Signaux et systèmes en temps discret

$$x(n) = x_{\text{continu}}(nT_s)$$

Avec T_s la période d'échantillonnage

Impulsion unité

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

Saut unité

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Durée finie : échantillons égaux à 0 en dehors d'un intervalle donné

Durée infinie : saut unité, oscillation, etc...

Séquence à droite : 0 pour $n < n_0$

Séquence à gauche : 0 pour $n > n_0$

Représentation exponentielle d'un signal périodique

$$e^{\sigma n + jn\omega_0} = e^{\sigma n} \left(\cos(n\omega_0) + j\sin(n\omega_0) \right)$$

Pas d'amortissement si $\sigma = 0$

Propriétés des systèmes

Lorsqu'on passe un signal x dans un système T on obtient une sortie y

$$y(n) = T\left[x(n)\right]$$

$$y(n) = \sum_{k=0}^{q} b(k)x(n-k) - \sum_{k=1}^{p} a(k)y(n-k)$$

$$\begin{cases} \text{IIR} & a(k) \neq 0 \quad \forall k \in 1, ..., p \\ \text{FIR} & a(k) = 0 \quad \forall k \in 1, ..., p \end{cases}$$
$$p > q \longrightarrow \text{causal}$$

p est l'ordre du système

Linéarité

$$T[ax_1(n) + bx_2(n)] = aT[x_1(n)] + bT[x_2(n)]$$

Invariance temporelle (ou shift)

$$y(n-n_0) = T\left[x(n-n_0)\right]$$

Causalité y(n) dépend uniquement de y(n-k) et x(n)

Stabilité BIBO: borné en entrée et borné en sortie. Vérifié si

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

Inversibilité Si on peut déterminer x(n) à partir de 1.3.1 Propriétés y(n)

$$x_1(n) \neq x_2(n) \longrightarrow y_1(n) \neq y_2(n)$$

Convolution

1.2.1 Propriétés

Linéarité

$$x(n) * (\alpha y(n) + \beta w(n)) = \alpha x(n) * y(n) + \beta x(n) * w(n)$$

Invariance temporelle

$$w(n) = x(n) * y(n) \Longleftrightarrow x(n) * y(n-k) = w(n-k)$$

Commutativité

$$x(n) * y(n) = y(n) * x(n)$$

Associativité

$$\Big(x(n)*h(n)\Big)*w(n)=x(n)*\Big(h(n)*w(n)\Big)$$

Multiplication par une impulsion unité

$$h(n) * d(n) = h(n)$$

1.3 DTFT

$$X\left(e^{j\omega}\right) = \sum_{n=-\infty}^{n=+\infty} x(n)e^{-jn\omega}$$

Cas spéciaux:

$$x(n) = e^{jn\omega_0} \longrightarrow X(e^{j\omega}) = 2\pi u(\omega - \omega_0) \quad |\omega| < \pi$$

$$x(n) = u(n) \longrightarrow X\left(e^{j\omega}\right) = \frac{1}{1 - e^{-j\omega}} + \pi u(\omega) \quad |\omega| < \pi$$

Impulsion unité:

$$H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} h(n)e^{-jn\omega}$$

H décrit la réponse fréquentielle du système

Périodicité $X(e^{j\omega})$ est périodique en 2π

Signal réel si x(n) réel alors

$$x(e^{j\omega}) = X^* \left(e^{-j\omega} \right)$$

Décomposition amplitude-phase

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j\Phi_x(\omega)}$$

Pour un signal réel $|X(e^{j\omega})|$ est paire et Φ impaire

1.3.2 Opérations

Convolution

$$y(n) = x(n) * h(n) \iff Y(e^{j\omega}) = X(e^{j\omega}) \cdot H(e^{j\omega})$$

Modulation

$$y(n) = x(n) \cdot h(n) \Longleftrightarrow Y(e^{j\omega}) = X(e^{j\omega}) * H(e^{j\omega})$$

1.4 Transformée en z

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^n$$
 $z = re^{j\omega}$

Si une fréquence tombe pile sur un zéro (sur le cercle unité) alors elle sera complètement annulée. Un pôle proche du cercle unité va augmenter les fréquences proches de ce pôle.

1.4.1 Propriétés

Linéarité

$$Z\{\alpha x(n) + \beta y(n)\} = \alpha X(z) + \beta Y(z)$$

Décalage temporel

$$Z\{x(n-N)\} = z^{-N}X(z)$$

	x(n)	X(z)
Délai	$x(n-n_0)$	$z^{-n_0}X(z)$
Multiplication par α^n	$a^n x(n)$	$X(z/\alpha)$
Conjugué	$x^*(n)$	$X^{*}(z^{*})$
Inversion de temps	x(-n)	$X(z^{-1})$
Convolution	x(n) * w(n)	X(z)W(z)
Multiplication par n	nx(n)	$-z\frac{d}{dz}X(z)$

Table 1: Opérations

$Z\{\delta(n)\} = 1$

1.5 Équation aux différences

$$d = n - m$$

$$degré relatif = deg(denominateur) - deg(numérateur)$$

$$G(z) = \frac{Y(z)}{X(z)}$$

$$G(z) = \frac{b_0 z^{-d} + b_1 z^{-d-1} + b_2 z^{-d-2} + \dots + b_m z^{-d-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}$$

 $a \longrightarrow \text{poles}, \, b \longrightarrow \text{z\'eros}$

$$|a_i| < 1 \longrightarrow \text{ stable } \forall i \in [1, n]$$

2 Algèbre linéaire

2.1 Matrices

$$x = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

$$y(n) = h^T x(n) = x^T h$$
 (un élément à la fois)

2.1.1 Transposée hermitienne

$$(A^{H})^{H} = A$$
$$(A+B)^{H} = A^{H} + B^{H}$$
$$(AB)^{H} = B^{H}A^{H}$$

2.1.2 Rang

Le rang d'une matrice A donne le nombre de colonnes linéairement indépendantes qu'elle contient. Si le rang est **plein** alors

$$rank(A) = \rho(A) = n$$

2.1.3 Inverse

$$(AB)^{-1} = A^{-1}B^{-1}$$

 $(A^H)^{-1} = (A^{-1})^H$

Inversible si $det(A) \neq 0$

2.1.4 Déterminant

$$\det(AB) = \det(A) \det(B)$$
$$\det(A^{T}) = \det(A)$$
$$\det(\alpha A) = \alpha^{n} \det(A)$$
$$\det(A^{-1}) = \frac{1}{\det(A)}$$

2.1.5 Pseudo-inverse

$$A \in \mathbb{R}_{n \times m}$$
 $n < m$
 $A^+ = A^H (AA^H)^{-1}$

Permet de calculer la solution minimale

$$x = A^+b$$

2.1.6 Norme

$$||x||_1 = \sum_{i=1}^{N} |x_i|$$
 $||x||_2 = \sqrt{\sum_{i=1}^{N} |x_i|^2}$

Permet aussi de calculer la distance : $||x - y||_2$

$$||x||_{\infty} = \max |x_i|$$

2.1.7 Produit scalaire

$$\langle a, b \rangle = a \cdot b = ||a|| ||b|| \cos \theta$$

2.1.8Espace vectoriel

$$\mathbf{v} = \sum_{i=1}^{N} \alpha_i \mathbf{v}_i$$

Si la base est orthogonale et si on utilise autant de coefficients qu'il y a de points dans le signal, alors la reconstruction est parfaite.

2.1.9 Projection

$$\hat{b} = A^+ x_0 = P_A b$$

Par exemple

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$A^H A = \begin{bmatrix} 6 & 5 \\ 5 & 6 \end{bmatrix}$$

Solution des moindres carrés donnée par

$$x_0 = (A^H)^{-1} A^H b = \frac{1}{11} \begin{bmatrix} 6 & -5 \\ -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{4}{11} \begin{bmatrix} 1 \\ \Omega \end{bmatrix}$$
est l'ensemble des possibilités.

$$e = b - Ax_0 = \frac{1}{11} \begin{bmatrix} -1\\ -1\\ 3 \end{bmatrix}$$

2.1.10Valeurs propres

$$Av = \lambda v$$

Pour trouver les valeurs propres, on cherche les racines de

$$p(\lambda) = \det(A - \lambda I) = 0$$

$$V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$
 $\Lambda = \operatorname{diag}\{\lambda_1, \lambda_2, ..., \lambda_n\}$

$$AV=V\Lambda$$

2.2Approximation

Autant de lignes que de points et autant de colonnes que de fonctions de base

$$A = \begin{bmatrix} 1 & x_{11} & \sin(2\pi x_{11}) & \cos(2\pi x_{12}) \\ 1 & x_{11} & \sin(2\pi x_{11}) & \cos(2\pi x_{12}) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & \sin(2\pi x_{1n}) & \cos(2\pi x_{1n}) \end{bmatrix}$$

Vecteur au sens des moindres carrés :

$$\Theta = (A^T A)^{-1} A^T b = A^+ b$$

Processus aléatoires à temps discrets

Variable aléatoire (pile ou face)

$$P_r\{l\} = 0.5$$
 $P_r\{H\} = 0.5$

3.1 Fonction de répartition

Par exemple l'intégrale d'une gaussienne

$$F_x(\alpha) = P_r\{x \le \alpha\}$$

Densité de probabilité

Par exemple une gaussienne

$$f_x(\alpha) = \frac{d}{d\alpha} F_x(\alpha)$$

$$\int_{-\infty}^{\infty} f_x(\alpha) d\alpha = 1$$

3.2.1 Exemple

$$x = \{1, 2, 3, 4, 5, 6\}$$

$$P_r\{x = 1\} = \frac{1}{6}$$

$$F_x(x) = P_r\{x \le \alpha\}$$

$$P_r\{x = 3\} = \int_{3-\epsilon}^{3+\epsilon} f_x(\alpha) d\alpha$$

3.3Espérence

Moyenne pondérée de chaque possibilité

$$E\{x\} = 3.5 \qquad \text{(pour un d\'e)}$$

$$E\{x\} = \sum_{k} \alpha_k P_r\{x = \alpha_k\}$$

3.4 Variance

$$\sigma^2 = \text{var} = E\{(x(n) - \underbrace{E\{x\}}_{m_x(n)})^2\}$$

Avec σ la déviation standard. On a aussi

$$var(x) = \sigma^2 = E\{x^2\} - E^2\{x\}$$

$$var\{x+y\} = var\{x\} + var\{y\}$$

3.5Biais

$$B = \theta - E\{\hat{\theta}_N\}$$

Différence entre la moyenne mesurée (par exemple sur un ensemble de pile ou face) et l'espérance théorique (0.5 dans ce cas)

$$\lim_{N\to\infty} E\{\hat{\theta}\} = \theta \longrightarrow \text{ non biais\'e}$$

3.6 Corrélation

$$r_{xy} = E\{xy^*\}$$

Avec * le conjugué complexe (si les valeurs sont complexes). Si la corrélation est le produit des moyennes, alors les deux variables sont indépendantes

$$r_{xy} = E\{x\}E\{y^*\} = m_x m_y^* \longrightarrow \text{ indépendants}$$

3.7 Coefficient de corrélation

$$\rho_{xy} = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \le 1$$

3.8 Gaussienne

$$f_x(\alpha) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left(-\frac{(\alpha - m_x)^2}{2\sigma_x^2}\right)$$

3.9 Bruit blanc

Avec déviation standard de σ

$$P = \sigma^2$$

Le spectre est plat entre $-\frac{F_s}{2}$ et $\frac{F_s}{2}$ avec une amplitude de σ^2

4 Systèmes de communication

Possibilité d'effectuer une compression importante pour des données prévisibles / redondantes. Deux caractéristiques de l'information :

1. Meaning

2. Suprise

Avec E certain, I(E) = 0

$$p(E) = 1 \longrightarrow I(E) = 0$$

Avec un événement peu probable F, I(F) > 0. Pour deux événements non-liés :

$$I(E_1 \cap E_2) = I(E_1) + I(E_2)$$

$$I(E) = -K \log_a(P(E))$$

a vaut souvent 2 (binaire).

4.1 Exemple équiprobable

$$p(A) = \frac{1}{2}$$
 $p(B) = \frac{1}{2}$ $p(C) = \frac{1}{8}$ $p(D) = \frac{1}{8}$

4.1.1 Entropie H

$$H = \frac{1}{2}1 + \frac{1}{2}2 + \frac{1}{8}3 + \frac{1}{8}3 = \frac{7}{4}$$
 bits par symbole

H = 0 pas d'information (certain), $H = H_{max}$ tous les symboles ont la même probabilité.

5 Codage de source

Aucune connaissance de la source, son rôle est de minimiser la redondance

Dilemme: Si on supprime des bits dans la source, on doit en rajouter dans le canal pour augmenter la robustesse.

5.1 Entropie

Symboles $\{a_0, a_1, a_2, \dots, a_{n-1}\}$ Probabilités : $\{P(a_0), P(a_1), P(a_2), \dots, P(a_{n-1})\}$ Information contenue dans un message :

$$I(a_k) = -\log_2(P(a_k))$$
 [bits]

Entropie de la source (moyenne du contenu d'information):

$$H = \sum_{i=0}^{n-1} P(a_i) I(a_i)$$

De la source \rightarrow ne pas prendre en compte si on envoie x symboles. On parle uniquement de la source

5.1.1 Combinaison de sources

Si une source S_3 fait un choix entre S_1 et S_2 (avec α la chance de S_1). L'entropie sera

$$H_3 = \alpha \left(H_1 - \log_2 \left(\alpha \right) \right) + (1 - \alpha) \left(H_2 - \log_2 \left(1 - \alpha \right) \right)$$

Pour construire l'arbre, on multiplie les probabilités des symboles de S_1 par α et les probabilités des symboles de S_2 par $(1 - \alpha)$

5.2 Méthodes de codage

- 1. Longueur fixe (comptage binaire "standard")
- 2. Optimal (100% efficace) pour puissances de 2 $(\frac{1}{2}, \frac{1}{4}, ..., 2 \times \frac{1}{2^{n-1}})$

Symbole	prob	Code A	Code B
s_0	1/2	1	0
s_1	1/4	01	10
s_2	1/8	001	110
÷	:	÷	:
s_{n-2}	$1/2^{n-1}$	0001	1110
s_{n-1}	$\frac{1/2^{n-1}}{1/2^{n-1}}$	0000	1111

Les deux codes (A et B) sont valides

5.3 Efficacité du code

Entropie divisée par la longueur moyenne (déterminée à partir de la méthode de codage)

 $\frac{H}{\bar{l}}$

Si n symboles sont combinés, on divise par n la longueur moyenne (pour connaître la longueur moyenne correspondant à un symbole).

5.4 Décodage

Décodage instantané : Aucun mot-code n'est prefix d'un autre

Inégalité de Kraft-McMillan

$$\sum_{i=0}^{n-1} 2^{-\mathrm{longueur}(s_i)} \neq 1 \longrightarrow \mathrm{Pas} \ \mathrm{instantan\acute{e}}$$

 $\mathrm{Si}=1$ cela ne veut pas forcément dire que le code est instantané

5.5 Huffman

Attention au 1 en haut ou en bas (les exemples sont données avec le 1 en haut) (les deux sont utilisés dans le cours). Ensuite on construit l'arbre avec le nouvel élément "en haut" ou "en bas" (précisé dans l'exo en principe).

5.5.1 Longueur moyenne

$$\bar{l} = \sum P(a_k) \cdot \text{longueur du code}(a_k)$$

5.5.2 Variance de la longueur

$$\operatorname{var} = \sigma^2 = \sum P(a_k) \cdot \left(\operatorname{longueur du code}(a_k) - \overline{l} \right)^2$$

Si on doit départager deux codes, une variance plus faible est meilleure

5.5.3 Huffman avec nouvel élément en haut

5.5.4 Huffman avec nouvel élément en bas

5.6 Lempel Ziv

Taux de compression :

$$\frac{L_{\text{initiale}} - L_{\text{finale}}}{L_{\text{initiale}}} \ [\%]$$

6 AWGN et Shannon

6.1 Capacité du canal et efficacité spectrale

eff. spec. =
$$\frac{C}{B} = \log_2\left(1 + \frac{S}{N}\right) = \log_2\left(1 + \frac{E_bR}{N_0B}\right)$$

La limite est donnée par

$$\frac{E_b}{N_0} = B \frac{2^{\frac{C}{B}-1}}{R}$$

6.2 BER

$$BER = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right)$$

7 Wireless

$$\lambda = \frac{c}{f}$$

8 Transmission sans-fil

$$1 \, \mathrm{W} = 30 \, \mathrm{dBm}$$

8.1 Formule de Friis

Dans un cas idéal, sans trajets multiples

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$

en dB:

$$\underbrace{(P_r)_{\mathrm{dB}} - (P_t)_{\mathrm{dB}}}_{-Att,\mathrm{p}} = (G_t)_{\mathrm{dB}} + (G_r)_{\mathrm{dB}} + 20\log_{10}\left(\frac{\lambda}{4\pi R}\right)$$

$$A_{tt_{\rm dB}} > 0$$

$$(x)_{dB} = 10 \log_{10}(x)$$

A noter que la puissance de 2 a été enlevée et le 10 log remplacé par 20 log

8.1.1 Avec γ

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi}\right)^2 \frac{1}{R^{\gamma}}$$

$$\underbrace{(P_r)_{\mathrm{dB}} - (P_t)_{\mathrm{dB}}}_{-Att_{\mathrm{dB}}} = (G_t)_{\mathrm{dB}} + (G_r)_{\mathrm{dB}} +$$

$$20 \log_{10} \left(\frac{\lambda}{4\pi}\right) + 10 \log_{10} \left(\frac{1}{R^{\gamma}}\right)$$

Valeurs de γ Espace libre 2, Environnement urbain 2.7 à 3.5, environnement urbain avec ombrage 3 à 5, dans un bâtiment avec vue de l'antenne 1.6 à 1.8, dans un bâtiment sans vue 4 à 6, dans une industrie 2 à 3

Si on rajoute γ après-coup, on utilise la formule suivante pour calculer la nouvelle atténuation Att_{\gamma} (on considère Att > 0):

$$Att_{\gamma} = Att + 10\log_{10}(r^{\gamma - 2})$$

zone de Fresnel

$$R = \frac{1}{2} \sqrt{\frac{cD}{f}}$$

Avec D la distance entre les antennes, c la vitesse de la lumière et f la fréquence

9 Codage de canal

$$(n,k,d)_q$$

Lorsque la base est q=2 on ne l'affiche pas

$$\begin{array}{c|c}
k & n \\
\hline
010110 & \longrightarrow 11010010 \\
\text{message} & \text{mot-code}
\end{array}$$

Nombre de bits à transmettre (information)

Nombre de bits transmis n > kn

Distance de Hamming

Information (bits à transmettre)

$$x = \begin{pmatrix} x_{k-1} & x_{k-2} & \cdots & x_1 & x_0 \end{pmatrix} \in \mathbb{R}^{1 \times k}$$

Matrice systématique (identité à gauche).

$$G_S = \begin{pmatrix} I_k & P \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 & x & \cdots & x \\ 0 & 1 & \cdots & 0 & x & \cdots & x \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & x & \cdots & x \end{pmatrix}$$

$$Encodage "standard" :$$

$$H_s = \begin{pmatrix} P^T & I_{n-k} \end{pmatrix} \in \mathbb{R}^{n-k \times n}$$

Capacité de détection d'erreurs : $d_{min} - 1$ Capacité de correction d'erreurs : $\left| \frac{d_{min}-1}{2} \right|$

9.1 Propriétés

$$G_S H_S^T = 0$$

Codes polynomiaux 9.2

- 1. Souvent linéaires (+ parfois cycliques)
- 2. Générateur rarement systématique (on peut utiliser un encodage systématique si le générateur ne l'est pas)

Codes linéaires

La somme de deux codes valides donne un nouveau code valide

9.4Codes cycliques

Un décalage vers la gauche $0011 \longrightarrow 0110$ ou vers la droite $0011 \longrightarrow 1001$ donne un autre code valide. Un décalage d'un mot-code de longueur n dans $\mathbb{R}_n[X]$ est similaire à une multiplication par X

9.4.1 Générateur

Un générateur permet, par des décalages cycliques et des sommes d'obtenir tous les mots-code.

Si le générateur divise $(1+X^n)$ alors le code est cyclique

9.4.2 Encodage

On veut encoder un message x et obtenir le mot-code y

Encodage systématique :

$$x \xrightarrow{\text{encodage}} xX^{n-k} + \text{reste}\left(\frac{xX^{n-k}}{g(x)}\right) = y$$

Encodage "standard" :

$$x \xrightarrow{\text{encodage}} xg(x) = y$$

9.4.3 Vérification

On va simplement chercher à savoir si le message est correct ou non.

Vérification systématique (on vérifie simplement que le message soit égal au reste, comme pour l'encodage)

$$y[0:k] == \text{reste}\left(\frac{y[0:k]X^{n-k}}{g(x)}\right)$$

Vérification "standard"

$$s(x) = e(x) = \frac{y}{g(x)}$$
 $s(x) = 0 \longrightarrow \text{ ok}$

Correction d'erreurs

On va utiliser une matrice de contrôle (typiquement pour les codes BCH) qui va indiquer la position de(s) erreur(s)

Décodage 9.4.5

Dans le cas où le message est correct, on va effectuer le décodage.

Décodage systématique (on récupère simplement les bits dans le message tels-quels):

$$\hat{x} = y[0:k]$$

Décodage "standard" :

$$\hat{x} = \frac{y}{g(x)}$$

Générateur \leftrightarrow matrice

On peut créer la matrice en effectuant des décalages cycliques du générateur g(x)

$$\begin{pmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 \\ 0 & 0 & g_0 & g_1 & \cdots & g_{n-k} \end{pmatrix}$$

Avec le nombre de lignes correspondant à la longueur du message. Cette matrice n'est pas systématique. Il faut On utilise le codage de Grey. Si il y a une petite pertur-

la manipuler si on veut obtenir la version systématique. On effectue ensuite des combinaisons linéaires sur les lignes pour obtenir la matrice systématique.

Codage convolutionnel 9.6

Modulations

10.1 QAM

13 Autres

$$1 \, \mathrm{W} = 30 \, \mathrm{dBm}$$

Algorithme de Viterbi (décodage)

Soit le code reçu 00 11 10 01 11 11 11

bation sur le signal, il y a un minimum de bits modifiées et donc la correction d'erreur pourra récupérer le message d'origine.

Multiple access 11

12Acquisition et synchronisation

Le code corrigé est donc 00 11 10 11 11 10 11. Qui correspond à la séquence 0100100 (le message est 01001, les deux derniers bits sont le vidage de la mémoire).