Escuela Rafael Díaz Serdán

Matemáticas 2

JC Melchor Pinto

2° de Secundaria

Unidad 3

2022-2023

Equivalencia de expresiones algebraicas

Nombre del alumno:

Aprendizajes: ______

Formula expresiones de primer grado para representar propiedades (perímetros y áreas) de figuras geométricas y verifica equivalencia de expresiones, tanto algebraica como geométricamente (análisis de las figuras).

Fecha:

D_{11}	ntii	\sim	ión:
гu	HUU	ıucı	OII.

Pregunta	1	2	3	4	5	6	7	8	9	Total
Puntos	10	5	10	5	10	18	16	16	10	100
Obtenidos										

Ejemplo 1

Señala si son iguales o diferentes las expresiones:

$$(4x-2) + (3+2x)$$
 y $(5x+8) + (x-7)$

Iguales

Solución:

$$(4x - 2) + (3 + 2x) = 4x - 2 + 3 + 2x$$

$$=4x+2x-2+3$$

$$= 6x + 1$$

$$(5x+8) + (x-7) = 5x + 8 + x - 7$$

$$= 6x + 1$$

Ejercicio 1 10 puntos

Señala si son iguales o diferentes las expresiones:

$$3(5x-4)+10$$
 y $15x+6$

(A) Iguales

(B) Differentes

Ejercicio 2 5 puntos

Señala si son iguales o diferentes las expresiones:

$$(4x-2)-(3+2x)$$
 y $(5x+8)-(x-7)$

(A) Iguales (B) Diferentes

Ejercicio 3 10 puntos

Señala si son iguales o diferentes las expresiones:

$$-3(5x-4)+10$$
 y $-15x+22$

(A) Iguales (B) Diferentes

Ejercicio 4 5 puntos

Señala si son iguales o diferentes las expresiones:

$$-(-7x+1)$$
 y $-1+7x$

(A) Iguales (B) Diferentes

Ejemplo 2

En cada caso, indica si las expresiones son equivalentes y argumenta.

a
$$5n-5$$
 y $5(n-1)$

 $\sqrt{}$ Son equivalentes

☐ No son equivalentes

5(n-1) = 5n - 5.

b
$$4-2n \mid y \mid 2-2(n-1) \mid$$

 $\sqrt{\text{Son equivalentes}}$

☐ No son equivalentes

Solución:

2 - 2(n - 1) = 2 - 2n + 2 = 4 - 2n.

☐ Son equivalentes

 $\sqrt{\text{ No son equivalentes}}$

Solución:

28 + 4(n+2) = 28 + 4n + 8 = 36 + 4n.

d
$$3n-9$$
 y $3(n-2)-3$

 $\sqrt{}$ Son equivalentes

 \square No son equivalentes

Solución:

3(n-2) - 3 = 3n - 6 - 3 = 3n - 9.

 \square Son equivalentes

 $\sqrt{\text{ No son equivalentes}}$

Solución: $\frac{3}{2}n + \left(-\frac{3}{2} - \frac{n}{2}\right) = \frac{3}{2}n - \frac{3}{2} - \frac{1}{2}n = n - \frac{3}{2}.$

Ejercicio 5 10 puntos

Coloca el número que completa la equivalencia.

- 2
- 6
- 4

 $footnote{\circ}$ La expresión 6(b+8)-4(b+4) es equivalente a $footnote{\circ}$ La expresión (b+7)-8(b+1) es equivalente a (b+9)-2(b+2).

3

 $-9(b+1)+[_{----}](b+4).$

e La expresión 11(b-3)-6(b+5) es equivalente a (b-1) + 2(b-30).

	2/1 ()	2/1	 	

C La expresión -3(b+4)-2(b-5) es equivalente a -4(b+3)- (b - 10).

Ejemplo 3

Realiza las siguientes operaciones algebraicas mediante la adición por términos semejantes.

3x + 7 + 2(3x + 7) =

Solución:

$$3x + 7 + 2(3x + 7) = 3x + 7 + 6x + 14$$

= $3x + 6x + 14 + 7$
= $9x + 21$

d

b
$$2(5x+8) =$$

Solución:

$$2(5x+8) = 10x + 16$$

2x + 3(7 - 3x) + 6 =

Solución:

$$2x + 3(7 - 3x) + 6 = 2x + 21 - 9x + 6$$
$$= -7x + 27$$

$$3(5x-4) - 2(2x-5) = 15x - 12 - 4x + 10$$
$$= 11x - 2$$

Ejercicio 6

18 puntos

Realiza las siguientes operaciones algebraicas mediante la suma por términos semejantes.

5(3x+2)+2(7x-3)=

d x + 2(5 - 6x) + 2 =

b 2x + 4(x+3) + 4x + 4 =

f 8(2x+1)+4(x-2)=

Ejercicio 7 16 puntos

Simplifica las expresiones de la izquierda y relacionalas con la expresión equivalente.

(A) 2a + 5 - (3a + 1)

a + 2

(B) (3a-8)+(-2a+10)

b _____ a - 2

 \bigcirc 2(a+2) - (a+6)

c ______ -2a

 \bigcirc -6a - 12 - 5(-a - 2)

d _____ -a+5

e _____ −a − 2

F) 2(a+1) - 3(a-1)

f _____ -a+4

 \bigcirc -4(a+3) - 3(-2a-4)

9 _____ 2a

(H) -7(2a-4) + 2(6a-14)

h _____ 5a - 1

Ejemplo 4

Elige la(s) respuesta(s).

- La expresión 2(3.6) + 2(5.4) resultó de considerar las longitudes de los lados de un cuadrilátero para calcular su perímetro, ¿de qué tipo de cuadrilátero se trata?
 - (A) Cuadrado
 - (B) Rectángulo
 - (C) Trapecio
 - (D) Rombo
 - (E) Ninguna

- b El área de un triángulo es $3 \cdot 5$ u², si las longitudes de la base y la altura son enteros, ¿cuál es la longitud posible de la base?
 - (A) 3
 - (B) 5
 - (C) 6
 - (D) 10
 - (E) Ninguna

Ejercicio 8 16 puntos

Elige la(s) respuesta(s).

- © El perímetro de un polígono regular es 8 u, si las longitudes de sus lados son enteros ¿de qué polígono se trata?
 - (A) Triángulo
 - (B) Cuadrado
 - (C) Pentágono
 - (D) Hexágono
- b ¿En qué tipo de triángulo no puedes usar la multiplicación para simplificar el cálculo del perímetro?
 - (A) Equilátero
 - (B) Escaleno
 - (C) Isósceles
 - (D) Ninguno de los anteriores
- c ¿Cuál o cuáles de las siguientes expresiones permiten calcular el perímetro de un hexágono regular tal que uno de sus lados mide $\frac{3}{2}$?
 - \bigcirc $5\left(\frac{3}{2}\right)$

 - \bigcirc 6 $\left(\frac{2}{3}\right)$
 - (D) $2(3)(\frac{2}{3})$

- d La expresión $\frac{(11+5)(7)}{2}$ u² permite calcular el área de un trapecio, ¿cuál o cuáles de las expresiones también permite calcular dicha área?
 - (A) $(11+5)(\frac{7}{2}) u^2$

 - \bigcirc $\left(\frac{11}{2} + 5\right) (7) \text{ u}^2$
 - (D) $(11 + \frac{5}{2})(7) u^2$
- e La expresión $\frac{(1347)(7489)}{2}$ u² resultó de sustituir la base y la altura de un triángulo para calcular el área de éste. ¿Cuál o cuáles de las siguientes expresiones también generan el área del triángulo?
 - $\Box \left(\frac{1347}{2}\right) (7489) u^2$
 - \Box (1347) $\left(\frac{7489}{2}\right)$ u²
 - \Box (1347) (7489) $(\frac{1}{2})$ u²
 - $\Box \left(\frac{1347}{2}\right) \left(\frac{7489}{2}\right) u^2$
- **f** El área de un pentágono se calcula con la expresión $\frac{(3+3+3+3+3)(2)}{2}$ ¿Cuál o cuáles de las siguientes expresiones también generan el área del pentágono?
 - $\Box 3 + 3 + 3 + 3 + 3$

 - $\Box \left(\frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{3}{2}\right) (2)$
 - $\Box (5)(3)$

a

Ejercicio 9 10 puntos

Elige la expresión que corresponde al área de cada figura.

7

$$(A)$$
 $42x$

(A)
$$42x$$
 (B) $42x^2$ (C) $35x$ (D) $35x^2$

$$\widehat{D}$$
 $35x^2$

3 2

x+5 b

(A)
$$6x + 30$$
 (B) $5x + 25$ (C) $3x + 10$ (D) $6x + 5$

4x + 12x + 2

7 С

(A)
$$42x + 21$$

(A) 42x + 21 (B) 56x + 14 (C) 8x + 2 (D) 42x + 3

$$\bigcirc$$
 $8x + 2$

 $6(\frac{x}{2} + \frac{2}{3})$ d

(A) 30x + 20 (B) 15x + 30 (C) 15x + 20 (D) 30x + 30

x -3 x -4

7

е

(A) 2x (B) 7x - 49 (C) 2x - 49 (D) 14x - 49