PROJECT: Analysis of country level predictors of pro-social behaviors to reduce the spread of COVID-19 during the early stages of the pandemic.

BY: Lim Yu Jin tool used: R studio

install necessary library packages install.packages("magrittr") install.packages("dplyr") install.packages("ggplot2") install.packages('tidyverse') install.packages('caret')

library(magrittr) library(dplyr) library(ggplot2) library(tibble) library(tidyverse) library(caret) library(fpc)

extract the dataset
rm(list = ls())
set.seed(32637888) # student id: 32637888
psy = read.csv("PsyCoronaBaselineExtract.csv", header=TRUE)
psy <- psy[sample(nrow(psy), 40000),] # 40000 rows</pre>

Question 1.a

head(psy)

	(P -)	,																		
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	affanx a	affBor	affCalm	ı aff	Conter	nt affDepr	affEner	q affExc	affner	affEx	h affInsp	affRel	PLRAC19	PLRAE	co disc01	disc02	disc03	jbInsec0	1 jbInsec02	jbInsec03
48406	3	4		3		4 4		2 2	2		1 2	3	4		3 1	1	0		2 2	-1
23747		3	1			1 3		1 1	. 4		2 1	1	4	i .	5 2	2	0		1 -2	2
52572	1		4			4 1		3 3	1		1 4	4	4	l .	3 -1	-1	0		2 2	-1
59046	4	4	7	2				2 1			1 1		2	2	6 1	0	-1		1 1	0
45855			1			2 3		1 2	4		4 3	3	2	2	1 0	2	-1		2 0	1
143		4		3		4 1		3 2			2 1		4	l	2 1	1	0	N	A NA	NA
	jbInsec	04 emp1	loystati	15_1	employ	/status_2	employst	atus_3 e	mploysta	atus_4	employsta	tus_5 e	mploysta	atus_6	employsta	tus_7 e	mploysta	itus_8 em	ploystatus_9	
48406		-2		NA		NA		1		NA		NA		NA		NA		NA	NA	
23747		-1		1		NA		NA		NA		NA		NA		NA		NA	NA	
52572		-2		NA		NA		1		NA		NA		NA		NA		NA.	NA	
59046		-2		NA		NA		1		NA		NA		NA		NA		NA	NA	
45855		-2		NA		1		NA		NA		NA		NA		NA		NA	NA	
143		NA		NA		NA		NA		NA		1		NA		NA		NA	NA	
		tatus_1	LO PFS01	L PFS	502 PFS	503 fail01	fail02	failO3 h	appy lif	esat M	LQ c19Nori	nShould	c19Norm	nDo c19	Disstrict	c19IsPu	nish c19	Disorg tr	ustGovCtry	
48406			IA -1		1	-2 0	-1	-2	5	5	-3	2		-1	4		3	3	3	
23747			IA 2	2	2	1 1	-1	2	1	2	2	2		-2	4		2	4	3	
52572			IA -1		-1	-1 -1	-1	-1	3	4	3	1		0	4		3	4	3	
59046			IA Z	?	2	2 1	0	1	5	3	0	0		-3	1		1	1	3	
45855			iA 1		1	2 1	-2	0	7	3	-1	3		3	4		3	5	4	
143			IA _ −1		1	-1 -1	-1	-1	9	6	1	2		2	4		4	4	3	
	trustGov	/State	gender	age	edu	coded_		c19ProSo	01 c19Pr	05002	c19Pro5o0	c19Pr	05004							
48406		3	1	2	6		Poland		1	1		3	1							
23747		2	1	2	4 Re	epublic of			-2	-2	-	2	3							
52572		- 3	2	2	6		Romania		1	1			1							
59046		1	2	- 3	2		hailand		1	-3		3	-3							
45855		4	2	- 2	6	Sout	h Korea		-1	-2		5	-1							
143		- 3	1	-1	4		Egypt		0	2		L	0							

dimension of data set : 40000 rows, 54 columns dim(psy)

> dim(psy) [1] 40000 54

see the range of values and distribution of all attributes summary(psy)

> summary(psy)									
affAnx	affBor	affCalm	affContent	affDepr	affEnerg	affExc	affNerv	affExh	affInsp
Min. :1.00	Min. :1.000	Min. :1.000		in. :1.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.0	Min. :1.000
1st Qu.:2.00	1st Qu.:2.000	1st Qu.:2.000		st Qu.:1.000	1st Qu.:2.000	1st Qu.:1.000	1st Qu.:2.000	1st Qu.:1.0	1st Qu.:1.000
Median :3.00	Median :3.000	Median :3.000		ledian :2.000	Median :3.000	Median :2.000	Median :2.000	Median :2.0	Median :2.000
Mean :2.72	Mean :2.714	Mean :2.931	Mean :2.683 M	lean :2.237	Mean :2.575	Mean :2.153	Mean :2.586	Mean :2.5	Mean :2.439
3rd Qu.:4.00	3rd Qu.:4.000	3rd Qu.:4.000	3rd Qu.:3.000 3	rd Qu.:3.000	3rd Qu.:3.000	3rd Qu.:3.000	3rd Qu.:4.000	3rd Qu.:3.0	3rd Qu.:3.000
Max. :5.00	Max. :5.000	Max. :5.000		ax. :5.000	Max. :5.000	Max. :5.000	Max. :5.000	Max. :5.0	Max. :5.000
NA'S :524	NA'S :544	NA'S :529		A's :604	NA'S :658	NA'S :703	NA's :558	NA'S :627	NA'S :668
affRel	PLRAC19	PLRAECO	disc01	disc02	disc03	jbInse	c01 jbIns	ec02 jb1	nsec03
Min. :1.000	Min. :1.00	Min. :1.000	Min. :-2.0000	Min. :-2.00				:-2.000 Min.	:-2.000
1st Qu.:2.000	1st Qu.:3.00	1st Qu.:3.000	1st Qu.: 0.0000	1st Qu.: 0.00			-2.000 1st Qu.	: 0.000 1st 0	u.:-1.000
Median :3.000	Median :4.00	Median :4.000	Median : 1.0000	Median: 1.00		.0000 Median :	-1.000 Median	: 1.000 Media	n: 0.000
Mean :2.739	Mean :3.56	Mean :4.396	Mean : 0.6388	Mean : 0.83	79 Mean :-0	.4021 Mean :	-0.594 Mean	: 0.563 Mean	: 0.064
3rd Qu.:4.000	3rd Qu.:4.00	3rd Qu.:6.000	3rd Qu.: 1.0000	3rd Qu.: 1.00	00 3rd Qu.: 0	.0000 3rd Qu.:	0.000 3rd Qu.	: 1.000 3rd Q	u.: 1.000
Max. :5.000	Max. :8.00	Max. :8.000	Max. : 2.0000	Max. : 2.00	00 Max. : 2		2.000 Max.	: 2.000 Max.	: 2.000
NA'S :620	NA'S :151	NA'S :162	NA'S :148	NA'S :145	NA'S :15			:9945 NA's	:8533
jbInsec04	employstatus_	1 employstatus_	2 employstatus_3	employstatus_	4 employstatus	_5 employstatus	_6 employstatus	_7 employstatu	IS_8
Min. :-2.000	Min. :1	Min. :1	Min. :1	Min. :1	Min. :1	Min. :1	Min. :1	Min. :1	
1st Qu.:-2.000	1st Qu.:1	1st Qu.:1	1st Qu.:1	1st Qu.:1	1st Qu.:1	1st Qu.:1	1st Qu.:1	1st Qu.:1	
Median :-2.000	Median:1	Median :1	Median :1	Median :1	Median :1	Median :1	Median :1	Median :1	
Mean :-0.986	Mean :1	Mean :1	Mean :1	Mean :1	Mean :1	Mean :1	Mean :1	Mean :1	
3rd Qu.: 0.000	3rd Qu.:1	3rd Qu.:1	3rd Qu.:1	3rd Qu.:1	3rd Qu.:1	3rd Qu.:1	3rd Qu.:1	3rd Qu.:1	
Max. : 2.000	Max. :1	Max. :1	Max. :1	Max. :1	Max. :1	Max. :1	Max. :1	Max. :1	
NA'S :13127	NA'S :34349	NA'S :33255	NA'S :29145	NA'S :36545	NA'S :3794	2 NA'S :3692	2 NA'S :3634	2 NA'S :392	64
employstatus_9	employstatus_1	0 PFS01	PFS02	PFS03	fai	101	fai102	fail03	happy
Min. :1	Min. :1	Min. :-2.000	000 Min. :-2.00	0 Min. :-2	.0000 Min.	:-2.00000 Min.	:-2.0000 Mi	n. :-2.0000	Min. : 1.000
1st Qu.:1	1st Qu.:1	1st Qu.:-1.000	000 1st Qu.: 0.00	0 1st Qu.:-1	.0000 1st Qu.	:-1.00000 1st	Qu.:-1.0000 1s	t Qu.: 0.0000	1st Qu.: 5.000
Median :1	Median :1	Median : 0.000	000 Median: 1.00	0 Median: 0	.0000 Median	: 0.00000 Medi	an :-1.0000 Me	dian : 1.0000	Median : 7.000
Mean :1	Mean :1	Mean :-0.025			.2545 Mean	:-0.06268 Mean	:-0.4104 Me	an : 0.3522	Mean : 6.325
3rd Qu.:1	3rd Qu.:1	3rd Qu.: 1.000	000 3rd Qu.: 1.00	0 3rd Qu.: 1	.0000 3rd Qu.	: 1.00000 3rd	Qu.: 0.0000 3r	d Qu.: 1.0000	3rd Qu.: 8.000
Max. :1	Max. :1	Max. : 2.000	000 Max. : 2.00	0 Max. : 2	.0000 Max.	: 2.00000 Max.	: 2.0000 Ma	x. : 2.0000	Max. :10.000
NA'S :31867	NA's :39066	NA'S :173	NA's :153	NA'S :14	9 NA'S	:161 NA's	:158 NA	's :145	NA's :511
lifeSat	MLQ	c19NormShould	c19NormDo	c19IsStric	t c19IsPuni	sh c19Isor	q trustGovC	try trustGovs	tate
Min. :1.00	Min. :-3.0000	Min. :-3.00	00 мin. :-3.000	Min. :1.0	00 Min. :1.	000 Min. :1.	000 Min. :1.	000 Min. :1	. 000
1st Qu.:3.00	1st Qu.: 0.0000	1st Qu.: 2.00	0 1st Qu.: 1.000	1st Qu.:3.0	00 1st Qu.:2.	000 1st Qu.:3.	000 1st Qu.:2.	000 1st Qu.:2	.000
Median :4.00	Median : 1.0000		00 Median : 2.000	Median :4.0	00 Median :4.			000 Median :3	
Mean :4.14	Mean : 0.8411	Mean : 2.00			23 Mean :3.	503 Mean :3.	898 Mean :3.	018 Mean :3	.081
3rd Qu.:5.00	3rd Qu.: 2.0000	3rd Qu.: 3.00	00 3rd Qu.: 2.000	3rd Qu.:5.0	00 3rd Qu.:5.	000 3rd Qu.:5.	000 3rd Qu.:4.	000 3rd Qu.:4	.000
Max. :6.00	Max. : 3.0000	Max. : 3.00			00 Max. :6.	000 Max. :6.	000 Max. :5.	000 Max. :5	.000
NA'S :130	NA'S :133	NA's :153	NA'S :149	NA'S :184	NA'S :18	7 NA'S :17	3 NA'S :94	44 NA'S :9	523
gender	age	edu	coded_country	c19ProSo0	1 c19Pro	S002 c19P	roso03 c1	9ProSo04	
Min. :1.000	Min. :1.000	Min. :1.000	Length:40000	Min. :-3.	0000 Min. :	-3.0000 Min.	:-3.0000 Min.	:-3.000	
1st Qu.:1.000	1st Qu.:2.000	1st Qu.:4.000	class :character	1st Qu.: 0.	0000 1st Qu.:	0.0000 1st Qu	.: 0.0000 1st	Qu.: 0.000	
Median :1.000	Median :3.000	Median :5.000	Mode :character	Median: 1.	0000 Median:	1.0000 Median	: 1.0000 Medi	an : 2.000	
Mean :1.392	Mean :2.902	Mean :4.412		Mean : 0.	9657 Mean :	0.6744 Mean	: 0.5442 Mean	: 1.283	
3rd Qu.:2.000	3rd Qu.:4.000	3rd Qu.:5.000		3rd Qu.: 2.				Qu.: 2.000	
Max. :3.000	Max. :8.000	Max. :7.000		Max. : 3.	0000 Max. :	3.0000 Max.	: 3.0000 Max.	: 3.000	
NA'S :217	NA'S :243	NA's :296		NA'S :142	NA'S :	150 NA'S	:158 NA's	:161	
						2000 00	1000 00		

only coded_country is character class, # others in integer class

str(psy)

```
str(psy)
data.frame':
$ affAnx
$ affBor
$ affCalm
$ affContent
$ affDepr
$ affEnerg
$ affExc
```

111 countries in this dataset n_distinct(psy\$coded_country)

```
[1] 111
```

Life Satisfaction # (lifesat, happy, MLQ) have similar distribution, which is a right shift in normal distribution par(mfrow=c(2,2)) plot(table(psy\$lifeSat)) plot(table(psy\$happy))

These 2 plot is likely a standard normal distribution, but the PLRAC19 have a left shift in the distribution par(mfrow=c(1,2)) plot(table(psy\$PLRAC19))

plot(table(psy\$pLrayeco))

(12000 4000 8000 8000 8000 4000 80

(disc01, disc02) have similar distribution which has a right shift normal distribution

(disc03) have a left shift normal distribution

par(mfrow=c(2,2))

plot(table(psy\$disc01))

plot(table(psy\$disc02))

plot(table(psy\$disc03))

(jbInsec01) has a left shift normal distribution

(jbInsec02) has a right shift in distribution

(jbInsec03) has a almost equally distribution

(jbInsec04) has a concave up decreasing distribution

par(mfrow=c(2,2))

plot(table(psy\$jbInsec01))

plot(table(psy\$jbInsec02))

plot(table(psy\$jbInsec03))

plot(table(psy\$jbInsec04))

Perceived Financial Strain

(PFS01) has a standard normal distribution with a decrease in the center part

(PFS02) has a right shift normal distribution

(PFS01) has a left shift normal distribution

par(mfrow=c(2,2))

plot(table(psy\$PFS01))

plot(table(psy\$PFS02))

plot(table(psy\$PFS03))

able(psy\$PFS03) 4000 8000

Disempowerment

(failO1) has a standard normal distribution

(fail02) has a left shift normal distribution

(fail03) has a right shift normal distribution

par(mfrow=c(2,2))

plot(table(psy\$fail01))

plot(table(psy\$fail02))

plot(table(psy\$fail03))

Corona Community Injunctive norms

(c19NormShould) has a concave upwards increasing distribution

(c19IsOrg, c19NormDo, c19IsStrict) have a right shift normal distribution

(c19IsPunish) has a likely equally distribution

par(mfrow=c(3,2))

plot(table(psy\$c19NormShould))

plot(table(psy\$c19NormDo))

plot(table(psy\$c19IsStrict))

plot(table(psy\$c19IsPunish))

plot(table(psy\$c19IsOrg))

Trust in Government

Gender

in this plot we can see that most of the participants are female, # the number of male participants are likely half of the females'

a little of other gender

plot(table(psy\$gender))

Age

most of the participants are equal or below age of 54 plot(table(psy\$age))

Education

most of the participants have a higher education plot(table(psy\$edu))

Country Self Report

the maximum participants come from United States of America

tbl = as.data.frame(table(psy\$coded_country))

ggplot(tbl, aes(x=Var1,y=Freq))+

geom_point(size=2, shape=23) +

labs(x = "Country", y = "people") +

theme(axis.text.x = element_text(angle = 90))

Corona ProSocial Behavior

(c19ProSo01, c19ProSo02, c19ProSo03, c19ProSo04) have a right shift in normal distribution

par(mfrow=c(2,2))

plot(table(psy\$c19ProSo01))

plot(table(psy\$c19ProSo02))

plot(table(psy\$c19ProSo03))

plot(table(psy\$c19ProSo04))

top 5 happinest country

United Republic of Tanzania, Uzbekistan, Iceland, Costa Rica, Oman

psy %>% group_by(coded_country) %>% summarise(happinest = mean(happy)) %>% slice_max(happinest, n =5)

```
coded_country
                                    happinest
 United Republic of Tanzania
Uzbekistan
                                         10
                                            . 5
  Iceland
                                          8.
5 Oman
```

top 5 most educated countries

(Ethiopia, Georgia), Malta, Albania, (Armenia, Belarus, Cambodia, Ecuador, Kenya, Mauritius, Mongolia, Panama) psy %>% group_by(coded_country) %>% summarise(education = mean(edu)) %>% slice_max(education, n =5)

top 5 countries with most old people

(Dominican Republic, Georgia, Myanmar), Oman, Costa Rica

psy %>% group_by(coded_country) %>% summarise(old = mean(age)) %>% slice_max(old, n =5)

```
coded country
Dominican Republic
Georgia
Myanmar
Oman
```

top 5 countries with most teenagers

Cambodia, Cameroon, Nepal, El Salvador, Moldova

psy %>% group by(coded country) %>% summarise(young = mean(age)) %>% slice min(young, n =5)

```
coded_country young
 Cambodia
2 Cameroon
3 Nepal
 El Salvador
Moldova
```

let 'modi' be a copy of the data 'psy'

modi = psy

Due to the NA values in employment status are meant that boolean values, so can be modified to 0

modi\$employstatus 1[is.na(modi\$employstatus 1)] = 0 modi\$employstatus 2[is.na(modi\$employstatus 2)] = 0

modi\$employstatus_3[is.na(modi\$employstatus_3)] = 0

modi\$employstatus_4[is.na(modi\$employstatus_4)] = 0

modi\$employstatus_5[is.na(modi\$employstatus_5)] = 0

modi\$employstatus_6[is.na(modi\$employstatus_6)] = 0

modi\$employstatus_7[is.na(modi\$employstatus_7)] = 0

modi\$employstatus_8[is.na(modi\$employstatus_8)] = 0

modi\$employstatus_9[is.na(modi\$employstatus_9)] = 0

modi\$employstatus_10[is.na(modi\$employstatus_10)] = 0

Due to every people only can have 1 employment status,

So if there is multiple selection per pax, it is not logical,

So filter those rows out.

data 'modi1' is a copy of modi to drop rows or modifications in columns modi1 = modi %>% filter(modi\$employstatus 1+modi\$employstatus 2+

modi\$employstatus_3+modi\$employstatus_4+

modi\$employstatus 5+modi\$employstatus 6+

modi\$employstatus_7+modi\$employstatus_8+

modi\$employstatus_9+modi\$employstatus_10 == 1)

Due the 10 empployment status attributes are actually qualitative attributes,

So it can be combined into 1 attribute

So change their corresponding value and merge them

into a new column named 'employstatus'

```
modi1$employstatus 2[modi1$employstatus 2 == 1] <- 2
modi1$employstatus 3[modi1$employstatus 3 == 1] <- 3
modi1$employstatus_4[modi1$employstatus_4 == 1] <- 4
modi1$employstatus 5[modi1$employstatus 5 == 1] <- 5
modi1$employstatus 6[modi1$employstatus 6 == 1] <- 6
modi1$employstatus_7[modi1$employstatus_7 == 1] <- 7
modi1$employstatus_8[modi1$employstatus_8 == 1] <- 8
modi1$employstatus_9[modi1$employstatus_9 == 1] <- 9
modi1$employstatus_10[modi1$employstatus_10 == 1] <- 10
employstatus <- rowSums(modi1[,21:30],modi1$employstatus_1 + modi1$employstatus_2 +
             modi1$employstatus 3 + modi1$employstatus 4 +
             modi1$employstatus_5 + modi1$employstatus_6 +
             modi1$employstatus 7 + modi1$employstatus 8 +
             modi1$employstatus_9 + modi1$employstatus_10)
modi1 <- add column(modi1, employstatus, .after = 30)
modi1 <- modi1[,-21:-30]
# for age is NA means that they are below 18, so replace by 0
# for edu is NA means that they doesn't have education, so replace by 0
modi1$age[is.na(modi1$age)] = 0
modi1$edu[is.na(modi1$edu)] = 0
modi1 = na.omit(modi1)
# there are no reasons for the other columns to be NA.
# Question 2.a
# Focus Country = Greece
# function that detects most outliers
outliers <- function(x) { Q1 <- quantile(x, probs=.25)
                      Q3 <- quantile(x, probs=.75)
                      iqr = Q3-Q1
                      upper limit = Q3 + (igr*1.5)
                      lower_limit = Q1 - (iqr*1.5)
              x > upper_limit | x < lower_limit}
# function that remove most outliers
remove outliers <- function(df, cols = names(df)) {
for (col in cols) {df <- df[!outliers(df[[col]]),]}df}
# 'focus' is data set for Greece, 'focuss' is modification of 'focus',
# that remove the variable coded country
focus = modi1 %>% filter(coded_country == "Greece")
focuss <- focus[,-41]
# remove outliers in data frame 'focuss'
focuss <- remove_outliers(focuss)
#' other' is data set for all the countries except Greece, 'others' is modification of 'other',
# that remove the variable coded country
other = modi1 %>% filter(coded country != "Greece")
others <- other[,-41]
# remove outliers in data frame 'others'
others <- remove outliers(others)
# In average,
# we can see there are more people in Greece doesn't have income, compare to other countries.
# We can also see that the people in Greece is more educated.
# All people in Greece felt concerned when think about the future of society
par(mfrow=c(2,1))
boxplot(focuss)
boxplot(others)
```


- # Linear Model used
- # Since all the people in Greece have the same value for variable 'disc02',
- # so it doesnt make any support to the linear regression,
- # so variable 'disc02' dropped.

focuss <- focuss[,-15]

predict --> c19ProSo01

partition 80% for training data, 20% for testing data

f1training.samples <- focuss\$c19ProSo01 %>% createDataPartition(p = 0.8, list = FALSE)

f1train.data <- focuss[f1training.samples,]</pre>

f1test.data <- focuss[-f1training.samples,]</pre>

strongest predictors: c19ProSo02, PLRAC19, affBor, affBor

p-value: 0.02719

Multiple R-squared: 0.4292

f1_fit = Im(c19ProSo01 ~ ., data = f1train.data)

summary(f1_fit)

plot(f1_fit)

make a predict using the test data

f1pred <- f1_fit %>% predict(f1test.data)

RMSE: 1.580738

RMSE(f1pred, f1test.data\$c19ProSo01)

> RMSE(f1pred, f1test.data\$c19proso01)

R-square: 0.01920922

R2(f1pred, f1test.data\$c19ProSo01)

> R2(f1pred, f1test.data\$c19ProSo01 [1] 0.01920922

predict --> c19ProSo02

partition 80% for training data, 20% for testing data

f2training.samples <- focuss\$c19ProSo02 %>% createDataPartition(p = 0.8, list = FALSE)

f2train.data <- focuss[f1training.samples,]
f2test.data <- focuss[-f1training.samples,]</pre>

strongest predictors: c19ProSo01, c19ProSo03, c19IsStrict, c19NormDo, c19IsPunish

p-value: 0.0003551

Multiple R-squared: 0.5202

f2_fit = Im(c19ProSo02 ~ ., data = f2train.data)

summary(f2_fit)

plot(f2_fit)

make a predict using the test data

f2pred <- f2_fit %>% predict(f2test.data)

#RMSE: 1.516047

RMSE(f2pred, f2test.data\$c19ProSo02)

[1] 1.516047

R-square: 0.001218048

R2(f2pred, f2test.data\$c19ProSo02)

> R2(f2pred, f2test.data\$c19proso0 [1] 0.001218048

predict --> c19ProSo03

partition 80% for training data

20% for testing data

f3training.samples <- focuss\$c19ProSo03 %>% createDataPartition(p = 0.8, list = FALSE)

f3train.data <- focuss[f3training.samples,]

f3test.data <- focuss[-f3training.samples,]

strongest predictors: c19NormDo, edu, lifeSat, c19ProSo04

p-value: 0.0004024

Multiple R-squared: 0.5181

f3_fit = Im(c19ProSo03 ~ ., data = f3train.data)

summary(f3_fit)

plot(f3_fit)

Normal Q-Q

make a predict using the test data

f3pred <- f3_fit %>% predict(f3test.data)

RMSE: 1.231611

RMSE(f3pred, f3test.data\$c19ProSo03)

> RMSE(T3pred, T3test.data%c19Prosou [1] 1.231611

R-square: 0.278455

R2(f3pred, f3test.data\$c19ProSo03)

> R2(f3pred, f3test.data\$c19ProSo03) [1] 0.278455

predict --> c19ProSo04

partition 80% for training data, 20% for testing data

f4training.samples <- focuss\$c19ProSo04 %>% createDataPartition(p = 0.8, list = FALSE)

f4train.data <- focuss[f4training.samples,]

f4test.data <- focuss[-f4training.samples,]

strongest predictors: fail03, PLRAEco

p-value: 0.1754

Multiple R-squared: 0.3687

f4_fit = Im(c19ProSo04 ~ ., data = f4train.data)

summary(f4_fit)

make a predict using the test data

f4pred <- f4_fit %>% predict(f4test.data)

RMSE: 1.024248

RMSE(f4pred, f4test.data\$c19ProSo04)

> RMSE(f4pred, f4test.data\$c19proSo04)
[1] 1.024248

R-square: 0.003979094

R2(f4pred, f4test.data\$c19ProSo04)
> R2(f4pred, f4test.data\$c19ProSo04)
[1] 0.003979074

predict --> c19ProSo01

partition 80% for training data, 20% for testing data

o1training.samples <- others\$c19ProSo01 %>% createDataPartition(p = 0.8, list = FALSE)

o1train.data <- others[o1training.samples,]

o1test.data <- others[-o1training.samples,]

strongest predictors: c19ProSo02, c19ProSo03, c19ProSo04

p-value: < 2.2e-16

Multiple R-squared: 0.3632

o1_fit = $Im(c19ProSo01 \sim ., data = o1train.data)$

summary(o1_fit)

plot(o1_fit)

make a predict using the test data

o1pred <- o1_fit %>% predict(o1test.data)

RMSE: 1.058412

RMSE(o1pred, o1test.data\$c19ProSo01)

> RMSE(01pred, 01test.data\$c19ProSo01)
[1] 1.058412

R-square: 0.3671841

R2(o1pred, o1test.data\$c19ProSo01)

> R2(olpred, oltest.data\$c19ProS [1] 0.3671841

compared to the focus country model, they only have 1 same indicator which is

the 'c19ProSo02', and for 2 of the models 'c19ProSo02' is the strongest predictor.

For focus country have another 3 indicators which is PLRAC19, affBor and affBor.

Whereas for All other countries, have another 2 indicators which is c19ProSo03 and c19ProSo04.

predict --> c19ProSo02

partition 80% for training data

20% for testing data

o2training.samples <- others\$c19ProSo02 %>% createDataPartition(p = 0.8, list = FALSE)

o2train.data <- others[o2training.samples,]

o2test.data <- others[-o2training.samples,]

strongest predictors: c19ProSo03, c19ProSo01

p-value: < 2.2e-16

Multiple R-squared: 0.3997

o2_fit = lm(c19ProSo02 ~ ., data = o2train.data)

summary(o2_fit)

plot(o2_fit)

make a predict using the test data

o2pred <- o2_fit %>% predict(o2test.data)

RMSE: 1.105373

RMSE(o2pred, o2test.data\$c19ProSo02)

[1] 1.105373

R-square: 0.4252648

R2(o2pred, o2test.data\$c19ProSo02)

[1] 0.4252648

compared to the focus country model, they have 2 same significant indicator which is # 'c19ProSo01' and 'c19ProSo03' and for 2 of the models 'c19ProSo01' and 'c19ProSo03' # is the strongest predictor. # For focus country have another 3 indicators # which is c19IsStrict, c19NormDo, c19IsPunish.

predict --> c19ProSo03

partition 80% for training data, 20% for testing data

o3training.samples <- others\$c19ProSo03 %>% createDataPartition(p = 0.8, list = FALSE)

o3train.data <- others[o3training.samples,]

o3test.data <- others[-o3training.samples,]

strongest predictors: c19ProSo01, c19ProSo02, c19ProSo04

p-value: < 2.2e-16

Multiple R-squared: 0.4306

 $o3_{fit} = Im(c19ProSo03 \sim ., data = o3train.data)$

summary(o3_fit)

plot(o3_fit)

make a predict using the test data

o3pred <- o3_fit %>% predict(o3test.data)

RMSE: 1.15123

RMSE(o3pred, o3test.data\$c19ProSo03)

> RMSE(03pre

R-square: 0.4141071

R2(o3pred, o3test.data\$c19ProSo03)
> R2(o3pred, o3test.data\$c19ProSo03)
[1] 0.4141071

compared to the focus country model, they have only 1 same significant indicator which is

'c19ProSo04' and for 2 of the models 'c19ProSo04' is the strongest predictor.

For focus country have another 3 indicators which is c19NormDo, edu, lifeSat.

Whereas for All other countries, have another 2 indicators which is c19ProSo01 and c19ProSo02.

predict --> c19ProSo04

partition 80% for training data, 20% for testing data

o4training.samples <- others\$c19ProSo04 %>% createDataPartition(p = 0.8, list = FALSE)

o4train.data <- others[o4training.samples,]

o4test.data <- others[-o4training.samples,]

strongest predictors: c19ProSo01, c19ProSo03, c19NormShould

p-value: < 2.2e-16

Multiple R-squared: 0.3293

o4_fit = lm(c19ProSoO4 ~ ., data = o4train.data)

summary(o4_fit)

Plot(o4_fit) Residuals vs Fitted Residuals vs Leverage Residuals vs Leverage

make a predict using the test data o4pred <- o4 fit %>% predict(o4test.data)

0.000

RMSE: 1.158719

RMSE(o4pred, o4test.data\$c19ProSo04)

[1] 1.183097

R-square: 0.3216867

R2(o4pred, o4test.data\$c19ProSo04)

[1] 0.2851207

strongest predictors:

compared to the focus country model, they don't have same significant indicator.

for focus country model have 'fail03', 'PLRAEco' as the strongest predictor.

For All other countries, have c19ProSo01, c19ProSo03, c19NormShould as the

strongest predictor.

Question 3.a

```
# to reproduce the results
set.seed(32637888)
# to find the best number of cluster
# best: 3
wss<- NULL
for (i in 1:10){
   fit = kmeans(focuss,centers = i)
   wss = c(wss, fit$tot.withinss)
}
plot(1:10, wss, type = "o")</pre>
```


Attributes used: "affAnx","affBor","affCalm","affContent","affDepr","affEnerg", # "affExc","affNerv","affExh","affInsp","affRel","PLRAC19","PLRAEco","disc01", # "disc03","jbInsec01","jbInsec02","jbInsec03","jbInsec04","employstatus","PFS01", # "PFS02","PFS03","fail01","fail02","fail03","happy",lifeSat","MLQ","c19NormShould", # "c19NormDo","c19IsStrict","c19IsPunish","c19IsOrg","trustGovCtry","trustGovState", # "gender","age","edu","c19ProSo01","c19ProSo02","c19ProSo03","c19ProSo04"

attributes(focuss)

\$name	"affAr "affIr "jbIns "lifes	nx" nsp" sec04" sat"		"affm "affm "empl "MLQ" "age"	el" oysta	tus"	"PLR	Norms		"PL "PF "c1"	fCont RAECO SO2" 9Norm 9ProS	" Do"	"d "p "c	ffDep lisc01 FS03" 19ISS	" trict	:	affEn disc0 fail0 c19Is c19Pr	3" 1" Punis	h"	"fail	sec01 02" sorg"		"jbI "fai			"jb "ha	fExh" Insec ppy" ustGo		e"		
\$clas [1] "		rame'																													
\$row.	names																														
[1]	13	17	18	24	26	29	44	49	56	67	78	90	101	102	108	130	131	136	138	145	148	162	163	168	169	173	174	184	187	190	202
[32]	203	210	212	215	217	223	224	226	234	236	244	245	252	253	260	263	270	274	290	296	302	306	307	308	313	314	322	324	342	345	348
[63]	349	350	356	360	363	381	382	390	409	411	413	414	421	425	426	427	451	452	477	479	491	496	508	510	520	542	546	548	555	558	566
[94]	571	573	575	577	594	601	602	606	619	623	625	626	628	632	637	654	655	658	660	674	694	698	703	706	709	710	722	724	727	734	736
[125]	744	747	763	764	769	777	779	786	793	805	812	814	815	817	833	835	844	872	881	882	889	898	904	913	917	925	927	928	930	932	951
[156]	952	959	967	971	972	975	978	991	996	999	1003																				

Clustering to fit --> c19ProSo01

focus country --> Greece

par(mfrow=c(2,2))

k-means clustering

f1fit = kmeans(focuss,3,nstart=30)

table to show the fitness

T1 <- table(actual = focuss\$c19ProSo01, fitted = f1fit\$cluster)

T1 = as.data.frame.matrix(T1)

show the column names

colnames(T1)

T1

plot the cluster chart

plotcluster(focuss,f1fit\$cluster,pointsbyclvecd = TRUE)

Country --> Republic of Serbia

any1 = modi1 %>% filter(coded_country == "Republic of Serbia")

any1s <- any1[,-41]

any1s <- any1s[,-15]

remove outliers in data frame 'any1s'

any1s <- remove_outliers(any1s)</pre>

f2fit = kmeans(any1s,3,nstart=30)

T2 <- table(actual = any1s\$c19ProSo01, fitted = f2fit\$cluster)

T2 = as.data.frame.matrix(T1)

colnames(T2)

T2

plotcluster(any1s,f2fit\$cluster,pointsbyclvecd = TRUE)


```
# Country --> Ukraine
any2 = modi1 %>% filter(coded_country == "Ukraine")
any2s <- any2[,-41]
any2s <- any2s[,-15]
# remove outliers in data frame 'any1s'
any2s = na.omit(any2s)
any2s <- remove_outliers(any2s)
f3fit = kmeans(any2s,3,nstart=30)
T3 <- table(actual = any2s$c19ProSo01, fitted = f3fit$cluster)
T3 = as.data.frame.matrix(T3)
colnames(T3)
T3
plotcluster(any2s,f3fit$cluster,pointsbyclvecd = TRUE)</pre>
```


dc 1
Country --> United Kingdom
any3 = modi1 %>% filter(coded_country == "United Kingdom")
any3s <- any3[,-41]
any3s <- any3s[,-15]
remove outliers in data frame 'any3s'
any3s = na.omit(any3s)
any3s <- remove_outliers(any3s)
f4fit = kmeans(any3s,3,nstart=30)
T4 <- table(actual = any3s\$c19ProSo01, fitted = f4fit\$cluster)
T4 = as.data.frame.matrix(T4)
colnames(T4)
T4
plotcluster(any3s,f4fit\$cluster,pointsbyclvecd = TRUE)

```
# Country --> United Kingdom
any4 = modi1 %>% filter(coded_country == "United States of America")
any4s <- any4[,-41]
any4s <- any4s[,-15]
# remove outliers in data frame 'any3s'
any4s = na.omit(any4s)
any4s <- remove_outliers(any4s)
```

```
f5fit = kmeans(any4s,3,nstart=30)
T5 <- table(actual = any4s$c19ProSo01, fitted = f5fit$cluster)
T5 = as.data.frame.matrix(T5)
colnames(T5)
T5
plotcluster(any4s,f5fit$cluster,pointsbyclvecd = TRUE)
```


Similar countries: Republic of Serbia, Ukraine, United Kingdom, United States of America

Smlar = modi1 %>% filter(coded_country == "United States of America" | coded_country == "United Kingdom" | coded_country == "Ukraine" | coded_country == "Republic of Serbia")

Smlar < Smlar (41)

Smlar <- Smlar[,-41]

Smlar <- Smlar[,-15]

Smlar = na.omit(Smlar)

Smlar <- remove_outliers(Smlar)</pre>

predict --> c19ProSo01

partition the data for training and testing

Smtraining.samples <- Smlar\$c19ProSo01 %>% createDataPartition(p = 0.8, list = FALSE)

Smtrain.data <- Smlar[Smtraining.samples,]</pre>

Smtest.data <- Smlar[-Smtraining.samples,]</pre>

fit into linear regression model

strongest predictors: c19ProSo02, c19ProSo03, trustGovState

p-value: < 2.2e-16

Multiple R-squared: 0.3502

Sm1fit = Im(c19ProSo01 ~ ., data = Smtrain.data)

summary(Sm1fit)

	19ProSo01	~ ., data = Smtrain.data)	
Residuals:			
	LQ Median	3Q Max	
-4.2245 -0.517	74 0.1147	0.6338 3.6000	
Coefficients:			
		Std. Error t value Pr(> t)	
(Intercept)	-0.749374	0.432075 -1.734 0.08315 .	
affAnx	-0.043118	0.047954 -0.899 0.36878	
affBor	-0.001738	0.029019 -0.060 0.95225	
affCalm	0.102556	0.049578 2.069 0.03883 *	
affContent	-0.045609	0.049102 -0.929 0.35318	
affDepr	-0.021073	0.041180 -0.512 0.60894	
affEnerg	0.059396	0.043984 1.350 0.17719	
affExc	-0.043239		
affNerv	0.016141	0.046938 0.344 0.73100	
affExh	0.025390	0.035402 0.717 0.47342	
affInsp	0.050469	0.041619 1.213 0.22554	
affRel	-0.004505	0.049552 -0.091 0.92758	
PLRAC19	0.038485	0.037980 1.013 0.31116	
PLRAECO disc01	0.074629	0.027508 2.713 0.00678 **	
discos	-0.070123	0.047190 -1.486 0.13758 0.044461 -0.581 0.56153	
	-0.025821		
jbInsec01 ibInsec02	-0.016497	0.057220 -0.288 0.77317	
	0.006680 -0.011403	0.053131 0.126 0.89997 0.039855 -0.286 0.77486	
jbInsec03			
jbInsec04 employstatus	-0.074518 0.035381	0.058272 -1.279 0.20125 0.039781 0.889 0.37400	
PFS01	0.006553	0.051622 0.127 0.89901	
PFS02	-0.027371	0.031622 0.127 0.89901 0.046076 -0.594 0.55261	
PFS02 PFS03	0.077613		
fail01	-0.018819	0.048335 1.606 0.10864 0.039700 -0.474 0.63558	
fail02	-0.024370	0.043074 -0.566 0.57168	
fail02	-0.013039	0.043743 -0.298 0.76570	
	0.048659	0.029618 1.643 0.10071	
happy lifesat	-0.109407	0.048766 -2.244 0.02507 *	
MLQ	0.013966	0.031553 0.443 0.65814	
c19NormShould		0.054242 -0.976 0.32922	
c19NormDo	0.027505	0.042665 0.645 0.51928	
c19IsStrict	0.036063	0.034844 1.035 0.30092	
c19IsPunish	0.012825	0.027171 0.472 0.63702	
c19Isorq	0.017996	0.034835 0.517 0.60553	
trustGovCtrv	-0.034537	0.037166 -0.929 0.35297	
trustGovState		0.044247 2.858 0.00435 **	
gender	0.053682	0.068609 0.782 0.43413	
age	0.009453	0.027187 0.348 0.72815	
edu	-0.015577	0.024878 -0.626 0.53137	
c19ProSo02	0.292488	0.027126 10.782 < 2e-16 ***	
c19ProSo03	0.226015	0.025619 8.822 < 2e-16 ***	
c19ProSo04	0.081404	0.040623 2.004 0.04534 *	
	01001101	2.2.2.2.3	
Signif. codes:	0 '***	0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '	1
- Jiiii coucs		0101 0103 F 0.1	
Residual stand	dard error:	: 1.031 on 1040 degrees of freedom	
Multiple R-squ		3502, Adjusted R-squared: 0.3239	
		2 and 1040 DF, p-value: < 2.2e-16	
			_

plot(Sm1fit)

make a predict using the test data

Sm1pred <- Sm1fit %>% predict(Smtest.data)

RMSE: 1.063085

RMSE(Sm1pred, Smtest.data\$c19ProSo01)

> RMSE(Smlpred, Smtest.data\$c19ProSo01)
[1] 1.063085

R-square: 0.2585837 R2(Sm1pred, Smtest.data\$c19ProSo01)

> R2(Sm1pred, Smtest.data\$c19ProSo01) [1] 0.2585837

predict --> c19ProSo02

fit into linear regression model

strongest predictors: c19ProSo01, c19ProSo03, c19ProSo04

p-value: < 2.2e-16

Multiple R-squared: 0.3872

Sm2fit = Im(c19ProSo02 ~ ., data = Smtrain.data)

summary(Sm2fit)

plot(Sm2fit)

make a predict using the test data

Sm2pred <- Sm2fit %>% predict(Smtest.data)

RMSE: 1.136873

RMSE(Sm2pred, Smtest.data\$c19ProSo02)

> RMSE(Sm2pred, Smtest.data\$c19Proso02)
[1] 1.117186

R-square: 0.3489879

R2(Sm2pred, Smtest.data\$c19ProSo02)

| R2(Sm2pred, Smtest.data\$C19Pr0S002 | [1] 0.3416506

predict --> c19ProSo03

fit into linear regression model

strongest predictors: c19ProSo01, c19ProSo02, c19ProSo04

p-value: < 2.2e-16

Multiple R-squared: 0.3524

Sm3fit = Im(c19ProSo03 ~ ., data = Smtrain.data)

summary(Sm3fit)

```
Residuals:
 Min 1Q Median 3Q Max
-4.1621 -0.6203 0.1707 0.7091 4.2970
Coefficients:
                            Estimate Std. Error t
-0.298070 0.505077 -
0.030535 0.055999
-0.043592 0.033852 -
                                                                         value Pr(>|t|)
-0.590 0.55522
0.545 0.58567
-1.288 0.19812
(Intercept)
affBor
affCalm
affContent
                            0.035563
-0.019429
                                                    0.057989
0.057346
                                                                          0.613
-0.339
                                                                                         0.53983
0.73482
                                                                          1.316
-0.131
0.581
-1.355
                                                                                         0.18863
0.89594
0.56105
affDepr
                             0.063201
-0.006724
                                                    0.048043
0.051395
affEnerg
affExc
affNerv
                             0.028789
-0.074194
                                                    0.049511
0.054753
                             -0.001911
0.011237
                                                    0.041341
0.048621
                                                                          -0.046
0.231
affExh
                                                                                          0.96315
affInsp
affRel
PLRAC19
PLRAECO
                                                    0.057850
0.044146
0.032227
                                                                           0.208
3.200
0.263
                              0.012039
                                                                                          0.83519
                              0.141284
                                                                                         0.00141
disc01
disc03
                            -0.063304
-0.017871
                                                    0.055116
0.051912
                                                                          -1.149
-0.344
                                                                                         0.25100
0.73073
                                                                         -0.344
-1.385
-0.871
-0.030
0.654
 jbInsec01
jbInsec02
                            -0.092426
-0.054024
                                                    0.066743
0.062006
                                                                                          0.16641
0.38381
 jbInsec03
jbInsec04
                             -0.001389
0.044496
                                                    0.046532
0.068070
                                                                                          0.97619
                                                                         0.654
-1.337
-1.699
-0.256
-0.192
-0.996
1.295
0.292
-0.583
-1.248
employstatus
PFS01
PFS02
                                                    0.046421
                            -0.062087
                                                                                          0.18136
                            -0.102258
-0.013767
                                                    0.060184
0.053800
                                                                                         0.08960
0.79808
PFS03
fail01
                            -0.010837
-0.046141
                                                    0.056498
0.046331
                                                                                          0.84793
0.31953
                                                                                         0.19563
0.77008
0.56019
                              0.065078
0.014930
                                                    0.050255
0.051068
 fail02
 fail03
                             -0.020173
-0.071160
                                                    0.034617
0.057028
                                                                         1.400
0.182
-0.795
-1.147
0.686
MLQ
c19NormShould
c19NormDo
                             0.051523
0.011554
-0.039614
                                                    0.036806
                                                                                          0.16186
                                                    0.063354
                                                                                         0.85532
c19IsStrict
                              -0.046651
0.021753
                                                    0.040675
0.031717
                                                                                          0.25167
0.49297
c19IsPunish
c19IsOrg
trustGovCtry
trustGovState
                              0.052245
-0.005666
                                                    0.040641
0.043408
                                                                          1.286
-0.131
                                                                                         0.19890
0.89617
                                                    0.051856
0.080104
                                                                          -0.364
0.676
                             -0.018894
                                                                                          0.71567
                                                                                         0.71567

0.49920

0.15104

0.19895

< 2e-16

< 2e-16
                                                    0.031710
0.029027
0.034919
                                                                           -1.437
1.285
8.822
                              -0.045566
                              0.037310
c19ProSo01
                                                                         10.329
5.147
                              0.241514
                                                    0.046924
Signif. codes: 0'***'0.001'**'0.01'*'0.05'.'0.1''1
Residual standard error: 1.203 on 1040 degrees of freedom
Multiple R-squared: 0.3524, Adjusted R-squared: 0.3262
F-statistic: 13.47 on 42 and 1040 DF, p-value: < 2.2e-16
```

plot(Sm3fit)

make a predict using the test data

Sm3pred <- Sm3fit %>% predict(Smtest.data)

RMSE: 1.292243

RMSE(Sm3pred, Smtest.data\$c19ProSo03)

> RMSE(Sm3pred, Smtest.data\$c19ProSo03) [1] 1.096615

R-square: 0.3246896

R2(Sm3pred, Smtest.data\$c19ProSo03)

> R2(Sm3pred, Smtest.data\$c19ProSo03)
[1] 0.3709666

predict --> c19ProSo04

fit into linear regression model

strongest predictors: c19NormShould, c19ProSo03, c19IsPunish

p-value: < 2.2e-16

Multiple R-squared: 0.3424

Sm4fit = Im(c19ProSo04 ~ ., data = Smtrain.data)

summary(Sm4fit)

```
Residuals:
Min 1Q Median 3Q Max
-2.36832 -0.46450 0.02424 0.54204 2.35628
Coefficients:
                                                                                                                value Pr(>|t|)
-1.017 0.30962
1.421 0.15563
0.637 0.52445
1.439 0.15052
0.601 0.54797
-1.996 0.04619
-1.914 0.05594
-1.826 0.06808
                                            Estimate Std.

-0.334934 0.

0.051884 0.

0.014074 0.

0.054401 0.
                                                                              0.329492
0.036513
0.022104
0.037811
0.037418
(Intercept)
affAnx
affBor
affCalm
affContent
affDepr
affEnerg
                                              0.022488
                                            -0.062512
-0.064070
                                                                                                                  -1.826
0.167
0.376
-1.037
 affExc
                                                                               0.035762
0.026976
0.031714
                                                                                                                  0.412
0.356
1.817
                                                                               0.035898
0.033877
0.043595
0.040426
                                                                                                                 2.311
-0.227
-0.034
1.634
1.253
-1.472
1.881
-1.971
2.872
0.179
-2.300
                                              0.082957
                                            0.08295/
-0.007682
-0.001496
0.066059
0.038021
-0.065314
0.056944
-0.077390
disc03
jbInsec01
jbInsec02
                                                                               0.034971
0.036869
0.030172
                                                                                                                -1.714
2.151
-0.482
1.115
-0.972
9.464
-0.839
2.314
-4.299
1.800
-1.606
                                                                                                                                       0.33104
< 2e-16
0.40142
                                             0.061312
-0.088225
0.047691
                                                                                                                 -1.606
3.252
-0.086
0.822
-2.247
2.004
2.957
                                               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 0.7854 on 1040 degrees of freedom
Multiple R-squared: 0.3424, Adjusted R-squared: 0.3159
F-statistic: 12.89 on 42 and 1040 DF, p-value: < 2.2e-16
```

plot(Sm4fit)

make a predict using the test data

Sm4pred <- Sm4fit %>% predict(Smtest.data)

RMSE: 0.7941543

RMSE(Sm4pred, Smtest.data\$c19ProSo04)

> RMSE(Sm4pred, Smtest.data\$c19ProSo04)
[1] 0.7941543

R-square: 0.2800452

R2(Sm4pred, Smtest.data\$c19ProSo04)

> R2(Sm4pred, Smtest.data\$c19ProSo04)
[1] 0.2800452

For c19ProSo01,

Focus country (Greece):

strongest predictors: c19ProSo02, PLRAC19, affBor, affBor

Similar COuntries:

strongest predictors: c19ProSo02, c19ProSo03, trustGovState

summary(Sm1fit)
All other countries:

strongest predictors: c19ProSo02, c19ProSo03, c19ProSo04

In my opinion for attribute 'c19ProSo01', 'c19ProSo02' is the most important indicator for prediction

because it appeared as the most significant in all models.

For both group of All other countries 2(c) and Similar COuntries 3(b) give a similar match

to the important attributes for predicting pro-social attitudes in my focus country

because they 2 only have 1 same indicator with the my country model.

For c19ProSo02,

Focus country (Greece):

strongest predictors: c19ProSo01, c19ProSo03, c19IsStrict, c19NormDo, c19IsPunish

Similar COuntries:

strongest predictors: c19ProSo01, c19ProSo03, c19ProSo04

All other countries:

strongest predictors: c19ProSo03, c19ProSo01

In my opinion for attribute 'c19ProSo02', 'c19ProSo01' and 'c19ProSo03'is the

most important indicator for prediction because it appeared as the most

significant in all models.

All other countries 2(c) give a similar match to the important attributes for

predicting pro-social attitudes in my focus country.

This is because although they have the same similar very significant indicators,

but for model of All Countries have 'c19NormDo' as significant indicator and

for similar countries have it as not significant indicator.

```
# For c19ProSo03,
```

- # Focus country (Greece):
- # strongest predictors: c19NormDo, edu, lifeSat, c19ProSo04
- # Similar COuntries:
- # strongest predictors: c19ProSo01, c19ProSo02, c19ProSo04
- # All other countries:
- # strongest predictors: c19ProSo01, c19ProSo02, c19ProSo04
- # In my opinion for attribute 'c19ProSo03', 'c19ProSo04' is the
- # most important indicator for prediction because it appeared as the most
- # significant in all models.
- # All other countries 2(c) give a similar match to the important attributes for
- # predicting pro-social attitudes in my focus country.
- # This is because although they have the same similar very significant indicators,
- # but for model of All Countries have 'c19NormDo' as significant indicator and
- # for similar countries have it as not significant indicator.

For c19ProSo04,

- # Focus country (Greece):
- # strongest predictors: c19ProSo03, c19NormShould
- # Similar COuntries:
- # strongest predictors: c19NormShould, c19ProSo03, c19IsPunish
- # All other countries:
- # strongest predictors: c19ProSo01, c19ProSo03, c19NormShould
- # In my opinion for attribute 'c19ProSoO4', 'c19ProSoO3' and 'c19NormShould' is
- # the most important indicator for prediction because it appeared as the most
- # significant in all models.
- # Similar COuntries 3(b) give a similar match to the important attributes for
- # predicting pro-social attitudes in my focus country.
- # This is because although they have the same similar very significant indicators,
- # but for model of Similar COuntries have focus on the 2 indicators as significant
- # indicator and for All other countries 2(c) have other significant indicator for prediction.