A/B testing

Maria Aguilera, Kelsey Moon, Michelle Joung

What is A/B testing

- Using
 experimental
 design and
 statistics to
 compare two or
 more variants of
 a design
- Usually deals with conversion rates

Utilization and Types of A/B Testing

- Types:
 - Within
 - Each participant sees both conditions
 - Between
 - Different groups see different conditions
- Uses:
 - Conversion Rate
 - Engagement
 - Drop off Rate
 - Time Spent
- Purpose: Maximize desired goal
- Assumptions

Old Version

New Version

What now?

- Time frame
- Test and Control
- Collect Data
- 4. Sample Size (Power Analysis)
- 5. Statistical Test
 - a. Logistic Regression for binary categorical DV
 - b. T-test continuous binary DV
 - c. Linear Regression continuous DV
 - d. Chi-Squared

Power Analysis: Sample Size

- What is necessary:
 - Power (1 Beta)
 - Significant level (alpha)
 - Effect Size
- Functions depend on statistical tests
 - SSizeLogisticBin()
 - pwr.t.test()
- Higher power, lower alpha, and smaller effect size will require **more** data points

What's Next?

- Figure out which model performed better
 - Statistical Tests: P- value, standard error, estimates, test statistic
- Update to the winning model
 - If the new model won, compare it to the old one
- Follow up experiments
 - Take things one step at a time
 - Small changes

Bag

Door

Meat

Vegetarian

Benefits

- Improve content
 - Better understanding of customer base
- Higher page engagement
- Can test multiple elements
- May increase revenue
- Increase conversion rates
- Decrease acquisition rates

Common Issues

- "Flicker effect"
- Small sample size can lead to inaccurate results
- Requires a minimum of 2 3 weeks
 - o Or at least 5,000 'conversions'
- Needs regular updating
- False positives
- Confounding Variables
 - Internal
 - External
- Side Effect
 - Unintended consequence of a change

A/A testing

• Test one version of a page with two different groups

Before the A/B test:

- Helps find minimum sample size
- Baseline conversion rate

After the A/B Test:

- Ensures it was efficient
 - No difference vs difference in conversion rates

A/B/N or Multivariate Testing

- Compare a control condition to "N" number of different versions of a web page
- Test to see which specific feature generates the best conversion rates

Cons of A/B/N testing

- Poor efficiency, more complicated statistics
- Each variant tested increases the sample size requirements

A/B/N example

Data Set

- Found on Kaggle
- 294,478 observations
- Five variables:
 - user_id, timestamp, group, landing_page, and converted
- Data collection period:
 - January 2nd, 2017 to January 24th,
 2017
- <u>Purpose</u>: To determine whether the new website design results in a higher conversion rate than the old website design.

Number of old page and new pages that resulted website conversion

Convert and Did not convert for each Webpage condition. Color shows details about Convert and Did not convert.

Conversion rate

- Rate = (Those who clicked) / (Total visitors)
- Difference between the old and new page:
 - o 0.16%.
- Conversion rate control:
 - 12.04%
- Conversion rate for new page:
 - 0 11.88%

Conversion rates in January

Statistical Analysis - Chi-Square

- Used to test if two categorical variables are related in population.
 - Large sample size
 - Independent observations

H0: There would not be a significant difference of conversion rate between old page and new page

HA: There would be a significant difference of conversion rate between old page and new page

- P value of chi square test = 0.19 (>0.05)
- Null hypothesis failed to reject.

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Confidence Interval

- The 95% confidence interval: -0.0007144889 and 0.0039880781
- Confirms that there's no actual difference in conversion rate between old website and new website.

```
2-sample test for equality of proportions with continuity correction

data: t2
X-squared = 1.8568, df = 1, p-value = 0.173
alternative hypothesis: two.sided
95 percent confidence interval:
-0.0007144889  0.0039880781
sample estimates:
   prop 1   prop 2
0.1204776  0.1188408
```

Recommendations/Future Research

- Test more specific variables
 - Exact word clicked for conversion
 - Amount of time spent on page
- Longer data collection period that accounts for seasonal variation
- Perform other A/B tests
- Test demographics of visitors

Real World Example

Version 1

Version 2

Conclusion

- Our Data:
 - Based on the statistical tests, the new site did not change the conversion rates
 - Maintain the old website design
- General:
 - Know the type of A/B test you want to perform prior to starting
 - Collect enough data
 - Start small!
 - Continue to make improvements

Questions?

Citations

Brebion, Anthony. "How to Avoid Flickering (Flash of Original Content) in A/B Tests." AB Tasty, 9 Oct. 2018, www.abtasty.com/blog/ab-testing-flicker-effect/.

Cabot, Jordi. "A/B Testing for Dummies." Nelio Software, 9 Apr. 2018, neliosoftware.com/blog/ab-testing-dummies/.

Chapman, Cameron. "A Beginner's Guide To AB Testing: An Introduction." Neil Patel, 15 Feb. 2019, neilpatel.com/blog/ab-testing-introduction/.

Deshpande, Bala. "2 Key Assumptions to Be Aware of before Applying the Chi-Square Test." *Analytics Made Accessible: for Small and Medium Business and Beyond*, Soliton Technologies, www.simafore.com/blog/bid/56480/2-key-assumptions-to-be-aware-of-before-applying-the-chi-square-test.

Parmar, Divya. "Introduction to A/B Testing." Data Science Central, DSC, 23 May 2017, www.datasciencecentral.com/profiles/blogs/introduction-to-a-b-testing.

Piccinini, Page, director. *Assumptions and Types of A/B Testing. R*, 2018 campus.datacamp.com/courses/ab-testing-in-r/chapter-3-experimental-design-in-ab-testing?ex=5.

Shukairy, Ayat. "Momentum Behavior: Are Visitors in Love with Your Old Site Design?" *Invespcro*, Invesp, 2017, www.invespcro.com/blog/momentum-behavior-are-visitors-in-love-with-your-old-site-design/

Zhang, Luyuan. "A/B Testing." Kaggle, Kaggle Inc, 25 June 2018, www.kaggle.com/zhangluyuan/ab-testing.