

Kecak Dance

CS 553 CRYPTOGRAPHY

Lecture 21
Keyed Hashing
MAC

Instructor Dr. Dhiman Saha

Keyed Hashing

Keyed Hash Functions

Hashing with secret keys

Keyed Hashing

Keyed Hashing

Keyed Hash Functions

Hashing with secret keys

Keyed Hash Functions

Hashing with secret keys

Message Authentication Codes

Integrity

Alice knows that the message wasn't corrupted in transit

Authenticity

Alice knows that Bob sent that message

When used and when not

Generate a MAC for each network packet transmitted

- ► Internet Protocol Security (IPSec)
- ► Secure Shell (SSH)
- ► Transport Layer Security (TLS)

Ciphertext expansion adds overhead

- ▶ MAC not generated in 3G and 4G mobile telephony standards
- ► Whats the implication?

Security of MACs

Forgery

► Generating new message/tag pair

Attack Model

- ► Known Message Attack
- ► Chosen Message Attack

Replay Attacks

► What's a replay attack?

Why?

- ► MACs vulnerable to replay attacks
- ► What's the strategy to handle this?

Pseudorandom Functions (PRFs)

A PRF is a function that uses a secret key to return PRF(K, M) such that the output looks random.

Used as part of other cryptographic primitive

- ► To make block ciphers
- Key derivation schemes
- ► Identification schemes
 - Generate a response from a random challenge.

Security Notion

Indistinguishability from a random function.

How?

MACs have weaker security requirements

Any secure PRF is also a secure MAC

If a PRF's outputs can't be distinguished from random strings, the implication is that their values can't be guessed which implies **unforgeability** and hence a secure MAC.

► Is the converse true?

Example (PRF \rightarrow PRF2 from secure PRF \rightarrow PRF1)

$$PRF2(K, M) = PRF1(K, M)||0$$

Keyed Hashes ← Unkeyed Hashes

The Secret-Prefix Construction

Vulnerabilities

- ► Length Extension Attacks
- ► Different Key Lengths (HomeWork)

The Secret-Suffix Construction

$$\mathsf{Hash}(M \mid\mid K)$$

Vulnerabilities

- ► Length Extension Attacks
- ► Colliding Messages ⇒ forgery

Keyed Hashes ← Unkeyed Hashes

The HMAC Construction

$$Hash((K \oplus opad) \mid\mid Hash((K \oplus ipad) \mid\mid M))$$

Envelope Mode

Hash(K||M||K)

Keyed Hashes ← Unkeyed Hashes

The HMAC Construction

$$Hash((K \oplus opad) \mid\mid Hash((K \oplus ipad) \mid\mid M))$$

$$K \oplus ipad$$
 H_0
Compress
 H_1'
Compress
 H_1
Compress
 H_1
Compress
 H_1
Compress
 H_1
 H_0
 H

Envelope Mode

Hash(K||M||K)

Generic Attack Against Hash-Based MACs

Cost? 2ⁿ/₂ MAC Tags

Use a hash collision to get a collision of MACs

The principle of the generic forgery attack on hash-based MACs

How? HomeWork

This attack will work even if the hash function is **not** vulnerable to length extension, and it will work for **HMAC**, too.

CMAC

Cipher-based MAC

- ► CMAC → successor of CBC-MAC
- Recall CBC mode of operation
- ► What is the problem with CBC-MAC?

► Forgery with CBC-MAC

Based on M being a sequence of integral blocks or not

Note

Unlike the CBC encryption mode, CMAC does not take an IV as a parameter and is deterministic. Can you justify this?

Timing Attacks

HomeWork

► Side Channel Attacks on MACs