Axioms - Decision Theory

Group 2

1. We should have a preference about any combination of lotteries.

$$f \succeq_s g \text{ or } g \succeq_s f$$

2. If you prefer A over B and B over C, then you must prefer A over C.

If
$$f \succsim_s g$$
 and $g \succsim_s h$, then $f \succsim_s h$

3. A player would be indifferent between two lotteries that differ only in states outside S.

If
$$f(\cdot|t) = g(\cdot|t) \ \forall t \in S$$
, then $f \sim_s g$

4. A higher probability of getting a better lottery is always better.

If
$$f \succ_s h$$
 and $0 \le \beta < \alpha \le 1$, then $\alpha f + (1 - \alpha)h \succ_s \beta f + (1 - \beta)h$

5. Any lottery g that is ranked between f and h is just as good as some randomization between f and h.

If
$$f \succsim_s g$$
 and $g \succsim_s h$, then $\exists 0 \le \gamma \le 1$ such that $g \sim_s \gamma f + (1 - \gamma)h$

6. If $e \succsim_s f$ and $g \succsim_s h$ and $0 \le \alpha \le 1$, then $\alpha e + (1 - \alpha)g \succsim_s \alpha f + (1 - \alpha)h$

7. If $e \succ_s f$ and $g \succ_s h$ and $0 \le \alpha \le 1$, then $\alpha e + (1 - \alpha)g \succ_s \alpha f + (1 - \alpha)h$

8. If $f \succsim_S g$ and $f \succsim_T g$ and $S \cap T = \emptyset$, then $f \succsim_{S \cup T} g$

9. If $f \succ_s g$ and $f \succ_T g$ and $S \cap T = \emptyset$, then $f \succ_{S \cup T} g$

10. There are some prices that you prefer over others, otherwise nothing interesting would happen.

For every state
$$t \in \Omega$$
, there exists $x, y \in X$ such that $[x] \succ_t [y]$

11. The preference order should be the same in all states of the world. Otherwise the prices have a different amount of value to you in different states of the world.

For any two states
$$t, r \in \Omega$$
, if $f(\cdot, t) = f(\cdot, r)$ and $g(\cdot, t) = g(\cdot, r)$ and $f \succsim_r g$, then $f \succsim_t g$