Maximum Weighted Bipartite Matching

Pramook Khungurn

December 11, 2019

1 Maximum Weight Bipartite Matching Problem

- We consider the problem of maximum weight bipartite matching (MWBM).
- As input, we are given a weighted bipartite graph G = (V, E) where
 - $-V = X \cup Y$
 - $-X \cap Y = \emptyset$, and
 - $-E \subseteq X \times Y$.

Also, there's a function $w: E \to \mathbb{R}^+ \cup \{0\}$.

- A matching is a subset $M \subseteq E$ such that, for every vertex $v \in V$, at most one edge in M is incident upon v.
- The size of matching M, denoted by |M|, is the number of edges in M.
- The weight of matching M, denoted by w(M), is the sum of the weights of the edges in M. That is,

$$w(M) = \sum_{e \in M} w(e).$$

 \bullet The MWBM problem wants to find a matching M whose weight is the maximum among all possible matchings.

2 The Assignment Problem

- In the **assignement problem**, we are given a complete weighted bipartite graph, and we want to find the maximum weight matching.
- The MWBM problem can be reduced to the assignment problem.

This can be done by:

- introducing dummy nodes so that |X| = |Y|, and
- for every pair of vertices (x,y) such that $(x,y) \notin E$, creating a new edge (x,y) with weight 0.
- A maximum weight matching in a complete bipartite graph can be made *perfect*. (That is, every vertex is incident to an edge.)
- So, the assignment problem is to find a perfect matching with maximum weight.

3 Feasible Labeling

- A vertex labeling is a function $\ell: V \to \mathbb{R}$.
- A feasible labeling is one such that

$$\ell(x) + \ell(y) \ge w(x, y)$$

for all $x \in X$ and $y \in Y$.

- An edge (x, y) is called **tight** if $\ell(x) = \ell(y) = w(x, y)$.
- The equality graph with respect to a labeling ℓ is $G_{\ell} = (V, E_{\ell})$ where E_{ℓ} is the set of tight edges.
- Theorem 3.1. If ℓ is feasible and M is a perfect matching in G_{ℓ} , then M is a maximum weight matching.

Proof. Denote edge $e \in E$ by $e = (e_x, e_y)$.

Let M' be any perfect matching in G (not necessarily in E_{ℓ}). Since every vertex $v \in V$ is incident to exactly one edge in M', we have that

$$w(M') = \sum_{e \in M'} w(e) \le \sum_{e \in M'} (\ell(e_x) + \ell(e_y)) = \sum_{v \in V} \ell(v).$$

Hence, $\sum_{v \in V} \ell(v)$ is an upper bound on the cost of any perfect matching.

Now, let M be a perfect matching in E_{ℓ} . Then, $w(M) = \sum_{e \in M} w(e) = \sum_{v \in V} \ell(v)$. So, $w(M') \leq w(M)$ and M is optimal.

• If you wonder where the heck the above theorem comes from, it comes from writing the matching problem as a linear programming and take the dual.

4 The Hungarian Algorithm

- With respect to a graph G (not necessarily complete) a matching M in G,
 - a vertex is **free** is it is incident to no edges in M,
 - a vertex is **matched** if it is not free,
 - a path in G is alternating if its edges alternate between M and E-M,
 - a path is **augmenting** if both end points are free, and
 - the **residual graph** of G with respect to M is a directed graph G' = (V', E') where
 - * V' = V, and
 - * for each edge $(x, y) \in E$,
 - · if $(x, y) \notin M$, then $(x, y) \in E'$, and
 - \cdot if $(x,y) \in M$, then $(y,x) \in E'$
- The sketch of the algorithm is as follows:
 - 1. Start with a feasible labeling ℓ , and a maximum size matching M in G_{ℓ} .
 - 2. If M is perfect, we are done.
 - 3. If not, then then we find another feasible labeling ℓ' such that $E_{\ell} \subset E_{\ell'}$. Then, we set ℓ to ℓ' , recompute M, and go back to Step 2.

- After Step 3, either M or E_{ℓ} increases in size. Hence, the algorithm must terminate.
- An initial feasible labeling is given by:
 - $-\ell(y) = 0$ for all $y \in Y$, and
 - $-\ell(x) = \max y \in Y\{w(x,y)\} \text{ for all } x \in X.$
- Before we go on to find how to find labeling ℓ' such that $E_{\ell} \subset E_{\ell'}$, we need to define one more set of terminology.
- Let ℓ be a feasible labeling.

The **neighbor** of a vertex $u \in V$ is the set $N_{\ell}(u) = \{v : (u, v) \in E_{\ell}\}$. The **neighbof** of the set $S \subseteq V$ is the set $N_{\ell}(V) = \bigcup_{u \in S} N_{\ell}(u)$.

• The process of finding ℓ' where $E_{\ell} \subset E_{\ell'}$ uses the following lemma:

Lemma 4.1. Let $S \subseteq X$ and $T = N_{\ell}(S) \neq Y$. Let

$$\alpha_{\ell} = \min_{x \in S, y \neq T} \{\ell(x) + \ell(y) - w(x, y)\}.$$

Define ℓ' as follows:

$$\ell'(v) = \begin{cases} \ell(v) - \alpha_{\ell}, & \text{if } v \in S, \\ \ell(v) + \alpha_{\ell}, & \text{if } v \in T, \\ \ell(v), & \text{otherwise.} \end{cases}$$

Then, ℓ' is a feasible labeling, and

- $-if(x,y) \in E_{\ell} \text{ for } x \in S \text{ and } y \in T, \text{ then } (x,y) \in E_{\ell'},$
- $-if(x,y) \in E_{\ell} \text{ for } x \notin S \text{ and } y \notin T, \text{ then } (x,y) \in E_{\ell'}, \text{ and }$
- there exists some edge $(x,y) \in E_{\ell'}$ for $x \in S$ and $y \notin T$.

Proof. We first show that $E_{\ell'}$ is a feasible labeling. Let $x \in X$ and $y \in Y$. There four cases three cases:

- 1. $x \in S$ and $y \in T$. In this case, $\ell'(x) + \ell'(y) = \ell(x) \alpha_{\ell} + \ell(y) + \alpha_{\ell} = \ell(x) + \ell(y) \ge w(x,y)$.
- 2. $x \notin S$ and $y \in T$. In this case, $\ell'(x) + \ell'(y) = \ell(x) + \ell(y) + \alpha_{\ell} \ge \ell(x) + \ell(y) \ge w(x, y)$. This is simply because $\alpha_{\ell} \ge 0$.
- 3. $x \in S$ and $y \notin T$. In this case.

$$\ell'(x) + \ell'(y) = \ell(x) - \alpha_{\ell} + \ell(y)$$

$$= w(x, y) + (\ell(x) + \ell(y) - w(x, y)) - \min_{x \in S, y \notin T} \{\ell(x) + \ell(y) - w(x, y)\}$$

$$\geq w(x, y).$$

4. $x \notin S$ and $y \notin T$. In this case, $\ell'(x) + \ell'(y) = \ell(x) + \ell(y) \ge w(x,y)$.

So, ℓ' is a feasible labeling.

From the above analysis, in Case 1 and Case 4, we have that $\ell'(x) + \ell'(y) = \ell(x) + \ell(y)$. Thus, an edge (x, y) remains in $E_{\ell'}$ if it is (1) already in E_{ℓ} , and (2) either $x \in S$ and $y \in T$ or $x \neq S$ and $y \neq T$.

Also, there exists an edge (x,y) with $x \in S$ and $y \notin T$ where $\ell(x) + \ell(y) - w(x,y)$ achieve its minimum. This edge cannot already be in E_{ℓ} ; otherwise, it would already be included in the neighborhood $N_{\ell}(S)$. After the update, we see that $\ell(x) + \ell(y) - w(x,y)$ goes to 0. Hence, this is a new edge in $E_{\ell'}$ which is not in E_{ℓ} before.

• It remains to find a set $S \subseteq X$ such that $N_S(X) \neq Y$.

Lemma 4.2. Let M be a maximum size matching in a bipartite graph G. Suppose there exists some vertices in X that are free. Let L be the vertices reachable from any free vertex in X in the residual graph of G with respect to M. Then, $C = (X - L) \cup (B \cap L)$ is a vertex cover and |C| = |M|.

Proof. If C is not a vertex cover, then there exists an edge $(x,y) \in E$ such that $x \in X \cap L$ and $y \in Y - L$.

First, we claim that $(x,y) \notin E - M$. Otherwise, we have that $x \in X \cap L$, which means it is reachable from a free vertex in the residual graph. Moreover, $(x,y) \in E'$, so this we can follow a path from a free vertex to x and then to y.

Next, we claim that $(x, y) \notin M$. Otherwise, the fact that $(x, y) \in M$ means that x is matched. Now, if a matched vertex x is reachable from a free vertex, it means that it must be reached to the directed edge (y, x). This implies that y is reachable from a free vertex, but this contradicts the fact that $y \in B - L$.

So, such an edge (x, y) does not exist, and C is a vertex cover.

We now show that $|C| \leq |M|$.

First, we have that no vertices in X - L are free because free vertices in X are included in L by definition.

Also, no vertices in $Y \cap L$ are free. Otherwise, a path from a free node to a free vertex in Y exists and is an augmenting path. This contradicts the fact that M is not a maximum matching.

Moreover, there cannot be any edge $(x,y) \in M$ where $x \in X - L$ and $y \in Y \cap L$. Othewise, x would be included in L. So, every vertex in X - L and $Y \cap L$ is incident to an edge in M, but no two vertices in $(X - L) \cup (Y \cap L)$ can share an edge. This means that $|M| \ge |(X - L) \cup (Y \cap L)| = |C|$.

Now, the size of a maximum matching is a lower bound on the size of a vertex cover. Hence, $|M| \leq |C|$. It follows that |C| = |M|.

• Now, let M be a maximum matching in G_{ℓ} . If M is not perfect, then there exists some vertices that are free. We let L be the set of vertices reachable from these free vertices in the residual graph of G_{ℓ} with respect to M. We can then set $S = X \cap L$.

Observe that $N_{\ell}(S) = Y \cap L$.

It follows that $|N_{\ell}(S)| = |Y \cap L| \le |(X - L) \cup (Y \cap L)| = |C| = |M| < |Y|$. So, there exists some vertex $y \in Y$ such that $y \notin N_{\ell}(S)$.

- The Hungarian algorithm:
 - 1. Generate initial labeling ℓ and maximum cardinality matching M in E_{ℓ} .
 - 2. If M is perfect, stop.
 - 3. Let v be a free vertex with respect to M. Construct an alternating tree in G_{ℓ} with respect to M, eninating from v. Let L be the set of vertices reachable from any free vertex in X, including the free vertices themselves.
 - 4. Set $S = X \cap L$ and $T = Y \cap L$. Compute the new weight ℓ' according to the process in Lemma 4.1.
 - 5. Add the new edge created by this process to G_{ℓ} and recompute M.
 - 6. Go to Step 2.

• We will find at most |V|/2 = O(|V|) augmenting paths. Finding an augmenting path requires a breadth first search, which takes $O(|V|^2)$ because we have a complete graph. So, augmenting the paths take $O(|V|^3)$ time.

Updating the weight takes $O(|V|^2)$ time. However, we only need up update the weight O(|V|) time because, each time we update, there will always be a new augmenting path. So, updating the weights take $O(|V|^3)$ time as well.

All in all, the algorithm takes $O(|V|^3)$ time.