

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 31: Autoencoder Training

CONCEPTS COVERED

Concepts Covered:

- ■Autoencoder
 - ☐ Undercomplete Autoencoder
 - ☐ Autoencoder vs. PCA
 - ☐ Deep Autoencoder Training
 - ☐ Sparse Autoencoder
 - ☐ Denoising Autoencoder
 - ☐ Contractive Autoencoder
 - ☐ Convolution Autoencoder

Training W_3 W_1 W_3

Layer by Layer Pretraining

Autoencoder

Training W_1^t W_3^t W_2^t W_3 W_2 W_1 $L(X,\hat{X})$

Applications

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 32: Autoencoder Variants

CONCEPTS COVERED

Concepts Covered:

- ■Autoencoder
 - ☐ Undercomplete Autoencoder
 - ☐ Autoencoder vs. PCA
 - ☐ Deep Autoencoder Training
 - ☐ Sparse Autoencoder
 - ☐ Denoising Autoencoder
 - ☐ Contractive Autoencoder
 - ☐ Convolution Autoencoder

Sparse Autoencoder

Sparse Autoencoder

- ❖ Interesting features can be learnt even when number of nodes in the hidden layer is large.
- Introduce sparsity constraint on the hidden layer nodes that penalize activations within a layer.
- Network learns encoding-decoding that relies on activating a small number of neurons.

Regularizing Activations not the Weights

Sparsity Constraint

 $a_j^h \rightarrow$ Activation of j^{th} Neuron in hidden layer h

 $a_j^h \rightarrow 1 \Rightarrow$ Neuron is active

Average activation
$$\rightarrow \hat{\rho}_j = \frac{1}{m} \sum_{i=1}^m a_j^h(x_i)$$

Constraint $\rightarrow \hat{\rho}_j = \rho$

 $\rho \rightarrow$ sparsity parameter (typically a small value)

Sparsity Constraint

Regularizer:
$$\sum_{j=1}^{N_h} \left| \rho \log \frac{\rho}{\hat{\rho}_j} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_j} \right| \implies \sum_{j=1}^{N_h} KL(\rho \| \hat{\rho}_j)$$

$$J_{sparse}(W) = L(X, \hat{X}) + \lambda \sum_{j} KL(\rho \parallel \hat{\rho}_{j})$$

KL

Divergence

Sparsity Constraint

$$\delta_i^k = O_i^k (1 - O_i^k) \sum_{j=1}^{M_{k+1}} \partial_j^{k+1} W_{ij}^{k+1}$$

$$\delta_{i}^{k} = O_{i}^{k} (1 - O_{i}^{k}) \left[\sum_{j=1}^{M_{k+1}} \partial_{j}^{k+1} W_{ij}^{k+1} \right] + \lambda \left(-\frac{\rho}{\hat{\rho}_{i}} + \frac{1 - \rho}{1 - \hat{\rho}_{i}} \right) \right]$$

Denoising Autoencoder

Denoising Autoencoder

- The Autoencoder learns a generalizable encodingdecoding scheme.
- An approach:- while training use corrupt data as input but output as uncorrupted original data.
- The model can not memorize the training data as input and target output is not same any more
- The Model learns a vector field to map the input data towards a low dimensional manifold.

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 33: Autoencoder Variants

CONCEPTS COVERED

Concepts Covered:

- ■Autoencoder
 - ☐ Undercomplete Autoencoder
 - ☐ Autoencoder vs. PCA
 - ☐ Deep Autoencoder Training
 - ☐ Sparse Autoencoder
 - ☐ Denoising Autoencoder
 - ☐ Contractive Autoencoder
 - ☐ Convolution Autoencoder

Denoising Autoencoder

Denoising Autoencoder

- The Autoencoder learns a generalizable encodingdecoding scheme.
- An approach:- while training use corrupt data as input but output as uncorrupted original data.
- The model can not memorize the training data as input and target output is not same any more
- The Model learns a vector field to map the input data towards a low dimensional manifold.

Denoising Autoencoder

What is Manifold?

Manifold Learning

Contractive Autoencoder

Contractive Autoencoder

- For similar inputs- learned encoding (compressed domain representation should also be very similar.
- Hidden layer activation variation with input data should be small.

Effectively the Model learns to contract a neighborhood of Inputs to a small neighborhood of Outputs

Regularizati on

$$||A||_F = \sqrt{\sum_{j=1}^m \sum_{i=1}^{N_h} |a_{ij}|^2}$$

$$J = \begin{bmatrix} \frac{\partial a_1^h(X)}{\partial x_1} & \frac{\partial a_1^h(X)}{\partial x_2} & \dots & \frac{\partial a_1^h(X)}{\partial x_m} \\ \frac{\partial a_2^h(X)}{\partial x_1} & \frac{\partial a_2^h(X)}{\partial x_2} & \dots & \frac{\partial a_2^h(X)}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial a_{N_h}^h(X)}{\partial x_1} & \frac{\partial a_{N_h}^h(X)}{\partial x_2} & \dots & \frac{\partial a_{N_h}^h(X)}{\partial x_m} \end{bmatrix}$$

$$L(X, \hat{X}) + \lambda \sum_{i=1}^{N_h} ||\nabla_X a_i^h(X)||^2$$

Application s

Thank you

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 34: Convolutional Neural Network

CONCEPTS COVERED

Concepts Covered:

☐ CNN

☐ Convolution

☐ Linear Time Invariant (LTI) System

☐ Linear Shift Invariant (LSI) System

☐ Cross Correlation

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

n

Input Image

Feature Map

Thank you

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 35: Cross Correlation

CONCEPTS COVERED

Concepts Covered:

- ☐ CNN
 - ☐ Convolution
 - ☐ Linear Time Invariant (LTI) System
 - ☐ Linear Shift Invariant (LSI) System
 - ☐ Cross Correlation

n

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

n

Input Image

Feature Map

Cross Correlation

Cross Correlation

```
      1
      1
      1
      1
      1
      1

      1
      20
      2
      2
      2
      1

      1
      2
      3
      3
      2
      1

      1
      2
      3
      3
      2
      1

      1
      2
      2
      2
      2
      1

      1
      1
      1
      1
      1
      1
```

```
3 3 2
3 3 2
2 2 2
f
```

47	54	56	20	18	12
54	87	94	40	34	21
56	90	107	54	44	24
20	40	54	56	44	24
18	34	43	44	37	22
12	21	24	24	22	15

g

Normalized Cross Correlation

$$C_{fg}$$

$$\left[\sum_{u}\sum_{v}g^{2}(x+u,y=v)\right]^{\frac{1}{2}}$$

CrossCorrelation

$$\left[\sum_{u}\sum_{v}g^{2}(x+u,y+v)\right]^{\frac{1}{2}}$$

20.07	20.19	20.30	3.87	3.46	2.64
20.19	20.54	20.80	6.08	5.09	3.46
20.27	20.76	21.26	7.48	6.08	3.87
3.87	5.91	7.48	7.48	6.08	3.87
3.46	5.09	6.08	6.08	5.09	3.46
2.64	3.46	3.87	3.87	3.46	2.64

Cross Correlation

$$\left[\sum_{u}\sum_{v}g^{2}(x+u,y=v)\right]^{\frac{1}{2}}$$

1	1	1	1	1	1
1	20	2	2	2	1
1	2	3	3		1
1	2	3	3	2	1
1	2	2	2	2	1
1	1	1	1	1	1

Thank you