1	2	3	4	5	6	7	8

微處理機系統 Midterm Exam (2020.11.12)

	編號	_ 學號		姓名	
是非題與	簡答題,請	謹慎作答,不要	·亂猜答案,答錯	·倒扣對應部分的一	-半分數。
1. 是非	題 (請回答(〇或 X) [30%]			
(1)	<u>X</u> _標	準 8051 的運算	能力,相當於 Ap	ople Watch 智慧手	镁。
(2)	<u>O</u> _標	建 8051 的價格	,低於 Apple Wa	tch 智慧手錶。	
(3)		起 Apple Watch	,用標準 8051 更	文容易實現 POV clo	ck (視覺殘留時鐘)
(4)	<u>X</u> _標	洋 8051 可同時	有 32 個輸出及 3	32 個輸入。	
(5)	<u>X</u> _標	洋 8051 的 32 位	固輸出,都能由旨	晶片內輸出 high (約	5V)或 low (0V)數位訊
	號。				
(6)	<u>O</u> _標	洋 8051 可同時	使用 2 組 Timer	0	
(7)	<u>O</u> _標	注準 8051 的 Time	er可改用來計算	外部訊號的 0、1 變	卷化次數。
(8)	<u>X</u> _標	洋 8051 有內建	支援 I2C 界面的A	更體。	
(9)	<u>X</u> _l ² (C 界面使用 2 條	訊號線,一條專	用來輸出、一條專	用來輸入,因此可同
	時雙后	向 傳送資料。			
(10)		果連接一顆標準	隼 8051 的 TX 與 F	RX 腳,UART 傳出的	的資料可回傳給晶片本
	身。				
(11)	<u>X</u> 使	用 I ² C 界面,除	:了資料線,每個	slave 需一條 Selec	t 控制線。
(12)	<u>O</u> _解	4析度 128*128 自	的 LED 陣列,可係		制 256 個 MAX7219 來
	驅動。				
(13)	<u>X</u> _霍	爾感測器利用半	半 導體,將磁場轉	專換成電阻值進行化	貞測。
(14)	0 六	·軸感測器利用微	数小的機械結構 ,	將加速度轉換為電	電容值進行偵測。

2. [6%] 使用一顆 MAX7219 驅動七段顯示器模組,沒有其它 LED 驅動晶片,顯示1到最大 N 的連續正整數,請設計如何能達到最大的 N。(不顯示小數點,不顯示數字開頭的零,顯示的數字要與一般七段顯示器筆劃相同,不可以缺少筆劃)

(15)_____ O_ADC 是類比訊號與數位訊號之間的橋樑。六軸感測器內也有使用到 ADC。

MAX7219 可獨立控制 64 個筆劃,所以可以控制 9 位七段顯示器顯示 0~9,及控制最高一位七段顯示器的 1 的兩個筆劃。換句話說,可以顯示 1~1,999,999,999 所有正整數。

3. [6%] 使用標準 8051,不使用其它晶片,不考慮按按鍵的速度及彈跳,可以做出最大的 矩陣鍵盤,理論上有幾個按鍵?

最多可以有 16*16=256 個按鍵

[6%] 承上題,如果按鍵按下到放開最短的時間是 100 ms,且要求使用迴圈連續讀取按鍵狀態維持 10 ms 來除彈跳,可做出最大的矩陣鍵盤有幾個按鍵?請簡單說明你的答案的理由。

100 ms 內必須檢查過所有按鍵。每次檢查要花 10 ms,因此最多檢查 10 次。因此能支援的按鈕是 10*(32-10) = 220 個按鍵。

4. [6%] 請完成下圖3×3的矩陣鍵盤電路,並完成表格的A、D、H列。

[6%] 承上,此矩陣鍵盤電路,若同時按2個鍵會發生怎樣的問題。請一個有問題的例子說明。

可以同時按2個鍵,沒有問題。

5. [6%] 如果要設計讓 8051 的 Timer 周期最長為 1 秒,請問石英震盪器頻率應為多少(假如忘了詳細算式,請大約估計)?

$F/12/65536 = 1 \rightarrow F = 786432 Hz$

[6%] 承上,如果用來做時鐘,希望每1天誤差正負1秒,請問選購石英振盪器時,頻率誤差百分比要小於多少?

一天有 24*60*60=86400 秒,誤差 1 秒是 1/86400 = 0.001157%

[6%] 請完成下圖 8051 接石英振盪器的電路。

6. [6%] 近接感測是指不必碰觸到被檢測物體,但能測得該物體靠近的感測器。請舉出兩種 利用不同物理原理的近接感測器,並說明兩者相較於另一種的優點。

紅夕	卜線反射式感測器	霍爾	育磁感測器
✓	感測對象可以是非磁性物質(例如塑	✓	不受環境光線影響
	膠、紙、皮膚)	✓	不受油汙、灰塵、反射率高的表面影
✓	感測距離較遠(例如 10~20 cm)		響
✓	不會對被測物產生磁性影響(例如磁		
	化)		

7. [2%] 六軸感測器為什麼叫做"六軸",它偵測哪幾種物理量?

六軸感測器感測 6 種與姿態有關的物理量,所以稱為六軸。 它偵測 3 個加速度及 3 個角速度。

[10%] 請舉出 5 種使用六軸感測器的產品,簡單說明六軸感測器在該產品內的功能。

- ✓ 電玩遙控器遙控把手,利用六軸感測器知道判斷玩家手部動作。例如揮拍、出拳。
- ✓ 無人機,利用六軸感測器偵測姿態來修正馬達轉速保持平衡。
- ✓ 相機穩定器,利用六軸感測器偵測相機姿態並修正
- ✓ 運動手環、智慧手表,利用六軸感測器偵測使用者的動態,判斷使用者運動量、卡路里、計步、或在使用者看手錶自動顯示錶面。
- ✓ 數位沙漏,利用六軸感測器偵測沙漏的姿態,計算光點的移動
- 8. [6%] 請說明 interrupt (中斷)與 pooling (輪詢),相對於另一種,各有什麼優點。

interrupt (中斷)			pooling (輪詢)		
✓	事件發生以外的其他時間,8051可以	\	程式簡單,流程清楚		

- 進行其他運算,不必把運算能力浪費 在等待事件發生
- ✓ 反應速度不受迴圈速度影響
- ✓ 如果是等待短時間內會發生的事件, 輪詢的效能較佳
- ✓ 不容易發生 race condition