HOMEWORK 2. Due: Friday, March 8, 2019.

This is an individual assignment!

1. Extracting and simulating the synthesized design.

In the first lab, we have created a design by using a strictly digital ('VLSI') design flow. In this assignment, we will inspect the results of the static timing analysis.

To do this, please work through Lab 2, then turn in:

- a) For the path A[2] rise to Z[15] rise, report the delay measured by IC Compiler.
- b) A screenshot of the critical path highlighted in IC Compiler showing the wires that contribute to the path from a).
- c) For the functional testbench that counts from A=0000 to A=1111, report the power measured by Primetime.
- d) A screenshot of your decoder layout imported into Virtuoso after running it through the HAMMER flow.

2. Delays

Consider an inverter driving a capacitive load in 28nm bulk-CMOS technology.

All transistors are minimum length and $W_n = 0.5 \mu m$ $W_p = 1 \mu m$, $V_{DD} = 1 V$. In this technology, $C_g = C_d = 2 f F / \mu m$, transistor thresholds are 0.25V and fanout-of-4 inverter delay is 15ps.

- a) For what range of sizes of the load capacitor, C_L , adding another inverter to drive the load reduces the delay?
- b) If the input capacitance of the first inverter in figure below is set to $C_1 = 3$ fF, the wire capacitance C_w is 6fF, how would you size the second inverter that is driving 13.5fF load to minimize the overall delay from In to Out? Is this result intuitive?

3. Switching trajectories

In the IDS-VDS coordinates, plot simulated switching trajectories for the following transistors:

- a) NMOS transistor in an inverter chain with a fanout of 1.
- b) NMOS transistor in an inverter chain with a fanout of 4.
- c) Top NMOS transistor in the 2-input NAND gate with a fanout of 3.
- d) Bottom NMOS transistor in the 2-input NAND gate with a fanout of 3.