Abschlussprüfung 2016 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Name: Klasse:		Vorname: Platzziffer:	Punkte:	
	Aufgabe A 1		Haupttermin	
A 1.0	Die gleichschenkligen Dreiec A_nB_nC haben die Basen $[A_nB]$ und die gemeinsame Höhe $[CM]$ Die Winkel A_nCB_n haben die Maß ϕ mit $\phi \in]0^\circ; 180^\circ[$. Es gilt: $\overline{CM} = 5$ cm.	s _n] 1].	C ϕ	E
	Die Zeichnung zeigt das Dreieck	A.B.C für $\omega = 8$		
A 1.1	Zeichnen Sie das Dreieck A ₂ B ₂ C			1 P
A 1.2	Zeigen Sie, dass für den Fläche von φ gilt: $A(\varphi) = 25 \cdot \tan \frac{\varphi}{2}$ cm		reiecke A _n B _n C in Abhängigke	it
				 2 P
A 1.3	Der Flächeninhalt des Dreiecks des Dreiecks A ₂ B ₂ C. Berechn Dreiecks A ₃ B ₃ C auf zwei Steller	nen Sie das Ma	$β$ φ des Winkels A_3CB_3 de	lt

A 2.0 Im Koordinatensystem ist der Graph der Funktion f_1 mit der Gleichung $y = 10 \cdot (x+3)^{-2} - 2.5$ ($\mathbb{G} = \mathbb{R} \times \mathbb{R}$) eingezeichnet.

A 2.1 Der Graph zu f_1 wird durch orthogonale Affinität mit der x-Achse als Affinitätsachse und k als Affinitätsmaßstab $(k \in \mathbb{R} \setminus \{0\})$ auf den Graphen der Funktion f_2 mit der Gleichung $y = -4 \cdot (x+3)^{-2} + 1$ ($\mathbb{G} = \mathbb{R} \times \mathbb{R}$) abgebildet. Bestimmen Sie den Affinitätsmaßstab k und geben Sie die Gleichungen der Asymptoten von f_2 an.

Zeichnen Sie sodann den Graphen zu f_2 für $x \in [-6; 4]$ in das Koordinatensystem zu A 2.0 ein.

3 P

A 2.2 Punkte $A_n(x|10\cdot(x+3)^{-2}-2,5)$ auf dem Graphen zu f_1 und Punkte $M_n(x|-4\cdot(x+3)^{-2}+1)$ auf dem Graphen zu f_2 haben dieselbe Abszisse x.

Die Punkte A_n sind für x>-1 zusammen mit Punkten B_n , C_n und D_n die Eckpunkte von Rauten $A_nB_nC_nD_n$ mit den Diagonalenschnittpunkten M_n .

Es gilt: $\overline{B_n D_n} = 4 LE$.

Zeichnen Sie die Raute $A_1B_1C_1D_1$ mit dem Diagonalenschnittpunkt M_1 für x=0,5 in das Koordinatensystem zu A 2.0 ein.

A 2.3 Zeigen Sie, dass für die Länge der Strecken $\left[A_nC_n\right]$ in Abhängigkeit von der Abszisse x der Punkte A_n gilt: $\overline{A_nC_n}\left(x\right) = \left[-28\cdot\left(x+3\right)^{-2}+7\right]LE$.

1 P

 $\label{eq:continuous} A~2.4~~Unter~den~Rauten~A_{_n}B_{_n}C_{_n}D_{_n}~gibt~es~das~Quadrat~A_{_2}B_{_2}C_{_2}D_{_2}\,.$

Berechnen Sie den zugehörigen Wert für x auf zwei Stellen nach dem Komma gerundet.

2 P

A 2.5 Begründen Sie, dass die Rauten A_nB_nC_nD_n stets einen kleineren Flächeninhalt als 14 FE besitzen.

A 3.0 Punkte C_n liegen auf dem Thaleskreis über der Strecke [AB] mit dem Mittelpunkt M. Die Winkel BAC_n haben das Maß α mit $\alpha \in]0^\circ; 90^\circ[$. Die Punkte A, B und C_n sind die Eckpunkte von Dreiecken ABC_n. Punkte D_n sind die Fußpunkte der Lote von den Punkten C_n auf die Strecke [AB].

Es gilt: $\overline{AB} = 6 \text{ cm}$.

A 3.1 Zeigen Sie, dass für die Länge der Strecken $[C_nD_n]$ in Abhängigkeit von α gilt:

 $\overline{C_n D_n}(\alpha) = 6 \cdot \cos \alpha \cdot \sin \alpha \text{ cm}$.

2 P

A 3.2 Die Dreiecke ABC_n rotieren um die Achse AB.

Begründen Sie rechnerisch, dass für das Volumen V der entstehenden Rotationskörper in Abhängigkeit von α gilt: $V(\alpha) = 72 \cdot \pi \cdot \cos^2 \alpha \cdot \sin^2 \alpha \text{ cm}^3$.

Berechnen Sie sodann für $\alpha=30^\circ$ das Volumen des entstehenden Rotationskörpers.

3 P

Abschlussprüfung 2016

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Haupttermin Aufgabe B 1 B 1.0 Punkte $B_n(x \mid -0.3x-1)$ liegen auf der Geraden g mit der Gleichung y = -0.3x-1mit $\mathbb{G} = \mathbb{IR} \times \mathbb{IR}$. Sie sind zusammen mit dem Punkt A(0|0) sowie Punkten C_n und D_n für x > 0.84 Eckpunkte von Drachenvierecken $AB_nC_nD_n$ mit den Diagonalenschnittpunkten M_n. Die Diagonalen [AC_n] der Drachenvierecke AB_nC_nD_n liegen auf der Symmetrieachse h mit der Gleichung $y = \frac{2}{3}x$ ($\mathbb{G} = \mathbb{R} \times \mathbb{R}$). Es gilt: $\overrightarrow{AC}_n = 4 \cdot \overrightarrow{AM}_n$. Runden Sie im Folgenden auf zwei Stellen nach dem Komma. B 1.1 Zeichnen Sie die Geraden g und h sowie die Drachenvierecke $AB_1C_1D_1$ für x = 3 und $AB_2C_2D_2$ für x = 5 in ein Koordinatensystem. Für die Zeichnung : Längeneinheit 1 cm; $-2 \le x \le 10$; $-3 \le y \le 8$ 4 P B 1.2 Bestimmen Sie rechnerisch die Koordinaten der Punkte D_n in Abhängigkeit von der Abszisse x der Punkte B_n. Ergebnis: $D_n (0.11x - 0.92 | 1.04x + 0.38)$ 3 P B 1.3 Der Punkt D₃ liegt auf der y-Achse. Berechnen Sie die Koordinaten des Punktes B₃. 2 P B 1.4 Berechnen Sie die Koordinaten der Punkte M_n und C_n in Abhängigkeit von der Abszisse x der Punkte B_n. Ergebnis: $C_n(2,24x-1,84|1,48x-1,24)$ 2 P B 1.5 Das Drachenviereck AB₄C₄D₄ ist bei B₄ rechtwinklig. Berechnen Sie den zugehörigen Wert für x. 4 P B 1.6 Die Seite $[C_5D_5]$ des Drachenvierecks $AB_5C_5D_5$ verläuft parallel zur x-Achse. Begründen Sie, dass gilt: $\angle D_5C_5B_5 = 67,38^{\circ}$. 2 P

Abschlussprüfung 2016

an den Realschulen in Bayern

2 P

Prüfungsdauer: 150 Minuten

Mathematik I

Aufgabe B 2 Haupttermin B 2.0 Das gleichschenklige Dreieck ABC ist die Grundfläche der Pyramide ABCS. Der Punkt M ist der Mittelpunkt der Basis [BC]. Die Pyramidenspitze S liegt senkrecht über dem Punkt M. Es gilt: $\overline{AM} = 9 \text{ cm}$; $\overline{BC} = 12 \text{ cm}$; $\overline{MS} = 10 \text{ cm}$. Runden Sie im Folgenden auf zwei Stellen nach dem Komma. B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCS, wobei die Strecke [AM] auf der Schrägbildachse und der Punkt A links vom Punkt M liegen soll. Für die Zeichnung gilt: q = 0.5; $\omega = 45^{\circ}$. Berechnen Sie sodann die Länge der Strecke [AS] sowie das Maß des Winkels MAS. 4 P B 2.2 Auf der Strecke [AS] liegen Punkte P_n. Die Winkel P_nMA haben das Maß φ mit $\varphi \in [0^\circ; 90^\circ]$. Die Dreiecke AMP_n sind die Grundflächen von Pyramiden AMP_nC, deren Spitze der Punkt C ist. Zeichnen Sie die Pyramide AMP₁C für $\varphi = 65^{\circ}$ in die Zeichnung zu B 2.1 ein. 1 P B 2.3 Berechnen Sie die Länge der Strecken [AP_n] in Abhängigkeit von φ und zeigen Sie sodann, dass für das Volumen V der Pyramiden AMP_pC in Abhängigkeit von φ gilt: $V(\varphi) = \frac{60, 20 \cdot \sin \varphi}{\sin (\varphi + 48, 01^{\circ})} \text{ cm}^{3}.$ Ergebnis: $\overline{AP_n}(\varphi) = \frac{9 \cdot \sin \varphi}{\sin (\varphi + 48,01^\circ)} \text{ cm}$ 3 P B 2.4 Die Grundfläche der Pyramide AMP₂C ist das rechtwinklige Dreieck AMP₂ mit der Hypotenuse [AM]. Berechnen Sie den prozentualen Anteil des Volumens der Pyramide AMP2C am 3 P Volumen der Pyramide ABCS. B 2.5 Das gleichschenklige Dreieck ACP₃ mit der Basis [CP₃] ist eine Seitenfläche der Pyramide AMP₂C. Berechnen Sie den zugehörigen Wert für φ. 4 P

B 2.6 Begründen Sie, dass für das Volumen V der Pyramiden AMP_nC gilt: $V \le 90 \text{ cm}^3$.