Uniqueness of the Kähler structure of \mathbb{CP}^n

Bowen Liu

Mathematics Department of Tsinghua University

2023/06/08

- 2 Theorem A
- 3 Theorem B
- 4 Closing remarks

1 Overview

Overview •000

- 4 Closing remarks

• In this talk we mainly focus on the following two theorems, which show the uniqueness of the Kähler structure of \mathbb{CP}^n in different categories.

Theorem (Hirzebruch, Kodaira, 1957; Yau, 1977)

If a Kähler manifold M is homeomorphic to \mathbb{CP}^n , then M is biholomorphic to it.

Theorem (Yau, 1977)

If a compact complex surface M is homotopy equivalent to \mathbb{CP}^2 , then M is biholomorphic to it.

 To prove these two theorems, the following lemma motivates us it suffices to construct a holomorphic line bundle with some properties.

Theorem B

Lemma (Kobayashi, Ochiai, 1973)

If M is a compact Kähler n-manifold and L is a positive holomorphic line bundle over M with $\int_M c_1(L)^n = 1$ and $\dim H^0(M,L) = n+1$, then M is biholomorphic to \mathbb{CP}^n .

Rough idea of proof

- If M is a compact Kähler manifold whose cohomology groups are the same as the ones of \mathbb{CP}^n , then
 - c_1 : Pic(M) $\to H^2(M,\mathbb{Z})$ is an isomorphism, which allows us to construct a (unique) holomorphic line bundle L with a given cohomology class as its first Chern class.

Rough idea of proof

- If M is a compact Kähler manifold whose cohomology groups are the same as the ones of \mathbb{CP}^n , then
 - c_1 : Pic $(M) \to H^2(M, \mathbb{Z})$ is an isomorphism, which allows us to construct a (unique) holomorphic line bundle L with a given cohomology class as its first Chern class.
 - The holomorphic Euler characteristic satisfies

$$\chi(M,\mathcal{O}) = \sum_{p=0}^{n} (-1)^{p} \dim H^{0,p}(M) = 1.$$

Overview

- If M is a compact Kähler manifold whose cohomology groups are the same as the ones of \mathbb{CP}^n , then
 - $c_1: \operatorname{Pic}(M) \to H^2(M, \mathbb{Z})$ is an isomorphism, which allows us to construct a (unique) holomorphic line bundle L with a given cohomology class as its first Chern class.
 - The holomorphic Euler characteristic satisfies

$$\chi(M, \mathcal{O}) = \sum_{p=0}^{n} (-1)^p \dim H^{0,p}(M) = 1.$$

By using Hirzebruch-Riemann-Roch theorem one can conclude

$$\chi(M,L)=n+1.$$

Rough idea of proof

Overview

- If M is a compact Kähler manifold whose cohomology groups are the same as the ones of \mathbb{CP}^n , then
 - c_1 : $\operatorname{Pic}(M) \to H^2(M, \mathbb{Z})$ is an isomorphism, which allows us to construct a (unique) holomorphic line bundle L with a given cohomology class as its first Chern class.
 - The holomorphic Euler characteristic satisfies

$$\chi(M, \mathcal{O}) = \sum_{p=0}^{n} (-1)^p \dim H^{0,p}(M) = 1.$$

By using Hirzebruch-Riemann-Roch theorem one can conclude

$$\chi(M,L)=n+1.$$

• By using Kodaira vanishing theorem one can conclude $H^k(M,L)=0$ for k>0. In particular, one has $\dim H^0(M,L)=n+1$, as desired.

- 1 Overview
- 2 Theorem A
- 3 Theorem E
- 4 Closing remarks

• In this section, M is a Kähler manifold which is homeomorphic to \mathbb{CP}^n .

- In this section. M is a Kähler manifold which is homeomorphic to \mathbb{CP}^n .
- Choose a Kähler form $\widetilde{\omega}$ on M. Its cohomology class lies in $H^2(M,\mathbb{R})\cong\mathbb{R}$, so we can rescale $\widetilde{\omega}$ to get another Kähler form ω whose cohomology class generates $H^2(M,\mathbb{Z}) \cong \mathbb{Z}$. In particular, $\int_{M} \omega^{n} = 1$.

Theorem B

- In this section. M is a Kähler manifold which is homeomorphic to \mathbb{CP}^n .
- Choose a Kähler form $\widetilde{\omega}$ on M. Its cohomology class lies in $H^2(M,\mathbb{R})\cong\mathbb{R}$, so we can rescale $\widetilde{\omega}$ to get another Kähler form ω whose cohomology class generates $H^2(M,\mathbb{Z}) \cong \mathbb{Z}$. In particular, $\int_{M} \omega^{n} = 1$.

Theorem B

• Since c_1 is an isomorphism, there exists a (unique) holomorphic line bundle L whose first Chern class is $[\omega]$.

Overview

For any holomorphic line bundle L over M we have

$$\chi(M,L) = \int_M e^{c_1(L) + \frac{c_1(M)}{2}} \left(\frac{\omega/2}{\sinh(\omega/2)}\right)^{n+1}.$$

Theorem B

Corollary

 $c_1(M)$ equals either $(n+1)[\omega]$ or $-(n+1)[\omega]$, with the latter only possibly occuring when n is even.

Proof.

Since $[\omega]$ is a generator of $H^2(M,\mathbb{Z})$, we may write $c_1(M) = \lambda[\omega]$. The reduction mod 2 of $c_1(M)$ is the second Stiefel-Whitney class $w_2(M) \in H^2(M,\mathbb{Z})$, which is a topological invariant. Hence it is equals to $w_2(\mathbb{CP}^n)$ which equals $c_1(\mathbb{CP}^n) \equiv n+1 \pmod 2$. This shows $c_1(M)=(n+1+2s)[\omega]$ for some $s\in\mathbb{Z}$.

Continuation.

By Lemma 4 one has

$$\chi(M,\mathcal{O}) = \int_{M} e^{\frac{n+1+2s}{2}\omega} \left(\frac{\omega/2}{\sinh(\omega/2)}\right)^{n+1} = \int_{M} e^{s\omega} \left(\frac{\omega}{1-e^{-\omega}}\right)^{n+1}.$$

Theorem B

By residue theorem a direct computation shows

$$\int_{M} e^{s\omega} \left(\frac{\omega}{1 - e^{-\omega}} \right)^{n+1} = \binom{n+s}{n}.$$

Since $\chi(M,\mathcal{O})=1$, one has $\binom{n+s}{n}=1$, which can be rewritten as

$$n! = (s+n)\dots(s+1).$$

So if *n* is ood this implies s = 0, while if *n* is even, *s* is either 0 or -n-1. This completes the proof.

Proof of Theorem 1.

Case I: Assume first $c_1(M) = (n+1)[\omega]$, which implies that M is a Fano manifold. Then $c_1(K_M) = -c_1(M) = -(n+1)c_1(L)$ and so $K_M = -(n+1)L$ since c_1 is an isomorphism. Then Serre duality gives $H^{k}(M, L) = H^{n-k}(M, K_{M} - L)$ and $K_{M} - L = -(n+2)L$ is negative, so $H^k(M, L) = 0$ if k > 0 by Kodaira vanishing. Hence one has

$$\dim H^{0}(M,L) = \chi(M,L) = \int_{M} e^{c_{1}(L) + \frac{c_{1}(M)}{2}} \left(\frac{\omega/2}{\sinh(\omega/2)} \right)^{n+1} = n+1,$$

and Lemma 3 implies M is biholomorphic to \mathbb{CP}^n .

Case II: Assume $c_1(M) = -(n+1)[\omega] < 0$, it suffices to show the following identity

$$(2(n+1)c_2(M) - nc_1^2(M)) [\omega]^{n-2} = 0.$$

Continuation.

Overview

Indeed, by the equality condition of Chern number inequality of Yau, M has constant holomorphic sectional curvature -1, and thus by uniformization theorem M is biholomorphic to the unit ball in \mathbb{C}^n , a contradiction.

To compute $c_2(M)$, note that $p_1(M) = p_1(TM) = -c_2(TM \otimes \mathbb{C})$, $TM \otimes \mathbb{C} \cong TM \oplus TM$ and Chern classes satisfy $c_k(\overline{TM}) = (-1)^k c_k(TM)$, so

$$p_1(M) = -c_2(TM \oplus \overline{TM})$$

$$= -c_2(TM) - c_2(\overline{TM}) - c_1(TM)c_1(\overline{TM})$$

$$= -2c_2(M) + c_1^2(M).$$

On the other hand, $p_1(M) = (n+1)[\omega]^2$. Thus

$$2c_2(M) = (n+1)^2[\omega]^2 - (n+1)[\omega]^2 = n(n+1)[\omega]^2.$$

- Overview
- 3 Theorem B
- 4 Closing remarks

Theorem B •00

Proof of Theorem 2.

Let $\tau(M)$ denote the signature of M, that is the signature of its intersection form. The signature is a topological invariant up to sign, and so

Theorem B

$$\tau(M) = \pm \tau(\mathbb{CP}^2) = \pm 1.$$

Hirzebruch's signature theorem gives

$$\tau(M) = \frac{1}{3} \int_{M} p_1(M) = \frac{1}{3} \int_{M} (c_1^2(M) - 2c_2(M)) = \pm 1.$$

Chern-Gauss-Bonnet's theorem gives

$$\int_{M} c_2(M) = \chi(M) = \chi(\mathbb{CP}^2) = 3.$$

As a consequence, $\int_M c_1^2(M) \neq 0$, which implies M is Kähler by Kodaira embeddding.

Continuation.

As before we see that $\chi(M, \mathcal{O}) = 1$ and Hirzebruch-Riemann-Roch gives

Theorem B

$$\chi(M,\mathcal{O}) = \frac{K_M^2 + \chi(M)}{12} = \frac{K_M^2 + 3}{12},$$

which gives $\int_M c_1^2(M) = K_M^2 = 9$. Let ω be as before, and $c_1(M) = \lambda[\omega]$ for some $\lambda \in \mathbb{Z}$. Then $\lambda = \pm 3$. Here it suffices to show in case $\lambda = 3$, dim $H^0(M, L) = 3$, and the case $\lambda = -3$ leads the same contradiction as before. By Hirzebruch-Riemann-Roch formula one has

$$\chi(M,L) = 1 + \frac{L^2 - K_M \cdot L}{2} = 3.$$

Serre duality and Kodaira vanishing gives $H^{1}(M, L) = H^{2}(M, L) = 0$ as before. So dim $H^0(M, L) = \chi(M, L) = 3$. This completes the proof.

- Overview

- 4 Closing remarks

• Libgober-Wood proved that a compact Kähler *n*-manifold with $n \leq 6$ which is homotopy equivalent to \mathbb{CP}^n must be biholomorphic to it.

- Libgober-Wood proved that a compact Kähler n-manifold with n < 6 which is homotopy equivalent to \mathbb{CP}^n must be biholomorphic to it.
- A natural question is that whether the Kähler hypothesis is really necessary in Theorem 1. If not, one can also ask whether a complex manifold diffeomorphic to \mathbb{CP}^n must be biholomorphic to it. If it's ture when n=3, then there is no complex structure on S^6 .

Lemma

Overview

If there exists a compact complex manifold M diffeomorphic to S^6 , then there exists a compact complex manifold \widetilde{M} diffeomorphic to \mathbb{CP}^3 but not biholomorphic to it.

Proof.

Let M be a compact complex manifold diffeomorphic to S^6 and \widetilde{M} be its blowup at one point $p \in M$. A basic fact is that \widetilde{M} is a compact complex manifold which is diffeomorphic to $S^6\sharp \overline{\mathbb{CP}^3}$, where $\overline{\mathbb{CP}^3}$ is the smooth manifold obtained from \mathbb{CP}^3 by reversing orientation. In particular, \widetilde{M} is diffeomorphic to \mathbb{CP}^3 . If \widetilde{M} was biholomorphic to \mathbb{CP}^3 , one has

$$\int_{\widetilde{M}} c_1(\widetilde{M})^3 = \int_{\mathbb{CP}^3} c_1(\mathbb{CP}^3)^3 = 64$$

Continuation.

On the other hand, if we let $\pi \colon M \to M$ be the blow up map and $E = \pi^{-1}(p)$ be its exceptional divisor, then one has

$$c_1(\widetilde{M}) = \pi^* c_1(M) - 2[E]$$

where [E] is the Poincaré duality of E. Since $b_2(M)=0$, one has $c_1(M)=0$. Thus

$$\int_{\widetilde{M}} c_1(\widetilde{M})^3 = -8 \int_{\widetilde{M}} [E]^3$$

$$= -8 \int_{E} [E]^2$$

$$= -8 \int_{\mathbb{CP}^2} c_1(\mathcal{O}(-1))^2 = -8$$

Therefore \widetilde{M} is not biholomorphic to \mathbb{CP}^3 , as desired.

Thanks!