

Ecorrection

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Introduction to Quantum Computing

Exam: IN2381 / Final Exam Date: Tuesday 20th July, 2021

Examiner: Christian Mendl **Time:** 14:15 – 15:45

Working instructions

- This exam consists of 10 pages with a total of 3 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 60 credits.
- Detaching pages from the exam is prohibited.
- Allowed resources: open book
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.

Problem 1 (20 credits)

In this problem, you will build a quantum version of a half adder – the basic building block of addition on a classical computer. The most important part of such a circuit is the half-adder:

where A and B are classical bits, $S = A \oplus B$ is the sum modulo two and $C = A \cdot B$ is ordinary multiplication of A and B called the carry. The carry is the part of the summation that adds to the next digit (it is only 1 if both A = 1 and B = 1).

0

2

7

8

a) Assume you start in the arbitrary two-qubit state $|AB\rangle$. Provide a quantum gate / series of quantum gates that performs the operation:

$$\begin{array}{c|c} |A\rangle & \hline & ? \\ |B\rangle & \hline & ? \\ \hline \end{array} \begin{array}{c} |A\rangle \\ |A \oplus B\rangle \end{array}$$

b) The $A \cdot B$ operation can be performed by a Toffoli gate:

Verify that the circuit below performs that operation up to a global phase constant.

Hint: Follow the state of each qubit through the circuit for all 4 possible input basis states $|00\rangle$, $|01\rangle$, $|10\rangle$ and $|11\rangle$ separately.

Problem 2 (20 credits)

Consider an ensemble of quantum states $\{p_i, |\psi_i\rangle\}$, where the quantum system is in state $|\psi_i\rangle$ with probability p_i . Recall from the lecture that the density operator ρ of such an ensemble is defined as:

$$\rho = \sum_{i} p_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|$$

a) Given the ensemble	$\left\{ \left(\frac{1}{2}, \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \right. \right.$	$\left(\frac{1}{2}, \frac{ 0\rangle + i 1\rangle}{\sqrt{2}}\right)$, compute ρ and write it in the form:
-----------------------	---	---	--

$$\rho = \frac{1}{2}I + \alpha_x X + \alpha_y Y + \alpha_z Z.$$

What is the connection of $\vec{\alpha} = (\alpha_x, \alpha_y, \alpha_z)$ with the Bloch sphere representation?

ı	L	U
		1
		2
		3
		4
		5
		6
ı		ľ

b) Now consider the ensemble

$$\left\{ \left(\frac{1}{2}, |0\rangle\right), \left(\frac{1}{2}, |1\rangle\right) \right\},\,$$

and compute its density matrix ρ . Draw a Bloch sphere, clearly labeling $|0\rangle$ and $|1\rangle$, and indicate the position of this ensemble within the sphere.

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \sqrt{1-\lambda} & -i\sqrt{\lambda} & 0 \\ 0 & -i\sqrt{\lambda} & \sqrt{1-\lambda} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

where $0 \le \lambda \le 1$, acts on a system of two qubits. The first qubit is initially in an arbitrary state ρ and the second one is initialized at $|0\rangle$. Trace out the second qubit to obtain the two operators E_0 and E_1 which represent the action of U on the first one.

d) Compute the effect of the operators you found on the general density matrix $\rho = \frac{1}{2}I + \alpha_x X + \alpha_y Y + \alpha_z Z$. Interpret their action on the Bloch sphere.

Problem 3 (20 credits)

We consider a quantum system of n qubits, and use the notation X_j , Y_j , Z_j to denote that one of the Pauli matrices acts on the jth qubit; e.g., $X_1Z_3 \equiv X \otimes I \otimes Z$ for n = 3.

Conjugation by U refers to the transformation UgU^{\dagger} of a quantum gate g by a unitary operation U. The following table summarizes several conjugation transformations:

Here $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ is the phase gate.

a) State the check matrix representation of $g_1, g_2 \in G_4$ given by

$$g_1 = Z \otimes Y \otimes X \otimes X,$$

$$g_2 = X \otimes Z \otimes I \otimes Y.$$

Based on this representation, show that g_1 anti-commutes with g_2 .

b)* Given a square lattice, a qubit is associated with each *edge* of the lattice (dots in the figure below). We define logical Pauli operators X_L and Z_L as tensor products of strings of X and Z operators: $X_L = X_{13}X_{14}X_{15}X_{16}$ and $Z_L = Z_2Z_7Z_{15}Z_{18}Z_{22}Z_{30}$, as visualized in the figure.

Show that X_L and Z_L anti-commute, i.e., $X_L Z_L = -Z_L X_L$. How can one define a logical Y_L operator such that X_L , Y_L , Z_L satisfy the anti-commutation relations of the Pauli-matrices?

$$\left|\chi_{0}\right\rangle = \frac{1}{2}\left(\left|000\right\rangle + \left|001\right\rangle + i\left|110\right\rangle - i\left|111\right\rangle\right), \qquad \left|\chi_{1}\right\rangle = \frac{1}{2}\left(\left|010\right\rangle + \left|011\right\rangle - i\left|100\right\rangle + i\left|101\right\rangle\right).$$

(A proof of this statement is not required here.) Determine the result (eigenvalue) when measuring the operator $Y_1Y_2Y_3$ with respect to the quantum state $(S \otimes H \otimes (SH)) |\chi_0\rangle$, where S is the phase gate.

n identity matrix	Show that this no	ise process is er	ror-correctable.	V2 V2	It is affected by $X \otimes X$, where I_n to
			•		
				6	
		A 0		*C	
			0		
4					

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

