Interview Questions: Regular Expressions

3/3 points earned (100%)

Excellent!

Retake

Course Home

1/1 points

1.

Challenging REs. Construct a regular expression for each of the following languages over the binary alphabet or prove that no such regular expression is possible:

- All strings except 11 or 111.
- Strings with 1 in every odd-number bit position.
- Strings with an equal number of 0s and 1s.
- Strings with at least two 0s and at most one 1.
- Strings that when interpreted as a binary integer are a multiple of 3.
- Strings with no two consecutive 1s.
- Strings that are palindromes (same forwards and backwards).
- Strings with an equal number of substrings of the form 01 and 10.

a	
u	
Than	k you for your response.
	1/1
	points
xpone	ential-size DFA. Design a regular expressions of length n such that any DFA
	ential-size DFA. Design a regular expressions of length n such that any DFA cognizes the same language has an exponential number of states.
nat red	
hat red	cognizes the same language has an exponential number of states.
hat red	cognizes the same language has an exponential number of states.
hat red	cognizes the same language has an exponential number of states.
hat red	cognizes the same language has an exponential number of states.
hat red	cognizes the same language has an exponential number of states.
a Than	ognizes the same language has an exponential number of states. A you for your response. n^{th} -to-the-last bit equals 0.
hat red	cognizes the same language has an exponential number of states.

3.

Extensions to NFA. Add to NFA.java the ability to handle multiway or, wildcard, and the + closure operator.

а		
_		
Thank you for your response.		

