Al history problem solving using search

Main events in the history of Al

Period	Key Events
The birth of Artificial Intelligence (1943–1956)	McCulloch and Pitts, A Logical Calculus of the Ideas Immanent in Nervous Activity, 1943
	Turing, Computing Machinery and Intelligence, 1950
	The Electronic Numerical Integrator and Calculator project (von Neumann)
	Shannon, <i>Programming a Computer for Playing Chess</i> , 1950
	The Dartmouth College summer workshop on machine intelligence, artificial neural nets and automata theory, 1956

Period	Key Events
The rise of artificial intelligence (1956–late 1960s)	 LISP (McCarthy) The General Problem Solver (GPR) project (Newell and Simon) Newell and Simon, Human Problem Solving, 1972 Minsky, A Framework for Representing Knowledge, 1975
The disillusionment in artificial intelligence (late 1960s—early 1970s)	Cook, <i>The Complexity of Theorem Proving Procedures</i> , 1971 Karp, <i>Reducibility Among Combinatorial Problems</i> , 1972 The Lighthill Report, 1971

Period	Key Events
The discovery of expert systems (early 1970s–mid-1980s)	DENDRAL (Feigenbaum, Buchanan and Lederberg, Stanford University)
	MYCIN (Feigenbaum and Shortliffe, Stanford University) PROSPECTOR (Stanford Research Institute)
	PROLOG - <i>a logic programming language</i> (Colmerauer, Roussel and Kowalski, France)
	EMYCIN (Stanford University)
	Waterman, A Guide to Expert Systems, 1986

Period	Key Events
The rebirth of artificial neural networks (1965–onwards)	Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities, 1982 Kohonen, Self-Organized Formation of Topologically
	Correct Feature Maps, 1982
	Rumelhart and McClelland, Parallel Distributed Processing, 1986
	The First IEEE International Conference on Neural Networks, 1987
	Haykin, Neural Networks, 1994
	Neural Network, MATLAB Application Toolbox (The MathWork, Inc.)

Period	Key Events
Evolutionary computation (early 1970s—onwards)	Rechenberg, Evolutionsstrategien - Optimierung Technischer Systeme Nach Prinzipien der Biologischen Information, 1973
	Holland, Adaptation in Natural and Artificial Systems, 1975.
	Koza, Genetic Programming: On the Programming of the Computers by Means of Natural Selection, 1992.
	Schwefel, Evolution and Optimum Seeking, 1995
	Fogel, Evolutionary Computation –Towards a New Philosophy of Machine Intelligence, 1995.

Period	Key Events
Computing with Words (late 1980s—onwards)	Zadeh, Fuzzy Sets, 1965
	Zadeh, Fuzzy Algorithms, 1969
	Mamdani, Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis, 1977
	Sugeno, Fuzzy Theory, 1983
	Japanese "fuzzy" consumer products (dishwashers, washing machines, air conditioners, television sets, copiers)
	Sendai Subway System (Hitachi, Japan), 1986
	The First IEEE International Conference on Fuzzy Systems, 1992
	Kosko, Neural Networks and Fuzzy Systems, 1992
	Kosko, Fuzzy Thinking, 1993
	Cox, The Fuzzy Systems Handbook, 1994
	Zadeh, Computing with Words - A Paradigm Shift, 1996
	Fuzzy Logic, MATLAB Application Toolbox (The MathWork, Inc.)

Al Applications

Medicine:

Image guided surgery

Al Applications

Image analysis and enhancement

Al Applications

Transportation

:Autonomous

vehicle control:

Pizza Delivery by Drone

Al and the Future

smart mirrors

Another Examples...

speech recognition

1. Problem Solving using Search

What is search strategies?

- A search strategy is defined by picking the order of node expansion – nodes are taken from the frontier • Strategies are evaluated along the following dimensions: –
- completeness: does it always find a solution if one exists?
- time complexity: number of nodes generated
- space complexity: maximum number of nodes in memory optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution –
- m: maximum depth of the state space (may be ∞)

What kind of problem could be solved by search

- Many interesting problems in science and engineering are solved using search A search problem is defined by:
- A search space: The set of objects among which we search for the solution
- A goal condition –
 Characteristics of the object we want to find in the search space?

- Search problems can be often represented as graph search problems:
- Initial state State (configuration) we start to search from (e.g. start city, initial game position)
- Operators: Transform one state to another (e.g. valid connections between cities, valid moves in Puzzle 8)
- Goal condition: Defines the target state (destination, winning position) Search space is now defined indirectly through: The initial state + Operators

BLIND Search Methods

Methods that do not use any specific knowledge about the problem:

Depth-first
Breadth-first
Non-deterministic search
Iterative deepening

Heuristic Search Methods

Methods that use a heuristic function to provide specific knowledge about the problem:

Hill climbing
Beam search
Hill climbing (2)
Greedy search
Genetic algorithm

OPTIMAL Search

When cost of TRAVERSING the path should be minimized (even at expense of more complicated SEARCHING):

Uniform Cost

A*

Learning Outcomes

- To be able to apply all search algorithm in different problems like 8-puzzle or a simple roads network (hw#1)
- To know the differnces between the differnt type of algorithim (speed, memory
- To be able to compute the fitness or the Heuristic Functions for given problem
- To know what type of problems could be solve using search