

Prof. Dr. Alfred Benedikt Brendel

Chair of Business Information Systems, esp. Intelligent Systems and Services

Data Science: Advanced AnalyticsProcess Analytics

Process Warehouse and Process Mining

Process Analytics and Process Mining

"Process mining aims to **exploit event data** in a meaningful way"

"Process mining techniques use event data to discover processes, check compliance, analyze bottlenecks, compare process variants, and suggest improvements"

"Process mining adds the **process perspective** to machine learning and data mining"

"Process mining brings together traditional model-based process analysis and data-centric analysis techniques"

van der Aalst (201

Analyzing Processes

Event Logs

Case ID	Event ID	Timestamp	Activity	Resource
1	Ch-4680555556-1	2012-07-30 11:14	Check stock availability	SYS1
1	Re-5972222222-1	2012-07-30 14:20	Retrieve product from warehouse	Rick
1	Co-6319444444-1	2012-07-30 15:10	Confirm order	Chuck
1	Ge-6402777778-1	2012-07-30 15:22	Get shipping address	SYS2
1	Em-655555556-1	2012-07-30 15:44	Emit invoice	SYS2
1	Re-4180555556-1	2012-08-04 10:02	Receive payment	SYS2
1	Sh-4659722222-1	2012-08-05 11:11	Ship product	Susi
1	Ar-3833333333-1	2012-08-06 09:12	Archive order	DMS
2	Ch-4055555556-2	2012-08-01 09:44	Check stock availability	SYS1
2	Ch-4208333333-2	2012-08-01 10:06	Check materials availability	SYS1
2	Re-466666667-2	2012-08-01 11:12	Request raw materials	Ringo
2	Ob-3263888889-2	2012-08-03 07:50	Obtain raw materials	Olaf
2	Ma-6131944444-2	2012-08-04 14:43	Manufacture product	SYS1
2	Co-6187615741-2	2012-08-04 14:51	Confirm order	Conny
2	Em-638888889-2	2012-08-04 15:20	Emit invoice	SYS2
2	Ge-6439814815-2	2012-08-04 15:27	Get shipping address	SYS2
2	Sh-727777778-2	2012-08-04 17:28	Ship product	Sara
2	Re-3611111111-2	2012-08-07 08:40	Receive payment	SYS2
2	Ar-3680555556-2	2012-08-07 08:50	Archive order	DMS
3	Ch-4208333333-3	2012-08-02 10:06	Check stock availability	SYS1
3	Ch-4243055556-3	2012-08-02 10:11	Check materials availability	SYS1
3	Ma-6694444444-3	2012-08-02 16:04	Manufacture product	SYS1
3	Co-6751157407-3	2012-08-02 16:12	Confirm order	Chuck

Process Analytics Dimensions

zur Mühlen (2004)

Folie 5

Process Analytics Dimensions

zur Mühlen (2004)

Process Mining Challenges

Correlation challenge

Identify the case an event belongs to

Timestamps challenge

 Logging is often delayed until the system has idle time: sequential events with the same timestamp, logs from different Business Process Management Software (BPMS)

Longevity challenge

Long running processes might be too slow for snapshot window

Scoping challenge

IS does not directly produce event logs. Logs are synthesized

Granularity challenge

Abstraction of model might be different from log

Process Analytics Questions

What is the **performance** of the process?

What **is** the actual process model?

To which extent are the **rules** of the process model **followed**?

Prof. Dr. Alfred Benedikt BrendelChair of Business Information Systems, esp. Intelligent Systems and Services

Process AnalyticsProcess Warehouse

Process Warehouse Functionality

"A data warehouse that caters for the need of process analytics"

Collection and integration of **historic and current data** for **predefined** process performance indicators

Transformation, **calculation** and **aggregation** of process performance indicators

Provisioning of tools for process-based multidimensional analysis and navigation

Distribution and **presentation** of analysis results

Kueng et al. (2001), List et al. (2002), Becker et al. (2006)

Process Warehouse Challenges

Needs data from **many sources** (many of which are **not databases**)

Needs **historical data** in addition to data about **current process instances**

Needs complex transformations (e.g., **map system events into abstract process progression** – but structures are complex and may contain loops)

Many reporting and analytic tools already work with data warehouses

Casati et al. (2017)

Process Warehouse Reference Dimensions

Becker (2007), Becker, Chamoni (2008)

Process Warehouse Reference Architecture

Becker (2007), Becker, Chamoni (2008)

Example: Celonis Viewer & Analyst

Process Analytics Questions

What is the **performance** of the process?

What **is** the actual process model?

To which extent are the **rules** of the process model **followed**?

Prof. Dr. Alfred Benedikt BrendelChair of Business Information Systems, esp. Intelligent Systems and Services

Process AnalyticsProcess Discovery

Automatic Process Discovery

Goal

construct a process model that captures the behavior of an event log in a representative way

Construction

- automatically and generically using algorithms
- should make minimal assumptions about properties of the log and the resulting process model

Result

- constructed process model should be able to replay the cases of the event log and
- forbid behavior not found in the logs

α-algorithm

The α -algorithm is a **basic** algorithm for discovering process models from event logs. It is less complex than other advanced algorithms. It will not be sufficient for practical application

Idea is to identify the relations between **all pairs of tasks** from the workflow log to construct a process model

Folie 18

Dumas et al. (2018), van der Aalst (2017)

Assumptions

Order of Events

The events in the log are chronologically ordered (e.g. timestamps)

Case Reference

Each event refers to a single case

Activity Reference

Each event relates to a specific activity (task) of the process

Activity Completeness

Each activity of the process is included in the log

Behavioral Completeness

- If b can follow a, then there is at least one case where one can observe ab

Preparation of Workflow Log

Case ID	Event ID Timestamp	Activity
1	Ch-468 2012-07-30 1	11:14 Check stock availability
1	Re-597 2012-07-30 1	14:20 Retrieve product from warehouse
1	Co-631 2012-07-30 1	15:10 Confirm order
1	Ge-640 2012-07-30 1	15:22 Get shipping address
1	Em-655 2012-07-30 1	15:44 Emit invoice
1	Re-418 2012-08-04 1	10:02 Receive payment
1	Sh-465 2012-08-05 1	11:11 Ship product
1	Ar-383 2012-08-06 0	09:12 Archive order
2	Ch-405 2012-08-01 0	09:44 Check stock availability
2	Ch-420 2012-08-01 1	10:06 Check materials availability
2	Re-466 2012-08-01 1	11:12 Request raw materials
2	Ob-326 2012-08-03 0	07:50 Obtain raw materials
2	Ma-613 2012-08-04 1	14:43 Manufacture product
2	Co-618 2012-08-04 1	14:51 Confirm order
2	Em-638 2012-08-04 1	15:20 Emit invoice
2	Ge-643 2012-08-04 1	15:27 Get shipping address
2	Sh-727 2012-08-04 1	17:28 Ship product
2	Re-361 2012-08-07 0	08:40 Receive payment
2	Ar-368 2012-08-07 0	08:50 Archive order

Chair of Business Information Systems, esp. Intelligent Systems and Services Prof. Dr. Alfred Benedikt Brendel

Letter	Actvities
а	Check stock availability
b	Retrieve product from warehouse
С	Check materials availability
d	Request raw materials
e	Obtain raw materials
f	Manufacture product
g	Confirm order
h	Get shipping address
i	Ship product
j	Emit invoice
k	Receive payment
1	Archive order
	Workflow Log
	a,b,g,h,j,k,i,l
	a,c,d,e,f,g,j,h,

Dumas et al. (2018)

Dresden | 28.06.2023

α-Algorithm Phases

Phase 1

different order relations are extracted from the workflow log

Phase 2

the process model is constructed in a stepwise fashion from these identified relations

α-Algorithm Order Relations

Basic (a > b)

Task α is directly followed by bBasis for the definition of the other three order relations

Causality $(a \rightarrow b)$

a > b and that $b \neq a$

Parallelism $(a \parallel b)$

a > b and b > a

Non-succession (*a*#*b*)

 $a \gg b$ and $b \gg a$

Order Relation Examples

Causality $(a \rightarrow b)$

Causality $(a \rightarrow b)$ Causality $(a \rightarrow c)$ Non-succession (b#c)

Causality $(b \rightarrow d)$ Causality $(c \rightarrow d)$ Non-succession (b#c)

Causality $(a \rightarrow b)$ Causality $(a \rightarrow c)$ Non-succession (b#c)Parallelism $(b \parallel c)$

Causality $(b \rightarrow d)$ Causality $(c \rightarrow d)$ Non-succession (b#c)Parallelism $(b \parallel c)$

Extract Order Relations

Traces (a, b, g, h, j, k, i, l) & (a, c, d, e, f, g, j, h, i, k, l)

Basic relations

	а	b	С	d	e	f	g	h	i	j	k	l
а	#	\leftarrow	\rightarrow	#	#	#	#	#	#	#	#	#
b	←	#	#	#	#	#	\rightarrow	#	#	#	#	#
c	←	#	#	\rightarrow	#	#	#	#	#	#	#	#
d	#	#	↓	#	\rightarrow	#	#	#	#	#	#	#
e	#	#	#	←	#	\rightarrow	#	#	#	#	#	#
f	#	#	#	#		#	\rightarrow	#	#	#	#	#
g	#		#	#	#	←	#	\rightarrow	#	\rightarrow	#	#
h	#	#	#	#	#	#		#	\rightarrow		#	#
i	#	#	#	#	#	#	#	—	#	#		\rightarrow
j	#	#	#	#	#	#	←		#	#	\rightarrow	#
k	#	#	#	#	#	#	#	#		←	#	\rightarrow
l	#	#	#	#	#	#	#	#	←	#	←	#

$$> i$$
 $i > k$

Parallelism Cau

$$h \parallel j$$
 $k \parallel i$

$$b \rightarrow g$$

 $a \rightarrow b$

$$c \rightarrow d$$

 $a \rightarrow c$

$$g\rightarrow h$$

$$d \rightarrow e$$

$$j \rightarrow k$$

$$e \rightarrow f$$

$$i \rightarrow I$$

$$f \rightarrow g$$

$$g \rightarrow j$$

Non-sucession

$$h\rightarrow I$$

$$k \rightarrow l$$

Process Footprint Matrix

	а	b	С	d	e	f	g	h	i	j	k	l
а	#	\rightarrow	\rightarrow	#	#	#	#	#	#	#	#	#
b	←	#	#	#	#	#	\rightarrow	#	#	#	#	#
c	←	#	#	\rightarrow	#	#	#	#	#	#	#	#
d	#	#	←	#	\rightarrow	#	#	#	#	#	#	#
e	#	#	#	—	#	\rightarrow	#	#	#	#	#	#
f	#	#	#	#	←	#	\rightarrow	#	#	#	#	#
g	#	←	#	#	#		#	\rightarrow	#	\rightarrow	#	#
h	#	#	#	#	#	#	←	#	\rightarrow		#	#
i	#	#	#	#	#	#	#		#	#		\rightarrow
j	#	#	#	#	#	#	←		#	#	\rightarrow	#
k	#	#	#	#	#	#	#	#		←	#	\rightarrow
l	#	#	#	#	#	#	#	#	←	#	←	#

α -Algorithm Steps (1)

- 1. Identify the **set of all tasks** in the log
- 2. Identify the set that has been observed as the **first task**
- 3. Identify the set that has been observed as the **last task**
- 4. Identify the **set of all connections** to be potentially represented in the process
 - 1.Pattern (a): all pairs for which holds $\boldsymbol{a} \rightarrow \boldsymbol{b}$
 - 2.Pattern (b): all triples for which holds $a \rightarrow (b + c)$
 - 3.Pattern (c): all triples for which holds $(b\#c) \rightarrow d$

Note that triples for which Pattern (d) $a \rightarrow (b \mid c)$ or

Pattern (e) $(b \mid c) \rightarrow d$ hold are not included

α-Algorithm Steps (2)

- 5. Construct the a **subset** by
 - 1.Eliminating $a \rightarrow b$ and $a \rightarrow c$ if there exists some $a \rightarrow (b \# c)$
 - 2.Eliminating $b \rightarrow c$ and $b \rightarrow d$ if there exists some $(b\#c) \rightarrow d$
- 6. Connect start and end events
 - 1.If there are multiple first tasks, then draw a start event leading to a split (XOR or AND) which connects to all first tasks; otherwise, directly **connect the start event with the** only **first task**
 - 2.For each last task, add an end event and draw an arc from the task to the end event

α -Algorithm Steps (3)

- 7. Construct the **flow arcs** in the following way
 - 1.Pattern (a): For each $a \rightarrow b$, draw an arc a to b
 - 2.Pattern (b): For each $a \rightarrow (b\#c)$, draw an arc from a to an **XOR-split**, and from there to b and c
 - 3.Pattern (c): For each $(b\#c)\rightarrow d$, draw an arc from b and c to an **XOR-join**, and from there to d
 - 4.Pattern (d) and (e): If a task in the so constructed process model has multiple incoming or multiple outgoing arcs, bundle these arcs with an **AND-split** or **AND-join**, respectively
- 8. Return the newly constructed process model

Example Discovery

- (1) All tasks (a, b, c, d, e, f, g,h, i, j, k, l)
- (2) Start task a
- (3) End task /
- (4a) All relations (see footprint matrix)
- (4b) Rows $a \rightarrow (b + c)$ as XOR-split
- (4c) Columns (b#f) $\rightarrow g$ as XOR-join
- (5) Remove $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow g$, and $f \rightarrow g$
- (6a+b) Connect start a and end event I
- (7) Add arcs and AND-gateways

	а	b	С	d	e	f	g	h	i	j	k	l
а	#			#	#	#	#	#	#	#	#	#
b		#	#	#	#	#		#	#	#	#	#
c			#	\rightarrow	#	#	#	#	#	#	#	#
d				#	\rightarrow	#	#	#	#	#	#	#
e					#	\rightarrow	#	#	#	#	#	#
f						#		#	#	#	#	#
g							#	\rightarrow	#	\rightarrow	#	#
h								#	\rightarrow		#	#
i									#	#		\rightarrow
j										#	\rightarrow	#
k											#	\rightarrow
l												#

Returned Model

2 full redel on lecher video

	а	b	c	d	e	f	g	h	i	j	k	l
а	#			#	#	#	#	#	#	#	#	#
b		#	#	#	#	#		#	#	#	#	#
С			#	\rightarrow	#	#	#	#	#	#	#	#
d				#	\rightarrow	#	#	#	#	#	#	#
e					#	\rightarrow	#	#	#	#	#	#
f						#		#	#	#	#	#
g							#	\rightarrow	#	\rightarrow	#	#
h								#	\rightarrow		#	#
i									#	#		\rightarrow
j										#	\rightarrow	#
k											#	\rightarrow
l												#

Problems with the α -Algorithm

Short loops

 $a \rightarrow b$, $b \rightarrow a$ is not always ($a \parallel b$)

Incompleteness and **noise**

For 10 concurrent tasks, we need 10! = 3,628,800 cases Missing tasks

Four Quality Criteria

Approaches to fix these issues use

Fitness

ability to replay

Simplicity (Occam's razor)

simplest model to explain behavior, is the best model

Precision

- degree of behavior allowed by the model, but not in the logs
- do not underfit

Generalization

- work with incomplete behavior
- do not overfit

Challenges in Process Mining

van der Aalst (2017)

Process Analytics Questions

What is the **performance** of the process?

What **is** the actual process model?

To which extent are the **rules** of the process model **followed**?

Prof. Dr. Alfred Benedikt Brendel

Chair of Business Information Systems, esp. Intelligent Systems and Services

Process AnalyticsProcess Conformance Checking

Conformance Checking

"Does the execution of a process **follows predefined rules or constraints** or does it **violate** them?"

Violations relate to one of the three process perspectives

Control flow

Explicit constraints

Normative process model

- Data
- Resources

in isolation or in combination

Explicit Constraints

Mandatoriness

- Tasks that are required from a control perspective
- Violations can be found by searching for traces without them
- e.g., review tasks

Exclusiveness

- Tasks that relate to a decision
- Violations can be found by searching for traces with both/all of them
- e.g., accept vs. reject task

Ordering

- Tasks that have to be in a specific succession
- Violations can be found by searching for traces with the activities appearing in the wrong order
- e.g., pay -> deliver

Normative Process Model

For each trace in the workflow log

replay with tokens and

record at each step whether an activity was allowed to be executed according to the rules of the model

Is (a, b, g, j, i, k, l) valid?

Is (a, b, i, j, k, l) valid, too? If not, what does it violate?

Tokens in a Normative Process Model

How many misplaced tokens in (a, b, i, j, k, l)?

the number of tokens that are **correctly produced p**

the number of tokens that are **correctly consumed** *c*

the number of tokens that are **missing for executing** *m* the next activity in the log, and

the number of tokens **remaining unconsumed** *r* after executing the final activity in the log

Tokens in a Normative Process Model

How many misplaced tokens in (a, b, i, j, k, l)?

the number of tokens that are **correctly produced p**

the number of tokens that are **correctly consumed** *c*

the number of tokens that are **missing for executing** *m* the next activity in the log, and

the number of tokens **remaining unconsumed** *r* after executing the final activity in the log

Tokens in a Normative Process Model

How many misplaced tokens in (a, b, i, j, k, l)?

the number of tokens that are **correctly produced** *p* (13)

the number of tokens that are **correctly consumed** *c* (13)

the number of tokens that are **missing for executing** *m* **(1)** the next activity in the log, and

the number of tokens **remaining unconsumed** *r* (1) after executing the final activity in the log

Calculating Fitness for n = 1

$$fitness = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)$$

$$p = 13$$

$$m = 1$$

$$r = 1$$

$$fitness = \frac{1}{2} \left(1 - \frac{1}{13} \right) + \frac{1}{2} \left(1 - \frac{1}{13} \right)$$

Interpretation

Overall fitness

- is a high-level measure
- gives an idea of how accurately the process model matches the actually observed behavior as reflected by the set of cases
- does not help us to analyze the deviations in detail

Arc analysis

- Inspect arcs of the process model that have missing or remaining tokens
- Interview process participants why x has been omitted for some cases and identify cause and desirable behavior
- CAVEAT: Consider multiple opinions on this!

Conformance of Data and Resources

Participants usually require **permissions** to execute certain activities

Permissions are bundled for specific **roles**

Violations of permissions can be checked by searching for each **activity conducted** by a participant whether or not an appropriate role or permission existed

Folie 48

Specific control rules which require two different persons to approve a business transaction are called separation of duties constraints

These rules do not necessarily involve supervisors

Dumas et al. (2018

Process Analytics Questions

What is the **performance** of the process?

What **is** the actual process model?

To which extent are the **rules** of the process model **followed**?

Prof. Dr. Alfred Benedikt BrendelChair of Business Information Systems, esp. Intelligent Systems and Services

Thank you for your attention

