First Name:	Last Name:	Student ID:
	Test 1	/51
Show your work!		
1. Compute each limit.		(12marks)
(a) $\lim_{x \to 1} \frac{1 - x^3}{x^4 - 1}$	(d) _x	$\lim_{x \to -1} \frac{x-1}{x+1}$
(b) $\lim_{x \to -\infty} \frac{-2x^3 - 7}{3x^2 + 1}$	(e) l _x	$\lim_{x \to 2} \frac{x-2}{x+2}$
(c) $\lim_{x \to 4} \frac{\sqrt{5-x}-1}{x-4}$	(f) _x -	$\lim_{\to -\infty} (-2x^3 + 17x^2 + x + 3)$

2.	For	each	case	find	f'((x)) :

(12marks)

(a)
$$f(x) = \frac{x-1}{x+1}$$

(d)
$$f(x) = e^x(x^3+x^2-1)$$

(b)
$$f(x) = 2^x + x^2$$

(e)
$$f(x) = In(e^x)$$

(c)
$$f(x) = \sin^2(x^2+1)$$

(f)
$$f(x) = In(cosx)$$

3. Use the first principles to find the derivatives of $f(x) = x^2 + 2x - 3$.

(3marks)

(6marks)

4. For each case, use the first derivative sign to find the intervals of increase or decrease, LM, Lm.

(a)
$$f(x) = x^2 - 2x$$

(b)
$$f(x) = x^3(x-1)^4$$

5. Find the intervals of concavity and the points of inflection for $f(x) = x^2 - 4x + 3$. (3marks)

6. Find a function f such that $f'(x) = 6x^2 - 12x + 6$ and (1, 3) is a point of inflection of the graph of f.

- (3marks)
- **7.** Find the equation of the tangent line to the curve defined by $x^2 + xy + y^2 = 7$ at the point (1, -3).

8. What is the maximum slope of a tangent to the curve $y = -x^3 + 3x^2 + 9x - 27$? (3marks)

9. Find the points on the curve $y = x^3 - 3x^2$ at which the tangent is parallel to the line y = 9x + 7.

10. Find the dimensions of the rectangle of largest area that has its base on the x-axis and its other two vertices above x-axis and lying on the parabola $y = 8 - x^2$. (3marks)

Bonus question

11. The diagonals of a quadrilateral are perpendicular. The sum of the diagonals is 8 cm.

What is the maximum area of such quadrilateral?

(3marks)