Here im imprting all my packages. I may not use them all but it saves me from doing it later.

Here I'm loading my data

```
In [3]:
           df.info()
           df.shape
            <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 3454 entries, 0 to 3453
           Data columns (total 15 columns):
            #
                Column
                                       Non-Null Count
                                                      Dtype
            _ _ _
                -----
                                       -----
            0
                brand_name
                                       3454 non-null
                                                      object
            1
                                       3454 non-null
                                                      object
            2
                screen size
                                       3454 non-null
                                                      float64
            3
                                       3454 non-null
                                                      object
                4g
            4
                                       3454 non-null
                                                      object
                5g
            5
                main_camera_mp
                                       3275 non-null
                                                      float64
            6
                                       3452 non-null
                                                      float64
                selfie_camera_mp
            7
                int memory
                                       3450 non-null
                                                      float64
            8
                                       3450 non-null
                                                      float64
                ram
            9
                battery
                                       3448 non-null
                                                      float64
                                       3447 non-null
                                                      float64
            10 weight
            11 release_year
                                       3454 non-null
                                                      int64
            12 days_used
                                       3454 non-null
                                                      int64
            13 normalized_used_price 3454 non-null
                                                      float64
                C1 - - + C 4
```

```
    df.describe()

In [4]:
    Out[4]:
                      screen_size
                                  main_camera_mp
                                                   selfie_camera_mp
                                                                     int_memory
                                                                                         ram
                                                                                                  ba
               count 3454.000000
                                       3275.000000
                                                        3452.000000
                                                                     3450.000000 3450.000000
                                                                                              3448.00
               mean
                        13.713115
                                          9.460208
                                                            6.554229
                                                                       54.573099
                                                                                    4.036122 3133.40
                 std
                        3.805280
                                          4.815461
                                                            6.970372
                                                                       84.972371
                                                                                    1.365105 1299.68
                        5.080000
                                          0.080000
                                                            0.000000
                                                                        0.010000
                                                                                    0.020000
                                                                                               500.00
                min
                25%
                        12.700000
                                          5.000000
                                                            2.000000
                                                                       16.000000
                                                                                    4.000000 2100.00
                                                                                              3000.00
                50%
                        12.830000
                                          8.000000
                                                            5.000000
                                                                       32.000000
                                                                                    4.000000
                75%
                        15.340000
                                         13.000000
                                                            8.000000
                                                                       64.000000
                                                                                    4.000000
                                                                                              4000.00
                                                                                    12.000000 9720.00
                max
                        30.710000
                                         48.000000
                                                          32.000000 1024.000000
In [5]:
              df.value_counts('main_camera_mp')
              df.value_counts('selfie_camera_mp')
              df.value_counts('int_memory')
              df.value_counts('ram')
              df.value_counts('battery')
              df.value_counts('weight')
    Out[5]: weight
              150.0
                        112
              140.0
                         86
              160.0
                         80
              145.0
                          68
              155.0
                          68
              159.9
                           1
              158.8
                           1
              158.6
                           1
              158.4
                           1
              855.0
```

Here I want to see what data is presenting as null

Length: 555, dtype: int64

```
df.median()
In [6]:
   Out[6]: screen size
                                      12.830000
           main_camera_mp
                                       8.000000
            selfie camera mp
                                       5.000000
            int memory
                                      32.000000
            ram
                                       4.000000
           battery
                                    3000.000000
           weight
                                    160.000000
            release_year
                                    2015.500000
           days_used
                                     690.500000
           normalized used price
                                       4.405133
           normalized_new_price
                                       5.245892
           dtype: float64
In [7]:
         | median_mcm = df['main_camera_mp'].median()
           df['main_camera_mp'] = df['main_camera_mp'].fillna(median_mcm)
           median scm = df['selfie camera mp'].median()
           df['selfie_camera_mp'] = df['selfie_camera_mp'].fillna(median_scm)
           median_mem = df['int_memory'].median()
           df['int_memory'] = df['int_memory'].fillna(median_mem)
           median_ram = df['ram'].median()
           df['ram'] = df['ram'].fillna(median ram)
           median_bat = df['battery'].median()
           df['battery'] = df['battery'].fillna(median_bat)
           median_wei = df['weight'].median()
           df['weight'] = df['weight'].fillna(median_wei)
           df.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 3454 entries, 0 to 3453
           Data columns (total 15 columns):
             #
                Column
                                       Non-Null Count
                                                       Dtype
                ----
            ---
                                       -----
                                                       ----
             0
                brand_name
                                       3454 non-null
                                                       object
             1
                                       3454 non-null
                                                       object
             2
                screen_size
                                       3454 non-null
                                                       float64
             3
                4g
                                       3454 non-null
                                                       object
             4
                5g
                                       3454 non-null
                                                       object
             5
                                       3454 non-null
                                                       float64
                main camera mp
             6
                selfie_camera_mp
                                       3454 non-null
                                                       float64
             7
                                       3454 non-null
                                                       float64
                int_memory
                                                       float64
             8
                ram
                                       3454 non-null
             9
                battery
                                       3454 non-null
                                                       float64
             10 weight
                                       3454 non-null
                                                       float64
             11 release_year
                                       3454 non-null
                                                       int64
             12 days_used
                                       3454 non-null
                                                       int64
             13 normalized_used_price 3454 non-null
                                                       float64
             14 normalized_new_price
                                       3454 non-null
                                                       float64
            dtypes: float64(9), int64(2), object(4)
            memory usage: 404.9+ KB
```

Here I'm fixing my null data and replacing it with the median.

# In [8]: ► df.info()

```
RangeIndex: 3454 entries, 0 to 3453
Data columns (total 15 columns):
 #
    Column
                           Non-Null Count Dtype
---
    -----
                           -----
 0
     brand_name
                           3454 non-null
                                           object
 1
                           3454 non-null
                                           object
 2
     screen_size
                           3454 non-null
                                           float64
 3
                           3454 non-null
                                           object
    4g
 4
                           3454 non-null
                                           object
    5g
                           3454 non-null
 5
    main_camera_mp
                                           float64
 6
    selfie_camera_mp
                           3454 non-null
                                           float64
 7
                           3454 non-null
    int_memory
                                           float64
 8
                           3454 non-null
                                           float64
    ram
 9
    battery
                           3454 non-null
                                           float64
 10 weight
                           3454 non-null
                                           float64
                           3454 non-null
 11 release_year
                                           int64
 12 days_used
                           3454 non-null
                                           int64
    normalized_used_price 3454 non-null
                                           float64
```

dtypes: float64(9), int64(2), object(4)

<class 'pandas.core.frame.DataFrame'>

memory usage: 404.9+ KB

14 normalized\_new\_price

```
In [9]: ▶ df.columns
```

3454 non-null

float64

The only clear relationship seen above is a positive correlation between normalized used price and normalized new price.

```
In [11]: ▶ sns.kdeplot(data=df, x='normalized_used_price')
```

Out[11]: <Axes: xlabel='normalized\_used\_price', ylabel='Density'>



Q1. The chart above shows the disturbution of normalized used price the most prices being between 4 and 5.

Q2. Androids make up 3214/3454 or 93.05% of the market

```
In [13]: In sns.violinplot(data=df, x='brand_name', y='ram', scale='count')
plt.xticks(rotation=90)
plt.show()
```



Q3. We can see that ram varies quiet a bit between brands with most brands sticking to a specfic range of ram for most of their devices.

Out[14]: <seaborn.axisgrid.JointGrid at 0x193da6e0110>



Q4. We can see that mild increasing battery omh does tend to increase weight but there is still a high degree of variance in weight. This means that while weight will tend to increase with battery size this is not always true.

```
In [15]:
           ▶ scr_df = df.copy()
             scr_df = scr_df.loc[scr_df['screen_size'] > 6]
             print(scr_df.value_counts('brand_name'))
             scr_df.info()
             brand_name
             Others
                            479
             Samsung
                            334
             Huawei
                            251
                            197
             LG
             Lenovo
                            171
             ZTE
                            140
             Xiaomi
                            132
             0ppo
                            129
                            122
             Asus
             Vivo
                            117
             Honor
                            116
             Alcatel
                            115
             HTC
                            110
             Micromax
                            108
             Motorola
                            106
             Sony
                             86
             Nokia
                             72
                             62
             Meizu
```

Q5. We can see that 3362 devices have screens bigger than 6 inches.

```
In [16]:

■ scmp_df = df.copy()

             scmp_df = scmp_df.loc[scmp_df['selfie_camera_mp'] > 8.0]
             sns.countplot(data=scmp_df, x='brand_name')
             plt.xticks(rotation=90)
             scmp_df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 655 entries, 1 to 3448 Data columns (total 15 columns):

| #                                       | Column                           | Non-Null Count | Dtype   |  |
|-----------------------------------------|----------------------------------|----------------|---------|--|
|                                         |                                  |                |         |  |
| 0                                       | brand_name                       | 655 non-null   | object  |  |
| 1                                       | os                               | 655 non-null   | object  |  |
| 2                                       | screen_size                      | 655 non-null   | float64 |  |
| 3                                       | 4g                               | 655 non-null   | object  |  |
| 4                                       | 5g                               | 655 non-null   | object  |  |
| 5                                       | main_camera_mp                   | 655 non-null   | float64 |  |
| 6                                       | selfie_camera_mp                 | 655 non-null   | float64 |  |
| 7                                       | int_memory                       | 655 non-null   | float64 |  |
| 8                                       | ram                              | 655 non-null   | float64 |  |
| 9                                       | battery                          | 655 non-null   | float64 |  |
| 10                                      | weight                           | 655 non-null   | float64 |  |
| 11                                      | release_year                     | 655 non-null   | int64   |  |
| 12                                      | days_used                        | 655 non-null   | int64   |  |
| 13                                      | <pre>normalized_used_price</pre> | 655 non-null   | float64 |  |
| 14                                      | normalized_new_price             | 655 non-null   | float64 |  |
| dtypes: float64(9), int64(2), object(4) |                                  |                |         |  |
| momo                                    | ny ucaga. 01 O. VD               |                |         |  |

memory usage: 81.9+ KB



Q6. We can see that the distubtion of devices with selfie camera mp above 8 is domatanted by 5 brands.

| n [17]: 🕨 | df.corr()             |             |                |                  |            |        |
|-----------|-----------------------|-------------|----------------|------------------|------------|--------|
| Out[17]:  |                       | screen_size | main_camera_mp | selfie_camera_mp | int_memory |        |
|           | screen_size           | 1.000000    | 0.139385       | 0.271615         | 0.071746   | 0.27   |
|           | main_camera_mp        | 0.139385    | 1.000000       | 0.373565         | 0.009507   | 0.21   |
|           | selfie_camera_mp      | 0.271615    | 0.373565       | 1.000000         | 0.296531   | 0.47   |
|           | int_memory            | 0.071746    | 0.009507       | 0.296531         | 1.000000   | 0.122  |
|           | ram                   | 0.273810    | 0.211150       | 0.477191         | 0.122774   | 1.000  |
|           | battery               | 0.811240    | 0.225791       | 0.369661         | 0.118108   | 0.280  |
|           | weight                | 0.828872    | -0.088483      | -0.004688        | 0.015374   | 0.089  |
|           | release_year          | 0.364223    | 0.301558       | 0.690661         | 0.235166   | 0.31:  |
|           | days_used             | -0.291723   | -0.108173      | -0.552377        | -0.242377  | -0.279 |
|           | normalized_used_price | 0.614785    | 0.552477       | 0.607548         | 0.190954   | 0.518  |
|           | normalized_new_price  | 0.460889    | 0.512655       | 0.474444         | 0.196067   | 0.530  |
|           | 4                     |             |                |                  |            | •      |

Q7. The columns most correlated with normalized\_used\_price are in order from highest to lowest are normalized new price, screen size, and battery.



We see a lot of outliers but we wont treat them because they fit logically and will help improve our model.

```
M df.info()
In [19]:
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 3454 entries, 0 to 3453
             Data columns (total 15 columns):
                  Column
              #
                                         Non-Null Count Dtype
             _ _ _
                  _ _ _ _ _
              0
                  brand_name
                                         3454 non-null
                                                         object
              1
                                         3454 non-null
                                                         object
              2
                  screen size
                                         3454 non-null
                                                         float64
              3
                                         3454 non-null
                                                         object
                  4g
              4
                                         3454 non-null
                                                         object
                  5g
              5
                  main_camera_mp
                                         3454 non-null
                                                         float64
                  selfie_camera_mp
                                         3454 non-null
                                                         float64
              6
              7
                  int memory
                                         3454 non-null
                                                         float64
              8
                                         3454 non-null
                                                         float64
                  ram
              9
                  battery
                                         3454 non-null
                                                         float64
                                         3454 non-null
                                                         float64
              10
                 weight
              11 release_year
                                         3454 non-null
                                                         int64
              12 days_used
                                         3454 non-null
                                                         int64
                  normalized used price 3454 non-null
                                                         float64
              14 normalized new price
                                         3454 non-null
                                                         float64
             dtypes: float64(9), int64(2), object(4)
             memory usage: 404.9+ KB
In [20]:
          df.head()
   Out[20]:
                screen_size main_camera_mp selfie_camera_mp int_memory ram
                                                                        battery weight rele
              0
                     14.50
                                     13.0
                                                               64.0
                                                                        3020.0
                                                                                146.0
                                                     5.0
                                                                    3.0
              1
                     17.30
                                                                        4300.0
                                     13.0
                                                    16.0
                                                              128.0
                                                                    8.0
                                                                                213.0
              2
                     16.69
                                     13.0
                                                     0.8
                                                              128.0
                                                                    8.0
                                                                        4200.0
                                                                                213.0
              3
                     25.50
                                     13.0
                                                     8.0
                                                               64.0
                                                                    6.0
                                                                        7250.0
                                                                                480.0
              4
                     15.32
                                     13.0
                                                     8.0
                                                               64.0
                                                                    3.0
                                                                        5000.0
                                                                                185.0
             5 rows × 49 columns
         Here I am creating dummy variables for my model
In [21]:
          # independent variables
             X = df.drop(["normalized_used_price"], axis=1)
```

```
In [21]:  # independent variables
X = df.drop(["normalized_used_price"], axis=1)
# dependent variable
y = df[["normalized_used_price"]]
```

Here I am creating my independent and dependent variables.

```
In [22]:

    X = sm.add_constant(X)

In [23]:
         In [24]:
         ▶ print(X_train.head())
                 const screen_size main_camera_mp selfie_camera_mp int_memory
            ram \
            3026
                   1.0
                             10.29
                                             8.0
                                                             0.3
                                                                       16.0
            4.0
            1525
                   1.0
                             15.34
                                            13.0
                                                             5.0
                                                                       32.0
            4.0
            1128
                   1.0
                             12.70
                                            13.0
                                                             5.0
                                                                       32.0
            4.0
            3003
                   1.0
                             12.83
                                             8.0
                                                             5.0
                                                                       16.0
            4.0
                             12.88
            2907
                   1.0
                                            13.0
                                                            16.0
                                                                       16.0
            4.0
                 battery weight release_year days_used ... brand_name_Spice
            3026
                  1800.0
                          120.0
                                        2014
                                                   819
                                                                         0
                                                       . . .
            1525
                  4050.0
                          225.0
                                        2016
                                                                         0
                                                   585
                                                       . . .
            1128
                  2550.0
                          162.0
                                        2015
                                                   727
                                                                         0
            3003
                  3200.0
                                        2015
                                                                         0
                          160.0
                                                  800
                                                       . . .
```

2017

 $\Gamma \subset \Omega$ 

2007

2000 0

100 0

In [25]: print(X\_test.head())

|            | const   | screen_si | ze ma | in_camer | a_mp  | se   | lfie | e_cam | era_mp | int_memory  | ,   |
|------------|---------|-----------|-------|----------|-------|------|------|-------|--------|-------------|-----|
| ram<br>866 | 1.0     | 15.       | 24    |          | 8.00  | ,    |      |       | 2.0    | 16.0        | ı   |
| 4.00       | 1.0     | 15.       | 24    |          | 0.00  | ,    |      |       | 2.0    | 10.0        | 1   |
| 957        | 1.0     | 10.       | 16    |          | 3.15  | ,    |      |       | 0.3    | 512.0       | ı   |
| 0.25       |         |           |       |          |       |      |      |       |        |             |     |
| 280        | 1.0     | 15.       | 39    |          | 8.00  | )    |      |       | 8.0    | 32.0        | 1   |
| 2.00       |         |           |       |          |       |      |      |       |        |             |     |
| 2150       | 1.0     | 12.       | 83    | 1        | .3.00 | )    |      |       | 16.0   | 64.0        | 1   |
| 4.00<br>93 | 1 0     | 15        | 20    | 1        | 2 00  |      |      |       | гα     | 22.0        |     |
| 3.00       | 1.0     | 15.       | 29    | 1        | .3.00 | ,    |      |       | 5.0    | 32.0        |     |
| 3.00       |         |           |       |          |       |      |      |       |        |             |     |
|            | battery | / weight  | relea | se_year  | day   | s_us | ed   |       | brand_ | _nameSpice  | \   |
| 866        | 3000.0  | 206.0     |       | 2014     | _     | 6    | 32   |       |        | 0           |     |
| 957        | 1400.0  |           |       | 2013     |       |      | 37   |       |        | 0           |     |
| 280        | 5000.0  |           |       | 2020     |       |      | 29   | • • • |        | 0           |     |
| 2150       | 3200.0  |           |       | 2017     |       |      | 48   | • • • |        | 0           |     |
| 93         | 3500.0  | 179.0     |       | 2019     |       | 2    | 16   | • • • |        | 0           |     |
|            | brand n | name_Vivo | brand | name XC  | LO    | bran | d na | ame X | iaomi  | brand_name_ | ZTE |
| \          | _       |           |       |          |       |      | _    | _     |        |             | •   |
| 866        |         | 0         |       |          | 0     |      |      |       | 0      |             | 0   |
| 957        |         | 0         |       |          | 0     |      |      |       | 0      |             | 0   |
| 280        |         | 0         |       |          | 0     |      |      |       | 0      |             | 0   |
| 2150       |         | 0         |       |          | 0     |      |      |       | 0      |             | 0   |
| 93         |         | 0         |       |          | 0     |      |      |       | 0      |             | 0   |
|            | os_Othe | ers os_Wi | ndows | os_iOS   | 4g_   | yes  | 5g_  | yes   |        |             |     |
| 866        |         | 0         | 0     | 0        |       | 0    |      | 0     |        |             |     |
| 957        |         | 0         | 0     | 0        |       | 0    |      | 0     |        |             |     |
| 280        |         | 0         | 0     | 0        |       | 1    |      | 0     |        |             |     |
| 2150       |         | 0         | 0     | 0        |       | 1    |      | 0     |        |             |     |
| 93         |         | 0         | 0     | 0        |       | 1    |      | 0     |        |             |     |

[5 rows x 49 columns]

Both x models seem to be correct.

## OLS Regression Results

|                                         |                 | regressi     |                    |          |       |
|-----------------------------------------|-----------------|--------------|--------------------|----------|-------|
| ======================================= | =========       | =======      | ========           | :======: | ===== |
|                                         | normalized_used | d_price      | R-squared:         |          |       |
| Model:                                  |                 | OLS          | Adj. R-square      | ed:      |       |
| 0.842<br>Method:                        | Least S         | Squares      | F-statistic:       |          |       |
| 268.8 Date:                             | Sat, 09 Se      | ep 2023      | Prob (F-stati      | istic):  |       |
| 0.00<br>Time:                           | -               | '<br>1:55:18 | `<br>Log-Likelihoo | ·        |       |
| 124.22                                  | 0.              |              | _                  | ,        |       |
| No. Observations:<br>-150.4             |                 | 2417         | AIC:               |          |       |
| Df Residuals:<br>133.3                  |                 | 2368         | BIC:               |          |       |
| Df Model:                               |                 | 48           |                    |          |       |
| Covariance Type:                        | _               | nrobust      |                    |          |       |
| ======================================= |                 | =======      |                    | :======: | ===== |
|                                         | coef            | std err      | r t                | P> t     |       |
| [0.025 0.975]                           |                 |              |                    |          |       |
|                                         |                 |              |                    |          |       |
| const                                   | -48.6977        | 9.184        | -5.303             | 0.000    | -6    |
| 6.707 -30.689                           |                 |              |                    |          |       |
| screen_size                             | 0.0243          | 0.003        | 3 7.145            | 0.000    |       |
| 0.018 0.031                             | 0 0202          | 0 001        | 12 900             | 0.000    |       |
| main_camera_mp 0.017 0.023              | 0.0203          | 0.001        | l 13.806           | 0.000    |       |
| selfie_camera_mp                        | 0.0136          | 0.001        | L 12.084           | 0.000    |       |
| 0.011 0.016                             | 0.0230          | 0.00         | 12.00              | 0.000    |       |
| int_memory                              | 0.0001          | 6.97e-05     | 1.542              | 0.123    | -2.92 |
| e-05 0.000                              |                 |              |                    |          |       |
| ram                                     | 0.0239          | 0.005        | 4.657              | 0.000    |       |
| 0.014 0.034                             | 4 505 05        | 7 27 04      | 2 404              | 0.000    | 2 01  |
| battery<br>e-05 -1.6e-06                | -1.585e-05      | 7.27e-06     | -2.181             | 0.029    | -3.01 |
| e-05 -1.6e-06<br>weight                 | 0.0010          | 0.000        | 7.421              | 0.000    |       |
| 0.001 0.001                             |                 |              |                    |          |       |
| release_year                            | 0.0248          | 0.00         | 5.441              | 0.000    |       |
| 0.016 0.034                             |                 |              |                    |          |       |
| days_used                               | 3.485e-05       | 3.09e-05     | 1.127              | 0.260    | -2.58 |
| e-05 9.55e-05                           | 0 4210          | 0.012        | ) 25 122           | 0.000    |       |
| normalized_new_price 0.407 0.455        | e 0.4310        | 0.012        | 2 35.133           | 0.000    |       |
| brand_name_Alcatel                      | 0.0153          | 0.048        | 0.321              | 0.748    | _     |
| 0.078 0.109                             | 010_00          |              | 0.022              |          |       |
| brand_name_Apple                        | -0.0116         | 0.147        | 7 -0.079           | 0.937    | -     |
| 0.300 0.277                             | 0.0105          | 0.046        | 0 400              | 0.603    |       |
| brand_name_Asus<br>0.074 0.113          | 0.0195          | 0.048        | 3 0.408            | 0.683    | -     |
| brand_name_BlackBer<br>0.167 0.108      | ry -0.0295      | 0.076        | -0.420             | 0.675    | -     |
| brand_name_Celkon                       | -0.0424         | 0.066        | -0.640             | 0.522    | -     |
| 0.172 0.088                             |                 |              |                    |          |       |

|                                              | Linear Regression | Model - Jupytel 1 | MOTEDOOK |       |   |
|----------------------------------------------|-------------------|-------------------|----------|-------|---|
| brand_name_Coolpad                           | 0.0401            | 0.073             | 0.551    | 0.582 | - |
| 0.103 0.183 brand_name_Gionee                | 0.0454            | 0.058             | 0.787    | 0.431 | - |
| 0.068 0.159                                  |                   |                   |          |       |   |
| <pre>brand_name_Google 0.197     0.135</pre> | -0.0312           | 0.085             | -0.369   | 0.712 | - |
| brand_name_HTC                               | -0.0115           | 0.048             | -0.240   | 0.811 | - |
| 0.106 0.083 brand_name_Honor                 | 0.0244            | 0.049             | 0.496    | 0.620 | _ |
| 0.072 0.121                                  | 0.0244            | 0.045             | 0.430    | 0.020 |   |
| brand_name_Huawei<br>0.095 0.079             | -0.0081           | 0.044             | -0.181   | 0.856 | - |
| brand_name_Infinix                           | 0.1548            | 0.093             | 1.661    | 0.097 | - |
| 0.028 0.337                                  | 0 0071            | 0.067             | 1 447    | 0 140 |   |
| brand_name_Karbonn<br>0.034 0.229            | 0.0971            | 0.067             | 1.447    | 0.148 | _ |
| brand_name_LG                                | -0.0152           | 0.045             | -0.335   | 0.738 | - |
| 0.104 0.074                                  |                   |                   |          |       |   |
| brand_name_Lava                              | 0.0337            | 0.062             | 0.541    | 0.589 | - |
| 0.089 0.156                                  | 0.0440            | 0.045             | 0.004    |       |   |
| brand_name_Lenovo                            | 0.0449            | 0.045             | 0.994    | 0.320 | - |
| 0.044 0.134 brand_name_Meizu                 | 0.0080            | 0.056             | 0.143    | 0.887 | _ |
| 0.102 0.118                                  | 0.0000            | 0.050             | 0.143    | 0.007 | _ |
| brand_name_Micromax                          | -0.0335           | 0.048             | -0.700   | 0.484 | _ |
| 0.127 0.060                                  |                   |                   |          |       |   |
| brand_name_Microsoft                         | 0.0945            | 0.088             | 1.070    | 0.285 | - |
| 0.079 0.268                                  |                   |                   |          |       |   |
| brand_name_Motorola                          | 0.0045            | 0.050             | 0.091    | 0.928 | - |
| 0.093 0.102                                  |                   |                   |          |       |   |
| brand_name_Nokia                             | 0.0671            | 0.052             | 1.297    | 0.195 | - |
| 0.034 0.169                                  | 0 1225            | 0 077             | 1 506    | 0 111 |   |
| brand_name_OnePlus 0.028 0.275               | 0.1235            | 0.077             | 1.596    | 0.111 | - |
| brand_name_Oppo                              | 0.0198            | 0.048             | 0.414    | 0.679 | _ |
| 0.074 0.113                                  | 0.0130            | 0.040             | 0.111    | 0.073 |   |
| brand_name_Others                            | -0.0080           | 0.042             | -0.191   | 0.849 | _ |
| 0.091 0.074                                  |                   |                   |          |       |   |
| <pre>brand_name_Panasonic</pre>              | 0.0574            | 0.056             | 1.028    | 0.304 | - |
| 0.052 0.167                                  |                   |                   |          |       |   |
| brand_name_Realme                            | 0.1197            | 0.061             | 1.951    | 0.051 | - |
| 0.001 0.240                                  | 0.0224            | 0.043             | 0 740    | 0.454 |   |
| brand_name_Samsung<br>0.117 0.052            | -0.0324           | 0.043             | -0.749   | 0.454 | - |
| brand_name_Sony                              | -0.0493           | 0.050             | -0.979   | 0.328 | _ |
| 0.148 0.049                                  | 0.0400            | 0.030             | 0.575    | 0.320 |   |
| brand_name_Spice                             | -0.0132           | 0.063             | -0.208   | 0.835 | _ |
| 0.137 0.111                                  |                   |                   |          |       |   |
| brand_name_Vivo                              | -0.0082           | 0.048             | -0.170   | 0.865 | - |
| 0.103 0.087                                  |                   |                   |          |       |   |
| brand_name_XOLO                              | 0.0102            | 0.055             | 0.187    | 0.852 | - |
| 0.097 0.118                                  | 0.0070            | 0.040             | 2 024    | 0.043 |   |
| <pre>brand_name_Xiaomi 0.004     0.192</pre> | 0.0978            | 0.048             | 2.034    | 0.042 |   |
| brand_name_ZTE                               | -0.0038           | 0.047             | -0.079   | 0.937 | _ |
| 0.097 0.089                                  | 3.0030            |                   | 2.2.2    |       |   |
| os_Others                                    | -0.0513           | 0.033             | -1.566   | 0.117 | - |
|                                              |                   |                   |          |       |   |

| 0.116<br>os Windows | 0.013 | -0.0176  | 0.045     | -0.389      | 0.697   | _      |
|---------------------|-------|----------|-----------|-------------|---------|--------|
| 0.106<br>os_iOS     | 0.071 | -0.0585  | 0.146     | -0.399      | 0.690   |        |
| 0.346               | 0.229 | -0.0303  | 0.140     | -0.355      | 0.050   | _      |
| 4g_yes              |       | 0.0507   | 0.016     | 3.190       | 0.001   |        |
| 0.020               | 0.082 |          |           |             |         |        |
| 5g_yes              |       | -0.0435  | 0.032     | -1.369      | 0.171   | -      |
| 0.106               | 0.019 |          |           |             |         |        |
| ========            |       | ======== | ======    | =======     | ======= | :===== |
| ====<br>Omnibus:    |       | 217.620  | Dunhin    | -Watson:    |         |        |
| 1.904               |       | 217.020  | וובטיוטע  | -wat5011.   |         |        |
| Prob(Omnibu         | ıs):  | 0.000    | Jarque    | -Bera (JB): |         | 40     |
| 9.702               | ,     |          | 2 44 44 4 |             |         |        |
| Skew:               |       | -0.607   | Prob(J    | B):         |         | 1.0    |
| 8e-89               |       |          |           |             |         |        |
| Kurtosis:           |       | 4.611    | Cond.     | No.         |         | 7.6    |
| 9e+06               |       |          |           |             |         |        |
| ========            |       |          | ======    | ========    | ======= | :===== |
| =====               |       |          |           |             |         |        |

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.
- [2] The condition number is large, 7.69e+06. This might indicate that the re are

strong multicollinearity or other numerical problems.

When we first fit our model we see a lot a variables thats p-value is to high and thus we will need to come back and correct this. We also see we have an adj. R-squared of.841 which is fairly good.

Out[27]:

|    | aspect                | VIF          |
|----|-----------------------|--------------|
| 0  | const                 | 3.780344e+06 |
| 1  | screen_size           | 7.680705e+00 |
| 2  | main_camera_mp        | 2.136597e+00 |
| 3  | selfie_camera_mp      | 2.808416e+00 |
| 4  | int_memory            | 1.361465e+00 |
| 5  | ram                   | 2.258272e+00 |
| 6  | battery               | 4.073582e+00 |
| 7  | weight                | 6.380746e+00 |
| 8  | release_year          | 4.884645e+00 |
| 9  | days_used             | 2.669393e+00 |
| 10 | normalized_new_price  | 3.121941e+00 |
| 11 | brand_name_Alcatel    | 3.405629e+00 |
| 12 | brand_name_Apple      | 1.305691e+01 |
| 13 | brand_name_Asus       | 3.330500e+00 |
| 14 | brand_name_BlackBerry | 1.632240e+00 |
| 15 | brand_name_Celkon     | 1.773986e+00 |
| 16 | brand_name_Coolpad    | 1.466522e+00 |
| 17 | brand_name_Gionee     | 1.951248e+00 |
| 18 | brand_name_Google     | 1.322242e+00 |
| 19 | brand_name_HTC        | 3.409765e+00 |
| 20 | brand_name_Honor      | 3.345910e+00 |
| 21 | brand_name_Huawei     | 5.986382e+00 |
| 22 | brand_name_Infinix    | 1.283540e+00 |
| 23 | brand_name_Karbonn    | 1.573183e+00 |
| 24 | brand_name_LG         | 4.848734e+00 |
| 25 | brand_name_Lava       | 1.711294e+00 |
| 26 | brand_name_Lenovo     | 4.559101e+00 |
| 27 | brand_name_Meizu      | 2.172894e+00 |
| 28 | brand_name_Micromax   | 3.363483e+00 |
| 29 | brand_name_Microsoft  | 1.869447e+00 |
| 30 | brand_name_Motorola   | 3.259778e+00 |
| 31 | brand_name_Nokia      | 3.471596e+00 |
| 32 | brand_name_OnePlus    | 1.436575e+00 |
| 33 | brand_name_Oppo       | 3.971623e+00 |
| 34 | brand_name_Others     | 9.710790e+00 |
| 35 | brand_name_Panasonic  | 2.105493e+00 |

|    | aspect             | VIF          |
|----|--------------------|--------------|
| 36 | brand_name_Realme  | 1.931102e+00 |
| 37 | brand_name_Samsung | 7.539528e+00 |
| 38 | brand_name_Sony    | 2.931789e+00 |
| 39 | brand_name_Spice   | 1.688738e+00 |
| 40 | brand_name_Vivo    | 3.647700e+00 |
| 41 | brand_name_XOLO    | 2.136708e+00 |
| 42 | brand_name_Xiaomi  | 3.711997e+00 |
| 43 | brand_name_ZTE     | 3.795991e+00 |
| 44 | os_Others          | 1.855401e+00 |
| 45 | os_Windows         | 1.595333e+00 |
| 46 | os_iOS             | 1.178485e+01 |
| 47 | 4g_yes             | 2.479097e+00 |
| 48 | 5g_yes             | 1.845023e+00 |

All my VIF are low so I have no mullticollinarity. I wont need to do anything to change it for this aspect.

## OLS Regression Results

|                                         |                 | regressi     |                    |          |       |
|-----------------------------------------|-----------------|--------------|--------------------|----------|-------|
| ======================================= | =========       | =======      | ========           | :======: | ===== |
|                                         | normalized_used | d_price      | R-squared:         |          |       |
| Model:                                  |                 | OLS          | Adj. R-square      | ed:      |       |
| 0.842<br>Method:                        | Least S         | Squares      | F-statistic:       |          |       |
| 268.8 Date:                             | Sat, 09 Se      | ep 2023      | Prob (F-stati      | istic):  |       |
| 0.00<br>Time:                           | -               | '<br>1:55:18 | `<br>Log-Likelihoo | ·        |       |
| 124.22                                  | 0.              |              | _                  | ,        |       |
| No. Observations:<br>-150.4             |                 | 2417         | AIC:               |          |       |
| Df Residuals:<br>133.3                  |                 | 2368         | BIC:               |          |       |
| Df Model:                               |                 | 48           |                    |          |       |
| Covariance Type:                        | _               | nrobust      |                    |          |       |
| ======================================= |                 | =======      |                    | :======: | ===== |
|                                         | coef            | std err      | r t                | P> t     |       |
| [0.025 0.975]                           |                 |              |                    |          |       |
|                                         |                 |              |                    |          |       |
| const                                   | -48.6977        | 9.184        | -5.303             | 0.000    | -6    |
| 6.707 -30.689                           |                 |              |                    |          |       |
| screen_size                             | 0.0243          | 0.003        | 3 7.145            | 0.000    |       |
| 0.018 0.031                             | 0 0202          | 0 001        | 12 900             | 0.000    |       |
| main_camera_mp 0.017 0.023              | 0.0203          | 0.001        | l 13.806           | 0.000    |       |
| selfie_camera_mp                        | 0.0136          | 0.001        | L 12.084           | 0.000    |       |
| 0.011 0.016                             | 0.0230          | 0.00         | 12.00              | 0.000    |       |
| int_memory                              | 0.0001          | 6.97e-05     | 1.542              | 0.123    | -2.92 |
| e-05 0.000                              |                 |              |                    |          |       |
| ram                                     | 0.0239          | 0.005        | 4.657              | 0.000    |       |
| 0.014 0.034                             | 4 505 05        | 7 27 04      | 2 404              | 0.000    | 2 01  |
| battery<br>e-05 -1.6e-06                | -1.585e-05      | 7.27e-06     | -2.181             | 0.029    | -3.01 |
| e-05 -1.6e-06<br>weight                 | 0.0010          | 0.000        | 7.421              | 0.000    |       |
| 0.001 0.001                             |                 |              |                    |          |       |
| release_year                            | 0.0248          | 0.00         | 5.441              | 0.000    |       |
| 0.016 0.034                             |                 |              |                    |          |       |
| days_used                               | 3.485e-05       | 3.09e-05     | 1.127              | 0.260    | -2.58 |
| e-05 9.55e-05                           | 0 4210          | 0.012        | ) 25 122           | 0.000    |       |
| normalized_new_price 0.407 0.455        | e 0.4310        | 0.012        | 2 35.133           | 0.000    |       |
| brand_name_Alcatel                      | 0.0153          | 0.048        | 0.321              | 0.748    | _     |
| 0.078 0.109                             | 010_00          |              | 0.022              |          |       |
| brand_name_Apple                        | -0.0116         | 0.147        | 7 -0.079           | 0.937    | -     |
| 0.300 0.277                             | 0.0105          | 0.046        | 0 400              | 0.603    |       |
| brand_name_Asus<br>0.074 0.113          | 0.0195          | 0.048        | 3 0.408            | 0.683    | -     |
| brand_name_BlackBer<br>0.167 0.108      | ry -0.0295      | 0.076        | -0.420             | 0.675    | -     |
| brand_name_Celkon                       | -0.0424         | 0.066        | -0.640             | 0.522    | -     |
| 0.172 0.088                             |                 |              |                    |          |       |

|                                  | Linear Regression | Model - Jupyter i | MOTEDOOK |       |   |
|----------------------------------|-------------------|-------------------|----------|-------|---|
| brand_name_Coolpad               | 0.0401            | 0.073             | 0.551    | 0.582 | - |
| 0.103 0.183 brand_name_Gionee    | 0.0454            | 0.058             | 0.787    | 0.431 | _ |
| 0.068 0.159                      | 0.0131            | 0.050             | 0.707    | 0.451 |   |
| brand_name_Google                | -0.0312           | 0.085             | -0.369   | 0.712 | - |
| 0.197 0.135                      | 0.0445            | 0.040             | 0.240    | 0.011 |   |
| brand_name_HTC<br>0.106 0.083    | -0.0115           | 0.048             | -0.240   | 0.811 | - |
| brand_name_Honor                 | 0.0244            | 0.049             | 0.496    | 0.620 | _ |
| 0.072 0.121                      | 0.02              | 0.0.5             | 0.150    | 0.020 |   |
| brand_name_Huawei                | -0.0081           | 0.044             | -0.181   | 0.856 | - |
| 0.095 0.079                      |                   |                   |          |       |   |
| brand_name_Infinix               | 0.1548            | 0.093             | 1.661    | 0.097 | - |
| 0.028 0.337 brand_name_Karbonn   | 0.0971            | 0.067             | 1.447    | 0.148 | _ |
| 0.034 0.229                      | 0.0371            | 0.007             | 1,447    | 0.148 |   |
| brand_name_LG                    | -0.0152           | 0.045             | -0.335   | 0.738 | _ |
| 0.104 0.074                      |                   |                   |          |       |   |
| brand_name_Lava                  | 0.0337            | 0.062             | 0.541    | 0.589 | - |
| 0.089 0.156                      | 0.0440            | 0.045             | 0.004    | 0.220 |   |
| brand_name_Lenovo<br>0.044 0.134 | 0.0449            | 0.045             | 0.994    | 0.320 | - |
| brand_name_Meizu                 | 0.0080            | 0.056             | 0.143    | 0.887 | _ |
| 0.102 0.118                      | 0.0000            | 0.030             | 0.1.5    | 0.007 |   |
| brand_name_Micromax              | -0.0335           | 0.048             | -0.700   | 0.484 | - |
| 0.127 0.060                      |                   |                   |          |       |   |
| brand_name_Microsoft             | 0.0945            | 0.088             | 1.070    | 0.285 | - |
| 0.079 0.268 brand_name_Motorola  | 0.0045            | 0.050             | 0.091    | 0.928 |   |
| 0.093 0.102                      | 0.0043            | 0.030             | 0.031    | 0.328 | _ |
| brand_name_Nokia                 | 0.0671            | 0.052             | 1.297    | 0.195 | _ |
| 0.034 0.169                      |                   |                   |          |       |   |
| brand_name_OnePlus               | 0.1235            | 0.077             | 1.596    | 0.111 | - |
| 0.028 0.275                      | 0.0100            | 0.040             | 0.414    | 0 670 |   |
| brand_name_Oppo<br>0.074 0.113   | 0.0198            | 0.048             | 0.414    | 0.679 | - |
| brand_name_Others                | -0.0080           | 0.042             | -0.191   | 0.849 | _ |
| 0.091 0.074                      |                   |                   |          |       |   |
| <pre>brand_name_Panasonic</pre>  | 0.0574            | 0.056             | 1.028    | 0.304 | - |
| 0.052 0.167                      | 0.4407            | 0.051             | 4 054    | 0 054 |   |
| brand_name_Realme 0.001 0.240    | 0.1197            | 0.061             | 1.951    | 0.051 | - |
| brand_name_Samsung               | -0.0324           | 0.043             | -0.749   | 0.454 | _ |
| 0.117 0.052                      | 0.032             | 0.0.3             | 0.7.13   | 0     |   |
| brand_name_Sony                  | -0.0493           | 0.050             | -0.979   | 0.328 | - |
| 0.148 0.049                      |                   |                   |          |       |   |
| brand_name_Spice                 | -0.0132           | 0.063             | -0.208   | 0.835 | - |
| 0.137 0.111 brand_name_Vivo      | -0.0082           | 0.048             | -0.170   | 0.865 | _ |
| 0.103 0.087                      | -0.0002           | 0.048             | -0.170   | 0.805 | _ |
| brand_name_XOLO                  | 0.0102            | 0.055             | 0.187    | 0.852 | _ |
| 0.097 0.118                      |                   |                   |          |       |   |
| brand_name_Xiaomi                | 0.0978            | 0.048             | 2.034    | 0.042 |   |
| 0.004 0.192                      | _0_0029           | 0 047             | _0_070   | 0 027 |   |
| brand_name_ZTE 0.097 0.089       | -0.0038           | 0.047             | -0.079   | 0.937 | - |
| os_Others                        | -0.0513           | 0.033             | -1.566   | 0.117 | _ |
| _                                |                   |                   |          |       |   |

| 0.116              | 0.013     |                 |         |            |          |            |
|--------------------|-----------|-----------------|---------|------------|----------|------------|
| os_Windows         |           | -0.0176         | 0.045   | -0.389     | 0.697    | -          |
| 0.106              | 0.071     |                 |         |            |          |            |
| os_iOS             |           | -0.0585         | 0.146   | -0.399     | 0.690    | -          |
| 0.346              | 0.229     |                 |         |            |          |            |
| 4g_yes             |           | 0.0507          | 0.016   | 3.190      | 0.001    |            |
| 0.020              | 0.082     |                 |         |            |          |            |
| 5g_yes             |           | -0.0435         | 0.032   | -1.369     | 0.171    | -          |
| 0.106              | 0.019     |                 |         |            |          |            |
| =======            | ========= |                 | ======= |            | ======== | ===        |
| =====              |           |                 |         |            |          |            |
| Omnibus:           |           | 217.620         | Durbin- | Watson:    |          |            |
| 1.904              |           |                 |         |            |          |            |
| Prob(Omnibu        | s):       | 0.000           | Jarque- | Bera (JB): |          | 40         |
| 9.702              |           |                 |         |            |          |            |
|                    |           |                 |         |            |          |            |
| Skew:              |           | -0.607          | Prob(JB | ):         | :        | 1.0        |
| 8e-89              |           |                 | ·       | •          |          |            |
| 8e-89<br>Kurtosis: |           | -0.607<br>4.611 | Prob(JB | •          |          | 1.0<br>7.6 |
| 8e-89              |           |                 | ·       | •          |          |            |

=====

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.69e+06. This might indicate that the re are

strong multicollinearity or other numerical problems.

['const', 'screen\_size', 'main\_camera\_mp', 'selfie\_camera\_mp', 'ram', 'ba ttery', 'weight', 'release\_year', 'normalized\_new\_price', 'brand\_name\_Len ovo', 'brand\_name\_Nokia', 'brand\_name\_Realme', 'brand\_name\_Xiaomi', 'os\_O thers', '4g\_yes']

Here I am dropping every p-value above .05 in order to remove no signifigant variables.

```
X_train1 = X_train[passed]
In [30]:
            X_{\text{test1}} = X_{\text{test[passed]}}
            olsmod3 = sm.OLS(y_train, X_train1).fit()
            print(olsmod3.summary())
                                       OLS Regression Results
            ______
            ========
            Dep. Variable:
                             normalized used price R-squared:
            0.843
            Model:
                                             OLS
                                                 Adj. R-squared:
            0.842
                                    Least Squares F-statistic:
            Method:
            918.5
                                 Sat, 09 Sep 2023
            Date:
                                                  Prob (F-statistic):
            0.00
            Time:
                                         01:55:18
                                                  Log-Likelihood:
            106.20
            No. Observations:
                                            2417
                                                   AIC:
            -182.4
            Df Residuals:
                                            2402
                                                   BIC:
            -95.55
            Df Model:
                                              14
            Covariance Type:
                                        nonrobust
In [31]:
         X_train2 = X_train1.drop(["battery"], axis=1)
            olsmod_4 = sm.OLS(y_train, X_train2)
            olsres_4 = olsmod_4.fit()
            print(olsres_4.summary())
                                       OLS Regression Results
            ______
            ========
            Dep. Variable:
                             normalized used price
                                                   R-squared:
            0.842
            Model:
                                             0LS
                                                  Adj. R-squared:
            0.841
            Method:
                                    Least Squares
                                                 F-statistic:
            987.5
            Date:
                                 Sat, 09 Sep 2023
                                                   Prob (F-statistic):
            0.00
            Time:
                                         01:55:18
                                                  Log-Likelihood:
            104.09
            No. Observations:
                                             2417
                                                   AIC:
            -180.2
            Df Residuals:
                                            2403
                                                   BIC:
            -99.11
            Df Model:
                                              13
            Covariance Type:
                                        nonrobust
```

```
In [32]: N X_train3 = X_train2.drop(["brand_name_Nokia"], axis=1)
    olsmod_5 = sm.OLS(y_train, X_train3)
    olsres_5 = olsmod_5.fit()
    print(olsres_5.summary())
```

```
OLS Regression Results
______
========
Dep. Variable:
                normalized_used_price
                                    R-squared:
0.842
Model:
                               0LS
                                   Adj. R-squared:
0.841
Method:
                       Least Squares F-statistic:
1068.
                    Sat, 09 Sep 2023
                                    Prob (F-statistic):
Date:
0.00
Time:
                           01:55:18
                                   Log-Likelihood:
101.51
No. Observations:
                                    AIC:
                              2417
-177.0
Df Residuals:
                              2404
                                    BIC:
-101.7
Df Model:
                                12
Covariance Type:
                          nonrobust
```

```
In [33]:  X_train4 = X_train3.drop(["os_Others"], axis=1)
  olsmod_6 = sm.OLS(y_train, X_train4)
  olsres_6 = olsmod_6.fit()
  print(olsres_6.summary())
```

## OLS Regression Results

| ======================================= |               | =======         | =========     | =======  | ====== |
|-----------------------------------------|---------------|-----------------|---------------|----------|--------|
| ======<br>Dep. Variable:                | normalized_us | sed_price       | R-squared:    |          |        |
| 0.842                                   | _             | <del>_</del> .  | •             |          |        |
| Model:                                  |               | OLS             | Adj. R-squa   | red:     |        |
| 0.841<br>Method:                        | l east        | - Sauares       | F-statistic   | •        |        |
| 1163.                                   | Ecas          | . Jquui CJ      | · Statistic   | •        |        |
| Date:                                   | Sat, 09       | Sep 2023        | Prob (F-sta   | tistic): |        |
| 0.00                                    |               |                 |               |          |        |
| Time:<br>99.656                         |               | 01:55:19        | Log-Likelih   | ood:     |        |
| No. Observations:                       |               | 2417            | AIC:          |          |        |
| -175.3                                  |               | ,               |               |          |        |
| Df Residuals:                           |               | 2405            | BIC:          |          |        |
| -105.8                                  |               | 4.4             |               |          |        |
| Df Model:<br>Covariance Type:           | r             | 11<br>nonrobust |               |          |        |
| ======================================  |               |                 | ========      | =======  | ====== |
| =========                               |               |                 |               |          |        |
| _                                       | coef          | std err         | t             | P> t     | [0.    |
| 025 0.975]                              |               |                 |               |          |        |
|                                         |               |                 |               |          |        |
| const                                   | -39.8838      | 7.003           | -5.695        | 0.000    | -53.   |
| 617 -26.150                             |               |                 |               |          |        |
| screen_size                             | 0.0256        | 0.003           | 8.674         | 0.000    | 0.     |
| 020 0.031                               | 0.0006        | 0.001           | 45 350        | 0.000    | •      |
| main_camera_mp<br>018                   | 0.0206        | 0.001           | 15.358        | 0.000    | 0.     |
| selfie_camera_mp                        | 0.0138        | 0.001           | 13.105        | 0.000    | 0.     |
| 012 0.016                               |               |                 |               |          |        |
| ram                                     | 0.0212        | 0.004           | 4.916         | 0.000    | 0.     |
| 013 0.030                               | 0.0000        | 0.000           | C C21         | 0.000    | ۵      |
| weight<br>001 0.001                     | 0.0008        | 0.000           | 6.621         | 0.000    | 0.     |
| release_year                            | 0.0204        | 0.003           | 5.871         | 0.000    | 0.     |
| 014 0.027                               |               |                 |               |          |        |
| normalized_new_pri                      | .ce 0.4238    | 0.011           | 39.394        | 0.000    | 0.     |
| 403 0.445 brand_name_Lenovo             | 0.0455        | 0.021           | 2.120         | 0.034    | 0.     |
| 003 0.088                               | 0.0455        | 0.021           | 2.120         | 0.054    | 0.     |
| brand_name_Realme                       | 0.0983        | 0.045           | 2.170         | 0.030    | 0.     |
| 009 0.187                               |               |                 |               |          |        |
| brand_name_Xiaomi                       | 0.0929        | 0.025           | 3.652         | 0.000    | 0.     |
| 043 0.143<br>4g_yes                     | 0.0429        | 0.015           | 2.891         | 0.004    | 0.     |
| 014 0.072                               | 0.0423        | 0.013           | 2.891         | 0.004    | 0.     |
| ======================================= |               |                 | ========      | =======  | ====== |
| =====                                   |               |                 |               |          |        |
| Omnibus:                                | 23            | 32.186 Du       | rbin-Watson:  |          |        |
| 1.906<br>Prob(Omnibus):                 |               | 0.000 Ja        | rque-Bera (J  | B):      | 44     |
| 3.950                                   |               | J. 555 Ju       | . 440 50.4 (5 | -,•      | 7-7    |
| Skew:                                   | -             | -0.635 Pr       | ob(JB):       |          | 3.9    |
| 6e-97                                   |               |                 |               |          |        |

Kurtosis: 4.671 Cond. No.

9e+06

\_\_\_\_\_

=====

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.
- [2] The condition number is large, 2.99e+06. This might indicate that the re are

strong multicollinearity or other numerical problems.

2.9

```
In [34]:  X_train5 = X_train4.drop(["brand_name_Lenovo"], axis=1)
  olsmod_7 = sm.OLS(y_train, X_train5)
  olsres_7 = olsmod_7.fit()
  print(olsres_7.summary())
```

## OLS Regression Results

| ======================================= |               |                 |              |           |        |  |  |
|-----------------------------------------|---------------|-----------------|--------------|-----------|--------|--|--|
| ======<br>Dep. Variable:                | normalized_us | sed price       | R-squared:   |           |        |  |  |
| 0.841                                   |               | р               | oqua. ca.    |           |        |  |  |
| Model:                                  |               | OLS             | Adj. R-squa  | red:      |        |  |  |
| 0.841                                   |               |                 |              |           |        |  |  |
| Method:                                 | Least         | t Squares       | F-statistic  | ::        |        |  |  |
| 1277.                                   |               |                 |              |           |        |  |  |
| Date:<br>0.00                           | Sat, 09       | Sep 2023        | Prob (F-sta  | itistic): |        |  |  |
| Time:                                   |               | 01:55:19        | Log-Likelih  | ood:      |        |  |  |
| 97.399                                  |               | 01.55.15        | LOG LIKCIII  |           |        |  |  |
| No. Observations:                       |               | 2417            | AIC:         |           |        |  |  |
| -172.8                                  |               |                 |              |           |        |  |  |
| Df Residuals:                           |               | 2406            | BIC:         |           |        |  |  |
| -109.1                                  |               | 4.0             |              |           |        |  |  |
| Df Model:                               |               | 10<br>nonrobust |              |           |        |  |  |
| Covariance Type:                        |               |                 |              |           |        |  |  |
| ======================================= |               |                 |              |           |        |  |  |
|                                         | coef          | std err         | t            | P> t      | [0.    |  |  |
| 025 0.975]                              |               |                 |              |           |        |  |  |
|                                         |               |                 |              |           |        |  |  |
|                                         | 20 2647       | 7 000           | F 607        | 0.000     | F2     |  |  |
| const<br>996 -25.533                    | -39.2647      | 7.002           | -5.607       | 0.000     | -52.   |  |  |
| screen_size                             | 0.0259        | 0.003           | 8.808        | 0.000     | 0.     |  |  |
| 020 0.032                               | 0.0233        | 0.003           | 0.000        | 0.000     | •      |  |  |
| main_camera_mp                          | 0.0206        | 0.001           | 15.408       | 0.000     | 0.     |  |  |
| 018 0.023                               |               |                 |              |           |        |  |  |
| selfie_camera_mp                        | 0.0138        | 0.001           | 13.083       | 0.000     | 0.     |  |  |
| 012 0.016                               | 0.0242        | 0.004           | 4 026        | 0.000     |        |  |  |
| ram<br>013 0.030                        | 0.0213        | 0.004           | 4.936        | 0.000     | 0.     |  |  |
| weight                                  | 0.0008        | 0.000           | 6.631        | 0.000     | 0.     |  |  |
| 001 0.001                               | 0,000         | 0.000           | 0.002        | 0.000     | •      |  |  |
| release_year                            | 0.0201        | 0.003           | 5.784        | 0.000     | 0.     |  |  |
| 013 0.027                               |               |                 |              |           |        |  |  |
| normalized_new_pri                      | ce 0.4220     | 0.011           | 39.320       | 0.000     | 0.     |  |  |
| 401 0.443                               | 0.0050        | 0.045           | 2 117        | 0.024     | 0      |  |  |
| brand_name_Realme<br>007 0.185          | 0.0959        | 0.045           | 2.117        | 0.034     | 0.     |  |  |
| brand_name_Xiaomi                       | 0.0905        | 0.025           | 3.557        | 0.000     | 0.     |  |  |
| 041 0.140                               |               |                 |              |           |        |  |  |
| 4g_yes                                  | 0.0433        | 0.015           | 2.914        | 0.004     | 0.     |  |  |
| 014 0.072                               |               |                 |              |           |        |  |  |
| ======================================= | ========      |                 | ========     | ========  | ====== |  |  |
| ====<br>Omnibus:                        | 25            | 37.168 Dui      | rbin-Watson: |           |        |  |  |
| 1.903                                   | 2.            | 57.106 Dui      | DIII-Watson. |           |        |  |  |
| Prob(Omnibus):                          |               | 0.000 Jai       | rque-Bera (J | B):       | 45     |  |  |
| 3.649                                   |               |                 | 1 (-         | •         |        |  |  |
| Skew:                                   | -             | -0.647 Pro      | ob(JB):      |           | 3.1    |  |  |
| 0e-99                                   |               |                 | _            |           |        |  |  |
| Kurtosis:                               |               | 4.683 Coi       | nd. No.      |           | 2.9    |  |  |
| 9e+06                                   |               |                 |              |           |        |  |  |

\_\_\_\_\_\_

=====

### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.
- [2] The condition number is large, 2.99e+06. This might indicate that the re are

strong multicollinearity or other numerical problems.

```
In [35]:  X_train6 = X_train5.drop(["brand_name_Realme"], axis=1)
  olsmod_8 = sm.OLS(y_train, X_train6)
  olsres_8 = olsmod_8.fit()
  print(olsres_8.summary())
```

## OLS Regression Results

|                                         |               | _                    | OII RESULES         |            |        |  |
|-----------------------------------------|---------------|----------------------|---------------------|------------|--------|--|
| ======================================= | ========      | =======              | =======             | :======:   | =====  |  |
| Dep. Variable:<br>0.841                 | normalized_us | ormalized_used_price |                     | R-squared: |        |  |
| Model:                                  |               | OLS                  | Adj. R-squar        | ed:        |        |  |
| 0.841                                   |               |                      |                     |            |        |  |
| Method:                                 | Least         | Squares              | F-statistic:        |            |        |  |
| 1416.                                   |               |                      | _ , , , , , , , , , |            |        |  |
| Date:                                   | Sat, 09       | Sep 2023             | Prob (F-stat        | istic):    |        |  |
| 0.00<br>Time:                           |               | 01:55:19             | Log-Likeliho        | od.        |        |  |
| 95.151                                  |               | 01.33.13             | LOG LIKCIINO        | ,ou:       |        |  |
| No. Observations:                       |               | 2417                 | AIC:                |            |        |  |
| -170.3                                  |               |                      |                     |            |        |  |
| Df Residuals:                           |               | 2407                 | BIC:                |            |        |  |
| -112.4                                  |               | _                    |                     |            |        |  |
| Df Model:                               | _             | 9                    |                     |            |        |  |
| Covariance Type:<br>=========           |               | onrobust<br>         |                     |            |        |  |
| ==========                              |               |                      |                     |            |        |  |
|                                         | coef          | std err              | t                   | P> t       | [0.    |  |
| 025 0.975]                              |               |                      |                     |            |        |  |
|                                         |               |                      |                     |            |        |  |
| const                                   | -41.3312      | 6.939                | -5.956              | 0.000      | -54.   |  |
| 938 -27.724                             |               |                      |                     |            |        |  |
| screen_size                             | 0.0261        | 0.003                | 8.865               | 0.000      | 0.     |  |
| 020 0.032                               | 0 0205        | 0.001                | 15 205              | 0.000      | 0.     |  |
| main_camera_mp<br>018                   | 0.0205        | 0.001                | 15.305              | 0.000      | 0.     |  |
| selfie_camera_mp                        | 0.0137        | 0.001                | 13.001              | 0.000      | 0.     |  |
| 012 0.016                               |               |                      |                     |            |        |  |
| ram                                     | 0.0214        | 0.004                | 4.942               | 0.000      | 0.     |  |
| 0.030                                   |               |                      |                     |            |        |  |
| weight                                  | 0.0008        | 0.000                | 6.576               | 0.000      | 0.     |  |
| 001 0.001 release_year                  | 0.0211        | 0.003                | 6.136               | 0.000      | 0.     |  |
| 014 0.028                               | 0.0211        | 0.003                | 0.130               | 0.000      | ٥.     |  |
| normalized_new_pric                     | e 0.4212      | 0.011                | 39.241              | 0.000      | 0.     |  |
| 400 0.442                               |               |                      |                     |            |        |  |
| brand_name_Xiaomi                       | 0.0883        | 0.025                | 3.473               | 0.001      | 0.     |  |
| 038 0.138                               |               |                      |                     |            |        |  |
| 4g_yes                                  | 0.0436        | 0.015                | 2.929               | 0.003      | 0.     |  |
| 014 0.073                               |               |                      |                     |            |        |  |
| =====                                   |               |                      |                     |            |        |  |
| Omnibus:                                | 22            | 3.098 Du             | rbin-Watson:        |            |        |  |
| 1.904                                   |               |                      |                     |            |        |  |
| Prob(Omnibus):                          |               | 0.000 Ja             | rque-Bera (JB       | 3):        | 41     |  |
| 0.667                                   |               |                      |                     |            |        |  |
| Skew:                                   | -             | 0.627 Pr             | ob(JB):             |            | 6.6    |  |
| 8e-90<br>Kurtosis:                      |               | 4.583 Co             | nd. No.             |            | 2.9    |  |
| 6e+06                                   |               | 0) دور.4             | IIU. NU.            |            | 2.9    |  |
| ======================================  | ========      | =======              | =========           | :=======   | ====== |  |
| ====                                    |               |                      |                     |            |        |  |
|                                         |               |                      |                     |            |        |  |

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.
- [2] The condition number is large, 2.96e+06. This might indicate that the re are

strong multicollinearity or other numerical problems.

All p-values below .05 have been dropped.

| Out[36]: |   | Actual Values | Fitted Values | Residuals |
|----------|---|---------------|---------------|-----------|
|          | 0 | 4.087488      | 3.854967      | 0.232520  |
|          | 1 | 4.448399      | 4.589640      | -0.141241 |
|          | 2 | 4.315353      | 4.282336      | 0.033016  |
|          | 3 | 4.282068      | 4.246969      | 0.035099  |
|          | 4 | 4.456438      | 4.471019      | -0.014581 |

```
In [37]: In sns.residplot(data=df_pred, x="Fitted Values", y="Residuals", color="purpl
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.title("Fitted vs Residual plot")
plt.show()
```



You can see it is independent.

```
In [38]: N sns.histplot(data=df_pred, x="Residuals", kde=True)
    plt.title("Normality of residuals")
    plt.show()
```



You can see it is normally distrubited.



though the p-value may indicate innormality visual analysis confirms there is normality.

since the p-value is > .05 we can assume homoscedacity

```
    olsmodel final = sm.OLS(y train, X train6).fit()

In [42]:
           print(olsmodel final.summary())
                                      OLS Regression Results
           ______
           ========
           Dep. Variable:
                            normalized used price
                                                 R-squared:
           0.841
           Model:
                                            0LS
                                                Adj. R-squared:
           0.841
           Method:
                                   Least Squares F-statistic:
           1416.
           Date:
                                 Sat, 09 Sep 2023
                                                 Prob (F-statistic):
           0.00
           Time:
                                        01:55:20
                                                 Log-Likelihood:
           95.151
           No. Observations:
                                           2417
                                                 AIC:
           -170.3
           Df Residuals:
                                           2407
                                                 BIC:
           -112.4
           Df Model:
           Covariance Type:
                                       nonrobust
```

Since our adj. R-squared is .841 we can explain 84% variance in the data which is pretty good.

A unit increase of normalized\_new\_price would result in .421 unit increase in normalized\_used\_price

Our model tells us that the most important factor in predicting normalized\_used\_price is understanding normalized\_new\_price screen\_size and main\_camera\_mp seem to be key factors in predicting normalized\_used\_price

It seems if you want to know what a phone will cost you should first look at what it did cost.