Electrónica Básica: Introducción

Smart Open Lab Jueves 30 de Noviembre Escuela Politécnica Cáceres

Índice

- Conceptos Fundamentales
 - Voltaje, Corriente, Potencia
 - Conductores, Aislantes, Semiconductores
- Dispositivos mas utilizados
 - Resistencias, Condensadores, Bobinas
 - Switch
 - Diodos
 - Optoelectrónica

Índice

- Aplicaciones en circuitos imprescindibles
- Circuitos digitales
- Circuitos integrados programables
- Circuitos de protección
- Sensores

¡El electrón se mueve!

- Las cargas se ejercen fuerzas entre sí
- En Electrónica solo nos importan los más libres
- Se mueven en dirección contraria al campo eléctrico

- Se puede pensar en la corriente eléctrica como:
 - Flujo de cargas positivas que se mueven en la dirección del campo (o que van desde la zona de mayor a la de menor potencial)

¿Y cómo se mide la corriente?

Se mide como cualquier flujo (unidades/tiempo)

• Amperios:
$$[A] = \left[\frac{C}{s}\right]$$

• Multímetro: EN SERIE

Analogía Hidráulica

¿Y cuánto consume?

• La potencia eléctrica se define

$$P = I \cdot V$$

$$1 \ vatio = \frac{1 \ Julio}{1 \ Segundo}$$

• La energía eléctrica es simplemente el producto de la potencia consumida por el tiempo que se está consumiendo (ej. 1 kilowatio · hora = 3.600.000 J)

¿Cómo relacionamos la corriente con el voltaje?

• Ley de Ohm

$$i = \frac{\Delta v}{R} = \frac{v_A - v_B}{R}$$

¿Cómo de aislante es un material?

¿Cómo se mide la resistencia eléctrica?

• Resistencia:

$$R = [\Omega]$$

• Resistividad:

$$\rho = R^{\underline{a}}_{\,\overline{l}} = [\Omega \cdot m]$$

¿Cómo varía entre materiales?

$$\rho \approx 10^{-6} \ \Omega \cdot \mathrm{cm}$$

$$\rho \approx 10^{12} \ \Omega \cdot \mathrm{cm}$$

¿Y el término medio?

• En los materiales semiconductores la resistencia depende de la temperatura

$$T=0~{\rm K} \longrightarrow \rho = \infty \longrightarrow {\rm AISLANTE}$$

$$T=300~{\rm K} \longrightarrow {\rm CONDUCTOR}$$

¿Y el término medio?

• ¡Para doparlo! Tipo P – Tipo N

• Si los unimos... ¡Efecto rectificador! Diodo

Y llega el Rey...

• El TRANSISTOR

No es más que un grifo

¿Y que se puede hacer con un grifo?

AMPLIFICAR

¿Y con 1.000.000 de grifos?

Revolución Digital

¿Y ya está todo dicho?

• Entra en juego el **Tiempo**:

Señales Analógicas y Digitales

¿Y como controlamos dichas señales?

Resistencia (Ω)

- "Tuberías mas o menos estrecha"
- Código de colores
- Ojo con la potencia

Condensador (F)

- "Tanques, cisternas de líquido"
- Lo normal es usar pF o nF
- ATENCIÓN!!! con el voltaje que soportan
- En Corriente Continua ——— Circuito Abierto

Bobinas (H)

- "Serpientes con inercia"
- Lo normal es usar mF
- Uso como filtros y hacer transformadores
- En Corriente Continua ——— Circuito Cerrado

Interruptores - Conmutadores

- Cierran o Abren un lazo del circuito.
- ATENCIÓN!!! VOLTAJES/CORRIENTE MÁXIMOS
- Se definen por el número de posibles caminos (poles)

Relés

- Conmutación con una señal eléctrica
- Se seleccionan por el voltaje de conmutación y número de sub-circuitos

Diodos

- Un único sentido de conducción
- Caracterizado por voltaje de conducción, de ruptura y corriente máxima

Diodos

- Tipos de diodos fundamentales
 - Diodos de rectificación y señal
 - Diodos Zener
 - Diodos LEDs
 - Diodos Schottky
 - Diodos Láser
- Se usan para:
 - Circuitos de protección
 - Rectificación
 - Circuitos de carga
 - Iluminación

Transistores

• Tipos:

- Características:
 - Ganancia en corriente
 - Voltaje Umbral
 - Corriente/Voltajes Máximos
 - Tiempos de Conmutación

Circuitos Integrados

Conjunto de transistores/componentes electrónicos

Circuitos Integrados

- Sus usos más comunes son:
 - Circuitos Analógicos
 - Amplificadores y filtros
 - Circuitos de alimentación y carga
 - Circuitos Digitales
 - Puertas lógicas
 - Temporizadores
 - Microcontroladores, microprocesadores y FPGAs
 - Sensores
 - Acelerómetros, giroscopios
 - Efecto Hall

Componentes Opto-electrónicos

- Sus usos más comunes son:
 - LDR
 - Fotodiodos/Fototransistores
 - Activados por luz
 - Células Solares Fotovoltaicas
 - Opto-acopladores
 - Interconectan ópticamente circuitos eléctricamente independientes
 - Muchos tipos, aunque la idea es la misma
 - Son importantes los tiempos de respuesta

¿Dónde utilizar estos componentes?

- Divisor de voltaje y de corriente
- Resistencias de Pull-Up y Pull-Down
- Fuente de Alimentación
- Amplificador de Alimentación
- Circuitos Digitales
- Circuitos Integrados Programables
- Circuitos de Protección
- Sensores

Pero antes... una herramienta básica para resolver circuitos: Leyes de Kirchoff

Conservación de la Energía

"La suma de las subidas y caídas de voltaje en todo lazo cerrado de un circuito siempre es igual a 0"

Conservación de la Masa/Carga

"La suma de todas las corrientes que entran en cualquier nodo de un circuito debe ser igual a la suma de todas las corrientes que salen"

Divisor de Voltaje

Compuesto por dos resistencias en serie conectadas a

una fuente de alimentación

$$I = \frac{V_{in} - V_{out}}{R_1}$$

$$I = \frac{V_{out} - 0}{R_2}$$

$$V_{out} = V_{in} \frac{R_2}{R_1 + R_2}$$

Divisor de Corriente

 Compuesto por dos resistencias en paralelo conectadas a una fuente de alimentación

$$I_1 = I_s \frac{R_2}{R_1 + R_2}$$

$$I_2 = I_s \frac{R_1}{R_1 + R_2}$$

 Los electrones se van por el camino que les ofrece menos resistencia

Resistencias de Pull-Up y Pull-Down

 Garantizan que los niveles de voltaje son estables para una determinada entrada en todos los casos

Resistencias Limitadoras

- Limitar la corriente que atraviesa un componente para evitar que se destruya
- LEDs: En función del brillo y consumo que deseemos usaremos un valor mayor o menor (normalmente entre los 100Ω y los $10k\Omega$)

$$I_F = \frac{V_{input} - V_{\gamma}}{R + r_{led}}$$

Fuente de Alimentación

 Transforma un voltaje variable en el tiempo (sinusoidal) a un voltaje casi constante

Amplificador de Alimentación

 Amplifica una señal de entrada gracias a la alimentación proporcionada por una fuente de voltaje

Partes:

- Transistor
- Circuito de Polarización
- Condensador de Acoplo
- Condensadores de ByPass

Circuitos Digitales

- Un circuito digital o lógico es aquél que maneja la información en forma binaria, es decir, con valores de "1" y "0"
- Estos dos niveles lógicos de voltaje fijos representan:
 - "1" nivel alto o "High"
 - "0" nivel alto o "Low"

Circuitos Digitales

- Puertas NAND
- Puertas NOR
- Puertas OR Exclusiva
- Demultiplexores y Multiplexores
- Codificadores
- Flip-Flop
- Memoria
- Microcontroladores y Microprocesadores

Circuitos Integrados Programables (PIC)

 Elemento que ejecuta una secuencia de instrucciones de entre un conjunto almacenadas en una memoria

• Tipos:

- Propósito general
- Propósito único

Partes:

- Puertos I/O
- Memoria
- Entradas analógica
- Gran número de aplicaciones

Circuitos de Protección

- Se diseñan tanto para proteger el circuito, como al usuario
- Están inactivos bajo condiciones de operación normal y se activan tan pronto como se exceda el límite de seguridad
- Tipos de circuitos de protección:
 - Fusible o Fusible programable
 - Varistor
 - Diodo Zener
 - Circuito detector de sobre corriente (OCP)
 - Circuito detector de sobrevoltaje (OVP)
 - Protección contra bajo voltaje (UVP)

Sensores

- Dispositivo que responde a una señal o estímulo del medio en el que se encuentra
- Obtener una respuesta acorde a nuestros intereses
 - Medir las variables a controlar
 - Tomar decisiones de control
 - Actuar sobre el sistema en caso de necesidad
- Clasificación
 - En función de la señal de salida
 - En función del aporte energético
 - En función de la variable eléctrica que modifican

Sensores

Enlace Certificado

https://goo.gl/forms/DhnD5mInDEeliNYt1

GRACIAS POR SU ATENCIÓN

Encuéntranos en:

@Davvid_

@SolEpcc

O escribe a: smartopenlab@gmail.com

