

Машинное обучение ФИВТ DS-поток

Лекция 7

SVM Метод опорных векторов

Бинарная классификация

$$\begin{cases} \frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^n \xi_i^+ \longrightarrow \min_{\theta, \theta_0, \xi} \\ Y_i(\theta^T X_i + \theta_0) \geqslant 1 - \xi_i \quad i = 1, \dots, n \end{cases}$$

Двойственная задача
$$\begin{cases} -\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n\lambda_i\lambda_jY_iY_j\left\langle X_i,X_j\right\rangle + \sum_{i=1}^n\lambda_i\longrightarrow\max_{\lambda}\\ 0\leqslant\lambda_i\leqslant C \quad i=1,\dots,n;\\ \sum_{i=1}^n\lambda_iY_i=0 \end{cases}$$

Решение:
$$\widehat{\theta} = \sum_{i=1}^n \lambda_i Y_i X_i$$
; $\widehat{\theta}_0 = Y_i - \widehat{\theta}^\mathsf{T} X_i$ где i т.ч. $\xi_i = 0$ $\widehat{y}(x) = \left\langle \widehat{\theta}, x \right\rangle + \widehat{\theta}_0$

Исходная задача

$$\begin{cases} \frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^n \xi_i^+ \longrightarrow \min_{\theta, \theta_0, \xi} \\ Y_i(\theta^T X_i + \theta_0) \geqslant 1 - \xi_i \quad i = 1, \dots, n \end{cases}$$

Преобразуем:

$$\sum_{i=1}^n (1-M_i)^+ + rac{1}{2C} \| heta\|^2 o \min_{ heta, heta_\mathbf{0}}$$
где $M_i = Y_i (heta^T X_i + heta_\mathbf{0})$

Вывод: SVM эквивалентен поиску линейного классификатора c ф-ией потерь $L(y,z)=(1-yz)^+$ [hinge loss] и L_2 -регуляризацией.

SVM: влияние константы С

Большой С Слабая регуляризация

Малый С Сильная регуляризация

На практике небольшие изменения в значении C не сильно влияют на вид классификатора.

 \Rightarrow C можно подбирать по достаточно грубой сетке.

SVM: ключевые моменты

- SVM линейный классификатор с кусочно-линейной функцией потерь (hinge loss) и L2-регуляризацией.
- Придуман из соображений максим. зазора между классами.
- При линейно-разделимой выборке это означает
 максимизацию ширины разделющей полосы.
- При линейно неразделимой выборке добавляется возможность попадания объектов в полосу и штрафы за эти попадания.
- Объекты в глубине классов не влияют на разделяющую гиперплоскость.

Kernel trick

Недостаток:

Является линейной моделью \Rightarrow разделяющие полосы линейные.

Рассмотрим преобразование пространства объектов: $\psi:\mathscr{X}\to\mathscr{H}$, где $\mathscr{X}=\mathbb{R}^d$ — исходное пр-во,

 \mathscr{H} — гильбертово пр-во, возможно, бесконечномерное.

Напоминание: в гильбертовом пр-ве есть скалярное произведение.

Обозначим
$$K(x_1,x_2)=\langle \psi(x_1),\psi(x_2) \rangle$$

Наблюдения:

- 1. $\theta \in \mathscr{X} \Rightarrow$ к нему тоже применимо преобразование ψ .
- 2. используем только скалярные произведения.

$$\begin{cases} \frac{1}{2}\langle \theta, \theta \rangle + C \sum_{i=1}^{n} \xi_{i}^{+} \longrightarrow \min_{\theta, \theta_{0}, \xi} \\ Y_{i}(\langle \theta, X_{i} \rangle + \theta_{0}) \geqslant 1 - \xi_{i} \quad i = 1, \dots, n \end{cases}$$

Двойственная задача
$$\begin{cases} -\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n\lambda_i\lambda_jY_iY_j\left\langle X_i,X_j\right\rangle + \sum_{i=1}^n\lambda_i\longrightarrow\max_{\lambda}\\ 0\leqslant\lambda_i\leqslant C \quad i=1,\ldots,n;\\ \sum_{i=1}^n\lambda_iY_i=0 \end{cases}$$

Решение:
$$\widehat{\theta}=\sum_{i=1}^n\lambda_iY_iX_i;\quad \widehat{\theta}_0=Y_i-\langle \theta,X_i\rangle$$
 где i т.ч. $\xi_i=0$ $\widehat{y}(x)=\left\langle \widehat{\theta},x\right\rangle +\widehat{\theta}_0$

Исходная задача:
$$\begin{cases} \frac{1}{2}\langle \theta, \theta \rangle + C \sum_{i=1}^n \xi_i^+ \longrightarrow \min_{\theta, \theta_0, \xi} \\ Y_i(\langle \theta, X_i \rangle + \theta_0) \geqslant 1 - \xi_i \quad i = 1, \dots, n \end{cases}$$

Двойственная задача
$$\begin{cases} -\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n\lambda_i\lambda_jY_iY_j\left\langle X_i,X_j\right\rangle + \sum_{i=1}^n\lambda_i\longrightarrow\max_{\lambda} \\ 0\leqslant\lambda_i\leqslant C \quad i=1,\ldots,n; \\ \sum_{i=1}^n\lambda_iY_i=0 \end{cases}$$

$$\widehat{y}(x) = \sum_{i=1}^n \lambda_i Y_i \left\langle X_i, x
ight
angle + \left(Y_\ell - \sum_{i=1}^n \lambda_i Y_i \langle X_i, X_\ell
ight
angle
ight)$$
, т.ч. X_ℓ на границе.

Исходная задача:
$$\begin{cases} \frac{1}{2} \textit{K}(\theta,\theta) + \textit{C} \sum_{i=1}^{n} \xi_{i}^{+} \longrightarrow \min_{\theta,\theta_{\mathbf{0}},\xi} \\ Y_{i}(\textit{K}(\theta,\textit{X}_{i}) + \theta_{0}) \geqslant 1 - \xi_{i} \quad i = 1,\dots,n \end{cases}$$

Двойственная задача
$$\begin{cases} -\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n\lambda_i\lambda_jY_iY_j \textbf{\textit{K}}(\textbf{\textit{X}}_i,\textbf{\textit{X}}_j) + \sum_{i=1}^n\lambda_i \longrightarrow \max_{\lambda} \\ 0\leqslant \lambda_i\leqslant C \quad i=1,\ldots,n; \\ \sum_{i=1}^n\lambda_iY_i=0 \end{cases}$$

$$\widehat{y}(\mathbf{x}) = \sum_{i=1}^n \lambda_i Y_i \mathbf{K}(\mathbf{X}_i, \mathbf{x}) + \left(Y_\ell - \sum_{i=1}^n \lambda_i Y_i \mathbf{K}(\mathbf{X}_i, \mathbf{X}_\ell)\right)$$
, т.ч. X_ℓ на

Kernel trick

 $\emph{Наблюдение:}$ не нужно знать саму $\psi.$

Определение:

$$K(x_1,x_2)-$$
 ядро, если $\exists \psi:\mathscr{X} o\mathscr{H}$ т.ч. $K(x_1,x_2)=\langle \psi(x_1),\psi(x_2)
angle$,

где \mathscr{H} — некоторое гильбертово пространство.

Замечание. Не путать с ядром из KDE.

Теорема:

Функция $K(x_1,x_2)$ является ядром \iff

- $ightharpoonup K(x_1, x_2)$ симметрична: $K(x_1, x_2) = K(x_2, x_1)$;
- $ightharpoonup K(x_1, x_2)$ неотрицательно определена:

т.е. для любых $x_1,...,x_n\in\mathscr{X}$ матрица $(K(x_i,x_j))_{ij}$ неотр. определена.

$$K(x_1,x_2)=\langle x_1,x_2\rangle$$

Полиномиальное ядро

$$K(x_1,x_2)=(\gamma\langle x_1,x_2\rangle+r)^d$$

$$K(x_1, x_2) = e^{-\gamma \langle x_1 - x_2 \rangle^2}$$

Kernel trick

Почему это ядра?

Рассмотрим пример квадратичного ядра, т.е. $K(x,z) = \langle x,z \rangle^2$.

Пусть
$$\mathscr{X} = \mathbb{R}^2$$
, т.е. $x = (x_1, x_2), \ z = (z_1, z_2)$

Разложим K(x,z):

$$K(x,z) = \langle x, z \rangle^2 = \langle (x_1, x_2), (z_1, z_2) \rangle^2 =$$

$$= (x_1 z_1 + x_2 z_2)^2 = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 z_1 x_2 z_2 =$$

$$= \left\langle \left(x_1^2, x_2^2, \sqrt{2} x_1 x_2 \right), \left(z_1^2, z_2^2, \sqrt{2} z_1 z_2 \right) \right\rangle$$

Таким образом, $\mathscr{H} = \mathbb{R}^3, \;\; \psi(x) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2\right)$

Линейная поверхность в $\mathscr H$ соответствует квадратичной в $\mathscr X$.

Пространство \mathscr{H} называется спрямляющим.

Недостатки SVM

- ▶ Нужно подбирать С.
- ightharpoonup Нет общих рекомендаций для выбора K(x,z).
- Работает только для бинарной классификации.

SVM Метод опорных векторов

Многоклассовый случай

Многоклассовый SVM

Теперь $Y_i \in \{1, ..., K\}$.

Пусть в выборке имеется константный признак т.е. не нужно явно указывать сдвиг θ_0 .

Идея: отделяем класс k от всех остальных по знач. $\langle \theta_k, x \rangle$. где θ_k — вектор параметров.

Итоговое предсказание имеет вид

$$\widehat{y}(x) = \underset{k \in \{1, ..., K\}}{\operatorname{arg max}} \langle \theta_k, x \rangle.$$

Двуклассовый
$$egin{cases} rac{1}{2}\| heta_1\|^2
ightarrow \min_{ heta_1} & Y_i\langle heta_1,X_i
angle \geqslant 1 \end{cases}$$

Двуклассовый
$$\begin{cases} \frac{1}{2}\|\theta_1\|^2 \to \min_{\theta_1} \\ Y_i\langle\theta_1,X_i\rangle\geqslant 1,\quad i=1,\dots,n \end{cases}$$
 Многоклассовый
$$\begin{cases} \frac{1}{2}\sum_{k=1}^K\|\theta_k\|^2\to \min_{\theta} \\ \langle\theta_{Y_i},X_i\rangle-\langle\theta_k,X_i\rangle\geqslant 1,\quad i=1..n;\ k\in\{1..K\}\setminus\{Y_i\} \end{cases}$$

$$x; \ k \in \{1..K\} \setminus \{Y_i\}$$

Общий случай

Двуклассовый:

$$\begin{cases} \frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^n \xi_i^+ \longrightarrow \min_{\theta, \theta_0, \xi} \\ Y_i(\theta^T X_i + \theta_0) \geqslant 1 - \xi_i \quad i = 1, \dots, n \end{cases}$$

Многоклассовый:

$$\begin{cases} \frac{1}{2} \sum_{k=1}^{K} \|\theta_k\|^2 + C \sum_{i=1}^{n} \xi_i^+ \longrightarrow \min_{\theta, \xi} \\ \langle \theta_{Y_i}, X_i \rangle - \langle \theta_k, X_i \rangle \geqslant 1 - \xi_i, \quad i = 1..n; \ k \in \{1..K\} \setminus \{Y_i\} \end{cases}$$

Эквивалентная функция потерь

Рассмотрим следующую функцию потерь:

$$\mathcal{L}(X_i) = \max_{k} \left\{ \langle \theta_k, X_i \rangle + 1 - I\{k = Y_i\} \right\} - \langle \theta_{Y_i}, X_i \rangle$$

Выражение, по которому берется тах:

lacktriangle Если $k=Y_i$, то оно равно $\langle heta_k, X_i
angle$, иначе оно равно $\langle heta_k, X_i
angle + 1$

Получаем

- ▶ Если оценка за верный класс больше оценок за остальные классы хотя бы на единицу, т.е. $\forall k: \langle \theta_{Y_i}, X_i \rangle > \langle \theta_k, X_i \rangle + 1$, \Rightarrow Максимум достигается на $k = Y_i$ $\Rightarrow \mathcal{L}(X_i) = \langle \theta_{Y_i}, X_i \rangle \langle \theta_{Y_i}, X_i \rangle = 0$
- ▶ Иначе, т.е. $\exists k: \langle \theta_{Y_i}, X_i \rangle < \langle \theta_k, X_i \rangle + 1$ ⇒ Максимум достигается на $k \neq Y_i$ ⇒ $\mathcal{L}(X_i) = \langle \theta_k, X_i \rangle + 1 - \langle \theta_{Y_i}, X_i \rangle > 0$

Вывод: Штрафуем как за неверный ответ на объекте, так и за попадание в разделяющую полосу

SVM Метод опорных векторов

История

Метод обобщенного портрета

Предложен в 1960-е Вапником и Червоненкисом.

Первая версия: Отделение отделение гиперплоскостью точек одного класса на сфере от всего остального.

Вторая версия: Разделение гиперплоскостью двух классов на сфере.

Третья версия: Разделение гиперплоскостью двух классов в пр-ве.

SVM: предложен Вапником в 1990-е

Ключевые отличия:

- 1. Ошибки ξ_i
- 2. Ядра.

В середине 2000-х был популярным.

Вапник Владимир Наумович род. 1936 учился в Узбекистане

Червоненкис Алексей Яковлевич 1938-2014 выпускник МФТИ, 1961