《微分几何入门与广义相对论》 部分习题参考解答

by 薛定谔的大喵¹

2020年12月26日

 $^{^{1}}$ wyj1234@mail.ustc.edu.cn

目录

第一部分 上册	1
第一章 拓扑空间简介	2
第二章 流形和张量场	6
第三章 黎曼(内禀)曲率张量	23
第四章 李导数、Killing 场和超曲面	42
第五章 微分形式及其积分	51
第六章 狭义相对论	71
第七章 广义相对论基础	88
第八章 爱因斯坦方程的求解	105
第九章 施瓦西时空	106
第十章 宇宙论	107
第二部分 中册	108
第十一章 时空的整体因果结构	109
附录 B 量子力学数学基础简介	111
附录 G 李群和李代数	112

ii

第一部分

上册

第八章 爱因斯坦方程的求解

习题

1. 试证命题 8-1-1。

证明 正文命题 8-1-1 为

命题 设 $\xi^a=(\partial/\partial t)^a$ 是 Killing 矢量场, $\Sigma_0=\{p\in M\mid t(p)=0\}$ 是处处与 ξ^a 正交的超曲 面,则超曲面 $\Sigma_{t_1}=\{p\in M\mid t(p)=t_1\}$ 也处处与 ξ^a 正交。

证明 设矢量场 ξ^a 生成的单参微分同胚群为 ϕ_t , 则 $\Sigma_{t_1} = \phi_{t_1}[\Sigma_0]$, 任取 $p \in \Sigma_0$, $q = \phi_{t_1}(p) \in \Sigma_{t_1}$, 以及 q 点处 Σ_{t_1} 的任意切矢量 $v^a \in T_q\Sigma_{t_1}$, 则 $u^a = (\phi_{-t_1})_*v^a \in T_p\Sigma_0$, 故

$$g_{ab}|_{q} v^{a} \xi^{b}|_{q} = (\phi_{t_{1}})_{*} (g_{ab}|_{p}) v^{a} (\phi_{t_{1}})_{*} (\xi^{a}|_{p})$$

$$= (\phi_{t_{1}})_{*} (g_{ab}|_{p} u^{a} \xi^{b}|_{p})$$

$$= (\phi_{t_{1}})_{*} 0$$

$$= 0,$$

故 Σ_{t_1} 也与 ξ^a 正交。

2. 设 $\gamma(r)$ 是图 8-6 中 Σ_t 上从 p_1 到 p_2 的、 θ 和 φ 都为常数的

第二部分 中册