Material Balance Summary

September 23, 2020

Compiled by Yohanes Nuwara (Source from Brian F. Towler (2001) SPE Textbook Fundamental Principles of Reservoir Engineering)

0.1 Material balance parameters - reservoir voidage (F) and total FVFs (B_t)

Reservoir Fluid	F	B_{tg}	B_{to}
Dry-gas			no condensate
	G_pB_g	B_g	component
Gas-condensate	$N_p(\frac{B_o - R_s B_g}{1 - R_v R_s}) + (G_p - G_i)(\frac{B_g - R_v B_o}{1 - R_s R_s})$	$\frac{B_g(1 - R_v R_{vi}) + (R_{vi} - R_v)B_o}{1 - R_v R_s}$	$\frac{B_o(1 - R_v R_{si}) + (R_{si} - R_s)B_g}{1 - R_v R_s}$
Undersaturated non-volatile oil	N_pB_o	no vapor component	B_o
$(R_s = R_{si}, R_v = 0)$ Undersaturated volatile oil $(R_s = R_{si}, R_v \neq 0)$	$N_p(\frac{B_o - R_s B_g}{1 - R_v R_s}) + (G_p - G_i)(\frac{B_g - R_v B_o}{1 - R_v R_s})$	no vapor component	B_o
Saturated non-volatile	$N_p(B_o - R_s B_g) + G_p B_q OR N_p(B_{to} -$	B_g	$B_o + (R_{si} - R_s)B_q OR B_{to}$
oil $(R_s \neq R_{si}, R_v = 0)$ Saturated volatile oil $(R_s \neq R_{si}, R_v \neq 0)$	$R_{si}B_g) + G_pB_g$ $N_p(\frac{B_o - R_sB_g}{1 - R_vR_s}) + (G_p - G_i)(\frac{B_g - R_vB_o}{1 - R_vR_s})$	$\frac{B_g(1 - R_v R_{vi}) + (R_{vi} - R_v)B_o}{1 - R_v R_s}$, ,

^{*)} In Tarek Ahmed, F (defined as the "underground withdrawal") is expressed differently. The F from the above table is added with water production term; B_wW_p

0.2 Basic Plots - to identify volumetricity, waterdrive, and formation drive

Reservoir	x-axis var.	y-axis var.	G_{fgi}	N_{foi}	Volumetric	Waterdrive	Formation Drive
Dry-gas	E_g	\overline{F}	slope	-	straight lineslope	curves	curves downward
Dry-gas	G_p	$rac{p}{z}$	x- intercept	-	straight lineslope +	curves upward	curves downward
Dry-gas	G_p	$rac{F}{E_g}$	y- intercept	-	horizontal lineslope 0	straight lineslope +	
Gas- condensate *)	E_g	F	slope	-	straight lineslope	curves upward	curves downward
Gas- condensate *)	G_p	$rac{p}{z}$	x- intercept	-	straight lineslope +	curves upward	curves downward
Gas- condensate	G_p	$rac{F}{E_g}$	y- intercept	-	horizontal lineslope 0	straight lineslope +	
Undersatur Oil	ated $E_o + B_{oi} E_{fu}$	F	-	slope	straight lineslope +	curves upward	curves downward
Undersatur Oil	$\operatorname{ated} N_p$	$\frac{F}{E_o + B_{oi}E}$	$\frac{1}{\sqrt{fw}}$	y- intercept	horizontal lineslope 0	straight lineslope +	
Saturated Oil	$rac{E_g}{E_o}$	$rac{F}{E_o}$	slope	y- intercept	straight lineslope 0		

Reservoir	x-axis var.	y-axis var.	G_{fgi}	N_{foi}	Volumetric	Waterdrive	Formation Drive
Saturated Oil	$\frac{E_o}{E_g}$	$rac{F}{E_g}$	y- intercept	slope	straight lineslope 0		

^{*)} These plots apply only for gas-condensate above dewpoint (Towler, 2001)

0.3 Waterdrive Plots - MB plot for waterdrive reservoirs

After identifying the waterdrive from the basic plots, we proceed with these plots. We calculate $\Sigma(\Delta pW_{eD})$ using van-Everdingen Hurst method. Then, there are new terms introduced; the combined formation/gas/aquifer expansion factor (E_c) and the total fluid expansion (E_t)

Reservoir	x-axis	y-axis	G_{fgi}	N_{foi}
Dry-gas			slope	-
	$\frac{\Sigma(\Delta p W_{eD})}{E_g}$	$rac{F}{E_g}$		
Dry-gas Gas-condensate	E_c	F	slope slope	- -
	$\frac{\Sigma(\Delta p W_{eD})}{E_g}$	$rac{F}{E_g}$		
Gas-condensate Undersaturated Oil	E_c	F	slope -	- slope
	$\frac{\Sigma(\Delta p W_{eD})}{E_o}$	$rac{F}{E_g}$		
Undersaturated Oil	E_c	F	-	slope
Saturated Oil	E_t	$F - \Delta W$	-	slope

 E_c is used in dry-gas and gas-condensate reservoirs

$$E_{c} = E_{g} + B_{gi}E_{fw} + \frac{2(c_{f} + c_{w})B_{gi}\Sigma(\Delta pW_{eD})}{1 - S_{wi}}(\frac{h_{aq}}{h_{R}})$$

And E_c for undersaturated-oil reservoir is

$$E_{c} = E_{o} + B_{oi}E_{fw} + \frac{2(c_{f} + c_{w})B_{gi}\Sigma(\Delta pW_{eD})}{1 - S_{wi}}(\frac{h_{aq}}{h_{R}})$$

 E_t is used in saturated oil reservoirs

$$E_t = E_o + mE_g \frac{B_{oi}}{B_{qi}} + B_{oi}(1+m)E_{fw}$$

Where m is the gas-cap volume ratio

$$m = \frac{G_{fgi}B_{gi}}{N_{foi}B_{oi}}$$

0.4 Formation drive plots - plot to correct the compressibility effect

This plot is relevant to gas reservoirs (dry-gas and gas-condensate). After, identifying that the basic plots make a downward curving, we use these plots. The plots will now look straight.

Reservoir	x-axis	y-axis	G_{fgi}	N_{foi}
Dry-gas			slope	-
	$E_g + B_{gi}E_{fw}$	F		
Dry-gas Gas-condensate	G_p	$\frac{p}{z}(1 - E_{fw})$	slope x-intercept	- -
	$\frac{\Sigma(\Delta p W_{eD})}{E_g}$	$rac{F}{E_g}$		