$\frac{1}{n+1}$, 所以 $\forall \varepsilon > 0$, 只要取 $N = \left[\frac{1}{\varepsilon}\right]$, 则 $\forall n > N$ 及 $p \in \mathbb{N}_+$, 恒有 $|a_{n+p} - a_n| < \varepsilon$. 故 $\langle a_n \rangle$ 为 Cauchy 列,因而收敛.

证 数列 $\{a_n\}$ 单增, $\{b_n\}$ 单减且 $\lim_{n\to\infty}(b_n-a_n)=0$. 由习题 1. 2(A)第 16 题, $\{a_n\}$, $\{b_n\}$ 均收敛. 且 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 且 $a_n\leqslant \xi\leqslant b_n$,即 $\forall n\in \mathbb{N}_+$, $\xi\in\bigcap_{n=1}^\infty[a_n,b_n]$. 由极限的唯一性知 $\bigcap_{n=1}^\infty[a_n,b_n]=\{\xi\}$.

8. 利用闭区间套定理(第7题)证明 Weierstrass 定理.

证 设 $\{x_n\}$ 是有界数列,则必存在 $a_1,b_1 \in \mathbb{R}$,使得 $\forall n \in \mathbb{N}_+$,都有 $x_n \in [a_1,b_1]$,等分 $[a_1,b_1]$ 为两个子区间,则至少有一个含 $\{x_n\}$ 的无穷多项,记该子区间为 $[a_2,b_2]$ (若两个子区间都含 $\{x_n\}$ 的无穷多项,则可任取其一)。等分 $[a_2,b_2]$,按照同样的方法又可得含 $\{x_n\}$ 无穷多项的子区间 $[a_3,b_3]$ 。照此办理,可得一个闭区间列 $\{[a_k,b_k]\}$,满足:

$$[a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_k,b_k] \supseteq \cdots,$$

$$b_k - a_k = \frac{b_1 - a_1}{2^{k-1}} \rightarrow 0 (k \rightarrow \infty),$$

因此它是一个闭区间套。根据闭区间套定理,存在唯一的 $\xi \in \mathbb{R}$,使得 $\bigcap_{k=1}^{\infty} [a_k, b_k] = \{\xi\}$,并且 $\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = \xi$.

由于每个闭区间都含数列 $\{x_n\}$ 的无穷多项,所以我们能在每个 $[a_k,b_k]$ 中选取 $\{x_n\}$ 的一项 x_{n_k} ,并使 $n_1 < n_2 < \cdots < n_k < \cdots$,从而得到 $\{x_n\}$ 的一个子列 $\{x_{n_k}\}$,满足: $a_k \leqslant x_{n_k} \leqslant b_k (\ \forall \ k \in \mathbb{N}_+)$.

根据夹逼原理, $\lim_{x_n} = \xi$.

习 题 1.3

(A)

3. 设 $\lim_{x \to x_0} f(x) = a$,且 f(x)在 x_0 有定义. 问在 $x \to x_0$ 的过程中,x 可否取

到 x_0 ? 是否必有 $a=f(x_0)$?

解 可以取到
$$x_0$$
. 但未必有 $a = f(x_0)$. 例 $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 1, & x = 0, \end{cases}$

 $\lim_{x\to 0} f(x) = 0 \Rightarrow f(0) = 1,$

- 5. 下列命题是否正确? 若正确,请给出证明;若不正确,请举出反例.
- (1) $\lim_{x \to x_0} f(x) = a$ 的充要条件是 $\lim_{x \to x_0} |f(x)| = |a|$;
- (2) 若 $\lim_{x \to x_0} f(x) = a$,则 $\lim_{x \to x_0} [f(x)]^2 = a^2$;
- (3) 若 $\lim_{n\to\infty} f\left(\frac{1}{n}\right) = a$,则 $\lim_{x\to 0^+} f(x) = a$;
- (4) 若 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} [f(x) + g(x)]$ 都存在,则 $\lim_{x \to x_0} g(x)$ 必存在;
- (5) 若 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} f(x)g(x)$ 都存在,则 $\lim_{x \to x_0} g(x)$ 必存在;
- (6) 若在 x_0 的某邻域内 f(x) > 0,并且 $\lim_{x \to a} f(x) = a$,那么必有 a > 0.
- 解 (1) 不正确. $\lim_{x \to x_0} f(x) = a$,则 $\lim_{x \to x_0} |f(x)| = |a|$. 但反过来不成立.

例
$$f(x) = \begin{cases} 1, & x \ge 0, \\ -1, & x < 0, \end{cases} |f(x)| = 1, \lim_{x \to 0} |f(x)| = 1,$$

但 $\lim_{x \to \infty} f(x)$ 不存在.

即

(2) 正确. 因为 $\lim_{x\to x_0} f(x) = a$, $\exists U(x_0, \delta_1) = M > 0$, 使得 $\forall x \in U(x_0, \delta_1)$, $|f(x)+a| \leq M$. 从而 $\forall \varepsilon > 0$, $\exists \delta > 0 (\delta < \delta_1)$, 使得 $\forall x \in U(x_0, \delta)$,

$$|[f(x)]^2 - a^2| = |f(x) + a| |f(x) - a| < M \cdot \frac{\varepsilon}{M} = \varepsilon,$$

$$\lim_{x \to x_0} [f(x)]^2 = a^2.$$

(3) 不正确. $\lim_{n\to\infty} \sin \frac{\pi}{1} = \lim_{n\to\infty} \sin n\pi = 0$. 但 $\lim_{x\to 0^+} \sin \frac{\pi}{x}$ 不存在.

- (4) 正确. 由极限的有理运算法则 $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} [f(x) + g(x)] \lim_{x \to x_0} f(x)$,
- (5) 不正确. 取 $f(x) = x, g(x) = \sin \frac{1}{x}, \lim_{x \to 0} f(x) = \lim_{x \to 0} f(x)g(x) = 0$,但 $\lim_{x \to 0} g(x)$ 不存在.

如果 $\lim_{x \to x_0} f(x) = a \neq 0$,且 $\lim_{x \to x_0} f(x)g(x)$ 存在,则 $\lim_{x \to x_0} g(x)$ 存在.

(6) 不正确. 如
$$f(x) = \begin{cases} x^2, & x \ge 0, \\ 1, & x = 0, \end{cases}$$
 im $f(x) = 0.$

9. 下列运算有无错误? 若错,错在何处?

(1)
$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{\lim_{x \to 0} \sin x}{\lim_{x \to 0} x} = \frac{0}{0} = 1;$$
 (2) $\lim_{x \to \infty} \frac{\sin x}{x} = \frac{\lim_{x \to \infty} \sin x}{\lim_{x \to \infty} x} = 0;$

- (3) $\lim_{x\to 0} x \sin \frac{1}{x} = \lim_{x\to 0} x \lim_{x\to 0} \sin \frac{1}{x} = 0.$
- 答:(1) 错. 分母极限为零. (2) 错. lim sin x 不存在.
 - (3) 错. $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.
- 10. 用定义证明下列各题:
- (2) $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$; (4) $\lim_{x \to 1} \frac{x^2}{x+1} = \frac{1}{2}$.

解 (2) $\forall x > 0$, 由 $0 < \frac{\pi}{2} - \arctan x = |\arctan x - \frac{\pi}{2}| < \varepsilon < \frac{\pi}{2} \Leftrightarrow \tan\left(\frac{\pi}{2} - \arctan x\right) = \cot(\arctan x) < \tan \varepsilon \Leftrightarrow \frac{1}{x} = \frac{1}{\tan(\arctan x)} < \frac{1}{\cot \varepsilon} \Leftrightarrow x > \cot \varepsilon$, 可得 $\forall \varepsilon > 0$. 如 $\varepsilon < \frac{\pi}{2}$. 取 $X = \cot \varepsilon > 0$; 如 $\varepsilon > \frac{\pi}{2}$, $0 < \varepsilon - \frac{n\pi}{2} < \frac{\pi}{2}$, 取 $X = \cot\left(\varepsilon - \frac{n\pi}{2}\right) > 0$,那么 $\forall x > X$. $\left|\arctan x - \frac{\pi}{2}\right| < \varepsilon$, 即 $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$.

(4) 不妨设|x-1| < 1.则 1 < x+1 < 3, 1 < 2x+1 < 5. $\forall \varepsilon > 0$, 取 $\delta = \min\left(1, \frac{2}{5}\varepsilon\right) > 0$,则 $\forall x \in U(1, \delta)$,有

$$\left| \frac{x^2}{x+1} - \frac{1}{2} \right| = \frac{2x+1}{2(x+1)} |x-1| < \frac{5}{2} |x-1| < \varepsilon.$$

- 11. 用 Heine 定理证明下列极限不存在:
- (1) $\lim_{x\to 0} \cos \frac{1}{x}$; (2) $\lim_{x\to +\infty} x(1+\sin x)$.

解 (1) 取 $x_n = \frac{1}{2n\pi}$, $y_n = \frac{1}{2n\pi + \pi/2}$, 那么当 $n \to +\infty$ 时, $x_n \to 0$, $y_n = 0$, $\cos \frac{1}{x_n} = 1 \to 1$ $(n \to +\infty)$, $\cos y_n = 0 \to 0$ $(n \to +\infty)$, 由 Heine 定理 $\lim_{x \to 0} \cos \frac{1}{x}$ 存在.

- (2) 取 $x_n = 2n\pi \rightarrow +\infty$, $y_n = 2n\pi \frac{\pi}{2} \rightarrow +\infty$ $(n \rightarrow +\infty)$, 那么 $\lim_{n \rightarrow +\infty} x_n (1 + \sin x_n) = \lim_{n \rightarrow +\infty} x_n = +\infty$, $\lim_{n \rightarrow +\infty} y_n (1 + \sin y_n) = \lim_{n \rightarrow +\infty} 0 = 0$. 则 $\lim_{x \rightarrow +\infty} x (1 + \sin x)$ 存在.
 - 12. 求下列极限:

(4)
$$\lim_{x \to 0} \frac{x}{\sqrt{2+x} - \sqrt{2-x}} = \lim_{x \to 0} \frac{x(\sqrt{2+x} + \sqrt{2-x})}{2x} = \sqrt{2}.$$

(6)
$$\lim_{x \to 1} \left(\frac{2}{1 - x^2} - \frac{3}{1 - x^3} \right) = \lim_{x \to 1} \frac{2(1 + x + x^2) - 3(1 + x)}{(1 - x^2)(1 + x + x^2)}$$
$$= \lim_{x \to 1} \frac{2x + 1}{(1 + x)(1 + x + x^2)} = \frac{1}{2}.$$

(8)
$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin x \cos \Delta x + \cos x \sin \Delta x - \sin x}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left[\frac{(\cos \Delta x - 1) \sin x}{\Delta x} + \cos x \frac{\sin \Delta x}{\Delta x} \right]$$
$$= \lim_{\Delta x \to 0} \frac{-2 \sin^2 \frac{\Delta x}{2} \sin x}{\Delta x} + \cos x$$
$$= \cos x.$$

(10)
$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{x} (n \in \mathbb{N}_{+})$$

$$= \lim_{x \to 0} \frac{(\sqrt[n]{1+x})^{n}-1}{x \left[(\sqrt[n]{1+x})^{n-1}+(\sqrt[n]{1+x})^{n-2}+\cdots+\sqrt{1+x}+1\right]} = \frac{1}{n}.$$

13. 利用两个重要极限求下列极限:

(2)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3 \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin^2 \frac{x}{2}}{2(\frac{x}{2})^2} \cdot \frac{1}{\cos x} = \frac{1}{2}.$$

(3)
$$\lim_{x \to n\pi} \frac{\sin x}{x - n\pi} = \lim_{x \to n\pi} \frac{(-1)^n \sin(n\pi - x)}{n\pi - x} = (-1)^n.$$

(4)
$$\Leftrightarrow t=1-x, \lim_{x\to 1}(1-x)\tan\frac{\pi x}{2} = \lim_{t\to 0}t\cot\frac{\pi}{2}t = \lim_{t\to 0}\frac{\frac{\pi}{2}t}{\sin\frac{\pi}{2}t} \cdot \frac{\cos\frac{\pi t}{2}}{\frac{\pi}{2}} = \frac{2}{\pi}.$$

(7) 因为
$$\lim_{x\to\infty} x \sin \frac{\pi}{x} = \lim_{x\to\infty} \pi \frac{\sin \frac{\pi}{x}}{\frac{\pi}{x}} = \pi$$
. 由 Heine 定理, $\lim_{n\to\infty} 2^n \sin \frac{\pi}{2^n} = \pi$.

(8)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x = \lim_{x \to \infty} \left[\left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right]^2 = e^2$$
. 由 Heine 定理, $\lim_{n \to \infty} \left(1 + \frac{2}{3^n}\right)^{3^n} = e^2$.

14. 讨论下列函数的极限是否存在:

(1)
$$f(x) = \frac{1}{1+2^{\frac{1}{t}}}, \quad x \to 0;$$
 (2) $f(x) = \begin{cases} \frac{\sin x}{x}, & x < 0 \\ (1+x)^{\frac{1}{x}}, & x > 0; \end{cases}$

(3)
$$f(x) = \frac{1}{x} \cos \frac{1}{x}$$
, $x \to \infty$.

解 (1) 由 $\lim_{x\to 0^+} 2^{\frac{1}{x}} = +\infty$, $\lim_{x\to 0^-} 2^{\frac{1}{x}} = 0$ 知 f(0+0) = 0, f(0-0) = 1, 从而 $\lim_{x\to 0} f(x)$ 不存在.

(2)
$$f(0+0) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1+x)^{\frac{1}{2}} = e, f(0-0) = \lim_{x \to 0^-} f(x) = e$$

 $\lim_{x\to 0^{-}} \frac{\sin x}{x} = 1. f(0+0) + f(0-0) \cdot \text{id} \lim_{x\to 0} f(x) = 7.$

(3)
$$\lim_{x \to \infty} \frac{1}{x} \cos \frac{1}{x} = 0$$
.

15. 用夹逼原理证明 $\lim_{x\to 0} x \left[\frac{1}{x}\right] = 1$, []表示取整.

证 由
$$x \Rightarrow 0$$
 时, $\frac{1}{x} - 1 \leqslant \left[\frac{1}{x}\right] \leqslant \frac{1}{x}$. 于是,当 $x > 0$ 时, $1 - x \leqslant x \left[\frac{1}{x}\right] \leqslant 1$, 当 $x < 0$ 时, $1 \leqslant x \left[\frac{1}{x}\right] \leqslant 1 - x$,

由夹逼准则, $\lim_{x\to 0} x \left[\frac{1}{x}\right] = 1$.

16. 试确定常数
$$a$$
 与 b , 使 $\lim_{x\to\infty} \left(\frac{x^2+3}{x-2} + ax + b\right) = 0$.

解 因为
$$\lim_{x\to\infty} \left(\frac{x^2+3}{x-2}+ax+b\right) = \lim_{x\to\infty} \left[\frac{(1+a)x^2-2ax+3}{x-2}+b\right] = 0$$
,

所以
$$\lim_{x\to\infty} \frac{(1+a)x^2-2ax+3}{x-2} = -b$$
,于是 $1+a=0$,即 $a=-1$, $b=-2$.

17. 求下列极限:

(1)
$$\lim_{x\to\infty} \left(\frac{3x-1}{3x+1}\right)^{3x-1}$$
; (2) $\lim_{x\to 1} (2-x)^{\sec\frac{xx}{2}}$;

(3)
$$\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}};$$
 (4) $\lim_{x\to 0} (\frac{\pi + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \arctan\frac{1}{x}).$

(2) 因为
$$\lim_{x \to 1} \left(\sec \frac{\pi}{2} x \right) \ln(2-x) = \lim_{x \to 1} \frac{\ln(2-x)}{\cos \frac{\pi}{2} x}$$

$$= \lim_{x \to 1} \frac{1-x}{\sin \frac{\pi}{2} (1-x)} \ln [1+(1-x)]^{\frac{1}{1-x}}$$
$$= \frac{2}{\pi},$$

所以 $\lim_{x\to 1} (2-x)^{\sec\frac{\pi}{2}x} = \lim_{x\to 1} e^{\left(\sec\frac{\pi}{2}x\right)\ln(2-x)} = e^{\frac{\pi}{x}}$.

(3) 因为
$$\lim_{x\to a^{+}} \frac{1}{x} \ln \cos \sqrt{x} = \lim_{x\to a^{+}} \frac{\cos \sqrt{x}-1}{\left(\sqrt{x}\right)^{2}} \ln \left[1+(\cos \sqrt{x}-1)\right]^{\frac{1}{\cos \sqrt{x}-1}} = -\frac{1}{2}$$
,

所以
$$\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}} = \lim_{x\to 0^+} e^{\frac{1}{x}\ln(\cos\sqrt{x})} = e^{-\frac{1}{x}}$$
.

(4)
$$\lim_{x \to 0^{+}} \left(\frac{\pi + e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} + \arctan \frac{1}{x} \right) = \lim_{x \to 0^{+}} \left(\frac{\pi e^{-\frac{4}{x}} + e^{-\frac{3}{x}}}{e^{-\frac{4}{x}} + 1} + \arctan \frac{1}{x} \right) = \frac{\pi}{2},$$

$$\lim_{x \to 0^{-}} \left(\frac{\pi + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \arctan \frac{1}{x} \right) = \pi - \frac{\pi}{2} = \frac{\pi}{2},$$

故 $\lim_{x \to 0} \left(\frac{\pi + e^{\frac{1}{x}}}{1 + e^{\frac{x}{x}}} + \arctan \frac{1}{x} \right) = \frac{\pi}{2}$

(B)

1. 证明 Dirichlet 函数 $D(x) = \begin{cases} 1, x \in \mathbb{Q}, \\ 0, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ 在任何 $x \in \mathbb{R}$ 处的极限都不存在.

证 由实数的稠密性、 $\forall a \in \mathbb{Q}$, $\exists \{x_n\} \subseteq \mathbb{Q}$, $\{y_n\} \subseteq \mathbb{R} \setminus \mathbb{Q}$,且 $x_n \to a$, $y_n \to a$ $\{n \to +\infty\}$,但 $D(x_n) = 1$, $D(y_n) = 0$,所以 $\forall a \in \mathbb{Q}$, $\lim_{x \to a} D(x)$ 不存在. 同理可证 $\forall b \in \mathbb{R} \setminus \mathbb{Q}$.

2. 设 $f: \mathbf{R} \to \mathbf{R}$ 是周期函数,若 $\lim_{x \to a} f(x) = a$,则 f(x) = a.

证 用反证法. 设 $f(x) \neq a$, 不妨设 $f(x_0) = b \Rightarrow a$, 则可构造一点列 $\{x_0 + nT\}$. T 为 f(x) 的最小正周期,则 $f(x_0 + nT) = f(x_0) = b$,即 $\lim_{n \to \infty} f(x_0 + nT) = b \Rightarrow a$ 与 $\lim_{n \to \infty} f(x) = a$ 矛盾.

3. 设[a,b]是一个有限闭区间,如果 $\forall x_0 \in [a,b]$, $\lim_{t \to x_0} f(x)$ 存在,证明: f(x)在[a,b]上有界.

证 反证法. 若 f(x)在[a,b]上无界,则 $\exists \{x_n\} \subseteq [a,b]$,使 $f(x_n) \to \infty (n \to \infty)$. 又由于 $\{x_n\} \subseteq [a,b]$ 有界数列,则必存在收敛子列 $\{x_{n_k}\}$ 。设 $x_{n_k} \to x_0 (k \to \infty)$,则 $x_0 \in [a,b]$ 且 $\lim_{k \to +\infty} f(x_{n_k}) = \infty$. 与 $\forall x_0 \in [a,b]$, $\lim_{x \to x_0} f(x)$ 存在矛盾。

4. 设 $f:(a,b)\to \mathbb{R}$ 是 无 界 函 数,证 明: $\exists\ \{x_n\}\subseteq (a,b)$,使 得 $\lim f(x_n)=\infty$.

证 因为 $f:(a,b)\to \mathbb{R}$ 是无界函数. 故 $\forall n\in \mathbb{N}_+$, $\exists x_n\in(a,b)$, 使 $f(x_n)>n$. 这样便得到一个数列 $\{x_n\}\subseteq(a,b)$, 使得 $\lim_{n\to\infty}f(x_n)=\infty$.

5. 设 $f:[a,+\infty)\to \mathbb{R}$,证明: $\lim_{x\to+\infty} f(x)$ 存在⇔ $\forall \varepsilon > 0$, $\exists M > 0$,使得 $\forall x_1$, $x_2 > M$,恒有 $|f(x_1)-f(x_2)| < \varepsilon$.

证 必要性 设 $\lim_{x\to +\infty} f(x) = a$,则 $\forall \varepsilon > 0$, $\exists M > 0$, $\exists x > M$ 时,恒有 $|f(x) - a| < \frac{\varepsilon}{2}$. 任取 $x_1, x_2 > M$. 则

$$|f(x_i)-a|<\frac{\varepsilon}{2}, i=1,2,$$

于是 $|f(x_1)-f(x_2)| \leq |f(x_1)-a|+|f(x_2)-a| < \varepsilon$.

充分性 任取两个数列 $\{x_n\},\{y_n\}\subseteq [a,+\infty)$,目

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = +\infty.$$

(i) 证明数列 $\{f(x_n)\}, \{f(y_n)\}$ 收敛.

由 $\forall \varepsilon > 0$, $\exists M > 0$,使 $\forall x_1, x_2 > M$,有 $|f(x_1) - f(x_2)| < \varepsilon$. 及 $\lim_{n \to \infty} x_n = +\infty$ 知: 对上述的 M > 0, $\exists N \in \mathbb{N}_+$,使 $\forall m, n > N$ 有 $x_m, x_n > M$. 从而 $|f(x_m) - f(x_n)| < \varepsilon$,即 对数 列 $\{f(x_n)\}$ 来说: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, $\forall m, n > N$ 恒 有 $|f(x_m) - f(x_n)| < \varepsilon$. 由数列的 Cauchy 收敛原理知数列 $\{f(x_n)\}$ 收敛. 不妨设 $\lim_{n \to \infty} f(x_n) = a$.

同理可证(f(yn))收敛.

(ii) 证明{f(yn)}也收敛于a.

由 $\lim_{n\to\infty} y_n = \lim_{n\to\infty} x_n = +\infty$ 及已知条件 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, 当 n > N 时, 使 x_n ,

$$y_n > M$$
,则 $|f(x_n) - a| < \frac{\varepsilon}{2}$,且 $|f(x_n) - f(y_n)| < \frac{\varepsilon}{2}$,进而

$$|f(y_n)-a| \leq |f(x_n)-f(y_n)|+|f(x_n)-a| < \varepsilon$$

即 lim f(y,)=a,由(i)、(ii),命题得证.

习 题 1.4

(A)

2. 下列说法是否正确? 为什么?