CS 3313 Foundations of Computing:

CFG Normal Formsand a Parsing Algorithm

http://gw-cs3313-2021.github.io

Simplification and Parsing

- 1. Simplification rules: transform a grammar such that:
 - Resulting grammar generates the same language
 - and has "more efficient" production rules in a specific format
- 2. Normal Forms: express all CFGs using a standard "format" for how the production rules are specified
 - Definition of CFGs places no restrictions on RHS of production
 - It is convenient (for parsing algorithms) to restrict to a standard form
 - Chomsky Normal Form (CNF) or Greiback Normal Form (GNF)
- 3. Parsing Algorithm: Design a parsing algorithm that takes a grammar in a standard form (CNF) to check if string w is generated by grammar G.

CFG Simplification (Cleanup) Algorithms

- 1. Remove productions
- Remove Unit Productions
- 3. Remove Useless Symbols and Production
 - 1. Remove variables that do not derive terminal strings
 - 2. Remove variables that are not reachable from S
- After the simplification process, a CFG has productions where right hand side has length more than two or is a single terminal symbol

Normal Forms for Context Free Grammars

 Any context free grammar can be converted to an equivalent grammar in a "normal form"

■ Chomsky Normal Form (CNF): All productions are of the form $A \rightarrow a$ or $A \rightarrow BC$ where a is a terminal and A,B,C are variables

■ Greibach Normal Form (GNF): All productions are of the form $A \rightarrow a\alpha$ where a is a terminal and α is a string of variables (possibly empty)

Conversion to CNF

- Theorem 6.6: Any CFG G = (V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\widehat{G} = (\widehat{V}, \widehat{T}, S, \widehat{P})$ in CNF.
- Step 1: Constructing $G_1 = (V_1, T, S, P_1)$ from G by considering all productions P in the form
 - $A \rightarrow x_1 x_2 \dots x_n$ where each x_i is either in V or T.
 - Add variable V_a and production $V_a \rightarrow a$ for each terminal a
 - If x_i is a terminal a, replace with V_a
- **Step 2:** For rules with $A \to C_1 \dots C_n$, n > 2, we introduce new variables D_1, D_2, \dots and put into \widehat{P} the productions
 - $\circ A \rightarrow C_1D_1$
 - $\circ\ D_1\to C_2D_2\ ...\ ...$
 - O $D_{n-1} \to C_{n-1}C_n$, where each $A, D_1, ..., D_{n-1}$ is in CNF.

Testing for Membership – a Parsing Algorithm

- Simple algorithm: Convert CFG to a Greibach Normal Form (all productions are of the form A →aα)
 - For string *w* of length *n*, we have *n* derivation steps.
 - At each step, explore all productions.
 - Time: $O(|P|^n)$ this is exponential (in length of input string w)
- Can we do better ?.....Yes
 - Start with conversion to CNF

Testing Membership

- Want to know if string w is in L(G).
- Assume G is in CNF.
 - Or convert the given grammar to CNF.
 - $w = \varepsilon$ is a special case, solved by testing if the start symbol is nullable.
- Cocke Younger Kashimi Algorithm (CYK) is a good example of dynamic programming and runs in time O(n³), where n = |w|.

Observations (derivations in CNF grammar)

- CNF Grammar: suppose S derives string w
- Parse tree:

■ Generalize to variable A derives a string w = w₁w₂

Setting up our solution/algorithm: Notations

- Important: these notations are a bit different from notations in the book, but the end algorithm works in the same manner
- Input string w has length n i.e, consists of n terminal symbols: $w = a_1 a_2 ... a_n$ where each $a_i \in T$
 - Ex: w = abcaab $a_1 = a a_2 = b a_3 = c,...$
- Define a substring x_{ij} (of w) as the the substring starting at position i and having length j
 - Ex: $x_{13} = abc$ $x_{22} = bc$ $x_{33} = caa$ $x_{15} = abcaa$ $w = x_{16} = abcaab$
- For a substring x_{ij} , define V_{ij} to be set of variables that derive x_{ij}
 - $V_{ij} = \{ A \mid A =>^* x_{ij} \} \text{ note } 1 \le i \le n-j$

Algorithm

- Claim is that we can construct V_{ii} interatively
- Basis: $V_{i1} = \{ A \mid A \rightarrow x_{i1} \text{ is a production } \}$
- Ind. A =>* x_{ij} iff A BC and for some k, 1<= k <= j,</p>
 B =>* x_{ik} and C =>* x_{i+k, i-k}
- Since k, j-k are <j the IH holds.</p>
- w is in L(G) iff S V_{1n} (since $w = x_{1n}$)

$$V_{ij} = \{A \mid A \rightarrow BC, \text{ and } for some k, B is in $V_{ik} \text{ and } C \text{ is in } V_{i+k,j-k} \}$$$

CYK Algorithm

Input: CFG G=(V,T,P,S) in CNF, Input string w of length n

- 1. for i=1 to n $V_{i1} = \{A \mid A \rightarrow a \text{ is in P and } x_{i1} = a\}$
- 2. for j=2 to n
 - For i=1 to n-j+1 { $V_{ij} = \emptyset$ for k =1 to j-1 { $V_{ij} = V_{ij} \cup \{A \mid A \rightarrow BC \text{ is a production in P,}$ B is in V_{ik} C is in $V_{i+k,j-k}$ } }
- 3. w is in L(G) if S is in V_{1n}

Time Complexity

- Step 1: takes O(n) to examine each of the n symbols
 - Assume P is a constant.
- Step 2: O(n³)
 - Outer j loop iterates O(n)
 - The i loop iterates O(n)
 - For each of the n² iterations, the k loop iterates O(n)
- Dynamic programming formulation
 - Construct solution for size n in terms of sizes n-1
 - Principle of optimality needs to hold

Example: Application of CYK Algorithm

- $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$
- w = baaba (length 5), so i,j iterate from 1 to 5.

- Some sample V_{ii}
- To compute V_{31} , x_{31} = a. V_{31} ={ X | X \rightarrow a is in P}
 - $V_{31} = \{ A, C \}$
- To compute V_{12} : $X \rightarrow YZ$ in P and
 - check if Yε V₁₁ and Zε V₂₁
- To compute $V_{23}: X \rightarrow YZ$ in P and
 - Check for Y in V₂₁ and Z in V₃₂
 - Check for Y in V₂₂ and Z in V₄₁

Example: Application of CYK Algorithm

- $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$
- w = baaba (length 5), so i,j iterate from 1 to 5.

i=1 j=2

В	A,C	A,C	В	A,C
S,A	В	S, C	A,S	

Example: Application of CYK Algorithm

- $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$
- w = baaba (length 5), so i,j iterate from 1 to 5.

_	В	A, C	A, C	В	A, C
Ĵ	S, A	В	S, C	A, S	
	{}	В	В		
	{}	C, A, S			
	S, A, C				

S is in V_{15} therefore w is in L(G)

Summary

- CFGs can be simplified and converted to CNF form
- CYK Algorithm provides a polynomial time O(n³) "parsing" algorithm
 - This is still time consuming if input is a large program
- Luckily syntax of most programming languages form a subset of CFGs known as Deterministic Context Free
 - Lend themselves to an O(n) parsing algorithm
- YACC: yet another compiler compiler
 - Standard tool in most Unix distributions
 - Generates a parser when given the grammar
 - Input is Grammar, and output is a parser
- Next: Return to automaton models for CFLs
- Then properties of CFLs...what languages are not CFL?

Exercise: CYK Algorithm

Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b String w = ababa