

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM  
Internationales Büro



INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE  
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |                                                                                                                                                                                                   |                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Internationale Patentklassifikation <sup>6</sup> :<br><b>C08F 8/30, C08K 5/17, C08J 5/04, C09J 133/06</b>                                                                                                                                                                                                                                                                                                                                                                                                                   |  | A1                                                                                                                                                                                                | (11) Internationale Veröffentlichungsnummer: <b>WO 97/45461</b><br><br>(43) Internationales Veröffentlichungsdatum: <b>4. Dezember 1997 (04.12.97)</b> |
| (21) Internationales Aktenzeichen: <b>PCT/EP97/02796</b><br><br>(22) Internationales Anmeldedatum: <b>28. Mai 1997 (28.05.97)</b>                                                                                                                                                                                                                                                                                                                                                                                                |  | (81) Bestimmungsstaaten: AU, BR, CA, CN, JP, KR, MX, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).                                                |                                                                                                                                                        |
| (30) Prioritätsdaten:<br><b>196 21 573.0 29. Mai 1996 (29.05.96) DE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | Veröffentlicht<br><i>Mit internationalem Recherchenbericht.<br/>Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i> |                                                                                                                                                        |
| (71) Anmelder ( <i>für alle Bestimmungsstaaten ausser US</i> ): <b>BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).</b>                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                                                                                                                                                   |                                                                                                                                                        |
| (72) Erfinder; und<br>(75) Erfinder/Anmelder ( <i>nur für US</i> ): <b>RECK, Bernd [DE/DE]; Beim Bergtor 14, D-67269 Grünstadt (DE). WISTUBA, Eckehardt [DE/DE]; Im Obergarten 7, D-67098 Bad Dürkheim (DE). BECKERLE, Wilhelm, Friedrich [DE/DE]; Beethovenstrasse 20 1/2, D-67240 Bobenheim-Roxheim (DE). MOHR, Jürgen [DE/DE]; Hochgewanne 48, D-67269 Grünstadt (DE). KISTENMACHER, Axel [DE/DE]; Grünerstrasse 14, D-67061 Ludwigshafen (DE). ROSEN, Joachim [DE/DE]; Richard-Wagner-Strasse 55, D-68165 Mannheim (DE).</b> |  |                                                                                                                                                                                                   |                                                                                                                                                        |
| (74) Anwalt: <b>REITSTÖTTER, KINZEBACH &amp; PARTNER; Postfach 86 06 49, D-81633 München (DE).</b>                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                                                                                                                                                   |                                                                                                                                                        |
| (54) Title: <b>THERMOSETTING, AQUEOUS COMPOSITIONS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |                                                                                                                                                                                                   |                                                                                                                                                        |
| (54) Bezeichnung: <b>THERMISCH HÄRTBARE, WÄSSRIGE ZUSAMMENSETZUNGEN</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                                                                                                   |                                                                                                                                                        |
| (57) Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |                                                                                                                                                                                                   |                                                                                                                                                        |
| <p>The present invention relates to thermosetting mixtures consisting of hydroxyalkylated polyamines and polycarboxylic acids. The compositions do not contain formaldehyde and can be used, in particular, as a binding agent to produce moulded structures.</p>                                                                                                                                                                                                                                                                |  |                                                                                                                                                                                                   |                                                                                                                                                        |
| (57) Zusammenfassung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |                                                                                                                                                                                                   |                                                                                                                                                        |
| <p>Die vorliegende Erfindung betrifft thermisch härtbare Mischungen aus hydroxyalkylierten Polyaminen und Polycarbonsäuren. Die Zusammensetzungen sind formaldehydfrei und insbesondere brauchbar als Bindemittel zur Herstellung von Formkörpern.</p>                                                                                                                                                                                                                                                                           |  |                                                                                                                                                                                                   |                                                                                                                                                        |

**Thermisch härtbare, wässrige Zusammensetzungen****Beschreibung****5**

Die vorliegende Erfindung betrifft thermisch härtbare, wässrige Zusammensetzungen aus hydroxyalkylierten Polyaminen und Polycarbonsäuren sowie deren Verwendung.

- 10 Die Verfestigung von flächenförmigen Fasergebilden, beispielsweise Faservliesen, Formkörpern wie Spanplatten, etc. erfolgt häufig auf chemischen Weg unter Verwendung eines polymeren Bindemittels. Zur Erhöhung der Festigkeit, insbesondere der Naß- und Wärmestandfestigkeit, werden vielfach Bindemittel eingesetzt.  
15 welche Formaldehyd abspaltende Vernetzer enthalten. Damit besteht aber die Gefahr von Formaldehydemissionen.

Zur Vermeidung von Formaldehydemissionen wurden bereits zahlreichen Alternativen zu den bisher bekannten Bindemitteln vorgeschlagen. So sind aus der US-A-4,076,917 Bindemittel bekannt,  
20 welche Carbonsäure- oder Carbonsäureanhydrid-haltige Polymerisate und  $\beta$ -Hydroxyalkylamide als Vernetzer enthalten. Das molare Verhältnis von Carboxylgruppen zu Hydroxylgruppen beträgt bevorzugt 1:1. Nachteilig ist die relativ aufwendige Herstellung der  
25  $\beta$ -Hydroxyalkylamide.

Aus der EP-A-445 578 sind Platten aus feinteiligen Materialien, wie beispielsweise Glasfasern bekannt, in denen Mischungen aus hochmolekularen Polycarbonsäuren und mehrwertigen Alkoholen,  
30 Alkanolaminen oder mehrwertigen Aminen als Bindemittel fungieren. Als hochmolekulare Polycarbonsäuren werden Polyacrylsäure, Copolymeren aus Methylmethacrylat/n-Butylacrylat/Methacrylsäure und aus Methylmethacrylat/Methacrylsäure beschrieben. Als mehrwertige Alkohole bzw. Alkanolamine werden 2-Hydroxymethylbutan-1,4-diol,  
35 Trimethylolpropan, Glycerin, Poly(methylmethacrylat-co-hydroxypropylacrylat), Diethanolamin und Triethanolamin eingesetzt.

Aus der EP-A-583 086 sind formaldehydfreie, wässrige Bindemittel zur Herstellung von Faservliesen, insbesondere Glasfaservliesen,  
40 bekannt. Die Bindemittel enthalten eine Polycarbonsäure mit mindestens zwei Carbonsäuregruppen und gegebenenfalls auch Anhydridgruppen. Verwendung findet insbesondere Polyacrylsäure. Das Bindemittel enthält weiterhin ein Polyol, beispielsweise Glycerin, Bis-[N,N-Di( $\beta$ -hydroxyethyl)adipamid, Pentaerythrit, Diethenglykol, Ethylenglykol, Gluconsäure,  $\beta$ -D-Lactose, Sucrose, Polyvinylalkohol, Diisopropanolamin, 2-(2-Aminoethylamino)ethanol, Triethanolamin, Tris(hydroxymethylamino)methan und Diethanolamin.

Diese Bindemittel benötigen einen phosphorhaltigen Reaktionsbeschleuniger, um ausreichende Festigkeiten der Glasfaservliese zu erreichen. Es wird darauf hingewiesen, daß auf die Anwesenheit eines derartigen Reaktionsbeschleunigers nur verzichtet werden kann, wenn ein hochreaktives Polyol eingesetzt wird. Als hochreaktive Polyole werden die  $\beta$ -Hydroxyalkylamide genannt.

Die EP-A-651 088 beschreibt entsprechende Bindemittel für Substrate aus Cellulosefaser. Diese Bindemittel enthalten zwingend einen phosphorhaltigen Reaktionsbeschleuniger.

Die EP-A-672 920 beschreibt formaldehydfreie Binde-, Imprägnier- oder Beschichtungsmittel, die ein Polymerisat, welches zu 2 bis 100 Gew.-% aus einer ethylenisch ungesättigten Säure oder einem Säureanhydrid als Comonomer aufgebaut ist und mindestens ein Polyol enthalten. Bei den Polyolen handelt es sich um substituierte Triazin-, Triazintrion-, Benzol- oder Cyclohexylderivate, wobei die Polyolreste sich stets in 1,3,5-Position der erwähnten Ringe befinden. Trotz einer hohen Trocknungstemperatur werden mit diesen Bindemitteln auf Glasfaservliesen nur geringe Naßreißfestigkeiten erzielt. Im Rahmen von Vergleichsversuchen wurden auch aminhaltige Vernetzungsmittel und überwiegend linear aufgebaute Polyole getestet. Es wird darauf hingewiesen, daß aminhaltige Vernetzungsmittel flokkulierend wirken und daß die überwiegend linear aufgebauten Polyole zu schwächerer Vernetzung führen als die cyclischen Polyole.

Die DE-A-22 14 450 beschreibt ein Copolymerisat, das aus 80 bis 99 Gew.-% Ethylen und 1 bis 20 Gew.-% Maleinsäureanhydrid aufgebaut ist. Das Copolymerisat wird, zusammen mit einem Vernetzungsmittel, in Pulverform oder in Dispersion in einem wässrigen Medium, zur Oberflächenbeschichtung verwendet. Als Vernetzungsmittel wird ein aminogruppenhaltiger Polyalkohol verwendet. Um eine Vernetzung zu bewirken, muß jedoch auf bis zu 300°C erhitzt werden.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, formaldehydfreie Zusammensetzungen zur Verfügung zu stellen, die ein rasches Härten bei niedriger Temperatur erlauben und dem Substrat gute mechanische Eigenschaften verleihen.

Überraschenderweise wurde nun gefunden, daß diese Aufgabe gelöst wird, wenn man Polycarbonsäuren zusammen mit aliphatischen Verbindungen einsetzt, die mindestens zwei mit Hydroxyalkylgruppen substituierte Aminogruppen enthalten.

3

Gegenstand der vorliegenden Erfindung sind daher thermisch härtbare, wässrige Zusammensetzungen, enthaltend

- A) mindestens eine wasserlösliche, lineare oder verzweigte aliphatische Verbindung, die pro Molekül wenigstens zwei funktionelle Aminogruppen vom Typ (a) oder vom Typ (b)



10

worin R für Hydroxyalkyl steht und R' für Alkyl steht, enthalten und

- 15 B) ein durch radikalische Polymerisation erhältliches Polymerisat, das zu 5 bis 100 Gew.-% aus einer ethylenisch ungesättigten Mono- oder Dicarbonsäure aufgebaut ist.

Vorzugsweise umfaßt die Verbindung (A) wenigstens 5 Hydroxyalkylgruppen.

20

im Rahmen der vorliegenden Erfindung bedeutet:

Alkyl eine geradkettige oder verzweigte Alkylgruppe, vorzugsweise eine C<sub>1</sub>-C<sub>12</sub>-Alkylgruppe und insbesondere eine C<sub>1</sub>-C<sub>6</sub>-Alkylgruppe.  
25 Beispiele für Alkylgruppen sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sek-Butyl, iso-Butyl, t-Butyl, n-Pentyl, n-Hexyl, 2-Ethylhexyl, n-Decyl und n-Dodecyl.

Hydroxyalkyl eine geradkettige oder verzweigte Alkylgruppe, die  
30 mindestens eine Hydroxygruppe aufweist. Vorzugsweise weist die  
Hydroxyalkylgruppe eine Hydroxygruppe auf, die insbesondere end-  
ständig gebunden ist. Vorzugsweise besitzt der Alkylrest der  
Hydroxyalkylgruppe die gleichen Bedeutungen wie oben für Alkyl  
angegeben. Bevorzugt sind die 3-Hydroxypropylgruppe, die 2-Hydro-  
35 xypropylgruppe und insbesondere die 2-Hydroxyethylgruppe.

Cycloalkyl eine C<sub>3</sub>-C<sub>7</sub>-Cycloalkylgruppe und insbesondere die Cyclopentyl- oder Cyclohexylgruppe.

40 Alkylen eine geradkettige oder verzweigte Alkylengruppe, vorzugsweise eine C<sub>2</sub>-C<sub>12</sub>-Alkylengruppe und insbesondere eine C<sub>2</sub>-C<sub>8</sub>-Alkylengruppe.

Bei der in den erfundungsgemäßen Zusammensetzungen zur Anwendung  
45 kommenden Komponente (A) handelt es sich vorzugsweise um minde-  
stens eine Verbindung der Formel I

4



5 worin

- A für C<sub>2</sub>-C<sub>18</sub>-Alkylen steht, das gegebenenfalls substituiert ist durch ein oder mehrere Gruppen, die unabhängig voneinander ausgewählt sind unter Alkyl, Hydroxyalkyl, Cycloalkyl, OH und NR<sup>6</sup>R<sup>7</sup>, wobei R<sup>6</sup> und R<sup>7</sup> unabhängig voneinander für H, Hydroxyalkyl oder Alkyl stehen,  
 10 und das gegebenenfalls unterbrochen ist durch ein oder mehrere Sauerstoffatome und/oder NR<sup>5</sup>-Gruppen, wobei R<sup>5</sup> für H, Hydroxyalkyl, (CH<sub>2</sub>)<sub>n</sub>NR<sup>6</sup>R<sup>7</sup>, wobei n für 2 bis 5 steht und R<sup>6</sup> und R<sup>7</sup> die oben angegebenen Bedeutungen besitzen, oder Alkyl,  
 15 das seinerseits durch ein oder mehrere NR<sup>5</sup>-Gruppen, wobei R<sup>5</sup> die oben angegebenen Bedeutungen besitzt, unterbrochen und/ oder durch ein oder mehrere NR<sup>6</sup>R<sup>7</sup>-Gruppen substituiert ist, wobei R<sup>6</sup> und R<sup>7</sup> die oben angegebenen Bedeutungen besitzen, steht;  
 20 oder A für einen Rest der Formel steht:



25

worin

- o, q und s unabhängig voneinander für 0 oder eine ganze Zahl von 1 bis 6 stehen,  
 30 p und r unabhängig voneinander für 1 oder 2 stehen und t für 0,1 oder 2 steht,  
 wobei die cycloaliphatischen Reste auch durch 1, 2 oder 3 Alkylreste substituiert sein können und  
 35 R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für H, Hydroxyalkyl, Alkyl oder Cycloalkyl stehen, wobei die Verbindungen pro Molekül mindestens zwei, vorzugsweise mindestens drei Hydroxyalkylgruppen aufweisen.

40 Als Komponente (A) besonders bevorzugt sind:

(1) Verbindungen der Formel Ia



45

worin

5

- A<sub>1</sub> für C<sub>2</sub>-C<sub>12</sub>-Alkylen steht, das gegebenenfalls durch mindestens eine Alkylgruppe und/oder mindestens eine NR<sup>6</sup>R<sup>7</sup>-Gruppe substituiert ist, wobei R<sup>6</sup> und R<sup>7</sup> unabhängig voneinander für Alkyl oder Hydroxyalkyl stehen und  
 5 R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für Hydroxyalkyl oder H stehen oder einer der Reste R<sup>1</sup> und R<sup>2</sup> und/oder einer der Reste R<sup>3</sup> und R<sup>4</sup> für Alkyl oder Cycloalkyl steht.

Besonders brauchbare Verbindungen dieses Typs sind die Verbindungen der folgenden Formeln:



worin x für 2 bis 12, insbesondere 2, 3, 6, 8, 10 oder 12 steht.



45 Verbindungen der Formel Ia sind auch die Aminale der Formel



## (2) Verbindungen der Formel Ib



worin

A<sub>2</sub> für C<sub>2</sub>-C<sub>8</sub>-Alkylen steht, das durch mindestens eine NR<sup>5</sup>-Gruppe unterbrochen ist, wobei R<sup>5</sup> (oder die Reste R<sup>5</sup> unabhängig voneinander) für Hydroxyalkyl oder Alkyl steht

(stehen) und  
R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für Hydroxyalkyl oder  
H stehen.

25 Vorzugsweise ist der Rest A<sub>2</sub> durch eine oder zwei Gruppen NR<sup>5</sup> unterbrochen. Besonders brauchbare Verbindungen dieses Typs sind die Verbindungen der folgenden Formeln:

30

33

40

3



### (3) Verbindungen der Formel Ic:



worin

30 A<sub>3</sub> für C<sub>2</sub>-C<sub>8</sub>-Alkylen steht, das durch mindestens eine NR<sup>5</sup>-Gruppe unterbrochen ist, wobei R<sup>5</sup> für H, Hydroxyalkyl oder CH<sub>2</sub>CH<sub>2</sub>NR<sup>6</sup>R<sup>7</sup> steht,

$R^1$ ,  $R^2$ ,  $R^3$  und  $R^4$  unabhängig voneinander für Alkyl stehen, das gegebenenfalls durch mindestens eine  $NR^5$ -Gruppe unterbrochen und/oder durch mindestens eine  $NR^6R^7$ -Gruppe substituiert ist.

R<sup>5</sup> für H, Hydroxyalkyl oder -R<sup>8</sup>NR<sup>6</sup>R<sup>7</sup> steht und R<sup>6</sup> und R<sup>7</sup> unabhängig voneinander für H, Hydroxyalkyl oder -R<sup>8</sup>NR<sup>6</sup>R<sup>7</sup> stehen,

40 R<sup>8</sup> für einen Ethylen- oder Propylenrest steht,  
wobei (durchschnittlich) wenigstens 30%, insbesondere > 60%  
und bevorzugt > 80% der (hydroxyalkylierbaren) N-Atome eine  
Hydroxyalkylgruppe tragen.

45 Vorzugsweise ist die C<sub>2</sub>-C<sub>8</sub>-Alkylengruppe durch mindestens zwei Gruppen NR<sup>5</sup> unterbrochen. Besonders brauchbare Verbindungen dieses Typs sind Umsetzungsprodukte von Ethylenoxid mit Polyethylenimi-

## 8

nen verschiedener Molekulargewichte mit mehreren Strukturelementen  $\text{NR}^6\text{R}^7$  und  $\text{NR}^5$ . Brauchbare Polyethylenimine sind solche, deren gewichtsmittleres Molekulargewicht im Bereich von 400 bis 2 000 000 liegt. Die nachfolgende schematische Formel soll die Verbindung dieses Typs erläutern:



worin

$\text{R}^5$  für H, Hydroxyethyl oder  $-\text{R}^8\text{NR}^6\text{R}^7$  steht und  $\text{R}^6$  und  $\text{R}^7$  für H, Hydroxyethyl oder  $-\text{R}^8\text{NR}^6\text{R}^7$  und  $\text{R}^8$  für  $(\text{CH}_2)_2$  steht, wobei im Mittel > 40%, insbesondere > 60% und besonders bevorzugt > 80% der ethoxilierbaren NH-Funktionen des Polyethylenimins mit Ethylenoxid umgesetzt sind.

25 (4) Verbindungen der Formel Ie



30 worin

$\text{A}_5$  für C<sub>6</sub>-C<sub>18</sub>-Alkylen steht, das durch mindestens eine  $\text{NR}^5$ -Gruppe unterbrochen ist, wobei  $\text{R}^5$  für  $(\text{CH}_2)_n\text{NR}^6\text{R}^7$  oder Alkyl steht, das gegebenenfalls durch wenigstens eine  $\text{NR}^5$ -Gruppe, worin  $\text{R}^5$  für  $(\text{CH}_2)_n\text{NR}^6\text{R}^7$  oder Alkyl steht, unterbrochen und/oder durch mindestens eine  $\text{NR}^6\text{R}^7$ -Gruppe substituiert ist,  
 $n$  für 2 oder 3 steht und  
 $\text{R}^1$ ,  $\text{R}^2$ ,  $\text{R}^3$ ,  $\text{R}^4$ ,  $\text{R}^6$  und  $\text{R}^7$  unabhängig voneinander für Hydroxyalkyl oder H stehen.

40 Besonders brauchbare Verbindungen dieses Typs sind Polyamine der Formeln:



## (5) Verbindungen der Formel If



worin

45 A<sub>6</sub> für C<sub>2</sub>-C<sub>12</sub>-Alkylen steht, das durch mindestens ein Sauerstoffatom unterbrochen ist und

10

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für Hydroxyalkyl oder H stehen.

Vorzugsweise ist die Alkylenkette durch 1, 2 oder 3 Sauerstoffatome unterbrochen. Besonders brauchbare Verbindungen dieses Typs sind die Verbindungen folgender Formeln:



(6) Verbindungen der Formel Ig.

35



40

worin

o, q und s unabhängig voneinander für 0 oder eine ganze Zahl im Bereich von 1 bis 6 stehen;

45 p und r unabhängig voneinander für 1 oder 2 stehen und t für 0,1 oder 2 steht,

## 11

wobei die cycloaliphatischen Ringe auch durch 1, 2 oder 3 Alkylreste substituiert sein können, und R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für Hydroxyalkyl oder H stehen.

5

Besonders brauchbare Verbindungen dieses Typs sind



(7) Polyalkanolamine, die erhältlich sind durch Kondensation von  
25 Di- oder Trialkanolaminen mit sich selbst oder untereinander,  
gegebenenfalls in Gegenwart von ein- bzw. mehrwertigen Alko-  
holen oder ein- bzw. mehrwertigen Aminen.

Ein Beispiel für derartige oligomere oder polymere Verbindungen  
30 ist das aus Triethanol hergestellte Kondensationsprodukt, das  
idealisiert durch folgende schematische Formel wiedergegeben  
wird:



Die Verbindungen der Formeln Ia, Ib (ausgenommen die erwähnten  
45 Aminale), Ic, Id, Ie, If und Ig können durch Umsetzung der ent-  
sprechenden Polyamine mit Alkylenoxiden hergestellt werden.

## 12

Die Umsetzung von Aminen mit Alkylenoxiden, insbesondere Ethylenoxid und Propylenoxid, zu den entsprechenden Alkanolaminen ist im Prinzip bekannt. Hierzu werden die Amine in Anwesenheit eines Protonendonors - im allgemeinen Wasser - mit den Alkylenoxiden, vorzugsweise bei Temperaturen zwischen 30 und 120°C, unter Normaldruck oder unter erhöhtem Druck, vorzugsweise bei 1 bis 5 bar, umgesetzt, indem pro zu oxalkylierender N-H-Funktion etwa ein Äquivalent des Alkylenoxids eingesetzt wird. Zur möglichst vollständigen Oxalkylierung kann ein geringer Überschuß an Alkylenoxid verwendet werden, vorzugsweise setzt man aber die stöchiometrische Menge oder sogar einen leichten Unterschluß des Alkylenoxids gegenüber den N-H-Funktionen ein. Die Oxalkylierung kann mit einem Alkylenoxid oder mit einem Gemisch von zwei oder mehreren Alkylenoxiden erfolgen. Wahlweise kann die Alkoxylierung mit zwei oder mehr Alkylenoxiden auch nacheinander erfolgen.

Außer Wasser kommen als Katalysatoren auch Alkohole oder Säuren in Frage, bevorzugt ist aber Wasser (zur Oxalkylierung von Aminen vgl. N. Schönfeld, Grenzflächenaktive Ethylenoxid-Addukte, 20 S. 29-33, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1976 bzw. S.P. McManus et al., Synth. Comm. 3, 177 (1973)).

Die als Katalysator und/oder Lösemittel eingesetzte Wassermenge kann je nach Anforderung und Bedarf schwanken. Bei flüssigen, 25 niedrigviskosen Aminen reichen Wassermengen zwischen 1 und 5 % aus, um die Reaktion zu katalysieren. Feste, hochviskose oder polymere Amine setzt man vorteilhaft in Wasser gelöst oder dispergiert um; die Wassermenge kann dann zwischen 10 und 90 % betragen.

Unter den beschriebenen Bedingungen für die Oxalkylierung in Gegenwart von Wasser werden im wesentlichen nur die -NH-Gruppen umgesetzt. Eine Oxalkylierung der entstehenden OH-Gruppen findet in der Regel nicht statt, so daß im wesentlichen eine Monoalkoxylierung der NH-Gruppen abläuft (d.h. pro mol NH wird maximal 1 35 mol Alkylenoxid addiert).

Der mittlere Alkoxylierungsgrad der aktiven NH-Gruppen ist bei Verbindungen mit weniger als 5 Stickstoffatomen pro Molekül vor- 40 zugsweise > 75%.

Als Ausgangspolyamine kann man beispielsweise verwenden α,ω-Oligomethylendiamine, wie 1,2-Ethylendiamin, 1,3-Propandi- 45 amin, 1,6-Hexamethylendiamin, 1,8-Oktamethylendiamin, 1,12-Dodecamethylendiamin, 2,2-Dimethyl-1,3-propandiamin, 1,2-Propandi- amin, 2-(Ethylamino)ethylamin, 2-(Methylamino)-propylamin, N-(2-Aminoethyl)-1,2-ethanediamin, N-(2-Aminoethyl)-1,3-propan-

## 13

diamin, N-(2-Aminoethyl)-N-methylpropanediamin, N,N-Bis-(3-Amino-propyl)-ethylendiamin, 4-Aminoethyl-1,8-octandiamin, 2-Bu-tyl-2-ethyl-1,5-pentandiamin, 2,2,4-Trimethylhexamethylendiamin, 2-Methylpentamethylendiamin, 1,3-Diaminopentan, 3-Isopropylamino-5-propylamin, Triethylenetetramin oder Tetraethylenpentamin.

Oligo- und Poly-N-( $\beta$ -hydroxyethyl)aminoverbindungen (Aminale) können auch durch Kondensation von aliphatischen Dialdehyden und Diethanolamin hergestellt werden.

10

Zu Poly-N-( $\beta$ -hydroxyethyl)aminoverbindungen (8) gelangt man, wie beispielsweise in der US-A-4,505,839 und der DE-A-3 206 459 beschrieben, durch thermische Kondensation von Triethanolamin zu Poly(triethanolamin) oder durch thermische Kondensation von Alkanolaminen zu hydroxylgruppenhaltigen Polyethern. Die Kondensation der Alkanolamine kann auch, wie in DE-A-1 243 874 beschrieben, in Gegenwart ein- bzw. mehrwertiger primärer oder sekundärer Amine oder ein- bzw. mehrwertiger Alkohole erfolgen. Je nach Konditionsbedingungen kann das Molekulargewicht dieser Produkte und damit ihre Viskosität im breiten Rahmen variiert werden.

Die gewichtsmittleren Molekulargewichte dieser Polykondensate liegen üblicherweise zwischen 200 und 100 000.

25 Die Verbindungen der Formeln Ie können durch Alkoxylierung aus sogenannten Dendrimer-Polyaminen hergestellt werden, deren Synthese durch Michael-Addition von aliphatischen Diaminen an Acrylnitril und anschließende katalytische Hydrierung in der WO 93/14147 beschrieben ist. Ein Beispiel hierfür ist das 30 hydrierte Addukt von 4 mol Acrylnitril und Ethylendiamin. Dieses Hexamin mit 4 primären Aminogruppen kann auf analoge Weise weiter umgesetzt werden zu dem N-14-Amin mit 8 primären Aminogruppen. Anstelle von Ethylendiamin können auch andere aliphatische Di- und Polyamine eingesetzt werden.

35

Auch Aminogruppen enthaltende Polymere, wie Polyethylenimin, lassen sich zu den Verbindungen der Formel Ic mit Ethylenoxid in wässriger Lösung zu brauchbaren Poly-N-( $\beta$ -hydroxyethyl)aminoverbindungen umsetzen, wobei der Umsetzungsgrad der vorhandenen NH-Funktionen im allgemeinen > 40%, insbesondere > 60% und bevorzugt > 80% ist. Die Herstellung von Polyethylenimin ist allgemein bekannt. Polyethylenimine im Molekulargewichtsbereich  $M_w = 800$  bis 2 000 000 sind beispielsweise von der Fa. BASF unter der Bezeichnung Lupasol® erhältlich. Polyethylenimine bestehen in der Regel aus verzweigten Polymerketten und enthalten daher primäre, sekundäre und tertiäre Aminogruppen. Deren Verhältnis liegt überlicherweise bei ca. 1:2:1. Bei sehr niedrigen Molekulargewichten

## 14

sind jedoch auch höhere Anteile primärer Aminogruppen möglich. Auch weitgehend lineare Polyethylenimine, die über spezielle Herstellverfahren zugänglich sind, sind für diese Anwendung geeignet.

5

Polymerische Alkylenimine mit primären und/oder sekundären Aminogruppen, die nach Oxalkylierung in den erfundungsgemäßen Zusammensetzungen verwendet werden können, sind beschrieben in "Encyclopedia of Polymer Science and Engineering", H. Mark (Editor), Revised 10 Edition, Volume 1, S. 680-739, John Wiley & Sons Inc., New York, 1985;

Es ist auch möglich, Hydroxyalkyl-substituierte Polyalkylenimine durch Polymerisation von N-Hydroxyalkylazidinen herzustellen.

15

Weiterhin können auch oxalkylierte Allylamin-Polymeren und -Copolymere in den erfundungsgemäßen Zusammensetzungen verwendet werden.

20

Die Verbindungen der Formel I f lassen sich ausgehende von Oxamiden, wie 4,7-Dioxadecan-1,10-diamin, 4,9-Dioxadecan-1,12-diamin, 4,11-Dioxatetradecan-1,14-diamin, 4,9-Dioxadodecan-1,12-diamin, 4,7,10-Trioxatridecan-1,13-diamin herstellen. Geeignete Ausgangsamine sind auch Polyoxyalkylenamine, die von der Fa. Huntsman unter der Bezeichnung Jeffamine® vertrieben werden. Beispiele hierfür sind die Diamine, Jeffamine D-230, Jeffamine-D-400, Jeffamine D-2000, Jeffamine D-4000, Jeffamine ED-600, Jeffamine ED-900, Jeffamine ED-2001, Jeffamine EDR-148 sowie die Triamine Jeffamine T-403, Jeffamine T-3000 und Jeffamine T-5000.

25

Umsetzungprodukte von aromatischen Polyaminen mit Alkylenoxid sind prinzipiell auch für die Verwendung in den erfundungsgemäßen Zusammensetzungen geeignet.

30

Die erfundungsgemäßen Zusammensetzungen enthalten weiter ein Polymerisat (B), welches zu 5 bis 100 Gew.-%, vorzugsweise 20 bis 100 Gew.-% und insbesondere 50 bis 100 Gew.-% aus mindestens einer ethylenisch ungesättigten Mono- oder Dicarbonsäure aufgebaut ist. Das Polymerisat kann auch teilweise oder vollständig in Form eines Salzes vorliegen, bevorzugt ist die saure Form. Sie sind im wesentlichen frei von Carbonsäureanhydridstrukturen.

Das gewichtsmittlere Molekulargewicht der Komponente (B) ist größer als 500 und im allgemeinen kleiner als 5 Millionen. Die K-Werte der Polymerivate (nach H. Finkentscher, Cellulose-Chemie 45 13 (1932), Seiten 58-64, 71 und 74), die ein Maß für das Molekulargewicht darstellen, liegen im allgemeinen im Bereich von 15

## 15

bis 150 (gemessen in 1 gew.-%iger Lösung). Das Polymerisat muß im Mittel mindestens 4 Carbonsäuregruppen davon abgeleitete Salzgruppen pro Polymerkette enthalten.

5 Brauchbare ethylenisch ungesättigte Carbonsäuren sind insbesondere C<sub>3</sub>-C<sub>6</sub>-Carbonsäuren wie Acrylsäure, Methacrylsäure, Croton-säure, Fumarsäure, Maleinsäure, 2-Methylmaleinsäure und Itaconsäure sowie Halbester von ethylenisch ungesättigten Dicarbonsäuren, wie z.B. Maleinsäuremonoalkylester von C<sub>1</sub>-C<sub>8</sub>-Alkoholen.

10 Die Polymerivate können auch ausgehend von ethylenisch ungesättigten Mono- oder Dicarbonsäureanhydriden, gegebenenfalls im Gemisch mit den erwähnten Carbonsäuren, erhalten werden. Die Anhydridfunktionen werden unter den Polymerisationsbedingungen, 15 z.B. bei der Lösungs- oder Emulsionspolymerisation im wässrigen Medium, oder im Anschluß an die Polymerisation durch Umsetzung mit einer Säure oder Base in Carbonsäuregruppen überführt. Brauchbare ethylenisch ungesättigte Carbonsäureanhydride sind insbesondere Maleinsäureanhydrid, Itaconsäureanhydrid, Acryl- 20 säureanhydrid und Methacrylsäureanhydrid.

Neben den bisher genannten Monomeren (Monomere b) kann das Polymerisat noch 0 bis 95 Gew.-%, vorzugsweise 0 bis 80 Gew.-% und insbesondere 0 bis 50 Gew.-% mindestens eines weiteren Monomeren 25 einpolymerisiert enthalten. Brauchbare weitere Monomere sind:

Vinylaromatische Verbindungen wie Styrol, α-Methylstyrol und Vinyltoluole (Monomere b<sub>1</sub>).

30 Lineare 1-Olefine, verzweigtkettige 1-Olefine oder cyclische Olefine (Monomere b<sub>2</sub>), wie z.B. Ethen, Propen, Buten, Isobuten, Penten, Cyclopenten, Hexen, Cyclohexen, Octen, 2,4,4-Tri-methyl-1-penten gegebenenfalls in Mischung mit 2,4,4-Tri-methyl-2-penten, C<sub>8</sub>-C<sub>10</sub>-Olefin, 1-Dodecen, C<sub>12</sub>-C<sub>14</sub>-Olefin, Octa-decen, 1-Eicosen (C<sub>20</sub>), C<sub>20</sub>-C<sub>24</sub>-Olefin; metallocenkatalytisch her-gestellte Oligoolefine mit endständiger Doppelbindung, wie z.B. 35 Oligopropen, Oligohexen und Oligooctadecen; durch kationische Polymerisation hergestellte Olefine mit hohem α-Olefin-Anteil, wie z.B. Polyisobuten. Vorzugsweise ist jedoch kein Ethen oder 40 kein lineares 1-Olefin in das Polymerisat einpolymerisiert.

Butadien.

Vinyl- und Allylalkylether mit 1 bis 40 Kohlenstoffatomen im 45 Alkylrest, wobei der Alkylrest noch weitere Substituenten wie eine Hydroxylgruppe, eine Amino- oder Dialkylaminogruppe oder eine bzw. mehrere Alkoxyatgruppen tragen kann (Monomere b<sub>3</sub>), wie

## 16

z.B. Methylvinylether, Ethylvinylether, Propylvinylether, Isobutylvinylether, 2-Ethylhexylvinylether, Vinylcyclohexylether, Vinyl-4-hydroxybutylether, Decylvinylether, Dodecylvinylether, Octadecylvinylether, 2-(Diethylamino)ethylvinylether, 2-(Di-n-butyl-amino)ethylvinylether, Methyldiglykolvinylether sowie die entsprechenden Allylether bzw. deren Mischungen.

Acrylamide und alkylsubstituierte Acrylamide (Monomere b<sub>4</sub>), wie z.B. Acrylamid, Methacrylamid, N-tert.-Butylacrylamid, N-Methyl-10 (meth)acrylamid.

Sulfogruppenhaltige Monomere (Monomere b<sub>5</sub>), wie z.B. Allylsulfonsäure, Methallylsulfonsäure, Styrolsulfonat, Vinylsulfonsäure, Allyloxybenzolsulfonsäure, 2-Acrylamido-2-methylpropansulfon-15 säure, deren entsprechende Alkali- oder Ammoniumsalze bzw. deren Mischungen.

C<sub>1</sub>- bis C<sub>8</sub>-Alkylester oder C<sub>1</sub>- bis C<sub>4</sub>-Hydroxyalkylester der Acrylsäure, Methacrylsäure oder Maleinsäure oder Ester von mit 2 bis 20 50 Mol Ethylenoxid, Propylenoxid, Butylenoxid oder Mischungen davon alkoxylierten C<sub>1</sub>- bis C<sub>18</sub>-Alkoholen mit Acrylsäure, Methacrylsäure oder Maleinsäure (Monomere b<sub>6</sub>), wie z.B. Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, Isopropyl(meth) acrylat, Butyl(meth)acrylat, Hexyl(meth)acrylat, 25 2-Ethylhexyl (meth)acrylat, Hydroxyethyl(meth)acrylat, Hydroxypropyl(meth) acrylat, Butandiol-1,4-monoacrylat, Maleinsäuredibutylerster, Ethyldiglykolacrylat, Methylpolyglykolacrylat (11 EO), (Meth)acrylsäureester von mit 3,5,7,10 oder 30 Mol Ethylenoxid umgesetztem C<sub>13</sub>/C<sub>15</sub>-Oxoalkohol bzw. deren Mischungen.

30 Alkylaminoalkyl(meth)acrylate oder Alkylaminoalkyl(meth)acrylamide oder deren Quaternisierungsprodukte (Monomere b<sub>7</sub>), wie z.B. 2-(N,N-Dimethylamino)ethyl(meth)acrylat, 3-(N,N-Dimethylamino)-propyl(meth)acrylat, 2-(N,N,N-Trimethylammonium)ethyl 35 (meth)acrylat-chlorid, 2-Dimethylaminoethyl(meth)acrylamid, 3-Dimethylaminopropyl(meth)acrylamid, 3-Trimethylammonium-propyl(meth)acrylamid-chlorid.

Vinyl- und Allylester von C<sub>1</sub>- bis C<sub>30</sub>-Monocarbonsäuren (Monomere b<sub>8</sub>), wie z.B. Vinylformiat, Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylvalerat, Vinyl-2-ethylhexanoat, Vinylnonoat, Vinyldecanoat, Vinylpivalat, Vinylpalmitat, Vinylstearat, Vinyl-laurat.

45 Als weitere Monomere b<sub>9</sub> seien noch genannt:

## 17

N-Vinylformamid, N-Vinyl-N-methylformamid, Styrol,  $\alpha$ -Methylstyrol, 3-Methylstyrol, Butadien, N-Vinylpyrrolidon, N-Vinylimidazol, 1-Vinyl-2-methylimidazol, 1-Vinyl-2-methyl-imidazolin, N-Vinylcaprolactam, Acrylnitril, Methacrylnitril, Allylalkohol, 5 2-Vinylpyridin, 4-Vinylpyridin, Diallyldimethylammoniumchlorid, Vinylidenchlorid, Vinylchlorid, Acrolein, Methacrolein und Vinylcarbazol bzw. Mischungen davon.

Bevorzugte weitere Monomere sind die erwähnten Ester der Acrylsäure und Methacrylsäure, die vinylaromatischen Verbindungen, 10 Butadien, Vinylester, (Meth)acrylnitril und die erwähnten (Meth)acrylamide.

Besonders bevorzugte Comonomere sind Methacrylat, Ethylacrylate, 15 Butylacrylate, 2-Ethylhexylacrylat, Methylmethacrylat, Butylmethacrylate, Hydroxyethylacrylate, Hydroxypropylacrylat, Hydroxybutylacrylate, Hydroxyethylmethacrylat, Styrol, Butadien, Vinylacetat, Acrylnitril, Methacrylnitril, Acrylamid, Methacrylamid und/oder N-Butylacrylamid.

20 Die Polymerisate können nach üblichen Polymerisationsverfahren hergestellt werden, z.B. durch radikalische Substanz-, Emulsions-, Suspensions-, Dispersions-, Fällungs- und Lösungspolymerisation. Bei den genannten Polymerisationsverfahren wird 25 bevorzugt unter Ausschluß von Sauerstoff gearbeitet, vorzugsweise in einem Stickstoffstrom. Für alle Polymerisationsmethoden werden die üblichen Apparaturen verwendet, z.B. Rührkessel, Rührkesselkaskaden, Autoklaven, Rohrreaktoren und Kneter. Bevorzugt wird nach der Methode der Lösungs-, Emulsions-, Fällungs- oder Suspensionspolymerisation gearbeitet. Besonders bevorzugt sind die 30 Methoden der Lösungs- und Emulsionspolymerisation im wässrigen Medium.

Bei Anwendung der wässrigen radikalischen Lösungspolymerisation 35 erhält man wasserlösliche Polymere und Copolymere, vorzugsweise ausgehend von 50 bis 100 Gew.-% der erwähnten Carbonsäuren, Carbonsäureanhydride, Halbester oder einer Mischung von zwei oder mehreren dieser Verbindungen. Ihr gewichtsmittleres Molekulargewicht liegt im allgemeinen im Bereich von 500 bis 1 000 000, vorzugsweise 2000 bis 200 000. Die K-Werte der Polymerisate liegen 40 im allgemeinen im Bereich von 10 bis 150, vorzugsweise 15 bis 100 (gemessen in 1 gew.-%iger Lösung in Wasser). Der Feststoffgehalt liegt im allgemeinen im Bereich von 10 bis 80 Gew.-%, vorzugsweise 20 bis 65 Gew.-%. Die Polymerisation kann bei Temperaturen 45 von 20 bis 300, vorzugsweise von 60 bis 200°C durchgeführt werden. Die Durchführung der Lösungspolymerisation erfolgt in üblicher

Weise, z.B. wie in der EP-A-75 820 oder DE-A-36 20 149 beschrieben.

- Bei Anwendung der wässrigen Emulsionspolymerisation erhält man
- 5 Polymerivate mit einem gewichtsmittleren Molekulargewicht von 1000 bis 2 000 000, vorzugsweise 5000 bis 500 000. Die K-Werte liegen im allgemeinen im Bereich von 15 bis 150 (1 gew.-% in Dimethylformamid). Die gewichtsmittlere Teilchengröße (bestimmt mittels Ultrazentrifuge) liegt vorzugsweise im Bereich von 50 bis 10 1000 nm. Die Dispersion kann monomodale oder polymodale Teilchengrößenverteilung aufweisen. Die Emulsionspolymerisation kann so durchgeführt werden, daß der Feststoffvolumengehalt im Bereich von 20 bis 70 %, vorzugsweise 30 bis 60 % liegt.
- 15 Die Durchführung der Emulsionspolymerisation mit den erwähnten Carbonsäuregruppen enthaltenden Monomeren erfolgt in üblicher Weise, z.B. wie in der DE-A-31 34 222 oder der US-A-5,100,582 beschrieben. Dabei liegt der Anteil der Carbonsäuremonomeren bevorzugt zwischen 5 und 50%.
- 20 Die Polymerisation wird vorzugsweise in Gegenwart von Radikale bildenden Verbindungen (Initiatoren) durchgeführt. Man benötigt von diesen Verbindungen vorzugsweise 0,05 bis 15, besonders bevorzugt 0,2 bis 8 Gew.-%, bezogen auf die bei der Polymerisa-25 tion eingesetzten Monomeren.
- Geeignete Polymerisationsinitiatoren sind beispielsweise Peroxide, Hydroperoxide, Peroxodisulfate, Percarbonate, Peroxoester, Wasserstoffperoxid und Azoverbindungen. Beispiele für Initiatoren, die wasserlöslich oder auch wasserunlöslich sein können, sind Wasserstoffperoxid, Dibenzoylperoxid, Dicyclohexylperoxid-carbonat, Dilaurylperoxid, Methylethylketonperoxid, Di-tert.-Butylperoxid, Acetylacetoneperoxid, tert.-Butylhydroperoxid, Cumolhydroperoxid, tert.-Butylperneodecanoat, tert.-Amylperpivalat, tert.-Butylperpivalat, tert.-Butylperneohexanoat, tert.-Butylper-2-ethylhexanoat, tert.-Butyl-perbenzoat, Lithium-, Natrium-, Kalium- und Ammoniumperoxidisulfat, Azodiisobutyronitril, 2,2'-Azobis(2-amidinopropan)dihydrochlorid, 2-(Carbamoyl-azo)isobutyronitril und 4,4-Azobis(4-cyanovaleriansäure). Auch 40 die bekannten Redox-Initiatorsysteme können als Polymerisationsinitiatoren verwendet werden.
- Die Initiatoren können allein oder in Mischung untereinander angewendet werden, z.B. Mischungen aus Wasserstoffperoxid und 45 Natriumperoxidisulfat. Für die Polymerisation in wässrigem Medium werden bevorzugt wasserlösliche Initiatoren eingesetzt.

Um Polymerisate mit niedrigem mittleren Molekulargewicht herzustellen, ist es oft zweckmäßig, die Copolymerisation in Gegenwart von Reglern durchzuführen. Hierfür können übliche Regler verwendet werden, wie beispielsweise organische SH-Gruppen enthaltende Verbindungen, wie 2-Mercaptoethanol, 2-Mercaptopropanol, Mercaptoessigsäure, tert.-Butylmercaptan, n-Octylmercaptan, n-Dodecylmercaptan und tert.-Dodecylmercaptan, C<sub>1</sub>- bis C<sub>4</sub>-Aldehyde, wie Formaldehyd, Acetaldehyd, Propionaldehyd, Hydroxylammoniumsalze wie Hydroxylammoniumsulfat, Ameisensäure, Natriumbisulfit oder Isopropanol. Die Polymerisationsregler werden im allgemeinen in Mengen von 0,1 bis 10 Gew.-%, bezogen auf die Monomeren eingesetzt.

Um höhermolekulare Copolymerivate herzustellen, ist es oft zweckmäßig, bei der Polymerisation in Gegenwart von Vernetzern zu arbeiten. Solche Vernetzer sind Verbindungen mit zwei oder mehreren ethylenisch ungesättigten Gruppen, wie beispielsweise Diacrylate oder Dimethacrylate von mindestens zweiseitigen gesättigten Alkoholen, wie z.B. Ethylenglycoldiacrylat, Ethylenglycoldimethacrylat, 1,2-Propylenglycoldiacrylat, 1,2-Propylenglycoldimethacrylat, Butandiol-1,4-diacrylat, Butandiol-1,4-dimethacrylat, Hexandioldiacrylat, Hexandioldimethacrylat, Neopentylglycoldiacrylat, Neopentylglycoldimethacrylat, 3-Methylpentandioldiacrylat und 3-Methylpentandioldimethacrylat. Auch die Acrylsäure- und Methacrylsäureester von Alkoholen mit mehr als 2 OH-Gruppen können als Vernetzer eingesetzt werden, z.B. Trimethylolpropan-triacrylat oder Trimethylolpropantrimethacrylat. Eine weitere Klasse von Vernetzern sind Diacrylate oder Dimethacrylate von Polyethylenglykolen oder Polypropylenglykolen mit Molekulargewichten von jeweils 200 bis 9 000. Auch Divinylbenzol ist geeignet.

Die Vernetzer werden vorzugsweise in Mengen von 10 ppm bis 5 Gew.-%, bezogen auf die zu polymerisierenden Monomere, eingesetzt.

Wird nach der Methode der Emulsions-, Fällungs-, Suspensions- oder Dispersionspolymerisation gearbeitet, so kann es vorteilhaft sein, die Polymertröpfchen bzw. Polymerteilchen durch grenzflächenaktive Hilfsstoffe zu stabilisieren. Typischerweise verwendet man hierzu Emulgatoren oder Schutzkolloide. Es kommen anionische, nichtionische, kationische und amphotere Emulgatoren in Betracht. Bevorzugt sind anionische Emulgatoren, beispielsweise Alkylbenzolsulfonsäuren, sulfonierte Fettsäuren, Sulfosuccinate, Fettalkoholsulfate, Alkylphenolsulfate und Fettalkoholethersulfate. Als nichtionische Emulgatoren können beispielsweise Alkylphenoxyethoxylate, Primäralkoholethoxilate, Fettsäure-

20

ethoxilate, Alkanolamidethoxilate, Fettaminethoxilate, EO/PO-Blockcopolymere und Alkylpolyglucoside verwendet werden.

Typische Schutzkolloide sind beispielsweise Cellulosederivate,  
 5 Polyethylenglykol, Polypropylenglykol, Copolymerisate aus Ethylenglykol und Propylenglykol, Polyvinylacetat, Polyvinylalkohol, Polyvinylether, Stärke und Stärkederivate, Dextran, Polyvinylpyrrolidon, Polyvinylpyridin, Polyethylenimin, Polyvinylimidazol, Polyvinylsuccinimid, Polyvinyl-2-methylsuccinimid,  
 10 Polyvinyl-1,3-oxazolidon-2, Polyvinyl-2-methylimidazolin und Maleinsäure bzw. Maleinsäureanhydrid enthaltende Copolymerisate, wie sie z.B. in DE 2 501 123 beschrieben sind.

Die Emulgatoren oder Schutzkolloide werden üblicherweise in  
 15 Konzentrationen von 0,05 bis 20 Gew.-%, bezogen auf die Monomere, eingesetzt.

Wird in wäßriger Emulsion, Lösung oder Verdünnung polymerisiert, so können die Monomere vor oder während der Polymerisation ganz  
 20 oder teilweise durch übliche, anorganische oder organische Basen neutralisiert werden.

Besonders bevorzugt werden die ethylenisch ungesättigten Carbonsäuren vor und während der Polymerisation nicht neutralisiert.  
 25 Bevorzugt wird auch nach der Polymerisation kein Neutralisierungsmittel, abgesehen vom Alkanolamin B), zugesetzt.

Wird das Polymerisat nach der Methode einer Lösungs-, Fällungs- oder Suspensionspolymerisation in einem wasserdampfflüchtigen  
 30 Lösungsmittel oder Lösungsmittelgemisch hergestellt, so kann das Lösungsmittel durch Einleiten von Wasserdampf abgetrennt werden, um so zu einer wäßrigen Lösung oder Dispersion zu gelangen. Das Polymerisat kann von dem organischen Verdünnungsmittel auch durch einen Trocknungsprozeß abgetrennt werden.

35

Bevorzugt liegen die Polymerisate (B) in Form einer wäßrigen Dispersion oder Lösung mit Feststoffgehalten von vorzugsweise 10 bis 80 Gew.-%, insbesondere 25 bis 65 Gew.-% vor.

40 Das Polymerisat (B) kann auch durch Propfung von Maleinsäure bzw. Maleinsäureanhydrid bzw. einer Maleinsäure oder Maleinsäure-anhydrid enthaltenden Monomermischung auf eine Propfgrundlage erhalten werden. Geeignete Propfgrundlagen sind beispielsweise Monosaccharide, Oligosaccharide, modifizierte Polysaccharide und  
 45 Alkylpolyglykolether. Solche Propfpolymerisate sind beispielsweise in DE-A-4 003 172 und EP-A-116 930 beschrieben.

## 21

Zur Herstellung der erfindungsgemäßen formaldehydfreien Zusammensetzungen werden das Alkanolamin (A) und das Polymerisat (B) bevorzugt in einem solchen Verhältnis zueinander eingesetzt, daß das Molverhältnis von Carboxylgruppen der Komponente (B) zu Hydroxylgruppen der Komponente B) 20:1 bis 1:5, bevorzugt 8:1 bis 5 1:2 und besonders bevorzugt 4:1 bis 1:1 beträgt.

Die Herstellung der erfindungsgemäßen formaldehydfreien, wässrigen Bindemittel erfolgt z.B. durch Zugabe des Alkanolamins (A) zur 10 wässrigen Dispersion oder Lösung der Polymerisate (B). In manchen Fällen ist es zweckmäßig, die wässrige Lösung oder Dispersion des Polymerisates (B) zu dem Alkanolamin (A) zuzugeben. Das Alkanolamin (A) kann entweder unverdünnt oder als wässrige Lösung verwendet werden, deren Konzentration bevorzugt > 25% liegt.

15

Die Zugabe kann bei Raumtemperatur oder aber auch bei erhöhter Temperatur, z.B. bei 90°C, erfolgen.

Die Viskosität der erfindungsgemäßen wässrigen Zusammensetzungen 20 (A) und (B) liegt bei einem Gehalt von aktiven Inhaltsstoffen von 40 Gew.-% im allgemeinen im Bereich von 10 bis 100 000 mPa.s, gemessen in einem Rotationsviskosimeter gemäß DIN 53019 bei 23°C und einer Schergeschwindigkeit von 250 sec<sup>-1</sup>. Bevorzugt sind Viskositäten von 20 bis 20000 mPa.s, besonders bevorzugt von 50 bis 5000 25 mPa.s.

Ist die Komponente (B) ein Emulsionspolymerisat, so lassen sich damit bei vergleichbaren Molekulargewicht oder K-Wert Zusammensetzungen mit niedrigerer Viskosität herstellen als mit homogen 30 gelösten, säurehaltigen Polymerisaten.

Die erfindungsgemäßen Zusammensetzungen können einen Reaktionsbeschleuniger enthalten, vorzugsweise jedoch liegen sie ohne einen derartigen Reaktionsbeschleuniger vor. Geeignete Reaktionsbeschleuniger sind z.B. Alkalimetallhypophosphite, -phosphite, -polyphosphate, -dihydrogenphosphate, Polyphosphorsäure, Hypophosphorsäure, Phosphorsäure, Alkylphosphinsäure oder Oligomere 35 bzw. Polymere dieser Salze und Säuren.

Weiterhin sind als Katalysatoren geeignet starke Säuren wie z.B. 40 Schwefelsäure, p-Toluolsulfonsäure. Auch polymere Sulfonsäuren, wie z.B. Poly(acrylamido-2-methylpropansulfonsäure), Poly(vinylsulfonsäure), Poly(p-styrolsulfonsäure), Poly(sulfopropylmethacrylat) und polymere Phosphonsäuren wie z.B. Poly(vinylphosphon-45 säre) sowie davon abgeleitete Copolymeren mit den oben beschriebenen Comonomeren sind geeignet.

## 22

Es ist weiterhin möglich, die beschleunigend wirkende Sulfonsäure oder Phosphonsäure in das säurehaltige Polymerisat (B) einzubauen, indem man die entsprechenden Monomere wie z.B. Acrylamido-2-methylpropansulfonsäure, Vinylsulfonsäure, p-Styrolsulfonsäure, Sulfopropylmethacrylat oder Vinylphosphonsäure bei der Herstellung der polymeren Carbonsäuren als Comonomer verwendet.

Weiterhin als Katalysatoren geeignet sind Organotitanate und Organzirkonate wie z.B. Triethanolatitanat, Titanchelat ETAM und Tetrabutylzirkonat, die z.B. von der Fa. Hüls vertrieben werden.

Ferner können die erfindungsgemäßen Zusammensetzungen wenigstens ein Di- oder Trialkanolamin enthalten. Im allgemeinen verwendet man 0,5 bis 200 Gew.-%, bezogen auf die Menge an Komponente (A). Bevorzugt verwendet man Di- oder Triethanolamin.

Weiter können die erfindungsgemäßen Zusammensetzungen übliche Zusätze je nach Anwendungszweck enthalten. Beispielsweise können sie Bakterizide oder Fungizide enthalten. Darüber hinaus können sie Hydrophobierungsmittel zur Erhöhung der Wasserfestigkeit der behandelten Substrate enthalten. Geeignete Hydrophobierungsmittel sind übliche wässrige Paraffindispersionen oder Silicone. Weiter können die Zusammensetzungen Netzmittel, Verdickungsmittel, Plastifizierungsmittel, Retentionsmittel, Pigmente und Füllstoffe enthalten.

Schließlich können die erfindungsgemäßen Zusammensetzungen übliche Brandschutzmittel, wie z.B. Aluminiumsilikate, Aluminiumhydroxide, Borate und/oder Phosphate enthalten.

Häufig enthalten die Zusammensetzungen auch Kupplungsreagenzien, wie Alkoxy silane, beispielsweise 3-Aminopropyltriethoxysilan, lösliche oder emulgierbare Öle als Gleitmittel und Staubbinde mittel sowie Benetzungshilfsmittel.

Die erfindungsgemäßen Zusammensetzungen können auch in Abmischung mit Bindemitteln, wie beispielsweise Harnstoff-Formaldehyd-Harzen, Melamin-Formaldehyd-Harzen oder Phenol-Formaldehyd-Harzen, eingesetzt werden.

Die erfindungsgemäßen Zusammensetzungen sind formaldehydfrei. Formaldehydfrei bedeutet, daß die erfindungsgemäßen Zusammensetzungen keine wesentlichen Mengen an Formaldehyd enthalten und auch bei Trocknung und/oder Härtung keine wesentlichen Mengen an Formaldehyd freigesetzt werden. Im allgemeinen enthalten die Zusammensetzungen < 100 ppm Formaldehyd. Sie ermöglichen die Her-

stellung von Formkörpern mit kurzer Härtungszeit und verleihen den Formkörpern ausgezeichnete mechanische Eigenschaften.

Die erfindungsgemäßen thermisch härzbaren, formaldehydfreien Zusammensetzungen sind bei der Anwendung im wesentlichen unvernetzt und daher thermoplastisch. Wenn erforderlich, kann jedoch ein geringer Grad an Vorvernetzung eingestellt werden.

Beim Erhitzen verdampft das in der Zusammensetzung enthaltene Wasser und es kommt zur Härtung der Zusammensetzung. Diese Prozesse können nacheinander oder gleichzeitig ablaufen. Unter Härtung wird in diesem Zusammenhang die chemische Veränderung der Zusammensetzung verstanden, z.B. die Vernetzung durch Knüpfung von kovalenten Bindungen zwischen den verschiedenen Bestandteilen der Zusammensetzungen, Bildung von ionischen Wechselwirkungen und Clustern, Bildung von Wasserstoffbrücken. Weiterhin können bei der Härtung auch physikalische Veränderungen im Bindemittel ablaufen, wie z.B. Phasenumwandlungen oder Phaseninversion.

Als Folge der Härtung nimmt die Löslichkeit der Zusammensetzung ab, beispielsweise werden wasserlösliche Zusammensetzungen in teilweise bis weitgehend wasserunlösliche Materialien überführt.

Der Härtungsgrad lässt sich charakterisieren durch Extraktionsversuche an den gehärteten Zusammensetzungen in geeigneten Lösungsmitteln wie z.B. Wasser oder Aceton. Je höher der Aushärtungsgrad, desto mehr gehärtetes Material bleibt unlöslich, d.h. desto höher ist sein Gelanteil.

Die Härtungstemperaturen liegen zwischen 75 und 250°C, bevorzugt zwischen 90 und 200°C. Die Dauer und die Temperatur der Erwärmung beeinflussen den Aushärtungsgrad. Ein Vorteil der erfindungsgemäßen Zusammensetzungen ist, daß ihre Härtung bei vergleichsweise niedrigen Temperaturen erfolgen kann. So findet beispielsweise schon bei 100 bis 130°C eine deutliche Vernetzung statt.

Die Aushärtung kann auch in zwei oder mehr Stufen erfolgen. So kann z.B. in einem ersten Schritt die Härtungstemperatur und -zeit so gewählt werden, daß nur ein geringer Härtungsgrad erreicht wird und weitgehend vollständige Aushärtung in einem zweiten Schritt erfolgt. Dieser zweite Schritt kann räumlich und zeitlich getrennt vom ersten Schritt erfolgen. Dadurch wird beispielsweise die Verwendung der erfindungsgemäßen Zusammensetzungen zur Herstellung von mit Bindemittel imprägnierten Halbzeugen möglich, die an anderer Stelle verformt und ausgehärtet werden können.

## 24

Die Zusammensetzungen werden insbesondere als Bindemittel für die Herstellung von Formkörpern aus Fasern, Schnitzeln oder Spänen verwendet. Dabei kann es sich um solche aus nachwachsenden Rohstoffen oder um synthetische oder natürliche Fasern, z.B. aus Kleiderabfällen handeln. Als nachwachsende Rohstoffe seien insbesondere Sisal, Jute, Flachs, Kokosfasern, Bananenfasern, Hanf und Kork genannt. Besonders bevorzugt sind Holzfasern oder Holzspäne.

10 Die Formkörper haben bevorzugt eine Dichte von 0,2 bis 1,0 g/cm<sup>3</sup> bei 23°C.

Als Formkörper kommen insbesondere Platten in Betracht. Die Dicke der Platten beträgt im allgemeinen mindestens 1 mm, vorzugsweise 15 mindestens 2 mm. In Betracht kommen auch Automobilinnenteile, z.B. Türinnenverkleidungen, Armaturenträger, Hutablagen.

Die Gewichtsmenge des verwendeten Bindemittels beträgt im allgemeinen 0,5 bis 40 Gew.-%, vorzugsweise 1 bis 30 Gew.-% (Bindemittel fest, berechnet als Summe A + B), bezogen auf das Substrat (Fasern, Schnitzel oder Späne).

Die Fasern, Schnitzel oder Späne können direkt mit dem Bindemittel beschichtet werden oder mit dem wässrigen Bindemittel vermischt werden. Die Viskosität des wässrigen Bindemittels wird vorzugsweise (insbesondere bei der Herstellung von Formkörpern aus Holzfasern oder Holzspänen) auf 10 bis 10 000, besonders bevorzugt auf 50 bis 5 000 und ganz besonders bevorzugt auf 100 bis 2500 mPa·s (DIN 53019, Rotationsviskosimeter bei 250 sec<sup>-1</sup>) eingestellt.

Die Mischung aus Fasern, Schnitzeln und Spänen und dem Bindemittel kann z.B. bei Temperaturen von 10 bis 150°C vorgetrocknet werden und anschließend zu den Formkörpern, z.B. bei Temperaturen von 50 bis 250°C, vorzugsweise 100 bis 240°C und besonders bevorzugt 120 bis 225°C und Drücken von im allgemeinen 2 bis 1000 bar, vorzugsweise 10 bis 750 bar, besonders bevorzugt 50 bis 500 bar zu den Formkörpern verpreßt werden.

40 Die Bindemittel eignen sich insbesondere zur Herstellung von Holzwerkstoffen wie Holzspanplatten und Holzfaserplatten (vgl. Ullmanns Encyclopädie der technischen Chemie, 4. Auflage 1976, Band 12, S. 709-727), die durch Verleimung von zerteiltem Holz, wie z.B. Holzspänen und Holzfasern, hergestellt werden können. Die 45 Wasserfestigkeit von Holzwerkstoffen kann erhöht werden, indem man dem Bindemittel eine handelsübliche wässrige Paraffindispersion oder andere Hydrophobierungsmittel zusetzt, bzw. diese

## 25

Hydrophobierungsmittel vorab oder nachträglich den Fasern, Schnitzeln oder Spänen zusetzt.

Die Herstellung von Spanplatten ist allgemein bekannt und wird 5 beispielsweise in H.J. Deppe, K. Ernst Taschenbuch der Spanplattentechnik, 2. Auflage, Verlag Leinfelden 1982, beschrieben.

Es werden bevorzugt Späne eingesetzt, deren mittlere Spangröße zwischen 0,1 und 4 mm, insbesondere 0,2 und 2 mm liegt, und die 10 weniger als 6 Gew.-% Wasser enthalten. Es können jedoch auch deutlich grobteiligere Späne und solche mit höherem Feuchtigkeitsgehalt eingesetzt werden. Das Bindemittel wird möglichst gleichmäßig auf die Holzspäne aufgetragen, wobei das Gewichtsverhältnis Bindemittel:Holzspäne bezogen auf die aktiven Inhaltsstoffe (berechnet als A) + B vorzugsweise 0,02:1 bis 0,3:1 beträgt. Eine gleichmäßige Verteilung lässt sich beispielsweise erreichen, indem man das Bindemittel in feinverteilter Form auf die Späne aufsprüht.

20 Die beleimten Holzspäne werden anschließend zu einer Schicht mit möglichst gleichmäßiger Oberfläche ausgestreut, wobei sich die Dicke der Schicht nach der gewünschten Dicke der fertigen Spanplatte richtet. Die Streuschicht wird bei einer Temperatur von z.B. 100 bis 250°C, bevorzugt von 120 bis 225°C durch Anwendung 25 von Drücken von üblicherweise 10 bis 750 bar zu einer Platte verpreßt. Die benötigten Preßzeiten können in einem weiten Bereich variieren und liegen im allgemeinen zwischen 15 Sekunden bis 30 Minuten.

30 Die zur Herstellung von mitteldichten Holzfaserplatten (MDF) aus den Bindemitteln benötigten Holzfasern geeigneter Qualität können aus rindenfreien Holzschnitzeln durch Zermahlung in Spezialmühlen oder sogenannten Refinern bei Temperaturen von ca. 180°C hergestellt werden.

35 Zur Beleimung werden die Holzfasern im allgemeinen mit einem Luftstrom aufgewirbelt und das Bindemittel in den so erzeugten Fasernstrom eingedüst ('Blow-Line' Verfahren). Das Verhältnis Holzfasern zu Bindemittel bezogen auf den Trockengehalt bzw. 40 Feststoffgehalt beträgt üblicherweise 40:1 bis 2:1, bevorzugt 20:1 bis 4:1. Die beleimten Fasern werden in dem Fasernstrom bei Temperaturen von z.B. 130 bis 180°C getrocknet, zu einem Faservlies ausgestreut und bei Drücken von 20 bis 40 bar zu Platten oder Formkörpern verpreßt.

## 26

Die beleimten Holzfasern können auch, wie z.B. in der DE-OS 2 417 243 beschrieben, zu einer transportablen Fasermatte verarbeitet werden. Dieses Halbzeug kann dann in einem zweiten, zeitlich und räumlich getrennten Schritt zu Platten oder Formteilen, wie z.B. Türinnenverkleidungen von Kraftfahrzeugen weiterverarbeitet werden.

Auch andere Naturfaserstoffe wie Sisal, Jute, Hanf, Flachs, Kokosfasern, Bananenfasern und andere Naturfasern können mit den 10 Bindemitteln zu Platten und Formkörpern verarbeitet werden. Die Naturfaserstoffe können auch in Mischungen mit Kunststofffasern, z.B. Polypropylen, Polyethylen, Polyester, Polyamide oder Polyacrylnitril verwendet werden. Diese Kunststofffasern können dabei auch als Cobindemittel neben dem erfindungsgemäßen Bindemittel 15 fungieren. Der Anteil der Kunststofffasern beträgt dabei bevorzugt weniger als 50 Gew.-%, insbesondere weniger als 30 Gew.-% und ganz besonders bevorzugt weniger als 10 Gew.-%, bezogen auf alle Späne, Schnitzel oder Fasern. Die Verarbeitung der Fasern kann nach dem bei den Holzfaserplatten praktizierten Verfahren erfolgen. Es können aber auch vorgeformte Naturfasermatten mit den erfindungsgemäßen Bindemitteln imprägniert werden, gegebenenfalls 20 unter Zusatz eines Benetzungshilfsmittels. Die imprägnierten Matten werden dann im bindemittelfeuchten oder vorgetrockneten Zustand z.B. bei Temperaturen zwischen 100 und 250°C und Drücken 25 zwischen 10 und 100 bar zu Platten oder Formteilen verpreßt.

Die erfindungsgemäß erhaltenen Formkörper haben eine geringe Wasseraufnahme, eine niedrige Dickenquellung nach Wasserlagerung, eine gute Festigkeit und sind formaldehydfrei.

30 Außerdem kann man die erfindungsgemäßen Zusammensetzungen als Bindemittel für Beschichtungs- und Imprägniermassen für Platten aus organischen und/oder anorganischen Fasern, nicht fasrigen mineralischen Füllstoffen sowie Stärke und/oder wässrigen Polymeratdispersionen verwenden. Die Beschichtungs- und Imprägniermassen verleihen den Platten einen hohen Biegemodul. Die Herstellung derartiger Platten ist bekannt.

Derartige Platten werden üblicherweise als Schalldämmplatten eingesetzt. Die Dicke der Platten liegt üblicherweise im Bereich von etwa 5 bis 30 mm, bevorzugt im Bereich von 10 bis 25 mm. Die Kantenlänge der quadratischen oder rechteckigen Platten liegt üblicherweise im Bereich von 200 bis 2000 mm.

45 Ferner können die erfindungsgemäßen Zusammensetzungen in der Beschichtungs- und Imprägnierungstechnologie übliche Hilfsstoffe enthalten. Beispiele hierfür sind feinteilige inerte Füllstoffe,

## 27

wie Aluminiumsilikate, Quarz, gefällte oder pyrogene Kieselsäure, Leicht- und Schwerspat, Talkum, Dolomit oder Calciumcarbonat; farbgebende Pigmente, wie Titanweiß, Zinkweiß, Eisenoxidschwarz etc., Schauminhibitoren, wie modifizierte Dimethylpolysiloxane, 5 und Haftvermittler sowie Konservierungsmittel.

Die Komponenten (A) und (B) sind in der Beschichtungsmasse im allgemeinen in einer Menge von 1 bis 65 Gew.-% enthalten. Der Anteil der inerten Füllstoffe liegt im allgemeinen bei 0 bis 10 85 Gew.-%, der Wasseranteil beträgt mindestens 10 Gew.-%.

Die Zubereitung der erfindungsgemäßen Zusammensetzungen erfolgt in einfacher Weise durch Einröhren der gegebenenfalls mit zu verwendenden Zusatzstoffe in die Zusammensetzung.

15

Die Anwendung der Zusammensetzungen erfolgt in üblicher Weise durch Auftragen auf ein Substrat, beispielsweise durch Sprühen, Rollen, Gießen oder Imprägnieren. Die aufgetragenen Mengen, bezogen auf die Summe der in der Zusammensetzung enthaltenen Komponenten (A) und (B), betragen im allgemeinen 2 bis 100 g/m<sup>2</sup>.

Die einzusetzenden Mengen an Zusatzstoffen sind dem Fachmann bekannt und richten sich im Einzelfall nach den gewünschten Eigenschaften und dem Anwendungszweck.

25

Die erfindungsgemäßen Zusammensetzungen sind auch als Bindemittel für Dämmstoffe aus anorganischen Fasern, wie Mineralfasern und Glasfasern brauchbar. Solche Dämmstoffe werden technisch durch Verspinnen von Schmelzen der entsprechenden mineralischen Rohstoffe hergestellt, siehe US-A-2,550,465, US-A-2,604,427, 30 US-A-2,830,648, EP-A-354 913 und EP-A-567 480. Die Zusammensetzung wird dann auf die frisch hergestellten, noch heißen anorganischen Fasern aufgesprüht. Das Wasser verdampft dann weitgehend und die Zusammensetzung bleibt im wesentlichen unausgehärtet 35 als Viskosemasse auf den Fasern haften. Eine auf diese Weise hergestellte endlose, bindemittelhaltige Fasermatte wird von geeigneten Förderbändern durch einen Härtungsofen weitertransportiert. Dort härtet die Matte bei Temperaturen im Bereich von ca. 100 bis 200°C zu einer steifen Matrix aus. Nach dem Härteten werden die 40 Dämmstoffmatten in geeigneter Weise konfektioniert.

Der überwiegende Anteil der in den Dämmstoffen verwendeten Mineral- oder Glasfasern hat einen Durchmesser im Bereich von 0,5 bis 20 µm und eine Länge im Bereich von 0,5 bis 10 cm.

45

Die erfindungsgemäßen Zusammensetzungen eignen sich außerdem als Bindemittel für Faservliese.

Als Faservliese seien z. B. Vliese aus Cellulose, Cellulose-  
5 acetat, Ester und Ether der Cellulose, Baumwolle, Hanf, tierische Fasern, wie Wolle oder Haare und insbesondere Vliese von synthetischen oder anorganischen Fasern, z.B. Aramid-, Kohlenstoff-, Polyacrylnitril-, Polyester-, Mineral-, PVC- oder Glasfasern genannt.

10

Im Falle der Verwendung als Bindemittel für Faservliese können die erfindungsgemäßen Zusammensetzungen z. B. folgende Zusatzstoffe enthalten: Silikate, Silikone, borhaltige Verbindungen, Gleitmittel, Benetzungsmittel.

15

Bevorzugt sind Glasfaservliese. Die ungebundenen Faservliese (Rohfaservliese), insbesondere aus Glasfasern, werden durch das erfindungsgemäße Bindemittel gebunden, d.h. verfestigt.

20 Dazu wird das erfindungsgemäße Bindemittel vorzugsweise im Gewichtsverhältnis Faser/Polymerisat A (fest) von 10:1 bis 1:1, besonders bevorzugt von 6:1 bis 3:1 auf das Rohfaservlies z.B. durch Beschichten, Imprägnieren, Tränken aufgebracht.

25 Das Bindemittel wird dabei vorzugsweise in Form einer verdünnten wäßrigen Zubereitung mit 95 bis 40 Gew.-% Wasser verwendet.

Nach dem Aufbringen des Bindemittels auf das Rohfaservlies erfolgt im allgemeinen eine Trocknung vorzugsweise bei 100 bis 400,  
30 insbesondere 130 bis 280°C, ganz besonders bevorzugt 130 bis 230°C über einen Zeitraum von vorzugsweise 10 Sekunden bis 10 Minuten, insbesondere von 10 Sekunden bis 3 Minuten.

Das erhaltene, gebundene Faservlies weist eine hohe Festigkeit im trockenen und nassen Zustand auf. Die erfindungsgemäßen Bindemittel erlauben insbesondere kurze Trocknungszeiten und auch niedrige Trocknungstemperaturen.

Die gebundenen Faservliese, insbesondere Glasfaservliese eignen  
40 sich zur Verwendung als bzw. in Dachbahnen, als Trägermaterialien für Tapeten oder als Inliner bzw. Trägermaterial für Fußbodenbeläge z.B. aus PVC.

Bei der Verwendung als Dachbahnen werden die gebundenen Faservliese im allgemeinen mit Bitumen beschichtet.

Aus den erfindungsgemäßen wäßrigen Zusammensetzungen lassen sich weiterhin geschäumte Platten oder Formkörper herstellen. Dazu wird zunächst das in der Zusammensetzung enthaltene Wasser bei Temperaturen von < 100°C bis zu einem Gehalt von < 20 Gew.-% entfernt. Die so erhaltene viskose Zusammensetzung wird dann bei Temperaturen > 100°C, vorzugsweise bei 120 bis 300°C, verschäumt. Als Treibmittel dient dabei das in der Mischung noch enthaltene Restwasser und/oder die bei der Härtungsreaktion entstehenden gasförmigen Spaltprodukte. Die entstehenden vernetzten Polymer-  
schäume können beispielsweise zur Wärmedämmung und zur Schallisolierung eingesetzt werden.

Mit den erfindungsgemäßen Zusammensetzungen lassen sich durch Imprägnierung von Papier und anschließende schonende Trocknung nach den bekannten Verfahren sogenannte Lamine, z.B. für dekorative Anwendungen, herstellen. Diese werden in einem zweiten Schritt auf das zu beschichtende Substrat unter Einwirkung von Hitze und Druck auflaminiert, wobei die Bedingungen so gewählt werden, daß es zur Aushärtung des Bindemittels kommt.

Die erfindungsgemäßen Zusammensetzungen sind weiterhin geeignet als formaldehydfreie Kernsandbindemittel zur Herstellung von Gußformen und Kernen für den Metallguß nach den üblichen Verfahren. Sie eignen sich auch als Bindemittel für die Herstellung von Schleifpapieren und Schleifkörpern nach Verfahren, wie sie üblicherweise bei Phenoharzen praktiziert werden.

Die nachfolgenden Beispiele erläutern die Erfindung. Die K-Werte wurden in 1 gew.-%iger Lösung (Wasser oder Dimethylformamid) bestimmt.

#### Beispiele

##### Beispiel A:

Herstellung der alkoxylierten Polyamine durch Umsetzung von Polyaminen mit Alkylenoxiden:

2390 g einer 55%igen wäßrigen Lösung eines Polyethylenimins (mittleres Molekulargewicht, ermittelt über Lichtstreuung:  $M_w = 40$  800, Verhältnis von primären zu sekundären zu tertiären Stickstoffgruppen von 4,4:3,8:1,8) werden im einem 5 l Edelstahlautoklaven vorgelegt. Der Reaktor wird verschlossen und mit Stickstoff gespült. Man erwärmt unter Rühren auf 90°C und gibt bei dieser Temperatur 1408 g (30 mol) Ethylenoxid im Verlauf von 5 bis 45 6 Stunden bei einem maximalen Druck von 5 bar zu. Nach beendeter Zugabe und Erreichen der Druckkonstanz hält man noch zwei Stunden

30

bei 90°C. Danach wird auf 40°C abgekühlt und entspannt. Die Reaktionsmischung wird noch eine Stunde bei 40°C bei einem Druck von 50 mbar entgast. Man isoliert 3650 g einer klaren, fast farblosen Lösung mit einem Gehalt an oxalkyliertem Polyethylenimin von ca. 5 75%.

Die Viskosität der Lösungen wird bestimmt gemäß DIN 53019 bei 23°C und einer Schergeschwindigkeit von 250 sec<sup>-1</sup> mit einem Contraves Rheomat 115.

10

Die Lösungen A2 bis A5 werden auf analoge Weise hergestellt:

|    | Lösung | Polyamin                    | mol Alkylenoxid pro mol NH-Gruppe | Wassergehalt der Lösung (%) | pH   | Viskosität bei 250 sec <sup>-1</sup> (mPa.s) |
|----|--------|-----------------------------|-----------------------------------|-----------------------------|------|----------------------------------------------|
| 15 | A1     | Polyethylenimin<br>Mw = 800 | 1,05 mol EO                       | 25                          | 13,7 | 3100                                         |
| 20 | A2     | Ethylendiamin               | 1,0 mol EO                        | 18                          | 12,9 | 560                                          |
|    | A3     | Ethylendiamin               | 1,0 mol PO                        | 25                          | 10,2 | 280                                          |
|    | A4     | Hexamethylen-diamin         | 1,05 mol EO                       | 24                          | 13,6 | 340                                          |
|    | A5     | Diethylentriamin            | 0,92 mol EO                       | 23                          | 13,5 | 580                                          |

25

EO = Ethylenoxid

PO = Propylenoxid

30 Beispiel B:

Zu 400 g einer 50%igen wässrigen Lösung eines Copolymerisates enthaltend 55 Gew.-% Acrylsäure-Einheiten und 45% Maleinsäure-Einheiten (K-Wert einer 1%igen wässrigen Lösung = 11; pH : 1,6; Viskosität 140 mPas) werden bei Raumtemperatur 79 g der 76%igen wässrigen Lösung A 4 unter Rühren in 10 min zugegeben. Anschließend werden bei Raumtemperatur 46 g 25%ige wässrige Ammoniak-Lösung unter Rühren innerhalb von 5 min zugegeben.

40 Aktive Inhaltsstoffe:

51,7% (aktive Inhaltsstoffe sind alle Bestandteile der Zusammensetzung außer Wasser)

Viskosität:

280 mPas

pH:

4,1

45

**Beispiel C:**

Zu 500 g einer 50%igen wäßrigen Lösung des Copolymerisates aus Beispiel B werden bei 80°C 33,3 g der Lösung des ethoxylierten 5 Polyethylenimins A1 unter Rühren zugegeben.

|                 |          |
|-----------------|----------|
| Aktive Inhalts- |          |
| stoffe:         | 51,6%    |
| Viskosität:     | 580 mPas |
| 10 pH:          | 1,9      |

**Beispiel D:****Herstellung der Polymerisatdispersion D1:****15**

Ein Gemisch bestehend aus

220 g Wasser

20 0,5 g einer handelsüblichen 28 Gew.-%igen wäßrigen Lösung des Natriumsalzes eines Gemisches aus Schwefelsäurehalbestern von ethoxylierten C12/C14-Fettalkoholen (mittlerer Ethoxylierungsgrad = 2,8) = Emulgatorlösung i  
20 g Zulauf 1

25 wurde auf 85°C erhitzt und unter Aufrechterhaltung der Temperatur von 85°C zeitgleich beginnend während 2h mit der Restmenge des Zulauf 1 und dazu synchron mit Zulauf 2 kontinuierlich versetzt. Anschließend wurde noch 1h bei 85°C gerührt.

**30**

Zulauf 1: 3 g Natriumperoxodisulfat  
100 g Wasser

Zulauf 2: 210 g Methylmethacrylat  
35 90 g Methacrylsäure  
15,6 g Emulgatorlösung i  
391 g Wasser

Der K-Wert des resultierenden Emulsionspolymerisates (1%ige Di-40 methylformamid-Lösung) betrug 63.

## 32

## Herstellung der Zusammensetzung

Zu 450 g der auf einen Feststoffgehalt von 10% verdünnten wäßrigen Polymerdispersion werden unter Rühren bei Raumtemperatur 23 g 5 der 82%igen Lösung A2 und 0,8 g des Titanelates ETAM (Fa. Hüls) gegeben.

## Aktive Inhalts-

stoffe: 13,6%

10 Viskosität: 920 mPas

pH: 6,4

## Beispiel E:

15 Zu 450 g einer 25%igen Lösung eines Copolymerisates, enthaltend 70 Gew.-% Methacrylsäureeinheiten und 30 Gew.-% Acrylsäureeinheiten (K-Wert: 17; pH 1,1, Viskosität 190 mPas), werden bei Raumtemperatur 36,5 g der 77%igen Lösung des ethoxylierten Diethylenetriamins A5 und 5,6 g einer 50%igen, wäßrigen Natriumhypophos-  
20 phit-Lösung zugegeben.

## Aktive Inhalts-

stoffe: 29,1%

Viskosität: 240 mPas

25 pH: 3,8

## Beispiel F:

Zu 425 g einer 40%igen wäßrigen Lösung eines Copolymerisates aus 30 85 Gew.-% Acrylsäure und 15 Gew.-% Ethylacrylat, synthetisiert nach Beispiel 9 der DE-A-36 20 149, wurden bei Raumtemperatur unter Rühren 88,5 g der 77%igen Lösung des ethoxylierten Diethylenetriamins A5 zugegeben.

35 Aktive Inhaltsstoffe: 46,5%

Viskosität: 4800 mPas

pH: 4,1

## Beispiel G:

40

100 g eines handelsüblichen Copolymerisates von 60 Gew.-% Styrol und 40 Gew.-% Acrylsäure (Molekulargewicht Mn = 1200) wurden in einer Mischung aus 372 g Wasser, 19 g 25%iger NH<sub>3</sub>-Lösung und 80 g der 82%igen Lösung des ethoxylierten Ethyleniamins A2 unter Rühren 45 aufgelöst.

33

Aktive Inhaltsstoffe: 30%  
 Viskosität: 15 mPas  
 pH: 8,5

## 5 Beispiel H:

Zu 470 g einer handelsüblichen 35%igen wässrigen Polyacrylsäure-Lösung, {Molekulargewicht Mw = 100 000, pH = 0,9, Viskosität 140 mPas}, wurden bei Raumtemperatur 33 g der 76%igen wässrigen 10 Lösung A4 zugegeben.

Aktive Inhaltsstoffe: 39,2 Gew.-%  
 Viskosität: 1910 mPas  
 15 pH-Wert: 4,2  
 Gelanteil: Die Mischung wird in eine Silikonform gegossen und bei 50°C im Umluftofen getrocknet. Die Dicke des entstehenden Filmes liegt zwischen 0,5 und 1 mm.

20 Etwa 1 g des so hergestellten Filmes werden 15 min bei 130°C an der Luft gehärtet. Der gehärtete Film wird 48 h in destilliertem Wasser bei 23°C gelagert.

25 Aus dem Gewicht des wassergelagerten Filmes nach Rücktrocknung bis zur Gewichtskonstanz im Verhältnis zum Gewicht des Filmes vor der Wasserverlagerung wird der Gelanteil (d.h. der ganz oder teilweise vernetzte, in Wasser unlösliche Anteil) des Bindemittels berechnet. Er beträgt im vorliegenden Beispiel 74%.

30

## Beispiel I:

35 250 g der 50%igen wässrigen Lösung des Copolymerisates aus Beispiel B und 290 g einer 43,5%igen wässrigen Lösung eines durch radikalische Polymerisation hergestellten Copolymerisates (K-Wert der 1%igen wässrigen Lösung = 30; pH = 0,5; Viskosität = 2100 mPas bei  $250 \text{ sec}^{-1}$ ), bestehend aus 80 Gew.-% Acrylsäure und 20 Gew.-% Maleinsäure, wurden gemischt. Zu dieser Mischung wurden bei Raumtemperatur 50 g der 75%igen Lösung des ethoxylierten Polyethylenimins Al zugegeben.

45

## 34

Aktive Inhaltsstoffe: 49,8 Gew.-%  
 Viskosität: 3700 mPas  
 pH-Wert: 2,0  
 Gelanteil: 85%

5

**Beispiel J:**

Zu 500 g der 50%igen wässrigen Lösung des Copolymerisates aus Beispiel B wurde bei Raumtemperatur unter Rühren eine Mischung aus 10 50 g der 75%igen Lösung des ethoxylierten Polyethylenimins A1 und 37,5 g Triethanolamin innerhalb von 5 min zugegeben.

Aktive Inhaltsstoffe: 55,3 Gew.-%  
 Viskosität: 960 mPas  
 15 pH-Wert: 2,7  
 Gelanteil: 83%

**Beispiel K:**

20 Zu 500 g einer 25%igen Lösung eines Copolymerisates des Beispiels E werden bei Raumtemperatur 46,8 g der 75%igen Lösung des propoxylierten 1,2-Ethylendiamins A3 unter Rühren zugegeben.

**Vergleichsbeispiel A (Beispiel 14, Probe 33 der EP-A-651 088):**

25

Aus 100 g Polyacrylsäure ( $M_w = 10000$ , 25% mol-% der Carbonsäuregruppen mit NaOH neutralisiert), 10 g Triethanolamin und 5 g Natriumhypophosphit wird eine 40%ige wässrige Lösung hergestellt.

30 pH: 4,5  
 Viskosität: 130 mPas  
 Aktive Inhaltsstoffe: 40 Gew.-%  
 Gelanteil: 0%

35 **Vergleichsbeispiel B:**

handelsübliches Phenol-Formaldehydharz: "Kauresin Leim 259 flüssig"

40 **Beispiel L:**

**Herstellung von Spanplatten:**

In einem Taumelmischer werden zu 100 g Holzspänen (mittlere 45 Größe: 1,2 mm, 95 Gew.-% der Späne haben eine Größe zwischen 0,3 mm und 2,5 mm) innerhalb von 1 min soviel des angegebenen wässrigen Bindemittels zugegeben, daß der Gewichtsanteil der akti-

35

5 Inhaltsstoffe des Bindemittels, bezogen auf das Trockengewicht der Holzspäne, 10% beträgt.

Nach einer Mischzeit von 2 min werden die mit Bindemittel imprägnierten Holzspäne in eine 20 x 20 cm große Preßform gestreut und vorverdichtet. Anschließend werden die Späne 10 min mit einer Laborpresse bei einem Preßdruck von 50 bar und einer Pressentemperatur von 190°C zu einer Spanplatte mit einer Dichte von ca. 0,6 bis 0,9 g/cm<sup>3</sup> und einer Dicke zwischen 6 und 8 mm verpreßt.

10

#### Prüfung der Spanplatten:

Die Biegefestigkeit und der Elastizitätsmodul E<sub>b</sub> der Spanplatten wird gemäß DIN 52362 bestimmt.

15

#### Wasseraufnahme:

Prüfkörper der Größe 2,5 x 2,5 cm werden 2 h bei 23°C in Wasser gelagert. Durch Auswiegen der Platten nach Abtupfen des oberflächlich anhängenden Wassers wird die prozentuale Gewichtszunahme der Platten bestimmt.

#### Dickenquellung:

Ebenso wird die prozentuale Zunahme der Plattendicke infolge der Wasserlagerung mittels einer Schublehre bestimmt.

30

| Probe | Bindemittel | Dichte der Platte (g/cm <sup>3</sup> ) | Biegefestigkeit bei 23°C/60°C (N/mm <sup>2</sup> ) | E-Modul bei 23°C/60°C (N/mm <sup>2</sup> ) | Wasseraufnahme nach 2 h (%) | Dickenquellung nach 2 h (%) |
|-------|-------------|----------------------------------------|----------------------------------------------------|--------------------------------------------|-----------------------------|-----------------------------|
| 1     | B           | 0,74                                   | 33/21                                              | 3560/2380                                  | 53                          | 21                          |
| 2     | C           | 0,84                                   | 29/19                                              | 3470/2220                                  | 20                          | 16                          |
| 3     | H           | 0,86                                   | 25/20                                              | 3100/2410                                  | 44                          | 21                          |
| 4     | J           | 0,74                                   | 31/20                                              | 3740/3120                                  | 55                          | 28                          |
| 5     | K           | 0,82                                   | 28/24                                              | 3430/2650                                  | 42                          | 25                          |
| 6     | VA          | 0,70                                   | 21/11                                              | 2590/1840                                  | 88                          | 50                          |

40

#### Beispiel M

##### Herstellung und Prüfung von Platten aus Korkschnitzeln

In einem Taumelmischer wurden zu 65 g Korkschnitzeln (Schütt-dichte 65 g/l, mittlere Größe: 1 mm) 25 g 46,5%ige Bindemittelzusammensetzung aus Beispiel F zugegeben. Die mit Bindemittel

## 36

imprägnierten Korkschnitzel wurden bei 70°C getrocknet und anschließend in einer 15 x 15 cm großen Form bei 190°C für 5 min bei einem Preßdruck von 50 bar zu Platten von 2 mm Dicke verpreßt. Die mechanischen Eigenschaften der Platten wurden im Zugversuch 5 nach DIN 53504 geprüft.

Dichte: 0,14 g/cm<sup>3</sup>  
 Reißfestigkeit: 5,2 N/mm<sup>2</sup>  
 Reißdehnung: 2%

10

## Beispiel N

Herstellung und Prüfung von Platten hergestellt aus Flachsfasermatten

15

100 g der Bindemittel-Zusammensetzung G werden mit 4 g des 50%igen wäßrigen Hydrophobierungsmittel-Zusammensetzung Mobilcer 736 gemischt. Eine Flachsfasermatte (Flächengewicht 410 g/m<sup>2</sup>) wird mit dieser Mischung getränkt, so daß die Matte 25 Gew.-% aktive 20 Inhaltsstoffe, bezogen auf das Gewicht der trockenen Fasern, enthält. Drei Lagen der imprägnierten Matte werden in einer beheizten Presse bei einer Pressentemperatur von 190°C für 3 min zu 2 mm dicken Platten verpreßt.

25 Dichte: 0,83 g/cm<sup>3</sup>  
 Biegefesteitigkeit bei 23°C: 48 N/mm<sup>2</sup>  
 Biegefesteitigkeit bei 100°C: 34 N/mm<sup>2</sup>  
 E-Modul bei 23°C: 5860 N/mm<sup>2</sup>  
 E-Modul bei 100°C: 4360 N/mm<sup>2</sup>  
 30 Wasseraufnahme nach 24 h: 30%  
 Dickenquellung nach 24 h: 28%

## Beispiel O

## 35 Beschichtung und Prüfung von Mineralfaserplatten:

Auf eine handelsübliche 16 mm dicke Akustikplatte, die als Bindemittel Stärke enthielt, wurden mit einem Pinsel auf der Dekorseite die in der Tabelle angegebenen Beschichtungsmassen aufgebracht. Die Auftragsmenge betrug jeweils 100 g aktive Bestandteile/m<sup>2</sup>. Die Platten wurden 15 min bei 200°C getrocknet.

Der Biegemodul der unbeschichteten und beschichteten Platten wurde gemäß DIN 53362 bei 23°C und bei 60°C geprüft. Die Abmessungen der Prüfkörper betrugen 25 x 5 x 1,6 cm.

## Prüfergebnisse:

|   | Beschichtungs-masse | Elastizitätsmodul<br>$E_b$ bei 23°C<br>(N/mm²) | Elastizitätsmodul<br>$E_b$ bei 60°C<br>(N/mm²) |
|---|---------------------|------------------------------------------------|------------------------------------------------|
| 5 | ohne                | 130                                            | 120                                            |
|   | Beisp. D            | 210                                            | 200                                            |
|   | Beisp. I            | 190                                            | 180                                            |

## 10 Beispiel P

## Herstellung von Prüfkörpern aus Basalt-Schmelzperlen

300 g Basalt-Schmelzperlen (fallen an bei Herstellung von Mine-  
15 ralfasern aus der Schmelze, mittlere Korngröße 0,2 mm) wurden mit  
Bindemittel-Zusammensetzung bei Raumtemperatur vermischt  
(5 Gew.-% Bindemittel-Aktivsubstanz bezogen auf Schmelzperlen).  
Aus der feuchten Mischung wird ein Prüfkörper (Fischer-Riegel)  
mit den Abmessungen 17 x 2,3 x 2,3 cm geformt und 2 h bei 200°C  
20 ausgehärtet.

Die Biegefestigkeit der so hergestellten Fischerriegel wird im  
trockenen Zustand bei 23°C im Dreipunktbiegeversuch bestimmt.

25 Ein weiterer Fischer-Riegel wird eine Stunde in destilliertem  
Wasser bei 23°C gelagert. Bestimmt wird die Wasseraufnahme des  
Prüfkörpers und seine Biegefestigkeit im nassen Zustand bei 23°C  
Wasseraufnahme nach 1 h in destilliertem Wasser bei 23°C gelagert,  
angegeben in Gewichtsprozent vom Trockengewicht.

## 30

| Probe | Bindemittel | Wasseraufnahme<br>nach 1 h<br>(%) | Biegefestig-            | Biegefestig-        |
|-------|-------------|-----------------------------------|-------------------------|---------------------|
|       |             |                                   | keit trocken<br>(N/mm²) | keit naß<br>(N/mm²) |
| 35    | B           | 1,7                               | 580                     | 590                 |
| 1     | E           | 5,7                               | 820                     | 940                 |
| 2     | I           | 10,5                              | 550                     | 570                 |
| 3     | J           | 4,1                               | 880                     | 630                 |
| 4     | V-B         | 22,0                              | 850                     | 690                 |

## 40

259/hz

## Patentansprüche

1. Thermisch härtbare, wässrige Zusammensetzungen, enthaltend  
 5     A) mindestens eine wasserlösliche, lineare oder verzweigte  
       aliphatische Verbindung, die pro Molekül wenigstens zwei  
       funktionelle Aminogruppen vom Typ (a) oder vom Typ (b)

10



20

2. Zusammensetzung nach Anspruch 1, enthaltend als Komponente  
 (A) mindestens eine Verbindung der Formel I

25



35

40

45

worin

A für C<sub>2</sub>-C<sub>18</sub>-Alkylen steht, das gegebenenfalls substituiert ist durch ein oder mehrere Gruppen, die unabhängig voneinander ausgewählt sind unter Alkyl, Hydroxyalkyl, Cycloalkyl, OH und NR<sup>6</sup>R<sup>7</sup>, wobei R<sup>6</sup> und R<sup>7</sup> unabhängig voneinander für H, Hydroxyalkyl oder Alkyl stehen, und das gegebenenfalls unterbrochen ist durch ein oder mehrere Sauerstoffatome und/oder NR<sup>5</sup>-Gruppen, wobei R<sup>5</sup> für H, Hydroxyalkyl, (CH<sub>2</sub>)<sub>n</sub>NR<sup>6</sup>R<sup>7</sup>, wobei n für 2 bis 5 steht und R<sup>6</sup> und R<sup>7</sup> die oben angegebenen Bedeutungen besitzen, oder Alkyl, das seinerseits durch ein oder mehrere NR<sup>5</sup>-Gruppen, wobei R<sup>5</sup> die oben angegebenen Bedeutungen besitzt, unterbrochen und/oder durch ein oder mehrere NR<sup>6</sup>R<sup>7</sup>-Gruppen substituiert sein kann, wobei R<sup>6</sup> und R<sup>7</sup> die oben angegebenen Bedeutungen besitzen, steht; oder A für einen Rest der Formel steht:



5

worin

$a$ ,  $q$  und  $s$  unabhängig voneinander für 0 oder eine ganze Zahl von 1 bis 6 stehen.

10 p und r unabhängig voneinander für 1 oder 2 stehen und r für 0,1 oder 2 steht,

wobei die cycloaliphatischen Reste auch durch 1, 2 oder 3 Alkylreste substituiert sein können und R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für H, Hydroxy- und Alkylgruppen eingesetzt werden können.

15 alkyl, Alkyl oder Cycloalkyl scaten.

3. Zusammensetzung nach Anspruch 2, wobei die Komponente (A) ausgewählt ist unter mindestens einer Verbindung der Formel Ia:



worin

25 A<sub>1</sub> für C<sub>2</sub>-C<sub>12</sub>-Alkylen steht, das gegebenenfalls durch mindestens eine Alkylgruppe und/oder mindestens eine NR<sup>6</sup>R<sup>7</sup>-Gruppe substituiert ist, wobei R<sup>6</sup> und R<sup>7</sup> unabhängig voneinander für Alkyl oder Hydroxyalkyl stehen und R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für Hydroxyalkyl oder H stehen oder einer der Reste R<sup>1</sup> und R<sup>2</sup> und/oder einer der Reste R<sup>3</sup> und R<sup>4</sup> für Alkyl oder Cycloalkyl steht.

30

4. Zusammensetzung nach Anspruch 2, wobei die Komponente (A) ausgewählt ist unter mindestens einer Verbindung der Formel



1

worin

worin  
A<sub>2</sub> für C<sub>2</sub>-C<sub>8</sub>-Alkylen steht, das durch mindestens eine NR<sup>5</sup>-Gruppe unterbrochen ist. wobei R<sup>5</sup> (oder die Reste R<sup>5</sup> unabhängig voneinander) für Hydroxyalkyl oder Alkyl steht (stehen) und

1

$R^1$ ,  $R^2$ ,  $R^3$  und  $R^4$  unabhängig voneinander für Hydroxyalkyl oder H stehen.

5. Zusammensetzung nach Anspruch 2, wobei die Komponente (A) ausgewählt ist unter mindestens einer Verbindung der Formel Ic:

5



worin

- A<sub>3</sub> für C<sub>2</sub>-C<sub>8</sub>-Alkylen steht, das durch mindestens eine NR<sup>5</sup>-Gruppe unterbrochen ist, wobei R<sup>5</sup> für H, Hydroxyalkyl oder CH<sub>2</sub>CH<sub>2</sub>NR<sup>6</sup>R<sup>7</sup> steht,
- R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für Alkyl stehen, das gegebenenfalls durch mindestens eine NR<sup>5</sup>-Gruppe unterbrochen und/oder durch mindestens eine NR<sup>6</sup>R<sup>7</sup>-Gruppe substituiert ist,
- R<sup>5</sup> für H, Hydroxyalkyl oder -R<sup>8</sup>NR<sup>6</sup>R<sup>7</sup> steht,
- R<sup>6</sup> und R<sup>7</sup> unabhängig voneinander für H, Hydroxyalkyl oder -R<sup>8</sup>NR<sup>6</sup>R<sup>7</sup> stehen und
- R<sup>8</sup> für einen Ethylen- oder Propylenrest steht,
- wobei (durchschnittlich) wenigstens 30% der N-Atome eine Hydroxyalkylgruppe tragen.

6. Zusammensetzung nach Anspruch 5, wobei es sich bei der Komponente (A) um ein Umsetzungsprodukt eines Polyethylenimins mit Ethylenoxid handelt.

7. Zusammensetzung nach Anspruch 2, wobei die Komponente (A) ausgewählt ist unter mindestens einer Verbindung der Formel Ie:

30



worin

- A<sub>5</sub> für C<sub>6</sub>-C<sub>18</sub>-Alkylen steht, das durch mindestens eine NR<sup>5</sup>-Gruppe unterbrochen ist, wobei R<sup>5</sup> für (CH<sub>2</sub>)<sub>n</sub>NR<sup>6</sup>R<sup>7</sup> oder Alkyl steht, das gegebenenfalls durch wenigstens eine NR<sup>5</sup>-Gruppe, worin R<sup>5</sup> für (CH<sub>2</sub>)<sub>n</sub>NR<sup>6</sup>R<sup>7</sup> oder Alkyl steht, unterbrochen und/oder durch mindestens eine NR<sup>6</sup>R<sup>7</sup>-Gruppe substituiert ist, n für 2 oder 3 steht und
- R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>6</sup> und R<sup>7</sup> unabhängig voneinander für Hydroxyalkyl oder H stehen.

8. Zusammensetzung nach Anspruch 2, wobei die Komponente (A) ausgewählt ist unter mindestens einer Verbindung der Formel If:



- 5        worin
- A<sub>6</sub>    für C<sub>2</sub>-C<sub>12</sub>-Alkylen steht, das durch mindestens ein Sauerstoffatom unterbrochen ist und
- R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> unabhängig voneinander für Hydroxyalkyl oder H stehen.
- 10      9. Zusammensetzung nach Anspruch 2, wobei es sich bei der Komponente (A) um Polyalkanolamine handelt, die durch Kondensation von Dialkanolaminen und/oder Trialkanolaminen mit sich selbst, gegebenenfalls in Gegenwart von ein- bzw. mehrwertigen Alkoholen oder ein- bzw. mehrwertigen Aminen, erhältlich sind.
- 15      10. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei es sich bei der Hydroxyalkylgruppe in den obigen Definitionen um eine Hydroxypropyl- oder Hydroxyethylgruppe handelt.
- 20      11. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Komponente (B) aufgebaut ist aus mindestens einer Verbindung, die ausgewählt ist unter Acrylsäure, Methacrylsäure, Crotonsäure, Fumarsäure, Maleinsäure, 2-Methylmaleinsäure und Itaconsäure.
- 25      12. Zusammensetzung nach Anspruch 11, wobei die Komponente (B) zumindest teilweise aus Maleinsäure aufgebaut ist.
- 30      13. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Komponente (B) bis zu 95 Gew.-% andere ethylenisch ungesättigte Monomere einpolymerisiert enthält.
- 35      14. Zusammensetzung nach Anspruch 13, wobei die ethylenisch ungesättigten Monomere ausgewählt sind unter Estern der (Meth)acrylsäure mit C<sub>1</sub>-C<sub>12</sub>-Monoalkoholen oder -Dialkoholen, vinylaromatischen Verbindungen, Butadien, Vinylestern von aliphatischen C<sub>2</sub>-C<sub>12</sub>-Monocarbonsäuren, (Meth)acrylnitril, (Meth)acrylamid, N-C<sub>1</sub>-C<sub>6</sub>-Alkyl(meth)acrylamiden und N,N-Di-C<sub>1</sub>-C<sub>6</sub>-Alkyl(meth)acrylamiden.

15. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Molverhältnis von Carboxylgruppen der Komponente (B) zu den Hydroxylgruppen der Komponente (A) im Bereich von 20:1 bis 1:5 liegt.  
5
16. Zusammensetzung nach einem der vorhergehenden Ansprüche, die zusätzlich ein Dialkanolamin und/oder Trialkanolamin enthält.
17. Zusammensetzung nach einem der vorhergehenden Ansprüche, die  
10 zusätzlich einen Reaktionsbeschleuniger enthält.
18. Verwendung der Zusammensetzungen nach einem der Ansprüche 1 bis 17 als Bindemittel für Formkörper.
- 15 19. Bindemittel, enthaltend eine Zusammensetzung nach einem der Ansprüche 1 bis 17.
20. Formkörper, erhältlich durch Imprägnieren eines Substrates mit einer Zusammensetzung nach einem der Ansprüche 1 bis 17  
20 bzw. einem Bindemittel nach Anspruch 19 und Aushärten des imprägnierten Substrats.
21. Formkörper nach Anspruch 20, wobei es sich um Platten aus feinteiligen Materialien, insbesondere Spanplatten und Faserplatten, Dämmstoffe oder Faservliese handelt.  
25

30

35

40

45

# INTERNATIONAL SEARCH REPORT

Internat. Application No  
PCT/EP 97/02796

A. CLASSIFICATION OF SUBJECT MATTER  
IPC 6 C08F8/30 C08K5/17 C08J5/04 C09J133/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C08K C09J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                     | Relevant to claim No. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X          | DE 22 14 450 A (ETHYLENE-PLASTIQUE) 5<br>October 1972<br>cited in the application<br>see page 4, line 21 - line 27; claims 1,11<br>--- | 1,2,4,<br>11,12,20    |
| A          | EP 0 445 578 A (BASF) 11 September 1991<br>cited in the application<br>see claims 1,2,7,11,12<br>---                                   | 1,13,14,<br>18,20     |
| X          | DE 17 94 341 A (DU PONT) 2 March 1972<br>see page 11, paragraph 3 - page 12,<br>paragraph 1; examples<br>---                           | 1,18                  |
| A          | DE 17 94 341 A (DU PONT) 2 March 1972<br>see page 11, paragraph 3 - page 12,<br>paragraph 1; examples<br>---                           | 1,13,14,<br>18        |
| E          | WO 97 31059 A (BASF) 28 August 1997<br>see page 9, paragraph 5; claims 1,16,17<br>-----                                                | 1,13,18               |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"G" document member of the same patent family

1

Date of the actual completion of the international search

Date of mailing of the international search report

14.10.97

29 September 1997

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl  
Fax: (+31-70) 340-3018

Authorized officer

Engel, S

# INTERNATIONAL SEARCH REPORT

Information on patent family members

|           |                  |
|-----------|------------------|
| Internat. | Application No.: |
|           | PCT/EP 97/02796  |

| Patent document cited in search report | Publication date | Patent family member(s)                                                                      | Publication date                                         |
|----------------------------------------|------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|
| DE 2214450 A                           | 05-10-72         | GB 1366081 A<br>BE 780965 A<br>FR 2130561 A<br>NL 7203882 A,B,<br>US 3784396 A               | 11-09-74<br>17-07-72<br>03-11-72<br>27-09-72<br>08-01-74 |
| EP 445578 A                            | 11-09-91         | DE 4006644 A<br>DE 4012947 A<br>AT 113307 T<br>CA 2037214 A<br>DE 59103307 D                 | 05-09-91<br>31-10-91<br>15-11-94<br>04-09-91<br>01-12-94 |
| DE 1794341 A                           | 02-03-72         | BE 643538 A<br>DE 1520590 A<br>FR 1386655 A<br>GB 1088105 A<br>NL 6401270 A,B<br>SE 321087 B | 07-08-64<br>11-11-71<br>14-05-65<br>17-08-64<br>23-02-70 |
| WO 9731059 A                           | 28-08-97         | DE 19606393 A                                                                                | 28-08-97                                                 |

# INTERNATIONALER RECHERCHENBERICHT

Internat. Aktenzeichen  
PCT/EP 97/02796

**A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES**  
IPK 6 C08F8/30 C08K5/17 C08J5/04 C09J133/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

**B. RECHERCHIERTE GEBIETE**

Recherchierte Mindestprätfot (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C08K C09J

Recherchierte aber nicht zum Mindestprätfot gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

**C. ALS WESENTLICH ANGEGEHENE UNTERLAGEN**

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                 | Betr. Anspruch Nr. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| X          | DE 22 14 450 A (ETHYLENE-PLASTIQUE)<br>5.Okttober 1972<br>in der Anmeldung erwähnt<br>siehe Seite 4, Zeile 21 - Zeile 27;<br>Ansprüche 1,11<br>--- | 1,2,4,<br>11,12,20 |
| A          | EP 0 445 578 A (BASF) 11.September 1991<br>in der Anmeldung erwähnt<br>siehe Ansprüche 1,2,7,11,12<br>---                                          | 1,13,14,<br>18,20  |
| X          | DE 17 94 341 A (DU PONT) 2.März 1972<br>siehe Seite 11, Absatz 3 - Seite 12.<br>Absatz 1; Beispiele<br>---                                         | 1,18               |
| A          | DE 17 94 341 A (DU PONT) 2.März 1972<br>siehe Seite 11, Absatz 3 - Seite 12.<br>Absatz 1; Beispiele<br>---                                         | 1,13,14,<br>18     |
| E          | WO 97 31059 A (BASF) 28.August 1997<br>siehe Seite 9, Absatz 5; Ansprüche 1,16,17<br>-----                                                         | 1,13,18            |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen:

Siehe Anhang Patentfamilie

- \* Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besondere Bedeutung anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "Z" Veröffentlichung, die Mitglied derselben Patentfamilie ist

1

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

29.September 1997

14.10.97

Name und Postanschrift der Internationalen Recherchenbehörde  
Europäisches Patentamt, P.B. 5818 Patentamt 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl  
Fax: (+31-70) 340-3018

Bevollmächtigter Bediensteter

Engel, S

# INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur seinen Patentfamilie gehören

|                 |              |
|-----------------|--------------|
| Information     | Aktenzeichen |
| PCT/EP 97/02796 |              |

| Im Recherchenbericht<br>angeführtes Patentdokument | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie                                                            |  | Datum der<br>Veröffentlichung                            |
|----------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------|--|----------------------------------------------------------|
| DE 2214450 A                                       | 05-10-72                      | GB 1366081 A<br>BE 780965 A<br>FR 2130561 A<br>NL 7203882 A,B,<br>US 3784396 A               |  | 11-09-74<br>17-07-72<br>03-11-72<br>27-09-72<br>08-01-74 |
| EP 445578 A                                        | 11-09-91                      | DE 4006644 A<br>DE 4012947 A<br>AT 113307 T<br>CA 2037214 A<br>DE 59103307 D                 |  | 05-09-91<br>31-10-91<br>15-11-94<br>04-09-91<br>01-12-94 |
| DE 1794341 A                                       | 02-03-72                      | BE 643538 A<br>DE 1520590 A<br>FR 1386655 A<br>GB 1088105 A<br>NL 6401270 A,B<br>SE 321087 B |  | 07-08-64<br>11-11-71<br>14-05-65<br>17-08-64<br>23-02-70 |
| WO 9731059 A                                       | 28-08-97                      | DE 19606393 A                                                                                |  | 28-08-97                                                 |