שיעור 12 אינטגרלים מסויימים

12.1 אינטגריה של שברים אלגבריים (פונקציות רצינליות)

הגדרה 12.1 פונקציה רציונלית

פונקציה רציונלית (שבר אלגברי) זאת פונקציה מהצורה

$$y = \frac{P(x)}{Q(x)} ,$$

. פולינומים Q(x) ,P(x) כאשר

דוגמה 12.1 פונקציה רציונלית

$$Q(x) = x - 2$$
 $P(x) = x^4 - 5x + 9$ פונקציה רציונלית:
$$f(x) = \frac{x^4 - 5x + 9}{x - 2}$$

הגדרה 12.2 פונקציה רציונלית אמיתי

שבר אלגברי

$$\frac{P(x)}{Q(x)}$$

נקרא אמיתי אם

$$\deg(P) < \deg(Q)$$
 .

אם שבר אלגברי לא אמיתי, יש לעשות חילוק פולינומים.

דוגמה 12.2 חילוק פולינומים

חשבו את האינטגרל

$$\int \frac{x^4 - 5x + 9}{x - 2} \ .$$

פתרון:

שלב ראשון בחישוב אינטגרל של שבר אלגברי לא אמיתי, להגיע לשבר אלגברי אמיתי ע"י חילוק פולינומים. ע"י חילוק ארוך:

$$\frac{x^4 - 5x + 9}{x - 2} = x^3 + 2x^2 + 4x + 3 + \frac{15}{x - 2}$$

לכן

$$\int \frac{x^4 - 5x + 9}{x - 2} = \int \left(x^3 + 2x^2 + 4x + 3 + \frac{15}{x - 2} \right) = \frac{x^4}{4} + \frac{2}{3}x^3 + 2x^2 + 3x + 15 \ln|x - 2| + C \ .$$

יש 4 סוגים של שברים אלגבריים פשוטים:

סוג 2

$$\frac{A}{(x-a)^n} , \qquad n \in \mathbb{N} , \quad n \ge 2 .$$

סוג 3

$$\frac{Mx+N}{x^2+px+q} \ ,$$

. כאשר ל- $x^2 + px + q$ אין שורשים

4 סוג

$$\frac{Mx+N}{(x^2+nx+q)^n}, n \in \mathbb{N}, \quad n \ge 2$$

. כאשר ל-q+px+q אין שורשים

דוגמה 12.3 אינטגרל של פונקציה רציונלית

$$\int \frac{2x+1}{x^2-3x+1}$$
 חשבו את

פתרון:

$$\frac{2x+1}{x^2-3x+1} = \frac{2x+1}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}$$
$$A(x-2) + B(x-1) = 2x+1$$

$$x = 2 \Rightarrow B = 5$$

 $x = 1 \Rightarrow A = -3$

$$\int \frac{2x+1}{x^2-3x+1} \, dx = \int \left(\frac{-3}{x-1} + \frac{5}{x-2}\right) dx = -3\ln|x-1| + 5\ln|x-2| + C \ .$$

דוגמה 12.4 אינטגרל של פונקציה רציונלית

$$\int \frac{x^2 + 4}{(x - 2)(x - 3)^2}$$
 חשבו את

$$\frac{x^2+4}{(x-2)(x-3)^2} = \frac{A}{x-2} + \frac{B}{(x-3)^2} + \frac{C}{x-3}.$$

$$A(x-3)^2 + B(x-2) + C(x-3)(x-2) = x^2 + 4$$

$$x = 3 \Rightarrow B = 13$$

 $x = 2 \Rightarrow A = 8$
 $x = 0 \Rightarrow 9A - 2B + 6C = 4 \rightarrow C = -7$

$$\int \frac{x^2+4}{(x-2)(x-3)^2} \, dx = \int \left(\frac{8}{x-2} + \frac{13}{(x-3)^2} - \frac{7}{x-3}\right) dx = 8 \ln|x-2| - \frac{13}{x-3} - 7 \ln|x-3| + C \ .$$

דוגמה 12.5 אינטגרל של פונקציה רציונלית

$$\int \frac{x^3+1}{x^2(x^2+1)}$$
 חשבו את

פתרון:

$$\frac{x^3 + 1}{x^2(x^2 + 1)} = \frac{A}{x^2} + \frac{B}{x} + \frac{Cx + D}{x^2 + 1}.$$

$$A(x^2 + 1)^2 + Bx(x^2 + 1) + (Cx + D)x^2 = x^3 + 1$$

 $x^{3}: B+C=1$ $x^{2}: A+D=0$ x: B=0 $x^{0}: A=1$

לכן D=-1 . C=1 .

$$\int \frac{x^3+1}{x^2(x^2+1)} dx = \int \left(\frac{1}{x^2} + \frac{x-1}{x^2+1}\right) dx = \int \left(\frac{1}{x^2} + \frac{x}{x^2+1} - \frac{1}{x^2+1}\right) dx = -\frac{1}{x} + \frac{1}{2} \ln|x^2+1| - \arctan(x) + C \; .$$

דוגמה 12.6 אינטגרל של פונקציה רציונלית

$$I = \int \frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)}$$
 חשבו את

פתרון:

$$\frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 - 2x + 5}.$$
$$A(x^2 - 2x + 5) + (Bx + C)(x - 1) = 2x^2 - 3x - 3$$

 $x^{2}: A + B = 2$ x: -2A + C - B = -3 $x^{0}: 5A - C = -3$

$$A = -1$$
, $B = 3$, $C = -2$.

$$I = \int \frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} dx = \int \left(-\frac{1}{x - 1} + \frac{3x - 2}{x^2 - 2x + 5} \right) dx = -\ln|x - 1| + \int \left(\frac{3x - 2}{(x - 1)^2 + 4} \right) dx \; .$$

: u = x - 1 נגדיר

$$\begin{split} I &= \ln|x-1| + \int \frac{3(u+1)-2}{u^2+4} du \\ &= \ln|x-1| + \int \frac{3(u+1)-2}{u^2+4} du \\ &= \ln|x-1| + 3 \int \frac{u}{u^2+4} du - \int \frac{1}{u^2+4} du \\ &= \ln|x-1| + \frac{3}{2} \ln|u^2+4| - \frac{1}{2} \arctan\left(\frac{u}{2}\right) \\ &= \ln|x-1| + \frac{3}{2} \ln|(x-1)^2+4| - \frac{1}{2} \arctan\left(\frac{x-1}{2}\right) \end{split}$$

למה 12.1 שלבים באינטגרציה של שברים אלגבריים

 $\deg(P) \geq \deg(Q)$ שלב 1. לחלק במכנה (חילוק פולינומי) שלב 1.

שלב 2. להציב שבר אלגברי אמיתי כסכום של שברים פשוטים.

שלב 3. לבצע אינטגרציה של כל שבר חשוט.

דוגמה 12.7 אינטגרל של פונקציה רציונלית

$$I = \int rac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} \, dx$$
 חשבו את

פתרון:

ע"י חילוק ארוך:

$$\frac{x^5 + 2x + 4x + 4}{x^4 + x^3 + 2x^2} = x - 2 + \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} = x - 2 + 4\left(\frac{x^3 + x^2 + x + 1}{x^4 + 2x^3 + 2x^2}\right)$$
$$\frac{x^3 + x^2 + x + 1}{x^4 + 2x^3 + 2x^2} = \frac{4x^3 + 4x^2 + 4x + 4}{x^2(x^2 + 2x + 2)} = \frac{A}{x^2} + \frac{B}{x} + \frac{Cx + D}{x^2 + 2x + 2}$$
$$A(x^2 + 2x + 2) + Bx(x^2 + 2x + 2x) + (Cx + D)x^2 = x^3 + x^2 + x + 1$$

$$x^3: B+C=1$$

$$x^2: 2A + 2B + D = 1$$

$$x: \quad 2A + 2B = 1$$

$$x^0: 2A = 1$$

ירמיהו מילר חדו"א 1 למדמ"ח תשפ"ד סמסטר א'

$$A = \frac{1}{2} \;, \qquad B = 0 \;, \qquad C = 1 \;, \qquad D = \frac{1}{2} \;.$$

$$I = \int \left(x - 2 + \frac{2}{x^2} + \frac{4x + 2}{x^2 + 2x + 2}\right) dx \int \left(x - 2 + \frac{2}{x^2} + \frac{4x + 2}{(x + 1)^2 + 1}\right) dx = \frac{x^2}{2} - 2x - \frac{2}{x} + 4 \int \frac{x + \frac{1}{2}}{(x + 1)^2 + 1} dx \;.$$

$$: u = x + 1$$
 נגדיר
$$I = \frac{x^2}{2} - 2x - \frac{2}{x} + 4 \int \frac{u - \frac{1}{2}}{u^2 + 1} du$$

$$= \frac{x^2}{2} - 2x - \frac{2}{x} + 2 \ln|u^2 + 1| - 2 \arctan(u) + C$$

$$= \frac{x^2}{2} - 2x - \frac{2}{x} + 2 \ln|(x + 1)^2 + 1| - 2 \arctan(x + 1) + C$$

12.2 אינטגרל מסוים

הגדרה 12.3 אינטגרל מסוים

 $x_{n-1} \, x_n = b$

נניח שפונקציה y=f(x) מוגדרת בקטע y=f(x) מוגדרת בקטע $a=x_0 < x_1 < \ldots < x_n = b$. f(x)

 $|a = x_0 x_1 x_2 x_3|$

מכל קטע $[x_i,x_{i+1}]$ נבחר נקודה c_i באופן שרירותי. נבנה סכום אינטגרלי:

$$\sum_{i=1}^{n} f(x_i) \cdot (x_i - x_{i-1}) \ .$$

נסמן $\max(\Delta x_i) o 0$. נפעיל את הגבול נפעיל הגבול נפעיל . $\Delta x_i = x_i - x_{i-1}$

$$\lim_{\max(\Delta x_i)\to 0} \sum_{i=1}^n f(x_i) \Delta x_i = \int_a^b f(x) dx .$$

[a,b] בקטע בקטע הימין אינטגרל המסויים של

משפט 12.1 קייום אינטגרל מסוים

. אים א $\int_a^b f(x)\,dx$ רציפה בקטע אז האינטגרל האינטגרל [a,b] איז רציפה אם f(x)

משפט 12.2 משמעות הגיאומטרית של אינטגרל מסוים

אם $f(x) \geq 0$ פונקציה רציפה בקטע a, a, אז a, אז b, שווה לשטח הטרפז העקום החסום ע"י הקווים a פונקציה רציפה בקטע a, בצדדים. a

משפט 12.3 נוסחת ניוטון לייבניץ

$$\int_a^b f(x)dx = F(b) - F(a)$$
 אם $\int_a^b f(x)dx = F(x) + C$ אם

דוגמה 12.8

$$\int_0^3 x^2 dx = \left[\frac{x^3}{3} \right]_0^3 = \frac{3^3}{3} - 0 = 9.$$

דוגמה 12.9

$$\int_{-2}^{2} \frac{1}{4+x^2} \, dx = \frac{1}{2} \left[\arctan\left(\frac{x}{2}\right) \right]_{-2}^{2} = \frac{1}{2} \left[\arctan\left(1\right) - \arctan\left(-1\right) \right] = \frac{1}{2} \left[\frac{\pi}{4} - \left(-\frac{\pi}{4}\right) \right] = \frac{\pi}{4} \; .$$

דוגמה 12.10

$$\int_{e}^{e^{2}} \frac{1}{x \cdot \ln x} dx = \left[\ln |\ln x| \right]_{e}^{e^{2}} = \left[\ln |\ln e^{2} - \ln e| \right] = \left[\ln |2 - 1| \right] = 0.$$

משפט 12.4 תכונות של אינטגרל מסויים

$$\int_a^b c \cdot f(x) \, dx = c \cdot \int_a^b f(x) \, dx . . \mathbf{1}$$

$$\int_{a}^{b} [f(x) \pm g(x)] \ dx = \int_{a}^{b} f(x) \ dx \pm \int_{a}^{b} g(x) \ dx \ . \ .2$$

$$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \, . \, .3$$

$$a < c < b$$
 עבור $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$. .4

$$\left(\int_{a}^{x} f(t) dt\right)_{T}^{\prime} = f(x) . .5$$

הוכחה:

.1

.2

.3

.4

.5

$$\int_{a}^{x} f(t)dt = F(x) - F(a)$$

כאשר f(x) פונקציה קדומה של F(x) לכן

$$\left(\int_{a}^{x} f(t)dt\right)_{x}' = (F(x) - F(a))_{x}' = F'(x) = f(x) .$$

דוגמה 12.11

עבור אילו ערכי x לגרף הפונקציה

$$f(x) = \int_0^x e^{-(t+2)^2}$$

יש נקודת פיתול?

$$f'(x) = e^{-(x+2)^2} .$$

$$f''(x) = -2(x+2)e^{-(x+2)^2} = 0 \qquad \Rightarrow \qquad x = -2 .$$

דוגמה 12.12 החלפת משתנים באינטגרל מסויים

$$\int_{1}^{e^{2}} \frac{\ln^{2} x}{x} dx$$
 חשבו את

פתרון:

נגדיר

$$u = \ln x$$
, $u' = \frac{1}{x}$, $u(e^2) = 2$, $u(1) = 0$.

$$\int_1^{e^2} \frac{\ln^2 x}{x} dx = \int_0^2 u^2 u' dx = \int_0^2 u^2 du = \left[\frac{u^3}{3}\right]_0^2 = \frac{8}{3}.$$

דוגמה 12.13 החלפת משתנים באינטגרל מסויים

$$\int_0^4 \frac{1}{1+\sqrt{x}} dx \, \mathrm{d}x$$
חשבו את

פתרון:

נגדיר

$$u = \sqrt{x} , \qquad u' = \frac{1}{2\sqrt{x}} = \frac{1}{2u} , \qquad u(4) = 2 , \qquad u(0) = 0 .$$

$$\int_0^4 \frac{1}{1+\sqrt{x}} dx = \int_0^2 \frac{1}{1+u} \cdot 2u \cdot \frac{1}{2u} dx$$

$$= \int_0^2 \frac{1}{1+u} \cdot 2u \cdot u' dx$$

$$= \int_0^2 \frac{2u}{1+u} du$$

$$= \int_0^2 \left(2 - \frac{2}{1+u}\right) du$$

$$= \left[2u - 2\ln|1+u|\right]_0^2$$

$$= 4 - 2 \cdot \ln 3 .$$

דוגמה 12.14 החלפת משתנים באינטגרל מסויים

$$\int_0^{\ln 2} \sqrt{e^x - 1} \, dx$$
 חשבו את

פתרון:

נגדיר

$$u = \sqrt{e^x - 1}$$
, $u' = \frac{1}{2\sqrt{e^x - 1}} \cdot e^x = \frac{u^2 + 1}{2u}$, $u(\ln 2) = 1$, $u(0) = 0$.

$$\begin{split} \int_0^{\ln 2} \sqrt{e^x - 1} \, dx &= \int_0^{\ln 2} u \cdot \frac{u^2 + 1}{2u} \cdot \frac{2u}{u^2 + 1} \, dx \\ &= \int_0^{\ln 2} u \cdot \frac{2u}{u^2 + 1} \cdot u' \, dx \\ &= \int_0^1 u \cdot \frac{2u}{u^2 + 1} \, du \\ &= \int_0^1 \frac{2u^2}{u^2 + 1} \, du \\ &= \int_0^1 \left(2 - \frac{2}{u^2 + 1} \right) \, du \\ &= \left[2u - 2 \arctan(u) \right]_0^1 \\ &= 2 - 2 \cdot \frac{\pi}{4} \; . \end{split}$$

דוגמה 12.15 החלפת משתנים באינטגרל מסויים

$$\int_{-1}^{2} \sqrt{2-x} \, dx$$
 חשבו את

פתרון:

נגדיר

$$u = \sqrt{2 - x} , \qquad u' = \frac{1}{2\sqrt{2 - x}} \cdot (-1) = \frac{-1}{2u} , \qquad u(2) = 0 , \qquad u(-1) = \sqrt{3} .$$

$$\int_{-1}^{2} \sqrt{2 - x} \, dx = \int_{-1}^{2} u \cdot (-2u) \cdot \frac{-1}{2u} \, dx$$

$$= \int_{-1}^{2} u \cdot (-2u) \cdot u' \, dx$$

$$= \int_{0}^{0} (-2u^{2}) \, du$$

$$= \int_{0}^{\sqrt{3}} 2u^{2} \, du$$

$$= \left[\frac{2}{3} u^{3} \right]_{0}^{\sqrt{3}}$$

$$= \frac{2}{3} 3^{3/2} .$$

למה 12.2 אינטגרציה בחלקים באינטגרל מסויים

$$\int_{a}^{b} u \, d\mathbf{v} = [u\mathbf{v}]_{a}^{b} - \int_{a}^{b} \mathbf{v} du$$
$$\int_{a}^{b} u \, \mathbf{v}' \, dx = [u\mathbf{v}]_{a}^{b} - \int_{a}^{b} \mathbf{v} u' \, dx$$

דוגמה 12.16 אינטגרציה בחלקים באינטגרל מסויים

$$\int_{1}^{e} x \cdot \ln x \, dx$$
 חשבו את

פתרון:

נגדיר

$$\begin{split} u &= \ln x \;, \qquad \mathbf{v}' = x \;, \qquad u' = \frac{1}{x} \;, \qquad \mathbf{v} = \frac{x^2}{2} \;. \\ \int_1^e x \cdot \ln x \, dx &= \left[\ln x \cdot \frac{x^2}{2}\right]_1^e - \int_1^e \frac{x^2}{2} \cdot \frac{1}{x} \, dx \\ &= \left[\ln x \cdot \frac{x^2}{2}\right]_1^e - \int_1^e \frac{x}{2} \, dx \\ &= \left[\ln x \cdot \frac{x^2}{2}\right]_1^e - \left[\frac{x^2}{4}\right]_1^e \\ &= \left[\ln e \cdot \frac{e^2}{2} - \ln 1 \cdot \frac{1}{2}\right] - \left[\frac{e^2}{4} - \frac{1}{4}\right] \;, \\ &= \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} \\ &= \frac{e^2}{4} + \frac{1}{4} \;. \end{split}$$

דוגמה 12.17 אינטגרציה בחלקים באינטגרל מסויים

$$\int_0^{\pi} x \cdot \sin x \, dx$$
 חשבו את

פתרון:

נגדיר

$$\begin{split} u &= x \;, \qquad \mathbf{v}' &= \sin x \;, \qquad u' &= 1 \;, \qquad \mathbf{v} = -\cos x. \\ \int_0^\pi x \cdot \sin x \, dx &= [-x \cdot \cos x]_0^\pi - \int_0^\pi (-\cos x) \, dx \\ &= [-x \cdot \cos x]_0^\pi + [\sin x]_0^\pi \\ &= [-\pi \cdot \cos \pi + 0 \cdot \cos 0] + \sin \pi - \sin 0 \\ &= \pi \;. \end{split}$$

דוגמה 12.18

$$\int_{-3}^{3} e^{-x^2} \sin x \, dx \, \,$$
חשבו את

$$\int_{-3}^{3} e^{-x^2} \sin x \, dx = 0$$

. בגלל ש- $e^{-x^2}\sin x$ פונקציה אי-זוגית והתחום סימטרי ביחס לראשית הצירים

דוגמה 12.19

$$I=\int_0^2 \min(x,a)\,dx=1$$
 עבור אילו ערכי a מתקיים

פתרון:

 $:\!\!a\leq 0$

$$I = \int_0^2 a \, dx = [ax]_0^2 = 2a \neq 1 \ .$$

 $:a \geq 2$

$$I = \int_0^2 x \, dx = \left[\frac{x^2}{2}\right]_0^2 = 2 \neq 1$$
.

:1 < a < 2

$$I = \int_0^a x \, dx + \int_a^2 a \, dx = \left[\frac{x^2}{2}\right]_0^a + \left[ax\right]_a^2 = \frac{a^2}{2} + 2a - a^2 = -\frac{a^2}{2} + 2a = 1.$$
$$a^2 - 4a + 2 = 0$$

$$a=2\pm\sqrt{2}$$

 $a=2-\sqrt{2}$ לכן התשובה היא

דוגמה 12.20

$$I = \int_0^{2\pi} \cos(\max(x,\pi)) \, dx$$
 חשבו את

$$\int_0^{2\pi} \cos(\max(x,\pi)) \, dx = \int_0^{\pi} \cos(\pi) \, dx + \int_{\pi}^{2\pi} \cos(x) \, dx$$
$$= [-x]_0^{\pi} + [\sin x]_{\pi}^{2\pi}$$
$$= -\pi .$$

דוגמה 12.21

$$I = \int_0^{\pi/2} \frac{\cos x}{2 + 3\sin x} \, dx$$
 חשבו את

פתרון:

נגדיר

$$u = 2 + 3\sin x , \qquad u' = 3\cos x.$$

$$\int_0^{\pi/2} \frac{\cos x}{2 + 3\sin x} dx = \int_0^{\pi/2} \frac{\frac{u'}{3}}{u} dx$$

$$= \int_2^5 frac 13 \cdot \frac{1}{u} du$$

$$= \left[\frac{1}{3} \ln u\right]_2^5$$

$$= \frac{1}{3} \ln \frac{5}{2} .$$

דוגמה 12.22

$$I = \int_0^5 |2x - 4| \, dx$$
 חשבו את

פתרון:

$$\int_0^5 |2x - 4| \, dx = \int_2^5 (2x - 4) + \int_0^2 \left(-(2x - 4) \right) dx$$

$$= \int_2^5 (2x - 4) + \int_0^2 (4 - 2x) \, dx$$

$$= \left[x^2 - 4x \right]_2^5 + \left[4x - x^2 \right]_0^2$$

$$= \left[25 - 20 - 4 + 8 \right] + \left[8 - 4 \right]$$

$$= 13.$$

דוגמה 12.23

מצא את ערכו של $I=\int_0^t (2-te^{-0.5x})\,dx$ עבורו האינטגרל (t>0) עבורו היא מקסימאלי. חשבו את הערך המקסימאלי.

$$F(t) = \int_0^t (2 - te^{-0.5x}) dx = \left[2x + 2te^{-0.5x}\right]_0^t = 2t + 2te^{-0.5t} - 2t = 2te^{-0.5t} .$$

$$F'(t) = 2e^{-0.5t} \left(1 - \frac{t}{2}\right) = 0 \qquad \Rightarrow \qquad t = 2 .$$

עבור 2 ל f(t) יש ערך מקסימלי.

$$F(2) = 2 \cdot 2 \cdot e^{-0.5 \cdot 2} = \frac{4}{e} .$$

דוגמה 12.24 חישוב שטח

y=0 ,x=1 והישרים את הפונקציה ע"י גרף הפונקציה ע"י את השטח מצאו את מצאו

פתרון:

$$S = \int_0^1 x^3 dx = \left[\frac{x^4}{4}\right]_0^1 = \frac{1}{4} .$$

דוגמה 12.25 חישוב שטח

y=0 ,x=3 ,y=x , $y=rac{1}{x^2}$ מצאו את השטח החסום ע"י

$$S = \int_0^1 x \, dx + \int_1^3 \frac{1}{x^2} \, dx = \left[\frac{x^2}{2} \right]_0^1 - \left[\frac{1}{x} \right]_1^3 = \frac{1}{2} - \frac{1}{3} + 1 = \frac{7}{6} .$$

דוגמה 12.26 חישוב שטח

$$x=0$$
 , $x=3$, $y=0$, $y=x^2-2x$ מצאו את השטח החסום ע"י

$$S = -\int_0^2 (x^2 - 2x) dx + \int_2^3 (x^2 - 2x) dx$$

$$= -\left[\frac{x^3}{3} - x^2\right]_0^2 + \left[\frac{x^3}{3} - x^2\right]_2^3$$

$$= -\left[\frac{2^3}{3} - 2^2\right] + \left[\frac{3^3}{3} - 3^2 - \frac{2^3}{3} + 2^2\right]$$

$$= -\frac{8}{3} + 4 + 9 - 9 - \frac{8}{3} + 4$$

$$= \frac{8}{3}.$$

דוגמה 12.27 חישוב שטח

y=2 ,y=0 , $y=\sqrt{x}$ מצאו את השטח החסום ע"י

$$S = \int_0^4 2 \, dx - \int_0^4 \sqrt{x} \, dx$$
$$= \left[2x\right]_0^4 - \left[\frac{2}{3}x^{3/2}\right]_0^4$$
$$= 8 - \frac{2}{3} \cdot 4^{3/2}$$
$$= \frac{8}{3} .$$

דוגמה 12.28 חישוב שטח

 $y=2-x^2$,y=x מצאו את השטח החסום ע"י

פתרון:

$$S = \int_{-2}^{1} (2 - x^2 - x) dx$$

$$= \left[2x - \frac{x^3}{3} - \frac{x^2}{2} \right]_{-2}^{1}$$

$$= \left[2 - \frac{1}{3} - \frac{1}{2} \right] - \left[-4 + \frac{8}{3} - \frac{4}{2} \right]$$

$$= \frac{9}{2}.$$

דוגמה 12.29 חישוב שטח

y -ה וציר ה- (3,5) את השטח החסום ע"י את השיק לפרבולה את השטח את יא את את י"י איי איי את את את את מצאו את השטח איי

פתרון:

נמצא את משוואת המשיק:

$$y' = 2x - 2$$
$$y'(3) = 4$$

משוואת המשיק:

$$y - 5 = 4(x - 3) \qquad \Rightarrow \qquad y = 4x - 7 \ .$$

$$S = \int_0^3 ((x^2 - 2x + 2) - (4x - 7)) dx$$

$$= \left[\frac{x^3}{3} - x^2 + 2x\right]_0^3 - \left[2x^2 - 7x\right]_0^3 dx$$

$$= \left[\frac{3^3}{3} - 3^2 + 6\right] - [18 - 21]$$

$$= 9.$$

דוגמה 12.30 חישוב שטח

 $.y = |x| - \pi$,
y = $\sin |x|$ ע"י החסום את מצאו מצאו את מצאו

$$S = 2 \int_0^{\pi} (\sin x - (x - \pi)) dx$$

$$= 2 \left[-\cos x - \frac{x^2}{2} + \pi x \right]_0^{\pi}$$

$$= 2 \left[1 - \frac{\pi^2}{2} + \pi^2 \right] 0 - 2 [-1]$$

$$= 4 + \pi^2.$$

x -הישוב משפט 12.5 חישוב נפח גוף סיבוב סביב איר ה-

בהינתן גרף של פונקציה y=f(x) בקטע בקטע גוף סיבוב סביב ציר ה- y=f(x)

$$V = \pi \int_a^b f^2(x) \, dx \ .$$

דוגמה 12.31 חישוב נפח

 $0 \le x \le \pi$ בתחום ביב ע"י בתחום המישורי החסום $y = \sin x$ את מצאו את של התחום ביב ציר ה- של התחום אוף את נפח גוף הסיבוב סביב ביר ה-

$$V = \pi \int_0^{\pi} \sin^2 x \, dx$$
$$= \pi \int_0^{\pi} \frac{1 - \cos 2x}{2} \, dx$$
$$= \pi \left[\frac{x}{2} - \frac{1}{4} \sin 2x \right]_0^{\pi}$$
$$= \frac{\pi^2}{2} .$$

דוגמה 12.32 חישוב נפח

 $y=\sqrt{x}$, $y=x^2$ ע"י, של התחום החסום ציר ה- ציר סביב ציר הסיבוב מצאו את נפח את מצאו

$$V = \pi \int_0^1 (\sqrt{x})^2 dx - \pi \int_0^1 x^4 dx$$
$$= \pi \left[\frac{x^2}{2} \right]_0^1 - \pi \left[\frac{x^5}{5} \right]_0^1$$
$$= \pi \left[\frac{1}{2} - \frac{1}{5} \right]$$
$$= \frac{3\pi}{10} .$$

דוגמה 12.33 חישוב נפח

 $0 \le x \le 1$ בתחום $y = \frac{\sqrt{x}}{x+1}$ את נפח גוף הסיבוב סביב ציר ה- x של התחום החסום ע"י

$$V = \pi \int_0^1 \frac{x}{(x+1)^2} dx .$$

$$\frac{x}{(x+1)^2} = \frac{A}{(x+1)^2} + \frac{B}{x+1} = \frac{A+B(x+1)}{(x+1)^2} .$$

$$\begin{array}{ll} x: & B=1 \\ x^0: & A+B=0 \ \Rightarrow \ A=-1. \end{array}$$

$$V = \pi \int_0^1 \left(-\frac{1}{(x+1)^2} + \frac{1}{x+1} \right) \, dx = \pi \left[\frac{1}{x+1} + \ln|x+1| \right]_0^1 = \pi \left[\frac{1}{2} + \ln|2| - 1 \right] = \pi \left(\ln|2| - \frac{1}{2} \right) \, .$$