NOSITEL VYZNAMENÁNÍ ZA BRANNOU VÝCHOVU I. A II. STUPNĚ

ŘADA PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXVI/1987 ● ● ČÍSLO 5

V TOMTO SEŠITĚ

Urychlení, přestavba,

kvalita.....161
PŘIJÍMAČE PRO PŘÍJEM

BAREVNÉ TELEVIZE Signálová část přijímačů

Signálová část přijímačů (dokončení)

Rozkladové obvody

Obvody synchronizace185 Obvody vertikálního, snímkového rozkladu187 Obvody pro horizontální rozklad obrazu, základní funkce koncového stupně......189 Princip činnosti obvodů řádkového rozkladu v přijí-mačích Mánes Color a Color Oravan.....190 Obvody ovládání tyristorových spínačů.....192 Primární napájecí zdroje193 Budicí stupeň horizontálního a odvozených typů194 Obvody stabilizace horiz. rozkladu a ochrany197

AMATÉRSKÉ RADIO ŘADA B

Inzerce200

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJSKO, Vladislavova 26, 133 66 Praha 1, tel. 26 06 51–7. Šéfredaltor ing. Jan Klabal, Redalkční radu řídí ing. Jan Klabal, Redalkční radu řídí ing. J. T. Hyan. Redalktor L. Kalousek, OK1FAC. Redalkce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7, šéfredaltor linka 353, sekretářka linka 355. Ročně vyjde 6 čísel. Cena výtisku 5 Kčs, pololetní předplatné 15 Kčs, Rozšíruje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřízuje PNS, ústřední expedice a dovoz tisku, závod 01, Kařkova 9, 160 00 Praha 6. Tiskne NAŠE VOJSKO, n. p., závod 08, 160 05 Praha 6, Vlastina ulice č. 889/23. Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redalkci a telefonické dotazy po 14. hodině. Číslo indexu 46 044.

Toto číslo má vyjít podle plánu 9. 10. 1987. © Vydavatelství NAŠE VOJSKO.

🔟 🕮 URYCHLENÍ, PŘESTAVBA, KVALITA

(Dokončení)

V minulém čísle jsme skončili u 31. bodu Zásad přebudování hospodářského mechanismu ČSSR. Dnes si všimneme zbývajících šesti bodů, z nichž první, tj. 32. bod se týká uplatnění progresívnějších podmínek komplexem kritérií, úkolů a nástrojů plánu, než jaké odpovídají současné průměrné efektivnosti čs. organizací. Rozdíly v míře ziskovosti a ztrátovosti organizací, které se zřeimě objeví především v prvních letech po uplatnění Zásad. použít jako nutné východisko k odhalování příčin rozdílů v hospodaření organizací (tj. k odhalování nedostatků v jejich hospodaření) tak, aby mohla být příjata odpovídající opatření.

S uvedeným bodem 32 Zásad souvisí úzce i 33. bod, který ukládá rozpracovat postupy a opatření vůči dlouhodobě špatně hospodařícím organizacím, přičemž tato opatření nesmí jít na úkor oprávněných sociálních jistot pracujících. Mohlo by jít zejména o konsolidační programy, zvláštní režimy hospodaření včetně kontroly bankou, používání direktivních opatření centra, rušení výrobních programů, změny v kádrové oblasti, rekvalifikace a přemisťování pracovníků až po ztrátu chozrasčotní samostatnosti organizace a jejímu začlenění k jiné hospodářské jednotce, tj. opatření jistě neobvyklá v našem dosavadním hospodářském mechanismu, ale zcela jistě nezbytná.

Nutnost promítnout principy přebudování hospodářského mechanismu a především jeho přednostní orientaci na společenskou efektivnost i do vnitropodnikového chozrasčotu, organizace a řízení je předmětem 34. bodu Zásad. To v praxi znamená, že každý útvar, článek řízení a kolektiv musí být zainteresován a odpovědný za společenský přínos své práce, což souvisí s posilováním pocitu hospodáře u všech pracujících. K tomu, aby se tento bod Zásad mohl realizovat, je třeba důsledně vymezit úkoly všech vnitropodnikových složek a jejich vzájemné vztahy a součinnost. Přitom je třeba zvláštní pozornost věnovat těm podnikovým útvarům, které zabezpečují vědeckotechnický rozvoj, technologické a výrobkové inovace a kvalitu produkce. Nesmí se zapomenout na ty útvary, které mají v pracovní náplni plynulost výzkumu, vývoje, výroby a v neposlední řadě i zásobování a odbytu. K těmto úkolům je třeba ovšem vytvořit předpoklady - co nejúplněji rozpracovat naturální i hodnotové stránky úkolů hospodářského plánu na jednotlivé útvary organizací, průběžně sledovat a vyhodnocovat jejich činnost, kvalitu výrobkových kalkulací a všechny technicko-ekonomické normy, zavádět brigádní formy organizace práce a odměňování.

35. bod Zásad ukládá zvýšit nároky na výběr, přípravu a hodnocení kádrů na všech úrovních řízení, aby řídicí pracovníci vždy šli příkladem při prosazování nového stylu práce, při překonávání konfliktů spojených s přebudováním hospodářského mechanismu a při upevňování kázně a pracovní discipliny. Přitom je třeba dbát na to, aby současně s hmotným odměňováním výsledků práce bylo v jednotě i ocenění morální. S t(m souvisí i požadavek, aby hodnocení a odměňování výsledků práce řídicích pracovníků bylo náročněji spojováno s dlouhodobou úspěšností jimi řízených úseků, s kvalitou jejich přímé řídicí a organizátorské práce

a angažovanosti v prosazování společenských zájmů. Stejná měřítka by měla být použita i pro jmenování řídicích pracovniků a jejich setrvávání na vedoucích funkcích

Při realizaci bodu 36 Zásad je třeba vycházet z toho, že je třeba využívat tvůrčí iniciativy pracujících a rozvíjet vyšší formy účasti jejich kolektivů na řízení. Socialistickou ekonomiku intenzifikovat a účinně prosazovat výsledky vědeckotechnického rozvoje v praxi mohou jen lidé s vysokou iniciativou a politickým uvědoměním, kteří mají zájem na tom, jak je jejich práce organizována, jaký je pořádek na pracoviští, jaká je v organizaci kázeň na všech pracovištích, a kteří jsou na efektivním rozvoji ekonomiky morálně a hmotně plně zainteresováni.

Poslední, 37. bod Zásad ukládá zaměřit činnost všech komunistů, stranických a státních, hospodářských i společenských orgánů a organizací na důsledné rozpracování a komplexní zavádění přijímaných opatření do praxe. Současně je třeba v návaznosti na již přijatá opatření, ještě před zavedením celého komplexu změn podle těchto Zásad do praxe, využívat důsledně všech možností, které skýtá stávající soustava řízení, stávající platné zákony a předpisy, k podstatnému zkvalitnění přímé řídicí a organizátorské práce. To všechno zákonitě zvyšuje i nároky na vedoucí a kontrolní úlohu strany, normy a metody jejího uplatňování. Pod vedením strany je teda třeba zajišťovat jednotný koordinovaný postup všech orgánů organizací, odpovědnou politickou ideově výchovnou i věcnou přípravu na přebudování hospodářského mechanismu tak, aby se prováděné změny staly významným činitelem rozvoje naší socialistické společnosti. V této souvislosti je třeba klást velký důraz na to, že je nutná maximální osobní odpovědnosť hospodářských pracovníků za realizaci strategických cílů, které vyjadřují zájmy a potřeby celé socialistické společnosti.

To je tedy všech 37 bodů Zásad. Nyní se začínají postupně převádět do zákonů, nařízení a dalších právních norem. Bude jistě i zajímavé si uvést, jaký časový harmonogram je uvažován pro zavádění Zásad do praxe. To přesně ozřejmil Jaro-mír Matějka, sekretář Vládního výboru pro otázky plánovitého řízení národního hospodaření a náměstek ministra: Změny v hospodářském mechanismu budou tak významné, že povedou k zásadní restrukturalizaci celé hospodářské základny, která bude zasahovat i do některých oblastí práva, částečně do ústavy, do kompetenčního zákona, do zákona o federalizaci apod., Zatím se zpracovává věcné zaměření všech změn hospodářského mechanismu v souladu se Zásadami tak, aby soubor změn byl dostatečně účinný. Tato práce má být dokončena do prosince letošního roku. Pak má být komplexní dokument vyhlášen a současně se mají zahájit práce na novelizaci všech právních norem, které je třeba změnit. Tyto práce skončí, spolu se změnou takových dokumentů, jako je metodika pro sestavení pětiletého plánu, zhruba do poloviny roku 1989 tak, aby se celý komplex změn

uplatnil při přípravě 9. pětiletého plánu. Půjde tedy o postupné změny právních norem. Prvním krokem v této oblasti je zákon o podniku, který byl již předložen k veřejné diskusi.

Na závěr pak ještě odpověď na otázku, co přinese přestavba lidem. Tady by snad bylo nejlepší ocitovat opět Jaromíra Matějku: Musíme mluvit o člověku ze dvou hledisek – jako o tvůrci hodnot, výrobci a jako o spotřebiteli. Samozřejmě, že hlavním cílem je maximální uspokojování životních potřeb. Ale vyšší uspokojování těchto potřeb je možné jen tehdy, když se zvýší produktivní síla Člověka jako tvůrce hodnot. Celá přestavba směřuje jen k tomu, aby se člověk realizoval jako výrobce i jako spotřebitel. Všech 37 bodů

Zásad směřuje k tomu, aby se člověk mohl uplatnit, aby byly respektovány jeho potřeby a zájmy, aby on, když svoje zájmy realizuje, současně přispíval k realizaci společenských zájmů. Chceme-li mít ovšem spotřebu na úrovni nejvyspělejších států, musíme mít také pracovní morálku, vědeckotechnický rozvoj a produktivitu práce na jejich úrovni.

Přijímače pro příjem barevné televize

SIGNÁLOVÁ ČÁST PŘIJÍMAČŮ

Ing. Milan Žebrák

(Dokončení z AR B4)

Dekódovací obvody přenosných přijímačů Mánes Color a Color Oravan — moduly P 6PN 053 68, 8PN 051 006

Tyto přijímače jsou osazeny novým typem dekodéru PAL/Secam, obsahujícím pouze dva integrované obvody. Pro dekódování signálu PAL je to obvod A3510D (MDA3510, TDA3510), pro signál Secam obvod A3520D (TDA3520).

Použitím integrovaných obvodů s větší hustotou integrace se podstatně zmenšil počet vnějších součástek, což zjednodušuje celkové zapojení obvodů dekodéru a současně zvětšuje spolehlivost. Dekodér s těmito obvody má i menší počet nastavovacích prvků, což zjednodušuje servis. Obvody nepotřebují další obvod pro automatické přepínání systému (jako byl modul A u BTVP řady Color 110), neboť tato funkce je zabezpečena automatickou změnou pracovního bodu koncových stupňů v závislosti na typu přijímaného signálu. Koncové stupně jsou podle pokynů identifikačních obvodů buď průchozí, nebo jsou zablokovány. Z tohoto důvodu je možno výstupy roz-

dílových signálů z jednotlivých obvodů propojit paralelně. Stejným způsobem jsou řešeny i budicí stupně pro připojení společného ultrazvukového zpožďovacího vedení (UZV).

Integrovaný obvod TDA3510 je v pouzdře DIL 24 z plastické hmoty. Svou funkcí nahrazuje, ve srovnání s dekodérem u přijímačů řády Color 110, obvody MCA640, MCA650 a MBA540. Blokové schéma zapojení obvodu je na obr. 55.

Chrominanční signál se na vstup obvodu TDA3510 přivádí kapacitní nebo indukční vazbou. Vstupní zesilovač je řešen jako diferenciální zesilovač se vstupy ná vývodech 1 a 2 IO, přičemž vstupní signál je přiváděn na vývod 1 a vstup 2 musí být pro střídavý signál blokován (C2). Stejnosměrné předpětí obou vstupů je zajištěno interně (4 V). Aby byl chrominanční signál ve správném poměru k jasovému signálu, je zisk chrominančního zesilovače řízen napětím $U_{\rm AVC}$, což zajišťuje konstantní výstupní napětí při změně vstupního signálu až o 26 dB v rozmezí 10 mV až 200 mV (mezi vývody 1 a 2 IO). Náslezesilovací stupně chrominančního zesilovače mají silnou zápornou zpětnou vazbu pro stabilizaci pracovního bodu. Pro chrominanční signál

je účinek této zpětné vazby zmenšen blokovacím kondenzátorem mezi vývody 3 a 4 IO.

Za vstupním chrominančním zesilovačem je omezovací obvod (2), zajišťující, že výstupní napětí zesilovače nepřekročí dvojnásobek jmenovité velikosti (např. při příjmu signálu mimo normu).

Za omezovačem se signál rozděluje do přímé a zpožděné cesty. Signál, který má být zpožděn ve vnějším (UZV) ultrazvukovém vedení 64 μs, je veden na budicí stupeň zpožďovací linky (3), jehož výstup je na vývodu 5 IO. Aby nevznikaly poruchy vlivem odrazů synchronizačního impulsu barvy (SIB) v lince, je SIB před příchodem signálu na UZV v budicím stupni ze signálu vyklíčován. Dále následuje stupeň, který je při jmenovitém signálu PAL průchozí a při signálu Secam nebo ČB tlumí barvonosný signál minimálně o 56 dB. Tento stupeň je řízen odpojovačem barvy se Schmittovým klopným obvodem (4) přes obvod pro posuv ss úrovně (5). Tento obvod řídí i pracovní bod koncového emitorového sledovače budicího stupně (3), čímž se připojuje vstup zpožďovací linky k obvodům PAL nebo Secam (obdobně je řešen i budicí stupeň v IO pro Secam, rezistor R_E je společný emitorový rezistor). Při signálu Secam nebo ČB vysílání je na bázi emitorového sledovače napětí 4,7 V (na výstupu 5 IO jsou tedy 4 V). Na výstupu budicího stupně IO pro Secam je v tomto případě 8 V a emitorový sledovač budicího stupně (3) pro PAL je tímto předpětím uzavřen. Při příjmu signálu PAL je naopak napětí na bázi emitorového sledovače v (3) 8,7 V. Tímto způsobem je zajištěno, že vede ten emitorový sledovač, který má větší předpětí báze a tak se připojuje vstup zpožďovací linky k jednomu nebo dru-

Jmenovité mezivrcholové napětí signálu na vývodu 5 IO při měřicím signálu 75 % barevných pruhů je 2 V.

Zpožděný signál se přivádí přes regulační potenciometr P₇ na vývod 7 IO a odtud je přiveden přes přizpůsobovací člen k jednotlivým synchronním demodulátorům (6 a 7).

V cestě přímého signálu je zařazen útlumový článek (8) s útlumem 18 dB pro vyrovnání útlumu v cestě zpožděného signálu (průchozí a přizpůsobovací útlum zpožďovací linky), takže potenciometrem P₇ je možno vzájemně vyrovnat úroveň přímého a zpožděného signálu (jmenovité mezivrcholové napětí signálu přiváděného na vývod 7 lO je 250 mV).

Obvody pro vytvoření barvonosných složek $\pm F_{R-Y}$ a F_{B-Y} z přímého a zpožděného signálu (matice PAL) jsou až součástí demodulátorů (6 a 7). Toto uspořádání je nutné, aby mohla být společná zpožďovací linka pro obvody PAL i Secam. Maticování se provádí vhodně spínanými rozdílovými zesilovači.

Synchronní demodulátory (6 a 7) jsou realizovány klasicky diferenčními multiplikativními směšovači, přepínanými referenčním signálem f_{ref}. Zbytky signálu nosného kmitočtu na výstupech demodulátorů jsou, eliminovány integrovanými dolními propustmi RC. Velmi důležitá je symetrie synchronních demodulátorů, neboť rozdíl ss úrovně o několik mV na vstupech těchto demodulátorů zvětšuje zbytkový signál barvonosného kmitočtu na jejich výstu-

pech. Požadavek shodnosti ss úrovně na vstupech demodulátorů je splněn tím, že je ss úroveň přímého signálu připojena ke zpožděnému signálu. Toto přímé spojení je možné, neboť zpožďovací linka ss složku nepřenáší. Kondenzátor C₆ na vývodu 6 IO toto ss napětí ještě filtruje.

Po dobu řádkových zpětnoběhových impulsů a při vypnuté barvě jsou demodulátory zablokovány signály z bloku řízení zatemňování (9) a současně jsou výstupní stupně (10 a 11) zablokovány přes obvod pro posuv ss úrovně (5). Kondenzátor C₈ na vývodu 8 IO zpomaluje přepínání mezi stavy "PAL" a "ČB" tak, aby přepnutí bylo dostatečně rychlé, avšak nereagovalo na případné rušivé signály (optimální kapacita Co = 1 uF from = 1/6.s)

kapacita $C_8 = 1 \, \mu F$, $t_{přep} = 1/6$, s). U výstupních stupňů (10 a 11) pro signály —(R-Y) a —(B-Y) je použit stejný princip posuvu ss úrovně předpětí pro báze výstupních emitorových sledovačů, jako u stupně pro buzení požďovací linky. Při provozu PAL je na báze emitorových sledovačů přiváděno napětí 8,7 V (tj. 8 V na výstupech 10 a 11 IO). Při provozu ČB/Secam je předpětí bází 4,7 V. V integrovaném obvodu TDA3520 (Secam) je konstantní předpětí bází 6,7 V (tj. 6 V na emitorových sledovačů 6,7 V (tj. 6 V na emitorech). Průchozí jsou opět ty stupně, které mají větší předpětí báze.

Demodulované signály —(B-Y) a —(R-Y) jsou k dispozici na vývodech 10, popř. 11 IO a jejich jmenovitá úroveň je $U_{mv}=1,33$ V, popř. 1,05 V.

Obvod pro obnovu barvonosného kmitočtu se liší od IO MBA540 především tím, že základní kmitočet oscilátoru (12) je 8,867238 MHz, tedy dvojnásobný. V děliči 2:1 (14) se vytvářejí referenční signály $f_{\text{ref(R-Y)}}$ a $f_{\text{ref(B-Y)}}$ s přesným fázovým posuvem 90°. Odpadá tedy externí fázovací článek a jeho nastavování (na rozdíl od MBA540). Kmitočet oscilátoru se nastavuje kapacitním trimrem C₁₄. Řídicí napětí pro dolaďování oscilátoru se získává ve fázovém diskriminátoru, v němž se porovnává fáze vyklíčovaného SIB s fází referenčního signálu fref(R-Y). Dynamické vlastnosti fázového regulačního obvodu jsou určeny prvky C₁₂, C₁₃, C_s, Rs, které filtrují řídicí napětí pro osci-

Pro správnou funkci dekodéru PAL je nezbytné, aby přepínač PAL, řízený bistabilním klopným obvodem PAL, přepínal synchronně ve správné fázi s vysílací stranou. Obvod, který tuto činnost zajišťuje, je tvořen bistabilním klopným obvodem PAL (19), demodulátorem H/2 (18) a prahovým detektorem identifikace (20).

Ve fázovém diskriminátoru (13) vzniká tím, že se fáze SIB vůči referenčnímu signálu $f_{\rm ref(R-Y)}$ mezi řádky mění o 90°, signál s polovičním řádkovým kmitočtem, který se skládá střídavě z kladných a záporných impulsů, superponovaných na ss napětí, tzv. impulsní signál H/2. Tento signál je přiveden na demodulátor H/2 (18) spolu s přepínacími impulsy H/2 z klopného obvodu PAL (19). V demodulátoru H/2 dochází k synchronní demodulaci signálu H/2, při které pracují přepínací impulsy H/2 z klopného obvodu jako spínací signál demodulátoru. Na výstupu demodulátoru H/2 isou při správném pořadí přepínání pouze záporné impulsy, a při nespráv-ném pouze kladné. Výstupní napětí demodulátoru je vyváděno na vývod 16 IO přes klíčovací obvod pouze po dobu trvání SIB a přes vnitřní rezistor $2,2~k\Omega$ nabíjí paměťový kondenzátor C_{16} . Naopak výstupní napětí demodulátoru mezi impulsy je vyvedeno na vývod 18 IO, kde se filtruje externím kondenzátorem C_{18} . Toto napětí se používá jako referenční ss signál U_{ref} pro přenos demodulovaného signálu H/2, stejně jako pro vnitřní zpětnou vazbu v zesilovačí demodulátoru H/2. Tímto způsobem je zabezpečeno, že se rušivě neprojeví kolísání ss úrovně na vstupu demodulátoru H/2.

Napětí na vývodu 16 IO představuje identifikační signál U_{ident} a ovládá jak klopný obvod PAL, tak obvody pro řízení vypínání a zapínání barvy. napětí se spolu s napětím U_{ref} přivádí na prahový detektor (20), jehož výstupní napětí řídí bistabilní klopný obvod PAL. Při správné fázi přepínání je napětí U_{18} (U_{ident}) záporné vůči napětí U_{18} (U_{ref}). V tomto případě prahový detektor nereaguje a neovlivňuje ani klopný obvod PAL. Je-li fáze přepínání nesprávná, začne se napětí U16 zvětšovat vůči U18, a když rozdíl dosáhne asi 200 mV, zareaguje prahový detektor a zablokuje překlopení klopného obvodu PAL. Tím se dostane přepínání do správné fáze, napětí U 16 se opět zmenší pod práh detektoru, který opět uvolní překlápění klopného obvodu PAL. Napětí U₁₆ se dále zmenšuje a ustálí se asi na 4 V

Jak již bylo řečeno, napětí U_{ref} a U_{ident} jsou přiváděna také na obvod pro vytváření napětí odpojovače barvy (4). emitorový sledovač tohoto Vstupní přes stupně řídí 1 kΩ Schmittův klopný obvod. Tento klopný obvod zapíná a vypíná podle velikosti napětí na vývodu 19 IO. Prahová úroveň Schmittova KO je 3,5 V. Zmenší-li se napětí U_{19} pod tuto úroveň, zapne se barva. V ustáleném stavu při signálu PAL je na vývodu 19 lO napětí 2,8 V. Když na vstup dekodéru přijde ČB signál, začne se identifikační napětí U_{16} zvětšovat směrem k U_{ref} , tj. 5,5 V. Když dosáhne asi 4,9 V, otevře se sledovač na vstupu obvodu (4) a přes rezistor 1 kΩ bude nabíjet kondenzátor C₁₉. Když dosáhne napětí U₁₉ 3,7 V, sepne se Schmittův KO a barva se vypne. V ustáleném stavu bude napětí $U_{\rm ident}$ rovno napětí $U_{\rm ref}$ (neboť chybí signál SIB) a napětí $U_{\rm 19}$ se ustálí na 4,4 V. Když nyní opět přivedeme na vstup dekodéru signál PAL, zmenší se napětí U16 postupně až na 4 V a již při jeho zmenšení pod 4,9 V se uzavře emitorový sledovač na vstupu obvodu (4). Smittův KO však ještě zůstane sepnutý, pokud se kondenzátor C₁₉ nevybije na napětí menší nez 3,5 V. Hystereze Schmittova KO mezi 3,5 V a 3.7 V zabraňuje střídavému vypínání a zapínání barev při mezních nebo rychle se měnících příjmových podmínkách. Výstupní napětí Schmittova KO je

Výstupní napětí Schmittova KO- je přes tranzistor s otevřeným kolektorem vyvedeno na vývod 21 IO. Ve spojení s vnějším kolektorovým rezistorem, připojeným na napájecí napětí, lze tento vývod použít k řízení doplňkových obvodů v závislosti na typu přijímaného signálu (např. odlaďovač 32,5 MHz, tj. přepínání K-G).

Impulsy pro výběr SIB a impulsy pro horizontální a vertikální klíčování jsou získávány z tříúrovňových složených impulsů "Sandcastle" (SCI), přiváděných na vývod 20 IO prostřednictvím prahového detektoru (17).

Regulační napětí U_{AVC} pro řízení zisku chrominančního zesilovače se vytváří v kvazišpičkovém detektoru v bloku (21). Na vstup detektoru je přiváděn výstupní signál z demodulátoru H/2 ($U_{DH/2}$), který není ani filtrovaný ani klíčovaný, což zabraňuje, jak je uvedeno dále, nárůstu barevné sytosti při slabých a zašuměných signálech.

Vlastní kvazišpičkový detektor je tvořen zdrojem proudu nabíjejícím vnější kondenzátor C₁₇ a emitorovým sledovačem s tranzistorem p-n-p, řízeným napětím U_{DH/2}, které vybíjí kondenzátor C₁₇ zápornými proudovými špičkami. Takto vytvořené napětí na kondenzátoru C₁₇ se po zesílení a dalším vyfiltrování kondenzátorem C₂₂ přivádí na chrominanční zesilovač. Popsané uspořádání umožňuje při běžném nezašuměném signálu získat regulační napětí úměrné amplitudě SIB, neboť záporné impulsy U_{DH/2} se podobně jako napětí U_{ident} zvětšují s rostoucí amplitudou SIB. Regulační napětí U_{AVC} se tedy zmenšuje s rostoucím signálem na vstupu IO. Činností AVC se potom napětí U_{ident} udržuje prakticky stálé (4 V).

Při slabém vstupním signálu, kdy jsou šum a užitečný signál řádově stejné, obsahuje signál $U_{\rm D-H/2}$, přiváděný na bázi emitorového sledovače špičkového detektoru, také šum, na který uvedený špičkový detektor také reaguje, takže se neúměrně nezesiluje barvonosný signál vzhledem k jasovému; proto se nezvětšuje sytost barev při slabém signálu.

Pro zpracování signálu v normě Secam je v dekodéru použit již uvedený nový typ integrovaného obvodu TDA3520 (A3520D). Obvod je v pouzdře DIL 28 z plastické hmoty a svou funkcí nahrazuje dříve používané typy IO MCA640 a MCA650.

Na rozdíl od starších typů IO je v tomto případě použit chrominanční zesilovač s regulací zisku pomocí obvodů AVC stejně jako při zpracování signálu PAL. Řízení zisku chrominančního zesilovače je použito proto, že přesto, že jde o kmitočtově modulovaný signál, je výhodné udržovat stupeň omezení na nepříliš velké úrovni, neboť se zvětšující se úrovní omezení se zvětšuje i obsah harmonických složek v signálu přiváděném na přepínač Secam a demodulátory. Zcela novým způsobem jsou řešeny demodulátory (R—Y) a (B—Y), které nejsou řešeny jako fázové diskriminátory s natáčením fáze vnějšími fázovacími články, ale na principu fázového závěsu. Demodu-látory na principu PLL (Phase Lock Loop) vyžadují jen málo externích součástek a nemají žádný nastavovací prvek. Potřebují však na určitých pozicích přesné a stabilní součástky R, C. Blokové schéma zapojení obvodu TDA3520 (A3520D) je na obr. 56.

Řízený chrominanční zesilovač (1) je principu stejný jako u TDA3510. Signál je přiváděn na vstup IO přes filtr (vývod 27 IO). Druhý vstup diferenciálního zesilovače je na vývodu 28, který je blokován externím kondenzátorem C₂₈ a má pevné ss předpětí asi 3,2 V z interního zdroje. Toto ss předpětí musí být přivedeno i na první vstup zesilovače (vývod 27 IO), což zabezpečuje cívka filtru "cloche". Výstupní signál z chrominančního zesilovače je přiveden v přímém kanálu na omezovací zesilovač (2), na omezovací zesilovač fázového diskriminátoru v obvodu identifikace (3) a na zesilovač (4). Pro dosažení dokonalé ss vazby se na následující stupně přivádí z chrominančního zesilovače kromě střídavého signálu, superponovaného na složku, ještě tato ss složka, z níž je kondenzátorem C1 odfiltrován signál. Ze signálu za zesilovačem (4) se usměrňovačem (5) získává regulační napětí U_{AVC} pro automatickou regulaci zisku chrominančního zesilovače. Toto regulační napětí je filtrováno kondenzátorem C_{26} , zapojeným na vývod 26 lO. Pro dosažení velkého potlačení rušivých napětí (zejména brumu) není druhý pól kondenzátoru C_{26} připojen na zem, ale na napájecí napětí lO (vývod 5).

Zesílený signál je z výstupu zesilovače (4) přiveden jednak přes vývod 2 IO, vnější fázovací článek (LiCiRi) a vývod 4 10 na fázový diskriminátor obvodu identifikace (3), jednak na budicí stupeň zpožďovacího vedení (6). Tento budicí stupeň, obsahující opět obvod pro posuv ss úrovně, je řešen stejně jako v IO TDA3510. Výstupní emitorový sledovač budicího stupně pracuje do společného emitorového rezistoru R_E na vývodu *25* IO. Posuv ss úrovně je řízen napětím z odpojovače barvy v bloku (3). Při vypnuté barvě je na bázi emitorového sledovače napětí asi 5,2 V a při zapnuté barvě asi 8,7 V. Tímto způsobem je opět zajištěno připojení zpožďovací linky k obvodům Secam a nebo PAL. Z vývodu 25 IO je signál přes oddělovací kondenzátor C_v a přizpůsobovací rezistor R_v přiveden na ultrazvukovou zpožďovací linku (UZV). Z výstupu linky je signál přes oddělovací kondenzátor přiveden na omezovací zesilovač zpožděného signálu (7).

Z omezovačů (2) a (7) jsou přímý a zpožděný signál přivedeny na přepínač Secam (8), zajišťující, že jsou oba tyto signály přiváděny na příslušné demodulátory. Přepínač se skládá ze dvou párů rozdílových zesilovačů s křížovou vazbou, zapojených do kolektorových obvodů omezovačů, jejichž báze jsou ovládány přepínacím signálem H/2 z bistabilního klopného obvodu Secam v bloku (3).

Výstupní kmitočtově modulované signály F_{R-Y} a F_{B-Y} z přepínače Secam se přivádějí na příslušné demodulátory

(9) a (10). Jak již bylo řečeno, demodulátory pracují na principu fázového závěsu (PLL). Jsou tvořeny napěťově řízeným oscilátorem (VCO) a fázovým diskriminátorem. Výstupní napětí oscilátoru se ve fázovém diskriminátoru porovnává se vstupním kmitočtově modulovaným signálem F_{R-Y}, popř. F_{B-Y}. Výstupní napětí fázového diskriminátoru slouží po vyfiltrování dolní propustí k řízení VCO. Pokud je horní mezní kmitočet dolní propusti dostatečně vyšší než nejvyšší modulační kmitočet, kmitá oscilátor prakticky na okamžitém kmitočtu vstupního signálu. Regulační napětí oscilátoru tedy představuje demodulovaný signál.

Napětím řízený oscilátor (VCO) se skládá z dvou proudových zdrojů, řízených regulačním napětím z vnějšího kondenzátoru (C₉, popř. C₁₉) nabíjeného a vybíjeného střídavě přes elektronický spínač a z prahového detektoru, který tento elektronický spínač řídí. Kapacita vnějšího kondenzátoru oscilátoru (C₉, popř. C₁₉) musí být volena tak, aby kmitočet volně běžícího oscilátoru byl v blízkosti nosného kmitočtu barvy, aby bylo zajištěno zasynchronizování oscilátoru vstupním signálem.

Pro zajištění nezkresleného barevného signálu je nutno oscilátor interně nastavovat tak, aby jeho volný kmitočet byl přesně roven kmitočtu nemodulovaného barvonosného signálu červeného, popř. modrého kanálu (f_R, popř. f_B). Současně je nutno zabránit jakémukoli driftu v obvodu PLL, který by mohl způsobit posuvy ss úrovně na výstupu rozdílového signálu (R-Y), popř. (B-Y), což by opět vedlo ke zkréslení barev (posunutí nuly diskriminátorů, zkreslený přenos neutrální šedé). Proto je použit upínací obvod (11) a (12), s jehož pomocí se výstupní signál demodulátorů, v době řádkového zatemňovacího intervalu, kdy jsou vysílány nemodulované signály barvonosných kmitočtů (Burst-Secam), připojuje na vnitřní referencií úroveň U_R (což dává na výstupech 13 a 15 IO ss úroveň +6 V). Vlastní klíčování je provedeno tím způsobem, že v době zadní části řádkového zatemňovacího impulsu (kdy je vysílán Burst-Secam) je klíčovacím impulsem 1 µs přiveden výstupní signál z demodulátoru přes interní dolní propust na vnější paměťový kondenzátor C₁₈, popř. C₁₁ (vývod 18, popř. 11 IO) a současně na neinvertující vstup diferenciálního zesilovače. Druhý vstup tohoto zesilovače je připojen na referenční napětí $U_{\rm R}$, vytvořené odporovým děličem z napájecího napětí. Toto napětí je ještě filtrováno kondenzátorem C₁₀ na vývodu 10 10 (jakékoli rušivé napětí v tomto bodě by se projevilo posuvem nulového bodu diskriminátoru). Výstupní napětí z diferenciálního zesilovače spolu s regulačním napětím z fázového diskriminátoru řídí kmitočet oscilátoru VCO. Vlivem uzavřené regulační smyčky oscilátor fázový diskriminátor diferenciální zesilovač se při velkém zesílení diferenciálního zesilovače nabíjí paměťový kondenzátor C₁₈, popř. C₁₁ na úroveň referenčního napětí U_R. Jelikož toto "upínání" probíhá v době, kdy je na vstup fázového diskriminátoru při-váděn-nemodulovaný barvonosný signál (Burst-Secam), představuje tato referenční úroveň nulovou úroveň rozdílového signálu barvy (nulový bod

diskriminátoru).

Aby se při vypnuté barvě nemohl paměťový kondenzátor C_{11} , popř.

C₁₈ vybít na nedefinovanou úroveň, je v tomto případě regulační smyčka upínacího obvodu uzavřena trvale. To je zajištěno nezpožděným výstupním napětím z odpojovače barvy (3), přiváděným na regulační obvod spolu s impulsy 1 μs přes součtový člen (15). Kondenzátor C₁₁ (C₁₈) tak zůstává po celou dobu odpojení barvy nabitý přibližně na referenční úroveň U_R, takže při přepnutí na barvu se pracovní bod v obvodu PLL podstatně nemění.

Demodulované rozdílové signály jsou přivedeny na obvody nf deemfáze (13), (14) s vnějšími kondenzátory C₁₇ a C₁₂ na vývodech 17 a 12 IO. Dále následuje spínací stupeň, který v době řádkových a snímkových zatemňovacích impulsů "upíná" signál na referenční úroveň, což znamená, že se ss úroveň rozdílových signálů zaklíčuje s amplitudou jako pro nulovou úroveň signálu.

Na vývody 16 a 13 IO jsou demodulované rozdílové signály přivedeny přes spínací stupeň řízený odpojovačem barvy. Tento stupeň je řešen tak, že při zablokování i uvolnění výstupního signálu vždy zabezpečuje na výstupech 16 a 13 IO ss napětí 6 V. Toto řešení umožňuje propojit paralelně výstupy obvodu TBA3510 a TDA3520, jak již bylo uvedeno při popisu integrovaného

obvodu TDA3510. Řízení přepínače Secam (8) zajišťuje bistabilní klopný obvod (3). Správnou fázi přepínání zajišťuje identifikační obvod, vytvářející indentifikační signál, a spínací signál odpojovače barvy. Identifikační signál je vytvářen fázovým diskriminátorem. Fázový diskriminátor tvoří dva křížově vázané diferenciální zesilovače, na jejichž emitory je přiváděn řízený barvonosný signál ze zesilovače (1). Na jejich báze je přiváděn signál z externího fázovacího článku Li, Ci, Ri. Pomocí spínacího stupně v emitorech je fázový diskriminátor zapojován v každém řádku klíčovacím vacím impulsem 1 μs, tedy pouze v době, kdy jsou vysílány vzorky nemodulovaných barvonosných (Burst-Secam), tedy v jednom řádku f_R a v následujícím f_B. Externí fázovací článek je nastaven tak, že při kmitočtu (f_R + f_B)/2 má fázový posuv 90°. Při střídání signálů o kmotočtech f_R a f_B je tedy fázový posuv v jednom řádku $<90^{\circ}$ ($f_{\rm B}$) a v následujícím $>90^{\circ}$ ($f_{\rm B}$), takže na výstupu fázového diskriminátoru dostáváme v jednom řádku kladný a ve druhém záporný impuls. Tento impulsní signál s kmitočtem H/2 je přiveden na demodulátor H/2. Jako druhý (spínací) signál pro synchronní demodulaci je na demodulátor H/2 přiváděn přepínací signál H/2 z bistabilního klopného obvodu. Výstupní signál z demodulátoru H/2, který obsahuje při správné fázi přepínání pouze záporné impulsy a při nesprávné fázi jen kladné impulsy, představuje po vyfiltrování vnějším členem RC na vývodu 6 IO identifikační napětí. Článek R_TC_T představuje časovou konstantu pro identifikační obvod i pro obvod odpojovače barvy.

Bez signálu Secam je na vývodu 6 IO napětí úrčené vnějším odporovým děličem (12 k Ω /22 k Ω), které je při $+U_{\rm nap}=12$ V rovno, 7,7 V. Při příjmu signálu Secam a při správné fázi přepínání se začne napětí U_6 zmenšovat vlivem záporných impulsů z demodulátoru H/2. Když bude napětí U_6 asi 6,5 V, přepne se první Schmittův KO odpojovače barvy a zapne se barva.

Napětí U6 se dále zmenšuje a ustálí se na +2 V. BKO Secam není nijak ve své funkci ovlivňován identifikačním obvodem a je překlápěn řádkovými impulsy z prahového detektoru (15). Dostane-li se z jakékoli příčiny přepínání BKO do nesprávné fáze, nebo přestane-li být přiváděn na vstup signál Secam, začnou být z demodulátoru H/2 dodávány kladné impulsy a napětí U6 se začne zvětšovat. Dosáhne-li napětí U6 asi 6,6 V, přepne se první Schmittův KO zpět a vypne barvu. Tím se zablokují výstupy rozdílových signálů a výstup na zpožďovací linku. Signál z chrominančního zesilovače (1) je samozřejmě dále přiváděn na indentifikační obvod. Napětí U_6 se dále zvětšuje a při dosažení úrovně 8,6 V se přepne Schmittův KO identifikace. Toto přepnutí KO způsobí, že kromě správného řídicího řádkového impulsu je na BKO Secam přiveden ještě jeden impuls. Časová následnost tohoto korekčního impulsu za impulsem H z prahového detektoru je vytvářena vnitřním zpožďovacím obvodem. Korekční impuls zůsobí, že se BKO Secam dostane do správné fáze.

Současně je však třeba zajistit, aby do doby příchodu následujícího impulsu H již nebyl Schmittův KO v aktivní oblasti. To je zabezpečeno tím, že výstupní napětí Schmittova KO současně spouští vnitřní proudový zdroj, který rychle vybíjí kondenzátor C_T na vývodu 6 IO, takže napětí U6 se rychle zmenší na 8,5 V a Schmittův KO identifikace se překlopí zpět. Správná fáze překlápění BKO Secam způsobí, že na výstupu demodulátoru jsou opět záporné impulsy a napětí U_6 se dále zmenšuje. Při dosažení úrovně 6,5 V se opět přepne první Schmittův KO vypínače barvy. Jeho výstupní napětí (nezpožděné) je přívedeno na obvod pro posuv ss úrovně (6) a na vývod 8IO. První Schmittův KO vypínače barvy ovládá i druhý Schmittův KO vypínače barvy. Zatímco pro vypnutí barvy je odpojovací napětí za druhým KO také okamžitě (tedy výstupní obvody IO (19) a (14) jsou odpojeny také okamžitě), je zapínání barvy na výstupech IO zpožděné a doba zpoždění je určena časovou konstantou článku RC na vývodu 7

Všechny impulsy nutné pro řízení IO TDA3520 jsou získávány z tříúrovňového složeného synchronizačního impulsu (SCI), přiváděného přes vývod 22 IO na prahový (úrovňový) detektor a ze synchronizační části kladného obrazového signálu, který je přiváděn na vývod 21 IO.

Řádkové a snimkové zatemňovací impulsy jsou ze signálu SCI vyděleny opět prahovým detektorem (15). Klíčovací impuls 1 μs pro fázový diskrimi-nátor v identifikačním obvodu a pro přepínání demodulátorů PLL je vytvářen v bloku (16). Tento impuls musí být časově shodný se zadní částí zatemňovacího impulsu, musí začínat až v oblasti ustáleného stavu referenčních vzorků Burst-Secam a musí končit nejpozději 5,6 μs od sestupné hrany řádkového synchronizačního impulsú (tedy před začátkem činného řádkového běhu). Impuls se vytváří z kladného obrazového signálu (záporné synchronizační impulsy). Oddělovačem tvořeným vnějším členém RC na vývo-

SECAM PAL

1P

1P

2,5 V H

2,4P

400 mV H

10P

10P

1V H

11P

11P

11P

13 V H

1,3 V H

8P

du 21 IO jsou z obrazového signálu odděleny synchronizační impulsy. Časová poloha klíčovacího impulsu je dána časovou konstantou článku *RC* na vývodu 20 IO. Z tohoto důvodu je nutné jako R₂₀ a C₂₀ použít stabilní součástky s úzkými tolerancemi.

8 V

Skutečné schéma zapojení dekodéru PAL/Secam (modul P) je na obr. 57. V

Obr. 57. Schéma zapojení modulu P 6PN 053 68, 8PN 051 006

BTVP Mánes Color má modul označení 8PN 051 006, v BTVP Color Oravan 6PN 053 68.

úplný barevný obrazový signál je přiváděn z modulu obrazové mezifrekvence nebo externího zdroje obrazového signálu (přes T₃ a modul N — viz obr. 5) přes rezistor R₁₇ na vstup modulu (vývod 15-P). Odtud je signál přiveden přes odlaďovač 5,5 MHz (L₇, C₂₆) na emitorový sledovač s tranzistorem T₁. Z jeho emitoru je signál přiváděn k dalším obvodům. Přes vývod 11-P modulu k obvodům jasového kanálu na následujícím modulu G, přes C₂₅ a R₁₀ na vstupní filtr dekodéru PAL (L₁, R₅, C₂₂), přes C₂₈ a R₁₃ na filtr "cloche" dekodéru Secam (L₄, R₉, C₃₀) a na separátor synchronizačních impulsů pro generátor klíčovacího impulsu 1 μs v TDA3520 (C₂₇, R₁₁, R₁₂, C₂₉).

Popisovat konkrétní zapojení obvodů TDA3510 a TDA3520 včetně jejich vzájemného propojení není třeba, neboť zcela odpovídá předcházejícímu podrobnému popisu jednotlivých integrovaných obvodů. Jedinou odchylkou je zapojení rezistoru R₂₇ na vývod 18 IO₂ TDA3520. Tento rezistor nepatrně koriguje, s ohledem na praktické výsledky zapojení, nulový bod diskriminátoru PLL (R-Y).

Výstupní napětí odpojovače barvy u IO₁ TDA3510 je využito (přes D₂ a T₂ na záladní desce) k automatickému připojování odlaďovače 32,5 MHz při příjmu signálu v normě PAL (viz celkové schéma zapojení signálových obvodů na obr. 5).

Nastavení modulu

Nejvhodnějším zdrojem signálu pro nastavení dekodéru je televizní generátor, umožňující přivést na vstup televizního přijímače (vf nebo vstup video) signál normalizovaných (svislých) barevných pruhů v normě Secam a PAL. Pro nastavení obvodů PAL je výhodné, produkuje-li generátor i signály +V a ±U.

Velmi dobře lze obvody nastavit pomocí vysílaného barevného zkušebního obrazce (v příslušné normě), máme-li k dispozici osciloskop s alespoň dvojitou časovou základnou, abychom si mohli ze snímku monoskopu vybrat oblast, v níž jsou vysílány barevné normalizované pruhy 75 %. Běžně vysílaný monoskop v normě PAL (FuBK) obsahuje pole +V a ±U, která nám umožňují velmi přesně nastavit demodulátor PAL se zpožďovací linkou (P₁, L₂, popř. L₃).

Nastavení odlaďovače 5,5 MHz

Na vstup modulu (15-P) přivést sinusový signál 5,5 MHz o mezivrcholové úrovni asi 2 V (nebo obrazový signál se zvukem 5,5 MHz). Sondu osciloskopu připojit na měřicí bod *MB12* (vývod 11-P). Změnou indukčnosti cívky L₇ nastavit minimum rušivého signálu 5,5 MHz.

Nastavení obvodů PAL

a) Na vstup přijímače přivést signál normalizovaných barevných pruhů PAL. Sondu osciloskopu připojit na měřicí bod *MB13* (vývod 1 IO₁) a cívku L₁ přednastavit na maximální rozkmit barvonosného signálu.

b) Vzájemně propojit měřicí body MB5 a MB6 (na fázový diskriminátor regulační smyčky oscilátoru nejsou přiváděny SIB a oscilátor kmitá volně) a měřicí bod MB7 propojit na zem (vynucené zapnutí barev). Dolaďovacím kondenzátorem C₂ nastavit podle stínítka obrazovky jmenovitý kmitočet osciláto-

ru (labilně zasynchronizované barevné

pruhy). Odpojit zkraty.

c) Sondy osciloskopu připojit na výstupy rozdílových signálů -(R-Y) a Y) (vývody 1 a 3 modulu). Cívkou L1 nastavit optimální průběh demodulovaných signálů, tj. maximální strmost náběžných hran, vrcholy bez překmitů. Optimální průběh se jeví při dvou kmitočtech laděného obvodu (asi 4,2 MHz a 5 MHz). Správná poloha jádra cívky je ta, která odpovídá niž-šímu kmitočtu (více zašroubované jádro).

d) Nastavení demodulátoru PAL (L2, L3,

P₁): Výrobce uvádí v [18] následující

změnou indukčnosti cívky L2 (fáze zpožděného signálu) nastavit ve dvou následujících řádcích identický průběh demodulovaných signálů -(R-Y) a -(B-Y). Pokud by rozsah ladění cívkou L2 nebyl dostatečný, doladit pomocí La;

odporovým trimrem P1 (amplituda zpožděného signálu) nastavit stejnou amplitudu výstupních signálů —(R-Y) a —(B-Y) jako při příjmu signálu Secam (jmenovitá mezivrcholová úroveň je 1,0 V a 1,33 V;

v případě nutnosti opět upravit nastavení fáze cívkou L2, popř. L3.

K tomuto způsobu nastavení je nutno doplnit, že nastavení fáze zpožděného signálu (L2, popř. L3) se nejlépe vyhodnocuje, je-li osciloskop zasynchronizován tak, že se překrývají sudé a liché řádky. Neidentita průběhů v jednotlivých řádcích se pak projevuje výrazným blikáním (chvěním) obrazu na stínítku obrazovky. Nastavení amplitudv zpožděného signálu (P1) podle výrobce není optimální. Správně lze nastavit demodulátor PAL v tomto případě pouze podle měřicích polí +V a ±U (viz nastavení modulu P u přijímačů řady Color 110). Podle těchto polí (např. s použitím monoskopu FuBK) nastavíme fázi a amplitudu zpožděného signálu stejnými nastavovacími prvky na minimum žaluzií v těchto polích (pozorováno na stínítku obrazovky), nebo osciloskopem na nulový (minimální) výstupní signál —(R-Y) v poli +V a nulový (minimální) výstupní signál (B-Y) v poli ±U. Správná fáze os R-Y a B-Y vůči sobě a vůči SIB je zajišťována obvody uvnitř IO a nenastavúje se (týká se zabarvení polí +V a ±U).

e) Zopakovat nastavení podle bodu c). f) Zkontrolovat průběh a amplitudu výstupních rozdílových signálů —(R-Y) a —(B-Y) na MB10 a MB11. Poměr amplitud signálů —(R-Y) a —(B-Y) má být 4:5, jmenovitě 1,05 V a 1,33 V.

Nastavení obvodů Secam

a) Na vstup přijímače přivést signál normalizovaných barevných pruhů Secam. Sondu osciloskopu připojit na měřicí bod MB2. Cívkou L4 (obvod "cloche") nastavit minimální amplitudovou modulaci barevného signálu.

b) Sondu osciloskopu připojit na měřicí bod MB3. Cívkou L6 (fázovací článek identifikace) nastavit maximální stejnou amplitudu vzorků nemodulovaných barvonosných kmitočtů (Burst-Secam) ve dvou po sobě následujících řádcích a potom ještě otočit jádrem cívky L8 o 1/2 závitu směrem k menší indukčno-

c) Zkontrolovat průběh a amplitudu rozdílových signálů —(R-Y) a —(B-Y) na MB10 a MB11 stejně jako v bodě f) u obvodů PAL.

Závady modulu

Před posouzením jakékoli závady ve zpracování chrominančního signálu je nutno se nejprve přesvědčit, zda je TVP skutečně optimálně naladěn a zda je přiváděn kvalitní demodulovaný obrazový signál na vstup modulu P (viz průběh 1P na obr. 57). Špatné zpracování signálu předcházejícími obvody TVP (jako je kanálový volič nebo obrazová mezifrekvence) může způsobit jak značné zkreslení barevného signálu, tak jeho úplný výpadek (velká amplitudová a fázová zkreslení, intermodulační produkty apod.).

Závady ve zpracování nančního signálu je opět výhodné rozdělit na dva základní typy. Buď dekódovací obvody nepracují vůbec, obraz na obrazovce je černobílý a na výstupech dekodéru (vývody 1 a 3 modulu P) chybějí rozdílové signály, nebo dekodér pracuje, ale výstupní signál je tvarově či amplitudově zkreslen.

Pokud dekódovací obvody nepracují vůbec, zkontrolujeme nejdřív napájecí napětí modulu a úroveň klíčovacích impulsů SCI (vertikální zatemňovací impuls 2,5 V ±0,5 V, řádkový zatemňovací impuls 4,5 V ±0,5 V, impuls pro vyklíčování burstu >7,5 V). Je-li vše v pořádku, je obvykle závada v případě signálu Secam v obvodech identifika-ce, u signálu PAL v obvodech oscilátoru referenčního kmitočtu. Pokud je v tomto případě použito slovo závada, je tím myšleno rozladění příslušných obvodů vlivem stárnutí součástek. Přímá porucha některé pasívní součástky v obvodu oscilátoru PAL či obvodu identifikace Secam je málo pravděpodobná. Správnost naladění těchto obvodů ověříme podle příslušného bodu nastavovacího předpisu. Pokud obvody nastavit nelze nebo je nastavení bez účinku, nezbývá než sledovat postupně zpracování signálu od vstupních obvodů příslušného IO až k výstupu. Současně je výhodné sledovat ss napětí na jednotlivých vývodech IO, zejména napětí U_{AVC} , napětí vypínače barvy, identifikační napětí a ss napětí na výstupu pro zpožďovací linku a výstupech rozdílových signálů. Z velikostí těchto napětí můžeme dále určit, zda obvod reaguje na vstupní signál a zda pracuje ve správném režimu (PAL/Secam/ČB).

Výhodou při vyhledávání příslušné závady je, že oba integrované obvody pracují zcela samostatně, avšak s výjimkou tří bodů, v nichž jsou navzájem propojeny. Je to výstup na zpožďovací linku a vlastní výstupy rozdílových signálů. Pokud dojde v tómto místě k závadě výstupního stupně u jednoho z IO. může se závada projevovat i na funkci druhého obvodu, neboť jeho výstupní stupeň může být v tomto případě nadměrně zatěžován vadným stupněm sousedního IO. V tomto případě je výhodné rozpojit oba systémy, např. odsátím cínu z příslušného vývodu integrovaného obvodu.

Velmi přesně lze sledovat cestu zprasignálu podle blokového schématu integrovaných obvodů a popisu v předcházejících odstavcích. Při tom lze samozřejmě ověřit správnost nastavení jednotlivých obvodů podle nastavovacího předpisu.

Pokud je výstupní signál nějakým způsobem zkreslen (zkreslené přechody, změna barevného podání apod.), je obvykle závada ve špatném naladění vstupních filtrů (PAL, popř. cloche), nebo v obvodu zpožďovací linky (rušivé struktury v obraze), závada však může být také v indentifikačních obvodech či přepínači PAL nebo Secam.

Předběžně lze místo závady určit podle přehledu možných závad, uvedeného v závěru této kapitoly a kontrolní měření pak soustředit do oblasti předpokládané závady.

Po odstranění příčiny závady nastavíme celý modul podle nastavovacího předpisu. Tím vyloučíme vliv stárnutí ostatních součástek, což by se mohlo po určité době projevit jako nová závada ve funkci dekodéru.

Dekódovací obvody přijímačů řady Color 416 - modul P 6PN 053 28

Tato řada stolních přijímačů je osazena inovovaným typem dekodéru PAL/Secam, ktérý pro zpracování signálu PAL opět používá integrovaný obvod MDA3510 (TDA3510), avšak pro zpracování v normě Secam je použit nový typ obvodu, MDA3530 (TDA3530). Blokové schéma zapojení tohoto obvodu ie na obr. 58.

Většina obvodů uvnitř tohoto IO je řešena prakticky shodně jako u TDA3520 (A3520D). Zcela odlišným způsobem jsou však řešeny demodulátory (R-Y) a (B-Y), na jejichž místě jsou použity fázové diskriminátory s vnějšími fázovacími články. Toto řešení obsahuje sice více vnějších součástek a nastavovacích prvků, nepotřebuje však přesné a stabilní součástky v

obvodech PLL.

vstupni signál z filtru "cloche" opět přiváděn na diferenciální vstup chrominančního zesilovače (1) (vývody 28 a 1 IO). Vývod 28 má stejné vnitřní předpětí 3,2 V, které je přes cívku filtru "cloche" přivedeno i na druhý vstup, který je blokován proti zemi kondenzátorem C₁. Kondenzátor C₂ opět filtru-je signální napětí ze stejnosměrné vazby v zesilovači. Ze vstupního chrominančního zesilovače je signál přiveden na zesilovač s pevným ziskem (2), na jehož výstupu se usměrněním získává regulační napětí UAVC, které je dále filtrováno kondenzátorem C27, který je opět připojen druhým pólem na napájeci napětí.

Z výstupu zesilovače (2) je dále signál přiveden přes emitorový sledovač na vývod 3 IO a odtud přes dolní propust P3, C8 a oddělovací kondenzátor C_3 na omezovač přímého signálu (3) přes vývod \mathcal{B} IO. Z vývodu \mathcal{B} IO se dále signál dostává přes fázovací článek identifikace a vývod \mathcal{B} IO na fázový diskriminátor identifikace.

Signál pro ultrazvukové zpožďovací vedení je z výstupu zesilovače (2) přiveden na vývod 26 IO opět přes obvod pro posuv ss úrovně (jako u obvodu TDA3520). Z výstupu zpožďovacího vedení je signál odebírán přes oddělovací kondenzátor C₂₄ a přes vývod 24 IO na omezovač zpožděného signálu (4). Z omezovačů (3) a (4) je signál přiveden na přepínač Secam (6), který je řešen stejným způsobem jako v obvodu TDA3520.

Výstupní kmitočtově modulované signály F_{R-Y} a F_{B-Y} z přepínače Secam jsou přes vývody 10 a 22 IO přivedeny přímo na první vstupy fázových diskriminátorů (9) a (10) (vývody *11* a *21* IO). Na druhé vstupy fázových diskrimi-

nátorů jsou přiváděny po natočení fáze o 90° ve vnějších laděných obvodech LCR přes vývody 14 a 18 IO. Fázové diskriminátory (9) a (10) jsou stejného typu jako v integrovaném obvodu MCA650. Pomocí řádkového zatemňovacího impulsu v bloku (11) je v demodulátorech z rozdílových signálů vyklíčována oblast řádkového zatemňovacího impulsu (tím je v této oblasti vyklíčován šum a impulsy Burst-Secam).

Po vyfiltrování vf složek a po korekci členy RC nf deemfáze na vývodech 13 a 19 IO jsou rozdílové signály z fázových diskriminátorů přivedeny na koncové stupně (13) a (14), stejné jako u obvodu TDA3520. Stejným způsobem jako u obvodu je řešen i bistabilní klopný obvod Secam (7), prahový detektor impulsů SCI (8) a identifikační obvody (16).

Odlišným způsobem je řešeno klíčování fázového diskriminátoru identifikace, které je řízeno blokem (12), umožňujícím různé způsoby identifikace podle zapojení vývodu 9 IO. Je-li tento vývod nezapojen, je úroveň prahového detektoru (12) nastavena na 7,0 V ± 0,5 V a z prahového detektoru (12) jsou tedy přiváděny do obvodu identifikace řádkové impulsy pro vyklíčování burstu (neboť jejich úroveň je >7,5 V). Na vstup fázového diskriminátoru identifikace je v tomto případě přiváděn signál v době, kdy je vysílán nemodulovaný barvonosný signál (Burst-Secam) a identifikace je tedy řádková. Je-li vývod 9 10 uzemněn, je rozhodovací úroveň prahového detektoru (12) nastavena na 1,5 V ±0,5 V, takže jsou na identifikační obvody přiváděny snímkové zatemňovací impulsy (jejich úroveň je 2,5 V ± 0,5 V). Samozřejmě mimo dobu snímkových zatemňovacích impulsů reaguje detektor i na řádkové zatemňovací impulsy, které mají úroveň 4,5 V ±

0,5 V. Při uzemněném vývodu 9 IO jsou tedy z prahového detektoru (12) při-váděny na identifikační obvody jednak snímkové, jednak řádkové zatemňovací impulsy. Signál je tedy na fázový diskriminátor přiváděn v době snímkových identifikačních impulsů Secam i v době řádkových impulsů Burst-Secam. Identifikační obvod Li, Ci, Ri je tedy možno naladit v tomto případě na snímkovou identifikaci, popř. stejně jako u dříve používaného obvodu MCA640 u přijímačů řady Color 110 na smíšenou identifikaci (snímková a řádková současně).

Skutečné schéma zapojení dekodéru PAL/Secam s obvody MDA3510 a MDA3530 je na obr. 59. Zapojení obvodů pro dekódování signálu v normě PAL je stejné jako u předcházejícího typu modulu P. Je pouze doplněno obvodem s rezistory R₃, R₇ a odporovým trimrem P4, zapojeným mezi vývody 12 a 13 IO1. Pomocí tohoto zapojení lze korigovat řídicí napětí oscilátoru referenčního kmitočtu (viz obr. 55) a tím jemně korigovat fázový posuv mezi SIB a referenčními osami. Trimrem P4 lze tedy částečně kompenzovat zabarvení měřicích polí +V a -U (pouze do jisté míry, neboť přesnost vzájemného posuvu 90° mezi referenčními osami je i nadále určena kvalitou obvodů uvnitř IO1).

Signál v normě Secam je přes vstupní filtr "cloche" přiveden na vstupy IO₂. Zesílený barvonosný signál je přes C₃₉ a P₂ přiveden na omezovač přímého signálu, přes C₄₄ na fázovací článek identifikace (L₆, C₄₃, R₂₃) a přes C₄₂ a vývod 5 IO₂ na identifikační obvody.

Z vývodu 26 lO₂ je přes oddělovací kondenzátor C₁₃ signál přiveden na ultrazvukovou zpožďovací linku UZV. Rezistor R₆ a cívky L₂, L₃ zajišťují amplitudové a fázové přizpůsobení zpožďovací linky. Zpožděný signál je pak přes oddělovací kondenzátor C₁₆ a vývod 24 lO₂ přiveden na omezovač zpožděného signálu.

Na výstupy přepínače Secam (vývody 10 a 22 IO2) jsou, na rozdíl od blokového schématu na obr. 58, zapojeny emitorové sledovače s tranzistory T₄ a T₅, neboť zmenšení výstupní impedance na vstupech demodulátorů má příznivý vliv na velikost přeslechů. Na vstupy demodulátorů je signál z emitorů těchto tranzistorů veden jednak přímo přes kondenzátory C23, popř. C₃₅, jednak po natočení fáze o 90° vnějšími fázovacími články C₂₀, L₈, P₅, popř. C₃₄, L₉, P₃ přes kondenzátory C₁₇, popř. C₃₁. Vnější články *RC* nf deemfáze jsou zapojeny na vývody 13 a 19 Výstupní demodulované signály —(R-Y) a —(B-Y) jsou odebírány z vývodů 15, popř. 17 IO₂. Oproti předcházejícímu typu modulu P jsou na výstup rozdílových signálů navíc zařazeny dolní propusti (T2, L11, C50, R27, popř. T₃, L₁₀, C₄₉, R₂₆) pro dodatečné potlačení zbytků signálu barvonosného kmitočtu.

Nastavení modulu

Pro nastavení modulu jsou potřebné stejné měřicí signály jako u předcházejícího typu modulu P.

Nastavení odlaďovače 5,5 MHz

Na vstup modulu (15-P) přivést sinusový signál 5,5 MHz o mezivrcholové úrovní asi 2 V (nebo obrazový signál se zvukem 5,5 MHz). Sondu osciloskopu připojit na měřicí bod *MB12* (vývod 11-P). Změnou indukčnosti cívky L₇ nastavit minimum rušivého signálu 5,5 MHz.

Nastavení obvodů PAL

Na vstup přijímače přivést signál normalizovaných barevných pruhů

- a) Sondu osciloskopu připojit na měřicí bod MB13 (vývod $1\ lO_1$) a cívku L_1 přednastavit na maximální rozkmit barvonosného signálu.
- b) Nastavení kmitočtu oscilátoru: Vzájemně propojit měřicí body *MB5*

a MB6 a měřicí bod MB7 propojit na zem. Dolaďovacím kondenzátorem C₂ nastavit podle stínítka obrazovky jmenovitý kmitočet oscilátoru (labilně zasynchronizované barevné pruhy). Odpojit zkraty.

c) Sondy osciloskopu připojit na výstupy rozdílových signálů —(R-Y) a —(B-Y) (vývody 1 a 3 modulu). Jádrem cívky L₁ nastavit optimální průběh demodulovaných signálů, tj. maximální strmost náběžných hran, vrcholy bez překmitů. d) Nastavení demodulátoru PAL (P₁, L₂, L₃): Výrobce používá pro nastavení těchto obvodů [12] měřicí signál DE-LAY. Protože tento signál není běžně k dispozici, popíšeme si nastavení pomocí signálu barevných normalizovaných pruhů PAL a pomocí polí +V a ±U, které jsou signálu DELAY prakticky rovnocenné.

Nastavení podle signálu barevných pruhů:

Sondy osciloskopu připojit na výsturozdílových signálů (MB10 Jádrem cívky (fáze L₂ (faze trimrem zpožděného signálu) a P₁ (amplituda zpožděného signálu) nastavit ve dvou po sobě následujících řádcích identický průběh rozdílových signálů -(R-Y) a -(B-Y) (osciloskop je zasynchronizován tak, že se kryjí sudé a liché řádky; nastavujeme na maximální překrytí průběhů v sudém a lichém řádku). Pokud by rozsah ladění cívkou L2 nebyl dostatečný, doladit pomocí L₃.

Nastavení podle měřicích polí +V a ±U:

Jádrem cívky L_2 (popř. L_3) nastavime minimální (nulové) žaluzie v obou polích (pozorováno na stínítku obrazovky), nebo pomocí osciloskopu nastavíme nulový (minimální) výstupní signál—(B-Y) v poli $\pm U$. Žaluzie jsou také velmi dobře patrné v polích $\pm V$ (vodorovný červený pruh) a $\pm U$ (vodorovný modrý pruh) umístěných vlevo od polí $\pm V$ a $\pm U$ (stále se jedná o monoskop FuBK). Pokud jsou žaluzie zřetelné

Obr. 59. Schéma zapojení modulu P 6PN 053 28

zejména v polích +V a ±V, má demodulátor (matice) PAL zejména amplitudové chyby (upravujeme trimrem P₁). Jsou-li žaluzie patrné zejména v polích ±U a +U, má demodulátor fázovou chybu (upravujeme jádrem cívky L₂, popř. L₃).

e) Nastávení fáze referenčního kmitočtu oscilátoru: Pro toto nastavení používá výrobce opět signál DELAY. Pokud není tento signál k dispozici, doporučuje ve [12] tento náhradní postup:

Sondu osciloskopu připojit na výstup — (B-Y) (měřicí bod *MB11*). Běžec trimru P₁ nastavit na vf uzemněný konec odporové dráhy (směrem k C₂₅, C₁₅), tj. přerušit zpožděný signál. (Po-kud neexistuje zpožděný signál, ne-může se kompenzovat případná fázová chyba — jako v případě soustavy PAL_{simple} — a amplituda signálu — (B-Y) se při nesprávné fázi řádek od řádku střídavě mění.) Trimrem P₄ nastavit identický průběh signálu — (B-Y) ve dvou po sobě následujících řádcích (amplituda signálu je přibližně poloviční).

S ohledem na způsob vyloučení zpožděného signálu je nutno toto nastavení provést před bodem d), nebo nastavení P₁ podle bodu d) zopakovat. Nastavení podle měřicích polí +V a ±U:

Odporový trimr P₄ nastavíme tak, aby obě pole byla neutrálně šedá (pozorováno na stínítku obrazovky), nebo pomocí osciloskopu na nulový výstupní signál —(R-Y) v poli ±U a nulový výstupní signál —(B-Y) v poli +V (pozor, je to přesně naopak než při odstraňování žaluzií!).

Při nastavování fáze kmitočtu trimrem P₄ je nutno si uvědomit jednu důležitou skutečnost. Trimrem P₄ se upravuje fáze oscilátoru vůči SIB, tedy fáze signálů referenčních kmitočtů

 $f_{\rm ref(B-Y)}$ a $f_{\rm ref(B-Y)}$ vůči SIB, přičemž možnost fázového posuvu 90° mezi jednotlivými osami $f_{\rm ref(B-Y)}$ a $f_{\rm ref(B-Y)}$ je dána přesností obvodů uvnitř integrovaného obvodu a nelze ji korigovat. pokud tedy nebudou tyto dva vektory navzájem přesně kolmé, nelze trimrem P_4 vyrovnat obě pole +V a $\pm U$ na neutrální šedou barvu současně. Trimr P_4 pak musí být nastaven na takový kompromis, aby obě pole byla co nejméně zabarvená.

f) Zopakovat nastavení podle bodu c). g) Zkontrolovat průběh a amplitudu výstupních rozdílových signálů MB10 a MB11. Poměr amplitud signálů -(R-Y) a -(B-Y) má být 4:5 (±10 %), imenovitě 1,05 V a 1,33 V.

Nastavení obvodů Secam

Na vstup přijímače přivést signál normalizovaných barevných pruhů Secam.

a) Nastavení vstupního filtru "cloche": Sondu osciloskopu připojit na měřicí bod MB2 (C₃₉, P₂). Cívkou L₄ (cloche) nastavit minimální amplitudovou modu-

laci barvonosného signálu.

b) Nastavení obvodů identifikace: Stejnosměrný voltmetr připojit na MB3 (vývod 6 IO₂). Cívkou L₆ nastavit minimální ss napětí na měřicím bodě MR3

c) Nastavení amplitudy přímého sig-

Odporovým trimrem P2 nastavit stejnou amplitudu signálu na vývodu 8 IO2 jako na vývodu 24 IO2 (jmenovitá mezivrcholová velikost ≥ 250 mV). Osciloskopem ověřit na MB4 (L₈, P₅), je-li amplituda signálu ve dvou po sobě následujících řádcích konstantní.

d) Nastavení nuly diskriminátoru R-Y a

amplitudy výstupního signálu —(R-Y): Sondu osciloskopu připojit na MB10 (vývod 1 modulu). Cívkou L9 nastavit pruh bílé barvy na úroveň řádkového zatemňovacího impulsu. Trimrem P₃ nastavit stejnou amplitudu výstupního signálu -(R-Y) jako při příjmu signálu PAL (jmenovitá mezivrcholová úroveň 1,05 V). Opět zkontrolovat, případně nastavit nulu diskriminátoru jádrem cívky L₉.

e) Nastavení nuly diskriminátoru B-Y a amplitudy výstupního signálu —(B-Y):

Sondu osciloskopu připojit na MB11 (vývod 3 modulu). Jádrem cívky L₈ nastavit pruh bílé barvy na úroveň řádkového zatemňovacího impulsu. Trimrem P₅ nastavit výstupní úroveň signálu —(B-Y) tak, aby poměr amplitud signálů —(R-Y): —(B-Y) byl 4:5 mezivrcholová (jmenovitá úroveň 1,33 V). Opět zkontrolovat, případně nastavit nulu diskriminátoru jádrem cívky L₈

Jestliže byl pro nastavení obvodů Secam použit servisní generátor, doporučuji překontrolovat nastavení nul diskriminátorů a filtru "cloche" pomocí vysílaného signálu monoskopu, neboť i malá odchylka barvonosných kmitočtů generátoru od skutečně vysílaných (a tudíž nesprávně nastavené nuly) se projevuje poměrně výrazným zabarvením šedé plochy. Správnost nastavení filtru "cloche" kontrolujeme na věrnosti přechodu zelená - purpurová.

Závady modulu

O případných závadách na tomto modulu platí totéž, co bylo řečeno u předcházejícího typu modulu P. Přesto, že je pro signál Secam použit odlišný integrovaný obvod, je způsob zpraco-vání signálu v podstatě stejný.

Pro snadnější určení místa poruchy v dekódovacích obvodech jsou v následujících odstavcích uvedeny běžné typy závad ve zpracování barvonosného signálu s odkazy na pravděpodobné příčiny. V tomto přehledu je předpo-kládáno, že TVP je optimálně naladěn na přijímaný signál a na vstup dekodéru je přiváděn nezkreslený barvonosný signál v patřičné úrovní. Závady jsou posuzovány na signálu normalizovaných barevných pruhů, který je součástí i každého barevného zkušebního obrazce (monoskopu). Tento přehled platí obecně pro všechny typy dekodérů PAL/Secam.

Závady při příjmu signálu v normě Secam

- 1) Barevný obraz chybí, nebo je nestabilní
 - odladěný vstupní obvod "cloche", závada v identifikačních obvodech
- 2) Změna odstínu barev jednotlivých pruhů včetně bílého a černého pruhu nesprávně nastavené nuly diskriminátorů R-Y, B-Y.
- 3) Změna pořadí barevných pruhů, černý a bílý pruh je reprodukován správně

chybí nebo je silně potlačen některý z rozdílových signálů.

4) Barevné pruhy jsou zabarveny do purpurového odstínu včetně bílého a černého pruhu

 nesprávná fáze přepínání signálů FR-Y a FR-Y

Nejčastěji vlivem špatné funkce obvodů identifikace.

- 5) Zkreslení svislých barevných přechodů
 - rozladění vstupního filtru "cloche",
 - nesprávné nastavení obvodů nf deemfáze.
 - nesprávná časová koincidence přímého a zpožděného signálu.

Nejčastěji vlivem závady v přizpůsobení ultrazvukového zpožďovacího vedení. Na přechodu vznikají zuby, jejichž amplituda je úměrná odchylce od správného zpoždění.

6) Rušivé struktury v obraze nepracuje přepínač Secam.

V jednom řádku jsou tedy signály zpracovány správně, ve druhém nesprávně. Totéž platí i o bílém a černém pruhu. V nesprávně zpracovaném řádku je barevné zkreslení stejné jako v bodě 4). V tomto případě však je polovina řádků reprodukována správně a polovina nesprávně, takže celkové zkreslení barevného podání je mírnější než v případě podle bodu 4). Při nepřepínání přepínače Secam navíc vzniká jasová struktura jako následek porušení principu konstantního jasu, neboť rozdílové barevné signály obsahují kromě informace o barvě i určitou parazitní inforomaci o jasu.

velký rozdíl amplitudy barvonosných signálů na vstupu přepínače Secam, případně chybí jeden barvonosný signál.

Vzniká řádková struktura s rozdílným jasem v následujících řádcích. Nejvíce je patrná v červeném a modrém pruhu, kde svítí pouze pa-

prsek jedné barvy

přeslechy mezi rozdílovými signály.

V sytých barevných plochách vznikají charakteristické rušivé struktury v podobě žaluzií. Nejvíce jsou patrné v modrém a červeném poli. Přeslechy mezi oběma signály mohou vznikat ještě před demodulací v přepínači Secam nebo na ultrazvukovém zpožďovacím vedení, nebo až po demodulaci přímo mezi signály (R-Y) a (B-Y) např. v matici signálu přeslechy (G-Y). Obvykle jsou

způsobeny závadou v přizpůsobení ultrazvukového zpožďovacího vedení.

rušivé modré vznikající záznějem mezi nosným kmitočtem zvuku a barvonosnými kmitočty.

Nejčastěji způsobeno nesprávným nastavením odlaďovačů pro 6,5 a 5,5 MHz.

Závady při příjmu signálu v normě PAL

- 1) Barevný obraz chybí nebo je nesta-
 - závada ve zpracování SIB nebo v obvodech oscilátoru barvonosného kmitočtu.
- 2) Změna sytosti barev podle druhu vysílání
 - špatná funkce obvodů AVC pro řízení zisku chrominančního zesilovače.

3) Žaluzie v obraze

- amplitudové a fázové chyby demodulátoru PAL, tj. nesprávná vzájemná amplituda a fáze přímého a zpožděného signálu,

závada v přepínači PAL.

Referenční signál R-Y nebo B-Y je přiváděn ob řádek, nebo není přiváděn vůbec. Příslušná barva je v demodulovaném signálu přítomna v každém druhém řádku, nebo chybí vůbec.

- 4) Chyby v sytosti některých barev, případně chybí některá základní barva úplně
 - závada v synchronních demodu-
 - závada v přepínači PAL, tj. není přiváděn referenční signál do synchronního demodulátoru.

5) Závady v podání barev

- přepínač PAL přepíná s opačnou fází.

Nastává záměna červené a zelené barvy, pleťová barva v obraze je nazelenalá.

přepínač PAL nepřepíná.

Není tedy komutován referenční signál pro demodulátor R-Y. V jednom řádku je tedy fáze referenčního signálu správná, ve druhém opačná. V červeném a zeleném pruhu se tedy střídají červené a zelené řádky. Výsledná barva těchto dvou pruhů je žlutohnědá. Zkreslení v následujících pruzích je dáno podílem signálu (R-Y).

chybí některý z rozdílových signálů.

Uvedený přehled možných závad v dekódovacích obvodech přijímačů zdaleka nepostihuje všechny typy závad a zejména jejich možné kombinace. Rozsáhlejší výčet možných závad a zejména jejich rozbor by značně přesáhl rámec tohoto časopisu.

3.7 Obvody pro zpracování a regulaci videosignálů

Obvody popisované v této kapitole zajišťují zpracování jasového signálu, obsahují zesilovače rozdílových signálů (R-Y) a (B-Y), maticový obvod pro vytváření signálu (G-Y), obvody pro regulaci jasu, kontrastu a barevné sytosti. Z rozdílových signálů (R-Y), (B-Y), (G-Y) a jasového signálu vytvářejí signaly R, G a B. Jednotlivé katody obrazovky budí koncové obrazové zesilovače.

Součástí těchto obvodů jsou ještě pomocné obvody, zajišťující zhášení zpětných běhů, zaklíčování úrovně černé, omezení katodového proudu obrazovky apod.

Obr. 60. Blokové schéma zapojení IO MCA660

U jednotlivých generací barevných televizních přijímačů jsou tyto obvody řešeny odlišně pokud jde jak o použité integrované obvody, tak o rozčlenění obvodů na jednotlivé celky či moduly. U přijímačů řady Color 110 je část obvodů umístěna na základní signálové desce (obvody jasového kanálu a IO MCA660), zbývající část na modulu G, 6PN 052 10 (IO MBA530 a koncové obrazové zesilovače). U následujících typů přijímačů jsou všechny tyto obvody, díky použití moderních IO s větší hustotou integrace, soustředěny na jediném modulu. U přenosných barevných televizních přijímačů Mánes Color, popř. Color Oravan je to modul G, 8PN 051 005, popř. 6PN 053 69 (TDA3501 nebo A3501D). U stolních barevných televizních přijímačů řady Color 416 je to modul G, 6PN 053 27 (TDA3505 nebo MDA3505).

Signálové obvody s IO MCA660

Integrovaný obvod MCA660 slouží k řízení kontrastu, jasu a barevné sytosti, obnovuje úroveň černé (obnovení ss složky) a zatemňuje jasový signál. Zpracovává rozdílové signály barev (R-Y) a (B-Y) z výstupu dekodéru a jasový signál, přivedený ze zpožďovací linky. Kromě řídicích elektronických potenciometrů obsahuje ještě invertor pro rozdílový signál (G-Y), který se vytváří na vnější odporové matici. Blokové schéma zapojení integrovaného obvodu MCA660 je na obr.

Rozdílové signály (R-Y) a (B-Y) jsou z dekodéru přivedeny na vývody 9 a 8 IO. Jasový signál ze zpožďovací linky je přiváděn na vývod 16 IO. Regulátor kontrastu P_5 řídí pomocí ss napětí, přiváděného na vývod 5 IO, nejen úroveň jasového signálu (Y), ale i úroveň signálů (R-Y) a (B-Y) prostřednictvím regulačních bloků (1) a (2), takže se současně se změnou kontrastu lineárně mění i sytost barev a vzájemný poměr jasového signálu a signálů barev je konstantní. Samostatně se sytost barev řídí v blocích (4) a (6) změnou ss napětí přiváděného na vývod 6 IO z regulátoru sytosti P_6 . Výstupní rozdílové signály —(R-Y) a

—(B-Y) jsou vyvedeny na vývody 10 a 7 IO. Výstupní rozdílový signál —(G-Y) je vytvořen podle známé rovnice:

$$(G-Y) = -0.51(R-Y) - 0.19(B-Y)$$

(znaménka "—" v této rovnici nesouvisí se znaménky "—" u výstupních signálů na obr. 60, v němž značí, že výstupní signál je v protifázi ke vstupnímu). Vnější odporovou maticí jsou sečteny jednotlivé příspěvky od rozdílových signálů —(R-Y) a —(B-Y). Tento součtový signál je přiveden přes vývod 11 IO na invertor (5) (tj. realizace znaménka "—" v rovnici). Výstupní rozdílový signál —(G-Y) je vyveden na vývod 12 IO.

Jasový signál je po regulaci kontrastu při průchodu zesilovačem v bloku (7) zatemňován ve zpětných bězích a pak klíčován řádkovým klíčovacím impulsem na konstantní zatemňovací úrovni. Tuto úroveň lze měnit nastavením stejnosměrného napětí na vývodu 14 10, čímž se řídí jas obrazu. Zatemňovací impulsy jsou přiváděny na vývod 3 IO. Zatemnění může být řádkové i snímkové současně (na obr. 60 je použito pouze zatemnění řádkových zpětných běhů, snímkové zpětné běhy se zatemňují až na výstupu jasového signálu). Zatemňovací impulsy přiváděné na vývod 3 IO mohou být kladné nebo záporné polarity podle požadovaného druhu zatemnění jasového signálu v době zpětného běhu. Při použití záporných zatemňovacích impulsů s amplitudou -1,5 až -10 V se signál zatemní na zatemňovací úroveň, při kladných impulsech s amplitudou 2 až 12 V se jasový signál zatemní na úroveň černé. Během aktivní části řádků musí být napětí na vývodu 3 IO v rozmezí —0,75 az + 0.7 V

Klíčovací impuls se vytváří ve zvláštním tvarovacím obvodu (8) z kladných řádkových zpětnoběhových impulsů. Správná činnost klíčování je zaručena, když je v zadní části zatemňovacího impulsu umístěn impuls šířky 3 µs. Tvarovací obvod (obr. 61) je osazen tranzistorem BC178 (p-n-p). Pracuje jako klíčovací stupeň tak, že se do emitoru přivádějí kladné řádkové impulsy zpětného běhu přes dělič

Obr. 61. Tvarovací obvod klíčovacích impulsů

R₁₆₃/R₁₆₄. Do báze se přivádí derivovaný řádkový impuls přes C₁₆₁ a R₁₆₁. V době, kdy se tento derivovaný impuls zmenší pod úroveň napětí na emitoru, tranzistor se otevírá a na pracovním kolektorovém rezistoru R₁₆₅ se vytvoří požadovaný tvar impulsu (viz obr. 62).

Obr. 62.

Kondenzátor C₁₆₂ v kolektoru tranzistoru T₁₆₁ omezuje špičku impulsu kladné polarity. Dioda D₁₆₁ zaručuje, že se nemůže zvětšit napětí báze — emitor tranzistoru v závěrném směru nad jmenovitou úroveň. Časová konstanta derivačního obvodu určuje zúžení řádkových impulsů z 12 μs na 3 μs a impuls na kolektoru je zpožděný, takže přichází v době, kdy je v jasovém signálu po řádkovém synchronizačním impulsu právě zatemňovací impuls. Součástky derivačního obvodu jsou voleny tak, aby poměr kladné a záporné části klíčovacího impulsu byl 2:1.

Skutečné schéma zapojení těchto signálových obvodů u přijímačů řady Color 110 je na obr. 63. Signál pro obvody jasového kanálu je odebírán z vývodu 5 modulu obrazové mezifrekvence (O). Nejdříve je přiveden přes rezistor R₁₅₂ na sérioparalelní odlaďovače barvonosného signálu. Odlaďovače jsou připojovány přes diodu D₁₅₁. Spínací napětí pro diodu je přiváděno automaticky přes rezistor R₁₅₄ z výstupu vypínače barev v dekodéru (vývod 11 modulu P). Při příjmu ČB signálu nebo vypnutí barev servisním vypínačem (Z12) nedostává dioda D₁₅₁ kladné předpětí přes rezistor R₁₅₄, je uzavřena a odlaďovače jsou odpojeny, takže při příjmu ČB vysílání není omezována šířka pásma jasového signálu. Z odlaďovačů je signál přiveden na jasovou zpožďovací linku JZV1. Odporový dělič na vstupu linky (R₁₅₅/R₁₅₆) jednak částečně upravuje úroveň signálu přiváděného na linku, jednak zajišťuje impedační přizpůsobení vstupu linky. Zároveň je využit pro kompenzaci po-klesu vyšších kmitočtů (C₁₅₈), způsobeného omezenou šířkou pásma zpožďovací linky.

Zpožděný jasový signál je ze zpožďovacího vedení odebírán přes emitorový sledovač s tranzistorem T151. Rezistory děliče v bázi tranzistoru jsou navržený opět s ohledem na impedanční přizpůsobení zpožďovací linky. Z emitoru tranzistoru je jasový signál přiveden přes oddělovací kondenzátor C₁₅₅ a odporový trimr P₁₆₁, sloužící k nastavení úrovně jasového signálu, na vstup IO₁₆₁, MCA660. Rezistor R₁₆₀ zajišťuje ss předpětí vstupu zesilovače jasového signálu uvnitř IO. Výstup jasového signálu (vývod 1 IO₁₆₁) je vnitřně napájený a není proto nutný vnější zatěžovací rezistor.

Kontrast se řídí ss napětím na vývodu 5 IO₁₆₁, nřiváděným z běžce potenciometru kontrastu P₆₀₆. Na tomto vývodu se zabezpečuje i omezení katodového proudu obrazovky (omezení jasu). Omezovač je tvořen tranzistorem T_{162} , jehož vodivost (a tedy i napětí na vývodu 5 IO₁₆₁) se ovládá napěťovými impulsy, přiváděnými z násobiče vn. Při nadměrném zvětšení katodového proudu obrazovky se amplituda impulsů z násobiče vn zvětší na asi 70 V. Impulsy se přivádějí na dělič R₁₉₂/P₁₆₃ a po vyfiltrování kondenzátorem C₁₇₂ jsou vedeny na bázi tranzistoru T₁₆₂. Při dosažení určitého napětí se tranzistor otevírá a zkratovává běžec potenciometru kontrastu P₆₀₆, čímž se zmenší regulační napětí a zmenší se kontrast. V omezovači je zavedena zpětná vazba z kolektoru na bázi T₁₆₂ kondenzátorem C₁₇₁. Úroveň nasazení omezení se nastavuje trimrem P₁₆₃.

Jas se reguluje ss napětím na vývodu

14 IO₁₆₁, přiváděným z běžce potencio-metru jasu P₆₀₃. Kondenzátor C₁₆₅ (vývod 15 IO₁₆₁) je paměťový kondenzátor úrovně černé.

Demodulované rozdílové signály (R-Y) a (B-Y) z výstupu dekodéru jsou přiváděny na vstupy 9 a 8 IO₁₆₁ přes oddělovací kondenzátory C₁₅₇ a C₁₅₆. Zesilovače (R-Y) a (B-Y) jsou shodné. Jejich zesílení (sytost barev) se řídí ss napětím na vývodu 6 lO₁₆₁, přiváděným z běžce potenciometru P₆₀₂. Rozsah regulace se nastavuje odporovým trimrem P₁₆₂. Jak již bylo řečeno v popisu blokového schématu IO MCA660, zesílení signálů (R-Y) a (B-Y) se řídí i ss napětím pro regulaci kontrastu, tedy při změně černobílého kontrastu se automaticky mění i barevná sytost, takže je zachován poměr barev a jasového signálu, nastavený potenciometrem sytosti. Vývod 6 IO₁₆₁ slouží kromě regulace obstati i kodelinický potenciometrem sytosti. lace sytosti i k odpojování barvy. Barva se "odpojuje" uzemněním přes vývod 8 IO MCA640 v modulu P (přes vývod 11-P), nebo ručně servisním vypínačem barev (Z12). Rezistor R₁₄₉ přivádí na diodu D₁₄₂ závěrné napětí při zapnutých

Signál -(G-Y) se vytváří ve vnější odporové matici ze signálů —(R-Y) a —(B-Y) (R₁₇₆, R₁₇₉, R₁₈₀, R₁₈₁, R₁₈₂). Součtový signál je přiveden přes vývod 10 IO₁₆₁ na vstup invertujícího zesilovače a výstupní signál —(G-Y) je k dispozici na vývodu 12 IO₁₆₁. Všechov tři rozdílové signály jsou spolu s jasovým signálem přiváděny k dalšímu zpracování na modul G.

Obvody s tranzistory T₁₀₄ a T₁₀₃, zapojené na výstupy signálů (Y) a —(G-Y), slouží k zobrazení čísla zvolené předvolby na obrazovce. Oba tranzisto-

ry jsou ovládány kladnými impulsy z jednotky programové volby (impuls pozadí a impuls čísla). V době příchodu těchto impulsů je příslušný tranzistor v saturaci a přes diodu D₁₀₃, popř. D₁₀₂ je zkratován výstup signálu (Y), popř. —(G-Y). S ohledem na polaritu těchto signálů a zapojení následujících obvodů na modulu G platí, že zvětšení ss úrovně signálu (Y) zvětšuje jas paprsku u všech tří katod, zatímco zvětšení ss úrovně signálu —(G-Y) zmenšuje jas paprsku zelené trysky. V době zkrato-vání signálu (Y) se tedy "zatemní"

všechny tři katody a na obrazovce vznikne černé pole pozadí. (Jmenovitá ss úroveň signálu (Y) je asi 2 V s rozkmitem signálu 1 V. Při zobrazení pozadí se zmenší asi na 0,8 V.) Stejnosměrná úroveň signálu —(G-Y) je 6,2 V s rozkmitem signálu 0,8 V. V době zobrazování čísla se zmenší na úroveň danou děličem R₁₁₄/P₁₆₅. Tento posuv ss úrov-ně je tak velký, že se "rozsvítí" zelená tryska i přesto, že je pomocí vstupu Y zatemněna. Zmenšení této ss úrovně v době zobrazování čísla a tím i jas na obrazovce lze nastavit trimrem P₁₆₅.

Řádkové zpětné běhy se zatemňují blokováním jasového kanálu zápornými řádkovými impulsy zpětných běhů. Potřebná mezivrcholová úroveň zatemňovacích impulsů (asi --6 V) se vytváří z impulsů -50 V omezovačem se Zenerovou diodou (R₁₆₇, D₁₆₂).

Snímkové zpětné běhy jsou zatemňovány až na výstupu jasového signálu z MCA660 (na vstupu modulu G) zápornými snímkovými zatemňovacímí impulsy, přiváděnými přes rezistor R₁₇₃ z tvarovacího obvodu na základní desce (T₁₂₁, T₁₂₂), který byl popsán již v souvislosti s modulem P.

Nastavení signálových obvodů

Nastavení odlaďovačů barvonosného signálu:

Na vstup přijímače přivést úplný barevný televizní signál barevných pruhů Secam. Televizní přijímač optimálně naladit. Cívkami L₁₆₁ a L₁₆₂ nastavit minimum barvonosného signálu v bodě MB101 (emitor T₁₅₁).

2. Nastavení amplitudy jasového signálu:

Na vstup přijímače přivést signál jako v bodě 1. Potenciometr kontrastu nastavit na maximum. Sondu osciloskopu připojit na měřicí bod MB104 (vývod 1 modulu G). Potenciometrem jasu, nastavit klíčovací (zatemňovací) úroveň na úroveň černé a trimrem P₁₆₁ nastavit mezivrcholovou úroveň jasového sig-nálu na 1 V. (Klíčovací úroveň nemusíme nastavovat přímo na úroveň černé, stačí co nejblíže k ní, aby bylo zajištěno, že nepracuje omezovač jasu a pak nastavíme rozkmit černá-bílá na

3. Nastavení rozsahu regulace sytosti: Potenciometr sytosti nastavit na maximum. Odporovým trimrem P₁₆₂ nastavit na vývodu 6 IO161 ss napětí 5,8 V. Při nastavení potenciometru sytosti na minimum musí právě zaniknout barva v obraze.

4. Nastavení omezovače proudu obrazovkv:

Na vstup přijímače přivést signál barevných pruhů nebo monoskopu v normě Secam nebo PAL. Potenciometr kontrastu a jasu nastavit na maximum, potenciometr sytosti a barevného tónu do středu. Odporovým trimrem P₁₆₃ nastavit anodový proud obrazovky na 850 \pm 50 μ A.

V tomto případě je nutno upozornit na nutnost dodržování příslušných bezpečnostních předpisů, neboť se měří proud v přívodu anodového napětí s napětím asi 24 kV a tomu musí odpovídat izolace měřicího přístroje i přívodních vodičů.

Nastavení omezovače jasu v souvislosti s nastavením modulu G je popsáno v následující kapitole spolu s nastavením modulu G.

5. Nastavení zobrazení čísla zvolené předvolby na obrazovce:

Na obrazovce zobrazíme číslo osmé předvolby a odporovým trimrem P₁₆₅ nastavíme optimální jas a ostrost čísla na černém pozadí, případně korigujeme nastavení ještě pomocí trimru P₂ v jednotce programové volby.

6. Nastavení šířky snímkových zatemňovacích impulsů:

Nastavení šířky impulsu podle osciloskopu-(asi 1,1 ms) bylo uvedeno při nastavování dekódovacích obvodů. Správnost nastavení kontrolujeme na obrazovce při zmenšeném vertikálním rozměru obrazu. Nesmí docházet k zatemnění horního okraje obrazu, avšak obraz musí být zatemněný již v té

části činného běhu, kde ještě není podle TV normy vysílaný obraz (včetně měřicích řádků). Nastavení lze případně korigovat odporovým trimrem P₁₂₁ na základní signálové desce (obr. 4, obr. 53).

Závady signálových obvodů

Případná porucha v této části obvodů má za následek závadu ve zpracování rozdílových signálů nebo jasového signálu:

1. Chybí jasový signál na vstupu modulu G (vývod 1-G):

Zkontrolovat signálovou cestu od vstupu modulu G až po vstup signálu na odlaďovače barvy a určit místo, kde se signál ztrácí:

závada v obvodech na výstupu IO_{161} (přerušený R_{171} , L_{153} , částečný svod T_{104} — při úplném zkratu by na obrazovce chyběl i barevný signál;

vadný IO₁₆₁ (zkontrolovat signál na vstupu 16 a výstupu 1 IO₁₆₁ a ss napětí v těchto bodech);

závada v obvodech odlaďovačů barvonosného signálu a zpožďovací linky (přerušený R₁₅₂, R₁₅₃, vadný dělič na vstupu zpožďovací linky, přerušená zpožďovací linka, vadný T₁₅₁, C₁₅₅).

2. Chybí jeden nebo více rozdílových signálů na vstupu modulu G:

přerušená signálová cesta MCA660 na vstup modulu G (přerušený R₁₇₅, R₁₇₇ nebo R₁₇₈). Chybí-li rozdílový signál —(G-Y), popř. má malou amplitudu, může být závada ještě ve vnější odporové matici nebo invertujícím zesilovači uvnitř IO₁₆₁ (vývody 10 a 12 10₁₆₁). Chybí-li jeden ze základních

rozdílových signálů, je pochopitelně zkreslen i signál —(G-Y);
— závada uvnitř IO₁₆₁ (změřit osciloskopem amplitudu signálu na příslušném vstupu a výstupu IO161 a ss napětí v těchto bodech);

vadný vazební kondenzátor na vstu-

pu IO₁₆₁ (C₁₅₆, popř. C₁₅₇).

3. Zcela chybějí nebo mají malou amplitudu všechny tři rozdílové signály na vstupu modulu G:

- závada v regulaci sytosti (zkontrolovat rozsah regulačního napětí na vývodu 6 IO₁₆₁ — jmenovitě asi 4,0 až 5,8 V; je-li toto napětí i signály na vstupu IO₁₆₁ v pořádku, je patrně vadný IO₁₆₁; závada v odpojovači barvy v dekodéru (regulační napětí pro sytost je trvale zkratováno odpojovačem barvy v modulu P).

4. Malý černobílý kontrast:

závada v regulačních obvodech (zkontrolovat rozsah ss regulačního

napětí na vývodu 5 IO₁₆₁ — jmenovitě 3,9 až 5,5 V);

závada v omezovači jasu (zkrat T162, přerušený P₁₆₃).

5. Omezovač jasu nepracuje (přerušený R₁₉₂ nebo přívod impulsů z rozkladové desky, zkrat P₁₆₃ nebo C₁₇₂, vadný T₁₆₂).

6. Závada v regulaci jasu:

zkontrolovat rozsah regulačního napětí na vývodu 14 IO₁₆₁ (jemnovitě 4,4 až 6,2 V), C₁₆₆, C₁₆₅.

7. Závady v zatemnění a klíčování:

zkontrolovat amplitudu a průběh impulsů na vývodech 2 a 3 IO161 a snímkových zatemňovacích impulsů, přiváděných přes rezistor R₁₇₃

8. Závada v zobrazení čísla předvolby

na obrazovce:

 při závadě v zobrazení vlastního čísla, popř. pozadí zkontrolovat osciloskopem zobrazovací impulsy na bázi tranzistoru T₁₀₃, popř. T₁₀₄, průběhy na jejich kolektorech a diody D₁₀₂, popř.

Modul obrazových zesilovačů (G), 6PN 052 10

Tento modul, použitý u přijímačů řady Color 110, dále zpracovává jasový signál a rozdílové signály barvy, při-váděné z výstupu integrovaného obvodu MCA660 (IO161). Obsahuje obvody pro dematicování rozdílových signálů a diferenciální zesilovače signálů R, G, B (integrovaný obvod MBA 530) a diskrétní tranzistorové koncové obrazové zesilovače signálů R, G, B pro buzení jednotlivých katod obrazovky. Blokové schéma zapojení integrovaného obvodu MBA530 včetně koncových stupňů obrazových zesilovačů je na obr. 64.

Všechny tři kanály jsou shodné. Na vstupu IO je v každém kanálu obvod pro dematicování rozdílových signálů, za nímž je zapojen diferenciální zesilovač s velkým zesílením, do něhož je zavedena záporná zpětná vazba z koncového obrazového zesilovače, čímž je zajištěna dostatečná stabilita pracovního bodu. Zesílení se na velikost, potřebnou k vyrovnání úrovně černé, nastavuje změnou stupně záporné zpětné vazby. Na obr. 65 je schéma zapojení jednoho kanálu v IO MBA530. průběhů jednotlivých signálů na obrázku je patrný i způsob dematicování rozdílového signálu. Pro lepší názornost je uvažován přenos obou tranzistorů T₁ a T₂ jednotkový a stejným

Obr. 64. Blokové schéma zapojení MBA530 s koncovými stupni obrazových zesilovačů

Obr. 65. Schéma zapojení jednoho kanálu MBA530 a princip dematicování signálů

jsou zjednodušeny průběhy jednotlivých signálů. Podstata dematicování spočívá v tom, že zvětší-li se napětí na bázi T1, zvětší se i ss napětí na bázi T₃, zatímco zvětšení ss napětí na bázi T₂ způsobí zmenšení napětí na bázi T₃. Tímto způsobem je realizován rozdíl signálů -(R-Y) a (Y), takže na bázi tranzistoru T_3 dostáváme výsledný signál -(R), který je dále zesílen diferenciálním zesilovačem (T_3 , T_4) uvnitř IO a potom koncovým obrazovým zesilovačem.

U koncových obrazových zesilovačů je použito zapojení zesilovače s aktivní zátěží - viz obr. 66b, u něhož se dosahuje podstatně menšího ztráto-

$$C_{a1}$$
 C_{a1}
 C_{a1}
 C_{a1}
 C_{a2}
 C_{a3}
 C_{a4}
 C_{a4}
 C_{a5}
 C

Obr. 66. Schéma zapojení koncových stupňů obrazových zesilovačů ve třídě A (a) a zapojení s aktivní zátěží (b)

vého výkonu než u zapojení zesilovače ve třídě A. U zapojení ve třídě A (viz obr. 66a) je šířka pásma obrazového zesilovače určena především zatěžovacím odporem Ra a kapacitou obrazovky Ca (asi 12 pF). Pro horní mezní kmitočet tohoto zesilovače platí:

$$f_{\rm T} = \frac{1}{2\pi R_{\rm a} C_{\rm a}}$$

Požadujeme-li pásma 4 MHz/3 dB a C_a = 12 pF, dostáváme z uvedeného vztahu, že $R_a = 4.7 \text{ k}\Omega$. Tento poměrně malý odpor způsobuje velké výkonové zatížení tranzistoru. V zapojení s aktivní zátěží může být odpor R_{a1} několikrát větší, neboť se přes něj nabíjí pouze malá kapacita C_{a1} , kterou tvoří vlastní kapacita obvodu a zpětnovazební kapacita tranzistorů T₁ a T₂. Při nízkých kmitočtech pracuje tranzistor T₁ jako zesilovač ve třídě A s velkým zatěžovacím odporem

 $R_{\rm a1}$ a tranzistor ${\rm T_2}$ jako za něho zapojený emitorový sledovač. S rostoucím kmitočtem přecházejí oba tranzistory do protitaktního provozu. Když přijde na bázi T₁ sestupná hrana signálu, tranzistor se uzavře a přes kolektorový odpor Ra1 se nabíjí kapacita Ca1. Aby mohl být odpor Rai co největší, musí být kapacita Ca1 co nejmenší a musí se tedy použít tranzistory s co nejmenší kapacitou C_{BK}. Větší kapacita obrazovky se nabíjí přes emitorový sledovač T₂, který má velmi malý vnitřní odpor. Když přijde na bázi tranzistoru T1 náběžná hrana signálu, přejde T_1 do vodivého stavu a jeho nyní malý vnitřní odpor umožní vybití kapacity C_a přes diodu D_1 . Tranzistor T_2 je v této době uzavřený. Vybíjení a nabíjení C_a přes malé vnitřní odporv T_a a T_a D_a votváří ostrá vnitřní odpory T₂ a T₁, D₁ vytváří ostré přechody vetikálních linií, což kompenzuje případný nižší mezní kmitočet $f_{\rm T}$ daný větším odporem $R_{\rm a1}$.

V oblasti nízkých kmitočtů je s ohledem na větší odpor R_{a1} celkový ztrátový výkon podstatně menší než u zapojení ve třídě A. S rostoucím kmitočtem se ztrátový výkon zvětšuje vlivem nabíje-

cího proudu kapacity Ca.

Konkrétní schéma zapojení modulu G, 6PN 052 10, je na obr. 67. Vstupní signály od IO₁₆₁ na základní desce (MCA660) jsou přivedeny na odpovídající vstupy IO₁, MBA530, přes vývody 1 až 4 modulu G. Po dematicování a zesílení v diferenciálních zesílovačích uvnitř IO jsou signály R, G a B přivedeny na vstupy koncových zesilovačů (T₃₁, T₂₁, T₁₁). V době zatěmňovacího impulsu je tranzistor T₃₁ (T₂₁, T₁₁) uzavřen. Tranzistor T₃₂ (T₂₂, T₁₂) má na bázi napětí dané odporem rezistoru R_{31} (R_{21} R_{11}), 18 k Ω , a napětí na katodě obrazovky je rovno přibližně napáje-címu napětí +220 V. Když se obsah obrazu mění směrem k úrovni bílé (směrem k většímu napětí na bázi T₃₁, T_{21} , T_{11}), tranzistorem T_{31} (T_{21} , T_{11}) začne téci kolektorový proud a tranzistor T₃₂ (T₂₂, T₁₂) se uzavírá. Napětí báze-emitor tohoto tranzistoru dosáhne záporné velikosti asi —0,6 V, která odpovídá úbytku napětí na diodě D₃₁ (D21, D11) v propustném směru. Napětí na katodě obrazovky se vybíjí přes tuto diodu a vstupní tranzistor T_{31} (T_{21} , T_{11}) tak dlouho, dokud se nezmenší na potřebnou úroveň. Ta je definována děličem R_{34}/R_{35} , P_{31} , R_{14}/R_{15} , P_{11}) a zpětnou napěťovým $(R_{24}/R_{25}, P_{21}$ vazbou z MBA530 přes C_{32} (C_{22} , C_{12}). Tato úroveň a tedy zisk zesilovačů se nastavuje trimrem P₃₁ (P₂₁, P₁₁). Úroveň zpětné vazby v červeném a modrém kanálu je možno měnit odporovým trimrem P₆₀₅, připojeným k zpětnovazebním děličům přes rezistory R₁₉₀ a R₁₉₁ a tím měnit barevný tón obrazu.

Jako ss záporná zpětná vazba se přivádí na vývod 15 (12, 9) IO₁, MBA530, přes rezistor R₃₇ (R₂₇, R₁₇) napětí, které se vytváří klíčováním úrovně černé diodou D₃₂ (D₂₂, D₁₂). V době řádkového zpětného běhu se nabíjí kondenzátor C₃₄ (C₂₄, C₁₄) řádko-vým impulsem. Na konci řádkového běhu je tedy na pravé straně tohoto kondenzátoru napětí rovno prakticky nule a na levé straně je záporné napětí. To se přivádí přes rezistory R_{38} a R_{37} (R_{28} a R_{27} , R_{18} a R_{17}) k IO_1 , MBA530, jako regulační napětí, jehož velikost je závislá na odchylce vůči správné úrovni černé a ruší část kladného napětí přiváděného přes P₃₂ a R₃₉ (P₂₂ a R₂₉, P₁₂ a P₁₉). Toto kladné napětí se vytváří vně modulu G usměrněním klíčovacích

impulsů diodou D₁₆₃ na kondenzátoru C₁₇₃. Změnou tohoto napětí trimrem P₃₂ (P₂₂, P₁₂) lze měnit nastavení ss pracovního bodu každého kanálu (úroveň černé).

Výstupní signály R, G, B jsou přiváděny na katody obrazovky přes ochranný rezistor R₃₆ (R₂₆, R₁₆) a kompenzační tlumivku L₃ (L₂, L₁).

Nastavení modulu

Před nastavováním modulu dáme všechny odporové trimry do střední polohy.

1. Základní nastavení modulu:

a) na přijímači bez signálu nastavit potenciometr jasu a kontrastu na minimum, potenciometr barevného tónu nastavit do středu. Odporovým trimrem P₁₆₄ na základní desce na-stavit na měřicím bodu MB2 (katoda G) stejnosměrné napětí 190 ±5 V. (Pouze pokud by byl trimr P₁₆₄ v dorazu a toto napětí by nebylo možné nastavit, použít i odporový trimr P22 na modulu G;

b) na vstup přijímače přivést signál barevných pruhů (Secam nebo PAL). Potenciometr kontrastu nastavit na maximum, potenciometrem jasu nastavit klíčovací úroveň na úroveň černé a potenciometr barevného tónu na střed. Potenciometr sytosti nastavit tak, aby byl správný poměr barevného a jasového signálu, tj. signály obdélníkovitého tvaru R, G, B jednotlivých katodách (viz průběhy 1G, 2G a 3G na obr. 67). Potom odporovými trimry P₁₁, P₂₁, P₃₁ nastavit rozkmit signálů R, G, B v měřicích bodech MB1 až MB3 na 95 ±5 V.

2. Nastavení úrovně obnovení SS složky:

na vstup přijímače přivést signál jako v bodě 1b).

servisním odpojovačem barvy (Z12) vypnout barvu. Kontrast a jas nastavit na minimum. Běžec potenciometru barevného tónu je ve středu. Odporovým trimrem P₄₀₂ v rozkladové části nastavit U_{g2} obrazovky na 550 V. Potom odporovým trimrem P₁₆₄ na základní signálové desce nastavit na měřicím bodu MB2 (katoda G) nejdříve ss napětí 190 V a potom trimrem P₂₂ na modulu G stejnosměrné napětí 160 V;

b) zvětšit jas tak, aby se na stínítku objevila i zelená barva a odporovými trimry P₁₂ a P₃₂ nastavit na stínítku obrazovky nautrální šedou barvu.

3. Nastavení kontrastu a omezovače iasu:

na vstup televizního přijímače je stále přiváděn signál barevných pruhů, servisním vypínačem (Ž12) za-

pnout barvy.

Kontrast a jas nastavit na maximum, barevnou sytost a tón do středu. Trimrem P₁₆₃ na základní signálové desce nastavit proud obrazovky 850 ±50 μA. Na měřicím bodě MB2 zkontrolovat mezivrcholovou úroveň signálu G, která musí být 65 V až 70 V. Pokud je menší, zmenšit napětí $U_{\rm g2}$ obrazovky ($P_{\rm 402}$) a opět nastavit omezení jasu trimrem $P_{\rm 163}$. Napětí U_{g2} obrazovky musí být po nastavení v rozsahu 300 až 550 V

Závady modulu

V případě závady je nutno rozlišit, zda se týká všech tří kanálů R, G, B, nebo pouze některého z nich. Pokud se závada týká všech tří kanálů (projevuje se stejně u všech tří signálů), je nutno ji

hledat v obvodech, které jsou společné pro všechny tři obrazové zesilovače.

Svítí-li v důsledku poruchy stínítko obrazovky plným jasem a díky přejasnění vypínají ochrany v televizním přijímači, odpojíme žhavení obrazovky (vyjmutím pojistky Po₄₀₂ na rozkladové desce), aby ochrany nevypínaly přijímač a bylo možno identifikovat závadu.

Při rozboru závad na tomto modulu je předpokládáno, že všechny rozdílové signály i jasový signál od MCA660 jsou v pořádku.

- Všechny tři katody svítí plným jasem:
 chybí napájecí napětí +220 V modu-
- chybí řádkové impulsy +280 V (závada v přívodu nebo přerušený R₁₉₄ na základní desce),
- chybí klíčovací impulsy přiváděné na vývod 9 modulu G (vadný odporový trimr P₁₆₄ nebo plošný spoj na základní desce),
- vadný IO₁ (např. závada ve zdroji pro řízení zdrojů proudu v diferenciálních zesilovačích, vedoucí ke zvětšení ss úrovně na vstupech koncových zesilovačů).
- 2. Ani jedna katoda nesvítí:
- chybí kladné napětí přiváděné na vývod 8 modulu G (vadná D₁₆₃, R₁₉₆, C₁₇₃, R₁₉₇),
- C₁₇₃, R₁₉₇),
 vadný IO₁ (závada uvnitř IO vedoucí ke zmenšení ss úrovně na vstupech koncových zesilovačů.
- 3. V obraze chybí jasový signál:
- závada uvnitř IO₁.
- 4. Některá z katod nesvítí (uvedeno na příkladu katody R):
- závada v obvodu ss zpětné vazby (přerušený R₃₉, P₃₂, R₁₇, zkrat C₃₃),
- přerušený přívod na katodu (R₃₆, L₃),
 závada v obvodu koncových zesilo-

- vačů (zkrat R_{32} , přerušený T_{31} , D_{31} , T_{32} zkrat),
- vadný IO₁ (např. výstupní diferenciální zesilovač).
- 5. Některá z katod svítí plným jasem (uvedeno na příkladu katody R):
- závada v klíčovacích obvodech (C₃₄, R₃₈),
- závada v obvodu koncových zesilovačů (proražený tranzistor T₃₁), vadný IO₁.
- 6. Nejde nastavit správná amplituda výstupního signálu:
- závada v obvodu střídavé zpětné vazby (R₃₄, R₃₅, P₃₁, C₃₂).

Určení místa závady je do jisté míry ztíženo tou skutečností, že je zavedena zpětná vazba z výstupu koncových obrazových zesilovačů až na vstup diferenciálního zesilovače uvnitř IO₁. V některých případech je možno si pomoci tím způsobem, že se rozpojí tato zpětná vazba a zpětnovazební napětí se nahradí pomocným zdrojem. Někdy je též výhodné odpojit vstup koncových zesilovačů od IO₁. Příslušná katoda by měla zhasnout, pokud jsou koncové stupně v pořádku, neboť vstupní tranzistor je zavírán rezistorem mezi bází a zemí (R₃₂, R₂₂, R₁₂).

Modul G, 6PN 053 69, 8PN 051 005

Tento modul, použitý u přenosných barevných televizních přijímačů Mánes Color a Color Oravan, obsahuje všechny potřebné obvody pro zpracování obrazových signálů včetně diskrétních koncových obrazových zesilovačů. Většina těchto obvodů je soustředěna v integrovaném obvodu TDA3501, popř. A3501D (NDR).

Obvod je určen pro spolupráci s dekodérem používajícím obvody TDA3510 a TDA3520, popř. TDA3530. Z rozdílových signálů R-Y a B-Y se nejdříve odvodí signál G-Y a potom jsou v maticích R, G, B vytvořeny jednotlivé signály RGB. Vnějšími stejnosměrnými řídicími napětími se v obvodu řídí sytost, kontrast a jas. Pro správnou funkci integrovaného obvodu TDA3501 je nutné na příslušný vývod IO přivádět tříúrovňový složený synchronizační impuls (SCI), jímž je zabezpečeno obnovení a udržování úrovně černé a vyklíčování signálu v době řádkových a snímkových zpětných běhů.

Řešení obvodu TDA3501 umožňuje zablokovat (odpojit) vnějším přepínacím signálem přiváděné vstupní signály a současně uvolnit externí vstupy R, G, B. Externí signály jsou rovněž ovlivňovány regulátory jasu a kontrastu. Blokové schéma zapojení integrovaného obvodu TDA3501 je na obr. 68.

-(R-Y)Rozdílové signály barvv a -(B-Y) z dekodéru (modul P) jsou přiváděny na vývody 17 a 18 IO přes vazební kondenzátory C₁₇ a C₁₈, takže přiváděné signály mohou být superponovány na libovolné stejnosměrné napětí (to odpovídá změně ss napětí na výstupu dekodéru při signálu PAL nebo Secam). V integrovaném obvodu se v době zadní části řádkového zatemňovacího impulsu "upínají" rozdílové signály na vnitřně nastavenou úroveň 4,2 V. Pro klíčování se používá impuls pro vyklíčování burstu (HKB), obsažený v SCI. Klíčovací impuls je ze signálu SCI získáván prahovým detektorem PD1. Jmenovitá úroveň vstupního rozdílového signálu -(R-Y),

Obr. 68. Blokové schéma zapojení IO TDA3501 (A3501D)

-(B-Y) je 1,05, popř. 1,33 V (mezivrcholově) pro signál barevných pruhů se sytostí 75 %, což odpovídá jmenovitým výstupním úrovním dekodéru. Tyto úrovně byly zvoleny s ohledem na možnost použít standardní úroveň 1 V u externích signálů R, G, B.

K volbě jmenovitých vstupních úrovní alespoň krátké vysvětlení. Mají-li externí i interní signály způsobit stejné vybuzení katod obrazovky, musí být na výstupu matic MR, MG a MB také signál s úrovní 1 V. Pro amplitudu jasového signálu platí rovnice:

 $U_{\rm Y} = 0.30U_{\rm R} + 0.59U_{\rm G} + 0.11U_{\rm B}$ Maximální amplitudu jasového signálu tedy dostáváme pro bílou barvu, tj. pro $U_{\rm R} = U_{\rm G} = U_{\rm B} = 1 \text{ V}$:

 $U_{\rm Y} = 0.30 + 0.59 + 0.11 = 1 \,\rm V.$ Pro rozdílové signály barvy platí:

 $U_{R-Y} = U_R - U_Y =$

 $= 0.70U_{\rm B} - 0.59U_{\rm G} - 0.11U_{\rm B}$

 $U_{B-Y} = U_B - U_Y =$ $= 0.89U_B - 0.59U_G - 0.30U_R$

Maximální úroveň signálu R-Y dostáváme pro červený, popř. modrozelený (do-

me pro cerveny, popr. modrozosty, copliková barva) pruh, tedy pro $U_G = U_B = 0$, popř. pro $U_B = 0$. Tedy: $U_G = U_B = 0 \text{ V}, U_R = 1 \text{ V}; U_{R-Y} = 0.7 \text{ V}, U_R = 0 \text{ V}, U_G = U_B = 1 \text{ V}; U_{R-Y} = -0.7 \text{ V}.$ Maximální rozkmit signálu R-Y je tedy ±0,7 V, jeho mezivrcholová velikost je tedy 1,4 V.

Maximální úroveň signálu B-Y dostáváme pro modrý, popř. žlutý (doplňková barva) pruh, tedy pro $U_{G} = \dot{U}_{R} = 0$, popř. pro $U_{\rm B}=0$. Tedy:

$$U_{G} = U_{R} = 0 \text{ V}, U_{B} = 1 \text{ V};$$

 $U_{B-Y} = 0.89 \text{ V},$
 $U_{B} = 0 \text{ V}, U_{G} = U_{R} = 1 \text{ V};$
 $U_{B-Y} = -0.89 \text{ V}.$

Maximální rozkmit signálu B-Y je v tomto případě ±0,89 V, jeho mezivrcholová velikost je tedy 1,78 V.

Tyto úrovně signálů R-Y a B-Y platí pro barevný pruhy se 100% sytostí. Pro signál barevných pruhů se 75% sytostí analogicky platí:

 $U_{R-Y} = 1.4 \times 0.75 = 1.05 \text{ V}$ $U_{B-Y} = 1.78 \times 0.75 = 1.33 \text{ V}.$ Při jmenovité barevné sytosti 75 % odpovídá tedy externím signálům R, G, B se imenovitou mezivrcholovou úrovní 1 V obrazový signál s mezivrcholovou úrovní jasového signálu 1 V a s rozdílovými signály R-Y a B-Y s mezivrcholovými úrovněmi 1,05 a 1,33 V.

Za upínacími obvody jsou v obou kanálech rozdílových signálů R-Y a B-Y zařazeny elektronické potenciometry pro regulaci sytosti (RS), řízené vnějším ss napětím přiváděným na vývod 16 IO. Závislost mezi regulačním napětím a sytostí barvy je prakticky lineární. Jmenovitému nastavení pro jmenovitou sytost odpovídá napětí $U_{16} = 3$ V. Při napětí $U_{16} = 4$ V se sytost zvětší o 6 dB. Při napětí $U_{16} = 2$ V je činitel přenosu elektronických potenciometrů již velmi malý, avšak rozdílové signály barvy budou zcela potlačeny až při napětí U_{16} <1,8 V (>-40 dB). Za potenciometry sytosti následuje matice signálu G-Y, ve které je tento signál vytvářen podle známého vztahu:

(G-Y) = -0.51(R-Y) - 0.19(B-Y).Jasový signál Y, potřebný pro vytváření signálů R, G, B, se přivádí na vývod 15 10 přes odlaďovače barvy a jasové zpožďovací vedení. Vazba na vývod 15 IO je také střídavá přes kondenzátor C15, avšak s ohledem na malý rozkmit signálu Y se vstup IO neklíčuje a vstup jasového zesilovače (ZY) je trvale připojen na vnitřní zdroj předpětí 2,7 V. Obvody pro "upínání" úrovně černé a ke stabilizaci pracovního bodu jsou až ve stupních pro regulaci jasu a v koncových stupních.

Jmenovitá mezivrcholová vstupní úroveň jasového signálu (včetně synchronizačních impulsů) na vývodu 15 IO, odpovídající imenovitým vstupním úrovním rozdílových signálů barvy, je 0,45 V. Vlastní obrazový signál (bez synchronizační směsi) má tedy úroveň 0,7 × 0,45 V, tj. 0,315 V a jasový zesilovač (ZY) uvnitř IO jej zesílí o 10 dB na požadovanou úroveň 1 V.

Jednotlivé signály R, G, B se vytvářejí v maticových obvodech (MR), (MG), (MB), ve kterých se k rozdílovým signálům R-Y, B-Y a G-Y přičítá jasový signál Y. Všechny tyto tři obvody jsou shodné. Aby bylo možno regulací jasu (RJ) a kontrastu (RK) ovlivňovat i externí signály, je před tyto regulační obvody zařazen přepínací stu-

peň (PS), ovládaný napětím na vývodu 11 ÍO. Pokúd je napětí Ú₁₁ ≦ 0,3 V, jsou na následující obvody připojeny signály R, G, B z maticových obvodů (MR), (MG) a (MB). Je-li napětí U₁₁ ≥ 0,9 V (max. 1,5 V), isou maticové obvody odpojeny a na následující regulační stupně jsou přiváděny externí signály R, G, B přes vývody 12, 13 a 14 IO.

Za přepínacími stupni následují obvody pro regulaci kontrastu (RK) a regulaci jasu (RJ). Obvody pro regulaci kontrastu isou tvořeny elektronickými potenciometry, pracujícími na stejném principu jako stupně pro regulaci sytosti (RS). Regulační napětí v rozsahu 2 až 4 V se přivádí na vývod 19 IO. Závislost činitele přenosu těchto stupňů na regulačním napětí je lineární. Regulační napětí pro jmenovitý kontrast (0 dB) je U₁₉ = 3,4 V a při napětí U₁₉ = 4 V je úroveň signálu o 3 dB větší. Vnitřní zapojení stupňů (RK) zajišťuje, že i při regulačních napětích menších než 2 V je stále stejné maximální potlačení signálu (-17 dB). To zabraňuje, aby na-příklad při nesprávně nastaveném jasu nebyl vlivem omezovače katodového proudu obrazovky úplně potlačen kontrast a zcela nevymizel obraz z obrazovky.

V regulačních stupních jasu (RJ) se upíná" úroveň černé všech tří signálů R, G, B na ss úroveň, která je daná nastavením jasu, tj. napětím na vývodu 20 10. Obvod se klíčuje v době zadní části řádkového zatemňovacího impulsu klíčovacími impulsy HKB, přiváděnými z prahového detektoru (PD₁). Vnější kondenzátory C₇. C_e a C_e jsou paměťové pro regulační veličinu v době mimo klíčovací interval. Rozsah regulačního napětí na vývodu 20 IO je 1 až 3 V, přičemž napětí $\hat{U}_{20} = 2$ V odpovídá jmenovitému jasu, při němž úroveň černé signálu souhlasí se závěrným bodem obrazovky (při správném nastavení).

Z regulačních stupňů (RJ) jsou signály G, B přivedeny na klíčovací stupně (SVK), zajišťující obnovu ss složky a zatemnění signálů v době zpětných běhů. K řízení těchto stupňů se používá řádkový zatemňovací impuls HZ a snímkový zatemňovací impuls VZ. Impulsy VZ je signál v době snímkového zatemňovacího impulsu "upnut" na ultra-černou úroveň, ležící o 20 % níže, než je úroveň černé. Toto silné zatemnění se používá proto, aby žádný signál vysílaný v době snímkového zpětného běhu (měřicí signály, TXT apod.) nemohl proniknout na obrazovku.

Řádkový impuls HZ jednak řídí přepínač signálů (PS) tak, že je v době řádkového zatemňovacího impulsu v běžné poloze (tj. jsou připojeny signály z maticových obvodů i při přepnutí na externí signály), jednak ve stupních (SVK) způsobí přepnutí napětí na vnitřní umělou úroveň černé, odpovídající nastavenému napětí U20 jasu. Tato umělá úroveň černé se používá jako referenční pro obnovu ss složky ve výstupních obvodech. Pro zabezpečení správné obnovy ss složky se obvod klíčuje impulsem HZ i v době snímkového zatemňovacího impulsu.

Dále postupují jednotlivé signály do omezovacích stupňů (OS), jejichž úroveň omezení je na úrovni +125 % (směrem k bílé) a na úrovni -25 % (ve směru k ultra-černé) vůči jmenovité úrovni signálů R, G, B. Tímto omezovacím stupněm je zabráněno případnému přebuzení koncových stupňů a omezení (limitaci) výstupního signálu pro katody obrazovky (při optimálním návrhu zisku koncových obrazových zesilovačů).

Za omezovacími stupni následuje v červeném kanálu zesilovač s pevným ziskem, v zeleném a modrém kanálu zesilovače, jejichž zisk lze řídit ss napětím (0 až 12 V), přiváděným na vývody 21 a 22 IO. Změna ss napětí na těchto vývodech umožňuje měnit zesílení v rozmezí ±40 % od střední velikosti, odpovídající regulačnímu napětí 6 V. Změnou zesílení v kanálech G a B vůči R je tedy možno nastavit

správný odstín bílé.

Dále následuje v každém kanálu stupeň pro "upínání" ss složky (SU) a budicí stupeň (BS) koncových obrazových zesilovačů. Budicí stupně jsou tvořeny diferenčními zesilovači, jejichž výstupní napětí se přivádí přes vývody 1, 4 a 26 IO na koncové stupně. Výstupní napětí koncových obrazových zesilovačů se přivádí přes externí děliče zpětné vazby zpět na neinvertující vstupy těchto diferenciálních zesilovačů (vývody 2, 5, 27 lO). Protože v koncových zesilovačích se obrací fáze signálů o 180°, je tímto způso-bem realizována záporná zpětná vazba. Zpětnovazební napětí z koncových obrazových zesilovačů z vývodů 2, 5 a 27 IO se přivádí také na obvody "upínání" (SU). V zadní části řádkového zatemňovacího impulsu se impulsem HKB připojí tyto obvody na zpětnovazební signál, takže se může v tomto okamžiku porovnat ss úroveň signálu v zatemňovací oblasti se ss referenční úrovní Up/2, vytvořenou vnitřním děličem z napájecího napětí Up. Pokud jsou tato napětí různá, potom regulační obvody korekčními proudy nabíjejí paměťové kondenzátory na vývodech 3, 28 a 25 IO. Tím vznikají na kondenzátorech korekční napětí, která se superponují na jednotlivé signály RGB a zpětně působí přes koncové obrazové zesilovače a zpětnou vazbu na řídicí obvody tak, že se tyto odchylky zmenšují. Zisk zpětnovazební smyčky v době klíčování je podstatně větší než v době činného běhu a to díky zesílení řídicího stupně. Obvody pro obnovu ss složky (SU) tak udržují výstupní napětí koncových obrazových zesilovačů v době klíčování na úrovni, která po vydělení činitelem zpětné vazby dává právě referenční napětí Up/2. Obvody obnovy ss složky tedy upínají signály RGB v době řádkového zatemňovacího impulsu na úroveň odpovídající referenci, která je pevně stanovena uvnitř IO. Aby byla základní ss úroveň signálů RGB správná i mimo dobu upínání, je nutno zajistit, aby byla dostatečně konstantní úroveň černé

těchto signálů již na vstupu upínacího stupně (SU). To je zajištěno klíčovacími obvody (SVK), které upínají signály v době řádkového zatemňovacího impulsu HZ na interně danou umělou úroveň černé.

Součástí integrovaného obvodu TDA3501 je i obvod pro omezení špičkového (okamžitého) katodového proudu obrazovky. Tento obvod vhodně doplňuje funkci omezovače středního katodového proudu, aby nebyl nadměrně přejasněn obraz tehdy, má-li na stínítku charakter malé svítící plochy na tmavém pozadí (např. bílé mříže ná černém pozadí, text na tmavém pozadí apod.). V tomto případě je totiž střední katodový proud obrazovky malý, takže se neaktivuje omezovač středního katodového proudu. Regulační veličinou pro špičkový omezovač není střední katodový proud, ale jeho okamžitá hodnota. Nejčastěji se informace o okamžitém katodovém proudu získává buď jako napětí na rezistoru zapojeném mezi akvadak obrazovky a zem (na rezistoru je napětí úměrné proudu nabíjejícímu a vybíjejícímu kondenzátor akvadak-anoda). nebo v jednodušším případě se regulační veličina odvozuje z rozkmitu signálů R, G, B na katodách. Práh nasazení špičkového omezení se nastavuje přibližně $3\times$ až $5\times$ větší než práh nasazení omezovače středního katodového proudu.

Vlastní špičkový omezovač je tvořen prahovým detektorem (PD2) s prahovou úrovní 5,7 V a spínačem S₄. Vstup prahového detektoru je připojen na vnitřní zdroj předpětí 6 V. Regulační napětí úměrné špičkovému katodovému proudu – napětí zmenšující se s proudem je přivedeno přes vývod 23 IO na vstup prahového detektoru. Pokud se toto napětí při zvětšujícím se proudu zmenší na velikost menší než 5,7 V, sepne prahový detektor (PD2) spínač S₄. Tím je připojen (přes S₃ ovládaný PD1) zdroj proudu 20 mA na přívod regulačního napětí kontrastu. Tímto proudem je zatížen odporový dělič vytvářející regulační napětí U 19 kontrastu, napětí se zmenší a tím se zmenší i kontrast. Přes vnitřní diodu zapojenou mezi vývody 20 a 19 IO je se zpožděním, daným úbytkem na diodě, případně omezován

Koncové stupně obrazových zesilovačů pro buzení katod obrazovky jsou vně integrovaného obvodu a tvoří je zesilovače třídy AB osazené komplementárními tranzistory. Základní schéma zapojení koncového stupně je na obr. 69.

Základní princip činnosti koncových stupňů je obdobný jako u přijímačů řady Color 110. Tranzistor T₁ je buzen přímo z integrovaného obvodu, avšak tranzistor T₂ je buzen přes vazební kondenzátor C_K s poměrně malou kapacitou (4,7 nF). Tranzistor T₂ je tedy buzen přes horní propust tvořenou C_K a paralelním spoje-

ním R $_{11}$, R $_{12}$ a vstupního odporu tranzistoru T $_2$ (jeho velikost je nejmenší a tedy dominantní). Při kmitočtech dostatečně nižších než je mezní kmitočet horní propusti (prakticky $1/2\pi C_k R_{vstr2} \approx 1$ MHz) pracuje tedy toto zapojení jako zesilovač ve třídě A, přičemž tranzistor T $_2$ tvoří kolektorovou zátěž T $_1$ o odporu $R_L = U_{EC}/I_C$.

Klidový proud tranzistoru T_2 musí být nastaven tak, aby výstupní signál byl dostatečně velký a kladný i v době, když není tranzistor T_2 buzen a pracuje pouze vlastně jako zdroj proudu. Malý klidový proud $I_{\rm C2}$ (a tedy velký $R_{\rm L}$) by způsobil omezení amplitudy kladných půlvln výstupního signálu spádem na $R_{\rm L}$. Proud $I_{\rm C2}$ (asi 5 mA) je nastaven děličem $R_{\rm 11}/R_{\rm 12}$ a rezistorem $R_{\rm 5}$. Pokud je $T_{\rm 1}$ vybuzen tak, že je jeho kolektorový proud shodný s $I_{\rm C2}$, je na výstupu obrazového zesilovače (bez uvažování vlivu $R_{\rm 5}$ a $D_{\rm 1}$) napětí rovné polovině napájecího napětí $U_{\rm p1}$ (165 V).

Při kmitočtech vyšších než je mezní kmitočet horní propusti na vstupu tranzistoru T_2 pracuje koncový stupeň opět v protitaktním režimu, takže se zatěžovací kapacita C_z obrazovky může dostatečně rychle nabít přes tranzistor T_2 a vybít přes tranzistor T_1 .

Záporná zpětná vazba je zavedena z výstupu koncového zesilovače přes dělič R₂/R₃, R₄, R₆, P₁. Odpor R₄ je ve skutečném zapojení tvořen rezistory v obvodech omezovače špičkového katodového proudu obrazovky. Stejnosměrné poměry ve zpětné vazbě a tím i ss pracovní bod koncového zesilovače určuje přes rezis-tor R₆ trimr P₁. Paralelně k Ř₂ o poměrně velkém odporu (56 kΩ) leží vždy určitá rozptylová kapacita obvodů C_s, což vede ke kmitočtové závislosti zpětnovazebního děliče. Tuto parazitní kapacitu je možno kompenzovat kondenzátorem C1, a dosáhnout tak prakticky kmitočtově nezávislého dělicího poměru a vyrovnat přenosovou charakteristiku obrazového zesilovače při vyšších kmitočtech.

Emitorový rezistor R_5 tranzistoru T_2 , sloužící ke stabilizaci pracovního bodu tohoto tranzistoru, je přemostěn kondenzátorem C_4 , aby se pro střídavý signál vyloučila na R_5 vznikající záporná zpětná vazba.

Rezistory R₉ a R₁₀ v kolektorech tranzistorů T₁ a T₂ chrání jednak tranzistory při náhodných zkratech a výbojích v obrazovce, omezují vyzařování nad užitečným pásmem a jednak současně zmenšují výkonové zatížení tranzistorů při vyšších kmitočtech.

Pracovní bod budicího stupně uvnitř IO $(U_{26}, U_1, U_4 = \min. U_p/2)$ je nastaven zdrojem ss napětí (D_1) , o který je "opřen" emitor tranzistoru T_1 . Konkrétní schéma zapojení modulu G je na obr. 70.

Obr. 69. Základní zapojení koncového stupně obrazového zesilovače ve třídě AB s komplementárními tranzistory

Na vývod 4 modulu je přiváděn z modulu P videosignál s mezivrcholovou úrovní 2,5 V. Po odladění signálů barvonosných kmitočtů odlaďovači barev (C₁L₁, C₂L₂C₃) je vlastní jasový signál přiveden přes odporový dělič R₉/R₁₇ na vstup jasového zpožďovacího vedení. Tento dělič upravuje amplitudu signálu na požadovanou úroveň (0,45 V na vstupu IO1); využívá se ke kompenzaci kmitočtového pásma přenášeného zpožďovací linkou (C13) a současně přizpůsobuje impedančně vstup zpožďovací linky k předcházejícím obvodům. Z výstupu zpožďovací linky, impedančně přizpůsobeného rezistorem R₁₃, je jasový signál přiveden přes L21 a C8 na vývod 15 10.

Rozdílové signály barvy – (R-Y) a – (B-Y) jsou z výstupů modulu P přivedeny na vývody 5 a 6 modulu a odtud přes vazební kondenzátory C_{10} a C_{9} na příslušné vstupy IO_{1} (vývody 17, 18). Regulační napětí pro řízení barevné sytosti je vytvářeno děličem P_{103} , $R_{106}+R_{6}$, R_{7} , R_{8} . Regulační napětí je filtrováno kondenzátorem C_{4} . Stejným způsobem jsou vytvořena i regulační napětí pro řízení jasu a kontrastu.

Zapojení obvodů IO_1 a koncových obrazových zesilovačů bylo popsáno při výkladu funkce obvodů.

Na přívody regulačního napětí jasu kontrastu (vývody 19 a 20 IO1) je přes diody D₁ a D₂ připojen obvod pro omezení středního katodového proudu obrazovky. Při použitém způsobu zapojení násobiče vn protéká katodový proud obrazovky ze zdroje +12 V, přes R₁₆ a vývod 2 modulu G do násobiče vn (vývod D). S rostoucím proudem Ik obrazovky se tedy zvětšuje spád napětí na R₁₆ a napětí na vývodu 2 modulu G se zmenšuje. Při běžných proudech /k je ss napětí na vývodu 2 modulu G větší, než na emitoru tranzistoru T1. Tranzistor je tedy uzavřen. Při nadměrném zvětšení katodového proudu I_k se napětí na vývodu 2 modulu zmenší tak, že se začne tranzistor úbytkem napětí na R₁₀ otevírat a přes R₁₈, R₁₉ a D₁ a D₂ se regulační napětí kontrastu a jasu zmenší. Protože regulační napětí kontrastu (U 19) bývá větší než regulační napětí jasu (U20), otevře se nejdříve dioda D1 a přednostně se zmenšuje kontrast. Rezistory R₁₈ a R₁₉ upravují regulační charakteristiku tak, aby změny jasu byly méně výrazné (pro zachování správného podání obrazu je nutno omezovat katodový proud především zmenšením kontrastu, tedy úrovně bílé a nikoli posuvem úrovně šedé k černé zmenšováním jasu - to samozřejmě platí při správně nastaveném jasu). Vnitřní dioda mezi vývody 20 a 19 IO₁ (viz obr. 68) znemožňuje nastavit U20 větší o více než 0,7 V než napětí U19 (to by bylo možné prakticky pouze při nesprávně nastavených ovládacích prvcích - nadměrný jas, příliš malý kontrast). To zabezpečuje, že se při nesprávně nastaveném nebo automatikou příliš zmenšeném kontrastu bude příliš velký jas zmenšovat přes tuto diodu, takže kontrast se zmenší méně.

Pro zajištění potřebné stability a "opticky" správné funkce omezovače je nutné, aby pokles regulačního napětí kontrastu případně jasu byl okamžitý, avšak naopak s dlouhou dobou návratu. To je zajištěno kondenzátory C₅ a C₁, malými odpory vybíjecích rezistorů v obvodu diod D₁ a D₂ a velkou impedancí děličů vytvářejících napětí (tj. velkou impedancí zdrojů nabíjejících kondenzátory C₅ a C₁).

Obvody pro omezení špičkového katodového proudu obrazovky jsou řešeny s tranzistory T₂ až T₄. Jako informace o okamžitém katodovém proudu obrazovky slouží zpětnovazební napětí z koncových stupňů obrazových zesilovačů.

V tomto případě však není sledován celkový katodový proud, ale proud každé katody zvlášť (přesněji rozkmit napětí na katodě, jemuž je okamžitý proud úměrný). V tomto zapojení tedy okamžik omezení celkového proudu odpovídá proudu té katody, která v daném okamžiku dodává největší část celkového proudu obrazovky. Na regulaci se vždy podílí pouze jeden z tranzistorů T₂ až T₄, zbývající dva jsou s ohledem na společný emitorový rezistor R₂₆ uzavřeny.

S rostoucím rozkmitem signálu na katodách obrazovky se okamžité napětí na zpětnovazebních vstupech IO1 (vývody 2, 5, 27) zmenšuje. Při dosažení určitého rozkmitu signálu na jedné z katod obrazovky se toto napětí zmenší na odpovídajícím vstupu natolik, že se otevře příslušný z tranzistorů T2 až T4. Jak již bylo řečeno, je k vývodu 23 IO, připojen interní zdroj napětí 6 V a prahový detektor s prahovým napětím 5,7 V. V klidovém stavu, kdy jsou tranzistory T2 až T4 uzavřeny, je na jejich emitorech napětí přibližně 6,5 V, což je dáno děličem R₂₆/R₂₀ a diodou D₃. Obvod začne omezovat, je-li na bázi jednoho z tranzistorů (a tedy i na vývodu 23 IO1) napětí 5,7 V a menší.

Ve schématu na obr. 70 jsou čárkovaně vyznačeny obvody, umožňující připojit externí signály R, G, B (samozřejmě při současném přivádění synchronizačního signálu např. prostřednictvím videovstupu). Tyto součástky nejsou ve výrobním závodě osazovány, je však možno kdykoli jimi desku s plošnými spoji osadit.

Nastavení modulu

Modul se nastavuje při použití signálu barevných pruhů 75 %, pokud není uvedeno iinak.

1. Nastavení odlaďovačů barvy

Na vstup přijímače (vf nebo videovstup) přivést signál barevných pruhů Secam, sondu osciloskopu připojit na měřicí bod MB1 (vývod 15 IO₁). Jádry cívek L₁ a L₂ nastavit minimum barvonosného signálu v měřicím bodě MB1.

2. Nastavení odstínu šedé

Na vstup přijímače přivést signál barevných pruhů nebo monoskopu. Zkratovať vývody 1 a 3 modulu (vypnout barvy). Potenciometr kontrastu nastavit na minimum, potenciometrem jasu nastavit úroveň černé tak, aby byla dobře pozorovatelná celá gradační stupnice. Odporovými trimry P₄₁, P₆₁ a P₈₁ nastavit v měřicích bodech MB2, MB3 a MB4 zatemňovací úroveň signálu na 130 V. Podle potřeby znovu upravit jas, aby byla dobře viditelná celá stupnice šedé. Stejnými trimry nyní nastavit neutrální šedou (nebarevnou) nastavovat tak, že se více rozsvítí chybějící barva (nezhasínat převládaiící barvu).

Nastavení úrovně signálů R, G, B

 a) Odporovým trimrem P₅ na základní desce nastavit předběžně napětí U_{g²} obrazovky na 400 V.

b) Zkratovat vývody 1 a 3 modulu G (tj. vypnout barvy).

c) Sondu osciloskopu připojit na MB4 (vývod R). Regulátorem jasu nastavit úroveň černé signálu co nejblíže zatemňovací úrovni, potenciometrem kontrastu nastavit maximální kontrast avšak tak, aby nedocházelo k případnému omezování vlivem nasazení omezovače I_k (o tom se lze přesvědčit na osciloskopu – při jemném zvětšení jasu se nesmí zmenšovat rozkmit signálu).

d) Odporovými trimry P₂ a P₁ nastavit na MB3 (vývod G) a MB2 (vývod B) stejný rozkmit signálu jako na MB4. Pokud byl trimry P₂ a P₁ zvětšován rozkmit signálů, kontrolovat, nenasazuje-li omezovač I_k a případně zmenšit kontrast.

e) Odpojit zkrat mezi vývody 1 a 3 modulu G.

4. Nastavení omezení středního katodového proudu obrazovky

Na přijímači nastavit správný obraz barevného monoskopu. Potom nastavit regulátory jasu a kontrastu na maximum. Trimrem P_5 na základní desce (nastavení U_{92}) nastavit katodový proud obrazovky na 700 \pm 50 μ A. Není-li k dispozici vhodný měřicí přístroj, nastavit P_5 tak, aby součet úbytků napětí na R_{201} až R_{203} (sériové rezistory v přívodech na jednotlivé katody na desce obrazovky) byl 0,75 V.

byl 0,75 v.

Kontrola a nastavení odstínu bílé
Na přijímači nastavit obraz barevného
monoskopu. Regulátory jasu a kontrastu nastavit na maximum, regulátor
sytosti na minimum (případně vypnout
barvy zkratování vývodů 1 a 3 modulu
G). Za současného zmenšování kontrastu pozorovat bílá místa obrazu,
která nesmí měnit odstín. Při změně
odstínu upravit nastavení P1 a P2. Po
nastavení bílé zkontrolovat nastavení
omezovače středního katodového
proudu a případně upravit jako v před-

Závady modulu

V následujících příkladech možných závad je předpokládáno, že vstupní signály a napájecí napětí modulu jsou v pořádku. 1. Chybějící jasový signál ve všech kanálech:

- přerušená signálová cesta od vstupu modulu (vývod 4) přes odlaďovač barev, jasovou zpožďovací linku, L₂₁ a C₈ nebo vadný IO₁.
- Chybějící jasový signál v některém z kanálů:

vadný IO₁.

cházejícím bodu.

3. Malý černobílý kontrast:

závada v regulačním napětí kontrastu, zkontrolovat rozsah regulačního napětí na vývodu 19 IO₁ a případně prvky příslušného děliče,

 závada v obvodech omezovače středního I_k, zkontrolovat napětí na vývodu 2 modulu G, R₁₆, R₁₀, T₁.

4. Závady v regulaci jasu, kontrastu nebo sytosti:

 zkontrolovat rozsahy regulačních napětí na vývodech 16, 19 a 20 obvodu IO₁, případně příslušné děliče napětí.

 Všechny katody svítí naplno:

 zkrat D₄₁ nebo C₄₁ (pokud je v pořádku napětí +165 V).

 6. Některá z katod svítí naplno:

- zkrat tranzistoru T₄₁, T₆₁, T₈₁, C₇, C₈, C₉, C₂₅, C₃, C₂₈.
- 7. Obrazovka nesvítí vůbec:

chybějící anodové napětí,

přerušený žhavicí okruh obrazovky,
 na modul G není přiváděn signál SCI,

– závada v obvodech omezovače špičkového $I_{\rm k}$, zkontrolovat napětí na vývodu $23\,$ IO₁, dále D₃, R₂₆ (přerušeno), R₂₀ (zkrat), T₂ až T₄ (zkrat), R₂₇, R₂₉, R₃₂ (přerušený),

přerušený R₄₅, R₆₅, R₈₅ nebo zkrat R₄₃,
 R₆₃, R₈₃ (aktivuje se omezovač špičko-

vého/_k).

8. Nesvítí některá z katod:

přerušený R₄₂, R₆₂, R₈₂, C₂₅, C₃, C₂₈,

přerušený T₄₁, T₆₁, T₈₁,

přerušený nebo zkratovaný T₄₂, T₆₂,
 T₈₂.

9. Viditelné zpětné běhy v obraze:

- v signálu SCI chybí vertikální zatemňovací impuls (VZ).
- Výrazně potlačený přenos signálů horních kmitočtů, integrované náběžné hrany signálu:

- přerušený C₄₃, C₆₃, C₈₃.

- 11. Od začátku řádku se postupně zvětšuje jas některé z katod:
 - přerušený C₉, C₈, C₇.

Modul N, 6PN 053 78, 8PN 051 009

Tento modul doplňuje signálové obvody přijímačů Mánes Color (8PN 051 009) a Color Oravan (6PN 053 78). Umožňuje výstup přijímaného televizního signálu ve formě úplného videosignálu a naopak připojení videosignálu z externího zdroje. V obou případech je jmenovitá mezivrcholová úroveň signálu 1 V/75 Ω. Schéma zapojení modulu N včetně propojení s ostatními obvody přijímače je na obr. 71.

i Před vlastním popisem funkce obvodů modulu N si připomeňme, že z modulu obrazové mezifrekvence (O) je demodulovaný videosignál odebírán celkem třemi způsoby. Jednak to je kladný videosignál vyvedený na vývod 4 modulu O, odebíraný ještě před odlaďovačem zvukového mezifrekvenčního kmitočtu 6,5 MHz. Potom to je kladný videosignál s odladěným mezifrekvenčním kmitočtem vyvedený na vývod 1 modulu O a záporný videosignál vyvedený na vývod 2 modulu.

Pokud je přijímán vf televizní signál přes anténní vstup, pracují obvody následujícím způsobem. Kladný videosignál z vývodu 4 modulu O přiváděný přes C₆ na vstup modulu Z je současně přiveden na vývod 2 modulu N. Odtud je přes rezistor R₁ přiveden na bázi T₁, zapojeného jako emitorový sledovač. Přes R₃, upravující

Obr. 71. Schéma zapojení modulu N, 6PN 053 78. 8PN 051 009

výstupní impedanci emitorového sledovače na imenovitou výstupní impedanci. oddělovací kondenzátor C1 a vývod 7 modulu N je výstupní videosignál přiveden na vývod 2 videokonektoru. Na vývodu 4 modulu O má videosignál jmenovitou mezivrcholovou velikost 2,6 V. Průchodem přes emitorový sledovač se jeho úroveň zmenší asi na 2,3 V. Po zatížení výstupu jmenovitou impedancí 75 Ω se výstupní napětí zmenší na polovinu, čímž dostáváme požadovanou úroveň výstupního signálu. Obvod s tranzistorem T2 na modulu N a tranzistory T3 a T6 na základní desce se v tomto případě neuplatňují.

Má-li televizní přijímač zpracovávat vstupní signál ve formě videosignálu, je nutno přivést na vývod 1 konektoru "video" napájecí napětí +12 V. To může být zajištěno buď automaticky (např. přepínacím napětím z videorekordéru při funkci přehrávání), nebo ručně při zasunutí konektoru propojovacího kabelu, na kterém musí být z tohoto důvodu propojeny vývody 1 a 5. Kladné napájecí napětí ná vývodu 1 konektoru jednak sepne tranzistor T₆ a pres diody D₅ a D₆ prepne moduly Z a O do provozu "VCR", jednak zajišťuje napájení vstupního obvodu modulu N s tranzistorem T₂. Při přepnutí modulu O na provoz "VCR" se vlivem ss vazby uzavře tranzistor T₁-N a T₂-O. Funkci tranzistoru T₂ v modulu O nyní přebírá tranzistor T₃, jenž je stejnosměrně vázán na kolektor tranzistoru T2-N, zapojeného jako zesilovač se společnou bází.

Videosignál, přiváděný z externího zdroje opět na vývod2 konektoru "video" je přiveden přes vývod 7 modulu N na vstup zesilovače s tranzistorem T₂-N. Rozdělením emitorového odporu na rezistory R₄ a R₅ je dosaženo požadované vstupní impedance 75 Ω. Zesílený signál je z kolektoru T2-N přiveden přes vývod 6 modulu N na bázi tranzistoru T3 nahrazujícího nyní tranzistor T2-O. Z emitoru tranzistoru T₃ je tedy přiváděn kladný videosignál s úrovní asi 2,5 V přes rezistor R₁₇ k dalším signálovým obvodům (vývod 15 modulu P) a z jeho kolektoru je invertovaný videosignál přiváděn na synchronizační obvody, tedy další zpracování signálu je stejné jako při příjmu vf signálu.

Ke způsobu přepínání TVP na provoz video (VCR) ještě následující poznámku. Pokud je televizní přijímač používán ve spojení s videorekordérem, je problém v tom, že ne všechny typy přístrojů dodávají přepínací napětí a pokud ano, tak velmi často např. jen 8 V. Při tomto napájecím napětí modulu N však již hrozí nebezpečí limitace signálu. Pokud videorekordér přepínací napětí nedodává vůbec, nebo je používán jiný zdroj videosignálu (např. počítač, videohry apod.), je nutno propojit vývody 1 a 5 konektoru na propojovacím kabelu. V tomto případě je obsluha přijímače dost problematická, neboť kdykoli chceme přejít z provozu video na běžný provoz a naopak, je nutno vyjmout nebo zasunout konektor, který nemusí být vždy dobře přístupný, což platí zejména o přijímači Color Oravan, u něhož je konektor umístěn na zadní stěně přijímače. Z důvodu této obtížné manipulace nabízím případným zájemcům následující úpravu zapojení.

K přepínání druhů provozu je možno využít funkce spínače "VCR", který je součástí použité jednotky předvolby LPA 8 (viz obr. 15). Na výstupu tohoto spínače se při zvolení 8 předvolby objeví napětí +12 V, které je využíváno pro přepnutí časové konstanty synchronizačních obvodů při zpracovávání signálu z videorekordéru (TVCR). Tuto funkci lze vhodně spojit s provozem pro zpracování videosignálu. Lze toho dosáhnout tím, že na vývod 5 konektoru "video" přivedeme toto napětí místo stálého napájecího napětí +12 V (C) a na propojovacím kabelu zkratujeme vývody 1 a 5 konektoru. Zkratování vývodů konektoru na přívodním kabelu je použito proto, aby byla zachována i původní funkce 8. předvolby, tj. přepnutí časové konstanty synchronizace při připojení videorekordéru "vf cestou". V tom případě je videorekordér připojen souosým kabelem do anténního vstupu televizního přijímače, není tedy použit propojovací kabel video a obvody se do provozu "video" nepřepínají.

Po této úpravě lze zapnout vstup video pouhým stisknutím tlačítka 8 předvolby bez obtížné manipulace s konektorem

Modul N nemá žádné nastavovací prvky a s ohledem na jednoduchost zapojení není ani nutné popisovat identifikaci a odstranění případných závad, které budou, vzhledem k jednoduchosti zapojení, patrně ojedinělé.

Modul G, 6PN 053 27

Modul je použit u barevných televizních přijímačů řady Color 416. Pro zpracování videosignálů je v něm použit integrovaný obvod TDA3505 ve spojení s koncovými obrazovými zesilovači ve třídě AB.

Integrovaný obvod TDA3505 je vývojovým následovníkem obvodu TDÁ3501, z něhož je převzata i značná část vnitřních obvodů. Od svého předcházejícího typu se obvod TDA3505 liší především v následujících bodech:

- ss úroveň vstupního signálu na vstupu IO je zaklíčována nejen v rozdílových kanálech barvy, ale i v jasovém kanálu. Díky větší vstupní impedanci jasového kanálu je možno použít vazební kondenzátor s menší kapacitou;
- novým způsobem isou řešeny stupně pro připojování externích signálů R. G. B. Při krátkodobém přepnutí na externí vstupy (např. zobrazení údaje času, čísla předvolby apod.) jsou externí vstupní signály "upnuty" na úroveň černé interních signálů, takže při přepínání nedochází k jasovému skoku. Při trvalém přepnutí na externí vstupy jsou vstupní signály "upnuty" na interní umělou úroveň černé, takže nesynchronní signály, případně signály se šumem přicházející v tuto dobu z obrazové mezifrekvence se neuplatní;
- výstupní stupně signálů R, G, B jsou tvořeny emitorovým sledovačem se zdrojem proudu v emitorovém obvodu. Protože napěťový zisk těchto stupňů je 1, není nutné, aby byly součástí záporné zpětné vazby koncových obrazových zesilovačů:
- součástí obvodu TDA3505 jsou obvody pro automatické nastavení závěrných bodů katod obrazovky, takže odpadá nutnost ručně je nastavovat a je současně kompenzován vliv svodového proudu a stárnutí obvodů či obrazovky. schéma zapojení obvodu TDA3505 je na obr. 72.

Patrně největším přínosem tohoto typu integrovaného obvodu je použití automatiky pro nastavení závěrného bodu katod obrazovky. Je známo, že základní podmínkou pro správné zobrazení barevného signálu je bezchybné zobrazení stupnice šedé při vypnutém kanálu barvy. Z tohoto důvodu je nutné, aby byly charakteristiky všech tří systémů barevné obrazovky shodné. To je v běžném případě nesplnitelné, a proto je nutné nastavením příslušných obvodů dosáhnout "nakrytí" těchto

charakteristik na sebe. Obvody se nastaví ve dvou bodech. Jednak v oblasti malých katodových proudů, kdy je stínítko obrazovky prakticky tmavé (oblast nastavení závěrných bodů katod - celkový posuv výsledné charakteristiky ve směru proudu), jednak v oblasti veľkých proudů (oblast nastavení bílé - změna sklonu výsledné charakteristiky). Nastavení obvodů v těchto dvou bodech musí zajistit, aby obrazovka svítila "nebarevně". Nastavení se však mění se stárnutím obvodů, obrazovky, ale i s teplotou, např. po zapnutí přijímače. Nejvíce jsou tyto změny patrné při proudech v blízkosti závěrných bodů.

Problém nastavení a stability v oblasti závěrných bodů katod obrazovky řeší obvody automatického nastavení použité popisovaném integrovaném obvodu. Měření a nastavení probíhá periodicky, převážně v zatemněné části snímkového zpětného běhu tak, že je postupně měřena okamžitá hodnota katodového proudu každého systému při určité úrovní měřicího signálu a je srovnávána s interní referenční úrovní odpovídající požadovanému proudu. Z rozdílu mezi okamžitou a referenční úrovní je odvozena regulační veličina, která se přičítá k vlastnímu signálnímu napětí a tak koriguje přes stupně obrazových zesilovačů katodový proud na požadovanou velikost. Regulační veličina je po dobu činného běhu půlsnímku, kdy není uzavřena regulační smyčka, uchována v paměťovém kondenzátoru (C28, C2, C4 na obr. 72), takže potřebné posunutí úrovní (jde o ss posunutí) na jednotlivých katodách zůstává stejné v době činného běhu půlsnímku.

Tento způsob automatického nastavení závěrných bodů (cut-off) má následující výhody:

 odpadá nutnost ručně nastavovat závěrné body a tím i příslušné nastavovací

- automaticky probíhá korekce nastavení s ohledem na stárnutí součástek a obrazovky.
- automaticky je kompenzována teplotní závislost nastavení, což je důležité zejména v počáteční době po zapnutí přijímače.

Princip činnosti těchto automatických regulačních obvodů je na obr. 73.

Koncový obrazový zesilovač (Z2) řízen výstupním stupněm (Z1) uvnitř IO. Ke snímání katodového proudu slouží měřicí tranzistor T_M. Díky velkému proudovému zesílení tranzistoru je jeho kolektorový proud prakticky identický s katodovým proudem. Napětí U_M vznikající na měřicím odporu R_M je přiváděno přes oddělovací stupeň (Z3) s jednotkovým ziskem a v sérii zapojený zdroj referenčního napětí Uref na invertující vstup diferenčního zesilovače (Z4), na jehož neinvertující vstup je přiváděno napětí Us odpovídající svodovému proudu (o jeho měření viz dále). Referenční napětí U ref má opačnou polaritu než napětí U_M, takže na vstupu diferenčního zesilovače je napětí $U_{1d} = U_S - (U_M - U_{ref})$ Na výstupu zesilovače Z4 je zapojen spí-

nač Sz, který je periodicky spínán v každém půlsnímku po dobu jednoho řádku, ve kterém probíhá měření (měřicí řádky pro jednotlivé katody jsou umístěny částečně uvnitř a částečně za snímkovým zatemňovacím impulsem - 22., 23. a 24. řádek od začátku snímkového zatemňovacího impulsu). Regulační napětí na výstupu Z4 nabije kondenzátor Cz (C28, C2, C₄ na obr. 72) a je v něm uschováno po dobu jednoho půlsnímku, než proběhne nové měření katodového proudu. V součtovém členu (+) se toto regulační napětí přičítá k signálnímu napětí příslušné katody, čímž se koriguje velikost katodového závěrného proudu. Regulační smyčka

Obr. 72. Blokové schéma zapojení IO TDA3505 (MDA3505)

působí tak, že chybové napětí $U_{\rm id}$ se blíží k nule. Potom prakticky platí, že:

 $U_{\mathsf{M}} = I_{\mathsf{M}} R_{\mathsf{M}} = \dot{U}_{\mathsf{ref}} + U_{\mathsf{S}}$ Během měřicího řádku je nutno zabezpečit, aby signál příslušného barevného kanálu přiváděný na druhý vstup součtového členu měl přesně požadovanou úroveň černé, která je vždy regulačními obvody posunuta na úroveň odpovídající přesně definovanému bodu v oblasti závěrné charakteristiky. To zabezpečuje klíčovací obvod před součtovým členem, který jednak zajišťuje zaklíčování signálu v požadovaném okamžiku na úroveň ultra-černé (a tím i vyklíčování veškerých rušivých signálů z měřicího řádku) a jednak poté vklíčuje do měřicího řádku měřicí impuls. který přesně definuje úroveň umělé černé. Měřicí impuls pro červený kanál je umístěn ve 22. řádku, pro zelený kanál ve 23. a ve 24. řádku je umístěn měřicí impuls modrého kanálu.

l při uzavřené katodě obrazovky může protékat emitorem tranzistoru T_M nějaký, často časově proměnný, svodový proud I_S . Tento proud potom protéká i kolektorovým obvodem a měřicím odporem. Celkový měřicí proud pak je:

 $I_{\rm M}=I_{\rm k}+I_{\rm S}$ (3). Velikost svodového proudu se zjišťuje ještě jedním měřením (ve 21. řádku). V tuto dobu je signál pouze zaklíčován na úroveň ultra-černé a neobsahuje měřicí impuls. Při tomto měření je tedy nutno vyloučit vliv referenčního zdroje $U_{\rm ref}$, což zabezpečuje spínač $S_{\rm S}$, který je v tuto dobu sepnut. Na měřicím odporu $R_{\rm M}$ je napětí:

 $U_{\rm S}=I_{\rm S}R_{\rm M}$ (4). Regulační smyčka vyhodnocuje tedy pouze svodový proud $I_{\rm S}$ a jemu odpovídající napětí $U_{\rm S}$ je uloženo v paměťovém kondenzátoru $C_{\rm S}$ ($C_{\rm 27}$ na obr. 72). Napětí $U_{\rm S}$ se pak uplatňuje při regulaci závěrných bodů jednotlivých katod (jak bylo uvedeno). Ze vztahů (2), (3) a (4) dostáváme pro velikost závěrného katodového proudu při respektování svodového proudu následující vztah:

Obr. 73. Základní schéma zapojení obvodu regulace závěrného bodu s kompenzací vlivu svodového proudu

$$I_{KZ} = I_M - I_S =$$

= $(U_{ref} + U_S)/R_M - (U_S/R_M) = U_{ref}/R_M$ (5).

Ze vztahu (5) vyplývá, že nastavená velikost závěrného katodového proudu závisí pouze na napětí $U_{\rm ref}$ a na vnějším měřicím odporu $R_{\rm M}$.

V ideálním případě by měla regulační smyčka nastavit katodové napětí tak, aby byl proud $I_{KZ} = 0$. To však nelze v praxi realizovat, neboť nulový proud katody není jednoznačně spjat s určitým katodovým napětím a analogový regulační obvod má konečné zesílení, takže určitá odchylka chybového napětí vyvolá pouze konečnou změnu regulačního napětí a katodového proudu. S ohledem na tuto skutečnost je nutno nastavovaný proud /_{kz} volit poněkud větší. Použití proudu, při kterém není obrazovka zcela zhasnutá, není na závadu, neboť měření probíhá v oblasti, která není na obrazovce viditelná a úroveň zatemnění signálu v potřebné oblasti (mimo dobu měření) je určena amplitudou vklíčovaného měřicího impulsu. Proud /_{KZ} je však nutno volit pokud možno co nejblíže závěrnému proudu, aby se příliš neuplatňovaly rozdíly v zakřivení charakteristik katod v blízkosti závěrného bodu a rozdíly v účinnosti luminoforů. Z těchto důvodů se obvod nastavuje při proudu /κz asi 10 μA.

Díky rozdílné účinnosti luminiforů je poměr jednotlivých katodových proudů pro bílou barvu rozdílný od jedničky. Jak již bylo řečeno, obvody pro nastavení závěrného bodu katod jsou katodová napětí obrazovky nastavena tak, že všemi katodami protéká stejně velký, nepatrný proud. Aby byl obraz i při malých katodových proudech (při malém jasu) skutečně nebarevný, nesmí být tyto tři proudy v blízkosti závěrného bodu stejné, ale musí respektovat rozdílnou účinnost jednotlivých luminiforů. Rozdílného proudu v jednotlivých katodách lze s ohledem na tuto skutečnost dosáhnout rozdělením měřicího odporu R_M na jednotlivé rezistory zvlášť pro každou katodu. Rozdělení katodových proudů umožňuje pomocí děličů napětí vytvořit rozdílnou závislost měřicího napětí U_M na jednotlivých katodových proudech. Toto modifikované zapojení měřicího obvodu je na obr. 74.

Pro dosažení stejného napětí $U_{\rm M}$ (s ohledem na předcházející výklad) musí mít každý dělič $R_{\rm D1}/R_{\rm D2}$. vytvářející jednotlivý měřicí odpor, celkový odpor $3R_{\rm M}$. Pro napětí $U_{\rm M}$, odpovídající příslušnému katodovému proudu, platí:

$$U_{M} = R_{D1} I_{k} / 3 = \alpha R_{M} I_{k}$$
(6),

$$\alpha = R_{D1} / (R_{D1} + R_{D2}) = R_{D1} / 3R_{M} \stackrel{\text{def}}{=} 1$$
(7).

Při uzavřené regulační smyčce opět platí, že $U_{\rm M}=U_{\rm ref}$. Ze vztahu (6) dostáváme pro nastavenou velikost katodového proudu vztah:

$$I_{KZ} = U_{ref}/\alpha R_{M}$$
 (8).

Změnou dělicího poměru α lze tedy nastavit úroveň závěrného proudu pro každou katodu zvlášť a tím dosáhnout vyrovnání "bílé" i při malých katodových proudech. Protože dělicí poměr $\alpha \leqq 1$, lze tímto způsobem proud /_{kz} pouze zvětšovat. Při praktické realizaci lze na místě děličů $R_{\rm D1}/R_{\rm D2}$ použít buď odporové trimry, nebo pevné rezistory v děličích určit výpočtem s ohledem na parametry luminiforů uváděné výrobcem obrazovky. Je také možné vypustit dělič $R_{\rm D1}/R_{\rm D2}$ u katody s největším jasem a bílou správně nastavit při malých katodových proudech pouze korekcí zbývajících dvou katod apod.

Existují ještě jiné způsoby kompenzace vlivu rozdílné účinnosti luminiforů, ale i další modifikace zapojení měřicího obvodu např. s možností kompenzace záporného svodového proudu apod. Zájemci o tuto problematiku naleznou potřebné informace v [18].

Jak bylo již úvodem řečeno, plní integrovaný obvod TDA3505 v podstatě stejné funkce jako předcházející typ a většina vnitřních obvodů je u obou typů shodná.

Na rozdíl od TDA3501 je u TDA3505 (obr. 72) klíčována ss úroveň vstupního signálu i u jasového signálu a to opět pomocí impulsu HKB. Signál je "upínán" na interní ss úroveň 2,7 V. Jmenovité úrovně vstupních signálů jsou stejné jako u TDA3501. Stejný je i způsob zpracování rozdílových signálů barvy R-Y a B-Y a jasového signálu. Rozdílové signály jsou přes upínací obvod přivedeny na stupně pro regulaci sytosti (RS), ovládané vnějším ss napětím přiváděným na vývod 16 IO. Užitečný rozsah regulačního napětí je 2,1 až 4,3 V. Jmenovité barevné sytosti odpovídá napětí $U_{16} = 3,1$ V a při napětí $U_{16} = 4,3$ V je sytost dvojnásobná (+6 dB).

Ze stupňů pro regulaci sytosti jsou rozdílové signály přivedeny opět na matici G-Y a na maticové obvody (MR) a (MB) stejně jako vytvořený signál G-Y na maticový obvod (MG). Jasový signál je z upínacího obvodu na vstupu IO přiveden na zesilovač (ZY) a dále na maticové obvody pro vytvoření jednotlivých signálů R, G, B stejně jako ú TDA3501. Jednotlivé signály R, G a B jsou z maticových obvodů přivedeny na přepínací stupně (PS), umožňující připojování externích signálů R, G, B. Přepínání je řízeno vnějším napětím na vývodu 11 IO. Je-li U₁₁ ≥ 0,4 V, jsou do následujících obvodů přiváděny signály R, G, B z interních maticových obvodů. Je-li napětí U11>0,9 V (max. 3 V), isou na následující obvody přiváděny externí signály R, G, B. V přepínacích stupních jsou zaklíčovány ss úrovně externích signálů, které jsou na vstupy IO přiváděny přes kondenzátory C_{12} až C_{14} . Úroveň, na níž jsou signály zaklíčovány, závisí na velikosti přepínacího napětí U_{11} v době upínání, tj. v době klíčovacího impulsu HKB. Jsou-li externí signály přiváděny krátkodobě, pouze v činném řádkovém běhu (v době upínání je tedy napětí $U_{11}<0.4$ V), jsou externí signály upnuty na úroveň černé signálů z vnitřních maticových obvodů. Při vklíčování externích signálů do původního obrazu tak nedochází k jasovému skoku. Jsou-li externí signály přiváděny dlouhodobě (U_{11} je trvale >0.9 V a tedy i v době upínání), jsou upnuty na interní referenční úroveň 4,4 V a výstupy z interních maticových obvodů jsou odpojeny. V tomto případě nemůže docházet k rušení externích signálů případnými signály z maticových obvodů.

Dále jsou signály R, G, B přivedeny na stupně pro regulaci kontrastu (RK) a regulaci jasu (RJ). Kontrast je řízen ss napětím v rozsahu 2 až 4,3 V přiváděným a vývod 19 IO. Jmenovitému kontrastu (0 dB) odpovídá napětí $U_{19} = 3,6$ V. Na přívod regulačního napětí U_{19} je připojen obvod pro omezení špičkového katodového proudu obrazovky (PD1), pracujícího stejně jako u obvodu TDA3501, pouze zdroj interního předpětí má hodnotu 5,5 V.

V obvodech pro regulaci jasu jsou signály upnuty na ss úroveň, určenou velikostí regulačního napětí na vývodu 20 IO. Klíčování se opět provádí impulsem HKB. Mimo dobu klíčování je tato regulační veličina uložena v paměťových kondenzátorech na vývodech 7 až 9 IO. Vnitřní dioda zapojená mezi vývody 19 a 20 IO plní stejnou funkci jako u obvodu TDA3501.

Za regulačními stupni jasu a kontrastu následují ve všech kanálech klíčovací stupně (SVK), v nichž jsou signály v době řádkového (HZ) a prodlouženého vertikálního (V'Z) zatemňovacího impulsu upnuty na ultra-černou úroveň. Impuls V'Z je vytvářen v generátoru impulsů (GI) a je prodloužen tak, aby obsahoval i 23. a 24. měřicí řádek, které jsou již za sestupnou hranou běžného vertikálního zatemňovacího impulsu.

Za klíčovacími stupni jsou do jednotlivých signálů vklíčovány pomocí stupňů (VI) měřicí impulsy M_R, M_G a M_B.

Dále následuje v každém kanálu omezovací stupeň (OS) a elektronické potenciometry pro nastavení bílé stejně jako u TDA3501. U obvodu TDA3505 je však možno řídit zisk i u stupně v kanálu R. Bílá se nastavuje vnějším regulačním napětím přiváděným na vývody 21 až 23 IO v rozsahu 0 až 12 V. Jmenovitému zisku těchto stupňů odpovídá regulační napětí 5,5 V, na němž jsou vývody 21 až 23 interně nastaveny, pokud nejsou připojeny k vnějším obvodům (odporovým trimrům) pro nastavení bílé.

Z řízených zesilovačů pro nastavení bílé jsou signály přivedeny na součtové členy, v nichž se k signálnímu napětí přičítá korekční napětí pro nastavení závěrného bodu jednotlivých katod. Toto korekční napětí je vytvářeno ve stupních (KR), (KG) a (KB). Tyto stupně obsahují regulační smyčku pro nastavení závěrného bodu katod a byly již podrobně popsány. Stupeň (MS) obsahuje vstupní oddělovací stupeň měřicího napětí U_M a obvody pro měření svodového proudu tak, jak byly popsány. Napětí U_M vznikající na měřicím odporu R_M je přiváděno na vývod 26 10 a přes ochranný obvod R, D₁, D₂ je přivedeno na vstupní obvod regulační smyčky. Spínač S_H je spínán řádkovými zatem-ňovacími impulsy a zkratuje v tuto dobu přívod měřicího napětí U_M na zem. Tím je zaručeno, že se během půlsnímku nenahromadí na tomto přívodu rušivý náboj, který by ovlivňoval velikost napětí $U_{\rm M}$ v době měření katodových proudů. Celá regulační smyčka je řízena impulsy z generátoru (GI), který vy-

Obr. 75. Schéma zapojení modulu G, 6PN 053 27

tváří veškeré ovládací a měřicí impulsy. Z výstupů součtových členů jsou signály R, G, B přiváděny na koncové stupně (KS), tvořené emitorovými sledovači a přes vývody 1, 3 a 5 IO na vstupy externích koncových obrazových zesilovačů.

88

\$ 18 all 2

150 v

TETU (

Skutečné schéma zapojení modulu G. 6PN 053 27, je na obr. 75. Na vývod 4 modulu je přiváděn z obrazové mezifrekvence (modul O) kladný videosignál s jmenovitou mezivrcholovou úrovní 2,5 V. Odladěním barvonosných kmitočtů v odladovačích (C₁L₁, C₂L₂C₃) je vytvořen vlastní jasový signál, který je přes přizpůsobovací rezistor R₃ přiveden na vstup jasového zpožďovací linky je zapojen dělič R₁₀/R₁₃, zajišťující impedanční přizpůsobení výstupu linky, který současně upravuje amplitudu jasového signálu na požadovanou úroveň (0,45 V včetně synchronizačních impulsů). Jasový signál je z výstupu děliče přiveden na vstup IO₁ (vývod 15) přes oddělovací kondenzátor C₈.

Rozdílové signály barvy – (R-Y) a – (B-Y) jsou z modulu dekodéru (P) přivedeny na příslušné vstupy IO₁ přes vývody 5 a 6 modulu a přes oddělovací kondenzátory C₉ a C₁₀. Rezistory R₃₈ a R₃₉ zajišťují malou impedanci na přívodních vodičích a zmenšují tak nebezpečí pronikání rušivých napětí do vstupních signálů barvy.

Regulační napětí pro řízení jasu, kontrastu a sytosti jsou vytvářena obdobně jako u předcházejícího typu modulu G s obvodem TDA3501. Hodnoty jednotlivých prvků v děličích jsou poněkud odlišné s ohledem na jiné rozsahy regulačních napětí. O časové konstantě těchto děličů ve vztahu k obvodům pro omezení kato-

١

dového proudu platí totéž, co bylo řečeno v souvislosti s předešlým modulem G. Velmi podobně je řešen i obvod pro omězení středního katodového proudu obrazovky. Proměnný odporový trimr P4 umožňuje nastavit proud /k bez ohledu (v určitých mezích) na velikosti napětí U₀₂ obrazovky.

Obvody pro omezení špičkového katodového proudu obrazovky jsou u tohoto modulu řešeny poněkud jednodušeji. Místo původních tranzistorů jsou použity diody D₃, D₅ a D₆. Jako informace o okamžitém proudu slouží opět zpětnovazební napětí z koncových obrazových zesilova-čů. Z tohoto důvodu je podélný odpor ve zpětné vazbě koncových zesilovačů rozdělen na dva rezistory (R44, R64, R84 a R46, R₆₆, R₈₆). Při dosažení určitého rozkmitu signálu v některém z kanálů se zmenší napětí na katodě příslušné diody tak, že se dioda otevře a zatíží vnitřní referenční zdroj napětí na vývodu 25 10 (i R₂₆). Zmenší-li se toto napětí pod prahovou úroveň (asi 5,2 V), aktivuje se prahový detektor uvnitř IO₁, který aktivuje příslušné obvody zajišťující zmenšení regulačního napětí kontrastu, popř. i jasu.

Vstupy pro připojení externích signálů R, G, B (včetně vstupu pro přepínací napětí) jsou vyvedeny na konektor modulu. U přijímačů s dálkovým ovládáním jsou tyto vstupy (vstup pro přepínací napětí a pro signál G) využity pro zobrazení čísla zvolené předvolby na obrazovce.

Kondenzátory C₁₅, C₁₆ a C₁₇ jsou paměťové kondenzátory pro referenční úroveň stupňů pro řízení jasu, kondenzátory C18, C₁₉ a C₂₀ jsou paměťové kondenzátory pro regulační napětí obvodů pro nastavení závěrných bodů katod. Kondenzátor C21 je paměťový kondenzátor napětí Us úměrného svodovému proudu. Potenciometry P₁, P2 a P3 jsou řízeny elektronické potenciometry pro nastavení bílé.

Výstupní signály R, G, B jsou z IO (vývody 1, 3, 5) přivedeny na koncové obrazové zesilovače, tvořené tranzistory T₄₁ a T₄₂, pracujícími ve třídě AB (pro zjednodušení bude dále popisován pouze kanál B). Pro dosažení dostatečného proudového zesílení i při vysokých kmitočtech a dostatečně velkého odporu je koncový stupeň řízen přes emitorový sledovač (tranzistor T43). Článek RC v jeho bázi vytváří potřebnou kmitočtovou charakteristiku zpětné vazby a koriguje tak šířku přenášeného pásma.

Tranzistor T44 je zapojen jako měřicí tranzistor katodového proudu v obvo-dech pro automatické nastavení závěrného bodu katod. Zpětnovazební napětí vznikající na měřicím odporu je přes integrační a omezovací člen (C22, D4) přivedeno přes sériový rezistor R₃₆ na měřicí vstup IO₁ (vývod 26). Zpětnovazební napětí je integrováno i kondenzátorem C₄₂, připojeným paralelně k přechodu báze-emitor tranzistoru T₄₄. Tato integrace slouží k potlačení překmitu na náběžné hraně měřicího impulsu, což by vedlo k nesprávnému údaji o protékajícím proudu a tedy i k nesprávnému nastavení závěrných bodů katod obrazovky. V měřicím obvodu katodového proudu je použito zapojení s oddělenými měřicími odpory, umožňující správně nastavit šedou i při

malých katodových proudech. Diody D₄₂, popř. D₄₃ zajišťují průchod proudu při uzavřeném tranzistoru T42, popř. T₄₄ a umožňují tak vybíjení, popř. nabíjení kapacity zátěže (obrazovky).

Základní ss pracovní bod koncového stupně je s ohledem na ss úroveň výstup-

ního signálu z IO1 nastaven opěrným napětím pro emitor tranzistoru T41, vytvářeným zdrojem napětí s tranzistorem T₉.

Katoda obrazovky je řízena z emitoru měřicího tranzistoru T₄₄ přes ochranný rezistor R49 a tlumivku L41 omezující vyzařování signálů nad užitečným pásmem.

Nastavení modulu

1. Nastavení úrovní signálů R, G, B

Na vstup přijímače přivést signál barevných pruhů 75 %. Odporový trimr P₄₀₂ na rozkladové desce (nastavení U₀₂ obrazovky) nastavit do střední polohy a zkratovat vývody 1 a 3 modulu (vypnout barvy). Regulátor kontrastu nastavit na maximum a regulátorem jasu nastavit úroveň černé na zatemňovací úroveň. Odporovými trimry P3, P2 a P1 nastavit na měřicích bodech MB4, MB3 a MB2 rozkmit signálu 90 V černá-bílá. Odpojit zkrat vývodů 1 a 3 modulu.

2. Nastavení odlaďovačů barvonosných signálů

Na vstup přijímače přivést signál barevných pruhů Secam. Potom jádry cívek L1 a L2 nastavit minimum bárvonosného signálu v MB1 (vývod 15 IO₁).

Nastavení omezovače středního kato-

dového proudu

Na přijímač přivést signál barevných pruhů. Regulátory jasu, kontrastu a sytosti nastavit na maximum. Potom odporovým trimrem P4 nastavit katodový proud obrazovky 850±50 μA. Pokud nelze maximální proud trimrem P4 nastavit (nebo je trimr v krajní poloze), je nutné nastavit P4 do 1/2 až 3/4 odporové dráhy a požadovaný proud/k nastavit trimrem P402 na rozkladové desce. (Katodový proud je opět možno měřit jako součet úbytků napětí na sériových rezistorech v přívodech ke katodám obrazovky.)

Nastavení stupnice šedé

a) Na přijímač přivést signál monoskopu nebo barevných pruhů. Zkratovat vývody 1 a 3 modulu. Odporové trimry P₅, P₆ a P₇ nastavit do střední polohy. Regulátor kontrastu nastavit na minimum a regulátor jasu nastavit tak, aby se dala dobře posoudit stupnice šedé. Potenciometry P₅ až P₇ nastavit neutrální šedou tak, aby se při změně jasu neměnil její odstín.

b) Regulátory jasu a kontrastu nastavit na maximum. Potom za současného zmenšování kontrastu pozorovat bílá místa v obraze, zda nemění odstín. Případně upravit nastavení trimry P₁ až

c) Po nastavení bílé zkontrolovat maximální proud/k a případně opět nastavit podle bodu 3).

Závady medulu

Při rozboru příčin následujících příkladů závad je předpokládáno, že vstupní signály (Y, R-Y, B-Y) a napájecí napětí modulu jsou v pořádku.

1. Chybějící jasový signál ve všech kaná-

- přerušená signálová cesta videosignálu od vstupu modulu (vývod 4) přes odlaďovače barev, jasovou zpožďovací linku JZV1 a vazební kondenzátor C8 nebo vadný IO₁.
- 2. Chybějící jasový signál v některém z kanálů:

vadný IO₁

3. Malý černobílý kontrast:

závada v obvodech vytvářejících regulační napětí kontrastů, zkontrolovat regulační napětí na vývodu 19 IO, a případně prvky příslušného děliče (R₅, R₁₂, R₁₁, C₅);

- závada v obvodech omezovače středního /k nebo špatné nastavení omezovače. Zkontrolovat napětí na vývodu 2 modulu, P4, R16, T1.
- 4. Závady v regulaci jasu, kontrastu nebo sytosti:
 - zkontrolovat rozsahy regulačního napětí na vývodech 1, 19 a 20 IO₁, případně příslušné děliče napětí.
- 5. Všechny katody svítí plným jasem. chybí opěrné napětí pro emitory tranzistorů T41, T61, T81 (závada ve zdroji
 - chybí zpětnovazební napětí pro nastavení závěrných bodů (zkrat C22, D4 apod.).
- 6. Některá z katod svítí plným jasem:
 - zkrat T₄₁, T₆₁, T₈₁, C₇, C₈, C₉; přerušený T₄₃, T₆₃, T₈₃, T₄₄, T₆₄, T₈₄
- 7. Obrazovka nesvítí vůbec:
 - chybějící anodové napětí,
 - přerušený žhavicí okruh obrazovky, na modul G není přiváděn signál SCI.
 - závada v obvodech omezovače špičkového /k, zkontrolovat napětí na vývodu 25 IO₁, dále R₂₆, R₂₇, R₂₉, R₃₁ (přeru-
 - šeno) a R₂₈, R₃₀, R₃₂ (zkrat); přerušený R₄₆, R₈₆, R₈₆ (chybí zpětno-vazební napětí, aktivuje se omezovač špičkového/k).
- 8. Nesvítí některá z katod:

přerušený T₄₁, T₆₁, T₈₁, zkrat T₄₃, T₆₃,
T₈₃, T₄₂, T₆₂, T₈₂, vadný C₁₈, C₁₉, C₂₀.
Snížený jas obrazu, při zvětšení kon-

- trastu je signál omezován (způsobeno posuvem ss úrovně signálu ke kladným hodnotám):
 - v signálu SCI chybí vertikální zatemňovací impuls (VZ),
 - zkrat T₄₄, T₆₄, T₈₄,

vadný kondenzátor C21.

- 10. Potlačený přenos signálů horních kmitočtů, integrované náběžné hrany signálu na katodách:
 - přerušený T₄₂, T₆₂, T₈₂.
- 11. Od začátku řádku (zleva doprava) se postupně zvětšuje jas některé z katod: vadný C₁₅, C₁₆, C₁₇.

Literatura

- [1] Lindauer, H.; Worgul, W.: SECAM-Farbbalkentestgenerator, RFE č. 12/77, s. 407—410, č. 13, s. 423—427. Erweiterung des SECAM-Farbbalkentstgenerators für das PAL-System. RFE č. 2/81, s. 107—111.
- [2] TESLA Orava, k. p.: Kanálové voliče TESLA 6PN 38244.2, 7PN 382 002. Technické informácie č. 38.
- [3] TESLA Orava, k. p.: TVP Andrea senzorová jednotka. Technické informácie č. 33.
- [4] TESLA Orava, k. p.: Popis obvodov FTVP Color Univerzal. echnické informácie č. 32
- [5] TESLA Orava, k. p.: FTVP Color 110 nastavovací predpis, zapojenie prijímača, zoznam náhradných dielov. Technické informácie č. 34.
- [6] TESLA Orava, k. p.: Popis obvodov na FTVP Color 110. Technické informácie č. 37.
- *[7] Vít, V. a kol.: Televizní technika. SNTL: Praha 1979
- 181 Netušil. O.: Diagnostika a servis FTVP, Alfa: Bratislava 1983.
- [9] Roick, U.: Nové polovodičové prvky pro TVP. Sborník předná-šek symposia Aktivní elektronické součástky z NDR, Praha 1981.
- [10] TESLA Orava, k. p.: FTVP Minicolor, Color Oravan. Technic-ké informácie č. 44.
- [11] TESLA Orava, k. p.: FVTP typovej rady TESLA 4416. Technic-ké informácie č. 50.
- [12] TESLA Orava, k. p.: Color 110 ST Nastavovací predpis, zapojenie, zoznam dielov. Technické informácie č. 39. Popis obvodov. Technické informácie č. 40.
- [13] TESLA Orava, k. p.: FTVP Minicolor, Color Oravan. Popis obvodov. Technické informácie č. 45.
- [14] Firemní literatura Siemens, Valvo, katalog TESLA Rožnov.

ROZKLADOVÉ OBVODY

Ing. Jiří Nedvěd

Obvody synchronizace

soustředěny isou modulu na S a podstatná jejich část je realizována integrovaným obvodem. Ve starších typech — COLOR 110 a COLOR 110 ST je to integrovaný obvod A250D, v novějších přijímačích Mánes a Oravan a v nejnovějším typu 4416A inte-

grovaný obvod A255D.

Schéma modulu S přijímačů COLOR 110 je na obr. 1. Úplný obrazový signál záporné polarity (kladné synchroni-zační impulsy) se přivádí přes kontakt konektoru modulu, oddělovací kondenzátor C1 a rezistor R1, omezující špičkové proudy, na vývod 5 integrovaného obvodu. Vývod 5 je vstup amplitudového oddělovače (separátoru), spojeného s omezovačem poruch. Vstupní tranzistor oddělovače se otevírá kladnými špičkami signálu - synchronizačními impulsy — a při tom se nabíjí kondenzátor C₁. Vzniklé předpětí brání, aby části signálu s menší úrovní otevíraly oddělovač. Úroveň oddělování určuje proud rezistorem R₃. Omezovač poruch uzavírá oddělovač, překračujeli špičkové napětí (při poruše) úroveň synchronizačních impulsů.

Vícenásobnou vnitřní integrací a oboustranným omezením se ze synchronizační směsi odděluje vertikální (snímkový) synchronizační impuls, který se z vývodu 7 IO, přes kontakt 6 modulu, vyvádí pro synchronizaci generátoru vertikálního rozkladu. K synchronizaci se používá přední hrana impulsu, protože zadní hrana není

přesně udržována.

Kmitočet oscilátoru řádkového rozkladu určuje kondenzátor C₄ na vývodu 13 IO spolu s rezistorem R₈ a potenciometrem P₂ na vývodu 14. Kondenzátor je periodicky nabíjen — vybíjen na vnitřně definované úrovni napětí dvěma

generátory proudu, velikost proudu určují rezistory na vývodu 14. Kapacita kondenzátoru C₄ (10 nF) se nesmí měnit s teplotou, proto se používá typ kondenzátoru se styroflexovým dielektrikem

Ve fázovém detektoru se porovnává napětí pilovitého průběhu z oscilátoru s řádkovým synchronizačním impulsem. Výstupní napětí fázového detektoru, které je na vývodu 4 10 připojeným obvodem zbavováno šumu, pak řídí kmitočet horizontálního (řádkového) oscilátoru. Rozsah "zachycení" kmitočtu (pásmo aktivní synchronizace) ohraničuje omezovač. Fáze napětí oscilátoru je pevně svázána s fází synchronizačních impulsů.

Přepínací obvod, připojený na vývod 9, má pomocnou funkci, zajišťující větší rozsah zachycení synchronizace. Dokud není dosaženo synchronizace oscilátoru, je zařazen do série s kondenzátorem C₇ rezistor 2 kΩ. Po dosažení synchronizace se tento rezistor přemostí tranzistorem v saturaci a omezí se rozsah zachycení (pásmo aktivní synchronizace) na 50 Hz, čímž se podstatně zúží šumová šířka fázové syn-

chronizace.

Aby se vyrovnalo zpoždění zpětného běhu proti spouštěcím impulsům komutačního tyristoru z obvodů synchronizace (část komutačního cyklu probíhá ještě v činném běhu paprsku obvody horizontálního rozkladu), upravuje se fáze výstupních impulsů obvodem regulace fáze. V obvodu se porovnává impuls zpětného běhu z koncového stupně horizontálního rozkladu -přiváděný přes kontakt 1 konektoru modulu a rezistor R₁₅ na vývod 10 integrovaného obvodu pilovitého průběhu z oscilátoru a vzniknapětí řídí komparátor, z pilovitého signálu oscilátoru odvozuje budicí impulsy. Napětím na vývodu 11

integrovaného obvodu lze základní fázový posuv upravit. Změnou nastavení odporového trimru P1 se tedy posouvá zpětný běh vůči obrazovému signálu. Větší posuvy, které by vyžadovala obrazovka s velkou nesymetrií obrazu, nelze takto vyrovnat, neboť musí být zaručeno, že impuls zpětného běhu musí oboustranně přesahovat synchronizační impuls.

Výstupní impulsy se zesilují proudově dvoustupňovým zesilovačem s tran-

zistory T₁ a T₂. Integrovaný obvod A255D v modulu S přijímačů Oravan a Mánes zajišťuje lepší činnost synchronizace a navíc generování klíčovacích impulsů. Schéma modulu, doplněné funkčními bloky uvnitř integrovaného obvodu, je na obr. 2. Následující popis ve stručnosti seznamuje s funkcí obvodů:

Úplný obrazový signál (OZS) záporné polarity (kladné synchronizační impulsy) přichází přes kontakt 2 konektoru modulu a obvod z rezistorů a kondenzátorů na vývod 9 integrovaného obvodu. Zapojení tvoří se zesilovačem uvnitř 10 oddělovač synchronizačních impulsů. Rezistor Re chrání 10 před velkými impulsy a zlepšuje činnost oddělovače při signálu s poruchami (rušením). Kondenzátor C₁₀ odděluje stejnosměr-nou složku signálu a vzniká na něm předpětí pro tranzistor oddělovače (separátoru). Pracovní bod určuje rezistor R₁₂. Paralelní článek R₁₁, C₁₁ zlepšuje funkci při poruchách. Kondenzátor C₉ potlačuje krátké rušivé impulsy. Paralelní cestou postupuje signál též na vstup omezovače poruch - vývod 10. Při poruchách, které přesahují úroveň synchronizačních impulsů, omezovač poruch blokuje oddělovač synchronizačních impulsů a brání tak jeho "zahlcení", tj. posunutí pracovního bodu integrací impulsů poruch v kondenzátoru C₁₀. Ze synchronizační směsi se odděluje vertikální synchronizační impuls a po zesílení je na vývodu 8 integrovaného obvodu. Vertikální synchronizační impuls V_{sync.} zavírá také hradlo, přes které se přivádějí synchronizační impulsy na fázový detektor (6), aby se neposouvala fáze odlišným tvarem impulsů během vertikálního

Obr. 1. Schéma modulu S s integrovaným obvodem A250D

synchronizačního impulsu. Ve fázovém detektoru se porovnává pilovitý signál relaxačního oscilátoru (5) se synchronizačními impulsy (princip oscilátoru je podobný jako v IO A250D). Výstupní napětí detektoru, filtrované obvody na vývodu 13, se přivádí přes rezistor R₆ na vývod 15, kde výsledné napětí určuje kmitočet oscilátoru. Základní kmitočet se nastavuje odporovým trimrem P2

Z průběhu signálu oscilátoru se odvozují klíčovací impulsy (10), které se porovnávají se synchronizačními impulsy v koincidenčním detektoru (7), jehož výstup ovládá přepínač časové konstanty synchronizace oscilátoru a hradla v přívodu synchronizačních impulsů na fázový detektor. Při časové shodě impulsů se kondenzátor C7 na vývodu 11 nabíjí. Při dosažení napětí asi 2 V se na vývod 12 připojí napětí 0,5 V a zmenší se impedance proti kostře — vývodu 16. Tím se zúží šířka pásma filtrace napětí na vývodu 13. Současně se připojí přívod synchronizačních impulsů na hradlo 2, kde se klíčují impulsy z generátoru (10). Tím se omezí možnosť rušení synchronizace odraženými signály (duchy) a poruchami. Přepínač lze vyřadit z funkce připojením vývodu 11 na kostru (vývod 16) nebo napájecí napětí (vývod 1), což je vhodné při příjmu signálu z videorekordéru VCR. Blokovací napětí se přivádí přes kontakt 1 konektoru modulu.

generátoru 11 se komparátory vytváří budicí impuls horizontálního rozkladu. Jeho šířku lze měnit napětím na vývodu 4 a umožnit tak aplikaci např. v obvodech s tyristorovým rozkladem. Připojením vývodu 4 na kostru je nastavená šířka vhodná pro tranzisto-rový koncový stupeň. Přední hrana impulsu se posouvá napětím na vývodu 5. To umožňuje nastavit fázi budicího impulsu vůči synchronizačnímu impulsu odporovým trimrem P1 a umístit tak

Obr. 2. Schéma modulu S s integrovaným obvodem A255D přijímačů Mánes a Oravan

obraz na rastru horizontálního rozkladu na obrazovce. Toto nastavení se automaticky udržuje při změnách zátěže koncového stupně horizontálního rozkladu fázovým detektorem (14), ve kterém se porovnávají impulsy zpět-ných běhů, přiváděné na vývod 6 přes kontakt 5 modulu.

U obvodů horizontálního rozkladu v přijímačích Mánes a Oravan ztěžuje tato funkce start napájecích obvodů. Proto je po čas startu blokována kladným napětím, přiváděným přes rezistor R₁₉ a diodu D₄. Po dosažení potřebné amplitudy impulsů zpětného běhu se přes diody běhu se pres diody D_2 , D_3 a rezistor R_{22} nabíjí kondenzátor C_{12} . Tranzistor T_1 se otevře a převezme proud rezistorem R_{19} , čímž se funkce fázové regulace uvolní.

Budicí impulsy se zesilují v zesilovači (15) a vyvádějí se přes vývod 3.

Rezistor, přes který se impulsy přivádějí na kontakt 9 konektoru, chrání výstupní zesilovač (omezením proudu) při havarijních stavech.

V generátoru 15 se tvaruje ještě dvouúrovňový impuls pro klíčování synchronizačního impulsu barev (SIB) a pro zatemňování horizontálního zpětného běhu. Klíčovací impuls pro SIB se odvozuje z průběhu napětí oscilátoru a ieho největší velikost je asi 11 V. K němu se přidávají zatemňovací impulsy, odvozené z impulsů horizontálních zpětných běhů. Složený impuls z vývodu 7 se přivádí přes rezistor R₁₇ na kontakt 4 konektoru modulu. Vně modulu se pak k tomuto dvouúrovňovému impulsu přidává ještě na třetí, nejnižší úrovni zatemňující impuls vertikálního zpětného běhu.

Modul S přijímačů 4416 A, jehož schéma je na obr. 3, se prakticky neliší. Hlavní rozdíl je v tom, že je vypuštěn obvod pro potlačení funkce fázové korekce při startu, který u těchto přijímačů není potřebný. (Vypuštěn

186

Obr. 4. Změna délky dráhy elektronového paprsku při vychylování

tranzistor T₁ s příslušnými součástkami.)

Obvody vertikálního – snímkového – rozkladu

Obvody vertikálního rozkladu vychylují paprsek tak, že se pohybuje rovnoměrně od horního okraje stínítka k dolnímu okraji a v době určené pro zpětný běh se vrací na horní okraj. To se opakuje s kmitočtem vertikálního rozkladu, který je blízký kmitočtu sítě. Odpovídající proud ve vychylovacích cívkách má přibližně pilovitý průběh. Mírné prohnutí ve tvaru "S" koriguje nelinearitu, která by jinak vznikla při konstantní úhlové rychlosti paprsku vlivem jeho narůstající délky od středu vychylování ke stínítku při pohybu stopy od středu k okraji stínítka (obr. 4).

Impedanci vertikálních vychylovacích cívek lze přibližně nahradit sériovým spojením odporu a indukčnosti. Při činném běhu paprsku, vzhledem k nízkému řádkovému kmitočtu, je změna proudu s časem natolik malá, že proti spádu napětí na rezistoru se napětí na cívce může zanedbat. Jiné je to při zpětném běhu, při němž je rychlost změny více než 20krát větší. Na indukčnosti vzniká impuls zpětného běhu, který podstatně zvětšuje celkový rozkmit napětí na vychylovacích cívkách. Koncový stupeň zesilovače, který vychylovací cívky napájí, musí tento rozkmit napětí pokrýt. Na vstup zesilovače koncového stupně se přivádí napětí pilovitého průběhu z generátoru, který je synchronizován vertikálními synchronizáčními impulsy z oddělovače synchronizačních impulsů v obvodech synchronizace. Pro vychylování je rozhodující proud ve vychylovacích cívkách, proto u většiny současných obvodů pro vertikální rozklad se kontroluje průběh proudu — zápornou proudovou vazbou se stabilizuje rozkmit a časový průběh proudu ve vychylovacích cívkách.

V přijímači COLOR 110, dědičně i v COLOR 110 ST a odvozených typech se používá zapojení obvodů vertikálního rozkladu, jejichž schéma je na obr. 5. Vertikální rozklad je tvořen diskrétními součástkami, rozmístěnými na modulu V s výjimkou výkonových tranzistorů, které jsou s chladiči na základní desce.

Popis činnosti obvodů

Půlsnímkové vertikální synchronizační impulsy, přiváděné přes kontakt 14 konektoru modulu, se derivují derivačním článkem z kondenzátoru C1 a rezistoru R₁. Záporné špičky ořezává dioda D₁, kladné přes emitorový sledovač T₁ synchronizují astabilní multivibrátor s tranzistory T2, T3. Po příchodu synchronizačního impulsu se tranzistor T, uzavírá. Přes rezistor R4 se nabíjí kondenzátor C₃. Proud se uzavírá přes bázi tranzistoru T₃ a přivádí jej do saturace. Malé napětí na kolektoru udržuje přes rezistor R₆ tranzistor T₂ uzavřený až do doby, než se nabíjecí proud kondenzátoru C3 zmenší. Tato doba, vzhledem k časové konstantě C3, R₄, je kratší než doba zpětného běhu. Jakmile se proud do báze tranzistoru zmenší natolik, že se tranzistor neudrží v saturaci, napětí na jeho kolektoru se zvětší a tranzistor T2 se otevírá. Kladná zpětná vazba tento pochod urychluje. Po otevření tranzistoru T2 se úbytek napětí na jeho kolektoru přenese přes kondenzátor C3 na bázi tranzistoru T3. Záporné napětí na bázi se potom zmenšuje, jak se kondenzátor C₃ nabíjí přes rezistor R7 a potenciometr P₄₀₅ působením kladného napětí, které se vytvořilo na rezistoru R₅ proudem tranzistoru T2. Když napětí na kondenzátoru C3 dosáhne kladné úrovně, při které se tranzistor T3 otevírá, multivibrátor se opět překlopí. Příchodem synchronizačního impulsu se otevření urychlí tím, že se tento impuls přičte k napětí na bázi tranzistoru T3. Napětí z emitoru tranzistoru T2 se přenese do kolektoru, i když je tranzistor v saturaci.

Kmitočet voľně běžícího multivibrátoru se nastavuje odporovým trimrem P_{405} na základní desce tak, aby byl asi o 5 % nižší, než je kmitočet vertikálního rozkladu.

V době otevření tranzistoru T₃ na začátku zpětného běhu se vybíjejí kon-

denzátory C₅ a C₆ přes diodu D₂ a rezistor R₈. Po uzavření tranzistoru T₃ se tyto kondenzátory opět nabíjejí pres rezistor R₁₁ a potenciometr P₁. V uzlu 4 vzniká napětí přibližně pilovitého průběhu, které se přivádí na vstup následujícího dvoustupňového zesilovače s tranzistory T4 a T5. Pracovní bod zesilovače je stabilizovaný silnou zápornou zpětnou vazbou přes dělič z rezistorů R₁₇, R₁₆ a R₁₄, R₁₅. Průhyb S napětí pilovitého průběhu zajišťuje vazba z emitoru tranzistoru T₄ přes rezistor R₁₂ a odporový trimr P₂. Integrací proudu pilovitého průběhu na kondenzátoru C₆ vzniká napěťová složka parabolického průběhu, která se skládá se složkou exponenciálního průběhu, vznikající na kondenzátorech nabíjením přes rezistor R₁₁ a odporový trimr Vytváří se tak napětí pilovitého průběhu s průhybem S. Velikost parabolické složky napětí se nastavuje odporovým trimrem P2 podle porovnání linearity v horní a dolní polovině obrazu, aby se dosáhlo symetrie.

Výstupní napětí zesilovače se přivádí na bázi tranzistoru T₄₀₁. Ten ve funkci emitorového sledovače dodává proud do vychylovacích cívek v druhé polovině periody (pohyb paprsku v dolní polovině obrazovky). Současně se jeho proudem ovládá i druhý tranzistor dvojčinného koncového stupně T₄₀₂. Proud kolektoru tranzistoru T_{401} se uzavírá přes diody D_3 , D_5 a k nim paralelní rezistor R_{21} . Napětí na rezistoru R₂₁ se přivádí na emitor tranzistoru T₆. Napětí na bázi tranzistoru T₆ určuje úbytek napětí na diodách (přechodové napětí) D₃ a D₄, kterými protéká proud rezistoru R₁₉. Na začátku činného běhu je proud tranzistoru T₄₀₁ malý. Dioda D₅ je uzavřena. Rezistorem R₂₁ protéká i proud tranzistoru T6. Proud tranzistoru T6 udržuje na rezistoru spád napětí odpovídající přechodovému napětí diody D₃. Tímto napětím a odporem rezistoru je určen proud, který se dělí mezi tranzistory T₆ a T₄₀₁. Proud tranzistoru T₆ se přivádí do báze tranzistoru T₄₀₂. (Kondenzátor C₄₂₄ potlačuje zák-mity a jeho kapacita pro relativně pomalé změny při nízkém kmitočtu vertikálního rozkladu má dostatečně velkou impedanci.) Tranzistor T₄₀₂ je otevřený a uzavírá se přes něj proud v první polovině periody. Napětí na bázi tranzistoru T₄₀₁ se postupně zvětšuje. Zvětšuje se i proud tranzistorem T_{401} a budicí proud tranzistoru T_6 se zmenšuje, a tím se zmenšuje i proud tranzistoru T_{402} , až celý proud tekoucí rezistorem R21 se uzavře přes tranzistor

Obr. 6. Schéma modulu přilímačů Mánes a Oravan

 T_{401} . Tranzistor T_{402} je pak uzavřený a proud vychylovacích cívek teče přes tranzistor T₄₀₁. Jeho proud se dále zvětšuje a spád napětí na rezistoru R₂₁ se omezuje otevřením diody D₅. Na začátku zpětného běhu se tranzistor T₄₀₁ uzavře a dříve popsaným dějem se opět otevře tranzistor T₄₀₁.

Proud vychylovacích cívek se uzavírá přes rezistor R₁₅, na kterém se vytváří napětí proudové záporné zpětné vazby, které se přes rezistor R₁₄ a kondenzátor C₈ přivádí do budicího zesilovače. Zapojení koncového stupně má tu výhodu, že při přechodu proudu z jednoho tranzistoru na druhý jsou otevřeny oba tranzistory a nevznikají tak při silné zpětné vazbě zákmity vychylovacího proudu, které působí rušivě na řádkovém rastru i při nepatrné amplitudě.

Diody D₄₀₈ a D₄₀₉ chrání koncové tranzistory proti průrazu špičkami napětí, které by mohly případně vznikat ve vychylovacích cívkách při výbojích v obrazovce. Přes kondenzátor C421 se uzavírají proudy řádkového kmitočtu korekčních obvodů či indukované z cívek horizontálního rozkladu. Obvod z rezistoru R_{421} , diod D_{411} , D_{412} i odporový trimr P_{404} vytvářejí nesouměrným (rozdílovým usměrněním odporem usměrňovačů) stejnosměrnou složku proudu, vychylovacího čímž umožněn posuv obrazu ve svislém směru. Diodou D_{410} se oddělují záporné impulsy zpětných běhů pro obvody signálové části přijímače.

obvodech vertikálního rozkladu přijímačů Mánes a Oravan se používá integrovaný obvod TDA1670, který spolu s doplňujícími součástkami na modulu V zajišťuje všechny příslušné funkce. Na obr. 6 je zapojení modulu V spolu se souvisejícími vnějšími obvody. Pro ujasnění funkce je naznačeno uspo-řádání obvodů uvnitř IO.

Vertikální synchronizační impulsy se přivádějí na kontakt 8 konektoru modulu V. Odtud se přivádějí přes oddělovací kondenzátor C1 na vývod 5 integrovaného obvodu. Synchronizační impulsy synchronizují relaxační oscilátor. Kmitočet volně běžícího oscilátoru určuje kondenzátor C2, zapojený mezi vývody 3. 4 a rezistor mezi vývody 4. 6. Odporovým trimrem P1 se nastavuje kmitočet na 47 Hz. Uzemněním kontaktu 9 konektoru modulu lze oscilátor (a tím i veřtikální vychylování) vyřadit z činnosti. Využívá se toho v některých přijímačích při nastavování proudu élektronových trysek obrazovky na úrovni černé.

Na začátku zpětného běhu vybíjí oscilátor kondenzátory C₄, C₅ tvarova-cího obvodu (vývod 9). Pak nastává opětovné nabíjení ze zdroje, jehož vnitřní odpor určuje rezistor R₅ v sérii s odporovým trimrem P₂, připojený na vývod 7. Odporovým trimrem P₂ se nastavuje rozkmit - vertikální výchylka.

Rezistor R₆ o něco zmenšuje celkový odpor zdroje nabíjejícího kondenzátory a zvětšuje tak exponenciální zakřivení souladu s požadovanou korekcí. Kondenzátory se ještě nabíjejí proudem, který se přes rezistory R₄₉, R₅₀ a R₅₂ přivádí na kontakt 4 konektoru modulu. Tento proud koriguje vertikální výchylku. Výchylka paprsku při elektromagnetickém vychylování je závislá nejen na proudu ve vychylovacích cívkách, ale je i nepřímo úměrná odmocnině anodového napětí. Proto by se se změnou anodového napětí měníl vertikální rozměr obrazu. Korekční proud má dvě složky. Jedna, přiváděná přes rezistor R₅₀, se odvozuje od napájecího napětí modulu, které je úměrné rozkmitu v horizontálních vychylovacích cívkách. Druhá sleduje proud zdroje anodového napětí a eliminuje vliv úbytku napětí v násobiči vn; uzavírá se přes rezistor R52. Napětí přivedené na rezistor R₅₂ vzniká na rezistoru R₁₆ modulu G, přes který se uzavírá proud násobiče vn.

Na kondenzátoru C₅ vzniká složka napětí parabolického průběhu na tvarovacím obvodu integrací proudu, který se přivádí přes odporový trimr P3 a rezistor R₇ z výstupu emitorového sledovače na vývodu 10. (Tvarovací obvody jsou podobné obvodům v přijímači **COLOR 110.)**

Výstupní napětí tvarovacího obvodu se přivádí přes odporový dělič na invertující vstup výstupního zesilovače. Z výstupu zesilovače na vývodu 1 se přes oddělovací kondenzátor C44 napájejí vychylovací cívky. Proud vychylovacích cívek se uzavírá přes rezistor R₁₁, na kterém vzniká napětí pro zápornou zpětnou vazbu. To se přivádí přes rezistor R₁₀ a kondenzátor C₇ na vývod 12 integrovaného obvodu. Uvnitř se slučuje s napětím tvarovacího obvodu, které se přivádí na vstup výstupního zesilovače. Pracovní bod výstupního zesilovače se stabilizuje zápornou zpětnou vazbou přes dělič z rezistorů R₉,

R₈ a R₁₁.
Přiváděné napájecí napětí se stabilizuje vnitřním stabilizátorem a napájí obvody generátoru kromě výstupního zesilovače. Ten se napájí přes vývod 2. Na tomto vývodu obvod generátoru zpětného běhu zvětšuje napětí po dobu zpětného běhu téměř na dvojnásobek (při rychlé změně proudu vzniká na indukčnosti vychylovacích cívek impuls napětí). Potom stačí, aby napětí zdroje F pokrývalo maximum napětí výstupního zesilovače v činném běhu. Zmenšuje se tak příkon a teplo, které chladič musí odvádět z pouzdra integrovaného obvodu. Generátor zpětného běhu pracuje v součinnosti s kondenzátorem C₆ a diodou D₁. Během činného běhu je vývod 15 přes obvod generátoru spojen se zemí napájení (vývod 8) a kondenzátor C_6 se nabíjí na napětí napájecího zdroje. Při zpětném běhu, kdy se napětí na výstupním zesilovači zvětší, přepne se vývod 15 na napájecí napětí. To se přičítá k napětí na kondenzátoru, čímž se zvětšuje napětí na vývodu 2. Dioda D1 zabraňuje vybití kondenzátoru do zdroje F.

Pro činnost obvodů signálové části přijímače dekodéru, obvodů pro zpracování obrazového signálu nerují se impulsy, odpovídající zatemňovacím impulsům. Ty se odvozují z průběhu napětí oscilátoru v generátoru zatemňovacích impulsů, na jehož výstupu je tranzistor, který po dobu činného běhu spojuje vývod 13 se zemí napájení na vývodu 8. Při zatemňovacím impulsu se uzavírá a na jeho kolektoru vzniká kladný impuls. Ten se přes kontakt 3 konektoru modulu vyvádí a přes diodu D₄₁ se přičítá k dvojúrovňovému horizontálnímu impulsu z modulu S ("Sandcastle impuls"). Tvoří ve složeném impulsu vertikální zatemňovací impulsy v trvání asi 1,35 ms v třetí, nejnižší úrovni, kterou omezuje rezistor R41 (na základní desce), tvořící s rezistorem R4 modulu V

Ke střídavému proudu vychylovacích cívek, který se uzavírá přes kondenzátor C₄₄, je možno přidat stejnosměrnou složku a upravit tak vystředění obrazu ve vertikálním směru. Toho lze dosáhnout spojením některých z vývodů odporového trimru P₃ na desce s plošnými spoji buď s rezistorem R₄₇ (posuv dolů) nebo rezistorem R₄₈ (posuv nahoru).

Během výroby se u modulu V změnil odpor rezistoru R_{12} z 1 Ω na 2,2 Ω , čímž se zmenšilo namáhání kondenzátoru C_8 ,

který měl četné poruchy.

Modul V přijímače TESLA 4416 se liší od modulu přijímače Oravan jen v detailech. Upraveny jsou hodnoty některých součástek v souvislosti s použitou obrazovkou — změna korekce S, vychylovacího proudu a napětí.

Obvody pro horizontální rozklad obrazu — základní funkce koncového stupně

Elektronový paprsek v obrazovkách televizních přijímačů se vychyluje magnetickým polem vychylovacích cívek. Přibližně je výchylka stopy paprsku na stínítku od středu k okraji úměrná proudu, který vychylovacími cívkami protéká. Při vychýlení paprsku na letý okraj obrazovky bude jimi tedy protékat maximální proud. To odpovídá začátku řádku. Při pohybu tvořícím řádek bude se proud lineárně zmenšovat, až při průchodu svislou osou stínítka obrazovky bude nulový. To odpovídá polovině řádku, pak se bude proud opět zvětšovat, ale poteče opačným směrem, až paprsek dosáhne pravého okraje stínítka v době, kdy řádek končí. Pak za dobu, vyhraženou pro zpětný běh paprsku na levý okraj, se musí proud ve vychylovacích cívkách obrátit. Takový idealizovaný časový průběh velikosti proudu vychylovacími cívkami ie naznačen v obr. 8a. Přibližné náhradní zapojení vychylovacích cívek tvoří indukčnost v sérii s odporem, reprezentujícím výkonové ztráty. Pro vysvětlení principu nebudeme nejprve činnou složku impedance uvažovat.

Obr. 7. Náhradní, zjednodušené schéma koncového stupně horizontálního rozkladu

Obr. 8. Průběh proudu indukčností L_H (a) a napětí na kondenzátoru C (b)

V obr. 7 je náhradní zapojení koncového stupně řádkového rozkladu v nejjednodušší sestavě. Na cívku L_H , odpovídající indukčnosti vychylovacích cívek, je připojen napájecí zdroj o napětí U_B přes spínač S_1 . V čase t_0 je spínač S_1 sepnut. Paralelně ke spínači zapojený kondenzátor C_1 se zatím neuplatní. Na indukčnost příložené napětí U_B způsobí lineární zvětšování

proudu $I_{\rm L}$. V čase $t_{\rm 1}$ se spínač $S_{\rm 1}$ rozpojí. Proud $I_{\rm L}$ pak bude nabíjet kondenzátor C. Průběh napětí na kondenzátoru je na obr. 8b. Jakmile bude napětí $U_{\rm C}$ větší než napětí $U_{\rm B}$, bude se proud $I_{\rm L}$ zmenšovat. Energie z indukčnosti $L_{\rm H}$ se bude předávat do kondenzátoru C až se proud $I_{\rm L}$ zmenší na nulu. Pak se opět kondenzátor nabitý na vrcholovou hodnotu napětí začne přes indukčnost $L_{\rm H}$ vybíjet do zdroje $U_{\rm B}$ a energie z kondenzátoru C se vrátí do indukčnosti. Protože indukčnost $L_{\rm H}$ s kapacitou C tvoří sériový rezonanční obvod, jsou průběhy napětí $U_{\rm C}$ a proudu $I_{\rm L}$ při otevřeném spínači $S_{\rm 1}$ úseky sinusovky, popř. cosinusovky.

Zdroj napětí se může nahradit kondenzátorem, nabitým na napětí $U_{\rm B}$. Potom ovšem nebude napětí $U_{\rm B}$ konstantní a při sepnutém spínači S_1 se nebude proud $I_{\rm L}$ měnit lineárně, ale bude se měnit rychleji uprostřed řádky než na krajích, jak to bude odpovídat průběhu napětí $U_{\rm B}$ (obr. 9b, indukčnost $L_{\rm H}$ a kapacita $C_{\rm B}$ tvoří sériový rezonanční obvod a průběh napětí na kapacitě $C_{\rm B}$ tvoří vrcholovou část sinu-

Obr. 9. Vliv kondenzátoru, nahrazujícího zdroj U_B, na průběh proudu · » vychylovacích cívkách

sovky). To však je právě potřeba, neboť při lineární změně proudu by se paprsek pohyboval při okrajích obrazovky rychleji než ve středu, což je způsobeno především tím, že zakřivení stínítka má mnohem větší poloměr, než je vzdálenost středu vychylování od stínítka.

Dosud jsme neuvažovali vliv odporu vychylovacích cívek ani ztráty ve spínači. Aby se udržel rozkmit proudu ve vychylovacích cívkách, musí se tyto ztráty energie krýt z vnějšího zdroje. Energie se např. přivádí tak, jak je naznačeno na obr. 4. Indukčnost L_T bývá tvořena transformátorem zdroje anodového napětí obrazovky. In-

Obr. 10. Obvod pro napájení koncového stupně horizontálního rozkladu

dukčností L_T pak protéká proud I_T , jehož střední velikost se vyrovnává se střední velikostí proudu spínače S a střední napětí na kondenzátoru C_B odpovídá napětí zdroje U_B . Proud I_T se bude v čase měnit periodicky s opakovacím kmitočtem řádek a jeho střední velikost bude kolísat podle zatížení zdrojů odebírajících energii z koncového stupně řádkového rozkladu. Při uzavřeném spínači se bude zvětšovat, při otevřeném, kdy napětí na kondenzátoru C bude větší než napětí zdroje

Obr. 11. Vliv ztrátového odporu na průběh proudu ve vychylovacích cívkách

U_B, se bude zmenšovat. Při zvětšování ztrát v obvodu koncového stupně rozkladu se bude střední velikost proudu zvětšovat, při zmenšování zmenšovat.

Vliv odporu vychylovacích cívek a spínače se projeví i na časovém průběhu proudu v cívkách. Při konstantním napětí na kondenzátoru C_B se bude časová závislost proudu odchylovat od ideálního průběhu v indukčnosti, jak je naznačeno v obr. 11 (čárkovaně ideální průběh proudu). Změna proudu bude s narůstajícím časem menší. Jestliže je na obrázku znázorněn průběh odpovídající vychylovacímu proudu během aktivní části řádky, je zřejmé, že v pravé polovině (odpovídající pravé straně obrazu) je zakřivení podobné tomu, jaké působí kapacitní reaktance v sérii s indukčností vychylovacích cívek; působení obou vlivů se sčítá. V praktických případech lze určitým zvětšením kapacity oddělovacího kondenzátoru dosáhnout vyrovnání na průběh požadovaný pro rovnoměrný pohyb stopy elektronového paprsku na stínítku, zajišťující linearitu řádkového rozkladu v pravé polovině obrazu. V levé polovině obrazu vliv odporu na linearitu je opačný a zvětšením kapacity kondenzátoru se nelinearita ještě zvětší. Proto se do série s vychylovacími cívkami zařazuje tlumivka, jejíž indukčnost je závislá na protékajícím proudu. Je to cívka s feritovým jádrem, které je přesyceno magnetickým tokem přiloženého trvalého magnetu, takže neprotéká-li cívkou prouď, nebo protéká-li jí proud ve směru, kdy se sycení zvětšuje (vychylovací pro pravou stranu), je indukčnost tlumivky proti indukčnosti vychylovacích cívek zanedbatelná (obr. 12a). Proud v opačném směru zmenšuje sycení jádra a indukčnost tlumivky se zvětšuje. Na tlumivce vzniká úbytek napětí a změna proudu ve vychylovácích cívkách, di / dt, je menší (viz obr. 12b).

Obr. 12. Korekce proudu vychylovacích cívek tlumivkou s přesyceným jádrem; a) závislost indukčnosti na proudu, b) výsledný průběh proudu ve vychylovacích cívkách

Další vysvětlení funkce obvodů je odlišné pro televizní přijímače s tyristorovým koncovým stupněm horizontálního rozkladu, použitým v televizních přijímačích COLOR 110, COLOR 110 ST a odvozených typů, a pro

Obr. 13. Základní schéma obvodů horizontálního rozkladu a síťového napájecího zdroje v přijímačích Mánes a Oravan

televizní přijímače s tranzistorovým koncovým stupněm horizontálního rozkladu, v zapojení tzv. IPSALO (Integrated Power Supply And Line Output — společný napájecí zdroj a koncový stupeň řádkového rozkladu), použité v přijímačích Mánes COLOR a COLOR Oravan.

Princip činnosti obvodů řádkového rozkladu v přijímačích Mánes COLOR a COLOR Oravan

Použité zapojení koncového stupně řádkového (horizontálního) rozkladu a obvodů pro jeho napájení zajišťuje stabilizaci horizontálního rozměru obrazu při změnách napájecího napětí z primárního zdroje i při změnách zatížení sekundárními zdroji, napájejícími ostatní obvody přijímače, které odebírají energii přes transformátor koncového stupně horizontálního rozkladu. Mimo to galvanicky odděluje televizor od primárního napájecího zdroje a tím od sítě. Energie z primárního zdroje se do obvodu vychylovacích cívek dodává přes transformátor. Impulsy do transformátoru se spínají tyristorem, který je ovládán řídicími obvody podle amplitudy impulsů řád-kových zpětných běhů. Na obr. 13 je zjednodušené zapojení, jehož činnost si dále popíšeme.

Pro výklad si opět vytvoříme náhradní schéma, obr. 14. Indukčnosti $L_{\rm T}$ a $L_{\rm R}$ představují indukčnost sekundárního vinutí transformátoru, přičemž

Obr. 14. Zjednodušené náhradní schéma koncového stupně horizontálního rozkladu přijímače Mánes

 $L_{\rm R}$ odpovídá rozptylové indukčnosti mezi primárním a sekundárním vinutím. Náhradní zdroj má napětí upravené transformačním převodem p. Spínač S_2 nahrazuje funkci paralelního zapojení tyristoru Ty_2 a diody D_2 . Ostatní prvky náhradního schématu mají funkci podle výkladu k obr. 7. Činnost obvodů doplňujících energii si ukážeme na jednom řádkovém cyklu.

Spínač S_1 spíná v čase t_0 , v čase t_2 se rozpojuje. Během této doby, jak již víme, je napětí na kondenzátoru C_p rovno nule. V čase t_2 až t_0 probíhá zpětný běh a na kondenzátoru C_p se vytvoří "půlsinusový" impuls napětí (křivka obsahuje více než 1/2 sinusového kmitu) — viz obr. 15a. V čase t_1 sepne spínač S_2 . Na indukčnost L_R se

Obr. 15. Průběh napětí na kondenzátoru C_D as cívkách L_R a L_H

přiloží součet napětí zdroje pU_B a napětí na kondenzátoru C_A . Proud indukčností se bude lineárně zvětšovat,

$$I_{L} = \frac{pU_{B} + U_{A}}{L_{B}} (t_{2} - t_{1}),$$

jak naznačuje průběh v obr. 15b. V době mezi t_2 a t_0 se bude proud měnit podobně jako ve vychylovacích cívkách, ale zmenšovat se začne tehdy, až napětí na kondenzátoru C_p bude větší než součet napětí zdroje a napětí "akumulačního" kondenzátoru. Proud indukčností L_R se zmenší na nulu a obrátí se jeho směr, tj. poteče do zdroje. V této fázi přebírá proud spínače S_2 dioda D_2 a tyristor Ty_2 se zavře. (Vypínání při nulovém proudu a napětí u polovodičových spínačů minimalizuje ztráty, proto má toto zapojení dobrou energetickou účinnost.) Po skončení zpětného běhu se proud postupně zmenšuje a zavírá se i dioda.

Pokud proud do indukčnosti L_B teče ze zdroje pU_B, dodává zdroj energii. Ta se projeví zvětšením náboje, a tím i vrcholového napětí na kondenzátoru Cp během zpětného běhu. Od času t4 se proud do zdroje vrací (a tím i část energie). Protože na pozici spínače S₂ je tyristor (s paralelní diodou), je nutné, aby proud spínačem obrátil svůj směr a protékal diodou, čímž se uzavře tyristor. (Doba potřebná k uzavření tyristoru závisí na tyristoru samotném. ale i na rychlosti zmenšování proudu. Tyristor se může vypnout - uzavřít ještě dříve, než se proud zmenší do zmenší se pod velikost nulv přídržného proudu - což může nastat při činnosti řádkového rozkladu při malém napájecím napětí. Při běžném provozu vypíná tyristor přibližně tehdy, zmenší-li se proud na nulu, tedy při zcela nepatrné reverzaci proudu.)

Zajistit podmínky pro vypnutí tyristoru vyžaduje vhodně dimenzovat obvod, především rozptylovou indukčnost L_R. Musí se brát v úvahu i napájecí napětí, pro které se musi optimalizovat převod transformátoru. Rozptylová indukčnost závisí na konstrukčním uspořádání transformátoru. Vyhovuje volnější vazba mezi primárním a sekundárním vinutím, která od-

povídá jejich provedení na oddělených sloupcích rámečkového jádra. Usnadňuje to pak i realizaci potřebné izolace pro galvanické oddělení od sítě, s kterou je primární vinutí spojeno přes napájecí zdroj. Uvedené uspořádání transformátoru právě tak vyhovuje přenášenému výkonu v koncovém stupni. Pro možnosť většího odběru ze sekundárních zdrojů by byla třeba těsnější vazba (např. část primárního vinutí by byla na společném sloupku se sekundárním vinutím). Proud indukčnosti L_R se uzavírá přes tranzistor spínače S₁ a zvětšuje tak jeho proudové zatížení, které je kritické ve špičce před koncem aktivní části řádku. To může působit nelinearitu při pravém okraji obrazu i zvětšovat ztráty v tranzistorú. Další zvětšení ztrát přináší nutnost většího budicího proudu koncového tranzistoru. Proto je důležitá kompromisní velikost rozptylové indukčnosti, která vyhovuje maximálnímu příkonu obvodů řádkového rozkladu bez zbytečných rezery.

Protože během zpětného běhu je spínač S_2 sepnut, je indukčnost L_R připojena paralelně k indukčnosti vychylovacích cívek. Obě indukčnosti mají srovnatelnou velikost, proto pro správnou délku doby zpětného běhu je zapotřebí větší kapacita C_p , než u běžného typu tranzistorového rozkladu. Při poruše spínání spínače S_2 se impuls zpětného běhu prodlouží, což může být vodítkem při opravě.

Amplituda proudového impulsu v rozptylové indukčnosti (a tedy i energie předaná do obvodu vychylovacích cívek) závisí na délce intervalu t_1-t_2 . Jeho prodloužením, zkrácením doby t_0-t_1 , se zvětšuje a naopak. To umožňuje stabilizovat rozměr vhodným načasováním spouštěcího impulsu tyristoru — to zajišťují obvody stabilizace podle vyhodnocení amplitudy impulsu zpětného běhu.

Při rozběhu řádkového rozkladu po zapnutí přijímače (i když se používají v napájecím zdroji obvody, které zpomalují zvětšování napětí) se v každém cyklu dodává energie pokrývající zvětšování rozkmitu proudu ve vychylovacích cívkách. To navozuje kritické poměry pro vypínání tyristoru. Proto se dobu rozběhu interval t_1 — t_2 omezuje. Aby byl rozběh vůbec možný, napájí se koncový stupeň z pomocného zdroje přes diodu přímo do kondenzátoru CA. Z tohoto zdroje se napájejí též obvody, budící tranzistor koncového stupně i obvody, zajišťující řízení síťového napáječe a tyristoru řádkového rozkladu.

Úplné zapojení koncového stupně horizontálního rozkladu je složitější. Zahrnuje sekundární zdroje a obvody omezující překmity napětí na spínacích polovodičových součástkách (viz úplné schéma obr. 16). Spínací obvod s tyristorem Ty² a diodou D³5 pro napájení je připojen na vinutí 19 — 20 transformátoru Tr₅. Vychylovací cívky se spínačem, tvořeným tranzistorem T³3 a diodami D³4, D³5, jsou připojeny na vinutí transformátoru 8 — 11. Kondenzátor C⁵4 odpovídá akumulačnímu kondenzátoru C¾ v náhradním schématu na obr. 13. Kondenzátory C³6 a C³7 odpovídají kondenzátoru C¾ a určují šířku impulsu zpětného běhu. Ta se nastavuje výběrem kapacity kondenzátoru C³6 podle šířky obrazu.

Z vinutí 5-6; 5-8 a 5-10 transformátoru Tr₅ se odebírá energie pro zdroje E, C, F. Ve zdroji E se

využívá impulsu zpětného běhu, kterým se přes diodu D_{64} nabíjí vyhlazovací kondenzátor C_{56} . Tlumivka L_5 potlačuje vznik zákmitů. Ve zdrojích C a F se využívá napětí v činném běhu. Proud přes diody těchto zdrojů teče větší část periody a nároky na vyhlazovací kondenzátory jsou proto menší. Zdroj C má ještě navíc stabilizátor — IO_2 . Výstupní napětí stabilizátoru je zvětšeno "opřením" zemního konce o odporový dělič (u televizoru Mánes Color), nebo dělič z diody D_{36} a rezistoru R_{80} (u televizoru Oravan Color) asi o 0,7 V, což je potřebné pro dobrou funkci generátoru v integrovaném obvodu A255 na modulu S.

lu S. Z vinutí 14 — 15 se napájí žárovka tlačítkové volby a žhavicí vlákno obrazovky. Tlumivkou L₇ je při tom nastavena správná velikost žhavicího proudu. (Pozor! Rozptylové magnetické pole transformátoru ovlivňuje proud v tlumivce. Jejím přemístěním nebo záměnou vývodů se žhavicí proud mění.)

Anodové napětí obrazovky a napětí pro její druhou a třetí mřížku zajišťuje zdroj s násobičem vn, TVK30 Si-6, napájený z vinutí 12 — 21. Napětí pro druhou mřížku obrazovky se odebírá ze "studeného" konce vinutí (12) přes dělič R₈₄, P₅, R₈₅. Vzniká usměrněním v činném běhu s diodou v násobiči vn. Napětí pro 3. mřížku (fokuzační napětí) se odebírá z prvního stupně násobiče vn. Nastavuje se odporovým trimrem p.

Stabilizované napětí pro ladicí jednotku se odebírá ze stabilizátoru 10₁, napájeného přes rezistor R₁₄ z kondenzátoru C54. Nf zesilovač je napájen ze zdroje D. Patří k němu dioda D₆₂, kondenzátor C52 a cívka L4. Odběr nf zesilovače kolísá podle dynamiky zvukového signálu, nesynchronně s obrazem, proto musí být co nejvíce omezen jeho vliv na rozkmit proudu ve vychylovacích cívkách. Vinutí 1 - 2, z kterého se zdroj D napájí, je těsně vázáno na primární vinutí 12 — 20, zatímco se sekundární stranou má vazbu volnou. Kondenzátor C52 tvoří s vinutím transformátoru rezonanční obvod. Během doby sepnutí spínače S₂ (tyristor Ty₂ a dioda D_{95}) je přiloženo na diodu D_{62} napětí a proud v okruhu vytvoří poloviční sinusový kmit, který je kratší než doba otevření spínače S_2 . Vliv odběru se neprojeví znatelnou změnou výchylky paprsku na obrazovce, ale na napětí zdroje D se projevuje kolísání síťového napětí.

Se sekundárními zdroji je spojen též obvod pro napětí první mřížky obrazovky, který zháší paprsek po vypnutí přijímače. První mřížka obrazovky je připojena přes konektor Z9 na kondenzátor C_{70} , ke kterému jsou připojeny sériově spojené diody D_{76} , D_{77} . Ze zdroje E přes rezistory R_{82} a rezistory R₈₃ protéká diodami proud a napětí na nich je dáno napětím přechodu. Kondenzátor C₆₉ je nabitý téměř na napětí zdroje E. Po vypnutí televizoru se napětí zdroje E zmenší. Úbytek napětí se přenese přes rezistor R82, kondenzátor C_{69} a diodu D_{76} (dioda D_{77} se uzavře) na kondenzátor C70 a mřižka obrazovky má záporné předpětí. Napětí na kondenzátoru se zmenšuje vybíjením přes rezistor R₈₃. Bude-li však přijímač zapnut (např. automaticky po akci elektronické pojistky zdroje) dříve, než se stačí zmenšit emisní schopnost katody, dioda D_{76} a kondenzátor C_{70} brání, aby se ihned při startu zmenšilo zavírací napětí mřížky. Zabraňuje se tak vypadávání přetížením při opětovném startu při velkém jasu obrazovky. (Připojení kondenzátoru C70 na zdroj C zajišťuje stejnosměrnou polarizaci.)

Spínač napájení koncového stupně by měl vypínat při nulovém proudu. Ve skutečnosti tomu tak není, protože spínací prvky nejsou ideální a narůstající napětí způsobí určitý proudový impuls. Ten vytvoří na rozptylové indukčnosti impuls napětí, který zvětšuje nároky na vrcholové blokovací napětí tyristoru. Proto se tento překmit omezuie. Vinutí 3-4 transformátoru má těsnou vazbu s vinutím 19-20, proto je možné transformovaný impuls omezit diodou D₇₅, která je připojena katodou na zdroj napájející stabilizátor zdroje C. Transformační převod je vhodně volen s ohledem na napětí zdroje 17 V a na napětí na primárním vinutí. I když je

vazba těsná, přesto z rozptylové indukčnosti takto vázaných cívek vzniká ještě velmi úzký impuls, který je rovněž nutno omezit. To dělá dioda D₉₆, která odvádí impulsy do kondenzátoru C₉₀. Vybíjecím rezistorem R₉₇ je pak určena úroveň omezení. Část energie impulsu překmitu se tak využívá v napájecích zdrojích.

Obvody ovládání tyristorových spínačů — modul R

Obvody v modulu R (obr. 17) a na ně navazující obvody na základní desce ovládají spouštění tyristoru Ty₂, pracujícího ve spínači napájení koncového stupně horizontálního rozkladu tak, aby se stabilizoval rozměr obrazu, spouštění tyristoru Ty₁ v síťovém zdroji, jímž se zajišťuje pomalé zvětšování napájecího napětí při rozběhu. Obvody elektronického jištění pak přerušují buzení tyristoru Ty₁ a tím zajišťují odpojení síťového zdroje tehdy, když nevypnul tyristor Ty₂ během zpětného běhu, nebo vznikla-li závada v obvodech stabilizace a mohlo-li by zvětšení amplitudy impulsů zpětných běhů, nebo napětí pro nf zesilovač poškodit součástky obvodů.

Činnost obvodů stabilizace

Na kontakt 9 konektoru modulu se přivádějí impulsy zpětných běhů z transformátoru horizontálního rozkladu Tr₅ — vývod 6. Po vydělení děličem z rezistorů R_{31} , R_{23} a potenciometru P_1 , kterým se dělicí poměr nastavuje podle napětí zdroje anodového napětí obrazovky, špičky impulsů otevírají Zenerovu diodu D₅ a tranzistor T₉. Tím se zmenšuje napětí na bázi tranzistoru T10. Ten s tranzistorem T₁₂ tvoří komparátor, ve kterém se napětí na bázi tranzistoru T₁₀, vyhlazené kondenzátorem C₇, porovnává s napětím pilovitého průběhu odvozeným z impulsů zpětných běhů v tvarovacích obvodech s tranzistory T₁₃ a T₁₄ (obr. 17.1). Tranzistor T₁₃ pracuje jako Millerův integrátor. Impuls zpětného běhu otevírá tranzistor T₁₄ a kondenzátor C₁₀ se nabíjí na napětí dané děličem z rezistorů R24, R₂₅. Po uzavření tranzistoru T₁₄ otevírá

Obr. 17.1. Průběhy napětí v uzlech obvodů stabilizace horizontálního rozkladu, modul R, a) průběh napětí impulsů zpětných běhů na kontaktu 9 konektoru, b) spínací napětí na bázi tranzistoru T₁₄, c) průběh napětí na bázi tranzistoru T₁₃, d) průběhy napětí na bázich tranzistorů komparátoru T₁₀ (čárkovaně) a T₁₂ (plně), e) výstupní impulsy na kolektoru tranzistoru T₁₁

Obr. 17.2. Objasnění funkce pro zpomalený nárůst napájecího napětí; a) průběh napětí na bázi tranzistoru T_1 (doba otevření tranzistoru T_1 a T_2 odpovídá horní ploché části průběhu), b) napětí na bázích tranzistorů komparátoru T_4 a T_5 (amplituda omezených impulsů řádkových zpětných béhů na bázi tranzistoru T_5 narůstá ve skutečnosti mnohem pomaleji), c) impulsy na kolektoru tranzistoru T_3 (čárkovaně je zakreslen průběh výstupního napětí na můstkovém usměrňovači, d) průběh napětí na katodě tyristoru T_7 (ve skutečnosti pomalý plynulý nárůst)

proud rezistorem R₃₀ tranzistor T₁₃, napětí na kolektoru se lineárně zmenšuje a podstatná část proudu z rezistoru R₃₀ se uzavírá přes kondenzátor C₁₀. Když se okamžitá úroveň napětí piloviprůběhu tého na kondenzátoru C₁₀ zmenší pod úroveň napětí na kondenzátoru C7, tranzistor T12 uzavře a rovněž tak se uzavře tranzistor T₁₁ v okruhu budicího transformátoru tyristoru Ty2. Po přerušení proudu v primárním okruhu se napětí na řídicí elektrodě tyristoru zvětší a tyristor se otevře. Zmenší-li se amplituda impulsu zpětného běhu např. při zvětšení zátěže zdroje, zvětší se napětí na kondenzátoru C_7 a tranzistor T_{12} se uzavře dříve. Tím se interval otevření tyristoru Ty₂ prodlouží a dodaný impuls energie do koncového stupně horizontálního rozkladu je větší. Opačná reakce nastane, když se impuls zpětného běhu zvětší. Kondenzátor C₈ a rezistor R₂₂ spolu s rezistorem R₁₇ tvoří tlumicí filtr řídicího napětí, který potlačuje zakmitávání v regulační smyčce při reakci na změny zatížení.

Dioda D₇ patří obvodu, který při rozběhu obvodů rozkladu, při němž při zvětšujícím se napětí síťového zdroje jsou kritické poměry pro přerušení proudu v tyristoru Ty₂, omezuje interval jeho otevření asi na polovinu aktivní periody řádku. Napětí na kondenzátoru C₇ se zmenšuje odběrem přes diodu D₇ a rezistor R₂₁ v záporné špičce napětí pilovitého průběhu. Po rozběhu pracují napájecí zdroje a přes rezistor R₂₆ ze zdroje D (napětí se přivádí na kontakt 5 konektoru modulu) se nabije kondenzátor C₉, proud diody D₇ převezme dioda D₈ a regulace může probíhat v celém rozsahu.

Obvody pro buzení tyristoru síťového zdroje

pracují následovně (viz obr. 17.2): V komparátoru z tranzistorů T₄ a T₅ se porovnává napětí pilovitého průběhu (b), odvozené z průběhu napětí sítě (a), s impulsy zpětných běhů (U_{BT5}), jejichž amplituda je modulována napětím vzniklým jejich integrací v kondenzátoru C₄. Napětí pilovitého průběhu se vytváří nabíjením a vybíjením kondenzátoru C₃. Kladná půlvlna napětí z

transformátoru pomocného zdroje otevírá tranzistory T₁ a T₂. Přes tranzistor T₂ se nabije kondenzátor C₃. Po uzavtranzistorů se kondenzátor C₃ vybíjí přes odpor R₅ až do nového otevření tranzistoru T2. To nastává při průchodu síťového napětí nulou, tedy minimum napětí pilovitého průběhu odpovídá průchodu síťového napětí nulou. Při pozvolném zvětšování amplitudy impulsů na bázi tranzistoru T5 se tento tranzistor začne otevírat nejprve při minimu napětí na tranzistoru T₄, a to je v minimu síťového napětí (c). Proudové impulsy tranzistoru T_5 otevírají tranzistor T_3 a přes transformátor T_3 se otevře tyristor Ty₁. Tyristor se otevírá nejprve v oblasti poklesu napětí sinusové vlny a postupně se otevírá stále více. Podle rychlosti otevírání do maxima síťové sinusové vlny, které závisí na rychlosti zvětšování napětí na kondenzátoru C4, modulujícího amplitudu impulsů na bázi tranzistoru T5, se zvětšuje napětí síťového zdroje (d). Tím je zajištěn pomalý "náběh" napájecího napětí, a tím i podmínky pro reverzaci

proudu v tyristoru Ty2. S budicími obvody síťového zdroje jsou spojeny obvody ochrany. Tyto obvody kontrolují především funkci tyristoru Ty_2 . Ze zdroje 12 V se přes rezistor R_{10} nabíjí kondenzátor C_5 . Tento kondenzátor se vybíjí v každém rádkovém cyklu záporným impulsem, který vzniká po uzavření S2, tehdy, jestliže se zotavil tyristor Ty2. Impuls vzniká na diodě D₇₂ průtokem proudu z vinutí 3-4 transformátoru Tr₅ přes diodu D₇₅ při omezování překmitu napětí. Při malém rozkmitu se proud uzavírá přes rezistor R₇₈ (obr. 16). Nevybije-li se kondenzátor C₅, další na-bíjení přes rezistor R₁₀ zvětší napětí tak, že se otevře tranzistor T7. Jeho proud prochází přechodem báze-emitor tranzistoru T₆, který se rovněž otevře a svým proudem udržuje otevřený tranzistor T_7 . Vybije se kondenzátor C_4 . Rezistor R_9 přitom omezuje proud. Tranzistor komparátoru T5 se přestane otevírat a tyristor Ty, přesťane dostávat

uzavře. Dále pak nastane automaticky nový startovací proces. Při poruše funkce stabilizace se

spouštěcí impulsy a při následujícím průchodu síťového napětí nulou se zvětšuje amplituda impulsů zpětných běhů. Impulsy zpětných běhů se přivádějí z děliče z rezistorů R_{61} , R_{62} přes diodu D_{61} na kontakt 5 konektoru modulu. Současně se na tento kontakt přivádí napětí ze zdroje D (zdroj pro napájení nf zesilovače). Napětí takto složeného průběhu se přivádí přes dělič z rezistorů R_{16} , R_{15} na bázi tranzistoru T_8 . Při běžné funkci teče z báze tranzistoru T_8 do děliče proud a udržuje tranzistor otevřený. Napětí na rezistoru R_{14} zavírá diodu D_4 . Zvětší-li se napětí na děliči tak, že se tranzistor T_8 uzavře, proud přes rezistor R_{14} a diodu D_4 otevře tranzistor T_6 , čímž se aktivují obvody ochrany.

Primární napájecí zdroje

Primární napájecí zdroje jsou napájeny ze sítě přes odrušovací filtr z kondenzátorů C_1 , C_2 a tlumivky L_1 . Obvody zdrojů, galvanicky spojené se sítí, jsou od kostry a obvodů signálové části izolovány. Pro potlačení rušivého vyzařování jsou za filtrem oba síťové přívody propojeny s kostrou přes bezpečnostní kondenzátory C_{81} , C_{82} . Proti průrazu izolace statickým nábojem spojuje obvody zdroje s kostrou rezistor R_{91} , 8,2 $M\Omega$.

stor R₉₁, 8,2 MΩ.
Hlavní napájecí zdroj s můstkovým usměrňovačem z diod D₉₁ až D₉₄ napájí koncový stupeň řádkového rozkladu přes ochranný obvod s tyristorem Ty₁, jehož funkce byla popsána spolu s funkcí modulu R. Kondenzátory C₈₃, C₈₄, C₈₅ potlačují rušivé kmity na diodách. Rezistory R₉₂ a R₉₄ zajišťují vybití kondenzátorů, je-li přerušen odběr

Pro funkci tyristoru Ty₂ je nutné, aby byl v činnosti koncový stupeň řádkového rozkladu třeba jen s malým rozkmitem proudu ve vychylovacích cívkách. Při rozběhu po zapnutí televizoru je tento požadavek zajištěn napájením koncového stupně přes diodu D₆₃ do akumulačního kondenzátoru C₅₄ z pomocného zdroje. Tento zdroj se napájí přes malý síťový transformátor Tr₁ diodami D₆₅ až D₆₈ v můstkovém zapojení.

Kondenzátorem C56 vyhlazené napětí se přivádí na stabilizátor s tranzistory T₆₁ a T₆₂. Aby došlo k počátečnímu otevření stabilizátoru, je tranzistor T₆₁ přemostěn rezistorem R₆₉. Tak se vytvoří na děliči R₇₁, R₇₂ napětí, které otevře tranzistor T₆₂, a tím i tranzistor T₆₁. Při zkratu na výstupu stabilizátoru nebo nadměrném odběru je větší úbytek napětí na rezistoru R₆₉ a napětí z děliče nestačí na otevření stabilizátoru. Budeli při běžné činnosti napětí na diodě D₇₀ větší než Zenerovo napětí, proud tranzistorem T_{62} se zmenší, a tím se zmenší i proud přes tranzistor T_{61} . Tím se stabilizuje výstupní napětí, které určuje dělicí poměr děliče R71, R72 a Zenerovo napětí spolu s napětím přechodu báze-emitor tranzistoru T62

Z pomocného zdroje se napájejí také obvody, které zajišťují budicí impulsy tranzistoru koncového stupně, tj. modul S a budič koncového stupně, dále obvody modulu R, které ovládají tyristory Ty₁ a Ty₂. Po dosažení provozních napětí sekundárních zdrojů, konkrétně zdroje C, z kterého se přivádí proud na výstup stabilizátoru pomocného zdroje B přes diodu D₆₉, se stabilizátor zvětšeným napětím na výstupu zavírá.

Perspektivně bude stabilizátor pomocného zdroje zjednodušen. Na pozici tranzistoru T_{61} bude tranzistor typu n-p-n a napětí na jeho bázi bude stabilizováno Zenerovou diodou. Toto zapojení nebude odolné proti zkratu na výstupu, ale ušetří několik součástek. Napětí na výstupu stabilizátoru nemá kritické tolerance, pouze musí být zajištěno, aby nepřesahovalo i bez zatížení úroveň napětí, kterou má zdroj B při napájení ze zdroje C. Jinak by obvody stabilizace horizontálního rozkladu morozměr modulovat vodorovný složkami brumu (zvlnění svislých linií).

Budicí stupeň horizontálního koncového stupně

Budicí stupeň horizontálního koncového stupně tvoří zesilovač s tranzistory T₃₁ a T₃₂ v Darlingtonově zapojení. Toto zapojení zmenšuje nároky na budicí proud, přiváděný z modulu S přes rezistor R₃₁, který indukcí do obvodů obrazového signálu způsobuje rušení. Kondenzátor C31 urychluje zavírání tranzistorů a zmenšuje tak jejich kolektorovou ztrátu. Dioda D₃₁ omezuje saturaci tranzistorů a zkracuje dobu potřebnou k jejich uzavření. Otevřením tranzistoru budiče vzniká záporný impuls, který se přivádí přes transformátor Tr₁ na bázi tranzistoru T₃₂ a zavírá jej. Po uzavření tranzistorů se na jejich kolektorech zvětšuje kladné napětí, jehož nárůst se na primární straně transformátoru Tr, zpožďuje kondenzátorem C₃₃, s kterým je zapojen v sérii rezistor R₃₂, takže maximum budicího napětí se posouvá poněkud ke konci aktivní části řádku, kdy se spínací proud tranzistoru T₃₃ zvětšuje.

Při rozběhu horizontálního koncového stupně se budič napájí ze zdroje B přes diodu D₃₂ a rezistor R₃₃. Při malých proudech v koncovém stupni stačí menší budicí napětí. Při plném výkonu jsou nároky na vybuzení větší, a proto napájení budiče přejímá zdroj F, který se-aktivuje až po rozběhu a jeho napětí je přibližně dvojnásobkem napětí zdroje B. Zdroj F je připojen přes diodu D₃₃ a omezovací rezistor R₃₄.

V obvodu horizontálních vychylovacích cívek je ještě obvod, o kterém nebyla dosud zmínka. Jde o sériové zapojení kondenzátoru C46 a paralelní kombinaci diody D42 s rezistorem R₄₆ (obr. 16). Tato sestava je připojena paralelně k oddělovacímu kondenzátoru "S" vychylovacích cívek, C₄₃. Obvod zatlumuje oscilace rezonančního obvodu, který tvoří indukčnost vychylovacích cívek a kapacita kondenzátoru C43. Vybuzení oscilací způsobuje náhlý odběr větší energie akumulované v kondenzátoru C43. To nastává např. při úzkých vodorovných pruzích s velkým jasem, kdy se zvětší příkon zdroje vysokého napětí. Tento jev se projeví zejména u obrazovek malých rozměrů. které mají malou kapacitu anody. Funkce obvodu spočívá v tom, že kondenzátor C46 uvolňuje energii při špičkovém zatížení přes diodu D₄₂ a po jeho skončení se opět dobíjí přes rezistor R₄₆.

Obvod řádkového rozkladu neinovějšího typu barevného televizního přijímače 4416 A, jehož celkové schéma je na obr. 18, je podstatně jednodušší než dosud popsané obvody přenos-ných televizních přijímačů. Koncový stupeň horizontálního rozkladu je nazdroje pájený ze stabilizovaného a dodává energii pouze zdrojům pro napájení obrazovky. Vrcholový proud koncového tranzistoru je menší a stačí pak i buzení menším výkonem.

Budič je napájený ze společného zdroje s koncovým stupněm (140 V) a používá tranzistor (T₄₀₁) s větším závěrným napětím. Tlumicí člen R₄₀₂, C₄₀₁ a záporná zpětná vazba přes kondenzátor C₄₁₄ omezují strmost nárůstu napětí a překmity na kolektoru tranzistoru T₄₀₁ i rušivé vyzařování na vyšších harmonických kmitočtech. Při otevření tranzistoru T401 se z transformátoru Tr₄₀₁ přivádí do báze tranzistoru T₄₀₂ záporný impuls, který přeruší proud tranzistorem a nastává zpětný běh. Jeho šířka je nastavena kondenzátorem C403, ke kterému je možno paralelně připojovat kondenzátory C₄₁₅ a C₄₁₆ konektorovou zástrčkou Z45. Změnou šířky zpětného běhu se ovlivňuje jeho amplituda a tím úroveň vysokého napětí, které se z transformovaných impulsů vn transformátorem Tr₄₀₂ získává násobičem vn TVK32 SiG. Současně se získává fokuzační napětí i napětí pro druhou mřížku obrazovky, které se nastavuje potenciometrem P₄₀₂. Tyto zdroje i obvody pro žhavení obrazovky jsou podobné jako u přiiímače Oravan. Podobně je i v okruhu vychylovacích cívek obvod pro potlačení zákmitů (C_{406} , D_{407} , R_{414}). Navíc je použit obvod pro středění rastru na obrazovce z cívky L₄₀₁, diod D₄₀₅, D₄₀₆ a odporového trimru P₄₀₁ Nastavením nesteiné impedance (středicím odporovým trimrem) pro kladnou a zápornou část průběhu napětí vzniká stejnosměrná složka proudu, která se uzavírá přes vychylovací cívky a způsobuje posuv celého rastru. V okruhu vychylovacích cívek je mimo linearizační tlumivku zařazeno vinutí transformátoru diodového modulátoru Tr₄₀₃-Diodový modulátor, v jehož obvodu jsou diody D₄₀₁ až D₄₀₄, zajišťuje korek-ci rastru ve směru V—Z. Popis funkce obvodu je v části "Korekce rastru".

Obvody horizontálního rozkladu přijímačů COLOR 110, **COLOR 110 ST** a odvozených typů

horizontálního Obvody rozkladu těchto přijímačů jsou složitější než dříve popsané rozkladové obvody přenosných televizorů a to proto, že obrazovky se 110° vychylovacím úhlem vyžadují složitější korekční obvody, a proto, že se používá zapojení koncového stupně s tyristory. Spolehlivé tyristory pro tyto účely byly k dispozici dříve, než se podařilo vyvinout spolehlivé tranzistory s velkým závěrným napětím, proto se při nástupu polovodičohorizontálních rozkladových obvodů využívalo především tyristorů. Nevýhodou tyristorů je, že je nelze (mimo speciální typy) uzavřít (tak jako tranzistory) řídicí elektrodou, ale je nutno přerušit proud v anodovém okruhu. To vede ke složitějšímu zapojení, ve kterém se používají tyristory dva. V obvodech pro stabilizaci se pak používá další, třetí tyristor.

Pro názorné vysvětlení vyjdeme opět ze zjednodušeného zapojení (obr. 19a). Tyristory s paralelními diodami nahradíme spínači S₁, S₂ a S₃. Spínač S₃ reguluje výkon přiváděný do rozkladových obvodů. Pro počáteční výklad uvažujeme, že je sepnutý trvale. Na obr. 19b je průběh proudu ve vychylovacích cívkách L_H. (Viz též výklad v popisu principu horizontálního rozkladu.) Polovinu periody proud z kondenzátoru Cs vytéká, polovinu periody se do kondenzátoru vrací. Průběh musí být přibližně symetrický, protože po skončení každé periody musí mít kondenzátor Cs stejný náboj. Během cyklu se však vlivem ztrát odebírá z obvodu energie. Tu doplňuje komutační obvod ovládaný spínačem S2, který, jak z jeho názvu vyplývá, komutuje proud ve spínači S₁, aby se mohl zotavit (vy-

pnout) tyristor.

V intervalu t_1 až t_3 je spínač S_1 sepnutý a S_2 rozpojený. V uzlu 1 je nulové napětí, v uzlu 2 kladné napětí působením zdroje $U_{\rm B}$. V čase t_2 sepne spínač S₂ a kondenzátor C_K se vybíjí přes indukčnost L_K. Proud sleduje sinusový průběh naznačený čárkovanou čarou (obr. 19b). V intervalu t3 až t₄ převýší proud I_K proud I_H a směr proudu ve spínači S₁ se obrátí. V této době vede dioda a tyristor se zotavuje. vybití kondenzátoru proud IK začne zmenšovat a v čase t4 se zmenší na velikost proudu IH. Spínač S₁ se uzavře a energie z indukčností L_K a L_H se převádí do kondenzátoru C_K. V intervalu t₄ až t6 probíhá zpětný běh. Když se proud zmenší na nulu (t_5) , energie akumulovaná v kondenzátoru C_K způsobí zvětšování proudu v opačném směru. Jakmile se tento proud zvětší tak, že bude větší než proud IB tekoucí indukčností LB, obrátí se směr proudu spínačem S₂. Ten teče diodou a tyristor se zotavuje. Po vybití kondenzátoru C_K se otevírá dioda spínače S₁, zpětný běh končí a proud v komutačním okruhu vzhledem k vyššímu rezonančnímu kmitočtu rezonančního obvodu L_k C_k se zmenšuje rychleji než proud vychylovacími cívkami. Při tom se nabíjí kondenzátor Ck nejprve energií z komutační indukčnosti L_k a když se proud zmenší na úroveň proudu IB, spínač S2 se rozpojí a kondenzátoru předává energii především podstatně větší indukčnost LB. Energie v této indukčnosti se nahroma-

Obr. 18. Schéma zapojení obvodů horizontálního rozkladu přijímače 4416A

dila během doby, kdy byl spínač S_2 sepnutý — tato energie doplňuje rozdíl energie v kondenzátoru C_K na začátku a na konci komutačního cyklu, tj. na začátku a na konci doby sepnutí spínače S_2 .

Nyní se dostáváme k funkci spínače S₃. Energie dodaná do obvodu vychylovacích cívek v komutačním cyklu závisí

Obr. 19. a) Základní zapojení koncového stupně horizontálního rozkladu s tyristory, b) průběh proudu v horizontálních vychylovacích cívkách a komutačním obvodu, c) průběh proudu spínače S_1 , d) průběh napětí na spínači S_1 (uzel 1), e) průběh napětí na spínači S_2 (uzel 2)

na napětí na kondenzátoru C_K na začátku komutačního cyklu. Rezonanční kmitočet indukčnosti L_B + L_k a kondenzátoru C_K je volen tak, že maxima napětí na kondenzátoru C_K se dosáhne dříve než spíná spínač S₂ Proto při trvale sepnutém spínačí S_3 vrátí kondenzátor C_K část energie do zdroje (viz graf obr. 19e čárkovaná čára) a napětí na něm v čase t_2 je menší než na vrcholu. Jestliže vede jen dioda spínače S₃, nevrací se do zdroje žádná energie a na kondenzátoru C_K zůstává vrcholové napětí. Lze tedy řízením okamžiku sepnutí tyristoru spínače S₃ v intervalu t' až t2 měnit napětí na kondenzátoru C_K na začátku komutačního cyklu, a tím ovládat rozkmit proudu v obvodu vychylovacích cívek. Obvody stabilizace umístěné na modulu H pak udržují konstantní amplitudu impulsů zpětného běhu při kolísání napětí napájecího zdroje i kolísání odběru energie z obvodu vychylovacích cívek sekundárními zdroji.

Skutečné zapojení obvodu horizontálního rozkladu je složitější, a to nejen o korekční obvody, obvody tlumící překmity, ale i vlastní obvody v komutačním okruhu (viz obr. 20).

Kondenzátory C₄₁₀, c₄₁₁, C₄₀₆, C₄₀₅, ke kterým lze připojovat přepínačem vytvořeným z nástrčky Z40 různé kombinace kondenzátorů C₄₀₃ a C₄₀₄, tvoří kapacitní článek Π. Tento článek zajišťťuje přizpůsobení impedance obvodu vychylovacích cívek k napětí napájecího zdroje. V určitém případě transformace se může redukovat na jednu podélnou a jednu příčnou kapacitu. Tlumicí článek z cívky L₄₀₂ a rezistoru R₄₀₃ chování zásadně neovlivňuje, ani budicí obvod tyristoru Ty₄₀₂, tvořený kapacitním děličem C₄₁₀, C₄₁₁ rezistorem R₄₀₅ a cívkou L₄₀₅. Příčný kondenzátor, jehož kapacitu jsme v náhradním obvodě na obr. 19 neuvažovali, podstátným způsobem ovlivňuje průběh proudu v komutačním obvodu a napětí

na komutačním tyristoru. S komutační cívkou vytváří ďalší oscilační okruh, takže na průběhu komutačního proudu vznikají kratší zákmity (viz obr. 21). Podle naladění se může krátce přerušit proud v komutačním spínači (S₂) (plná čára). V této době se vytvoří zákmit kladného napětí na rozpojeném spínači. To má za následek určité prodloužení zpětného běhu. Při větším odběru energie zdrojem anodového napětí obrazovky, při větším jasu obrazu, se tento zákmit přesouvá a doba uzavření spínače S2 se zkracuje, což relativně zvětšuje amplitudu impulsu zpětného běhu. Tím se vyrovnává úbytek ve zdroji anodového napětí při větších proudech, takže se zmenší i úbytek anodového napětí. Tím se dosahuje stability horizontálního rozměru, aniž by se v širokých mezích měnilo anodové napětí obrazovky. (Protože vychýlení paprsku je přímo úměrné rozkmitu proudu ve vychylovacích cívkách a nepřímo úměrné odmocnině z anodového napětí, lze kompenzovat rozšíření obrazu zmenšení anodového napětí zmenšením napájení koncového stupně, to však vede k podstatnějšímu zmenšení anodového napětí, protože se současně zmenšuje impuls zpětného běhu.) Uvedené ladění komutačního obvodú zvětšuje nároky na rychlé zotavení ko-mutačního tyristoru. Z toho důvodu tyristory pro pozici komutačního tyristoru mají zotavovací dobu kratší než 4,5 μs. (U tyristoru s delší zotavovací dobou nelze uvedeného zákmitu napětí a tím stabilizace dosáhnout - tyristor se

nevypne — i když koncový stupeň horizontálního rozkladu jinak pracuje normálně.) Naladění komutačního obvodu lze měnit nastavením komutační indukčnosti posouváním cívek po jhu (cívky na krajních sloupcích). Naladění se mění i přepojováním kondenzátorů C₄₀₃ a C₄₀₄ při nastavování šířky, takže je nutné komutační indukčnost opětovně nastavit.

Paralelně ke komutačnímu spínači je kondenzátor C₄₀₉ v sérii s rezistorem R₄₀₄ (obr. 20). Tento obvod zpomaluje zvětšování napětí na komutačním tyristoru. Při velké strmosti zvětšování napětí se totiž může tyristor sepnout. Kondenzátor C₄₀₈ s cívkou L₄₀₄ potlačují rušení, které při rychlém sepnutí spínače vzniká.

Komutační tyristor Ty₄₀₁ se spouští impulsem, přiváděným z modulu S signálové části přes tlumivku L₄₀₃ která omezuje rušivé vyzařování. K otevření tyristoru Ty₄₀₂ se využívá napětí na kondenzátoru komutačního obvodu. Toto napětí se odebírá z kapacitního děliče C₄₁₀, C₄₁₁ a přivádí přes rezistor R₄₀₅ a cívku L₄₀₅ na řídicí elektrodu tyristoru. Tlumivka zpožďuje spouštěcí proud, protože maximum nárůstu napětí předbíhá okamžik, kdy tyristor přebírá proud.

V okruhu horizontálních vychylovacích cívek, které jsou připojeny přes kondenzátor C₄₁₅, je přesytka linearity L₄₀₈ a obvody korekce rastru, které budou popsány později. Diody D₄₀₅, D₄₀₆ připojené přes tlumivku L₄₀₇ paralelně k vychylovacím cívkám, zavádějí stejnosměrnou složku proudu podle nastavení odporového trimru P₄₀₁; jeho nastavením se středí rastr na obrazov-ce.

Na spínač činného běhu je připojeno přes kondenzátor C₄₀₇ primární vinutí (vývody 5—9) transformátoru Tr₄₀₂. Z transformátoru se odebírají pomocná napětí (impulsy řádkového zpětného běhu) a dodává energie sekundárním napájecím zdrojům, které napájejí ostatní obvody přijímače (obr. 20). Je to zdroj napětí anodového a fokuzačního a napětí druhé mřížky obrazovky, který je napojen na vývody 14-16 usměrnění používá násobič TVK30 Si6. Žhavicí vlákno obrazovky se napájí z vývodů 1-2. Další zdroje jsou na modulu U. Zdroj 12 V usměrňuje napětí v činném běhu diodou D₁. Zdroj E pro napájení koncových stupňů obrazových zesilovačů je připojen na vývod 11 a diodou D_2 se usměrňují impulsy zpětného běhu. Cívka L_2 prodlužuje úhel otevření a potlačuje nežádoucí oscilace.

Na tento zdroj navazuje obvod pro zhášení bodu při vypnutí přijímače. První mřížka obrazovky je připojena přes diodu D₃. Dioda je otevřena proudem přes rezistor R₅. Kondenzátor C₆ je nabitý přes rezistor R₈. Po vypnutí přijímače se napětí zdroje E zmenší, tím se zmenší i výstupní napětí obrazových zesilovačů, které napájejí katody obrazovky, což by způsobilo rozsvícené body na stínítku, pokud katody emitují elektrony. Avšak tím, že se zmenšení napětí zdroje E přenese přes kondenzátor C₆ na mřížku obrazovky, trysky se uzavřou. Generátor vertikálního rozkla-

du se napájí ze zdroje F (deska U na obr. 20). Ten usměrňuje napětí v činném běhu diodami D₄ a D₅, zapojenými paralelně. Kondenzátory přemosťující diody u všech zdrojů potlačují vznik rušení.

Ve zdrojích se usměrňují buď impulsy zpětných běhů nebo průběh v aktivní části řádku. Napětí v impulsu zpětného běhu je větší, a proto se využívá ve zdrojích s větším výstupním napětím. Naproti tomu úhel otevření u diody usměrňující činný běh je větší, což je výhodné také z hlediska nároku na vyhlazovací kondenzátory, proto se používá u zdrojů s větším proudovým zatížením.

Napájení nf koncového stupně dělá problémy proměnlivým zatížením, které je nesynchronní s obrazem. K omezení vlivu na rozkladové obvody se odebírá energie z vinutí L4, vázaného na vinutí napájecí tlumivky L3 kombinované cívky Tr₄₀₁. Vliv na obvody rozkladu omezuje též nárazová tlumivka L₄₀₁.

Obvody stabilizace horizontálního rozkladu a ochrany — modul H

Regulační spínač S₃ (obr. 21) tyristorového koncového stupně je na modulu H (obr. 20). Tvoří jej dioda D₁ a tyristor Ty₁. Tyristor je spouštěn obvody, které vyhodnocují rozkmit napětí na vinutí 4—10 (L₄) transformátoru řádkového rozkladu Tr₄₀₂. Impuls zpětného běhu záporné polarity se přivádí na kontakt 3 konektoru modulu. Záporným impulsem se přes rezistor R_{12} a diodu D_5 nabije kondenzátor C_9 i kapacitní dělič C_7 , C_6 , přes který se střídavé napětí na kondenzátoru C9 přenáší na bázi tranzistoru T2. Úroveň záporného napětí na kondenzátoru C₉ určuje Ze-nerova dioda D₆ (vytváří srovnávací úroveň pro rozkmit napětí v řádkovém rozkladu). Kondenzátor C11 se při tom nabíjí a po skončení zpětného běhu se přes diodu D₄ nabíjí kondenzátor C₈. Napětí na tomto kondenzátoru závisí na rozkmitu napětí na řádkovém transformátoru. Přes rezistory R₉, R₁₁ a odporový trimr P₁ se nabíjí kondenzátor C₉ tak, že na něm vzniká napětí pilovitého průběhu. Z běžce odporoví vzniká napětí pilovitého průběhu. Z běžce odporoví vzniká napětí pilovitého průběhu. vého trimru P1 se toto napětí přivádí na bázi tranzistoru T2. V určitém okamžiku dosáhne napětí na bázi T2 úrovně, při níž se tranzistor otevírá. Ten pak otevírá i tranzistor T₁ a přes kondenzátor C1 dostává tyristor Ty1 spouštěcí Kladná zpětná vazba přes kondenzátor C5 zvětšuje strmost hrany spouštěcího impulsu. Zvětší-li se rozkmit napětí na koncovém stupni řádkového rozkladu, zvětší se napětí na kondenzátoru C₈. Napětí na bázi tranzistoru se zvětšuje rychleji a tyristor se otevře dříve, což zmenší energii v komutačním obvodu. Odporovým trimrem P1 se mění především stejnosměrná složka napětí na bázi tranzistoru T₂, čímž se ovládá okamžik otevření tyristoru. Lze tedy odporovým trimrem P₁ nastavit rozkmit napětí v koncovém stupni řádkového rozkladu. (Nastavuje se podle napětí zdroje anodového napětí obrazovky.)

Štejnosměrná úroveň se ovlivňuje i napětím napájecího zdroje proudem přes rezistory R₁₃ a R₁₄, čímž se redukuje zbytková chyba regulace při

١

Obr. 21. a) Náhradní zapojení komutačního obvodu přijímače COLOR 110, b) průběh napětí na komutačním spínači, c) průběh proudu komutačním spínačem

kolísání napětí sítě. Podobně se chyba regulace ovlivňuje i napětím vzniklým usměrněním impulsů, vzniklých na rezistoru R₄₀₁ proudem násobiče zdroje vn, což zmenšuje změnu rozměru s jasem obrazu.

Napájecí napětí spouštěcího obvodu (tranzistory T_1 a T_2) je odvozeno z anodového napětí na tyristoru Ty_1 . Když dosáhne napětí na komutačním tyristoru maxima, přestane diodou D₁ téci proud a na anodě tyristoru Ty, se zvětší napětí. Tato změna napětí na anodě Ty_1 , vydělená kapacitním děličem C_2 , C_3 , se přenese na spouštěcí obvod, který spustí, jakmile je tranzistor T2 otevřený, nejdříve však při zvětšení napětí na anodě tyristoru, což zaručuje spuštění i v tom případě, že napájecí napětí překročí možnosti řídicího obvodu. (Spouštěcí impuls, který by přišel dříve, než se na tyristoru objeví napětí, by tyristor nespustil.) Záporný impuls při zmenšení napětí na anodě tyristoru se odvádí diodou D2. Při rozběhu je zajištěno napájení přes rezistor R₁₅.

Dioda D₁₅ s rezistorem R₂₈ zajišťují nabíjení kondenzátoru C₉ i při rychlém poklesu amplitudy impulsů zpětných běhů, což zabraňuje nežádoucímu rozkmitání regulační smyčky.

Ochranné obvody zabezpečují ochranu proti překročení napětí na tyristoru či poškození sekundárních zdrojů a napájených obvodů, především obrazovky. Podstatu ochranných obvodů tvoří klopný obvod z tranzistorů T₃ a T₄. Úroveň napětí na emitoru tranzistoru T₃ určuje Zenerova dioda D₁₂. Do báze tohoto tranzistoru se přes diodu D₁₄ přivádí napětí impulsů řádkových zpětných běhů z děliče R₂₇, P₂, R₂₉. Odporovým trimrem P2 je nastavena taková úroveň, aby špičky těchto impulsů otevřely tranzistor T3, jestliže amplituda impulsů zpětných běhů odpovídá anodovému napětí obrazovky . 27,5 kV (bez zatížení anodovým proudem). Aby napětí zdrojů, odebírajících energii v aktivní části řádkové periody, nepřesahovalo tolerovatelné hranice, přivádí se napětí opačně polarizova-ného průběhu přes diodu D₉ z děliče R₂₀, R₁₉. Konečně při nadměrném proudu obrazovky se zvětšuje amplituda impulsu na kontaktu 6 konektoru modulu. Tyto impulsy po integraci článkem R_{18} , C_{13} otevírají tranzistor T_3 přes diodu D_8 . Proud tranzistoru T_3 otvírá tranzistor T_4 a zvětšování napětí na kolektoru se přenáší přes diodu D_{11} , kondenzátor C_{14} a rezistor R_{26} na bázi tranzistoru T_3 . Kondenzátor C_{14} s rezistorem R_{26} určuje dobu sepnutí tranzistorů. Současně se napětí z kolektoru T_4 přenáší na diodu D_{10} a rezistorem R_{22} na řídicí elektrodu komutačního tyristoru, který se otevře a vyřadí obvod rozkladu z činnosti. (Elektronická pojistka ve zdroji při tom vypne napájení.) Po nabití kondenzátoru C_{14} se obvod překlopí zpět a náboj kondenzátoru se vybije přes diodu D_{13} a rezistor R_{23} .

Televizní přijímače COLOR 110 ST (typ 4415A) jsou osazeny novějším typem obrazovky TESLA 671QQ22 nebo podobnými typy z dovozu, jejichž vychylovací systém je odlišný. Má menší vychylovací příkon a menší nároky na obvody korekce rastru. Impedance vychylovacích cívek je podstatně větší, což spolu s větší účinností vychylovacího systému si vyžádalo úpravy v obvodech horizontálního rozkladu, především změnu transformátoru Tr₄₀₂, který má jiná vinutí a jiné umístění vývodů. Další změny se týkají hodnot součástek v komutačním obvodu — viz schéma obr. 22.

Aby bylo zachováno vrcholové napětí na tyristoru činného běhu Ty₄₀₂, je impedance vychylovacích cívek transformována přes transformátor horizontálního rozkladu Tr₄₀₂. V sérii s vychylovacími cívkami je vinutí 6—8, které s primárním vinutím 5—9 tvoří autotrans-

formátor, zvětšující napětí na vychylovacích cívkách. Rozdělení vinutí částečně symetrizuje napětí na vývodech vychylovacích cívek (z vinutí 6—8 se přivádí napětí opačné polarity), což zmenšuje vyzařování. Kondenzátor "S", C₄₁₅, v obvodu vychylovacích cívek má podstatně menší kapacitu, ale je dimenzován na větší napětí. Napojením anody tyristoru Ty₄₀₂ na odbočku 4, jednoho závitu vinutí 6—8, se částečně zmenšuje skok napětí na vychylovacích cívkách při přechodu proudu z tyristoru na diodu. Změna napětí na vychylovacích cívkách způsobuje změnu rychlosti vychylování paprsku, a tím i rozdíl jasu. Vzniká tak pozorovatelný svislý pruh s odlišným jasem při pravém okraji obrazu. (U přijímače COLOR 110 se tento nedostatek řeší samostatným vinutím 6-8, tvořícím jeden závit, přes které jsou připojeny diody diodového modulátoru.) Vzhledem k tomu, že se přes primární vinutí transformátoru Tr₄₀₂ uzavírá část vychylovacího proudu, je vinutí zesíleno a kapacita oddělovacího kondenzátoru C407 podstatně zvětšena. Ztráty ve vychylovacích cívkách jsou menší, proto musel být upraven i komutační obvod. Mění se kapacity kondenzátoru na pozicích C₄₀₄, C₄₀₅, C₄₀₆, C₄₁₀. Mění se i obvod ,,tlumící" zvětšování napětí na komutačním tyristoru, C409 a R404.

Primární zdroje

Obvody horizontálního rozkladu přijímačů COLOR 110 i COLOR 110 ST jsou napájeny ze sítě dvěma primár-

MEZINÁRODNÍ A MEZIMĚSTSKÁ TELEFONNÍ A TELEGRAFNÍ ÚSTŘEDNA v Praze 3, Olšanská 6

přiime

výzkumné a vývojové pracovníky se zaměř, na měřicí a kontrolní činnost v oboru spoj. systémů II. až IV. generace.

Odbor. znalosti: sděl. elektrotechnika po vedeních Vzděl.: VŠ + praxe Plat. zařaz. podle ZEUMS II, tř. 10-13 la

Pro mimopražské pracovníky zajistíme ubytování. Poskytujeme náborové výhody.

Informace osobně, písemně i telefonicky na č. tel. 714 41 64, 27 28 53.

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce ARB), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. tohoto čísla byla dne 31. 7. 1987, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátú pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

G As FET CF300B (180), P8002 (200), TDA1001 (120).

J. Tichý, 330 12 Horní Bříza 475.

Zosliňovače VKV – CCIR, OIRT s MOSFE (190), III.

TV pásmo s MOSFE (190), IV. – V. TV s BFT66 (360), IV. – V. TV s BFT66 a BFR91 (470), BF961 (60). I.

1V. – V. IV s BF166 a BFH91 (4/0), BF961 (60). I. Omámik, Odborárska 1443, 020 01 Púchov. Poč. Sharp MZ821 (8000), nový, nevyužitý. J. Svoboda, U cukrovaru 1075, 278 01 Kralupy n. Vlt. OML-ZM (1500), 8080, 8228, 8224, 8255, 8708, 4116, 2114 (80, 60, 40, 100, 150, 90, 90), různé IO, T, D, C (50 % MC). Seznam proti známce. Ing. P. Chmela,

Rosenbergových 11/c, 612 00 Brno. Ant. zes. 4. a 5. pásmo, BFT66 + BFR90, vstup 75/300 Ω , výstup 75 Ω , nap. +12 V po koax. kabelu (450). H. Adamcová, Falfanova 572, 149 00 Praha 4. Tuner 813A HI-fi (3200), Grundig Satelit 2000 + schéma (4200), magn. B100 + 20 pás. (1000 + 1500), nová vědec. kalkul. na solár. čl. (1200), bar. hudba dle AR9/73 (500), část. možná výměna za RX, radiomag. Koupím příd. zař. na SSB Grundig a čidlo na plyn + CO. S. Panský, Nad Laurovou 8, 150 00 Praha 5.

IO pro dálk. ovl. U806, U807, návod (280, 120, 10), EPROM 1702, 2708, 2716 (50, 120, 220), Z80 – PIO (140). Koupím 4164, 27128. P. Sova, Heranova 1548, 155 00 Praha 5.

BFR91 (90), BF960 (70). Lad. Szilágyi, Bernolák. n.

30, 940 01 Nové Zámky.

MIDI Interface fy Jellinghaus pro ZX – Spectrum

48 kB, ext. synchro s dělením 16 nebo 96

imp./takt + program Composer CMP 1.1 (8 stop) (4000) nebo vyměním za tiskárnu. K. Marcoň, Leninova 933, 768 24 Hulín.

Paměti DRAM 4164, 200 ns, 8 kusů (750), příp. i jednotlivě, DT401 (20), další materiál – seznam proti známce. Poštou. R. Klusáková, Skupova 12, 320 04

Přístrojové skříně podle ARB1 – 85, typ I – II – III (80, 90, 100) z mat. Al - Fe, zákl. barva - šedá. Panely Al, bočnice + kryty Fe. F. Vovesný, J. Faimonové 18, 628 00 Brno.

KOUPĚ

Btvp C430 - 432 na součástky. J. Šmehyl, 790 65

Vrtáky Ø 0,8 a 1 mm, cupr., různý el. a konstr. mat., Izost., obdél. LED, krystaly, filtry 455, 10,7, SN74164, TR161, 191, různé T, IO, pro nf i vf, TTL, nabídněte. O. Bišták, VÚ 1534 Radošov, 364 71 Bochov

ZX Spectrum plus, interface, 2× joystik i jednotlivě. J. Svoboda, U cukrovaru 1075, 278 01 Kralupy n. Vlt. **K500TM131,** MC10131P, BF981, SO42P, páry SFE10,7 MA. B. Saldoň, Dukelská 11, 915 01 Nové Město n. V.

Cartridge na Atari 800XL, příp. vyměním, cena nerozhoduje. Lad. Tomeček, Dobrotice 138, 769 01 Holešov

Nahraté hudobné VHS kazety len Hi-fi stereo I ad Szilágyi, Bernolák. n. 30, 940 01 Nové Zámky. ARB 2-5/1978, 1, 6/1979, 1, 4, 6/1980. Ladislav

Flajšinger, Marie Hübnerové, 56, 621 00 Brno. 41256, 27256, 8272, 8088, 8086, 8284, HM6264. Ing. P. Černota, Komsomolská 422, 708 00 Ostra-

va-Poruba. IO - CA3089 (TDA1200), filtr 10,7 MURATA. J. Cvak, Družstevní 25, 412 01 Litoměřice.

Tov. měřicí pásky na cívce i v CC, cenu respektuji. P. Heczko, Na zákopech 175, 739 61 Třinec III. MC10131 nebo ekviv. (sovětské ne). I. Janda, 373 82

Včelná 101.

Basový reproduktor ARN 734 (4 Ω, 20 W), nový i za původní cenu. L. Ritnošík, Mezi trhy 6, 746 01

Tiskárnu na jednotlivé listy papíru i rol. papír se stykem Centronics a větší množství methal papíru š. 100 pro ZX Printer. J. Procházka, Jánského 14, 772 00 Olomouc

Filtr s.s. SFW 10,7 MA, filtr s. s. SPF455BG, SPF455AG, předladěnou VKV jednotku TESLA 1PB00148 (přijímač Soprán), transformátorová vinutí od 0,1–1 mm v jakémkoliv množství, ladicí kondenzátor 1PN 70 557. J. Mol, Riegrova 7, 741 01 Nový Jičín.

VÝMĚNA

Mikropočítač Philips VG8010 MSX, 32 kB ROM, 48 kB RAM (podrobnější údaje viz ST 2/87, str. 63) za ZX Spectrum 48 kBS interf. pro joystick. Nebo prodám a koupím. J. Esteřák, Sychrov 68, 755 01

Česky komentovaný výpis ROM Spectra (tasw. file na kazetě C90) za 2 páry FRB konektorů (62 a 30 pinů). M. Skokánek, Želivecká 2797, 100 00 Praha

Relé Lun. 24 V za Lun 6 V (12 V). V. Zajac, Lomnická 14, 080 05 Přerov-Solivar

RÛZNÉ

Kdo postaví kvalitní korekční předzesilovač pro magnetodynamickou přenosku. Pavel Dedek, 798 24 Pivín 149.

Podnik Restaurace

v Děčíně. Tržni 19, 405 - 48

zakoupí výpočetní system ATARI:

počítač 130 XE (příp. 800 XL) disketovou jednotku 1050 (5.25°) tiskárnu 1029 (příp. 1027) i jednotlivė. 100% stav.