Convolution Neural Network

Il-Chul Moon, Wonsung Lee, Sungrae Park, Su-Jin Shin, Kyungwoo Song, Weonyoung Joo, JunKeon Park, YoonYeong Kim, Joonho Jang

Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Wonsung Lee

Sungrae Park

Su-Jin Shin

Kyungwoo Song

Weonyoung Joo

JunKeon Park

YoonYeong Kim

Joonho Jang

ACKNOWLEDGEMENTS

SIMPLE FEED-FORWARD NETWORKS

Optimal Classification and Bayes Risk

Perceptron

Activation Level

 Perceptron is a binary classifier with a similar structure resembling the neuron

Do you recall logistic regression?

•
$$\mu(x) = \frac{1}{1 + e^{-\dot{\theta}^T x}} = g(a(x)), a(x) = \dot{\theta}^T x, g(y) = \frac{1}{1 + e^{-y}}$$

Logistic function becomes the smooth activation function

Logistic Function

Problem of Linear Decision Boundary

- Consider the sandwich case
 - The orange X marks cannot be classified as the negative by the model limitation
- Many real world applications have non-linear cases
 - Any cases with peak as positive
 - Then, the before and the after around the peak are negative
 → Non-linear boundary
- Ways to make the boundary non-linear
 - Make the model more complex
 - Change the neuron input activation function
 - Apply the model to the higher dimension features

Artificial Neural Network

- To overcome the linear decision boundary of a single perceptron, we use multiple perceptrons structured in a certain form.
- Artificial neural network

A function approximation method with a collection of interconnected

perceptrons

- Structured by stacking layers
 - Input layer
 - Hidden layer
 - Output layer
- Can create a multiple output

Multiple Layers of Neural Network

- Considering L hidden layers
 - Neuron input activation function for the *k-th* layer

•
$$a^k(x) = b^k + W^k h^{(k-1)}(x)$$

 Neuron output activation function for the k-th layer

•
$$h^k(x) = g\left(a^k(x)\right)$$

Output layer activation

$$h^{L+1}(x) = o\left(a^{L+1}(x)\right) = f(x)$$

- Each function is available by choices
 - Sigmoid functions
 - Softmax functions

Backpropagation

- Backpropagation
 - Do
 - For training examples, x

// forward pass of the neural net.

•
$$o_k = f(x; w)$$

•
$$E = \frac{1}{2} (\sum_{k} (t_k - o_k)^2)$$

// backward pass of the neural net.

- Calculate $\delta_k = (t_k o_k)o_k(1 o_k)$
- For the backward-pass from the top to the bottom

• Calculate
$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{jk}$$

// weight update

- Update w_{jk} with $w_{jk}^{t+1} \leftarrow w_{jk}^t + \eta \delta_k o_j$
- For the backward-pass from the top to the bottom
 - Update $w_{ij}^{t+1} \leftarrow w_{ij}^t + \eta o_i \delta_j$
- Until converges

Problem of Artificial Neural Network

- Problem of gradient method
 - Vanilla version of gradient method
 - Random initialization?
 - → Potentially very long learning process
 - → Risk of local optima and saddle points
- Problem of back-propagation
 - What-if many layers?
 - Multiplication of many gradients → Getting close to zero
 - Computation time
 - A single logistic regression → Multiple logistic regression with interactions
 - Long training time
- Problem of structure
 - Is feasible and meaningful to fully connect the neurons?

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." *Nature* 521.7553 (2015): 436-444.

CONVOLUTIONAL NEURAL NETWORKS

Neural Networks for Various Domains

- Previous structure : Fully connected networks
- Recent advances in neural networks
 - Computer vision
 - Language models
- Application domain influences network structures
 - Convolutional structure utilizing localized connections
 - Recurrent structure utilizing chain connections

Speech Recognition

Image Classification
Object Recognition

Example: Computer Vision

- Vision problem characteristics
 - High dimensional inputs
 - 150 X 100 pixels = 15000 pixels
 - 15000 pixels X 3 RGB channels
 45000 real value inputs
 - 2D topology of pixels for images and
 3D topology of pixels for video
 - Need to handle invariance
 - Rotation, Translation, Scale...
- Convolutional neural networks mitigates these characteristics
 - Local connectivity
 - Convolution
 - Pooling

Local Connectivity

- Use a local connectivity of hidden units
 - Each hidden unit is connected to only to a sub-region of the input images
 - Connected to all channels: 1 channel of grayscale and 3 RGB channel of color images
- Advantages of local connectivity
 - # of a fully connected layer >>> # of a sparsely connected Layer
 - More number of parameters to optimize
 - More data, more difficulties in learning
 - How to sparsely connect?
 - Utilizing the 2D topologies : Receptive field

Vector, Matrix, Tensor...

- Tensor is a geometric object that describe linear relations between geometric vectors, scalars, and other tensors.
 - Relations : dot product, cross product...
 - Dot product : $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \dots + a_n b_n$
 - Cross product : $\mathbf{a} \times \mathbf{b} = \widehat{\mathbf{n}} |\mathbf{a}| |\mathbf{b}| \sin \theta$
 - Scalar: 0-dimensional tensor
 - 0, 1, 2....
 - Vector: 1-dimensional tensor
 - <0,1>, <1,2> ...
 - Matrix: 2-dimensional tensor
 - $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
 - Tensor : Multi-dimensional tensor (so called)
 - Dimension of a tensor \rightarrow rank
- Can be viewed as a multi-dimensional array
 - Array can be viewed as a storage of a tensor

3-dimensional Tensor

Convolutional Neural Network

- Convolutional Neural Network (CNN)
 - Designed to <u>recognize visual patterns</u> directly from pixel images with minimal preprocessing
 - Recognize patterns with extreme variability, and with robustness to distortions and simple geometric transformations
 - Three main types of layers
 - Convolutional (C) / Pooling (S) / Fully-Connected (F) Layer
- Example Architecture: LeNet [12]

- [INPUT] \rightarrow [CONV POOL]*2 \rightarrow [FC]*2
- Developed for digits/hand-written recognition

Hierarchical feature learning

lower

higher

*Figure from [13]

Car

Convolutional Layer

- $s(t) = (x * w)(t) = \int x(a)w(t-a)da$
 - x: data, w: filter/kernel, s(t): feature map
- Convolutional Layer
 - Core building block of CNN
 - Parameters: a set of learnable filters
 - Local connectivity & Shared/Tied weights
 - Model complexity ↓

Image Convolved Feature

Receptive fields

Convolution Layer

- Each feature map forms a 2D grid of features
 - Can be computed with a discrete convolution (*) of a kernel matrix k_{ii}
 - Which is the hidden weights matrix W_{ij} with its rows and columns flipped
 - The kernel can be matched to the receptive field dimension
- Mathematical definition on convolution
 - L-th layer has the neuron with $n_1 \times n_2$
 - Kernel matrix, $K \in R^{(2h_1+1)\times(2h_2+1)}$
 - $(I * K)_{r,s} := \sum_{u=-h_1}^{h_1} \sum_{v=-h_2}^{h_2} K_{u,v} I_{r+u,s+v}$
 - There are exception cases when we compute the convolution at the edge of the images with the negative indexes
 - Limit the convolution range to avoid the negative indexes
 - Padding values, usually zero (so called zero padding) to the edge of the layer
- Convolution layer

$$(Y_i^{(l)})_{r,s} = \sigma \left(\left(B_i^{(l)} \right)_{r,s} + \sum_{j=1}^{m_1^{(l-1)}} \sum_{u=-h_1^{(l)}}^{h_1^{(l)}} \sum_{v=-h_2^{(l)}}^{h_2^{(l)}} \left(K_{i,j}^{(l)} \right)_{u,v} \left(Y_j^{(l-1)} \right)_{r+u,s+v} \right)$$

$$m^{(l)} = \frac{m_2^{(l-1)} - 2h_1^{(l)}}{m^{(l)}} m^{(l)} = \frac{m_3^{(l-1)} - 2h_2^{(l)}}{m^{(l)}}$$

•
$$m_2^{(l)} = \frac{m_2^{(l-1)} - 2h_1^{(l)}}{s_1^{(l)} + 1}, m_3^{(l)} = \frac{m_3^{(l-1)} - 2h_2^{(l)}}{s_2^{(l)} + 1}$$

- *l* : layer index
- r, s : 2D neuron index at layer l
- $m_1^{(l-1)} \times m_2^{(l-1)} \times m_3^{(l-1)}$: Dimension of layer (l-1) by Depth X Width X Height
- $s_1^{(l)}$, $s_2^{(l)}$: Stride (skipping factor) of the kernel matrix on the width and the height dim.

Pooling Layer

- Common to periodically insert a pooling layer in-between successive convolutional layers
- Progressively <u>reduce the spatial size</u> of the representation → #params. & computation ↓
- Types
 - Max / Average / L2-Norm / Stochastic pooling
- Common form
 - 2×2 filters applied with a stride of 3
 - Called overlapping pooling
 - 2 × 2 filters applied with a stride of 2
 - Discard 75% activation

Single depth silc	gle depth slid	се
-------------------	----------------	----

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6 8 3 4

Figure adopted from Fei-Fei Li & Andrej Karpathy, CS231n: Convolutional Neural Networks for Visual Recognition, Winter 2015

Pooling Layer

- Pool hidden units in the same neighborhood
 - Introduce invariance to local translations
- Definition of various pooling

•
$$(Y_i^{(l)})_{r,s} = f\left(\left(Y_i^{(l-1)}\right)_{r-h_1,s-h_2}, \dots, \left(Y_i^{(l-1)}\right)_{r+h_1,s+h_2}\right)$$

- Max pooling : $f(Y_i) = \max(Y_i)$
- Average pooling: $f(Y_i) = \frac{1}{h_i \times h_i} \sum Y_i$

Example of Convolution Neural Network

- Should be able to read the structure presented as the above diagram
- Convolution layer, pooling layer, fully connected layer
- Require to use diverse kernels and carefully calibrated hyperparameters
- Still learnable with the back-propagation with some techniques

Existing Developed CNN Architectures

- Various CNN architectures
 - LeNet, AlexNet (TorontoNet), ZFNet, VGGNet, GoogleNet
- AlexNet (TorontoNet) First prize of ILSVRC 2012 challenge

- Caffe implementation (https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet)
- Main Features
 - 7 hidden layers & about 650,000 units & about 60,000,000 parameters
 - Dropout, ReLU instead of sigmoid
 - Parallelization on many GPUs (50x speedup over CPU)
 - Trained on two GPUs for a week

IMAGE ANALYSIS ACHIEVEMENTS

Images....

- Various Image Tasks
 - Image classification (Object recognition)

 Image segmentation / Object detection

Approaches for Recognition: "Shallow" vs. "Deep" Architectures

Shallow

Hand-designed feature extraction (SIFT [3], HOG [4])

Object class

Features are not learned

Layer 1

Object class

Each layer extracts features from the output of previous layer

Object Detection Task

- Based on "Shallow" Architectures
 - **DPM**, UVA, Regionlets
 - Histogram of Oriented Gradient (HOG) / Scale Invariant Feature Transform (SIFT) - based

- Based on "Deep" Architectures
 - Neural networks have been used typically on <u>constrained object categories</u>; face/pedestrian/vehicle detection

Region-Based CNN

Figure: Object Detection System Overview

- Main Contributions
 - Simple and scalable object detection
 - 2. Region proposals + CNN
 - 3. Training for scarce labeled data
 - Supervised pre-training
 - Domain-specific fine-tuning

Structure of Region-Based CNN

Training of CNN

- Supervised pre-training
 - → Domain-specific fine-tuning

ILSVRC 2012 + image-level → annotation_{large} PACAL VOC 2012 train (IoU≥0.5)_{smo}

Training of SVM Class-specific linear SVMs 4096 PACAL VOC 2012 trainval (groundtruth)

Region Proposal Network

- A fully convolutional network that simultaneously <u>predicts object</u> bounds and objectness scores at each position
 - Input: an image
 - Output: a set of (square) object proposals, each with an objectness score

Framework of Mask R-CNN

- Mask R-CNN
 - Region proposals by Region Proposal Network (RPN)
 - Alternative external method; e.g., selective search
 - Object detection by Fast R-CNN
 - +) Semantic Segmentation by Fully Convolutional Network (FCN)
 - RoIPool → RoIAlign

Faster R-CNN

Figure 5. FCIS+++ [26] (top) vs. Mask R-CNN (bottom, ResNet-101-FPN). FCIS exhibits systematic artifacts on overlapping objects.

net-depth-features	AP	AP_{50}	AP ₇₅
ResNet-50-C4	30.3	51.2	31.5
ResNet-101-C4	32.7	54.2	34.3
ResNet-50-FPN	33.6	55.2	35.3
ResNet-101-FPN	35.4	57.3	37.5
ResNeXt-101-FPN	36.7	59.5	38.9

	AP	AP_{50}	AP ₇₅
softmax	24.8	44.1	25.1
sigmoid	30.3	51.2	31.5
	+5.5	+7.1	+6.4
,	ı		

	align?	bilinear?	agg.	AP	AP_{50}	AP_{75}
RoIPool [12]			max	26.9	48.8	26.4
RoIWarp [10]		✓	max	27.2	49.2	27.1
Korwarp [10]		✓	ave	27.1	48.9	27.1
RoIAlign	✓	✓	max	30.2	51.0	31.8
KolAtign	✓	✓	ave	30.3	51.2	31.5

- (a) **Backbone Architecture**: Better backbones bring expected gains: deeper networks do better, FPN outperforms C4 features, and ResNeXt improves on ResNet.
- (b) Multinomial vs. Independent Masks (ResNet-50-C4): Decoupling via perclass binary masks (sigmoid) gives large gains over multinomial masks (softmax).
- (c) **RoIAlign** (ResNet-50-C4): Mask results with various RoI layers. Our RoIAlign layer improves AP by \sim 3 points and AP₇₅ by \sim 5 points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

	AP	AP_{50}	AP_{75}	AP ^{bb}	$\mathrm{AP_{50}^{bb}}$	$\mathrm{AP^{bb}_{75}}$
RoIPool RoIAlign	23.6	46.5	21.6	28.2	52.7	26.9
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5

_		mask branch	AP	AP_{50}	AP_{75}	
_	MLP	fc: $1024 \rightarrow 1024 \rightarrow 80.28^2$	31.5	53.7	32.8	•
	MLP	fc: $1024 \rightarrow 1024 \rightarrow 1024 \rightarrow 80.28^2$	31.5	54.0	32.6	
_	FCN	conv: $256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 80$	33.6	55.2	35.3	-

- (d) **RoIAlign** (ResNet-50-**C5**, *stride 32*): Mask-level and box-level AP using *large-stride* features. Misalignments are more severe than with stride-16 features (Table 2c), resulting in massive accuracy gaps.
- (e) **Mask Branch** (ResNet-50-FPN): Fully convolutional networks (FCN) *vs.* multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs improve results as they take advantage of explicitly encoding spatial layout.

Table 2. **Ablations** for Mask R-CNN. We train on trainval35k, test on minival, and report *mask* AP unless otherwise noted.

Image+Domain

- Human Pose Estimation
 - Human pose
 - → 17 keypoints
 - → 17 masks
- Only a single pixel is labeled as foreground

Figure 6. Keypoint detection results on COCO test using Mask R-CNN (ResNet-50-FPN), with person segmentation masks predicted from the same model. This model has a keypoint AP of 63.1 and runs at 5 fps.

Multi-Domain Network (MDNet)

Pre-train Multi-Domain Network (MDNet)

- Convolutional layers
 - Identical to the corresponding parts of VGG_M network
- Fully-connected layers
 - 512 output units and are combined with ReLUs and dropouts
- K branches
 - Binary classification layer with softmax cross-entropy loss
 - Distinguish target and background

Online Tracking with MDNet

- Real-time online tracking of moving objects
 - Hard Mini-batch Mining

Red boxes : positive samples Blue boxes : negative samples

- As learning proceeds and the network becomes more discriminative, the classification in a mini-batch becomes more challenging
- This approach identifies critical negative examples (false positives)
 effectively

Step1

Human-level Face Verification

- Step1. Face Detection
- Step2. Face Alignment
- Step3. Feature Extraction
- Step4. Face Classification

Step2

Figure 2. Outline of the *DeepFace* architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.

Preprocessing Faces fiducial points

- Step1. Face Detection
- Step2. Face Alignment

(c)

(d)

: Scaling & Rotation & Translate

: take the average of the 3D scans from the USF Human

-ID database

: piecewise affine transformation

warping (frontalization)

(h)

Final Alignment

Neural Network Structure for Face Verification

Figure 2. Outline of the *DeepFace* architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.

- Step3. Feature Extraction & Step4. Face Classification
 - Locally connected layer
 - No weight sharing unlike the standard convolutional layer

Face Verification Results

Figure 3. The ROC curves on the *LFW* dataset. Best viewed in color.

Method	Accuracy \pm SE	Protocol
Joint Bayesian [6]	0.9242 ± 0.0108	restricted
Tom-vs-Pete [4]	0.9330 ± 0.0128	restricted
High-dim LBP [7]	0.9517 ± 0.0113	restricted
TL Joint Bayesian [5]	0.9633 ± 0.0108	restricted
DeepFace-single	0.9592 ± 0.0029	unsupervised
DeepFace-single	0.9700 ± 0.0028	restricted
DeepFace-ensemble	0.9715 ± 0.0027	restricted
DeepFace-ensemble	0.9735 ± 0.0025	unrestricted
Human, cropped	0.9753	

Table 3. Comparison with the state-of-the-art on the *LFW* dataset.

TECHNIQUES IN NEURAL NETWORKS

Many Techniques in Neural Networks

- Neural network requires diverse techniques
 - Training process to facilitate the learning
 - Batch normalization
 - Early stopping
 - Adversarial training
 - Momentum in optimization, adaptive learning rate, gradient checking ...
 - Structure to facilitate the learning
 - Attention network
 - Highway network
 - Dropout....
 - Some are originated from experiments, and others are motivated by theory
 - A few found to be useful by experiments, and later, they are revealed to be meaningful, theoretically
- Inference is limited to the stochastic gradient descent

Model Selection

- Training processes
 - Given a dataset, D
 - Divide D into three datasets
 - Training set : *D*^{train}
 - To infer the parameter of the model to train
 - Validation set : D^{valid}
 - To search the hyper-parameter
 - Hidden layer size, learning rate, number of iterations
 - Test set : D^{test}
 - Actual testing
- In the real world,
 - Train the model with the training and the validation set
 - Deployment domain requires adaptations
 - Training: development phase
 - Validation : deployment phase
 - Test the model with the testing set
 - Evaluate the actual performance after the deployment

Early Stopping

- Neural network model is naturally complex with many parameters
 - Very easy to overfit
 - Stop the fitting before the model overfits
- Training: the model parameter inference
- Validation : early stopping point check

Momentum and Adaptive Learning Rate

- Gradient Descent: $\theta_{t+1} = \theta_t \eta \nabla_{\theta} l(f(x^{(t)}), y^{(t)}; \theta_t)$
- Momentum
 - Exponential average of the previous gradients
 - Move along the direction to overcome the plateau
 - β becomes the decay factor
 - $\theta_{t+1} = \theta_t \eta \hat{V}_{\theta}^{(t)}$
 - $\hat{V}_{\theta}^{(t)} = V_{\theta} l(f(x^{(t)}), y^{(t)}; \theta_t) + \beta \hat{V}_{\theta}^{(t-1)}$
- Adaptive Learning Rate
 - Adagrad: learning rate scaled by the square root of the cumulative sum of squared gradients
 - More movements on the smaller movements, less movements on the larger movements

•
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \nabla_{\theta} l(f(x^{(t)}), y^{(t)}; \theta_t)$$

•
$$G_t = G_{t-1} + \left(\nabla_{\theta} l(f(x^{(t)}), y^{(t)}; \theta_t)\right)^2$$

RMSProp: Exponential moving average of the squared gradients

•
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \nabla_{\theta} l(f(x^{(t)}), y^{(t)}; \theta_t)$$

•
$$G_t = \gamma G_{t-1} + (1 - \gamma) \left(\nabla_{\theta} l(f(x^{(t)}), y^{(t)}; \theta_t) \right)^2$$

Adam : RMSProp + Momentum

•
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \widehat{V}_{\theta}^{(t)}$$

$$\hat{V}_{\theta}^{(t)} = (1 - \beta_1) \nabla_{\theta} l(f(x^{(t)}), y^{(t)}; \theta_t) + \beta_1 \hat{V}_{\theta}^{(t-1)}$$

•
$$G_t = \gamma G_{t-1} + (1 - \gamma) \left(\nabla_{\theta} l(f(x^{(t)}), y^{(t)}; \theta_t) \right)^2$$

Mini-Batch and Gradient Checking

- Backpropagation algorithm
 - Single instance gradient calculation

•
$$w \leftarrow w - \eta \nabla_{\mathbf{w}} E[l(f(\mathbf{x}^{(i)}; \mathbf{w}), y^{(i)})]$$

- With a single instance, not much to calculate as expectation
- Full instance gradient calculation
 - $w \leftarrow w \eta \nabla_{\mathbf{w}} E[l(f(\mathbf{x}; \mathbf{w}), \mathbf{y})]$
 - Normalize the summation with the size of the dataset
- Should be mini-batch

•
$$w \leftarrow w - \eta \nabla_{w} E[l(f(\mathbf{x}^{(i;i+n)}; \mathbf{w}), y^{(i;i+n)})]$$

- Normalize the summation with the size of the mini-batch
- Gradient checking
 - When you implement the propagation algorithm, compare the finitedifference approximation of the gradient

•
$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

Batch Normalization

- Layer type output normalization with mini-batch data
 - BatchNormalization($x_{1...m}$; γ , β)

•
$$\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$$

•
$$\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$

•
$$\hat{\chi}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

•
$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

- Batch normalization parameter, γ and β , is trainable through stochastic gradient descent, as well
 - Can use chain rule
- How to use it?
 - Training: After the regression, and before the activation
 - Testing : remember the mean of γ s and β s from mini-batches
- Why use it?
 - Scale and shift normalization

Adversarial Training

- Instances in datasets
 - Some instances work well with the trained model
 - Some instances do not work well with the trained model
 - Some instances should not be accommodated because it could be noise
 - Some instances should be accommodated because it is a meaningful case
- Find an (or artificially generate) instance that disrupt the current trained model
 - "Training on adversarial example"
 - $w^T \tilde{x} = w^T x + w^T \eta$, $||\eta||_{\infty} < \epsilon$
 - \tilde{x} : adversarial example, $w^T \eta$: adversarial perturbation
 - $\eta^* = max_{\eta}w^T\eta = sign(w)$
 - Can make many infinitesimal changes, "Accidental steganography"
- Given $y \in \{-1,1\}, P(y = 1) = \sigma(w^T x + b), g(z) = \log(1 + \exp(z))$
 - Training objective
 - $min_w E_{x,y\sim P_{data}} g(-y(w^T x + b))$
 - Adding the adversarial training
 - $min_w E_{x,y\sim P_{data}} g(-y(w^T x + b \epsilon ||w||_1))$
 - $-||w||_1 = -w^T sign(w)$, because of the minimization objective
 - Similar to the L1 regularization, but it is different
 - Not directly applied as a penalty that does not go away.
 - Good fitting of w can eliminate the adversarial learning term
 - L1 regularization → controlling the sensitivity
 - Adversarial training → robust weight vector

Dropout

- Challenge of the neural network
 - Complex model to learn a simple principle
 - Limit the complexity, stochastically
 - Remove a set of randomly selected neurons for a certain mini-batch
- Rational
 - Hidden units cannot co-adapt to other units that were active in the mini-batch gradient descent
 - Hidden units must be more generally useful
- By defining a mask, $r^{(l)}$, $l = 1 \dots L$
 - Neural network without dropout

•
$$z_i^{(l+1)} = w_i^{(l+1)} y^{(l)} + b_i^{(l+1)}, y_i^{(l+1)} = f(z_i^{(l+1)})$$

- Neural network with dropout
 - $r_j^{(l)} \sim Bernoulli(p)$
 - $\tilde{y}^{(l)} = r^{(l)} * y^{(l)}$
 - $z_i^{(l+1)} = w_i^{(l+1)} \tilde{y}^{(l)} + b_i^{(l+1)}, y_i^{(l+1)} = f(z_i^{(l+1)})$
- Marginalizing the dropout in the linear regression
 - $\min_{w} E_{R \sim Bernoulli(p)} \left[\left| \left| y (R * X)w \right| \right|^{2} \right] = \min_{w} \left[\left| \left| y pXw \right| \right|^{2} + p(1-p) \left| \left| \Gamma w \right| \right|^{2} \right]$
 - $\Gamma = (diag(X^TX))^{1/2}$
 - $= min_w \left[\left| \left| y X\widetilde{w} \right| \right|^2 + \frac{1-p}{p} \left| \left| \Gamma \widetilde{w} \right| \right|^2 \right]$
 - $\widetilde{w} = wp$