FLEETO

-Android Application

Presenters-

Vivek Ramji

Rupesh Joshi

MOTIVATION

- One does not know exactly when to leave in order to reach the airport on time.
- Unavailability of various factors (like fastest route, climate, construction sites, future climate delay and road traffic) clubbed together in one single application.
- If all these factors can be assimilated in a appropriate manner then it can help in estimating the travel time.

INTRODUCTION

- The main motto of this android application is to aid the user to get to the airport within the scheduled departure time taking into account various factors like:
- Current Climate
- Future Climate
- Roadway Traffic (includes delay due to constructions and incidents)

Current Apps Vs Our App

- Apps already present in Google Play for the flight statistics: FlightStats, FlightAware, etc
- It just tells us about the stats but nothing about how to get there on time depending on many factors.
- For the fastest route, separate apps needs to be used. (like Google Maps)
- To check the climate, again a separate app needs to be used! (like AccuWeather)

Current Apps Vs Our App

 What if everything is clubbed together and only one application suffices for all your need!!

FLEETO!!

 Our app incorporates all of the mentioned services making use of some APIs available over the internet and provides data which is accurate and dynamic.

DESIGN

- APIs used:
- FlightStats To get the flight details viz.
 Airline name, departure date and time, terminal, *DELAY*.
- Wunderground To get the hourly climatic conditions for the entire day.
- Google Maps API v2 For plotting travel route, displaying construction sites and incidents, traffic layer, customized navigation

DESIGN

- MapQuest Traffic API To get the list of details about the constructions and incidents happening in the vicinity.
- Google Directions API To get the fastest route to the airport from the current location.

Cloud Used:

To maintain the user information and the associated search history, we used AWS EC2 cloud

BLOCK DIAGRAM OF THE APPLICATION

Register Button clicked

Flight: EK-208

Departure Date: 5-19-2015

Boarding Point: JFK

Flight: AI-102

Departure Date: 5-19-2015

Boarding Point: JFK

Flight: AI-102

Departure Date: 5-20-2015

Boarding Point: JFK

Flight: AI-102

Departure Date: 5-17-2015

Boarding Point: JFK

Start New Search

Start New Search Button

Flight Details:

Flight: AI-102

Carrier: Air India

Date: 5-20-2015

Airport: John F. Kennedy

International Airport

Scheduled 2015-05-20 **Dept Time:** at 15:10:00

Estimated 2015-05-20 **Dept Time**: at 15:10:00

Departure 4 Terminal:

Delay Statistics

Future Delay Estimator (FDE)

- Created a module which can predict the future delay at the future location at the corresponding future time.
- The delay is assumed to be equal to the addition of quantitative precipitation factor (QPF) and the snow fall level.
- Needs to be calibrated on trial and error basis.

Current Location

A

Current Time

X

Current Location A

Current Time X Future Location B

Future time X + (travel time / 2)

Current Location A

Current Time X Future Location B

Future time X + (travel time / 2)

Future Location C

Future Time X + travel time

Current Location A

Current Time X Future Location B

Future time Y= X + (travel time / 2)

QPF and/or snow level for Loc B at time Y Future Location C

Future Time Z= X + travel time

QPF and/or snow level for Loc C at time Z

TECHNICAL CHALLENGES

- Configuring Database instance on AWS
- Achieving Network to GPS Hand-Off while in Navigation Activity
- Thread-Safe programming
- Parsing nested XML with same tag names
- Future Delay Estimation on the basis of climatic conditions
- Decoding routing encrypted data

TAKE AWAY POINTS

- Be careful with the Activity Life Cycle!
- Always carry out internet related work (like calling APIs) on a separate thread.
- Never try to access UI components from a thread. Use "runOnUIThread" instead.
- Design a thread-safe program in order to avoid crashes at later stage.

FUTURE SCOPE

- To support different modes of transport.
- Voice guided navigation.
- Calibrate the FDE model to predict a more accurate delay time.
- · Push notifications.

QUESTIONS?