5. Modelos de Distribución

- 1. Distribución Binomial
- 2. Distribución de Poisson
- 3. Distribución Normal
- 4. Combinación lineal de normales
- 5. Teorema Central del Límite
- 6. Aproximaciones por la normal

Distribución de probabilidad

- Una distribución de probabilidad define el comportamiento de una variable aleatoria.
 - Ejemplo: en el caso discreto especifica todos los valores posibles de la v.a. y la prob. de que ocurra cada uno de ellos.
- Toda v.a. tiene una distribución de probabilidad (conocida o desconocida).
- Distribuciones <u>teóricas</u> (se dan en realidad):
 - Discretas: Binomial, Poisson, Hipergeométrica, (Uniforme), ...
 - Continuas: Normal, Exponencial, ...
- Distribuciones <u>en el muestreo</u>:
 - t de Student, χ^2 , F de Snedecor, ...

Distribución de Bernoulli

Una v.a. X tiene una distribución de Bernoulli de parámetro p si su función de cuantía es

X	0	1		
f	q	p		

- Se trata de una prueba básica, donde la probabilidad de 1 (éxito) es *p* y la de 0 (fracaso) es q.
- p + q = 1
- Ejemplo: en el lanzamiento de un dado precisamos un 6 para ganar.

X	0	1		
f	5/6	1/6		

Parámetros:

•
$$E(X) = p$$
; $Var(X) = pq$ (comp.)

•
$$\psi(t) = E(e^{tX}) = p \cdot e^t + q, -\infty < t < \infty$$

Distribución Binomial

- Una v.a. tiene una distribución Binomial con parámetros (n, p) si está formada por la suma de n pruebas de Bernoulli de parámetro p.
 - Si tenemos una muestra $\{X_i\}_1^n$ consistente en n pruebas de Bernoulli, entonces la v.a. $X = X_1 + X_2 + \cdots + X_n$ tiene una distribución Binomial $X \sim B(n, p)$
- <u>Ejemplo</u>: en un colegio la probabilidad de que un niño contraiga la gripe en un año es de 0'3. Considerar un aula con 20 niños.
 - El nº X de niños con gripe viene dado por: $X \sim B(20, 0'3)$
 - *X* mide el número de "éxitos" (contraer gripe), por lo que *Y* medirá el número de "fracasos" (no contraer gripe), por tanto:

$$X + Y = n$$

Estadística

Distribución Binomial

- Parámetros:
 - Función de cuantía

$$f(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x}, & x \in \{0,1,2,...,n\} \\ 0, & resto \end{cases}$$

- E(X) = np; Var(X) = npq
- $\psi(t) = \prod_{i=1}^{n} E(e^{tX_i}) = (p \cdot e^t + q)^n, -\infty < t < \infty$
- T^{ma}: Sean k v.a. $X_1, X_2, ..., X_k$ independientes cada una con distribución binomial $X_i \sim B(n_i, p)$, entonces

$$X = X_1 + X_2 + \cdots + X_k \sim B(n_1 + n_2 + \cdots + n_k, p)$$

• <u>Ejemplo</u>: nº de caras en el lanzamiento de 4 monedas + nº de caras en el lanzamiento de 6 monedas: binomial del lanzamiento de 10 monedas

Tabla Binomial

Binomial
$$B(n, p)$$
: $F(k) = \sum_{i=0}^{k} {n \choose i} p^{i} q^{n-i}$

n	k	0.01	0.05	0.10	0.15	0.20	0.25	0.30	1/3	0.35	0.40	0.45	0.50
1	0	0.9990	.9500	.9000	.8500	.8000	.7500	.7000	.6667	.6500	.6000	.5500	.5000
	1	1	1	1	1	1	1	1	1	1	1	1	1
	0	.9801	.9025	.8100	.7225	.6400	.5625	.4900	.4444	.4225	.3600	.3025	.2500
2	1	.9999	.9975	.9900	.9775	.9600	.9375	.9100	.8889	.8775	.8400	.7975	.7500
	2		1	1	1	1	1	1	1	1	1	1	1
	0	.9703	.8574	.7290	.6141	.5120	.4219	.3430	.2963	.2746	.2160	.1664	.1250
	1	.9997	.9928	.9720	.9393	.8960	.8438	.7840	.7407	.7183	.6480	.5748	.5000
3	2	1	.9999	.9990	.9966	.9920	.9844	.9730	.9630	.9571	.9360	.9089	.8750
	3		1	1	1	1	1	1	1	1	1	1	1
	0	.9606	.8145	.6561	.5220	.4096	.3164	.2401	.1975	.1785	.1296	.0915	.0625
	1	.9994	.9860	.9477	.8905	.8192	.7383	.6517	.5926	.5630	.4752	.3910	.3125
	2	1	.9995	.9963	.9880	.9728	.9492	.9163	.8889	.8735	.8208	.7585	.6875
4	3		1	.9999	.9995	.9984	.9961	.9919	.9877	.9850	.9744	.9590	.9375
	4			1	1	1	1	1	1	1	1	1	1

Tabla Binomial

- La tabla representa la función de distribución $F(k) = P(X \le k)$ de una v.a. binomial $X \sim B(n, p)$
- Alcanza valores hasta n = 30. Para valores mayores aproximar por Poisson, la Normal o, si es posible, hacer el cálculo directo.
- La prob. p aparece desde 0'01 hasta 0'50. Si p > 0'50 (no aparece en la tabla), entonces cambiar por Y ya que X + Y = n y p + q = 1. Por tanto: $Y \sim B(n, q)$, donde q < 0'50.
- Para $P(X \le k) = F(k) \rightarrow [tablas]$
- Para $P(X > k) = 1 P(X \le k) = 1 F(k) \rightarrow [tablas]$
- Para $P(X = k) = P(X \le k) P(X \le k 1) = F(k) F(k 1) \rightarrow [tablas]$
 - En este caso es fácil también usar f(x) directamente.

- Sea $X \sim B(3, 0'2)$.
 - a) Calcular $P(X \le 2)$.
 - b) Calcular P(X > 2).
 - c) Calcular P(X = 2).

• La probabilidad de que una persona adulta no sea hipertensa es de 0'7. Si tomamos 4 personas, calcular la probabilidad de que menos de 2 no sean hipertensas.

- Se lanzan 20 monedas; calcular:
 - a) Probabilidad de obtener 14 caras.
 - Resolver mediante tablas, función de cuantía y Laplace.
 - b) Probabilidad de obtener al menos 14 caras.

Distribución de Poisson

- La distribución de Poisson mide el número de ocurrencias por unidad de medida.
 - La v.a. es discreta y toma valores enteros 0, 1, 2, ...
 - Ejemplos: número de clientes que entran en un establecimiento por hora; defectos por metro en un rollo de tela; despegues de aviones por día; etc.
- El número de ocurrencias es proporcional a la unidad de medida.
- Las ocurrencias deben ser independientes por unidad de medida.

Distribución de Poisson

• Una v.a. X tiene una distribución de Poisson $X \sim P(\lambda)$ con media $\lambda > 0$ si es una v.a. discreta con función de cuantía:

$$f(x) = \begin{cases} e^{-\lambda} \cdot \frac{\lambda^x}{x!}, & x \in \{0,1,2,\dots\} \\ 0, & resto \end{cases}$$

- <u>Ejemplo</u>: el número de descargas por hora de un archivo en un servidor sigue una distribución de Poisson de media 20 por hora.
 - $X \sim P(20)$ en <u>una hora</u>
 - $X \sim P(40)$ en dos horas
 - Las descargas son independientes.

Distribución de Poisson

• Parámetros:

- f.g.m.: $\psi(t) = e^{\lambda(e^t 1)}$
- Media: $E(X) = \psi'(0) = \lambda$
- Varianza: $Var(X) = \psi''(0) \psi'(0)^2 = \lambda^2 + \lambda \lambda^2 = \lambda$
- T^{ma}: Sean k v.a. $X_1, X_2, ..., X_k$ independientes cada una con distribución de Poisson $X_i \sim P(\lambda_i)$, entonces

$$X = X_1 + X_2 + \dots + X_k \sim P(\lambda_1 + \lambda_2 + \dots + \lambda_k)$$

• <u>Ejemplo</u>: el número de hombres que entran en una gasolinera por hora es $X \sim P(25)$ y el número de mujeres es $Y \sim P(30)$, luego el número de personas que entran en una gasolinera es $X + Y \sim P(55)$

Tabla de Poisson

Poisson
$$P(\lambda) : F(k) = \sum_{i=0}^{k} e^{-\lambda} \frac{\lambda^{i}}{i!}$$

k/λ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0	.9048	.8187	.7408	.6703	.6065	.5488	.4966	.4493	.4066	.3679
1	.9953	.9825	.9631	.9384	.9098	.8781	.8442	.8088	.7725	.7358
2	.9998	.9989	.9964	.9921	.9856	.9769	.9659	.9526	.9371	.9197
3	1	.9999	.9997	.9992	.9982	.9966	.9942	.9909	.9865	.9810
3 4		1	1	.9999	.9998	.9996	.9992	.9986	.9977	.9963
5				1	1	1	.9999	.9998	.9997	.9994
6							1	1	1	.9999
7										1
k/λ	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
0	.3329	.3012	.2725	.2466	.2231	.2019	.1827	.1653	.1496	.1353
1	.6990	.6626	.6268	.5918	.5578	.5249	.4932	.4628	.4337	.4060
2	.9004	.8795	.8571	.8335	.8088	.7834	.7572	.7306	.7037	.6767
3	.9743	.9662	.9569	.9463	.9344	.9212	.9068	.8913	.8747	.8571
4	.9946	.9923	.9893	.9857	.9814	.9763	.9704	.9636	.9559	.9473
5	.9990	.9985	.9978	.9968	.9955	.9940	.9920	.9896	.9868	.9834
6	.9999	.9997	.9996	.9994	.9991	.9987	.9981	.9974	.9966	.9955
7	1	1	.9999	.9999	.9998	.9997	.9996	.9994	.9992	.9989
8			1	1	1	1	.9999	.9999	.9998	.9998
8 9							1	1	1	1

Tema 5. Modelos de Distribución

Estadística Grado en Ingeniería Informática Dpto. de Ciencia de la Computación e Inteligencia Artificial Universidad de Alicante

Tabla de Poisson

- La tabla representa la función de distribución $F(k) = P(X \le k)$ de una v.a. de Poisson $X \sim P(\lambda)$
- Alcanza valores de n = 21. Para valores mayores aproximar por la Normal o, si es posible, hacer el cálculo directo.
- Para $P(X \le k) = F(k) \rightarrow [tablas]$
- Para $P(X > k) = 1 P(X \le k) = 1 F(k) \to [tablas]$
- Para $P(X = k) = P(X \le k) P(X \le k 1) = F(k) F(k 1) \rightarrow [tablas]$
 - En este caso es fácil también usar f(x) directamente.

- Sea $X \sim P(1'5)$.
 - a) Calcular $P(X \le 3)$.
 - b) Calcular P(X > 2).
 - c) Calcular P(X = 2).

- El número de identificaciones con certificado en un servidor web sigue una distribución de Poisson de media 10 por minuto. Calcular:
 - a) Probabilidad de que en un minuto no se identifiquen más de 20 usuarios.
 - b) Probabilidad de que en dos minutos se identifiquen 8 usuarios.
 - c) Probabilidad de que en 15 segundos no acceda nadie.

Aproximación de la Binomial por Poisson

- Relación entre la Binomial y la de Poisson:
 - Dada una v.a. con distribución de Poisson, se toman n intervalos sobre la medida de manera que en cada intervalo sólo tengamos una ocurrencia. De esta forma, cada ocurrencia tendrá la misma probabilidad p, y como son independientes, la probabilidad de un intervalo será $\lambda = n \cdot p$.
 - $X \sim B(n, p) \rightarrow X \sim P(np)$
 - Se utiliza para Binomiales con *n* grande (>30).
 - La aproximación es buena para p < 0'5 y np < 5.

• La probabilidad de éxito de un correo electrónico malicioso (con virus) es de 0'02. Si se envía a 100 personas, calcular la probabilidad de que se infecten exactamente 5 incautos.