Question 4: Solution

24 February 2022 15:28

$M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ $Cart (a) : \begin{bmatrix} 12 \end{bmatrix}$ $Mn = \oint_{n}^{T} m \oint_{n} dn$ $L_{n}^{R} = \oint_{n}^{T} m \underbrace{1}_{n}^{T} = 0$	$= \frac{3}{j^{-1}} m_j \phi_{j,j}^2$	L1.0 1.0	Derivation of necessary formulas:
$Mn = \oint_{n}^{\infty} m \oint_{n} :$	$= \sum_{j=1}^{3} m_j \phi_j^2,$	$M_1 = 1.3825 \times 10^4 \text{ kg}$ $M_2 = 1.185 \times 10^4 \text{ kg}$	Derivation of necessary formulas: mi+cu+ku=-m1.ia(t)
	@	M2 = 1.185 × 10 hg	$m\ddot{u} + c\ddot{u} + ku = -m \cdot \dot{u}a(t)$
$L_n^R = \oint_n^T \underline{m1} =$	Z mi pina	$M_3 = 2.891 \times 10^4 \text{ ha}$	
$L_n = \Phi_n m! =$	Z mi pin	5	⇒ ± m ± 2 (0 + ± 1 € 2 (1) + ± 1 € ± 2 (1) = - ± m 1 ig (1)
	9=10,01	$\Rightarrow L_1^h = 1.77 \times 10^4 \text{kg}$ $L_2^h = -0.48 \times 10^4 \text{kg}$	Fin no mode,
	42	13 = 0.275×10 kg	=> 9 m(t) + 25 n wn in (t) + wn m(t) = - 4 m 1 kg(t)
$L_n^0 = \sum_{j=1}^3 h_j m_j \phi_j$	j.n.		$= -\frac{L_{N}^{n}}{n}\ddot{u}_{g} = -r_{N}\ddot{u}_{g}(t)$ lowpare this to sore earl of motion:
	(12)		Compare this to sof egn of motion: $\hat{D}_n(t) + 2S_n w_n \hat{D}_n(t) + w_n^{-1} D_n(t) = - \frac{u}{a}(t)$ $onless = T_n D_n(t)$ where $T_n = \frac{4n}{mn} \frac{1}{n} = \frac{1}{n}$
In = Lh			: Un(t) = pn 2n(t) = In pn Dn(b) = In pn Anly
Mη			Now, $s_n = k \cdot u_n^{st} = k \cdot \frac{n}{N} \cdot 2n = \Gamma_n \cdot m \cdot 2n$
Effective mo		0	Von = Sin = Inth because of m 1 = mpn = Mn = Effectue modal mass
	⇒ M ₁	= VS+ = 2.267 x10 kg	N P. C. N P. C. 19
	(1) M3	$=V_{b2} = 0.0358 \times 10^{1} \text{ kg}$	$= V_{in}^{sh} h_{in}^{sh}$ $= \sum_{j=1}^{N} h_{j} m_{j} \phi_{j,n}$
effective mos	lal heights	$h_n^* = \frac{M_{im}^{st}}{v_{st}} = \frac{L_n^{\theta}}{v_{in}^{st}}$	$E_{m}^{+} = \frac{M_{m}^{+}}{V_{n}^{+}} = \frac{\Gamma_{n}L_{n}^{+}}{V_{n}^{+}} = \frac{\Gamma_{n}L_{n}^{+}}{M_{n}^{+}} = \frac{L_{n}^{+}}{L_{n}^{+}}$
			100
	(1)	$h_2^{\text{eff}} = -2.914 \text{ m}$	Ma=0.0358 XID
		N3 = 31208 111	$M_{2}^{*}=0.197\times10^{4}M_{2}$ $M_{3}^{*}=0.0353\times10^{4}$ $M_{2}^{*}=0.197\times10^{4}M_{3}$ $M_{3}^{*}=0.0353\times10^{4}$ $M_{2}^{*}=0.0353\times10^{4}$
			h ₂ = -2.111m
			(3)
Question #4		CE 6 29 A	C-Kolay, 117K
Part (b) % [5]			
Model lease	moment	$M_{bn}^{S+} = \sum_{j=1}^{3} h_{j} s_{j} n =$	$\Gamma_n L_n^0 \Rightarrow M_{b_1}^{st} = 18.432 \times 10^4 hg m$
			5+ =-0.574 × 10 dg-m Most = 0.117 × 10 dg-m
. Total bas	se shear	V _b (t)= ≥ V _{bn} A _n (t)	111 b3 = 0-117 × 10' teg-by
	Spective mos Effective mos Spective mos Aut (b): [5] Modal base	Spective modal masser Spective modal heights Spective modal heights And Marketing #4 Spection #4 Dart (6): [5] Modal lease moment	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Fart (c):

Total leave moment $M_{\phi}(e) = \sum_{n=1}^{\infty} M_{nn}^{\text{st}} A_{n}(e)$ $= \begin{bmatrix} 18.432 A_{1}(e) - 0.571 A_{2}(e) + 0.117 A_{3}(e) \end{bmatrix} N \cdot m$ Part (c):

Yes, peak values of modal remonses can be determined using the response yestum for each mode because $Y_{n}(e) = Y_{n}^{\text{st}} \cdot A_{n}(e)$ $\therefore Y_{n0} = \max_{k} |Y_{n}(e)| = Y_{n}^{\text{st}} \cdot \max_{k} |A_{n}(e)| = Y_{n}^{\text{st}} \cdot PSA(S_{n}, w_{n})$ $\frac{43}{13}$