The Simplex method

```
Maximize x_1+x_2 subject to -x_1+x_2 \leq 1 x_1 \leq 3 x_2 \leq 2 x_1, x_2 \geq 0
```

Maximize
$$x_1+x_2$$
 subject to $-x_1+x_2 \leq 1$ $x_1 \leq 3$ $x_2 \leq 2$ $x_1, x_2 \geq 0$

How to transform into equational form?

Maximize
$$x_1+x_2$$
 subject to $-x_1+x_2\leq 1$ $x_1\leq 3$ $x_2\leq 2$ $x_1,x_2\geq 0$

add slack variables

Equational form

Maximize x_1+x_2 subject to $-x_1+x_2+x_3=1$ $x_1+x_4=3$ $x_2+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$

Maximize
$$x_1+x_2$$
 subject to $-x_1+x_2\leq 1$ $x_1\leq 3$ $x_2\leq 2$ $x_1,x_2\geq 0$

add slack variables

Equational form

Maximize $x_1 + x_2$

subject to
$$-x_1 + x_2 + x_3 = 1$$

$$x_1 + x_4 = 3$$

$$x_2 + x_5 = 2$$

$$x_1, x_2, x_3, x_4, x_5 \geq 0$$

in matrix form

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$c^T = (1, 1, 0, 0, 0), b^T = (1, 3, 2)$$

rewrite

Simplex tableau A

$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 3 - x_1$
 $x_5 = 2 - x_2$
 $z = x_1 + x_2$

Maximize
$$x_1 + x_2$$
 subject to $-x_1 + x_2 + x_3 = 1$ $x_1 + x_4 = 3$ $x_2 + x_5 = 2$ $x_1, x_2, x_3, x_4, x_5 > 0$

Simplex tableau A

basic
$$x_3=1+x_1-x_2$$
 $x_4=3-x_1$ variables $x_5=2$ x_1+x_2 $x_5=x_1+x_2$ non-basic variables

Plug in $x_1 = x_2 = 0$ to get a bfs with basis $B = \{3, 4, 5\}$ and value z = 0.

basic feasible solution

Simplex tableau A

basic
$$x_3=1+x_1-x_2$$
 $x_4=3-x_1$ variables $x_5=2$ x_1+x_2 $x_5=x_1+x_2$ non-basic variables

Plug in $x_1 = x_2 = 0$ to get a bfs with basis $B = \{3, 4, 5\}$ and value z = 0.

How can we increase the objective value z?

Simplex tableau A

basic
$$x_3=1+x_1-x_2$$
 $x_4=3-x_1$ variables $x_5=2$ x_1+x_2 $x_5=x_1+x_2$ non-basic variables

Plug in $x_1 = x_2 = 0$ to get a bfs with basis $B = \{3, 4, 5\}$ and value z = 0.

Increase z by (arbitrarily) deciding to increase x_2 while fixing $x_1=0$.

Simplex tableau A

basic
$$x_3=1+x_1-x_2$$
 $x_4=3-x_1$ variables $x_5=2$ x_1+x_2 $x_5=x_1+x_2$ non-basic variables

Plug in $x_1 = x_2 = 0$ to get a bfs with basis $B = \{3, 4, 5\}$ and value z = 0.

Increase z by (arbitrarily) deciding to increase x_2 while fixing $x_1=0$.

How much can we increase x_2 ?

Simplex tableau A

basic
$$x_3=1+x_1-x_2$$
 $x_4=3-x_1$ variables $x_5=2$ x_1+x_2 $x_5=x_1+x_2$ non-basic variables

Plug in $x_1 = x_2 = 0$ to get a bfs with basis $B = \{3, 4, 5\}$ and value z = 0.

Increase z by (arbitrarily) deciding to increase x_2 while fixing $x_1=0$.

We are most limited by the equation $x_3 = 1 + x_1 - x_2$, which we can rewrite as $x_2 = 1 + x_1 - x_3$.

Simplex tableau B

basic
$$x_2=1+x_1-x_3$$
 $x_4=3-x_1$ variables $x_5=1-x_1+x_3$ $z=1+2x_1-x_3$ non-basic variables

Plug in $x_1 = x_3 = 0$ to get a bfs with basis $B = \{2, 4, 5\}$ and value z = 1.

Simplex tableau B

basic
$$x_2=1+x_1-x_3$$
 $x_4=3-x_1$ variables $x_5=1-x_1+x_3$ $z=1+2x_1-x_3$ non-basic variables

Plug in $x_1 = x_3 = 0$ to get a bfs with basis $B = \{2, 4, 5\}$ and value z = 1.

Which variable to increase next?

Simplex tableau B

basic
$$x_2=1+x_1-x_3$$
 $x_4=3-x_1$ variables $x_5=1-x_1+x_3$ $z=1+2x_1-x_3$ non-basic variables

Plug in $x_1 = x_3 = 0$ to get a bfs with basis $B = \{2, 4, 5\}$ and value z = 1.

Next increase z by increasing x_1 .

We are limited by the equation $x_5 = 1 - x_1 + x_3$, which we can rewrite as $x_1 = 1 + x_3 - x_5$.

Simplex tableau C

basic
$$x_1=1+x_3-x_5$$
 $x_2=2-x_5$ variables $x_4=2-x_3+x_5$ $z=3+x_3-2x_5$ non-basic variables

Plug in $x_3 = x_5 = 0$ to get a bfs with basis $B = \{1, 2, 4\}$ and value z = 3.

Simplex tableau C

basic
$$x_1=1+x_3-x_5$$
 $x_2=2-x_5$ variables $x_4=2-x_3+x_5$ $z=3+x_3-2x_5$ non-basic variables

Plug in $x_3 = x_5 = 0$ to get a bfs with basis $B = \{1, 2, 4\}$ and value z = 3.

Increase z by increasing x_3 .

We are limited by the equation $x_4 = 2 - x_3 + x_5$, which we can rewrite as $x_3 = 2 - x_4 + x_5$.

Simplex tableau D

basic
$$x_1=3-x_4$$
 $x_2=2-x_5$ variables $x_3=2-x_4+x_5$ $z=5-x_4-x_5$ non-basic variables

Plug in $x_4 = x_5 = 0$ to get a bfs with basis $B = \{1, 2, 3\}$ and value z = 5.

Simplex tableau D

basic
$$x_1=3-x_4$$
 $x_2=2-x_5$ variables $x_3=2-x_4+x_5$ $z=5-x_4-x_5$ non-basic variables

Plug in $x_4 = x_5 = 0$ to get a bfs with basis $B = \{1, 2, 3\}$ and value z = 5.

Can we increase *z* further?

Simplex tableau D

basic
$$x_1=3-x_4$$
 $x_2=2-x_5$ variables $x_3=2-x_4+x_5$ $z=5-x_4-x_5$ non-basic variables

Plug in $x_4 = x_5 = 0$ to get a bfs with basis $B = \{1, 2, 3\}$ and value z = 5.

This is optimal, and moreover gives a proof of optimality, since any feasible solution satisfies $z = 5 - x_4 - x_5$ with $x_4, x_5 \ge 0$.

Simplex tableau D

basic
$$x_1=3-x_4$$
 $x_2=2-x_5$ variables $x_3=2-x_4+x_5$ $z=5-x_4-x_5$ non-basic variables

Plug in $x_4 = x_5 = 0$ to get a bfs with basis $B = \{1, 2, 3\}$ and value z = 5.

This is optimal, and moreover gives a proof of optimality, since any feasible solution satisfies $z = 5 - x_4 - x_5$ with $x_4, x_5 \ge 0$.

Remark: Pictures should really be in \mathbb{R}^5 , not \mathbb{R}^2 .

Simplex tableau D

basic
$$x_1=3-x_4$$
 $x_2=2-x_5$ variables $x_3=2-x_4+x_5$ $z=5-x_4-x_5$ non-basic variables

Plug in $x_4 = x_5 = 0$ to get a bfs with basis $B = \{1, 2, 3\}$ and value z = 5.

This is optimal, and moreover gives a proof of optimality, since any feasible solution satisfies $z = 5 - x_4 - x_5$ with $x_4, x_5 \ge 0$.

Remark: Pictures should really be in \mathbb{R}^5 , not \mathbb{R}^2 .

Remark: We would have needed fewer steps if we had first pivoted over x_1 .

Introductory example - Question

Simplex tableau A

$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 3 - x_1$
 $x_5 = 2 - x_2$
 $z = x_1 + x_2$

Which Simplex tableau do we get if we increase x_1 first? Which do we get in the second step?

Introductory example - Question

Simplex tableau A

$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 3 - x_1$
 $x_5 = 2 - x_2$
 $z = x_1 + x_2$

Simplex tableau B'

$$x_1 = 3 - x_4$$
 $x_3 = 4 - x_2 - x_4$
 $x_5 = 2 - x_2$
 $z = 3 + x_2 - x_4$

Introductory example - Question

Simplex tableau A

$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 3 - x_1$
 $x_5 = 2 - x_2$
 $z = x_1 + x_2$

Simplex tableau B'

$$x_1 = 3 - x_4$$
 $x_3 = 4 - x_2 - x_4$
 $x_5 = 2 - x_2$
 $z = 3 + x_2 - x_4$

Simplex tableau C'

$$x_1 = 3 - x_4$$
 $x_3 = 4 - x_2 - x_4$
 $x_5 = 2 - x_2$
 $x_6 = 3 + x_2 - x_4$
 $x_8 = 3 - x_4$
 $x_9 = 2 - x_9$
 $x_9 = 2 - x_9$

```
Maximize x_1 subject to: x_1-x_2 \leq 1 -x_1+x_2 \leq 2 x_1,x_2 \geq 0
```

Maximize x_1 subject to: $x_1-x_2 \leq 1$ $-x_1+x_2 \leq 2$ $x_1,x_2 \geq 0$

Equational form

Maximize x_1

subject to:
$$x_1 - x_2 + x_3 = 1$$

 $\begin{array}{c|c} \text{add slack} & -x_1+x_2+x_4=2 \\ \hline \text{variables} & x_1,x_2,x_3,x_4\geq 0 \\ \end{array}$

Maximize x_1 subject to: $x_1-x_2 \leq 1$ $-x_1+x_2 \leq 2$ $x_1,x_2 \geq 0$

Equational form

Maximize x_1

subject to:
$$x_1 - x_2 + x_3 = 1$$

add slack variables

rewrite

$$-x_1 + x_2 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = 1 - x_1 + x_2$$

$$x_4 = 2 + x_1 - x_2$$

$$z = x_1$$

Maximize x_1

subject to: $x_1 - x_2 \le 1$

$$-x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Equational form

Maximize x_1

subject to:
$$x_1 - x_2 + x_3 = 1$$

rewrite

$$-x_1 + x_2 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = 1 - x_1 + x_2$$

$$x_4 = 2 + x_1 - x_2$$
 pivot on x_1 $x_4 = 3 - x_3$

$$z = x_1$$

$$x_1 = 1 + x_2 - x_3$$

$$x_4 = 3 - x_3$$

$$z = 1 + x_2 - x_3$$

Maximize x_1

subject to: $x_1 - x_2 < 1$

$$-x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Equational form

Maximize x_1

subject to:
$$x_1 - x_2 + x_3 = 1$$

add slack variables

rewrite

$$-x_1 + x_2 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = 1 - x_1 + x_2$$

$$x_4 = 2 + x_1 - x_2$$
 pivot on x_1 $x_4 = 3 - x_3$

$$z = x_1$$

$x_1 = 1 + x_2 - x_3$

$$x_4 = 3 - x_3$$

$$z = 1 + x_2 - x_3$$

Exception handling: Unboundedness

Maximize x_1

subject to: $x_1 - x_2 \le 1$

$$-x_1 + x_2 \le 2$$

$$x_1, x_2 \geq 0$$

Equational form

Maximize x_1

subject to:
$$x_1 - x_2 + x_3 = 1$$

 $-x_1 + x_2 + x_4 = 2$

variables

rewrite

$$x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = 1 - x_1 + x_2$$

$$x_4 = 2 + x_1 - x_2$$

$$z = x_1$$

$x_1 = 1 + x_2 - x_3$

$$z = 1 + x_2 - x_3$$

increase x_2 without limit

Feasible ray $\{(1+x_2,x_2,0,3):x_2\geq 0\}$ with unbounded objective function $1+x_2$.

Maximize x_2 subject to: $-x_1+x_2 \leq 0$ $x_1 \leq 2$ $x_1, x_2 \geq 0$

Maximize x_2

subject to: $-x_1 + x_2 \leq 0$

$$x_1 \leq 2$$

$$x_1, x_2 \ge 0$$

Equational form

Maximize x_2

subject to:
$$-x_1+x_2+x_3=0$$
 $x_1+x_4=2$ $x_1,x_2,x_3,x_4\geq 0$

$$x_1 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Maximize x_2 subject to: $-x_1 + x_2 \leq 0$

$$x_1 \leq 2$$

$$x_1, x_2 \ge 0$$

Equational form

Maximize x_2

subject to:
$$-x_1 + x_2 + x_3 = 0$$

$$x_1 + x_4 = 2$$

$$x_1 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = x_1 - x_2$$

$$x_4 = 2 - x_1$$

$$z = x_2$$

Feasible solution: (0, 0, 0, 2)

Maximize x_2 subject to: $-x_1 + x_2 \le 0$

$$x_1, x_2 > 0$$

 $x_1 < 2$

Equational form

Maximize x_2 subject to: $-x_1 + x_2 + x_3 = 0$

$$x_1 + x_4 = 2$$

$$x_1 + x_4 - 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = x_1 - x_2$$
 $x_2 = x_1 - x_3$

$$x_4 = 2 - x_1 \quad \text{pivot on } x_2 \quad x_4 = 2 - x_1$$

$$z = x_2 \quad z = x_1 - x_3$$

Feasible solution: (0,0,0,2) Feasible solution: (0,0,0,2)

Maximize x_2 subject to: $-x_1 + x_2 \leq 0$

$$x_1, x_2 > 0$$

 $x_1 < 2$

Equational form

Maximize x_2 subject to: $-x_1 + x_2 + x_3 = 0$

$$x_1 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = x_1 - x_2$$
 $x_2 = x_1 - x_3$ $x_4 = 2 - x_1$ pivot on x_2 $x_4 = 2 - x_1$ $z = x_1 - x_3$

Feasible solution: (0,0,0,2) - Feasible solution: (0,0,0,2)

note: we changed basis for the same bfs. Can we get stuck?

Exception handling: Degeneracy

Maximize x_2 subject to: $-x_1 + x_2 \le 0$

$$x_1 \leq 2$$

$$x_1, x_2 \ge 0$$

Equational form

Maximize x_2

subject to:
$$-x_1 + x_2 + x_3 = 0$$

$$x_1 + x_4 = 2$$

$$x_1 + x_4 - z \\ x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = x_1 - x_2$$
 $x_2 = x_1 - x_3$ $x_4 = 2 - x_1$ pivot on x_2 $x_4 = 2 - x_1$ $z = x_1 - x_3$ $z = x_1 - x_3$

Feasible solution: (0,0,0,2) Feasible solution: (0,0,0,2)

note: we changed basis for the same bfs. There are ways to prevent cycling.

Exception handling: Degeneracy

Maximize x_2 subject to: $-x_1 + x_2 \le 0$ $x_1 < 2$

$$x_1, x_2 \ge 0$$

Equational form

Maximize x_2 subject to: $-x_1+x_2+x_3=0$ $x_1+x_4=2$

$$x_1, x_2, x_3, x_4 \ge 0$$

Simplex tableau

$$x_3 = x_1 - x_2$$
 $x_2 = x_1 - x_3$ $x_1 = 2 - x_4$ $x_4 = 2 - x_1$ pivot on x_2 $x_4 = 2 - x_1$ pivot on x_1 $x_2 = 2 - x_3 - x_4$ $z = x_1 - x_3$ $z = x_1 - x_3$ $z = 2 - x_3 - x_4$

Feasible solution: (0,0,0,2) Feasible solution: (0,0,0,2) Optimal solution: (2,2,0,0)

note: we changed basis for the same bfs. There are ways to prevent cycling.

We get a feasible basis for free in Maximize c^Tx subject to $Ax \leq b, \ x \geq 0, b \geq 0$ by adding slack variables to get to equational form and then letting the basis be the slack variables.

We get a feasible basis for free in

Maximize c^Tx subject to $Ax \leq b, \ x \geq 0, b \geq 0$

by adding slack variables to get to equational form and then letting the basis be the slack variables.

But in general, we might first need to find a feasible solution!

Maximize $x_1 + 2x_2$ subject to: $x_1 + 3x_2 + x_3 = 4$

$$2x_2 + x_3 = 2$$

$$x_1, x_2, x_3 \ge 0$$

Note: $(x_1, x_2, x_3) = (0, 0, 0)$ is not feasible.

Solution: Auxilliary problem with auxilliary variables to find a feasible solution via simplex

Maximize
$$-x_4-x_5$$
 subject to: $x_1+3x_2+x_3+x_4=4$ $2x_2+x_3+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$

The objective value is $0 \iff$ there is a feasible solution to the original problem.

Maximize
$$x_1 + 2x_2$$
 subject to: $x_1 + 3x_2 + x_3 = 4$ $2x_2 + x_3 = 2$ $x_1, x_2, x_3 > 0$

Solution: Auxilliary problem with auxilliary variables to find a feasible solution via simplex

Maximize
$$-x_4-x_5$$
 subject to: $x_1+3x_2+x_3+x_4=4$ $2x_2+x_3+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$

The objective value is $0 \iff$ there is a feasible solution to the original problem.

$$x_4 = 4 - x_1 - 3x_2 - x_3$$

$$x_5 = 2 - 2x_2 - x_3$$

$$z = -6 + x_1 + 5x_2 + 2x_3$$

Solution: Auxilliary problem with auxilliary variables to find a feasible solution via simplex

Maximize
$$-x_4-x_5$$
 subject to: $x_1+3x_2+x_3+x_4=4$ $2x_2+x_3+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$

The objective value is $0 \iff$ there is a feasible solution to the original problem.

$$x_4 = 4 - x_1 - 3x_2 - x_3$$
 $x_1 = 4 - 3x_2 - x_3 - x_4$ $x_5 = 2 - 2x_2 - x_3$ pivot on x_1 $x_5 = 2 - 2x_2 - x_3$ $z = -6 + x_1 + 5x_2 + 2x_3$ $z = -2 + 2x_2 + x_3 - x_4$

Solution: Auxilliary problem with auxilliary variables to find a feasible solution via simplex

$$x_4 = 4 - x_1 - 3x_2 - x_3$$
 x_1
 $x_5 = 2 - 2x_2 - x_3$ pivot on x_1
 $z = -6 + x_1 + 5x_2 + 2x_3$ z

$$x_1 = 4 - 3x_2 - x_3 - x_4$$
 pivot on x_1
$$x_5 = 2 - 2x_2 - x_3$$

$$z = -2 + 2x_2 + x_3 - x_4$$

Solution: Auxilliary problem with auxilliary variables to find a feasible solution via simplex

$$x_1 = 2 - x_2 - x_4 + x_5$$

$$x_3 = 2 - 2x_2 - x_5$$

$$z = -x_4 - x_5$$

$$x_4 = 4 - x_1 - 3x_2 - x_3$$

$$x_5 = 2 - 2x_2 - x_3$$

$$z = -6 + x_1 + 5x_2 + 2x_3$$

$$x_1 = 4 - 3x_2 - x_3 - x_4$$
 pivot on x_1
$$x_5 = 2 - 2x_2 - x_3$$

$$z = -2 + 2x_2 + x_3 - x_4$$

Solution: Auxilliary problem with auxilliary variables to find a feasible solution via simplex

Auxilliary optimal solution (2,0,2,0,0) yields the basic feasible solution (2,0,2) of the original problem.

$$x_1 = 2 - x_2 - x_4 + x_5$$

$$x_3 = 2 - 2x_2 - x_5$$

$$z = -x_4 - x_5$$

pivot on x_3

$$x_4 = 4 - x_1 - 3x_2 - x_3$$
 $x_5 = 2 - 2x_2 - x_3$ pivot on x_1 $z = -6 + x_1 + 5x_2 + 2x_3$

$$x_1 = 4 - 3x_2 - x_3 - x_4$$
 pivot on x_1 $x_5 = 2 - 2x_2 - x_3$ $z = -2 + 2x_2 + x_3 - x_4$

Back to the original problem:

Maximize
$$x_1+2x_2$$
 subject to: $x_1+3x_2+x_3=4$
$$2x_2+x_3=2$$

$$x_1,x_2,x_3\geq 0$$

Back to the original problem:

Maximize
$$x_1+2x_2$$
 subject to: $x_1+3x_2+x_3=4$
$$2x_2+x_3=2$$

$$x_1,x_2,x_3\geq 0$$

$$x_1 = 2 - x_2$$
 $x_1 = 1 + \frac{1}{2}x_3$ $x_2 = 1 - \frac{1}{2}x_3$ $z = 2 + x_2$ pivot on x_2 $z = 3 - \frac{1}{2}x_3$

Back to the original problem:

Maximize
$$x_1+2x_2$$
 subject to: $x_1+3x_2+x_3=4$
$$2x_2+x_3=2$$

$$x_1,x_2,x_3\geq 0$$

Simplex tableau

Optimal solution: (1, 1, 0) with value 3.

the simplex algorithm in general

Maximize $z=c^Tx$ subject to Ax=b and $x\geq 0$, with A of size $m\times n$.

Recall: a feasible basis is a m-element set $B\subseteq\{1,2,...,n\}$

with A_B nonsingular and the (unique) solution $A_Bx_B=b$ nonnegative.

Example: Maximize
$$x_1+x_2$$
 subject to: $-x_1+x_2+x_3=1$ $x_1+x_4=3$ $x_2+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$ $A=\begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$ $c^T=(1,1,0,0,0),\ b^T=(1,3,2)$

Maximize $z=c^Tx$ subject to Ax=b and $x\geq 0$, with A of size $m\times n$.

Recall: a feasible basis is a m-element set $B \subseteq \{1,2,...,n\}$

with A_B nonsingular and the (unique) solution $A_Bx_B=b$ nonnegative.

Example: Maximize
$$x_1+x_2$$
 subject to: $-x_1+x_2+x_3=1$ $x_1+x_4=3$ $x_2+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$ $x_1+x_2+x_3=1$ $x_2+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$ $x_2+x_5=0$ $x_1+x_2+x_3=1$ $x_2+x_3=1$ $x_1+x_2+x_3=1$ $x_1+x_2+x_3=1$ $x_2+x_3=1$ $x_1+x_2+x_3=1$ $x_1+x_2+x_3=1$ $x_2+x_3=1$ $x_1+x_2+x_3=1$ $x_1+x_2+x_3=1$

Def.: The simplex tableau determined by the feasible basis B is

$$x_B = p + Qx_N$$
$$z = z_0 + r^T x_N$$

where x_B is the vector of basic variables , $N = \{1, 2, ..., n\} \setminus B$,

 x_N is the vector of nonbasic variables,

$$p \in \mathbb{R}^m, r \in \mathbb{R}^{n-m}$$
, $Q \ m imes (n-m)$ matrix, $z_0 \in \mathbb{R}$.

Maximize $z=c^Tx$ subject to Ax=b and $x\geq 0$, with A of size $m\times n$.

Recall: a feasible basis is a m-element set $B \subseteq \{1,2,...,n\}$

with A_B nonsingular and the (unique) solution $A_Bx_B=b$ nonnegative.

Example: Maximize
$$x_1+x_2$$
 $x_3=1+x_1-x_2$ subject to: $-x_1+x_2+x_3=1$ $x_1+x_4=3$ $x_2+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$ $x_3=1+x_1-x_2$ $x_4=3-x_1$ $x_5=2$ $x_5=2$ $x_5=2$ $x_5=2$

Def.: The simplex tableau determined by the feasible basis B is

$$x_B = p + Qx_N$$
$$z = z_0 + r^T x_N$$

where x_B is the vector of basic variables , $N=\{1,2,...,n\}\setminus B$, x_N is the vector of nonbasic variables,

$$p \in \mathbb{R}^m, r \in \mathbb{R}^{n-m}$$
, $Q \ m imes (n-m)$ matrix, $z_0 \in \mathbb{R}$.

Maximize $z=c^Tx$ subject to Ax=b and $x\geq 0$, with A of size $m\times n$.

Recall: a feasible basis is a m-element set $B\subseteq\{1,2,...,n\}$

with A_B nonsingular and the (unique) solution $A_B x_B = b$ nonnegative.

Example:

$$\begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$z = 0 + \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$x_3 = 1 + x_1 - x_2$$

$$x_4 = 3 - x_1$$

$$x_5 = 2$$
 $-x_2$

$$z = x_1 + x_2$$

Def.: The simplex tableau determined by the feasible basis B is

$$x_B = p + Qx_N$$
$$z = z_0 + r^T x_N$$

where x_B is the vector of basic variables , $N=\{1,2,...,n\}\setminus B$,

 x_N is the vector of nonbasic variables,

$$p \in \mathbb{R}^m, r \in \mathbb{R}^{n-m}$$
, $Q \ m imes (n-m)$ matrix, $z_0 \in \mathbb{R}$.

Maximize $z=c^Tx$ subject to Ax=b and $x\geq 0$, with A of size $m\times n$.

Recall: a feasible basis is a m-element set $B\subseteq\{1,2,...,n\}$

with A_B nonsingular and the (unique) solution $A_Bx_B=b$ nonnegative.

Example:

$$\begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$z=0+\begin{bmatrix}1&1\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}$$
 in general?

$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 3 - x_1$
 $x_5 = 2 - x_2$

$$z = x_1 + x_2$$

Def.: The simplex tableau determined by the feasible basis B is

$$x_B = p + Qx_N$$
$$z = z_0 + r^T x_N$$

where x_B is the vector of basic variables , $N = \{1, 2, ..., n\} \setminus B$, x_N is the vector of nonbasic variables,

$$p \in \mathbb{R}^m, r \in \mathbb{R}^{n-m}$$
, $Q \ m imes (n-m)$ matrix, $z_0 \in \mathbb{R}$.

Simplex tableau

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

Lemma 5.5.1:

$$Q = -A_B^{-1}A_N, \ p = A_B^{-1}b, \ z_0 = c_B^TA_B^{-1}b, \ r = c_N - (c_B^TA_B^{-1}A_N)^T$$

Remark: Don't memorize these formulas, just know they exist and depend on ${\cal A}_B^{-1}$.

Lemma 5.5.1:

$$Q = -A_B^{-1}A_N, \ p = A_B^{-1}b, \ z_0 = c_B^TA_B^{-1}b, \ r = c_N - (c_B^TA_B^{-1}A_N)^T$$

Lemma 5.5.1:

$$Q = -A_B^{-1}A_N, \ p = A_B^{-1}b, \ z_0 = c_B^TA_B^{-1}b, \ r = c_N - (c_B^TA_B^{-1}A_N)^T$$

Proof:

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Rewrite Ax = b as $A_Bx_B + A_Nx_N = b$, or $A_Bx_B = b - A_Nx_N$, giving $x_B = A_B^{-1}(b - A_Nx_N)$.

Lemma 5.5.1:

$$Q = -A_B^{-1}A_N, \ p = A_B^{-1}b, \ z_0 = c_B^TA_B^{-1}b, \ r = c_N - (c_B^TA_B^{-1}A_N)^T$$

Proof:

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Rewrite Ax=b as $A_Bx_B+A_Nx_N=b$, or $A_Bx_B=b-A_Nx_N$, giving $x_B=A_B^{-1}(b-A_Nx_N)$.

$$z = c^{T}x = c_{B}^{T}x_{B} + c_{N}^{T}x_{N}$$

$$= c_{B}^{T}(A_{B}^{-1}(b - A_{N}x_{N})) + c_{N}^{T}x_{N}$$

$$= c_{B}^{T}A_{B}^{-1}b + (c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})x_{N}.$$

Simplex tableau

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Remark: If $r \leq 0$ then the corresponding bfs is ?

Simplex tableau

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Remark: If $r \leq 0$ then the corresponding bfs is optimal.

Simplex tableau

$$x_{1} = 1 + x_{3} - x_{5}$$

$$x_{2} = 2 - x_{5}$$

$$x_{4} = 2 - x_{3} + x_{5}$$

$$z = 3 + x_{3} - 2x_{5}$$

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Remark: If $r \leq 0$ then the corresponding bfs is optimal.

Remark: A nonbasic variable x_v may enter the basis \iff its coefficient in r is ?

Simplex tableau

$$x_{1} = 1 + x_{3} - x_{5}$$

$$x_{2} = 2 - x_{5}$$

$$x_{4} = 2 - x_{3} + x_{5}$$

$$z = 3 + x_{3} - 2x_{5}$$

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Remark: If $r \leq 0$ then the corresponding bfs is optimal.

Remark: A nonbasic variable x_v may enter the basis \iff its coefficient in r is positive.

Simplex tableau

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Remark: If $r \leq 0$ then the corresponding bfs is optimal.

Remark: A nonbasic variable x_v may enter the basis \iff its coefficient in r is positive.

Remark: When pivoting, the leaving variable x_u satisfies $q_{uv} < 0$

and
$$\frac{-p_u}{q_{uv}} = \min\left\{\frac{-p_i}{q_{iv}}\middle| q_{iv} < 0\right\}.$$

Simplex tableau

$$x_{1} = 1 + x_{3} - x_{5}$$

$$x_{2} = 2 - x_{5}$$

$$x_{4} = 2 - x_{3} + x_{5}$$

$$z = 3 + x_{3} - 2x_{5}$$

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Remark: If $r \leq 0$ then the corresponding bfs is optimal.

Remark: A nonbasic variable x_v may enter the basis \iff its coefficient in r is positive.

Remark: When pivoting, the leaving variable x_u satisfies $q_{uv} < 0$

and
$$\frac{-p_u}{q_{uv}} = \min\left\{\left.\frac{-p_i}{q_{iv}}\right| q_{iv} < 0\right\}$$
. Note: if this set is empty, the LP is unbounded.

Simplex tableau

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

$$\begin{pmatrix} x_B = p + Qx_N \\ z = z_0 + r^T x_N \end{pmatrix}$$

Remark: If $r \leq 0$ then the corresponding bfs is optimal.

Remark: A nonbasic variable x_v may enter the basis \iff its coefficient in r is positive.

Remark: When pivoting, the leaving variable x_u satisfies $q_{uv} < 0$

and
$$\frac{-p_u}{q_{uv}} = \min\left\{\left.\frac{-p_i}{q_{iv}}\right| q_{iv} < 0\right\}$$
. Note: if this set is empty, the LP is unbounded.

(There could be more than one choice of the leaving variable.)

Simplex method - Correctness

Lemma 5.6.1:

If B is a feasible basis and T(B) the corresponding simplex tableau, and if the entering variable x_v and the leaving variable x_u have been selected according to the above criteria (and otherwise arbitrarily), then $B' = (B \setminus \{u\}) \cup \{v\}$ is again a feasible basis. If no x_u satisfies the criterion for a leaving variable, then the LP is unbounded.

Simplex method - Correctness

Lemma 5.6.1:

If B is a feasible basis and T(B) the corresponding simplex tableau, and if the entering variable x_v and the leaving variable x_u have been selected according to the above criteria (and otherwise arbitrarily), then $B' = (B \setminus \{u\}) \cup \{v\}$ is again a feasible basis. If no x_u satisfies the criterion for a leaving variable, then the LP is unbounded.

Proof sketch:

We need to show that

- $A_{B'}$ is nonsingular
- Basis B' is feasible

Computation and Efficiency

Optional Warm-up Exercise: Another LP

Maximize
$$9x_1 + 3x_2 + x_3$$
 subject to: $x_1 \le 1$ $6x_1 + x_2 \le 9$ $18x_1 + 6x_2 + x_3 \le 81$ $x_1, x_2, x_3 \ge 0$

- equational form?
- initial basis?
- simplex tableau?
- which non-basic variable to make basic???
- which basic variable leaves?
- new tableau?

Optional Warm-up Exercise: Another LP

Maximize
$$9x_1 + 3x_2 + x_3$$
 subject to: $x_1 \le 1$ $6x_1 + x_2 \le 9$ $18x_1 + 6x_2 + x_3 \le 81$ $x_1, x_2, x_3 \ge 0$

- equational form?
- initial basis?
- simplex tableau?
- which non-basic variable to make basic???
- which basic variable leaves?
- new tableau?

natural choice: x_1 because largest coefficient: 9, but is it a good choice?

Simplex method - Computations

How to do one step efficiently?

Simplex method - Computations

How to do one step efficiently?

Remark: Computer implementations do not store the full tableau, but only $B,\ A_B^{-1}$ and $p=A_B^{-1}b$

Simplex tableau

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

$$B = \{1, 2, 4\}$$

$$\begin{pmatrix} 1 & -1 \\ 0 & -1 \\ -1 & 1 \end{pmatrix} = Q = A_B^{-1} A_N$$

$$(1, 2, 2)^T = p = A_B^{-1} b$$

Simplex method - Computations

How to do one step efficiently?

Remark: Computer implementations do not store the full tableau, but only $B,\ A_B^{-1}$ and $p=A_B^{-1}b$

Simplex tableau

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

$$B = \{1, 2, 4\}$$

$$\begin{pmatrix} 1 & -1 \\ 0 & -1 \\ -1 & 1 \end{pmatrix} = Q = A_B^{-1} A_N$$

$$(1, 2, 2)^T = p = A_B^{-1} b$$

Remark: Due to numerical imprecision, the explicit inverse ${\cal A}_B^{-1}$ is not the best choice: often ${\cal A}_B^{-1}$ is represented by an LU-factorization of ${\cal A}_B$.

Simplex method - Computations

How to do one step efficiently?

Remark: Computer implementations do not store the full tableau, but only $B,\ A_B^{-1}$ and $p=A_B^{-1}b$

Simplex tableau

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

$$B = \{1, 2, 4\}$$

$$\begin{pmatrix} 1 & -1 \\ 0 & -1 \\ -1 & 1 \end{pmatrix} = Q = A_B^{-1} A_N$$

$$(1, 2, 2)^T = p = A_B^{-1} b$$

Remark: Due to numerical imprecision, the explicit inverse ${\cal A}_B^{-1}$ is not the best choice: often ${\cal A}_B^{-1}$ is represented by an LU-factorization of ${\cal A}_B$.

Remark: In this revised simplex method, a pivot step takes time $\mathcal{O}(m^2)$ instead of $\mathcal{O}(mn)$ operations with the full tableau.

Simplex tableau

$$x_{3} = 1 + x_{1} - x_{2}$$

$$x_{4} = 3 - x_{1}$$

$$x_{5} = 2 - x_{2}$$

$$z = x_{1} + x_{2}$$

How to choose which variable to pivot on, i.e. the entering variable?

Simplex tableau

$$x_{3} = 1 + x_{1} - x_{2}$$

$$x_{4} = 3 - x_{1}$$

$$x_{5} = 2 - x_{2}$$

$$z = x_{1} + x_{2}$$

Dantzig's rule / Largest coefficient (in z row):

Maximizes improvement of z per unit increase in entering variable.

Simplex tableau

$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 3 - x_1$
 $x_5 = 2 - x_2$
 $z = x_1 + x_2$

Dantzig's rule / Largest coefficient (in z row):

Maximizes improvement of z per unit increase in entering variable.

Largest increase (of z): more expensive, but locally greedy.

Simplex tableau

$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 3 - x_1$
 $x_5 = 2 - x_2$
 $z = x_1 + x_2$

Dantzig's rule / Largest coefficient (in z row):

Maximizes improvement of z per unit increase in entering variable.

Largest increase (of z): more expensive, but locally greedy.

Steepest edge:
$$\max \frac{c^T(x_{new} - x_{old})}{\|x_{new} - x_{old}\|}$$
.

Champion among pivot rules in practice! Efficient approximate implementation: "Devex"

Simplex tableau

$$x_{3} = 1 + x_{1} - x_{2}$$

$$x_{4} = 3 - x_{1}$$

$$x_{5} = 2 - x_{2}$$

$$z = x_{1} + x_{2}$$

Dantzig's rule / Largest coefficient (in z row):

Maximizes improvement of z per unit increase in entering variable.

Largest increase (of z): more expensive, but locally greedy.

Steepest edge: $\max \frac{c^T(x_{new} - x_{old})}{\|x_{new} - x_{old}\|}$.

Champion among pivot rules in practice! Efficient approximate implementation: "Devex" Bland's rule: smallest index for both entering and leaving variables. Prevents cycling.

Simplex tableau

$$x_3 = 1 + x_1 - x_2$$
 $x_4 = 3 - x_1$
 $x_5 = 2 - x_2$
 $z = x_1 + x_2$

Dantzig's rule / Largest coefficient (in z row):

Maximizes improvement of z per unit increase in entering variable.

Largest increase (of z): more expensive, but locally greedy.

Steepest edge:
$$\max \frac{c^T(x_{new} - x_{old})}{\|x_{new} - x_{old}\|}$$
.

Champion among pivot rules in practice! Efficient approximate implementation: "Devex" Bland's rule: smallest index for both entering and leaving variables. Prevents cycling. Random edge:

Random methods lead to best provable bounds for expected simplex method efficiency.

How many pivot steps does the simplex method do?

In the worst case, the simplex method runs in exponential time.

In the worst case, the simplex method runs in exponential time.

 $\left(egin{aligned} n &= \#variables \ m &= \#equations \end{aligned}
ight)$

Klee-Minty cubes:

With some choice of pivots, the simplex method will require 2^n-1 pivot steps.

In the worst case, the simplex method runs in exponential time.

 $\begin{pmatrix} n = \#variables \\ m = \#equations \end{pmatrix}$

Klee-Minty cubes:

With some choice of pivots, the simplex method will require 2^n-1 pivot steps.

Maximize
$$9x_1 + 3x_2 + x_3$$
 subject to: $x_1 \leq 1$ $6x_1 + x_2 \leq 9$ $18x_1 + 6x_2 + x_3 \leq 81$ $x_1, x_2, x_3 \geq 0$

In the worst case, the simplex method runs in exponential time.

 $\begin{pmatrix} n = \#variables \\ m = \#equations \end{pmatrix}$

Klee-Minty cubes:

With some choice of pivots, the simplex method will require 2^n-1 pivot steps.

What would the first three pivot rules do here?

Maximize
$$9x_1 + 3x_2 + x_3$$
 subject to: $x_1 \leq 1$ $6x_1 + x_2 \leq 9$ $18x_1 + 6x_2 + x_3 \leq 81$ $x_1, x_2, x_3 \geq 0$

In the worst case, the simplex method runs in exponential time.

$$\left(egin{aligned} n &= \#variables \ m &= \#equations \end{aligned}
ight)$$

Klee-Minty cubes:

With some choice of pivots, the simplex method will require 2^n-1 pivot steps.

What would the first three pivot rules do here?

With Danzig's original pivot rule (largest coefficient), this Klee-Minty cube requires 2^n-1 pivot steps, . . .

Maximize
$$9x_1 + 3x_2 + x_3$$
 subject to: $x_1 \leq 1$ $6x_1 + x_2 \leq 9$ $18x_1 + 6x_2 + x_3 \leq 81$ $x_1, x_2, x_3 \geq 0$

In the worst case, the simplex method runs in exponential time.

 $\begin{pmatrix} n = \#variables \\ m = \#equations \end{pmatrix}$

Klee-Minty cubes:

With some choice of pivots, the simplex method will require 2^n-1 pivot steps.

What would the first three pivot rules do here?

With Danzig's original pivot rule (largest coefficient), this Klee-Minty cube requires 2^n-1 pivot steps, . . .

Very slow examples of a similar type have been constructed for all non-random pivot rules aboves.

In the worst case, the simplex method runs in exponential time.

 $\begin{pmatrix} n = \#variables \\ m = \#equations \end{pmatrix}$

Klee-Minty cubes:

With some choice of pivots, the simplex method will require 2^n-1 pivot steps.

Very slow examples of a similar type have been constructed for all non-random pivot rules aboves.

Goal which has never been attained: Design a pivot rule and prove the number of pivot steps is bounded by a polynomial in n, m.

Goal which has never been attained: Design a pivot rule and prove the number of pivot steps is bounded by a polynomial in n, m.

Positive result: Randomly order all variables.

Use Bland's rule for entering variable, lexicographic rule for leaving variable.

Then: $\mathbb{E}(\#pivot\ steps) \leq e^{c\sqrt{n\ln(n)}}.$ expectation over all variable orderings

Goal which has never been attained: Design a pivot rule and prove the number of pivot steps is bounded by a polynomial in n, m.

Positive result: Randomly order all variables.

Use Bland's rule for entering variable, lexicographic rule for leaving variable.

Then: $\mathbb{E}(\#pivot\ steps) \leq e^{c\sqrt{n\ln(n)}}.$ expectation over all variable orderings

Remark: Better than 2^n , much worse than polynomial.

Goal which has never been attained: Design a pivot rule and prove the number of pivot steps is bounded by a polynomial in n, m.

Positive result: Randomly order all variables.

Use Bland's rule for entering variable, lexicographic rule for leaving variable.

Then: $\mathbb{E}(\#pivot\ steps) \leq e^{c\sqrt{n\ln(n)}}.$ expectation over all variable orderings

Remark: Better than 2^n , much worse than polynomial.

Clairvoyant pivot "rule": Pretend you can see the future - take the shortest path (fewest number of pivot steps).

Goal which has never been attained: Design a pivot rule and prove the number of pivot steps is bounded by a polynomial in n, m.

Positive result: Randomly order all variables.

Use Bland's rule for entering variable, lexicographic rule for leaving variable.

Then: $\mathbb{E}(\#pivot\ steps) \leq e^{c\sqrt{n\ln(n)}}.$ expectation over all variable orderings

Remark: Better than 2^n , much worse than polynomial.

Clairvoyant pivot "rule": Pretend you can see the future - take the shortest path (fewest number of pivot steps).

Positive result: Clairvoyant rule needs at most $n^{1+\ln(n)}$ steps.

Goal which has never been attained: Design a pivot rule and prove the number of pivot steps is bounded by a polynomial in n, m.

Positive result: Randomly order all variables.

Use Bland's rule for entering variable, lexicographic rule for leaving variable.

Then: $\mathbb{E}(\#pivot\ steps) \leq e^{c\sqrt{n\ln(n)}}.$ expectation over all variable orderings

Remark: Better than 2^n , much worse than polynomial.

Clairvoyant pivot "rule": Pretend you can see the future - take the shortest path (fewest number of pivot steps).

Positive result: Clairvoyant rule needs at most $n^{1+\ln(n)}$ steps.

Hirsch conjecture: Clairvoyant rule needs only $\mathcal{O}(n)$ steps

— disproven by Francisco Santos, 2011.

Goal which has never been attained: Design a pivot rule and prove the number of pivot steps is bounded by a polynomial in n, m.

Positive result: Randomly order all variables.

Use Bland's rule for entering variable, lexicographic rule for leaving variable.

Then: $\mathbb{E}(\#pivot\ steps) \leq e^{c\sqrt{n\ln(n)}}.$ expectation over all variable orderings

Remark: Better than 2^n , much worse than polynomial.

Clairvoyant pivot "rule": Pretend you can see the future - take the shortest path (fewest number of pivot steps).

Positive result: Clairvoyant rule needs at most $n^{1+\ln(n)}$ steps.

Hirsch conjecture: Clairvoyant rule needs only $\mathcal{O}(n)$ steps

— disproven by Francisco Santos, 2011.

Polynomial Hirsch conjecture: still open.

In practice, the simplex method is impressively fast.

In practice, the simplex method is impressively fast.

Positive result: A "random" linear program in equational form requires only m^2 pivot steps with high probability.

In practice, the simplex method is impressively fast.

Positive result: A "random" linear program in equational form requires only m^2 pivot steps with high probability.

Positive result: An arbitrary linear program, after adding an insignificant amount of random noise to the coefficients, requires only polynomially many pivot steps with high probability.

Summary

Simplex Method

- 1. Convert the input linear program to equational form.
- 2. If a basic feasible solution is not obvious, solve the auxiliary LP to find an bfs (if such exists if not LP is infeasible, **stop**).
- 3. For a feasible basis B compute the simplex tableau T(B).
- 4. If in T(B) no nonbasic variable appears positively, return an optimal solution; stop.
- 5. Otherwise, choose an entering variable using some pivot rule (if necessary).
- 6. If the column of the entering variable in the simplex tableau is nonnegative, the linear program is unbounded; **stop**.
- 7. Otherwise, choose a leaving variable using some pivot rule (if necessary).
- 8. Update B and T(B), and go to step 4.