1. When *f* increases, decreases and its derivative.

- · Where is f increasing? decreasing?
- · Where is f'>o? f'2o?
- · Where is f'=0 or undefined?

*Observe the local max's & min's occur when f'changes sign.

2. The First Derivative Test

Let f be continuous on interval I with crit.pt. X=C.

- · If f'70 on left of c and f'x0 on right (+ to-), then f(c) local max.
- · If f'<0 on left of c and f'>o on right (- to+), then f(c) local min.
- · If f' doesn't change sign, f has no extremum at x=c.
 - 3. For the function $f(x) = \frac{2}{3}x^3 + x^2 12x + 7$:
 - (a) Determine the intervals where f(x) is increasing or decreasing.
 - (b) Use the First Derivative Test to identify the location of all local extrema.
 - (c) Use technology to confirm your work.

$$f'(x) = 2x^2 + 2x - 12 = 2(x^2 + x - 6) = 2(x+3)(x-2)$$

(a) f'=0 when X=-3 or X=2.

2(3)(-2) (+)(+)(+)+(-)(-) +(+)(-)

> f (2) is increasing on (-00,-3) U(2,00) decreasing on (-3,2)

This is an application of First Derivative Test.

1

· draw conclusion

4. Identify all local extrema for $f(x) = x^2 e^{-x}$ $f(x) = 2xe^{-x} + x^{2}(-1)e^{-x}$ $= \times e^{-x}(z-x)$

f(x)=0 when x=0 or x=2.

6. Test for Concavity f is twice differentiable on interval I

i. If f">0 on I, then f is concave up on I.

ii. If f" < 0 on I, then f is concave down on I.

has a local min at x=0 local max at x=2

> concare up Concave down /

· Observe that when f is concaveur f'is increasing; so f">0.

· When f is concave down, f'is decreasing; so f"<0

· Infliction points = where concavity changes

7. Determine the intervals for which the function $f(x) = \frac{2}{3}x^3 + x^2 - 12x + 7$ is concave up and concave down. Identify the x-coordinate of any inflection points.

$$f''(x) = 4x + 2 = 2(2x+1)$$

 $f'' = 0$ when $x = -\frac{1}{2}$
 $----0 + + + +$

8. Do the same for $f(x) = x^2 e^x$.

So $f''(x) = -e^{-x}(2x-x^2)+e^{-x}(2-2x)$

$$f''(x) = 0 \quad x = 2 \pm \sqrt{2}$$

f is ccup on (==1,00), codown on (=0,==) Inflection point at X=-1/3

 $= e^{-x} (x^2 - 4x + 2) = e^{-x} (x - (2 + \sqrt{2})) (x - (2 - \sqrt{2}))$

Infl. pts at x=2±12