Pravděpodobnost a Statistika 1

Poznámky z přednášek p. doc. Roberta Šámala

Letní semestr 2020/2021

Viktor Soukup, Lukáš Salak

Obsah

1	První přednáška 1.1 Úvodem	3 3 4
2	Druhá přednáška2.1 Opakování2.2 Podmíněná pravděpodobnost	6 7
3	Třetí přednáška3.1 Typy rozdělení3.2 Rozptyl a LOTUS	9 10 11
4	Čtvrtá přednáška4.1 Parametry rozdělení4.2 Náhodné vektory4.3 Marginální rozdělení	12 14 15 15
5	Pátá přednáška	16
6	Šestá přednáška	18
7	Sedmá přednáška	20
8	Osmá přednáška	23
9	Devátá přednáška 9.1 Nerovnosti, které známe z minula 9.2 Slabý zákon velkých čísel 9.3 Centrální limitní věta 9.4 Momentová vytvořující funkce 9.5 Statistika 9.6 Empirická distribuční funkce - Dvoretzky-Keifer-Wolfowitz (DKW) 9.7 Intro - explorační analýza dat (exploratory data analysis) Desátá přednáška	27 27 27 28 28 28 29
	10.1 náhodný výběr	29 29 29 30 31 31
11	Jedenáctá přednáška11.1 Intervalové odhady	32 32 33
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 35 35 35 36
19	13.1 Simpsonův paradox	36 37 37

13.4	Bayesovská statistika	38
	13.4.1 Frekventistický/klasický přístup	38
	13.4.2 Bayesovský přístup	38
13.5	Generování náhodných veličin	39

1 První přednáška

1.1 Úvodem

Modely náhody \rightarrow Pravděpodobnost \rightarrow Pozorovaná data \rightarrow Modely náhody Model náhody např. kostka $1, \dots, 6$,

Pozorovaná data: 1,5,4,3,3

otázka na pravděpodobnost: jaká je pravděpodobnost. . . hodně pozorovaných dat \to statistika na model náhody.

Příklad (Schwartz-Zippel algoritmus): Máme dány dva polynomy f(x), g(x) stupně d. Chceme zjistit, zda jsou stejné, a to co nejrychleji.

Problém: g(x) je součin několik polynomů stupně $\leq \frac{d}{4}$, dostávame víc než lineární čas.

Řešení: Algoritmus: zvolíme náhodně $x \in \{1, 2, ..., 100d\}$, ověříme, zda $f(x_1) = g(x_1)$. Když $f \neq g$, tak x_1 je kořen polynomu f - g. ... takových x_1 je $\leq d$.

$$P(f(x_1) = g(x_1) : f \neq g) \le \frac{1}{100}$$

Pokud jsme spokojeni s 1%, končíme, když ne, volíme $x_2, x_3 \dots \in \{1, 2, \dots, 100d\}$, pak

$$P(Prox_1, x_2, x_3 \dots f(x_i) = g(x_i) : f \neq g) \le \left(\frac{1}{3}\right)^3 = 10^{-6}$$

... aproximační algoritmy

Některé jevy neumíme/nechceme popsat kauzálně

- hod kostkou
- tři hody kostkou, nekonečně mnoho hodů kostkou
- hod šipkou na terč
- počet emailů za den
- dobu běhu programu (v reálnem počítači)
- a další ...

Důvody:

- fyzikální vlastnost přírody
- komplikovaný proces (počasí, medicína, molekuly plynu...)
- neznáme vlivy (působení dalších lidí, programů...)
- randomizované algoritmy (test prvočíselnosti, quicksort)
- náhodné grafy (Ramseyovy čísla)
- a další ...

Pro popis pomocí teorie pravděpodobnosti napřed vybereme množinu elementárních jevů Ω (sample space)

$$\Omega = \{1, 2 \dots, 6\} = [6] \implies \text{hod kostkou}$$

$$\Omega = [6]^3 \implies \text{hod třemi kostkami}$$

1.2 Základní definice

Definice (Prostor jevů): $\mathcal{F} \subseteq \mathcal{P}(\Omega)$

 $\mathbb{F}\subseteq\mathbb{P}(\Omega)$ je prostor jevů (též $\sigma\text{-algebra}),$ pokud

- 1. $\emptyset \in \mathcal{F}$ a $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies \Omega \backslash A \in \mathcal{F}$
- 3. $A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Často $\mathcal{F} = \mathcal{P}(\Omega)$, to je možné vždy, když je Ω spočetná, např. pro $\Omega = \mathbb{R}$ to již nejde.

Definice (Pravděpodobnost): $P: \mathcal{F} \to [0,1]$ se nazývá pravděpodobnost (probability), pokud:

- 1. $P(\emptyset) = 0, P(\Omega) = 1$, a
- 2. $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$, pro libovolnou posloupnost po dvou disjunktních jevů **TODOOT**

Šance (odds) jevu A je $O(A) = \frac{P(A)}{P(A^c)}$. Např. šance na výhru je 1 ku 2 znamená, že pravděpodobnost výhry je $\frac{1}{3}$; šance, že na kostce padne šestka je 1 ku 5.

Konvence:

- "A je jistý jev" znamená P(A) = 1. Také se říká, že A nastáva skoro jistě (almost surely), zkráceně s.j. (a.s.).
- \bullet "A je nemožný jev" znamená P(A) = 0.

$$P(A) = 0 \Rightarrow ? A = \emptyset$$

 $\leftarrow \text{axiom}$

 \rightarrow platí často, ne vždy

 \bullet Např. A=střed kruhu (házení šipek na terč) $\implies P(A)=0$ B spočetná (konečná, velká jako $\mathbb N)$ množina:

$$P(B) = 0 + 0 + 0 + \dots = 0$$

 B_i je *i*-tý bod, $B = \bigcup B_i$

Věta (Vlastnosti pravděpodobnostního prostoru): V pravděpodobnostním prostoru (Ω, \mathcal{F}, P) platí pro $A.B \in \mathcal{F}$:

- 1. $P(A) + P(A^c) = 1$
- $2. A \subseteq B \implies P(A) \le P(B)$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 4. $P(A_1 \cup A_2 \cup ...) \leq \sum_i P(A_i)$ (subaditiva, Booleova nerovnost) (nevyžadujeme disjunktnost, pak by platila rovnost)

Důkaz:

- 1. $\Omega = A \cup A^c$; A, A^c disj., $1 = P(\Omega) = P(A) + P(A^c)$
- 2. $P(B) = P(A) + P(B \setminus A) \ge P(A)$
- 3. Využíváme Princip Inkluze a Exkluze. (ale nevim jiste, jestli to staci)
- 4. trik zdisjunktnění: z A_1, A_2 ... uděláme disjunktní množiny

$$B_1 = A_1, B_2 = A_2 \setminus A_1, B_3 = A_3 \setminus A_1 \cup A_2 \dots$$

$$B_{i} \subseteq A_{i} \implies P(B_{i}) \leq P(A_{i})$$

$$B_{i} \cap B_{j} = \emptyset : j < i \dots B_{i} \cap B_{j} \subseteq B_{i} \cap A_{j} = \emptyset$$

$$\bigcup_{i=1}^{\infty} B_{i} = \bigcup_{i=1}^{\infty} A_{i}$$

$$\subseteq ok$$

opačná inkluze TODOOT

$$P(\bigcup A_i = P(\bigcup B_i) = \sum P(B_i) \le \sum P(A_i)).$$

Příklad (Pravděpodobnostní prostory):

1. Konečný s uniformní pravděpodobností

$$\Omega$$
 je libovolná konečná množina, $\mathcal{F}=\mathcal{P}(\Omega),$ $P(A)=\frac{|A|}{|\Omega|}.$

2. Diskrétní

$$\Omega = \{\omega_1, \omega_2 \dots\}$$
 je libovolná spočetná množina. Jsou dány $p_1, p_2 \dots \in [0, 1]$ se součtem 1. $P(A) = \sum_{i:\omega_i \in A} p_i$ (cinknutá loterie, nějaké možnosti mají jiné procenta)

3. Spojitý

$$\Omega\subseteq\mathbb{R}^d$$
pro vhodné d (Ω např. uzavřená nebo otevřená) \mathcal{F} vhodná (obsahuje např. všechny otevřené množiny) $f:\Omega\to[0,1]$ je funkcne taková, že $\int_\Omega f(x)dx=1.$ $P(A)=\int_A f(x)dx$

Speciální případ:
$$f(x)=1/V_d(\Omega)$$
 $P(A)=\frac{V_d(A)}{V_d(\Omega)},$ kde $V_d(A)=\int_A 1$ je d-rozměrný objem A.

4. Bernoulliho krychle - nekonečné opakování

$$\Omega = S^{\mathbb{N}}$$
, kde S je diskrétní s pravděpodobností Q , \mathcal{F} vhodná (obsahuje např. všechny množiny tvaru $A = A_1 \times \cdots \times A_k \times S \times S \times \cdots$) $P(A) = Q(A_1) \dots Q(A_k)$

Příklad (Nepříklady):

1. Náhodné přirozené číslo: můžeme si vybrat mnoha způsoby, Ale všechna přirozená čísla nemají stejnou pravděpodobnost.

není možné, aby měly všechny stejnou nenulovou pravděpodobnost, protože pokud $P(0) = P(1) = P(2) \cdots = P$ tak $P(\mathbb{N}) = p + p + p \cdots = \infty$.

- 2. Náhodné reálne číslo
- 3. Betranův paradox

Definice (Podmíněná pravděpodobnost): Pokud $A, B \in \mathcal{F}$ a P(B) > 0, pak definujeme podmíněnou pravděpodobnost A při B (probability of A given B) jako

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Q(A) := P(A|B). Pak (Ω, \mathcal{F}, Q) je pravděpodobností prostor.

Definice (Zřetězené podmíňování): $P(A \cap B) = P(B)P(A|B)$

Věta: Pokud $A_1, \ldots A_n \in \mathcal{F}$ a $P(A_1, \cap \cdots \cap A_n) > 0$, tak

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)...TODOOT$$

2 Druhá přednáška

2.1 Opakování

- 1. definice pravděpodobnostního prostoru (Ω, \mathcal{F}, P) : dva axiomy,
- 2. naivní pravděpodobnostní prostor: Ω konečná, $\mathcal{F}=\mathcal{P}(\Omega)$ $P(A):=|A|/|\Omega|$
- 3. diskrétní pravděpodobnostní prostor: $\Omega=\omega_1,\omega_2,...,$

$$\mathcal{F} = \mathcal{P}(\Omega), \sum_{i} p_i = 1$$
$$P(A) := \sum_{i:\omega_i \in A} p_i$$

4. **geometrický** pravděpodobnostní prostor:

$$\omega \subseteq \mathbb{R}^d$$
 s konečným objemem,

$$P(A) := V_d(A)/V_d(\Omega)$$

5. pravděpodobnostní prostor **spojitý s hustotou**:

$$\Omega \subseteq \mathbb{R}^d$$
 s funkcí f , kde $\int_{\Omega} f = 1$, $P(A) := \int_A f$

V pravděpodobnostním prostoru (Ω, \mathcal{F}, P) platí pro $A, B \in \mathcal{F}$

1.
$$P(A^c) = 1 - P(A) \dots (A^c = \Omega \setminus A)$$

$$2. A \subseteq B \implies P(A) \leq P(B)$$

3.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 ... PIE

- 4. $P(A_1 \cup A_2 \cup ...) \leq \sum_i P(A_i)$ (subaditivita, Booleova nerovnost)
- 5. Definujeme podmíněnou pravděpodobnost (pro P(B) > 0).

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

6. Q(A) = P(A|B) splňuje axiomy pro pravděpodobnost.

$$P(\emptyset|B) = 0$$

$$P(\Omega|B) = \frac{P(B)}{P(B)} = 1$$

$$P(A_1 \circ A_2|B) = \frac{P((A_1 \circ A_2) \cup B)}{P(B)} = \frac{P((A_1 \cap B) \cup (A_2 \cap B))}{P(B)}$$

$$= \frac{P(A_1 \cap B)}{P(B) + \frac{P(A_2 \cap B)}{P(B)}} = P(A_1|B) + P(A_2|B)$$

2.2 Podmíněná pravděpodobnost

Definice (Zřetězené podmíňování):

$$P(A \cup B) = P(B)P(A|B)$$

Věta: Pokud $A_1, \ldots, A_n \in \mathcal{F}$ a $P(A_1 \cap \cdots \cap A_n) > 0$, tak

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) =$$

$$P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|\bigcap_{i=1}^{n-1} A_i)$$

Důkaz: indukcí □

Příklad: Vytáhneme 3 karty z balíčku 52 karet. Jaká je P(žádné srdce)?

 $A_i = i$ -tá karta není srdce

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \times P(A_2|A_1) P(A_3|A_2 \cap A_1) = \frac{13 * 3}{52} \times \frac{13 * 3 - 1}{51} \times \frac{13 * 3 - 2}{50}$$

$$\frac{\text{\#dobrých}}{\text{\#všech}} = \frac{\binom{39}{3}}{\binom{52}{3}}$$

Definice: Spočetný systém množin $B_1, B_2, ... \in \mathcal{F}$ je rozklad (partition) Ω , Pokud

- 1. $B_i \cap B_j = \emptyset$ pro $i \neq j$ a
- 2. $\bigcup_i B_i = \Omega$.

Věta (Věta o úplné pravděpodobnosti): = Rozbor všech možností Pokud $B_1, B_2, ...$ je rozklad Ω a $A \in \mathcal{F}$, tak

$$P(A) = \sum_{i} P(B_i)P(A|B_i)$$

(sčítance s $P(B_i) = 0$ považujeme za 0).

$$A = (A \cap B_1) \cup (A \cap B_2) \cup \dots$$

(sjednocení disjunktních množin)

$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(B_i)P(A|B_i)$$

Příklad: Máme tři mince: P+O, P+P, O+O. Jaká je pravděpodobnost, že padne orel? Označíme M_1, M_2, M_3 pro P+O, P+P, O+O.

$$P(O) = P(M_1)P(O|M_1) + P(M_2)P(O|M_2) + P(M_3)P(O|M_3)$$
$$= \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = \frac{1}{2}$$

Rychlejší je vypsat si strom a pak posčítat výsledné jevy

Příklad (Gambler's ruin - zbankrotování hazardního hráče.): Máme a korun, náš protihráč b korun. Hrajeme opakovaně spravedlivou hru o 1kč,

dokud někdo nepřijde o všechny peníze. Jaká je pravděpodobnost, že vyhrajeme?

Důkaz:

$$P_{a} = P(\text{z této pozice vyhrajeme})$$

$$P_{0} = 0, P_{n} = 1 \dots (a + b = n)$$

$$P(\text{výhra}|1. \text{ kolo výhra})P(1. \text{ kolo výhra})$$

$$+P(\text{výhra}|1. \text{ kolo prohra})P(1. \text{ kolo prohra})$$

$$\text{výhra} \implies P_{a+1}, \text{prohra} \implies P_{a-1}$$

$$P_{a} = \frac{P_{a+1}}{2} + \frac{P_{a-1}}{2}$$

$$\Leftrightarrow$$

$$P_{a} - P_{a-1} = P_{a+1} - P_{a} = \Delta$$

$$1 = P_{n} = P_{0} + n * \Delta \implies \Delta = \frac{1}{n}$$

$$P_{a} = \frac{a}{a+b} = \frac{a}{n}$$

Věta (Bayesova Věta): Pokud B_1, B_2, \ldots je rozklad $\Omega, A \in \mathcal{F}, P(A) > 0$ a $P(B_j) > 0$, tak

$$P(B_j)|A) = \frac{P(B_j)P(A|B_j)}{P(A)} = \frac{P(B_j)P(A|B_j)}{\sum_i P(B_i)P(A|B_i)}.$$

(sčítance s $P(B_i) = 0$ považujeme za 0).

Důkaz:

$$P(B_j|A)P(A) = P(B_j)P(A|B_j)$$
$$P(A \cap B_j) = P(B_j \cap A)$$

Příklad: $N = \text{nemocn}\acute{y}, T = \text{testovan}\acute{y}, \text{specif. } P(N|T), \text{sens. } P(T|N).$

$$P(N|T) = \frac{P(N)P(T|N)}{P(N)P(T|N) + P(N^c)P(T|N^c)} = \frac{p*0.8}{p*0.8 + (1-p)*0.01}$$

$$p = 0.001 \dots 7\%$$

$$p = 0.0016 \dots 56\% \dots \text{momentální stav testování}$$

$$p = 0.05 \dots 80\%$$

Definice: Jevy $A, B \in \mathcal{F}$ jsou nezávislé (independenet) pokud $P(A \cap B) = P(A)P(B)$. Pak také platí P(A|B) = P(A), pokud P(B) > 0.

Definice: Jevy $\{A_i : i \in I\}$ jsou (vzájemně) nezávislé, pokud pro každou konečnou množinu $J \subseteq I$

$$P\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}P(A_i).$$

Pokud podmínka platí jen pro dvouprvkové množiny J, nazýváme jevy $\{A_i\}$ po dvou nezávislé (pairwise independent).

Definice: Nechť pro množiny z prostoru jevů platí

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$

a $A = \bigcup_{i=1}^{\infty} A_i$. Pak platí

$$P(A) = \lim_{i \to \infty} P(A_i).$$

Důkaz:

$$A = A_1 \cup (A_2 \backslash A_1) \cup (A_3 \backslash A_2) \cup \dots$$

$$P(A) = P(A_1) + P(A_2 \backslash A_1) + P(A_3 \backslash A_2) + \dots$$

$$\lim_{i \to \infty} (P(A_1) + \dots + P(A_i \backslash A_{i-1})) = \lim_{i \to \infty} P(A_i).$$

 $A_n \subset P, O^{\mathbb{N}}, A_n =$ mezi prvními nhody padl aspoň jednou orel.

$$P(A) = P(\geq 1 \text{ orel } v \infty \text{ hodech}) = \lim_{n \to \infty} \cdots = 1$$

Definice (Náhodná veličina): Mějme pravděpodobnostní prostor (Ω, \mathcal{F}, P) . Funkci $X : \Omega \to \mathbb{R}$ nazveme diskrétní náhodná veličina, pokud $I_m(X)$ je spočetná množina a pokud pro všechna reálna x platí

$$\{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}.$$

Definice: Pravděpodobnostní funkce diskrétní náhodné veličiny X je funkce $p_X: \mathbb{R} \to [0,1]$ taková, že

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

Definice: $\sum_{x \in I_m(X)} p_X(x) = 1$

Definice: $S := I_m(X)1, Q(A) := \sum_{x \in A} p_X(x)$ $(S, \mathcal{P}(S), Q)$ je diskrétní pravděpodobnostní prostor.

Definice: Pro $S = \{s_i : i \in I\}$ spočetnou množinu reálných čísel a $c_i \in [0,1]$ $\sum_{i \in I} c_i = 1$ existuje pravděpodobnostní prostor a diskrétní n.v. X na něm taková, že $p_X(s_i) = c_i$ pro $i \in I$.

3 Třetí přednáška

Definice (Distribuční funkce): Distribuční funkce (cumulative distribution function, CDF) n.v. X je funkce

$$F_X(x) := P(X < x) = P(\{\omega \in \Omega : X(\omega) < x\}).$$

- 1. F_X je neklesajíci funkce
- 2. $\lim_{x\to-\infty} F_X(x) = 0$
- 3. $\lim_{x\to+\infty} F_X(x) = 1$
- 4. F_X je zprava spojitá

Příklad: $X = \{0 \text{ s pravděpodobností } \frac{1}{2}, 1 \text{ s psravděpodobností } \frac{1}{2}\}$

Důkaz: F_X je neklesající funkce

$$x < y \implies P(X \le x) \le P(X \le y)$$
 protože $A = \omega : X(\omega) \le x$ a $B = \omega : X(\omega) \le y,$ pak $A \subseteq B \implies P(A) \le P(B)$

Důkaz: $\lim_{x\to+\infty} F_X(x) = 1$

 $A_n = X \le n$; platí $A_1 \subseteq A_2 \subseteq \dots$

Takže $\bigcup_{n=1}^{\infty} A_n = \Omega$, podle véty o spojitosti pak

$$P(\Omega) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} F_X(n)$$

Obdobně postupujeme pro druhou limitu.

3.1 Typy rozdělení

Definice (Bernoulliho/alternativní rozdělení):

- 1. X = počet orlů při jednom hodu nespravedlivou mincí.
- 2. Značíme $X \sim Bern(p)$. Někdy se značí Alt(p).
- 1. Dáno $p \in [0, 1]$.
- 2. $p_X(1) = p$
- 3. $p_X(0) = 1 p$
- 4. $p_X(k) = 0 \text{ pro } k \neq 0, 1$
- 1. Pro libovolný jev $A \in \mathcal{F}$ definujeme indikátorovou n.v. I_A :
- 2. $I_A(\omega) = 1$ pokud $\omega \in A, I_A(\omega) = 0$ jinak.
- 3. $I_A \sim Bern(P(A))$.

Definice (Binomické rozdělení):

- 1. X = počet orlů při n hodech nespravedlivou mincí.
- 2. Dáno $p \in [0,1]$ pravděpodobnost orla při jednom hodu.
- 3. Značíme $X \sim Bin(n, p)$.
- 1. $X = \sum_{i=1}^{n} X_i$ pro nezávislé n.v. $X_1, \dots X_n \sim Bern(p)$.
- 2. $p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ pro } k \in \{0, 1, \dots, n\}$

$$\sum_{k=1}^{n} \binom{n}{k} p^k (1-p)^{n-k} = 1$$

$$(p + (1 - p))^n = 1^n = 1$$

Definice (Hypergeometrické rozdělení):

- 1. X = počet vytažených červených míčku při n tazích, v osudí je K červených z N celkových míčků
- 2. Dáno n, N, K.
- 3. Značíme $X \sim Hyper(N, K, n)$.

4.
$$p_X(k) = P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

Definice (Poissonovo rozdělení (poasón)):

- 1. Značíme $X \sim Pois(\lambda)$.
- 2. Dáno reálné $\lambda > 0$.
- 3. $p_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$
- 4. $Pois(\lambda)$ je limitou $Bin(n, \lambda/n) \dots \sim X_n \dots \lambda$ pevné
- 5. X popisuje např. počet emailů, které dostaneme za jednu hodinu.

cheeme $\sum \frac{\lambda^k}{k!} e^{-1} = 1$

$$e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$

$$P(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} =$$

$$= \frac{n(n-1)\dots(n-k+1)}{k!} \frac{\lambda^k}{n^k} \left(1 - \frac{1}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k} =$$
$$= \frac{\lambda^k}{k!} e^{-\lambda}$$

Poznámka (Poissonovo paradigma): $A_1, \ldots A_n$ jsou (skoro) nezávislé jevy s $P(A_i) = p_i$, $\lambda = \sum_j p_j$. Nechť n je velké, každé z p_i malé. Pak přibližně platí

$$\sum_{i=1}^{n} I_{A_i} \sim Pois(\lambda)$$

Definice (Geometrické rozdělení):

- 1. X = kolikátým hodem mincí padl první orel.
- 2. Značíme $X \sim Geom(p)$.
- 3. Dáno $p \in [0, 1]$.
- 4. $p_X(k) = (1-p)^{k-1}p$, pro k = 1, 2, ...
- 5. Někdy se tomuto rozdělení říká posunuté geometrické, a za normální geometrické se považuje rozdělení X-1, t.j. počet neúspěšných hodů.

Důkaz: chceme $\sum (1-p)^{k-1}p = 1$

$$= \frac{(1-p)^0 p}{1-(1-p)} = \frac{p}{p} = 1$$

Definice (Střední hodnota): Pokud X je diskrétní n.v., tak její střední hodnota (expectation) je označovaná $\mathbb{E}(X)$ a definovaná

$$\mathbb{E}(X) = \sum_{x \in Im(X)} x P(X = x),$$

pokud součet má smysl.

Nechť X je definovaná na diskrétním prostoru (Ω, \mathcal{F}, P) . Pak střední hodnotu lze také definovat jako vážený průměr

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega).$$

Poznámka: Obě definice spolu souhlasí.

Důkaz:

$$\sum_{x \in Im(X(\omega))} \sum_{\omega \in \Omega} X(\omega) P(\omega) = \sum_{x \in Im(X)} (x \times P(\omega \in \Omega : X(\omega) = x))$$

3.2 Rozptyl a LOTUS

Definice (Rozptyl): Rozptyl
(variace) n.v. X nazveme číslo $\mathbb{E}((X - \mathbb{E}X)^2)$. Značíme je
jvar(X)

Věta:

$$var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Definice (LOTUS (Law of The Unconscious Statistist)): Pro reálnou funkci g a diskrtétni n.v. X je Y = g(X) také diskrétní n.v.

Věta (LOTUS): Pokud X je diskrétní n.v. a g reálná funkce, tak

$$\mathbb{E}(g(X)) = \sum_{x \in Im(X)} g(x)P(X = x)$$

pokud součet má smysl.

Důkaz:

$$Y = g(X)$$

$$\mathbb{E}Y = \sum_{y \in Y} y \times P(Y = y)... \text{ definice}$$

$$= \sum_{y \in Y} \sum_{x \in Im(X)} g(x)P(X = x)$$

$$= \sum_{x \in Im(X)} g(x)P(X = x)$$

4 Čtvrtá přednáška

Věta: Nechť X, Y jsou diskrétní n.v. a $a, b \in \mathbb{R}$.

- 1. Pokud $P(X \ge 0) = 1$ a $\mathbb{E}(X) = 0$, tak P(X = 0) = 1.
- 2. Pokud $\mathbb{E}(X) \geq 0$ tak $P(X \geq 0) > 0$.
- 3. $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$.
- 4. $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$

Důkaz:

1.

$$\mathbb{E}(X) = \sum_{x \in X} x P(X = x) = 0 P(X = 0) + \sum_{x > \&x \in X} x P(X = 0) = \sum_{x < 0 \land x \in X} x P(X = x) = 0$$

$$\implies \forall x > 0 : P(x = x) = 0 \implies P(X = 0) = 1$$

2.

$$\mathbb{E}(X) = \sum x P(X \ge x) = 0$$

kdyby ne: $P(x \ge 0) = 0$, všechny členy v sumě by byly záporné...spor

3. $\mathbb{E}(aX + b) = \sum_{x \in X} (ax + b)P(X = x) = a\sum_{x \in X} xP(X = x) + b\sum_{x \in X} P(X = x)$

4.

$$\mathbb{E}(X+Y) = \sum_{\omega} (X(\omega) + Y(\omega))P(\omega) = \sum_{\omega} X(\omega)P(\omega) + \sum_{\omega} Y(\omega)P(\omega) = \mathbb{E}(X) + \mathbb{E}(Y)$$

Věta: Nechť X je diskrétní n.v. nabývajíci jen hodnot $z \mathbb{N} = 0, 1, 2, s$. Pak platí

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} P(X > n).$$

Důkaz:

$$\mathbb{E}(X) = \sum_{k=0}^{\infty} kP(X=k) = \sum_{k=0}^{\infty} \sum_{n=0}^{k-1} P(X=k)$$
$$= \sum_{n=0}^{\infty} \sum_{k=n+1}^{\infty} P(X=k) = \sum_{k=0}^{\infty} \sum_{n=0}^{k-1} P(X=k)$$
$$= \sum_{n=0}^{\infty} P(X=k) = \sum_{k=0}^{\infty} P(X=k) = \sum_{n=0}^{\infty} P(X>n)$$

Definice (Rozptyl): Rozptyl (variance) n.v. X nazveme číslo $\mathbb{E}((X - \mathbb{E}(X))^2)$. Značíme jej var(X). . . . (kvadratické měření odchylky)

1. Směrodatná odchylka (standard deviation) $\sigma_X = \sqrt{var(X)}$

Poznámka: "stejné jednotky jako X"

2. Měří, jak je daleko "typicky" X od $\mathbb{E}(X)$. Mohli bychom to měrit i jinak (např. $\mathbb{E}(|X - \mathbb{E}(X)|)$, ale rozptyl je výhodnější).

Věta: $var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Důkaz:

$$\mu = \mathbb{E}(X)$$

$$var(X) = \mathbb{E}((X - \mu)^2) = \mathbb{E}(X^2 - 2\mu + \mu^2) = \mathbb{E}(X^2) - 2\mu\mathbb{E}(X) + \mu^2$$

Definice (Podmíněná střední hodnota): Pokud X je diskrétní n.v. a P(B) > 0, tak podmíněná střední hodnota X za předpokladu B (conditional expectation of X given by B)

Věta (Věta o úplné střed. hodnotě): Pokud B_1, B_2, \ldots je rozklad Ω a X je d.n.v., tak

$$\mathbb{E}(X) = \sum_{i} \mathbb{E}(X|B_i)P(B_i)$$

kdykoliv má součet smysl. (Sčítance s $P(B_i) = 0$ považujeme za 0.)

Důkaz:

$$\mathbb{E}(X) = \sum_{i} P(B_i) \mathbb{E}(X|B_i)$$

$$= \sum_{i} P(B_i) \sum_{x} x P(X = x|B_i)$$

$$= \sum_{x} x (\sum_{i} P(B_i) P(i))$$

Poznámka:

Rozbor všech možností: $X \sim Geom(p)$ $B_1 = S \dots$ první pokus úspěšný

 $B_2 = B_1^C = F \dots$ první pokus neúspěšný

$$\mathbb{E}(X) = P(S)\mathbb{E}(X|S) + P(F)\mathbb{E}(X|F)$$
$$= p1 + (1 - p)(\mathbb{E}(X + 1))$$

13

$$p\mathbb{E}(X) = p + (1 - p) = 1$$
$$\mathbb{E}(X) = \frac{1}{p}$$

4.1 Parametry rozdělení

Věta (Parametry rozdělení - Bernoulliho):

 $Pro\ X \sim Bern(p)\ je$

1.
$$\mathbb{E}(X) = p$$

2.
$$var(X) = p(1-p)$$

Důkaz:
$$\mathbb{E}(X) = 0P(X=0) + 1P(X=1) = P(X=1) = p$$
 $var(X) = \mathbb{E}(X-p)^2 = (0-p)^2 P(X=0) + (1-p)^2 P(X=1) = p(1-p)(p+(1-p)) = p(1-p)$

Věta (Parametry rozdělení - binomické):

 $Pro\ X \sim Bin(n,p)\ je$

1.
$$\mathbb{E}(X) = np$$

2.
$$var(X) = np(1-p)$$

Důkaz:

1. První postup: $X = \sum_{i=1}^{n} X_i$, kde $X_i = [i-tý \text{ hod uspěl}]$

$$\mathbb{E}(X_i) = P(X_i = 1) = p$$

2. Druhý postup:

$$\mathbb{E}(X) = \sum_{k=0}^{n} k P(X = k) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1 - p)^{n-k}$$
$$\sum_{k=1}^{n} pn \binom{n-1}{k-1} p^{k-1} (1 - p)^{(n-1)-(k-1)}$$
$$= pn(p + (1 - p))^{n-1} = np$$

Věta (Parametry rozdělení - hypergeometrické): $Pro\ X \sim Hyper(N,K,n)\ je$

1.
$$\mathbb{E}(X) = n\frac{K}{N}$$

2.
$$var(X) = n \frac{K}{N} (1 - \frac{K}{N}) \frac{N-n}{N-1}$$

1. První postup: $X = \sum_{i=1}^{n} X_i$, kde $X_i = [i$ -tý míček červený]

$$\mathbb{E}(X_i) = P(X_i = 1) = \frac{K}{N}$$

2. Druhý postup:

$$\mathbb{E}(X) = \sum_{j=1}^{K} Y_j, \text{ kde } Y_j = [\text{byl vytažen } (\text{z n tahů}) \text{ míček s číslem } j]$$

$$\mathbb{E}(Y_j) = P(Y_j = 1) = \frac{n}{N}$$

$$= \frac{\binom{N-1}{n-1}}{\binom{N}{N}} = \frac{n}{N}$$

Věta (Parametry rozdělení - geometrické): $Pro\ X \sim Geom(p)\ je$

1.
$$\mathbb{E}(X) = n\frac{1}{p}$$

2.
$$var(X) = \frac{1-p}{p^2}$$

Věta (Parametry rozdělení - hypergeometrické): $Pro\ X \sim Hyper(N,K,n)\ je$

1.
$$\mathbb{E}(X) = \lambda$$

2.
$$var(X) = \lambda$$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
$$\mathbb{E}(X) = \sum_{k=1}^{k} k \frac{\lambda^k}{k!} e^{-\lambda} = 1$$
$$\lambda \sum_{k=1}^{k} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda$$

4.2 Náhodné vektory

Definice (Základní popis náhodných vektorů):

- 1. X, Y náhodné veličiny na stejném pravděpodobnostním prostoru (Ω, \mathcal{F}, P) .
- 2. Budeme chtít uvažovat (X,Y) jako jeden objekt náhodný vektor.
- 3. Jak to udělat?
- 4. Příklad: házíme dvakrát čtyřstěnnout kostkou, X = první hod, Y = druhý hod.

Definice: Pro diskrétní n.v. X,Y na pravděpodobnostím prostoru (Ω, \mathcal{F}, P) definujeme jejich sdruženou pravděpodobnostní funkci (joint pmf) $p_{X,Y} = \mathbb{R}^2 \to [0,1]$ předpisem

$$p_{XY}(x,y) = P(\omega \in \Omega : X(\omega) = x \& Y(\omega) = y) = P(X = x \& Y = y)$$

4.3 Marginální rozdělení

Máme-li dáno $p_{X,Y}$, jak zjistit rozdělení jednotlivých složek, t.j. p_X a p_Y ?

Věta: Nechť X, Y jsou diskrétní n.v. Pak:

$$p_X(x) = P(X = x) = \sum_{Y \in Im(Y)} P(X = x \& Y = y) = \sum_{Y \in Im(Y)} p_{X,Y}(x,y)$$

$$p_Y(y) = P(Y = y) = \sum_{X \in Im(X)} P(X = x \& Y = y) = \sum_{Y \in Im(Y)} p_{X,Y}(x,y)$$

Věta: Nechť X, Y jsou n.v. na (Ω, \mathcal{F}, P) , nechť $g : \mathbb{R}^2 \to \mathbb{R}$ je funkce.

- $Pak Z = g(X,Y) je n.v. na (\Omega, \mathcal{F}, P)$
- a platí pro ni

$$\mathbb{E}(g(X,Y)) = \sum_{x \in Im(X)} \sum_{y \in Im(Y)} g(x,y) P(X = x, Y = y).$$

Věta: Pro X, Y n.v. a $a, b \in \mathbb{R}$ platí

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y).$$

Definice (Nezávislost náhodných veličin): Diskrétní n.v. X, Y jsou nezávislé (independent) pokud pro každé $x, y \in \mathbb{R}$ jsou jevy $\{X = x\}$ a $\{Y = y\}$ nezávislé. To nastane právě když

$$P(X = x, Y = y) = P(X = x)P(Y = y).$$

Věta (Součin nezávislých n.v.): Pro nezávislé diskrétní n.v. X, Y platí

$$\mathbb{E}XY = \mathbb{E}(X)\mathbb{E}(Y)$$

Důkaz:

$$\mathbb{E}(XY) = \sum_{x \in Im(X), y \in Im(Y)} P(X = x, Y = y)$$
$$= \sum_{x} x P(X = x) \sum_{y} y P(Y = y) = \mathbb{E}(X) \mathbb{E}(Y)$$

5 Pátá přednáška

Definice (Coupling):

- 1. $X = \sum_{i=1}^{n} X_i$ kde X_1, \dots, X_n jsou n.n.v. $\dots \sim Bern(p)$
- 2. $Y = \sum_{i=1}^{n} Y_i$ kde Y_1, \dots, Y_n jsou n.n.v. $\dots \sim Bern(q) \dots o < q$
- 3. vztah X, Y není určen, můžou být jakékoliv.
- 4. Zařídíme, že nebudou nezávislé, dokonce bude vždy $X \leq Y$.
- 5. Stačí definovat:

$$\operatorname{pokud} X_i = 1 \text{ tak } Y_i = 1$$

$$\operatorname{pokud} X_i = 0 \text{ tak } Y_i \text{ bud' } 1 \text{ nebo } 0$$

$$\Longrightarrow Y_1, \dots, Y_n \text{ jsou n.n.v } \Longrightarrow Y \sim Bin(n,q)$$

$$\Longrightarrow X \leq Y \text{ vždy } (Y \leq k \implies X \leq k) \Longrightarrow P(X \leq k) \geq P(Y \leq k)$$

Věta (Funkce náhodného vektoru):

Nechť X, Y jsou n.v. na (Ω, \mathcal{F}, P) , nechť $g : \mathbb{R}^2 \to \mathbb{R}$ je funkce.

- 1. Pak Z = g(X,Y) je n.v. na (Ω, \mathcal{F}, P)
- 2. platí pro ni

$$\mathbb{E}(g(X,Y)) = \sum_{x \in Im(X)} \sum_{y \in Im(Y)} g(x,y) P(X = x, Y = y)$$

Věta (Linearita střední hodnoty):

Pro X, Y n.v. $a \ a, b \in \mathbb{R}$ platí

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

Důkaz:

$$g(x,y) = ax + by$$

$$\mathbb{E}(aX + bY) = \mathbb{E}(g(X,Y)) = \sum_{x,y} g(x,y)P(X = x, Y = y) = \sum_{x,y} axP(X = x, Y = y)$$

$$+ \sum_{x,y} byP(X = x, Y = y) = \sum_{x} axP(X = x) + \sum_{y} byP(Y = y)$$

Věta (Konvoluce): Pokud X, Y jsou diskrétní náhodné veličiny, tak pro Z = X + Y platí

$$P(Z=z) = \sum_{x \in Im(X)} P(X=x, Y=z-x).$$

Pokud X, Y jsou návíc nezávislé, tak

$$P(Z=z) = \sum_{x \in Im(X)} P(X=x)P(Y=z-x).$$

Důkaz:

$$P_z = \sum_x P_X(x) P_Y(z - x) \dots \text{ konvoluce}$$

$$P(Z = z) = \sum_k P(X = k \& Y = z - k)$$

$$= \sum_{k=0}^m P(X = k) P(Y = z - k)$$

$$= \sum_{k=0}^m P^k (1 - p)^{m-k} \binom{n}{z - k} p^{z-k} (1 - p)^{n-(z-k)}$$

$$= \sum_{k=0}^m p^z (1 - p)^{m+n-z} \binom{m}{k} \binom{n}{z - k}$$

$$= p^z (1 - p)^{m+n-z} \sum_{k=0}^m \binom{m}{k} \binom{n}{z - k}$$

$$= Bin(m + n, p)$$

Definice (Podmíněné rozdělení): X, Y - diskrétní náhodné veličiny na $(\Omega, \mathcal{F}, P), A \in \mathcal{F}$

- 1. $p_{X|A}(x) := P(X = x|A) \dots$ příklad: X je výsledek hodu kostkou, $A = \mathrm{padlo}$ sudé číslo
- 2. $p_{X|Y}(x|y) := P(X = x|Y = y)$... příklad: X,Z jsou výsledky dvou nezávislých hodů kostkou, Y = X + Z.

Definice (Obecná náhodná veličina): Náhodná veličina (random variable) na (Ω, \mathcal{F}, P) je zobrazení $X: \Omega \to \mathbb{R}$, které pro každé $x \in \mathbb{R}$ splňuje

$$\omega \in \Omega : X(\omega) < x \in \mathcal{F}$$

. . .

$$F_X(x) = P(X \le x)$$

Definice (Spojitá náhodná veličina): N.v. X se nazývá spojitá (continuous), pokud existuje nezáporná reálna funkce f_X tak, že

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt$$

Někdy se též používá pojem absolutně spojitá veličina.

Funkce f_X se nazývá hustota (probability density function) náhodné veličiny X.

Podmínka na hustotu:

$$\int_{-\infty}^{\infty} f_X(t) = 1 \dots \lim_{x \to \infty} F_X(x) = 1$$

6 Šestá přednáška

Definice (Kvantilová funkce): Pro náhodnou veličinu X definujeme $kvanitlovou funkci <math>Q_X : [0,1] \to \mathbb{R}$ pomocí

$$Q_X(p) := \min\{x \in \mathbb{R} : p \le F_X(x)\}\$$

- 1. Pokud F_X je spojitá, tak $Q_X = F_X^{-1}$.
- 2. Obecně platí: $Q_X(p) \le x \Leftrightarrow p \le F_X(x)$.
- 3. $Q_X(\frac{1}{2}) = \text{medián (pozor, když } F_X \text{ není rostoucí)}$

Definice (Spojitá náhodná veličina): N.v. X se nazývá spojitá (continuous) pokud existuje nezáporná reálná funkce f_X tak, že

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt$$

- 1. Alternativně: máme zadanou funkci $f \ge 0$ s $\int_{-\infty}^{\infty} f = 1$.
- 2. Vybereme náhodný bod pod grafem f.
- 3. Označíme jeho souřadnice (X, Y).
- 4. Pak je X n.v. s hustotou f.

Věta (Práce s hustotou): Nechť spojitá n.v. X má hustotu f_X . Pak

- 1. $P(X = x) = 0 \ \forall x \in \mathbb{R}$.
- 2. $P(a \le X \le b) = \int_a^b f_X(t)dt \ \forall a, b \in \mathbb{R}.$
- 3. V důsledku taky platí (pro rozumnou množinu A):

$$P(X \in A) = \int_{A} f_X(t)dt$$

Důkaz:

$$2 \implies 1: P(x \le X \le x) = \int_x^x f = 0$$

$$2: P(a < X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a) = \int_{-\infty}^b f - \int_{-\infty}^a f$$

$$P(a \le X \le b) = \lim_{n \to \infty} P(a - \frac{1}{n} < X \le b) = \lim_{n \to \infty} \int_{a - \frac{1}{n}}^b f = \int_a^b f$$

Definice (Střední hodnota spojité n.v.): Nechť spojitá n.v. X má hustotu f_X . Pak její střední hodnota (expectation, expected value, mean) je označováná $\mathbb{E}(X)$ a definována

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

pokud integrál má smysl, t.j. pokud se nejedná o typ $\infty - \infty$.

- 1. Analogie s výpočtem těžiště tyče ze znalosti hustoty
- 2. Diskretizace.

Věta (LOTUS): Pokud X je spojitá n.v. s hustotou f_X a g reálná funkce, tak

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

pokud integrál má smysl. (Důkaz pomocí substituce v integrálu)

Věta (Linearita střední hodnoty): Pro X_1, \ldots, X_n diskrétní nebo spojité n.v. platí

$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n)$$

Definice (Rozptyl spojité n.v.):

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$

Označíme-li $\mu = \mathbb{E}(X)$, tak

$$var(X) := \mathbb{E}((X - \mu)^2) = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

Věta: Pro spojité n.v. platí $var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$

Důkaz: (Důkaz jako pro diskrétní n.v.)

Věta (Rozptyl součtu): Pro X_1, \ldots, X_n nezávislé diskrétní nebo spojité n.v. platí

$$var(X_1 + \dots + X_n) = var(X_1) + \dots + var(X_n).$$

Důkaz: Triviální. □

Definice (Uniformní rozdělení): N.v. X má uniformní rozdělení na intervalu [a,b], píšeme $X \sim U(a,b)$, pokud $f_X(x) = \frac{1}{b-a}$ pro $x \in [a,b] \& f_X(x) = 0$ jinak.

Definice (Exponenciální rozdělení):

$$F_X(x) = \begin{cases} 0 & \dots x \le 0 \\ 1 - e^{-\lambda x} & \dots x \ge 0 \end{cases}$$

Poznámka: X modeluje např. čas před příchodem dalšího telefonního hovoru do callcentra, dotazu na webserver, čas do dalšího blesku v bouřce atd.

Poznámka: Souvislost $X \sim Exp(\lambda)$ a $Y \sim Geom(p)$

- 1. $P(X > x) = e^{-\lambda x} \text{ pro } x > 0$
- 2. $P(Y > n) = (1 p)^n \text{ pro } n \in \mathbb{N}$

Definice (Standardní normální rozdělení):

- 1. $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$
- 2. $\Phi(x)$ primitivní funkce k ϕ
- 3. Standardní normální rozdělení N(0,1) má hustotu ϕ a distribuční funkci Φ .
- 4. Pokud $Z \sim N(0,1)$, tak $\mathbb{E}(Z) = 0$ a var(Z) = 1.

Definice (Obecné normální rozdělení):

- 1. Pro $\mu, \sigma \in \mathbb{R}, \sigma > 0$ položíme $X = \mu + \sigma \dot{Z}$, kde $Z \sim N(0, 1)$.
- 2. Píšeme $X \sim N(\mu, \sigma^2)$ obecné normální rozdělení
- 3. Normální rozdělení $N(\mu, \sigma^2)$ má hustotu $\frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right)$

$$\Phi(z) = P(Z < z) = P(X < \mu + \sigma z) = F_X(\mu + \sigma z)$$

Poznámka (Odolnost vůči součtu): Pokud X_1, \ldots, X_k jsou n.n.v., kde $X_i \sim N(\mu_i, \sigma_i^2)$, pak

$$X_1 + \cdots + X_k \sim N(\mu, \sigma^2),$$

kde $\mu = \mu_1 + \ldots + \mu_n$.

Poznámka (Normální rozdělení - klíčové vlastnosti):

- 1. Pravidlo $3\sigma(68 95 99.7 \text{ rule})$ $X \sim N(\mu, \sigma^2)$ $P(\mu - \sigma \le X \le \mu + \sigma) = 68\%$ $2\sigma = 95$ $3\sigma = 99.7$
- 2. Centrální limitní věta

7 Sedmá přednáška

Definice (Cauchyho rozdělení): hustota $f(x) = \frac{1}{\pi(1+x^2)}$ nemá střední hodnotu!

Poznámka:

$$\begin{split} \int_{-\infty}^{\infty} f &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+x^2} = \frac{1}{\pi} \left[arctg(x) \right]_{-\infty}^{\infty} = 1 \\ \mathbb{E} X &= \int_{-\infty}^{\infty} x f(x) = \int_{0}^{\infty} \frac{2x}{2\pi (1+x^2)} + \int_{-\infty}^{0} \frac{x}{\pi (1+x^2)} \\ &\left[\frac{1}{2\pi} log(1+x^2) \right]_{0}^{\infty} + \left[\frac{1}{x\pi} log(1+x^2) \right] \\ &\infty - 0 + 0 - \infty = \infty - \infty ?! \end{split}$$

Definice (Gamma rozdělení): $Gamma(w, \lambda)$, gamma rozdělení s parametry w>0 a $\lambda>0$ má hustotu

$$f(x) = 0$$
 pro $x \le 0$ & $\frac{1}{\Gamma(w)} \lambda^w x^{w-1} e^{-\lambda x}$ pro $x \ge 0$

kde
$$\Gamma(w) = (w-1)! = \int_0^\infty x^{w-1} e^{-x} dx$$

Pro w=1 dostáváme znovu exponenciální rozdělení ... $\frac{1}{0!}\lambda^1 e^{-\lambda x}$ Pokud X_1,\ldots,X_n jsou n.n.v s rozdělením $Exp(\lambda)$, tak $X_1+\cdots+X_n\sim Gamma(n,\lambda)$.

Věta: Nechť X je n.v. s distribuční funkcí $F_X = F$, nechť F je spojitá a rostoucí. Pak $F(X) \sim U(0,1)$.

Důkaz:

$$F_Y(y) = P(F(X) \le y) = 0 \text{ pro } y < 0\&1 \text{ pro } y \ge 1$$

pro $y \in (0,1)P(X \le x) \implies \text{ stejn\'e jevy } \cdots = F(x) = y$

Věta: Nechť F je funkce "typu distribuční funkce" : neklesajíci zprava spojitá funkce s $\lim_{x\to-\infty} F(x) = 0$ a $\lim_{x\to\infty} F(x) = 1$.

Nechť Q je odpovídající kvantilová funkce. Nechť $U \sim U(0,1), X = Q(U)$. Pak X má distribuční funkci F.

Důkaz:

$$F_X(x) = P(Q(U) \le x)$$

Poznámka:

$$Q(p) = \inf\{x: F(X) \geq p\} \implies Q(p) \leq x \Leftrightarrow F(x) \geq p$$

Příklad:

$$F(x) = 1 - e^{-\lambda x} \dots Exp(\lambda)$$

$$Q(p) = \frac{\log(1-p)}{-\lambda} > 0$$

$$U \sim U(0,1) \dots \frac{\log(1-U)}{-\lambda} \sim Exp(\lambda)$$

Definice: Sdružená distribuční funkce (Joint cdf)

Pro n.v. X, Y na pravděpodobnostním prostoru (Ω, \mathcal{F}, P) definujeme jejich sdruženou distribuční funkci (joint cdf) $F_{X,Y} : \mathbb{R}^2 \to [0,1]$ předpisem

$$F_{X,Y}(x,y) = P(\{\omega \in \Omega : X(\omega) \le x \& Y(\omega) \le y\}).$$

- 1. Formální podmínka: potřebujeme $\{X \leq x \& Y \leq y\} \in \mathcal{F}$, jinak (X,Y) není náhodný vektor.
- 2. Mohli bychom definovat i pro více než dvě n.v. . . . $F_{X_1,\dots,X_n(x_1,\dots,x_n)}=P(X_1\leq x_1\&\dots X_n\leq x_n)$.
- 3. Můžeme odsud odvodit pravděpodobnost obdélníku:

$$P(X \in (a, b) \& Y \in (c, d)) = F(b, d) - F(b, c) - F(a, d) + F(a, c)$$

Definice: Sdružená hustota (Joint pdf)

Často můžeme sdruženou distribuční funkci psát jako integrál pomocí nezáporné funkce $f_{X,Y}$

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) ds dt.$$

Pak nazýváme n.v. X,Y sdruženě spojité. Funkce $f_{X,Y}$ je jejich sdružená hustota.

Jako u jednorozměrného případu může být $f_{X,Y} > 1$.

Stejně jako u jednorozměrného případu můžeme pak pomocí hustoty vyjádřit i další pravděpodobnosti, pro "rozumnou množinu A".

$$P((X,Y) \in A) = \int_{A} f_{X,Y}(x,y) dx dy$$
$$\int_{\mathbb{R}^{2}} f_{X,Y} = 1$$

Poznámka:

$$\begin{split} f_{X,Y}(x,y) &= \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y) \\ f_{X,Y}(x) &\doteq \frac{P(x \leq X \leq x + \Delta_x \& y \leq Y \leq y + \Delta_y)}{\Delta_x \Delta_y} \\ P((X,Y) \in A) &= \int_A f = \int_x^{x + \Delta_x} \int_y^{y + \Delta_y} f_{X,Y}(s,t) ds dt = f_{X,Y}(x,y) \Delta_x \Delta_y \end{split}$$

Definice: LOTUS

Analogicky jako v diskrétním případu platí pro střední hodnotu funkce dvou n.v.

$$\mathbb{E}(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy.$$

A tak jako v diskrétním případu odsud odvodíme

$$\mathbb{E}(aX + bY + c) = a\mathbb{E}(X) + b\mathbb{E}(Y) + c$$

$$\mathbb{E}(g(X,Y)) = \int \int g(x,y) f_{X,Y}(x,y) = \int \int ax f(x,y) + \int \int by f(x,y) + c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) = a \int x \int f_{X,Y}(x,y) dy dx + b \int y \int f(x,y) dy dx + c = a \int x f_{X}(x) + b \int y f_{Y}(y) + c = a\mathbb{E}(X) + b\mathbb{E}(Y) + c$$

Definice: Nezávislost spojitých náhodných veličin

Libovolné náhodné veličiny nazveme nezávislé (independent), pokud jevy $\{X \leq x\}$ a $\{Y \leq y\}$ jsou nezávislé pro libovolná $x, y \in \mathbb{R}$. Ekvivalentně:

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y),$$

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

Věta: Nechť X, Y mají sdruženou hustotu $f_{X,Y}$. Následující tvrzení jsou ekvivalentní:

- 1. X, Y jsou nezávislé
- 2. $f_{X,Y}(x,y) = f_X(x) f_Y(y)$

Důkaz:

$$\implies: f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y) = F'_X F'_Y = f_X(x) f_Y(y)$$

doplniť druhú implikáciu (nestihol som, zo slidov)

Vícerozměrné normální rozdělení

1.
$$\varphi(t) = \frac{e^{-t^2/2}}{\sqrt{(2\pi)}}$$

2.
$$f(t_1, \dots, t_n) = \varphi(t_1)\varphi(t_2)\dots\varphi(t_n) = \frac{e^{-\frac{t_1^2 + \dots + t_n^2}{2}}}{\sqrt{2\pi}}$$

- 3. $f(t_1,\ldots,t_n=(2\pi)^{-\frac{n}{2}}e^{-\frac{r^2}{2}})$, kde $r^2=t_1^2+\cdots+t_n^2$ je radiálně symetrická funkce.
- 4. Nechť $Z = (Z_1, \ldots, Z_n)$ má hustotu f.
- 5. $Z_1, ..., Z_n$ jsou n.n.v, $Z_i \sim N(0, 1)$
- 6. $\mathbb{Z}/||\mathbb{Z}||$ je uniformně náhodný bod na n-rozměrné sfěře
- 7. skalární součin Z s libovolným jednotkovým vektorem je N(0,1)
- 8. $\langle u,Z\rangle=\sum_{i=1}^n u_iZ_i$ má také rozdělení N(0,1)

Vícerozměrné normální rozdělení obecné

- 1. Obecněji můžeme vzít náhodný vektor s hustotou $ce^{Q(t)}$, kde c>0 je vhodná konstanta a Q(t) je obecná kvadratická funkce.
- 2. Používá se ve strojovém učení.
- 3. Souřadnice nejsou nezávislé.

8 Osmá přednáška

Definice: Podmíňování

zúžení náhodné veličiny na množinu: X je n.v. na $(\Omega, \mathcal{F}, P), B \in \mathcal{F}$, t. ž. P(B) > 0.

$$F_{X|B}(x) := P(X \le x|B)$$

K tomu příslušní hustotní funkce $f_{X|B}$:

Pokud $B=\{X\in S\},$ tak

$$f_{X|B}(x) = \begin{cases} \frac{f_X(x)}{P(X \in S)} \dots \text{ pokud } x \in S \\ 0 \dots \text{ jinak} \end{cases}$$

Věta: Věta o rozkladu hustoty

Nechť X je spojitá n.v., nechť B_1, B_2, \ldots je rozklad Ω . Pak

$$F_X(x) = \sum_i P(B_i) F_{X|B_i}(x),$$

$$f_X(x) = \sum_i P(B_i) f_{X|B_i}(x).$$

Důkaz: věta o úplné pravděpodobnosti.

$$P(X \le x) = \sum P(\dots)$$

Věta: Marginální hustota

$$f_X(x) = \int_{y \in \mathbb{R}} f_{X,Y}(x,y) dy$$

$$f_Y(y) = \int_{x \in \mathbb{R}} f_{X,Y}(x,y) dx$$

Důkaz: TODO

Definice: Podmíněná hustota

Pro spojité n.v. X, Y definujeme podmíněnou hustotu předpisem

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

pokud je $f_Y(y) > 0$, jinak ji nedefinujeme.

- 1. připomeňme, že $f_Y(y) = \int_{x \in \mathbb{R}} f_{X,Y}(x,y) dx$
- 2. pro fixované y je $f_{X|Y}(x|y)$ hustota.

Věta: Podmíněná, sdružená a marginální hustota

$$f_{X,Y}(x,y) = f_Y(y)f_{X|Y}(x|y)$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x|y) f_Y(y)$$

Věta: Součet spojitých n.v.

Nechť spojité X,Y jsou n.n.v. Pak Z=X+Y je také spojitá n.v. a její hustotu dostaneme jako konvoluci funkcí f_X, f_Y , neboli

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

Důkaz: Náhled:

$$P(Z = z | X = x) = P(Y = z - x)$$
$$f_{Z|X}(z|x) = f_Y(z - x)$$

 $(n.v.\ Z|X=x\ je\ stejná\ jako\ Y+x)$

$$f_Z(z) = \int_{-\infty}^{\infty} f_{Z|X}(z|x) f_X(x) =$$
$$= \int f_Y(z-x) f_X(x)$$

Příklad: $X, Y \sim N(0, 1)$ nezávislé. n.v. ... $f_X = f_Y = \varphi \dots \varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$

$$Z = X + Y$$

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx =$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \frac{1}{\sqrt{(2\pi)}} e^{-\frac{(z-x)^2}{2}} dx$$

$$= \frac{1}{2\pi} e^{-\frac{z^2}{2}} \int_{-\infty}^{\infty} e^{-x^2 + zx} dx$$

$$= \frac{1}{2\pi} e^{-\frac{z^2}{2} + \frac{z^2}{4}} \int e^{-(x - \frac{z}{2})^2} dx$$

$$= \frac{1}{\sqrt{2}\sqrt{2\pi}} e^{-\frac{z^2}{4}} \dots \text{ hustota } N(0, 2)$$

Definice: Podmíněná hustota a střední hodnota

1.
$$\mathbb{E}(X|B) := \int_{-\infty}^{\infty} x f_{X|B}(x) dx$$

2.
$$\mathbb{E}(g(X)|B) := \int_{-\infty}^{\infty} g(x) f_{X|B}(x) dx$$

Věta: Věta o úplné střední hodnotě

Nechť X je spojitá n.v.. Pokud B_1, B_2, \ldots je rozklad, tak

$$\mathbb{E}(X) = \sum_{i} P(B_i) \mathbb{E}(X|B_i).$$

Důkaz: pomocí rozkladu hustoty:

$$\int x f_X(x) = \int_{-\infty}^{\infty} x \sum_i P(B_i) f_{X|B}(x) = \sum_i P(B_i) \int x f_{X|B_i}(x)$$

Definice: Podmíněná hustota a střední hodnota

1.
$$f_{X|Y}(x|y) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$
 je hustota n.v. X , pokud $Y = y$

2.
$$\mathbb{E}(X|Y=y) := \int x f_{X|Y}(x,y) dx$$
 je střední hodnota této veličiny

- 3. $\mathbb{E}(g(X)|Y=y) = \int g(x)f_{X|Y}(x,y)dx$
- 4. Analogie věty o úplné střední hodnotě:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} \mathbb{E}(X|Y=y) f_Y(y) dy$$

5. $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|Y))$

Definice: Kovariance

Pro n.v. X, Y definujeme jejich kovarianci předpisem

$$cov(X, Y) = \mathbb{E}((X - \mathbb{E}X)(Y - \mathbb{E}Y)).$$

Věta:

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

- 1. var(X) = cov(X, X)
- 2. $cov(X, \alpha Y + \beta Z + c) = \alpha \ cov(X, Y) + \beta \ cov(X, Z)$
- 3. cov(X, Y) = 0 pokud X, Y jsou nezávislé
- 4. ale nejen tehdy

Definice: Korelace

Korelace náhodných veličin X, Y je definovaná předisem

$$\varrho(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}}.$$

- 1. je to "přenormovaná"kovariance
- 2. $-1 \le \varrho(X, Y) \le 1$.
- 3. Korelace neznamená příčinnou souvislot! (Např. korelace je symetrická, kauzalita nikoli!)
- 4. Naopak, nekorelace neznamená nezávislost. (Př. X libovolná, Y=+X nebo Y=-X, obojí se stejnou pravděpodobností).

Věta: Rozptyl součtu

Nechť $X = \sum_{i=1}^{n} X_i$. Pak

$$var(X) = \sum_{i=1}^{n} \sum_{j=1}^{n} cov(X_i, X_j) = \sum_{i=1}^{n} var(X_i) + \sum_{i \neq j} cov(X_i, X_j).$$

Sec. jsou X_1, \ldots, X_n nezávislé, pak

$$var(X) = \sum_{i=1}^{n} var(X_i)$$

Důkaz:

$$var(X) = \mathbb{E}(\sum X_i \times \sum X_j) - (\sum \mathbb{E}X_i)(\sum \mathbb{E}X_j)$$
$$= \mathbb{E}(\sum X_i X_j) - \sum \mathbb{E}(X_i)\mathbb{E}(X_j)$$

Věta: Cauchyho nerovnost

$$\mathbb{E}(XY) \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

Důkaz: jako v LA, součin norem

25

Poznámka: Důsledek pro korelaci: $-1 \le \varrho(X,Y) \le 1$

Věta: Jensenova věta

Nechť X má konečnou střední hodnotu a nechť g je konvexní reálná funkce. Pak

$$\mathbb{E}(g(X)) \ge g(\mathbb{E}(X)).$$

Důkaz:

$$\begin{split} \mu &= \mathbb{E}(X) \\ L(\mu) &= g(\mu) \\ \forall t L(t) \leq g(t)...L(t) \ je \ tečna \ g(t) \ v \ bodě \ \mu \\ L(X) \leq g(X) \\ \mathbb{E}L(X) \leq \mathbb{E}g(X) \\ z \ linearity \ L \\ L(\mathbb{E}X) &= g(\mathbb{E}(X)) \end{split}$$

Věta: Markovova nerovnost

Nechť náhodná veličina X splňuje $X \ge 0$. Pak

$$P(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Důkaz:

$$\mathbb{E}(X) = P(X \ge a)\mathbb{E}(X|X \ge a) + P(X < a)\mathbb{E}(X|X < a)$$
$$\mathbb{E}(X) \ge P(X \ge a)a$$

Věta: Čebyševova nerovnost

Nechť X má konečnou střední hodnotu μ a rozptyl σ^2 . Pak

$$P(|X - \mu| \ge a\sigma) \le \frac{1}{a^2}$$

Důkaz:

$$Y = (X - \mu)^2$$

$$P(Y \ge a^2 \sigma^2) \le \frac{\mathbb{E}(Y)}{a^2 \sigma^2} = \frac{var(X)}{a^2 \sigma^2}$$

Věta: Černovova nerovnost

Nechť $X = \sum_{i=1}^{n} X_i$, kde X_i jsou n.n.v. nabývající hodnot ± 1 s pravděpodobností 1/2. Pak pro t > 0 platí:

$$P(X \le -t) = P(X \ge t) \le e^{-\frac{t^2}{2\sigma^2}},$$

 $kde \ \sigma = \sigma_X = \sqrt{n}$

9 Devátá přednáška

9.1 Nerovnosti, které známe z minula

• Markovova

$$X \ge 0 \implies P(X \ge a\mathbb{E}(X)) \le \frac{1}{a}$$

Čebyševova

$$P(|X - \mathbb{E}(X))| \ge a\sigma_X) \le \frac{1}{a^2}$$

• Chernoffova $(\sigma_X = \sqrt{n})$

$$X = \sum_{i=1}^{n} X_i, \ X_i = \pm 1 \implies P(|X - \mathbb{E}(X)| \ge a\sigma_X) \le 2e^{-a^2/2}$$

9.2 Slabý zákon velkých čísel

Věta: Nechť X_1, \ldots, X_n jsou stejné rozdělené n.n.v. se střední hodnotou μ a rozptylem σ^2 . Označme $S_n = (X_1 + \cdots + X_n)/n$. Pak pro každé $\varepsilon > 0$ platí

$$\lim_{n \to \infty} P(|S_n - \mu| \ge \varepsilon) = 0.$$

 \check{R} íkáme, že posloupnost S_n konverguje k μ v pravděpodobnosti, píšeme $S_n \to^P \mu$.

Důkaz:

$$\mathbb{E}S_n = \mathbb{E}\frac{X_1 + \dots + X_n}{n} = \frac{\mathbb{E}X_1 + \dots + \mathbb{E}X_n}{n} = \frac{\mu + \dots + \mu}{n} = \mu$$

$$var(S_n) = var\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{var(X_1) + \dots + var(X_n)}{n^2} = \frac{\sigma^2 + \dots + \sigma^2}{n^2} = \frac{\sigma^2}{n}$$

$$P(|S_n - \mathbb{E}S_n| \ge a\sigma_{S_n}) \le \frac{1}{a^2} = \frac{1}{\left(\frac{\varepsilon\sqrt{n}}{\sigma}\right)} = \frac{\sigma^2}{\varepsilon^2 n} \to_{n\to\infty} 0$$

9.3 Centrální limitní věta

Věta (Centrální limitní věta): Nechť X_1, \ldots, X_n jsou stejně rozdělené n.n.v se střední hodnotou μ a rozptylem σ^2 . Označme

$$Y_n = ((X_1 + \dots + X_n) - n\mu)/(\sqrt{n} \cdot \sigma).$$

 $Pak Y_n \rightarrow^d N(0,1)$. Neboli, pokud F_n je distribuční funkce Y_n , tak

$$\lim_{n \to \infty} F_n(x) = \Phi(x) \ \forall x \in \mathbb{R}.$$

Rikáme, že posloupnost Y_n konverguje k N(0,1) v distribuci.

Doplnit tri grafy z prezentace

9.4 Momentová vytvořující funkce

Definice (Momentová vytvořující funkce): Pro náhodnou veličinu X označíme

$$M_X(t) = \mathbb{E}(e^{t_X}).$$

Funkci $M_X(t)$... **DOPLNIT**

9.5 Statistika

Příklad (1. Počet leváků): • #L = 6 = 14%

- #P = 37 = 87%
- spolu: 43 = 100%

Tipujeme, že je 4 - 12% leváků v ČR.

Poznámka: otázky statistiky \rightarrow co můžeme z výsledků v malém vzorku odvodit o výsledcích v celé skupině

- bodové odhady ... 14%
- intervalové odhady ... (10%, 20%)

Obtíže statistiky \rightarrow otázky typu

- máme reprezentativní vzorek?
- je otázka dobře formulovaná?

Příklad (2. Doba běhu programu):

• $X_1, \ldots, X_n \sim F$ n.n.v., F je jejich distribuční funkce

Definice: Empirická distribuční funkce (empirical CDF) je definována

$$\hat{F}_n(x) = \frac{\sum_{i=1}^n I(X_i \le x)}{n},$$

kde $I(X_i \le x) = 1$ pokud $X_i \le x$ a 0 jinak.

Věta: Pro pevné x platí

- $\mathbb{E}(\hat{F}_n(x)) = F(x)$
- $var(\hat{F}_n(X)) = \frac{F(x)(1-F(x))}{n}$
- $\hat{F}_n(x)$ konverguje k F(x) v pravděpodobnosti, píšeme $\hat{F}_n(x) \to^P F(x)$.

Důkaz: Slabý zákon velkých čísel:

$$\mathbb{E}\hat{F}_n(x) = \mathbb{E}S_n = \mathbb{E}I(X_i \le x) = P(X_i \le x) = F(x)$$
$$var(\hat{F}_n(x)) = \frac{var(X_1')}{n}$$
$$X_i' \sim Bern(p) \dots p = F(x)$$

9.6 Empirická distribuční funkce - Dvoretzky-Keifer-Wolfowitz (DKW)

Věta (Empirická distribuční funkce): Nechť $X_1, \ldots, X_n \sim F$ jsou n.n.v., \hat{F}_n jejich empirická distribuční funkce. Nechť $\mathbb{E}(X_i)$ je konečná. Zvolme $\alpha \in (0,1)$ (pravděpodobnost chyby) a označme $\varepsilon = \sqrt{\frac{1}{2n}log\frac{2}{\alpha}}$. Pak platí:

$$P(\hat{F}_n(x) - \varepsilon \le F(x) \le \hat{F}_n(x) + \varepsilon) \ge 1 - \alpha$$

9.7 Intro - explorační analýza dat (exploratory data analysis)

- posbíráme data (a dáme pozor na systémové chyby nezávislost, nezaujatost...)
- různé tabulky (třeba v Excelu a spol.)
- vhodné obrázky: histogram, krabicový diagram (boxplot) atd.

10 Desátá přednáška

10.1 náhodný výběr

• bez vracení

 Ω = všechny n – tice obyvatel ČR Pro $\omega = (\omega_1, \dots, \omega_n)$ zvolíme $X_i = I(\omega_i$ je levák).

• s vracením

 $\Omega = \{ \text{všechny } n\text{-tice obyvatel ČR, mohou se opakovat} \}$ Pro $\omega = (\omega_1, \dots, \omega_n)$ zvolíme $X_i = I(\omega_i \text{ je levák}).$

• varianty (stratifikovaný výběr) Chceme adekvátně reprezentovat různé podmnožiny (dané věkem, bydlištěm, ...). Nebudeme dále zkoumat.

10.2 Statistika - model

- \bullet nezávislá měření hodnoty n.n.v. $X_1,\dots,X_n\sim F$ náhodný výběr s distribuční funkcí F s rozsahem n
- ullet neparametrické modely: povolujeme velkou třídu F.
- parametrické modely: $F \in \{F_{\vartheta} : \vartheta \in \Theta\}$
- příklady:
 - $Pois(\lambda)$ (parametr ϑ)
 - -U(a,b) (parametr $\vartheta=(a,b),\ \Theta=\mathbb{R}^2$)
 - $-N(\mu,\sigma^2)$ (parametr $\vartheta=(\mu,\sigma),\ \Theta=\mathbb{R}\times\mathbb{R}^+$)

10.3 Zkoumané úlohy - cíle konfirmační analýzy

- 1. bodové odhady
- 2. intervalové odhady
- 3. testování hypotéz
- 4. (linární) regrese

Definice: statistika - libovolná funkce náhodného výběru, tj. např. aritmetický průměr, medián, maximum atd.

$$T = T(X_1, \dots, X_n)$$

Příklad (Výběrový průměr a rozptyl):

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$\overline{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$\widehat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Definice: Odhad je libovolná statistika.

10.4 Vlastnosti bodových odhadů

Definice (Vlastnosti bodových odhadů): Odhad $\widehat{\Theta}_n = \widehat{\Theta}_n(X_1,\dots,X_n)$ parametrů ϑ je

- nestranný (unbiased), pokud $\vartheta = \mathbb{E}(\widehat{\Theta}_n)$ (pro každé ϑ)
- asymptoticky nestranný (asymptotically unbiased) pokud $\vartheta = \lim_{n \to \infty} \mathbb{E}(\widehat{\Theta}_n)$
- konzistentní (consistent) pokud $\widehat{\Theta}_n \to^P \vartheta$
- vychýlení (bias) $bias_{\vartheta}(\widehat{\Theta}_n) := \mathbb{E}(\widehat{\Theta}_n) \vartheta$
- $\bullet\,$ střední kvadratická chyba je $MSE:=\mathbb{E}((\widehat{\Theta}_n-\vartheta)^2)$

Věta:

$$MSE = bias_{\vartheta}(\widehat{\Theta}_n)^2 + var_{\vartheta}(\widehat{\Theta}_n)$$

Důkaz: TODO

Věta (Parametry výběrového momentu a rozptylu):

- 1. \overline{X}_n je konzistentní nestranný odhad $\mu = \mathbb{E}X_1 = \mathbb{E}X_2 = \dots$
- 2. \overline{S}_n^2 je konzistentní asymptoticky nestranný odhad σ^2
- 3. \widehat{S}_n^2 je konzistentní nestranný odhad σ^2

Důkaz:

1.

$$\overline{X}_n = \frac{1}{n}X_1 + X_2 + \dots + X_n$$

 \overline{X}_i je nestranný, t. j. $\mathbb{E}(\overline{X}_n) = \mu$

$$=\frac{1}{n}\mathbb{E}X_1 + \mathbb{E}X_2 + \dots + \mathbb{E}X_n = \frac{1}{n}\mu + \mu + \dots + \mu = \mu$$

 \overline{X}_n je konzistentní, t. j. $\overline{X}_n\to^P\mu$ (slabý zákon velkých čísel) $var(\overline{X}_n)=\frac{\sigma^2}{n}\dots$ Čebyšev

2.

$$\overline{S}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$\mathbb{E}\overline{S}_n = \mathbb{E}\frac{1}{n} \sum_{i=1}^n ((X_i - \mu) - (\overline{X}_n - \mu))^2$$

$$= \mathbb{E}\frac{1}{n} \sum \left[(X_i - \mu)^2 - 2(X_i - \mu)(\overline{X}_n - \mu) + (\overline{X}_n - \mu)^2 \right]$$

$$= \mathbb{E}\frac{1}{n} \sum (X_i - \mu) - \mathbb{E}\frac{2}{n} \sum (X_i - \mu)(\overline{X}_n - \mu) + \mathbb{E}(\overline{X}_n - \mu)^2$$

$$\frac{1}{n} \sum \mathbb{E}(X_i - \mu)^2 - (\overline{X}_n - \mu)^2$$

$$= \sigma^2 - var(\overline{X}_n) = \sigma^2 - \frac{\sigma^2}{n} = \frac{n-1}{n}\sigma^2$$

3.

$$\widehat{S}_n^2=\frac{n}{n-1}\overline{S}_n^2$$

$$\mathbb{E}\widehat{S}_n^2=\frac{n}{n-1}\mathbb{E}\widehat{S}_n^2=\sigma^2>>\widehat{S}_n^2 \text{ je nestranný odhad.}$$

Je lepší \widehat{S}_n^2 nebo $\overline{S}_n^2?$
 $\to \widehat{S}_n^2$ je nestranný, \overline{S}_n^2 ne.

10.5 Metoda momentů

- $m_r(\vartheta) := \mathbb{E}(X^r)$ pro $X \sim F_{\vartheta} \dots r$ -tý momentu
- $\widehat{m_r(\vartheta)}:=\frac{1}{n}\sum_{i=1}^n X_i^r$ pro náhodný výběr X_1,\dots,X_n z F_ϑ ...r-tý výběrový moment

Věta: $\widehat{m_r(\vartheta)}$ je nestranný konzistentní odhad pro $m_r(\vartheta)$.

Důkaz:

$$\widehat{\mathbb{E}m_r(\vartheta)} = \frac{1}{n} \sum \mathbb{E}(X_i^r) = \frac{1}{n} \sum \mathbb{E}(X_i^r) = m_r(\vartheta)$$

Příklad: $X_1, \ldots, X_n \sim Bern(p) \ldots X_i = "i$ -tý člověk je levák" $\vartheta = p \in [0, 1]$ $\underbrace{m_1(\vartheta)}_{n_r(\vartheta)} = \mathbb{E} X_1 = \vartheta$ $\underbrace{m_r(\vartheta)}_{n_r(\vartheta)} = \frac{1}{n_r} (X_1 + \cdots + X_n) = \overline{X}_n$

10.6 Metoda maximální věrohodnosti (maximal likelihood, ML)

- náh. výběr $X=(X_1,\ldots,X_n)$ z modelu s parametrem ϑ
- možný výsledek $x = (x_1, \dots, x_n)$
- ... sdružená pravděpodobnostní funkce $p_X(x; \vartheta)$
- ...sdružená hustota $f_X(x; \vartheta)$
- \bullet věrohodnost (likelihood) $L(x;\vartheta)$ značí p_X nebo f_X
- normálně: máme pevné ϑ , a $L(x;\vartheta)$ je funkce x
- teď: máme pevné x a $L(x; \vartheta)$ je funkce ϑ
- Metoda MV (ML): volíme takové ϑ , pro které je $L(x;\vartheta)$ maximální
- definujeme také $\ell(x; \vartheta) = log(L(x; \vartheta))$
- díky nezávislosti je

$$L(x; \vartheta) = p(x_1; \vartheta) p(x_2; \vartheta) \dots p(x_n; \vartheta)$$
$$\ell(x; \vartheta) = \sum_{i=1}^{n} \log p(x_i; \vartheta)$$
$$0 = \ell'(x; \vartheta) = \sum_{i=1}^{n} \frac{1}{p(x_i; \vartheta)} \cdot p'(x_i; \vartheta)$$

Jedenáctá přednáška 11

11.1 Intervalové odhady

• místo jednoho čísla s nejistým významem vypočítáme z dat interval $\left|\widehat{\Theta}^{-},\widehat{\Theta}^{+}\right|$

Definice (Konfidenční interval): Nechť $\widehat{\Theta}^-, \widehat{\Theta}^+$ jsou n.v., které závisí na náhodném výběru X= (X_1,\ldots,X_n) z distribuce F_{ϑ} . Tyto n.v. určují intervalový odhad, též konfidenční interval o spolehlivosti $1 - \alpha$ (confidence interval) pokud

$$P(\widehat{\Theta}^- \le \vartheta \le \widehat{\Theta}^+) \ge 1 - \alpha$$

- tohle jsou tzv. oboustranné odhady
- jednostranný odhad: $[\widehat{\Theta}^-, \infty)$ nebo $(-\infty, \widehat{\Theta}^+]$

Věta: X_1, \ldots, X_n je náhodný výběr z $N(\vartheta, \sigma^2)$. σ známe, ϑ chceme určit, $\alpha \in (0,1)$. Nechť $\Phi(z_{\alpha/2}) = 1 - \alpha/2$. Zvolíme $\widehat{\Theta}_n := \widehat{X}_n$.

$$C_n := \left[\widehat{\Theta}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \widehat{\Theta}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

 $Pak \ P(C_n \ni \vartheta) = 1 - \alpha.$

Důkaz:

$$C_n \ni \vartheta \Leftrightarrow |\widehat{\Theta}_n - \vartheta| \le z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\Leftrightarrow \left| \frac{\widehat{\Theta}_n - \vartheta}{\sigma/\sqrt{n}} \right| \le z_{\alpha/2}$$

$$\frac{\widehat{\Theta}_n - \vartheta}{\sigma/\sqrt{n}} = Z \sim N(0, 1)$$

$$P(C_n \ni \vartheta) = P(|Z| \le z_{\alpha/2}) = \Phi(z_{\alpha/2}) - \Phi(-z_{\alpha/2})$$

$$= (1 - \alpha/2) - (+\alpha/2) = 1 - \alpha$$

Věta: X_1, \ldots, X_n je náhodný výběr z rozdělení se střední hodnotou ϑ , rozptylem σ^2 . σ známe, ϑ chceme určit, $\alpha \in (0,1)$.

Nechť $\Phi(z_{\alpha/2}) = 1 - \alpha/2$. Zvolíme $\widehat{\Theta}_n := \widehat{X}_n$.

$$C_n := \left[\widehat{\Theta}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \widehat{\Theta}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

 $Pak \lim_{n\to\infty} P(C_n \ni \vartheta) = 1 - \alpha.$

Důkaz: Centrální limitní věta.

Definice (Studentovo rozdělení):

- $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \dots$ výběrový průměr
- $\widehat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X}_n)^2 \dots$ výběrový rozptyl
- Nechť $X_1, \ldots X_n \sim N(\mu, \sigma^2)$
- Pak $\frac{\overline{X}_n \mu}{\widehat{S}_n^2 / \sqrt{n}} \sim N(0, 1)$
- Studentovo t-rozdělení s n-1 stupni volnosti je rozdělení n.v. $\frac{X_n-\mu}{\widehat{S}^2/\sqrt{n}}$

• Distribuční funkci budeme značit Ψ_{n-1} . Je v tabulkách, v $R: pt(x, n-1)\mathbf{TODO}$

Věta: X_1, \ldots, X_n je náhodný výběr z $N(\vartheta, \sigma^2)$. ϑ chceme určit, σ neznáme, $\alpha \in (0, 1)$. Nechť

$$\Psi_{n-1}(z_{\alpha/2}) = 1 - \alpha/2, \ \widehat{\Theta}_n = \widehat{X}_n, \ \widehat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$C_n := \left[\widehat{\Theta}_n - z_{\alpha/2} \frac{\widehat{S}_n}{\sqrt{n}}, \widehat{\Theta}_n + z_{\alpha/2} \frac{\widehat{S}_n}{\sqrt{n}}\right]$$

 $Pak \ P(C_n \ni \vartheta) = 1 - \alpha$

Důkaz:

$$P(C_n \ni \vartheta) = P(|Z| \le z_{\alpha/2}) = \Psi_{n-1}(z_{\alpha/2}) - \Psi_{n-1}(-z_{\alpha/2}) = 1 - \alpha/2 - \alpha/2 = 1 - \alpha$$

$$*Z = - \text{ st. } t - \text{rozdělení s } n - 1.$$

11.2 Testování hypotéz

- Je naše mince spravedlivá?
- Je naše kostka spravedlivá?
- Má vylepšený program kratší dobu běhu než původní?
- Je léčba nemoci metodou X dobrá? (Lepší než placebo, lepší než metoda Y,...)
- Jsou leváci lepší boxeři?
- dvě hypotézy: H_0, H_1
- \bullet H_0 nulová hypotéza značí defaultní, konzervativní model (léčba, mince je spravedlivá)
- H_1 alternativní hypotéza značí alternativní model "pozoruhodnost"

Příklad (Testování hypotéz):

- Chceme testovat, zda je mince spravedlivá.
- Hodíme n-krát mincí, orel padne S-krát.
- Pokud je |S n/2| moc velké, tak mince není spravedlivá.

12 Dvanáctá přednáška

12.1 Testování hypotéz - ilustrace

- Chceme testovat, zda je mince spravedlivá.
- H_0 : je spravedlivá očekávaný stav světa
- H_1 : není spravedlivá překvapivé zjištění
- ullet Výsledky. zamítneme H_0 / nezamítneme H_0
- \bullet Chyba 1. druhu: chybné zamítnutí. Zamítneme H_0 , i když platí. Trapas.
- \bullet Chyba 2. druhu: chybné přijetí. Nezamítneme H_0 , ale ona neplatí. Promarněná příležitost.
- ullet Potřebujeme určit k takové, že budeme zamítat H_0 pokud **DOPLNIT**

- Vybereme vhodný statistický model.
- Volíme hladinu významnosti (significance level) α : pravd. chybného zamítnutí H_0 . Typicky $\alpha=0.05$.
- Určíme testovou statistiku $T = h(X_1, \dots, X_n)$, kterou budeme určovat z naměřených dat.
- \bullet Určíme kritický obor (rejection region) množinu W.
- Naměříme hodnoty x_1, \ldots, x_n náh. veličin X_1, \ldots, X_n .
- Rozhodovací pravidlo: zamítneme H_0 pokud $h(x_1, \ldots, x_n) \in W$.
- $\alpha = P(h(X) \in W; H_0)$
- $\beta = P(h(X) \notin W; H_1) \dots 1 \beta$ je tzv. síla testu
- \bullet často α nevolíme předem, ale spočítáme tzv. p-hodnotu: minimální $\alpha,$ pro které bychom H_0 zamítli.

Příklad: Měříme teplotu, chceme $\mu = 5$ °C

- X_1, \ldots, X_n náhodný výběr z $H(\vartheta, \sigma^2)$
- $\bullet \ \sigma^2$ známe, μ dáno
- $H_0: \vartheta = \mu, H_1: \vartheta \neq \mu$

$$T = \frac{X_1 + \dots + X_n}{\mu} = \overline{X}_n \sim N(\vartheta, \sigma^2/n)$$

... víme ze vzorce pro rozptyl

$$S = \frac{\overline{X_n} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

vezmeme množinu:

$$W := \{ s \in R : |s| > Z_{\alpha/2} \}$$

kde $z_{\alpha/2} = \Phi^{-1}(1 - \frac{\alpha}{2})...$ pro $\alpha = 0.05$ dostaneme 1.96

Příklad (příklad dvojvýběrového testu):

- X_1, \ldots, X_{n_1} náhodný výběr z $Ber(\vartheta_X)$
- Y_1, \ldots, Y_{n_2} náhodný výběr z $Ber(\vartheta_Y)$
- $H_0: \vartheta_X = \vartheta_Y \dots H_1: \vartheta_X \neq \vartheta_Y$

Máme n_1 lidí a jiných n_2 lidí které léčíme různými metodami (H_0 vs H_1)

$$\widehat{\Theta}_X = \frac{X_1 + \dots + X_{n_1}}{n_1} \dots \text{odhad } \vartheta_X$$

$$\widehat{\Theta}_Y = \frac{Y_1 + \dots + Y_{n_2}}{n_2} \dots \text{odhad } \vartheta_Y$$

$$Z := \widehat{\Theta}_X - \widehat{\Theta}_Y$$

 $\widehat{\Theta}_X, \widehat{\Theta}_Y$ mají přibližně normální rozdělení (Centrální limitní věta)

Předpokládáme, že platí H_0 :

$$\mathbb{E}\widehat{\Theta}_X = \mathbb{E}\widehat{\Theta}_Y \implies \mathbb{E}Z = 0$$

Víme, že Z je přibližně $N(0, \sigma^2)$, σ^2 neznáme

$$\sigma^2 = var(Z) = var(\widehat{\Theta}_X) - var(\widehat{\Theta}_Y) = \frac{varX_1}{n_1} + \frac{varY_1}{n_2} = \frac{\vartheta_X(1-\vartheta_X)}{n_1} + \frac{\vartheta_Y(1-\vartheta_Y)}{n_1} = \vartheta\left(\frac{1}{n_1} + \frac{1}{n_2}\right)$$

$$\widehat{\Theta} = \frac{\sum X_i + \sum Y_j}{n_1 + n_2} \dots \text{ odhad } \vartheta \implies \widehat{\sigma^2} := \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \widehat{\Theta}(1 - \widehat{\Theta}) \implies T := \frac{\widehat{\Theta}_X - \widehat{\Theta}_Y}{\widehat{\sigma}}$$

12.2 *p*-hacking

- napřed získáme data, pak v nich hledáme zajímavosti
- když máme dost dat, tak tam nějaké budou "shodou okolností"
- reprodukovatelnost po explorační analýze dat uděláme nezávislý sběr dat a ten analyzujeme konfirmačně
- nebo dopředu náhodně rozdělíme data na část pro tvorbu hypotéz a část pro jejich potvrzení ...jednoduchý případ křížové validace (cross validation)

12.3 χ_k^2 - rozdělení χ -kvadrát

Definice $(\chi_k^2$ - rozdělení χ -kvadrát): $Z_1, \ldots, Z_k \sim N(0,1)$ n.n.v. Rozdělení náhodné veličiny

$$Q = Z_1^2 + \dots + Z_k^2$$

se nazývá χ -kvadrát s k stupni volnosti.

- $\mathbb{E}(Q) = k$
- var(Q) = 2k
- hustota jde napsat vzorcem, lze najít např. na Wikipedii
- $Q \doteq N(k, 2k)$ pro velká k (CLV)

12.4 Multinomické a kategoriální rozdělení

Definice: Dána $p_1, \ldots, p_k \ge 0$ a tak, že $p_1 + p_2 + \cdots + p_k = 1$.

n-krát zopakuji pokus, kde může nastat jedna z k možností, i-tá má pravděpodobnost p_i .

 $X_i := \text{kolikrát nastala } i\text{-tá možnost } (X_1, \dots, X_k)$ má multinomické rozdělení s parametry $n, (p_1, \dots, p_k)$.

- triviální případ: X_i = počet hodů kostkou, kdy padlo i
- důležitý případ: X_i = počet výskytů i-tého písmene, i-tého slovního druhu, ...
- $P(X_1 = x_1, \dots, X_k = x_k) = \binom{n}{x_1, \dots, x_k} p_1^{x_1} \dots p_k^{x_k}$

Definice (Pearsonova χ^2 Statistika):

- (X_1,\ldots,X_k) multinomické rozdělení s parametry $n,(p_1,\ldots,p_k)$ jako minule
- $\mathbb{E}_i = \mathbb{E}(X_i) = np_i$
- Pearsonova χ^2 statisika je funkce

$$\chi^2 = T := \sum_{i=1}^k \frac{(X_i - E_i)^2}{E_i}$$

Věta: $T \rightarrow^d \chi^2_{k-1}$

Důkaz: pro k=2

$$X_1 + X_2 = n, p_1 + p_2 = 1, E_i = np_i$$

$$T = \frac{(X_1 - E_1)^2}{E_1} + \dots = \frac{(X_1 - np_1)^2 + (p_1 + p_2)}{np_1p_2}$$

$$= \left(\frac{X_1 - np_1}{\sqrt{np - (1 - p_1)}}\right)$$

12.5 Test dobré shody (goodness of fit)

- (X_1,\ldots,X_k) multinomické rozdělení s parametry $n,\vartheta=(\vartheta_1,\ldots,\vartheta_k)$ jako minule
- n známe, φ neznáme.
- Hypotéza $H_0: \vartheta = \vartheta^*$
- $E_i := n\vartheta_i^*$ pro všechna i
- Použijeme statistiku $\chi^2 = T := \sum_{i=1}^k \frac{(X_i E_i)^2}{E_i}$
- Hyotézu H_0 zamítneme, pokud $T > \gamma$
- $\gamma := F_Q^{-1}(1-\alpha)$, kde $Q \sim \chi_{k-1}^2$
- $P(\text{chyba prvního druhu}) = P(T > \gamma; H_0) \rightarrow P(Q > \gamma) = \alpha$

Příklad (Test dobré shody - házíme kostkou):

- Házíme opakovaně kostkou. Jednotlivá čísla padla s četností 92,120,88,98,95 a 107.
- Je kostka spravedlivá?

$$n = 92 + 120 + \dots = 600$$

$$\vartheta^* = \left(\frac{1}{6}, \dots, \frac{1}{6}\right), \ E_i = n\frac{1}{6} = 100$$

$$T = \sum_{i=1}^{6} \frac{(X_i - 100)^2}{100} = \dots = \frac{(80^2 + 20^2 + 12^2 + 2^2 + 5^2 + 7^2)}{100} = 6.86$$

$$Q \sim \chi_5^2 \dots F_Q^{-1} (1 - \alpha = 0.95) = 11.1$$

kdyby nám T vyšlo víc než 11.1, můžeme říct, že kostka je nespravedlivá.

$$p - \text{hodnota} : 1 - F_Q(6.86) = 1 - 0.77 = 0.23$$

zhruba ve čtvrtině hodů najdeme extremnejší odchylku.

Další rozšíření

- Pro zkoumání rozdělení libovolné n.v. Y můžeme vybrat "přihrádky" B_1, \ldots, B_k (rozklad \mathcal{R}) a zkoumat, kolikrát je $Y \in B_i$
- Obdobný test pro nezávislost (diskrétních) náhodných veličin

Definice (Lineární regrese):

- data: (x_i, y_i) pro i = 1, ..., n
- TODO

13 Třináctá přednáška

13.1 Simpsonův paradox

DOPLNIT (tabulka + **graf)** Problém s tím, jestli jsou naměřená data (skupiny dat) dostatečně homogenní

13.2 Permutační test

Příklad:

- Máme k dispozici dvě sady nezávislých náhodných veličin (náhodné výběry):
- $X_1, \ldots, X_n \sim F_X$ a $Y_1, \ldots, Y_m \sim F_Y$
- Chceme rozhodnout, zda platí $H_0: F_X = F_Y$ nebo $H_1: F_X \neq F_Y$
- Příklady: doba běhu programu před/po vylepšení, hladina cholesterolu u lidí co jedí/nejedí Zázrčnou Superpotravu™, frekvenci
- TODO

Postup:

• Zvolíme vhodnou statistiku, například.

$$T(X_1,\ldots,X_n,Y_1,\ldots,Y_m)=|\overline{X}_n-\overline{Y}_m|$$

- $t_{\text{obs}} := T(X_1, \dots, X_n, Y_1, \dots, Y_m)$
- $\bullet\,$ Za předpokladu H_0 jsou "všechny permutace stejné": X_i i Y_j se generovaly ze stejného rozdělení.
- Náhodně zpermutujeme zadaných m+n čísel a pro každou permutaci vyčíslíme T dostaneme čísla $T_1, \ldots, T_{(m+n)!}$ (každé stejně pravděpodobné).
- Jako p-hodnotu vezmeme pravděpodobnost, že $T > t_{\rm obs}$, neboli

$$p = \frac{1}{(m+n)!} \sum_{j} I(T_j > t_{\text{obs}}).$$

• To je pravděpodobnost chyby 1. druhu, neboli H_0 zamítneme, pokud je $p < \alpha$ (pro naši zvolenou hodnotu α , např. $\alpha = 0.05$).

Vylepšení:

- Zkoušet všechny permutace může trvat moc dlouho. Vezmeme tedy jen vhodný počet B nezávisle náhodně vygenerovaných permutací a spočítáme jenom B hodnot T_1, \ldots, T_B .
- $\bullet\,$ Jako p-hodnotuvezmeme odhad pravdě
podobnosti, že $T>t_{\mathrm{obs}}$
- DOPLNIT

13.3 Bootstrap

Příklad: Základní idea

- \bullet z naměřených dat $X_1 = x_1 \dots, X_n = x_n \sim F$ vytvoříme \widehat{F}_n
- $\bullet\,$ další data můžeme samplovat z \widehat{F}_n
- to se dělá tak, že vybereme uniformně náhodné **DOPLNIT**

Základní použití

- $T_n = g(X_1, \dots, X_n)$ nějaká statistika (funkce dat)
- cheeme odhadnout $varT_n$
- nasamplujeme $X_1^*, \ldots, X_n^* \sim \widehat{F}_n$ (viz minulá strana)
- spočteme $T_n^* = g(X_1^*, \dots, g_n^*)$
- opakujeme B-krát, dostaneme $T_{n,1}^*, \ldots, T_{n,B}^*$

• odhad rozptylu:

$$\frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{k=1}^{B} T_{n,k}^* \right)^2$$

13.4 Bayesovská statistika

13.4.1 Frekventistický/klasický přístup

- Pravděpodobnost je dlouhodobá frekvence (z 6000 hodů kostkou padla šestka 1026krát). Je to objektivní vlastnost reálného světa.
- Parametry jsou pevné, neznáme konstanty. Nelze o nich říkat smysluplné pravděpodobnostní výroky.
- Navrhujeme statistické procedury tak, aby měly žádané dlouhodobé vlastnosti. Např. 95% z našich intervalových odhadů pokryje neznámy parametr.

13.4.2 Bayesovský přístup

- Pravděpodobnost popisuje, jak moc věříme nějakému jevu, jak moc jsme ochotní se vsadit. (Pravděpodobnost, že Thomas Bayes měl 18. prosince 1760 šálek čaje je 90%.)
- Můžeme vyslovovat pravděpodobnostní výroky i o parametrech (třebaže jsou to pevné konstanty).
- Spočítáme distribuci ϑ a z ní tvoříme bodové a intervalové odhady, atd.

Bayesovská metoda - základní popis

- \bullet neznámý parametr považujeme za náhodnou veličinu Θ .
- zvolíme apriorní distribuci (prior distribution), neboli hustotu pravděpodobnosti $f_{\Theta}(\vartheta)$ nezávislou na datech.
- zvolíme statistický model $F_{X|\Theta}(x|\vartheta)$, který popisuje co naměříme (s jakou pravděpodobností), v závislosti na hodnotě parametru
- poté, co pozorujeme hodnotu X=x, spočítáme posteriorní distribuci (posterior distribution) $f_{\Theta|X}(\vartheta|x)$
- \bullet z té pak odvodíme co potřebujeme, např. najdeme a, b tak, aby

$$\int_{a}^{b} f_{\Theta|X}(\vartheta|x)d\vartheta \ge 1 - \alpha$$

 $\bullet \ \vartheta = \theta$ malá théta, Θ je velká théta

Věta (Bayesova věta pro diskrétní náhodné veličiny): X, Θ jsou diskrétní n.v.

$$p_{\Theta|X}(\vartheta|x) = \frac{p_{X|\Theta}(x|\vartheta)p_{\Theta}(\vartheta)}{\sum_{\vartheta' \in I_{m\Theta}} p_{X|\Theta}(x|\vartheta')p_{\Theta}(\vartheta')}.$$

(sčítance s $p_{\Theta}(\vartheta') = 0$ považujeme za θ).

Věta (Bayesova věta pro spojité náhodné veličiny): X, Θ jsou spojité n.v., které mají hustotu f_X, f_{Θ} i sdruženou hustotu $f_{X,\Theta}$

$$p_{\Theta|X}(\vartheta|x) = \frac{f_{X|\Theta}(x|\vartheta)f_{\Theta}(\vartheta)}{\int \vartheta' \in I_{m\Theta}f_{X|\Theta}(x|\vartheta')f_{\Theta}(\vartheta')d\vartheta'}.$$

Bayesovské bodové odhady - MAP a LMS

- MAP Maximum A-Posteriori Volíme $\widehat{\vartheta}$ tak, aby maximalizovalo
 - $-\ p_{\Theta|X}(\vartheta|x)$ v diskrétním případě
 - $-f_{\Theta|X}(\vartheta|x)$ v spojitém případě
 - Podobné metodě ML v klasickém přístupu, pokud bychom volili "flat prior"- uniformní $p_{\Theta}(\vartheta)$.
- LMS Least Mean Square
 Též metoda podmíněné střední hodnoty
 - Volíme $\widehat{\vartheta} = \mathbb{E}(\Theta|X = x)$.
 - Nestranný bodový odhad, má nejmenší možnou hodnotu LMS: $\mathbb{E}((\Theta \widehat{\vartheta})^2 | X = x).$

Příklad (Bayesovský klasifikátor spamů):

- vytvoříme seznam podezřelých slov (money, win, pharmacy,...)
- n.v. X_i (0 nebo 1) popisuje, zda email obsahuje podezřelé slovo w_i .
- n.v. Θ popisuje, zda email je spam $\Theta = 1$ nebo ne $\Theta = 0$.
- Z pŘedchodzích emailů získáme odhady $p_{X\Theta}, p_{\Theta}$
- \bullet Použijeme Bayesovu větu na výpočet $p_{\Theta|X}$

Příklad: Romeo a Julie se mají sejít přesně v poledne. Julie ale přijde pozdě o dobu popsanou náhodnou veličinou $X \sim U(0, \vartheta)$. Parametr ϑ modelujeme náhodnou veličinou $\Theta \sim U(0, 1)$. Co z naměřené hodnoty X = x usoudíme o ϑ ?

Doplnit řešení

13.5 Generování náhodných veličin