To find the following Machine Learning Regression using r2 value

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

Sample dataset: "insurance_pre.csv"

As a data scientist, you must develop a model which will predict the insurance charges.

- 1.) Identify your problem statement
 - Machine Learning (predict the insurance charge numbers)
 - Supervised Learning (we have input and output)
 - Regression Type (Numerical value)
- 2.) Tell basic info about the dataset (Total number of rows, columns)
 - ➢ 6 columns (5 columns is input and 1 column is output)
 - No.of rows is 1338 (exclude column header)
 - Input column is (age, sex, bmi, children, smoker)
 - Output column is (charges)
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)
 - We are using Standardization(Pre-processing, StandardScaler) method
- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
 - I'm going with random forest comparing with other model. Execution time is less and more productivity to other model.
 - Accuracy of this model is 0.8 not equal to 1.0 but compare to others. It's ok for probability decision.
- 5.) R2_score of the models:
- 1. Multiple Linear Regression: {r2 value = 0.78947}
- 2. SVM Support Vector Machine Regression:

Kernal = {'linear', 'rbf', 'poly', 'sigmoid'}

S.NO	HYPER PARAMETER	LINEAR (r value)	RBF (NON- LINEAR) (r value)	POLY (r value)	SIGMOID (r value)

1	C=10	0.4624	-0.03227	0.0387	0.0393
2	C=100	0.62887	0.3200	0.61795	0.52761
3	C=500	0.76310	0.66429	0.8263	0.4446
4	C=1000	0.76493	0.81020	0.8566	0.2874
5	C=2000	0.7440	0.8547	0.8605	-0.5939
<mark>6</mark>	C=3000	0.74142	<mark>0.8663</mark>	0.8598	-2.1244

SVM Regression - R² value (nonlinear "rbf" & hyper parameter C=3000) = 0.8663

3. Decision Tree Regressor:

Criterion List = {"squared_error", "friedman_mse", "absolute_error", "poisson"}

Mse = Mean squared error Mae = Mean absolute error

S.NO	CRITERION LIST	MAX FEATURES	SPLITTER	R VALUE
1	squared_error	None	best	0.6880
2	squared_error	None	random	0.6775
3	squared_error	sqrt	best	0.7421
4	squared_error	sqrt	random	0.7011
5	squared_error	log2	best	0.7282
6	squared_error	log2	random	0.6959
7	Mae	None	best	0.6744
8	Mae	None	random	0.6869
9	<mark>Mae</mark>	<mark>sqrt</mark>	<mark>best</mark>	<mark>0.7625</mark>
10	Mae	sqrt	random	0.6742
11	Mae	log2	best	0.75607
12	Mae	log2	random	0.72709
13	friedman_mse	None	best	0.6923
14	friedman_mse	None	random	0.6815
15	friedman_mse	sqrt	best	0.6582
16	friedman_mse	sqrt	random	0.6977
17	friedman_mse	log2	best	0.67605
18	friedman_mse	log2	random	0.7107
19	poisson	None	best	0.7319
20	poisson	None	random	0.7541
21	poisson	sqrt	best	0.7231
22	poisson	sqrt	random	0.6900

23	poisson	log2	best	0.6037
24	poisson	log2	random	0.6712

Decision Tree Regressor - R² value (Criterion list = "absolute_error", Max feature = "sqrt", Splitter=best) = 0.7625

4. Random Forest:

Criterion List = {"squared_error", "friedman_mse", "absolute_error", "poisson"}

S.NO	N_ESTIMATORS	CRITERION	MAX	R VALUE
		LIST	FEATURES	
1	50	squared_error	None	0.85091
2	50	squared_error	sqrt	0.86961
3	50	squared_error	log2	0.8696
4	50	Mae	None	0.85412
<mark>5</mark>	<mark>50</mark>	<mark>Mae</mark>	<mark>sqrt</mark>	<mark>0.87168</mark>
<mark>6</mark>	<mark>50</mark>	<mark>Mae</mark>	<mark>log2</mark>	<mark>0.87168</mark>
7	50	friedman_mse	None	0.85111
8	50	friedman_mse	sqrt	0.87023
9	50	friedman_mse	log2	0.87023
10	50	poisson	None	0.85032
11	50	poisson	sqrt	0.86320
12	50	poisson	log2	0.86320

Random Forest Regressor - R^2 value (Criterion list = "Mae", Max feature = "sqrt or log2") = 0.87168

- 6.) Random Forest gives the best result compare to other model.
 - > Execution time is less and compare to other model accuracy is considerable