- 1.Définitions et exemples
- 2.Implémentations
- 3. Ordre topologique
- 4.Chemin le plus court
- 5.Dijkstra
- 6.Parcours

1.Définitions et exemples

- 2.Implémentations
- 3. Ordre topologique
- 4. Chemin le plus court
- 5.Dijkstra
- 6.Parcours

Graphes - définitions

- Un graphe est une paire G = (V,E) où V est un ensemble de sommets et E un ensemble d'arêtes. Chaque arête est une paire (V₁,V₂) qui relie deux sommets du graphe.
- Graphe orienté: les sommets sont reliés par des arcs (arêtes orientées), qui relient un sommet origine à un sommet destination
- Un graphe est dit valué si les arêtes (ou arcs) ont une valeur indiquant le coût pour les traverser. On peut aussi parler de poids de chaque arête (arc).

Graphes – définitions (2)

- Un chemin est une séquence de sommets du graphe connectés par des arêtes
- La longueur d'un chemin correspond au nombre d'arêtes dans ce chemin
- Un chemin simple ne contient pas plus d'une fois le même sommet
- Un cycle est un chemin qui commence et termine au même sommet
- Un graphe orienté acyclique est un graphe orienté qui ne contient pas de cycle

Graphes – définitions (3)

- Graphe connexe → un chemin pour chaque paire de nœuds
- Graphes orientés
 - connexes → connexité forte
 - Non connexes, mais le graphe sous-jacent sans orientation est connexe → connexité faible
- Graphes complets → il y a un arc entre chaque paire de nœuds
 - Cliques → sous-graphes complets

Graphes – définitions (4)

- Un graphe complet comportant |V| nœuds possède |E| = |V-1|·|V|/2 arcs
- On dit qu'un graphe est dense si |E| est O(|V|²)
- On dira qu'un graphe est peu dense si |E| est O(|V|)

Graphes - exemples

Graphe non orienté: chaque arête représente deux personnes qui se connaissent

Graphes – exemples (2)

Quelles sont les positions possibles du cavalier à partir de sa position actuelle?

Graphes – exemples (3)

Remarque: dans la figure, chaque arc représente en fait deux arcs, soit un pour chaque orientation

Graphes – exemples (4)

- Réseaux
 - Sociaux
 - Ordinateurs
 - Transports
- Théorie des langages
 - Automates
 - Graphe de flot de contrôle
 - Graphes d'appel
 - Graphes des dépendances

Graphes – exemples (5)

- Généalogies
- Biologie moléculaire
 - Chaînes métaboliques
 - Représentation de protéines et de molécules organiques
- Génie logiciel
 - Diagrammes UML (classe, interaction)
 - Diagramme de transition des Interfaces usager

- 1. Définitions et exemples
- 2.Implémentations
- 3. Ordre topologique
- 4. Chemin le plus court
- 5.Dijkstra
- 6.Parcours

Graphes - implémentation

- Matrice d'adjacence
 - On suppose que les sommets du graphe sont étiquetés de 0 à N
 - S'il existe une arête du sommet i au sommet j, on met 1 à la position A[i][j], sinon on met INFINI comme valeur (autres codages existent)

Graphes – implémentation (2)

- Matrice d'adjacence
 - Si le graphe est valué, on met à la position A[i][j], le poids associé à l'arête
 - Si le graphe est peu dense, ce qui est souvent le cas, il y aura beaucoup de 0 dans la matrice

Graphes – implémentation (3)

- Listes d'adjacence
 - Pour chaque sommet, on associe une liste de tous les autres sommets auquel il est lié par une arête dont il est l'origine
 - En principe (tout comme avec la matrice d'adjacence), il faut une table qui associe l'identificateur de chaque sommet à un numéro interne dans la représentation
 - En Java, cette table peut nous retourner une référence sur la structure qui représente le sommet

Graphes – implémentation (4)

Itérateurs

- Graphe
 - first(), next(), getCurrent(), currentIsValid()
 - Ordres de visite
 - Profondeur (dfs), ampleur (bfs), listes de priorité, basés sur des critères
- Listes d'adjacence
 - First(), next(), getCurrent(), currentIsValid()

- 1. Définitions et exemples
- 2.Implémentations
- 3. Ordre topologique
- 4. Chemin le plus court
- 5.Dijkstra
- 6.Parcours

Ordre topologique

- Graphes orientes acycliques
- Définition
 - Ordre sur les nœuds du graphe dans lequel l'existence d'un chemin entre x et y implique que x précède y

Algorithme

```
void topsort( ) throws CycleFoundException
    for( int counter = 0; counter < NUM_VERTICES; counter++ )</pre>
        Vertex v = findNewVertexOfIndegreeZero( );
        if( v == null )
            throw new CycleFoundException( );
        v.topNum = counter;
        for each Vertex w adjacent to v
            w.indegree--;
```

Complexité: O(|V|²)

Algorithme amélioré (?)

```
void topsort( ) throws CycleFoundException
    Queue<Vertex> q = new Queue<Vertex>( );
    int counter = 0:
    for each Vertex v
        if( v.indegree == 0 )
            q.enqueue( v );
   while( !q.isEmpty( ) )
       Vertex v = q.dequeue( );
        v.topNum = ++counter; // Assign next number
        for each Vertex w adjacent to v
            if( --w.indegree == 0 )
                g.enqueue( w );
    if( counter != NUM VERTICES )
        throw new CycleFoundException();
```

- Complexité: O(|E| + |V|)
- Algorithme avec une file (liste de travail)

Exemple

Simulation

		In	degree	Before	e Dequeue	e #		
Vertex	1	2	3	4	5	6	7	
ν_1	0	0	0	0	0	0	0	
v_2	1	0	0	0	0	0	0	
v_3	2	1	1	1	0	0	0	
v_4	3	2	1	0	0	0	0	
v_5	1	1	0	0	0	0	0	
v_6	3	3	3	3	2	1	0	
v_7	2	2	2	1	0	0	0	
Enqueue	v_1	ν_2	v_5	v_4	v_3, v_7		v_6	
Dequeue	v_1	ν_2	ν_5	ν_4	v_3	ν_7	v_6	

- 1. Définitions et exemples
- 2.Implémentations
- 3. Ordre topologique
- 4.Chemin le plus court
- 5.Dijkstra
- 6.Parcours

Plus court chemin sans poids

- Graphe oriente
- Nœud de départ
- Coût associé aux arêtes
 - Longueur du chemin

Algorithme

```
void unweighted( Vertex s )
    for each Vertex v
        v.dist = INFINITY;
        v.known = false;
    s.dist = 0;
    for( int currDist = 0; currDist < NUM VERTICES; currDist++ )</pre>
        for each Vertex v
            if( !v.known && v.dist == currDist )
                                                                     Complexité: O(|V|<sup>2</sup>)
                v.known = true;
                for each Vertex w adjacent to v
                    if( w.dist == INFINITY )
                        w.dist = currDist + 1;
                        w.path = v;
```

Cas pathologique

Exemple

Simulation

Nœuds	Distance	Connu?	Parent		Nœuds	Distance	Connu?	Parent
$\overline{V_0}$	∞	Faux	_		V_0	1	Faux	V_2
V_1	∞	Faux	-		V_1	∞	Faux	-
V_2	∞	Faux	-		$\mathbf{V_2}$	0	Vrai	-
V_3	∞	Faux	-	\longrightarrow	V_3	∞	Faux	-
V_4	∞	Faux	-		V_4	∞	Faux	-
V_5	∞	Faux	-		V_5	1	Faux	V_2
V_6	∞	Faux	-		V_6	∞	Faux	-
Nœuds	Distance	Connu?	Parent		Nœuds	Distance	Connu?	Parent
$\frac{Nœuds}{V_0}$	Distance 1	Connu? Vrai	Parent V ₂		$\frac{Nœuds}{V_0}$	Distance 1	Connu? Vrai	Parent V ₂
$\overline{\mathbf{V_0}}$	1	Vrai	$\overline{\mathbf{V}_2}$		$\overline{V_0}$	1	Vrai	V_2
V_0 V_1	1 2	Vrai <i>Faux</i>	$\overline{\mathbf{V}_2}$	→	$egin{array}{c} V_0 \ V_1 \ \end{array}$	1 2	Vrai Faux	$egin{array}{c} V_2 \ V_0 \ \end{array}$
$egin{array}{c} oldsymbol{V_0} \ oldsymbol{V_1} \ oldsymbol{V_2} \end{array}$	1 2 0	Vrai <i>Faux</i> Vrai	$egin{array}{c} \mathbf{V_2} \\ V_0 \\ - \end{array}$	→	$egin{array}{c} V_0 \ V_1 \ V_2 \ \end{array}$	1 2 0	Vrai Faux Vrai	V ₂ V ₀
$ \begin{array}{c} \mathbf{V_0} \\ V_1 \\ V_2 \\ V_3 \end{array} $	1 2 0 2	Vrai Faux Vrai Faux	$egin{array}{c} \mathbf{V_2} \\ V_0 \\ - \\ V_0 \end{array}$	→	$egin{array}{c} V_0 \ V_1 \ V_2 \ V_3 \ \end{array}$	1 2 0 2	Vrai Faux Vrai Faux	$egin{array}{c} V_2 \\ V_0 \\ - \\ V_0 \end{array}$
$ \begin{array}{c} \mathbf{V_0} \\ V_1 \\ V_2 \\ V_3 \\ V_4 \end{array} $	1 2 0 2 ∞	Vrai Faux Vrai Faux Faux	$egin{array}{c} \mathbf{V_2} \\ V_0 \\ - \\ V_0 \\ - \end{array}$	→	$ \begin{array}{c} V_0 \\ V_1 \\ V_2 \\ V_3 \\ V_4 \end{array} $	1 2 0 2 ∞	Vrai Faux Vrai Faux Faux	$egin{array}{c} V_2 \\ V_0 \\ - \\ V_0 \\ - \end{array}$

Simulation (2)

Nœuds	Distance	Connu?	Parent		Nœuds	Distance	Connu?	Parent
$\overline{\mathrm{V}_{\mathrm{0}}}$	1	Vrai	V_2		$\overline{V_0}$	1	Vrai	V_2
\mathbf{V}_1	2	Vrai	$\mathbf{V_0}$		V_1	2	Vrai	V_0
V_2	0	Vrai	-		V_2	0	Vrai	-
V_3	2	Faux	V_0	$\longrightarrow\hspace{0.2cm}$	\mathbf{V}_3	2	Vrai	\mathbf{V}_0
V_4	3	Faux	V_1		V_4	3	Faux	V_1
V_5	1	Vrai	V_2		V_5	1	Vrai	V_2
V_6	∞	Faux	-		V_{6}	3	Faux	V_3
Nœuds	Distance	Connu?	Parent		Nœuds	Distance	Connu?	Parent
$\frac{Nœuds}{V_0}$	Distance 1	Connu? Vrai	Parent V ₂		$\frac{Nœuds}{V_0}$	Distance 1	Connu? Vrai	Parent V ₂
$\overline{ m V}_0$	1	Vrai	V_2		$\overline{V_0}$	1	Vrai	V_2
$egin{array}{c} V_0 \ V_1 \end{array}$	1 2	Vrai Vrai	$egin{array}{c} V_2 \ V_0 \ \end{array}$	→	$egin{array}{c} V_0 \ V_1 \ \end{array}$	1 2	Vrai Vrai	$egin{array}{c} V_2 \ V_0 \end{array}$
$egin{array}{c} V_0 \ V_1 \ V_2 \ \end{array}$	1 2 0	Vrai Vrai Vrai	V ₂ V ₀	\longrightarrow	$egin{array}{c} V_0 \ V_1 \ V_2 \ \end{array}$	1 2 0	Vrai Vrai Vrai	V ₂ V ₀
$V_0 \\ V_1 \\ V_2 \\ V_3$	1 2 0 2	Vrai Vrai Vrai Vrai	$egin{array}{c} V_2 \ V_0 \ - \ V_0 \ \end{array}$	\longrightarrow	$egin{array}{c} V_0 \ V_1 \ V_2 \ V_3 \ \end{array}$	1 2 0 2	Vrai Vrai Vrai Vrai	$egin{array}{c} V_2 \ V_0 \ - \ V_0 \ \end{array}$

Algorithme amélioré (?)

```
void unweighted( Vertex s ) {
    Queue<Vertex> q = new Queue<Vertex>();
    for each Vertex v
      v.dist = INFINITY;
    s.dist = 0;
                                       Complexité: O(|E| + |V|)
    q.enqueue(s);
    while(!q.isEmpty()) {
       Vertex v = q.dequeue();
      for each Vertex w adjacent to v
         if( w.dist == INFINITY ) {
           w.dist = v.dist + 1;
           w.path = v;
           q.enqueue(w);
```


File: V₂

File: V₀ V₅

File: V₅ V₁ V₃

File: V₁ V₃

File: V₃ V₄

Exemple avec file

File: V₄ V₆

Exemple avec file

File: V₆

Exemple avec file

File: vide

Arbre équivalent

(parcours par niveaux)

Graphes

- 1. Définitions et exemples
- 2.Implémentations
- 3. Ordre topologique
- 4. Chemin le plus court
- 5.Dijkstra
- 6.Parcours

Plus court chemin avec poids

- Graphe oriente
- Nœud de départ
- Coût associé aux arêtes
 - Poids (non négatif)

```
void dijkstra( Vertex s )
    for each Vertex v
        v.dist = INFINITY;
        v.known = false;
    }
    s.dist = 0;
    for(;;)
        Vertex v = smallest unknown distance vertex;
        if( v == NOT A VERTEX )
            break;
        v.known = true;
        for each Vertex w adjacent to v
            if(!w.known)
                if( v.dist + cvw < w.dist )</pre>
                    // Update w
                    decrease( w.dist to v.dist + cvw
                    w.path = v;
```

Complexité: O(|V|²)

Exemple

Simulation

Nœud	$\begin{array}{c} \text{Distance} \\ \text{V}_0 \end{array}$	Distance V_1	Distance V_2	Distance V_3	Distance V_4	Distance V_5	Distance V_6
-	0	∞	∞	∞	∞	∞	∞
V_0	<u>0</u>	2	∞	1	∞	∞	∞
V_3	0	2	3	<u>1</u>	3	9	5
V_1	0	<u>2</u>	3	1	3	9	5
V_2	0	2	<u>3</u>	1	3	8	5
V_4	0	2	3	1	<u>3</u>	8	5
V_6	0	2	3	1	3	6	<u>5</u>

Analyse (Dijkstra)

- Recherche séquentielle du minimum nœud traverse O(|V|²)
 - Graphe compacte (« dense »)
 - $|E| = \Theta(|V|^2) \rightarrow O(|E|)$
 - Graphe éparpillé (« sparse »)
 - $|E| \ll |V|^2$, $|E| = \Theta(|V|)$

(avec file de priorité)

File de priorité: $(V_0,0)$

(avec file de priorité)

File de priorité: $(V_3,1)$ $(V_1,2)$

(avec file de priorité)

File de priorité: $(V_1, 2) (V_2, 3) (V_4, 3) (V_6, 5) (V_5, 9)$

(avec file de priorité)

File de priorité: $(V_2,3) (V_4,3) (V_6,5) (V_5,9)$

(avec file de priorité)

File de priorité: $(V_4,3)$ $(V_6,5)$ $(V_5,8)$

(avec file de priorité)

File de priorité: $(V_6,5)$ $(V_5,8)$

(avec file de priorité)

File de priorité: (V₅,8)

(avec file de priorité)

File de priorité: Vide

Analyse (Dijkstra) (2)

- Implantation par monceau O(|E| log₂|V|)
 - Extraction du minimum: O(log₂|V|)
 - Total O(|V| log₂|V|)
 - Mis-a-jour des couts: O(log₂|V|)
 - Total: O(|E| log₂|V|)
 - Taille du monceau O(|E|)

Graphes

- 1. Définitions et exemples
- 2.Implémentations
- 3. Ordre topologique
- 4. Chemin le plus court
- 5.Dijkstra
- 6.Parcours

Algorithmes de visite

1. Breadth First Search (équivalent à par niveau)

Vu au tri topologique

2. Depth First Search (équivalent à pré-ordre)

On part d'un nœud,

Visite ses enfants

Pour chacun de ses enfants, on refait la même chose

Chaque nœud visité est marqué comme tel

V₀,

 $V_0, V_1, V_2, V_3,$

 $V_0, V_1, V_2, V_3, V_4,$

Ex. 2 BFS – graphe orienté

 $V_0, V_1, V_3, V_4, V_2, V_5, V_6.$

V₀,

 $V_0, V_1,$

 $V_0, V_1, V_3,$

 $V_0, V_1, V_3, V_2,$

 $V_0, V_1, V_3, V_2, V_5,$

Ex. 4 DFS – graphe orienté

