Содержание

Вв	едение		3
1	Понят	ие математической модели	6
	1.1	Основные понятия	6
	1.2	Этапы построения математической модели	6
	1.3	Классификация математических моделей	7
2	Модел	ъ Солоу	8
	2.1	Базовая модель Солоу	8
	2.2	Модель Солоу и научно-технологический прогресс	13
	2.3	Модель Солоу с человеческим капиталом	14
3	Идент	ификация параметров	17
4	Модел	ъ Республики Сербия	19
	4.1	Идентификация формул	19
	4.2	Идентификация параметров	21
	4.3	Рассчет параметров	22
5	Анали	з развития экономики в Республике Сербия	24
	5.1	Текущая экономическая ситуация в Республике Сербия .	24
	5.2	Стратегия развития Всемирного банка	25
	5.3	Экономический прогноз	26
Зан	ключени	ие	27
Сп	исок ис	спользованных источников	28
Δ	Табли	ты макроокономинеских панных	30

Обозначения и сокращения

ООН — Организация Объединённых Наций.

МВФ — Международный Валютный Фонд.

ВВП — Валовой внутренний продукт.

ИТ — Информационные технологии.

RSD — Сербский динар.

USD — доллар США.

HATO — Организация Североатлантического договора, Североатлантический Альянс (англ. North Atlantic Treaty Organization).

ПИИ — Прямые иностранные инвестиции.

США — Соединенные Штаты Америки.

Введение

Сербия — индустриально-аграрная страна, расположенная на юговостоке Европы (центральной части Балканского полуострова). Через республику проходят важные транспортные и торговые пути, соединяющие Западную и Центральную Европу с Ближним и Средним Востоком. Сербия располагает значительными сырьевыми ресурсами — запасами медной, свинцово-цинковой, железной, хромовой, марганцевой руды, а также каменного угля. В стране имеются значительные гидроэнергетические ресурсы республики (реки Дунай, Морава, Дрина).

На рубеже 1980 – 1990 годов страна (на тот момент Югославия) была экономически развитой. Однако политические события 90-х (санкции ООН, война, разрушение инфраструктуры и промышленности в ходе многочисленных воздушных атак НАТО, утрата торговых связей внутри бывшей Югославии и т. д.) оказали негативное влияние на экономическое и политическое положение страны.

За последние годы в Сербии начался стремительный экономический рост, возобновились иностранная финансовая помощь и инвестиции. За 10-летний период по данным МВФ сербская экономика выросла почти на 20 процентов.

Сельское хозяйство, промышленность и сектор услуг являются основными источниками доходов Сербии. Они внесли большой вклад в динамику роста ВВП. Основная отрасль сельского хозяйства — растениеводство. В обрабатывающей промышленности ведущее место занимают машиностроение и металлообработка. Также уверенными темпами развиваются ИТ и туризм. Например, экспорт ИТ сектора в 2019 году был выше, чем экспорт доминирующего сельского хозяйства. Примечательно, что в 2019 году Балканская республика наряду с Ирландией показала самый высокий экономический рост среди всех остальных государств Европы. В 2020 году Сербия также может показать опережающию темпы роста экономики в Европе.

Актуальность выбранной темы выпускной квалификационной работы обусловлена тем, что экономика Сербии в настоящий момент находится на этапе активного развития. Математические модели способны

описать текущую экономическую ситуацию в стране и спрогнозировать как и положительные, так и отрицательные сюжеты развития государства.

Экономика государства очень сильно зависит от политической ситуации, она настолько динамична, что построив математическую модель вчера, сегодня она уже может оказаться не актуальной. В связи с вспышкой пандемии COVID-19, многие страны уже оказались в неприятной экономической ситуации. Это еще одна причина выбора темы. Кроме того, построение математических моделей экономики государства на примере Сербии поможет разобраться как в особенностях государства, так и в математических инструментах.

Объект исследования — математические модели экономического роста.

Предмет исследования — математическая модель экономики, построенная на примере Республики Сербия.

Цель данной работы — создание инструмента прогнозирования динамики экономики Республики Сербия в зависимости от поведения внутренних и внешних переменных, сделать выводы и построить прогнозы.

Для реализации поставленной цели необходимо решить следующие задачи:

- а) Изучить теорию построения математических моделей экономики.
- б) Построить модель на примере макроэкономических данных Республики Сербия.
 - в) Сделать выводы и прогнозы.

Выпускная квалификационная работа состоит из содержания, перечня сокращений, введения, пяти глав, заключения, списка используемых источников и приложения.

В первой главе определяются основные термины, описываются этапы построения математических моделей, приводятся различные типы математических моделей.

Во второй главе описывается теоретическая состовляющая математической модели экономического роста Солоу.

В третьей главе рассчитываются основные макроэкономические переменные экономики Республики Сербия.

В четвертой главе проводится анализ, вычисления и построение математической модели экономики Республики Сербия, разбираются полученные результаты.

В пятой главе исследуются главные сферы экономической деятельности Сербии, оцениваются прогнозы авторитетных рейтинговых агенств (МВФ, Всемирный банк и т. д.).

1 Понятие математической модели

1.1 Основные понятия

Объект — система состоящая из множества элементов. Это может быть ракета, рынок ценных бумаг или популяции животных. В нашем случае это государство.

Модель несет в себе отражение связей между элементами. Математическая модель — это математическое представление реальности. Экономической моделью можно считать набор уравнений, основанных на определенных предположениях и приближено описывающих экономику в целом или отдельно ее отрасль.

Моделирование — процесс расчета поведения системы на основе граничных условий и заданных связей между элементами системы.

Алгоритм — логика расчета поведения системы. Логика может быть основана на разных математических подходах.

1.2 Этапы построения математической модели

Построение математических моделей в экономике является методом для решения задач оптимального упраления. Экономико-математическая модель отображает некоторые процессы, которые смоделированы с помощью математических теорем и уравнений.

Построение математических моделей состоит из нескольких этапов:

- Идентификация. Определение основных параметров объекта.
- **Оценка параметров модели.** Выбор переменных модели на основе выбранных параметров.
- **Спецификация модели.** Определение связей между параметрами. Построение уравнений.
- **Моделирование.** Проведение моделирования на основе заданных начальных условий.
 - Анализ полученных результатов.

1.3 Классификация математических моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Например:

- **Линейные и нелинейные модели.** Модели, в которых связь между зависимой и независимой переменными могут быть линейными или нелинейными (например, линейная регрессия).
- **Дискретные и непрерывные модели.** В дискретных моделях изменение параметров связано только с отдельными моментами времени. В непрерывных моделях параметры изменяются во времени плавно.
- **Стохастические модели.** Стохастические модели предназначены для прогнозирования экономических явлений в условиях неопределенности исходных данных и реализуются методами математической статистики.
- **Оптимизационные модели.** Оптимизационная модель позволяет из нескольких альтернативных вариантов выбрать наилучший вариант по любому признаку.

Естественно, что существуют и другие модели, в том числе и смешанные.

Вся теория построения математических моделей основывается на предположениях, которые не всегда являются правдивыми. Эти предположения помогают существенно упростить описание какого-либо процесса. Грамотное построение моделей заключается в создании предположений таким образом, чтобы окончательные результаты оказались наиболее независимыми. Лучшие модели обычно очень просты, но позволяют глубоко описать устройство мира.

В современной экономической науке модель является математическим описанием отдельных экономических явлений. Проще всего думать о моделях как об игрушечных странах, населенных роботом. Обычно точно оговаривается, каким образом себя ведут роботы, как правило, они обычно максимизируют полезность. Также конкретизируют ограничения, с которыми сталкиваются роботы в процессе максимизации своей полезности. Мы будем обобщать результаты такого поведения с помощью некоторых общих правил.

2 Модель Солоу

В этой главе будет описана модель экономического роста, предложенная Робертом Солоу¹. Эта модель способна объяснить, почему одни страны процветают, а другие становятся все беднее.

Предположим, что мир состоит из стран, в которых потребляется только один товар (выпуск) и не существует международной торговли. В модели рассматривается закрытая экономика². Второе предположение этой модели заключаетя в том, что технологии не зависят от производителей.

2.1 Базовая модель Солоу

Модель основывается на двух уравнениях:

- Производственная функция.
- Уравнение, описывающее процесс накопления капитала.

Для упрощения модели разделим все ресурсы на капитал и труд.

Фирма производит выпуск, используя капитал и труд. Сделаем предположение, что выпуск нельзя отложить на время — он производится за определенный период. Он может быть потреблен или повторно инвестирован (в этом же периоде), но не может просто храниться.

Труд — это единица, показывающая сколько времени люди тратят на работу. Если труд не используется в течение определенного периода, то он пропадает навсегда. Капитал выражен в единицах товаров. Капитал отличается от труда тем, что он должен производиться (труд — это дар), а также запас капитала не исчерпывается в течение времени (использование капитала сегодня не мешает вам использовать его для производства завтра). Можно провести аналогию с фруктами. Капитал — фруктовое дерево, которое может быть посажено, а семя — несъеденный фрукт. Фруктовое дерево может существовать самостоятельно и может давать плоды в течение нескольких периодов. Производственный процесс включает дере-

¹Роберт Мертон Солоу — американский экономист, лауреат Нобелевской премии 1987 года «за фундаментальные исследования в области теории экономического роста»[1].

²Отсутствие международных сделок.

вья (капитал), которые приносят фрукты, и людей(труд), которые тратят время на сбор плодов.

Введем специальные обозначения, представленные в таблице 2.1. Мы предполагаем, что существует некая функция, объединяющая капитал

Таблица 2.1 — Специальные обозначения для производственной функции

Описание	Обозначение
Капитал	K
Труд	$\mid L \mid$
Выпуск	$\mid Y \mid$

и труд, для производства выпуска. Такая функция называется производственной.

Эта функция обладает следующими свойствами:

а) И труд и капитал необходимы для производства.

$$F(K,0) = F(0,L) = 0$$

б) Если удвоить труд и капитал, то удвоится выпуск.

$$F(\gamma K, \gamma L) = \gamma F(K, L), \gamma > 0$$

в) При одном фиксированном аргументе увеличение второго аргумента увеличивает выпуск.

Это означает, что функция является возрастающей и вогнутой.

Функцией, удовлетворяющей этим свойствам, является производственная функция Кобба-Дугласа:

$$Y = F(K, L) = K^{\alpha} L^{1-\alpha}, \tag{2.1}$$

где α — некий коэффициент в интервале от 0 до 1. Она демонструрует постоянную отдачу от масштаба.

Если $\forall \alpha>1$ $F(\alpha K,\alpha L)=\alpha Y$, то говорят, что функция демонструрует постоянную отдачу от масштаба. Если $F(\alpha K,\alpha L)>\alpha Y$, то производственная функция показывает возврастающую отдачу от масштаба. Если $F(\alpha K,\alpha L)<\alpha Y$, то убывающую отдачу от масштаба.

Фирма платит рабочим заработную плату w за каждую единицу труда и платит r за аренду единицы капитала на один период времени. Посчитаем доход фирмы:

$$\Pi = F(K, L) - rK - wL.$$

Фирма хочет максимизировать свою прибыль, которая равна выручке с вычетом затрат. Теперь получаем задачу, которая максимизирует прибыль фирме:

$$\max_{K,L} F(K,L) - rK - wL. \tag{2.2}$$

Решение заключается во взятии частных производных по каждой переменной и приравнивании к нулю.

$$\frac{\partial \Pi}{\partial K} = 0,$$
$$\frac{\partial \Pi}{\partial L} = 0.$$

Посчитав производные получим:

$$\alpha K^{\alpha - 1} L^{1 - \alpha} = r,$$

$$(1 - \alpha) K^{\alpha} L^{-\alpha} = w.$$

Заметим, что $wL=(1-\alpha)Y$, $rK=\alpha Y$, а значит $\Pi=Y-\alpha Y-(1-\alpha)Y=0$. Следовательно в сумме платежи за ресурсы соответствуют объему произведенного выпуска, а значит отсутствует прибыль. Этот результат является свойством производственной функции с постоянной отдачей от масштаба. В реальном мире фирмы обычно владеют собственным капиталом.

Обратим внимание, что доля выпуска, идущего на оплату труда, равна $w\frac{L}{Y}=1-\alpha$, а на оплату капитала равна $r\frac{K}{Y}=\alpha$

Перепишем производственную функцию 2.1, зависящую от капитала, в расчете на одного трудящегося. Во многих авторитетных источниках

приведена статистика на душу населения.

$$y = \frac{Y}{L},$$
$$k = \frac{K}{L}.$$

Получим производственную функцию выпуска на одного работника:

$$y = k^{\alpha}. (2.3)$$

Нарисуем график. Чем выше уровень капитала на трудящегося, тем больше его выпуск.

Рисунок 2.1 — График производственной функции на душу населения

Однако для капитала на одного работника характерна убывающая предельная отдача, каждая дополнительная единица капитала, полученная рабочим, будет увеличивать его выпуск на все меньшую величину.

Второе ключевое уравнение модели Солоу описывает процесс на-копления капитала:

$$K' = sY - \delta K, (2.4)$$

где $K' = \frac{dK}{dt}$ — производная по времени.

В соответствии с ним изменение запаса капитала K' за определенный период равно совокупным инвестициям sY с вычетом износа капитала в процессе производства δK . Величина в левой части уравнения представляет собой аналог величины $K_{i+1}-K_i$ для непрерывного времени.

Второй член выражения 2.4 представляет собой совокупные инвестиции. Предположим, что люди сохраняют постоянную часть s своего дохода: заработной и арендной платы Y=wL+rK. Экономика закрытая, поэтому сбережения равны инвестициям, а значит I=sY. По предположению выше получаем, что люди потребляют фиксированную долю дохода C=(1-s)Y.

Третий член уравнения 2.4 отражает износ капитала в процессе производства. Предполагается, что постоянная часть капитала изнашивается каждый период(вне зависимости от производства). Часто предполагается, что $\delta=0{,}05$. Это означает, что 5 процентов машин и сооружений выбывает из процесса производвства каждый период.

Рассмотрим темп прироста численности труда $\frac{L'}{L}$. Предположим, что уровень участия в рабочей силе постоянен, а темп припоста численности населения обозначается с помощью параметра n. Таким образом, темп прироста численности занятых $\frac{L'}{L}$ равен n. Если n=0,01, это обозначает, что тем прироста численности занятых увеличилась на 1 процент за определенный период. Этот экспоненциальный рост можно записать в следующем виде:

$$L(t) = L_0 e^{nt}.$$

Воспользуемся математическим приемом, возьмем логарифм, а затем производные по времени. Например:

$$k = \frac{K}{L} \Rightarrow \log k = \log K - \log L \Rightarrow \frac{k'}{k} = \frac{K'}{K} - \frac{L'}{L}.$$

Для того, чтобы показать каким образом во времени меняется выпуск в расчете на одного работника произведем эту операцию от уравнения накопления капитала 2.4. Получим:

$$\frac{k'}{k} = \frac{sY}{K} - n - \delta = \frac{sy}{k} - n - \delta.$$

Это преобразование позволило получить уравнение, показывающее изменение во времени капитала на каждого работника:

$$k' = sy - (n + \delta)k.$$

2.2 Модель Солоу и научно-технологический прогресс

Усовершенствуем нашу модель с помощью добавления в производственную функцию переменной, учитывающей научно-технологический прогресс. Новая производственная функция будет выглядеть следующим образом:

$$Y = F(K, AL) = K^{\alpha}(AL)^{1-\alpha}.$$
(2.5)

Технологический прогресс наблюдается, когда A увеличивается с течением времени — например, единица труда становится более продуктивной, когда уровень технологий растет.

Важным предположением данной модели является то, что технологический прогресс экзогенен 1 . Вместо того, чтобы самостоятельно моделировать откуда технологии появляются, мы упростим этот момент и сделаем предположение, что A растет с постоянным темпом:

$$\frac{A'}{A} = g \Rightarrow A_t = A_0 e^{gt},$$

где g это параметр, отвечающий за технологический рост.

Уравнение накопления капитала остается прежним. Перепишем его в новом виде:

$$\frac{K'}{K} = s\frac{Y}{K} - \delta. \tag{2.6}$$

Перепишем произведенную функцию 2.2 в расчете на одного рабочего:

$$y = k^{\alpha} A^{1-\alpha}.$$

Проведем операцию из предыдущего параграфа. Возьмем логарифм и продифференцируем:

$$\frac{y'}{y} = \alpha \frac{k'}{k} + (1 - \alpha) \frac{A'}{A}.$$
(2.7)

Заметим из уравнения , что рост капитала K будет постоянным только, если $\frac{Y}{K}$ константа. Если $\frac{Y}{K}$ постоянно, то $\frac{y}{k}$ тоже постоянно, а значит y и k будут расти с одинаковым темпом. Если капитал, выпуск, потребление

¹Определяется вне модели и могут изменяться со временем.

и население растут с постоянными темпами, то эта ситуация называется траекторией сбалансированного роста.

Введем обозначение g_x — уровень роста переменной x по траектории сбалансированного роста. Тогда получаем, что $g_k = g_y$. Подставляя это равенство и $\frac{A'}{A}$ в уравнение 2.7 получаем:

$$g_y = g_k = g$$
.

Из этого следует, что производительность и капитал на одного работника растут со скоростью технологических изменений. В предыдущей главе не было технологического роста, а значит и роста производительности работников не было. Из этого следует, что $g_y = g_k = g = 0$.

Модель с учетом технологий показывает, что научно-технический прогресс является источником устойчивого роста на душу населения.

2.3 Модель Солоу с человеческим капиталом

Заметим, что модель может быть улучшена, включив в нее человеческий капитал, то есть труд в разных экономиках может иметь разные уровни образования и навыки.

Предположим, что выпуск Y получается путем объединения капитала K, с квалифицированным трудом H. Получим новую производственную функцию:

$$Y = K^{\alpha} (AH)^{1-\alpha}, \tag{2.8}$$

где A отвечает за научно-технологический прогресс с уровнем роста g.

Люди в этой модели накапливают человеческий капитал, тратя время на обучение. Обозначим u за долю времени, потраченного на обучение навыкам, а L — общее количество необученного труда, используемого в производстве. Предположим, что обучение неквалифицированного труда професиональным навыкам за время u производит опытный труд H в соответствии c:

$$H = e^{\psi u} L, \tag{2.9}$$

где ψ является положительной константой. Заметим, что если u=0, тогда H=L, весь труд — неквалифицированный. Увеличивая u, единица

неквалифицированного труда увеличивает эффективные единицы опытного труда H. Для того, чтобы посчитать это изменение, возьмем логарифм и посчитаем производную от уравнения 2.9:

$$\frac{d\log H}{du} = \psi \Rightarrow \frac{dH}{du} = \psi H.$$

Для разъяснения этого равенства предположим, что u увеличивается на единицу (например, добавление еще одного года обучения в школе) и $\psi=0.10$. В этом случае H увеличивается на 10 процентов. Как было показано ранее, физический капитал накапливается путем инвестирования некоторого объема продукции:

$$K' = s_K Y - \delta K,$$

где s_K это инвестиционная ставка для физического капитала и δ — константная норма амортизации.

Теперь перепишем производственную функцию с точки зрения выпуска на одного работника:

$$y = k^{\alpha} \left(Ah \right)^{1-\alpha}, \tag{2.10}$$

где $h=e^{\psi u}$ Мы предполагаем, что отдельные лица экономят и инвестируют постоянную часть своего дохода, а значит что u постоянна и дана экзогенно.

Константа h показывает, что производственная функция 2.10 очень похожа на ту, которая использовалась ранее. В частности, y и k будут расти с постоянной скоростью технологического прогресса g .

Рассмотрим переменные, которые являются постоянными на сбалансированной траектории роста. Обозначим эти переменные с тильдой. Так как h константа можем определить эти переменные делением функции 2.10 на Ah:

$$\tilde{y} = \tilde{k}^{\alpha}, \tag{2.11}$$

оно эквивалентно уравнению 2.3.

Запишем уравнение накопления капитала в этом же виде:

$$\tilde{k}' = s_K \tilde{y} - (n + g + \delta)\tilde{k}.$$

Заметим, что модель идентична модели, которая рассматривалась ранее. Это означает, что все результаты, которые обсуждались ранее относительно динамики модели Солоу, применимы здесь. Добавление человеческого капитала, не меняет базовую модель.

Таким образом, страны богаты, потому что имеют высокий уровень инвестиций в физический капитал, тратят большую часть времени на накопление навыков.

3 Идентификация параметров

Для построения математической модели воспользуемся макроэкономическими показатели статистического агенства ООН [2]. Так как модели у нас рассматривают закрытую экономику, то нас интересуют данные в национальной валюте Республики Сербия (RSD).

Существует два вида цен:

- **Текущие.** Цены на какую-либо конкретную дату, например на 1 апреля, либо средние за год цены.
- **Постоянные.** Цены определенного периода, принимаемые за основу расчета макроэкономических показателей. Эти цены не учитывают уровень инфляции. На момент написания работы этот период 2015 год.

Если периоды текущих и постоянных цен совпадают, то и цены тоже соответственно совпадают.

Введем специальные обозначения, которые представлены в таблице 3.1. Переменные с нижним индексом const обозначают постоянные цены. В

Таблица 3.1 — Специальные обозначения для параметров

Параметр	Описание
t	Год
Y	ВВП
I	импорт
J	размер инвестиций
C	общие расходы на потребление
E	экспорт
L	количество трудящегося населения ¹
P	население

противном случае текущие.

¹Трудящееся население включает людей в возрасте 15 лет и старше, которые способны производить товары и услуги в течение определенного периода.Значение включает людей, которые в настоящее время работают, и людей, которые являются безработными, но ищут работу, а также впервые ищущих работу. Однако не все, кто работают, включены. Неоплачиваемые работники, семейные работники и студенты часто не учитываются, а некоторые страны не учитывают военнослужащих. Численность рабочей силы имеет тенденцию меняться в течение года, когда сезонные работники приходят и уходят.

Таблицы найденных статистических данных для Республики Сербия представлены в приложении А. Все найденные показатели представлены в текущих и постоянных ценах. Все данные представлены с 1993 года, так как это был переломный момент в истории страны.

Первым делом посчитаем индексы цен, определим поведение цен в среднем. Индекс цен представляет собой соотношение макроэкономических показателей данного периода в текущих и постоянных ценах. Для этого воспользуемся формулой:

$$P(X(t)) = \frac{X(t)}{X_{const}(t)}$$

где X(t) это макроэкономический показатель.

На графике ниже видна динамика поведения цен.

Рисунок 3.1 — Индекс цен (RSD)

В дальнейшем, при построении сложных моделей этот показатель может пригодиться.

4 Модель Республики Сербия

Мы разобрались с основами модели Солоу, теперь надо ее построить. В общем случае модель состоит из нескольких уравнений, которые описывают взаимосвязи между набором эндогенных переменных — переменных, значения которых определяются внутри модели. Можно заметить, что уравнения, описывающие взаимосвязи между эндогенными переменными включают в себя различные параметры и экзогенные переменные. Параметры — это постоянные величины. Экзогенные переменные — это величины, которые могут меняться во времени, однако их значения определяются вне модели.

4.1 Идентификация формул

После объяснения этих понятий мы готовы построить модель. Решение модели означает получение значений каждой эндогенной переменной, когда даны значения для экзогенных переменных и параметров. В идеале хотелось бы иметь возможность выражать каждую эндогенную переменную как функцию только от экзогенных переменных и параметров.

В предыдущем разделе мы ввели два ключевых уравнения модели Солоу:

$$Y = K^{\alpha}(AH)^{1-\alpha},$$

$$K' = sY - \delta K.$$

Переопределим обозначение t, чтобы было удобнее работать. Период времени будет один год. Пусть 2010 год будет базисным годом, тогда $t={\rm год}-2010$.

Для начала рассчитаем труд, пусть $L_0 = L_{stat}(0)$. Теперь воспользуемся формулой рассчета количества труда:

$$L(t) = L_0 e^{nt}$$
,

где n — темп прироста численности трудящегося населения.

Теперь, воспользовавшись количеством трудящихся, можно вычислить квалифицированный труд. Сделаем предположение, что только половина трудящихся страны является квалифицированной. Из-за отсутствия

статистики приходится делать предположения. В зависимости от уровня образования, обучение занимает разное время. В среднем квалифицированное обучение в Республике Сербия занимает 4 года, значит u=4. Модифицировав формулу подсчета квалифицированного труда в соответствии с предположениями, получим формулу:

$$H(t) = 0.5L(t) + 0.5e^{\psi u}L(t),$$

где ψ — константа, показывающая увеличение эффективности труда за единицу времени обучения.

Теперь займемся технологиями. Так как уровень технологического прогресса существенно влияет на производство, нам необходимо его определить.

$$A(t) = A_0 e^{gt},$$

где g — это параметр, отвечающий за технологический рост. Начальный уровень технологий A_0 будет определен в дальнейшем.

Как было показано ранее, физический капитал накапливается путем инвестирования некоторого объема продукции, а значит можно посчитать начальный запас капитала, как сумма инвестиций с учетом амортизации за прошлые года:

$$K_0 = \varkappa + \sum_{t=-17}^{0} J_{stat}(t)e^{\delta t},$$

где \varkappa — некая константа для приближения результатов к статистике, δ — параметр износа капитала.

Теперь мы можем рассчитать капитал по формуле:

$$K' = sY - \delta K,$$

где s — инвестиционная постоянная. Преобразуем это уравнение к более удобному виду для вычислений:

$$K_{t+1} - K_t = sY_t - \delta K_t.$$

Перенесем K_t в правую часть уравения:

$$K_{t+1} = sY_t + (1 - \delta)K_t.$$

Теперь мы можем подставить производственную функцию и получим:

$$K_{t+1} = sK_t^{\alpha}(AH)^{1-\alpha} + (1-\delta)K_t.$$

В этой формуле все переменные определены, поэтому без проблем можно рассчитать капитал.

Из предположений о инвестициях получим, что:

$$I(t) = sY(t) = sK_t^{\alpha}(AH)^{1-\alpha},$$

из этого следует, что потребление можно вычислить по формуле:

$$C(t) = (1 - s)Y(t) = (1 - s)K_t^{\alpha}(AH)^{1-\alpha}.$$

Переменные производственной функции нам известны. Посчитаем выпуск, подставив все переменные в производственную функцию.

Таким образом модель построена, однако нам необходимо рассчитать неизвестные параметры.

4.2 Идентификация параметров

Первым делом, для удобства составим таблицу с параметрами и их крайними значениями. Разъясним граничные значения приведенные в таб-

Таблица 4.1 — Неизвестные параметры модели

Параметр	Нижнее значение	Верхнее значение
α	0	1
n	-0.05	0.05
ψ	0	0.1
g	0	0.1
A_0	1	100
s	0	1
δ	0.01	0.1

лице 4.1.

Ограничения α заданы из определения производственной функции Кобба-Дугласа.

Параметр роста численности работающих n определен в диапозоне от -0.05 до 0.05, исходя из соображений, что каждый период кто-то становится, а кто-то перестает быть трудоспособным. Теоретически изменение численности трудящихся не может быть более чем на 5 процентов.

Константа ψ , показывающая увеличение эффективности квалифицированного рабочего от обучения, не может быть более чем 10 процентов за период.

Исходя из текущего уровня мировой науки, увеличение технологического прогресса g задано в таких ограничениях, так как не может быть более чем на 10 процентов в год.

Уровень начального технологического прогресса A_0 , может быть абсолютно любым, однако из логических соображений технологии не могут влиять на выпуск более чем в 100 раз.

Инвестиции в будущий выпуск могут присутствовать, а могут и напросто отсутствовать.

Ежегодный износ капитала δ наблюдается всегда, однако в спокойное время 1 не может быть более чем 10 процентов.

4.3 Рассчет параметров

Определимся с нашей основной задачей. Мы хотим подобрать, в соответсвии с ограничениями, такие параметры модели, что они будут наиболее близкими с статистическим данным. Для этого введем индекс Тейла:

$$T_X = \sqrt{\frac{\sum_{t=0}^{8} (X(t) - X_{stat}(t))^2}{\sum_{t=0}^{8} (X(t))^2 - (X_{stat}(t))^2}},$$

где X это сравниваемая переменная. Если $T_X=0$, значит что полученные данные совпадают со статистическими.

Для того, чтобы получить результат близости полученных и статистических данных, произведем свертку критериев Тейла по всем перемен-

¹Отсутствие военных действий.

ным. Получим:

$$S = \prod_{X=Y,L,C,I} (1 - T_X)$$

Таким образом, требуется найти максимум свертки при заданных ограничениях:

$$\max_{\substack{\alpha^{-} < \alpha < \alpha^{+} \\ n^{-} < n < n^{+} \\ \psi^{-} < \psi < \psi^{+} \\ g^{-} < g < g^{+} \\ A_{0}^{-} < A_{0} < A_{0}^{+} \\ \delta^{-} < \delta < \delta^{+} \\ s^{-} < s < s^{+} }$$

В дальнейшем, все подобные вычисления можно произвести в рассчете на душу населения.

5 Анализ развития экономики в Республике Сербия

Многие рейтинговые агенства регулярно пишут отчеты, строят стратегии экономичекого роста и т. д. Все это возможно только благодаря математическим моделям. Ниже приведен пример отчета Всемирного банка о текущей экономической ситуации в Республике Сербия.

5.1 Текущая экономическая ситуация в Республике Сербия

Рост в Республике Сербия в 2019 году несколько снизился по сравнению с 2018 годом, но оставался устойчивым на уровне 4,2 процента, что обусловлено увеличением государственных инвестиций наряду с высокими показателями ПИИ.

Потребление оставалось на высоком уровне. Вклад чистого экспорта в рост был отрицательным, поскольку экспорт рос не так быстро, как в прошлых годах. Если посмотреть на отраслевой состав, то в 2019 году промышленность увеличилась всего на 0,3 процента, а объем производства в сельском хозяйстве в целом остался таким же, как в 2018 году. Однако, наряду со строительным сектором, услуги внесли значительный вклад в рост ВВП.

Уровень активности и уровень занятости среди населения в возрасте 15 лет и старше в четвертом квартале 2019 года продолжали расти. Уровень безработицы снизился до 9,7 процента в последнем квартале 2019 года.

Благодаря этим тенденциям уровень бедности¹ снизился с 25,8 процента в 2015 году до примерно 18,9 процента в 2019 году.

К концу 2019 года государственный долг Сербии сократился до 52,9 процента ВВП. Инфляция была низкой и стабильной.

Приток ПИИ оставался высоким в 2019 году. Общий объем кредитов вырос на 8,5 процента, в то время как просроченные кредиты сократились до 4,1 процента в декабре 2019 года.

¹Доход ниже 5,5 долларов США в день — стандартизированная черта бедности в странах со средним уровнем дохода.

5.2 Стратегия развития Всемирного банка

Согласно отчетам Всемирного банка экономика Сербии может расти быстрее, чем в настоящее время (3 – 4 процента в год). В отчете [3] и связанных с ним документах [4, 5, 6, 7, 8, 9, 10, 11] изложена стратегия, которая может помочь экономике страны расти быстрее. Всемирный банк считает, что текущие темпы роста недостаточно быстро приближают страну к среднему уровню жизни в Европейском Союзе. Опираясь на новую стратегию Сербия может расти в среднем на 7 процентов в год, удваивоив свои доходы за 10 лет.

В стратегии намечены семь ключевых шагов, которые могли бы привести экономику страны к указанным темпам роста. В частности:

- **Увеличение инвестиций.** Увеличение государственных и частных инвестиций поддержит стабильность высоких темпов роста.
- **Финансирование для растущих фирм.** Увеличение кредита частному сектору до уровня, близкого к европейским стандартам, расширит финансирование для малых и средних предприятий.
- **Квалифицированные рабочие.** Поскольку более двух третьих фирм не могут найти работников для расширения, повышение качества образования может увеличить темпы роста ВВП.
- **Повышение производительности.** Повышение производительности труда позволит увеличить производство с добавленной стоимостью, увеличить количество рабочих мест и повысить заработную плату.
- **Содействие экспорту.** Сербские экспортеры в среднем в два раза продуктивнее других фирм. Улучшение инфраструктуры и устранение таможенных ограничений будут способствовать увеличению экспорта.
- **Улучшение правоприменения.** Усовершенствованная нормативно-правовая база, предсказуемость и прозрачность административных процедур могли бы сократить расходы для бизнеса.
- **Развязывание конкуренции.** Сокращение государственного присутствия в экономике уменьшит барьеры для конкуренции.

5.3 Экономический прогноз

Вспышка пандемии COVID-19¹ и связанные с ее распространением ограничительные меры наносят тяжелый урон как мировой экономике, так и экономике Республики Сербия. Таким образом, экономический рост в стране может оказаться более низким, чем ожидалось ранее. Снижение туристической и транспортной активности, сокращение денежных переводов, замедление экспорта и уменьшение ПИИ и инвестиций в целом могут привести экономику страны к рецессии в 2020 году. Сербские власти принимают всесторонние меры для смягчения негативных последствий пандемии.

В среднесрочной перспективе (2021 – 2023) рост может вернуться к прежней траектории. Этот прогноз в решающей степени зависит от международных событий, темпов структурных реформ и политических событий.

Ожидается, что текущие события приведут к небольшому росту уровня бедности в 2020 году. Помимо непосредственного воздействия на здоровье граждан, ожидаемое снижение инвестиций, сокращение спроса на сербский экспорт и ограничения мобильности нарушат ситуацию с рабочими местами и доходами. Кризис, в первую очередь, затронет наиболее мелкие, уязвимые домохозяйства. Глубина кризиса, прежде всего, будет зависеть от длительности пандемии COVID-19. Текущий прогноз предполагает, что меры по сдерживанию могут быть постепенно отменены к концу второго квартала 2020 года.

Республика Сербия может сохранить свою с трудом завоеванную макроэкономическую стабильность и вывести свои экономические преобразования на новый уровень.

¹COVID-19 (аббревиатура от англ. COronaVIrus Disease 2019), ранее коронавирусная инфекция 2019-nCoV — потенциально тяжёлая острая респираторная инфекция, вызываемая коронавирусом [12].

Заключение

Список использованных источников

- 1. Википедия. Robert Solow. 2020. https://en.wikipedia.org/wiki/Robert_Solow.
- 2. Статистическое агенство OOH. https://unstats.un.org/home/.
- 3. Serbia's New Growth Agenda / Ekaterina Vostroknutova, Trang Van Nguyen, Lazar Sestovic, Dusko Vasiljevic // Serbia's New Growth Agenda. 2019. http://pubdocs.worldbank.org/en/782101580729358303/Serbia-CEM-Synthesis-web.pdf.
- 4. Sestovic, Lazar. Investment for Growth / Lazar Sestovic, Enrique Blanco Armas // Serbia's New Growth Agenda. 2019. http://pubdocs.worldbank.org/en/168251577293556733/SRB-CEM-Investment-for-Growth-wq.pdf.
- 5. Financing for Growth / Gunhild Berg, Ekaterina Vostroknutova, Trang Van Nguyen, Lazar Sestovic // Serbia's New Growth Agenda.

 2019. http://pubdocs.worldbank.org/en/358601577293558709/
 SRB-CEM-Financing-for-Growth-wq.pdf.
- 6. Boosting Productivity for Faster Growth / Elwyn Davies, Boris Majstorovic, Ekaterina Vostroknutova et al. // Serbia's New Growth Agenda.

 2019. http://pubdocs.worldbank.org/en/822851576650043739/
 Serbia-CEM-Productivity-Note-17-12-sm.pdf.
- 7. Brussevich, Mariya. Encouraging FDI Spillovers / Mariya Brussevich, Shawn W. Tan // Serbia's New Growth Agenda. 2019. http://pubdocs.worldbank.org/en/771651576649384571/SRB-CEM-FDI-spillovers.pdf.
- 8. Nguyen, Trang. Labor Market for Growth / Trang Nguyen, Gonzalo Reyes, Ekaterina Vostroknutova // Serbia's New Growth Agenda.
 2019. http://pubdocs.worldbank.org/en/501621577293868352/
 SRB-CEM-Labor-Market-for-Growth-wq.pdf.
- 9. Markets, WBG. Removing Regulatory Barriers to Competition / WBG Markets, Competition Policy Team // Serbia's New Growth Agenda.
 2019. http://pubdocs.worldbank.org/en/535691577293870277/
 SRB-CEM-Removing-Regulatory-Barriers-to-Competition-wq.pdf.

- 10. Reforming State Aid for Growth / Dusko Vasiljevic, Marc Schiffbauer, Shawn Tan, Bojan Shimbov // Serbia's New Growth Agenda.
 2019. http://pubdocs.worldbank.org/en/525621576650023118/
 SRB-CEM-State-Aid-sm.pdf.
- 11. Building a Skilled Workforce // Serbia's New Growth Agenda.

 2019. http://pubdocs.worldbank.org/en/260201580323446491/
 SRB-CEM-Building-a-Skilled-Workforce.pdf.
- 12. Википедия. COVID-19. 2020. https://ru.wikipedia.org/wiki/COVID-19.
- 13. А., Самарский А. Математическое моделирование. Идеи. Методы. Примеры / Самарский А. А., Михайлов А. П. 2 изд. М.: Физматлит, 2001.
- 14. *Mixon*, *Wilson*. The Solow Growth Model / Wilson Mixon, William Sockwell. 2007. 02. Vol. 38. Pp. 483–483.
- 15. *Jones, Charles*. Introduction to Economic Growth / Charles Jones, Dietrich Vollrath. 3 edition. W. W. Norton & Company, 2013.
- 16. *Mankiw, N. Gregory*. A Contribution to the Empirics of Economic Growth: Working Paper 3541 / N. Gregory Mankiw, David Romer, David N Weil: National Bureau of Economic Research, 1990. December.

Приложение A Таблицы макроэкономических данных

В данном приложении приведены таблицы статистических макро- экономических показателей для Республики Сербия.

Таблица A.1 — Макроэкономические показатели в текущих ценах RSD (млрд.).

Год	С	J	Е	I	Y			
	В текущих ценах — Миллиарды сербских динаров							
1993	28,56	3,57	3,68	6,75	30,60			
1994	30,42	3,93	4,18	7,77	32,33			
1995	54,91	6,74	4,81	8,96	59,30			
1996	105,02	12,93	16,89	30,45	112,50			
1997	137,59	19,36	22,36	42,67	142,77			
1998	176,66	25,56	38,81	55,70	183,41			
1999	208,37	28,66	25,19	39,47	214,68			
2000	387,99	58,09	40,71	59,15	413,12			
2001	788,84	105,80	184,23	309,82	820,84			
2002	1005,78	168,01	214,28	401,93	1037,90			
2003	1165,20	223,16	267,98	482,58	1220,16			
2004	1401,40	298,45	351,53	734,92	1451,45			
2005	1667,79	351,93	475,34	825,58	1751,37			
2006	1958,49	457,76	622,03	1039,92	2055,20			
2007	2241,71	595,03	667,99	1240,26	2355,07			
2008	2598,91	684,66	799,24	1486,07	2744,91			
2009	2778,75	566,16	773,20	1231,07	2880,06			
2010	2960,46	570,06	1010,11	1469,85	3067,21			
2011	3247,22	626,67	1157,76	1682,43	3407,56			
2012	3428,60	758,70	1323,60	1921,03	3584,24			
2013	3607,34	668,36	1597,09	2012,21	3876,40			
2014	3648,67	652,01	1695,33	2119,29	3908,47			
2015	3675,54	715,47	1887,24	2281,58	4043,47			

Продолжение на след. стр.

Продолжение таблицы А.1

2016	3929,03	766,31	2198,03	2415,48	4521,26
2017	4136,27	843,70	2402,90	2716,27	4754,37
2018	4351,18	1016,51	2573,60	3005,31	5068,59

Таблица A.2 — Макроэкономические показатели в постоянных ценах 2015 года RSD (млрд.).

Год	С	J	Е	I	Y		
	В постоянных ценах 2015 года — Миллиарды сербских динаров						
1993	1892,79	212,00	228,87	318,26	2231,47		
1994	1960,79	226,33	252,62	355,45	2289,37		
1995	2031,07	223,96	167,44	236,29	2419,57		
1996	2097,59	251,88	309,11	439,65	2478,27		
1997	2340,53	330,71	397,48	586,20	2656,33		
1998	2404,54	343,93	501,14	576,47	2720,90		
1999	2166,71	296,06	283,97	372,56	2390,40		
2000	2351,13	297,88	348,16	427,30	2575,87		
2001	2485,58	282,70	509,58	761,36	2704,48		
2002	2660,40	389,77	572,99	916,52	2896,93		
2003	2793,46	478,08	678,92	1081,69	3024,83		
2004	3059,59	566,33	766,68	1404,04	3298,48		
2005	3217,99	585,90	862,51	1373,28	3481,23		
2006	3398,99	684,13	1020,72	1578,33	3651,97		
2007	3585,92	860,96	1077,67	1831,95	3867,02		
2008	3788,02	931,73	1178,84	2052,17	4074,55		
2009	3769,47	721,67	1097,69	1649,35	3947,59		
2010	3753,45	670,34	1262,47	1721,23	3970,66		
2011	3788,63	705,27	1325,63	1856,82	4026,31		
2012	3741,50	798,67	1336,24	1881,94	3985,43		
2013	3716,74	702,74	1620,51	1976,92	4087,92		
2014	3672,62	677,50	1712,50	2087,11	4013,05		

Продолжение на след. стр.

Продолжение таблицы А.2

2015	3675,54	715,47	1887,24	2281,58	4043,47
2016	3848,71	761,74	2146,99	2237,82	4541,58
2017	3932,67	817,67	2322,76	2486,88	4634,65
2018	4004,21	963,48	2515,65	2775,49	4838,21

Таблица А.3 — Население Республики Сербия (млн.).

Год	P	L							
	Миллионы человек								
1993	9,80	3,41							
1994	9,86	3,43							
1995	9,88	3,38							
1996	9,86	3,39							
1997	9,78	3,38							
1998	9,69	3,37							
1999	7,55	3,38							
2000	7,52	3,36							
2001	7,50	3,35							
2002	7,50	3,34							
2003	7,48	3,33							
2004	7,46	3,31							
2005	7,44	3,30							
2006	7,41	3,29							
2007	7,38	3,29							
2008	7,35	3,24							
2009	7,32	3,14							
2010	7,29	3,07							
2011	7,24	3,05							
2012	7,20	3,07							
2013	7,17	3,12							
2014	7,13	3,13							

Продолжение на след. стр.

Продолжение таблицы А.3

2015	7,10	3,09
2016	7,06	3,19
2017	7,04	3,22
2018	7,02	3,19