Practice 2

Nian.Liu

Practice 2-1

• The differential equation model

$$\frac{dx(t)}{dt} = \rho(1 - \frac{x(t)}{K}) \bullet x(t)$$

• Table of all model parameters:

ρ	K
Growth rate	Capacity of the environment
0.71	54*10^4
\.	individuals

• Table of all state variables of the model:

x(t)	
Number of individuals via time	
$x(0)=(1/4)*K=(1/4)*54*10^4$	
individuals	

• Calculation:

Population size after the first year: 2.184*10^5

Time when population reaches half capacity of the environment: 1.58

Practice 2-2

Logistic model with delay

• The differential equation model

$$\frac{dx(t)}{dt} = \rho \bullet x(t) \bullet \left[1 - \frac{x(t-\tau)}{K} \right]$$

• Table of all model parameters:

ρ	K	τ
Growth rate	Capacity of the environment	Time delay
0.71	54*10^4	1/6
\.	individuals	year

• Table of all state variables of the model:

x(t)
Number of individuals via time
$x(0)=(1/4)*K=(1/4)*54*10^4$
individuals

Population size after the first year: 2.262*10^5

Time when population reaches half capacity of the environment: 1.37

Logistic model with variable parameters:

• The differential equation model

$$\frac{dx(t)}{dt} = \rho(t) \bullet x(t) \bullet \left[1 - \frac{x(t)}{K}\right]$$
$$p(t) = arctg(1/t) + 1$$

• Table of all model parameters:

K	
Capacity of the environment	
54*10^4	
individuals	

• Table of all state variables of the model:

x(t)	$\rho(t)$
Number of individuals via time	Growth rate
x(0)=(1/4)*K=(1/4)*54*10^4	p(t) = arctg(1/t) + 1
individuals	\.

Population size after the first year: 2.75*10^5

Time when population reaches half capacity of the environment: 1.07

Logistic model with harvesting

• Table of all model parameters:

ρ	K	c
Growth rate	Capacity of the environment	Model capture
0.71	54*10^4	0.1
\.	individuals	\.

• Table of all state variables of the model:

x(t)
Number of individuals via time
x(0)=(1/4)*K=(1/4)*54*10^4
individuals

Population size after the first year: 1.99*10^5

Time when population reaches half capacity of the environment: 2.05

