We're going to see what regularization does to bias and variance in order to understand when to use it.

Example model:
$$f_{\vec{w},b}^{(\vec{x})} = \omega_i x + \omega_2 x^2 + \omega_3 x^3 + \omega_4 x^4 + b$$

$$T(\vec{w},b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}^{(i)}(\vec{x}^{(i)}) - \gamma^{(i)})^2 + \sum_{i=1}^{m} \sum_{j=1}^{m} \omega_j^2$$

If
$$\lambda = 10,000$$
 (too high)
$$f_{\overline{w},b}(\overline{x}) \approx b,$$

because in case of > being too high, the model makes the parameters very small - almost zero

Small λ (\approx 0) means regularization might not even occur which means it overfit (high variance)

Intermediate >. Regularization happens

If you're looking for perfect value for λ , the J_{cv} can be used

Try multiple values for x and see for which J_{cv} is the lowest.

1. Try
$$\lambda = 0 \rightarrow \min_{\overrightarrow{w}, b} \mathcal{I}(\overrightarrow{w}, b) \rightarrow \omega^{(1)}, b^{(1)} \rightarrow \mathcal{I}_{cv}(\omega^{(1)}, b^{(1)})$$

2. Try $\lambda = 0.01 \rightarrow \omega^{(2)}, b^{(2)} \rightarrow \mathcal{I}_{cv}(\omega^{(2)}, b^{(2)})$

2. Try
$$\lambda = 0.01 \rightarrow$$

$$\rightarrow \omega^{(2)}, b^{(2)} \rightarrow T_{cv}(\omega^{(2)}, b^{(3)})$$
3. Try $\lambda = 0.02 \rightarrow$

$$\rightarrow \omega^{(3)}, b^{(3)} \rightarrow T_{cv}(\omega^{(3)}, b^{(3)})$$

4. Try
$$\lambda = 0.04 \rightarrow \omega^{(12)}$$
, $b^{(12)} \rightarrow J_{cv}(w^{(12)}, b^{(12)})$

12. Try $\lambda = 10 \rightarrow \omega^{(12)}$, $b^{(12)} \rightarrow J_{cv}(w^{(12)}, b^{(12)})$

Check for which w, b is J_{cv} is the least

For example:-

If w^{5} , b^{5} is trained on the training set and T_{cv} is the lowest, then check test ever — $T_{test}(w^{5},b^{5})$

To get even further intuition, let's see how λ affects training even and wass validation ever.

$$J(\vec{\mathbf{w}}, b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} w_{j}^{2}$$

If $\lambda = 0$, I train will be low as regularization doesn't even occur and keeps increasing. Whereas, Icv is high, decreases and then keeps on increasing.