EXERCISE 8

1. Let X_n be the Rayleigh random variables with

$$f_{X_n}(x) = \begin{cases} n^2 x \exp\left(-\frac{n^2 x^2}{2}\right) & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Does $X_n \stackrel{p}{\longrightarrow} 0$

- 2. Let $X_n \sim Exp(-n)$ random variables. Answer the following:
 - (a) Show that $X_n \stackrel{p}{\longrightarrow} 0$
 - (b) Show that $X_n \stackrel{d}{\longrightarrow} 0$
- 3. Let $X_n \sim N(0, \frac{1}{n})$, random variables, that is

$$f_{X_n}(x) = \frac{\sqrt{n}}{2\pi} exp\left(-\frac{nx^2}{2}\right)$$

Let $\alpha_n > 0$ such that $\alpha_n \longrightarrow +\infty$. Answer the following:

- (a) Is $P(X_n \le x) = P(\alpha_n X_n \le \alpha_n x)$?
- (b) Use the above to find $\lim_{n\to\infty} F_{X_n}(x)$ for x>0
- (c) Use a similar idea to find $\lim_{n\to\infty} F_{x_n}(x)$ for x<0
- (d) Does $X_n \stackrel{d}{\longrightarrow} 0$
- 4. Let X_n be the sequence of random variables defined on $\Omega = [0, 1]$, (with $P(any\ interval) = its\ length$), as follows:

$$X_n(\omega) = \begin{cases} n & \text{if } 0 \le \omega \le \frac{1}{n} \\ 0 & \text{if } \frac{1}{n} \le x \le 1 \end{cases}$$

Answer the following:

- (a) Does $X_n \xrightarrow{a.s} 0$
- (b) Does $X_n \stackrel{p}{\longrightarrow} 0$?
- (c) Does $X_n \stackrel{d}{\longrightarrow} 0$?

- (d) For r > 1 does $X_n \xrightarrow{r.m} 0$
- 5. Let X_n be a sequence of real valued random variables such that

$$F_{X_n}(x) = \begin{cases} \frac{e^{n(x-1)}}{1 + e^{n(x-1)}} & \text{if } x \ge \mathbf{Q} \\ 0 & \text{if } x < \mathbf{Q} \end{cases}$$

Show that $X_n \xrightarrow{d} X$ where X is the constant random variable X = 1

6. Let X_n be a sequence of real valued random variables such that

$$F_{X_n}(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{e^{nx} + xe^n}{e^{nx} + (\frac{n+1}{n})e^n} & \text{if } 0 \le x \le 1 \\ \frac{e^{nx} + e^n}{e^{nx} + (\frac{n+1}{n})e^n} & \text{if } x > 1 \end{cases}$$

Show that $X_n \stackrel{d}{\longrightarrow} Uni[0,1]$

7. Let X_n be the sequence of real valued random variables defined on a probability space (Ω, \mathcal{B}, P) such that

$$X_n = \begin{cases} n & \text{with probability } \frac{1}{n^2} \\ 0 & \text{with probability } 1 - \frac{1}{n^2} \end{cases}$$

Answer the following:

- (a) Show that $X_n \stackrel{p}{\longrightarrow} 0$
- (b) Show that $X_n \xrightarrow{r.m} 0$ for r < 2 and not for $r \ge 2$
- (c) Show that $X_n \xrightarrow{a.s} 0$
- 8. Let X_n be a sequence of real valued random variables on a probability space (Ω, \mathcal{B}, P) such that the pdfs are given by

$$f_{X_n}(x) = \frac{n}{2}e^{-n|x|} \text{ for all } x \in \mathbb{R}$$

Show that $X_n \stackrel{p}{\longrightarrow} 0$

9. Let X_n be a sequence of real valued random variables on a probability space (Ω, \mathcal{B}, P) such that the pdfs are given by

$$f_{X_n}(x) = \begin{cases} \frac{1}{nx^2} & \text{if } x > \frac{1}{n} \\ 0 & \text{if } x < \frac{1}{n} \end{cases}$$

Show that $X_n \stackrel{p}{\longrightarrow} 0$

10. In the experiment of rolling a fair die consider the following random variables:

$$X_n(\omega) = \begin{cases} 1 & \text{if } \omega \text{ is even} \\ -1 & \text{if } \omega \text{ is odd} \end{cases}$$

 $Y_n(\omega) = \begin{cases} -1 & \text{if } \omega \text{ is even} \\ 1 & \text{if } \omega \text{ is odd} \end{cases}$

Let X_n , Y_n be the constant sequences $X_n = X$ for all n and $Y_n = Y$ for all n. Answer the following:

- (a) Does $X_n \xrightarrow{d} X$?
- (b) Does $Y_n \stackrel{d}{\longrightarrow} X$?
- (c) Does $X_n + Y_n \xrightarrow{d} X + X$?