

Feed-forward Neural Networks

Marco Forgione

SUPSI – Scuola Universitaria Professionale della Svizzera Italiana

IDSIA – Dalle Molle Institute for Artificial Intelligence

marco.forgione@supsi.ch

Artificial Intelligence, Machine Learning, Deep Learning

Machine learning: Regression

• $\{(x^i, y^i)\}$ i = 1, ..., N available dataset

•
$$\hat{y}^i = M(x^i; \theta)$$
 parametric model

• $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y^i - \hat{y}^i(\theta))^2$ Loss (MSE)

$$\theta^* = \arg\min_{\theta} L(\theta)$$

Real estate application

Feed-Forward Neural Networks

It is just a particular model structure

$$\begin{split} z_1^2 &= \sigma \left(\sum_{j=1}^4 w_{1,j}^1 z_j^1 + b_1^1 \right) = \sigma \left(W_1^1 z^1 + b_1^1 \right) \\ z_2^3 &= \sigma \left(\sum_{j=1}^5 w_{2,j}^2 z_j^2 + b_2^2 \right) = \sigma \left(W_2^2 z^2 + b_2^2 \right) \\ y &= z^4 = \sum_{j=1}^3 w_{1,j}^3 z_j^3 + b^3 = W_1^3 z^3 + b^3 \\ y &= z^4 = f(z^3 (z^2 (z^1)); W, b) \end{split}$$

For regression, the output neuron typically does not have a nonlinear activation function

Vanilla Gradient Descent

- 1. Initialize Parameters: $\theta^{(0)}$
- 2. for $k = 0, 1, \ldots$: until maximum number of iterations or convergence do:
 - (a) Compute Gradient: $\nabla_{\theta} \mathcal{L}(\theta^{(k)})$
 - (b) Update Parameters:

$$\theta^{(k+1)} = \theta^{(k)} - \gamma \cdot \nabla_{\theta} \mathcal{L}(\theta^{(k)})$$

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

Nowadays, the adam optimizer (optim.Adam) is a more common variant of vanilla gradient descent.

Exercise: synthetic toy dataset (toy_example.ipynb)

Consider the 2D function $f:\mathbb{R}^2 o \mathbb{R}$

$$f(x) = 2\sin(x_1) - 3\cos(x_2)$$
$$x \in [-2, 2]^2 \subset \mathbb{R}^2$$

- Training and test datasets: 500 points uniformly sampled in the domain.
- Additive noise with standard deviation 0.1

True Function and Training Points

Feed-forward neural network model

- 2 inputs, 1 output this is the structure of f(x)
- 2 hidden layers with [16, 8] neurons
- tanh non-linearities

```
class FeedForwardNN(nn.Module):
    def __init__(self):
        super(FeedForwardNN, self).__init__()
        self.fc1 = nn.Linear(2, 16)
        self.act1 = nn.Tanh()
        self.fc2 = nn.Linear(16, 8)
        self.act2 = nn.Tanh()
        self.fc3 = nn.Linear(8, 1)

def forward(self, x):
        x = self.act1(self.fc1(x)) # 16
        x = self.act2(self.fc2(x)) # 8
        x = self.fc3(x) # 1
        return x

model = FeedForwardNN()
```


Model training

```
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# Train the model
iters = 5000
LOSS = []
for iter in range(iters):
    optimizer.zero_grad()
    y_pred = model(X_train)
    loss = criterion(y_pred, y_train)
    loss.backward()
    optimizer.step()

LOSS.append(loss.item())
    if iter % 100 == 0:
        print(f"Epoch {iter}: Loss = {loss.item():.4f}")
```


Model evaluation

It is common to inspect, on the test dataset:

- Predictions and residuals vs measured y (top left)
- Histogram of residuals (top right)

In this toy example, we can do more:

- The input is only 2D. We can visualize the learned function over a grid (bottom left)
- The true function is known. We can also visualize it in 2D (bottom right)

Everything seems to work well!

True Function

Inverse Dynamical Modeling on the EMPS benchmark (emps_exercise.ipynb)

Real dataset from a (simple) mechanical system: the <u>Electro-Mechanical Positioning System</u>

Prismatic joint, 1-DoF mechanical system

$$M\ddot{q}(t) = \tau(t) - \tau_f(t) - b$$

- q(t): measured position (m)
- $\tau(t)$: known applied force (N)
- $\tau_f(t)$: unknown friction (N)
- M: unknown mass (kg)
- b: force measurement bias (N)

We want an inverse dynamical model (IDM): $q(t), \dot{q}(t), \ddot{q}(t) \to \tau(t)$

Training and test datasets

Linear model

We assume a linear friction model: $au_f = -F_v \dot{q}(t)$

Then, the IDM is: $au(t) = M\ddot{q}(t) + F_v\dot{q}(t) + b$. We can fit the IDM with a **linear regression**:

$$\tau(t) = \phi(t)\theta, \qquad \phi(t) = [\ddot{q}(t)\,\dot{q}(t)\,1], \qquad \theta = [M\,F_v\,b]^{\top}$$

Linear model with static friction

We use a more sophisticated friction model: $\tau_f(t) = -F_v \dot{q}(t) - F_c \mathrm{sign}(\dot{q}(t))$

$$\tau(t) = \phi(t)\theta, \qquad \phi(t) = [\ddot{q}(t)\,\dot{q}(t)\,\mathrm{sign}(q(t))\,1], \qquad \theta = [M\,F_v\,F_c\,b]^{\top}$$

Feed-forward neural network

We ignore all physics and fit a feed-forward neural network instead: $\tau(t) = \mathrm{FF}(\ddot{q}, \dot{q})$

```
in_dim = train_X_torch.shape[1] # 2
out_dim = 1
batch_size = 128
hidden_size = 32
lr = 5e-4

ff_net = torch.nn.Sequential(
    torch.nn.Linear(in_dim, hidden_size),
    torch.nn.ReLU(),
    torch.nn.Linear(hidden_size, hidden_size),
    torch.nn.ReLU(),
    torch.nn.Linear(hidden_size, 1)
)
```


Feed-forward neural network

Training data 150 - 100 - 50 - 100 - 150 - 15 10 15 20 25 Time (s)

FF Neural Network IDM model

Train it yourself!

Physics-inspired neural network

We trust Newton's law, but nothing else: $\tau(t) = M\ddot{q} + FF(\dot{q})$

Train it yourself!

