Esperienza: misura del rapporto e/m

Laboratorio 3 - a.a. 2021/2022

L'esperienza

- Scopo: misura del rapporto tra il valore assoluto della carica -e
 e la massa m dell'elettrone.
- Metodo:
 - Si accelerano elettroni mediante una d.d.p. V_{acc} :

$$\frac{1}{2}mv_e^2 = eV_{acc}$$

- Due bobine di Helmoltz creano un campo \vec{B} uniforme; sugli elettroni agisce $\vec{F}_L = -e \ \vec{v}_e \times \vec{B}$
- $F_{c.peta} = F_L \Rightarrow \frac{mv_e^2}{r} = ev_eB$
- Si misura il raggio r della traiettoria circolare:

$$e/m = v_e/(Br)$$
 \rightarrow $e/m = 2V_{acc}/(Br)^2$

Strumentazione

- Sonda ad effetto Hall con circuito di ampl.
- Multimetro digitale
- Bussola
- Righello
- Bobine di Helmoltz
- Tubo catodico
- Alimentatori
- Macchina fotografica digitale con cavalletto

Le bobine di Helmoltz

E' noto (Fisica II) che mettendo 2 spire di raggio *a* poste a distanza *a* si ottiene un campo "uniforme"

Andamento Teorico:

Per le nostre bobine (130 spire, a=15.8 cm) $B_{7}^{MAX}(T) = 7.40 \ 10^{-4} \ I_{coil}(A)$

Il tubo catodico

Posizionare lo switch su e/m: le placche di deflessione vengono messe allo stesso potenziale

userete non ha il focus

Bobine di Helmoltz con il bulbo

Fasi dell'esperienza

- 1. Orientazione delle bobine rispetto al campo mag. terrestre (l'apparecchiatura è appoggiata su una base rotante)
- 2. Mappatura del campo magnetico B_z generato dalle bobine mediante sonda ad effetto Hall
- 3. Posizionamento della macchina fotografica
- 4. Acquisizione della foto della traiettoria degli e^- al variare di $V_{\rm acc}$ (150 \rightarrow 300 V) e $I_{\rm coil}$
- 5. Misura del raggio della traiettoria (fit cerchio o intercetta normali a 2 corde) dalla digitizzazione delle immagini
- 6. Correzione per effetto di geom. proiettiva
- 7. Analisi dati: ricavare <e/m> con l'errore stat.
- Valutazione effetti sistematici

L'effetto Hall

Supponiamo di avere un semiconduttore leggermente drogato n. I portatori (maggioritari) vengono deflessi dalla forza di Lorentz $\mathbf{F}_1 = \mathbf{q} \mathbf{v} \times \mathbf{B}$ in dir -y.

Nello stato stazionario si stabilisce un campo elettrico // y, $E_H = V_H/W$ che annulla la forza magnetica, in modo da avere v_{el} // x:

-e
$$V_H/W = -e v_{el} B_z$$

 $J=n (-e) v_{el} = I/(Wt)$
 $V_H = -I B_z / (e n t) < 0$

N.B.: drogaggio tipico ~10¹⁵ cm⁻³

Nel caso di drogaggio p:

$$e V_H/W = e v_h B_z$$

 $J=p e v_h = I/(Wt)$
 $V_H = I B_z / (e p t) > 0$

Il sensore a effetto Hall

Sensibile alla componente di **B** ortogonale al piano del sensore.

FEATURES

- Single current sinking or current sourcing linear output
- Improved temperature stability
- Three pin in-line printed circuit board terminals
- Standard .100" mounting centers
- Laser trimmed thin film and thick film resistors minimize sensitivity variations and compensate for temperature variations
- Flux range of ±100 to ±2500 gauss

L'uscita della sonda è amplificata con guadagno $G=11.1\pm0.1$ e letta da un voltmetro

0 +250 +500 AUSS	SS94A1/SS94A2
Catalog Listing	SS94A1
Main Feature	Gen. purpose
Supply Voltage (VDC)*	6.6 to 12.6
Supply Current (mA)**	13 typ. 30 max.
Output Current (mA) Sinking or Sourcing	1 max.
Response Time (µ sec.)	3 typ.
Magnetic Characteristics*** Span*	.625 V _s
Range (gauss)*	-500 to +500
Sensitivity (mV/gauss @ 25°C)	5.0±.1
Linearity† (% span)	−0.8 typ. −1.5 max.
Vout (0 gauss @ 25°C)***	4.00±.04V
Temperature Error (all %s reference 25°C value)* Null (%/°C)	±.02 ₉
Gain (%/°C)	±.02

La sonda

Apparato

Alimentatore

Macchina Fotografica

Acquisizione tipica

Digitizzazione delle immagini

esempio con plotdigitizer

Estrazione di r

Metodo delle 2 corde: trovato il centro C come intersezione delle rette normali, $R^2=1/3*\Sigma_{i=1,2,3}[(x_i-x_c)^2+(y_i-y_c)^2]$

Effetto geometria proiettiva

fotografica

Correzioni e effetti sistematici

L'effetto discusso nella pagina precedente si può quantificare confrontando le scale graduate poste davanti e dietro il bulbo.

Alcuni effetti sistematici da valutare

- Larghezza della traiettoria degli elettroni
- Incertezza sulla misura di Vacc e Icoil (Vacc: 1V; Icoil: 1% + 2 digits)
- Effetto distorcente del vetro del bulbo
- Effetto del campo magnetico terrestre
- Non uniformità del campo generato dalle bobine di Helmoltz (pag. 4)
- Eventuali altri effetti che ritenete possano essere rilevanti

Alcuni contributi risulteranno importanti, altri trascurabili

Vi verrà data una scheda dell'esperienza con le informazioni utili a svolgere l'analisi dei dati acquisiti e a impostare la relazione