

Chapter 2: Basic Structures

Learning Objectives

After studying this topic, you should be able to:

- 1. Describe about the set theory
- 2. Distinguish all the set operation.
- 3. State the sequence and calculate the summation
- 4. Understand about the matrices
- 5. Apply some operations in matrices

2.1 Sets

•

- It is denoted as: -
 - \triangleright $a \in A$: is an element of the set A.
 - > $a \notin A$: is not an element of the set A

Set Theory			
N	The set of natural numbers $\{0, 1, 2, \dots\}$		
Z	The set of integers $\{, -2, -1, 0, 1, 2,\}$		
$Z^{\scriptscriptstyle +}$	The set of positive integers $\{1, 2, 3, \dots\}$		
Q	The set of rational numbers $\{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z} \text{ and } q \neq 0 \}$		
R	The set of real numbers		
R^{+}	The set of positive real numbers		
C	The set of complex numbers		

• Sets can be represented graphically using Venn Diagrams. In Venn Diagrams, the Universal Sets U, which contains all the objects under consideration, is represented by a rectangle.

Venn Diagram

• Let A and B be the sets. The set A is a subset of B if and only if every element of A also an element of B. It is denoted as $A \subseteq B$: A is a subset of the set B.

A is a subset of the set B

Example:

- 1. The set of all odd positive integers less than 10 is a subset of the set of all positive integers less than 10.
- 2. The set of rational number is a subset of the set of real numbers.

2.2 Set Operation

Let A and B be the sets.

Set Operations	Definition	Venn Diagram
Union	AVB	
Intersection	АЛВ	
Disjoint		₩ DEFE
Difference	A-B/NB	
Complement	A'/ Ā	

2.3 Sequences and summations

SEQUENCES.

- A sequence is a function from a subset of the set of integers.
- We use the notation a_n to denote the image of the integer n.
- We call a_n a term of the sequence.
- There are two types of sequence, which are:
 - Seometric progression a sequence of the form $a, ar, ar^2, ..., ar^n$ where the initial term a and the common ratio r are real numbers.
 - Arithmetic progression a sequence of the form a, a + d, a + 2d, ...a + nd where the initial term a and the common difference d.

Example:

$$b_{n} = (-1)^{n}$$

$$b_{n} = (-1)^{n}$$

$$b_{n} = (-1)^{n} = 1$$

 $b_{n} = (-1)^{n}, \quad \text{1. The sequence } \{b_{n}\} \text{ with } b_{n} = (-1)^{n}, \quad \{c_{n}\} \text{ with } c_{n} = 2 \cdot 5^{n}, \text{ and } \{d_{n}\} \text{ with } d_{n} = 6 \cdot \left(\frac{1}{3}\right)^{n} \text{ are } (-1)^{n}, \quad \{c_{n}\} \text{ with } c_{n} = 2 \cdot 5^{n}, \quad \{c_{n}\} \text{ with } c_$

geometric progressions with initial term and common ratio equal to 1 and -1; 2 and 5; and 6 and 1/3, respectively, if we start n = 0. Find the sequences for n = 0 until n = 5.

2. The sequence $\{s_n\}$ with $s_n = -1 + 4n$, $\{t_n\}$ and $t_n = 7 - 3n$, are arithmetic progressions with initial term and common difference equal to -1 and 4, and 7 and -3, respectively, if we start n = 0. Find the sequences for n = 0 until n = 5.

SUMMATION. Sign a notation

- We consider the addition of the terms of a sequence. Hence, we introduce summation notation.
- Let $a_m, a_{m+1}, ..., a_n$ be the terms, we express the sum of this terms in the notation

$$\sum_{j=m}^{n} a_j, \sum_{j=m}^{n} a_j, \quad or \quad \sum_{m \leq j \leq n} a_j$$

 Double summations arise in many contexts (as in the analysis of nested loops in computer programs.

$$\sum_{i=m}^{n} \sum_{j=r}^{s} ij$$

 Summation notation also is used to add all values of the function, or terms of an indexed set, where the index of summation runs over all values in a set.

$$\sum_{s \in S} f(s)$$

Some formulae are formulated and useful in summation.

Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} k x^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

Some Useful Summation Formulae

Example:

1. Use summation notation to express the sum of the first 100 terms of the sequence $\{a_j\}$, where

$$a_{j} = \frac{1}{j}$$
 for $j = 1, 2, 3, ...$

$$\sum_{j=1}^{100} \frac{1}{j}$$

- 2. What is the value of $\sum_{j=1}^{5} j^2$?

 3. What is the value of $\sum_{s \in \{0,2,4\}}^{5} s$?
- 4. Find $\sum_{k=50}^{100} k^2$.

2.4 Cardinality of sets

The cardinality of a set states the number of elements a set contains. The cardinality is expressed as |A| where A is the given set.

Example:

Given set $A = \{1, 2, 3\}$. State the cardinality of this set.

|A| = 3. The cardinality of A is 3.

2.5 Matrices

Matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$

A matrix with the same number of rows as columns is called square matrix.

• Two matrices are equal if they have the same number of rows and the same number of columns.

square matrix row = column

• Let $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$, the *i*th row of A is the 1 x n matrix $\begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix}$, the *j*th

column of A is the $n \times 1$ matrix $\begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$. The $(i,j)^{th}$ element or entry of A is the element a_{ij} . Element:

Element: each value in matrix
 Dimension: A matrix that has the same number of rows and columns.
 Square matrix: Number of rows by number of columns of a matrix

Example:

Find the dimension of each matrix.

a.
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \\ 3 & -2 \end{bmatrix}$$
 3 x 2 b. $B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ 4 x 1 c. $C = \begin{bmatrix} 5 & 6 & 7 \\ 3 & 5 & 4 \\ 2 & 1 & 3 \end{bmatrix}$ 3 x 3

Matrix operation

- 1. Matrix addition and subtraction.
 - > Only matrices of same dimension can be added and subtracted.

$$A = \begin{bmatrix} 3 & 5 \\ 4 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

Find the value of addition and subtraction matrix A and B.

ВхД

B can't multiply with A because the no. of columns in B is not equal to the no. of row in A.

- 2. Matrix multiplication.
 - > Multiply rows times columns.
 - ➤ Only can multiply if the number of columns in 1st matrix is equal to number of rows in the 2nd matrix.
 - 1. Find the product of this matrices : $\begin{bmatrix} -3 & 2 & 5 \\ 7 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} -8 & 2 \\ 1 & 5 \\ 0 & -3 \end{bmatrix}.$
 - 2. Let $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, does AB = BA?

 $AB = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}$ and $BA = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}$. $\therefore AB \neq BA$ because matrix multiplication is not commutative.

Tutorial Questions.

2.1 Sets.

- 1. List the members of these sets.
 - a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
 - b) $\{x \mid x \text{ is a positive integer less than } 12\}$
 - c) $\{x | x \text{ is the square of an integer and } x < 100\}$
 - d) $\{x | x \text{ is an integer such that } x^2 = 2\}$
- 2. For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.
 - a) the set of airline flights from New York to New Delhi, the set of nonstop airline flight from New York to New Delhi.
 - b) the set of people who speak English, the set of people who speak Chinese
 - c) the set of flying squirrels, the set of living creatures that can fly
 - d) the set of people who speak English, the set of people who speak English with an Australian accent
 - e) the set of fruits, the set of citrus fruits
 - f) the set of students studying discrete mathematics, the set of students studying data structures
- 3. Suppose that $A = \{2,4,6\}$, $B = \{2,6\}$, $C = \{4,6\}$ and $D = \{4,6,8\}$. Determine which of these sets are subsets of which other of these sets.
- 4. Use a Venn Diagram to illustrate the set of all months of the year whose names do not contain the letter R in the set of all month of the year.
- 5. Use a Venn Diagram to illustrate the relationship $A \subset B$ and $B \subset C$.

2.2 Set Operations

- 1. Let A be the set of students who live within one mile of school and let B be the students who walk to classes. Describe the students in each of these sets.
 - a) $A \cap B$
- b) $A \cup B$
- c) A-B
- d) B-A
- 2. Suppose that A is the set of sophomores at your school and B is the set of students in discrete mathematics at your school. Express each of these sets in terms of A and B.
 - a) the set of sophomores taking discrete mathematics in your school.
 - b) the set of sophomores at your school who are not taking discrete mathematics.
 - c) the set of students at your school who either are sophomores or are taking discrete mathematics
 - d) the set of students at your school who either are not sophomores or are not taking discrete mathematics

- 3. Let $A = \{1,2,3,4,5\}$ and $B = \{0,3,6\}$. Find
 - a) $A \cap B$
- b) $A \cup B$
- A Bc)
- B Ad)
- 4. Let $A = \{0,2,4,6,8,10\}, B = \{0,1,2,3,4,5,6\}$ and $C = \{4,5,6,7,8,9,10\}$. Find
 - $A \cap B \cap C$
- $A \cup B \cup C$ b)
- c) $(A \cup B) \cap C$
- d) $(A \cap B) \cup C$
- 5. Draw the Venn diagrams for each of these combinations of the sets A, B and C.
 - $A \cap (B C)$ a)
- $(A \cap B) \cup (A \cap C)$ b)
- $(A \cap \overline{B}) \cup (A \cap \overline{C})$ c)

2.3 Sequence and summation

- Find these terms of the sequence $\{a_n\}$, where $a_n = 2 \cdot (-3)^n + 5^n$. a) a_0 b) a_1 c) a_4 1.

- d) a_5
- What are the terms a_0 , a_1 , a_2 and a_3 of the sequence $\{a_n\}$, where a_n equals a) $2^n + 1$? b) $(n+1)^{n+1}$? 2.
- [n/2]? c)
- [n/2] + [n/2]? d)
- List the first 10 terms of each of these sequences. 3.
 - the sequence that begins with 2 and in which each successive term is 3 more than the preceding term
 - b) the sequence that lists each positive integer three times, in increasing order
 - the sequence that lists the odd positive integers in increasing order, listing each odd c) integer twice
 - d) the sequence whose *n*th term is $n! - 2^n$
 - the sequence that begins with 3, where each succeeding term is twice the preceding term e)
 - the sequence whose first term is 2, second term is 4, and each succeeding term is the sum f) of two preceding terms
- 4. What are the values of these sums?
 - $\sum_{k=1}^{5} (k+1)$ a)

 $\sum_{i=1}^{10} 3i$ c)

- b) $\sum_{j=0}^{4} (-2)^j$ d) $\sum_{j=0}^{8} (2^{j+1} 2^j)$
- 5. What is the value of each of these sums of terms of a geometric progression?
 - $\sum_{j=0}^{8} 3 \cdot 2^{j}$ $\sum_{j=2}^{8} (-3)^{j}$ a)

b)

c)

- $\sum_{j=1}^{8} 2^{j}$ $\sum_{j=0}^{8} 2 \cdot (-3)^{j}$ d)
- Compute each of these double sums. 6.
 - $\begin{array}{l} \sum_{i=1}^{2} \sum_{j=1}^{3} (i+j) \\ \sum_{i=0}^{2} \sum_{j=1}^{3} ij \end{array}$
- b) $\sum_{i=0}^{2} \sum_{j=0}^{3} (2i+3j)$

c)

2.4 Cardinality of sets

- 1. Given set A is an odd integer between 0 until 20. What is the cardinality of set A?
- 2. Set A consists of vowel alphabet in word CAMBRIDGE. State the cardinality of set A.
- 3. State the cardinality of set of letters in the ENGLISH alphabet.
- 4. What is the cardinality of elements T in word CRESCENDO.

2.5 Matrix

1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & 0 & 4 & 6 \\ 1 & 1 & 3 & 7 \end{bmatrix}$$
.

- What size is A?
- What is the third column of A? b)
- What is the second row of A? c)
- What is the element of A in the (3, 2)th position?
- 2. Find A + B, where

a)
$$A = \begin{bmatrix} 1 & 0 & 4 \\ -1 & 2 & 2 \\ 0 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} -1 & 3 & 5 \\ 2 & 2 & -3 \\ 2 & -3 & 0 \end{bmatrix}$$
b)
$$A = \begin{bmatrix} -1 & 0 & 5 & 6 \\ -4 & -3 & 5 & -2 \end{bmatrix}, B = \begin{bmatrix} -3 & 9 & -3 & 4 \\ 0 & -2 & -1 & 2 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} -1 & 0 & 5 & 6 \\ -4 & -3 & 5 & -2 \end{bmatrix}, B = \begin{bmatrix} -3 & 9 & -3 & 4 \\ 0 & -2 & -1 & 2 \end{bmatrix}$$

3. Find AB if

a)
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 & 4 \\ 1 & 3 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 3 & -2 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 4 & -3 \\ 3 & -1 \\ 0 & -2 \\ -1 & 5 \end{bmatrix}, B = \begin{bmatrix} -1 & 3 & 2 & -2 \\ 0 & -1 & 4 & -3 \end{bmatrix}$$

4. Find the product AB, where

a)
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & -3 & 0 \\ 1 & 2 & 2 \\ 2 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 2 & 3 \\ -1 & 0 & 3 & -1 \\ -3 & -2 & 0 & 2 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -3 & -2 & 0 & 2 \\ 0 & -1 \\ 7 & 2 \\ -4 & -3 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 & 2 & 3 & 0 \\ -2 & 0 & 3 & 4 & 1 \end{bmatrix}$$