DATA 468: Applied Stochastic Process by Dr. Zakir

Department of Mathematics University of Arizona

Email: zakir@arizona.edu

Outline

- Stochastic Process
 - ➤ Continuous-time Stochastic process
 - ➤ Discrete-time Stochastic process
- Stochastic Processes as Random Functions
- Mean Function of a Random Process
- Autocorrelation and Auto-covariance
- Supplementary reading

Random Variables

- **Random experiment**: physical situation whose outcome cannot be predicted until it is observed.
- **Random Variable:** $X : S \to R$. For every event in Ω , X is a function that maps Ω to a real number line R.

❖Consider flipping a fair coin 2 times.

 $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$

			Ω		
	Sample Space (S)	Random Variable (X)			
	HH	0		$HH \longrightarrow$	
	HT	1	Flipping the coin (H or T)	$TT \longrightarrow$	Real
	TH	2		$HT \longrightarrow$	Number
	TT	3		$TH \longrightarrow$	line
50	'	'			
	Outcome				
	'\			•	

or $\Omega = \{\omega_1, \omega_2, \cdots\}$, Event: $E = \{\omega_1, \omega_2\}$.

-infinity

+infinity

Stochastic/Random Process

- Stochastic process assigns a function of time to each outcome, a dynamic, evolving system of random variables.
- A set of random variables indexed by time $\{X_t\}$ where $t \subseteq R$, is called stochastic process or random process.

Examples:

- \triangleright Let X_t or X(t) be the temperature in Beijing at time t ∈[0,∞).
- ► Let W (t) be the thermal noise generated across a resistor in an electric circuit at time t, for $t \in [0, \infty)$.
- \triangleright Let X(t) be the stock price at time t for t∈[0, ∞).

Applied Stochastic Process, Department Of Mathematics, UA, Dr.Zakir

Discrete and continuous-time random process

♦Continuous-time: { X(t), t ∈ \mathbb{R} }, **t** is uncountable, i.e., interval on the real line, [-1, 1], [0,∞), (-∞, ∞) etc

Discrete-time: $\{X(t), t \in \mathbb{N}\}$, sequence of random variables, discrete-time random processes are sometimes referred to as random sequences.

Random Variable vs Random Process

Feature	Random Variable	Random Process
Definition	A variable whose value is subject to randomness	A collection of random variables indexed by time (or space)
Notation	X	X(t)or X(t,ω)
Input	Probability space	Probability space and time (or space index)
Output	Single random outcome	A function over time (a stochastic signal)
Examples	Outcome of a die roll	Temperature over time at a location
Application	Probability theory, statistics	Signal processing, control systems, finance

Probability Space (\Omega F P)

- \clubsuit Each random variable(X_t) is defined on a common probability space (Ω , F, P).
- \diamondsuit (i) Sample Space/State Space(Ω): which lists all possible outcomes, where an outcomes is written as ω .
- \bullet (ii) σ -algebra (**F**): A collection of subsets of Ω that define events.
 - \triangleright If some set A is in F, then so is its complement, X\A.
 - \triangleright If $A_1, A_2, A_3,...$ are in F, then so is $A=A_1\cup A_2\cup A_3\cup \cdots$.
- \Leftrightarrow (iii) **Probability Measure (P)**: A function that assigns probabilities to events in F, $P: F \to [0, 1]$.

For fixed \omega: $X(\omega_i, t)$ it is called a sample path or a sample function or a sample realization of X(t).

- (1): $X(t, \omega) = X(t)$: random process.
- (2): $X(t_0, \omega)$: random variable for fixed t_0 .
- (3): $\mathbf{X}(\mathbf{t}, \boldsymbol{\omega}_{\mathbf{0}})$: real-valued function of \mathbf{t} for fixed $\boldsymbol{\omega}_{\mathbf{0}}$.
- (4): $X(t_0, \omega_0)$ is a real number for fixed t_0 and ω_0 .

For fixed t

Properties of Random Process: mean

- A random process is described by some properties such as the **mean**, **autocorrelation**, **cross-correlation**, **auto-covariance etc**.
- ❖ For a random process $\{X(t), t \in J\}$, the **mean function** $\mu_X(t):J \to R$, is defined as $\mu_X(t)=E[X(t)]$, where at each t, X(t) is a random variable with its own expected value.
 - ❖ If X(t) is the temperature in a certain city, the mean function $\mu_{X(t)}$ might look like the function shown in the following Figure. As we see, the expected value of X(t) is lowest in the winter and highest in summer.

Example1: Mean

- ❖ You have 1000 dollars to put in an account with interest rate R, compounded annually. That is, if Xn is the value of the account at year n, then $Xn=1000(1+R)^n$, for $n=0,1, 2, \cdots$. The value of R is a random variable that is determined when you put the money in the bank, but it does not change after that. In particular, assume that R~Uniform(0.04,0.05).
- Find all possible sample functions for the random process $\{Xn, n=0,1,2,...\}$.
- ❖ For any Specific value of R=r, $Xn=1000(1+r)^n$, for r∈[0.04, 0.05], and n≥0.
- **Sample Function** of X_n is $f(n) = 1000(1+r)^n$
- Find the expected value of your account at year three ($E[X_3]=?$).

Since R~Uniform(0.04,0.05) is uniform its pdf is:

$$f_R(r) = \frac{1}{1.05 - 1.04} = 100, \ 1.04 \le n \le 1.05$$

$$\begin{split} &\mu_X\left(n\right) = & E[X_n] \\ &= & 1000 E[Y^n] \quad (where \ Y = 1 + R \sim Uniform(1.04, 1.05)) \\ &= & 1000 \int\limits_{1.04}^{1.05} 100 y^n dy \\ &= & \frac{10^5}{n+1} [y^{n+1}]_{1.04}^{1.05} \\ &= & \frac{10^5}{n+1} [(1.05)^{n+1} - (1.04)^{n+1}], \quad \text{for all } n \in \{0,1,2,3...\}. \end{split}$$

Example 2: Mean

- **♦**Let $\{X(t), t \in [0,\infty)\}$ be defined as X(t)=A+Bt, for all $t \in [0,\infty)$, A and B are independent normal N(1,1) random variables.
- \diamondsuit (1): Find all possible sample functions for this random process.
- \diamondsuit (2): Define the random variable Y=X(1). Find the PDF of Y.

Solution:

- ❖Lets A=a and B=b, then X(t)=a+bt (sample functions, t≥0).
- ❖ Y=X(1)=A+B , since A and B are independent N(1,1)=N(μ , σ^2) random variables, Y=A+B is also normal with E(Y)=E(A+B)=E(A)+E(B)=1+1=2
- Var(Y)=Var(A+B)=Var(A)+Var(B) (since A and B are independent)=1+1=2.

$$f_Y(y) = \frac{1}{\sqrt{4\pi}}e^{-\frac{(y-2)^2}{4}}$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

General expression of the Normal the pdf with normal distribution.

Example2: Mean

- \triangle Let also Z=X(2).
- ❖Find E[YZ]

 $Var(A)=E[A^2]-(E[A])^2$

 $E[A^2]=Var(A)+(E[A])^2=2$

Solution:

$$E[YZ]=E[(A+B)(A+2B)]$$

 $=E[A^2+3AB+2B^2]$

 $=E[A^2]+3E[AB]+2E[B^2]$

 $=2+3E[A]E[B]+2\cdot2$ (since A and B are independent)=9.

Auto-correlation

 \clubsuit The correlation of the random process X(t) with itself at different points in time.

$$R_X(t_1, t_2) = E[X(t_1)X(t_2)]$$

$$R_{X}(m,n) = E[X^{m}X^{n}]$$

$$= 1000E[Y^{m}Y^{n}] \text{ (where } Y=1+R\sim Uniform(1.04,1.05))}$$

$$= 10^{6} \int_{1.04}^{1.05} 100y^{m+n} dy$$

$$= \frac{10^{8}}{m+n+1} [y^{m+n+1}]_{1.04}^{1.05}$$

$$= \frac{10^{8}}{m+n+1} [(1.05)^{m+n+1} - (1.04)^{m+n+1}], \text{ for all } m,n \in \{0,1,2,3...\}.$$

Auto-covariance

 \clubsuit The covariance of the random process X(t) with itself at different points in time.

$$\begin{split} &C_X(t_1,\ t_2) = Cov(X(t_1),\ X(t_2)) = E[(X(t_1) - E[X(t_1)])\ (X(t_2) - E[X(t_2)])] \\ &=\ E[X(t_1),\ X(t_2)] - E[X(t_1)]E[X(t_2)] \end{split}$$

$$C_{X}(m,n)=R_{X}(m,n)-E[X_{m}]E[X_{n}]$$

$$= \frac{10^8}{m+n+1} [(1.05)^{m+n+1} - (1.04)^{m+n+1}]$$

$$- \frac{10^{10}}{(m+1)(n+1)} [(1.05)^{m+1} - (1.04)^{n+1}] [(1.05)^{m+1} - (1.04)^{n+1}]$$

PDF of a random process

- ❖A **PDF** describes the **likelihood** of a continuous random variable taking on a particular value.
- \clubsuit For a continuous variable X, the PDF is a function f(x) such that:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx \qquad f_{Y}(y) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2\sigma^{2}}}$$

- The PDF itself does not give probabilities directly the probability that X is in an interval is the area under the curve of f(x) over that interval.
- *Random processes are characterized by joint probability distributions, which describe the probabilities of the variables at different time points.

PDF: Example

- *Consider the random process $\{Xn, n=0,1,2,\cdots\}$, in which Xi's are i.i.d. **standard normal random variables**. Write down $f_{Xn}(x)$ for $n=0,1,2,\cdots$.
- ❖ Write down $f_{X_mX_n}(x_1, x_2)$ for m≠n, Since $X_n \sim N(0,1)$, we have

$$f_{Xn}(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \text{ for all } x \in R$$

If $m\neq n$, then X_m and X_n are independent (because of the i.i.d. assumption), so

$$f_{XmXn}(x_1, x_2) = f_{Xm}(x_1) f_{Xn}(x_2) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x_1^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{\frac{-x_2^2}{2}} = \frac{1}{2\pi} e^{\left(-\frac{x_1^2 + x_2^2}{2}\right)}$$

CDF of a Random process

❖ Consider the random process $\{X(t), t \in J\}$. For any $t_0 \in J$, $X(t_0)$ is a random variable, so we can write its CDF.

$$F_{X(t_0)}\left(x\right) = P\left(X\left(t_0\right) \le x\right) \qquad F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt, \quad \text{for } x \in R.$$

❖ If $t_1, t_2 ∈ J$, and $X(t_1)$ and $X(t_2)$, then a random process has a **family of CDFs**, one for each time t.

$$F_{X(t_1)X(t_2)}(x_1, x_2) = P(X(t_1) \le x_1, X(t_2) \le x_2) = P(X(t_1) \le x_1). P(X(t_2) \le x_2)$$

\Pi For $t_1, t_2, \dots, t_n \in J$, we can write $F_{X(t1) \ X(t2) \dots, \ X(tn)}(x_1, x_2, \dots, x_n) = P(X(t_1) \le x_1, \ X(t_2) \le x_2, \dots, \ X(t_n) \le x_n)$.

Supplementary readings: PDF, CDF & PMF

$$CDF: F(x) = \int_{-\infty}^{x} f(x)dx, \ PDF: f(x) = \frac{d}{dx}F(x)$$

Supplementary readings: Example

Let X denote the time a person waits for an elevator to arrive. Suppose the longest wait for is 2 minutes, so that the possible values of X (in minutes) are given by the interval [0,2]. Calculate the probability that a person waits less than 30 seconds for the elevator to arrive $P(0 \le X \le 0.5)$.

Supplementary readings: CDF Examples

Outcome	Probability	Cumulative Probability
2	1/36	1/36
3	2/36	3/36
4	3/36	6/36
5	4/36	10/36
6	5/36	15/36
7	6/36	21/36
8	5/36	26/36
9	4/36	30/36
10	3/36	33/36
11	2/36	35/36
12	1/36	36/36=1

Supplementary reading: Famous Probability Distributions

