duration			
		III Semester		Test-I		
	D	ATA STRUCTURE		TO		
		ATA STRUCTURES AND	APPLICATION	NO		
Sl. No		(Common to CS, IS,	CD &CY)	M	BT	CO
· la	Design an algo	brithm to convert infix expression	n to its profiv	IVI	D.	
	- The the thigoth	unii ioi the inniif	n to its prenx		2	3
	/((A+(B-C))) * D) ^ E) + F		6	3	3
. /	Note: \(^\) is the	exponential symbol				
Mb	Differentiate be	tween linear and non-linear data s	tructures.	4	1	1
26	What is a Lin	ear queue? Discuss the enqueu	e and dequeue	6.	3	1
21	operations of in			7		
12	stack	tion to check the parenthesis ba	lancing using a			
	Examples:					
	{()[]} is valid		3.0	4	2	2
	{([])} is valid			-		
	{([)]} is not					
3a		functions to perform the following				
		ether the array elements are so	rted or not (In	6	3	2
	descending orde	r)				
	ii) To find GCD	or two numbers.				
36	Trace the algori	thm for evaluating a postfix en	apression for the	4	3	3
-		stack contents at each step.		4	3	3
/	10 5 + 60 6 /	"8 -	unamic mamory			
/4a		nctions used to perform d	ynamic memory	6	2	1
	allocation along	with syntax.				
Ab	Consider the foll	owing C function			1	H R L P
	int fun(int n,	inc r)				
	if(n > 0)			1 11	1100	
	ret	turn (n % r + fun(n/r,r);		4	3	2
5.3	else			1	1837	
	ret	urn 0;		1000	1 130	- 1
	}		(245.10)	1 300	No.	
1	What is the return	a value when it is called as fur	(345,10)			
5/a	Discuss the push	and pop operation of integer	ers with necessar	9 6	2	
/	functions on a Sir	ngly Linked list.				
1		n to Create an Ordered Singly	linked list	4	3	
10	AAIII a C Tamono	if to create an ordered office,	The state of the s			

Date

Academic year 2023-2024 (ODD Sem)

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

	lirea C. 1	22 nd Feb 2024	N			
Course Code Sem		IS233AI	Maximum Marks Duration		50	
	ocili	III Semester	Test-	TT	90 M	in
Sl. No.	D	ATA STRUCTURES AN (Common to CS, IS	D APPLICATIONS S, CD &CY)			
N	Write C function	as for a doubly linked list:		M	BT	C(
	b. To insert	the number of nodes in the list a new node at the end of the list the first node from the list of for a key element in the list	st 🗸	10	3	3
2	in a circle and e	people have decided to elect a liminating every K th person are ecomes the leader. Note that the	ound the circle, till one pers	on		
	circular singly l are eliminated f	es for N and K, write recursive inked list data structure to determine the circle and which person entary functions used and assuments.	mine the order in which peon becomes the leader. Mer	ople	3	2
					1	
-	Trace the code					
3	Define binary s 18, 4, 1, 0, 47, inorder and pos	earch tree. Construct a binary \$ 65, 90, 21, 7, 12. Traverse the torder.	Search tree by inserting the	e keys order,	10	3
3	Define binary s 18, 4, 1, 0, 47, inorder and pos Write recursive a. To visit b. To find c. To find	earch tree. Construct a binary S 65, 90, 21, 7, 12. Traverse th	Search tree by inserting the ne constructed tree in pre	order,	10	3

2.1.2:0

Academic year 2023-2024 (Odd Sem)

DEPARTMENT OF INFORMATION OF THE PROPERTY OF T

Date	23rd MATION	Maximum Marks	50
Course Code	23rd March 2024	Duration	90Min
Sem	IS233AI	Re-CIE-1	
UG/PG	III	Faculty:SWS/GRS/CRM/	SB/SDV/ARA
r	UG UG	Faculty: SWS/GRS/CRV	JB/ JB
	ATA STRUCTURES A	ND APPLICATIONS	
	(Common to CS,	IS, CD &CY)	

SL No.	Test Questions	M	BT	СО
	N. C.			
1.1	parentheses is balanced or not. Write the maximum number of parentheses that can appear on the stack AT ANY ONE TIME when she is applying the algorithm: ({}<(<)><([])>)	2	L3	COI
	what will be the value returned by the following function, when it is called with a value 11?			
1.2	Fun(int num) if ((num/2)!=0) return (Fun(num/2) * 10 + num%2); else return 1;	2	L3	CO5
1.3	Let the following circular queue can accommodate maximum seven elements with the following data: front = 3 rear = 5, queue =,, X, Y, Z, What will the value of front and rear pointer after 'insert (A)' operation takes place?	2	L2	CO3
	The following C function takes a single-linked list of integers as a parameter and rearranges the elements of the list. The function is called with the list containing the integers 3,4,5,6,7,8,9 in the given order. What will be the contents of the list after the function completes execution?			
1.4	struct node { int value; struct node *next; }; DSA-III		2 1	_3 CC
	<pre>void fun (struct node *list){ struct node *p, * q; int temp; if(!list !list-> next) return; p = list; q = list->next; while (q) { temp = p->value;</pre>			

Academic year 2023-2024 (Odd Sem)

	p-> value = q ->value; q-> value = temp; p = q-> next; q = p ? p->next : 0;			
	Write the equivalent calloc statement for ptr = malloc(m * n);	2	L2	CO2
	List the advantages of circular queue over linear queue, explain with a neat diagram	5	LI	CO2
1	in C Write the syntax for malloc and realloc DMA functions	5	L2	CO3
2.	1) Insert at beginning ii) Deletion at and	5	L2	CO5
2.1	write recursive algorithm to solve Tower of Hanoi puzzle. Draw the recursive call tree for number of disc is 3 and write the moves performed	5	L2	COI
3a	Evaluate the following expressions. Write the steps showing the content of stack and input array and output array. abc+\$de-*fg*+h* Assume: a=2,b=3, c=1, d=2, e=3,f=7, g=1,h=2	5	L3	CO4
36	Define data structure. Write any four applications of stack and queue data structures	5	L	1 CO1
4	Write an algorithm to convert infix to postfix expression and convert the following infix expression to prefix form. Give the steps showing the content of stack, input array and output array. ((x+y*c-d+e/g) /(h*i))/j\$k\$n Note: Use the following Precedence and associativity Rules Precedence(+) = Precedence(-) Precedence(*) = Precedence(/) Precedence(\$) > Precedence(+,-) Precedence(+,-) > Precedence(*, /) Associativity(\$) is Right to Left Associativity(*,-) is Right to Left Associativity(*,-) is Left to Right		10	L3 CO4
5	Give a node structure to create a singly linked list of integers and write a functions to perform the following: i) Create a three node list with data 500,700 and 800 ii) Insert a node with the data value 600 in between the nodes having data values 500 and 700. iii) Delete the node whose data is 700 iv) Display the resultant linked list	С	10	L2 CO

(An Autonomous Institution Affiliated to VTU)

III Semester B. E. Examinations April/May -2024

DATA STRUCTURES AND APPLICATIONS

Common to ISE/CSE/CD/CY

Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

1. Answer all questions from Part A. Part A questions should be answered in first

three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2 is 2 and 4. 5 and 6, 7 and 8, 9 and compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and

	PART-A	M	BT	со	
1 1	.1 Write a C function to convert a decimal number to binary using				
2 3 7 7 7	recursion.	02	2	4	
	.2 Evaluate the expression -/* 2 * 5 + 3652 using stack	02	3	1	
1	evaluated using a stack: 8 2 3 ^ / 2 3 * + 5 1 * -				
	Note that ^ is the exponentiation operator.	02	3	1	
	Let the following circular queue can accommodate maximum eight elements with the following data front = 3 rear = 6				
	queue =, X, Y, Z, W, What will be the value of front				
	What will be the value of front and rear after 'insert (P)' operation takes place?	02	2	1	
1.	What does the function "llist" return for a given singly linked list with contents as (1,4,3,5, and 11) and with first node pointed by external pointer "head"? struct node{				
	int data;	1			
	struct node * next;				
	};				
	int llist(struct node * head)				
	if(head == NULL)				
	return 1;				
	$return(llist(head \rightarrow next) + head \rightarrow data);$				
	}		02	3	2
1.6	The height of a tree is the length of the longest root-to-leaf pat	h			
1.0	in it. The maximum and minimum number of nodes in a stri	ct			
	hinary tree of height 5 are and		02	2	2
1 7	A priority queue is implemented as MAX -neap. Initially, it has	as		-	
1.7	The level order traversal of the heap is: 20 16 14 A	7			1
	12 and 15 are inserted in to the heap in that order	222			
	Two elements is and is all the heap after the insertion of the level order traversal of the heap after the insertion of the level order traversal of the heap after the insertion of the heap after the h	h.			
			0.0		
	element is element is		02	3	1
1.8	element is Consider a hash table with 9 slots. The hash function is $h(k) = 0$ mod 9. The collisions are resolved by chaining. The following mod 9. The collisions are resolved: 5,28,19,15,20,33,12,17,10, and	K			
2.0	mod 9. The collisions are resolver: 5,28.19 15 20 22 12 15	3 9		11111	1
	mod 9. The collisions are resolved 5,28,19,15,20,33,12,17,10. The following keys are inserted in the order: 5,28,19,15,20,33,12,17,10. The following keys are inserted in the hash table, respectively.	'he	FEL	1 116	
	keys are inserted in the older hash table, respective maximum and average lengths in the hash table, respective	ely,			1
	maximum and		02	2	
	are and		102	1 4	2

1.9	ing AVI.				1000
	tree. rotation is required to balance the following AVL				
	(FO)				
	(50) @	33			
	49 60 (99)				
	65	01	2	1	
1.10	On Creating a min heap using bottom up method for the following elements, what is a large of element 7/assume	01	2	*	
	following elements, what is the position of element 7(assume that the array index starts with 1)	Ball			
1.11	84 68 23 43 1 20 Starts With 1)	02	3	2	
1.11	Write an example graph to show that the number of vertices of odd degree in a graph is always even.	01	1	3	
	graph is always even.	U1	1 7		
	PART-B	1711			
2 a	Write an algorithm to convert infix expression to postfix form				-
	and convert the following infix expression to postfix form. Give the steps showing the content of stack, input array and output				
1	array. $((p+q*r-s-t/u)/(v*w))/x$yz	1			1
	Note: Use the following Precedence and associativity Rules	19	1		
	Parenthesis have highest precedence Precedence(+) = Precedence(-)	1		1	1
	Precedence(*) = Precedence(/)		-	13	170
	Precedence(\$) > Precedence(+,-) Precedence(+,-) > Precedence(*,/)				
	Associativity(\$) is Right to Left Associativity(+,-) is Right to Left			-	
	Associativity(*, /) is Left to Right	0	8 3	. 1	
b	Write a C program to do the following using stack				
	 i) Create stack with n elements. ii) Assign to a variable name Y the value of the third elements. 	nt		1	
	from the top of the stack and keep the stack undisturbed	1.	1	1	1
	iii) Given an arbitrary integer n pop out the top n elements. message should be displayed if an unusual condition	is	-		
15 7	encountered.				
	iv) Display the content of stack after each above operation	-	08	2	3
3 a	Write the C functions to perform insertion, deletion and displ	ay			
	operations on circular queue. Note: Handle all exceptions wh	ile			-
	performing the operations.	227	06	2	5
	Discuss the push and pop operation of integers with necess functions on a Singly Linked list.	ary	05	2	5
	Explain with syntax example different dynamic mem	ory			
	dlocation functions.		05	1	1
				1	
	OR		TO TO		

から、かんら

4 a					
	Develop C functions to perform the following operations on a				
	i) Replacing all nodes which have the data 'x' by 'y'.				
	ii) Create an ordered list.				
	(Note: A list of n nodes such that $N_i <= N_{i+1}$ for all $1 < i < n-1$	00	3	5	
	is called an ordered list)	06	3	3	
b	Write C functions to perform the following operations on linked		7		
	list with header node:			100	
	i) Insert at beginning ii) Deletion at end	05	3	3	
C	Write a C function to delete alternate nodes of a Linked List.	05	3	5	
5 a	Design a doubly linked list to represent sparse matrix. Each				
	node in the list can have the row and column index of the matrix element and the value of the element. Print the complete matrix			1 3	
	as the result.	08	3	4	
b	Define binary trees. Explain the following with an example:				
	i) Skewed binary tree ii) Almost complete binary tree	08	2	1	
	iii) Degree of a binary tree iv) Height of a node	00			
	OR				
5 a	With the Pinese				
o a	With necessary diagram explain the deletion operation in Binary Search tree.	08	2	1	
b	Write a C function to perform the following operations				
	i) Insert a node in the middle of a Doubly Linked List.			139	
	ii) Delete a node at the given position in circular Doubly	08	3	3	
	linked list using only tail/end pointer.	08	3	3	
а	Give a node structure and write iterative C solution functions to			1	
	perform inorder, preorder and postorder traversal of a binary	08	2	3	
ь	search tree. Design an algorithm to Generate Expression Tree from	-	1	10	
D	Design an algorithm to Generate Expression				
	parentheses-free infix arithmetic expression and apply the same			1	1
	parentheses-free infix arithmetic expression and apply the same		1		1
	on the following input to show the stack content after processing each input character in the process.				1
	on the following input to show the stack content after processing		3	5	1
	on the following input to show the stack content after processing each input character in the process.		3	5	1
	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$E - F / E$ OR	08	3	5	
	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$E - F / E$ OR Write a recursive C function to check whether the given tree is	08			
	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not.	08 a 0			3
b	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. A + B % C \$ E - F / E OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below	08 a 0			3
ь	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not.	08 a 0			3
ь	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. A + B % C \$ E - F / E OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below	08 a 0			3
b	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a 0			3
ь	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a 0			3
b	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a 0			3
ь	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a 0			3
ь	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a 0			3
b	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a 0			3
b	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a 0			3
ь	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a 0			3
b	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a			3
b	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. A + B % C \$ E - F / E OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a o	5	3	3
b	parentheses-free infix arithmetic expression and apply the same on the following input to show the stack content after processing each input character in the process. $A + B \% C \$ E - F / E$ OR Write a recursive C function to check whether the given tree is strictly binary tree or not. Apply the Postorder, preorder and inorder traversal on the below tree and write the order in which the vertices are visited.	08 a o		3	3

9 a b c	Write a C function with nod to perform preorder	05	3 3	1 4 1	
	OR		1	1	1
10 a	Show the steps of insertion operation on a splay tree for the following elements:	1		1	1
	25, 20, 27, 17, 23, 26	06	. 3	3	1
b	Apply Quadratic probing to insert the keys $45, 5, 8, 31, 23, 16, 18, 17, 22, 11, 21, 13$ into the empty hash table of length 13, with hash function $H(K) = 3K + 3\%13$. Show the				
	search for the key element 21?	0	5	3	1
c	For the given set of elements construct a B + tree of order 3 by storing a copy on the left	У	1		
File Til	RETESTADDITIONAL	()5	3	1