

Training Deep Neural Networks

Maziar Raissi

Assistant Professor

Department of Applied Mathematics

University of Colorado Boulder

maziar.raissi@colorado.edu

An overview of gradient descent optimization algorithms

Deep Learning: An algorithm that writes an algorithm

Source Code: Data (examples/experiences)

Compiler: Deep Learning

Executable Code: Deployable Model

Deep: Function Compositions $f_L \circ f_{L-1} \circ \dots f_2 \circ f_1$

Learning: Loss Function, Back-propagation,

and Gradient Descent

$$\min_{\theta} L(\theta)$$

 $L(\theta) \approx J(\theta) \rightarrow \text{noisy estimate of the objective function}$ (e.g., due to mini-batching)

Stochastic Gradient Descent

$$\theta_{t+1} = \theta_t - \gamma \nabla_{\theta} J(\theta_t)$$

$$J: \mathbb{R}^d \to \mathbb{R}$$
 one back-propagation (fast) $\nabla_{\theta} J: \mathbb{R}^d \to \mathbb{R}^d$

Questions?

