Circle Assignment

Gautam Singh

Abstract—This document contains the solution to Question 12 of Exercise 5 in Chapter 10 of the class 9 NCERT textbook.

1) Prove that a cyclic paralellogram is a rectangle. **Solution:** Consider the points P_i , $1 \le i \le 4$ on the unit circle. Thus, for $1 \le i \le 4$,

$$\|\mathbf{P_i}\|^2 = 1\tag{1}$$

Since $P_1P_2P_3P_4$ is a parallelogram, its diagonals bisect each other. Thus,

$$\frac{\mathbf{P_1} + \mathbf{P_3}}{2} = \frac{\mathbf{P_2} + \mathbf{P_4}}{2} \tag{2}$$

$$\implies \mathbf{P_1} + \mathbf{P_3} = \mathbf{P_2} + \mathbf{P_4} \tag{3}$$

$$\implies ||\mathbf{P_1} + \mathbf{P_3}||^2 = ||\mathbf{P_2} + \mathbf{P_4}||^2$$
 (4)

Using (1), (4) becomes

$$\mathbf{P_1}^{\mathsf{T}} \mathbf{P_3} = \mathbf{P_2}^{\mathsf{T}} \mathbf{P_4} \tag{5}$$

Hence, using (1) and (5)

$$||\mathbf{P}_{1} - \mathbf{P}_{3}||^{2} = ||\mathbf{P}_{1}||^{2} - 2\mathbf{P}_{1}^{\mathsf{T}}\mathbf{P}_{3} + ||\mathbf{P}_{3}||^{2}$$
(6)
$$= ||\mathbf{P}_{2}||^{2} - 2\mathbf{P}_{2}^{\mathsf{T}}\mathbf{P}_{4} + ||\mathbf{P}_{4}||^{2}$$
(7)
$$= ||\mathbf{P}_{2} - \mathbf{P}_{4}||^{2}$$
(8)

From (8), we see that $P_1P_3 = P_2P_4$, or the diagonals of the parallelogram are equal. Thus, $P_1P_2P_3P_4$ is in fact a rectangle.

The situation is demonstrated in Fig. 1, plotted by the Python code codes/circle.py.

Fig. 1: $P_1P_2P_3P_4$ is a rectangle.