习 题

2. 解: (1)3个反相器

(2) 3 输入与非门

(3) 3 输入或非门

(5) 一个非门控制两个传输门分时传送

4. 解: $A \setminus B$ 为电路输入变量,F 为输出变量,只要列出真值表,就可判断其逻辑功 能。

\overline{A}	В	Y		
0	0	高阻		
0	1	1		
1	0	高阻		
1	1	0		
$A \longrightarrow \begin{bmatrix} 1 \\ \nabla \\ B \longrightarrow EN \end{bmatrix} \circ \longrightarrow Y$				

- 5. 解: (1) 片选信号任何时刻只能有一个为低电平;
 - (2) 总线冲突。
 - (3) 高阻态。
- 6. 解: (1)

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

输出 $S \neq A$ 和 B 的异或函数, 即 $S = A \oplus B$

(2)

A	B	S		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

输出 $S \neq A$ 和 B 的异或函数, 即 $S = A \oplus B$

7. 解: 当 B=0 时, $Y_1=C$; 当 B=1 时, $Y_1=A+C$, 所以,

$$Y_1 = \overline{BC} + B(A+C) = C + AB$$

$$Y_1 = \overline{BC} + B(A+C) = C + AB$$

$$Y_2 = \overline{A+0} \cdot \overline{B+C} = \overline{A} \, \overline{B} \, \overline{C}$$

11. 解: (a) 根据图中参数

$$i_B = \frac{v_{\rm I} - V_{\rm BE}}{R_{\rm B}} = \frac{6 - 0.7}{50} \, mA = 0.106 mA$$

$$i_{BS} = \frac{V_{CC} - V_{CES}}{\beta R_C} = \frac{12 - 0.3}{50 \times 1} mA = 0.24 mA$$

因为 $i_B < i_{BS}$,故 T_1 管处于放大状态。

(b)
$$i_B = \frac{V_{\text{CC}} - V_{\text{BE}}}{R_{\text{B}}} = \frac{5 - 0.7}{30} mA = 0.143 mA$$

$$i_{BS} = \frac{V_{CC} - V_{CES}}{\beta R_{C}} = \frac{5 - 0.3}{20 \times 3} mA = 0.078 mA$$

因为 $i_B > i_{BS}$, 故 T_2 管处于饱和状态。

12. **M**:
$$F_1 = AB$$
, $F_2 = CD$, $F_3 = AB + CD$, $F = \overline{AB + CD}$

13. 解: LSTTL 或非门电路。该电路可以理解如下: 如果不考虑 D_6 、 D_2 、 R_{IB} 和 T_1 ,该电路就是一个非门电路; 类似地,如果不考虑 D_5 、 D_1 、 R_{IA} 和晶体管 T_2 ,该电路也是一个非门电路; 由于晶体管 T_2 和 T_1 是并联的,所以,输入 T_2 0和导通,输出低电平;只有 T_2 1个导通,进而使 T_3 10和导通,输出低电平;只有 T_3 2个输入都是低电平时,输出才为高电平。显然这是一个或非门电路, T_3 2— T_4 3— T_4 3。

14. 解: $A \setminus B$ 加不同电平时, $T_4 \sim T_8$ 的通断情况如表所示。

A	B	T_4	T_5	T_6	T_7	T_8	F
0	0	off	off	off	on	off	1
0	1	on	off	off	off	on	0
1	0	off	on	off	off	on	0
1	1	on	on	on	off	off	1

电路为 OC 输出的同或门.

16.
$$\text{MF:} R = \frac{V_{\text{CC}} - V_{\text{OL}} - V_{\text{LED}}}{I_{\text{LED}}} = (5.0 - 0.35 - 2.0) \text{V} / 5 \text{mA} = 530 \Omega$$

17. 解: (1) G₁、G₂均输出高电平时

电阻 Rc上流过的电流

 $I_{\rm C}$ =2 $I_{\rm OZ}$ +(2+2+3) $I_{\rm H}$ =(2×0.05+7×0.02)mA=0.24mA $R_{\rm C}$ 上的压降会使输出高电平电压下降,根据题意应满足

$$V_{\rm OH} = V_{\rm CC} - R_{\rm C} \times I_{\rm C} \geqslant 3 \text{V}$$

因此 Rc 应满足

$$R_C \le \frac{V_{\rm CC} - V_{\rm OH}}{I_{\rm C}} = \frac{(5-3) \text{ V}}{0.24 \text{mA}} \approx 8.33 \text{k}\Omega$$

(2) G₁或 G₂门输出低电平时

考虑最不利的情况,只有一个OC门输出低电平,流入该OC门的电流

$$I_{\text{OL}} = I_{\text{C}} + 3 \times I_{\text{IL}} = \frac{V_{\text{CC}} - V_{\text{OL}}}{R_{\text{C}}} + 3 \times I_{\text{IL}} \le 14 \text{mA}$$

$$R_{\text{C}} \ge \frac{5 - 0.3}{14 - 3 \times 0.22} = 352\Omega$$

所以 $352 \Omega \leq R_{\rm C} \leq 8.33 k \Omega$

18. **M**: (1) $V_{\text{NL}} = V_{\text{IL}} (_{\text{max}}) (74 \text{LS}) - V_{\text{OL}} (_{\text{max}}) (74 \text{HCT}) = 0.8 - 0.1 = 0.7 \text{V}$

 $V_{\text{NH}} = V_{\text{OH (min)}} (74 \text{HCT}) - V_{\text{IH (min)}} (74 \text{LS}) = 4.4-2=2.4 \text{V}$

(2) $V_{\text{NL}} = V_{\text{IL} \text{ (max)}} (74\text{HCT}) - V_{\text{OL} \text{ (max)}} (74\text{ALS}) = 0.8 - 0.5 = 0.3 \text{V}$

 $V_{\text{NH}} = V_{\text{OH (min)}} (74 \text{ ALS}) - V_{\text{IH (min)}} (74 \text{ HCT}) = 3-2=1.0 \text{V}$

19. 解:由于是共阴数码管,门电路需要提供 5mA 以上拉电流,三态门和反相器的 I_{OH} 只有 0.4mA,无法满足要求,可以采用 OC 门,电路图为

(2) 当输入变高时: $\frac{5-1.4}{R} \ge 5mA$ $R \le 720\Omega$

当输入变低时: $\frac{5-0.3}{R} \le 16mA$ $R \ge 294\Omega$

 \therefore 294 $\Omega \leq R \leq$ 720 Ω