

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

TECHNICAL SCIENCES P2 MAY/JUNE 2024

MARKS: 75

TIME: 1½ hours

This question paper consists of 9 pages and 4 data sheets.

SC/NSC Confiden

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- This question paper consists of SIX questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, etc. where required.
- 10. Write neatly and legibly.

SC/NSC Confidential

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.5) in the ANSWER BOOK, e.g. 1.6 D.

1.1	The name of the functional group of ETHANOL is							
	Α	carboxyl.						
	В	carbonyl.						
	С	hydroxyl.						
	D	formyl.	(2)					
1.2		ch homologous series has London forces, dipole-dipole forces and ogen bonds?						
	Α	Alkanes						
	В	Ketones						
	С	Aldehydes						
	D	Carboxylic acids	(2)					
1.3	An e	An element in group 3 that can be used for doping:						
	Α	Germanium						
	В	Gallium						
	С	Silicon						
	D	Tin	(2)					
1.4		Which ONE of the following combinations of standard conditions is applicable to a galvanic cell with non-gaseous reactants and products?						
	Α	1 mol·dm ⁻³ ; 101,3 kPa; 25 K						
	В	1 mol·dm ⁻³ ; 101,3 kPa						
	С	1 mol·dm ⁻³ ; 298 K						
	D	1 mol·dm ⁻³ ; 0 K	(2)					
1.5	A so	A solution that can conduct an electric current through the movement of ions:						
	Α	Oxidising agent						
	В	Reducing agent						
	С	Electrolysis						
	D	Electrolyte	(2) [10]					

QUESTION 2 (Start on a new page.)

The table below represents six organic molecules with different functional groups.

Α	H H—C≡C—C—H H	В	H C H
С	H-C-H	D	C₅H ₁₂
E	CH₃CH₂CH₂Cℓ	F	C₃H ₆

- 2.1 Define a *hydrocarbon*. (2)
- 2.2 Write down the letters that represent TWO unsaturated hydrocarbons. (2)
- 2.3 Write down the general formula of the following compounds:

2.4 Write down the IUPAC names of the following compounds:

2.5 Draw the structural formula of the following compounds:

[14] 254

QUESTION 3 (Start on a new page.)

The following isomers are commonly used as fuels because of their low boiling points:

	A B	Butane 2-methylpropane				
3.1	Identify t	he homologous series to which these compounds belong.	(1)			
3.2	Define th	ne term structural isomers.	(2)			
3.3	What typ	be of isomerism is represented by the compounds above?	(1)			
3.4	Identify t	he type of intermolecular forces in both compounds.	(1)			
3.5	Which ONE of the compounds has the strongest intermolecular forces? Write down only ${\bf A}$ or ${\bf B}$.					
3.6	Give a re	eason for the answer to QUESTION 3.5.	(2)			
3.7	Define v	apour pressure.	(2)			
3.8	Write do	wn the compound above with a higher:				
	3.8.1	Boiling point	(1)			
	3.8.2	Vapour pressure	(1) [12]			

QUESTION 4 (Start on a new page.)

Consider the following organic reactions.

Reaction 2: $C_2H_2 + O_2 \longrightarrow CO_2 + H_2O + Heat$

Reaction 3: $C_4H_8 + H_2 \longrightarrow Product Y$

- 4.1 Consider reaction 1.
 - 4.1.1 Name the type of reaction. (1)
 - 4.1.2 Write down the CONDENSED STRUCTURAL FORMULA of compound **X**. (2)
 - 4.1.3 Is compound **X** a PRIMARY, SECONDARY or TERTIARY alcohol? (1)
- 4.2 Consider reaction 2.
 - 4.2.1 Balance the chemical equation for this reaction. (1)
 - 4.2.2 Is this an EXOTHERMIC or ENDOTHERMIC reaction?
 Give a reason. (3)
- 4.3 Consider reaction 3.

Product **Y** is used in cigarette lighters.

- 4.3.1 Name the type of ADDITION reaction taking place. (1)
- 4.3.2 Write down the IUPAC name of product **Y**. (2)
- 4.3.3 Write down the NAME or FORMULA of the catalyst used. (1)

4.4 Reaction **4** is a polymerisation reaction used to produce plastics.

4.4.1 Define the term *polymer*. (2)

4.4.2 Write down the NAME of the monomer used in this reaction. (1) [15]

QUESTION 5 (Start on a new page.)

Scratches on chromium mag wheels are removed by electroplating. The diagram below represents an electrolytic cell involved in such a process.

- 5.1 Define the term *electrolytic cell*. (2)
- 5.2 Write down the NAME or FORMULA of the metal used as the anode. (1)
- 5.3 Which electrode, **A** or **B**, is the cathode? Give a reason. (2)
- 5.4 Write down the half reaction taking place at the following electrodes:
 - 5.4.1 **A** (2)
 - 5.4.2 **B** (2)
- 5.5 What is the purpose of the power source? (1)
- 5.6 Why is the DC source preferred to the AC source? (2) [12]

SC/NSC Confidential

QUESTION 6 (Start on a new page.)

The diagram below represents an electrochemical cell operating under standard conditions.

- 6.1 What type of reaction is taking place in the cell above? (1)
- 6.2 What is the reading on the voltmeter? (1)
- 6.3 Switch **S** is now closed.
 - 6.3.1 Calculate the reading on the voltmeter. (4)
 - 6.3.2 Which ONE of the electrodes, **Pb** or **A**\ell\$, will experience a decrease in mass? Explain the answer. (3)
 - 6.3.3 Write down the net ionic cell reaction. (3) [12]

TOTAL: 75

DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12

VRAESTEL 2

TABLE 1/TABEL 1: PHYSICAL CONSTANTS/FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 x 10 ⁵ Pa
Standard temperature Standaardtemperatuur	Τ ^θ	0 °C/273 K

TABLE 2/TABEL 2: FORMULAE/FORMULES

Emf/Emk	E^{θ} cell = E^{θ} cathode - E^{θ} anode / E^{θ} sel = E^{θ} katode - E^{θ} anode
	or/of
	E^{θ} cell = E^{θ} reduction - E^{θ} oxidation / E^{θ} sel = E^{θ} reduksie - E^{θ} oksidasie
	or/of
	E^{θ} cell = E^{θ} oxidising agent - E^{θ} reducing agent / E^{θ} sel = E^{θ} oksideermiddel - E^{θ} reduseermiddel

SC/NSC Confidential

TABLE 3: THE PERIODIC TABLE OF ELEMENTS / TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
2,1	1 H 1		` ,					KEY	SLEUT	EL	Atoo	numbe mgetal 29				()	()	()	()	()	2 He 4
1,0	3 Li 7	1,5	4 Be 9						ectrone ektrone		• .	Cu 53,5	Symbol Simboo			5,0 B 11	2,5 C 12	7 0; Ν 14	3,5 0 16	0,4 10 8 9	10 Ne 20
6,0	11 Na 23	1,2	12 Mg 24			1		1	Ber	naderde	relatie	ve atoo	nic mass	a		13 - Al 27	ω 14 Si 28	15 7 P 31	16 S 32	17 ຕີ Cℓ 35,5	18 Ar 40
8,0	19 K 39	1,0	20 Ca 40	1,3	21 Sc 45	1,5	22 Ti 48	9, V 51	9 Cr 52	ري Mn 55	56	ω, Co 59	59	63,5		9 31 Ga 70	` 73	75	79	80	36 Kr 84
8,0	37 Rb 86	1,0	38 Sr 88	1,2	39 Y 89	4,1	40 Zr 91	41 Nb 92	ω΄ Mo 96	£ Tc	101	103		108	48 Cd 112	1		` 122	128		54 Xe 131
2'0	133	6'0	56 Ba 137		57 La 139	1,6	72 Hf 179	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	∞ Tℓ 204	∞. Pb 207	83 6. Bi 209	84 0, bo	85 S', At	86 Rn
2,0	87 Fr	6'0	88 Ra 226		89 Ac			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
								140 90 Th 232	141 91 Pa	144 92 U 238	93 Np	150 94 Pu	152 95 Am	157 96 Cm	159 97 Bk	163 98 Cf	165 99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/ <i>Halfreaksies</i> E^{θ} (V)									
F ₂ (g) + 2e ⁻	=	2F ⁻ Co ²⁺	+ 2,87						
Co ³⁺ + e ⁻	=		+ 1,81						
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77 + 1,51						
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	\rightleftharpoons	$Mn^{2+} + 4H_2O$							
$\operatorname{Cl}_2(g) + 2e^-$	=	2Cl ⁻	+ 1,36 + 1,33						
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O							
$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+ 1,23						
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23						
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+ 1,20						
$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br ⁻	+ 1,07						
$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96						
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85						
Ag ⁺ + e ⁻	\rightleftharpoons	Ag	+ 0,80						
NO ₃ + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80						
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77						
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+ 0,68						
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54						
Cu ⁺ + e ⁻	<u>,</u>	Cu	+ 0,52						
$SO_2 + 4H^+ + 4e^-$	` ≓	S + 2H ₂ O	+ 0,45						
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40						
$Cu^{2+} + 2e^{-}$	7	Cu	+ 0,40						
_	_		+ 0,34						
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$							
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16						
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15						
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+ 0,14						
2H ⁺ + 2e ⁻	\rightleftharpoons	H ₂ (g)	0,00						
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06						
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13						
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14						
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,27						
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28						
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40						
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	-0,41						
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44						
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74						
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76						
2H ₂ O + 2e ⁻	\rightleftharpoons	H ₂ (g) + 2OH ⁻	- 0,83						
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91						
Mn ²⁺ + 2e ⁻	;	Mn	- 1,18						
$A\ell^{3+} + 3e^{-}$	≓	Αl	- 1,66						
Mg ²⁺ + 2e ⁻	<u>`</u>	Mg	- 2,36						
Na ⁺ + e ⁻	-	Na	- 2,71						
Ca ²⁺ + 2e ⁻	<u>`</u>	Ca	- 2,87						
Sr ²⁺ + 2e ⁻	<u>`</u>	Sr	- 2,89						
Ba ²⁺ + 2e ⁻	←	Ba	- 2,90 - 2,90						
Cs ⁺ + e ⁻	←	Cs	- 2,90 - 2,92						
K ⁺ + e ⁻	←	K	- 2,92 - 2,93						
Li ⁺ + e ⁻	-	Li	- 2,93 - 3,05						
ы ть	_		- 3,05						

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions	/Hal	freaksies	Ε ^θ (V)
Li ⁺ + e ⁻	=	Li	- 3,05
K ⁺ + e ⁻	÷	K	- 2,93
Cs ⁺ + e ⁻	\rightleftharpoons	Cs	- 2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	- 2,90
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87
Na ⁺ + e ⁻	\rightleftharpoons	Na	- 2,71
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	- 2,36
Aℓ ³⁺ + 3e ⁻	\rightleftharpoons	Αℓ	– 1,66
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	– 1,18
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	- 0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06
2H ⁺ + 2e ⁻	=	$H_2(g)$	0,00
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+ 0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu [⁺]	+ 0,16
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	\rightleftharpoons		+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons		+ 0,45
Cu ⁺ + e ⁻	\rightleftharpoons	Cu	+ 0,52
$l_2 + 2e^-$	\rightleftharpoons	2l ⁻	+ 0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H ₂ O ₂	+ 0,68
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
NO ₃ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Ag ⁺ + e ⁻	=	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	3(1)	+ 0,85
$NO_3 + 4H^+ + 3e^-$	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20
$MnO_2 + 4H^+ + 2e^-$	<u>,</u>		+ 1,23
O ₂ (g) + 4H ⁺ + 4e ⁻	=	-	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	≓	-	+ 1,33
Cl ₂ (g) + 2e ⁻	<u>,</u>		+ 1,36
MnO ₄ + 8H ⁺ + 5e ⁻	<u>,</u>	-	+ 1,51
$H_2O_2 + 2H^+ + 2e^-$	<i>_</i>	2H ₂ O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels