2.5 The Chain Rule Implicit Differentiation

Explicitly Defined:

Examples: Differentiating with respect to x

$$\frac{d}{dx}[7x^3] = 7.3x^2 = 21x^3$$

$$\frac{d}{dx}[7y^3] \cdot 7 \cdot 3y^2 \cdot \frac{dy}{dx}$$

$$\frac{d}{dx}[x^4 - 2y] \approx 4x^3 - 2\frac{dy}{dx}$$

$$\frac{d}{dx} \left[\frac{x^2}{y^3} \right] = \left(y^3 \right) \left(2x \right) - \left(x^2 \right) \left(3y^2 \right) \frac{dy}{dx}$$

Steps for Implicit Differentiation

- 1. Differentiate both sides with respect to x. *
- 2. Gather all terms with \$\frac{1}{42}\$ to one side
- 3. Factor out du
- 4. Solve for dy

Examples: Implicit Differentiation

Find $\frac{dy}{dx}$ given $2y^4 - y^3x^2 + 4x^3 = 5$.

$$08y^{3} \frac{dy}{dx} - (y^{3} \cdot 2x + 3y^{2} \frac{dy}{dx} \cdot x^{2}) + 12x^{2} = 0$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} \frac{dy}{dx} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} \frac{dy}{dx} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} \frac{dy}{dx} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} \frac{dy}{dx} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} \frac{dy}{dx} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} + 12x^{2} = 0)$$

$$08y^{3} \frac{dy}{dx} - (xy^{3} - 3x^{2}y^{2} + 12x^{2} + 12x^$$

Determine the slope of the tangent line to the graph of $\frac{1}{4}x^2 + y^2 = 6$ at $(2, \sqrt{5})$

Determine the slope of the graph of $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5$ at the point (8,1).

Find the tangent line to the graph of $(x + 2)^2 + (y - 3)^2 = 37$ at the point (4,4).

Example: Finding a Second Derivative with Implicit Differentiation

Given
$$(x-5)^2 + y^2 = 36$$
 find $\frac{d^2y}{dx^2}$

$$2(x-5)(1) + 2y \frac{dy}{dx} = 0$$

$$2y \frac{dy}{dx} = -2(x-5)$$

$$\frac{dy}{dx} = -2(x-5) - -x+5$$

$$\frac{dy}{dx^2} = y(-1) - \frac{dy}{dx}(-x+5) - y - (-x+5)^2$$

P