Covariate Assisted Principal (CAP) Regression for Matrix Outcomes

Xi (Rossi) LUO

University of Texas

Health Science Center School of Public Health Dept of Biostatistics and Data Science ABCD Research Group

ICSA Workshop, Xishuangbana, Yunan, CHINA

January 13, 2019

Funding: NIH R01EB022911, P20GM103645, P01AA019072, P30AI042853; NSF/DMS (BD2K) 1557467

Co-Authors

Yi Zhao Johns Hopkins Biostat

Bingkai Wang Johns Hopkins Biostat

Stewart Mostofsky
Johns Hopkins Medicine

Brian Caffo
Johns Hopkins Biostat

Slides viewable on web: bit.ly/icsa19

Motivating Example

Brain network connections vary by covariates (e.g. age/sex)

Goal: model how covariates change network connections

function(graph) = age
$$\times \beta_1 + \text{sex} \times \beta_2 + \cdots$$

Resting-state fMRI Networks

- fMRI measures brain activities over time
- Resting-state: "do nothing" during scanning

 Brain networks constructed using cov/cor matrices of time series

Mathematical Problem

- Given n (semi-)positive matrix outcomes, $\Sigma_i \in \mathbb{R}^{p imes p}$
- ullet Given n corresponding vector covariates, $x_i \in \mathbb{R}^q$
- ullet Find function $g(\Sigma_i)=x_ieta$, $i=1,\ldots,n$
- In essense, regress matrices on vectors

Some Related Problems

- Heterogeneous regression or weighted LS:
 - \circ Usually for scalar variance σ_i , find $g(\sigma_i) = f(x_i)$
 - \circ Goal: to improve efficiency, not to interpret x_ieta
- Covariance models [Anderson, 73; Pourahmadi, 99; Hoff, Niu, 12; Fox, Dunson, 15; Zou, 17]
 - \circ Model $\Sigma_i = g(x_i)$, sometimes n=i=1
 - \circ Goal: better models for Σ_i
- Multi-group PCA [Flury, 84, 88; Boik 02; Hoff 09; Franks, Hoff, 16]
 - \circ No regression model, cannot handle vector x_i
 - \circ Goal: find common/uncommon parts of multiple Σ_i
- ullet Ours: $g(\Sigma_i)=x_ieta$, g inspired by PCA

Massive Edgewise Regressions

- Intuitive method by mostly neuroscientists
- ullet Try $g_{j,k}(\Sigma_i)=\Sigma_i[j,k]=x_ieta$
- ullet Repeat for all $(j,k)\in\{1,\ldots,p\}^2$ pairs
- ullet Essentially $O(p^2)$ regressions for each connection
- Limitations: multiple testing $O(p^2)$, failure to accout for dependencies between regressions

Model and Method

Model

• Find principal direction (PD) $\gamma \in \mathbb{R}^p$, such that:

$$\log(\gamma^ op \Sigma_i \gamma) = eta_0 + x_i^ op eta_1, \quad i = 1, \dots, n$$

Example (p=2): PD1 largest variation but not related to x PCA selects PD1, Ours selects PD2

Advantages

- ullet Scalability: potentially for $p\sim 10^6\,$ or larger
- Interpretation: covariate assisted PCA
 - Turn unsupervised PCA into supervised
- Sensitivity: target those covariate-related variations
 - Covariate assisted SVD?
- Applicability: other big data problems besides fMRI

Method

MLE with constraints:

$$egin{aligned} & ext{minimize} \ \ell(oldsymbol{eta}, oldsymbol{\gamma}) := rac{1}{2} \sum_{i=1}^n (x_i^ op oldsymbol{eta}) \cdot T_i + rac{1}{2} \sum_{i=1}^n oldsymbol{\gamma}^ op \Sigma_i oldsymbol{\gamma} \cdot \exp(-x_i^ op oldsymbol{eta}), \ & ext{such that} \ oldsymbol{\gamma}^ op H oldsymbol{\gamma} = 1 \end{aligned}$$

Two obvious constriants:

$$\circ$$
 C1: $H=I$

$$\circ$$
 C2: $H=n^{-1}(\Sigma_1+\cdots+\Sigma_n)$

Choice of H

Proposition: When (C1) H=I in the optimization problem, for any fixed $\boldsymbol{\beta}$, the solution of $\boldsymbol{\gamma}$ is the eigenvector corresponding to the minimum eigenvalue of matrix

$$\sum_{i=1}^{n} rac{\Sigma_i}{exp(x_i^{\; au}oldsymbol{eta})}$$

Will focus on the constraint (C2)

Algoirthm

- ullet Iteratively update eta and then γ
- Prove explicit updates
- Extension to multiple γ :
 - \circ After finding $\gamma^{(1)}$, we will update Σ_i by removing its effect
 - \circ Search for the next PD $\gamma^{(k)}$, $k=2,\ldots$
 - \circ Impose the orthogonal constraints such that γ^k is orthogonal to all $\gamma^{(t)}$ for t < k

Theory for β

Theorem: Assume $\sum_{i=1}^n x_i x_i^\top/n \to Q$ as $n \to \infty$. Let $T = \min_i T_i$, $M_n = \sum_{i=1}^n T_i$, under the true γ , we have $\sqrt{M_n} \left(\hat{\beta} - \beta \right) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N} \left(0, 2Q^{-1} \right), \quad as \ n, T \to \infty,$ where $\hat{\beta}$ is the maximum likelihood estimator when the true

 γ is known.

Theory for γ

Theorem: Assume $\Sigma_i = \Gamma \Lambda_i \Gamma^\top$, where $\Gamma = (\gamma_1, \ldots, \gamma_p)$ is an orthogonal matrix and $\Lambda_i = diag\{\lambda_{i1}, \ldots, \lambda_{ip}\}$ with $\lambda_{ik} \neq \lambda_{il} \ (k \neq l)$, for at least one $i \in \{1, \ldots, n\}$ There exists $k \in \{1, \ldots, p\}$ such that for $\forall i \in \{1, \ldots, n\}$ $\gamma_k^\top \Sigma_i \gamma_k = exp(x_i^\top \beta)$. Let $\hat{\gamma}$ be the maximum likelihood estimator of γ_k in Flury, 84. Then assuming that the assumptions are satisfied, $\hat{\beta}$ from our algorithm is $\sqrt{M_n}$ -consistent estimator of β .

Simulations

Table 1: Estimate (Est.) of β_1 , as well as standard error (SE), coverage probability with asymptotic variance in Theorem 1 (CP-A) and coverage probability from 500 bootstrap samples (CP-B) from different methods under the alternative hypothesis. All values are computed with n = 100 and $T_i = 100$ over 200 simulations.

Method	First Direction			Second Direction		
	Est. (SE)	CP-A	CP-B	Est. (SE) CP-A CP-	В	
Truth	-1.00	-	-	1.00 -	_	
CAP	-1.00 (0.03)	0.950	0.950	$0.81 \ (0.58) 0.885 0.87$	70	
CAP-OC	-1.00 (0.03)	0.950	0.950	$0.52 \ (0.84) 0.730 0.71$	15	
CAP-C	-1.00 (0.03)	0.950	0.955	1.00 (0.03) 0.975 0.96	30	
PCA	-0.02 (0.10)	-	0	-0.98 (0.03)	0	
CPCA	-0.01 (0.11)	_	0	-1.00 (0.03)	0	

PCA and common PCA do not find the first principal direction, because they don't model covariates

Resting-state fMRI

Regression Coefficients

No statistical significant changes were found by massive edgewise regression

Brain Map of γ

Figure 4: The loading profile and brain regions with absolute loading greater than 0.2 in projection direction D1 identified by CAP.

Discussion

- Regress matrices on vectors
- Method to identify covariate-related directions
- Theorectical justification
- Manuscript: DOI: 10.1101/425033
- R pkg: cap

Thank you!

Comments? Questions?

BigComplexData.com

or BrainDataScience.com

