Improvements to a Branch-Cut-and-Price Algorithm for the Exact Solution of Parallel Machines Scheduling Problems

Daniel Oliveira, Artur Pessoa

Universidade Federal Fluminense

May 23, 2016 Column Generation 2016

Outline

- 1 The Parallel Machines Scheduling Problem
- 2 The BCP of Pessoa, Uchoa, Poggi, Rodrigues (2010)
- 3 The Improved Algorithm
 - Newly Proposed Cuts over Extended Variables
 - Additional Known Cuts
 - Alternative Time-Indexed Formulations
 - New Cuts over TIF
- 4 Experiments
- Conclusions

The Parallel Machines Scheduling Problem

- $J = \{1, \ldots, n\}$
- $M = \{1, \ldots, m\}$
- Processing times p_j
- Cost $f_i(C_t)$

Weighted Tardiness:

- Due dates d_i
- Weights w_j
- Minimize $\sum w_j T_j$

- 1 The Parallel Machines Scheduling Problem
- 2 The BCP of Pessoa, Uchoa, Poggi, Rodrigues (2010)
- The Improved Algorithm
 - Newly Proposed Cuts over Extended Variables
 - Additional Known Cuts
 - Alternative Time-Indexed Formulations
 - New Cuts over TIF
- 4 Experiments
- Conclusions

- Variables x^t_{ij}: job j succeeds job
 i at time t
- Schedules are paths in G = (V, A)
 - $V = \{(i, t)\}$
 - $A = \{((i, t p_i), (j, t))\}$
 - ▶ $i, j \in J_0 = J \cup \{0\}$
 - ▶ $t \in \{0, ..., T\}$

$$\min \quad \sum_{i \in J_0} \sum_{j \in J \setminus \{i\}} \sum_{t=p_i}^{T-p_j} f_j \left(t+p_j\right) x_{ij}^t$$

min
$$\sum_{i \in J_0} \sum_{j \in J \setminus \{i\}} \sum_{t=p_i}^{r-p_j} f_j(t+p_j) x_{ij}^t$$

s.t.
$$\sum_{j \in J_0} x_{0j}^0 = m$$

$$\min \sum_{i \in J_0} \sum_{j \in J \setminus \{i\}} \sum_{t=p_i}^{I-p_j} f_j(t+p_j) x_{ij}^t$$

s.t.
$$\sum_{i \in J_0 \setminus \{j\}} \sum_{t=p_i}^{I-p_j} x_{ij}^t = 1 \quad (j \in J)$$
$$x \in Z^+$$

ATIF Reformulation

- Pseudo-Schedule: Path from (0,0) to (0,T) in G
- λ_p : pseudo-schedule p is part of the solution
- $x_a^t = \sum_{p \in P} q_a^{tp} \lambda_p$
- Substituting in the ATIF without flow conservation

ATIF Reformulation

$$\min \sum_{p \in P} \left(\sum_{(i,j)^t \in A} q_{ij}^{tp} f_j(t+p_j) \right) \lambda_p$$

$$\text{s.t.} \sum_{p \in P} \left(\sum_{(j,i)^t \in A} q_{ji}^{tp} \right) \lambda_p = 1 \qquad (\forall i \in J) \qquad (\pi_i)$$

$$\sum_{p \in P} \left(\sum_{(0,j)^0 \in A} q_{0j}^{0p} \right) \lambda_p = m \qquad (\pi_0)$$

$$\lambda \ge 0$$

$$\sum_{a^t \in A} \alpha_{al}^t x_a^t \left(\sum_{p \in P} q_a^{tp} \lambda_p \right) \ge b_l \qquad (\forall l \in \{n+1,\dots,r\}) (\pi_l)$$

$$\bar{c}_a^t = f_j(t+p_j) - \sum_{n=1}^r \alpha_{nl}^t \pi_l$$

Branch-Cut-and-Price

- Pricing
 - ▶ Shortest path from (0,0) to (0,T) in G with arc lengths \bar{c}_a^t
- Fixing x_a^t variables by Reduced Costs after every 5 iterations
- Extended Capacity Cuts (Uchoa et al., 2008)
- Dual stabilization of Wentges (1997)
- Strong branching: 8 possible choices
- After Root, if $|A| \le 200.000$: Feed reduced ATIF to MIP Solver (CPLEX 11.1)

- 1 The Parallel Machines Scheduling Problem
- 2 The BCP of Pessoa, Uchoa, Poggi, Rodrigues (2010)
- The Improved Algorithm
 - Newly Proposed Cuts over Extended Variables
 - Additional Known Cuts
 - Alternative Time-Indexed Formulations
 - New Cuts over TIF
- 4 Experiments
- Conclusions

The Overload Elimination Cuts

$$u^t = \sum_{a^t \in \delta^-(S)} x_a^t \quad (t = 1, \dots, T)$$
 $v^t = \sum_{a^t \in \delta^+(S)} x_a^t \quad (t = 1, \dots, T)$

Theorem

For $m \ge 2$, $S \subseteq J$, and $t \in \{1, ..., t_{max}\}$:

$$\sum_{q=t}^{t_1} v^q + \sum_{q=t_1+1}^T 2 v^q - \sum_{\substack{q=\max\{t_1,\\T-\rho(S)+m(t-1)+1\}}}^{T-1} u^q \ge 2,$$

$$t_1 = \rho(S) - t - (m-2)(t-1).$$

The Overload Elimination Cuts

For two machines:

$$\sum_{q=t}^{p(S)-t} v^q + \sum_{q=p(S)-t+1}^{T} 2 v^q - \sum_{\substack{q=\max\{p(S)-t,\\T-p(S)+2t-1\}}}^{T-1} u^q \geq 2$$

OEC Separation

- Genetic Algorithm
- Solution: (*S*, *t*)
- $\bar{x} \rightarrow \bar{G}$
- ullet Avg Completion Times: $ar{\mathcal{C}}_j = \sum\limits_{(i,t)|ar{x}_{ij}^t>0} t\,ar{x}_{ji}^t$
- Initial Population
 - connected component of k earliest jobs, including k-th job, $k = 1, \ldots, n$
- Crossover
 - 2 random solutions
 - $ightharpoonup S_{child} = S_{father} \cap S_{mother}$
 - $S_{child} = \varnothing \rightarrow$ use a path connecting one element from each
- Local Search: evaluate each single insertion/deletion from S
- Selection: 20 best solutions

Triangle Clique Cuts

- Pessoa, Uchoa and Poggi, 2009 (BCP for the HFVRP)
- $S \subset J, |S| = 3$
- Compatibility graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- $\mathcal{V} = \{(i,j)^t \in A\}$
- $\mathcal{E} = \{((i,j)^t, (j,k)^{t+p_j}) \mid i,j,k \in S\}$

For any independent set $i \in \mathcal{G}$:

$$\sum_{a^t \in I} x_a^t \le 1$$

Switching to a MIP Solver

- ullet Solve Root Node o Branching Freed Residual Model to CPLEX
- Residual Model: Excludes variables fixed to zero
- Pessoa et al. (2010): ATIF residual model
- Now: TIF residual model
- Time-Indexed Formulation, Dyer and Wolsey (1991)
 - ▶ Variables y_i^t : job j completes at time t

$$\begin{aligned} & \min \quad \sum_{j \in J} \sum_{t = p_j}^T f_j(t) \, y_j^t \\ & \text{s.t.} \quad \sum_{t = p_j}^T y_j^t = 1 & (j \in J) \\ & \sum_{j \in J} \sum_{t' = t}^{\min\{t + p_j - 1, \ T\}} y_j^{t'} \leq m \quad (t = 1, \dots, T) \\ & y \in \{0, 1\} \end{aligned}$$

- Variable definition
 - y Variables y_i^t : job j completes at time t
 - z Variables z_i^t : job j completes until time $t (y_i^t = z_i^t z_i^{t-1})$
- How to enforce that no more that *m* machines are running?
 - F Network Flow
 - R Resource Constraints
- 4 different time-indexed formulations (R_y, R_z, F_y, F_z)

$$R_y = R_z = F_y = F_z$$

$$\begin{aligned} & \min \quad \sum_{j \in J} \sum_{t = \rho_j}^T f_j(t) \, y_j^t \\ & \text{s.t.} \quad \sum_{t = \rho_j}^T y_j^t = 1 & (j \in J) \\ & \sum_{j \in J} \sum_{t' = t}^{\min\{t + \rho_j - 1, \, T\}} y_j^{t'} \leq m \quad (t = 1, \dots, T) \\ & y \in \{0, 1\} \end{aligned}$$

$$R_y$$
 R_z R_y R_z

$$\begin{aligned} & \min & & \sum_{j \in J} \sum_{t=p_j}^T f_j(t) \left(z_j^t - z_j^{t-1} \right) \\ & \text{s.t.} & & z_j^{p_j-1} = 0 & (j \in J) \\ & & z_j^{t-1} \leq z_j^t & (j \in J; \ t = p_j, \dots, T) \\ & & z_j^T = 1 & (j \in J) \\ & & \sum_{j \in J} \left(z_j^{\min\{t+p_j-1, T\}} - z_j^{t-1} \right) \leq m \quad (t = 1, \dots, T) \\ & & z \in \{0, 1\} \end{aligned}$$

$$R_y = R_z = F_y = F_z$$

$$\begin{aligned} & \min \quad \sum_{j \in J} \sum_{t = \rho_j}^T f_j(t) \, y_j^t \\ & \text{s.t.} \quad \sum_{t = \rho_j}^T y_j^t = 1 & (j \in J) \\ & \sum_{j \in J} \sum_{t' = t}^{\min\{t + \rho_j - 1, \, T\}} y_j^{t'} \leq m \quad (t = 1, \dots, T) \\ & y \in \{0, 1\} \end{aligned}$$

$$R_y$$
 R_z F_y F_z

$$\begin{aligned} & \min \quad \sum_{j \in J} \sum_{t=\rho_j}^T f_j(t) \, y_j^t \\ & \text{s.t.} \quad \sum_{t=\rho_j}^T y_j^t = 1 & (j \in J) \\ & \sum_{j \in J} y_j^{\rho_j} = m \\ & \sum_{j \in J \mid t \geq \rho_j} y_j^t \geq \sum_{j \in J} y_j^{t+\rho_j} \quad (t = 1, \dots, T) \\ & y \in \{0, 1\} \end{aligned}$$

$$R_y$$
 R_z F_y $\underline{F_z}$

$$\begin{aligned} & \min & & \sum_{j \in J} \sum_{t=\rho_{j}}^{T} f_{j}(t) \left(z_{j}^{t} - z_{j}^{t-1} \right) \\ & \text{s.t.} & & z_{j}^{\rho_{j}-1} = 0 & (j \in J) \\ & & z_{j}^{t-1} \leq z_{j}^{t} & (j \in J; \ t = \rho_{j}, \dots, T) \\ & & z_{j}^{T} = 1 & (j \in J) \\ & & \sum_{j \in J} \left(z_{j}^{\rho_{j}} - z_{j}^{\rho_{j}-1} \right) = m \\ & & \sum_{j \in J \mid t \geq \rho_{j}} \left(z_{j}^{t} - z_{j}^{t-1} \right) \geq \sum_{j \in J} \left(z_{j}^{t+\rho_{j}} - z_{j}^{t+\rho_{j}-1} \right) & (t = 1, \dots, T) \end{aligned}$$

 $z \in \{0, 1\}$

TIF Cuts by Projecting the ATIF Polytope

$$\sum_{i \in J} y_i^t \geq \sum_{j \in J} y_j^{t +
ho_j} \qquad (t = 1, \dots, T)$$

$$prec_t(S) = \{i \mid \exists j \in S, \ x_{ij}^t \text{ is not fixed}\}$$

$$\sum_{i \in prec_t(S)} y_i^t \ge \sum_{j \in S} y_j^{t+\rho_j} \qquad (S \subset J; \ t = 1, \dots, T)$$

TIF Cuts Separation

$$0.3+0.1<0.2+0.5$$
 Violated Cut: $y_1^t+y_4^t\geq y_2^{t+p_2}+y_3^{t+p_3}$ Separation: Minimum Cut

- 1 The Parallel Machines Scheduling Problem
- 2 The BCP of Pessoa, Uchoa, Poggi, Rodrigues (2010)
- The Improved Algorithm
 - Newly Proposed Cuts over Extended Variables
 - Additional Known Cuts
 - Alternative Time-Indexed Formulations
 - New Cuts over TIF
- 4 Experiments
- Conclusions

How much of the Integrality Gap is closed?

Table: Root relaxation and cut separation results

	m	BCP-PM	1WT	BCP-PMWT-OTI		
n		Avg. Gap	Avg. Time	Avg. Gap	Avg. Time	
40	2	0.525%	78.0	0.235%	51.9	
40	4	0.456%	23.4	0.448%	18.8	
50	2	0.379%	256.8	0.276%	193.8	
50	4	0.571%	67.8	0.583%	29.9	
100	2	0.878%	6297.0	0.114%	3398.8	
100	4	0.494%	984.0	0.322%	481.6	

Which is the best TIF?

Table: Comparison of Alternative Time-Indexed Formulations

	Average LP Time (s)				Averag	Average MIP Time (s)			# Solved			
n	Fy	Ry	Fz	Rz	Fy	Ry	Fz	Rz	Fy	Ry	Fz	Rz
40	0.72	0.84	7.17	0.97	63.17	351.97 150.26	122.92	58.28	12	10	12	12
50	1.77	1.98	47.08	2.43	53.46	150.26	70.56	16.47	13	11	14	16

^{*}average times only for the instances solved with all 4 TIFs in up to 3,600 seconds

How much help is the Variable Fixation?

Table: Effect of Variable Fixation in the Rz Time-Index Formulation – Summary

	Avera	ge LP Time (s)	Averag	e MIP Time (s)	# Solved	
n	Fix. w/ Fix.		Fix.	w/ Fix.	Fix.	w/ Fix.
40	0.74	22.54	11.11	561.59	12	10
50	2.04	105.84	11.63	496.61	17	9

^{*}average times only for the instances solved by both in up to 3,600 seconds

How much help are the Projected Cuts?

Table: Effect of Projected Cuts in the Rz Time-Indexed Formulation – Summary

		ATIF	TIF		
		Root	1st LP	Root	Gap
n	m	Gap	Gap	Gap	Improv.
100	2	0.114%	0.294%	0.249%	16.76%
100	4	0.322%	0.660%	0.646%	11.20%

Overall Results

Table: Full Results - Summary

		BCP-PMV	/T	BCP-PMWT-OTI			
n	m	Avg. # Solved Time		# Solved	Avg. Time		
40		50	357.9	50	48.1		
50		50	5734.9	50	241.9		
100	2	18	22523.8	21	7058.5		
100	4	16	37667.7	22	5672.0		

^{*}average times only for the instances solved by both in up to 3,600 seconds

Branching vs Switching to MIP Solver

Table: BCP-PMWT-OTI Best Procedure

	BCP-PMWT					BCP-F	PMWT-	-OTI	
n	m	Root	ВСР	ATIF MIP	Unsolved	Root	ВСР	TIF MIP	Unsolved
40		38	2	10	0	38	1	11	0
50		33	4	13	0	33	3	14	0
100	2	13	2	3	7	16	1	4	4
100	4	7	5	4	9	7	1	14	3

- The Parallel Machines Scheduling Problem
- 2 The BCP of Pessoa, Uchoa, Poggi, Rodrigues (2010)
- The Improved Algorithm
 - Newly Proposed Cuts over Extended Variables
 - Additional Known Cuts
 - Alternative Time-Indexed Formulations
 - New Cuts over TIF
- 4 Experiments
- Conclusions

Conclusions

- Results
 - ▶ 9 instances solved for the first time
 - ▶ 84.1% running time decrease for other instances