Przykładowe zadania

Zadanie 1

Funkcję opisaną zbiorami F i R zminimalizować metodą ekspansji

- a) przy założeniu, że jest to funkcja boolowska realizowana na PLA,
- b) przy założeniu, że jest to tablica decyzyjna.

F: 10000	R:01100
01000	00010
01010	00110
11110	10001
01101	11101
11011	

Zadanie 2

Dla funkcji F opisanej podziałami zmienne niezbędne są x_6 oraz x_8 . Należy wyznaczyć wszystkie realizacje minimalno argumentowe tej funkcji.

$$P_{1} = (\overline{1,6,11,12}; \overline{2,3,4,5,7,8,9,10})$$

$$P_{2} = (\overline{1,11,12}; \overline{2,3,4,5,6,7,8,9,10})$$

$$P_{3} = (\overline{2,5,7,10}; \overline{1,3,4,6,8,9,11,12})$$

$$P_{4} = (\overline{2,4,7,8,9,10}; \overline{1,3,5,6,11,12})$$

$$P_{5} = (\overline{2,3,5,6,7,10,12}; \overline{1,4,8,9,11})$$

$$P_{6} = (\overline{1,3,5,7,8,10,11,12}; \overline{2,4,6,9})$$

$$P_{7} = (\overline{1,2,4,6,7,9,11,12}; \overline{3,5,8,10})$$

$$P_{8} = (\overline{1,4,6,8,10}; \overline{2,3,5,7,9,11,12})$$

$$P_{F} = (\overline{1,2,3,5,6,8,9,11,12}; \overline{4,7,10})$$

Zadanie 3

Dla funkcji binarnej f podanej w tablicy należy wyznaczyć dekompozycję:

$$f = H(x_2, G_1(x_1, x_5), G_2(x_3, x_4)).$$

x_1	x_2	<i>x</i> ₃	χ_4	x_5	f
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	1	0	0
0	1	1	1	1	0
0	1	1	0	0	0
0	0	0	1	1	1
0	1	0	0	0	1
0	1	1	0	1	1
1	1	0	1	0	1
1	0	0	1	1	1
1	0	0	1	0	1

Zadanie 4

Mając do dyspozycji licznik o mikrooperacjach LOAD, HOLD, COUNT ze sterowaniem odpowiednio: –1, 00, 10, oraz inne bloki funkcjonalne i bramki, zaprojektować mikroprogramowany układ sterujący o następującej liście mikroinstrukcji:

 $\mu I_1: if \ x_c \ then \ A'=A_j \ else \ A'=A_{i+1},$

 μI_2 : Z, if x_c then A' = AZ else A' = A_i ,

 μI_3 : Z, if x_c then A' = A_i else A' = A_{i+1} .

Uwaga: mikroinstrukcja μI_2 oznacza oczekiwanie na skok do adresu zewnętrznego, podanego na specjalnej szynie danych AZ.

W rozwiązaniu należy podać:

- schemat blokowy układu sterującego,
- wyrażenia boolowskie co najmniej dwóch funkcji wyjściowych dekodera mikroinstrukcji.