(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 March 2002 (14.03.2002)

PCT

(10) International Publication Number WO 02/20706 A1

(51) International Patent Classification7: C11D 1/835. 3/20, 3/00, 11/00

(21) International Application Number: PCT/EP01/09882

(22) International Filing Date: 24 August 2001 (24.08.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0021765.3

5 September 2000 (05.09.2000)

- (71) Applicant (for AE, AG, AU, BB, BZ, CA, GB, GD, GH, GM, IL, KE, LC, LK, LS, MN, MW, NZ, SD, SG, SL, TT, TZ. UG, ZA, ZW only): UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4P 4BO (GB).
- (71) Applicant (for AL, AM, AT, AZ, BA, BG, BR, BY, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GE, HR, HU, ID, IS, JP, KG, KP, KR, KZ, LR, LT, LU, LV, MA, MD, MG, MK, MX, MZ, NO, PH, PL, PT, RO, RU, SE, SI, SK, TJ, TM, TR, UA, UZ, VN, YU only): UNILEVER NV [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).
- (71) Applicant (for IN only): HINDUSTAN LEVER LIM-ITED [IN/IN]; Hindustan Lever House, 165/166 Backbay Reclamation, Maharashtra, 400 020 Mumbai (IN).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HOWARD, Jane [GB/GB]; c/o Lever Faberge, Development Centre, PO Box 69, Port Sunlight, Wirral, Merseyside CH62 4ZA

(GB). ORMANDY, Kevin, Anthony [GB/GB]; c/o Lever Faberge, Lever Faberge Technical Centre, PO Box 69, Port Sunlight, Wirral, Merseyside CH62 4ZD (GB). PARSONS, John, Stuart [GB/GB]; 1 Elm Road, Prenton, Birkenhead, Merseyside L42 9NY (GB).

- (74) Agents: ELLIOTT, Peter, William et al.; Unilever PLC, Patent Department, Colworth House, Sharnbrook, Bedford, Bedfordshire MK44 1LQ (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: A METHOD OF PREPARING FABRIC CONDITIONING COMPOSITIONS

(57) Abstract: A method of preparing an aqueous dispersion of a fabric conditioning composition comprises mixing 7.5 to 60 % byweight of a cationic fabric softening compound, the compound having one or more hydrocarbyl chains formed from parent fatty acyl compounds or fatty acids having an iodine value of from 0 to 20 with 0.01 % - 1.5 % by weight of a nonionic surfactant viscosity modifier and up to 1.4 % by weight of a fatty alcohol, the combination of (b) and (c) being no more than 1.5 % by weight, based on the total weight of the composition, the aqueous dispersion being subjected to high-shear below the phase transition temperature of compound (a) for a time sufficient to provide a composition having a viscosity of from 10 to 250 mPa.s measured at 20s-1 using a Haake MV1 Rotoviscometer at 20 °C.

PCT/EP01/09882

A METHOD OF PREPARING FABRIC CONDITIONING COMPOSITIONS

Field of the Invention

5

10

15

20

25

30

The present invention relates to a method for preparing a fabric conditioning composition, in particular a concentrated fabric conditioning composition. The invention further relates to a fabric conditioning composition obtained by the method.

Background of the Invention

Fabric conditioning compositions are often used to deposit a fabric softening compound onto fabrics. These are usually rinse added fabric conditioning compositions. Typically, such compositions comprise a fabric softening agent dispersed in water. The fabric softening agent may be included at up to 7.5% by weight, in which case the compositions are considered dilute, or at levels from 7.5% to 60% by weight, in which case the compositions are considered concentrated.

Concentrated fabric conditioning compositions can suffer, and indeed are much more likely than dilute compositions to suffer from problems of instability both immediately after the composition is formed and during longer term storage.

Instability can manifest itself as a thickening of the composition. This thickening can occur to a level at which the composition is no longer pourable or dispersible in use, and, can even lead to the formation of an irreversible gel.

Such thickening is very undesirable because the composition can thereafter no longer be conveniently used, for example unpleasant residues can be left in the dispenser drawer of the washing machine and/or it is unattractive to the consumer.

Instability is particularly a problem when compositions are stored at high temperature, e.g. above 30°C.

10 It is obviously highly desirable for any fabric conditioning composition to provide excellent softening. It is known that better softening can be achieved using hardened (i.e. saturated) softening compounds instead of unsaturated or partially unsaturated softening compounds.

15

liquid.

5

It is also desirable to use hardened (saturated) softening compounds as they are believed to have less base odour than unsaturated softening compounds, especially for TEA quats.

However, conditioning compositions comprising hardened softening compounds have been found in practice to be harder to formulate than those containing unsaturated or partially unsaturated softening compounds. For instance, additional viscosity modifiers and/or stabilisers not required when using unsaturated or partially unsaturated softening compounds are usually required in order to achieve a viscosity desirable to consumers, such as a thick, pourable

PCT/EP01/09882 WO 02/20706

- 3 -

It is suggested that the viscosity of concentrated conditioning compositions comprising hardened softening compounds can be modified using nonionic surfactants. However, large amounts of such agents are typically required. Typically, they have to be included at levels in excess of 1.5% by weight, based on the total weight of the composition, and because such ingredients are expensive, their addition increases the cost of fabric conditioning compositions which include them.

10

This is especially true for compositions comprising hardened ester-linked quaternary ammonium softening compounds, in particular triethanolamine-based quaternary ammonium compounds (hereinafter referred to as 'TEA quats').

15

20

25

The present invention thus sets out to provide methods of preparing concentrated fabric conditioning compositions, and compositions prepared by said methods, which achieve viscosities desirable to consumers without the need to incorporate large quantities of components that are usually expensive.

The present inventors have found that a reduced amount of a particular nonionic active agent acts as a viscosity stabiliser for a fabric conditioning composition thereby providing a viscosity desired by consumers, even when included at very low levels (1.5% or less by weight in a fabric conditioning composition), when the composition is manufactured under certain conditions. In particular, it has been found that high-shear treatment of the composition 30 below the phase transition temperature of the softener

material provides the desired viscosity stability for a composition comprising said particular nonionic active agent.

- 5 WO 97/16516 discloses a softening composition comprising a cationic softener and a nonionic surfactant in a ratio of 1:2 to 4:1. There is no mention of formulating the composition under certain shear conditions.
- 10 EP 640121 discloses a composition comprising a diester quat and 0.1 to 30% of a viscosity/dispersibility modifier.

 There is no mention of hardened softening compounds.
- EP 734433 discloses mixtures of hardened and partially unsaturated ester-linked quaternary ammonium materials. There is no mention of nonionic stabilising agents.
- GB 2170829 discloses compositions comprising quaternary ammonium compounds and fatty alcohols in a ratio of 6:1 to 3:1. There is no mention of hardened quaternary ammonium compounds.
- WO 99/29823 discloses a process for making a softener composition comprising forming a melt of a softener and optional additives, dispersing this in water, cooling to below the Krafft temperature of the softener and adding dye and nonionic material. There is no suggestion that the nonionic material can be incorporated before the mixture cools. Furthermore, there is no reference to high-shear milling.

WO 02/20706 PCT/EP01/09882

- 5 -

EP 503221 discloses a composition comprising a cationic softener, a linear fatty alcohol ethoxylate and a highly branched fatty alcohol. There is no mention of a hardened cationic softener.

5

EP 309052 discloses compositions comprising 11 to 25% of a quaternised ester-amine, 0.1 to 10% of a linear alkoxylated alcohol with 1 to 10 alkylene oxide groups and 60% or more of a liquid carrier.

10

Objects of the Invention

The present invention seeks to provide a method for forming a fabric conditioning composition and a fabric conditioning composition obtained by said method which overcomes one or more of the above-mentioned problems, and provides one or more of the aforementioned benefits.

Summary of the Invention

20

15

According to the invention, there is provided a method for preparing a fabric conditioning composition comprising mixing with water:

25

(a) 7.5 to 60% by weight of a cationic fabric softening compound of formula (I), (II) or (III) as herein defined, the compound having one or more hydrocarbyl chains formed

from parent fatty acyl compounds or fatty acids having an iodine value of from 0 to 20; and

WO 02/20706

5

- (b) 0.01% 1.5% by weight of a nonionic surfactant viscosity modifier; and
- (c) up to 1.4% by weight of a fatty alcohol

wherein the combination of (b) and (c) is no more than 1.5% by weight, based on the total weight of the composition and the components (a), (b) and (c) are mixed to form an aqueous dispersion, the aqueous dispersion being subjected to high-

- shear below the phase transition temperature of compound (a) for a time sufficient to provide a composition having a viscosity of from 10 to 250 mPa.s measured at 20s⁻¹ using a Haake MV1 Rotoviscometer at 25°C.
- The invention further provides a fabric conditioning composition obtained by said method.

For the avoidance of doubt, the word "comprising" covers the normal meaning of the word "including" and is not limited to "consisting of" or "composed of". In other words the listed steps, options and components are not exhaustive.

Detailed Description of the Invention

25 The compositions of the invention provide excellent initial and long term storage stability.

For the purposes of the present invention, the phrase 'initial stability' is defined as the viscosity stability at room temperature of the composition (measured over the initial 24 hour period after formation of the composition).

WO 02/20706

- 7 -

PCT/EP01/09882

For the purposes of the present invention, the phrase 'long term storage stability' is defined as the viscosity stability of the composition stored over a 4 week period at 37°C.

5

All viscosity measurement are made using a Haake MV1 rotoviscometer at a shear rate of 20s⁻¹.

Cationic Fabric Softening Compound

10

25

The cationic fabric softening compound is a quaternary ammonium compound having at least one ester group and having one or more hydrocarbyl chains formed from a parent fatty acyl group or acid having a degree of unsaturation represented by an iodine value (I.V.) of from 0 to 20, more preferably 0 to 5, even more preferably 0 to 2, e.g. 0 to 1 15 or even 0 to less than 1.

Thus, the softening compound is substantially or fully saturated (hardened). 20

It is considered advantageous to use a hardened (substantially or fully saturated) softening compound rather than an unsaturated or partially unsaturated compound since softening performance is generally better when using hardened softening compounds.

Also, hardened softening compounds are believed to have a lower base odour than unsaturated softening compounds. is especially apparent when comparing saturated and 30

15

unsaturated quaternary ammonium compounds based on triethanolamine (hereinafter referred to as "TEA").

Preferably the cationic softening compound has two C_{12-28} alkyl or alkenyl groups connected to the nitrogen head group via at least one ester link. It is more preferred if the quaternary ammonium material has two ester links present.

Preferably, the average chain length of the alkyl or alkenyl group is at least C_{14} , more preferably at least C_{16} . Most preferably at least half of the chains have a length of C_{18} .

It is generally preferred if the alkyl or alkenyl chains are predominantly linear.

The first group of cationic fabric softening compounds for use in the invention is represented by formula (I):

20
$$[(CH_2)_n(TR)]_m$$

 $R^1-N^+-[(CH_2)_n(OH)]_{3-m}$ X^- (I)

wherein each R is independently selected from a C_{5-35} alkyl or alkenyl group, R^1 represents a C_{1-4} alkyl, C_{2-4} alkenyl or a C_{1-4} hydroxyalkyl group,

WO 02/20706 PCT/EP01/09882

- 9 -

5

10

15

n is 0 or a number selected from 1 to 4, m is 1, 2 or 3 and denotes the number of moieties to which it relates that pend directly from the N atom, and X is an anionic group, such as halides or alkyl sulphates, e.g. chloride, methyl sulphate or ethyl sulphate.

Especially preferred materials within this formula are dialkenyl esters of triethanol ammonium methyl sulphate and N-N-di(tallowoyloxy ethyl) N,N-dimethyl ammonium chloride. A commercial example of a compound within this formula is Tetranyl AHT-1 (di-hardened oleic ester of triethanol ammonium methyl sulphate 80% active), ex Kao corporation.

degree of unsaturation, providing the overall IV of the parent fatty acyl compounds or fatty acids of the softening compounds remains below 20, preferably below 5, more preferably below 2. Compounds with low levels of unsaturation include the following from Tetranyl series: AT-1(di-oleic ester of triethanol ammonium methyl sulphate 90% active), L5/90 (palm ester of triethanol ammonium methyl sulphate 90% active (supplied by Kao corporation). Other unsaturated quaternary ammonium materials include Rewoquat

WE15 (C_{10} - C_{20} and C_{16} - C_{18} unsaturated fatty acid reaction products with triethanolamine dimethyl sulphate quaternised 90 % active), ex Witco Corporation. If softening compounds with low levels of unsaturation are present in the composition, then the weight ratio of hardened compound to

composition, then the weight ratio of hardened compound to unsaturated compound is preferably greater than 4:1, more preferably greater than 6:1, e.g. 8:1 or more.

The second group of cationic fabric softening compounds for use in the invention is represented by formula (II):

$$TR^{2}$$

$$|$$

$$(R^{1})_{3}N^{+} \longrightarrow (CH_{2})_{n} \longrightarrow CH \qquad X^{-} \qquad Formula (II)$$

$$|$$

$$CH_{2}TR^{2}$$

wherein each R^1 group is independently selected from C_{1-4} alkyl, hydroxyalkyl or C_{2-4} alkenyl groups; and wherein each R^2 group is independently selected from C_{8-28} alkyl or alkenyl groups; n is 0 or an integer from 1 to 5 and T and X^- are as defined above.

Preferred materials of this class such as 1,2

bis[tallowoyloxy]-3- trimethylammonium propane chloride and 1,2-bis[oleyloxy]-3-trimethylammonium propane chloride and their method of preparation are, for example, described in US 4137180 (Lever Brothers), the contents of which are

incorporated herein. Preferably these materials also comprise small amounts of the corresponding monoester, as described in US 4137180.

5 A third group of cationic fabric softening compounds for use in the invention is represented by formula (III)

wherein each R^1 group is independently selected from C_{1-4} alkyl, or C_{2-4} alkenyl groups; and wherein each R^2 group is independently selected from C_{8-28} alkyl or alkenyl groups; n is 0 or an integer from 1 to 5 and T and X^- are as defined above.

The compositions comprise from 7.5 to 60% by weight of cationic softening material(active ingredient), based on the total weight of the composition, more preferably 8 to 45% by weight, most preferably 8 to 30% by weight or even 9 to 25% e.g. 11 to 22% by weight.

Iodine Value of the Parent Fatty Acyl group or Acid

The iodine value of the parent fatty acyl compound or acid from which the cationic softening material is formed is from 0 to 20, preferably from 0 to 5, more preferably from 0 to 2.

If there is any unsaturated softening compound present in the composition, the iodine value is calculated as the mean value of the parent fatty acyl compounds or fatty acids of the unsaturated together with the (substantially) saturated softening compounds.

In the context of the present invention, iodine value of the 5 parent fatty acyl compound or acid from which the cationic surfactant is formed, is defined as the number of grams of iodine which react with 100 grams of the compound.

One method for calculating the iodine value of a parent
fatty acyl compound/acid from which the cationic softening
compound is formed, comprises dissolving a prescribed amount
(from 0.1-3g) into about 15ml chloroform. The dissolved
parent fatty acyl compound/fatty acid is then reacted with
25 ml of iodine monochloride in acetic acid solution (0.1M).
To this, 20ml of 10% potassium iodide solution and about 150
ml deionised water is added. After addition of the halogen
has taken place, the excess of iodine monochloride is
determined by titration with sodium thiosulphate solution
(0.1M) in the presence of a blue starch indicator powder.

At the same time a blank is determined with the same

quantity of reagents and under the same conditions. The

15

25

· 曹操のから、これのの政治の経験を開発している。

difference between the volume of sodium thiosulphate used in the blank and that used in the reaction with the parent fatty acyl compound or fatty acid enables the iodine value to be calculated. Other methods for calculating the IV of a parent fatty acyl compound or fatty acid of a softening compound will be apparent to the person skilled in the art.

Nonionic Surfactant Viscosity Stabiliser

The compositions comprise one or more nonionic surfactant 10 viscosity stabilising agents.

Especially preferred nonionic surfactant viscosity stabilising agents for use in the compositions of the invention are alkoxylated nonionic fatty alcohols, such as fatty alcohols comprising $C_{10}-C_{22}$ alkyl/alkenyl chains alkoxylated with 3 to 30, more preferably 4 to 27, most preferably 6 to 25, e.g. 11 to 20 moles of alkoxy moieties. The fatty alcohols may be alkoxylated with ethylene oxide, propylene oxide or ethylene oxide/propylene oxide mixtures. 20 Ethoxylated nonionic surfactants are especially preferred.

The viscosity stabilising agent is present in the composition in an amount from 0.01% to 1.5% by weight, more preferably from 0.1% to 1.3% by weight from 0.3% to 1.2% by weight, based on the total weight of the composition.

Fatty Alcohol

Optionally and advantageously, one or more un-alkoxylated 30 fatty alcohols are present in the composition.

Preferred alcohols have a hydrocarbyl chain length of from 10 to 22 carbon atoms, more preferably 11 to 20 carbon atoms, most preferably 15 to 19 carbon atoms.

- 5 The fatty alcohol may be saturated or unsaturated, though saturated fatty alcohols are preferred as these have been found to deliver greater benefits in terms of stability, especially low temperature stability.
- 10 Suitable commercially available fatty alcohols include tallow alcohol (available as Hydrenol S3, ex Sidobre Sinnova, and Laurex CS, ex Clariant).
- The fatty alcohol content in the compositions is from 0 to 1.4% by weight, more preferably from 0.005 to 1.2% by weight, most preferably from 0.01 to 0.8% by weight, based on the total weight of the composition.
- In the present invention, the particular method of preparing
 the composition enables lower levels of nonionic stabilising
 agent and fatty alcohol (if used) to be included in the
 compositions whilst maintaining excellent initial and long
 term viscosity stability.
- 25 Thus, the combined level of nonionic surfactant viscosity stabilising agent and fatty alcohol in the compositions of the invention does not exceed 1.5% by weight based on the total weight of the composition.
- 30 The weight ratio of the cationic softening material to the combined weight of the nonionic surfactant viscosity

WO 02/20706 PCT/EP01/09882

- 15 -

stabilising agent and optional fatty alcohol is preferably 5:1 to 50:1, more preferably 5:1 to 20:1, most preferably 5:1 to 15:1.

5 Water

The compositions of the invention are aqueous based.

Typically, the level of water present is from 0.5-92.49% by weight, more preferably 50-92% by weight, even more preferably 60-91% by weight, most preferably 70-90% by weight, based on the total weight of the composition.

Oils

15

The compositions of the present invention may comprise at least one oil.

The oil may be a mineral oil, a silicone oil, an ester oil and/or natural oils such as vegetable oils.

The ester oils are preferably hydrophobic in nature. They include fatty esters of mono or polyhydric alcohols having from 1 to 24 carbon atoms in the hydrocarbon chain, and mono or polycarboxylic acids having from 1 to 24 carbon atoms in the hydrocarbon chain, provided that the total number of carbon atoms in the ester oil is equal to or greater than 16, and that at least one of the hydrocarbon chains has 12 or more carbon atoms.

25

Suitable ester oils include saturated ester oils such as the PRIOLUBES (ex. Unichema). 2-ethyl hexyl stearate (PRIOLUBE 1545), neopentyl glycol monomerate (PRIOLUBE 2045) and methyl laurate (PRIOLUBE 1415) are particularly preferred although oleic monoglyceride (PRIOLUBE 1407) and neopentyl glycol dioleate (PRIOLUBE 1446) are also suitable.

It is preferred that the viscosity of the ester oil is from 2 to 400 mPA.s at a temperature of 25°C at 106s⁻¹, measured using a Haake rotoviscometer, and that the density of the mineral oil is from 0.8 to 0.9g.cm⁻³ at 25°C.

Suitable mineral oils include branched or straight chain hydrocarbons having 6 to 35, more preferably 7 to 20, most preferably 7 to 14 carbon atoms in the hydrocarbon chain, although if no low molecular weight alcohol is present in the composition, then the hydrocarbon chain length of the oil will preferably be in the range 6 to 12 carbon atoms.

20 Preferred mineral oils include the Marcol technical range of oils (ex Esso) although particularly preferred is the Sirius range (ex Silkolene) or Semtol (ex. Witco Corp.).

Suitable silicone oils are described in co-pending application PCT/EP00/04223 (published as WO-A1-00/71806).

One or more oils of any of the above mentioned types may be used.

WO 02/20706 PCT/EP01/09882

- 17 -

The oil may be present in an amount from 0.1 to 70% by weight, more preferably 0.2 to 20%, by weight most preferably 0.3 to 12%, e.g. 0.4 to 10% by weight based on the total weight of the composition.

5

The oil may be present as a component added into the composition separately from any other ingredient, or it may be present in other components of the composition, e.g. perfumes.

10

15

30

Solvent

In addition to any fatty alcohol which may be present in the compositions, the compositions may comprise one or more solvents.

自由 · 中日 東 在各田中的村村所以上的人工工工具的社工工具、1、 中、海内局的市局工工工工厂

The solvent may consist of a low molecular weight alcohol, such as a low molecular weight monohydric alcohol.

The presence of a lower molecular weight alcohol may also help to improve physical stability of the composition upon storage by lowering the viscosity to a more desired level.

Examples of suitable low molecular weight alcohols include 25 ethanol, isopropanol, n-propanol, t-butyl alcohol, hexanol, heptanol, octanol, and the like.

It is especially preferred that the chain length of the hydrocarbon in the monohydric alcohol is 2 to 10, more preferably 3 to 9, most preferably 4 to 8 carbon atoms.

WO 02/20706

- 18 -

PCT/EP01/09882

The alcohol may be branched or linear.

The solvent may be added to the composition either by being present as a component in the raw material comprising the cationic surfactant or it may be added separately.

The solvent is preferably present in an amount from 0.05% to 40% by weight, more preferably from 0.1% to 25% by weight, most preferably from 0.15% to 16% by weight, based on the total weight of the composition.

10

Mixtures of solvents may be used if desired.

Dispersion Aids

- 15 The compositions may comprise dispersion aids. Typical dispersion aids include mono-long chain alkyl cationic quaternary ammonium compounds and mono-long chain alkyl amine oxides.
- 20 Preferably the concentration of the dispersion aid is from 0.05-30% by weight, more preferably from 0.3-20% by weight, most preferably from 1-15% by weight, based on the total weight of the composition.

25 Anti-Oxidation/Reduction Stabilisers

The compositions of the invention may, optionally, comprise one or more additional compounds which stabilise against oxidation and/or reduction.

WO 02/20706 PCT/EP01/09882

- 19 -

If the stabilisers are present as anti-oxidants, they may be added at a level of from 0.005 to 2% by weight based on the total weight of the composition, more preferably from 0.01 to 0.2% by weight, most preferably from 0.035% to 0.1% by weight.

If present as an anti-reduction agent, then the stabiliser is preferably used in an amount from 0.001% to 0.2% by weight based on the total weight of the composition.

10

Co-active Softening Surfactants

Co-active softening surfactants for the cationic surfactant may also be incorporated in an amount from 0.01 to 20% by weight, more preferably 0.05 to 10%, based on the total weight of the composition. Preferred co-active softening surfactants are fatty acids, fatty amines and fatty Nooxides.

20 Perfumes

The compositions of the invention may also comprise one or more perfumes.

When present, the perfume is used in a concentration of preferably from 0.01-15% by weight, more preferably from 0.05-10% by weight, most preferably from 0.1-5% by weight, e.g. 0.15 to 4.5% by weight based on the total weight of the composition.

WO 02/20706

The perfume is preferably hydrophobic and has a ClogP value of 2.5 or more, more preferably 3 or more. For a discussion of ClogP and the method of its calculation, see WO 96/12785, of which the calculation method is incorporated by reference.

Other Optional Ingredients

The compositions may also contain one or more optional
ingredients conventionally included in fabric conditioning
compositions such as pH buffering agents, perfume carriers,
fluorescers, colourants, hydrotropes, antifoaming agents,
antiredeposition agents, polyelectrolytes, enzymes, optical
brightening agents, anti-shrinking agents, anti-wrinkle
agents, anti-spotting agents, germicides, fungicides, anticorrosion agents, drape imparting agents, anti-static
agents, ironing aids, skin care agents as disclosed in EP
0789070 and dyes.

20 Product Form

25

In its undiluted state at ambient temperature the product is in the form of an aqueous dispersion. Preferably the product is an aqueous dispersion of lamellar particles.

Phase Transition Temperature

Fabric conditioning compositions which comprise an aqueous dispersion of water insoluble cationic fabric softening compounds exist at ambient temperature as a phase which is a dispersion of lamellar droplets where the chains of the

WO 02/20706 PCT/EP01/09882

cationic softener exist in a solid or crystalline state (Lβ lamellar phase). As the temperature is raised the dispersed phase undergoes a transition to the Lα lamellar phase where the chains of the cationic softener (with or without coactives) will exist in a more fluid or liquid state. The temperature at which this transition occurs is the "phase transition temperature" and will be apparent to the person skilled in the art. The shear must be applied according to the present invention at a temperature below this phase transition temperature. However, shear may, in addition, be carried out at higher temperatures. Typically the phase transition temperature is in the range 30-65°C for cationic softeners with long saturated chains (e.g. greater than C18).

15 For hardened TEA-based softening compounds, the phase transition temperature is from 30 to about 65°C.

If the softening material has more than one phase transition temperature, then the high shear must be carried out below the lowest phase transition temperature although it may in addition be carried out above this temperature.

The level and duration of shear can be used to control the viscosity of the final product.

Viscosity of the Product

20

25

30

The compositions have an initial viscosity as herein defined of from 10 to 250 mPa.S, preferably 15 to 200 mPa.S, most preferably 20 to 180 mPa.S at a shear rate at $20s^{-1}$ at 25° C,

WO 02/20706

and a long term viscosity as herein defined of 10 to 250 mPa.S, preferably 15 to 200 mPa.S, most preferably 20 to 180 mPa.S at a shear rate at 20s⁻¹ at 25°C. All measurements are made using a Haake MV1 rotoviscometer.

5

Thus, the compositions of the invention provide excellent initial stability and long term storage stability, especially at ambient and high temperature.

10 The composition is preferably used in the rinse cycle of a home textile laundering operation, where, it may be added directly to the washing machine, e.g. through a dispenser drawer. It can be diluted prior to use or can be added in an undiluted state. The compositions may also be used in a domestic hand-washing laundry operation.

Composition pH

When the composition is dispersed in water, the solution 20 preferably has a pH of from 1.5 to 5.

Processing

The compositions of the invention are prepared according to
25 any suitable method as long as the mixture is subjected to
high shear below the phase transition temperature of the
softening compound for a length of time sufficient to
achieve a viscosity desirable to the consumer (from 10 to
250mPa.S at a shear rate of 20s⁻¹ measured using a Haake
30 Rotoviscometer MV1 at a temperature of 25°C). High shear can

WO 02/20706 PCT/EP01/09882

- 23 -

be achieved by using static or dynamic mills preferably, but not exclusively, in a side-loop. Examples of dynamic milling devices include Janke-Kunkel or Silverson high-shear mills. Examples of static milling devices include needle valves and orifice plates. High shear can also be achieved by sonolation. Other methods of achieving high shear will be apparent to those skilled in the art.

In the context of the present invention, high shear is

defined as shear applied at an angular velocity (rpm) of

from 3,000 to 10,000 where the number of batch volumes

passing through a mill at the temperature below the phase

transition temperature is from 0.5 to 4 batch volumes.

- 15 It will be apparent to those skilled in the art that at lower angular velocities, higher batch volumes will be required and at higher angular velocities, lower batch volumes will be required.
- 20 A particularly suitable method according to the invention for forming fabric conditioning compositions is described in method 1 below.

Method 1

25

30

A cationic softening material, a nonionic surfactant viscosity stabiliser and, optionally, a fatty alcohol are mixed under heating and stirring to form a melted premix. In a separate vessel, water, and optionally antifoam and preservative, are heated under stirring. The melted premix is added slowly to the contents of the vessel, preferably

with stirring. The resulting mixture is gently cooled to just above ambient temperature. Stirring is continued throughout. Additional optional ingredients, such as dye and perfume, may then be added. During the process, the material is subjected to high shear, as defined above, at a temperature below the phase transition temperature of the cationic softening material until such a time that the acceptable viscosity is reached.

10 Examples

15

25

The invention will now be illustrated by the following nonlimiting examples. Further modification within the scope of the present invention will be apparent to the person skilled in the art.

Examples of the invention are denoted by a number whilst comparative examples are denoted by a letter.

20 Unless otherwise stated, all values are in percentage by weight based on the total weight of the composition.

Compositions 1 to 8 and B to E were prepared according to method 1 described above.

Composition A was prepared according to the following prior art method.

PCT/EP01/09882 WO 02/20706

- 25 -

Prior Art Method

The cationic surfactant, nonionic stabiliser and fatty alcohol are mixed under heating with stirring to form a melted premix. In a separate vessel, water, antifoam and preservative are heated with stirring. The melted premix is added slowly to the contents of the vessel. The mixture is gently cooled to just above ambient temperature and stirring is continued throughout. Optional ingredients such as dye and perfume may then be added. The mixture was not subjected to high shear below the phase transition temperature for a period to give a viscosity of from 10 to 250mPa.S at a shear rate of 20s-1 measured using a Haake Rotoviscometer MV1 at a temperature of 25°C

15

The compositions are given in table 1, below.

Table 1

Example	А	В	C 1 2 3	-	2	က	4 5	5	9	7	8	۵	Ш
Cationic surfactanta	13	12.5	12.5	13	12.5	12.5	12.5	12.5	12	12	13 12.5 12.5 13 12.5 12.5 12.5 12.5 12 12 12 12 12	12	12
Nonionic viscosity	0.75	0.75 1.8	2	0.75	0.75	0.75	0.75	9.0	0.75	0.75	2 0.75 0.75 0.75 0.75 0.6 0.75 0.75 0.75 1.6 1.8	1.6	1.8
stabiliser ^b													
Fatty alcohole	9.0		,	0.75	0.5	9.0	0.75	9.0	0.5	9.0	- 0.75 0.5 0.6 0.75 0.6 0.5 0.6 0.75		
Preservative													
Dye	\	1				1	Minor						1
Antifoam		ه. مه											
Perfume	V						0.95						1
	,												
Water	4					 	To 100						4
	, 												1

An ester-linked quaternary ammonium material based on ^aTetranyl AHT1 (ex Kao).

TEA and having an IV of less than 1.

Ŋ

^bGenapol C200. Coco-20 EO (ex Clariant)

^cHydrenol S3. Tallow alcohol(ex Sidobre Sinnova)

The results are given in table 2.

rable 2

Storage time Shear rate (days/weeks) (s ⁻¹)	A 354	B 26	C C	169	2 103	3 148 60	Example 4 145 145		6 68	7 118 60	107	D 129 61	112 53
	146 160 76	91 43		133 67	39 39	102 45	90 27	36	90 48	42	39	98 49 289	122 54 435
	276	421 155	445 174	210 105	112	63	52	26 -	59	- 51	52	115	147
	112	-	•	1	1	SS C	.				•	1	•
_	22		1		40	44		}					

The viscosity measurements were taken at the shear rates indicated in the table Ŋ

using a Haake MV1 Rotoviscometer at $25^{\circ}\mathrm{C}.$

Comparison of example A with example 1 shows that compositions formed according to method 1 exhibited significantly improved initial viscosity stability over

the composition prepared according to the prior art method. 10

Comparison of the viscosity stability results for examples B to E with examples 1 to 8, all of which were prepared according to method 1 above, demonstrates that there is a marked improvement in the stability of the compositions on storage (especially high temperature stability upon storage) obtained by restricting the total amount of the nonionic surfactant viscosity stabiliser and fatty alcohol in the compositions.

- Thus, there is a clear synergistic benefit provided by the specific conditions of production and the limitation of the nonionic viscosity stabiliser plus fatty alcohol level to 1.5% by weight.
- The invention has been described by way of example only.

 Further modifications within the scope of the invention will be apparent to the person skilled in the art.

WO 02/20706

CLAIMS

1. A method for preparing a fabric conditioning composition comprising mixing with water:

5

- (a) 7.5 to 60% by weight of a cationic fabric softening compound of formula (I), (II) or (III) as herein defined, the compound having one or more hydrocarbyl chains formed
- from parent fatty acyl compounds or fatty acids having an iodine value of from 0 to 20; and
 - (b) 0.01% 1.5% by weight of a nonionic surfactant viscosity modifier; and

15

25

(c) up to 1.4% by weight of a fatty alcohol

wherein the combination of (b) and (c) is no more than 1.5% by weight, based on the total weight of the composition

20 compos

and wherein components (a), (b) and (c) are mixed to form an aqueous dispersion, the aqueous dispersion being subjected to high-shear below the phase transition temperature of component (a) for a time sufficient to provide a composition having a viscosity of from 10 to 250 mPa.s measured at 20s⁻¹ using a Haake MV1 Rotoviscometer at 25°C.

WO 02/20706

- A method according to claim 1 wherein components (a),
 (b), (c) are melted together to form a premix prior to mixing with water.
- 5 3. A method according to either of claims 1 or 2 wherein the high shear is applied at an angular velocity of from 3,000 to 10,000 rpm where the number of batch volumes passing through a mill below the phase transition temperature is from 0.5 to 4 batch volumes.

10

25

- 4. A fabric conditioning composition obtainable by the method of claim 1.
- A composition according to claim 4 comprising a
 cationic fabric softening compound of formula (I) as defined herein.
- 6. A composition according to claims 4 or 5 wherein the weight ratio of cationic softening material to the combined weight of the nonionic surfactant viscosity modifier and fatty alcohol is 5:1 to 50:1.
 - 7. A composition according to any one of claims 4 to 6 wherein the cationic softening material in present in an amount from 11 to 22% by weight, based on the total weight of the composition.
- 8. A composition as claimed in any one of claims 4 to 7 wherein the nonionic surfactant viscosity modifier is a
 30 C₁₀₋₂₂ fatty alcohol having an alkoxylation number of 3 to 30.

INTERNATIONAL SEARCH REPORT

Intel al Application No PCI/EP 01/09882

A. CLASSIFICATION OF SUBJECT MATTER 1PC 7 C11D1/835 C11D3/20 C11D11/00 C11D3/00 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) B. FIELDS SEARCHED C11D IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 4,6-8EP 0 309 052 A (PROCTER & GAMBLE) X 29 March 1989 (1989-03-29) cited in the application 1-3 example 4 Υ page 13, line 19 - line 20 4-8 WO 93 23510 A (PROCTER & GAMBLE) χ 25 November 1993 (1993-11-25) cited in the application example 9 4,6 WO 99 50378 A (UNILEVER PLC (GB)) χ 7 October 1999 (1999-10-07) claims 1-3,9 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'E' earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is clied to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cocument of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed *&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 14/01/2002 4 January 2002 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Palentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Rasmusson, R

INTERNATIONAL SEARCH REPORT

Inte Intelligation No

2 12 11		PCI/EP 01	17 09882
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Υ	WO 97 16516 A (PROCTER & GAMBLE) 9 May 1997 (1997-05-09) cited in the application page 30 -page 31; claims 5,10		1-3
A			4-8
А	US 6 057 285 A (PÈSCADOR JOSÉ JAVIER TOVAR ET AL) 2 May 2000 (2000-05-02) claims 1,3,4 column 6, line 30 - line 32		1-8
A	US 5 985 820 A (KHAN-LODHI ABID NADIM ET AL) 16 November, 1999 (1999-11-16) claims 1,8 column 4, line 48-54		4,6-8
А	US 6 004 913 A (IACOBUCCI PAUL ALBERT ET AL) 21 December 1999 (1999-12-21) claims 1,4 column 6, line 12 - line 16 column 8, line 63 -column 9, line 30		4-8
	-		
			· · ·
;			

DEST AVAILABLE COPY

Patent document cited in search report	Publication date	Patent family member(s)	- Publication date
EP 0309052 /	29-03-19	B9 AT 82770 T AU 2243488 A CA 1340425 A1 CN 1032813 A DE 3876196 D1 DE 3876196 T2 DK 531388 A EP 0309052 A2 FI 884352 A ,B, GR 3006341 T3 IE 61379 B JP 1162872 A KR 9509258 B1 MX 169935 B NZ 226302 A TR 28531 A	15-12-1992 23-03-1989 09-03-1999 10-05-1989 07-01-1993 15-04-1993 24-03-1989 29-03-1989 24-03-1989 21-06-1993 02-11-1994 27-06-1989 18-08-1995 02-08-1993 26-04-1991 02-10-1996
WO 9323510	A 25-11-19	AT 181956 T AU 4227393 A CA 2134640 A1 CN 1082101 A ,B CZ 9402769 A3 DE 69325578 D1 DE 69325578 T2 EP 0640121 A1 EP 0894848 A1 ES 2133397 T3 FI 945327 A HU 72231 A2 JP 7507107 T MX 9302786 A1 NO 944302 A SK 134694 A3 WO 9323510 A1 US 5545350 A	15-07-1999 13-12-1993 25-11-1993 16-02-1994 12-04-1995 12-08-1999 27-01-2000 01-03-1995 03-02-1999 16-09-1999 11-11-1994 29-04-1996 03-08-1995 31-05-1994 11-11-1994 08-11-1995 25-11-1993 13-08-1996
WO 9950378	A 07-10-1	999 AU 733476 B2 AU 3410299 A BR 9909123 A CN 1294626 T WO 9950378 A1 EP 1066363 A1	17-05-2001 18-10-1999 19-12-2000 09-05-2001 07-10-1999 10-01-2001
WO 9716516	A 09-05-	1997 AU 7521996 A BR 9611374 A CA 2242405 A1 CZ 9801351 A3 EP 0858499 A1 PL 326868 A1 SK 57798 A3 US 6022845 A WO 9716516 A1	22-05-1997 23-02-1999 09-05-1997 11-11-1998 19-08-1998 26-10-1998 02-12-1998 08-02-2000 09-05-1997
US 6057285	A 02-05-	2000 AU 2769299 A BG 103896 A BR 9904829 A CN 1258313 T EP 0975726 A1	06-09-1999 31-07-2000 23-05-2000 28-06-2000 02-02-2000

INTERNATIONAL SEARCH REPORT

Inter al Application No
PCI/Er 01/09882

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 6057285	Α		HU	0003822 A2	28-03-2001
			PL	336221 A1	19-06-2000
			SK	154999 A3	11-07-2000
			TR	9902595 T1	23-10-2000
			WO	9942547 A1	26-08-1999
US 5985820		16-11-1999	AU	721656 B2	13-07-2000
			ΑU	7565996 A	17-07-1997
•			BR	9612231 A	13-07-1999
			CA	2240953 A1	03-07-1997
			DE	69613715 D1	09-08-2001
			WO	9723590 A1	03-07-1997
			ΕP	0876455 A1	11-11-1998
			ES	2160843 T3	16-11-2001
US 6004913	A	21-12-1999	US	5916863 A	29-06-1999
			ΑT	207950 T	15-11-2001
			BR	9708898 A	03-08-1999
			CN	1221447 A	30-06-1999
			DE	69707864 D1	06-12-2001
			WO	9742279 A1	13-11-1997
			EP	0900260 A1	10-03-1999
			JP	2000509445 T	25-07-2000
			US	6323167 B1	27-11-2001
			US	6037315 A	14-03-2000

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)