线性方程组

一、填空题

- 1、设 $A = E_n \alpha \alpha^{\mathsf{T}}$,其中 $\alpha = [a_1, a_2, ..., a_n]^{\mathsf{T}} \in \mathbf{R}^n$,且 $a_1^2 + a_2^2 + \cdots + a_n^2 = 1$. 如果 r(A) =n-1,则线性方程组 AX = 0 的通解为
 - 2、设n 阶方阵A 的各行元素之和均为零,且A 的秩为n-1,则线性方程组AX=0 的通解为

3、设 $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$, A^* 是A 的伴随矩阵,则方程组 $A^*X = \mathbf{0}$ 的通解是______.

- 4、设A为4阶方阵,r(A)=3,则方程组 $A^*X=0$ 的基础解系所含向量的个数为 .
- 5、设 $\alpha_1,\alpha_2,...,\alpha_t$ 均为非齐次线性方程组 $AX = \beta$ 的解, $k_1,k_2,...,k_t \in \mathbf{P}$. 若 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_4 + k_4\alpha_5 + k_5\alpha_5 + k_$ $\cdots + k_t \alpha_t$ 也是方程组 $AX = \beta$ 的一个解,则 $k_1 + k_2 + \cdots + k_t =$
- 6、设 3 元非齐次线性方程组 $AX = \beta$ 的系数矩阵 A 的秩为 2, $\alpha_1, \alpha_2, \alpha_3$ 是其 3 个解向量,且 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 1,2,3 \end{bmatrix}^T, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 = \begin{bmatrix} 3,5,7 \end{bmatrix}^T$,则方程组 $\boldsymbol{A}\boldsymbol{X} = \boldsymbol{\beta}$ 的通解为
 - 二、选择题
 - 1、齐次线性方程组 AX = 0 只有零解的充要条件是().
 - (A) \mathbf{A} 的行向量组线性无关
- (B) **A** 的列向量组线性无关
- (C) A 的行向量组线性相关
- (D) A 的列向量组线性相关
- 2、设A为 $m \times n$ 矩阵,B为 $n \times m$ 矩阵,则线性方程组(AB)X = 0().
- (A) 当m > n 时只有零解
- (B) 当m > n 时必有非零解
- (C) 当m < n 时只有零解
- (D) 当m < n 时必有非零解
- 3、设 $n(n \ge 3)$ 元线性方程组AX = 0的系数矩阵A的秩为n-3,且 $\alpha_1, \alpha_2, \alpha_3$ 为AX = 0的3 个线性无关的解,则()为AX = 0的基础解系.
 - (A) $\boldsymbol{\alpha}_1 \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_1$
- (B) $\boldsymbol{\alpha}_2 \boldsymbol{\alpha}_1, 2\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$
- (C) $2\boldsymbol{\alpha}_2 \boldsymbol{\alpha}_1, -\boldsymbol{\alpha}_2 + \frac{1}{2}\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_1$ (D) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, -\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, -2\boldsymbol{\alpha}_3 \boldsymbol{\alpha}_1$
- 4、设n阶矩阵A的伴随矩阵 $A^* \neq O$,若 $\xi_1, \xi_2, \xi_3, \xi_4$ 是非齐次方程组 $AX = \beta$ 的互不相等的 解,则对应的齐次线性方程组AX = 0的基础解系().
 - (A) 不存在

- (B) 仅含一个非零解向量
- (C) 含有两个线性无关的解向量
- (D) 含有三个线性无关的解向量
- 5、设 $A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ 为4阶方阵, A^* 为A的伴随矩阵,若 $[1,0,1,0]^T$ 是方程组 $AX = \mathbf{0}$ 的 一个基础解系,则方程组 $A^*X = 0$ 的基础解系可为().
 - (A) $\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$
- (B) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$
- (C) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ (D) $\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$
- 6、设A是秩为n-1的n阶方阵, α_1 与 α_2 是齐次线性方程组AX=0的两个互异的解,则方 程组 $AX = \mathbf{0}$ 的通解必定是().

7 、设有 $m \times n$ 齐	次方程组 $AX = 0$ 和 B	$\mathbf{Y} = 0$,现有 4 个命题			
①	解均是 $BX = 0$ 的解,	则有 $r(A) \ge r(B)$;			
② 若 $r(A) \ge r(B)$	\mathbf{S}),则 $\mathbf{A}\mathbf{X} = 0$ 的解均	是 $BX = 0$ 的解;			
③ 若 AX = 0 与	BX = 0 同解,则 $r(A)$	$=r(\boldsymbol{B});$			
④ 若 $r(A) = r(B)$	(B) , \emptyset $(AX) = 0 \Rightarrow BX$	= 0 同解.			
以上命题正确的是	론;				
(A) 1)2	(B) ①③	(C) 24	(D) 34		
8、设 $A \in \mathbf{R}^{4\times7}$, E	$\mathbf{B} \in \mathbf{R}^{2 \times 7}$,则齐次线性	方程组 AX = 0 与 BX =	:0().		
(A) 无共同解		(B) 只有共同零解	Ę.		
(C) 必有共同非零		(D) 同解			
9、设 <i>A</i> 为 n 阶方	α 为 n 元列向量,	若 $r(A) = r\begin{bmatrix} A & \boldsymbol{\alpha} \\ \boldsymbol{\alpha}^{\mathrm{T}} & 0 \end{bmatrix}$,则线性方程组().	
(A) $AX = \alpha$ 必有	无穷多解	(B) $\mathbf{A}\mathbf{X} = \boldsymbol{\alpha}$ 必有	唯一解		
(C) $\begin{bmatrix} \boldsymbol{A} & \boldsymbol{\alpha} \\ \boldsymbol{\alpha}^{\mathrm{T}} & 0 \end{bmatrix} \boldsymbol{Y}$	=0仅有零解	(D) $\begin{bmatrix} \boldsymbol{A} & \boldsymbol{\alpha} \\ \boldsymbol{\alpha}^{\mathrm{T}} & 0 \end{bmatrix} \boldsymbol{Y}$	= 0 必有非零解		
- 10、对于 <i>n</i> 元线性	生方程组,下列命题正码	角的是().			
(A) 如果 $AX = 0$	只有零解,则 $AX = 1$	3 有唯一解			
(B) 如果 $AX = 0$	有非零解,则 $AX = 1$	3 有无穷多解			
(C) 如果 AX = A	3 有两个不同的解,则	AX = 0有无穷多解			
(D) $AX = \beta$ 有即	能一解的充要条件是 <i>r</i>	A)=n			
11、设有3×4非	齐次线性方程组 AX =	β , 若()成立, 贝] 该方程组一定有解		
(A) $r(A) = 1$	(B) $r(A) = 2$	(C) $r(A) = 3$	(D) $r(A) = 4$		
		向量 $oldsymbol{eta}$,线性方程组 $oldsymbol{A}$).	
(A) A 的行向量组线性无关		(B) A 的列向量组	(B) A 的列向量组线性无关		
(C) A 的行向量组	[线性相关	(D) A 的列向量组	l线性相关		
13、设 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 为非	卡齐次线性方程组 AX	$=oldsymbol{eta}$ 的两个不同的解,而	万 $oldsymbol{lpha}_{\scriptscriptstyle 1},oldsymbol{lpha}_{\scriptscriptstyle 2}$ 为其导出组	AX = 0 的	
基础解系, k_1,k_2 为任	意常数,则方程组 🗚	$X = \beta$ 的通解为().			
(A) $k_1 \boldsymbol{\alpha}_1 + k_2 (\boldsymbol{\alpha}_1 -$	$-\boldsymbol{\alpha}_2) + \frac{1}{2}(\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2)$	(B) $k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2)$	$(\boldsymbol{\alpha}_2) + \frac{1}{2} (\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2)$		
(C) $k_1 \alpha_1 + k_2 (\beta_1 + \beta_2)$	$-\boldsymbol{\beta}_2) + \frac{1}{2}(\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2)$	(D) $k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$	$-\boldsymbol{\beta}_2) + \frac{1}{2}(\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2)$		
14、设 <i>A</i> 是 4 × 5	实矩阵,且行向量组织	注 性无关,则下列结论中	错误的是().		
$(A) \boldsymbol{A}^{\mathrm{T}}\boldsymbol{X} = 0 \ \boldsymbol{\Box}^{\mathrm{T}}$	有零解				
(B) $(\mathbf{A}^{T}\mathbf{A})\mathbf{X} = 0$ 必有非零解					
(C) 对任意 β ∈ I	\mathbb{R}^4 , $AX = \beta$ 必有无穷	多解			
(D) 对任意 β ∈ I	\mathbb{R}^4 , $AX = \beta$ 必有唯一	-解			

(A) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$ (B) $k\boldsymbol{\alpha}_1$ (C) $k(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2)$ (D) $k(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2)$

15、设
$$\boldsymbol{\alpha}_{1} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}$$
, $\boldsymbol{\alpha}_{2} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$, $\boldsymbol{\alpha}_{3} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$, 则联立的三条直线
$$\begin{cases} a_{1}x + b_{1}y + c_{1} = 0, \\ a_{2}x + b_{2}y + c_{2} = 0, (a_{i}^{2} + b_{i}^{2} \neq 0, a_{3}x + b_{3}y + c_{3} = 0, (a_{i}^{2} + b_{i}^{2} \neq 0, a_{3}x + b_{3}y + c_{3} = 0, (a_{i}^{2} + b_{i}^{2} \neq 0, a_{3}x + b_{3}y + c_{3} = 0, (a_{i}^{2} + b_{i}^{2} \neq 0, a_{3}x + b_{3}y + c_{3} = 0, (a_{i}^{2} + b_{i}^{2} \neq 0, a_{3}x + b_{3}y + c_{3} = 0, (a_{i}^{2} + b_{i}^{2} \neq 0, a_{3}x + b_{3}y + c_{3} = 0, (a_{i}^{2} + b_{i}^{2} \neq 0, a_{3}^{2} + b_{3}^{2} + b_$$

i = 1, 2, 3) 交于一点的充要条件是().

(A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性相关

(B) $r[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3] = r[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2]$

(C) $\alpha_1, \alpha_2, \alpha_3$ 线性无关

(D) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性相关, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 线性无关

三、解答题

1、设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是线性方程组AX = 0的一个基础解系,若

$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 + t\boldsymbol{\alpha}_2$$
, $\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 + t\boldsymbol{\alpha}_3$, $\boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 + t\boldsymbol{\alpha}_4$, $\boldsymbol{\beta}_4 = \boldsymbol{\alpha}_4 + t\boldsymbol{\alpha}_1$,

讨论实数t满足什么关系时, $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_4$ 也是 $AX = \mathbf{0}$ 的一个基础解系.

- 2、设矩阵 $A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 均为 4 元列向量,其中 $\alpha_2, \alpha_3, \alpha_4$ 线性无关. $\alpha_1 = 2\alpha_2 \alpha_3$, 如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$, 求线性方程组 $AX = \beta$ 的通解.
- 3、设 4 元线性方程组 $AX = \alpha_5$ 有通解 $[2,-1,3,3]^T + k[1,0,-2,1]^T$,其中 k 为任意常数, $A = [\alpha_1,\alpha_2,\alpha_3,\alpha_4]$ 为 4 阶方阵.
 - (1) α_5 能否由 α_2 , α_3 , α_4 线性表示?若不能,说明理由;若能,则表示之.
 - (2) α_2 能否由 α_1 , α_3 , α_4 线性表示?若不能,说明理由,若能,则表示之.

4、设
$$\boldsymbol{\alpha}_1 = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ b \\ 2b \end{bmatrix}$, $\boldsymbol{\alpha}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\boldsymbol{\beta} = \begin{bmatrix} 4 \\ 3 \\ 4 \end{bmatrix}$. 试问: a,b 取何值时,

- (1) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,且表示式唯一?
- (2) β 不可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示?
- (3) β 可由 α_1 , α_2 , α_3 线性表示,且表示式不唯一?写出一般表示式.
- 5、设 4 元线性方程组 (I) $\begin{cases} x_1 + x_2 x_3 &= 0, \\ x_2 + x_3 x_4 = 0, \end{cases}$ 且线性方程组 (II) 的基础解系为 $\boldsymbol{\xi}_1 =$

 $[-1,1,2,4]^{T}, \boldsymbol{\xi}_{2} = [1,0,1,1]^{T}.$

- (1) 求(I)的一个基础解系;
- (2) 求(I)与(II)的公共解.

6、设齐次线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0, \\ \cdots \cdots \cdots \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + \cdots + a_{n-1,n}x_n = 0 \end{cases}$$
的系数矩阵为 A , M_j

 $(j=1,2,\cdots,n)$ 是 A 划去第 j 列所得到的行列式,证明: 如果 M_j 不全为 0,则 $[M_1,-M_2,\cdots,(-1)^{n-1}M_n]^{\mathrm{T}}$ 是该方程组的基础解系.

7、设A是n阶方阵,若存在正整数k,使得线性方程组 $A^kX=0$ 有解向量 α ,且 $A^{k-1}\alpha\neq 0$,

证明:向量组 α , $A\alpha$, \cdots , $A^{k-1}\alpha$ 线性无关.

8、设A为n阶方阵,证明 $r(A^n) = r(A^{n+1})$.

答案与提示

一、填空题

1、解 因为 $a_1^2 + a_2^2 + \dots + a_n^2 = 1$,所以 $(\boldsymbol{\alpha}, \boldsymbol{\alpha}) = \boldsymbol{\alpha}^T \boldsymbol{\alpha} = 1$.此时 $A\boldsymbol{\alpha} = (\boldsymbol{E}_n - \boldsymbol{\alpha} \boldsymbol{\alpha}^T) \boldsymbol{\alpha} = \boldsymbol{\alpha} - \boldsymbol{\alpha} (\boldsymbol{\alpha}^T \boldsymbol{\alpha}) = \boldsymbol{0}$,

则 α 为齐次线性方程组 AX=0 的一个非零解. 又 r(A)=n-1,则方程组 AX=0 的基础解系只含有 n-r(A)=1 个解,因此 α 可作为方程组 AX=0 的一个基础解系,故方程组 AX=0 的通解为 $k\alpha$,其中 k 为任意常数.

2、解 记 $X_0 = \begin{bmatrix} 1,1,\cdots,1 \end{bmatrix}^T$. 因为A的各行元素之和均为零,所以

$$\boldsymbol{A}\boldsymbol{X}_{0} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} + a_{12} + \cdots + a_{1n} \\ a_{21} + a_{22} + \cdots + a_{2n} \\ \vdots \\ a_{n1} + a_{n2} + \cdots + a_{nn} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \boldsymbol{0},$$

因此 X_0 是齐次线性方程组 AX=0 的解. 又 r(A)=n-1,则方程组 AX=0 的基础解系只含有 n-r(A)=1 个解,因此 X_0 可作为方程组 AX=0 的一个基础解系,故方程组 AX=0 的通解为 kX_0 ,其中 k 为任意常数.

3、解 因为

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix} \xrightarrow{r_3 + r_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

所以r(A)=2<3,因此|A|=0. 此时 $A^*A=|A|E_3=0$,表明A的每一列都是 $A^*X=0$ 的解.又r(A)=2,则 $r(A^*)=1$ (书 73 页 29 题的结论).,因此 $A^*X=0$ 的基础解系含有 $3-r(A^*)=2$ 个解. 因为A的任意两个列向量均线性无关,所以A的任意两个列向量都可以是 $A^*X=0$ 的基础解系,因此 $A^*X=0$ 的通解为

$$X = k_1[1,2,-1]^T + k_2[1,0,1]^T$$
, 其中 k_1,k_2 为任意常数.

4、3.

5、解 由题设,知 $A\boldsymbol{\alpha}_i = \boldsymbol{\beta}, i = 1, 2, ..., t$. 又 $k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_t\boldsymbol{\alpha}_t$ 是方程组 $A\boldsymbol{X} = \boldsymbol{\beta}$ 的解,则 $A(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_t\boldsymbol{\alpha}_t) = \boldsymbol{\beta}$ ⇒ $k_1(A\boldsymbol{\alpha}_1) + k_2(A\boldsymbol{\alpha}_2) + \cdots + k_t(A\boldsymbol{\alpha}_t) = \boldsymbol{\beta}$ ⇒ $(k_1 + k_2 + \cdots + k_t)\boldsymbol{\beta} = \boldsymbol{\beta}$,

即 $(k_1+k_2+\cdots+k_t-1)\boldsymbol{\beta}=\mathbf{0}$. 因为 $\boldsymbol{\beta}\neq\mathbf{0}$,所以 $\boldsymbol{\beta}$ 线性无关,因此 $k_1+k_2+\cdots+k_t=1$.

6、解 因为r(A)=2,所以方程组 $AX=oldsymbol{eta}$ 的导出组 $AX=oldsymbol{0}$ 的基础解系所含向量的个数为3-r(A)=3-2=1. 记

$$\eta = (\alpha_2 + \alpha_3) - 2\alpha_1 = [3, 5, 7]^T - 2[1, 2, 3]^T = [1, 1, 1]^T$$

则 $A\eta = 0$, 因此 η 可作为 AX = 0 的一个基础解系, 故方程组 $AX = \beta$ 的通解为

$$X = \alpha_1 + k\eta = [1,2,3]^T + k[1,1,1]^T$$
, 其中 k 为任意常数.

二、选择题

1、选择(B)

解 设A为 $m \times n$ 矩阵,则齐次线性方程组AX = 0只有零解的充要条件是r(A) = n,即A的列向量组线性无关.

2、选择(B).

解 注意到,AB 为 m 阶方阵. 当 m > n 时,有 $r(AB) \le r(A) \le n < m$,因此方程组 (AB)X = 0 有非零解. 当 m < n 时,如果取 $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$,则 $AB = E_1$,此时方程组只有零解; 如果取 $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$,则 AB = O,此时方程组有非零解.

3、选择(C) (利用任意 n-r(A) 个线性无关的 AX=0 的解都可以是方程组 AX=0 的一个基础解系,这一结论).

4、应选(B).

解 由题设,知非齐次线性方程组 $AX = \beta$ 有无穷多解,因此 $r(A) = r(\tilde{A}) < n$. 此时 $r(A^*) = 1$ 或 $r(A^*) = 0$ 又 $A^* \neq 0$,则 $r(A^*) = 1$,因此 r(A) = n - 1,故齐次线性方程组 AX = 0 的基础解系含有 n - r(A) = 1 个解.

5、应选(D).

解 因为 $[1,0,1,0]^{T}$ 是方程组 $AX = \mathbf{0}$ 的一个基础解系,所以 $\alpha_1 + \alpha_3 = \mathbf{0}$,且4 - r(A) = 1,因此 $\alpha_1 = -\alpha_3$,r(A) = 3.因为r(A) = 3,所以 $r(A^*) = 1$,因此方程组 $A^*X = \mathbf{0}$ 的基础解系含有 $4 - r(A^*) = 3$ 个解.又

$$A = \left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}\right] = \left[-\boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}\right] \xrightarrow{\tilde{y}|} \left[\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}, \boldsymbol{0}\right] = \boldsymbol{B} ,$$

则 $r(A) = r(B) = r(\alpha_2, \alpha_3, \alpha_4)$, 因此 $\alpha_2, \alpha_3, \alpha_4$ 线性无关.

因为r(A)=3<4,所以|A|=0,因而 $A^*A=|A|E_n=0$,表明A的每一列都是方程组 $A^*X=0$ 的解,故 $\alpha_2,\alpha_3,\alpha_4$ 可作为方程组 $A^*X=0$ 的一个基础解系. 选择(D). (另外 $\alpha_1,\alpha_2,\alpha_4$ 也可作为基础解系)

6、选择(D).

解 事实上,因为 α_1 与 α_2 互异,所以 α_1 - α_2 为非零向量. 又r(A)=n-1,则方程组AX=0的基础解系含有n-r(A)=1个解,因此 α_1 - α_2 可作为方程组AX=0的一个基础解系. 另外 α_1 与 α_1 + α_2 有可能为零向量,所以选项(B)和(C)都不正确.

7、选择(B).

解 若 AX = 0 的解均是 BX = 0 的解,则 AX = 0 的解空间含于 BX = 0 的解空间,因此

 $n-r(A) \le n-r(B)$, $\square r(A) \ge r(B)$.

若 $AX = \mathbf{0}$ 与 $BX = \mathbf{0}$ 同解,则 $AX = \mathbf{0}$ 和 $BX = \mathbf{0}$ 的解空间相同,因此 n - r(A) = n - r(B),即 r(A) = r(B).

若取
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, 则 $r(\mathbf{A}) > r(\mathbf{B})$. 而 $\mathbf{AX} = \mathbf{0}$ 与 $\mathbf{BX} = \mathbf{0}$ 的通解分别为

$$\boldsymbol{X} = k \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \forall k \in \mathbf{P}: \quad \boldsymbol{X} = k_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \forall k_1, k_2 \in \mathbf{P}.$$

若取
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, 则 $r(\mathbf{A}) = r(\mathbf{B})$. 而 $\mathbf{AX} = \mathbf{0}$ 与 $\mathbf{BX} = \mathbf{0}$ 的通解分别为

$$X = k_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \forall k_1 \in \mathbf{P} : X = k_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \forall k_2 \in \mathbf{P} .$$

8、选择(C).

解 因为齐次线性方程组 $\begin{cases} AX = \mathbf{0}, & \text{的 sand partial } \mathbf{B} \\ BX = \mathbf{0} \end{cases}$ 为 6×7 矩阵,所以 $r \begin{bmatrix} A \\ B \end{bmatrix} \le 6 < 7$ (未知量

的个数),故AX = 0与BX = 0有共同非零解.

9、选择(D).

解 因为
$$r(A) = r \begin{bmatrix} A & \alpha \\ \alpha^{\mathrm{T}} & 0 \end{bmatrix}$$
, 所以

$$r(A) \le r[A, \alpha] \le r\begin{bmatrix} A & \alpha \\ \alpha^{\mathrm{T}} & 0 \end{bmatrix} = r(A)$$
,

因此 $r[A, \alpha] = r(A)$,即方程组 $AX = \alpha$ 的系数矩阵和增广矩阵的秩相等,故方程组 $AX = \alpha$ 有解.(无法确定是无穷多解,还是唯一解)

注意到,齐次线性方程组
$$\begin{bmatrix} A & \alpha \\ \alpha^T & 0 \end{bmatrix}$$
 $Y = \mathbf{0}$ 的未知量个数为 $n+1$. 此时

$$r\begin{bmatrix} A & \boldsymbol{\alpha} \\ \boldsymbol{\alpha}^{\mathrm{T}} & 0 \end{bmatrix} = r(A) \le n < n+1$$
,

则线性方程组 $\begin{bmatrix} A & \boldsymbol{\alpha} \\ \boldsymbol{\alpha}^{\mathsf{T}} & 0 \end{bmatrix} Y = \mathbf{0}$ 有非零解.

10、选择(C).

解 设A为 $m \times n$ 矩阵,则AX = 0只有零解(有非零解)的充要条件是r(A) = n (r(A) < n),此时无法判断 $AX = \beta$ 是否有解,所以选项(A)和(B)都不正确.

若方程组 $AX=m{\beta}$ 有两个不同的解,即 $AX=m{\beta}$ 有无穷多解,则 $r(A)=r(\tilde{A})< n$,因此 $AX=\mathbf{0}$ 有非零解,即有无穷多解.

因为方程组 $AX=m{\beta}$ 有唯一解的充要条件是 $r(A)=r(\tilde{A})=n$,所以当 r(A)=n 时,方程组 $AX=m{\beta}$ 不一定有解.

11、选择(C).

解 非齐次线性方程组 $AX = \beta$ 有解的充要条件是 $r(A) = r[A, \beta]$. 又增广矩阵 $[A, \beta]$ 为 3×5 矩阵,则 $r[A, \beta] \le 3$. 若 r(A) = 1,则 $r[A, \beta] = 1$ 或 2,因此方程组 $AX = \beta$ 有可能出现无解. 若 r(A) = 3,则 $r[A, \beta] = 3$,因此 $r(A) = r[A, \beta] = 3$,故方程组 $AX = \beta$ 一定有解.

12、选择(A).

解 记 $A = [\alpha_1, \alpha_2, ..., \alpha_n]$. 因为对任意 m 元列向量 β ,线性方程组 $AX = \beta$ 总有解,所以对于 m 元列向量 $\varepsilon_i (i=1,2,...,m)$, $AX = \varepsilon_i$ 有解 X_i (i=1,2,...,m) . 此时

$$A[X_1, X_2, ..., X_m] = [AX_1, AX_2, ..., AX_m] = [\varepsilon_1, \varepsilon_2, ..., \varepsilon_m] = E_m$$

因此

$$m = r(\boldsymbol{E}_m) = r(\boldsymbol{A}[\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_m]) \leq r(\boldsymbol{A}) \leq m$$
,

故r(A) = m, 从而 A 的行向量组线性无关.

13、选择(A).

解 因为 α_1 , α_2 为方程组AX=0的基础解系,所以 α_1 , $\alpha_1-\alpha_2$ 都是AX=0的解,且线性无关,因此可作为AX=0的基础解系. 又 $\frac{1}{2}(\beta_1+\beta_2)$ 为 $AX=\beta$ 的解,因此方程组 $AX=\beta$ 的通解为

$$X = k_1 \boldsymbol{\alpha}_1 + k_2 (\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2) + \frac{1}{2} (\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2)$$
,其中 k_1, k_2 为任意常数.

14、选择(D).

解 因为 4×5 矩阵 A 的行向量组线性无关,所以 r(A) = 4.

选项(A),因为 $r(A^T) = r(A) = 4$,且方程组 $A^TX = 0$ 的未知量个数为4,所以 $A^TX = 0$ 只有零解.

选项(B), 因为 A 是实矩阵, 所以 $r(A^{T}A) = r(A) = 4 < 5$ (未知量个数), 因此 $(A^{T}A)X = 0$ 必有非零解.

选项(C),方程组
$$AX=m{\beta}$$
 的增广矩阵 $\left[A,m{\beta}\right]$ 是 4×6 矩阵,则 $r\left[A,m{\beta}\right] \le 4$.又 $4=r(A)\le r\left[A,m{\beta}\right] \le 4$,

则 $r(A) = r[A, \beta] = 4 < 5$,即方程组的系数矩阵和增广矩阵的秩相等,且小于未知量个数,因此 $AX = \beta$ 必有无穷多解.

15、选择(D).

解 由三条直线交于一点,知方程组 $\begin{cases} a_1x+b_1y+c_1=0,\\ a_2x+b_2y+c_2=0, 有唯一解(未知量的个数为2), 当且仅 \\ a_3x+b_3y+c_3=0 \end{cases}$

当 $r(A) = r(\tilde{A}) = 2$,即系数矩阵 $A = [\alpha_1, \alpha_2]$ 和增广矩阵 $\tilde{A} = [\alpha_1, \alpha_2 : -\alpha_3]$ 的秩都为2,因此 α_1, α_2 线性无关, $\alpha_1, \alpha_2, \alpha_3$ 线性相关.

三、解答题

1、解 因为 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_4$ 均为 $\boldsymbol{A}\boldsymbol{X} = \boldsymbol{0}$ 的解向量 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 的线性组合,所以 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_4$ 均为 $\boldsymbol{A}\boldsymbol{X} = \boldsymbol{0}$ 的解.

设
$$x_1 \boldsymbol{\beta}_1 + x_2 \boldsymbol{\beta}_2 + x_3 \boldsymbol{\beta}_3 + x_4 \boldsymbol{\beta}_4 = \mathbf{0}$$
,即

$$(x_1 + tx_4)\alpha_1 + (tx_1 + x_2)\alpha_2 + (tx_2 + x_3)\alpha_3 + (tx_3 + x_4)\alpha_4 = 0$$

因为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,所以

$$\begin{cases} x_1 + tx_4 = 0, \\ tx_1 + x_2 = 0, \\ tx_2 + x_3 = 0, \\ tx_3 + x_4 = 0. \end{cases}$$

方程组的系数行列式为|A|= $\begin{vmatrix} 1 & 0 & 0 & t \\ t & 1 & 0 & 0 \\ 0 & t & 1 & 0 \\ 0 & 0 & t & 1 \end{vmatrix} = 1-t^4.$ 当 $|A| \neq 0$,即 $t \neq \pm 1$ 时,方程组只有零解. 此

时向量组 $\beta_1, \beta_2, \beta_3, \beta_4$ 线性无关,因此 $\beta_1, \beta_2, \beta_3, \beta_4$ 是AX = 0的一个基础解系.

2、解 法 1 因为 $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = \beta$,所以 $[1, 1, 1, 1]^T$ 为非齐次线性方程组 $AX = \beta$ 的一个解. 又 $\alpha_1 = 2\alpha_2 - \alpha_3$,

$$A = \left[2\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3, \, \boldsymbol{\alpha}_4\right] \xrightarrow{\overline{\mathcal{Y}}} \left[\boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3, \, \boldsymbol{\alpha}_4, \, \boldsymbol{0}\right],$$

且 α_2 , α_3 , α_4 线性无关,因而 r(A) = 3 ,故齐次线性方程组 $AX = \mathbf{0}$ 的基础解系含有 4 - r(A) = 1 个解. 而 $\alpha_1 - 2\alpha_2 + \alpha_3 + 0\alpha_4 = \mathbf{0}$,所以 $[1, -2, 1, 0]^T$ 为方程组 $AX = \mathbf{0}$ 的一个基础解系.从而方程组 $AX = \mathbf{\beta}$ 的通解为

$$X = [1, 1, 1, 1]^{T} + k[1, -2, 1, 0]^{T}$$
, 其中 k 为任意常数.

法 2 记 $\boldsymbol{X} = [x_1, x_2, x_3, x_4]^{\mathrm{T}}$,则 $\boldsymbol{A}\boldsymbol{X} = \boldsymbol{\beta}$ 的向量形式为

$$x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + x_3\boldsymbol{\alpha}_3 + x_4\boldsymbol{\alpha}_4 = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4$$
.

将 $\alpha_1 = 2\alpha_2 - \alpha_3$ 代入上式,得

$$(2x_1 + x_2 - 3)\alpha_2 + (-x_1 + x_3)\alpha_3 + (x_4 - 1)\alpha_4 = \mathbf{0}$$

因为
$$\boldsymbol{\alpha}_2$$
, $\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$ 线性无关,所以 $\begin{cases} 2x_1+x_2 & -3=0, \\ -x_1 & +x_3 & =0, \end{cases}$ 即 $\begin{cases} x_1=+x_3, \\ x_2=3-2x_3, \end{cases}$ 因此方程组的通 $x_4-1=0,$

解为

$$X = [0, 3, 0, 1]^{T} + k[1, -2, 1, 0]^{T}$$
, 其中 k 为任意常数.

3、解 (1) 因为方程组 $AX = \alpha_5$ 的通解为 $[2,-1,3,3]^T + k[1,0,-2,1]^T$ (k 为任意常数),所以 $[2,-1,3,3]^T$ 是 $AX = \alpha_5$ 的解,且 $[1,0,-2,1]^T$ 是 $AX = \mathbf{0}$ 的解,即

$$2\alpha_1 - \alpha_2 + 3\alpha_3 + 3\alpha_4 = \alpha_5, \ \alpha_1 - 2\alpha_3 + \alpha_4 = 0,$$

则 $\boldsymbol{\alpha}_5 = 2(2\boldsymbol{\alpha}_3 - \boldsymbol{\alpha}_4) - \boldsymbol{\alpha}_2 + 3\boldsymbol{\alpha}_3 + 3\boldsymbol{\alpha}_4 = -\boldsymbol{\alpha}_2 + 7\boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4$.

(2) 设 $\boldsymbol{\alpha}_2$ 可由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$ 线性表示,则有 $\boldsymbol{\alpha}_2 = k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_3 + k_3 \boldsymbol{\alpha}_4$. 因为 $\boldsymbol{A}\boldsymbol{X} = \boldsymbol{0}$ 的基础解系含有1个解 $\begin{bmatrix} 1,0,-2,1 \end{bmatrix}^T$,所以 $\boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4 = \boldsymbol{0}$, $4 - r(\boldsymbol{A}) = 1$,因此 $\boldsymbol{\alpha}_4 = -\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_3$, $r(\boldsymbol{A}) = 3$. 又

$$A = \begin{bmatrix} \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\alpha}_{1}, k_{1}\boldsymbol{\alpha}_{1} + k_{2}\boldsymbol{\alpha}_{3} + k_{3}\boldsymbol{\alpha}_{4}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4} \end{bmatrix}$$

$$\xrightarrow{\mathfrak{H}} \begin{bmatrix} \boldsymbol{\alpha}_{1}, \boldsymbol{0}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\alpha}_{1}, \boldsymbol{0}, \boldsymbol{\alpha}_{3}, -\boldsymbol{\alpha}_{1} + 2\boldsymbol{\alpha}_{3} \end{bmatrix}$$

$$\xrightarrow{\mathfrak{H}} \begin{bmatrix} \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{3}, \boldsymbol{0}, \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} \boldsymbol{B}, \boldsymbol{O} \end{bmatrix} = \boldsymbol{C},$$

则 $r(A) = r(C) = r(B) \le 2 < 3$,与 r(A) = 3 相矛盾!故 α_2 不可由 $\alpha_1, \alpha_3, \alpha_4$ 线性表示.

4、解设 $x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + x_3\boldsymbol{\alpha}_3 = \boldsymbol{\beta}$,则

$$\begin{cases} ax_1 + x_2 + x_3 = 4, \\ x_1 + bx_2 + x_3 = 3, \\ x_1 + 2bx_2 + x_3 = 4. \end{cases}$$

法1对方程组的增广矩阵作初等行变换,有

$$\tilde{A} = \begin{bmatrix} a & 1 & 1 & | & 4 \\ 1 & b & 1 & | & 3 \\ 1 & 2b & 1 & | & 4 \end{bmatrix} \xrightarrow{r_3 - r_2 \atop r_2 - r_3} \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ a & 1 & 1 & | & 4 \\ 0 & b & 0 & | & 1 \end{bmatrix}$$

$$\xrightarrow{r_2 - ar_1 \atop r_3 - br_2} \xrightarrow{r_3 - br_2} \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & 1 - a & | & 4 - 2a \\ 0 & 0 & b(a - 1) & | & 1 - b(4 - 2a) \end{bmatrix}.$$

当 $a \neq 1, b \neq 0$ 时, $r(A) = r(\tilde{A}) = 3$,则方程组有唯一解,表明 β 可唯一地由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

当
$$a = 1$$
 时, \tilde{A} $\xrightarrow{\text{行}}$ $\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 - 2b \end{bmatrix}$,

 $\ddot{A}b \neq \frac{1}{2}$,则 $r(A) \neq r(\tilde{A})$,因此方程组无解,表明 β 不可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

若 $b=\frac{1}{2}$,则 $r(A)=r(\tilde{A})=2<3$,因此方程组有无穷多解,表明 $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3$ 线性示,

且表示式不唯一. 其同解方程组为 $\begin{cases} x_1 = 2 - x_3, \\ x_2 = 2, \end{cases}$ 因此

 $\boldsymbol{\beta} = (2-k)\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 + k\boldsymbol{\alpha}_3$, 其中 k 为任意常数.

当
$$b=0$$
时, \tilde{A} $\xrightarrow{\text{fr}}$ $\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1-a & 4-2a \\ 0 & 0 & 0 & 1 \end{bmatrix}$,

则 $r(A) \neq r(\tilde{A})$, 因此方程组无解, 表明 β 不可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

法 2 方程组的系数行列式为

$$|A| = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 2b & 1 \end{vmatrix} = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 0 & b & 0 \end{vmatrix} = -b(a-1).$$

当 $a \neq 1, b \neq 0$ 时,方程组有唯一解,表明 β 可唯一地由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

若 $b = \frac{1}{2}$,则 $r(A) = r(\tilde{A}) = 2 < 3$,因此方程组有无穷多解,表明 β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表

示,且表示式不唯一. 其同解方程组为 $\begin{cases} x_1 = 2 - x_3, \\ x_2 = 2, \end{cases}$ 因此

$$\beta = (2-k)\alpha_1 + 2\alpha_2 + k\alpha_3$$
, 其中 k 为任意常数

当
$$b = 0$$
时, $\tilde{A} = \begin{bmatrix} a & 1 & 1 & | & 4 \\ 1 & 0 & 1 & | & 3 \\ 1 & 0 & 1 & | & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 1 & 1 - a & | & 4 - 3a \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$

则 $r(A) \neq r(\tilde{A})$, 因此方程组无解, 表明 β 不可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

5、解 (1) 对方程组(I)的系数矩阵作初等行变换,有

$$A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix} \xrightarrow{\text{fr}} \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix},$$

则 r(A) = 2 < 4,因此齐次线性方程组(I)有非零解. 其同解方程组为 $\begin{cases} x_1 = 2x_3 - x_4, \\ x_2 = -x_3 + x_4, \end{cases}$ 求得一个基

础解系为 $\eta_1 = [2,-1,1,0]^T, \eta_2 = [-1,1,0,1]^T$.

(2) 设 $y_1\eta_1 + y_2\eta_2 = y_3\xi_1 + y_4\xi_2$ (公共解),则

$$\begin{cases} 2y_1 - y_2 + y_3 - y_4 = 0, \\ -y_1 + y_2 - y_3 = 0, \\ y_1 - 2y_3 - y_4 = 0, \\ y_2 - 4y_3 - y_4 = 0. \end{cases}$$

对方程组的系数矩阵作初等行变换,有

$$\begin{bmatrix} 2 & -1 & 1 & -1 \\ -1 & 1 & -1 & 0 \\ 1 & 0 & -2 & -1 \\ 0 & 1 & -4 & -1 \end{bmatrix} \xrightarrow{\text{fT}} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

其同解方程组为 $\begin{cases} y_1 = y_4, \\ y_2 = y_4, & \text{故(I)}与(II)的公共解为 k \xi_2 (公共解为 <math>y_1 = y_2, y_2$ 自由变量的解或者 $y_3 = 0,$

 $y_3 = 0, y_4$ 为自由变量的解), 其中 k 为任意常数.

6、证 易知

$$0 = \begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n} \end{vmatrix} = a_{i1}M_1 - a_{i2}M_2 + \cdots + (-1)^{n-1}a_{in}M_n, \quad i = 1, 2, \dots, n-1,$$

则 $[M_1, -M_2, ..., (-1)^{n-1}M_n]^T$ 是方程组的一个解.

又 $r(A_{(n-1)\times n}) \le n-1$,且 M_j 不全为0,即A有n-1阶子式不等于零,因此r(A) = n-1,

故方程组的基础解系含有 1 个解,因此非零解 $\left[M_1,-M_2,\dots,\left(-1\right)^{n-1}M_n\right]^{\mathrm{T}}$ 可作为方程组的基础解系。

7、证 设有数 l_0, l_1, \dots, l_{k-1} ,使得 $l_0 \boldsymbol{\alpha} + l_1 \boldsymbol{A} \boldsymbol{\alpha} + \dots + l_{k-1} \boldsymbol{A}^{k-1} \boldsymbol{\alpha} = \boldsymbol{0}$. 等式两边同乘以 \boldsymbol{A}^{k-1} ,得 $l_0 \boldsymbol{A}^{k-1} \boldsymbol{\alpha} + l_1 \boldsymbol{A}^k \boldsymbol{\alpha} + \dots + l_{k-1} \boldsymbol{A}^{2k-2} \boldsymbol{\alpha} = \boldsymbol{0}.$

因为 $A^k \alpha = \mathbf{0}$,所以 $A^m \alpha = \mathbf{0}$, $m \ge k+1$,因此 $l_0 A^{k-1} \alpha = \mathbf{0}$.由题设,知 $A^{k-1} \alpha \neq \mathbf{0}$,所以 $l_0 = \mathbf{0}$.同理可证 $l_1 = l_2 = \cdots = l_{k-1} = \mathbf{0}$, 因此向量组 α , $A\alpha$,…, $A^{k-1} \alpha$ 线性无关.

8、证 设 X_0 是 $A^nX=0$ 的解,则 $A^nX_0=0$.此时 $A^{n+1}X_0=A(A^nX_0)=0$,因此 X_0 也是 $A^{n+1}X=0$ 的解.

反之,设 X_0 是 $A^{n+1}X = \mathbf{0}$ 的解,则 $A^{n+1}X_0 = \mathbf{0}$. 此时 $A^{n+k}X_0 = A^{k-1}(A^{n+1}X_0) = \mathbf{0}, k \ge 2$.

如果 X_0 不是 $A^nX=0$ 的解,则 $A^nX_0\neq 0$. 此时 n+1个 n 元列向量 X_0 , AX_0 , \cdots , A^nX_0 必线性相关,因此存在不全为零的 k_0 , k_1 , \ldots , k_n ,使得

$$k_0 \mathbf{X}_0 + k_1 \mathbf{A} \mathbf{X}_0 + \dots + k_n \mathbf{A}^n \mathbf{X}_0 = \mathbf{0}.$$

等式两边同时左乘 A^n ,得

$$k_0 A^n X_0 + k_1 A^{n+1} X_0 + \dots + k_n A^{2n} X_0 = \mathbf{0}$$
,

则 $k_0 A^n X_0 = \mathbf{0}$,而 $A^n X_0 \neq \mathbf{0}$, 因此 $k_0 = \mathbf{0}$. 同理可证 $k_1 = \cdots = k_n = \mathbf{0}$, 矛盾! 故 $A^n X_0 = \mathbf{0}$.

表明 $A^nX = \mathbf{0}$ 和 $A^{n+1}X = \mathbf{0}$ 同解,即解空间相同,维数也相同,因此

$$n-r(A^n)=n-r(A^{n+1}),$$

 $\mathbb{P} r(\mathbf{A}^n) = r(\mathbf{A}^{n+1}).$