ASSQ3

April 12, 2024

1 Question3 a

```
[1]: # Reading the data into Python
   import pandas as pd
   import numpy as np
   from matplotlib import pyplot as plt
   from sklearn.preprocessing import StandardScaler
   from sklearn.cluster import KMeans
   from sklearn.metrics import silhouette_score
   from matplotlib.ticker import MaxNLocator
   from sklearn.decomposition import PCA
   from sklearn.metrics import confusion_matrix, classification_report
   from sklearn.utils import resample
   import warnings
   df = pd.read_excel("data_q3.xlsx");
   warnings.filterwarnings("ignore")
```

```
[2]: # Q3a Data preprocessing.
     print("Number of observation: ", df.shape[0])
                                                      # check dimension
     print("Any NA value:", df.isnull().values.any()); # Check for missing values
     print("Any row duplictaes:",df.duplicated().any());# check for dupllicates rows
     df = df.dropna()
     df.reset_index(drop=True, inplace=True)
     #Check for data error(negative values)
     num_error = (df.select_dtypes(include=['float64', 'int64']) < 0).sum()</pre>
     print(num_error)
     #Check datatype
     print(df.dtypes)
     #check outliers
     interest = ["InboundRatio", "InternationalStudentsNO", "KOFPoGI", "KOFEcGI", "

¬"KOFSoGI", "top_50_count",
                        "top_100_count", "top_500_count", "top_1000_count"]
     for i in interest:
         df.boxplot(i)
         plt.title(i)
         plt.tight_layout()
         plt.show()
```

```
# check normalization

df[["InboundRatio","InternationalStudentsNO","KOFPoGI","KOFEcGI","KOFSoGI","ISCED5_

Dercentage","ISCED6 Percentage","ISCED7 Percentage","ISCED8 Percentage",

"top_50_count","top_100_count","top_500_count","top_1000_count"]].describe()
```

Number of observation: 49 Any NA value: True Any row duplictaes: False Tertiary Percentage 0 ISCED5 Percentage 0 0 ISCED6 Percentage ISCED7 Percentage 0 0 ISCED8 Percentage 0 InternationalStudentsNO 0 KOFGI 0 KOFGIdf 0 KOFGIdj 0 KOFPoGI 0 KOFPoGIdf 0 0 KOFPoGIdj KOFSoGI 0 KOFSoGIdf 0 0 KOFSoGIdj KOFInGI 0 KOFInGIdf 0 KOFInGIdj 0 0 KOFIpGI 0 KOFIpGIdf KOFIpGIdj 0 KOFCuGI 0 KOFCuGIdf 0 KOFCuGIdj 0 KOFEcGI 0 KOFEcGIdf 0 0 KOFEcGIdj 0 KOFTrGI KOFTrGIdf 0 0 KOFTrGIdj KOFFiGI 0 KOFFiGIdf 0 0 KOFFiGIdj KOFSoGI_WithoutInterpersonal 0 InboundRatio 0 top_50_count 0 top_100_count 0 top_500_count 0 top_1000_count 0

total_ranked_universities	0
dtype: int64	
country_x	object
code	object
Tertiary Percentage	float64
ISCED5 Percentage	float64
ISCED6 Percentage	float64
ISCED7 Percentage	float64
ISCED8 Percentage	float64
country_y	object
year	int64
InternationalStudentsNO	int64
KOFGI	int64
KOFGIdf	int64
KOFGIdj	int64
KOFPoGI	int64
KOFPoGIdf	int64
KOFPoGIdj	int64
KOFSoGI	int64
KOFSoGIdf	int64
KOFSoGIdj	int64
KOFInGI	int64
KOFInGIdf	int64
KOFInGIdj	int64
KOFIpGI	int64
KOFIpGIdf	int64
KOFIpGIdj	int64
KOFCuGI	int64
KOFCuGIdf	int64
KOFCuGIdj	int64
KOFEcGI	int64
KOFEcGIdf	int64
KOFEcGIdj	int.64
KOFTrGI	int64
KOFTrGIdf	int64
	int64
KOFTrGIdj KOFFiGI	int64
KOFFIGIdf	int64
KOFFiGIdj	int64
KOFSoGI_WithoutInterpersonal	float64
InboundRatio	float64
top_50_count	int64
top_100_count	int64
top_500_count	int64
top_1000_count	int64
total_ranked_universities	int64
WESP	object
dtype: object	

[2]:		${\tt InboundRatio}$	InternationalStudentsNO	KOFPoGI	KOFEcGI	KOFSoGI	\
	count	42.000000	42.000000	42.000000	42.000000	42.000000	
	mean	9.368033	117317.380952	84.952381	71.976190	79.976190	
	std	8.016693	183894.022375	13.510524	12.994348	9.358674	
	min	0.219050	1546.000000	29.000000	42.000000	59.000000	
	25%	3.549540	22034.250000	79.500000	64.000000	73.250000	
	50%	7.800560	49007.000000	89.500000	76.500000	83.000000	
	75%	12.455103	114335.750000	93.000000	82.000000	87.000000	
	max	35.293780	976562.000000	98.000000	90.000000	91.000000	
		ISCED5 Percent	tage ISCED6 Percentage	ISCED7 Perc	entage \		
	count	42.000	0000 42.000000	42.	000000		
	mean	10.62	6414 45.236110	18.69704961.083925			
	std	9.80	1015 13.083961				
	min	0.004	4350 12.319206				
	25%	2.52	38.851575				
	50% 8.476903		6903 44.474409	14.	806317		
	75%	16.899	9843 54.239022	21.	464752		
	max	41.86	3344 68.238077	35.507974			
		ISCED8 Percent	tage top_50_count top_	100_count t	op_500_coun	.t \	

count	42.000000	42.000000	42.000000	42.000000
mean	2.098529	1.095238	2.261905	10.214286
std	1.353961	3.259579	5.793434	16.543418
min	0.000000	0.000000	0.00000	0.000000
25%	0.804222	0.000000	0.00000	2.000000
50%	2.085667	0.000000	0.00000	5.000000
75%	2.887539	0.000000	2.500000	12.750000
max	5.152113	19.000000	33.000000	94.000000

```
top_1000_count
count
             42.000000
             18.642857
mean
std
             26.709660
min
              0.000000
25%
              6.250000
50%
              9.500000
75%
             24.250000
            156.000000
max
```

In this dataset, we have 49 observations with missing values and no row duplicates. There is no negative value in the numeric variables. We also observe a few outliers in those numeric variables, as indicated by box plots. Since the standard deviation of those variables is quite different, we have to standardize them (This is done in later parts), which is a crucial step for cluster analysis as the distance between data points is a major determinant. Variables on different scales will result in a bias for cluster analysis. Data balancing is not needed for this cluster analysis question. We begin our analysis by dropping all the NA values.

2 Question3 b

```
[3]: # Standardising all continious variables

variables_ofstd =

□ □ ["InboundRatio", "InternationalStudentsNO", "KOFPoGI", "KOFEcGI", "KOFSoGI", "ISCED5

□ Percentage", "ISCED6 Percentage", "ISCED7 Percentage", "ISCED8 Percentage",

"top_50_count", "top_100_count", "top_500_count", "top_1000_count"];

std= df[variables_ofstd];

scaler = StandardScaler(); # creating object

fitted = scaler.fit(std);

df_std = pd.DataFrame(fitted.transform(std))
```

```
[4]: # Elbow method
np.random.seed(1)
from sklearn.cluster import KMeans
def wcss(x, kmax): #wcss Function: The wcss function calculates the
within-cluster sum
#of squares (WCSS) for different numbers of clusters.
wcss_s = [] #wcss_s: This list will store the WCSS values for different
numbers of clusters.
```

```
for k in range(2, kmax + 1):
        kmeans = KMeans(n_clusters = k);
        kmeans.fit(x);
        wcss_s.append(kmeans.inertia_); # sample distances to closest cluster_
 \hookrightarrow center
    return wcss s
# Plot
from matplotlib import pyplot as plt
fig = plt.figure(figsize = (19,11));
ax = fig.add_subplot(1,1,1);
kmax = 10; # maximum number of clusters
ax.plot(range(2, kmax + 1), wcss(df_std, kmax));
ax.tick_params(axis="both", which="major", labelsize=20);
ax.set_xlabel("Number of clusters", fontsize = 25);
ax.set_ylabel("Sum of squared error", fontsize = 25);
ax.set_title("Sum of squared error by number of clusters", fontsize = 25);
plt.show();
#Silihouse score
np.random.seed(100)
def Silhouette(x, kmax):
    sil = []
    for k in range(2, kmax+1):
        kmeans = KMeans(n_clusters = k).fit(x)
        sil.append(silhouette_score(x, kmeans.labels_, metric = "euclidean"))
    return sil
# Plot
fig = plt.figure(figsize = (19,11));
ax = fig.add_subplot(1,1,1);
ax.plot(range(2,kmax+1) , Silhouette(df_std,kmax));
ax.tick_params(axis="both", which="major", labelsize=20);
ax.set_xlabel("Number of clusters", fontsize = 25);
ax.set_ylabel("Silhouette score", fontsize = 25);
ax.set_title("Silhouette score by number of clusters", fontsize = 25);
ax.xaxis.set_major_locator(MaxNLocator(integer=True)) # to force intergers in_
 \rightarrow x-axis
plt.show();
```


It is not quite intuitive where the elbow effect happens, but it could be at K=3, 4, or 5 since the SSE decreased quite significantly with respect to lower K values. For K values greater than 5, the SSE decreases, but not as dramatically. The Silhouette scores plot favors K=2 and 4, but the SSEs for

K=2 are too high in the Elbow method. Therefore, we propose K=4 (four clusters for the dataset). We can reduce the dimensionality of the data via PCA for visual inspection (See later parts).

```
[5]: # We now perform visital inspection via reducing dimesionality (PCA)
     from sklearn.decomposition import PCA
     pca = PCA(n_components=2);# First two components
     principalComponents = pca.fit_transform(df_std);
     PCs = pd.DataFrame(data = principalComponents, columns = ["PC1", "PC2"]);
     kmeans = KMeans(n_clusters = 4, init = "k-means++", random_state = 42);
     y_kmeans = kmeans.fit_predict(df_std); # predictions of clusters
     # Plotting PCs
     fig = plt.figure(figsize = (19,11));
     ax = fig.add subplot(1,1,1);
     plt.scatter(PCs.iloc[y_kmeans == 0, 0], PCs.iloc[y_kmeans == 0, 1], s=60,
     c="red", label = "Cluster1");
     plt.scatter(PCs.iloc[y_kmeans == 1, 0], PCs.iloc[y_kmeans == 1, 1], s=60,
     c="blue", label = "Cluster2");
     plt.scatter(PCs.iloc[y_kmeans == 2, 0], PCs.iloc[y_kmeans == 2, 1], s=60,
     c="green", label = "Cluster3");
     plt.scatter(PCs.iloc[y_kmeans == 3, 0], PCs.iloc[y_kmeans == 3, 1], s=60,
     c="yellow", label = "Cluster4");
     plt.xlabel("PC1", fontsize = 25);
     plt.ylabel("PC2", fontsize = 25);
     ax.set_title("Clusters - K=4", fontsize = 25);
     plt.legend(fontsize = 20);
     plt.show();
     # Total variability explained by first two
     print(" The variability explained by first two principal components is " +u
      ⇒str(np.sum(pca.explained variance ratio )*100) + "%")
```


The variability explained by first two principal components is 64.97013208955245%

```
[6]: # print out countries in differnt clusters.
     df["Cluster_Kmean"] = pd.DataFrame(y_kmeans);
     print("Cluster 1:\n", list(df["country_x"][(df["Cluster Kmean"]==0)]));
     print("Cluster 2:\n", list(df["country_x"][(df["Cluster_Kmean"]==1)]));
     print("Cluster 3:\n", list(df["country_x"][(df["Cluster_Kmean"]==2)]));
     print("Cluster 4:\n", list(df["country_x"][(df["Cluster_Kmean"]==3)]));
    Cluster 1:
     ['Argentina', 'Brazil', 'Chile', 'China', 'Colombia', 'Japan', 'Kazakhstan',
    'Malaysia', 'Mexico', 'Mongolia', 'Russia', 'Saudi Arabia', 'South Africa',
    'Turkey']
    Cluster 2:
     ['Australia', 'Canada', 'France', 'Germany', 'United Kingdom']
    Cluster 3:
     ['Austria', 'Belgium', 'Cyprus', 'Czech Republic', 'Denmark', 'Hong Kong',
    'Hungary', 'Iceland', 'Ireland', 'Italy', 'Latvia', 'Netherlands', 'New
    Zealand', 'Norway', 'Poland', 'Portugal', 'Qatar', 'Slovak Republic',
    'Slovenia', 'Spain', 'Sweden', 'Switzerland']
    Cluster 4:
     ['USA']
```

We could observe a clear separation between the clusters, and there is no overlap in the figure. It seems that K=4 also represents the definition of the clusters quite well. The first 2 principal

components explain approx 65% of the variability of the data. More importantly, the 4 clusters are well-defined in the PC1 and PC2 scatter plots.

3 Question3 c

The largest distance can be found between approximately 9 and 15, generating 3 clusters (Vertical line at 9). Hence, we propose 3 clusters for this method.

```
[8]: #We now perform visital inspection via reducing dimesionality (PCA)
from sklearn.cluster import AgglomerativeClustering
model = AgglomerativeClustering(n_clusters=3, linkage="ward",
compute_distances = True);
model.fit(df_std);
df["Cluster_Agg"] = pd.DataFrame(model.labels_);
clusters3 = model.labels_;
```

```
pca = PCA(n_components=2);
principalComponents = pca.fit_transform(df_std);
print("Variability explained by first 2 PCs: ", round(np.sum(pca.
 ⇔explained_variance_ratio_),2))
PCs = pd.DataFrame(data = principalComponents, columns = ["PC1", "PC2"]);
# Plotting PCs
fig = plt.figure(figsize = (19,11));
ax = fig.add_subplot(1,1,1);
plt.scatter(PCs.iloc[clusters3 == 0, 0], PCs.iloc[clusters3 == 0, 1], s=20,
 ⇔c="red", label = "Cluster1");
plt.scatter(PCs.iloc[clusters3 == 1, 0], PCs.iloc[clusters3 == 1, 1], s=20,

¬c="blue", label = "Cluster2");
plt.scatter(PCs.iloc[clusters3 == 2, 0], PCs.iloc[clusters3 == 2, 1], s=20,
 ⇔c="green", label = "Cluster3");
plt.ylabel("PC2", fontsize = 25);
ax.set_title("Hierarchical clustering K =3", fontsize = 25);
plt.legend(fontsize = 20);
plt.show();
```

Variability explained by first 2 PCs: 0.65

Since we can not plot all the variables simultaneously, we would reduce the dimensionality of the dataset through PCA. The first 2 principal components explain 65% of the variability of the data. More importantly, the 3 clusters are well-defined in the PC1 and PC2 scatter plots.

4 Question3 d

```
[9]: # print out countries in differnt clusters to describe.
    print("Cluster 1:\n", list(df["country_x"][(df["Cluster_Agg"]==0)]));
    print("Cluster 2:\n", list(df["country_x"][(df["Cluster_Agg"]==1)]));
    print("Cluster 3:\n", list(df["country_x"][(df["Cluster_Agg"]==2)]));

Cluster 1:
    ['Australia', 'Austria', 'Belgium', 'Canada', 'Cyprus', 'Czech Republic',
    'Denmark', 'France', 'Germany', 'Hong Kong', 'Hungary', 'Iceland', 'Ireland',
    'Italy', 'Japan', 'Latvia', 'Malaysia', 'Netherlands', 'New Zealand', 'Norway',
    'Poland', 'Portugal', 'Qatar', 'Slovak Republic', 'Slovenia', 'Spain', 'Sweden',
    'Switzerland', 'United Kingdom']
    Cluster 2:
    ['USA']
    Cluster 3:
    ['Argentina', 'Brazil', 'Chile', 'China', 'Colombia', 'Kazakhstan', 'Mexico',
    'Mongolia', 'Russia', 'Saudi Arabia', 'South Africa', 'Turkey']
```

The analysis of K-mean and agglomerative cluster analysis suggested a slightly different number of clusters (4 and 3), indicating that globalization of the country and education system are indeed quite complex as there is a lot factors influencing them. Interestingly, the USA itself was identified as one cluster in this case, meaning that the USA has unique characteristics not shared by other countries, as well as the dominance of the USA, such as a higher globalization index, international students' mobility, economic globalization index, etc. Moreover, Countries like Australia, Canada and France were in one cluster alone by the K-mean method; then they were put in the same cluster as countries like Spain and Japan. This potentially implies that those emerging countries are getting better and better at their education system and attracting more international students to come to their country. This agrees with what we have from the scatter plot, as we could observe a point on the far right end(USA).