

NBIS Omics Integration and Systems Biology workshop Fall 2020, Lund University

Jonathan Robinson

National Bioinformatics Infrastructure Sweden (NBIS) Science for Life Laboratory (SciLifeLab) Chalmers University of Technology jonathan.robinson@scilifelab.se

Metabolism provides the energy and building blocks necessary to sustain life.

We can generally measure metabolite concentrations

...but what is often important is the flow or **flux** of metabolites through the reactions.

Assume that we want to know the production rate of **B**, but can only measure the concentration of **A**

$$\frac{dA}{dt} = -v_1$$

$$\frac{dB}{dt} = v_1$$

The Stoichiometric Matrix

Reactions

The Stoichiometric Matrix

Reactions r2 G₆P F6P **FBP DHAP** G₃P

The Stoichiometric Matrix

Genome-scale model (GEM)

...

Other IDs

Chemical formula Charge InChl code

Other external IDs

Name

KEGG ID Compartment Name **Symbol** r2 r3 r4 r5 **Symbol** glucose 6-phosphate G6P C00668 cytosol [c] 0 0 0 0 cytosol [c] fructose 6-phosphate F6P C00085 0

cytosol [c] fructose-1,6-bisphosphate FBP C00354

dihydroxyacetone phosphate 0 C00111 DHAP cytosol [c]

G₃P 0 0 0 cytosol [c] glyceraldehyde 3-phosphate C00118

...

DHAP

G₃P

Genome-scale model (GEM)

Transcript IDs
GO Terms
Orthologs

. . .

Symbol	r1	r2	r3	r4	r5
G6P	-1	0	0	0	0
F6P	1	-1	1	0	0
FRP	0	1	-1	-1	0

Reactions are linked to genes that encode the enzymes that catalyze the reaction.

P60174

These associations are often called "gene-protein rules" (GPR rules)

GPR Rules

GPR Rules enable more accurate simulation of gene inactivation/knock-out

Knockout	Effect		
E1	none		
E2	none		
E1 + E2	rA inactive		
E3a	rB inactive		
E3b	rB inactive		
E3a + E3b	rB inactive		

GEMs as an integrative tool

FBA seeks to calculate the reaction **fluxes** (**v**) of a network

The calculation is based on the **conservation of mass**: it cannot be created or destroyed

$$\frac{dX}{dt} = v_{produce} - v_{consume}$$

$$\frac{d[G6P]}{dt} = -v_1 + v_{in}$$

$$\frac{d[G3P]}{dt} = v_4 + v_5 - v_{out}$$

A key assumption to FBA is **steady state**: metabolite concentrations are **constant** with respect to time!

$$\frac{dX}{dt} = v_{produce} - v_{consume} = 0$$

This assumption allows us to **ignore enzyme kinetics**, thus eliminating **many** unknown parameters

We can further constrain the solution space by limiting reaction fluxes based on their reversibility:

Since the problem is still **under-defined**, FBA uses linear **optimization** to identify a solution that maximizes (or minimizes) some **objective**

Exercise: COBRApy

COBRApy (COnstraint-Based Reconstruction and Analysis) is a package that facilitates the use of GEMs in python

The exercise will walk through the basics of GEM structure, functionality, flux balance analysis, and gene knockouts.