Probabilistic Graphical Models

Xin Zhang
Peking University

Recap of Last Lecture - WebPPL

Recap of Last Lecture - Applications

• Bayesian learning models

$$argmax_{\omega}P(D|\omega)$$
 $argmax_{\omega}P(D|\omega)*P(\omega)$

• Optimal experiment design

$$argmax_X \mathbf{E}_{p(X,Y)}(D_{KL}(m | x = X, y = Y | | m))$$

Inverse graphics

• The Bayesian way to do linear regression is strictly more powerful than the conventional way to do linear regression.

• Yes.

• In a Bayesian learning model, the more training data there is, the less the prediction results will be affected by the prior distribution of the parameters.

• Yes.

• When using a Bayesian model, one should always use the most likely result in the prediction distribution.

• No. Sometimes expectations are better.

• Given two distributions A, B, we have

$$D_{KL}(A \mid B) = D_{KL}(B \mid A).$$

• No.

• The goal of the optimal experiment design is to choose an experiment whose expected result (i.e., output value) is the highest among all experiments.

• No.

What are the applications of inverse graphics?

1. Scene understanding.

2. Data generation.

3. Both.

• 3.

Why do we need graphical models?

- How would you represent a probability distribution, so you can
 - Visualize and design a model.
 - Gain insights about relationships between random variables.
 - Do complex inferences.

Naïve Method

A and B are Bernoulli random variables.

	A= True	A= False
B= True	0.25	0.25
B = False	0.25	0.25

Naïve Method

A and B are Bernoulli random variables.

	A= True	A= False
B= True	0.25	0.25
B = False	0.25	0.25

What questions can we ask?

Probabilistic Inference Problems

- Marginal inference:
 - Let X be the set of random variables, Y be a subset of it, Z = X/Y then marginal inference is to compute

$$P(Y = V_Y) = \sum_{V_{Z_i}} P(Y = V_Y, Z = V_{Z_i})$$

- Conditional inference:
 - Let X be the set of random variables, Y and W be subsets of it then conditional inference is to compute

$$P(Y = V_Y \mid W = V_W)$$

Probabilistic Inference in Table Method

	A= True	A= False
B= True	0.25	0.25
B = False	0.25	0.25

P(A = True) = P(A = True, B = False) + P(A = True, B = True)

Probabilistic Inference in Table Method

	A= True	A= False
B= True	0.25	0.25
B = False	0.25	0.25

$$P(A = True \mid B = True) = \frac{P(A = True, B = True)}{P(A = True, B = True) + P(A = False, B = True)}$$

Bayesian Networks

• Directed Acyclic Graph (DAG)

$$p(a,b,c) = p(c|a,b)p(a,b) = p(c|a,b)p(b|a)p(a)$$

$$p(x_1, \dots, x_K) = p(x_K | x_1, \dots, x_{K-1}) \dots p(x_2 | x_1) p(x_1)$$

Bayesian Networks

$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

General Factorization

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

Bayesian Networks

Are x_1 and x_2 independent?

What about x_4 and x_5 ?

What about x_4 and x_5 when x_1 is fixed?

We will talk about dependence later!

Example Application: Bayesian Curve Fitting

Polynomial

$$y(x, \mathbf{w}) = \sum_{j=0}^{M} w_j x^j$$

x is the set of training inputs while t is their predictions.

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | y(\mathbf{w}, x_n))$$

Example Application: Bayesian Curve Fitting

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | y(\mathbf{w}, x_n))$$

Example Application: Bayesian Curve Fitting

• Input variables and explicit hyperparameters

- α is the parameter of the parameter. For example: $w_i \sim N(\alpha, 1)$
- σ^2 is the variance of the gaussian noise in training.

$$p(\mathbf{t}, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2).$$

Bayesian Curve Fitting — Learning

• Condition on data

Bayesian Curve Fitting — Prediction

Predictive distribution: $p(\widehat{t}|\widehat{x}, \mathbf{x}, \mathbf{t}, \alpha, \sigma^2) \propto \int p(\widehat{t}, \mathbf{t}, \mathbf{w}|\widehat{x}, \mathbf{x}, \alpha, \sigma^2) d\mathbf{w}$

Which model is correct?

A: whether the school bus has a crash

B: whether the teacher is late for the class

	A= True	A= False
B= True	0.09	0.09
B = False	0.01	0.81

Generative Models

• Causal process for generating images

We will talk about causality in a later lecture!

Two Special Cases

• Discrete variables

• Gaussian variables

Discrete Variables

• General joint distribution: K ²-1 parameters

• Independent joint distribution: 2(K-1) parameters

$$\hat{p}(\mathbf{x}_1, \mathbf{x}_2 | \boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_{1k}^{x_{1k}} \prod_{l=1}^{K} \mu_{2l}^{x_{2l}}$$

Discrete Variables

General joint distribution over M variables: K^M - 1 parameters

M -node Markov chain: K - 1 + (M - 1) K(K - 1) parameters

Discrete Variables: Bayesian Parameters

$$p(\{\mathbf{x}_m, \boldsymbol{\mu}_m\}) = p(\mathbf{x}_1 | \boldsymbol{\mu}_1) p(\boldsymbol{\mu}_1) \prod_{m=2}^{M} p(\mathbf{x}_m | \mathbf{x}_{m-1}, \boldsymbol{\mu}_m) p(\boldsymbol{\mu}_m)$$

$$p(\boldsymbol{\mu}_m) = \operatorname{Dir}(\boldsymbol{\mu}_m | \boldsymbol{\alpha}_m)$$

Discrete Variables: Bayesian Parameters

- Why are Direchlet distributions used?
 - They are conjugate priors for categorical and binomial distributions.

• Further reading: https://towardsdatascience.com/dirichlet-distribution-a82ab942a879

Discrete Variables: Bayesian Parameters

$$p(\{\mathbf{x}_m\}, \boldsymbol{\mu}_1, \boldsymbol{\mu}) = p(\mathbf{x}_1 | \boldsymbol{\mu}_1) p(\boldsymbol{\mu}_1) \prod_{m=2}^{M} p(\mathbf{x}_m | \mathbf{x}_{m-1}, \boldsymbol{\mu}) p(\boldsymbol{\mu})$$

Parameterized Conditional Distributions

If x_1, \ldots, x_M are discrete, K-state variables, $p(y=1|x_1,\ldots,x_M)$ in general has $\mathbf{O}(\mathbf{K}^{\mathbf{M}})$ parameters.

The parameterized form

$$p(y = 1 | x_1, \dots, x_M) = \sigma\left(w_0 + \sum_{i=1}^M w_i x_i\right) = \sigma(\mathbf{w}^T \mathbf{x})$$

requires only M + 1 parameters

Linear-Gaussian Models

• Directed Graph

$$p(x_i|pa_i) = \mathcal{N}\left(x_i \left| \sum_{j \in pa_i} w_{ij} x_j + b_i, v_i \right)\right)$$

Each node is Gaussian, the mean is a linear function of the parents.

Vector-valued Gaussian Nodes

$$p(\mathbf{x}_i|\mathrm{pa}_i) = \mathcal{N}\left(\mathbf{x}_i\left|\sum_{j\in\mathrm{pa}_i}\mathbf{W}_{ij}\mathbf{x}_j + \mathbf{b}_i, \mathbf{\Sigma}_i
ight)$$

Recall This Graph

Are x_1 and x_2 independent?

What about x_4 and x_5 ?

What about x_4 and x_5 when x_1 is fixed?

We will talk about dependence now!

Conditional Independence

• a is independent of b given c

$$p(a|b,c) = p(a|c)$$

• Equivalently p(a, b|c) = p(a|b, c)p(b|c)= p(a|c)p(b|c)

Notation

$$a \perp \!\!\!\perp b \mid c$$

Conditional Independence: Example 1

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c)$$

$$a \not\perp \!\!\!\perp b \mid \emptyset$$

$$p(a,b,c) = p(a)p(c|a)p(b|c)$$

$$p(a,b) = p(a)\sum p(c|a)p(b|c) = p(a)p(b|a)$$

$$a \not\perp \!\!\!\perp b \mid \emptyset$$

$$p(a, b, c) = p(a)p(b)p(c|a, b)$$
$$p(a, b) = p(a)p(b)$$
$$a \perp \!\!\!\perp b \mid \emptyset$$

• Note: this is the opposite of Example 1, with c unobserved.

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$

$$= \frac{p(a)p(b)p(c|a,b)}{p(c)}$$

$$a \not\perp b \mid c$$

Note: this is the opposite of Example 1, with c observed.

"Am I out of fuel?"

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$

 $p(F=1) = 0.9$
and hence
 $p(F=0) = 0.1$

"Am I out of fuel?"

$$p(F = 0|G = 0) = \frac{p(G = 0|F = 0)p(F = 0)}{p(G = 0)}$$
 $\simeq 0.257$

Probability of an empty tank increased by observing G = 0.

D-separation

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- A path from A to B is blocked if it contains a node such that either
 - a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set **C**, or
 - b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set **C**.
- If all paths from A to B are blocked, A is said to be d-separated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp\!\!\!\perp B \mid C$.

D-separation: Example

D-separation: I.I.D. Data

Question

• What can D-separation be used for?

The Markov Blanket

$$p(\mathbf{x}_{i}|\mathbf{x}_{\{j\neq i\}}) = \frac{p(\mathbf{x}_{1}, \dots, \mathbf{x}_{M})}{\int p(\mathbf{x}_{1}, \dots, \mathbf{x}_{M}) d\mathbf{x}_{i}}$$
$$= \frac{\prod_{k} p(\mathbf{x}_{k}|\mathbf{pa}_{k})}{\int \prod_{k} p(\mathbf{x}_{k}|\mathbf{pa}_{k}) d\mathbf{x}_{i}}$$

Factors independent of x_i cancel between numerator and denominator.

Bayesian Networks: Summary

• Directed

• Factorizations of conditional probabilities

• Reason about the relationships between different variables using conditional independence

Markov Random Fields

• Undirected

Markov networks

• One motivation: reasoning about conditional independence is subtle in Bayesian networks. Can we have something simpler?

Markov Random Fields

Markov Random Fields: Intuitions

• If x and y are not directly connected, then they should be independent conditioning on the other variables

•
$$P(x, y | V/\{x, y\}) = P(x | V/\{x, y\}) * P(y | V/\{x, y\})$$

• x and y should not appear in the same factor

• We should put nodes that are directly connected in the same factor

Cliques and Maximal Cliques

Joint Distribution

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

• where $\psi_C(\mathbf{x}_C)$ is the potential over maximal clique **C** and

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

- is the normalization coefficient; note: M K-state variables \rightarrow K^M terms in Z.
- In general, we only require potentials to be positive. One example: Energies and the Boltzmann distribution

$$\psi_C(\mathbf{x}_C) = \exp\left\{-E(\mathbf{x}_C)\right\}$$

Factorization and Conditional Independence

• Given a graph (potential function unknown), let UI be the distributions whose conditional independence fits the graph

• Let UF be the subset of UI that can be expressed in the factorization form

• We have UF = UI: the Hammersley-Clifford theorem (Clifford, 1990)

Illustration: Image De-Noising

Original Image

 $x_i \in \{-1, 1\}$

Noisy Image

$$y_i \in \{-1, 1\}$$

Illustration: Image De-Noising

$$E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_{i} - \beta \sum_{\{i,j\}} x_{i} x_{j}$$
$$-\eta \sum_{i} x_{i} y_{i}$$

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp\{-E(\mathbf{x}, \mathbf{y})\}$$

Special Case: Conditional Random Field

• There two sets of variables X and Y

• The conditional distribution Y | X forms a Markov Random Field

• By observing Y, predict X

• Example: text segmentation: X: text, Y: segments

Summary

- Bayesian networks
 - Directed
 - Factorization of conditional probabilities
 - Conditional independence: D-separation
- Markov random fields
 - Undirected
 - Factorization over maximum cliques

Next Class

• Relationship between directed and undirected models

• Inference