ΘΕΜΑ 4

Δύο παράλληλες μεταλλικές πλάκες φορτισμένες με αντίθετα φορτία, όπως στο σχήμα, δημιουργούν ανάμεσά τους ομογενές ηλεκτρικό πεδίο.

Η διαφορά δυναμικού των δύο πλακών είναι $V=1\ KV$ και η απόσταση μεταξύ τους $d=5\ mm$.

Τη χρονική στιγμή $t_o=0$, από το σημείο A του πεδίου, ένα θετικό φορτίο q_1 επιταχύνεται από την ηρεμία χωρίς αντιστάσεις, μόνο με την επίδραση του ηλεκτρικού πεδίου και φτάνει στο σημείο B. Η απόσταση (AB) είναι ίση με $(AB)=d=5\ mm$.

Γνωρίζετε ότι: το φορτίο του ηλεκτρονίου είναι ίσο με -e=-1,6 · 10^{-19} C, η μάζα του ίση με $m_e=9$,1 · 10^{-31} Kg ενώ για το θετικό φορτίο q_1 ισχύει η σχέση $q_1=e$ και η μάζα του είναι ίση με $m_1=2\cdot m_e$.

4.1. Να προσδιορίσετε την ένταση του ομογενούς ηλεκτρικού πεδίου.

Μονάδες 4

4.2. Αν από το σημείο Β, επιταχυνθεί από την ηρεμία ένα ηλεκτρόνιο τότε να βρείτε το λόγο των μέτρων των επιταχύνσεων που αποκτά καθένα από τα σωματίδια.

Μονάδες 8

4.3. Να προσδιορίσετε το μέτρο της επιτάχυνσης που αποκτά το φορτίο q_1 και στη συνέχεια να υπολογίσετε το έργο για τη μετακίνηση του φορτίου q_1 μεταξύ των σημείων Α και Β. Το αποτέλεσμα για το έργο να δοθεί σε eV.

Μονάδες 5

4.4. Να κατασκευάσετε τη γραφική παράσταση της θέσης του φορτίου q_1 σε συνάρτηση με το τεράγωνο του χρόνου $(x-t^2)$, ορίζοντας έναν άξονα x΄x, με $x_0=0$ στο σημείο A, δηλαδή στο σημείο στο οποίο αρχίζει να κινείται το φορτίο αυτό.

Μονάδες 8