ثانوية بن بولعيد - باتنة ـ الأوية الأو العام الدراسي: 2016-2016 (2016-2016) الأستاذ: ح

الحصة الأولى (دعم بالثانوية للنهائي) الأستاذ: جرادي سلطان (الثالثة ثانوي)

التمرين الأول:

نعرف الدالة f على المجالي $[-\infty, -1]$ على الدالة f على المجالي $[-\infty, -1]$ كما يلي: $[-\infty, -1]$ كما يلي: $[-\infty, -1]$ وليكن $[-\infty, -1]$ المتعامد المتجانس $[0; \overline{i}, \overline{j}]$ (الوحدة $[-\infty, -1]$

أحسب نهایات f عند حدود مجالي تعریفها f

بين أن (c_f) يقبل مقاربين أحدهما مائل (Δ) يطلب تعيين معادلة له.

(Δ) مع مقاربه المائل في نقطة يطلب نعيين إحداثييها، ثم حدد وضعية (c_f) مع (c_f) بين أن

y=2، y=o : عين نقط تقاطع (c_f) مع المستقيمين (4

تحقق أن الدالة المشتقة للدالة f معرفة كما يلي: $\frac{xp(x)}{(x+1)^3}$ حيث p(x) كثير حدود من الدرجة الثانية f

f أدرس إتجاه تغير الدالة 6

 (c_f) أرسم(7)

التمرين الثاني:

 $g(x) = (x-1)e^{-x} + 2$: المعرفة R كمايلي (1)

أ)أدرس اتجاه تغير الدالة g مع حساب النهايات عند حدود أطراف مجموعة التعريف

 $-0.38 \prec \alpha \prec -0.37$ بين أن المعادلة g(x) = 0 تقبل حلا وحيدا α

g(x)ج)استتتج حسب قیم xاشتارة

 $g(x) = 2x + 1 - xe^{-x}$: كمايلي f المعرفة R كمايلي (2

 $\left(O; \vec{i}; \vec{j}
ight)$ وليكن و $\left(C_f
ight)$ التمثيل البياني للدالة f في مستوي منسوب الى معلم متعامد ومتجانس

أ) حسب نهايات الدالة عند حدود أطراف مجموعة التعريف

ب)أحسب f'(x) ثم أدرسإشارتها

f استنتج جدول تغیرات الداله ج

 $+\infty$ عند C_f عند y=2x+1 عند (d) عند عند عند المعادلة (d)

(d) و (C_f) ادرس الوضعية النسبية لـ (C_f)

و)بين أن المنحنى $\left(C_{f}
ight)$ يقبل نقطة انعطاف يطلب تعيين إحداثييها

$$f(lpha)=rac{2lpha^2+lpha-1}{lpha-1}$$
 : ز) بین أن $(lpha=-0.375$ ز) بین أن (C_f) و (d) ح)أرسم ح)أرسم $y=2x+k$ عدد حقیقی (Δ_k) متقیم معادلته

أعين k حتى يكون Δ_k مماسا للمنحنى أول في نقطة يطلب تعيين إحداثياتها أ

$\frac{x}{e^x} + 1 - m = 0$ عدد حلول المعادلة وسيط الحقيقي بيانيا حسب قيم الوسيط الحقيقي الثالث:

 $^{\prime}$ (B(7;-1;-2) ، A(1;-1;4) حيث C,B,A حيث المعلم المتعامد والمتجانس ($O;\vec{i}\,,\vec{j}\,,\vec{k}\,)$ هي الفضاء المنسوب إلى المعلم المتعامد والمتجانس (C(1;5;-2)

- رين أن النقط $C \cdot B \cdot A$ تعين مستويا.
- ب) بين أن المثلث ABC متقايس الأضلاع.
- (ABC) بين أن الشعاع $\vec{n}(1;1;1)$ ناظم للمستوي
 - د) عين معادلة ديكارتية للمستوي (ABC).
- D(0;-2;-3) اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة (2
 - و العمودي على المستوي (ABC).
- (3) عين إحداثيات النقطة G المسقط العمودي للنقطة D على المستوي (ABC) ثم بين أن النقطة G هي مركز ثقل المثلث ABC.
 - عين مجموعة النقط (E) عين مجموعة النقط عين مجموعة النقط (E) عين مجموعة النقط عين مجموعة النقط عين مجموعة النقط (E

التمرين الرابع:منزلي

الشكل المقابل هو التمثيل البياني (C) في معلم متعامد متجانس لدالة f معرفة وقابلة للإشتقاق على المجال [-2,4]

النقطة من (C) ذات الفاصلة A

- 0 من (C) ذات الفاصلة
- (T) المستقيم ، المستقيم (C) في المستقيم ، المستقيم مماس للمنحني (C) في النقطة (C) الدالة المشتقة (C) للدالة (C)
 - f'(-1) أحسب (1
 - f '(2) حدد إشارة (2
 - (3) أعط تفسيرا بيانيا للعدد f'(0) عمل أحسبه.
 - (T) عين معادلة للمماس عين (4
- $f(x) = (ax + b)e^{-x}$: العددان a,b العددان أن الدالة $f(x) = (ax + b)e^{-x}$ العددان (5
 - a,b,x بدلالة f'(x) عبارة (أ
 - $f(x) = (x+2)e^{-x}$: باستعمال نتائج من البيان تحقق أن
 - ت) أحسب القيمة المضبوطة لترتيبة النقطة A
 - ث) تحقق بالحساب من صحة إتجاه تغيرات الدالة
 - [-2,4] في المجال f

