Sheet 2 - The Rule of Two, Episode II (Due: 08.11.2021, 18:00)

To accompany the exercises below, we have prepared a Jupyter-Python notebook for you under this link:

 $https://mybinder.org/v2/git/https%38%2F%2Fgitlabph.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fbinder_repo_aqm_ii_2122/main?urlpath=doc/tree/Sheet2.ipynb.physik.fu-berlin.de%2Fmattkrauss%2Fmattk$

For some of the problems on this sheet you should use this notebook for assistance. These instances are indicated by the keyword "**investigate**". Please do not hand in the Jupyter-Python notebooks - rather, describe the results of your investigations in your submitted solutions, for example by screenshotting and pasting some of the figures you obtain and by explaining your observations with words.

Exercise 1 - Tricks of the Trade II (10 points)

(a) Show that for any $x \in \mathbb{R}$ and linear operator \hat{A} with $\hat{A}^2 = \hat{1}$, the following relation holds, [4P]

$$e^{i\hat{A}x} = \cos(x)\,\hat{\mathbb{1}} + i\sin(x)\,\hat{A}.$$

Hint: On the previous sheet we learned that general functions on operators can be evaluated via the spectral decomposition. In this exercise a different approach is a little easier, namely directly using the definition of the exponential, lifted to the operator level, i.e., $e^{i\hat{A}x} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(i\hat{A}x\right)^n$.

- (b) Show that the operator $\hat{\sigma}_{\vec{n}} \equiv \vec{n} \cdot \hat{\vec{\sigma}} \equiv n_x \hat{\sigma}_x + n_y \hat{\sigma}_y + n_z \hat{\sigma}_z$ with $\vec{n} \in \mathbb{R}^3$, $||\vec{n}|| = 1$ posseses the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$ for arbitrary \vec{n} . [4P] Hint: Show first that $\hat{\sigma}_{\vec{n}}$ is both Hermitian and unitary. Which eigenvalues are permissable for such operators?
- (c) **Investigate** for the three examples $\vec{n}_1 = (0, 1, 0)$, $\vec{n}_2 = \left(\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right)$ and $\vec{n}_3 = \frac{1}{\sqrt{3}}(1, 1, 1)$, in how far the directions of the eigenvectors of $\hat{\sigma}_{\vec{n}}$, $|\psi_{\pm \vec{n}}\rangle$, correspond to the directions $\pm \vec{n}$ on the Bloch sphere. [2P]

Exercise 2 - Controlled Rotations (28 points)

Remark: For simplicity, we use $\hbar = 1$ throughout this exercise.

- (a) Prove that the eigenvectors of $\hat{\sigma}_{\vec{n}}$, $|\psi_{\pm \vec{n}}\rangle$, point along the directions $\pm \vec{n}$ on the Bloch sphere. [5P]
- (b) Prove the following general expression for the exponential of a linear combination of Pauli matrices with normalised coefficients,

$$\hat{R}_{\vec{n}}\left(\phi\right) \equiv e^{-i\frac{\phi}{2}\left(\vec{n}\cdot\hat{\vec{\sigma}}\right)} = \cos\left(\frac{\phi}{2}\right)\mathbb{1} - i\sin\left(\frac{\phi}{2}\right)\left(\vec{n}\cdot\hat{\vec{\sigma}}\right),\tag{1}$$

with $\vec{n} \cdot \hat{\vec{\sigma}} \equiv n_x \hat{\sigma}_x + n_y \hat{\sigma}_y + n_z \hat{\sigma}_z$ and $||\vec{n}|| = 1$. [2P]

(c) Use the results from 1(b) and 1(c) to show that $\hat{R}_{\vec{n}}(\phi)$ rotates a state on the Bloch sphere by an angle ϕ around the \vec{n} direction. [5P]

Hint: An arbitrary state on the Bloch sphere can also be written in rotated spherical coordinates with polar angle $\theta_{\vec{n}}$ and azimuthal angle $\varphi_{\vec{n}}$, where the \vec{n} direction takes the role of the z axis in conventional spherical coordinates,

$$|\psi\rangle = \cos\frac{\theta_{\vec{n}}}{2} |\psi_{\vec{n}}\rangle + e^{i\varphi_{\vec{n}}} \sin\frac{\theta_{\vec{n}}}{2} |\psi_{-\vec{n}}\rangle$$
.

Think about how a rotation around the \vec{n} axis should behave in this representation and show that $\hat{R}_{\vec{n}}(\phi)$ indeed has this property.

(d) Consider a Hamiltonian of the form

$$\hat{H} = \frac{1}{2}\alpha_x \hat{\sigma}_x + \frac{1}{2}\alpha_y \hat{\sigma}_y + \frac{1}{2}\alpha_z \hat{\sigma}_z, \qquad (2)$$

with $\alpha_x, \alpha_y, \alpha_z \in \mathbb{R}$. Use Eq. (1) to derive an explicit expression for the propagator $\hat{U}(t) = e^{-i\hat{H}t}$. [2P]

(e) We now introduce a time dependence in the Hamiltonian from Eq. (2) by replacing the constants α_i with time-dependent functions α_i (t). Furthermore, we assume that these time-dependent functions are piecewise constant and can only take on the values of 0 or 1 at a given time. At t=0 we start in the state $|\psi(t=0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$. Find solutions for the time-dependent functions α_i (t) such that we arrive - for some T>0 - in one of the following two states, respectively, ...

- (i) $|\psi_1(T)\rangle = |1\rangle$.
- (ii) $|\psi_2(T)\rangle = \frac{\sqrt{3}}{2} |0\rangle + \frac{i}{2} |1\rangle$.

Investigate the states' trajectories on the Bloch sphere and sketch / screenshot your solutions. [4P]

- (f) Explain how to obtain an arbitrary state $|\psi(T)\rangle \in \mathcal{H}_2$ for some T > 0 from $|\psi(t=0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ with the piecewise-constant time-dependent approach from (e). Describe your general protocol in words and **investigate** your solution for a few examples via their trajectories on the Bloch sphere. [4P]
- (g) We now assume that we only have access to two of the three Paulis in Eq. (2) via the additional constraint $\forall t: \alpha_y(t) = 0$. In other words, you are not allowed to use the $\hat{\sigma}_y$ term in the Hamiltonian! Repeat exercises (e) and (f) under this constraint. [6P]

Remark: What you have observed in this exercise, is the so-called "state controllability" of a qubit with two of the three Pauli matrices only. Two Paulis are sufficient to reach any state because the so-called "dynamical Lie algebra" is complete as soon as it is generated by two of the three Paulis - their commutator always yields the third. Studying the controllability of quantum mechanical systems is a crucial step to understand whether certain tasks can be achieved with a given physical implementation, see, e.g. the paper "Fundamental bounds on qubit reset", published as Phys. Rev. Research 3, 013110 (2021), about how to initialise qubits in a quantum computer.

Exercise 3 - The Cat in the Hat Came Back (22 points + 5 extra points)

The so-called Wigner distribution W(x, p),

$$W(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} \psi^*(x-y) \,\psi(x+y) \,e^{\frac{2ipy}{\hbar}} \,dy$$

is a very useful tool to visualise the dynamics of a particle in one dimension by associating any wave function $\psi(x)$ to a distribution with respect to phase space coordinates, $(x,p) \in \mathbb{R}^2$.

- (a) Show that the integral of the Wigner distribution over all p yields the probability $P_x(x)$ to find the particle at position x, i.e., $P_x(x) = \int_{-\infty}^{\infty} W(x, p) dp$. [3P]
- (b) Show that the integral of the Wigner distribution over all x yields the probability $P_p(p)$ to find the particle at position p, i.e., $P_p(p) = \int_{-\infty}^{\infty} W(x,p) \ dx$. [5P] Hint: Remember that the wave function with respect to position, $\psi(x)$, is connected to the wave function with respect to momentum, $\tilde{\psi}(p)$, via the Fourier transform,

$$\psi\left(x\right) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \tilde{\psi}\left(p\right) e^{-\frac{i}{\hbar}px} dp.$$

- (c) **Investigate** the Wigner distribution of Fock states $|n\rangle$. Describe your observations, in particular with respect to the role of n. [2P]
- (d) **Investigate** the Wigner distribution of an equal superposition between two Fock states, i.e., a state of the form $|\psi\rangle = \frac{1}{\sqrt{2}} (|n_1\rangle + e^{i\varphi} |n_2\rangle)$. Describe how the relative phase φ affects the Wigner distribution. Would such a distribution have a classical phase space analogue? Justify your answer. [4P]
- (e) **Investigate** the Wigner distribution of coherent states $|\alpha\rangle$. Describe in how far the Wigner distribution changes when you modify the modulus and phase of α . [2P]
- (f) On the previous sheet we introduced coherent cat states. Their definition can be further generalised as follows,

$$\left| \bigotimes_{\alpha,\theta} \right\rangle = \frac{1}{\sqrt{2\left(1 + e^{-2|\alpha|^2}\cos\theta\right)}} \left(|\alpha\rangle + e^{i\theta} |-\alpha\rangle \right) \,.$$

Investigate the Wigner distribution of coherent cats $| \bigoplus_{\alpha, \theta} \rangle$. Describe how the relative phase $\theta \in [0, 2\pi)$ affects the Wigner distribution. [2P]

- (g) Explain why, for fixed $\alpha \neq 0$, all coherent cats $\left\{ | \bigotimes_{\alpha,\theta} \rangle \right\}$ with $\theta \in [0,2\pi)$ are elements of a two-dimensional subspace of the harmonic oscillator's Hilbert space. Determine an orthornormal basis of this subspace which consists of two generalised coherent cats. [4P]
- (h) Bonus exercise: Show that, for $\alpha \neq 0$, for each coherent cat $|\bigotimes_{\alpha,\theta}\rangle$ with angle θ there exists exactly one coherent cat $|\bigotimes_{\alpha,\theta'}\rangle$ with angle θ' such that $\langle\bigotimes_{\alpha,\theta}|\bigotimes_{\alpha,\theta'}\rangle=0$. Denote an explicit formula for the relation between θ and θ' . Investigate your expression for different pairs of θ and θ' to check your result. [5XP]