Estudo de caso: Grupo D 3

Gilmar Pereira, Maressa Tavares e Victor Ruela 30 de Setembro, 2019

1 Summary

O presente trabalho realizou o delineamento e executou os testes estatísticos para avaliar as diferenças no IMC médio entre duas populações de estudantes de pós-graduação em Engenharia elétrica, nos semetres de 2016-2 e 2017-2. As sub-populações masculina e feminina foram analisadas separadamente. Após os testes verificou-se que . . .

2 Planejamento do experimento

Nesta seção é apresentado o planejamento do experimento, descrevendo os objetivos, determinando as hipóteses a serem testadas e realizando uma análise exploratória dos dados.

2.1 Objetivo do experimento

O objetivo deste experimento é estudar as diferenças entre o IMC médio entre duas turmas de estudantes de pós-graduação em Engenharia elétrica da UFMG, para os dados coletados nos semestres de 2016-2 e 2017-2. A análise será dividada entre as sub-populações de homens e mulheres, uma vez que é experado diferenças no ICM e também no tamanho amostral.

Para se comparar os valores de IMC, formulou-se as seguintes hipóteses a serem testadas:

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases}$$

onde μ_1 e μ_2 são as médias populacionais das turmas de 2016-2 e 2017-2, respectivamente. A hipótese nula foi formulada sobre a igualdade entre as médias dos IMC's dos homens e mulheres, separadamente, e a hipótese alternativa, de forma complementar, como a diferença entres as médias.

Os testes serão realizados para um tamanho de efeito $\delta^* = 5$, visto que essa é a diferença de valor entre os níveis de classificação IMC encontrados na literatura [1].

2.2 Análise Exploratória dos Dados

Antes de iniciar a análise exploratória dos dados, foi preciso realizar um pré-processamento dos dados, visto que cada semestre possui formatos ligeiramente diferentes, como por exemplo, para os dados de 2016-2, foi necessário remover as linhas referentes aos alunos de graduação. Ambos os arquivos foram padronizados para possuirem os mesmos nomes de colunas e foi adicionado uma nova coluna com o cálculo do IMC. A partir dos dados filtrados e tratados forma criados novos datasets contendo somente os dados referentes a cada sexo, para auxiliar nas análises.

Realizando uma primeira análise, calculou-se os seguinte dados estatísticos separados por semestre.

summary(data.2016.2)

```
## Gender imc
## F: 7 Min. :17.58
## M:21 1st Qu.:21.27
## Median :23.52
```

```
## Mean :23.97
## 3rd Qu.:25.29
## Max. :37.55
```

summary(data.2017.2)

```
##
    Gender
                 imc
##
    F: 4
            Min.
                    :17.36
##
    M:21
            1st Qu.:20.83
            Median :23.26
##
                    :23.35
##
            Mean
##
            3rd Qu.:25.18
##
            Max.
                    :30.42
```

Analisando os dados é possível observar que a quantidade de amostras do sexo feminimo é inferior a do masculino, o que pode afetar a potência dos testes a serem executados.

Para melhor visualização foi gerado um gráfico boxplot que pode ser visto na figura abaixo.

Figure 1: Boxplot dos dados

Analisando os boxplot's é possível observar que existem alguns outliers nos valores de IMC, para a sub-população dos homens no semetre de 2016-2 e para a sub-população das mulheres no semestre de 2017-2. Devido a um numero pequeno de amostras para a população das mulheres, no semetre de 2017-2, este valore de outlier pode vir a alterar os padrões, influenciando nos resultados dos testes. Desta maneira, será desenvolvido nas seções seguintes as análises preliminares das amostras, para constatação dos níveis de significância e potência para os respectivos testes a serem realizados com as populações.

2.2.1 Estimativa da significância e potência

Para os testes de hipóteses, foram especificados um nível de significância $\alpha=0.05$ e uma potência de $\pi=1-\beta=0.8$, suficientes para uma boa análise das amostras. Como o número de amostras é conhecido e inalterável para cada turma e gênero, avaliou-se os níveis de significância e potência para cada população, para verificar se serão atendidos os respectivos parâmetros.

Para a análise da significância, utilizou-se o power t teste com o número de amostras n e potência $\pi = 0.8$ especificados. Os resultados dos testes podem ser vistos abaixo.

```
(sig.est.males <- pwr.t.test(d = d.cohen.males,</pre>
           n = n.males,
           sig.level = NULL,
           type = "two.sample",
           alternative = "two.sided",
           power = pi))
##
##
        Two-sample t test power calculation
##
##
                 n = 21
##
                  d = 1.280529
##
         sig.level = 0.002185197
##
             power = 0.8
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
(sig.est.females <- pwr.t.test(d = d.cohen.females,</pre>
           n = n.females,
           sig.level = NULL,
           type = "two.sample",
           alternative = "two.sided",
           power = pi))
##
##
        Two-sample t test power calculation
##
##
                  n = 4
                  d = 2.437794
##
##
         sig.level = 0.04525425
##
             power = 0.8
       alternative = two.sided
##
##
## NOTE: n is number in *each* group
```

É possível verificar, analisando os resultados, que existem amostras suficientes para a realização dos testes de cada sub-população, que atendam o nível de siginificancia $\alpha=0,05$ pré estabelicido. É importante notar que, dado que existem mais amostras de estudantes do sexo masculino, a significância mínima estimada foi significativamente inferior a da população feminina.

Para testar a potência de cada teste considerou-se o número de amostras n e uma significância $\alpha = 0.05$, a potência estimada pode ser observada a seguir.

```
alternative = "two.sided",
           power = NULL))
##
##
        Two-sample t test power calculation
##
##
                 d = 2.437794
##
##
         sig.level = 0.05
             power = 0.8177638
##
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
(pwr.est.males <- pwr.t.test(d = d.cohen.males,
           n = n.males,
           sig.level = 0.05,
           type = "two.sample",
           alternative = "two.sided",
           power = NULL))
##
##
        Two-sample t test power calculation
##
##
                 n = 21
                 d = 1.280529
##
##
         sig.level = 0.05
             power = 0.9815966
##
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
```

Conforme esperado, a potência do teste referente a população masculina é 17% maior que a feminina, indicando uma maior probabilidades de erros do tipo II. Assim como no teste da significância as duas amostras possuem potencia superior a estimada.

3 Validação das premissas

Para realizar as inferências estatísticas sobre o IMC das duas populações é necessário validar as premissas antes de executar os respectivos testes. Neste caso, como as variâncias das duas populações é desconhecida, utiliza-se a distribuição t para o teste de hipóteses e para os intervalos de confiança [2].

A seguir são apresentados os testes realizados para validar as premissas exigidas pelo teste t: analise da normalidade dos dados, homocedasticidade e independência. Para facilitar as análises optou-se por separar o grupo na população feminina e masculina.

3.1 Subpopulação Feminina

1 - Normalidade:

Para avaliar a normalidade dos dados das duas subpopulações, utilizou-se o gráfico quantil-quantil e o teste de Shapiro Wilk com $\alpha=0.05$. Os resultados são apresentados a seguir.

```
## [1] 6 1
```

Q-Q plot Feminino - 2016.2

Q-Q plot Feminino - 2017.2

Figure 2: Gráfico quantil-quantil das populações - Feminino

```
## [1] 2 1
```

```
shapiro.test(data.2016.2.Females$imc)

##
## Shapiro-Wilk normality test
##
## data: data.2016.2.Females$imc
## W = 0.91974, p-value = 0.4674
shapiro.test(data.2017.2.Females$imc)

##
## Shapiro-Wilk normality test
##
## data: data.2017.2.Females$imc
##
## data: data.2017.2.Females$imc
## ## w = 0.7475, p-value = 0.03659
```

Pela análise do teste de Shapiro-Wilk e do gráfico concluí-se que não há evidências para rejeitar a normalidade dos dados de 2016-2, pois o p-valor do teste de Shapiro Wilk foi maior que 0.05. Por outro lado, os dados de 2017-2 apresentam um outlier e o p-valor foi inferior a 0,05, por isso, há evidências para rejeitar a normalidade dos dados.

Diante dos resultados, foi necessário fazer uma transformação logarítma nos dados de 2017-2 para normalizar os dados, a fim de possibilitar a realização dos testes estatísticos.

```
qqnorm(log(data.2017.2.Females$imc), pch = 16, las = 1)
qqline(log(data.2017.2.Females$imc))
```

Normal Q-Q Plot

Figure 3: Gráfico quantil-quantil para tranformação logarítimica dos dados

shapiro.test(log(data.2016.2.Females\$imc))

```
##
## Shapiro-Wilk normality test
##
## data: log(data.2016.2.Females$imc)
## W = 0.93097, p-value = 0.5592
```

Embora o gráfico dos quantis não deixe claro a normalidade, o teste de Shapiro mostra que, após o ajuste logarítmico dos dados, não há evidências para rejeitar a normalidade.

2- Igualdade de Variâncias:

A segunda premissa a ser avaliada é a igualdade de variâncias das duas populações, homocedasticidade. Para tanto, utilizou-se o teste F com a função var.test e $\alpha=0.05$, que tem como hipótese nula a igualdade da variância das duas amostras.

```
var.test(data.2016.2.Females$imc,data.2017.2.Females$imc)
```

```
##
## F test to compare two variances
##
## data: data.2016.2.Females$imc and data.2017.2.Females$imc
## F = 2.2688, num df = 6, denom df = 3, p-value = 0.5353
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1539783 14.9715344
## sample estimates:
## ratio of variances
```

2.268827

Pelo teste F conclui-se que não há evidências para rejeitar a hipótese nula de igualdade das variâncias das duas populações, portanto, as amostras são consideradas homocedásticas.

3 - Independência

Considerando que as populações referem-se a dois grupos distintos da pós-graduação, sabe-se a priori, que as amostras são independentes. Porém, para concluir com precisão em relação à independência realizou-se o teste Qui-quadrado com $\alpha=0.05$.

```
data.chi.Female <- c(data.2016.2.Females$imc, data.2017.2.Females$imc)
chisq.test(data.chi.Female)

##
## Chi-squared test for given probabilities
##
## data: data.chi.Female</pre>
```

Como era esperado, o teste Qui-quadrado reafirma a independência entre as duas amostras, como o p-valor = 0,9813 é muito alto.

Após a análise das premissas, percebe-se que provavelmente o tamanho pequeno das amostras de IMC feminino pode ter influenciado nas conclusões em relação às premissas. Portanto, esse fator pode influenciar também nos testes de hipóteses que serão apresentados nas próximas seções.

3.2 Subpopulação Masculina

X-squared = 3.0047, df = 10, p-value = 0.9813

Assim como na validação das premissas da subpopulação feminina, foram realizados os testes para a subpopulação masculina, como descrito a seguir.

1 - Normalidade:

Para validar a normalidade dos dados utilizou-se o gráfico quantil-quantil e o teste de Shapiro Wilk com $\alpha=0.05$.

[1] 4 12

Q-Q plot Masculino - 2016.2

Q-Q plot Masculino - 2017.2

Figure 4: Gráfico quantil-quantil das populações - Feminino

```
## [1] 12 4
```

```
shapiro.test(data.2016.2.Males$imc)

##
## Shapiro-Wilk normality test
##
## data: data.2016.2.Males$imc
## W = 0.92833, p-value = 0.1275
shapiro.test(data.2017.2.Males$imc)

##
## Shapiro-Wilk normality test
##
## data: data.2017.2.Males$imc
##
## data: data.2017.2.Males$imc
##
## data: data.2017.2.Males$imc
## W = 0.96494, p-value = 0.6206
```

Pela análise do teste de Shapiro-Wilk e dos gráficos concluímos que não há evidências para rejeitar a hipótese nula para as duas amostras, pois em ambas o p-valor do teste foi superior a 0.05. Portanto, para a subpopulação masculina dos dois semestres os dados estão normalmente distribuídos.

2- Igualdade de Variâncias:

Para validar a igualdade de variâncias das duas amostras utilizou-se o teste F com $\alpha = 0.05$. A hipótese nula considera a igualdade da variância das duas amostras.

```
var.test(data.2016.2.Males$imc,data.2017.2.Males$imc)
##
## F test to compare two variances
```

```
##
## data: data.2016.2.Males$imc and data.2017.2.Males$imc
## F = 1.5839, num df = 20, denom df = 20, p-value = 0.3119
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.6426853 3.9034665
## sample estimates:
## ratio of variances
## 1.583888
```

Pelo teste F conclui-se que as populações são homocedásticas, pois o p-valor foi superior a 0.05, logo, não há evidências para rejeitar a hipótese nula.

3 - Independência

Assim como na subpopulação feminina, sabe-se a priori, que as amostras são independentes. Para concluir com precisão em relação à independência realizou-se o teste Qui-quadrado com $\alpha = 0.05$.

```
data.chi.male <- c(data.2016.2.Males$imc,data.2017.2.Males$imc)
chisq.test(data.chi.male)

##
## Chi-squared test for given probabilities
##
## data: data.chi.male
## X-squared = 24.96, df = 41, p-value = 0.9772</pre>
```

Como era esperado, o teste Qui-quadrado reafirma a independência entre as duas amostras, como o p-valor = 0.9772.

Ao contrário do que aconteceu com as amostras da subpopulação feminina, nesse caso o tamanho das amostras foram maiores, e por isso, não houve nenhum problema em relação às premissas do teste.

4 Resultados

Nesta seção são apresentados os resultados do teste para as hipóteses estabelecidas anteriormente com $\alpha=0.05$. Os resultados estão subdivididos entre a população feminina e masculina devido às diferenças de IMC que existem entre eles.

4.1 Teste de Hipóteses Subpopulação Feminina

Para o teste de hipotese para subpopulação feminina utilizou-se o o teste t, analizando a igualdade das médias amostrais.

```
##
## Two Sample t-test
##
## data: data.2016.2.Females and data.2017.2.Females
## t = 1.9308, df = 9, p-value = 0.08556
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4527037 5.7283762
## sample estimates:
```

```
## mean of x mean of y ## 21.08443 18.44660
```

Analisando os resultados, verifica-se que o p-valor retornado pelo teste é superior ao nível de significancia, desta maneira não se possui evidencias suficientes para se rejeitar a hipótese nula, mesmo verificando que a diferença entre as médias, d = 2.6378362, esta dentro do intervalo de confiança calculado.

Devido o baixo número de amostras da subpopulação, realizou-se um teste de potência, utilizando a função pwr.t.test, para verificar a probabilidade de erro de tipo II. O teste esta especificado a seguir.

```
pwr.t2n.test(n1 = 7, n2= 4, d = 0.3, sig.level = 0.05, power = NULL,
    alternative = "two.sided")
##
```

```
## t test power calculation
##

## n1 = 7
## n2 = 4
## d = 0.3
## sig.level = 0.05
## power = 0.07141217
## alternative = two.sided
```

O teste resultou em uma potencia extremamente baixa devido ao baixo número de amostras entre os dois semestres 2015-2 e 2017-2. Desta maneira a probabilidade de erro de tipo II é extremamente alta.

Para melhora a análise dos dados e aumentando a sua potencias realizou-se uma remostragem utilizando-se a técnica de bootstrap, conforme mostrado a seguir.

```
means.diff <- function(x, i){
   sample.2016.2 <- sample((x %>% filter(Class == '2016-2'))$imc,replace=TRUE)
   sample.2017.2 <- sample((x %>% filter(Class == '2017-2'))$imc,replace=TRUE)

   return((mean(sample.2016.2) - mean(sample.2017.2)))
}

set.seed(5021)
data.diff.means.boot <- boot(data.all.Females, statistic = means.diff, R=1000)
hist(data.diff.means.boot$t)</pre>
```

Histogram of data.diff.means.boot\$t

Analisando o histograma gerado, pode-se observar a normalização dos dados para subpopulação, justificado pelo teorema do limite central para médias amostrais. Analisando o intervalo de confiança resultante verifica-se que a diferença das médias igual a 2.6378362, resutante do teste t, esta dentro do intervalo especificado, não rejeitando, desta maneira, a hipotese nula.

4.2 Teste de Hipóteses Subpopulação Masculina

Assim como para a subpopulação feminina, utilizou-se o teste t para análise dos dados. O teste esta especificado abaixo.

```
var.equal = TRUE))
```

```
##
## Two Sample t-test
##
## data: data.2016.2.Males and data.2017.2.Males
## t = 0.53979, df = 40, p-value = 0.5923
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.784943 3.085836
## sample estimates:
## mean of x mean of y
## 24.93595 24.28551
```

O teste t para as subpopulações masculinas resultou em um p-valor superior ao nível de significancia de 0,05, como especificado. Deste forma não se possui evidências suficientes para rejeitar a hipotese nula. Verifica-se também o a valor das diferenças entre as médias esta dentro do valor especificado.

Realizou-se o teste de potência para as subpopulações masculinas, demostrado a seguir.

```
##
##
        t test power calculation
##
##
                 n1 = 21
##
                 n2 = 21
                  d = 0.8
##
##
         sig.level = 0.05
##
              power = 0.7155555
##
       alternative = two.sided
```

O teste resultado em uma potência superior de 0.7155555, que considerado uma potencia alta para os testes realizados.

5 Discussão e Conclusões

Neste trabalho foi feito um estudo estatístico ...

6 Divisão das Atividades

- Victor Verificador e Monitor
- Maressa Relatora
- Gilmar Coordenador

Referências

- [1] Tabela de imc. http://www.calculoimc.com.br/tabela-de-imc/.
- [2] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, (with cd). John Wiley & Sons, 2007.