Quiz 11

Due Nov 18 at 12pm

Points 10

Questions 10

Time Limit None

Instructions

There is no time limit, but you may only make one submission.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	53 minutes	9 out of 10

Score for this quiz: **9** out of 10 Submitted Nov 15 at 3:39pm This attempt took 53 minutes.

Question 1 1 / 1 pts

Consider the helper method reversePrint, which uses recursion to display in reverse the elements in a section of an array limited by the firstIndex and lastIndex arguments. What statement should be used to complete the recursive method?

```
array[lastIndex]
array[firstIndex + 1]

array[firstIndex]
```

Correct!

Correct!

What is required to make a recursive method successful? I. special cases that handle the simplest computations directly II. a recursive call to simplify the computation III. a mutual recursion I and II only I, II, and III I only

```
Question 3

Consider the square() method shown below that takes a non-negative int
argument. Complete the code for the square() method so that it correctly calls the
squareHelper() method to produce the square of n.

public int square(int n)
{
    if (c == 1)
    {
        return n;
    }
}
```

```
}
else
{
    return n + squareHelper(c - 1, n);
}

return square(n)

return squareHelper(n, n - 1)

return squareHelper(n - 1, n)

return squareHelper(n, n)
```

Question 4 1 / 1 pts

Consider the getArea() method from the textbook shown below.

```
public int getArea()
   if (width <= 0)
                                                           // line #1
                                                           // line #2
       return 0;
   else if (width == 1)
                                                           // line #3
       return 1;
                                                           // line #4
   }
   else
       Triangle smallerTriangle = new Triangle(width - 1); // line #5
       int smallerArea = smallerTriangle.getArea();  // line #6
       return smallerArea + width;
                                                           // line #7
   }
}
```

Where is/are the recursive call(s)?

line #1

Correct!

Correct!

line #6

lines #1 and #3

Question 5 1 / 1 pts

Consider the permutations() method from the textbook, which is intended to return all permutations of the word passed in as a parameter. How does the permutations() method simplify its input for the recursive call?

```
public static ArrayList<String> permutations(String word)
   ArrayList<String> result = new ArrayList<String>();
    if (word.length() == 0)
        result.add(word);
        return result;
    }
    else
    {
        for (int i = 0; i < word.length(); i++) // line #4
            String shorter = word.substring(0, i) + word(substring(i + 1));
            ArrayList<String> shorterPermutations = permutations(shorter);
            for (String s : shorterPermutations)
                result.add(word.charAt(i) + s);
        return result;
   }
}
```

It finds permutations of a shorter word by removing both the first and last character.

It finds permutations of a shorter word by removing the first character.

Correct!

- It finds permutations of shorter words formed by removing the ith character.
- It finds permutations of a shorter word by removing the last character.

Question 6 0 / 1 pts

	What is the most likely input to a Merge operation in a Merge-Sort algorithm?	
You Answered	An array	
Correct Answer	Two sorted arrays	
	Two arrays	
	A sorted array	
		4 1

Question 7	1 / 1 pts
Which of the following algorithms most naturally involve recursion? I. Binary Search II. Insertion Sort III. Merge Sort	
I and III only	
O II only	
O I only	
○ II and III only	

Correct!

Question 8	1 / 1 pts
What is the best way to describe the complexity of the Insertion Sort alg	gorithm?
O Log-Linear	
Constant time	

Correct!	• Quadratic
	Question 9 1 / 1 pts
	What is the complexity of the Binary Search algorithm?
	O(n^2) [Note: n^2 means n-squared]
Correct!	O(log n)
	O(n log n)
	O(n)
	Question 10 1 / 1 pts
	Which of the following is most true about algorithm complexity, assuming large tasks?
Correct!	Polynomial-time algorithms are generally practical while exponential-time algorithms are typically not practical
	Linear-time algorithms are faster than both exponential-time and logarithmic-time algorithms
	An algorithm of complexity O(n^5) is considered more complex (taking more time) than an algorithm of complexity O(5^n)

Linear

Exponential-time algorithms are generally practical while polynomial-time algorithms are typically not practical

Quiz Score: 9 out of 10