Heat diffusion distance processes: a statistical method to analyze graph data

December, 9th 2021 Forum des Jeunes Mathématicien.ne.s

Etienne Lasalle

Introduction

Goals:

• analysis of graph samples

$$(G_1,\ldots,G_N)$$

- ullet theoretical results (asymptotic in N)
- useable in practice

Requirements:

- take into account topological information
- graphs can be weighted
- graph sizes (same/different)
- node correspondance (known/unknown)

Outline

1. Tools

- Heat Kernel Diffusion Processes
- Heat Persistence Diffusion Processes

2. Theoretical Results

- Functional Central Limit Theorem
- Gaussian Approximation Rates

3. Simulations

- Confidence Bands
- Two-sample Tests

Assumption:

same sizes n & known node correspondance.

W, weight matrix, $W_{i,j}$: weight of $\{i,j\}$

L = D - W, laplacian.

D, degree matrix,
$$D_{i,i} = \sum\limits_{j=1}^n W_{i,j}$$

Heat Diffusion:

For $t \geq 0$, $u_t \in \mathbb{R}^n$: heat distribution,

$$\frac{d}{dt}u_t = -Lu_t, \quad t \ge 0$$

Assumption:

same sizes n & known node correspondance.

W, weight matrix, $W_{i,j}$: weight of $\{i,j\}$

L = D - W, laplacian.

D, degree matrix, $D_{i,i} = \sum\limits_{i=1}^n W_{i,j}$

Heat Diffusion:

For $t \geq 0$, $u_t \in \mathbb{R}^n$: heat distribution,

$$\frac{d}{dt}u_t = -Lu_t, \quad t \ge 0$$

$$u_t = e^{-tL}u_0$$
 ,

Assumption:

same sizes n & known node correspondance.

W, weight matrix, $W_{i,j}$: weight of $\{i,j\}$

$$L = D - W$$
, laplacian.

D, degree matrix,
$$D_{i,i} = \sum\limits_{j=1}^n W_{i,j}$$

Heat Diffusion:

For $t \geq 0$, $u_t \in \mathbb{R}^n$: heat distribution,

$$\frac{d}{dt}u_t = -Lu_t, \quad t \ge 0$$

$$u_t = e^{-tL}u_0$$
 ,

Assumption:

same sizes n & known node correspondance.

W, weight matrix, $W_{i,j}$: weight of $\{i,j\}$

$$L = D - W$$
, laplacian.

D, degree matrix,
$$D_{i,i} = \sum\limits_{j=1}^n W_{i,j}$$

Heat Diffusion:

For $t \geq 0$, $u_t \in \mathbb{R}^n$: heat distribution,

$$\frac{d}{dt}u_t = -Lu_t, \quad t \ge 0$$

$$u_t = e^{-tL}u_0$$
 ,

Assumption:

same sizes n & known node correspondance.

W, weight matrix, $W_{i,j}$: weight of $\{i,j\}$

L = D - W, laplacian.

D, degree matrix,
$$D_{i,i} = \sum\limits_{j=1}^n W_{i,j}$$

Heat Diffusion:

For $t \geq 0$, $u_t \in \mathbb{R}^n$: heat distribution,

$$\frac{d}{dt}u_t = -Lu_t, \quad t \ge 0$$

$$u_t = e^{-tL}u_0$$
 ,

 $u_t = e^{-tL}u_0$, e^{-tL} , heat kernel at time t.

Assumption:

same sizes n & known node correspondance.

W, weight matrix, $W_{i,j}$: weight of $\{i,j\}$

L = D - W, laplacian.

D, degree matrix,
$$D_{i,i} = \sum\limits_{j=1}^n W_{i,j}$$

Heat Diffusion:

For $t \geq 0$, $u_t \in \mathbb{R}^n$: heat distribution,

$$\frac{d}{dt}u_t = -Lu_t, \quad t \ge 0$$

 $u_t = e^{-tL}u_0$, e^{-tL} , heat kernel at time t.

Heat Kernel Distance:

$$D_t(G, G') = \|e^{-tL} - e^{-tL'}\|_F$$
 [HGJ13]

- respectful of the topology √
- t : scale parameter

Assumption:

same sizes n & known node correspondance.

W, weight matrix, $W_{i,j}$: weight of $\{i,j\}$

L = D - W, laplacian.

D, degree matrix,
$$D_{i,i} = \sum_{j=1}^{n} W_{i,j}$$

Heat Diffusion:

For $t \geq 0$, $u_t \in \mathbb{R}^n$: heat distribution,

$$\frac{d}{dt}u_t = -Lu_t, \quad t \ge 0$$

 $u_t = e^{-tL}u_0,$

 e^{-tL} , heat kernel at time t.

Heat Kernel Distance:

$$\mathbb{E}(G, G') = \|e^{\bullet t} - e^{\bullet t'}\|_F \quad [\mathsf{HGJ13}]$$

- respectful of the topology
- t : scale parameter

Using Topological Data Analysis

Figures from [CCIL+19]

Comparing persistence diagrams

 μ , ν : finite multisets of points in \mathbb{R}^2 . $\Delta = \{(a, a), \forall a \in \mathbb{R}\}$: diagonal

 π : a matching from $\mu \cup \Delta$ to $\nu \cup \Delta$

 $\Pi(\mu, \nu)$: set of all matchings

Bottleneck Distance:

$$d_B(\mu, \nu) := \inf_{\pi \in \Pi(\mu, \nu)} \sup_{x \in \mu \cup \Delta} \|x - \pi(x)\|_{\infty}$$

[EH10]

Choice of *f*

Heat Kernel Signature (HKS): [SOG09] [HRG14]

$$h_t(G): i \to (e^{-tL})_{i,i}$$
 "Remaining heat at node i "

Heat Persistence Distance (HPD):

$$H_t(G, G') = \max_{D_g} d_B(Dg(G, h_t(G)), Dg(G', h_t(G')))$$

Choice of *f*

Heat Kernel Signature (HKS): [SOG09] [HRG14]

Heat Persistence Distance (HPD):

$$H_t(G, G') = \max_{D_g} d_B(Dg(G, h_t(G)), Dg(G', h_t(G')))$$

Heat Kernel Distance (HKD):

$$D_t(G, G') = ||e^{-tL} - e^{-tL'}||_F$$

How to choose t?

Don't Choose!

Functional Point of View

$$D.(G,G'): [0,T] \mapsto \mathbb{R}$$
 or $H.(G,G'): [0,T] \mapsto \mathbb{R}$ $t \mapsto D_t(G,G')$

$$H_{\cdot}(G,G'): [0,T] \mapsto \mathbb{R}$$

$$t \mapsto H_{t}(G,G')$$

Empirical Process Point of View

$$\{D_t((G, G')), t \in [0, T]\}$$

or

$$\{H_t((G,G')), t \in [0,T]\}$$

$$\mathcal{F}_{HKD} = \{ D_t(\cdot), \quad t \in [0, T] \}$$

or
$$\mathcal{F}_{HPD} = \{H_t(\cdot), t \in [0, T]\}$$

How to choose t?

Don't Choose!

Functional Point of View

$$D.(G,G'): [0,T] \mapsto \mathbb{R}$$
 or $H.(G,G'): [0,T] \mapsto \mathbb{R}$ $t \mapsto D_t(G,G')$

 $t \mapsto H_t(G, G')$

Empirical Process Point of View

$$\{D_t((G, G')), t \in [0, T]\}$$

or

 $\{H_t((G,G')), t \in [0,T]\}$

$$\mathcal{F}_{HKD} = \{ D_t(\cdot), \quad t \in [0, T] \}$$

or $\mathcal{F}_{HPD} = \{H_t(\cdot), t \in [0, T]\}$

 $D_{\cdot}(\cdot)$ or $H_{\cdot}(\cdot)$

Lipschitz continuity

```
Proposition. Fix n and w_{\max} > 0.

For all (G, G') of size n, with weights in [0, w_{\max}],

\begin{bmatrix}
0, T \end{bmatrix} \to \mathbb{R}^+ \\
t \to D_t(G, G')
 is (n^{3/2}w_{\max})-lipschitz continuous.
```

```
Proposition. Fix n and w_{\max} > 0.

For all (G, G') of size at most n, with weights in [0, w_{\max}],

\begin{bmatrix}
0, T \end{bmatrix} \to \mathbb{R}^+ \\
t \to H_t(G, G')
 is (2nw_{\max})-lipschitz continuous.
```

Functional central limit theorem

- $(G_1, G'_1), \dots, (G_N, G'_N) \sim P$ (i.i.d sample)
- \bullet P_N : empirical measure

$$P_N D_t = \frac{1}{N} \sum_{i=1}^{N} D_t((G_i, G'_i))$$
 $PD_t = \mathbb{E}_P [D_t((G, G'))]$

Theorem. Fix n and $w_{\text{max}} > 0$. For all distribution P over pairs of graphs of size n, with weights in $[0, w_{\text{max}}]$, the family $\mathcal{F}_{HKD} = \{D_t(\cdot), \ t \in [0, T]\}$ is P-Donsker

Functional central limit theorem

- $(G_1, G'_1), \dots, (G_N, G'_N) \sim P$ (i.i.d sample)
- ullet P_N : empirical measure

$$P_N D_t = \frac{1}{N} \sum_{i=1}^{N} D_t((G_i, G'_i))$$
 $PD_t = \mathbb{E}_P [D_t((G, G'))]$

Theorem. Fix n and $w_{\text{max}} > 0$. For all distribution P over pairs of graphs of size n, with weights in $[0, w_{\text{max}}]$, the family $\mathcal{F}_{HKD} = \{D_t(\cdot), \ t \in [0, T]\}$ is P-Donsker

$$\{\sqrt{N}(P_N - P)D_t, \ t \in [0, T]\} \overset{weak}{\longrightarrow} \text{ Gaussian Process } \mathbb{G}$$

$$\forall h: \mathcal{C}([0, T]) \to \mathbb{R}, \text{ continuous and bounded,}$$

$$\lim_{N \to \infty} \mathbb{E}\left[h\Big(\sqrt{N}(P_N - P)D.\Big)\right] = \mathbb{E}\left[h(\mathbb{G})\right]$$

Theorem. Fix n and $w_{\text{max}} > 0$. For all distribution P over pairs of graphs of size at most n, with weights in $[0, w_{\text{max}}]$, the family $\mathcal{F}_{HPD} = \{H_t(\cdot), \ t \in [0, T]\}$ is P-Donsker

Consequences: consistent confidence bands and two-sample tests

Results

Gaussian Approximation with rate r_N :

 $\forall \lambda > 1$, $\exists C$ s.t. $\forall N > 1$,

one can construct on the same probability space both X_N and a version of the Gaussian process $\mathbb{G}^{(N)}$, s.t.

$$\mathbb{P}\left(\|X_N - \mathbb{G}^{(N)}\|_{\infty} > C.r_N\right) \le N^{-\lambda}.$$

$$\left\{\sqrt{N}(P_N-P)D_t,\quad t\in[0,T]\right\}$$
 and $\left\{\sqrt{N}(P_N-P)H_t,\quad t\in[0,T]\right\}$ admit Gaussian Approximations with rate :

$$r_N = N^{-1/7} \log(N)^{9/14}$$
.

Remark: r_N is independent of n (graph size)

Simulations: Stochastic Models

Simulations: Confidence Bands

Confidence level 99%, sample size: 100, bootstrap sample size: 1000.

Simulations: Two-sample Tests

14

ER-ER vs ER-SBM

Level 95%, bootstrap sample size: 1000, number of tests: 400

Disk-Disk vs Disk-Annulus

Level 95%, bootstrap sample size: 1000, number of tests: 100

Simulations: Two-sample Tests

Neyman-Pearson regime:

sample of size N

Neyman-Pearson test : $ER(p_1(N))$ vs $ER(p_2(N))$

$$|p_1(N) - p_2(N)| \gg 1/\sqrt{N}$$

$$n = 50$$

$$p_1(N)$$

$$p_2(N)$$

$$0.5 \qquad |p_1(N) - p_2(N)| \sim \log(N)/\sqrt{N}$$

$$p_2(N)$$

$$0.5 \qquad |p_1(N) - p_2(N)| \sim \log(N)/\sqrt{N}$$

Conclusion

L. (2021) Heat diffusion distance processes: a statistically founded method to analyze graph data sets. arXiv preprint arXiv:2109.13213.

Future work:

- Applications to real datasets (activation graphs from NN)
- Learning tasks: classification, change point detection, ...
- ullet Relationship between n and N

Conclusion

L. (2021) Heat diffusion distance processes: a statistically founded method to analyze graph data sets. arXiv preprint arXiv:2109.13213.

Future work:

- Applications to real datasets (activation graphs from NN)
- Learning tasks: classification, change point detection, ...
- ullet Relationship between n and N

Thank you for your attention!

Confidence bands

$$\mathcal{D} = (G_1, G'_1), \dots, (G_N, G'_N) \sim P$$

$$P_N = N^{-1} \sum_{i} \delta_{(G_i, G'_i)}$$

$$\alpha \in]0, 1[$$

$$\mathbb{P}(\|P_ND. - PD.\|_{\infty} \ge T_{\alpha, P}) \le \alpha$$
unknown

From the Donsker property:

$$\sqrt{N}(P_ND_{\cdot}-PD_{\cdot}) \stackrel{weak}{\longrightarrow} \mathbb{G} \stackrel{weak}{\longleftarrow} \sqrt{N}(\hat{P}_ND_{\cdot}-P_ND_{\cdot}) \mid \mathcal{D}$$

 \tilde{c}_{α} Monte Carlo estimator of c_{α} , s.t

$$\mathbb{P}\left(\|\hat{P}_N D_{\cdot} - P_N D_{\cdot}\|_{\infty} \ge \frac{c_{\alpha}}{\sqrt{N}} \mid \mathcal{D}\right) \le \alpha.$$

$$\lim_{N \to \infty} \mathbb{P}\left(\|P_N D_{\cdot} - P D_{\cdot}\|_{\infty} \ge \tilde{c}_{\alpha} / \sqrt{N}\right) \le \alpha$$

Two-sample Tests

$$X_1,\dots,X_N\sim P$$
 a sample $P_N=N^{-1}\sum_i\delta_{X_i}$

$$Y_1,\ldots,Y_M\sim Q$$
 a sample $Q_M=M^{-1}\sum_i\delta_{Y_i}$

$$\mathcal{H}_0: P = Q$$
 or $\mathcal{H}_1: P \neq Q$

Idea: compute $T_{N,M} = \|P_N D_{\cdot} - Q_M D_{\cdot}\|_{\infty}$.

$$\left(\mathbb{P}_{\mathcal{H}_0}\left(T_{N,M} > T\right) \le \alpha\right)$$

 \tilde{c} : Monte-Carlo estimator of c, s.t.

$$\mathbb{P}\left(\|\hat{P}_ND. - \hat{Q}_MD.\|_{\infty} \ge \frac{\sqrt{N+M}}{\sqrt{NM}} \mid \mathcal{D}\right) \le \alpha.$$
 resampled from
$$Z = (X_1, \dots, X_N, Y_1, \dots, Y_M)$$

$$\lim_{N,M\to\infty} \mathbb{P}_{\mathcal{H}_0} \left(T_{N,M} \ge \tilde{c} \frac{\sqrt{N+M}}{\sqrt{NM}} \right) \le \alpha$$

if
$$PD. \neq QD.$$
, $\lim_{N,M \to \infty} \mathbb{P}_{\mathcal{H}_1} \left(T_{N,M} \ge \tilde{\boldsymbol{c}} \frac{\sqrt{N+M}}{\sqrt{NM}} \right) = 1$