Fuzzy

Fuzzy and Crisp

- Crisp Set
 - Has only 0 and 1 values
 - clear boundary
- Fuzzy Set
 - Has values b/w 0 and 1
 - no clear boundary

Membership Function

- Tells about the degree of belonging in the fuzzy set ### Features of Membership function
- Boundry Part
- Core Part
- Support Part

Operation and Properites

Operations and Properties of a classical set

- Operation on a classical set
 - Union
 - Intersection
 - Compliment
 - Set Difference
- Properties of a classical Set
 - Commutavity
 - * AUB = BUA
 - Associativity
 - * (AUB)UC = AU(BUC)
 - Distrubitivity
 - * AdisBUC = (AdisB) U (AdisC)
 - Idempotency
 - * AUA = A
 - Cardinality
 - * It is the number of elements in a set nx
 - * Cardinality of the power set of a set with nx elements in $2^n x$

Operations and Properties of Fuzzy Set

- Operation on Fuzzy Set
 - Compliment
 - * 1 (element value)
 - Union
 - * max of both the values
 - Intersection
 - * min of both the values

Relations

Crisp Relations

- The crisp relations are defined in 0 and 1
- Relation matrix b/w 2 crisp sets can be represented as 0 is there is no relation b/w the row and the col
- 1 if there is a relationship b/w the row and the column
- The relationship matrix b/w the crisp relations is obtained by cartesian product itself

Cardinality of Crisp Relations

- If the cardinality of the set1 is n_x and the cardinality of set2 is n_y
- Then the cardinality of the relation R b/w these 2 universes is nxy = nx * ny
- The cardinality of the power set describing the relation is $2^{(nxny)}$

Fuzzy Relations

- In real life the relations can be represented by fuzzy values
- Fuzzy Relation are one kind of fuzzy set

Operations on Fuzzy Relations

- Therefore you can apply operation on those fuzzy relation
- Union
- Intersection
- Complement
- Containment (FLAG101)

- Extra Properties (Other than Fuzzy Sets)
 - Sum

$$* A + B = Max[aij,bij]$$

- Max Product
 - * A.B = AB = Max[Min(aik,bjk)]
- Scalar Product
 - \ast lambda * a

To form relation from two fuzzy sets

- Cartesian Product
 - Multiply the two sets and min of the values in the set
 - $P[x][y] = \min(u_a(x), u_b(x))$

Composition of fuzzy relations

• Max Min Composition

- Max Product Composition
 - Instead of finding the \min of the values , we will multiply them

Properties of Relation Matrices

- Reflexitivity
 - $-\operatorname{xr}(xi,xi) = 1$
- Symmetry
 - $-\operatorname{xr}(yi,xi) = \operatorname{xr}(xi,yi)$
- Transitivity (Crisp)
 - $-\operatorname{xr}(xi,xj)$ and $\operatorname{xr}(xj,xk) = 1 -> \operatorname{xr}(xi,xk) = 1$
- Transitivity (Fuzzy)

```
-x2,x5 > = min((x2,x1) \text{ and } (x1,x5))
```

Types of fuzzy Relations

- Check in the relation Matrices for these properties
- Equivalence
 - All three relations will hold
- Tolerance
 - Reflexivity
 - Symmetry

/alpha cuts for fuzzy relations

- Basically saying that if 2 elements are highly related then they are connected
- like defuzzification of fuzzy relations
- certain value below which the value of the fuzzy is approximated to zero
- above values are approximated to 1
- thus the fuzzy set is approximated to a crisp set

Similarity Methods in Matrices

```
• Cosine Methods
```

```
- rij = /sumk = 1mx_ikx_jk

- (/sumk = 1m(x_ik)^2/sumk = 1m(x_ik)^2)^(1/2)
```

• Max-Min Methods

```
-/sumk = 1mmin(x_ik, x_jk)-/sumk = 1mmax(x_ik, x_jk)* where i,j = 1,2 . . . . . ,n
```

Convex Fuzzy Set

• Whose values are strictly monotically increasing or monotically descreasing

Arithemetic Operation

Fuzzy Sets

- Addition
- Subtraction
- Multiplication
- Division

Cont Fuzzy Sets

Fuzzy Number

- A fuzzy number is a fuzzy set
- It should be convex
- If it's normalized
- It's MF is peicewise continous

Arithemetic Operation of Fuzzy No.

Defuzzification

- It is the conversion of a fuzzy quantity to a precise quantity
- \bullet Methods
 - Max Membersip Function
 - * Simply Replace the set with the max value
 - Centroid Average Method
 - * Integral uc(x).x.dx/Intergral uc(x).dx
 - Weighted Average Method
 - * Find the peak value in the set and where is the peak
 - * weighted avg = (pk1v1 + pk2v2 + pk3*v3)/(v1+v2+v3)