

Facultad de Ciencias Localización de landmarks cefalométricos por medio de técnicas de few-shot learning

Doble Grado en Ingeniería Informática y Matemáticas

TRABAJO DE FIN DE GRADO

Localización de landmarks cefalométricos por medio de técnicas de few-shot learning y análisis de redes convolucionales

Presentado por:

Alejandro Borrego Megías

Tutor:

Pablo Mesejo Santiago DECSAI

Guillermo Gómez Trenado DECSAI

Javier Merí de la Maza Dpto Análisis Matemático

Curso académico 2021-2022

Localización de landmarks cefalométricos por medio de técnicas de few-shot learning y análisis de redes convolucionales

Alejandro Borrego Megías

Alejandro Borrego Megías Localización de landmarks cefalométricos por medio de técnicas de few-shot learning y análisis de redes convolucionales.

Trabajo de fin de Grado. Curso académico 2021-2022.

Responsable de tutorización

Pablo Mesejo Santiago DECSAI

Guillermo Gómez Trenado DECSAI

Javier Merí de la Maza Dpto Análisis Matemático Doble Grado en Ingeniería Informática y Matemáticas

Facultad de Ciencias

Universidad de Granada

Declaración de originalidad

D./Dña. Alejandro Borrego Megías

Declaro explícitamente que el trabajo presentado como Trabajo de Fin de Grado (TFG), correspondiente al curso académico 2021-2022, es original, entendida esta, en el sentido de que no ha utilizado para la elaboración del trabajo fuentes sin citarlas debidamente.

En Granada a 26 de mayo de 2022

Fdo: Alejandro Borrego Megías

Dedicatoria (opcional) Ver archivo preliminares/dedicatoria.tex

Índice general

Ag	radecimientos	ΧI
Su	mmary	XII
Int	roducción	χv
ı.	Primera parte	1
1.	Análisis de Redes Convolucionales	3
	1.1. Introducción	3
	1.1.1. Notación	4
	1.2. Modelización Matemática de una Red Neuronal Convolucional	5
	1.2.1. De Fourier a las ondeletas de Littlewood-Paley	5
	1.2.2. Camino de dispersión Ordenado	13
	1.2.3. Propagador de dispersión y conservación de la Norma	16
	1.3. Invarianza por Traslaciones	21
	1.4. Elementos del texto	24
	1.4.1. Listas	24
	1.4.2. Tablas y figuras	25
	1.5. Entornos matemáticos	25
	1.6. Bibliografía e índice	26
II.	Segunda parte	27
2.	Localización de landmarks cefalométricos por medio de técnicas de few-shot learning	29
	2.1. Introducción	29
	2.1.1. Descripción del problema	29
	2.1.2. Motivación	30
	2.1.3. Objetivos	30
A.	Primer apéndice	31
Glo	osario	33
Bik	oliografía	35

Agradecimientos

Agradecimientos del libro (opcional, ver archivo preliminares/agradecimiento.tex).

Summary

An english summary of the project (around 800 and 1500 words are recommended). File: preliminares/summary.tex

Introducción

De acuerdo con la comisión de grado, el TFG debe incluir una introducción en la que se describan claramente los objetivos previstos inicialmente en la propuesta de TFG, indicando si han sido o no alcanzados, los antecedentes importantes para el desarrollo, los resultados obtenidos, en su caso y las principales fuentes consultadas.

Ver archivo preliminares/introduccion.tex

Parte I.

Primera parte

Si el trabajo se divide en diferentes partes es posible incluir al inicio de cada una de ellas un breve resumen que indique el contenido de la misma. Esto es opcional.

1. Análisis de Redes Convolucionales

1.1. Introducción

En el contexto del procesamiento de imágenes, se define el término **invarianza** como la capacidad de reconocer un objeto en la imagen incluso si su apariencia ha variado en algún sentido (rotando, deformando ligeramente o trasladando el objeto por ejemplo). Esto es algo muy importante y positivo, pues esto indica que se preserva la identidad del objeto incluso a pesar de haberse sometido a ciertos cambios.

Las simetrías e invarianzas, aunque juegan un papel más importante en el campo de la Física, van abriéndose paso en el procesamiento de información de señales. La información contenida en las señales referente a imágenes o sonidos no suele verse afectada bajo la acción de grupos finitos como las traslaciones o las rotaciones, y es estable a la acción de pequeños difeomorfismos que deforman las señales. Esto motiva el estudio de las representaciones de traslaciones e invarianzas de las funciones de $L^2(\mathbb{R}^d)$, que son Lipschitz-continuas por la acción de difeomorfismos y que mantienen información de alta frecuencia para diferenciar entre distintos tipos de señales.

En primer lugar nos centraremos en la invarianza por traslaciones, entendida en el contexto de las imágenes como trasladar cada pixel de la imagen en una misma dirección la misma distancia. En este sentido:

Definición 1.1.
$$L_c f(x) = f(x-c)$$
 es la traslación de $f \in L^2(\mathbb{R}^d)$ por $c \in \mathbb{R}^d$.

Así, decimos que un operador Φ de $L^2(\mathbb{R}^d)$ en un espacio de Hilbert \mathcal{H} es invariante por traslaciones si $\Phi(L_c f(x)) = \Phi(f)$ para todo $f \in L^2(\mathbb{R}^d)$ y para todo $c \in \mathbb{R}^d$. El módulo de la transformada de Fourier de f es un ejemplo de un operador invariante por traslaciones no canónico que estudiaremos en la sección siguiente.

Sin embargo, estos operadores invariantes a traslaciones no son Lipshcitz-continuos por la acción de difeomorfismos. Es conocido el hecho de que aparecen inestabilidades frente a deformaciones en las altas frecuencias, y el mayor reto es preservar la Lipschitz-continuidad en esta situación.

Para preservar la estabilidad en $L^2(\mathbb{R}^d)$ queremos que Φ sea no-expansiva.

Definición 1.2. Decimos que Φ es no-expansiva si:

$$\forall (f,h) \in L^2(\mathbb{R}^d)^2 ||\Phi(f) - \Phi(h)||_{\mathcal{H}} \le ||f - h||$$

Es entonces suficiente verificar su Lipschitz-continuidad relativa a la acción de pequeños difeomorfismos cercanos a las traslaciones. Dichos difeomorfismos transforman $x \in \mathbb{R}^d$ en $x - \tau(x)$ dónde τ es el campo de desplazamiento.

Definición 1.3. Denotemos $L_{\tau}f(x) = f(x - \tau(x))$ como la acción del difeomorfismo $\mathbb{1} - \tau$ en f.

La condición de Lipschitz nos dice que $||\Phi(f) - \Phi(L_{\tau}f)||$ está acotada por el "tamaño" del difeomorfismo, y por tanto por la distancia entre $1 - \tau$ y 1, hasta ||f|| por una constante multiplicativa.

Sea $|\tau(x)|$ la norma euclídea en \mathbb{R}^d , $\nabla |\tau(x)|$ la norma del supremo de la matriz $\nabla \tau(x)$, y $|H\tau(x)|$ la norma del supremo del tensor Hessiano.

La topología débil (recordemos que es la topología menos fina de un espacio normado que hace continuas todas las aplicaciones de su dual) en los difeomorfismos C^2 permite definir la siguiente aplicación:

Definición 1.4. Así, se define una distancia entre $\mathbb{1} - \tau$ y $\mathbb{1}$ en cualquier subconjunto compacto Ω de \mathbb{R}^d como

$$(1.1) \ d_{\Omega}(\mathbb{1}, \mathbb{1} - \tau) = \sup_{x \in \Omega} |\tau(x)| + \sup_{x \in \Omega} |\nabla \tau(x)| + \sup_{x \in \Omega} |H\tau(x)|$$

Definición 1.5. Un operador invariante por traslaciones Φ se dice "Lipchitz-continuo" por la acción de los difeomorfismos C^2 si para cualquier compacto $\Omega \subset \mathbb{R}^d$ existe una constante C tal que para todo $f \in L^2(\mathbb{R}^d)$ con Soporte en Ω y para todo $\tau \in C^2(\mathbb{R}^d)$ se cumple:

$$(1.2) ||\Phi(f) - \Phi(L_{\tau}f)||_{\mathcal{H}} \le C||f||(\sup_{x \in \mathbb{R}^d} |\nabla \tau(x)| + \sup_{x \in \mathbb{R}^d} |H\tau(x)|)$$

Debido a que Φ es invariante a traslaciones, la cota superior de Lipschitz no depende de la amplitud máxima de traslación $\sup_x |\tau(x)|$ de la métrica del difeomorfismo (1.1). Por otro lado la continuidad Lipschitz de (1.2) implica que Φ es invariante por traslaciones globales, pero es mucho más fuerte. Φ se ve poco afectada por los términos de primer y segundo grado de difeomorfismos que son traslaciones locales.

Las inestabilidades por altas frecuencias de las deformaciones se pueden evitar agrupando las frecuencias en paquetes diádicos en \mathbb{R}^d con transformadas de ondeletas. Sin embargo, una transformada de ondeletas no es invariante por traslaciones. Es posible construir un operador invariante por traslaciones mediante un procedimiento de dispersión a lo largo de múltiples caminos, que preservan la condición de lipschitz de las ondeletas por la acción de difeomorfismos. Un propagador de dispersión se define en primer lugar como una composición organizada de convoluciones de operadores no lineales y no conmutativos, cada uno de los cuales calcula el módulo de la transformada de ondeletas. Esta cascada de convoluciones y módulos también pueden interpretarse como una red neuronal convolucional. Para ondeletas apropiadas, en la sección 2 veremos el principal teorema que demuestra que una ventana de dispersión mantiene la norma: $||\Phi(f)||_{\mathcal{H}} = ||f|| \ \forall f \in L^2(\mathbb{R}^d)$ y es Lipschitz-continua por difeomorfismos de clase C^2 .

1.1.1. Notación

- $||\tau||_{\infty} := \sup_{x \in \mathbb{R}^d} |\tau(x)|$
- $||\nabla \tau||_{\infty} := \sup_{x \in \mathbb{R}^d} |\nabla \tau(x)|$
- $||\mathcal{H}\tau||_{\infty} := \sup_{x \in \mathbb{R}^d} |\mathcal{H}\tau(x)|$ dónde $|\mathcal{H}\tau(x)|$ es la norma del tensor Hessiano.
- El producto interno de $(x, y) \in \mathbb{R}^{2d}$ es $x \cdot y$.

- La norma de f en un espacio de Hilbert se denota por ||f||.
- La norma de f en $L^2(\mathbb{R}^d)$ se denota por $||f||^2 = \int |f(x)|^2 dx$.
- La norma de f en $L^1(\mathbb{R}^d)$ es $||f||_1 = \int |f(x)| dx$.
- La transformada de Fourier se denota por $\widehat{f}(\omega) := \int f(x)e^{-ix\omega}d\omega$.
- Un operador \mathcal{R} parametrizado por p es denotado por $\mathcal{R}[p]$ y $\mathcal{R}[\Omega] = {\mathcal{R}[p]}_{p \in \Omega}$.
- La norma del supremo de un operador lineal A en $L^2(\mathbb{R}^d)$ lo denotamos por ||A|| y el conmutador entre dos operadores [A, B] = AB BA.

1.2. Modelización Matemática de una Red Neuronal Convolucional

Nuestro primer objetivo será tratar de llegar a la modelización matemática de lo que es una **Red Neuronal Convolucional**, para ello vamos a comenzar explicando la problemática de las inestabilidades en altas frecuencias que se producen en las señales bajo la acción de difeomorfismos y de la importancia de elegir un operador que las evite, en concreto usaremos el ejemplo de la transformada de Fourier para comprobar este hecho.

Tras esto veremos posibles alternativas para evitar que se produzcan estas inestabilidades, mediante el uso de bases de ondeletas o la transformada de ondeletas de **Littlewood-Paley**. En concreto con esta segunda alternativa obtendremos un operador que es **Lipschitz-continuo** bajo la acción de difeomorfismos.

Después, nuestra tarea será conseguir calcular coeficientes que sean invariantes por traslaciones, y para ello veremos que la solución será aplicar el operador módulo al que habíamos obtenido anteriormente con la transformada de Littlewood-Paley.

Una vez tengamos un operador con todas las propiedades anteriores definiremos lo que denominaremos como **propagador de dispersión**, que será la aplicación en cadena de los operadores anteriores sobre un çamino"de frecuencias y rotaciones y que supondrá la modelización matemática de una red neuronal convolucional debido a las grandes similitudes que tendrá su comportamiento con el comportamiento clásico de una Red Neuronal Convolucional.

1.2.1. De Fourier a las ondeletas de Littlewood-Paley

El análisis de Fourier juega un papel fundamental en el procesamiento de señales [RC18] y puesto que las imágenes se procesan como señales, vamos a poner de manifiesto la importancia del análisis de Fourier y en concreto de su transformada en el tratamiento clásico de imágenes, así como sus inconvenientes y alternativas actuales.

La transformada de Fourier es una de las herramientas matemáticas más potente en el tratamiento de señales. La intuición detrás de su fórmula es la de representar funciones no periódicas (pero que tienen área bajo la curva finita) como la integral de senos y cosenos multiplicados por una función que determina los pesos en cada instante. Formalmente tiene la siguiente expresión:

$$\widehat{f}(\omega) := \int f(x)e^{-ix\omega}d\omega = \int f(x)\left[\cos x\omega - i\sin x\omega\right]d\omega$$

.

Entre las propiedades más destacables de la transformada encontramos el hecho de que una función se puede recuperar sin pérdida de información a partir de su transformada de Fourier, lo cual nos permite poder trabajar en el "Dominio de Fourier" (también llamado "Dominio de Frecuencia") ya que al calcular la integral, la función resultante sólo depende de t que es la frecuencia. También nos permite pasar de nuevo al dominio original de la función, aplicando la inversa de la transformada, e interpretar los resultados obtenidos.

Normalmente, en el estudio de señales se suele emplear el módulo de la transformada de Fourirer para evitar fases complejas en el análisis, de esta forma:

Definición 1.6. Sea $\Phi(f) = |\hat{f}|$ el módulo de la transformada de Fourier.

Vamos a comprobar si se trata de un operador válido para nuestro propósito de construir un propagador de dispersión. Para ello necesitamos en primer lugar que sea un operador **Invariante por traslaciones**, algo esencial en el procesamiento de imágenes y concretamente en tareas de clasificación y detección.

Translation Invariance

Figura 1.1.: Las tres estatuas deben identificarse como iguales, aunque se ecuentren desplazadas.

Lema 1.1. El operador $\Phi(f) = |\widehat{f}|$ es invariante por traslaciones.

Demostración. Para ello tenemos que ver que si definimos para cada $c \in \mathbb{R}^d$, la traslación $L_c f(x) = f(x-c)$ se tiene que :

$$\widehat{L_c f}(w) = \int_{\mathbb{R}^d} L_c f(x) e^{-ixw} dx = \int_{\mathbb{R}^d} f(x - c) e^{-ixw} dx$$

Y realizando el cambio de variable x - c = y se tendría que:

$$\begin{split} \int_{\mathbb{R}^d} f(x-c)e^{-ixw}dx &= \int_{\mathbb{R}^d} f(y)e^{-i(y+c)w}dy = \\ &= \int_{\mathbb{R}^d} f(y)e^{-iyw}e^{-icw}dy = \\ &= \int_{\mathbb{R}^d} e^{-icw} \int_{\mathbb{R}^d} f(y)e^{-iyw}dy = e^{-icw}\widehat{f}(w) \end{split}$$

Por lo que se tiene que $|\widehat{L_cf}(w)|=|e^{-icw}||\widehat{f}(w)|=|\widehat{f}(w)|$ y entonces $\Phi(f)=|\widehat{f}|$ es invariante a traslaciones.

Figura 1.2.: Acción de un difeomorfismo en una rejilla.

Figura 1.3.: Pequeñas deformaciones del número 5 que deberían ser todas identificadas como similares.

Sin embargo, la invaianza por traslaciones no es suficiente y necesitamos que sea invariante también a pequeñas deformaciones llamadas difeomorfismos. Este hecho es de vital importancia en el contexto del procesamiento de imágenes, ya que en tareas como clasificación o segmentación resulta de vital importancia el reconocer objetos o clasificarlos incluso en imágenes que están en baja resolución o deformadas (afectadas por un difeomorfismo), por lo tanto definimos en primer lugar el concepto de difeomorfismo:

Definición 1.7. Una función diferenciable $f: X \to \Omega$ dónde X y Ω son variedades, es un "*Difeomorfismo*" si f es una biyección y su inversa $f^{-1}: \Omega \to X$ es también diferenciable.

Por otro lado:

Definición 1.8. La topología débil de los difeomorfismos de C^2 define una distancia entre $\mathbb{1} - \tau$ y $\mathbb{1}$ en cualquier subconjunto compacto $\Omega \in \mathbb{R}^d$ mediante:

$$d_{\Omega}(1,1-\tau) = \sup_{x \in \Omega} |\tau(x)| + \sup_{x \in \Omega} |\nabla \tau(x)| + \sup_{x \in \Omega} |H\tau(x)|$$

Dónde $|\tau(x)|$ es la norma euclídea en \mathbb{R}^d , $|\nabla \tau(x)|$ el supremo de la matriz $|\nabla \tau(x)|$ y $|H\tau(x)|$

Figura 1.4.: Deformación excesiva que permite confundir el 1 con el 2 cuando se le aplica el difeomorfismo.

el supremo de la norma del tensor Hessiano. Además se define $||\tau||_{\infty} := \sup_{x \in \mathbb{R}^d} |\tau|$.

De esta forma, un operador $\Phi(f)$ diremos que es estable frente a deformaciones si su norma euclídea $||\Phi(f) - \Phi(L_{\tau})||$ (con $L_{\tau}f(x) = f(x - \tau(x))$) definiendo la acción del difeomorfismo $1 - \tau$ en f) es "pequeña" cuando la deformación se mide por $d_{\Omega}(1, 1 - \tau)$. En otras palabras, la estabilidad se da cuando se verifica lo siguiente:

Definición 1.9. Un Operador Φ invariante por traslaciones se dice "Lipschitz-continuo" bajo la acción de difeomorfismos de C^2 si para cualquier compacto $\Omega \in \mathbb{R}^d$ existe una constante $c \in \mathbb{R}^d$ tal que para todo $f \in L^2(\mathbb{R}^d)$ con soporte en Ω y $\tau \in C^2(\mathbb{R}^d)$ se tiene

$$||\Phi(f) - \Phi(L_{\tau}|| \le c||f||(||\nabla \tau||_{\infty} + ||H\tau||_{\infty})$$

con $||\nabla \tau||_{\infty} + ||H\tau||_{\infty} < 1$ para asegurarnos de que la deformación sea invertible [TY05].

Como podemos comprobar, la cota superior no depende de $||\tau(x)||_{\infty}$ ya que hemos supuesto que Φ es invariante por traslaciones.

Sin embargo, el operador que estábamos empleando hasta ahora (el módulo de la Transformada de Fourier) no es invariante frente a pequeños difeomorfismos, como podemos ver a continuación:

Lema 1.2. El módulo de la Transformada de Fourier no es estable frente a pequeñas deformaciones y no es "Lipschitz-continuo".

Demostración. Vamos a considerar la función $\tau(x) := \epsilon x$ con $0 < \epsilon << 1$. De esta forma $||\nabla \tau(x)||_{\infty} = \epsilon$ y $||H\tau(x)||_{\infty} = 0$ con esto, la condición de Lipschitz debería ser

$$\left|\left||\widehat{f}| - |\widehat{L_{\tau}f}|\right|\right| \le c||f||(||\nabla \tau||_{\infty} + ||H\tau||_{\infty}) \le c||f||\epsilon$$

Si suponemos que $f(x) = e^{i\xi x}\Theta(x)$ el escalado por medio de τ produce que la frecuencia ξ se traslade de ξ a $(1-\epsilon)\xi$, si suponemos que Θ además es regular con decrecimiento rápido, se tiene que:

$$(2.1) |||\widehat{L_{\tau}f}| - |\widehat{f}||| \sim |s||\xi|||\Theta|| = ||\nabla \tau||_{\infty}|\xi|||f||.$$

Y como $|\xi|$ puede ser arbitrariamente grande, $\Phi(f) = |\hat{f}|$ no satisface la continuidad de Lipschitz cuando se alcanzan altas frecuencias.

No obstante, este desplazamiento de frecuencia de ξ a $(1-s)\xi$ tiene un impacto menor si las ondas sinusoidales de la transformada de Fourier son reemplazadas por funciones localizadas con un soporte mayor en altas frecuencias. Esto se consigue empleando ondeletas. Esto puede consultarse en el libro [Maloo]. A menudo, la discretización de señales tiene un tamaño muy grande (superior a 10^6) y sólo pueden procesarse por medio de algoritmos rápidos, idealmente O(NlogN) en tiempo y memoria. El análisis de Fourier y las ondeletas ilustran la fuerte conexión entre los algoritmos rápidos y las herramientas matemáticas.

Las ondeletas están bien localizadas y se necesitan pocos coeficientes para representar estructuras transitorias locales. Al contrario que las bases de Fourier, las bases de ondeletas definen representaciones dispersas de señales regulares a trozos, que podrían incluir transiciones y singularidades. En las imágenes, los mayores coeficientes de las ondeletas se localizan en el entorno de las esquinas y en las texturas irregulares.

Podemos revisar por ejemplo la función que creó Haar en 1910:

$$\psi(t) = \begin{cases} 1 & 0 \le t < 1/2 \\ -1 & 1/2 \le t < 1 \\ 0 & \textit{en otro caso} \end{cases}$$

Que generan la siguiente base ortonormal

$$\left\{\psi_{j,n}(t) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{t - 2^j n}{2^j}\right)\right\}_{(j,n) \in \mathbb{Z}^2}$$

del espacio $L^2(\mathbb{R})$ de señales con energía finita:

$$||f||^2 = \int_{-\infty}^{+\infty} |f(t)|^2 dt < +\infty$$

Así, cualquier señal f de energía finita puede ser representada por los coeficientes que se obtienen mediante el producto interno en $L^2(\mathbb{R})$ con la base anterior:

$$\langle f, \psi_{j,n} \rangle = \int_{-\infty}^{+\infty} f(t) \psi_{j,n}(t) dt$$

y puede recuperarse sumando en su base ortonormal:

$$f = \sum_{j=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}$$

Además, se verifica que cada ondeleta $\psi_{j,n}$ tiene media 0 en su soporte $[2^j n, 2^j (n+1)]$. Por otro lado, si f es localmente regular y 2^j es pequeño, entonces es casi constante en su intervalo y su coeficiente de ondeleta $\langle f, \psi_{j,n} \rangle$ es casi cero. Lo que significa que los coeficientes grandes de ondeletas están únicamente en los cambios bruscos de señal.

Para el caso concreto de imágenes (ver por ejemplo sección 1.1 de [Maloo]), las bases de ondeletas ortonormales pueden construirse a partir de bases ortonormales en señales de

una dimensión. Así, a partir de tres ondeletas $\psi^1(x)$, $\psi^2(x)$ y $\psi^3(x)$ con $x=(x_1,x_2)\in \mathbb{R}^2$, dilatadas por el factor 2^j y trasladadas por 2^jn con $n=(n1,n2)\in \mathbb{Z}^2$, se construye una base ortonormal para el espacio $L^2(\mathbb{R}^2)$ de funciones de energía finita:

$$\{\psi_{j,n}^k(x) = \frac{1}{\sqrt{2^j}}\psi^k\left(\frac{x-2^jn}{2^j}\right)\}_{(j,n)\in\mathbb{Z}^2}$$

El soporte de la ondeleta $\psi_{j,n}^k(x)$ es un cuadrado proporcional a la escala 2^j . Las bases de ondeletas en dos dimensiones se discretizan para definir bases ortonormales de imágenes de N píxeles. Los coeficientes se calculan rápidamente, en un tiempo O(N).

Del mismo modo que en una dimensión, los coeficientes de ondeletas $\langle f, \psi_{j,n}^k \rangle$ serán pequeños si f(x) es regular, y serán grandes cerca de los cambios bruscos de frecuencias como en los bordes o esquinas de las imágenes.

La transformada de ondeletas por lo tanto, permite que el deslpacamiento de ξ a $(1-s)\xi$ tenga un menor impacto en las ondas sinusoidales en las altas frecuencias.

Volviendo al caso que nos ocupaba del módulo de la transformada de Fourier. Una transformada de dispersión se calcula con ondeletas del tipo:

$$\psi(x) = e^{i \cdot \eta \cdot x} \Theta(x)$$

Donde $\widehat{\Theta}(x)$ es una función real centrada en una bola de baja frecuencia en x=0, cuyo radio es del orden de π .

Y como podemos ver:

$$(2.2) \quad \widehat{\psi}(\omega) = \int_{\mathbb{R}^d} e^{i\cdot \eta \cdot x} \Theta(x) e^{-i\omega x} dx = \int_{\mathbb{R}^d} \Theta(x) e^{ix(\omega - \eta)} dx = \widehat{\Theta}(\omega - \eta).$$

Por lo tanto, $\widehat{\psi}(\omega)$ es real y centrada en una bola de mismo radio pero centrada en $\omega=\eta$. Tras la dialtación y rotación, $\widehat{\psi}_{\lambda}(\omega)=\widehat{\Theta}(\lambda^{-1}\omega-\eta)$, donde $\lambda=2^{j}r\in 2^{\mathbb{Z}}\times G$, siendo G el grupo finito de rotaciones. Por lo tanto $\widehat{\psi}_{\lambda}(\omega)$ recubre una bola centrada en $\lambda\eta$ con radio proporcional a $|\lambda|=2^{j}$. El índice λ especifica la localización de la frecuencia y la dispersión de la transformada $\widehat{\psi}_{\lambda}$.

En contraposición a las bases de ondeletas, la Transformada de ondeleta de Littlewood-Paley es una representacion redundante que calcula convoluciones para todo $x \in \mathbb{R}^d$ sin realizar sub-muestreo:

(2.4)
$$\forall x \in \mathbb{R}^d \ W[\lambda]f(x) = f * \psi_{\lambda}(x) = \int f(u)\psi_{\lambda}(x-u)du.$$

Su transformada de Fourier es:

$$\widehat{W[\lambda]f(\omega)} = \widehat{f}(\omega)\widehat{\psi_{\lambda}}(\omega) = \widehat{\psi_{\lambda}}(\lambda^{-1}\omega).$$

Si la función f es real, entonces $\widehat{f}(-\omega)=\widehat{f}^*(\omega)$, y si $\widehat{\psi}(\omega)$ es real entonces $W[-\lambda]f=W[\lambda]f^*$. Si denotamos por G^+ al cociente de G con $\{-1,1\}$, conjunto en el cual las dos rotaciones r y -r son equivalentes, sería suficiente calcular $W[2^jr]f$ para las rotaciones "positivas" de G^+ . Si la función f es compleja, entonces $W[2^jr]f$ tendría que calcularse para todo f es G.

Una transformada de ondeleta a escala 2^J sólo mantiene las ondeletas de frecuencias $2^j > 2^{-J}$. Las bajas frecuencias que no son cubiertas por estas ondeletas vienen dadas por un promedio en el dominio proporcional a 2^J :

(2.5)
$$A_I f = f * \phi_{2^J} \operatorname{con} \phi_{2^J}(x) = 2^{-dJ} \phi(2^{-J}x).$$

Si f es real, entonces la transformada de ondeleta $W_J f = \{A_J f, (W[\lambda]f)_{\lambda \in \Lambda_J}\}$ se indexa por $\Lambda_J = \{\lambda = 2^j r : r \in G^+, 2^j > 2^{-J}\}$. Su norma sería:

(2.6)
$$||W_J f||^2 = ||A_J f||^2 + \sum_{\lambda \in \Lambda_j} ||W[\lambda] f||^2.$$

Si $J=\infty$ entonces $W_{\infty}f=\{W[\lambda]f\}_{\lambda\in\Lambda_{\infty}}$ con $\Lambda_{\infty}=2^{\mathbb{Z}}\times G^+$. Su norma es $||W_{\infty}f||^2=\sum_{\lambda\in\Lambda_{\infty}}||W[\lambda]f||^2$.

En el caso en que f sea compleja, se incluyen todas las rotaciones definiendo $W_J f = \{A_J f, (W[\lambda]f)_{-\lambda,\lambda\in\Lambda_J}\}$ y $W_\infty f = \{W[\lambda]f\}_{-\lambda,\lambda\in\Lambda_\infty}$.

La siguiente proposición da una condición estándar de Littlewood-Paley para que W_J sea unitario.

Proposición 1.1. Para cualquier $J \in \mathbb{Z}$ o $J = \infty$, W_J es unitario en el espacio de funciones reales o complejas de $L^2(\mathbb{R}^d)$ si y sólo si para casi todo $\omega \in \mathbb{R}^d$:

$$(2.7) \ \beta \sum_{j=-\infty}^{\infty} \sum_{r \in G} |\widehat{\psi}(2^{-j}r^{-1}\omega)|^2 = 1 \ y \ |\widehat{\phi}(\omega)|^2 = \beta \sum_{j=-\infty}^{0} \sum_{r \in G} |\widehat{\psi}(2^{-j}r^{-1}\omega)|^2,$$

Dónde $\beta = 1$ para funciones complejas y $\beta = \frac{1}{2}$ para funciones reales.

Demostración. Si f es una función compleja, $\beta=1$, y vamos a demostrar que (2.7) es equivalente a :

$$(2.8) \ \forall J \in \mathbb{Z} \ \left| \widehat{\phi} \left(2^J \omega \right) \right|^2 + \sum_{j > -J, r \in G} \left| \widehat{\psi} \left(2^{-j} r^{-1} \omega \right) \right|^2 = 1.$$

Para ello partimos de que si $\beta = 1$ se tiene sustituyendo en (2.7) que:

$$\sum_{j=-\infty}^{\infty} \sum_{r \in G} |\widehat{\psi}(2^{-j}r^{-1}\omega)|^2 = 1 \ y \ |\widehat{\phi}(\omega)|^2 = \sum_{j=-\infty}^{0} \sum_{r \in G} |\widehat{\psi}(2^{-j}r^{-1}\omega)|^2.$$

Si ahora sumamos $\sum_{j=0}^{\infty}\sum_{r\in G}|\widehat{\psi}(2^{-j}r^{-1}\omega)|^2$ en el segundo término obtenemos:

$$|\widehat{\phi}(\omega)|^2 + \sum_{j=0}^{\infty} \sum_{r \in G} |\widehat{\psi}(2^{-j}r^{-1}\omega)|^2 = 1.$$

Por otro lado si vamos a la expresión a la que queremos llegar se tiene que:

$$\forall J \in \mathbb{Z} \quad \left| \widehat{\phi} \left(2^J \omega \right) \right|^2 + \sum_{j > -J, r \in G} \left| \widehat{\psi} \left(2^{-j} r^{-1} \omega \right) \right|^2 = 1 \iff \forall J \in \mathbb{Z} \quad \left| \widehat{\phi} \left(2^J \omega \right) \right|^2 = \sum_{j = -\infty}^{-J} \sum_{r \in G} |\widehat{\psi} (2^{-j} r^{-1} \omega)|^2.$$

Con lo que si demostramos esto último tendríamos que (2.7) y (2.8) son equivalentes para el caso $\beta = 1$.

$$\begin{split} \left| \widehat{\phi} \left(2^J \omega \right) \right|^2 &= \sum_{j=-\infty}^0 \sum_{r \in G} |\widehat{\psi}(2^{-j} r^{-1} 2^J \omega)|^2 \\ &= \sum_{j=-\infty}^0 \sum_{r \in G} |\widehat{\psi}(2^{J-j} r^{-1} \omega)|^2 \\ &= \sum_{j=-\infty}^{-J} \sum_{r \in G} |\widehat{\psi}(2^{-j} r^{-1} \omega)|^2 \end{split}$$

con lo que queda demostrado que (2.7) y (2.8) son equivalentes. Si ahora tenemos en cuenta que $\widehat{W[2^j r]} f(\omega) = \widehat{f}(\omega) \widehat{\psi}_{sjr}(\omega)$, multiplicando (2.8) por $|\widehat{f}(\omega)|^2$ obtenemos:

$$\forall J \in \mathbb{Z} \quad \left| \widehat{\phi} \left(2^J \omega \right) \right|^2 \left| \widehat{f}(\omega) \right|^2 + \sum_{j > -I, r \in G} \left| \widehat{f}(\omega) \right|^2 \left| \widehat{\psi} \left(2^{-j} r^{-1} \omega \right) \right|^2 = \left| \widehat{f}(\omega) \right|^2.$$

Si ahora integramos en ambos miembros en \mathbb{R}^d obtenemos:

$$\int_{\mathbb{R}^d} \left(\left| \widehat{\phi} \left(2^J \omega \right) \right|^2 \left| \widehat{f}(\omega) \right|^2 + \sum_{i > -Lr \in G} \left| \widehat{f}(\omega) \right|^2 \left| \widehat{\psi} \left(2^{-j} r^{-1} \omega \right) \right|^2 \right) d\omega = \int_{\mathbb{R}^d} \left| \widehat{f}(\omega) \right|^2 d\omega.$$

Recordamos la fórmula de Plancharel en el caso de \mathbb{R}^d :

$$\int_{\mathbb{R}^d} |f(x)|^2 dx = \int_{\mathbb{R}^d} \left| \widehat{f}(\omega) \right|^2 d\omega.$$

Si la aplicamos a la expresión anterior se obtiene:

$$\int_{\mathbb{R}^d} \left(\left| \phi \left(2^J \omega \right) \right|^2 |f(\omega)|^2 + \sum_{j > -J, r \in G} |f(\omega)|^2 \left| \psi \left(2^{-j} r^{-1} \omega \right) \right|^2 \right) d\omega = \int_{\mathbb{R}^d} |f(\omega)|^2 d\omega.$$

Si ahora recordamos la expresión (2.6), tenemos que la expresión anterior equivale a:

$$||A_{J}f||^{2} + \sum_{\lambda \in \Lambda_{j}} ||W[\lambda]f||^{2} = ||W_{J}f||^{2} = ||f||^{2},$$

que es válido para todo J y en particular también cuando $J=\infty$.

Recíprocamente, si tenemos que $||W_J f||^2 = ||f||^2$ entonces (2.8) se verifica para casi todo ω . De no ser así podríamos contruir una función f no nula cuya transformada de fourier \hat{f}

tuviera soporte en el dominio de ω dónde (2.8) no fuera válido, y en estos casos al aplicar la fórmula de Plancherel se verificaría que $||W_J f||^2 \neq ||f||^2$ contradiciendo la hipótesis. Y como la expresión (2.8) era equivalente a la que nos daba el teorema tenemos demostrado el resultado para el caso en que f sea compleja.

Si ahora f es real entonces $|\widehat{f}(\omega)| = |\widehat{f}(-\omega)|$ lo que implica que $||W[2^j r]f|| = ||W[-2^j r]f||$. Por lo que $||W_J f||$ permanece constante si restringimos r a G^+ y multiplicando ψ por $\sqrt{2}$ se obtiene la condición (2.7) con $\beta = \frac{1}{2}$.

En todo lo que sigue:

- $\widehat{\psi}$ es una función real que satisface la condición (2.7). Lo que implica que $\widehat{\psi}(0) = \int \psi(x) dx = 0$ y $|\widehat{\phi}(r\omega)| = |\widehat{\phi}(\omega)| \ \forall r \in G$.
- $\widehat{\phi}(\omega)$ es real y simétrica y $\phi(rx) = \phi(x) \ \forall r \in G$.
- Suponemos que ϕ y ψ son dos veces diferenciables y su decrecimineto así como el de sus derivadas de primer y segundo orden es $O((1+|x|)^{-d-2})$.

Un cambio de variable en la integral de la transformada de ondeleta nos muestra que si f se escala y rota, $2^lg \circ f = f(2^lgx)$ con $2^lg \in 2^{\mathbb{Z}} \times G$, entonces la transformada de ondeleta se escala y rota de acuerdo a:

$$(2.9) \quad W[\lambda](2^l g \circ f) = 2^l g \circ W[2^{-l} g \lambda] f.$$

Como ϕ es invariante a traslaciones en G, podemos comprobar que A_J conmuta con las rotaciones de G: $A_I(g \circ f) = g \circ A_I f \ \forall g \in G$.

1.2.2. Camino de dispersión Ordenado

Las convoluciones con ondeletas definen operadores Lipschitz-conitnuos por la acción de difeomorfismos, porque las ondeletas son funciones regulares y localizadas. Sin embargo, la transformada de ondeletas no es invariante a traslaciones y $W[\lambda]f = f * \psi_{\lambda}$ se traslada cuando lo hace f. Por eso el mayor reto es conseguir calcular coeficientes que sean invariantes a traslaciones, que permanezcan estables bajo la acción de difeomorfismos y que retengan la información en altas frecuencias que proporcionan las ondeletas. Un operador de dispersión calcula una representación invariante a traslaciones de este tipo. Primero explicaremos como obtener coeficientes invariantes a traslaciones a partir de la transformada de ondeletas mientras que a su vez se mantiene la estabilidad bajo la acción de difeomorfismos. Tras esto definiremos los operadores de dispersión y sus principales propiedades.

De esta forma si $U[\lambda]$ es un operador definido en $L^2(\mathbb{R}^d)$, no necesariamente lineal pero que conmuta con traslaciones, entonces $\int_{\mathbb{R}^d} U[\lambda] f(x) dx$ es invariante a traslaciones si es finito. En nuestro caso $W[\lambda]f = f * \psi_\lambda$ conmuta con traslaciones, pero $\int_{\mathbb{R}^d} 0$ porque $\int_{\mathbb{R}^d} \psi(x) dx = 0$. De forma más general, uno puede verificar que cualquier transformación lineal de $W[\lambda]f$ que sea invariante a traslaciones tiene que ser necesariamente 0. Para obtener uno que no sea cero, definimos $U[\lambda]f = M[\lambda]W[\lambda]f$ dónde $M[\lambda]$ es una "demodulación"no lineal que convierte $W[\lambda]f$ en una función de baja frecuencia con integral distinta de cero. La elección de $M[\lambda]$ debe preservar la Lipschitz-continuidad por la acción de difeomorfismos.

Si $\psi(x) = e^{i\eta x}\Theta(x)$, entonces $\psi_{\lambda}(x) = e^{i\lambda\eta x}\Theta_{\lambda}(x)$, y por lo tanto

(2.11)
$$W[\lambda]f(x) = e^{i\lambda\eta x}(f^{\lambda} * \Theta_{\lambda}(x))$$
 con $f^{\lambda}(x) = e^{-i\lambda\eta x}f(x)$.

La convolución $f^{\lambda} * \Theta_{\lambda}(x)$ es un filtro de bajas frecuencias porque $\widehat{\Theta}_{\lambda}(\omega) = \widehat{\Theta}(\lambda^{-1}\omega)$ que cubre una bola de frecuencia centrada en $\omega = 0$ y de radio proporcional a $|\lambda|$. Por lo tanto se podría obtener un operador invariante por traslaciones si se cancela el término de modilación $e^{-i\lambda\eta x}$ con una función $M[\lambda]$ pertinente. Por ejemplo:

(2.12)
$$M[\lambda]h(x) = e^{-i\lambda\eta x}e^{-i\Phi(\widehat{h}(\lambda\eta))}h(x).$$

Dónde $\Phi(\widehat{h}(\lambda\eta))$ es la fase compleja de $\widehat{h}(\lambda\eta)$. Este registro de fase no lineal garantiza que $M[\lambda]$ conmuta con las traslaciones. De (2.11) tenemos que $\int_{\mathbb{R}^d} M[\lambda]W[\lambda]f(x)dx = |\widehat{f}(\lambda\eta)||\widehat{\Theta}(0)|$. Esto recupera el módulo de la transformada de Fourier que sabemos que es invariante a traslaciones pero no Lipschitz-continuo (como se vio en (2.1)). Por lo tanto no es apropiado para nuestro cometido el operador definido en (2.12).

La Lipschitz-continuidad bajo la acción de difeomorfismos se preserva si $M[\lambda]$ conmuta con la acción de los difeomorfismos. Para la estabilidad en $L^2(\mathbb{R}^d)$, también necesitamos que $M[\lambda]$ sea no expansiva. Se puede comprobar que entonces $M[\lambda]$ tiene que ser necesariamente un operador punto a punto, lo que significa que $M[\lambda]h(x)$ dependería únicamente del valor de h en el punto x. Si además de todo esto imponemos que $||M[\lambda]h|| = ||h|| \ \, \forall h \in L^2(\mathbb{R}^d)$, que implica entonces que $|M[\lambda]h| = |h|$. Las funciones más regulares se obtienen con $M[\lambda]h = |h|$ que eliminan todas las variaciones de fase. Se obtiene entonces de (2.11) que este módulo transforma $W[\lambda]f$ en una señal de baja frecuencia:

$$M[\lambda]W[\lambda]f = |W[\lambda]f| = |f^{\lambda} * \Theta_{\lambda}|.$$

Las bajas frecuencias creadas por el módulo resultan de interferencias. Por ejemplo, si $f(x) = \cos(\xi_1 x) + a\cos(\xi_2 x)$ dónde ξ_1 y ξ_2 están en la banda de frecuencia cubierta por $\widehat{\psi}_{\lambda}$, entonces $|f * \psi_{\lambda}(x)| = 2^{-1} |\widehat{\psi}_{\lambda}(\xi_1) + a\widehat{\psi}_{\lambda}(\xi_2)e^{i(\xi_2 - \xi_1)x}|$ oscila entre la frecuencia de interferencias $|\xi_2 - \xi_1|$, que es menor que $|\xi_1|$ y $|\xi_2|$.

Por otro lado, la integración de $\int_{\mathbb{R}^d} U[\lambda] f(x) dx = \int_{\mathbb{R}^d} |f * \psi_\lambda(x)| dx$ es invariante por traslaciones pero elimina todas las altas frecuencias de $|f * \psi_\lambda(x)|$. Para recuperar dichas altas frecuencias un operador de dispersión también calcula los coeficientes de ondeletas para cada $U[\lambda]f$ que son $\{U[\lambda]f * \psi_{\lambda'}\}_{\lambda'}$. De nuevo, los coeficientes invariantes a traslaciones se obtienen con el módulo $U[\lambda']U[\lambda]f = |U[\lambda]f * \psi_{\lambda'}|$ y la integración $\int_{\mathbb{R}^d} U[\lambda']U[\lambda]f(x)dx$. Si ahora $f(x) = \cos(\xi_1 x) + a\cos(\xi_2 x)$ con a < 1 y si $|\xi_2 - \xi_1| << |\lambda|$ con $|\xi_2 - \xi_1|$ en el soporte de $\widehat{\psi}_{\lambda'}$, entonces $U[\lambda']U[\lambda]f$ es proporcional a $a \cdot |\psi_\lambda(\xi_1)| \cdot |\psi_{\lambda'}(|\xi_2 - \xi_1|)|$. La segunda ondeleta $\widehat{\psi}_{\lambda'}$ captura las interferencias creadas por el módulo, entre la frecuencia de las componentes de f y el soporte de $\widehat{\psi}_\lambda$.

A continuación introducimos el porpagador de dispersión que extiende estas descomposiciones.

Definición 1.10. Una secuencia ordenada $p=(\lambda_1,\lambda_2,...,\lambda_m)$ con $\lambda_k\in\Lambda_\infty=2^\mathbb{Z}\times G^+$ se denomina **camino**. Al camino vacío se le denota por $p=\emptyset$.

Definición 1.11. Si definimos $U[\lambda]f = M[\lambda]W[\lambda]f = |f * \psi_{\lambda}| = \left| \int_{\mathbb{R}^d} f(u)\psi_{\lambda}(x-u)du \right|$ para $f \in L^2(\mathbb{R}^d)$, un propagador de dispersión sería un producto ordenado según un camino de operadores no conmutativos definido por:

(2.13)
$$U[p]f = U[\lambda_m]...U[\lambda_2]U[\lambda_1],$$

$$con U[\emptyset] = Id$$

El operador U[p] está bien definido en $L^2(\mathbb{R}^d)$ porque $||U[\lambda]f|| \le ||\psi_{\lambda}||_1||f||$ para todo $\lambda \in \Lambda_{\infty}$. El propagador de dispersión es por tanto una cascada de convoluciones y módulos:

(2.14)
$$||f * \psi_{\lambda_1}| * \psi_{\lambda_2}| ... | * \psi_{\lambda_m}|$$

Cada $U[\lambda]$ filtra la frecuencia del componente en la banda cubierta por $\widehat{\psi}_{\lambda}$ y lo mapea en un espacio de baja frecuencia con el módulo.

Definición 1.12. Escribimos la rotación y reescalo de un camino p mediante $2^l g \in 2^{\mathbb{Z}} \times G$ como $2^l g p = (2^l g \lambda_1, 2^l g \lambda_2, ..., 2^l g \lambda_m)$.

Definición 1.13. Por otro lado la concatenación de dos caminos p y p' se denota por $p + p' = (\lambda_1, \lambda_2, ..., \lambda_m, \lambda'_1, \lambda'_2, ..., \lambda'_{m'})$.

En el caso particular de $p + \lambda = (\lambda_1, \lambda_2, ..., \lambda_m, \lambda)$

Proposición 1.2. Sean p, p' dos caminos, se tiene que :

$$U[p+p']=U[p']U[p]$$

Demostración. Como $p + p' = (\lambda_1, \lambda_2, ..., \lambda_m, \lambda'_1, \lambda'_2, ..., \lambda'_{m'})$ entonces siguiendo la definición de U[p] se tiene que:

$$U[p + p'] = U[\lambda'_{m'}]...U[\lambda'_{2}]U[\lambda'_{1}]U[\lambda_{m}]...U[\lambda_{2}]U[\lambda_{1}] = U[p']U[p]$$

Definición 1.14. Sea \mathcal{P}_{∞} el conjunto de todos los caminos finitos. La transformada de dispersión de $f \in L^1(\mathbb{R}^d)$ se define para cualquier camino $p \in \mathcal{P}_{\infty}$ como:

$$(2.16) \quad \overline{S}f(p) = \frac{1}{\mu_p} \int_{\mathbb{R}^d} U[p]f(x) dx \quad con \quad \mu_p = \int_{\mathbb{R}^d} U[p]\delta(x) dx.$$

Un propagador de dispersión es un operador invariante por traslaciones que transforma $f \in L^1(\mathbb{R}^d)$ en una función en el camino de frecuencias variable p. Esta defnición no vamos a estudiarla en profundidad, pero podemos apreciar que guarda similitudes con el módulo de la transformada de Fourier dónde p jugaría el papel de la frecuencia variable. Sin embargo, al contrario que el módulo de la transformada de Fourier, la transformada de dispersión $\overline{S}f$ es estable bajo la acción de difeomorfismos porque se calcula iterando en transformadas de ondeletas y módulos, que son estables.

Por otro lado, tiene las mismas propiedades de rotación y escalado que la transformada de Fourier. Tengo que desarrollar mejor esta parte porque el propagador de dispersión que usaremos de ahora en adelante es una extensión de este.

Rotando f el propagador rota idénticamente, sin embargo si f se ve afectado por un factor de escala 2^l , entonces la frecuencia de los caminos p se escalan por 2^{-l} .La extensión de estas transformadas de dispersión a $L^2(\mathbb{R}^d)$ se obtienen como el límite de las ventanas de estas transformadas de dispersión que ahora introducimos:

Definición 1.15. Sea $J \in \mathbb{Z}$ y \mathcal{P}_J el conjunto de caminos finitos $p = (\lambda_1, \lambda_2, ..., \lambda_m)$ con $\lambda_k \in \Lambda_J$ y $|\lambda_k| = 2^{jk} > 2^{-J}$. Una ventana de transformada de dispersión se define para todo $p \in \mathcal{P}_J$ por

$$(2.20) \quad S_{J}[p]f(x) = U[p]f * \phi_{2J}(x) = \int_{\mathbb{R}^{d}} U[p]f(u)\phi_{2J}(x-u)du.$$

La convolución con $\phi_{2J}(x) = 2^{-dJ}\phi(2^{-J}x)$ centra la transformada de dispersión en el dominio espacial proporcional a 2^J :

$$(2.20) \quad S_{I}[p]f(x) = ||f * \psi_{\lambda_{1}}| * \psi_{\lambda_{2}}|...| * \psi_{\lambda_{m}}| * \phi_{2J}(x).$$

Define una familia infinita de funciones indexadas por \mathcal{P}_{I} , denotada por

$$S_J[\mathcal{P}_J]]f := \{S_J[p]f\}_{p \in \mathcal{P}_J}.$$

Como decíamos antes, para funciones complejas, en \mathcal{P}_J incluimos los caminos negativos, y si f es real $S_J[-p] = S_J[p]f$. En la Subsección 1.2.3 se comprueba que para ondeletas apropiadas, $||f||^2 = \sum_{p \in \mathcal{P}_J} ||S_J[p]f||^2$.

Sin embargo, la energía de señal está mayormente concentrada en un conjunto mucho más pequeño de caminos de frecuencias descendentes $p=(\lambda_k)_{k\leq m}$ en el cual $|\lambda_{k+1}|\leq |\lambda_k|$. De hecho, el propagador $U[\lambda]$ progresivamente empuja la energía a través de las frecuencias bajas. El principal teorema de la sección 2.5 demostrará que un propagador de dispersión en ventanas es Lipschitz-continuo por la a acción de difeomorfismos.

Del hecho de que $\phi(x)$ es continua en o, si $f \in L^1(\mathbb{R}^d)$ se tiene que su transformada de dispersión de ventana converge punto a punto a la transformada de dispersión cuando 2^J tiende a ∞ :

(2.21)
$$\forall x \in \mathbb{R}^d \lim_{J \to \infty} 2^{dJ} S_J[p] f(x) = \phi(0) \int_{\mathbb{R}^d} U[p] f(u) du$$
$$= \phi(0) \mu_p \overline{S}(p).$$

1.2.3. Propagador de dispersión y conservación de la Norma

Hasta ahora hemos probado que el propagador por ventanas S_J es no-expansivo y que preserva la norma de $L^2(\mathbb{R}^d)$. A partir de ahora denotamos por $S_J[\Omega] := \{S_J[p]\}_{p \in \Omega}$ y $U[\Omega] := \{U[p]\}_{p \in \Omega}$ a la familia de operadores indexados por el conjunto de caminos Ω .

Un dispersor de ventanas puede calcularse iterando en el propagador de un paso definido por:

$$U_J f = \{A_J f, (U[\lambda]f)_{\lambda \in \Lambda_I}\},\$$

Con $A_J = f * \phi_{2J}$ y $U[\lambda]f = |f * \psi_{\lambda}|$. Tras calcular $U_J f$, aplicando de nuevo U_J a cada $U[\lambda]f$ se genera una familia infinita aún más grande de funciones. La descomposición se continúa iterando por recursividad aplicando U_J a cada U[p]f. Si recordamos la Proposición 1.2, $U[\lambda]U[p] = U[p + \lambda]$, y $A_J U[p] = S_J[p]$, esto da lugar a :

(2.22)
$$U_I U[p] = \{S_I[p]f, (U[p+\lambda]f)_{\lambda \in \Lambda_I}\}.$$

Sea Λ_I^m el conjunto de caminos de longitud m con $\Lambda_I^0 = \emptyset$. Se propaga en:

$$(2.23) \quad U_J U[\Lambda_I^m] = \{S_J[\Lambda_I^m]f, (U[\Lambda_I^{m+1}]f)_{\lambda \in \Lambda_I}\}.$$

Del hecho de que $\mathcal{P}_J = \bigcup_{m \in \mathbb{N}} \Lambda_J^m$, uno puede calcular $S_J[\mathcal{P}_J]f$ a partir de $f = U[\emptyset]f$ iterativamente calculando $U_IU[\Lambda_I^m]f$ para m tendiendo a ∞ .

Las operaciones del propagador de dispersión siguen la estructura general de la red neuronal convolucional introducida por LeCun. Las redes convolucionales son una cascada de convoluciones y capas de "pooling" que usan funciones no lineales, las cuales se representan en este modelo como módulos de números complejos. Las redes neuronales convolucionales usan normalmente Kernels que no son predefinidos, sino que se aprenden mediante la técnica de back-propagation al entrenar la red, a diferencia de las ondeletas que usamos en este modelo. Estas redes han sido empleadas con mucho éxito en tareas de reconocimiento de objetos o personas.

El propagador $U_J f = \{A_J f, (|W[\lambda]f|)_{\lambda \in \Lambda_J}\}$ es no expansivo, porque la transformada de ondas W_J es unitaria pues cumple las hipótesis de la Proposición 1.1 y el módulo no es expansivo en el sentido de que $||a| - |b|| \le |a - b|$ para cualquier $(a, b) \in \mathbb{C}^2$. Esto es válido tanto si f es real o compleja. Como consecuencia:

$$||U_{J}f - U_{J}h||^{2} = ||A_{J}f - A_{J}h||^{2} + \sum_{\lambda \in \Lambda_{J}} |||W[\lambda]f| - |W[\lambda]h|||^{2}$$

$$\leq ||W_{J}f - W_{J}h||^{2} \leq ||f - h||^{2} \quad (2.24)$$

Del hecho de que W_J es unitaria, poniendo h=0 también se comprueba que $||U_jf||=||f||$ por lo que el operador U_J preserva la norma.

Para todo conjunto de caminos Ω , las normas de $S_I[\Omega]f$ y $U[\Omega]f$ son:

$$||S_{J}[\Omega]f||^{2} = \sum_{p \in \Omega} y ||U[\Omega]f||^{2} = \sum_{p \in \Omega} ||U[p]f||^{2}$$

Como $s_I[\mathcal{P}_I]$ itera en U_I , que es no expansivo, la siguiente proposición prueba que $S_I[\Omega]f$ es también no expansivo.

Proposición 1.3. La transformada de dispersión es no expansiva:

$$(2.25) \quad \forall (f,h) \in L^{2}(\mathbb{R}^{d})^{2} \quad ||S_{I}[\mathcal{P}_{I}]f - S_{I}[\mathcal{P}_{I}]h|| \leq ||f - h||$$

Demostración. Como U_I es no expansiva, partiendo de (2.23) que nos dice:

$$U_J U[\Lambda_J^m] = \{ S_J[\Lambda_J^m] f, (U[\Lambda_J^{m+1}] f)_{\lambda \in \Lambda_J} \},$$

se tiene que:

$$\begin{aligned} ||U[\Lambda_J^m]f - U[\Lambda_J^m]h||^2 &\geq ||U_J U[\Lambda_J^m]f - U_J U[\Lambda_J^m]h||^2 \\ &= ||S_J[\Lambda_I^m]f - S_J[\Lambda_J^m]h||^2 + ||U[\Lambda_J^{m+1}]f - U[\Lambda_J^{m+1}]h||^2. \end{aligned}$$

Si ahora sumamos en m cuando tiende a ∞ se obtiene que:

$$(2.26)||S_{J}[\Lambda_{J}^{m}]f - S_{J}[\Lambda_{J}^{m}]h||^{2} = \sum_{m=0}^{\infty} ||S_{J}[\Lambda_{J}^{m}]f - S_{J}[\Lambda_{J}^{m}]h||^{2} \le ||f - h||^{2}$$

En la Sección 1.2 se obtuvo que cada $U[\lambda]f = |f * \psi_{\lambda}|$ capturaba la energía de frecuencia de f en una banda de frecuencia cubierta por $\widehat{\psi}_{\lambda}$ y propagaba dicha energía a través de las bajas frecuencias, este hecho lo demuestra el siguiente teorema, mostrando que toda la energía del propagador de dispersión alncanza la frecuencia mínima 2^J y es atrapada por el filtro paso bajo ϕ_{2^J} . La energía propagada tiende a 0 conforme se incrementa la longitud del camino, y el teorema implica que $||S_J[\mathcal{P}_J]f|| = ||f||$. Esto se aplica también a funciones complejas en caminos negativos.

Teorema 1.1. Una ondeleta de dispersión se dice que es admisible si existe $\eta \in \mathbb{R}^d$ y $\rho \geq 0$, con $|\widehat{\rho}(\omega)| \leq |\widehat{\phi}(2\omega)|$ y $\widehat{\rho}(0) = 1$, tal que la función:

(2.27)
$$\widehat{\Phi}(\omega) = |\widehat{\rho}(\omega - \eta)|^2 - \sum_{k=1}^{+\infty} k(1 - |\widehat{\rho}(2^{-k}(\omega - \eta))|^2)$$

satisface:

$$(2.28) \quad \alpha = \inf_{1 \le |w| \le 2} \sum_{j = -\infty}^{\infty} \sum_{r \in G} \widehat{\Psi}(2^{-j}r^{-1}\omega) |\widehat{\psi}(2^{-j}r^{-1}\omega)|^2 > 0.$$

Si la ondeleta es admisible, entonces para toda $f \in L^2(\mathbb{R}^d)$

(2.29)
$$\lim_{m \to \infty} ||U[\Lambda_J^m]f||^2 = \lim_{m \to \infty} \sum_{n=m}^{\infty} ||S_J[\Lambda_J^n]f||^2 = 0$$

y

(2.29)
$$||S_I[\mathcal{P}_{\mathcal{T}}f]| = ||f||$$

Demostración. Primero probamos que $\lim_{m\to\infty}||U[\Lambda_J^m]f||^2=0$ es equivalente a tener $\lim_{m\to\infty}\sum_{n=m}^\infty||S_J[\Lambda_J^n]f|$ 0 y a $||S_J[\mathcal{P}_{\mathcal{J}}f||=||f||$. Como $||U_Jh||=||h||\ \forall h\in L^2(\mathbb{R}^d)$ y $U_JU[\Lambda_J^n]f=\{S_J[\Lambda_J^n]f,U[\Lambda_J^{n+1}]\}$,

$$(2.31) \quad ||U[\Lambda_J^n]f||^2 = ||U_JU[\Lambda_J^n]f||^2 = ||S_J[\Lambda_J^n]f||^2 + ||U[\Lambda_J^{n+1}]f||^2.$$

Sumando en $m \le n < \infty$ se prueba que $\lim_{m\to\infty} ||U[\Lambda_J^m]f|| = 0$ es equivalente a $\lim_{m\to\infty} \sum_{n=m}^{\infty} ||S_J[\Lambda_J^n]f||^2 = 0$. Por otro lado, como $f = U[\Lambda_J^0]f$, sumando en (2.31) para $0 \le n < m$ también se prueba que:

(2.32)
$$||f||^2 = \sum_{n=0}^{m-1} ||S_J[\Lambda_J^n]f||^2 + ||U[\Lambda_J^m]f||^2,$$

entonces

$$||S_{J}[\mathcal{P}_{J}f||^{2} = \sum_{n=0}^{\infty} ||S_{J}[\Lambda_{J}^{n}]f||^{2} = ||f||^{2} \iff \lim_{m \to \infty} ||U[\Lambda_{J}^{m}]|| = 0.$$

A continuación probaremos que la condición (2.27) implica que $\lim_{m\to\infty}||U[\Lambda_J^m]f||^2=0$. La clave de esto reside en el siguiente lema, que nos da una cota inferior de $|f*\psi_\lambda|$ convolucionada con una función positiva:

Lema 1.3. Si $h \ge 0$ entonces $\forall f \in L^2(\mathbb{R}^d)$:

$$(2.33) |f * \psi_{\lambda}| * h \ge \sup_{\eta \in \mathbb{R}^d} |f * \psi_{\lambda} * h_{\eta}| con h_{\eta} = h(x)e^{i\eta x}$$

Demostración.

$$|f * \psi_{\lambda}| * h(x) = \int \left| \int f(v)\psi_{\lambda}(u-v)dv \right| h(x-u)du$$

$$= \int \left| \int f(v)\psi_{\lambda}(u-v)e^{i\eta(x-u)}h(x-u)dv \right| du$$

$$\geq \left| \int \int f(v)\psi_{\lambda}(u-v)e^{i\eta(x-u)}h(x-u)dvdu \right| =$$

$$= \left| \int f(v) \int \psi_{\lambda}(x-v-u')h(u')e^{i\eta u'}du'dv \right|$$

$$= \left| \int f(v)\psi_{\lambda} * h_{\eta}(x-v)dv \right| = |f * \psi_{\lambda} * h_{\eta}|$$

En el apéndice A se usa este lema para demostrar que el propagador dispersa la energía progresivamente hacia bajas frecuencias y demuestra el siguiente lema:

Lema 1.4. *Si* (2.28) *se satisface y*

(2.34)
$$||f||_w^2 = \sum_{j=0}^{\infty} \sum_{r \in G^+} j||W[2^j r]f||^2 < \infty$$

Entonces se tiene:

(2.35)
$$\frac{\alpha}{2}||U[\mathcal{P}_{\mathcal{J}}f||^2 \ge \max(J+1,1)||f||^2 + ||f||_w^2.$$

Demostración. La clase de funciones para las que $||f||_w < \infty$ es una clase logarítmica de Sobolev correspondiente a funciones que tienen un módulo promedio continuo en $L^2((R)^2$. Como

$$||U[\mathcal{P}_J]f||^2 = \sum_{m=0}^{+\infty} ||U[\Lambda_J^m]f||^2,$$

si $||f||_w < \infty$ entonces (2.35) implica que $\lim_{m\to\infty} ||U[\Lambda_J^m]f|| = 0$. Este resultado se extiende en $L^2(\mathbb{R}^d)$ por densidad. Como $\phi \in L^1(\mathbb{R}^d)$ y $\phi(0) = 1$, cualquier $f \in L^2(\mathbb{R}^d)$ satisface

 $\lim_{n\to-\infty} ||f-f_n|| = 0$, dónde $f_n = f * \phi_{2^n}$ y $\phi_{2^n} = 2^{-nd}\phi(2^{-n}x)$. Se demuestra por tanto que $\lim_{m\to\infty} ||U[\Lambda_I^m]f_n|| = 0$ viendo que $||f_n||_w < \infty$. De hecho,

$$||W[2^{j}r]f_{n}||^{2} = \int |\widehat{f}(\omega)|^{2}|\widehat{\phi}(2^{n}\omega)|^{2}|\widehat{\psi}(2^{-j}r^{-1}\omega)|^{2}d\omega$$

$$\leq C2^{-2n-2j}\int |\widehat{f}(\omega)|^{2}d\omega,$$

porque ψ hay un momento en que desaparece entonce $|\widehat{\psi}(\omega)| = O(|\omega|)$, y las derivadas de ϕ están en $L^1(\mathbb{R}^d$ luego $|\omega||\widehat{\phi}\omega|$ están acotadas. Por lo que se tiene que $||f_n||_w < \infty$.

Como $U[\Lambda^m]$ es no expansiva, $||U[\Lambda_I^m]f - U[\Lambda_I^m]f_m|| \le ||f - f_n||$, por lo que

$$||U[\Lambda_I^m]f|| \le ||f - f_n|| + ||U[\Lambda_I^m]f_n||.$$

Como $\lim_{n\to-\infty} ||f-f_n|| = 0$ y $\lim_{m\to\infty} ||U[\Lambda_I^m]f_n|| = 0$ tenemos que

$$\lim_{m \to \infty} ||U[\Lambda_J^m]f||^2 = 0$$

para toda $f \in L^2(\mathbb{R}^d)$.

La demostración muestra que el propagador dispersa la energía progresivamente a frecuencias menores. La energía de U[p]f se concentra principalmente en los caminos de frecuencia decrecientes $p=(\lambda_k)_{k\leq m}$ para los que $|\lambda_{k+1}|<|\lambda_k|$. Por ejemplo, si $f=\delta$, entonces los caminos de longitud 1 tienen una energía de $||U[2^jr]\delta||^2=||\psi_{2^jr}||^2=2^{-dj}||\psi||^2$.

Esta energía se propaga entonces por todos los caminos $p \in \mathcal{P}_J$. Para ondeleteas de Splines cúbicos de dimensión d=1, en torno al 99.5 % de su energía se concentra en los caminos de frecuencias descendentes. Las implementaciones numéricas de las transformadas de dispersión limitan los cálculos a estas rutas de disminución de frecuencia. La transformada de dispersión de una señal de tamaño N se calcula a lo largo de todos los caminos de frecuencias decrecientes, con un orden O(NlogN) de operaciones, usando una implementación con banco de filtros.

El decrecimiento de $\sum_{n=m}^{\infty} ||S_J[\Lambda_J^n]f||^2$ implica que podemos abandonar todos los caminos de longitud mayor que un cierto m > 0. El decrecimiento numérico de $||S_J[\Lambda_J^n]f||^2$ parece ser exponencial en el tratamiento de imágenes y audio. El tamaño de camino se liminta a m = 3 en problemas de clasificación.

Debe también existir una transformada de ondeleta unitaria y de hecho una ondeleta admisible que satisfaga la condición de Littlewood-Paley $\beta \sum_{(j,r) \in \mathbb{Z} \times G} |\widehat{\psi}(2^j r \omega)|^2 = 1$.

Debe también existir $\rho \geq 0$ y un $\eta \in \mathbb{R}^d$ con $|\hat{\rho}(\omega)| \leq |\hat{\phi}(2\omega)|$ tal que:

$$\sum_{(j,r)\in\mathbb{Z}\times G} |\widehat{\psi}(2^{j}r\omega)|^{2} |\widehat{\rho}(2^{j}r\omega-\eta)|^{2}$$

sea suficientemente grande para que $\alpha > 0$. Esto se puede obtener como se indica en (2.3), con $\psi(x) = e^{i\eta x}\Theta(x)$ y de hecho $\widehat{\psi} = \widehat{\Theta}(\omega - \eta)$, dónde $\widehat{\Theta}$ y $\widehat{\rho}$ tienen su energía concentrada en los mismos dominos de frecuencia, que son bajos.

1.3. Invarianza por Traslaciones

En esta sección vamos a ver que la distancia entre propagadores de dispersión $||S_J[\overline{\mathcal{P}}_J f - S_J[\overline{\mathcal{P}}_J h]||$ es no creciente cuando se incrementa la J, y de hecho converge cuando $J \to \infty$. Esto define una distancia límite que veremos que es invariante por traslaciones.

Proposición 1.4. Para todo $(f,h) \in L^2(\mathbb{R}^d)^2$ y $J \in \mathbb{Z}$,

$$(2.36) ||S_{J+1}[\mathcal{P}_{j+1}]f - S_{J+1}[\mathcal{P}_{J+1}]h|| \le ||S_J[\mathcal{P}_{\mathcal{J}}f - S_J[\mathcal{P}_{\mathcal{J}}]h||$$

Demostración. Todo camino $p' \in \mathcal{P}_{J+1}$, puede ser unívocamente escrito como una extensión de un camino $p \in \mathcal{P}_J$ dónde p es el prefijo más grande de p' que pertenece a \mathcal{P}_J , y p' = p + q para algún $q \in \mathcal{P}_{J+1}$. El conjunto de todas las extensiones de $p \in \mathcal{P}_J$ en \mathcal{P}_{J+1} es

(2.37)
$$\mathcal{P}_{I+1}^p = p \cup p + 2^{-J}r + p''_{r \in G^+, p'' \in \mathcal{P}_{I+1}}$$

Esto define una partición disjunta de $\mathcal{P}_{J+1} = \bigcup_{p} \mathcal{P}_{J+1}^p$. Vamos a probar que estas extensiones son no expansivas,

$$(2.38) \quad \sum_{p'\mathcal{P}_{I+1}^p} ||S_{J+1}[p']f - SJ + 1[p']h||^2 \le ||S_J[p]f - S_J[p]h||^2.$$

Sumando en (2.38) en todo $p\mathcal{P}_J$ prueba (2.36). Usando lo demostrado en el apéndice A(mirar apéndice A), para todo $g \in L^2(\mathbb{R}^d)$

$$||g * \phi_{2^{J+1}}||^2 + \sum_{r \in G^+} ||g * \psi_{2^{-J}r}||^2 = ||g * \phi_{2^J}||^2.$$

Aplicando este resultado con g=U[p]f-U[p]h junto con que $U[p]f*\phi_{2^J}=S_J[p]f$ y $|U[p]f*\psi_{2^{-J}r}|=U[p+2^{-J}r]f$ obtenemos

$$(2.40) \quad ||S_{J}[p]f - S_{J}[p]h||^{2} \ge ||S_{J+1}[p]f - S_{J+1}[p]h||^{2} + \sum_{r \in G^{+}} ||U[p + 2^{-J}r]f - U[p + 2^{-J}r]h||^{2}.$$

Como $S_{J+1}[\mathcal{P}_{J+1}]U[p+2^{-J}r]f=\{S_{J+1}[p+2^{-J}r+p'']\}_{p''\in\mathcal{P}_{J+1}}$ y $S_{J+1}[\mathcal{P}_{J+1}]f$ es no expansiva, esto implica que

$$\begin{split} ||S_{J}[p]f - S_{J}[p]h||^{2} \geq &||S_{J+1}[p]f - SJ + 1[p]h||^{2} \\ &+ \sum_{p'' \in \mathcal{P}_{J+1}} \sum_{r \in G^{+}} ||S_{J+1}[p + 2^{-J}r + p'']f - S_{J+1}[p + 2^{-J}r + p'']h||^{2}, \end{split}$$

que demuestra (2.38). Como $S_J[\mathcal{P}_{J+1}]f$ preserva la norma, si h=0 en (2.40) nos da la igualdad

$$||S_{J}[p]f||^{2} = ||S_{J+1}[p]f||^{2} + \sum_{p'' \in \mathcal{P}_{J+1}} \sum_{r \in G^{+}} ||S_{J+1}[p+2^{-J}r+p'']f||^{2},$$

que demuestra (2.39).

1. Análisis de Redes Convolucionales

Esta proposición anterior nos demuestra que $||S_J[\mathcal{P}_J] - S_J[\mathcal{P}_J]h||$ es positivo y no creciente cuando J se incrementa, y de hecho converge. Como $S_J[\mathcal{P}_J]$ es no expansiva, el límite tampoco:

$$\forall (f,h) \in L^2(\mathbb{R}^d)^2 \lim_{J \to \infty} ||S_J[\mathcal{P}_J]f - S_J[\mathcal{P}_J]h|| \le ||f - h||.$$

Para ondeletas de dispersión admisibles que satisfacen (2.28), El Teorema 1.1 nos demuestra que $||S_J[\mathcal{P}_J]f|| = ||f||$ entonces $\lim_{J\to\infty} ||S_J[\mathcal{P}_J]f|| = ||f||$. El siguiente teorema demuestra que el límite es invariante por traslaciones:

Teorema 1.2. Para ondeletas de dispersión admisibles se tiene que

$$\forall f \in L^2(\mathbb{R}^d), \ \forall c \in \mathbb{R}^d \quad \lim_{I \to \infty} ||S_I[\mathcal{P}_I f - S_I[\mathcal{P}_J] L_c f|| = 0$$

Demostración. Como $S_I[\mathcal{P}_I]L_c f = L_c f S_I[\mathcal{P}_I]$ y $S_I[\mathcal{P}_I]f = A_I U[\mathcal{P}_I]f$,

(2.41)
$$||S_J[\mathcal{P}_J]L_cf - S_J[\mathcal{P}_J]f|| = ||L_cA_JU[\mathcal{P}_J]f - A_JU[\mathcal{P}_J]f||$$

 $\leq ||L_cA_J - A_J||||U[\mathcal{P}_J]f||.$

Para continuar la demostración necesitamos el siguiente lema:

Lema 1.5. Existe una constante C tal que para todo $\tau \in \mathbb{C}^2(\mathbb{R}^d)$ con $||\nabla \tau||_{\infty} \leq \frac{1}{2}$ se tiene que

$$(2.42) \quad ||L_{\tau}A_{I}f - A_{I}f|| \leq C||f||2^{-J}||\tau||_{\infty}.$$

Este lema se prueba en el Apéndice B (mirar). Si lo aplicamos para $\tau=c$ como $||\tau||_{\infty}=|c|$ se tiene que

$$(2.43) ||L_c A_I - A_I|| \le C 2^{-J} |c|.$$

Y si tenemo en cuenta esto en (2.41) nos da que:

$$(2.44) ||S_I[\mathcal{P}_I]L_cf - S_I[\mathcal{P}_I]f|| \le C2^{-J}|c|||U[\mathcal{P}_I]f||.$$

Como la admisibilidad de la condición (2.28) se satisface, Lema 1.4 demuestra en (2.35) que para I>1

$$(2.45) \quad \frac{\alpha}{2}||U[\mathcal{P}_J]f||^2 \le (J+1)||f||^2 + ||f||_w^2.$$

Si $||f||_w < \infty$ entonces de (2.44) se tiene

$$||S_J[\mathcal{P}_J]L_cf - S_J[\mathcal{P}_J]f||^2 \le ((J+1)||f||^2 + ||f||_w^2)C^2 2\alpha^{-1} 2^{-2J}|c|^2$$

luego $\lim_{J\to\infty}||S_J[\mathcal{P}_J]L_cf-S_J[\mathcal{P}_J]f||=0$. Vamos a probar ahora que el límite anterior se da $\forall f\in L^2(\mathbb{R}^d)$, con un argumento similar al de la prueba del Teorema 1.1. Cualquier $f\in L^2(\mathbb{R}^d)$ se puede escribir como el límite de una sucesión de funciones $\{f_n\}_{n\in\mathbb{N}}$ con $||f_n||_w<\infty$, y como $S_J[\mathcal{P}_J]$ es no expansivo y L_c es unitario, se puede verificar que

$$||L_c S_I[\mathcal{P}_I]f - S_I[\mathcal{P}_I]f|| \le ||L_c S_I[\mathcal{P}_I]f_n - S_I[\mathcal{P}_I]f_n|| + 2||f - f_n||.$$

Haciendo tender $n \to \infty$ se prueba que $\lim_{J \to \infty} ||S_J[\mathcal{P}_J f - S_J[\mathcal{P}_J] L_c f|| = 0$ con lo que acaba la demostración.

- La memoria debe realizarse con un procesador de texto científico, preferiblemente (La)TeX.
- La portada debe contener el logo de la UGR, incluir el título del TFG, el nombre del estudiante y especificar el grado, la facultad y el curso actual.
- La contraportada contendrá además el nombre del tutor o tutores.
- La memoria debe necesariamente incluir:
 - un índice detallado de capítulos y secciones,
 - un resumen amplio en inglés del trabajo realizado (se recomienda entre 800 y 1500 palabras),
 - una introducción en la que se describan claramente los objetivos previstos inicialmente en la propuesta de TFG, indicando si han sido o no alcanzados, los antecedentes importantes para el desarrollo, los resultados obtenidos, en su caso y las principales fuentes consultadas,
 - una bibliografía final que incluya todas las referencias utilizadas.
- Se recomienda que la extensión de la memoria sea entre 30 y 60 páginas, sin incluir posibles apéndices.

Para generar el pdf a partir de la plantilla basta compilar el fichero libro.tex. Es conveniente leer los comentarios contenidos en dicho fichero pues ayudarán a entender mejor como funciona la plantilla.

La estructura de la plantilla es la siguiente¹:

Carpeta preliminares: contiene los siguientes archivos

dedicatoria.tex Para la dedicatoria del trabajo (opcional)

agradecimientos.tex Para los agradecimientos del trabajo (opcional)

introduccion.tex Para la introducción (obligatorio)

summary.tex Para el resumen en inglés (obligatorio)

tablacontenidos.tex Genera de forma automática la tabla de contenidos, el índice de figuras y el índice de tablas. Si bien la tabla de contenidos es conveniente incluirla, el índice de figuras y tablas es opcional. Por defecto está desactivado. Para mostrar dichos índices hay que editar este fichero y quitar el comentario a \listoffigures o \listoftables según queramos uno de los índices o los dos. En este archivo también es posible habilitar la inclusión de un índice de listados de código (si estos han sido incluidos con el paquete listings)

El resto de archivos de dicha carpeta no es necesario editarlos pues su contenido se generará automáticamente a partir de los metadatos que agreguemos en libro. tex

Carpeta capitulos: contiene los archivos de los capítulos del TFG. Añadir tantos archivos como sean necesarios. Este capítulo es capitulo01.tex.

¹Los nombres de las carpetas no se han acentuado para evitar problemas en sistemas con Windows

- Carpeta apendices: Para los apéndices (opcional)
- Carpeta img: Para incluir los ficheros de imagen que se usarán en el documento.
- Carpeta **paquetes**: Incluye dos ficheros

hyperref.tex para la configuración de hipervínculos al generar el pdf (no es necesario editarlo)

comandos-entornos.tex donde se pueden añadir los comandos y entornos personalizados que precisemos para la elaboración del documento. Contiene algunos ejemplos

- Fichero library.bib: Para incluir las referencias bibliográficas en formato bibtex. Son útiles las herramientas doi2bib y OttoBib para generar de forma automática el código bibtex de una referencia a partir de su DOI o su ISBN. Para que una referencia aparezca en el pdf no basta con incluirla en el fichero library.bib, es necesario además *citarla* en el documento usando el comando \cite. Si queremos mostrar todos las referencias incluidas en el fichero library.bib podemos usar \cite{*} aunque esta opción no es la más adecuada. Se aconseja que los elementos de la bibliografía estén citados al menos una vez en el documento (y de esa forma aparecerán de forma automática en la lista de referencias).
- Fichero glosario.tex: Para incluir un glosario en el trabajo (opcional). Si no queremos incluir un glosario deberemos borrar el comando \input{glosario.tex} del fichero libro.tex y posteriormente borrar el fichero glosario.tex
- Fichero libro.tex: El documento maestro del TFG que hay que compilar con LATEX para obtener el pdf. En dicho documento hay que cambiar la *información del título del* TFG y el autor así como los tutores.

Finalmente y de forma también opcional se puede incluir in índice terminológico. Por defecto dicha opción está desabilitada. Para habilitar la inclusión de dicho índice terminológico basta con quitar los comentarios a las líneas finales de libro. tex y cargar el paquete makeindex en el preámbulo del documento (ver comentarios en libro. tex)

1.4. Elementos del texto

En esta sección presentaremos diferentes ejemplos de los elementos de texto básico. Conviene consultar el contenido de capitulos/capitulo01. tex para ver cómo se han incluido.

1.4.1. Listas

En LATEX tenemos disponibles los siguientes tipos de listas:

Listas enumeradas:

- 1. item 1
- 2. item 2
- 3. item 3

Listas no enumeradas

- item 1
- item 2
- item 3

Listas descriptivas

termino1 descripción 1

termino2 descripción 2

1.4.2. Tablas y figuras

En la Tabla 1.1 o la Figura 1.5 podemos ver...

Agru		
cabecera	cabecera	cabecera
elemento	elemento elemento elemento	elemento

Tabla 1.1.: Ejemplo de tabla

Figura 1.5.: Logotipo de la Universidad de Granada

1.5. Entornos matemáticos

Teorema 1.3. Esto es un ejemplo de teorema.

Proposición 1.5. Ejemplo de proposición

Lema 1.6. Ejemplo de lema

Corolario 1.1. Ejemplo de corolario

Definición 1.16. Ejemplo de definición

1. Análisis de Redes Convolucionales

Observación 1.1. Ejemplo de observación

Y esto es una referencia al Teorema 1.3. Identidad Pitagórica (1.1)

$$\cos^2 x + \sin^2 x = 1 \tag{1.1}$$

La fórmula de Gauss-Bonnet para una superficie compacta S viene dada por:

$$\int_{S} K = 2\pi \chi(S)$$

1.6. Bibliografía e índice

Además incluye varias entradas al índice alfabético mediante el comando \index

Parte II. Segunda parte

2. Localización de landmarks cefalométricos por medio de técnicas de few-shot learning

2.1. Introducción

Las **ciencias forenses** son aquellas que aplican el método científico a hechos presuntamente delictivos con la finalidad de aportar pruebas a efectos judiciales. Este campo es interdisciplinar que incluye principalmente a la Criminalística¹ y la Medicina Forense².

Así pues, este trabajo ubica en el ámbito de la **antropología forense**, que es una rama de la Medicina Forense que se encarga de determinar la edad, raza, sexo o estatura, entre otras, a partir de restos óseos en problemas de reconstrucción facial, identificación de víctimas en desastres en masa o en identificación facial.

2.1.1. Descripción del problema

La **Superposición Craneofacial** es una técnica de identificación forense mediante la cual se comparan imágenes de la persona difunta³ con una o varias imágenes de un cráneo candidato. La técnica empleada es la superposición de ambas imágenes y se estima si son o no la misma persona de acuerdo a correspondencias morfológicas o marcando puntos de referencia. Los *landmarks* o puntos de referencia, pueden situarse en el cráneo⁴ encontrado o en el rostro⁵. Entre los dos tipos de *landmarks* anteriores existe una correlación, en caso de pertenecer a la misma persona, que el antropólogo forense trata de descubrir.

Esta tarea no es sencilla debido al **tejido blando facial** que separa el punto craneométrico de su homólogo cefalométrico y que lo desplaza. El desplazamiento ocasionado por el tejido blando facial no es constante ni se produce siempre en la misma dirección, lo cual junto con otros factores como la grasa o la calidad de la imagen complica esta tarea de superponer las dos imágenes (de cráneo y cara) con fidelidad.

Tradicionalmente, el proceso era esencialmente manual y complicado de replicar, y pese a los avances actuales que se están llevando a cabo para automatizar esta tarea [HIWK15], la identificación de *landmarks* sigue realizándose a mano normalmente.

En este contexto, el presente trabajo se centrará en esta etapa del marcado de *landmarks*, en concreto de *landmarks* cefalométricos (en las imágenes ante-mortem). El objetivo será comparar dos frameworks que utilizan técnicas de **Deep Learning** para la detección y marcado de *landmarks* cefalométricos

¹Disciplina encargada del descubrimiento y verificación científica de presuntos hechos delictivos y quienes los cometen.

²Disciplina encargada de determinar el origen de las lesiones, las caisas de muerte o la identificación de seres humanos vivos o muertos.

 $^{^3\}mathrm{A}$ estas imágenes se le denominan imágenes ante-mortem

⁴En este caso reciben el nombre de puntos craneométricos

⁵En este caso se denominan puntos cefalométricos

- 2. Localización de landmarks cefalométricos por medio de técnicas de few-shot learning
- 2.1.2. Motivación
- 2.1.3. Objetivos

A. Primer apéndice

Los apéndices son opcionales. Archivo: apendices/apendice01.tex

Glosario

La inclusión de un glosario es opcional. Archivo: glosario.tex

- $\ensuremath{\mathbb{R}}$ Conjunto de números reales.
- ${\Bbb C}$ Conjunto de números complejos.
- ${\mathbb Z}$ Conjunto de números enteros.

Bibliografía

Las referencias se listan por orden alfabético. Aquellas referencias con más de un autor están ordenadas de acuerdo con el primer autor.

- [HIWK15] María Isabel Huete, Óscar Ibáñez, Caroline Wilkinson, and Tzipi Kahana. Past, present, and future of craniofacial superimposition: Literature and international surveys. *Legal medicine*, 17 4:267–78, 2015. [Citado en pág. 29]
- [Maloo] Stéphane Mallat. *Une exploration des signaux en ondelettes.* Palaiseau: Les Éditions de l'École Polytechnique, 2000. [Citado en pág. 9]
- [RC18] Richard E.Woods Rafael C.Gonzalez. *Digital Image Processing*. Pearson, 2018. [Citado en pág. 5]
- [TYo5] Alain Trouvé and Laurent Younes. Local geometry of deformable templates. *SIAM Journal on Mathematical Analysis*, 37(1):17–59, 2005. [Citado en pág. 8]