

Chemical stoichiometry

21. (d)
$$2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$

Change by 5

Eq. wt. =
$$\frac{\text{Mol. wt.}}{5}$$

22. (c) Dibasic acid NaOH;
$$N_1V_1 = N_2V_2$$

$$\frac{W}{E} \times 1000 = \frac{1}{10} \times 25; \frac{0.16}{E} \times 1000 = \frac{25}{10}$$

$$M=2\times E=2\times 64=128.$$

$$N_1V_1 = N_2V_2$$
; $20 \times \frac{1}{10} = \frac{1}{20} \times V$; $V = 40ml$.

24. (a)
$$NV = N_1V_1 + N_2V_2$$

$$0.2 \times 2 = 0.5x + 0.1(2 - x)$$

$$0.2 \times 2 = 0.3x + 0.1(2 - x)$$

$$0.4 = 0.5x + 0.2 - 0.1x$$

$$0.2 = 0.4x$$

$$0.2 = 0.4x$$

$$x=\frac{1}{2}L=0.5L$$

25. (d)
$$NV = N_1V_1 + N_2V_2 + N_3V_3$$

$$N \times 1000 = 1 \times 5 + \frac{1}{2} \times 20 + \frac{1}{3} \times 30 = 5 + 10 + 10 = 25$$

$$N = 0.025 = \frac{N}{40}$$

26. (b)
$$NH_{3(g)} + HCl_{(g)} \rightarrow NH_4Cl_{(s)}$$
 $t=0.20ml_40ml_0 \atop t=t 0 20ml_solid$

Final volume = 20ml.

27. (b) $KMnO_4$ Oxalic acid

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$
; $\frac{20 \times 0.1}{2} = \frac{M_2V_2}{5}$; $M_2V_2 = 5$.

- **28.** (b) Acidic medium $E = \frac{M}{5} = \frac{158}{5} = 31.6 gm$.
- **29.** (c) 0.1 $MAgNO_3$ will react with 0.1 MNaCI to form 0.1 $MNaNO_3$. But as the volume is doubled, conc. of $NO_3^- = \frac{0.1}{2} = 0.05M$
- 30. (a) Acid base

$$N_1V_1 = N_2V_2$$
; $N_1 \times 30 = 0.2 \times 15$; $N_1 = 0.1N$

31. (b) (l) Phenopthalein indicate partial neutralisation of $Na_2CO_3 \rightarrow NaHCO_3$ Meq. of Na_2CO_3 + Meq. of NaOH = Meq. of HCI

$$\frac{w}{E} \times 1000 + \frac{w}{E} \times 1000 = NV$$

(Suppose
$$Na_2CO_3 = agm$$
, $NaOH = b gm$)

$$\frac{a}{106} \times 1000 + \frac{b}{40} \times 1000 = 300 \times 0.1....(1)$$

(II) Methyl orange indicate complete neutralisation

$$N_1V_1 = N_2V_2$$
, $25 \times 0.2 = 0.1 \times V_2$ so $V_2 = 50$ mlexcess

$$\therefore \frac{a}{53} \times 1000 + \frac{b}{40} \times 1000 = 350 \times 0.1....(2)$$

From (1) and (2) b = 1gm.

32. (c) From solution of (31)

From equation (1)

 $a = Na_2CO_3 = 0.53gm.$

33. (b) $(H_2SO_4)\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}(NaOH)$

 $\frac{1\times V_1}{1} = \frac{1\times 10}{2}$; $V_1 = 5ml$.

34. (c) Atom in highest oxidation state can oxidize iodide to liberate I_2 which is volumetrically measured by iodometric titration using hypo.

 $2I^- \rightarrow I_2$

 $Pb^{+2} \rightarrow$ Lowest oxidation state can not oxidise iodide to I_2 .

35. (d) $KMnO_4$ = Mohr salt

 $\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$; $\frac{0.1 \times 10}{1} = \frac{M_2V_2}{5}$; $M_2V_2 = 5$.

36. (d) The equivalent weight of $H_3PO_4 = \frac{\text{molecular weight}}{2}$

∴ mole wt of $H_3PO_4 = 3 + 31 + 64 = 98$

$$\therefore \frac{98}{2} = 49$$

37. (b) $Ba(OH)_2 + CO_2 \rightarrow BaCO_3 + H_2O$

Atomic wt. of $BaCO_3 = 137 + 12 + 16 \times 3 = 197$

No. of mole = $\frac{\text{wt. of substance}}{\text{mol wt.}}$

:1 mole of $Ba(OH)_2$ gives 1 mole of $BaCO_3$

∴205 mole of $Ba(OH)_2$ will give .205 mole of $BaCO_3$

∴wt. of 0.205 mole of $BaCO_3$ will be

$$.205 \times 197 = 40.385gm \approx 40.5gm$$

38. (d)
$$N_1 = 0.5N \to 10mg \text{ per } mL$$

$$N_2 = \frac{10 \times 10^{-3} gm}{40 \times 1} \times 1000 = 0.25 N$$

$$V_1 = 500ml, V_2 = ?$$

$$N_1V_1 = N_2V_2$$
; $0.5 \times 500 = 0.25 \times V_2$

 $V_2 = 1000mL$ final volume water added = 1000 - 500 = 500mL.

39. (a) eq. of
$$KMnO_4 = eq. of Fe(C_2O_4)$$

$$x \times 5 = 1 \times 3$$

$$x = 0.6$$

Element	At.wt.	Mole	Ratio	Empirical
- \\\	EDU		\ 	formula
C =86%	12	7.1	1	CH_2
H = 14%	1 DI	14	2	Beleongs to
				alkanaC H

