

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 347 811 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 30.03.94 (51) Int. Cl. 5: C07D 239/60, C07D 239/34,
(21) Application number: 89111133.8 C07D 239/52, C07D 251/30,
(22) Date of filing: 19.06.89 C07D 251/26, A01N 43/54,
A01N 43/66

Zum Verbleib
Bitte nicht zurücksenden
am 6. SEP 1995
Erledigt
Patentschriftensammlung

(54) Alkanolic acid derivatives and herbicidal compositions.

(30) Priority: 20.06.88 JP 150063/88

(43) Date of publication of application:
27.12.89 Bulletin 89/52

(45) Publication of the grant of the patent:
30.03.94 Bulletin 94/13

(84) Designated Contracting States:
CH DE FR GB IT LI NL

(56) References cited:
EP-A- 0 262 393
EP-A- 0 287 079
DE-A- 2 314 160

(73) Proprietor: KUMIAI CHEMICAL INDUSTRY CO., LTD.
4-26, Ikenohata 1-chome
Taitoh-ku Tokyo 110(JP)

Proprietor: IHARA CHEMICAL INDUSTRY Co., Ltd.
4-26, Ikenohata 1-chome
Taitoh-ku, Tokyo 110(JP)

(72) Inventor: Kaku, Kolchiyo
132, Kojima
Fukude-cho
Iwata-gun Shizuoka-ken(JP)
Inventor: Wada, Nobuhide
2-4-11, Asahigaoka
Kakegawa-shi Shizuoka-ken(JP)
Inventor: Sugiyama, Kazuhiko
132, Kojima
Fukude-cho
Iwata-gun Shizuoka-ken(JP)
Inventor: Takeuchi, Akira
88-2, Tennou-cho
Kakegawa-shi Shizuoka-ken(JP)
Inventor: Toyokawa, Yasufumi
1-22-2-1016, Odai
Adachi-ku
Tokyo(JP)
Inventor: Miyazawa, Takeshige
1205-9, Iwaname
Daito-cho
Ogasa-gun Shizuoka-ken(JP)

EP 0 347 811 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

EP 0 347 811 B1

Inventor: **Yoshida, Ryo**
3353, Kamo
Kikugawa-cho
Ogasa-gun Shizuoka-ken(JP)

⑦ Representative: **Wächtershäuser, Günter, Dr.**
Tal 29
D-80331 München (DE)

Description

The present invention relates to novel alcanoic acid derivatives and herbicidal compositions containing them, which are useful for application to paddy fields, and upland fields and non-agricultural fields.

5 In recent years, many herbicides have been developed and practically used, and they have contributed to the improvement of productivity and to energy saving for agricultural works.

For example, European Patent 262,393 discloses N-(1-cyano-1,2-dimethylpropyl)-2-pyrimidinyloxypropionamide. However, this is concerned with an agricultural fungicide. Further, German Laid-open Application No. 2,314,160 discloses 2-[4-chloro-6-(4-chlorobenzyl)aminopyrimidinyl]thiopropionic acid as a 10 2-pyrimidinylthio acetic acid derivative, which exhibits anticholesteremics.

However, such conventional herbicides have various problems with respect to the herbicidal effects and safety in their practical application. Therefore, it has been desired to develop a herbicide having improved herbicidal effects and safety to crop plants.

The present invention provides an alcanoic acid derivative of the formula:

15

20

(I)

wherein R is

25

30

wherein R³ is a hydrogen atom, a halogen atom, a halogen-substituted C₁-C₄ alkyl group, a C₁-C₁₅ alkyl group, preferably a C₁-C₄ alkyl group, a C₃-C₆ cycloalkyl group, a C₁-C₄ alkylthio-C₁-C₄ alkyl group, a hydroxy-C₁-C₄ alkyl group, a hydroxyl group, a cyano group, an acyloxy-C₁-C₄ alkyl group, a thiienyl group, 35 a naphthyl group, a dihydronaphthyl group or

40

wherein R⁸ is a hydrogen atom, a halogen atom, a nitro group, a C₁-C₄ alkyl group, a C₁-C₄ alkoxy group or -S(O)_nR⁹ wherein R⁹ is a C₁-C₄ alkyl group, and n is an integer of from 0 to 2, m is an integer of from 0 to 2, each of R² and R⁴ which may be the same or different is a hydrogen atom or a C₁-C₄ alkyl group, or R² and R⁴ form together with the adjacent carbon atom a 3-, 4-, 5- or 6-membered ring which may contain an oxygen atom and may be substituted by one or two C₁-C₄ alkyl groups, each of R⁵ and R⁶ which may be the same or different is a hydrogen atom or a C₁-C₄ alkyl group, R⁷ is a C₁-C₄ alkyl group, or a phenyl group, or R⁶ and R⁷ form -(CH₂)_l- where l is an integer of 3 or 4 which may be substituted by one or two 45 C₁-C₄ alkyl groups, or R is a C₂-C₆ alkenyl group, a dihydronaphthyl group, a tetrahydronaphthyl group, a 1-oxo-1,2,3,4-tetrahydronaphthyl group, a 1,2-epoxycycloalkyl group or an indanyl group which may be substituted by an alkyl or alkoxy group; R¹ is a hydrogen atom, a C₁-C₄ alkyl group, a C₂-C₆ alkenyl group, a C₂-C₆ alkynyl group, a phenyl group, an alkylideneamino group, a C₁-C₄ alkoxy-C₁-C₄ alkyl group, a C₁-C₄ alkoxy carbonyl-C₁-C₄ alkyl group, a halogen-substituted-C₁-C₄ alkyl group, a C₃-C₅ cycloalkyl group, a 50 nitro-substituted phenylthio-C₁-C₄ alkyl group, a halogen atom or a benzyl group which may be substituted by a C₁-C₄ alkyl, or C₁-C₄ alkoxy group; or R and R¹ form a ring; A is a C₁-C₄ alkyl group, a C₁-C₄ alkoxy group, a C₁-C₄ alkylthio group, a halogen atom, a halogen-substituted C₁-C₄ alkoxy group, an amino group, a C₁-C₄ alkylamino group, or a di-C₁-C₄ alkylamino group; B is a hydrogen atom, a C₁-C₄ alkyl group, a 55

C₁-C₄ alkoxy group, or a halogen-substituted C₁-C₄ alkoxy group; X is an oxygen atom or a sulfur atom; and Z is a methine group or a nitrogen atom; and a salt thereof.

The present invention also provides a herbicidal composition comprising a herbicidally effective amount of the alcanoic acid derivative of the formula I or a salt thereof, and an agricultural adjuvant.

5 Further, the present invention provides a method for killing weeds which comprises applying a herbicidally effective amount of the alcanoic acid derivative of the formula I or a salt thereof to a locus to be protected.

Now, the present invention will be described in detail with reference to the preferred embodiments.

In the formula I, R is preferably a straight chain or branched alkyl group, a cycloalkyl group or

10

15

wherein each of R² and R⁴ which may be the same or different is a hydrogen atom or an alkyl group; R¹ is 20 a hydrogen atom or an alkyl group; each of A and B which may be the same or different is an alkyl group, an alkoxy group or a dihaloalkoxy group; and X and Z are as defined above; and a salt thereof.

Preferably, each of A and B is a methoxy group. X is preferably an oxygen atom, and Z is preferably a 25 methine group. In a preferred embodiment, R is a straight or branched C₃-C₅ alkyl group, a cyclopentyl group, an α -methylbenzyl group, or an α,α -dimethylbenzyl group, R₁ is a hydrogen atom or a C₁-C₄ alkyl group; each of A and B which may be the same or different is an alkyl group or an alkoxy group; and X and Z are as defined above. In another preferred embodiment R is an isopropyl group, a tert-butyl group, a cyclopentyl group or an α,α -dimethylbenzyl group; R₁ is a hydrogen atom, a methyl group or an ethyl group; and X and Z are as defined above.

30 Among the compounds of the formula I, the following compounds show particularly good herbicidal activities. Namely, in the formula I, R is an isopropyl group, a secondary butyl group, a tert-butyl group, a cyclopentyl group or an α,α -dimethylbenzyl group, R₁ is a hydrogen atom or a C₁-C₄ alkyl group, A is a methyl group, a methoxy group, a halogen-substituted alkoxy group, a dihalogen-substituted alkoxy group, an amino group, alkylamino group or a dialkylamino group, and B is a methyl group or a methoxy group.

35 When both A and B are methyl groups, R is preferably a C₃-C₅ alkyl group.
The salt of the alcanoic acid derivative of the formula I may be an alkali metal salt, an alkaline earth metal salt, a transition metal salt, an ammonium salt or an organic ammonium salt. Particularly preferred is a isopropylamine salt, a dimethylamine salt, an ammonium salt, a sodium salt, a potassium salt or a calcium salt.

40 Now, typical examples of the compound of the formula I of the present invention will be presented in Table 1. Compound Nos. given in the Table will be referred to in the subsequent description in the specification.

45

50

55

Table 1

Compound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
1	CH ₃	C ₂ H ₅	O	OCH ₃	OCH ₃	CH	1.4841
2	C ₂ H ₅	"	"	"	"	"	62~63
3	"	H	"	"	"	"	138~140
4	i-C ₃ H ₇	"	"	"	"	"	132~135
5	n-C ₃ H ₇	C ₂ H ₅	"	"	"	"	47~48
6	"	H	"	"	"	"	112~113
7	n-C ₄ H ₉	"	"	"	"	"	112~115
8	"	CH ₃	"	"	"	"	1.4868
9	t-C ₄ H ₉	H	"	"	"	"	182~184
10	"	CH ₃	"	"	"	"	97~105
11	"	C ₂ H ₅	"	"	"	"	98~99
12	"	H	"	CH ₃	CH ₃	"	167~169
13	"	CH ₃	"	"	"	"	1.4868
14	"	"	"	"	OCH ₃	"	1.4763
15	"	H	"	"	"	"	Not measurable
16		C ₂ H ₅	"	OCH ₃	"	"	118~120
17	t-C ₄ H ₉	CH ₃	"	Cl	"	"	1.5946
18	i-C ₄ H ₉	H	"	OCH ₃	"	"	117~119
19	"	C ₂ H ₅	"	"	"	"	1.4823
20	sec-C ₄ H ₉	H	"	"	"	"	92~96
21	"	C ₂ H ₅	"	"	"	"	1.4878
22	n-C ₆ H ₁₃	H	"	"	"	"	94~95
23	"	C ₂ H ₅	"	"	"	"	1.4769
24		H	"	"	"	"	137~142
25	"	CH ₃	"	"	"	"	60~63
26	"	C ₂ H ₅	"	"	"	"	80~82
27	"	CH ₂ C≡CH	"	"	"	"	88~89

Table 1 (continued)

Compound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
28	$\begin{array}{c} \text{C}_2\text{H}_5 \\ \\ \text{C}_2\text{H}_5\text{CH}- \end{array}$	$\text{CH}_2-\text{C}_6\text{H}_5$	0	OCH ₃	OCH ₃	CH	95~96
29	$\begin{array}{c} \text{CH}_3 \\ \\ \text{C}_2\text{H}_7\text{CH}- \end{array}$	H	"	"	"	"	109~114
30	"	C ₂ H ₅	"	"	"	"	1.4833
31	$\begin{array}{c} \text{CH}_3\text{CH} \\ \\ \text{C}_2\text{H}_5\text{C}- \end{array}$	H	"	"	"	"	117~119
32	$\begin{array}{c} \text{C}_2\text{H}_5 \\ \\ \text{CH}_2\text{C}- \\ \\ \text{C}_2\text{H}_5 \end{array}$	"	"	"	"	"	158~159
33	"	C ₂ H ₅	"	"	"	"	84~87
34	$\begin{array}{c} \text{CH}_3 \\ \\ \text{C}_6\text{H}_5-\text{C}_2\text{H}_4\text{C}- \\ \\ \text{CH}_2 \end{array}$	H	"	"	"	"	100~102
35	"	C ₂ H ₅	"	"	"	"	87~88
36	$\begin{array}{c} \text{CH}_3 \\ \\ \text{C}_6\text{H}_5-\text{CH}- \end{array}$	H	"	"	"	"	143~145
37	"	C ₂ H ₅	"	"	"	"	98~101
38	$\begin{array}{c} \text{C}_2\text{H}_5 \\ \\ \text{C}_6\text{H}_5-\text{CH}- \end{array}$	H	"	"	"	"	145~150
39	"	CH ₃	"	"	"	"	77~80
40	$\begin{array}{c} \text{C}_2\text{H}_7-\text{i} \\ \\ \text{C}_6\text{H}_5-\text{CH}- \end{array}$	H	"	"	"	"	Not measurable
41	"	CH ₃	"	"	"	"	1.5224
42	$\begin{array}{c} \text{CH}_3 \\ \\ \text{C}_6\text{H}_5-\text{C}- \\ \\ \text{CH}_3 \end{array}$	H	"	"	"	"	163~165
43	"	CH ₃	"	"	"	"	95~97
44	"	C ₂ H ₅	"	"	"	"	123~124

Table 1 (continued)

Compound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_D^{20})
45		$\text{CH}_2-\text{C}_6\text{H}_4-$	O	OCH_3	OCH_3	CH	115~116
46	"	H	"	CH_3	"	"	152~154
47	"	"	"	"	CH_3	"	115~117
48	"	CH_3	"	"	OCH_3	"	1.5310
49	"	"	"	"	CH_3	"	1.5332
50		H	"	OCH_3	OCH_3	"	140~147
51	"	CH_3	"	"	"	"	112~116
52		"	"	"	"	"	1.5333
53		H	"	"	"	"	208~215
54	"	CH_3	"	"	"	"	140~143
55	"	$\text{CH}_2-\text{C}_6\text{H}_4-$	"	"	"	"	123~124
56	"	$\text{CH}_2-\text{C}_6\text{H}_4-\text{OCH}_3$	"	"	"	"	128~130
57		H	"	"	"	"	163~165
58	"	CH_3	"	"	"	"	133~137
59	"	$\text{C}_6\text{H}_5-\text{i}$	"	"	"	"	85~86
60	"	$\text{CH}_2\text{CH}=\text{CH}_2$	"	"	"	"	118~121
61	"	Na	"	"	"	"	220~226
62		H	"	"	"	"	128~127

Table 1 (continued)

Com-Pound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_D^{20})
6 3		CH ₃	O	OCH ₃	OCH ₃	CH	63~ 65
6 4	"	C ₂ H ₅	"	"	"	"	71~ 73
6 5		H	"	"	"	"	140~144
6 6	"	C ₂ H ₅	"	"	"	"	55~ 56
6 7		H	"	"	"	"	149~152
6 8	"	C ₂ H ₅	"	"	"	"	86~ 87
6 9		H	"	"	"	"	145~148
7 0	"	C ₂ H ₅	"	"	"	"	73~ 74
7 1		H	"	"	"	"	142~143
7 2	"	CH ₃	"	"	"	"	76~ 77
7 3	"	C ₂ H ₅	"	"	"	"	80~ 81
7 4		H	"	"	"	"	111~115
7 5	"	C ₂ H ₅	"	"	"	"	97~101
7 6		"	"	"	"	"	1.4993
7 7		H	"	"	"	"	104~110
7 8	"	CH ₃	"	"	"	"	80~ 92
7 9	CH ₃ SC ₂ H ₄ —	"	"	"	"	"	61~ 62

Table 1 (continued)

Compound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
8 0		H	O	OCH ₃	OCH ₃	CH	133~140
8 1		H	"	"	"	"	69~75
8 2		C ₂ H ₅	"	"	"	"	85~89
8 3		H	"	"	"	"	169~173
8 4	"	C ₂ H ₅	"	"	"	"	89~91
8 5		H	"	"	"	"	135~137
8 6	"	C ₂ H ₅	"	"	"	"	59~60
8 7		H	"	"	"	"	112~113
8 8	"	C ₂ H ₅	"	"	"	"	56~57
8 9		H	"	"	"	"	107~111
9 0		H	"	"	"	"	161~163
9 1	"	C ₂ H ₅	"	"	"	"	122.5~123.5
9 2	"	CH ₂ -	"	"	"	"	132~135
9 3		H	"	"	"	"	176~178

Table 1 (continued)

5 Com- ound No.	R	R ¹	X	A	B	Z	Melting point. (°C) or refractive index (n_{D}^{20})
10 94		C ₂ H ₅	O	OCH ₃	OCH ₃	CH	133~135
15 95		H	"	"	"	"	183~190
20 96	"	C ₂ H ₅	"	"	"	"	116~119
25 97	"	H-NH(I-C ₃ H ₇) ₂	"	"	"	"	152~157
30 98		H	"	"	"	"	157~159
35 99	"	CH ₃	"	"	"	"	126~127
40 100	"	H	"	CH ₃	"	"	185~197
45 101	"	CH ₂ C≡CH	"	OCH ₃	"	"	95~97
50 102	"		"	"	"	"	119~122
55 103		H	"	"	"	"	155~157
60 104	"	CH ₃	"	"	"	"	115~117
65 105		H	"	"	"	"	158~160
70 106	"	CH ₃	"	"	"	"	104~106
75 107		H	"	"	"	"	196~200
80 108	"	CH ₃	"	"	"	"	170~173
85 109		H	"	"	"	"	175~183
90 110	"	CH ₃	"	"	"	"	110~115

Table 1 (continued)

	Com-pound No.	R	R'	X	A	B	Z	Melting point. (°C) or refractive index (n_D^{20})
5	111		H	O	OCH3	OCH3	CH	168~170
10	112	"	CH3	"	"	"	"	143~149
15	113		H	"	"	"	"	213~216
20	114	"	CH2	"	"	"	"	143~144
25	115		H	"	"	"	"	205~207
30	116	"	CH3	"	"	"	"	180~181
35	117		H	"	"	"	"	158~159
40	118	"	CH3	"	"	"	"	77~80
45	119		H	"	"	"	"	140~142
50	120	"	CH3	"	"	"	"	135~138
	121	Cl						
	122	CH3CH-	C2H5	"	"	"	"	63~71
	123	n-C7H16	"	"	"	"	"	1.4755
	124	n-C8H18	"	"	"	"	"	1.4739
	125	n-C10H22	"	"	"	"	"	1.4785
	126	n-C12H26	"	"	"	"	"	1.4779
	127	n-C7H16	H	"	"	"	"	91~92
	128	n-C8H18	"	"	"	"	"	86~87
	129	n-C10H22	"	"	"	"	"	87~92
	130	n-C12H26	"	"	"	"	"	83~85
	131	n-C14H30	"	"	"	"	"	

Table 1 (continued)

Compound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
132		C ₂ H ₅	S	OCH ₃	OCH ₃	CH	1.5310
133	"	H	"	"	"	"	125~127
134		C ₂ H ₅	O	"	"	"	97~98
135	"	H	"	"	"	"	128~132
136		CH ₃	"	CH ₃	CH ₃	"	79~82
137	"	H	"	"	"	"	183~185
138		CH ₃	"	OCH ₃	OCH ₃	"	153~154
139	"	H	"	"	"	"	176~179
140		CH ₃	"	"	"	"	102~103
141	"	H	"	"	"	"	170~173
142		CH ₃	"	"	"	"	72~73
143		C ₂ H ₅	"	"	"	"	1.4968
144	"	H	"	"	"	"	116~118
145	n-C ₁₄ H ₂₉	C ₂ H ₅	"	"	"	"	1.4769
146	n-C ₁₄ H ₂₉	H	"	"	"	"	83~85
147	n-C ₆ H ₁₃	CH ₃	"	"	"	"	54~56
148	"	H	"	"	"	"	107~115
149	n-C ₁₆ H ₃₃	CH ₃	"	"	"	"	1.4779
150	"	H	"	"	"	"	85~91

Table 1 (continued)

Compound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
151		CH ₃	O	OCH ₃	OCH ₃	N	85~87
152	i-C ₃ H ₇	C ₂ H ₅	S	〃	〃	CH	1.5162
153	〃	H	〃	〃	〃	〃	76~78
154	t-C ₄ H ₉	CH ₃	O	〃	〃	N	1.4800
155		H	〃	〃	〃	CH	142~150
156		C ₂ H ₅	S	〃	〃	〃	1.5168
157	〃	H	〃	〃	〃	〃	82~87
158		CH ₃	O	〃	〃	〃	97~98
159	〃	H	〃	〃	〃	〃	158~160
160		C ₂ H ₅	〃	〃	〃	〃	68~70
161	〃	H	〃	〃	〃	〃	93~102
162		CH ₃	S	〃	〃	〃	1.5368
163	t-C ₄ H ₉	〃	O	OC ₂ H ₅ -i	〃	〃	84~87
164	〃	〃	〃	OCHF ₂	CH ₃	〃	88~98
165	〃	H	〃	OC ₂ H ₅ -i	OCH ₃	〃	135~140
166	C ₂ H ₅ SO ₂		CH ₃	〃	OCH ₃	〃	90~92
167	〃	H	〃	〃	〃	〃	187~190
168	CH ₃	〃	〃	〃	〃	〃	154~156
169		CH ₂ -	〃	〃	〃	〃	63~65

Table 1 (continued)

Compound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
170		H	O	OCH ₃	OCH ₃	CH	125~130
171	i-C ₃ H ₇	CH ₃	//	Cl	//	//	1.4943
172	//	H	//	//	//	//	128~130
173		CH ₃	//	OC ₂ H ₅	OC ₂ H ₅	//	1.5219
174	//	H	//	//	//	//	144~148
175	//	CH ₃	//	OC ₃ H ₇ -I	OC ₃ H ₇ -I	//	96~98
176	//	H	//	//	//	//	165~170
177		C ₂ H ₅	//	OCH ₃	OCH ₃	//	1.4953
178	//	H	//	//	//	//	133~138
179		C ₂ H ₅	//	//	//	//	64~68
180	//	H	//	//	//	//	115~117
181		C ₂ H ₅	//	//	//	//	1.5018
182		CH ₃	//	//	CH ₃	//	1.5033
183	//	H	//	//	//	//	138~143
184	//	CH ₃	//	OCHF ₂	//	//	1.4773
185	//	H	//	//	//	//	130~132
186	//	CH ₃	//	OCH ₃	OCH ₃	N	1.4998
187	//	H	//	//	//	//	1.4914
188	//	CH ₃	S	CH ₃	CH ₃	CH	1.5388
189	//	H	//	//	//	//	117~119
190	//	i-C ₃ H ₇	O	OCH ₃	OCH ₃	//	58~57
191	//	n-C ₄ H ₉	//	//	//	//	44~46

Table 1 (continued)

	Com- ound No.	R	R ¹	X	A	B	Z	Melting point. (°C) or refractive index (n_{D}^{20})
10	192			O	OCH ₃	OCH ₃	CH	83.5~85
15	193		C ₂ H ₅	S	/"	/"	/"	1.5140
194	"	H	/"	/"	/"	/"	/"	63~87
195	n-C ₄ H ₇	C ₂ H ₅	/"	CH ₃	CH ₃	/"	/"	1.5140
196	"	H	/"	/"	/"	/"	/"	1.5368
197	n-C ₄ H ₉	CH ₃	/"	/"	/"	/"	/"	1.5148
198	"	H	/"	/"	/"	/"	/"	1.5308
199	"	CH ₃	O	/"	/"	/"	/"	1.4814
200	"	H	/"	/"	/"	/"	/"	1.4949
25	201		CH ₃	/"	OCH ₃	/"	CH	1.5180
202	t-C ₄ H ₉	H	/"	Cl	/"	CH	30~35	
203	"	/"	/"	OC ₂ H ₅	/"	/"	/"	150~155
204	"	/"	/"	OC ₂ H ₇ -n	/"	/"	/"	81~85
205	"	CH ₃	/"	OC ₂ H ₅	OC ₂ H ₅	/"	/"	1.4783
206	"	H	/"	/"	/"	/"	/"	155~157
207	"	CH ₃	/"	OC ₂ H ₇ -i	OC ₂ H ₇ -i	/"	/"	1.4722
35	208	"	H	/"	/"	/"	/"	147~150
209	"	/"	/"	OCH ₃	OC ₂ H ₅	/"	/"	78~83
40	210		C ₂ H ₅	O	/"	OCH ₃	/"	1.4812
211	"	H	/"	/"	/"	/"	/"	162~167
45	212		CH ₃	/"	CH ₃	CH ₃	/"	1.5013
213	"	H	/"	/"	/"	/"	/"	130~134
50	214		H	/"	OCH ₃	OCH ₃	/"	180~183

Table 1 (continued)

Com- ound No.	R	R'	X	A	B	Z	Melting point- (°C) or refractive index (n_{D}^{20})
215		C2H5	0	OCH3	OCH3	CH	77~79
216	"	H	"	"	"	"	145~147
217		CH3	"	"	CH3	"	1.5304
218	"	H	"	"	"	"	150~152
219		CH3	"	"	OCH3	"	84~86
220	"	H	"	Cl	"	"	135~140
221		CH3	"	"	CH3	"	75~88
222	t-C4H9	"	"	"	"	"	1.4982
223		CH3	"	OCH3	OCH3	"	120~122.5
224	"	H	"	"	"	"	175~178
225		CH3	"	"	"	"	133~136
226	"	H	"	"	"	"	198~204
227		C2H5	"	Cl	"	"	1.5085
228	"	CH3	"	"	CH3	"	1.5100
229		"	"	"	"	"	1.5343
230		"	"	OCH3	OCH3	"	150~152

Table 1 (continued)

Com- ound No.	R	R'	X	A	B	Z	Melting point. (°C) or refractive index (n_D^{20})
231		H	O	OCH ₃	OCH ₃	CH	162~166
232	n-C ₆ H ₅	CH ₃	S	"	"	"	1.5151
233	"	H	"	"	"	"	1.5258
234	t-C ₄ H ₉	"	O	Cl	"	"	58~ 67
235	"	CH ₃	"	CH ₃	"	N	1.4755
236	"	"	"	OC ₂ H ₅	"	CH	1.4794
237	l-C ₆ H ₇	"	"	CH ₃	CH ₃	"	1.4855
238	"	H	"	"	"	"	120~122
239	"	CH ₃	"	"	OCH ₃	"	1.4843
240	"	H	"	"	"	"	127~130
241	"	CH ₃	"	Cl	CH ₃	"	1.4923
242	"	"	"	CH ₃	OCH ₃	N	1.4765
243	"	"	"	OCH ₃	"	CH	57~ 58
244							178~181
245		C ₆ H ₅	O	OCH ₃	OCH ₃	CH	108~110
246		"	"	"	"	"	80~ 83
247	CH ₃ -	"	"	"	"	"	39~ 43
248	"	H	"	"	"	"	117~119
249		"	"	"	"	"	155~158

Table 1 (continued)

Com- ound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
250		C ₂ H ₅	O	OCH ₃	OCH ₃	CH	92~95
251	"	H	"	"	"	"	118~120
252	"	C ₂ H ₅	S	"	"	"	1.5288
253	"	H	"	"	"	"	76~78
254	CH ₃ 	C ₂ H ₅	"	"	"	"	1.5280
255	"	H	"	"	"	"	84~86
256	CH ₃	"	"	"	"	"	109~111
257		C ₂ H ₅	O	"	"	"	130~132
258		H	"	"	"	"	162~164
259	t-C ₄ H ₉ -	CH ₃	"	"	OCHF ₂	"	82~70
260	"	H	"	"	"	"	149~153
261		"	"	Cl	OCH ₃	"	163~168
262	"	CH ₃	"	OCH ₃	OCHF ₂	"	1.5081
263	"	H	"	"	"	"	147~149

Table 1 (continued)

Compound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_D^{20})
264		CH ₃	O	OCHF ₂	CH ₃	CH	1.5121
265		CH ₃	O	OC ₂ H ₅	OC ₂ H ₅	II	67~68
270	II	H	II	II	II	II	145~148
271	II	II	II	OCH ₃	OC ₂ H ₇ -I	II	118~125
272		C ₂ H ₅	II	II	OCH ₃	II	112~113
273		H	II	II	II	II	176~180
274	II	C ₂ H ₅	II	II	II	II	63~65
275		CH ₃	II	II	II	II	120~121
276	II	H	II	II	II	II	187~189
277		CH ₃	O	OCH ₃	OCH ₃	CH	98~99

Table 1 (continued)

Com- ound No.	R	R ¹	X	A	B	Z	Melting point (°C) or refractive index (π_{D}^{20})
278		H	O	OCH ₃	OCH ₃	CH	138~141
279		C ₂ H ₅	S	〃	〃	〃	1.5202
280	〃	H	〃	〃	〃	〃	1.5283
281		C ₃ H ₇ -i	〃	〃	〃	〃	1.5245
282	〃	CH ₂ -	〃	〃	〃	〃	1.5633
283		CH ₃	O	〃	〃	〃	116~119
284	〃	H	〃	〃	〃	〃	165~167
285		CH ₃	〃	〃	〃	〃	114~115
286	〃	H	〃	〃	〃	〃	161~163
287		CH ₃	〃	〃	〃	〃	159~160
288	〃	H	〃	〃	〃	〃	184~186
289		CH ₃	〃	〃	〃	〃	132~136
290	〃	H	〃	〃	〃	〃	185~187

Table 1 (continued)

Com- ound No.	R	R ¹	X	A	B	Z	Melting point. (°C) or refractive index (n_{D}^{20})
291		C ₆ H ₅	S	OCH ₃	OCH ₃	CH	1.5217
292	"	CH ₂ C=CH	"	"	"	"	102~103
293		CH ₃	O	Cl	C ₆ H ₅ -I	"	1.5255
294	"	"	"	OCH ₃	"	"	1.5252
295	"	H	"	"	"	"	Not measurable
296	t-C ₄ H ₉	"	"	"	"	"	Not measurable
297		CH ₃	"	"	OCH ₃	"	101~103
298	"	H	"	"	"	"	151~153
299	"	CH ₃	S	"	"	"	1.5389
300	"	H	"	"	"	"	131~133
301	t-C ₄ H ₉	CH ₃	O	"	C ₆ H ₅	"	1.4364
302	"	H	"	"	"	"	63~67
303		"	"	"	"	"	Not measurable
304		"	"	"	OCH ₃	"	117~119
305	"	C ₆ H ₅	"	"	"	"	1.5222
306		CH ₃	"	"	"	"	121~123

Table 1 (continued)

Com- ound No.	R	R ¹	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
307		H	O	OCH ₃	OCH ₃	CH	175~177
308		CH ₃	"	"	"	"	93~94
309	"	H	"	"	"	"	162~164
310		"	"	"	"	"	160~164
311		C ₂ H ₅	"	"	OCHF ₂	"	1.4777
312	"	H	"	"	"	"	132~133
313		C ₂ H ₅	"	"	OCH ₃	"	71~73
314	"	"	S	"	"	"	1.5313
315	t-C ₄ H ₉	H	"	"	"	"	115~119
316		C ₄ H ₉ -S	"	"	"	"	1.5231
317	"		"	"	"	"	1.5569
318		C ₂ H ₅	"	"	"	"	1.5482
319	"	H	"	"	"	"	138~140
320		C ₂ H ₅	"	"	"	"	1.5270
321	"	H	"	"	"	"	95~98

Table 1 (continued)

Compound No.	R	R ¹	X	A	B	Z	Melting point (°C) or refractive index (n _D ²⁰)
322		H	S	OCH ₃	OCH ₃	CH	148~150
323	i-C ₃ H ₇	CH ₃	"	"	"	"	1.5247
324	"	CH ₃ C=CH	"	"	"	"	1.5238
325	t-C ₄ H ₉	H	"	CH ₃	CH ₃	"	122~125
326	"	"	"	OCH ₃	OCH ₃	H	94~98
327		CH(CH ₃) ₂	"	"	"	CH	1.5190
328	"	CH(C ₂ H ₅) ₂	"	"	"	"	1.5199
329	"	C ₂ H ₅	"	"	"	H	1.5304
330	i-C ₃ H ₇	CH ₃	"	"	"	"	-1.5106
331	"	H	"	"	"	"	1.5240
332	"	"	"	Cl	"	CH	100~105
333	"	"	"	CH ₃	CH ₃	"	93~95
334	"	CH ₃	"	Cl	OCH ₃	"	1.5335
335	"	C ₂ H ₅	"	CH ₃	CH ₃	"	1.5152
336	t-C ₄ H ₉	H	O	OCH ₃	OCH ₃	H	37~40
337	"	CH ₂ -	"	"	"	"	63~66
338		H	"	"	"	"	41~44

Table 1 (continued)

Com- ound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
339		H	S	CH ₃	CH ₃	CH	153~157
340	"	"	"	OCH ₃	OCH ₃	N	115~118
341	t-C ₄ H ₉	H	"	"	OCHF ₂	CH	95~100
342		C ₃ H ₇ -I	"	"	OCH ₃	"	1.5230
343		H	"	"	"	N	105~110
344	"	C ₂ H ₅	"	Cl	"	CH	1.5440
345	"	H	"	"	"	"	90~97
346	"	C ₂ H ₅	"	CH ₃	"	"	1.5327
347	"	H	"	"	"	"	91~93
348	"	"	"	OCH ₃	OCHF ₂	"	127~130
349	"	C ₂ H ₅	"	"	"	"	1.5064
350		H	"	"	"	"	136~140
351	"	"	"	Cl	OCH ₃	"	177~181
352	t-C ₄ H ₉	"	"	"	"	"	121~123
353	C ₂ H ₅	"	"	OCH ₃	"	"	82~83
354	i-C ₃ H ₇	"	"	"	OCHF ₂	"	85~88

Table 1 (continued)

5 Com- ound No.	R	R'	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
10 355	1-C ₃ H ₇	H	S	CH ₃	OCH ₃	CH	1.5331
15 356		CH ₃	O	OCH ₃	//	//	1.5343
20 357	t-C ₄ H ₉	H	//	OCH ₃	H	//	Not measurable
25 358	//	//	//	N(CH ₃) ₂	OCH ₃	//	73~78
30 359	//	//	//	SCH ₃	//	//	150~158
360	//	//	//	//	CH ₃	//	194~200
361	//	//	//	NHCH ₃	OCH ₃	//	101~104
362	//	//	//	OCHF ₂	OCHF ₂	//	205~213
363	//	//	S	NHCH ₃	OCH ₃	//	124~127
364	//	//	//	NHC ₄ H ₉ -t	//	//	123~125
365		//	O	NHCH ₃	//	//	105~109
366	//	//	//	N(CH ₃) ₂	//	//	154~158
367	//	//	//	SCH ₃	//	//	156~158
368	//	//	//	OCHF ₂	OCHF ₂	//	193~197
45 369	//	//	//	NH ₂	OCH ₃	//	227~230

Table 1 (continued)

Compound No.	R	R ¹	X	A	B	Z	Melting point. (°C) or refractive index (n_{D}^{20})
370		H	O	OCH ₃	OCH ₃	CH	144~148
371	"	CH ₃	"	"	"	"	132~134
372	CH ₂ =CH-CH ₂ -	H	"	"	"	"	105~111
373		"	"	"	"	"	113~117
374	"	CH ₃	"	"	"	"	93~96
375	"	C ₂ H ₅	"	"	"	"	187~189
376		H	"	"	"	"	112~114
377	"	CH ₃	"	"	"	"	62~84
378	"	C ₂ H ₅	"	"	"	"	52~54
379		"	"	"	"	"	Not measurable
380		H	S	"	"	"	112~115
381	"	C ₂ H ₅	"	"	"	"	71~73
382		"	O	"	"	"	112~115
383		H	"	"	"	"	148~151
384		H	"	"	"	"	158~163

Table 1 (continued)

Compound No.	R	R ¹	X	A	B	Z	Melting point (°C) or refractive index (n_{D}^{20})
385			O	OCH ₃	OCH ₃	CH	84~85
386	"		"	"	"	"	112~114
387	"		"	"	"	"	1.5162
388	"		"	"	"	CH	68~70
389	"		"	"	"	"	38~38
390	"		S	"	"	"	1.5452
391	"		"	"	"	"	1.6027
392	"		"	"	"	"	1.5309
393	"		"	"	"	"	40~45
394	"		"	"	"	"	1.4958
395	"		"	"	"	"	1.5368
396		CH ₃	O	"	"	"	105~107
397	"	H	"	"	"	"	163~165
398	n-C ₈ H ₁₇	"	S	"	"	"	1.5301
399	n-C ₈ H ₁₇	"	"	"	"	"	1.5263
400	t-C ₄ H ₉	"	"	"	CH ₃	"	128~133
401		"	"	"	"	"	46~49

Table 1 (continued)

Compound No.	R	R'	X	A	B	Z	Melting point. (°C) or refractive index (n_{D}^{20})
402		H	O	OCH ₃	OCH ₃	CH	115~120
403		"	"	"	"	"	215~218
404	"	CH ₃	"	"	"	"	95~ 97
405	t-C ₄ H ₉	H	S	N(CH ₃) ₂	"	"	105~110
406	CH ₃ C ₂ H ₅	"	"	OCH ₃	"	N	75~ 78
407	t-C ₄ H ₉	"	"	NHCH ₃	"	"	1.5187
408	"	"	"	NHC ₂ H ₅	"	"	51~ 55
409	"	"	"	NH-C ₄ H ₉ -t	"	"	128~132
410	"	"	"	NHC ₂ H ₇	"	"	57~ 60
411	"	"	"	NHC ₂ H ₇ -i	"	"	69~ 73
412	"	"	"	Cl	OC ₂ H ₅	CH	73~ 78
413	"	"	"	N(CH ₃) ₂	"	"	101~105
414		H-H ₂ NC ₂ H ₇ -i	S	OCH ₃	OCH ₃	"	68~ 73

Table 2

Compound No.	R ¹⁰	R ¹¹	A	B	Z	Melting point (°C) or refractive index (n _D ²⁰)
415	H	H	OCH ₃	OCH ₃	CH	1.5210
416	CH ₃	CH ₃	"	"	"	165~170
417	"	"	"	"	"	139~142
418	"	"	"	"	N	104~106
419	"	"	CH ₃	CH ₃	CH	118~122

Compound 416 is a S(+) form.

Among the compounds of the present invention, Compound Nos. 4, 9, 65, 42, 66, 132, 133, 315, 153,
25 331, 326 and 336 are particularly excellent as herbicides.

The compounds of the present invention can be prepared by the processes of the following reaction schemes (1) to (6).

30 (1)

In the above formulas, R¹² is a halogen atom, an alkylsulfonyl group, a benzylsulfonyl group or a substituted benzylsulfonyl group, Y is a halogen atom or a methylsulfonyloxy group, and R, R¹, A, B, X and Z are as defined above.

The compound of the formula I can be prepared by reacting the compound of the formula A with the compound of the formula B as shown in reaction scheme (1), or by reacting the compound of the formula C with the compound of the formula D as shown in reaction scheme (2) in the presence of at least one

equivalent of a base in a solvent at a temperature within a range of from room temperature to the boiling point of the solvent for from 0.5 to 24 hours. As the base, an alkali metal such as sodium metal or potassium metal, and an alkali metal hydride or alkaline earth metal hydride such as sodium hydride, potassium hydride or calcium hydride, an alkali metal carbonate such as sodium carbonate or potassium carbonate, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an organic amine such as triethylamine or pyridine, may be employed.

As the solvent, a hydrocarbon solvent such as benzene, toluene or xylene, a halogenated hydrocarbon solvent such as methylene chloride or chloroform, an alcohol solvent such as methanol, ethanol or 2-propanol, an ether solvent such as ethyl ether, tetrahydrofuran or dioxane, a ketone solvent such as acetone or methyl ethyl ketone, an ester solvent such as methyl acetate or ethyl acetate, an aprotic polar solvent such as N,N-dimethylformamide, N,N-dimethylacetamide or dimethylsulfoxide, acetonitrile or water, may be used.

A compound of the formula I of the present invention wherein R¹ is a hydrogen atom, can be prepared by the reaction in accordance with reaction scheme (1) or (2) using at least two equivalent of a base, followed by acidification.

(3)

40 In the above formulas, R¹³ is a formyl group.

45

55 wherein each of R¹⁴ and R¹⁵ which may be the same or different is a hydrogen atom or a lower alkyl group, and each of R¹⁶ and R¹⁷ which may be the same or different is a lower alkyl group, and R, R¹², A, B and Z are as defined above.

The compound of the formula II of the present invention as shown in reaction scheme (3), can be prepared by reacting the compound of the formula E with the compound of the formula B in the presence of

a base in a suitable solvent at a temperature range of from -10°C to the boiling point of the solvent for from 0.5 to 24 hours to obtain the compound of the formula F, and oxidizing the compound of the formula F by an oxidizing agent in the presence of a solvent.

As the base to be used in the preparation of the compound of the formula F, an alkali metal amide such as lithium diisopropylamide, an alkali metal such as sodium metal or potassium metal, an alkali metal hydride or alkaline earth metal hydride such as sodium hydride, potassium hydride or calcium hydride, an alkali metal carbonate such as sodium carbonate or potassium carbonate, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an organic amine such as triethylamine or pyridine, may be employed. However, if such a base is present in the step for preparation of the compound of the formula E, it is unnecessary to further add such a base. As the solvent, a hydrocarbon solvent such as benzene, toluene or xylene, a halogenated hydrocarbon solvent such as methylene chloride or chloroform, an alcohol solvent such as methanol, ethanol or 2-propanol, an ether solvent such as ethyl ether, tetrahydrofuran or dioxane, a ketone solvent such as acetone or methyl ethyl ketone, an ester solvent such as methyl acetate or ethyl acetate, an aprotic polar solvent such as N,N-dimethylformamide, N,N-dimethylacetamide or dimethylsulfoxide, acetonitrile or water, may be used.

As the oxidizing agent oxidizing the compound of the formula F to be used in the preparation of the compound of the formula II of the present invention, a permanganate, silver oxide or a permanganate-periodic acid, may be mentioned.

As the solvent to be used in the oxidation, water, acetic acid or a solvent mixture such as water-acetone or water-acetic acid, may be mentioned. The reaction may be conducted at a temperature within a range of from room temperature to the boiling point of the solvent for 1 to 24 hours.

(4)

25

45

In the above formulas, R^{18} is an alkyl group, an alkenyl group, an alkynyl group or a benzyl group which may be substituted by a halogen atom or an alkoxy group, L is a halogen atom, an imidazolyl group or $-OCOR^{19}$ wherein R^{19} is a lower alkyl group or a phenyl group, and R, A, B, X, Y and Z are as defined above.

50 The compound of the formula IV of the present invention as shown in reaction scheme (4) can be prepared by hydrolyzing the compound of the formula III in the presence of at least one equivalent of a base in water at a temperature with a range of from room temperature to the boiling point of the solvent for from 1 to 48 hours and bringing the reaction solution to be neutral or acidic with an acid. As the base, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide may be employed. Further, in order to facilitate the reaction, an alcohol such as methanol or ethanol or a water-soluble organic solvent such as dioxane or acetonitrile, may be added to the reaction system.

55 The compound of the formula III of the present invention as shown in reaction scheme (4) can be prepared by esterifying the compound of the formula IV. Here, two processes will be described. However, it

should be understood that the present invention is by no means restricted to these processes.

Process A

5 The compound of the formula III can be prepared by reacting the compound of the formula IV with $R^{18}Y$ wherein R^{18} and Y are as defined above, in the presence of a base in a suitable solvent at a temperature within a range of from room temperature to the boiling point of the solvent for 1 to 24 hours. As the base, an alkali metal carbonate such as sodium carbonate, potassium carbonate, sodium hydrogencarbonate or potassium hydrogencarbonate, an alkali metal hydride such as sodium hydride, potassium hydride or an organic amine such as triethylamine, pyridine or DBU, may be used. As the solvent, a hydrocarbon solvent such as benzene, toluene or xylene, an ether solvent such as ethyl ether, ethylene glycol dimethyl ether, tetrahydrofuran or dioxane or an aprotic polar solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide or acetonitrile, may be employed. Further, as a catalyst, crown ether, N,N,N',N'-tetramethylethylenediamine may be used.

10

15

Process B

The compound of the formula IV is reacted with a suitable reagent to prepare the compound of the formula G. Then, after isolating it or without isolating it, it is reacted with $R^{18}OH$ wherein R^{18} is as defined above to obtain the compound of the formula III. Here, as the reagent to be used in the preparation of the compound of the formula G, thionyl chloride, oxalic acid dichloride, a chlorocarbonate or carbonyldiimidazole may be mentioned. As the solvent, a hydrocarbon solvent such as benzene, toluene or xylene, a halogenated hydrocarbon solvent such as methylene chloride or chloroform, an ether solvent such as diethyl ether, ethyleneglycol dimethyl ether or tetrahydrofuran or an aprotic polar solvent such as N,N-dimethylformamide or acetonitrile may be used. The compound of the formula III can be prepared by the reaction of $R^{18}OH$ at a temperature within a range of from 0 °C to the boiling point of the solvent for 0.5 to 24 hours.

30

(5)

In the above formulas, each of $\text{M}^{\text{P}+}$ and $\text{M}'^{\text{P}'-}$ is a cation such as an alkali metal, an alkaline earth metal or a transition metal, organic or inorganic ammonium, and each of P and P' is an electrical charge number of from 1 to 3.

The compound of the formula V as shown in reaction scheme (5) can be prepared by reacting the compound of the formula IV with a base in a solvent at a temperature within a range of from room temperature to the boiling point of the solvent for 5 minutes to 10 hours. As the solvent, a hydrocarbon solvent such as benzene, toluene or xylene, a halogenated hydrocarbon solvent such as methylene chloride or chloroform, an alcohol solvent such as methanol or ethanol, an ether solvent such as ethyl ether,

5 ethyleneglycol dimethyl ether, tetrahydrofuran or dioxane, a ketone solvent such as acetone or methyl ethyl ketone, an ester solvent such as methyl acetate or ethyl acetate, acetonitrile, or water, may be mentioned. As the base, an alkali metal such as sodium metal or potassium metal, an alkali metal hydride or alkaline earth metal hydride such as sodium hydride, potassium hydride or calcium hydride, a carbonate such as sodium carbonate, potassium carbonate or calcium carbonate, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or a primary, secondary or tertiary organic amine, will be employed. Further, the compound of the formula VI can be prepared by subjecting the compound of the formula V to cation exchange in the above-mentioned solvent at a temperature within a range of from room temperature to the boiling point of the solvent for from 5 minutes to 10 hours.

10

(6)

15

25

(VII)

(78)

In the above formulas, each of R¹⁰ and R¹¹ is a hydrogen atom or an alkyl group, and A, B and Z are as defined above.

The compound of the formula VIII as shown in reaction scheme (6) can be prepared by hydrolyzing the compound of the formula VII in the presence of at least one equivalent of a base and then bringing the reaction solution to be neutral or acidic with an acid.

As the base, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide may be employed. Further, in order to facilitate the reaction, the afore-mentioned water-soluble organic solvent may be added to the reaction system.

Now, the process for producing the intermediates to be used in the present invention will be mentioned as Reference Examples.

The compound of the formula A wherein X is an oxygen atom can be obtained by a usual method. For instance, an oxirane is prepared from the corresponding ketone by Darzens reaction, and then an aldehyde is prepared in accordance with the method disclosed in Org. Syn. III, 733 (1955). Then, the aldehyde is converted to a cyanohydrin, followed by hydrolysis to obtain such a compound. Further, specific processes for producing the compound of the formula A wherein X is a sulfur atom will be given in Reference Examples 1 and 2.

The compound of the formula C can be obtained by halogenating the α -position of a fatty acid in accordance with the method disclosed in Org. Syn. III, 848 (1955).

A specific process for producing the compound of the formula E wherein R is

50

55

and R¹³ is CH=CH-CH₃
will be described in Example 11.

REFERENCE EXAMPLE 1

Preparation of 3-phenyl-3-methyl-2-mercaptopbutyric acid

5 15.2 g of diisopropylamine was added to 500 ml of dry tetrahydrofuran, and 84 g of a n-butyl lithium-hexane solution (15%) was dropwise added thereto at a temperature of from -30 to -40 °C under stirring. After completion of the dropwise addition, the mixture was stirred for further 30 minutes, and then the temperature was raised to 0 °C. The reaction solution was stirred at 0 °C for 30 minutes and then cooled to -30 to -40 °C again. 17.8 g of 3-phenyl-3-methylbutyric acid dissolved in 50 ml of tetrahydrofuran and 11.6
 10 ml of hexamethylphosphoric acid triamide were dropwise added thereto. The mixture was stirred for one hour and further stirred at 0 °C for one hour. Then, the reaction solution was cooled to -10 °C, and 3.2 g of sulfur powder was added thereto. The temperature was gradually raised to room temperature and stirred overnight. Water was added to the reaction solution, and the reaction solution was acidified with citric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to obtain a brown solid. The
 15 solid and 7 g of activated zinc powder were added to 70 ml of acetic acid and refluxed for 6 hours. The reaction solution was poured into water, and a precipitated zinc complex was collected by filtration. This complex was stirred in a 48% sodium hydroxide aqueous solution at 90 °C for 30 minutes. The reaction solution was poured into water and subjected to filtration. Then, the filtrate was acidified with hydrochloric acid and extracted with chloroform. The organic layer was washed with water, dried over anhydrous sodium
 20 sulfate and concentrated to obtain 9.6 g of 3-phenyl-3-methyl-2-mercaptopbutyric acid.

Melting point: 70-73 °C

REFERENCE EXAMPLE 2

Preparation of 3,3-dimethyl-2-mercaptopbutyric acid

25 9.2 g of 3,3-dimethyl-2-mercaptopbutyric acid was obtained in the same manner as in Reference Example 1 except that 3,3-dimethyl-2-mercaptopbutyric acid was used instead of 3-phenyl-3-methylbutyric acid.

30 Melting point: 80-81 °C.

Now, the present invention will be described in further detail with reference to Examples.

EXAMPLE 1

Preparation of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-methyl-3-phenylbutyrate (Compound No. 44)

35 4.5 g of ethyl 2-hydroxy-3-methyl-3-phenylbutyric acid, 4.6 g of 4,6-dimethoxy-2-methylsulfonyl-pyrimidine, 5.3 g of anhydrous potassium carbonate and 50 ml of N,N-dimethylformamide were introduced to a round bottom flask, and the mixture was stirred at 100 °C for 3 hours. Then, the reaction mixture was
 40 poured into ice water and extracted twice with 50 ml of ethyl acetate. The extract was washed with water and then dried over anhydrous sodium sulfate overnight. An inorganic salt was removed by filtration, and then the solvent was distilled off under reduced pressure to obtain 7 g of crude crystals. The crude crystals were recrystallized from ethanol to obtain 5.6 g of the desired product.

Melting point: 123-124 °C

45

EXAMPLE 2

Preparation of 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-methyl-3-phenylbutyric acid (Compound No. 42)

50 4.8 g of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-methyl-3-phenylbutyrate, 11 ml of a 10% sodium hydroxide aqueous solution and 50 ml of ethanol were introduced to a round bottom flask and reacted for 2 hours under refluxing. Then, a large portion of ethanol was distilled off under reduced pressure. 50 ml of water was added to the residue thereby obtained, and neutral organic substances were removed by extraction with chloroform. Then, the solution was adjusted to pH 3 to 4 with 5% hydrochloric acid, and
 55 extracted twice with 50 ml of ethyl acetate. The extract was washed with water and then dried over anhydrous sodium sulfate overnight. An inorganic salt was removed by filtration, and then, the solvent was distilled off under reduced pressure to obtain 4.0 g of crude crystals. The crude crystals were recrystallized from ethanol to obtain 2.8 g of the desired product.

Melting point: 163-165 °C

EXAMPLE 3

5 Preparation of sodium 3-(3-chlorophenyl)-2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-methylbutyrate (Compound No. 61)

1 g of 3-(3-chlorophenyl)-2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-methylbutyric acid was dissolved in 10 ml of acetone, and 0.6 g of 28% sodium methoxide was added thereto. The mixture was stirred at room temperature for one hour, and then the precipitated crystals collected by filtration to obtain 0.9 g of the desired product.

Melting point: 220-226 °C

EXAMPLE 4

15 Preparation of propargyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-methyl-3-(3-methylphenyl)butyrate (Compound No. 101)

1.1 g of 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-methyl-3-(3-methylphenyl)butyric acid, 0.5 g of anhydrous potassium carbonate, 0.5 g of propargyl bromide and 20 ml of N,N-dimethylformamide were introduced to a round bottom flask and stirred at 80 °C for 4 hours. Then, the reaction mixture was poured into ice water and extracted twice with 50 ml of toluene. The extract was washed with water and then dried over anhydrous sodium sulfate overnight. An inorganic salt was removed by filtration, and then the solvent was distilled off under reduced pressure to obtain 1.2 g of a viscous liquid. The viscous liquid was dissolved in N-hexane, and the solution was left to stand at room temperature to precipitate crystals. The crystals were collected by filtration to obtain 0.9 g of the desired product.

Melting point: 95-97 °C

EXAMPLE 5

30 Preparation of methyl 2-(4,6-dimethoxy-S-triazin-2-yl)oxy-3-methyl-3-phenyl)butyrate (Compound No. 151)

2.1 g of methyl 2-hydroxy-3-methyl-3-phenylbutyrate, 1.8 g of 2-chloro-4,6-dimethoxy-S-triazine and 1.7 g of potassium carbonate were added to 50 ml of acetonitrile, and the mixture was refluxed for 20 hours. 35 The reaction solution was cooled, then poured into water and extracted with 100 ml of ethyl acetate. The organic layer was washed twice with a sodium chloride aqueous solution, then dried over anhydrous sodium sulfate and concentrated under reduced pressure. The liquid substance thereby obtained was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 6/1) to obtain 1.2 g of the desired product.

40 Melting point: 85-87 °C

EXAMPLE 6

Preparation of methyl 2-(4,6-dimethylpyrimidin-2-yl)oxy-3,3-dimethylbutyrate (Compound No. 13)

45 2.9 g of methyl 2-hydroxy-3,3-dimethylbutyrate, 4.1 g of 4,6-dimethyl-2-methylsulfonylpyrimidine and 3.3 g of potassium carbonate were added to 50 ml of N,N-dimethylformamide, and the mixture was stirred at 100 °C for 4 hours. The reaction solution was cooled to room temperature, poured into water and extracted with 100 ml of ethyl acetate. The organic layer was washed twice with a sodium chloride aqueous 50 solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The liquid substance thereby obtained was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 6/1) to obtain 4.2 g of the desired product.

Refractive index n_D^{20} : 1.4868

EXAMPLE 7Preparation of 2-(4,6-dimethylpyrimidin-2-yl)oxy-3,3-dimethylbutyric acid (Compound No.12)

5 1.5 g of methyl 2-(4,6-dimethylpyrimidin-2-yl)oxy-3,3-dimethylbutyrate was dissolved in 10 ml of methanol, and 10 ml of an aqueous solution containing 0.5 g of potassium hydroxide was added thereto. The mixture was stirred at room temperature for 12 hours and then shaken with 210 ml of toluene and 30 ml of water in a separatory funnel. The aqueous layer was acidified with an oxalic acid aqueous solution and extracted with 100 ml of ethyl ether. The organic layer was dried over anhydrous sodium sulfate and 10 concentrated under reduced pressure to obtain 1.2 g of the desired product.

Melting point: 167-169 °C

EXAMPLE 8Preparation of 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3,3-dimethyl-γ-butyrolactone (Compound No. 247)

15 13.0 g of 2-hydroxy-3,3-dimethyl-γ-butyrolactone and 24.0 g of 4,6-dimethoxy-2-methylsulfonylpyrimidine were mixed in 80 ml of N,N-dimethylformamide in the presence of 27.6 g of potassium carbonate at a temperature of from 90 to 100 °C for 3 hours. The reaction solution was cooled to room 20 temperature, then, poured into ice water and extracted with ethyl ether. The extract was washed twice with water and dried over anhydrous magnesium sulfate. The desiccating agent was removed by filtration and then the filtrate was concentrated to obtain 26.0 g of the desired product.

Melting point: 139-142 °C

EXAMPLE 9Preparation of 2-(4,6-dimethoxypyrimidin-2-yl)oxy-4-hydroxy-3,3-dimethylbutyric acid (Compound No. 77)

25 To 150 ml of an ethanol solution of 5.4 g of 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3,3-dimethyl-γ-butyrolactone, 20 ml of an aqueous solution of 1.2 g of sodium hydroxide was added, and then, the mixture was stirred at room temperature for one hour. Ethanol was evaporated under reduced pressure, and the reaction solution was adjusted to pH 2 to 3 with 5% hydrochloric acid. The reaction solution was extracted twice with ethyl acetate, washed twice with a sodium chloride aqueous solution and then dried over anhydrous magnesium sulfate. The desiccating agent was removed by filtration, and then, the filtrate was 35 concentrated under reduced pressure to obtain 4.7 g of the desired product.

Melting point: 104-110 °C

EXAMPLE 10Preparation of methyl 2-(4,6-dimethoxypyrimidin-2-yl)oxyhexanoate (Compound No. 8)

40 3.5 g of 2-hydroxy-4,6-dimethoxypyrimidine, 4.7 g of methyl 2-bromohexanoate, 50 ml of N,N-dimethylformamide and 3.3 g of anhydrous potassium carbonate were stirred at a temperature of from 85 to 90 °C for 3 hours. The reaction mixture was cooled to room temperature and then diluted with water. This 45 aqueous mixture was extracted with ethyl ether. The ethyl ether extract was washed with water and dried. Then, ethyl ether was removed by distillation under reduced pressure to obtain a slightly yellow oily substance. The slightly yellow oily substance was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 6/1) to obtain 4.7 g of the desired product.

Refractive index n_D^{20} : 1.4868

50

EXAMPLE 11Preparation of 3-cyano-2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-methylbutyric acid (Compound No. 155)

55 To a tetrahydrofuran solution of lithium diisopropylamide prepared from 3.3 g of diisopropylamine and 14.1 g of a 15% n-butyl lithium hexane solution dissolved in 50 ml of tetrahydrofuran at -20 °C, 2.3 g of isobutyronitrile and 2.1 g of crotonaldehyde were added in turn at -10 °C to obtain 5-cyano-4-hydroxy-5-methyl-2-hexane. To this reaction solution, 6.5 g of 4,6-dimethoxy-2-methylsulfonylpyrimidine was added,

and the mixture was stirred overnight. The reaction solution was neutralized with a 10% hydrochloric acid aqueous solution, extracted with ethyl acetate, washed with water and dried. The solvent was distilled off to obtain crystals of 5-cyano-4-(4,6-dimethoxypyrimidin-2-yl)oxy-5-methyl-2-hexene (melting point: 91-92 °C). The crystals thereby obtained were dissolved in 100 ml of acetone, and an aqueous solution of 1.7 g of potassium permanganate were added thereto at room temperature. The mixture was stirred for one hour. Acetone was distilled off and then the reaction solution was extracted with ethyl acetate. The ethyl acetate layer was washed and adjusted to pH 4 to obtain 0.68 g of the desired product.

Melting point: 142-150 °C

10 EXAMPLE 12

Preparation of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)thiocyclopentyl acetate (Compound No. 132)

4.0 g of 2-mercaptop-4,6-dimethoxypyrimidine, 4.8 g of ethyl 2-bromocyclopentyl acetate, 50 ml of N,N-dimethylformamide and 3.4 g of anhydrous potassium carbonate were stirred at 90 °C for 3 hours. The reaction mixture was cooled to room temperature and then diluted with water. The aqueous mixture was extracted with ethyl ether. The ethyl ether extract was washed with water and dried. Then, ethyl ether was removed by distillation under reduced pressure to obtain an yellow oily substance. The yellow oily substance was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 6/1) to obtain 3.6 g of the desired product.

Refractive index n_D^{20} : 1.5310

EXAMPLE 13

25 Preparation of 2-(4,6-dimethoxypyrimidin-2-yl)thiocyclopentyl acetic acid (Compound No. 133)

To a mixture solution of 20 ml of ethanol, 20 ml of water and 0.4 g of sodium hydroxide, 2.5 g of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)thiocyclopentyl acetate was added, and the mixture was stirred at a temperature of from 45 to 50 °C for 3 hours. Ethanol was removed by distillation under reduced pressure, and the residue was extracted with toluene. The toluene layer was removed. The aqueous layer was adjusted to pH 2 to 3 with a 5% hydrochloric acid aqueous solution and extracted with ethyl ether. The ethyl ether extract was washed with water and dried. Then, ethyl ether was removed by distillation under reduced pressure to obtain a white solid. The solid was recrystallized from isopropyl ether to obtain 1.6 g of the desired product.

Melting point: 125-127 °C.

35

EXAMPLE 14

Preparation of ferric 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3,3-dimethylbutyrate (Compound No. 244)

40 To 5 ml of an aqueous solution of 0.2 g of sodium hydroxide, 1.0 g of 2-(4,6-dimethoxypyrimidin-2-yl)-oxy-3,3-dimethylbutyric acid was dissolved to prepare a sodium salt. 5 ml of aqueous solution of 1.1 g of ferric trichloride (hexahydrate) was added thereto. Precipitated salts were collected by filtration, thoroughly washed with water and dried to obtain 1.1 g of the desired product.

Melting point: 178-181 °C

45

EXAMPLE 15

Preparation of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy-(1,2-epoxycyclohexyl)acetate (Compound No. 245)

50 To a suspension of 5.9 g of methachloro perbenzoic acid in 70 ml of methylene chloride, 7.4 g of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy-2-(1-cyclohexenyl)acetate was added at a temperature of from 5 to 10 °C over a period of 30 minutes. The reaction mixture was stirred at room temperature for 12 hours, and formed crystals were removed by filtration. Then, the filtrate was washed a few times with a diluted sodium carbonate aqueous solution and water and dried over anhydrous sodium sulfate. Then, methylene chloride was removed by distillation under reduced pressure to obtain a yellow residue. The residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 6/1) to obtain 1.9 g of the desired product.

Melting point: 108-110 °C

EXAMPLE 16

Preparation of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)thio-2-(2,4-dimethylcyclopentyl)acetate (Compound No. 279)

5 3.2 g of 2-mercaptop-4,6-dimethoxypyrimidine, 4.9 g of ethyl 2-bromo-2-(2,4-dimethylcyclopentyl)acetate, 50 ml of N,N-dimethylformamide and 2.7 g of anhydrous potassium carbonate were stirred at a temperature of from 85 to 90 °C for 3 hours. The reaction mixture was cooled to room temperature and then diluted with water. The aqueous mixture was extracted with ethyl ether. The ethyl ether extract was washed with water and dried. Then, ethyl ether was removed by distillation under reduced pressure to obtain a slightly yellow oily substance. The slightly yellow oily substance was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 10/1) to obtain 4.5 g of the desired product.

10 Refractive index n_D^{20} : 1.5202

15 EXAMPLE 17

Preparation of 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-trifluoromethylbutyric acid (Compound No. 376)

20 To a mixture solution of 50 ml of methanol, 50 ml of water and 1.0 g of sodium hydroxide, 8.0 g of methyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-trifluoromethylbutyrate was added, and the mixture was stirred at a temperature of from 45 to 50 °C for 4 hours. Methanol was removed by distillation under reduced pressure, and the residue was extracted with toluene. The toluene layer was removed, and the aqueous layer was adjusted to pH 2 to 3 with a 5% hydrochloric acid aqueous solution and extracted with ethyl ether. The ethyl ether extract was washed and dried. Then, ethyl ether was removed by distillation under reduced pressure to obtain a slightly yellow solid. The solid was recrystallized from n-hexane to obtain 5.9 g of the desired product.

25 Melting point: 112-114 °C

EXAMPLE 18

30 Preparation of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)thio-2-(1-cyclopentenyl)acetate (Compound No. 318)

35 10.4 g of 2-mercaptop-4,6-dimethoxypyrimidine, 15.0 g of ethyl 2-(1-cyclopentenyl)-2-(methylsulfonyloxy)acetate, 100 ml of N,N-dimethylformamide and 9.2 g of anhydrous potassium carbonate were stirred at 90 °C for 5 hours. The reaction mixture was cooled to room temperature and then diluted with water. The aqueous mixture was extracted with ethyl ether. The ethyl ether extract was washed with water and dried. Then, ethyl ether was removed by distillation under reduced pressure to obtain an yellow oily substance. The yellow oily substance was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 10/1) to obtain 9.7 g of the desired product.

40 Refractive index n_D^{20} : 1.5482

EXAMPLE 19

Preparation of 2-(4,6-dimethoxy-S-triazin-2-yl)thio-2-cyclopentyl acetic acid (Compound No. 343)

45 To a mixture solution of 6.0 g of 2-mercaptop-2-cyclopentyl acetic acid, 4.2 g of potassium hydroxide and 50 ml of water, a solution of 30 ml of acetone and 6.6 g of 2-chloro-4,6-dimethoxy-S-triazine was added at a temperature of from 0 to 5 °C for 20 minutes. Then, the reaction mixture was stirred at room temperature for 1.5 hours. Acetone was removed by distillation under reduced pressure, and the residue was extracted with ethyl ether. The ethyl ether layer was removed, and the aqueous layer was adjusted to pH 2 to 3 with a 5% hydrochloric acid aqueous solution and extracted with ethyl acetate. The ethyl acetate extract was washed with water and dried. Then, ethyl acetate was removed by distillation under reduced pressure to obtain a white solid. The solid was recrystallized from isopropyl ether and n-hexane to obtain 4.5 g of the desired product.

55 Melting point: 106-110 °C

EXAMPLE 20

Preparation of isopropylammonium 2-(4,6-dimethoxypyrimidin-2-yl)thio-2-cyclopentyl acetate (Compound No. 414)

5 A mixture of 5.0 g of 2-(4,6-dimethoxypyrimidin-2-yl)thio-2-cyclopentylacetic acid, 1.0 g of isopropylamine and 80 ml of methanol was stirred at room temperature for 1.5 hours. Methanol was removed by distillation under reduced pressure. Isopropyl ether was added to the residue, and the mixture was stirred at room temperature for 0.5 hour. Formed crystals were collected by filtration, washed with n-hexane and then dried to obtain 4.3 g of the desired product.

10 Melting point: 68-73 °C

EXAMPLE 21

Preparation of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-(2,6-dichlorophenyl)propionate (Compound No. 257)

15 50 ml of a N,N-dimethylformamide solution of 1.65 g of 2-(4,6-dimethoxypyrimidin-2-yl)oxy-3-(2,6-dichlorophenyl)propionic acid, 0.5 g of ethyl bromide 0.6 g of potassium carbonate was stirred at 80 °C for 20 2 hours under heating. The reaction solution was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed and dried. Then, the solvent was distilled off to obtain colorless crystals.

Melting point: 130-132 °C

EXAMPLE 22

Preparation of 2-(1-indanyl)-2-(4,6-dimethoxypyrimidin-2-yl)oxy acetic acid (Compound No. 373)

25 A mixture solution of 3.8 g of methyl 2-(1-indanyl)-2-(4,6-dimethoxypyrimidin-2-yl)oxy acetate, 6.2 g of potassium hydroxide, 60 ml of water and 60 ml of ethanol was stirred at room temperature for 5 hours. The solvent was distilled off, and residue was extracted with ethyl acetate. The ethyl acetate layer was extracted with a sodium hydrogencarbonate aqueous solution. The aqueous layer was acidified and then extracted with ethyl acetate. The ethyl acetate layer was washed with water and dried. The solvent was distilled off to obtain 2.4 g of the desired product.

Melting point: 113-117 °C

35

EXAMPLE 23

Preparation of methyl 2-(1-indanyl)-2-(4,6-dimethoxypyrimidin-2-yl)oxy acetate (Compound No. 374)

40 100 ml of a N,N-dimethylformamide solution of 8.1 g of methyl 2-(2-indanyl)-2-hydroxy acetate, 9.0 g of 4,6-dimethoxy-2-methylsulfonylpyrimidine and 6.0 g of potassium carbonate was reacted at 100 °C under heating for 5 hours. After completion of the reaction, the reaction solution was poured into water and extracted with ethyl acetate. The extract was washed with water and dried. Then, the solvent was distilled off under reduced pressure, and the residue thereby obtained was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 6/1) to obtain 5.8 g of the desired product.

45 Meltingt: 93-96 °C

EXAMPLE 24

Preparation of 2-(2-methylindan-1-yl)-2-(4,6-dimethoxypyrimidin-2-yl)oxy acetic acid (Compound No. 383)

50 50 ml of a N,N-dimethylformamide solution of 2.9 g of methyl 2-(2-methylindan-1-yl)-2-hydroxy acetate, 2.9 g of 4,6-dimethoxy-2-methylsulfonylpyrimidine and 2.1 g of potassium carbonate was reacted at 80 °C under heating for 3 hours. After completion of the reaction, the reaction solution was poured into water and extracted with ethyl ether. The extract was washed with water and dried. Then, the solvent was distilled off under reduced pressure to obtain 2.3 g of methyl 2-(2-methylindan-1-yl)-2-(4,6-dimethoxypyrimidin-2-yl)oxy acetate (melting point: 102-104 °C).

A solution mixture of 3.2 g of methyl 2-(2-methylindan-1-yl)-2-(4,6-dimethoxypyrimidin-2-yl)oxy acetate, 1.0 g of potassium hydroxide, 100 ml of water and 100 ml acetone was reacted at 60 °C for 3 hours. The solvent was distilled off, and the residue was extracted with ethyl ether. The ethyl ether layer was extracted with a sodium hydrogencarbonate aqueous solution and the aqueous layer was acidified and extracted with 5 ethyl ether. The ethyl ether layer was washed with water and dried. The solvent was distilled off to obtain 1.9 g of the desired product.

Melting point: 148-151 °C

EXAMPLE 25

Preparation of 3,3-dimethyl-2-(4,6-dimethoxy-S-triazin-2-yl)oxybutyric acid (Compound No. 336)

4.8 g of benzyl 3,3-dimethyl-2-hydroxyacetate and 3.4 g of 2-chloro-4,6-dimethoxy-S-triazine were dissolved in 100 ml of tetrahydrofuran, and the solution was stirred under cooling with ice. 1.2 g (60%) of 10 sodium hydride was added thereto. The temperature was raised to room temperature, and the mixture was stirred overnight. The reaction solution was poured into water and extracted with 80 ml of ethyl acetate. The organic layer was washed with water, dried over anhydrous sodium sulfate and concentrated to obtain an oily substance. The oily substance was purified by silica gel column chromatography (eluent: hexane/ethyl 15 acetate = 10/1) to obtain 6.2 g of benzyl 3,3-dimethyl-2-(4,6-dimethoxy-S-triazin-2-yl)oxybutyrate (Compound No. 337, melting point: 63-66 °C).

4.5 g of benzyl 3,3-dimethyl-2-(4,6-dimethoxy-S-triazin-2-yl)oxybutyrate and 0.5 g (10%) of palladium 20 carbon wetted with 2 ml of acetic acid were added to 100 ml of ethanol. 257 ml of hydrogen was added thereto at room temperature under stirring. The reaction solution was subjected to filtration, and the filtrate was extracted twice with 200 ml of ethyl acetate. The organic layer was dried over anhydrous sodium 25 sulfate and concentrated under reduced pressure to obtain 3.1 g of the desired product.

Melting point: 37-40 °C

EXAMPLE 26

Preparation of 3-phenyl-3-methyl-2-(4,6-dimethoxy-S-triazin-2-ylthio)butyric acid (Compound No. 340)

1.9 g of 3-phenyl-3-methyl-2-mercaptopbutyric acid was dissolved in 50 ml of acetone, and 1.2 g of 35 potassium hydroxide dissolved in 5 ml of water was added thereto under cooling with ice. 1.5 g of 2-chloro-4,6-dimethoxy-S-triazine dissolved in 20 ml of acetone was added thereto. The mixture was stirred for 30 minutes. Then, the reaction solution was poured into water and extracted with 50 ml of ethyl acetate. The aqueous layer was acidified with a citric acid aqueous solution and extracted with 100 ml of chloroform. The organic layer was washed with water, dried over anhydrous sodium sulfate and concentrated to obtain 2.2 g of the desired product.

Melting point: 115-118 °C

EXAMPLE 27

Preparation of ethyl 2-(4,6-dimethoxypyrimidin-2-yl)oxy-2-(1,2,3,4-tetrahydronaphthalen-1-oxo-2-yl)acetate (Compound No. 379)

3.0 g of ethyl 2-hydroxy-2-(1,2,3,4-tetrahydronaphthalen-1-oxo-2-yl)acetate and 2.6 g of 4,6-dimethoxy-2-methylsulfonylpyrimidine were dissolved in 50 ml of tetrahydrofuran, and 0.8 g (60%) of sodium hydride was added thereto at 5 °C. The mixture was stirred overnight. Then, the reaction solution was poured into water and extracted with ethyl acetate. The ethyl acetate extract was dried over anhydrous sodium sulfate 50 and concentrated. The residue thereby obtained was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 6/1) to obtain 0.4 g of the desired product.

The herbicidal composition of the present invention comprises a herbicidally effective amount of the compound of the present invention and an agricultural adjuvant. The herbicide of the present invention may be used as it is or may be formulated in various formulations such as a wettable powder, a granule, an emulsifiable concentrate a flowable, a dry flowable, a liquid formulation, or a dust by blending it in an amount of from 0.5 to 95 parts by weight, preferably from 1 to 80 parts by weight, with a carrier, a surfactant, a dispersing agent or an adjuvant which is commonly employed for the formulation of agricultural chemicals, in an amount to make up the total of 100 parts by weight.

As the carrier to be used for the formulation, there may be mentioned a solid carrier such as jeeklite, talc, bentonite, clay, kaolin, diatomaceous earth, white carbon, vermiculite, slaked lime, silica sand, ammonium sulfate or urea, or a liquid carrier such as isopropyl alcohol, xylene, cyclohexane or methyl naphthalene. As the surfactant and dispersing agent, there may be mentioned, for example, an alcohol-sulfuric acid ester, an alkyl aryl sulfonate, lignin sulfonate, a polyoxyethylene glycol ether, a polyoxyethylene alkyl aryl ether or a polyoxyethylene sorbitol mono-alkylate. As the adjuvant, for example, carboxymethyl cellulose, polyethylene glycol or gum arabic may be mentioned.

The proportion of the compound of the present invention in the formulation may vary depending upon the type of the formulation, the application method, the application site, timing, etc. Therefore, it can not generally be defined. However, it is usually from 5 to 90% by weight in a wettable powder, from 5 to 80% by weight in an emulsifiable concentrate, from 1 to 60% by weight in a flowable, from 0.5 to 20% by weight in a granule, from 5 to 80% by weight in a liquid formulation, from 0.5 to 10% by weight in a dust and from 5 to 90% by weight in a dry flowable.

In practical use, such a herbicide may be diluted to a suitable concentration before application, or may directly be applied. Further, the herbicide of the present invention can be used in combination with other herbicides.

Now, Formulation Examples for the herbicidal composition of the present invention will be given. In these Examples, "%" means "% by weight".

20 FORMULATION EXAMPLE 1 (wettable powder)

10% of Compound No. 1, 0.5% of Emulgen 810 (trademark, Kao Corporation), 0.5% of Demol N (trademark, Kao Corporation), 20% of Kunilite 201 (trademark, Kunimine Kogyo K.K.) and 69% of Jeeklite CA (trademark, Jeeklite Company Ltd.) were uniformly mixed and pulverized to obtain a wettable powder.

25 FORMULATION EXAMPLE 2 (emulsifiable concentrate)

30% of Compound No. 1, 20% of cyclohexanone, 11% of polyoxyethylene alkyl aryl ether, 4% of calcium alkylbenzenesulfonate and 35% of methyl naphthalene, were uniformly dissolved to obtain an emulsifiable concentrate.

FORMULATION EXAMPLE 3 (granule)

5% of Compound No. 1, 2% of a sodium salt of a lauryl alcohol-sulfuric acid ester, 5% of sodium lignin sulfonate, 2% of carboxymethyl cellulose and 86% of clay were uniformly mixed and pulverized. To 100 parts by weight of this mixture, 20 parts by weight of water was added, and the mixture was kneaded, and granulated into granules of from 14 to 32 mesh by means of an extrusion granulating machine, followed by drying to obtain granules.

40 FORMULATION EXAMPLE 4 (dust)

2% of Compound No. 1, 5% of diatomaceous earth and 93% of clay were uniformly mixed and pulverized to obtain a dust.

The herbicide of the present invention is capable of controlling various weeds in an upland field by soil treatment before or after the emergence of weeds or by foliage treatment. Further, the herbicide is capable of controlling various weeds in a paddy field by irrigated soil treatment before or after the emergence of weeds or by foliage treatment.

For soil treatment, the herbicide of the present invention is applied in a dose of from 0.1 g to 1 kg, preferably from 1 to 400 g of the active ingredient per 10 ares. For foliage treatment, it is diluted to a concentration of from 1 to 10,000 ppm for application.

The compounds and the herbicidal compositions of the present invention are capable of effectively controlling annual weeds such as barnyardgrass (Echinochloa crus-galli), crabgrass (Digitaria sanguinalis), goosegrass (Eleusine indica), green foxtail (Setaria viridis), giant foxtail (Setaria faberi), yellow foxtail (Setaria glauca), shattercane (Sorghum bicolor), proso millet (Panicum miliaceum), fall panicum (Panicum dichotomiflorum), itchgrass (Rottboellia exaltata), downy brome (Bromus tectorum), water foxtail (Alopecurus aequalis), annual bluegrass (Poa annua), wild oat (Avena fatua), italian ryegrass (Lolium multiflorum), smartweed (Polygonum lapathifolium), slender amaranth (Amaranthus viridis), lambsquarters (Chenopodium album), velvetleaf (Abutilon theophrasti), common cocklebur (Xanthium strumarium), mornin-

gglory (*Ipomoea* spp), chickweed (*Stellaria media*), prickly sida (*Sida spinosa*), sicklepod (*Cassia tora*), Japanese bindweed (*Calystegia hederacea*), wild mustard (*Brassica arvensis*), field bindweed (*Convolvulus arvensis*), jimsonweed (*Datura stramonium*), rice flatsedge (*Cyperus iria*), broadleaf signalgrass (*Brachiaria platyphylla*), wild buckwheat (*Polygonum convolvulus*) and devils beggarticks (*Bidens frondosa*), and 5 perennial weeds such as purple nutsedge (*Cyperus rotundus*), johnsongrass (*Sorghum halepense*), bermudagrass (*Cynodon dactylon*) and quackgrass (*Agropyron repens*) grown in upland fields.

Further, they are capable of effectively controlling annual weeds such as barnyardgrass (*Echinochloa crus-galli*), flatsedge (*Cyperus difformis*), monochoria (*Monochoria vaginalis*), bulrush (*Scirpus hotarui*) and 10 *Alisma canaliculatum*, and perennial weeds such as *Cyperus serotinus*, *Sagittaria pygmaea* and *Eleocharis kuroguwai*, grown in paddy fields.

On the other hand, they are highly safe to crop plants, particularly to cotton (*Gossypium indicum*) and soybean (*Glycine max*).

Now, the herbicidal activities of the herbicides of the present invention will be described with reference to Test Examples.

15 The following abbreviations represent the following test plants:

Ec:	barnyardgrass (<i>Echinochloa crus-galli</i>)
Di:	crabgrass (<i>Digitaria sanguinalis</i>)
Po:	smartweed (<i>Polygonum lapathifolium</i>)
Am:	slender amaranth (<i>Amaranthus retroflexus</i>)
Ch:	lambsquarters (<i>Chenopodium album</i>)
Ci:	rice flatsedge (<i>Cyperus iria</i>)
Cd:	flatsedge (<i>Cyperus difformis</i>)
Mo:	monochoria (<i>Monochoria vaginalis</i>)
Sc:	bulrush (<i>Scirpus hotarui</i>)
Se:	green foxtail (<i>Setaria viridis</i>)
So:	Johnsongrass (<i>Sorghum halepense</i>)
Al:	blackgrass (<i>Alopecurus myosuroides</i>)
Go:	cotton (<i>Gossypium hirsutum</i>) and
Gl:	soybean (<i>Glycine max</i>)

30 TEST EXAMPLE 1

In a pot filled with soil (surface area: 100 cm²), seeds of barnyardgrass (Ec), crabgrass (Di), smartweed (Po), slender amaranth (Am), lambsquarters (Ch) and rice flatsedge (Ci), were sown and covered with soil in 35 a thickness of from 0.5 to 1 cm. The pot was cultured in a green house at a temperature of from 20 to 25 °C for 2 weeks, and then a predetermined amount of a wettable powder prepared in accordance with Formulation Example 1 was diluted with water, and applied to the foliage at a rate of 100 liters per 10 ares (dose of active ingredient: 400 g/10 ares). The evaluation was conducted on the 14th day after the treatment in accordance with the standard as identified in Table 3. The results are shown by the index numbers in 40 Table 4.

Table 3

Index No.	Herbicidal effects
0	No herbicidal effect
1	Herbicidal effect: more than 0% and less than 30%
2	Herbicidal effect: at least 30% and less than 50%
3	Herbicidal effect: at least 50% and less than 70%
4	Herbicidal effect: at least 70% and less than 90%
5	Herbicidal effect: more than 90%

Table 4

5

10

15

20

25

30

35

40

45

50

Compound No.	Herbicidal effect					
	Ec	Di	Po	An	Ch	Ci
2	4	3	5	5	4	4
3	4	3	5	5	5	4
4	5	5	5	5	5	5
5	5	4	5	5	5	5
6	5	5	5	5	5	5
7	5	5	5	5	5	5
8	5	5	5	5	5	5
9	5	5	5	5	5	5
10	5	4	5	5	3	4
11	5	5	4	5	3	4
12	5	5	5	5	5	5
14	5	5	5	5	5	5
15	5	5	5	5	5	5
18	5	5	5	5	5	5
19	5	5	5	5	5	5
20	5	5	5	5	5	5
21	5	5	5	5	5	5
24	5	5	5	5	4	5
26	5	4	5	4	4	4
29	5	5	5	5	5	5
30	5	4	5	5	5	5
36	5	5	5	5	5	5
38	5	5	5	5	5	5
39	5	5	5	5	5	4
40	5	3	5	5	5	5
41	5	4	5	4	4	4
42	5	5	5	5	5	5
44	5	4	3	5	3	4
50	5	3	5	5	5	5
53	5	4	5	5	4	5
57	5	4	5	5	4	5
61	5	4	5	5	4	5
62	5	5	5	5	5	5

Table 4 (continued)

5 Compound No.	Herbicidal effect					
	Ec	Di	Po	Am	Ch	Ci
10 65	5	5	5	5	5	5
66	5	5	5	5	5	5
69	5	4	5	5	5	5
70	5	4	5	5	5	5
71	5	3	5	5	4	5
73	5	4	5	3	3	5
76	4	4	4	4	4	5
77	4	4	5	4	4	5
78	4	4	5	5	4	5
20 79	5	5	5	4	5	5
90	4	4	5	5	5	5
105	5	4	5	5	4	5
107	5	5	5	5	5	5
117	5	5	5	5	5	5
119	5	5	5	5	5	5
121	4	4	5	5	5	5
132	5	4	5	5	5	5
30 133	5	3	5	5	5	5
135	4	4	5	5	5	5
139	5	3	5	5	4	5
140	4	3	4	5	3	5
35 141	5	5	5	5	5	5
142	3	4	5	5	5	3
152	5	5	5	5	5	5
153	5	5	5	5	5	5
40 155	5	5	5	5	5	5
156	5	5	5	5	5	5
157	5	5	5	5	5	5
159	4	4	5	5	4	5
45 161	5	4	5	5	5	4
162	5	5	5	5	5	5
163	5	4	4	5	4	5
165	5	5	5	5	5	5

50

Table 4 (continued)

5	Compound No.	Herbicidal effect					
		Ec	Di	Po	Am	Ch	Ci
10	170	5	4	4	5	4	5
	171	4	4	5	5	5	5
	172	5	5	5	5	5	5
	177	5	5	5	5	5	5
15	178	5	5	5	5	5	5
	179	5	4	4	5	4	4
	182	5	4	5	5	5	5
	183	5	5	5	5	5	5
	186	5	5	5	5	5	5
20	187	5	5	5	5	5	5
	190	5	5	5	5	5	5
	191	5	5	5	5	5	5
25	192	5	5	5	5	5	5
	193	5	4	5	5	5	5
	194	5	4	5	5	5	5
	199	5	4	5	5	5	5
30	200	5	4	5	5	5	5
	201	5	4	5	5	4	5
	202	5	3	5	5	4	5
	203	5	5	5	5	5	5
	204	5	5	5	5	5	5
35	209	5	5	5	5	5	5
	212	5	3	5	5	5	5
	213	5	4	5	5	4	5
40	214	5	4	5	5	4	5
	216	5	5	5	5	5	5
	219	5	5	5	5	5	5
	220	5	5	5	5	5	5
	224	5	5	5	5	5	5
45	226	5	4	5	5	4	5
	227	5	5	5	5	4	5
	228	5	4	5	5	4	5
50	232	5	5	5	5	5	5

Table 4 (continued)

Compound No.	Herbicidal effect					
	Ec	Di	Po	An	Ch	Ci
233	5	5	5	5	5	5
234	5	5	4	5	5	5
235	5	5	5	5	4	4
238	5	5	5	5	4	4
240	5	4	5	5	4	5
242	5	3	4	5	4	4
243	5	5	5	5	5	5
244	5	5	5	5	5	5
247	5	4	5	5	5	3
248	5	4	5	5	5	4
250	4	4	5	5	5	-
251	5	4	5	5	5	5
252	5	3	5	5	4	3
253	5	4	5	5	5	5
255	5	4	5	5	5	5
260	5	5	3	5	5	5
263	5	4	5	5	5	5
265	4	2	5	5	4	4
266	5	3	5	5	5	5
267	5	4	5	5	5	5
268	5	4	5	5	5	5
270	4	3	5	5	4	5
271	5	4	5	5	4	5
280	4	3	5	5	4	5
281	5	4	5	5	5	5
282	5	4	5	5	5	5
286	5	4	5	5	4	5
291	5	5	5	5	4	5
292	4	-	5	5	4	5
297	5	5	5	5	5	5
298	5	5	5	5	5	5
299	5	4	5	5	5	5
300	5	3	5	5	5	5

50

Table 4 (continued)

5	Compound No.	Herbicidal effect					
		Ec	Di	Po	Am	Ch	Ci
10	302	4	-	5	5	5	5
	303	4	3	5	5	5	5
	310	5	3	4	5	4	5
	311	4	-	5	5	5	5
15	312	5	4	5	5	5	5
	313	5	5	5	5	5	5
	314	5	4	5	5	5	5
	315	5	4	5	5	5	5
	316	5	3	5	5	5	5
20	317	5	-	5	5	4	5
	318	5	-	5	5	5	5
	319	5	4	5	5	5	5
	321	-	-	5	5	5	5
25	322	3	-	5	5	5	5
	323	5	5	4	5	5	5
	324	5	5	5	5	5	5
	326	5	5	5	5	5	-
30	327	5	5	5	5	5	-
	328	5	4	5	5	5	-
	329	5	5	5	5	5	-
	330	5	5	5	5	5	-
35	331	5	5	5	5	5	-
	332	5	3	5	5	5	-
	334	5	4	5	5	5	-
	336	5	5	5	5	5	-
40	337	5	5	5	5	5	-
	338	5	5	5	5	5	-
	340	5	3	5	5	5	-
	341	5	5	5	5	5	-
45	342	5	5	5	5	5	-
	343	5	5	5	5	5	-
	344	5	4	5	5	5	-
	345	5	4	5	5	5	-
50							

Table 4 (continued)

Compound No.	Herbicidal effect					
	Ec	Di	Po	An	Ch	Ci
347	4	4	3	5	5	5
348	5	5	5	5	5	-
349	5	3	5	5	-	-
352	5	5	5	5	5	5
353	5	5	5	5	5	-
354	5	5	5	5	5	-
357	5	4	4	5	4	5
358	5	5	5	5	5	5
359	5	5	5	5	5	5
360	5	5	4	5	5	5
361	5	5	5	5	5	5
362	3	4	5	5	5	5
363	5	5	5	5	5	5
364	5	5	5	5	5	5
365	5	3	3	5	5	5
367	5	3	5	5	5	-
368	4	-	4	5	5	5
369	3	3	5	5	4	5
370	5	-	5	5	5	5
372	5	5	5	5	5	5
373	5	4	5	5	5	5
374	5	5	5	5	5	5
375	5	4	5	5	5	5
376	5	-	5	5	5	5
377	5	5	5	5	5	5
378	5	4	5	5	5	5
379	5	3	5	5	5	5
383	5	5	5	5	5	-
385	5	5	5	5	5	5
386	5	5	5	5	5	5
387	5	5	5	5	5	5
388	5	5	5	5	5	5
389	5	5	5	5	5	5

Table 4 (continued)

Compound No.	Herbicidal effect					
	Ec	Di	Po	Am	Ch	Ci
390	5	4	5	5	5	5
392	5	4	5	5	5	5
393	5	3	4	4	5	5
394	5	4	5	5	5	5
395	5	4	5	5	5	-
397	5	4	5	5	5	5
400	5	5	5	5	5	5
402	5	5	5	5	5	5
416	5	4	5	5	5	5
417	4	5	5	5	4	4

TEST EXAMPLE 2

In a pot filled with soil (surface area: 100 cm²), seeds of barnyardgrass (Ec), crabgrass (Di), smartweed (Po), slender amaranth (Am), lambsquarters (Ch) and rice flatsedge (Ci) were sown and covered with soil in a thickness of from 0.5 to 1 cm. One day later from the seeding, a predetermined amount of a wettable powder prepared in accordance with Formulation Example 1, was diluted with water and applied to the soil surface at a rate of 100 liters per 10 ares (dose of active ingredient: 400 g/10 ares). The evaluation was conducted on the 20th day after the treatment in accordance with the standard as identified in Table 3. The results are shown by the index numbers in Table 5.

40

45

50

55

Table 5

Compound No.	Herbicidal effect					
	Ec	Di	Po	Am	Ch	Ci
3	4	4	5	5	3	4
4	5	5	5	5	5	5
5	5	4	5	5	5	4
6	5	5	5	5	5	5
7	5	5	5	5	5	5
8	5	5	5	5	5	5
9	5	5	5	5	5	5
10	4	5	5	5	5	5
11	5	5	5	5	5	5
12	5	5	5	5	5	5
14	4	4	5	5	5	5
15	5	5	5	5	5	5

5

10

15

20

25

30

35

40

45

50

55

Table 5 (continued)

5	Compound No.	Herbicidal effect					
		Ec	Di	Po	An	Ch	Ci
10	17	5	4	5	5	5	5
	18	5	5	5	5	5	5
	19	5	5	5	5	5	5
	20	5	5	5	5	5	5
15	21	5	5	5	5	5	5
	29	5	4	5	5	5	5
	30	5	5	5	5	5	5
	36	5	5	5	5	5	5
20	39	5	5	3	5	5	5
	40	5	4	5	5	5	5
	42	5	5	5	5	5	5
	44	5	5	5	5	5	5
25	46	5	4	5	5	5	4
	47	5	5	5	5	5	5
	50	5	4	3	5	5	5
	53	4	4	5	5	4	5
30	57	5	4	3	5	4	5
	61	4	4	5	5	5	5
	62	5	5	5	5	5	5
	63	5	5	5	5	5	5
35	64	5	4	5	5	4	4
	65	5	5	5	5	5	5
	66	5	5	5	5	5	5
	70	5	4	5	5	5	5
40	73	4	5	5	5	5	5
	85	5	3	5	5	5	4
	86	5	3	5	5	5	5
	90	4	4	3	5	4	5
45	93	3	5	5	4	5	5
	97	5	4	5	5	5	5
	98	5	4	5	5	5	5
50	100	5	4	3	5	3	4

Table 5 (continued)

Compound No.	Herbicidal effect					
	Ec	Di	Po	Am	Ch	Ci
103	4	4	3	5	5	5
105	5	3	5	5	5	5
117	5	5	5	5	5	5
119	5	4	5	5	5	5
121	5	4	5	5	5	5
132	5	5	5	5	5	5
133	5	4	5	5	5	5
135	5	4	5	5	5	5
139	5	4	5	5	5	4
140	4	4	5	5	3	5
141	5	5	5	5	5	5
151	5	4	5	5	4	5
152	5	5	5	5	5	5
153	5	4	5	5	5	5
154	3	3	5	5	4	4
155	4	3	5	5	5	5
156	5	5	5	5	5	5
157	5	5	5	5	5	5
159	5	4	5	5	5	4
160	5	5	5	5	5	-
161	4	4	4	5	5	-
162	5	5	5	5	5	5
163	5	5	5	5	5	5
165	5	5	5	5	5	5
167	5	5	5	5	4	5
170	5	3	5	5	5	3
171	5	5	5	5	4	5
172	5	5	5	5	5	5
177	5	5	5	5	5	5
178	5	5	5	5	5	5
179	5	5	5	5	5	4
182	5	5	5	5	5	5

Table 5 (continued)

5	Compound No.	Herbicidal effect					
		Ec	Di	Po	An	Ch	Ci
10	183	5	5	5	5	5	5
	184	5	3	5	5	4	5
	185	5	3	5	5	5	5
	186	5	5	5	5	5	5
15	187	5	5	5	5	5	5
	190	5	5	5	5	5	5
	191	5	5	5	5	5	5
	192	5	5	5	5	5	5
20	193	5	5	5	5	5	5
	194	5	4	5	5	5	5
	199	5	5	5	5	5	5
	200	5	4	5	5	5	5
25	201	4	4	5	5	5	5
	202	4	3	5	5	4	5
	203	5	5	5	5	5	5
	204	5	5	5	5	5	5
30	209	5	5	5	5	5	5
	210	5	4	5	5	4	3
	212	5	4	5	5	5	5
	213	5	4	4	5	5	5
35	214	5	5	5	5	5	5
	216	5	5	5	5	5	5
	217	5	3	5	5	5	4
	218	5	4	5	5	5	4
40	219	5	5	5	5	5	5
	220	5	5	5	5	5	5
	224	5	5	5	5	5	5
	226	5	5	5	5	5	5
45	227	5	5	5	5	5	5
	228	5	5	4	5	5	5
	232	5	4	5	5	5	5
	233	5	4	5	5	5	5

50

Table 5 (continued)

5

10

15

20

25

30

35

40

45

50

Compound No.	Herbicidal effect					
	Ec	Di	Po	Am	Ch	Ci
234	5	5	5	5	5	5
235	5	5	5	5	5	4
238	5	5	4	5	4	4
239	5	3	4	4	4	4
242	3	4	4	5	5	4
243	5	5	5	5	5	5
244	5	5	5	5	5	5
247	5	5	5	5	5	5
248	5	5	5	5	5	5
250	5	5	5	5	5	5
251	5	5	5	5	5	5
252	5	5	5	5	5	5
253	5	4	5	5	5	5
254	5	4	5	5	5	5
255	5	3	5	5	5	5
260	5	5	5	5	5	5
261	5	4	5	5	5	5
263	5	5	5	5	5	5
267	5	5	5	5	5	5
268	5	3	5	5	4	5
270	4	4	5	5	5	5
271	5	4	5	5	2	5
273	4	4	4	5	5	5
274	5	-	5	5	5	5
280	4	-	5	5	5	5
281	5	5	5	5	5	5
282	5	3	5	5	5	5
286	5	5	5	5	5	5
291	5	4	5	5	5	5
292	4	4	5	5	5	5
297	5	5	5	5	5	5
298	5	5	5	5	5	5

Table 5 (continued)

Compound No.	Herbicidal effect					
	Ec	Di	Po	As	Ch	Ci
299	5	5	5	5	5	5
300	5	5	5	5	5	5
310	5	4	5	5	5	5
311	5	5	5	5	5	5
312	5	5	5	5	5	5
313	5	5	5	5	5	5
314	5	5	5	5	5	5
315	5	5	5	5	5	5
316	5	3	5	5	5	5
317	4	-	5	5	-	5
319	5	-	5	5	5	5
323	5	5	5	5	5	5
324	5	5	5	5	5	5
326	5	5	5	5	5	5
329	5	4	5	5	4	4
330	5	5	5	5	5	5
331	5	5	5	5	5	5
336	5	5	5	5	5	5
337	5	5	5	5	4	5
338	5	5	5	5	5	5
341	5	5	5	5	5	-
342	5	5	5	5	5	-
343	5	5	5	5	5	5
344	4	4	5	5	4	5
345	4	3	5	5	4	5
348	5	5	5	5	5	5
352	5	5	5	5	5	5
353	5	5	5	5	5	5
356	-	-	5	5	5	5
357	5	4	5	5	4	5
358	5	5	5	5	5	5
359	5	5	5	5	5	5
360	5	3	5	5	4	5

Table 5 (continued)

Compound No.	Herbicidal effect					
	Ec	Di	Po	Am	Ch	Ci
361	5	5	5	5	5	5
362	4	4	5	5	4	5
363	5	4	5	5	5	5
364	5	4	4	5	5	5
367	5	3	5	5	5	5
370	5	-	5	5	4	5
372	5	4	5	5	5	5
373	5	4	5	5	5	5
376	5	5	5	5	5	5
377	5	4	5	5	5	5
378	5	5	5	5	5	5
379	4	3	5	5	5	5
384	-	-	5	5	5	4
385	5	5	5	5	5	5
386	5	5	5	5	5	5
387	5	5	5	5	5	5
388	5	5	5	5	5	5
389	5	5	5	5	5	5
390	5	4	5	5	5	5
392	5	4	5	5	5	5
393	5	3	5	5	5	5
394	5	4	5	5	5	5
395	4	5	4	5	5	4
398	4	3	5	5	5	5
399	5	3	5	5	3	5
400	5	5	5	5	5	5
402	5	5	5	5	5	5
416	5	5	5	5	5	5
417	4	5	5	5	5	5

50

TEST EXAMPLE 3

In a pot filled with paddy field soil (surface area: 100 cm²), seeds of barnyardgrass (Ec), flatsedge (Cd), monochoria (Mo) and bulrush (Sc) were sown, and water was introduced to a depth of 5 cm. Two days later from the seeding, a predetermined amount of wettable powder prepared in accordance with Formulation Example 1, was diluted with water and dropwise applied to the water surface in a dose of 100 g of the active ingredient per 10 ares. The evaluation was conducted on the 21st day after the treatment in

accordance with the standard as identified in Table 3. The results are shown by the index numbers in Table 6.

Table 6

Compound No.	Herbicidal effect			
	Ec	Cd	Mo	Se
2	5	5	5	5
4	5	5	5	5
5	5	5	5	5
6	5	5	5	5
7	5	5	5	5
8	5	5	5	5
9	5	5	5	5
10	5	4	5	5
11	5	5	5	5
12	5	5	5	5
14	5	5	5	5
15	5	5	5	5
18	5	5	5	5
19	5	5	5	5
20	5	5	5	5
21	5	5	5	5
22	4	5	5	4
23	4	5	5	4
24	5	5	5	5
25	5	4	5	5
27	5	4	5	5
29	5	5	5	5
30	5	5	5	5
31	4	4	5	5
32	5	5	5	5
36	5	5	5	5
37	5	5	5	5
38	5	5	5	5
39	5	5	5	5
40	5	5	5	5
41	5	5	5	5
42	5	5	5	5

Table 6 (continued)

Compound No.	Herbicidal effect				
	B	Cd	Mo	Sc	
43	5	5	5	5	
44	5	5	5	5	
45	5	5	5	4	
46	5	5	5	5	
47	5	5	5	5	
48	5	5	5	4	
50	5	5	5	5	
53	5	5	5	5	
57	5	5	5	5	
61	5	5	5	5	
62	5	5	5	5	
63	5	5	5	5	
65	5	5	5	5	
66	5	5	5	5	
67	4	5	5	5	
69	5	5	5	5	
70	5	5	5	5	
71	5	5	5	5	
72	5	5	5	5	
73	5	5	5	5	
74	5	5	5	5	
75	5	5	5	4	
78	5	5	5	5	
79	4	4	5	4	
86	5	5	5	4	
87	4	5	5	4	
88	5	5	5	4	
90	5	5	5	5	
93	5	5	5	5	
95	5	5	5	5	
98	5	5	5	5	
100	5	5	5	5	

Table 6 (continued)

Compound No.	Herbicidal effect			
	Ec	Cd	Mo	Sc
103	5	5	5	5
105	5	5	5	5
106	4	5	5	5
109	5	5	5	5
111	5	5	5	4
117	5	5	5	5
118	5	5	5	5
119	5	5	5	5
121	5	5	5	5
132	5	5	5	5
133	5	5	5	5
135	5	5	5	5
136	5	4	5	5
137	4	5	5	5
139	5	5	5	5
140	5	5	5	5
141	5	5	5	5
142	5	5	5	5
143	5	5	5	5
144	4	5	5	5
151	5	5	5	5
152	5	5	5	5
153	5	5	5	5
155	5	5	5	5
156	5	5	5	5
157	5	5	5	5
159	5	5	5	4
160	5	4	5	5
161	5	5	5	5
162	5	5	5	5
165	5	5	5	5
167	5	5	5	5

Table 6 (continued)

Compound No.	Herbicidal effect			
	Ec	Cd	Mo	Sc
169	4	5	5	5
170	5	5	5	5
171	5	5	5	5
172	5	5	5	5
174	4	5	5	4
177	5	5	5	5
178	5	5	5	5
179	5	5	5	5
182	5	5	5	5
183	5	5	5	5
184	5	5	5	5
185	5	5	5	5
186	5	5	5	5
187	5	5	5	5
190	5	5	5	5
191	5	5	5	5
192	5	5	5	5
193	5	5	5	5
194	5	5	5	5
199	5	5	5	5
200	5	5	5	5
201	4	4	5	5
202	3	5	5	5
203	5	5	5	5
204	5	5	5	5
206	3	5	5	5
209	5	5	5	5
210	5	5	5	5
211	5	5	5	5
212	5	5	5	5
213	5	5	5	5
214	5	5	5	5

Table 6 (continued)

Compound No.	Herbicidal effect			
	Ec	Cd	Mo	Sc
216	5	5	5	5
217	5	5	5	5
218	5	5	5	5
219	5	5	5	5
220	5	5	5	5
221	5	5	5	4
222	5	4	5	4
224	5	5	5	5
225	5	3	4	4
226	5	5	5	5
227	5	5	5	5
228	5	5	5	5
229	4	5	5	4
231	3	5	5	5
232	5	5	5	5
233	5	5	5	5
234	5	5	5	5
238	5	4	5	4
239	5	5	5	3
240	5	5	5	5
243	5	5	5	5
244	5	5	5	5
246	5	5	5	5
247	5	5	5	5
248	5	5	5	5
250	5	5	5	5
251	5	5	5	5
252	5	5	5	5
253	5	5	5	5
254	5	5	5	5
255	5	5	5	5
256	3	4	5	4

Table 6 (continued)

5

10

15

20

25

30

35

40

45

50

Compound No.	Herbicidal effect			
	Ec	Cd	Mo	Sc
259	3	4	5	4
260	5	5	5	5
261	5	5	5	5
262	4	5	5	5
263	5	5	5	5
264	4	3	4	5
266	4	4	5	5
267	5	5	5	5
268	5	5	5	5
270	4	5	5	4
271	4	5	5	4
274	5	5	5	3
280	5	5	5	5
281	5	5	5	5
282	5	5	5	5
284	3	5	5	3
286	5	5	5	5
291	5	5	5	5
292	5	5	5	5
297	5	5	5	5
298	5	5	5	5
299	5	5	5	5
300	5	5	5	5
302	4	5	5	5
303	5	5	5	5
307	5	5	5	5
308	5	5	3	5
310	5	5	5	5
311	5	5	5	5
312	5	5	5	5
313	5	5	5	5
314	5	5	5	5

Table 6 (continued)

Compound No.	Herbicidal effect				
	Ec	Cd	Mo	Sc	
315	5	5	5	5	
316	5	5	5	5	
317	5	5	5	5	
318	5	5	5	5	
319	5	5	5	5	
320	3	5	5	5	
321	3	5	5	4	
322	4	5	5	5	
323	5	5	5	5	
324	5	5	5	5	
325	5	5	5	4	
326	5	5	5	5	
327	5	5	5	5	
328	5	5	5	5	
329	5	5	5	5	
330	5	-	5	5	
331	5	-	5	5	
332	4	-	5	5	
334	5	-	5	5	
336	5	-	5	5	
338	5	-	5	5	
341	5	-	5	5	
342	5	-	5	5	
343	5	-	5	5	
344	5	-	5	5	
345	5	-	5	5	
348	5	-	5	5	
349	4	-	5	5	
350	5	-	5	5	
351	4	-	5	5	
352	5	-	5	5	
353	5	-	5	4	

50

55

Table 6 (continued)

Compound No.	Herbicidal effect			
	Ec	Cd	Mo	Sc
354	5	-	5	5
355	3	-	5	4
356	2	5	5	4
358	5	5	5	5
359	5	5	5	5
360	5	5	5	5
361	4	5	5	5
362	4	5	5	5
363	5	-	5	5
364	5	-	5	5
365	5	5	5	5
366	5	5	5	5
367	5	5	5	5
368	4	5	5	5
370	5	5	5	5
371	5	5	5	5
372	4	5	5	4
373	5	5	5	5
374	5	5	5	5
375	5	5	5	5
376	5	5	5	4
377	5	5	5	5
378	5	5	5	4
382	3	-	4	5
383	5	-	5	5
385	5	5	5	5
386	5	5	5	5
387	5	5	5	5
388	5	5	5	5
389	5	5	5	5
390	5	5	5	5
391	5	5	5	5

Table 6 (continued)

Compound No.	Herbicidal effect			
	Ec	Cd	Mo	Se
392	5	5	5	5
393	5	5	5	5
394	5	5	5	5
395	5	5	5	5
396	5	-	5	5
397	5	-	5	5
400	5	-	5	5
401	4	-	5	3
402	5	-	5	5
416	5	5	5	5
417	5	5	5	5
418	5	5	5	5

TEST EXAMPLE 4

In a pot filled with soil (surface area: 600 cm²), seeds of barnyardgrass (Ec), green foxtail (Se), Johnsongrass (So), blackgrass (Al), smartweed (Po), slender amaranth (Am), lampsquaters (Ch) and cotton (Go) were sown and covered with soil in a thickness of from 0.5 to 1 cm. Two days later from the seeding, a predetermined amount of a wettable powder prepared in accordance with Formulation Example 1 was diluted with water, and applied to the soil surface at a rate of 100 liters per 10 ares. The evaluation of the herbicidal effect was conducted on the 20th day after the treatment in accordance with the standard as identified in Table 3, and the evaluation of the phytotoxicity was conducted in accordance with the standard as identified in Table 7. The results are shown by the index numbers in Table 8.

Table 7

Index No.	Herbicidal effects
0	No phytotoxicity
1	Phytotoxicity: more than 0% and less than 30%
2	Phytotoxicity: at least 30% and less than 50%
3	Phytotoxicity: at least 50% and less than 70%
4	Phytotoxicity: at least 70% and less than 90%
5	Phytotoxicity: more than 90%

Table 8

5 Compound No.	Dose (g. ai/ 10a)	Herbicidal effect						Phytotoxicity Go
		Ec	Se	So	Po	Am	Ch	
10 4	25	5	5	5	5	5	5	0
7	400	4	4	4	5	5	5	1
9	25	5	5	5	5	5	5	0
11	100	4	4	5	5	5	5	0
15 12	25	4	5	5	5	5	5	1
15	400	5	5	5	5	5	5	0
18	100	4	4	4	5	5	5	1
20 19	100	5	3	4	5	5	5	0
20	100	4	4	4	5	5	5	0
21	100	5	5	5	5	5	5	0
25 30	25	4	5	4	5	5	5	1
36	25	5	5	5	5	5	5	0
37	25	5	4	5	5	4	5	0
42	25	5	5	5	5	5	5	1
30 65	25	5	4	5	5	5	5	1
66	25	5	4	5	5	5	5	0
152	25	5	5	5	5	5	5	1
35 156	6.3	5	3	5	5	5	5	0
161	100	4	5	5	5	5	5	0
162	25	5	5	5	5	5	5	1
177	100	5	4	5	5	5	5	0
40 183	100	4	4	5	5	5	4	1
186	100	5	5	5	5	5	5	0
187	100	5	5	5	5	5	5	1
45 190	25	5	5	5	5	5	5	0
191	25	5	5	5	5	5	5	1
192	100	5	4	5	5	5	4	0
50 219	6.3	4	4	5	5	5	5	1

Table 8 (continued)

5 Compound No.	Dose (g. ai/ 10 a)	Herbicidal effect						Phytoto- xicity Go
		Ec	Se	So	Po	Am	Ch	
10 281	25	5	4	5	5	5	5	0
15 297	25	5	5	5	5	5	5	1
298	6.3	5	4	5	5	5	5	1
310	25	5	4	5	5	5	5	1
311	100	5	5	5	5	5	5	0
20 313	6.3	5	5	5	3	5	5	0
315	100	5	5	5	5	5	5	1
323	25	5	5	5	5	5	5	1
324	25	5	5	5	5	5	5	0
327	100	5	-	5	5	5	5	1
328	100	5	-	5	5	5	5	0
329	25	5	5	5	5	5	5	0
341	6.3	5	4	-	5	5	5	1
352	6.3	5	5	4	5	5	5	1
374	25	5	4	5	5	5	5	1
375	100	5	5	5	5	5	5	0
376	25	5	4	5	5	5	5	0
377	100	5	5	5	5	5	5	0
378	100	5	5	5	5	5	5	0
385	6.3	5	4	5	5	5	4	0
386	25	5	4	5	5	5	5	0
387	25	5	5	5	5	5	5	1
390	25	5	5	5	5	5	5	1
45 395	100	5	4	5	5	5	5	1
50								

55 TEST EXAPLE 5

Tests were conducted in the same manner as in Test Example 4 except that the crop plant was changed to soybean (G1). The results are shown by the index numbers in Table 9.

Table 9

Compound No.	Dose (g.ai/10a)	Herbicidal effect						Phytotoxicity
		Ec	Se	So	Po	Am	Ch	
183	25	4	4	5	5	5	4	0
185	100	4	4	5	4	5	3	0
186	100	5	5	5	5	5	5	0
187	100	5	4	5	5	5	5	1
191	25	5	5	5	5	5	5	1
192	100	5	4	5	5	5	4	0
199	100	5	5	5	5	5	5	0
224	25	4	5	5	5	5	5	1
281	25	5	4	5	5	5	5	0
292	25	5	4	5	5	5	5	1
314	6.3	5	4	5	5	5	5	1
315	6.3	5	4	4	5	5	5	1
316	100	5	5	5	5	5	5	1
324	25	4	4	5	5	5	5	0
326	6.3	5	5	5	5	5	5	1
328	100	5	-	5	5	5	5	0
329	25	5	5	5	5	5	5	1
343	25	5	5	4	5	5	4	1
352	6.3	5	5	4	5	5	5	0
363	25	5	5	-	5	5	5	0
374	25	5	4	5	5	5	5	1
385	6.3	5	4	5	5	5	4	0
386	6.3	5	4	5	5	5	5	0
390	25	5	5	5	5	5	5	1
395	100	5	4	5	5	5	5	1

Claims

1. An alkanoic acid derivative of the formula:

wherein R is

wherein R³ is a hydrogen atom, a halogen atom, a halogen-substituted C₁-4 alkyl group, a C₁-15 alkyl group, a C₃-6 cycloalkyl group, a C₁-4 alkylthio-C₁-4 alkyl group, a hydroxy-C₁-4 alkyl group, a hydroxyl group, a cyano group, an acyloxy C₁-4 alkyl group, a thiienyl group, a naphthyl group, a dihydronaphthyl group or

5

wherein R⁸ is a hydrogen atom, a halogen atom, a nitro group, a C₁-4 alkyl group, a C₁-4 alkoxy group or -S(O)_nR⁹ wherein R⁹ is a C₁-4 alkyl group, and n is an integer of from 0 to 2, m is an integer of from 0 to 2, each of R² and R⁴ which may be the same or different is a hydrogen atom or a C₁-4 alkyl group, or R² and R⁴ form together with the adjacent carbon atom a 3-, 4-, 5- or 6-membered ring which may contain an oxygen atom and may be substituted by one or two C₁-4 alkyl groups, each of R⁵ and R⁶ which may be the same or different is a hydrogen atom or a C₁-4 alkyl group, R⁷ is a C₁-4 alkyl group or a phenyl group, or R⁶ and R⁷ form -(CH₂)_l wherein l is an integer of 3 or 4 which may be substituted by one or two C₁-4 alkyl groups, or R is a C₂-6 alkenyl group, a dihydronaphthyl group, a tetrahydronaphthyl group; a 1-oxo-1,2,3,4-tetrahydronaphthyl group, a 1,2-epoxycycloalkyl group or an indanyl group which may be substituted by an alkyl or alkoxy group; R¹ is a hydrogen atom, a C₁-4 alkyl group, a C₂-6 alkenyl group, a C₂-6 alkynyl group, a phenyl group, an alkylideneamino group, a C₁-4 alkoxy-C₁-4 alkyl group, a C₁-4 alkoxy carbonyl-C₁-4 alkyl group, a halogen-substituted C₁-4 alkyl group, a C₃-5 cycloalkyl group, a nitro-substituted phenylthio-C₁-4 alkyl group, a halogen atom or a benzyl group which may be substituted by a C₁-4 alkyl or C₁-4 alkoxy group; or R and R¹ form a ring; A is a C₁-4 alkyl group, a C₁-4 alkoxy group, a C₁-4 alkylthio group, a halogen atom, a halogen-substituted C₁-4 alkoxy group, an amino group, a C₁-4 alkylamino group or a di-C₁-4 alkylamino group; R⁸ is a hydrogen atom, a C₁-4 alkyl group, a C₁-4 alkoxy group or a halogen-substituted C₁-4 alkoxy group; X is an oxygen atom or a sulfur atom; and Z is a methine group or a nitrogen atom; and a salt thereof.

2. The alcanoic acid derivative of the formula I according to Claim 1, wherein R is a straight chain or branched C₁-16 alkyl group, a cycloalkyl group or

30

wherein each of R² and R⁴ which may be the same or different is a hydrogen atom or a C₁-4 alkyl group; R¹ is a hydrogen atom or C₁-4 alkyl group; each of A and B which may be the same or different is a C₁-4 alkyl group, a C₁-4 alkoxy group or a dihalo-C₁-4 alkoxy group; and X and Z are as defined in Claim 1; and a salt thereof.

40

3. The alcanoic acid derivative of the formula I according to Claim 1, wherein each of A and B is a methoxy group, and R, R¹, X and Z are as defined in Claim 1; and a salt thereof.

4. The alcanoic acid derivative of the formula I according to Claim 1, wherein X is an oxygen atom, and R, R¹, A, B and Z are as defined in Claim 1; and a salt thereof.

5. The alcanoic acid derivative of the formula I according to Claim 1, wherein Z is a methine group, and R, R¹, A, B and X are as defined in Claim 1; and a salt thereof.

50 6. The alcanoic acid derivative of the formula I according to Claim 1, wherein R is a straight chain or branched C₃-C₅ alkyl group, a cyclopentyl group, an α-methylbenzyl group or an α,α-dimethylbenzyl group; R¹ is a hydrogen atom or a C₁-C₄ alkyl group; each of A and B which may be the same or different is an alkyl group or an alkoxy group; and X and Z are as defined in Claim 1; and a salt thereof.

55 7. The alcanoic acid derivative of the formula I according to Claim 1, wherein each of A and B is a methoxy group, R is an isopropyl group, a tert-butyl group, a cyclopentyl group or an α,α-dimethylbenzyl group; R¹ is a hydrogen atom, a methyl group and an ethyl group; and X and Z are as defined in Claim 1, and a salt thereof.

8. The alcanoic acid derivative of the formula I according to Claim 1, wherein each of A and B is a methyl group, R is a C₃-C₅ alkyl group, and R¹, X and Z are as defined in Claim 1; and a salt thereof.

9. A herbicidal composition comprising a herbicidally effective amount of an alcanoic acid derivative of the formula I or its salt as defined in Claim 1, and an agricultural adjuvant.

5 10. A method for killing weeds which comprises applying a herbicidally effective amount of an alcanoic acid derivative of the formula I or its salt as defined in Claim 1 to a locus to be protected.

10 Patentansprüche

1. Alkancarbonsäure-Derivat der Formel:

20

worin R

30

ist,

worin R³ ein Wasserstoffatom, ein Halogenatom, eine halogensubstituierte C₁-4-Alkylgruppe, eine C₁-15-Alkylgruppe, eine C₃-6-Cycloalkylgruppe, eine C₁-4-Alkythio-C₁-4-Alkylgruppe, eine Hydroxy-C₁-4-alkylgruppe, eine Hydroxylgruppe, eine Cyangruppe, eine Acyloxy-C₁-4-alkylgruppe, eine Thienylgruppe, eine Naphthylgruppe, eine Dihydronaphthylgruppe oder

35

40

ist,

worin R⁸ ein Wasserstoffatom, ein Halogenatom, eine Nitro-, eine C₁-4-Alkyl-, eine C₁-4-Alkoxygruppe oder -S(O)_nR⁹ ist, worin R⁹ eine C₁-4-Alkylgruppe ist und n eine ganze Zahl von 0 bis 2 ist, m eine ganze Zahl von 0 bis 2 ist, jedes von R² und R⁴, die gleich oder verschieden sein können, ein Wasserstoffatom oder eine C₁-4-Alkylgruppe ist oder R² und R⁴ zusammen mit dem benachbarten Kohlenstoffatomen einen 3-, 4-, 5- oder 6-gliedrigen Ring bilden, der ein Sauerstoffatom enthalten kann oder durch ein oder zwei C₁-4-Alkylgruppen substituiert sein kann, jedes von R⁵ und R⁶, die gleich oder verschieden sein können, ein Wasserstoffatom oder eine C₁-4-Alkylgruppe ist, R⁷ eine C₁-4-Alkylgruppe oder eine Phenylgruppe ist oder R⁶ und R⁷ -(CH₂)_l - bilden, worin l eine ganze Zahl von 3 oder 4 ist, das durch ein oder zwei C₁-4-Alkylgruppen substituiert sein kann, oder R ist eine C₂-6-Alkenyl-, Dihydronaphthyl-, Tetrahydronaphthyl-, eine 1-Oxo-1,2,3,4-tetrahydronaphthyl-, 1,2-Epoxcycloalkyl- oder eine Indanylgruppe, die durch eine Alkyl- oder Alkoxygruppe substituiert sein kann; R¹ ist ein Wasserstoffatom, eine C₁-4-Alkyl-, C₂-6-Alkenyl-, C₂-6-Alkinyl-, Phenyl-, eine Alkylidennamino-, C₁-4-Alkoxy-C₁-4-alkyl-, eine C₁-4-Alkoxy carbonyl-C₁-4-alkyl-, eine halogensubstituierte C₁-4-Alkyl-, eine C₃-5-Cycloalkyl-, eine nitrosubstituierte Phenylthio-C₁-4-alkylgruppe, ein Halogenatom oder eine Benzylgruppe ist, die durch eine C₁-4-Alkylgruppe oder C₁-4-Alkoxygruppe substituiert sein kann, oder R und R¹ bilden einen Ring; A ist ein C₁-4-Alkyl-, C₁-4-Alkoxy-, C₁-4-Alkythiogruppe, ein Halogenatom, eine halogensubstituierte C₁-4-Alkoxy-, eine Amino-, C₁-4-Alkylamino- oder eine Di-

45

C_{1-4} -alkylaminogruppe; B ist ein Wasserstoffatom, eine C_{1-4} -Alkyl-, C_{1-4} -Alkoxy- oder eine halogen-substituierte C_{1-4} -Alkoxygruppe; X ist ein Sauerstoffatom oder ein Schwefelatom und Z ist eine Methingruppe oder ein Stickstoffatom, und ein Salz davon.

5 2. Alkancarbonsäure-Derivat der Formel I nach Anspruch 1, worin R eine geradkettige oder verzweigte C_{1-16} -Alkylgruppe, eine Cycloalkylgruppe oder

10

15 ist, worin jedes von R² oder R⁴, die gleich oder verschieden sein können, ein Wasserstoffatom oder eine C_{1-4} -Alkylgruppe ist; R¹ ein Wasserstoffatom oder eine C_{1-4} -Alkylgruppe ist; jedes von A und B, die gleich oder verschieden sein können, eine C_{1-4} -Alkyl-, C_{1-4} -Alkoxy- oder eine dihalogensubstituierte C_{1-4} -Alkoxygruppe ist und X und Z die in Anspruch 1 angegebene Bedeutung haben, und ein Salz davon.

20

3. Alkancarbonsäure-Derivat der Formel I nach Anspruch 1, worin jedes von A und B eine Methoxygruppe ist und R, R¹, X und Z die in Anspruch 1 angegebene Bedeutung haben, und ein Salz davon.

25 4. Alkancarbonsäure-Derivat der Formel I nach Anspruch 1, worin X ein Sauerstoffatom ist und R, R¹, A, B und Z die in Anspruch 1 angegebene Bedeutung haben, und ein Salz davon.

5. Alkancarbonsäure-Derivat der Formel I nach Anspruch 1, worin Z eine Methingruppe ist und R, R¹, A, B und X die in Anspruch 1 angegebene Bedeutung haben, und ein Salz davon.

30 6. Alkancarbonsäure-Derivat der Formel I nach Anspruch 1, worin R eine geradkettige oder verzweigte C_3-C_5 -Alkylgruppe, eine Cyclopentylgruppe, eine α -Methylbenzylgruppe oder eine α,α -Dimethylbenzylgruppe ist; R¹ ein Wasserstoffatom oder eine C_{1-C_4} -Alkylgruppe ist; jedes von A und B, die gleich oder verschieden sein können, eine Alkylgruppe oder eine Alkoxygruppe ist und X und Z die in Anspruch 1 angegebene Bedeutung haben, und ein Salz davon.

35

7. Alkancarbonsäure-Derivat der Formel I nach Anspruch 1, worin jedes von A und B eine Methoxygruppe ist, R eine Isopropylgruppe, eine tert-Butylgruppe, eine Cyclopentylgruppe oder eine α,α -Dimethylbenzylgruppe ist; R¹ ein Wasserstoffatom, eine Methylgruppe und eine Ethylgruppe ist und X und Z die in Anspruch 1 angegebene Bedeutung haben, und ein Salz davon.

40

8. Alkancarbonsäure-Derivat der Formel I nach Anspruch 1, worin jedes von A und B eine Methylgruppe ist, R eine C_3-C_5 -Alkylgruppe ist und R¹, X und Z die in Anspruch 1 angegebene Bedeutung haben, und ein Salz davon.

45 9. Herbizide Zusammensetzung, umfassend eine herbizid wirksame Menge eines Alkancarbonsäure-Derivats der Formel I oder seines Salzes, wie in Anspruch 1 definiert, und einen landwirtschaftlichen Zusatz.

50 10. Verfahren zum Vernichten von Unkräutern, umfassend das Aufbringen einer herbizid wirksamen Menge eines Alkancarbonsäure-Derivats der Formel I oder seines Salzes, wie in Anspruch 1 definiert, auf einen zu schützenden Ort.

Revendications

55 1. Dérivé de l'acide alcanoïque de formule:

5

dans laquelle R représente

10

15

dans laquelle R³ est un atome d'hydrogène, un atome d'halogène, un groupe alkyle en C₁-C₄ substitué par halogène, un groupe alkyle en C₁-C₁₅, un groupe cycloalkyle en C₃-C₆, un groupe alkylthio en C₁-C₄ alkyle en C₁-C₄, un groupe hydroxyalkyle en C₁-C₄, un groupe hydroxyle, un groupe cyano, un groupe acyloxy-alkyle en C₁-C₄, un groupe thiényle, un groupe naphtyle, un groupe dihydronaphtyle ou bien

25

30

dans laquelle R⁸ représente un atome d'hydrogène, un atome d'halogène, un groupe nitro, un groupe alkyle en C₁-C₄, un groupe alcoxy en C₁-C₄ ou -S(O)_nR⁹ dans laquelle R⁹ représente un groupe alkyle en C₁-C₄ et n est un nombre entier de 0 à 2, m est un nombre entier de 0 à 2, R² et R⁴ pouvant être identiques ou différents, représentant chacun un atome d'hydrogène ou un groupe alkyle en C₁-C₄, ou R² et R⁴ forment ensemble, avec l'atome de carbone adjacent, un cycle à 3, 4, 5 ou 6 chaînons pouvant contenir un atome d'oxygène et pouvant être substitué par un ou deux groupes alkyle en C₁-C₄, R⁵ et R⁶ pouvant être identiques ou différents et représentant chacun un atome d'hydrogène ou un groupe alkyle en C₁-C₄, R⁷ est un groupe alkyle en C₁-C₄ ou un groupe phényle, ou R⁶ et R⁷ forment -(CH₂)_t- dans laquelle t est un nombre entier égal à 3 ou 4 et qui peut être substitué par un ou deux groupes alkyle en C₁-C₄, ou R est un groupe alcényle en C₂-C₆, un groupe dihydronaphtyle, un groupe tétrahydronaphtyle, un groupe 1-oxo-1,2,3,4-tétrahydronaphtyle, un groupe 1,2-époxy-cycloalkyle ou un groupe indanyle pouvant être substitué par un groupe alkyle ou alcoxy; R¹ est un atome d'hydrogène, un groupe alkyle en C₁-C₄, un groupe alcényle en C₂-C₆, un groupe alcyne en C₂-C₆, un groupe phényle, un groupe alkylidène-amino, un groupe alcoxy en C₁-C₄ - alkyle C₁-C₄, un groupe alcoxy en C₁-C₄ carbonyle - alkyle C₁-C₄, un groupe alkyle en C₁-C₄ substitué par halogène, un groupe cycloalkyle en C₃-C₆, un groupe phénylthio-alkyle en C₁-C₄ substitué par nitro, un atome d'halogène ou un groupe benzyle pouvant être substitué par un groupe alkyle en C₁-C₄ ou alcoxy en C₁-C₄; ou R et R¹ forment un cycle; A est un groupe alkyle en C₁-C₄, un groupe alcoxy en C₁-C₄, un groupe alkylthio en C₁-C₄, un atome d'halogène, un groupe alcoxy en C₁-C₄ substitué par halogène, un groupe amino, un groupe alkylamino en C₁-C₄ ou un groupe di(alkyl en C₁-C₄) amino ; B est un atome d'hydrogène, un groupe alkyle en C₁-C₄, un groupe alcoxy en C₁-C₄ ou un groupe alcoxy en C₁-C₄ substitué par halogène; X est un atome d'oxygène ou un atome de soufre ; et Z est un groupe méthine ou un atome d'azote; et un sel de celui-ci.

2. Dérivé d'acide alcanoïque de formule I selon la revendication 1, dans lequel R représente un groupe alkyle en C₁-C₁₆ à chaîne linéaire ou ramifiée, un groupe cycloalkyle ou

5

dans lequel R² et R⁴, qui peuvent être identiques ou différents, représentent chacun un atome d'hydrogène ou un groupe alkyle en C₁₋₄; R¹ est un atome d'hydrogène ou un groupe alkyle en C₁₋₄; A et B, pouvant être identiques ou différents, représentent chacun un groupe alkyle en C₁₋₄, un groupe alcoxy en C₁₋₄ ou un groupe dihaloalcoxy en C₁₋₄; et X et Z sont tels que définis dans la revendication 1 ; et un sel de celui-ci.

- 10 3. Dérivé d'acide alcanoïque de formule I selon la revendication 1, dans lequel A et B représentent chacun un groupe méthoxy et R, R¹, X et Z sont tels que définis dans la revendication 1; et un sel de celui-ci.
- 15 4. Dérivé d'acide alcanoïque de formule I selon la revendication 1, dans lequel X représente un atome d'oxygène et R, R¹, A, B et Z sont tels que définis par la revendication 1 ; et un sel de celui-ci.
- 20 5. Dérivé d'acide alcanoïque de formule I selon la revendication 1, dans lequel Z représente un groupe méthine, et R, R¹, A, B et X sont tels que définis dans la revendication 1 ; et un sel de celui-ci.
- 25 6. Dérivé d'acide alcanoïque de formule I selon la revendication 1, dans lequel R représente un groupe alkyle en C₃₋₅ à chaîne linéaire ou ramifiée, un groupe cyclopentyle, un groupe α-méthylbenzyle ou un groupe α,α-diméthylbenzyle; R¹ représente un atome d'hydrogène ou un groupe alkyle en C₁₋₄; A et B pouvant être identiques ou différents représentent chacun un groupe alkyle ou un groupe alcoxy et X et Z sont tels que définis par la revendication 1; et un sel de celui-ci.
- 30 7. Dérivé d'acide alcanoïde de formule I selon la revendication 1, dans lequel A et B représentent chacun un groupe méthoxy, R est un groupe isopropyle, un groupe tertbutyle, un groupe cyclopentyle ou un groupe α,α-diméthylbenzyle; R¹ est un atome d'hydrogène, un groupe méthyle et un groupe éthyle; et X et Z sont tels que définis dans la revendication 1, et un sel de celui-ci.
- 35 8. Dérivé d'acide alcanoïque de formule I selon la revendication 1 dans lequel A et B représentent chacun un groupe méthyle, R est un groupe alkyle en C_{3-C₅}, et R¹, X et Z sont tels que définis par la revendication 1; et un sel de celui-ci.
- 40 9. Composition herbicide comprenant une quantité à efficacité herbicide d'un dérivé d'acide alcanoïque de formule I ou son sel, tel que défini par la revendication 1, et un adjuvant agricole.
- 45 10. Méthode de destruction des mauvaises herbes, comprenant l'application d'une quantité à efficacité herbicide d'un dérivé d'acide alcanoïque de formule I ou de son sel, tel que défini par la revendication 1 sur un site à protéger.

45

50

55