WHAT IS CLAIMED IS:

1. A compound having the formula:

wherein R² is lower alkyl, bridged alkyl, aryl, heteroaryl, aralkyl, cycloalkyl, a 5- or 6-membered saturated heterocycle, C_{1-4} alkylenearyl, C_{1-4} alkyleneOaryl, C_{1-4} alkyleneheteroaryl, C_{1-4} alkylene-Het, C_{2-4} alkylenearylOaryl, C_{1-4} alkylene bridged alkyl, C_{1-3} alkylenecycloalkyl, substituted or unsubstituted propargyl, substituted or unsubstituted allyl, or halocycloalkyl;

 $$\rm R^2$$ is hydrogen, methyl, or halo-substituted methyl;

 $\rm R^3$ is selected from the group consisting of $\rm C(=0)\,OR^7,\,C(=0)\,R^7,\,C(=NH)\,NR^8R^9,\,C(=0)\,NR^8R^9,\,lower$ alkyl, bridged alkyl, cycloalkyl, haloalkyl, halocycloalkyl, $\rm C_{1-3}$ alkylenecycloalkyl, a 5- or 6-membered saturated heterocycle, aryl, heteroaryl, $\rm C_{1-3}$ alkyleneC(=0)R^7,\,C(=0)C(=0)NR^8R^9,\,C_{1-4}alkyleneOR^7, $\rm C_{1-3}$ alkylenearyl, SO_heteroaryl, Het, aralkyl, alkaryl, heteroaralkyl, heteroalkaryl, $\rm C_{1-3}$ alkyleneC-(=0)OR^7,\,C(=0)C_{1-3}alkyleneC(=0)OR^7, $\rm C_{1-3}$ alkyleneC-aryl, C(=0)C(=0)OR^7,\,C(=0)C_{1-3}alkyleneC(=0)OR^7, C(=0)OR^7, C(=0)-

 C_{1-3} alkyleneNH(C=O)OR⁷, C(=O)C alkyleneNH₂, and NHC(=O)OR⁷;

 R^4 is hydrogen, lower alkyl, haloalkyl, cycloalkyl, or aryl;

 R^{5} is hydrogen, lower alkyl, alkynyl, halo-alkyl, cycloalkyl, or aryl;

 $$\rm R^6$$ and $\rm R^{12},$ independently, are hydrogen, lower alkyl, <code>aralkyl</code>, <code>SO_{\rm I}R^-</code>, or $\rm C(=0)\,R^7$;

 R^7 is selected from the group consisting of branched or unbranched lower alkyl, heteroaryl, a heterocycle, aralkyl, and aryl, and R^7 can be optionally substituted with one or more of RO^8 , NR^8R^9 , or SR^8 ;

R⁸ and R⁹, same or different, are selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, heteroalkaryl, and aralkyl, or R⁸ and R⁹ can be taken together form a 4-membered to 7-membered ring;

 $$\rm R^{10}$$ is hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, C(=0)alkyl, C(=0)cycloalkyl, C(=0)aryl, C(=0)Oalkyl, C(=0)Ocycloalkyl, C(=0)aryl, CH_2OH, CH_2Oalkyl, CHO, CN, NO_2, or SO_2R^{11};

 $$R^{\text{li}}$$ is alkyl, cycloalkyl, trifluoromethyl, aryl, aralkyl, or $NR^{\text{g}}R^{\text{g}};$

salts and solvates thereof.

2. The compound of claim 1 having the structure:

 $\label{eq:3.7} 3. \quad \text{The compound of claim 1 wherein R^1 is selected from the group consisting of:}$

$$\text{r}_{\text{S}}$$

 $CH_3 - C = CCH_2 -$

H-C≡CCH₂-

$$\mathrm{C}\!\equiv\!\mathrm{CCH}_2\text{-}$$

$$CF_3$$

$$\begin{array}{c|c} \operatorname{CH_3-CH-CH_2-CH-} \\ \mid & \mid \\ \operatorname{CH_3} & \operatorname{CH_3} \end{array}$$

$$\mathrm{CH_3}$$
 - CH - ($\mathrm{CH_2}$) $_2$ - $\mathrm{CH_3}$

Н-

CH₃-

(CH₃) ₃C-

 $(CH_3)_3C(CH_2)_2$

 $\begin{array}{c} \text{(CH}_3)_2\text{C(CH}_2)_2\text{-} \\ \\ \text{OCH}_3 \end{array}$

$$CH_3$$
 CH_2 -

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

and

4. The composition of claim 1 wherein \mathbb{R}^3 is selected from the group consisting of:

CH₃OC-

$$CH_3$$
OC-

 CH_3 OC-

 CH_2 C-

 CH_3 CC-

$$(CH_3)_{2}N(CH_2)_{2} \xrightarrow{CH_3} CH_3$$

$$CH_3 \xrightarrow{C} CH_2 \xrightarrow{C} CH_3 \xrightarrow{C} CH_2 \xrightarrow{C} CH_3 \xrightarrow{C} CH_2 \xrightarrow{C} CH_3 \xrightarrow{C} CH_2 \xrightarrow{C} C$$

00 |||| HOCC

OAc

носн2снС

ÓН

ÓН

) OAc

CH₃SO₂NHCH₂C-

CF₃SO₂NHCH₂C

$$(CH_3)_2NCH_2C - CH_2OCNHCHC - CH_2OCNHCHC - CH_3$$

$$(CH_3)_2NCH_2C - CH_3$$

$$(CH_3)_3CHC - CH_3$$

$$(CH_3)_3CHC$$

$$(CH_3)_2CHCH_2CHC-$$
 and CH_2-

- 5. The compound of claim 1 wherein R⁻ is selected from the group consisting of hydrogen, methyl, trifluoromethyl, cyclopropyl, ethynyl, and phenyl.
- $\hbox{ 6.} \quad \hbox{The compound of claim 1 wherein R is } \\ \hbox{hydrogen or lower alkyl.}$
- 7. The compound of claim 1 wherein R is selected from the group consisting of hydrogen, $C(=0)R^7$, $C(=0)OR^7$, ethyl, benzyl, SO_2CH_3 , and $SO_2C_6H_5$.
- 8. The compound of claim 1 wherein \mathbb{R}^7 is lower alkyl.
- 9. The compound of claim 1 wherein R^{ϵ} and R^{9} , independently, are hydrogen or lower alkyl, or are taken together form a 5-membered or 6-membered ring.
- 10. The compound of claim 1 wherein R^{-2} is selected from the group consisting of hydrogen and lower alkyl.

11. The compound of claim 1 wherein R⁻ is selected from the group consisting of cyclopentyl, cyclopropylmethyl, tetrahydrofuryl, indanyl, norbornyl, phenethyl, and phenylbutyl; R² is selected from the group consisting of methyl and difluoromethyl; R³ is selected from the group consisting of benzyl, CO_2CH_2 , $C(=O)CH_2OH$, $C(=O)CH(CH_3)OH$, $C(=O)C(CH_3)_2OH$, and

C(=0)-C-OH

 R^4 is hydrogen; R^5 is hydrogen or methyl; R^6 is selected from the group consisting of hydrogen, methyl, ethyl, benzoyl, SO_2CH_3 , $SO_2C_6H_5$, benzyl, $C(=O)\,C\,(CH_3)_3$, and acetyl; R^{12} is hydrogen or methyl; R^7 is methyl; and R^{13} is hydrogen.

12. The compound of claim 1 selected from the group consisting of

Methyl (4S,3R)-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methyl-3-{[benzylamino]methyl]}pyrrolidine carboxylate

Methyl (4S,3R)-3-(aminomethyl)-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methylpyrrolidinecarboxylate

Methyl (3S,4S)-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methyl-3-{[methylsulfonyl)amino]methyo}pyrroli-dinecarboxylate

Methyl (4S,3R)-3-[(acetylamino)methyl]-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methylpyrrolidine-carboxylate

Methyl (4S,3R)-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methyl-3-[(phenylcarbonylamino)methyl]pyrroli-dinecarboxylate

Methyl (3S,4S)-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methyl-3-{[phenylsulfonyl)amino]methyl}pyrroli-dinecarboxylate

Bis{[(4S,3R)-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methyl-1-carboxymethylpyrrolidin-3-yl]methyl}amine

1-[(3S,4S)-4-(3-Cyclopentyloxy-4-methoxyphenyl)-3-methyl-1-benzylpyrrolidin-3-yl]ethylamine

```
1-{(3S,4S)-4-(3-Cyclopentyloxy-4-methoxyphenyl)-3-
methyl-1-benzylpyrrolidin-3-yl]ethylamine
```

$$N- \{1-[(3S,4S)-4-(3-Cyclopentyloxy-4-methoxyphenyl)-3-methyl-1-benzylpyrrolidin-3-yl] ethyl \} acetamide \\$$

$$N-\{1-[(3S,4S)-4-(3-Cyclopentyloxy-4-methoxyphenyl)-3-methyl-1-benzylpyrrolidin-3-yl]ethyl\}acetamide$$

3-(S)-(1-Acetylaminoethyl)-4-(S)-(3-cyclopentyloxy-4-methoxyphenyl)-3-methylpyrrolidine-1-carboxylic acid methyl ester

{1-[(3S,4S)-4-(3-Cyclopentyloxy-4-methoxyphenyl)-3-methyl-1-benzylpyrrolidin-3-yl]ethyl}(phenylsulfonyl)amine

{1-[(3S,4S)-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methyl-1-benzylpyrrolidin-3-yl]ethyl}(phenylsufonyl)amine

{1-[(3S,4S)-4-(3-Cyclopentyloxy-4-methoxyphenyl)-3-methyl-1-benzylpyrrolidin-3-yl]ethyl}(methylsulfonyl)amine

 $\label{lem:condition} $\{1-[(3S,4S)-4-(3-Cyclopentyloxy-4-methoxyphenyl)-3-methyl-1-benzylpyrrolidin-3-yl]ethyl\}-$$ $$(methylsulfonyl)amine, and$

Methyl (3S,4S)-4-(3-cyclopentyloxy-4-methoxyphenyl)-3-methyl-3-[(methylamino)ethylpyrrolidine carbox-ylate.

13. The compound of claim 1 selected from the group consisting of

- 14. The compound of claim 1 having an $IC_{\rm SC}$ vs. human recombinant PDE4 of about 1 nM to about 25 ν M.
- \$15.\$ The compound of claim 1 having a PBL/TNF EC_{51} of about 10 nM to about 20 $\ensuremath{\textit{uM}}\xspace$.
- 16. The compound of claim 1 having an IC₅₀ vs. human recombinant PDE4 of about 1 nM to about 25 μ M, and a PBL/TNF α EC₅₀ of about 10 nM to about 25 μ M.
- 17. The compound of claim 1 having an IC_{50} vs. human recombinant PDE4 of about 100 x 10^{-6} M or less.
- 18. The compound of claim 1 having an IC_{50} vs. human recombinant PDE4 of about 50 x $10^{-6}\ M$ or less.
- 19. The compound of claim 1 having a PBL/TNF $EC_{5^{\circ}}$ of about 5 $\ensuremath{\mbox{\sc PBL}}$ or less.
- 20. The compound of claim 1 having a PBL/TNF $EC_{\text{5}^{\wedge}}$ of about 2 μM or less.
- 21. The compound of claim 1 having an IC5. vs. human recombinant PDE4 of about 100 x 10⁻⁶ or less and a PBL/TNF α EC50 of about 5 μ M or less.
- 22. The compound of claim 1 having an IC, vs. human recombinant PDE4 of about 50 x 10 6 or less and a PBL/TNF α EC, of about 2 μM or less.

- 23. A pharmaceutical composition comprising a compound of claim 1, a pharmaceutically acceptable carrier, and, optionally, a second antiinflammatory therapeutic agent.
- 24. The composition of claim 23 wherein the second antiinflammatory therapeutic agent is capable of targeting $TNF\alpha$.
- 25. A method of treating a mammal having a condition where inhibition of a cAMP-specific PDE is of therapeutic benefit, said method comprising administering to said mammal at therapeutically effective amount of a compound of claim 1.
- 26. A method of modulating cAMP levels in a mammal comprising administering to said mammal an effective amount of a compound of claim 1.
- 27. A method of treating a mammal having a condition where inhibition of a cAMP-specific PDE is of a therapeutic benefit comprising administering to said mammal an effective amount of a pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 28. The method of claim 27 wherein the condition is an allergic disease, an autoimmune disease, an inflammatory disease, an arthritic disease, or dermititis.

- 29. The method of claim 27 wherein the condition is rheumatoid arthritis, osteoarthritis, gouty arthritis, or spondylitis.
- 30. The method of claim 27 wherein the condition is thyroid-associated ophthalmopathy, Behcet disease, sepsis, septic shock, endotoxic shock, gram negative sepsis, gram positive sepsis, toxic shock syndrome, allergic conjunctivitis, vernal conjunctivitis, or eosinophilic granuloma.
- 31. The method of claim 27 wherein the condition is asthma, chronic bronchitis, allergic rhinitis, adult respiratory distress syndrome, chronic pulmonary inflammatory disease, chronic obstructive pulmonary disease, silicosis, or pulmonary sarcoidosis.
- 32. The method of claim 27 wherein the condition is reperfusion injury of the myocardium, brain or extremities as a brain or spinal cord injury due to trauma.
- 33. The method of claim 27 wherein the condition is a fibrosis, keloid formation, or scar tissue formation.
- 34. The method of claim 27 wherein the condition is systemic lupus erythematosus, a transplant rejection disorder, a graft vs. host reaction, or an allograft rejection.

- 35. The method of claim 27 wherein the condition is chronic glomerulonephritis, an inflammatory bowel disease, Crohn's disease, or ulcerative colitis.
- 36. The method of claim 27 wherein the condition is proliferative lymphocytic disease or a leukemia.
- 37. The method of claim 27 wherein the condition is an inflammatory dermatosis, atopic dermatitis, psoriasis, or urticaria.
- 38. The method of claim 27 wherein the condition is a cardiomyopathy, congestive heart failure, atherosclerosis, pyrexia, cachexia, cachexia secondary to infection or malignancy, cachexia secondary to acquired immune deficiency syndrome, ARC, cerebral malaria, osteoporosis, a bone resorption disease, fever and myalgias due to infection, erectile dysfunction, diabetes insipidus, a central nervous system disorder, depression, multi-infarct dementia, an anxiety or stress response, cerebral ischemia, tardive dyskinesia, Parkinson's disease, or premenstrual syndrome.
- 39. The method of claim 27 wherein the mammal exhibits a minimal emetic response.
- 40. The method of claim 27 wherein the mammal is free of an emetic response.

- 41. The method of claim 27 wherein the mammal exhibits minimal adverse central nervous system side effects.
- 42. The method of claim 27 wherein the mammal is free of adverse central nervous system side effects.
- 43. The method of reducing TNF levels in a mammal comprising administering to said mammal therapeutically effective amount of a compound of claim 1.
- 44. A method of suppressing inflammatory cell activation in a mammal comprising administering to said mammal a therapeutically effective amount of a compound of claim 1.
- 45. A method of inhibiting PDE4 function in a mammal comprising administering to said mammal a therapeutically effective amount of a compound of claim 1.