

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА «	Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №17 по курсу «Функциональное и логическое программирование» на тему: «Обработка списков на Prolog»

Студент _	ИУ7-63Б (Группа)	(Подпись, дата)	<u>Миронов Г. А.</u> (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	Толпинская Н. Б. (И. О. Фамилия)

1 Практическая часть

Задание 17: Используя хвостовую рекурсию, разработать эффективную программу, (комментируя назначение аргументов), позволяющую:

- найти длину списка (по верхнему уровню);
- найти сумму элементов числового списка;
- найти сумму элементов числового списка, стоящих на нечетных позициях исходного списка (нумерация от 0).

Убедиться в правильности результатов.

Для одного из вариантов **ВОПРОСА** и одного из заданий составить таблицу, отражающую конкретный порядок работы системы.

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты! Для каждого запуска алгоритма унификации, требуется указать № выбранного правила и дальнейшие действия – и почему.

Листинг 1.1 – Реализация вычисления числа Фибоначчи

```
domains
2
       list = integer*.
3
4
   predicates
       len(list, integer).
5
6
       len(list, integer, integer).
7
       sum(list, integer).
8
       sum(list, integer, integer).
       sumOddPos(list, integer).
9
10
       sumOddPos(list, integer, integer).
11
12
   clauses
13
       len(List, Len) :- len(List, 0, Len).
14
       len([], Len, Len) :- !.
15
       len([_|T], CurLen, Len) :-
           NewLen = CurLen + 1,
16
17
           len(T, NewLen, Len).
18
19
       sum(List, Sum) :- sum(List, 0, Sum).
       sum([], Sum, Sum) :- !.
20
21
       sum([H|T], CurSum, Sum) :-
22
           NewSum = CurSum + H,
23
            sum(T, NewSum, Sum).
24
25
       sumOddPos(List, Sum) :- sumOddPos(List, 0, Sum).
26
       sumOddPos([], Sum, Sum) :- !.
27
       sumOddPos([_], Sum, Sum) :- !.
       sumOddPos([_|[H|T]], CurSum, Sum) :-
28
29
           NewSum = CurSum + H,
30
            sumOddPos(T, NewSum, Sum).
31
32
   goal
       %len([0, 1, -2, 10], Len).
33
34
       %sum([0, -2, 10], Sum).
35
       %sumOddPos([1, 2, 1, 2, 1], Sum).
36
       %sumOddPos([1, 2, 1, 2], Sum).
```

В Таблице 1.1 представлен порядок поиска ответа на вопрос 1.

Таблица 1.1 – Порядок формирования результата для 1-го вопроса

Срав	Сравниваемые термы; результаты	Дальнейшие действия	Резольвента	Подстановка
len([0, 1, -2, 10], Len) u len(List, Len)	10], Len)	Прямой ход	len([0, 1, -2, 10], 0, Len)	List = [0, 1, -2, 10]
len([0, 1, -2, 10], 0, Len)	[0], 0, Len)	Прямой ход Перехол к	len([0, 1, -2, 10], 0, Len)	List = [0, 1, -2, 10]
Не унифицируемы	цируемы	след. предл.		
:		:	÷	÷
len([0, 1, -2, 10], 0, Len)	10], 0, Len)	Прямой ход	NewLen = CurLen + 1	T = [1, -2, 10]
M len([_ 1], Curben, ben)	urben, ben)	3	len([1, -2, 10], New Len, Len)	Curben = 0
NewLen = CurLen + 1	+ 1	Прямой ход	len([1, -2, 10], 1, Len)	$\Gamma = [1,$ -2, $10]$ Curl on $=0$
				NewLen = 1
:		<u>:</u>	:	:
len([1, -2, 10], 1, Len)	ol, 1, Len)	Прямой ход	NewLen = CurLen + 1	T=[-2,10]
и len([_ T], CurLen, Len)	urLen, Len)		len([-2, 10], NewLen, Len)	CurLen = 1
			Продолжение на сл	Продолжение на следующей странице

Таблица 1.1 – продолжение

$ \mathrm{IIIar} $	Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	результаты	действия		
6	NewLen = CurLen + 1	Прямой ход	len([-2, 10], NewLen, Len)	T = [-2, 10] NewLen = 2
:	:	:	:	:
19	len([], 4, Len) u len([], Len. Len)	прямой ход		$egin{aligned} T = [] \ NewLen = 4 \end{aligned}$
				$\operatorname{Len}=4$
20		Завершение работы		$\mathrm{Len}=4$
		1 подст.		
		в рез-те		
				Конец таблицы

2 Контрольный вопросы

2.1 Что такое рекурсия?

Рекурсия – это ссылка на описываемый объект при описании объекта.

2.2 Как организуется хвостовая рекурсия в Prolog?

- рекурсивный вызов единственен и расположен в конце тела правила;
- не должно быть возможности сделать откат до вычисления рекурсивного вызова.

2.3 Как организовать выход из рекурсии в Prolog?

С помощью отсечения

2.4 Какое первое состояние резольвенты?

Заданный вопрос (goal).

2.5 В каких пределах программы переменные уникальны?

Именованная переменная уникальна в рамках предложения, в котором она используется. Анонимные переменные всегда уникальны.

2.6 В какой момент, и каким способом системе удается получить доступ к голове списка?

Получить голову или хвост списка можно при унификации списка с [H|T], H – голова списка, T – хвост списка.

2.7 Каково назначение и результат использования алгоритма унификации?

Унификация — механизм логического вывода. Результат — подстановка.

2.8 Как формируется новое состояние резольвенты?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

2.9 Как применяется подстановка, полученная с помощью алгоритма унификации? Как глубоко?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм. В результате применения подстановки некоторые переменные конкретизируются значениями, которые (значения) могут и будут далее использованы при доказательстве истинности тела выбранного правила.

2.10 В каких случаях запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.

2.11 Когда останавливается работа системы?

Работа системы останавливается, когда найдены все возможные ответы на вопрос.

2.12 Как это определяется на формальном уровне?

Когда в резольвенте находится исходный вопрос, для которого пройдена вся БЗ.