Hicksian aggregation across consumers or (the rebound problem after derivation went wrong) Felipe Del Canto, 9 de Septiembre de 2019

1. Do you remember this?

Consider an economy composed by a continuum of agents that consume n+1 goods: an essential good z (i.e., water) and n different goods grouped in the vector \mathbf{x} . Good z is valued at price $q \in \mathbb{R}_{++}$ and the \mathbf{x} goods are valued at prices $\mathbf{p} \in \mathbb{R}_{++}^n$. Each individual in this setting is identified with a pair (y, α) , where $y \in [m, M]$ is her income and $\alpha \in (0, 1)$ determines the form of her pseudo-Cobb-Douglas (PCD)¹ utility function, that is,

$$u_{\alpha}(\mathbf{x}, z) := u_{(y,\alpha)}(\mathbf{x}, z) = \sum_{j=1}^{n} x_{j}^{\alpha} z^{1-\alpha} = \left(\sum_{j=1}^{n} x_{j}^{\alpha}\right) z^{1-\alpha}.$$

Assume further that (y, α) follows a certain distribution $F(\mathbf{p}, q)$ over its support $S := [m, M] \times (0, 1)$ that may depend on the prices \mathbf{p} and q. Suppose that for simplicity the investigator is not interested in a model with disaggregate consumption of the \mathbf{x} goods but instead considers a single good X given by:

$$g_{\alpha}(\mathbf{x}) = \left(\sum_{j=1}^{n} x_j^{\alpha}\right)^{1/\alpha}.$$

In this scenario, we can write

$$U(g_{\alpha}(\mathbf{x}), z) := g_{\alpha}(\mathbf{x})^{\alpha} z^{1-\alpha},$$

which is the usual Cobb-Douglas utility function. By defining $\varepsilon := (1 - \alpha)^{-1}$ and

$$P_{\alpha}(\mathbf{p}) := \left(\sum_{j=1}^{n} p_j^{1-\varepsilon}\right)^{\frac{1}{1-\varepsilon}},$$

¹The choice of this name will be clear shortly.

we have that the solutions

$$\mathbf{x}(\mathbf{p}, q, y) := \underset{\mathbf{x}, z}{\operatorname{arg \, max}} \quad u_{\alpha}(\mathbf{x}, z)$$
s.a.
$$\mathbf{p}\mathbf{x} + qz = y.$$
(1)

and

$$X(P(\mathbf{p}), q, y) := \underset{X, z}{\operatorname{arg\,max}} \quad U(X, z)$$
 s.a.
$$P_{\alpha}(\mathbf{p})X + qz = y$$
 (2)

satisfy

$$X(P_{\alpha}(\mathbf{p}), q, y) = g_{\alpha}(\mathbf{x}(\mathbf{p}, q, y)).$$

Note that the functions g_{α} and P_{α} depend explicitly on the value of α . Hence, in order to correctly aggregate the goods \mathbf{x} a different aggregator and price index for every person is needed. However, if the investigator is not aware of (or concerned with) the heterogeneity of the population then she will use a single function $g := g_{\overline{\alpha}}$ and $P := P_{\overline{\alpha}}$. If she is interested in estimating the demand for category $X_{\alpha} := g_{\alpha}(\mathbf{x})$ for ea