DILIAN MARROQUIN MATH 331.1001 SCRIBING WEEK 13

Due. 22 November 2021

Lecture 32

Properties of Elements in Rings

Recall from Lecture 6 the following:

Theorem (6.2). $(\mathbb{Z}/n^{\times}, *, [0])$, where $\mathbb{Z}/n^{\times} := \{[k] \in \mathbb{Z}/n - \{[0]\}| \gcd(k, n) = 1\}$ for n > 1 is a group.

Example. We have $\mathbb{Z}/4^{\times} = \{[1],[3]\}$. Here, [1] * [1] = [1] and [3] * [3] = [8] = [1]. Therefore, every element has a multiplicative inverse. Also, if you have $[a],[b] \in \mathbb{Z}/4$ such that [a] * [b] = [0], then [a],[b] need not be [0]: [2] * [2] = [4] = [0]. On the other hand, if n = p prime, then $(\mathbb{Z}/p^{\times}) = \mathbb{Z}/p - \{[0]\}$. Every non-zero element of \mathbb{Z}/p has a multiplicative inverse.

Definition (32.1). Let R be a ring. An element $a \in R$ is a <u>unit</u> iff it has a multiplicative inverse. i.e. $\exists u \in R$ such that $au = ua = 1_R$. Define $R^{\times} := \{a \in R | a \text{ is a unit}\}.$

Proposition (32.2). Let $(R, +, 0_R, *, 1_R)$ be a ring. Then...

- 1. $(R^{\times}, *, 1_R)$ is a group.
- 2. If $a \in \mathbb{R}^{\times}$, its inverse is unique.
- 3. If $1_R \neq 0_R$, $0_R \notin R^{\times}$.

Proof. 1. Definition of a ring implies $(R, *, 1_R)$ is a monoid. This implies * is associative and 1_R is the identity element. Now we need to show R^{\times} is closed with respect to *. Let $a, b \in R^{\times}$, and let u, w be the inverses, respectively. WTS $a * b \in R^{\times}$. We have $a * u = 1_R = u * a$ and $b * w = 1_R = w * a$. Now consider $(w * u) * (a * b) = w * (u * a) * b = w * 1_R * b = w * b = 1_R$. So $(a * b) * (w * u) = a * (b * w) * u = a * 1_R * u = a * u = 1_R$. Therefore $a * b \in R^{\times}$.

- 2. By 1. above, R^{\times} is a group which implies that the inverse of any element in the group is unique.
- 3. Use the contrapositive. Suppose $0_R \in R^{\times}$. By definition, $\exists u \in R$ such that $0_R u = 1_R$. Thus, $0_R u = 0_R$ by 26.3.

Definition (32.3). A ring R is a <u>division ring</u> iff $R^* = R - \{0_R\}$. A <u>field</u> is a commutative division ring. Fields are denoted \mathbb{K} .

Examples of fields: \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{F}_p := \mathbb{Z}/p$.

Another example: $\mathbb{K}(x) \coloneqq \left\{ \frac{p(x)}{q(x)} \middle| p, q \in \mathbb{K}[x], \ q \neq 0 \right\}$. These are rational functions in 1 variable.

Lecture 33

Example (A division ring, but not a field). The quarternions: $\mathbb{H} := \{a+ib+jc+kd | a,b,c,d \in \mathbb{R}\}$, where $i*i=j*j=k*k=-1 \in \mathbb{R}$, i*j=k, j*i=-k (non-commutative). If q=a+ib+jc+kd, then $\overline{q}:=a-ib-jc-kd$ is the conjugate of q and $q*\overline{q}=a^2+b^2+c^2+d^2$.

For
$$q \neq 0 \in \mathbb{H}$$
, $q^{-1}q = qq^{-1} = 1$, $q^{-1} = \frac{\bar{q}}{q\bar{q}}$.

Subrings: $\mathbb{R} \leq \mathbb{C} \leq \mathbb{H}$. Group of Units: $\mathbb{R}^{\times} \leq \mathbb{C}^{\times} \leq \mathbb{H}^{\times}$ subgroups. "Norm 1 integer units": $\{\pm 1\} \leq \{\pm 1, \pm i\} \leq \{\pm 1, \pm i, \pm j, \pm k\}$.

Definition (33.1). Let $R \neq 0$ be a ring. An element $a \neq 0 \in R$ is a <u>zero divisor</u> if $\exists b \neq 0$ such that ab = 0 or ba = 0.

Example. 1. [3] $\in \mathbb{Z}/6$ is a zero divisor since [3] \cdot [2] = [6] = [0], but [3] \neq [0], [2] \neq [0].

2. Let *R* be a non-trivial ring: $R \times R$. Then an element $(1,0) \cdot (0,1) = (0,0)$ is a zero divisor.

3. For the integers \mathbb{Z} , there exists no such zero divisor.

Definition (33.2). A ring R is an **integral domain** iff

- 1. $R \neq 0$
- 2. *R* is commutative
- 3. *R* has no zero divisors

Proposition (33.3). A field \mathbb{K} is an integral domain.

Remark. An **entire ring** as defined in Paulin's notes is a ring $R \neq 0$ that has no zero divisors.

Polynomial Rings and Zero Divisors

```
Suppose f, g \in \mathbb{R}[x] - \{0\}. Then \deg(f) = m, \deg(g) = n, and \deg(fg) = m + n. On the other hand, f = [3]x^3, g = [2]x^2 + x \in \mathbb{Z}6[x]. So \deg(f) = 3, \deg(g) = 2, and \deg(fg) = [3]x^4 < \deg(f) + \deg(g).
```

Theorem (33.4). Let R be an integral domain. Then...

- 1. If $f, g \in R[x] \{0_R\}$, then $\deg(fg) = \deg(f) + \deg(g)$.
- 2. $\mathbb{R}[x]$ is an integral domain.

Lecture 34

Proof (Thm 33.4). 1. Let $\deg f = n \ge 0$, $\deg g = m \ge 0$. Then $f = \sum_{i=0}^n a_i x^i$, $g = \sum_{j=0}^m b_j x^j$ for a_i , $b_j \in R$. By definition of degree, $a_n \ne 0$ and $b_m \ne 0$. Consider $fg = a_n b_m x^{n+m} + (a_n b_{m-1} + a_{n-1} b_m) x^{n+m-1} + \cdots + a_0 b_0$. Note that $a_n b_m \ne 0$ since R is an integral domain and $a_n \ne 0$, $b_n \ne 0$. So $\deg fg = n + m = \deg f + \deg g$.

2. Let f, $g \in R[x] - \{0\}$. WTS $fg \neq 0$. Therefore deg $f = n \geq 0$, deg $g = m \geq 0$. Therefore as in 1. above, we have $fg = a_n b_m x^{n+m} + \cdots$ with $a_n \neq 0$ and $b_m \neq 0$. Thus $a_n b_m x^{n+m} \neq 0$ implies $fg \neq 0$.

Corollary (34.1). If \mathbb{K} is a field, then $\mathbb{K}(x)$ is an integral domain.

Remark. If R is an integral domain and we have ac = bc in R with $c \ne 0$, then a = b.

Principal and Prime Ideals in Commutative Rings

From here on, *R* is assumed to be a non-trivial commutative ring (so $0_r \neq 1_r$).

Proposition (34.2). Let $a \in R$. The subset (a) := $\{ra | r \in R\} \subseteq R$ is an ideal called the **principal ideal** generated by a.

Example. We have $n\mathbb{Z} = (n)$ when $R = \mathbb{Z}$.

Definition (34.3). An ideal $I \subseteq R$ is **principal** iff $\exists a \in I$ such that I = (a).

Theorem (34.4). Every ideal in \mathbb{Z} is principal.

Proof. Suppose $I \subseteq \mathbb{Z}$ is an ideal. By definition of ideal, $(I, +, 0) \le (\mathbb{Z}, +, 0)$ is a subgroup. Recall \mathbb{Z} is a cyclic (additive) group. In particular, $\mathbb{Z} = \langle 1 \rangle$. Theorem 13.3 says every subgroup of a cyclic group is cyclic. Therefore $\exists n \in I$ such that $I = \langle n \rangle = n\mathbb{Z}$. As an ideal, $n\mathbb{Z} = \langle n \rangle$.