COM4511 Speech Technology: "Alternatives" to Supervised Learning

Anton Ragni

Standard supervised learning setup

- ► Not always possible
 - new channel, domain, task
 - most of 7,000 languages spoken in the world lack supervised resources

I want a train to Oxford ... uh ... I mean ... to Cambridge

- Availability and quality of transcripts may vary
 - "accurate" verbatim human annotations

I want a train to Oxford um I mean Cambridge $\,$

crowd-sourced verbatim human annotations

I want a train to Oxford uh Cambridge

non-verbatim human annotations (subtitles)

I want a train to Cambridge

automatic machine transcriptions

I wanna train to Oxford ... uh ... I meant Cambridge

no transcriptions

Inter-Annotator Agreement

- Improve reliability of "annotation" using multiple "annotators"
 - non-trivial with sequence data
- Need to know how to deal with multiple annotations
 - options?

Audio Availability

- Availability and quality of audio may vary
 - quantity: zero, limited, large quantities
 - quality: matched, mismatched (different domain, channel)
- Example:
 - ▶ 8 kHz training audio, 16 kHz test audio and vice versa
 - one gender training audio, another gender test audio
 - read training audio, spontaneous test audio
 - ▶ 3 hours of training data, 1000000 hours of training data (total and per day)
 - given what you have learnt so far what is the best course of actions?

Lightly-Supervised Training

- Subtitles (closed-captions) not suitable for acoustic modelling (why?)
 - transcribe training audio with a biased language model

$$P_{\text{bias}}(w_l|\mathbf{w}_{l-1:l-n+1}) = \lambda P_{\text{sub}}(w_l|\mathbf{w}_{l-1:l-n+1}) + (1-\lambda)P_{\text{back}}(w_l|\mathbf{w}_{l-1:l-n+1})$$

- assumes acoustic model is available!
- Use portion of derived transcripts for supervised training

)	
	SPANDH

												_	\overline{C}	ode	D	escri	ptior	 1	SP	ND
CC		—		ΑI	V	EL	AB(DRA	TE	ME	ΕAL		_				<u> </u>			
Hyp)	BU	Γ	DIDI	Ν'Τ	EL	AB(DRA	TE	_	_			5	Sı	ıbstit	utio	n		
Erro		ī		ς			_	_		Г)			D		Delet	ion			
		(2)	M/or	d-Leve	l Alia	nmon	+ (10)	20/- 01	ror)			-		1		Inser	tion			
		(a)	VVOI	u-Leve	a Ang	Jiiiieii	1 (10	J /0 EI	101)					(c) Erro	or type	es			
CC	_	_	Α	N	_	_	Ε	L	Α	В	О	R	Α	Т	Е	М	Е	Α	L	
Нур	D	- 1	D	Ν	,	Т	Ε	L	Α	В	Ο	R	Α	Т	Ε	_	_	_	_	
Error	- [I	S	-	ı	I	_	_	_	_	_	_	_	_	_	D	D	D	D	

▶ Use Levenshtein (edit) distance to measure disagreement between CC and hypotheses

(b) Grapheme-Level Alignment (60% error)

Error Rate (%) =
$$\frac{\mathsf{S} + \mathsf{D} + \mathsf{I}}{\mathsf{N}} \cdot 100\%$$

- possible to compute at different levels (words, graphemes, phonemes)
- discuss different tradeoffs

Example: English Broadcast News subtitles*

Туре	Data (hrs)	WER (%)		
Supervised	143	13.8		
Lightly supervised	513	13.0		
Lightly supervised	743	12.4		

- ▶ Use large quantity of subtitled audio to improve broadcast news transcription
 - external, seed, acoustic model trained on matched domain broadcast news audio

^{*} H. Y. Chan and P. C. Woodland, "Improving broadcast news transcription by lightly supervised discriminative training". Proc. ICASSP. 2004.

Unsupervised Training

- Create biased language model using unsupervised methods
 - iterative transcription refinement
 - 1. initialise interpolation weights $oldsymbol{\lambda}^{(0)}$
 - 2. transcribe training audio
 - 3. obtain new interpolation weights $\lambda^{(1)}$ and repeat till convergence
 - maximise confidence score
- Use portion of derived transcripts for supervised training

Data Selection Strategies

- Use confidence scores to select audio with reliable transcripts
 - ▶ hard schemes: discard any file with average confidence below set threshold
 - soft schemes: use all files weighing any accumulated statistics with confidence scores
- Options available how much information to use
 - one path: limited ability to rectify transcription errors
 - multiple paths: enables mitigating transcription errors

Language	Unsupervised Data (WER, %)						
Language	_	+Youtube					
Swahili	38.0	36.5	30.8				
Tagalog	36.9	33.8^{\dagger}	_				
Somali	57.9	54.3	50.8				
Bulgarian	26.5		18.0				
Lithuanian	27.5 —		21.4				
US IARPA MATERIAL programme 2018—							

- ▶ Use large quantity of web scrapped data to improve transcription accuracy
 - external narrow-band acoustic model
 - billions of words of web text data for language modelling
 - thousands hours of radio news and Youtube
- Different impact for different languages
 - discuss possible reasons

Semi-Supervised Training

- Initial supervised acoustic model
 - produces transcripts for unsupervised data
 - data quantity required varies
- Semi-supervised acoustic model
 - train on merged supervised and unsupervised data
 - alternatively, use MAP adaptation
- Forms of MAP adaptation
 - ► GMM-HMM:

$$\boldsymbol{\mu}_{j,m}^{\text{map}} = \frac{\sum_{t=1}^{T} \gamma_{t,j,m}^{\text{uns}} \boldsymbol{o}_{t}^{\text{sup}} + \tau \boldsymbol{\mu}_{j,m}^{\text{uns}}}{\sum_{t=1}^{T} \gamma_{t,j,m}^{\text{uns}} + \tau}$$

- compare to count smoothing (n-grams)
- ► NN-HMM: fine-tune neural network weights

Example: Million Hours of Far-Field Data for Amazon Alexa

Туре	Data (hrs)	WERR (%)
Supervised	7,000	0
Semi-supervised	100,000	~ 8
Semi-supervised	1,000,000	\sim 13

- Use vast data quantities to improve Amazon Alexa transcription accuracy
 - ▶ approximately 10% relative WER reduction with 100,000 hours
 - ▶ diminishing gains past the first 100,000 hours
- $S.\ H.\ K.\ Parthasarathi,\ N.\ Strom,\ "Lessons\ from\ building\ acoustic\ models\ with\ a\ million\ hours\ of\ speech",$

- ► This lecture examined alternatives to supervised learning
 - varying transcript quality
 - varying audio quality and quantity
- ► Focus on approximate transcription schemes
 - lightly-supervised, semi-supervised and unsupervised learning
 - vary in terms of additionally available data
- Next lectures will look at different aspects of speech technology
 - speech synthesis
 - spoken dialogue systems