GRADE 100%

TO PASS 80% or higher

## **Recurrent Neural Networks**

LATEST SUBMISSION GRADE

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the  $j^{th}$ word in the  $i^{th}$  training example?

1 / 1 point

- $\bigcirc \ x^{< i > (j)}$
- $\bigcirc \ x^{(j) < i >}$
- $\bigcirc \ x^{< j > (i)}$

Correct

We index into the  $i^{th}$  row first to get the  $i^{th}$  training example (represented by parentheses), then the  $j^{th}$  column to get the  $j^{th}$  word (represented by the brackets).

2. Consider this RNN:

1/1 point



This specific type of architecture is appropriate when:

- $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1 / 1 point







- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct

Correct!

- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

✓ Correct!

4. You are training this RNN language model.

1/1 point



At the  $t^{th}$  time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \ \, \text{Estimating} \,\, P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- $\bigcirc \ \, \text{Estimating} \, P(y^{< t>})$
- Estimating  $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$
- $\bigcirc \ \, \text{Estimating} \, P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$

✓ Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1/1 poin



What are you doing at each time step t?

|    | (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$ . (ii) Then pass the ground-truth word from the training set to the next time-step.                                                                                                                                 |           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$ . (ii) Then pass the ground-truth word from the training set to the next time-step.                                                                                                                                     |           |
|    | (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$ . (ii) Then pass this selected word to the next time-step.                                                                                                                                                          |           |
|    | (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$ . (ii) Then pass this selected word to the next time-step.                                                                                                                                                              |           |
|    | ✓ Correct Yes!                                                                                                                                                                                                                                                                                                                              |           |
| 6. | You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?                                                                                                                                                           | 1/1 point |
|    | O Vanishing gradient problem.                                                                                                                                                                                                                                                                                                               |           |
|    | Exploding gradient problem.                                                                                                                                                                                                                                                                                                                 |           |
|    | ReLU activation function g(.) used to compute g(z), where z is too large.                                                                                                                                                                                                                                                                   |           |
|    | Sigmoid activation function g(.) used to compute g(z), where z is too large.                                                                                                                                                                                                                                                                |           |
|    | ✓ Correct                                                                                                                                                                                                                                                                                                                                   |           |
|    |                                                                                                                                                                                                                                                                                                                                             |           |
| 7. | Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$ . What is the dimension of $\Gamma_u$ at each time step?                                                                                                                                               | 1/1 point |
|    | <ul><li>100</li></ul>                                                                                                                                                                                                                                                                                                                       |           |
|    | ○ 300                                                                                                                                                                                                                                                                                                                                       |           |
|    | O 10000                                                                                                                                                                                                                                                                                                                                     |           |
|    | $\checkmark$ Correct ${\it Correct}, \Gamma_u \ {\it is a vector of dimension equal to the number of hidden units in the LSTM}.$                                                                                                                                                                                                            |           |
| 8. | Here're the update equations for the GRU.                                                                                                                                                                                                                                                                                                   | 1/1 point |
|    | GRU                                                                                                                                                                                                                                                                                                                                         |           |
|    | $\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$                                                                                                                                                                                                                                                                      |           |
|    | $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$                                                                                                                                                                                                                                                                                        |           |
|    | $\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$                                                                                                                                                                                                                                                                                        |           |
|    | $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$                                                                                                                                                                                                                                                                      |           |
|    | $a^{} = c^{}$                                                                                                                                                                                                                                                                                                                               |           |
|    | Alice proposes to simplify the GRU by always removing the $\Gamma_u$ . i.e., setting $\Gamma_u$ = 1. Betty proposes to simplify the GRU by removing the $\Gamma_r$ . i. e., setting $\Gamma_r$ = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences? |           |
|    | $\bigcap$ Alice's model (removing $\Gamma_u$ ), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.                                                                                                                                                                   |           |
|    | $\bigcap$ Alice's model (removing $\Gamma_u$ ), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.                                                                                                                                                                   |           |

igoplus Betty's model (removing  $\Gamma_r$ ), because if  $\Gamma_u \approx 0$  for a timestep, the gradient can propagate back through that timestep without much decay.

| O Betty's model (removing $\Gamma_r$ ), because if $\Gamma_u pprox 1$ for a timesto                                                                                                                                                                                                                                                                                                                                                                          | ep, the gradient can propagate back through that                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| timestep without much decay.                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |  |  |
| $\checkmark$ Correct Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$ .                                                                                                                                                                                                                                                                                                                     |                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |  |  |
| Here are the equations for the GRU and the LSTM:                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |  |  |
| $\operatorname{GRU}$                                                                                                                                                                                                                                                                                                                                                                                                                                         | LSTM                                                             |  |  |
| $\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$                                                                                                                                                                                                                                                                                                                                                                                       | $\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$      |  |  |
| $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$                                                                                                                                                                                                                                                                                                                                                                                                         | $\Gamma_u = \sigma(W_u[a^{< t-1>},x^{< t>}] + b_u)$              |  |  |
| $\Gamma_r = \sigma(W_r[c^{< t-1>},x^{< t>}] + b_r)$                                                                                                                                                                                                                                                                                                                                                                                                          | $\Gamma_f = \sigma(W_f[a^{< t-1>},x^{< t>}] + b_f)$              |  |  |
| $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$                                                                                                                                                                                                                                                                                                                                                                                       | $\Gamma_o = \sigma(W_o[\ a^{< t-1>}, x^{< t>}] + b_o)$           |  |  |
| $a^{< t>} = c^{< t>}$                                                                                                                                                                                                                                                                                                                                                                                                                                        | $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$ |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $a^{< t>} = \Gamma_o * c^{< t>}$                                 |  |  |
| From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to and in the GRU. What should go in the the blanks?                                                                                                                                                                                                                                                                                                             |                                                                  |  |  |
| $left{igorall} \Gamma_u$ and $1-\Gamma_u$                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |  |  |
| $igcap \Gamma_u$ and $\Gamma_r$                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |  |  |
| $igcirc$ $1-\Gamma_u$ and $\Gamma_u$                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |  |  |
| $igcap \Gamma_r$ and $\Gamma_u$                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |  |  |
| ✓ Correct Yes, correct!                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |  |  |
| You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$ . You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$ . You'd like to build a model to map from $x\to y$ . Should you use a Unidirectional RNN or Bidirectional RNN for this problem? |                                                                  |  |  |
| O Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.                                                                                                                                                                                                                                                                                                                                              |                                                                  |  |  |
| O Bidirectional RNN, because this allows backpropagation to c                                                                                                                                                                                                                                                                                                                                                                                                | ompute more accurate gradients.                                  |  |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1                                                              |  |  |

- $\bigodot$  . Unidirectional RNN, because the value of  $y^{<\!t>}$  depends only on  $x^{<\!1>},\dots,x^{<\!t>}$  , but not on  $x^{<\!t+1>},\dots,x^{<\!365>}$
- $\bigcirc \ \ \ \ \, \text{Unidirectional RNN, because the value of} \ y^{< t>} \ \ \text{depends only on} \ x^{< t>}, \text{and not other days' weather.}$

Correct

9.

Yes!