

- For given Test data instance, we have to find out near by instance, for this we need distance function.
- This distance function computed in the term of features.
- If number of features are large, there is a problem, because distance may not be represent actual distance.
- As feature contained information about target
- More feature means more information and better classification
- But , we have to properly handle
- Irrelevant Feature : As it create noise
- Redundant Feature: It lead to degradation of performance of algorithm.

number of training examples is fixed

=> the classifier's performance usually will degrade for a large number of features!

Feature Reduction: Type 1

Feature Selection :

```
Let , F = \{ X1, X2, X3, ..., Xn \}

F' \in F = \{ X1', X2', X3', ..., Xm \}

where F' is a subset of F
```

Here, to find subset of feature to optimize certain criteria.

- Forward Selection:
- We started with empty set of feature set and add one feature at a time.
- Then try each of remaining features.
- Estimate classification/ regression error for adding each features.
- Selected a feature that gives maximum improvement
- Stop, when there is no significant improvement

- Backward Selection:
- We started with full feature set
- Then try remaining features
- Drop a feature with smallest improvement /impact on error

Filter Methods

- 1. IG- Information Gain Method
- 2. Chi-squre Test
- 3. Correlation Coef.

Wrapper Methods

- 1. Recursive feature elimination
- 2. Genetic Algorithms

Embedded Methods

1. Decision Tree

Selection of Optimal Feature / Correlation Coef. Method

Step1: Find the correlation of attribute like A with target attribute T

Wrapper Methods

Here, we have to make a combination (wrapping) of attributes with target attribute.

Let us consider, attribute A and target attribute T will be provide to Machine Learning Algorithm which developed model M1.

Now, consider attribute A and B combine with T and provide to machine learning algorithm, which develop model M2.

Now, A, B and C combine with T and provide to machine learning algorithm, which develop model M3 and so on.

Then find the best Model match with Objective.

Feature Reduction Steps

Feature selection is an optimization problem.

- Step 1: Search the space of possible feature subsets.
- Step 2: Pick the subset that is optimal or nearoptimal with respect to some objective function.

Feature Reduction Steps(cont'd)

Search strategies

- Optimum
- Heuristic
- Randomized

Evaluation strategies

- Filter methods
- Wrapper methods

Evaluating feature subset

- Supervised (wrapper method)
 - Train using selected subset
 - Estimate error on validation dataset

- Unsupervised (filter method)
 - Look at input only
 - Select the subset that has the most information

Feature selection

- Pearson correlation coefficient
- F-score
- Chi-square
- Signal to noise ratio
- mutual information
- Etc.
- Rank features by importance
- · Ranking cut-off is determined by user

Pearson correlation coefficient

- Measures the correlation between two variables
- Formula for Pearson correlation =

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

- The correlation r is between +1 and −1.
 - +1 means perfect positive correlation
 - -1 in the other direction

Pearson correlation coefficient

Signal to noise ratio

$$S2N(X,Y) = (\mu_X - \mu_Y)/(\sigma_X - \sigma_Y)$$

Large values indicate a strong correlation

Multivariate feature selection

- Multivariate (considers all features simultaneously)
- Consider the vector w for any linear classifier.
- Classification of a point x is given by w^Tx+w₀.
- Small entries of w will have little effect on the dot product and therefore those features are less relevant.
- For example if w = (10, .01, -9) then features 0 and 2 are contributing more to the dot product than feature 1.
 - A ranking of features given by this w is 0, 2, 1.

Multivariate feature selection

- The w can be obtained by any of linear classifiers
- A variant of this approach is called <u>recursive feature</u> <u>elimination</u>:
 - Compute w on all features
 - Remove feature with smallest w.
 - Recompute w on reduced data
 - If stopping criterion not met then go to step 2

Collaborative Filtering Based Recommendation System

It is instance based learning

O Why there is a need?

"Getting Information off the internet is like taking a drink from a fire hydrant" - Mitchell Kapor

- Information Overload
- User Experience
- Revenues

Recommender systems help in addressing the information overload problem by retrieving the information desired by the user based on his or similar users' preferences and interests.

- Personalized

RECOMMENDATIONS BASED ON YOUR INTEREST VIEW ALL

Head First Design Patterns 1st Edition by Kathy Sierra ****

Re-500 (7% Off) Rs. 465

Malbro C2-01 Ultra Screen Guard for N... ****

Rs-275 (56% Off) Rs. 120

Rainbow N - G2-02 for Nokia - C2-02

Rs 128 (60% Off)

**** Rs. 50

Java/J2ee Job Interview Companion - 4. by Sivayini Arulkumaran... ****

Rs. 375 (18% Off)

Rs. 306

Data Structures And Algorithms Made E... by Narasimha Karumanchi ****

Rs-550 (34% Off)

Rs. 358

nCase PFBC-8554BK Back Cover (Black) ***

Rs. 200 (16% Off)

Rs. 168

- Non-Personalized

What Other Customers Are Looking At Right Now

Scosche I2H12 12-Watt Home Charger. **南京南南京**(5)

\$34.09 \$20.18

Kindle Fire HD 7", Dolby ★本本本章 (18,095) Stop on \$159.00

Phillips Hf3321 goLITE BLU **含含含含金 (129)** S129.99 \$100.96

PS3 500 GB Grand Theft Auto V Bundle Sony PlayStation 3 新林林林林 (5)

\$269.99

*** (668) \$499.98 \$59.99

Techniques: Data Acquisition

01

- 1. Explicit Data
- Customer Ratings
- Feedback
- DemographicsPhysiographics

02

- 2. Implicit Data
- Purchase History

 <u>Click or Browse</u> History

03

- 3. Product Information
- Product Taxonomy
- Product Attributes
- Product Descriptions

Techniques: Recommendation Generation

1. Collaborative Filtering method finds a subset of users who have similar tastes and preferences to the target user and use this subset for offering recommendations.

Basic Assumptions:

- Users with similar interests have common preferences.
- Sufficiently large number of user preferences are available. Main Approaches :
- User Based
- Item Based

Techniques: Recommendation Generation

User-Based Collaborative Filtering

- · Use user-item rating matrix
- Make user-to-user correlations
- Find highly correlated users
- · Recommend items preferred by those users

Pearson Correlation:

$$userSim(u,n) = \frac{\sum_{i \subset CRu,n} (rui - \overline{r_u})(rni - \overline{r_n})}{\sqrt{\sum_{i \subset CRu,n} (rui - \overline{r_u})^2} \sqrt{\sum_{i \subset CRu,n} (rni - \overline{r_n})^2}}$$

Prediction Function:

$$pred(u,i) = \overline{r}_u + \frac{\sum_{n \subset neighbors(u)} userSim(u,n) \cdot (r_{ni} - \overline{r}_n)}{\sum_{n \subset neighbors(u)} userSim(u,n)}$$

User Based Collaborative Filtering

	ltem ──►	I1	12	13	14	15
	U1	5	8		7	8
	U2	10		1		
\Rightarrow	U3	2	2	10	9	9
	U4		2	9	9	10
	U5	1	5			1
	User a	2		9	10	

Recommend items preferred by highly correlated user U3 --- I5

User Based Collaborative Filtering

- Advantage :
- No knowledge about item features needed
- Problems :
- New user cold start problem
- New item cold start problem: items with few rating cannot easily be recommended
- Sparsity problem: If there are many items to be recommended, user/rating matrix is sparse and it hard to find the users who have rated the same item.
- Popularity Bias: Tend to recommend only popular items. e.g. RINGO, GroupLens

The **sparsity problem** occurs when transactional or feedback data is sparse and insufficient for identifying neighbors and it is a major **issue** limiting the quality of recommendations and the applicability of collaborative filtering in general.

Item Based Collaborative Filtering

- Use user-item ratings matrix
- Make item-to-item correlations
- Find items that are highly correlated
- Recommend items with highest correlation

Similarity Metric:

$$itemSim(i, j) = \frac{\sum_{u \subset RB_{i,j}} (r_{ui} - \overline{r_u})(r_{uj} - \overline{r_u})}{\sqrt{\sum_{u \subset RB_{i,j}} (r_{ui} - \overline{r_u})^2} \sqrt{\sum_{u \subset RB_{i,j}} (r_{uj} - \overline{r_u})^2}}$$

Prediction Function:

$$pred(u, i) = \frac{\sum_{j \in ratedItems(u)} itemSim(i, j) \cdot rui}{\sum_{j \in ratedItems(u)} itemSim(i, j)}$$

Item Based Collaborative Filtering

					2
User— Item →	11	12	13	Item I	15
U1	5	8		7	8
U2	10		1		
U3	2		10	9	9
U4		2	9	9	10
U5	1	5			1
User a	2		9	10	

Recommend items highly correlated to preferred items \rightarrow 15

Item Based Collaborative Filtering

- Advantage :
- No knowledge about item features needed
- Better scalability, because correlations between limited number of items instead of very large number of users
- Reduced sparsity problem
- Problems :
- New user cold start problem
- New item cold start problem
 e.g. Amazon, eBay

2. Recommendations are based on the content of items rather on other user's opinion.

User Profiles: Create user profiles to describe the types of items that user prefers.

e.g. User1 likes sci-fi, action and comedy.

Recommendation on the basis of keywords are also classified under content based.

e.g. IMDB, Last.fm

Content Based Systems Cont'd...

Advantage:

- No need for data on other users. No cold start and sparsity.
- Able to recommend users with unique taste.
- Able to recommend new and unpopular items.
- Can provide explanation for recommendation.

Limitations:

- Data should be in structured format.
- Unable to use quality judgments from other users

1. Amazon

Inspired by Your Browsing History

You viewed

Customers who viewed this also viewed

Lenovo 120W AC Adapter (57Y6549) ***** (12) 840-99 \$33.12

Bundle:3 items - Adapter/Power Cord... Lenovo 本六本本(2) \$29.99

Pwr+® Ac Adapter for Lenovo Ideapad... 本本本本 (35) sae.co \$25.00

Pwr+® Ac Adapter for Lenovo

ideapad...

本本本本念 (19)

839.99 \$21.40

Bundle:3 items - AdaptenPower Cord... Lenovo 完全完全(1) \$29.99

2. YouTube

Upload

Collaborative filtering based recommendation system

Let u is a set of users and s is a set of items.

P is utility function that finds out rating of item by users

P: u X s [∞] R

Its indicating that for a user u and for item s, the rating of the user for that item.

Now, Learn P from data.

Where training data set is past rating of users for rating prediction problem, or past purchase history.

Based on P to predict utility value of each item to each user.

- Let the record (or profile) of the target user be u
 (represented as a vector), and the record of another
 user be v (v ∈ T).
- The similarity between the target user, u, and a neighbor, v, can be calculated using the Pearson's correlation coefficient:

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i \in C} (r_{\mathbf{u},i} - \bar{r}_{\mathbf{u}})(r_{\mathbf{v},i} - \bar{r}_{\mathbf{v}})}{\sqrt{\sum_{i \in C} (r_{\mathbf{u},i} - \bar{r}_{\mathbf{u}})^2} \sqrt{\sum_{i \in C} (r_{\mathbf{v},i} - \bar{r}_{\mathbf{v}})^2}},$$

In the previous phase , we have to find the similar user ,using KNN algorithms and now

Recommendation Phase

 Use the following formula to compute the rating prediction of item i for target user u

$$p(\mathbf{u}, i) = \overline{r}_{\mathbf{u}} + \frac{\sum_{\mathbf{v} \in V} sim(\mathbf{u}, \mathbf{v}) \times (r_{\mathbf{v}, i} - \overline{r}_{\mathbf{v}})}{\sum_{\mathbf{v} \in V} \left| sim(\mathbf{u}, \mathbf{v}) \right|}$$

where V is the set of k similar users, $r_{\mathbf{v},i}$ is the rating of user \mathbf{v} given to item i,

- One of the drawback of user based recommendation system is, when number of users increased, then it is very difficult to handle it.
- Amazon has Million of users.

Item-based CF

 The item-based approach works by comparing items based on their pattern of ratings across users. The similarity of items i and j is computed as follows:

$$sim(i,j) = \frac{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})(r_{\mathbf{u},j} - \overline{r}_{\mathbf{u}})}{\sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})^2} \sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},j} - \overline{r}_{\mathbf{u}})^2}}$$

 After computing the similarity between items we select a set of k most similar items to the target item and generate a predicted value of user u's rating

$$p(\mathbf{u}, i) = \frac{\sum_{j \in J} r_{\mathbf{u}, j} \times sim(i, j)}{\sum_{j \in J} sim(i, j)}$$

where J is the set of k similar items

Rating Prediction

$$\mathbf{p}(\mathbf{u},\mathbf{j}) = \sum_{\substack{i \in J \\ j \in J}}^{|\mathcal{I}|} r_{u,j} \ X \ Sim(i,j)$$

$$\sum_{\substack{j \in J \\ j \in I}}^{|\mathcal{I}|} Sim(i,j)$$

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Finding Similar Users

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Consider users x and y with rating vectors r_x and r_y
- We need a similarity metric sim(x, y)
- Capture intuition that sim(A,B) > sim(A,C)

Jaccard Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

•
$$sim(A,B) = | r_A \cap r_B | / | r_A \cup r_B |$$

Jaccard Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- $sim(A,B) = |r_A \cap r_B| / |r_A \cup r_B|$
- sim(A,B) = 1/5; sim(A,C) = 2/4
 - sim(A,B) < sim(A,C)</p>

Jaccard Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5*	5	4				
C				2	4	5	
D		3					3

- = sim(A,B) = $|r_A \cap r_B| / |r_A \cup r_B|$
- sim(A,B) = 1/5; sim(A,C) = 2/4
 - sim(A,B) < sim(A,C)</p>
- Problem: Ignores rating values!

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4	0	0	5	1	D	0
B	5	5	4	0	0	0	0
C				2	4	5	
D		3					3

$$= sim(A,B) = cos(r_A, r_B) \qquad sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$$

- sim(A,B) = 0.38, sim(A,C) = 0.32
 sim(A,B) > sim(A,C), but not by much

Cosine Similarity: To Solve

$$sim(\mathbf{x}, \mathbf{y}) = cos(\mathbf{r}_{\mathbf{x}}, \mathbf{r}_{\mathbf{y}}) = \frac{r_{x} \cdot r_{y}}{||r_{x}|| \cdot ||r_{y}||}$$

$$sim(A,B) = cos(r_A, r_B)$$

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4	0	0	5	1	D	0
B	5	5	4	0	0	0	0
C				2	4	5	
D		3					3
	,						

$$= 4 \times 5$$

$$\int 4^{2} + 5^{2} + 1^{2} \times \int 5^{2} + 5^{2} + 4^{2}$$

$$= 20$$

$$\int 16 + 25 + 1 \times \int 25 + 25 + 16$$

$$= 20$$

$$\int 4 \times 2 \times \int 66$$

$$= \frac{20}{6.48 \times 8.12}$$

$$= 20$$

$$= 52.617$$

$$= 0.38$$

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4	0.8	0	5	1	D	0
B	5	5	4	0	0	0	0
C				2	4	5	
D		3					3

- $= sim(A,B) = cos(r_A, r_B)$
- $\sin(A,B) = 0.38$, $\sin(A,C) = 0.32$
 - sim(A,B)>sim(A,C), but not by much
- Problem: treats missing ratings as negative

In the above example, there is only one common rating between A and B

Terminologies

- Utility Matrix
- Ratings [1-5]
- Users
- Items

	WT 1	WT2	TM1	TM2	SM1	SM2
Α	3		5			
В	2	3		3	4	
С	5	4	4		5	
D	5	5	2	1	5	4

WT= Wrong Turn TM=The Matrix SM=Spider Man

In this example let us consider A and C, they having two common rating ie. WT1 and TM1

Terminologies

- Utility Matrix
- Ratings [1-5]
- Users
- Items

	WT1	WT2	TM1	TM2	SM1	SM2
Α	3		5			
В	2	3		3	4	
С	5	4	4		5	
D	5	5	2	1	5	4

WT= Wrong Turn TM=The Matrix SM=Spider Man

• In this example let us consider A and C , they having two common rating ie. WT1 and TM1

$\cos \sin \sin (A, c) = (345) + (5 \times 4)$ $= 3(3)^{2} + (5)^{2} \times 5^{2} + 4^{2} + 4^{2} + 5^{2}$
15+20
9+25 + 25+16+16+25
= 35
2 35 5.831 × 9.055
3 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	WT1	WT2	TM1	TM2	SM1	SM2
Α	3		5			
В	2	3		3	4	
С	5	4	4		5	
D	5	5	2	1	5	4

Conclusion From Results

 Smaller the cosine angle implies smaller the distance and hence closer the two users are.

Angle	Cosine Value
0	1
30	0.8661
45	0.7071
90	0

Normalize ratings by subtracting row mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3	
A	4			- 5	_1_			10
B	5	5	4					144
C				2	4	5		
D		3					3	

Normalize ratings by subtracting row mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3
	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3	n .	
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0		167.0	- 20		0

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
$\frac{B}{C}$	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

- $sim(A,B) = cos(r_A, r_B) = 0.09; sim(A,C) = -0.56$
 - sim(A,B) > sim(A,C)

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B C	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

- $sim(A,B) = cos(r_A, r_B) = 0.09$; sim(A,C) = -0.56
 - sim(A,B) > sim(A,C)
- Captures intuition better
 - Missing ratings treated as "average"
 - Handles "tough raters" and "easy raters"

Rating Prediction

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have also rated item i
- Prediction for user x and item i
- **Option 1:** $r_{xi} = 1/k \sum_{y \in N} r_{yi}$ In first condition, we have find out Average rating from neighbor
- Option 2: $r_{xi} = \sum_{y \in N} s_{xy} r_{yi} / \sum_{y \in N} s_{xy}$

where
$$s_{xy} = sim(x,y)$$

Rating Prediction

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

- unknown rating

Activ Go to

							user	s					
		1	2	3	4	5	6	7	8	9	10	11	12
9.	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

recin recin or															
	users														
movies		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)	
	1	1		3		?	5			5		4		1.00	
	2			5	4			4			2	1	3	-0.18	
	3	2	4		1	2		3		4	3	5		0.41	
	4		2	4		5			4			2		-0.10	
	5			4	3	4	2					2	5	-0.31	
	<u>6</u>	1		3		3			2			4		0.59	

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

							user	s							
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)	
	1	1		3		?	5			5		4		1.00	
movies	2			5	4			4			2	1	3	-0.18	
	3	2	4		1	2		3		4	3	5		0.41	
	4		2	4		5			4			2		-0.10	
	5			4	3	4	2					2	5	-0.31	
	6	1		3		3			2			4		0.59	

Compute similarity weights: s_{13} =0.41, s_{16} =Q.59

Activate Windows Go to Settings to activat

	users													
		1	2	3	4	5	6	7	8	9	10	11	12	
	1	1		3		2.6	5			5		4		
	2			5	4			4			2	1	3	
movies	3	2	4		1	2		3		4	3	5		
Ē	4		2	4		5			4			2		
	5			4	3	4	2					2	5	
	<u>6</u>	1		3		3			2			4		

Predict by taking weighted average:

$$r_{15} = (0.41^2 + 0.59^3) / (0.41 + 0.59) = 2.6$$

