

ECO 1002

Date Printed: 04 February 2023

Opamp Inverting Amplifier

PART NUMBER	04A-005
GROUP NAME	Opamp Amplifiers (04A)
CIRCUIT NAME	Inverting Amplifier
VARIANT DESCRIPTION	Single supply, DC Bias Trimmer
BOARD DESIGN	PCB50
PRODUCT DESCRIPTION	Panel of 04A-005 miniPCBs, v-scored (1 Panel = 4 Pieces)

Basic Circuit Diagram

Figure 1 – Source: https://www.electronics-tutorials.ws/opamp/opamp_2.html

www.miniPCB.com 1 of 21

ECO 1002

Date Printed: 04 February 2023

Theory of Operation

This circuit amplifies a small voltage signal. Since there is no DC blocking capacitor on the signal input pin P1-4, the difference between the DC component of the input signal and the reference voltage set by the potentiometer R2 will be amplified.

The feedback capacitor C6 allows larger feedback resistor values to be used without decreasing the amplifier's gain bandwidth.

A low-pass Butterworth filter is formed by resistor R6 and capacitor C3 to minimize noise on the non-inverting opamp input.

The input impedance is largely determined by resistor R4. The output impedance is largely determined by the opamp U1.

The minimum and maximum supply voltage is largely determined by the opamp U1. Only the V+ power source is needed to operate this circuit.

Capacitors C2 and C5 filter the V+ power rail. Using capacitors with different values, generally between 10X and 1000X different, will provide better performance than two capacitors with similar values. The smaller capacitor should be used for C2 since C2 is closer to the opamp pin than C5.

www.miniPCB.com 2 of 21

ECO

Date Printed: 04 February 2023

1002

www.miniPCB.com 3 of 21

ECO 1002

Date Printed: 04 February 2023

TOP VIEW

BOTTOM VIEW

www.miniPCB.com 4 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

Design Example

Pictures

www.miniPCB.com 5 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

Parts List

QTY REQ	PART	REF DES	MFG	MFG PN	VALUE	FIND
1	РСВ	-	miniPCB	04A-005	N/A	1
1	CAPACITOR	C1	NICHICON	UFW2A470MPD	47 uF	2
1	CAPACITOR	C2	TDK	TDK FA28X7S2A473KRU06		3
1	CAPACITOR	C3	TDK	FA28X7S2A473KRU06	47 nF	4
1	CAPACITOR	C4	TDK	FA28X7S2A473KRU06	47 nF	5
1	CAPACITOR	C5	NICHICON	UFW2A470MPD	47 uF	6
1	CAPACITOR	C6	TDK	FA24NP02W102JNU06	1000pF	7
1	PINS, 2mm	P1	MOLEX	87754-0552	N/A	8
1	RESISTOR	R1	VISHAY RL07S101GRE6		100 Ω	9
1	TRIMMER	R2	VISHAY T93YA104KT20		100 ΚΩ	10
1	RESISTOR	R3	VISHAY RL07S101GRE6		100 Ω	11
1	RESISTOR	R4	VISHAY PTF6550R000BYEK		50 Ω	12
1	RESISTOR	R5	VISHAY	PTF56500R00BYEB	500 Ω	13
1	RESISTOR	R6	VISHAY	RL07S101GRE6	100 Ω	14
			NISSHINBO	NJM2904D		
			NISSHINBO	NJM14558D		
1	OPAMP, DUAL U1	114	TAIWAN SEMICONDUCTOR	TS358	N1/A	15
1		01	MICROCHIP	MCP6002-I/P	- N/A	15
		ANALOG DEVICES	AD827JNZ			
			TEXAS INSTRUMENTS	LF412CP]	
10	TEST POINT	TP*	KEYSTONE ELECTRONICS	5000	N/A	16

www.miniPCB.com 6 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

Absolute Maximum Ratings

POWER REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Postive DC Supply	+V	V	3.1	3.3	3.5
Negative DC Supply	-V	V	N/A	N/A	N/A

STIMULI REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Maximum Voltage Gain	A_v	$\frac{V}{V}$			
Bandwidth	f_{-3dB}	Hz			
Common-Mode Offset	V_{cm}	$\frac{V}{V}$			
Common-Mode Gain	A_{cm}	$\frac{V}{V}$			
Maximum Input Bias Current	I_{bias}	Α			
Maximum Phase Shift	ϕ_{max}	o			
Source Impedance	R_{s}	Ω			

PERFORMANCE CHARACTERISTICS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Quiescient Current	I_q	Α			
Voltage Gain	A_v	$\frac{V}{V}$			
Input Impedance	R_i	Ω			
Output Impedance	R_i	Ω			

www.miniPCB.com 7 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

Test Documentation

Test List

TEST #	TEST NAME	TEST DESCRIPTION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		

Test Results

Test Conclusions

www.miniPCB.com 8 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

Engineering Forms

FORM: Parts List

QTY REQ	PART	REF DES	MFG	MFG PN	VALUE	FIND
1	РСВ	-	miniPCB	04A-005	N/A	1
1	CAPACITOR	C1				2
1	CAPACITOR	C2				3
1	CAPACITOR	C3				4
1	CAPACITOR	C4				5
1	CAPACITOR	C5				6
1	CAPACITOR	C6				7
1	PINS, 2mm	P1			N/A	8
1	RESISTOR	R1				9
1	TRIMMER	R2				10
1	RESISTOR	R3				11
1	RESISTOR	R4				12
1	RESISTOR	R5				13
1	RESISTOR	R6				14
1	OPAMP, DUAL	U1			N/A	15
10	TEST POINT	TP*	KEYSTONE ELECTRONICS	5000	N/A	16

www.miniPCB.com 9 of 21

ECO 1002

Date Printed: 04 February 2023

Gerber Files

This section contains images of the layers included in each Gerber file.

TOP COPPER (GLTX)

www.miniPCB.com 10 of 21

ECO 1002

Date Printed: 04 February 2023

TOP CREAM (GCTX)

www.miniPCB.com 11 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

BOTTOM CREAM (GCBX)

www.miniPCB.com 12 of 21

ECO 1002

Date Printed: 04 February 2023

BOTTOM COPPER (GLBX)

www.miniPCB.com 13 of 21

ECO 1002

Date Printed: 04 February 2023

TOP SILKSCREEN (GOTX)

www.miniPCB.com 14 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

BOTTOM SILKSCREEN (GOBX)

X04A-005-B-XB INVERTING AMPLIFIER X04A-005-B-XB INVERTING AMPLIFIER X04A-005-B-XB INVERTING AMPLIFIER X04A-005-B-XB INVERTING AMPLIFIER FILE DESCRIPTION THIS DRAWING AND THE INFORMATION IT CONTAINS **BOTTOM SILKSCREEN** IS PROVIDED FOR EDUCATIONAL USE ONLY.

www.miniPCB.com 15 of 21

ECO 1002

Date Printed: 04 February 2023

TOP SOLDERMASK (GSTX)

www.miniPCB.com 16 of 21

ECO 1002

Date Printed: 04 February 2023

BOTTOM SOLDER MASK (GSBX)

www.miniPCB.com 17 of 21

ECO 1002

Date Printed: 04 February 2023

EDGE (GM1)

www.miniPCB.com 18 of 21

ECO 1002

Date Printed: 04 February 2023

VSCORE (GM2)

www.miniPCB.com 19 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

MILLING (GM3)

www.miniPCB.com 20 of 21

04A-005-B

ECO 1002

Date Printed: 04 February 2023

Change and Liability Notice

This document is subject to change without notice. While effort has been made to ensure the accuracy of the material contained within this document, Nolan Manteufel shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this document.

Trademark Notice

miniPCB is a trademark of Nolan Manteufel.

This datasheet does not constitute permission to use the miniPCB trademark.

WORDMARK	FIGUREMARK	FIGUREMARK
miniPCB™	mjniPCB _m	□ TM

Revision History

REV	DESCRIPTION	ECO	DATE
Α	Initial Release	1002	

www.miniPCB.com 21 of 21