ANOMALY DETECTION

JENS BAETENS

DOEL VAN OUTLIER DETECTION

Outliers = punten die zich niet gedragen als andere datapunten

Opsporen van problemen: medisch, mechanisch, fraude, hacking, ...

Vaak toegepast op niet-gelabelde data omdat niet alle problemen op voorhand vastgelegd kunnen worden en ze per definitie zeldzaam zijn.

VERWIJDEREN VAN OUTLIERS

Problemen met deze methode:

- Opnieuw trainen moeilijk in real-time situaties

Kan wel gebruikt worden om outliers te verwijderen in de trainingsdata maar niet in de testdata of na in gebruik name

Andere algoritmes:

- Isolation Forests
- Local Outlier Factor
- One-Class-Svm
- Neurale Netwerken

ISOLATION FORESTS

Ensemble techniek gebaseerd op random forest

Datapunten willekeurig verdelen tot elk punt alleen in een eindknoop zit.

Hoe korter het pad, hoe groter de kans op een outlier

ISOLATION FORESTS

LOCAL OUTLIER FACTOR

Gebaseerd op K-Nearest Neighbours

Afstand tot deze buren bepaald voor kans in te schatten dat het een outlier is

LOCAL OUTLIER FACTOR

ONE CLASS SVM

Gebaseerd op SVM

SVM scheidt twee klassen met een hyperplane

One-Class SVM dat hypersfeer bepaald dat alle punten omvat

- Punten op de marge zijn de support vectors
- Mogelijkheid om een aantal "fouten" toe te laten
- Kernel om complexere sferen te bepalen

ONE CLASS SVM

