Paper 1MA1: 2H	J: 2H	ı			
Question	Working	Answer		Z	Notes
		96	P1	a strategy to start to solve the	a strategy to start to solve the problem eg 18 ÷ $(7-4)$ (=6)
			P1	for completing the process of	for completing the process of solution eg " 6 " × $(4 + 5 + 7)$
			A1	cao	
2		20.9	M1	correct recall of appropriate formula eg $\sin x =$	formula eg $\sin x = \frac{5}{14}$
			A1	for 20.9(248)	
3 (a)		4n+2	M	start to deduce nth term from	start to deduce nth term from information given eg $4n+k$ where $k\neq 2$
			A1	cao	
(b)		No (supported)	M	starts method that could lead operations	starts method that could lead to a deduction eg uses inverse operations
			C1	for a convincing argument eg integer	for a convincing argument eg 34 is 107 so NO; (108−5)÷3 is not an integer
4		conclusion	P1	$30 \div 70 \ (=0.428) 26 \div 60$	$26 \div 60 \ (=0.4333)$ $30 \div 26 \ (=1.153)$
		(supported)	P1	$60 \times "0.428$ " $70 \times "0.4$	70 ×"0.4333" 60× "1.153"
			C1	for conclusion linked to 25.7	for conclusion linked to 25.7 mins, 30.3 miles or 69.2 mph

Paper 1MA1: 2H	1: 2H			
Question	Working	Answer		Notes
5 (a)		$22 \le f < 24$	B1	
(b)		21.9	M1	$x \times f$ using midpoints
			M1	(dep on previous mark) " $x \times f$ " ÷ 40
			A1	accept 22 if working seen
9		9.54	P1	$10^2 - 5^2 (=75)$
			P1	$"75" + 4^2 (=91)$
			P1	$\sqrt{(10^2 - 5^2 + 4^2)}$
			A1	9.53 - 9.54
7 (a)		(1, 4)	B1	
(b)		-0.4, 2.4	B1	
(c)		3.75	B1	accept 3.7 – 3.8
8		6:2:1	M1	for correct interpretation of any one statement eg. 3:1;1:0.5
			A1	accept any equivalent ratio eg. 3:1:0.5

Paper 1MA1: 2H	1: 2H			
Question	Working	Answer		Notes
6		203	P1	translate into algebra for rectangle: $4x+4x+3x+4+3x+4$ (=14x+8) or for trapezium: $5x+5x+x-3+7x-3$ (=18x-6)
			P1	equating: eg $18x-6=14x+8$ ($4x=14$)
			A1	solving for <i>x</i> : $x=14/4=3.5$ oe
			P1	process to find area: "3.5" \times 3+4 (ft) or "3.5" \times 4 ft
			A1	cao
10 (a)		1.8%	P1	for start to process eg. 2000×1.025 (=2050)
			P1	for process to use all given information eg "2050" \times $m^2 = 2124.46$
				or "2050"× $\left(1 + \frac{x}{100}\right)^2 = 2124.46$
			P1	for process to find their unknown eg $m = \sqrt{\frac{2124.46}{2020}} (= 1.01799)$
			A1	for 1.79% – 1.8 %
(q)		200	M1	225 ÷ 1.125 oe
			A1	

11 2 90 C1 angle 290 angle 290	A PAGENTANA	0100
(a) (b) (C1) (C1) (C1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A	AIISWCI	
(a) (b) (b) (MI) (MI) (MI) (MI) (MI) (MI) (MI) (MI		angle $OTP = 90^{\circ}$, quoted or shown on the diagram
(a) (b) (C1) (C1) (C1) (A1) (A2) (A2) (A2) (A3) (A3) (A3) (A3) (A3) (A3) (A3) (A3	MI	method that leads to $180 - (90 + 32)$ or 58 shown at $7OP$ OR that leads to 122 shown at SOT
(a) 0.4,0.6 B1 0.3,0.7,0.8,0.2 B1 (b) B with correct P1	M	complete method leading to "58" \div 2 or (180 – "122") \div 2 or 29 shown at TSP
(a) 0.4,0.6 B1 0.3,0.7,0.8,0.2 B1 B1 (b) B with correct P1	CI	for angle of 29° clearly indicated and appropriate reasons linked to method eg angle between radius and tangent = 90° and sum of angles in a triangle = 180°; ext angle of a triangle equal to sum of int opp angles and base angles of an isos triangle are equal or angle at centre = 2x angle at circumference or ext angle of a triangle equal to sum of int opp angles
0.3,0.7,0.8,0.2 B1 B with correct P1		correctly placing probs for light A eg 0.4, 0.6
B with correct P1		correctly placing probs for light B eg 0.3, 0.7, 0.8, 0.2
		(ft) eg 0.4×0.3 or 0.6×0.8 or $1-(0.28+0.12)$
probabilities P1 both s		both sets of correct probability calculations
C1 Corre	C1	Correct interpretation of results with correct comparable results
13 M1 Establ		Establishing method linked to proportion eg $d=k+c$ or $25=k+280$
M1 (dep)	M1	(dep) substitution eg $d = 7000 \div 350$ or $25 \times 280 \div 350$ oe
A1 cao	A1	cao

Paper 1MA1: 2H	J: 2H			
Question	Working	Answer		Notes
14		proof (supported)	IM	for 3 out of 4 terms correct in the expansion of $(2n+1)^2$ or $(2n+1)\{(2n+1)-1\}$
	$= 4n^2 + 2n$ $= 2n(2n+1)$		P1	for $4n^2 + 2n$ or equivalent expression in factorised form
			C1	for convincing statement using $2n(2n+1)$ or $2(2n^2+n)$ or $4n^2+2n$ to prove the result
15		23 90	M	For a fully complete method as far as finding two correct decimals that, when subtracted, give a terminating decimal (or integer) and showing intention to subtract eg. $x = 0.25$ so $10x = 2.55$ then $9x = 2.3$ leading to
			A1	correct working to conclusion
16		$\frac{2x+1}{3x+5}$	M1 M	for $(3x \pm 5)(2x \pm 1)$ or $(2x + 1)(2x - 1)$ $\frac{1}{(3x \pm 5)(2x \pm 1)} \times (2x + 1)(2x - 1)$
			A1	
17		4.89	M	$\frac{40}{360} \times 2 \times \pi \times 7 \text{ oe}$
			A1	4.8 – 4.9

Paper 1MA1: 2H	1: 2H			
Question	Working	Answer		Notes
18		0.229 With Explanation	BI	Finding bound of s: 3.465 or 3.475 or 3.474999 or Finding bound of t: 8.1315 or 8.1325 or 8.132499
		Гурганапон	P1	Use of "upper bound" and "lower bound" in equation
			P1	Process of choosing correct bounds eg $\frac{\sqrt{3.475}}{8.1315}$ or $\frac{\sqrt{3.465}}{8.1375}$
			A1	
			C1	For 0.229 from 0.2292 and 0.2288 since both LB and UB round to 0.229
19 (a)		Sketch	P1	Parabola passes through all three of the points (0, 4), (2,0), (4, 4)
(q)		Sketch	P1	Parabola passes through all three of the points $(-4, -1), (-2, 2), (0, -1)$
20		x=0, y=5	M1	Initial process of substitution eg $x^2 + (2x + 5)^2$ (=25)
		x4, y5	M1	for expanding and simplifying eg $x^2 + 4x^2 + 10x + 10x + 25$ (=25)
			M	Use of factorisation or correct substitution into quadratic formula or completing the square to solve an equation of the form $ax^2 + bx + c = 0$, $a \neq 0$
			A1	correct values of x or y
			C1	x = 0, x = -4, y = 5, y = -3 correctly matched x and y values

Paper 1MA1: 2H Ouestion Working	Answer		Notes
D	130	PI	start to process eg draw a labelled triangle or use of sine rule $\frac{\sin Q}{8.7} = \frac{\sin 32}{5.2}$
		P1	process to find of Q eg $Q = \sin^{-1} \left[\frac{\sin 32}{5.2} \times 8.7 \right]$
		P1	process to find area of triangle PRQ .
		A1	22.5 - 22.6
		C1	angle PRQ is obtuse so need to find area of two triangles.
	1361	P1	process using similar triangles to find base of small cone eg. 4 cm used as diameter or 2 cm used as radius
		P1	process to find volume of one cone
		P1 P1	complete process to find volume of frustum complete process to find mass or 1360 – 1362
		A1	1361 or 1360 or 1400