Seminar 1 - Relatii binare, Inchideri

Relatiile binare sunt multimi de perechi ordonate. Fie ρ o relatie binara de la A la B, $a \in A$ si $b \in B$, (a, b) este element al relatie ρ , se noteaza $(a, b) \in \rho$, daca $a \rho b => \rho \subseteq A \times B$

 $Dom(\rho)$ si $Cod(\rho)$ desemneaza domeniul si respectiv, codomeniul relatie ρ .

Fie A, B 2 multimi. Relatia $\iota_A \subseteq A \times A$ definita prin $\iota_A = \{(a, a) | a \in A\}$ este numita relatia de egalitate pe A sau identitatea pe A sau diagonala lui A

Definitia 1 Fie ρ si σ doua relatii binare. Relatia binara notata $\rho \circ \sigma$

$$\rho \circ \sigma = \{(a, c) | (\exists b)((a, b) \in \rho \land (b, c) \in \sigma) \}$$

este numita produsul (compunerea) relatiilor ρ si σ .

Observatie Daca $\rho \subseteq A \times B \text{ si } \sigma \subseteq B \times C \text{ atunci } \rho \circ \sigma \subseteq A \times C$

Definiția 2 Fie ρ o relație binară. *Inversa* relației ρ este relația notată ρ^{-1} și data prin $\rho^{-1} = \{(b, a) | (a, b) \in \rho\}$ deci $(a, b) \in \rho => (b, a) \in \rho^{-1}$

Inversa unei relatii ρ exista intotdeauna, iar daca ρ este relatie de la A la B, atunci ρ^{-1} este relație de la B la A.

Exercitiul 1. Fie ρ , σ si θ relatii binare, iar A si B multimi. Atunci, au loc următoarele proprietăți:

$$1. \ \rho \ \circ \ (\sigma \ \circ \ \theta) = (\rho \ \circ \ \sigma) \ \circ \theta;$$

$$2.\; \rho \; \circ \; (\sigma \cup \theta) = (\rho \; \circ \; \sigma) \cup (\rho \; \circ \; \theta);$$

3.
$$(\rho \cup \sigma) \circ \theta = (\rho \circ \theta) \cup (\sigma \circ \theta);$$

$$4.\:\rho\:\circ\:(\sigma\cap\theta)\subseteq(\rho\:\circ\:\sigma)\cap(\rho\:\circ\:\theta);$$

$$5.\; (\rho \cap \sigma) \; \circ \; \theta \subseteq (\rho \; \circ \; \theta) \; \cap (\sigma \circ \theta);$$

6.
$$\rho \circ \sigma - \rho \circ \theta \subseteq \rho \circ (\sigma - \theta);$$

7. daca $\sigma \subseteq \theta$, atunci $\rho \circ \sigma \subseteq \rho \circ \theta$ si $\sigma \circ \rho \subseteq \theta \circ \rho$;

8.
$$\iota_A \circ \rho \subseteq \rho$$
 si $\rho \circ \iota_B \subseteq \rho$. In plus, $\iota_A \circ \rho = \rho$ $\langle = \rangle$ $Dom(\rho) \subseteq A$ si $\rho \circ \iota_B = \rho$

 $Cod(\rho) \subseteq B$.

$$\begin{array}{lll} \textit{Dem 1.} & \rho \, \circ \, (\sigma \, \circ \, \theta) = (\rho \, \circ \, \sigma) \, \circ \theta; \\ \\ \rho \, \circ \, (\sigma \, \circ \, \theta) \, \subseteq \, (\rho \, \circ \, \sigma) \, \circ \theta & \textit{Si} & (\rho \, \circ \, \sigma) \, \circ \theta \subseteq \rho \, \circ \, (\sigma \, \circ \, \theta) \end{array}$$

prima incluziune

$$(a, b) \in \rho \circ (\sigma \circ \theta) = \exists c \text{ astfel incat } (a, c) \in \rho \quad \text{si} \quad (c, b) \in \sigma \circ \theta$$

$$(c, b) \in \sigma \circ \theta = \exists d \text{ astfel incat } (c, d) \in \sigma \text{ si } (d, b) \in \theta$$

$$=> \exists c \ \textit{astfel incat} \ (a, \ c) \in \rho \quad \textit{si} \quad (c, \ d) \in \sigma \quad => \quad \exists d \quad \textit{a.i.} \quad (a, \ d) \in \rho \ \circ \ \sigma \ \text{si} \quad (d, \ b) \in \theta$$

$$deci \quad (a, b) \in (\rho \circ \sigma) \circ \theta$$

$$deci \qquad (a,\,b) \in \rho \, \circ \, (\sigma \, \circ \, \theta) => \quad (a,\,b) \in \quad (\rho \, \circ \, \sigma) \, \circ \theta \qquad pentru \, orice \, (a,b) \, deci$$

$$\rho \circ (\sigma \circ \theta) \subseteq (\rho \circ \sigma) \circ \theta \quad (1)$$

Demonstram a doua incluziune $(\rho \circ \sigma) \circ \theta \subseteq \rho \circ (\sigma \circ \theta)$

$$(a, b) \in (\rho \circ \sigma) \circ \theta => \exists c \text{ astfel incat } (a, c) \in (\rho \circ \sigma) \text{ si } (c, b) \in \theta$$

 $\exists d \ astfel \ incat \ (a, d) \in \rho \ \ si(d, c) \in \sigma \ si(c, b) \in \theta$

$$\exists c \ a.i. \ (d,c) \in \sigma \ si \ (c,\ b) \in \theta = (d,b) \in \sigma \circ \theta$$

$$\exists d \ a.i. \ (a, d) \in \rho \ si \ (d,b) \in \sigma \circ \theta => (a, b) \in \rho \circ (\sigma \circ \theta)$$

$$Deci(a, b) \in (\rho \circ \sigma) \circ \theta => (a, b) \in \rho \circ (\sigma \circ \theta) => (\rho \circ \sigma) \circ \theta \subseteq \rho \circ (\sigma \circ \theta)$$
 (2)

Din (1) si (2)
$$\rho \circ (\sigma \circ \theta) = (\rho \circ \sigma) \circ \theta$$
;

$$\begin{array}{l} \text{Dem 2. } \rho \ \circ \ (\sigma \cup \theta) = (\rho \ \circ \ \sigma) \cup (\rho \ \circ \ \theta); \\ \rho \ \circ \ (\sigma \cup \theta) \subseteq \ (\rho \ \circ \ \sigma) \cup (\rho \ \circ \ \theta) \qquad \text{si} \qquad (\rho \ \circ \ \sigma) \cup (\rho \ \circ \ \theta) \subseteq \ \rho \ \circ \ (\sigma \cup \theta) \end{array}$$

Dem prima incluziune: $\rho \circ (\sigma \cup \theta) \subseteq (\rho \circ \sigma) \cup (\rho \circ \theta)$

$$(a,b) \in \rho \circ (\sigma \cup \theta) \Rightarrow \exists c \ astfel \ incat \ (a,c) \in \rho \quad si \quad (c,b) \in \sigma \cup \theta \Rightarrow \sigma \cup \theta \cup \theta \Rightarrow \sigma \cup \theta \Rightarrow \sigma$$

 $\exists c \ astfel \ incat \ (a, c) \in \rho \quad si \quad (c,b) \in \sigma \ sau \ (c,b) \in \theta$

 $\exists c \text{ astfel incat } [(a, c) \in \rho \text{ si } (c,b) \in \sigma] \text{ sau } \exists c \text{ astfel incat } [(a, c) \in \rho \text{ si } (c,b) \in \theta] = > (a,b) \in \rho \circ \sigma \text{ sau } (a,b) \in \rho \circ \theta = > (a,b) \in (\rho \circ \sigma) \cup (\rho \circ \theta);$

Dem a doua incluziune: $(\rho \circ \sigma) \cup (\rho \circ \theta) \subseteq \rho \circ (\sigma \cup \theta)$

$$(a, b) \in (\rho \circ \sigma) \cup (\rho \circ \theta) = (a, b) \in (\rho \circ \sigma) \text{ sau } (a, b) \in (\rho \circ \theta) = (a, b) \in (a, c) \in \rho \text{ si } (c, b) \in \sigma \text{ sau } (a, c) \in \rho \text{ si } (c, b) \in \sigma \text{ sau } (c,$$

Dem. 8. $\iota_A \circ \rho \subseteq \rho$ Fie $(a, b) \in \iota_A \circ \rho$. Atunci, exista c astfel încât $(a, c) \in \iota_A$ şi $(c, b) \in \rho$. Conform definiției relației ι_A , urmează a = c şi, deci, $(a, b) \in \rho$. Am obtinut astfel

 $\iota_A \circ \rho \subseteq \rho$; incluziunea $\rho \circ \iota_B \subseteq \rho$ se demonstreaza similar.

Să presupunem acum că $\iota_A \circ \rho = \rho$ şi să arătăm că $Dom(\rho) \subseteq A$. Fie $a \in Dom(\rho)$. Atunci, există b astfel încât $(a, b) \in \rho$. Deoarece $\rho = \iota_A \circ \rho$, obţinem $(a, b) \in \iota_A \circ \rho$ şi, deci, va exista c astfel încât $(a, c) \in \iota_A$ şi $(c, b) \in \rho$. Conform definitiei relatiei ι_A avem c = a deci $a \in A$. Am obtinut astfel $Dom(\rho) \subseteq A$.

Reciproc, presupunem ca $Dom(\rho) \subseteq A$. Conform cu ceea ce am demonstrat anterior $(\iota_A \circ \rho \subseteq \rho)$, ne rămâne de arătat că $\rho \subseteq \iota_A \circ \rho$. Fie deci $(a, b) \in \rho$. Cum $Dom(\rho) \subseteq A$ rezuta ca $a \in A$ deci putem scrie $(a, b) \in \iota_A \circ \rho$. Am obtinut astfel $\rho = \iota_A \circ \rho$.

Echivalenta $\rho \circ \iota_B = \rho$ daca si numai daca $Cod(\rho) \subseteq B$ se demonstreaza asemanator.

Exercitiul 2. Fie ρ și σ relații binare. Atunci au loc următoarele proprietăți:

(1)
$$(\rho^{-1})^{-1} = \rho$$
;

(2) daca $\rho \subseteq \sigma$, atunci $\rho^{-1} \subseteq \sigma^{-1}$; (3) ($\rho \cup$

$$\sigma$$
)⁻¹ = ρ ⁻¹ U σ ⁻¹;

(4)
$$(\rho \cap \sigma)^{-1} = \rho^{-1} \cap \sigma^{-1}$$
; (5) $(\rho - \sigma)^{-1}$

$$\sigma^{-1} = \rho^{-1} - \sigma^{-1}$$
;

(6)
$$(\rho \circ \sigma)^{-1} = \sigma^{-1} \circ \rho^{-1}$$
.

Demonstratie Vom demonstra 6.

Dem
$$(\rho \circ \sigma)^{-1} \subseteq \sigma^{-1} \circ \rho^{-1}$$

Fie $(a, b) \in (\rho \circ \sigma)^{-1}$. Atunci, $(b, a) \in \rho \circ \sigma$ şi există c astfel încât $(b, c) \in \rho$ şi $(c, a) \in \sigma$. Deci $(c, b) \in \rho^{-1}$ şi $(a, c) \in \sigma^{-1}$, deci $(a, c) \in \sigma^{-1}$ si $(c, b) \in \rho^{-1}$ deci $(a, b) \in \sigma^{-1} \circ \rho^{-1}$. Am obtinut astfel incluziunea $(\rho \circ \sigma)^{-1} \subseteq \sigma^{-1} \circ \rho^{-1}$.

Dem
$$\sigma^{-1}$$
 • ρ^{-1} $\subseteq (\rho$ • $\sigma)^{-1}$

Fie $(a, b) \in \sigma^{-1} \circ \rho^{-1} =$ există c astfel încât $(a, c) \in \sigma^{-1}$ şi $(c, b) \in \rho^{-1}$ =>

$$(c,a) \in \sigma$$
 $\Si (b,c) \in \rho$ \Longrightarrow $(b,c) \in \rho$ \Longrightarrow $(c,a) \in \sigma$ \Longrightarrow $(b,a) \in \rho$ \Longrightarrow $\sigma \Longrightarrow$

(a,b)
$$\in (\rho \circ \sigma)^{-1}$$

Definitia 3. Fie ρ o relatie binara si A o multime.

• ρ este numită reflexivă pe A dacă are loc

$$(\forall a)(a \in A \Rightarrow (a, a) \in \rho)$$
 $a \rho a$

• ρ este numită *simetrică pe A* dacă are loc

$$(\forall a, b)(a, b \in A \land (a, b) \in \rho \Rightarrow (b, a) \in \rho).$$

• ρ este numită asimetrică pe A dacă are loc

$$(\forall a, b)(a, b \in A \land (a, b) \in \rho \Rightarrow (b, a) \notin \rho).$$

• ρ este numită antisimetrică pe A dacă are loc

$$(\forall a, b)(a, b \in A \quad \land \ (a, b) \in \rho \quad \land \ (b, a) \in \rho$$

 $\Rightarrow a = b$).

• ρ este numită tranzitivă pe A dacă are loc

$$(\forall a, b, c)(a, b, c \in A \land (a, b) \in \rho \land (b, c) \in \rho \implies (a, c) \in \rho).$$

Exercitiul 3. Fie ρ o relatie binara si $A = Dom(\rho) \cup Cod(\rho)$.

- 1. ρ este reflexiva daca si numai daca $\iota_A \subseteq \rho$.
- 2. ρ este simetrica daca si numai daca $\rho = \rho^{-1}$.
- 3. ρ este antisimetrica daca si numai daca $\rho \cap \rho^{-1} \subseteq \iota_A$.
- 4. ρ este tranzitiva daca si numai daca $\rho \circ \rho \subseteq \rho$.

Demonstrație Demonstram (3) Presupunem ca ρ este antisimetrică. Pentru orice $(a, b) \in \rho \cap \rho^{-1}$ are loc $(a, b) \in \rho$ şi $(b, a) \in \rho$. Relația ρ fiind antisimetrică, deducem a = b și, deci, $(a, b) \in \iota_A$. Am obtinut astfel $\rho \cap \rho^{-1} \subseteq \iota_A$.

Data o relatie ρ pe A definim:

- $\rho^0 = \iota_A$;
- $\rho^{n+1} = \rho^n$ ρ , pentru orice $n \ge 0$;
- $\bullet \qquad \rho^+ = \bigcup_{n \ge 1} \rho^n$
- $\bullet \quad \rho^* =_{\bigcup_{n \geq 0} \rho} \quad = \iota_A \cup \rho^+$

Definitia 4. Fie ρ o relatie binara pe A si P o proprietate. Cea mai mica relatie binara ρ' pe A care include ρ si care are proprietatea P se numeste inchiderea P a relatiei ρ .

Notam prin $r(\rho)$ închiderea reflexivă a relației ρ $t(\rho)$ închiderea tranzitivă a relației ρ $s(\rho)$ închiderea simetrică a relației ρ

Observatie Fie ρ o relatie pe A. Atunci,

- ρ^+ este cea mai mica relatie tranzitiva pe A ce include ρ ;
- ρ^* este cea mai mica relatie reflexiva si tranzitiva pe A ce include ρ .
- $\iota_A \subseteq \rho^*$ şi, deci, ρ^* este reflexivă.

Exercitiul 4. Fie ρ o relatie binara pe A atunci

1.
$$r(\rho) = \rho \cup \iota_A$$

2.
$$s(\rho) = \rho \cup \rho^{-1}$$

2.
$$s(\rho) = \rho \cup \rho^{-1}$$
3.
$$t(\rho) = \rho^{+} = \bigcup_{n \ge 1} \rho^{n}$$
4.
$$rt(\rho) = \rho^{*} = \bigcup_{n \ge 0} \rho^{n}$$

4.
$$\operatorname{rt}(\rho) = \rho^* = \bigcup_{n \ge 0} \rho^n$$

Demonstratie

1. $\rho \cup \iota_A$ este reflexiva deoarece $(a, a) \in \rho \cup \iota_A$, $(a, a) \in \iota_A$ si contine ρ . Este cea mai mica cu aceasta proprietate deoarece multimea minimala trebuie sa contina p si sa fie reflexiva deci ι_A trebuie sa fie in aceasta multime minimala (Exercitiul 3, 1).

2.
$$s(\rho) = \rho \cup \rho^{-1}$$

 $\rho \subseteq \rho \cup \rho^{-1}$; $\rho \cup \rho^{-1}$ este simetrica conform punctului 2. Exercitiul 3
 $(\rho \cup \rho^{-1})^{-1} = \rho^{-1} \cup (\rho^{-1})^{-1} = \rho \cup \rho^{-1}$

Observatie Relația ρ^+ este numită închiderea tranzitivă a relației ρ , iar ρ^* , închiderea reflexivă și tranzitivă a relației ρ.

Exercitiul 5. Fie ρ si σ doua relatii binare pe A atunci

1.
$$r(\rho \cup \sigma) = r(\rho) \cup r(\sigma)$$

2.
$$s(\rho \cup \sigma) = s(\rho) \cup s(\sigma)$$

3.
$$t(\rho \cup \iota_A) = t(\rho) \cup \iota_A$$

4.
$$rs(\rho) = sr(\rho)$$

5.
$$\operatorname{tr}(\rho) = \operatorname{rt}(\rho)$$

6.
$$(\rho^n)^{-1} = (\rho^{-1})^n$$
, $n \ge 1$

6.
$$(\rho^n)^{-1} = (\rho^{-1})^n$$
, $_{n\geq 1}$
7. $(\cup_{n\geq 1}\rho^n)^{-1} = \cup_{n\geq 1}(\rho^{-1})^n$, $_{n\geq 1}$

Demonstratie

1.
$$r(\rho \cup \sigma) = (\rho \cup \sigma) \cup \iota_A = (\rho \cup \iota_A) \cup (\sigma \cup \iota_A) = r(\rho) \cup r(\sigma)$$

2.
$$s(\rho \cup \sigma) = (\rho \cup \sigma) \cup (\rho \cup \sigma)^{-1} = (\rho \cup \sigma) \cup \rho^{-1} \cup \sigma^{-1} = (\rho \cup \rho^{-1}) \cup (\sigma \cup \sigma^{-1}) = s(\rho) \cup s(\sigma)$$
.