Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters

Charlie Snell^{♦, 1}, Jaehoon Lee², Kelvin Xu^{♠, 2} and Aviral Kumar^{♠, 2}

[♠]Equal advising, ¹UC Berkeley, ²Google DeepMind, [♠]Work done during an internship at Google DeepMind

The benefits of "thinking" for longer in LLMs

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic, commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

Figure 5: Ablation study for different variations of prompting using LaMDA 137B and PaLM 540B. Results for other datasets are given in Appendix Table 6 and Table 7.

Scaling Test-Time

There are problems that benefit from being able to think for longer.

Question: What is the capital of Vietnam?

Answer: Hanoi

Sometime, we do the task subconsciously without thinking.

"Go to the star!"

Question: Let k, l > 0 be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line y = 4 at two points A and B. These points are distance 6 apart. What is the sum of the squares of the distances from A and B to the origin?

Answer: Step 1: Set up the intersection points...**Step 2:** Find the roots (coordinates of points A and B)...**Step 3:** Use the fact that the distance between A and B is 6...**Step 4:** Find the sum of the squares of the distances from A and B to the origin...

Sometime, we need to think/plan.

Scaling Test-Time

- 1. Scaling Test-Time Compute via Verifiers
- 2. Refining the Proposal Distribution

1. Scaling Test-Time Compute via Verifiers

Proposer - LLMs Verifier - Score models Solution level Step level

Q: If there are 3 cars in the parking She has 16 - 3 - 4 = 9 eggs lot and 2 more cars arrive, how many left. So she makes \$2 * 9 = The answer is \$18. cars are in the parking lot? \$18 per day. A: There are 3 cars in the parking lot already. 2 more arrive. Now there are This means she she sells the 3 + 2 = 5 cars. The answer is 5. remainder for \$2 * (16 - 4 - 3). The answer is \$26. = \$26 per day. Q: Janet's ducks lay 16 eggs per day. Language She eats three for breakfast every model morning and bakes muffins for her She eats 3 for breakfast, so friends every day with four. She sells she has 16 - 3 = 13 left. Then the remainder for \$2 per egg. How she bakes muffins, so she The answer is \$18. much does she make every day? has 13 - 4 = 9 eggs left. So she has 9 eggs * \$2 = \$18.

Figure 6: Illustration of advantage estimation from negative data on a didactic example in synthetic model generations. Critical steps are those with high advantage values.

1. Scaling Test-Time Compute via Verifiers

Proposer, Verifier, and Search

2. Refining the Proposal Distribution Self-correction

Problem. If $n \equiv 2 \pmod{7}$, then find the remainder when (n+2)(n+4)(n+6) is divided by 7.

SCORe turn 1 solution (incorrect). Since $n \equiv 2 \pmod{7}$, we can write n = 7k + 2 for some integer k. Substituting, we get

```
(n+2)(n+4)(n+6) = (7k+4)(7k+6)(7k+8)

\equiv 4 \cdot 6 \cdot 8 \pmod{7}

\equiv 192 \pmod{7}

\equiv 1 \pmod{7}.
```

Final Answer: The final answer is 1. I hope it is correct.

Self-correction instruction. There might be an error in the solution above because of lack of understanding of the question. Please correct the error, if any, and rewrite the solution.

SCORe turn 2 solution (correct). Since $n \equiv 2 \pmod{7}$, we can write n = 7k+2 for some integer k. Substituting, we get

$$(n+2)(n+4)(n+6) = (7k+4)(7k+6)(7k+8)$$

 $\equiv 4 \cdot 6 \cdot 8 \pmod{7}$
 $\equiv 4 \cdot 6 \cdot 1 \pmod{7}$
 $\equiv 24 \pmod{7}$
 $\equiv 3 \pmod{7}$.

Final Answer: The final answer is 3. I hope it is correct.

- 1. Scaling Test-Time Compute via Verifiers
- 2. Refining the Proposal Distribution

"Can we enable LMs to most **effectively make use of additional computation at test time** so as to improve the accuracy of their response?"

Datasets, Models, and Metrics

MATH benchmark [1]

high-school competition level math problems with a range of difficulty levels

Fine-tuned PaLM-2 models Verifiers, LMs

A protocol for estimating the cost of each method.

MATH Dataset (Ours)

Problem: Tom has a red marble, a green marble, a blue marble, and three identical yellow marbles. How many different groups of two marbles can Tom choose?

Solution: There are two cases here: either Tom chooses two yellow marbles (1 result), or he chooses two marbles

of different colors $\binom{4}{2} = 6$ results). The total number of distinct pairs of marbles Tom can choose is 1 + 6 = 7.

Problem: If $\sum_{n=0}^{\infty} \cos^{2n}\theta = 5$, what is $\cos 2\theta$? **Solution:** This geometric series is $1 + \cos^2\theta + \cos^4\theta + \cdots = \frac{1}{1 - \cos^2\theta} = 5$. Hence,

$$\cos^2 \theta = \frac{4}{5}$$
. Then $\cos 2\theta = 2\cos^2 \theta - 1 = \boxed{\frac{3}{5}}$.

Problem: The equation $x^2 + 2x = i$ has two complex solutions. Determine the product of their real parts.

Solution: Complete the square by adding 1 to each side. Then $(x+1)^2 = 1 + i = e^{\frac{i\pi}{4}}\sqrt{2}$, so $x+1 = \pm e^{\frac{i\pi}{8}}\sqrt[4]{2}$. The desired product is then

$$\left(-1 + \cos\left(\frac{\pi}{8}\right) \sqrt[4]{2}\right) \left(-1 - \cos\left(\frac{\pi}{8}\right) \sqrt[4]{2}\right) =$$

$$1 - \cos^2\left(\frac{\pi}{8}\right) \sqrt{2} = 1 - \frac{\left(1 + \cos\left(\frac{\pi}{4}\right)\right)}{2} \sqrt{2} = \boxed{\frac{1 - \sqrt{2}}{2}}.$$

Results and Analysis - Overview

- Search with Verifiers
 - a. Comparing search algorithms
 - b. Which problems does search improve?
 - c. Compute-optimal" scaling trend
- 2. Revisions
 - a. Can revision improve performance?
 - b. Trading off sequential and parallel test-time compute
 - c. Compute-optimal revisions
- 3. Exchanging Pretraining and Test-Time Compute

1. Comparing search algorithms

- With smaller generation budgets, beam search significantly outperforms best-of-N.
- As the budget is scaled up, beam search often underperforming the best-of-N baseline.
- **Lookahead-search** generally underperforms other methods at the same generation budget.
- There are signs of exploitation of the PRM's predictions

2. Which problems does search improve?

Defining model-specific difficulty of a problem.

Binning the model's pass@1 rate – estimated from 2048 samples – on each question in the test set into five quantiles, each corresponding to increasing difficulty levels

- Oracle difficulty
- Model-predicted difficulty

2. Which problems does search improve?

In aggregate, beam search and best-of-N perform similarly with a high generation budget

On the level 1,2 questions, beam search degrades performance as the generation budget increases

On the level 3,4 questions, beam search consistently outperforms best-of-N.

On the level 5 questions, no method makes much meaningful progress.

^{*}The four bars in each difficulty bin correspond to increasing test-time compute budgets (4, 16, 64, and 256 generations).

3. "Compute-optimal" scaling trend

Select the search parameters per difficulty bin

Performance gains could be obtained by adaptively allocating test-time compute during search.

In the low generation budget regime, compute-optimal scaling can nearly outperform best-of-N using up to 4x less test-time compute

In the higher budget regime, some of these benefits diminish.

1. Revision can improve performance

 When using a naïve approach, around 38% of correct answers get converted back to incorrect ones.

=> They employ a mechanism based or verifier-based selection on sequential majority voting.

 The model's pass@1 at each revision step gradually improves.

2. Sampling in sequence vs in parallel

 Sampling solutions in sequence outperforms sampling them in parallel

3. Trading off sequential and parallel test-time compute

3. Trading off sequential and parallel test-time compute

- There exists an ideal sequential to parallel ratio, that achieves the maximum accuracy.
- The ideal ratio of sequential to parallel varies depending on a given question's difficulty

4. Compute-optimal revisions

- * Select the ideal ratio of sequential to parallel compute per difficulty bin.
 - Compute-optimal scaling can outperform best-of-N using up to 4x less test-time compute (e.g. 64 samples verses 256)

Exchanging Pretraining and Test-Time Compute

Test-time and pretraining compute are not 1-to-1 "exchangeable".

On easy and medium questions, or in settings with small inference requirement, test-time compute can easily cover up for additional pretraining.

However, on challenging questions or under higher inference requirement, pretraining is likely more effective for improving performance.

Conclusion

- 1. Scaling test-time compute can be achieved via Search and Revisions
- 2. The effectiveness of scaling test-time compute depends on the difficulty of problems
- 3. In some scenarios, scaling test-time compute is more effective than scaling training-time compute