复分析第三周作业

涂嘉乐 PB23151786

2025年3月13日

习题 2.4

T8

证明 假设 $z_1, z_2 \in B(0,1)$,若 $f(z_1) = f(z_2)$,则 $z_1^2 + 2z_1 = z_2^2 + 2z_2 \Rightarrow (z_1 - z_2)(z_1 + z_2 + 2) = 0$,由于 $z_1, z_2 \in B(0,1)$,所以 $z_1 + z_2 + 2 \neq 0$,故只能是 $z_1 - z_2 = 0$,即 $z_1 = z_2$,则 $f(z) = z^2 + 2z + 3$ 在 B(0,1) 中单叶

T15

证明 假设 $z_1 \neq z_2$, 若 $f(z_1) = f(z_2)$, 则

$$f(z_1) - f(z_2) = \frac{1}{2}(z_1 z_2 - 1)(z_1 - z_2) = 0 \iff z_1 z_2 = 1$$

要证明 f 在 $D \subset \mathbb{C}$ 上是单叶的,只需证明 D 中任意一点 z 的倒数 $\frac{1}{z}$ 在 D 外

- (1) 上半平面 $\{z \in \mathbb{C} : \text{Im} z > 0\}$: 假设 z = a + bi 是上半平面的一点,则 $a \in \mathbb{R}, b > 0$,且 $\frac{1}{z} = \frac{a b_i}{a^2 + b^2}$ 在下半平面,因此上半平面中任意一点,它的倒数均在下半平面,故上半平面是 φ 的单叶性域
- (2) 下半平面 $\{z \in \mathbb{C} : \operatorname{Im} z < 0\}$: 同上知,下半平面的任意一点的倒数均在上半平面,故下半平面是 φ 的单叶性域
- (3) 无心单位圆盘 $\{z \in \mathbb{C} : 0 < |z| < 1\}$: 若 0 < |z| < 1, 则由 $z \cdot \frac{1}{z} = 1$ 知, $\left|\frac{1}{z}\right| = \frac{1}{|z|} > 1$,因此无心单位圆盘中任意一点的倒数均在圆盘外,故无心单位圆盘是 φ 的单叶性域
- (4) 单位圆盘的外部 $\{z \in \mathbb{C}: |z| > 1\}$: 若 |z| > 1, 则同上分析知, $0 < \left|\frac{1}{z}\right| < 1$, 因此单位圆盘外任意一点的倒数均在无心单位圆盘上,故单位圆盘外部是 ω 的单叶性域

T16

证明

设 $\varphi = u(r,\theta) + iv(r,\theta), z = re^{i\theta}$, 则

$$\varphi(z) = \frac{1}{2} \left(r e^{i\theta} + \frac{1}{r} e^{-i\theta} \right) = \frac{1}{2} \left(r + \frac{1}{r} \right) \cos \theta + \frac{1}{2} \left(r - \frac{1}{r} \right) \sin \theta$$

所以

$$\begin{cases} u(r,\theta) = \frac{1}{2} \left(r + \frac{1}{r} \right) \cos \theta \\ v(r,\theta) = \frac{1}{2} \left(r - \frac{1}{r} \right) \sin \theta \end{cases}$$

(1). 上半平面 $\{(r,\theta): \theta \in (0,\pi)\}$

首先当 $\theta = \frac{\pi}{2}$ 时, $\cos \theta = 0$, $\sin \theta = 1 \Rightarrow u = 0$, $v = \frac{1}{2} \left(r - \frac{1}{r} \right) \in \mathbb{R}$,因此 φ 把射线 $\arg \theta = \frac{\pi}{2}$ 映为虚轴;其次当 $\theta \in (0,\pi) \setminus \left\{ \frac{\pi}{2} \right\}$ 时, $\cos \theta$, $\sin \theta \neq 0$,且

$$\frac{u^2(r,\theta)}{\cos^2\theta} - \frac{v^2(r,\theta)}{\sin^2\theta} = \frac{1}{4}\left(r^2 + \frac{1}{r^2} + 2\right) - \frac{1}{4}\left(r^2 + \frac{1}{r^2} - 2\right) = 1$$

当 $\theta \in \left(0, \frac{\pi}{2}\right)$ 时, $\cos \theta > 0 \Rightarrow u > 0$, φ 将射线 $\arg \theta$ 映为上述双曲线的右半支;当 $\theta \in \left(\frac{\pi}{2}, \pi\right)$ 时, $\cos \theta < 0 \Rightarrow u < 0$, φ 将射线 $\arg \theta$ 映为上述双曲线的左半支,且双曲线的顶点为 $(\pm \cos \theta, 0)$,因此除了实轴上的 $(-\infty, -1] \cup [1, +\infty)$, \mathbb{C} 中的任意一点都存在唯一一条上述双曲线经过该点(把虚轴看作双曲线族的极限),所以 φ 将上半平面 $\{(r, \theta) : \theta \in (0, \pi)\}$ 映为 $\mathbb{C} \setminus ((-\infty, -1] \cup [1, +\infty))$

(2). 下半平面 $\{(r,\theta): \theta \in (\pi,2\pi)\}$

由于对于 $\forall \theta \in (\pi, 2\pi)$, $\theta - \pi, \theta$ 二者的正弦、余弦值的平方完全相等,因此下半平面与上半平面完全同理,所以 φ 将下半平面 $\{(r, \theta): \theta \in (\pi, 2\pi)\}$ 映为 $\mathbb{C} \setminus ((-\infty, -1] \cup [1, +\infty))$

(3). 无心单位圆盘 $\{z \in \mathbb{C} : 0 < |z| < 1\}$

对固定的圆周 $|z|=r\in(0,1)$, 我们有

$$\frac{u^2}{\left[\frac{1}{2}\left(r+\frac{1}{r}\right)\right]^2} + \frac{v^2}{\left[\frac{1}{2}\left(r-\frac{1}{r}\right)\right]^2} = 1$$

因此圆周 |z|=r 的像为上面的椭圆,记长半轴、短半轴为 a,b,则

$$\begin{cases} a = \frac{1}{2} \left(r + \frac{1}{r} \right) \\ b = \frac{1}{2} \left| r - \frac{1}{r} \right| \end{cases}$$

当 $r\to 0$ 时, $a\to +\infty$, $b\to +\infty$;当 $r\to 1^-$ 时, $a\to 1$, $b\to 0$,因此除了线段 [-1,1] 上的点,复平面上的任意点在都存在唯一一个上述椭圆族中的椭圆,使得该点在这个椭圆上,因此 φ 将无心单位圆盘 $\{z\in\mathbb{C}:0<|z|<1\}$ 映为 $\mathbb{C}\setminus[-1,1]$

(4). 单位圆盘的外部 $\{z \in \mathbb{C} : |z| > 1\}$

同上,对固定的圆周 |z|=r,它的像为长半轴、短半轴为 a,b (同上)的椭圆,且当 $r\to 1^+$ 时, $a\to 1,b\to 0$;当 $r\to +\infty$ 时, $a\to +\infty,b\to +\infty$,因此除了线段 [-1,1] 上的点,复平面上的任意点在都存在唯一一个上述椭圆族中的椭圆,使得该点在这个椭圆上,因此 φ 将单位圆盘的外部 $\{z\in\mathbb{C}:|z|>1\}$ 映为 $\mathbb{C}\setminus[-1,1]$

T17

证明 (1). 半条形域(不妨记为 D_1) $\{z \in \mathbb{C} : \theta_0 < \text{Re}z < \theta_0 + 2\pi, \text{Im}z > 0\} \stackrel{\text{def}}{=} D_1$ 记区域 $G_1 : \{re^{i\theta} : 0 < r < 1, \theta_0 < \theta < \theta_0 + 2\pi\},$ 考虑函数

$$\sigma: D_1 \longrightarrow G_1$$
$$z \longmapsto e^{iz}$$

则 σ 是双射:

单射: 设 $z_i=x_i+iy_i, z_i\in D_1, i=1,2$,若 $\sigma(z_1)=\sigma(z_2)\Rightarrow e^{iz_1}=e^{iz_2}\Rightarrow e^{-y_1}=e^{-y_2}, e^{ix_1}=e^{ix_2}$,所以 $x_1=x_2+2k\pi, y_1=y_2$,但 $x_1, x_2\in (\theta_0,\theta_0+2\pi)$,故 $x_1=x_2$,故 $z_1=z_2$

满射: 对 $\forall re^{i\theta} \in G_1$, 考虑 $z = \theta - i \ln r$, 则 $\sigma(z) = re^{i\theta}$

因为 $\cos\theta = \frac{e^{iz} - e^{-iz}}{2} = \varphi(e^{iz}) = \varphi(\sigma(z))$, 因为 $\sigma(z)$ 的定义域为 $G_1 \subset B(0,1) \setminus \{0\}$, 由 T15 已证 φ 在 $B(0,1) \setminus \{0\}$ 上单叶,所以 $\cos\theta$ 在 G_1 上单叶,且两个单射的复合仍是单射,故 $\cos\theta$ 在半条型域 D_1 上单叶

考虑函数

$$\psi: G_1 \longrightarrow \psi(G_1)$$

$$z \longmapsto \frac{1}{2} \left(z - \frac{1}{z} \right)$$

假设 $z_1 \neq z_2$, 若 $\psi(z_1) = \psi(z_2)$, 则

$$\psi(z_1) - \psi(z_2) = \frac{1}{2}(z_1z_2 + 1)(z_1 - z_2) = 0 \iff z_1z_2 = -1$$

要证明 ψ 在 G_1 上单叶,只需证明 $\forall z \in G_1$, $\frac{-1}{z} \notin G_1$ 即可,因为 0 < |z| < 1,所以 $\left| \frac{-1}{z} \right| > 1$, $\frac{-1}{z} \notin G_1$,因此 ψ 在 G_1 上是单叶的,因为 $\sin \theta = \frac{e^{iz} - e^{-iz}}{2i} = \frac{1}{i} \psi(e^{iz}) = -i \psi(\sigma(z))$,且两个单射的复合仍是单射,故 $\sin \theta$ 在半条型域 D_1 上单叶

(2). 半条型域(不妨记为 D_2) $\{z \in \mathbb{C} : \theta_0 < \text{Re}z < \theta_0 + 2\pi, \text{Im}z > 0\} \stackrel{\text{def}}{=} D_2$ 记区域 $G_2 : \{re^{i\theta} : r > 1, \theta_0 < \theta < \theta_0 + 2\pi\}$,考虑函数

$$\tau: D_2 \longrightarrow G_2$$
$$z \longmapsto e^{iz}$$

则同上也可以验证 τ 也是双射,且 $\cos\theta=\varphi(\tau(z)),\sin\theta=-i\psi(\tau(z))$,由 φ,ψ,τ 单叶知, $\sin\theta,\cos\theta$ 在半条形域 D_2 上单叶

T22

证明 因为

$$f(z) = \frac{z^{p-1}}{(1-z)^p} = e^{[(p-1)\log|z| - p\log|1-z|]} \cdot e^{i[(p-1)\operatorname{Arg}(z) - p\operatorname{Arg}(1-z)]}$$

则对 $\forall D$ 中的简单闭曲线 γ

Case 1. γ 包含 [0,1], 则 $\forall z \in \gamma$, z 逆时针绕 γ 转一圈时

$$\Delta \text{Arg}(z) = 2\pi, \Delta \text{Arg}(1-z) = 2\pi$$

且 $e^{i[(p-1)\cdot 2\pi-p\cdot 2\pi]}=e^{-2\pi i}=1$,故 f(z) 的值不发生变化 $Case\ 2.\ \gamma\ \text{不包含}\ [0,1],\ 则\ \forall z\in\gamma,\ z\ \text{逆时针绕}\ \gamma\ - \mathbb{B}$

$$\Delta \text{Arg}(z) = \Delta \text{Arg}(1-z) = 0$$

且 $e^{i[(p-1)\cdot 0-p\cdot 0]}=e^{0i}=1$, 故 f(z) 的值不发生变化 综上 f 能在 $D=\mathbb{C}\setminus [0,1]$ 上选出单值的全纯分支

T26

证明 因为

$$Log(1 - z^2) = \log|1 - z^2| + iArg(1 - z^2)$$

取充分小的圆周 γ_1 ,使得 1 在圆周内,-1 在圆周外,则 $\forall z \in \gamma_1$ 逆时针绕 γ_1 转一圈时

$$\Delta \text{Arg}(1-z) = 2\pi, \Delta \text{Arg}(1+z) = 0 \Rightarrow \Delta \text{Arg}(1-z^2) = \Delta \text{Arg}(1-z) + \Delta \text{Arg}(1+z) = 2\pi$$

此时 $\text{Log}(1-z^2)$ 的取值发生改变,故 1 是支点;取充分小的圆周 γ_2 ,使得 -1 在圆周内,1 在圆周外,则 $\forall z \in \gamma_2$ 逆时针绕 γ_2 转一圈时

$$\Delta \text{Arg}(1-z) = 0, \Delta \text{Arg}(1+z) = 2\pi \Rightarrow \Delta \text{Arg}(1-z^2) = \Delta \text{Arg}(1-z) + \Delta \text{Arg}(1+z) = 2\pi$$

此时 $Log(1-z^2)$ 的取值发生改变,故 -1 是支点;任取复平面中不同于 ± 1 的点 a,取充分小的圆周 γ_3 ,使得 a 在圆周内, ± 1 在圆周外,则 $\forall z \in \gamma_3$ 逆时针绕 γ_3 一周时

$$\Delta \text{Arg}(1-z) = \Delta \text{Arg}(1+z) = 0 \Rightarrow \Delta \text{Arg}(1-z^2) = 0$$

此时 $\text{Log}(1-z^2)$ 的取值不发生改变,故 $\forall a\in\mathbb{C}\backslash\{-1,1\}$,a 不是支点;最后取充分大的圆周 γ_4 ,使得 ± 1 在圆周内,则 $\forall z\in\gamma_4$ 逆时针绕 γ_4 一周时

$$\Delta \text{Arg}(1-z) = 2\pi, \Delta \text{Arg}(1+z) = 2\pi \Rightarrow \Delta \text{Arg}(1-z^2) = \Delta \text{Arg}(1-z) + \Delta \text{Arg}(1+z) = 4\pi$$

因此无穷远点 ∞ 是支点,所以 $\pm 1, \infty$ 为 $\mathrm{Log}(1-z^2)$ 的支点,故在 D 上, $\mathrm{Log}(1-z^2)$ 能分出全纯分支 z=0 时,取 $\mathrm{Arg}(1-0)=\mathrm{Arg}(1+0)=0$,则此时 f(0)=0 符合题意

如图, z=0 沿曲线 γ_0 到达 z=2 时, $\Delta \text{Arg}(1+z)=0$, $\Delta \text{Arg}(1-z)=\pi \Rightarrow \Delta \text{Arg}(1-z^2)=\pi$, 因此

$$Log(1-z^2) = \log|1-2^2| + i\pi = \log 3 + i\pi$$

T27

证明 因为

$$\sqrt[4]{(1-z)^3(1+z)} = e^{\frac{3}{4}\log|1-z| + \frac{1}{4}\log|1+z|} \cdot e^{i\left[\frac{3}{4}\mathrm{Arg}(1-z) + \frac{1}{4}\mathrm{Arg}(1+z)\right]}$$

对于 $\forall D$ 中的简单闭曲线 γ

 $Case\ 1.\ \gamma$ 包含 [-1,1], 则 $\forall z \in \gamma$, z 逆时针绕 γ 转一圈时

$$\Delta \mathrm{Arg}(1-z) = \Delta \mathrm{Arg}(1+z) = 2\pi \Rightarrow \Delta \left(\frac{3}{4}\mathrm{Arg}(1-z) + \frac{1}{4}\mathrm{Arg}(1+z)\right) = \frac{3}{4} \cdot 2\pi + \frac{1}{4} \cdot 2\pi = 2\pi$$

由于 $e^{2\pi i}=1$, 故函数值不变

 $Case\ 2.\ \gamma$ 不包含 [-1,1], 则 $\forall z \in \gamma$, z 逆时针绕 γ 转一圈时

$$\Delta {\rm Arg}(1-z) = \Delta {\rm Arg}(1+z) = 0 \Rightarrow \Delta \left(\frac{3}{4}{\rm Arg}(1-z) + \frac{1}{4}{\rm Arg}(1+z)\right) = 0$$

由于 $e^{0i} = 1$, 故函数值不变

综上, $\sqrt[4]{(1-z)^3(1+z)}$ 能在 $\mathbb{C}\setminus[-1,1]$ 上选出一个全纯分支; 若取 $\mathrm{Arg}(1-i) = -\frac{\pi}{4}, \mathrm{Arg}(1+i) = \frac{\pi}{4}$,则

$$f(i) = e^{\frac{3}{4}\log|1-i| + \frac{1}{4}\log|1+i|} \cdot e^{i\left[\frac{3}{4} \cdot \frac{-\pi}{4} + \frac{1}{4} \cdot \frac{\pi}{4}\right]} = \sqrt{2}e^{-\frac{\pi}{8}i}$$

符合题意

如图, z=i 沿曲线 γ_0 到达 z=-i 时, $\Delta {
m Arg}(1-z)=\frac{\pi}{2}, \Delta (1+i)=\frac{3\pi}{2}$, 则

$$f(-i) = e^{\frac{3}{4}\log|1+i| + \frac{1}{4}\log|1-i|} \cdot e^{i\left[\frac{3}{4}\cdot\left(-\frac{\pi}{4} + \frac{\pi}{2}\right) + \frac{1}{4}\cdot\left(\frac{\pi}{4} + \frac{3\pi}{2}\right)\right]} = \sqrt{2}e^{\frac{5\pi}{8}i}$$