Занятие 01. Комплексные числа, интегралы и аналитические функции

15.02.22

Комплексные числа

- 1. Какие кривые задаются параметрическими уравнениями
 - (a) $z(t) = t + it^2, t \in \mathbb{R};$
 - (b) z(t) = t + i/t, t > 0;
 - (c) $z(t) = ae^{it} + 1/(ae^{it}), t \in [0, 2\pi];$
 - (d) $z(t) = e^{i\pi/4} \cos t, \ t \in [0, 2\pi].$
- 2. Описать множества f(E) когда
 - (a) $f(z) = z^2$, $E = \{z : \pi/4 < \arg z < 3\pi/4\}$;
 - (b) $f(z) = e^z$, $E = \{z : \operatorname{Re} z > 1, -\pi/4 < \operatorname{Im} z < \pi/3\}$ $a \text{ что будет, если взять } E = \{z : \operatorname{Re} z > 1, -\pi < \operatorname{Im} z < 2\pi\}$?;
 - (c) f(z) = z + 1/z, $E = \{z : |z| > 1\}$ a что будет, если взять $E = \{z : |z| < 1\}$?
- 3. Найти все решения уравнений
 - $z^2 = 3 4i$, $z^7 + 1 = 0$, $\bar{z} = z^3$.
- 4. Даны два треугольника с вершинами в точках z_1, z_2, z_3 и w_1, w_2, w_3 соответственно. Они подобны, если

$$\frac{z_3 - z_1}{z_3 - z_2} = \frac{w_3 - w_1}{w_3 - w_2}.$$

Является ли это условие необходимым?

5. Пусть z_1, z_2, z_3 - три вершины параллелограмма, записанные в порядке обхода границы. Найти четвертую вершину.

Немножко интегралов

- 6. Посчитайте интегралы
 - (a) $\int_0^1 \frac{dt}{1+it}$;
 - (b) $\oint_{\gamma} z^n dz$, $\gamma = \{z : |z| = R\}$, $n \in \mathbb{Z}$;
 - (c) $\oint_{\gamma} \frac{(z+1)(z-1)(z+2)}{z^2} dz$, $\gamma = \{z : |z| = 10\}$;

Функции

- 7. Пусть $f:[0,1] \to \mathbb{C}$ непрерывно дифференцируема. Положим $\lambda = f(1) f(0)$. Верно ли что
 - 1) Найдется $t \in [0,1]$ такое, что $f'(t) = \lambda$?
 - 2) λ принадлежит выпуклой оболочке множества $\{f'(t); t \in [0,1]\}$?
- 8. Запишите условия Коши-Римана в полярных координатах
- 9. В каких точках комплексной плоскости обращаются в ноль функции $\sin z$ и $\cos z$?
- 10. В каких областях голоморфны следующие функции: $e^z := e^{x+iy}$, $\tan z$, $\log z := \log |z| + i \arg z$,
- 11. Пусть функция f(z) голоморфна и или $\mathrm{Re}\,f(z)=\mathrm{const}$ или $|f(z)|=\mathrm{const}$. Тогда $f(z)=\mathrm{const}$. А что если $\mathrm{Re}(e^{i\pi/4}f(z))=\mathrm{const}$?