PROCURA EM ESPAÇOS DE ESTADOS

Luís Morgado 2024

PROCURA MELHOR-PRIMEIRO (BEST-FIRST)

- Utiliza uma função f(n) para avaliação de cada nó n gerado
 - $-f(n) \geq 0$
 - f(n) representa uma avaliação do custo da solução através do nó n
 - Quanto menor o valor de f(n) mais promissor é o nó n
- A fronteira de exploração é ordenada por ordem crescente de f(n)
- f(n) pode ter diferentes formas
 - Baseada no custo dos nós explorados
 - Baseada em estimativas de custo
 - Com base em heurísticas métodos expeditos de estimação de valores ou de resolução de problemas

PROCURA MELHOR-PRIMEIRO (BEST-FIRST)

Variantes principais de f(n)

$$f(n) = g(n)$$

- Procura de Custo Uniforme
 - Minimização de custo acumulado até cada nó explorado

PROCURA DE CUSTO UNIFORME

f(n) = g(n), representa uma avaliação do custo g(n) do percurso até ao nó n

g(n): custo do percurso até **n**

Custo calculado para a partir do estado inicial atingir o estado *n*

Procura de Custo Uniforme

- Estratégia de controlo
 - Explorar primeiro os nós com menor custo
 - Fronteira ordenada por custo associado a cada nó: f(n) = g(n)

Fronteira de exploração []

[0:0] Estado: Nó

Árvore de Procura

Fronteira de exploração

Grafo do Espaço de Estados

Procura de Custo Uniforme

- Estratégia de controlo
 - Explorar primeiro os nós com menor custo
 - Fronteira ordenada por custo associado a cada nó

Fronteira de exploração [] [0:0] 0:0 [] [1:5, 2:25]

Procura de Custo Uniforme

- Estratégia de controlo
 - Explorar primeiro os nós com menor custo
 - Fronteira ordenada por custo associado a cada nó

Procura de Custo Uniforme

- Estratégia de controlo
 - Explorar primeiro os nós com menor custo
 - Fronteira ordenada por custo associado a cada nó

Fronteira de exploração

Procura de Custo Uniforme

- Estratégia de controlo
 - Explorar primeiro os nós com menor custo
 - Fronteira ordenada por custo associado a cada nó

Procura de Custo Uniforme

- Estratégia de controlo
 - Explorar primeiro os nós com menor custo
 - Fronteira ordenada por custo associado a cada nó

Fronteira com relação de ordem entre nós

(Prioridade de processamento)

Estrutura de dados *PriorityQueue*

(Fila com prioridade)

Representação com base numa lista

Linguagem Python

Biblioteca heapq (HeapQueue)

Possibilita o acesso a listas com relação de ordem entre os elementos

heapq.heappush(heap, item)

Insere item na pilha heap

heapq.heappop(heap)

Remove e retorna da pilha *heap* por ordem de prioridade

Utiliza a relação de ordem definida para os objectos manipulados

PROCURA EM ESPAÇOS DE ESTADOS

Métodos de Procura não Informada

- Estratégias de exploração do espaço de estados (controlo da procura) não tiram partido de conhecimento do domínio do problema para ordenar a fronteira de exploração
- Procura não guiada
 - Exploração **exaustiva** do espaço de estados

Métodos de Procura Informada

- Estratégias de exploração do espaço de estados (controlo da procura) tiram partido de conhecimento do domínio do problema para ordenar a fronteira de exploração
- Procura guiada
 - Exploração **selectiva** do espaço de estados

Qual a melhor acção a realizar em cada situação?

Qual a melhor acção a realizar em cada situação?

Utilização de conhecimento do domínio do problema, por exemplo, distância ao objectivo

FUNÇÃO HEURÍSTICA h(n)

- Representa uma estimativa do custo do percurso desde o nó n até ao nó objectivo
 - Pode n\u00e3o corresponder ao valor real
- Reflecte conhecimento acerca do domínio do problema, para guiar a procura
- O seu valor é independente do percurso até *n*
 - Depende apenas de:
 - Estado associado a n
 - Objectivo

MÉTODOS DE PROCURA INFORMADA

f(n) baseada em dois tipos de funções de avaliação de custo g(n) e h(n)

g(n): Custo do percurso até n

Custo calculado para a partir do estado inicial atingir o estado *n*

h(n): Estimativa de custo de **n** até ao objectivo

Estimativa de custo (heurística) para a partir do estado n atingir o estado objectivo u (sem que o percurso respectivo tenha sido explorado)

PROCURA MELHOR-PRIMEIRO (BEST-FIRST)

Variantes principais de f(n)

$$-f(n)=g(n)$$

- Procura de Custo Uniforme
 - Minimização de custo acumulado até cada nó explorado
 - Não tira partido de conhecimento do domínio do problema expresso através da função h(n)
- -f(n)=h(n)
 - Procura Sôfrega (Greedy Search)
 - Minimização da estimativa de custo para atingir o objectivo
 - Não tem em conta o custo do percurso explorado
 - Soluções sub-óptimas
- -f(n)=g(n)+h(n)
 - Procura A* (heurística admissível)
 - Minimização de custo global
 (custo acumulado até ao nó n + custo estimado até ao objectivo)

MÉTODOS DE PROCURA INFORMADA

Problema

Sendo as *heurísticas* **estimativas** de custo, podem induzir em erro levando a soluções sub-óptimas

Exemplo: qual a melhor acção a realizar?

PROCURA MELHOR-PRIMEIRO (BEST-FIRST)

Procura de custo uniforme

- Solução óptima
- Maior complexidade computacional

Procura sôfrega

- Solução sub-óptima
- Menor complexidade computacional

- Heurística admissível
 - $-0 \leq h(n) \leq h^*(n)$
 - $-h^*(n)$
 - Custo mínimo do nó n até ao objectivo (percurso óptimo)
- Uma heurística admissível é optimista
 - A estimativa de custo é sempre inferior ou igual ao custo efectivo mínimo
 - Para um nó objectivo n_{obj}
 - $h(n_{\text{obj}}) = 0$

h₁ – Distância Euclidiana

$$h_1(n) = \sqrt{(x_n - x_{obj})^2 + (y_n - y_{obj})^2}$$

Admissível?

SIM

h₂ – Distância de Manhattan

$$h_2(n) = |x_n - x_{obj}| + |y_n - y_{obj}|$$

Admissível?

- SIM : Se não forem possíveis movimentos diagonais
- NÃO : Caso contrário

Como definir uma heurística admissível

- No caso geral, uma heurística admissível é obtida através da remoção de restrições associadas ao problema
- Exemplo: Navegação autónoma
 - h₁ Distância de Manhattan
 - Corresponde a retirar a restrição:
 - » Não movimentação através de obstáculos
 - h₂ Distância de Euclidiana
 - Corresponde a retirar as restrições:
 - » Não movimentação através de obstáculos
 - » Não movimentação em diagonal

- C* Custo da solução óptima
- n Nó na fronteira de exploração

$$f(n) = g(n) + h(n) \le C^*$$
 (se $h(n)$ admissível)

• *m* - Nó sub-óptimo na fronteira de exploração

$$f(m) = g(m) + h(m)$$

• Se **m** for um nó objectivo

$$h(m) = 0$$
$$f(m) = g(m) > C^*$$

Então

$$f(n) \leq C^* < f(m)$$

m não será expandido e a solução encontrada será óptima

PROCURA EM ESPAÇOS DE ESTADOS COMPARAÇÃO DE MÉTODOS DE PROCURA

Procura de custo uniforme (solução óptima)

Procura sôfrega (solução sub-óptima)

Procura A* (solução óptima)

- O método de procura A* é
 - Completo
 - Óptimo
- Se os nós já visitados forem mantidos
 - Porque a heurística pode não ser consistente
 - O seu valor pode variar ao longo do processo de procura de forma não-monótona, ou seja, não preserva uma relação de ordem (crescente ou decrescente)
 - Logo não há garantia de que um nó mais recente seja melhor que nós anteriores, ou seja, que esse nó esteja necessariamente no caminho óptimo, pelo que é necessário manter os nós anteriormente explorados para comparação

Exemplo de estimativa de custo para atingir o objectivo num processo de procura em espaço de estados, considerando uma heurística admissível não consistente e uma heurística consistente

Final: Custo final real

- Heurística consistente (ou monótona)
 - Para cada nó n, seu sucessor n' e custo de transição c(n,n')
 - $h(n) \le c(n,n') + h(n')$
 - Para um nó objectivo
 - $h(n_{obj}) = 0$
- Uma heurística consistente é também admissível
- Uma heurística admissível pode não ser consistente

- Se h(n) for consistente os valores de f(n) nunca diminuem ao longo de um caminho
- Consideremos n' um sucessor de n $g(n) + c(n,n') + h(n') \ge g(n) + h(n)$

 Qualquer nó selecionado para expansão tem de estar num percurso óptimo, pois qualquer outro caminho terá um custo no mínimo igual

- Com uma heurística consistente o método de procura A* é
 - Completo
 - Óptimo
- Mesmo se os nós já visitados forem eliminados
 - Redução da complexidade da procura

PROCURA A* COM HEURÍSTICA CONSISTENTE

Ao gerar novo nó sucessor noSuc:

- noSuc ∉ Abertos ∧ noSuc ∉ Fechados
 - Inserir noSuc em Abertos
- noSuc ∈ Abertos
 - Se noSuc foi atingido através de um caminho mais curto
 - Remover nó anterior de Abertos
 - inserir noSuc em Abertos
- noSuc ∈ Fechados
 - Eliminar *noSuc*

Para uma heurística consistente

- Sempre que é expandido um nó o percurso desse nó é óptimo
- São expandidos todos os nós com $f(n) < C^*$
- São eventualmente expandidos nós com $f(n) = C^*$ antes do nó objectivo

- Método de procura de eficiência óptima para qualquer função heurística
 - Nenhum outro algoritmo expandirá menos nós, mantendo as características de ser **completo** e **óptimo**, excepto nas situações de escolha entre nós com $f(n) = C^*$
- No entanto, não resolve o problema da complexidade combinatória
 - O número de nós expandidos dentro do contorno do nó objectivo contínua a ser uma função exponencial da dimensão do percurso até ao objectivo
 - Função heurística possibilita a exploração selectiva do espaço de estados
 - Reduz o número de nós explorados
 - Pode n\u00e3o ser suficiente para a resolu\u00e7\u00e3o pr\u00e1tica de problemas de elevada complexidade

REFERÊNCIAS

[Russel & Norvig, 2003]

S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", 2nd Edition, Prentice Hall, 2003

[Pearl, 1984]

J. Pearl, "Heuristics: Intelligent Search Strategies for Computer Problem Solving", Addison-Wesley, 1984