

4

# Pemodelan Basis Data dengan EER

(PART 2)

**CSF2600700 - BASIS DATA** 





# Yang Sudah Dipelajari

- 1. Latar Belakang
- 2. Superclass/Subclass Relationship
  - 3. Spesialisasi dan Generalisasi



### Outline

- 1. Latar Belakang
- 2. Superclass/Subclass Relationship
  - 3. Spesialisasi dan Generalisasi
    - 4. Hierarchy dan Lattice
  - 5. Pemodelan dengan Categories
    - 6. Higher Degree Relationship
- 7. Kapan Kita Menggunakan EER?



## Hierarchy dan Lattice

### Hierarchy

Satu subclass hanya berpartisipasi pada satu class/subclass relationship (satu subclass hanya memiliki satu superclass saja)

Contoh: VEHICLE dengan TRUCK dan CAR



#### Lattice

→ Satu subclass dapat berpastisipasi pada lebih dari satu class/subclass relationship

#### Contoh:

seorang Engineering Manager, haruslah seorang Engineer dan juga seorang Manajer

→ Mengandung konsep multiple inheritance

### Contoh Lattice (1)



### Contoh Lattice (2)



### Outline

- 1. Latar Belakang
- 2. Superclass/Subclass Relationship
  - 3. Spesialisasi dan Generalisasi
    - 4. Hierarchy dan Lattice
  - 5. Pemodelan dengan Categories
    - 6. Higher Degree Relationship
- 7. Kapan Kita Menggunakan EER?



### Union Type dengan Menggunakan Category



### Perbedaan Category dengan Lattice

Figure 4.6
A specialization lattice with shared subclass ENGINEERING\_MANAGER.

EMPLOYEE

SECRETARY TECHNICIAN ENGINEER MANAGER HOURLY\_EMPLOYEE

SALARIED\_EMPLOYEE

Lattice

- → Engineering\_Manager harus ada pada semua superclass: Manager, Engineer, Salaried\_Employee
- Engineering\_Manager: mewarisi semua attribute dari superclasses



- → Owner harus ada pada **salah satu** dari ketiga superclasses
- Owner mewarisi attribute tertentu saja, tergantung dari superclass-nya

# **Partial Category**



#### Partial category:

dapat berpartisipasi ataupun tidak pada relationship

### **Total Category**



Figure 4.9 Total and partial categories. (a) Partial category ACCOUNT\_HOLDER that is a subset of the union of two entity types COMPANY and PERSON. (b) Total category PROPERTY and a similar generalization.

# Harus merupakan salah satu superclasses

**Contoh**: A building and a lot must be a member of PROPERTY

Dapat direpresentasikan sebagai generalization (d), khususnya jika kemiripannya banyak

#### 5. Pemodelan dengan Categories

Contoh Skema EER untuk Basis Data Universitas



### Outline

- 1. Latar Belakang
- 2. Superclass/Subclass Relationship
  - 3. Spesialisasi dan Generalisasi
    - 4. Hierarchy dan Lattice
  - 5. Pemodelan dengan Categories
    - 6. Higher Degree Relationship
  - 7. Kapan Kita Menggunakan EER?



### **Higher Degree Relationship** (1)



## **Higher Degree Relationship** (2)

Higher degree relationhsip tampak kompleks, bagaimana menyederhanakannya?

# Opsi 1. Higher degree relationship sebagai weak entity

- Merepresentasikan higher degree relationship sebagai weak entity type yang berhubungan ke owner entity types
- Mengandung binary (identifying) relationship

# Opsi 2. Higher degree relationship sebagai identifying relationship type

→ Sebuah ternary relationship type dengan sebuah weak entity type dan dua buah owner entity type

## Ternary Relationship sebagai Weak Entity Type



### Ternary Relationship sebagai Identifying Relationship Type



Figure 3.19
A weak entity type
INTERVIEW with a
ternary identifying
relationship type.

### Outline

- 1. Latar Belakang
- 2. Superclass/Subclass Relationship
  - 3. Spesialisasi dan Generalisasi
    - 4. Hierarchy dan Lattice
  - 5. Pemodelan dengan Categories
    - 6. Higher Degree Relationship
  - 7. Kapan Kita Menggunakan EER?



## Kapan Kita Menggunakan Model EER? (1)

- → Sebagian besar proyek basis data tidak perlu fitur-fitur model berorientasi obyek yang ada pada EER
- → Tujuan pemodelan data konseptual adalah untuk menghasilkan sebuah model yang sederhana dan mudah dimengerti
- → Jangan menggunakan class/subclass relationship yang kompleks jika tidak diperlukan
- → Penggunaan model EER menawarkan keuntungan dibandingkan model ER jika digunakan pada kondisi yang tepat



### Kapan Kita Menggunakan Model EER? (2)

Model EER perlu digunakan jika domain yang dimodelkan secara alamiah bersifat *object-oriented, inheritance* akan mereduksi kompleksitas perancangan

#### Gunakan EER pada situasi:

- → Ketika penggunaan attribute inheritance dapat mereduksi penggunaan null pada suatu single entity relation (yang mengandung multiple subclasses)
- → Subclass dapat digunakan untuk secara eksplisit memodelkan dan menamai subset dari entity yang berpartisipasi pada relationship-nya sendiri (dimana subclass lain dalam superclass yang sama tidak berpartisipasi pada relationship tersebut)



## **Alternative Diagrammatic Notations**

#### Figure A.1

Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displaying attributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations for displaying specialization/generalization.











