天体物理辐射机制笔记

GasinAn

2022年5月17日

Copyright © 2022 by GasinAn

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher, except by a BNUer.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories, technologies and programs to determine their effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these techniques or programs contained in this book. The author and publisher shall not be liable in any event of incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these techniques or programs.

Printed in China

目录

第一章	辐射基本知识	5
1.1	高斯单位制	5
第二章	辐射场理论	7
2.1	辐射场的偏振与 Stokes 参量	7
2.2	有源场: 电磁势—求解辐射场的经典方法	8
2.3	辐射谱: 电磁场能量在不同频率的分布	10
第三章	相对论性带电粒子辐射	11
第四章	同步辐射	13
4.1	回旋辐射	13
4.2	同步辐射	15
4.3	幂律分布电子的集体辐射	15
4.4	同步自吸收	16
4.5	曲率辐射	16

第一章 辐射基本知识

1.1 高斯单位制

国际单位制: m, kg, s; $\mu_0 := 4\pi \times 10^{-7} \text{N/A}^2$.

Gauss 单位制: cm, g, s;

1. $\Leftrightarrow \epsilon_0 = \mu_0 = 1^1$, $\epsilon_{\text{Gauss}} := \frac{\epsilon}{\epsilon_0}$, $\mu_{\text{Gauss}} := \frac{\mu}{\mu_0}$,

2. 令库伦定律中比例系数为 1, 得 q 单位 cm³/2g¹/2s⁻¹, $q_{Gauss} := \frac{q}{\sqrt{4\pi\epsilon_0}}$,

3. 令 \boldsymbol{B} 单位和 \boldsymbol{E} 单位相同, $\boldsymbol{B}_{\text{Gauss}} := c\boldsymbol{B}$.

直接计算方法: 把公式看成数的等式而非量的等式2.

 $^{^1}$ 国际制中 $c=\frac{1}{\sqrt{\epsilon_0\mu_0}},$ Gauss 制中 $c=\frac{c}{\sqrt{\epsilon_0\mu_0}}.$ 2 请自行咨询梁老师这句话的含义.

物理量	单位定义式
q	$F = \frac{q_1 q_2}{r^2}$
ϵ_0	$\epsilon_0 = 1$
ϵ	$\epsilon = \epsilon_{ m r} \epsilon_0$
E	F = qE
p	p = ql
P	$P = \frac{\sum p}{\Delta V}$
D	$D = \epsilon E$
$\chi_{ m e}$	$P = \chi_{\rm e} E$
I	$I = \frac{\mathrm{d}q}{\mathrm{d}t}$
U	U = Ed
R	U = IR
\mathcal{E}	$\mathcal{E} = U + IR$
C	$C = \frac{q}{U}$
L	$L = \mathcal{E} \frac{\mathrm{d}I}{\mathrm{d}t}$
μ_0	$\mu_0 = 1$
μ	$\mu = \mu_{\rm r} \mu_0$
B	$F = q \frac{v}{c} B$
m	$m = \frac{I}{c}S$
M	$M = \frac{\sum m}{\Delta V}$
Н	$B = \mu H$
$\chi_{ m m}$	$M = \chi_{\rm m} H$

表 1.1: Gauss 单位制

第二章 辐射场理论

2.1 辐射场的偏振与 Stokes 参量

椭圆偏振,

$$\boldsymbol{E}_{1}(t) = E_{1}\boldsymbol{e}_{x}\cos(\omega t - \varphi_{1}), \tag{2.1}$$

$$\mathbf{E}_2(t) = E_2 \mathbf{e}_u \cos(\omega t - \varphi_2). \tag{2.2}$$

Stokes 参量:

$$\begin{cases}
I = E_1^2 + E_2^2, \\
Q = E_1^2 - E_2^2, \\
U = 2E_1 E_2 \cos(\varphi_2 - \varphi_1), \\
V = 2E_1 E_2 \sin(\varphi_2 - \varphi_1).
\end{cases}$$
(2.3)

实际,

$$E(t) = E_x(t)e_x + E_y(t)e_y$$

$$= \int \{E_x(\omega)\cos[\omega t - \varphi_x(\omega)]e_x + E_y(\omega)\cos[\omega t - \varphi_y(\omega)]e_y\} d\omega,$$
 (2.5)

给 y 方向附加一相移 η ,

$$\boldsymbol{E}(t) = \int \{ E_x(\omega) \cos[\omega t - \varphi_x(\omega)] \boldsymbol{e}_x + E_y(\omega) \cos[\omega t - \varphi_y(\omega) + \eta] \boldsymbol{e}_y \} d\omega, \quad (2.6)$$

在 $(\sin \psi, \cos \psi)$ 上的投影为

$$\int \{E_x(\omega)\cos[\omega t - \varphi_x(\omega)]\sin\psi + E_y(\omega)\cos[\omega t - \varphi_y(\omega) + \eta]\cos\psi\} d\omega$$

$$= \sum_{\text{func=cos,sin}} \int \{E_x(\omega)\operatorname{func}\varphi_x(\omega)\sin\psi + E_y(\omega)\operatorname{func}[\varphi_y(\omega) - \eta]\cos\psi\} \operatorname{func}\omega t d\omega,$$
(2.8)

平方平均, 得

$$\sum_{\text{func=cos,sin}} \int \left\{ E_x(\omega) \operatorname{func} \varphi_x(\omega) \sin \psi + E_y(\omega) \operatorname{func} \left[\varphi_y(\omega) - \eta \right] \cos \psi \right\}^2 d\omega,$$
(2.9)

$$= \left\{ \int E_x(\omega)^2 d\omega \right\} \sin^2 \psi + \left\{ \int E_y(\omega)^2 d\omega \right\} \cos^2 \psi$$

$$+ 2 \left\{ \int E_x(\omega) E_y(\omega) \cos[\varphi_x(\omega) - \varphi_y(\omega) + \eta] d\omega \right\} \sin \psi \cos \psi$$

$$= \frac{1}{2} [I + Q \cos 2\psi + (U \cos \eta + V \sin \eta) \sin 2\psi], \tag{2.10}$$

$$\begin{cases}
I = \int E_x(\omega)^2 d\omega + \int E_y(\omega)^2 d\omega, \\
Q = \int E_x(\omega)^2 d\omega - \int E_y(\omega)^2 d\omega, \\
U = 2 \int E_x(\omega) E_y(\omega) \cos[\varphi_y(\omega) - \varphi_x(\omega)] d\omega, \\
V = 2 \int E_x(\omega) E_y(\omega) \sin[\varphi_y(\omega) - \varphi_x(\omega)] d\omega.
\end{cases} (2.11)$$

Stokes 参量依赖于坐标系.

2.2 有源场: 电磁势—求解辐射场的经典方法

$$\partial^a \partial_a A_b(t, \mathbf{r}) = -4\pi J_b(t, \mathbf{r}). \tag{2.12}$$

有解

$$A^{a}(t, \mathbf{r}) = \frac{1}{c} \int \frac{J^{a}(t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}, \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dV'.$$
 (2.13)

对单粒子, $J^a(t, \mathbf{r}) = qU^a(t)\delta(\mathbf{r} - \mathbf{r}_q(t))$, 所以

$$A^{a}(t, \mathbf{r}) = \frac{q}{c} \int \frac{U^{a}(t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}) \delta(\mathbf{r}' - \mathbf{r}_{q}(t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}))}{|\mathbf{r} - \mathbf{r}'|} dV'$$
(2.14)

$$= \frac{q}{c} \int \frac{\int U^{a}(t')\delta(\mathbf{r}' - \mathbf{r}_{q}(t'))\delta(t' - (t - \frac{|\mathbf{r} - \mathbf{r}'|}{c})) dt'}{|\mathbf{r} - \mathbf{r}'|} dV' \qquad (2.15)$$

$$= \frac{q}{c} \iint \frac{U^{a}(t')\delta(t' - (t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}))}{|\mathbf{r} - \mathbf{r}'|} \delta(\mathbf{r}' - \mathbf{r}_{q}(t')) \, dV' \, dt' \qquad (2.16)$$

$$= \frac{q}{c} \int \frac{U^a(t')\delta(t' - \left(t - \frac{\left|\mathbf{r} - \mathbf{r}_q(t')\right|}{c}\right))}{\left|\mathbf{r} - \mathbf{r}_q(t')\right|} dt', \tag{2.17}$$

上式是对 t' 进行的积分. 把积分变量变成 $\tilde{t}' = t' - (t - \frac{|r - r_q(t')|}{c})$. 注意到 积分中 t 和 r 被当成常量,所以 $d\tilde{t}' = dt' + \frac{\dot{R}(t')}{c}dt' = (1 + \frac{\dot{R}(t')}{c})dt'$,其中
$$\begin{split} R(t') &= |\boldsymbol{r} - \boldsymbol{r}_q(t')|, \, \text{所以} \, \dot{R}(t') = -\frac{(\boldsymbol{r} - \boldsymbol{r}_q(t'))}{|\boldsymbol{r} - \boldsymbol{r}_q(t')|} \cdot \dot{\boldsymbol{r}}_q(t') = -\hat{\boldsymbol{n}}(t') \cdot \boldsymbol{u}_q(t'). \\ & \hspace{1cm} \boldsymbol{\mathbb{E}} \, \boldsymbol{\mathbb{X}} \, \, K(t') = 1 + \frac{\dot{R}(t')}{c} = 1 - \frac{\hat{\boldsymbol{n}}(t') \cdot \boldsymbol{u}_q(t')}{c} = 1 - \frac{u_r(t')}{c}, \, \boldsymbol{\mathbb{M}} \, \, \mathrm{d}\tilde{t}' = K(t') \mathrm{d}t', \end{split}$$

所以

$$A^{a}(t, \mathbf{r}) = \frac{q}{c} \int \frac{U^{a}(t')}{K(t') |\mathbf{r} - \mathbf{r}_{q}(t')|} \delta(\tilde{t}') \,\tilde{t}', \qquad (2.18)$$

其中 t' 是 \tilde{t}' 和 t, r 的函数. 令 $\tilde{t}' = t' - (t - \frac{|r - r_q(t')|}{c}) = 0$, 可得 R(t') = $|r - r_a(t')| = c(t - t')$, 所以

$$A^{a}(t, \mathbf{r}) = \left[\frac{qU^{a}(t')}{cK(t')R(t')}\right]_{R(t')=c(t-t')}.$$
(2.19)

t 时刻 r 处接收到 t' 时刻 $r_q(t')$ 处产生的辐射, 恰有 R(t') = c(t-t'). 给定 t 和 \mathbf{r} , 满足 $R(t') = |\mathbf{r} - \mathbf{r}_q(t')| = c(t - t')$ 的 t' 存在且唯一, 否则世界线不 类时.

$$\mathbf{E} = q \left[\frac{(\hat{\mathbf{n}}(t') - \boldsymbol{\beta}(t'))(1 - \boldsymbol{\beta}(t')^2)}{K(t')^3 R(t')^2} \right]_{R(t') = c(t - t')}$$
(2.20)

$$+\frac{q}{c}\left[\frac{\hat{\boldsymbol{n}}(t')\times((\hat{\boldsymbol{n}}(t')-\boldsymbol{\beta}(t'))\times\dot{\boldsymbol{\beta}}(t'))}{K(t')^{3}R(t')}\right]_{R(t')=c(t-t')},\qquad(2.21)$$

$$\boldsymbol{B} = [\hat{\boldsymbol{n}} \times \boldsymbol{E}]_{R(t') = c(t - t')}. \tag{2.22}$$

$$\frac{\mathrm{d}P(t)}{\mathrm{d}\Omega} = \frac{c}{4\pi}R(t')^2 \left| \mathbf{E}(t') \right|^2. \tag{2.23}$$

dP(t) 为因 t' 时刻电荷的辐射, 观者在 t 时刻测得的单位时间通过 $R(t')^2 d\Omega$ 的辐射. 求电荷处单位时间 $d\Omega$ 方向的能量 dP(t'). 能量守恒 dP(t')dt' = dP(t)dt, $K(t') = \frac{dt}{dt'}$,

$$\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega} = \frac{c}{4\pi}K(t')R(t')^2 \left| \mathbf{E}(t') \right|^2. \tag{2.24}$$

非相对论, $K \simeq 1$, $\hat{\boldsymbol{n}} - \boldsymbol{\beta} \simeq \hat{\boldsymbol{n}}$,

$$\boldsymbol{E} = \frac{q}{cR} [\hat{\boldsymbol{n}} \times (\hat{\boldsymbol{n}} \times \dot{\boldsymbol{\beta}})], \tag{2.25}$$

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{q^2}{4\pi c} \dot{\beta}^2 \sin^2 \Theta_{\dot{\beta},\hat{n}}.$$
 (2.26)

2.3 辐射谱: 电磁场能量在不同频率的分布

$$E(t) = \int E(\omega)e^{-i\omega t}d\omega, \qquad (2.27)$$

$$E(\omega) = \frac{1}{2\pi} \int E(t)e^{i\omega t} dt.$$
 (2.28)

对 $\frac{\mathrm{d}P(t)}{\mathrm{d}\Omega}$ 作 Fourier 分析 (警告: 不是 $\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega}$, 因为观者测得频谱). 假定 $R \simeq \mathrm{const}$, 由 Parseval 定理,

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega\mathrm{d}\omega} = cR^2 \left| \mathbf{E}(\omega) \right|^2. \tag{2.29}$$

$$\mathbf{E}(\omega) = \frac{1}{2\pi} \int \mathbf{E}(t')e^{i\omega t} dt, \qquad (2.30)$$

$$\boldsymbol{E}(\omega) = \frac{1}{2\pi} \int K(t') \boldsymbol{E}(t') e^{i\omega \left[t' + \frac{R(t')}{c}\right]} dt', \qquad (2.31)$$

 $R(t')=|m{r}-m{r}_q(t')|\simeq |m{r}|-rac{m{r}}{|m{r}|}\cdotm{r}_q(t')=|m{r}|-\hat{m{n}}\cdotm{r}_q(t'),$ 得

$$|\boldsymbol{E}(\omega)|^2 = \left| \frac{1}{2\pi} \int K(t') \boldsymbol{E}(t') e^{i\omega \left[t' - \frac{\hat{\boldsymbol{n}} \cdot \boldsymbol{r}_q(t')}{c} \right]} dt' \right|^2.$$
 (2.32)

非相对论,

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{q^{2}\left|\ddot{\boldsymbol{r}}_{q}\right|(\omega)^{2}\sin^{2}\Theta_{\ddot{\boldsymbol{r}}_{q},\hat{\boldsymbol{n}}}}{c^{3}} = \frac{\omega^{4}q^{2}\left|\boldsymbol{r}_{q}\right|(\omega)^{2}\sin^{2}\Theta_{\ddot{\boldsymbol{r}}_{q},\hat{\boldsymbol{n}}}}{c^{3}}.$$
 (2.33)

第三章 相对论性带电粒子辐射

$$\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega} = \frac{c}{4\pi}K(t')R(t')^2 \left| \mathbf{E}(t') \right|^2,\tag{3.1}$$

$$\boldsymbol{E} = \frac{q}{c} \frac{\hat{\boldsymbol{n}}(t') \times ((\hat{\boldsymbol{n}}(t') - \boldsymbol{\beta}(t')) \times \dot{\boldsymbol{\beta}}(t'))}{K(t')^3 R(t')},$$
(3.2)

$$K(t') = 1 - \hat{\boldsymbol{n}}(t') \cdot \boldsymbol{\beta}(t'). \tag{3.3}$$

若 $\hat{\boldsymbol{n}}/\!/\boldsymbol{\beta}$, 则 $K \to 0$, $\frac{\mathrm{d}P}{\mathrm{d}\Omega} \to \infty$, 速度方向极大.

$$K = 2K_{\min} \rightarrow \theta \simeq \frac{1}{\gamma} := \sqrt{1 - \beta^2}$$
.

粒子静系中 $\theta = \frac{\pi}{2}$ 出射的光子², 观者看来 $\theta \simeq \frac{1}{\gamma}$. $\boldsymbol{\beta}//\dot{\boldsymbol{\beta}}$,

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{q^2}{4\pi c} \frac{\dot{\boldsymbol{\beta}}^2 \sin^2 \theta}{(1 - |\boldsymbol{\beta}| \cos \theta)^5},\tag{3.4}$$

 $\theta_{\text{max}} = \arccos \frac{\sqrt{15|\boldsymbol{\beta}|^2 + 1} - 1}{3|\boldsymbol{\beta}|}^3.$

 $\boldsymbol{\beta}\perp\dot{\boldsymbol{\beta}},$

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{q^2}{4\pi c} \dot{\boldsymbol{\beta}}^2 \left[\frac{\gamma^2 (1 - |\boldsymbol{\beta}| \cos \theta)^2 - \sin^2 \theta \cos^2 \phi}{\gamma^2 (1 - |\boldsymbol{\beta}| \cos \theta)^5} \right],\tag{3.5}$$

其中 ϕ 坐标系为: 以 $\dot{\beta}$ 方向为 x 轴正向, 以 β 方向为 z 轴正向.

 $^{^{1}}$ 此处 θ 是观者系中粒子运动方向和观者方向的夹角.

 $^{^{2}}$ 此处 θ 是粒子静系中光子出射方向和粒子运动方向的夹角.

³我算的, 不知对不对.

第四章 同步辐射

4.1 回旋辐射

 $v_{\parallel} = v \cos \alpha$, $v \perp = v \sin \alpha$, α 称为投射角. 非相对论,

$$P = \frac{2e^2\dot{v}^2}{3c}. (4.1)$$

又有 $m_e \dot{\boldsymbol{v}} = -\frac{e}{c} (\boldsymbol{v} \times \boldsymbol{B})$, 所以

$$P = \frac{2}{3} \frac{e^4}{m_e^2 c^5} v^2 B^2 \sin^2 \alpha. \tag{4.2}$$

电子经典半径为 $r_e = \frac{e^2}{m_e c^2}$ 1, 则

$$P = \frac{2}{3c}r_e^2 v^2 B^2 \sin^2 \alpha = \frac{2r_e^2 c}{3}\beta^2 B^2 \sin^2 \alpha.$$
 (4.3)

假设电子分布各项同性,则平均总功率

$$\bar{P} = \frac{2r_e^2 c}{3} \beta^2 B^2 \frac{\iint \sin^2 \alpha \sin \alpha \, d\alpha \, d\phi}{4\pi}$$
 (4.4)

$$=\frac{2r_e^2c}{3}\beta^2B^2\frac{\int\sin^3\alpha\,\mathrm{d}\alpha}{2}\tag{4.5}$$

$$=\frac{2r_e^2c}{3}\beta^2B^2\frac{2}{3}$$
 (4.6)

$$= \frac{4}{9}r_e^2c\beta^2B^2. (4.7)$$

P 和 \bar{P} 正比于电子动能 (β^2) 和磁场能量密度 (B^2). 周期运动,

$$E(t) = \sum_{-\infty}^{\infty} E_s e^{-is\omega_0 t}, \tag{4.8}$$

 $^{^{1} \}diamondsuit m_{e}c^{2} = \frac{e^{2}}{r_{e}}$.

$$E_s = \frac{1}{T} \int_0^T E(t)e^{is\omega_0 t} dt. \tag{4.9}$$

对 $\frac{\mathrm{d}W}{\mathrm{d}\Omega}:=\int_0^T\frac{\mathrm{d}P(t)}{\mathrm{d}\Omega}\,\mathrm{d}t$ 作 Fourier 分析. 一样假定 $R\simeq\mathrm{const},$ 由 Parseval 定理,

$$\frac{\mathrm{d}\bar{P}_s}{\mathrm{d}\Omega} := \frac{1}{T} \frac{\mathrm{d}W_s}{\mathrm{d}\Omega} = \frac{c}{2\pi} R^2 \left| \boldsymbol{E}_s \right|^2. \tag{4.10}$$

$$\boldsymbol{E}_{s} = \frac{1}{T} \int_{0}^{T} \boldsymbol{E}(t') e^{is\omega_{0}t} dt.$$
 (4.11)

 $\pm t' = t - \frac{R(t')}{c}, \quad \frac{\mathrm{d}t}{\mathrm{d}t'} = K(t'),$

$$\boldsymbol{E}_{s} = \frac{1}{T} \int K(t') \boldsymbol{E}(t') e^{i\omega \left[t' + \frac{R(t')}{c}\right]} dt', \tag{4.12}$$

 $R(t') = |m{r} - m{r}_q(t')| \simeq |m{r}| - \frac{m{r}}{|m{r}|} \cdot m{r}_q(t') = |m{r}| - \hat{m{n}} \cdot m{r}_q(t'),$ 得

$$|\boldsymbol{E}_{s}|^{2} = \left| \frac{1}{T} \int K(t') \boldsymbol{E}(t') e^{i\omega \left[t' - \frac{\hat{\boldsymbol{n}} \cdot \boldsymbol{r}_{q}(t')}{c} \right]} dt' \right|^{2}, \tag{4.13}$$

非相对论,

$$\frac{\mathrm{d}\bar{P}_s}{\mathrm{d}\Omega} = \frac{q^2 \left|\ddot{\boldsymbol{r}}_q\right|_s^2 \sin^2 \Theta_{\ddot{\boldsymbol{r}}_q,\hat{\boldsymbol{n}}}}{2\pi c^3} = \frac{s^4 \omega_0^4 q^2 \left|\boldsymbol{r}_q\right|_s^2 \sin^2 \Theta_{\ddot{\boldsymbol{r}}_q,\hat{\boldsymbol{n}}}}{2\pi c^3}.$$
 (4.14)

偶极子: x 轴和 y 轴 E 沿 z 轴, z 轴 E = 0.

由对称性, 可令电子在 xOy 面内, 观者在 xOz 面内, 然后可得 $(\nu_0 = \frac{\omega_0}{2\pi}, \omega_0 = \frac{1}{\gamma}\omega_L = \frac{1}{\gamma}\frac{eB}{m_ec})$

$$\frac{\mathrm{d}\bar{P}_s}{\mathrm{d}\Omega} = \frac{2\pi e^2 s^2 \nu_0^2}{c} \left[\cot^2 \theta J_s (s\beta \sin \theta)^2 + \beta^2 J_s' (s\beta \sin \theta)^2 \right],\tag{4.15}$$

其中 Bessel 函数

$$J_s(x) := \frac{1}{2\pi} \int_0^{2\pi} e^{i(su - x\sin u)} du.$$
 (4.16)

积分得

$$\bar{P}_s = \frac{8\pi^2 e^2 s^2 \gamma^{-2} \nu_L^2}{c\beta} \left[s\beta^2 J_{2s}'(2s\beta) - s^2 \gamma^{-2} \int_0^\beta J_{2s}(2su) du \right], \qquad (4.17)$$

非相对论, $\beta \ll 1$, $s\beta \ll 1$, 展开得

$$\bar{P}_s \simeq \left(\frac{8\pi^2 e^2 \nu_L^2}{c}\right) \frac{(s+1)s^{2s+1}}{(2s+1)!} \beta^{2s}.$$
 (4.18)

可见 $\bar{P}_{s+1}/\bar{P}_s \sim \beta^2 \ll 1$.

4.2 同步辐射

同样回旋运动, 令 $m_e \to \gamma m_e$, 得 $\omega_0 = \frac{1}{\gamma} \omega_L = \frac{eB}{\gamma m_e c}$, 回旋半径非常大, 接近直线运动.

$$P = \frac{2e^2\gamma^4\dot{v}^2}{3c}. (4.19)$$

$$P = \frac{2r_e^2 c}{3} \gamma^2 \beta^2 B^2 \sin^2 \alpha. \tag{4.20}$$

$$\bar{P} = \frac{4}{9} r_e^2 c \gamma^2 \beta^2 B^2. \tag{4.21}$$

冷却时间 $t_{\text{cool}} := \gamma m_e c^2 / \bar{P}$.

仍然有第三章的 🖞 和4.1节的

$$\frac{\mathrm{d}\bar{P}_s}{\mathrm{d}\Omega} = \frac{2\pi e^2 s^2 \nu_0^2}{c} \left[\cot^2 \theta J_s (s\beta \sin \theta)^2 + \beta^2 J_s' (s\beta \sin \theta)^2 \right],\tag{4.22}$$

$$\bar{P}_s = \frac{8\pi^2 e^2 s^2 \nu_0^2}{c\beta} \left[s\beta^2 J_{2s}'(2s\beta) - s^2 \gamma^{-2} \int_0^\beta J_{2s}(2su) du \right]. \tag{4.23}$$

因为 $\Delta\nu_0/\nu_0 \ll 1$, 已成连续谱.

直接求连续谱. $\omega_c := \frac{3}{2} \gamma^2 \omega_L \sin \alpha$, 最大值 $\omega \approx 0.29 \omega_c$, 低频 $\propto \omega^{1/3}$, 高频指数下降, 用 $\ln \omega$ 画图可见高频截断.

4.3 幂律分布电子的集体辐射

常认为电子能量分布是幂律的,即

$$N(\gamma) = C\gamma^{-p}, \quad \gamma \in [1, \infty),$$
 (4.24)

则

$$P_{\text{tot}}(\omega) = C \int_{\gamma_1}^{\gamma_2} P(\omega) \gamma^{-p} \, d\gamma \propto \int_{\gamma_1}^{\gamma_2} F\left(\frac{\omega}{\omega_c}\right) \gamma^{-p} \, d\gamma.$$
 (4.25)

把积分变量变成 $x := \omega/\omega_c$, 由 $\omega_c \propto \gamma^2$ 得

$$P_{\text{tot}}(\omega) \propto \omega^{-(p-1)/2} \int_{x_1}^{x_2} F(x) x^{(p-3)/2} dx \propto \omega^{-s},$$
 (4.26)

其中 s := (p-1)/2.

4.4 同步自吸收

 $\alpha(\omega) \propto \omega^{-(p+4)/2}, \ S(\omega) = \frac{j(\omega)}{\alpha(\omega)} = \frac{P_{\rm tot}(\omega)}{4\pi} \alpha(\omega) \propto \omega^{5/2}.$ 低频 α 大, 光学 厚, $I(\omega) \approx S(\omega) \propto \omega^{5/2}$, 高频 $I(\omega) \propto \omega^{-s}$, 分界点 $\tau(\omega) = 1$.

4.5 曲率辐射

因为运动类似,所以单粒子谱型一样.但 $\omega_0 \simeq \frac{c}{\rho}$ (其中 ρ 为曲率半径),所以 $\omega_c \propto \gamma^3$,低频端 $P(\omega) \propto \omega^{1/3}$ 与 γ 无关,所以 $P_{\rm tot}(\omega) \propto P(\omega) \propto \omega^{1/3}$.