	Mama: Denia Alvira Tezaningrum	3
	NPM : A 171 070 HO	
	Kelas : Reguler Sore .	1
	Tugas : Kimia Organik -	
	H-5 H5	
1.	Struktur isomer hersana.	
		1 1 2 2 - 1 1 1 1 1 1 1 - 8 . 8 . A
	1. CH3 - CH2 - CH2 - CH2 - CH3.	
	2. CH3 - CH - CH2 - CH2 - CH3 .	
	HO CH3 HO	4.
	3. CH3 - CH2 - CH - CH2 - CH3.	
	Ho CH ₃	
	4. CH3	
	4. CH3 - C - CH2 - CH3 97100	osb 149 organ 7 - F - 1901 +9 - 6 . 0
CH3.		
	S. CH3 - CH - CH3	
	CH3 CH3	V/V/ .0 3
	H3 H3 H3	
2.	Struktur isomer heptana.	
	1. CH3 - CH2 - CH2 - CH2 - CH2 - CH2 - CH3	g. CH3
	2. CH3 - CH - CH2 - CH2 - CH3	8. CH3 - CH - C - CH3
	CH3	CH3 CH3
1		9. CH3 - CH2 - CH - CH2 - CH3
	3. CH3 - CH2 - CH - CH2 - CH3	C2H5-
	CH3	
	4. CH3 - CH - CH - CH2 - CH3	
	CH3 CH3	
001		
	5. CH3 - CH - CH2 - CH - CH3	
	CH3 CH3	
	CH3	
	6. CH3 - C - CH2 - CH2 - CH3.	
	CH	
	CH3	
	7. CH3 - CH2 - C - CH2 - CH3	
N. L.	CH3	

