Analisi Esatta di Joseph e Pandya

Dati dei processi:

$$P_1 = (3,6,6)$$

$$P_2 = (2,9,9)$$

$$P_3 = (4,24,24)$$

Priorità dei processi:

$$\pi_{P_1} = \frac{1}{T_2} = \frac{1}{6} = 0.11$$

$$\pi_{P_2} = \frac{1}{T_2} = \frac{1}{4} = 0.167$$

$$\pi_{P_3} = \frac{1}{T_3} = \frac{1}{18} = 0.04167$$

Quindi $\pi_{P_2} > \pi_{P_1} > \pi_{P_3}$.

Equazione di ricorrenza del processo P_3 :

Il suo high-priority set $hp(P_3)$ è costituito dai processi P_1 e P_2 , entrambi caratterizzati da un valore di priorità più elevato.

$$R_3^0 = 0$$

$$R_3^1 = C_3 = 4$$

$$R_3^2 = C_3 + \left\lceil \frac{R_3^1}{T_1} \right\rceil \cdot C_1 + \left\lceil \frac{R_3^1}{T_2} \right\rceil \cdot C_2 = 4 + \left\lceil \frac{4}{6} \right\rceil \cdot 3 + \left\lceil \frac{4}{9} \right\rceil \cdot 2 = 4 + \left\lceil 0.66 \right\rceil \cdot 3 + \left\lceil 0.44 \right\rceil \cdot 2 = 4 + 1 \cdot 3 + 1 \cdot 2$$

$$= 9$$

$$R_3^3 = C_3 + \left[\frac{R_3^2}{T_1}\right] \cdot C_1 + \left[\frac{R_3^2}{T_2}\right] \cdot C_2 = 4 + \left[\frac{9}{6}\right] \cdot 3 + \left[\frac{9}{9}\right] \cdot 2 = 4 + \left[1.5\right] \cdot 3 + \left[1\right] \cdot 2 = 4 + 2 \cdot 3 + 1 \cdot 2 = 12$$

$$R_3^4 = C_3 + \left\lceil \frac{R_3^3}{T_1} \right\rceil \cdot C_1 + \left\lceil \frac{R_3^3}{T_2} \right\rceil \cdot C_2 = 4 + \left\lceil \frac{12}{6} \right\rceil \cdot 3 + \left\lceil \frac{12}{9} \right\rceil \cdot 2 = 4 + \left\lceil 2 \right\rceil \cdot 3 + \left\lceil 1.33 \right\rceil \cdot 2 = 4 + 2 \cdot 3 + 2 \cdot 2 = 14$$

$$R_3^5 = C_3 + \left\lceil \frac{R_3^4}{T_1} \right\rceil \cdot C_1 + \left\lceil \frac{R_3^4}{T_2} \right\rceil \cdot C_2 = 4 + \left\lceil \frac{14}{6} \right\rceil \cdot 3 + \left\lceil \frac{14}{9} \right\rceil \cdot 2 = 4 + \left\lceil 2.33 \right\rceil \cdot 3 + \left\lceil 1.55 \right\rceil \cdot 2 = 4 + 3 \cdot 3 + 2 \cdot 2 = 17$$

$$R_3^6 = C_3 + \left\lceil \frac{R_3^5}{T_1} \right\rceil \cdot C_1 + \left\lceil \frac{R_3^5}{T_2} \right\rceil \cdot C_2 = 4 + \left\lceil \frac{17}{6} \right\rceil \cdot 3 + \left\lceil \frac{17}{9} \right\rceil \cdot 2 = 4 + \left\lceil 2.833 \right\rceil \cdot 3 + \left\lceil 1.88 \right\rceil \cdot 2$$
$$= 4 + 3 \cdot 3 + 2 \cdot 2 = 17$$

La relazione $R_3 \le D_3$ è rispettata ($D_3 = 24$).

Equazione di ricorrenza del processo P_1 :

Il suo high-priority set $hp(P_1)$ è costituito dal processo P_2 .

$$R_1^0 = 0$$

$$R_1^1 = C_1 = 3$$

$$R_1^2 = C_1 + \left[\frac{R_1^1}{T_2}\right] \cdot C_2 = 3 + \left[\frac{3}{6}\right] \cdot 2 = 3 + [0.5] \cdot 2 = 3 + 1 \cdot 2 = 5$$

$$R_1^3 = C_1 + \left[\frac{R_1^2}{T_2}\right] \cdot C_2 = 3 + \left[\frac{5}{6}\right] \cdot 2 = 3 + \left[0.833\right] \cdot 2 = 3 + 1 \cdot 2 = 5$$

La relazione $R_1 \leq D_1$ è rispettata $(D_1 = 6)$.

Equazione di ricorrenza del processo P_2 :

Il suo high-priority set $hp(P_2)$ è vuoto perché il processo a maggiore priorità.

$$R_2^0 = 0$$

$$R_2^1 = C_2 = 2$$

$$R_2^2 = C_2 = 2$$

E così via...

La relazione $R_2 \le D_2$ è rispettata ($D_2 = 9$).