

#### UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de São José dos Campos Instituto de Ciência e Tecnologia

# Solução de Equações (zeros de funções)

Prof. Dr. Rogério Galante Negri

- São frequentes os problemas que exigem o cálculo de zeros da funções
- Técnicas numéricas consistem em aproximações <u>iterativas</u>
- Atenção especial (no CN) é dada às funções polinomiais, devido sua importâncias nas aplicações práticas



• Alguns teoremas e definição são importantes antes de começarmos...

- **Definição:** Seja  $f[a,b] \to \mathbb{R}$  e  $c \in [a,b]$  é zero (ou raiz) de f se f(c) = 0
- **Teorema:** Seja f(x) contínua em [a,b], se f(a)f(b) < 0, então existe ao menos um  $c \in [a,b]$  tal que f(c) = 0.



- No intervalo  $(0, \infty)$ :
  - $f(x) = \ln(x)$  possui raiz
  - $g(x) = \exp(x)$  não possui raiz

- **Definição:** um ponto  $c \in [a, b]$  é raiz de multiplicidade m da equação f(x) = 0 se  $f(x) = (x c)^m g(x)$  com  $g(x) \neq 0$  em [a, b]
- Exemplo: em  $f(x) = x^2 + 2x + 1 = (x + 1)^2 = 0$ , temos que c = -1 é raiz de multiplicidade 2



- Formas de obter as raízes:
  - Traçando o gráfico da função e procurando pontos de intersecção com o eixo x (o que pode não ser simples)
  - Rearranjar a equação f(x) = 0 como  $y_1(x) = y_2(x)$

- Na "estratégia"  $y_1(x) = y_2(x)$  devemos ter  $y_1$  e  $y_2$  como funções com gráficos mais simples do que f
- As raízes de f equivalem aos pontos onde  $y_1$  e  $y_2$  se interceptam

Vejamos este comportamento graficamente!

#### **Exemplo**

- Seja  $f(x) = (x + 1)^2 e^{(x^2-2)} 1$  e queremos verificar onde f(x) = 0
- Rearranjando a expressão e traçando os gráficos:



# Exemplo (continuação)

• Tabelando valores de  $f(x) = (x+1)^2 e^{(x^2-2)} - 1$ 

| X    | -3     | -2  | -1   | 0    | 1   | 2    | 3       |
|------|--------|-----|------|------|-----|------|---------|
| f(x) | 4383.5 | 6.4 | -1.0 | -0.9 | 0.5 | 65.5 | 17545.1 |

- Pelo **Teorema** definido anteriormente, podemos afirmar que em (-2, -1) e (0,1) existem raízes
- O gráfico anterior mostrou isso!

# Considerações iniciais...

- Os métodos numéricos para encontrar aproximações para raízes de funções são divididos em duas etapas
  - Localização: Teoremas enunciados
    - Feita a identificação do intervalo que contém a raiz
    - Processo INTERATIVO
  - Refinamento: Métodos numéricos
    - Inicio pela aproximação inicial, contida no intervalo identificado que contém a raiz
    - Melhoramento sucessivo da aproximação inicial
    - Processo ITERATIVO

#### Métodos que serão estudados

Método da Bissecção (MB)

Método da Posição Falsa (PF)

Método do Ponto Fixo (MPF)

Newton-Raphson (NR)

Método da Secante (MS)

#### Método da Bissecção

- Seja o intervalo [a, b] onde f(a)f(b) < 0
- Calcula-se f(x) no ponto médio  $x_1$  de [a, b]:

$$x_1 = \frac{a+b}{2}$$

- Nestas condições:
  - a) Se  $f(x_1) = 0$ , então  $x_1$  é raiz
  - b) Se  $f(a)f(x_1) < 0$ , então há uma raiz em  $[a, x_1]$
  - c) Se  $f(a)f(x_1) > 0$ , então há raiz em  $[x_1, b]$ , pois é dado que f(a)f(b) < 0
- Repete-se o mesmo processo em  $[a, x_1]$  ou  $[x_1, b]$ , se for o caso dos itens (b) e (c), respectivamente
- Chamamos cada repetição de <u>iteração</u>

# Método da Bissecção

```
pol = @(x) x.^5 - 3*x.^2; % definicao de uma funcao anonima
%funcao exemplo - apenas para visualizacao
v = -2:0.01:2; y = pol(v); plot(v,y); grid on;
inf = input('Limite inferior do intervalo: ');
sup = input('Limite superior do intervalo: ');
eps = input('Precisao: ');
it = 1;
if (sup - inf) >= 10.^(-eps)
    M = pol(inf);
    while (sup - inf) >= 10.^{(-eps)}
        x = (\sup + \inf)/2.0;
        if (M*pol(x) > 0) inf = x; else sup = x; end
        it = it + 1;
    end
else
    x = (\sup + \inf)/2.0;
end
fprintf('Raiz = %f #iters: %d \n', x, it)
```

# Método da Bissecção

- O método não é genérico! (nem automático)
- Ele é útil quando sabemos que existe uma raiz entre [a, b]
- Se existem várias raízes em [a, b], podemos alterar o algoritmo para lidar com isso
- Apenas com base nos extremos de [a, b], não podemos afirmar muito sobre as raizes de f(x)



#### **Exercício**

• Dada  $f(x) = x^3 - 9x + 3$  e considerando [a, b] = [0,1] e precisão de três casas decimais (i.e.,  $\epsilon = 10^{-3}$ ), obtenha a raiz.

Obs: não confundir a precisão dos cálculos com precisão de máquina ou arredondamento/truncamento

#### Convergência do MB

Seja f(x) contínua em [a,b] e f(a)f(b) < 0, então MB gera  $\{x_k\}$  que converge para uma raiz

- MB gera três sequências (a partir de  $[a_0, b_0]$  inicial):
  - $\{a_k\}$ : não decrescente e lim. sup. por  $b_0$  com  $\lim_{k\to\infty} a_k = r$
  - $\{b_k\}$ : não crescente e lim. sup. por  $a_0$  com  $\lim_{k\to\infty}b_k=s$
  - $\{x_k\}$ : com  $x_k = (a_k + b_k)/2$ , e logo  $a_k < x_k < b_k$
- A amplitude de cada intervalo é metade do anterior:

$$b_k - a_k = (b_0 - a_0)/2^k$$

- Logo:  $\lim_{k \to \infty} (b_k a_k) = \lim_{k \to \infty} (b_0 a_0)/2^k = 0$
- Como  $\{a_k\}$  e  $\{b_k\}$  convergem,  $\lim_{k\to\infty} b_k \lim_{k\to\infty} a_k = 0$ , e assim r = s
- Como  $x_k \in (a_k, b_k)$ , então  $\lim_{k \to \infty} x_k = \ell = r = s$
- Devemos então verificar que  $f(\ell) = 0$

#### Convergência do MB (cont.)

• Como  $f(a_k)f(b_k) \le 0$ , então:

$$0 \ge \lim_{k \to \infty} f(a_k) f(b_k) = \lim_{k \to \infty} f(a_k) \cdot \lim_{k \to \infty} f(b_k) =$$

$$= f\left(\lim_{k \to \infty} a_k\right) \cdot f\left(\lim_{k \to \infty} b_k\right) = f(s) \cdot f(r) =$$

$$= [f(\ell)]^2 \ge 0$$

• Assim,  $0 \ge [f(\ell)]^2 \ge 0$ , permitindo afirmar que  $f(\ell) = 0$ 

...mostrando assim a convergência do MB

# Estimativa de # iterações

• Dado o intervalo [a, b] é possível saber quantas iterações são efetuadas pelo MB até que se obtenha precisão  $\epsilon$ 

• Uma vez que  $b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_0 - a_0}{2^k}$ , devemos obter k tal que  $b_k - a_k < \epsilon$ , assim:

$$\frac{b_0 - a_0}{2^k} < \epsilon \Rightarrow 2^k > \frac{b_0 - a_0}{\epsilon} \Rightarrow$$

$$\Rightarrow k \log(2) > \log(b_0 - a_0) - \log(\epsilon) \Rightarrow$$

$$\Rightarrow k > \frac{\log(b_0 - a_0) - \log(\epsilon)}{\log(2)}$$

# Método da Posição Falsa

- Seja f(x) contínua e com raíz única em [a,b] e f(a)f(b) < 0
- Pelo MB, a raiz aprox.  $\bar{x}$  é obtida por  $x = \frac{a+b}{2}$  (med. aritmética)
- Vejamos o exemplo:  $f(x) = x^3 9x + 3$



Observe que:

$$f(0) = 3$$
$$f(1) = -5$$

Provavelmente, a raiz está mais próxima de 0 do que de 1

Então, é melhor obter  $\bar{x}$  pela média ponderada

# Método da Posição Falsa

• Assim:

$$x = \frac{a|f(b)| + b|f(a)|}{|f(b)| + |f(a)|} = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

- |f(a)| e |f(b)| são os pesos da média ponderada
- Já que f(a) e f(b) possuem sinais opostos, a expressão de dentro pode ser escrita como a expressão mais à direita
- No exemplo anterior, f(0) = 3 e f(1) = -5, onde a = 0 e b = 1, a "contribuição" para o cálculo de x tem maior peso para a (|f(b)| > |f(a)|) do que para b

# Método da Posição Falsa

- Representação geométrica:  $f(x) = \frac{sen((x+1)^2)}{2}$
- Intervalo: 1ª iteração  $\left[0, \frac{7\pi}{22}\right]$  2ª iteração  $\left[0.53, \frac{7\pi}{22}\right]$



Reta: 0.79x + y = 0.42

Aprox.  $x_0 = 0.53$ 

Reta: 1.58x + y = 1.2

Aprox.  $x_1 = 0.76$ 

Porque o intervalo foi restrito de  $\left[0, \frac{7\pi}{22}\right]$  para  $\left[0.53, \frac{7\pi}{22}\right]$  e não de  $\left[0, \frac{7\pi}{22}\right]$  para  $\left[0, 0.53\right]$ ?

#### Convergência do PF

Se f(x) é contínua em [a,b] e f(a)f(b) < 0 então o método PF gera uma sequência convergente

- A ideia é a mesma usada no MB
  - Consideramos sequências  $\{a_k\}$ ,  $\{x_k\}$  e  $\{b_k\}$
- Os elementos de  $\{x_k\}$  ficam entre a "raiz" e o extremo não fixo
- Com isso,  $\lim_{k \to \infty} x_k = \epsilon$
- A raiz aprox.  $\bar{x}$  é tal que  $|f(\bar{x})| < \epsilon$  sem que  $[a_k, b_k]$  seja pequeno
- Qual critério de parada adequado?



Use um para o intervalo e outro para  $f(\bar{x})$ 

#### Exercício (com PF)

• Dada  $f(x) = x^3 - 9x + 3$  e considerando [a, b] = [0,1] e precisão de quatro casas decimais (i.e.,  $\epsilon = 10^{-4}$ ), obtenha a raiz.

Obs: considere agora uma comparação entre o tamanho do intervalo e outro para a proximidade entre função no ponto observado e a raiz (i.e.,  $|f(x)| < \epsilon$ )

#### Método do Ponto Fixo

- Seja f(x) contínua em [a, b] e que contém uma raiz
- O MPF transforma f(x) = 0 em uma equação equivalente  $x = \varphi(x)$
- A partir de uma aproximação original  $x_0$  é gerada uma sequência  $\{x_k\}$  de aproximações:

$$x_{k+1} = \varphi(x_k), \text{ tal que:}$$

Como  $\{x_k\} \to \xi$ 

Temos que  $\varphi(x)$  proporciona  $f(\xi) = 0 \Leftrightarrow \varphi(\xi) = \xi$ 

Assim, encontrar a raiz de f(x) = 0 equivale a encontrar o ponto fixo de  $\varphi(x)$ 

É necessário definir  $\varphi(x)$  adequada!

Função de Iteração

# Função de Iteração

• A forma geral da função de iteração é:

$$\varphi(x) = x + A(x)f(x)$$

 $com A(\xi) \neq 0$  sendo  $\xi$  o ponto fixo

IDA: Dado  $\xi$  tal que  $f(\xi) = 0$  temos:  $\varphi(\xi) = \xi + A(\xi)f(\xi) = \xi$ , já que  $f(\xi)$  anula a segunda parcela

VOLTA: Seja  $\varphi(\xi) = \xi$ :  $\varphi(\xi) = \xi \Rightarrow \xi + A(\xi)f(\xi) = \xi \Rightarrow A(\xi)f(\xi) = 0$ Como  $A(\xi) \neq 0$ , então  $f(\xi) = 0$ 

• Dada f(x) = 0, existem diversas formas de definir  $\varphi(x)$ 

Será que qualquer uma resolve?

• A raiz de  $\varphi(x) = x$  é a abcissa onde ocorre a intersecção de  $y = \varphi(x)$  com y = x Exemplo:  $f(x) = x^2 + x - 6$ 



Exemplo:  $f(x) = x^2 + x - 6$ 

 $x_0 = 1.5$  ("chute" inicial)



Exemplo:  $f(x) = x^2 + x - 6$ 

 $x_0 = 1.5$  ("chute" inicial)



$$x_0 = 1.5$$
  
 $x_1 = \varphi(x_0) = \sqrt{6 - 1.5} = 2.121$   
 $x_2 = \varphi(x_1) = \sqrt{6 - 2.1213} = 1.970$   
 $x_3 = \varphi(x_2) = \sqrt{6 - 1.970} = 2.007$   
:

 $\{x_k\}$  converge para 2 2 é raiz de f(x)



#### Teorema da Função de Iteração

- Seja  $\xi$  raiz de f(x) = 0 contida no intervalo I, cujo centro é o próprio  $\xi$ .
- Dada a função de iteração  $\varphi(x)$  de f(x) = 0, se:
  - i.  $\varphi(x)$  e  $\varphi'(x)$  são contínuas em I
  - ii.  $|\varphi'(x)| \leq M < 1, \forall x \in I$
  - iii.  $x_0 \in I$

então a sequência  $\{x_k\}$  obtida por  $x_{k+1} = \varphi(x_k)$ converge para  $\xi$ 

Este teorema define as <u>condições necessárias</u> para que o processo iterativo seja <u>convergente para a raiz</u>

#### **Exercício**

- Considere as seguintes funções de iteração:
  - a)  $\varphi_1(x) = 2x 1$
  - b)  $\varphi_{2(x)} = x^2 2x + 2$
  - c)  $\varphi_{3(x)} = x^2 3x + 3$

Qual delas devemos escolher para obter a raiz (no caso a raiz é 1)

- Considerando uma aproximação inicial  $x_0 = 1.2$
- Qual delas podem ser escolhidas para aproximar a raiz  $\xi = 1$ ?
- Exiba a sequência convergente para  $\xi$

#### Critério de Parada

• Embora o MPF produza uma <u>sequência convergente</u> (nas condições ideais), o critério de convergência não deve ser somente  $|x_k - x_{k-1}| < \epsilon$ , mas também  $f(x_k) < \epsilon$ 

- Observemos que  $|x_k x_{k-1}| < \epsilon \text{ não}$  implica que  $|x_k \xi| < \epsilon$
- Pode ocorrer de  $x_k$  e  $x_{k-1}$  estarem próximos, porém  $\xi$  distante dos mesmos!



#### Algoritmo MPF

```
pol = (x) x.^5 - 3*x.^2; %definicao de uma funcao anonima
phi = (a(x)(3*x.^2).^{(1.0/5.0)}; %definicao da funcao phi(x)
%funcao exemplo - apenas para visualizacao
v = -2:0.01:2; y = pol(v); plot(v,y); grid on;
x0 = input('Aproximacao inicial: ');
eit = input('Precisao-iteracao: '); era = input('Precisao-raiz: ');
it = 1;
%Complete o codigo... falta uma estrutura "while" para o processo iterativo!
if pol(x0) < 10^{-eit}
    x1 = x0;
else
   x1 = phi(x0);
    if ((pol(x1) < 10^{-eit})) \mid (abs(x1 - x0) < 10^{-era}))
        break; end
    x0 = x1;
    it = it + 1;
end
disp( strcat('Raiz = ',num2str(x1),' (#iters: ',num2str(it), ')' ) );
```

# Ordem de convergência

• Seja  $\{x_k\}$  uma sequência que converge para  $\xi$  e seja  $e_k = x_k - \xi$  o erro na k-ésima iteração.

Se existem  $p \ge 1$  e C > 0 tais que:

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C$$

- p é denominada ordem de convergência
- C é denominada constante assintótica de erro
- Se  $\lim_{k\to\infty} \frac{e_{k+1}}{e_k} = C$ , com  $0 \le |C| < 1$  então a convergência é <u>linear</u>
- O valor de p informa a velocidade de convergência do processo iterativo, uma vez que  $|e_{k+1}| \approx C|e_k|^p$  quando  $k \to \infty$

#### Ordem de Convergência do MPF

Sendo  $x_{k+1} - \xi = \varphi(x_k) - \varphi(\xi) = \varphi'(c_k)(x_k - \xi)$  com  $c_k \in (x_k, \xi)$ , temos:

$$\frac{x_{k+1} - \xi}{x_k - \xi} = \varphi'(c_k)$$

• Quando  $k \to \infty$ 

$$\lim_{k \to \infty} \frac{x_{k+1} - \xi}{x_k - \xi} = \lim_{k \to \infty} \varphi'(c_k) = \varphi'\left(\lim_{k \to \infty} c_k\right) = \varphi'(\xi)$$

• Portanto,  $\lim_{k\to\infty} \frac{e_{k+1}}{e_k} = \varphi'(\xi) = C$  e |C| < 1 já que  $\varphi'(x)$  satisfaz o Teorema de Função de Iteração

Notemos que o erro em cada iteração é proporcional ao erro na iteração anterior, com proporção  $\varphi'(\xi)$ 

Quanto menor é  $|\varphi'(\xi)|$ , mais rápida é a convergência

#### Método de Newton-Raphson

- Segundo o MPF:
  - Para convergir é necessário  $|\varphi'(x)| \le M < 1, \forall x \in I$
  - Quanto menor é  $|\varphi'(\xi)|$ , mais rápida é a convergência
- O Métodos de Newton-Raphson (NR) tenta garantir e acelerar a convergência do MPF
- Para isso, NR busca por  $\varphi(x)$  tal que  $\varphi'(\xi) = 0$

Uma vez que,

$$\varphi(x) = x + A(x)f(x) \varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x) \varphi'(\xi) = 1 + A'(\xi)f(\xi) + A(\xi)f'(\xi) = 1 + A(\xi)f'(\xi)$$

Temos, 
$$\varphi'(\xi) = 0 \Leftrightarrow 1 + A(\xi)f'(\xi) = 0 \Rightarrow A(\xi) = \frac{-1}{f'(\xi)}$$
  
Assim, tomamos  $A(x) = -1/f'(x)$ 

# Método de Newton-Raphson

Uma vez que 
$$\varphi(x) = x + A(x)f(x)$$
 e  $A(x) = -\frac{1}{f'(x)}$  temos  $\varphi(x) = x - \frac{f(x)}{f'(x)}$  tal qual  $\varphi'(\xi) = 0$  (VERIFIQUE!)

• Baseado nos desenvolvimentos, a sequência que define a aproximação para a raiz de f(x) = 0 é:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

- Lembrando que a reta tangente em  $x = x_k$  é dada por:  $L_k(x) = f(x_k) + f'(x_k)(x x_k)$
- Para  $L_k(x) = 0$  é necessário que  $x = x_k \frac{f(x_k)}{f'(x_k)}$
- Assim, consideramos  $x_{k+1} = x$



$$f(x) = 0.05 \cdot x^{2} - 2$$

$$x_{0} = 3$$

$$L_{0}(x) = (0.05 \cdot 9 - 2) + 0.1 \cdot 3 \cdot (x - 3)$$

$$L_{0}(x) = 0.3x - 2.45$$

$$x_{1} = 8.167$$

$$L_{1}(x) = (0.05 \cdot 8.167^{2} - 2) + 0.1 \cdot 8.167 \cdot (x - 8.167)$$

$$L_{1}(x) = 0.817x - 5337$$

$$x_{2} = 6.523$$

#### Te<mark>orema da convergência do NR</mark>

• Seja f(x), f'(x) e f''(x) contínuas em I centrado na raiz  $x = \xi$  de f(x). Supondo  $f'(\xi) \neq 0$ , então existe  $\xi \in \overline{I} \subset I$  e  $x_0 \in \overline{I}$ , onde  $\{x_k\} \to \xi$  sendo  $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ 

Uma vez que o NR é um caso particular do MPF, para provar que NR converge, basta verificar que ele atende o Teorema da Função de Iteração

# Ordem de convergência do NR

• Partindo de  $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ , temos:

$$x_{k+1} - \xi = x_k - \xi - \frac{f(x_k)}{f'(x_k)} \Rightarrow e_k - \frac{f(x_k)}{f'(x_k)} = e_{k+1}$$

• Desenvolvendo a série de Taylor em torno de  $x_k$ :

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(c_k)}{2}(x - x_k)^2$$
$$com |x - x_k| \le c_k$$

Nestas condições:

$$0 = f(\xi) = f(x_k) - f'(x_k)(x_k - \xi) + \frac{f''(c_k)}{2}(\xi - x_k)^2$$

$$f(x_k) = f'(x_k)(x_k - \xi) - \frac{f''(c_k)}{2}(-(x_k - \xi))^2 \Leftrightarrow$$

$$\Leftrightarrow \frac{f''(c_k)}{2f'(x_k)}e_k^2 = -\frac{f(x_k)}{f'(x_k)} + e_k = e_{k+1} \Leftrightarrow \frac{e_{k+1}}{e_k^2} = \frac{1}{2}\frac{f''(c_k)}{f'(x_k)}$$

# Ordem de convergência do NR

Assim,

$$\lim_{k\to\infty} \frac{e_{k+1}}{e_k^2} = \frac{1}{2} \lim_{k\to\infty} \frac{f''(c_k)}{f'(x_k)} =$$

$$= \frac{1}{2} \frac{f''(\lim_{k \to \infty} c_k)}{f'(\lim_{k \to \infty} x_k)} = \frac{1}{2} \frac{f''(\xi)}{f'(\xi)} = \frac{1}{2} \varphi''(\xi) = C$$

· Logo, a convergência é quadrática!

# Algoritmo NR

```
pol = (x) \times .^5 - 3*x.^2; %definicao de uma funcao anonima
dpol = @(x) 5*x.^4 - 6*x; %derivada de pol(x)
%funcao exemplo - apenas para visualizacao
v = -2:0.01:2; y = pol(v); plot(v,y); grid on;
x0 = input('Aproximacao inicial: '); eit = input('Precisao-iteracao: ');
era = input('Precisao-raiz: '); it = 1;
while (1)
    if abs(pol(x0)) < 10^{-eit}
       x1 = x0;
    else
        x1 = x0 - pol(x0)/dpol(x0);
        if ((abs(pol(x1)) < 10^{-eit})) | (abs(x1 - x0) < 10^{-era}))
            break; end
        x0 = x1; it = it + 1;
    end
end
disp( strcat('Raiz = ',num2str(x1),' (#iters: ',num2str(it), ')' ) );
```

#### Método da Secante (MS)

- Desvantagem do NR é a necessidade de calcular f'(x) e seu respectivo valor numérico a cada iteração
- Uma alternativa é substituir  $f'(x_k)$  por uma aproximação:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
 Necessitamos de  $x_k$  e  $x_{k-1}$ 

Assim,  

$$\varphi(x_k) = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}} = x_k - \frac{f(x_k) \cdot (x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} = \frac{x_k - x_{k-1}}{f(x_k) - x_k f(x_{k-1})} = \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

- A aproximação para a raiz é obtida pela interseção da reta secante com o eixo das abcissas
- Este comportamento caracteriza o Método da Secante (MS)



• Exercício: verifique que a equação da reta secante equivale a função de iteração do MS

#### Algoritmo MS

```
pol = (x) x.^5 - 3*x.^2; %definicao de uma funcao anonima
%funcao exemplo - apenas para visualizacao
v = -2:0.01:2; y = pol(v); plot(v,y); grid on;
x0 = input('Aproximacao inicial 0: ');x1 = input('Aproximacao inicial 1: ');
eit = input('Precisao-iteracao: ');era = input('Precisao-raiz: '); it = 1;
   if ((abs(pol(x0)) < 10^{-eit})) | (abs(pol(x1)) < 10^{-eit}) | ...
      (abs(x1 - x0) < 10^{-eit}))
      x1 = x0:
   else
     while(1)
         if ((abs(pol(x1)) < 10^{-eit})) | (abs(x1 - x0) < 10^{-era}))
           x1 = x0: break
        end
        x2 = x1 - (pol(x1)/(pol(x1) - pol(x0)))*(x1 - x0);
         if ((abs(pol(x2)) < 10^{-eit})) | (abs(x2 - x1) < 10^{-era}))
           x1 = x2; break
        end
        x0 = x1; x1 = x2; it = it + 1;
     end
 end
 disp( strcat('Raiz = ',num2str(x1),' (#iters: ',num2str(it), ')' ) );
```

#### **Exercícios**

• Considerando  $f(x) = x^2 + x - 6$ , sabendo que  $\xi = 2$  e adotando  $x_0 = 1.5$  e  $x_1 = 1.7$ , calcule a raiz de f(x) = 0 a partir do MS

#### Bibliografia da aula

- RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo
   Numérico Aspectos Teóricos e Computacionais, 2ª Ed.
   Pearson, 1996.
- FRANCO, N. B. Cálculo Numérico. Pearson, 2007.



