

EMBEDDED SYSTEM COURSE

LECTURE 1: GETTING STARTED

Learning Goals

- Understanding about the embedded system and its products in real world
- Understanding about the microcontroller: a microprocessor and common architectures nowadays.

- 1. Embedded system Introduction
- 2. Microcontroller & Microprocessor
- 3. Processor Architecture
- 4. Instruction Set Architecture
- 5. Summary

- 1. Embedded system Introduction
- 2. Microcontroller & Microprocessor
- 3. Processor Architecture
- 4. Instruction Set Architecture
- 5. Summary

Definition

Definition

 An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints. It is embedded as part of a complete device often including hardware and mechanical parts.

(wikipedia)

Example:

Embedded system used in Car Door

Application Area

General Computing
 Video games, set-top boxes, wearable computer

- Control System
 Vehicle engine, nuclear power, fight control
- Signal Processing
 Radar, Sonar, video compression.
- Communication & Network
 Telephone system, router

Features:

- Embedded system is designed to perform some specific tasks.
- The program written for embedded system is called "firm-ware", and usually stored in persistence memory (rom/flash)
- The firm-ware can run with limited hardware resourced.

- 1. Embedded system Introduction
- 2. Microcontroller & Microprocessor
- 3. Processor Architecture
- 4. Instruction Set Architecture
- 5. Summary

Microprocessors and Microcontrollers

 The microprocessor is a processor on one silicon chip.

The microcontrollers are used in embedded computing.

The microcontroller is a microprocessor with added circuitry.

Microcontroller overview

Definition

MCU is integrated electronic computing device that includes three major components on a single chip:

- Microprocessor
- Memory
- I/O ports

Microprocessor overview

Definition

The microprocessor is a multipurpose, programmable devic e that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.

(Wiki)

Arithmetic / Logic Unit (ALU)	Register Arrays
Control Unit	

- 1. Embedded system Introduction
- 2. Microcontroller & Microprocessor
- 3. Processor Architecture
- 4. Instruction Set Architecture
- 5. Summary

Microprocessor architecture

 Communicates with Memory and I/O using the System Bus:

Address bus

- Unidirectional
- Memory and I/O Addresses

Data bus

- Bidirectional
- Transfers Binary Data and Instructions

Control lines

Read and Write timing signals

Microprocessor architecture

Von Neumann

Harvard

- 1. Embedded system Introduction
- 2. Microcontroller & Microprocessor
- 3. Processor Architecture

4. Instruction Set Architecture

5. Summary

Instruction Set Architecture

How to talk to computers

Instruction Set Architecture

Definition

ISA is the part of the computer architecture related to programming, including the native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception handling, and external I/O.

(wiki)

How to design ISA

1. Operations

- how many
- which ones

2. Operands

- how many
- location
- types
- how to specify

3. Instruction format

- **Size**
- how many formats

(add r1, r2, r5)

CISC & RISC

CISC

- Fewer instructions to execute a given task than RISC
- Programs for CISC take less storage space than programs for RISC
- Arithmetic or other instructions may read their operand from memory and could write the result in memory

RISC

- Simpler instructions, faster execution speeds per instruction
- Cheaper to implement
- Load/Store architecture only load and store are used to access the external memory

Summary

- An embedded system is a product that has one or more computers embedded within it.
- The embedded computer is usually a microcontroller: a microprocessor adapted for embedded control applications.
- There are two kinds of microprocessor architectures: Harvard
 & Von Neumann
- The ISA serves as the boundary between software and hardware

Question & Answer

Thanks for attention!

Copyright

- This course including Lecture Presentations,
 Quiz, Mock Project, Syllabus, Assignments,
 Answers are copyright by FPT Software Corporation.
- This course also uses some information from external sources and non-confidential training document from Freescale, those materials comply with the original source licenses.