Professor: Alexander Schmidt Tutor: Daniel Kliemann

1 Aufgabe

a) Z.Z. $f(A \cap f^{-1}(C)) = f(A) \cap B$

Beweis. Wir zeigen zunächst, dass $f(A \cap f^{-1}(C)) \subset f(A) \cap C$. Sei $y \in f(A \cap f^{-1}(C))$ beliebig. Dann $\exists x \in A \cap f^{-1}(C)$ mit f(x) = y sodass

$$x \in A \land x \in f^{-1}(C)$$

$$\Leftrightarrow f(x) \in f(A) \land x \in \{a | f(a) \in C\}$$

$$\Leftrightarrow f(x) \in f(A) \land f(x) \in C$$

$$\Leftrightarrow f(x) \in f(A) \cap C$$

$$\Leftrightarrow y \in f(A) \cap C$$

Nun zeigen wir $f(A) \cap C \subset f(A \cap f^{-1}(C))$.

Sei $y \in f(A) \cap C$ beliebig. Dann $\exists x \in X$ mit $f(x) \in f(A) \cap C$. Gemäß den obigen Äquivalenzumformungen ist also $x \in (A \cap f^{-1}(C))$ und $f(x) \in f(A \cap f^{-1}(C))$.

b) Z.Z. $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$.

Beweis. $\forall x \in f^{-1}(Y \setminus C)$

$$x \in f^{-1}(Y \setminus C)$$

$$\Leftrightarrow f(x) \in Y \setminus C$$

$$\Leftrightarrow f(x) \in Y \land f(x) \notin C$$

$$\Leftrightarrow x \in X \land x \in \{a | f(a) \notin C\}$$

$$\Leftrightarrow x \in X \land x \notin \{a | f(a) \in C\}$$

$$\Leftrightarrow x \in X \land x f^{-1}(C)$$

$$\Leftrightarrow x \in X \cap f^{-1}(C)$$

Daraus resultiert $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$.

c) Z.Z. $f(A \cap B) \subset f(A) \cap f(B)$

Beweis. Sei $y \in f(A \cap B)$ beliebig. Dann $\exists x \in A \cap B$ mit f(x) = y. Es gilt

$$(x \in A \land x \in B) \implies (f(x) \in f(A) \land f(x) \in f(B)) \implies (f(x) \in f(A) \cap f(B)) \implies (y \in f(A) \cap f(B))$$

d) Z.Z. $f(f^{-1}(C)) \subset C$

Beweis. Sei $y \in f(f^{-1}(C))$ beliebig. Dann $\exists x \in f^{-1}(C)$ mit f(x) = y. Es gilt

$$(x \in f^{-1}(C)) \implies (x \in \{a|f(a) \in C\}) \implies f(x) \in C \implies y \in C$$

.

2 Aufgabe

a) Z.Z. f ist genau dann injektiv, wenn für alle Teilmengen $A, B \subset X$ die Gleichheit $f(A \cap B) = f(A) \cap f(B)$ gilt.

Beweis. Wir zeigen zunächst, dass $f(A \cap B) = f(A) \cap f(B)$ gilt, wenn f injektiv ist. Wir wissen bereits, dass $f(A \cap B) \subset f(A) \cap f(B)$.

Z.Z.: f injektiv $\Longrightarrow f(A) \cap f(B) \subset f(A \cap B)$. Wir beweisen einfach die Kontraposition $f(A) \cap f(B) \not\subset f(A \cap B) \Longrightarrow f$ ist nicht injektiv.

Es gibt also stets ein $y \in f(A) \cap f(B)$ mit $y \notin f(A \cap B)$. Daher $\exists x \in A$ und $\exists x' \in B$ mit f(x) = f(x') = y, wobei weder x noch x' in $A \cap B$ liegen, da ansonsten $y = f(x) \in f(A \cap B)$ wäre. Das impliziert $x \notin B$ und $x' \notin A \implies x \neq x'$, f ist also nicht injektiv.

Im zweiten Teil des Beweises zeigen wir, dass f injektiv ist, wenn $f(A \cap B) = f(A) \cap f(B) \forall A, B \subset X$.

Auch hier zeigen wir die Kontraposition: f nicht injektiv $\implies \exists A, B \subset X$ mit $f(A \cap B) \neq f(A) \cap f(B)$.

Wir betrachten eine nicht injektive Abbildung f und wählen $A = \{x\}$ und $B = \{x'\}$ mit f(x) = f(x') = y. Dann ist $y = f(x) \in f(A) \land y = f(x) \in f(B) \implies y \in f(A) \cap f(B)$. Allerdings ist weder x noch x' Element von $A \cap B$. Daher ist sowohl $f(x) \notin f(A \cap B)$ als auch $f(x') \notin f(A \cap B)$ und damit auch $y \notin f(A \cap B)$.

b) Z.Z. f ist genau dann surjektiv, wenn für alle Teilmengen $C \subset Y$ die Gleichheit $f(f^{-1}(C)) = C$ gilt.

Beweis. Wir zeigen zunächst, dass $f(f^{-1}(C)) = C$ gilt, wenn f surjektiv ist. Wir wissen bereits, dass $f(f^{-1}(C)) \subset C$.

Z.Z.: f surjektiv $\Longrightarrow C \subset f(f^{-1}(C))$. Sei y aus C beliebig. Dann folgt aus der Surjektivität von f, dass es ein x mit f(x) = y geben muss. Es gilt

$$f(x) \in C \implies x \in \{c | f(c) \in C\} \implies x \in f^{-1}(C) \implies f(x) \in f(f^{-1}(C)) \implies y \in f(f^{-1}(C))$$

Im zweiten Teil des Beweises zeigen wir, dass f surjektiv ist, wenn $\forall C \subset X : f(f^{-1}(C)) = C$.

Wir zeigen die Kontraposition: f nicht surjektiv $\implies \exists C \subset X : f(f^{-1}(C)) \neq C$.

Wir betrachten eine nicht surjektive Abbildung f, sodass $\exists y \in C \text{ mit } f^{-1}(\{y\}) = \emptyset$. Da y kein Urbild hat, ist auch $y \notin f(M) \forall M \subset X$, insbesondere also auch $y \notin f(f^{-1}(C))$.

3 Aufgabe

Sei A eine Menge und $X,Y\subset A$. Wir betrachten die Abbildung $f_{X,Y}:P(A)\to P(A)$, welche für $M\subset A$ definiert ist durch

$$f_{X,Y}(M) = (X \cap M) \cup (Y \cap (A \setminus M))$$

Wann gibt es eine Teilmenge $M \subset A$ mit $f_{X,Y}(M) = \emptyset$?

Lemma 1. $Y \cap (A \setminus M) = \emptyset$ gilt genau dann, wenn $M \subset Y$.

Beweis. Wir zeigen zunächst: $(Y \cap (A \setminus M) = \emptyset) \implies (Y \subset M)$.

Beweis durch Widerspruch: Annahme: $(Y \cap (A \setminus M) = \emptyset)$ und $(\exists x \in Y \land x \notin M)$. Es gilt $x \in A$ und $x \notin M$, also $x \in A \setminus M$. Daher ist auch $x \in (Y \cap (A \setminus M))$.

Im zweiten Teil des Beweises zeigen wir: $(Y \subset M) \implies (Y \cap (A \setminus M) = \emptyset)$.

Beweis durch Kontraposition: $(Y \cap (A \setminus M) \neq \emptyset) \implies (Y \not\subset M)$.

$$(\exists x \in Y \cap (A \setminus M)) \implies (\exists x \in Y \land x \notin M) \implies (Y \not\subset M)$$

Satz 2. Es gibt genau dann eine Teilmenge $M \subset A$ mit $f_{X,Y}(M) = \emptyset$, wenn $X \cap Y = \emptyset$.

Beweis. Wir zeigen zunächst, dass es eine Teilmenge $M \subset A$ mit $f_{X,Y}(M) = \emptyset$ gibt, wenn $X \cap Y = \emptyset$. Wir wählen M einfach gleich Y. Dann gilt

$$f_{X,Y}(M) = (X \cap M) \cup (Y \cap (A \setminus M)) = (X \cap Y) \cup (Y \cap (A \setminus Y)) = Y \cap (A \setminus Y)$$

Mit $Y \subset Y$ folgt aus dem Lemma: $f_{X,Y}(M) = Y \cap (A \setminus Y) = \emptyset$.

Im zweiten Teil des Beweises zeigen wir, dass $X \cap Y = \emptyset$ gilt, wenn es eine Teilmenge $M \subset A$ mit $f_{X,Y}(M) = \emptyset$ gibt.

$$((X \cap M) \cup (Y \cap (A \setminus M)) = \emptyset) \implies (X \cap M = \emptyset) \land (Y \cap (A \setminus M) = \emptyset)$$

Mit dem Lemma erhalten wir

$$(X \cap M = \emptyset) \land (Y \subset M) \implies (X \cap Y) = \emptyset$$

4 Aufgabe

Seien A und B endliche Mengen, welche jeweils genau n verschiedene Elemente enthalten.

a) In der Vorlesung wurde skizziert, wieso die Potenzmenge P(A) genau 2^n Elemente enthält. Führen Sie einen Beweis dieser Behauptung mit vollständiger Induktion.

Def. 1. #M sei die Anzahl der Elemente von M.

Beweis. Offensichtlich ist #A = n.

Induktionsanfang: n = 0: $P(\emptyset)$ enthält $1 = 2^0 = 2^n$ mit n = #A = 0

Induktionsschritt $n \to n+1$: Induktionsannahme: Jede Menge P(A) mit #A = n enthält 2^n Elemente

Wir betrachten eine Menge C mit #C = n + 1.

Sei $c \in C$ beliebig, $D := \{M \in P(C) | c \notin M\}$ und $E := \{M \in P(C) | c \in M\}$. Offensichtlich ist $C = D \dot{\cup} E$.

D gleicht der Potenzmenge von $C \setminus \{c\}$, da alle Teilmengen von C, die c nicht enthalten, auch Teilmengen von $C \setminus \{c\}$ sind, aber gleichzeitig $P(C \setminus \{c\}) \subset P(C)$.

Damit ist $\#D = \#P(C \setminus \{c\}) = 2^{\#C \setminus \{c\}} = 2^{\#C-1} = 2^n$.

Da man aus jedem Element von D durch Hinzufügen von c ein Element von E erzeugen kann, ist $\#E \geq \#D$. Analog kann man aber durch Entfernen von c aus einem beliebigen Element von E ein Element von D erzeugen, sodass $\#D \geq \#E$.

Insgesamt ist $\#C = \#D + \#E = 2\#D = 2 \cdot 2^n = 2^{n+1}$.

b) Zeigen Sie mit vollständiger Induktion, dass es genau $n! = n \cdot (n-1) \cdot \cdots \cdot 3 \cdot 2 \cdot 1$ bijektive Abbildungen $f: A \to B$ gibt. Hierbei definieren wir 0! = 1.

Beweis. Bei einer bijektiven Abbildung $f:A\to B$ gibt es zu jedem $a\in A$ genau ein $b\in B$. Induktionsanfang: n=1: Da es genau ein $a\in A$ und genau ein $b\in B$ gibt, ist die bijektive Abbildung $f:A\to B, a\mapsto b$ eindeutig.

Induktionsschritt $n \to n+1$: Induktionsannahme: Zu zwei beliebigen Mengen A, B mit #A = #B = n gibt es genau n! bijektive Abbildungen $f: A \to B$.

Wir betrachten zwei beliebige Mengen C, D mit #C = #D = n + 1.

Jedes Element von C muss auf genau ein Element von D abgebildet werden. Wir wählen $c \in C$ beliebig. Es gibt offensichtlich n+1 Möglichkeiten, auf welches $d \in D$ c abgebildet wird.

Nun verbleiben noch n Elemente aus C, die bijektiv auf n Elemente aus D abgebildet werden müssen. Dafür gibt es laut Induktionsannahme n! verschiedene bijektive Abbildungen $f': C \setminus \{c\} \to D \setminus \{d\}$. Insgesamt erhalten wir also $(n+1) \cdot n! = (n+1)!$ mögliche $f: C \to D$.