Геометрия и топология.

Лектор — Евгений Анатольевич Фоминых Создатель конспекта — Глеб Минаев *

Литература:

- Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., "Элементарная топология", М.:МЦНМО, 2012.
- Коснёвски Чес, "Начальный курс алгебраической топологии", М.:Мир, 1983.
- Ю.Г. Борисович, Н.М. Близняков, Я.А. Израилевич, Т.Н. Фоменко, "Введение в топологию", М.:Наука. Физматлит, 1995.
- James Munkres, Topology.

Определение 1. Функция $d: X \times X \to \mathbb{R}_+$ называется *метрикой* (или *расстоянием*) в множестве X, если:

- $d(x,y) = 0 \Leftrightarrow x = y$;
- $\bullet \ d(x,y) = d(y,x);$
- $d(x,z) \leq d(x,y) + d(y,z)$ ("неравенство треугольника").

Пара (X, d), где d — метрика в X, называется метрическим пространством.

 $\Pi pumep \ 1. \ \Pi y$ сть X- произвольное множество. Тогда метрика

$$d(x,y) := egin{cases} 1 & ext{если } x
eq y \ 0 & ext{если } x = y \end{cases}$$

называется $\partial uc\kappa pemho \ddot{u}$ метрикой на множестве X.

 Π ример 2.

- ullet $X:=\mathbb{R}$, тогда d(x,y):=|x-y| метрика.
- ullet $X:=\mathbb{R}^n, \ x=(x_1,\ldots,x_n), \ y=(y_1,\ldots,y_n).$ Тогда

$$d(x,y) := \sqrt{(x_1 - y_1)^2 + \dots + (x_n + y_n)^2}$$

называется евклидовой метрикой.

- $X := \mathbb{R}^n$, $d(x, y) := \max_{i=1}^n |x_i y_i|$
- $X := \mathbb{R}^n, d(x,y) := \sum_{i=1}^n |x_i y_i|$

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

• $X := C[0;1], d(x(t), y(t)) = \max_{t \in [0;1]} |x(t) - y(t)|. (X, d)$ называют пространством непрерывных функций.

Определение 2. Пусть (X, d) — метрическое пространство. Сужение функции d на $Y \times Y$ является метрикой в Y. Метрическое пространство $(Y, d|_{Y \times Y})$ называется nodnpocmpancmeom пространства (X, d).

Теорема 1. Пусть дана $g: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, что

- $\forall x, y \in \mathbb{R}_+$ $g(x, y) = 0 \leftrightarrow x = y = 0;$
- $\forall x, y, d \in \mathbb{R}_+$ $g(x+d, y) \geqslant g(x, y) \land g(x, y+d) \geqslant g(x, y);$
- $\forall x_1, y_1, x_2, y_2 \in \mathbb{R}_+$ $g(x_1 + x_2, y_1 + y_2) \leq g(x_1, y_1) + g(x_2, y_2).$

Тогда для любых метрических пространств (X, d_X) и (Y, d_Y) функция

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)):=g(d_X(x_1,x_2),d_Y(y_1,y_2))$$

будет метрикой на $X \times Y$.

Доказательство. Проверим, что $d_{X\times Y}$ — метрика.

• $\forall x_1, x_2 \in X, y_1, y_2 \in Y$

$$d_{X\times Y}((x_1, y_1), (x_2, y_2)) = 0 \longleftrightarrow g(d_X(x_1, x_2), d_Y(y_1, y_2)) = 0 \longleftrightarrow d_X(x_1, x_2) = 0 \land d_Y(y_1, y_2) = 0 \longleftrightarrow x_1 = x_2 \land y_1 = y_2$$

• $\forall x_1, x_2 \in X, y_1, y_2 \in Y$

$$d_{X\times Y}((x_1, y_1), (x_2, y_2))$$

$$= g(d_X(x_1, x_2), d_Y(y_1, y_2)) = g(d_X(x_2, x_1), d_Y(y_2, y_1))$$

$$= d_{X\times Y}((x_2, y_2), (x_1, y_1))$$

• $\forall x_1, x_2, x_3 \in X, y_1, y_2, y_3 \in Y$

$$d_{X\times Y}((x_1, y_1), (x_3, y_3))$$

$$= g(d_X(x_1, x_3), d_Y(y_1, y_3))$$

$$\leqslant g(d_X(x_1, x_2) + d_X(x_2, x_3), d_Y(y_1, y_2) + d_Y(y_2, y_3))$$

$$\leqslant g(d_X(x_1, x_2), d_Y(y_1, y_2)) + g(d_X(x_2, x_3), d_Y(y_2, y_3))$$

$$= d_{X\times Y}((x_1, y_1), (x_2, y_2)) + d_{X\times Y}((x_2, y_2), (x_3, y_3))$$

Следствие 1.1. Для любых метрических пространств (X, d_X) и (Y, d_Y) пара $(X \times Y, d_{X \times Y})$, где

$$d_{X\times Y} := \sqrt{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2}$$

есть метрическое пространство.

Доказательство. Необходимо лишь проверить, что $g(x,y) := \sqrt{x^2 + y^2}$ удовлетворяет условиям теоремы.

2

- $\forall x, y \in \mathbb{R}_+$ $\sqrt{x^2 + y^2} \leftrightarrow x^2 + y^2 = 0 \leftrightarrow x = 0 = y$.
- $\forall x, y, d \in \mathbb{R}_+$ $x + d \geqslant x \Rightarrow (x + d)^2 \geqslant x^2 \Rightarrow (x + d)^2 + y^2 \geqslant x^2 + y^2 \Rightarrow \sqrt{(x + d)^2 + y^2} \geqslant \sqrt{x^2 + y^2}$; для y аналогично.
- $\forall x_1, y_1, x_2, y_2 \in \mathbb{R}_+$ по неравенству Коши-Буняковского-Шварца

$$(x_1y_2 - x_2y_1)^2 \geqslant 0$$

$$x_1^2y_2^2 + x_2^2y_1^2 \geqslant 2x_1x_2y_1y_2$$

$$(x_1^2 + y_1^2)(x_2^2 + y_2^2) \geqslant (x_1x_2 + y_1y_2)^2$$

$$(x_1^2 + y_1^2) + 2\sqrt{(x_1^2 + y_1^2)(x_2^2 + y_2^2)} + (x_2^2 + y_2^2) \geqslant (x_1^2 + y_1^2) + 2(x_1x_2 + y_1y_2) + (x_2^2 + y_2^2)$$

$$\left(\sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2}\right)^2 \geqslant (x_1 + x_2)^2 + (y_1 + y_2)^2$$

$$\sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2} \geqslant \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$$

Замечание 1. Если g ассоциативна (например, $g(x,y) := \sqrt{x^2 + y^2}$; она заодно коммутативна), то аналогично можно определить метрику на $X_1 \times X_2 \times \cdots \times X_n = (X_1 \times (X_2 \times (\cdots \times X_n) \dots))$.

Таким образом евклидова метрика есть метрика, так как её можно получить, применяя $g(x,y):=\sqrt{x^2+y^2}$ к пространствам $(X_i,d_i)=(\mathbb{R},d_{\mathbb{R}})$ (где $d_{\mathbb{R}}(x,y)=|x-y|$).

Определение 3. Пусть Для $g(x,y) := \sqrt{x^2 + y^2}$ из последней теоремы пространство $(X \times Y, d_{X \times Y})$ называется ($de\kappa apmoвым$) произведением метрических пространств (X, d_X) и (Y, d_Y) . Аналогично определяется произведение конечного числа пространств.

Замечание 2. На роль q(x,y) подходят следующие функции:

- $(x^{\alpha} + y^{\alpha})^{1/\alpha}$ для всех $\alpha \geqslant 1$;
- \bullet max(x, y).

А следующие функции уже не подходят:

- $(x^{\alpha} + y^{\alpha})^{1/\alpha}$ для всех $\alpha < 1$ (даже для отрицательных);
- $\min(x, y)$;
- $x \cdot y \times x/y$.

Определение 4. Пусть (X,d) — метрическое пространство, $a \in X, r \in \mathbb{R}, r > 0$. Тогда:

- $B_r(a) := \{x \in X \mid d(a,x) < r\}$ (открытый) шар пространства (X,d) с центром в точке a и радиусом r;
- $\overline{B}_r(a) = D_r(a) := \{x \in X \mid d(a,x) \leqslant r\}$ замкнутой шар пространства (X,d) с центром в точке а и радиусом r;
- $S_r(a) := \{x \in X \mid d(a,x) = r\}$ сфера пространства (X,d) с центром в точке a и радиусом r.

Определение 5. Пусть (X, d) — метрическое пространство, $A \subseteq X$. Множество A называется открытым в метрическом пространстве, если

$$\forall a \in A \ \exists r > 0 : B_r(a) \subseteq A$$

Теорема 2. В любом метрическом пространстве (X, d)

- 1. \varnothing u X открыты;
- 2. для всяких $a \in X$ и r > 0 открытый шар $B_r(a)$ открыт;
- 3. объединение любого семейства открытых множеств открыто;
- 4. пересечение конечного семейства открытых множеств открыто.

Доказательство.

- 1. Очевидно.
- 2. Для всякого $x \in B_r(a)$ верно, что $B_{r-d(x,a)}(x) \subseteq B_r(a)$, откуда утверждение очевидно следует.
- 3. Пусть дано семейство открытых множеств Σ . Пусть также $I = \bigcup \Sigma$. Для любого $x \in I$ верно, что существует $J \in \Sigma$, что $x \in J$, а значит есть r > 0, что $B_r(x) \subseteq J \subseteq I$, т.е. x внутренняя точка I. Таким образом I открыто.
- 4. Пусть $I = \bigcap_{i=1}^n I_i$. Тогда для любого $x \in I$ верно, что существуют $r_1, \ldots, r_n > 0$, что $B_{r_i}(x) \subseteq I_n$, значит $B_{\min r_i} \subseteq I$, значит x— внутренняя точка I. Таким образом I открыто.

Определение 6. Пусть X — некоторое множество. Рассмотрим набор Ω его подмножеств, для которого:

- 1. $\varnothing, X \in \Omega$;
- 2. объединение любого семейства множеств из Ω лежит в Ω ;
- 3. пересечение любого конечного семейства множеств, принадлежащих Ω , также принадлежит Ω .

В таком случае:

- Ω топологическая структура или просто топология в множестве X;
- множество X с выделенной топологической структурой Ω (т.е.пара (X,Ω)) называется топологическим пространством;
- ullet элементы множества Ω называются *открытыми множествами* пространства (X,Ω) .

Пример 3.

- Если Ω множество открытых множеств в метрическом пространстве (X,d), то (X,Ω) топологическое пространство. Таким образом любое метрическое пространство можно отождествлять с соответствующим топологическим пространством.
- Топология, индуцированная евклидовой метрикой в \mathbb{R}^n , называется *стандартной*.

- $\Omega := 2^X \partial ucк pemnas$ топология на произвольном множестве X. Именно она порождается дискретной метрикой на X.
- $\Omega := \{\varnothing, X\} aнmuducкpemнas$ топология на произвольном множестве X.
- $X:=\mathbb{R},\,\Omega:=\{(a;+\infty):a\in\mathbb{R}\}\cup\{\mathbb{R}\}\cup\{\varnothing\}$. Такая топология называется $\mathit{стрелкой}.$
- $\Omega = \{\varnothing\} \cup \{A \in X : |X \setminus A| \in \mathbb{N}\}$ топология конечных дополнений на произвольном множестве X.

Определение 7. Множество $F \subseteq X$ замкнуто в топологическом пространстве (X, Σ) , если его дополнение $X \setminus F$ открыто (т.е. если $X \setminus F \in \Sigma$).

Теорема 3. В любом топологическом пространстве X

- \varnothing u X замкнуты;
- объединение конечного набора замкнутых множеств замкнуто;
- пересечение любого набора замкнутых множеств замкнуто.

Теорема 4. Пусть $U - открыто, a V - замкнуто в <math>(X, \Omega)$. Тогда:

- $U \setminus V$ открыто;
- $V \setminus U$ замкнуто.

Определение 8. Пусть (X, Ω) — топологическое пространство и $A \subseteq X$. Тогда *внутренностью* множества A называется объединение всех открытых подмножеств A:

$$\operatorname{Int}(A) := \bigcup_{\substack{U \in \Omega \\ U \subset A}} U$$

Теорема 5.

- Int(A) omkpыmoe множество.
- $Int(A) \subseteq A$.
- $B om\kappa pumo \land B \subseteq A \Rightarrow B \subseteq Int(A)$.
- $A = Int(A) \Leftrightarrow A om\kappa pumo$.
- Int(Int(A)) = Int(A).
- $A \subseteq B \Rightarrow \operatorname{Int}(A) \subseteq \operatorname{Int}(B)$.
- $\operatorname{Int}(\bigcap_{k=1}^n A_k) = \bigcap_{k=1}^n \operatorname{Int}(A_k)$.
- $\operatorname{Int}(\bigcup_{A \in \Sigma} A) \supseteq \bigcup_{A \in \Sigma} \operatorname{Int}(A)$.

Определение 9. Окрестность точки a в топологическом пространстве X — открытое множество в X, содержащее a.

Точка a топологического пространства X называется внутренней точкой множества $A \subseteq X$, если A содержит как подмножество некоторую окрестность a.

Теорема 6.

- Множество открыто тогда и только тогда, когда все его точки внутренние.
- Внутренность множества есть множество всех его внутренних точек.

Доказательство.

- (\Rightarrow) Пусть A открыто, а $a \in A$. Тогда A та самая окрестность a, которая является подмножеством A, поэтому a внутренняя точка A.
 - (\Leftarrow) Пусть каждая точка A внутренняя. Тогда для каждого $a \in A$ определим окрестность I_a , лежащую в A как подмножество (такая есть по определению). Тем самым $A = \bigcup_{a \in A} I_a$, т.е. A есть объединение открытых множеств, следовательно открытое множество.
- (\subseteq) Пусть $a \in Int(A)$. Вспомним, что Int(A) открытое подмножество A. Следовательно, a внутренняя точка A.
 - (\supseteq) Пусть a внутренняя точка A. Следовательно есть открытое I, что $a \in I \subseteq A$, следовательно $I \subseteq \operatorname{Int}(A)$, а значит $a \in \operatorname{Int}(A)$.

Определение 10. Пусть (X, Ω) — топологическое пространство, а $A \subseteq X$. Замыканием множества A называется пересечение всех замкнутых пространств, содержащих A как подмножество:

$$Cl(A) := \bigcap_{\substack{X \setminus V \in \Omega \\ V \supseteq A}} V$$

Теорема 7.

- Cl(A) замкнутое множество.
- $Cl(A) \supseteq A$.
- $B 3am\kappa ymo \land B \supseteq A \Rightarrow B \supseteq Cl(A)$.
- $A = Cl(A) \Leftrightarrow A 3amkhymo.$
- Cl(Cl(A)) = Cl(A).
- $A \subseteq B \Rightarrow \operatorname{Cl}(A) \subseteq \operatorname{Cl}(B)$.
- $\operatorname{Cl}(\bigcup_{k=1}^{n} A_k) = \bigcup_{k=1}^{n} \operatorname{Cl}(A_k).$
- $Cl(\bigcap_{A \in \Sigma} A) \supseteq \bigcap_{A \in \Sigma} Cl(A)$.
- $Cl(A) \sqcup Int(X \setminus A) = X$.

Определение 11. Пусть X — топологическое пространство, $A \subseteq X$ и $b \in X$. Точка b называется точкой прикосновения множества A, если всякая её окрестность пересекается c A.

Теорема 8.

- ullet Множество замкнуто тогда и только тогда, когда оно является множеством своих точек прикосновения.
- Замыкание множества есть множество всех его точек прикосновения.

Определение 12. Пусть X — топологическое пространство, $A \subseteq X$ и $a \in X$.

 Γ разность замыкания и внутренности A: $\operatorname{Fr}(A) := \operatorname{Cl}(A) \setminus \operatorname{Int}(A)$.

Точка $a-\mathit{граничная}$ точка множества A, если всякая её окрестность пересекается с A и с $X\setminus A$.

Теорема 9. Граница множества совпадает с множеством его граничных точек.

Теорема 10.

- Fr(A) замкнуто.
- $\operatorname{Fr}(A) = \operatorname{Fr}(X \setminus A)$.
- A замкнуто $\Leftrightarrow A \supseteq \operatorname{Fr}(A)$.
- $A \ om \kappa p \cup mo \Leftrightarrow A \cap Fr(A) = \varnothing$.

Определение 13. Пусть X — топологическое пространство, $A \subseteq X$ и $a \in X$.

- a-npedeльная точка A, если в любой окрестности a есть точка $A\setminus\{a\}$.
- a изолированная точка A, если $a \in A$ и есть окрестность a без точка $A \setminus \{a\}$.

Теорема 11.

- ullet b-npeдельная $\Rightarrow b-m$ очка прикосновения.
- $Cl(A) = \{$ внутренние точки $A\} \sqcup \{$ граничные точки $A\}.$
- $Cl(A) = \{ npedenbhue точки A \} \sqcup \{ usonupoванные точки A \}.$

Определение 14. Пусть Ω_1 и Ω_2 — топологии на X. Тогда если $\Omega_1 \subseteq \Omega_2$, то говорят, что Ω_1 слабее (грубее) Ω_2 , а Ω_2 сильнее (тоньше) Ω_1 .

 $\mathit{Пример}\ 4.\ \mathit{И}$ з всех топологий на X антидискретная — самая грубая, а дискретная — самая тонкая.

Теорема 12. Топология метрики d_1 грубее топологии метрики d_2 тогда и только тогда, когда в любом шаре метрики d_1 содержится шар метрики d_2 с тем же центром.

Доказательство.

- (\Rightarrow) Пусть топология метрики d_1 грубее топологии метрики d_2 . Тогда любой шар $B_r^{d_1}(a)$ открыт в d_2 , следовательно по определению открытости есть шар $B_q^{d_2}(a) \subseteq B_r^{d_1}(a)$.
- (\Leftarrow) Пусть в любом шаре метрики d_1 содержится шар метрики d_2 с тем же центром. Возьмём любое открытое в d_1 множество U. Тогда для всякой точки $a \in U$ есть шар $B_r^{d_1}(a) \subseteq U$. При этом есть шар $B_q^{d_2}(a) \subseteq B_r^{d_1}(a)$, таким образом a внутренняя точка U в d_2 . Следовательно U открыто в d_2 .

Следствие 12.1. Если d_1 и d_2 — метрики на X и $d_1 \leq d_2$, то топология d_1 грубее топологии d_2 .

Определение 15. Две метрики на одном множестве называются *эквивалентными*, если они порождают одну топологию.

Лемма 13. Пусть (X,d) — метрическое пространство. Тогда для всякого C>0 функция $C\cdot d$ — метрика на X, эквивалентная d.

Следствие 13.1. Если для метрик d_1 и d_2 на X есть такое C > 0, что $d_1 \leqslant C d_2$, то d_1 грубее d_2 .

Определение 16. Метрики d_1 и d_2 на одном множестве называются липшицево эквивалентными, если существуют c, C > 0, что $c \cdot d_1 \leqslant d_2 \leqslant C \cdot d_1$.

Теорема 14. Липшицево эквивалентные метрики просто эквивалентны.

Определение 17. Топологическое пространство *метризуемо*, если есть метрика, её порождающая.

Определение 18. $\mathit{Базa}$ топологии Ω — такое семейство Σ открытых множеств, что всякое открытое U представимо в виде объединения множеств из Σ .

$$\Sigma \subseteq \Omega$$
 — база $\Longleftrightarrow \forall U \in \Omega \; \exists \Lambda \subseteq \Sigma : \quad U = \bigcup_{W \in \Lambda} W$

Определение 19. Множество Γ подмножеств множества X называются его *покрытием*, если $X := \bigcup_{A \in \Gamma} A$. Часто покрытие записывают в виде $\Gamma = \{A_i\}_{i \in I}$.

Теорема 15 (второе определение базы). Пусть (X,Ω) — топологическое пространство и $\Sigma \subseteq \Omega$. Тогда Σ — база топологии Ω тогда и только тогда, когда для любой точки а любого открытого множества U есть окрестность из Σ , лежащая в U как подмножество.

Определение 20. Пусть (X, Ω) — топологическое пространство, $a \in X$ и $\Lambda \subseteq \Omega$. Λ называется базой топологии (базой окрестности) в точке a, если:

- 1. $\forall U \in \Lambda \ a \in U$;
- 2. \forall окрестности U точки $a \exists V_a \in \Lambda : V_a \subseteq U$.

Теорема 16.

- Если Σ база топологии, то для всякой точки $a \in X$ множество $\Sigma_a := \{U \in \Sigma \mid a \in U\}$ база топологии в точке a.
- Пусть для каждой точки $a \in X$ определена база топологии Σ_a в ней. Тогда $\bigcup_{a \in X} \Sigma_a$ база топологии.

Теорема 17. Пусть Σ — семейство подмножеств X. Тогда есть не более одной топологии, для которой Σ является базой.

Доказательство. Предположим противное: пусть Ω_1 и Ω_2 — различные топологии на X, для которых Σ является базой. По определению базы для всякого $U \in \Omega_1$ есть семейство $\Gamma \subseteq \Sigma$, что $U = \bigcup_{A \in \Gamma} A$; но поскольку $\Gamma \subseteq \Sigma \subseteq \Omega_2$, то всякое $A \in \Gamma$ лежит в Ω_2 , а значит U тоже лежит в Ω_2 . Таким образом $\Omega_1 \subseteq \Omega_2$; аналогично наоборот, следовательно $\Omega_1 = \Omega_2$ — противоречие.

Таким образом для всякого Σ будет не более одной топологии, где для которой оно будет базой. \square

Следствие 17.1. Пусть Σ_1 и Σ_2 — базы топологий Ω_1 и Ω_2 на одном и том же множестве. Тогда если $\Sigma_1 = \Sigma_2$, то и $\Omega_1 = \Omega_2$.

Теорема 18 (критерий базы). Пусть X — произвольное множество, а Σ — его покрытие. Σ — база некоторой топологии на X тогда и только тогда, когда для всяких $A,B\in\Sigma$ есть семейство $\Lambda \subseteq \Sigma$, что $A \cap B = \bigcup_{S \in \Lambda} S$.

Доказательство.

- (\Rightarrow) Если Σ база, то для всяких $A,B\in\Sigma$ множество $A\cap B$ открыто, а поэтому представляется как объединение некоторого подсемейства Σ .
- (\Leftarrow) Рассмотрим топологию Ω , образованную всевозможными объединениями множеств из Σ , т.е.

$$\Omega := \left\{ \bigcup_{S \in \Lambda} S \mid \Lambda \subseteq \Sigma \right\}$$

Проверим, что это действительно топология.

- 1. Σ покрытие, поэтому $X=\bigcup_{S\in\Sigma}S\in\Omega$. Также рассматривая $\Lambda=\varnothing$, получаем, что $\bigcup_{S \in \Lambda} S = \emptyset \in \Omega.$
- 2. Пусть $\Phi \subseteq \Omega$. Тогда для каждого $S \in \Phi$ есть семейство $\Lambda_S \subseteq \Sigma$, его образующее, т.е. $S=\bigcup_{T\in\Lambda_S}T.$ В таком случае $\Lambda:=\bigcup_{S\in\Phi}\Lambda_S$ является подмножеством $\Sigma,$ а тогда

$$\bigcup_{S \in \Phi} S = \bigcup_{S \in \Phi} \bigcup_{T \in \Lambda_S} T = \bigcup_{T \in \Lambda} T \in \Omega$$

3. Пусть $U,V\in\Omega$. Тогда существуют $M,N\subseteq\Sigma$, что $U=\bigcup_{S\in M}S$ и $V=\bigcup_{S\in N}S$. Также для каждой $P=(A,B)\in M\times N$ существует $\Lambda_P\subseteq \Sigma$, что $A\cap B=\bigcup_{S\in\Lambda_P}$. Пусть $\Lambda := \bigcup_{P \in M \times N} \Lambda_S$. Понятно, что $\Lambda \subseteq \Sigma$. Следовательно

$$U \cap V = \left(\bigcup_{A \in M} A\right) \cap \left(\bigcup_{B \in N} B\right) = \bigcup_{(A,B) \in M \times N} A \cap B = \bigcup_{P \in M \times N} \bigcup_{S \in \Lambda_P} S = \bigcup_{S \in \Lambda} S \in \Omega$$

Определение 21. Предбаза — семейство Δ открытых множеств в пространстве (X,Ω) , что Ω — наименьшая топология по включению топология, содержащая $\Delta.$

Теорема 19. Любое семейство Δ подмножеств множества X является предбазой некоторой топологии.

Доказательство. Определим

$$\Sigma := \{X\} \cup \left\{ \bigcap_{A \in W} A \mid W \subseteq \Delta \land |W| \in \mathbb{N} \right\}$$

Заметим, что $\Delta\subseteq\Sigma$. Действительно, для всякого $A\in\Delta$ семейство $W:=\{A\}$ является подмножеством Δ , следовательно $A = \bigcap_{T \in W} T \in \Sigma$.

Покажем, что любая топология, которая содержит как подмножество Δ , содержит и Σ как подмножество. Действительно, пусть $A \in \Sigma$ (будем считать, что A — не X и не \varnothing ; иначе утверждение очевидно). Тогда есть конечное семейство $W\subseteq \Delta$, что $A=igcap_{T\in W} T$. Пусть Ω — любая топология, содержащая Δ как подмножество. Тогда $W\subseteq\Omega$, а следовательно A= $\bigcap_{T\in W}T\in\Omega$. Таким образом $\Sigma\subseteq\Omega$. Поэтому для топология, для которой Σ будет предбазой, Δ тоже будет предбазой.

Покажем, что Σ удовлетворяет критерию базы.

- $X \in \Sigma$, значит Σ покрытие X.
- Пусть $A, B \in \Sigma$. Если A = X, то $A \cap B = B = \bigcup_{T \in W} T$, где $W := \{B\} \subseteq \Sigma$. Если $A = \emptyset$, то $A \cap B = \emptyset = \bigcup_{T \in W} T$, где $W := \emptyset \subseteq \Sigma$. Аналогично, если B есть X или \emptyset . Иначе есть непустые $V, U \subseteq \Delta$, что $A = \bigcap_{T \in V} T$, а $B = \bigcap_{T \in U} T$. Следовательно $A \cap B = \bigcap_{T \in V \cup U} T$. Но поскольку $V \cup U \subseteq \Delta$, то $A \cap B \in \Sigma$. Таким образом $A \cap B = \bigcup_{T \in W} T$, где $W := \{A \cap B\} \subseteq \Sigma$.

Рассмотрим

$$\Omega := \left\{ \bigcup_{S \in \Lambda} S \mid \Lambda \subseteq \Sigma \right\}$$

По теореме о критерии базы Ω — топология, где Σ — база. С другой стороны Ω — множество, которое содержится как подмножество в любой топологии, которая содержит как подмножество Σ . Следовательно Ω — минимальное топология, содержащая как подмножество Σ , а значит и Δ . Поэтому Δ — предбаза в Ω .

Теорема 20. Пусть (X, Ω) — топологическое пространство, а $A \subseteq X$. Тогда множество

$$\Omega_A := \{ U \cap A \mid U \in \Omega \}$$

ecmь топология на A.

Определение 22. Пусть (X,Ω) топологическое пространство, а $A\subseteq X$. Тогда

$$\Omega_A := \{ U \cap A \mid U \in \Omega \}$$

— топология, *индуцированная* множеством A, а (A, Ω_A) — подпространство (X, Ω) .

Теорема 21.

- Множества, открытые в подпространстве, не обязательно открыты в объемлющем пространстве.
- Открытые множества открытого подпространства открыты и во всём пространстве.
- $Ecnu \Sigma база топологии \Omega$, то

$$\Sigma_A := \{ U \cap A \mid U \in \Sigma \}$$

- база индуцированной топологии.
- Пусть (X,Ω) топологическое пространство и $B \subseteq A \subseteq X$. Тогда $(\Omega_A)_B = \Omega_B$, т.е. топология, которая индуцируется в B топологией, индуцированной в A, совпадает с топологией, индуцированной непосредственно из X.

Определение 23. Пусть X, Y — топологические пространства. Отображение $f: X \to Y$ называется nenpepuвным, если прообраз всякого открытого множества из Y открыт в X.

Теорема 22.

- Отображение непрерывно тогда и только тогда, когда прообраз замкнутого замкнут.
- Композиция непрерывных отображений непрерывно.
- Пусть Z-noдпространство X, а $f:X\to Y$ непрерывно. Тогда $f|_Z:Z\to Y$ непрерывно.

• Пусть Z — подпространство Y, $f: X \to Y$ и $f(X) \subseteq Z$. Пусть $\widetilde{f}: X \to Z, x \mapsto f(x)$. Тогда f непрерывна тогда и только тогда, когда \widetilde{f} непрерывна.

Определение 24. Отображение $f: X \to Y$ называется непрерывным в точке $a \in X$, если для любой окрестности U точки f(a) существует такая окрестность V точки a, что $f(V) \subseteq U$.

Теорема 23. Отображение $f: X \to Y$ непрерывно тогда и только тогда, когда оно непрерывно в каждой точке пространства X.

Доказательство.

- (\Rightarrow) Очевидно, $V = f^{-1}(U)$.
- (\Leftarrow) Пусть $U \in \Omega_Y$. Тогда для всякого $a \in f^{-1}(U)$ есть окрестность V_a точки a, что $V_a \subseteq f^{-1}(U)$. Следовательно любая точка $f^{-1}(U)$ внутренняя, а значит $f^{-1}(U)$ открыто.

Теорема 24. Пусть X и Y — топологические пространства, $a \in X$, $f: X \to Y$, Σ_a — база окрестностей в точке a и $\Lambda_{f(a)}$ — база окрестностей в точке f(a). Тогда f непрерывна в точке a тогда и только тогда, когда для всякого $U \in \Lambda_{f(a)}$ есть $V \in \Sigma_a$, что $f(V) \subseteq U$.

Доказательство.

- (⇒) Пусть f непрерывна в a. Рассмотрим любое $U \in \Lambda_{f(a)}$. U окрестность f(a), соответственно есть W окрестность a, что $f(W) \subseteq U$. Но тогда есть $V \in \Sigma_a$, что $V \subseteq W$. Тогда $V \in \Sigma_a$ и $f(V) \subseteq U$.
- (\Leftarrow) Пусть для всякого $U \in \Lambda_{f(a)}$ найдётся $V \in \Sigma_a$, что $f(V) \subseteq U$. Рассмотрим любую окрестность U точки f(a). Тогда есть семейство $W \in \Lambda_{f(a)}$, что $W \subseteq U$. Следовательно найдётся $V \in \Sigma_a$, что $f(V) \subseteq W$, а следовательно V окрестность a, и $f(V) \subseteq U$.

Следствие 24.1. Пусть X, Y — метрические пространства, $a \in X, f : X \to Y$. Тогда

1. f непрерывно в точке а тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \quad f(B_{\delta}(a)) \subseteq B_{\varepsilon}(f(a))$$

2. f непрерывно в точке а тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \quad d_X(x, a) < \delta \rightarrow d_Y(f(x), f(a)) < \varepsilon$$

Определение 25. Пусть X, Y — метрические пространства. Отображение $f: X \to Y$ называется $\mathit{липшицевым},$ если:

$$\exists C > 0: \forall a, b \in X \quad d_Y(f(a), f(b)) \leq C \cdot d_X(a, b)$$

Значение C называют константой Липшица отображения f .

Теорема 25. Всякое липшицево отображение непрерывно.

Доказательство. Действительно,

$$\forall \varepsilon > 0 \qquad \delta := \frac{\varepsilon}{C} \quad \Longrightarrow \quad \left(d_X(x, a) < \delta \quad \longrightarrow \quad d_Y(f(x), f(a)) \leqslant C \cdot d_X(x, a) < C \cdot \delta = \varepsilon \right)$$

 $\Pi p u м e p 5.$

• Пусть фиксирована точка x_0 в метрическом пространстве (X,d). Тогда отображение

$$f: X \to \mathbb{R}, \ a \mapsto d(a, x0),$$

непрерывно.

• Пусть A — непустое подмножество метрического пространства (X, d). Расстоянием от точки $x \in X$ до множества A называется число

$$d(x, A) := \inf\{d(x, a) : a \in A\}.$$

Отображение

$$f: X \to \mathbb{R}, \ x \mapsto d(x, A),$$

непрерывно.

• Метрика d на множестве X является непрерывным отображением $X \times X \to \mathbb{R}$.

Определение 26. Покрытие Γ топологического пространства X называется $\phi y n damenman b-$ ным, если

$$\forall U \subseteq X: \quad \Big(\forall A \in \Gamma \quad U \cap A \text{ открыто в } A \Big) \quad \longrightarrow \quad \Big(U \text{ открыто в } X \Big)$$

Лемма 26. Покрытие Γ топологического пространства X фундаментально тогда и только тогда, когда

$$\forall V \subseteq X \quad \Big(\forall A \in \Gamma \quad V \cap A \; \textit{замкнуто} \; \textit{в} \; A \Big) \quad \longrightarrow \quad \Big(U \; \textit{замкнуто} \; \textit{в} \; X \Big)$$

Доказательство.

- (⇒) Пусть Γ фундаментально. Рассмотрим $V \subseteq X$, что для всякого $A \in \Gamma$ множество $V \cap A$ замкнуто в A. Следовательно $(X \setminus V) \cap A$ открыто в A, а тогда по фундаментальности Γ множество $X \setminus V$ открыто, а значит всё V замкнуто.
- (⇐) Аналогично, поменяв местами слова "открыто"и "замкнуто".

Теорема 27. Пусть X, Y- топологические пространства, $\Gamma-$ фундаментальное покрытие X и $f: X \to Y$. Если сужение f на всякое $A \in \Gamma$ непрерывно, то и само f непрерывно.

Доказательство. Рассмотрим любое открытое в Y множество U. Если $A \in \Gamma$, то $f^{-1}(U) \cap A = (f|_A)^{-1}(U)$ открыто. А в таком случае из фундаментальности Γ следует, что $f^{-1}(U)$ открыто. Таким образом f непрерывно.

Определение 27. Покрытие топологического пространства называется

- открытым, если оно состоит из открытых множеств;
- замкнутым если из замкнутых;
- *локально конечным* если каждая точка пространства обладает окрестностью, пересекающейся лишь с конечным числом элементов покрытия.

Теорема 28.

- 1. Всякое открытое покрытие фундаментально.
- 2. Всякое конечное замкнутое покрытие фундаментально.
- 3. Всякое локально конечное замкнутое покрытие фундаментально.

Доказательство. Пусть Γ — данное покрытие.

1. Пусть дано $U\subseteq X$, что для всякого $A\in \Gamma$ множество $U\cap A$ открыто в A, а значит открыто в X. Тогда

$$U=U\cap X=\bigcup_{A\in\Gamma}U\cap A$$

есть объединение открытых множеств, а значит само открыто. Таким образом Γ фундаментально.

2. Пусть дано $U\subseteq X$, что для всякого $A\in \Gamma$ множество $U\cap A$ замкнуто в A, а значит замкнуто в X. Тогда

$$U=U\cap X=\bigcup_{A\in\Gamma}U\cap A$$

есть конечное объединение замкнутых множеств, а значит само замкнуто. Таким образом Γ фундаментально.

3. Пусть дано $U \subseteq X$, что для всякого $A \in \Gamma$ множество $U \cap A$ открыто в A. Рассмотрим некоторую точку $u \in U$ и её окрестность V_u , которая пересекается с конечным набором Γ_u элементов из Γ . Тогда для всякого $A \in \Gamma_u$ множество

$$U\cap A\cap V=(U\cap A)\cap (A\cap V)$$

открыто в $V \cap A$. При этом

$$\{V \cap A \mid A \in \Gamma_u\}$$

— конечное замкнутое покрытие, а значит $U \cap V$ открыто в V, а значит и в X. Таким образом $U \cap V$ — окрестность u, а значит u — внутренняя точка U. Значит U открыто.

Теорема 29. Пусть (X,Ω_X) и (Y,Ω_Y) — топологические пространства. Тогда

$$\Sigma := \{ U \times V \mid U \in \Omega_X \land V \in \Omega_Y \}$$

является базой топологии на $X \times Y$.

Доказательство. Проверим критерий базы:

- 1. $X \in \Omega_X, Y \in \Omega_Y$, следовательно $X \times Y \in \Sigma$. Таким образом Σ покрытие $X \times Y$.
- 2. Пусть $U_1 \times V_1, U_2 \times V_2 \in \Sigma$. Тогда $U_1 \cap U_2 \in X, V_1 \cap V_2 \in Y$, а значит $(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) \in \Sigma$.

Таким образом Σ — база.

Определение 28. Пусть (X, Ω_X) и (Y, Ω_Y) — топологические пространства, а $\Omega_{X \times Y}$ — топология, порождённая базой Σ из предыдущей теоремы. Тогда $(X \times Y, \Omega_{X \times Y})$ называется *произведением* топологических пространств, а сама $\Omega_{X \times Y}$ называется *стандартной* топологией.

3амечание 3. По аналогии если Σ_X и Σ_Y — базы топологий Ω_X и Ω_Y соответственно, то

$$\Lambda := \{ U \times V \mid U \in \Sigma_X \land V \in \Sigma_Y \}$$

также являются базойстандартной топологии на X imes Y.

Определение 29. Обозначения:

- $X = \prod_{i \in I} X_i$ произведение топологических пространств.
- Элементами X являются такие функции $x:I \to \bigcup_{i\in I} X_i$, что $x(i) \in X_i$.
- $p_i: X \to X_i$ координатная проекция, где $p_i(x) := x(i)$.

Определение 30. Пусть $\{(X_i, \Omega_i)\}_{i \in I}$ — семейство топологических пространств. *Тихоновская топология* на $X = \prod_{i \in I} X_i$ задаётся предбазой, состоящей из всевозможных множеств вида $p_i^{-1}(U)$, где $i \in I$, а $U \subseteq \Omega_i$.

Замечание 4. В случае конечного произведения тихоновская топология совпадает со стандартной.

Теорема 30. Пусть (X, d_X) и (Y, d_Y) — метрические пространства, Ω_X и Ω_Y — топологии в данных метрических пространствах. Рассмотрим две топологии:

- $\Omega_{X\times Y}$ топология-произведение топологий Ω_X и Ω_Y ;
- Ω_{\max} топология, порождённая произведением метрик по функции $g := \max (c M. meo-pemy 1).$

Тогда эти топологии совпадают.

Доказательство. Определим

$$d_{\text{max}}: (X \times Y) \times (X \times Y) \to \mathbb{R}, ((x_1, y_1), (x_2, y_2)) \mapsto \max(d_X(x_1, x_2), d_Y(y_1, y_2))$$

Таким образом d_{\max} — метрика, порождающая Ω_{\max} .

Лемма 30.1.

$$B_r^{d_{\text{max}}}((x,y)) = B_r^{d_X}(x) \times B_r^{d_Y}(y)$$

Доказательство. Очевидно.

Вспомним, что

$$\Sigma_X := \{ B_r^{d_X}(x) \mid r > 0 \land x \in X \}$$
 $\qquad \Sigma_Y := \{ B_r^{d_Y}(y) \mid r > 0 \land y \in Y \}$

являются базами Ω_X и Ω_Y . Следовательно

$$\Sigma_{X \times Y} := \{ U_X \times U_Y \mid U_X \in \Sigma_X \land U_Y \in \Sigma_Y \}$$

является базой $\Omega_{X imes Y}$. Также заметим, что

$$\Sigma_{\max} := \{B^{d_{\max}}_r((x,y)) \mid r > 0 \land x \in X \land y \in Y\} = \{B^{d_X}_r(x) \times B^{d_Y}_r(y) \mid r > 0 \land x \in X \land y \in Y\}$$

является базой Ω_{\max} . При этом несложно видеть, что $\Sigma_{\max} \subseteq \Sigma_{X \times Y}$, следовательно Ω_{\max} грубее $\Omega_{X \times Y}$. Осталось показать, что Σ_{\max} порождает $\Sigma_{X \times Y}$, т.е. всякое $U \in \Sigma_{X \times Y}$ представимо в виде объединения некоторых множеств из Σ_{\max} .

Пусть U — некоторый элемент $\Sigma_{X \times Y}$. Тогда есть некоторые $r_X, r_Y > 0$ и $(x,y) \in X \times Y$, что $U = B^{d_X}_{r_X}(x) \times B^{d_Y}_{r_Y}(y)$. Пусть $(x',y') \in U$, тогда $x' \in B^{d_X}_{r_X}(x)$. Следовательно $q_X := r_X - d_X(x,x') > 0$, а $B^{d_X}_{q_X}(x') \subseteq B^{d_X}_{r_X}(x)$; аналогично для Y. Пусть $q := \min(q_X,q_Y) > 0$. Тогда

$$V := B_q^{d_X}(x') \times B_q^{d_Y}(y')$$

— окрестность (x',y'). При этом $V\subseteq U$. Значит U представляется в виде объединения всех таких окрестностей для каждой точки (x',y') из него. Но $V\in \Sigma_{\max}$, поэтому Σ_{\max} порождает $\Sigma_{X\times Y}$. Значит топология, которая порождает Σ_{\max} , — Ω_{\max} — содержит как подмножество топологию, которую порождает $\Sigma_{X\times Y}$.

Таким образом $\Omega_{\max} = \Omega_{X \times Y}$.

Теорема 31. Пусть дана $g: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, что

- $\forall x, y \in \mathbb{R}_+$ $g(x, y) = 0 \leftrightarrow x = y = 0;$
- $\forall x, y, d \in \mathbb{R}_+$ $g(x+d, y) \geqslant g(x, y) \land g(x, y+d) \geqslant g(x, y);$
- $\forall x_1, y_1, x_2, y_2 \in \mathbb{R}_+$ $g(x_1 + x_2, y_1 + y_2) \leqslant g(x_1, y_1) + g(x_2, y_2);$
- $\forall \alpha > 0 \,\exists x, y > 0$: $0 < q(x, 0) < \alpha \land 0 < q(0, y) < \alpha$.

Тогда для любых метрических пространств (X, d_X) и (Y, d_Y) функция

$$d_q((x_1, y_1), (x_2, y_2)) = g(d_X(x_1, x_2), d_Y(y_1, y_2))$$

является метрикой, эквивалентной метрике

$$d_{\max}((x_1, y_1), (x_2, y_2)) = \max(d_X(x_1, x_2), d_Y(y_1, y_2))$$

Доказательство. Заметим, что по теореме 1 функция d_{\max} является метрикой. С помощью теоремы 12 имеем, что нужно показать, что в каждом шаре по одной метрик d_{\max} и d_g есть шар с тем же центром по другой метрики.

Рассмотрим шар $B_r^{d_g}((x,y))$. Тогда по свойству g есть $q_X>0$, что $0< g(q_X,0)< r/2$; аналогично для Y. Следовательно для всех точек $x'\in B_{q_X}^{d_X}(x)$ и $y'\in B_{q_Y}^{d_Y}(y)$ верно, что

$$d_g((x', y'), (x, y))$$

$$= g(d_X(x', x), d_Y(y', y))$$

$$\leqslant g(d_X(x', x), 0) + g(0, d_Y(y', y))$$

$$\leqslant g(q_X, 0) + g(0, q_Y)$$

$$< \frac{r}{2} + \frac{r}{2} = r$$

Пусть $q := \min(q_X, q_Y)$. Тогда

$$B_q^{d_{\max}}((x,y)) = B_q^{d_X}(x) \times B_q^{d_Y}(y) \subseteq B_{q_X}^{d_X}(x) \times B_{q_Y}^{d_Y}(y) \subseteq B_r^{d_g}((x,y))$$

T.e. для каждого шара по d_g нашёлся подшар по d_{\max} .

Лемма 31.1. Для всякого r > 0 есть такое $q_X > 0$, что

$$\forall x \in \mathbb{R}_+ \qquad g(x,0) < q_X \longrightarrow x < r$$

Aналогично для Y.

Доказательство. Рассмотрим $q_X := g(r,0) > 0$. Тогда если $x \geqslant r$, то $g(x,0) \geqslant g(r,0) = q_X$. Следовательно

$$\forall x \in \mathbb{R}_+ \qquad g(x,0) < q_X \longrightarrow x < r$$

Аналогично для Y.

Рассмотрим шар $B_r^{d_{\max}}((x,y))$. Тогда определим q_X и q_Y по прошлой лемме для r и координат X и Y соответственно. Пусть также $q:=\min(q_X,q_Y)$ Тогда

$$\forall (x',y') \in B_q^{d_g}((x,y)) \\ \begin{cases} g(d_X(x',x),0) \leqslant g(d_X(x',x),d_Y(y',y)) = d_g((x',y'),(x,y)) < q \leqslant q_X \\ g(0,d_Y(y',y)) \leqslant g(d_X(x',x),d_Y(y',y)) = d_g((x',y'),(x,y)) < q \leqslant q_Y \end{cases} \\ \Longrightarrow \begin{cases} d_X(x',x) < r \\ d_Y(y',y) < r \end{cases} \\ \Longrightarrow d_{\max}((x',y'),(x,y)) = \max(d_X(x',x),d_Y(y',y)) < r \\ \Longrightarrow (x',y') \in B_r^{d_{\max}}((x,y)) \end{cases}$$

Следствие 31.1. Произведения метрических пространств по функции $g(x,y) := (x^{\alpha} + y^{\alpha})^{1/\alpha}$ для всякого $\alpha \geqslant 1$ даёт такую же топологию, что и произведение стандартных топологий на метрических пространствах. В случае $\alpha = 2$ мы имеем стандартное произведение пространств.

Теорема 32. Пусть $X = \prod_{i \in I} X_i$ — произведение топологических пространств. Тогда координатные проекции $p_i : X \to X_i$ непрерывны.

Доказательство. Для всякого открытого в X_i множества U множество $p_i^{-1}(U)$ — элемент предбазы тихоновской топологии (по определению), поэтому $p_i^{-1}(U)$ открыто, а значит p_i непрерывно.

Определение 31 (отображение в $X \times Y$). Пусть X, Y, Z– топологические пространства. Любое отображение $f: Z \to X \times Y$ имеет вид

$$f(z) = (f_1(z), f_1(z)),$$
 для всех $z \in Z$,

где $f_1:Z\to X,\ f_2:Z\to Y$ — некоторые отображения, называемые компонентами отображениями f.

Определение 32 (отображение в $\prod_{i \in I} X_i$). Пусть Z и $\{X_i\}_{i \in I}$ — топологические пространства. Компонентами отображения $f: Z \to \prod_{i \in I} X_i$ называются отображения $f_i: Z \to X_i$, задаваемые формулами

$$f_i := p_i \circ f_i$$

Теорема 33 (о покоординатной непрерывности). Пусть Z и $\{X_i\}_{i\in I}$ — топологические пространства, $X = \prod_{i\in I} X_i$ — тихоновское произведение. Тогда отображение $f: Z \to \prod_{i\in I} X_i$ непрерывно тогда и только тогда, когда каждая его компонента f_i непрерывна.

Доказательство.

 (\Rightarrow) $f_i = p_i \circ f$, при этом p_i и f непрерывны, следовательно и f_i непрерывно.

 (\Leftarrow) Пусть U — элемент предбазы тихоновской топологии. Тогда существуют $i \in I$ и $V \in \Omega_i$, что $U = p_i^{-1}(V)$, следовательно

$$f^{-1}(U) = f^{-1}(p_i^{-1}(V)) = (p_i \circ f)^{-1}(V) = f_i^{-1}(V)$$

— открытое множество.

Теперь заметим, что для всякого открытого в X множества W существует семейство Σ конечных наборов открытых множеств предбазы, что

$$W = \bigcup_{\Lambda \in \Sigma} \bigcap_{T \in \Lambda} T$$

Следовательно

$$f^{-1}(W) = f^{-1}\left(\bigcup_{\Lambda \in \Sigma} \bigcap_{T \in \Lambda} T\right) = \bigcup_{\Lambda \in \Sigma} f^{-1}\left(\bigcap_{T \in \Lambda} T\right) = \bigcup_{\Lambda \in \Sigma} \bigcap_{T \in \Lambda} f^{-1}(T)$$

является открытым, поскольку каждое $f^{-1}(T)$ открыто (т.к. T — элемент предбазы, для него уже показали), а каждое Λ конечно.

Замечание 5. Также для проверки на непрерывность $f: X \to Y$ достаточно проверить открытость $f^{-1}(U)$ для всякого U из какой-либо базы или предбазы Y.

Замечание 6. Развёрнутое утверждение неверно: неверно, что если $f:\prod_{i\in I}X_i\to Y$ непрерывно по каждой координате, от непрерывно и в итоге. Для этого несложно проверить, что подходит

$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto \begin{cases} 0 & \text{если } (x,y) = (0,0) \\ \frac{2xy}{x^2+y^2} & \text{иначе} \end{cases}$$

Определение 33. Пусть X, Y — топологические пространства. Отображение $f: X \to Y$ называется гомеоморфизмом, если

- 1. f биекция,
- 2. f непрерывно,
- 3. f^{-1} непрерывно.

Определение 34. Если существует гомеморфизм между X и Y, то X и Y гомеморфны. Обозначение: $X \simeq Y$.

Теорема 34. Гомеоморфность — "отношение эквивалентности" на топологических пространствах

Доказательство.

- Тождественное отображение (любого топологического пространства) есть гомеоморфизм.
- Отображение, обратное гомеоморфизму, есть гомеоморфизм.
- Композиция гомеоморфизмов есть гомеоморфизм.

Замечание 7.

- ullet Гомеоморфизм задаёт биекцию между открытыми множествами в X и Y.
- Гомеоморфные пространства неотличимы с точки зрения топологии.