《微积分A1》第七讲

教师 杨利军

清华大学数学科学系

2020年10月07日

小欧o例子

Example

例: (i) 当
$$x \to 0$$
 时, $x^2 + x^3 = o(x)$;

(ii) 当
$$x \to 0$$
 时, $\sin(x^2) = o(x)$. 但不能写作 $o(x) = \sin(x^2)$;

(iii)
$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 = o(x^{n+1}), x \to \infty;$$

(iv)
$$x^n = o(e^x)$$
, $x \to +\infty$.

等价无穷小, 例子

Example

例: $当 x \rightarrow 0$ 时,

- (i) $\sin x \sim x$;
- (ii) $1 \cos x \sim \frac{1}{2}x^2$;
- (iii) $\tan x \sim x$;
- (iv) $\ln(1+x) \sim x$;
- (v) $e^{x} 1 \sim x$;
- (vi) $a^x 1 \sim x \ln a$;
- (vii) $(1+x)^{\alpha}-1\sim \alpha x$, $\alpha\in \mathbb{R}$, $\alpha\neq 0$.

证明

结论(i)至(vi)已证. 以下证(vii):
$$(1+x)^{\alpha}-1\sim \alpha x$$
. 令 y = $(1+x)^{\alpha}-1$, 则 y \rightarrow 0 $(x \rightarrow 0)$ 且 $1+y=(1+x)^{\alpha}$. 故 $\ln(1+y)=\alpha \ln(1+x)$. 于是
$$\frac{(1+x)^{\alpha}-1}{\alpha x}=\frac{y}{\ln(1+y)}\cdot\frac{\alpha \ln(1+x)}{\alpha x}\rightarrow 1\cdot 1=1.$$

这就证明了结论(vii).

等价无穷小量应用于求极限,例一

Example

例一: 求极限

$$\lim_{x\to 0}\frac{1-\cos(1-\cos x)}{x^4}.$$

解:

$$\frac{1 - \cos(1 - \cos x)}{x^4} = \frac{1 - \cos(1 - \cos x)}{\frac{1}{2}(1 - \cos x)^2} \frac{\frac{1}{2}(1 - \cos x)^2}{x^4}$$

$$= \frac{1-\cos(1-\cos x)}{\frac{1}{2}(1-\cos x)^2} \left(\frac{1-\cos x}{\frac{x^2}{2}}\right)^2 \frac{1}{2\cdot 4} \to 1\cdot 1^2 \cdot \frac{1}{8} = \frac{1}{8}.$$

例: 求极限

$$\lim_{x \to 0} \frac{\sqrt{1 + 2x^4} - \sqrt[3]{1 - x^4}}{\sin^2\!x(1 - \cos x)}.$$

解:

$$\frac{\sqrt{1+2x^4} - \sqrt[3]{1-x^4}}{\sin^2 x (1-\cos x)}$$

$$= \frac{(\sqrt{1+2x^4}-1) - (\sqrt[3]{1-x^4}-1)}{x^4} \frac{x^4}{\sin^2 x (1-\cos x)}$$

$$= \left(\frac{(1+2x^4)^{1/2}-1}{x^4} - \frac{(1-x^4)^{1/3}-1}{x^4}\right) \left(\frac{x}{\sin x}\right)^2 \frac{2 \cdot \frac{x^2}{2}}{1-\cos x}$$

$$\to \left(\frac{1}{2} \cdot 2 - \frac{1}{3} \cdot (-1)\right) (1^2) \cdot 2 \cdot 1 = (1+\frac{1}{3}) \cdot 2 = \frac{8}{3}.$$

例三

例三: 求极限

$$\lim_{x\to 0}\frac{\tan x-\sin x}{x^2\ln(1+x)}.$$

解:

$$\frac{\tan x - \sin x}{x^2 \ln(1+x)} = \frac{\sin x}{x} \cdot \frac{\frac{1}{\cos x} - 1}{x \ln(1+x)}$$

$$=\frac{\sin x}{x}\cdot\frac{1}{\cos x}\cdot\frac{1-\cos x}{x\ln(1+x)}=\frac{\sin x}{x}\cdot\frac{1}{\cos x}\cdot\frac{1-\cos x}{x^2}\cdot\frac{x}{\ln(1+x)}$$

$$\rightarrow 1 \cdot 1 \cdot 1/2 \cdot 1 = \frac{1}{2}.$$

故所求极限为1/2.

课本第57页习题2.4第9题(14): 求极限

$$\lim_{x\to +\infty} \Big(\sqrt{x^2+2x} - \sqrt[3]{x^3-x^2} \Big).$$

解:

$$\sqrt{x^2 + 2x} - \sqrt[3]{x^3 - x^2} = x \left(1 + \frac{2}{x} \right)^{1/2} - x \left(1 - \frac{1}{x} \right)^{1/3}$$
$$= x \left[\left(1 + \frac{2}{x} \right)^{1/2} - 1 \right] - x \left[\left(1 - \frac{1}{x} \right)^{1/3} - 1 \right]$$

例四,续

$$= \frac{\left(1 + \frac{2}{x}\right)^{1/2} - 1}{\frac{2}{x}} \cdot 2 - \frac{\left(1 - \frac{1}{x}\right)^{1/3} - 1}{-\frac{1}{x}} \cdot (-1)$$
$$\rightarrow \frac{1}{2} \cdot 2 - \frac{1}{3} \cdot (-1) = 1 + \frac{1}{3} = \frac{4}{3}.$$

故所求极限为4/3.

连续点,间断点,连续函数

Definition

定义: 设 f(x) 在 $(x_0 - r, x_0 + r)$ 上有定义.

- (i) 若 $\lim_{x\to x_0} f(x) = f(x_0)$, 即对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得 $|f(x) f(x_0)| < \varepsilon$, $\forall x \in (x_0 \delta, x_0 + \delta)$, 则称函数 f(x) 在点 x_0 处连续.
- (ii) 若极限 $\lim_{x\to x_0} f(x)$ 不存在, 或虽存在但不等于 $f(x_0)$, 则称 f(x) 在点 x_0 处间断, 或不连续.
- (iii) 若函数 f(x) 在其定义域 J 处处连续, 则称 f(x) 为 J 上的连续函数.

几个连续函数类

由函数极限的讨论可知,

- 1. 多项式在 IR 上连续;
- 2. 分式 $\frac{P(x)}{Q(x)}$ 在分母非零处连续, 其中 P(x), Q(x) 为多项式;
- 3. 函数 sin x, cos x 是 IR 上的连续函数;
- 4. 函数 $\tan x$ 是 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的连续函数, $\cot x$ 是 $\left(0, \pi\right)$ 上的连续函数;
- 5. 指数函数 a* (a > 0) 在 IR 上连续;
- 6. 对数函数 $\ln x$ 在 $(0,+\infty)$ 上连续.

左连续, 右连续

Definition

定义: (i) 若 $f(x_0^+) \stackrel{\triangle}{=} \lim_{x \to x_0^+} f(x) = f(x_0)$, 则称函数 f(x) 在点 x_0 处右连续:

(ii) 若 $f(x_0^-) \stackrel{\triangle}{=} \lim_{x \to x_0^-} f(x) = f(x_0)$,则称函数 f(x) 在点 x_0 处 左连续.

Theorem

定理: 函数 f(x) 在点 x_0 处连续 \iff f(x) 在点 x_0 处既右连续又左连续.

Proof.

证明: 由相应的函数极限结论立得.

取整函数的连续性

回忆取整函数 [x] 的值定义为不大于x 的最大整数. 因此对于函数 [x] 在非整数处连续. 显然在整数 x=N 处间断, 但右连续. 函数 [x] 的图像如下.

间断点类型

Definition

定义:设函数 f(x) 在点 x₀ 处间断,则可能出现如下情形之一.

- (1) (可去间断) 极限 $\lim_{x\to x_0} f(x) = L$ 存在, 但 $L \neq f(x_0)$.
- (2) (跳跃间断) 左右极限 $\lim_{x\to x_0^{\pm}} f(x)$ 均存在, 但不相等.
- (3) (本性间断) 至少有一个单侧极限不存在.

有时称可去间断和跳跃间断为第一类间断, 称本性间断为第二类间断.

可去间断, 例子

对于可去间断点, 若补充或修改 f(x) 在点 x_0 处的值为 L, 则函数 f(x) 在点 x_0 处就连续了. 例如函数

$$f(x) = \left\{ \begin{array}{ll} \frac{\sin x}{x}, & x \neq 0, \\ 0, & x = 0, \end{array} \right.$$

在点 x=0 处有可去间断. 因为 $\lim_{x\to 0} f(x)$ 极限存在且等于 1, 不等于 f(0)=0. 如果改变 f(0)=0 为 f(0)=1, 则函数 f(x) 在 x=0 处连续.

跳跃间断, 例子

Heaviside 函数定义如下

$$\mathsf{H}(\mathsf{t}) = \left\{ \begin{array}{ll} \mathsf{0}, & \mathsf{t} < \mathsf{0}, \\ \\ \mathsf{1}, & \mathsf{t} \geq \mathsf{0}. \end{array} \right.$$

FIGURE 8
The Heaviside function

显然 t=0 是函数 H(t) 的跳跃间断点. 因为 $\lim_{t\to 0^+} H(t)=1$,

 $\lim_{t\to 0^-} H(t) = 0$, 即两个单侧极限存在, 但不相等.

本性间断, 例子

定义函数 $f(x)=\sin\frac{\pi}{x}$, $\forall x\neq 0$, f(0)=0. 显然 x=0 是函数 f(x) 的本性间断点. 因为左右极限 $\lim_{x\to 0^\pm}f(x)$ 都不存在. 如图所示.

单调函数的间断点均为跳跃间断

回忆单调函数在任意点处的左极限和右极限均存在. 因此单调函数的间断点均为跳跃间断.

连续函数的四则运算

Theorem

定理: 设函数 f 和 g 在点 x_0 处连续,则它们的和差函数 f \pm g,乘积函数 f g,商函数 f/g (补充假设 g(x_0) \neq 0) 在点 $x=x_0$ 处也连续.

Proof.

证明: 根据函数极限的四则运算定理立得.

复合函数的连续性

Theorem

定理: 设函数 g(x) 在点 x_0 处连续,设 f(u) 在点 $u_0 = g(x_0)$ 处连续,则它们的复合函数 $f \circ g$ 在点 x_0 处也连续.

Proof.

证明: 由 f(u) 在点 u_0 的连续性知, 对 $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得 $|f(u) - f(u_0)| < \varepsilon$, $\forall u \in (u_0 - \delta, u_0 + \delta)$. 由 g(x) 在点 x_0 处的连续性知对上述 $\delta > 0$, 存在 $\delta_1 > 0$, 使得 $|g(x) - g(x_0)| < \delta$, $\forall x \in (x_0 - \delta_1, x_0 + \delta_1)$. 于是 $|f(g(x)) - f(g(x_0))| < \varepsilon$,

$$\forall x \in (x_0 - \delta_1, x_0 + \delta_1)$$
. 此即 $f \circ g$ 在点 x_0 处连续. 证毕.

幂函数的连续性

Corollary

推论: 幂函数 \mathbf{x}^{α} 在区间 $(\mathbf{0}, +\infty)$ 上处处连续, 其中 $\alpha \in \mathbb{R}$ 为任意常数.

Proof.

 \overline{u} 明: 因为幂函数 x^{α} 可以表示为复合函数 $x^{\alpha} = e^{\alpha \ln x}$, 即函数 e^{u} 和函数 $u = \alpha \ln x$ 的复合. 由于这两个函数都连续, 故它们 的复合函数, 即幂函数也连续. 证毕.

连续函数的保号性

证明: 只证括号外的情形, 即 $f(x_0) > 0$. 由 f(x) 在 x_0 处的连续性知, 对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对 $\forall x \in (x_0 - \delta, x_0 + \delta)$, $|f(x) - f(x_0)| < \varepsilon$. 取 $\varepsilon = \frac{f(x_0)}{2} > 0$, 则存在 $\delta_0 > 0$, 使得对 $\forall x \in (x_0 - \delta_0, x_0 + \delta_0)$.

$$|f(x)-f(x_0)|<\frac{f(x_0)}{2},$$

$$\text{Pr} \quad f(x_0) - \frac{f(x_0)}{2} < f(x) < f(x_0) + \frac{f(x_0)}{2},$$

证明,续

亦即

$$0<\frac{f(x_0)}{2}< f(x)<\frac{3f(x_0)}{2},$$

其中 $\forall x \in (x_0 - \delta_0, x_0 + \delta_0)$. 证毕.

闭区间上的连续函数, 记号

Definition

定义: 称函数 f(x) 在有界闭区间 [a,b] 上连续, 如果 f(x)在开区间 (a,b) 上每一点均连续, 且在左端点 x=a 处右连续, 在右端点 x=a 处左连续.

记号: C[a,b] 表示闭区间 [a,b] 上连续函数的全体.

连续函数性质: 介值性

Theorem

<u>介值定理</u>: 设 $f \in C[a,b]$, 则对于介于 f(a) 和 f(b) 之间的任意一个值 c, 存在点 $\xi \in [a,b]$, 使得 $f(\xi) = c$.

可. 设 $f(a) \neq f(b)$. 不失一般性 (without loss of generality), 可设 f(a) < 0 < f(b) 且 c = 0. 因为(1) 若 f(b) < f(a), 则可 考虑函数 $\hat{f}(x) \stackrel{\triangle}{=} -f(x)$. (2) 若 c \neq 0, 则考虑 $\hat{f}(x) \stackrel{\triangle}{=} f(x) - c$. 往证在假设 f(a) < 0 < f(b) 下, 存在 $\xi \in [a,b]$, 使得 $f(\xi) = 0$. 考虑集合 $E \stackrel{\triangle}{=} \{x \in [a,b], f(x) < 0\}$. 显然 E 非空且有上界, 因 为 a ∈ E, 且 E ⊂ [a, b]. 因此 E 存在上确界.

证明续

记 $\xi \stackrel{\triangle}{=} \sup E$. 我们将证明 $f(\xi) = 0$. 讨论如下.

- (i) 若 $f(\xi) > 0$, 则根据连续函数的保号性质知, 存在 $\delta > 0$, 使得 f(x) > 0, $\forall x \in [\xi \delta, \xi]$. 由上确界性质可知, 存在 $x_1 \in E$, 使得 $x_1 > \xi \delta$. 于是一方面 $x_1 \in (\xi \delta, \xi]$, 故 $f(x_1) > 0$. 另一方面 $x_1 \in E$, 故 $f(x_1) < 0$. 矛盾.
- (ii) 若 $f(\xi)$ < 0, 仍由连续函数的保号性质知, 存在 δ > 0, 使得 f(x) < 0, $\forall x \in [\xi, \xi + \delta]$. 这说明 $\xi + \delta \in E$. 此与 $\xi = \sup E$ 相矛盾.

综上所述可知 $f(\xi) = 0$. 证毕.

另一证明

另证: 不妨设 f(a) < 0 < f(b). 要证 $\exists \xi \in [a,b]$, 使得 $f(\xi) = 0$. 以下用二分法来证. 记 $[a_1,b_1] = [a,b]$, 则 $f(a_1) < 0 < f(b_1)$. 考虑 f(x) 在区间 $[a_1,b_1]$ 中点 $c_1 = \frac{a_1+b_1}{2}$ 处值. 若 $f(c_1) = 0$, 则证毕. 设 $f(c_1) \neq 0$. 若 $f(c_1) > 0$, 则记 $[a_2, b_2] = [a_1, c_1]$. 否 则记 $[a_2, b_2] = [c_1, b_1]$. 于是 $f(a_2) < 0 < f(b_2)$, 且 $b_2 - a_2 =$ $\frac{1}{2}(b-a)$. 对区间 $[a_2,b_2]$ 重复对 $[a_1,b_1]$ 的做法, 考虑 $f(c_2)$ 的 值, 其中 $c_2 = \frac{a_2 + b_2}{2}$. 若 $f(c_2) = 0$, 结论成立. 若不然, 则类似 构造闭区间 $[a_3,b_3]$, 使得 $f(a_3) < 0 < f(b_3)$, 且 $b_3 - a_3 =$ $\frac{1}{2}(b_2-a_2)=\frac{1}{2}(b-a).$

另证续

继续上述过程,则可能出现如下两种情况.

- (i) 上述过程中止于第 n 步, 即已构造闭区间 $[a_n, b_n]$, 函数 f(x) 在其中点 $c_n = \frac{a_n + b_n}{2}$ 为零, 结论成立.
- (ii) 上述过程可无穷次进行. 由此得一个闭区间套 $[a_{n+1},b_{n+1}]$ $\subset [a_n,b_n]$, $\forall n \geq 1$, 且区间长度为 $b_n a_n = \frac{1}{2^{n-1}}(b-a)$. 由区间套定理知存在唯一点 $\xi \in \bigcap_{n \geq 1} [a_n,b_n]$, 并且 $a_n \uparrow \xi$, $b_n \downarrow \xi$. 根据做法有 $f(a_n) < 0 < f(b_n)$. 令 $n \to +\infty$ 并利用函数 f(x) 的连续性可知, $f(\xi) \leq 0 \leq f(\xi)$. 因此 $f(\xi) = 0$. 证毕.

例子

例:证明奇数次实系数多项式必存在零点.

证: 设 $p(x) = x^{2k+1} + a_{2k}x^{2k} + \cdots + a_1x + a_0$ 为 2k+1 次实系数多项式. 要证 p(x) 有零点, 即存在 $\xi \in \mathbb{R}$, 使得 $p(\xi) = 0$. 将 p(x) 写作

$$p(x) = x^{2k+1} \left(1 + \frac{a_{2k}}{x} + \dots + \frac{a_1}{x^{2k}} + \frac{a_0}{x^{2k+1}} \right).$$

由于 $\frac{a_{2k}}{x} + \cdots + \frac{a_1}{x^{2k}} + \frac{a_0}{x^{2k+1}} \to 0$, 当 $|x| \to +\infty$. 故存在

M > 0, 使得

$$\left| \frac{a_{2k}}{x} + \dots + \frac{a_1}{x^{2k}} + \frac{a_0}{x^{2k+1}} \right| < \frac{1}{2}, \quad |x| \geq M$$

例子,续一

于是

$$\begin{split} \mathsf{p}(\mathsf{M}) &= \mathsf{M}^{2k+1} \left(1 + \frac{a_{2k}}{\mathsf{M}} + \frac{a_{2k-1}}{\mathsf{M}^2} + \dots + \frac{a_0}{\mathsf{M}^{2k+1}} \right) \\ &\geq \mathsf{M}^{2k+1} \left(1 - \left| \frac{a_{2k}}{\mathsf{M}} + \frac{a_{2k-1}}{\mathsf{M}^2} + \dots + \frac{a_0}{\mathsf{M}^{2k+1}} \right| \right) \\ &> \mathsf{M}^{2k+1} \left(1 - \frac{1}{2} \right) = \frac{1}{2} \mathsf{M}^{2k+1} > 0. \end{split}$$

同理

$$p(-M) = -M^{2k+1} \left(1 - \frac{a_{2k}}{M} + \frac{a_{2k-1}}{M^2} - \dots - \frac{a_0}{M^{2k+1}} \right)$$

例子,续二

由介值定理知存在 $\xi \in [-M, M]$, 使得 $p(\xi) = 0$. 证毕.

连续函数性质: 有界性

Theorem

定理: 有界闭区间上的连续函数必有界. 也就是说, 若 f(x) 在有界闭区间 [a,b] 上连续, 则存在 M>0, 使得 $|f(x)|\leq M$, $\forall x\in [a,b]$.

证明: 反证. 若不然, 设 f(x) 无界, 则对任意正整数 n, 存在 $x_n \in [a,b]$, 使得 $|f(x_n)| > n$. 这样就得到一个有界序列 $\{x_n\} \subset [a,b]$. 根据 B-W 定理可知序列 $\{x_n\}$ 存在收敛子列 $x_{n_k} \to \xi$, $k \to +\infty$. 由 $a \le x_{n_k} \le b$ 可知 $a \le \xi \le b$. 一方面 $|f(x_{n_k})| > n_k \to +\infty$. 另一方面由函数 f(x) 的连续性知 $f(x_{n_k}) \to f(\xi)$, $k \to +\infty$. 故序列 $\{f(x_{n_k})\}$ 有界. 这就得到一个矛盾. 证毕.

例子

例: 设 f(x) 在区间 $[0,+\infty)$ 上取正值的连续函数. 若 $\lim_{x\to +\infty} f(f(x)) = +\infty$, 证明 $\lim_{x\to +\infty} f(x) = +\infty$. 反证: 假设 $\lim_{x\to+\infty} f(x) = +\infty$ 不成立, 则存在 $M_0 > 0$, 使 得对任意正整数 n, 存在 $x_n > n$, 使得 $0 < f(x_n) < M_0$, $\forall n > 1$. 由于连续函数 f(x) 在闭区间 $[0, M_0]$ 上有界, 故存在 C > 0, 使 得0 < f(x) < C, ∀x ∈ [0, M₀]. 于是0 < f(f(x₀)) < C. 此与假 设 $\lim_{x\to+\infty} f(f(x)) = +\infty$ 相矛盾. 证毕

连续函数性质: 最值性

Theorem

定理: 有界闭区间 [a,b] 上的连续函数 f(x) 必有最大值和最小值,即存在 $\xi, \eta \in [a,b]$,使得 $f(\xi) \leq f(x) \leq f(\eta)$, $\forall x \in [a,b]$. 即 $f(\xi) = \min\{f(x), x \in [a,b]\}$, $f(\eta) = \max\{f(x), x \in [a,b]\}$.

确界的一个性质

引理: 设S ⊂ IR 为一实数集合.

- (i) 记 $M = \sup S$ (允许 $M = +\infty$), 则存在 $s_n \in S$, 使得 $s_n \to M$, $n \to +\infty$;
- (ii) 记 $m = \inf S$ (允许 $m = -\infty$), 则存在 $t_n \in S$, 使得 $t_n \to m$, $n \to +\infty$.

证明: 只证(i). 结论(ii)的证明类似. 当 M 为有限数时, 依定义知对于任意 $\varepsilon > 0$, 存在 $s_{\varepsilon} \in S$, 使得 $s_{\varepsilon} > M - \varepsilon$. 取 $\varepsilon = \frac{1}{n}$, 则存在 $s_n \in S$, 使得 $M \ge s_n > M - \frac{1}{n}$, 即 $s_n \to M$. 当 $M = +\infty$, 即 S 无上界时, 已证存在 $s_n \in S$, 使得 $s_n \to +\infty$. 证毕.

最值性定理证明

证明: 记 $M \stackrel{\triangle}{=} \sup\{f(x), x \in [a,b]\}$, $m \stackrel{\triangle}{=} \inf\{f(x), x \in [a,b]\}$. 根据函数 f(x) 的有界性可知 M 和 m 均为有限数. 根据上述引理知存在 $x_n \in [a,b]$, 使得 $f(x_n) \to M$, $n \to +\infty$. 根据 B-W 定理知序列 $\{x_n\}$ 存在收敛子列 $x_{n_k} \to \eta$. 再根据函数 f(x) 的连续性知 $f(x_{n_k}) \to f(\eta)$. 这表明 $f(\eta) = M$. 同理可证 $\exists \xi \in [a,b]$, 使得 $f(\xi) = m$. 证毕.

有界闭区间上的连续函数的值域是有界闭区间

Corollary

推论: 有界闭区间上的连续函数的值域是有界闭区间. 也就是说, 若 f(x) 在有界闭区间 J=[a,b] 上连续, 则 f 的值域 $f(J)=\{f(x),x\in J\}$ 是有界闭区间.

Proof.

证明: 根据连续函数的最值性可知, f(x) 在 [a,b] 上取得最大值和最小值,即 $\exists \xi, \eta \in [a,b]$,使得 $f(\xi) = \min\{f(x), x \in [a,b]\}$, $f(\eta) = \max\{f(x), x \in [a,b]\}$. 再根据连续函数的介值性可知,对任意 $c \in [f(\xi), f(\eta)]$,存在 x 介于 ξ 和 η 之间,使得 f(x) = c. 这表明 $f(J) = [f(\xi), f(\eta)]$.

总结, 注记

总结: 有界闭区间上的连续函数具有三个性质: 介值性, 有界性, 最值性.

注记: 上述三个性质成立的前提条件是(i) 区间闭; (ii) 区间有界; (iii) 函数连续.

例一: 函数 $\frac{1}{x}$ 在区间 (0,1) 上连续, 但无界.

例二:函数 $\frac{1}{x}$ 在无界区间 $[1,+\infty)$ 上连续,但无最小值.

例三: 符号函数 sgn(x) 无介值性质. 例如不存在 $\xi \in \mathbb{R}$, 使得 $sgn(\xi) = \frac{1}{2}$.

反函数的连续性

Theorem

<u>定理</u>:设 f(x) 在闭区间 J=[a,b] 上连续,且严格单调,则反函数 $f^{-1}(y)$ 在有界闭区间 $K \stackrel{\triangle}{=} f(J)$ 上连续.

证明: 不妨设 f(x) 个 严格. 不然考虑 -f. 于是反函数 $f^{-1}(y)$ 个 严格. 于是 c = f(a) 和 d = f(b) 分别是函数 f(x) 的最小值和最大值. 回忆连续函数在有界闭区间的值域也是有界闭区间,故 f(J) = [c,d]. 以下证反函数 $f^{-1}(y)$ 在 [c,d] 上连续. 对任意 $y_0 \in [c,d]$, 记 $x_0 = f^{-1}(y_0)$, 即 $f(x_0) = y_0$.

证明续一

情形一. $y_0 \in (c,d)$, 即 y_0 是闭区间 [c,d] 的内点(不是端点). 要证 $f^{-1}(y)$ 在 y_0 处连续, 即要证对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使 得 $|f^{-1}(y) - f^{-1}(y_0)| < \varepsilon$, $\forall y \in (y_0 - \delta, y_0 + \delta)$. 令 $y_1 = f(x_0 - \varepsilon)$, $y_2 = f(x_0 + \varepsilon)$, 如图所示.

证明续二

取
$$\delta = \min\{y_2 - y_0, y_0 - y_1\}$$
. 由图可知, 当 $|y - y_0| < \delta$ 时,
$$|f^{-1}(y) - f^{-1}(y_0)| < \varepsilon$$
. 这就证明了 $f^{-1}(y)$ 在点 y_0 处的连续. 情形二: $y_0 = c$ 或 $y_0 = d$. 可作类似处理. 定理得证.

反函数定理的另一个证明, 一个引理

Lemma

<u>引理</u>: 设 f(x) 在闭区间 J = [a,b] 上单调,则 f(x) 在 J 上连续, 当且仅当 f(x) 的象集(值域) $f(J) = \{f(x), x \in J\}$ 为闭区间.

证明: 不妨设 $f(x) \uparrow$. 则 c = f(a) 和 d = f(b) 分别是 f(x) 在 [a,b] 上的最小值和最大值. 如图所示.

证明续一

⇒: 设 f(x) 在闭区间 J 上连续. 回忆连续函数在有界闭区间的值域也是有界闭区间,故 f(J) = [c,d]. 必要性得证. \Leftarrow : 设 f(J) = [c,d],要证 f(x) 在 J = [a,b] 上连续. 反证. 假设 f(x) 在某点 $x_0 \in [a,b]$ 处不连续. 回忆单调函数在任意点的左右极限均存在. 因此 $f(x_0^+)$ 和 $f(x_0^-)$ 均存在. 由于 x_0 是间断点,且 f(x) ↑,故 $f(x_0^-)$ < $f(x_0^+)$.

证明续二

现断言: 对于任意 $y \in (f(x_0^-), f(x_0^+)) \setminus \{y_0\}$, 不存在 $x \in [a, b]$,

使得 f(x) = y. 因为 $y \neq y_0$, 且

对于 $x \in [a, x_0)$, 有 $f(x) \le f(x_0^-) < y$,

对于 $x \in (x_0, b]$, 有 $f(x) \ge f(x_0^+) > y$.

如图所示. 这表明 $f(J) \neq [c,d]$. 充分性得证. 引理得证.

反函数定理的另一个证明

Theorem

定理: 设 f(x) 在有界闭区间 J = [a,b] 上连续, 且严格单调, 则 反函数 $f^{-1}(y)$ 在有界闭区间 K = f(J) 上连续.

Proof.

证明: 由于反函数 $f^{-1}(y)$ 的值域为有界闭区间 J=[a,b], 故根据引理知反函数 $f^{-1}(y)$ 在其定义域 K=f(J) 上连续. 结论(ii) 成立. 证毕.

例子

Example

例: 正弦函数 y = $\sin x$ 在有界闭区间 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上严格单调上升,其值域为有界闭域 $\left[-1,1\right]$. 由反函数存在定理知,函数 y = $\sin x$ 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上存在反函数. 这个反函数就是我们熟知的反正弦函数 x = $\arcsin y$,它的定义域为 $\left[-1,1\right]$,并在 $\left[-1,1\right]$ 上处处连续. 类似可证其他反三角函数在其定义域上连续.

初等函数的连续性

Theorem

定理: 每个初等函数在其定义域上处处连续.

Proof.

证明:已证六类基本初等函数,即多项式函数,幂函数,对数函数,指数函数,三角函数,反三角函数在其定义域上处处连续.依定义每个初等函数是由基本初等函数经过有限次的四则运算,以及有限次函数复合所得,因此每个初等函数在其定义域上处处连续.

例子

Example

例: 设函数 f(x) 在区间 $[a,+\infty)$ 上连续, 且极限 $\lim_{x\to\infty} f(x)$ 存在, 记作 $f(+\infty)$. 若 $f(a)f(+\infty)<0$, 则 f(x) 在 $[a,+\infty)$ 上存在零点.

证: 由于极限 $\lim_{x\to\infty} f(x)$ 存在,且 $f(a)f(+\infty) < 0$,故极限 $\lim_{x\to\infty} f(a)f(x) < 0$.由极限的保序性知存在 M > a,使得 f(a)f(x) < 0, $\forall x \geq M$.于是 f(a) 与 f(M) 反号.由介值定理知 存在 $\xi \in [a,M]$,使得 $f(\xi) = 0$.证毕.

作业

课本习题2.5 (pp. 59-60):

2(1)(3)(5), 3, 4, 5, 6.

课本习题2.6 (pp. 63-64):

1, 2, 3, 4, 5, 6.