CSP FAST TRACK

ARTURO

ABSTRACT. In this note

1. Introduction

Let R be a set of relation symbols. Let $\mathcal{A} = (A, P)$ be a relational structure over R. Let X be a countable set of variables. By the **constraint satisfaction problem** $CSP(\mathcal{A})^1$ we mean the following decision problem: given a finite set Σ of atomic formulas over R, decide whether there is an assignment $(-)^{\mathcal{A}}: X \to A$ such that $\mathcal{A} \models \Sigma$; i.e. for all $r \in R_n$ and for all $x, y, x_1, \ldots, x_n \in X$

(1)
$$r(x_1, \dots, x_n) \in \Sigma \implies (x_1^{\mathcal{A}}, \dots, x_n^{\mathcal{A}}) \in r^{\mathcal{A}}$$

$$(2) x \equiv y \in \Sigma \implies x^{\mathcal{A}} = y^{\mathcal{A}}$$

Clearly, it is enough to find an assignment only for those variables that appear in Σ .

Important: if a set of relation symbols is not fixed, a relational structure \mathcal{A} will be always thought as a structure over the set of its relations.

Starting point: consider the case when A is finite.

Let F be a set of function symbols. Let $\mathbf{A} = (A, \Phi)$ be an algebra over F. Let $\mathcal{A} := (A, \operatorname{Inv}(\Phi))$. By $\operatorname{CSP}(\mathbf{A})$ we mean the decision problem $\operatorname{CSP}(\mathcal{A})$.

Definition 1.1. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $Clo(\mathbf{A})$ the smallest set containing

$$\{f^{\mathbf{A}}: f \in F\}$$
 and $\{\pi_i^n: A^n \to A, 1 \le i \le n, n \in \omega\}$

and closed under composition.

Goal: prove

Theorem 1.2. Let **A** be a finite idempotent algebra. Then the following are equivalent:

- (1) CSP(**A**) is polynomial-time decidable;
- (2) $Clo(\mathbf{A})$ contains a weak near-unanimity operation;
- (3) for every $\mathbf{B} \in HS(\mathbf{A})$, $Clo(\mathbf{B}) \neq \{\pi_i^n : 1 \leq i \leq n, n \in \omega\}$.

Otherwise, $CSP(\mathbf{A})$ is NP-complete.

¹More often denoted by CSP(P).

ARTURO

2. Kinds of Operations

Definition 2.1. An operation $\varphi: A^n \to A$ is called

(1) **essentially unary** if there is an index i and a function $\psi: A \to A$ such that

$$\varphi(a_1,\ldots,a_n)=\psi(a_i)$$

for all $a_1, \ldots, a_n \in A$.

(2) **idempotent** if $\varphi(a, ..., a) = a$ for all $a \in A$.

3. Relational Clones

Definition 3.1. Let R be a set of relation symbols and A be a relational structure over R. We denote by Clo(A) the smallest set containing

$$\{r^{\mathcal{A}}: r \in R\}$$
 and $\{\Delta^{(n)}: n \in \omega\}$

and closed under

2

(1) **permutaion**: if $\rho \in Clo(A)$, then also

$$\{(a_{\sigma(1)},\ldots,a_{\sigma(n)}): \sigma \in S_n, (a_1,\ldots,a_n) \in \rho\} \in \operatorname{Clo} A$$

(2) **extension**: if $\rho \in Clo(\mathcal{A})$, then also

$$\{(a_1,\ldots,a_n,a_{n+1}):(a_1,\ldots,a_n)\in\rho,a_{n+1}\in A\}\in\operatorname{Clo}\mathcal{A}$$

(3) **truncation**: if $\rho \in \text{Clo}(A)$, then also

$$\{(a_1, \dots, a_{n-1}) : (a_1, \dots, a_{n-1}, a_n) \in \rho, \text{ for some } a_n \in A\} \in \text{Clo } A$$

(4) intersection.

Remark 3.2. Observe that Clo(A) is given by all the relations ρ of A definable by a first-order primitive positive formula (that is, involving only conjunctions and existential quantifications). Recall that $\rho \subseteq A^n$ is definable if there is a formula $\varphi(x_1, \ldots, x_n)$ such that

$$\mathcal{A} \models \varphi(a_1, \dots, a_n) \iff (a_1, \dots, a_n) \in \rho$$

Theorem 3.3. For any pair of relational structures $A = (A, \Gamma)$ and B = (A, H) such that H is finite and $H \subseteq Clo(A)$, CSP(B) is polynomial-time reducible to CSP(A).

Proof. Let Σ be a set of atomic formulas over H. Let $\eta(x_1, \ldots, x_n) \in \Sigma$. For every $a_1, \ldots, a_n \in A$

(3)
$$\mathcal{B} \models \eta(a_1, \dots, a_n) \iff \mathcal{A} \models \varphi(a_1, \dots, a_n)$$

for some $\varphi(x_1,\ldots,x_n)$ of the form

$$\exists y_1, \ldots, y_m \left(\gamma_1(z_1^1, \ldots, z_{n_1}^1) \wedge \cdots \wedge \gamma_k(z_1^k, \ldots, z_{n_k}^k) \right)$$

where $\gamma_1, \ldots, \gamma_k \in \Gamma$ and $z_j^i \in \{x_1, \ldots, x_n, y_1, \ldots, y_m\}$. We can assume (up to renaming of variables) that y_1, \ldots, y_m do not appear in any formula of Σ .

Now, for each $\eta(x_1,\ldots,x_n)\in\Sigma$ perform the following steps:

- (1) add $\{\gamma_1(z_1^1, \dots, z_{n_1}^1), \dots, \gamma_k(z_1^k, \dots, z_{n_k}^k)\}$ to Σ ;
- (2) remove $\eta(x_1,\ldots,x_n)$ from Σ .

At the the end we obtain a set of equations T over G. This is a polynomial-time reduction. By (3) it is clear that we can find an assignment $X \to A$ such that $\mathcal{B} \models \Sigma$ iff we can find an assignment such that $\mathcal{A} \models T$.

Corollary 3.4. Let A = (A, P) and B = (A, Clo(A)). Then

- (1) CSP(A) is polynomial-time decidable iff CSP(B) is.
- (2) CSP(A) is NP-complete iff CSP(B) is.

Theorem 3.5 ([1]). Let A be a relational structure. If Pol(A) contains essentially unary operations only, CSP(A) is NP-complete.

4. Surjective Algebras

Definition 4.1. An algebra **A** is **surjective** if all the element of $Clo(\mathbf{A})$ are surjective.

Remark 4.2. Let **A** be an algebra. Every element of $Clo(\mathbf{A})$ is surjective iff every element of $Clo_1(\mathbf{A})$ is. In this case $Clo_1(\mathbf{A})$ is a group.

Lemma 4.3. Let $A = \{a_1, \ldots, a_k\}$ be a finite set. Let $\mathbf{A} = (A, \Phi)$ be an algebra. Then the relation

(4)
$$\sigma := \{ (\psi(a_1), \dots, \psi(a_k)) : \psi \in \operatorname{Clo}_1(\mathbf{A}) \}$$

belongs to $Inv(\Phi)$.

Proof. We show that for every $f \in F_n$ and for every matrix M

$$\begin{bmatrix} a_1^1 & \cdots & a_n^1 \\ \vdots & \ddots & \vdots \\ a_k^1 & \cdots & a_n^k \end{bmatrix}$$

such that $(a_1^1, \ldots, a_1^k) \in \sigma, \ldots, (a_1^n, \ldots, a_n^k) \in \sigma$ we have

$$(f^{\mathbf{A}}(a_1^1,\ldots,a_n^1),\ldots,f^{\mathbf{A}}(a_k^1,\ldots,a_n^k)) \in \sigma$$

By hypothesis we can write M as

$$\begin{bmatrix} \psi_1(a_1) & \cdots & \psi_n(a_1) \\ \vdots & \ddots & \vdots \\ \psi_1(a_k) & \cdots & \psi_n(a_k) \end{bmatrix}$$

but then

$$(f^{\mathbf{A}}(a_1^1, \dots, a_n^1), \dots, f^{\mathbf{A}}(a_k^1, \dots, a_n^k))$$

$$= (f^{\mathbf{A}}(\psi_1(a_1), \dots, \psi_n(a_1)), \dots, f^{\mathbf{A}}(\psi_1(a_k), \dots, \psi_n(a_k)))$$

$$= (f^{\mathbf{A}}[\psi_1, \dots, \psi_n](a_1), \dots, f^{\mathbf{A}}[\psi_1, \dots, \psi_n](a_k))$$

and we conclude since $f^{\mathbf{A}}[\psi_1, \dots, \psi_n] \in \mathrm{Clo}_1(\mathbf{A})$.

4 ARTURO

Definition 4.4. Let **A** be an algebra. Let Id(A) be the set of idempotent operations on A. We define $Clo_{Id}(\mathbf{A}) := Clo(\mathbf{A}) \cap Id(A)$.

Theorem 4.5. Let F be a set of function symbols and let $\mathbf{A} = (A, \Phi)$ be a finite surjective algebra over F. Let $\mathbf{B} := (A, \operatorname{Clo}_{\operatorname{Id}}(\mathbf{A}))$. Then

- (1) $CSP(\mathbf{A})$ is polynomial-time decidable iff $CSP(\mathbf{B})$ is.
- (2) $CSP(\mathbf{A})$ is NP-complete iff $CSP(\mathbf{B})$ is.

Proof. Let $A = \{a_1, \ldots, a_k\}$ and let $\Gamma := \{\gamma_1, \ldots, \gamma_k\}$ where $\gamma_i := \{a_i\}$. Let $A := (A, \operatorname{Inv}(\Phi))$ and $B := (A, \operatorname{Inv}(\Phi) \cup \Gamma)$.

By definition and by Remark $CSP(\mathbf{B})$ is polynomial-time equivalent to $CSP(\mathbf{A})$ iff $CSP(\mathcal{B})$ is polynomial-time equivalent to $CSP(\mathcal{A})$.

That $\mathrm{CSP}(\mathcal{A})$ is polynomial-time reducible to $\mathrm{CSP}(\mathcal{B})$ is obvious. Let Σ be a set of atomic formulas over $\mathrm{Inv}(\Phi) \cup \Gamma$ and let $\{x_1, \ldots, x_k\}$ be variables that do not appear in Σ . By Remark 4.2, since \mathbf{A} is surjective, $\mathrm{Clo}_1(\mathbf{A})$ forms a group. Moreover, the relation σ of Lemma 4.3 belongs to $\mathrm{Inv}(\Phi)$. Now, perform the following steps:

- (1) replace every formula $\gamma_i(x)$ with $x \equiv x_i$;
- (2) add the formula $\sigma(x_1,\ldots,x_k)$.

At the the end we obtain a set of equations T over R. This is a polynomial-time reduction. We finally show that we can find an assignment such that $\mathcal{A} \models T$ iff we can find an assignment such that $\mathcal{B} \models \Sigma$. Let $(-)^{\mathcal{B}} : X \to A$ be an assignment such that $\mathcal{B} \models \Sigma$. Consider the assignment

$$(x)^{\mathcal{A}} = \begin{cases} (x)^{\mathcal{B}} & \text{if } x \neq x_i \\ a_i & \text{if } x = x_i \end{cases}$$

Then $(-)^{\mathcal{A}}$ is such that $\mathcal{A} \models T$. Conversely, assume that there is an assignment $(-)^{\mathcal{A}}$ such that $\mathcal{A} \models T$. There is $\psi \in \mathrm{Clo}_1(\mathbf{A})$ such that $x_i^{\mathcal{A}} = \psi(a_i)$ for all i. Consider $(-)'^{\mathcal{A}} := \psi^{-1}(-)^{\mathcal{A}}$. Every relation in $\mathrm{Inv}(\Phi)$ is invariant under ψ^{-1} , hence defining $(x)^{\mathcal{B}} := (x)'^{\mathcal{A}}$ is enough to have $\mathcal{B} \models \Sigma$.

5. Subalgebras and Images

Theorem 5.1. Let A be a finite algebra.

- (1) if CSP(A) is polynomial-time decidable, so is CSP(B) for every B < A;
- (2) if there is $\mathbf{B} \leq \mathbf{A}$ such that $CSP(\mathbf{B})$ is NP-complete, so is $CSP(\mathbf{A})$.

Proof. Let $\mathbf{A} = (A, \Phi)$. Observe that $\operatorname{Inv}(\Phi|B) \subset \operatorname{Inv}(\Phi)$.

Theorem 5.2. Let $\mathbf{A} = (A, \Phi_A), \mathbf{B} = (B, \Phi_B)$ be two finite algebras of the same type

(1) if CSP(**A**) is polynomial-time decidable, so is CSP(**B**) for every surjective homomorphism $\alpha : \mathbf{A} \to \mathbf{B}$;

(2) if there is a surjective homomorphism $\alpha : \mathbf{A} \to \mathbf{B}$ such that $\mathrm{CSP}(\mathbf{B})$ is $\mathrm{NP}\text{-}complete$, so is $\mathrm{CSP}(\mathbf{A})$.

Proof. Let $\mathcal{B} = (B, \operatorname{Inv}(\Phi_B))$. We show that there is $\Gamma \subseteq \operatorname{Inv}(\Phi_B)$ such that, definining $\mathcal{A} = (A, \Gamma)$, $\operatorname{CSP}(\mathcal{B})$ is polynomial-time reducible to $\operatorname{CSP}(\mathcal{A})$. For every $\rho \in \operatorname{Inv}(\Phi_B)_n$ let

$$\alpha^{-1}(\rho) := \{ (a_1, \dots, a_n) \in A^n : (\alpha(a_1), \dots, \alpha(a_n)) \in \rho \}$$

Clearly, $\alpha^{-1}(\rho) \in \text{Inv}(\Phi_A)_n$ and therefore, letting $\Gamma := \{\alpha^{-1}(\rho) : \rho \in \Gamma\}$, $\Gamma \subseteq \text{Inv}(\Phi_A)$. Let Σ be a set of atomic formulas over $\text{Inv}(\Phi_B)$. Perform the following step: replace every formula $\rho(x_1, \ldots, x_n)$ with $\alpha^{-1}(\rho)(x_1, \ldots, x_n)$. We obtain a set of equations T over Γ . Let β be a section of α .

Referring to the assignments in the picture, each defined in terms of the other so that the diagram commute, it is clear that $\mathcal{A} \models T$ iff $\mathcal{B} \models \Sigma$.

6. Simple Algebras

Definition 6.1. An algebra **A** is called **simple** if the lattice of congruences on **A** is $\{\Delta, \nabla\}$. An algebra **A** is **strictly simple** if it is simple and has no nontrivial subalgebras.

Remark 6.2. Since the lattice of congruence of **A** is in bijection with the set of surjective homomorphisms from **A**, **A** is simple if whenever there is a surjective homomorphism $\mathbf{A} \to \mathbf{B}$ such that |B| < |A|, then **B** is the trivial algebra.

References

[1] Jeavons, P. (1998). On the algebraic structure of combinatorial problems, *Theoretical Computer Science* 200, 185–204.