Lecture 17: Clustering and density estimation

Professor Ilias Bilionis

Clustering using k-means

Clustering

Your are given n observations:

$$\mathbf{x}_{1:n} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$$

(inputs, features, ...)

Problem: Separate the data into K groups? How many such groups exist?

K-means objective

must specify K clusters ω / centers $\not\vdash_1$, ..., $\not\vdash_k =)$ Voronoi tesseltion $\times_{1:\eta} = (\chi_1, \chi_2, ..., \chi_n)$ SIC {XL, ..., Xn}, Sic {XL, ..., Xn} min & \[\langle \| \mu_i - \times \|^2 \\ \L_{1,...,\beta_k} \\ \frac{\epsilon_{i=1}}{\times_i} \times_{\epsilon_i} \\ \epsilon_{i=1} \times_{\epsilon_i} \\ \epsilon_{i=1} \\ \times_{\epsilon_i} \\ \times_{\epsilon_i} \\ \epsilon_{i=1} \\ \times_{\epsilon_i} \\ \times_{

Standard k-means algorithm

I. Start by randomly choosing
$$f(1)$$
, ..., $f(1)$ $f(1)$

Example

Example

What if I used two clusters?

What if I used five clusters?

Limitations of k-means

- How many clusters?
- Assumes spherical clusters.
- Cannot be applied to high-dimensional datasets, e.g., images.

Beyond k-means

- Clustering is related to density estimation.
- Idea:
 - Make hypothesis about how data are generated.
 - Train your model.
 - Let the structure arise naturally.

