1 (1 punto) Se desea incluir la instrucción sll rd, rt, desp5, con formato R, como una instrucción más del juego de instrucciones básico del MIPS visto en clase. La instrucción desplaza a la izquierda el contenido del registro rt, la cantidad de bits establecido en el campo desp de la instrucción, introduciendo ceros por la derecha, y dejando el resultado en rd. Por ejemplo, la instrucción s11 \$2, \$3, 6 se codificaría como muestra la Figura 1:

COP	RS	RT	RD	desp5	Función	
000000	00000	00011	00010	00110	000000	

Figura 1 Codificación s/l \$2, \$3,6, de tipo R

Para ello se ha modificado la ruta de datos tal y como muestra la Figura 2 incluyendo un componente DESPLAZADOR (SLL), basado internamente en un *Barrel Shifter*, que efectúa la operación de la instrucción sll. Además, el Multiplexor de escritura en registro se ha ampliado por lo que requiere una señal de control de 2 bits.

Figura 2. Ruta de los datos, con componente SLL.

Complete la tabla correspondiente a las señales de control para ejecutar sobre la misma las instrucciones que se piden.

Instrucción	Form	EReg	OpALU	LMem	EMem	MxPC	MxALU	MxDst	MxER
sll rd, rt, desp	R	1	XXX	0	0	0	X	1	10
and rd, rs, rt	R	1	000	0	0	0	0	1	00
lw rt, desp(rs)	I	1	010	1	0	0	1	0	01
beq rs, rt, etiq	I	0	110	0	0	Z	0	X	X

- **2** (1.25 puntos) Considérese la ruta de datos segmentada de cinco etapas (LI, DI, EX, M, ER) estudiada en clase y supóngase que las etapas tienen los siguientes retardos: 49 ns las memorias, 45 ns el banco de registros para lectura y escritura, y 40 ns la unidad aritmético-lógica. Los registros de segmentación tienen un retardo de 1ns. Resto de unidades funcionales tienen un tiempo despreciable.
 - a) (0.25 puntos) ¿Cuál es la productividad máxima que se puede alcanzar con esta ruta de datos segmentada?

$$\chi = 1/T$$

$$T = max(49,45,40,49,45) + 1 = 50 \text{ ns}$$

$$\chi = (1000/50) \text{ MIPS} = 20 \text{ MIPS}$$

b) (0.25puntos) ¿Cuál es la aceleración máxima conseguida respecto a la versión no segmentada?

```
T_{NS} = (49 + 45 + 40 + 49 + 45) = 228

S = T_{NS} / T = 228/50 = 4.56
```

c) **(0.25 puntos)** Indique para la ruta indicada cuál sería la aceleración ideal, y bajo qué condiciones se llegaría a obtener.

S=5

Etapas mismos retardos y registro de segmentación 0 ns.

d) **(0.25 puntos)** Un programa ejecuta 100 instrucciones en este computador y tarda 6200 ns. ¿Cuántos ciclos de parada han tenido lugar?

```
(100 + P + 4) * 50 ns = 6200 ns
P = 6200/50 – 104 = 20 paradas
```

e) **(0.25 puntos)** Si utilizáramos esta ruta como base para hacer un procesador superescalar de 2 vías, ¿cuál sería la productividad máxima?

Doble, luego 40 MIPS

3 (1.5 puntos) En el procesador segmentado en cinco etapas del ejercicio anterior se va a ejecutar el siguiente fragmento de código en ensamblador del MIPS R2000. Asuma que los conflictos por dependencias de datos y control se solucionan mediante la inserción de ciclos de parada y la latencia de salto es 1.

(1)		7 1 010 0 1000
(1)		lui \$t0,0x1000
(2)		ori \$t4 , \$0 , 100
(3)	bucle:	beqz \$t4, fin
(4)		lh \$t5, 0(\$t0)
(5)		lh \$t6, 0x200(\$t0)
(6)		sh \$t5, 0x200(\$t0)
(7)		sh \$t6, 0(\$t0)
(8)		addi \$t4,\$t4,-1
(9)		addi \$t0,\$t0,2
(10)		j bucle
(11)	fin:	

	Registro	instrucción en que se escribe	instrucción en que se lee
Riesgo	\$t4	2	3
Riesgo	\$t5	4	6
Riesgo	\$t6	5	7
Riesgo			
Riesgo			

Tabla 1. Riesgos de datos

- a) **(0.5 puntos)** Indique los riesgos por dependencias de datos que existe utilizando la Tabla 1 (el número de riesgos no tiene por qué ser igual al número de filas)
- b) (0.5 puntos) Indique para dicho código (justifique las respuestas)

Número de Instrucciones ejecutadas (I)	2 + 8 * 100 + 1 = 803 instrucciones
Número de ciclos de parada (P)	2ori + 1lh *100 veces + 1beqz* 101 veces + 1j * 100 veces
	303 paradas
Número de ciclos totales de ejecución (T)	I + P + 4 = 803 + 303 +4= 1110 ciclos
СРІ	(1110-4)/803=1.38

c) (0.5 puntos) Rellene el diagrama de ejecución solo para las tres instrucciones que se indican:

	2	3	4	5	6	7	8	9	10	11
ori \$t4,\$0,100	LI	DI	EX	М	ER					
beqz \$t4,fin		LI	-	_	DI	EX	М	ER		
Ih \$t5,0(\$t0)					-	LI	DI	EX	М	ER

4 (1 punto) El circuito de la Figura 3 es multiplicador combinacional para números de 3 bits (X e Y) basado en sumadores completos FA implementados a según las funciones lógicas para la Suma y el Acarreo vistas en clase. Cada puerta lógica (independientemente de la función que realice) introduce un retardo de 0.5 ns.

Figura 3. Multiplicador combinacional

a) **(0.75 puntos)** Tiempo necesario para realizar el producto de X*Y. Justifíquelo indicando los tiempos de los resultados parciales indicados en la figura mediante un recuadro.

```
T = 11*0.5 ns = 5.5 ns
```

b) (0.25 puntos) Productividad del circuito expresada en MOPS.

```
P = 1 op / 5.5 ns = 181.8 MOPS
```

5 (1. punto) Se dispone de un circuito multiplicador secuencial basado en el **algoritmo de Booth** para números enteros de 4 bits tal y como se muestra en la figura. Supóngase que el retardo de las diferentes operaciones involucradas en la multiplicación es el que se indica en la tabla adjunta:

Inicializar registros y circuito de control	5 ns
Inspeccionar q _i , q _{i-1}	2 ns
Sumar y actualizar HI	8 ns
Restar y actualizar HI	11 ns
Desplazar S-HI-LO-X 1 bit	2 ns
Evaluar el número de ciclo actual	1 ns

a) (0.75 puntos) Indique paso a paso como se realiza el producto de los números de 4 bits M=2 y Q= -7.

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 0000 100 <u>1 0</u>
1	Caso 10: HI ← HI – M	1 1110 1001 0
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 010 <u>0 1</u>
2	Caso 01: HI ← HI + M	0 0001 0100 1
Ì	Desplazar S-HI-LO 1 bit a la derecha	0 0000 101 <u>0 0</u>
3	Caso 00: No hacer nada	0 0000 1010 0
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 010 <u>1 0</u>
4	Caso 10: HI ← HI – M	1 1110 0101 0
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 0010 1

b) (0.5 puntos) ¿Cuál sería la productividad que podría alcanzar dicho multiplicador, en MOPS? Considere que la inicialización se realiza en un ciclo de reloj independiente. Justifique la respuesta.

```
Tiempo de operación = max(5ns, (2ns+11ns+2ns+1ns))*(1+4) = 80ns

Productividad = 1/80ns = 12,5 MOPS
```

(1 punto) Escriba una función areaT en lenguaje ensamblador del MIPS R2000 que calcule el área de un triángulo $(A = \frac{b*a}{2})$. La base b del triángulo y la altura a son dos variables reales que se pasan a la función en los registros \$f10 y \$f12 respectivamente. El área se devuelve en el registro \$f0.

```
....
__start:
areaT: li $t2, 2

mtc1, $t2, $f4

cvt.s.w $f4, $f4

mult.s $f10, $f10, $f12

div.s $f0, $f10, $f4

jr $ra

(o bien li.s $f4, 2.0 y sobran mtc1 y cvt )
```

- **(1.5 puntos)** Un determinado chip comercial de memoria SDRAM tiene un ancho de palabra de 64 bits y trabaja a una frecuencia de reloj de 100 MHz (t_{ciclo} = 10ns).
 - a) (0.5 puntos) Complete la siguiente tabla expresando los parámetros temporales en los ciclos de reloj correspondientes:

PARAMETRO	TIEMPO	Ciclos
PARAIVIETRO	Min. (ns)	FRECUENCIA 100MHz
t _{RCD}	18	2
t _{RAS}	42	5
t _{RC}	60	6
t _{RP}	18	2
CL		2

b) (0.5 puntos) Calcule el tiempo de acceso y el ancho de banda:

FRECUENCIA	TIEMPO DE ACCESO (ns) (Latencia de lectura)	ANCHO de BANDA (MBps)
100 MHz	$t_A = t_{RCD} + t_{CL} = 4$ Tciclo = 40ns	B = f x W = 100MHz x 8B = 800 MBps

c) (0.5 puntos) En una versión actualizada el mismo chip se oferta utilizando tecnología DDR3. Indique cómo afectaría esta nueva versión al tiempo de acceso y al ancho de banda. Suponga que se mantienen los mismos parámetros temporales y la misma frecuencia de trabajo.

t_A sería el mismo

B se duplicaría, pues al ser DDR se acceden a 2 palabras por ciclo

 $B = MT/s \times W = 2 \times f \times W = 1600 \text{ MBps}$

- **8** (1.5 puntos) A un computador basado en una CPU MIPS R2000 se le ha dotado de un primer módulo (M1) de 1GB a partir de la dirección 0x00000000. Posteriormente se le ha añadido a continuación de éste un segundo módulo (M2) de 512MB. A partir de la dirección 0x80000000 se ha incluido el módulo M3 de 2GBytes de capacidad
 - a) (0.75 puntos) Complétese el mapa de memoria resultante, indicando la dirección inicial y final de cada uno de los módulos, y especificando el tamaño y dirección del espacio libre disponible.

 M1 (1GB)
 0x00000000

 M1 (1GB)
 0x3FFFFFFFF

 0x40000000
 0x40000000

 512MB
 0x7FFFFFFF

 0x80000000
 0x80000000

 M3 (2GB)
 0xFFFFFFFF

b) Indíquense las funciones de selección para los módulos M1 y M2 utilizando lógica negativa (0.25 puntos)

- c) (0.75 puntos) El módulo M2 está constituido por una única fila de chips idénticos. Cada chip tiene una longitud de palabra de 8 bits y se organiza internamente en cuatro bancos con 4096 (2¹²) filas cada uno.
 - c1) Calcule la capacidad de cada chip y el número de chips que tiene el módulo.

(0.25 puntos)

 N^{o} de chips = W/8 = 32/8 = 4 Tamaño de cada chip = 512 MB/4 = 128 MB

c2) Indique cuántas patillas de dirección tiene cada chip de memoria (0.25 puntos)

Organización del chip: 128 MB = 128Mpalabras x 8bits 128 Mpalabras = 2^{27} palabras = Bancos x Filas x Columnas = $4 \times 2^{12} \times 2^{13}$ - 13 líneas para filas/columnas multiplexadas (el máximo de f y c)

- 2 líneas para el banco
- c3) Indique cuántas líneas de selección de octeto tiene el módulo

(0.25 puntos)

4 líneas de selección de octeto, pues el tamaño de la palabra = W = 32 = 4B DQM3*, DQM2*, DQM1*, DQM0*