The Gini impurity index Intuition

Measuring the diversity in a dataset

Which one is more diverse?

Which one is more diverse?

Which one is more diverse?

More diverse

 Randomly pick any two elements from the dataset and determine if they are similar or different.

• Repeat the process a number of times.

• Do the same process for the second dataset.

- Let's start with the second dataset.
- Enumerate all the possible combinations.

- Let's start with the second dataset.
- Enumerate all the possible combinations.

• We need to calculate the percentage of the black area (When both elements are different).

• We need to calculate the percentage of the black area (When both elements are different).

• We need to calculate the percentage of the black area (When both elements are different).

We need to calculate the black area.

• We need to calculate the black area

• We need to calculate the black area

• Let's calculate the Gini index for the first dataset.

• Let's calculate the Gini index for the first dataset.

• Let's calculate the Gini index for the first dataset.

The General Formula

n classes

Proportions: $p_1, p_2, ..., p_n$

Gini impurity index: $1 - p_1^2 - p_2^2 - \dots - p_n^2$

The General Formula

Gini index examples, all similar or all different

Note: The Gini index can not be one, because its always 1 – the sum of squares, unless the dataset is infinite.

References

https://www.youtube.com/watch?v=u4lxOk2ijSs