Demo Problem 1: Principal Component Analysis

Upload the file decathlon.txt into your R workspace. The file contains the results of 48 decathletes from 1973. Familiarize yourself with the data and perform the correlation matrix based PCA transformation. Conduct the analysis without the variables: points, height and weight.

- a) How much of the variation of the original data is explained by k principal components, where k = 1, 2, ..., 10.
- b) Choose a sufficient amount of principal components and try to interpret them. Are the interpretations same as last week? Visualize the observations with respect to the first two principal components.
- c) Add one clear outlier into the data set. Use PCA and try to detect the outlier.

Demo Problem 2: Affine Equivariance

a) Show that the sample mean $T(\cdot)$ is affine equivariant. In other words, if you transform your data $X \to Y$ such that

$$y_i = Ax_i + b,$$

then

$$T(Y) = AT(X) + b,$$

for all nonsingular $p \times p$ matrices A and for all p-vectors b.

b) Show that the sample covariance matrix $S(\cdot)$ is affine equivariant. In other words, if you transform your data $X \to Y$ such that

$$y_i = Ax_i + b,$$

then

$$S(Y) = AS(X)A^{\top}$$

for all nonsingular $p \times p$ matrices A and for all p-vectors b.

Homework Problem 1: Maximizing Variance

Let x denote a p-variate random vector with a finite mean vector μ and a finite full-rank covariance matrix Σ . Let $y_k = \gamma_k^{\top}(x - \mu)$ denote the kth principal component of x. Let $b \in \mathbb{R}^p$ such that $b^{\top}b = 1$. Assume that $b^{\top}x$ is uncorrelated with first k-1 principal components of x. Read lecture slides 2 carefully and give detailed proofs for the following.

- (a) Let $b = d_1 \gamma_1 + \ldots + d_p \gamma_p$. Show that $d_i = 0$, when i < k.
- (b) Show that $var(y_k) \ge var(b^\top x)$.

Be careful with your notation and note that $y_k \neq \gamma_k$.