# **AlexNet**

- AlexNet, developed by Alex Krizhevsky and his colleagues in 2012, was a groundbreaking convolutional neural network (CNN) that significantly advanced the field of computer vision.
- AlexNet achieved state-of-the-art performance in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), significantly outperforming the competition.
- Its success demonstrated the power of deep learning in image classification tasks and spurred further research and development in convolutional neural networks.
- Overall, AlexNet's architecture and techniques laid the groundwork for many subsequent deep learning models, paving the way for advances in various applications, including image and video recognition, object detection, and more.

# **AlexNet**



#### 1. Input Layer:

• Input Size: 227x227 pixels (originally designed to accept 224x224, but the extra padding was added for compatibility). Each image has three color channels (RGB).

### 2. Convolutional Layers:

#### Conv Layer 1:

– Filters: 96

– Kernel Size: 11x11

- Stride: 4

Activation: ReLU (Rectified Linear Unit)

Output Size: 55x55x96 (after applying padding and the convolution operation)

#### Pooling Layer 1:

- Type: Max Pooling

- Kernel Size: 3x3

- Stride: 2

- Output Size: 27x27x96

### Conv Layer 2:

- **Filters**: 256

- Kernel Size: 5x5

- Stride: 1

- Activation: ReLU

- Output Size: 27x27x256 (after padding)

## Pooling Layer 2:

- Type: Max Pooling

- Kernel Size: 3x3

- Stride: 2

- **Output Size**: 13x13x256

#### Conv Layer 3:

- **Filters**: 384

- Kernel Size: 3x3

- Stride: 1

- Activation: ReLU

- Output Size: 13x13x384

#### Conv Layer 4:

- **Filters**: 384

- Kernel Size: 3x3

- Stride: 1

- Activation: ReLU

- Output Size: 13x13x384

#### Conv Layer 5:

- **Filters**: 256

- Kernel Size: 3x3

- Stride: 1

- Activation: ReLU

- **Output Size**: 13x13x256

### Pooling Layer 3:

- Type: Max Pooling

- Kernel Size: 3x3

- Stride: 2

- Output Size: 6x6x256

## 3. Fully Connected Layers:

FC Layer 1:

– Neurons: 4096

– Activation: ReLU

Dropout: 50% dropout rate during training for regularization

FC Layer 2:

– Neurons: 4096

– Activation: ReLU

Dropout: 50% dropout rate during training for regularization

FC Layer 3:

Neurons: 1000 (for 1000 classes in the ImageNet dataset)

Activation: Softmax (to produce class probabilities)

# Thank You