Artificial Intelligence and Evolutionary Computing

Lecture 7

IT/T/414A Winter Semester 2014

Instructor: Kartick Ch. MONDAL

- Invented early 1960s in Germany to simulating natural evolution
- Ingo Rechenberg, Hans-Paul Schwefel and Peter Bienert of the Technical University of Berlin
 - Engineering students
- Experimenting with wind tunnels
 - Optimizing jointed flat plates
- Were working on the search for the optimal shapes of bodies in a flow.
- Only intuitive methods to do this at the time

- Unlike genetic algorithms, this approach called an evolution strategy
- Designed to solve technical optimization problems.
- They decided to try random changes in the parameters defining the shape following the example of natural mutation.
- As a result, the evolution strategy was born.
- Evolution strategies were developed as an alternative to the engineer's intuition.

- Unlike GAs, evolution strategies use only a mutation operator.
- Like GP, no distinction between search and solution space
- Individuals are represented as real-valued vectors.
- Simple ES
 - One parent and one child
 - Child solution generated by randomly mutating the problem parameters of the parent.
- Susceptible to stagnation at local optima
- Rechenberg had the idea of 'mutating' the parameters and selecting good mutations
- Evolution Strategy are used for numerical parameter optimization

- Fitness of individual is determined by how well the parameters solve the problem
- Offspring are created by mutation
- Real-numbered, normally distributed creep mutation
- Offspring replace parents only if more fit

Evolutionary Strategy vs GA's

 ES's are an algorithm that only uses mutation and does not use crossover

 This is not a formal definition and there is no reason why we cannot incorporate crossover (as Michalewicz, 1996 shows)

Evolutionary Strategy vs GA's

 ES's are normally applied to real numbers (continuous variables) rather than discrete values.

 Again, this is not a strict definition and work has been done on using ES's for discrete problems (Bäck, 1991) and (Herdy, 1991)

Evolutionary Strategy vs GA's

ES's are a population based approach

 Originally only a single solution was maintained and this was improved upon.

An Example Evolution Strategy

```
Procedure ES{
 t = 0;
 Initialize P(t);
Evaluate P(t);
 While (Not Done)
   Parents(t) = Select Parents(P(t));
   Offspring(t) = Procreate(Parents(t));
   Evaluate(Offspring(t));
   P(t+1) = Select Survivors(P(t), Offspring(t));
   t = t + 1;
```

- In its simplest form, termed as a (1+1)-evolution strategy, one parent generates one offspring per generation by applying *normally distributed* mutation. The (1+1)-evolution strategy can be implemented as follows:
 - **Step 1**: Choose the number of parameters *N* to represent the problem, and then determine a feasible range for each parameter:
- $\{x_{1min}, x_{1max}\}, \{x_{2min}, x_{2max}\}, \dots, \{x_{Nmin}, x_{Nmax}\}$

Define a standard deviation for each parameter and the function to be optimized.

Step 2: Randomly select an initial value for each parameter from the respective feasible range. The set of these parameters will constitute the initial population of parent parameters: x_1, x_2, \ldots, x_N

Step 3: Calculate the solution associated with the parent parameters: $X = f(x_1, x_2, ..., x_N)$

Step 4: Create a new offspring parameter $(x'_1, x'_2, \ldots, x'_N)$ by adding a normally distributed random variable a with mean zero and pre-selected deviation δ to each parent parameter $x'_i = x_i + a(0, \delta)$ where $i = 1, 2, \ldots, N$

Normally distributed mutations with mean zero reflect the natural process of evolution (smaller changes occur more frequently than larger ones).

Step 5: Calculate the solution associated with the offspring parameters: $X' = f(x_1', x_2', ..., x_N')$

Step 6: Compare the solution associated with the offspring parameters with the one associated with the parent parameters.

- If the solution for the offspring is better than that for the parents, replace the parent population with the offspring population.
- Otherwise, keep the parent parameters.

Step 7: Go to Step 4, and repeat the process until a satisfactory solution is reached, or a specified number of generations is considered.

- Evolution Strategy named according to number of parents and children at each generation
- 1+1 Evolution Strategy has one parent and one child

- Later Evolution Strategy have populations
- $-(\mu+\lambda)$ and (μ,λ) Evolution Strategy
- $-\mu$ (mu) is the size of the parent population
- $-\lambda$ (lambda) is the size of the offspring population
- Offspring are created using recombination as well as mutation

- In a $(\mu+\lambda)$ ES, the μ best survive to the next generation
- In a (μ,λ) ES, only child individuals survive to the next generation

- There are basically 4 types of ESs
 - The Simple (1+1)-ES
 - The $(\mu+1)$ -ES (The first multimembered ES)
 - The (μ + λ)-ES, and
 - The (μ, λ) -ES.

1+1 ES

- 1. Evaluated fitness of parent *P*, *f*(*P*)
- 2. Create child C by adding small normally distributed values to each parameter of P
- 3. Evaluate the fitness of C, f(C)
- 4. If f(C) > f(P) then replace P with C
- 5. Repeat Steps 2-4 until stopping condition

Evolution Strategies: The Simple (1+1)-ES

- The simple (1+1)-ES has the following attributes:
 - Individuals are represented as follows:
 - $\langle x_{i,0}, x_{i,1}, ..., x_{i,n-1}, \sigma_i \rangle$, where n is the number of variables
 - Offspring are created as follows:

```
\begin{split} & \sigma_{\mu+i,j} = \sigma_{k,j} * \exp(\tau_0 * N(0,1)); \\ & x_{\mu+i,j} = x_{k,j} + \sigma_{\mu+i,j} N_{\mu+i,j}(0,1); \end{split}
```

Where j represents the jth variable.

And where $\tau_0 \approx 1/\text{sqrt(n)}$ (Global Learning Rate)

- Uses the 1/5 Success Rule to Adapt the Step Size:
 - If more than $1/5^{th}$ of the mutations cause an improvement (in the objective function) then multiply σ by 1.2,
 - If less than $1/5^{th}$ of the mutations cause an improvement, then multiply σ by 0.8.

Evolution Strategies: The Simple (1+1)-ES

```
Procedure simpleES{
  t = 0;
   Initialize P(t); /* \mu = 1, \lambda = 1 */
  Evaluate P(t);
  while (t <= (4000-\mu)/\lambda) {
     for (i=0; i<1; i++) {
         Create_Offspring(\langle x_i, y_i, \sigma_i \rangle, \langle x_{\mu+i}, y_{\mu+i}, \sigma_{\mu+i} \rangle):
             \sigma_{u+i} = \sigma_i * \exp(\tau_0 * N(0,1));
             x_{\mu+i} = x_i + \sigma_{\mu+i} N_{\mu+i,x} (0,1);
             y_{u+i} = y_i + \sigma_{u+i} N_{u+i,v} (0,1);
         fit_{u+i} = Evaluate(\langle x_{u+i}, y_{u+i} \rangle);
      P(t+1) = Better of 2 individuals;
     t = t + 1;
```

Evolution Strategies: The Simple (1+1)-ES

- How is a simple (1+1)-ES similar to a (1+1)-Standard EP?
- In what ways are these two different?

Evolution Strategies: The (μ+1)-ES

- Since the (μ+1)-ES is multi-membered, crossover can be used.
- According to, Bäck, T., Hoffmeister, F, and Schwefel, H.-P. (1991). "A Survey of Evolution Strategies", The Proceedings of the 4th International Conference on Genetic Algorithms, R. K. Belew and L. B. Booker Eds., pp. 2-9, Morgan Kaufmann.
 - Uniform Crossover (also referred to a discrete recombination) can be used on the variable values as well as the strategy parameter.
- Adaptation of the step-size is not used in the $(\mu+1)$ -ES.

Evolution Strategies: The (μ+1)-ES

```
Procedure (\mu+1)-ES{
      t = 0;
      Initialize P(t); /* of \mu individuals */
      Evaluate P(t);
      while (t \leq (4000-\mu)) {
             Create_Offspring(\langle x_i, y_i, \sigma_i \rangle, \langle x_{\mu+i}, y_{\mu+i}, \sigma_{\mu+i} \rangle):
                  \sigma_{u+i} = \sigma_i * \exp(\tau_0 * N(0,1));
                  x_{\mu+i} = x_i + \sigma_{\mu+i} N_{\mu+i,x} (0,1);
                  y_{\mu+i} = y_i + \sigma_{\mu+i} N_{\mu+i,\nu} (0,1);
             fit_{u+i} = Evaluate(\langle x_{u+i}, y_{u+i} \rangle);
         P(t+1) = Best \mu \text{ of the } \mu+1 \text{ individuals;}
         t = t + 1;
```

Evolution Strategies: The $(\mu+\lambda)$ -ES

- In the (μ+λ)-ES, an individual, i, is represented as follows:
- $\langle x_{i,0}, x_{i,1}, \dots, x_{i,n-1}, \sigma_{i,0}, \sigma_{i,1}, \dots, \sigma_{i,n-1} \rangle$, where n is the number of variables
- Offspring are created by as follows:

$$-\sigma_{\mu+i,j} = \sigma_{k,j} * \exp(\tau' * N(0,1) + \tau * N_{\mu+i}(0,1));$$

$$x_{\mu+i,j} = x_{k,j} + \sigma_{\mu+i,j} N_{\mu+i,j}(0,1);$$

- Where j represents the jth variable,
- τ' ≈ 1/sqrt(2n) /* Global Learning Rate */
- τ ≈ 1/sqrt(2*sqrt(n))/* Individual Learning Rate */
- The 1/5th success rule is used.

Evolution Strategies: The $(\mu+\lambda)$ -ES

```
Procedure (\mu + \lambda)-ES{
        t = 0;
        Initialize P(t); /* of \mu individuals */
        Evaluate P(t);
        while (t \leq (4000-\mu)/\lambda) {
                for (i=0; i<\lambda; i++) {
                    Create_Offspring(\langle x_k, y_k, \sigma_{k,x}, \sigma_{k,y} \rangle, \langle x_{u+i}, y_{u+i}, \sigma_{u+i,x}, \sigma_{u+i,y} \rangle):
                        \sigma_{\mu+i,x} = \sigma_{k,x} * \exp(\tau' * N(0,1) + \tau * N_{\mu+i}(0,1));
                         x_{\mu+i} = x_i + \sigma_{\mu+i,x} N_{\mu+i,x} (0,1);
                         \sigma_{\mu+i,\nu} = \sigma_{k,\nu} * \exp(\tau' * N(0,1) + \tau * N_{\mu+i}(0,1));
                         y_{u+i} = y_i + \sigma_{u+i,v} N_{u+i,v} (0,1);
                         fit_{u+i} = Evaluate(\langle x_{u+i}, y_{u+i} \rangle);
                P(t+1) = Best \mu \text{ of the } \mu+\lambda \text{ individuals;}
               t = t + 1;
```

Evolution Strategies: The (μ,λ) -ES

```
Procedure (\mu, \lambda)-ES{
        t = 0;
         Initialize P(t); /* of \mu individuals */
        Evaluate P(t);
        while (t \leq (4000-\mu)/\lambda)
                for (i=0; i<\lambda; i++)
                    Create Offspring (\langle x_k, y_k, \sigma_{k,x}, \sigma_{k,y} \rangle, \langle x_{u+i}, y_{u+i}, \sigma_{u+i,x}, \sigma_{u+i,y} \rangle):
                        \sigma_{\mu+i,x} = \sigma_{k,x} * \exp(\tau' * N(0,1) + \tau * N_{\mu+i}(0,1));
                         x_{\mu+i} = x_i + \sigma_{\mu+i,x} N_{\mu+i,x} (0,1);
                        \sigma_{\mu+i,\nu} = \sigma_{k,\nu} * \exp(\tau' * N(0,1) + \tau * N_{\mu+i}(0,1));
                         y_{\mu+i} = y_i + \sigma_{\mu+i,y} N_{\mu+i,y} (0,1);
                         fit_{n+1} = Evaluate(\langle x_{n+1}, y_{n+1} \rangle);
                P(t+1) = Best \mu \text{ of the } \lambda \text{ offspring};
                t = t + 1;
```

- Slow to converge to optimal solution
- More advanced ES
 - have pools of parents and children
- Unlike GA and GP, ES have these properties:
 - ES Separates parent individuals from child individuals
 - ES Selects its parent solutions deterministically

Evolutionary Algorithms

- In summary ES's are
 - Like genetic algorithms but only use mutation and not crossover
 - They operate on real numbers
 - They are a population based approach
 - But we can break any, or all, of these rules if we wish!