

Circles Ex 16.5 Q12

Answer:

It is given that, $\angle BAC = 60^{\circ}$ and $\angle BCA = 20^{\circ}$

We have to find the $\angle ADC$

In given $\triangle ABC$ we have

$$\angle B + \angle BCA + \angle BAC = 180^{\circ} \text{(Total angle of } \Delta BCD\text{)}$$

So

$$\angle B = 180^{\circ} - \left(60^{\circ} + 20^{\circ}\right)$$
$$= 100^{\circ}$$

In cyclic quadrilateral ABCD we have

$$\angle B + \angle D = 180^{\circ} \text{ (Sum of opposite angle} = 180^{\circ} \text{)}$$

$$\angle D = 180^{\circ} - 100^{\circ}$$

$$\angle D = 80^{\circ}$$

Hence
$$\angle ADC = 80^{\circ}$$

Circles Ex 16.5 Q13

Answer:

It is given that, ABC is an equilateral triangle

We have to find $\angle BDC$ and $\angle BEC$

Since $\triangle ABC$ is equilateral triangle

So
$$\angle A = \angle B = \angle C = 60^{\circ}$$

And ABEC is cyclic quadrilateral

So
$$\angle A + \angle E = 180^{\circ} (\angle A = 60^{\circ})$$

Then

$$\angle E = 180^{\circ} - 60^{\circ}$$

= 120°

Similarly BECD is also cyclic quadrilateral So

$$\angle E + \angle D = 180^{\circ}$$

 $\angle D = 180^{\circ} - 120^{\circ}$
 $= 60^{\circ}$

Hence
$$\angle BDC = 60^{\circ}$$
 and $\angle BEC = 120^{\circ}$

********* END *******