

Applied Cryptography CPEG 472/672 Lecture 6A

Instructor: Nektarios Tsoutsos

Hash functions

- Cryptographer's Swiss Army Knife
 - Any length input -> short digest
- Examples
 - MD5, SHA-1, SHA-256, SHA-3, BLAKE2
 - Digital signatures, public key encryption
 - integrity verification, key agreement
 - message authentication, password protection
 - Intrusion detection systems
 - ⊙ Git, Bitcoin

Secure hash functions

- Notion of security in hash functions
 - Goal: ensure data hasn't changed
 - Different pieces of data must have different hashes
 - The hash serves as an identifier
 - Different notion compared to ciphers
- Case study: Digital signatures

Hashes are unpredictable

- Flipping one bit in the input, generates a completely different hash digest
- - ca978112ca1bbdcafac231b39a23dc4da786e
 ff8147c4e72b9807785afee48bb
 - 3e23e8160039594a33894f6564e1b1348bbd7a0088d42c4acb73eeaed59c009d
 - 2e7d2c03a9507ae265ecf5b5356885a53393 a2029d241394997265a1a25aefc6

Security guarantees of hashes

- Preimage resistance (one-wayness)
 - Given H so that H=Hash(M), it is impossible to find the original M
 - There are infinite preimages that give the same hash H
 - Even if you have unlimited resources, it is not possible to find the exact message M
- Second-preimage resistance
 - \odot Given M₁, can't find M₂ so that H(M₂)=H(M₁)
 - o If you could find preimages, you could also find 2nd preimages

Security guarantees of hashes (2)

- Collision Resistance
 - Collisions are inevitable due to the pigeonhole principle
 - ⊙ If you have m holes and n pigeons with n>m, at least one hole must have more than one pigeon
 - We want to hash functions where finding collisions is not possible
 - Collisions resistance is related to 2nd preimage resistance
 - Finding 2nd preimages, allows finding collisions
 - Collision resistant hash functions are also 2nd preimage resistant

Finding collisions

- Uses the Birthday Attack method
 - o If hash can have up to N different digests as outputs, we will find a collision after hashing √N messages with about 40% probability
- Memory efficient collision search
 - Rho method
 - \odot Pick a random hash value $H_1 = H_1'$
 - $\odot H_{i+1} = Hash(H_i), H'_{i+1} = Hash(Hash(H'_i))$
 - ⊙ Iterate until $H_{i+1} = = H'_{i+1}$

Rho method to find collisions

 \circ Hash(H4) = H5 = Hash(H10)

Building hash functions

- Split message into blocks and process each block iteratively
 - Iterative hashing
- Two approaches
 - Using compression functions
 - ⊙ Examples: MD5, SHA-1, SHA-2
 - Using sponge functions
 - ⊙ Examples: SHA-3

Compression-based hashing

Uses the Merkle Damgard (M-D)
 construction and a compression function

- Can use the Davies-Meyer construction
- Secure block cipher E

 - ⊙ H is the ptxt input of E

M-D security

- If Compress is preimage and collision resistant, then a hash constructed using M-D is also preimage & collision resistant
 - Any successful preimage attack on M-D is a successful attack on Compress
 - Breaking collision resistance of M-D means breaking collision resistance of Compress
- A collision in Compress does not necessarily give a collision on M-D hash

Sponge-based hashing

- Use a single permutation P instead of compression functions and block ciphers
 Simpler than M-D functions (mostly XORs)
 - Random M, M_{2} M_2 r bits Permutation n bits P Padding: append bit w bits 1 + enough absorbing squeezing c=w-r zeros phase • hits phase

 \odot Security level (bits) = MIN(c/2, n/2)

Reading for next lecture

- Aumasson: Chapter 6
 - From "The SHA Family of Hash Functions" to the end of the chapter
 - We will have a short quiz