Вероятностные методы строительной механики и теория надежности строительных конструкций

Надёжность Черновик

Кафедра СМиМ

2019

План

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Ссылки

Outline

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Ссылки

Бетон _{Марка}

- Одна из основных характеристик прочности бетона прочность на сжатие.
- Марка бетона предел прочности на сжатие в кг/см².
 Обозначение М100 образец¹ бетона выдерживает давление 100 кг/см²
- ▶ Прочность на сжатие указанная в марке среднее значение прочности испытанных образцов

 $^{^1}$ кубики со сторонами 150 мм, которые затем выдерживают в условиях нормального твердения 28 суток \bigcirc

Бетон _{Марка}

- Одна из основных характеристик прочности бетона прочность на сжатие.
- Марка бетона предел прочности на сжатие в кг/см².
 Обозначение М100 образец¹ бетона выдерживает давление 100 кг/см²
- ▶ Прочность на сжатие указанная в марке среднее значение прочности испытанных образцов
- Проблема?

 $^{^1}$ кубики со сторонами 150 мм, которые затем выдерживают в условиях нормального твердения 28 суток

Бетон

Проблема марки

- Прочность на сжатие бетона случайная величина распределённая по закону, близкому² к закону нормального распределения
- Поэтому бетон марки, например М100 выдержит нагрузку в 100 кг/см² с вероятностью 0.5
 Площадь под кривой нормального распределения слева и справа от М равна 0.5

²у нормального закона хвосты кривой тянутся до бесконечности, на практике же такое невозможно

Бетон

Класс бетона

- Класс бетона В это кубиковая прочность в МПа, принимаемая с гарантированной обеспеченностью (доверительной вероятностью) 0,95
- Это означает, что образец выдержит нагрузку указанную в классе с вероятностью (обеспеченностью) 0.95
- Класс бетона занижает ожидаемую прочность, чтобы обеспечить запас прочности

Бетон

Перевод марки в класс

Переведём марку М100 в класс.

- ► $\kappa r/cm^2 \rightarrow M\Pi a$ $100 \cdot g \cdot 10000 = 9806650\Pi a = 9.806650M\Pi a$
- Вычисление класса

$$B = M_{\mathsf{M}\mathsf{\Pi}\mathsf{a}} - \sigma \cdot 1.64$$

- Стандартное отклонение σ прочности бетона на сжатие определяют используя коэффициент вариации $\nu=0.135$
- $ightharpoonup \sigma = \nu \cdot M_{\mathsf{M}\mathsf{\Pi}\mathsf{a}}$
- F(1.64) = 0.05, где F функция нормального распределения
- lacktriangle Подставляя формулу для σ и вынося $M_{\mathsf{M}\mathsf{\Pi}\mathsf{a}}$ за скобку получим:

$$B=M_{\mathsf{M}\mathsf{\Pi}\mathsf{a}}(1-1.64
u)$$

Outline

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Ссылки

Теория надёжности

Теория надёжности - наука изучающая закономерности отказов технических объектов

- критерии и показатели надёжности
- метода анализа и синтеза по критериям надёжности
- методы обеспечения и повышения надёжности
- методы эксплуатации обеспечивающие надёжность

Теория надёжности

Надёжность - свойство объекта выполнять свои функции в заданном режиме в течение заданного срока с за- данной вероятностью Р.

Начальная надёжность - свойство объекта выполнять свои функции в заданном режиме в начальный период эксплуатации

Отказ - случайное событие, заключающееся в нарушении работоспособности объекта. Вероятность отказа: Q=1-P

Теория надёжности

Долговечность - свойство сохранять работоспособность в течение определенного времени Т

Долговечность vs надёжность

Долговечность определяется временем безотказной работы, а надёжность вероятностью безотказной работы в течении заданного времени.

- Традиционный подход к определению (обеспечение)
 надёжности (надёжно
 не надёжно) подразумевает использование коэффициентов
 запаса (коэффициентов перегрузки) обеспечивающих
 резерв несущей способности.
- Такой подход называется детерминированным
- Вероятностный подход подразумевает, что величины влияющие на надёжность - случайны³
- Определения или обеспечение надёжности основывается на знании числовых характеристик этих случайных величин и их функций распределения

Здаже если принимают значения в узких диапазонах 🗇 → « 🛢 → 🐧 → 🐧 🔻

Расчет по допускаемым напряжениям

В методе расчета по допускаемым напряжениям должно соблюдаются неравенство:

$$\sum S_i \le A[\sigma] \tag{1}$$

где S_i - воздействие на рассчитываемый элемент і-ой *нормативной* нагрузки (постоянной или временной)

А - геометрическая характеристика сечения

 $[\sigma]$ - допускаемое напряжение в элементе

Расчет по допускаемым напряжениям

Введя коэффициенты надёжности получим неравенство 1 в виде:

$$\sum \gamma_i S_i \leq A rac{\sigma_{\mathsf{пред}}}{\gamma_R}$$

где γ_i – коэффициент надежности по нагрузке γ_R – коэффициенты надежности по материалам

Расчет по предельным состояниям

Предельное состояние – состояние конструкции (сооружения), при котором она перестаёт удовлетворять эксплуатационным требованиям.

- используется несколько коэффициентов запаса, учитывающих особенности работы сооружения, независимых коэффициентов
- учёт вероятностных свойств действующих на конструкции нагрузок и сопротивлений этим нагрузкам
- **.**..

Предельные состояния

- Первое предельное состояние характеризуется потерей устойчивости и полной непригодностью к дальнейшей эксплуатации.
- Второе предельное состояние характеризуется наличием признаков, при которых эксплуатация конструкции или сооружения хотя и затруднена, но полностью не исключается

Предельные состояния

Первое предельное состояние

изображение с сайта lib.dystlab.com/index.php/engineering/civil/structural/87-limit-states

Предельные состояния

изображение с сайта lib.dystlab.com/index.php/engineering/civil/structural/87-limit-states

Проверки по предельным состояниям

 $N_{max} \leq N$

 N_{max} - фактор характеризующий нагрузку Например: изгибающий момент, напряжение, деформация, ... N - нормативное значение соответствующего N_{max} фактора или расчётное значение соответствующего сопротивления

В настоящее время расчёт по предельным состояниям заменил расчёт по допускаемым напряжениям и определяется ГОСТом и Eurocode

Outline

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Ссылки

Запишем выражение со слайда 19 как разность факторов:

$$g = R - L$$

- ▶ R сопротивление (несущая способность)
- ▶ L воздействие (нагрузочный эффект)
- ightharpoonup R и L случайные величины⁴
- ▶ g Характеристика безопасности случайная величина
- R и L принимают конкретный вид в зависимости от исследуемой нагрузки

Вероятность безотказной работы

$$P=P(g>0)$$

- Чтобы определить вероятность безотказной работы требуется знать распределение резерва несущей способности g
- Функцию распределения g часто считают близкой к функции нормального распределения.
- Далее для определения вероятности безотказной работы используют индекс надёжности:

$$\beta = \frac{\bar{\mathbf{g}}}{\sigma_{\mathbf{g}}}$$

- lacktriangle $ar{g}$ среднее значение резерва несущей способности
- $ightharpoonup \sigma_g$ стандартное отклонение резерва несущей способности
- ▶ Среднее значение и стандартного отклонение обычно вычисляют для линейной аппроксимации функции g⁵

⁵см. линеаризацию функции случайных аргументов с → х ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ х × ≥ x ×

Характеристика безотказности

 Наконец используя вместо резерва несущей способности g индекс надёжности β для определения вероятности безотказной работы

$$P = P(\beta > 0)$$

- Как представить графически вероятность безотказной работы?
- Как связать вероятность безотказной работы и функцию Лапласа Φ_0 ?

Характеристика безотказности

Характеристика безотказности по Ржаницкому что дальше?

- Обратная задача: Для известного нагрузочного эффекта и сопротивления, с известными средними значениями и стандартными отклонениями величин определяется вероятность безотказной работы (надёжность)
- Прямая задача: определяются значения от которых зависит сопротивление для обеспечения заданной надёжности

Какую надёжность выбрать?

- ▶ Стремление к абсолютной надёжности, то есть к P = 1 не экономично
- потому, что g в этом случае должно быть очень велико, а значит велика и несущая способность R
- С другой стороны низкая надёжность недопустима
- Как правило выбирают надёжность соответствующую отступу от \bar{g} вправо на 3 σ_g

На стальной стержень действует растягивающая сила со средним значением $\bar{F}=100$ кН. Средний предел текучести стержня \bar{R}_y - 230 МПа. Площадь поперечного сечения стержня - 5.36 см2 Если известны стандартные отклонения нагрузки F - 10 кН и предела текучести R_y - 10 МПа определить запас несущей способности и вероятность безотказной работы стержня.

На стальной стержень действует растягивающая сила со средним значением $\bar{F}=100$ кН. Средний предел текучести стержня \bar{R}_y - 230 МПа. Площадь поперечного сечения стержня - 5.36 см2 Если известны стандартные отклонения нагрузки F - 10 кН и предела текучести R_y - 10 МПа определить запас несущей способности и вероятность безотказной работы стержня.

- Определим выражения для R сопротивления и L нагрузочного эффекта.
- $ightharpoonup R = R_v \cdot A$
- ightharpoonup L = F
- Определим резерв несущей способности как функцию двух случайных величин:

$$g(R_v, F) = \bar{R}_v \cdot A - \bar{F}$$

Тогда средний резерв несущей способности:

$$\bar{g} = \bar{R}_{v} \cdot A - \bar{F}$$

- ightharpoonup Функция g линейна относительно R_y и F, поэтому используем следующие выражения для среднего значения и дисперсии:
- Тогда средний резерв несущей способности:

$$\bar{g} = \bar{R}_y \cdot A - \bar{F}$$

▶ Стандартное отклонение резерва несущей способности:

$$S_g = \sqrt{S_F^2 \cdot (\frac{\partial g}{\partial R_y})^2 + S_{R_y^2} \cdot (\frac{\partial g}{\partial F})^2}$$

- lacktriangle Определим индекс надёжности $eta=rac{ar{g}}{S_{g}}$
- Определим вероятность безотказной работы $P=P(\beta>0)=1-F(\beta),$ где $F(\beta)$ функция стандартного нормального распределения

Outline

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Ссылки

Последовательное соединение элементов

Последовательное соединение элементов системы - соединение, при котором отказ одного элемента ведёт к отказу системы в целом

$$P=\prod P_i=\prod (1-Q_i)$$

где P_i , Q_i - надёжность и вероятность отказа соответственно для і-го элемента

При таком соединении надёжность идеальной системы всегда меньше надёжности самого слабого элемента

Параллельное соединение элементов

Последовательное соединение элементов системы - соединение, при котором только отказ всех элементов системы ведёт к отказу системы в целом.

$$P = 1 - \prod Q_i = 1 - \prod (1 - P_i)$$

где P_i , Q_i - надёжность и вероятность отказа соответственно для і-го элемента

При таком соединение надёжность системы всегда выше надёжности самого надёжного элемента

Параллельное соединение элементов

Замечание

- Стоит учитывать что если один или несколько элементов системы вышли из строя, то надёжность остальных элементов системы может снижаться
- В этом случае рассматриваются различные варианты разрешения системы:
- когда все элементы выходят из строя
- когда из строя выходят один или несколько элементов системы

Пример

На пролетное строение моста, имеющее в поперечном сечении две главных балки, действует нагрузка.

- Обеспеченность (надежность) несущей способности каждой балки в размере 400 кH равна P=0.9.
- Обеспеченность несущей способности в размере 800 кH равна P = 0.6.

Определить надежность системы

Пример из учебного пособия "Основы надежности транспортных сооружений МАДИ, 2008

Пример

- Это система с параллельным соединением элементов
- Рассмотрим два сценария разрушения системы:
- 1. Балки разрушаются одновременно
- ▶ 2. Разрушается сначала одна, потом другая балка (разрушение Б1, Б2; разрушение Б2, Б1)
- ▶ Вероятность отказа всей системы Q будет складывается из вероятностей отказа случая 1 и 2

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Вопросы

▶ Возможно ли добиться вероятности безотказной работы равной единице?

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

- Разброс нагрузок от собственного веса конструкций: коэффициент вариации от 0.02 до 0.03
- ► Нормативная прочность обычно принимается с обеспеченностью P = 0.95 ($R_{\rm H} = R1.65\sigma_R$)
- ▶ Расчетная 0.9986 ($R_{\rm pacч} = R 3\sigma_R$) Коэффициенты вариации
 - для стали 0.03...0.05;
 - для бетона 0.10...0.15.

Коэффициенты запаса

для нагрузки

$$\gamma_F = \frac{F}{F + 3\sigma_F}$$

для сопротивления

$$\gamma_R = \frac{R}{R - 3\sigma_R}$$

Марка и класс бетона

Надёжность

Характеристика безопасности

Надёжность систем

Дерево отказов и дерево событий

Метод Монте-Карло

Метод экспертных оценок

Вопросы

Справочные сведения

Источники

- ▶ Пшеничкина, В. А. Вероятностные методы строительной механики и теория надёжности строительных конструкций [Электронный ресурс] : учебное пособие : в 2-х частях. Ч. І / В. А. Пшеничкина, Г. В. Воронкова, С. С. Рекунов, А. А. Чураков http://vgasu.ru/attachments/oipshenichkina — 03.pdf
- Начальная надёжность элементов строительных конструкций: методические указания / Сост. Р.П. Моисеенко.

Ссылки

Материалы курса

github.com/VetrovSV/ST