VECTORS

OBJECTIVE

(1)	If $u = 2\underline{i} + \alpha \underline{j} + 5\underline{k} \& \underline{v} = 3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular $\alpha = \underline{}$							
	(a)	0	(b)	3				
	(c)	– 1	(d)	$\frac{-1}{3}$				
(2)	Project	tion of $\underline{\mathbf{a}} = \mathbf{u}\underline{\mathbf{i}} + \mathbf{v}\mathbf{j} + \mathbf{w}\underline{\mathbf{k}}$ alor	ng j is					
	(a)	u	(b)	v				
	(c)	W	(d)	none				
(3)	ab sin	θ =						
	(a)	$\underline{\mathbf{a}} \times \underline{\mathbf{b}}$	(b)	<u>a</u> . <u>b</u>				
	(c)	$ \underline{\mathbf{a}} \times \underline{\mathbf{b}} $	(d)	$\frac{\underline{\mathbf{a}} \times \underline{\mathbf{b}}}{ \underline{\mathbf{a}} \times \underline{\mathbf{b}} }$				
(4)	If $4\underline{i}$ +	0j - 3k be a vector then cos	ς γ =					
	(a)	$\frac{4}{5}$	(b)	$\frac{1}{5}$				
	(c)	$\frac{-3}{5}$	(d)	$\frac{2}{5}$				
(5)	The m	agnitude of a ca	n't be cha	inge.				
	(a)	Null vector	(b)	Unit vector				
	(c)	Negative of vector	(d)	none				
(6)	The ve	ector [0, 0, 1] is along						
	(a)	x-axis	(b)	y-axis				

/ \	
(c)	z-axis

(d) all of these

(7) Volume of parallelepiped with edges $\underline{i} - 4\underline{j} - \underline{k}$, $\underline{i} - \underline{j} - 2\underline{k}$ & $2\underline{i} - 3\underline{j} + \underline{k}$ is _____

(a) 10

(b) 0

(c) 14

(d) 17

(8) If <u>a</u> & <u>b</u> are two non-zero vectors, then

 $|\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}| \& |\underline{\mathbf{a}} \times \underline{\mathbf{b}}|$ are always _____

(a) $\geq |\underline{a}| |\underline{b}|$

(b) $\leq |\underline{a}| |\underline{b}|$

(c) $\neq |\underline{a}| |\underline{b}|$

 $(d) = |\underline{\mathbf{a}}| |\underline{\mathbf{b}}|$

(9) The norm of a non zero vector <u>u</u> is _____

(a) $|\underline{\mathbf{u}}| = 0$

(b) $|\underline{\mathbf{u}}| < 0$

(c) $|\underline{\mathbf{u}}| > 0$

(d) $|\underline{\mathbf{u}}| \ge 0$

(10) If A, B, C, D are vertices of parallelepiped, its volume = _____

(a) $\left[\overrightarrow{AB} \stackrel{\rightarrow}{BC} \stackrel{\rightarrow}{CD} \right]$

(b) $\begin{bmatrix} \overrightarrow{AB} & \overrightarrow{AC} & \overrightarrow{BD} \end{bmatrix}$

(c) $\left[\overrightarrow{AB} \overset{\rightarrow}{AC} \overset{\rightarrow}{AD} \right]$

(d) $\left[\overrightarrow{BC} \overrightarrow{BD} \overrightarrow{AD} \right]$

(11) $(\underline{\mathbf{i}} - \underline{\mathbf{j}}) \cdot (\underline{\mathbf{j}} - \underline{\mathbf{k}}) \times (\underline{\mathbf{k}} - \underline{\mathbf{i}}) = \underline{\hspace{1cm}}$

(a) 1

(b) 0

(c) -1

(d) 2

(12) Moment of foce F about A, applied at B is _____

(a) $\overrightarrow{F} \cdot \overrightarrow{AB}$

(b) $\overrightarrow{AB} \times \overrightarrow{F}$

(c) $\overrightarrow{BA} \cdot \overrightarrow{F}$

(d) $\overrightarrow{F} \times \overrightarrow{BA}$

(13) A vector parallel and perpendicular to every vector is _____

(a) position vector

(b) negative vector

(c) zero vector

(d) unit

(14) If $\overrightarrow{AB} = \lambda \overrightarrow{DC}$ in quadrilateral ABCD, then ABCD is parallelogram if

(a) $\lambda = 0$

(b) $\lambda \neq 0$

 $\lambda \neq 1$ (c)

(d) $\lambda = 1$

A force $\overrightarrow{F} =$ (15)

(a)

(b)

(c)

(d)

 $2\underline{\mathbf{i}} \cdot 5\underline{\mathbf{j}} \times 3\underline{\mathbf{k}} =$ (16)

(a)

(b) 30

(c)

12 (d)

 $\underline{\mathbf{u}} = 2\underline{\mathbf{i}} - 4\underline{\mathbf{j}} + 5\underline{\mathbf{k}} \ \underline{\mathbf{v}} = 4\underline{\mathbf{i}} - 3\underline{\mathbf{j}} - 4\underline{\mathbf{k}} \ \text{are}$ (17)

> (a) parallel

perpendicular (b)

neither // nor \perp (c)

(d) none

Two vectors $\underline{\mathbf{a}} \& \underline{\mathbf{b}}$ are coplanar if $P\underline{\mathbf{a}} + q\underline{\mathbf{b}} = 0$ implies (18)

> (a) $p = 0, q \neq 0$

(b) $p \neq 0$, q = 0

(c) p = 0 = q

(d) none

Position vector of (-1, 2, 3) =(19)

> (a) $\underline{\mathbf{i}} + 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$

(b) $\underline{\mathbf{i}} - 2\mathbf{j} + 3\underline{\mathbf{k}}$

(c) $\underline{i} - 2\underline{i} - 3\underline{k}$

(d) $-\underline{\mathbf{i}} + 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$

Additive inverse of position vector is (20)

> position vector (a)

unit vector (b)

null vector (c)

(d) none

(21)

(a) $|\underline{\mathbf{v}}|$ (b) $\underline{\mathbf{v}}$

 $\hat{\mathbf{v}}$ (c)

(d)

A vector having norm 5 & lies on vertical line (22)

> 5 <u>j</u> (a)

(b) – 5<u>j</u>

both (c)

(d) none

Angle between $\sqrt{3} \, \underline{i} + j$ with x-axis is (23)

> $30^{\rm o}$ (a)

(b) 60°

	(c)	45°	(d)	90°
(24)	If <u>u</u> –	$\underline{\mathbf{v}} = 0$, then $\underline{\mathbf{u}} \times \underline{\mathbf{v}} = \underline{\hspace{1cm}}$		
	(a)	0	(b)	$\underline{\mathbf{v}} \times \underline{\mathbf{u}}$
	(c)	v^2	(d)	none
(25)	If <u>u</u> , <u>v</u>	& $\underline{\mathbf{w}}$ are coplanar, then $\underline{\mathbf{u}}$. ($\underline{\mathbf{v}}$	$\times \underline{\mathbf{w}}) = \underline{}$	
	(a)	0	(b)	1
	(c)	– 1	(d)	none
(26)	Vecto	r making on angle α with y-ax	is is	
	(a)	$\cos \alpha \underline{i} + \sin \alpha \underline{j}$	(b)	$\sin \alpha \underline{\mathbf{i}} + \cos \alpha \mathbf{j}$
	(c)	$\cos \alpha \underline{i} - \sin \alpha \underline{j}$	(d)	all
(27)	If <u>u</u> . <u>i</u>	$\underline{u} = -2$, \underline{u} . $\underline{i} = 3$ then $\underline{u} = \underline{\qquad}$		
	(a)	$3\underline{i} - 2\underline{j}$	(b)	$2\underline{\mathbf{i}} - 3\mathbf{j}$
	(c)	$3\underline{\mathbf{i}} + 2\underline{\mathbf{j}}$	(d)	$-2\underline{\mathbf{i}}+3\underline{\mathbf{j}}$
(28)	If $\underline{\mathbf{u}} =$	$\mathbf{j} - 2\mathbf{\underline{k}}$, $\mathbf{\underline{v}} = 4\mathbf{\underline{j}} + \mathbf{\underline{k}}$, then $\mathbf{\underline{u}} \times \mathbf{\underline{v}}$ i	s // to	
	(a)	x-axis	(b)	y-axis
	(c)	z-axis	(d)	none
(29)	If u =	$\frac{-1}{3} \underline{\mathbf{v}} \text{ then } \underline{\mathbf{u}} \times \underline{\mathbf{v}} = \underline{}$		
	(a)	u^2	(b)	$3 \text{ uv } \sin \theta$
	(c)	0	(d)	$3u^2$
(30)	$\underline{\mathbf{u}} \times (\underline{\mathbf{v}}$	$(\underline{\mathbf{w}}) = \underline{}}$		(Lahore Board 2013)
	(a)	$(\underline{\mathbf{u}} \times \underline{\mathbf{v}}) \cdot \underline{\mathbf{w}}$	(b)	$\underline{\mathbf{v}}$. $(\underline{\mathbf{w}} \times \underline{\mathbf{u}})$
	(c)	$\underline{\mathbf{w}}$. $(\underline{\mathbf{u}} \times \underline{\mathbf{v}})$	(d)	none
(31)	Vecto	r making an angle α with x – a	axis is	
	(a)	$\cos \alpha \underline{i} + \sin \alpha \underline{j}$	(b)	$\sin \alpha \underline{\mathbf{i}} + \cos \alpha \mathbf{j}$
	(c)	$\cos \alpha \underline{i} - \sin \alpha \underline{j}$	(d)	all of these
(32)	Cosin	e of the angle between any two	o non ze	ero vectors <u>a</u> & <u>b</u> .
	(a)	<u>a</u> . <u>b</u>	(b)	$\frac{ \underline{a} \ \underline{b} }{\underline{a}.\underline{b}}$

(c)
$$\frac{\underline{a} \cdot \underline{b}}{|a| |b|}$$

(d)
$$\frac{\underline{\mathbf{a}} \times \underline{\mathbf{b}}}{|\mathbf{a}| |\mathbf{b}}$$

- (33) Angle between vectors $2\underline{i} + 3\underline{j} + \underline{k}$ and $2\underline{i} \underline{j} \underline{k}$ is _____
 - (a) $\frac{\pi}{6}$

(b) $\frac{\pi}{4}$

145

(c) $\frac{\pi}{2}$

- (d) π
- (34) A unit vector perpendicular to $\overrightarrow{a} & \overrightarrow{b}$ is
 - (a) $\frac{\overrightarrow{a} \times \overrightarrow{b}}{\overrightarrow{a} \mid \overrightarrow{a} \mid |\overrightarrow{b}|}$

(b) $\frac{\overrightarrow{a} \times \overrightarrow{b}}{\overrightarrow{a} \times \overrightarrow{b}}$ $| \overrightarrow{a} \times \overrightarrow{b} |$

(c) $\overrightarrow{a} \times \overrightarrow{b}$

- (d) $\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \\ \overrightarrow{a} & | \overrightarrow{b} \end{vmatrix}$
- (35) The projection of \overrightarrow{a} along \overrightarrow{b} is
 - (a) $\overrightarrow{a} \cdot \underline{b}$

(b) $\stackrel{\wedge}{\underline{a}} \cdot \stackrel{\rightarrow}{b}$

(c) $\stackrel{\wedge}{\underline{a}} \stackrel{\wedge}{\underline{b}}$

- (d) $\overrightarrow{a} \cdot \overrightarrow{b}$
- (36) If $\underline{u} \& \underline{v}$ are adjacent vectors of parallelogram, then area of parallelogram is
 - (a) $|\underline{\mathbf{u}} \times \underline{\mathbf{v}}|$

(b) $\frac{1}{2} |\underline{\mathbf{u}} \times \underline{\mathbf{v}}|$

(c) $\frac{1}{6} |\underline{\mathbf{u}} \times \underline{\mathbf{v}}|$

- (d) $|\underline{\mathbf{u}} \times \underline{\mathbf{v}}|$
- (37) Two vectors are \overrightarrow{a} . \overrightarrow{b} // if
 - (a) $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

(b) $\overrightarrow{a} = \lambda \overrightarrow{b}$

(c) $\overrightarrow{a} \times \overrightarrow{b} = 0$

- (d) both b & c
- (38) The dot product of two vectors is minimum if
 - (a) $\theta = 0^{\circ}$

(b) $\theta = \pi$

(c)	θ	=	$\frac{\pi}{2}$
-----	---	---	-----------------

(d) $\theta = \frac{\pi}{4}$

 $(39) \quad [\underline{\mathbf{a}} \cdot \underline{\mathbf{a}} \cdot \underline{\mathbf{b}}] = \underline{\hspace{1cm}}$

(a)
$$a^2 b$$

(b) <u>a</u>.<u>a</u>.<u>c</u>

(c) 0

(d) none

(40) If 1 & $\sqrt{3}$ are i & j components respectively of a vector then its angle with x-axis is _____ (Lahore Board 2009)

146

(a) 30°

(b) 45°

(c) 60°

(d) 90°

(41) The magnitude of dot & cross product of two vectors are $6 \& 6\sqrt{3}$ respectively, then angle b/w the vectors is (Lahore Board 2009)

(a) 90°

(b) 60°

(c) 30°

(d) 45°

(42) For vector $3\underline{i} - \underline{j} + 2\underline{k}$, $\cos \alpha = \underline{\hspace{1cm}}$

(a) $\frac{3}{\sqrt{14}}$

(b) $\frac{1}{\sqrt{14}}$

(c) $\frac{-1}{\sqrt{14}}$

(d) $\frac{4}{\sqrt{14}}$

(43) _____ is parallel to every vector.

(a) position vector

(b) null vector

(c) unit vector

(d) none

(44) If α , β , γ are directional angles then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ _____

(a) 0

(b)

(c) 2

(d) -2

(45) The vector <u>u</u> & <u>v</u> are collinear if angle between is _____

(a) 1

(b) 0

(c) 45°

(d) 90°

(46) If $\underline{\mathbf{u}}$, $\underline{\mathbf{v}}$ & $\underline{\mathbf{w}}$ are edges of tetrahedron then volume = _____

(a) $\frac{1}{2} \left[\underline{\mathbf{u}} \, \underline{\mathbf{v}} \, \underline{\mathbf{w}} \right]$

(b) $\frac{1}{3} \left[\underline{\mathbf{u}} \, \underline{\mathbf{v}} \, \underline{\mathbf{w}} \right]$

(c) $\frac{1}{4} \left[\underline{\mathbf{u}} \, \underline{\mathbf{v}} \, \underline{\mathbf{w}} \right]$

(d) $\frac{1}{6} \left[\underline{\mathbf{u}} \, \underline{\mathbf{v}} \, \underline{\mathbf{w}} \right]$

(47) Magnitude of the vector $\underline{\mathbf{v}} = 2\underline{\mathbf{i}} + 3\underline{\mathbf{j}} + 4\underline{\mathbf{k}}$ is _____

(Lahore Board 2014)

 $\sqrt{29} \\ \sqrt{28}$ (b)

147

(c) 28 (d)

Two vectors $\underline{\mathbf{u}} \& \underline{\mathbf{v}}$, written as $\underline{\mathbf{p}}\underline{\mathbf{u}} + \underline{\mathbf{q}}\underline{\mathbf{v}} = 0$ are collinear if (48)

> $p \neq 0$, $q \neq 0$ (a)

(b) p = 0 = q

 $p \neq 0$, q = 0(c)

(d) p=0, $q \neq 0$

If two vectors <u>u</u> & <u>v</u> are orthogonal, then (49)

> $\underline{\mathbf{u}} \times \underline{\mathbf{v}} = 0$ (a)

 $\underline{\mathbf{u}} = \lambda \, \underline{\mathbf{v}}$ (b)

(c) $\underline{\mathbf{u}} \cdot \underline{\mathbf{v}} = 0$

 $\overrightarrow{r} = \underline{\mathbf{u}} + \lambda \underline{\mathbf{v}}$ (d)

The direction cosines of a vector are (50)

> real numbers (a)

- ve real numbers (b)

+ ve real numbers (c)

non zero real numbers (d)

Projection of $3\underline{i} + \underline{j} - \underline{k}$ along $-2\underline{i} - \underline{j} + \underline{k}$ is (51)

(a) $\frac{-1}{\sqrt{2}} \left(-2\underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}} \right)$

(b)

(c)

none of these (d)

A vector having norm 2 and lies on horizontal line is (52)

> (a) 2<u>i</u>

(b) -2i

(c) both (a, b) (d) none of these

Diagonals of _____ bisect each other. (53)

> (a) square

rectangle (b)

parallelogram (c)

all of above (d)

If $\underline{a} = 4\underline{i} + 3\underline{j} + \underline{k}$, $\underline{b} = 2\underline{i} - \underline{j} + 2\underline{k}$ then vector perpendicular to both $\underline{a} \& \underline{b}$ is ____ (54)

 $\sqrt{185} \, \underline{i}$ (a)

(b) $\frac{1}{\sqrt{185}} (7\underline{i} - 6\underline{j} - 10\underline{k})$

(c) $\frac{1}{\sqrt{185}} (7\underline{i} + 6\underline{i} + 10\underline{k})$

(d) none

Cosine of the angle between two collinear vectors is (55)

(a)

0 and 1 (b)

1 and -1(c)

(d) none of these

Let $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ then $\overrightarrow{AB} = \underline{}$ (56)

 $\underline{\mathbf{a}} - \underline{\mathbf{b}}$ (a)

(b) $\underline{\mathbf{a}} + \underline{\mathbf{b}}$

(c) $\underline{\mathbf{b}} - \underline{\mathbf{a}}$

- (d) $\underline{b} + \underline{a}$
- Work done = (57)

(Lahore Board 2014)

(a)

 $\overrightarrow{F} \times \overrightarrow{r}$ (b)

 \overrightarrow{F} . \overrightarrow{d} (c)

- \overrightarrow{d} . \overrightarrow{F} (d)
- (58)
 - ab $\cos \theta$ (a)

- (b) ab $\sin \theta$
- $|\underline{a}| |\underline{b}| \sin \theta \hat{n}$ (c)
- (d) none
- If the angle between two vectors with magnitudes 16 and 2 is 60°. Find their (59)scalar product.
 - (a) 6

(b)

(c) 16

- (d)
- The work done by a force $2\underline{i} \underline{j} \underline{k}$ in moving on object through a displacement (60)3i + 2j - 5k is _____
 - (a)

(b)

(c)

- (d)
- The angle between vectors A & B is (61)

- (b) $\sin^{-1} \left(\frac{\overrightarrow{A} \times \overrightarrow{B}}{AB} \right)$
- (d) $\cos^{-1} |\overrightarrow{A} \times \overrightarrow{B}|$
- A vector whose initial point is at origin and whose terminal point is P is called ___
 - displacement of P (a)
- magnitude of P (b)
- (c) position vector of point P
- none of these (d)
- (63)

- (d) $5\underline{i} 4\underline{i}$
- If $\underline{\mathbf{a}} = -4\underline{\mathbf{i}} + \underline{\mathbf{j}} 2\underline{\mathbf{k}}$, $\underline{\mathbf{b}} = 2\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}$ then $\underline{\mathbf{b}} \times \underline{\mathbf{a}} = \underline{}$ (64)
 - (a) $3\underline{i} 6\underline{k}$

(b) -3i + 6k

(c) $3\underline{i} + 6\underline{k}$

 $(d) \qquad -3\underline{i}-6\underline{k}$

(c)

components

(65)	(2 <u>a</u> +	$(2\underline{\mathbf{a}} + 3\underline{\mathbf{b}}) \times (5\underline{\mathbf{a}} + 7\underline{\mathbf{b}}) = \underline{\hspace{1cm}}$							
	(a)	$\underline{b} - \underline{a}$	(b)	$\underline{b} + \underline{a}$					
	(c)	$\underline{\mathbf{a}} \times \underline{\mathbf{b}}$	(d)	$\underline{b} \times \underline{a}$					
(66)	<u>u</u> . (<u>v</u>	<u>v</u> × <u>w</u>) =							
	(a)	$\underline{\mathbf{u}} \times \underline{\mathbf{v}}$	(b)	$\underline{\mathbf{w}}$. $(\underline{\mathbf{v}} \times \underline{\mathbf{u}})$					
	(c)	$\underline{\mathbf{v}}$. $(\underline{\mathbf{w}} \times \underline{\mathbf{u}})$	(d)	none					
(67)	Com	mutative law hold in							
	(a)	vector product	(b)	cross product					
	(c)	scalar product	(d)	none of these					
(68)	68) For any vectors $\underline{\mathbf{u}} = [\mathbf{x}, \mathbf{y}], \ \underline{\mathbf{v}} = [\mathbf{x}', \mathbf{y}']$ are said to be equal iff								
	(a)	x = y, $x' = y'$	(b)	$\mathbf{x} = -\mathbf{x'}$, $\mathbf{y} = -\mathbf{y'}$					
	(c)	x = x', $y = y'$	(d)	none					
(69)	$R^2 =$	$\{(x, y) : x, y \in \Re\}$ is called							
	(a)	vector	(b)	curve					
	(c)	cartesian plane	(d)	none of these					
(70)		metrically $\overrightarrow{a} \cdot \overrightarrow{b} \times \overrightarrow{c}$ represent sides.	ents	having $\overrightarrow{a} \cdot \overrightarrow{b}$ and \overrightarrow{c} as its					
	(a)	Area of triangle	(b)	volume of parallelepiped					
	(c)	volume of tetrahedron	(d)	area of parallelogram					
(71)	If <u>a</u> =	$= 2\underline{\mathbf{i}} + 4\underline{\mathbf{j}} - \underline{\mathbf{k}}, \ \underline{\mathbf{b}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} + 7\underline{\mathbf{k}}$	& <u>c</u> = :	$5\underline{\mathbf{i}} + 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$ then $(3\underline{\mathbf{c}} + \underline{\mathbf{b}})$. $(2\underline{\mathbf{a}} - \underline{\mathbf{c}}) =$					
	(a)	32	(b)	- 66					
	(c)	- 19	(d)	-27					
(72)	If <u>a</u> ×	$\underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a} \text{ then}$							
	(a)	$\underline{\mathbf{a}} = \underline{\mathbf{b}} + \underline{\mathbf{c}}$	(b)	$\underline{b} = \underline{c} + \underline{a}$					
	(c)	$\underline{\mathbf{a}} = \underline{\mathbf{b}} \neq \underline{\mathbf{c}}$	(d)	$\underline{\mathbf{a}} + \underline{\mathbf{b}} + \underline{\mathbf{c}} = 0$					
(73)	If u =	= [4, 5], 4, 5 called							
	(a)	coordinates	(b)	vectors					

ordinates

(d)

(a) (2,7)

(b) (7, 2)

151

(c) (-2-7)

(d) (-2, 7)

(75) If $\underline{a} = [2, 3, 1]$, $\underline{b} = [1, 0, 2]$ then $\underline{a} \times \underline{b} = \underline{\hspace{1cm}}$

(a) $6\underline{i} - 3\underline{j} - 3\underline{k}$

(b) $6\underline{i} + 3\underline{j} + 3\underline{k}$

(c) -6i + 3i + 3k

(d) Null vector

(76) $[\underline{i} . \underline{i} . \underline{j}] = \underline{\hspace{1cm}}$

(Lahore Board 2012)

(a) 1

(b) 3

(c) 0

(d) 2

(77) $|\cos \alpha \underline{\mathbf{i}} + \sin \alpha \underline{\mathbf{j}} + 0\underline{\mathbf{k}}| = \underline{\hspace{1cm}}$

(Lahore Board 2012)

(a) 0

(b) 1

(c) -1

(d) 2

(78) Magnitude of the vector $\underline{\mathbf{v}} = -\underline{\mathbf{i}} + \underline{\mathbf{j}}$ is

(Lahore Board 2012)

(a) $\sqrt{1}$

(b) $\sqrt{2}$

(c) $\sqrt{3}$

(d) $\sqrt{4}$

(79) The value of $\underline{\mathbf{k}} \cdot \underline{\mathbf{i}} \times \underline{\mathbf{j}}$ is

(Lahore Board 2012)

(a) 0

(b) 1

(c) 2

(d) -1

(80) Magnitude of 2i+3j+4k is

(Lahore Board 2011)

(a) 2a

(b) $\sqrt{29}$

(c) 28

(d) $\sqrt{28}$

(81) Commutative law holds in

(Lahore Board 2013)

- (a) Vector product
- (b) cross product in three vectors
- (c) Inner product
- (d) None of these

(82) The norm of $\underline{\mathbf{u}} = [\mathbf{x}, \mathbf{y}]$ in \mathbb{R}^2 is

(Lahore Board 2013)

(a) $x^2 + y^2$

(b) $\sqrt{x^2 + y^2}$

(c) $x^2 - y^2$

(d) $\sqrt{x^2-y}$

(83)

(Lahore Board 2013)

(a) $\underline{b} \times \underline{a}$

If $\underline{a} \& \underline{b}$ are non zero vectors, then $\underline{a} \times \underline{b} = \underline{}$

(b) $\underline{a} \underline{b}$

(c) $\underline{a} \cdot \underline{b}$

 $(d) \qquad -\,\underline{b}\times\underline{a}$

(84) $2\underline{i} \cdot (2\underline{j} \times \underline{k})$ equals

(a) 0

(b) 2

(c) 4

(d) 6

 $(85) \quad \hat{i} \times \hat{i} = \underline{\qquad}$

(a)

(b) 2

(c) 0

(d) -1

1.	c	2.	b	3.	c	4.	c	5.	c	6.	c
7.	c	8.	b	9.	c	10.	c	11.	b	12.	b
13.	c	14.	d	15.	b	16.	b	17.	b	18.	d
19.	d	20.	d	21.	d	22.	c	23.	а	24.	а
25.	а	26.	b	27.	d	28.	а	29.	c	30.	d
31.	а	32.	c	33.	d	34.	b	35.	а	36.	d
37.	d	38.	b	39.	c	40.	c	41.	b	42.	а
43.	b	44.	c	45.	b	46.	d	47.	b	48.	а
49.	c	50.	а	51.	d	<i>52</i> .	c	53.	c	54.	b
55.	c	56.	c	57.	c	58.	b	59.	c	60.	d
61.	b	62.	c	<i>63</i> .	c	64.	b	65.	d	66.	c
67.	c	68.	c	69.	c	70.	b	71.	b	72.	d
73.	c	74.	c	75.	а	<i>76</i> .	c	77.	b	78.	b
<i>79</i> .	b	80.	b	81.	c	82.	b	83.	d	84.	c
85.	c										