Continuous Fractions

Oscar Morris

Contents

1	Introduction															1										
2	Differing values of k $2.1 k = 2 \dots \dots \dots \dots \dots \dots$																1									
	2.1	k =	= 2																							1
	2.2	<i>k</i> =	= 0																							2
	2.3	<i>k</i> <	< -	-1.																						2
	2.4	0 <	< <i>k</i>	<	-1	-	•																			2
3	Determining exact limits															3										

1 Introduction

The continuous fraction $1 + \frac{1}{1 + \frac{1}{n}}$ which can be generalised as $t_n = k + \frac{1}{t_{n-1}}$ where $k \in \mathbb{R}$. When the first 15 terms t_n where k = 1 are plotted t_n against n you get the following chart: Using the graph the observation can be made that the value of t_n converges on a specific value $\approx 1.618033988749895$ therefore it can be determined that $t_{n-1} - t_n$ approaches 0. The problems arising for high values of n is that you quickly reach the limit of floating point maths used by computers.

2 Differing values of k

2.1 k = 2

The graph of the generalised equation $t_n = k + \frac{1}{t_{n-1}}$ where k = 2 is below: From this graph a similar observation can be made as the case where k = 1 being that the value of t_n converges on a specific value ≈ 2.4142135623731 however is seems to converge to this value more quickly.

2.2 k = 0

When k = 0 the value of t_n stays constant at 1 which would be expected since having a non-zero value of k is what allows the value of t_n to converge

2.3 k < -1

Here since the value of k is given as an uncertainty we can take k=-1 and k=-2 and extrapolate from there. There is only a value for t_n where n=1 since the value of $t_1=1-1=0$ therefore every value of t_n for higher values of n will be a division by 0. For k=-2, the graph displays characteristics to both the graph where k=1 and where k=2 and is shown below: Here the graph appears similar the the graph of k=2 however it's starting value is -1. It converges on a value ≈ -2.4142135623731 which is the negative of the value that k=2 converges on

2.4 0 < k < -1

Some of the graphs of values of k between 0 and -1 are somewhat unusual however the graph of k=0.5 is below: This graph is mostly expected as it converges slower than when k=1 however the spike at n=4 is mostly unexpected, the value of $t_4=5.5$. The graph where k=-0.1 is the most unexpected however t_n seems to diverge as n increases, the graph is below:

3 Determining exact limits

Since some of these continued fractions converge there must be an exact value for t_{∞} which we can calculate. Using the continued fraction $1 + \frac{1}{1 + \frac{1}{\dots}}$ the limit is as follows: Consider the quadratic $x^2 - x - 1 = 0$, to find it's solutions we can use the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solving for x where $a=1,\,b=-1,\,c=-1$ we get the solutions $x=\frac{1+\sqrt{5}}{2}$ (the positive solution) or $x=\frac{1-\sqrt{5}}{2}$ (the negative solution). If we consider the positive value of x as Φ we can say that:

$$\Phi^2 - \Phi - 1 = 0$$

Rearranging this equation we get:

$$\Phi = 1 + \frac{1}{\Phi}$$

If we substitute Φ into the right side we get:

$$\Phi = 1 + \frac{1}{1 + \frac{1}{\Phi}}$$

If we repeat this substitution "to infinity" we get the continued fraction above. This indicates that the exact value for this continued fraction is $\frac{1+\sqrt{5}}{2}$ which bears a fairly high amount of significance as it equals the **golden ratio** which is often given the capital letter phi (Φ)