

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
КАФЕДРА	Прикладная математика

Лабораторная работа №5

Методы решения нелинейных уравнений

Студент	ФН2-52Б		Г.А. Швецов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподават	ель		А.О. Гусев
		(Подпись, дата)	(И. О. Фамилия)

Оглавление 2

Оглавление

1. Контрольные вопросы	3
2. Результаты	8
Список использованных источников	19

1. Контрольные вопросы

1. Можно ли использовать методы бисекции и Ньютона для нахождения кратных корней уравнения f(x) = 0 (т.е. тех, в которых одна или несколько первых производных функций f(x) равны нулю)? Обоснуйте ответ.

Метод бисекции применим в случае нечетной кратности корня, т.к. только в этом случае выполнено условие $f(a) \cdot f(b) < 0$.

Метод Ньютона применим для поиска корней любой кратности. В случае кратности более 1 скорость сходимости линейна.

Доказательство:

Итерационная формула метода Ньютона:

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}. (1.1)$$

Пусть корень x^* уравнения f(x) = 0 имеет кратность 2. Получаем, что $f(x_*) = f'(x^*) = 0$. Разложим функцию f(x) и ее производную f'(x) в ряд Тейлора в точках $x^{(k)}$ и x^* соответственно и подставим $x = x^*$ и $x = x^{(k)}$. Тогда с учетом предыдущих равенств получаем, что

$$f(x^*) = f(x^{(k)}) + f'(x^{(k)})(x^* - x^{(k)}) + \frac{1}{2}f''(\xi_k)(x^* - x^{(k)})^2, \ \xi \in [x^*, x^{(k)}]; \ (1.2)$$
$$f'(x^{(k)}) = f'(x^*) + f''(\eta_k)(x^{(k)} - x^*) = f''(\eta_k)(x^{(k)} - x^*), \ \eta \in [x^{(k)}, x^*]. \ (1.3)$$

Выражая из выражения (1.2) $f(x^{(k)})$ и подставляя результаты в формулу (1.1), получаем:

$$x^{(k+1)} = x^{(k)} - \frac{-\left(f'(x^{(k)})(x_* - x^{(k)}) + \frac{1}{2}f''(\xi_k)(x^* - x^{(k)})^2\right)}{f'(x^{(k)})} = x^{(k)} + (x^* - x^{(k)}) + \frac{\frac{1}{2}f''(\xi_k)(x^* - x^{(k)})^2}{f'(x^{(k)})} = x^* + \frac{\frac{1}{2}f''(\xi_k)(x^* - x^{(k)})^2}{f''(\eta_k)(x^{(k)} - x^*)} = x^* + \frac{1}{2}\frac{f''(\xi_k)}{f''(\eta_k)}(x^* - x^{(k)}) \Rightarrow$$

$$\Rightarrow |x^{(k+1)} - x^*| = \frac{1}{2} \left| \frac{f''(\xi_k)}{f''(\eta_k)} \right| |x^* - x^{(k)}| \Rightarrow |x^{(k+1)} - x^*| \leqslant C|x^{(k)} - x^*|.$$

Таким образом, в данном случае метод Ньютона имеет линейную скорость сходимости.

Чтобы улучшить скорость сходимости в случае кратного корня, можно использовать следующую модификацию метода Ньютона:

$$x^{(k+1)} = x^{(k)} - p \frac{f(x^{(k)})}{f'(x^{(k)})}$$
, где p — кратность корня.

2. При каких условиях можно применять метод Ньютона для поиска корней уравнения f(x) = 0, $x \in [a,b]$? При каких ограничениях на функцию f(x) метод Ньютона обладает квадратичной скоростью сходимости? В каких случаях можно применять метод Ньютона для решения систем нелинейных уравнений?.

Функция f(x) должна быть непрерывна-дифференцируема, т.е. $f(x) \in C^1$. Метод Ньютона обладает квадратичной скоростью сходимостью при следующих ограничениях $(f(x) = 0 \Leftrightarrow F(x) = x)$:

$$|f'(x)| \ge m > 0, \qquad |f''(x)| \le M,$$

$$|F'(x)| = \left|1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2}\right| = \frac{|f(x) \cdot f''(x)|}{(f'(x))^2} < 1,$$

где m, M — константы, то при попадании очередного приближения $x^{(k)}$ в эту окрестность итерационный процесс по методу Ньютона будет сходиться с квадратичной скоростью

$$|x^{(k+1)} - x^*| < C|x^{(k)} - x^*|^2$$
, $k = s, s+1, s+2, \dots$

Теорема (о достаточных условиях сходимости метода **Ньютона**). Пусть выполняются следующие условия:

- (a) Функция f(x) определена и дважды дифференцируема на отрезке [a, b];
- (b) Отрезку [a, b] принадлежит только один простой корень x^* , так что $f(a) \cdot f(b) < 0$;
- (c) Производные f'(x), f''(x) на [a, b] сохраняют знак, и $f'(x) \neq 0$;
- (d) Начальное приближение $x^{(0)}$ удовлетворяет неравенству $f(x^{(0)}) \cdot f''(x^{(0)}) > 0$. Тогда с помощью метода Ньютона можно вычислить корень уравнения f(x) = 0 с любой точностью.
- 3. Каким образом можно найти начальное приближение?

Если известен отрезок [a,b] локализации корня, то для получения начального приближения $x^{(0)}$ можно использовать метод xopd

$$x^{(0)} = \frac{f(a) \cdot b - f(b) \cdot a}{f(a) - f(b)},$$

т.е. $x^{(0)}$ — абсцисса точки пересечения с осью Ox отрезка, соединяющего точки (a, f(a)) и (b, f(b)).

Также в качестве начального приближения $x^{(0)}$ можно взять (метод бисекции)

$$x^{(0)} = \frac{a+b}{2}.$$

4. Можно ли использовать метод Ньютона для решения СЛАУ? СЛАУ имеет вид Ax = b. Обозначим F(x) = Ax - b, тогда F'(x) = F' = A. Тогда согласно итерационной формуле метода Ньютона

$$X^{(k+1)} = X^{(k)} - (F'(X^{(k)})^{-1}F(X^{(k)})) = X^{(k)} - A^{-1}(AX^{(k)} - b) = A^{-1}b.$$

Таким образом, метод Ньютона можно использовать для решения СЛАУ в том случае, если квадратная матрица A имеет обратную A^{-1} .

Метод сходится максимум за две итерации

$$0 = ||X^{(2)} - X^{(1)}|| < \varepsilon.$$

5. Предложите альтернативный критерий окончания итераций в методе бисекции, в котором учитывалась бы возможность попадания очередного приближения в очень малую окрестность корня уравнения.

Можно сравнивать значения функции на концах и в середине отрезка с нулем.

- 6. Предложите различные варианты модификаций метода Ньютона. Укажите их достоинства и недостатки.
 - (а) Упрощенный метод Ньютона (метод одной касательной). Вычисляем производную функции или, в случае системы, матрицу Якоби только для первого приближения, т.е. итерационная формула метода Ньютона выглядит так

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(0)})}, \qquad X^{(k+1)} = X^{(k)} - (F'(X^{(0)}))^{-1}F(X^{(k)}).$$

Данный метод по сравнению с классическим (квадратичная скорость) будет медленнее сходиться (линейная скорость), но все же он снижает вычислительные затраты (достаточно посчитать производную в точке $x^{(0)}$).

(b) Метод секущих. Замена производной в формуле Ньютона

$$f'(x^{(k)}) \approx \frac{f(x^{(k-1)}) - f(x^{(k)})}{x^{(k-1)} - x^{(k)}}$$

приводит к расчетной формуле

$$x^{(k+1)} = x^{(k)} - f(x^{(k)}) \frac{x^{(k-1)} - x^{(k)}}{f(x^{(k-1)}) - f(x^{(k)})}.$$

Метод является двухшаговым. Функция не обязана быть дифференцируемой, поэтому данный метод можно применять на широкий класс функций. (c) **Метод Ньютона** — **Бройдена**. Этот метод позволяет увеличить скорость сходимости последовательных приближений благодаря формуле

$$x^{(k+1)} = x^{(k)} - c_k \frac{f(x^{(k)})}{f'(x^{(0)})},$$

где c_k — число, которое выбирается на каждой итерации так, чтобы уменьшить значение $|f(x^{(k+1)})|$ по сравнению с $|f(x^{(k)})|$. Как правило, при плохой сходимости или ее отсутствии полагают $0 < c_k < 1$, а при хорошей сходимости для $c_k = 1$ полагают $c_k > 1$ (это ускоряет сходимость).

(d) **Метод Стеффенсена**. Итерационная формула метода Стеффенсена имеет вид

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f(x^{(k)} + f(x^{(k)})) - f(x^{(k)})}.$$

Метод Стеффенсена является одношаговым, не требует вычисления производной f'(x) и в то же время, как и метод Ньютона, сходится с квадратичной скоростью. Метод Стффенсена уступает методу секущих, поскольку требует большей вычислительной работы.

(e) **Метод "замораживание через один"**. Итерационная формула одношагового метода имеет вид

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})} - \frac{f(x^{(k)} - f(x^{(k)})(f'(x^{(k)}))^{-1})}{f'(x^{(k)})}$$
(1.4)

Скорость сходимости данного метода является кубической.

Доказательство:

Формулу (1.4) можно записать следующей системой

$$\begin{cases} y^{(k)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}, \\ x^{(k+1)} = y^{(k)} - \frac{f(y^{(k)})}{f'(x^{(k)})}. \end{cases}$$
(1.5)

Пусть x* — корень уравнения f(x) = 0. Разложим функцию в ряд до третьего слагаемого (включительно)

$$f(x^*) = f(x^{(k)}) + f'(x^{(k)})(x^* - x^{(k)}) + \frac{1}{2}f''(x^{(k)})(x_* - x^{(k)})^2 + \frac{1}{6}f'''(\xi_k)(x^* - x^{(k)})^3, \ \xi \in [x^*, x^{(k)}].$$
 (1.6)

Тогда

$$-\frac{f(x^{(k)})}{f'(x^{(k)})} = x^* - x^{(k)} + \frac{1}{2} \frac{f''(x^{(k)})}{f'(x^{(k)})} (x^* - x^{(k)})^2 + \frac{1}{6} \frac{f'''(\xi_k)}{f'(x^{(k)})} (x^* - x^{(k)})^3, \ \xi \in [x^*, x^{(k)}].$$

Подставляя это выражение в (1.5), получаем

$$y^{(k)} = x^* + \frac{1}{2} \frac{f''(x^{(k)})}{f'(x^{(k)})} (x^* - x^{(k)})^2 + \frac{1}{6} \frac{f'''(\xi_k)}{f'(x^{(k)})} (x^* - x^{(k)})^3.$$

Тогда

$$|y^{(k)} - x^*| \le C|x^{(k)} - x^*|^2$$

TODO

7. Предложите алгоритм для исключения зацикливания метода Ньютона и выхода за пределы области поиска решения?

Во избежание выхода очередного приближения за пределы отрезка можно использовать комбинацию алгоритмов Ньютона и метода хорд (в пределах — метод Ньютона, за пределами — метод хорд).

Во избежании зацикливания через определенное количество итераций используем другой метод, например, метод бисекции.

2. Результаты

Функция: $x^2 - 4\sin x + \ln(x+5)$

Отрезок поиска: $-1 \leqslant x \leqslant 1$

Точность: $\varepsilon = 0.001$

Точное решение (вычисленное в Wolfram Mathematica): 0.516127723925248

Начальное приближение для метода Ньютона: $x^0 = -0.7$

Оценка количества итераций для метода бисекции:

$$\frac{b-a}{2^n} \leqslant 2\varepsilon, \quad 2^n \geqslant \frac{b-a}{2\varepsilon}, \quad n \geqslant \log_2 \frac{b-a}{2\varepsilon}.$$

Оценка количества итераций для метода Ньютона:

$$|x^k - x_*| \leqslant rac{q^k}{1 - q} \left| rac{f(x^0)}{f'(x^0)}
ight|,$$
 где $q = \max_{x \in [a,b]} \left| rac{ff''}{f'^2}
ight|.$

Таблица 1. Сравнение результатов методов

	Метод хорд	Метод бисекции	Метод Ньютона,	Метод Ньютона,	
	метод хорд	Метод оисекции	аналитич. произв.	численная произв.	
Результат	0.516129712688983	0.516601562500000	0.516127702953010	0.516127830340478	
	0.000001988763735	0.000473838574752	0.000000020972238	0.000000106415230	
Достигнутая					
точность					
Невязка	0.000004505347242	0.001072993704317	0.000000047510609	0.000000241073557	
Кол-во	7	10	4	4	
итераций	•	10	4	*	
Оценка					
кол-ва	_	10	-	_	
итераций					
Порядок	1.641769886747711	1.311565782225854	1.993086440377016	1.582081537253162	
сходимости	1.041705550747711	1.01100010222004	1.000000110011010	1,302001001200102	

Таблица 2. Квадратичная сходимость метода Ньютона

Итерации	Метод Ньютона,	Метод Ньютона,	
перации	аналитич. произв.	численная произв.	
1	0.370662064055730	0.370582289101866	
2	0.502555503936164	$\underline{0.5}02623170227612$	
3	<u>0.515</u> 972422772407	<u>0.515</u> 985168673437	
4	<u>0.5161277</u> 02953010	<u>0.516127</u> 830340478	

Подчеркиванием отмечены верные значащие цифры. Видно, что их количество от шага к шагу растет (приблизительно удваиваясь с каждым шагом), иллюстрируя квадратичную скорость сходимости.

При корне кратности 2 (на примере функции $f(x)=(x-1)^2$) порядок сходимости p=1.00000000000103.

При корне кратности 2 (на примере функции $f(x)=(x-1)^2(x-3)^2$) порядок сходимости p=1.001024090561162.

При корне кратности 2 (на примере функции $f(x) = (x-1)^2(x-3)^2$) порядок сходимости модифицированным методом p = 1.997361522322007.

Рис. 1. Бассейн Ньютона (300 × 300 точек)

Тест 4

$$\begin{cases} x_1^2 - x_2^2 - 15 = 0 \\ x_1 x_2 + 4 = 0 \end{cases}$$

(а) Область сходимости метода Ньютона"2D"(аналитическая производная)

(b) Область сходимости метода Ньютона "3D"(аналитическая производная)

(a) Область сходимости метода Ньютона "2D"(аналитическая производная)

(b) Область сходимости метода Ньютона "3D"(аналитическая производная)

Тест 5

$$\begin{cases} x_1^2 + x_2^2 + x_1 + x_2 - 8 = 0 \\ x_1^2 + x_2^2 + x_1 x_2 - 7 = 0 \end{cases}$$

(a) Область сходимости метода Ньютона "2D"(аналитическая производная)

(a) Область сходимости метода Ньютона "2D"(численная производная)

(b) Область сходимости метода Ньютона "3D"(аналитическая производная)

(b) Область сходимости метода Ньютона "3D"(численная производная)

Список использованных источников

1. *Галанин М.П., Савенков Е.Б.* Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 592 с.