

POTENCIACIÓN

Vigilada Mineducación

Exponentes enteros (negativos y positivos) > Reglas para trabajar con exponentes > Notación científica

NOTACIÓN EXPONENCIAL

Si a es cualquier número real y n es un entero positivo, entonces la n-ésima potencia de a es

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ factores}}$$

El número *a* se denomina **base**, y *n* se denomina **exponente**.

EJEMPLO 1 Notación exponencial

(a)
$$(\frac{1}{2})^5 =$$

(b)
$$(-3)^4 =$$

(c)
$$-3^4 =$$

$$\bullet \left(\frac{1}{2}\right)^4 = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{16}$$

•
$$(-5)^6 = (-5) \cdot (-5) \cdot (-5) \cdot (-5) \cdot (-5) \cdot (-5) = 15625$$

$$-5^6 = -(5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5) = -15625$$

•
$$0^5 = 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 = 0$$
.

EXPONENTES CERO Y NEGATIVOS

Si $a \neq 0$ es cualquier número real y n es un entero positivo, entonces

$$a^0 = 1$$
 y $a^{-n} = \frac{1}{a^n}$

Nota: La expresión 0^0 no está definida.

EJEMPLO 2 | Exponentes cero y negativos

(a)
$$(\frac{4}{7})^0 =$$

(b)
$$x^{-1} =$$

(c)
$$(-2)^{-3} =$$

LEYES DE EXPONENTES

Ley

1.
$$a^m a^n = a^{m+n}$$

Ejemplo

1.
$$a^m a^n = a^{m+n}$$
 $3^2 \cdot 3^5 = 3^{2+5} = 3^7$

Descripción

Para multiplicar dos potencias del mismo número, sume los exponentes.

2.
$$\frac{a^m}{a^n} = a^{m-n}$$

2.
$$\frac{a^m}{a^n} = a^{m-n}$$
 $\frac{3^5}{3^2} = 3^{5-2} = 3^3$

Para dividir dos potencias del mismo número, reste los exponentes.

3.
$$(a^m)^n = a^{mn}$$

3.
$$(a^m)^n = a^{mn}$$
 $(3^2)^5 = 3^{2 \cdot 5} = 3^{10}$

Para elevar una potencia a una nueva potencia, multiplique los exponentes.

4.
$$(ab)^n = a^n b^n$$
 $(3 \cdot 4)^2 = 3^2 \cdot 4^2$

$$(3 \cdot 4)^2 = 3^2 \cdot 4^2$$

Para elevar un producto a una potencia, eleve cada uno de los factores a la potencia.

$$5. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\left(\frac{3}{4}\right)^2 = \frac{3^2}{4^2}$$

Para elevar un cociente a una potencia, eleve el numerador y el denominador a la potencia.

EJEMPLO 3 Uso de las Leyes de Exponentes

(a)
$$x^4x^7 = x^{4+7} = x^{11}$$

Ley 1:
$$a^m a^n = a^{m+n}$$

(b)
$$y^4y^{-7} = y^{4-7} = y^{-3} = \frac{1}{y^3}$$

Ley 1:
$$a^m a^n = a^{m+n}$$

(c)
$$\frac{c^9}{c^5} = c^{9-5} = c^4$$

$$Ley 2: \frac{a^m}{a^n} = a^{m-n}$$

(d)
$$(b^4)^5 = b^{4\cdot 5} = b^{20}$$

Ley 3:
$$(a^m)^n = a^{mn}$$

(e)
$$(3x)^3 = 3^3x^3 = 27x^3$$

Ley 4:
$$(ab)^n = a^n b^n$$

(f)
$$\left(\frac{x}{2}\right)^5 = \frac{x^5}{2^5} = \frac{x^5}{32}$$

Ley 5:
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

EJEMPLO 4 | Simplificación de expresiones con exponentes

Universidad Pontificia Bolivariana

(a)
$$(2a^3b^2)(3ab^4)^3$$

(a)
$$(2a^3b^2)(3ab^4)^3$$
 (b) $(\frac{x}{y})^3(\frac{y^2x}{z})^4$

LEYES DE EXPONENTES

Ley

Descripción

6.
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$$

$$\left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)$$

Para elevar una fracción a una potencia negativa, invierta la fracción y cambie el signo del exponente.

7.
$$\frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}$$

$$\frac{3^{-2}}{4^{-5}} = \frac{4^5}{3^2}$$

Para pasar un número elevado a una potencia del numerador al denominador o del denominador al numerador, cambie el signo del exponente.

EJEMPLO 5 | Simplificación de expresiones con exponentes negativos

Fundada en 1936

Elimine exponentes negativos y simplifique cada expresión.

(a)
$$\frac{6st^{-4}}{2s^{-2}t^2}$$

(a)
$$\frac{6st^{-4}}{2s^{-2}t^2}$$
 (b) $\left(\frac{y}{3z^3}\right)^{-2}$

(a)
$$\left(\frac{a^{1/6}b^{-3}}{x^{-1}y}\right)^3 \left(\frac{x^{-2}b^{-1}}{a^{3/2}y^{1/3}}\right)$$
 (b) $\frac{(9st)^{3/2}}{(27s^3t^{-4})^{2/3}} \left(\frac{3s^{-2}}{4t^{1/3}}\right)^{-1}$ (c) $\left(\frac{q^{-1}r^{-1}s^{-2}}{r^{-5}sq^{-8}}\right)^{-1}$ (d) $\left(\frac{xy^{-2}z^{-3}}{x^2y^3z^{-4}}\right)^{-3}$

▼ Notación científica

Los científicos usan notación exponencial como una forma compacta de escribir números muy grandes y números muy pequeños. Por ejemplo, la estrella más cercana además del Sol, Proxima Centauri, está aproximadamente a 40,000,000,000,000 de km de distancia. La masa del átomo de hidrógeno es alrededor de 0.000000000000000000000000166 g. Estos números son difíciles de leer y escribir, de modo que los científicos por lo general los expresan en *notación científica*.

Fundada en 1936

NOTACIÓN CIENTÍFICA

Se dice que un número positivo *x* está escrito en **notación científica** si está expresado como sigue:

$$x = a \times 10^n$$
 donde $1 \le a < 10$ y n es un entero

Por ejemplo, cuando decimos que la distancia a la estrella Proxima Centauri es 4×10^{13} km, el exponente positivo 13 indica que el punto decimal debe recorrerse 13 lugares a la *derecha*:

Fundada en 1936

$$4 \times 10^{13} = 40,000,000,000,000$$

Mueva el punto decimal 13 lugares a la derecha

Cuando decimos que la masa de un átomo de hidrógeno es 1.66×10^{-24} g, el exponente -24 indica que el punto decimal debe moverse 24 lugares a la *izquierda*:

Mueva el punto decimal 24 lugares a la izquierda

EJEMPLO 6 | Cambio de notación decimal a científica

En notación científica, escriba cada uno de los números siguientes.

(a) 56,920

(b) 0.000093

Fundada en 1936

SOLUCIÓN

(a)
$$56,920 = 5.692 \times 10^4$$

4 lugares

(b)
$$0.000093 = 9.3 \times 10^{-5}$$
 5 lugares

REFERENCIA

Stewart, J., Precálculo Matemáticas para el Cálculo, Cengage Learning, séptima edición.

Referencia en línea

http://www.ebooks7-24.com.consultaremota.upb.edu.co/stage.aspx?il

