Hierarchical Attention Networks for Document Classification

Zichao Yang, Diyi Yang, Chris Dyer, Xiadong He, Alex Smola, Eduard Hovy

Presented by Pamudu Ranasinghe

Text Classification

The goal is to automatically assign predefined labels or categories to a piece of text.

- Topic Labelling
 Is this article about 'Food', 'Sports', or 'Politics'?
- Sentiment Classification
 Is this product review 'Positive', 'Negative', or 'Neutral'?

Spam Detection
 Is this email 'Spam' or 'Not Spam'?

Existing Methods [Text Classification]

Linear & SVM Models

Bag-of-Words/N-grams:

Uses frequency counts of the most common words and phrases.

Bag-of-Means:

Averages the pre-trained embeddings (word2vec) of all words in a document.

SVM + Text Features:

An SVM model using features like n-grams and sentiment lexicons.

Standard Neural Networks

Word/Char CNN:

A Convolutional Neural Network learns features from word or character sequences for classification.

LSTM:

Reads an entire document as a sequence and averages the hidden states of all words for classification.

Hierarchical Models

Conv-GRNN:

A hierarchical model that uses a CNN to create sentence vectors, which are then combined by a Gated Recurrent Neural Network (GRNN).

LSTM-GRNN:

Similar to Conv-GRNN, but it uses an LSTM to create the sentence vectors.

The Intuition Behind HAN [Hierarchical Attention Network]

Hierarchical Structure

Documents have a natural hierarchy: words form sentences, and sentences form a document.

Not all parts of a document are equally important for understanding its meaning.

The Solution: The model should learn to pay more attention to the words and sentences that are most informative.

The waiter was friendly.
But the wait time for our food was long.
Dut the wait time for our lood was long.
When the food arrived, it was perfect.
I might come back.

Model Architecture

Words to Sentences

- Word Encoder (BiGRU): Captures the meaning of each word based on its context within the sentence.
- Word Attention: Identifies and weighs the most informative words to create a consolidated sentence.

Sentences to Document

- Sentence Encoder (BiGRU): Captures the meaning of each sentence based on the context of surrounding sentences.
- Sentence Attention: Identifies and weighs the most informative sentences to create a final document.

Model Architecture [2]


```
function build_sentence_vector(sentence):
   word_annotations = WordEncoder(sentence) # Returns h_it for all words
   sentence_vector = WordAttention(word_annotations) # Returns s_i
   return sentence_vector
function build document vector(sentence vectors):
   sentence_annotations = SentenceEncoder(sentence_vectors) # Returns h_
   document_vector = SentenceAttention(sentence_annotations) # Returns v
   return document_vector
function HierarchicalAttentionNetwork(document):
   sentences = split_into_sentences(document)
   for sentence in sentences:
       sentence_vector = build_sentence_vector(sentence)
       sentence_vectors.append(sentence_vector)
   document_vector = build_document_vector(sentence_vectors)
   probabilities = softmax(document_vector)
   return probabilities
```

Model Architecture [3]


```
function Encoder(input_sequence):
    forward_hidden_states = RNN_forward(input_sequence)
    backward_hidden_states = RNN_backward(input_sequence)
    annotations = concatenate(forward_hidden_states, backward_hidden_states)
    return annotations
function Attention(annotations):
    hidden_representation = tanh(annotations * W_attention + b_attention)
    attention_scores = dot_product(hidden_representation, u_context)
    attention_weights = softmax(attention_scores)
    final_vector = sum(attention_weights * annotations)
    return final vector
```

HN - Model Comparison

	HN-ATT (Attention	HN-AVE (Averaging)	HN-MAX (Max-Pooling)
			Selects the feature with the maximum
Mechanism	Uses a learned, weighted sum	Performs a simple average of	value over time from the
	based on context vectors.	word/sentence annotations.	word/sentence annotations.
			The fact that this method does not
	The superiority of this model	This model is equivalent to using	beat simple averaging suggests that
	clearly demonstrates the	non-informative context vectors	capturing a single, most salient
Key Implication	effectiveness of learning	(uniform attention). Its solid	feature is less effective than
	context-dependent word and	baseline performance shows the	aggregating information, even
	sentence importance.	benefit of hierarchy alone.	uniformly.

Accuracy

Datasets

The model was evaluated across **06 large-scale datasets** for **02 key NLP tasks**.

Sentiment Classification

- Yelp Reviews (2013-2015)
- Yahoo Answers

- IMDB Reviews
- Amazon Reviews

Data set	classes	documents	average #s	max #s	average #w	max #w	vocabulary
Yelp 2013	5	335,018	8.9	151	151.6	1184	211,245
Yelp 2014	5	1,125,457	9.2	151	156.9	1199	476,191
Yelp 2015	5	1,569,264	9.0	151	151.9	1199	612,636
IMDB review	10	348,415	14.0	148	325.6	2802	115,831
Yahoo Answer	10	1,450,000	6.4	515	108.4	4002	1,554,607
Amazon review	5	3,650,000	4.9	99	91.9	596	1,919,336

Model configuration and training

Data & Embeddings

- Vocabulary: Words appearing less than 5 times were replaced with a special UNK token.
- Word Vectors: Initialized with pre-trained 200-dimensional word2vec embeddings.

Model Specifications

- GRU Size: 50 hidden units for each forward/backward GRU.
- Annotation & Context Vectors: 100 dimensions (combining forward & backward GRUs).

Training Process

- Optimizer & Batching:
 - Stochastic Gradient Descent (SGD) with a batch size of 64.
 - Documents of similar length were batched together, which accelerated training by 3x.
- **Hyperparameters:** The best learning rate was found using grid search on the validation set.

Performance Comparison

Results and Analysis

- (a) Aggregate Distribution: The overall attention given to the word "good" across all reviews.
- **(b) 1-Star Reviews:** The model learns to ignore "good" in negative reviews, assigning it a very low weight.
- (c) 2-Star Reviews: Attention remains low, as "good" is still not a reliable positive indicator.
- (d) 3-Star Reviews: The distribution is more centered, reflecting mixed or neutral sentiment.
- **(e) 4-Star Reviews:** The model now pays high attention, recognizing "good" as an important positive word.
- (f) 5-Star Reviews: "good" consistently receives high attention as a key indicator of a very positive review.
- What this shows: The distribution of attention weights assigned to the word "good" based on the review's star rating.
- X-axis: Attention Weight (Low to High Importance).
- **Y-axis:** Frequency.
- The Trend: As the star rating increases, the model pays more attention to the word "good".

Results and Analysis [2]

```
GT: 0 Prediction: 0 (1 star) 👚
GT: 4 Prediction: 4 (5 star) 👚 👚 👚 👚
                                                      terrible value .
     pork belly = delicious .
                                                      ordered pasta entree .
     scallops ?
     i do n't .
                                                         16.95 good taste but size was
     even .
                                                      appetizer size .
     like .
     scallops, and these were a-m-a-z-i-n-g.
                                                      no salad, no bread no vegetable.
     fun and tasty cocktails .
                                                      this was .
     next time i 'm in phoenix , i will go
                                                      our and tasty cocktails .
     back here .
                                                      our second visit .
     highly recommend.
                                                      i will not go back .
```

- **Red Highlight:** Indicates the importance of the **sentence**. A darker red means the model found the entire sentence more important.
- Blue Highlight: Indicates the importance of a word within its sentence. A darker blue means the word was more influential for that sentence's meaning.

Practical Considerations & Challenges

Costly to Add New Categories

The model is trained for a fixed set of classes.

Adding a new class (e.g., a new topic or sentiment) requires modifying the final layer and fully retraining the model—making it **inefficient for agile workflows** with changing requirements.

Computationally Intensive

Bidirectional GRUs + Attention = Heavy computation. Training demands powerful GPUs and long durations due to the model's complexity.

Requires Large Datasets

Performance scales with data.

HAN performs best with large datasets. On smaller datasets, it may underperform and become prone to overfitting compared to simpler models.

Thank You

