| 1st Score:         | 2nd Score: | 3rd Score:         |             |  |  |  |
|--------------------|------------|--------------------|-------------|--|--|--|
| S & G              | S & G      | S & G              | ·           |  |  |  |
| Grader:            | Grader:    | Grader:            | Final Score |  |  |  |
| PLACE LABEL BELOW  |            |                    |             |  |  |  |
| Name:              |            | School:            |             |  |  |  |
| SS/ID Number:City: |            |                    |             |  |  |  |
| Grade: 5 6 7       | 8 Cla      | ssification: 1A 2A | 3A 4A 5A 6A |  |  |  |



# TMSCA MIDDLE SCHOOL CALCULATOR STATE TEST

APRIL 21, 2018

GENERAL DIRECTIONS

#### I. About this test:

- A. You will be given 30 minutes to take this test.
- B. There are 80 problems on this test.
- II. How to write the answers:
  - A. For all problems except stated problem as noted below write three significant digits.
    - 1. Examples (\* means correct, but not recommended)

Correct:  $12.3, 123, 123.*, 1.23x10^*, 1.23x10^{0*}, 1.23x10^{1}, 1.23x10^{01}, .0190, 1.90x10^{-2}$ Incorrect: 12.30, 123.0,  $1.23(10)^2$ ,  $1.2310^2$ ,  $1.230x10^2$ ,  $1.23*10^2$ , 0.19,  $1.9x10^{-2}$ ,  $19.0x10^{-3}$ , 1.90E-02

- 2. Plus or minus one digit error in the third significant digit is permitted.
- B. For stated problems:
  - 1. Except for integer, dollar sign, and significant digit problems, as detailed below, answers to stated problems should be written with three significant digits.
  - 2. Integer problems are indicated by (integer) in the answer blank. Integer problems answers must be exact, no plus or minus one digit, no decimal point or scientific notation.
  - 3. Dollar sign (\$) problems should be answered to the exact cent, but plus or minus one cent error is permitted. The decimal point and cents are required for exact dollar answers.
- III. Some symbols used on the test.
  - A. Angle measure: rad means radians; deg means degrees.
  - B. Inverse trigonometric functions: arcsin for inverse sine, etc.
  - C. Special numbers:  $\pi$  for 3.14159 . . . ; e for 2.71828.
  - D. Logarithms: Log means common (base 10); Ln means natural (base e).

### IV. Scoring:

A. All problems answered correctly are worth FIVE points. FOUR points will be deducted for all problems answered incorrectly or skipped before the last problem attempted.

## 2017-2018 TMSCA Middle School Calculator State Meet

4. 
$$18 - 16 + \pi - 10$$
 ------  $4 =$ 

- 11. A circle has an area of  $37\pi$  square inches. Calculate the circumference of the circle. ------in.
- 13. Calculate the number of distinct diagonals a polygon with 222 sides has. ------ 13= INT.

17. 
$$\left[\frac{244}{128}\right][(278/348) + 0.622]$$
 ----- 17=\_\_\_\_\_

18. 
$$\frac{[298/(262)]/0.0933}{(3.42 \times 3.55)(0.0143)}$$
 ----- 18=\_\_\_\_\_

19. 
$$\left\lceil \frac{101/218}{100/241} \right\rceil \{ 2.76 + 0.628 - 0.998 \} ----- 19 = \underline{\hspace{1cm}}$$

20. 
$$(12.2)[87/72 \times 52/74] - \pi$$
 ----- 20=\_\_\_\_\_

21. 
$$\frac{(\pi)(36/23)(16/43)}{314}$$
 ----- 21=\_\_\_\_\_

22. 
$$\frac{(587 \times 1300)/869}{(859 \times 12.3) + 4370}$$
 ------ 22=\_\_\_\_\_

23. 
$$\left\lceil \frac{1150 + 1280}{943 - 972} \right\rceil \left\lceil \frac{1070}{1250} \right\rceil - \dots 23 = \dots$$

24. Calculate the slope of the line perpendicular to 
$$(3/7)x - (4/5)y = 7/11 -----24=$$

30. 
$$\frac{1}{-0.0152} + \frac{1}{(0.0619 - 0.074)} - \dots 30 = \dots$$

31. 
$$(3.68)[(1.12\times10^7) - (2.66\times10^6)]$$
 ----- 31=\_\_\_\_

32. 
$$(755)\left[\frac{1.22}{(3.67\times10^8)}\right]$$
 ----- 32=\_\_\_\_\_

33. 
$$\frac{1}{39.6} - \frac{1}{148} + \frac{1}{195}$$
 ----- 33=\_\_\_\_





39. 
$$\left[ \frac{5.68}{1090} \right] (76.1 + 99.5)^4 ------ 39 = \underline{\phantom{0}}$$

40. 
$$\sqrt{\frac{2690 + 723}{235 - 159}}$$
 ----- 40=\_\_\_\_

41. 
$$(140 + 75.5)^2(51.8 + 28.5)^2$$
 ----- 41=\_\_\_\_\_

42. 
$$\sqrt{(55.8/118) + 0.203 - 0.19}$$
 ----- 42=\_\_\_\_\_

43. 
$$(1/(6.93\times10^{-4}))(2720-1010)^3$$
 ------ 43=\_\_\_\_\_

44. 
$$\sqrt{291} + \sqrt{238 + 335} - (\pi)\sqrt{276}$$
 ----- 44=\_\_\_\_\_

45. 
$$\frac{1}{\sqrt{1900 + 2500 + 2180}} + \left(\frac{1}{\sqrt{31}}\right)^2 - \dots + 45 = \dots$$

46. 
$$\frac{(928 + 2740)^{1/2}}{(63.3 - 24.1)^{1/2}} - \dots 46 = \dots 46 = \dots$$

- 47. Calculate the area of a circle that has a center point (3, 5) and a point on the circle at (8, -2).
- 48. Calculate the length of the longest diagonal in a regular nonagon with a side length of 7.28 inches. -----in.



51. 
$$\left[ \frac{5.32 - 1.32 + \sqrt{5590/646}}{-18.3 + 28.8} \right]^{5}$$
 ------ 51=\_\_\_\_\_

52. 
$$\left[ \frac{\sqrt{\sqrt{12000 - 2740}}}{-(0.0245 - 0.026)} \right]^{2} [0.0995 + 0.168] ------ 52 = \underline{\phantom{0}}$$

54. 
$$\sqrt{\frac{1/(73-72)}{(4.31)(316+250)^4}} ------54=\underline{\phantom{0}}$$

55. 
$$(828)^2 \sqrt{(16.7)/(497)} - (84900 + 41300)$$
 ----- 55=\_\_\_\_

56. 
$$0.715 + \sqrt{(3840)/(816)} - (0.628 + 0.934)^2$$
 ----- 56=\_\_\_\_

57. 
$$(deg) cos(422^\circ) + (1.72/1.42) ----- 57=$$

58. 
$$\sqrt{\frac{1/(24.1 - 7.22)}{(756)(105 + 65)^6}} - \dots 58 = \dots$$

59. Calculate the distance between the x-intercept and the y-intercept of the line 
$$4x + 3y = 8$$
.

SCALENE TRIANGLE



Shortest Side = ?

61=\_\_\_\_

CUBE

Surface Area =  $2.13x10^5$ 

Inner Diagonal = ?

62=\_\_\_\_

63. 
$$\frac{30!}{31!} + 2!$$
 ----- 63=\_\_\_\_

64. 
$$(29.3 - \pi)e^{0.174}$$
 ----- 64=\_\_\_\_

65. 
$$(9.28 \times 10^7 - 1.06 \times 10^8)^{-5} (4.09 \times 10^8)$$
 ----- 65=\_\_\_\_\_

66. 
$$(rad) \frac{\cos(176)}{23.3/2480}$$
 ----- 66=\_\_\_\_

67. (rad) 
$$\cos \left[ \frac{(597)(\pi)}{(1.1)(2.52)} \right]$$
 ------ 67=\_\_\_\_

68. 
$$(deg) \frac{\sin(232^\circ)}{145 + 74.5}$$
 ------ 68=\_\_\_\_\_

69. 
$$(\text{deg}) \frac{\sin(50.9^\circ)}{\tan(50.9^\circ)} [40.2]$$
 ------ 69=\_\_\_\_\_

70. 
$$(16.4 - 7.3)e^{\pi - 0.966}$$
 ----- 70=\_\_\_\_\_

- 71. The probability of Doug having a successful trip is thirteen-fifteenths.

  Calculate the odds of not having a successful trip. ------ 71=

**DECAGON** 



Area = 423.205

Apothem = 11.4127

Length of a side = ?

73=\_\_\_\_

RECTANGLE, CIRCLE, AND EQUILATERAL TRIANGLE



Shaded Area = ?

74=

76.  $\frac{\text{Log}(5.12 + 12.8)}{30200 - 8730} - ..... 76 = _____$ 

77.  $\frac{12400 - 4820}{\log(28300 + 13300)}$  ----- 77=\_\_\_\_

78.  $Ln \left[ \frac{87.1 + 655 + 567}{183 - 16.6 - \pi} \right] ----- 78 = \underline{\hspace{1cm}}$ 

79. 1 + 3 + 5 + ... + 525 ----- 79=\_\_\_\_

80.  $1 + \frac{(0.72)^4}{2} - \frac{(0.72)^6}{6} + \frac{(0.72)^8}{24} - \frac{(0.72)^{10}}{120} - \dots - 80 = \dots$ 

# 2017-2018 TMSCA Middle School Calculator State Meet Answer Key

| Page 1                                 | Page 2                                | Page 3                                            | Page 4                                  |
|----------------------------------------|---------------------------------------|---------------------------------------------------|-----------------------------------------|
| $1 = 3980$ $= 3.98 \times 10^{3}$      | $14 = 8.21$ $= 8.21 \times 10^{0}$    | 27 = 58.4<br>= $5.84 \times 10^{1}$               | $39 = 4.95 \times 10^6$                 |
| 2 = 63.0<br>= $6.30 \times 10^{1}$     | 15 = 6.00×10 /<br>16 = 1.05           | 28 = 0.0429<br>= $4.29 \times 10^{-2}$            | $40 = 6.70$ $= 6.70 \times 10^{0}$      |
| 3 = 3880<br>= $3.88 \times 10^3$       | $= 1.05 \times 10^{0}$ $17 = 2.71$    | $29 = 8.09 \times 10^{-12}$                       | $41 = 2.99 \times 10^{8}$ $42 = 0.697$  |
| 4 = -4.86                              | $= 2.71 \times 10^{0}$                | 30 = -148                                         | $= 6.97 \times 10^{-1}$                 |
| $= -4.86 \times 10^{0}$ $5 = -2840$    | 18 = 70.2<br>= $7.02 \times 10^{1}$   | $= -1.48 \times 10^{2}$ $31 = 3.14 \times 10^{7}$ | $43 = 7.22 \times 10^{12}$ $44 = -11.2$ |
| $= -2.84 \times 10^3$<br>6 = -154      | 19 = 2.67 = 2.67×10 <sup>0</sup>      | $32 = 2.51 \times 10^{-6}$                        | $= -1.12 \times 10^{1}$                 |
| $= -1.54 \times 10^2$                  | $20 = 7.22$ $= 7.22 \times 10^{0}$    | 33 = 0.0236                                       | $45 = 0.0446$ $= 4.46 \times 10^{-2}$   |
| 7 = -0.623<br>= $-6.23 \times 10^{-1}$ | 21 = 0.00583                          | $= 2.36 \times 10^{-2}$                           | $46 = 9.67$ $= 9.67 \times 10^{0}$      |
| $8 = -2.20$ $= -2.20 \times 10^{0}$    | $= 5.83 \times 10^{-3}$ $22 = 0.0588$ | $34 = 2.64 \times 10^6$                           |                                         |
| $9 = 304000$ $= 3.04 \times 10^{5}$    | $= 5.88 \times 10^{-2}$ $23 = -71.7$  | 2F 00077 INT                                      | 47 222                                  |
| $10 = 7.04 \times 10^{10}$             | $= -7.17 \times 10^{1}$ $24 = -1.87$  | 35 = 90077 INT.                                   | $47 = 232$ $= 2.32 \times 10^{2}$       |
| 11 = 38.2<br>= $3.82 \times 10^{1}$    | $= -1.87 \times 10^{0}$               | $36 = -2.06 \times 10^{2391}$                     | 48 = 21.0<br>= $2.10 \times 10^{1}$     |
| $12 = 0.450$ $= 4.50 \times 10^{-1}$   | 25 = 109<br>= $1.09 \times 10^{2}$    | $37 = 1280$ $= 1.28 \times 10^{3}$                | $49 = 0.0510$ $= 5.10 \times 10^{-2}$   |
| 13 = 24309 INT.                        | $26 = 55.0$ $= 5.50 \times 10^{1}$    | 38 = 237<br>= $2.37 \times 10^2$                  | 50 = 3010<br>= $3.01 \times 10^3$       |

# 2017-2018 TMSCA Middle School Calculator State Meet Answer Key

| Page 5                                  | Page 6                                                         | Page 7                              |
|-----------------------------------------|----------------------------------------------------------------|-------------------------------------|
| 51 = 0.126<br>= $1.26 \times 10^{-1}$   | $61 = 65.5$ $= 6.55 \times 10^{1}$                             | $73 = 7.42$ $= 7.42 \times 10^{0}$  |
| $52 = 1.14 \times 10^7$                 | $62 = 326$ $= 3.26 \times 10^{2}$                              | 74 = 2230<br>= $2.23 \times 10^3$   |
| $53 = 0.000949$ $= 9.49 \times 10^{-4}$ | $63 = 2.03$ $= 2.03 \times 10^{0}$                             | 75 = 267<br>= $2.67 \times 10^2$    |
| $54 = 1.50 \times 10^{-6}$              | $64 = 31.1$ $= 3.11 \times 10^{1}$                             | $76 = 5.84 \times 10^{-5}$          |
| $55 = -527$ $= -5.27 \times 10^{2}$     | $65 = -1.02 \times 10^{-27}$ $66 = 106$ $= 1.06 \times 10^{2}$ | $77 = 1640$ $= 1.64 \times 10^{3}$  |
| $56 = 0.444$ $= 4.44 \times 10^{-1}$    | $67 = -0.403$ $= -4.03 \times 10^{-1}$                         | 78 = 2.08<br>= $2.08 \times 10^{0}$ |
| 57 = 1.68<br>= $1.68 \times 10^{0}$     | $68 = -0.00359$ $= -3.59 \times 10^{-3}$                       | $79 = 69200$ $= 6.92 \times 10^{4}$ |
| $58 = 1.80 \times 10^{-9}$              | $69 = 25.4$ $= 2.54 \times 10^{1}$                             | 80 = 1.11                           |
| 59 = 3.33                               | 70 = 80.1<br>= $8.01 \times 10^{1}$                            | $= 1.11 \times 10^{0}$              |
| $= 3.33 \times 10^{0}$                  | $71 = 0.154$ $= 1.54 \times 10^{-1}$                           |                                     |
| $60 = 53.0$ $= 5.30 \times 10^{1}$      | 72 = \$11677.40                                                |                                     |

**11.** 
$$37\pi = \pi r^2 \text{ so } r = \sqrt{37}$$
  
  $C = 2\pi(\sqrt{37})$ 

12. 
$$\frac{1}{\sqrt[3]{\ln 57912}}$$

**13.** diagonals = 
$$\frac{n(n-3)}{2} = \frac{222(219)}{2}$$
  
Be sure to look at all digits for the INT.

**24.** For 
$$ax + by = c$$
, the slope is  $\frac{-a}{b}$ . Perpendicular slope is  $\frac{b}{a} = \left(\frac{-4}{5}\right) \div \left(\frac{3}{7}\right)$ 

**25**. 
$$\frac{7}{8}$$
(.31)(400)

**26.** Arith mean = 
$$\frac{2+3+5+7}{4} = 4.25$$
  
Geom mean =  $\sqrt[4]{(2)(3)(5)(7)}$   
Harm mean =  $\frac{1}{\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7}\right)}$ 

Find Product of these three means. **35.** 

$$5(7^5) + 2(7^4) + 3(7^3) + 4(7^2) + 2(7^1) + 1$$

**36.** Calculate 
$$(-2121)^{718}$$
 ignoring the negative since it has an even power. 718  $ENTER$  2121  $EOG$   $X$ 

(Look at the digits to the left of the decimal. This gives 2388 for the exponent. Write down 2388.)

**37.** 
$$\frac{29}{360}[2\pi(512)] + 2(512)$$

**38.** Area = 
$$\frac{side^2\sqrt{3}}{4}$$
 side =  $\sqrt{\frac{2713(4)}{\sqrt{3}}}$ ; Perim= $3\left(\sqrt{\frac{2713(4)}{\sqrt{3}}}\right)$ 

**47.** 
$$r = \sqrt{(5+2)^2 + (3-8)^2}$$
  
 $A = \pi r^2$   
 $= \pi \left[ \sqrt{(5+2)^2 + (3-8)^2} \right]^2$ 

**48.** Longest diagonal for a regular polygon with an odd number of sides is  $\frac{side}{2\sin\left(\frac{90}{n}\right)}$  7.28

 $2\sin\left(\frac{90}{9}\right)$ 

**49.** 
$$\left(\frac{x}{5}\right)^2 + x^2 = .052^2$$

$$\frac{x^2}{25} + \frac{25x^2}{25} = \frac{26x^2}{25} = .052^2$$

$$x = \sqrt{\frac{.052^2(25)}{26}}$$

**50.** 
$$1.6x + 90 = 180$$
  
 $x = \frac{90}{1.6}$   
Long leg:  $y = 1259(\sin 56.25)$   
Short leg:  $z = 1259(\cos 56.25)$   
Perimeter =  $1259 + y + z$ 

**59.** x-intercept, let y = 0;  

$$4x = 8, x = 2 \text{ or } (2,0)$$
  
y-intercept, let x = 0;  $3y = 8$ ,  
 $y = \frac{8}{2} \text{ or } (0, \frac{8}{2})$ 

$$y = \frac{8}{3} \text{ or } \left(0, \frac{8}{3}\right)$$
$$D = \sqrt{(2-0)^2 + \left(0 - \frac{8}{3}\right)^2}$$

**60.**

$$18.2x + 33.6(27.8)$$

$$= 23.5(27.8 + x)$$

$$281 = 5.3x; x = \frac{281}{5.3}$$

**61.** s = semi-perimeter; a,b,c = the sides of triangle

$$\sqrt{s(s-a)(s-b)(s-c)}$$

$$s = 11x;$$

$$11x - 10x = x$$

$$11x - 7x = 4x$$

$$11x - 5x = 6x$$

$$\sqrt{11x(x)(4x)(6x)} = 2791$$

$$11x(x)(4x)(6x) = 2791^{2}$$

$$264x^{4} = 2791^{2}$$

$$x = \sqrt[4]{\frac{2791^{2}}{264}}$$
 The shortest side is
$$5\left(\sqrt[4]{\frac{2791^{2}}{264}}\right)$$

**62.** Surface Area = 
$$2d^2 = 2.13 \times 10^5$$
  $d = \sqrt{\frac{2.13 \times 10^5}{2}}$ 

**71.** 
$$\frac{2}{13}$$

**72.** Sarah :  $10000(1.0315)^5$ Jim:  $10000\left(1+\frac{.0275}{4}\right)^{(4)(5)}$ Sarah's is the better investment.

**73.** 
$$A = \frac{1}{2}\alpha P$$
  
 $423.205 = \frac{1}{2}(11.4127)P$   
 $P = \frac{423.205(2)}{11.4127}$   
Side =  $\frac{423.205(2)}{11.4127} \div 10$ 

**74.** Area of rectangle minus area of circle minus area of triangle.  $h^{2}\sqrt{3}$ 

triangle = 
$$\frac{h^2\sqrt{3}}{3}$$
  
(113.75)(52) -  $\pi$ 26<sup>2</sup> -  $\frac{52^2\sqrt{3}}{3}$ 

**11.** 
$$37\pi = \pi r^2 \text{ so } r = \sqrt{37}$$
  
  $C = 2\pi(\sqrt{37})$ 

12. 
$$\frac{1}{\sqrt[3]{\ln 57912}}$$

**13.** diagonals = 
$$\frac{n(n-3)}{2} = \frac{222(219)}{2}$$
  
Be sure to look at all digits for the INT.

**24.** For 
$$ax + by = c$$
, the slope is  $\frac{-a}{b}$ . Perpendicular slope is  $\frac{b}{a} = \left(\frac{-4}{5}\right) \div \left(\frac{3}{7}\right)$ 

**25**. 
$$\frac{7}{8}$$
(.31)(400)

**26.** Arith mean = 
$$\frac{2+3+5+7}{4} = 4.25$$
  
Geom mean =  $\sqrt[4]{(2)(3)(5)(7)}$   
Harm mean =  $\frac{1}{\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7}\right)}$ 

Find Product of these three means. **35.** 

$$5(7^5) + 2(7^4) + 3(7^3) + 4(7^2) + 2(7^1) + 1$$

**36.** Calculate 
$$(-2121)^{718}$$
 ignoring the negative since it has an even power. 718  $ENTER$  2121  $EOG$   $X$ 

SHOW (Look at the digits to the left of the decimal. This gives 2388 for the exponent. Write down 2388.)

**37.** 
$$\frac{29}{360}[2\pi(512)] + 2(512)$$

**38.** Area = 
$$\frac{side^2\sqrt{3}}{4}$$
 side =  $\sqrt{\frac{2713(4)}{\sqrt{3}}}$ ; Perim= $3\left(\sqrt{\frac{2713(4)}{\sqrt{3}}}\right)$ 

**47.** 
$$r = \sqrt{(5+2)^2 + (3-8)^2}$$
  
 $A = \pi r^2$   
 $= \pi \left[ \sqrt{(5+2)^2 + (3-8)^2} \right]^2$ 

**48.** Longest diagonal for a regular polygon with an odd number of sides is  $\frac{side}{2\sin(\frac{90}{n})}$ 

 $2\sin\left(\frac{90}{9}\right)$ 

**49.** 
$$\left(\frac{x}{5}\right)^2 + x^2 = .052^2$$
  $\frac{x^2}{25} + \frac{25x^2}{25} = \frac{26x^2}{25} = .052^2$ 

$$x = \sqrt{\frac{.052^2(25)}{26}}$$

**50.** 
$$1.6x + 90 = 180$$
  $x = \frac{90}{1.6}$ 

Long leg:  $y = 1259(\sin 56.25)$ Short leg:  $z = 1259(\cos 56.25)$ Perimeter = 1259 + y + z

**59.** x-intercept, let y = 0;  

$$4x = 8, x = 2 \text{ or } (2,0)$$
  
y-intercept, let x = 0;  $3y = 8$ ,

$$y = \frac{8}{3} \text{ or } \left(0, \frac{8}{3}\right)$$
$$D = \sqrt{(2-0)^2 + \left(0 - \frac{8}{3}\right)^2}$$

D = 
$$\sqrt{(2-0)^2 + (0-\frac{3}{3})}$$

$$18.2x + 33.6(27.8)$$

$$= 23.5(27.8 + x)$$

$$281 = 5.3x; x = \frac{281}{5.3}$$

**61.** s = semi-perimeter; a,b,c = the sides of triangle

$$\sqrt{s(s-a)(s-b)(s-c)}$$

$$s = 11x;$$

$$11x - 10x = x$$

$$11x - 7x = 4x$$

$$11x - 5x = 6x$$

$$\sqrt{11x(x)(4x)(6x)} = 2791$$

$$11x(x)(4x)(6x) = 2791^{2}$$

$$264x^{4} = 2791^{2}$$

$$x = \sqrt[4]{\frac{2791^2}{264}}$$
 The shortest side is 
$$5\left(\sqrt[4]{\frac{2791^2}{264}}\right)$$

**62.** Surface Area = 
$$2d^2 = 2.13 \times 10^5$$
  $d = \sqrt{\frac{2.13 \times 10^5}{2}}$ 

**71.** 
$$\frac{2}{13}$$

**72.** Sarah :  $10000(1.0315)^5$ Jim:  $10000 \left(1 + \frac{.0275}{4}\right)^{(4)(5)}$ Sarah's is the better investment.

**73.** 
$$A = \frac{1}{2}aP$$
  
 $423.205 = \frac{1}{2}(11.4127)P$   
 $P = \frac{423.205(2)}{11.4127}$   
Side  $= \frac{423.205(2)}{11.4127} \div 10$ 

**74.** Area of rectangle minus area of circle minus area of triangle.

$$triangle = \frac{h^2\sqrt{3}}{3}$$

$$(113.75)(52) - \pi 26^2 - \frac{52^2 \sqrt{3}}{3}$$