Assessment Schedule – 2012

Mathematics and Statistics: Apply calculus methods in solving problems (91262)

Evidence Statement

Q	E	vidence	Achievement (u)			Merit (r)			Excellence (t)		
			Apply calculus methods in solving problems.			Apply calculus methods, using relational thinking, in solving problems.			Apply calculus methods, using extended abstract thinking, in solving problems.		
ONE (a)	f'(x) = 6x $f'(2) = 14$		Correct.								
(b)	p(x) = 4x or $p(x) = 4x - 4x$	$-\frac{6x^3}{3} + 13$ $-2x^3 + 13$	Correct.								
(c)	v = 0.2 t + When $v = $ $8 = 0.2t + $ $t = 15 secs$	8 5	Finding expression for <i>v</i> and equating to 8.			Finding	the value of	t.			
(d)	$f' = -0.2 + \frac{2v}{250}$ $f' = -0.2 + \frac{2 \times 25}{250} = 0$ So $v = 25$ $\Rightarrow \text{ turning point}$ Shape of parabola or		Finding expression for f' .			Substitute 25 for v and show the value of the expression is 0 or find $v = 25$ from $f' = 0$					
	$f'' > 0 \Longrightarrow \min $ minimum								Justification.		
(e)	(e) $a = 5 - \frac{1}{4}t$ $v = 5t - \frac{t^2}{8} + c$ $t = 0, v = 0$ $\Rightarrow c = 0$ $s = \frac{5t^2}{2} - \frac{t^3}{24} + c$ $t = 0, s = 0 \Rightarrow c = 0$ When $t = 30$ $s = 1125 \text{ metres}$		Finding expression for v.			Finding expression for s.			Finding the distance when $t = 30$.		
	NØ N1		N2	A3		A4	M5	N	Л6	E7	E8
No response; no relevant evidence Attempt at one question		Attempt at one question	1 of u	2 of u	3	3 of u	1 of r	2	of r	1 of t	2 of t

Q		Evidence			A	chievement (u)	Me	rit (r)	Excellence (t)	
TWO (a)	x intercept aligns with turning point				Cor	rect				
(b)(i)	h'(x) = 2x - 12 = 4 x = 8				Correct <i>x</i> co-ordinate found.					
(ii)	h'(1) = 2 - 12 = -10 y + 11 = -10(x - 1) y = -10x - 1				Gradient found. Equation correct.					
(c)	$g'(x) = 3x^{2} - 18x + 24$ $x^{2} - 6x + 8 = 0$ $2 < x < 4$ Justification: Shape of cubic OR check gradient at a point.			Derivative found and set equal to 0.		Solution without justification.		Justified solution.		
(d)	$A = \frac{1}{2}ax^2 - \frac{1}{2}x^3$ $\frac{dA}{dx} = ax - \frac{3}{2}x^2$ $\frac{dA}{dx} = 0$ $x = \frac{2a}{3}$ $\max A = \frac{2a^3}{27}$					Derivativ	e found.	x found.		
-	NØ N1 N2		A	.3	A4	M5	M6	E7	E8	
	sponse; no	Attempt at one question	1 of u	2 0	of u	3 of u	1 of r	2 of r	1 of t	2 of t

Q		Evider	ice		Achievemen	t (u)		Merit (r)	Excelle	ence (t)
THREE (a)	$f(x) = \frac{3}{2}$ $f(6) = 7$ Hence (2 - 36			Anti-differenti found.	ation	Coc	ordinates nd.		
(b)	$\frac{dV}{dx} = 3x^2$ When $x = 5$, $\frac{dV}{dx} = 75$			Rate of change of volume found.						
(c)	Minimu	e cubic drawn with am at $(a, 0)$ and matept on $h'(x)$			Positive cubic drawn.		with and with	nic drawn n min at (a,0) max aligned n tercept.		
(d)	A = -14 $33 = 2 > B = 21$	= $6 \times 4 + A = 10$ $4 \times -8 - 14 \times -2 + B$ $4 \times x^3 - 14x + 21$			f'(x) found an equal to 10.	d set	B fo	ound.	Coordina found.	tes
(e)	$A = \frac{1}{2} \pi (1+2t)^{2}$ $\frac{dA}{dt} = 2\pi + 4\pi t$ $\frac{dA}{dt} = 60$ $t = 4.27$ Width = 9.55 m			Derivative four	nd.	A'=60		Width for	und.	
NØ		= 9.55 m N1	N2	A3	A4	N./	5	M6	E7	E8
No response	nse; no	no Attempt at one 1 of u 2 of u 3 of u 1 of r 2 of		2 of r	1 of t	2 of t				

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
Score range	0 – 7	8 – 14	15 – 20	21 – 24	