第2章 PGP

- ➤application layer security (SSH, S-MIME, PGP,)
- ➤transport layer security (TLS/SSL,)
- ➤ network layer security (IPsec,)
- ➤data-link layer security (WEP, WPA, WPA2,)

内容提要

- □PGP概述
- □PGP加密与解密
- □PGP生成和验证数字签名
- □PGP加密+数字签名——解密+签名验证
- □PGP信任网 (web of trust)
- □PGP实例: GPG4Win

PGP概述

- □ Philip Zimmermann设计
 - ◆目前在瑞士运营公司Silent Cycle,提供移动/桌面加密通信软件及服务,目的是保护用户隐私。
- \square OpenPGP \rightarrow RFC4880

PGP概述:安全属性

- □保密性
 - ◆对称加密
- □完整性
 - ◆对消息摘要进行数字签名
- □身份认证
 - ◆数字签名

Building blocks of PGP

- □加解密
- □数字签名
- □压缩
- □电子邮件兼容性

PGP: 压缩

□ PGP支持数据的压缩和解压,目的是提高数据存储和传输的效率,支持ZIP、ZLIB、BZIP2等格式

PGP: 电子邮件兼容性

- □电子邮件系统通常支持*ASC*II文本格式,而加解密通常是对二进制进行操作,因此需要进行兼容性处理,二进制与Radix-64互相转换
- □ Radix-64编码
 - ◆基于base64,增加了检测数据错误的校验和。
 - ◆Base64编码是一种可以将任何二进制数据都用A~Z、a~z、0~9、+、/共64个字符外加=(用于末尾填充)来表示的编码方法

PGP加密和解密

PGP:加密

- □生成和加密会话密钥
 - ◆ (1) 用伪随机数生成器生成会话密钥
 - ◆ (2) 采用公钥加密算法,用接收者的公钥加密会话密钥
- □压缩和加密消息
 - ◆ (3) 压缩消息
 - ◆ (4) 使用对称密码对压缩后的消息进行加密,密钥 为步骤 (1) 中的会话密钥
 - ◆ (5) 将加密的会话密钥(步骤(2)中)与加密的消息(步骤(4)中)拼接起来
 - ◆ (6) 将步骤 (5) 中结果转换为文本数据,得到报文数据。

PGP:解密

□解密私钥

- ◆ (1) 接收者输入解密的口令
- ◆ (2) 求口令的散列值,生成用于解密私钥的密钥
- ◆ (3) 对钥匙串中经过加密的私钥进行解密

□解密会话密钥

- ◆ (4) 将报文数据(文本形式)转换为二进制数据
- ◆ (5) 将二进制数据分解为两部分:会话密钥的密文 和消息的密文
- ◆ (6) 用步骤 (3) 中生成的接收者的私钥解密会话密钥

PGP:解密

□解密和解压消息

- ◆ (7) 使用步骤 (6) 中生成会话密钥解密消息密文,得到压缩过的消息
- ◆ (8) 对步骤 (7) 中的输出进行解压缩
- ◆ (9) 得到原始消息

接收者私钥管理

□ PGP解密中,我们用到了接收者的私钥,但是 私钥是如何管理的并没有提及。

下面讨论接收者私钥是如何管理的

接收者私钥管理

- □私钥——记在脑袋里
 - ◆记不住: 长串随机数
- □私钥——明文存放计算机上
 - ◆不安全
- □加密存放在计算机上
 - ◆合理:加密私钥的密钥怎么管理?
- □ PBE to rescue

Password Based Encryption

接收者私 钥管理 PBE

PBE 接收者 合并PBE和 口令 报文数据 解密部分 (用于解密) 文本转换为二 盐 拼接 进制 经过加密的 分解 单向散列函数 私钥 私钥的解密 经过加密的会 对称密码 密钥 话密钥 解密 用公钥密码 经过压缩和加 接收者私钥 解密会话密钥 密的消息 用对称密码解 会话密钥 解压缩 消息

完整的加 解密过程

只采用加解密功能,具有消息的保密性, 也确保了接收者是正确的,但是无法保证 发送者的身份。因此,在只需要消息的保 密性的前提下,只用PGP的加解密功能是 可以的。

生成和验证数字签名

生成数字签名

□解密私钥

- ◆ (1) 发送者输入用于解密私钥的口令
- ◆ (2) hash (□令||盐) → 解密私钥的密钥(KEK)
- ◆ (3) 解密钥匙串中经过加密的私钥

生成数字签名:解密私钥

生成数字签名

□生成数字签名

- ◆ (4) 用单向散列函数计算消息的散列值
- ◆ (5) 用步骤 (3) 中私钥对上述散列值进行签名
- ◆ (6) 将步骤 (5) 中生成的数字签名与消息进行 拼接
- ◆ (7) 将步骤 (6) 中的结果进行压缩
- ◆ (8) 将步骤 (7) 中的结果转换为文本数据,即: 报文数据

验证数字签名

- □提取发送者发送的散列值
 - ◆ (1) 将报文数据(文本形式)转换为二进制数据
 - ◆ (2) 解压缩二进制数据
 - ◆ (3) 将解压后的数据分离为经过签名的散列值和消息 息两部分
 - ◆ (4) 将经过签名的散列值用发送者的公钥进行解密, 提取出发送者对原始消息生成的散列值

验证数字签名(续)

□对比散列值

- ◆ (5) 将步骤 (3) 中的消息单向散列函数计算散 列值
- ◆ (6) 对比步骤 (4) 的散列值和步骤 (5) 的散列值,如果一致,则数字签名验证成功,步骤 (3) 发送的消息就是发送者发送的消息。

数字签名

PGP生成数字签名并加密以及解密并 验证数字签名

生成数字签名并加密

解密并验证数字签名

在前面的内容中,我们使用了公钥,但是没有说明公钥是如何管理的。

PGP的公钥管理

PGP的公钥管理

- □PGP的正确运行依赖于公钥的合法性
- □PGP没有假定信任任何机构,即使是国家
 - ◆不依赖于PKI
- □PGP采用信任网来确保公钥的合法性

信任网:基本原则

- □通过自己的数字签名进行确认
- □通过自己完全信任的人的数字签名进行确认
- □通过自己有限信任的多个人的数字签名进行确

认

- □ Alice和Bob在一次meeting上认识,分别时, Bob交给Alice一个U盘,并说"以后email联系,这是我的公钥"。
- □ Alice回家后,将Bob的公钥从U盘中导入到自己的PGP公钥串中。Alice确信U盘中的公钥就是Bob本人的,因此,Alice对这个公钥加上自己的数字签名,以证明这个公钥是合法的。

- □随后, Alice收到来自Bob的email, 这封邮件带有Bob的数字签名, 为了验证Bob的数字签名, PGP需要执行以下步骤。
- □ (1) PGP从Alice的公钥串中寻找Bob的公钥。 (根据数字签名的原理,验证某个数字签名,需要对应的公钥)
- □ (2) Alice的公钥串中有Bob的公钥。(因为, Alice在之前导入过Bob的公钥)

- □ (3) (但是,这个公钥合法吗?) PGP发现公钥串中Bob的公钥带有Alice的数字签名。 (Alice在导入Bob的公钥的时候,对它做了数字签名)
- □ (4) 为了验证Alice的数字签名, PGP需要从Alice的公钥串中寻找Alice自己的公钥。
 (Alice的公钥串中也包含了Alice自己的公钥)

- □ (5) PGP使用Alice自己的公钥对Bob的公钥上的数字签名进行验证。如果成功,则表明这的确是Bob的公钥。
- □ (6) PGP使用合法的Bob的公钥对邮件上附带的Bob的数字签名进行验证。如果验证通过,则表明该email确实来自于前段时间开会时遇到的Bob所发。

通过自己完全信任的人的数字签名进行确认

□ Alice有个男朋友叫Trent。在Alice的公钥串 中,包含带有Alice签名的Trent的公钥。 Alice完全信任Trent,可以认为 "Trent介绍 的人也是可信的"。因此,Alice设置Trent的 公钥为 "我完全信任Trent的数字签名" 这一 状态,并加上自己的数字签名。也就是一旦验 证是Trent签名的公钥,就是合法的公钥。

通过自己完全信任的人的数字签名进行确认

□在PGP中,用户可以设置对每个公钥所有者的 "所有者信任级别" (owner trust),因为 Alice完全信任Trent,因此把Trent的"所有 者信任级别"设置为"完全信任(Fully Trusted)"。

公钥所有者的信任级别

Ultimately trusted	绝对信任(是持有私钥的本人)
Fully trusted	完全信任
Marginally trusted 有限信任	
Never trust this key	不信任
Not enough information	未知密钥
No owner trust assigned	未设置

通过自己完全信任的人的数字签名进行确认

- □假设某一天, Alice收到了自称来自Carrol的 邮件,邮件中附带有Carrol的公钥,而且这个 公钥带有Trent的数字符名。Alice把Carrol的 公钥导入自己的公钥串时, Alice的PGP诵讨 Trent的公钥验证了Carrol的公钥的合法性。因为Alice完全信任Trent,因此Alice的PGP会 认为Carrol的公钥是合法的。在这一场景中, Alice信任Trent, Trent通过给Carrol的公钥 数字签名而起到了"介绍人"的角色,从而 Alice可以认为Carrol的公钥是合法的。
- □ 注意:因为Alice的公钥串中没有Carrol的公钥,因此无法通过 Alice的公钥串来直接确认Carrol的邮件。

通过自己有限信任的多个人的数字签名进行确认

□假设Alice有两个男朋友,分别叫Dave和Fred。在Alice的公钥串中,包含有带Alice签名的上述两人的公钥,而且Alice把Dave和Fred的所有者信任级别都设置为"有限信任"。

通过自己有限信任的多个人的数字签名进行确认

 \square 某一天,Alice收到了来自George的公钥,该公 钥带有Dave和Fred的数字签名, Alice的PGP会 确认该公钥是合法,确实属于George。如果仅有 Dave或者Fred之一对该公钥进行数字签名,因为 Alice对Dave和Fred只是有限信任,因此不能确 认该公钥是合法的。只有当2个或以上的有限信 任的人对某个公钥签名时,才能确认该公钥是合 法的。

Alice的信任网

PGP总结

PGP流程总结: 发送方

发送方: Alice

PGP流程总结:接收方

接收方:Bob

PGP操作算法总结

操作	使用算法	描述
数字签名 DSS/SHA 或 RSA/SHA	C C C C C C C C C C C C C C C C C C C	使用SHA-1生成消息的散列值,采用
	DSS或者RSA,用发送者的私钥加密该	
	散列值并与原消息拼接。	
消息加密 CAST 或 IDEA 或RSA	采用CAST-128或IDEA或3DES,使用	
		由发送者生成的一次性会话密钥加密消
		息。使用RSA算法中接收者的公钥加密
		该会话密钥并与消息拼接。
压缩	ZIP	采用ZIP算法来实现消息压缩以便存储和 传输
电子邮件 兼容性	Radix-64转换	与电子邮件系统兼容,在二进制和 Radix-64编码之间互相转换。

PGP实例操作

PGP软件: GPG4Win

- □ GPG (Gnu Private Guard, GnuPG)
 - ◆一款基于OpenPGP标准开发的密码学软件
- □ GPG4Win组件
 - ◆GnuPG 本身
 - ◆GPA 一个证书管理器
 - ◆GpgOL Outlook 加密扩展
 - ◆GpgEX Explorer 资源管理器加密扩展
 - ◆Claws Mail 一个邮件客户端
 - ◆Kleopatra 证书管理器
 - ◆Compendium 帮助文档集,仅英语和德语

GPG4Win

- □创建密钥对
- □导入/导出密钥
- □加密文本
- □解密文本

GPG4Win: 创建密钥对

□菜单操作File→New Certificate

- ◆Create a personal OpenPGP key pair
- Enter details
 - > Name
 - > Email address
- ◆Create Key
 - > Enter passphrase

GPG4Win: 导出公钥

----BEGIN PGP PUBLIC KEY BLOCK----

Version: GnuPG v2

mQENBFmiImEBCACywmP8ehLhPDFyRdfc/Cad3WOtImlxRPKW0hLUPgEZXjavyP5L gHO/pw+xOk0agcnTeS8ANN5IcGn66rKDloY4OZSclX4pUUF/EjlljkgKcuHfO44p noLhAumconxMs8rYs34ErMDupiPWO+Dyu2T/QZvg/HLVYnzJfNi+epNtZcfVPyxy IUTfDv3qtQDJiB6GZUqmqSrtyvOtEwWtW3p0GkG8bEhRePVrr2D5SnEOQq8hJWka lVakoPMkT018W8T9EBfsw+A4YQ5SfSCaMkYcbhJ2VsYXf600hWmdNw50w6E7NvjP jftUnz5esu4XVhfzTOHnexoW4I8vY/tCz+jhABEBAAG0HXRvbSBjcnVpemUqPHRv bUB1ZXN0Yy51ZHUuY24+iQE5BBMBCAAjBQJZoiJhAhsDBwsJCAcDAqEGFQqCCQoL BBYCAwECHgECF4AACgkQ5ealmxV138D8swf+PFekgLLXOgz90N7wgobZzBNkyRGC 6vPs4RLJKWTCJ4ImHZSjghqEZYqpQ+YlAqCpKd1DYXUVUtQESqpo3l1/cTkfYS3T NL4plW9C+ITkWQImPbEBbe/8acenZyYBm4I0LDfXPDxUgReQhaB7bigLfjtVJIdI GHCi7HqDP6AyDiZU/PSwPUUZu74faPa4AEaL2oxFX65oj2K0sKT/Vbljm8H+4CIA hETc6pyoxpGm9RD1kVHTd2/uCYD18tNzf4le+wrT3kVwaKVc4VpJvcZF1zTm5tvg Z6LzBN7ov0I5tfr1Jw3XiZYbAGWpVabuXZF1x2kqTsrX9Fu0hxt6uUEj8bkBDQRZ oiJhAQqAo9CdCb6/Q+7pExrICGuhy8mKf8PACP6kL+BTt/92BUIvVp/3lyb5d1Pr La9H4qVSmz06LB94G0txqKxUNs7IZnMyI3bfG8eGj4rQcd5e5Zd2mT061Ep15a4B 70diG5zA2hioGMBuHX39dreGbk3G/6vujt5cwv5cTcq1ZTJ1NDu88EDGwnHUxsiZ ORt5CW5NpoNPWtT0H75hYYmq1o1L5CX/ne9EBCp8jJP9Ixuf//iKWxm7vNVd7bMU

GPG4Win: 导出私钥

----BEGIN PGP PRIVATE KEY BLOCK----

Version: GnuPG v2

1009BFmiImEBCACywmP8ehLhPDFyRdfc/Cad3WOtImlxRPKW0hLUPgEZXjavyP5L gHO/pw+xOk0agcnTeS8ANN5IcGn66rKDloY4OZSclX4pUUF/EjlljkgKcuHfO44p noLhAumconxMs8rYs34ErMDupiPWO+Dyu2T/QZvg/HLVYnzJfNi+epNtZcfVPyxy IUTfDv3gtQDJiB6GZUgmgSrtyvOtEwWtW3p0GkG8bEhRePVrr2D5SnEOQg8hJWka lVakoPMkT018W8T9EBfsw+A4YQ5SfSCaMkYcbhJ2VsYXf600hWmdNw50w6E7NvjP jftUnz5esu4XVhfzTOHnexoW4I8vY/tCz+jhABEBAAH+AwMCEnT6EwvWzYTD9Bvk M2qtcPqosJw14iqPVM3xMxI+71f+wyliF/Cfx3G0e+uJqIXB5mqp0nv15e7ur6uj S4GzMXDYFRlrqkvPvbe3qTKfT0L9Z+jLecb9x1qT08GXkHHqScpTC685j2BX93fv wmkApI8RzAr2697TLgWl8Ixk5KH5pBslB4vpQpJrhfXXAslCoG0R4ZtgirzDVlZO F/4e+VYbIyLihtnUHqhkzmClIrPyoY0mq7v1L59hLPcpOqYVcsIveU5Tr5e/v4M3 mKLQ00ECs28sNPwHTK8K/LVPRjvjhIm8ow7Rj0dsYq6+xeMnudjUUwqKG45SVZJU iPBTq4TXuuqafYVt51vVUo+zFJtDAIeXh7xJGPYUcc9GqRkp3XsFQdjMQjUkYbxq wCXW3kYMkqd8bXBX+K+UTEjbj0rLp9E2jtwENMpeLIk88pC5S4BoCnvSqmQ7sxiz xpfTouI9LcuMvpHnVFt3KDs2Nv5XZCOGem7QM9NOIUBKWM/Tp9WNjlTzqDQCnubf u9BcINQWrcu5EB1AT1oaNjRcriGpNbsYdmthu4CUz6eivVVq+KYwq1sOT1yFn6Ek H2ZrQ5FZj6W/Uubs+3KVYM/sShllxQouTnrX7RKwNrJ6kZvpvYUvsJFKmG9Piv4q n2NzkE8S9d9O2Ak+vmkOeiodHmPkII/aa5vdcOw1.TFTvCa+CAmeAsaaRGFPhv7fTn

GPG4Win: 导入证书

获取公钥证书:

面对面提交

从目录服务获取,如: http://pgp.mit.edu

GPG4Win:加密文件

□菜单操作: File→Sign/Encrypt Files

----BEGIN PGP MESSAGE----

Version: GnuPG v2

hQEMA7zyLoLaInhSAQf9HxQDFuUMUqeVG9519p8C/1d21kTl
E18ESfdZ8xAvy+QvSVnczZTQvuQW69MbmVJ0g3S3/99rORUt31SIz7rFi0gFyn09Q/beloliP8nmRXogn4YwZX01cXsYVn:
urfVYDGuEjVJjLESHBXgoX6jmgPNUZq3r+Zey/z/SZ0pM2Wl
EinOg5M7dlPzBv9NQbKD9jUKUSNX4/VgKcustU5q5hoL+gy(
PWkTVig3vi008jlXNKc0SXprZ50rijPTITJdfwsc29LsAY1l
3/Y6Ytq9600Dw9lwoGsG6+cK1BCFkHmBffSVxhiakqtwU/Cl
2G18HACNtDcUvkkwIHJPkj5zSUmuq0587xZBE7r1C08DohEl
FrccarQbqeqj5wPqNWcPF08NUms6uefqewwmRkX9Ln6liK3:
1QZ/47W/1k08cBfY5R2iKvhukm40/G73/FKU1VuoTrX0b4+V
AbPcCpjbGMkb31ZoSyDtx9Ix8pHiUrcyCjJoGlf0j2G05K2I
QQRsesZ3yBLWoI9zP95Bs+Vx6m60XqqVEGM1+N1pO6dx1jx(
CQL19Kmj+pu+8HmxJhjGtT2tXTbMqHf34QDeaYqt9vje9jWl

GPG4Win:解密文件

GPG4Win:解密文件(续)

解密后的文件内容:

电子科技大学科研项目申请书审查会签表。

填表日期: 年月日。

项目名称。

项目类型。

项目类型。

项目负责人。

或目负责人。

或目负责人对所有上报材料中关于个人信息、申报内容均真是有效的承诺: 。

小结

- □PGP用到了哪些密码技术?
 - ◆哈希函数
 - ◆对称加密算法
 - ◆公钥加密算法
 - ◆数字签名

小结

□学习PGP的主要目的是学习其设计思想, PGP已经有较长的历史了, 随着技术的发展, 其中加密模块、散列算法、数字签名模块有些已经过时, 但是我们可以用最新的密码算法来替换不安全的密码算法。

课后作业

- □设计并实现一个基于口令的文件加解密软件
 - ◆用对称密码加密文件数据
 - ◆用PBE方式生成加密/解密密钥
 - ◆C + openssl、Python3、.....