

Tarea 4

14 de octubre de 2024

 2° semestre 2024 - Profesores P. Bahamondes - D. Bustamante - M. Romero

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 21 de octubre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas (salvo que utilice su cupón #problemaexcepcional).
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Pregunta 1

(a) (1.5 pts) Recuerde que la diferencia entre dos conjuntos A y B se define como

$$A \setminus B = \{x \mid x \in A \land x \notin B\}.$$

Sean A, B y C conjuntos. ¿Es cierto que $(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C)$? ¿Es cierto que $A \setminus (B \setminus C) \subseteq (A \setminus B) \setminus C$? En cada caso, demuestre o dé un contraejemplo de la propiedad.

- (b) Decimos que una relación R sobre un conjunto A es un preorden si es refleja y transitiva. Sea R un preorden sobre A:
 - (1) (1.5 pts) Demuestre que $R \cap R^{-1}$ es una relación de equivalencia en A.
 - (2) (3.0 pts) Definimos una relación S sobre el conjunto cuociente de A con respecto a $R\cap R^{-1}$ como sigue:

$$(C, D) \in S \iff \text{existe } c \in C \text{ y existe } d \in D \text{ tal que } (c, d) \in R.$$

Demuestre que S es un orden parcial.

Solución

(a) Por demostrar que $A \setminus (B \setminus C) \not\subseteq (A \setminus B) \setminus C$. Por contraejemplo, sea $A = B = C = \{1\}$. Luego, $(A \setminus B) = (B \setminus C) = \emptyset$. Finalmente, $A \setminus (B \setminus C) = \{1\}$ y $(A \setminus B) \setminus C = \emptyset$ por lo que el primero no es subconjunto del segundo.

Por demostrar que $(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C)$. Por definición, debemos demostrar lo que sigue: $\forall x. \ x \in (A \setminus B) \setminus C \to x \in A \setminus (B \setminus C)$. Sea x tal que $x \in (A \setminus B) \setminus C$ entonces $x \in (A \setminus B) \wedge x \notin C \equiv x \in A \wedge x \notin B \wedge x \notin C \equiv x \in A \wedge \neg (x \in B \vee x \in C)$.

Luego, particionando $B \cup C : x \in A \land \neg[(x \in B \land x \notin C) \lor (x \in B \land x \in C) \lor (x \notin B \land x \in C)]$. Aplicando definiciones: $x \in A \land \neg[(x \in B \setminus C) \lor (x \in B \cap C) \lor (x \in C \setminus B)]$. Por ley de Morgan: $x \in A \land (x \notin B \setminus C) \land (x \notin B \cap C) \land (x \notin C \setminus B)$. Lo que implica $x \in A \land x \notin B \setminus C$. Por definición, $x \in A \setminus (B \setminus C)$.

(b.1) Si A fuera vacío, $R \cap R^{-1}$ sería vacía y por definición una relación de equivalencia. Sea A no vacío.

 $R \cap R^{-1}$ es refleja. Como R es refleja, para todo $x \in A$ se cumple que $(x,x) \in R$. Por definición de inversa también se tiene que $(x,x) \in R^{-1}$. Luego, dichas tuplas estarán en la intersección: $(x,x) \in R \cap R^{-1}$.

 $R \cap R^{-1}$ es transitiva. Supongamos que $a,b,c \in A$ y (a,b) y (b,c) son tuplas en $R \cap R^{-1}$. Sabemos que (a,b) y (b,c) están en particular en R que es transitiva, por lo que (a,c) está en R. Sabemos que (a,b) y (b,c) también están en R^{-1} , por lo que (b,a) y (c,b) están en R. Como R es transitiva, también contiene la tupla (c,a) y de ello sabemos que (a,c) está

en R^{-1} (demostramos que la inversa es transitiva). Finalmente, de R y R^{-1} se concluye que $(a,c)\in R\cap R^{-1}$.

 $R \cap R^{-1}$ es simétrica. Suponga que $(a,b) \in R$. Primer caso: si $(b,a) \notin R$, entonces por definición $(b,a) \in R^{-1}$ y $(a,b) \notin R^{-1}$. De ello, ni (a,b) ni (b,a) están en $R \cap R^{-1}$. Segundo caso: si $(b,a) \in R$, entonces por definición $(b,a) \in R^{-1}$ y $(a,b) \in R^{-1}$. De ello, (a,b) y (b,a) están en $R \cap R^{-1}$.

(b.2) Si A fuera vacío, su conjunto cuociente sería vacío y S es un orden parcial por definición. Sea A no vacío.

S es refleja. Como A es no vacío sea $x \in A$ un elemento cualquiera. Sabemos que existe su clase de equivalencia bajo $R \cap R^{-1}$, sea [x] dicha clase. Luego, para cualquier x se cumple que $(x,x) \in R$ porque ésta es refleja. Por definición, para cualquier clase de equivalencia se tendrá que $([x],[x]) \in S$.

S es transitiva. Sean clases [x], [y] y [z] tales que $([x], [y]) \in S$ y $([y], [z]) \in S$. Luego, existen elementos x' de clase [x] e y' de clase [y] tal que $(x', y') \in R$. También existen los elementos y'' en [y] y z' en [z] tal que $(y'', z') \in R$ y no necesariamente y' = y''. Pero, como [y] es una clase de equivalencia bajo $R \cap R^{-1}$ debe ocurrir que $(y', y'') \in R$. Finalmente, utilizando 2 veces la transitividad de R se obtiene que (x', z') está en R y se cumple que $([x], [z]) \in S$.

S es antisimétrica. Sean clases [x] e [y] tales que $([x],[y]) \in S$ y $([y],[x]) \in S$. Como en la propiedad anterior, existen elementos x' de clase [x] e y' de clase [y] tal que $(x',y') \in R$. También elementos y'' en [y] y x'' en [x] tal que $(y'',x'') \in R$ y no necesariamente x'=x'' o y'=y''. Como [x] es una clase de equivalencia bajo $R \cap R^{-1}$, debe ocurrir que $(x'',x') \in R$ y por transitividad de R que $(y'',x') \in R$. Además, como [y] también es una clase de equivalencia bajo $R \cap R^{-1}$, debe ocurrir que $(y',y'') \in R$ y por transitividad de R que $(y',x') \in R$. Por definición de inversa, $(x',y') \in R^{-1}$. Juntando lo anterior con $(x',y') \in R$ obtenemos que $(x',y') \in R \cap R^{-1}$ y por definición de clase de equivalencia que [x] = [y].

Pauta (6 pts.)

- (a) 1.5 pts, 0.5 por el contraejemplo y 1.0 por la demostración. Descuentos y puntajes parciales a criterio del corrector.
- (b.1) 1.5 pts, 0.5 por cada propiedad. Descuentos y puntajes parciales a criterio del corrector.
- (b.2) 3.0 pts, 1.0 por cada propiedad. Descuentos y puntajes parciales a criterio del corrector.

Pregunta 2

- (a) (2.0 pts) Sea (A, \preceq) un orden total. Demuestre que para todo subconjunto no vacío $S \subseteq A$ y todo elemento $x \in A$, se cumple que x es un elemento minimal de S si y sólo si x es un mínimo de S.
- (b) Sea \mathcal{F} el conjunto de todas las funciones $f: \mathbb{N} \to \mathbb{N}$. Definimos la relación \leq sobre \mathcal{F} como sigue:

$$f \leq g \iff f(n) \leq g(n)$$
 para todo $n \in \mathbb{N}$.

- (1) (2.0 pts) Demuestre que \leq es un orden parcial sobre \mathcal{F} .
- (2) (1.0 pts) ¿Es \leq un orden total? Argumente su respuesta.
- (3) (1.0 pts) ¿Tiene \mathcal{F} un mínimo? Argumente su respuesta.

Solución

- (a) Sea un subconjunto no vacío $S \subseteq A$ y un elemento $x \in A$. Separamos el si y sólo si en dos partes:
- (⇒) Supongamos que x es un elemento minimal de S. Por contradicción, supongamos que x no es un mínimo de S. Luego, existe $y \in S$ tal que $x \not\preceq y$. Como la relación \preceq es total, los elementos x e y deben ser comparables, y la única opción es que $y \preceq x$. Tenemos entonces que $y \preceq x$ e $y \ne x$, lo cual contradice la hipótesis de que x es elemento minimal de S.
- (\Leftarrow) Esta dirección se cumple para todo orden parcial (independiente si es total o no). Supongamos que x es un mínimo de S. Por contradicción, supongamos que x no es un elemento minimal de S. Luego, existe $y \in S$ tal que $y \preceq x$ e $y \neq x$. Como x es minimo de S, obtenemos que $x \preceq y$. Por antisimetría de \preceq , concluimos que y = x, lo cual es un contradicción.

(b.1)

- Refleja: Sea $f \in \mathcal{F}$. Como para todo $n \in \mathbb{N}$, siempre se cumple que $f(n) \leq f(n)$, concluimos que $f \leq f$.
- Antisimetría: Supongamos que $f \leq g$ y $g \leq f$. Sigue que para todo $n \in \mathbb{N}$, se tiene que $f(n) \leq g(n)$ y $g(n) \leq f(n)$. Es decir, para todo $n \in \mathbb{N}$, se tiene que f(n) = g(n), luego f = g.
- <u>Transitiva</u>: Supongamos que $f \leq g$ y $g \leq h$. Tenemos que para todo $n \in \mathbb{N}$, se tiene que $f(n) \leq g(n)$ y $g(n) \leq h(n)$. Por la transitividad de \leq , concluimos que para todo $n \in \mathbb{N}$, se tiene que $f(n) \leq h(n)$, es decir, $f \leq h$.

(b.2) No es un orden total. Es posible construir funciones f y g tal que $f \not\preceq g$ y $g \not\preceq f$. Un posible ejemplo:

$$f(n) = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ 0 & \text{si } n \ge 2 \end{cases}$$
$$g(n) = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{si } n = 1 \\ 0 & \text{si } n \ge 2 \end{cases}$$

Como g(0) > f(0), se tiene que $g \not\preceq f$, como f(1) > g(1), se tiene que $f \not\preceq g$.

(b.3) \mathcal{F} sí tiene mínimo. Basta tomar la funcion f_0 tal que $f_0(n) = 0$, para todo $n \in \mathbb{N}$. Por definición, se cumple que $f_0 \leq f$, para todo $f \in \mathcal{F}$.

Distribución de puntajes:

- (a) 1.0 pts por cada dirección del si y sólo si. Descuentos y puntajes parciales a criterio del corrector.
- (b.1) 0.5 pts por demostrar que es refleja, 0.75 pts para antisimetría, 0.75 pts para transitividad. Descuentos y puntajes parciales a criterio del corrector.
- (b.2) 0.2 pts por decir que no es un orden total y 0.8 pts por argumentar correctamente o dar un contraejemplo correcto. Descuentos y puntajes parciales a criterio del corrector.
- (b.3) 0.2 pts por decir que sí tiene mínimo y 0.8 pts por argumentar correctamente. Descuentos y puntajes parciales a criterio del corrector.