<u>Aula 30</u>

#### **Professor**:

Geraldo Xexéo UFRJ

**Conteúdo:** 

Modelo de Interface



## Como Projetar a Interface



Compreender o ser humano



Compreender as ações do ser humano ao usar o sistema



Compreender as reações do ser humano a interface que o sistema apresenta



# Porque a qualidade da IU é importante



Mais pessoas podem utilizar o computador.



Ensinar computadores sobre as pessoas, ao invés de ensinar as pessoas sobre computadores



Mais fácil de utilizar, mais formas de utilizar



Economia de tempo, economia de dinheiro



Mas...



O que é Qualidade ?



#### **Professor**:

Geraldo Xexéo UFRJ

#### **Conteúdo:**

**Qualidade** 



# Compatibilidade com o Usuário





## Compatibilidade entre Produtos









# Compatibilidade com as Tarefas



Escolha Um
Gráfico
Editor
Banco de Dados
Planilha

<u>Escolha Um</u> Relatório Anual Memorandos Plano de Vendas





## Compatibilidade com o Fluxo de Trabalho

# Escolha Um!! Relatório Anual Memorandos

Agenda Telefones









## Consistência





## Familiaridade









# Simplicidade

Espaço Proporcional? Justificação? Qual Fonte? Cabeçalho? Quais Cores? Mexidos ou Fritos?





## Manipulação Direta

Troque

"Cadeia"

na linha 10

por "Prisão"







## Controle

Entre com o comando!
Comando
Ilegal!





Pronto...

Comando não reconhecido...



# **WYSIWYG**













# Respostas e Feedback







Formatando Disco...

30% Executado
2 min. para acabar



# Encapsulamento da Tecnologia

Byte
Node
Trilha
Block









## Robustez

BAD FILE!!!

ABORTAR PROGRAMA!!







Erro: registro 32
Pressione:
C para continuar
P para parar



# Proteção

TODOS
OS
ARQUIVOS
APAGADOS







**UNDO** 

Você confirma
o comando?
(Pressione S ou N)



# Facilidade de Aprendizado











## Facilidade de Uso







NOVICE











## Como Atingir Qualidade



Conhecendo a teoria



Desenvolvendo junto com o usuário



Conhecendo as melhores práticas e guidelines

Siga um conjunto de Princípios



Analisando o Resultado



#### **Professor**:

Geraldo Xexéo UFRJ

#### **Conteúdo:**

Teoria Básica para Interface Homem Computador



# Interação Homem Computador

A interação homem computador corresponde a um ciclo, onde cada parte recebe informações, as processas e emite novas informações



# IHC





## Model Human Processor



Consorcio **CECIC** 

## Sistema Cognitivo



## A Memória de Curto Prazo



Rimas são difíceis de diferenciar



Perdida com a menor distração



Taxa de esquecimento aumenta

- com a complexidade
- com a quantidade de informação
- com a semelhança (confusão?)



a imagens do que a palavras



Idade diminui quantidade de informação

## Ainda as Memórias



Memória de Curto prazo

- 6174591765 vs. (617) 459-1765
- DECIBMGMC vs. DEC IBM GMC
- Acesso rápido (~ 70ms)



Memória de Longo Prazo

- Episódica e semântica
- muito grande (se não for ilimitada)
- Acesso lento (>100ms)



Memória Sensorial!!

Ao toque, por exemplo



# Percepção

Estímulos que ocorrem muito rapidamente podem se fundir

cinema



 dois estímulos distintos podem se fundir se o primeiro parece causar o segundo



## Passos da Execução de Uma Ação

- Formar o objetivo, o que se deseja no sentido mais amplo (por exemplo, "matar a sede").
- A Execução, dividida em 3 passos:
  - Formar a intenção, o que se fará (por exemplo, "beber água" ou "beber um suco").
  - Especificar a ação, (algo como "ir a geladeira, pegar uma garrafa de água, ir ao armário, pegar um copo, colocar água no copo e beber")[1].
  - Executar a ação,
  - A Avaliação, dividida também em 3 passos
    - Perceber o estado do mundo,
    - Interpretar o estado do mundo e
    - Avaliar o resultado (em relação aos objetivos originais).



#### **Professor**:

Geraldo Xexéo UFRJ

#### **Conteúdo:**

Desenvolvendo com o Usuário



#### Desenvolvendo com o Usuário





- Baixa Fidelidade
- Alta Fidelidade
- Storyboards
- Mapas de Tela/Navegação



## Protótipo



Implementação simplificada do sistema



Pode inclusive ser descartável



Deve ter uma finalidade

- validar um modelo de interface
- um modelo de funcionamento ou ainda um algoritmo.
- Normalmente protótipos são construídos utilizando a ferramenta em que o sistema está ou será desenvolvido (podendo servir inclusive para validar essa ferramenta) e apresentam algum comportamento, mesmo que simulado.

## Vantagens de Protótipos









# Vantagens de Protótipos







## Vantagens de Protótipos



Facilitam em muito a validação de sistemas

- principalmente de novos sistemas, onde há certo grau de exploração da solução mais adequada.
- Além disso, podem facilitar a encontrar funções desnecessárias ou funções esquecidas, principalmente com usuários já acostumados com sistemas semelhantes.



#### Riscos do Protótipo



A possibilidade de perder tempo fazendo melhorias de baixa importância no protótipo



Pode trazer como risco a confiança demasiada e um otimismo exagerado em relação a prazos, como uma decepção proporcional a seguir



#### Riscos do Protótipo



Riscos de qualidade historicamente associados aos protótipos, como a utilização no código final de código que foi criado para ser jogado fora, e conseqüentemente sem seguir regras e padrões de desenvolvimento



#### Mock-up

- Uma representação da interface que não cumpre nenhuma finalidade a não ser demonstrar a uma proposta para a aparência final do sistema, sem a capacidade de simular seu comportamento (a não ser, possivelmente, a navegação entre telas).
- Um mock-up não precisa ser feito com uma ferramenta de programação, podendo ser feito com ferramentas de desenho, como os softwares Visio® ou SmartDraw®.
- Em computação, é normal usar o termo protótipo mesmo quando se trata de um mock-up.





É um *mock-up* feito a mão da interface, basicamente um conjunto de desenhos, com a finalidade de demonstrar a aparência básica e simular, manualmente, o comportamento do sistema.









Esse tipo de protótipo é totalmente diferente do protótipo tradicional proposto normalmente e que inclui a construção de um software.



- PBF podem ser desenhados em quadros negros, quadros brancos, sobre papel, sobre transparência, em "tablet PCs", ou qualquer outra forma, incluindo a união das citadas.
- Podem ser feitos a mão livre ou com auxílio de réguas, gabaritos ou outros materiais de desenho.
- Podem ser preto e branco ou coloridos.
- Podem usar materiais pré-desenhados, como frames de janelas, ou serem feitos a partir de colagens.





Poucos são as habilidades necessárias para desenhar um PBF.



Seu custo também é baixo e o ciclo de interação com o usuário muito rápido.



PBFs podem ser desenhados junto com o usuário, inclusive em uma reunião de JAD.



Um dos efeitos psicológicos interessantes é que o usuário, não vendo uma implementação, fica mais disposto a propor mudanças, pois não vê nenhum custo ou esforço associado às mesmas, o que, na prática, é verdade.



## PBF e Storyboards

- A principal característica de PBF é que eles são explicados e "executados", ou melhor, "encenados", manualmente.
- Partes do protótipo podem ser desenhadas com detalhes, enquanto outras podem ser só indicadas.
- Alguns objetos podem ser cortados em um tamanho apropriado, como caixas mensagens e menus.
- A construção dessa encenação é semelhante à técnica de storyboarding usada no cinema.

|                                          | . Detalhe de cliente                                 |
|------------------------------------------|------------------------------------------------------|
|                                          | CNPS:                                                |
|                                          | RUA:                                                 |
| Arquivo Ediran Clientes Ajudz            | NUM: [ COMPLITE                                      |
|                                          | CEP: SAIRRO, S                                       |
| 5 Nome do Cliente CNPJ Media Mensal      | TELEFONES: [ ST400: 19]                              |
| 5 Nome do Clience Cross Medianos         | FAX:                                                 |
| U Cerse Varande 938+45231-77 14 80.00900 | [SALVAK [EANCELAN                                    |
|                                          | 10gin                                                |
|                                          | Usuánio                                              |
|                                          | PASS WOLD                                            |
|                                          |                                                      |
|                                          | CABASTRO                                             |
|                                          | ESQUECT MINHA SENIA                                  |
| INSERIR ATVACIZAR REMOVER                |                                                      |
|                                          | Confirma Deceis C. I.                                |
|                                          | Apagar Cliente Deseja Salver<br>127 antes de fechan? |
|                                          | SIM [NÃO] SIM [NÃO] CANCELAR                         |



# PBF e Storyboards

- comportamento de um PBF é executado por uma pessoa, em uma estratégia conhecida como "Mágico de Oz"
  - sua documentação não é tão simples.
- A partir da encenação do uso da interface é feita uma avaliação, que pode levar a necessidade de aceitá-la, melhorá-la ou até mesmo iniciar tudo do início.



## Storyboard



Apesar do storyboard não ser uma HQ propriamente dita, por não possuir balões nem se destinar à reprodução, preserva as características de divisão de ação em quadros.



## Storyboard





#### PBF com Software



Também é possível desenvolver PBF com software



Um exemplo disso é o software DENIM, projetado para ser utilizado com computadores "tablete"

Pode ser utilizado com mouse



# **Denim** (1/3)



Fundação

Consorcio **ceder**j

# **Denim** (2/3)



# **Denim** (3/3)





#### O Software Denim









## Protótipo de Alta Fidelidade

É um mock-up feito de forma a se assemelhar ao software final, sendo normalmente construído na linguagem de desenvolvimento ou em uma ferramenta com resultados similares.





#### Protótipo de Alta Fidelidade





## Software para Alta Fidelidade











# Mapa de Telas/Navegação



Outra ferramenta, normalmente mais adequada para o desenvolvedor, que permite a compreensão de como é possível navegar nas telas do sistema



## Mapa de Telas/Navegação



#### **Professor**:

Geraldo Xexéo UFRJ

#### **Conteúdo:**

**Modelo Mental** 



#### **Modelo Mental**



O usuário faz um modelo mental do sistema



Faz suposições sobre o que deve ocorrer no sistema



Baseado no aprendizado que teve em outra parte do sistema ou em outros sistemas



#### O Modelo Mental do Usuário



Esse modelo vêm da combinação de várias experiências desse usuário, tanto com o mundo real quanto com outros softwares.



#### Levantando o Modelo Mental

- Antes de desenvolver seu projeto, investigue qual o modelo mental da tarefa que sua aplicação vai tomar parte
- Investigue as metáforas utilizadas.
- Procure atender as expectativas do usuário quanto aos componentes que devem existir na tarefa e o fluxo de trabalho que ela executa na sua interface
  - Organizando menus e barras de ferramenta
  - Adequando seu uso das janelas e espaços na tela as tarefas



#### Exemplo de Modelo Mental



Se em uma parte do sistema ao tentar apagar um objeto o usuário tem a oportunidade de desistir ou voltar atrás, vai esperar que o mesmo aconteça em todo o sistema.



# Princípios do Modelo Mental



Familiaridade



Simplicidade



Disponibilidade



Explorabilidade



#### Familiaridade



O modelo mental é baseado na experiência

Quando possível, melhore a interface com o usuário com componentes que reflitam o modelo esperado



## Simplicidade



O modelo mental de uma tarefa é simplificado



Tem o foco nos principais componentes da tarefa



Os detalhes, mesmo quando existentes, não devem competir com os componentes básicos pela atenção do usuário



## Disponibilidade



Porém, as necessidades do usuário devem estar prontamente disponíveis

 Por exemplo, evite estruturas muito profundas de menu



#### Explorabilidade



Os usuários devem ser encorajados a descobrir a funcionalidade

- Por meio de dicas de como usar a interface
  - Por exemplo, um botão deve parecer um botão



Não esconda funcionalidade



#### **Professor**:

Geraldo Xexéo UFRJ

#### **Conteúdo:**

**Guias e Princípios** 



# Princípios da Interface com Usuário



Estrutura



Simplicidade



Visibilidade



Feedback



Tolerância



Reuso



#### Princípio da Estrutura

- Seu projeto deve organizar a interface com o usuário de forma significativa
  - Reconhecida pelo usuário
  - Baseada em modelos consistentes
    - Coisas relacionadas juntas, coisas não relacionadas separadas
    - Coisas similares devem parecer similares, coisas diferentes devem parecer diferentes



# Princípio da Simplicidade



Seu projeto deve fazer tarefas simples serem simples



Deve se comunicar claramente e na linguagem do usuário



Deve fornecer "aceleradores" que sejam facilmente associados aos procedimentos mais longos



#### Princípio da Visibilidade





O número de alternativas não pode confundir o usuário



#### Princípio da Tolerância



O custo de errar deve ser reduzido



Deve ser possível desfazer e refazer



Erros também devem ser evitados



É possível tolerar entradas variadas e interpretá-las da maneira correta, quando razoável



## Princípio do Feedback

















#### Princípio do Reuso



Seu projeto deve reusar componentes externos e internos



Manter a consistência de comportamento e aparência



O usuário não deve precisar repensar ou lembrar.



# Princípios de Interface com Humanos da Apple



#### **Metáforas**







Controle do usuário

Feedback e Comunicação O que temos de novo?



Consistência



**WYSIWYG** 



Perdão



Estabilidade



Estética (integrada)



Ausência de Modo



Complexidade Gerenciada



#### Metáforas

- Trazem para a interface conceitos e funcionalidade que o usuário está habituado a usar no mundo real
- São o bloco básico dos modelos mentais
- Devem ser óbvias
- Criam expectativas
- Sugerem um uso
  - Não estão limitadas ao uso do mundo real
  - Exemplo
    - Um cesta de lixo tem um tamanho máximo, mas isso não deve ser uma propriedade de uma cesta de lixo do sistema operacional

# Ações Explícitas

- Determinam claramente o resultado da manipulação de um objeto
- Exemplo: comandos em menus
- Não exigem que o usuário memorize algo



# Ações Implícitas

- Fornecem o resultado por meio de dicas visuais e contextos
- Exemplo: Drag and Drop
- Exemplo: Puxar para o Lixo
- Exige o reconhecimento dos objetos envolvidos, o conhecimento das ações possíveis e as suas consequencias



#### Explicítas x Implícitas



Devemos examinar o modelo mental do usuário para determinar que ações são apropriadas



#### Usuário no Controle



O usuário deve iniciar as ações



- Usuários novatos podem se beneficiar com alternativas limitadas
- Deve haver a possibilidade de expandir para as alternativas completas



#### Ausência de Modo

- Modo: um estado do sistema que só permite que algumas ações sejam tomadas
- Sempre que possível, permita que os usuários façam tudo que eles quiserem, a qualquer momento.
- Evite o uso de interfaces modais



#### Guidelines





Sua empresa também deve ter padrões de qualidade



#### **Professor**:

Geraldo Xexéo UFRJ

#### **Conteúdo:**

**Analisando o Resultado** 



#### Critique você mesmo



Observe o usuário usando o sistema

- Dificuldades
- Tarefas longas
- Tarefas feitas erroneamente
- Trabalho perdido
- Procure por padrões
- Não ajude o usuário a usar o sistema



Escute o usuário falando sobre o sistema



#### Treinamento e Manual



Usuários não lêem manual



Usuários não recebem treinamento formal

Pelo menos na maioria dos casos



Usuários são treinados para a tarefa, não para o software



#### Experimentos de Interface (1/10)

- Se apresente e descreva o objetivo da observação em termo gerais
  - Não diga especificamente o que vai ser observado
  - Deixe claro que o testado é o produto, não o participante



## Experimentos de Interface (2/10)

- Diga ao participante quanto tempo vai demorar o teste
- Diga que está OK se ele desistir a qualquer momento, por qualquer razão
  - O participante nunca deve se sentir pressionado
  - A desistência pode indicar que a tarefa é muito difícil ou complexa



# Experimentos de Interface (3/10)



Escolha uma metodologia



Exemplo: Pensando Alto



Explique como funciona

- O participante deve falar alto durante a observação, falando o que vier a mente enquanto trabalha
  - Foco em pensar e planejar
- Observe
  - Expectativas
  - Intenções
  - Estratégias de solução de problemas
  - Frustrações



## Experimentos de Interface (4/10)

Use toda a informação que puder encontrar na fala do usuário

- Detalhes do modelo mental
- Se necessário, ensine ao usuário como descrever uma tarefa simples, como fazer café



#### Fazendo Café



Quero fazer café



Preciso de pó, água e cafeteira



A água está na pia



O café está no armário



A cafeteira já está na mesa



Abro o armário



Pego o pote de café



Abro o pote de café



Preciso de uma colher



A colher está na gaveta



Abro a gaveta



Pego a colher



Pego uma colher de café e coloco na cafeteira



A cafeteira está fechada



Abro a cafeteira...



#### Experimentos de Interface (5/10)

- Explique de modo geral o que o participante vai fazer
- Explique quais os materiais e qual a sequencia em que deve usá-los
- Explique o objetivo de cada equipamento na sala e como será usado no teste
  - Software, hardware, câmeras, etc...
- Se for necessário, demonstre seu produto, mas não demonstre o que vai ser testado



#### Experimentos de Interface (6/10)



Não ajude ou interfira com o participante

- Se for necessária sua ajuda, isto deve estar determinado no protocolo do experimento
  - Por exemplo: se o participante tentar por 3 minutos fazer algo sem ajuda e não conseguir, a ajuda será dada.
- Se o participante ficar muito frustrado, pode ser melhor intervir logo para evitar que ele desista



# Experimentos de Interface (7/10)



Conclua explicando o que você estava tentando encontrar e responda as perguntas do participante



## Experimentos de Interface (8/10)



- Você verá os usuários fazendo coisas que você pode não ter antecipado
- Não culpe o usuário pelos erros que cometem
- Lembre que o objetivo do teste é descobrir que partes do produto podem ser difíceis de usar



# Experimentos de Interface (9/10)



Procure por padrões

- O problema de um não representa necessariamente um problema geral
- Analise detalhadamente porque um usuário isolado teve um problema
  - Pode ser descartado?
  - É um problema real?



## Experimentos de Interface (10/10)

- - Revise os resultados
- Use equipe com representantes de todas as áreas funcionais da empresa
  - Use a experiência desses participantes nos seus pontos de vista específicos
  - Gerência
  - Marketing
  - Qualidade
  - Design
  - Engenharia...



#### **Problemas Detectados**

Problemas com um usuário não significam problemas com todos os usuários

Mas indicam uma área de preocupação

Problemas com todos os usuários são certamente problemas



**Aula 30** 

#### **Professor**:

Geraldo Xexéo UFRJ

**Conteúdo:** 

FIM: Modelo de Interface

