Objective: \$1,003,571,304,682; without intervention: \$1,003,571,304,682 (Desired optimality gap: 1%; actual: 9%. Lower Bound: \$917,257,000,000. Time to solve: 179s) $C^I = \$10,000,C^D = \$10,000,000.$ Zero switching costs. One Period=7 days (costs scaled by 1,000,000 during optimization) $Solved using solve_and_process_lagrangian_threshold_0.1_use_smart_stepsize_True_L1_optGap_0.025_L2_optGap_0.1_L2_max_time_200$

	0 -149
<pre>0. Movement A: \$[5000 ,10000]·10² B: \$[0 ,0]·10² C: \$[10 ,14]·10² P: [.95 ,.93]</pre>	
1. Education (University level) A: \$[0 ,0]·10 ² B: \$[0 ,0]·10 ² C: \$[10 ,14]·10 ² P: [.99 ,.95]	
2. Social Gatherings (in a house) A: \$[0 ,0 ,0 ,0]·10 ² B: \$[0 ,0 ,0 ,0]·10 ² C: \$[8 ,10 ,12 ,14]·10 ²	
P: [.99 ,.99 ,.97 ,.93] 3. Non-Food Service (bank,retail, etc) A: \$[2500 ,5000 ,10000]·10 ² B: \$[0 ,0 ,0]·10 ² C: \$[8 ,10 ,14]·10 ² P: [.99 ,.95 ,.93]	
4. Restaurants A: \$[5000 ,10000]·10 ² B: \$[0 ,0]·10 ² C: \$[10 ,14]·10 ² P: [.95 ,.93]	
5. Masking A: \$[0 ,0 ,0]·10 ² B: \$[0 ,0 ,0]·10 ² C: \$[8 ,10 ,14]·10 ² P: [.99 ,.95 ,.93]	
6. Mega Events A: \$[2500 ,5000 ,10000]·10 ² B: \$[0	
7. Border Control A: \$[5000 ,10000]·10 ² B: \$[0 ,0]·10 ² C: \$[10 ,14]·10 ² P: [.95 ,.93]	
8. Physical Distancing A: \$[0]·10 ² B: \$[0]·10 ² C: \$[10]·10 ² P: [.93]	
Cost Per Period: TOTAL Cost Per Period: POLICY Cost Per Period: DISEASE Probability Factor	\$6.7e+09 \$0.0 \$6.7e+09 1.000