

Context-Aware Plagiarism Detection

Evelyn Yee - CS 329T

Background

Plagiarism is a classic issue in education, and it has **only gotten easier** with the development of LLMs.

- Difficult false positives: critique, citing, reference
- Difficult false negatives: paraphrasing, summary

Our goal: **Empower** instructors to more effectively identify plagiarism in student works.

To do this, a plagiarism detection system needs to:

- run quickly on documents of different sizes and in different contexts
- dynamically adapt over time, as students make new submissions and the corpus of relevant source documents also changes
- provide verifiable evidence, allowing instructors to make informed assessments of student work
- consider nuance in the provided literary context

Dimensions of Trust

Grounding

- Plagiarism accusations need to be grounded in evidence from both the student's submission and the source documents.
- Grounding gives instructors **specific evidence** to evaluate, expediting the evaluation process.

Interpretability

• A human-readable Chain of Thought report allows the instructor to understand the assessment, rather than having to blindly accept the score..

Confidence

• The system acknowledges when it is less confident, allowing instructors to make informed choices about how to handle the result.

Pipeline

Jooyoung Lee, Toshini Agrawal, Adaku Uchendu, Thai Le, Jinghui Chen, and Dongwon Lee. 2024. Plagbench: Exploring the duality of large language models in plagiarism generation and detection

Baselines

- **Text Heuristics**: logistic regression on n-gram maximum similarity metrics
- Parametric Knowledge: Chain of Thought without access to source documents
- **Direct Prompting**: RAG with non-Chain of Thought prompt

Performance

Classification Performance

Pipeline	Precision	Recall	Accuracy	
		5	Fine	Coarse
N-gram Heuristics	100.00	83.05	87.70	91.80
Zero-shot CoT	50.00	1.69	0.00	51.64
RAG + Direct Prompt	68.60	100.00	35.59	77.87
RAG + CoT	74.68	100.00	52.50	83.61

RAG Trio

Pipeline	Context Relevance	Groundedness	Answer Relevance
Zero-shot CoT	_	46.76	89.34
RAG + Direct Prompt	86.07	79.91	69.67
RAG + CoT	85.25	67.79	100.00

Evaluated using the TruLens framework, with custom criteria for the plagiarism detection task.

Verbalized Confidence

Conclusions

- RAG offers a **lightweight**, **scalable**, and **customizable** approach to plagiarism detection
 - Retrieval and Chain of Thought are essential to the system performance
- For this task, **n-grams are accurate** if you have definite access to the single source document
 - o lower interpretability + confidence
- Interpretability is key for real-life deployment
 - promote seamless integration between humans and trustworthy AI systems