WHAT IS CLAIMED IS:

1	1. A method for fitting a set of upper and lower teeth in a masticatory			
2	system of a patient, comprising:			
3	modeling a set of teeth in a predetermined position; and			
4	generating a plurality of one or more appliances having cavities, said			
5	appliances having cavities and wherein the cavities of successive ones of the plurality			
6	appliances have different geometries shaped to receive and resiliently reposition teeth from			
7	one arrangement to a successive arrangement.			
1	2. A method for fitting a set of upper and lower teeth in a masticatory			
2	system of a patient, comprising:			
3	modeling a set of teeth in three or more predetermined positions; and			
4	generating an appliance having cavities for each of the three or more			
	predetermined positions, said appliance having cavities and wherein the cavities of successive			
5				
6	ones of the plurality appliances have different geometries shaped to receive and resiliently			
7	reposition teeth from one arrangement to a successive arrangement.			
1	3. A method for fitting a set of upper and lower teeth in a masticatory			
2	system of a patient, comprising:			
3	modeling a set of teeth using three or more predetermined molds or casts; and			
4	generating an appliance having cavities for each of the three or more molds or			
5	casts, said appliance having cavities and wherein the cavities of successive ones of the			
6	plurality appliances have different geometries shaped to receive and resiliently reposition			
7	teeth from one arrangement to a successive arrangement.			
1	4. The method of any of claims 1-3, wherein the modeling the set of teeth			
2	comprises selecting one or more arch forms specifying the ideal set of teeth.			
1	5. The method of claim 4, wherein the masticatory system includes jaws			
2	and wherein generating includes:			
3	registering a model of the upper and lower teeth with a model of the			
4	masticatory system;			
5	simulating the motion of the jaws to generate contact data between the upper			
6	and lower teeth; and			
7	placing a tooth in a final position based on the contact data.			

The method of claim 5, wherein the model is registered using X-ray 6. 1 2 data. 7. The method of claim 5, wherein the model is registered using 1 2 computed tomography data. 8. The method of claim 5, wherein the model is registered using data 1 2 associated with a mechanical model. The method of claim 5, wherein the simulating step further comprises 1 9. 2 applying kinematics to the model of the teeth. 10. The method of claim 5, wherein the simulating step further comprises 1 2 applying a constrained motion to the model of the tooth. 11. The method of claim 5, wherein the placing step is based on a measure 1 2 of undesirability to the contacts. The method of claim 11, further comprising optimizing the position of 1 12. the tooth according to the measure of undesirability. 2 The method of claim 12, further comprising minimizing the measure of 13. 1 2 undesirability. The method of claim 13, wherein the measure of undesirability is a 14. 1 function of one or more of Peer Assessment Rating (PAR) metrics, distance-based metrics 2 and shape-based metrics. 3 1 15. The method of claim 5, wherein the simulating step includes providing 2 a library of motions. The method of claim 15, wherein the library of motions includes a 1 16. 2 protrusive motion. The method of claim 15, wherein the library of motions includes a 1 17. 2 lateral motion.

I		18.	The method of claim 15, wherein the library of motions includes took	
2	guided motions.			
1		19.	The method of claim 5, wherein the simulating step includes applying	
2	physical forces to one jaw.			
1		20.	The method of claim 5, wherein the placing step further includes	
2	updating the computer representation of the masticatory system with new patient data.			
1		21.	The method of claim 20, wherein the patient has a first teeth model,	
2	further comprising:			
3	scanning the teeth of the patient to generate a second teeth model;			
4	matching the second teeth model with the first teeth model;			
5	applying a final position transform to the second teeth model; and			
6	adjusting the position of teeth in the second model based on new information			
1		22.	The method of claim 21, wherein the matching step compares	
2	correspondences between the first and second teeth models.			
1		23.	The method of claim 22, wherein the correspondences include feature	
2	correspondence	ces.		
1		24.	The method of claim 21, wherein the new information includes	
2	information from a new prescription.			