Sobre a Conjectura dos Jogos Únicos

Contexto

- Um dos maiores avanços recentes na área de algoritmos de aproximação (especificamente na dificuldade de aproximação), proposta em Кнот (2002)
- Muitos resultados fortes, limites de inaproximabilidade justo para: cobertura por vértice, max cut, max 2-sat, subgrafo acíclico máximo.

Unique Games Conjecture

- ▶ primeiramente devemos definir o problema Unique Label Cover (ULC): sejam $G(V \cup W, E)$ um grafo bipartido, [M] o universo de possíveis rótulos e σ um conjunto de bijeções $\sigma_{vw}:[M] \to [M]$ para todo $vw \in E$. Definimos uma instância do Unique Label Cover como $\mathcal{L}(G,[M],\sigma)$. Queremos atribuir rótulos $l(v):[M] \to [M]$, para todo $v \in V \cup W$ de modo a satisfazer o máximo de arestas possíveis. Uma aresta vw é satisfeita se e somente se: $\sigma_{vw}(l(v)) = l(w)$.
- Sejam η , γ > 0 quaisquer. Existe $M = M(\eta, \gamma)$ tal que é NP-difícil distinguir se a solução ótima de uma instância do Unique Label Cover com conjunto de rótulos de tamanho M satisfaz uma fração de pelo menos 1η ou no máximo γ .
- Uma consequência direta da conjectura é que para η , γ quaisquer não existe um algoritmo polinomial com razão de aproximação maior ou igual a $\frac{1-\eta}{\gamma}$. Concluímos que não existem algoritmos de aproximação para o Unique Label Cover com razão constante.
- Agora definimos uma variação do ULC, o ULC-gap: sejam $\mathcal{L}(G, [M], \sigma)$ uma instância do Unique Label Cover e $\eta, \gamma > 0$. Queremos saber se a solução ótima de \mathcal{L} satisfaz uma fração de pelo menos 1η ou no máximo γ das arestas.

Max cut

- ▶ Seja G(V, E) um grafo, queremos encontrar $S \subseteq V$ tal que o número de arestas entre S e seu complemento seja máximo, ou seja, queremos maximizar $C \subseteq E$ em que C := $\{uv : u \in S, v \notin S\}$.
- Um dos 21 problemas NPcompletos de Karp.
- Algoritmo de aproximação proposto em Goemans and Williamson (1995), que possui o melhor bound que conhecemos, $\alpha_{gw} \approx 0.878$, é ótimo caso a UGC seja verdadeira (provado em Кнот et al. (2007));
- ► O melhor limite de inaproximabilidade que conhecemos, supondo que a UGC seja falsa, é $\frac{16}{17} \approx 0.941$.

PCP

- PCP (probabilistic checkable proofs) é um sistema de provas que funciona como um jogo entre dois jogadores que recebem uma instância de um problema de decisão binário (digamos que com respostas sim e não) e um oráculo quer sempre convencer o outro jogador de que a resposta certa é sim e um verificador que tenta não ser enganado pelo oráculo.
- ► Como o nome indica, existe um elemento probabilístico no jogo (introduzido por um gerador de números aleatórios usado pelo verificador). Chamamos a chance do verificador ser convencido pelo oráculo quando a resposta é de fato sim de completness e a chance dele ser convencido quando a resposta é NÃO de soundness.

Redução do ULC-gap ao max cut

Para provar o limite de inaproximabilidade do max cut, vamos construir um PCP para o ULC-gap em que o verificador lê dois bits da prova e a aceita se e somente se eles forem diferentes.

- Podemos modelar a prova como um grafo em que cada bit é um vértice e para cada par de bits que pode ser escolhido pelo verificador, inserimos uma aresta. Assim, geramos um gap soundness/completness, que é exatamente o bound que queremos provar.
- Pela UGC, é difícil distinguir entre as instancias do ULC, mas seja I uma instancia sım. Então, ela deve ser aceita com probabilidade maior ou igual a c. Pensando na prova como uma instância do max cut, isso significa que o corte ótimo corta uma fração maior ou igual a c das arestas. Agora, suponha que existe um algoritmo de aproximação melhor do que α_{GW} , então se rodássemos esse algoritmo, acabaríamos com um corte que corta uma fração maior ou igual a s das arestas. Assim, saberíamos em tempo polinomial que I é uma instancia SIM, contrariando a UGC.

Bibliografia

- Michel X Goemans and David P Williamson (1995). "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming". In: *Journal of the ACM (JACM)* 42(6), pp. 1115–1145.
- Subhash Khot (2002). "On the power of unique 2-prover 1-round games". In: *Proceedings of the thiry-fourth annual ACM symposium on Theory of computing*. ACM, pp. 767–775.
- Subhash Khot et al. (2007). "Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?" In: *SIAM Journal on Computing* 37(1), pp. 319–357.