

Mathématiques

Classe: 4ème Mathématiques

Devoir de synthèse N°1

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(S) 40 min

4 pts

Soit a un réel de]1;+ ∞ [et $n \in \mathbb{N}$ tel que $n \ge 2$.

- **1)a)** Montrer que, pour tout $n \in \mathbb{N}$ et $n \ge 2$, on a : $\sqrt[n]{a} 1 \le \frac{a-1}{n}$.
 - **b)** En déduire $\lim_{n\to\infty} \sqrt[n]{a} = 1...$
- **2)a)** Montrer que, pour tout $b \in]0; +\infty[$ on a : $(1+b)^n \ge \frac{n(n-1)}{2}b^2$.
 - **b)** En déduire que $\lim_{n\to +\infty} n \Big(\sqrt[n]{a} 1 \Big)^2 = 0$.
 - c) Montrer que $\lim_{n\to +\infty} \sqrt[n]{n} = 1$.
 - d) En déduire que $\lim_{n\to+\infty} \sqrt[n]{\sum_{k=1}^n \frac{1}{k}}$

Exercice 2

4.5 pts

Dans le plan orienté, on donne un parallélogramme ABCD tel que AD = BD et BIC, DCJ sont deux triangles équilatéraux direct. Soit f le déplacement du plan tel que f(A) = I et f(D) = C.

- **1)a)** Montrer que $f = r_C \circ t_{\overline{AB}}$ avec r_C est la rotation de centre C et d'angle $\frac{\pi}{3}$.
 - **b)** Déduire que f est la rotation de centre J et d'angle $\frac{\pi}{3}$.
 - c) On note par K le point tel que ADK soit un triangle équilatéral direct. Montrer que f(K) = B.
 - d) Soit F le symétrique de J par rapport au point B et on note $E = f^{-1}(F)$. Montrer que les droites (JK), (EF) et (AB) sont concourantes
- 2) On note G l'image de F par la translation de vecteur AB.
 - a) Montrer qu'il existe un unique anti-déplacement g tel que g(B) = A et g(G) = J.
 - **b)** Déterminer les images de A et F par la transformation $g \circ t_{\overline{AB}}$
 - c) Déduire que g est une symétrie glissante dont on précisera l'axe et le vecteur.

Exercice 3

(\$ 60 min

5.5 pts

Le plan est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) . Soit m un nombre complexe non nul.

On considère dans \mathbb{C} l'équation (E): $z^2-2(m+i)z+2m^2-2im-5=0$.

- 1°) Résoudre dans C l'équation (E).
- 2°) On désigne par M, J, N et N' les points d'affixes respectives m, -1+2i, (1+i)m+2+i et (1-i)m-2+i.

Soit f l'application du plan qui au point N associe le point N'.

- a) Montrer que l'écriture complexe associée à f est z' = -iz 3 + 3i.
- **b)** En déduire que f est une rotation dont on précisera l'angle et l'affixe du centre Ω .
- c) Soit I le milieu de [NN'].

 Montrer que I est l'image du point M par une translation t que l'on caractérisera.
- d) Etant donné un point M du plan, Construire les point N et N'.
- **5°)a)** Déterminer puis construire l'ensemble (ζ) des points M pour lesquels les points M, N et N' sont alignés.
 - **b)** Monter que si $M \in (\zeta)$ alors les vecteurs $\overrightarrow{J\Omega}$ et \overrightarrow{JN} sont colinéaires.
 - c) Montrer que lorsque M décrit (ζ) , le point N'=f(N) décrit une droite que l'on précisera.

Exercice 4

(5) 70 min

6 pts

Soit g la fonction définie $\sup[0;\pi[\operatorname{par} g(x)=\tan\left(\frac{x}{2}\right)]$ et $\left(C_{g}\right)$ sa courbe représentative dans un repère orthonormé $\left(0;\vec{i};\vec{j}\right)$.

- **1°)a)** Justifier que g réalise une bijection de $[0;\pi[$ dans $[0;+\infty[$. On note g ⁻¹ sa fonction réciproque.
 - **b)** montrer que g ⁻¹ est dérivable sur $\mathbb R$ et déterminer que $(g^{-1})'(x)$ pour tout $x \in [0; +\infty[$.
- 2°) Soit f la fonction définie sur $[0; +\infty[$ par $f(x)=\begin{cases}g^{-1}\left(\frac{1}{x}\right) & \text{si } x>0\\f(0)=\pi\end{cases}$
 - a) Montrer que f est continue à droite en 0.
 - **b)** Montrer que f est dérivables sur $]0;+\infty[$ et calculer f'(x) pour tout x>0.
 - c) Montrer que pour tout x > 0, il existe $c \in \left]0; x\right[$ tel que $\frac{f(x) \pi}{x} = \frac{-2}{1 + c^2}$.
 - d) En déduire que f est dérivable à droite en 0 et déterminer $f_d^i(0)$.
- **3°)a)** Montrer que, pour tout $x \in [0; +\infty[$ on a $f(x) = \pi g^{-1}(x)$.
- **b)** Montrer que la courbe représentative (C_f) de f est l'image de (C_g) par une isométrie que l'on déterminera.

Dresser le tableau de variations de f puis tracer (C_g) et (C_f) sur le graphique ci-dessous.

a) Montrer que ϕ est n fois dérivable sur $]0;+\infty[$,et que pour tout $n \in \mathbb{N}^*$, on a

 $\varphi^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}.$

 $\textbf{b)} \text{ soit, pour tout } n \in \mathbb{N} \text{ *, la suite } \left(u_n\right) \text{ définie par } u_n = \phi^{(2n)} \Big(\sqrt{3}\Big) \text{ . calculer } \lim_{n \to +\infty} u_n.$

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000