Relatório do Trabalho 3 - Inteligência Artificial

Augusto César Araújo de Oliveira - 508991 Elizadora Mendonça da Silva - 508949

Foi usada uma classe Matriz para representar um indivíduo, ela contém o número de enfermeiros, o número de turnos e matriz (podendo ser como cadeia de caracteres ou uma lista de listas).

Crossover

A função cria novos filhos pegando 2 indivíduos arbitrariamente (os pais) da população atual e fazendo o crossover. É sorteado aleatoriamente um ponto de corte e os dois pais são separados nesse ponto, a primeira parte de um é concatenada à segunda parte de outro, e a primeira parte do segundo pai é concatenada com a segunda parte do primeiro pai, de modo que dois filhos são gerados. Contudo, somente um dos filhos gerados farão parte da próxima geração, e o filho é decidido pela variação da função crossover. Caso a variação seja 1, o primeiro filho gerado é escolhido (a parte 1 do primeiro pai e a segunda parte do segundo). Caso a variação seja 2, o segundo filho gerado é escolhido (parte 1 do segundo pai e a segunda parte do primeiro).

Variáveis de Entrada:

- tampopulação: Tamanho da população.
- população: Lista de indivíduos na população.
- melhores indices: Índices dos melhores indivíduos.
- restrições específicas para o problema.
- var: Uma variável que controla o tipo de crossover a ser realizado.

Elitismo

O elitismo foi usado multiplicado pelo tamanho da população, o que gera o número de indivíduos que serão preservados. Esses valores são escolhidos pegando os indivíduos de maior fitness. Esses valores são preservados, sem alteração, e estarão na geração futura. No código, quanto maior o elitismo, menor a variação de indivíduos na próxima geração, ou seja, para haver uma variância de indivíduos, o elitismo deve ser baixo.

Mutação

A mutação influencia a probabilidade de um indivíduo ser modificado. No código, é sorteado um valor entre 0 e 1, se esse valor for menor que a taxa de mutação, o indivíduo é modificado (um caractere que é 0 vira 1 e vice-versa). A mutação ocorre para indivíduos que são produtos do crossover e garante uma variabilidade na geração futura, mesmo que baixa, visto que altera apenas um caractere na cadeia.

Blocos de experimentação

Para testes, temos os seguintes parâmetros:

- nenfermeiros (número de enfermeiros): 10.
- nturnos (número de turnos): 21.
- restricoes (quais restrições serão consideradas para calcular o fitness): 1, 2, 3 e 4.
- mutacao (valor da taxa de mutação): 0.1 (10 por cento).
- var (variação do crossover): 1 e 2 (foram testados para ambos os valores).
- interações (número de gerações/iterações): 1000.

Os valores de tamanho e elitismo foram modificados de acordo com o bloco de experimentação. Para cada bloco foram testados 10 vezes com os parâmetros anteriores.

Bloco de experimentação 1

Nesse bloco, foi usado o valor de 100 a população e foram testados os valores de 0, 0.1, 0.25, 0.5 e 0.75 na variável "elitismo", de modo que o algoritmo foi executado 10 vezes para cada valor, isto é, 50 vezes.

Como resultado, temos:

Variação 1

Execução	Elitismo 0	Elitismo 0.1	Elitismo 0.25	Elitismo 0.5	Elitismo 0.75
1	-484	-4	-4	-7	-8
2	-509	-6	-6	-8	-7
3	-570	-5	-4	-5	-5

4	-517	-3	-5	-5	-7
5	-578	-5	-6	-5	-9
6	-514	-7	-6	-5	-8
7	-500	-7	-5	-6	-10
8	-527	-4	-4	-9	-8
9	-553	-5	-2	-2	-8
10	-514	-6	-6	-3	-6

Variação 2

Execução	Elitismo 0	Elitismo 0.1	Elitismo 0.25	Elitismo 0.5	Elitismo 0.75
1	-536	-6	-6	-6	-9
2	-524	-4	-5	-5	-8
3	-388	-4	-8	-6	-6
4	-559	-6	-5	-6	-8
5	-441	-4	-7	-6	-8
6	-540	-6	-6	-5	-7
7	-518	-5	-5	-5	-7
8	-517	-5	-5	-6	-8
9	-484	-5	-7	-5	-7
10	-557	-7	-5	-6	-6

Questão 1

O valor do elitismo favoreceu o número de interações, de modo que permitisse "guiar" o algoritmo para os melhores resultados. Isto é, com valores maiores de elitismo, o algoritmo genético conseguiu melhores resultados, garantindo que indivíduos com bons fitness continuassem nas gerações futuras, de modo a auxiliar o encontro de fitness maiores. Ao analisar os resultados das variações 1 e 2 do crossover, temos:

Taxa de Elitismo	0	0.1	0.25	0.5	0.75
Média do fitness (variação 1)	-526.6	-5.2	-4.8	-6.1	-7.6
Média do fitness (variação 2)	-506.4	-5.2	-5.9	-5.6	-7.4

Os valores de fitness mais altos encontrados foram os com elitismo 0.25, 0.1 e 0.5 (-2, -3 e -3, respectivamente).

Questão 2

A taxa de elitismo diferente de zero garantiu uma solução com fitness bem alto como foi mostrado na análise anterior. Em especial, o elitismo de 25 por cento garantiu um indivíduo com fitness -2. Então, a permanência de indivíduos com fitness altos nas próximas gerações garante uma qualidade de resultados superior. Porém, quanto maior a taxa de elitismo, menor a variabilidade de indivíduos, o que pode reduzir a qualidade de soluções encontradas. Isso é visto ao analisar-se os resultados obtidos nas variações 1 e 2 do crossover, em que os melhores resultados estavam entre os valores de elitismo 0.1, 0.25 e 0.5, já que ao aumentar a taxa para 0.75, a média de fitness dos melhores indivíduos diminuiu bastante. Vale ressaltar que nos testes feitos na variação 1, a melhor taxa de elitismo foi de 0.25, já na variação 2, foi de 0.1.

Bloco de experimentação 2

Nesse bloco, foi usado o valor de 0.1 na taxa de elitismo e foram testados os valores de 10, 25, 50, 100, 500 e 1000 na variável "tampopulação" (tamanho da população), de modo que o algoritmo foi executado 10 vezes para cada valor, isto é, 60 vezes.

Como resultado, temos:

Variação 1

Execução -	Tamanhos								
	10	25	50	100	500	1000			
1	-18	-8	-8	-4	-2	-1			
2	-17	-9	-5	-2	-1	-1			
3	-14	-7	-6	-4	-2	-2			
4	-20	-9	-7	-5	-2	-1			
5	-22	-7	-4	-7	-4	-1			
6	-30	-7	-10	-5	-2	-2			
7	-11	-9	-6	-3	-1	-3			
8	-22	-9	-6	-5	-3	-2			
9	-20	-8	-5	-7	-2	-2			
10	-16	-17	-8	-7	-4	-3			

Variação 2

Execução	Tamanhos							
	10	25	50	100	500	1000		
1	-12	-15	-6	-4	-3	-2		
2	-23	-7	-6	-3	-2	-2		
3	-17	-8	-7	-6	-3	-2		
4	-18	-8	-6	-5	-3	-1		
5	-16	-5	-6	-3	-4	-2		
6	-14	-7	-7	-5	-1	-2		
7	-9	-8	-8	-4	-2	-2		
8	-14	-7	-7	-5	-2	-2		
9	-31	-9	-7	-4	-1	-1		
10	-21	-8	-6	-4	-2	-2		

Questão 1

Quanto maior o tamanho da população, melhor foram os resultados, visto que mesmo com um número alto de interações os valores encontrados continuaram com o fitness baixo, isto é, quanto maior a população, mais o número de interações foi bem aproveitado de modo que existiu uma variabilidade de indivíduos maior, garantindo assim um melhor fitness para cada execução. Isso pode ser observado ao analisar-se os resultados das variações 1 e 2 do crossover:

Tamanho da	10	25	50	100	500	1000
população						

Média do fitness (variação 1)	-19	-9	-6.5	-4.9	-2.9	-1.8
Média do fitness (variação 2)	-17.5	-8.2	-6.6	-4.3	-2.3	-1.8

Os resultados melhoraram bastante ao aumentar o tamanho da população, resultado de uma maior variedade de valores ao serem comparados e modificados.

Questão 2

Quanto maior o tamanho da população, melhor foi o fitness, visto que a variabilidade aumentou consideravelmente. Porém, foi testado com um número menor de interações também, e o resultado caiu. Isso se deu, pois como a variabilidade reduziu, reduziu também as chances de indivíduos com fitness bons serem avaliados e contados nas gerações seguintes. No geral, quanto maior o tamanho da população, melhor o fitness, porém contando também com um número alto de interações.