The Basics of Number Theory

Dennis Chen

March 2019

1 Divisibility, GCD, and LCM

1.1 Divisibility

Divisibility seems like such a simple idea; if a divides b (which is denoted as a|b) then $\frac{b}{a}$ must be an integer. However, this falls apart once we start introducing 0 into the equation. For the purpose of letting our definition stay consistent when 0 is introduced, we say that integers a|b if there exists integer c such that ac = b. (We specify a, b as integer for our useful results to stay consistent.)

This means that all a|0 and $0 \not| b$ for all $b \neq 0$, implying 0|0. (Verify this for yourself.)

1.2 Results

Our rigorous definition of divisibility leaves us with some results that we can prove which we would not have obtained using the intuitive method.

- 1. If a|c and b|c then a|c. (This may be referred to as the "chain rule" of divisibility.)
- 2. If a|b then a|bc for all integer c.
- 3. If a|b and a|c, then a|b+c and a|b-c.

1.3 GCD and LCM

We define $gcd(a_1, a_2 \dots a_n)$ as the largest positive integer such that

$$\gcd(a_1, a_2 \dots a_n) | a_1, a_2 \dots a_n.$$

Similarly, we define $lcm(a_1, a_2 ... a_n)$ as the smallest **positive** integer such that $a_1, a_2 ... a_n | lcm(a_1, a_2 ... a_n)$.

2 Fermat's Little Theorem

Theorem 1. (Fermat's Little Theorem) Consider a prime p. For relatively prime $a, p, a^{p-1} \equiv 1 \pmod{p}$.

Proof. (Induction) For the inductive proof, we prove that $a^p \equiv a \pmod{p}$ instead.

This is obviously true for the base case a=1.

Now assume that this is true for a = n. Then

$$(n+1)^p \equiv n^p + \binom{p}{1} n^{p-1} + \binom{p}{2} n^{p-2} + \dots + 1.$$

But notice that $\binom{p}{1}, \binom{p}{2}, \ldots, \binom{p}{p-1}$ are all divisible by p, so

$$n^{p} + {p \choose 1} n^{p-1} + {p \choose 2} n^{p-2} + \dots + 1 \equiv n^{p} + 1 \equiv n+1,$$

as desired. \Box

Proof. (Rearrangement) Notice that $a, 2a, 3a \dots a(p-1)$ is a rearrangement of $1, 2, 3 \dots p-1$ taken (mod p). We prove this by contradiction. Assume that there are two integers such that $ax \equiv ay \pmod{p}$. Since $\gcd(a, p) = 1$, we can divide both sides by a to yield $x \equiv y$. But this is obviously not possible. Thus, contradiction

Then we notice that because of our proven rearrangement, $(p-1)! \equiv a^{p-1}(p-1)! \pmod{p}$. As $\gcd(p, (p-1)!) = 1$, we can divide both sides by (p-1)! to get $1 \equiv a^{p-1} \pmod{p}$, as desired.

3 The Totient Function

Theorem 2. (Multiplicity) For relatively prime $m, n, \phi(m) \cdot \phi(n) = \phi(mn)$.

Theorem 3. (Product Formula) For $n = p_1^{e_1} \cdot p_2^{e_2} \dots p_n^{e_n}$, $\phi(n) = n^{\frac{p_1-1}{p_1}} \cdot \frac{p_2-1}{p_2} \dots \frac{p_n-1}{p_n}$.

Theorem 4. (Euler's Totient Theorem) For relatively prime $a, n, a^{\phi(n)} \equiv 1 \pmod{n}$.

4 Modular Inverses

In normal arithmetic, $a \cdot a^{-1} = 1$. In modular arithmetic, a^{-1} is the number such that $a \cdot a^{-1} \equiv 1 \pmod{n}$. We say that a^{-1} is the inverse of $a \pmod{n}$.

Of course, the modular inverse is defined if and only if gcd(a, n) = 1.

5 Wilson's Theorem

Theorem 5. (Wilson's Theorem) For prime p,

$$(p-1)! \equiv -1 \pmod{p}.$$

Proof. Notice that the numbers $2,3,4\dots p-2$ all have modular inverses. In addition, modular inverses come in pairs. Since p is odd (the case where p=2 is very easy to deal with), then the modular inverses all multiply to 1. This leaves us with $(p-1)! \equiv 1 \cdot (p-1) \equiv -1 \pmod{p}$, as desired.

As an exercise, prove that $(p-2)! \equiv 1 \pmod{p}$. (This is quite easy to do directly with Wilson's.)

6 Homework Problems

- 1. Find the inverse of 2 \pmod{p} for odd prime p in terms of p.
- 2. Let n be a 5-digit number, and let q and r be the quotient and the remainder, respectively, when n is divided by 100. For how many values of n is q+r divisible by 11?
- 3. Prove $\phi(n)$ is composite for $n \geq 7$.
- 4. Let F(n) be the sum of the divisors of n. Prove that $\phi(n)|nF(n)$.
- 5. How many integer values of $1 \le x \le 100$ makes $x^2 + 8x + 5$ divisible by 10^9
- 6. Find the remainder of $(1^3)(1^3+2^3)(1^3+2^3+3^3)\dots(1^3+2^3+3^3\dots+99^3)$ when divided by 101.
- 7. Find all odd n such that $\frac{1}{n}$ expressed in base 8 is a repeating decimal with period 4.
- 8. Find the remainder of $5^{31} + 5^{17} + 1$ when divided by 31.