# Self-supervised hamiltonian mechanics neural networks

### Zhan Youqiu

August 30, 2020

#### Abstract

Abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abstract abs

Keywords— keyword1, keyword2, keyword3

#### Contents

| 1 | Introduction               | 1     |
|---|----------------------------|-------|
| 2 | Canonical equation and ODE | 1     |
| 3 | The training               | 2     |
| 4 | Tasks 4.1 Free particle    | 2 2 3 |

## 1 Introduction

Some text [3].

## 2 Canonical equation and ODE

To build a common sense of the physics theories it is going to involve, the canonical equation is introduced.

The canonical equation is a set of ordinary differential equations (ODE) whose solution depicts the motion of the system. The equation in mathematical form is [4][1, p. 65][6, p. 132]

$$\dot{\mathbf{q}} = \frac{\partial \mathcal{H}}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -\frac{\partial \mathcal{H}}{\partial \mathbf{q}},$$
 (1)

where  $\mathbf{q} \in \mathbb{R}^n$  is the **generalized coordinates**,  $\mathbf{p} \in \mathbb{R}^n$  is the **generalized momentum**, and  $\mathcal{H}$  is the **hamiltonian** of the system, which is a scalar function w.r.t. t,  $\mathbf{q}$ , and  $\mathbf{p}$ . n is the number of degrees of freedom (DOF). A hamiltonian is specific for a specific system.

The tuple  $\mathbf{x} := (\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2n}$  is called the **canonical coordinates**. In computer programs, it is convenient to write Equation 1 in form of

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \tag{2}$$

which is the common form of ODE. Here in our specific case,

$$\mathbf{f}(t, \mathbf{x}) := \boldsymbol{\omega} \nabla_{\mathbf{x}} \mathcal{H},\tag{3}$$

where the notion  $\omega \nabla_{\mathbf{x}}$  denotes the **symplectic gradient** w.r.t.  $\mathbf{x}$ , whose first n components is the gradient w.r.t. the last n components of  $\mathbf{x}$ , and the last n components is the negative gradient w.r.t. the first n components of  $\mathbf{x}$ .

One of properties of the symplectic gradient is that, moving along the symplectic gradient field of a scalar does not change the value of the scalar function, which means that the value of  $\mathcal{H}$  is conserved if  $\frac{\partial \mathcal{H}}{\partial t} = 0$ . In fact, the physical meaning of  $\mathcal{H}$  is the energy, so its conservation is obvious.

According to Equation 3, the difference between  $\mathbf{x}$  at 2 different times is an integral

$$\mathbf{x}(t_2) = \mathbf{x}(t_1) + \int_{t_1}^{t_2} \mathbf{f}(t, \mathbf{x}(t)) dt.$$
(4)

The integral can be calculated using the torchdiffed Python package [2].

## 3 The training

Our goal is to derive the function  $(t, \mathbf{x}) \mapsto \mathcal{H}$  according to the dataset containing a series of samples in form of  $(t, \mathbf{x})$  on a series of possible motions of the system.

The dataset does not contain the  $\dot{\mathbf{x}}$  infomation, which acts as the ground truth in the supervised model [3]. Our model is self-supervised, and thus does not need the  $\dot{\mathbf{x}}$  infomation.

The model uses the loss inspired from Equation 4

$$\mathcal{L} := MSE\left(\mathbf{x}\left(t_{1}\right) + \int_{t_{1}}^{t_{2}} \boldsymbol{\omega} \nabla_{\mathbf{x}} \mathcal{H} dt, \mathbf{x}\left(t_{2}\right)\right), \tag{5}$$

where  $(t_1, \mathbf{x}(t_1))$  and  $(t_1, \mathbf{x}(t_1))$  are 2 samples from the same motion of the system. The complete process of a training circle is shown in Figure 2. For comparison, the train circle of the supervised hamiltonian neural network is shown in Figure 1.

The Adam optimizer [5] is used for optimizing the neural network.

## 4 Tasks

## 4.1 Free particle

A free particle is a system with 1 DOF whose hamiltonian is

$$\mathcal{H}\left(t,q,p\right):=\frac{p^{2}}{2m},$$

where m is the mass of the particle. To be simple, we take m = 1/2.



Figure 1: The train circle of a supervised hamiltonian neural network [3]

#### 4.2 Harmonic oscillator

## References

- [1] V. I. Arnol d, K. Vogtmann, and A. Weinstein. *Mathematical methods of classical mechanics*. Springer, 2nd edition, 1989.
- [2] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations. *Advances in Neural Information Processing Systems*, 2018.
- [3] S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks, 2019.
- [4] L. N. Hand and J. D. Finch. Analytical mechanics. Cambridge University Press, 2008.
- [5] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.
- [6] L. D. Landau, L. E. Mikhaĭlovich, J. B. Sykes, and J. S. Bell. Mechanics. Butterworth-Heinemann, 3rd edition, 1976.



Figure 2: The train circle of a self-supervised hamiltonian neural network