

V TOMTO SEŠITĚ

Náš interview	41
Únorový rozběsek	42
Pátý ročník konkursu	43
Spolupráce Svazarmu a n. p. OP TESLA	44
Dohoda o vzájemné spolupráci	44
TESLA	44
Mladý konstruktér	47
Základy nf techniky	49
Čtyřmístný měřič kmitočtu do 25 MHz	52
Druhy zapalování a jejich vlast- nosti (dokončení)	56
Bezdobjkové snímače	63
Automatické koncové vypínanie gramofónu	64
Europhon M5000	68
Škola amatérského vysílání	71
Diferenciální klíčování pro tran- zistorové vysílače (dokončení) . .	73
Soutěže a závody	76
RTO Contest	76
DX	76
Amatérská televize	77
Četli jsme	77
Naše předpověď	78
Přečteme si	78
Nezapomeňte, že	79
Inzerce	79

Na str. 59 až 62 jako vyjímatelná pří-
loha „Malý katalog tranzistorů“.

AMATÉRSKÉ RADIO

Vydává FV Svazarmu ve vydavatelství MAGNET, Vladislavova 26, PSC 113 66 Praha 1, telefon 260651-7. Šéfredaktor ing. František Smolík, zástupce Luboš Kalousek. Redakční rada: K. Bartoš, V. Brzák, ing. J. Čermák, CSc., J. Dlouhý, K. Do-
nat, I. Harminc, L. Hlinský, ing. L. Hloušek, A. Hofhans, Z. Hradíký, ing. J. T. Hyun, ing. J. Jaroš, ing. F. Králik, ing. J. Navrátil, K. Novák, ing. O. Petráček, A. Pospišil, ing. J. Vackář, CSC, laureát st. ceny KG, J. Ženíšek. Redakce Lublaňská 57, PSC 120 00 Praha 2, tel. 296930. Ročně vyjde 12 čísel. Cena výšku 5 Kčs, poletní předplatné 30 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství MAGNET, administrace Vladislavova 26. Praha 1, Objednávky přijímá každá pošta i doručovatel. Dohledací pošta Praha 07. Objednávky do zahraničí vyzívají PNS, vývoz tisku, Jindřišská 14, Praha 1. Tiskne Polygrafia 1, n. p., Praha. Inzerci přijímá vydavatelství MAGNET, Vladislavova 26, PSC 116 33 Praha 1, tel. 260651-7, linka 294. Za původnost příspěvku ručí autor. Redakce rukopis vrátí, bude-li vyzádán a bude-li připojená franková-
ná obálka se zpětnou adresou.

Toto číslo vyšlo 8. února 1973.
© Vydavatelství MAGNET, Praha

náš interview

s Vladimírem Gazdou, tajemníkem fe-
derální rady Československého hifi-
klubu Svazarmu, o náplni a základní
problematice činnosti tohoto klubu.

O činnosti, poslání a perspektivě hifi-
klubu bylo v poslední době mezi
„lidem“ mnoho dohadů nepodložených
zpráv. Chceme naše čtenáře zasvěceně a pravdivě informovat –
proto Vám položím několik otázek.
Můžete stručně charakterizovat sou-
časný stav v Československém hifi-
klubu a perspektivu klubu?

Československý hifi-klub patří k nej-
úspěšnějším svazům Svazarmu. Není to
nekritická chvála vlastního svazu ani
pouze můj názor, ale spíše citát z 9.
pléna ČÚV Svazarmu, kde gen. Kučera
vyzdvíhl pochvalně činnost MBS, Sva-
zu radioamatérů a hifi-klubu. Naše čin-
nost zapustila již hluboké kořeny ne-
jen v řadách zájemců o věrnou repro-
dukci zvuku popr. obrazu, ale i v řadách
techniků. Protože náplň naší činnosti je
atraktivní, stává se naše práce i práci
velmi odpovědnou a je-li dobré dělána,
může být jednou z nejvhodnějších forem
politickovýchovné práce mezi mládeží.
Její vliv není však pouze kulturní
a společenskovýchovný. Bez zvukové
a obrazové techniky se dnes neobejdě-
řada elektronických oborů a průmyslov-
ých odvětví, má svůj velký význam
ve školství a samozřejmě i v armádě.
A do všech těchto oblastí proniká nebo
chce proniknout svoji činností i Česko-
slovenský hifi-klub.

Jaká je praktická náplň činnosti jednot-
livých klubů a jaké služby zajišťuje
Čs. hifi-klub pro své členy centrálně?

Činnost našich základních organizací
lze rozdělit zhruba do tří kategorií.
Předně je to technické zabezpečování
masové politické práce všech složek Ná-
rodních fronty. V praxi to reprezentuje
ozvučování různých výstav, konferencí,
přednášek, sportovních akcí apod. Je to
činnost velmi záslužná a spolupráce jed-
notlivých klubů s národními výbory se
v tomto směru velmi nadějně rozbíhá.

Vlastní klubovou činností je převážně
kulturně výchovná činnost. Kluby pořá-
dají přehrávky hudby různých žánrů se
snahou o maximální věrnost reprodukcí.
Přitom jde o aktivní poslech, doprová-
zený odborným výkladem nebo komen-
tářem. Tyto přehrávky nejsou spojovány
se společenskými zábavami a nelze je
zaměňovat ze známými diskotékami,
které v programu našeho klubu nejsou.

Jádrem činnosti hifi-klubu Svazarmu
je však činnost technická. Naše snahy
je zajistit, aby si každý klub mohl
na základě potřebných návodů postavit
nebo zakoupit vlastní co nejkvalitnější
reprodukční zařízení, tj. gramofon,
popr. magnetofon, zesilovač, reproduc-
torové soustavy. Totéž chceme postupně
umožnit i jednotlivým členům pro dom-
áci poslech. Kromě toho se snažíme
zajišťovat i celkové odborné vzdělávání

Vladimír Gazda

v oboru hifi-techniky formou odbor-
ných přednášek, zájezdů, exkurzí apod.
a formou osobních individuálních kon-
zultací.

Služby, které poskytuje Čs. hifi-klub
všem svým členům centrálně, zajišťu-
jeme jednak prostřednictvím naší Edice,
jednak prostřednictvím výrobního pod-
niku hifi-elektronika. V ediční čin-
nosti spolupracujeme se Supraphonem,
s nakladatelstvím OPUS, s kulturními
středisky socialistických zemí. Vydá-
váme gramofonové desky se snahou o za-
chycení vzorové dramaturgie a žánrové
rovnováhy a se snahou o co nejklá-
nější technické zpracování. Kromě toho
vydáváme i instrukční a měřicí desky.
Všechny tyto služby poskytujeme na zá-
kladě subskripce.

Jaká je situace ve výrobním podniku
Hi-Fi elektroakustika a jaké jsou
jeho záměry?

Výrobní podnik hifi-elektronika
vznikl sloučením dvou výrobních zaří-
zení – podniku hifi-servis a hospodář-
ského zařízení Elektroakustika. Tímto
sloučením byly zajištěny základní pod-
mínky pro racionalizaci výroby. Rok
1972 byl pro vedení podniku velmi ná-
ročný, protože vedení muselo vytřídit
z obou bývalých zařízení takový sorti-
ment, aby podnik plnil své poslání,
ale aby se jeho činnost neúnosně neroz-
růstala. Byl sestaven výrobní program
se snahou o omezení rozšírování sorti-
mentu. Konkrétně: zastavuje se výroba
gramofonů SG40 a SG80 a místo nich
se bude vyrábět jediný gramofon SG60
s mechanickým řazením rychlostí. Sorti-
ment zesilovačů se omezí na dva typy:
pro byty a malé kluby to bude typ
TW40B (upravený typ TW40) a pro velké sály a místnosti se bude vyrábět
úplně nový zesilovač 2 × 100 W pod
označením TW220. Budou se vyrábět
nové dvoupásmové reproduktory sou-
stavy RS22 a RS30. Všechny uvedené
výrobky se budou vyrábět jak ve formě
stavebnic, tak jako finální přístroje a bu-
du se prodávat i jejich jednotlivé díly.

Profesionální technika, ježíž výrobou
se dříve zabývalo především hospodář-

ské zařízení Elektroakustika, se bude nadále vyrábět pouze v omezeném rozsahu na investiční objednávky. Budou se jí vybavovat větší kluby, klubovny SSM apod.

Prodejna ve Smečkách patří výrobnímu podniku hifi-elektroakustika a bude nadále prodávat hlavně zařízení, vyrobená v tomto podniku. Přednostně budou vyřizovat objednávky prostřednictvím klubů, aby bylo zajištěno, že přednostně obdrží požadované zařízení naši členové. Všechny služby prodejny jsou za stejných podmínek poskytovány všem členům Svazarmu.

Jaké plány máte v oboru publikační činnosti?

Naši zatím jedinou pravidelnou publikační činností je spolupráce s technickým magazínem T73. Ta však bohužel nemůže zahrdat vlastní vydávání informací hlavně technického a odborného charakteru. Tuto otázku se snažíme řešit vydáváním sborníků. V současné době se připravuje mimořádné dvojčíslo T73 s podtitulkem Audio-video. Bratislavský kolektiv autorů chystá Příručku techniky Hi-Fi, která by se systematicky zabývala všemi články reprodukčního řetězce, tj. mikrofony, přenoskami, magnetofonovými hlavami, zesilovači, gramofony, magnetofony, reproduktory atd. Nebude obsahovat praktické konstrukční návody, ale měla by být jakousi praktickou teorií pro každého, kdo se chce trochu hlouběji zabývat hifi-technikou. K vydání je rovněž připraven kompletnejší návod ke stavbě stavebnice hifi-Junior.

Spolupracujete ve své činnosti se Svazem socialistické mládeže?

Statistika praví, že z mládeže do 25 let jich má 92 % zájem o reprodukování hudby. To samo o sobě je již přirozeným důvodem, že SSM je mezi organizacemi, s nimiž spolupracujeme, na prvním místě. Vycházíme přitom z dohody, kterou uzavřel FV Svazarmu ČSSR a ÚV SSM. Více než třetina klubů má již uzavřeny dohody se SSM na úrovni základních organizací.

Každoročně bývala pořáданá výставка audio-vizuální techniky pod názvem AVRO. Proč nebyla uspořádána tato výstava v roce 1972?

Výstava AVRO byla plánována samozřejmě i na rok 1972. Měla se uskutečnit v listopadu v Bratislavě a z technických důvodů k její realizaci nedošlo. Uskutečnil se pravděpodobně v dubnu v Bratislavě. Uspořádá ji jako obvykle agentura Made in (publicity), tentokrát ve spolupráci s našim výrobním podnikem hifi-elektroakustika. Oproti minulým letům na ní bude podstatně více kvalitní reprodukční techniky ze socialistických zemí.

Kromě této výstavy se bude rovněž tradičně pořádat výstava hifi-Ama, a to na podzim při příležitosti II. sjezdu Svazarmu ČSR v Praze. Byly bychom rádi, kdyby se jí se svými exponáty z hifi-techniky zúčastnili nejen naši členové a naše kluby, ale i radiokluby ČRA a všichni radioamatéři, kteří se touto technikou zabývají.

Na závěr tedy - jak se lze stát členem Československého hifi-klubu?

Ve většině okresů je některý z našich zatím 130 klubů, které mají dohromady 12 000 členů. Má-li někdo zájem přidat se k naší činnosti, udělá nejlépe, bude-li se informovat na okresním výboru Svazarmu, kde mu řeknou, kdy a kde se členové hifi-klubu Svazarmu schází. Každý bude v našich řadách vítán!

Rozmlouval ing. Aleš Mysík

Únorový rozbřesk

na Hrad a zde by si vynutil své právo. Nebylo to nutné. Předseda vlády Gottwald přišel od prezidenta s dobrou zprávou. Reakce prohrála.

V únorových dnech, před 25 lety, začal rozbřesk socialismu. Začala se tvůrčí budovatelská práce, smělé plány přeměny země se začaly realizovat v první pětiletce. V naší vlasti jsme vybudovali novou materiálně technickou i společenskou základnu průmyslu i socialistické zemědělství velkovýroby. V mnohých vědeckých a technických disciplinách jsme dosahli špičkových výkonů, na které můžeme být právem hrdi.

V krátkém historickém období, za složité mezinárodní politické situace, splnil pracující lid Ceskoslovenska pod vedením své Komunistické strany odhad vítězného Února - vybudoval socialismus.

* * *

Informace ze zasedání předsednictva Svazu radioamatérů Svazarmu ČSR

Dne 2. prosince 1972 se konalo v Olomouci zasedání předsednictva Svazu radioamatérů Svazarmu ČSR, kde byla projednána řada bodů, z nichž nejdůležitější byly:

1. Kontrola plnění usnesení a úkolů svazového orgánu Svazarmu ČSR.
2. Zpráva o dosavadní činnosti a stěžejní problémů, jakž i o perspektivě politicko-výchovné práce ve všech článkách radistické činnosti, vyplývající z usnesení ÚV KSC o ideologické práci v masových organizacích s hlavním zaměřením na mládež. Předsednictvo přijalo několik konkrétních opatření, která mají zajistit i nadále všechnou tendenci na úseku politicko-výchovné činnosti Svazu radioamatérů.
3. Zpráva o činnosti odboru „Honu na lišku“, která seznámila předsednictvo se sportovními úspěchy jak ve vnitrostátních soutěžích, tak i s výsledky v zahraničních závodech. Bylo velmi kladně hodnoceno, že výchova mladých závodníků v této populární branné disciplíně má neustálé vystupnou tendenci a to zásluhou dobrého politického a pedagogického vedení ze strany našich trenérů a instruktorů. Současně byly projednány otázky materiálně technického zabezpečení této disciplíny na rok 1973.
4. Na závěr zasedání bylo provedeno rozdělení přijímačů a transceiverů PETR 103 SSB pro pásmo 80 m na okresy, kde radioamatéři vyzkouzí aktívnu činnost, politickou angažovanost a pomáhají plnit společné úkoly dané programem Svazu radioamatérů Svazarmu ČSR. Předsednictvem byl schválen pořadník okresů v ČSR, které obdrží transceiver SOKA 747, které budou pro naši svaz dovezeny. Pro rok 1973 jsou připraveny některé další přístroje a tak záleží na aktivitě našich radioamatérů, na jejich angažovanosti, aby i do jejich okresů mohla být tato materiálová dotace odeslána.

Dne 9. prosince 1972 zemřel ve věku 49 let

JIŘÍ ZÁHORSKÝ, OK1DDW

po dlouhé a těžké nemoci.

V jeho osobě nám odešel čestný a upřímný člověk-přítel, který miloval nade vše život a naši společnou zálibu - radioamatérský sport. Mnozí z nás ho možná znali pod jeho dřívější značkou OK1AAW.

Čest jeho památce.

Pátý ročník konkursu AR a Obchodního podniku TESLA na nejlepší radioamatérské konstrukce

Uveřejňujeme podmínky dalšího, páteho ročníku konkursu AR - TESLA, jehož cílem je jednak podnítit radioamatéry k tvořivé práci, jednak umožnit i profesionálním pracovníkům v elektronice, aby svými „mimoslužebními“ pracemi pomohli rozšiřovat pestrost publikovaných konstrukcí.

Podmínky tohoto pátého ročníku konkursu zůstávají v podstatě stejné jako v minulých letech. Změna je pouze v tom, že konkurs je pro letošní rok vypsán jako *neanonymní*, neboť anonymita soutěžících vyloučovala styk s autory konstrukcí před vyhodnocením konkursu, což se z hlediska obou organizací, které konkurs vypisuje, jevilo jako podstatný nedostatek.

Pro ty, kteří se ještě konkursu nezúčastnili, opakujeme všechny podmínky pro účast v plném znění.

Podmínky konkursu

- Účast v konkursu je zásadně *neanonymní*. Může se ho zúčastnit každý občan ČSSR. Konstruktér, který se do konkursu přihlásí, označí žádanou dokumentaci svým jménem a úplnou adresou, případně i dalšími údaji o tom, jak je možno vejit s ním v co nejkratším čase do styku (telefonní číslo do bytu, do zaměstnání, přechodné bydliště atd.).
- Konkurs je rozdělen na tři kategorie dále podrobně uvedené. V kategorii I a II musí být v konstrukci použity jen součástky dostupné v běžné prodejně sítí, v kategorii III součástky československé výroby (tedy i součástky, které je možno získat přímým jednáním s výrobním podnikem).
- K přihlášce zasláne do 15. září 1973 na adresu redakce Amatérského rádia, Lublaňská 57, Praha 2; PSČ 120 00 s výrazným označením „**KONKURS**“, musí být připojena tato dokumentace: podrobně schéma, naměřené vlastnosti, mechanické výkresy, kresby použitých plošných spojů, reprodukce schopné fotografie vnějšího i vnitřního provedení (nejlépe 9 × 12 cm), podrobný popis činnosti a návod na praktické použití přístroje; vše zpracované ve formě článku. Pokud nebude zaslána dokumentace kompletní, bude přihlášený příspěvek vyřazen z hodnocení.
- Každý účastník konkursu je povinen doručit na požádání na vlastní útraty do redakce AR přihlášenou konstrukci a dát ji k dispozici k potřebným zkouškám a měřením. Autor konstrukcí vybraných do užšího výběru budou oznameni v AR 10/73 s tím, do kdy mají doručit konstrukce do redakce (pravděpodobně max. do 31. října).
- Do konkursu mohou být přihlášeny jen ty konstrukce, které ještě nebyly na území ČSSR publikovány. Redakce AR si přitom vyhrazuje právo na jejich zveřejnění.
- Přihlášené konstrukce bude hodnotit komise ustavená po dohodě pořadatelů. Její složení bude označeno dodatečně. Komise si může vyžádat i spolupráci specializovaných od-

borníků a laboratoří n. p. TESLA. Členové komise se nesmějí konkursu zúčastnit. Návrhy komise schvaluje s konečnou platností redakční rada AR v dohodě s Obchodním podnikem TESLA.

- Při hodnocení konstrukcí se bude kromě jejich vlastností, technického i mechanického provedení zvláště přihlížet k jejich reprodukovatelnosti, k uplatnění nových součástek a k původnosti zapojení a konstrukce, pokud by konstrukce byly jinak rovnocenné.
- Bude-li kterákoli kategorie obeslána mimorádným počtem konstrukcí odpovídající úrovni, budou druhá a třetí cena v této kategorii zdvojeny, tj. budou vyplaceny dvě druhé a dvě třetí ceny v původně stanovené výši. V opačném případě si pořadatelé vyhrazují právo neudělit první, druhou nebo třetí cenu a převést odměny na další ceny do těch kategorií, které budou nejlépe obeslány, popř. udělit podle vlastního uvážení čestné odměny ve formě poukázek na zboží v hodnotě 100 až 300 Kčs.

- Všechny konstrukce přihlášené do konkursu, které budou uveřejněny v Amatérském rádiu, budou kromě toho běžně honorovány.
- Pro uveřejnění popisu kterékoli konstrukce za běžný honorár v Amatérském rádiu není rozhodující získání ceny v konkursu.
- Veškerá dokumentace konstrukcí, které nebudou ani odměněny, ani vybrány k uveřejnění, bude autorům vrácena.
- Výsledek konkursu bude všem odměněným sdělen písemně do 15. prosince 1973 a otištěn nejpozději v AR 1/1974.

Kategorie konkursu

Kategorie byly zvoleny podle vyspělosti a zájmů účastníků takto:

I. kategorie

- stavebnice jednoduchých přístrojů pro začátečníky a mírně pokročilé radioamatéry (především pro mládež od 14 do 18 let). Jde o jednoduchá zařízení, např. rozhlasové přijímače, buzáků, domácí telefony, zesilovače a různá jiná užitková zařízení, která by mohla obchodní organizace TESLA prodávat jako soubor součástek ve formě stavebnic pro mládež a začínající amatéry. Pokud půjde o konstrukce na plošných spojích, bude je dodávat prodejna Svažarmu, Praha 2-Vinohrady, Budečská 7 (telef. 250733).

Tato kategorie je rozdělena do dvou větví a dotována cenami takto:

a) pro začátečníky:

- cena: 1 500 Kčs v hotovosti a poukázka na zboží podle vlastního výběru v prodejnách TESLA v hodnotě 500 Kčs,
- cena: poukázka na zboží v hodnotě 1 000 Kčs,
- cena: poukázka na zboží v hodnotě 500 Kčs.

b) pro mírně pokročilé:

- cena: 1 500 Kčs v hotovosti a poukázka na zboží podle vlastního výběru v prodejnách TESLA v hodnotě 500 Kčs,
- cena: poukázka na zboží v hodnotě 1 000 Kčs,
- cena: poukázka na zboží v hodnotě 500 Kčs.

II. kategorie

- libovolné konstrukce z nejrůznějších oborů elektroniky a radiotechniky (přijímací a vysílací, televizní a měřicí technika, nízkofrekvenční a stereofonní technika, aplikovaná elektronika, automatizace a technika pro průmyslové využití atd.). Jediným omezením v této kategorii je použití maximálně šesti aktivních prvků, přičemž aktivním prvkem se rozumí elektronika, tranzistor, popřípadě integrovaný obvod.

Kategorie je dotována takto:

- cena: 2 000 Kčs v hotovosti,
- cena: poukázka na zboží podle vlastního výběru v prodejnách TESLA v hodnotě 1 500 Kčs,
- cena: poukázka na zboží v hodnotě 1 000 Kčs.

III. kategorie

- libovolné konstrukce z nejrůznějších oborů elektroniky a radiotechniky s více než šesti aktivními prvky.

Kategorie má tyto ceny:

- cena: 3 000 Kčs v hotovosti,
- cena: poukázka na zboží podle vlastního výběru v prodejnách TESLA v hodnotě 2 500 Kčs,
- cena: poukázka na zboží v hodnotě 2 000 Kčs.

Přípravy na celostátní setkání radioamatérů ČSSR

Dne 1. prosince 1972 se uskutečnila v Olomouci schůzka užšího předsednictva Svazu radioamatérů Svažarmu ČSR s představitelem organizačního výboru pro „Setkání radioamatérů ČSSR“.

Předseda Svažaru radioamatérů Svažarmu ČSR mistropředseda federální rady ÚRK ČSSR s. L. Hlinšek, OK1GL, požádal s. prorektora prof. MUDr. J. Hrbka, CSc., o převzetí patronátu a čestného předsednictví tohoto celostátního setkání našich radioamatérů. Tuto funkci s. prorektor přijal a ujistil pořadatele a funkcionáře svazu radioamatérů svojí plnou podporou ke zdaru této velké společenské akce, jež se bude tradičně konat v areálu university.

Při této přilehlosti byl předán předsedovi OV Svažarmu, s. pplk. K. Kupkoví, transceiver SOKA 747, který odevzdal do péče předsedovi radioklubu za obětavou práci celého kolektivu na ústku radistické, politické a společenské činnosti v okrese Olomouc.

Celostátní setkání se bude konat v rámci oslav 400 let univerzity v Olomouci. Přípravy a námitky organizačního výboru nasvědčují, že „Setkání radioamatérů ČSSR“ v roce 1973 předčí všechna dosud konaná setkání do rozsahu 1 obsahu; tak je na co se těšit.

PŘIPRAVUJEME PRO VÁS

Přímoukazující ohmmetr
s lineární stupnicí

Stereofonní zesilovač
s MA 0403

Antennní zesilovače

Spolupráce Svazarmu a OP TESLA má i nadále zelenou

M. Ševčík (vlevo)
a dr. L. Ondříš
(vpravo) při podepsání smlouvy

Svazarmovští radioamatéři tvoří značnou část členské základny této branné a zájmové organizace. Rozvoj radioamatérské činnosti a trvalé rozširování členské základny je úzce spjato s popularizací elektroniky, představované v ČSSR VHJ TESLA. Svazarm vychovává řadu budoucích odborníků, elektroniků specialistů a podílí se na přípravě branců k výkonu vojenské služby u nejzáročnějších elektronických zařízení. Všechny tyto skutečnosti úzce souvisí s velkým úkolem, který má československý slaboproudý elektronický průmysl, jako jedno z nejprogresivnějších průmyslových odvětví.

Podkladem vzájemné spolupráce obou organizací je dlouhodobá dohoda uzavřená mezi GR VHJ TESLA a FV Svazarmu na léta 1971—1975. Aby tato rámcová dohoda mohla co nejlépe v závislosti na daném časovém údobí reagovat na zájmy obou partnerů, rozpracovává se do ročního dohod ustanovený mezi ÚRK Svazarmu a obchodním podnikem TESLA.

Pro rok 1972 byla zakotvena ve smlouvě materiální a finanční pomoc radioamatérům Svazarmu. Na konkurs Amatérského rádia přispěla TESLA částkou 15 000 Kčs, podílela se na vydání radioamatérských map, na přednostním zajíždění

zlevněního mimo tolerančního materiálu a na dalších svazarmovských akcích.

Znění dohody pro rok 1973 bylo podepsáno v prosinci minulého roku. Za ÚRK Svazarmu podepsal dohodu dr. L. Ondříš, předseda ÚRK ČSSR a za druhou správní stranu Miroslav Ševčík, podnikový ředitel Obchodního podniku TESLA. Soudruh dr. Ondříš v úvodním projevu zdůvodnil význam spolupráce mezi organizacemi, obzvláště pak účasti n. p. TESLA na modernizaci technické základny radioamatérů Svazarmu. Podnikový ředitel obchodního podniku TESLA s. Ševčík informoval zástupce Svazarmu o službách pro radioamatéry. V další části svého vystoupení hovořil o významu elektroniky pro zájmovou činnost mládeže a organizování jejího volného času. Jako konkrétní pomoc radiokroužkům poslouží také přímé navazování stýků zástupců Svazarmu s výrobními podniky TESLA, vyrábějícími aktivní a pasivní prvky.

Do vinku smlouvy na příští rok rozšířil n. p. TESLA svoji finanční účast na konkursu časopisu Amatérské rádio z 15 000 Kčs na 30 000 Kčs.

Radioamatéři Svazarmu mají tedy pro příští léta od n. p. TESLA zelenou. Jejich úspěšná práce si zaslouží tohoto ocenění.

? Jak na to AR?

Závada přijímače Orbita

V létě jsem se setkal při opravě přijímače Orbita 2 se závadou, jejíž příznaky i příčina jsou ojedinělé a zdalek těžko vysvětlitelné. Závada se projevovala nepravidelným přerušováním reprodukce. Byla lokalizována na nf předzesilovač, pracující se dvěma galvanicky vázanými tranzistory. Po důkladné kontrole všech součástek a propojení všech spojů závada nakrátko zmizela, ovšem brzy se projevila znova a tentokrát trvale. Měření napětí ukázalo, že předzesilovač je zablokován. Po výměně tranzistorů a všech ostatních součástek nf předzesilovače se situace nezměnila. Zkrat mezi spoji na desce také nebyl. Teprve po vyjmutí všech součástek předzesilovače z desky se ukázala příčina závady. Deska z laminátu měla na ploše asi 1 cm^2 izolační odpor několik desítek až stovek Ω a jakákoli impregnace byla neúčinná. Odpor desky se měnil i při tlaku na ni. Nezbýlo než propojit součástky provizorně na pájecí lištu, izolovanou od desky; závada pak trvale zmizela.

Josef Kůs

Mikrofoničnost ladicích kondenzátorů

Při dostatečném zesílení reprodukce dochází někdy k chvění ladicího kondenzátoru — ten mění svoji kapacitu a v rytmu zvuku rozladuje přijímační signál (především oscilátor), což má za následek jakousi kmitočtovou modulaci, která je závislá na době pohybu zvuku od reproduktoru ke kondenzátoru. Tím dojde k nežádoucím oscilacím, projevujícím se hučením. Tento problém je vlastně mechanického původu a není elektrickou závadou zapojení. Hučení lze odstranit např. tak, že se obloží zadní víko přijímače tenkým molitanem, který zabrání chvění nosné destičky s plošnými spoji, která je mechanicky spojena s ladícím kondenzátorem. Po tomto zádkoku hučení zcela zmizí, jak jsem si ověřil u přijímače Dolly 3 (hučení se projevovalo na rozsahu VKY). Domnívám se, že tento jednoduchý zádkrok pomůže i u přijímače IN 70, u něhož se tento jev vyskytuje velmi často.

Vlastimil Němec

Nápis na panely

V časopise Amatérské rádio byl již několikrát uveden návod, jak zhotovovat nápis na panelech přístrojů suchými obtisky Propisot, Transotype ap. Tyto obtisky jsou sice vzhledné, ale na některých materiálech (plech, organické sklo, plastické hmoty) dobře nedrží, popř. trpí otřem. Přelakování la-kem není vždy vhodné, neboť běžné bezbarvé laky časem žloutnou, nelehče na to, že rozpouštějí materiál, z něhož jsou obtisky zhotoveny. Tyto neuctnosti nemá lak Pragosorb Spray v aerosolovém balení. Tento lak je určen k lakování fotografií a je k dostání v prodejnách s fotopotřebami za 17 Kčs. Osobně doporučuji nejdříve popsaný panel jen mírně přestříknout a po zaschnutí práci dokončit. Kartáčovaný duralový plech (domácky) získá touto úpravou vlastnosti továrního výrobku, tzn. odolnost vůči prachu a omývatelnost při zachování žádaného matného vzhledu.

Bedřich Dvořák

Dohoda o vzájemné spolupráci

Ministr spojů ČSSR ing. Vlastimil Chalupá a předseda FV Svazarmu armádní generál Otakar Ryti podepsali 22. prosince 1972 dohodu o vzájemné spolupráci mezi federálním ministerstvem spojů a federálním výborem Svazu pro spolupráci s armádou v oblasti branné výchovy a radioamatérské činnosti.

Federální ministerstvo spojů a Svaz pro spolupráci s armádou v soustavě politických a státních orgánů uskutečňuje specifické funkce ve společných stykých oblastech elektroniky, sdělovací techniky a zejména radiotechniky. Pro současný společenský vývoj je charakteristické, že branná výchova (jako součást komunistické výchovy) stále více přerůstá z dřívějšího vojenského charakteru do civilních procesů.

Ukazuje se potřeba koordinovat v uvedené problematice činnost FMS a Svazarmu a rozvíjet jejich spolupráci k dosažení co nejlepších výsledků při formování politického, hospodářského a kulturního života lidu a při řízení společnosti.

Dohoda se týká těchto hlavních bodů spolupráce: technická osvěta a šíření technických znalostí, radioamatérská činnost ve Svazarmu, hromadné sdělovací prostředky a ediční činnost, vědeckovýzkumná činnost a materiálně technické zabezpečení radioamatérské činnosti.

Předseda FV Svazarmu armádní generál Ot. Ryti při projevu po obdržení medaile za zásluhy o výstavbu spojů z rukou ministra spojů ČSSR ing. V. Chalupá (vpravo)

Dvojtonový akustický zvonec s doznievaním

Základná časť dvojtonového akustického zvonca s doznievaním pozostáva z multivibrátora, ktorého činnosť bola už mnohokrát popísaná v AR. Multivibrator je doplnený o relé LUN 262151, ktoré prepina kondenzátor C_1 a C_2 . Multivibrator taktovo môže kmitať na dvoch kmitočtoch (nerovnaká časová konštantá). Signály dvoch kmitočtov sa potom privádzajú na jednoduchý koncový zosilňovač bez výstupného transformátora.

Obr. 1. Dvojtonový akustický zvonec s doznievaním

Pri centrálnom striedavom rozvode 3 až 4 V je nutné použiť zdvojovač napäcia (viď zdroj 1), pri rozvode 8 V stačí použiť jednoduchý usmerňovač v Graetzovom zapojení (viď zdroj 2).

Silačením zvonkového tlačidla T_1 sa priviedie na usmerňovač striedavé napätie, ktoré sa usmerňa a usmerneným napätiom je potom napájaný celý obvod. Multivibrator sa rozkmitá a zo reproduktora sa ozve prvý tón. Za určitý čas (asi 0,5 s) elektromagnet relé pritiahne kotvu a pripojí sa kondenzátor C_2 (C_1 sa odpojí) a ozve sa druhý tón. Po uvolnení tlačidla relé ešte určitý čas pripína C_2 , až sa filtračný elektrolytický kondenzátor vybije na určité napätie (doznievanie druhého tónu), relé sa rozpojí a prepne na kondenzátor C_1 (doznievanie prvého tónu až do úplného zaniknutia).

Zmenou kapacity kondenzátorov C_1 a C_2 (označené hviezdičkou) sa dajú nastaviť ľuboľovné tóny. Odpory R_1 a R_2 (označené hviezdičkou) treba voliť tak, aby sa dosiahol priažnivé časové oneskorenie prepnutia relé. Ak na tlačidlo tlačíme približne 1 s, je potrebné, aby relé prepló multivibrátor z jedného tónu na druhý asi za 0,5 s. Je samozrejme, že miesto dvoch odporov R_1 a R_2 (spojených paralelne) stačí jeden, ktorého hodnota je závislá:

na napájacom rovnosmernom napätií,

na kapacitu kondenzátora C_3 ,

na odpore vinutia relé.

Odpór je preto treba nastavovať individuálne. Mne najlepšie vyzhovovala paralelná kombinácia odporov 68Ω a 220Ω .

O mechanickej konštrukcii sa nebudem rozpísavať, to ponechám na fantázii každého, kto by sa rozhadol pre stavbu tohto zariadenia. Ja som celé zariadenie postavil do bakelitovej kramičky typ „B 6“ za Kčs 9,50.

Ivan Dorošány

Indikátor úrovne

Stavím tranzistorový nízkofrekvenční zosilovač, v némž chci použiť indikátor úrovne. Prostudoval jsem mnoho rôznych zapojení (bez ručkových indikátorov, ktoré jsou stále ještě drahé).

Vyzkoušel jsem i zapojenie, uverejnené v AR č. 4/71; to mi nevyhovovalo nedostatočne plynulou indikáciu úrovne a malou citlivosťou.

V Ostravě ve výprodeji jsem koupil elektronku PM84 za 1,- Kčs; s touto elektronkou jsem sestavil zapojení indi-

K prijímaču typu Dolly

Jsem vlastníkem přijímače Dolly 2 a protože jsem po dobu používání zjistil pozoruhodné věci, pojď jsem úmysl podělit se o ně s amatérskou veřejností. Jak je obecně známo, tento druh přijímače je vybaven rozsahy středních (525 až 1 605 kHz), krátkých (5,9 až 7,4 MHz) a velmi krátkých vln. Přijímače mají dobrou citlivost, selektivitu i slušnou reprodukci. K nedostatkům patří především příjem různých signálů cizích kmitočtů (nejvíce však příjem tzv. zrcadel) a „vedlejší příjem“, způsobené vyššími harmonickými kmitajícími směšovače. Druhého případu lze využít k poslechu stanic v pásmech, jimž jsou vybaveny jen větší a dražší přijímače. Jako anténu používám asi 7 metrů dlouhý drát, natažený přes místnost.

Naladím-li např. vstup přijímače na 940 kHz znamená to, že oscilátor kmitá na 7 400 kHz. Součtový kmitočet jeho druhé harmonické a mezifrekvence bude v tomto případě 15 260 kHz, neboli v pásmu 19 metrů. Z toho je patrné, že v okolí 7 MHz lze zachytit silné stanice z pásmu 19 m. Signál však musí např. proniknout vstupním obvodem, naladěným na odlišný kmitočet, čímž se citlivost přijímače pro tento signál značně změní. Citlivost je menší i proto, že amplituda harmonických kmitočtů je malá. Příjem v pásmech 13 a 19 m závisí značně na vnějších vlivech. Přiblížením ruky k vlnovému přepínači stanice na těchto pásmech úplně zmizí, což je spolehlivou indikaci tohoto parazitního příjmu. Příjem v pásmu 31 m je omezen jen na denní hodiny, k večeru se totiž začnou ozývat vzdálenější středovlnné stanice, které příjem úplně znemožní. Je si třeba uvědomit, že některá harmonická má také nkrát větší nestabilitu, což způsobuje častější samovolné rozladování přijímače. Dosažené výsledky jsou v tabulce:

Naladěno:	Přijimáno:	Harmo-nická:
KV 6 860 až 7 035 kHz	15 100 až 15 450 kHz	2.
KV 6 536 až 6 637 kHz	21 450 až 21 750 kHz	3.
SV 1 348 až 1 403 kHz	9 500 až 9 775 kHz	5.

(počítáno pro mf 460 kHz).

Pozn. V okrajových oblastech ČSR lze na tento přijímač přijímat v dobré kvalitě i signály VKV podle normy CCIR-G.

Josef Jirků

Tranzistory

GC509 nebo libovolný tranzistor p-n-p, jenž má U_{CE} minimálne 40 V. Ve vzorku byly s úspěchem použity tranzistory OC170 třetí kvality. Důležité je, aby tranzistory mely co nejméně klidový proud I_{CEO} .

Odpory

Všechny odpory jsou miniaturní, pouze R_1 je na zátižení 0,5 W. P_1 a R_s jsou odporové trimry.

Kondenzátory

C_1 10 $\mu\text{F}/35$ V
 C_2 0,1 μF , svitkový

Obr. 1. Indikátor úrovne nf signálu s PM84

Napájecí napäť

Anoda PM84 ze sítě 220 V, zosilovač 40 V.

Indikátor jsem vyzkoušel i v tranzistorovém magnetofonu, kde se také osvědčil.

Jaromír Kučatý

Jelikož je zařízení galvanicky spojeno se sítí, je nutno zachovat všechny bezpečnostní předpisy.

Úprava projektoru Meolux

Mnoho kinoamatérů používá snadno dostupný projektor Meolux 85113. Jeho provoz je spolehlivý, až na projekční žárovku. Vzhledem k její ceně (70 Kčs) jsem se pokusil o drobnou úpravu přístroje, jejímž účelem bylo prodloužit dobu života vlákna žárovky. Úprava se osvědčila, proto ji popisuji.

Projektor Meolux 85113 8 mm Super/normal používá zrcadlovou projekční žárovku 8 V/50 W. Doba života žárovky (podle výrobce) je asi 100 hodin. Při zavedení filmu do projektoru se samočinně sepne mikrosípinač S_2 projekční žárovky \tilde{Z}_1 (obr. 1). Sepnutím hlavního spínače S_1 je ovládán současně motor i žárovka. Ovládání je tedy velice jednoduché, ale časté zapínání (např. při stříhání filmu na projektoru apod.) je na úkor doby života žárovky. Studené vlákno má malý odpor, nárazový proud je velký, žárovka je mžikově přetížena. Bylo by tedy záhadno vlákno předžhat.

Při měření jsem zjistil, že provozní napětí \tilde{Z}_1 (projekční žárovky) je $U = 7,1$ V, přesto se však vlákno při častém zapínání brzy přepáilo. Rozhodl jsem se k úpravě projektoru, která je schematicky znázorněna na obr. 2. Úprava je jednoduchá, ale účinná. Vzhledem ke svým provozním vlastnostem se jako \tilde{Z}_2 nejlépe osvědčila motocyklová žárovka 6 V/35 W, kterou jsem zapojil přes přepínač (P_f) do série s projekční žárovkou (\tilde{Z}_1). Použil jsem jedno vlákno žárovky. Naměřené údaje jsou v tabulce. Měřeno při napětí sítě $U = 215$ V.

Poloha přepínače P_f	Napětí na \tilde{Z}_1 [V]
1	0
2	3,6
3	7,1

To znamená, že žárovka má při předžhavování poloviční výkon, což plně vyhovuje. Při volbě přepínače musíme brát v úvahu proud v sekundárním obvodu, který je přibližně 7 A. Jinak je možno použít i jakýkoli typ, který je právě po ruce.

Vlastní mechanické provedení může řešit každý po svém, místa je v projektoru dostatek. Záleží na tom, jakou bude mít k dispozici objímku a přepínač. Avšak pozor! Projektor je přístroj choulostivý, nemá rád násilí! Při montáži je třeba opatrnosti, nutné při práci v jemné mechanice. Možné mechanické řešení je na obr. 3.

Tři polohy přepínače umožňují:

- poloha 1: průběh filmu bez prosvětlení,
- poloha 2: předžhavení vlákna projekční žárovky (stačí několik vteřin, např. při průběhu zaváděcího pásku),
- poloha 3: plný výkon, projekce.

Jednoduchý a nenákladný zásah do projektoru rozšířuje jeho manipulační možnosti, především však prodlužuje dobu života žárovky. Upravený přístroj používám již déle než jeden rok bez potíží. Úprava se rozhodně vyplatí.

Ladislav Rygl

Obr. 1. Původní zapojení projektoru

Obr. 2. Zapojení upravených obvodů

Obr. 3. Příklad umístění nových součástí

Návrh plošných spojů

Plošné spoje dnes zcela ovládly konstrukci slaboproudých zařízení a přístrojů. Deska z plastické hmoty přeplávaná mědi odlepovanou do potřebných propojení je součástí téměř všech výrobených přístrojů. Výhod přináší totík, že ji s různými obměnami používají téměř všichni výrobci, ať již ve velkých sériích, v kusové výrobě či u unikátních výrobků. Vytlačila dokonce tradiční šasi i u výrobců, kteří dosud používají elektronky. Návrh desky s plošnými spoji je dnes vyžadován i u každého amatérského přístroje.

Při sériové výrobě plošných spojů se dnes používají velmi efektivní automatické prostředky. Počítače dokáží na výhradnou a nakreslit propojení součástek na desce, měď se při značných výrobních sériích skutečně nanáší i tiskařským způsobem. Stroje řízené děrnou páskou desky vrtají a vkládají do otvorů potřebné součástky. Součástky se pájejí najednou a hotové desky jsou jako celek zkontrolovány během zlomku vteřiny.

Při kusové a malosériové výrobě desek s plošnými spoji se však bude dlouho používat jako hlavní způsob výroby leptání. Spojy před leptáním se přitom vykrývají mnoha technologiemi – bud negativními, či pozitivními fotocitlivými laky, nanášením ochranné barvy sitotiskem, nebo (při domácím zpracování) vakuového tmelu – picejnu, rozličných laků, lepením obtisků nebo pásků izolépy atd.

Z hlediska amatéra lze doufat, že výhradku rozšíří i sortiment dostupných desek. Existuje velké množství druhů základního materiálu, který se nekroutí a má měděnou fólii na jedné nebo na obou stranách.

Amatér si může desku s plošnými spoji navrhnutou a zhotovit sám. Není třeba připomínat, že tvořit plošné spoje je vhodné pouze pro zapojení, která jsou po funkční stránce zvládnuta a vyzkoušena. Navrhujeme-li plošné spoje pro vý obvody, je nutno znát přibližně vliv vzájemných kapacit součástek a spojů. V případě, že nelze tyto vlivy určit

snadným výpočtem, je vhodné kritické části obvodu realizovat a důkladně proměřit.

Při celkovém návrhu vycházíme většinou z daného schématu a konkrétních součástek. Součástky je třeba rozložit a propojit tak, aby se spoje nekřížily. Kromě toho musíme zachovávat i některé další zásady rozmístění součástek. Z hlediska oteplení je např. nutno výkonové odpory „zvednout“ nad laminát a do jejich blízkosti (obzvláště nad ně) neumisťovat polovodiče a elektrolytické kondenzátory. Ve vý technice je třeba cívky a součástky, které se vzájemně ovlivňují, umisťovat co nejdále od sebe a pokud možno tak, aby rušivá elektromagnetická pole byla vzájemně kolmá.

K usnadnění návrhu je vhodné použít tzv. modelovací desku (obr. 1). Je to laminátová deska o skutečné velikosti

Obr. 1. Návrh plošných spojů na papíru s rastrem 2,5 mm (a) a modelovací deska s dérami o \varnothing 1 mm v témže rastru (b)

navrhované desky s plošnými spoji. V ní je vyvrácena pravouhlá síť děr o \varnothing 1 mm, vzdálených vzájemně 2,5 mm. Moderní součástky určené k pájení do plošných spojů jsou konstruovány tak, že mají vývody od sebe vzdáleny v modulu délky 2,5 mm. Do vyvratané síti děr lze všechny díly obvodu umístit podle našich představ v logickém funkčním sledu, takže vznikne vlastně přesný a věrný model. Představa tedy dostane konkrétní podobu, v níž je možno dělat funkční a estetické korektury. V takové modelovací desce lze propojovat součásti i drátovými spoji a odzkoušet některá choulostivá uspořádání. Rozmístění součástek potom překreslíme na čtverečkový papír do síť čar, vzdálených opět 2,5 mm, nebo obvykleji v měřítku 2 : 1, tj. 5 mm, v níž lze lépe rozkreslit spojové čáry nebo oddělovací mezery.

Popisovaná pomůcka urychluje práci při návrhu s plošnými spoji a pomáhá návrháři s menší zkušeností a horší prostorovou představivostí předejet chybám, které se u hotového výrobku těžko odstraňují.

Obr. 2. Modelovací deska, osazená součástkami

Literatura

Plošné spoje. RK č. 6/1966.
Koudela, V.: Plošné spoje. SNTL:
Praha 1966.
Sborník přednášek z celostátního semináře o plošných spojích. -AR-

Mladý konstruktér

K. Novák

Síťový napájecí zdroj

Rozhlasový přijímač, který jsme si psali v minulém čísle AR, odebírá při běžném provozu proud průměrně 30 mA; dvě ploché baterie vydrží tedy několik desítek hodin provozu.

Budeme-li přijímač používat převážně v místě, kde je k dispozici proud z elektrické sítě, je účelné postavit si k přijímači síťový napájecí zdroj, neboť elektrická energie ze sítě je mnohonásobně levnejší než z baterii.

Jaké jsou požadavky na síťový zdroj pro naši přijímač? Jeho výstupní stejnosmerné napětí musí být asi 9 V, přičemž toto napětí nesmí příliš kolisat při změně odberu proudu od 20 do 150 mA. (Spotřeba přijímače kolísá totiž zhruba v tomto rozmezí v závislosti na hlasitosti reprodukce). Napětí zdroje může být jen nepatrne zvlněno, protože větší zvlnění by bylo příčinou neúnosného „brumu“ v reprodukci.

Popis činnosti zdroje

Schéma zapojení je na obr. 1. Základní součástí zdroje je síťový transformátor T_r . Transformátor se skládá z uzavřeného, magneticky dobře vodivého

Obr. 1. Schéma zapojení síťového zdroje

jádra, na něž je cívka se dvěma nebo více vinutími. Vinutí L_1 se nazývá vinutí primární, vinutí L_2 sekundární. Průtokem střídavého proudu primárním vinutím vzniká v dutině cívky a v uzavřeném jádru časově proměnný magnetický tok. V důsledku tohoto proměnného magnetického toku se indukuje v sekundárním vinutí střídavé elektrické napětí a po připojení spotřebiče jím protéká elektrický proud.

Napětí indukované v sekundárním vinutí závisí na tzv. převodu transformátoru p , tj. na poměru počtu závitů obou vinutí podle vztahu

$$p = \frac{U_1}{U_2} = \frac{n_1}{n_2},$$

kde U_1 je napětí na primárním vinutí, U_2 napětí na sekundárním vinutí,

- n_1 počet závitů primárního vinutí L_1 a
- n_2 počet závitů sekundárního vinutí L_2 .

Transformátorem můžeme tedy střídavé napětí transformovat na jakékoli napětí větší nebo menší – podle poměru počtu závitů obou vinutí.

Není-li sekundární vinutí transformátoru zatíženo spotřebičem, chová se transformátor jako tlumivka (indukčnost). Odebíráme-li ze sekundárního vinutí proud, zvětší se činný proud v primárním vinutí, přičemž platí, že poměr proudů v obou vinutích je v převráceném poměru k počtu jejich závitů

$$\frac{I_1}{I_2} = \frac{n_2}{n_1}.$$

Primární vinutí odebírá potom ze zdroje stejný výkon, jaký odebírá spotřebič ze sekundárního vinutí.

Vše, co bylo uvedeno, platí pro ideální transformátor. V každém skutečném transformátoru vznikají určité ztráty a to zejména ve formě tepla.

Počet závitů primárního vinutí, průřez vodičů pro všechna vinutí, rozměry (zejména průřez) a vlastnosti jádra nemůžeme volit libovolně. Platí pro ně určité zákonitosti a vztahy, které musíme při návrhu transformátoru respektovat.

Transformátor T_r je navržen pro trvalý výkon 4 W. Při napětí 220 V na primárním vinutí L_1 dává na sekundárním vinutí L_2 (s odběčkou uprostřed vinutí) napětí 36 V, to jest 18 V mezi středním vývodem a začátkem vinutí a 18 V mezi středním vývodom a koncem vinutí. Přitom napětí na začátku a konci vinutí jsou oproti střednímu vývodu fázově pootočena o 180° (obr. 1, křivky 1 a 2).

Dalšími důležitými součástmi síťového zdroje jsou polovodičové diody D_1 a D_2 a Zenerova dioda D .

Polovodičové diody jsou součástky se dvěma elektrodami, které mají značně rozdílnou vodivost v závislosti na poláritě přiloženého napětí. Ríkáme, že mají usměrňovací účinek.

Závislost proudu protékajícího diodou na napětí na diodě vyjadřuje nejlépe tzv. voltampérová charakteristika. Příklad takové charakteristiky je na obr. 2.

Obr. 2 Voltampérová charakteristika usměrňovací diody
(na vodorovné ose vlevo od průsečíku obou os je U_{RA})

Při půlování v propustném směru má dioda malý odpor – při maximálním dovoleném proudu jen desetiny až jednotky Ω . Při půlování v závěrném směru má naopak velký odpor – řádu $k\Omega$ až $M\Omega$. Vztah mezi proudem a napětím na diodě není lineární a neplatí proto pro něj Ohmův zákon. Voltampérová charakteristika je závislá i na teplotě.

Dioda je tím jakostnější, čím je křivka voltampérové charakteristiky v propustném směru blíže k ose proudu (čím má dioda menší odpor v propustném směru), čím je křivka voltampérové charakteristiky blíže k ose napětí (čím má dioda větší odpor v závěrném směru). Při určitém napětí v závěrném směru dochází náhle k prudkému zvětšení závěrného proudu. Ríkáme, že dochází k průrazu diody a příslušné napětí označujeme jako průrazné.

Diody konstruované pro použití jako usměrňovače proudu musí pracovat vždy v takových podmínkách, aby napětí v závěrném směru nedosáhlo průrazného napětí, jinak by došlo ke zničení diody. Jen u speciálních, tzv. Zenerových diod není průraz nebezpečný, pokud je závěrný proud po průrazu omezen nějakým vnějším odporem tak, aby nedošlo k tepelnému poškození diody. Typický průběh voltampérové charakteristiky Zenerovy diody je na obr. 3. Pracovní napětí Zenerových diod bývá právě v oblasti průrazného napětí.

Obr. 3. Voltampérová charakteristika Zenerovy diody

Podle základního polovodičového materiálu se běžné moderní diody dělí na germaniové a křemíkové. Germaniové diody mohou pracovat do teploty uvnitř diody +75 °C, křemíkové do +150 °C. V propustném směru mají lepší vlastnosti (menší odpor) diody germaniové, v závěrném směru (větší odpor, větší průrazné napětí) diody křemíkové. Podle provedení se diody dělají na plošné a hrotové. Plošné diody jsou vhodné k usměrňování malých i velkých nf proudů. Hrotové diody jsou vhodné jen pro usměrňování malých výkonů. Mohou však pracovat i v oblasti velmi vysokých kmitočtů.

K napájení elektrických přístrojů stejnosmerným proudem se používají různá zapojení usměrňovačů. Základní zapojení a příslušné průběhy (zvlnění napětí za usměrňovačem) jsou na obr. 4.

Při výběru vhodné diody pro určité zapojení a napětí usměrňovače chybí často začínající amatéři při výpočtu tzv. inverzního špičkového napětí U_{inv} , které musí být menší než max. dovolené napětí příslušné diody v závěrném směru. Při výpočtu U_{inv} je třeba si uvědomit, že

Obr. 4. Zapojení usměrňovače; a) jednocestné, b) dvojcestné, c) dvojcestné můstkové

- napětí sinusového střídavého proudu se udává tzv. efektivní hodnotou U_{ef} , která je menší než maximální hodnota napětí U_{max} každé půlvlny střídavého proudu

$$U_{max} = 1,414 U_{ef};$$

- pokud je za usměrňovačem zapojen kondenzátor, sloužící k zpravidla k vyhlazení (filtraci) zvlněného proudu po usměrnění, může se na něm napětí při malém odběru proudu zvětšit až na U_{max} .

Dojdeme pak k závěru, že u jednocestného a dvojcestného usměrňovače

$$U_{inv} = 2,828 U_{ef}$$

a u můstkového dvojcestného usměrňovače

$$U_{inv} = 1,414 U_{ef}.$$

Pro nás síťový zdroj použijeme dvojcestné usměrnění křemíkovými difúzní-midiódami KY701, které mají maximální proud v propustném směru $I_{AK} = 0,7 \text{ A}$ při teplotě okolo do 55°C a maximální napětí v závěrném směru $U_{KA} = 80 \text{ V}$.

Ke stabilizaci napětí na výstupu zdroje a současně k jeho „vyhlazení“ použijeme křemíkovou diodu KZ705, jejíž Zenerovo napětí U_Z je 8 až $10,2 \text{ V}$ a která „vydrží“ max. Zenerův proud $I_Z = 240 \text{ mA}$ bez přidavného chlazení a s chladicem I_Z až 970 mA .

Síťové napětí 220 V je tedy transformováno na $2 \times 18 \text{ V}$ síťovým transformátorem T_r a dvojcestné usměrňování provádí diodami D_1 a D_2 . Kondenzátor C_1 působí jako jakýsi akumulátor (nádrž) elektrické energie. V době jednotlivých půlvln usměrněného napětí se nabíjí a v době mezi nimi se vybije odběrem proudu přes odporník R . Původní tepavý (pulsující) proud (obr. 1, křivka 3) se kondenzátorem C_1 podstatně vyhladí. Za odporem R je zapojen kondenzátor C_2 a paralelně k němu Zenerova dioda D . Při všech napětcích větších než Zenerovo napětí U_Z se Zenerova dioda „prozají“ a protéká ji Zenerův proud I_Z , jehož velikost je omezena odporem R . Napětí se tedy trvale stabilizuje na U_Z a „odřezává“ se přitom jeho nezádoucí zvlnění (obr. 1, křivka 4). Případné zbývající zvlnění vyhlazuje kondenzátor C_2 . V okamžiku, kdy se proud do přijímače

zmenšuje, zvětšuje se automaticky Zenerův proud a naopak. Kondenzátory C_3 a C_4 zamezují vzniku rušivých vysokofrekvenčních kmitů, které by se mohly projevit v reprodukci bručením.

Konstrukce síťového zdroje

Celý síťový zdroj je sestaven na základní desce s plošnými spoji (obr. 5). Základní deska je zhotovena z jednostranně plátovaného cuprextitu nebo

kostru cívky - pokud ji neseženeme hotovou - slepíme z tvrzeného papíru tloušťky asi 1 mm podle obr. 6b. Lepíme bezvodým lepidlem, hrany ohybu jádra kostry nařízneme do dvou třetin tloušťky papíru nožem. Do dutiny kostry vložíme při lepení dřevěný špalíček. Hotovou kostru nainregneme v roztaveném parafinu, jehož teplota nesmí však být příliš vysoká, aby se lepidlo nespálilo. Pro stažení jádra cívky a upevnění transformátoru na základní desku zho-

Obr. 5. Deska s plošnými spoji síťového zdroje
(ze strany součástek). Typ G04

Všechny desky s plošnými spoji si objednávejte v prodejně Svažaru Budečská 7, PSČ 120 00 Praha 2

cuprexcartu tloušťky asi 1,5 mm. Postup při zhotovování plošných spojů je stejný, popsal v minulém čísle AR. Vzhledem k jednoduchosti plošných spojů můžeme však v tomto případě odstranit měděnou fólii z izolačních mezér mezi spoji i mechanicky. Obrazec plošných spojů (obr. 5) po překopirování na měděnou fólii vyryjeme ostrou ocelovou jehlou a měděnou fólii z izolačních mezér odstraníme po kouskách odtrháváním, odškrabováním, pilováním apod. Použijeme k tomu ostrý nůž, pilníky, kleště, popř. jiné vhodné nástroje. Díry k upevnění síťového transformátoru (průměr 3,2 mm) vrtáme souhlasně s drámem ve tlátku transformátoru.

Základní součástí síťového transformátoru jsou transformátorové plechy EI20 (obr. 6a). Potřebujeme jich tolík, aby tvořily svazek tloušťky 20 mm.

tovinou si ze železného, nejlépe pocínovaného nebo pozinkovaného plechu tloušťky asi 0,5 až 0,7 mm tlátku podle obr. 6c. Jeho rozvinutý tvar je na obr. 6d.

Pro vinutí cívky si zhotovíme alespoň jednoduchou navíječku, jejíž náčrt je na obr. 7.

Primární vinuti L_1 má pro 220 V 2 930 z drátu o $\varnothing 0,1$ až $0,125 \text{ mm}$, izolovaného lakem (CuL). Pro síťové napětí 120 V by mělo primární vinuti 1 590 z drátu o $\varnothing 0,125$ až $0,18 \text{ mm}$ CuL. Drát vedeme při vinutí rukou, mezi prsty. Vinutí by mělo být závit vedle závitu v pravidelných vrstvách, každá vrstva by měla být izolována transformátorovým papírem. Ruční vinutí závit vedle závitu je však tak tenkým drátem nemožné. Vinutí L_1 navineme proto způsobem, naznačeným na obr. 8a. Jednotlivé závity nemusí být

Obr. 6. Síťový transformátor; a) jádro EI20,
b) kostra cívky, c) tlátko jádra, d) rozvinutý
tvar tlátku

Obr. 7. Jednoduchá navíječka cívek

Obr. 8. a) Způsob ručního vinutí tenkého drátu, b) prokladový papír, c) vývod vinutí

tak přesně ukládány, vystačíme jen se třemi až pěti vrstvami, oddělenými pruhy papíru a přesto zabráníme velkému rozdílu napětí mezi na sobě ležícimi závity vinuti. Jednotlivé vrstvy musíme však vinout až těsně k celu kostry cívky, aby se závity z horní vrstvy „neprořezávaly“ a nedotýkaly závitů spodnější vrstvy. Jednotlivé vrstvy vinuti oddělíme jednou vrstvou transformátorového papíru, jehož okraje nastříháme podle obr. 8b. Papír musí být asi o 2 mm širší, než je vzdálenost mezi čely cívkové kostry. Místo transformátorového papíru můžeme použít hedvábný nebo průklepový papír impregnovaný v roztaveném parafínku. Začátek a konec vinutí vyvedeme tenkým izolovaným lankem, které připojíme k drátu cívky a spoj izolujeme přeloženou izolepou (obr. 8c). Hotové primární vinutí ovineme čtyřmi vrstvami papíru. Uspořádání jednotlivých vývodů je patrné z obr. 6b. Sekundární vinutí L_2 má celkem 500 z drátu o $\varnothing 0,25$ až $0,3$ mm CuL s vyvedeným středem (tedy 2×250 z). Střed vyvedeme přeložením a zkroucením drátu vinutí. Tentokrát ukládáme drát při vinutí pokud možno závit vedle závitu, aby se vinutí na kostru „veslo“. Musíme pečlivě dbát, aby se ani jeden závit vinutí L_2 „neprořezał“ (zejména vedle čela kostry) mezi závity vinutí L_1 . Drát sekundárního vinutí je dostatečně tlustý, takže ho můžeme vyvést přímo, bez nastavování lankem. Povrch sekundárního vinutí ovineme asi pěti vrstvami papíru.

Plechy jádra skládáme střídavě po-otočeny o 180° , aby se styky obou částí vzájemně překryvaly. Celý svazek musí být do cívkové kostry „natěsněn“ a stažen ještě třmenem, aby transformátor za provozu „nebrůčel“. Případnému „bručení“ můžeme zabránit přelakováním jádra lakem nebo lepidlem, címž se plechy slepí.

Hotový transformátor přišroubujeme na základní desku dvěma šrouby M3 ×

$\times 12$ mm a maticemi, jimiž pak také upevníme celý síťový zdroj v krabičce. Potrebujeme proto ke každému šroubku tři maticce. Vývody transformátoru připojíme na příslušné plochy plošných spojů. Zenerova dioda má upevňovací šroub příliš dlouhý. Podložíme proto pod ni kovovou podložku o \varnothing asi 15 mm, 6 mm vysokou, nebo diodu přitáhneme mezi dvě maticce M5, popř. její upevňovací šroub zkrátíme na délku asi 6 mm. Druhý pól Zenerovy diody propojíme s příslušným plošným spojem kouskem izolovaného zapojovacího vodiče. Všechny ostatní součástky připojíme na základní desku podle obr. 5. Diody D_1 a D_2 umístíme svisle, u odporu R poněcháme delší přívody, aby mezi ním a základní deskou byla mezera asi 10 mm (zlepší se jeho chlazení).

Chceme-li vestavěný zdroj (baterie) ponechat v přijímači při provozu na síťový zdroj, musíme použít vidlice a zásuvku s rozpinacím kontaktem, aby se baterie po připojení síťového zdroje automaticky odpojila. Jinak by mohlo (v závislosti na Zenerově napětí použité diody) docházet k vybijení baterií nebo naopak k jejich „přebijení“. Vhodné jsou např. vidlice a zásuvka určené k připojení sluchátek k tranzistorovým přijímačům, šestipólová vidlice a zásuvka s rozpinacím kontaktem, určené k připojení magnetofonu a gramofonu k přijímači a konečně i speciální vidlice a zásuvka pro připojení vnějších reproduktorů. Vhodnou zásuvku a vidlici je možno zhotovit i amatérsky.

Po vyzkoušení síťového zdroje připevníme víko krabičky v rozích (aby je bylo

Obr. 9. Krabička síťového zdroje

mohlo odtrhnout při případné opravě lepidlem.

Nakonec upozorňuji, že síťové napětí 220 V je životu nebezpečné. Při vinutí transformátoru musíme dbát na dokonalou izolaci mezi primárním a sekundárním vinutím. Pro síťový přívod musíme použít dokonale izolovanou dvojpramennou síťovou šňůru s normalizovanou vidlicí. Celý síťový zdroj musí být uzavřen v krabičce z izolantu s větracími dírami.

Potřebné součástky

- C₁ miniaturní elektrolytický kondenzátor
200 μ F/35 V, 1 kus
- C₂ miniaturní elektrolytický kondenzátor
200 μ F/15 V, 1 kus
- C₃, C₄ keramický kondenzátor 33 nF na nejmenší provozní napětí (např. 40 V), 2 kusy
- R drátový odpor 64 Ω /2 W, 1 kus
- D₁, D₂ plošná křemíková dioda KY701, 2 kusy
- D Zenerova dioda KZ705 1 kus

ZÁKLADY NF TECHNIKY

Ing. Petr Kellner

Nastavení a stabilizace pracovního bodu

Klidový stav tranzistoru je dán polohou pracovního bodu v soustavě stejnosporných charakteristik. Je určen dvěma nezávislými veličinami (např. proudem kolektoru I_{CE} a napětím kolektoru U_{CE}), které určují proud všech ostatních elektrod. Hlavním kritériem volby pracovního bodu při návrhu je funkce zesilovacího stupně. Pokusme se nyní ve stručném přehledu shrnout základní zásady pro volbu pracovního bodu.

Nejobecnějším pohledem je rozdělení zesilovačů na třídy. Na obr. 3 jsou tři možné případy nastavení pracovního bodu. V prvním případě prochází tranzistorem proud I_C , i když není buzen

signálem. Pracovní bod se nastavuje tak, aby celý rozkmit budicího signálu byl na lineární části převodní charakteristiky (obr. 63a). To je tzv. třída A, nejčastěji používaná v předesilovacích stupních.

Je-li pracovní bod v počátku převodní charakteristiky, protéká bez buzení tranzistorem pouze zbytkový proud kolektoru I_{CEO} . Z obr. 63b je vidět, že při sinusovém buzení protéká proud I_{CE} pouze polovinu periody, zbyvající polovinu periody je tranzistor uzavřen. To je třída B, při níž má zesilovač podstatně větší účinnost (proto se používá

Obr. 63. Třídy zesilovačů

ve výkonových zesilovačích). Protože je však výstupní signál silně zkreslen, je třeba zesilovač třídy B používat v některé technice vždy ve dvojčinném zapojení, o němž se zmíníme později.

Na obr. 63c je nastaven pracovní bod do třídy C – tranzistorem protéká proud po dobu kratší než polovina periody. Tato třída zesilovače (při níž má zesilovač největší účinnost) se v nízkofrekvenční technice pro velké zkreslení nepoužívá ani ve dvojčinném provozu; využívá se jí však ve vysílační technice.

Jak jsme již řekli, v předzesilovacích stupních se používají výhradně zesilovače třídy A. Vzhledem k množství různých funkcí předzesilovacích stupňů liší se i požadavky na nastavení pracovního bodu. U prvního stupně předzesilovače je důležitým kritériem k volbě pracovního bodu požadavek minimálního šumu tranzistoru. Je známo, že při malém kolektorovém proudu a při malém napětí kolektoru – emitor má tranzistor podstatně menší šum, než v „obvyklých“ pracovních bodech. Je tedy vhodné volit se zřetelem na malý šum $I_C = 0,2$ až $0,5$ mA a $U_{CE} = 1$ až 3 V. Podrobnější údaje bývají uvedeny v katalogu výrobce použitého tranzistoru. U ostatních předzesilovacích stupňů lze volit pracovní bod podle obvyklých údajů výrobce. Je to např. pro tranzistory KC508 (popř. KC148) $U_{CE} = 5$ až 15 V, $I_C = 3$ až 10 mA. Blížší hlediska volby U_{CE} a I_C budou probrána při návrhu zesilovače z hlediska střídavých proudů.

Jednou ze specifických vlastností tranzistorů (a to jak germaniových, tak i křemíkových) je závislost vodivosti materiálu přechodu na vlastní teplotu. Tato vlastnost souvisí s fyzikální podstatou polovodiče a musíme s ní počítat při návrhu každého tranzistorového zařízení. V praxi se projeví teplotní závislost změnou předem nastaveného pracovního bodu tranzistoru v závislosti na teplotě systému. Se zvýšující se teplotou se zvětšuje kolektorový proud a naopak. Protože vlastnosti tranzistoru jako střídavého zesilovače závisí ve značné míře na pracovním bodu, je základním požadavkem návrhu zajistit co nejménší změnu pracovního bodu v závislosti na teplotě. To je úkolem tzv. stabilizace pracovního bodu.

K ziskání teplotně nezávislého pracovního bodu se používají obvykle dvě metody. První spočívá v zavedení stejnosměrné záporné zpětné vazby. Používá se nejčastěji, i když nelze s její pomocí úplně potlačit změny kolektorového proudu. Zavedení záporné zpětné vazby však vede ke zvětšení energetických ztrát v pomocných obvodech, proto se tento způsob používá především u předzesilovačů, neboť jejich podíl na celkové spotřebě zesilovače je zanedbatelný. Druhá metoda (používaná převážně u výkonových zesilovačů) využívá teplotně závislých členů (termistorů, polovodičových diod, tranzistorů, žárovek). V některých případech je výhodné oba způsoby stabilizace kombinovat.

Změnu polohy klidového pracovního bodu ve statických charakteristikách ovlivňují zejména zbytkové proudy – změny zbytkového proudu kolektoru (ΔI_{CB} , ΔI_{CE}), napětí ΔU_{BE} a proudu výkonového zesilovacího činitele ($\Delta\beta$, $\Delta\alpha$). U germaniových tranzistorů obvykle převládá vliv ΔI_{CB} a ΔI_{CE} , u křemíkových vliv ΔU_{BE} . Uvedli jsme si, že úkolem stabilizace je omezit nebo potlačit vliv těchto změn na změnu proudu kolektoru ΔI_C . Podle první metody stabilizace (stejnosměrná záporná zpětná vazba) se k nastavení a stabilizaci pracovního bodu používají obvody s lineárními odpory. Tyto stabilizační obvody jednak omezují vliv teploty na klidovou polohu pracovního bodu, jednak zmenšují vliv rozptylu parametrů tranzistorů a potlačují vliv kolísání napájecího napětí. Obecné zapojení obvodu k nastavení a stabilizaci pracovního bodu při použití jednoho zdroje napětí je na obr. 64.

Ze zapojení na obr. 64 lze zkratováním ($R = 0$) nebo vypuštěním ($R = \infty$) některých odporů odvodit jednodušší obvody. Při podrobném návrhu zesilovacího stupně z hlediska teplotní stability se stabilizační obvody volí obvykle podle požadovaného činitele stabilizace (značí se S pro germaniové a S_{UBE} pro křemíkové tranzistory). Tyto metody jsou z hlediska amatérského návrhu zbytečně přesné a složité, už proto, že se v současné době používají v předzesilovacích stupních téměř výhradně křemíkové tranzistory, u nichž se obvykle v běžném rozsahu pracovních teplot (-10 až $+50$ °C) k požadavku stabilizace nepřiblíží ani u profesionálních zařízení. Důležité však je, abychom si uvědomili, že pro teplotní stabilizaci germaniových tranzistorů musí být celkový odpor v obvodu báze co nejménší a odpor v emitoru co největší. U křemíkových tranzistorů naopak požadujeme, aby celkový odpor v obvodu báze byl co největší. V následujících odstavcích si probereme typické stabilizační obvody pro oba druhy tranzistorů.

1. Obvod se stejnosměrnou zápornou zpětnou vazbou, s bází napájenou zdrojem konstantního napětí. Je to typický stabilizační obvod pro germaniové tranzistory, který se pro křemíkové tranzistory prakticky nepoužívá.

Stabilizace je tím účinnější, čím menší jsou odpory R_1 a R_2 a čím větší je napětí U_E (obr. 64). Celkový odpor děliče R_1 , R_2 však nelze libovolně zmenšovat; je omezen proudem děliče I_B a tím příkonem ze zdroje a především tím, že na velikosti odporu R_1 a R_2 závisí podstatně vstupní odpor zesilovacího stupně pro střídavý signál. Napětí U_E je omezeno požadovaným napětím U_{CE} a

Obr. 64. Obecné zapojení s lineárními odpory k nastavení a stabilizaci pracovního bodu

úbytkem napětí na odporu R_4 při požadovaném proudu I_C (při určitém napájecím napětí U_n). V praxi se nejčastěji volí poměr

$$m = \frac{I_D}{I_B} = 2 \text{ až } 10,$$

$$n = \frac{U_E}{U_n} = 0,1 \text{ až } 0,2.$$

Čím jsou m a n větší, tím je stabilizace účinnější. Velikost činitele m je důležitá při velkých rozdílech vstupního střídavého signálu. Není-li přesně určen odpór R_4 , určíme velikosti odporů v zapojení z obr. 65 pro daný pracovní bod (U_{CE} , I_C) a napájecí napětí U_n z rovnice

$$R_1 = \frac{U_n - U_E - U_{BE}}{I_B + I_D},$$

$$R_2 = \frac{U_E + U_{BE}}{I_D},$$

$$R_3 = \frac{U_E}{I_E}, \quad R_4 = \frac{U_n - U_{CE} - U_E}{I_C}.$$

kde U_E a I_D volíme podle vztahů pro m a n a dále

$$I_E = I_C + I_B.$$

Vztahy jsou jednoduché a vyplývají ze základních (Ohmova a Kirchhoffových) elektrotechnických zákonů. Podle obr. 64 a 65 si je lehce může odvodit každý sám.

Obr. 65. Stabilizace pracovního bodu stejnosměrnou proudotovou zápornou zpětnou vazbou

Obr. 66. Zapojení s bází napájenou zdrojem konstantního napětí (a) a zdrojem konstantního proudu (b)

Zkratujeme-li v zapojení z obr. 65 odpor R_3 a vypustíme-li i např. R_2 , dostaneme další dvě zapojení.

2. Zapojení s bází napájenou zdrojem konstantního napětí (obr. 66a).

3. Zapojení s bází napájenou zdrojem konstantního proudu (obr. 66b).

Tato zapojení germaniových tranzistorů však nestabilizují. V obvodech s křemikovými tranzistory však stabilizují a jsou, zejména zapojení s bází napájenou zdrojem konstantního proudu, velmi často používána. Při výpočtu prvků používáme předchozí vzorce s tím, že $R_3 = 0$ a tedy i $I_E = 0$. U zapojení s bází napájenou zdrojem konstantního napětí volíme I_D co nejmenší, aby odpór v obvodu báze $R_B = \frac{R_1 R_2}{R_1 + R_2}$ byl co největší. V zapojení na obr. 66b je ve vzorcích $R_2 = \infty$ a tedy $I_D = 0$.

Obr. 67. Stabilizace pracovního bodu stejnosměrnou napěťovou zápornou zpětnou vazbou

Obr. 68. Stabilizace pracovního bodu kombinací stejnosměrné proudové a napěťové záporné zpětné vazby

4. Na obr. 67 je další často používané zapojení se stejnosměrnou napěťovou zápornou zpětnou vazbou.

Je-li $I_C \gg I_{CBO}$, což je vždy, platí přibližně

$$R_1 \doteq \beta \frac{U_{CE} - U_{BE}}{I_C},$$

$$R_S \doteq -\alpha \frac{U_n - U_{CE}}{I_C}.$$

5. Obvod s kombinací stejnosměrné proudové a napěťové záporné zpětné vazby je na obr. 68. V tomto obvodu vypočteme:

$$R_1 = \frac{U_{CE} - U_E - U_{BE}}{I_B + I_D},$$

$$R_2 = \frac{U_E + U_{BE}}{I_D},$$

$$R_3 = \frac{U_E}{I_E},$$

$$R_S = \frac{U_n - U_{CE} - U_E}{I_C + I_B + I_D}.$$

Příklad 5. Máme navrhnout odpory R_1 a R_S pro zapojení podle obr. 67. Tranzistor KF506 má mít pracovní bod: $U_{CE} = 3$ V, $I_C = 10$ mA. Teplota okolí je 40°C a napájecí napětí $U_n = 12$ V. V této podmínce má tranzistor $U_{BE} = 0,8$ V a $\beta = 90$. Nejprve si z β vypočteme α

$$\alpha = -\frac{\beta}{1 + \beta} = -\frac{90}{91} \doteq -0,989.$$

Nyní vypočítáme oba odpory

$$R_1 = \beta \frac{U_{CE} - U_{BE}}{I_C} = 90 \frac{3 - 0,8}{10 \cdot 10^{-3}} \doteq 1,98 \cdot 10^4 \Omega = 19,8 \text{ k}\Omega,$$

$$R_S = -\alpha \frac{U_n - U_{CE}}{I_C} = +0,989 \frac{12 - 3}{10 \cdot 10^{-3}} \doteq 890 \Omega.$$

Tím je výpočet stabilizačního obvodu ukončen.

Ke stabilizaci pracovního bodu výkonových tranzistorů se používají teplotně závislé prvky. Je to proto, že stabilita stupně s lineární stabilizací (popsanou v předchozích odstavcích) značně závisí na velikosti U_E , popř. R_E . Vlivem velkých proudů výkonového tranzistoru by totiž právě na tomto odporu docházelo k velkým energetickým ztrátám.

Teplotně závislý prvek (člen) je zařazen do obvodu báze stabilizovaného tranzistoru. Protože se proud tranzistoru zvětšuje se zvyšující se teplotou a opak, upravuje tento stabilizační člen předpří báze tak, aby se zmenšení či zvětšení proudu kolektoru vyrovnalo. Nejčastěji se používá termistor v zapojení podle obr. 69. Odpor termistoru

Obr. 69. Stabilizace pracovního bodu termistorem

se s rostoucí teplotou exponenciálně zmenšuje. Rychlosť změny v závislosti na teplotě (součinitel B) udává tab. 3; pro běžné vyráběné termistory je $B = 1000$ až 4000 . Odpor termistoru je v katalogu uvedán při 20°C . Stačí tedy při znalosti součinitele B vynásobit odpór při 20°C příslušným číslem z tabulky a zjistíme odpor termistoru při určité teplotě. Praktický návrh se dělá zkusmo, a to tak, že v zapojení podle obr. 69 nahradíme termistor proměnným odporem, jehož odpor nastavujeme (a zjištujeme) při různých teplotách tak, aby klidový proud tranzistoru měl požadovanou velikost. Teplotu měříme v místě, kde bude termistor, obvykle v místě styku s pouzdrem tranzistoru a čteme ji vždy až po ustálení.

Většinou však nelze najít termistor s přesně stejným průběhem odporu (vzávislosti na teplotě), jaký potřebujeme pro stabilizaci. Menší odchylky (do 20 %) obvykle nevadí, při větších odchylkách je nutno upravit charakteristiku termistoru přidáním sériových či paralelních odporek (obr. 70). Podrobný vý-

Obr. 70. Stabilizace pracovního bodu termistorem

výpočet této kombinace je velmi zdlouhavý, proto si uvedeme několik empirických zásad, které pro běžný návrh zcela postačí.

Zapojení podle obr. 70a použijeme tehdy, vyhovuje-li změna odporu termistoru při nižších teplotách, avšak zmenšuje-li se jeho odpor při vyšších teplotách příliš rychle. Pak pro nejvyšší požadovanou teplotu zapojíme do série s termistorem odpor R_S tak, abychom získali požadovaný odpor. Odpor R_S

Tab. 3. Pomocní součinitel k určení odporu termistoru

Teplota [°C]	0	20	40	60	80
B					
1 000	1,30	1	0,80	0,67	0,58
1 500	1,45	1	0,72	0,56	0,44
2 000	1,60	1	0,68	0,48	0,34
2 500	1,80	1	0,60	0,38	0,25
3 000	2,05	1	0,56	0,32	0,19
3 500	2,35	1	0,52	0,27	0,14
4 000	2,65	1	0,48	0,23	0,11

však nesmí být větší, než asi 20 % odporu termistoru při nejvyšší teplotě, při níž chceme ještě předpří báze stabilizovat.

Podle obr. 70b upravujeme stabilizační obvod tehdy, je-li odpor termistoru při nízkých teplotách příliš velký, avšak vyhovuje-li při vyšších teplotách. K termistoru zapojíme tedy paralelně odpor tak, aby výsledný odpor kombinace vyhovoval i pro nejnižší uvažovanou teplotu.

Příklad na obr. 70c je kombinací zapojení na obr. 72a a b. Při vyšších teplotách však musíme počítat s paralelní kombinací odporů R_S a R_P , nikoli pouze s odporem R_S . Zájemci o podrobnější výpočet mohou najít nejrůznější metody výpočtu a příklady ve většině příruček, zabývajících se tranzistorovou technikou.

Se zmenšující se teplotou se zmenšuje napětí přechodu báze-emitor, potřebné k udržení stejného proudu kolektoru. Přechod báze-emitor je přitom polarizován v propustném směru. Je tedy možné do obvodu zařadit další přechod p-n, polarizovaný v propustném směru. Za předpokladu stejného materiálu a stejné technologie výroby přechodů bude přechod p-n v děliči báze (např. dioda) regulovat napětí na bázi tranzistoru tak, že se proud kolektoru tranzistoru I_C prakticky nemění. Nestačí-li napětí na přechodu jedné diody, použije se více diod v sérii. Dioda v propustném směru znamená ovšem pro střídavý signál prakticky zkrat. Proto se toto zapojení může použít pouze tam, kde tato vlastnost není na závadu, jako třeba v invertoru dvojčinného zesilovače mezi bázemi komplementárních tranzistorů (obdoba obr. 72) nebo např. ve stupni s transformátorovou vazbou (obr. 71).

Obr. 71. Stabilizace pracovního bodu tranzistoru diodou

Použití více diod se lze vyhnout použitím tranzistoru jako teplotně citlivého prvku. Toto velmi dobré a moderní zapojení se používá v současné době především u dvojiciných zapojení výkonových zesilovačů s křemíkovými tranzistory. Zjednodušený příklad zapojení je na obr. 72.

Obr. 72. Příklad teplotní stabilizace tranzistorem mezi bázemi komplementárního budíku koncového stupně zesilovače třídy B/AB. Stabilizační obvod vytažen tučně

Nastavení a stabilizace pracovního bodu u vícestupňových zesilovačů

Zatím jsme se zabývali pouze jedním zesilovacím stupněm bez ohledu na to, jak se tento stupeň chová ve spojení s dalšími stupni zesilovače. Nyní si tedy ukážeme postup návrhu vícestupňových zesilovačů.

Vazba mezi stupni může být (pomíne-li dnes už vzácnou transformátorovou vazbu) kapacitní nebo galvanická – přímá. Při použití kapacitní vazby se nastavuje pracovní bod zvlášť pro každý stupeň podle předchozích postupů. Je nutné brát ohled pouze na vzájemné přizpůsobení stupňů (dělíc v bázi následujícího stupně nesmí nadměrně „střídavé“ zatěžovat stupeň předchozí).

U přímé vazby jsou poměry poněkud složitější, i když je výpočet jednoduchý, jak si ukážeme na příkladu podle obr. 73.

Obr. 73. Příklad přímovázaného zesilovače

Příklad 6. Máme navrhnout odpory R_1 až R_6 pro přímovázaný zesilovač z obr. 73. Pracovní bod tranzistoru T_1 je $U_{CE} = 2$ V, $I_C = 1$ mA, proudový zesilovací činitel $\beta = 100$. Pro tranzistor T_2 je $U_{CE} = 5$ V, $I_C = 10$ mA, $\beta = 200$. Ve výpočtu (kromě výpočtu odporů R_1 a R_2) můžeme předpokládat, že $U_{BE} = 0$. Odpory R_1 a R_2 se vypočítají stejným způsobem jako v obr. 65. Vzhledem k tomu, že $I_B \ll I_C$ (proudový zesilovací činitel β je velký), lze

předpokládat $I_C = I_E$ a $I_B \approx 0$. Stanovíme si úbytek na R_3 ($U_{E1} = 0,5$ V) a R_5 ($U_{E2} = 2,5$ V).

$$R_3 = \frac{U_{E1}}{I_{C1}} = \frac{0,5}{10^{-3}} = 500 \Omega,$$

$$R_5 = \frac{U_{E2}}{I_{C2}} = \frac{2,5}{10 \cdot 10^{-3}} = 0,25 \cdot 10^3 = 250 \Omega.$$

Je-li $U_{E2} = 2,5$ V, pak také $U_{B2} = U_{C1} \approx 2,5$ V. Tím je dáno i napětí kolektor–emitor U_{CE1} prvního tranzistoru T_1

$$U_{CE1} = U_{C1} - U_{E1} = 2,5 - 0,5 = 2 \text{ V}.$$

Odpor R_4 tedy bude

$$R_4 = \frac{U_n - U_{CE1} - U_{B1}}{I_{C1}} = \frac{10 - 2 - 0,5}{10^{-3}} = 7,5 \cdot 10^3 = 7,5 \text{ k}\Omega.$$

Při zvýšení teploty se u tohoto zapojení zvětší proud T_1 , tím se zmenší napětí U_{C1} a tedy i proud kolektoru T_2 a naopak, čímž se poněkud kompenzuje změny zesílení obou tranzistorů se změnou pracovního bodu. Stabilita však plně závisí na stabilitě prvního stupně, tedy na volbě R_1 , R_2 a U_{E1} (jako v zapojení na obr. 65). Při úpravě tohoto zapojení podle obr. 74 se teplotní stabilizace značně zlepší, protože báze tranzistoru T_1 je napojena přes oddělovací odporník R_6 z emitoru tranzistoru T_2 . Je tedy použita stabilizace stejnosmernou zápornou zpětnou vazbou.

Zvětší-li se vlivem teploty proud prvního tranzistoru, zmenší se napětí na jeho kolektoru a tím i na bázi druhého

Obr. 74. Stabilizace pracovního bodu stejnosmernou zápornou zpětnou vazbou u dvoustupňového přímovázaného zesilovače

tranzistoru, jehož proud I_{C2} se proto také zmenší. Menší proud I_{C2} má však za následek zmenšení napětí U_{E2} a tím i zmenšení napětí U_{BE1} a tedy zmenšení proudu I_{C1} , takže se celý systém prakticky vráti do výchozího stavu. Emitor T_2 musí být z hlediska střídavého signálu spojen se zemí (konduktorem), aby nedocházelo ke střídavé záporné zpětné vazbě (pokud je nežádoucí). Toto zapojení je velmi výhodné z hlediska stabilizace pracovního bodu a také proto, že odpadají obvyklé ztráty v bázových děličích, protože T_2 žádný dělič nemá a báze T_1 má jen velký odporník R_6 (řádu stovek k Ω u křemíkových tranzistorů), na němž jsou ztráty podstatně menší, než na obvyklém děliči v bázi. Činitel stabilizace se u tohoto a podobných zapojení (i vícestupňových) se může blížit jedné, což znamená, že lze tímto zapojením dosáhnout velmi dobré teplotní stabilizace bez přídavných obvodů, náročných na počet součástek.

ČTVŘMÍSTNÝ MĚŘÍČ KMITOČTU DO 25 MHz

Měření kmitočtu elektrického proudu patří mezi základní měření elektrických veličin v profesionální, ale i amatérské praxi.

Metody měření této fyzikální veličiny vycházejí buď z měření času (počtu period), když pro napětí periodického průběhu platí

$$f = \frac{1}{T} \quad [\text{Hz; s}],$$

nebo z měření délky vlny λ , kde platí

$$f = \frac{c}{\lambda} \quad [\text{Hz; m/s, m}].$$

Měřicí přístroje založeném na druhém principu pracují převážně jen v užším kmitočtovém pásmu a to většinou v oblasti vysokých kmitočtů. Jejich přesnost bývá většinou asi $\pm 2,5\%$.

Další metodou, používanou k měření kmitočtu, je záznějová metoda, založená na měření nulového zázněje dvou kmitočtů. Nevýhodou je značná složitost (používají se dva osciloskop, z toho jeden předádající ve velkém rozsahu kmitočtů). Předností této metody je velká přesnost, na niž má vliv přesnost měření nulového zázněje a způsob určení (čtení) kmitočtu předáditeľného osciloskopu.

Nejnovější metodou měření kmitočtu je metoda, využívající kmitočtové napě-

ťového převodníku (převodník F-A). U tohoto způsobu měření kmitočtu je problémem linearita převodníku F-A v širokém kmitočtovém rozsahu.

Převážná většina měřičů kmitočtu je založena na principu měření (čítání) počtu impulsů (odtud název čítací) během určitého, přesně definovaného a stabilního časového intervalu, tzn. vychází z první metody.

Blokové schéma tohoto druhu měřičů kmitočtu je na obr. 1.

Vstupní tvarovač

Vstupní tvarovač zpracuje vstupní signál na takovou úroveň a tvar, které jsou třeba k dalšímu zpracování signálu v číslicovém systému (pro logiku TTL úroveň $\log I_{min} = 2$ V). Vstupní tvarovač musí mít dostatečnou šířku přenášeného pásma (v našem případě $B = 25$ MHz) a co největší vstupní odpór, aby čítací nezatěžoval měřený objekt.

Obr. 1. Blokové schéma měřiče kmitočtu

Klíčovací hradlo

Klíčovací hradlo se klíčuje taktovacím impulsem C z časové základny. Z obr. 2a je vidět, že je taktovací impuls C symetrický. Po dobu trvání jeho kladné úrovně je klíčovací hradlo otevřeno a čítač čítá impulsy z tvarovacího obvodu. Úroveň $\log 0$ taktovacího impulsu zablokuje klíčovací hradlo, čímž se odpojí vstupní část od vlastního čítače.

Obr. 2. Časový diagram impulsů. R je nulovací impuls, C je půl taktovacího impulsu, A je vzorkovací impuls
(impuls označený v obrázku B má být správně označen R)

Časová základna

Úlohou časové základny je vytvořit taktovací impuls, z něhož jsou potom odvozeny další dva impulsy – vzorkovací a nulovací. Jak bylo uvedeno v předchozím výkladu, obsah čítače se naplňuje během úrovni $\log 1$ určitou vstupní informaci. Týlovou hranou taktovacího impulsu se uzavírá klíčovací hradlo a tím končí plnění čítače. Z časového diagramu (obr. 2a) je vidět, že po určité době $t_1 < t_2 < t_4$ je vytvořen vzorkovací impuls, jehož pomocí se přenesou informace o stavu čítače na výstup paměti, tzn. na displej. Po ukončení vzorkovacího impulsu zůstává tato informace na výstupu paměti. Nulovací impuls R je vytvořen v čase t_3 , pro který platí:

$$t_2 < t_3 < t_4.$$

Tímto impulsem se vynuluje čítač, ale výstup paměti se nemění (zachovala se původní informace čítače). S další čelní hranou taktovacího impulsu v době t_4 dojde k dalšímu čítání vstupní informace.

Časová základna je nejdůležitějším obvodem celého čítače. Na přesnosti a stabilitě taktovacího impulsu závisí i celková přesnost zařízení.

Čítač

Úlohou čítače je určit počet vstupních impulsů až do doby vynulování (pří-

jíště konstantní zisk v dostatečném kmitočtovém rozsahu. Vzhledem ke vstupnímu odporu je výhodné vybrat tranzistor KF124 s velkým proudovým zesilovacím činitelem h_{21} . Odporovým trimrem R , 470 kΩ, v bázi prvního tranzistoru se nastavuje pracovní bod přimovázané dvojice tranzistorů – symetrická limitace (souměrné omezení signálu) při přebuzení. Zpětnou vazbou přes R_1 , R_2 je dán nejen zisk této dvojice, ale zároveň i šířka pásmo, proto je třeba obvod navrhovat tak, aby šířka propouštěného pásmo i zisk dvojice byly dostatečné. Navíc odpory R_1 a R_2 ovlivňují i vstupní odpory celého čítače.

Diody KA206 na vstupu tvoří ochranu celého zařízení při připojení větších napětí. Diody omezují symetricky střídavé napětí na bázi prvního tranzistoru asi na 0,65 V. Odpor R_0 , ochranný odporník, zmenšuje však částečně dosažitelnou citlivost. Vzhledem k tomu, že maximální povolený proud použitými diodami je 100 mA, je maximální povolené vstupní napětí 100 V.

Další stupeň, tvořený tranzistorem T_3 , KSY71, pracuje ve spínacím režimu. Odpor R_4 je volen tak, aby byl tranzistor T_3 ještě v zavřeném stavu (v případě, není-li na bázi T_1 vstupní napětí).

Tranzistor T_3 slouží jako převodník úrovně (tzn. že na jeho kolektoru jsou logické úrovně TTL, $\log 1 \geq 2$ V a $\log 0 \leq 0,8$ V). Další stupně jsou tvarovače, které jsou složeny z kaskády hradel. Třetí hradlo plní zároveň funkci klíčovacího hradla.

Pro nejnižší kmitočty (akustické pásmo 20 Hz až 20 kHz) bylo nutno (vzhledem k zakmitávání na hranách impulsů) výstupy jednotlivých hradel blokovat kondenzátory 0,1 μF. Příčinou zakmitávání je nedostatečná strmost čelní a týlové hrany impulsu v bodu X při nejnižších úrovních vstupního signálu.

Dalším stupněm čítače je časová základna (obr. 4a). Její hlavní částí, na níž závisí přesnost a stabilita celého zařízení, je krystalem řízený oscilátor. Vzhledem k tomu, že byl čítač konstruován jako čtyřmístný, postačuje jako zdroj signálu pravoúhlého průběhu multivibrátor, realizovaný dvěma hradly (1/2 MH7400). Při požadavku větší přesnosti je možné použít sinusový oscilátor, jehož výstupní napětí je potom nutno tvarovat (např. Schmittovým obvodem s MH7460). Požadavek větší stability kmitočtu se dá splnit umístěním celého oscilátoru do termositu, příp. použitím kmitočtového normálu. V tomto zařízení je použit krystal 1 MHz s možností dodávání paralelním kondenzátorem. Základní kmitočet 1 MHz je dělen $10^7 : 1$, což znamená, že nejdélší časovým intervalem, během kterého čítač čítá, je 10 vteřin. Dělička kmitočtu je realizo-

padně do jeho naplnění). Kapacita čítače (tzn. největší počet impulsů, který je možno načítat) je dána požadavkem přesnosti měření a maximálním měřeným kmitočtem.

Paměť

Jak již bylo uvedeno v předchozím textu, úlohou paměti je zachovat původní informace po vynulování čítače.

Displej

Displej se skládá z dekódéru, který zpracovává určitým způsobem zakódovanou informaci k řízení zobrazovací jednotky.

Zobrazovací jednotkou rozumíme číslicovou výbojku – digitron, polovodičový displej GaAsP, případně číslicový displej z tekutých krystalů. I když světový trend směřuje k polovodičovým zobrazovacím jednotkám (zahraniční firmy vyrábějí vicemístné jednotky, případně zobrazovací jednotku spolu s dekodérem, pamětí a čítačem v jednom pouzdře), jejich cena a především nedostupnost nás nutí používat v číslicových zařízeních výbojky – digitrony.

Celý čítač lze realizovat u nás výrobě číslicovými integrovanými obvody řady 74, a tím dosáhnout malých rozměrů.

Technické údaje měřiče

Citlivost: $U_{\text{vst} \text{ min}} = 100 \text{ mV}$.

Maximální vstupní napětí: 100 V.

Vstupní odpór: $R_{\text{vst}} = 150 \text{ k}\Omega$.

Rozsah časové základny: 1 ms až 10 s.

Kmitočtový rozsah:

1. pásmo – 20 Hz až 20 kHz.
2. pásmo – 20 kHz až 25 MHz.

Napájení: síť 220 V.

Popis zapojení

Vstupní tvarovač (obr. 3) je realizován z diskrétních prvků vzhledem k malým vstupním úrovním signálu, které má zpracovávat, a vzhledem k požadavku co nejvyššího vstupního odporu.

Obsahuje stejnomsérnně vázanou dvojici tranzistorů n-p-n – p-n-p, která za-

Obr. 3. Vstupní tvarovač

vána sedmi obvody MH7490 (dekadický čítač binárního čísla použity ve funkci 10 : 1, obr. 4b).

Aby bylo dosaženo rychlejšího měření, je nutno zkrátit časový interval. To umožňuje spínače, realizované tranzistory T_1 až T_5 , které spínají podle předvolby výstupy děliček nižšího řádu. Tím dosáhneme rozsahu časové základny 1 ms až 10 s.

Nyní získáme tedy impuls, jehož doba trvání (tzn. $\log 1 + \log 0$) je podle volby v rozahu 1 ms až 10 s.

Z předcházejícího výkladu je zřejmé, že čítač počítá jen tehdy, je-li otevřeno klíčovací hradlo, tzn. má-li taktočivý impuls úroveň $\log 1$. Proto musíme impuls, získaný z programovatelné děličky $10^{n+3} : 1$ ($n = 0, 1, 2, 3, 4$) dělit dvěma. Dělička 2 : 1 je realizována klopňovým obvodem typu J-K (použito MH7472). Na výstupu Q klopňového obvodu nyní dostáváme symetrický taktočivý impuls C potřebné délky. Tímto impulsem řídíme klíčovací hradlo.

Impuls se současně zpracovává tak, aby se z něho vytvořil vzorkovací a nulovací impuls podle časového diagramu na obr. 2b.

Taktočivý impuls se neguje invertem (1/4 MH7400). Získaný průběh \bar{C} se zderívuje, záporná špička se omezí (dioda KA501) a kladná špička \bar{C}^* spíná tranzistor KC508. Na jeho kolektoru se objeví úzké pravoúhlé impulsy C^* . Těmito impulsy řídíme monostabilní multivibrátor, tvořený dvěma hradly (1/2 MH7400). Šířka výstupního impulsu je dána přibližně časovou konstantou použitého člena RC (v našem případě $0,1 \mu\text{F}$ a 390Ω , tzn. $t_k \approx 39 \mu\text{s}$). Získaný impuls R^* opět zderívujeme, zápornou špičku omezíme a dostaneme impuls R vhodně časově posunutý vzhledem k taktočivému impulsu (jeho týlové hraně) a vzorkovacímu impulsu A , který dostaneme negováním impulsu C^* .

Dalšími částmi přístroje jsou čítač, paměť, dekódér a zobrazovací jednotka – digitrony (obr. 5a). I v těchto částech se používají číslicové integrované obvody MH7490 – dekadický čítač (obr. 5b), MH7475 – řízená vzorkovací paměť (obr. 5c), MH7441 – dekódér binárně kódovaného dekadického čísla (obr. 5d).

Tyto tři integrované obvody tvoří jednu dekádu (v celém zařízení jsou čtyři identicky zapojeny). První dekáda zpracovává vstupní informaci. Po naplnění čítače první dekády se začíná plnit čítač druhé dekády, jehož vstup T (hodiny) je zapojen na výstup D předcházejícího čítače atd.

Pro názornost uvádíme průběh časového diagramu v součinnosti jedné dekády (obr. 6):

1. V čase t_1 se dekadický čítač vynuluje – vstupy A, B, C, D dekodéru jsou na úrovni $\log 0$, což odpovídá číslu 0.
2. V čase t_2 se čítač plní vstupními impulsy do čísla 3.
3. V čase t_3 přichází hodinový impuls na hodinové vstupy paměti MH7475, dochází ke snímání výstupů čítače a k přenosu na vstupy A, B, C, D – v tomto případě 1 – 1 – 0 – 0, což odpovídá číslu 3.
4. V čase t_4 se čítač nejdříve vynuluje a potom čítá se další vstupní informace. V tomto čase dekódér zpracovává ještě stále přicházející informaci – číslo 3.
5. V čase t_5 dochází ke změně informace na vstupech A, B, C, D dekodéru MH7441, 1 – 0 – 1 – 0, tj. číslo 5.

Obr. 5b)

Obr. 5. Zapojení čítače, paměti, dekodéru a digitronů (a), obvodu MH7490 jako desítkového čítače binárního čísla v kódě BCD (b), obvodu MH7475 jako řízené vzorkovací paměti (c) a obvodu MH7441 jako dekodéru kódovaného dekadického čísla (d)

Použité číslicové výbojky jsou typu ZM1080T, tzn. s dvěma tečkami. Jedna tečka se využívá při přepínání časové základny, tzn. k určení desetinného čísla. Druhá tečka je v tomto případě využita k indikaci přeplnění čítače (obr. 5a).

Obr. 7. Napájecí zdroj

Obr. 5c)

Obr. 5d)

Obr. 6. Časový diagram jedné dekády

Obvod indikace přeplnění čítače pracuje takto: v klidovém stavu je na výstupu $Q = 0$. Když se naplní čítač dekády nejvyššího řádu (v našem případě 4), vyšle impuls, který překlopí klopný obvod J-K, realizovaný obvodem MH7472, do stavu $Q = 1$ ($J = 1$, $K = \bar{Q}$ v čase $t_0 \equiv K = Q = 1$). Kladný signál na výstupu \bar{Q} otevře tranzistor, který sepne uvedené tečky. Místo nich lze k indikaci stavu přeplnění použít doutnavku.

Uvedený klopný obvod nastavujeme po každé periodě taktovacího impulu nulovacím impulsem.

Napájecí zdroj

Napájecí zdroj se skládá ze dvou částí. Napájecí napětí pro logiku (+5 V) získáme klasickým napěťovým stabilizátorem. Zdrojem referenčního napětí jsou tři křemíkové diody (přibližně 2 V), protože Zenerovy diody s napětím kolem 3 V se dodnes u nás nevyrábějí.

Napájecí napětí pro digitrony získáme jednosměrným usměrněním střídavého napětí 130 V. Na výstupu zdroje je kapacitní filtr a odporník R_0 , který tvoří stálou zátěž. Velikost usměrněného napětí má vliv na volbu pracovních odporů v anodách digitronů. Tyto odpory se volí tak, aby digitronem tekl proud 1 mA.

Ing. Jiří Jireš

Druhy zapalovania a jejich vlastnosti

Ing. Ivan Nepraš

(Dokončení)

Ak by sme pre zaujímavosť vyrávali rezonančný kmitočet sústavy (indukčná cievka a kondenzátor ako ladený obvod), vyšiel by rezonančný kmitočet, na ktorom sústava kmitá. Rezonančný kmitočet sústavy je vyjadrený vzťahom

$$f = \frac{1}{2\pi\sqrt{L_1 C}} = \frac{1}{2 \cdot 3,14 \cdot \sqrt{1,5 \cdot 10^{-2} \cdot 3 \cdot 10^{-5}}} = \frac{1}{1 \cdot 10^3 \text{ Hz.}}$$

To všetko je súčasne dôvod, prečo pri poruche na kondenzátore nemožno prakticky naštartovať vozidlo. Ak je kondenzátor prerazený – skratovaný, preteká cez ň neustále prúd a rozprínanie kontaktov prerušovača KP je naprostro neúčinné, takže nedochádza k časovej zmene prúdu. Ak je naopak kondenzátor prerušený – napr. odolený prívodný káblík, nedochádza k výsile popísaným osciláciám prúdu vo vinutiach indukčnej cievky IC a na sekundárnej strane indukčnej cievky sa preto indukuje podstatne menšie napätie, nepostačujúce k prerazneniu medzery sviečky.

Z diskusie o kontaktoch a indukčnej cievke vyplýva ďalej jeden poznatok. Indukčná cievka je pri návrhu podľa mienovaná, nepočítá sa s tým, že cez jej vinutie bude neustále pretekáť relativne veľký prúd (3 až 3,5 A). Ak ale vodič omylem alebo úmyselne nechá zapojenie obvody zapalovania pri stojacom vozidle a motore v klude, je značná pravdepodobnosť (70 %), že sú kontakty prerušovača zopnuté. V takomto prípade preteká cez vinutie n_1 indukčnej cievky neustále maximálny prúd z akumulátora, cievka sa neúmerne zohrieva a môže sa celkom ľahko zničiť. Hovoríme, že „vtečie“, izolačné médium sa zvýšeným teplom silne rozťahne, hliníkový kryt sa tlakom vydaje a napokon praskne. Teda pozor!

Z uvedených faktov vyplývajú preto tieto závery:

- Pri zvyšujúcich sa obrátkach motora nemožno nijako ovplyvniť (teda predĺžiť) čas zopnutia kontaktov prerušovača, počas ktorého sa v indukčnej cievke akumuluje energia W_L .
- Ak sa nábehový čas pre získanie maximálneho prúdu má skrátiť, musí sa zmeniť indukčnosť L_1 primárneho vinutia indukčnej cievky IC , ovšem súčasne zviesť prúd cez primárne vinutie indukčnej cievky IC tak, aby súčin $0,5 L_1 I^2$ ostal aspoň na úrovni klasického zapojenia. Dôsledkom takéhto snahu je zapalovanie tranzistorové, o ktorom hovoríme v ďalšom.
- Treba nájsť iný (kvalitatívne úplne odlišný) systém zapalovania, v ktorom

rom by sa pri zachovaní prvej podmienky istým spôsobom obišla druhá podmienka. Dochádzame tak k zapalovaniu tyristorovému.

Obr. 5. Základná schéma zapojenia pri tranzistorovom zapalovaní systému
(Polarita batérie je obrácená)

Ústrednou myšlienkou tranzistorového zapalovania (obr. 5) je teda požiadavka zvetšenia prúdu I , pretekajúceho cez primárne vinutie indukčnej cievky. Avšak kontakty, ktoré už tak boli značne namáhané, nemožno beztrestne preťažovať. Mohlo by dochádzať k veľmi intenzívnomu opaľovaniu so všetkými už komentovanými dôsledkami, alebo k ich totálnemu zvareniu.

Akumulátor B je v tomto prípade pripojený cez spinaci skrinku a kontakty SK na emitor tranzistora T , v kolektorovom obvode je zapojené primárne vinutie indukčnej cievky IC . V báze spinacieho tranzistora je opäť kontakt prerušovača KP . Kondenzátor v tomto prípade nie je potrebný, pretože kontakty KP sú namáhané iba malým prúdom a neopälujú sa. Na kontaktoch spínacej obvodu indukčnej cievky (teda v tranzistore, ktorý ako spinaci kontakt pracuje) sa nijaké „opaľovanie prechodu“ prejavovať nemôže, oblúk sa takisto nemôže vytvárať a prerušenie prúdu je preto vlastne okamžité. Dôsledok – rýchla časová zmena prúdu – je pre indukciu napäťia v sekundárnych závitoch indukčnej cievky veľmi priaznivá.

Ak sa zapne kontakt prerušovača KP , preteká cez obvod batéria-spinacia skrinka-emitor-báza-kontakt prerušovača-batéria prúd I_1 , ktorý je (vďaka väčšiemu odporu prechodu emitor-báza) pomerne malý. Býva okolo 0,5 A alebo ešte menej. Často je ešte obmedzený zaradením zrážacieho sériového odporu medzi bázu a kontakt prerušovača. Súčasne sa ale prechod emitor-kolektor chová tak, ako keby bol prakticky skratovaný (veľmi malý odpor), takže cez vinutie n_1 špeciálnej indukčnej cievky, ktorá má teraz málo závitov z hrubého vodiča, teda malý činný odpor a menšiu indukčnosť, preteká (vzhľadom na klasické zapalovanie) veľmi veľký prúd I , približne 10 A alebo aj viac. Kontakty prerušovača sú takto chránené a prakticky sa vôbec neopälujú. Raz nastavená medzera, teda aj vzdialenosť kontaktov, nastavený predstih ako aj čas zapnutia sa prakticky nemenia. Z batérie sa potom odoberá prúd $I_2 = I + I_1$. Tak sme, zatiaľ zdánlivо, dosiahli práve to, čo sme chceli: aj za krátky čas za-

pnutia kontaktov pri vysokých obrátkach motora sa stačí nahromadiť dostatočná energia W_L v indukčnej cievke, takže sýtosť iskry a veľkosť sekundárneho napäťia je aj pri týchto extrémnych podmienkach dostatočná. Graficky bol tento priebeh znázornený na obr. 2 prerošovanou čiarou.

Pozrite sa však, čo nás tento fakt stojí:

pre účely tranzistorovho zapalovania treba zvláštnu indukčnú cievku, ktorá má malý R , malou L_2 , malé τ_L a prevod $n_1 : n_2$ v rozmedzí 1 : 250 až 1 : 400. Amatérska výroba takejto indukčnej cievky je prakticky nemožná a výrobcovia tento fakt vedia patrične oceniť jej cenou. (Pozor L_2 je opäť indukčnosť primárneho vinutia!)

Spinaci prvok – tranzistor – musí v pripustnom smere spínať značné prúdy, často viac ako 10 A. Pre tento účel sú potrebné typy s povoleným kolektorovým stratovým výkonom od 25 do 50 W, emitorové prúdy sú značne vysoké (súčet $I + I_1$) a pohybujú sa okolo 12 až 15 A. Zesilovacie činiteľ tranzistora má byť čo najväčší.

Celé zvýšené napätie, ktoré sa pri klasickom zapalovaní objavilo na kondenzátore (ktorý bol zapojený v sérii s primárne vinutím indukčnej cievky!) sa teraz objaví na tranzistore a bez ďalších úprav by ho veľmi jednoducho zničilo. Ak sa to nemá stať, musí mať tranzistor ďalší dôležitý parameter – veľké záverné napätie.

Požiadavku na záverné napätie tranzistoru môžeme eliminovať pridáním ďalšieho polovodičového prvkú – Zenerovej diódy, zapojenej mezi emitor a kolektor tranzistoru.

Všetkým požiadavkám vyhovujú z čs. tranzistorov typy 6NU74 alebo 7NU74 so záverným napäťom 70 a 90 V (popr. KU607). Zenerove diódy s požadovanými parametrami treba nahradzať sériovým spojením viacerých kusov s nižším Zenerovým napäťom.

Aj v tomto prípade platí pre energiu, nahromadenú v magnetickom poli indukčnej cievky už známy vzťah $W_L = 0,5 L_2 I^2$. Ak uvažujeme, že špeciálna indukčná cievka má indukčnosť vinutia n_1 približne 7 mH a maximálny prúd cez toto vinutie je približne 6 A, vychádza pre akumulovanú energiu

$$W_L = 0,5 L_2 I^2 = 5 \cdot 10^{-1} \cdot 7 \cdot 10^{-3} \cdot 3,6 \cdot 10 = 1,26 \cdot 10^3 = 1,26 \cdot 10^{-1} \text{Ws},$$

čo vyjadrené v rovnakých jednotkách ako predtým dáva $126 \cdot 10^{-3}$ Ws = = 126 mJ. Je to teda približne dvojnásobok energie, nahromadenej v najoptimálnejšom pracovnom režime klasického zapalovacieho systému a súčasne dôkaz, že tranzistorovým zapalovaním vybavené vozidlo ľahšie a bezpečnejšie štartuje ako aj znáša zvýšené obrátky motoru bez závad v zapalovaní.

Ako z uvedených faktov vyplýva, nie je zavedenie tranzistorového zapalovania nijaké podstatné zlepšenie celého zapalovacieho systému, pretože:

- Stavebné náklady sú značné a dosiahnu pri kúpe súčiastok sumu najmenej 700 až 800 Kčs.
- Získanie špeciálnej indukčnej cievky (s klasickou, s malým prevodom 1 : 90 je zapojenie málo účinné) je ľahké, ak nie nemožné.
- Jazda pri obrátkach nad 5 000 obr./min., kedy má vôbec význam uvažovať o inom zapalovaní ako klasickom,

- je pre bežných motoristov viac zriedkavá ako pravideľná.
- Význam a opodstatnenie nekonvenčného systému zapáľovania má smysel iba vtedy, ak sa jedná o vozidlo špeciálne.
 - Jedinou „výhodou“, ktorú treba v tomto pripade dostaťne oceniť je skutočnosť, že opáľovanie a celkové opotrebovanie kontaktov je minimálne a raz nastavené pomery sa po dlhú dobu nemenia. Či tento fakt vyváži značná cena zariadenia, je skutočne diskutabilné.
 - Medzi zápory tranzistorového zapáľovania treba zaradiť fakt, že výkon odoberaný z akumulátora je oproti klasickému zapáľovaniu 2 až 3krát väčší (u klasického zapáľovania je prúd asi 3,5 A; u zapáľovania tranzistorového je 10 až 15 A). V porovnaní so zapáľovaním klasickým je táto závislosť znázornená na obr. 6.

- Otzáka opráv zariadenia počas cesty je priamo kritická, skoro nikto sa podobným zariadeniam nevenuje a preto im zvyčajne nerozumie.
- Bolo by potrebné robiť úpravy klasického zapáľovacieho systému na tranzistorové zapáľovanie tak, aby bola hoci kedy možnosť volby ktoréhokoľvek z oboch systémov.

V záveroch o činnosti klasického zapáľovacieho systému sme ako tretí bod uviedli snahu o vytvorenie kvalitatívne nového systému zapáľovania, ktorý by nielen obišiel fakt, že cez kontakty prerušovača preteká značný prúd, ale aj eliminoval na minimum čiastočné nevýhody tranzistorového zapáľovacieho systému.

V ďalšom sa pokúsime porovnať parametre zapáľovania výbojového s klasickým a poukážeme na patričné analógie medzi vyššie uvedenými charakteristickými veličinami.

Pozrite sa ale najprv na typický (schematický!) obvod tyristorového zapáľovania na obr. 7.

Obr. 7. Principiálna schéma zapojenia tyristorového zapáľovacieho systému

Celé zariadenie sa skladá z niekoľkých samostatných častí, ktoré postupne popíšeme. Akumulátor B napája tranzistorový menič M , ktorý z jednosmer-

ného napäťia 12 V urobí neharmonické napätie U_M približne 300 až 400 V. Na veľkosti tohto napäťia celkom nezáleží. Menič je zvyčajne konštruovaný ako dvojtranzistorový v súmernom, protitaktovom zapojení (výkonové tranzistory 10 až 20 W.). Neharmonické napätie meniča sa usmerní diódou D a takto získaným napäťom sa nabija kondenzátor C_N . Náboj kondenzátora je možno vyrátať zo vzťahu

$$Q = CU \quad [C; F, V].$$

Ak chceme dosiahnuť ten istý náboj, ktorý sa v ďalšom použije k vyzvoleniu iskry na sviečke máme dve možnosti, z ktorých si podľa lubovoľne môžeme vybrať tú, ktorá je ľahšie splniteľná. Možno alebo:

- zvolať veľké napätie, ktoré má menič výrobiť a dióda usmerniť a použiť pomerne malú kapacitu kondenzátora C_N ,
- môžeme sa rozhodnúť pre pomerne malé jednosmerné napätie a značne veľkú kapacitu C_N tak, aby ich súčin bol asi rovnaký, ako v predchádzajúcim pripade. V praxi sa opäť volí kompromis, pretože by nebolo sice technicky nemožné výrobiť veľmi vysoké napätie U_M v meniči M , zbytočne by sa ale zvyšovali nároky na použité tranzistory a usmerňovaci diód. Príliš veľká kapacita kondenzátora C_N by mala za následok zbytočné veľké geometrické rozmerky kondenzátora. Ako ďalej uvidíme, väčšia kapacita predĺžuje nabijiaci čas, pretože vplýva úmerne na veľkosť časovej konštanty nabijacieho obvodu.

V praxi sa napätie U_M volí v rozmedzí 300 až 400 V a kapacita kondenzátora C_N býva v rozmedzí 0,5 až 1 μF . Z toho vyplýva náboj

$$Q_1 = 5 \cdot 10^{-7} \cdot 3 \cdot 10^2 = 1,5 \cdot 10^{-4} \text{ C}$$

$$(0,5 \mu\text{F}; 300 \text{ V}),$$

$$Q_2 = 1 \cdot 10^{-6} \cdot 4 \cdot 10^2 = 4 \cdot 10^{-4} \text{ C}$$

$$(1 \mu\text{F}; 400 \text{ V}).$$

Aj v tomto pripade (podobne ako sme to urobili pri klasickom zapáľovacom systéme) možno výčísliť celkovú energiu, ktorá je v kondenzátore akumulovaná. Možno ju zrátať zo vzťahu

$$W_C = 1/2 CU^2 \quad [J; F, V].$$

Výrátajme preto opäť prezaujímavosť čiselné veľkosť energie W_C za predpokladu, že používame kondenzátor C_N s kapacitou 0,5 alebo 1 μF a jednosmerné napätie 300 alebo 400 V. Výraz pre W_C tak bude

$$(0,5 \mu\text{F}; 300 \text{ V}) \rightarrow W_C = 0,5 \cdot 5 \cdot 10^{-7} \cdot 9 \cdot 10^4 =$$

$$= 22,5 \cdot 10^{-3} \text{Ws} = 22,5 \text{ mJ},$$

$$(0,5 \mu\text{F}; 400 \text{ V}) \rightarrow W_C = 0,5 \cdot 5 \cdot 10^{-7} \cdot 1,6 \cdot 10^5 =$$

$$= 40 \cdot 10^{-3} \text{Ws} = 40 \text{ mJ},$$

$$(1 \mu\text{F}; 300 \text{ V}) \rightarrow W_C = 0,5 \cdot 1 \cdot 10^{-6} \cdot 9 \cdot 10^4 =$$

$$= 45 \cdot 10^{-3} \text{Ws} = 45 \text{ mJ},$$

$$(1 \mu\text{F}; 400 \text{ V}) \rightarrow W_C = 0,5 \cdot 1 \cdot 10^{-6} \cdot 1,6 \cdot 10^5 =$$

$$= 80 \cdot 10^{-3} \text{Ws} = 80 \text{ mJ}.$$

Vidíme tu analógiu s klasickým a tranzistorovým zapáľovaním, kde výraz pre W_C bol podobný.

Analogicky možno vyrátať aj časovú konštantu nabijacieho obvodu zo vzťahu

$$\tau_C = R_1 C_N \quad [s; \Omega, F],$$

pričom odpor R_1 teraz reprezentuje súčet stratových odporov vinutia transformátora T_r , prívodov ako aj ekvivalentného odporu p-n usmerňovacej diódy D vo vodivom smere. Vidíme, že čas, za ktorý sa kondenzátor nabije na maximálne napätie, je priamo úmerný kapacite kondenzátora. To je súčasne aj dôvod, prečo sa kapacita kondenzátora volí v medziach 0,5 až 1 μF . Odpor R_1 totiž nemôžeme lubovoľne zmenšovať a musíme sa snažiť, aby súčin $R_1 C_N$ bol čo najmenší. Týmto sme porovnali obidva zapáľovacie systémy z hľadiska časových konštant τ_L a τ_C a získali časy, za ktoré sú obidva zapáľovacie systémy pripravené k práci. Inými slovami, v akom rýchлом sledu môžu za sebou nasledovať dva výboje na sviečke.

Je to súčasne aj odpoveď, do akých maximálnych obrátok motora je ktorý systém vhodný a ekonomický. Výrátajme pre zaujímavosť čas τ_C , ak uvažujeme kapacitu $C_N = 1 \mu\text{F}$ a celkový odpor v obvode $R_1 = 50 \Omega$.

$$\tau_C = R_1 C_N = 50 \cdot 10^{-6} = 5 \cdot 10^{-5} =$$

$$= 50 \mu\text{s} = 0,05 \text{ ms}.$$

Pri porovnaní τ_C a τ_L (bolo asi 3,5 ms) vidíme, že τ_C je asi 15krát menšie! To znamená, že celý systém tyristorového zapáľovania je pripravený k práci podstatne rýchlejšie, ako obidva predchádzajúce systémy a je preto vhodný pre použitie do extrémne vysokých obrátok motoru. Porovnanie klasického a tyristorového zapáľovania vidíme na obr. 8, ktorý dokumentuje rýchlosť náhrania sekundárneho napäťia [8].

Podstatná časť celého zapáľovacieho systému je tyristor T_y . Je to opäť polovodičový spínací prvok, ovládaný elektronicky, impulzne. Jeho činnosť spočíva v tom, že v stanovený čas (pri rozopnutí kontaktov prerusovača KP) dostáva tyristor impulz zo synchronizačných obvodov S_O , čím sa okamžite, skôrom, mení jeho odpor.

V kľudovom stave (pred vyslaním impulzu pri zopnutých kontaktoch prerusovača KP) je tyristor úplne nevodivý a predstavuje nekonenečne veľký odpor. Preto sa v prvej fáze celého deja nabija napäťom z usmerňovača iba kondenzátor C_N a cez vinutie n_1 indukčnej cievky IC nepreteká žiadny prúd. Spätnému vybijaniu kondenzátora C_N bráni súčasne dióda D , hoci jej prvoradý a pôvodný účel je úplne iný. Prúd týmto obvodom preteká iba tak dlho, pokiaľ sa napätie U na kondenzátore C_N liší od usmerneného striedavého napäťia U_M z meniča M .

V pracovnom stave (v okamihu vyslania otváracieho impulzu zo synchronizačných obvodov, teda v okamihu rozopnutia kontaktov) sa stáva tyristor skôrom úplne vodivý. Celá energia kondenzátora sa tak odrazu vybija cez primárne vinutie n_1 indukčnej cievky IC , v ktorej vyvoláva značne veľký (iba krátkodobý) prúd.

Náboj kondenzátora môžeme určiť zo vzťahu $Q = It$.

Rozborom tohto vzťahu a jeho aplikáciou na naše pomery prichádzame k tomu, že prúd cez primárne vinutie n_1 indukčnej cievky IC je značný a po čase zaniká. Dochádza teda k časovej zmene prúdu a podmienky pre indukó-

vanie sekundárneho napäťia sú splnené. Naviac vidime, že ak bude súčin I konštantný, bude sa čas vybijania náboja Q skracovať úmerne s tým, ako bude narastať prúd I . Prúd I je ale daný odporom obvodu kondenzátor-tyristor-vinutie n_1 -kondenzátor, teda prakticky iba odporom vinutia n_1 , ak predpokladáme, že kondenzátor nemá nijaký zvod a teda predstavuje nekoniecny odpor pre jednosmerný prúd. Tak ako v predchádzajúcich prípadoch, bolo by aj teraz výhodné, aby primárne vinutie n_1 indukčnej cievky IC malo čo najmenší počet závitov z najhrubšieho vodiča.

Vyrájame veľkosť prúdového impulzu, ktorý krátkodobe preteká cez pri-márne vinutie n_1 indukčnej cievky IC .

Ak bude odpor primárneho vinutia n_1 indukčnej cievky IC približne 4Ω a prechovodový odpor tyristoru menší ako 1Ω , bude $R_2 = 5 \Omega$, čo dáva časový konštantu $\tau_v = \tau_{\mu s}$. Pre náboj $Q = 2,5 \cdot 10^{-4} C$ (rátali sme ho pre dva prípady vyššie), vychádza potom

$$I = \frac{Q}{t} = \frac{2,5 \cdot 10^{-4}}{5 \cdot 10^{-6}} = 5 \cdot 10^1 = 50 A$$

[C, s; A].

Prúd je teda oproti klasickému ako aj tranzistorovému zapalovaniu podstatne väčší a vytvorená iskra mohutnejšia, „sýtejšia“, „teplejšia“.

Podstatnou výhodou výbojového zapalovania (teraz už vidime, že systém dostal meno nie pre výboj na sviečke, ale pre vybijanie náboja kondenzátora C_N do indukčnej cievky IC) je skutočnosť, že pomerne veľký náboj z kondenzátora sa za veľmi krátky čas, prakticky okamžite v okamihu zmeny vodivosti tyristoru, vybija do primárneho vinutia indukčnej cievky. Dôsledok tohto faktu je veľmi priažnivý, pretože:

dej prebieha veľmi rýchlo (rádove μs) a rovnako rýchlo aj zaniká. Vzniká tak intenzívna časová zmena prúdu a podmienky pre indukciu sekundárneho napäťia sú veľmi priažnivé. Prúdy cez primárne vinutie sú v dôsledku krátkeho času t veľmi veľké (desiatky A);

rovnako rýchlo, strmo, narastá indukované sekundárne napätie, ktoré sa dostáva na sviečku.

Obr. 8. Vzrast vysokého napäťia, a) klasický, b) tyristorový systém

Kedže vybijaci a nabijaci dej prebieha veľmi rýchlo, nabíja sa kondenzátor C_N na maximálnu energiu W_C v podstatne kratšom čase (malá časová konštantá), ako je čas zapnutia kontaktov prerušovača KP (2/3 pracovného cyklu). Časová konštantá $\tau_0 = 50 \mu s$ je doslova zanedbateľná voči minimálnemu času zopnutia kontaktov prerušovača, ktorý sme pre štvorvalcový a štvortaktový motor pri 4 500 obr./min. vyráiali ako 4,5 ms. Z tohto vyplýva, že kondenzátor C_N je nabity približne za

1/50 času, v ktorom sú kontakty prerušovača zopnuté. Nahromadená energia je preto prakticky stále konštantná a nezávislá na obrátkach motora. Dôsledkom je prakticky konštantné sekundárne napätie na indukčnej cievke IC , nezávislé na obrátkach motora, ktorý preto beží kludne od voľnobehu až po maximálne obrátky, ktoré môžu byť vyššie ako pri klasickom zapalovačom systéme.

V dôsledku veľmi rýchleho narastania sekundárneho napäťia sa vplyv nečistot na sviečkach neprejavuje tak intenzívne a zapalovanie spoľahlivo pracuje aj pri nevhodne volených parametroch sviečok.

Cez kontakty prerušovača tečie malý prúd (potrebný pre ovládanie synchronizačných obvodov radu 0,1 A), ktorý kontakty neopaľuje a nemení tak raz správne nastavené parametre (predstih a mezeru medzi kontaktami).

Systém má také energetické rezervy, že dokáže spoľahlivo pracovať aj pri značne zniženom napätiu akumulátora a plne nabíjať kondenzátor C_N . Dôsledkom sú lahlé štarty odstaveného vozidla, kedy veľký odber prúdu štartérom pôsobí značný pokles napäťia akumulátora.

Iskra na sviečke v dôsledku značnej energie je veľmi „sýta“, dosahuje sa napätie 30 až 35 kV (oproti 15 až 20 kV klasického zapalovacieho systému).

Nevyžaduje sa špeciálna indukčná cievka IC , zariadenie uspokojuvo pracuje s konvenčnou indukčnou cievkou s prevodom 1 : 90.

Celé zariadenie spolu s tyristorom je však pomerne drahé a reprezentuje cenu 600 až 900 Kčs.

Záver

Záverom tohto rozboru činnosti zapalovacích systémov treba konštatovať, že:

1. Uvedené typy zapalovania ako tranzistorové a obzvlášť tyristorové sú zlepšením, prípadne podstatným zlepšením (tyristorové zapalovanie) celého zapalovacieho systému iba vtedy, keď fungujú správne.

2. Ani jeden z progresívnych typov zapalovania sa záťaľ bežne nepredáva a tak výroba jednotlivých zariadení je prenechaná technicky a teoretičky podkutím jednotlivcom.

3. Výrobne náklady obidvoch moderných zapalovacích systémov sú oproti klasickému systému podstatne vyššie. Možno je to dôvod, prečo nie sú u nás bežne rozšírené.

4. Obidva moderné systémy zapalovania sú oproti klasickému systému podstatne komplikovanějšie, čo ohrozuje ich životnosť ako aj prevádzkovú spoľahlivosť.

5. Obidva moderné systémy majú oproti klasickému zapalovaciemu systému podstatne prednosti iba v režime vysokých a extrémne vysokých obrátok motora a pre jazdy „rekreačného typu“

neprinášajú podstatné zlepšenie a sú teda zbytočné.

6. Celková informovanosť pracovníkov oprávňenej siete o týchto moderých zapalovacích systémoch je minimálna, ak nie nulová (česť výnimkám) a nádejne na údržbu alebo prípadnú opravu takýchto zariadení sú mizivé.

7. Keby sme sa mali rozhodnúť, ktorý z moderných zapalovacích systémov zvoliť a v našom vozidle použiť, mali bysme dať jednoznačne prednosť najprogresívnejšiemu tyristorovému zapalovaniu.

Toľko teda k problematike zapalovania v motorových vozidlách. Autor dúfa, že uvedené rozboru jednotlivých zapalovacích systémov, vysvetlené možno nekonvenčným spôsobom, prispejú k celkovému zvýšeniu vedomostí o tejto problematike a možno pomôžu niektorým vodičom lepšie poznať (v prípade potreby aj opraviť) svoje vozidlo. Keď sa tak stalo alebo stane, je zámer autora dokonale splnený.

Literatúra

- [1] Everding, H.: Kondensator Zündanlage mit Konstanter Ausgangsspannung. Elektronik, č. 8/1968, str. 239 až 242.
- [2] Wolf, J.: Senkt eine Tyristor Zündanlage den Benzinverbrauch? Elektronik, č. 9/1969, str. 287 až 288.
- [3] Kabeš, K.: Přednosti a nedostatky tyristorového zapalování. Sdělovací technika, č. 8—9/1970, str. 274 až 275.
- [4] Řanda, J.: Tyristorové zapalování. Amatérské radio, č. 9/1970, str. 338 až 339.
- [5] Veveka, M.: Nové směry v technice zapalování. Motoristická současnost, č. 2/1969, str. 23 až 29.
- [6] Škoda, Z.: Elektronika v motorovém vozidle. SNTL: Praha 1969.
- [7] Mráček, K.: Tyristorové zapalování. Amatérské radio č. 1/1971, str. 27, 28.
- [8] Issler, J.: Batteriegespeiste Zündquellen für fremdgezündete Motoren — Heute und Morgen. Automobilindustrie č. 3/1965.

* * *

Dvojitý monolitický operační zesilovač ULN-2157A v pouzdru z plastické hmoty dual-in-line se 14 vývodů uvedl na trh výrobce Sprague (Belgie). Vyznačuje se vstupním rozdiľovým proudem prům. 30, max. 50 nA, rozdiľovým napäťím prům. ± 1 , max. ± 5 mV, napäťovým záseleňím 100 000, vstupním impedanci 1 MΩ. Môže odevzdať vstupní napäť o amplitúde ± 13 V, jeho vstupní napäťový rozsah je väčší ± 12 V, rýchlosť napäťového sŕmosti v zapojení zesilovače s plnou zpětnou vazbou je 0,5 V/us. Výrobce zaručuje vzájemné oddelení obou zesilovačů 120 dB, čo je ideálne k použití zesilovače pri zpracovaní ní stereofónickej signál.

Sž

Podle podkladu Sprague

NEZAPOMEŇTE, že v březnu vyjde Ročenka AR, obsahující data nejpoužívanějších a nejnovějších tranzistorů, FET, usměrňovacích, stabilizačních, kapacitních a referenčních diod výrobců ze SSSR, Japonska, USA, NDR, MLR, PLR, Jugoslávie, Československa, západní Evropy atd.

Ročenka bude mít asi 250 stran formátu A4 a bude k dostání v prodejnách PNS, n. p. Knihy a pro jednotlivé čtenáře ji bude zasílat na dobírkou specializovaná prodejna technické literatury n. p. Knihy, Praha 2, Karlovo nám. 19, kde si ji již dnes môžete objednat. Ročenka bude stát 25,— Kčs.

Typ	Druh	Použití	Rozdíly																			
			U_{CE} [V]	I_C [mA]	h_{FE}	f_T [MHz]	T_a [°C]	P_{tot}^* max [mW]	U_{CB} max [V]	U_{CEO}^* max [V]	I_C max [mA]	T_j max [°C]	Pouzdro	Výrobce	Patice	Náhrada TESLA	P_C	U_C	f_T	h_{FE}	$S_{pin, V}$	
PG2390	SPp	VF, NFv		5 A	40–120	60	100c	65 W	70	50	10 A	200	TO-3	Pir	31	KU606	<	>	<	<	≤	
PG2391	SPp	VF, NFv		5 A	40–120	60	100c	65 W	80	70	10 A	200	TO-3	Pir	31	KU606	<	>	=	<	≤	
PG2392	SPp	VF, NFv		5 A	40–120	60	100c	65 W	120	100	10 A	200	TO-3	Pir	31	KU606	—	—	—	—	—	
PG2393	SPp	VF, NFv		5 A	100–300	60	100c	65 W	70	50	10 A	200	TO-3	Pir	31	—	—	—	—	—		
PG2394	SPp	VF, NFv		5 A	100–300	60	100c	65 W	80	70	10 A	200	TO-3	Pir	31	—	—	—	—	—		
PG2395	SPp	VF, NFv		5 A	100–300	60	100c	65 W	120	100	10 A	200	TO-3	Pir	31	—	—	—	—	—		
PG2396	SPp	VF, NFv		5 A	40–120	60	100c	65 W	120	100	10 A	200	TO-3	Pir	31	KU606	<	>	=	<	≤	
PMT011	SMn	NF, I	10	10	3				25	100	30	25		175 u7	PSI	KF507	—	—	—	—	—	
PMT012	SMn	NF, I	10	10	3,5				25	100	30	25		175 u7	PSI	KF507	—	—	—	—	—	
PMT013	SMn	NF, I	10	10	5				25	100	60	40		175 u7	PSI	KF506	—	—	—	—	—	
PMT014	SMn	NF, I	10	150	2,5				25	100	60	40		175 u7	PSI	KF506	—	—	—	—	—	
PMT015	SMn	NF, I	10	10	5	25			25	100	80	50		175 u7	PSI	KF506	—	—	—	—	—	
PMT016	SMn	NF, I	1	10	> 20				25	100	25	20		175 u7	PSI	KC508 KF507	—	—	—	—	—	
PMT018	SMn	NF, I	10	10	4				25	100	40	30		175 u7	TRW	KF507	—	—	—	—	—	
PMT019	SMn	NF, I	10	10	6				25	100	40	30		175 u7	TRW	KF507	—	—	—	—	—	
PMT020	SMn	NF, I	5	1	37				25	100	45	30		175 u7	TRW	KF507 KC507	—	—	—	—	—	
PMT021	SMn	VFu	10	10	> 2	400	25c	100	20	15	220	175 u7	TRW	—	—	—	—	—	—	—	—	
PMT022	SMn	VFu	3	10	> 2	400	25c	100	50	20	220	175 u7	TRW	—	—	—	—	—	—	—	—	
PMT023	SMn	VFu, Sp	1	10	> 20	750	25	100	25	20		175 u7	TRW	—	—	—	—	—	—	—	—	
PMT024	SMn	NF, I	10	150	> 20				25	100	30	20		175 u7	TRW	KF507	—	—	—	—	—	
PMT025	SMn	VFv	10	5	93	160	25	100	75	50		175 u7	TRW	KF508	—	—	—	—	—	—	—	
PMT111	SMn	NF, I	10	10	3				25	100	30	25		175 u6	TRW	KF507	—	—	—	—	—	
PMT112	SMn	NF, I	10	10	3,5				25	100	30	25		175 u6	TRW	KF507	—	—	—	—	—	
PMT113	SMn	NF, I	10	10	4				25	100	60	40		175 u6	TRW	KF506	—	—	—	—	—	
PMT114	SMn	NF, I	10	10	5				25	100	60			175 u6	TRW	KF506	—	—	—	—	—	
PMT115	SMn	NF, I	10	150	> 40				25	250	80	50		175 u6	TRW	KF506	—	—	—	—	—	
PMT116	SMn	NF, I	10	10	> 4				25	100	25	20		175 u6	TRW	KF507	—	—	—	—	—	
PMT117	SMn	VFu	10	10	> 4	400	25	360	25	15	220	175 u6	TRW	KF173	—	—	—	—	—	—	—	
PMT118	SMn	NF, I	10	10	> 4				25	100	40	30		175 u6	TRW	KF507	—	—	—	—	—	
PMT119	SMn	NF, I	10	10	> 6				25	100	40	30		175 u6	TRW	KF507	—	—	—	—	—	
PMT120	SMn	NF, I	10	10	5*				25	100	45	30		150 u6	TRW	—	—	—	—	—		
PMT121	SMn	VFu	10	10	> 2*	400*	25c	100	20	15	220	150 u6	TRW	—	—	—	—	—	—	—	—	
PMT122	SMn	VFu	3	10	> 2*	400*	25c	100	50	20	220	150 u6	TRW	—	—	—	—	—	—	—	—	
PMT123	SMn	VFu	1	10	> 20	750*	25c	250	25	20		150 u6	TRW	—	—	—	—	—	—	—	—	
PMT124	SMn	VF	10	150	> 20				25c	250	30	20		150 u6	TRW	—	—	—	—	—		
PMT125	SMn	VFv	10	5	93	160*	25c	100	75	50		150 u6	TRW	—	—	—	—	—	—	—	—	
PMT211	SMn	VFv	10	150	> 15	130*	25	800	30	25	500	150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT212	SMn	VFv	15	100	6,5	130*	25	800	45	30	500	150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT213	SMn	VFv	10	150	40	150*	25	600	60	40		150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT214	SMn	VFv	10	150	80	150*	25	600	60	40		150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT215	SMn	VFv	10	50	9	175*	25	600	80	50		150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT216	SMn	VFu	1	10	> 20	750*	25	100	25	20		150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT217	SMn	VFu	10	10	4	400*	25	360	25	15	220	175 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT218	SMn	VFv	10	150	75	150*	25c	250	60			175 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT219	SMn	VFv	10	150	75	150*	25c	250	60			175 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT220	SMn	VFu	5	1	63*	600*	25c	250	45			25 175	TO-51	TRW	29	—	—	—	—	—	—	—
PMT221	SMn	VFv	1	10	80	400*	25c	250	25		220	175 TO-51	PSI	29	—	—	—	—	—	—	—	
PMT222	SMn	VFv	3	10	> 2	40*	25c	100	50	20	220	150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT223	SMn	VFu	1	10	> 20	750*	25c	250	25	20		150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT224	SMn	VF	10	150	> 20				25c	250	30	20		150 TO-51	TRW	29	—	—	—	—	—	
PMT225	SMn	VFv	10	5	93*	160*	25c	100	75	50		150 TO-51	TRW	29	—	—	—	—	—	—	—	
PMT1767	SPn	VFu	3	10	> 5	750	25c	250	25	15	200	175 u7	TRW	—	—	—	—	—	—	—	—	
PMT1767M	SMn	VFv	3	10	> 5	200*	25c	100	25	15	200	150 u7	TRW	—	—	—	—	—	—	—	—	
PMT1767P	SMn	VFv	3	10	> 5	200*	25c	100	25	15	200	150 u7	TRW	—	—	—	—	—	—	—	—	
PMT1767T	SMn	VFv	3	10	> 5	200*	25c	100	25	15	200	150 u7	TRW	—	—	—	—	—	—	—	—	
PMT1787M	SPn	VFv	10	0,1	> 40	200*	25c	250	25			200	150 u7	PSI	—	—	—	—	—	—	—	—
PMT1787P	SPn	VFv	10	0,1	> 40	200*	25c	100	25			200	150 u7	PSI	—	—	—	—	—	—	—	—
PMT1787T	SPn	VFv	10	0,1	> 40	200*	25c	250	25			200	150 u7	PSI	—	—	—	—	—	—	—	—
PPT720	SPn	VFv, Sp	10	0,1	> 40	>250	25	360	25	15	200	175 TO-46	PSI	2	KSY62	—	—	—	—	—		
PT270	SPn	VFv, O			A = 15 dB	100*	25	1200	25	15			TO-18	MCP	2		—	—	—	—	—	
PT515	SPn	VF, I	10	30	> 10	> 70	25	800	120	100	300	175 TO-5	TRW	2	KF504	—	—	—	—	—		
PT516	SPn	VF, I	10	30	> 10	> 70	25	800	120	100	300	175 TO-5	TRW	2	KF504	—	—	—	—	—		
PT517	SPn	VF, I	10	30	> 10	> 70	25	800	120	100	300	175 TO-5	TRW	2	KF504	—	—	—	—	—		
PT518	SPn	VF, I	10	30	> 10	> 70	25	800	120	90	300	175 TO-5	TRW	2	KF503	—	—	—	—	—		

Typ	Druh	Použití	U_{CE} [V]	I_C [mA]	h_{FE}^*	f_T f_{C*} [MHz]	T_a T_c [°C]	P_{tot} P_C^* max [mW]	U_{CB} max [V]	U_{CEB}^* max [V]	I_C max [mA]	T_j max [°C]	Pouzdro	Výrobce	Patice	Náhrada TESLA	Rozdíly				
																	P_C	U_C	f_T	h_{FE}	Spín. Vl.
PT519	SPn	VF, I	10	30	> 10	> 70	25	800	120	90	300	175	TO-5	TRW	2	KF503	=	=	=	=	=
PT520	SPn	VF, I	10	30	> 10	> 70	25	800	120	90	300	175	TO-5	TRW	2	KF503	=	=	=	=	=
PT522	SPn	VF, I	28	100	7—100	250	25c	3 W	50	40	500	175	TO-5	TRW	2	KF506	=	<	>	>	<
PT523	SPn	VF, I	28	100	10—100	250	25c	3 W	60	40	500	175	TO-5	TRW	2	KF506	=	<	>	>	<
PT530	SPn	VF, I	28	350	7,5—75	> 150	25c	15 W	75	60	2 A	175	TO-8	PSI	2	—	—	—	—	—	
PT530-1	SPn	VF, I	28	350	7,5—75	> 120	25c	15 W	60	45	2 A	175	TO-8	TRW	2	—	—	—	—	—	
PT530A	SPn	VF, I	28	350	7,5—75	> 140	25c	15 W	100	100*	2 A	175	TO-8	PSI	2	—	—	—	—	—	
PT531	SPn	VF, I	28	350	7,5—75	> 140	25c	15 W	75	75*	2 A	175	TO-8	PSI	2	—	—	—	—	—	
PT600	SPn	VF, I	12	1 A	15—45	210	25c	13 W	60	45*	2 A	175	TO-8	TRW	2	—	—	—	—	—	
PT601	SPn	VF, I	12	1 A	30—90	210	25c	13 W	60	45*	2 A	175	TO-8	TRW	2	—	—	—	—	—	
PT612	SPn	VF, I	28	350	7,5—75	> 60	25	2 W	75	60*	2 A	175	TO-8	TRW	2	—	—	—	—	—	
PT613	SPn	VF, I	28	350	7,5—75	> 140	25c	15 W	100	100*	2 A	175	TO-8	PSI	2	—	—	—	—	—	
PT657	SPn	VF, I	28	350	15—80	210	25c	25 W	100	80	1,2 A	175	MT-39	TRW	2	—	—	—	—	—	
PT665	SPn	VF, I	28	350	7,5—75	210	25c	25 W	75	60*	2 A	175	MT-39	TRW	2	—	—	—	—	—	
PT665A	SPn	VF, I	28	350	7,5—75	> 150	25c	25 W	100	90*	2 A	175	MT-39	TRW	2	—	—	—	—	—	
PT692	SPn	VF, I	28	350	7,5—75	> 140	25c	15 W	75	75*	2 A	175	TO-8	PSI	2	—	—	—	—	—	
PT703	SPEn	VF			80	30*	25	360	25	25*	200	175	TO-18	TRW	2	KC508	=	=	=	=	=
PT706	SMn	VFv, Sp	10	10	> 4	400	25	360	25	15	220	175	TO-18	PSI	2	KSY62	=	=	=	=	=
PT706-1	SMn	VFv, Sp	10	10	> 4	400	25	360	25	15	220	175	TO-18	PSI	2	KSY62	=	=	=	=	=
PT706A	SMn	VFv, Sp	10	10	> 4	400	25	360	50	20	220	175	TO-18	TRW	2	KSY63	=	=	=	=	=
PT706A1	SMn	VFv, Sp	10	10	> 4	400	25	360	50	20	220	175	TO-18	TRW	2	KSY63	=	=	=	=	=
PT709	SPEn	VFv, Sp	1	10	> 20	> 300	25	300	20	10	200	175	TO-18	TRW	2	KSY62A	=	>	>	>	=
PT709-1	SPEn	VFv, Sp	1	10	> 20	> 300	25	300	20	10	200	175	TO-18	TRW	2	KSY62A	=	>	>	>	=
PT720	SPEn	VFv, Sp	1	10	> 40	400	25	360	25	15	200	175	TO-18	TRW	2	KSY62B	=	=	=	=	=
PT801	SPp	VF, I	10	150	45	> 50	25	600	30			175	TO-5	TRW	2	KF517	=	>	>	>	=
PT802	SPp	VF, I	10	150	90	> 50	25	600	45			175	TO-5	TRW	2	KF517A	=	>	>	>	=
PT822	SMn	VF, I	10	50	9	175	25	600	80	50*		175	TO-5	PSI	2	KF507	=	>	>	>	=
PT850	SPn	VF, Sp	10	150	> 40	120	25c	2 W	120	80	500	175	TO-5	TRW	2	—	—	—	—	—	
PT850A	SPn	VF, Sp	10	150	> 40	120	25c	2,8 W	120	80	500	175	TO-5	TRW	2	—	—	—	—	—	
PT851	SMn	VF, Sp	10	150	90	175	25	600	45	30		175	TO-5	PSI	2	KF508	=	>	>	>	=
PT852	SMn	VF, Sp	10	50	9	175	25	600	45	30		175	TO-5	PSI	2	KF506	=	>	>	>	=
PT853	SMn	VF, Sp	10	150	12	175	25	600	25	20		175	TO-5	PSI	2	KF507	=	>	>	>	=
PT886	SPn	VF, I			80	30*	25	600	25	22*	500	175		TRW		KF507	=	>	>	>	=
PT887	SPn	VF, I			80	30*	25	600	50	45*	500		TO-5	TRW	2	KF506	=	>	>	>	=
PT888	SPn	VF, I			80	30*	25	600	50	45*	500		TO-5	TRW	2	KF506	=	>	>	>	=
PT896	SPn	VF, NF					25c	1,6 W	45	50			TO-5	TRW	2	—	—	—	—	—	
PT897	SPn	VF, I			80	30*	25	600	50	45*	500		TO-5	TRW	2	KF506	=	>	>	>	=
PT898	SPn	VF, I			80	30*	25	600	45	50*	500		TO-5	TRW	2	KF506	=	>	>	>	=
PT900	SMn	NF, VFv	2	10 A	10	50*	25	125 W	80	50*	15 A	150	MT3	TRW	93	—	—	—	—	—	
PT900-1	SMn	NFv	2	10 A	10	30*	25		80	50*	10 A	150	MT16	PSI	2	—	—	—	—	—	
PT901	SPn	NFv, I	2	10 A	10—30	> 50	25c	125 W	140	50	10 A	150	MT38	PSI	93	—	—	—	—	—	
PT901-1	SPn	NFv, I	2	10 A	10—30	> 50	25c	125 W	140	50	10 A	150	MT39	TRW	2	—	—	—	—	—	
PT902	SPn	NFv, I	2	10 A	> 8	> 50	25c	125 W	140	100*	10 A	150	MT38	TRW	93	—	—	—	—	—	
PT902-1	SPn	NFv, I	2	10 A	> 8	> 50	25c	125 W	140	100*	10 A	150	MT39	TRW	2	—	—	—	—	—	
PT903	SPn	NFv, I	2	10 A	20—60	> 50	25c	125 W	140	50	10 A	150	MT39	TRW	2	—	—	—	—	—	
PT903-1	SPn	NFv, I	2	10 A	20—60	> 50	25c	125 W	140	50	10 A	150	MT39	TRW	2	—	—	—	—	—	
PT1515	SPn	NFv, I	28	100	15—100		25c	3 W	80	80*	500	175	TO-5	TRW	2	—	—	—	—	—	
PT1544	SPn	VFv					250	25c	4 W	50	50*	500	175	TO-5	TRW	2	—	—	—	—	—
PT1545	SPn	VFv					250	25c	4 W	50	50*	500	175	TO-5	TRW	2	—	—	—	—	—
PT1558	SPn	VFv	28	100	10—100	250	25c	4 W	80	45	500	175	TO-5	TRW	2	—	—	—	—	—	
PT1559	SPn	VF, NFv	28	100	> 10	140	25c	3,5 W	80	50	500	175	TO-5	TRW	2	—	—	—	—	—	
PT1835	SPn	VF, NF	10	150	45	200	25	600	30	25*		175	TO-18	TRW	2	—	—	—	—	—	
PT1836	SPn	VF, NF	10	150	90	200	25	400	45	30*		175	TO-18	TRW	2	—	—	—	—	—	
PT1837	SPn	VF, NF	10	150	120	200	25	400	80	50*		175	TO-18	TRW	2	—	—	—	—	—	
PT1937	SPn	Sp, Re	2	7 A	15—60	> 40	25c	5 W	140	100*	7 A	150	TO-8	TRW		KU606	=	>	>	>	=
PT1941	SPn	Sp, Re	2	7 A	15—60	> 40	25c	90 W	140	100*	7 A	150	MT39	TRW	2	KU606	=	>	>	>	=
PT1949	SPn	Sp, Re	2	10 A	10—30	> 50	25c	50 W	140	100*	10 A	150		TRW	29	—	—	—	—	—	
PT1963	SPn	Sp, Re	2	10 A	10—30	> 50	25c	50 W	140	100*	10 A	150	MT10	TRW	2	—	—	—	—	—	
PT2523	SPn	VF, NF	50	10	> 20	> 50	25	870	180	140*	500	175	TO-5	TRW	2	—	—	—	—	—	
PT2524	SPn	VF, NF	50	10	> 20	> 50	25	870	200	180*	500	175	TO-5	TRW	2	—	—	—	—	—	
PT2525	SPn	VF, NF	50	10	> 20	> 50	25	800	220	170	500	175	MT39	TRW	2	—	—	—	—	—	
PT2525A	SPn	VFv	50	10	> 20	> 70	25c	5 W	240	200	300	175	TO-5	TRW	2	—	—	—	—	—	
PT2540	SPEn	VFv	10	150	> 15	> 150	25	850	60												

Typ	Druh	Použití	U_{CE} [V]	I_C [mA]	h_{FE}	f_T , f_{α^*} , f_{β^*} , [MHz]	T_a , T_c , [°C]	P_{tot} , P_C^* , max [mW]	U_{CB} , max [V]	U_{CE0} , U_{CB^*} , max [V]	I_C , max [mA]	T_1 , max [°C]	Pouzdro	Výrobce	Patice	Náhrada TwSLA	Rozdíly						
																	P_C	U_C	f_T	h_{FE}	S_{pin}	F	
2N2480	SPn	DZ	5	1	30—350	> 50	25	300	75	40	500	200	TO-5	Mot	9	—	—	—	—	—	—	—	
2N2480A	SPn	DZ	5	1	Δ U_{BE} < 10 mV	50—200	> 50	25	300	80	40	500	200	TO-5	Mot	9	—	—	—	—	—	—	
2N2481	SPEn	Spvr	1	10	40—120	> 300	25	360	40	15	—	200	TO-18	Mot	2	KSY63	=	=	=	=	=	=	
2N2482	GMn	VFu	6	2	> 25	> 600	25	150	20	10	100	90	TO-18	RCA	2	—	—	—	—	—	—	—	
2N2483	SPn	VF-nš	5	0,01	40—120	80 > 60	25	360	60	60	50	200	TO-18	NSC	2	—	—	—	—	—	—	—	
2N2484	SPn	VF-nš	5	0,01	100—500	100 > 60	25	360	60	60	50	200	TO-18	NSC	2	—	—	—	—	—	—	—	
2N2484A	SPn	VF-nš	5	0,01	100—500	> 60	25	360	60	60	50	175	TO-18	Am	2	—	—	—	—	—	—	—	
2N2485	SPn	VFv	10	500	> 10	200	25c	8,7 W	120	120	—	175	TO-5	NSC	2	—	—	—	—	—	—	—	
2N2486	SPn	VFv	10	500	> 10	200	25c	8,7 W	140	140	—	175	TO-5	NSC	2	—	—	—	—	—	—	—	
2N2487	Gdfp	Spvr	0,5	10	> 20	> 360	25	60	15	10	100	100	TO-18	Spr	2	—	—	—	—	—	—	—	
2N2488	Gdfp	Spvr	0,5	50	> 20	> 360	25	60	15	10	100	100	TO-18	Spr	2	—	—	—	—	—	—	—	
2N2489	Gdfp	Spvr	0,5	10	> 20	> 300	25	60	20	15	100	100	TO-18	Spr	2	—	—	—	—	—	—	—	
2N2490	Gjp	NFv, Sp	2	5 A	20—40	> 0,005*	25c	170 W	70	60	15 A	110	TO-36	Mot	36	—	—	—	—	—	—	—	
2N2491	Gjp	NFv, Sp	2	5 A	35—70	> 0,005*	25c	170 W	60	50	15 A	110	TO-36	Mot	36	—	—	—	—	—	—	—	
2N2492	Gjp	NFv, Sp	2	5 A	25—50	> 0,005	25c	170 W	80	70	15 A	110	TO-36	Mot	36	—	—	—	—	—	—	—	
2N2493	Gjp	NFv, Sp	2	5 A	25—50	> 0,005*	25c	170 W	100	85	15 A	110	TO-36	Mot	36	—	—	—	—	—	—	—	
2N2494	Gjp	NF	6	1	> 25	—	25	125	40	40	10	85	TO-7	Am,Ph	42	—	—	—	—	—	—	—	
2N2495	Gjp	NF	6	1	> 25	—	25	125	40	40	10	85	TO-18	Am,Ph	6	—	—	—	—	—	—	—	
2N2496	Gjp	NF	6	1	> 25	—	25	100	40	40	10	85	TO-72	Am,Ph	4	—	—	—	—	—	—	—	
2N2501	SPEn	Spvr	1	10	50—150	> 350	25	360	40	20	—	200	TO-18	Mot	2	KSY63	=	=	=	=	=	=	=
2N2509	SPn	VF, NF-nš	5	10	> 40	> 45	25	360	125	80	50	200	TO-18	F, Tr	2	KF504	=	=	=	=	=	=	=
2N2510	SPn	VF, NF-nš	5	10	150—500	> 45	25	360	100	65	50	200	TO-18	F, Tr	2	—	—	—	—	—	—	—	
2N2511	SPn	VF, NF-nš	5	10	250—750	> 45	25	360	80	50	50	200	TO-18	F, GI	2	—	—	—	—	—	—	—	
2N2512	Gdfp	VFv, Sp	6	10	> 40	> 140	25	150	70	70*	30	90	TO-12	Sil	6	—	—	—	—	—	—	—	
2N2514	Sdfn	VF, NF	5	1	> 15	30	25	400	80	60	100	175	TO-46	Sil	2	KF506	=	=	=	=	=	=	=
2N2515	Sdfn	VF, NF	5	1	> 30	60	25	400	80	60	100	175	TO-46	Sil	2	KF506	=	=	=	=	=	=	=
2N2516	Sdfn	VF, NF	5	1	> 60	99	25	400	80	60	100	175	TO-46	Sil	2	KF506	=	=	=	=	=	=	=
2N2517	Sdfn	VF, NF	5	1	> 15	30	25	400	125	80	50	175	TO-46	SSD	2	KF503	=	=	=	=	=	=	=
2N2518	SPn	VF, NF	5	5	> 40	100	25	400	125	80	—	175	TO-46	Sil	2	KF503	=	=	=	=	=	=	=
2N2519	SPn	VF, NF	5	5	> 80	100	25	400	125	80	—	175	TO-46	Sil	2	KF503	=	=	=	=	=	=	=
2N2520	SPn	VF, NF	5	1	> 18	50	25	400	60	60	—	175	TO-46	Sil	2	KF506	=	=	=	=	=	=	=
2N2521	SPn	VF, NF	5	1	> 36	50	25	400	60	60	—	175	TO-46	Sil	2	KF506	=	=	=	=	=	=	=
2N2522	SPn	VF, NF	5	1	> 76	50	25	400	60	60	—	175	TO-46	Hu	2	KF506	=	=	=	=	=	=	=
2N2523	SPn	VF, NF-nš	5	0,01	40—120	> 45	25	400	60	45	—	200	TO-46	NSC	2	KF506	=	=	=	=	=	=	=
2N2524	SPn	VF, NF-nš	5	0,01	100—300	> 45	25	400	60	45	—	200	TO-46	NSC	2	KF508	=	=	=	=	=	=	=
2N2525	SPn	VF, Sp	28	350	> 10	—	25c	25 W	100	100	1 A	—	MT39	TRW	2	—	—	—	—	—	—	—	
2N2526	Gp	Sp	2	3 A	20—50	> 0,3	25c	85 W	80	80	10 A	110	TO-3	Mot	31	4NU74	=	=	=	=	=	=	=
2N2527	Gp	Sp	2	3 A	20—50	> 0,3	25c	85 W	120	120	10 A	110	TO-3	Mot	31	—	—	—	—	—	—	—	
2N2528	Gp	Sp	2	3 A	20—50	> 0,3	25c	85 W	160	160	10 A	110	TO-3	Mot	31	—	—	—	—	—	—	—	
2N2529	Sn	NF, I	5	1	18*	6	25	150	45	25	175	TO-18	TI	2	KF507	=	=	=	=	=	=	=	
2N2530	Sn	NF, I	5	1	30*	10	25	150	45	25	175	TO-18	TI	2	KF507	=	=	=	=	=	=	=	
2N2531	Sn	NF, I	5	1	60*	12	25	150	45	25	175	TO-18	TI	2	KF507	=	=	=	=	=	=	=	
2N2532	Sn	NF, I	5	1	150*	16	25	150	45	25	175	TO-18	TI	2	KF508	=	=	=	=	=	=	=	
2N2533	Sn	NF, I	20	1	35*	> 10	25	150	45	25	175	TO-18	TI	2	KF507	=	=	=	=	=	=	=	
2N2534	Sn	NF, I	20	1	100*	> 20	25	150	45	40	25	175	TO-18	TI	2	KC507	=	=	=	=	=	=	=
2N2535	Gjp	NFv	2	400	40—120	> 0,008	25c	1 W	60	30	3 A	90	MT43	RCA	2	5NU72	=	=	=	=	=	=	=
2N2536	Gjp	NFv	2	400	40—120	> 0,008	25c	1 W	80	40	3 A	90	MT43	RCA	2	5NU72	=	=	=	=	=	=	=
2N2537	SPEn	Spvr	10	150	50—150	> 250	25	800	60	30	800	200	TO-5	Mot	2	KSY34	=	=	=	=	=	=	=
2N2538	SPEn	Spvr	10	150	100—300	> 250	25	800	60	30	800	200	TO-5	Mot	2	—	—	—	—	—	—	—	
2N2539	SPEn	Spvr	10	150	50—150	> 250	25	500	60	30	800	200	TO-18	Mot	2	KSY34	=	=	=	=	=	=	=
2N2540	SPEn	Spvr	10	150	100—300	> 250	25	500	60	30	800	200	TO-18	Mot	2	—	—	—	—	—	—	—	
2N2541	Gjp	Sp	0,35	50	> 60	> 10	25	215	30	14	1 A	85	TO-5	Ray	2	—	—	—	—	—	—	—	
2N2551	Sjp	NF, I	5	100	> 15	—	25	400	150	150	—	175	TO-5	Hu	2	—	—	—	—	—	—	—	
2N2552	Gjp	NFv	0,5	1 A	20—60	0,01*	25c	20 W	40	40	3 A	100	MT27	KSC	2	4NU73	=	=	=	=	=	=	=
2N2553	Gjp	NFv	0,5	1 A	20—60	0,01*	25c	20 W	60	60	3 A	100	MT27	KSC	2	5NU73	=	=	=	=	=	=	=
2N2554	Gjp	NFv	0,5	1 A	20—60	0,01*	25c	20 W	80	80	3 A	100	MT27	KSC	2	6NU73	=	=	=	=	=	=	=
2N2555	Gjp	NFv	0,5	1 A	20—60	0,01*	25c	20 W	100	100	3 A	100	MT27	KSC	2	—	—	—	—	—	—	—	
2N2556	Gjp	NFv	0,5	1 A	20—60	0,01*	25c	20 W	40	40	3 A												

Typ	Druh	Použití	U_{CE} [V]	I_C [mA]	h_{21E} h_{21C}^*	f_T f_{α^*} β^* [MHz]	T_a T_c [$^{\circ}$ C]	P_{tot} P_C^* max [mW]	U_{CB} max [V]	U_{CE} U_{CB}^* max [V]	I_C max [mA]	T_j max [$^{\circ}$ C]	Pouzdro	Výrobce	Patice	Náhrada TESLA	Rozdíly							
																	P_C	U_C	f_T	h_{21}	$S_0 \text{ m}$	F		
2N2558	Gjp	NFv	0,5	1 A	20—60	0,01*	25c	20 W	80	80	3 A	100	MT28	KSC	2	6NU73	<	=	=	=	=	=		
2N2559	Gjp	NFv	0,5	1 A	20—60	0,01*	25c	20 W	100	100	3 A	100	MT28	KSC	2	—	=	=	=	=	=			
2N2560	Gjp	NFv	1	3 A	20—60	0,01*	25c	20 W	40	40	3 A	100	MT27	KSC	2	4NU73	=	=	=	=	=	=		
2N2561	Gjp	NFv	1	3 A	20—60	0,01*	25c	20 W	60	60	3 A	100	MT27	KSC	2	5NU73	=	=	=	=	=	=		
2N2562	Gjp	NFv	1	3 A	20—60	0,01*	25c	20 W	80	80	3 A	100	MT27	KSC	2	6NU73	=	=	=	=	=	=		
2N2563	Gjp	NFv	1	3 A	20—60	0,01*	25c	20 W	100	100	3 A	100	MT27	KSC	2	—	=	=	=	=	=	=		
2N2564	Gjp	NFv	1	3 A	20—60	0,01*	25c	20 W	40	40	3 A	100	TO-5	KSC	2	4NU73	<	=	=	=	=	=		
2N2564/5	Gjp	NFv	1	3 A	20—60	0,007*	25c	5 W	40	30	3 A	85	TO-5	KSC	2	4NU73	>	=	=	=	=	=		
2N2565	Gjp	NFv	1	3 A	20—60	0,01*	25c	20 W	60	60	3 A	100	TO-5	KSC	2	5NU73	<	=	=	=	=	=		
2N2565/5	Gjp	NFv	1	3 A	20—60	0,007*	25c	5 W	60	40	3 A	85	TO-5	KSC	2	5NU73	=	=	=	=	=	=		
2N2566	Gjp	NFv	1	3 A	20—60	0,01*	25c	20 W	80	80	3 A	100	TO-5	KSC	2	6NU73	=	=	=	=	=	=		
2N2566/5	Gjp	NFv	1	3 A	20—60	0,007*	25c	5 W	80	50	3 A	85	TO-5	KSC	2	6NU73	=	=	=	=	=	=		
2N2567	Gjp	NFv	1	3 A	20—60	0,01*	25c	20 W	100	100	3 A	100	TO-5	KSC	2	—	=	=	=	=	=	=		
2N2567/5	Gjp	NFv	1	3 A	20—60	0,007*	25c	5 W	100	60	3 A	85	TO-5	KSC	2	—	=	=	=	=	=	=		
2N2568	Gdfn	VFu	5	40	> 10	> 1400	25	1 W	32	15	100	85	MT54	Mot	6	—	=	=	=	=	=	=		
2N2569	SPEn	Stř	10	100	> 50	> 100	25	300	20	15	500	175	TO-18	M,P,V	2	—	=	=	=	=	=	=		
					$I_E = 0$	$I_B = 0,15$		$U_{off} < 250 \text{ mV}$																
2N2570	SPEn	Stř	10	100	> 50	> 100	25	300	20	15	500	175	TO-18	M,P,V	2	—	=	=	=	=	=	=	=	
					$I_E = 0$	$I_B = 0,15$		$U_{off} < 500 \text{ mV}$																
2N2571	Sn	NF, VF	10	100	> 50	> 100	25	300	20	15		175	TO-18	amer	2	KF507	=	=	=	=	=	=	=	
2N2572	Sn	NF, VF	10	100	> 50	> 100	25	300	20	15		175	TO-18	amer	2	KF507	=	=	=	=	=	=	=	
2N2580	Sdfn	NFv, Sp	5	5 A	10—40	0,05*	25c	150 W	400		10 A	150	TO-36	Del	36	—	=	=	=	=	=	=	=	
2N2580M	Sdfn	Sp	5	5 A	10—40	> 2	25c	150 W	400	400	10 A	150	TO-36	Del	36	—	=	=	=	=	=	=	=	
2N2581	Sdfn	Sp	5	5 A	25—65	0,05*	25c	150 W	400		10 A	150	TO-36	Del	36	—	=	=	=	=	=	=	=	
2N2582	Sdfn	Sp	5	5 A	10—40	0,05*	25c	150 W	500		10 A	150	TO-36	Del	36	—	=	=	=	=	=	=	=	
2N2583	Sdfn	Sp	5	5 A	25—65	0,05*	25c	150 W	500		10 A	150	TO-36	Del	36	—	=	=	=	=	=	=	=	
2N2584	Sdfn	Sp	5	5 A	10—40	> 30	25c	150 W	600	600	5 A	175	TO-36	Del	36	—	=	=	=	=	=	=	=	
2N2585	Sdfn	Sp	5	5 A	25—65	> 30	25c	150 W	600	600	10 A	175	TO-36	Del	36	—	=	=	=	=	=	=	=	
2N2586	SPn	NF-nš	5	0,01	120—360	62 > 45	25	300	60	45	30	175	TO-18	TI	2	—	=	=	=	=	=	=	=	
2N2587	Gdfp	VF	5	8	> 15		25	150	30	15	100	85	TO-18	Mot	2	OC170vkv	=	=	=	=	=	=	=	
2N2588	Gdfp	VF	12	1,5	> 50	> 75	25	150	40	40	30	85		TI	2	OC170vkv	=	=	=	=	=	=	=	
2N2589	Sdfn	Sp	4	7 A	17—51		25c	85 W	150	150	7 A	175	MT18	Sil	2	KU607	=	=	=	=	=	=	=	
2N2590	SPp	VF, NF	5	5	> 40	100	25	400	100	60		175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2591	SPp	VF, NF	5	5	> 70	100	25	400	100	60		175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2592	SPp	VF, NF	5	5	> 115	100	25	400	100	60		175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2593	SPp	VF, NF	5	5	> 160	100	25	400	100	60		175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2594	SPn	VF	5	100	50—150	40	25c	5 W	80	80	1 A	175	TO-5	Tr	2	KF506	=	=	=	=	=	=	=	
2N2594/	SPEn	VFu	1	10	80	800	25	100	40	15			u17	Tr	28	—	=	=	=	=	=	=	=	
2N2594/TPT	SPEn	VFu	1	10	80	800	25	150	40	15			X31	Tr	53	—	=	=	=	=	=	=	=	
2N2595	SPp	VF, NF	5	5	15—60	80 > 30	25	400	80	60		175	TO-46	Tr	2	KFY16	>	=	=	=	=	=	=	=
2N2596	SPp	VF, NF	5	5	30—120	80 > 40	25	400	80	60		175	TO-46	Tr	2	KFY16	>	=	=	=	=	=	=	=
2N2597	SPp	VF, NF	5	5	60—240	80 > 60	25	400	80	60		175	TO-46	Tr	2	KFY18	>	=	=	=	=	=	=	=
2N2598	SPp	VF, NF	5	5	15—60	80 > 30	25	400	125	80		175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2599	SPp	VF, NF	5	5	30—120	80 > 40	25	400	125	80		175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2599A	SPp	VF, NF	5	5	75	> 40	25	400	125	100	50	175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2600	SPp	VF, NF	5	5	60—240	80 > 60	25	400	125	80		175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2600A	SPp	VF, NF	5	5	60—240	> 60	25	400	125	100		175	TO-46	Tr	2	—	=	=	=	=	=	=	=	
2N2601	SPp	VF, NF	5	1	18 > 12,5*	> 50	25	400	60	60		175	TO-46	Tr	2	KFY16	>	=	=	=	=	=	=	=
2N2602	SPp	VF, NF	5	1	36 > 25*	> 50	25	400	60	60		175	TO-46	Tr	2	KFY16	>	=	=	=	=	=	=	=
2N2603	SPp	VF, NF	5	1	76 > 50*	> 50	25	400	60	60		175	TO-46	Tr	2	KFY16	>	=	=	=	=	=	=	=
2N2604	SPp	NF-nš	5	0,01	40—120	> 30	25	400	60	45	30	200	TO-46	Tr	2	KFY16	>	=	=	=	=	=	=	=
2N2605	SPp	NF-nš	5	0,01	100—300	> 30	25	400	60	45	30	200	TO-46	Tr	2	KFY18	>	=	=	=	=	=	=	=
2N2605A	SPp	NF	5	0,01	150—300	> 40	25	400	60	45	30	200	TO-46	Tr	2	KFY18	>	=	=	=	=	=	=	=
2N2610	SPn	NF	5	1	9—20*		25	150	45	40	25	175	TO-5	Tr	2	KF507	>	=	=	=	=	=	=	=
2N2611	SMn	VFv, Sp	10	200	12—36	20	25c	2 W	120	100		175	MD14	GE	2	KU602	>	=	=	=	=	=	=	=
2N2612	Gjp	NFv	2	10 A	85—250		25c	90 W	65	65*	15 A	100	TO-3	amer	31	5NU74	<	=	=	=	=	=	=	=
2N2613	Gjp	NF-nš	4	0,3	120—300*	> 4*	55	120	30	25	50	100	TO-1	RCA	2	GC518	<	=	=	=	=	=	=	=
2N2614	Gjp	NF	6	1	100—250*	> 4*	55	120	40	35	50	100	TO-1	RCA	2	GC518	<	=	=	=	=	=	=	=
2N2615	SPn	VFu	1	3	> 20	> 800	2																	

Bezdotykové snímače

Článek si klade za cíl seznámit čtenáře s některými způsoby bezdotykového počítání pohybujících se předmětů. V automatizaci průmyslu je tento úkol velice častý a amatérů používají podobných principů např. při počítání ujetých okruhů na autodráhách.

Jsou popsány tři různé metody bezdotykového snímání.

První metoda využívá toho, že sledovaný předmět přeruší optickou dráhu mezi žárovkou a fotoelektrickým čidlem. Druhá metoda předpokládá, že je na sledovaném předmětu umístěn trvalý magnet. Čidlem je pak kontakt jazýkového relé. V profesionální praxi se používá ještě několik dalších metod. ZPA vyrábí např. snímač (typ S 586) obsahující oscilátor, jehož kmity vysazují při přiblížení cizího kovového předmětu.

Nejobvyklejší je první metoda. Předměty, které chceme počítat, procházejí

proudem R_1 na velikost, která nestačí k udržení sepnutého stavu. Kondenzátor se totiž počne nabijet a dosáhne-li jeho napětí velikosti, při níž fototyristor opět sepnese, znova se vybije. Dochází k relaxačním kmitům, amplituda impulsů je však malá a kotva počítadla se nepřitáhne. Chceme-li, aby se kondenzátor nabil na napětí, potřebné ke spuštění počítadla, je třeba přerušit světelný tok dopadající na fototyristor po dobu delší, než je časová konstanta $\tau = R_1 C$.

Na obr. 3 je zapojení, které spíná

Obr. 1. Ovládání počítadla fototranzistory: počítadlo sepnese na rozhraní tma-světlo (a), počítadlo sepnese na rozhraní světlo-tma (b). Relé počítadla je označeno Re.

optickou dráhu mezi žárovkou a fotoelektrickým čidlem. Na obr. 1a je zapojení, které využívá velmi citlivého fototranzistoru KP101. Dopadne-li na něj světlo, stane se vodivým a otevře tranzistor T₂, který je zapojen jako emitorový sledovač. Napětí z emitoru T₂ sepnese tranzistory T₃ a T₄. Počítadlo započítá v okamžiku, kdy na fototranzistor dopadne světlo. Předností tohoto zapojení je značná světelná citlivost. Ke spínání stačí potom obvyklé osvětlení místnosti. Při vhodném umístění fototranzistoru stačí pak např. intenzita osvětlení 300 lx. Kondenzátor C₁ má za úkol vyfiltrovat případná střídavá napětí, vznikající ze střídavé složky světelného toku osvětlovací žárovky.

Na obr. 1b je obdobné zapojení, ale počítadlo spíná při přerušení světelného paprsku.

Zapojení na obr. 2 využívá vlastnosti fototyristoru. Kondenzátor C je nabité na špičkové napětí zdroje; dopadne-li na fototyristor světlo, náboj kondenzátoru se vybije do vinutí počítadla. Pokud na fototyristor dopadá světlo i po vybití náboje kondenzátoru, omeze se

Obr. 3. Ovládání počítadla jazýkovým relé

(Trvalý magnet by měl být umístěn nad kontaktem re, který spíná! Re je cívka počítadla a s kontaktem re nesouvisejí).

počítadlo na odlišném principu. Využívá se vlastnosti kontaktu jazýkového relé, který spíná v magnetickém poli. Nevýhodou je, že musíme na sledovaný předmět umístit alespoň malý trvalý magnet. Kondenzátor C je nabité na špičkové napětí zdroje. Dostane-li se magnet do blízkosti jazýčku, kontakt jazýčku sepnese a otevřou se tranzistory T₁ a T₂, které jsou v tzv. Darlingtonově zapojení. Počítadlo „započítá“, neboť jeho vinutímu proteče proud, daný nábojem kondenzátoru C.

Casto je výhodné spínat vinutí počítadla z nabitého kondenzátoru, jak tomu bylo v zapojení podle obr. 2 a 3. Pokud není kmitočet spinání příliš velký, vystačíme i pro současné spinání několika počítadel se zdrojem, který dodává zlomek potřebného proudu.

Kromě toho si můžeme dovolit nabít kondenzátor až na trojnásobek jmenovitého napětí počítadla (kondenzátor „namáháme“ pouze impulsně). Např. v zapojení podle obr. 3 protéká odporem R₁ = 8,2 kΩ – při trvale sepnutém tranzistoru – proud menší než 3 mA.

Obr. 2. Ovládání počítadla fototyristorem

Při sepnutí tranzistoru se náboj kondenzátoru rychle vybije přes vinutí počítadla, což se projeví zvětšením přítažné síly kotvy. Tím se viditelně zlepšuje chod celého mechanismu. Podobného zapojení lze ostatně využít i v jiných aplikacích ke zlepšení přitahových vlastností elektromagnetických mechanismů, např. voličů, spojek, kleštin, relé apod. Je však třeba zvolit správné časové konstanty a vhodnou velikost kondenzátorů.

Na závěr bychom se chtěli zmínit o bezdotykovém snímači S 586 vyráběném v ZPA. Vzhledově je S 586 uzavřená krabička, zalitá v epoxidové pryskyřici (odolná proti mechanickému poškození a korozivnímu prostředí) o rozmerech 40 x 23 x 13 mm, opatřená dvěma vývody. V polovině delší stěny je zárez. Snímač je schopen indikovat stav, při němž tímto zárezem prochází kovová clonka. Princip je patrný z obr. 4. Uvnitř krabice je tranzistorový oscilátor, kmitající na kmitočtu asi 20 kHz. Kmity oscilátoru vysadí tehdyně, je-li v zárezu (tvořeném půlovými nástavci obou cívek) clonka. Při vysazení kmi-

Obr. 4. Celkové (a) a náhradní (b) schéma bezdotykového snímače S 586. Mezi půlovými nástavci se pohybuje mechanická clona

tú oscilátoru teče snímačem pouze základní proud asi 1 mA. Není-li v zárezu clonka, oscilátor se rozkmitá, oscilační napětí se usměrní diodou a usměrněný proud se vede do báze tranzistoru tak, že se odběr proudu zvětší asi na

5 mA při napájecím napětí 4,5 V. Vazba mezi cívkami je nastavena stínicími plechy, takže k řízení snímače stačí malý zdvih clonky.

Jednou z hlavních podmínek u bezdotykových snímačů je, že nesmí existovat žádny neurčitý stav – tento požadavek zapojujeme plně splňuje. Nelze nalézt polohu clonky, při níž by oscilátor kmital jen „částečně“. Snímač jako celek představuje po elektrické stránce odporník, který se mění z 1 kΩ (kmitá-li oscilátor a clonka je mimo mezera) na 6 kΩ (je-li oscilátor zatlumen). Takto získaný údaj o poloze clonky se pak dále elektricky zpracovává.

Použijeme-li některého z uvedených zapojení k počítání ujetých kol u autodráhy, je nutno signál zpracovat nějak-

kým klopným obvodem, neboť doba potřebná k „započítání“ mechanického počítadla bývá větší než 50 mS a doba, kdy projíždí autíčko světelním paprskem, bývá kratší. Pouze aplikace s fototyristorom je možno použít bez změny, zajistíme-li, aby světlo dopadlo na fototyristor pouze v okamžiku přítomnosti autíčka v jeho blízkosti. Této podmínce můžeme vyhovět použitím zrcátka nebo odrazné plochy na povrchu autíčka, či mechanicky odklopoucí clonkou.

Na závěr nutno upozornit, že metod bezdotykového snímání je daleko více a jsou vyvíjeny stále nové. Popisované principy byly vybrány pro svoji snadnou realizovatelnost a vhodnost při použití v amatérských konstrukcích.

Ar. Ru.

Automatické koncové vypínanie gramofónu

Filip Kuzman

Od gramofónov vyšej kvalitatívnej triedy (hlavne Hi-Fi) vyžadujeme, aby okrem špičkových technických parametrov poskytovali i určitý ovládací komfort. Jedným z doplnkov je i zariadenie popísané v tomto článku, ktoré pri dohrani gramofónovej dosky automaticky vypne pohon gramofónového taniera a súčasne nadvhne ramienko tak, aby sa hrot prenosky nedotýkal dosky. Takéto zariadenie nie je luxus, ak si uvedomíme, že okrem pohodlia významne prispeje i k udržaniu dobrého technického stavu gramofónu napr. tým, že sa úplne odstráni opotrebovávanie hrotu prenoskovej vložky v poslednej drážke gramofónovej dosky, zmenší sa na minimum nebezpečenstvo poškrabania často uzáčnej dosky alebo poškodenie hrotu prenosky neopatrnom manipuláciu pri odkladaní ramienka do stojanka apod.

Výber koncepcie

Všetky moderné gramofónové prístroje triedy Hi-Fi sú osadené stereofónnymi prenoskovými vložkami, ktoré pracujú so zvislou silou na hrot v rozmedzí asi 0,5 až 2,5 p. Pri tak malých silách musí byť tuhost kábliku pre vývod signálu i trenie v ložiskách pre zvislý aj vodorovný pohyb ramienka čo najmenšie. Antiskatingom sa kompenzujú i dostreďné sily veľkosti milipondy, ktoré vznikajú pri prehrávaní dosky ako dôsledok zalomenia prenoskového ramienka. Z tohto dôvodu nie je možné použiť na vypínanie pákový systém z bežných gramofónov. Taktiež špeciálne kontaktné pružiny (použité napr. v gramofóne firmy Rabco) nie sú pre amatéra bežne dostupné.

Ako najvhodnejší sa ukázalo koncové vypínanie svetelným paprskom a fototranzistorom. Zariadenie je ekonomicky nenáročné, jeho citlivosť možno veľmi jednoducho upraviť podľa potreby a je ho možné zabudovať prakticky do každého gramofónového prístroja. Podmienkou správnej funkcie je, aby ramienko malo viskózne (alebo iným spôsobom) tlmený zdviháčik. Ramienka, ktoré tlmený zdviháčik nemajú, doplníme jednoduchým tlmičom, popisaným v ďalšej časti.

Popis zapojenia

Úplná schéma zapojenia je na obr. 1. Celé zariadenie je napájané sieťovým napätiom 220 V. Napätiom z odbočky 4 sekundárneho vinutia transformátora T_r napájame osvetlovaci žiarovku \tilde{Z} . Na-

Obr. 1. Úplná schéma zapojenia

päťic z odbočky 3 jednocestne usmerňime, po vyfiltrovaní článkom C_1 , R_1 a stabilizácii Zenerovou diodou D_3 ním napájame vlastné fotorelé. Zväzok kontrolovaných svetelných paprskov zo žiarovky \tilde{Z} po odrazení od zrkadla dopadá na fotocitlivý tranzistor T_1 (obr. 2). Fototranzistor T_1 je zapojený ako premenný odpor v bázi tranzistora T_2 . Dráha kolektor – emitor neosvetleného fototranzistora predstavuje odpor rádové desiatky $M\Omega$. Pri dostatočnom osvetlení jeho báze zmenší sa odpor na desiatky Ω . Spomenutú vlastnosť využívame priamo na ovládanie pracovného bodu tranzistora T_2 . Tranzistor T_2 má dva pracovné stavy. V prípade, že T_1 nie je osvetlený, T_2 je úplne zavretý. Ak T_1 osvetlime, T_2 sa otvorí až do oblasti saturácie (čo je výhodné, pretože stratový výkon na ňom je malý

a tranzistor nemusíme chladit. Pozn.: takéto namáhanie tranzistora T_2 prichádza do úvahy len vtedy, ak zapojenie použijeme pre iný účel ako v tomto článku a ak v kolektore T_2 bude miesto relé so samodržným kontaktom zapojený napr. vysuvovací článok, akustická alebo svetelná húkačka apod.). V kolektore tranzistora T_2 je ako záťaž zapojené relé re_2 , ktoré pomocou pákového systému ovláda zdvihanie prenoskového ramienka a rozpínacím kontaktom re_1 vypína pohon gramofónového motora. Po pritiahnutí kotvy samodržný kontakt re_2 premiestní tranzistor T_2 a ten prechádza do režimu impulzného namáhania a jeho dovolená kolektorova strata môže byť niekoľkrát menšia ako spínaný výkon (pokiaľ využívate jeho zosilňovací činiteľ β). Samodržný kontakt re_2 má však dve omnoho dôležitejšie úlohy. Zrkadlo, od ktorého sa svetelný paprsek odraža, je upevnené na pohybujúcej sa časti ramienka a preto pri koncovom vypínaní a zdvihaní trubky ramienka vykonáva dráhu v guľovej rovine o polomeru asi 45 mm. Tento (i keď nepatrny) pohyb spôsobí, že zdvih svetelného paprsku v mieste fototranzistora je asi 10 až 20 mm (prípadne i viac) a tak prestance osvetľovať fototranzistor. Bez kontaktu re_2 by relé odpadol, paprsek by

Obr. 2. Konštrukcia vypínania. 1 – základňa gramofónu, 2 – posledná drážka na doske, 3 – gramofónový tanier, 4 – prehadzovanie rýchlosťi, 5 – sieťový spínač, 6 – elektronika, 7 – hrot prenosky, 8 – relé s pákovým mechanizmom, 9 – držiak s fototranzistorom, 10 – dráha svetelného paprsku, 11 – zrkadlo, 12 – využívanie závažia, 13 – kryt s osvetľovacou žiarovkou

znova pri klesaní trubky ramienka zasiahlo fototranzistor a tento dej by sa vďaka vytvorenjej optickomechanickej spätej výběže ustavične opakoval. Jav sa dá čiastočne eliminovať zváčšením priemeru paprsku v mieste fototranzistora. Ovšem to je protichodná požiadavka, nakoľko sa snažíme práve o vytvorenie čo najkoncentrovanejšieho paprsku (pre zvýšenie citlivosti). Druhou, nemenej dôležitou úlohou je to, že po koncovom vypnutí je prenoska držaná vo zdvihnejúcej polohe v hociktorom mieste nad gramofónovou doskou a preto nemôže dôjsť pri odkladaní prenosky do stojanka neopatrnu manipuláciu ani k poškodeniu hrotu prenosky, ani k poškodeniu gramofónovej dosky.

Odpór R_2 zabráňuje zničeniu tranzistora T_2 pri náhodnom skratovaní vý-

Obr. 3. Doska s plošnými spojmi G05

vodov kolektor – emitor T_1 a jeho zväčšovaním až na stovky $\text{k}\Omega$ možno vo veľkom rozsahu regulovať citlosť fotorele. Pri zachovaní rovnakej intenzity osvetlenia sa zväčšovaním R_2 zmenšuje citlosť. Zmenšovať R_2 pod $10 \text{ k}\Omega$ nedoporučujem. Zvýšenie citlosťi dosiahneme použitím výkonnejšej osvetľovacej žiarovky, alebo tranzistora T_2 s väčším zosilovacím činiteľom. Dioda D_1 zabráňuje zničeniu tranzistora T_2 napäťovými špičkami vznikajúcimi pri odpinaní indukčnej záťaže. Kondenzátor C_2 filtriuje sieťový kmitočet v obvode kolektora tranzistora T_2 . Ak bude žiarovka napájaná jednosmerným napäťom (naznačené čiarkované), kondenzátor C_2 môžeme vyniechať. V závislosti od výkonu použitej žiarovky treba potom patrie zmenšiť odpor R_1 a zaistiť dostatočné chladenie Zenerovej diody pre prípad prerušenia vlákna žiarovky. Stabilizácia Zenerovou diodou je nutná, inak by sa pri zmene sieťového napäťia menil okamžik vypínania.

Gramofón ovládame nasledovným spôsobom. Spínačom S zapneme pohon gramofónu a napájanie automatiky. Hrot prenosky nasadíme do zavádzacej drážky gramodosky. Keď hrot prenosky bude v poslednej drážke, automatika vypne napájanie gramofónového motora a prenoska sa nadvihne asi 5 až 10 mm nad dosku. V tejto polohe ramienko odsunieme mimo dosku, tú obrátime alebo vymeníme, ramienko znova posunieme nad zavádzaciu drážku, vypnutím a opäťovným zapnutím spínača odstavíme automatiku a tým zapneme napájanie motora. Súčasne zdviháčik pomaly spustí prenosku do zavádzacej drážky. Ďalší priebeh je už analogický práve popísanému. Pokial nenašločí automatika, funkcia ručného ovládania zdvívania a spúštania ramienka je v plnom rozsahu zachovaná.

Konštrukcia elektronickej časti

Všetky súčiastky (okrem osvetľovacej žiarovky, fototranzistora a relé) sú umiestnené na doske s plošnými spojmi (Obr. 3). Plošné spoje sú navrhnuté pre použitie integrovaného Darlingtonovho zosilovača typu KFZ66 na mieste tranzistora T_2 . Ak ho nahradíme dvomi samostatnými tranzistormi (napr. KC509

Obr. 4. Náhrada integrovaného zosilňovača tranzistormi a úprava dosky s plošnými spojmi

Tab. 1. Údaje sietového transformátora a relé Re

	Vinutie	Napätie	Počet záv.	\varnothing drátu CuL [mm]	Poznámka
Tr	1–2	220 V	2 970	0,132	Plechy
	3–4	15 V	240	0,18	EI 20,
	4,5	6,3 V	100	0,355	prierez jadra 20 × 16 mm
Re	1–2	12 V	4 050	0,2	RP 100 1 zap., 1 vyp. kontakt

Obr. 5. Rez ramienkom a princip ovládania. 1 – prenosková vložka, 2 – viskozne tlmený zdviháčik, 3 – základňa gramofónu, 4 – ručné ovládanie zdviháčika, 5 – časti pre automatické ovládanie, 6 – konektor pre vývod signálu, 7 – zrkadlo, 8 – kryt, 9 – závažia, 10 – kardanový záves

automatiky. Časti držiaku fototranzistora (Obr. 6) sú spojené lisovaním, prípadne lepením. Po dosiahnutí potrebnnej

geometrie držiak do základne zalepíme
Kanagomom.

Kóta na kryte osvetľovacej žiarovky označená * (obr. 7, det. 1) je vlastne ohnískovou vzdialenosťou použitej šošovky (čočky) a preto ju upravíme podľa potreby. Šošovku do krytu opatrné nalisujeme a zaistíme zvnútra po obvode zalepením Kanagom. Pre jednoduchosť byla použitá len spojňá šošovka, pre nás učel však plne vyhovuje. Po povolení skrutky M3 možno potáčaním krytu v malej miere pohybovať svetelným paprskom vo vodorovnej rovine. Časti krytu držia spolu samosvornosťou.

Nosník relé a pákového systému (obr. 8) vyrobíme z hliníkového alebo

Obr. 6. Časti držiaku fototranzistora. 3 - základňa gramofónu, 4 - fototranzistor

Obr. 9. Vyvažovacie závažie. 3 - trubka ramienka, 4 - vyvažovacie závažie

Obr. 7. Kryt osvetlovacej žiarovky. 4 - plechová objímka, 5 - základňa gramofónu, 6 - spojná šošovka

Obr. 8. Nosník relé a pákového systému

Obř. 11. Vodiaca príručka

stuha nasunieme do otvorov v zrkadle i v závaží.

Vodiaci prírubu (obr. 11) najprv nainstalujeme pod skrutky, ktoré držia prírubu ramienka v základni a až potom odvrátame dieru o \varnothing 1,2 mm súčasne cez obe prírubi i základňu (viď taktiež obr. 5).

Prenoskové ramienka, ktoré nemajú tlmený zdviháčik, doplníme zdviháčikom skonštruovaným podľa obr. 12.

Obr. 12. Tlmič. 5 – základňa gramofónu

Piest a valec zdvíháčika potrieme tenkou vrstvou silikónovej vazelíny. Pohyb piesta musí byť plynulý, bez zadierania. Na viskozite vazelíny závisí rýchlosť dosadania ramienka. Prúžina (det. 4) stláča piest do dolnej úrvate, aby sa zdvíhacia tyčka (det. 3) nedotýkala pri prehrávaní trubky ramienka. Ovplyvňuje tiež rýchlosť dosadania. Pri regulácii rýchlosť dosadania pružinou treba voliť kompromis medzi silou pružiny a silou potrebnou na zdvíhanie ramienka. Doporučená rýchlosť dosadania hrotu prenosky na gramodosku je 4 mm/s.

Rozmer „A“ u det. 3 upravíme tak, aby v dolnej polohu ramienka hrot prenosky presahoval asi 5 mm pod úroveň gramodosky. Rozmer „B“ je hrúbka základne zvážená o 15 mm. Zdviháčik sa snažíme namontovala čo najblížie k osi otáčania ramienka vo svisej rovine.

Zoznam detailov je v tab. 2.

Uvedenie do chodu

Elektronická časť je tak jednoduchá, že pri použíti dobrých súčiastok a správnom zapojení musí pracovať bez závad. Obmedzíme sa len na kontrolu napäcia na relé za prevádzkového osvetlenia fototranzistora. Medzi kontakty re_2 vložíme kúsok papiera a ramienko dáme do koncovej polohy. Ak svetelný papršok zo žiarovky \tilde{Z} dopadá na fototranzistor, relé pritiaňne a malí býme naňom namerať napätie $U = U_{D3} - U_{CES\ T_2}$. Keď totiž napätie bude oveľa menšie, je vadný tranzistor T_1 , alebo T_2 má malý zosilňovací činitel. Relé má pri napäti 12 V odber 100 mA. Pri pritiahnutom relé tečie cez Zenerovu diodu prúd asi 10 mA.

Pootáčaním krytu osvetľovacej žiarovky, držiaku fototranistora, hlavne však zrkadla sa snažíme o to, aby svetelný paprsk pri dohrati dosky osvetlil fototranzistor. Najvhodnejšie je okamih vypnutia nastaviť do bodu, kedy je hrot prenosky vzdialenosť asi 1 mm od poslednej drážky gramofónovej dosky o priemere 30 cm. Pri prehrávaní malých dosiek o priemere 15 cm (čo pri gramofónoch triedy Hi-Fi asi neprichádza do úvahy) môže sa stať, že automatica vypne ešte pred dohratím skladby. Pomôžeme si tým, že pred fototranzistor postavíme prekážku, ktorá zahvíji svetelný paprsek.

Voľný chod páky (obr. 8, det. 2) vy-
meďme skrutku M2, ktorú zaistíme
kontramatricou. Výšku zdvihu hrotu pre-
nosky nad gramodosku (postačí 3 mm)
nastavíme posúvaním páky tak, ako
bolo popísané v predchádzajúcej časti,
prípadne dĺžkou jej voľného chodu pri-
pritiahnutí relé.

Napokon skontrolujeme zvislú silu na

hrot prenosky a nastavíme jej správnú veľkosť.

Zariadenie si nevyžaduje žiadnu údržbu, až na výmenu spálenej osvetľovacej žiarovky. Gramofón umiestíme na takom mieste, aby na fototranzistor nedopadalo priame svetlo. Pri veľkej intenzite okolitého osvetlenia predĺžime tieniacu trubku (obr. 6, det. 2).

Názorné umiestnenie jednotlivých detailov a spôsob ich montáže do gramofónového prístroja je vidieť na fotografiách (obr. 13, 14, 15).

Použité súčiastky

Odpory

R_1 82 Ω /10 W
 R_2 10 k Ω (min).

Elektrolytické kondenzátory

C_1 100 μF /30 V
 C_2 100 μF /12 V

Tranzistory

T_1 KP101
 T_2 KFZ66, KFZ68 (KC509 +
+ KF508, KC508 + KC508 ap.)
(β okolo 10 000 pri $I_E = 100 \text{ mA}$)

Diody

D_1 KY701
 D_2 KA501
 ZD 6NZ70 (13,5 V)

Relé

Re - RP100 upravené, viď tab. 1

Transformátor

Tr - viď tab. 1

Literatúra

Katalóg polovodičových súčiastok TES-LA.

Prospekt firmy Rabco.

Hajda, J.: Optika a optické pribitky. SVTL: Bratislava 1956.

Kolektív: Příručka radiotechnické praxe. Naše vojsko: Praha 1959.

Tab. 2.

Obr. č.	Název	Det. č.	Počet ks	Materiál	Povrchová úprava
6	držiak fototranzistora	1 2	1 1	dural dural	čierne eloxovať čierne eloxovať
7	kryt osvetľovacej žiarovky	1 2 3	1	Al plech	čierne eloxovať
	podložka pod kryt		1	Al plech	čierne eloxovať
			1	novodur	-
8	nosník relé	1	1	Al plech	moriť v lúhu
	páka	2	1	dural	moriť v lúhu
	listová pružina	3	1	ocel	-
	hriadeľ	4	1	ocel	chemicky čierniť
	podložka	5	2	buzírka	-
	podložka	6	2	buzírka	-
9	nosná tyčka zrkadla	1	1	pružinový drát	-
	zrkadlo	2	1	mosadz	lesklo chrómovať
10	dvihacia ihla	-	1	strieborná ocel	-
11	vodiaca príruba	-	1	duralový plech	moriť v lúhu
12	valec tlmiča	1	1	dural	čierne eloxovať
	valec tlmiča	2	1	mosadz	leštiť
	dvihacia tyčka	3	1	mosadz	chrómovať
	tlačená pružina	4	1	pružinový drôt	-

Obr. 13.

Obr. 14.

Obr. 15.

EUROPHON M 5000

Přístroj M 5000 se dováží z Itálie. Je to stolní tranzistorové stereofonní gramofonové rádio, které má čtyři vlnové rozsahy (DV, SV, KV a VKV). Pro příjem DV a SV je vestavěna feritová anténa, pro KV a VKV vnitřní anténa - dipól. Přijímač je vybaven diodovým výstupem pro magnetofon a výstupem pro přidavné reproduktorské soustavy. V přijímači je použito dvojrychlostní gramofonové šasi s rychlosťmi 33 a 45 ot./min.

Technické údaje

Vlnové rozsahy:
 DV - 150 až 300 kHz,
 SV - 510 až 1 650 kHz,
 KV - 5,9 až 6,3 MHz,
 VKV - 65 až 74 MHz.

Mf kmitočet: AM - 468 kHz,
 FM - 10,7 MHz.

Prům. výk. citlivost:
 DV - 200 μ V/m,
 SV - 100 μ V/m,
 KV - 80 μ V/m,
 VKV - 2 μ V pro odstup signál/šum -26 dB.

Výstupní výkon:
 $2 \times 2,2$ W.

Celkové schéma přijímače

Napájení: 220 V, 50 Hz.

Osazení tranzistory a diodami:
 AF106A (2), AF106 (3),
 BC148B (5), BC148C (2),
 BC270B (2), AC141K (2),
 AC142K (2);
 1S352 (BA170), AA121
 (2), AA131 (8), AA123
 (2), ZF8,2, PTO541110
 (tranzistory zapojené jako
 diody D₃₀₁ a D₃₀₂, GIE
 W 005 (usměrňovač).

Všeobecný popis

Stereofonní gramorádio M 5000 je určeno pro příjem signálů FM v pásmu VKV a pro příjem signálů AM v pásmu DV, SV a KV. Má automatický dekodér všech stereofonních signálů. Použitý gramofon je poloautomatický, raménko přenosové se po přehrání jedné strany desky automaticky vrátí na podpěru a po dosednutí vypne motorek.

mech DV, SV a KV. Má automatický dekodér všech stereofonních signálů. Použitý gramofon je poloautomatický, raménko přenosové se po přehrání jedné strany desky automaticky vrátí na podpěru a po dosednutí vypne motorek.

Popis části k příjmu signálů AM

Vstupní část pro příjem signálů AM je osazena tranzistorem T₂₀₁ – AF106, který pracuje jako kmitající směšovač. Vstupní signál se přivádí z feritové antény do báze a signál z oscilátorového rezonančního obvodu (T₂₀₄) se přivádí do emitoru tohoto tranzistoru. V kolektoru je zapojen první mf transformátor.

Mezifrekvenční zesilovač tvoří tranzistory T₂₀₂ a T₂₀₃ (AF106), které pra-

cují pro kmitočet 468 kHz v zapojení se společným emitorem. Rezonanční obvody (T₂₀₅, T₂₀₆, T₂₀₇), naladěné na 468 kHz, jsou zapojeny v kolektorech příslušných tranzistorů. Velká impedance rezonančních obvodů je přizpůsobena k malému vstupnímu odporu tranzistoru kapacitním děličem. Dioda D₂₀₁ slouží jako tlumící dioda. Signály AM se detekují diodou D₂₀₂ (AA121), která je zapojena v sekundárním obvodu posledního mf transformátoru. Napětí, které se přivádí do báze tranzistoru T₂₀₂, slouží pro AVC.

Stereofonní přijímač M 5000 obsahuje dva samostatné nf zesilovače. První stupeň je osazen tranzistorem T₃₀₁ (T₃₀₂), BC108C (BC148C). Mezi druhým až čtvrtým stupněm nf zesilovače je zavedena stejnosměrná vazba. Koncový stupeň pracující bez výstupního transformátoru tvoří komplementární dvojice tranzistorů T₃₀₇–T₃₀₉ a T₃₁₀–T₃₀₈ (AC141K a AC142K). Mezi bázemi koncových tranzistorů je zapojen tranzistor, zapojený jako dioda (D₃₀₁, D₃₀₂), který slouží k získání vhodného napětí báze-emitor pro koncové tranzistory. Toto napětí nemá být větší než 0,3 V. Při větším napětí by byl proud koncových tranzistorů tak velký, že by mohlo dojít k jejich zničení; diody D₃₀₁ a D₃₀₂ slouží jako pojistka, neboť nedovolí, aby se napětí báze-emitor koncových tranzistorů zvětšilo nad dovolenou úroveň.

Popis části k příjmu signálů FM

Vstupní díl VKV je osazen dvěma tranzistory AF106A (T₁₀₁, T₁₀₂), které jsou použity v zapojení se společnou bází. Signál z antény se dostává přes anténní transformátor T₁₀₁ (který je naladěn na 70 MHz) na emitor tranzistoru T₁₀₁, který pracuje jako vf zesilovač. V kolektorem obvodu T₁₀₁ je zapojen laděný rezonanční obvod. Signál z tohoto rezonančního obvodu se přivádí přes kondenzátor C₁₁₂ na emitor tranzistoru T₁₀₂, který pracuje jako kmitající směšovač. Do emitoru tranzistoru T₁₀₂ se přivádí i signál z rezonančního obvodu oscilátoru (L₁₀₃, C₁₁₇, C₁₁₈, a C₁₁₉), který je naladěn o mf kmitočet vyšší, než vstupní rezonanční obvod. Křemíková dioda D₁₀₁, BA170, pripojená paralelně k oscilátorovému obvodu plní funkci ADK (automatického doladování kmitočtu). V kolektoru tranzistoru T₁₀₂ je zapojen první mf transformátor T₁₀₂. Dioda D₁₀₂ – AA121, která je zapojena paralelně k primárnímu vinutí transformátoru T₁₀₂, slouží jako tlumící dioda; útlum závisí na velikosti přijímaného signálu. Mf zesilovač pro FM tvoří tranzistory T₂₀₁, T₂₀₂, T₂₀₃ (AF106), které pro mf kmitočet 10,7 MHz pracují v zapojení se společnou bází. Tranzistory v tomto zapojení pracují stabilně a nepotřebují neutralizaci. Rezonanční obvody (T₂₀₁, T₂₀₂, T₂₀₃), naladěné na 10,7 MHz, jsou zapojeny v kolektorech příslušných tranzistorů. Tranzistory v zapojení se společnou bází mají velmi malý vstupní odpor, jsou proto k rezonančnímu obvodu připojeny přes cívky T₂₀₅, T₂₀₆. Signály FM se detekují poměrovým detektorem (T₂₀₃). Odpovídající trim R₂₂₆ slouží k nastavení symetrie poměrového detektora, při maximální symetrii dojde

k maximálnímu potlačení vlivu amplitudové modulace na výstupní napětí.

Stereofonní dekódér

V přijimači je automatický stereofonní dekódér (automaticky se přepíná mono-stereo) se žárovkovou indikací. Dekódér je osazen tranzistory T_{204} , T_{205} a T_{206} . Tranzistor T_{204} , BC148B, pracuje jako zesilovač pro řídící signál 19 kHz a dále jako emitorový sledovač pro nf signál. Kolektor tranzistoru T_{204} je indukčně vázán s rezonančním obvodem, naladěným na 19 kHz. Signál z tohoto rezonančního obvodu je upraven diodami D_{205} a D_{206} (AA131) (zdvojováč kmitočtu 38 kHz) a tato pomocná nosná se přivádí na bázi tranzistoru T_{205} , BC148B. Tranzistor T_{205} pracuje jako zesilovač pomocného nosného kmitočtu. Rezonanční obvod T_{210} a C_{251} je naladěn na kmitočet pomocné nosné – 38 kHz. Na tento rezonanční obvod je zapojen kruhový demodulátor, tvořený diodami D_{208} až D_{211} . Nf signál se přivádí z emitoru tranzistoru T_{204} přes člen RC , tvořený odporovým trimrem R_{230} a kondenzátorem C_{246} na střed cívky T_{210} . Signál o kmitočtu 38 kHz uvádí do vodivého stavu dvojici diod kruhového demodulátoru, čímž se nf signál dostane na příslušný výstup. Z kruhového demodulátoru se vede signál levého a pravého kanálu přes člen RC (deemfáze). Tranzistor T_{205} nedostává trvale napětí báze-emitor, je otevřen pouze tehdy, přijímáme-li signál s řídicím kmitočtem.

Signál o kmitočtu 38 kHz se z kolektoru tranzistoru T_{205} přivádí přes kondenzátor C_{249} na diodu D_{207} (AA131) a napětí z této diody otevírá tranzistor T_{205} . Průtokem emitorového proudu tranzistoru T_{205} přes odpor R_{233} se na tomto odporu vytváří napětí, které otevírá tranzistor T_{206} , BC148B, a proud tohoto tranzistoru rozsvítí žárovku STEREO. Přijímáme-li monosofonní signál, pak v signálu chybí řídící kmitočet (pilotní) a tranzistor T_{205} zůstane uzavřen. Tranzistor T_{204} pracuje tomto případě pouze jako emitorový sledovač pro nf signál. Tranzistor T_{206} zůstane uzavřen a napětí na jeho kolektoru se rovná napájecímu napětí. Toto napětí uvede diody D_{208} až D_{211} přes odpory R_{235} , R_{236} , R_{237} do vodivého stavu a nf signál projde přes kruhový demodulátor. Cívka T_{208} a kondenzátor C_{245} tvoří sériový rezonanční obvod, naladěný na kmitočet pilotního signálu a zabraňuje jeho vnikání do kruhového demodulátoru.

* * *

Firma Westinghouse v USA vyvinula televizní snímač na principu souřadnicově uspořádané matici integrovaných fototranzistorů, u něhož rádkový a snímkový rozklad obstarají integrované posuvné registry a náboje z fototranzistorů přímo generují obrazový signál. Tyto snímače mají tvar destičky a pro rozklad obrazu nepotřebují elektronový paprsek ve vakuu ani vysoké napětí. V letošním roce dosáhly tyto polovodičové snímače rozlišovací schopnosti, která odpovídá nárokům a požadavkům komerční televize.

O. H.

Appl. Optics č. 11/1972

LADĚNÍ

Potřebné přístroje:

1. Vf generátor.
2. Rozmitač se značkováním.
3. Elektronický voltmetr.
4. Osciloskop.

Vstupní signál se musí udržovat na co možno nejnižší úrovni, aby nedošlo ke zkreslení nebo k zahlcení přijimače. Výstupní indikátor používejte co nejdiliviději. Značka 10,7 MHz použitá při ladění FM musí být přesná. Při vložení značky nesmí být na osciloskopu patrné zkreslení. Modulace generátoru je 1 000 Hz, 30 %.

Pořadí	Připojení generátoru	Připojení indikátoru	Naladění generátoru	Naladění přijimače	Ladicí prvek	Ladit na
přepínač rozsahu přepnout na SV						
2	přes standardní rámovou anténu	elektronkový voltmetr nebo osciloskop připojte paralelně k reproduktoru	468 kHz (modul.)	do blízkosti 650 kHz	Tr_{205} , Tr_{206} , Tr_{207} (ladění opak. na maxim. citlivost)	maximum
3			520 kHz	lad. kondenzátor zavřen	SV, DV(O)	maximum
4			1 650 kHz	lad. kondenzátor otevřen	C_{110}	maximum
5			550 kHz	550 kHz	SV(A)	maximum
6			1 400 kHz	1 400 kHz	C_{110}	maximum
k získání max. citlivosti je nutné celé ladění opakovat						
přepínač rozsahu přepnout na DV						
9	vf generátor připojit stejně jako při kroku 2	el. voltmetr nebo osciloskop připojte paralelně k reproduktoru	280 kHz	lad. kond. otevřen	C_{211}	maximum
10			180 kHz	180 kHz	DV(A)	maximum
11			260 kHz	260 kHz	C_{208}	maximum
k získání max. citlivosti je třeba krok 9 až 11 opakovat						
přepínač vlnových rozsahů přepnout na KV						
14	vf generátor připojit přes standardní umělou anténu	el. voltmetr nebo osciloskop připojte paralelně k reproduktoru	5,85 MHz	lad. kondenzátor uzavřen	KV(O)	maximum
15			6,3 MHz	lad. kondenzátor otevřen	C_{208}	maximum
16			6,1 MHz	6,1 MHz	KV (O)	maximum
k získání max. citlivosti je třeba krok 14 až 16 opakovat						
přepínač vlnových rozsahů přepnout na VKV (ADK vypnuto)						
19	generátor připojit k měřicímu bodu MB1	osciloskop připojit k MB2 (C_{110} odpojen)	10,7 MHz 300 kHz rozmítání; 10,7 MHz značka	libovolné	Tr_{101} , Tr_{201} , Tr_{202} , Tr_{203} (několikrát opakovat)	ladte na maximum s ohledem na správný tvar křivky
20		osciloskop připojit na MB4 nebo MB5 (C_{110} připojen)			Tr_{208}	ladte na správný tvar křivky s linearitou ± 100 kHz
k získání max. linearity a symetrie křivky S je nutné ještě lehce pootočit jádry cívek Tr_{102} , Tr_{202} , Tr_{203}						
22	generátor s amplitudovou modulací připojit k MB1				R_{245}	min. výchylku
23	vf generátor přepnout na VKV a bude-li třeba, vložit mezi přijimač a generátor přizpůsobovací článek	elektronický voltmetr nebo osciloskop připojte paralelně k reproduktoru	63,5 MHz	ladící kondenzátor uzavřen	L_{102}	maximum
24			76,0 MHz	ladící kondenzátor otevřen	C_{110}	maximum
25			63,5 MHz	ladící kondenzátor uzavřen	L_{101}	maximum
26			76,0 MHz	ladící kondenzátor otevřen	C_{107}	maximum
k získání max. citlivosti je nutné krok 23 až 26 opakovat						
27			70,0 MHz	70,0 MHz	Tr_{101}	maximum
28						

ŠKOLA amatérského vysílání

Střídavé napětí 15 až 20 V je usměrňeno dvoucestným můstkovým usměrňovačem. Toto usměrněné napětí se přivede na kolektor tranzistoru, který pracuje jako sériový regulátor. Současně se toto napětí přivede přes odpor R_1 na Zenerovu diodu D_S , která dodává tranzistoru referenční napětí. Případné zvlnění napětí na Zenerově diodě filtrouje kondenzátor C_3 . Výstupní napětí zdroje je rovno rozdílu Zenerova napětí a napětí mezi emitorem a bází tranzistoru. Odpor R_2 tvoří zátěž a kondenzátor C_3 slouží k vysokofrekvenčnímu blokování zdroje.

Síťový zdroj

Tento zdroj má sloužit k napájení vysílače pro operatérskou třídu C. Počlovací podmínky stanoví maximální příkon koncového stupně vysílače 25 W. Tomu odpovídá při anodovém napětí 300 V anodový proud přibližně 80 mA. Pro napájení oscilátoru potřebujeme stabilizované napětí. Pro koncový stupeň potřebujeme záporné předpětí nastavitelné podle použité elektronky v rozmezí minimálně 40 až 100 V. Běžné síťové transformátory nemají vhodné vinutí pro získání záporného předpětí. Je proto možno použít malý žhavicí transformátor, který připojíme žhavicím vinutím k vinutí 4 nebo 6,3 V síťového transformátoru. Z původního síťového vinutí 120 nebo 220 V pak odebíráme střídavé napětí pro zdroj předpětí. Schéma zdroje je na obr. 1.

Obr. 1. Schéma zdroje pro vysílač pro třídu C

Rozpis součástek

C_1, C_2	TC521a, 100 μF
C_3	TC519a, 50 μF
D_1 až D_5	KY705
P_1	WN69050, 15 k Ω
P_{01}	pojistka 0,25 A
R_1 až R_4	TR152, 470 k Ω
R_5	TR511, 8,2 k Ω
S_1	síťový spínač dvoupólový
Tl_1	tłumivka 5 H/150 mA
Tr_1	síťový transformátor – sekundární vinutí 2 × 300 V /150 mA, 6,3 V, 4 V
Tr_2	žhavicí transformátor – sekundární vinutí 6,3 V

Klíčování

Klíčováním rozumíme pravidelné zapínání a vypínání výkonu z nuly a maximum a opačně. Probíhá-li změna z nulového výkonu na maximum (náběžná hrana značky) naráz, vytvářejí se sou-

časně kliksy, které jsou vyzařovány v pásmech mnoha kHz po obou stranách od vysílaného kmitočtu. Na přijímači se jeví jako klapání. Zmenšuje-li se výkon při puštění klíče z maxima na nulu (sestupná hrana značky) naráz, dochází ke stejnemu jevu. Amplituda postranních kmitočtů se zmenší v závislosti na rozladení. Čím více se odladíme na přijímači od vysílaného kmitočtu, tím je menší. Abychom se zbavili kliks, musíme značky tvarovat. Tvary značek jsou na obr. 2. V případě, že trvání náběžné a sestupné hrany příliš prodloužíme (obr. 2c), značky se stávají nečitelné.

Obr. 2. Oscilogramy telegrafních značek
a) vzbuzující kliksy po obou stranách signálu,
b) s upravenými náběžnými a sestupnými hranami bez kliksů,
c) s velmi „měkkým“ a dozívajícím tarem; značky jsou špatně čitelné

Jaké stupně vysílače můžeme klíčovat?

Přivedeme-li telegrafní signál do lineárního zesilovače, může být zesilován bez úpravy tvaru značek. Přivedeme-li však stejný signál do nelineárních stupňů (zesilovače nebo násobiče ve třídě C), změní se tvar signálu. Časym trvání sestupné a náběžné hrany se zkrátí a tím mohou vzniknout kliksy. Je proto nutné použít obvody, které prodlouží trvání těchto hrani.

Zesilovače mohou být klíčovány libovolným způsobem, který způsobí zmenšení výstupního výkonu na nulu. Neutralizované stupně mohou být klíčovány v katodovém obvodu. Při větších výkonech je vhodné použít kličovací relé nebo elektronkový kličovač (viz dále). Kličování elektronkou však zvětšuje předpěti a zmenší užitečné anodové napětí. Stupně s malým výkonem je možné klíčovat zmenšenou předpěti řídící mřížky. U stupňů, které nejsou neutralizovány, může i při zablokováném stupni pronikat vysokofrekvenční napětí do dalších stupňů. Proto je vhodné klíčovat dva stupně. Klíčovat lze i ve druhé (střední) mřížce. V tomto případě však nestačí pouze odpojovat kladné napětí. K potlačení anodového proudu na nulu je nutné ještě připojit na stínici mřížku záporné napětí.

Tvarování značek

Tvar značek můžeme upravit mnoha způsoby. Elektronické kličovače, blokování mřížkovým předpětem i kličování katody umožňují tvarovat značky změnou kapacity kondenzátoru a velikosti odporu v kličovacím obvodu. Při zaklá-

čování druhé mřížky měníme indukčnost cívky nebo odpor a kapacitu kondenzátoru. Příklady tvarovacích obvodů jsou na obr. 3 až 5.

Obr. 3. Základní obvod pro klíčování v katodě. Kondenzátor C_1 a C_3 slouží k vysokofrekvenčnímu uzemnění. Tvar signálu ovlivňuje kondenzátor C_2 a odpor R_2 . Odporom R_2 prodlužujeme trvání náběžné hrany a kondenzátorem C_3 dozívání značky (sestupnou hrancu). Odpor může být několik jednotek až stovek ohmů, kapacita kondenzátoru 0,5 až 10 μF (je nutno zjistit zkusemo, mění se s pracovními podmínkami elektronek)

Obr. 4. Základní obvod pro klíčování mřížkovým předpětem (a) a kličovací elektronka (b). Kličování vznikající při zakláčování odstraníme zvětšením kapacity kondenzátoru C_1 a při odkláčování zvětšením odporu R_2 . Odpor R_1 je běžný mřížkový svod. V praktickém zapojení bude R_2 asi desetkrát větší než R_1 a kapacita kondenzátoru C_1 minimálně 4,7 nF. Napětí pro blokování musí být několik set voltů, avšak odběr je velmi malý. Jako elektronický kličovač je možno použít pouze elektronku s malým vnitřním odporem

Obr. 5. Klíčování budicího stupně a středního mřížkového stupně. Tvar značek je ovlivněn změnou L_1 , C_4 a R_4 . Těž blokovací kondenzátory mají vliv na tvar sestupné hrany. Potenciometr R_2 slouží k nastavení správné velikosti buzení. Induktivnost tlumivky L_1 není kritická; podle ní se mění velikost C_4 a R_4 . Při nastavování tvaru značek vycházíme od $C_4 = 0,1 \mu\text{F}$ a $R_4 = 50 \Omega$

Klíčování oscilátoru

Problémy spojené s kličováním oscilátoru jsou uváděny naposled proto, že zhotovit kličovaný oscilátor je mnohem pracnější, než zhotovit kličovaný zesilovač. Zvláště na vyšších kmitočtech dochází při kličování oscilátoru k nestabi-

lité kmitočtu. Vysvětlení je velmi jednoduché. V průběhu značky (tečky nebo čárky) se mění pracovní podmínky oscilátoru a tím i kmitočet. Postupně „nabíhání“ značky má pak za následek proměnné buzení následujících stupňů a tím i proměnnou zátěž oscilátoru, což přispívá k jeho nestabilitě. Neexistuje totiž oscilátor, který by neměnil kmitočet v celém rozsahu napětí, při nichž kmitá a též při změně zátěže. Úprava tvaru značek přímo v oscilátoru však nemá význam i z toho důvodu, že další nelineární stupně mohou značně ovlivnit jejich tvar.

Hlavním důvodem pro klíčování oscilátoru je tzv. BK-provoz.

Co je to BK-provoz?

Při telegrafním vysílání BK-provoz umožňuje, aby operátor slyšel ostatní stanice mezi svými značkami v době, kdy má odklíčováno. Není-li vyžadován BK-provoz, je možno vysílač klíčovat některým z předcházejících způsobů a oscilátor vždy trvale zapnout.

Klíčovat pouze oscilátor je však povolovacími podmínkami zakázáno.

Diferenciální klíčování

Je to způsob, při kterém klíčujeme oscilátor a některý zosilovačí stupeň. Klíčujeme tak, že nejprve zakláčujeme oscilátor a pak se zpožděním zosilovačí stupeň. Odkláčujeme v opačném sledu, tj. nejprve odkláčujeme zosilovač a pak teprve oscilátor.

Jednoduchý obvod, který můžeme použít u vysokofrekvenčního zosilovače nebo klíčovací elektronky (klíčované předpětím řídící mřížky) je na obr. 6.

Obr. 6. Diferenciální klíčování

Při zvednutém klíci protéká proud stabilizátorem a na odporu R_3 vytváří záporné napětí, které způsobuje, že oscilátor nekmitá. Stiskneme-li klíci, přiblíží se napětí katody elektronky zemnímu potenciálu (napětí na šasi), stabilizátor zhase a oscilátor začne kmitat. Při tomto zapojení je důležité, aby vzájemná kapacita vodičů ke stabilizátoru byla malá. V opačném případě nasazují oscilace velmi pomalu. Ten to jev může vzniknout i v tom případě, mají-li kondenzátory v mřížkovém obvodu oscilátoru velkou kapacitu. Nejvýhodnější je, začiná-li oscilátor kmitat co nejrychleji. Značky se tvarují až v zosilovači. Zvětšením kapacity kondenzátoru C_1 lze značky „změkkčit“.

Obdobně jako elektronky mohou být klíčovány i tranzistory. Blížší podrobnosti o diferenciálním klíčování tranzistorových vysílačů najde zájemce

v článku Diferenciální klíčování (AR 12/72 až AR 2/73).

Vznik klíksů v neklíčovaných stupních

Jak bylo řečeno již v předcházejících kapitolách, mohou klíksy vzniknout i ve stupních, které následují za klíčovanými zosilovači. To může způsobit nepřijemnost tehdy, přidáme-li k již hotovému vysílači koncový (další zosilovačí) stupeň. Vysílač může pak mít klíksy. V tomto případě jsou dvě možné příčiny vzniku klíksů:

- parazitní oscilace na nízkých kmitočtech,
- přebuzení zosilovače a tím způsobené omezování.

Budíme-li zosilovač klíčovaným signálem, může v některých případech zosilovač produkovat i parazitní oscilace v oblasti nízkých kmitočtů. To má za následek vznik klíksů, které se nacházejí vždy v určitém odstupu od základního vysílaného kmitočtu. Parazitní oscilace mohou vznikat i v předcházejících klíčovaných stupních. Obyčejně vznikají, použijeme-li tlumivky nevhodných indukčnosti. Doporučuje se používat v anodových obvodech tlumivky o větší indukčnosti než mají tlumivky v mřížkových obvodech stejných stupňů.

Jsou-li klíksy po přidání zosilovacího stupně pouze v okolí vysílaného kmitočtu, je to zaviněno omezením signálu. Tento jev můžeme potlačit kombinací předpěti pevného a předpěti, které vzniká průtokem mřížkového proudu odporem v řídici mřížce elektronky. Pevné předpěti můžeme volit tak, aby byl anodový proud při nezakláčovaném vysílači velmi malý – vysílač pak pracuje přibližně ve třídě B. Se zvětšujícím se buzením se zvětšuje i pracovní předpětí a zosilovač není proto náhodný k přebuzení.

Pokud dochází ke vzniku klíksů u lineárních zosilovačů, jsou jejich příčinou parazitní oscilace.

Rušení televize a opatření proti rušení

Rušení televize můžeme rozdělit do dvou kategorií:

- rušení zaviněné vysílačem,
- rušení vznikající v přijímači.

V prvním případě, kdy je rušení způsobeno přímo vysílačem, je zaviněno vyzařováním harmonických kmitočtů, které mohou interferovat s přijímaným signálem.

V druhém případě, kdy je rušení zaviněno vlastním přijímačem, jsou problémy spojené s opatřením proti rušení velmi složité. Rušení může být zaviněno např. silným signálem na vstupu televizoru, který způsobí změnu pracovních podmínek některých stupňů. Silný signál se může dostávat i přímo do mezifrekvenčních nebo i nízkofrekvenčních stupňů (obdobná situace může nastat i u nízkofrekvenčních zosilovačů nebo magnetofonů).

Rušení působené vyzařováním harmonických kmitočtů

Vyzařuje-li vysílač harmonické kmitočty, může dojít k rušení televize, které vzniká interferencí harmonického signálu vysílače s televizním signálem. Je-li rušivý signál velmi silný, může dojít k úplnému vymazání televizního obrazu. K tomu dochází, jsou-li vysílač

a televizní přijímač velmi blízko u sebe.

Při silném signálu může též dojít k „roztrhání“ obrazu nebo ke změně obrazu v negativní (bílé části jsou černé nebo naopak).

Obyčejně dochází ke vzniku přičních čar přes obraz, které jsou výsledkem interference (záznějí) harmonického kmitočtu s nosným kmitočtem obrazu. Pokud je rušivý signál poblíž nosného kmitočtu obrazu, jsou přičné čáry velmi zřetelné, i když v malém počtu. Pokud se kmitočet rušivého signálu vzdaluje, počet čar se zvětšuje a čáry se stávají jemnějšími. Vzdaluje-li se dále, působí rušivý signál pouze větší zrnění obrazu. Při amplitudově modulovaném signálu mohou na obrazu vzniknout i vodorovné pruhy.

Potlačení harmonických kmitočtů

Opatření proti rušení na straně vysílače můžeme rozdělit do tří fází:

1. Potlačení amplitud harmonických kmitočtů ve vysílači na minimum.
2. Zabránění přímému vyzařování z vysílače a z přídavných zařízení.
3. Potlačení harmonických kmitočtů, které jsou přiváděny z vysílače do antény.

V praxi je nemožné zhotovit vysílač, který nevytváří harmonické kmitočty. Avšak volbou vhodných obvodů a pracovních podmínek je možné potlačit jejich intenzitu, aby nedocházelo k přímému vyzařování z vysílače. V tom případě je pak možné potlačit i vyzařování nežádoucích kmitočtů z antény.

Provoz vysokofrekvenčních zosilovačů jevždy provázen vznikem harmonických kmitočtů. Proto je užitečné navrhovat jednotlivé stupně vysílače s malou výkonovou úrovní. V oscilátoru, oddělovacích a násobících stupňech používáme pouze přijímací elektronky s malou anodovou ztrátou! Takto získané signály pak zosilujeme na požadovanou výkonovou úroveň.

Harmonické složky se vždy nacházejí v mřížkovém i anodovém proudu (zvláště pracuje-li zosilovač ve třídě C). Jsou-li krátkou cestou svedeny na katodu elektronky, mohou se jen nepatrně uplatnit.

Obr. 7. Cesty proudu harmonických složek

Na obr. 7 je zobrazeno, kudy proud harmonických složek protéká. Vzhledem k tomu, že reaktance ladicích indukčností je velká, je proud harmonických složek, který cívkami protéká, zanedbatelný. Tedy, proud teče přes ladící kondenzátor, mřížkový nebo anodový blokovací kondenzátor a příslušnou kapacitu elektronky. Délky přívodů mají vliv na kmitočet, na kterém mohou přívody společně s kapacitami elektronky rezonovat. Dojde-li k rezonanci na harmonickém kmitočtu, zvětší se jeho úroveň. Proto je nutné, aby přívody byly co nejkratší a zhotoveny z pásků, které mají malou indukčnost. Také je vhodné, vžádeme-li jednotlivé stupně linkovou vazbu nebo pomocí pásmových propustí, neboť tím změníme i přenos harmonických kmitočtů z předcházejících stupňů.

Krátkou dobu dosvitu a velmi malý šum má nová obrazovka MX71 pro snímání obrazu z černobílého i barevného filmu, kterou vyvinula anglická firma EMI Electronics. Stínítko obrazovky má průměr 185 mm, použitá svítící hmota CGO s velmi malým zrnem vyzařuje světlo s maximem vlnové délky 520 nm, dobu dosvitu má 150 ns (pro pokles jasu na desetinu původní velikosti). Rozlišovací schopnost obrazovky je 0,1 mm při napájení vysokým napětím 25 až 30 kV. Obrazovka je určena především ke snímání obrazu z filmu 16 a 35 mm pro profesionální i amatérskou televizi a jiné průmyslové účely.

Sž

Podle EMI 72/1972

1 577 703 fotodiody obsahuje mozaiku fotokatody snímací elektronky RCA 4532A typu vidicon, vyrobena novým technologickým postupem, který podle údajů výrobce znamená zvrat ve výrobě křemíkových fotokatod. Snímací elektronka má vynikající rozlišovací schopnost, velmi malý proud za tmy a velkou citlivost. Je proto vhodná ke snímání velmi jakostních televizních obrazů. Spektrální citlivost fotokatody je ze 60 % ve viditelném rozsahu při osvětlení 0,1 luxu. Do infračervené oblasti (900 nm) připadá 30 % citlivosti. Elektronka je odolná proti přesvětlení a je silně otřesuvzdorná.

Sž

Podle Electronics č. 11/1972

Monolitickou čtečkou integrovaných operačních zesilovačů s vnitřní kompenzací a společným obvodem pro předpeří uvádí na trh Motorola pod typovým označením MC3401P. Obvod je v plastickém pouzdru dual in line a prodává se za 1,75 US dolarů. Je to první obvod, který se napájí z jednoho zdroje napětí +5 až +18 V, má číslicově orientovaný systém a lze ho napájet z baterie. Je vhodný pro střídavé aplikace jako aktivní filtr, vícekanálový zesilovač a oscilátor nebo jako jednoduchá zesilovač jednotka. Vstupní proud k získání předpeří je jen 50 nA, šířka přenášeného pásma je 5 MHz.

Sž

Podle Electronics č. 11/1972

Nízkofrekvenční kompresor

V AR 9/67 jsem podle zahraniční literatury popsal nf kompresor pracující na principu řízení záporné zpětné vazby s tehdejšími Ge tranzistory. V současné době jsem se vrátil k problematice nf kompresorů a jako nejvhodnější se projevilo modernizované výše zmíněné zapojení. Díky kvalitním tranzistorům KČ508–507 je kompresor účinnější. Princip je jednoduchý: zesílený signál mikrofonu je usměrněn diodami D_2 , D_3 , vyfiltrován a měni dynamický odporník diody D_1 , připojující C_2 na zem. Vzniklá proudová zpětná záporná vazba na emitorovém odporu R_4 mění zesílení celého kompresoru v nepřímé závislosti na amplitudě signálu mikrofonu.

Obr. 1. Závislost výstupního napětí na vstupním napětí

Z mikrofonu je vhodný dynamický. Na místě diody D_1 je nutno použít typ OA7 nebo jiný typ s exponenciální charakteristikou.

Kompresor má při vstupním napětí U_i 30 mV zkreslení menší než 8 %.

Obr. 2. Schéma kompresoru

Při použití kompresoru v budiči SSB je na místě C_{10} nutný svitkový kondenzátor. Elektrolytický kondenzátor by svým případným svodem mohl porušit využití balančního modulátoru.

Ing. J. Tanistra, OK2BAT

Diferenciální klíčování pro transistorové vysílače

J. Erben, OK1AYY

(Dokončení)

Obr. 7. Oscilogram průběhu značek z vysílače

R_7 a R_5 , R_6 . Konečný tvar značky je ještě ovlivněn PA, který je ve třídě C. Je to týž případ jako u vysílače na obr. 2. Oscilogram průběhu značek z vysílače je na obr. 7.

Klíčovací Zenerova dioda D_2 má sklon k produkování šumu, proto je blokována kondenzátory C_{14} , C_{15} .

Odporem R_{10} je dán proud D_1 , který nastavíme na 25 až 35 mA, aby stabilizace byla dostatečná. Z hlediska spotřeby větší proud D_1 nevadí, neboť teče jen je-li zaklíváno. V klidovém stavu je proud celého vysílače dán prakticky odporem R_{11} a děličem R_8 , R_9 a je asi 7 mA.

Tranzistory T_5 a T_6 jsou germaniové tranzistory třetí jakosti. Při daných součástkách by proudový zesilovací činitel T_5 neměl být menší než 25. Zesilovací činitel T_6 závisí na Zenerově napětí D_2 , které volíme 0 až 5 V nižší, než napájecí napětí. Je-li Zenerovo napětí D_2 blízké napájecímu napětí, stává se, že již při částečně vybitých bateriích se trvale zaklívá oscilátor. Naopak, při rozdílu větším než 5 V může dojít k tomu, že klíčovaný stupeň T_2 nebude ještě uzavřen a již dojde k odklíčování oscilátoru, což má za následek kliky na konci značek.

Je-li napájecí napětí 18 V a Zenerovo napětí D_2 15 V, pak zesilovací činitel T_6 musí být alespoň 15. To je však krajní mez a klesne-li napájecí napětí při zaklíváném oscilátoru (odběr 30 až 40 mA) pod 18 V, oscilátor se trvale zaklívá. Proto by měl T_6 mít $\beta > 50$, zvláště napájecí-li vysílač z baterií. Při výběru T_5 a T_6 je nutno přihlédnout k značnému U_{CE} , které tranzistor třetí jakosti často nevydrží. T_6 by též neměl mít velký I_{CEO} .

Na začátku článku v AR12/72 omylem vypadl titulek pod obr. 1, který jej vysvětluje:

Obr. 1. Úrovňa nežádoucího spektra (kliků) vůči nosné vlně pro rychlosť 150 zm/min.: 1. pravoúhlé značky, bez předkmitu, 2. značky tvarované jedním členem RC , časová konstanta 1/5 délky tečky (podle obr. 4a), 3. značky tvarované dvojitým členem RC , časová konstanta 1/5 délky tečky (podle obr. 4b), 4. značky tvarované trojitym členem RC , časová konstanta 1/5 délky tečky, 5. spektrum podle doporučení CCIR č. 230, 6. šíře pásma nezbytně obsaženého při rychlosti 150 zm/min., 7. šíře pásma pro AM sinusovým průběhem o $f = 10$ Hz, $B = 20$ Hz.

R_{12} na obr. 5 a 6 má mít velikost 6,8 k Ω .

Tiché ladění

Lze je řešit několika způsoby, např. rozpinacím tlačítkem mezi D_2 a R_{12} . Tento způsob bývá vzhledem k zcela uzavřenému T_2 příliš tichý a často se není možné na silnější stanice vůbec naladit. Uvedený způsob se zapínacím tlačítkem má výhodu v tom, že zkratováním R_{12} se poněkud přiotevře T_2 a oscilátor je lépe slyšet.

Na obr. 8 a 9 je pohled na vysílač; vnější rozměry skříně jsou $6,5 \times 16 \times 12$ cm. Vysílač má vestavěn síťový zdroj s elektronickou pojistkou.

Obr. 8. Pohled do skřínky vysílače

Obr. 9. Shora: popisovaný vysílač včetně zdroje, koncový stupeň s KU605, přijímatel pro pásmo 160 m a 80 m

Ostatní diferenciální klíčování

V roce 1969, kdy jsem vyvíjel vysílač, byly křemíkové tranzistory těžko dostupné a drahé. Proto jsem tehdy použil tranzistor P403. Dnes jsou naopak křemíkové tranzistory poměrně levné a proto je na místě T_2 vhodné použít např. KF507. Na trhu jsou jenom vzácné křemíkové tranzistory p-n-p a proto je nutno diferenciální klíčování se Zenerovou diodou upravit pro klíčovaný stupeň s tranzistorem n-p-n. Možná varianta úpravy je na obr. 6. Tranzistory T_5 a T_6 jsou typu p-n-p. Diody D_1 a D_2 jsou polovány opačně. Uzemněn je kladný pól zdroje; tím se zjednoduší anténní člen, neboť kolektor PA je stejnospěrně uzemněn.

Funkce klíčování a jeho vlastnosti jsou totožné, jako u klíčování již popsaného a proto se o této variantě není potřeba dále zmíňovat.

Na obr. 10 je diferenciální klíčování se třemi tranzistory. Jeho výhodou (proti

Obr. 10. Diferenciální klíčování se třemi tranzistory

předešlému klíčování) je nezávislost na napájecím napětí. Mimo odpor 270 Ω v emitoru T_5 , který určuje proud diodou D_1 , není potřeba měnit hodnoty součástek v rozmezí napájecího napětí 8 až 24 V. Další výhodou tohoto klíčování je, že proti předešlému způsobu vyjde rozměrově menší. Naopak jistá nevýhoda je, že ani jeden pól klíče není spojen se zemí, což poněkud znesnadní aplikaci elektronického klíče bez relé. Funkce tohoto klíčování je následující: po zaklívání se otevře T_6 a napětí na jeho kolektoru klesne na nulu. Přes odpor 1,2 k Ω v kolektoru T_6 protéká bází T_5 proud, který T_5 otevře. Mezi kolektorem a emitemrem T_5 klesne napětí na nulu. Na D_1 se objeví napětí – oscilátor je zaklíván. Kondenzátor 1 μ F v bázích T_7 se nabíjí přes odpor 6,8 k Ω , T_7 se postupně otvírá a na T_2 se zvyšuje kolektorové napětí a zároveň roste i kolektorový proud. Po odklíčování se postupně vybíjí kondenzátor 1 μ F. Tím se uzavírá T_7 a na T_2 klesá U_C a snižuje se jeho I_C . Klesne-li napětí na kondenzátoru 1 μ F asi na 3 V, je T_2 již dostačně uzavřen. To znamená, že při napětí menším jak 3 V musí být T_6 ještě otevřen. Teprve po dalším vybíjení kondenzátoru 1 μ F se uzavře T_6 a na jeho kolektoru se objeví plné napětí. Bází T_5 přestane tekoucí proud, T_5 se uzavře, na D_1 klesne napětí na nulu – oscilátor odklíčoval.

Schéma je navrženo tak, aby vystačilo s tranzistory třetí jakosti. V daném případě je nutno dodržet minimálně tyto zesilovací činitele: $T_5 = 15$, $T_6 = 50$, $T_7 = 40$.

Odpor 4,7 k Ω mezi emitemrem T_5 a zemí tvoří s odporem 270 Ω dělič, který zaručuje, že bude v klidovém stavu tranzistor T_5 uzavřen, i když by T_6 vykazoval větší zbytkový proud I_{CEO} . Použijeme-li T_5 a hlavně T_6 kvalitnější, může odpor 4,7 k Ω odpadnout. Vybráme-li z mimotolerantních tranzistorů, je nutno pamatovat na to, že v odklíčovaném stavu je mezi kolektorem a emitemrem tranzistorů T_5 , T_6 , T_7 prakticky plné napájecí napětí.

Protěž u ovládaného tranzistoru T_2 se klíčuje jak I_C , tak i U_C , zatímco u klíčování se Zenerovou diodou, kde měníme jen I_C a zůstává U_C stále stejně, dochází k lepšemu tvarování značek, T_2 se dobře uzavírá a nedochází k případnému zesilování kliksů z oscilátoru. Proto zde odpadá dělič R_8/R_9 v emitoru T_2 . Odber v nezaklívovaném stavu je asi 4 mA. Odpadne-li v klíčovacím obvodu již uvedený odpor 4,7 k Ω , klesne odber celého vysílače v nezaklívovaném stavu prakticky na nulu.

Diferenciální klíčování se třemi tranzistory umožňuje beze změny zapojení klíčovat tranzistor typu p-n-p i n-p-n. Na obr. 11 je zapojení, kde pro oscilátor i klíčovaný stupeň jsou použity tranzistory n-p-n. Při použití křemíkových tranzistorů lze vypustit na obr. 5 a 6 odpor R_{13} a na obr. 10 a 11 odpor 4,7 k Ω mezi emitorem T_5 a zemí a odpor 820 Ω mezi bází T_6 a zemí.

Obr. 11. Zapojení klíčování se třemi tranzistory pro ovládaný stupeň s tranzistorem n-p-n (neoznačené součástky na obr. 6, 10, 11 jsou stejné jako na obr. 5)

Klíčování podle OK1DJK

Uvedené způsoby klíčování vycházely z jedné časové konstanty, z které byl odvozen klíčovací pochod. OK1DJK vyuvinul a používá jednoduchý způsob diferenciálního klíčování, který vychází ze dvou časových konstant (obr. 12). Vzhledem k jednoduchosti lze u tohoto způsobu očekávat větší rozšíření mezi amatéry.

Obr. 12. Diferenciální klíčování podle OK1DJK

Po stisknutí klíče se přes diodu D rychle nabije kondenzátor 0,47 μ F. Přes odpor 6,8 k Ω teče proud bází tranzistoru T , který se otevře a napětí 12 V se objeví na jeho emitoru – oscilátor se zaklíčoval.

Přes odpor 68 k Ω se nabíjí kondenzátor 0,22 μ F a dále přes odpory 15 k Ω kondenzátory 0,1 μ F. Dojde k otevření klíčovaných stupňů.

Po odklíčování se vybíjí kondenzátory 0,1 a 0,22 μ F. Kondenzátor 0,47 μ F je oddělen diodou D , položenou v nepropustném směru. Tento kondenzátor se vybíjí mnohem pomaleji. Nejdříve tedy dojde k uzavření T_2 a T_3 . V okamžiku uzavření musí být ještě napětí na kondenzátoru 0,47 μ F větší, než na kolektoru tranzistoru T , aby tranzistor T byl ještě zcela otevřen. Při změnách tvrdosti tónu je potřeba též měnit kapacitu kondenzátoru 0,47 μ F, aby nedocházelo k odklíčování oscilátoru dříve, než se uzavřou klíčované stupně.

Tiché ladění

Stisknutím tlačítka T_1 se otevře tranzistor T a oscilátor se zaklívá. Dioda D , půlována v nepropustném směru, zabrání otevření ovládaných stupňů. Příznivý vliv dvojitého člena RC (zde $68 \text{ k}\Omega/0,22 \mu\text{F}$ a $15 \text{ k}\Omega/0,1 \mu\text{F}$) a význam ovládání dvou stupňů byl popsán v úvodní části.

Diferenciální klíčování pro smíšené vysílače

Vzhledem k tomu, že u nás nejsou na trhu výkonné tranzistory (parametry KU601 až 607 jsou neuspokojivé), a na oscilátoru se lépe hodí tranzistory než elektronky, je vhodné konstruovat vysílače se smíšeným osazením. Oscilátor a několik následujících stupňů je osazeno tranzistory, PA a několik předcházejících stupňů je osazeno elektronkami. Zde je potřeba diferenciálně klíčovat tranzistorový oscilátor a některý elektronkový stupeň před PA.

Na obr. 13 je schéma jednoduchého klíčování s doutnavkou. U elektronkových vysílačů je klíčování s doutnavkou

Obr. 13. Diferenciální klíčování s tranzistorem a doutnavkou pro vysílače se smíšeným osazením

velice rozšířeno pro svoji jednoduchost, snadné nastavení a velkou spolehlivost.

Po zaklívání zhasne doutnavka, přes kterou byl uzavřen spínací tranzistor KC507. Přes odpor $47 \text{ k}\Omega$ protéká bází T_1 proud, který tranzistor plně otevře. Oscilátor se zaklívá. Záporné uzavírací napětí na kondenzátorech $0,22 \mu\text{F}$ a $0,1 \mu\text{F}$ se vybíjí přes odpory $15 \text{ k}\Omega$. Elektronka se se zpožděním otevře. Po odklíčování se kondenzátory opět nabíjejí, až napětí na g_3 a g_1 dosáhne velikosti, kdy se elektronka uzavře. Nyní dosáhne napětí na doutnavce zápalného napětí (asi 90 V), doutnavka zapálí a napětí na bázi T_1 klesne směrem do záporných hodnot vůči zemi, resp. na velikost Zenerova napětí přechodu báze-emitor, které bývá kolem 10 V . T_1 se uzavře, oscilátor odklíčuje [10].

U vysílačů s větším příkonem než 10 W používáme pro tvarování značek alespoň dvojitý článek RC , tak, jak je naznačeno na obr. 12 až 15. Vhodnou volbou součástek dvojitého článku RC se prakticky vždy podaří vyrovnat různé nonlinearity tvaru značek. Protože uzavírací napětí g_3 je značné, pomáháme si děličem (např. $0,15 \text{ M}\Omega/39 \text{ k}\Omega$), takže částečně klíčujeme i g_1 . Odpory děliče volíme tak, aby hlavní vliv na tvarování značek zůstal na g_3 . Kdybychom klíčovali g_1 plným ovládacím napětím, značky by se jednak zkrátily a jednak by měly strmější čela, což se může projevit jako kliksy. Zde je tedy příklad, že je nutno velikost ovládacího napětí přizpůsobit charakteru klíčovaného prvku.

Obr. 15. Realizované klíčování podle principu z obr. 11 s klíčovací elektronkou

Tiché ladění lze řešit obvyklým způsobem, pomocí rozpínacího tlačítka v obvodu doutnavky. U tranzistorových oscilátorů bývá tento způsob příliš tichý. Proto lze připojit paralelně ke klíči spínací tlačítko v sérii s potenciometrem. Po stisknutí tlačítka se zaklívá oscilátor a zároveň přiotevře ovládaná elektronka. Potenciometrem se nastaví vhodná hlasitost pro tiché ladění.

Dalším rozšířeným způsobem je klíčování g_2 s diodou. Lze jej opět snadno aplikovat i pro klíčování tranzistorového oscilátoru (obr. 14). V klidu je záporným napětím uzavřena elektronka v g_2 a zároveň se přes diodu D dostává napětí na bázi T_1 , který je uzavřen. Po zaklívání se zvýší napětí na katodě diody D vůči její anodě a se změnou polarity na diodě D se otevře tranzistor T_1 . Oscilátor se zaklívá. Pokračuje nabíjení kondenzátorů $0,1 \mu\text{F}$, $0,5 \mu\text{F}$ a $0,1 \mu\text{F}$, až se napětí na g_2 ustálí; ovládaná elektronka je otevřena.

Obr. 14. Diferenciální klíčování druhé mítěžky elektronky

Po odklíčování se kondenzátory vybijejí proudem g_2 a přes odpor $0,33 \text{ M}\Omega$. Je-li napětí na g_2 přibližně nulové, dochází ke změně polarity na diodě D a napětí na bázi T_1 se opět posune na velikost Zenerova napětí přechodu báze-emitor. T_1 se uzavře, oscilátor se odklíčuje.

Výhodou klíčování v g_2 je dobré a snadné tvarování značek. Při větších úrovních buzení však činí potíže elektronku dostatečně uzavírat a do dalších stupňů pronikají kliksy z oscilátoru. Proto ani u malých vysílačů takto neklíčujeme PA. Stupeň klíčovaný v g_2 je nejlépe zařadit před PA ve třídě C. Jistým problémem je velké klíčování napětí i proud, címž vzniká rušení jiskřením na kontaktech klíče. Často dostatečně nepomůže ani zhášecí obvod RC . Proto se zde často používá klíčovací elektronka. Na obr. 15 je konkrétní zapojení klíčování z roku 1967. Zapojení

je uvedeno beze změny, i když zapojení tranzistorové části obvodu je svým způsobem zastaralé. Nic však nebrání tomu, použít pro klíčování oscilátoru jednoduché zapojení z předešlého obr. 14.

Elektronka EF80 má za úkol snížit klíčované napětí a proud na potřebné minimum. V klidu je E_2 uzavřena napětím asi -25 V na g_1 vůči katodě. Po stisknutí klíče se toto napětí zkratuje a E_2 se otevře. Na katodě diody D se objeví kladné napětí (dioda je půlována v nepropustném směru). Tím se uzavře tranzistor T_2 , který byl v klidu otevřen a zároveň se otevře T_1 a oscilátor se zaklívá. Přes odpory $6,8 \text{ k}\Omega$ se nabijejí kondenzátory $0,5 \mu\text{F}$ a $0,15 \mu\text{F}$, až se napětí na g_2 ustálí. Po odklíčování se uzavře E_2 a kondenzátor $0,5 \mu\text{F}$ a $0,15 \mu\text{F}$ se po- stupně vybijejí. Při napětí blízkém nule dojde na diodě D k obrácení polarity, dioda je půlována v propustném směru a proud, který protéká bází T_2 otevře T_2 . Napětí na emitoru T_2 klesne na nulu. Tím se uzavře T_1 a oscilátor se odklíčuje. Součástky jsou voleny tak, že v klidu teče odporem 470Ω z kolektoru T_1 na zem stejný proud, jako při zaklívání do oscilátoru. Tím je dosaženo stejného zátištění zdroje (který může být měkký), aniž by při klíčování kolísalo napětí, což pomáhá při stabilizaci napětí pro oscilátor. Obvyklé tiché ladění s rozpínacím tlačítkem je příliš tiché, proto je nutno poněkud „priotevřít“ ovládaný stupeň. To umožňuje nastavitelný obvod pro tiché ladění.

Literatura

- [1] Kordač, J.: VFO s diferenciálním klíčováním. AR 4/64.
- [2] Šuba, S.: Nový způsob diferenciálního klíčování. AR 9/62.
- [3] Dvořák, T.: Malá abeceda kliksů. AR 9/62.
- [4] Kordač, J.: My OL-RP. AR 4/66, AR 8/66.
- [5] Černý, V.: Tabulky pro návrh korekčních obvodů RC. AR 2/69.
- [6] Vackář, J.: Vysílače I. SNTL: Praha 1959.
- [7] Vackář, J.: Měření a provoz vysílačů. SNTL: Praha 1959.
- [8] Radiokomunikační řád. UIT – Ženeva 1959.
- [9] Doporučení CCIR č. 230/1960.
- [10] Atilla S. Béda.: Kremíkové tranzistory ako náhrada Zenerových diód. AR 5/72.

DIPLOMY

Rubriku vede ing. M. Prostecký, OKIMP,
U průhonu 44, 170 00 Praha 7

Změny v soutěžích od 10. listopadu do 10. prosince 1972

,,S6S“

Za telegrafní spojení získaly diplomy č. 4737 až 4750 (pásmo doplňující známky je uvedeno v závorce) stanice: DM4WJG (14), OK1ATK (14), OK1ASS (21), OK3TMF (3,5), OK3TFM (3,5), OK3TBK (3,5), OK2BBP, OK3CIU (14), OK1MIN, SP1EFU (14), SP1PCN, SP1BNS (7 - 14 - 21), SP2RQ (14), SP9PT (7 - 21 - 28).

Za spojení 2 x SSB byly vydány diplomy číslo 1139 až 1144 stanicím: SP6AOI (21), OK1AGA (14), SP9PT (3,5 - 14), OK1KFX (14), SP9QU (14), SP9KRT (14).

Doplňovací známky za telegrafní spojení získaly stanice: DM2CCM (21), OK1FAR (14 - 21), OK1AOV (7), SP1BHX (3,5 - 7 - 14 - 21 - 28), HA5KFN (21 - 28).

,,100 OK“

Základní diplom získalo dalších 17 stanic. Jsou to v pořadí č. 2925 až 2941: DM5XVL, DM5UL, DM3NSL, SP9BRP, SP9EPY, OK2BMQ (715.OK), OK3TPL (716.OK), OK3YDM (717.OK), SP9ZAA, SP3ZAH, DM3SL, SP8YU, SP9AYB, SP9BBH, SP9ABU, SP2PZW, SP9PT.

,,200 OK“

SP9PT získal doplňovací známku číslo 343 k základnímu diplomu č. 2941.

,,300 OK“

Doplňovací známku za spojení s 300 československými stanicemi získali: č. 167 OK1FON k základnímu diplomu č. 2617, č. 168 SP6BAA k č. 1576, č. 169 SP9PT k č. 2941.

,,400 OK“

SP9PT získal i doplňovací známku č. 94 za spojení s 400 československými stanicemi.

,,500 OK“

Potřebné QSL předložili a doplňovací známky za spojení s 500 československými stanicemi v pásmu 160 metrů získali:
č. 65 OK1JIR a č. 66 OK3CJE.

,,OK - SSB Award“

Diplomy za spojení s československými stanicemi na SSB získali:

č. 193 SP6AOI, A. Dybowski, Opole, č. 194 OK1JMA, K. Marčík, Litoměřice, č. 195 OK1IAG, P. Soušek, Klatovy, č. 196 OK1AMI, V. Dittrich, Rybitví, č. 197 OK2BBP, R. Holub, Hranice, č. 198 OK2BDY, V. Němc, Přerov, č. 199 OK1JAX, P. Braniš, Krupka, č. 200 OK2BDH, G. Novotný, Jihlava, č. 201 OK1JVS, V. Starý, Litoměřice, č. 202 SP9PT, W. Klosok, Radlin, č. 203 OK1KFX, Praha, č. 204 SP5QU, W. Chojnicki, Varšava, č. 205 SP6AGK, Z. Gadecki, Zlobizná.

,,ZMT“

Za uplynulé období bylo vydáno pět diplomů: č. 2990 OK1ATK, Praha, č. 2991 OK1DVK, Praha, č. 2992 LZ2KSQ, Svitavy, č. 2993 SP9PT, Radlin, č. 2994 SP5QU, Varšava.

,,P-75-P“

V uplynulém období bylo vydáno 8 diplomů (v závorce je uveden počet zón doplňovací známky): č. 447 DM4XXH, Wittenberg (50), č. 448 DM3LDA, Rostock (50), č. 449 OK2KMB, Moravské Budějovice (50), č. 450 OK3YCE, Martin (50), č. 451 SP9PT, Radlin (50, 60, 70), č. 452 SP1BNS, Štětí (50), č. 453 SP2BMX, Toruň (50), č. 454 SP1BHX, Štětí (50, 60).

,,KV QRA 150“

Byla udělena šest diplomů:
č. 247 OK2SAR, M. Cicha, Šumperk, č. 248 OK1WN, S. Vlk, Klatovy, č. 249 OK1HB8, J. Novotný, Třeboň, č. 250 OK2BPG, J. Stryk, Olomouc, č. 251 OK3CEK, V. Kušpál, Bratislava, č. 252 OK1KVV, Dům pionýrů a mládeže České Budějovice.

,,KV QRA 250“

Potřebné QSL předložil a doplňovací známku č. 44 získal OK2LN, R. Zablatýk z Hranic na Moravě.

Při radioamatérském závodě UHF/SHF Contest, konaném 7. a 8. října 1972, pracoval na Sněžce v pásmu 432 MHz OK1AIB, operátor Franta. V mimořádně dobrých atmosférických podmínkách navázal spojení se sovětskými stanicemi z UP2 a z UR2. V odpoledních hodinách navázal spojení na téma pásmu s finskou stanicí OH2BEW z Helsinek a tím vytvořil nový československý rekord na tomto pásmu. Byla překlenuta vzdálenost 200 km.

Pavel Vlk, OK2NA,
a Magda Viková,
OK2BNA, „duše“ celé
soutěže.

Rubriku vede ing. V. Šrdík, OK1SV,
pošt. schránka 46, 53901 Hlinsko v Čechách

Expedice na ostrov Fanning, která tam pracovala od 8. do 11. 12. 72 pod značkou VR3AC, se opět nevydařila. Termín byl sice dodržen, a jak vedoucí expedice W6GQU potvrdil, měli i směrovky, ale vzhledem k podmínkám do tohoto směru expedice pro Evropu vlastně neexistovala také ji nikdo ani nezaslechl. Ale stejně si stěžovali i W6. Je to škoda, když se už taková nákladná expedice na velmi vzácnou zemi podaří, že témaž už pravidelně z ní pro Evropu nic nevyplyně. QSL, pokud jste ji snad jen zaslechli, se zasilají na W6GQU.

V době závodu CQ-WW-DX Contest pracoval Walter, DJ6QT, znova z republiky Mali pod znač-

Tento rekord však vydržel pouze několik hodin, jak při pří závodech byly.

Před koncem závodu navázala kolektivní stanice radioklubu Praha 5, OKIKIR, pracující na Klinovci, spojení s toutéž finskou stanicí OH2BEW. Na trase Klinovec-Helsinki bylo tímto spojením vytvořen nový československý rekord v pásmu 432 MHz. Byla překlenuta vzdálenost 1 354 km.

OKIKIR

* * *

Vánoční soutěž v Kunštátě

Tečkou za loňskou sezónou závodů v radioamatérském viceboji – RTO byla soutěž, kterou ve dnech 8. až 10. prosince 1972 uspořádal z pověření KV Svazarmu jihomoravského kraje radioklub RADIO Kunštát. Soutěž se zúčastnili závodníci jihomoravského kraje a několik hostů z ostatních krajů; kromě toho potom 9 závodníků z NDR v rámci družebního styku krajů Lipsko a jihomoravského kraje.

Soutěž se konala v hotelu Rudka a jeho okoli. Byla stížena nepříznivá počasí, takže orientační závod byl opravdu brannou disciplínou. Soutěž byla na přání URK zkoušebně rozšířena o disciplínu klíčování. Hlavním rozhodčím byl K. Pažourek, OK2BEW, MS. Z 29 závodníků zvítězil mistr sportu T. Mikeska, OK2BFN, v kategorii A, a mistrové ČSSR Magda Viková, OK2BNA, v kategorii C.

Celou soutěž připravil kolektiv radioklubu Kunštát velmi pečlivě a odpovědně. Reditel soutěže, Pavel Vlk, OK2NA, se zhostil své funkce velmi dobré a kromě toho stačil ještě připravit, postavit a zrušit trať orientačního závodu. Velmi aktivní v organizačním výboru byli i závodníci členové RADIA Kunštát, obzvláště Magda, OK2BNA, Petr, OK2PFM, Vláďa, OK2PEJ a další. Z dalších aktivních organizátorů je nutno jmenovat alespoň ještě Josefa, OK2BFY a Standu, OK2KR. Radio klub Kunštát znovu potvrdil, že je opravdu velmi dobrým a schopným kolektivem! OK1AMY

Celou soutěž připravil kolektiv radioklubu Kunštát velmi pečlivě a odpovědně. Reditel soutěže, Pavel Vlk, OK2NA, se zhostil své funkce velmi dobré a kromě toho stačil ještě připravit, postavit a zrušit trať orientačního závodu. Velmi aktivní v organizačním výboru byli i závodníci členové RADIA Kunštát, obzvláště Magda, OK2BNA, Petr, OK2PFM, Vláďa, OK2PEJ a další. Z dalších aktivních organizátorů je nutno jmenovat alespoň ještě Josefa, OK2BFY a Standu, OK2KR. Radio klub Kunštát znovu potvrdil, že je opravdu velmi dobrým a schopným kolektivem! OK1AMY

kou TZ2AC a tentokrát se s ním pracovalo velmi snadno. Ihned po závode odletěl definitivně zpět do Berlina a letošní expedici tim ukončil. Tak jenom ještě, aby všem poslal QSL!

ZD3Z byla značka expedice z Gambie, která rovněž pracovala v telegrafní části závodu CQ. Byla to druhá část expedice OH, kterou vedl tentokrát OH2MM. Sám Martii je však již dávno doma a plánuje další expedici na počátek dubna roku 1973, a to do 3X1 - Guyane. QSL pro ZD3Z vyrůzuje OH2NB.

Expedice na ostrov St. Rock and Paul, která byla ohlášena na počátek prosince pod značkou ZZOWH, se neuskutečnila, a pořádající skupina brazilských amatérů místo toho navštívila ostrov Fernando de Noronha, odkud vysílala SSB po několika dnech počátkem prosince jako PY7ZAH/Q. QSL žádají na adresu: Box 91, Recife, Brazil.

Expedice z Minami Torishima, KA1DX, o které jsme se v naší rubrice již zmínili, navázala v době fone části CQ Contest za dva dny přes 6 000 spojení, bohužel již obligátně jen několik desítek spojení s Evropou.

Několik Japonců podniklo počátkem prosince expedici na ostrov Ogasawara, odkud pracovali na SSB pod značkou JD1ACF. Byli však velmi slabí a nával nedovolil navázat spojení.

Zprávy ze světa

VR6TC se vrátil z nemocnice na N. Zélandu na Pitcairn a je již opět QRV na SSB na 14 MHz.

Z ostrova Iwo Jima pracuje stanice KAIIW, jejméná na SSB. QSL požaduje na adresu: Lorain station, APO Seattle Zip Code 98781.

Z ostrova Aldabra je v současné době aktivní stanice VQ9HCS, a objevuje se jejméná SSB na kmitočtu 14 115 kHz návěter. Rovněž pracuje na 21 MHz. Na ostrově se zdří do března 1973. QSL žádá na Box 84821, Mombassa, Kenya.

Na 21 MHz pracuje téměř denně nás OK4IZ/MM, který se plaví po Perském zálivu, a pak dále do Indie. Naleznete ho jejméná kódem 14.00 GMT s velmi silným signálem.

Z ostrova St. Lucia je běžně činná stanice VP2LI. Najdete ji nyní kupodivu nejsnadněji na pásmu 80 m v noci. QSL via W9UCE.

A ještě k naší expedici do JTOKOK: překlepem jsme změnili značku vedoucího expedice, jímž byl ve skutečnosti OKIDN a nikoli OKIND. Naštěstí OKIND nebyl dosud zaválen QSL agentou pro tuto expedici (zatím obdržel jediný QSL, hi), a agentu pro tuto expedici bude po vytisknutí QSL využívat kolektivka OK1KZD, pošt. příhrádka 105, pošt. směrovací číslo 16041, Praha 6.

Některí OK hlásí, že slyšeli již pracovat nový prefix z Okinawy, tj. stanici JR6EA na 14 MHz CW.

Z Bootswany pracuje t. č. již řada stanic, takže se tato dosud velmi vzácně pojí malu stává běžně dostupnou. Pracuje tam např. A2CAO SSB na kmitočtu 14 300 kHz a žádá QSL na Box 108, Orapa, dálce A2CJP na kmitočtu 14 183 kHz a jeho adresa je P. Johnston, Box 52, Gaberone. Dále tam pracuje A2CEW, což je VE4EW a žádá QSL na svoji domovskou adresu a konečně ještě A2CCY, což je EX ZE1CY - používá s oblibou kmitočtu 21 350 kHz a jeho adresa je: Bob Furzer, Box 298, Francistown.

EA9EJ ze španělské Sahary pracuje opět velmi intenzivně, a objevuje se již i telegraficky na 14 MHz. Na SSB používá kmitočet 14 218 kHz, případně 21 252 kHz. QSL vyžaduje nyní na Box 172, El Alau.

KC6SK, který pracoval intenzivně např. v CQ Contest telegraficky, vysílá z ostrova Yap a plati do DXCC za Západní Karoliny.

Podrobnejší informace od OH2BH z jejich letošní africké expedice praví, že OH2BC, OH2BP, OH2BH a OH2MM se vrátili z expedice domů 8. listopadu a celkem nadělali na 14 000 spojení jako ZD3X, ZD3Y, ZD3Z, OH2BH/6W8, OH2MM/6W8, 5T5BH, TZ2MM. Jako multi-team v CQ Contest udělali 8 600 spojení pod značkou ZD3Z, což znamená fantastické score asi 14,5 milionů bodů, hi. Celkem přišla tato expedice na 4 000 dolarů. Všechny QSL za uvedené značky vyžívají OH2NB (požadují se IRC).

Z ostrova Chagos pracuje VQ9DW jejméná na SSB, který je tam jako účastník vědecké expedice. QSL via GABFZ.

Des Roches Island - VQ9R/D ukončil svoji expedici dnem 8. 11. 1972 a navázel tam za 7 dní celkem 2 355 spojení QSL na adresu: Carl J. Reder, Box 193, Mahé, Seychelles.

Z Nových Hebrid se objevila nová stanice, YJ8EE, což není nikdo jiný, než bývalý známý VR4EE. Adresa zní: Jacques Sapir, c/o Radio Station, Santo.

Pokud jste v CQ Contest navázali spojení s expedicí na Cayman Island, zde jsou informace: expedice pracovala ve dnech 25. a 26. listopadu a posádku tvorili: W4BRB, K4SHB, WB4SHB a WB4TAF. Speciálně na pásmu 160 m, kvůli kterému patrně expedici podnikli, pracovali jako ZF1IGS. Ostatní pracovali na DX-pásmech pod značkami ZF1GW, ZF1SF a ZF1VD. QSL vyžívají West Palm Beach ARC, Box 6834 (Southboro Sta.), West Palm Beach, Florida 33405.

Z British Virgin Isl. pracuje v poslední době stanice VP2VAM jak SSB, tak telegraficky, na pásmu 14 MHz. Manažér dálka VE3GWT.

Z FL8 lze nyní získat poměrně snadno nový diplom, který se vydává za 5 spojení s FL8. Z toho 4 spojení musí být 2 × SSB, a jedno CW. Diplom stojí 15 IRC a je nutno se žádat o QSL.

Několik nově získaných QSL-informací z poslední doby: 9L1JT via WA4ZYB, IG6BAF via 11BAF, ZS3AK - DJ9FH, IG9BAF - 11BAF, VP7BA via G3AMB, OX3AX - OZ5DX, T11BF - WA4WAG, FM7AA - WA8TDX, ZB2CN - DK1P, FP0VX - VE3VX, KTONEB (QTH Nebraska) via W0YOY, VR1W - James B. Nieger, Box 2158, Glacier - LN, Santa Maria, California 93454, FP8AA - K2OJD, VP2MAH - W4GSM, JY9FOC - G2IO, JV9GR - DK4PP, KG6SW - W7YBX, VA3HAM - VE3GCO.

Do dnešní rubriky přispěli tit. amatérů-vysílači: OK1ADM, OK1ADP, OK2BRR, OK1DAX, OK1DVK, OK1IAT, OK1EP, OK2PEX, OK1MIN, OK1IAR, OK2SFS a dále posluchači: OK34592, OK1-22009, OK1-18550, OK1-25322, OK1-19549, OK2-5385, OK1-19005, OK1-18865 a OK2-18649. Vsem patří nás upřímný dík i těším se, že nám zdržanete v dopisování věrní i nadále. Současně volelám i další zájemce o DX-sport, záležíte i vy vaše zprávy z pásem a DX-zajímavosti, a to vždy do osmého měsíci na moji adresu.

SSTV AMATÉRSKÁ TELEVIZE

Rubriku vede F. Smola, OK1OO,
441 01 Podbořany 113

Jak jsem již v předchozích rubrikách naznačil, lze normální rychlý televizní signál převést pomocí konvertoru a s malou úpravou na kameň na signál SSTV.

cování probíhá v konvertoru. Činnost lze sledovat z blokového schématu. Zájemce upozorní na článek v [1, 2]. V originálu byly použity tyto tranzistory:

T_1 - 2N404	T_{10} - 2N2904
T_2 - 2N2904	T_{11} - 2N1613
T_3 - 2N1613	T_{12} - UJT, 2N491
T_4 - 2N1613	T_{13} - 2N1711
T_5 - 2N161	T_{14} - 2N708
T_6 - 2N708	T_{15} - 2N1141
T_7 - 2N708	T_{16} - 2N918
T_8 - 2N1613	T_{17}, T_{18} - 2N1711
T_9 - 2N1613	

Obr. 1. Schéma konvertoru pro převod normálního TV signálu na SSTV

Zajímavá zapojení s tranzistory - Stabilizační obvody - Tranzistorové měniče napětí - Tranzistorové dipmetry - E. T. Krenkel - Krystal v radioamatérské praxi - Odrušení při amatérském vysílání - Koncové stupně vysílačů - Měřicí můstek pro rozhlasové kmitočty - TV servis - Basereflexová skříň - Tranzistorový nf zesilovač s transformátory - Obsah ročníku 1972.

Přijímací televizní antény - Dálkové řízení zesílení a „balance“ u stereofonního zesilovače - Nový magnetický pásek Krolin - Stabilizátor proudu s tranzistorem FET - Obvody se Zenerovými diodami - Fototyristory - Přístroj ke zkoušení Zenerových diod - Stabilní generátor sinusového signálu - Charakteristické závady magnetofonu Grundig ZK140 - Přístroj k seřízení předstihu zapalování - Technické rady - Generátor pravouhlých impulsů - Rubriky.

Vady televizních přijímačů - Univerzální měřič pro tranzistorová zařízení - Schmittův klopný obvod - Indukční regulátor teploty - Stabilizátor napětí s tranzistorem FET - Sovětské tranzistory FET s přechodem p-n - Elektronické efektové zařízení pro elektronickou kytaru - Odsávačka cinu - Technické rady - Rubriky.

Transceiver SSB - Stabilizátor napětí s tranzistory - Stupeň pro přizpůsobení antény - Elektronika na olympiadě 1972 - Základy číslicové techniky (2) - Barevný televizní přijímač (8) - Elektronika v autě (2) - Zabezpečování zařízení pro auto (proti krádeži) - Určení neznámého tranzistoru - Suché články Lumina - Rubriky.

Výkonného stupeň vysílače pro pásmo 145 MHz - Dva ekonomické nf zesilovače - Nf filtr pro telegrafii - Ještě o anténních, napájecích a přizpůsobení - Základy číslicové techniky (3) - Barevný televizní přijímač (9) - Elektronika v autě (3) - Měnič bez transformátorů - Přepínání krystalů pomocí polovodičových prvků - Optický přenos informací vlnovodem se skleněnými vlákny - Rubriky.

Kontrola rušení vysílačů na amatérských pásmech - Revoluce v technice elektronických varhan (integrované obvody) - Hystereze v zařízeních ke změně osvětlení - Přesný číslicový časový spinac pro temennou komoru - Tranzistorový širokopásmový osciloskop TBO 70 - Univerzální servisní zkoušec - Novinky z elektroniky.

Přistávací systém SETAC - Revoluce v technice elektronických varhan (integrované obvody) - Tranzistorový širokopásmový osciloskop TBO 70 - Jednoduchý světelný telefon - Tranzistorové VFO pro pásmo 80 m - Fázovací můstek.

Publikace má čtyři základní kapitoly a obsahuje dodatek. V první kapitole je vysvětlen princip laseru, v druhé kapitole stručně shrnutá historie laseru a jeho vývoj (od maseru). Třetí kapitola je nejrozšířenější - je v ní uveden jak stav výroby a prodeje laserových zařízení, tak i vývojové tendenze jednotlivých druhů laseru (plynových, v tuhé fázi a kapalinových) a konečně i aplikace laseru ve sdělovacích a výpočetní technice, v holografii, v měření, lékařství, obrábění materiálů a v dalších oblastech. Třetí kapitola je doplněna i článkem o bezpečnosti práce s laserem.

Ctvrtá kapitola popisuje současný stav laserové techniky v ČSSR - výrobky TESLA, Metra Blansko a Meopta.

Cennou částí publikace je i dodatek, v němž jsou uvedeny rusko-český, anglicko-český a německo-český slovníček výrazů z laserové techniky, doporučená literatura a definice základních pojmu z laserové techniky.

Publikace vyšla v nákladu 300 výtisků, zájemci ať tedy neodkládají dluho objednávku této užitečné publikace (TESLA-VÚST), neboť je pravděpodobné, že bude brzy rozebrána.

F. M.

Uhliš, J.; Slípková, J.: POLOVODIČOVÉ IMPULSOVÉ A SPINACÍ OBVODY. SNTL: Praha 1972. Desátý svazek knižnice Polovodičová technika, 224 str., 222 obr., 27 ta-
bulek. Váz. Kčs 29,-.

V současné elektronice jsou impulsové obvody jedním z nejpoužívanějších - ve výpočetní technice, v automatizačních, měřicích a řídících zařízeních, v zařízeních sdělovací techniky jsou nepostradatelné. K všeobecné informaci o impulsových obvodech výše dosud v ČSSR několik publikací, zaměřených převážně na tranzistorovou techniku. Protože se tento obor rychle rozvíjí a protože v této technice existuje řada zapojení, která se během let do jisté míry „typizovala“, vydává SNTL knihu, v níž je uveden přehled standardních i méně používaných impulsových obvodů s výkladem jejich činnosti. Pro méně zkušené čtenáře je kniha doplněna poučkami a vztahy, používanými při řešení elektronických obvodů a popisem charakteristických vlastností impulsových obvodů.

Březen bývá v celoročním průměru měsícem s poměrně vysokými hodnotami nejvyšších použitelných kmitočtů na většině „denních“ tras, takže ožije pásmo 21 MHz a může se vzácně ozvat i ledacos na pásmu desetiometrovém. Vzhledem k neustálé klesající sluneční aktivitě to však bude spíše „labutí píseň“ dříve tak výhodného pásmo. Přece však je letoš dobrá naděje na nejrůznější překvapení na pásmech 14 a 21 MHz, zejména později odpoledne, na „dvacítce“ téměř po celou noc. Také čtyřicetimetrové pásmo na tom v březnu nebude nejhůř; již brzy odpoledne začne rychle vrátstat dosah ve směru na východ a druhá polovina noci bude většinou patřit americkému kontinentu. Podmínky pro DX zakončí hodinu po východu

Slnce krátké, avšak výrazné otevření pásmo ve směru na oblast jihovýchodní Austrálie až Nového Zélandu.

Nízší krátkovlnná pásmata budou mit začátkem měsíce zcela liné podmínky, než jaké budou v posledních březnových dnech. Je to způsobeno velkým rozdílem mezi délkom dne a noci začátkem a koncem měsíce. Zatímco na začátku března budou ještě dozvívat relativně dobré DX podmínky na těchto pásmech z měsíce předcházejícího, koncem měsíce se spíše projeví rostoucí útlum, působený radiovým vlnám nízkými vrstvami ionosféry. Prakticky to znamená, že zatímco začátkem března budou na osmdesáti metrech (a někdy i na stošedesáti metrech) DX-podmínky

zejména v podvečer a ve druhé polovině noci, koncem března budou takové podmínky spíše jen výjimkou.

Mimořádná vrstva E ve své výraznější formě má v březnu své celoroční minimum a proto se asi velkých překvapení shortskipového druhu nedočkáme. Hladina atmosférického šumu bude na krátkých vlnách poměrně nízká a jen v době, kdy budou (např. k ránu na kmitočtech 4 až 7 MHz) dobré podmínky ve směru do tropických oblastí (např. v uvedenou dobu do rovníkových oblastí Jižní Ameriky), zaznamenáme zvýšenou hladinu QRN. Souhrnně lze říci, že DX-podmínky v březnu budou přechodně lepší, než byly v únoru.

V BŘEZNU 1973

se konají tyto soutěže a závody (čas v GMT):

Datum, čas: Závod:

3. a 4. 3.
00.00—24.00 ARRL DX Contest, část II fone
4. 3.
06.00—09.00 YL-OM závod (ÚRK)
10. a 11. 3.
18.00—18.00 YL-OM Contest, část CW
17. a 18. 3.
00.00—24.00 ARRL DX Contest, část II CW
24. a 25. 3.
00.00—24.00 CQ WW WPX Contest SSB
24. a 25. 3.
02.00—02.00 BART RTTY Contest
24. 3. až 1. 4.
31. 3. a 1. 4.
15.00—24.00 IARC Contest, část fone
- SP DX Contest

Kniha má celkem dvanáct kapitol. V první kapitole jsou již zmíněné základní poznatky, vztahy a zákony, v druhé kapitole pak vlastnosti základních lineárních impulsových obvodů. Impulsové vlastnosti polovodičových diod tranzistorů tvoří náplň třetí kapitoly. Obvody, známé jako oneozvač amplitude, hradla, vrátkové obvody, modulátory, upinaci obvody jsou popsány ve čtvrté kapitole.

Základní zapojení impulsové techniky, multivibrátory, jsou probrány v paté kapitole; v sesté jsou generátory napětí pilovitého a trojúhelníkovitého průběhu. Sedmá kapitola je věnována komparátorům napětí a zpožďovacím obvodům, osmá dělícím opakovacímu kmitočtu impulsů, devátá logickým obvodům.

Integrované impulsové obvody popisuje desátá kapitola; v jedenácté kapitole najde čtenář popis zapojení posuvných registrů a čítací impulsů. Kniha končí dvanáctou kapitolou - Realizace a oživování impulsových polovodičových obvodů, seznámem literatury a rejstříkem.

V závěd lze říci, že autori dobře splnili svůj zájem: podal výklad, který postačí k návrhu obvodu a ukáže, jakým směrem mají postupovat úpravy a korekce navrženého obvodu při jeho realizaci a praktickém ověřování. Publikace je skutečně zdrcujem poučení pro zajemce, kteří dosud v probíraném oboru nepracovali a užitečnou příručkou pro zkuseňší pracovníky.

F. M.

Svoboda, J.: STAVEBNICE TRANZISTOROVÝCH ZESILOVACŮ A PŘIJÍMAČŮ. SNTL: Praha 1972. 176 str., 104 obr., 24 tabulek, 19 příloha (klišé desek s plošnými spoji). Váz. Kčs 17.—.

Autor uvedené knihy využívá faktu, že v současné nf technice a v technice přijímače se používají většinou obvody, které jsou více či méně „typizované“, tj. jejich zapojení se během doby ustálilo jak co do vlastnosti, tak co do použitých prvků. Navrhoval proto stavebnici nf zesilovačů různého výkonu i funkce, přijímat pro amplitudovou a kmitočtovou modulaci a další přijímače a různé obvody, které jsou všechny řešeny jako jednotky na plošných spojích stejně velikosti, takže je lze (při použití konektorů) velmi jednoduše skládat dohromady a tak získat přístroj požadovaných vlastností. Kniha je určena radioamatérům a těm pracovníkům, kteří mají základní znalosti ze stavby přístrojů nf techniky na plošných spojích.

Kniha má šestnáct kapitol - první kapitola popisuje základní prvky stavebnicového řešení přístrojů, tj. výběr prvků a požadavky na jejich parametry, volbu tranzistorů, integrovaných obvodů a tranzistorů, řízených elektrickým polem, regulačních prvků, dálší zásady úprav při změně napájecího napětí, zhotovení plošných spojů a popis používaných konektorů. V kapitolách druhé až desáté jsou postupně popsány univerzální zesilovače (I a II), linkový zesilovač, zesilovač 3 W, 10 W, 25 W, reprodukční zesilovač pro magnetofon a regulační zesilovač pro gramofon. U všech zesilovačů jsou uvedeny technické údaje, popis funkce, vlastní provedení, měření a nastavování, popř. jištění.

V desáté kapitole je popis přijímače pro příjem amplitudové modulovaných signálů, v jedenácté

kapitole pro příjem signálů kmitočtově modulovaných. Ve dvacáté kapitole je popis superregeneračního přijímače pro VKV; v dalších kapitolách je popis různých pomocných obvodů - ve třinácté spinaciho obvodu a ve čtrnácté síťového napájecího.

Patnáctá kapitola ukazuje na příkladech, jak lze z popsanych jednotek skládat nejrůznější sestavy. Je pojednáno o impedančním přizpůsobení, volbě napájecího napětí, umístění regulátorů atd. Jako příklady sestav jsou uvedeny stereofonní zesilovač pro magnetofon, univerzální stereofonní zesilovač, přenosný přijímač, stolní přijímač atd.

Závěrečná kapitola je věnována použití integrovaných obvodů v nf zesilovačích. Po teoretickém úvodu a praktických všeobecných pokynech je popsána konstrukce univerzálního zesilovače, korekčního zesilovače pro magnetofon nebo gramofon, předzesilovače pro mikrofon, zesilovače s výstupním výkonem 2 W a konečného zesilovače s výstupním výkonem 4 W.

Kniha je dobré zpracována a poslouží všem zájemcům, kteří se nespokojí s běžně publikovanými návody na stavbu různých konstrukcí, popř. i těm, kteří mají různé speciální nároky na nf zařízení.

F. M.

INZERCE

První tučný řádek 20,40, další Kčs 10,20. Příslušnou částku poukážte na účet č. 300-036 SBCS Praha, správa 611 pro Vydavatelství MAGNET, inzerce AR, Vladislavova 26. PSČ 113 66 Praha 1. Uzávěrka 6 týdnů před uveřejněním, tj. 13. v měsíci. Neopomítejte uvést prodejní cenu, jinak inzerát neuveřejníme.

Upozorňujeme zájemce o inzerci, aby nezapomněli v objednávkách inzerce uvést své poštovní směrovací číslo!

PRODEJ

Motor 120 V/200 W (200), mechaniku Uran (400), mgf. hlavy ANP935 (170), ANP939 (135). Jan Kuneš, Fügnerova 1898, Louny.

RX all band = MWeC s konvertorem Ríz, xtal, vhozený i pro SSB, vč. zdroje (2 900). PA all band = GK71 (amer. 813) + zdroj 1 500 V, 0,8 A vč. náhr. elektr. (1 500). Kompl. 144 MHz = TX s GU32 s anod. modulátorem a zdrojem + Lambda s konv. (2 200). Magnetofon KB100 (450). Dr. J. Procházká, Hošťálková 55, Praha 6.

AF139(39), AF239(45) - výběr (60), nízkošum. PNP BC177, 178, 179 (28, 26, 28), KC147, 148, 149 (10, 9, 10), MAA325(29), MAA145(25), KFY18 - výběr λ_{1E} 170-300, 200 MHz (48), MH7474 (60), KC507, 508, 509 (13, 11, 14), 156NU70(11) - 10 ks (70), 100 ks OC170 (70) - nové nepouž. část vadná, KT710 (40), KT714 (45), KT711 (42), GS507 (13), KF167 (20). J. Kazatel, Wintrova 795, 160 00 Praha.

VKV-stereo přijímač, zak. listopad 72, cena 4 000 Kčs. Pardubický. J. Zahajský, Mánesova 13, Praha 2.

Gram. SG-40+Shure NB 71 (1 800) stereo-zesil. TW30 bez. konc. tranz. (1 700). Jan Losenický, Křížová 7, okr. Havlíčkův Brod.

Stereo-zesilovač 2 × 10 W, TESLA AZS 171/A za 1 300 Kčs. J. Mikula, Wolkerova 277, Vítkov.

Nf zesil. 2 × 10 W (700) Oscilograf TM694 a nf generátor BM218A (900) - DU10 (800). M. Klus, Poděbradova 2013, Dvůr Králové n. L.

HaZ: 9-11/71 mf. zesil. 10,7 MHz nedokonč. (250); 3-4/70 předzesil. CCIR/OIRT (100); 2/70 konvertor VKV (100). Dále VKV díly: Grundig 3037 (80); Himiris pošk. (50); tranz. Big-Beat (80). Nf zesil. 1,5 W - Štern - Elite NDR (250); tranz. 2 ks KF173 záruka (à 25). R. Kraus, Karviná 8, Žižková 2926.

Nové výrobky na blesk IFK 120-300 V-120 Ws à 85 Kčs. R. Zamazal, Lid. milice 21, Havlíčkův Brod, tel. 491 95.

RX Lambda IV + přísl. (1400). Koupím RX MWeC, EZ6, EL10, jen fb, AR roč. 1958, 1959 kompl. František Fikar, Podluhy 181, okr. Beroun.

Trafo pro nahrazování z TVP (à 10). J. Seidl Slatinská 39, Brno.

Konvertor Tesla, ladit. (s AF279) 280,— Kčs, transist. AF139 (45), AF239 (50), BF245 (FET) (65), AF279 (65). M. Novotný, Mateřidoušková 11, Praha 10, tel.: 751 669.

Stereozes. TW 30 Hi-Fi, 2 × 15 W, půl roku záruky (2 200); 2 třípásmové reprosoustavy 10 W; 25C (1 400); obojí světlý mahagon. P. Milata, Moskevská 2997, Kladno 4.

KOUPE

Pásmový IV - V TV ant. předzes. s BFY90. Ing. Heřman, 435 14 Záluží Cheza stř. 901.

Trafo pro 4 Volt. lampy. Jan Taula, Pod vilami 27n, Praha 4-Nusle 674.

2 repro. soustavy Dixi, i starší. Ing. P. Tomášek, Bráfova 9, Brno.

Hi-Fi přenosník, raménko a magnetodyn. přenosu Ing. P. Tomášek, Bráfova 9, Brno.

Hrnčíčkova jadra 14 × 8 AL - 160 = 5 ks Ferrocart M 7 × 10 = 5 ks, ferrit. EE 3 × 3 = 10 ks, ponuknite na adresu: Mir. Berecický, Čajáka 18, Košice.

Skříňku RADIETA, příp. celý přijímač. Ivan Ragulský, Blatnice 2, okr. Třebíč.

Průchodkové kondenzátory 1k5 8 ks uši i jednot. B. Postranecký, Adamovská 1, Praha 4.

AR 4a7/70; 5,9 až 12/69; HaZ 3-10/70 aj. komplet.

Bosniak, Šandorová 17/9, Bratislava.

* Všechny druhy radiosoučástek ve velkém výběru

* reprodukční skříně

* zesilovače Music

* polovodiče

* a další potřeby pro začátečníky i pokročilé

nabízejí
speciální prodejny v Praze:

RADIOAMATÉR

Na poříčí 44

Žitná 7

DIAMANT

Václavské nám. 3

MELODIE

Jindřišská 5

pro radioamatéry, opraváře a kutily:

SPECIÁLNÍ VÝMĚNNÝ ŠROUBOVÁK pro šrouby s křížovým zárezem, vhodný též pro automobilisty. Velkoobchodní cena 9,80 Kčs, maloobchodní 15,50 Kčs.

ZKOUŠEČKY NAPĚtí:

Typ ZN 1 umožňuje zjišťovat střídavá napětí v rozsahu 110—220—380—500 V a stejnosměrná napětí 110—220—440—500 V; dále fázový vodič a pořadí fazí. Velkoobchodní cena 55,90, maloobchodní 75 Kčs.

Typ ZN 2 umožňuje zjišťovat střídavá napětí 12—24—48 V a stejnosměrná napětí 12—24—50 V a dále souvislost elektrických obvodů. Velkoobchodní cena 42,20, maloobchodní 65 Kčs.

Typ ZN 500 umožňuje zjišťovat napětí 110—220—380—500 V (střídavá) a 110—220—440—500 V (stejnosměrná). Velkoobchodní cena 18,80, maloobchodní 65 Kčs.

MINIATURNÍ PÁJEČKA MP 12 se zdržem. Slouží k pájení miniaturních součástí, tranzistorů, integrovaných obvodů apod. Napájení možné též z autobaterie. Ceny včetně sítového zdroje ZT 12 (220 V). Velkoobchodní cena 76,90, maloobchodní 140 Kčs.

CUPREXTITOVÉ DESKY pro vlastní výrobu plošných spojů, asi 30 x 30 cm, tloušťka 1,5 mm, cena podle váhy, 1 kg za 145 Kčs, 1 deska asi 40 Kčs, souprava potřebných chemikalií za 39 Kčs.

Uvedené výrobky obdrží zájemci ve všech prodejnách TESLA a také na dobírku ze Zásilkové služby TESLA, Uherský Brod, Moravská 92. Prodej soc. organizacím též na fakturu.

PRODEJNY TESLA

RADIOAMATÉŘI – OPRAVÁŘI ! Příručky, na které čekáte...

Český: RÁDCE TELEVIZNÍHO OPRAVÁŘE

Kniha pojednává o přičinách, zjišťování a odstraňování závad v televizních přijímačích pro černobílý i barevný příjem v televizním pásmu I až V a o správném seřízení a podmínkách bezporuchového příjmu.

Cena 58 Kčs

Bozděch: MAGNETOFONY I (1956 až 1970)

Obsahuje popisy a schématika československých i zahraničních magnetofonů, návody na seřizování a odstraňování poruch a popisy příslušenství k magnetofonům.

Cena 34 Kčs

Syrovátko: NÍZKOFREKVENČNÍ TRANZISTOROVÁ ZAPOJENÍ

Druhé vydání praktické příručky, která obsahuje výběr zapojení z oblasti tranzistorové a nízkovfrekvenciální techniky a zachycuje její současný stav.

Cena 23 Kčs

Meluzin: RADIOTECHNIKA (ELEKTRONKOVÉ A TRANZISTOROVÉ PŘIJÍMAče, ZESILOVAče A MAGNETOFONY)

Oblíbená a populární příručka, která popisuje konstrukční součástky, radiové obvody a funkce usměrňovačů, zesilovačů, magnetofonů a radiopřijímačů (slovensky).

Cena 31 Kčs

Bém: ČESKOSLOVENSKÉ POLOVODIČOVÉ SOUČÁSTKY

Kniha obsahuje popisy, použití, vlastnosti, charakteristiky, technická data a příklady zapojení československých polovodičových součástek.

Cena 55 Kčs

RADIOTECHNICKÁ PŘÍRUČKA V

Pátý svazek praktické příručky od kolektivu autorů fy Telefunken popisuje nejnovější zapojení základních prvků – elektronek a tranzistorů – v oblasti vysokofrekvenční techniky, elektroniky a elektroakustiky a hlavně v oblasti radioelektroniky (slovensky).

Cena 30 Kčs

Zíma: INTEGROVANÉ MONOLITICKÉ OBVODY

Kniha se zabývá základními fyzikálními principy, technologickými postupy, návrhem, vlastnostmi a parametry integrovaných monolitických obvodů a problematikou jejich spolehlivosti.

Cena 54 Kčs

Vít-Kočí: TELEVIZNÍ PŘÍJEM VE IV. A V. PÁSMU

Příručka vysvětluje, jak je potřebí upravit účastníkovo zařízení pro druhý televizní program a dává podrobné návody na stavbu potřebných doplňků, na jejich montáž a seřízení.

Cena 25 Kčs

Uvedené příručky vyjdou v průběhu letošního roku.

Objednejte a zajistěte si je již dnes na adresu:

KNIHA n. p., prodejna technické literatury,
120 00 Praha 2, Karlovo nám. 19