Fundamentals of Reinforcement Learning

Presenter: Kyler Sood Mentor: Dr. Loren Anderson

Reinforcement Learning Problem

- Interaction produces a *trajectory*: $S_0, A_0, R_1, S_1, A_1, R_2, \dots$
- Maximize expected return: $G_t = R_{t+1} + R_{t+2} + \cdots + R_T$

Gridworld: Frozen Lake Environment

States: individual grid squares

Terminal States: hole squares, goal squares

Actions: up, down, left, right

Rewards:

- -1 per action
- -100 for falling into a hole
- +100 for reaching goal state

Dynamics:

- 75% of the time, intended action
- Slips 25% of the time, random action

Goal: Reach goal state as quickly as possible

Value Functions and the Bellman Equation

Agent's *policy*: $\pi(a|s)$

Value function of policy:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + R_{t+2} + \dots + R_T | S_t = s]$$

Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Dynamic Programming

Goal: Learn an optimal policy.

$$v_*(s) \geq v_{\pi}(s)$$
 for all $s \in \mathcal{S}$, policies π

Policy evaluation:

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

Policy improvement (Bellman Eq.):

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$$

Monte Carlo Methods

$$S_0, A_0, R_1, S_1, A_1, R_2, \dots$$

- Learn optimal policy through experience only
- MC Prediction: (average over many episodes)

$$G \leftarrow \gamma G + R_{t+1}$$

MC Control (optimize greedy policy):

$$\pi(S_t) \leftarrow \underset{a}{\operatorname{argmax}} Q(S_t, a)$$

Temporal-Difference Learning

Iterative update for an MC method

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

Iterative update for one-step TD method (policy evaluation)

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

- Combining DP and MC techniques.
- Like MC, learning from experience

Comparing Tabular Solution Methods

- DP is model-based, learn from model
- MC and TD methods are model-free, learn from experience only.

Iterative MC Update

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

Iterative TD Update

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

TD typically converges faster than MC

References & Acknowledgments

• Reference: Reinforcement Learning (2018), 2nd ed. R. S. Sutton and A. G. Barto

FrozenLake-v0 environment is from OpenAI Gym (SF startup)

Really appreciate Loren for being a great mentor!

For inquiries, my email is sood0027@umn.edu