ECE255 - Introduction to Digital Logic Design **Homework Assignment 2** Due September 38

Max tums = 0

Name: | Sauc Abella

NOTE: Some questions require drawing schematics. You can use Logisim Evolution for drawing a schematic and then take a screenshot. Please see the Logisim Tutorial on Canvas as needed.

Let *ABCD*₂ be a 4-bit non-negative integer with corresponding decimal values:

$$0000_2 = 0_{10}$$

$$0001_2 = 1_{10}$$

$$0010_2 = 2_{10}$$

$$0011_2 = 3_{10}$$

$$1111_2 = 15_{10}$$

The digits *A*, *B*, *C*, and *D* in this 4-bit integer are also to be considered variables. Consider two functions of these 4 variables f(A, B, C, D) and g(A, B, C, D).

1. The function *f*(*A*, *B*, *C*, *D*) is defined as:

$$f = \begin{cases} 1 & \text{if the hex value of } ABCD_2 \text{ is less than } A_{16} \\ 0 & \text{otherwise} \end{cases} \quad \text{We like } \quad 9^n \text{ all all others}$$
where $s = 1$

fulse - O

Describe *f* in the following forms listed below:

- (a) Truth Table
- > Wron O

CSOP in Zm, notation

- (b) **CSOP** in the concise $\sum m_i$ **notation**
- (c) **CPOS** in the concise $\prod M_i$ **notation**
- @ Truth Table to bit

1 mm

impuri	output.		
ABCD	f	6	
m ₁ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	000000000000000000000000000000000000000	
M _M 0 M. 1 1 1	0	. 1	

2. The function g(A, B, C, D) is defined as:

	.14	inbry		output.			
:	<u> </u>	В	ሪ	D	f	6	
a=0	$ \begin{array}{c} if f = 1 \\ if f = 0 \end{array} $ $ \begin{array}{c} m_0 O \\ m_1 O \\ m_2 O \end{array} $	0	0	0	1	0	
$^{g-}$ $ 1 $	iff=0 m, 0	0	0	1	ı	O	
	m. 0	O	1	D	1	\mathcal{D}	
bolow		12/1			·	0	

Describe *g* in the following forms listed below:

- (a) **CSOP** in the concise $\sum m_i$ **notation**
- (b) **CPOS** in the concise $\prod M_i$ **notation**

10001 1 0 20010 1 0 130011 1 0			
my 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0	,0001	ī	O D
	m 4 0 1 0 0 1 m 5 0 1 1 0 0 0 1 m 6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	000001111

3. Express the function f(A, B, C, D) in the following forms:

- (a) A Boolean Algebra expression of the CSOP function f(A, B, C, D)
- (b) A minimized Boolean expression for f(A, B, C, D)Use the properties and axioms of Boolean Algebra to minimize f(A, B, C, D)

					5 MS
imput	ou.	fput.	tums.	csop 7	can't be a 3 term product.
A B C	f 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	600000000000000000000000000000000000000	WIM TUM I ME ABBRIDE BERRE BER	AB CD mo	F=(ABCO) + (ABCO) + (ABCO) + (ABCO) + (ABCO) + (ABCO) + (ABCO) + (ABCO) + (ABCO) + (ABCO) = ABC (D+D) + ABC (D+D) + ABC (D+D) = ABC + ABC + ABC + ABC + ABC = ABC (C+C) + ABC = ABC (C+C) + ABC = ABC (B+B) + ABC = ACB + BC + ABC = ACC + B
1 of 5		4,	A spec calculul		

4. Express *f*(*A*, *B*, *C*, *D*) as a digital logic schematic, clearly showing AND, NOT, and OR gates used and how they are connected. **Draw by hand or use Logisim to place and connect gates**. $f(A,B,C,D) = \overline{A} + \overline{B} \overline{C}$ 3 not happing find the field

(NOT A) OR (NOT B AND NOT C)

