1.32 Theorem. Let $a, n, b, r, k \in \mathbb{Z}$. If $k \mid a, k \mid b$, and a = nb + r, then $k \mid r$.

Proof. Let $a, n, b, r, k \in \mathbb{Z}$ be given such that $k \mid a, k \mid b$, and a = nb + r. Let $x, y \in \mathbb{Z}$ such that, by definition, a = kx and b = ky. Substituting a = nb + r into a = kx

$$a = kx,$$

$$nb + r = kx.$$

Substituting for b = ky

$$n(ky) + r = kx,$$

$$r = kx - kny,$$

$$= k(x - ny).$$

By CPI, we can see $(x - ny) \in \mathbb{Z}$. Thus $k \mid r$.