Electrical Engineering Department University of Delaware Technical Report 93-11-1 November 1993

Precision Synchronization of Computer Network Clocks

David L. Mills

Abstract

This report builds on previous work involving the Network Time Protocol, which is used to synchronize computer clocks in the Internet. It describes a series of incremental improvements in system hardware and software which result in significantly better accuracy and stability, especially in primary time servers directly synchronized to radio or satellite time services. These include novel interfacing techniques and operating system features. The goal in this effort is to improve the synchronization accuracy for fast computers and networks from the tens of milliseconds regime of the present technology to the submillisecond regime of the future.

In order to assess how well these improvements work, a series of experiments is described in which the error contributions of various modern Unix system hardware and software components are calibrated. These experiments define the accuracy and stability expectations of the computer clock and establish its design parameters with respect to time and frequency error tolerances. The report concludes that submillisecond accuracies are indeed practical, but that further improvements will be possible only through the use of temperature-compensated clock oscillators.

Keywords: disciplined oscillator, computer clock, network time synchronization.

Sponsored by: Advanced Research Projects Agency under NASA Ames Research Center contract NAG 2-638, National Science Foundation grant NCR-93-01002 and U.S. Navy Surface Weapons Center under Northeastern Center for Engineering Education contract A30327-93.

Table of Contents

1.	Introduction	
2.	Network Time Protocol	
2.1.	Calculating Offsets, Delays and Error Bounds	. 3
2.2.	The Unix Local Clock Model	. 5
2.3.	The NTP Local Clock Model	. 7
3.	Hardware and Software Interfaces for Precision Timekeeping	. 9
3.1.	Connection via Serial Port	10
3.1.1.	The CLK Facility	12
3.1.2.	The PPSCLK Facility	13
3.1.3.	The PPS Facility	14
3.2.	The IRIG Facility	15
4.	Unix Kernel Modifications for Precision Timekeeping	17
4.1.	Design Principles	
4.2.	Precision Time Resolution	
4.3.	Daemon and Application Interfaces	
4.4.	Leap Seconds	
5.	Timekeeping Errors in Time and Frequency	
5.1.	Clock Reading Errors	
5.2.	Clock Frequency Stability	
5.2.1.	Allan Variance of Typical Workstations	
5.2.2.	PLL Time Constant and Update Interval	
6.	Timekeeping in the Global Internet	
6.1.	Timekeeping in LANs and WANs	
6.2.	NTP System Performance	
7.	Summary and Conclusions	
8.	Acknowledgements	
9.	References	
Append	dix A. Audio IRIG Receiver Programming Information	
A.1.	Application Program Interface	
A.2.	Programming Example	
A.3.	Implementation and Configuration Notes	
	dix B. Precision Time Kernel Programming Information	
B.1.	The ntp_gettime() System Call	
B.2.	The ntp_adjtime() System Call	
B.3.	Command/Status Codes	49
B.4.	Kernel Variables	
B.5.	Architecture Constants	
	lix C. Phase-Lock Loop Simulator	
	lix D. DCnet Timekeeping Facilities	
D.1.	Computer and Network Facilities	
D.2.	DCnet Master Clock	
D.3.	Data Collection Facilities	
D.4.	Proof of Performance	
	11001 011 01101111111100	5 1

List of Figures

Figure 1. Subnet Synchronization Topologies
Figure 2. Network Time Protocol
Figure 3. Measuring Delay and Offset
Figure 4. Clock Adjustment Process
Figure 5. Update Nomenclature
Figure 6. Timing Offsets with Serial ASCII Timecode
Figure 7. Timing Offsets with PPS Signal
Figure 8. Probability of Error with Ultrix Kernel
Figure 9. Kernel Latency for SPARCstation IPC - 1
Figure 10. Kernel Latency for DECstation 5000/240
Figure 11. Kernel Latency for DEC 3000/400 AXP
Figure 12. Kernel Latency for SPARCstation IPC - 2
Figure 13. Probability of Error for SPARCstation IPC
Figure 14. Typical Clock Oscillator Wander
Figure 15. Allan Variance of Typical Local Oscillator
Figure 16. Transient Response of NTP PLL - Phase
Figure 17. Transient Response of NTP PLL - Frequency
Figure 18. Timing Offsets of a Primary Server
Figure 19. Timing Offsets Between Primary Servers
Figure 20. Timing Offsets of a LAN Secondary Server
Figure 21. Timing Offsets of a NSFnet Secondary Server
Figure 22. Timing Offsets of a NIST Primary Server
Figure 23. Timing Offsets for an Australian Primary Server
Figure 24. DCnet Timekeeping Facilities
Figure 25. Probability Distribution of GPS Receiver Errors
Figure 26. Time Offsets of WWVB Receiver
Figure 27. Time Offsets of LORAN-C Receiver
List of Tables
Table 1. Table of Leap-Second Insertions
Table 2. Characteristics of Typical NTP Peers