

Cylindrical Acceleration Structures for Large Hexahedral Volume Visualization

Junpeng Wang^{1,2} Mai Elshehaly² Yong Cao²

¹ The Ohio State University ² Virginia Tech

Invent the Future

Problem

Large Irregular **Unevenly Distributed**

diffuser

rotor

Number of Vertices: 3.6 million Number of Hexahedra: 3.4 million

0.9 million 0.9 million

2.2 million 2.1 million

Problem

Related Work

FLAT GRIDS

Two-level Grid

[Kalojanov et al. 2011]

Perspective Grid

[Guntury and Narayanan 2012]

Spherical Geodesic Grids

[Xie et al. 2012]

HIERARCHICAL TREES

*k*D-tree

[Hunt et al. 2006] [Zhou 2011]

Octree

[Karras 2012] [Zhou et al. 2011]

Bounding Volume Hierarchy (BVH)

[Lauterbach et al. 2009] [Garanzha et al. 2011] [Kopta et al. 2012] [Karras and Aila 2013]

Surface Area Heuristic (SAH)

[Goldsmith and Salmon 1987] [MacDonald and Booth 1990] VVH [Wald et al. 2004]

Two-Level Cylindrical Grid

Sort-based Grid Construction [Kalojanov and Slusallek 2009]

Two-level Cartesian Grid [Kalojanov et al. 2011]

Two-level Cylindrical Grid

Problem

(cell ID, Prim ID)

Related Work Contribution

Results

Conclusion

(cell ID, Prim ID)

Top-Level:

R, Θ, H and N (number of primitives)->Resolution of Second-Level Grid

Problem

Problem

Sort-Based Two-Level Grid Construction

R, Θ, H and N (number of primitives)->Resolution of Second-Level Grid

Top-Level:

R, Θ, H and N (number of primitives)->Resolution of Second-Level Grid

(cell ID, Prim ID)

2015 **CDAV**

Sort-Based Two-Level Grid Construction

R, Θ, H and N (number of primitives)->Resolution of Second-Level Grid

(cell ID, Prim ID)

R, Θ, H and N (number of primitives)->Resolution of Second-Level Grid

D

6

В

Ε

9

10

R, O, H and N (number of primitives)->Resolution of Second-Level Grid

(cell ID, Prim ID) 3 3 В Sort Reference Array В Ε 10 3 6 9 3 D Extract Cell Array (primitive range array) [7, 8)[9,10)|[10,11)[0, 1)[2, 4)[6, 7)[7, 7)[8, 9)[9, 9)[4, 6)

R, Θ, H and N (number of primitives)->Resolution of Second-Level Grid

R, Θ, H and N (number of primitives)->Resolution of Second-Level Grid

R, Θ, H and N (number of primitives)->Resolution of Second-Level Grid

October 25-26 CHICAGO, ILLINOIS, USA

Sort-Based Two-Level Grid Construction

$$R_x = d_x \sqrt[3]{\frac{\lambda N}{V}}$$
 $R_y = d_y \sqrt[3]{\frac{\lambda N}{V}}$ $R_z = d_z \sqrt[3]{\frac{\lambda}{V}}$

2015 **Cotober 25-26**

Sort-Based Two-Level Grid Construction

$$R_{x} = d_{x} \sqrt[3]{\frac{\lambda N}{V}} \qquad R_{y} = d_{y} \sqrt[3]{\frac{\lambda N}{V}} \qquad R_{z} = d_{z} \sqrt[3]{\frac{\lambda}{V}}$$

$$\lambda^{-1} = \frac{N}{R_{x}R_{y}R_{z}} \qquad d_{x}d_{y}d_{z} = V$$

October 25-26 CHICAGO, ILLINOIS, USA

Sort-Based Two-Level Grid Construction

$$V = d_r d_{\theta} \frac{(2r + d_r)}{2} d_h$$

October 25-26 CHICAGO, ILLINOIS, USA

Sort-Based Two-Level Grid Construction

$$V = d_r d_{\theta} \frac{(2r + d_r)}{2} d_h$$

$$R_r = d_r \sqrt[3]{\frac{\lambda N}{V}} \qquad R_{\theta} = \frac{d_{\theta} (2r + d_r)}{2} \sqrt[3]{\frac{\lambda N}{V}} \qquad R_h = d_h \sqrt[3]{\frac{\lambda N}{V}}$$

Surface area calculation has changed!

R:

Cylindrical BVH

Cylindrical BVH

A Special Case

Incorrect bounding volume O dimension is closed and periodical

A Special Case

Incorrect bounding volume O dimension is closed and periodical

A Special Case

Incorrect bounding volume O dimension is closed and periodical

Split hexahedra on the polar axis

Number of Grid Cells	diffuser	inlet	rotor
Cartesian Grid	2.82×10^{7}	6.47×10^6	2.39×10^{7}
Cylindrical Grid	2.81×10^{7}	6.94×10^6	2.25×10^7
$Ratio = \frac{Cylindrical}{Cartesian}$	1.00	1.07	0.94

Roughly the same number of grid cells.

Number of Hexahedra	diffuser	inlet	rotor
Cartesian Grid	2.34×10^{8}	4.18×10^{7}	2.29×10^{8}
Cylindrical Grid	1.43×10^{8}	3.09×10^{7}	1.47×10^{8}
$Ratio = \frac{Cylindrical}{Cartesian}$	0.61	0.74	0.64

Cylindrical grid generates less duplications.

Memory Usage	diffuser	inlet	rotor
Cartesian Grid	1139 <i>MB</i>	214 <i>MB</i>	1084 <i>MB</i>
Cylindrical Grid	783 <i>MB</i>	175 <i>MB</i>	753 <i>MB</i>
$Ratio = \frac{Cylindrical}{Cartesian}$	0.69	0.82	0.69

Cylindrical grid uses less memory space.

Hexahedra Visited in Rendering	diffuser	inlet	rotor
Cartesian Grid	1.66×10^{7}	2.15×10^7	1.51×10^{7}
Cylindrical Grid	9.74×10^{6}	1.26×10^{7}	1.35×10^7
$Ratio = \frac{Cylindrical}{Cartesian}$	0.59	0.59	0.89

Using cylindrical grid visits less hexahedra.

Frame Per Second	diffuser	inlet	rotor
Cartesian Grid	12.80	14.86	18.61
Cylindrical Grid	17.39	17.96	20.24
$Ratio = \frac{Cylindrical}{Cartesian}$	1.36	1.21	1.09

Using cylindrical grid achieves higher frame rates.

Problem

Results: Two-Level Grids

Result of the diffuser domain

Number of Hexahedra	diffuser	inlet	rotor
Cartesian BVH	3.44×10^{6}	8.56×10^{5}	2.15×10^{6}
Cylindrical BVH	3.45×10^{6}	8.63×10^5	2.16×10^{6}
$Ratio = \frac{Cylindrical}{Cartesian}$	1.00	1.01	1.00

The Cartesian BVH and cylindrical BVH roughly keep the same number of hexahedra.

Memory Usage	diffuser	inlet	rotor
Cartesian BVH	310 <i>MB</i>	77 <i>MB</i>	193 <i>MB</i>
Cylindrical BVH	311 <i>MB</i>	78 <i>MB</i>	194 <i>MB</i>
$Ratio = \frac{Cylindrical}{Cartesian}$	1.00	1.00	1.00

There is no big difference in the memory usage.

Surface Area	diffuser	inlet	rotor
Cartesian BVH	87.13	14.21	41.07
Cylindrical BVH	49.10	10.72	33.01
$Ratio = \frac{Cylindrical}{Cartesian}$	0.56	0.75	0.80

Cylindrical BVH creates tighter bounding volumes for primitives.

Conclusion

Results: BVH

Internal/Leaf Nodes Visited	diffuser	inlet	rotor
Cartesian BVH	Internal: 2.30×10^8	Internal: 2.16×10^8	Internal: 9.94×10^7
	Leaf: 5.70×10^6	Leaf: 5.83×10^6	Leaf: 5.98×10^6
Cylindrical BVH	Internal: 1.26×10^8	Internal: 1.00×10^8	Internal: 8.71×10^7
	Leaf: 3.64×10^6	Leaf: 3.97×10^6	Leaf: 5.15×10^6
$Ratio = \frac{Cylindrical}{Cartesian}$	Internal: 0.55	Internal: 0.46	Internal: 0.88
	Leaf: 0.64	Leaf: 0.68	Leaf: 0.86

Using cylindrical BVH will visit less Internal/leaf nodes during rendering.

Frame Per Second	diffuser	inlet	rotor
Cartesian BVH	7.55	9.50	12.16
Cylindrical BVH	11.37	16.53	13.92
$Ratio = \frac{Cylindrical}{Cartesian}$	1.51	1.74	1.14

Using cylindrical BVH achieves higher frame rates.

Conclusion

Results: BVH

Result of the diffuser domain

Results

Conclusion

- We present two cylindrical acceleration data structures for irregular hexahedral volume visualization. The cylindrical structures outperform their Cartesian counterparts for cylindrical volume data:
 - Two-level Grid: Use less memory (less duplication), visit less hexahedra during traversal
 - BVH: Tighter bounding box (less surface area), visit less BVH internal/leaf nodes

• We hope that the results we were able to achieve would inspire more research and better customizations of acceleration structures to meet the increasingly complex requirements of the data.

Thank you

Questions?

