

Navigation and Ancillary Information Facility

Remote Sensing Programming Lesson (TGO)

May 2018

Diagram for "getsta" Exercise

Navigation and Ancillary Information Facility

Diagram for "xform" Exercise

Navigation and Ancillary Information Facility

Remote Sensing Lesson: "Spacecraft Orientation and Reference Frames"

X: Angular separation between nominal instrument direction and direction to Mars

Mars Shape

Navigation and Ancillary Information Facility

The next two tasks ask for computing observation geometry parameters for Mars modeled as a triaxial ellipsoid and as a triangular plate model provided in a DSK, resulting in significantly different values for these two cases. This should not be surprising given how different Mars topography is from the ellipsoidal surface, for some areas by many kilometers, as illustrated by the animation/view below.

Diagram for "subpts" Exercise

Navigation and Ancillary Information Facility

Remote Sensing Lesson:
"Computing Sub-s/c and Sub-solar Points
on an Ellipsoid and a DSK"

Diagram for "fovint" Exercise

Navigation and Ancillary Information Facility

Remote Sensing Lesson: "Intersecting Vectors with An Ellipsoid and a DSK"

