	UBC ISCI 344 Gan	ne Theory
	UBC ISC 344 Gan Symmetric and zero-so Rik Blok and Christoph	um games
	Rik Blok and Christoph	h Hauert
Outline: .	symmetric games	
•	symmetric games zero-sum (or consto	int-sum) games
· Row	ames: and column players pl	ay same game
		y sum J m
-> Po	yoff matrix same a les	ifter swapping
ró	les	,, ,
1	Chrissy	Rikky
	L Swap	UD
Pill a,	x b, y roles	L &, 9 B, C
hicky	Chrissy L R swap roles Chrissy B d, 5	RVL 51
		transpose, or flip
		across diagonal
B().		
· reflection	symmetry: matrix un abegies unchanged: L=1 offs unchanged: a=a	changed after the
- 3 Str.	attegles unchanged: L=1	1, R=U
Pay	oris unchanged a=a	, D=B, Ceg, d-d
e summetr	is somes must be soun	re ie for M×N
game	ic games must be squa M=N	
00	, , , ,	

· rational choice only depends on differences between payoffs

-> can subtract off constant from every outcome without changing game -> every constant-sum game is zero-sum game

Ex. 1 20,80 20,80 D 50,50 80,20

constant-sum! $a + \alpha = 20 + 80 = 100$ b+B= c+f=d+5=100

· subtract 100 from row player: a'= a-100, b'= b-100, c'= c-100, d'= d-100

U-80,80 -80,80 D -50,50 -20,20

zero-sum: a'+x=b'+B=c'+y=d'+S=0

- -> could've subtracted 100 from column player
 or any X from row and y from column
 as X+y=100
- · solution concepts always predict same outcomes for constant-sum and equivalent zero-sum games

Convention: Unless otherwise stated, simplified matrices will indicate symmetric games.

Summary: • symmetric games
• simplified payoff matrix
• zero-sum games
• constant-sum games
• convention: simplified=) symmetric by default