Section 5.4 Problems

Ryan Heslin

2023-02-24

1.

 $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$

3.

Say we have bases of V and V^{\perp} . Then the union of the bases forms a basis for \mathbb{R}^n , because all vectors in \mathbb{R}^n are either linear combinations of V or are orthogonal to, except for 0, which is both.

4.

Yes. The image of A^T is all vectors in R^m obtained by A^Tx . $\ker(A)^{\perp}$ is all vectors in R^m for which $Ax \neq 0$.

5.

The solution space V of

$$x_1 + x_2 + x_3 + x_4 = 0$$
$$x_1 + 2x_2 + 5x_3 + 4x_4 = 0$$

is the kernel of the matrix. So $V^{\perp} = \text{im} A^T$:

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 5 \\ 1 & 4 \end{bmatrix}$$

6.

If A is $n \times m$, then $im(A) = (AA^T$ is true. mA^T is the orthogonal complement of the kernel, so it contains all nonzero x for which $Ax \neq 0$ - in other words, all vectors in $(A^{\perp})^{\perp}$

7.

If a matrix is symmetric, the image and kernel are orthogonal complements, because $A^T = A$, so $\ker(A^T) = \ker(A)$. Likewise, the row space and $\ker(A)$ are orthogonal complements.

8.

a.
$$A^+ = (A^T A)^{-1} A^T$$

b.

$$A^{+} = (A^{T}A)^{-1}A^{T}$$
$$= A^{-1}(A^{T})^{-1}A^{T}$$
$$= A^{-1}$$

c.
$$(A^T A)^{-1} A^T A x = x$$

d.
$$A(A^T A)^{-1} A^T y = y^{\parallel}$$

e.

$$L^+ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

9.

b.

They are orthogonal complements.

c.

It is a basis for $im(A^T)$.

d.

 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

e.

Being the minimal solution, it is the shortest.

10.

- a. If x_0 is in ker A^{\perp} , then it lies in the image of the transpose, the orthogonal complement. Then since $x = x_h + x_0$, if we set $x_h = 0$ (the portion in the kernel), then x_0 lies entirely in the image of the transpose. all vectors for which that lead to nonzero b, as well as 0_m
- b. 0_m is the only vector shared among $(\ker(A^{\perp}))$ and $\ker(A)$, so x_0 lies entirely in the image of the transpose only if $x_h = 0$.
- c. For all linear combinations x_0 of $\ker(A)$, $Ax_0 = 0$ by definition. So combinations of $\ker(A)$ can be freely added to x_h without impacting the solution, since $A(x_0 + x_h) = Ax_0 + Ax_h = 0 + Ax_h$. Since all nonzero vectors have nonzero length, this makes Ax_h the shortest solution.

11.

a. Given the definition of the minimal solution, the minimal least-squares solution is the next best thing: the one solution to $(A^TA)^{-1}A^Tx$ lying in $\ker(A)^{\perp}$). That is the image of the transpose, so this unique solution is purely a linear combination of A^T , without any vectors from $\ker(A)$.

Had these backwards initially.

b.
$$(A^T A)^{-1} A^T A = I$$

c.
$$A(A^T A)^{-1} A^T$$

d. The image is R^n , the kernel is $\ker(A)$

e. The first two elements of y.

12.

The minimal least-squares solution of a system is the shortest solution x^+ that yields an Ax^+ the shortest distance from b. It always lies in $(\ker A)^{\perp}$ because it is the one and only x^+ that lies entirely in A's row space.

13.

a. L(x) = y is linear, so $L(y_1 + y_2)$ is the minimal least-squares solution of $L(x) = y_1 + y_2$, which is the sum of the separate least-squares solutions for y_1 and y_2 . For the second property:

$$L(kx) = kL(x)$$

 $L^{+}(L(kx)) = L^{+}(k(L(x))) = kL^{+}(L(x))$

(I was initially not quite right on these before looking up the answers). b. $L^+(L(X))$ is the minimum least-squares solution of L(x) = L(X) - that is, x. More correctly, the projection of x onto the image of A^T .

- c. The projection of y onto the image of the row space.
- d. The image and kernel of L^+ are the same as those of A^T .
- e. If

$$L(x) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x$$

, then the pseudoinverse is just $\begin{bmatrix} 1/2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

15.

It is the pseudoinverse, $(A^TA)^{-1}A^T$. We have:

$$(A^T A)^{-1} A^T A = I$$

17.

Yes. If this were not true, then $\dim(\ker(A^T)) \ge \dim(\ker(A))$. This is impossible, because the orthogonal complement of A's image is $\ker(A^T)$ So no x solving $A^Tx = 0$ may be produced by a linear combination of A. Therefore, $\ker(A^TA) = \ker(A)$, and both matrices have m columns, so ranks are equal as well.

18.

Yes. We proved above A^TA and A have equal rank. $\ker(A^T)$ is the orthogonal complement of the image of A^T , so any x for which Ax = 0 cannot come from a linear combination of A^T (except for 0_m). So the kernel does not expand, and rank remains the same.

19.

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

28.

For an orthonormal basis, the least squares solution is b, since $A(A^TA)^{-1}A^T=I$.

34.

```
x <- b <- c(0, 0.5, 1, 1.5, 2, 2.5, 3)
X <- cbind(1, sin(x), cos(x), sin(2 * x), cos(2 * x))
solve(t(X) %*% X) %*% t(X) %*% b</pre>
```

```
[,1]
[1,] 1.50000000
[2,] 0.10897422
[3,] -1.53669122
[4,] 0.30269197
[5,] 0.04314769
```

36.

I fit a model predicting day length by time of year. The error vector is surprisingly small.

```
fit <- function(A) {
    solve(t(A) %*% A) %*% t(A)
}
days <- c(32, 77, 121, 152)
b <- c(10, 12, 14, 15)

A <- cbind(rep(1, 4), sin(((2 * pi)/366) * days),
    cos(((2 * pi)/366) * days))</pre>
```

```
betas <- fit(A) %*% b</pre>
b - A %*% betas
```

[,1]

[1,] -0.01328337 [2,] 0.03559242 [3,] -0.04424210 [4,] 0.02193305

39.

Another exponential fit problem.

a.

```
A <- cbind(rep(1, 5), log(c(6e+05, 2e+05, 60000, 10000, 2500)))
z <- c(5, 12, 25, 60, 250)

betas <- fit(A) %*% log(z)
betas
```

[,1]

[1,] 10.6031951 [2,] -0.6739273

c.

The exponential base of the fitted function is about 0.5, very close to the theoretical $a = k\sqrt{g}$.

```
k <- exp(betas[1])
g <- exp(betas[2])
sprintf("k = %.2f, g = %.2f", k, g)</pre>
```

```
[1] "k = 40263.28, g = 0.51"
```

41.

Let's predict the US national debt!

```
A <- cbind(rep(1, 4), seq(0, 30, by = 10))

b <- log(c(533, 1823, 4974, 7933))
betas <- fit(A) %*% b

cbind(A[, 2], exp(b)) %*% betas
```

[,1]

[1,] 48.52718 [2,] 230.51271 [3,] 581.93366 [4,] 915.87389

exp(betas[1] + betas[2] * c(A[,2], 40))

For 2015, the model predicts a debt of more than \$24 trillion.

70.

Let $A_1 = A - \lambda_1 I_n$ and $A_2 = A - \lambda_2 I_n$. By the rank-nullity theorem, nullity $(A_1 A_2) = \text{nullity} A_1 + \text{nullity} A_2$ if and only if $\ker A_1 \in \operatorname{im} A_2$; otherwise, only vectors mapped by A_2 to 0 are in the kernel. Since both domain and codomain are \mathbb{R}^n , this requires the kernels to be linearly independent subspaces. If we set $A_1 \prime = A_1 A_2$ and repeat this process for each eigenvalue, the same logic still holds. The matrix is only diagonalizable if $\ker A_1 \dots A_n = \mathbb{R}^n$, which means the combined eigenspaces span all of \mathbb{R}^n . But if an eigenvalue of multiplicity m is mapped to an eigenspace of dimension n < m, then the dimension of the eigenspaces fails to sum to n and (non-Jordan) diagonalization is impossible.