Division in Number Theory – Teacher's Solution Guide

Definition of Division

If a and b are integers with $b \ne 0$, we say that b divides a if there is an integer c such that a = bc. Notation: $b \mid a$. Example: $3 \mid 12$ because $12 = 3 \times 4$.

Teaching Note: Reinforce that 'divides' does not mean 'fractional division'; it specifically requires the result to be an integer.

Example 1 – Solutions

Problem: Determine whether 3 | 7 and whether 3 | 12.

Solution: $7 \div 3 = 2.333...$, not an integer $\rightarrow 3$ does not divide 7.

 $12 \div 3 = 4$, which is an integer $\rightarrow 3$ divides 12.

Easier Example: Does 2 divide 8?

Solution: Yes, $8 \div 2 = 4$, an integer. Therefore $2 \mid 8$.

Challenging Example: Does 7 divide 100?

Solution: $100 \div 7 = 14$ remainder 2, so 7 does not divide 100.

Teaching Note: Highlight the role of the remainder to connect with modular arithmetic.

Example 2 – Solutions

Problem: Let n = 4. Positive integers divisible by 4: 4, 8, 12, 16, ...

Easier Example: List integers divisible by 2 up to $20 \rightarrow 2, 4, 6, ..., 20$.

Challenging Example: List integers divisible by 9 up to $100 \rightarrow 9$, 18, 27, ..., 99.

Teaching Note: Good chance to illustrate arithmetic sequences.

Theorem 1 - Solutions

Theorem 1: If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$. Also: if $a \mid b$, then $a \mid (b \times m)$ for all integers m. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Easier Example: If 2 | 6 and 2 | 8, then 2 | (6 + 8).

Solution: 6 + 8 = 14. Since $14 \div 2 = 7$, integer, so $2 \mid 14$.

Challenging Example: If 5 | 20 and 5 | 35, prove 5 | (20 + 35).

Solution: 20 + 35 = 55. $55 \div 5 = 11$, integer, so $5 \mid 55$.

Teaching Note: Emphasize closure properties of divisibility under addition.

Corollary 1 - Solutions

If a, b, and c are integers with $a \neq 0$, and $a \mid b$, $a \mid c$, then $a \mid (mb + nc)$ for any integers m, n.

Easier Example: If $3 \mid 6$ and $3 \mid 9$, prove $3 \mid (2 \times 6 + 1 \times 9)$.

Solution: $2 \times 6 + 9 = 21$. $21 \div 3 = 7$, integer, so $3 \mid 21$.

Challenging Example: If $4 \mid 12$ and $4 \mid 20$, prove $4 \mid (3 \times 12 + 2 \times 20)$.

Solution: $3 \times 12 + 2 \times 20 = 36 + 40 = 76$. $76 \div 4 = 19$, integer, so $4 \mid 76$.

Teaching Note: Use this to show how linear combinations are divisible.