▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

METHODIK EINES INGENIEURS

Vorgelegt von:

Philipp Thüring m26665 Friedrichstraße 12 38855 Wernigerode

Erstprüfer Johr Alexander Zweitprüfer Singer Jürgen Abgabedatum 02. Februar 2021

Inhaltsverzeichnis

H	inwe	se zur Abgabe	3
1	Was	s ist ein Problem?	5
	1.1	Veränderung	5
		1.1.1 Am Besten	5
		1.1.2 Ungewissheit	6
	1.2	Der Kern des Ingenieursproblems	6
2	Ana	lyse	7
	2.1	Beschreibung des Problems	7
	2.2		8
	2.3		9
	2.4		10
3	Syn	these	1
	3.1	Lösungsansätze implementieren	11
			12
			14
			14
A	nhan	g 1	۱9
	A		19
	В	<u> </u>	20
Ei	idess	attliche Erklärung	21

Hinweise zur Abgabe

In dieser mit Latex erstellten PDF sind folgende Inhalte enthalten: [Links in eckigen Klammern]

- Ein Deckblatt mit Titel, Datum, Prüfer, Matrikelnummer
- Ein Inhaltsverzeichnis
- Wenigstens drei:
 - Kapitel
 - Unterkapitel
 - Unterunterkapitel
- Wenigstens drei Paragraphen
- Wenigstens einem sub-Paragraphen [Siehe Was ist ein Problem?]
- Ein Abbildungsverzeichnis
 - Mit wenigstens drei Bildern
 - * Mit jeweils einem Untertitel
 - \ast Mit einem abweichenden kurzen Titel für das Abbildungsverzeichnis
 - $\ast\,$ Mit jeweils einer Referenzierung der Abbildung im Fließtext des Kapitels
- Ein Listingsverzeichnis (nach Abbildungsverzeichnis)
 - $-\,$ Mit wenigstens zwei Listings
 - * Mit Untertitel
 - * Mit Abkürzung des UT für das Verzeichnis
 - * Mit jeweils einer Referenz im Text darauf.
- Einen Anhang (nach Inhalt und Litverzeichnis) [Siehe Anhang]
 - Mit wenigstens einer Abbildung
 - Mit wenigstens einem Listing
- Zwei wechselnde Hintergrundbilder (jede zweite Seite)
- Ein Literaturverzeichnis vor Anhang und nach Inhalt

- Hervorgehobener Text [Siehe Analyse]
 - Kursiv
 - Fett
 - Unterstrichen
 - In Anführungszeichen
- Listen
 - Numeriert [Siehe Analyse]
 - Nicht numeriert [Siehe Hinweise zur Abgabe]
- Zitate [Siehe Was ist ein Problem?]
 - Indirekt
 - Direkt
 - Zitat aus Internet mit Link der Webseite im Literaturverzeichnis
- \bullet Eine Eidesstattliche Erklärung mit Unterschrift als eingefügte PDF am Ende

1 Was ist ein Problem?

Diese Frage selbst stellt schon ein Problem dar. Konkreter sollten wir uns also Fragen: "Wie sieht ein Problem aus, welches ich mit der Ingenieurmethodik lösen kann?"

Einfach ausgedrückt: Ein System mit ungewissen Attributen befindet sich in einem Zustand A und soll mit gegeben Ressourcen in einen besseren Zustand B versetzt werden.

Um diese recht einfache Definition im Kern zu verstehen müssen jedoch einige Elemente in einen dringend notwendigen Kontext gestellt werden. So müssen wir, um eine Problematik mit der Ingenieurmethodik auf zu arbeiten folgende Begriffe definieren: Veränderung, Ressourcen, am Besten & Ungewiss.

1.1 Veränderung

Veränderung ist der Übergang von einer Situation A in eine Situation B wobei sich Situation A von B unterscheidet. In unserem Falle sind Situation A und B allerdings nicht fest definiert sondern müssen erst erkannt werden. Herauszufinden wie Situation B aussieht und wie der Übergang herbei zu führen ist ist Aufgabe des Ingenieurs. Hierzu muss er allerdings Situation A möglichst genau definieren, eine Aufgabe die ihm selten vom Auftraggeber abgenommen wird, auch wenn er dies eigentlich tun sollte. So muss der Ingenieur erstmal das genaue Problem feststellen um dann für eben dieses Problem nicht die Lösung sondern eine Lösung zu finden. Eben diese Lösung sollte dann die passendste aller möglichen Lösungen sein.

1.1.1 Am Besten

Der Begriff "am Besten" ist im Falle des Ingenieurs nicht die ideale Lösung des Problemes in einem ansonsten leeren Raum sondern ein möglichst optimaler Kompromiss aus allen Faktoren und Kriterien. Da eben diese Kriterien von Person zu Person zumeist unterschiedlich stark gewichtet werden ist es die Aufgabe des Ingenieurs die allgemeine Gewichtung eben dieser Kriterien durch die Gesellschaft zu ermitteln. Da auch dies ein subjektiver Prozess ist (bei dieser Evaluation spielen die persönlichen Kriterien des Ingenieurs natürlich auch eine Rolle) kann es keine ideale Lösung geben. Die "beste" Lösung die im Laufe dieses Prozesses zu finden ist ist die, die möglichst viele Kriterien einfließen lässt und abhängig der Gewichtung möglichst viele Teilnehmer zufriedenstellt. ¹

^{1.} Vgl. Bock, Getting It Right: R&D Methods for Science and Engineering, S. 35

1.1.2 Ungewissheit

Ein großer Teil, nein, gar der Kern eines jeden Ingenieurs-Projektes ist es mit unvollständigen Informationen auf ein schwammig definiertes Ziel mit unbekannt vielen Faktoren und Möglichkeiten zu zu arbeiten. Wäre dies anders, also die Informationen vollständig, die Aufgabe klar definiert und alle Faktoren bekannt wäre das Ganze nicht mehr als eine wissenschaftliche Formel zu lösen. Alle Variablen werden Eingesetzt und am Ende steht das Ergebnis. Sollte sich im Laufe dessen rausstellen dass sich Fehler eingeschlichen haben kann man diese korrigieren und die Variablen nochmals einsetzen. Mögen sich eben diese Variablen auch ändern, die Formel und Prozedur bleiben gleich. Eben diese Sicherheit ist bei einem Ingenieur-Problem jedoch nicht gegeben, da bis zum Schluss kein vollständiges Bild der Ausgangs- und Endlage bekannt ist. Die Aufgabe des Ingenieurs ist es also diese Ungewissheit der Situation zu minimieren, in dem er möglichst viele Faktoren und Kriterien in seine Überlegungen mit einfließen lässt und so einen optimalen Kompromiss findet. ²

1.2 Der Kern des Ingenieursproblems

Zusammengefasst sieht jedes Problem der Ingenieurmethodik wie folgt aus: Ein System mit ungewissen Attributen befindet sich in einem Zustand A und soll mit gegebenen Ressourcen in einen besseren Zustand B versetzt werden. 3

^{2.} Vaughn Koen, DISCUSSION OF THE METHOD: Conducting the Engineer's Approach to Problem Solving, S. 112

^{3.} The Scientific Method

2 Analyse

Die Aufgabe der Analysephase ist es, eingehendes Verständnis über alle Komponenten des Problemgebietes zu erlangen, sodass ein einzelnes, spezifisches und realistisches Ziel formuliert werden kann.

Das oberste Ziel der Analyse sollte immer sein, die vorerst viel umfassende und grobe Zielsetzung zu einer einzigen, spezifischen Aufgabe zu reduzieren. Die zuerst weite Problembeschreibung wird durch die Aufstellung leitender Thesen systematisch eingeschränkt, bis ein enges, aber hoch detailliertes Ziel im finalen Schritt der Analyse formuliert werden kann.

2.1 Beschreibung des Problems

Projekte können in zwei Untergruppen eingeteilt werden. Einerseits gibt es das Forschungsprojekt, dessen Ziel die Gewinnung neuen Wissens ist. Daneben gibt es noch das Entwicklungsprojekt, bei dem man bereits existierendes wissen nutzt, um ein neues Gerät zu entwickeln oder einen bestimmten Effekt zu erzeugen. Häufig kann man ein Projekt allerdings nicht strikt zu einem der beiden Gruppen zuordnen. Oftmals führt die Entwicklung eines neuen Geräts im Laufe seiner Entwicklungsphase auch zu neuen Erkenntnissen. Manchmal ist es auch nötig ein neues Gerät zu entwickeln, damit neues Wissen überhaupt zugänglich wird. Zweiteres trifft allerdings nur eher selten ein. Die Beschreibung eines Problems wird in der folgenden Grafik verdeutlicht.

Abbildung 1: Der Moment des Erkennens eines Problems

Sollte es schwer fallen, das Problem mit einer kurzen, präzisen Frage oder Aussage zu umschreiben, enthält das Projekt möglicherweise mehr als ein Problem. Dies ist ein häufig auftretender Grund für Verwirrung im Projektplan, denn unterschiedliche Probleme benötigen fast immer auch unterschiedliche Lösungen. Die dadurch verworrenen und sich teilweise widersprechenden Projektziele können zu großen Komplikationen führen und verheerende Auswirkungen auf den Erfolg des Projekts haben, sollten sie sich auch durch die Restlichen Projektphasen ziehen. Daher sollte am Anfang der Analyse eine möglichst detaillierte Zusammenfassung des Problems angefertigt werden. Darin beinhaltet sind auch ausreichende Hintergrundinformationen und eine Motivation zur Behebung des Problems, um das Projekt im richtigen Kontext einordnen zu können.

2.2 Performance Kriterien festlegen

"Performance Kriterien sind Bedingungen, die jede vorgeschlagene Lösung zu einem Problem erfüllen muss." Ziel ist hier, den in der Abbildung 1 gezeigten Moment möglichst zu vermeiden. Dabei sollte darauf geachtet werden, dass die Kriterien weder zu streng, noch zu offen sind. Das Beispiel sei hier das Festlegen einer Deadline für einen Teil eines Projekts. Die vorgeschlagene Lösung hier wäre drei Monate. Sind die Kriterien zu eng, würde das Projekt nach Ablauf der festgelegten Zeit gestrichen werden, auch wenn die eigentliche Dauer gerade mal drei Monate und ein Tag gewesen wären. Werden die Kriterien jedoch zu aussagelos gesetzt, könnte das Teilprojekt potenziell nie ein Ende finden und das gesamte Projekt gerät in nicht aufholbaren Verzug. Beide Ausgänge sind zu vermeiden. Die meisten Entwicklungsprojekte sind jedoch im Voraus schon von den festen, strengen Bedingungen und Parametern der Anwendungsdomäne eingegrenzt. Das folgende Diagramm 2 liefert einen Überblick über die wichtigsten generell anerkannten Kriterien.

Abbildung 2: Die wichtigsten Performance Kriterien im Bereich des R&D Sektors

2.3 Themenverwandte Arbeiten untersuchen

Ist das Problem dann formal und präzise beschrieben und alle grundsätzlichen Performance Kriterien festgelegt, so kann das Projektteam nun damit anfangen, möglichst viele Informationen über vorhergehende Projekte in einem ähnlichen oder im gleichen Rahmen zu sammeln. Der wohl bedeutendste Grund dafür ist es zu verhindern, "Das Rad neu zu erfinden." Sollten schon Lösungen für Teile, oder sogar das Projekt im Ganzen bestehen, ist es fast immer einfacher und billiger die Lösung oder das Gerät zu kaufen, als der Versuch es zu replizieren. Es gibt verschiedene Arten, um nach relevanten Quellen zu suchen. Einige davon sind hier zusammengefasst:

- 1. Professionelle Tagebücher
- 2. Konferenzdokumentationen
- 3. Bücher und Monographien
- 4. Professionelle Studien
- 5. Zeitungsartikel
- 6. Diskussionen mit Kollegen
- 7. Reverse engineering
- 8. Digitale Medien
 - (a) TV Berichte
 - (b) Radiobeiträge
 - (c) Ressourcen aus dem Internet
 - i. Webseiten
 - ii. Datenbanken
 - iii. Videos

Die Liste wird in Der Abbildung 3 um weitere Punkte ergänzt. Unabhängig von der Quelle muss die validität immer gründlich überprüft werden. Zweitquellen, wie z.B. Zeitungsartikel, müssen immer auf ihre ursprüngliche Quelle zurückführbar sein, um die Echtheit der Information versichern zu können. Die Quellen, die als Vorwissen in ein Projekt gebracht werden, müssen klar und strukturiert zitiert werden.

Abbildung 3: Ein Pfahl, der genau das gleiche wie der obige Text aussagt, nur cooler

2.4 Ziel formulieren

Dies ist der letzte Schritt in der Analysephase. Nachdem das Problem klar definiert, die Performance Kriterien festgelegt und verwandtes Material gründlich untersucht wurde, ist die Aufgabendomäne nun angemessen fokussiert und eingegrenzt. Jetzt kann ein spezifisches und klares Ziel für das Projekt bestimmt werden. Das Ziel ist ein Ausdruck von dem, was das Projekt im Bestfall erreichen soll. Bevor zur nächsten Phase übergegangen wird, müssen noch zwei Faktoren beachtet werden. Als erstes, das Ziel ist die Basis, an der Erfolg oder Versagen des Projekts gemessen werden. Auch die Leistung des Projektteams wird daran gemessen, wie gut es das Ziel erreicht hat. Als zweites, auch wenn andere Komponenten des Projekts relativ unkompliziert angepasst werden können, benötigt es für eine Änderung des Ziels explizite Erlaubnis der Management Ebene, was zur Verschwendung großer Zeit- und Geldressourcen führen kann und deshalb vermieden werden sollte. Umso wichtiger ist es, schon von Anfang an ein allgemein anerkanntes Ziel festzulegen.

3 Synthese

Das Ergebnis der Synthesephase sollte die Anwendung der designten Lösung sein, um die gesetzten Ziele zu erreichen und die die Aufgabe begleitende Hypothese zu validieren.

Auch dieser Prozess kann in 4 kleinere Funktionen unterteilt werden aber anders als in der Analysephase, muss die Reihenfolge aller Schritte genau eingehalten werden. In dieser Phase werden alle vorher aufgestellten Thesen, Faktoren, Bedingungen, etc. mit Hilfe von Experimenten in die Praxis umgesetzt, um erste konkrete Ergebnisse zu erzielen.

3.1 Lösungsansätze implementieren

Es gibt zwei Arten, auf die eine Lösung implementiert werden kann, entwickeln und kaufen. Ein Beispiel für eine selbst entwickelte Lösung kann im Listing 1 betrachtet werden. Sollte es den Anforderungen entsprechen, ist es fast immer effektiver die Lösung zu erwerben, als sie selbst zu entwickeln. Dies trifft auch zu, sollte die erworbene Komponente nur zu einem Teil zur Lösung beitragen. Besteht ein Teil der Lösung aus einer Datenbank, sollte der Aufwand betrieben werden, um die Daten vollständig, roh und unbearbeitet zu erhalten. Dies trifft vor allem zu, wenn die Daten von einer anderen Forschungsgruppe oder Firma kommen. Häufig treten im Zusammenhang dessen auch politische oder Eigentums Probleme auf. Von Drittparteien erhaltene Daten sollten generell immer mit einer gewissen Skepsis behandelt werden.

```
package com.tutego.insel.ds.observer;
        import java.util.*;
        public class Party
10
          public static void main( String[] args )
11
12
                               = new JokeListener( "Achim" );
            Observer achim
            Observer michael = new JokeListener( "Michael" );
14
            JokeTeller chris = new JokeTeller();
16
            chris.addObserver( achim );
17
18
            chris.tellJoke();
            chris.tellJoke();
20
21
            chris.addObserver( michael );
23
            chris.tellJoke();
25
            chris.deleteObserver( achim );
26
            chris.tellJoke();
28
          }
        }
30
```

Listing 1: Beispiel einer Loesungsimplementation nach den festgelegten Vorschriften

3.1.1 Experimente Designen

Der Sinn hinter diesem Schritt ist es, eine Reihe von Experimenten zu designen, dessen Resultate benutzt werden, um zu messen wie gut eine Aufgabe erfüllt wurde. Ein Experiment erfasst Daten um den Erfolg einer konzipierten Lösung unter kontrollierbaren Bedingungen im Labor zu testen.

Vor dem Beginn der Experimente sollten alle aufgestellten und gesammelten Faktoren, Regeln, Bedingungen und Beobachtungen auf Vollständigkeit und Korrektheit überprüft werden, da jede dieser Komponenten einen fundamentalen Einfluss auf die Planung und Durchführung der Experimente haben kann. Wurde diese Liste noch ein letztes mal verifiziert, kann nun mit der Planungsphase für die Experimente fortgefahren werden. Zuerst sollte sichergestellt werden, dass das Labor, in dem das Experiment stattfinden wird, frei von nichtessentiellen Objekten ist. Der negative Einfluss von emotionalen Reaktionen der Testsubjekte sowie der Prüfer kann oft nicht vollkommen verhindert werden. Deshalb sollte man darauf achten, dass jedes Element im Labor unabdingbar für das Experiment ist. Einmal richtig angeordnet, sollte danach großer Wert darauf gelegt werden, dass niemand außer den am Experiment beteiligten Personen das Labor betritt. Außenstehende können ohne ihr Wissen kleinste Veränderungen am Arbeitsraum durchführen, z.B. ein Gerät um wenige Millimeter verschieben, und damit die Ergebnisse des Experiments vollkommen aussagelos machen. Das schlimmste daran ist, dass ein solcher Fehler, wenn überhaupt, nur sehr schwer zurückverfolgt werden kann, wodurch das ganze Projekt in Gefährdung stehen könnte. Deshalb sollte das Labor in Abwesenheit des Personals immer verriegelt und klar und deutlich für Außenstehende gekennzeichnet sein, um die Chance auf derartige Fehler zu minimieren. Das eigentliche Experiment besteht aus mehreren Elementen. Angefangen wird bei dem Personal, dass das Experiment durchführen wird. Diese haben einen genauen Uberblick über alle bisher gesammelten Daten sowie die nötige Expertise um die Experimente auch durchzuführen. Lebendige Teilnehmer eines Experiments werden Kohorte genannt, ihr Gegenpol sind die Stichproben. Die Durchführung eines Versuchs mit einer schrittweisen Veränderung der Faktoren, bis alle möglichen Faktorkombinationen abgedeckt sind, heißt Block Design. Um die vorgesehene Funktion aller Faktoren bestätigen zu können, werden sogen. Control Trials durchgeführt. Dabei wird die Performance von einem Set von Faktoren in Abwesenheit eines anderen Sets von Faktoren gemessen, um die isolierten Effekte des Sets festhalten zu können.

Die aus Experimenten erhaltenen Daten sollten auf mehr als einem Medium gespeichert sein, um den Verlust im Falle eines Ausfalls eines der Medien zu verhindern. Datenschutz sollte eine der obersten Prioritäten sein. Am besten sollten fertig bearbeitete Daten irgendwo im Internetz gespeichert werden, damit sie für jeden zugänglich sind. Dies könnte mit Hilfe einer Webseite, wie im Listing 2 passieren. Es empfiehlt sich, die Daten zu verschlüsseln und diesen Schlüssel nur an die Personen weiterzugeben, die unbedingt Zugriff auf die Daten benötigen. Werden über die schon bestehenden Speicherplätze der Daten hinaus weitere Kopien angefertigt, so muss dies unbedingt Dokumentiert werden, um unkontrollierte Verbreitung der Daten zu verhindern. Sind alle Daten einmal gespeichert, sollten diese umgehend mit Hilfe des Copyright weiter geschützt werden. In der Regel ist es sinnvoll, zu viele Daten über das Experiment gespeichert zu haben als zu wenig.

Listing 2: Die Grundlage einer HTML Seite, zum Teilen der designten Experimente

3.1.2 Experimente durchführen

Jetzt gilt es nur noch, die bereits fertig geplanten Experimente durchzuführen. Dies sollte genauestens nach Plan passieren, damit Fehler oder unerwartete Ergebnisse in den Plänen gefunden und behoben werden können. Misslungene Experimente sollten als Hilfen gesehen werden, um die Pläne zu überarbeiten und dem Erfolg einen Schritt näher zu kommen. Um eine fehlerfreie

3.1.3 Ergebnisse extrahieren

Oft können die direkten Ergebnisse eines Experiments nicht genutzt werden, um Schlussfolgerungen zu ziehen. Zuerst müssen die Resultate reduziert werden, also umgewandelt und kombiniert, damit die entstehenden Werte in Form der gewählten Performance Metrik dargestellt werden können. Wurden bis jetzt alle Richtlinien beachtet, sollten die Daten über einen simplen SQL Befehl, gezeigt im Beispiel 3 ohne weitere Probleme extrahiert werden können. Im Grunde können nur zwei Arten von Werten direkt gemessen werden: Distanzen und Zählungen. Weil die reduzierten Daten oftmals modifiziert oder korrigiert werden müssen, sollten immer die rohen und die reduzierten Ergebnisse des Experiments dokumentiert werden.

```
USE AdventureWorks2012;
       GO
       SELECT *
       FROM Production.Product
       ORDER BY Name ASC;
        -- Alternate way.
10
       USE AdventureWorks2012;
11
       GO
12
       SELECT p.*
       FROM Production. Product AS p
14
       ORDER BY Name ASC;
       GO
16
```

Listing 3: SQL Befehl, um Ergebnisse aus dem Experiment zu extrahieren

Abbildungsverzeichnis

1	Problemerkennung	-
2	Performance Kriterien	8
3	Arten von Medien	L(
B.1	Hochschullogo	2(

Listingverzeichnis

1	Loesungsimplementation Codebeispiel Java	12
2	Anzeigemoeglichkeit Experimente via HTML	1
3	SQL Befehl, zur Extraktion der Ergebnisse	15
4	Java Hello World Beispiel	19

Literatur

Bock, Peter. Getting It Right: R&D Methods for Science and Engineering. Hrsg. von Julia Bock. Academic Press, 2001.

The Scientific Method. Feb. 2021. URL: https://www.britannica.com/science/scientific-method.

Vaughn Koen Billy & Bock, Peter. DISCUSSION OF THE METHOD: Conducting the Engineer's Approach to Problem Solving. Hrsg. von Julia Bock. Oxford University Press, Inc., 2013.

Anhang

A Nachbereitung

Als allererstes, hier noch die letzte Referenz zum folgenden Listing im Anhang: 4 Die hier benutzte Arbeit entstand im Rahmen des Moduls Wissenschaftliches Arbeiten aus dem 4. Semester. Da keine Bilder oder Grafiken vorgesehen waren, habe ich ein paar eher weniger relevante eingefügt. Trotzdem hoffe ich, dass der Leseflow der Arbeit einigermaßen angenehm ist. Alle für diese Abgabe relevanten Inhalte sind gleichmäßig über die Arbeit verteilt und können über die Seite 'Hinweise' angewählt werden. Überflüssige stellen der Arbeit wurden gelöscht, um den Inhalt bündig beisammen zu halten und nicht zu dünn zu verstreuen. Deshalb könnte der Text bei genauerem lesen allerdings auch teilweise nur wenig Sinn ergeben.

```
/*
            Java Hello World example.
            public class HelloWorldExample{
              public static void main(String args[]){
11
12
                 /*
13
                 Use System.out.println() to print on console.
14
                 */
15
                 System.out.println("Hello World !");
16
              }
18
            }
20
21
22
            OUTPUT of the above given Java Hello World Example would be :
23
            Hello World !
24
25
```

Listing 4: Every java dev says 'Hello world!', but noone ever says 'How are you doing, world?'...

B Danksagungen

Hier noch die letzte Anforderung an das Dokument in Form eines Bildes von unserem Hochschullogo im Anhang.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Hochschule für angewandte Wissenschaften

Abbildung B.1: Das Logo unserer Hochschule

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst und dabei keine anderen als die angegebenen Hilfsmittel benutzt habe. Sämtliche Stellen der Arbeit, die im Wortlaut oder dem Sinn nach Publikationen oder Vorträgen anderer Autoren entnommen sind, habe ich als solche kenntlich gemacht. Die Arbeit wurde bisher weder gesamt noch in Teilen einer anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Wernigerode, den 18.08.1999

Philipp Thüring