Cvičení 3 – Okruhy, obory a tělesa

14. října 2025

Příklad 1. Rozhodněte o následujících strukturách, zda jsou těleso, obor, okruh:

- a) \mathbb{Z}_n , kde $n \in \mathbb{N}$, s klasickým sčítáním a násobením,
- b) $\mathbb{Z} \times \mathbb{Z}$, se sčítáním a násobením po složkách,
- c) matice 2×2 nad tělesem \mathbb{Z}_7 , značme $M_2(\mathbb{Z}_7)$, s maticovým sčítáním a násobením,
- d) horní trojúhelníkové matice o rozměru 3×3 nad \mathbb{Q} , s maticovým násobením a sčítáním,
- e) $\mathbb{Z}[i]$, komplexní čísla s celočíselnými koeficienty, s klasickým sčítáním a násobením,
- f) $\mathbb{Q}[i]$, komplexní čísla s racionálními koeficienty, s klasickým sčítáním a násobením,
- g) $\mathbb{Z}[[x]]$, množina všech formálních mocninných řad s celočíselnými koeficienty, s klasickým sčítáním a násobením,
- h) \mathbb{H} , kvaterniony, reálná čísla doplněná o imaginární jednotky i,j,k splňující $i^2=j^2=k^2=ijk=-1$,
- i) pro libovolnou množinu S definujeme strukturu na $\mathcal{P}(S)$ takovou, že sčítání dvou množin bude symetrická diference a násobení bude rpůnik dvou množin,
- j) Z, kde sčítání definujeme jako maximum ze dvou čísel a násobení jako největší společný dělitel dvou čísel.

Příklad 2. Mějme těleso komplexních čísel \mathbb{C} , uvažujme následující množiny:

- a) $R_1 = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\},\$
- b) $R_2 = \{a + b\sqrt{2} + c\sqrt{3} : a, b, c \in \mathbb{Z}\},\$
- c) $R_3 = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\},\$
- d) $R_4 = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}.$

Rozhodněte, která R_i tvoří podokruh $\mathbb C$ a která tvoří podtěleso $\mathbb C$.

Příklad 3. Dokažte, že komutativita sčítání plyne z ostatních axiomů komutativních okruhů.

Příklad 4. Pro p prvočíslo dokažte, že jediné invertibilní prkvy $Z_p[x]$ jsou polynomy stupně 0.

Příklad 5. Najděte invertibilní prvek $Z_4[x]$ stupně 1. Najděte nekonečně mnoho invertibilních prkvů libovolného stupně.

Příklad 6. Určete podílové těleso pro $\mathbb{Z}[i]$ a pro $\mathbb{Z}[\sqrt{2}]$.

Příklad 7. Najděte podokruh $R \leq M_2(\mathbb{R})$ takový, že $R \cong \mathbb{C}$. Obdobně nalezněte $S \leq M_2(\mathbb{R})$ takový, že $S \cong \mathbb{H}$. \cong se myslí, že jsou izomorfní, tj. jeden dostaneme z druhého jen přejmenováním prvků.

Příklad 8. Mějme R okruh. Řekneme, že prvek $a \in R$ je *idempotentní*, pokud platí, že $a^2 = a$. Množinou S(R) značíme množinu všech idempotentních prvků.

- a) Ukažte, že pro všechna tělesa T platí, že $S(T) = \{0, 1\}$. Platí i opačná implikace?
- b) Určete $S(\mathbb{Z}_{12})$.

Domácí úkol. Mějme $e \in R$ idempotentní prvek okruhu R. Rozhodněte, zda množina $eRe = \{eae \mid a \in R\}$ s operacemi zděděnými z R je okruh a zda je to podokruh R.