Calculus I Areas and integrals

Todor Milev

2019

Outline

- Areas and Distances
 - The Area Problem

Outline

- Areas and Distances
 - The Area Problem
- The Definite Integral
 - Review of the ∑ notation
 - Riemann sums, areas and integrals
 - Evaluating Integrals with Riemann Sums
 - Properties of the Definite Integral

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

The Area Problem

• How can we find the area under $y = x^2$ between x = 0 and x = 1?

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.

The Area Problem

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation.

The Area Problem

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

The Area Problem

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

The Area Problem

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

The Area Problem

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

The Area Problem

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

The Area Problem

• How can we find the area under $y = x^2$ between x = 0 and x = 1?

- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

The Area Problem

• How can we find the area under $y = x^2$ between x = 0 and x = 1?

- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width $\frac{1}{3}$, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

The Area Problem

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

Example

Example

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

• Let R_4 denote the sum of the areas of the rectangles.

Example

- Let R_4 denote the sum of the areas of the rectangles.
- Each rectangle has width ?.

Example

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.

Example

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are

? ,? ,? , and?.

Example

- Let R_4 denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².

Example

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width ¹/₄.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2$$

Example

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width ¹/₄.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2 = \frac{15}{32} = 0.46875$$

Example

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².
- A similar calculation works for L₄, the sum of the areas of the left endpoint rectangles.

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2 = \frac{15}{32} = 0.46875$$

$$L_4 = \frac{1}{4} \cdot (0)^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2$$

Example

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².
- A similar calculation works for L₄, the sum of the areas of the left endpoint rectangles.

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2 = \frac{15}{32} = 0.46875$$

$$L_4 = \frac{1}{4} \cdot (0)^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2$$

Example

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width ¹/₄.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².
- A similar calculation works for L₄, the sum of the areas of the left endpoint rectangles.

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2 = \frac{15}{32} = 0.46875$$

$$L_4 = \frac{1}{4} \cdot (0)^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 = \frac{7}{32} = 0.21875$$

Example

For the region S underneath the parabola $y=x^2$ from 0 to 1, show that the area under the approximating rectangles approaches $\frac{1}{3}$, that is,

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

Example

For the region S underneath the parabola $y=x^2$ from 0 to 1, show that the area under the approximating rectangles approaches $\frac{1}{3}$, that is,

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

Example

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width ?.
- The heights are ? ,? $,\dots,$

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are ? ,? ,...,

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are ? ,? ,...,

Example

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.

$$R_n = \frac{1}{n} \left(\frac{1}{n}\right)^2 + \frac{1}{n} \left(\frac{2}{n}\right)^2 + \dots + \frac{1}{n} \left(\frac{n}{n}\right)^2$$

Example

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.

$$R_n = \frac{1}{n} \left(\frac{1}{n} \right)^2 + \frac{1}{n} \left(\frac{2}{n} \right)^2 + \dots + \frac{1}{n} \left(\frac{n}{n} \right)^2 = \frac{1}{n^3} \left(1^2 + 2^2 + \dots + n^2 \right)$$

Example

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.

•
$$1^2 + 2^2 + 3^2 + \cdots + n^2 =$$
?

Example

For the region S underneath the parabola $y=x^2$ from 0 to 1, show that the area under the approximating rectangles approaches $\frac{1}{3}$, that is,

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.

• $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

$$R_n = \frac{1}{n} \left(\frac{1}{n} \right)^2 + \frac{1}{n} \left(\frac{2}{n} \right)^2 + \dots + \frac{1}{n} \left(\frac{n}{n} \right)^2 = \frac{1}{n^3} \left(1^2 + 2^2 + \dots + n^2 \right)$$

Example

For the region S underneath the parabola $y=x^2$ from 0 to 1, show that the area under the approximating rectangles approaches $\frac{1}{3}$, that is,

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.

• $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

$$R_{n} = \frac{1}{n} \left(\frac{1}{n}\right)^{2} + \frac{1}{n} \left(\frac{2}{n}\right)^{2} + \dots + \frac{1}{n} \left(\frac{n}{n}\right)^{2} = \frac{1}{n^{3}} \left(1^{2} + 2^{2} + \dots + n^{2}\right)$$

$$\lim_{n \to \infty} R_{n} = \lim_{n \to \infty} \frac{1}{n^{3}} \frac{n(n+1)(2n+1)}{6}$$

Example

For the region S underneath the parabola $y = x^2$ from 0 to 1, show that the area under the approximating rectangles approaches $\frac{1}{2}$, that is,

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $(\frac{1}{n})^2$, $(\frac{2}{n})^2$, ..., $\left(\frac{n}{n}\right)^2$.

• $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Example

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $(\frac{1}{n})^2$, $(\frac{2}{n})^2$, ..., $\left(\frac{n}{n}\right)^2$.

• 1² + 2² + 3² + ··· + n² =
$$\frac{n(n+1)(2n+1)}{6}$$
.

$$R_n = \frac{1}{n} \left(\frac{1}{n}\right)^2 + \frac{1}{n} \left(\frac{2}{n}\right)^2 + ··· + \frac{1}{n} \left(\frac{n}{n}\right)^2 = \frac{1}{n^3} \left(1^2 + 2^2 + ··· + n^2\right)$$

$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \lim_{n \to \infty} \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right) = \frac{1}{3}$$

$$= \frac{1}{n^3} \left(1^2 + 2^2 + \dots + n^2 \right)$$

$$= \frac{1}{n^3} \left(1 + \frac{1}{n^2} \right) \left(2 + \frac{1}{n^2} \right) = \frac{1}{n^3}$$

7/24

Example (The ... and \sum notations for series)

Let A be the sum of the positive even integers between 2 and 124.

Let A be the sum of the positive even integers between 2 and 124. Write *A* using the . . . notation and using the \sum notation.

Todor Milev

$$A = ?$$

Let A be the sum of the positive even integers between 2 and 124. Write A using the ... notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

The Definite Integral

7/24

Let A be the sum of the positive even integers between 2 and 124. Write *A* using the . . . notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

• We aim to introduce the \sum notation for series via this example.

$$A = 2+4+6+\cdots+124$$

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.

$$A = 2+4+6+\cdots+124$$

= $2+4+6+\cdots+\frac{2n}{2}+\cdots+124$

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.

Let A be the sum of the positive even integers between 2 and 124. Write A using the ... notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

= $2+4+6+\cdots+2n+\cdots+124$

2n .

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.
- To make it clearer we should rewrite all elements in the pattern of the general term.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$
2n.

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.
- To make it clearer we should rewrite all elements in the pattern of the general term.

Let A be the sum of the positive even integers between 2 and 124. Write A using the ... notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$
2n.

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.
- To make it clearer we should rewrite all elements in the pattern of the general term.

Todor Milev

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$
2n.

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.
- To make it clearer we should rewrite all elements in the pattern of the general term.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$
2n.

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.
- To make it clearer we should rewrite all elements in the pattern of the general term.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$
2n.

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.
- To make it clearer we should rewrite all elements in the pattern of the general term.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.
- To make it clearer we should rewrite all elements in the pattern of the general term.
- If that is still ambiguous we should switch to the completely unambiguous ∑ notation.

Let A be the sum of the positive even integers between 2 and 124. Write A using the . . . notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

• The number *n* is the index (counter) of the sum.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.
- The index varies over all integers starting with the lower boundary and ending with upper boundary.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.
- The index varies over all integers starting with the lower boundary and ending with upper boundary.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.
- The index varies over all integers starting with the lower boundary and ending with upper boundary.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.
- The index varies over all integers starting with the lower boundary and ending with upper boundary.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.
- The index varies over all integers starting with the lower boundary and ending with upper boundary.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.
- The index varies over all integers starting with the lower boundary and ending with upper boundary.
- In programming, what objects are similar to Σ ?

Let A be the sum of the positive even integers between 2 and 124. Write A using the ... notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

To go from ∑ to ... notation: substitute few values for the index.
 Make sure to include the last value.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- To go from ∑ to ... notation: substitute few values for the index.
 Make sure to include the last value.
- To go from ... to \sum notation:
 - figure out a pattern for the general term just as with sequences;

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- To go from ∑ to ... notation: substitute few values for the index.
 Make sure to include the last value.
- To go from . . . to ∑ notation:
 - figure out a pattern for the general term just as with sequences;
 - select first and last index so that your general term formula reproduces the first and last terms of the sequence.

Let A be the sum of the positive even integers between 2 and 124. Write A using the . . . notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

Bear in mind the ... notation is informal.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- Bear in mind the ... notation is informal.
 - There are infinitely many formulas that fit any single pattern.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- Bear in mind the ... notation is informal.
 - There are infinitely many formulas that fit any single pattern.
 - Thus it is acceptable to use the ... notation only when we believe there is a single completely obvious pattern that will be recognized by every one.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- Bear in mind the ... notation is informal.
 - There are infinitely many formulas that fit any single pattern.
 - Thus it is acceptable to use the ... notation only when we believe there is a single completely obvious pattern that will be recognized by every one.
 - The pattern should be obvious not only to us, but also to our potential readers.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- Bear in mind the ... notation is informal.
 - There are infinitely many formulas that fit any single pattern.
 - Thus it is acceptable to use the ... notation only when we believe there is a single completely obvious pattern that will be recognized by every one.
 - The pattern should be obvious not only to us, but also to our potential readers.
 - ullet If in doubt or seeking complete rigor we should use the \sum notation.

Definition

Sigma Notation: The sum of *n* terms a_1, a_2, \ldots, a_n is written as

$$\sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

where i is the index of summation, ai is the i'th term, and the upper and lower bounds of summation are n and 1 respectively.

NOTE: The lower bound doesn't have to be 1. Any integer less than or equal to the upper bound is legitimate.

The index i may be replaced with another symbol, often j or k.

8/24

2019

Definition

Sigma Notation: The sum of *n* terms a_1, a_2, \ldots, a_n is written as

$$\sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

where i is the index of summation, ai is the i'th term, and the upper and lower bounds of summation are n and 1 respectively.

NOTE: The lower bound doesn't have to be 1. Any integer less than or equal to the upper bound is legitimate.

The index i may be replaced with another symbol, often j or k.

$$\sum_{j=3}^{7} j^2 = ? + ? + ?$$

Definition

Sigma Notation: The sum of *n* terms a_1, a_2, \ldots, a_n is written as

$$\sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

where i is the index of summation, ai is the i'th term, and the upper and lower bounds of summation are n and 1 respectively.

NOTE: The lower bound doesn't have to be 1. Any integer less than or equal to the upper bound is legitimate.

The index i may be replaced with another symbol, often j or k.

$$\sum_{j=3}^{7} j^2 = 9 + ? + ?$$

Definition **Sigma Notation:** The sum of *n* terms a_1, a_2, \ldots, a_n is written as

$$\sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

where i is the index of summation, ai is the i'th term, and the upper and lower bounds of summation are n and 1 respectively.

NOTE: The lower bound doesn't have to be 1. Any integer less than or equal to the upper bound is legitimate.

The index i may be replaced with another symbol, often j or k.

$$\sum_{j=3}^{7} j^2 = 9 + ? + ?$$

Definition Sigma Notation: The sum of n terms a_1, a_2, \ldots, a_n is written as

$$\sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

where i is the *index of summation*, a_i is the i'th term, and the upper and lower bounds of summation are n and 1 respectively.

NOTE: The lower bound doesn't have to be 1. Any integer less than or equal to the upper bound is legitimate.

The index i may be replaced with another symbol, often j or k.

$$\sum_{j=3}^{7} j^2 = 9 + \frac{16}{7} + \frac{2}{3}$$

Definition

Sigma Notation: The sum of *n* terms a_1, a_2, \ldots, a_n is written as

$$\sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

where i is the index of summation, ai is the i'th term, and the upper and lower bounds of summation are n and 1 respectively.

NOTE: The lower bound doesn't have to be 1. Any integer less than or equal to the upper bound is legitimate.

The index i may be replaced with another symbol, often j or k.

$$\sum_{j=3}^{7} j^2 = 9 + 16 + ?$$

2019

Definition

Sigma Notation: The sum of *n* terms a_1, a_2, \ldots, a_n is written as

$$\sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

where i is the *index of summation*, a_i is the i th term, and the upper and lower bounds of summation are n and 1 respectively.

NOTE: The lower bound doesn't have to be 1. Any integer less than or equal to the upper bound is legitimate.

The index i may be replaced with another symbol, often j or k.

$$\sum_{i=3}^{7} j^2 = 9 + 16 + 25 + 36 + 49$$

Estimate the area under y = f(x) between a and b using n strips.

- The width of the interval is b a.
- The width one strip is $\Delta x = \frac{b-a}{n}$.
- [a, b] is divided into n subintervals: $[X_0, X_1], [X_1, X_2], \ldots, [X_{n-1}, X_n],$ where $x_0 = a$ and $x_n = b$.

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + \cdots + f(x_n)\Delta x$$

 The right endpoints of the subintervals are

$$x_1 = a + \Delta x$$

$$x_2 = a + 2\Delta x$$

$$x_3 = a + 3\Delta x$$

$$\vdots$$

• The height of the *i*th rectangle is $f(x_i)$.

rectangle is $f(x_i)\Delta x$.

The area of the ith

 $R_n = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + \cdots + f(x_n)\Delta x$

Estimate the area under y = f(x) between a and b using n strips.

- The width of the interval is b a.
- The width one strip is $\Delta x = \frac{b-a}{n}$.
- [a, b] is divided into n subintervals: $[x_0, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n],$ where $x_0 = a$ and $x_n = b$.

$$L_n = f(x_0)\Delta x + f(x_1)\Delta x + f(x_2)\Delta x + \cdots + f(x_{n-1})\Delta x$$

 The left endpoints of the subintervals are

$$x_0 = a$$

$$x_1 = a + \Delta x$$

$$x_2 = a + 2\Delta x$$

$$\vdots$$

- The height of the *i*th rectangle is $f(x_{i-1})$.
- The area of the *i*th rectangle is $f(x_{i-1})\Delta x$.

Let f(x) > 0. The area of the region S that lies under y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

Let f(x) > 0. The area of the region S that lies under y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1) \Delta x + f(x_2) \Delta x + \cdots + f(x_n) \Delta x]$$

This limit always exists if f is continuous.

Let f(x) > 0. The area of the region S that lies under y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x]$$

- This limit always exists if f is continuous.
- If *f* is continuous, we get the same limit if we use left endpoints:

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x]$$

Let f(x) > 0. The area of the region S that lies under y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x]$$

- This limit always exists if f is continuous.
- If f is continuous, we get the same limit if we use left endpoints:

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x]$$

• If f is continuous, we get the same limit if we use any number x_i^* in the interval $[x_{i-1}, x_i]$. x_i^* is called a sample point.

$$A = \lim_{n \to \infty} [f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x]$$

Let f(x) > 0. The area of the region S that lies under y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \cdots + f(x_n)\Delta x]$$

- This limit always exists if f is continuous.
- If *f* is continuous, we get the same limit if we use left endpoints:

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x]$$

• If f is continuous, we get the same limit if we use any number x_i^* in the interval $[x_{i-1}, x_i]$. x_i^* is called a sample point.

$$A = \lim_{n \to \infty} \left[f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x \right]$$

Definition (Riemann Sum)

A Riemann sum is any sum of the form

$$f(x_1^*)\Delta x + f(x_2^*)\Delta x + \cdots + f(x_n^*)\Delta x.$$

Todor Miley Areas and integrals 2019

The Definite Integral

Definition (Definite Integral)

- Let f be a function defined for $a \le x \le b$.
- Divide the interval [a, b] into n subintervals of equal width $\Delta x = (b a)/n$ nd set $x_0 = a$, $x_n = b$.
- Let x_0, x_1, \ldots, x_n be the endpoints of the subintervals.
- Let $x_1^*, x_2^*, \dots, x_n^*$ be any sample points in these subintervals; that is, x_i^* is in $[x_{i-1}, x_i]$.

Suppose the limit $\lim_{n\to\infty}\sum_{i=1}^n f(x_i^*)\Delta x$ exists and is independent of the choice of sample points x_i^* . Then we say that f is an integrable function. If f is integrable we call the limit the integral of f over [a,b] and write

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Todor Milev

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$

- \int is called the integration sign.
- f(x) is called the integrand.
- a and b are called the limits of integration.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$

- \int is called the integration sign.
- f(x) is called the integrand.
- a and b are called the limits of integration.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$

- \int is called the integration sign.
- f(x) is called the integrand.
- a and b are called the limits of integration.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$

- \int is called the integration sign.
- f(x) is called the integrand.
- a and b are called the limits of integration.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$

- ∫ is called the integration sign.
- f(x) is called the integrand.
- a and b are called the limits of integration.
- The definite integral is a number. It does not depend on x. We could use any variable instead of x.

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(r) dr = \int_{a}^{b} f(\theta) d\theta$$

• We know already that if f(x) is always positive, then $\int_a^b f(x) dx$ is the area under the curve.

• What if f(x) is sometimes negative?

Todor Milev

Areas and integrals

• What if f(x) is sometimes negative?

2019

• We know already that if f(x) is always positive, then $\int_a^b f(x) dx$ is the area under the curve.

• What if f(x) is sometimes negative?

- What if f(x) is sometimes negative?
- Then $\int_{a}^{b} f(x) dx = A_1 A_2$.
- A₁ is the area of the region above the x-axis and below the graph of f.
- A₂ is the area of the region below the x-axis and above the graph of f.

Todor Milev

Areas and integrals

2019

Theorem

Let f be a continuous function on [a, b]. Then f is integrable over [a, b].

- In particular the integral does not depend the choice of sampling points so long as the intervals containing them shrink.
- The proof of this theorem is not difficult, but is outside of the scope of Calculus I and II.
- The only "difficulty" in the proof stems from the fact that we have not rigorously constructed the real numbers.
- We already (silently) assumed a construction of the real numbers when we defined limits.
- Such a construction is also (silently) assumed in most regular high school mathematics courses.
- A student interested in a proof of the theorem should google "Darboux integral".

The following **power sums** will be useful in what follows:

The following **power sums** will be useful in what follows:

The following **power sums** will be useful in what follows:

3
$$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
.

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} =$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_0^3 (x^3 - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_0^3 (x^3 - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n f\left(\right)$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_0^3 (x^3 - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n f\left(\right) \frac{3}{n}$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_0^3 (x^3 - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(\mathbf{x}_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n f\left(\right) \frac{3}{n}$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_0^3 (x^3 - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(\mathbf{x}_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n f\left(\frac{3i}{n}\right) \frac{3}{n}$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_0^3 (x^3 - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n f\left(\frac{3i}{n}\right) \frac{3}{n}$$
$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^n \left[\left(\frac{3i}{n}\right)^3 - 6\left(\frac{3i}{n}\right) \right]$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_0^3 (x^3 - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n f\left(\frac{3i}{n}\right) \frac{3}{n}$$
$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^n \left[\left(\frac{3i}{n}\right)^3 - 6\left(\frac{3i}{n}\right) \right] = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^n \left[\frac{27}{n^3} i^3 - \frac{18}{n} i \right]$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{a} = \frac{3}{a}$.

$$\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n}\right)^{3} - 6\left(\frac{3i}{n}\right) \right] = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\frac{27}{n^{3}} i^{3} - \frac{18}{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{a} = \frac{3}{a}$.

$$\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n}\right)^{3} - 6\left(\frac{3i}{n}\right) \right] = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\frac{27}{n^{3}} i^{3} - \frac{18}{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \left(\frac{81}{n^{4}} - \frac{54}{n^{2}} \right)$$

Todor Milev

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{a} = \frac{3}{a}$.

$$\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n}\right)^{3} - 6\left(\frac{3i}{n}\right) \right] = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\frac{27}{n^{3}} i^{3} - \frac{18}{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \left(\frac{81}{n^{4}} \left[\frac{n(n+1)}{2} \right]^{2} - \frac{54}{n^{2}} \right)$$

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{a} = \frac{3}{a}$.

$$\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n}\right)^{3} - 6\left(\frac{3i}{n}\right) \right] = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\frac{27}{n^{3}} i^{3} - \frac{18}{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \left(\frac{81}{n^{4}} \left[\frac{n(n+1)}{2} \right]^{2} - \frac{54}{n^{2}} \right)$$

Todor Milev

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n}\right)^{3} - 6\left(\frac{3i}{n}\right) \right] = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\frac{27}{n^{3}} i^{3} - \frac{18}{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \left(\frac{81}{n^{4}} \left[\frac{n(n+1)}{2} \right]^{2} - \frac{54}{n^{2}} \frac{n(n+1)}{2} \right)$$

Todor Milev

Areas and integrals

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n}\right)^{3} - 6\left(\frac{3i}{n}\right) \right] = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\frac{27}{n^{3}} i^{3} - \frac{18}{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \left(\frac{81}{n^{4}} \left[\frac{n(n+1)}{2} \right]^{2} - \frac{54}{n^{2}} \frac{n(n+1)}{2} \right)$$

$$= \lim_{n \to \infty} \left[\frac{81}{4} \left(1 + \frac{1}{n} \right)^{2} - 27\left(1 + \frac{1}{n} \right) \right]$$

Todor Milev

Areas and integrals

Evaluate
$$\int_0^3 (x^3 - 6x) dx$$
. $\Delta x = \frac{b-a}{n} = \frac{3}{n}$.

$$\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n}\right)^{3} - 6\left(\frac{3i}{n}\right) \right] = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\frac{27}{n^{3}} i^{3} - \frac{18}{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \left(\frac{81}{n^{4}} \left[\frac{n(n+1)}{2} \right]^{2} - \frac{54}{n^{2}} \frac{n(n+1)}{2} \right)$$

$$= \lim_{n \to \infty} \left[\frac{81}{4} \left(1 + \frac{1}{n} \right)^{2} - 27\left(1 + \frac{1}{n} \right) \right] = \frac{81}{4} - 27 = -\frac{27}{4}$$

Todor Milev

- So far when we have calculated $\int_a^b f(x) dx$, we have assumed that a < b.
- The definition as a limit of Riemann sums will still work even if we don't assume this.

Todor Milev Areas and integrals 2019

2019

Properties of the Definite Integral

- So far when we have calculated $\int_a^b f(x) dx$, we have assumed that a < b.
- The definition as a limit of Riemann sums will still work even if we don't assume this.
- If we reverse a and b, then Δx changes from $\frac{b-a}{a}$ to $\frac{a-b}{a}$.

- So far when we have calculated $\int_a^b f(x) dx$, we have assumed that a < b.
- The definition as a limit of Riemann sums will still work even if we don't assume this.
- If we reverse a and b, then Δx changes from $\frac{b-a}{n}$ to $\frac{a-b}{n}$.

$$\int_{b}^{a} f(x) dx =$$

- So far when we have calculated $\int_a^b f(x) dx$, we have assumed that a < b.
- The definition as a limit of Riemann sums will still work even if we don't assume this.
- If we reverse a and b, then Δx changes from $\frac{b-a}{n}$ to $\frac{a-b}{n}$.

$$\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx$$

- So far when we have calculated $\int_a^b f(x) dx$, we have assumed that a < b.
- The definition as a limit of Riemann sums will still work even if we don't assume this.
- If we reverse a and b, then Δx changes from $\frac{b-a}{n}$ to $\frac{a-b}{n}$.

$$\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx$$

• If a = b, then $\Delta x =$

- So far when we have calculated $\int_a^b f(x) dx$, we have assumed that a < b.
- The definition as a limit of Riemann sums will still work even if we don't assume this.
- If we reverse a and b, then Δx changes from $\frac{b-a}{n}$ to $\frac{a-b}{n}$.

$$\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx$$

• If a = b, then $\Delta x = 0$.

- So far when we have calculated $\int_a^b f(x) dx$, we have assumed that a < b.
- The definition as a limit of Riemann sums will still work even if we don't assume this.
- If we reverse a and b, then Δx changes from $\frac{b-a}{n}$ to $\frac{a-b}{n}$.

$$\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx$$

• If a = b, then $\Delta x = 0$.

$$\int_{a}^{a} f(x) dx =$$

- So far when we have calculated $\int_a^b f(x) dx$, we have assumed that a < b.
- The definition as a limit of Riemann sums will still work even if we don't assume this.
- If we reverse a and b, then Δx changes from $\frac{b-a}{n}$ to $\frac{a-b}{n}$.

$$\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx$$

• If a = b, then $\Delta x = 0$.

$$\int_a^a f(x) \mathrm{d}x = 0$$

- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$, where c is any constant.

- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$, where c is any constant.

- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$, where c is any constant.

$$\int_0^1 (4+3x^2) \mathrm{d}x$$

$$\int_{0}^{1} (4+3x^{2}) dx = \int_{0}^{1} 4 dx + \int_{0}^{1} 3x^{2} dx$$
 Property

$$\int_{0}^{1} (4+3x^{2}) dx = \int_{0}^{1} 4 dx + \int_{0}^{1} 3x^{2} dx$$
 Property 2

$$\int_{0}^{1} (4+3x^{2}) dx = \int_{0}^{1} 4 dx + \int_{0}^{1} 3x^{2} dx$$
 Property 2
$$= \int_{0}^{1} 4 dx + 3 \int_{0}^{1} x^{2} dx$$
 Property

$$\int_{0}^{1} (4+3x^{2}) dx = \int_{0}^{1} 4 dx + \int_{0}^{1} 3x^{2} dx$$
 Property 2
$$= \int_{0}^{1} 4 dx + 3 \int_{0}^{1} x^{2} dx$$
 Property 3

$$\int_0^1 (4+3x^2) dx = \int_0^1 4 dx + \int_0^1 3x^2 dx \qquad \text{Property 2}$$

$$= \int_0^1 4 dx + 3 \int_0^1 x^2 dx \qquad \text{Property 3}$$

$$= +3 \int_0^1 x^2 dx \qquad \text{Property}$$

Example |

$$\int_{0}^{1} (4+3x^{2}) dx = \int_{0}^{1} 4 dx + \int_{0}^{1} 3x^{2} dx$$
 Property 2
$$= \int_{0}^{1} 4 dx + 3 \int_{0}^{1} x^{2} dx$$
 Property 3
$$= 4(1-0) + 3 \int_{0}^{1} x^{2} dx$$
 Property

$$\int_{0}^{1} (4+3x^{2}) dx = \int_{0}^{1} 4dx + \int_{0}^{1} 3x^{2} dx$$
 Property 2
$$= \int_{0}^{1} 4dx + 3 \int_{0}^{1} x^{2} dx$$
 Property 3
$$= 4(1-0) + 3 \int_{0}^{1} x^{2} dx$$
 Property 1

$$\int_{0}^{1} (4+3x^{2}) dx = \int_{0}^{1} 4 dx + \int_{0}^{1} 3x^{2} dx$$
 Property 2
$$= \int_{0}^{1} 4 dx + 3 \int_{0}^{1} x^{2} dx$$
 Property 3
$$= 4(1-0) + 3 \int_{0}^{1} x^{2} dx$$
 Property 1
$$= 4 + 3.$$

Example¹

$$\int_0^1 (4+3x^2) dx = \int_0^1 4 dx + \int_0^1 3x^2 dx \qquad \text{Property 2}$$

$$= \int_0^1 4 dx + 3 \int_0^1 x^2 dx \qquad \text{Property 3}$$

$$= 4(1-0) + 3 \int_0^1 x^2 dx \qquad \text{Property 1}$$

$$= 4 + 3 \cdot \frac{1}{3} \qquad \text{From preceding lectures/slides}$$

Example¹

$$\int_0^1 (4+3x^2) dx = \int_0^1 4 dx + \int_0^1 3x^2 dx \qquad \text{Property 2}$$

$$= \int_0^1 4 dx + 3 \int_0^1 x^2 dx \qquad \text{Property 3}$$

$$= 4(1-0) + 3 \int_0^1 x^2 dx \qquad \text{Property 1}$$

$$= 4 + 3 \cdot \frac{1}{3} \qquad \text{From preceding lectures/slides}$$

$$= 5$$

Todor Milev

Areas and integrals

$$\int_0^8 f(x)\mathrm{d}x + \int_8^{10} f(x)\mathrm{d}x$$

$$\int_0^8 f(x) dx + \int_8^{10} f(x) dx = \int_0^{10} f(x) dx$$

$$\int_{0}^{8} f(x) dx + \int_{8}^{10} f(x) dx = \int_{0}^{10} f(x) dx$$
$$\int_{8}^{10} f(x) dx = \int_{0}^{10} f(x) dx - \int_{0}^{8} f(x) dx$$

$$\int_{0}^{8} f(x) dx + \int_{8}^{10} f(x) dx = \int_{0}^{10} f(x) dx$$
$$\int_{8}^{10} f(x) dx = \int_{0}^{10} f(x) dx - \int_{0}^{8} f(x) dx$$

$$\int_{0}^{8} f(x)dx + \int_{8}^{10} f(x)dx = \int_{0}^{10} f(x)dx$$
$$\int_{8}^{10} f(x)dx = \int_{0}^{10} f(x)dx - \int_{0}^{8} f(x)dx$$
$$= 17 -$$

$$\int_{0}^{8} f(x)dx + \int_{8}^{10} f(x)dx = \int_{0}^{10} f(x)dx$$
$$\int_{8}^{10} f(x)dx = \int_{0}^{10} f(x)dx - \int_{0}^{8} f(x)dx$$
$$= 17 -$$

$$\int_{0}^{8} f(x)dx + \int_{8}^{10} f(x)dx = \int_{0}^{10} f(x)dx$$
$$\int_{8}^{10} f(x)dx = \int_{0}^{10} f(x)dx - \int_{0}^{8} f(x)dx$$
$$= 17 - 12$$

$$\int_{0}^{8} f(x)dx + \int_{8}^{10} f(x)dx = \int_{0}^{10} f(x)dx$$
$$\int_{8}^{10} f(x)dx = \int_{0}^{10} f(x)dx - \int_{0}^{8} f(x)dx$$
$$= 17 - 12$$
$$= 5$$

• If $f(x) \le g(x)$ for all $a \le x \le b$, then $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

$$\int_a^b f(x) \mathrm{d} x \le \int_a^b g(x) \mathrm{d} x$$

• If $f(x) \le g(x)$ for all $a \le x \le b$, then $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

$$\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$$

• If $f(x) \le g(x)$ for all $a \le x \le b$, then $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

$$\int_a^b f(x) \mathrm{d}x \le \int_a^b g(x) \mathrm{d}x$$

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$$

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$$

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$$

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$$

