ME951 - Estatística e Probabilidade I

Parte 2

Notas de aula de ME414 produzidas pelos professores **Samara Kiihl**, **Tatiana Benaglia** e **Benilton Carvalho** modificadas e alteradas pela Profa. **Larissa Avila Matos** Estatísticas Sumárias: Resumindo dados

Introdução

Vimos na aula anterior como usar gráficos e tabelas para resumir os dados.

Podemos também usar **estatísticas**: quantidades numéricas calculadas a partir dos dados.

Por exemplo, podemos estar interessados em encontrar qual seria um valor "típico" do conjunto de dados.

Podemos então usar uma estatística que descreva o centro da distribuição dos dados.

Objetivo: resumir os dados, através de valores que representem o conjunto de dados em relação à alguma característica (posição, dispersão).

Medidas de Posição Central

Média Aritmética

Se x_1, x_2, \ldots, x_n são as n observações, a média é:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

A média pode ser interpretada como o ponto de equilíbrio de uma distribuição.

Porção de 30g:

	Cereal	Calorias	Carboidratos
1	Sucrilhos	109	26.0
2	All Bran	81	13.5
3	Nesfit	102	21.0
4	Nescau	115	23.0
5	Snow	113	25.0
6	Crunch	119	23.0
7	Moça	113	25.0
8	Fibra Mais	84	15.0
9	Froot Loops	113	25.0

 x_i : calorias do cereal i.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{9} \sum_{i=1}^{9} x_i = 105.44$$

Mediana

A mediana é o valor que deixa 50% das observações abaixo dele e 50% acima.

Determinando a mediana:

- \blacksquare Ordene as n observações.
- \blacksquare Se n é impar, a mediana é o valor do meio, na sequência ordenada.
- \blacksquare Se n é par, a mediana é a média aritmética das duas observações que caem no meio da sequência ordenada.

Calorias dos 9 cereais:

Ordenando:

Mediana é 113 (5ª observação).

Se descartássemos o maior valor, 119, teríamos oito observações e aí a mediana seria:

mediana =
$$\frac{109 + 113}{2} = 111$$
.

Moda

A moda é o valor mais frequente.

Calorias dos 9 cereais:

Tabela de frequências:

Portanto a moda de calorias dos cereias é 113.

Exemplo: Emissão de CO_2

Emissão per capita (em toneladas) para 8 países, em 2009 (http://data.worldbank.org):

País	Emissão CO_2	País	Emissão CO_2
China	5.8	Brazil	1.9
Índia	1.7	Rússia	11.1
EUA	17.3	Paquistão	0.9
Indonésia	1.9	Bangaladesh	0.3

Exemplo: Emissão de CO_2

$$\bar{x} = \frac{1}{8}(5.8 + 1.7 + 17.3 + 1.9 + 1.9 + 11.1 + 0.9 + 0.3) \approx 5.11$$

Ordenando:

Mediana é 1.9.

Exemplo: Emissão de CO_2

A mediana é bem menor do que a média.

Se desconsiderarmos os EUA:

$$\bar{x} = \frac{1}{7}(5.8 + 1.7 + 1.9 + 1.9 + 11.1 + 0.9 + 0.3) \approx 3.37$$

Ordenando:

Mediana é 1.9.

Mediana é menos afetada por valores muito extremos (muito diferentes do resto das observações).

Total de vezes que casou (x_i)	Frequência (mulheres)	Frequência (homens)
0	5861	7074
1	2773	1561
2	105	43
Total	8739	8678

Qual medida de posição você usaria para apresentar a diferença entre homens e mulheres?

Fonte: http://www.census.gov/prod/2002pubs/p70-80.pdf

A moda entre os homens é:

0.

A moda entre as mulheres é:

0.

Para as mulheres, a amostra ordenada é:

Como n=8739 é ímpar, a observação
o central está na posição (1+8739)/2=4370. A observação 4370 é 0, portanto a mediana é 0
 para as mulheres. Similarmente, para os homens, a mediana é 0.

Média entre as mulheres:

$$\bar{x} = \frac{0 \times 5861 + 1 \times 2773 + 2 \times 105}{8739} = 0.34$$

Média entre os homens: $\bar{x} = 0.19$.

Para dados discretos com poucos valores diferentes, a mediana ignora muita informação.

No entanto, como neste caso temos apenas os valores 0, 1 e 2, podemos apresentar os dados usando gráficos de barra.

Mediana é resistente a observações discrepantes

Considere os três conjuntos de dados abaixo:

$$C: 8, 9, 10, 11, 1000\\$$

Média de A: 10. Mediana de A: 10.

Média de B: 27.6. Mediana de B: 10.

Média de C: 207.6. Mediana de C: 10.

Exemplo: Transporte

Uma empresária cuja empresa está localizada na Av. Paulista, em São Paulo, está preocupada com a quantidade de gasolina gasta pelos seus funcionários. Ela quer promover o uso de transporte público entre seus funcionários. Ela decide investigar a extensão, em km, do trajeto percorrido por cada funcionário caso usassem transporte público durante um dia típico.

Para seus 10 funcionários, os valores são:

Encontre a média, a mediana e a moda.

Média é 2.7.

Ordenando: 1,1,1,1,1,1,1,4,6,10.

Mediana é 1.

Moda é 1.

Exemplo: Transporte

A empresária acabou de contratar um novo funcionário. Ele percorre 90 km em transporte público. Recalcule a média e a mediana.

Ordenando: 1,1,1,1,1,1,1,4,6,10,90.

Mediana é 1.

Média é 10.64

Qual medida de posição representa melhor a distância do grupo de funcionários?

Exemplo: Acidentes com Moto

Dados: entrevistas com 60 pessoas, em que cada uma relata o número de acidentes com moto que sofreu no último ano.

Por que a média seria provavelmente mais útil do que a mediana para resumir os dados?

Exemplo: Salários

A **média** salarial anual em 1998 nos EUA para pessoas com ensino superior era \$528.200.

A **mediana** do salário anual em 1998 nos EUA para pessoas com ensino superior era \$146.400.

Por que a média e a mediana diferem tanto?

Qual medida de posição você acredita que retrata de maneira mais realística um salário típico de pessoas com ensino superior nos EUA em 1998?

Exemplo: Sindicato

O sindicato dos trabalhadores está reivindicando aumento de salário em uma certa fábrica.

Explique por que o sindicato poderia usar a mediana dos salários de todos os empregados para justificar um aumento, enquanto que o gerente da fábrica poderia usar a média para argumentar que um aumento não é necessário?

Média, mediana e a distribuição dos dados

A figura a seguir mostra gráficos para três conjuntos de dados: A, B e C.

Média, mediana e a distribuição dos dados

Para quais conjuntos de dados, você esperaria que a média e a mediana tivessem o mesmo valor?

Para quais conjuntos de dados, você esperaria que a média e a mediana tivessem valores diferentes?

Qual valor seria maior: a média ou a mediana?

Gráfico A: média é 3.36, mediana é 3.

Gráfico B: média é 5, mediana é 5.

Gráfico C: média é 5, mediana é 5.

Assimetria (Caso Unimodal)

Se os dados são simétricos, a média coincide com a mediana e a moda.

Assimetria à direita (positiva): Média > Mediana > Moda

Assimetria à esquerda (negativa): Média < Mediana < Moda

Medidas de Dispersão

Exemplo: Salário professor de música

Salário anual hipotético de professores de música na Dinamarca (esquerda) e nos EUA (direita).

Média salarial Dinamarca: 40.02. Média salarial EUA: 39.87.

Amplitude

Uma medida de dispersão é **amplitude**: a diferença entre o maior e o menor valor observado na amostra.

Na Dinamarca, os salários variam de 27 a 52.

Amplitude dos salários na Dinamarca: 52 - 27 = 25.

Nos EUA, variam de 9 a 75.

Amplitude dos salários nos EUA: 75 - 9 = 66.

Problema com a amplitude: utiliza apenas duas observações (a máxima e a mínima).

Medidas de dispersão

Considere dois conjuntos de dados:

$$A = \{1, 2, 5, 6, 6\}$$
 e $B = \{-40, 0, 5, 20, 35\}$

Ambos com média 4 e mediana 5.

No entanto, claramente temos que os valores de B são mais dispersos do que em A.

Que medida podemos usar para considerar essa característica dos dados?

Medidas de dispersão

Podemos observar quão afastadas de uma determinada medida de posição estão as observações.

- **Desvio** de uma observação x_i da média \bar{x} é a diferença entre a observação e a média dos dados: $(x_i \bar{x})$.
- O desvio é negativo quando a observação tem valor menor do que a média.
- O desvio é positivo quando a observação tem valor maior do que a média.
- Estamos interessados nos desvios de todos os pontos x_i 's, então poderia-se propor a seguinte medida de dispersão: $\sum_{i=1}^{n} (x_i \bar{x})$.
- Qual o problema?
- A média representa o ponto de balanço dos dados, então os desvios irão se contrabalancear, ou seja: $\sum_{i=1}^{n} (x_i \bar{x}) = 0$.

Medidas de dispersão

Além do mais, uma medida de dispersão onde os desvios positivos e negativos se cancelam, não seria útil.

Queremos que se leve em conta cada desvio, independente do sinal.

Alternativas:

$$\sum_{i=1}^{n} |x_i - \bar{x}|$$

$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$

Ambas alternativas evitam que desvios iguais em módulo, mas com sinais opostos, se anulem.

Variância e Desvio-padrão

A média dos desvios ao quadrado é denominada variância:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Desvio padrão é a raiz da variância:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Interpretação: distância típica entre uma observação e a média dos dados.

Quanto maior s, maior a dispersão dos dados.

Para facilitar oscálculos: $\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$.

Exemplo

■ Conjunto de dados $A : \{1, 2, 5, 6, 6\}$.

$$x_i$$
: 1 2 5 6 6

$$\bar{x}$$
: 4

$$x_i - \bar{x}$$
: -3 -2 1 2 2

$$(x_i - \bar{x})^2$$
: 9 4 1 4 4

$$s^2 = \frac{9+4+1+4+4}{5-1} = 5.5$$

Exemplo

■ Conjunto de dados $B : \{-40, 0, 5, 20, 35\}.$

$$x_i$$
: -40 0 5 20 35
 \bar{x} : 4
 $x_i - \bar{x}$: -44 -4 1 16 31
 $(x_i - \bar{x})^2$: 1936 16 1 256 961

$$s^2 = \frac{1936 + 16 + 1 + 256 + 961}{5 - 1} = 792.5$$

38/47

Exemplo: "Qual o número ideal de filhos?"

Média: 2 (para ambos os sexos).

Amplitude: 4 (para ambos os sexos).

Para homens: desvio típico da média parece estar em torno de 2.

Para mulheres: desvio típico da média é menor do que o dos homens, pois a grande maioria das observações coincide com a própria média.

Desvio-padrão entre homens:
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2} = 2 \,.$$

Desvio-padrão entre mulheres: s = 1.15.

Exemplo: P1 de ME414

A primeira prova de ME414 teve um total de 100 pontos. Suponha que a média tenha sido 80.

Qual seria um valor plausível para o desvio padrão das notas da classe? s: 0, 10 ou 50.

- \bullet s = 0: todos os alunos tiraram a mesma nota.
- s = 50: uma nota típica da classe estaria 50 pontos distante da média, ou seja, 30 ou 130 pontos.
- s = 10: notas típicas seriam de 70 ou 90.

ENEM 2010

O quadro seguinte mostra o desempenho de um time de futebol no último campeonato. A coluna da esquerda mostra o número de gols marcados e a coluna da direita informa em quantos jogos o time marcou aquele número de gols.

Gols	Quantidade de	
marcados	partidas	
0	5	
1	3	
2	4	
3	3	
4	2	
5	2	
7	1	

Se X, Y e Z são, respectivamente, a média, a mediana e a moda dessa distribuição, então

A)
$$X = Y < Z$$
.

B)
$$Z < X = Y$$
.

C)
$$Y < Z < X$$
.

D)
$$Z < X < Y$$
.

E)
$$Z < Y < X$$
.

Observe primeiramente que a moda é zero, pois foi o número de gols marcado no maior número de partidas.

gols

0 1 2 3 4 5 7

5 3 4 3 2 2 1

As quantidades de gols devem ser colocadas em ordem crescente para encontrar a mediana:

Observe que existem dois valores centrais. Portanto, a mediana será:

$$0,0,0,0,0,1,1,1,2,\underbrace{2,2}_{\frac{2+2}{2}=2},2,3,3,3,4,4,5,5,7$$

Já a média pode ser obtida pela técnica de média ponderada ou de média simples. Para tanto, basta somar os elementos da lista acima e dividir o resultado por 20 ou, como média ponderada, considerar o número de partidas como peso. Ambos os cálculos darão o mesmo resultado.

$$\frac{0+0+0+0+0+1+1+1+1+2+2+2+2+3+3+3+4+4+5+5+7}{20} = \frac{45}{20}$$

$$\frac{0*5+1*3+2*4+3*3+4*2+5*2+7*1}{20} = \frac{45}{20}$$

Portanto,

$$X=2,25$$
 (média),
$$Y=2$$
 (mediana) e
$$Z=0$$
 (moda).

Então,

$$X > Y > Z$$
 ou $Z < Y < X$.

Solução: Letra (E).

Leitura

■ Ross: seções 3.1, 3.2, 3.3, 3.4, 3.5

Exercício Bussab & Morettin Exemplo 5.12

A tabela a seguir dá a distribuição de frequências dos salários dos 36 empregados da seção de orçamentos da Companhia MB por faixa de salários.

Classe de salários	Frequência	Porcentagem
	n_i	$100f_i$
(4,00; 8,00]	10	27,78
(8,00; 12,00]	12	33,33
(12,00; 16,00]	8	22,22
(16,00; 20,00]	5	13,89
(20,00; 24,00]	1	2,78
Total	36	100,00

Calcule a média, a mediana e a moda da distribuição salários.