Graphs - Introduction

Fundamental Algorithms

Rodica Potolea, Camelia Lemnaru and Ciprian Oprișa

Technical University of Cluj-Napoca Computer Science Department

Agenda

- Graph Representation
- Minimum Spanning Tree (MST)
 - Kruskal's Algorithm
 - Prim's Algorithm
- Breadth-First Search (BFS)

Agenda

- Graph Representation
- 2 Minimum Spanning Tree (MST)
 - Kruskal's Algorithm
 - Prim's Algorithm
- Breadth-First Search (BFS)

Graph Representation

$$G = (V, E)$$

- *V* node/vertex set
- E edge set, $E \subseteq V \times V$

Representation:

Graph Representation

$$G = (V, E)$$

- *V* node/vertex set
- ullet E edge set, $E\subseteq V imes V$

Representation:

adjacency matrix

	a	b	С	d	е
a	0	1	0	0	0
Ь	0	0	0	1	0
С	1	0	0	1	1
d	0	0	1	0	0
e	0	0	0	0	0

Graph Representation

$$G = (V, E)$$

- V node/vertex set
- E edge set, $E \subseteq V \times V$

Representation:

- adjacency matrix
- adjacency lists

	a	b	c	d	e
а	0	1	0	0	0
b	0	0	0	1	0
С	1	0	0	1	1
d	0	0	1	0	0
е	0	0	0	0	0

- $a \rightarrow \{b\}$
- $b \rightarrow \{d\}$
- $c \rightarrow \{a, d, e\}$
- $\bullet \ d \to \{c\}$
- ullet $e o \emptyset$

Concepts (1)

Directed graph

Undirected graph

Concepts (2)

Weighted graph

Concepts (2)

Weighted graph

Concepts (3)

Node degree

$$a.deg = 2$$

$$b.deg = 2$$

$$c.deg = 3$$

Concepts (3)

Node degree

$$a.deg = 2$$

$$b.deg = 2$$

$$c.deg = 3$$

a

Concepts (4)

Complete graph

$$E = \{(u, v) \in V \times V, u \neq v\}$$

Concepts (5)

The distance between two nodes

The shortest path (in number of edges) between the two nodes.

Graph diameter

The longest distance between (any) two nodes in the graph.

Concepts (6)

Connected graph

Unconnected graph

Concepts (6)

Connected graph

Unconnected graph

Strongly connected graph

Directed graph, in which we have a path from any node to any other node, considering the edge direction.

Agenda

- Graph Representation
- Minimum Spanning Tree (MST)
 - Kruskal's Algorithm
 - Prim's Algorithm
- Breadth-First Search (BFS)

Minimum Spanning Tree (MST)

- Given a weighted, undirected, graph G = (V, E), $w: V \times V \to \mathbb{R}$
 - w(u, v) weight/cost of the edge between u and v
- Find G' = (V, T)
 - $T \subseteq E$, |T| = |V| 1, T contains no cycle
 - $\sum_{(u,v)\in\mathcal{T}} w(u,v)$ is minimum

Minimum Spanning Tree (MST)

- Given a weighted, undirected, graph G = (V, E), $w: V \times V \to \mathbb{R}$
 - w(u, v) weight/cost of the edge between u and v
- Find G' = (V, T)
 - $T \subseteq E$, |T| = |V| 1, T contains no cycle
 - $\sum_{(u,v)\in T} w(u,v)$ is minimum

MST Applications

- network design
 - phone, electrical, hidraulic, computer, road

MST Applications

- network design
 - phone, electrical, hidraulic, computer, road
- approximation algorithms for NP-hard problems
 - TSP (traveling salesman problem)
 - Steiner trees

MST Applications

- network design
 - phone, electrical, hidraulic, computer, road
- approximation algorithms for NP-hard problems
 - TSP (traveling salesman problem)
 - Steiner trees
- indirect applications
 - max bottleneck path
 - LDPC codes for transmission error correction
 - feature learning in face recognition
 - reducing storage space in protein amino-acid sequencing
 - Ethernet auto-configuration for cycle avoidance

Kruskal's Algorithm - Approach

- greedy approach
- build the spanning tree by repeatedly linking partial trees
- initially, each node is a tree
- in each step, link the two closest sub-trees
 - by an edge which will be added to the MST
 - the sub-trees should be distinct (the edge must not close a cycle)
- ullet stop when we have selected |V|-1 edges
- how can we know that an edge links two different trees, and not two different branches of the same tree? (i.e. cycle)
 - use a disjoint set forest


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```



```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```


$$G.E = \{(a, b)_3, (a, c)_7, (b, c)_5, (b, d)_4, (c, d)_2, (c, e)_9, (d, e)_8\}$$

$$A = \{\}$$


```
MST-Kruskal(G, w)
   A = \emptyset
   for each vertex v \in G.V
3
        MAKE-Set(v)
   sort the edges G.E by weight w
   for each edge (u, v) \in G.E
6
        if FIND-SET(u) \neq FIND-SET(v)
             A = A \cup \{(u, v)\}
8
             Union(u, v)
9
   return A
```


$$G.E = \{(a, b)_3, (a, c)_7, (b, c)_5, (b, d)_4, (c, d)_2, (c, e)_9, (d, e)_8\}$$


```
MST-Kruskal(G, w)
   A = \emptyset
   for each vertex v \in G.V
        Make-Set(v)
   sort the edges G.E by weight w
   for each edge (u, v) \in G.E
6
        if FIND-SET(u) \neq FIND-SET(v)
             A = A \cup \{(u, v)\}
8
             Union(u, v)
9
   return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

 $A = \{\}$


```
MST-Kruskal(G, w)
   A = \emptyset
   for each vertex v \in G.V
        Make-Set(v)
   sort the edges G.E by weight w
5
   for each edge (u, v) \in G.E
6
        if FIND-SET(u) \neq FIND-SET(v)
             A = A \cup \{(u, v)\}
8
             Union(u, v)
9
   return A
```


$$G.E = \{ \frac{(c,d)_2}{(b,c)_5}, (a,b)_3, (b,d)_4, \\ (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9 \}$$

 $A = \{\}$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```


$$G.E = \{ (c, d)_2, (a, b)_3, (b, d)_4, (b, c)_5, (a, c)_7, (d, e)_8, (c, e)_9 \}$$

$$A = \{ (c, d) \}$$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, \frac{(a,b)_3}{(b,c)_5}, (b,d)_4, \\ (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

$$A = \{(c,d)\}$$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, \frac{(a,b)_3}{(b,c)_5}, (b,d)_4, \\ (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

$$A = \{(c,d), (a,b)\}$$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

$$A = \{(c,d), (a,b)\}$$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

 $A = \{(c, d), (a, b), (b, d)\}$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

$$A = \{(c,d), (a,b), (b,d)\}$$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

$$A = \{(c,d), (a,b), (b,d)\}$$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

$$A = \{(c,d), (a,b), (b,d), (d,e)\}$$

Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

$$A = \{(c,d), (a,b), (b,d), (d,e)\}$$

Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```


$$G.E = \{(c,d)_2, (a,b)_3, (b,d)_4, (b,c)_5, (a,c)_7, (d,e)_8, (c,e)_9\}$$

$$A = \{(c,d), (a,b), (b,d), (d,e)\}$$


```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3  MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7  A = A \cup \{(u, v)\}

8  UNION(u, v)

9 return A
```



```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```



```
MST-Kruskal(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 M_{AKE-SET}(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```



```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 M_{AKE-SET}(v)

4 sort the edges G.E by weight w

5 for each edge (u, v) \in G.E

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```



```
 \begin{aligned} & \operatorname{MST-KRUSKAL}(G,w) \\ & 1 \quad A = \emptyset \\ & 2 \quad \text{for each vertex } v \in G.V \\ & 3 \quad & \operatorname{Make-Set}(v) \\ & 4 \quad \text{sort the edges } G.E \text{ by weight } w \\ & 5 \quad \text{for each edge } (u,v) \in G.E \\ & 6 \quad & \text{if } \operatorname{FIND-Set}(u) \neq \operatorname{FIND-Set}(v) \\ & 7 \quad & A = A \cup \{(u,v)\} \\ & 8 \quad & \operatorname{UNION}(u,v) \end{aligned} \right\} \underbrace{ \begin{array}{c} O(V) \\ O(E \log E) \\ O(E) \\ O(E) \\ O(CV) \\ O(
```

Complexity: $O(E \log E)$

Kruskal's Algorithm - Disscussion

- Is the solution unique?
 - on the given example
 - in general

Kruskal's Algorithm - Disscussion

- Is the solution unique?
 - on the given example
 - in general
- How can we obtain other solutions?

Kruskal's Algorithm - Disscussion

- Is the solution unique?
 - on the given example
 - in general
- How can we obtain other solutions?
- How can we obtain all solutions?
 - How many solutions are there, in the worst case?

- Let *T* be the MST built by MST-KRUSKAL.
- Consider $G.E = \{e_1, e_2, \dots, e_m\}$ the edges of the graph, ordered ascendingly by weight.

- Let *T* be the MST built by MST-KRUSKAL.
- Consider $G.E = \{e_1, e_2, \dots, e_m\}$ the edges of the graph, ordered ascendingly by weight.
- Assume that T is not minimal, and that T^* is the MST $(w(T^*) < w(T))$ having the longest common edge prefix with T.

- Let *T* be the MST built by MST-KRUSKAL.
- Consider $G.E = \{e_1, e_2, \dots, e_m\}$ the edges of the graph, ordered ascendingly by weight.
- Assume that T is not minimal, and that T^* is the MST $(w(T^*) < w(T))$ having the longest common edge prefix with T.
- Let $e \in G.E$ be the first edge (considering their order) which doesn't belong to $T.E \cap T^*.E$

- Let *T* be the MST built by MST-KRUSKAL.
- Consider $G.E = \{e_1, e_2, \dots, e_m\}$ the edges of the graph, ordered ascendingly by weight.
- Assume that T is not minimal, and that T^* is the MST $(w(T^*) < w(T))$ having the longest common edge prefix with T.
- Let $e \in G.E$ be the first edge (considering their order) which doesn't belong to $T.E \cap T^*.E$
 - Kruskal would not have excluded that edge, unless it closed a cycle
 - $\bullet \Rightarrow e \in T.E \text{ and } e \notin T^*.E$

- Let *T* be the MST built by MST-KRUSKAL.
- Consider $G.E = \{e_1, e_2, \dots, e_m\}$ the edges of the graph, ordered ascendingly by weight.
- Assume that T is not minimal, and that T^* is the MST $(w(T^*) < w(T))$ having the longest common edge prefix with T.
- Let $e \in G.E$ be the first edge (considering their order) which doesn't belong to $T.E \cap T^*.E$
 - Kruskal would not have excluded that edge, unless it closed a cycle
 - $\bullet \Rightarrow e \in T.E \text{ and } e \notin T^*.E$
- If e = (x, y), there is a path in T^* , P, from x to y (which cannot be the direct edge, because, $(x, y) \notin T^*$.E).
- If all edges in P had a weight smaller than e, Kruskal-MST would have selected them prior to e (e is the first edge for which T and T* "disagree"), and e would close a cycle.
- $\bullet \Rightarrow \exists e' \in P, w(e) \leq w(e').$

- Let *T* be the MST built by MST-KRUSKAL.
- Consider $G.E = \{e_1, e_2, \dots, e_m\}$ the edges of the graph, ordered ascendingly by weight.
- Assume that T is not minimal, and that T^* is the MST $(w(T^*) < w(T))$ having the longest common edge prefix with T.
- Let $e \in G.E$ be the first edge (considering their order) which doesn't belong to $T.E \cap T^*.E$
 - Kruskal would not have excluded that edge, unless it closed a cycle
 - $\bullet \Rightarrow e \in T.E \text{ and } e \notin T^*.E$
- If e = (x, y), there is a path in T^* , P, from x to y (which cannot be the direct edge, because, $(x, y) \notin T^*$.E).
- If all edges in P had a weight smaller than e, Kruskal-MST would have selected them prior to e (e is the first edge for which T and T* "disagree"), and e would close a cycle.
- $\bullet \Rightarrow \exists e' \in P, w(e) \leq w(e').$
- Let $T_1 = T^* \cup \{e\} \setminus \{e'\}$. $\Rightarrow w(T_1) \leq w(T^*)$.
- T_1 is a MST with a longer common prefix with T than T^* contradiction.

Prim's Algorithm - Approach

- greedy approach
- start at any node
- in every step (out of the |V|-1 steps)
 - select the closest node to the current tree
 - add the node and the corresponding edge to the tree


```
MST-PRIM(G, w, r)

1 for each u \in G. V

2 u. key = \infty

3 u.\pi = \text{NIL}

4 r. key = 0

5 Q = G. V // priority queue

6 while Q \neq \emptyset

7 u = \text{EXTRACT-MIN}(Q)

8 for each v \in G. Adj[u]

9 if v \in Q and w(u, v) < v. key

10 v.\pi = u

11 v. key = w(u, v)
```



```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
 3
          u.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


	π	key


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


	π	key
а	NIL	∞
b	NIL	∞
С	NIL	∞
d	NIL	∞
е	NIL	∞


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
     r.key = 0
     Q = G.V // priority queue
     while Q \neq \emptyset
          u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                    v.\pi = u
                    v.key = w(u, v)
11
```


	π	key
а	NIL	∞
b	NIL	∞
С	NIL	0
d	NIL	∞
е	NIL	∞


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          \mu.\pi = NIL
     r.key = 0
     Q = G.V // priority queue
     while Q \neq \emptyset
          u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                    v.\pi = u
                    v.key = w(u, v)
11
```


	π	key
С	NIL	0
а	NIL	∞
Ь	NIL	∞
d	NIL	∞
e	NIL	∞


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          \mu.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{EXTRACT-MIN}(Q)
          for each v \in G.Adj[u]
                if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


	π	key		
С	NIL	0]	$V \setminus Q$
а	NIL	∞		
b	NIL	∞		
d	NIL	∞		Q
e	NIL	∞		


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
 3
          \mu.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
 9
                if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


	π	key	
С	NIL	0	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
а	NIL	∞	
b	NIL	∞	
d	NIL	∞	} Q
e	NIL	∞	


```
MST-PRIM(G, w, r)
1 for each u \in G.V
```

$$\begin{array}{ll}
u.key = \infty \\
u.\pi = NIL
\end{array}$$

$$4 \quad r.key = 0$$

5
$$Q = G.V //$$
 priority queue

6 while
$$Q \neq \emptyset$$

9 10

$$u = \text{Extract-Min}(Q)$$

for each
$$v \in G.Adj[u]$$

if
$$v \in Q$$
 and $w(u, v) < v$.key

$$v.\pi = u$$

 $v.key = w(u, v)$

	π	key	
С	NIL	0	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
a	С	7	
b	С	5	
d	С	2	Q
e	С	9	


```
MST-PRIM(G, w, r)

1 for each u \in G.V

2 u.key = \infty
```

3
$$u.\pi = NIL$$

$$4 \quad r.key = 0$$

5
$$Q = G.V // priority queue$$

6 while
$$Q \neq \emptyset$$

10

$$u = \text{Extract-Min}(Q)$$

for each
$$v \in G.Adj[u]$$

if
$$v \in Q$$
 and $w(u, v) < v$.key

$$v.\pi = u$$

 $v.key = w(u, v)$

	π	key	
С	NIL	0	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
d	С	2	
Ь	С	5	
а	С	7	
e	С	9	

MST-PRIM
$$(G, w, r)$$

1 for each $u \in G.V$
2 $u.key = \infty$
3 $u.\pi = \text{NIL}$
4 $r.key = 0$
5 $Q = G.V$ // priority queue
6 while $Q \neq \emptyset$
7 $u = \text{EXTRACT-MIN}(Q)$
8 for each $v \in G.Adj[u]$

		π	key		
	;	NIL	0		$V \setminus Q$
C	1	С	2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Ł)	С	5		
ã	7	С	7		Q
ϵ	,	С	9	-	

10


```
MST-PRIM(G, w, r)

1 for each u \in G.V

2 u.key = \infty

3 u.\pi = NIL

4 r.key = 0
```

$$Q = G.V //$$
 priority queue

6 while
$$Q \neq \emptyset$$

9

10

$$u = \text{Extract-Min}(Q)$$

for each
$$v \in G.Adj[u]$$

if
$$v \in Q$$
 and $w(u, v) < v$.key $v.\pi = u$

$$v.\pi = u$$

 $v.key = w(u, v)$

	π	key	
C	NIL	0	$V \setminus Q$
d	С	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
b	С	5	
а	С	7	Q
e	С	9	


```
MST-PRIM(G, w, r)

1 for each u \in G. V

2 u. key = \infty

3 u.\pi = NIL

4 r. key = 0

5 Q = G. V /// priority queue

6 while Q \neq \emptyset

7 u = \text{EXTRACT-MIN}(Q)

8 for each v \in G. Adj[u]

9 if v \in Q and w(u, v) < v. key

10

11

v. key = w(u, v)
```


	π	key	
С	NIL	0	$V \setminus Q$
d	С	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Ь	d	4	
а	С	7	Q
e	d	8	

MST-PRIM
$$(G, w, r)$$

1 **for** each $u \in G.V$
2 $u.key = \infty$
3 $u.\pi = NIL$

4
$$r.key = 0$$

5 $Q = G.V // priority queue$

while
$$Q \neq \emptyset$$

10

$$u = \text{EXTRACT-MIN}(Q)$$

for each
$$v \in G.Adj[u]$$

if $v \in Q$ and $w(u, v) < v.key$

$$v.\pi = u$$

$$v.key = w(u, v)$$

	π	key	
С	NIL	0	
d	С	2	$V \setminus Q$
Ь	d	4]
а	С	7	
e	d	8	Q

MST-PRIM
$$(G, w, r)$$

1 **for** each $u \in G.V$
2 $u.key = \infty$
3 $u.\pi = NIL$

$$4 \quad r.key = 0$$

9

10

5
$$Q = G.V // priority queue$$

while
$$Q \neq \emptyset$$

$$u = \text{Extract-Min}(Q)$$

for each
$$v \in G.Adj[u]$$

if
$$v \in Q$$
 and $w(u, v) < v$. key

$$v.\pi = u$$

 $v.key = w(u, v)$

	π	key	
C	NIL	0	
d	С	2	$V \setminus Q$
Ь	d	4	
a	С	7	
e	А	8	} Q


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


	π	key	
С	NIL	0	_)
d	С	2	$V \setminus Q$
b	d	4	
a	b	3	
e	d	8	- } Q


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          \mu.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{EXTRACT-MIN}(Q)
          for each v \in G.Adj[u]
                if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


	π	key	
С	NIL	0	
d	С	2	$V \setminus Q$
b	d	4	(, , ,
a	b	3	
e	d	8	} Q


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          \mu.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
                if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


	π	key	
C	NIL	0	
d	С	2	$V \setminus Q$
Ь	d	4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
а	b	3	
e	d	8	} Q


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
     r.key = 0
     Q = G.V // priority queue
     while Q \neq \emptyset
          u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                    v.\pi = u
                    v.key = w(u, v)
11
```


	π	key		
С	NIL	0		
d	С	2		$V\setminus Q$
Ь	d	4		V \ Q
а	b	3	_]	
e	d	8	}	Q


```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{EXTRACT-MIN}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


		π	key	
	С	NIL	0	
•	d	С	2	
	Ь	d	4	$V \setminus Q$
	а	Ь	3	
	e	d	8	

Prim's Algorithm

```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
     r.key = 0
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
                     v.key = w(u, v)
11
```


		π	key	
•	C	NIL	0	
	d	С	2	
	b	d	4	$V \setminus Q$
	а	Ь	3	
	e	d	8	

Prim's Algorithm

```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
     r.key = 0
     Q = G.V // priority queue
     while Q \neq \emptyset
          u = \text{Extract-Min}(Q)
          for each v \in G.Adj[u]
               if v \in Q and w(u, v) < v.key
10
                    v.\pi = u
                    v.key = w(u, v)
11
```


	π	key	
С	NIL	0	
d	С	2	
Ь	d	4	$V \setminus Q$
а	Ь	3	
е	d	8	


```
MST-PRIM(G, w, r)
     for each \mu \in G.V
          u.key = \infty
          \mu \pi = NIL
    r.kev = 0
     Q = G.V // priority queue
     while Q \neq \emptyset
          u = \text{Extract-Min}(Q)
 8
          for each v \in G.Adi[u]
 9
               if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
11
                     v.key = w(u, v)
```



```
MST-PRIM(G, w, r)
                                                             \rightarrow O(V)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
    r.kev = 0
    Q = G.V // priority queue
     while Q \neq \emptyset
          u = \text{Extract-Min}(Q)
 8
          for each v \in G.Adi[u]
               if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
11
                     v.key = w(u, v)
```



```
MST-PRIM(G, w, r)
                                                            O(V)
     for each u \in G.V
          u.key = \infty
                                                            O(V) - build heap
          u.\pi = NIL
    r.kev = 0
     Q = G.V // priority queue
     while Q \neq \emptyset
          u = \text{Extract-Min}(Q)
 8
          for each v \in G.Adi[u]
               if v \in Q and w(u, v) < v.key
10
                    v.\pi = u
11
                    v.key = w(u, v)
```



```
MST-PRIM(G, w, r)
                                                               O(V)
     for each u \in G.V
           u.key = \infty
                                                                O(V) - build heap
           u.\pi = NIL
     r.kev = 0
                                                              \rightarrow |V| steps
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
           u = \text{Extract-Min}(Q)
 8
           for each v \in G.Adi[u]
 9
                if v \in Q and w(u, v) < v.key
10
                     v.\pi = u
11
                     v.key = w(u, v)
```



```
MST-PRIM(G, w, r)
                                                                  O(V)
     for each u \in G.V
           u.key = \infty
                                                                  O(V) - build heap
           u.\pi = NIL
     r.kev = 0
                                                                \rightarrow |V| steps
      Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
                                                                \rightarrow O(\log V)
           u = \text{Extract-Min}(Q)
 8
           for each v \in G.Adi[u]
 9
                if v \in Q and w(u, v) < v.key
10
                      v.\pi = u
11
                      v.key = w(u, v)
```



```
MST-PRIM(G, w, r)
                                                                O(V)
     for each u \in G.V
           u.key = \infty
                                                                O(V) - build heap
           u.\pi = NIL
     r.kev = 0
                                                               \rightarrow |V| steps
     Q = G.V /\!\!/ priority queue
     while Q \neq \emptyset
                                                              \rightarrow O(\log V)
           u = \text{Extract-Min}(Q)
 8
           for each v \in G.Adi[u]
                                                                each neighbor
 9
                if v \in Q and w(u, v) < v.key
                                                                for every node,
10
                     v.\pi = u
                                                                so |E| steps in total
11
                     v.key = w(u, v)
```


binary heap implementation: $O(V + V + V \log V + E \log V) = O(E \log V)$

binary heap implementation: $O(V + V + V \log V + E \log V) = O(E \log V)$ Fibonacci heap implementation: $O(V + V + V \log V + E) = O(E + V \log V)$

Prim's Algorithm - Disscussion

- Advantage over Kruskal's algorithm
 - builds a rooted tree
 - more efficient in the Fibonacci heap implementation

Prim's Algorithm - Disscussion

- Advantage over Kruskal's algorithm
 - builds a rooted tree
 - more efficient in the Fibonacci heap implementation
- Is the solution unique?

Prim's Algorithm - Disscussion

- Advantage over Kruskal's algorithm
 - builds a rooted tree
 - more efficient in the Fibonacci heap implementation
- Is the solution unique?
- Is the algorithm deterministic?

- Let *T* be the MST build by Prim-MST.
- Let $T.E = \{e_1, e_2, \dots, e_{n-1}\}$ be the sequence of edges, in the order they are selected by the algorithm.

- Let T be the MST build by Prim-MST.
- Let $T.E = \{e_1, e_2, \dots, e_{n-1}\}$ be the sequence of edges, in the order they are selected by the algorithm.
- Assume that T is not minimal, and that T^* is the MST, $(w(T^*) < w(T))$, which includes the longest prefix $E' = \{e_1, e_2, \ldots, e_{i-1}\}$ from T.E, while the edge $e_i = (x, y) \notin T^*.E$. We denote by V' the nodes added to T before the edge e_i .

- Let *T* be the MST build by Prim-MST.
- Let $T.E = \{e_1, e_2, \dots, e_{n-1}\}$ be the sequence of edges, in the order they are selected by the algorithm.
- includes the longest prefix $E' = \{e_1, e_2, \dots, e_{i-1}\}$ from T.E, while the edge $e_i = (x, y) \notin T^*.E$. We denote by V' the nodes added to T before the edge e_i .

• Assume that T is not minimal, and that T^* is the MST, $(w(T^*) < w(T))$, which

- In T^* there is a path from x to y. As $y \notin T'$, there is in the path from x to y an edge (a,b) with $a \in T'$ and $b \notin T'$.
- Let $T_1 = T^* \cup \{(x,y)\} \setminus \{(a,b)\}$ also a MST.

- Let T be the MST build by Prim-MST.
- Let $T.E = \{e_1, e_2, \dots, e_{n-1}\}$ be the sequence of edges, in the order they are selected by the algorithm.
- Assume that T is not minimal, and that T* is the MST, (w(T*) < w(T)), which includes the longest prefix E' = {e₁, e₂,..., e_{i-1}} from T.E, while the edge e_i = (x, y) ∉ T*.E. We denote by V' the nodes added to T before the edge e_i.
 In T* there is a noth from x to y As y ∉ T' there is in the noth from x to y an
- In T^* there is a path from x to y. As $y \notin T'$, there is in the path from x to y an edge (a,b) with $a \in T'$ and $b \notin T'$.
- Let $T_1 = T^* \cup \{(x,y)\} \setminus \{(a,b)\}$ also a MST.
- We have 3 cases:
 - if w(x,y) < w(a,b), then $w(T_1) < w(T^*) \Rightarrow T^*$ is not minimal
 - if w(x, y) > w(a, b), then Prim-MST would have selected (a, b) instead of (x, y)
 - if w(x,y) = w(a,b), then $w(T_1) = w(T^*)$, so T_1 is minimal and contains a longer prefix of T.E

- Let *T* be the MST build by Prim-MST.
- Let $T.E = \{e_1, e_2, \dots, e_{n-1}\}$ be the sequence of edges, in the order they are selected by the algorithm.
- Assume that T is not minimal, and that T* is the MST, (w(T*) < w(T)), which includes the longest prefix E' = {e₁, e₂,..., e_{i-1}} from T.E, while the edge e_i = (x, y) ∉ T*.E. We denote by V' the nodes added to T before the edge e_i.
 In T* there is a noth from x to y As y ∉ T' there is in the noth from x to y an
- In T^* there is a path from x to y. As $y \notin T'$, there is in the path from x to y an edge (a,b) with $a \in T'$ and $b \notin T'$.
- Let $T_1 = T^* \cup \{(x,y)\} \setminus \{(a,b)\}$ also a MST.
- We have 3 cases:
 - if w(x,y) < w(a,b), then $w(T_1) < w(T^*) \Rightarrow T^*$ is not minimal
 - if w(x, y) > w(a, b), then Prim-MST would have selected (a, b) instead of (x, y)
 - if w(x,y) = w(a,b), then $w(T_1) = w(T^*)$, so T_1 is minimal and contains a longer prefix of T.E
- All three cases result in a contradiction, so T^* does not exist $\Rightarrow T$ is minimal.

Agenda

- Graph Representation
- 2 Minimum Spanning Tree (MST)
 - Kruskal's Algorithm
 - Prim's Algorithm
- Breadth-First Search (BFS)

Breadth-First Search (BFS)

- start at a given (source) node s
- produce a tree rooted in s
- ullet all reachable nodes at distance k from the source will be discovered prior to all those at distance k+1
- the resulting tree contains the minimum length paths from s to all nodes reachable from s

BFS Algorithm - Approach

- associate the current attributes to the nodes:
 - color: WHITE, GRAY, BLACK
 - d: distance from the source s
 - π : parent node in BFS tree
- the algorithm starts by adding the source node to a queue and coloring it GRAY
- while the queue still has elements
 - extract the first node from it
 - color with GRAY all neighbors of this node that haven't yet been discovered, and add them to the queue
 - color the extracted node with BLACK


```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
 6 	 s.d = 0
 7 s.\pi = NIL
 8 Q = \emptyset // regular queue
     ENQUEUE(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          \mu d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
     s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          \mu d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          \mu d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
     Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
     s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     ENQUEUE(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
     s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
     s.d = 0
     s.\pi = NIL
     Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE(Q, v)
18
          \mu.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
     s.d = 0
     s.\pi = NIL
     Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
     s.d = 0
     s.\pi = NIL
     Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE(Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE(Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE(Q, v)
18
          \mu.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE(Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE(Q, v)
18
          \mu.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
     s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
          for each v \in G.Adj[u]
12
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          u.\pi = NIL
    s.color = GRAY
    s.d = 0
     s.\pi = NIL
    Q = \emptyset // regular queue
     Enqueue(Q, s)
10
     while Q \neq \emptyset
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = u
17
                    ENQUEUE (Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
 3
      u.d = \infty
          \mu.\pi = NIL
  5 s.color = GRAY
  6 \cdot s.d = 0
  7 s.\pi = NIL
 8 Q = \emptyset // regular queue
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
                    v.color = GRAY
14
15
                    v.d = u.d + 1
16
                    v.\pi = II
17
                    ENQUEUE(Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
 3
          u.d = \infty
          \mu.\pi = NIL
                                                            \rightarrow O(V)
   s.color = GRAY
    s.d = 0
  7 s.\pi = NIL
 8 Q = \emptyset // regular queue
     ENQUEUE (Q, s)
     while Q \neq \emptyset
10
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
                    v.color = GRAY
14
15
                    v.d = u.d + 1
16
                    v.\pi = II
17
                    ENQUEUE(Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
 3
          u.d = \infty
          \mu.\pi = NIL
                                                             O(V)
    s.color = GRAY
     s.d = 0
                                                             O(1)
     s.\pi = NIL
     Q = \emptyset // regular queue
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = II
17
                    ENQUEUE(Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
          u.color = WHITE
 3
          u.d = \infty
          \mu.\pi = NIL
                                                             O(V)
    s.color = GRAY
     s.d = 0
                                                            O(1)
     s.\pi = NIL
     Q = \emptyset // regular queue
                                                            |V| steps
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \text{Dequeue}(Q)
12
          for each v \in G.Adj[u]
13
               if v.color == WHITE
14
                    v.color = GRAY
15
                    v.d = u.d + 1
16
                    v.\pi = II
17
                    ENQUEUE(Q, v)
18
          u.color = BLACK
```



```
BFS(G, s)
     for each u \in G.V - \{s\}
          u.color = WHITE
  3
          u.d = \infty
          \mu.\pi = NIL
                                                             O(V)
    s.color = GRAY
     s.d = 0
                                                             O(1)
     s.\pi = NIL
     Q = \emptyset // regular queue
                                                             |V| steps
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \text{Dequeue}(Q)
                                                             each neighbor
12
          for each v \in G.Adj[u]
                                                           → for every node,
13
               if v.color == WHITE
                                                             so |E| steps in total
                    v.color = GRAY
14
15
                    v.d = u.d + 1
16
                    v.\pi = II
17
                    Enqueue(Q, v)
18
          u.color = BLACK
```



```
BFS(G, s)
     for each u \in G.V - \{s\}
          u.color = WHITE
          u.d = \infty
          \mu.\pi = NIL
                                                              O(V)
    s.color = GRAY
     s.d = 0
                                                              O(1)
    s.\pi = NIL
     Q = \emptyset // regular queue
                                                              |V| steps
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \text{Dequeue}(Q)
                                                              each neighbor
12
          for each v \in G.Adj[u]
                                                            → for every node,
               if v.color == WHITE
13
                                                              so |E| steps in total
                    v.color = GRAY
14
15
                    v.d = u.d + 1
                                                            \rightarrow O(1)
16
                    v.\pi = II
17
                    Enqueue(Q, v)
18
          u.color = BLACK
```



```
BFS(G,s)
     for each u \in G.V - \{s\}
                                               Complexity: O(V+E)
          u.color = WHITE
          \mu d = \infty
          \mu.\pi = NIL
                                                            \rightarrow O(V)
    s.color = GRAY
     s.d = 0
                                                            \rightarrow O(1)
    s.\pi = NIL
     Q = \emptyset // regular queue
                                                             |V| steps
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \text{Dequeue}(Q)
                                                             each neighbor
          for each v \in G.Adj[u]
12
                                                            → for every node,
13
               if v.color == WHITE
                                                             so |E| steps in total
                    v.color = GRAY
14
15
                    v.d = u.d + 1
                                                            \rightarrow O(1)
16
                    v.\pi = II
17
                    Enqueue(Q, v)
18
          u.color = BLACK
```


• How does the algorithm behave if the graph is not connected?

- How does the algorithm behave if the graph is not connected?
 - How do we modify the algorithm to completely traverse unconnected graphs?

- How does the algorithm behave if the graph is not connected?
 - How do we modify the algorithm to completely traverse unconnected graphs?
- What complexity would the algorithm have on an adjacency matrix graph representation?

- How does the algorithm behave if the graph is not connected?
 - How do we modify the algorithm to completely traverse unconnected graphs?
- What complexity would the algorithm have on an adjacency matrix graph representation?
- How can we use it do determine the graph diameter?

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k = 1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1

- how do we find the closest exit in a maze?
- represent the maze as a matrix, in which 0 means free pass and
 1 means wall
- we move using V4 or V8

- mark starting point with k=1
- while we haven't reached the exit
 - the neighbors of nodes $k \to k+1$
 - k = k + 1
- how do we rebuild the path?

Bibliography

• Cormen, Thomas H., et al., "Introduction to algorithms.", MIT press, 2009, sec. 22.1, 22.2, ch. 23