CURSO DE CIÊNCIA DA COMPUTA	AÇÃO – TCC
(X) PRÉ-PROJETO () PROJETO	ANO/SEMESTRE: 2019/1

VISEDU LIGHT: VISUALIZADOR DE RAY TRACING

Daniel Rossato Martini Prof. Dalton Solano dos Reis – Orientador

1 INTRODUÇÃO

O *ray tracing* não é apenas um algoritmo, mas sim a junção de vários algoritmos, os quais foram desenvolvidos a partir de um trabalho publicado por Appel em 1968. Em 1979 e 1980, Kay e Whitted expandiram a ideia, tendo adicionado cálculos mais corretos da iluminação especular e da refração de luz (LOPES, 2000, p. 1).

De acordo com Pacheco (2008, p. 3, tradução nossa), "Ray tracing, de forma geral, não é nada menos do que uma simulação perfeita da luz. [...] A única diferença é que algoritmos de *ray tracing* seguem o caminho da luz num caminho inverso, [...]". Assim, muitas vezes se torna difícil visualizar como o *ray tracing* está sendo utilizado dentro de uma cena, se tornando um algoritmo bem complexo. Muitas variáveis podem afetar renderizações com *ray tracing*, como a cor de um objeto refletir em outro objeto, ou então a textura de um objeto torna a luz difusa.

Um dos primeiros exemplos de uso de *ray tracing* em animações e filmes foi em Carros, pela Pixar/Disney, onde os carros eram bem curvos, com superfícies bem reflexivas (PACHECO, 2008, p. 5). Até a pouco tempo, apenas em cenas renderizadas *offline* era possível fazer o uso de *ray tracing*, pois, como nota Batali et al. (2006, p. 5), a renderização de algumas cenas pode levar muito tempo, chegando a mais de 100 minutos, o que impossibilita seu uso em qualquer aplicação em tempo real, como jogos.

Em 2018, a NVIDIA lançou sua nova geração de placas de vídeo, a série RTX, que contam com núcleos específicos para calcular *ray tracing* (NVIDIA, 2018). Ainda de acordo com a NVIDIA (2018), esses núcleos de *ray tracing* dão às placas de vídeo poder suficiente para fazer uso de *ray tracing* em tempo real em jogos. Com isso há um novo foco em *ray tracing*, porém por não ter sido muito explorado recentemente, não há muitas formas de se entender como o *ray tracing* funciona e nem como ele afeta as renderizações.

Com base nesses argumentos, propõe-se a criação de uma ferramenta para a visualização de como funciona o *ray tracing*, adicionando explicações para que estudantes da área de computação gráfica possam compreender essa tecnologia.

1.1 OBJETIVOS

O objetivo deste trabalho é disponibilizar um ambiente para visualização e aprendizado de iluminação sobre a tecnologia de *ray tracing*.

Os objetivos específicos são:

- a) disponibilizar três cenas para simulação de ray tracing;
- b) apresentar uma explicação de como está ocorrendo o ray tracing na cena;
- c) permitir alterar textura dos objetos;
- d) permitir alterar cor dos objetos.

2 TRABALHOS CORRELATOS

São apresentados três trabalhos semelhantes ao trabalho proposto. O primeiro é o trabalho de conclusão de curso de Koehler (2015), que desenvolveu um visualizador de material educacional voltado à renderização. O segundo é o POV-Ray (PERSISTENCE OF VISION RAYTRACER PTY, 2013), uma ferramenta para criar imagens tridimensionais com *ray tracing*. Por último, é apresentado o trabalho feito por Peternier, Thalmann e Vexo (2006) o *Mental Vision*, uma plataforma para ensino de computação gráfica.

2.1 VISEDU-CG 4.0

Koehler (2015) integrou dois outros trabalhos, sendo eles o VisEdu-CG 3.0 criado por Nunes (2014) e o projeto de Harbs (2013). A aplicação serve para facilitar o ensino de computação gráfica para alunos, podem ser criadas cenas, que servem para facilitar a visualização das diversas propriedades existentes.

O programa tem uma tela conforme a Figura 1, no item A há 4 abas. A primeira é Arquivos, ela serve apenas para importar e exportar cenas criadas. A segunda, Fábrica de Peças, é dividida em 4 partes, sendo a área B a cena que está sendo criada, e a área C mostra o que a câmera está captando, que é o que está sendo renderizado. O item D são as peças, como objetos e propriedades, que podem ser adicionados à cena, e no item E é onde são adicionadas as peças à cena. Dentre os objetos que podem ser adicionados estão as fontes de luz, que funcionam de forma bem simples, apenas iluminando aquilo que atingem, sem reflexões. A terceira aba é a Propriedades da Peça, nela são definidas as propriedades, como posição e textura, da peça que está selecionada. Por último há a aba Ajuda, nela há apenas algumas informações de como o programa funciona.

O trabalho roda todo no navegador web onde uma tela é exibida utilizando HTML5 e Javascript. Já o JQuery é utilizado para definir os comportamentos mais complexos da tela,

como arrastar e soltar as peças. Para criar e manipular os elementos gráficos foi utilizada a biblioteca Three.js que serve para abstrair o WebGL. O WebGL utiliza a *Graphics Processing Unit* (GPU) do computador para realizar a renderização (KHRONOS GROUP, 2019).

Koehler (2015) atingiu seus objetivos conseguindo adaptar o motor gráfico para utilizar o Three.js. Assim a aplicação suporta ambientes tridimensionais com um grande número de objetos gráficos. Mesmo com um grande número de objetos, a biblioteca se manteve estável mostrando assim que há espaço para aplicações gráficas exigentes na web. O autor destaca também que o HTML5, CSS, Javascript e JQuery permitiram um controle mais simples e eficaz sobre a tela em geral.

Fonte: Koehler (2015).

2.2 POV-RAY

O POV-Ray (PERSISTENCE OF VISION RAYTRACER PTY, 2013) é um editor livre, disponibilizado para Windows, que permite criar e renderizar cenas utilizando *ray tracing*. Para isso, é disponibilizada uma tela para edição de código manualmente conforme a Figura 2, na qual é utilizada uma linguagem própria, que suporta diversos tipos de objetos, como esferas e retângulos, além de diversos tipos de fontes de luz, entre outros. Para que não seja necessário escrever tudo manualmente, é possível inserir códigos de objetos a partir de uma lista bem extensa de opções. Após inseridos, o usuário pode manualmente fazer alterações como preferir. A complexidade do programa é alta, visto que é necessário conhecer a linguagem própria e, como não há um editor visual, tudo é feito via código.

A renderização é feita utilizando-se de ray tracing em toda a cena, utilizando as fontes de luz definidas no projeto e levando como base as propriedades definidas para os objetos, como reflexibilidade e cor. A renderização pode por vezes demorar bastante para terminar, pois não é utilizada aceleração por GPU, sendo apenas utilizada a Central Processing Unit (CPU).

Figura 2 – POV-Ray

Fonte: Persistence of Vision Raytracer PTY. (2013)

A alta complexidade do programa permite que se criem imagens bem complexas e realistas utilizando-se do ray tracing. O programa tem uma área de ajuda, porém não faz nenhuma explicação do que se está passando na hora da renderização.

2.3 **MVISIO**

Peternier, Thalmann e Vexo (2006) criaram uma plataforma para simplificar e melhorar o ensino e prática de computação gráfica, denominada MVisio. A plataforma final é dividida em duas partes, uma é uma combinação de aplicações compactas que demonstram diversas técnicas e algoritmos de computação gráfica, denominada de módulos pedagógicos; a outra é um motor gráfico orientado à pedagogia para ser usado pelos alunos para projetos e trabalhos práticos.

Os módulos pedagógicos são usados para ilustrar de forma simples temas complexos da computação gráfica. A Figura 3 demonstra um módulo sobre a superfície de Bézier. Cada módulo fala sobre apenas um tópico para evitar confusão. Eles também permitem mudar diversas variáveis para ficar claro como elas funcionam e afetam a representação visual da cena. Para cada tópico há uma explicação detalhada sobre eles, mostrando fórmulas e desenhos sobre o tema.

O motor gráfico foi construído para ser fácil de usar e ser possível de rodar em vários tipos de *Personal Computers* (PC), inclusive *Personal Digital Assistent* (PDA), sem a necessidade de converter nada nos projetos. Para usuários mais avançados, ele abstrai as operações de baixo nível, permitindo que o usuário foque em criar aplicações em alto nível. É possível construir cenas complexas, com dezenas de objetos, texturas diferentes, porém não há vários pontos de luz, toda a cena é renderizada com uma iluminação uniforme e global.

O MVisio foi construído em C++ e utiliza o OpenGL, porém não utiliza a GPU, com isso as renderizações podem acabar sendo lentas, especialmente nos PDAs. Diversas funções necessárias para o motor gráfico, como carregamento de imagens foram construídas diretamente dentro dele. E isso somado ao fato que ele é orientado a objeto, permitiu que a aplicação ficasse leve.

Figura 3 – MVisio, módulo de Bézier

Fonte: Peternier, Thalmann e Vexo (2006).

3 PROPOSTA DA FERRAMENTA

Neste capítulo é apresentada a justificativa para elaboração do trabalho, bem como os requisitos e metodologia de desenvolvimento.

3.1 JUSTIFICATIVA

O Quadro 1 apresenta um comparativo entre os trabalhos correlatos apresentados, onde as linhas representam as características e as colunas os trabalhos.

Quadro 1 - Comparativo entre os trabalhos correlatos

características / trabalhos	Visedu 4.0 (KOEHLER, 2015)	POV-Ray (2013)	MVisio (PETERNIER, THALMANN, VEXO 2006)
plataforma	Web	Windows	Diversos
tecnologia principal utilizada	WebGL	Própria	OpenGL
permite edição de cenas	Sim	Sim	Sim
várias fontes de luz	Sim	Sim	Não
renderiza ray tracing	Não	Sim	Não
dá explicações sobre os temas	Não	Não	Sim
utiliza GPU	Sim	Não	Não

Fonte: elaborado pelo autor.

É possível observar que cada um dos trabalhos roda em um ambiente diferente, porém o Visedu 4.0 e o MVisio tem maior flexibilidade de uso, pois o primeiro pode ser rodado a partir de qualquer navegador. Já o segundo foi feito para diversas plataformas, permitindo diversas pessoas pudessem trabalhar com ele. Em relação à tecnologia utilizada, cada um deles utiliza uma diferente, sendo que o POV-Ray utiliza uma própria.

Todos os três permitem que sejam feitas edições no ambiente que se está criando, adicionando objetos, texturas entre outros, sendo o POV-Ray o mais complexo entre eles. Na questão de utilizar várias fontes de luz, ambos o Visedu 4.0 e o POV-Ray permitem que sejam adicionadas várias luzes, porém o MVisio não permite, ele apenas tem uma iluminação global igual para toda a área. Ainda no tema de iluminação, apenas o POV-Ray faz uso do *ray tracing*, criando assim uma iluminação extremamente realista, o Visedu 4.0 faz uso apenas de iluminação simples, sem nada de reflexão.

Apenas o MVisio tem explicações completas dentro do programa, com vários módulos cada um explicando algum tema específico. Já o Visedu 4.0 é uma ferramenta voltada para entender como funcionam algumas funções da computação gráfica, porém não há explicações propriamente ditas na ferramenta.

A utilização da GPU para renderizações é muito importante para agilizar o processo, porém apenas o Visedu 4.0 a utiliza, devido ao WebGL que ele utiliza. O POV-Ray como tem um motor de renderização próprio acaba não utilizando a GPU. Por fim, o MVisio não utiliza a GPU também devido a necessidade de compatibilidade entre várias ferramentas em ambientes diferentes.

Com base nas informações acima, conclui-se que nenhum deles apresenta uma explicação satisfatória sobre como o *ray tracing* afeta uma cena, e os que usam o *ray tracing* não apresentam uma performance satisfatória pelo fato de a GPU não ser utilizada. Assim, propõe-se a criação de uma ferramenta que irá mostrar como o *ray tracing* afeta a renderização de cena, explicando cada situação. Isso será feito utilizando-se de tecnologias novas, como o Unity, para permitir seu uso em diversos dispositivos com facilidade e performance. Também será feito uso dos núcleos *Ray Tracing* (RT) das GPUs da NVIDIA, para mostrar a diferença que eles podem fazer numa renderização. Com esse trabalho, espera-se que estudantes possam vir a entender como funciona essa tecnologia que está se popularizando atualmente.

3.2 REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO

A aplicação desenvolvida deve:

- a) possuir uma cena com um quarto branco, com dois cúbicos dentro e um holofote como fonte de luz apontando para um dos cubos (Requisito Funcional - RF);
- b) possuir uma cena com um chão branco e uma parede branca ao fundo, um objeto cúbico e outro objeto esférico, um holofote apontando para a esfera e uma luz dispersa logo acima dos objetos (RF);
- c) possuir uma cena com dois quartos ligados por uma porta, com uma fonte de luz dispersa num dos quartos, com dois objetos esféricos no quarto com a luz, e um objeto cúbico no quarto sem a luz (RF);
- d) possuir um menu que direcione para cada uma das cenas (RF);
- e) permitir alterar a textura e a cor dos objetos (RF);
- f) adicionar caixas de texto com explicações sobre como o ray tracing está sendo utilizado na cena (RF);
- g) possuir duas telas de visualização, uma com a visão da câmera e outra em terceira pessoa mostrando a cena como um todo (RF);
- h) criar traços na visualização em terceira pessoa mostrando o caminho dos raios de luz (RF);
- i) criar três tipos de texturas, reflexiva, opaca e transparente (Requisito Não Funcional RNF);
- j) permitir escolher três cores, vermelho, verde e azul (RNF);
- k) utilizar aceleração de GPU quando disponível (RNF);
- 1) permitir ligar e desligar o ray tracing (RNF).

3.3 METODOLOGIA

O trabalho será desenvolvido observando as seguintes etapas:

- a) levantamento bibliográfico: realizar pesquisa sobre *ray tracing*;
- elicitação de requisitos: reavaliar os requisitos, caso necessário fazer ajustes neles ou adicionar novos;
- c) especificação: criar os diagramas de classe e de casos de uso utilizando a Unified
 Modeling Language (UML) com a ferramenta Astah Community;
- d) implementação: implementar o trabalho proposto utilizando Unity, com a linguagem de programação C# (C-sharp) no ambiente Visual Studio;
- e) testes: realizar testes para validar se o *ray tracing* está funcionando de forma correta, se está respeitando a textura e a cor dos objetos, realizar testes com alunos de computação gráfica.

As etapas serão realizadas nos períodos relacionados no Quadro 2.

Ouadro 2 - Cronograma

		201				19)					
	ag	go.	se	et.	οι	ıt.	nc	ov.	de	ez.		
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2		
levantamento bibliográfico												
elicitação de requisitos												
especificação												
implementação												
testes												

Fonte: elaborado pelo autor.

4 REVISÃO BIBLIOGRÁFICA

Este capítulo descreve brevemente o assunto que fundamentará o estudo a ser realizado: *ray tracing*.

Nesta seção é apresentada uma introdução inicial ao tema principal do projeto. O tema apresentado é *ray tracing*, técnica para simular a representação realista da luz em renderizações dentro da área de computação gráfica.

4.1 RAY TRACING

De acordo com Pacheco (2008, p. 1, tradução nossa) "O *ray tracing* pode ser visto como um algoritmo recursivo para calcular a cor de um pixel". Ainda de acordo com Lopes (2000), existem três tipos de raios com funções distintas, sendo eles os raios refletivos, refratados e de iluminação direta ou de sombra. Dentro dos raios de reflexão, existem dois tipos, a reflexão especular perfeita e a reflexão difusa perfeita.

Reflexão especular perfeita ocorre em superfícies polidas e brilhantes, geralmente metálicas, de vidro ou espelhadas. Na realidade não existem superfícies refletivas perfeitas, porém o modelo de reflexão especular perfeita providencia uma aproximação suficientemente parecida com as reflexões que ocorrem em um ambiente real. A Figura 4 demonstra como ocorre a reflexão especular, onde um raio é refletido no mesmo ângulo de entrada, na imagem indicado como Θ (LOPES, 2000).

I θ_i θ_r R (reflectido)

Figura 4 – Reflexão especular perfeita

Fonte: Lopes (2000).

Reflexão difusa perfeita ocorre em superfícies irregulares, nela não existe uma única direção que o raio de luz pode seguir, na verdade a luz se dispersa em igual densidade para todas as direções. A Figura 5 exemplifica como ocorre reflexão difusa perfeita (LOPES, 2000).

Figura 5 – Reflexão difusa perfeita

Fonte: Lopes (2000).

A refração é uma outra propriedade que deve ser levada em consideração no *ray tracing*. Segundo Lopes (2000, p. 19), a luz se propaga por objetos transparentes ou translúcidos, por esse motivo é possível ver através de vidros, mas isso também faz com que os objetos aparentam estar mais próximos do que realmente estão caso esteja dentro da água. Isso é causado pela

diferença da velocidade de propagação da luz em diferentes meios, quando um raio vai de um meio para outro, a direção do raio é alterada. O grau de alteração da direção desse raio depende do índice de refração do meio que o raio acabou de entrar.

fonte de luz objecto opaco objecto translúcido В

Figura 6 – Iluminação direta e sombras

Fonte: Lopes (2000).

A definição de sombras é feita utilizando-se de raios secundários, criando-se um raio do ponto de intersecção do raio principal com um objeto, como o chão, até cada uma das fontes de luz. Na Figura 6, temos o raio A, que por não ter nenhuma intersecção, sabemos que é um local iluminado. No raio B, há uma intersecção com a fonte de luz, então não há luz no local abaixo desse objeto, já o raio C intersecciona com um objeto translúcido, então há luz no local, porém reduzida.

Figura 7 – Algoritmo ray tracing

Fonte: Lopes (2000).

De forma simples, o algoritmo completo de *ray tracing* funciona lançando um ou mais raios de cada pixel da tela, então para cada raio verifica-se as intersecções com os objetos, quando o raio se intersecciona com algum objeto, verifica-se se esse objeto gera reflexão difusa ou especular, gerando o raio secundário apropriado. De forma recursiva então são gerados novos raios, até que eles atinjam uma fonte de luz ou a quantidade máxima de novos saltos for atingida. A Figura 7 demonstra o algoritmo em um ambiente simples, contendo alguns objetos translúcidos, o número em cada um dos raios é a sequência em que eles foram criados e o item D é a fonte de luz.

REFERÊNCIAS

BATALI, Dana et al. **Ray Tracing for the Movie 'Cars'.** 2006. Disponível em: https://graphics.pixar.com/library/RayTracingCars/paper.pdf>. Acesso em 06 abr. 2019.

KHRONOS. **WebGL 2.0 Specification.** 2019. Disponível em:

https://www.khronos.org/registry/webgl/specs/latest/2.0/. Acesso em: 24 mar. 2019.

HARBS, Marcos. **Motor para Jogos 2D Utilizando HTML5**. 2013. 78 f. Trabalho de Conclusão de curso (Bacharelado em Ciência da Computação) — Centro de Ciências e Exatas Naturas, Universidade Regional de Blumenau, Blumenau.

KOEHLER, William F. **VISEDU-CG 4.0:** visualizador de material educacional. 2015. 89 f. Trabalho de Conclusão de curso (Bacharelado em Ciência da Computação) – Centro de Ciências e Exatas Naturas, Universidade Regional de Blumenau, Blumenau.

LOPES, João M B. **Ray Tracing.** 2000. Disponível em: http://disciplinas.ist.utl.pt/leic-cg/textos/livro/Ray%20Tracing.pdf>. Acesso em: 13 abr. 2019.

NUNES, S. A. **VisEdu-CG 3.0**: Aplicação didática para visualizar material educacional — Módulo de Computação Gráfica. 2014. 89 f. Trabalho de Conclusão de curso (Bacharelado em Ciência da Computação) — Centro de Ciências e Exatas Naturas, Universidade Regional de Blumenau. Blumenau.

NVIDIA. NVIDIA RTXTM platform. 2018. Disponível em:

https://developer.nvidia.com/rtx. Acesso em: 13 abr. 2019.

PACHECO, Hugo. **Ray Tracing in Industry:** An up-to-date review of industrial ray tracing applications and academic contributions. 2008. Disponível em:

https://paginas.fe.up.pt/~aas/pub/Aulas/DiCG/HugoPacheco.pdf>. Acesso em: 10 abr. 2019.

PERSISTENCE OF VISION RAYTRACER PTY. **POV-Ray.** 2013. Disponível em: http://www.povray.org/. Acesso em: 24 mar. 2019.

PETERNIER, Achille; THALMANN, Daniel; VEXO, Frederic. **Mental Vision**: A Computer Graphics Teaching Platform. 2006. Disponível em:

https://www.researchgate.net/publication/227186762_Mental_Vision_A_Computer_Graphic s_Teaching_Platform. Acesso em: 23 mar. 2019.

ASSINATURAS

(Atenção: todas as folhas devem estar rubricadas)

Assinatura do(a) Aluno(a):
Assinatura do(a) Orientador(a):
Assinatura do(a) Coorientador(a) (se houver):
Observações do orientador em relação a itens não atendidos do pré-projeto (se houver):

FORMULÁRIO DE AVALIAÇÃO – PROFESSOR TCC I

Aca	dêmi	ico(a):			
Ava	liado	or(a):			
		ASPECTOS AVALIADOS¹	atende	atende	não atende
	1.	INTRODUÇÃO			
		O tema de pesquisa está devidamente contextualizado/delimitado?			não atende
		O problema está claramente formulado?			
	2.	OBJETIVOS			
		O objetivo principal está claramente definido e é passível de ser alcançado?			
	2	Os objetivos específicos são coerentes com o objetivo principal?			
SO	3.	TRABALHOS CORRELATOS São apresentados trabalhos correlatos, bem como descritas as principais funcionalidades e os pontos fortes e fracos?			
ASPECTOS TÉCNICOS	4.	JUSTIFICATIVA Foi apresentado e discutido um quadro relacionando os trabalhos correlatos e suas principais funcionalidades com a proposta apresentada?			
SC		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?			
CI		São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?			
PE(5.	REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO			
ASI		Os requisitos funcionais e não funcionais foram claramente descritos?			
	6.	METODOLOGIA			
		Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?			
		Os métodos, recursos e o cronograma estão devidamente apresentados e são compatíveis com a metodologia proposta?			
	7.	REVISÃO BIBLIOGRÁFICA (atenção para a diferença de conteúdo entre projeto e pré-projeto) Os assuntos apresentados são suficientes e têm relação com o tema do TCC?			
		As referências contemplam adequadamente os assuntos abordados (são indicadas obras atualizadas e as mais importantes da área)?			
	8.	LINGUAGEM USADA (redação)			
S	0.	O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?			
ODOLÓGICOS		A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada é clara)?			
ΣÓ	9.	ORGANIZAÇÃO E APRESENTAÇÃO GRÁFICA DO TEXTO			
ĕ		A organização e apresentação dos capítulos, seções, subseções e parágrafos estão de acordo com			
_		o modelo estabelecido?			
ME	10.	ILUSTRAÇÕES (figuras, quadros, tabelas)			
SC	1.1	As ilustrações são legíveis e obedecem às normas da ABNT?			
CŢ	11.	REFERÊNCIAS E CITAÇÕES As referências obedecem às normas da ABNT?			1
ASPECTOS ME		As citações obedecem às normas da ABNT? As citações obedecem às normas da ABNT?			
Ā		Todos os documentos citados foram referenciados e vice-versa, isto é, as citações e referências são consistentes?			

PARECER – PROFESSOR DE TCC I OU COORDENADOR DE TCC (PREENCHER APENAS NO PROJETO):

O projeto de TCC será reprovado se: qualquer um dos itens tiver respo pelo menos 4 (quatro) itens dos pelo menos 4 (quatro) itens dos	osta NÃ ASPE C	CTOS TÉCNICOS tivere	em resposta ATENDE	PARCIALMENTE; ou
PARECER:	() APROVADO	() REPROVADO
Assinatura:			Data:	

¹ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.

FORMULÁRIO DE AVALIAÇÃO – PROFESSOR AVALIADOR

	,	a):			
Avaliad	lor(a)):			
		ASPECTOS AVALIADOS ¹	atende	atende	não atende
	1.	INTRODUÇÃO			
		O tema de pesquisa está devidamente contextualizado/delimitado?			
		O problema está claramente formulado?			
	2.	OBJETIVOS			
		O objetivo principal está claramente definido e é passível de ser alcançado?			
		Os objetivos específicos são coerentes com o objetivo principal?			
	3.	TRABALHOS CORRELATOS			
		São apresentados trabalhos correlatos, bem como descritas as principais funcionalidades e os			
S		pontos fortes e fracos?			
303	4.	JUSTIFICATIVA			
Ĭ		Foi apresentado e discutido um quadro relacionando os trabalhos correlatos e suas principais			
ÉC		funcionalidades com a proposta apresentada?			
ASPECTOS TÉCNICOS		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?			
ŢŌ		São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?			
ËÇ	_	REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO			
SP	5.	Os requisitos funcionais e não funcionais foram claramente descritos?			
∢	6.	METODOLOGIA			
	0.	Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?			
		Os métodos, recursos e o cronograma estão devidamente apresentados e são compatíveis com			
		a metodologia proposta?			
	7.	REVISÃO BIBLIOGRÁFICA (atenção para a diferença de conteúdo entre projeto e pré-			
	′ ·	projeto)			
		Os assuntos apresentados são suficientes e têm relação com o tema do TCC?			
		As referências contemplam adequadamente os assuntos abordados (são indicadas obras			
		atualizadas e as mais importantes da área)?			
)S Ó	8.	LINGUAGEM USADA (redação)			
ECTC DDOI	4	O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem			
M M		formal/científica?			
ASPECTOS METODOLÓ	1	A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada			
<u> </u>		é clara)?			<u> </u>
		PARECER – PROFESSOR AVALIADOR:			
		(PREENCHER APENAS NO PROJETO)			
• qua	alquei	TCC ser deverá ser revisado, isto é, necessita de complementação, se: r um dos itens tiver resposta NÃO ATENDE; nos 5 (cinco) tiverem resposta ATENDE PARCIALMENTE.			
PARE(•	`		
1 AKE	UEK	() AFROVADO () REPROVADO	,		
Assinatı	uro.	Data:			
129111gf	ura.	Data:			

 $^{^{1}}$ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.