# Class09: Halloween

Nathaniel Lightle (A16669288)

Today is Halloween and we will apply lots of the analysis methods and R graphics appraoches to find out all about typical Halloween candy.

### Importing candy data

```
candyphile = read.csv("candy-data.csv", row.names = 1)
head(candyphile)
```

|              | choco | olate | fruity   | caramel | peanut | tyalmondy | nougat  | crispedr | icewafer |
|--------------|-------|-------|----------|---------|--------|-----------|---------|----------|----------|
| 100 Grand    |       | 1     | 0        | 1       |        | 0         | 0       |          | 1        |
| 3 Musketeers |       | 1     | 0        | 0       |        | 0         | 1       |          | 0        |
| One dime     |       | 0     | 0        | 0       |        | 0         | 0       |          | 0        |
| One quarter  |       | 0     | 0        | 0       |        | 0         | 0       |          | 0        |
| Air Heads    |       | 0     | 1        | 0       |        | 0         | 0       |          | 0        |
| Almond Joy   |       | 1     | 0        | 0       |        | 1         | 0       |          | 0        |
|              | hard  | bar   | pluribus | sugarpe | ercent | priceper  | cent wi | npercent |          |
| 100 Grand    | 0     | 1     | (        | )       | 0.732  | 0         | .860    | 66.97173 |          |
| 3 Musketeers | 0     | 1     | (        | )       | 0.604  | 0         | .511    | 67.60294 |          |
| One dime     | 0     | 0     | (        | )       | 0.011  | 0         | .116    | 32.26109 |          |
| One quarter  | 0     | 0     | (        | )       | 0.011  | 0         | .511    | 46.11650 |          |
| Air Heads    | 0     | 0     | (        | )       | 0.906  | 0         | .511    | 52.34146 |          |

0.465

0.767

50.34755

[Q1] How many different candy types are in this data set?

0

```
nrow(candyphile)
```

0 1

[1] 85

Almond Joy

There are 85 different types of candy in the data set

[Q2] How many fruity candy types are in the dataset?

```
sum(candyphile[,2])
```

[1] 38

There are 38 fruity candy types in the dataset

#### What is your favorite candy?

[Q3] What is your favorite candy in the dataset and what is it's win percent?

My favorite candy is Werther's Original's Caramel

```
candyphile["Werther's Original Caramel", "winpercent"]
```

[1] 41.90431

The win percent for Werther's Original Caramel is 41.90431%

[Q4] What is the winpercent value for "Kit Kat"?

```
candyphile["Kit Kat", "winpercent"]
```

[1] 76.7686

The win percent for Kit Kat is 76.7686%

[Q5] What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candyphile["Tootsie Roll Snack Bars", "winpercent"]
```

[1] 49.6535

The win percent for Tootsie Roll Snack Bars is 49.6535%

Trying the skim() function

```
#install.packages("skimr")
library("skimr")
skim(candyphile)
```

Table 1: Data summary

| Name                   | candyphile |
|------------------------|------------|
| Number of rows         | 85         |
| Number of columns      | 12         |
| Column type frequency: | 12         |
| numeric                | 12         |
| Group variables        | None       |

#### Variable type: numeric

| skim_variable n_ | _missingcom | plete_ra | atmean | $\operatorname{sd}$ | p0    | p25   | p50   | p75   | p100  | hist |
|------------------|-------------|----------|--------|---------------------|-------|-------|-------|-------|-------|------|
| chocolate        | 0           | 1        | 0.44   | 0.50                | 0.00  | 0.00  | 0.00  | 1.00  | 1.00  |      |
| fruity           | 0           | 1        | 0.45   | 0.50                | 0.00  | 0.00  | 0.00  | 1.00  | 1.00  |      |
| caramel          | 0           | 1        | 0.16   | 0.37                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| peanutyalmondy   | 0           | 1        | 0.16   | 0.37                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| nougat           | 0           | 1        | 0.08   | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| crispedricewafer | 0           | 1        | 0.08   | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| hard             | 0           | 1        | 0.18   | 0.38                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| bar              | 0           | 1        | 0.25   | 0.43                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| pluribus         | 0           | 1        | 0.52   | 0.50                | 0.00  | 0.00  | 1.00  | 1.00  | 1.00  |      |
| sugarpercent     | 0           | 1        | 0.48   | 0.28                | 0.01  | 0.22  | 0.47  | 0.73  | 0.99  |      |
| pricepercent     | 0           | 1        | 0.47   | 0.29                | 0.01  | 0.26  | 0.47  | 0.65  | 0.98  |      |
| winpercent       | 0           | 1        | 50.32  | 14.71               | 22.45 | 39.14 | 47.83 | 59.86 | 84.18 |      |

[Q6] Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The win percent is on a different scale because it ranges from 0-100%

[Q7] What do you think a zero and one represent for the candy\$chocolate column?

A 0 means false and a 1 means true

[Q8] Plot a histogram of winpercent values

## Histogram of candyphile[, "winpercent"]



[Q9] Is the distribution of winpercent values symmetrical?

No the distribution is skewed to the left

[Q10] Is the center of the distribution above or below 50%?

The center is below 50%

[Q11] On average is chocolate candy higher or lower ranked than fruity candy?

```
mean(candyphile$winpercent[as.logical(candyphile$chocolate) == T])
```

[1] 60.92153

```
mean(candyphile$winpercent[as.logical(candyphile$fruity) == T])
```

[1] 44.11974

On average chocolate candy is higher ranked than fruity candy.

```
t.test(candyphile$winpercent[as.logical(candyphile$chocolate) == T], candyphile$winpercent
```

```
Welch Two Sample t-test
```

```
data: candyphile$winpercent[as.logical(candyphile$chocolate) == T] and candyphile$winpercent
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

The difference is statistically significant because the p value is teeny tiny

### **Overall Candy Rankings**

Ordering data by winpercent

```
head(candyphile[order(candyphile$winpercent),], n=5)
```

|                    | ${\tt chocolate}$ | ${\tt fruity}$ | cara         | nel j | peanutyaln | nondy | nougat  |              |
|--------------------|-------------------|----------------|--------------|-------|------------|-------|---------|--------------|
| Nik L Nip          | 0                 | 1              |              | 0     |            | 0     | 0       |              |
| Boston Baked Beans | 0                 | 0              |              | 0     |            | 1     | 0       |              |
| Chiclets           | 0                 | 1              |              | 0     |            | 0     | 0       |              |
| Super Bubble       | 0                 | 1              |              | 0     |            | 0     | 0       |              |
| Jawbusters         | 0                 | 1              |              | 0     |            | 0     | 0       |              |
|                    | crispedrio        | ewafer         | ${\tt hard}$ | bar   | pluribus   | sugar | percent | pricepercent |
| Nik L Nip          |                   | 0              | 0            | 0     | 1          |       | 0.197   | 0.976        |
| Boston Baked Beans |                   | 0              | 0            | 0     | 1          |       | 0.313   | 0.511        |
| Chiclets           |                   | 0              | 0            | 0     | 1          |       | 0.046   | 0.325        |
| Super Bubble       |                   | 0              | 0            | 0     | 0          |       | 0.162   | 0.116        |
| Jawbusters         |                   | 0              | 1            | 0     | 1          |       | 0.093   | 0.511        |
|                    | winpercent        | ;              |              |       |            |       |         |              |
| Nik L Nip          | 22.44534          | Ļ              |              |       |            |       |         |              |
| Boston Baked Beans | 23.41782          | 2              |              |       |            |       |         |              |

| Chiclets     | 24.52499 |
|--------------|----------|
| Super Bubble | 27.30386 |
| Jawbusters   | 28.12744 |

[Q13] What are the five least liked candy types in this set?

The 5 least liked candy types in the dataset are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, Jawbusters

[Q14] What are the top 5 all time favorite candy types out of this set?

```
tail(candyphile[order(candyphile$winpercent),], n=5)
```

|                           |            | c · ·              |        | ,    |            | ,     |         |
|---------------------------|------------|--------------------|--------|------|------------|-------|---------|
|                           | chocolate  | iruity             | caram  | ет ] | peanutyaln | nonay | nougat  |
| Snickers                  | 1          | 0                  |        | 1    |            | 1     | 1       |
| Kit Kat                   | 1          | 0                  |        | 0    |            | 0     | 0       |
| Twix                      | 1          | 0                  |        | 1    |            | 0     | 0       |
| Reese's Miniatures        | 1          | 0                  |        | 0    |            | 1     | 0       |
| Reese's Peanut Butter cup | 1          | 0                  |        | 0    |            | 1     | 0       |
|                           | crispedrio | cewafer            | hard   | bar  | pluribus   | sugai | percent |
| Snickers                  |            | 0                  | 0      | 1    | 0          |       | 0.546   |
| Kit Kat                   |            | 1                  | 0      | 1    | 0          |       | 0.313   |
| Twix                      |            | 1                  | 0      | 1    | 0          |       | 0.546   |
| Reese's Miniatures        |            | 0                  | 0      | 0    | 0          |       | 0.034   |
| Reese's Peanut Butter cup |            | 0                  | 0      | 0    | 0          |       | 0.720   |
|                           | priceperce | ent winp           | percen | t    |            |       |         |
| Snickers                  | 0.6        | 351 76             | 6.6737 | 8    |            |       |         |
| Kit Kat                   | 0.8        | 511 76             | 3.7686 | 0    |            |       |         |
| Twix                      | 0.9        | 906 83             | 1.6429 | 1    |            |       |         |
| Reese's Miniatures        | 0.2        | 279 83             | 1.8662 | 6    |            |       |         |
| Reese's Peanut Butter cup | 0.6        | 351 8 <sup>4</sup> | 1.1802 | 9    |            |       |         |

The top 5 candies in the dataset are Snickers, Kit Kat, Twix, Reese's Miniatures, and Reese's Peanut Butter Cup

[Q15] Make a first barplot of candy ranking based on winpercent values.

```
mycols <- rep("gray", nrow(candyphile))
#mycols[2:5] <- "red"

mycols[as.logical(candyphile$fruity) == T] <- "red"

mycols[as.logical(candyphile$chocolate) == T] <- "chocolate"

mycols[as.logical(candyphile$caramel) == T] <- "yellow"</pre>
```

```
mycols[as.logical(candyphile$peanutyalmondy) == T] <- "blue"
mycols[as.logical(candyphile$nougat) == T] <- "green"
mycols[as.logical(candyphile$crispedricewafer) == T] <- "black"
mycols</pre>
```

```
[1] "black"
                  "green"
                               "gray"
                                           "gray"
                                                        "red"
                                                                     "blue"
 [7] "green"
                  "blue"
                               "gray"
                                           "yellow"
                                                                     "red"
                                                        "green"
[13] "red"
                  "red"
                              "red"
                                           "red"
                                                        "red"
                                                                     "red"
[19] "red"
                  "gray"
                               "red"
                                           "red"
                                                        "chocolate" "black"
                                                                     "red"
[25] "chocolate" "chocolate" "red"
                                           "chocolate" "black"
[31] "red"
                  "red"
                               "blue"
                                           "chocolate" "red"
                                                                     "yellow"
[37] "green"
                  "green"
                              "yellow"
                                           "chocolate" "blue"
                                                                     "red"
[43] "blue"
                              "red"
                                           "red"
                                                                     "blue"
                  "black"
                                                        "green"
                  "red"
[49] "gray"
                              "red"
                                           "blue"
                                                        "blue"
                                                                     "blue"
[55] "blue"
                  "red"
                                                        "red"
                                                                     "chocolate"
                              "yellow"
                                           "gray"
[61] "red"
                  "red"
                               "chocolate" "red"
                                                        "green"
                                                                     "black"
                              "red"
                                                        "yellow"
                                                                     "yellow"
[67] "red"
                  "red"
                                           "red"
[73] "red"
                  "red"
                               "chocolate" "chocolate" "chocolate"
                                                                     "chocolate"
[79] "red"
                  "black"
                              "red"
                                           "red"
                                                        "red"
                                                                     "yellow"
[85] "black"
```

```
library(ggplot2)
ggplot(candyphile) +
  aes(winpercent, rownames(candyphile)) +
  geom_col(fill=mycols)
```



[Q16] This is quite ugly, use the reorder() function to get the bars sorted by win-percent

```
library(ggplot2)
ggplot(candyphile) +
  aes(winpercent, reorder(rownames(candyphile), winpercent)) +
  geom_col(fill=mycols)
```



[Q17] What is the worst ranked chocolate candy?

Sixlets is the worst ranked chocolate candy

[Q18] What is the best ranked fruity candy?

Starbusts is the best ranked fruity candy

### Taking a look at pricepercent

Looking at value Plotting pricepercent vs winpercent

```
library(ggrepel)

ggplot(candyphile) +
  aes(winpercent, pricepercent, label=rownames(candyphile)) +
  geom_point(col=mycols) +
  geom_text_repel(col=mycols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps



[Q19] Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's Miniatures give you the most bang for your buck

[Q20] What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

tail(candyphile[order(candyphile\$pricepercent),], n=5)

|                         |      | ${\tt chocolate}$ | fruity  | caran | nel j | ${\tt peanutyalr}$ | nondy | nougat  |
|-------------------------|------|-------------------|---------|-------|-------|--------------------|-------|---------|
| Hershey's Special       | Dark | 1                 | 0       |       | 0     |                    | 0     | 0       |
| Mr Good Bar             |      | 1                 | 0       |       | 0     |                    | 1     | 0       |
| Ring pop                |      | 0                 | 1       |       | 0     |                    | 0     | 0       |
| Nik L Nip               |      | 0                 | 1       |       | 0     |                    | 0     | 0       |
| Nestle Smarties         |      | 1                 | 0       |       | 0     |                    | 0     | 0       |
|                         |      | crispedrio        | cewafer | hard  | bar   | pluribus           | sugai | percent |
| Hershey's Special       | Dark |                   | 0       | 0     | 1     | 0                  |       | 0.430   |
| Mr Good Bar             |      |                   | 0       | 0     | 1     | 0                  |       | 0.313   |
| Ring pop                |      |                   | 0       | 1     | 0     | 0                  |       | 0.732   |
| Nik L Nip               |      |                   | 0       | 0     | 0     | 1                  |       | 0.197   |
| Nestle Smarties         |      |                   | 0       | 0     | 0     | 1                  |       | 0.267   |
| pricepercent winpercent |      |                   |         |       |       |                    |       |         |

| Hershey's Special Dark | 0.918 | 59.23612 |
|------------------------|-------|----------|
| Mr Good Bar            | 0.918 | 54.52645 |
| Ring pop               | 0.965 | 35.29076 |
| Nik L Nip              | 0.976 | 22.44534 |
| Nestle Smarties        | 0.976 | 37.88719 |

The top 5 most expensive candy types in the dataset are Hershey's Special Dark, Mr Good Bar, Ring pop, Nik L nip, and Nestle Smarties.

## **Exploring the correlation structure**

```
{\bf Installing\ corrplot}
```

```
#install.packages("corrplot")
Using corrplot
```

```
library(corrplot)
```

#### corrplot 0.92 loaded

```
cij <- cor(candyphile)
corrplot(cij)</pre>
```



[Q22] Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Fruity and chocolate are negatively correlated

[Q23] Similarly, what two variables are most positively correlated?

Winpercent and chocolate are the most highly correlated

## **PCA Analysis**

```
pca <- prcomp(candyphile, scale = TRUE)
summary(pca)</pre>
```

#### Importance of components:

```
PC1
                                  PC2
                                         PC3
                                                 PC4
                                                        PC5
                                                                 PC6
                                                                         PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                    PC9
                                           PC10
                                                   PC11
                                                           PC12
                       0.74530 0.67824 0.62349 0.43974 0.39760
Standard deviation
```

Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

#### Plotting it

```
plot(pca$x[,1:2])
```



#### Giving it some color

```
plot(pca$x[,1:2], col=mycols, pch=16)
```



### Making new data set of PCA



#### Making labels

library(ggrepel)

- attr(\*, "class")= chr [1:2] "theme" "gg"

- attr(\*, "complete")= logi FALSE
- attr(\*, "validate")= logi TRUE

Using plotly

```
#install.packages("plotly")
library(plotly)

Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
    last_plot
The following object is masked from 'package:stats':
    filter
The following object is masked from 'package:graphics':
    layout

#ggplotly(p)
Correlation check

par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```



[Q24] What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity and pluribus are the most strongly correlated in the positive direction. These make sense to me.