WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

(34) Countries for which the regional or international application was filed:

DE et al.

EP

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Database of human Translation in amino acid sequences Alignment of protein sequences Germline Rearranged sequences sequences Assignment to Computation of families germline counterpart Database of used Assignment to germline families families Analysis of Computation of canonical structures consensus sequences Structural Analysis Design of CDRs Gene Design

> Synthetic combinatorial antibody library

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	TE.	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	77	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of Americ
FR	France	MIN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

. J. e

۸į.

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

¥.

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immnoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains C_K (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2. The signal sequence (amino acids 1 to 21) was derived from the E. coli phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein softwagments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and 8-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-8, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a:List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vk CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

PCT/EP96/03647

1.2 Analysis of sequences

WO 97/08320

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 $V\kappa$, 3 $V\lambda$ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T Vκ1: N₃₄A,

 $V\kappa 3$: $G_{9}A$, $D_{60}A$, $R_{77}S$

Vλ3: V₇₈T

PCT/EP96/03647

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_K , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2		
HuCAL-VH1A	VH1-12-1	VH1-12-1		
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9		
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4		
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10		
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16		
		VH4-31-17,-18,-19,-20		
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2		
HuCAL-VH6	VH <u>6-35-1</u>	VH6-35-1		
HuCAL-Vκ1	Vĸ1-14,-15	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19		
HuCAL-Vκ2	Vĸ2-6	Vκ2-6		
HuCAL-Vκ3	Vκ3-1,-4	Vĸ3-4		
HuCAL-Vκ4	Vx4-1	Vĸ4-1		
HuCAL-Vλ1	HUMLV117,DPL5	DPL5		
HuCAL-Vλ2	DPL11,DPL12	DPL12		
HuCAL-Vλ.3	DPL23	HUMLV318		

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S₄,G

Vκ3: E₁D, I₅₈V

Vκ4: K₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEII for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vκ2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGG. The two oligonucleotides encoding this linker were 5'- TCAGCGGGTGGCGGTTCTGGCGGCGGTGGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid plG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3k2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector plG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

PCT/EP96/03647

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekās et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI)₅GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI)10(TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and acids amino encoding mixtures trinucleotide (GTT/TAT) phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7×10^7 and 3.4×10^{10} for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector plG10.3-scH3x2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 µl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a non-functional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{600nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

distribution.

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^8 cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100 \, \mu \text{g/ml}$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris-Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 10° cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 µI FITC-BSA (100µg/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3x2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to β -estradiol, testosterone, LeY, LT- β , ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti- β -estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, β -estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via AatII/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via AatII/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vk2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

 $E.\ coli$ JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3κ2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD soon of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the $\alpha\text{-FLAG}$ antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in TE buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD $1.0 = 40 \,\mu\text{g/ml}$). 10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase ($2.0 \,\mu\text{l}$) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/MscI for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ I of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial H3κ2 H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS 89, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology 6, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry 30, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science <u>240</u>, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research <u>22</u>, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

PCT/EP96/03647

Table 1A: Human kappa germline gene segments

Used Name¹	Reference ²	Family	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11:
Vk1-5	2	1	A30
Vk1-6	1	1	LPVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	. 1	1	A20; DPK4
Vk 1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	O12a (V3b)
Vk1-19	6	1	O2; O12; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	O12(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name'	Reference ²	Family ³	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	· 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name¹	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	· 1	7	•
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigne	ed VLAMBDA N.2
gVLX-4.4	6	10	

SUBSTITUTE SHEET (RULE 26)

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	· 19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	. 3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	. 3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	. 14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

Table 1C: (continued)

Used Name'	Reference	Family ³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3 .	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	Н8
VH4-11-11	20	4	H9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes⁴
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	. H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
111-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	08	9	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	Lı	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108		02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
CHEB	108		02	7	7,4%	5
HK134	95		L15(2)	0	0,0%	10
	108		02	9	9,5%	73

PCT/EP96/03647

WO 97/08320

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to	% diff. to	Reference
Name	-	family ³	gene⁴	germline ⁵	germline ⁶	
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
	108	1	L5	10	10,5%	61
WES	95	· }	04	1	1,1%	70
DILp1	107	1	L12(2)	8	8,4%	120
SA-4B	95	1	L15(1)	0	0,0%	9
HK101	108	1	02	5	5,3%	92
TR1.23		1	A30	0	0,0%	4
HF2-1/17	108		A30	1	1,1%	62
2E7	108	1	L12(2)	7	7,4%	126
33.C9	107	1	L12(2)	2	2,1%	34
3D6	105	1	L12(2)	8	8,4%	70
1-2a	108	1	L8	4	4,2%	121
RF-KL1	97	1	A30	9	9,5%	41
TNF-E7	108	1	02	7	7,4%	92
TR1.22	108	1	02	2	2,2%	8
HIV-B35	106	1		2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106		02	10	10,8%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107		02		5,3%	113
RF-SJ5	95	1	· A30	5	5,3% 6,3%	64
GAL(I)	108		A30	6	6,3%	70
R3.5H5G	108		02	6		8
HIV-b14	106		A20	2	2,2%	41
TNF-E1	105		L5	8	8,4%	37
WEA	108		A30	8	8,4%	
EU	108		L12(2)	5	5,3%	40
FOG1-G8	108		18	11	11,6%	41
1X7RG1	108	1	L1	8	8,4%	70
BLI	108	3 1	L8	3	3,2%	72
KUE	108	3 1	L12(2)	11	11,6%	. 32
LUNm01	108	3 1	L12(2)	10	10,5%	6
HIV-b1	106	5 1	A20	4	4,3%	8
HIV-54	103	3 1	02	2	2,2%	8
			54-			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	88	1	012	1	1,1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	1	A20	1	1,1%	122
CLL PATIENT 1	88	. 1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 '	L12(2)	20	21,1%	68
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0,0%	66
GLO	109	3	A27	0	0.0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109		A27	0	0,0%	66
PIE	109		A27	0	0,0%	91
HAH 14.1	109		A27	1	1,0%	51
HAH 14.2	109		A27	1	1,0%	51

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HAH 16.1	109	3	A27	1	1,0%	51
NOV .	109	3	A27	1	1,0%	52
•	108	3	A27	1	1,0%	126
33.F12	110	3	A27	1	1,0%	25
8E10	109	3	A27	1	1,0%	25
TH3	108	3	A27	0	0,0%	51
HIC (R)	110	3	A27	1	1,0%	67
SON	109	3	A27	. 1	1,0%	66
PAY	109	3	A27	1	1,0%	67
GOT	109	3	A27	. 1	1,0%	12
mAbA6H4C5	109	3	A27	2	2,1%	84
BOR'	96	3	A27	2	2,1%	121
RF-SJ3	109	3	A27	2	2,1%	15
SIE	109	3	A27	2	2,1%	98
ESC	110	3	A27	2	2,1%	98
HEW' YES8c	109	3	A27	3	3,1%	33
	109	3	A27	3	3,1%	114
TI mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	A27	0	0,0%	94
ROB	106	3	· A27	0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109		A27	4	4,2%	59
RF-SJ4	109		A11	0	0,0%	88
KAS	109		A27	4	4,2%	84
BRA	106		A27	1	1,1%	94
HAH	106		A27	1	1,1%	94
HIC	105		A27	0	0,0%	94
FS-2	109		A27	6	6,3%	87
	103		A27	6	6,3%	38
JH'	107		A27	6.	6,3%	83
EV1-15	108		A27	6	6,3%	65
SCA	100	, 3	56			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	~9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2.	2,1%	99
LS2	108	3	L6	1.	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	. 99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2.1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	99
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

5**天**

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3 ·	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
slkv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 -	3,2%	121
H-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3	L6	10	10,5%	121
GER	109	3	L2/L16	7	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4.7%	13
slkv15	99	3	L6	2	2,3%	13
bkv6	100		L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference?
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4.8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
sikv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	Ļ6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	Fe	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

59

Table 2A: (continued)

Name ¹	.aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	0	0,0%	54
MD3.9	93	3	A27	0 .	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A27	1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	· 3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	12	12,6%	31
REI-based CAMPATH-9		1	08	14	14,7%	39
RZ	107	1	80	14	14,7%	50
BI	108		08	14	14,7%	14
AND	107		02	13	13,7%	69
2A4	109		02	12	12,6%	23
KA	108	1	08	19	20,0%	107
MEV	109	•	02	14	14,7%	29
DEE	106	5 1	02	13	14,0%	76
OU(IOC)	108	3 1	02	18	18,9%	60
HuRSV19VK	111		08	21	21,0%	115
SP2	108		02	17	17,9%	93
BJ26	99		08	21	24,1%	1
NI ·	112		08	24	24,2%	106
BMA 0310EUCIV2	106		L12(1)	21	22,3%	105

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	A3	0	0,0%	58
R5A3K	- 114	2	A3	1	1,0%	125
R1C8K	114	2	A3	1	1,0%	125
VK2.R149	113	2	A3	. 2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A3	6	6,0%	92
NIM	113	2	A3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	6	6,4%	96
CUM	114	2	01	7	6.9%	44
HRF1	71	2	A3	4	5,6%	124
CLL PATIENT 19	87	2	A3 *	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	A3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Taykv306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	. 0	0,0%	119
1-187-29	110	3	A27	0	0.0%	119
Π117	110	3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	21	22,3%	8
			61			

Table 2A:

(continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	. 8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
Π125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	80	16	17,8%	. 8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5,0%	45
FK-001	113	4	В3	0	0.0%	81
CD5+.28	101	4	В3	1	1,0%	27
LEN	114	4	В3	1	1,0%	104
UC	114	4	В3	1	1,0%	- 111
CD5+.5	101	4	В3	1	1,0%	27
	•		62			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2,0%	27
CD5+.23	101	4	B3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	27
VJI	113	4	В3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	B3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	B 3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27
CD528	101	4	B3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	4	B3	6	5,9%	27
CD519	101	4	B3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.1	92	4	[*] B3	0	0,0%	54
MD4.4	92	4	B3	0	0,0%	54
MD4.5	92	4	В3	0	0.0%	54
MD4.6	92	4	В3	0	0,0%	54
MD4.7	92	4	В3	0	0.0%	54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4	В3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2.4%	122

Table 2B: rearranged human lambda sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	O%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	1	DPL5	6	6%	78
AL EZI	112		· DPL5	7	7%	41
ZIM	112		HUMLV117	7	7%	18
RF-SJ1	100		DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	0%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	110		DPL10	8	8%	25
NEI	111		DPL10	8	8%	24
AL MC	110		DPL11	6	6%	28
MES	112		DPL11	8	8%	84
FOG1-A3	. 111		DPL11	9	9%	27
AL NOV	112		DPL11	7	7%	28
, 12 1107			4			

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
НВр2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0%	49
THY-29	110	3	DPL16	0 -	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
K53	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
•	110	2	DPL12	13	12%	77
U266L	110	2	DPL12	14	13%	55
PR-SJ2 BOH	112	2	DPL12	11	10%	37
TOG	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
•	112	2	DPL12	18	17%	80
BO	112	2	DPL12	17	16%	11
WIN	104	2	DPL12	15	15%	46
BUR NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0%	54
HA	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	· DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112		DPL2	12	11%	67
NEWM	104		DPL8	23	22%	10
MD3-4	106		DPL23	14	13%	4
COX	112		DPL2	13	12%	84
HiH10	106		DPL23	13	12%	3
VOR	112		DPL2	16	15%	16
AL POL	113	1	DPL2 ·	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	2 3	DPL23	15	15%	30
OST577	108		Humlv318	3 10	10%	4
NIG-48	113		DPL3	42	40%	66
CARR	108		DPL23	18	17%	19
			66			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
		-				
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE ·	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	. 98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	40/0	60
YM-1	116	8	HUMLV801	51	49%	75
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	· 43
SHO	108	3	DPL23	19	18%	19
HAN	108	3	DPL23	20	19%	19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106	3	DPL23	9	9%	19
СОТ	106	3	DPL23	13	12%	19
Pag-1	111	3	Humlv318	5	5%	31
-			6=			

6 z

Table 2B: (continued)

WO 97/08320

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
DIS	107	3	Humiv318	2	2%	19
WIT	108	3	Humlv318	7	7%	19
•	108	3	Humlv318	12	11%	19
I.RH	108	3	Humiv318	12	11%	52
S1-1	108	3	Humlv318	14	13%	17
DEL	108	3	Humlv318	11	10%	19
TYR	109	3	Humlv318	13	12%	19
J.RH	112	2	DPL13	38	36%	26
THO	113	1	DPL3	38	36%	2
LBV	112	1	DPL3	33	31%	14
WLT SUT	112	2	DPL12	37	35%	65

PCT/EP96/03647

WO 97/08320 .

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5.1%	98
LS2S3-10	125	1	VH1-12-7	5	5,1%	98
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	1	VH1-12-7	7	7.1%	113
THY-29	122	1	VH1-12-7	0	0.0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0.0%	105
NEI	127	1	VH1-12-1	0	0.0%	55
AND	127	1	VH1-12-1	0	0,0%	55
L7	127	1	VH1-12-1	0	0,0%	54
L22	124	1	VH1-12-1	0	0.0%	54
L24	127	1	VH1-12-1	0	0.0%	54

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
L26	116	1	VH1-12-1	0	0,0%	54
	119	1	VH1-12-1	0	0,0%	54
L33	117	1	VH1-12-1	0	0,0%	54
L34	118	1	VH1-12-1	0	0,0%	54
L36	120	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41	125	. 1	VH1-12-1	0	0,0%	54
L42	101	1	VH1-12-1	0	0,0%	26
VHGL 1.8	127	1	VH1-12-1	0	0,0%	22
783c	127	1	VH1-12-1	0	0,0%	37
X17115	127	1	VH1-12-1	0	0,0%	54
L25	124	1	VH1-12-1	1	1,0%	54
L17	127	1	VH1-12-1	1	1,0%	54
L30	120	1	VH1-12-1	1	1,0%	54
L37	116	1	VH1-12-1	2	2,0%	42
TNF-E7	122	1	VH1-12-1	7	7,1%	71
mAb111		1	VH1-12-9	3	3,1%	70
III-2R	122	1	VH1-12-1	7	7.1%	79
KAS	121	1	VH1-12-1	8	8,2%	34
YES8c	122		VH1-12-1	8	8,2%	82
RF-TS1	123	1 1	VH1-12-8	7	7,1%	79
BOR'	121	1	· VH1-12-1	8	8,2%	26
VHGL 1.9	101		VH1-12-9	5	5,1%	52
mAb410.30F305	117		VH1-12-8	10	10,2%	78
EV1-15	127		VH1-12-1	11	11,2%	71
mAb112	122		VH1-12-1	11	11,2%	28
EU	117		VH1-12-1	12	12,2%	66
H210	127		VH1-12-1	0	0,0%	111
TRANSGENE	104		VH1-12-1	0	0,0%	30
CLL2-1	93	1	VH1-12-1	0	0,0%	29
CLL10 13-3	97		VH1-12-7	4	4,1%	113
LS7	99		VH1-12-7	0	0,0%	30
ALL7-1	87			1	1,0%	30
CLL3-1	91		VH1-12-7		0,0%	30
ALL56-1	85		VH1-13-8		1,0%	30
ALL1-1	87		VH1-13-6		0,0%	30
ALL4-1	94	1	VH1-13-8	0	0,090	30

WO 97/08320

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	. 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3.1%	26
SP2	119	1	VH1-13-6	. 15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2.0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1.	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124		VH1-12-7	20	20,4%	73
			≯ 1			

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9,0%	. 4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2,0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	. 114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	. 9	9,0%	85
N51P8	126	3	VH3-14-1	9	9.0%	7 7
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM1-1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0,0%	26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100	. 3	VH3-13-26	5	5,1%	96
OST577	122	3	VH3-13-13 ≯2_	6	6,1%	5

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
ВО	113	3	VH3-13-19	15	15,3%	10
TT125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-						
9	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	77
Π117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13 - 7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0,0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13	0	0,0%	46
ss8	94	3	VH3-13-13	0	0.0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20,4%	42
NOV	118	3	VH3-13-19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	46
L2E8	99	3	VH3-13-19	0	0,0%	46
L2D10	101	3	VH3-13-10	1	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0,0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0,0%	46
8	112	3	VH3-13-1	6	6,1%	118
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125	. 3	VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0.0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108	3	VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0 .	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1,0%	56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3.1%	57

タ4 SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene	Diff. to germline ⁵	% diff. to germline ⁶	Reference ³
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5,1%	100
N87	126	. 3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9.2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74 .
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0,0%	104
AL3.5	90	3	VH3-13-10	• 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38C1.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0,0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	·3	VH3-13-12	2	2,0%	51
mAb59	128		VH3-13-12	2	2.0%	51
mAb105	128	3	VH3-13-12	2	2,0%	51
mAb107	128		VH3-13-12	2	2,0%	51
E55 3.14	110		VH3-13-19	0	0,0%	26

75

Table 2C: (continued)

mAb55 YSE 1 E55 3.23 RF-TS5 N42P5 1 FOG1-H6 0-81 HIV-s8 mAb114 33.F12 484 M26 VHGL 3.1 E55 3.13 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	06 27 7 06 01 24 10 15 22 25 16 19 23 00 13	3 3 3 3 3 3 3 3 3 3 3 3	VH3-13-19 VH3-13-18 VH3-13-24 VH3-13-19 VH3-13-1 VH3-13-16 VH3-13-19 VH3-13-19 VH3-13-19 VH3-13-2 VH3-13-3 VH3-1X-3 VH3-1X-3	1 4 6 2 3 7 7 11 11 12 4 0	1,0% 4,1% 6,1% 2,0% 3,1% 7,1% 7,1% 11,2% 11,2% 12,2% 4,1% 0,0%	94 51 72 26 85 77 42 47 12 71
mAb55 YSE 1 E55 3.23 RF-TS5 N42P5 1 FOG1-H6 0-81 HIV-s8 mAb114 33.F12 484 M26 VHGL 3.1 E55 3.13 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	27 7 7 96 91 91 91 91 91 91 91 91 91 91 91 91 91	3 3 3 3 3 3 3 3 3	VH3-13-24 VH3-13-19 VH3-13-1 VH3-13-2 VH3-13-16 VH3-13-19 VH3-13-12 VH3-13-2 VH3-1X-3 VH3-1X-3	6 2 3 7 7 11 11 12 4	6,1% 2,0% 3,1% 7,1% 7,1% 11,2% 11,2% 12,2% 4,1%	72 26 85 77 42 47 12 71
YSE 1 E55 3.23 1 RF-TS5 1 N42P5 1 FOG1-H6 1 O-81 1 HIV-s8 1 mAb114 1 33.F12 1 4B4 1 M26 VHGL 3.1 1 E55 3.13 1 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	17 06 01 24 10 15 22 25 16 19 23 00 13	3 3 3 3 3 3 3 3 3	VH3-13-19 VH3-13-1 VH3-13-2 VH3-13-16 VH3-13-19 VH3-13-19 VH3-13-2 VH3-1X-3 VH3-1X-3	2 3 7 7 11 11 12 4	2.0% 3.1% 7.1% 7.1% 11,2% 11,2% 12,2% 4,1%	26 85 77 42 47 12 71 129
E55 3.23 II RF-TS5 II N42P5 I FOG1-H6 I O-81 I HIV-s8 II MAb114 I 33.F12 I 4B4 II M26 II VHGL 3.1 II E55 3.13 II E55 3.13 II SB5/D6 RAY4 II RAY4 II ROC LSF2 HIB RC3	06 01 24 10 15 22 25 16 19 23 00	3 3 3 3 3 3 3 3 3	VH3-13-19 VH3-13-1 VH3-13-2 VH3-13-16 VH3-13-19 VH3-13-19 VH3-13-2 VH3-1X-3 VH3-1X-3	3 7 7 11 11 12 4	3.1% 7.1% 7.1% 11,2% 11,2% 12,2% 4,1%	85 77 42 47 12 71
RF-TS5 11 N42P5 1 FOG1-H6 1 O-81 1 HIV-s8 1 mAb114 1 33.F12 1 4B4 1 M26 VHGL 3.1 1 E55 3.13 1 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	01 24 10 15 22 25 16 19 23 00 13	3 3 3 3 3 3 3 3	VH3-13-1 VH3-13-2 VH3-13-16 VH3-13-19 VH3-13-12 VH3-13-2 VH3-1X-3 VH3-1X-3	7 7 11 11 12 4	7,1% 7,1% 11,2% 11,2% 12,2% 4,1%	77 42 47 12 71 129
N42P5 1 FOG1-H6 1 O-81 1 HIV-s8 1 mAb114 1 33.F12 1 4B4 1 M26 1 VHGL 3.1 1 E55 3.13 1 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	24 10 15 22 25 16 19 23 00	3 3 3 3 3 3 3 3	VH3-13-16 VH3-13-19 VH3-13-12 VH3-13-2 VH3-1X-3 VH3-1X-3	7 11 11 12 4	7,1% 11,2% 11,2% 12,2% 4,1%	42 47 12 71 129
FOG1-H6 1 O-81 1 HIV-s8 1 mAb114 1 33.F12 1 4B4 1 M26 1 VHGL 3.1 1 E55 3.13 1 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	10 15 22 25 16 19 23 00	3 3 3 3 3 3 3	VH3-13-19 VH3-13-12 VH3-13-19 VH3-13-2 VH3-1X-3 VH3-1X-3	11 11 12 4	11,2% 11,2% 12,2% 4,1%	47 12 71 129
O-81 1 HIV-s8 1 mAb114 1 33.F12 1 4B4 1 M26 1 VHGL 3.1 1 E55 3.13 1 SB5/D6 RAY4 1 82-D V-D MAL LOC LSF2 HIB RC3	15 22 25 16 19 23 00	3 3 3 3 3 3	VH3-13-12 VH3-13-19 VH3-13-2 VH3-1X-3 VH3-1X-3	11 12 4	11,2% 12,2% 4,1%	. 12 71 129
HIV-s8 1 mAb114 1 33.F12 1 4B4 1 M26 1 VHGL 3.1 1 E55 3.13 1 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	22 25 16 19 23 00	3 3 3 3 3	VH3-13-19 VH3-13-2 VH3-1X-3 VH3-1X-3	12 4	12,2% 4,1%	71 129
mAb114 1 33.F12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 16 19 23 00	3 3 3 3	VH3-13-2 VH3-1X-3 VH3-1X-3	4	4,1%	129
33.F12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 19 23 00 13	3 3 3 3	VH3-13-2 VH3-1X-3 VH3-1X-3			
4B4 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	19 23 00 13	3 3 3	VH3-1X-3	0	0,0%	
M26 11 VHGL 3.1 11 E55 3.13 11 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	23 00 13	3				101
VHGL 3.1 E55 3.13 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	00 13	3		0	0,0%	103
E55 3.13 SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3	13			0	0,0%	26
SB5/D6 RAY4 82-D V-D MAL LOC LSF2 HIB RC3			VH3-1X-3	1	1,0%	26
RAY4 82-D V-D MAL LOC LSF2 HIB RC3		3	VH3-1X-6	3	3,0%	2
82-D V-D MAL LOC LSF2 HIB RC3	01	3	VH3-1X-6	3	3,0%	2
MAL LOC LSF2 HIB RC3	06	3	VH3-1X-3	5	5,0%	112
LOC LSF2 HIB RC3	29	3	VH3-1X-3	5	5,0%	72
LSF2 HIB RC3	23	3	VH3-1X-6	5	5,0%	72
HIB RC3	01	3	VH3-1X-6	11	11,0%	2
1115 1166	00	3	· VH3-1X-6	11	11,0%	1
301 1	19	3	VH3-13-7	0	0,0%	104
M72	22	3	VH3-13-7	0	0,0%	103
2	121	3	VH3-13-7	0	0,0%	103
	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114		VH3-13-7	1	1,0%	85
KIM46H	127		VH3-13-13	0	0,0%	18
E55 3.6	108		VH3-13-7	2	2,0%	26
E55 3.10	107		VH3-13-13	1	1,0%	26
3.86	114		VH3-13-13		1,0%	108
E54 3.6	110		VH3-13-13		1,0%	26
FL2-2	114	•	VH3-13-13		1,0%	80

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	'Reference'
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	. 12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
K6H6	119		VH3-1X-6	18	18,0%	60
K4B8	119	3	VH3-1X-6	18	18,0%	60
K5B8	119		VH3-1X-6	18	18,0%	60

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
HY18	121	4	VH4-11-2	0	0,0%	43
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	0	0,0%	86
FS-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
FS-6	108	4	VH4-11-2	6	6,2%	86
FS-2	114	4	VH4-11-2	6	6,2%	84
HIG1	126	4	VH4-11-2	7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9,3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI	78	4	VH4-11-9	16	16,5%	58
Ab26	126	4	VH4-31-4	8	8.1%	100
TS2	124	4	VH4-31-12	15	15,2%	110
265-695	115	4	VH4-11-7	16	16,5%	5
WAH	129	4	VH4-31-13	19	19,2%	93
268-D	122	4	VH4-11-8	22	22,7%	6
58P2	118	4	VH4-11-8	. 0	0,0%	104
mAb67	128	4	VH4-21-4	1	1,0%	45
4.L39	115	4	VH4-11-8	2	2,1%	108
mF7	111	4	VH4-31-13	3	3,0%	75
			_			

₹8

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	· 4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0 .	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0	0,0%	104 .
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0,0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
.L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0 .	0,0%	17
			7.0	•		

Za

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
CD+1	98	5	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	- 17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0.0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB,	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0,0%	. 17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	. 5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	2	2,0%	17
CD-2	98	5	VH5-12-1	2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5 `	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	• 3	3,1%	17
PBL13	98	.5	VH5-12-1	3	3,1%	17
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	. 5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3 .	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98		VH5-12-1	.4	4,1%	17
VERG2	98		VH5-12-1	5	5,1%	17

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLI6	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOM.	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
Tu0	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
4 405 27	125	5	VH5-12-4	0	0,0%	124
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	128	5	VH5-12-4	10	10,2%	121
P1-58	118	5	VH5-12-4	3	3,1%	121
P2-57	123	5	VH5-12-1	5	5,1%	121
P2-55	123	5	VH5-12-1	20	20,4%	121
P2-56	122	5	VH5-12-1	11	11,2%	121
P2-52	122	5	VH5-12-1	8	8,2%	121
P3-60	123	5	VH5-12-1	4	4,1%	121
P1-57 P1-55	122	5	VH5-12-1	14	14,3%	121
	128	5	VH5-12-4	12	12,2%	5
MD3-4 P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL3	98	.5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
£3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6	· VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0 .	0,0%	104
VH6.N1	121	. 6	VH6-35-1	0	0,0%	122
VH6.N11	123	6	VH6-35-1	. 0	0,0%	1.22
VH6.N12	123	6	VH6-35-1	0	0,0%	122
VH6.N2	125	6	VH6-35-1	0	0.0%	122
VH6.N5	125	6	VH6-35-1	0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0,0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	3 6	VH6-35-1	0	0.0%	122
VH6.N9	123		VH6-35-1	. 0	0,0%	122

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

VH6.N10 /H6.A3 /H6.A1 /H6.A4 E55 6.16 E55 6.17 E55 6.6 VHGL 6.3 CB-201 VH6.N4 E54 6.4 VH6.A6 E55 6.14 E54 6.6 E55 6.10 E54 6.1 E55 6.13 E55 6.3 E55 6.7 E55 6.2 E55 6.X E55 6.11 VH6.A11 A10 E55 6.1 VH6.A11 A10 E55 6.1 VH6.A2 VH6.A5 VH6.A7 HBp2 Au46.2 A431 VH6.A2 VH6.A9 VH6.A8 VH6.A8 VH6.A8 VH6.A8 VH6.A8 VH6.A8	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
VH6.N10	123	6	VH6-35-1	0	0,0%	122
	123	6	VH6-35-1	0	0,0%	122
•	124	6	VH6-35-1	0	0,0%	122
	120	6	VH6-35-1	0	0,0%	122
	116	6	VH6-35-1	0	0,0%	26
	120	6	VH6-35-1	0	0,0%	26
	120	6	VH6-35-1	0	0,0%	26
	102	6	VH6-35-1	0	0,0%	26
	118	6	VH6-35-1	0	0,0%	109
	122	6	VH6-35-1	0	0,0%	122
	109	6	VH6-35-1	1	1,0%	26
	126	6	VH6-35-1	1	1.0%	122
	120	6	VH6-35-1	1	1,0%	26
	107	6	VH6-35-1	.1	1,0%	26
	112	. 6	VH6-35-1	1	1,0%	26
	107	6	VH6-35-1	2	2,0%	26
	120	6	VH6-35-1	2	2,0%	26
	120	6	VH6-35-1	2	2,0%	26
	116	6	VH6-35-1	2	2,0%	26
	120	6	VH6-35-1	2	2,0%	26
	111	6	VH6-35-1	2	2,0%	26
	111	6	VH6-35-1	3	3,0%	26
	118	6	VH6-35-1	3	3,0%	122
	107	6	VH6-35-1	3	3,0%	68
	120	6	VH6-35-1	4	4,0%	26
	124	6	VH6-35-1	4	4,0%	65
	121	6	VH6-35-1	.4	4,0%	122
	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
•	123	6	VH6-35-1	5	5,0%	49
	106	6	VH6-35-1	5	5,0%	68
	120	6	VH6-35-1	5	5,0%	122
	125	6	VH6-35-1	. 8	7,9%	122
	118	6	VH6-35-1	10	9,9%	122
	118	6	VH6-35-1	2	2,0%	123
	126	6	VH6-35-1	12	11,9%	122

દક

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	. 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B4I	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 . PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	Vkl-l	28	
I	Vk1-2	0	
1	Vk1-3	1	
1	Vk1-4	0	
1	Vk1-5	7	•
1	Vk1-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
I	Vk1-9	9	
1	Vk1-10	0	
1	Vk1-11	1	
I	Vk1-12	7	
1	Vk1-13	1	
1	Vk1-14	7	
1	Vk1-15	2	
1	Vk1-16	2	
i	Vk1-17	16	
1	Vk1-18	I	
I	Vk1-19	33	
1	Vk1-20	1	
1	Vk1-21	i	
1	Vk1-22	0	
1	Vk1-23	0	119 entries
2	Vk2-I	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	-16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	i	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-I	ı	

WO 97/08320

Table 3A:

(continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	
_ 3	Vk3-6	0	
3	Vk3-7	1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	1	1 entry
6	Vk6-1	0	
6	Vk6-2	0	0 entries
7	Vk7-1	0	0 entries

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family'	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
. 2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

PCT/EP96/03647 WO 97/08320 .

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

VU1 12 1		
VH1-12-1	38	
VH1-12-8	2	
VH1-12-2	2	
VH1-12-9	2	
VH1-12-3	0	
VH1-12-4	0 .	
VH1-12-5	3	
VH1-12-6	0	
VH1-12-7	23	
VH1-13-1	1	
VH1-13-2	1	
VH1-13-3	0	
VH1-13-4	0	
VH1-13-5	0	
VH1-13-6	17	
VH1-13-7	0	
VH1-13-8	3	
VH1-13-9	0	
VH1-13-10	0	
VH1-13-11	0	
VH1-13-12	10	
VH1-13-13	0	
VH1-13-14	0	
VH1-13-15	4	
VH1-13-16	2	
VH1-13-17	0	
VH1-13-18	. 1	
VH1-13-19	. 0	
VH1-1X-1	1	110 entries
VH2-21-1	0	
VH2-31-1	0	•
VH2-31-2	. 1	
VH2-31-3	1	
VH2-31-4	0	
VH2-31-5	2	
VH2-31-6	0	
VH2-31-7	0	
	VH1-12-9 VH1-12-3 VH1-12-4 VH1-12-5 VH1-12-6 VH1-12-7 VH1-13-1 VH1-13-2 VH1-13-3 VH1-13-4 VH1-13-5 VH1-13-6 VH1-13-7 VH1-13-8 VH1-13-9 VH1-13-10 VH1-13-11 VH1-13-12 VH1-13-13 VH1-13-14 VH1-13-15 VH1-13-16 VH1-13-17 VH1-13-18 VH1-13-19	VH1-12-9 2 VH1-12-3 0 VH1-12-4 0 VH1-12-5 3 VH1-12-6 0 VH1-13-7 23 VH1-13-1 1 VH1-13-2 1 VH1-13-3 0 VH1-13-4 0 VH1-13-5 0 VH1-13-6 17 VH1-13-8 3 VH1-13-9 0 VH1-13-10 0 VH1-13-11 0 VH1-13-12 10 VH1-13-13 0 VH1-13-14 0 VH1-13-15 4 VH1-13-16 2 VH1-13-17 0 VH1-13-19 0 VH1-13-10 0 VH1-13-11 0 VH1-13-12 1 VH1-13-14 0 VH1-13-15 4 VH1-13-10 0 VH1-13-11 0 VH1-13-12 0 VH1-13-19 0 VH2-31-1 0 VH2-31-2

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	0	
2	VH2-31-13	1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	1	
3	VH3-11-6	1	
3 ·	VH3-11-7	0	
3	VH3-11-8	5	
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0	
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	2	
3	VH3-13-18	1	
3	VH3-13-19	13	
3	VH3-13-20	1	
3	VH3-13-21	1	
3	VH3-13-22	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3	VH3-1X-1	0	
3	VH3-1X-2	0	
3	VH3-1X-3	6	
3 3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	e.
4	VH4-11 - 15	0	
4 .	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0 .	
4	VH4-21-3	1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
4	VH4-21-7	0 .	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0 .	
4	VH4-31-2	0	
4	VH4-31-3	0	
4 .	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4 .	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0 ·	
4	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	_
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320 Table 4A: Analysis of V kappa subgroup 1

Analysis of V k	(ap)	Ja 3	uog		· ·								rame	work	(1		
amino acid'		2	က	4	ų	י נ) I	`	80	6	5	=	12		4	15	16
А		1								1				102		1	
В			1				1										
С															1		
D	64																
E	8		14													1	
F				<u> </u>				<u></u>		1	6				1		
G				<u> </u>													105
Н																	
.		65		<u> </u>												4	
К			1														
L		6	5	2	1							96		1			·····
М	1		<u> </u>	6	6												
N		<u></u>															
Р		<u> </u>							103		1		2			1	
Q	<u> </u>	<u> </u>	6	2		_	88					1					
R																	
S		<u> </u>		<u> </u>	_			89		102	:		103		103		
T	<u> </u>		1			88				<u> </u>	18				<u></u>		
V	<u> </u>		1	9	_						<u> </u>	8		2	<u> </u>	98	
W	_		_	_				<u> </u>		<u></u>	<u> </u>				<u> </u>	<u> </u>	<u></u>
Х	-	1		_				<u> </u>		<u> </u>		<u> </u>			<u> </u>	<u></u>	<u></u>
Y	_	<u> </u>	╧	_				<u> </u>		<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>
_	-	_	-	_				<u> </u>	<u> </u>	<u> </u>	<u> </u>	-			<u> </u>	<u> </u>	
unknown (?)			_	_								<u> </u>			<u> </u>	<u></u>	
not sequenced	1 3	1 3	1 1	8	18	17	16	16	400	1		105	105	105	105	105	10
sum of seq ²	. 7	4 7	4 8	37	87	88	85	89	103	104	10:	105	103	102	102	000	10
oomcaa,	-	;					:	:				96			S 103	V	G
mcaa ⁴]		1	:		<u> </u>		<u>S</u>	-		S	Ī	<u> </u>	-	1	Ť	Ī
rel. oomcaas	0.06	86%	0/08/0	71%	0/09/	100%	% 65	100%	1000	980	7,50%	910%	980%	97%	086	930%	900
pos occupied				5	2	1		2 .		1 :	3	4 3	2		3 :	3 !	5

92 SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

_															
amino acid¹ .	17	18	19	70	21	22	23	24	25	56	27	<	m ·	U T	
Α			1	1		1			103						
В						į					1				
. C							105								
D	101														
E	2							1	1		2				
F					2										
G										1					
Н											1				
1			6	4	101	1									
К								2			1				
L								1							
М					<u> </u>										
N ·										1					
Р															
Q								20			100				
R :		94						81							
S		5		1						102					
Т		6		99		103			1	1					
V			98	<u></u>	2										
W															
Х	1														
Y	1														
_	<u> </u>											105	105	105	105
unknown (?)						ļ	ļ	<u></u>	ļ			·-···			
not sequenced						<u> </u>	<u> </u>	<u> </u>	<u> </u>						
sum of seq ²	105	105	105												
oomcaa3	101	94	98	99	101	1.03	105	81	103	•	:	105	105	105	105
mcaa'	D	R	V	T	1	T	С	R	Α	S	α	-	-	-	-
rel. oomcaas	%96	%06	93%	94%	%96	%86	100%	77%	%86	97%	95%	100%	100%	100%	100%
pos occupied		3	:	:	:	:		ŗ	3	4	5	1	1	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

(CDRI														_		p (- 0	•
amino acid'	ш	ய	28	2	67	30		<u> </u>	32	33	34	; ;		36	37		30 50 50 50 50 50 50 50 50 50 50 50 50 50	33	4	=
Α							1	1		1		12				-				
В										•••••						1	1			7
. C		.,							1		ļ									-
D				25			1	5	7							1				
E									1							2				•••
F					1		1		7		-			6						
G				25			7	3			<u> </u>	4			<u> </u>	_				
Н	<u> </u>	<u></u>				ļ	1	2	2		-	1				2				
	<u></u>				98		1	4			-	1		********	<u> </u>					
K	<u> </u>					<u> </u>		7							<u>.</u>			95		•••
L						<u>.</u>	2	1		10	1				-					
М	<u></u>	<u> </u>				ļ									-					•••
N	<u></u>			6		ļ	16	42				50			-				10	
Р	<u>.</u>					ļ				<u> </u>				ļ	-		• • • •			
Q	<u></u>				·÷	<u> </u>								<u></u>	-	98	103	2 3	:	
R							16	3		•			·····	<u></u>				<u> </u>		•
S	<u></u>			41		2	57	32	3	<u> </u>	1	1		<u> </u>	+			1		
T				7				4	•••••			4		<u> </u>						
V				1		4	1				1								ļ	
W		_				-			21				104	<u> </u>	+				<u> </u>	
X					ļ	_				<u>.</u>		1	ļ <u>.</u>	-					-	
Υ		_	_		<u>_</u> _	+	_1		60)	-			3	8			<u> </u>	-	=
_	10	5	105			_			<u> </u>				<u> </u>		-			<u> </u>	 }	
unknown (?) [····	ļ			ļ					ļ			1	1) 	
not sequence	d	_			<u> </u>	 		:	· · · · · · · · · · · · · · · · · · ·	1	1	1		1	1	104			=	=
sum of seq	10)5	105	105	10)5	105	104	10	4 1	04	104	10	4 1()4	104	104	10	1 ! 5 . 1	
oomcaa,	10)5	105					•	•	•				•	•		103		•••••••	F
mcaa⁴		-		S	<u> </u>	_	<u>S</u>	N	Y		L	N				Q	Q	K		•••
rel. oomcaa	,	100%	100%	39%		93%	54%	400%	2	2840	97%	48%	1000	8 2001	940/0	94%	0 /06 b	010%	2	
pos occupie	۲ _و	1	1				12			9	4	1	3	1	2	5	5	2	4	

3+

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

	Fram	ewor	k II										<u> </u>	DR II		
amino acid'	41	42	43	44	45	46	47	ă.	2	49	20	51	25	53	54	52
Α			94					<u></u>			50	95				
В								ļ								
. C								ļ								
D								ļ			21	1	1	1		
E	1	3			1	1					1		1			33
F						1		-		3			1			
G	100		1				<u> </u>	<u> </u>			9	2				
Н		,					ļ			2						1
1		1				1	<u> </u>	1	00					1		
К		95			86		<u></u>				16			2		5
L		1				89	10	3							101	
M			<u> </u>				ļ		2							
N					10		ļ	<u></u>			2		1	25		_,
Р				104			ļ	_			1					1
Q		1	<u> </u>		1	ļ	<u> </u>									62
R			ļ		3		3					<u></u>		1		
S		<u> </u>	<u> </u>		1	ļ				5		:			2	
Ţ	<u></u>	3	<u> </u>	ļ	1						1		:			
<u>V</u>	<u> </u>	ļ	g				9			·····		1		1		
W	ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>					<u> </u>		<u> </u>			
X	.				1	ļ							<u></u>	1		
Y	<u> </u>	_	 -	-		92	1		<u> </u>	<u> </u>						
-	<u></u>	ļ	-		<u></u>	<u> </u>		_					ļ <u>.</u>	<u> </u>		
unknown (?)	· f	3				-	_					1	1	1	1	ļ
not sequenced				1 1			1	2								
sum of seq ²	10			:						•	:	•				6
oomcaa,	10	0 9		4 104			19 10				:		•••••••	•••••••	101	
mcaa*	G	K	A		K			L	i	Υ	Α	Α	S	S	L	0
rel. oomcaas	7050	9090	91.40	100%	0.20%	2 50	9,98	100%	%86	% U6	400%	91%	0 ±0%	39%	97%	30
pos occupied	-		:		1	8	6	1	. 2		4 1	0	6	6 9	3	}

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

amino acid'	56	57	58	59	09	61	62	63	64	65	99	29	89	69	2
А	3			T							2	1	1	1	
В				1											
C								,							
<u>.</u> C	1														67
E	Ì												1		30
F			1				103					3			
G	2	105							105	4	101		102		
Н												<u></u> .			
	3		4				1	3							
K	1					1									
L								1							******
М														1	
N	6														
Р	1			101	2										
Ω										1					····
R	1					103		1		1				2	
S	68			2	103			98		96		100			
Ţ	19			1		1		2		3				101	
V	ļ		99				1								
W	<u> </u>	<u> </u>													
Χ	<u> </u>		1								1		1		
Y												1			
	ļ														
unknown (?)										·					
not sequenced		<u> </u>			·—·										_
sum of seq²		••••••••	105		:	:		:	:		:	•	•	:	:
oomcaa³	:	•••••••	99	:	:		:	;				:	102	:	
mcaa*	S	G	V	Р	S	R	F	S			G	S	G	T	
rel. oomcaas	65%	100%	94%	%96	989%	986	%86	93%	100%	91%	%96	95%	97%	%96	
pos occupied	1() 1	4	4	2	3	3	5	1	5	4	4	4	4	

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

_	Fr	amev	ork II	<u> </u>											
amino acid'	17	72	73	74	75	9/	77	78	79	8		82	83		82
Α	1	3				1				2				101	1
В					1				3		2				
. C															
D						1						101			
Е											83				
F	102	1	21										73		
G							4			<u></u>	1			2	••••
Н										·					
1					99	. 5				<u> </u>			17		
К							ļ <u>-</u>			<u> </u>					
L			81				ļ	103	1				1		
М		<u></u>							<u> </u>						
N						7	4								
Р						<u> </u>	ļ		<u> </u>	97					
Q						<u> </u>	<u> </u>	<u></u>	97		ļ				
R		ļ			·····	·}	1		2			ļ			
S		2		1		86	94	-	<u> </u>		<u> </u>		1		
T		98	<u> </u>	102		2	1	·		ļ	<u> </u>				9
V	1		2		4	<u></u>		1		-			11		
W	ļ					<u> </u>	<u> </u>	<u> </u>		<u> </u>					
X	ļ	ļ		1			_		ļ		1	2			
Υ		<u> </u>	<u> </u>			<u> </u>	┷	<u> </u>	-	-	-	\vdash	 		
***************************************	ļ			ļ		ļ					-		 		
unknown (?)	<u> </u>													ຳ	
not sequenced			1 1										2 2	=	:-
sum of seq²	:		1	•	1	÷	:	•	:	:					
oomcaa	10			102			••••	4 10			:	3 10		101 A	9
mcaa*	F	T	L	Ţ	1	S	S	L	Q	P	E	D	F	<u> </u>	
rel. oomcaa°	7000	30-00	78%	%86	9200	3000	0,50	2000	200	34%	345/0	9000	71%	98%	
pos occupied				3	1	3	7	5	2	4	3	5	2 !	5 2	

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

: Analysis of v			T						C	DR III						
amino acid'	98	87	88	68	90	91	92	93	94	95	۷	<u> </u>	ں 	<u> </u>	ш -	<u>_</u>
А					1	7	1		5	1			_			••••
В			<u></u>	2	3											
. C			102	<u></u>												
D							23	5	1							
Ε							1	1		1	1					
F		7				3			13							
G						1		1	2	1		1				
Н		1		4	6	7	3	1								
							4	1	2	1		,				
K	1				7		1									
L				7		6	2		18	2						
М																
N						6	31	19	1							
Р									1	82	6					
Q				90	86	1	2									
R						1		2	2							••••
S	1					27	3	58	5	10			<u> </u>			
Ţ						3	1	15	25		<u> </u>	<u> </u>	<u></u>			
V									5		ļ	<u></u>	<u> </u>			
W								<u> </u>	1		<u> </u>		<u> </u>	<u> </u>		ļ
X					ļ	<u></u>		<u> </u>			<u></u>	<u></u>	<u> </u>	ļ		
Υ	101	93				42	32	1	23		<u> </u>	<u>. </u>	<u> </u>	<u> </u>		
_				<u></u>	<u></u>	<u></u>		<u></u>		3	82	88	89	89	89	8
unknown (?)		1						<u></u>			ļ	-	-	<u></u>	<u></u>	
not sequence											=	- -		16	÷	 -
sum of seq²	*************			:	:	:	:	:	104	•	•	•	•	:	:	:
oomcaa ₃	101	93	102	90	86	42	•	1	·	82	7	88	89	89	89	8
mcaa*	Υ	Υ	С	Q	Q	Υ	Y	S	T	Р	·÷·····	. . 	-	-	-	<u>.</u>
rel. oomcaa ^s	986%	91%	100%	87%	83%	40%	31%	56%	24%	81%	92%	%66	100%	100%	100%	
pos occupied		:		:	:	11	12	10	14							<u>.</u>

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

ysis of V kappa:		1	<u> </u>							ork	_					•
amino acid'	96	97	86	66	.100	101	102	103	3	104	105	106	⋖	107	108	sum
Α	1															627
В					1						1					19
. C																209
D	1										15			<u> </u>		459
E					2						65					258
F	6		86)							2				451
G				87	29	87		<u>.</u>							2	894
Н	2	1														40
	5									1		72				606
К	1	1					<u> </u>	7	77		,			79		480
L	18	1	1					<u>.</u>		22	4	2				793
М		1					<u> </u>					5				77
N	1						<u></u>					1		2		232
Р	6				7										1	620
Q	1				48		<u>.</u>				1					865
R	6						<u> </u>		6			<u></u>		2	70	413
S	2	2					<u> </u>	<u> </u>								1636
Т	2	82				<u>.</u>	8	7	3					2	<u></u>	1021
V	2				<u> </u>		<u>.</u>		1	63		3			<u> </u>	440
W	15					<u> </u>	<u> </u>	<u>.</u>				<u></u>	<u></u>		<u> </u>	141
X					<u>.</u>							<u>.</u>	<u> </u>		<u></u>	14
Y	16) 	<u> </u>			<u> </u>	<u> </u>				<u></u>	<u> </u>	<u> </u>		<u> </u>	564
-	4		1				<u>.</u>				<u></u>	<u> </u>	85	<u> </u>	1	1250
unknown (?)									•••••			ļ	ļ	ļ		7
not sequenced	16	10	3 1	3 1	8 1	8 1	8 1	8	18	19	19	20	20	20	31	589
sum of seq?	89	8	9 8	7 8	7 8	7 8	7 8	7	87	86	86	85	85	85	74	
oomcaa	18	8 8	2 8	6 8	7 4	8 8	7 8	7	77	63	65	72	85	79	70).
mcaa*	L	Ţ	F	C	3 (3 (]	Γ.	K	٧	E	1		K	R	
rel. oomcaa'	20%	9000	000%	1000%	100%	33%0	1000	000	%68	73%	76%	85%	100%	930%	95%	
pos occupied		•••••			•	1	1	:		: .		5 (:	:	1 4	:

 \mathcal{CC}

Table 4B: Analysis of V kappa subgroup 2

		•									F	ram	ewo	ork l								
amino acid	,	7	٣		‡ t	ر م	ا و	_	∞	6	0	<u>-</u>	12	13	4	5	9	-	18	19	20	21
A																				22		******
В																						
. С			<u> </u>					<u></u> .														
D	14		<u></u>																			
E	3		ļ															15				
F			<u>.</u>				_			1	1											
G			<u>.</u>												·		22					
Н			<u> </u>	_																		
<u></u>		8						<u></u>														22
K	ļ		ļ													<u></u>						
L	ļ	3	ļ	_	1					17		18				6				ļ		
M		<u> </u>	ļ	_	15															<u> </u>	<u></u>	<u> </u>
<u>N</u>		<u> </u>	-	_															22	<u> </u>	ļ	<u> </u>
<u>P</u>	ļ	ļ		_					18				18			15			22	ļ		
0	ļ	<u> </u>	<u>.</u>				18							<u> </u>				7	<u> </u>	<u> </u>		<u> </u>
R		<u> </u>	1	-										<u> </u>					<u> </u>	<u> </u>	22	<u> </u>
<u>S</u>	ļ	ļ						18			17	ļ		<u></u>					<u></u>			ļ
T		<u> </u>	-	_		17					<u></u>	<u></u>	<u></u>	• •	21				<u> </u>	<u> </u>		<u> </u>
<u>V</u>	 	<u> </u>	6	17	1		<u>`</u>		<u> </u>	ļ	<u> </u>	<u></u>	ļ	18	<u></u>		<u> </u>		<u> </u>	<u> </u>		<u> </u>
<u>W</u>	 	ļ	-						ļ		<u> </u>	<u></u>		<u></u>	ļ	ļ	ļ			<u> </u>	-	<u>.</u>
X	-	 	-									<u></u>	ļ	<u> </u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u>.</u>	 	<u> </u>	<u>.</u>
Υ	┡	<u> </u>	$\frac{\perp}{1}$	_					<u> </u>	<u> </u>	 	-	<u> </u>		<u> </u>		_	-	<u>: </u>	\vdash	 -	
	-	-	- -		••••••				<u> </u>	-	<u></u>	<u></u>		<u>.</u>		<u> </u>	<u></u>		<u> </u>	<u> </u>	-	<u> </u>
unknown (?)	<u> </u>				r	1	ļ				4	4		4	1	1		ļ	-	-		-
not sequenced			5		5									_	21	-		22	22	2 2	2 22	2 2
sum of seq ²		<u> </u>	<u>/</u>	17	1/	17	10	10	10	17	1 17	1 1 5	1 1 5	1 18	21	15	22	15	22	2 2	2 22	2 2
oomcaa,		•••					<u>0</u>	1	P	:	S	:	•	V	:	Р	G	:	•	- 3		
mcaa*								******					.			·÷·	·÷	·· [·- -	·- 		·- †
rel. oomcaa'	ά														100%							
pos occupied	,	2	3	1	3	1	1	1	<u>.</u>	1 2	2 :	2	1	1	1	2	2 1		2	1	1	1

Table 4B: Analysis of V kappa subgroup 2

											CDR	1									
amino acid'	22	23	24	25	56	27	∢	8	U	۵	ய	ц.	28	29	3	3	32	33	34	35	36
Α																					
В																					
· C		22																			
D										1			9		1	1			11		
E																					
F.															2						
G											1			22							
Н										16							1		1		
l																					
K			1													1					
L						1		22	13									22			
М									1												
N													10		7	12			9		
Р																					
Q	1					21															
R			21								2										
S	21			22	22		22				19		1								
T																8					
V									8												
W										1										22	
Χ													1		1				1		
Y					-					4			1		11		21				1
_												22									
unknown (?)																					
not sequenced																					
sum of seq ²	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	2
oomcaa,	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	1
mcaa*	S	С	R	S	S	Q	S	L	L	Н	S	-	N	G	Υ	N	Υ	L	D	W	γ
rel. oomeaas	95%	100%	95%	100%	100%	95%.	100%	100%	29%	73%	96%	100%	45%	100%	20%	55%	95%	100%	20%	100%	7000
pos occupied ^a																					

Table 4B: Analysis of V kappa subgroup 2

.b. Allaiysis of		ррс		Fr	ame	ewo	rk II									C	DR	11			
amino acid'	37	38	33	40	4	42	43	44	45	46	47	48	49	20	5	52	23	54	55	99	57
Α																			14		
В												<u></u>									
- C				<u></u>																	
D				<u></u>															7		
E									1			<u> </u>								<u></u>	<u> </u>
F																			<u></u>		
G					22										12				1		22
Н																	••••				-
ı										1		22					•	<u></u>		ļ	<u></u>
K			15											5					ļ		<u>. </u>
L	16									14	21			14	1	····			ļ		
M																	<u></u>	<u> </u>	<u> </u>		<u> </u>
N																	18	<u> </u>	<u> </u>	-	<u> </u>
Р				22				21													
Q	6	22				22			12	<u> </u>				1			<u></u>	<u> </u>	<u> </u>		-
R	ļ		7						8	7				1				22	1	<u> </u>	<u> </u>
5	 	ļ					21	<u></u>		ļ					2	22			-	22	2
Ţ	.									ļ							1	<u> </u>	-	-	-
V	ļ	<u></u>						<u> </u>	<u></u>	ļ	1				6		<u> </u>	<u> </u>	<u> </u>		
W	ļ	ļ				<u></u>		ļ		<u> </u>	ļ					ļ		<u> </u>	-		
Χ	ļ						<u></u>		<u></u>	<u> </u>	ļ					<u> </u>	ļ	<u> </u>	-		-
Υ	_								L	_	Ļ		21		_	<u> </u>	1	+	┿		-
	ļ	ļ	<u></u>	<u></u>	ļ	<u> </u>		<u> </u>	ļ	ļ	ļ	<u></u>			<u></u>	<u> </u>	-	ļ	4		
unknown (?)	ļ	ļ	ļ			ļ		<u> </u>	ļ	ļ					<u></u>	<u> </u>	-				-
not sequenced		<u> </u>			<u> </u>	<u> </u>		1		=	-		- -	1	=		<u> </u>	 -	<u></u>		
sum of seq ²		··•		• • • • • • • • • • • • • • • • • • • •	÷			•				22	:	:	;	:		•		:	:
oomcaa,	16	22	15	22	22	22	*******					22		•		:	:	:			
mcaa¹	L	÷	•••••••	Р	÷	Q	······	•••••			••••	İ			:		÷	:	•	- 1	:
rel. oomcaa'	730/0	100%	68%	100%	100%	100%	100%	100%	5.7%	640%	95%	100%	100%	9/0/9	57%	100%	920%	100%	2,707	1000%	0,001
pos occupied	, ;																				1

Table 4B: Analysis of V kappa subgroup 2

															mev						
amino acid'	28	23	09	19	62	63	64	65	99	29	89	69	02	71	72	73	74	75	9/	77	78
Α																					
В																					
. C																					
D			22				1				1		22								
E																					
F					21		<u> </u>							22					<u>-</u>		
G							21		22		21										
Н																					
1							<u></u>										1	21			
K							į										19				
L																21	1				
М																					
N																					
P		22																			
Q																					
R				20				1												20	
S				1		22		21		22									20	1	
T				1								22			21				1		<u>.</u>
V	22				1														<u> </u>		2
W																					ļ
Χ																		<u></u>	ļ		<u>.</u>
Υ																					
_																		<u> </u>			<u>.</u>
unknown (?)														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1				<u></u>		
not sequenced																1	1	1	1	1	
sum of seq?	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	2
oomcaa³	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	2
mcaa*	٧	Р	D	R	F	5	G	S	G	S	G	T	D	F	T	L	Κ	1	S	R	ļ.,
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	95%	100%	%06	100%	95%	95%	
pos occupied		÷	-		:	:		:	:	:	:	:	÷	÷			:	:	:	:	Ť

Table 4B: Analysis of V kappa subgroup 2

.D. Allaiy313 01																			С	DR	111			
amino acid'	79	8	2	5 6	78	83	84	82	98	87	88	83	6	3 3	n '	92	93	94	95	4	<u>В</u>	<u>-</u>	ے ر 	<u>۔۔</u>
Α		20	0											1	4		<u></u>	1			ļ			
В											<u> </u>	<u>.</u>		1			1				<u> </u>	_	_	••••
· C											21	<u>.</u>									<u> </u>	-		
D				1	21						<u></u>	<u> </u>				_					_	_		
E	19	<u> </u>	2	0						ļ	<u> </u>	ļ							••••		-	_		
F	<u> </u>									<u> </u>	ļ	<u>.</u>	_							<u> </u>	<u> </u>	_		,
G	1	<u> </u>					21				<u> </u>			<u>ļ</u>	6			1			?	- -		
Н										ļ		<u>.</u>			1		7			<u></u>	<u>.</u>			
1		<u> </u>						1		<u></u>	<u> </u>	<u>.</u>						1		<u> </u>	<u> </u>			•••
K		<u>.</u>	<u> </u>							<u>.</u>	ļ	<u>.</u>								<u> </u>	<u>.</u>			••••
Ĺ			<u>j</u>					1	<u> </u>		<u>.</u>					12			2	-				
M		<u>.</u>							<u></u>	ļ	<u>.</u>	2	1							<u> </u>				
N		<u>.</u>							ļ	ļ	<u>.</u>	<u>.</u>								<u> </u>	<u>.</u>	_		,
Р			1						<u></u>									2	16	<u> </u>	1			
Q	1	1							<u> </u>		<u> </u>	<u>.</u>		20			13		<u> </u>	-	-			
R	<u>.</u>							ļ	<u> </u>	_	<u> </u>	<u> </u>				1			<u> </u>	<u> </u>				
S							<u>i</u>	ļ	<u> </u>		<u>.</u>							3	2	2				••••
Ţ		<u>.</u>							<u> </u>		<u>.</u>		_			8		7		-				
V						21		19)		<u>.</u>							<u> </u>	<u> </u>	<u>.</u>			<u></u>	
W									ļ	_								6		<u> </u>				
X		<u>.</u>						<u>.</u>	<u> </u>							<u> </u>	<u> </u>	·		-	_			
Y							<u> </u>	<u> </u>	2	1 2	1		_					<u> </u>	<u> </u>	<u> </u>	4	_		_
_	_						ļ									ļ		<u> </u>	ļ	1	4	17	17	1
unknown (?)						ļ	ļ	ļ	<u>.</u>		_					ļ	ļ	<u> </u>		-				
not sequence																								
sum of seq'	:				*******							•				:	21							•
oomcaa,																	13							-
mcaa ⁴	****		*******	*******		÷					:				•		Q	•	•	•				<u>.</u>
rel. oomcaa	, ,	90%0	92%	95%	100%	100%	100%	9000	2000	0,00	%001	100%	100%	92%	90/9	57%	62%	330%	9000	0000	0/078	100%	100%	
pos occupied																								

104

Table 4B: Analysis of V kappa subgroup 2

arysis ur v kapi		_ <u>_</u>								Fra	mev	vork	: IV					
amino acid'	ш	щ	96	97	86	. (66	9	101	102	103	104	105	106	⋖_	107	108	sum
A					Π	T												71
В						-							1					3
С																		43
D		<u> </u>																112
E													13					71
. F			1		1	7												72
G				<u> </u>	<u></u>	<u>.</u>	17	2	16				1					233
Н		<u></u>	<u></u>	<u></u>	ļ													20
1			3		<u> </u>	<u>.</u>								14				9.
K											12					13		60
L			2		ļ							11						219
М										<u></u>								3
N									<u> </u>	<u> </u>								5
Р			1	<u> </u>												ļ		15
Q			1		<u>.</u>			14	<u></u>	<u> </u>	ļ	<u> </u>	ļ	<u></u>				15
R		<u> </u>	<u>.</u>	<u> </u>					<u> </u>	<u> </u>	4			<u></u>	<u></u>		12	12
S			<u>.</u>		<u> </u>				ļ	ļ		<u></u>	ļ		ļ			32
T	<u>.</u>	<u>.</u>	<u>.</u>	1	7				<u> </u>	16		<u> </u>	<u> </u>		<u> </u>			14
V		<u>.</u>	<u>.</u>	<u> </u>	<u>.</u>				<u> </u>	<u> </u>		5	<u> </u>	<u></u>	<u></u>			14
W				2					<u>.</u>	<u></u>		<u>.</u>	ļ		<u> </u>		<u></u> .	3
X	<u></u>	_	<u>.</u>		_				<u> </u>	ļ	ļ	<u> </u>	ļ	<u> </u>	<u></u>	ļ. 	<u> </u>	
Y	_			7	╧				<u> </u>		<u> </u>	_	12					
	1	7 1	7					<u></u>	<u></u>	<u>.</u>	<u></u>	<u> </u>		ļ	13		ļ	13
unknown (?)				<u>.</u>				ļ		ļ		ļ	ļ		<u>.</u>	ļ	-	
not sequence	d :	5	5	5	5	5	5	E	6	3 6	6	5 6	7	8	9	9	10	21
sum of seq ²	1	7 1	7 1	7 1	7	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaa,		••••	···•		•		•	·}····	•	••••••							12	
mcaa*	-	<u> </u>	١		Γ.	F	G	Q	G	Ţ	K	L	E	1	<u> </u>	K	R	
rel. oomcaa ^s	1000%	100%	2000	0/2 -	200	100%	100%	88%	100%	100%	7 5%	9069	87%	100%	100%	100%	100%	
pos occupied	le	1	1	7	1	1	1		2	1	1	2	2	3		1	1 1	

105
SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

4C. Allalysis of V											Fran	newo	rk l			
amino acid'	_	7	က	4	വ	9	7	æ	6	2	=	12	13	7	15	91
А		5					2		27						1	
В	1															
. C												2				
D	2								14							
E	76		27					<u>.</u>								
F .		1					<u> </u>						<u> </u>	1		
G	1								82						1	152
Н										1						
		75										<u>i</u>				
K	3											<u></u>		<u></u>		
L		4	1	104			1				150		129		1	
М	5			13							<u> </u>			<u> </u>		
N														5		
Р								124							147	
Q						123										
R					1											
S							119		3	:		150	1	141		
T		2			117					147				5	1	
V	ļ	1	89	1			1		<u> </u>		1		22		1	
W									ļ							
X			ļ <u>.</u>						<u> </u>							
Y									<u> </u>	<u> </u>						
_		<u></u>	<u> </u>	ļ		<u></u>		<u> </u>	<u> </u>	<u> </u>						
unknown (?)		<u> </u>	<u> </u>	<u> </u>		<u></u>	: : :	<u> </u>	<u> </u>	<u> </u>				<u>:</u>		<u> </u>
not sequenced		<u> </u>		<u> </u>				<u> </u>	_							
sum of seq'	88	88	÷	÷	-	÷	•	÷	:	149	:	:	Ī	:		:
oomcaa,	76	75	89	104	117		:			147	150			:		
mcaa ⁴	E	1	V	L	T	Q	S	Р	G	T	L	S	L	S	Р	G
rel. oomeaas	86%	85%	76%	9/088	%66	100%	97%	100%	65%	966	%66	%66	85%	93%	97%	100%
pos occupied ⁶	6	:	•	3	2	1	4	1	4	3	2	2	3	4	6	1

Table 4C: Analysis of V kappa subgroup 3

•			ogro				\Box								С	DRI
amino acid'	17	18	19	20	21	22	23	24	22	56	27	⋖	ω	U	٥	ш
А			178	2					166	1						
В				<u>.</u>												
C							181			1					<u>.</u>	
D	6		<u></u>													
E	146	1									1					
F					7	1									<u> </u>	
G	1	1	<u></u>						7]	1		1				
Н											17					
l		1		5	2							<u></u>	<u>.</u>			
К		1						5							·	
L					173						1	1				
M		<u> </u>														
N				<u></u>								9		<u></u>		
Р																
Q										<u> </u>	159					
R		175						176		1	1	10				
S						180			7	175		87				
Ţ		1		174					7	2		1	<u> </u>			
V		1	4	1					1			1	<u> </u>			
W								1								
X																
Y		<u> </u>				1					1					
-		ļ	<u> </u>				ļ					72	182	182	182	18
unknown (?)	<u></u>	<u></u>	<u> </u>								1					
not sequenced	~==	<u> </u>							<u> </u>							
sum of seq'	***************************************					•			:	181						
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	18
mcaa*	Ε	R	Α	T	L	5	С	R	Α	S	Q	S	_		-	-
rel. oomcaas	95%	9/0/6	%86	%96	95%	%66	100%	97%	91%	97%	9/088	48%	100%	100%	100%	0
pos occupied ⁶		· - · · · · · · · · · · · · · · · · · · ·	2	1	-	<u> </u>	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	5	6	6	8	1	1	1	<u>.</u>

Table 4C: Analysis of V kappa subgroup 3

: Analysis of V																Frame	
amino acid'	u.	28	29	30	31	32	33	34	35	, ,	S (37	35 	် - :		4	42
Α				1	1			181									
В										_							
С													<u> </u>				 -
D			1	1	2	1											
E						1								1			
F		1				7					1						
G			2	7	3		• • • • • • • • • • • • • • • • • • •	2								184	
Н			1			2					1		12	1	1		
<u> </u>		24	4	1	1				<u> </u>				<u> </u>				
K			<u> </u>	1	1				<u> </u>				····÷	153			
L		8	1			1	176						3				••••
M	.	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>						·		
N	<u></u>	<u> </u>	3	12	25	32	<u> </u>		<u> </u>				<u></u>				
Р	ļ	ļ <u>.</u>			1	ļ		<u> </u>	-						170		10
Q	ļ	ļ		<u> </u>	1	-	<u>!</u>	<u> </u>	<u> </u>			183	167				18
R	ļ	<u> </u>	10	3	18	16		1	1		<u> </u>	1		27	<u> </u>		
S	ļ	72	86	151	118	•	-	-	<u> </u>						5		
<u> </u>		1	1	1 3	8	<u> </u>	Ť	<u> </u>	<u>.</u>					1	<u> </u>		
V		76	68	3	1	<u> </u>	. 7	<u>.</u>	-				3		2	<u> </u>	
W		ļ		5	ļ	ļ	<u> </u>	-	1	85					<u> </u>	<u></u>	
Χ	. 	<u>.</u>		-		<u> </u>	<u> </u>	<u> </u>	-				·		<u> </u>	<u>.</u>	<u></u> .
Y		<u> </u>	-		1 1	11!	5	<u> </u>	+		183				<u> </u>	<u> </u>	<u> </u>
	182	2		<u> </u>	<u> </u>	ļ		ļ						<u> </u>	<u> </u>	<u>.</u>	<u> </u>
unknown (?)			-	-			-	-	-			1		<u> </u>	<u>.</u>		
not sequence	<u>d</u>	┿	+	-		-		-	_			105	105	104	104	104	_
sum of seq ²	18	2 18	2 18	2 18	1 18	1 18	2 18	3 18	4:]	185	185	185	185	184	184	104	1.
oomcaa,	18	••••					:		· :			:	:	:	:	184	
mcaa'	_	·- 	S	S	S	Y	L	··· <u> </u>	7			Q	u	<u>: K</u>	<u> </u>		1
rel. oomcaa ^s	, 000	2003	470/0	77.00	02%0	2000	0000	0.00	38/0	100%	%66	%66	%06	830%	920%	100%	. .
pos occupied	Je	1	6 1	1 1	0 1	3 1	:	•	•	1	3	2	4	(6	6	<u>.</u>

108

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

4C: Analysis of	rk II									С	DR II					
amino acid'	43	44	45	46	47	48	49	20	51	52	53	54	55	26	52	
Α	176							4	147				176	1		
В																
· C			į			<u> </u>	<u></u>		1							
D							<u></u>	43			<u> </u>		2		4	
E																
F .		<u> </u>	<u></u>	1		1	4									
G								125			<u> </u>		2	10	179	
H							9		1							
1						178							<u> </u>	1		168
K			1								7	1	<u></u>			
L		1		179	174	1										
M						3					1					
N			1					1			53			2		
Р	5	184								2			2	2		
0							1		<u> </u>							
R			182			<u> </u>		1	<u> </u>		4	180				
S						<u></u>	3	6	4	179	74	1		5		
T	3					<u>.</u>			11	2	44			164		2
V				3	9	<u> </u>	<u> </u>	3	19				3			15
W							1		<u> </u>			1				
X				<u> </u>			<u> </u>	<u> </u>	ļ				·			
Y		ļ		<u> </u>			165	<u> </u>	<u> </u>						2	
-	- -	ļ		ļ	<u></u>	<u> </u>	ļ	<u> </u>	ļ	<u> </u>				<u></u>	<u></u>	<u> </u>
unknown (?)		ļ	1	<u> </u>	ļ	<u> </u>	ļ	<u> </u>	<u>.</u>	ļ					<u> </u>	<u> </u>
not sequence				-		-	<u> </u>		-	<u> </u>						105
sum of seq'	******	185	÷		÷			-	•	•	:	:	:	:	:	:
oomcaa,		184	:	:	Ť	:	:	:	:	1	•		•	1	1	:
mcaa*	Α	Р	R	L	L	1	Y	G	Α	S	5	R	Α	<u> </u>	G	1
rel. oomcaa ^s	96%	%66	086%	98%	95%	9706	%06	68%	80%	%86	40%	%86	95%	89%	97%	· - · · · · · · · · · · · · · · · · · · ·
pos occupied	r :	3 2	3	3 3	:		1 (3	7 (3 3	6	4		7	3	3

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

													Fra	mew	ork I	<u> </u>
amino acid'	59	8	61	62	8	64	65	99	29	89	69	70	7.1	72	73	74
Α		68						3		5	3	1		3		
В																
. C													<u> </u>			
D	1	112	-			1						152				
E			ĺ					1		1		30				
F .				183									183		2	
G						184	3	178		177						
Н		1														
1				1										1		3
К			1													
L				1											182	
. M								1	<u> </u>							
N	ļ	1							<u> </u>					1		
Р	177	<u> </u>							<u></u>			· · · · · · · · · · · · · · · · · · ·				
Q	ļ	<u> </u>	-				<u> </u>					1				
R		<u> </u>	182		2		1	<u> </u>	<u>.</u>	<u></u>	2					
5	. 7	<u> </u>			180	············	179		185		3	<u> </u>		7		2
T	1		2		3	<u> </u>	2	<u> </u>	<u>.</u>		177	<u></u>		172		179
V		3	<u> </u>		<u> </u>	ļ	<u> </u>	1	<u> </u>	1		<u> </u>	<u> </u>	<u></u>	<u></u>	
W		<u> </u>		<u></u>	<u> </u>	<u></u>	<u> </u>		ļ	1	<u> </u>	<u> </u>	<u></u> .	<u> </u>	<u> </u>	
X	.	ļ	 	<u> </u>	<u></u>	<u> </u>	<u> </u>			ļ	<u></u>	<u> </u>		<u> </u>		
Y		<u> </u>	-			<u> </u>	<u> </u>	-	<u> </u>			<u>! </u>	1	<u></u>		
-	.	ļ	<u> </u>	ļ	<u> </u>	<u> </u>	<u>.</u>			ļ	<u> </u>	<u>!</u>	<u> </u>	<u></u>	<u> </u>	
unknown (?)		<u> </u>	-	<u> </u>		<u> </u>	<u> </u>	<u> </u>	l			<u> </u>	<u> </u>	<u> </u>	ļ	
not sequence		╄	-	<u> </u>					- 40/	100	100	104	104	104	104	10/
sum of seq?	2		185					•	•	•	:		•			•
oomcaa ³			182		:	:		:	1	•	-	:	•	•	1	:
mcaa*	P	D	R	F	S	G		G	·		T	<u> </u>	†	Ť	<u> </u>	
rel. oomeaas	%95b	510%	%86	%66	970%	9000	92.6	050	100%	%96	%96	83%	%66	93%	%66	97%
pos occupied	J ^E	3	1	:	3	3		110	5	1] 5	5 4	1 4	1 2	2 5	5 2	3

Table 4C: Analysis of V kappa subgroup 3

•																
amino acid'	75	9/	11	78	79	8	8	82	83	84	82	98	87	88	88	6 ===
Α							3			174						
В					1											
. C				<u> </u>					2				1	182		
D			1				3	182								
E					149		175									2
F		1							178		2	1	4			
G			3					1		2						
<u>H</u>											1				1	7
· [178							1	1		9					
K							1				<u> </u>					••••••
L				178		1			1		7		1			1
М										1	5		<u></u>			
N	1	5									<u> </u>		<u></u>			
Р						149										
Q					34		<u></u>							1	181	155
R		1	111							3	<u></u>					1
<u>S</u>		169	65			34			1	•			2			
T		8	4							1	•••••••••••••••••••••••••••••••••••••••	·····				8
<u>V</u>	4			6					1	3	159					7
W																·········
X	ļ							····	·							
Υ	1										1	183	176		1	2
-	ļ			ļ	<u> </u>											·
unknown (?)																
not sequenced	:===	<u> </u>														100
		÷	÷	÷•••••	:	:	:	:	:	184	:			:		:
oomcaa³	178	:	 	:		:	:	:		174						:
mcaa'		S	R	L	Ε	Р	E	D	F	Α	V	Υ	Υ	-	Q	Q
rel. oomcaa ^s	97%	92%	%09	97%	81%	81%	%96	%66	92%	92%	86%	%66	% 96	%66	999%	85%
pos occupied ⁶		5	5	. 2	3	3	4	3	6	6	7	2	•	•	3	8

Table 4C: Analysis of V kappa subgroup 3

: Analysis of	<u> </u>			<u> </u>	CI	or III										
amino acid'	91	92	93	94	95	⋖	B	ပ	٥	ا نب	ш.,	96	6	86	66	9
Α		1	8	3	3											1
В							<u></u>	<u></u>								
С	2			1			<u></u>	<u> </u>				2	<u>-</u>			
D		8	5								<u>į</u>		1			,
E		2										1				
F	5		2									7		166		
G	1	104	15		1	1	2					1			166	41
Н	4	1						<u> </u>				2				
1			1			1						4	<u> </u>			
K			2			1				<u>.</u>		1				1
L	<u>.</u>			2	7	5						42				
M	<u> </u>	1			1	2										
N		28	71								<u></u>	1				
Р				1	139	24						7	2			
Q	1	<u> </u>	1		3	1						3				114
R	34	2	3		2	2						19				
S	2	33	58	102	15	2						1				· · · · · · · · · · · · · · · · · · ·
T		2	13	1	1	2							154			
V		<u>.</u>	<u> </u>		3	· 1						2				
W			ļ	69	<u></u>							24				
X			<u> </u>	<u></u>	<u></u>											
Y	134	1 1	1	<u> </u>	<u> </u>							43			<u>. </u>	
_		<u> </u>	3	3	7	127	167	169	169	169	169	8	1	1	1	
unknown (?)			ļ	<u> </u>	<u> </u>	<u> </u>										
not sequence		<u> </u>	<u> </u>	<u> </u>										-	16	-
sum of seq²		3 183														
oomcaa'	13	4 104	·•••••••••••••••••••••••••••••••••••••	:		127	167	169	169	169	169	:		1 _		:
mcaa ⁴	Υ	G	N	S	Р	-	-	<u> </u>		-		-	T	F	G	C
rel. oomcaa	7.30%	57%	39%	26%	76%	75%	%66	100%	100%	100%	100%	25%	93%	0/066	99%	
pos occupied	J.	B 1	;	•	<u> </u>	12			1	1	1	18	5	:	:	<u>.</u>

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

	i	Fr	amev	vork	١٧					
amino acid'	101	102	103	104	105	106	⋖	107	108	sum
А										1345
В										2
С										375
D					23					564
E			3		141					759
F						6				765
G	166								1	1804
Н					1					64
I						143				803
κ			152					157		489
L				54		1			2	1596
М						3				36
N		1			Ÿ			3		255
Р		1		1						1147
Q			1		1					1314
R			9			2		4	134	1326
S		2								2629
Т		162	1					1		1593
V				111		11				646
W										287
X										
Y			1							1014
-	1	1	1	1	1	1	166	1	1	2151
unknown (?)							-			4
not sequenced	16	16	15	16	16	16	17	17	. 45	337
sum of seq ²	167	167	168	167	167	167	166	166	138	
oomcaa,	166	162	152	111	141	143	166	157	134	
mcaa⁴	G	Ţ	K	V	E	١	-	Κ	R	
rel. oomcaa'	%66	97%	90%	%99	84%	%98	100%	95%	97%	
pos occupied ^s	2	5	7	4	<u> </u>	7	;	5	4	

1/3

Table 4D: Analysis of V kappa subgroup 4

4D: Analysis of V K				•							ram	ewo	rk I					
amino acid'	-	2	m	4	ស	9	7	∞	ი —	5	=	12		4	5	16	17	18
А												24					1	
В																		
· c										1				_		1		
D	25								26									
E																	25	
F																<u></u> -		
G												1				24		
Н																		
1		26																
К						1												
L				1							26				26			
М				24												<u> </u>		
N	1	ļ											<u></u>			<u> </u>	<u></u>	
Р								26				1						
Q			1			25										<u> </u>		-
R	ļ															<u></u>	<u> </u>	26
5	ļ	ļ					26			25				26		1		
T	ļ				26									·		<u> </u>	<u></u>	<u> </u>
V	ļ	<u> </u>	25	1	<u> </u>	·					<u></u>		26			<u> </u>	<u> </u>	
W	ļ	<u> </u>			<u></u>						ļ					<u> </u>	<u> </u>	-
X	ļ	ļ	ļ		<u></u>			.,							<u></u>	 		<u></u>
Y	<u> </u>	<u> </u>	<u> </u>								_				<u> </u>	<u>!</u>	H	-
	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>		<u></u>			<u> </u>		<u></u>		<u></u>		<u> </u>		
unknown (?)		<u> </u>	<u> </u>								7		7	7	-	, .	,	7 7
not sequenced		7 7		_		7		=		+		7	 -			÷		
sum of seq ²		26	*******			**********	••••••			•	:	:	;	:	:	:	•	:
oomcaa,		5 26		:		-	:	;		:		•	:	: _) Zt	:	:	
mcaa*	D		V	M			S	Р	D	S	†**** <u>*</u>	<u> </u>		;		·÷····		
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	920%	060%	100%
pos occupied ^a		2 1	2	2	3	1 2	2 1	1	1	2	2 1	3	1	1		1	3	2

1/4

Table 4D: Analysis of V kappa subgroup 4

							_							CDRI				
amino acid'	19	20	21	22	23	24	25	56	27	٨	ω	ပ	٥	w	<u>u.</u>	28	29	30
A	26						1				1							
В																		
С					33													
D											1		1			1		
E																		
F ·											<u> </u>							
G																		
Н																		
			26								1							
K						33										2		3
L ·											2	_31						
· M																		
N				26												30	31	
Р							1								1			
Q									32									
R									1								1	
S .							31	33		33				32	32		1	
Ţ		26												1				
V		<u> </u>			.,						28	2						
W	<u></u>	<u> </u>																
X		<u> </u>	<u> </u>	<u>.</u>														
Y		<u>. </u>	<u> </u>										32					_
_		<u>.</u>			<u>.</u>									<u></u>				ļ
unknown (?)					<u>.</u>													
not sequenced	7	7	7	7											<u> </u>			_
sum of seq ²	26	26	26	26	33	33	33	33	33	33	33	33	3 3	33	33	33	33	3
oomcaa3	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	3
mcaa⁴	Α	Ţ	1	N	С	K	S	S	Q	5	٧	L	Υ	S	5	N	N	
rel. oomcaa ^s	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	97%	97%	92%	91%	94%	
pos occupied ⁶	1	1	1	1	1	1	:	:::::::::::::::::::::::::::::::::::::::	:	:	÷	:	÷	:	:	:	:	:

Table 4D: Analysis of V kappa subgroup 4

-					丄							rame							
amino acid'	31	32	33	34	2	3 5	ى د	3	8 8	£ .		41	42	. .	44	45	46	47	48
Α				3	2						2								
В				<u> </u>	<u></u>														
С														_					
D				<u> </u>															
E			<u></u>									1							
F			<u> </u>	<u> </u>															
G			<u> </u>									32							
Н			ļ	_			2					_							
			<u> </u>											_					32
K			<u> </u>	<u> </u>						33						32	:	22	<u></u>
L			3	3	_												29	33	
<u> </u>	ļ		<u> </u>											<u></u>			<u> </u>	<u></u>	
N	33	<u> </u>	<u> </u>	<u>.</u>													<u> </u>		<u> </u>
Р	<u> </u>										31			31	33				-
<u>Q</u>	ļ	<u> </u>	<u> </u>	-		_			33				32				<u> </u>		<u>.</u>
<u>R</u>	ļ	<u> </u>	-	_	_			1	<u> </u>		•••••		1			1	<u> </u>	<u> </u>	<u> </u>
<u>S</u>	. .		-	-	-						·····			2			ļ		-
T	. 	<u> </u>	 		1														·
V	. 	<u> </u>		+												<u>!</u>		ł <u></u>	. <u>i</u>
W	.	<u> </u>				33											ļ		
<u> </u>		<u> </u>	_	-										······			<u>.</u>		
Υ		3	3	+			31									<u> </u>	-	÷	÷
	- 	<u> </u>	-												<u> </u>	ļ			
unknown (?)		-	-					<u></u>							<u></u>				
not sequenced		+			22		22	22	22	22	27	33	77	73	37	1 3	3 3	3 3	3 3
sum of seq?	3.	3 3	3 .	33	33	 	33	33	22	22	71	32	32	33	3	≀ 3'	2 2	9 3	3 :
oomcaa,								1	;			G		Р.	•	K			
mcaa•	N	- 					Υ	-		Ţ					ļ		Ī		
rel. oomcaas	1000%		9 20 20 20 20 20 20 20 20 20 20 20 20 20	100%	97%	100%	94%	97%	100%	100%	940%	97%	97%	94%	100%	0.70%	2000	0000	
pos occupied ⁶		1	1	1	2	1	2	2	1	1		2 2	2	2	<u>!</u>	1	2	2	1

Table 4D: Analysis of V kappa subgroup 4

_				C	DR I													
amino acid'	49	S S	51	25	23	54	52	26	57	28	23	9	6	62	63	64	65	99
Α			30															
В																		
. С																		
D												33						
E							32											
F ·														33	<u></u>			
G									33						1	33		3:
Н																		
ļ					1													
К																		
L																		
M																		
N					2													
Р				1							33		1					
Q																		
R						33							32					
· <u>S</u>			1	31	1			33							32		33	
Ţ			2	1	29													
V			<u></u>				1			33								
W		33	<u></u>															
X			ļ															
Υ	33																	_
	ļ	<u> </u>	ļ						<u></u>	<u></u>		··						
unknown (?)	ļ	<u></u>	<u></u>		ļ					ļ							ļ	
not sequenced	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>							-	<u> </u>
sum of seq ²		÷	÷	·	÷	···	÷	:	·	33	:		:	:	:	:	:	:
oomcaa,	33	33	30	31	29	33	32		į	33	33	33	32	33	32	33		:
mcaa*	Υ	W	Α	S	T	R	E	S	G	·V	Р	D	R	F	S	G	S	Ť
rel. oomcaas	100%	100%	910%	94%	%88	100%	97%	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	
pos occupied ^a	1	1	<u> </u>	3	Ī		2	1	1	1	1	1	2	1	2	1	1	

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

_					Fr	ame	wo	rk l	ii				_							
amino acid'	67	89	69	70	71	72	7.7	2 ;	4	75	9/	77	20	9 9	? ?	8	8	82	83	84
Α																33				32
В		•••••											<u>.</u>					.,		
C													<u> </u>							
D			*******	32														33		
E												<u> </u>	<u>.</u>				33			
F					32	2	<u> </u>					<u> </u>	<u> </u>							
G		33		1		<u>.</u>	<u>.</u>					<u></u>								1
Н					<u> </u>							<u></u>								
					<u> </u>	<u> </u>				33		<u> </u>	<u>.</u>						<u> </u>	<u></u>
K		<u> </u>										<u> </u>						<u></u>		
L			ļ		<u>.</u>			33				<u> </u>		32			•			
· M			<u> </u>		<u>.</u>						<u> </u>	ļ	<u>.</u>	1	_			<u> </u>	<u> </u>	<u></u>
N			<u> </u>								2	<u> </u>	1					<u> </u>	ļ	
Р		<u></u>	<u></u>				_				ļ	-						<u>.</u>	-	
Q		<u></u>	<u> </u>	<u> </u>			_					<u> </u>	-		32			<u> </u>	-	ļ
R		<u> </u>	ļ				_				ļ	<u>.</u>			1			<u> </u>		<u> </u>
<u>S</u>	33	ļ	ļ				_				30) 3	2					ļ		
T	ļ	<u> </u>	3	3	<u> </u>	3	33		33			<u> </u>			<u>i</u>	•••••		<u> </u>	-	
<u>V</u>					<u>.</u>	1	<u>. </u>		•		<u> </u>	-					<u></u>	<u> </u>	3:	3
<u>W</u>	ļ				_		_			<u> </u>								-		-
X	ļ	<u> </u>		_	<u>.</u>		_			<u> </u>	ļ		_					-		
Υ	L	<u> </u>	┿		<u> </u>	_	_			<u> </u>	<u> </u>	-	-					 		-
-	ļ	ļ	.							<u> </u>	-						<u> </u>	<u>.</u>		
unknown (?)	Į	_	<u> </u>			_					-									-
not sequenced	Ļ	<u> </u>	╧	_	<u> </u>	+	_			_	-									
sum of seq'		3 3																		
oowcaa,	3	3 3				32	33		•	1	:	:				:			•	:
mcaa ⁴	S	G		T I)	F	Ţ	L	T	÷		5	<u>S</u>		Q	····				/ A
rel. oomcaas	1000%	9000	200	100%	97%	92%	100%	100%	100%	100%	2 70	0/- 	97%	97%	97%	100%	1000%			0.00
pos occupied ^a		1	1	1	2	2	1	:		1	1	3	2	2	2		1	1	1	1

Table 4D: Analysis of V kappa subgroup 4

D. Allalysis of V N											CI	OR III						
amino acid'	82	98	87	88	68	90	91	92	93	94	95	∢ .	æ ·	ပ	۵	ய	u_	96
Α										1								
В																		
· C				33														
D								1	1									
E																		
F ·			1					1										
G								<u> </u>	2	_								•••••
Н			1		3			ļ	<u></u>									
1							<u> </u>	<u></u>	<u></u>	2								
K					<u></u>		<u> </u>		ļ	ļ								
L						1		2	<u></u>	1	3							
· M					<u>.</u>		<u></u>	<u></u>	<u></u>	<u> </u>								
N					<u> </u>		<u></u>	<u></u>	4	4								
Р					<u></u>		ļ			1	29	1						
Q				<u></u>	30	32	<u>.</u>	<u> </u>	<u>.</u>	<u></u>	1							
R		<u> </u>		<u></u>	<u>.</u>	<u> </u>	<u> </u>	ļ	1	<u> </u>		1				<u></u>		
5		<u>.</u>		<u></u>	<u>.</u>		2		· •	2						ļ		
T .	ļ	ļ		<u> </u>	<u> </u>	<u> </u>	ļ		2	22						<u> </u>		
V	33	ļ	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>		ļ	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>
W	ļ	<u>.</u>			<u> </u>		<u> </u>		ļ	ļ	<u> </u>					<u> </u>	ļ <u>.</u>	
<u> </u>	ļ	<u> </u>	<u> </u>	ļ	ļ			-	<u>.</u>	ļ	ļ				<u> </u>	<u> </u>	<u></u>	<u> </u>
Υ	_	33	31	<u> </u>	<u> </u>	<u> </u>	3	1 2)	<u> </u>	<u> </u>						<u> </u>	<u> </u>
***************************************	ļ	<u>.</u>	<u></u>	ļ	<u> </u>		<u> </u>			ļ	<u>.</u>	13	15	15	15	15	15	<u> </u>
unknown (?)	[-			-							
not sequenced	_	<u> </u>	<u> </u>	<u> </u>		-	<u> </u>	+	<u> </u>	╄-	-		-	: -	$\dot{-}$	18		_
sum of seq'	*******								•	•	3 33		•			•	•	:
oomcaa	33		. ::	•	•••		····	:		:	2 29	13	15	15	15	15	15	•
mcaa ⁴	V	Y	Y	С					S			-	-		-	-	-	-
rel. oomcaas	100%	100%	940%	100%	200	07.00	0,700	0.4.0	2000	670%	0/088	87%	100%	100%	100%	100%	100%	
pos occupied"		1	1 :	3	•	•	•	: '	4	:	:	3	•		1	1	1 1	

Table 4D: Analysis of V kappa subgroup 4

nalysis of V kappa subg	Tou	p 4				Fra	me	woi	rk \	7					
amino acid' 6	86	60	3 5	3	101	102	103	104	105	106	9 <	, ,	<u> </u>	98	sum
А	Ī	T													183
В															
С															68
D															154
Е										14					105
F	1	5						<u> </u>							82
G			15	4	15			ļ							228
Н			_												6
l								<u> </u>	<u></u>		14				135
K							14	1					13		158
L	-		_				ļ		4						258 27
M	1						<u> </u>						1		136
N	<u>.</u>						ļ						1		195
Р						1	<u></u>		1						264
Q				11		<u> </u>	<u> </u>	1	1 :	1	<u>-</u>		1	11	116
R						<u> </u>	ļ				1				499
S	2				<u></u>	14									236
T . 1	12					<u> </u>			9					<u> </u>	196
W						<u> </u>	-		1						69
X		-				·	-					••••			
Y						<u> </u>	<u> </u>								254
-												15			106
unknown (?)															ļ
	18	18	18	18	3 18	3 1	8	18	18	18	18	18	18	22	518
sum of seq'	15	15	15	15	1	5 1	5	15	15	15	15	15	15	11	
oomcaa,	12	15	15	1	1 1	5 1	4	14	9	14	14	15	13	3 11	
mcaa ⁴	T	F	G	Q	G	1	·	K	٧	Ε	1	-	K	R	-
rel. oomcaaʻ	90%	100%	100%	730%	100%		92%	93%	%09	93%	93%	100%	870%	100%	
pos occupied ^a	3	1	1		2	1/2	,	2	4	2	2	1		3	1

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

•											F	ram	ewo	rk l						_
amino acid'	_	7	က	4	2	9	7	8	6	2	2	=	12	5	4	15	91	17	<u>e</u>	19
Α												19		18	20					
В										<u> </u>										
. C																				
D																				
E										<u>.</u>									1	
F .													į							
G														22			42			
Н	2								<u>.</u>											
			1						<u> </u>	<u>.</u>		1								·••••
K									<u></u>										14	
L			1	41				<u> </u>	<u></u>		<u></u>	1								
М									<u></u>											
N								<u></u>	<u>.</u>											
Р					<u> </u>		41	41	<u>.</u>						1	41				
Q	22		1	<u> </u>	<u> </u>	41	<u> </u>	<u> </u>	<u> </u>									42		
R				<u> </u>	<u> </u>	<u> </u>	<u></u>		<u> </u>										25	
S		39	<u> </u>	<u> </u>			<u> </u>	ļ	4	1			41			1			1	ļ
Ţ		<u> </u>	<u> </u>	<u> </u>	41	<u> </u>	<u> </u>	<u> </u>							19				1	
٧		1	38		<u></u>	<u></u>		<u> </u>	<u> </u>			20		1	1		<u></u>	<u> </u>		4
W				<u> </u>	<u> </u>		<u>.</u>										ļ <u>-</u>			<u></u>
Χ		<u></u>		<u> </u>													ļ	ļ	ļ	
Υ		<u></u>		<u>.</u>			<u> </u>	<u> </u>	<u> </u>							<u> </u>	ļ	<u> </u>	ļ	
Z	16			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		_					<u> </u>	<u> </u>		<u> </u>	_
		<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ	ļ	<u>.</u>		41					ļ	<u> </u>	<u></u>		-
unknown (?)		<u>.</u>	<u> </u>	<u>.</u>	<u> </u>	<u>.</u>	<u> </u>		<u>.</u>					<u></u>		<u> </u>		<u> </u>	<u> </u>	ļ
not sequence			1	=	1		_	 -				_1		: -	:	⇌	<u> </u>	<u> </u>	<u> </u>	<u> </u>
sum of seq²	40	40	41	41	41	4	1 4	1 4	1 4	1	41	41	41	41	41	42	42	42	42	
oowcaa,	22	39	38	3 41	41	4		•	•								42			
mcaa'	Q	S	٧	·÷			••••	Р		·	••••••	•		÷			G	:	R	
rel. oomcaa ^s	5.5%	980%	930V	100%	100%	100%	%0001	200	200	<u>ه</u>	100%	49%	100%	54%	49%	98%	100%	100%	%09	
pos occupied	• • • • • • • • • • • • • • • • • • • •			•	••••••••	·· · ·····	•	••••	•••••	••••••		:				:	2 1			

121

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

-					T									DR	_									_
mino acid'	20	21	22	23	24	י נ	C7	26	27	_	, ,	u —	28	2	۶۶ 	စ္က	31	∀	,			34	35	; =
A	2			Ī						1					2	2		-		1		<u> </u>	-	
В									<u> </u>				<u> </u>	_	_		<u> </u>	-		-		<u> </u>	-	•••
С				4	2				<u> </u>		_		ļ	_	_			-	-			┼	-	••
D									_	_		3	ļ	_				1	_	3		-	1	
E									_	_	_		ļ	-		1	-						-	
F						1			<u> </u>		1		Ļ	_					1	1	<u> </u>	-		
G			<u> </u>				42		3	1			<u> </u>	2	39		- -	2	-	 ^	<u> </u>	-	2	••
Н				_				<u> </u>	-	-	_		<u> </u>	-		<u> </u>	-	2	+	2	 	<u> </u>	1	
1	1	4	1					<u> </u>		_			1 3	17		<u> </u>	_		-		 -	┪	-	
K								<u>.</u>	_	_			<u> </u>	_	,	<u> </u>	1				 	-		
L			1					<u> </u>					-	1		 	-	-			╁	-	_	
М				_				-	_				_ -	1		ļ	3 :	21	2		-	1	9	
N								-		2	1	3	<u> </u>				3	21				1	_	-
Р					_			-	_				-			+	-				1	<u> </u>	十	••
Q	_							-		_		-					5	-			-	1	T	-
R			_	_			<u> </u>	-	1	1		_	-			-	13	1	1		3	<u></u>	19	-
S		1		42		38	<u>:</u>	-		34	*******	T			_	1		1			7		2	-
T	3	8	_			3	<u> </u>	-	4		. 2	<u> </u>	- 	1		'					2	40		_
V	_	_					-	╬				+			-	+	1			-				_
W	_ -	-					!	-	_						-	<u> </u>								
X		_				ļ	-	-					-		-	1		4	1	2	20		7	
<u>Y</u>		-				<u> </u>	+	-				┪	1		+	i								
Z	_	+	_			╬	┿	÷			-	Ť	7		Ť	T			36	5				
					<u> </u>	<u> </u>		+				+	_		<u> </u>	Ī								
unknown (<u> </u>	<u> </u>	 	-	1		<u> </u>	 	1				Ī				ı	1	_1	1	
not sequenc	,	42	12	42	47) 4	2 .	42	42	42	4	2	42	4	2 4	42	42	42	4	1	41	41	41	
sum of sec	•	72 70	<u>-72</u> Δ1	42	42	2 3	8	42	34	34	3	8	37	3	7	39	13	31	3	6	20	40	13	
mcaa _t	-	30: T		S		•	•	G		5			N			G	N	N	_		Υ	٧	S	-
	<u>-</u>			<u> </u>	· †		_			1		e S	%	2	0/2	%	%	74%	30%	00-00	49%	%86	46%	!
rel. oomca	a"	%06	980%	100%	100%	3 8	0/0S	100%	•		•	0/06 4	988	•		%26 م	31%	:			ਪੂੰ 10	:		7

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

				٠		ſ	rar	nev	vor	k							\perp					
amino acid'	36	37	38	2	ς γ	40	41	42		43	44	45		46	47	48	49	25	25	25	23	54
Α									4	40										1		
В																						
· C		,																				
D			<u></u>				1					ļ						··	10	8		
E			<u></u>	<u>.</u>					<u></u>			ļ	2					5			1	
F	1		<u> </u>		4				<u>ļ</u>			ļ			 		1					
G							39)				ļ						1				
Н	1	1	<u> </u>	6	1							ļ	<u></u>				1				1	
1			<u> </u>				<u></u>					<u> </u>	<u> </u>			40		1				
K			ļ				<u></u>		1] 3	15					1	1		18	
L			<u>.</u>	1	31		<u> </u>	<u>.</u>						41	40						1	
M		ļ	<u>.</u>				ļ		1			-				1					1	<u></u>
N							ļ						1					3	28	30	2	<u></u>
Р		ļ		ļ		42	ļ	1			42	2							<u></u>			<u> </u>
Q		36		34			<u> </u>					<u> </u>							ļ	<u></u>	15	÷
R	ļ	2	2		1		ļ	1					4					7			 	4
5	.	<u> </u>	<u>.</u>				<u>.</u>		<u>!</u>	1		<u> </u>						9	 -	3	1	ļ
Ţ	ļ	<u> </u>				<u> </u>	<u> </u>		36	1		-						1	<u> </u>	<u> </u>	<u></u>	-
V		ļ		1	5									1	2	1		<u> </u>	<u> </u>	<u></u>	ļ	
W	ļ	ļ				ļ						-			<u>.</u>		ļ		ļ	<u> </u>	<u> </u>	ļ
X	ļ										ļ				ļ					-	<u></u>	
Y	40)					<u> </u>								<u></u>	<u> </u>	40	1	1	<u> </u>	<u></u>	
Z		<u> </u>	1			<u> </u>	 	_			Ļ	+	_		-		_	!	<u> </u>	<u> </u>	╄	╪
_		<u>.</u>	_			ļ	<u>ļ</u>				ļ				ļ	<u> </u>		<u> </u>			 	
unknown (?)		<u> </u>				<u> </u>	_				<u> </u>				 	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>		-
not sequence	<u> </u>	<u> </u>	4			<u> </u>	┿	_			<u> </u>	<u> </u>	_					<u> </u>	1		1	╬
sum of seq ²	4	2 4	2	42	42	4	2 '	12	42	42	4	2	42	42	42	42	42	4.	4	4.	2 4	<u>'</u> '
oomcaa,	******	,			:											40						
mcaa ⁴	******	C		******	÷••••	•••		••••••		••••••		•	*******	•		1		:	:	:	K	
rel. oomcaa ^s	OE0%	966	93%	81%	740/0	900	200	93%	%98	950%		0/20 20 20 20 20 20 20 20 20 20 20 20 20 2	83%	980%	95%	950%	95%	210%	5.70%	710%	3000	2
pos occupied																						9

123

Table 5A: Analysis of V lambda subgroup 1

,	CDI											_		<u>~</u>		-		9		<u>—</u>
amino acid'	55	99	<	د د	۰ ۵	، ر	ٔ د	11	57	58	28	9	9	62	<u> </u>	79	65	<u> </u>	< -	<u> </u>
Α	1															5			_	
В																				
. С																				
D												38								
E																				
F														38						
G		<u></u>							41			2				36				
Н	<u> </u>	<u></u>				<u></u>						1								
	<u> </u>					<u></u>				17				3						••••
K		<u> </u>													<u> </u>	: :		38		
L		<u></u>	1			<u></u>		<u></u>			1			ļ	<u></u>	<u> </u>				
M		ļ		<u></u> j.										ļ	ļ					
N		<u>.</u>												<u> </u>						
Р	38										38			<u> </u>	<u> </u>	<u> </u>	ļ			
Q	<u></u>	<u> </u>		ļ						·•••	ļ	<u></u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			
R		<u> </u>									<u> </u>	ļ	42	<u></u>	<u> </u>	-	<u> </u>	4		
S		2	40								2	<u></u>	<u>.</u>	<u> </u>	42	÷	42	<u>. </u>		
T											<u></u>	<u> </u>	<u> </u>	<u> </u>	-	1	<u> </u>	<u> </u>		
<u>V</u>		<u>.</u>								24		<u></u>			1	<u> </u>	<u> </u>	<u></u>		
W								<i>.</i>		<u></u>	<u> </u>	<u></u>			-		<u> </u>		ļ	
Χ										ļ				<u> </u>						
Υ									<u></u>	ļ	<u></u>	ļ		<u> </u>		<u> </u>	<u>.</u>		ļ	_
Z									_		<u> </u>	<u> </u>	<u> </u>	<u> </u>	+	-	<u> </u>	-		-
				41	41	41	41	42	<u> </u>	ļ	ļ	<u> </u>		-		 	<u> </u>	<u>.</u>	42	-
unknown (?)										ļ	<u> </u>	<u> </u>		<u> </u>	-			 	 	<u> </u>
not sequence	d	1	1								1		1 !	_		 	1	<u> </u>	10	<u> </u>
sum of seq ²	4	1	41	41	41	41	41	42	41	4	4	4	1 4	2 4	2 4	2 4	2 4	42	42	
oomcaa,		•••••				41													3 42	
mcaa'			••••••i	-		-	·		••••••	••••••				:	:	G	:	K		
rel. oomcaa	,	33.40	%86	100%	100%	100%	100%	100%	100%	20%	93.00	020%	3000		3000	2000	100%	%U6	100%	
pos occupie	ر		<u>. ۲</u>	,	,	1	Ţ.,	,			2	2	2	1	7	1	2	1	2 1	

124

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

•				Fra	mev	vork	111												
amino acid'	29	89	69	20	7	72	73	74	75	9/	77	78	79	8	8	82	83	84	82
А		1	3		41			24						2				38	1
В																			
. С																			
D		1													1	41			37
E													1		24		42		1
F .																			
G		40				Ì		17		1	42	<u></u>			15				
Н												<u> </u>	1						2
1									41			<u> </u>							1
K					·														
L							42					41							
М																			
N																1			
Р														2					
Q				·									31						
R													8						
S	42		1	42		24				20				20				1	
Т			38			18				21				17				3	
٧					1			1	1			1		1					
W													1		2			,	
X																			
Y											<u> </u>				<u> </u>	<u> </u>			<u> </u>
Z																<u> </u>			
_																			
unknown (?)																		<u></u>	<u> </u>
not sequenced											<u> </u>				<u> </u>	<u> </u>			
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	4:
oomcaa,	42	40	38	42	41	24	42	24	41	21	42	41	31	20	24	41	42	38	37
mcaa'	S	G	T	S	Α	S	L	Α	1	Ţ	G	L	Q	S	E	D	Ε	Α	D
rel. oomcaas	%00 i	95%	%06	100%	%86	57%	100%	57%	38%	50%	100%	98%	74%	48%	57%	986%	100%	%06	880%
pos occupied ^a		†	:			2	:	:	2	:	:	2	<u> </u>		4	:		7	

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

												CDF	111									
amino acid'	98	87	88	8	3	2	91	92	0	3	9. 4	92	۷	В	٠		<u> </u>	, 11		-	5 6	8 6
A	Γ			2	2	15				1				1	6	_		-		4	1	
В		<u> </u>													_		<u>.</u>			\dashv	-	
С	 		4	2					_						_			_	_	_	_	
D								3	9	17				7	_		_			_		
E													ļ		1		_	_		1		~
F			2									1	<u></u>							_		36
G					14					1			ļ	1	7	1				5	1	
Н			1					<u> </u>					<u> </u>	_	<u> </u>	1		_			_	
1										_			<u> </u>	1	_						1	
K									_				<u> </u>	1		_	_				1	
L					1		<u> </u>	_	_			37	<u> </u>	_	_	1	_	-			1	
М							<u> </u>	_					-		_							
N							ļ		2	2				9	1							
Р							<u> </u>	_ _	_			1	<u> </u>	_	_		<u></u> -			6		
Q				_	3		<u> </u>	_ _	_				-	_						2		
R							<u> </u>	_			5	 -	1	2		_		<u> </u>		1		
S		_					4	_			35			18		1						
T		_		_		22	2	-		1	 		-	1	_					α	34	-
<u>V</u>					1		<u> </u>	_		1		 	1		2					7		-
W		_				<u> </u>		38			-	-	_									-
X		_				-					-	-								3		-
Y		42	39			ļ	<u>.</u>	3		1	<u> </u>	╄-										-
Z	_	4		_		-	+	+		 	-	╄	\dashv	2		25	30	38	38	1	_	Ť
-	_					-	_			<u> </u>	<u> </u>	╁	-		4:	35	33	30	30	<u>.</u>	ļ	H
unknown (<u> </u>	+	_		 	-	- - 	1	1	1	3	3	3	3	3		3
not sequenc	ed	_			1		1	1	1											_=	-	÷
sum of sec	ľ	42	42	42	4	4	1	41	41	4	1 4		77	10	17	35	30	38	38	9	34	1
oomcaa3	-	-			•	•				ž.	/ <u>3</u> S			<u>10</u> S			-	-	38 -	٧	+	
mcaa*		Y		С	÷		<u> </u>	W	ע	ט	13	-	<u>-</u>					.0				-
rel. oomca	a ^s	100%	93%	100%	5.40%		54%	93%	95%	410%	0 0 0	2.00	%06	44%	41%	%06	100%	100%	;		•	
pos occupio	1			i	•	5	•	2		2	•		:		6	:	1	1	1	10)	6

SUBSTITUTE SHEET (RULE 26)

Table 5A: Analysis of V lambda subgroup 1

•			F	ram	ewo	k IV						
amino acid'	66	90	101	102	103	104	105	106	∢	107	108	sum
Α												285
В					·····							
С					•						,	84
D												224
E		1										81
F												87
G	36	31	36							26		559
Н												25
1												188
K			<u> </u>		30							141
L				<u> </u>		25			34			344
M				<u></u>								5
N	ļ		ļ <u>-</u>	<u></u>	1							176
Р	ļ		ļ	<u> </u>							1	296
0	ļ	ļ	ļ	<u> </u>	3				1		18	251
R	ļ	<u> </u>	<u> </u>	<u> </u>	1		<u></u>			2		156
S	ļ	1	· ! ·····	<u> </u>						2		720
T	 	3		36	1	-	36	1				359
<u>V</u>	ļ	ļ	ļ	<u> </u>	ļ	11		36	1			282 92
W	ļ			<u>.</u>			<u></u>			1		92
X	ļ	ļ		-		<u></u>	ļ					202
Y	.		-	<u> </u>		<u> </u>	<u> </u>					16
Z	┢	<u> </u>	!	-	-	-	 				<u>-</u>	524
unknown (?)		<u> </u>	-	<u>.</u>		 		 		<u></u>		32.
not sequence		. <u> </u>	6. 1	5 (5 6	6	6	6	6	10	22	141
sum of seq							╤═	36	: -		-	4
oomcaa ₃			•••;•••••	**********				36	:	•	•	3
mcaa*	G	********	•	7		:			L	:		
				···•			%	%00	<u>o</u>	<u>e</u>	چ	
rel. oomcaa ^s	100%	0000	100%	1000	30%	%69	100	9	94%	84%	950%	
pos occupied	6	1	4	1	•••••••	5	2	1 1	3	4	1 2	2

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

Γ				-							F	ram	ewo	rk I						
amino acid'		2	Ç	n .	4 1	ر د	و	_ `	20	6	2		12	<u> </u>	4 .	5	91	1	<u>e</u>	5
А			Ţ.	35					30			6		1	1					
В		•••••																		
· C						<u></u>					<u></u>									
D														_	_		1			
E														_						
F																				
G														42			42			
Н	2	<u></u>											<u></u>					1		
1		ļ	<u>.</u>	1																28
К		<u> </u>																		
L		<u></u>	<u>.</u>		40											3				
М																				
N		ļ																	,	
Р								42	6							40		40		
Q	22			4			41											42		
R									6										43	
S		4	11			<u>i</u>				40			42		42			<u></u>	43	
T	ļ	<u> </u>	<u>.</u> .			42				1								<u> </u>	<u> </u>	1
V	ļ	<u> </u>	1	2								36						<u> </u>	<u></u>	
<u>W</u>	ļ	-																<u> </u>	<u>.</u>	
X	 	-	_				••••••											<u> </u>	<u></u>	
Υ	 																	<u> </u>		ļ
<u>Z</u>	16	<u>}</u>	1						<u> </u>	<u> </u>	42						<u> </u>	<u></u>	<u> </u>	-
	 	+								ļ	42						<u> </u>	<u> </u>	<u> </u>	-
unknown (?)	-	-					1				,	1	1					<u>.</u>	<u> </u>	<u> </u>
not sequenced		3	1												43	43	47	43	43	_
sum of seq ²	40	0	42	42	40	42	42	42	42	42	42	70	42	43	43	40	42	42	43	5
oomcaa³	:		:		:	:	;	:	•		•	:	42 S		S					
mcaa*	0	<u> </u>		<u>A</u>	L	· · · · · · · · · · · · · · · · · · ·	÷	Р	:	S		·····	· • · · · · · · · · · · · · · · · · · ·	•		<u>:</u>		-		-
rel. oomcaa ^s	5.50%	22.90	98%	83%	%001	100%	%86	100%	71%	95%	100%	969%	100%	98%	98%	93%	980%	98%	100%	
pos occupied	-				:	:	1	1	3	3	1	2	1	;	:	;	2	2 2	2 1	

120

Table 5B: Analysis of V lambda subgroup 2

_											CDI	RI							
amino acid'	20	21	22	23	24	25	26	27	٥	ய	28	29	္က	.	۷.	32	33	34	35
Α					3		1						1			1			
В																			
· C				42					1					1					
D		<u> </u>								39		1	4		5				
E															_1				
F .		1											1			4			
G						43		1				39	26						
Н								1		·					1	1			
l		41			1						6								
K					<u> </u>		<u></u>								4				
Ł		1														4			
М										<u> </u>									
N								1	3	4		1	4	3	28				
Р								1				<u></u>							
Q																			
R									1			<u></u>	2						
S			42		3		3	35	38				5	1	2	4	1	42	
T	43				36		39	3				1		1					
V											37						41		
W																			4
Χ															••••••				
Y								1				1		37		29			
Z																<u> </u>			<u> </u>
_															1	<u></u>		<u> </u>	<u></u>
unknown (?)											<u></u>				1	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequenced			1		_												1	:	÷
sum of seq ⁷	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	4
oomcaa	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	4
mcaa*	Ţ	ı	S	С	Ţ	G	Ţ	S	S	D	٧	G	G	Υ	N	Υ	٧	S	١.
rel. oomcaas	100%	95%	100%	100%	84%	100%	91%	81%	88%	91%	%98	91%	%09	86%	65%	%29	%86	100%	
pos occupied			·	1	4	;	;	:	:	:	:	:		:	:	(:	:	

Table 5B: Analysis of V lambda subgroup 2

							ran												 -			
amino acid'	36	37	30	000	33	9	41	42	7	} :	44	45	46	47	. 0	P Q	7 2	2	<u>.</u>	52	53	54
А						1	4		4	0				ļ	<u>.</u>							
В								<u> </u>						<u> </u>			_					
С		<u> </u>						<u> </u>	<u>.</u>													
D	<u></u>	<u> </u>			1		2	<u> </u>		_				-	_			20	1	2		
E	.	<u> </u>						<u> </u>						-			<u>-</u>	20			2	
F .	2						ļ	ļ			_			-			7		1			
G	ļ						36											2	2		1	
Н	.			2	34		ļ	ļ									<u>.</u>				1	<u> </u>
	<u></u>	ļ						<u>.</u>	1						9	43	<u></u>			1	 :	<u> </u>
K	<u> </u>	ļ	_				<u> </u>		10			41									21	<u> </u>
<u> </u>		_		1	1		<u> </u>	_	_				38	•••••	6					1	<u> </u>	<u> </u>
M	.	<u> </u>					<u> </u>	-	_						26						12	<u> </u>
N	-	-			2		<u> </u>	-										1		0	12	
Р						41	ļ	_			43			-							ļ	-
Q		-	41	39								2	ļ						••••••••••••••••••••••••••••••••••••••	2		. 4
R		- -	1				<u>.</u>	-	1				<u></u>	-						21	†	3
<u>S</u>					<u>-</u>	<u> </u>	<u> </u>	_					<u> </u>		<u></u>		2		••••	7		-
Ţ	- -	-				<u> </u>		_	1				<u> </u>						39		-	
<u>V</u>						<u> </u>	-	1		3			<u> </u>	4	2				33	<u> </u>	<u> </u>	
W					ļ	-							<u> </u>		<u>-</u>						<u> </u>	-
X		_					<u> </u>	_					<u> </u>				34					2
Y	4	1			5			_			ļ	<u></u>		-					ļ			
Z	- -	\dashv	_		<u> </u>	<u> </u>	┿	$\stackrel{ ext{\tiny +}}{ ext{\tiny -}}$			<u> </u>	_	<u> </u>	+		_				-		Ť
***************************************		_			<u></u>	-		-				ļ	<u> </u>					•••••		<u> </u>	<u> </u>	
unknown (?		-	1	1	<u> </u>						<u> </u>	ļ	<u> </u>		<u>i</u>				<u></u>			
not sequence sum of seq	d			42			2 /	12	42	42	1	Α,	2 2	13	43	43	43	43	4.	4	3 4	3
		13	43	43	4.	3 4	J 4	15	43	 	1 43	1	1 7	ξ 12	26	43	2∆	20	30) 7	1 2	1
oomcaa,																						
mcaa*											•	•	- :		M		•••••					
rel. oomcaa	5	920/0	95%	910%	700%	2 3	92% 100%	84%	93%	93%	100%	050%	2	0/088	%09	100%	79%	47%	910	3007	200	4300
pos occupie											2	i	2	3	4	1	3	. 4	ļ,	4	8	8

Table 5B: Analysis of V lambda subgroup 2

•	CDF	11									<u>.</u>									
amino acid'	22	26	۵	(c	<u>ه</u> د	ء ر	ے د	u [۲ ر	200	29	9	61	62	63	64	65	99	⋖	<u>Ф</u>
А															<u> </u>	2				*****
В			<u> </u>																	
C			<u> </u>														1			
D												17								
E			<u>.</u>																	
F														42						
G									43	1		-				41				
Н												2								
1										3								ļ		
K			<u>.</u>			<u></u>											<u> </u>	42		
L				<u></u> .								1		1			<u></u>	<u> </u>		
M				<u>.</u>									<u> </u>				<u></u>	<u> </u>		
N						<u> </u>						19			ļ	<u></u>	<u> </u>			
Р	43										15		<u> </u>		ļ					
Q	<u> </u>	<u>.</u>											<u></u>	<u></u>		ļ	ļ			
R	<u></u>	<u> </u>											43	<u>.</u>	ļ	<u> </u>	<u></u>	1	<u> </u>	
S		4:	3								28	2	ļ	ļ	43	<u></u>	42	<u> </u>	<u> </u>	
Ţ		<u> </u>											<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
V		<u></u>								39		ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
W		ļ										<u> </u>	ļ	<u> </u>		<u> </u>	ļ	ļ	<u> </u>	
Χ		ļ										ļ		<u> </u>		<u> </u>				<u> </u>
Υ		<u>.</u>										2	2	<u>.</u>		<u> </u>			<u>.</u>	
Z		L										_	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>
_		<u>.</u>		43	43	43	43	43				ļ		ļ		ļ			43	4
unknown (?)											ļ	<u> </u>	-	<u> </u>	-	ļ	<u>.</u>	-		<u> </u>
not sequence	d		_									<u> </u>	<u> </u>	┿	-		-		<u> </u>	
sum of seq ²	43	3 4	3	43	43	43	43	43	43	43	43	43	3 43	3 4	3 4	3 4	3 4	3 4	3 43	4
oomcaa,	4:	3 4	13	43	43	43	43	43	:	:			•	•					2 43	4
mcaa*	Р	9		-	-	-	-	-	·	٧	·		R		•••;••••••		S	••	7	
rel. oomcaaʻ	100%		100%	100%	100%	100%	100%	100%	100%	910%	65%	9077	100%	%080	100%	2 6	2000	0,000	100%	
pos occupied	16	•••••	•••••	,	:	:	:	:	:	:	:		•		:	•	2	:	:	ı

131

Table 5B: Analysis of V lambda subgroup 2

_			-	Fra	mev	vorl	k II	1						······································			·			
amino acid'	29	89	69	02	7.1	72	7.7	? ?	*	۲,	9/	77	78	79	08 ————————————————————————————————————	8	82	83	84	82
Α		3		1	43										36				43	
В							<u> </u>													
. C				.,				<u> </u>												
D		1	2													3	42	<u></u>		39
E						ļ	<u> </u>					1				38		43	<u> </u>	
F .					<u></u>													<u> </u>	ļ	
G		39				<u></u>						42				1		ļ	ļ	
Н				<u> </u>	<u> </u>	<u> </u>	_											ļ	ļ	2
l				<u></u>	<u> </u>	<u> </u>				35								<u> </u>	ļ	<u> </u>
K			1			<u> </u>												<u> </u>	<u> </u>	ļ
L					<u> </u>	<u> </u>		43					43				<u> </u>	<u> </u>	ļ	<u> </u>
M				<u> </u>	<u> </u>	<u> </u>		<u> </u>										ļ	<u> </u>	
N			38		<u>.</u>	<u> </u>										1	1	ļ	<u> </u>	
Р						<u>.</u>									2		ļ	ļ		
Q				<u>.</u>		<u>.</u>								41				<u> </u>	ļ	
R					<u></u>	<u> </u>								2				<u> </u>	<u> </u>	<u> </u>
S	42					4	3	<u> </u>			42						ļ	ļ	<u>.</u>	<u> </u>
T			1	4	<u> </u>	<u> </u>			43		1				2	ļ	ļ	<u> </u>	ļ	<u> </u>
٧						<u> </u>				8			ļ		3	<u> </u>	<u> </u>	ļ	<u>.</u>	
W				<u> </u>		<u> </u>		•					ļ			<u></u>	<u> </u>	<u>.</u>	<u> </u>	ļ
Χ						<u>.</u>							<u></u>	<u> </u>		<u> </u>		<u>.</u>	<u> </u>	ļ
Y				<u>.</u>	<u>.</u>	<u>.</u>						ļ	ļ			<u></u>				
Z			<u> </u>	<u> </u>		<u> </u>						<u> </u>	<u> </u>	<u> </u>			<u>!</u>	-	<u> </u>	<u> </u>
-			<u> </u>	<u>.</u>		<u> </u>						ļ		<u> </u>		<u> </u>	ļ			
unknown (?)			<u> </u>	1								<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>
not sequenced			<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	+-	-
sum of seq ²																			3 4	
oomcaa3	42	39	3	8 4	1 4	3 4	13	43			•	:		•	•	•	•	•	3 4	
mcaa*	S	G	N	1	P		S	L	Ţ	1	S	G	L	7	Α	E	D		•;	. [
rel. oomcaas	100%	910%	9000	200	35%0	200	100%	100%	100%	81%	%86	98%	100%	95%	84%	880%	8000	10000	100%	5
	·		:		3	<u>-</u>			<u> </u>		:	1	:	;			4	_	1	1

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

_												CDR									
amino acid'	98	87	88	83	8	<u> </u>	6	92	93	94	5	95	⋖	ω.	U	۵	w.	ш.	96	97	86
Α					2	1		21	•••••	<u></u>	1								1	1	
В										<u> </u>	<u>.</u>										
· C			43	1	1					<u></u>											
D									3	<u> </u>	1	2							1		
E				ļ				1	1	ļ											
F		3		ļ			3			ļ		1		1					5	<u> </u>	4
G			<u> </u>	ļ				1	21		3	4							1		ļ
Н				ļ			1			-								<u> </u>		<u></u>	
<u> </u>			ļ	ļ				1	1	ļ	_	1	2						1	7	<u>.</u>
K			<u> </u>	ļ						ļ		3						ļ <u>.</u>		<u> </u>	ļ
L			<u> </u>	<u></u>	-				ļ					1	1			<u> </u>	6	·	·
M			<u> </u>	<u> </u>					ļ									<u> </u>	1	Ī	-
N			<u> </u>	<u>.</u>					<u>.</u>		.5	7	5	:				<u> </u>	1		<u> </u>
Р										l į				4							-
0			ļ	<u>.</u>					<u> </u>	_		1	2	·							. <u> </u>
R	ļ		<u> </u>	<u> </u>				2	÷	-	3	*********		1					5	÷	
<u>S-</u>		1	ļ	<u> </u>	30	41			÷	··· · ···			9	······			<u> </u>	<u> </u>	1	<u> </u>	<u>.</u>
T	.		ļ					16		4	4	3	21	<u> </u>		·	<u> </u>	<u> </u>	 _		
<u>V</u>	.	<u> </u>	-					1	<u> </u>			•••••	<u> </u>	<u> </u>			<u> </u>	-	· !······	28	3
W	ļ	ļ	<u> </u>	<u>.</u>					. 					<u> </u>	<u> </u>		<u></u>	-		5	-
X	ļ		-						<u>.</u>	-		····-	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>		-
<u>Y</u>	43	39	3				39		-		1	6	-		<u> </u>			-		1	-
<u>Z</u>	<u> </u>	<u> </u>		<u> </u>					╧	$\stackrel{\perp}{-}$			<u> </u>	1 00			1	<u> </u>	<u> </u>		÷
<u>.</u>	. .					••••••			<u> </u>				1 3	3 36	42	43	4.	3 4.	5		-
unknown (?)		<u> </u>		<u></u>			<u></u>			‡	2	<u> </u>	<u> </u>		<u> </u>	<u></u>	<u> </u>			-	<u>.</u> 1
not sequenced		-	<u></u>	-			_		<u> </u>			4.2		1	42	47	4	3 4	2 4	÷	÷
sum of seq ²	2				******		÷							2 43	:						
oomcaa ₃		·†	··· ፣				Ţ		:	:				1 36	42	4.3	1 4	. 4	3 I V	:	o /
mcaa*	Y				S		<u> </u>		(•••••	S	T				-		<u> </u>		
rel. oomcaas	100%	0.10%	9-1-6	200	70%	98%	910%	4 00%	2	4300	53%	33%	2000	840%	0/86	100%	1000%	30001	200	0,07	0/2/0
pos occupied		1		1	3	i	:	:	:			:	١	÷		2	1	1	1 1	3	5

133

Table 5B: Analysis of V lambda subgroup 2

•			F	ram	ewo	rk IV						
amino acid'	66	100	101	102	103	104	105	901	٧	107	108	sum
А		1										280
В			•									
С					•							99
D			Ī									188
E												107
F												113
G	42	33	42							19		567
Н												48
l							1					184
К					36							189
L						28			40			264
М												29
N					1							146
Р												238
Q					1						14	250
R		1			2					4		121
S							1			2		831
T		7		41			40					398
V		<u> </u>	<u> </u>			14		42	1			327
W		<u> </u>										48
X		ļ										
Υ		ļ			1							285
Z			_									16
-	ļ	<u> </u>	ļ	<u> </u>		<u></u>						555
unknown (?)	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>						8
not sequenced		==	: -			1				15		80
sum of seq ²	·		42	÷	····	÷	42		•	25	i	
oomcaa ³	-	7	·!·····	<u> </u>	:	<u>;</u>	40				<u> </u>	
mcaa*	G	G	G	T	K	L	Τ	V	L	G	Q	
rel. oomcaas	100%	79%	100%	100%	88%	67%	95%	100%	98%	26%	100%	
pos occupied ^a	1	4	1	1	5	2	3	1	2	3	1	

134

Table 5C: Analysis of V lambda subgroup 3

							,			F	ram	ewo	rk I						
amino acid'	-	2	က	4	2	ဖ	^	&	5	2	= 1	17	<u></u>		15	9	17	13	19
Α					1		1	2	7			<u>.</u>		20	1				27
В														_					
. С																			
D			5				10												
E			20										1			1			
F	1	1										1			1				
G	·		1													37			
Н																			
ı												<u></u>							
K			<u> </u>		<u></u>												2		
L			<u></u>	37							4		1		9				
М																			
N																			
Р							26	35	1						27				
Q	4		4			38											36		
R																			
S	13	14			1		1	<u></u>	28			37		18					
T					36			1				<u> </u>						38	
٧			8	1					2		34		36						1
W																		ļ	
Χ																		ļ	_
Y		23	3															<u></u>	<u> </u>
Z																	<u> </u>		_
-	20)								38						<u></u>	<u> </u>	ļ	
unknown (?)																<u> </u>	<u> </u>	<u> </u>	<u>.</u>
not sequenced						<u> </u>											<u> </u>	<u> </u>	
sum of seq ²	38	31	3 3	3 38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	
oomcaa ³	20) 2:	3 20	37	36	38	26	35	28	38	34	37	36	20	27	37	36	38	
mcaa*	-	Υ	Ε	L	Ţ	Q	Р	Р	S	_	٧	S	٧	Α	Р	G	Q	Ţ	
rel. oomcaas	530%	610%	2.00	%25	95%	100%	%89	92%	74%	100%	%68	97%	95%	53%	71%	97%	95%	100%	
pos occupied	•	:		5 2	:	:	1	•	4	:	2	:	:		:		i	2 1	

Table 5C: Analysis of V lambda subgroup 3

•											CDI								
amino acid'	20	21	22	23	24	72	76	27	۵	ய	78	29	8	ب	⋖	32	<u>۳</u>	34	35
Α			1					5					1	1			21	3	
В										<u> </u>									
- С				38														5	
D							30	1				<u> </u>	10			3		1	
E							2	2				1	3	6					
F .										<u></u>				1		2			
G					9	38		1				23	4						
Н							1									2		9	
		38									9			1					
K								7				<u> </u>	2	13					
L											28	<u> </u>							
М	1													1					
N			2				4	9			1		2			1		2	<u> </u>
Р			1									3							
Q					10									4				ļ	
R	25			<u> </u>				2				10	1				1	÷	-
S	9		1	<u> </u>	19			10					11	2	<u> </u>	8	ļ	14	-
Ţ	3	<u> </u>	33	<u> </u>	<u> </u>			1				1	4		<u> </u>		<u> </u>		-
V		<u> </u>		<u> </u>	<u> </u>										<u> </u>	1	15	<u> </u>	-
W		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>							<u> </u>	<u></u>	<u> </u>	<u></u>	
Χ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>						<u>.</u>		<u> </u>	ļ	-
Υ		<u>.</u>				ļ	1	ļ	ļ					8	<u> </u>	20	1	4	ļ.,
Z							<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u>	<u> </u>	╀
			<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	38	38		ļ			37	<u> </u>	-	<u> </u>	-
unknown (?)		<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u></u>		<u> </u>	<u></u>	<u>.</u>	ļ	 -
not sequence		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	_					1	$\Rightarrow =$!	+
sum of seq?	38	3 38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	3
oomcaa,	25	38	33	· — ~ ~ ~ ~				:	:	38						:		:	
mcaa*	R	1	Ţ	С	S	÷	••••••	·:	7	-		G		· · · · · · · · · · · · · · · · · · ·	<u>-</u>	Y	Α	5	-
rel. oomcaa ^s	66%	100%	87%	100%	50%	100%	79%	26%	100%	100%	74%	61%	29%	35%	100%	54%	5.5%	37%	2
pos occupied	·			·÷	•••••••	7		•	:		:	1	1	:	1		7	4	7

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

						F	ram	ewo	rk II	_											_
amino acid'	36	77	2	S 8	ξ	6	4	42	43	44	Ļ	t t	46	47	48	4	20	51	52	53	
Α									23		-	_				_		1		1	·
В		<u> </u>									_	_ļ									
С	<u> </u>											_ļ									
D																		22			
E				1								_		<u> </u>			5	3		3	••••
F	3							<u> </u>								2			1		
G							36				_						9				
Н								1			_					1	3		<u> </u>	1	
												1			28				1	!	
K					32												2	6	1	13	
		Ī		2						<u> </u>		6	33	1					<u> </u>	<u> </u>	
M	1	Ī									<u> </u>		1		1				<u> </u>	<u> </u>	
N.		Ī	Ī															1	19	9	<u> </u>
P						36		1		3	8								ļ	<u></u>	
Q			37	35	1			36									9		<u> </u>	1	
R	-		1		4		2										1	1		1	3
S					1	2			14								<u> </u>	<u> </u>	10	1	<u> </u>
T	-	Ī															<u> </u>		2 4	<u> </u>	<u> </u>
V		Ī							1			31	4	37	9		<u> </u>		<u> </u>	<u> </u>	<u> </u>
W	-																<u> </u>			<u> </u>	-
Х		Ī											<u> </u>		<u> </u>			<u> </u>		<u> </u>	-
Y	3	5			********										<u> </u>	35				<u> </u>	
Z		1												<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ļ
															<u> </u>		<u> </u>			<u> </u>	_
unknown (?)		ì											<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	-
not sequence	d	1												<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
sum of seq	3	8	38	38	38	38	3 38	38	3	8	38	38	38	38	38	38	3	B 3	8 3	B 3	3
oomcaa,	3	5	37	35	32	36	3 (36	2	3	38	31	33	3 37	28	35	5	9 2	2 1	9 1	3
mcaa*			***********	Q	•	:			:	:	Р		L	٧	1	Υ		<u> </u>) N	l K	_
rel. oomcaa			92%	-					701	05.15	100%	82%	370%	9/0/6	74%	420%	240%	24.70	20%0	240%	
pos occupie	·			:	:	1	•						:	:	2 3			7	•	1	9

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

•	CDI	R 11																	
amino acid'	52	99	∢	8	U	۵	ш	57	28	23	09	61	62	63	64	9	99	⋖	8
Α		1																_	
В	<u> </u>													<u></u>					
С																			
D											9								
Е					<u> </u>						27		_						
F			,										38						
G					į			38							38				
Н																			
· I									37										
К																			
L	<u> </u>																		
М							<u> </u>												
N	<u> </u>																21		
Р	37	1								36									
Q			ļ																
R		<u> </u>										38							
S	1	36	<u> </u>							1				38		38	12		
Т	<u> </u>	<u> </u>	<u> </u>														5		
V		<u> </u>	<u>.</u>									ļ							
W	<u> </u>	<u> </u>	<u></u>						••••	ļ									
X	<u> </u>	ļ	<u> </u>					············		ļ	ļ								
Y		<u> </u>	<u></u>	ļ															
Z	<u> </u>	<u> </u>	<u> </u>															<u> </u>	
•		<u> </u>	38	38	38	38	38			ļ	ļ							38	38
unknown (?)		<u> </u>	<u> </u>	<u> </u>						<u> </u>	1							<u> </u>	
not sequenced	_		<u> </u>	<u> </u>					1									<u> </u>	
sum of seq?												38							
oomcaa3	37	36	38	38	38	38	38		•	:	:	38		·	•	•	•	38	38
mcaa*	Р	S		<u> </u>	_	-	-		·····	Р	·•••••••			<u></u>	<u></u>		N	-	-
rel. oomcaas	%26	95%	100%	100%	100%	100%	100%	100%	100%	97%	73%	100%	100%	100%	100%	100%	55%	100%	100%
pos occupied	*********		·· ·· ······			:	:	:	:	:	:	:	•	į	:	1	3	1	1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

			•	Fra	mev	vork	111												
amino acid'	67	89	69	20	71	72	73	74	75	9/	11	78	79	80	8	82	83	84	.85
A				1	36	1		1				11	1	34				38	
В																			
· C	·																		
D																38			37
E													10		14		38		1
F														·					
G		37									28				10				
H.			1																
l						1		1	37	1					1				
K			1																
L							38								2				
M															10				
N			28							1									
Р																			
Q		1											25						
· R					·					1	10		1					<u></u> į	
S	37		2			11				23		<u> </u>		1					
T	1		6	37		25		36		12		13		2			<u> </u>		<u></u>]
V					2				1			14	1	1	1				
W																			
X																			
Υ															•				
Z																			
<u>-</u>																			
unknown (?)																			
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa,	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa'	5	G	N	Ţ	Α	Ţ	L	Ţ	1	S	G	٧	Q	Α	Ε	D	Ε	Α	D
rel. oomcaa ^s	97%	97%	74%	97%	95%	%99	100%	95%	97%	61%	74%	37%	%99	%68	37%	100%	100%	100%	97%
pos occupied	2	2	5	2	2	4				:	;	;			:	1	1	1	2

Table 5C: Analysis of V lambda subgroup 3

										CDF	111								
amino acid'	98	87	88	83	6	91	92	93	94	95	۷	മ	ပ	۵	ш	u _	96	97	98
А					13	3	2			1	2						4		
В														_					
- С			38																
D							32	1	1		6								
E				1								2					2		
F .		2						2											35
G									3	14	3			1			3	1	
Н												12	1						
1																		4	
K											1								
L				1				1		1		1	1	<u> </u>			4	2	
М	.								1								1	1	
N				10			2	1	2		10	1							
Р									1				3				1		
Q		<u></u>	<u></u>	25						1	1								
R	<u> </u>	<u> </u>	<u> </u>	<u></u>		10		1	2	<u> </u>		2							
S	<u></u>	<u></u>	<u></u>	1	14	1		28	26	13		1				1			ļ
T	<u> </u>	<u>.</u>	<u> </u>	<u></u>	<u> </u>	1	<u></u>	3	<u> </u>	7	2							<u> </u>	
V			<u> </u>	<u> </u>	11		<u> </u>	<u> </u>		<u> </u>	ļ						18	28	<u> </u>
W		<u> </u>		<u> </u>	<u></u>	23	·	<u> </u>	<u> </u>	ļ	ļ						1	<u> </u>	
X	<u></u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ					<u> </u>			
Y	38	36		ļ	ļ		1	<u> </u>	1		1	3	1			ļ	3	ļ	
Z		<u> </u>	<u> </u>						<u> </u>	<u> </u>		<u> </u>					_	<u> </u>	<u> </u>
		ļ	<u> </u>	<u></u>	ļ			<u> </u>	<u> </u>	<u> </u>	10	15	31	36	37	36		1	<u> </u>
unknown (?)		<u> </u>		<u>.</u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>			<u></u>		<u> </u>	ļ	<u></u>	ļ	<u> </u>
not sequenced			<u> </u>					1							_	1			<u> </u>
sum of seq ²	******	*******		·	+ ; • • • • • • • • •	÷	÷	·÷					:	:	:	37	:	:	
oomcaa,	38	36	38	25	14	23	32	28	26	14	10	15	31	36	37	36	18	28	3
mcaa*	Υ	Υ	С	Q	S	W	D	S	S	G	N	-	-	-	-	-	٧	٧	f
rel. oomcaas	0,001	95%	100%	96%	37%	51%	%98	76%	70%	38%	28%	41%	84%	97%	100%	97%	49%	26%	200
pos occupied		+	·:	•	:	:	:	:	•	:	•	:	:	•			:	:	3

140

Table 5C: Analysis of V lambda subgroup 3

-			F	ram	ewo	rk	IV						
amino acid'	66	90	101	102	103	104	7	501	10°	∢	107	108	um
Α													265
В	T												
С	T		Ì								3		82
D													225
E					2								145
F													90
G	35	31	35								24		461
Н													32
													160
К				i.	30	<u> </u>	<u> </u>						110
L						2	8			33			23
М						<u> </u>							1
N													12
Р										1			24
Q												7	27
R	-				2	2							15
S				<u> </u>	<u> </u>	<u> </u>					2		50
T		4		35		<u>.</u>		35					34
V					<u> </u>		7		35				30
W				<u> </u>									6
Χ	ļ												
Y		<u> </u>		<u> </u>									21
Z					Ļ	╧							
		<u> </u>		<u> </u>									60
unknown (?)	<u> </u>	<u> </u>		<u> </u>	<u> </u>						ļ	<u></u>	
not sequenced				3 :	\Rightarrow	4	3					28	8
sum of seq²		·		5 3	•			:	:	•	:	:	
oomcaa3	35	3	1 3	5 3	5 3	0	28	35	35	33	•	:	
mcaa*	G	G	G	Ţ	K	(L	Ţ	٧	L	G	Q	
rel. oomcaa'	100%	000 000	100%	100%		0/28	%08	100%	100%	97%	%68	100%	
pos occupied		1		1		3	2	1	1	2	2 3	3 1	

141

Table 6A: Analysis of V heavy chain subgroup 1A

													_	Fra	mev	vor	(
amino acid'	,	7	က	4	ഹ	ဖ	7	œ	6	2	=	12		4 ;	5	9	17	= 28	<u>6</u>	50
Α					1	14			60						_	24	1			
В													_							
· c														_						
D														_						
E	1				2	1		2		64				_						
F																				
G								58	1						64					
Н			2																	
l		2												_						
K		2										57	64	_				<u></u>	60	<u></u>
L			2	59							3							<u> </u>		<u></u>
М		1																<u> </u>	<u> </u>	<u> </u>
· N			ļ									6						<u> </u>	<u> </u>	<u> </u>
Р			ļ			····								63						<u> </u>
Q	53		56	ļ	2	45												<u></u>		<u> </u>
R			<u> </u>	ļ					<u></u>			1						<u> </u>	3	<u> </u>
5	ļ	<u></u>	<u> </u>	<u> </u>			60		3	<u> </u>	<u></u>			1		40	63	<u> </u>		<u> </u>
T		<u> </u>	<u> </u>	<u> </u>			-	<u> </u>	<u> </u>	<u> </u>							<u>!</u>		÷	
<u>V</u>	2	55	<u> </u>	1	5 5	<u> </u>		<u> </u>		<u> </u>	61						<u> </u>	64	-	6
W			<u> </u>	<u> </u>	<u> </u>		-		<u> </u>		<u> </u>						<u> </u>	<u> </u>	 	-
X		<u> </u>	<u> </u>	<u> </u>	ļ		-	-	ļ	<u> </u>	<u> </u>						 	<u> </u>	-	-
Υ		-	ļ	<u> </u>	ļ		.	<u> </u>	<u> </u>			ļ					<u> </u>		-	-
<u>Z</u> .	3	<u> </u>	<u> </u>	<u>!</u>	<u> </u>	<u> </u>	<u> </u>	┡	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u>!</u>	<u> </u>	÷	-
	 	-	<u> </u>	<u>. </u>	<u> </u>			-	<u> </u>	<u>.</u>	<u> </u>	<u> </u>				<u> </u>	-	<u> </u>	<u></u> .	
unknown (?)	ļ	<u> </u>	<u> </u>					1	ļ				c					 S (3 4	-
not sequenced	11	10): 10	J 10	10	10); 1(): IC) t			<u> </u>	6					$\Rightarrow =$		=
sum of seq ²	59	60) 6) 60 2	60	60) 60) 60) b'	b: 64	64	: 04 E7	C4	C2	C/	7/	ו בי נייסי	ξ C.	1 6	ነ
oomcaa,	******		·	6 59			5 60 S						K	P	G		5	V	K	,
mcaa ⁴	į	۷			- į		<u>}</u>		·- -	. .	· -	· } -	· <u></u>	<u></u>	<u></u>	!	÷	- 		
rel. oomcaas	% U6	420%	020%	%86 98%	92%	7 50%	100%	%2.b	940%	100%	95%	%68	100%	%86	100%	630%	9080	200	040%	2
pos occupied ⁶																	2	2	1	3

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

															CDI	RI					
amino acid¹	21	22	22	57	24	25	56	27	28	29	8	31	⋖	80	32	33	34	35	36	37	38
A					62				1							41					
В			Ĺ																		
. С		63																			
D	<u> </u>		<u>.</u>					1						_	_						
E		ļ													_		·				
F .										69					3		3				
G					1		69	41		1		_				23					
Н		<u> </u>									1				1			1			
1		<u> </u>	<u>.</u>						1								61	1		1	
K		<u> </u>	(63							1	1									
L		<u> </u>	<u>.</u>							<u></u>						1	2				
М		<u> </u>								<u> </u>							4				
N		<u> </u>					••••••		<u> </u>	<u> </u>	2	5						4			
Р	1	<u> </u>							<u></u>	ļ						1					
Q		<u> </u>	<u>.</u>							<u></u>	<u></u>										
R			1	1					<u></u>	<u> </u>	1	1									71
S	63		<u>.</u>			68		1		<u> </u>	40	60			2			60			
Ţ	1		<u>.</u>		2				68	<u> </u>	25	3				3		4			
٧		<u> </u>	<u>.</u>						<u> </u>	<u> </u>	<u> </u>	ļ	İ			1		<u> </u>		69	
W		<u></u>							<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	70		
Х	<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>	ļ		
Y								27	<u></u>	<u></u>	<u>.</u>	<u> </u>			64			ļ	<u> </u>	ļ	ļ
Z										<u> </u>											_
_										ļ	<u> </u>	<u> </u>	70	70			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
unknown (?)			1					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequence		_	6			_	_		<u> </u>		<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>
sum of seq	*****					·····				·	•	•	70	:		:	:	:	:	:	
oomcaa³	6	3 6	3	63	62	68	69	41	68	69		· • · · · · · · · · · ·	70	70	:	:			•	•	:
mcaa*	S	(2	K	Α	S	G	G	T	F	S	S	-	-	Υ	Α	1	S	W	٧	1
rel. oomcaa ^s	98%	2 00	9840	%86	95%	100%	100%	29%	0/0/b	%0bb	57%	%98	100%	100%	91%	59%	87%	96%	100%	%66	
pos occupied	•	:	2		:		-	1	•	•	2 6		•	1 .	•	•	:	5	-	2	1

WO 97/08320 PCT/EP96/03647

Table 6A: Analysis of V heavy chain subgroup 1A

		•											T							
				Fr	ame	woi	k II					_								
amino acid'	33	4	4	42	43	44	45	46	47	48	49	20	51	52	⋖	۵	ပ	53	54	52
А		70)								1	١				5				
В																				
· c									<u> </u>								Ī	-		
D								1	<u> </u>								1	<u> </u>	Ī	
E								69									1		Ī	
F .											-	-	2				Ī	3	39	
G			1	68		69			1		69	39			1	-				68
Н			1												-					
1													65	38				34		
К																				
L				1			68		-	1		1				-	<u> </u>	2	4	
М									-	67				2			Ţ	4		
N														4				3	22	
Р			68				1								44			-		
Q	69				69													1	1	1
R	1	<u> </u>		1		1						4						1		
S					1				1	1				22					1	1
Т													1	2	4			1	3	
V										1			2	2	16			1	I	
W							1		67			26								
X																				
Y									1									20	Ì	
Z																				
-																70	70			
unknown (?)																				
not sequenced																				
sum of seq'	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,														38	44	70	70	34	39	68
mcaa'	Q	Α	Р	G	Q	G	L	Е	W	М	G	G	١	ı	Р	-	-	1	F	G
rel. oomcaa³	%66	100%	97%	97%	99%	%66	97%	%66	%96	%96	%66	26%	93%	54%	63%	100%	100%	49%	%95	97%
pos occupied ^a													4				•	10		3

144

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

	С	DR	11																	
amino acid	26	27	58	23	9	61	62	63	64	65	99	29	89	69	2	7	72	73	74	75
Α	1	34			69											43				
В								<u>i</u>				į								
· C																				i
D	15		1							2							70			
E									1									33		
F				1				48				3		4						
G	1						3			67										
Н			1																	
1	4									<u> </u>			1	44				1		
K	1		2	1			47		1		1							8		
L	1	1						22				2		1		3				
М														21						
N	9		59				18													
P	1	7																		
Q	1	1				70			64											
R	2						2		1		69							1		
S		1	2		1										5				70	
Ţ	34	26	4						3				66		65	24		27		6
V										1		65	3							:
W							·													
Χ																				
. Y			1	68													,			
Z																		:		
-																				
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa,	34	34	59	68	69	70	47	48	64	67	69	65	66	44	65	43	70	33	70	6
mcaa'	Ţ	Α	N	Υ	Α	Q	Κ	F	Q	G	R	٧	T	1	T	Α	D	Ε	S	1
rel. oomcaas	49%	49%	84%	92%	%66	100%	9029	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	9090
pos occupied ⁶	:	:	;	:	:														:	

145

WO 97/08320 ·

Table 6A: Analysis of V heavy chain subgroup 1A

				F	ram	ewo	rk II	II												
amino acid'	9/	11	78	79	80	81	82	Ø	മ	ပ	83	84	85	98	87	88	83	6	91	92
Α			64			1						3			1	70				
В																				
· C																				70
D						2							26	70						
E						64							44							
F																	1	1	2	
G									1				,							
Н				1				1												
I		1					3	1	1								2			
K				,							3									
L					3		63			70							2			
М					67										1		1			
N	4							_ 1	16											
Р																				
Q				1		3														
R	3							23	1		62									
S	62		1					41	49			67			1					
T	.1	69	2					3	2		4				67					
V			3				4				1						64			
W																				
X																				
Y				68														69	68	
Z																				
-																				
unknown (?)																				
not sequenced	_																			_
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcsa,						64				70	••••••••			*******		**********				
mcaa'	S	T	Α	Υ	М	E	L	S	S	L	R	S	E	D	T	Α	٧	·Y	Υ	С
rel. oomcaas	93%	%66	91%	97%	%96	91%	%06	29%	70%	100%	89%	%96	63%	100%	%96	100%	91%	%66	97%	100%
pos occupied"	4	2	4									•	:						2	1

148

Table 6A: Analysis of V heavy chain subgroup 1A

										CD	R III									
amino acid'	93	94	95	96	97	98	66	100	۷	8	ی	0	щ	щ	g	I	_	_	×	101
А	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				
. C					1	1	16	2		1	1	7	2	1						
D		<u> </u>	16	5	3		3	5	4	3	4			1	1	14				59
<u>E</u> E		<u></u>	9				2			1			1			1				
F .					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
н		<u> </u>								1	1	1		1						
				2	5	2	2		2	2	1	1			1					
K		5			2	1			1						·					
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
M			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
'P				20	3		1	3	2	2	2	4	2	1	4	1	•	1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16						
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
T	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
X																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z						!														
-				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)								<u> </u>					1		1	1		2	3	
not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
sum of seq²	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa,	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa'	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied ⁶	:	1	:			:		:			::::::::				11		8	7	••••••	

14 \times SUBSTITUTE SHEET (RULE 26)

Table 6A: Analysis of V heavy chain subgroup 1A

		•			Fra	mev	vork	: IV					
amino acid'	102	103	104	105	106	107	108	109	110	=======================================	112	113	sum
А													670
В													
С													165
D		1	1										308
Е	1	1											297
F	2												226
G			58		59	1	1						928
Н				1									14
1	3								4				286
К				3		1							325
L	3			1			40	1					386
· M	1						3						189
N				1		·							176
Р	5											1	238
Q				52									494
R				1									351
S											53	51	972
T						54	11	1	51		1		736
V	15		1				1	54		54		1	699
W		59		1									243
X													
Υ	34		1										542
Z													3
-	1												578
unknown (?)													8
not sequenced	5	9	9	10	11	14	14	14	15	16	16	17	406
sum of seq ²	65	61	61	60	59	56	56	56	55	54	54	53	
oomcaa3								54					
mcaa.	Υ	W	G	Q	G	Ţ	L	٧	Ţ	٧	S	S	
rel. oomcaa ^s	52%	97%	95%	87%	100%	%96	71%	%96	93%	100%	%86	%96	
pos occupied ^a	:										2	3	

148

SUBSTITUTE SHEET (RULE 26)

Table 6B: Analysis of V heavy chain subgroup 1B

,														Fr	ame	wor	k I			
amino acid'	-	2	က	4	2	9	7	8	6	01	11	12	13	14	15	16	17	18	19	20
А									32							34				
В																				
. C																				
D																				
Е		1			5	1				35										
F ·														********	•••••					
G								27							35					
Н			1											1						
l																				
K		3	1									34	33						33	
L			3	26	1															
M				1	1															
N																				
Р									1					3 3			1			
Q	21		20			26														
R	1											1	2							
S							27	·								1	34			
T									1					1					2	
V	3	21			20						∙35							35		34
W																				
X																				
Υ																				
Z																				
-																				
unknown (?)				٠																
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	
sum of seq²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	3
oomcaa3	21	21	20	26	20	26	27	27	32	35	35	34	33		•••••					
mcaa*	Q	٧	Q	L	٧	Q	S	G	Α	Ε	٧	K	K	Р	G	Α	S	٧	K	٧
rel. oomcaas	84%	84%	80%	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	92%	97%	100%	94%	970%
pos occupied		:	:	:	: :							2							2	

SUBSTITUTE SHEET (RULE 26)

Table 6B: Analysis of V heavy chain subgroup 1B

														CD	RI					
amino acid¹	21	22	23	24	25	56	27	28	29	30	31	⋖	8	32	33	34	35	36	37	38
Α				30							2				6					
В																				
. С		35																		
D											1				5		1			
E			3								1									
F							2		39					2	2					
G				1		40				1	14				1					
Ĥ														3	1		34			
l								1		1						9				
K			28																	
L									1		1					5			2	
M.																23				
N							1			1	3					1	3			
Р															1					
Q			2								1				1		1			
R			2					2						1						3
S	35				40			5		2	15			2	1					
T				3				32		34					1					
V				1		-	1			1	1				2	2			38	
W																		40		
Χ																				
Υ							36				1			32	19		1			
Z																				_
-												40	٠40							
unknown (?)																				
not sequenced	5	5	5	5																
sum of seq'	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
oomcaa ³	35	35	28	30	40	40	36	32	39	34	15	40	40	32	19	23	34	40	38	3
mcaa ⁴	S	С	Κ	Α	S	G	Y	T	F	T	5	-	-	Υ	Y	М	Н	W	٧	F
rel. oomcaas	100%	100%	30%	36%	100%	100%	%0€	30%	98%	35%	38%	100%	100%	30%	48%	28%	35%	100%	95%	č
pos occupied ^a																			2	

Table 6B: Analysis of V heavy chain subgroup 1B

																				_
				Fra	mev	work	(11													
amino acid	39	9	4	42	43	44	45	46	47	48	49	20	2	52	⋖	ф	ں ص	53	54	55
Α		39				1					1				7			1		
В																				
. С																				
D													,	1					1	
E				1				39										1	1	
F.							. 2						1					1		••••
G				39		28					39	1			1			9	1	3
Н																		2		
l										3			34							
K					1														1	
L			1				37						1							
M										37		2	4							
N														35				20	12	
Р		1	34				1	٠							31					
Q	39				39			1												
R	1					10						4						3	1	
S			1			1								2			<u></u>	1	20	
T			4											1				<u> </u>	3	
٧														1	1					
W									40			33								
X																				
Y																		2		
Z																				
-																40	40			
unknown (?)		<u> </u>	<u> </u>	<u>.</u>	<u></u>	<u></u>														
not sequenced	4	<u></u>	<u> </u>	<u> </u>																
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
oomcaa,	39	39	34	39	39	28	37	********	•	·····	*****		34	35	31	40	40	20		····
mcaa ⁴	Q	Α	Р	G	Q	G	L	E	W	М	G	W	1	N	Р	-	-	N	S	(
rel. oomcaas	%86	98%	85%	%86	%86	20%	93%	98%	100%	93%	%86	83%	85%	988%	78%	100%	100%	20%	20%	7000
pos occupied		1	:	:	:	•	•	•	i	:	2	:	i	:	4		1			Ţ

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

		DR	H																	
amino acid'				59	99	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75
Α	1	2			27	2				1		1				2				12
В																				
С																				
D	1									4							35			
E	2		2			1				1						1				
F.				4				39						3						
G	15		6		1					34										
Н			1	1													1			
1		1	1									1	1	13						22
К	2	2	8				36		1							1				
L						1		1						1						
M														23				1		1
N	17		18				1										4			
Р							*********												3	
Q						36			37											
R			2				1		2		37					34		1		
S	1			2	11		1									1			37	
T		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
X																				
Y				33																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq?	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,	17	35	18	33	27	36	36	39	37	34	37	38	39	23	40	34	35	38	37	22
mcaa'	N	T	N	Υ	Α	Q	Κ	F	Q	G	R	٧	T	М	T	R	D	T	S	1
rel. oomcaas	43%	%88	45%	83%	9%89	%06	%06	98%	93%	85%	93%	95%	%86	58%	100%	85%	88%	95%	93%	55%
pos occupied ^a	:	:		:	:	4			1	4							÷	3	2	4

Table 6B: Analysis of V heavy chain subgroup 1B

•				F	ram	ewo	rk II	1												_
amino acid'	9/	77	78	79	80	8	82	∢	8	ပ	83	84	82	98	87	88	83	90	9	92
Α			35									1	2			40				
В								<u> </u>												
· C																				3
D	1					4							19	40			1			
E						35							19							
F			1									2							2	
G						1		1	2											
Н																				
		1															1			
K											1									
L					2		39			39							2			
М			•		37		1							٠-			2			
N	7							1	2											
Р												1							1	
Q																				
R	4							2	16		37									
S	27			1				35	20		· 1	36						1	1	
T	1	39						1			1				40					
٧			4		1					1							33			
W							٠													
Χ																				
Υ				39														38	35	
Z																				
unknown (?)	1	<u></u>	<u> </u>																	
not sequenced	· 🖁																1	1	1	
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	3
oomcaa		Ť		:	:	:				7	:	36					:			
mcaa'	S	T	Α	Υ	Μ	Ε	L	S	S	L	R	S	D	D	T	Α	٧	Υ	Υ	(
rel. oomcaas	%89	%86	988%	%86	93%	98%	98%	88%	50%	98%	93%	%06	48%	100%	100%	100%	85%	97%	%06	7020
pos occupied	:	•	•	•	:	:	:	:	:	:	:		:							

Table 6B: Analysis of V heavy chain subgroup 1B

										CDF	R III									
amino acid'	93	94	95	96	97	86	66	001	⋖	89	ပ	۵	ш	u.	ပ	I	_	_	×	101
Α	37				1	-		2		1			1					5		
В																				
· C		1				3				2	1									
D			7		5	2	3	1	5	4		1		2	2	1	2			27
E			2		1			1	1		2		1		1					
F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
l		1		1	1	3	1	1	1	1	1	1							1	<u> </u>
K		1			1				1	1		1		1			1			
L			2	4	4	4	3			1	2	1	1	2		1			2	
M				2		1	1								1				4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
T		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Y	.			5	5	4	2	3		4	3	3	2	1	2	· 5	6	2		
Z																				
_	<u> </u>		·	1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)			<u> </u>																3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa¹		31	 -	<u> </u>	5		*********	•••••	10	11	14	20	23	25	25	25	23	18		27
mcaa*	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa⁵	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	26%	64%	%69	%69	%69	64%	50%	42%	75%
pos occupied ⁶	•	;		:	:														:	:

Table 6B: Analysis of V heavy chain subgroup 1B

					Fra	mev	vork	IV.					
amino acid	102	103	104	105	106	107-	108	109	110	111	112	113	sur
Α													34
В													
С													7
D	2												17
E				1									15
F	1												13
G			27		26					1			45
Н	1												5
l	7								3				11
K				2									19
L							12			1			20
М							2						14
N	1												13
Р	1			1									12
Q				23									25
R							1						24
S	3								1		18	18	43
Ţ						21	6		16		1		38
V	6							21		18			34
W		29		٠									15
Х													
Y	11										******		29
Z													
_	3												38
unknown (?)													
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	4:
sum of seq ²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa ³	11	29	27	23	26	21	12	21	16	18	18	18	
mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	90%	%06	95%	100%	
pos occupied	10	1	1	4	1	1 15	4	1	3	3	2	1	

Table 6C: Analysis of V heavy chain subgroup 2

														Fra	me	vor	(1			
amino acid'	-	2	က	4	Ω.	9	7	æ	6	10	1	12	13	4	15	16	17	18	19	20
А										3										
В																				
. С																				
D			İ														<u> </u>			
E	1					6										2				
F																				
G								6												
Н																				
		1																		
K					3		<u></u>						6		1					
L				6			<u></u>				6							6		6
М																				
N							1													
Р							1		6					6			1			
Q	2						<u></u>									4				
R		<u></u>			2		ļ	<u> </u>												
S		<u> </u>					4	<u> </u>												
T		<u> </u>	6		1		<u> </u>	<u> </u>		2					5		5		6	
٧		5						<u></u>	<u> </u>	1		6								
W																				
Х							<u> </u>	<u></u>	<u> </u>											
Y		<u> </u>					<u></u>	ļ	<u></u>											
Z	3	<u> </u>						<u> </u>												
_		<u>.</u>	<u> </u>				<u>.</u>	<u> </u>	<u></u>											
unknown (?)		<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u></u>										
not sequenced	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ⁷	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ³	3	5	6	6	3	E	4	6	6	3	÷		•••••••••••••••••••••••••••••••••••••••	*********	5			-	·····	6
mcaa'	Z	. 	T	<u> </u>	K	E	S	. 	.	;	L	٧	K	P	T	Q	T	L	T	L
rel. oomcaas	50%	83%	100%	100%	50%	100%	9/0/9	100%	100%	20%	100%	100%	100%	100%	83%	%/9	83%	100%	100%	100%
pos occupied	•	:	:	•	:	:	3	:	:	1 _		1	: :		2	2	2	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

•															CD						
amino acid'	21	22	23	24	4 6	C7	26	27	78	29	9	31	⋖	ω	32	33	34	35	36	37	38
Α									1				1			1					
В			<u> </u>	<u> </u>																	
C		7	<u> </u>	<u> </u>												2					
D			<u> </u>										1			.,					
E																					
F					3			6		1											
G							7							4		3		3			<u></u>
Н																		<u> </u>			<u></u>
1 .														1				<u> </u>		7	<u> </u>
K																	<u> </u>	<u> </u>	<u> </u>		<u></u>
L					2			1		6							<u></u>	<u> </u>	<u> </u>		<u> </u>
M															5		ļ	<u> </u>	<u> </u>		<u> </u>
N									<u>.</u> 			2					<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Р																	<u></u>			<u> </u>	ļ
Q															.,	<u></u>	<u></u>		<u> </u>	<u> </u>	
R														2		1			<u>.</u>	<u> </u>	<u> </u>
S				1		6			6	<u> </u>	6	2	4				<u> </u>	4	<u>.</u>	ļ	ļ
T	6			6							1	3	1				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
٧					2					<u> </u>		<u> </u>		<u> </u>	2		7	<u> </u>	<u> </u>	<u> </u>	<u> </u>
W									<u> </u>	<u> </u>		<u></u>		<u> </u>		<u> </u>	<u> </u>		7		<u> </u>
X									<u> </u>			<u></u>	<u> </u>	<u></u>		<u> </u>	<u> </u>		<u>.</u>	<u> </u>	<u> </u>
Υ						1						ļ	<u></u>			<u>.</u>		ļ	<u>.</u>	<u> </u>	ļ
Z									<u> </u>		<u> </u>	<u> </u>	<u></u>		<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	Ļ
-									<u> </u>	<u> </u>		<u>.</u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>
unknown (?)		<u> </u>						<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		ļ	<u> </u>	<u> </u>	<u> </u>	ļ	
not sequenced	<u></u>	<u> </u>								<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	╙	<u> </u>	_
sum of seq ²	(3	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7 7	7	7
oomcaa3	(3	7	6	3	6	7	(6	6	6	3	·	. 	.:		;	-÷			7
mcaa⁴	T	C		T	F	S	G	F	S	L	S	Ţ	S	G	М	G	V	S	W		
rel. oomcaas	100%	100%	200	86%	43%	%98	100%	96%	86%	96%	9698	43%	57%	57%	71%	430%	100%	5.70%	100%	100%	2
pos occupied	:	1				2			2 :		2 2			1 3							1

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

							work														—
amino acid'	39	40	;	- 4	42	43	44	45	46	47	48	49	22	22	25	∀	Ω.	ں ·	23	54	55
Α							6					7									
В		<u> </u>																			
. С																_					
D		ļ													2					3	(
E	<u> </u>	<u> </u>							7					_							
F	<u></u>	<u> </u>													2	_					
G			1		7		1														
Н		<u> </u>	<u></u>	<u> </u>									2								
														6							
K						6	<u></u>														
L							<u></u>	7			7		2	1	1						
M											.,										
N																				3	
Р			5	7																	
Q	6								<u></u>										ļ		
R	1					1		<u></u>	<u> </u>			<u></u>	2					ļ	<u> </u>		_
S			1			<u> </u>	<u> </u>		<u> </u>			<u>.</u>							2		_
T						<u> </u>						<u> </u>	ļ					<u> </u>	ļ	<u> </u>	_
V						<u> </u>			<u> </u>	<u> </u>		<u> </u>						<u> </u>	<u> </u>	<u> </u>	<u> </u>
W						<u> </u>	<u> </u>	<u></u>	<u> </u>	7		<u> </u>	1					<u> </u>	4		<u> </u>
Χ									<u> </u>			<u> </u>			1			<u> </u>	1	1	<u></u>
Y								<u> </u>	<u>.</u>	<u></u>	<u></u>	<u> </u>			1	1		<u></u>	ļ	<u> </u>	-
Z							<u> </u>		<u> </u>	<u> </u>									<u> </u>		<u> </u>
-									<u> </u>	<u> </u>		<u></u>	<u></u>			6	7	7	<u> </u>	<u> </u>	<u>.</u>
unknown (?)						<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u>.</u>
not sequence	d						<u> </u>	_				<u> </u>	<u> </u>						<u> </u>		Ļ
sum of seq?		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	-
oomcaa³		6	5	7	7	(6	3 7	7	7	7	7	÷			6	7	7	4	. 	
mcaa⁴	0		Р	Р	G	K	<u></u>			W	<u> </u>	.‡	Н	<u> </u>	D	<u>-</u>	-	-	-	D	
rel. oomcaa ^s	960%	2	7 1%	100%	100%	86%	86%	100%	100%	100%	100%	100%	29%	86%	29%	%98	100%	100%	57%	43%	000
pos occupied		•			;		•	:					4				•	-	3	3	3

Table 6C: Analysis of V heavy chain subgroup 2

•	С	DR I	 						-											
amino acid'	99	22	28	59	09	61	62	63	64	65	99	67	89	69	70	11	72	73	74	75
Α																				
В		<u></u>																		
. C																				
D	5																6	1		
E	1								1											
F		1		1																
G																				
H				1						<u> </u>										
ı														6						
K	1	6							4							6				6
L								7				7								
М.																				
N																	1			
Р						2														
Q																				
R			2			1			2		7					1				1
S			2		6		7			4			1		5				7	
Ţ						4				3			6		2			6		
٧														1						
W				1			,													
Х					1															•••••••
Y			3	4																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ³	5	6	3	4	6	4	7	7	4	4	7	7	6	· 6		6	6	6	·	6
mcaa'	D	K	Υ	Υ	S	T	S	L	K	5	R	L	Ţ	1	S	K	D	T	S	K
rel. oomcaa⁵	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	96%	%98	71%	%98	%98	%98	100%	%98
pos occupied ⁶	3	•	:	•			:	•	3	:	:	1	2				2	2	1	2

Table 6C: Analysis of V heavy chain subgroup 2

								rk li													
amino acid'	92	77	7.9	9 6	۶ <u>۱</u>	08	8	87	4	8	ပ	83	84	82	98	87	88	68	6	91	92
Α														1			5		<u></u>		<u> </u>
В		<u> </u>	<u> </u>																<u> </u>		<u> </u>
. С		<u> </u>																			1 7
D												6			7				<u> </u>		<u> </u>
E		<u> </u>	_									<u> </u>						<u> </u>	<u> </u>		<u> </u>
F	<u> </u>					1													ļ		-
G									ļ	<u></u>	<u> </u>	ļ					2	ļ	<u></u>		<u> </u>
Н										<u></u>	<u></u>	<u> </u>						ļ	<u></u>	<u> </u>	ļ
<u> </u>					1		2		1	<u> </u>	<u> </u>			`			<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ
K	-	1	Ī								<u> </u>		<u></u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
	-	Ì	Ī			6						<u>.</u>	<u> </u>	<u></u>			<u> </u>	<u> </u>	<u> </u>	ļ	ļ
М	-	Ī	Ī	Ī	<u>-</u>			7			5						<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>
N	5	5	Ī	Ī						6		1		<u></u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>
P		T	Ī	Ī									7				<u> </u>			<u> </u>	_
Q	-	1	7	•									<u>.</u>		<u></u>					ļ	
R	1	1	Ī											<u></u>				<u> </u>	<u> </u>	ļ	ļ
S	2	2	Ī									<u> </u>	<u> </u>	<u>.</u>			<u> </u>	<u> </u>		<u> </u>	
T	- I	T	Ī				5		Ę)				<u> </u>	<u> </u>	7			7	<u> </u>	<u>.</u>
V	1	İ	Ī	7	7							I		6					<u> </u>	ļ	<u> </u>
W		Ī	Ī															<u> </u>	<u> </u>	ļ	
X		1	Ť	-				<u> </u>												<u>.</u>	
Y		<u> </u>	-																	7	7
Z		1			*******											<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
************************		Ī	ī							1	1	1						<u>.</u>			
unknown (?)		1	T										<u></u>	<u></u>		<u> </u>	<u></u>				
not sequence		1													<u> </u>		L	<u> </u>			
sum of seq	==	7	7	7	7	7	7	7	7	7	7	7	7	7	7	, ,	7	7	7	7	7
oomcaa ³		5	7	7	7	6	5	5	7	5	6	5	6	7 (3	7	7	5	<u></u>	7	7
mcaa*	١	1	0	٧	٧	L	T	Ν	1 1	١	۱۱	1 C	P	٧	D	T	A	Ţ	Y	<u> </u>	<u> </u>
rel. oomcaa	10%	9	100%	100%	100%	96%	7 10%	1000	2,00-6	9050	710/-	0.170	1000	860%	100%	100%	7 10%	30001	9000	200	0,00
pos occupied			1	1	1			•	•					•		1	1	2	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

										CDF	RIII									
amino acid¹	93	94	95	96	97	86	66	100	۷	8	Ü	0	ш	ц.	၅	I		_	×	10
Α	5							1	2	1										
В									<u></u>											
. С																				
D																				6
E								2	<u> </u>		1									
F																			3	
G						1	1		1	2	1	1	1	1						
Н		1		1					Ī											
1			3			2														
K						••••••	1													
L								1	Ī	1									1	
M.								1											2	
N				1	2	********			Ī								1			
Р				1	1		1		1											
Q			1	••••	•	*******														
R		6	1			1			1											
S				1		1	1													
Т				1			1		1											
V	2		1	1	1		1	1			1									
W				••••		1		-							1			1		
X																				
Υ				•••••	2						1	2	1	1	1			2		
Z					••••								********							
<u>-</u>										2	2	3	4	4	4	6	5	3		
unknown (?)																				
not sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq²	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ³	5	6	3	1	2	2	1	2	2	2	2	3	4	4	4	6	5	3	3	6
mcaa ⁴	Α	:	÷	Н	N	1	G	E	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	71%	%98	20%	17%	33%	33%	17%	33%	33%	33%	33%	50%	67%	67%	67%	100%	83%	20%	20%	100%
pos occupied [«]	2	2	4		4	5	6	5	5 16	4	5	3	3	3	3	1	2	3	3	1

Table 6C: Analysis of V heavy chain subgroup 2

		<u> </u>			Frai	new	ork	١٧					
amino acid,	102	103	104	105	106	107	108	109	110		112	113	sum
Α									1				35
В										<u></u>			
С													16
D													43
E		•••••											21
F													18
G			6		6								5
Н								<u></u>					(
1							<u> </u>						29
K				1			1		<u> </u>				4:
Ĺ	1						3						7
М													2
N													2
Р	1						1						4
Q				3									2
R				2									4
S				<u></u>							6	3	8
T		<u></u>	<u> </u>	<u></u>		6	1		5				10
V	3	<u> </u>						6		6			6
W		6											2
Χ		<u> </u>											
Υ	1		<u>.</u>	<u></u>		<u></u>							3
Z													
-						<u> </u>	<u> </u>	ļ					5
unknown (?)		<u>.</u>	<u> </u>			<u> </u>	<u></u>	ļ					
not sequenced	1 1	1	1	1	1	1	1	_1	1	1	1	4	5
sum of seq'	6	(; (6	6	6	6	6	6	6			7
oomcaa ₃	3	. <u>.</u>	6	••••••	**********		÷	÷	•		*******	·	
mcaa ⁴	٧	W	G	Q	G	T	L	٧	Ţ	V	S	S	
rel. oomcaas	50%	100%	100%	50%	100%	100%	20%	100%	83%	100%	100%	100%	
pos occupied	, 2	١ .	ı	1 3	} 1	1	4	1	2	1	1	1	

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

D. Allalysis of														Fr	ame
amino acid¹		2	ო	4	2	9	7	∞	6	0	Ξ	12	13	14	15
А					1		1			12		1		3	1
В			1			1							1		
· c															
D	1					1				16					
E	110		9		15	166			9				8		2
F ·											4				
G								181	193	174		1			202
Н			5										4		
ı												9			
K		5	3										26		
L		1	5	176	43						140			1	
М		12		1											
N										1					
Р													1	194	
Q	41		138	1	3	12							162		
R			6										4		
S							178			2				8	
T							1						<u> </u>		
٧	5	147		1	118						62	195			
W						***********									
Χ															
Υ							<u></u>								
Z	8						<u> </u>								
-							<u></u>								
unknown (?)							<u></u>								
not sequenced								31		===					_
sum of seq'		165													
oomcaa	110	147	138	176	118	166	178	.,			:				
mcaa'	Ε	٧	Q	L	٧	Ε	S	G	G	G	L	V	Q	Р	G
rel. oomcaas	67%	968	83%	%86	%99	92%	%66	100%	%96	85%	%89	95%	79%	94%	Š
pos occupied		5 4	:		:	:	3	:	_	-	:	ŧ	;		:

163

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

-	work														
amino acid'	16	17	18	19	70	21	22	23	24	25	26	27	28	29	30
Ä								183	192		1				
В															
- C						1	209								
D													<u> </u>		7
E	8							8			3		1		
F .		1	1			1						201		201	·
G	134								2		207				3
Н															1
l								2				3	17	1	
К				15											4
Ĺ			205		201							6		3	
М			1										1		
N													10		10
Р								1					2		
Q			1												
R	62			191											11
5		206				207		4	•••••••••••••••••••••••••••••••••••••••	209			15		174
T	4	1		2				4	4			1	163		
V					8			7	9				1	6	
W															
X							•••••								
Υ												·			
Z															
-	<u> </u>					*******									
unknown (?)	ļ										••••			<u> </u>	
not sequenced															
sum of seq ²	**********	********		***********	**********	• • • • • • • • • • • • • • • • • • • •	••••••		*	209		:	:	:	:
oomcaa ¹		····				·			:	209					
mcaa*	G	S	L	R	L	S	С	Α	Α	<u>S</u> .	G	F	T	F	S
rel. oomcaa ⁵	64%	%66	%66	92%	%96	%66	100%	%88	92%	100%	98%	95%	78%	95%	83%
pos occupied"	:		:		2	3	1	7	5	1	3	4	8	4	7

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

Ī		-	·	CD	RI		•							F	rame
amino acid'	31	⋖	89	32	33	34	35	36	37	38	39	40	41	42	43
Α	1			17	80		1			1		187		1	
В															
· C												1		1	
D	26			3	7		2								
E	1				10									1	1
F				5											
G	13				31		1					2		209	
Н				4			88								
l	1			1		15			12						
К	7										1				202
Ĺ	3					3			2	3	1	2	1		
М						193					-				
N	35			8	3		34								
Р				1			1					4	191		
Q											209		1		1
R	7									207		7			8
S	103			17	8		72					3	14		
T	9				15		10					4	5		
V	2				7	1			197			2			
W					30			212							
Х	1														
Y	1			154	19		3								
Z															
		210	210												
unknown (?)															
not sequenced	2			2	2				1	1	1				
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	212
oomcaa,		210	210	154	•	193			197		***************************************				***********
mcaa*	S	-	-	Y	Α	М	Н	W	V	R	Q	Α	Р	G	Κ
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	98%	99%	88%	%06	99%	95%
pos occupied		1	1	9	10			1							

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

	vork l	1									_				
amino acid'	44	45	46	47	48	49	20	21	52	∢	ත	ပ	53	54	52
Α	1					77	42		1	2		14		7	
В			3							1					
· C													1		
D			1				į			7			94	8	3
E			198						3	2	1		2		1
F .							7	1	2	1				1	8
G	207					33	11		- 10	46			4	163	85
Н							6			1					
					3		3	191		1					
K								1	37	2	30		3	1	
L		211			5		12	1							
М							1	1							
N							13		7	9	2		13	11	
P		1								1			1		
Q			7				7			10					
R	1						24	1	17	5	1		2		1(
S	3			1		102	11	9	118	43		1	74	17	8:
Ţ							3	5	4	2		13	12	3	
V			3		204		49	2		1		6			
W				210			1		8	6					
Χ													4		
Υ				1			22		5	58					
Z	Î														
_										14	178	178	2	1	
unknown (?)															
not sequenced															
sum of seq?	212	212	212	212	212	212	212	212	212	212	212	212	212	212	21
oomcaa ³	207	211	198	210	204	102	49	191	118	58	178	178	94		
mcaa'	G	L	E	W	٧	S	٧	1	S	Υ	_	-	D	G	G
rel. oomcaa ⁵	%86	100%	93%	%66	%96	48%	23%	%06	26%	27%	84%	84%	44%	77%	Š
pos occupied	-	1	1	•		:	15	:	:	19					1

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

-	C	DR II													
amino acid'	26	57	58	29	09	19	62	63	64	65	99	29	89	69	2
Α	9	1	2		174	33							1		
В	1	2													
· c															
D	11		17			160									
E	8	3	2			1			2						
F.	1		3	2				<u></u>				207			
G	5	1	5		4	5				212	1				
H	1		4												
	3	37	2					8					14	208	
К	1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			2			•			
Р	1	1			6	8	18		1						
Q	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
T	42	97	5		7								189		1
V		2			10	2		204				1		3	
W			2												
Х	4		1			1									
Υ	9		151	210			1					1	1		
Z															
-															
unknown (?)			٠												
not sequenced															
sum of seq ²	212		***********			:···	**********		:						
oomcaa ³		97		210	***************************************	:	·							208	_
mcaa ⁴	N	T	Υ	Υ	Α	D	S	V	K	G	R	F	T	1	S
rel. oomcaa ^s	24%	46%	71%	99%	82%	75%	91%	96%	94%	100%	95%	%86	9/068	986	100%
pos occupied ^a		•	:	2	9			2		1	4	5	5	3	2

Table 6D: Analysis of V heavy chain subgroup 3

-										Fram	ewor	k III			
amino acid,	7.1	72	73	74	75	9/	77	78	79	80	8	82	Α	8	ပ
Α				57			1	8						1	
В											2				
· C															
D		199	38		2	2			1				10		
Е		6			4						5				
F									13						
G													1	4	
Н						1			1		2		2		
1			1				2	2				3	1	1	
К					186	6							3		,
L								188		209		3	1		212
M	1				2		10	3		2		205			
N		5	170		2	188					3		181	10	
Р							1								···········
Q					7						199				
R	211				1	1							2		
\$				153	8	10	56		3				6	186	
Ţ							142				1		4	2	
V				1				11		1		1			
W													******		
Х		2	2			4							1		
Y									194						·
Z						·								<u> </u>	
_	ļ														
unknown (?)															
not sequenced			1					<u> </u>						<u> </u>	-
sum of seq'		*********	211		····	;	;		:	:	:	:	:	:	2
oomcaa3	211	•	170		:	:	·····	188	:	:	:	•			
mcaa*	R	D	N	S	K	N	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa ^s	100%	94%	81%	73%	988%	89%	9/0/9	%68	92%	%66	94%	97%	85%	9/088	100%
pos occupied ⁶	2					:	:	<u> </u>	-	-	:	:	11	7	1

Table 6D: Analysis of V heavy chain subgroup 3

-															
amino acid'	83	84	85	98	87	88	88	90	91	92	93	94	95	96	97
Α		149	1		1	207					173	2	15	9	11
В															
. C									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F .							1		15			1		9	6
G	1	1	6			4	1		<u></u>		2	8	34	26	35
Н		1							1					3	11
l		8					2						4	15	10
K	30											60	4	3	5
L							18					1	6	11	7
М					2		1							6	1
N		1		1								2	20	4	3
Р		9									1	3	4	29	10
Q				1								5	3	9	2
R	177											103	9	30	19
S		1			1							3	9	8	11
T	3	28			207		1				25	15	7	6	20
V		9					187				10	1	7	7	15
W										1			3	4	3
X				1											
Y								211	194				12	9	8
Z		<u> </u>													
													1	3	4
unknown (?)		<u></u>				ļ					•				
not sequenced		<u> </u>			1		:								
•	·	···	· · · · · · · · · · · · · · · · · · ·	:		:	·		:	:				200	
oomcaa,		· ! ·······	190		••••	·	••••••	·····	·	***********		·			***********
mcaa*	R	Α	E	D	T	Α	V	Υ	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	70%	%06	%66	%86	%86	89%	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ⁶	:	:	:				:	•:	4	2	5	14	18	20	21

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

		·· ·			CDR	111									
amino acid¹	86	66	100	∢	മ	U	۵	w_	ш	တ	I			×	101
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	1	13		1	1								1
F .	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
ı	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11	<u></u>		3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	1					1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3		1	1
Т	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12	<u></u>	1	1	1			
W	6	5	6	7	2	4				1		6	10		
Х				1											1
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z			<u> </u>	<u> </u>			<u> </u>		<u> </u>				<u> </u>		
-	12	21	35	54	73	87	102	110	126	135	134	120	:	<u> </u>	21
unknown (?)							3	2	2 1	1			3	! -	
not sequenced									-	=				=	
sum of seq ²	198	3 198	198	197			•		:	188	•	•	:		
oomcaa ₃	34	28	3 35	54	73	87	102	110	126	135	134	120	91	71	146
mcaa'	G	S	G	-	-	-	-	-	-	-	-	-	-	-	D
rel. oomcaas	170/0	140/0	18%	27%	37%	45%	54%	280%	67%	72%	71%	65%	49%	38%	78%
pos occupied	2	0 20	0 19			······			4 14		12	13	1		1

WO 97/08320 PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amev	vork l	V				
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113
А	1		1			2						
В		<u>-</u>		1			i					
С												
D	2											
Ε					1							
.F	2					**********						
G			140		130	***************************************	1					
Н	4											
ı	15								1	1		·
К				13								
L .	10			1			91					2
. M							6					
N	1					1						
Р	17					1	1					
Q				111								
R				8								
S	7	1									118	110
T ,						123	27		122			1
V	34		1			1		125		119		
W		158										
Χ												
Y	82											
Z												
-	9	2	2	2	2	2	2	2	2	2	1	1
ınknown (?)		,										
ot sequenced	27	50	67	75	78	81	83	84	86	89	92	97
sum of seq'	184	161	144	136	133	130	128	127	125	122	119	114
oomcaa ³	82	158	140	111	130	123	91	125	122	119	118	
mcaa'	Y	W	G	Q	G	T	L	V	T	V	S	S
rel. oomcaa³	45%	98%	97%	82%	98%	95%	71%	98%	980%	98%	99%	%96
oos occupied"	12											

171

Table 6E: Analysis of V heavy chain subgroup 4

															Fra	mev	vor	(l			
amino acid'	,_	7	m	, -	4	ഹ	9	7	ω	6	01	Ξ	12	<u> </u>	4	2	9	12	18	19	70
Α										19					1	_		1		1	
В			<u> </u>	<u>.</u>											_	_					
. С																					
D																					
E			<u> </u>				32									_	44				
F			ļ																		
G			<u>.</u>						54	1	53		_				2				
Н				4		2															
1				<u></u> .																	
K			<u> </u>										1	54				<u> </u>		1	
L		7	<u>.</u>	<u>.</u>	54							53	19		1		•••••	<u> </u>	53	<u> </u>	5(
M			<u>.</u>						<u> </u>	<u></u>											
N	ļ	ļ	<u>.</u>						<u></u>	ļ								<u> </u>		<u> </u>	
Р			ļ					ļ		33					51	1				<u> </u>	
Q	52		5	0		51	20			<u> </u>	ļ	ļ					7	<u> </u>	<u></u>		
R	1	<u> </u>								<u> </u>	ļ	ļ						ļ	<u> </u>	<u> </u>	<u> </u>
<u>S</u>	<u> </u>	<u> </u>	<u>.</u>					33	ļ	ļ	<u> </u>	<u> </u>				52			<u> </u>	52	<u>. </u>
T	ļ	<u> </u>	<u>.</u>				<u> </u>		<u> </u>	1	<u> </u>	<u>!</u>						52	<u> </u>		<u></u>
V		47	7				1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	34					<u> </u>	<u></u>	-	
W	<u> </u>	<u> </u>	<u>.</u>				<u></u>	20)	<u> </u>	<u> </u>	<u> </u>	ļ					ļ	<u> </u>	<u> </u>	<u> </u>
X	<u> </u>	<u>.</u>						<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ				<u> </u>	ļ	ļ	<u> </u>	<u> </u>
Y		<u>.</u>						ļ	<u>.</u>	<u> </u>	ļ	<u> </u>	ļ					<u> </u>		-	<u>.</u>
Z		<u> </u>					L		Ļ.	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	_	<u> </u>
	<u> </u>	<u> </u>	<u>.</u>			ļ	<u></u>	ـــــــــــــــــــــــــــــــــــــ		ļ	ļ	ļ	<u> </u>					ļ	ļ	ļ	<u>.</u>
unknown (?)		<u> </u>	<u>.</u>			<u> </u>		ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>				-		<u>. </u>	
not sequence			3	3						3 3		 -	 -				÷	÷		=	1
sum of seq ²													54								
oomcaaı	÷,		··· -			·		:				•	34								
mcaa*	Q	١	/	Q		Q		S			G		٧	K		S	E	T	L		
rel. oomcaas	960m	0.70%	0/-/0	93%	100%	%96	60%	670%	100%	61%	100%	100%	63%	100%	%96	%86	83%	98%	100%	9090	
pos occupied				••••••	:	•	:						1 3		3	2	:	3 :	:	;	3

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

														CD	RI					
amino acid'	21	22	23	24	25	56	27	28	29	30	31	⋖	8	32	33	34	32	36	37	38
Α			22											1						
В	.			<u> </u>																
. С	<u> </u>	53		<u> </u>											1					
D			1								4	1	1	1			1			
E	<u> </u>													_						
F	<u> </u>				1				22					1	1				1	
G						53	53				21	3	4				8			
Н	<u> </u>	<u></u>					1							2						
		<u> </u>	1					1	32										51	
Κ	<u> </u>	<u> </u>																		
L		<u> </u>																	1	
M		<u> </u>																		
N										1	1		2	2			1			
Р								3												
Q	<u> </u>		<u></u>				<u></u>				1									ļ
R		<u> </u>				1				3	2		1						<u></u>	5
S		<u>.</u>	2		35			51	1	52	25	5	9	1			44	<u> </u>	1	<u> </u>
T	53		29				<u> </u>	<u> </u>			2	1					3	<u> </u>	ļ	<u> </u>
٧		<u> </u>	<u> </u>	55		1		<u> </u>	1									<u> </u>	3	<u> </u>
W								<u> </u>		<u> </u>		1			2	56		57	<u> </u>	<u> </u>
Χ								<u> </u>										<u> </u>	<u> </u>	<u> </u>
Y					19		1							48	52		<u> </u>			_
Z																		<u> </u>		
_												45	39				<u> </u>	<u> </u>	<u>.</u>	<u> </u>
unknown (?)						<u></u>	<u> </u>						<u></u>	<u> </u>		<u> </u>				
not sequence	d 4	4	2	2	2	2	2	2	1	1	1			1	1	1		<u> </u>	<u> </u>	_
sum of seq'	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa³	5.	53	29	55	35	53	53	51	32	52	25	45	39	48	52				•	
mcaa'	T	С	Ţ	٧	S	G	G	S	1	S	S	-	-	Υ	Υ	W	S	W		-
rel. oomcaas	1000u	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	80%	70%	%98	93%	100%	77%	100%	%68	
pos occupied	:	:	5	:	:		3	:	;	:	7	:	÷	:	:			1		· ·

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	me	wor															_
amino acid'	33	40	;	,	42	43	44	45	46	47	48		 ئ	20	5	52	∢ ।	ω	ں 		5.	52
Α				8	1			<u></u>		<u> </u>	ļ		1					_				
В								<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>					_					
· C								<u> </u>	<u> </u>	ļ	<u> </u>	<u>.</u>						_			_	
D								<u> </u>		<u> </u>	<u> </u>					1		_		1		
E					1			ļ	56	_	-			22			_					
F								-	ļ	ļ	-			1		1						
G					55		55			ļ	<u>.</u>		56	1						1		57
Н		ļ	2					<u> </u>	<u> </u>	ļ	<u> </u>									24		
		<u> </u>	<u></u>				<u> </u>	ļ	<u> </u>	<u> </u>		4		1	54							
K		<u> </u>				54	ļ	ļ	<u> </u>	<u> </u>	-											
L		<u> </u>	1			<u> </u>	<u> </u>	55	5	<u> </u>		2			<u> </u>							
M	ļ	<u> </u>				<u> </u>	<u> </u>	-	-	ļ								·				
N	ļ	ļ				ļ				ļ						21						
Р		5	0	49			-		2	-	-											_
Q	56	3				-	-	-		1				1	- 							
R	ļ	ļ				1 3	3	2	-			_		9	÷	1					52	<u>. </u>
S	ļ	<u> </u>	3			<u> </u>	-		-			‡		7	<u> </u>	1					÷	
T		1	1			ļ	-	-		-				<u></u>		<u> </u>				8	5	<u> </u>
<u> </u>	ļ	<u>.</u>			ļ	-	-	-	_			1			3					<u> </u>	<u> </u>	<u> </u>
<u> </u>	. 	<u> </u>			<u> </u>	<u> </u>					6			-	<u> </u>				<u></u>	<u> </u>	<u> </u>	<u> </u>
X		ļ.			<u> </u>	ļ	_	_		-				ļ	<u> </u>						<u> </u>	-
Υ	ļ	_			ļ	-		_	_		1			15	<u> </u>	32	ļ	<u></u>		23	ļ	-
Z	┡	_			<u> </u>	┿	<u> </u>	<u> </u>	+	\pm	<u> </u>	_		<u> </u>	╄	<u> </u>	<u> </u>		<u> </u>	_	 	╁
-		<u>.</u>			ļ	_	-	_		<u>.</u>				-	_	-	5/	5/	57	<u> </u>	<u> </u>	<u> </u>
unknown (?)	ä	<u> </u>			ļ	-	-							-	-	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>
not sequence	<u>d</u>	<u> </u>	_		<u> </u>	<u> </u>			_		_		_	<u> </u>	<u> </u>	<u> </u>	<u> </u>					, ,
sum of seq²	5	7	57	57	5	7 5 -	7 5	7 5	7 5	0/	5/	5/	5/	5	/ 5	5/	5/	5/	5/	2/	בי זור)
oomcaa,		****	******	*****			*****	,,		6 E				5 Z E		1 32 Y		5/		Ľ.	1 52 S	
mcaa*	ļ	;		.	·÷	;							<u></u>	·				- 		. 		÷
rel. oomcaa⁵	7000	3640	9%88	86%	0000	0.00	95%	96%	96%	0/n86	980%	95%	980%	2 00	35%	56%	100%	100%	100%	470%	910%	2
pos occupied	ı.	2	5		2	3	2	2	2	2	2	3		2	8	2 (3 1	ı .	۱ .		5	2

174

Table 6E: Analysis of V heavy chain subgroup 4

		DR																		
amino acid'	26	27	28	23	8	6	62	63	64	65	99	67	89	69	22	71	72	73	74	75
Α		1									1		1			1				•
В																				
. С																				
D			2									1					55			
E																	1			
F				3														1		
G	1									1										
Н			2																	
	1	1										1	1	48		3				
K					1				53									1		5
L						1		55				1				3				
M														7				2		
N	2		40		53								2							
P						54		1												
Q																	1			
R	2								3		56									
5	49		1		2		56			56			1		56			1	57	
T	1	54	1			1			1				51		1			52		
٧	1	1										53		2		50				
W																				
Χ																				
Y			11	54																
Z																				
																			·	
unknown (?)			<u></u>																	
not sequenced					1	1	1	1				1	1							
sum of seq?		57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	5
oomcaa,	···	-	÷				:				56									
mcaa'	5	:	÷	<u> </u>	N	····	:				R		T	**********	S		D	T	:	k
rel. oomcaa'	96%	95%	20%	95%	95%	%9£	100%	%86	93%	%86	%86	95%	91%	84%	%86	88%	96%	91%	100%	7000
pos occupied		}	6	:	:	į.	ŧ.	:	:	:			;		2		3			<u>-</u>

Table 6E: Analysis of V heavy chain subgroup 4

					ram													<u> </u>	_	0	_	7
amino acid'	92	77	78	79	8	8	82	<	(Ω.	<u> </u>	83	84	82	ä	3 6	ò 6	8 8	83	6	6	6
А				,				_					55	57	7	_		57				
В					<u></u>			<u> </u>						ļ	-	_	<u>.</u>	_				
. С					<u> </u>	<u></u>	<u> </u>	<u>.</u>	_					<u> </u>	_							57
D					1	<u></u>	<u> </u>	_							5	7		_				<u> </u>
E					<u> </u>	1	<u>.</u>	_	_					ļ			_					
F			54		ļ		ļ	_		1				ļ		_						<u> </u>
G				<u> </u>		<u></u>	<u>.</u>	_ _	1				ļ	-	_							-
Н				<u> </u>	<u>.</u>	<u> </u>							ļ	ļ	_						<u> </u>	<u> </u>
			1	<u> </u>	<u>.</u>	ļ			1			3	ļ	ļ						<u> </u>		
K	3			<u> </u>	<u> </u>	46	<u> </u>	_	2				<u> </u>	ļ	_	-				<u> </u>	<u> </u>	-
Ĺ		3	1	<u> </u>	5	5	5	3			2		<u> </u>		-	_			1	<u> </u>	<u> </u>	<u> </u>
M				<u> </u>	<u>.</u>		1	1			1	ļ	<u> </u>	<u> </u>	_				1	<u> </u>	<u> </u>	
N	54	<u></u>		<u> </u>			3		3	1			<u> </u>		_ -					<u> </u>	-	-
Р			<u></u>	<u> </u>									<u>.</u>	-	_ -					<u> </u>	<u> </u>	-
Q		54	ļ			1	1					<u> </u>	-	-	_		_			ļ	ļ	-
R	<u> </u>	<u> </u>	<u> </u>		ļ	_	2	_	_2	<u> </u>		<u> </u>	ļ	1	-	_			<u> </u>	<u> </u>	┼	.ļ
5	ļ	<u> </u>	1	5	7		2	1	44	55		ļ .	- 				2	.,	<u> </u>	<u> </u>	┼	1
<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>			1	_	4			53	- 	<u>.</u>		_	55		<u> </u>	<u> </u>	<u> </u>	-
V	. 	<u> </u>	<u> </u>		_	<u>.</u>		2		<u> </u>	54	<u> </u>	 	1					55		-	
W	<u>.</u>	<u> </u>	<u> </u>			_				ļ	<u> </u>	<u> </u>	-						<u> </u>	-	+	
X	<u>.</u>	<u> </u>	ļ	<u>.</u>	<u>.</u>					<u> </u>		-	_						 	<u> </u>		_
Υ		ļ		<u> </u>		_				-	ļ	. 							-	5	7 5	<u>ь</u>
Z ·		<u> </u>	<u> </u>	<u> </u>		_	_			<u>!</u>	<u> </u>	┷	<u></u>	+	-	_			<u>! </u>	╬	\dotplus	÷
······································		<u>.</u>	<u> </u>				_			ļ	ļ	<u> </u>		_	-				<u> </u>	<u> </u>	<u>.</u>	
unknown (?)		<u> </u>	<u> </u>	<u> </u>						ļ	ļ	-		_					╁	<u> </u>		
not sequence	<u>d</u>	<u> </u>	_		<u> </u>		<u> </u>	_		-	<u> </u>	┿	+	┿	\dashv				<u> </u>	+		
sum of seq²	57	7 5	7 5	7 5	7 5	7 5	7	57	57	57	5	7 5	7 5	7	57	57	57	57	7 5	/ 5 	/ 5	./
oomcaa³		********						53	44	55	5	4 5	3 5	5	57			57	7 5	5 5 ' Y	/ 5	
mcaa*	N	0	F	: '	5	L	Κ	L	S	S	<u> </u>		/			D		Α				
rel. oomcaas	950%	92.0	200	32%0	100%	0/096	81%	93%	77%	96%	0.50%	200	33.40	96%	100%	100%	%96	100%	200	2000	2001	0/n86
pos occupied							•		:	:	:	:	7	3	1	1	2		1	3	1	2

WO 97/08320 .

Table 6E: Analysis of V heavy chain subgroup 4

•										CDR	111									
amino acid'	93	94	95	96	97	86	66	100	⋖	8	ပ	٥	ш	<u>.</u>	ပ	I	<u>-</u>	<u> </u>	×	0
Α	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В										_			_							
. С					1				1											
D			6		5	5	5	4	3	2	4	3	_1		1	2	1			41
E			6	1	1	2	1			1	3	1	2	1						
F .				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1		<u>.</u>				1			1				2
l				1		2	4	1	3	2	3		1						1	
K			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
М				1	4		3	1	İ	2	1			-					9	
N				3					2	1	1	5	1	1			2			
P				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
5		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
T		1	1	2	1	3	4	4	3	3			1	1	1				<u> </u>	
٧	1	1	4	2	2	5	4	4	7	3	1	2	1							
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2	<u>.</u>	
Χ																				
Υ				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8	<u> </u>	2
Z																		<u> </u>	<u> </u>	<u> </u>
-		-				1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)				-										1		<u> </u>	1	1	1	<u> </u>
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq ²	2	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa,	56	54	25	12	10	8	10	11	7	9	11	16	23	27	29	34	31	14	31	41
mcaa'	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	_	-	F	D
rel. oomcaas	980%	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	0/0/9	30%	90.29	89%
pos occupied	2	4	12	16	16	16	16	16	16	18		13	15	13	10	9	8	5	4	4

Table 6E: Analysis of V heavy chain subgroup 4

Γ					Fra	me	wc	ork	IV					
amino acid'	102	103	104	105	106	107	100	80.	601	2		112	113	sum
Α	Ī					1				1				332
В	Ī								<u></u>					
С	Ī											_		113
D	Ī													210
E							<u>.</u>							176
F							_							135
G			41		40	1								674
Н	1									1				45
	9					<u> </u>	1							282
Κ				3		<u> </u>	<u>.</u>							278
L	4						<u>.</u>	19						540
М						<u></u>	1	9						43
N						<u> </u>	1							204
Р	3			2		<u>.</u>							2	{
Q				29		ļ								334
R	1			4		ļ	4	1						250
S	1			1		<u> </u>						36	33	11
T	 	<u> </u>		1	<u> </u>	3	3	8		34				532
V	12			<u></u>	<u> </u>	<u> </u>	-		36		36			488
W	<u> </u>	46	<u> </u>	<u> </u>			_						<u> </u>	267
X	ļ		ļ			-	_				<u> </u>			
Y	16		ļ	-		_	_							455
Z		<u> </u>		_	<u> </u>	<u> </u>	_				<u> </u>	<u> </u>	<u> </u>	'
-		-	-	-						ļ	<u></u>	-	-	466
unknown (?)		ļ	<u> </u>		-	_								476
not sequenced														
sum of seq ²			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•		•	:			•	•	:
oomcaa,					•••••••				36 V		36 V		5 3. S	
mcaa'		W						<u></u>	-		·			
rel. oomcaa ^s	340%	100%	100%	7.20%	2, 7	0 001	%68	51%	100%	94%	100%	100%	07070	2
pos occupied	6 {	3	<u> </u>	1	6	1	5		1 1]	3	<u> </u>	1	2

17.8

Table 6F: Analysis of V heavy chain subgroup 5

														Fra	me	worl	k I			
amino acid'	-	7	د	4	2	9	7	&	6	2	Ξ	12	13	14	15	16	17	28	19	20
. A					1			1	89		1			1						
В																<u>i</u>				
. C							1													
D										2										- -
E	88	1			2				4	93						92				
F .									İ								1			
G	1							92							94					
Н																				
																	<u></u>	<u></u>		9
K												94	94					<u></u>	77	
		1		91		2			<u> </u>									95		
M											3								1	
N																				
P				1					1					94						
Q	. 3		92		1	90										3			1	
R						1						1	1		1				17	
5							92										94			
T																				
V		90			89				1		91									
W																				
Χ	1																			
Υ																				
Z																				
unknown (?)																				
not sequenced	5	5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	1	
sum of seq'	92	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	9
oomcaa ³		90	92	91	89	90	92	92	89	93	91	94	94	94	94	92	94	95	77	9
mcaa'	Ε	٧	Q	L	٧	Q	S	G	Α	Е	٧	K	K	Р	G	Е	S	L	K	
rel. oomcaas	%96	%86	100%	%6£	%96	97%	%66	%66	94%	%86	%96	%66	%66	99%	99%	97%	%66	100%	80%	200
pos occupied	•	:	<u> </u>	-	4	•	•		1	•	1				i		:			Ī

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

														CD	RI			\Box		
amino acid'	21	22	23	24	25	26	27	28	53	8	3	⋖	മ	32	33	34	35	36	37	38
Α				3	2					4							8		1	
В																				
· C		96						1			1									
D								2			2						1			
E	<u> </u>					2					1									
F .					3		6		97					2						
G				92		93					1						72			
H											1			4			,			
										4						93				
K			89					1												
L															1				2	
М			1													1			1	
N			1					2		4	14			2						
Р					1															
Q			4																	
R			1		,	1		2							1					9
S	94			1	90			84		10	61			2	2		15	<u> </u>		<u> </u>
T	2							5		75	16					2	1	<u> </u>		<u> </u>
V																1			93	<u> </u>
W															93			97		<u> </u>
Χ																				<u> </u>
Υ							90			<u> </u>				87		ļ <u>.</u>		<u></u>		
Z																				
-												97	97				<u></u>	<u> </u>		
unknown (?)	- I										<u> </u>						<u> </u>	<u> </u>	<u></u>	<u> </u>
not sequence	1	1	1	1	1	1	1													_
sum of seq ⁷							96	97	97	97	97	97	97	97	97	97	97	97	97	ç
oomcaaı	*******			·	·			~	•	•	•	97		:	:	:	:			•
mcaa*	S	С	K	G	S	G	Υ	S	F	T	S	-	-	Υ	W	1	G	W	٧	1
rel. oomcaa'	%86	100%	93%	%96	94%	97%	94%	87%	100%	77%	63%	100%	100%	%06	%96	%96	74%	100%	96%	0
pos occupied			÷		:	:	2	:	:	:	:	1	:	•	•	:	5		;	-

Table 6F: Analysis of V heavy chain subgroup 5

1 1	1	97	3	1	45	97	47	48	49	20	51	25	1	8	U	2	1	55
7						97							1			1		
						97										·····	••••••	
						97										·····	••••••	
						97						14	-			8	93	
						97				Ì	ì	•	:			•		
				96													2	
				96			•			1		2						
			94			***********			95							69	1	
			94									3	1					
			94					1		75	92							
92			*******															
) 2		•			94			2		2	1							
								89			1							
9	96				2							1	93					
					1											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1									1	14						1		
										1			1			16		9
1										3	1		1					
2								5	1	1	2						<u> </u>	
							94										<u> </u>	ļ
					<u></u>												<u></u>	<u> </u>
						<u> </u>	3			••••		76					<u> </u>	
				<u> </u>		<u> </u>												_
							<u></u>							97	97		ļ	<u></u>
					<u>.</u>	<u> </u>	<u></u>									<u> </u>	<u></u>	ļ
				<u> </u>														L
97 9	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	9
	96	97	94	96	94	·		•	÷	÷	92		,	97	97			
92 9	Р	G	K	G	L	E	W	М	G			Y	Р	-	-	G	D	
92 9 M F	%66	100%	97%	%66	97%	100%	97%	92%	%86	77%	95%	78%	%96	100%	100%	71%	%96	300
М			:	÷	•		•	:		1	1	•	•		•	•	:	
•	92%	95% 99%	95% 99% 100%	95% 99% 100% 97%	95% 99% 100% 97%	95% 99% 100% 97% 95%	95% 99% 100% 97% 99% 99%	95% 99% 100% 97% 97% 97% 97%	90000 900000 900000 900000 900000 900000 900000 900000 900000 9000000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	90000 00000 00000 00000 00000 00000 00000	90000 900000 900000 900000 900000 900000 900000 900000 900000 900000 900000 900000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 90000 9000000	90000 900000 900000 900000 900000 900000 900000 900000 900000 900000 900000 900000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 90000 9000000	90001 5 2 1 2 2 3 1 2 4 3 7 5 6 5 1	95% 95% 99% 99% 99% 99% 97% 95% 97% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95	900001	0 0

Table 6F: Analysis of V heavy chain subgroup 5

•	С	DR I	1																	
amino acid'	26	27	28	59	09	1.9	62	8	64	65	99	67	89	69	2	7	72	73	74	75
Α		6					1									88				•••••
В									.											
. C					1					1										
D	77									2							97			
E	3								2						_			2		·-··-
F				2				91				1		3						
G	1									94										
Н											15									
l		4	1					1				3		88						91
K			2															93		
L						1		4							2			<u></u>		
М														3		•••		<u></u>		
N	2		14	2														<u> </u>		
Р						95	1		1										1	
Q		<u> </u>	<u>.</u>	<u> </u>					91		81							1		<u></u>
R		<u></u>	78	<u> </u>					3		1			1				1	 -	<u> </u>
S	2	2	<u> </u>	<u> </u>	95	1	95	1			<u> </u>		1		95		<u> </u>	<u></u>	96	-
T		85	2	<u> </u>	1		<u></u>	ļ			<u> </u>		96				<u> </u>	ļ	<u> </u>	<u> </u>
V		<u> </u>	<u> </u>	1	<u> </u>		<u></u>	<u> </u>			<u> </u>	93		2		9	<u> </u>	<u> </u>		<u> </u>
W				<u>.</u>	<u></u>						<u> </u>						<u> </u>	<u> </u>		<u> </u>
X		<u>.</u>						ļ			ļ							<u> </u>	ļ	<u> </u>
Y	12			92		<u></u>	ļ	ļ					••••			ļ	<u></u>	ļ		<u> </u>
Z				<u> </u>	<u> </u>			<u> </u>			<u> </u>						<u> </u>	<u> </u>	<u>!</u>	<u> </u>
_								<u> </u>	ļ	ļ	<u> </u>					ļ		ļ	<u> </u>	ļ
unknown (?)		<u> </u>	<u> </u>	<u>.</u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>				ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequence				<u> </u>	<u></u>	<u>L</u>		<u></u>			<u> </u>	<u> </u>				_	<u> </u>	<u> </u>	<u> </u>	
sum of seq ⁷												97								
oomcaa ³							•••••••					93								
mcaa*	D	Ţ	R	Y	5	Р	5	F	Q	G	Q	٧	T		S	Α	D	K	S	
rel. oomcaa ^s	√0b∠	880%	80%	95%	98%	%86	0/086	94%	94%	%26	84%	%96	%66	91%	%86	910%	100%	%96	<i>9</i> /066	
pos occupied			-	•			•	3 4	:	:	:	3 3	2	:	:		•	1 4	4 2	2

Table 6F: Analysis of V heavy chain subgroup 5

				F	ram	ewo	rk II	<u> </u>												
amino acid'	9/	77	78	79	8	8	82	⋖	8	ပ	83	84	82	98	87	88	68	8	91	92
Α		1	91								1	96				93				•••••
В			Ĺ	<u> </u>																
. С							1													95
D				1										96						
E						1					1									
F .				1														2	6	
G								3	1							4				
Н						3														
1															2		9			
K											91						1			
L					96					97							2			
M																	84			
N	7							2	2						2					
P			1		•															
Q						93														
R	1						1	1	3		3									
S	87	2	1	1				90	91				96		5					
Ţ	2	94	2					1			1	1	1		88		1			
V			2		1									1						
W							95													
Χ																				
Υ				94														94	89	
Z																				<u> </u>
_																				
unknown (?)												<u> </u>					<u> </u>	<u> </u>		<u> </u>
not sequence												<u> </u>						1	2	
sum of seq'	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	95	9
oomcaa ³	87	94	91	94	96	93	95	90	91	97	÷	÷	96		:	• • • • • • • • • • • • • • • • • • • •	·····	÷	•	····
mcaa'	S	T	Α	Υ	L	Q	W	S	S	L	K	Α	S	. D	T	Α	М	Υ	Υ	(
rel. oomcaas	90%	97%	94%	97%	%66	%96	98%	93%	94%	100%	94%	990%	%66	%66	91%	96%	87%	986	94%	1000
pos occupied	:	:	:	:	:			:	:	;	:	•		•	•	•	•	:	2	

PCT/EP96/03647

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

or . Anarysis or										CDR										
amino acid'	93	94	95	96	97	86	66	100	۷ i	m (ပ	ا ۵	<u>, , , , , , , , , , , , , , , , , , , </u>	(<u>.</u>	Ι.		¬ :	× (101
А	92		:	1	;			:	3	- :		1			1			4		2
В														_						
. C						1	1	1			2		1							
D				3	3	3	3	1	2	1	1	2		2	1	1	2			37
E			1	1	1	2			1	1				1			1	_		
F .					1		3			3	2		1						26	
G			1	9	11	12	12	5	2	4	3	10	2	1				5		
Н			10	1	<u> </u>	2			1	1		1								
				3	<u> </u>	2	2	1	1	4	1	1		1	1					
K		1	1	1		1	3	1								2				
L			11	2	3	1	1	2	5		1		1		1					
М					2	1	1		1	1	1	1							10	
N				1		2		1	1	2			1					2		
Р			ţ	1	4	3	1	2				1	1	1	1					
Q		1	1 3	3 2		1	1	4	2	1	2									3
R		92	2	7 9	2	2	<u></u>	2	1		2									
S			1	1] 3	2	6	4	4	5	3	5	3	2	2			1		1	
Т	1			1 3	3 2	1	2	6	3	3	6	1		1		<u>. </u>				
V	2			2 4	1 4		1		1	2			1							
W				1	2	1	<u>.</u>	<u></u>			1		2		1		1	1		,
Х					<u> </u>															
Y					1 6	3	6	9	8	7	2	1	2	6	8	9	9	10		1
Z					<u> </u>		<u> </u>	<u> </u>												
_						1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)				<u></u>	·	<u> </u>	<u> </u>		<u> </u>				1			1		1	÷	
not sequence									52									:	i	
sum of seq?									45											
oomcaa'									8			23	30	30	31	32	30	22		
mcaa*	Α	F	۱ ۱	. C	G	G	G	Υ	Y	-	-		-	-	-	-	-	-	F	D
rel. oomcaa ^s	70%	202	0/~/6	24%	340%	270%	77%	20%	18%	22%	36%	51%	67%	67%	%69	71%	%29	49%	59%	82%
pos occupied					1	:	:	:			•	1	:	:	:	:	:	:	;	:

184

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

,		_		-	Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	sum
А												1	611
В													
С													205
. D	1				i	<u>-</u>							458
E				1									404
F	2												256
G			41		41								1065
Н													44
1	9								2				588
ĸ				3									650
L	2						25	1					549
М							8						303
N													64
Р	2					1					1		414
Q				34									612
R		···		3									351
S	2										40	39	1545
Т	1					40	8		39				604
٧	11							40		41			594
W		43											432
X													
Υ	13												738
Z													
-	2												635
unknown (?)	<u>.</u>												4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq'	45	43	41	41	41	41	41	41	41	41	41	40	
oomcaa,	13	43	41	34	41	40	25	40	39	41	40	39	
mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	S	5	
rel. oomcaas	29%	100%	100%	83%	100%	%86	61%	%86	95%	100%	%86	%86	
pos occupied ^e	10	1	1	4	1	2	3	2	2	1	2	2	
					18	25							

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

·														Fra	mev	vork	(1			
amino acid'	-	7	က	4	ည	9	7	æ	6	2	=	12	<u></u>	4	15	9	17	<u>.</u>	5	20
Α												1								
В																				
· C																				
D																				
E																				
F .																				
G								52		67										
Н																				
l																				
K		l											68							
L				52							68	1						67	1	68
М																				
N																				
Р									68					67					1	
Q	52		52		51	52										68				
R					1					1										
S							52		<u></u>		<u> </u>			1	68				66	
T								<u> </u>			<u> </u>						68			<u> </u>
V		52							<u> </u>	<u></u>		66						1		<u> </u>
W								<u>.</u>	<u>.</u>	<u></u>	<u> </u>						<u></u>		<u>.</u>	<u> </u>
Χ											<u> </u>						ļ		<u> </u>	
Y								<u></u>		<u></u>	<u> </u>	<u> </u>							ļ	ļ
Z											<u> </u>	<u> </u>		14.7					<u> </u>	<u> </u>
_											<u>.</u>	<u>.</u>					<u> </u>	ļ	<u> </u>	<u>.</u>
unknown (?)									<u> </u>	<u> </u>	<u>.</u>	<u>.</u>					<u> </u>	<u> </u>	<u> </u>	<u>.</u>
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	
sum of seq²													68							6
oomcaa³	52	52	52	52	51	52	52	52	68	67	68	66	68	67	68	68				
mcaa'	0	٧	Q	L	Q	Q	S	G	Р	G	L	٧	K	Р	S	Q	T	L	S	
rel. oomcaas	100%	100%	100%	100%	98%	100%	100%	100%	100%	%66	100%	97%	100%	%66	100%	100%	100%	966	9,26	7000
pos occupied			<u> </u>	<u> </u>	1	-		1		-		7	1	:		1	1		3	}

WO 97/08320 .

Table 6G: Analysis of V heavy chain subgroup 6

•														CD	RI	-				
amino acid'	21	.22	23	24	25	26	27	28	29	30	31	∢	8	32	33	34	35	36	37	38
Α	1		67											66	67					
В																				
С		68								<u>.</u>										
D							68				1						1			
E																				
F .										2				1	1				1	
G			1			69							3	1	2					
Н																	1			
ļ				64						<u></u>]		2					1		70	
K												3								
L								į							<u></u>					
M																				
N							1				2	66					70			
Р																				
Q																				
R											2	1								7
5	1			1	69			69		68	66		67		3		1			<u> </u>
T	67										2	1	4		1					
V			1	4					70					6					2	<u> </u>
W		1	******													74		74		
Χ																				
Υ	ļ											1							1	
Z																				
<u></u>																				
unknown (?)	-	1			<u>-</u>						1									
not sequenced	5	5	5	5	5	5	5	5	4	4										
sum of seq?	~	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	7
oomcaa,	·	÷	÷	÷	····		:		:	•	·	66				;		7	:	:
mcaa*	T	·••	÷	1	S	G	D	S	٧	S	S	N	_		Α	·	·	W	1	1
rel. oomcaas	97%	99%	37%	33%	100%	100%	%6£	100%	100%	97%	968	%68	91%	93%	91%	100%	95%	100%	95%	
pos occupied	:		:	:	:	1	:	:	:	:	:	:	:	•	:	:	5	1	;	

Table 6G: Analysis of V heavy chain subgroup 6

•				Fra	me	work	c II													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	52	۷	В	U	53	54	55
Α				1									1					1		
В																				
· C																				
D																				
E								74												
F .														2	1			1		
G						74					74	1							1	
Н															1					
l																				
К	1				1											1			66	
Ĺ	1						74			74										
M																				
N																			1	
Р			73																	
Q	72																			
R					73							73				72			1	1
S		74	1	73												1		72		
Т													73						5	
V																				
W									74											73
X																				
Υ		·												72	72					
Z		_																		
-																	74			
unknown (?)																				
not sequenced																				
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaa ³	72	74	73	73	73	74	74	74			••••••		73		•••••		74			
mcaa*	Q	S	Р	S	R	G	L	Е	W	L	G	R	T	Υ	Υ	R	-	S	K	W
rel. oomcaa ^s	97%	100%	%66	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	92%	97%	97%	100%	97%	89%	%66
pos occupied ^a	3	1	2	2	2	1	1		1 ጽጽ		1	2	2	2	3	3	1	3	5	2

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

•	С	DR	I																	
amino acid'	26	57	28	29	99	61	62	63	64	65	99	29	89	69	02	7	72	73	74	75
Α					73	1							2			6		1		
В																				
· C				1																
D			68			1									2		73			
E	1		3			7			1											2
F .	7																			
G			1				1			8										
Н	1																1			
1						1						65	2	71				1		
Κ		1							67						1					70
L	1					5		2				4						1		
М												1								
N	2	65	1						1						69					
Р					1	1									•••••	66				
Q									2		1									
R		1							3		73				*******					
5	2	2	1	1			73			66			1		2	1			73	
T	ļ	4						<u> </u>					69	1				71	1	2
V						58		72			<u> </u>	4		2		1				
W			<u> </u>	<u> </u>				<u> </u>			<u> </u>									
X				<u> </u>				<u></u>												
Y	60	1		72				<u>.</u>												
Z								<u> </u>			<u> </u>									
_		<u> </u>	<u></u>	<u> </u>							<u></u>									
unknown (?)		<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>									<u></u>
not sequenced		<u> </u>		<u> </u>				<u></u>	<u> </u>	<u> </u>										
sum of seq²		÷	÷	÷	•••••		:	;	Ţ	····	Ŧ	:	:	:	:	:	:	:	:	;
oomcaa³		÷	÷	<u> </u>	·	·	• • • • • • • • • • • • • • • • • • • •	÷	÷	÷	÷	65		71	:	·	····			
mcaa¹	Υ	N	D	Υ	Α	٧	S	٧	K	S	R	1	T	1	N	Р	D	T	S	K
rel. oomcaas	81%	88%	92%	92%	%66	78%	%66	97%	91%	%68	%66	%88	93%	%96	93%	%68	%66	%96	99%	95%
pos occupied ⁶	7	6	5	3	2	7	2	2	5	2	2	4	4	3	4	4	:	:	2	3

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

•				F	ram	ewo	rk II	1												
amino acid'	92	11	78	79	80	81	82	⋖	മ	ပ	83	84	82	98	87	88	83	6	91	92
Α													1			74				
В									<u></u>	<u> </u>										
. C																				73
D								3						73						
E													73							
F .			71						1										3	
G														1						
Н						2		1												
.			1													•••••	2			
K								4												
L		1			74		72													<u>.</u>
М							1			1							2			
N	74							63											1	ļ
Р	ļ							ļ				70					<u> </u>			<u> </u>
Q	<u></u>	72				71		ļ										<u> </u>		<u> </u>
R	<u> </u>	1	<u></u>			1	ļ	1			<u> </u>							<u></u>	<u></u>	-
<u>S</u>	<u> </u>	<u></u>	<u> </u>	74	ļ		ļ	1	73		1	3					<u> </u>	<u> </u>	<u> </u>	<u> </u>
T	ļ	<u> </u>	<u> </u>	<u>.</u>	ļ		<u> </u>	1	ļ	<u></u>	73				74		<u> </u>	1		<u> </u>
V		<u> </u>	2	<u> </u>	ļ	<u> </u>	1	<u> </u>	<u> </u>	73	<u></u>						70	<u> </u>	<u> </u>	<u> </u>
W		<u> </u>	<u> </u>	<u></u>	<u> </u>	ļ	<u> </u>	ļ	ļ	<u></u>	<u> </u>	<u></u>					<u> </u>	<u> </u>		<u> </u>
X		<u> </u>	<u> </u>	<u> </u>	ļ			ļ	ļ		<u> </u>								-	ļ
Y	. 	<u> </u>	ļ	<u> </u>		ļ	ļ		ļ		<u></u>							73	70	<u> </u>
Z		<u>. </u>	<u>!</u>	<u> </u>			<u> </u>	<u> </u>			<u>!</u> _					<u> </u>			_	<u>!</u>
_	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>		ļ	<u></u>	ļ	<u> </u>	<u> </u>					<u>.</u>	<u> </u>	<u> </u>	ļ	<u>.</u>
unknown (?)		<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	ļ	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequence		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				_	1	—		_	<u> </u>	<u> </u>	_		<u> </u>
sum of seq		÷	·÷	· ····	• • • • • • • • • • • • • • • • • • • •	•••••••		•	Ţ	÷	· · · · · · · · · · · · · · · · · · ·	73	:	:	:	:		1	:	:
oomcaa ₃	·	·÷	÷	·÷		·!····		•	·•••••••	7		70	••••••		:	······		÷		
mcaa'	N	Q	F	S	L	Q	L	N	S	V	I	Р	E	D	T	Α	-	Υ	Υ	(
rel. oomcaa ^s	100%	97%	%96	100%	100%	%96	9/0/6	85%	%66	%66	99%	%96	%66	%66	100%	100%	95%	%66	95%	7000
pos occupied	٠ 1	•		-	1	:	3	-	2	1	•	•	2	:	1	1	3	1	•	3

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

										CDI	RIH									
amino acid ¹	93	94	92	96	97	86	66	100	ď	В	U	٥	ш	ட	ပ	I	_	_	×	101
Α	69		11	1	3	12	4	3	2	5		8						10	1	
В																				
· C					1		1			1		1	1							
D			19	4	3	7	4	3	1	6	1	1	1							62
E			10	4	2	1	2	2	1	2							1			
F	1		1	1	1		1	2	3		2			1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		··········
				1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
<u> </u>			1	8	4	2	3	2	1					1	5				8	
М				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
5		3	5	5	5	7	6	7	3	4	2					1	1			
T			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	5	1	1					2	
W			1	6	8		3	2	4						·		4	4		
X																				
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)														6	1	5				
not sequenced				1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa3								23	25	33	41	47	53	54	57	56	50	28	38	62
mcaa*	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	79%	78%	%69	39%	53%	%98
pos occupied	4	4	14	20	19	15	17	16	16	13	13	11	8	8	4	5	7	6	6	5

19

Table 6G: Analysis of V heavy chain subgroup 6

Ī	Framework IV												
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	sum
А	T			ī			2						494
В													
С													147
D								1					403
E													186
F	2										2		150
G			49		50								571
Н	2												18
·	9					3		1					304
K				1			1						293
L	5						26						632
M							8						31
N													436
Р	4			6								1	387
Q				40									539
R				2									495
S	4		1			1					43	46	1271
T						45		<u> </u>	45				640
V	21						2	46		48			647
W	ļ	65					5						398
X	ļ				ļ								
Y	19			ļ	<u> </u>								518
Z	<u> </u>				<u> </u>								
· _	2				<u></u>	<u></u>	<u> </u>	<u> </u>				ļ	585
unknown (?)	4,		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>					13
not sequenced	×					:	-	:			:	:	7
sum of seq ²		:	7	:	:	T	:	:	:	:	1		•
oomcaa,	······	<u>:</u>		÷	÷	÷	÷	46	••••••	;	····	·····	-
mcaa ⁴	V	W	G	Q	G	T	L	V	T	V	<u></u>	S	
rel. oomcaas	31%	100%	%86	82%	100%	92%	54%	%96	100%	100%	%96	98%	-
pos occupied ⁶	9	1	2	4		.3	7	3	1	1	2	2	

32

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138–1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L, Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273–274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., Iii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

PCT/EP96/03647

- 18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.
- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869-2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98–103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989) J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077-1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc.Acids Res., 12, 5249–5263.
- 47 Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.lmmunol., 23, 3272-3277.
- 55 Klobeck, H.G. Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) Llmmunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78. Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur J. Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand-J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc.Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- 93 Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, LS., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, LC. & Silberstein, LE. (1991) J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- 117 Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501–1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991)
 J.Clin.Invest., 87, 1603-1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- , 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767;
 Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.lmmunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415–421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.lmmunol., 17, 1407-1414.
- 39 Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017–1020;
 Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006–9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. &t Capra, J.D. (1992) Scand. J. Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand J. Immunol., 3, 833–836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem J., 195, 561–572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453–460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490–2493.
- 66 Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)

 J.Biochem., 86, 1523-1535.
- 67 Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321–333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228–1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407–8414.
- 75 Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

203

- 78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.
- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.invest., 85, 1722–1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 6 Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138–1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., lii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812–823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011–5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685–691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3–24.

- Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.
- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343–350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991)

 Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865–875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741-3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 56 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993)
 J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

- 66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203–213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550–564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385–4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992)

 J.Immunol., 149, 2337-2344.
- 87 Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem.J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867–878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561–6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

- 101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.
- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- 105 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791–793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72–76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen,
 P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.lmmunol., 21, 1115–1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020–8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, LE., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835–2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231–2236.
- 126 Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.lmmunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.
- B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur J. Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515–6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821-1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 9 Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993)
 J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429–1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761–768.
- 12 Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405–4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- (a) deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - (i) screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- A nucleic acid sequence obtainable by the method according to any of claims
 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of;
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, anddeducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42.** A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50**. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims
 50 or 51 a collection of proteins.
 - screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

sednence
consensus
L kappa
=
_
2A:
⋖.
7
igure

										Į.	ran	framework	vor	x 1						1				<u> </u>			CDRI	~		
	l	7	3	99488	S	9	L	8	6	01	11	15	13	Þι	91	91	[]	81	61	50	17	77	23	77	52	97	77	A	8)
Vk1	۵		O	QM		Ø	S	م	S	S		S	A	S	>	9		8	>		-	-	U	8	X	\ \	a	1	1	1
Vk2	0		>	∑ > -	—	O.	2	<u>م</u>		ν			>	-	ط	9	ш	٩	<	S	_	S	S	\propto	S	S	O	S	_	نـ
VK3	Ω	_	>	\ \		1 0	. S	Δ.	∢ .	<u> </u>	<u>.</u>	S		S	_	9	<u></u>	~	A	—		S	ပ	\propto	\forall	S	O	S	1	1
VK4			>	∑ >		O	S	Ъ		S	-	A	>	S		9	ш	\propto	<.	-	_	Z	ပ	\propto	S	S	O	S	>	_
							•										-									ŀ				
										-																				
		- 1			ات	CDRI	_									fı	framework	۲۹	/0r	k 2					l		0	CDR	=	
	a [3		30 53 58 58 58 58 58 58 58	67	30	31	35	33	34	32	36	37	38	39	40	17	45	43	77	St	97	L t	84	67	09	LS	25	23	75
Vk1	ţ	1	ι	9		S	S	>		⋖ .	>	≻	0	O	⊻.	٩	G	×	Α	۵	\mathbf{x}	—	—	-	 >	×	A	S	2	-
VK2	エ	S	ı	Z	9	>	Z	≻		Δ.	3	≻		O	×	٣	9	Ö	S	٩	O		_	_	>	_	G	S	Z	\propto
Vk3	ı	t	1	>	S	S	S	>		⋖ .	>	≻	Ö	Q	\mathbf{X}		9	Q	A	٩	R	_			>	9	A	S	S	\propto
VK4 Y	<u> </u>	S	S	S S N	2	z z	Z	<u></u>	_	Α	N N	/ Y	0	O .	~	<u>a</u>	9	Q	۵.	Д	\checkmark	_		_	>	≥	⋖	S	 	\propto
													l								ļ									

	CDRII	=												1	ran	ne	framework	논	3											
	92	99	129	88	09 69		19	79	63	† 9	92	99	Z 9	89	69	02	LL	7.5	23	74	92	92	LL	87	64	08	18	85	83	⊅ 8
VK1	0	5	9	>	P S	S	8	ட	S	G	S	9	S	9	—		ᄔ	-		—	_	S	S		Q	Ь	ш	D	щ	A
Vk2	A S	S	G	>	٥	\odot	\propto	ட	S	G	S	g	S	G	—		ட			\checkmark	_	S	\propto	>	ш	\forall	ш		>	G
VK3	⋖	⊢	G	>	۵	A	\propto	ட	S	9	S	G	S	G	-		ட	—	-			S	S		ш	۵	ш		ட	⋖
VK4	ш	S	9	>	٩		\propto	ш	S	<u>G</u>	S	9	S	9	<u> </u>	Ω	ᄔ	—		—	_	S	S		O	\forall	ш		>	\triangleleft
		,																	•											
fr	framework 3	e	or	3				CDRI		_							4	framework 4	ا ک	ō	4									
	98	98	۲8	88	68	06	16	76	63	7 6	96	96	۷6	86	66	100	101	102	103	10t	901	901	101	801	60 l					
VK1	-	>-	≻	0	0 0	a	工	>	 -	Į.	ط	مـ	-	ட	ග	a	9	⊢	ㅗ	>	ш	-	\prec	8	—					
VK2	>	>	>	S	000	O	エ	>	-	\vdash	ط	٩	—	щ,	9	O	9	<u> </u>	\prec	>	ш		\prec	\propto	-					
VK3	> >	>	>-	S	000	Q	I	>	\vdash	-	_	٩	-	ட	G	O	Ō	-	\checkmark	>	ш		\checkmark	8	\vdash			÷		
VK4 ∨ Y Y	>	>	>	S	O	O	工	>	—	—	ط.	٥	—	ட	G	O	9		\prec	>	ш	_	×	\propto	—				,	

Figure 2B: VL lambda consensus sequences

	1 .		<u>,</u>		٦		_				
	82	-	>					L S	9	G	9
-	3	Z	0	t				99	S	S	S
=	0	S	S	1				99	م	ط	٥
CDRI	72	S	S	A			=	175	8	\propto	\propto
	97	S	—	۵			CDR	23	a	Z	0
	52	9	G	G			اح	25	Z	S	S
	74	S	—	S				15	Z	>	
	23	V	ပ	၁				09		0	
	77	S	S	S	:			67	>	>	>
	12	-	-					84	-		_
	50	-	—	æ				LÞ	-	Σ	>
	61	>		A				97		-	
	81	8	S	—			j ,	94	×	¥	>
	11	a	Q	O			< 2	77	ط	٩	ط
	91	ပ	G	G			orl	43	A	A	V
	SI	٩	٥	٥			framework 2	45	—	\prec	a
1	τl	X	S	Þ			am	17	9	G	0
framework	13	9	G	>		,	fr	40	۵	٦	۵.
ew	71	S	S	S				38		エ	\times
am	11	>	>	>				38	O	O	
fr	10	1	1 .	L				75	O	O	a
	6	S	S	S	İ			36	>	>	>
	8	٦	A	٩				35	>	>	3
	, L	4	٩	Δ.				34	S	S	S
	9	Q	10	O.				33	>	>	∀
	9	⊢	—	-			2	32	> \ -	>	
	7			_			CDRI	A	1	Z	1.
	3	>	Ø	ய				30 32 32 33 33	Z	>	~
	99488	0 2 1 7 8 0	QSAL	>				30	G S N	GGYNYV	
	L	0	0	S				57	9	9	0
		₹	W2	M3 S Y					3	W2	M3 G D K -

Figure 28: VL lambda consensus sequences

Figure 2C: V heavy chain consensus sequences

	30 53 54 52 53 53 53	KASGGTF	KASGYTF	CTFSGFSLS	AASGFTF	TVSGGSI	KGSGYSF	AISGDSV		CDR II	50 51 52 53 54 55 55 55 57 57	1 P 1 F G T	INP NSGG	0 0 0 M 0 I		1 Y Y S G S	P G D S D	/ W /
framework 1	2345678901123456789021	AEVKKPGSSVKV	GAEVKKPGASVKV	SGPAL	SGGGLVQPGGSLRL	ILQESGPGLVKPSETLSL	SGAEVKKPGESLKI	GPGLVKPSQTLSL		CDRI framework 2	A B Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	WVRQAPGQGLE	MHWVRQAPGOGLE	VGWIROPPGKALEWL	Y A M S W V R Q A P G K G L E W V S	WSWIROPPGKGLEWI	I GWV ROMPGKG L E WM	I R O S P G R G L F W I
] l	VH1A 0	VH1B Q	VH2 Q	VH3 E	VH4 Q	gVH5 E	NH6	UTE 6	SHEI	LE ET (F.U 4	FVH1A S	©VH1B S	VH2 T			VH5 S	

sedneuces
consensus
y chain
:: V heav
igure 2C

VH18 N Y A Q K F Q G R V T M T R D T S I S I A Y M E L S S L K S E V L A S L K T R L T I S K D T S K N Q V V L T M T N M D P V V L A D S V K G R F T I S K D T S K N Q V V L T M T N M D P V V H A D S V K G R F T I S K D T S K N Q F S L K L S S V T A A B S L K S R V T I S V D T S K N Q F S L K L S S V T A A B S V A S V K S R I T I N P D T S K N Q F S L Q U W S S L K A S R W B W B W B W B W B W B W B W B W B W
--

Ω		GA		9 0 0 0	A.	CA GT	S	~~ TC
ഗ		GCGTGGGTGA CGCACCCACT	니	AGCTATCTGG TCGATAGACC	> -	AATTTATGCA TTAAATACGT	G S BamHI	GCTCTGGATC
>		STG	×	CTA'		TTZ	ω [CTC
		999	တ	AGC	₹	AA1 TT?		GCI
ഗ		GA	တ	0	L AseI ~~~~~	•	ტ	G
Æ		3000		TA(L L Ase	TA	W	'AG
ß		AGC TCG	Н	CAT GTA	\times	AAC TTG	<u>F4</u>	m TTT
ц		CTGAGCGCGA GACTCGCGCT	ڻ ر	GGGCATTAGC CCCGTAATCG		CGAAACTATT GCTTTGATAA	ĸ	CGTTTTAGCG
ഗ		_	Ø		A P			
		TAC	လ	992	¥	GCA	ഗ	GTC
ഗ		GTC	A A	CGA	×	AAA ITT	P	~~~ 300
<u>С</u> ,	~ ~ ~ . I]	CCCGTCTAGC GGGCAGATCG	. ~	~ GAGCGAGCCA CTCGCTCGGT	٠	GGTAAAGCAC CCATTTCGTG	V SanDI	G GGTCCC
တ	BanII ∼∼∼∼∼∼		R H	≀ .	P G SexAI		ى ق	ر ان
	₩ {	TGACCCAGAG ACTGGGTCTC	c PstI	ATTACCTGCA TAATGGACGT	Sey	GCAGAAACCA CGTCTTTGGT	ഗ	GCG
Sequer		2CC	H	ACC IGG	× `	SAA	OI .	4A.A
gene		GA(Н	ATT.	Ø	CAC	O .,	'GC
(Vk1) ™					Ø		니	Ļ
арра 1 Q		CAG GTC	H	GAC CTG	Tů X×~~	ACC TGG	ഗ	AGC
Figure 3A: V kappa 1 (Vk1) gene sequence . D I Q M T Q	ECORV	GATATCCAGA CTATAGGTCT	A V	TCGTGTGACC AGCACACTGG	W Y KpnI	CGTGGTACCA GCACCATGGT	S	GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC
igure 3A: V D I	ECORV	AT?	K	,CG; ,GC2	A W F	GTC	A	CCZ
Œ.	?	0 0		T d	A.	υġ		Ü

	CGAGACCTAG
	GCAAAATCGC
Figure 3A: V kappa 1 (Vk1) gene sequence (continued)	CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG

ליז		
CTA(Įщ	
3AC(Ω,	SI
CGAGACCTAG	I S S L Q P E E ECO57I	BbsI
CGC	P C C C C C	
\AT	OI ,	
CAA	ᆟ	
Ö		
33	လ	
3CA(တ	
CCAGGGCAGG GCAAAATCGC	Н	
7)	E	
CCC	H	
TTT	₽	
A ACGTTTCGCC	F T L T	٠
CGGTCGTCGA ACGTTTCGCC	Ω	
CGT(O F	-
GGT	Ŋ	RamHT
, O		Ω

~ ~ ~ ~ ~ ~ ~	I TITACCCIGA CCATTAGCAG CCTGCAACCT GAAGACTITG	GCCGTGACTA AAATGGGACT GGTAATCGTC GGACGTTGGA CTTCTGAAAC
	CCTGCAACCT	GGACGTTGGA
	CCATTAGCAG	GGTAATCGTC
•	TTTACCCTGA	AAATGGGACT
?	CGGCACTGAT	GCCGTGACTA

BamHI

Ø	—
ტ	MSCT
ഥ	
H	
Д	
凸	
₽	-
₽	
×	
H	
O	
Ø	
رن	
×	
>-	
E	
A	

ACGTACG TGCATGC TTGAAATTAA AACTTTAATT GGTACGAAAG CCATGCTTTC

Figure 3B: V kappa 2 (Vk2) gene sequence

ম	,	GA	
Ö		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Z
Д		2000	Ŋ
		CTCCGGGCGA	Ħ
E			٠,٦
>		GTC	-
Д		CCA	니
M T Q S P L S L P V T P G E Banii		CTGCCAGTGA GACGGTCACT	SISCRSSQSLLHSN
Ø		000 000 000	Q
i,	٠	TGA	ß
д н	?	CCCACTGAGC GGGTGACTCG	ß
S BanII	2 2 2 2 2		民
д O	1	TGACCCAGAG ACTGGGTCTC	ບ
د د		7007 366	ß
		GAC	Н
\mathbf{Z}			•
>		TG.	Ŋ
I RV	?	TCC	A
D I EcoRV	2 2 2 2	GATATCGTGA CTATAGCACT	Д
	٠		

PstI

AAGCCCGCAG CATAGCAACG GTATCGTTGC Ø Д S AACCAGGTCA TTCGGACGAC AAGCCTGCTG Ø Ç SexAI Д K GAAGCAGCCA CTTCGTCGGT TACCTTCAAA Ø Ц KpnI **>** TCTGGATTGG ATTAGCTGCA TAATCGACGT **В** Ц CGGACGCTCG GCTATAACTA GCCTGCGAGC \Rightarrow Z \succ G

ц CGGATCGTTT GCCTAGCAAA 又 Д Д AGTGGGGTCC TCACCCCAGG SanDI > O S CAACCGTGCC GTTGGCACGG 4 又 Z ATCTGGGCAG TAGACCCGTC Ŋ Ŋ Н CTATTAATTT GATAATTAAA Н ~~~~~ AseI Ц Ц

TTCGGGCGTC

TTGGTCCAGT

ATGGAAGTTT

AGACCTAACC

CGATATTGAT

	S R V	AGCCGTGTGG TCGGCACACC	E E		TACCACCCCG	T WI	~~ 50 00 00
	L K I	CCTGAAAATT GGACTTTTAA	о н х		AGCAGCATTA TCGTCGTAAT	I K R T BsiWI	ATTAAACGTA CG TAATTTGCAT GC
(P	r D F T	CCGATTTTAC GGCTAAAATG	Y Y C Q		TATTATTGCC	K V E	GAAAGTTGAA CTTTCAACTT
Figure 3B: V kappa 2 (Vx2) gene sequence (continued)	S G S G S G T BamHI	TAGCGGCTCT GGATCCGGCA ATCGCCGAGA CCTAGGCCGT	E A E D V G V Eco57I	BbsI	AAGCTGAAGA CGTGGGCGTG TTCGACTTCT GCACCCGCAC	P T F G Q G T MscI	CCGACCTTTG GCCAGGGTAC GGCTGGAAAC CGGTCCCATG

LSLS PGE	C CTGAGCCTGT CTCCGGGCGA	Y S S S Y	A GAGCGTGAGC AGCAGCTATC	A P R L L I Y AseI	CACCGCGTCT GTGGCGCAGA	A R F S G S Bam	G GCGCGTTTTA GCGGCTCTGG
Figure 3C: V kappa 3 (Vk3) gene sequence D I V L T Q S P A T ECORV	GATATCGTGC TGACCCAGAG CCCGGCGACC CTATAGCACG ACTGGGTCTC GGGCCGCTGG	RATLSCRAS Psti	ACGTGCGACC CTGAGCTGCA GAGCGAGCCA TGCACGCTGG GACTCGACGT CTCGCTCGGT	L A W Y Q Q K P G Q KpnI SexAI	TGGCGTGGTA CCAGCAGAAA CCAGGTCAAG ACCGCACCAT GGTCGTCTTT GGTCCAGTTC	GASSRATGVP	GGCGCGAGCA GCCGTGCAAC TGGGGTCCCG

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CGGCACGTTG ACCCCAGGGC CGCGCAAAAT CGCCGAGACC CCGCGCTCGT

BbsI ~~~~~ Eco57 口 Ы ᄓ Ц ഗ ัญ Н ⊱ 口 터 بعآ Н G BamHI ഗ

CCTGAAGACT GGACTTCTGA CAGCCTGGAA ACTGGTAATC GTCGGACCTT TGACCATTAG CTAAAATGGG GATTTTACCC ATCCGGCACG TAGGCCGTGC

~~~~

G

ഥ

Н

Д

ш

₽

H

耳

Ø

 $\circ$ 

CTGGAAACCG GACCTTTGGC MscI GGTGGGGCGG CCACCCCCCC CAGCATTATA GTCGTAATAT AATAACGGTC TTATTGCCAG Ø  $\succ$ TTGCGGTGTA AACGCCACAT > A

BsiWI ~~~~~ 凶 又  $\mathbf{H}$ 口 × H ڻ MscI Ø

ATTTGCATGC TAAACGTACG AAGTTGAAAT TTCAACTTTA CAGGGTACGA GTCCCATGCT

区

Д

Д

>

Ö

Ø

团

召

H

Ŋ

K

⋈

 $\succ$ 

Ц

ᆸ

X

AGGCCTAGC

CTTTCGCCCC

TAGGTGGCA

AAATAACCCG

TTTGATAATT

Figure 3D: V kappa 4 (Vk4) gene sequence

| 匝                                    | GA                                |               |
|--------------------------------------|-----------------------------------|---------------|
| ტ                                    | 390                               | 01            |
| M T Q S P D S L A V S L G E<br>BanII | GCCTGGGCGA                        | INCRSSQSVLYSS |
| W                                    |                                   |               |
| >                                    | TGGCGGTGA                         | IJ            |
| A.                                   | 3000<br>1000                      | >             |
| ᄓ                                    | CTGGCGGTGA                        | W             |
| Ø                                    | 0<br>0<br>0                       | Q             |
| 0                                    | CCCGGATAGC<br>GGGCCTATCG          | Q             |
| <b>П</b>                             | 7.000<br>7.000<br>7.000           | Ø.            |
| S E<br>anII                          | 999<br>222                        |               |
| S<br>Ban                             | _}<br>_}_r5_r5_                   | ĸ             |
| O                                    | CACCCAGA<br>CTGGGTCT              | Ŋ             |
| E                                    | 000                               | Z             |
| ٠                                    | TGACCCAGA(<br>ACTGGGTCT           | Н             |
| Σ                                    |                                   | Ė             |
| >                                    | CGTG                              | -<br>-        |
| I<br>oRV                             | ATC<br>TAG                        | A.            |
| D I<br>ECOR                          | ~~~~~<br>GATATCGTGA<br>CTATAGCACT | æ             |
|                                      |                                   |               |

Ø

Н

Ė

Ø

区

PstI  $\mathcal{O}$ 

| TATAGCAGCA               | N Y L A W Y Q Q K P G Q P P |                                         | TCAGCCGCCG               |
|--------------------------|-----------------------------|-----------------------------------------|--------------------------|
| ATATCGTCGT               | KpnI SexAI                  | }                                       | AGTCGGCGGC               |
| GAGCGTGCTG               | O K P G                     | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | AGAAACCAGG               |
| CTCGCACGAC               | SexAI                       |                                         | TCTTTGGTCC               |
| GAAGCAGCCA               | W Y Q Q                     | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | TGGTACCAGC               |
| CTTCGTCGGT               | KpnI                        |                                         | ACCATGGTCG               |
| ATTAACTGCA<br>TAATTGACGT | Y L A                       |                                         | CTATCTGGCG<br>GATAGACCGC |
| ACGTGCGACC<br>TGCACGCTGG | N N N                       |                                         | ACAACAAAAA<br>TGTTGTTTTT |

TCCCGGATCG SanDI GAAAGCGGGG ATCCACCCGT TTTATTGGGC AseI AAACTATTAA

Figure 3D: V kappa 4 (VK4) gene sequence (continued)

| T D F T L T I S S | GCACTGATTT TACCCTGACC ATTTCGTCCC<br>CGTGACTAAA ATGGGACTGG TAAAGCAGGG | V Y Y С Q Q Н Y T T  | GTGTATTATT GCCAGCAGCA TTATACCACC                           | T K V E I K R T<br>Bsiwi | TACGAAAGTT GAAATTAAAC GTACG<br>ATGCTTTCAA CTTTAATTTG CATGC |
|-------------------|----------------------------------------------------------------------|----------------------|------------------------------------------------------------|--------------------------|------------------------------------------------------------|
| FSGSGSG<br>BamHI  | TTTTAGCGGC TCTGGATCCG G                                              | L Q A E D V A Eco57I | BbsI<br>TGCAAGCTGA AGACGTGGCG G<br>ACGTTCGACT TCTGCACCGC C | PPTFGQG<br>MscI          | CCGCCGACCT TTGGCCAGGG T                                    |

| 5<br>5<br>5<br>5<br>5      | <b>\</b>                                                                                            | ATG<br>FAC                                                                                          | ×                                                                                                                                                                              | TAT<br>ATA                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                     | ì                                                                                                                                                                                                                                                                                         |
|----------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAG                        |                                                                                                     | CTZ<br>GA                                                                                           | H                                                                                                                                                                              | ATT'<br>FAA                                                                                                                                                                                                                                                           | SamH                                                                                                                                                                                                                                                                                                                                                | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \                                                                                                                                                                                                                                                   |
| GGA                        |                                                                                                     | CAA<br>GT                                                                                           | i<br>i                                                                                                                                                                         | TG                                                                                                                                                                                                                                                                    | ω m                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                         |
| CAC                        | Ŋ                                                                                                   | AG                                                                                                  |                                                                                                                                                                                |                                                                                                                                                                                                                                                                       | ß                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           |
| AC                         | Ŋ                                                                                                   | 3GC<br>7CG                                                                                          | ᄓ                                                                                                                                                                              | ACT<br>IGA                                                                                                                                                                                                                                                            | Ĺτ                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                           |
| 0<br>0<br>0<br>0<br>0      | н                                                                                                   | TTC                                                                                                 | ×                                                                                                                                                                              | AA)                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           |
| ,<br>,<br>,<br>,<br>,<br>, | <b>5</b> 2                                                                                          | ACA<br>TGT                                                                                          | വ                                                                                                                                                                              | ~<br>CCC<br>000                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           |
| AGT<br>TC?                 | <b>4</b>                                                                                            | CA                                                                                                  | )<br>JeI                                                                                                                                                                       | ວິດ<br>ວິດ<br>ວິດ                                                                                                                                                                                                                                                     | Д                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           |
| AC A                       | W .                                                                                                 | AG                                                                                                  |                                                                                                                                                                                |                                                                                                                                                                                                                                                                       | Д                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                         |
| CAG<br>STC                 | W                                                                                                   | AGC<br>TCG                                                                                          |                                                                                                                                                                                | GAC                                                                                                                                                                                                                                                                   | · >                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                         |
| TTC                        | W                                                                                                   | AGC                                                                                                 | G<br>maI                                                                                                                                                                       | 000<br>000                                                                                                                                                                                                                                                            | O                                                                                                                                                                                                                                                                                                                                                   | }                                                                                                                                                                                                                                                                                         |
| 000                        | rh.                                                                                                 | 000                                                                                                 | дΧ                                                                                                                                                                             | 00<br>00<br>00                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     | }<br>}                                                                                                                                                                                                                                                                                    |
| ပ ပ                        |                                                                                                     | ည်<br>သည                                                                                            | IJ                                                                                                                                                                             | TG                                                                                                                                                                                                                                                                    | s<br>su3                                                                                                                                                                                                                                                                                                                                            | }<br>}                                                                                                                                                                                                                                                                                    |
| CAG                        | Ω                                                                                                   | TAG                                                                                                 | Q                                                                                                                                                                              | AGT<br>TC2                                                                                                                                                                                                                                                            | ъ<br>Б                                                                                                                                                                                                                                                                                                                                              | . ≀                                                                                                                                                                                                                                                                                       |
| ည်စည်း                     | C<br>SSI                                                                                            | GAC                                                                                                 |                                                                                                                                                                                | AGC                                                                                                                                                                                                                                                                   | K                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           |
| TGA                        | S<br>Bs                                                                                             | TC(                                                                                                 | 4                                                                                                                                                                              | 55<br>55<br>55                                                                                                                                                                                                                                                        | Q                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           |
| ပ္ပ ဗ                      | H                                                                                                   | TC                                                                                                  | Y<br>Y                                                                                                                                                                         | STA                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           |
| CGTC                       | ·                                                                                                   | CCA                                                                                                 | N<br>N                                                                                                                                                                         | TGG                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           |
| AGC                        |                                                                                                     | rga.<br>act                                                                                         | Ω                                                                                                                                                                              | AGC                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           |
| CAG                        | 12                                                                                                  | TG5<br>AC2                                                                                          | >                                                                                                                                                                              | TG.<br>AC                                                                                                                                                                                                                                                             | Ω.                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                           |
|                            | CAGAGCGTGC TGACCCAGCC GCCTTCAGTG AGTGGCGCAC CAGGTCAGCGGTCTGGTCAGCG CGGAAGTCAC TCACCGCGTG GTCCAGTCGC | TGACCCAGCC GCCTTCAGTG AGTGGCGCAC ACTGGGTCGG CGGAAGTCAC TCACCGCGTG Eco57I  S C S G S S S N I G BSSSI | TGACCCAGCC GCCTTCAGTG AGTGGCGCAC ACTGGGTCGG CGGAAGTCAC TCACCGCGTG Eco571  S C S G S S S N I G BSSSI TCGTGTAGCG GCAGCAGCAG AGCACATTGGC GTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCG | TGACCCAGCC GCCTTCAGTG AGTGGCGCAC GGGAAGTCAC TCACCGCGTG GECOSTI  S C S G S S S N I G BSSSI TCGTGTAGCG GCAGCAGCAG CAACATTGGC TCGTGTAGCG CGTCGTCGTC GTTGTAACCG AGCACATCGC CGTCGTCGTC GTTGTAACCG AGCACATCGC CGTCGTCGTC GTTGTAACCG AND AND AND AND AND AND AND AND AND AND | TGACCCAGCC GCCTTCAGTG AGTGGCGCAC GGGAAGTCAC TCACCGCGTG GGAAGTCAC TCACCGCGTG GCAGTG AGTGGCGCAG GCAGCAGCAG GGCCCTGGTG GTTGTAACCG GGCACATTGGC GTTGTTAACCG GGCACATTGGC GGCCCTGCC GCGCGAAACT GGTCGTCAAC GGCCCTGCC GCGCAAACT GGTCGTCAAC GGCCCTGCC GCGCAAACT GGTCGTCAAC GGCCCTGCC GCGCAAACT GGTCGTCAAC GGCCCTGCC GCGCAAACT GGTCGTCAAC GGCCCTGCC GCGCCTTTGA | TGACCCAGCC GCCTTCAGTG AGTGGCGCAC CACTGGGTCGC CGGAAGTCAC TCACCGGGTG CGGAAGTCAC TCACCGCGTG CGCTGTG CTCGTGTAGCG CGTCGTCGTC GTTGTAACCG CGTCGTCGTC GTTGTAACCG CGTCGTCGTC GTTGTAACCG CGTCGTCGTC CCCGGGACGG CGCCGGAAACT CCCAGCAGTTG CCCGGGACGG CGCCCGAAACT CGTCGTCAAC GGCCCTGCC GCGCTTTGA BSu361 |

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

|               |                          | *                                                                                                        |                                                                                                         |                                                                                                                 |
|---------------|--------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| S E D<br>BbsI | AGCGAAGACG<br>TCGCTTCTGC | V F G<br>TGTGTTTGGC<br>ACACAAACCG                                                                        |                                                                                                         |                                                                                                                 |
| G<br>L<br>S   |                          | CCACCCGCC<br>GGTGGGGCGG                                                                                  |                                                                                                         |                                                                                                                 |
| T T           | TTGCGATTAC<br>AACGCTAATG | Q H Y 1<br>CAGCATTATA<br>GTCGTAATAT                                                                      | L G<br>MscI<br>~~~                                                                                      | TCT                                                                                                             |
| SASL          | AGCGCGAGCC<br>TCGCGCTCGG | Y C Q<br>TTATTGCCAG<br>AATAACGGTC                                                                        | K L T V<br>HpaI                                                                                         | ΑĒ                                                                                                              |
| S<br>D<br>Fr  | AAGCGGCACC<br>TTCGCCGTGG | E A D Y<br>AAGCGGATTA<br>TTCGCCTAAT                                                                      | T 5 5                                                                                                   | GGCGGCACGA                                                                                                      |
|               | GTSASLAITGLQS            | G T S A S L A I T G L Q CGGCACC AGCGCAGCC TTGCGATTAC GGGCCTGCAA GCCGTGG TCGCGCTCGG AACGCTAATG CCCGGACGTT | TTGCGATTAC GGGCCTGCAA AACGCTAATG CCCGGACGTT  Q H Y T T P P CAGCATTATA CCACCCCGCC GTCGTAATAT GGTGGGGGGGG | TTGCGATTAC GGGCCTGCAA AACGCTAATG CCCGGACGTT  Q H Y T T P P CAGCATTATA CCACCCGGC GTCGTAATAT GGTGGGGCGG  L G MScI |

2222

TTAGCGGATC AATCGCCTAG

AGCAACCGTT TCGTTGGCAA

CTCAGGCGTG GAGTCCGCAC

GCAACCGTCC

TATGATGTGA ATACTACACT

|                                           | Ω        | TC                                 | _            | CT                                                                   | н                 | TT                                                         | S             |
|-------------------------------------------|----------|------------------------------------|--------------|----------------------------------------------------------------------|-------------------|------------------------------------------------------------|---------------|
|                                           | Q        | CAGGTCAGAG<br>GTCCAGTCTC           | Z            | GGCTATAACT<br>CCGATATTGA                                             | Σ                 | ACTGATGATT<br>TGACTACTAA                                   | G S<br>BamHI  |
|                                           | ъ н<br>« | CCA                                | ≯.           | SAT                                                                  | I.                | IGA<br>ACT.                                                | W             |
|                                           | XXX      | CAC                                | Ŋ            | 333                                                                  | H                 | ACJ<br>TG2                                                 |               |
|                                           | S.e.     |                                    | ტ            | ည္သတ္                                                                | ¥                 | A.A<br>I'T                                                 | দ             |
|                                           | Ω.       | TCZ                                |              | )<br>)<br>)<br>)<br>)                                                |                   | .003<br>.003<br>.003<br>.003<br>.003<br>.003<br>.003<br>.0 | 民             |
|                                           | Ö        | 000                                | D V          | TGI                                                                  | A P<br>BbeI       | ~~~~~<br>300000<br>000000                                  | Z             |
|                                           | Ø        | AGCGGCTCAC<br>TCGCCGAGTG           | Ω            | CGATGTGGGC<br>GCTACACCCG                                             |                   | AGGCGCCGAA<br>TCCGCGGCTT                                   | ω<br>Z        |
|                                           | >        | STG<br>CAC                         | Ŋ            | AG                                                                   | P G K<br>XmaI     | 3GA<br>CCT                                                 | >             |
|                                           | ഗ        | CTTCAG<br>GAAGTC<br>ECO57I         | Q            | AGC                                                                  | P G<br>XmaI       | 000000                                                     | O,            |
|                                           | A<br>S   | AGCTTCAGTG<br>TCGAAGTCAC<br>Eco57I | E+ .         | GTACTAGCAG<br>CATGATCGTC                                             |                   | CATCCCGGGA<br>GTAGGGCCCT                                   |               |
|                                           | Д        | AG                                 | <sub>O</sub> | GT                                                                   | Ħ                 | CA                                                         | P S<br>Bsu36I |
|                                           | വ        | 0<br>0<br>0<br>0                   | E .          | , 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | Q                 | AG                                                         | దద            |
| uce ·                                     | OI .     | TGACCCAGCC<br>ACTGGGTCGG           |              | TCGTGTACGG                                                           | Y Q Q Y           | GTACCAGCAG                                                 | 民             |
| sedne                                     | E        | ACC<br>IGG                         | S C<br>BssSI | ~~~<br>GTG<br>CAC                                                    | 7<br>7 H<br>8 D H | ACC<br>IGG                                                 | Z             |
| ) gene                                    | i<br>I   | TG                                 | BS S         | TCGTG<br>AGCAC                                                       | W Y<br>KpnI       |                                                            | Ø             |
| 2 (W2                                     |          | AC                                 | H            | TC<br>AG                                                             | 3                 | ATGTGAGCTG<br>TACACTCGAC                                   |               |
| mbda                                      | <b>A</b> | CAGAGCGCAC<br>GTCTCGCGTG           | <b>[-</b> 4  | CATTACCATC<br>GTAATGGTAG                                             | W                 | AGC                                                        | >             |
| 8: < la                                   | W        | AGG                                |              | TA.                                                                  | >                 | TG<br>AC                                                   | Y.            |
| Figure 4B: V lambda 2 (Vλ2) gene sequence | Q        | CAGAGCGCAC<br>GTCTCGCGTG           | H            | CA1<br>GT?                                                           | <b>&gt;</b> -     | ATGTGAGCTG<br>TACACTCGAC                                   | >             |
| Ē                                         |          |                                    |              |                                                                      |                   |                                                            |               |

| _                        |
|--------------------------|
| ned                      |
| contin                   |
| <u>ō</u>                 |
| nce                      |
| dne                      |
| e se                     |
| bda 2 (VA2) gene sequenc |
| 72)                      |
| 2                        |
| 7                        |
| nbda                     |
| <u>a</u>                 |
| >                        |
| 4B:                      |
| ure                      |
| Fig                      |
|                          |

|                            |                                                                                                               | r. 1                                                                                        |                                                                                                                                                          |                                                                                                                                                                                  |
|----------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AAAG<br>TTC                | ्रिम                                                                                                          | STTT                                                                                        |                                                                                                                                                          |                                                                                                                                                                                  |
| 0000                       | >                                                                                                             | IGTC<br>ACAC                                                                                |                                                                                                                                                          |                                                                                                                                                                                  |
| CAAG                       | Д                                                                                                             | GCC1<br>CGG2                                                                                |                                                                                                                                                          |                                                                                                                                                                                  |
| TG                         | <u>.</u>                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0                                                                  | ÷                                                                                                                                                        |                                                                                                                                                                                  |
| 3600                       | H                                                                                                             | CACC                                                                                        |                                                                                                                                                          |                                                                                                                                                                                  |
| PAGCG                      | H                                                                                                             | ATACC                                                                                       |                                                                                                                                                          |                                                                                                                                                                                  |
|                            | <b>&gt;</b>                                                                                                   |                                                                                             | th ()                                                                                                                                                    |                                                                                                                                                                                  |
| CCA                        | H                                                                                                             | CA1                                                                                         | Msc                                                                                                                                                      | ~~~~<br>FTGGC<br>AACCG                                                                                                                                                           |
| TGA                        | Q                                                                                                             | SCAC                                                                                        | Ι .                                                                                                                                                      | ~~~~<br>CGTTCTTGGC<br>GCAAGAACCG                                                                                                                                                 |
| 000                        | Q                                                                                                             | CAC                                                                                         | <b>-</b>                                                                                                                                                 | CG.                                                                                                                                                                              |
|                            | Ö                                                                                                             | ပ္ ပ္                                                                                       | E H                                                                                                                                                      | AC<br>FF                                                                                                                                                                         |
| 555<br>808                 | <b>&gt;</b> -                                                                                                 | ATT<br>TAA                                                                                  | T<br>Hpa                                                                                                                                                 | CTTAAC                                                                                                                                                                           |
| CAC<br>GTG                 | ≯                                                                                                             | ATT<br>TAA                                                                                  | ×                                                                                                                                                        | AAG                                                                                                                                                                              |
| AA(<br>TT                  |                                                                                                               | TT                                                                                          | E                                                                                                                                                        | C C                                                                                                                                                                              |
| 0<br>0<br>0<br>0<br>0<br>0 | Ω                                                                                                             | GGA                                                                                         |                                                                                                                                                          | GCA                                                                                                                                                                              |
| )<br>(CGC                  | A                                                                                                             | AGC(<br>ICG(                                                                                |                                                                                                                                                          | 1000<br>1000<br>1000                                                                                                                                                             |
| AAA                        | E                                                                                                             | GAZ<br>GCTT                                                                                 |                                                                                                                                                          | ~~~~<br>GGCGGCGCA CGAAGTTAAC CGTTCTTGGC                                                                                                                                          |
| ~<br>CA<br>GT              | D<br>Bb                                                                                                       | AC<br>TC                                                                                    | U                                                                                                                                                        | 9 2                                                                                                                                                                              |
|                            | CAAAAGCGGC AACACCGCGA GCCTGACCAT TAGCGGCCTG CAAGCGGAAGGTTTTTCGCCG TTGTGGCGCT CGGACTGGTA ATCGCCGGAC GTTCGCCTTC | AACACCGCGA GCCTGACCAT TAGCGGCCTG<br>TTGTGGCGCT CGGACTGGTA ATCGCCGGAC<br>Y Y C Q Q H Y T T P | AACACCGCGA GCCTGACCAT TAGCGGCCTG TTGTGGCGCT CGGACTGGTA ATCGCCGGAC  Y Y C Q Q H Y T T P TTATTATTGC CAGCAGCATT ATACCACCCC AATAATAACG GTCGTCGTAA TATGGTGGGG | AACACCGCGA GCCTGACCAT TAGCGGCCTG TTGTGGCGCT CGGACTGGTA ATCGCCGGAC  Y Y C Q Q H Y T T P TTATTATTGC CAGCAGCATT ATACCACCCC AATAATAACG GTCGTCGTAA TATGGTGGGG T K L T V L G Hpal MscI |

Figure 4C: V lambda 3 (Vλ3) gene sequence

| E                                  | AAC<br>CTG                         | 70               | SCT<br>GA                | Q                           | AT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------|------------------------------------|------------------|--------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q                                  | CAC                                | Q1               | GAG                      | Ω                           | ATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| υ                                  | ~~<br>GT<br>CA                     | Ø                | Ď<br>Č<br>Č              |                             | TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| T Q P P S V S V A P G Q T<br>SexAI | AC CAGGTCAGAC<br>IG GTCCAGTCTG     | DALGDKYAS        | TACGCGAGCT<br>ATGCGCTCGA | Q A P V L V I Y D D<br>Bber | CAGGCGCCAG TTCTGGTGAT TTATGATGAT<br>GTCCGCGGTC AAGACCACTA AATACTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S<br>B                             |                                    | 84               | AA<br>I'I                | Н                           | AT<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ø                                  | , GC2                              |                  | TA                       | >                           | TGZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| >                                  | GTT                                | Н                | CGA                      | ت                           | IIGG<br>ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ω                                  | AGCGTTGCAC<br>TCGCAACGTG           | Ŋ                | GGGCGATAAA<br>CCCGCTATTT | • •                         | TTCTGGTGAT<br>AAGACCACTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                    |                                    | · 🎞              |                          | >                           | 5<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| >                                  | AGT<br>FCA<br>7 I                  | 4                | 20C                      | д _                         | č<br>ZCA<br>SGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ŋ                                  | CTTCAG<br>GAAGTC<br>Eco57I         | .7               | TG                       | A<br>BbeI                   | $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{\infty}\sum_{j=1}^{$ |
|                                    | GCCTTCAGTG<br>CGGAAGTCAC<br>Eco57I | Н                | GCGATGCGCT               | щ<br>O                      | CAGGCGCCAG<br>GTCCGCGGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.                                 |                                    |                  |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | 000                                | W                | 000                      | P G<br>Xmal                 | 9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| O/                                 | CCA                                | $O \vdash$       | čara<br>Cat              | K P G<br>XmaI               | 300<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H                                  | TGACCCAGCC<br>ACTGGGTCGG           | S C S G<br>BssSI | TCGTGTAGCG               | ×                           | GAAACCCGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i,                                 | •                                  | D W              | }                        |                             | GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ·<br>ਜੀ                            | ,<br>LTG                           | H                | ATC<br>PAG               | O.                          | 3CA<br>3GT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | TGZ                                | 民                | GTZ<br>CAS               | Q                           | CAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ξ<br>X                             | AGCTATGAAC<br>TCGATACTTG           | A<br>R           | CGCGCGTATC<br>GCGCGCATAG | W Y<br>KpnI<br>~~~~~~~      | GGTACCAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .Ω                                 | AG(<br>TC(                         | • •              | 0<br>0<br>0<br>0         | W Y<br>Kpn                  | GG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                    |                                    |                  |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Figure 4C: V lambda 3 (VA.3) gene sequence (Continued)

| ro<br>ro       |                   | 3000                                           | 4                     | 3000<br>3000          | )<br>(၁)<br>(၁)                                                                                                               | 3008<br>3008                                   |
|----------------|-------------------|------------------------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| PSGIPERFSGSNSG | ٠,                | TTTAGCGGAT CCAACAGCGG<br>AAATCGCCTA GGTTGTCGCC | TLTISGTQAEDEA<br>Bbsi | TCAGGCGGAA GACGAAGCGG | CTGCTTCGCC                                                                                                                    | TGGCGGCGGC                                     |
| ± Ω            |                   | E A                                            | l<br>bsI              | }                     |                                                                                                                               |                                                |
| ტ "p           | ਰ }<br>ਹ }        | GGA'                                           | ΜМ                    | GGA                   | )<br>)<br> <br>                                                                                                               | TGT                                            |
| W              |                   | AGC                                            | A                     | 666                   | ်<br>၁<br>၁                                                                                                                   | CTG                                            |
| Įτι            |                   | TTT<br>AAA                                     | O <sup>l</sup>        | TCA                   | AGI                                                                                                                           | 929                                            |
| ĸ              |                   | 20C                                            | E                     | CAC                   | יין די ש<br>שייים שייים שייים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים | 000<br>000<br>000                              |
| ы              |                   | SAAC                                           | Ö                     | 2990                  |                                                                                                                               | CCAC                                           |
| д              |                   | CCTCAGGCAT CCCGGAACGC<br>GGAGTCCGTA GGGCCTTGCG | Q                     | TTAGCGGCAC            | TGGGACTGGT AATCGCCGTG AGTCCGCCTT                                                                                              | TATACCACCC CGCCTGTGTT<br>ATATGGTGGG GCGGACACAA |
| н              |                   | AT C                                           | . Н                   | A T                   | 4.<br>4.                                                                                                                      | TA TI                                          |
| ဗ              | · }               | CCTCAGGCAT<br>GGAGTCCGTA                       | H                     | GACC                  | TGGGACTGGT                                                                                                                    | AGC                                            |
| S C            | BSUJOI<br>~~~~~~~ | TCA(                                           | H                     | CCT                   | GGA                                                                                                                           | AGC                                            |
| Б              | Ω<br>Ω<br>≥       |                                                |                       | AC                    |                                                                                                                               | 55                                             |
|                |                   | GTC                                            | Ą                     | 5050                  | ეტე<br>ეტექ                                                                                                                   | ATTG                                           |
| S D R          |                   | ACC                                            | £<br>Z                | CACC                  | GTGG<br>Z                                                                                                                     | ATTA<br>FAA1                                   |
| ഗ              |                   | TCTGACCGTC<br>AGACTGGCAG                       | Z                     | CAACACCGCG ACCCTGACCA | GTTGTGGCGC<br>D Y Y C                                                                                                         | ATTATTATTG CCAGCAGCAT<br>TAATAATAAC GGTCGTCGTA |

Ħ

>

×

딘

ACGAAGTTAA TGCTTCAATT WO 97/08320

Ц

团

 $\mathbf{Z}$ 

 $\succ$ 

Ø

H

ഗ

H

S

闰

ď

H

V T BstEll

| •                             | Ω<br>Ω<br>Ω      | CGGGCAGCAG<br>GCCCGTCGTC                      | S<br>X              | AGCTATGCGA<br>TCGATACGCT                       | U<br>U<br>W            | GATGGGCGGC<br>CTACCCGCCG                       | A Q K F Q G R<br>GCGCAGAAGT TTCAGGGCCG<br>CGCGTCTTCA AAGTCCCGGC |
|-------------------------------|------------------|-----------------------------------------------|---------------------|------------------------------------------------|------------------------|------------------------------------------------|-----------------------------------------------------------------|
|                               | V K K P          | GTGAAAAAAC<br>CACTTTTTTG                      | FT<br>FT<br>S       | CACTTTTAGC<br>GTGAAAATCG                       | XhoI                   | GTCTCGAGTĞ<br>CAGAGCTCAC                       | A Q K GCGCAGAAGT                                                |
| A (VH1A) gene sequence        | I G A E          | TGGTTCAGTC TGGCGCGGAA<br>ACCAAGTCAG ACCGCGCTT | S C K A S G G BSpEI | AGCTGCAAAG CCTCCGGAGG<br>TCGACGTTTC GGAGGCCTCC | R Q A P G Q G<br>BstXI | GCGCCAAGCC CCTGGGCAGG<br>CGCGGTTCGG GGACCCGTCC | I F G T A N Y<br>TTTTTGGCAC GGCGAACTAC<br>AAAAACCGTG CCGCTTGATG |
| Figure 5A: V heavy chain 1A ( | Q V Q. L<br>MfeI | CAGGTGCAAT<br>GTCCACGTTA                      | V K V               | CGTGAAAGTG<br>GCACTTTCAC                       | N W S I                | TTAGCTGGGT<br>AATCGACCCA                       | I I P ]<br>ATTATTCCGA<br>TAATAAGGCT                             |

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

| A H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | ပု ပု                                                              | <b>E</b> -1     | ပျှ ပု                               |                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------|-----------------|--------------------------------------|-----------------------------------|
| TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ග</u>      | 366<br>200                                                         |                 | rga<br>act                           |                                   |
| AAC<br>rTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M             | IGG<br>ACC                                                         | \<br>>          | GG7<br>CC2                           |                                   |
| ATGGAACTGA<br>TACCTTGACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ĸ             | CA                                                                 | 니               | CCCTGGTGAC<br>GGGACCACTG             |                                   |
| AT<br>TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | }<br>H ≀      | 000                                                                |                 | 000                                  | •                                 |
| AT<br>TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C A<br>BssHII | 0<br>0<br>0                                                        |                 | CA                                   | •                                 |
| GT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C A<br>BssH   | 1GC<br>1CG                                                         | D I,            | AGG<br>PCC                           |                                   |
| CACCGCGTAT<br>GTGGCGCATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≻             | ACGCCGTGT ATTATTGCGC GCGTTGGGGC<br>TGCCGGCACA TAATAACGCG CGCAACCCG | G Q G T<br>Styl | GGCCAAGGCA<br>CCGGTTCCGT             |                                   |
| AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •             | \TT<br>PAA                                                         | ტ `             | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×             | T &                                                                | **              | *                                    |                                   |
| AAAGCACCAG<br>TTTCGTGGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Α</b> Α    | ACGCCGTGT                                                          | M Y Q           | GGATTATTGG<br>CCTAATAACC             |                                   |
| CAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •             | 000                                                                | ≯               | TAT<br>AT2                           |                                   |
| AG<br>TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T A<br>EagI   | 900                                                                | Д               | BAT<br>CTA                           |                                   |
| AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ε ,           | -                                                                  | ,               |                                      |                                   |
| TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ω             | AT                                                                 | A               | TTTATGCGAT<br>AAATACGCTA             | · :                               |
| ACCGCGGATG<br>TGGCGCCTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ω<br>Ξ        | AAG<br>TTC                                                         | Ø               | 000                                  |                                   |
| ,<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,00<br>30,0 |               | Ω<br>Ω<br>Ω<br>Ω                                                   | <b>&gt;</b>     | rat<br>Ata                           |                                   |
| ACC<br>TGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ഗ             | TAC                                                                |                 | TT.<br>AA                            | ָט ט                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>K</b>      | ပ္ပ ပ္ပ                                                            | Ţ               | TO                                   | S S<br>BlpI<br>~~~~~~<br>GCTCA    |
| CAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L)            | TGC                                                                | Q               | 999                                  | S<br>BlpI<br>~~~~<br>CTCA<br>GAGT |
| AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | )<br>(C)<br>(C)<br>(C)                                             | Ω               | SAT<br>STA                           | S<br>S<br>FAG(                    |
| GGTGACCATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ŋ             | GCAGCCTGCG TAGCGAAGAT<br>CGTCGGACGC ATCGCTTCTA                     | O               | GGCGATGGCT<br>CCGCTACCGA             | V S S BlpI ~~~~~~GGTTAGCTCA G     |
| i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W             | ŏŏ                                                                 | _               | ַטֿ טַ                               | 00                                |

Figure 58: V heavy chain 18 (VH18) gene sequence

| W              | AG                         | <b>.</b> .   | TA                       | <b>%</b>         | 990<br>000               | # 50 D                                                          |
|----------------|----------------------------|--------------|--------------------------|------------------|--------------------------|-----------------------------------------------------------------|
| V K K P G A    | CGGCGCGAG                  | ≯            | AGCTATTATA<br>TCGATAATAT | to               | GATGGGCTGG<br>CTACCCGACC | A Q K F Q G R<br>GCGCAGAGT TTCAGGGCCG<br>CGCGTCTTCA AAGTCCCGGC  |
| <b>U</b>       | S<br>S<br>S<br>S<br>S<br>S | ×            | TA                       | 5<br>D           | 000                      | D<br>PG<br>TC                                                   |
|                | 992                        | S.           | AGC<br>ICG               | X                | GAI                      | TTC                                                             |
| Д              |                            |              |                          | Z                |                          | <u> </u>                                                        |
| ×              | AAA<br>I'T'I               | H            | rac<br>Atg               | ωн               | AGT<br>ICA               | K<br>AAG<br>ITC                                                 |
| <b>×</b>       | GTGAAAAAC<br>CACTTTTTTG    | দ            | TACCTTTACC<br>ATGGAAATGG | L E<br>XhoI      | GTCTCGAGTG               | A Q K<br>GCGCAGAAGT<br>CGCGTCTTCA                               |
| <b>.</b> >     | rga<br>ACT                 | EH           | ACC<br>IGG               |                  | ICT<br>AGA               | A<br>CGC<br>GCG                                                 |
|                | •                          |              |                          | ហ                |                          |                                                                 |
| 臼              | CGGCGCGGAA                 | <b>≯</b>     | CCTCCGGATA               | O<br>Cł          | CCTGGGCAGG               | T N Y<br>CACGAACTAC<br>GTGCTTGATG                               |
| A<br>E         | )<br>(GC(                  | S G<br>BSPEI | GG2                      | Ol .             | GC2                      | N<br>ACT                                                        |
| ტ              | 30<br>30<br>30<br>30<br>30 | S<br>B<br>S  | rcc<br>Agg               | c)               | 166<br>166               | T<br>CGA<br>GCT                                                 |
| O              | )<br>)<br>)<br>)           | ,            | CC.                      | дн               | CC:                      | CAC                                                             |
| ß              | AG<br>I'C                  | X Y          | AG<br>LC                 | Q A P G<br>BstXI |                          | ဗ ဗ ပ                                                           |
| . O            | AG.                        | ×            | AA                       | BS               | AG                       | 0 0 0                                                           |
| >              | rtc<br>AAG                 | Ü            | IGC<br>ACG               | O I              | CCA                      | 8<br>666<br>666                                                 |
|                | TGGTTCAGAG<br>ACCAAGTCTC   | S            | AGCTGCAAAG<br>TCGACGTTTC | <b>K</b>         | CCGCCAAGCC               | S G G<br>ATAGCGGCGG<br>TATCGCCGCC                               |
| O L<br>MfeI    | •                          | ••           |                          | >                |                          | N A T                                                           |
| O L<br>Mfei    | AA                         | >            | AGT                      | ·<br>->          | 900                      | ъ<br>СС<br>СС                                                   |
| >              | TGC                        | ×            | AAA<br>TTT               | Ø                | CTC                      | N<br>ACC                                                        |
|                | CAGGTGCAAT<br>GTCCACGTTA   | >            | CGTGAAAGTG<br>GCACTTTCAC | H                | TGCACTGGGT<br>ACGTGACCCA | I N P N S G G<br>ATTAACCCGA ATAGCGGCGG<br>TAATTGGGCT TATCGCCGCC |
| O <sup>1</sup> | C.P.                       |              | S S                      | Σ                | T(<br>A(                 | A.                                                              |

<u>ი</u> ი

GCCTGAAAAC CGGACTTTTG

TATAGCACCA ATATCGTGGT

TGATAAGTAT ACTATTCATA

ATTGGGATGA TAACCCTACT

GCTCTGATTG

| Ħ                                                                     | AC<br>TG                   |                  | $\mathcal{C}^{\mathcal{C}}$                    | Ţ                | TG                               | K T<br>MluI<br>~~ |
|-----------------------------------------------------------------------|----------------------------|------------------|------------------------------------------------|------------------|----------------------------------|-------------------|
| O                                                                     | CGACCCAAAC<br>GCTGGGTTTG   | Ŋ                | ACGTCTGGCG<br>TGCAGACCGC                       | Ø                | 9<br>9<br>9<br>9<br>9<br>9       | Z<br>Z            |
| E                                                                     | )<br>(GG(                  | S                | TC                                             |                  | GT(                              | ы                 |
|                                                                       | CGA                        | E                | ACG<br>TGC                                     | EOI              | CT CGAG<br>GA GCTC               |                   |
| Сч                                                                    |                            |                  | ပ္ ပ္                                          | L<br>XhoI        | T. A.                            | ഗ                 |
| ×                                                                     | AAA<br>TTT                 | <u>-</u>         | GTC                                            | <b>A</b>         | )<br>)<br>)<br>)                 | H                 |
| >                                                                     | GTG                        | T                | CCT                                            | ×                | AAG<br>TTC                       | S                 |
| Ä                                                                     | CTGGTGAAAC<br>GACCACTTTG   | .ω               | TAGCCTGTCC ACGTCTGGCG<br>ATCGGACAGG TGCAGACCGC |                  | CAGCCGCCTG GGAAAGCCCT CGAGTGGCTG | >-                |
|                                                                       |                            | [ <del>I</del> I |                                                | Q P P G<br>BstXI | <u> </u>                         |                   |
| A                                                                     | 999                        | G<br>≅ Z<br>× ×  | GAT<br>CTA                                     | Д.H.S            | CCT                              | $\prec$           |
| О.                                                                    | 0<br>0<br>0<br>0<br>0<br>0 | S G<br>BspEI     |                                                | P P BStXI        | 300<br>300<br>300<br>300         | ×                 |
| O                                                                     | 9900999009                 |                  | TTTCCGGATT<br>AAAGGCCTAA                       | Q ?              | CAGCCGCCTG                       | Ω                 |
| န် လ                                                                  |                            | لتا              |                                                |                  |                                  | Ω                 |
| equenc<br>E                                                           | AAA<br>I'T'T               | Ħ                | ACC<br>FGG                                     | <b>K</b>         | rcg<br>Agc                       | Ω ,<br>Ω          |
| ene se                                                                | AG                         | O                | 'GTZ                                           | Н                | AT                               |                   |
| /H2) ger<br>K<br>~                                                    | TGAAAGAAAG<br>ACTTTCTTTC   | <b>:</b> .       | ACCTGTACCT<br>TGGACATGGA                       | 3                | CTGGATTCGC<br>GACCTAAGCG         | M                 |
| avy chain 2 (VH Q L $MfeI$                                            | H Q:                       |                  |                                                | ပ                |                                  | Ω                 |
| wy chain 2<br>Q L<br>MfeI                                             | AA'<br>TT                  | ₽                | CCT(                                           |                  | 166(<br>\CC(                     | н                 |
| V hea                                                                 | TGC                        | [                | ACC                                            | >                | 1001<br>1007                     | ᆸ                 |
| Figure 5C: V heavy chain 2 (VH2) gene sequence $Q V Q L K E S$ $MfeI$ | CAGGTGCAAT<br>GTCCACGTTA   | ы                | CCTGACCCTG<br>GGACTGGGAC                       | D                | TTGGCGTGGG<br>AACCGCACCC         | A                 |
| Figu<br>(                                                             | 0 0                        |                  | υğ                                             | >                | T A                              | •                 |

|                                                                                                                                                                                                                                                                      | GCTTTTATGC GATGGATTAT TGGGG<br>CGAAAATACG CTACCTAATA ACCCC                                                                                                                                                                | GGACCCGGTG GATACGGCCA CCTATTATT<br>CCTGGGCCAC CTATGCCGGT GGATAATAA                                                                           | T N M D P V D T A T Y Y C A R W BSSHII                                                                                                                               | C ATTAGCAAAG ATAC<br>G TAATCGTTTC TATG                                                                                                                                    | LTISKDT                                                                                                                                                                                                                                                                                  | GTGCTGACTA CACGACTGAT A R W SSHII CGCGCGTTGG GCGCGCTTGG GCGCGCAACC GCGCGCAACC GCGCGCAACC | N Q V AAATCAGGT TTTAGTCCA Y Y GGATAATT W G Q Sty TGGGGCCAA ACCCCGGTT | NSPV<br>NSPV<br>TTCGAA<br>SAAGCTT<br>T A<br>T A<br>D Y<br>D Y<br>SGATTAT | I S K ATTAGCAAAG TAATCGTTTC TAATCGTTTC CCTGGGCCAC CCTGGGCCAC GCTTTTATGC CGAAAATACG | Figure SC: V heavy chain R L T MluI GCGTCTGACC CGCAGACTGG M T N M TGACCAACAT ACTGGTTGTA G G D ( G G D ( G G CGCCGCTAC T V S T V S B |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                      | o                                                                                                                                                                                                                         | GCTTTTATGC GATGGATTAT TGGGGCCAAG CGAAAATACG CTACCTAATA ACCCCGGTTC  S  1pi                                                                    | GGACCCGGTG GATACGGCCA CCTATTATTG CCTGGGCCAC CTATGCCGGT GGATAATAAC G F Y A M D Y W G Q G GCTTTTATGC GATGGATTAT TGGGGCCAAG CGAAAATACG CTACCTAATA ACCCCGGTTC  S 1pI 1pI | GGACCCGGTG GATACGGCCA CCTATTATTG CCTGGGCCAC CTATGCCGGT GGATAATAAC  G F Y A M D Y W G Q G Styl GCTTTTATGC GATGGATTAT TGGGGCCAAG CGAAAATACG CTACCTAATA ACCCCGGTTC  S  1pl S | C ATTAGCAAAG ATACTTCGAA AAATCAGGTG G TAATCGTTTC TATGAAGCTT TTTAGTCCAC  M D P V D T A T Y C BS  T GGACCCGGTG GATACGGCCA CCTATTATTG A CCTGGGCCAC CTATGCCGGT GGATAATAAC G F Y A M D Y W G Q G S E Y A M D Y W G Q G C GATGGATTAT TGGGGCCAAG C CGAAAATACG CTACCTAATA ACCCCGGTTC  S B1p1  S 1 |                                                                                          |                                                                      |                                                                          | TCAG                                                                               |                                                                                                                                     |
| GCTTTTATGC GATGGATTAT TGGGGCCAAG<br>CGAAAATACG CTACCTAATA ACCCCGGTTC                                                                                                                                                                                                 |                                                                                                                                                                                                                           |                                                                                                                                              | GGACCCGGTG GATACGGCCA CCTATTATTG<br>CCTGGGCCAC CTATGCCGGT GGATAATAAC                                                                                                 | D P V D T A T Y Y C BS CCTGGGCG GATACGGCCA CCTATTATTG CCTGGGCCAC CTATGGCCGGT GGATAATAAC                                                                                   | C ATTAGCAAAG ATACTTCGAA AAATCAGGTG G TAATCGTTTC TATGAAGCTT TTTAGTCCAC M D P V D T A T Y Y C BS T GGACCCGGTG GATACGGCCA CCTATTATTG A CCTGGGCCAC CTATGATAACA                                                                                                                               | E                                                                                        | Ŋ                                                                    | Д                                                                        | ᅜ                                                                                  | O<br>U                                                                                                                              |
| L T I S K D T S K N Q V  NSPV  CTGACC ATTAGCAAAG ATACTTCGAA AAATCAGGTG GACTGG TAATCGTTTC TATGAAGCTT TTTAGTCCAC  CAACAT GGACCCGGTG GATACGGCCA CCTATTATTG  G D G F Y A M D Y W G Q G  SGCGATG GCTTTTATGC GATGGATTAT TGGCCCAAG  CGCTAC CGAAAATACG CTACCTAATA ACCCCGGTTC | L T I S K D T S K N Q V  NSPV  CTGACC ATTAGCAAAG ATACTTCGAA AAATCAGGTG  GACTGG TAATCGTTTC TATGAAGCTT TTTAGTCCAC  N N M D P V D T A T Y Y C  BS  CCAACAT GGACCCGGTG GATACGGCCA CCTATTATTG  G D G F Y A M D Y W G Q G  Styl | L T I S K D T S K N Q V  NSPV  CTGACC ATTAGCAAAG ATACTTCGAA AAATCAGGTG GACTGG TAATCGTTTC TATGAAGCTT TTTAGTCCAC  N N N D P V D T A T Y Y C BS | L T I S K D T S K N Q V  NSPV  "CTGACC ATTAGCAAAG ATACTTCGAA AAATCAGGTG GACTGG TAATCGTTTC TATGAAGCTT TTTAGTCCAC                                                      | LTISKDTSKNQVL<br>NSPV                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                          |                                                                      | Julinued)                                                                | ח Z (VHZ) gene sequence (כנ                                                        | jure 5C: V heavy cnain                                                                                                              |

Figure 5D: V heavy chain 3 (VH3) gene sequence

| လ                 | AG                       |              | GA                       | Ą                | 0<br>0<br>0<br>0<br>0    | 8<br>0<br>0<br>0                               |
|-------------------|--------------------------|--------------|--------------------------|------------------|--------------------------|------------------------------------------------|
| Ö                 | CGGGCGGCAG<br>GCCCGCCGTC | X            | AGCTATGCGA<br>TCGATACGCT |                  | GGTGAGCGCG<br>CCACTCGCGC | K G R<br>TGAAAGGCCG<br>ACTTTCCGGC              |
| Ö                 | 500<br>200               |              | CTA<br>GAT               | ><br>S           | TGA<br>ACT               | K<br>AAA<br>TTT                                |
| வ                 | 0 0                      | Ø            | AG                       |                  | 99                       | >                                              |
| Ol Ol             | AAC<br>ITG               | က            | AGC                      | M                | GTG                      | 8<br>666<br>766                                |
| G G G L V Q P G G | CTGGTGCAAC<br>GACCACGÍTG | FI<br>FI     | TACCTTTAGC<br>ATGGAAATCG | L E<br>Xhol      | GTCTCGAGTG               | A D S<br>GCGGATAGCG<br>CGCCTATCGC              |
| ر<br>ا            | rgg:                     | H            | ACC.                     | μ×               | rcr(AGA)                 | A<br>CGG,<br>GCC,                              |
| H                 |                          | r            | ·                        | U                |                          |                                                |
| r d               | 3000                     | EH \         | AT.                      | G W G            | AAG                      | Y<br>TEAT                                      |
| <sub>ග</sub>      | 0000                     | S G<br>BspEI | 000                      | ָט וַ            | 1667<br>1001             | Y<br>TAT                                       |
| <sub>ව</sub>      | ອວວອວວອວວອ<br>ວອອວອອວອອວ | ω m į        | CCTCCGGATT<br>GGAGGCCTAA | ρ <sub>4</sub> i | CCTGGGAAGG               | T Y Y CACCTATTAT                               |
|                   | •                        | Ø            |                          | A<br>BstXI       |                          | _                                              |
| ><br>E            | TGGTGGAAAG<br>ACCACCTTTC | C A A        | AGCTGCGCGG<br>TCGACGCGCC | BS               | GCGCCAAGCC               | S G G G G S S G C S G C S G C S G C S C S      |
| >                 | TGG                      | Ö            | TGC                      | O !              | CCA                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| }                 | TGG<br>ACC               | ທ .          | AGC                      | <b>~</b>         | 999                      | 929                                            |
| fer               | AT<br>TA                 | н            | TG                       | >                | GT                       | S & E                                          |
| M M               | GCA                      | ×            | GTC<br>CAG               | *                | TGG<br>ACC               | ၁၁၅<br>၁၅၁                                     |
| >                 | GAAGTGCAAT<br>CTTCACGTTA | н            | CCTGCGTCTG<br>GGACGCAGAC | ß                | TGAGCTGGGT<br>ACTCGACCCA | I S G S G G S ATTÀGCGGTA GCGGCGGCAG            |
| 回                 | GA                       |              | 0<br>0<br>0<br>0         | Σ                | T A C                    | I<br>AT<br>TA                                  |
|                   |                          |              |                          |                  |                          |                                                |

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

| T I ACCATT TGGTAA L R CCTGCG GGACGC ATGGCT ATGGCT AGGCT AGGTCA | S R D N S K N T L Y L Q M Pmli Nspv | TCACGTGATA ATTCGAAAAA CACCCTGTAT CTGCAAATGA<br>AGTGCACTAT TAAGCTTTTT GTGGGACATA GACGTTTACT | A E D T A V Y Y C A R W G EagI BSSHII | TGT ATTATT<br>ACA TAATAA | Y A M D Y W G | TTTATGCGAT GGATTATTGG GGCCAAGGCA CCCTGGTGAC<br>AAATACGCTA CCTAATAACC CCGGTTCCGT GGGACCACTG | טט                       |
|----------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|---------------|--------------------------------------------------------------------------------------------|--------------------------|
| ACCATT TGGTAA L R CCTGCG GGACGC ATGGCT TACCGA S S B1PI AGCTCA  | R<br>Pmli<br>~~~~~                  | TCACGTGA<br>AGTGCACT                                                                       |                                       | TGCGGAAG                 | ×             | TTTATGCG<br>AAATACGC                                                                       | ဖ ပ                      |
| TTTT<br>AAAAN<br>N S<br>N S<br>ACAG<br>TGTC<br>GGCG            | EH                                  | TTTTACCATT<br>AAAATGGTAA                                                                   | S<br>L                                | ACAGCCTGCG<br>TGTCGGACGC | Q             | GGCGATGGCT                                                                                 | GGTTAGCTCA<br>CCAATCGAGT |

Figure 5E: V heavy chain 4 (VH4) gene sequence

| H              |     | AC         | TG            |            |
|----------------|-----|------------|---------------|------------|
| 臼              |     | CGAGCGAAA  | GCTCGCTTTG    | ≯          |
| w              |     | GCC        | CGC           | ×          |
|                |     | CGA        | GCI           | മ          |
| Д              |     | U          | Ö             | **         |
| ×              |     | AAA        | TTT           | ָנָט       |
| >              |     | 3TG        | CCACTTTG      | Н          |
| LQESGPGLVKPSET |     | CTGGTGAAA  | GACC          | SISSIS     |
| ָ<br>ניט       |     |            |               | ប          |
| 0.             |     | TGGTCCGGGC | CCAGGCCCG     | g g<br>Egi |
| H              |     | TCC        | AGC           | S<br>Bsi   |
| <b>O</b>       |     | rgĠ        | ACC           |            |
| w              |     |            |               | >          |
| 回              |     | AAA        | CGTTCTTT      | T C I      |
| O.             |     | AAG        | rTC           | υ          |
|                | l   | TGCAAGAAAG | ACG.          | EH .       |
| Le             | ì   |            |               | _          |
| Q<br>Mfe       | 111 | AA         | TT            | H          |
| >              | (   | TGC        | ACC           | ß          |
| Q              |     | CAGGTGCAAT | GTCCACGTTA    | Н          |
|                |     | _          | $\overline{}$ |            |

| 0<br>0<br>0<br>0                               | TTJ<br>AA/<br>AA/<br>KI        | CCTGAGCCTG<br>GGACTCGGAC<br>W S W I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACCTGCACCG TTTCCGGAGG CAGCATTAGC AGCTATTATT<br>TGGACGTGGC AAAGGCCTCC GTCGTAATCG TCGATAATAA | R Q P P G K G L E W I G Y<br>BstXI xhoI |
|------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|
| 4 H X                                          | AGGCCT<br>G K                  | ACCTGCACCG TGGACGACG TGGACGTGGC ABCCGTGGC ACCGTGGC  ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGCGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGGCC ACCGTGCCACCGTGCCACCGTGCCACCGTGCACCGTGCACCGTGCACCGTGCACCGTGCACCTACCGTGCACCGTGCACCGTGCACCGTGCACCGTGCACCACCGTGCACCACCGTGCACCACCACCACCACCACCACCACCACCACCACCACCAC |                                                                                            | r<br>T                                  |
|                                                | ) b b b                        | ACCTGCACCG I<br>TGGACGTGGC A<br>R Q P<br>BstXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GGA                                                                                        | ×                                       |
| TTJ<br>AAZ<br>P                                |                                | A F<br>D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \CCG                                                                                       | P<br>Bst)                               |
| HK X                                           | ACCG<br>1GGC<br>P<br>P<br>Bst2 | A F<br>D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,<br>(00,<br>(0,0)                                                                         | Ø                                       |
| HK X                                           | GCACG<br>CGTGGC<br>Q P<br>Bst  | CCTGAGCCTG<br>GGACTCGGAC<br>W S W I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACCT<br>TGGA                                                                               | PG .                                    |
| CTGCACCG I<br>SACGTGGC A<br>R Q P<br>R BStXI   | CTGCAC<br>SACGTG               | CCTGAGCC<br>GGACTCGG<br>WSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TG                                                                                         | н                                       |
| ACCTGCACCG I<br>TGGACGTGGC A<br>R Q P<br>BstXI | ACCTGCAC<br>TGGACGTG<br>R Q B  | CCTGA<br>GGACT<br>WS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 990<br>000                                                                                 | M                                       |
| ACCTGCACCG I<br>TGGACGTGGC A<br>R Q P<br>BstXI | ACCTGCAC<br>TGGACGTG<br>R Q B  | 0 0 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IGA<br>ACT                                                                                 | ω                                       |
| ACCTGCACCG I<br>TGGACGTGGC A<br>R Q P<br>BstXI | ACCTGCAC<br>TGGACGTG<br>R Q B  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ပ<br>ပ<br>ပ                                                                                | M                                       |

| AT<br>TA               | ΛΙ           |
|------------------------|--------------|
| GCTAT<br>CGATA         | R V<br>stEII |
| GATTGGC'<br>CTAACCG    | യ            |
| ניז פיז                | ×            |
| AGI                    | ᆸ            |
| TCTCGAGTG<br>AGAGCTCAC | လ            |
| GTC                    | Д            |
| AGG<br>ICC             | z            |
| CTGGGAAGG              | ×            |
| CCTG                   | Z            |
| 000<br>000             | E            |
| AGC                    | ິທີ.         |
| CGCCAGC<br>AGCGGTCG    | Ö            |
| T A                    | S            |
| GGA                    | ₩            |
| GCT                    | ×            |
| GGAGCTGGA              | H            |

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA GCGCCAGCAC CGCCGTCGTG ATTTATTATA TAAATAATAT

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

|                                   | <b>d</b> : F-1                                |                      | r) rh                     | _                                | E                        |
|-----------------------------------|-----------------------------------------------|----------------------|---------------------------|----------------------------------|--------------------------|
| ß                                 | 1907<br>1967                                  | Ŋ                    | 000                       |                                  | GGT                      |
| ы                                 | TGA<br>ACT                                    | ט                    | 360                       | E                                | SAC                      |
| V D T S K N Q F S L K L S<br>Nspv | AAACTGAGCA<br>TTTGACTCGT                      | D<br>D<br>M          | TTGGGGCGGC                | Y A M D Y W G Q G T L V T V Styl | TGGTGACGGT<br>ACCACTGCCA |
| _                                 | A T                                           |                      | E 4                       | H                                |                          |
| П                                 | CTG                                           | RII                  | ~~<br>GCG<br>GGG          | EH                               | 200                      |
| S                                 | CGAAAACCA GTTTAGCCTG<br>GCTTTTTGGT CAAATCGGAC | C A R<br>Bsshii      | ATTGCGCGCG<br>TAACGCGCGCG | רח                               | CAAGGCACCC               |
| দ                                 | rtt.<br>AAA'                                  | ပဏ္ဏ                 | rrg(<br>\AC(              | Q (<br>StyI                      | C CAAGG<br>G GTTCC       |
|                                   | 55                                            | <b>&gt;</b>          | A1<br>T2                  | S                                | ≀                        |
| O                                 | CCA                                           | ≽i                   | ATT<br>TAA                | Ö                                | 36C                      |
| Z                                 | AAA<br>FTT                                    | <b>,</b>             | rgt.                      | ×                                |                          |
| × ×                               | CGAAAAACCA<br>GCTTTTTGGT                      | A A D T A V Y Y Eagr | GCCGTGTATT                | <b>&gt;</b> 1                    | TTATTGGGGC               |
| S<br>sp/                          | TT CGAA<br>AA GCTT                            | A<br>ag              |                           |                                  |                          |
| E Z                               | GTTGATACTT<br>CAACTATGAA                      | 터                    | GGCGGATACG                | Ω                                | ATGCGATGGA<br>TACGCTACCT |
| 0                                 | ATA                                           | Ω                    | SAT                       | Σ                                | BAT(                     |
|                                   | TTG7                                          | Ø                    | 3000                      | A                                | )<br>)<br>)<br>)         |
|                                   | 5 5                                           |                      | 8 0                       | ¥                                |                          |
| လ                                 | AGC<br>TCG                                    |                      | 999<br>000                |                                  | ttt<br>Aaa               |
| HH                                | ATT                                           | H                    | 3AC<br>CTG                | Ľη.                              | 3CT                      |
| T I<br>Bsteii                     | GACCATTAG<br>CTGGTAATC                        | >                    | GCGTGACGCC<br>CGCACTGCCG  | G.                               | GATGGCTTTT<br>CTACCGAAAA |
| BS                                | GA                                            | ഗ                    | 90                        | Ц                                | GP                       |
|                                   |                                               |                      |                           |                                  |                          |

SUBSTITUTE SHEET (RULE 25)

S S BlpI TAGCTCAG ATCGAGTC

ഗ 되 ტ Д 又 又 囝 Ø G Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø > MfeI Ц Ø > 团

CGGCGAAAG GCCCCCTTTC CACTTTTTG. GTGAAAAAC GCCGCGCCTT CGGCGCGGAA TGGTTCAGAG ACCAAGTCTC GAAGTGCAAT CTTCACGTTA

3 ഗ്വ. Н ഥ ഗ  $\succ$ BSPEI G ഗ G × Ö ഗ -又 П

AGCTATTGGA TCGATAACCT AAGGAAATGC TTCCTTTACG GTTCCGGATA CAAGGCCTAT AGCTGCAAAG TCGACGTTTC CCTGAAAATT GGACTTTTAA

Σ 3 L E XhoI G × G Д BstXI Σ O  $\alpha$  $\gt$ 3 G

G

GATGGGCATT CTACCCGTAA GTCTCGAGTG CAGAGCTCAC CGCGGTCTAC GGACCCTTCC CCTGGGAAGG GCGCCAGATG AACCGACCCA TTGGCTGGGT

TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT <u>ს</u> O بتإ TCTCCGAGCT വ Д ഗ ATGGGCAATA TACCCGTTAT 凶 Н S GCGATAGCGA CGCTATCGCT Ω G TAAATAGGCC ATTTATCCGG Д

| chain 5 (VH5) gene sequence (continued) | I S A D K S I S T A Y L Q W |        |           | CTTCAATGGA | GAAGTTACCT     |
|-----------------------------------------|-----------------------------|--------|-----------|------------|----------------|
|                                         | A Y                         |        |           | CACCGCGTAT | GTGGCGCATA     |
|                                         | E                           |        |           |            |                |
|                                         | H<br>S                      |        |           | TTAG       | AATC           |
|                                         | ω                           |        |           | AAAGCATTAG | TTTCGTAATC     |
| )<br>(co                                | ×                           |        |           |            |                |
| duen                                    | Ω                           |        |           | GA.        | CT/            |
| gene se                                 | A                           |        |           | SCG        | 292            |
| 5 (VH5)                                 | ഗ                           |        |           | AGCGCGGATA | TAA TCGCGCCTAT |
| y chain !                               | Н                           |        |           | $\Gamma T$ | TAA            |
| / heav                                  | H                           | ΙΙ     | <b>₹</b>  | ACC        | TGG            |
| Figure 5F: V heavy c                    | >                           | BstEII | ? ? ? ? ? | GGTGACCA   | CCACTGGT       |

ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG ~~~~~~ TGCCGGTACA ACGGCCATGT GCAGCCTGAA AGCGAGCGAT TCGCTCGCTA CGTCGGACTT

 $\mathcal{O}$ 

≥

 $\alpha$ 

Ö

Σ

Ø

든

S

Ø

又

口

ഗ

ഗ

BSSHII

H Н ر ن Q ( StyI G 3 Ω Σ K ш G Ω . ტ

CCCTGGTGAC GGGACCACTG GGCCAAGGCA CCGGTTCCGT GGATTATTGG CCTAATAACC TTTATGCGAT AAATACGCTA GGCGATGGCT CCGCTACCGA

V S S BlpI GGTTAGCTCA G

Figure 5G: V heavy chain 6 (VH6) gene sequence

| E          |                                       |
|------------|---------------------------------------|
| Ø          |                                       |
| W          |                                       |
| Ωι         |                                       |
| ×          |                                       |
| >          |                                       |
| H          |                                       |
| ტ          |                                       |
| Ы          |                                       |
| ტ          |                                       |
| ഗ          |                                       |
| Q          |                                       |
| Ø          |                                       |
| e L        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
| , O<br>Mfe | <b>?</b>                              |
| >          |                                       |
| Ø          |                                       |

CGAGCCAAAC GCTCGGTTTG CTGGTGAAAC GACCACTTTG ACCAGGCCCG TGGTCCGGGC TGCAACAGIC ACGTTGTCAG GTCCACGTTA CAGGTGCAAT

| Ŋ             |       |           |
|---------------|-------|-----------|
| Z             |       |           |
| ഗ             |       |           |
| ഗ             |       |           |
| >             |       |           |
| ഗ             |       |           |
| Ω             |       |           |
| ტ             | ŒI    | ?         |
| ഗ             | BspEI | ~ ~ ~ ~ ~ |
| Н             |       | •         |
| .A            |       |           |
| O,            |       |           |
| . <b>[-</b> 1 | -     |           |
| IJ            |       |           |
| ഗ             |       |           |
| 디             |       |           |
|               |       |           |

TTTCCGGAGA TAGCGTGAGC AGCAACAGCG TCGTTGTCGC ATCGCACTCG AAAGGCCTCT CCTGAGCCTG ACCTGTGCGA TGGACACGCT GGACTCGGAC

CGAGTGGCTG CCGCACCGGA GCTCACCGAC GGCGTGGCCT CTGGATTCGC CAGTCTCCTG GTCAGAGGAC GACCTAAGCG CGGCGTGGAA GCCGCACCTT

AACGATTATG CGGTGAGCGT GCCACTCGCA ഗ > Ø TTGCTAATAC × Ω Z CAAATGGTAT GTTTACCATA 3 又 GGCCGTACCT ATTATCGTAG CCGGCATGGA TAATAGCATC S K Е 以 ෆ

|                                                            | വ          |       |            | CAGTTTAGCC            | GTCAAATCGG |   | N S V T P E D T A V Y Y C A |
|------------------------------------------------------------|------------|-------|------------|-----------------------|------------|---|-----------------------------|
|                                                            | ודן        |       |            | rTA                   | AAT        |   | ပ                           |
|                                                            | $\alpha$   |       |            | AGT                   | ICA        |   | <b>&gt;</b> -               |
|                                                            | <u> </u>   |       |            |                       |            |   | ~                           |
|                                                            | Z          |       |            | TTCGAAAAAC            | AAGCTTTTTG |   | _                           |
|                                                            | ×          | >     | <b>}</b>   | AAA                   | TTT        |   | >                           |
| Figure 5G: V heavy chain 6 (VH6) gene sequence (continued) | ഗ          | NspV  | ~~~~~      | rcg,                  | )<br>JGC   |   | Ø                           |
|                                                            | _          | ىم.   | <b>?</b>   |                       | ; A        |   | ⊱                           |
|                                                            | <u>-</u>   |       |            | ACCCGGATAC            | ATG        |   | Ω                           |
|                                                            | Ω          |       |            | 3GA                   |            |   | ы                           |
| inued                                                      | വ          |       |            | SCC                   |            |   | <u> </u>                    |
| cont                                                       | Z          | -     |            |                       |            |   |                             |
| dneuc                                                      | ˝ <b>H</b> |       | <b>?</b>   | TCA                   |            |   | ₽                           |
| ene se                                                     |            | BsaBI | <b>? ?</b> | CCA                   |            |   | >                           |
| /H6) g                                                     |            | BS    | `~ ~ )     | LTA                   |            |   | വ                           |
| in 6 (\                                                    | •          |       | ~~~~~~~~~~ | A.                    | T.         |   | <b>-</b>                    |
| wy cha                                                     | 召          |       | (          | CGG                   | rcggcc     | • |                             |
| ıre 5G: V heav                                             | ഗ          |       |            | AGC                   |            |   | $\dashv$                    |
|                                                            | ×          |       |            | GAAAAGCCGG ATTACCATCA | TL         |   | 0                           |
| Figt                                                       |            |       |            | Ċ,                    | $\ddot{c}$ |   | П                           |

TTATTGCGCG H AATAACGCGC Ö Q StyI G GCCGCCACAT CGGCCGTGTA 3 ~~~~~ GGCCTTCTAT CCGGAAGATA Σ K.  $\succ$ CAGCGTGACC GTCGCACTGG ᄺ G G TGCAACTGAA ACGTTGACTT G 3 A,

BSSHII

EagI

GCCAAGGCAC CGGTTCCGTG GATTATTGGG CTAATAACCC TTATGCGATG AATACGCTAC CGCTACCGAA GCGATGGCTT CGTTGGGGCG GCAACCCCGC

BlpI S S > E > Ы

GTTAGCTCAG CAATCGAGTC CCTGGTGACG GGACCACTGC

SUBSTITUTE SHEET (RULE 26)

BSSHII

Figure 6: oligonucleotides for gene synthesis

- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **01K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **02K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGGCTAATTTTCAGGG -3'
- **O3K1** 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

PCT/EP96/03647

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- O4K1 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- O4K4 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

**01L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'

- **02L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **02L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** \_5 '- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3 '
- **O3L2** 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- **O3L6** 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- **O1AH2** 5 '- GGCTTTGCAGCTCACTTTCACGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

Figure 6: (continued)

- **O1AH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCC TGCG -3 '
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

Figure 6: (continued)

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCGCCT-GGTGCAACCGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- **O3H3** 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACACACG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **04H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
  - O4H4 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
  - **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
  - **04H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

Figure 6: (continued)

**O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'

- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- O6H5 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- O6H6 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 '- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3 '
  SUBSTITUTE SHEET (RULE 26)

Figure 6: (continued)

- OCLK25'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5 ' GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGTGCCTGCTG -3 '
- OCLK4 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3'
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG 3 '
- OCLK7 5 ' GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5 ' GGCATGCTTATCAGGCCTCGCCACGATTAAAAGATTTAGTCACCGGGCTGCTCAGAC -3 '
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- **OCH4** 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- **OCH6** 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

| O                           |          |       | CA         | GT         |
|-----------------------------|----------|-------|------------|------------|
| 国                           |          |       | GAA        | CTI        |
| A A P S V F I F P P S D E Q |          | •     | GCGATGAACA | CGCTACTTG  |
| വ                           |          |       | 34         | E<br>U     |
| щ                           |          |       | CC         | 9          |
| Д                           |          |       | TITCCGCCG  | AAAGGCGG   |
| ഥ                           |          |       | TT         | AAA        |
| Н                           |          |       | PATT       | CACAAATAA  |
| ഥ                           |          |       | TT         | AA.        |
| >                           |          |       | CGTGTTTATT | GCAC       |
| ß                           |          |       | AG         | TC         |
| Д                           | <b>.</b> |       | SOO        | 000<br>0   |
| Ø                           |          |       | CTGCTCCGA  | GACGAGGCTC |
| Ø                           |          |       |            | ည<br>ပ     |
| > •                         | BsiWI    | ~~~~~ |            | GCATGCCA(  |
|                             |          |       |            |            |

| ≯                   | TATC        | TTGAAAATAG      |   | о<br>С        | GCAAAGCGGC   | BCCG            |
|---------------------|-------------|-----------------|---|---------------|--------------|-----------------|
| দ                   | TL          | AAA             |   | ß             | AAG          | )TC             |
| N<br>F              | AACTTTTAT(  | TTG             |   | Ø             | GCAZ         | CGTTTCGC        |
| z                   | <b>AAC</b>  | PTG             |   | H             | CT           | GA              |
| ᄓ                   | TGI         | AC.             |   | Ø             | SGC          | 3000            |
| G T A S V V C L L N | CCTGCTGAAC  | GGACGACTT       |   | W K V D N A L | ACAACGCGCT   | TGTTGCGCGA      |
| ( )                 |             | (3              | • | Ω             | רז<br>כז     |                 |
| >                   | CGTGGTGTG   | ACA(            |   | >             | <b>GTA</b> ( | CAT             |
| _                   | PGG.        | ACC.            |   | ×             | AAA          | LLI             |
| -                   | GCG1        | CGCACCACA       |   | ×             | TGGAAAGTAG   | ACCTTTCATC      |
| ഗ                   |             |                 |   |               | כי           |                 |
| Ø                   | GCG         | CGC             |   | K V Q         | TCA(         | AGT(            |
| ⊣                   | <b>₹CG</b>  | LGC.            | - | >             | \GT          | <b>ICA</b>      |
| ŋ                   | GGCACGGCGA  | CCGTGCCGCT      |   |               | GAAAGTŢCA    | CTTTCAAGTC      |
| ഗ                   | <b>∂</b> GC | rc <sub>G</sub> |   | Ą             | ₹GC          | rc <sub>G</sub> |
| ×                   | ACTGAAAAGC  | TTTT            |   | 臼             | CGCGTGAAGC   | GCGCACTTCG      |
| Ц                   | TGZ         | TGACI           |   | ĸ             | CG]          | GC7             |
|                     | AC          | ΤG              |   | Д             | S            | O<br>O          |
|                     |             |                 |   |               |              |                 |

| N S Q E S V T E Q D S K D S T Y S AACAGCCAGG AAAGCGTGAC CGAACAGGAT AGCAAAGATA GCACCTATTC TTGTCGACAG GCTTGTCCTA TCGTTTCTAT CGTGGATAAG | S<br>S | ATTC  | <b>PAAG</b> |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------|
| Q E S V T E Q D S K D S<br>AGG AAAGCGTGAC CGAACAGGAT AGCAAAGATA C<br>TCC TTTCGCACTG GCTTGTCCTA TCGTTTCTAT C                          |        | ACCT  | TGGA        |
| Q E S V T E Q D<br>AGG AAAGCGTGAC CGAACAGGAT A<br>TCC TTTCGCACTG GCTTGTCCTA T                                                        | Ø.     | U     | O           |
| Q E S V T E Q D<br>AGG AAAGCGTGAC CGAACAGGAT A<br>TCC TTTCGCACTG GCTTGTCCTA T                                                        | Ω      | 3AT?  | CTAT        |
| Q E S V T E Q D<br>AGG AAAGCGTGAC CGAACAGGAT A<br>TCC TTTCGCACTG GCTTGTCCTA T                                                        | ×      | AAA(  | lTT(        |
| Q E S V T E Q D<br>AGG AAAGCGTGAC CGAACAGGAT<br>TCC TTTCGCACTG GCTTGTCCTA                                                            | വ      | AGC   | TCG         |
| Q E S V T<br>AGG AAAGCGTGAC C<br>TCC TTTCGCACTG G                                                                                    | Ω      |       | CTA         |
| Q E S V T<br>AGG AAAGCGTGAC C<br>TCC TTTCGCACTG G                                                                                    | Q      | CAG(  | GTC         |
| Q E S V T<br>AGG AAAGCGTGAC<br>TCC TTTCGCACTG                                                                                        | 되      | CGAA  | GCTT        |
| Q E<br>AGG AAA<br>TCC TTT                                                                                                            | E      |       |             |
| Q E<br>AGG AAA<br>TCC TTT                                                                                                            | >      | GTG   | CAC         |
| AGG<br>TCC                                                                                                                           | S      | AAGC( | TTCG(       |
| OKE                                                                                                                                  | 曰      | E A   |             |
| N S<br>AACAGCO<br>TTGTCGO                                                                                                            | Ø      | A.    | GTC(        |
| N<br>AAC.<br>TTG                                                                                                                     | ß      | AGC(  | TCG         |
|                                                                                                                                      | Z      | AAC.  | TG          |

AAACATAAAG TTTGTATTC CCTAATACTT GGATTATGAA T L T L S K A ACCCTGACC TGAGCAAAGC TGGGACTGGG ACTCGTTTCG L S S TCTGAGCAGC AGACTCGTCG Figure 7A: sequence of the synthetic Ck gene segment (continued)

CCACTGATTT GGTGACTAAA Д TGAGCAGCCC GTAGTTCCAG ACTCGTCGGG ល വ Н H Q G I CATCAAGGTC GCTTCACTGG CGAAGTGACC V T 回 V Y A C TGTATGCGTG ACATACGCAC

S F N R G E A · \*

StuI

Sphi

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 78: sequence of the synthetic CH1 gene segment

ഗ S Д K ᆸ Д ĮΤΙ ഗ Д  $\mathcal{O}$ 又 H ഗ Ø

BlpI SalI

AGGCTCGTCG TCCGAGCAGC AAGGCGACCG TTCCGCTGGC CCAAGCGTGT GGTTCGCACA GACCAAAGGT CTGGTTTCCA ~~~~~~~~~~~~ CGAGTCGCAG GCTCAGCGTC

CCGACGGACC AATTTCTAAT TTAAAGATTA × > GGCTGCCTGG Ļ Ö G GGCTGCCCTG CCGACGGGAC Ø Ø CGCCGCCGTG GCGGCGGCAC ⊱ . G ഗ TTTTCGTGGT AAAAGCACCA H ഗ

CTGACCAGCG GACTGGTCGC ₽ CAGCGGGGCG GTCGCCCGC U ഗ CCAGTCACCG TGAGCTGGAA GGTCAGTGGC ACTCGACCTT Z 3 വ P V T VTTTCCCGGAA AAAGGGCCTT Γī വ لتا

GCAGCGCCT GTATAGCCTG CATATCGGAC ഗ CGTCGCCGGA Ŋ ഗ ഗ CACGACGTTT GTGCTGCAAA Ø ᆸ > CTTTCCGGCG GAAAGGCCGC Ø Д ۲ CGCACGTATG GCGTGCATAC Η > ŋ

AGACCTATAT TCTGGATATA Ø TTAGGCACTC AATCCGTGAG E ŋ Н GAGCAGCAGC CTCGTCGTCG . ഗ ഗ တ TGACCGTGCC TCGTCGCAAC ACTGGCACGG Δi > ⊱ > AGCAGCGTTG >

Figure 7B; sequence of the synthetic CH1 gene segment (continued)

Z . W Д TTGGTATTTG AACCATAAAC × 田 TTGCAACGTG AACGTTGCAC z Ö

PKSEF\* ECORI

ഥ

EcoRI HindIII

AG CGAATTCTGA TAAGCTT

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)



Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

| CCCCGCCTGT                                                                                                                        | DraIII<br>~~~<br>AAAGCCGCAC<br>TTTCGGCGTG                                   | GGCGAACAAA                                                                                                                           | CCGTGACAGT                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Bbsi<br>~~~~~<br>GAAGACGAAG CGGATTATTA TTGCCAGCAG CATTATACCA CCCCGCCTGT<br>CTTCTGCTTC GCCTAATAAT AACGGTCGTC GTAATATGGT GGGGCGGACA | MscI DraIII ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                              | Draiii<br>~~~~~~<br>CGAGTGTGAC GCTGTTTCCG CCGAGCAGCG AAGAATTGCA GGCGAACAAA<br>GCTCACACTG CGACAAAGGC GGCTCGTCGC TTCTTAACGT CCGCTTGTTT | TGTGCCTGAT TAGCGACTTT TATCCGGGAG CCGTGACAGT ACACGGACTA ATCGCTGAAA ATAGGCCCTC GGCACTGTCA |
| TTGCCAGCAG                                                                                                                        | HpaI<br>CCCACGAAGT TAACCGTTCT<br>CCGTGCTTCA ATTGGCAAGA                      | CCGAGCAGCG                                                                                                                           | TAGCGACTTT<br>ATCGCTGAAA                                                                |
| CGGATTATTA<br>GCCTAATAAT                                                                                                          | HpaI<br>CTTTGGCGC GCCACGAAGT TAACCGTTCT<br>CAAACCGCCG CCGTGCTTCA ATTGGCAAGA | GCTGTTTCCG CCGAGCAGCG<br>CGACAAAGGC GGCTCGTCGC                                                                                       | TGTGCCTGAT<br>ACACGGACTA                                                                |
| BbsI<br>~~~~~<br>GAAGACGAAG<br>CTTCTGCTTC                                                                                         | GTTTGGCGGC                                                                  | DrallI<br>~~~~~<br>CGAGTGTGAC<br>GCTCACACTG                                                                                          | GCGACCCTGG<br>CGCTGGGACC                                                                |
| <b>~</b>                                                                                                                          | 51                                                                          | 101                                                                                                                                  | 151                                                                                     |

GGCCTGGAAG GCAGATAGCA GCCCCGTCAA GGCGGGAGTG GAGACCACCA

CGGGGCAGTT

CGTCTATCGT

CCGGACCTTC

201

CTCTGGTGGT

CCGCCCTCAC

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CTATCTGAGC GCCGGTCGTC GATAGACTCG CGGCCAGCAG TTGTTCATGC AACAAGTACG ACAAAGCAAC TGTTTCGTTG CACCCTCCAA GTGGGAGGTT 251

RleAI

CGGTCCAGTG GCCAGGTCAC TCGATGTCGA AGCTACAGCT GTCCCACAGA CAGGGTGTCT AGCAGTGGAA TCGTCACCTT CTGACGCCTG GACTGCGGAC

301

StuI

~~~~~

GAGGCCTGAT CTCCGGACTA GCATGAGGGG AGCACCGTGG AAAAAACCGT TGCGCCGACT ACGCGGCTGA TTTTTGGCA

TCGTGGCACC

CGTACTCCCC

SphI

AAGCATGC 401

TTCGTACG

SUBSTITUTE SHEET (RULE 26) 49 / 204

351

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGTATATACCACCCCGCCTGTGTTTGGCGGCG-

GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTCGCCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

• GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

M24-D: TGTTIGGAGGGIGIGGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

Д

Е Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 بتا Sapi Н Н Ц Н П വ X

TCTTCACCCC AGAAGTGGGG AATGGCAACG TTACCGTTGC TGACCGTGAG ACTGGCACTC CGTGATAACG GCACTATTGC TACTTTGTTT ATGAAACAAA

C ß 臼 > 11111 Н MfeI Q \gt 曰 Д 又 H Ω K X Н >

GAAAGCGGCG CTTTCGCCGC GCAATTGGTG CGTTAACCAC TTCTACTTCA AAGATGAAGT CGGCTGATGT GCCGACTACA ACAATGGTTT TGTTACCAAA

GCGCCGGAGG CGCGGCCTCC GTCTGAGCTG CAGACTCGAC GGCAGCCTGC CCGTCGGACG GCAACCGGGC CGTTGGCCCG GCGCCTGGT CGCCGGACCA

BSPEI

വ

Ø

Ø

O

വ

Н

K

Н

വ

C

C

Д

Ø

>

Н

G

G

Д BstXI Ø O K 3 വ Σ K Ś ഗ Н BspEI Ö

U

TGGGTGCGCC AAGCCCCTGG TGCGATGAGC TTAGCAGCTA GGATTTACCT

TTCGGGGACC ACCCACGCGG ACGCTACTCG AATCGTCGAT CCTAAATGGA

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) വ r U ß C ß Ø വ > 3 XhoI Ö

CCGTCGTGGA GGCAGCACCT GCCATCGCCG CGGTAGCGGC GCGCGATTAG CGCGCTAATC GAGTGGGTGA CTCACCCACT GAAGGGTCTC CTTCCCAGAG

Nspv വ Z Д PmlI K ഗ Н ĮΉ K Ö × > വ Ω Ø \succ

×

ACTATTAAGC TGATAATTCG GGTAAAGTGC CCATTTCACG GGCCGTTTTA CCGGCAAAAT TAGCGTGAAA ATCGCACTTT ATTATGCGGA TAATACGCCT

EagI Н Ω 团 K 24 Н S Z Σ Ø H × Ц H Z NspV X

AAGATACGGC TTCTATGCCG CTGCGTGCGG GACGCACGCC TTACTTGTCG AATGAACAGC TGTATCTGCA ACATAGACGT TTTTTGTGGG AAAAACACCC

Ω Σ K ⋈ ہتا G Ω G U 3 K BSSHII Ø C × EagI >

GCGATGGATT TGCGCGCGTT GGGCGGCGA TGGCTTTTAT CGTGTATTAT

ent VH3-VK2 (continued) CGCTACCTAA GGSS	TGGCGGTTCT ACCGCCAAGA	S D I ECORV	GTTCCGATAT CAAGGCTATA	о Б	GGCGAGCCTG CCGCTCGGAC	N C	CAACGGCTAT GTTGCCGATA
sensus single-chain fragm ACCGAAAATA S S A G BlpI	GCTCAGCGGG CGAGTCGCCC	_ອ ອ ອ	GGCGGTGGTG	EL V	AGTGACTCCG TCACTGAGGC	L L H S	TGCTGCATAG ACGACGTATC
gure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) GCACACATA CCCCGCCGCT ACCGAAAATA CGCTACTAA Y W G Q G T L V T V S S A G G G S S S S LYI	GTGACGGTTA CACTGCCAAT	ტ ტ	CGGTGGTTCT GCCACCAAGA	L S L	TGAGCCTGCC	S Q S	AGCCAAAGCC TCGGTTTCGG
Striction map of the synthe ACGCGCGCAA GTL YI	AG	დ ტ	GGAGCGGTGG CCTCGCCACC	Danii	CAGAGCCCAC GTCTCGGGTG	C R S PstI	CTGCAGAAGC GACGTCTTCG
Figure 8: sequence and restrict GCACATAATA A Y W G Q Style	A H	_ე ე	GGCGGCGGTG	V M T ECORV	CGTGATGACC	A S I S	CGAGCATTAG GCTCGTAATC

H H G	ΗÆ		ຫ ບົ		HÆ	E	ပဖ
continued L L ASEI	AT	ω	D D D	4	55		GA
2 (60r L	CGCAGCTATT GCGTCGATAA	c. .	CGTTTTAGCG GCAAAATCGC	臼	TGTGGAAGCT ACACCTTCGA	Д	CCCGCCGAC
13-VK)	CAC	ഥ	TTJ AAA	>	TGG ACC	્ ભ	
ent V	0 0 0 0	K K	CG.		TG	_	S S S S S
Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) N Y L D W Y L Q K P G Q S P Q L L KpnI SexAI AseI	ပ ပု	Ω.	\T !A	ĸ	ດ ດ	E+ .	A L
hain f S	AGC	Н	GG2	လ	000	H	AC(TG(
single-cl	GGTCAAAGCC CCAGTTTCGG	면 H :	GGTCCCGGAT CCAGGGCCTA		AAATTAGCCG TTTAATCGGC	≯ 1 ·	CATTATACCA GTAATATGGT
isus sin G	STC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STC	H	AAT LTA	Ħ	ATT PAA
nsens A I	\mathcal{G}	G V P ECOO1091		.	A T	+4	25
I the consen P SexAI	TCAAAAACCA AGTTTTTGGT	B O O	GTGCCAGTGG CACGGTCACC	₽	GA	Q	TTGCCAGCAG AACGGTCGTC
oding t K S	TCAAAAACCA AGTTTTTGGT	S	AGT ICA	H	TTTACCCTGA AAATGGGACT	OI .	TTGCCAGCAG AACGGTCGTC
enco	AA/ TT:	4	CC.7	H	AC(TG(CCC
: gene Q	CA		TG	Įzų .	LTT \AA	Ö	LTG
I L	-	R.			_	≽ı	
ار Syn الے الے الے الے الے الے الے الے الے الے	CC C	Z	AC	, Ω	GA		TT
ap of the s KpnI	STA	·w	3CA 3GT	E	\CC GG	≯	STA
W F	ATTGGTACCT TAACCATGGA		GGCAGCAACC CCGTCGTTGG	ტ	CGGCACCGAT GCCGTGGCTA	>	GCGTGTATTA CGCACATAAT
trictio	AT	უ .	0 0 0		ეე ეე	უ) ()
10 rest	0 0 0 0	ᆡ	TG AC	S EHM	TC AG	O	99 CC
ice ar L	AACTATCTGG TTGATAGACC		AATTTATCTG TTAAATAGAC	G S BamH	GCTCTGGATC CGAGACCTAG	>	GAAGACGTGG CTTCTGCACC
equer Y	TAT ATA	≯⊔	rta Aat	က	STG	E D BbsI	SAC
7. 8: S	ACT IGZ	AseI	AT7 TA1		CT(GA(E D BbsI	AA(TT(
Figur 1	T.A.	A i	A H	G	S C	i	G G
					•		

guic o. sequence and resultable map of the synthetic year encoding the consensus single-chain ingginent vitis-val (contains	SUICUOIL		יייר איייניי	ינור שרוור		ש נוויר כי	20.00	יייין אוייניי	1601110	YA-6114 1117	7 (50) (11)
O G	ტ	H	K K	>	田田	Z Z	,	G T K V E I K R T E	臼	দা	
MscI								BsiWI	ECC	ECORI	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							ì	1 1 1 1	1	1 1 1	
CTTTGGCCAG		ACG?	GGTACGAAAG	TTG	AAAJ	TTGAAATTAA		ACGTACGGAA	GAA	TTC	
GAAACCGGTC		TGCI	CCATGCTTTC		TTT	AATT		TGCATGCCTT	CTT	AAG	•

SUBSTITUTE SHEET (RULE 26) 56 / 204

E01	<u>×</u>	<u></u> ≥	≥	≷	≷	≷	≷	≷	≷	≷	≷	≥	<u>≷</u>
105	>	>	>	>_	>-	>	>	>	>	>-	>-	>	>
101												Ω	Ω
100E	·Σ	1	1	ı	1	1	ı	1	ı	1	i	1	1
⊒001	1	1	ı	t	1	1	1	t	1	ı	1	ı	1
J001	ī	ı	ı	ı	ı	ı	t	1	i		ı	ı	1
100B	A	ı	ı	1	ı	1	ı	ı	ŧ	ı	ı	ī	ı
A001	>	1	1	1	ı	1	ı	1	ı	1	ı	ı	ı
001	ட	>	エ	I	\simeq	-	۵	1	S	\checkmark	⋖		Σ
66	5	Z	≥	>	⋖	9	0	\propto	Z	S	4	>	≥
86		Σ	ш	_	\leq	H	\	<u> </u>	\propto	Ω	ட	0	ш
<i>26</i>	Ü	\prec	-	ш		—	ш	_	Z		-	ص	S
96	Ŋ	ŋ	<u>~</u>	\propto	ட	Z	Z	⋖	>-	>	\leq	<	0
<i>S6</i>	≯	ட	エ	>	\checkmark	≥		 	≥	S	Ś	>	Σ
7 6	\propto	~	~	\propto	\propto	\simeq	\propto	\propto	\propto	\propto	4	\propto	~
86	4	4	۷	A	⋖	⋖	4	⋖	4	⋖	⋖	⋖	⋖
<i>76</i>	C	ပ	C	ပ	ပ	ပ	ပ	ပ	S	S	ပ	ပ	S
⋖		8											

Figure 10: Sequence analysis of initial libraries

C

3333333333 $\Sigma \Sigma \Gamma \Sigma \Sigma \Gamma \Gamma \Sigma \Sigma \Sigma \Sigma$ >- ~> ~ ~ エト> ~ ~ $\Sigma \succ R \land \Sigma \land \neg \Box \Box \neg \Box$ $F \times A Q \perp \ge F \cap F \times Q$ \succ O I O L I Z R L L Z **」SFENE>NLKF** $I X Z I X Q \geqslant Z I Z \vdash$ > \neg Q S \succ S q q S \vdash Q $\succ \Sigma \times \vdash \succ * \; \bowtie \Sigma \times \bowtie \succ$ R R R R R R R R R R R R R 444444444 000000000000

PCT/EP96/03647

Figure 11: Expression analysis of initial library

Figure 12: Increase of specificity during the panning rounds

Figure 13: Phage ELISA of clones after the 3rd round of panning

Clone Number

Figure 14: Competition ELISA

- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

Figure 15: Sequence analysis of fluorescein binders

701>>>>>>> 0000 1 1000 1 1 1000 1 1000 1 1000 1 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 18001 $R \ge R \times X \times R \times P > \Sigma \ge R \times R \times R \cap R$ 001 Z R I R \overline{A} 66.0787218858477 $89 \ge Q \times R -> \sum I \ge N R \times I - X \times$ 96 ~ w z × ~ - × × × × z u z × ≥ × $29 \times KKKY \rightarrow TKKKXKKKX$ **46 KKKKKKKKKKKKKKK**

Figure 16: Purification of fluorescein binding scFv fragments

Figure 17: Enrichment factors after three rounds of panning

Figure 18: ELISA of anti-ESL-1 and anti- β -estradiol antibodies

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies

Frequency	က	8	7	- -	,	-	_	—		2	4	
103	3	≥	≥	3	≥	≥	≥	≥	3	3	≥	3
105	>	>-	>	>-	>	>	>	>	>	>	>	>
101	٥			۵	Ω		۵				Ω	۵
100E	ட	Σ	ட	u.	Σ	Σ	ı	≥	Σ	Σ	Σ	ட
100D	G	×	œ	ш.	エ	Σ	1	œ	>	ட	ш	Z
J001	\checkmark	œ	\checkmark	>-	≥	\checkmark	ı	¥	>-	œ	\checkmark	\checkmark
1008	œ	œ	G	ш	S	~	ı	>	>	œ	9	œ
A001	+	z	_		≥	エ	ı	ட	O	ட	œ	Σ
100	A	\checkmark	<u>م</u>		ட	<u>~</u>	ط	≥	S	œ	S.	<u>«</u>
66	O	ட	≥	\propto	Ω	ے	<u>م</u>	工	≥	≥		Σ
- 86	≥	ய	Σ	≥	Ġ	بى	.V	≥	Σ	ð	Ø,	_
∠ 6	۵.	≥	≥		≥	_	\checkmark		Ω	O	_	\propto
96	œ	O	œ	S	م	g	≥	\checkmark	\checkmark	\checkmark	Σ	Σ
<i>9</i> 6	\vdash	z	\checkmark	>_	·>	Z	_	~	≥	Z	Z	Z
7 6	~	\propto	8	œ	~	œ	\propto	œ	<u>~</u>	<u>~</u>	œ	~
63	A	4	⋖	⋖	⋖	⋖	A	Α	A	X	⋖	V
. 76	C	ں	ں	C	ں	ں	ں	ں	J	ں	ပ	ں ٔ

Frequency	4	က	2			-
103	≥	≯	≥	≥	≥	≷
105	>	>	<u>`</u>	>	>-	>
101					Ω	۵
100E	ட	ഥ	ш.	ட	ш	ட
100D	V	O	O	Σ	≥	O
J001	_	Σ	≥	-	\checkmark	Σ
1008	\checkmark	\checkmark	\checkmark	×	Σ	O
A001	œ	O	Z	Σ	-	\propto
001	\checkmark	≥	\propto	≥	≃.	S
66	Ø	Ø	⋖	V	~	V
86	O	工	>-	S	_	\propto
<u></u>	\checkmark	œ	×	~	ط	\checkmark
96	-	Z	>	\checkmark	¥	œ
96	>	>	>	>	<u>.</u> œ	>-
7 6	\propto	œ	α	α	æ	œ
63	Ø	A	V	A	A	⋖
76	<u>၂</u>	ပ	ပ	ပ	ر ر	ں

Figure 22: Sequence analysis of lymphotoxin-ß binders

```
Frequency
 103
    3333333
 102
 101
     100E
    \pi \geq \pi \geq \geq \pi \geq \pi
    I T O S > N S S
J001
J001
    50>HHQH>
100B
    A001
     001
     \times Z Z \times \times O \vdash
 66
    SPODS
 86
 46
    YKOK-HHP
    \mathbb{Z} \otimes \mathbb{Z} \cap \mathbb{Z} \cap \mathbb{Z}
 96
 96
       D < S & C D
 t6
    KKKKKKK
     4444444
 63
```

333333333333 103 105 101 100E · КО-ООХХКГ J001 100Ca 1 1 22 1 1 1 · K K K K L L K K ≥ K J001 1008 1 T X A 🗦 🗦 S P T N 1 O A001 100 ロSYA>TSYTET 66 86 OOXOLUSX F R - E **Z6** $\neg \neg \neg \circ \bot z > \neg \neg z > \neg$ 96 0 0 - u z u o o x k o o 96 xxxxxxxxxxxx**7**6 4444444444 63 00000000000000

Frequency	2	~	-		-	.
103	≥	≥	≷	≥	≷	≥
Z01	>	>	>	>	>-	>
101	Ω		۵		Ω	Ω
100E	Σ	ட	Σ	≥	Σ	ட
100D	>	8	æ	O	>-	u_
J001	>	ட	>	S	≥	エ
100B	۵	>	>	≥	Z	-
A001		Z	ш	S	مـ	_
001	A	>	Σ		A	۵
66	>~	Σ	O	œ	≥	¥
86	ш	>	w	>	œ	ட
Z 6	9	-	ட	ш	S	O
96	O	ய	ய	¥	ط	9
<i>5</i> 6		>	>	u	>	۵
7 6	8	œ	œ	æ	œ	æ
£6	A	A	⋖	⋖	⋖	⋖
76	၂	ر	ر	ں	ں	ں

St∏

lox' site

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Aatll	/
Afili	Bfrl, BspTl, Bst98l
Ascl	
Asel	Vspl, Asnl, PshBl
BamHI	Bstl
Bbel	Ehel, Kasl, Narl
Bbsl	BpuAl, Bpil
Bglll	
Blpl	Bpu1102l,Celll, Blpl
BsaBl	Maml, Bsh1365l, BsrBRl
BsiWl	Pfl23II, SpII, SunI
BspEl	AccIII, BseAI, BsiMI, Kpn2I, Mrol
BsrGl	Bsp1407l, SspBl
BssHII	Paul
BstEll	BstPl, Eco91l, Eco0651
BstXI	1
Bsu36l	Aocl, Cvnl, Eco811
Dralll	
DsmAl	
Eagl	BstZI, EclXI, Eco52I, XmaIII
Eco571	
Eco01091	Drall
EcoRI	
EcoRV	Eco32I
Fsel	
HindIII	
Hpal	
Kpnl	Acc65l, Asp718l
Mlul	
Mscl	Ball, MluNl

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Munl	Mfel
Nhel	
Nsil	Ppu10l, EcoT22l, Mph1103l
NspV	Bsp1191, BstBl, Csp451, Lspl, Sful
Pacl	
Pmel	
PmII	BbrPl, Eco72l, PmaCl
Psp5II	PpuMI
Pstl	
RsrII	(Rsril), Cpol, Cspl
SanDI	1
Sapl	
SexAl	
Spel	
Sfil	
Sphl	Bbul, Pael, Nspl
Stul	Aatl, Eco147l
Styl	Eco130l, EcoT14l
Xbal	BspLU11II
Xhol	PaeR71
Xmal	Aval, Smal, Cfr9l, PspAl

Figure 26: list of pCAL vector modules

	WO 97/08320				FC1/EF90/0304
	reference	Skerra et al. (1991) Bio/Technology 9, 273-278	Hoess et al. (1986) Nucleic Acids Res. 2287-2300	see M2	Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266
	template	vector pASK30	lox, Bglll (synthetic)	(synthetic)	vector plG10
	sites to be inserted	Aatll	lox, BgIII	lox', Sphl	none
	sites to be removed	2x Vspl (Asel)	2x Vspl (Asel)	none	Sphl, BamHl
	functional element	lac promotor/operator	Cre/lox recombination site	Cre/lox' recombination site	glllp of filamentous phage with N- terminal myctail/amber codon
וופטורבטייים של וחלים ייינים וויינים ייינים	module/flan- king restriction sites	Aatil-lacp/o- Xbal	BgIII-lox- Aatll	Xbal-lox'- Sphl	EcoRI- gllllong- Hindlll
Talant.	o N	M	M2	M3	M7-1

S
Ü
=
_
Ō
ğ
Ĕ
<u></u>
_
vector
ب
U
ب
-
7
\sim
₽g
<u>-</u>
•
of
list
:=:
\simeq
ure 26:
بو
=
_

1	WO 97/08320					PCT/E	P96/03647
	see M7-I	see M7-I	see M3	see M1	see M1	see M1	see M1
	vector plG10	vector plG10	(synthetic)	(synthetic)	pASK30	pASK30	pASK30
		• .	NOI	Pacl, Fsel	Pacl, Fsel, BsrGl	BsrGl, Nhel	BsrGl, Nhel
	Sphl	Sphl, Bbsl	none	none	Vspl, Eco571, BssSl	Dralli (Banli not removed)	Dralli, Banli
liouvies	truncated gillp of filamentous phage with N-terminal Gly- Ser linker	truncated gillp of filamentous phage with N-terminal myctail/amber codon	Cre/lox recombination site	lpp-terminator	beta-lactamase/bla (ampR)	origin of single- stranded replication	origin of single- stranded replication
Figure 26: 11st of pear vector inodures	M7-II EcoRI-gIIIss- HindIII	EcoRI-gIIIss- HindIII	Sphl-lox- HindIII	HindIII-Ipp- Pacl	Pacl/Fsel-bla- BsrGl	BsrGl-f1 ori- Nhel	BsrGI-f1 ori- Nhel
Figure 2¢	M7-II	M7-III	M8	M9-II	M10-	M11-	M11-

Figure 26: list of pCAL vector modules

WO 97/0832	20				PCT/EP9
Rose, R.E. (1988) Nucleic Acids Res. 16, 355	see M3	Yanisch-Peron, C. (1985) Gene 33,103-119	Cardoso, M. & Schwarz, S. (1992) J. Appl. Bacteriol. 72, 289-293	see M1	Knappik, A & Plückthun, A. (1994) BioTechniques 17, 754-761
pACYC184	(synthetic)	pUC19	pACYC184	(synthetic)	(synthetic)
Nhel, BgIII	BgIII, Iox, Xmnl	BgIII, Nhel			
BssSI, VspI, NspV	none	Eco57l (BssSl not removed)	BspEI, MscI, Styl/Ncol	(synthetic)	(synthetic)
origin of double- stranded replication	Cre/lox recombination site	origin of double- stranded replication	chloramphenicol- acetyltransferase/ cat (camR)	signal sequence of phosphatase A	signal sequence of phosphatase A + FLAG detection tag
Nhel-p15A- BgIII	BgIII-lox- BgIII	BgIII-ColEI- Nhel	Aatll-cat- Bglll	Xbal-phoA- EcoRl	Xbal-phoA- FLAG-EcoRI
M12	M13	M14- Ext2	M17	M19	M20

	•		

_	WO 97/08320		
	Lee et al. (1983) Infect. Immunol. 264-268	see M1	Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41- 56
	(synthetic)	pASK30	(synthetic)
,			
	(synthetic)	BstXI, MluI,BbsI, BanII, BstEII, HpaI, BbeI, VspI	(synthetic)
modules	heat-stable enterotoxin II signal (synthetic) sequence	lac-repressor	poly-histidine tail
Figure 26: list of pCAL vector modules	Xbal-stll- Sapl	Afill-laci- Nhel	EcoRI-Histail- HindIII
Figure 26	M21	M41	. M42

SUBSTITUTE SHEET (RULE 26) 80 / 204

Figure 27	Figure 27: functional map and sequence of MCS module (continued)	nce of MCS module (cont	inued)		
	HindIII	II	PacI	BsrGI	H
	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	?	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	₹
Н	ACATGTAAGC TTCCCCCCCC	Treceeses	CCTTAATTAA	CCCCCCCCC TGTACACCCC	ACCCC
	TGTACATTCG AAGGGGGGG	AAGGGGGGGG	GGAATTAATT	GGGGGGGGG ACATGTGGGG	TGGGG
	NheI		Bglii	Aatii	XbaI
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	? ?	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	}
51	CCCCCGCTA	CCCCCGCTA GCCCCCCCC	CCAGATCTCC	CCAGATCTCC CCCCCCCGA CGTCCCCCT	CCCCT
!)	GGGGGCGAT CGGGGGGGG	5555555555	GGTCTAGAGG	GGGGGGGT GCAGGGGGGA	GGGGA
	XbaI	Sphi		EcoRI AatII	
	? ? ?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
101	CTAGACCCCC	CTAGACCCCC CCCCCGCATG CCCCCCCCC		CGAATTCGAC GTC	
	GATCTGGGGG	GGGGCGTAC	GGGGGGTAC GGGGGGGGG	GCTTAAGCTG CAG	

Figure 28: functional map and sequence of pMCS cloning vector

ATCCTTGAGA TAGGAACTCT

CAGCGGTAAG

TGGATCTCAA ACCTAGAGTT

TACATCGAAC ATGTAGCTTG

ACGAGTGGGT TGCTCACCCA

251

BSSSI

TTGTTTATTT AACAAATAAA	AACCCTGATA TTGGGACTAT	CAACATTTCC GTTGTAAAGG	TGTTTTTGCT ACAAAAACGA	AGTTGGGTGC TCAACCCACG BSSSI
GAACCCCTAT CTTGGGGATA	ATGAGACAAT TACTCTGTTA	TATGAGTATT ATACTCATAA	TTTGCCTTCC	Eco57I ~~~~~~ GCTGAAGATC CGACTTCTAG
ontinued) AATGTGCGCG TTACACGCGC	GTATCCGCTC	AAAGGAAGAG TTTCCTTCTC	TTTGCGGCAT	AGTAAAAGAT TCATTTTCTA
of pMCS cloning vector (continued) TTTTCGGGGA AATGTGCGCG AAAAGCCCCT TTACACGCGC	ATTCAAATAT TAAGTTTATA	TAATATTGAA ATTATAACTT	TATTCCCTTT ATAAGGGAAA	CGCTGGTGAA GCGACCACTT
Figure 28: functional map and sequence of pMCS cloning vector (continued) 1 CAGGTGGCAC TTTTCGGGGA AATG GTCCACCGTG AAAAGCCCCT TTAC	TTCTAAATAC AAGATTTATG	AATGCTTCAA TTACGAAGTT	GTGTCGCCCT	CACCCAGAAA GTGGGTCTTT
Figure 28: func 1	5.1	101	151	201

Figure 28: functional map and sequence of pMCS cloning vector (continued)

	•
_	
-;	
Ⅎ	
Ξ	
ď	
•	

Figure 28: functional map and sequence of pMCS cloning vector (continued)

GCAACGCGTT
TACCGTTGTT
CGGACATCGT
TGTGGTGCTA
CTGCTCGCAC

Figure 28: functional map and sequence of pMCS cloning vector (continued)

ATCCTTTTTG	AGTTTTCGTT CCACTGAGCG TCAAAAGCAA GGTGACTCGC	TCTTGAGATC CTTTTTTTTCT AGAACTCTAG GAAAAAAAA	ACCACCGCTA CCAGCGGTGG TGGTGGCGAT GGTCGCCACC	TTTTTCCGAA GGTAACTGGC AAAAAGGCTT CCATTGACCG E		CTTCTAGTGT AGCCGTAGTT GAAGATCACA TCGGCATCAA	GCCTACATAC CTCGCTCTGC CGGATGTATG GAGCGAGACG
	CCACTG	CTTTTT GAAAAAA	CCAGCGG	GGTAACT CCATTGA		AGCCGTA TCGGCAI	CTCGCT(GAGCGA(
ATAATCTO TATTAGAO	AGCG TCGC	TCT	TGG ACC	000 000 000	?	GTT CAA	CTGC
CAT	TCAGACCCCG AGTCTGGGGC	GCGCGTAATC CGCGCATTAG	TTTGTTTGCC AAACAAACGG	TTCAGCAGAG AAGTCGTCTC	? ? ? ?	AGGCCACCAC TCCGGTGGTG	TAATCCTGTT ATTAGGACAA
GACCAAAATC CTGGTTTTAG	TAGAAAAGAT ATCTTTTCTA	TGCTGCTTGC ACGACGAACG	GGATCAAGAG CCTAGTTCTC	CGCAGATACC GCGTCTATGG		TTCAAGAACT AAGTTCTTGA	ACCAGTGGCT TGGTCACCGA

Figure 28: 1401	1451	1501	1551	T 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1651	1701	
28: fui) 1	1.)1	1.0	01	7	01	
nctional map and sequen GCTGCCAGTG CGACGGTCAC	GTTACCGGAT CAATGGCCTA	AGCCCAGCTT TCGGGTCGAA	GAGCTATGAG CTCGATACTC	TCCGGTAAGC AGGCCATTCG	GGGGAAACGC CCCCTTTGCG	CTTGAGCGTC	
Figure 28: functional map and sequence of pMCS cloning vector (continued) 1401 GCTGCCAGTG GCGATAAGTC GTGTC CGCTATTCAG CACAC	AAGGCGCAGC TTCCGCGTCG	GGAGCGAACG	AAAGCGCCAC TTTCGCGGTG	GGCAGGGTCG; CCGTCCCAGC	CTGGTATCTT GACCATAGAA	GATTTTTGTG	
(continued) GTGTCTTACC CACAGAATGG	GGTCGGGCTG CCAGCCCGAC	ACCTACACCG TGGATGTGGC	GCTTCCCGAA CGAAGGGCTT	GAACAGGAGA CTTGTCCTCT	TATAGTCCTG ATATCAGGAC	ATGCTCGTCA	
GGGTTGGACT CCCAACCTGA	AACGGGGGGT TTGCCCCCCA	AACTGAGATA TTGACTCTAT	GGGAGAAAGG CCCTCTTTCC	GCGCACGAGG CGCGTGCTCC BSSSI	TCGGGTTTCG	GGGGGGCGGA	
CAAGACGATA GTTCTGCTAT	TCGTGCACAC	CCTACAGCGT GGATGTCGCA	CGGACAGGTA GCCTGTCCAT	GAGCTTCCAG CTCGAAGGTC	CCACCTCTGA	GCCTATGGAA CGGATACCTT	

Figure 28: functional map and sequence of pMCS cloning vector (continued)

	TTTGCGGTCG	TTTGCGGTCG TTGCGCCGGA AAATGCCAA GGACCGGAAA ACGACCGGAA	AAAATGCCAA	GGACCGGAAA	ACGACCGGAA
		HindIII	<i>\\ \\ \\ \\ \\ \\ \\ \\</i>	Paci	BsrGI
1801	TTGCTCACAT	GTAAGCTTCC CATTCGAAGG	CCCCCCCTT AATTAACCCC GGGGGGAA TTAATTGGGG	AATTAACCCC TTAATTGGGG	CCCCCCTGTA GGGGGGACAT
	BsrGI	NheI	ba .	Bglii	AatII
1851	CACCCCCCC GTGGGGGGGG	CCGCTAGCCC GGCGATCGGG	CCCCCCCAG ATCTCCCCCC GGGGGGTC TAGAGGGGGG	ATCTCCCCCC TAGAGGGGGG	CCCCGACGTC
	XbaI		Sphi	ECORI	RI
1901	CCCCCTCTAG GGGGGAGATC	CCCCCTCTAG ACCCCCCCC GGGGAGATC TGGGGGGGGG	CGCATGCCCC	CCCCCCCGAA TTCACGT GGGGGGCTT AAGTGCA	TTCACGT

Figure 29: functional map and sequence of pCAL module M1

AatII

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA ACACTCAATC TGTGAGTTAG CTGCAGAATT GACGTCTTAA

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC CAACACACCT GTTGTGTGGA CGGCTCGTAT GCCGAGCATA AAATACGAAG TTTATGCTTC 51

XbaI

GA CGAATTTCTA GCTTAAAGAT TGGTACTAAT ACCATGATTA TTGTCGATAC AACAGCTATG AGTGTGTCCT TCACACAGGA

SUBSTITUTE SHEET (RULE 26)

101

SUBSTITUTE SHEET (RULE 26)

Figure 30: functional map and sequence of pCAL module M7-II (continued)

ECORI

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•			
GAATTCGAGC	AGAAGCTGAT	GAATTCGAGC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG	GATCTGTAGG	GTGGTGGCTC
CTTAAGCTCG	TCTTCGACTA	G TCTTCGACTA GAGACTCCTC CTAGACATCC CACCACCGAG	CTAGACATCC	CACCACCGAG

51	TGGTTCCGGT	GATTTTGATT	ATGAAAAGAT	GATTTTGATT ATGAAAGAT GGCAAACGCT AATAAGGGGG	AATAAGGGGG	
	ACCAAGGCCA	CTAAAACTAA	TACTTTTCTA	CTAAAAACTAA TACTTTTCTA CCGTTTGCGA TTATTCCCCC	TTATTCCCCC	
	•					
7				TO THE PROPERTY OF THE PROPERT		

GATACTGGCT TTTACGGCTA CTTTTGCGCG ATGTCAGACT GCGATTTCCG	AAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG ATGGTTTCAT TTTGAACTAA GACAGCGATG ACTAATGCCA CGACGATAG TACCAAAGTA
CTTTTG	TGATTAC
TTTACGGCTA	CTGTCGCTAC GACAGCGATG
GATACTGGCT	AAACTTGATT TTTGAACTAA
H D H	151

GGTGATTTTG	AA AGGCCGGAAC GATTACCATT ACCACGATGA CCACTAAAAC
STT TCCGGCCTTG CTAATGGTAA TGGTGCTACT GGTGATTTTG	ACCACGATGA
CTAATGGTAA	GATTACCATT
TCCGGCCTTG	AGGCCGGAAC
TGGTGACGTT	ACCACTGCAA
201	

XmnI

AATCGGTTGA TTAGCCAACT TCCCTCCCTC AGGGAGGGAG ATATTTACCT TATAAATGGA ATTTCCGTCA TAAAGGCAGT AATTACTTAT TTAATGAATA 301

Figure 30: functional map and sequence of pCAL module M7-II (continued)

TTTGTCTTTG GCGCTGGTAA ACCATATGAA TTTTCTATTG AAACAGAAAC CGCGACCATT TGGTATACTT AAAAGATAAC	TCTTTGCGTT TCTTTTATAT AGAAACGCAA AGAAAATATA	CACIGIS TACTGCOTA TATTTCTACG TTTGCTAACA TACTGCGTAA
ACCATATGAA TGGTATACTT	TCTTTGCGTT AGAAACGCAA	TTTGCTAAC
GCGCTGGTAA	TTCCGTGGTG	ATTTTCTACG
TTTGTCTTTG	AATAAACTTA	TOTATOTA CHA
TCGCCCT	ATTGTGACAA AATAAACTTA TTCCGTGGTG	T.PACACIGIT
351 ATG	401	

ATGACGCATT

AAACGATTGT

TTATGTATGT ATTTTCTACG

TAAAAGATGC

AATACATACA

CAACGGTGGA GTTGCCACCT

451

HindIII

TAAGGAGTCT TGATAAGCTT ACTATTCGAA ATTCCTCAGA 501

Figure 31: functional map and sequence of pCAL module M9-II (continued)

HindIII

3GG AAGCTTGACC TGTGAAGTGA AAAATGGCGC AGATTGTGCG	SCC TICGAACIGG ACACTICACI TITIACCGCG ICTAACACGC	
AAAATGGCGC	TTTTACCGCG	
TGTGAAGTGA	ACACTTCACT	•
AAGCTTGACC	TTCGAACTGG	-
9999999999	CCCCCCCCCC	
Н		

FseI	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	GCCGGCCTGG CGGCCGGACC
	}	TTTTT TGTCTGCCGT TTAATTAAAG GGGGGGGGGG GCCGGCCTGG
PacI	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TTAATTAAAG AATTAATTTC
		TGTCTGCCGT ACAGACGGCA
		АСАТТТТТТТ ТСТААААААА
		51

101 GGGGGGTGT ACAGGGGGG GGG CCCCCCACA TGTCCCCCCC CCC

BsrGI

SUBSTITUTE SHEET (RULE 26) 96 / 204

ATAGAGCCAG

GTGAGTTGGG

TGACCTTGTT

GAACAAGGTT

TATCACCTGA

ATTICGGCCT ATTGGTTAAA

GATTTTGCCG

ATTTATAGG

TATTCTTTG

351

Figure 32; functional map and sequence of pCAL module M11-III (continued)

NheI

	⊣	GCTAGCACGC	GCCCTGTAGC CGGGACATCG	GGCGCATTAA	00000000000	TGTGGTGGTT ACACCACCAA
	51	ACGCGCAGCG TGCGCGTCGC	TGACCGCTAC ACTGGCGATG	ACTTGCCAGC TGAACGGTCG	GCCCTAGCGC CGGGATCGCG	CCGCTCCTTT GGCGAGGAAA
	101	CGCTTTCTTC GCGAAAGAAG	CCTTCCTTTC GGAAGGAAAG	TCGCCACGTT AGCGGTGCAA	CGCCGGCTTT GCGGCCGAAA	CCCCGTCAAG GGGGCAGTTC
	151	CTCTAAATCG GAGATTTAGC	GGGCATCCCT CCCGTAGGGA	TTAGGGTTCC AATCCCAAGG	GATTTAGTGC CTAAATCACG	TTTACGGCAC AAATGCCGTG
•	201	CTCGACCCCA	AAAAACTTGA TTTTGAACT	TTAGGGTGAT AATCCCACTA	GGTTCTCGTA CCAAGAGCAT	GTGGGCCATC
	251	GCCCTGATAG	ACGGTTTTTTC TGCCAAAAAG	GCCCTTTGAC CGGGAAACTG	GTTGGAGTCC CAACCTCAGG	ACGTTCTTTA TGCAAGAAAT
•	301	ATAGTGGACT	CTTGTTCCAA	ACTGGAACAA	CACTCAACCC	TATCTCGGTC

	C TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT
	TAAAGCCGGA
11-III (continued)	CTAAAACGGC
ce of pCAL module M11-II	TAAATATTCC
2: functional map and sequenc	ATAAGAAAAC
Figure 32: f	

AAAATATTAA	TTTATATT
GAATTTTAAC	CTTAAAATTG
AATTTAACGC	TTAAATTGCG
ATTTAACAAA AATTTAACGC	TAAATTGTTT
AAATGAGCTG	TTTACTCGAC
401	

BsrGI

TTCATGTACA AAGTACATGT CGTTTACAAT 451

GCAAATGTTA

SUBSTITUTE SHEET (NULE 26)

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

BglII	2222
	•

	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?				
Н	AGATCTGACC	AAAATCCCTT	AACGTGAGTT	TTCGTTCCAC	TGAGCGTCAG
	TCTAGACTGG	TTTTAGGGAA	TTGCACTCAA	AAGCAAGGTG	ACTCGCAGTC
51	ACCCCGTAGA	AAAGATCAAA	GGATCTTCTT	GAGATCCTTT	TTTTCTGCGC
	TGGGGCATCT	TTTCTAGTTT	CCTAGAAGAA	CTCTAGGAAA	AAAAGACGCG
101	GTAATCTGCT	GCTTGCAAAC	AAAAAAACCA	CCGCTACCAG	CGGTGGTTTG
	CATTAGACGA	CGAACGTTTG	TTTTTTTGGT	GGCGATGGTC	GCCACCAAAAC
151	TTTGCCGGAT	CAAGAGCTAC GTTCTCGATG	CAACTCTTTT GTTGAGAAAA	TCCGAAGGTA AGGCTTCCAT	ACTGGCTACA TGACCGATGT
201	GCAGAGCGCA	GATACCAAAT	ACTGTTCTTC	TAGTGTAGCC	GTAGTTAGGC
	CGTCTCGCGT	CTATGGTTTA	TGACAAGAAG	ATCACATCGG	CATCAATCCG
251	CACCACTTCA	AGAACTCTGT	AGCACCGCCT	ACATACCTCG	CTCTGCTAAT
	GTGGTGAAGT	TCTTGAGACA	TCGTGGCGGA	TGTATGGAGC	GAGACGATTA
301	CCTGTTACCA	GTGGCTGCTG	CCAGTGGCGA GGTCACCGCT	TAAGTCGTGT ATTCAGCACA	CTTACCGGGT GAATGGCCCA
351	TGGACTCAAG	ACGATAGTTA	CCGGATAAGG	CCGGATAAGG CGCAGCGGTC GGGCTGAACG	GGGCTGAACG

SUBSTITUTE SHEET (RULE 26) 100 / 204

AGCAGTCCCC

AAACACTACG

TCGCAGCTAA

GAGACTGAAC

CAAAGCGGTG

GTCCTGTCGG

TATCTTTATA

AAACGCCTGG

TTCCAGGGG

ACGAGGGAGC

551

ł

BssSI

TCCTCTCGCG

CCCAGCCTTG

CATTCGCCGT

GTCCATAGGC

CAGGTATCCG

GAAAGGCGGA CTTTCCGCCT

501

GTAAGCGGCA

GGGTCGGAAC

AGGAGAGCGC

	CCCGACTTGC	ACACCGAACT TGTGGCTTGA	CCCGAAGGGA GGGCTTCCCT
	ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTCGCCAG CCCGACTTGC	SGGGGTTCGT GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT CCCCCAAGCA CGTGTGTCGG GTCGAACCTC GCTTGCTGGA TGTGGCTTGA	GAGATACCTA CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGA CTCTATGGAT GTCGCACTCG ATACTCTTTC GCGGTGCGAA GGGCTTCCCT
xt2 (continued)	GGCCTATTCC	CAGCTTGGAG GTCGAACCTC	TATGAGAAAG ATACTCTTTC
e of pCAL module M14-E	TGCTATCAAT	GCACACAGCC CGTGTGTCGG	CAGCGTGAGC GTCGCACTCG
Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)	ACCTGAGTTC	GGGGGTTCGT	GAGATACCTA CTCTATGGAT
Figure 33: fu		401	451

CG AAGGTCCCCC TTTGCGGACC ATAGAAATAT CAGGACAGCC	•			AC CTCTGACTTG AGCGTCGATT TTTGTGATGC TCGTCAGGGG
ATAGAAATAT				TTTGTGATGC
TTTGCGGACC				AGCGTCGATT
TGCTCCCTCG AAGGTCCCCC TTTGCG				CTCTGACTTG
TGCTCCCTCG	BssSI	? ? ? ?	Tugan	GTTTCGCCAC
H)	-			601

CT ATGGAAAAC GCCAGCAACG CGGCCTTTTT ACGGTTCCTG	A TGCCAAGGAC
AACG CGGCCTTTTT	GCCGGAAAAA
C GCCAGCAACG	CGGTCGTTGC
SCCT ATGGAAAAAC	GR TACCTTTTTG CGGTCGTTGC GCCGGAAAA 1
GGCGGAGCCT	CCGCCTCGGA
651	

SUBSTITUTE SHEET (RULE 26)

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701

SUBSTITUTE SHEET (RULE 26) 102 / 204

SUBSTITUTE SHEET (RULE 26)
103 / 204

Figure 34: functional map and sequence of pCAL module M17 (continued)

⊢	ı
⊢	ı
	•
1)
π	5
Ø	•

AAGATCACTA	AGGAAGCTAA	TCCCAATGGC	ATGTACCTAT	CCGTAAAGAA	GCCCGCCTGA	TGAGCTGGTG	AGCAAACTGA
TTCTAGTGAT	TCCTTCGATT	AGGGTTACCG	TACATGGATA	GGCATTTCTT	CGGGCGGACT	ACTCGACCAC	
ATAATGAAAT TATTACTTTA	TCAGGAGCTA AGTCCTCGAT	CGTTGATATA	CAGTTGCTCA GTCAACGAGT	TTTTTAAAGA AAAAATTTCT	TCACATTCTT AGTGTAAGAA	TGAAAGACGG ACTTTCTGCC	GTTTTCCATG
AACTTTCACC	ATCGAGATTT	GATATACCAC	GCATTTCAGT	TATTACGGCC	CGGCCTTTAT	CGTATGGCAA	TTGTTACACC
TTGAAAGTGG	TAGCTCTAAA	CTATATGGTG	CGTAAAGTCA	ATAATGCCGG	GCCGGAAATA	GCATACCGTT	
GTGAGGTTCC CACTCCAAGG	TTTTTGAGTT AAAAACTCAA	AAAATCACTG TTTTAGTGAC	ACATTTTGAG TGTAAAACTC	TTCAGCTGGA	AAGTTTTATC TTCAAAATAG	CCCGGAGTTC GGGCCTCAAG	GTGTTCACCC
GGGACGTCGG	CCGGGCGTAT	AATGGAGAAA	ATCGTAAAGA	AACCAGACCG	AAATAAGCAC	TGAATGCTCA	ATATGGGATA
CCCTGCAGCC	GGCCCGCATA	TTACCTCTTT	TAGCATTTCT	TTGGTCTGGC	TTTATTCGTG	ACTTACGAGT	
~	21	101	151	201	251	301	351

(continued)
117
. module N
질
I map and sequence of pCAL r
map and
functional
Figure 34:

.	TATACCCTAT	CACAAGTGGG	AACAATGTGG	CAAAAGGTAC	TCGTTTGACT
401	AACGTTTTCA TTGCAAAAGT	TCGCTCTGGA	GTGAATACCA CACTTATGGT	CGACGATTTC GCTGCTAAAG	CGGCAGTTTC GCCGTCAAAG
451	TACACATATA	TTCGCAAGAT	GTGGCGTGTT	ACGGTGAAAA	CCTGGCCTAT
	ATGTGTATAT	AAGCGTTCTA	CACCGCACAA	TGCCACTTTT	GGACCGGATA
501	TTCCCTAAAG	GGTTTATTGA	GAATATGTTT	TTCGTCTCAG	CCAATCCCTG
	AAGGGATTTC	CCAAATAACT	CTTATACAAA	AAGCAGAGTC	GGTTAGGGAC
551	GGTGAGTTTC	ACCAGTTTTG	ATTTAAACGT	AGCCAATATG	GACAACTTCT
	CCACTCAAAG	TGGTCAAAAC	TAAATTTGCA	TCGGTTATAC	CTGTTGAAGA
601	TCGCCCCCGT	TTTCACTATG	GGCAAATATT	ATACGCAAGG	CGACAAGGTG
	AGCGGGGGCA	AAAGTGATAC	CCGTTTATAA	TATGCGTTCC	GCTGTTCCAC
651	CTGATGCCGC GACTACGGCG	TGGCGATTCA ACCGCTAAGT	GGTTCATCAT CCAAGTAGTA	GCCGTTTGTG CGGCAAACAC	ATGGCTTCCA
701	TGTCGGCAGA	ATGCTTAATG	AATTACAACA	GTACTGCGAT	GAGTGGCAGG
	ACAGCCGTCT	TACGAATTAC	TTAATGTTGT	CATGACGCTA	CTCACCGTCC
751	GCGGGGCGTA	ATTTTTTAA	GGCAGTTATT	GGGTGCCCTT	GGGTGCCCTT AAACGCCTGG

Figure 34: functional map and sequence of pCAL module M17 (continued)

CGCCCCGCAT TAAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC

Bglii

TGCTAGATCT 801

TCC ACGATCTAGA

> SUBSTITUTE SHEET (RULE 26) 106 / 204

SUBSTITUTE SHEET (RULE 28)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

н	
ECORI	

GG TGGTGGCTCT	TA ATAAGGGGGC
CC ACCACCGAGA	AT TATTCCCCCG
ATCTGTAGGG	GCAAACGCTA
TAGACATCCC	CGTTTGCGAT
TCTGAGGAGG	TGAAAAGATG
AGACTCCTCC	ACTTTTCTAC
GAAGCTGATC	ATTTGATTA TAAAACTAAT
AATTCGAGCA	GGTTCCGGTG CCAAGGCCAC
н	

	AA AATGCCGATG AAAACGCGCT ACAGTCTGAC GCTAAAGGCA	TT TTACGGCTAC TTTTGCGCGA TGTCAGACTG CGATTTCCGT	
	ACAGTCTGA	TGTCAGACT	
	AAAACGCGCT	TTTTGCGCGA	
	AATGCCGATG	TTACGGCTAC	
•	TATGACCGAA	ATACTGGCTT	
	101	٠	
	9	SUB	STI

	,					
ACCAAAGTAA	FAAG ACAGCGATGA CTAATGCCAC GACGATAGCT ACCAAAGTAA	CTAATGCCAC	ACAGCGATGA	TTGAACTAAG		
TGGTTTCATT	TTC TGTCGCTACT GATTACGGTG CTGCTATCGA TGGTTTCATT	GATTACGGTG	TGTCGCTACT	TTGA	151	

					۲ د د	
						در
CACTAAAACG	AAA GGCCGGAACG ATTACCATTA CCACGATGAC CACTAAAACG	ATTACCATTA	GGCCGGAACG	CCACTGCAAA		E 9
GTGATTTTGC	TIT CCGGCCTIGC TAATGGTAAT GGTGCTACTG GTGATTTTGC	TAATGGTAAT	CCGGCCTTGC	GTGACG	201	/Dt1

	AAT TCCCAAATGG CTCAAGTCGG TGACGGTGAT AATTCACCTT	ATTA AGGGTTTACC GAGTTCAGCC ACTGCCACTA TTAAGTGGAA
	TGACGGTGAT	ACTGCCACTA
	CTCAAGTCGG	GAGTTCAGCC
	TCCCAAATGG	AGGGTTTACC
	TGGCTCTAAT	ACCGAGATTA
	251	
١		

XmnI

ATCGGTTGAA TAGCCAACTT CCCTCCCTCA GGGAGGGAGT TATTTACCTT ATAAATGGAA TTTCCGTCAA AAAGGCAGTT ATTACTTATT TAATGAATAA 301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

351	TGTCGCCCTT ACAGCGGGAA	TTGTCTTTGG AACAGAAACC	CGCTGGTAAA GCGACCATTT	CCATATGAAT GGTATACTTA	TTTCTATTGA AAAGATAACT
401	TTGTGACAAA AACACTGTTT	ATAAACTTAT TATTTGAATA	TCCGTGGTGT	CTTTGCGTTT GAAACGCAAA	CTTTTATATG GAAAATATAC
451	TTGCCACCTT	TATGTATGTA ATACATACAT	TTTTCTACGT AAAAGATGCA	TTGCTAACAT AACGATTGTA	ACTGCGTAAT TGACGCATTA
501	AAGGAGTCTT TTCCTCAGAA	HindIII ~~~~~ GATAAGCTTG CTATTCGAAC	ACCTGTGAAG TGGACACTTC	TGAAAAATGG ACTTTTTACC	CGCAGATTGT GCGTCTAACA
			Paci	?	FS FI
551	GCGACATTTT CGCTGTAAAA	TTTTGTCTGC AAAACAGACG	CGTTTAATTA GCAAATTAAT	AAGGGGGGGG TTCCCCCCCC	9922992222 2299229999
		BsrGI			
601	TGGGGGGGGG	TGTACATGAA ACATGTACTT	ATŤGTAAACG TAACATTTGC	TTAATATTTT AATTATAAAA	GTTAAAATTC CAATTTTAAG

SUBSTITUTE SHEET (RULE 26) 109 / 204 WO 97/08320

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

T AGGCCGAAAT A TCCGGCTTTA	A GGGTTGAGTG T CCCAACTCAC	T GGACTCCAAC A CCTGAGGTTG	C TACGAGAACC G ATGCTCTTGG	A GCACTAAATC T CGTGATTTAG		3 AAAGCCGGCG C TTTCGGCCGC	G GCGCTAGGGC
TTTAACCAAT AAATTGGTTA	GACCGAGATA CTGGCTCTAT	TAAAGAACGT ATTTCTTGCA	GATGGCCCAC	GTGCCGTAAA CACGGCATTT		CTTGACGGGG GAACTGCCCC	AAAGGAGCGG TTTCCTCGCC
CAGCTCATTT GTCGAGTAAA	CAAAAGAATA GTTTTCTTAT	AGTCCACTAT TCAGGTGATA	CTATCAGGGC GATAGTCCCG	TGGGGTCGAG		CGATTTAGAG GCTAAATCTC	GAAGAAAGCG CTTCTTTCGC
TTTGTTAAAT AAACAATTTA	CCTTATAAAT GGAATATTTA	TTGGAACAAG AACCTTGTTC	GAAAAACCGT CTTTTTGGCA	TCAAGTTTTT AGTTCAAAAA	BanII	AGGGAGCCCC TCCCTCGGGG	GAAAGGAAGG CTTTCCTTCC
GCGTTAAATT CGCAATTTAA	CGGCAAAATC GCCGTTTTAG	TTGTTCCAGT AACAAGGTCA	GTCAAAGGGC CAGTTTCCCG	ATCACCCTAA TAGTGGGATT		GGAACCCTAA CCTTGGGATT	AACGTGGCGA TTGCACCGCT
651	701	751	801	851		901	951

SUBSTITUTE SHEET (RULE 26)

TCTCATAGCT

CGTGGCGCTT

CTTCGGGAAG

GCCTTTCTCC

1301

	ລຄລຄລລອນນ	9090990999	
	AGT GTAGCGGTCA CGCTGCGCGT AACCACCACA CCCGCCGCGC	THE CATCGCCAGT GCGACGCGCA TTGGTGGTGT GGGCGGCGCG	
.4 (continued)	CGCTGCGCGT	GCGACGCGCA	
quence of modular vector pCAL4 (continued)	GTAGCGGTCA	CATCGCCAGT	i
Figure 35: functional map and sequence	上げるないじじょうご	本の上でいいすびい 本の上でいいないい	
Figure 35: fu	1001	T 0 0 T	

Н	
ne	
Ξ	

GCA AAAGGCCAGC CGT TTTCCGGTCG	GTT TTTCCATAGG	CAA GTCAGAGGTG GTT CAGTCTCCAC	CCC CCTGGAAGCT	CGG ATACCTGTCC
GTACACTCGT	TGCTGGCGTT ACGACCGCAA	CGACGCTCAA GCTGCGAGTT	GGCGTTTCCC	CGCTTACCGG
CGCACGATCG	AAGGCCGCGT TTCCGGCGCA	TCACAAAAAT AGTGTTTTTA	AAAGATACCA GGCGTTTCCC TTTCTATGGT CCGCAAAGGG	CCGACCCTGC
CGATGTCCCG	GAACCGTAAA CTTGGCATTT	CTGACGAGCA GACTGCTCGT	ACAGGACTAT TGTCCTGATA	CTCTCCTGTT
TTAATGCGCC	AAAAGGCCAG TTTTCCGGTC	CTCCGCCCCC	GCGAAACCCG CGCTTTGGGC	BSSSI ~~~~~~ CCCTCGTGCG
1051	1101	1151	1201	1251

SUBSTITUTE SHEET (RULE 26)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

					•		
TGTGTGCACG ACACACGTGC	CTATCGTCTT GATAGCAGAA	CAGCCACTGG GTCGGTGACC	GAGTTCTTGA CTCAAGAACT	TGGTATCTGC	GCTCTTGATC	TGCAAGCAGC	GATCTTTTCT CTAGAAAAGA
CAAGCTGGGC GTTCGACCCG	TATCCGGTAA ATAGGCCATT	CCACTGGCAG GGTGACCGTC	CGGTGCTACA GCCACGATGT	GAACAGTATT CTTGTCATAA	AGAGTTGGTA TCTCAACCAT	TTTTTTGTT AAAAAACAA	AAGATCCTTT TTCTAGGAAA
TCGTTCGCTC	CGCTGCGCCT	CGACTTATCG	GGTATGTAGG CCATACATCC	TACACTAGAA ATGTGATCTT	CTTCGGAAAA GAAGCCTTTT.	GTAGCGGTGG CATCGCCACC	GGATCTCAAG CCTAGAGTTC
TCGGTGTAGG AGCCACATCC	TCAGCCCGAC AGTCGGGCTG	CGGTAAGACA GCCATTCTGT	AGCAGAGCGA TCGTCTCGCT	TAACTACGGC ATTGATGCCG	AGCCAGTTAC TCGGTCAATG	ACCACCGCTG TGGTGGCGAC	CAGAAAAAA GTCTTTTTTT
GTATCTCAGT CATAGAGTCA	AACCCCCCGGT TTGGGGGGGCA	GAGTCCAACC	TAACAGGATT ATTGTCCTAA	AGTGGTGGCC TCACCACCGG	GCTCTGCTGT CGAGACGACA	CGGCAAACAA GCCGTTTGTT	AGATTACGCG TCTAATGCGC
1351	1401	1451	1501	1551	1601	1651	1701

SUBSTITUTE SHEET (RULE 26) . 112 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

GGATTTTGGT	ТТААААААТ	CATTAAGCAT	TGAATCGCCA	CATAGTGAAA	CAAAACTGGT	TCAATAAACC
CCTAAAACCA	ААТТТТТТА	GTAATTCGTA	ACTTAGCGGT	GTATCACTTT	GTTTTGACCA	AGTTATTTGG
TCACGTTAAG	AATAACTGCC	TGTTGTAATT	ATGATGAACC	AATATTTGCC	ACGTTTAAAT	AAACATATTC
AGTGCAATTC	TTATTGACGG	ACAACATTAA	TACTACTTGG	TTATAAACGG	TGCAAATTTA	TTTGTATAAG
GAACGAAAAC	TAAGGGCACC	ATCGCAGTAC	CACAAACGGC	CCTTGCGTAT	CATATTGGCT	CTGAGACGAA
CTTGCTTTTG	ATTCCCGTGG	TAGCGTCATG	GTGTTTGCCG	GGAACGCATA	GTATAACCGA	GACTCTGCTT
ACGCTCAGTG	ACCAGGCGTT	CCTGCCACTC	TGGAAGCCAT	CACCTTGTCG	AGAAGTTGTC	CAGGGATTGG
TGCGAGTCAC	TGGTCCGCAA	GGACGGTGAG	ACCTTCGGTA	GTGGAACAGC	TCTTCAACAG	GTCCCTAACC
ACGGGGTCTG TGCCCCAGAC	BglII ~~~~~ CAGATCTAGC GTCTAGATCG	TACGCCCCGC ATGCGGGGGCG	TCTGCCGACA	GCGGCATCAG CGCCGTAGTC	ACGGGGGCGA TGCCCCCGCT	GAAACTCACC
1751	1801	1821 SUBSTITE	1901 1901	(F.ULE 26)	2001	2051

(continued) TTTTCACCGT AACACGCCAC ATCTTGCGAA AAAAGTGGCA TTGTGCGGTG TAGAACGCTT	GAAATCGTCG TGGTATTCAC TCCAGAGCGA CTTTAGCAGC ACCATAAGTG AGGTCTCGCT	CATGGAAAAC GGTGTAACAA GGGTGAACAC GTACCTTTTG CCACATTGTT CCCACTTGTG	CCGTCTTTCA TTGCCATACG GAACTCCGGG GGCAGAAAGT AACGGTATGC CTTGAGGCCC	AAGAATGTGA ATAAAGGCCG GATAAAACTT TTCTTACACT TATTTCCGGC CTATTTTGAA	TCTTTAAAAA GGCCGTAATA TCCAGCTGAA AGAAATTTTT CCGGCATTAT AGGTCGACTT	TGAGCAACTG ACTGAAATGC CTCAAAATGT ACTCGTTGAC TGACTTTACG GAGTTTTACA	TATATCAACG GTGGTATATC CAGTGATTTT ATATAGTTGC CACCATATAG GTCACTAAAA
Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2101 CTTTAGGGAA ATAGGCCAGG TTTTCAGGCCAGG TATTCAGGCCAGG TATAGGCCAGG TATAGGCCAGG AAAAGT	TATATGTGTA GAAACTGCCG ATATACACAT CTTTGACGGC	TGAAACGTT TCAGTTTGCT ACTTTTGCAA AGTCAAACGA	TATCCCATAT CACCAGCTCA ATAGGGTATA GTGGTCGAGT	TGAGCATTCA TCAGGCGGGC	GTGCTTATTT TTCTTTACGG CACGAATAAA AAGAAATGCC	CGGTCTGGTT ATAGGTACAT GCCAGACCAA TATCCATGTA	TCTTTACGAT GCCATTGGGA AGAAATGCTA CGGTAACCCT
Figure 35: 2101	2151	2201	22 5.1	TE SHEET (7321 3221 RULE 26)	2401	2451

SUBSTITUTE SHEET (RULE 26)
114 / 204

2751

Figure 35: function	2501 TT	2551 AC	·	2601	HIS BLUTTES	eet (rul	2701	й
onal map and sequence	TTTCTCCATT AAAGAGGTAA	ATACGCCCGG TATGCGGGCC	AatII	CCGACGTCTA	CTTTATGCTT GAAATACGAA	·	TTCACACAGG	EcoRI
Figure 35: functional map and sequence of modular vector pCAL4 (continued)	TTAGCTTCCT AATCGAAGGA	TAGTGATCTT ATCACTAGAA	-	ATGTGAGTTA TACACTCAAT	CCGGCTCGTA		AAACAGCTAT TTTGTCGATA	-
L4 (continued)	TAGCTCCTGA	ATTTCATTAT TAAAGTAATA		GCTCACTCAT CGAGTGAGTA	TGTTGTGTGG ACACACACC		GACCATGATT	
	AAATCTCGAT TTTAGAGCTA	GGTGAAAGTT CCACTTTCAA		TAGGCACCCC	AATTGTGAGC TTAACACTCG	XbaI	ACGAATTTCT TGCTTAAAGA	
	AACTCAAAAA TTGAGTTTTT	GGAACCTCAC CCTTGGAGTG		AGGCTTTACA TCCGAAATGT	GGATAACAAT CCTATTGTTA	I Sphi	AG	

SUBSTITUTE SHEET (RULE 26

SUBSTITUTE SHEET (RULE 26) 116 / 204

SUBSTITUTE SHEET (RULE 26)
118 / 204

Aatii

ACTGCAG TGACGTC

ATGCTTCAAT TACGAAGTTA

TACATACGAT

TGAAGCATAT

TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. m Σ BgllI

ATGTATGCTA ACTTCGTATA AGATCTCATA

> SUBSTITUTE SHEET (RULE 26) 119 / 204

SUBSTITUTE SHEET (RULE 26)

AAAGTTGTTT TTTCAACAAA

GAAACGGTTG CTTTGCCAAC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-I (long):

٠		TGCGTGCGCT	ACGCACGCGA
		GTGGTGGATC	CACCACCTAG
ECORI	1 1 1 1 1	GAATTCGGTG	CTTAAGCCAC
		Н	

ATTCATTTAC TAACGTCTGG AAAGACGACA	SG GTATGTCTTT TAAGTAATG ATTGCAGACC TTTCTGCTGT
TAACGTCTGG	ATTGCAGACC
ATTCATTTAC	TAAGTAAATG
CC CATACAGAAA	GTATGTCTTT
AGCAAAATCC	TCGTTTTAGG
51	

G GAATGCTACA	C CTTACGATGT
GCTGTCTGTG	CGACAGACAC
AACTATGAGG	TTGATACTCC
TCGTTACGCT	AGCAATGCGA
AAACTTTAGA	TTTGAAATCT
101	
IIRS	TITII

	GTACATGGGT	CATGTACCCA
	CAGTGTTACG	GTCACAATGC
	TGACGAAACT	ACTGCTTTGA
•	TTTGTACTGG	AAACATGACC
	LTGTAG	ATC
	151	
E	SHE	ET (R

	TCCTATTGGG CTTGCTATCC CTGAAAATGA GGGTGGTGGC TCTGAGGGTG	CC GAACGATAGG GACTTTTACT CCCACCACCG AGACTCCCAC
	GGGTGGTGGC	CCCACCACCG
	CTGAAAATGA	GACTTTTACT
	CTTGCTATCC	GAACGATAGG
	TCCTATIGGG	AGGATAACCC
	201	
_	E 26)

したしなじじなじじん	CGCCATGATT	GACTCCCAC	CT CCCACCGCCA A	CGCCAAGACT	
ACCTCCTGAG	GCGGTACTAA	TCTGAGGGTG	GGGTGGCGGT	CGGTTCTGA	251

301		CACC	TATTCC GGGCTATACT	TATATCAACC C	CTCTCGACGG
	ゼインセン フロン フロ フロ フロ フロ フロ フロ フロ フロ フロ フロ	りりななっなりりょう	ゼラゴゼゴゼランノン	PINIAGALGG	5AGAGC 1(5)

SUBSTITUTE SHEET (RULE 26

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTCTGAGGGT	AGGGTGGCGG	GGTGGCTCTG	CTCTGAGGGT	CTGGTGGCGG	701
GGTGGTGGTT	CGGCGGCTCT GCCGCCGAGA	TCAATGCTGG AGTTACGACC	CAACCTCCTG GTTGGAGGAC	TGACCTGCCT ACTGGACGGA	651
GCCAATCGTC CGGTTAGCAG	GAATATCAAG CTTATAGTTC	ATTTGTTTGT TAAACAAACA	ATGAGGATTT TACTCCTAAA	TCTGGCTTTA AGACCGAAAT	601
CGCTTTCCAT GCGAAAGGTA	TCAGAGACTG AGTCTCTGAC	AACGGTAAAT TTGCCATTTA	CGCTTACTGG GCGAATGACC	CCATGTATGA GGTACATACT	551
TCATCAAAAG AGTAGTTTTC	CACTCCTGTA GTGAGGACAT	ATTACCAGTA TAATGGTCAT	GTTAAAACTT CAATTTTGAA	CACTGACCCC	501
TTACTCAAGG AATGAGTTCC	ACGGGCACTG TGCCCGTGAC	AACTGTTTAT TTGACAAATA	AGGGGGCATT	CGAAATAGGC GCTTTATCCG	451
TAATAGGTTC ATTATCCAAG	TGTTTCAGAA ACAAAGTCTT	AATACTTTCA TTATGAAAGT	TCAGCCTCTT AGTCGGAGAA	TTGAGGAGTC AACTCCTCAG	401
AATCCTTCTC TTAGGAAGAG	CGCTAATCCT GCGATTAGGA	AGCAAAACCC TCGTTTTGGG	CCTGGTACTG	CACTTATCCG GTGAATAGGC	351

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

751	GGCGGCTCTG CCGCCGAGAC	AGGGAGGCGG TCCCTCCGCC	TTCCGGTGGT AAGGCCACCA	GGCTCTGGTT CCGAGACCAA	CCGGTGATTT GGCCACTAAA
801	TGATTATGAA ACTAATACTT	AAGATGGCAA TTCTACCGTT	ACGCTAATAA TGCGATTATT	GGGGGCTATG CCCCCGATAC	ACCGAAAATG TGGCTTTTAC
851	CCGATGAAAA GGCTACTTTT	CGCGCTACAG GCGCGATGTC	TCTGACGCTA AGACTGCGAT	AAGGCAAACT TTCCGTTTGA	TGATTCTGTC
901	GCTACTGATT	ACGGTGCTGC TGCCACGACG	TATCGATGGT ATAGCTACCA	TTCATTGGTG AAGTAACCAC	ACGTTTCCGG TGCAAAGGCC
951	CCTTGCTAAT	GGTAATGGTG CCATTACCAC	CTACTGGTGA GATGACCACT	TTTTGCTGGC AAAACGACCG	TCTAATTCCC AGATTAAGGG
1001	AAATGGCTCA TTTACCGAGT	AGTCGGTGAA TCAGCCACTT	GGTGATAATT CCACTATTAA	CACCTTTAAT GTGGAAATTA	XmnI ~~~~~~~~ GAATAATTTC CTTATTAAAG
1051	CGTCAATATT GCAGTTATAA	TACCTTCCAT	CCCTCAATCG GGGAGTTAGC	GTTGAATGTC	GCCCTTTTGT

SUBSTITUTE SHEET (RULE 26) 123 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

AatII

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA TAACACTCGC ATTGTGAGCG GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XbaI

XmnI

GTATAATGTA CATATTACAT CTTATTGAAG GAATAACTTC ACCATGTCTA TGGTACAGAT TTGTCGATAC AACAGCTATG TCACACAGGA AGTGTGTCCT

SphI

 \mathbf{TGC} AGTTATCGCA

ACG TCAATAGCGT GCGATATGCT

CGCTATACGA

51

SUBSTITUTE SHEET (RULE 26)

101

PCT/EP96/03647 WO 97/08320

⇌
ă
ξ
Ξ
ē
<u>ي</u>
ors
9
Š
ب
₹.
<u>a</u>
2
G
نة
modul
5
_
ecto
ຍ
₹
<u>ط</u> .
5
Ξ
몽
a
l sequences of additio
S
٤
ร
Сq
Ş
Ĕ
S
ар
Ë
æ
Ö
: <u>:</u>
·Ĕ
ጟ
ë
e 35a
ē
ď
ιĔ,

GACAAAATAA CTGTTTTATT CACCTTTATG GTGGAAATAC	HindIII _ AGTCTTGATA TCAGAACTAT	
TATTGALTGI GACAAAATAA ATAACTAACA CTGTTTTATT TATATGTTGC CACCTTTATG ATATACAACG GTGGAAATAC	CGTAATAAGG AG GCATTATTCC T	···
ATGAATTTTC TACTTAAAAG GCGTTTCTTT CGCAAAGAAA		
GGTAAACCCT CCATTTGGGA TGGTGTCTTT ACCACAGAAA	CTACGTTTGC TAACATACTG GATGCAAACG ATTGTATGAC	
CTTTTGGCGCT GAAACCGCGA ACTTATTCCG TGAATAAGGC	TATGTATTTT	HindI ~~~~ AGCTT TCGAA
1101	1201	T 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 21 1 5 2
	342	124 / 204

26)

SUBSTITUTE SHEET (RULE 25) 125 / 204 WO 97/08320 PCT/EP96/03647

TAATTTCCGT

GAAATTACTT

CTTTAATGAA

GATAATTCAC

CGGTGACGGT

TGGCTCAAGT

251

GCCACTGCCA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-II (SS-TAG):

ECORI

CACTAAAACT GAAAATGCCG TTCTGTCGCT AAGACAGCGA AAAGGCCGGA AATTCCCAAA GTGATTTTGA CTTTTACGGC TTTCCGGCCT TTAAGGGTTT XmnI ATTGGTGACG TAACCACTGC TGCTGGCTCT ACGACCGAGA AGACCAAGGC GCAAACTTGA CGTTTGAACT TCTGGTTCCG GGCTATGACC CCGATACTGG CTGGTGATTT CTGCGATTTC CGATGGTTTC GCTACCAAAG GACCACTAAA GCCACCACCG GATTATTCCC GACGCTAAAG CTAATAAGGG CGGTGGTGGC AATGGTGCTA GTGCTGCTAT CGATGTCAGA CACGACGATA TTACCACGAT CTCCGCCAAG TACCGTTTGC GCTACAGTCT ATGGCAAACG GAGGCGGTTC ACTGATTACG TACTTTGCG TGCTAATGGT AATACTTTTC ATGAAAACGC TGACTAATGC ACGATTACCA CGGGAATTCG GCCCTTAAGC TTATGAAAAG 101 151 201 51

SUBSTITUTE SHEET (RULE 26)

CTTTTGTCTT GAAAACAGAA	AAAATAAACT TTTTATTTGA	CTTTATGTAT GAAATACATA	HindIII CTTGATAAGC GAACTATTCG	
ntinued) GAATGTCGCC CTTACAGCGG	TGATTGTGAC ACTAACACTG	ATGTTGCCAC TACAACGGTG	AATAAGGAGT TTATTCCTCA	
ules and pCAL vectors (co TCAATCGGTT AGTTAGCCAA	AATTTTCTAT TTAAAAGATA	TTTCTTTTAT AAAGAAAATA	CATACTGCGT	·
additional pCAL vector modules and pCAL vectors (continued) CTTCCCTCCC TCAATCGGTT GAAT GAAGGGAGGG AGTTAGCCAA CTTA	AAACCATATG TTTGGTATAC	TGTCTTTGCG ACAGAAACGC	CGTTTGCTAA GCAAACGATT	
re 35a: Functional maps and sequences of ad 301 CAATATTTAC GTTATAAATG	TGGCGCTGGT ACCGCGACCA	TATTCCGTGG	GTATTTTCTA CATAAAAGAT	Hi TT AA
re 35a: Functional 301	351	401	SIBSTILINE SI	10 S HEET (RULE 26)

SUBSTITUTE SHEET (RULE 26) 127 / 204

SUBSTITUTE SHEET (RULE 26)

HindIII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. დ Σ SphI

TAAGCTT ATTCGAA ATGCTTCAAT TACGAAGTTA ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT CGTACGGTAT GCATGCCATA

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26) 130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 10-II:

BsrGI

AACCCTGATA	CAACATTTCC
TTGGGACTAT	GTTGTAAAGG
ATGAGACAAT	TATGAGTATT
TACTCTGTTA	ATACTCATAA
GTATCCGCTC	AAAGGAAGAG
CATAGGCGAG	TTTCCTTCTC
ATTCAAATAT	TAATATTGAA
TAAGTTTATA	ATTATAACTT
GGGGGTGTAC	AATGCTTCAA TTACGAAGTT
г	51

TGTTTTTGCT	ACAAAAACGA
TTTGCCTTCC	AAACGGAAGG
TTTGCGGCAT	AAACGCCGTA
TATTCCCTTT	ATAAGGGAAA
GTGTCGCCCT	CACAGCGGGA
101	
JBSTi	TUT

S.L.E	151	CACCCAGAAA	AA CGCTGGTGAA	AGTAAAAGAT	GTAAAAGAT GCTGAGGATC AGTTGGGTGC	AGTTGGGTGC
וביו ד		GTGGGTCTTT	GCGACCACTT	TCATTTTCTA C	CGACTCCTAG TCAACCCACG	TCAACCCACG

3 ATCCTTGAGA	TAGGAACTCT
AGCGGTAAG	GTCGCCATTC TA
C TGGATCTCAA C	ACCTAGAGTT G
TACATCGAAC	ATGTAGCTTG
GCGAGTGGGT	CGCTCACCCA
201	
261	

XmnI

TAAAGTTCTG	AAA ATTTCAAGAC
TGAGCACTTT TA	ACTCGTGAAA
ACGT TTTCCAATGA TGAGCACTTT	AAAGGTTACT ACTCGTG
C CGAAGAACGT	GCTTCTTGCA
GTTTTCGCCC	CAAAAGCGGG
51	

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

0
T
₹
=
.=
=
⊑
0
Ű
_
S
_
0
تب
Ų
ė
>
_
9
U
ď
P
~
modules an
S
۰
=
Ō
0
Ē
=
_
CAL vector modules
=
U
ď
>
٠.
⋖.
ں
<u>a</u>
Ē
~~
=
2
=
diti
2
0
90
ag
of ac
of ac
s of ac
es of ac
ces of ac
nces of addition
ences of ac
rences of ac
uences of ac
quences of ac
equences of ac
sequences of ac
d sequen
os and sequen
os and sequen
os and sequen
os and sequen
d sequen
os and sequen
os and sequen
os and sequen
os and sequen
os and sequen
os and sequen
os and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
nctional maps and sequen
ure 35a: Functional maps and sequen

AGCAACTCGG	TCACCAGTCA	ATGCAGTGCT	TGACAACGAT	GGGGATCATG	CATACCAAAC	CGTTGCGCAA	CAGTTAATAG
TCGTTGAGCC	AGTGGTCAGT	TACGTCACGA	ACTGTTGCTA	CCCCTAGTAC	GTATGGTTTG	GCAACGCGTT	GTCAATTATC
GCCGGGCAAG	GGTTGAGTAC	TAAGAGAATT ATTCTCTTAA	AACTTACTTC TTGAATGAAG	GCACAACATG CGTGTTGTAC	TGAATGAAGC ACTTACTTCG	ATGGCAACAA TACCGTTGTT	TTCCCGGCAA AAGGGCCGTT
CCGTATTGAC	AGAATGACTT	GGCATGACAG	CACTGCGGCC	CCGCTTTTTT	GAACCGGAGC	GCCTGTAGCA	TTACTCTAGC
GGCATAACTG	TCTTACTGAA	CCGTACTGTC	GTGACGCCGG	GGCGAAAAAA	CTTGGCCTCG		AATGAGATCG
CGGTATTATC	CACTATTCTC	TCTTACGGAT	TGAGTGATAA	AAGGAGCTAA	TGATCGTTGG	ACACCACGAT	GGCGAACTAC
GCCATAATAG	GTGATAAGAG	AGAATGCCTA	ACTCACTATT	TTCCTCGATT	ACTAGCAACC	TGTGGTGCTA	CCGCTTGATG
CTATGTGGCG	TCGCCGCATA	CAGAAAAGCA	GCCATAACCA	CGGAGGACCG	TAACTCGCCT	GACGAGCGTG	ACTATTAACT
GATACACCGC		GTCTTTTCGT	CGGTATTGGT	GCCTCCTGGC	ATTGAGCGGA	CTGCTCGCAC	TGATAATTGA
301	351	401	451	501	551	601	651

SUBSTITUTE SHEET (DULE 28)

rs (continued)
L vecto
δ
٦
modules a
pCAL vector
l pCAL
al p
f additior
es o
and sequence
and
maps
unctiona
a: F
re 35
Figur

SUBSTITUTE SHEET (RULE 26)

PacI

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 1
1101	TCAAAGGATC AGTTTCCTAG	TCAAAGGATC TTCTTGAGAT AGTTTCCTAG AAGAACTCTA	CCTTTTTGAT GGAAAAACTA	AATGGCCGGC TTACCGGCCG	CCCCCCCCTT
	PacI	-			
	11111				
1151	AATTAAGGGG	999			
	TTAATTCCCC	၁၁၁			

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)
135 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M11-II:

Г	-	GCTAGCACGC	GCCCTGTAGC	GGCGCATTAA	ອອອວອອວອວອ
ר		CGATCGTGCG	CGGGACATCG	CCGCGTAATT	AATT
1	4	TGCGCGTCGC	ACTGGCGATG	TGAACGGTCG	ט ט נ
101	1	CGCTTTCTTC GCGAAAGAAG	CCTTCCTTTC GGAAGGAAAG	TCGCCACGTT AGCGGTGCAA	rT AA
			BanII		
151	7	CTCTAAATCG	GGGGCTCCCT	TTAGGGTTCC	υ
		GAGATTTAGC	CCCCGAGGGA	AATCCCAAGG	G
201	1	CTCGACCCCA	AAAAACTTGA TTTTTGAACT	TTAGGGTGAT AATCCCACTA	HA
751		じるよるじょしししじ		しゃびもおもししつむ	τ
i I	I	CGGGACTATC	TGCCAAAAAG	CGGGAAACTG	ן ני

SUBSTITUTE SHEET (RULE 26)

(continued)	
vectors	
pCAL ve	
es and	
or module:	
vecto	
pCAL	
of additional	
2	
al maps and sequence	
l map	
: Functiona	
e 35a:	
Figur	

			BsrGI		
AAAATATTAA TTTTATAATT	GAATTTTAAC AAAATATTAA CTTAAAATTG TTTTATAATT		ATTTAACAAA AATTTAACGC TAAATTGTTT TTAAATTGCG	AAATGAGCTG TTTACTCGAC	401
ATTGGTTAAA TAACCAATTT	ATTTCGGCCT TAAAGCCGGA	GATTTTGCCG	ATTTATAAGG GATTTTGCCG TAAATATTCC CTAAAACGGC	TATTCTTTTG ATAAGAAAAC	351
TATCTCGGTC ATAGAGCCAG	CTTGTTCCAA ACTGGAACAA CACTCAACCC TATCTCGGTC GAACAAGGTT TGACCTTGTT GTGAGTTGGG ATAGAGCCAG	ACTGGAACAA TGACCTTGTT	CTTGTTCCAA GAACAAGGTT	ATAGTGGACT TATCACCTGA	301

SUBSTITUTE SHEET (RULE 26)

CGTTTACAAT GCAAATGTTA

451

SUBSTITUTE SHEET (RULE 26)
138 / 204

CTTGGAGCGA

TACAGTCCAG

GGTTCGTGCA

CTGAACGGGG

AGCGGTCGGA TCGCCAGCCT

301

ATGTCAGGTC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 12:

BglII

CGCGTAATCT	TTCGTAGGTT	GAGGAGCGCA	CATGACTTCA	GTGGTGCTTT	GATAAGGCGC
GCGCATTAGA	AAGCATCCAA	CTCCTCGCGT	GTACTGAAGT	CACCACGAAA	CTATTCCGCG
TTTTGGTCTG C	AGGGCGGTTT 1 TCCCGCCAAA 1	AACTGGCTTG (TTGACCGAAC (TTAACCGGCG (AATTGGCCGC)	GCTGCTGCCA CGACGACGGT	ACTCAAGACG ATAGTTACCG TGAGTTCTGC TATCAATGGC
CTTGAGATCG	ACCGCCTTGC	GAACCGAGGT	CAGTTTAGCC	ATTACCAGTG	ACTCAAGACG
GAACTCTAGC	TGGCGGAACG		GTCAAATCGG	TAATGGTCAC	TGAGTTCTGC
AGATGATCTT	AAACGAAAAA	CCAACTCTTT	CTTGTCCTTT	CTCTAAATCA	TCCGGGTTGG
TCTACTAGAA	TTTGCTTTTT	GGTTGAGAAA	GAACAGGAAA	GAGATTTAGT	AGGCCCAACC
AGATCTAATA	CTTGCTCTGA	CTCTGAGCTA	GTCACTAAAA	AGACTAACTC	TGCATGTCTT
TCTAGATTAT	GAACGAGACT	GAGACTCGAT	CAGTGATTTT	TCTGATTGAG	ACGTACAGAA
Н	. 51	101	151	201	251

GTCCTGTCGG TTGTCAGGGG AAACGCGGCC TTTGCGCCGG AGGAGAGCGC TCCTCTCGCG CAGGACAGCC AACAGTCCCC GGAATGAGAC CCTTACTCTG AGGCAGGAAC TCCGTCCTTG TATCTTTATA TTCGTGATGC **AAGCAC'TACG** ATAGAAATAT Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) TGTCAGGCGT ACAGTCCGCA GTAAACCGAA TCGCAGTCTA CATTTGGCTT AGCGTCAGAT AAACGCCTGG TTTGCGGACC AgeI CGGAACTGAG GCCTTGACTC TTACTGTGGC AATGACACCG CACTGATTTG GTGACTAAAC CGCCAGGGG GCGGTCCCC TGACGGATGG CAAAGCGGTG ACTGCCTACC ATAACAGCGG AGGAGGGAGC TCCTCCTCG GTTTCGCCAC TATTGTCGCC 351 451 401 501

GCCGCAGTCG AACGACCGAG CGTAGCGAGT CAGTGAGCGA	CGTAGCGAGT	AACGACCGAG	GCCGCAGTCG	ATTTCCGCTC
CGGCGTCAGC TTGCTGGCTC GCATCGCTCA GTCACTCGCT	GCATCGCTCA	TTGCTGGCTC	CGGCGTCAGC	TAAAGGCGAG
TAAGTATCTT CCTGGCATCT TCCAGGAAAT CTCCGCCCCG TTCGTAAGCC	CTCCGCCCCG	CCTGGCATCT TCCAGGAAAT CTCCGCCCCG	CCTGGCATCT	TAAGTATCTT
ATTCATAGAA GGACCGTAGA AGGTCCTTTA GAGGCGGGGC AAGCATTCGG		GGACCGTAGA AGGTCCTTTA GAGGCGGGGC	GGACCGTAGA	ATTCATAGAA

ACTTCCCTGT TGAAGGGACA

CGGCCCTCTC

GGCTTTGCCG

GGCGGAGCCT ATGGAAAAC CCGCCTCGGA TACCTTTTTG

551

601

651

CCGAAACGGC

GCCGGGAGAG

WO 97/08320

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

١.

AgeI ~~~~~~ ACCGGTGCAG TGGCCACGTC	TCATCAGTGC	
CTGCTGACGC GACGACTGCG	ACTGACACCC TCATCAGTGC TGACTGTGGG AGTAGTCACG	
TATATCCTGT ATCACATATT ATATAGGACA TAGTGTATAA	XmnI ~~~~~~~ CCTGCCACAT GAAGCACTTC GGACGGTGTA CTTCGTGAAG	NheI ~~~~~ CACTCCGCTA GC GTGAGGCGAT CG
TATATCCTGT ATATAGGACA	CCTGCCACAT	AGCCAGTATA TCGGTCATAT
GGAAGCGGAA CCTTCGCCTT	CCTTTTTTCT GGAAAAAAGA	CAACATAGTA GTTGTATCAT
701	751	801

BglII

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 13:

BglII

TTCAGATCT AAGTCTAGA ~~~~~~ ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19

SphI

XbaI

CTATTGCACT GATAACGTGA	ECORI	GAATTC CTTAAG
AAACAAAGCA TTTGTTTCGT		CCGTTGCTCT TCACCCCTGT TACCAAAGCC GGCAACGAGA AGTGGGGACA ATGGTTCGG
AAATAAAATG TTTATTTTAC	2	TCACCCCTGT
GCGTAGGAGA AAATAAAATG CGCATCCTCT TTTATTTAC	SapI	CCGTTGCTCT
TCTAGAGCAT AGATCTCGTA		GGCACTCTTA

SUBSTITUTE SHEET (RULE 26)

51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

Sapi

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA CCGTGAGAAT GGCACTCTTA

51

Muni EcoRI

ATGAAGTGCA ATTGGAATTC

TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)

101

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21 Σ XbaI

TTCTTCC AAGAAGAACG AATATCGCAT TTATAGCGTA TATGAAAAAG ATACTTTTTC CTCCACTAAA GAGGTGATTT AGATCTCCAA TCTAGAGGTT

ECORI 11111

NsiI

GAATTC TGCATACGCT TTGCTACAAA

51

CTTAAG ACGTATGCGA AACGATGTTT GTTTTTTTA CAAAAAAGAT ATCTATGTTC TAGATACAAG

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

NheI

 1	GCTAGCATCG	AATGGCGCAA	AACCTTTCGC	GGTATGGCAT	GATAGCGCCC
	CGATCGTAGC	TTACCGCGTT	TTGGAAAGCG	CCATACCGTA	CTATCGCGGG
51	GGAAGAGAGT	CAATTCAGGG	TGGTGAATGT	GAAACCAGTA	ACGTTATACG
	CCTTCTCTCA	GTTAAGTCCC	ACCACTTACA	CTTTGGTCAT	TGCAATATGC
101	ATGTCGCAGA	GTATGCCGGT	GTCTCTTATC	AGACCGTTTC	CCGCGTGGTG
	TACAGCGTCT	CATACGGCCA	CAGAGAATAG	TCTGGCAAAG	GGCGCACCAC
151	AACCAGGCCA	GCCACGTTTC	TGCGAAAACG	CGGGAAAAAG	TGGAAGCGGC
	TTGGTCCGGT	CGGTGCAAAG	ACGCTTTTGC	GCCCTTTTTC	ACCTTCGCCG
201	GATGGCGGAG CTACCGCCTC	CTGAATTACA GACTTAATGT	TTCCTAACCG	CGTGGCACAA GCACCGTGTT	CAACTGGCGG GTTGACCGCC
251	GCAAACAGTC CGTTTGTCAG	GTTGCTGATT CAACGACTAA	GGCGTTGCCA CCGCAACGGT	CCTCCAGTCT GGAGGTCAGA	GGCCCTGCAC
301	GCGCCGTCGC	AAATTGTCGC TTTAACAGCG	GGCGATTAAA	TCTCGCGCCG	ATCAACTGGG TAGTTGACCC

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	351	TGCCAGCGTG ACGGTCGCAC	GTCGTGTCGA CAGCACAGCT	TGGTAGAACG ACCATCTTGC	AAGCGGCGTC TTCGCCGCAG	GAAGCCTGTA CTTCGGACAT
	401	AAGCGGCGGT TTCGCCGCCA	GCACAATCTT CGTGTTAGAA	CTCGCGCAAC GAGCGCGTTG	GTGTCAGTGG CACAGTCACC	GCTGATTATT CGACTAATAA
	451	AACTATCCGC TTGATAGGCG	TGGATGACCA ACCTACTGGT	GGATGCTATT CCTACGATAA	GCTGTGGAAG CGACACCTTC	CTGCCTGCAC GACGGACGTG
	501	TAATGTTCCG ATTACAAGGC	GCGTTATTTC CGCAATAAAG	TTGATGTCTC AACTACAGAG	TGACCAGACA ACTGGTCTGT	CCCATCAACA GGGTAGTTGT
SHEET (RU	551	GТАТТАТТТ САТААТААА	CTCCCATGAG GAGGGTACTC	GACGGTACGC	GACTGGGCGT CTGACCCGCA	GGAGCATCTG CCTCGTAGAC
I = 26)	601	GTCGCATTGG CAGCGTAACC	GCCACCAGCA CGGTGGTCGT	AATCGCGCTG TTAGCGCGAC	TTAGCTGGCC AATCGACCGG	CATTAAGTTC GTAATTCAAG
	651	TGTCTCGGCG ACAGAGCCGC	CGTCTGCGTC GCAGACGCAG	TGGCTGGCTG ACCGACCGAC	GCATAAATAT CGTATTTATA	CTCACTCGCA GAGTGAGCGT
	701	ATCAAATTCA TAGTTTAAGT	GCCGATAGCG CGGCTATCGC	GAACGGGAAG CTTGCCCTTC	GCGACTGGAG CGCTGACCTC	TGCCATGTCC ACGGTACAGG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	æ	ω	. 61.257771	O) TE QUEET /G		10	11
751	801	851	901	951	1001	1051	1101
GGTTTTCAAC CCAAAAGTTG	GATGCTGGTT CTACGACCAA	CCGAGTCCGG GGCTCAGGCC	GATACCGAGG	GGATTTTCGC CCTAAAAGCG	CTCAGGGCCA GAGTCCCGGT	AAAAGAAAAA TTTTCTTTTT	GTTGGCCGAT
AAACCATGCA TTTGGTACGT	GCCAACGATC CGGTTGCTAG	GCTGCGCGTT	ACAGCTCATG TGTCGAGTAC	CTGCTGGGGC	GGCGGTGAAG	CCACCCTGGC	TCACTGATGC
AATGCTGAAT TTACGACTTA	AGATGGCGCT TCTACCGCGA	GGTGCGGACA CCACGCCTGT	TTATATCCCG AATATAGGGC	AAACCAGCGT TTTGGTCGCA	GGCAATCAGC CCGTTAGTCG	TCCCAATACG AGGGTTATGC	AGCTGGCACG TCGACCGTGC
GAGGCCATCG CTCCCGTAGC	GGGCGCAATG CCCGCGTTAC	TCTCGGTAGT AGAGCCATCA	CCGCTGACCA GGCGACTGGT	GGACCGCTTG CCTGGCGAAC	TGTTGCCCGT	CAAACCGCCT	ACAGGTTTCC TGTCCAAAGG
TTCCCACTGC	CGTGCCATTA GCACGGTAAT	GGGATACGAC CCCTATGCTG	CCATCAAACA GGTAGTTTGT	CTGCAACTCT GACGTTGAGA	CTCACTGGTG GAGTGACCAC	CTCCCCGCGC	CGACTGGAAA GCTGACCTTT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GGAGGCCGTT CCTCCGGCAA CTTCCTGACA GAAGGACTGT ATAAAAGCGG TATTTCGCC AGGCTACCCG TCCGATGGGC GCGGCAGTG 1151

Aflii

GCCCACTTAA TTGTTTTGCA 1201

ල ර CGGGTGAATT

SUBSTITUTE SHEET (RULE 26) 155 / 204

WO 97/08320 PCT/EP96/03647

> TAGTGAAAAC ATCACTTTTG

TATTTGCCCA ATAAACGGGT AAACTGGTGA TTTGACCACT

GTTTAAATCA CAAATTTAGT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCAL0-1

BglII 2222

AAAAAATTA TAACTGCCTT ATTGACGGAA AGGCCACCAA TCCCGTGGTT GTCCGCAAAT CAGGCGTTTA CTAGATCGTG GATCTAGCAC

AATTCGTAAG TTAAGCATTC TTGTAATTCA AACATTAAGT CGCAGTACTG GCGTCATGAC TGCCACTCAT ACGGTGAGTA 9990999999 CGCCCGCCC

51

AATCGCCAGC TTAGCGGTCG GATGAACCTG CTACTTGGAC CAAACGGCAT GTTTGCCGTA CTTCGGTAGT GAAGCCATCA ACGGCTGTAC TGCCGACATG 101

TTGCGTATAA AACGCATATT GGAACAGCGG CCTTGTCGCC

CCGTAGTCGT GGCATCAGCA

ATAACCGATG TATTGGCTAC AAGTTGTCCA TTCAACAGGT GGGGCGAAG CCCCCCTTC

201

251

GAGACGAAAA CTCTGCTTTT CCCTAACCGA GGGATTGGCT AACTCACCCA TTGAGTGGGT

TTATTGGGA

TGTATAAGAG

ACATATTCTC

AATAAACCCT

CTTGCGAATA GAACGCTTAT GTGCGGTGTA CACGCCACAT TTCACCGTAA AAGTGGCATT TCCGGTCCAA AGGCCAGGTT AATCCCTTTA TTAGGGAAAT 301

SUBSTITUTE SHEET (RULE 26)

151

(continued)
vectors
d pCAL ve
r modules and
ctor mo
pCAL ve
additional
luences of
ps and seq
nctional maps and sequences of addi
35a: Fun
Figure

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GTGATCTTAT TTCATTATGG TGAAAGTTGG AACCTCACCC	TTGGAGTGGG
TGAAAGTTGG	CACTAGAATA AAGTAATACC ACTTTCAACC TTGGAGTGGG
TTCATTATGG	AAGTAATACC
GTGATCTTAT	CACTAGAATA
ACGCCCGGTA	TGCGGGCCAT
751	

GCTTTACACT CGAAATGTGA CCGTGGGGTC GGCACCCCAG AGTGAGTAAT TCACTCATTA CACTCAATCG GTGAGTTAGC CTGCAGATTA GACGTCTAAT ~~~~ Aatii 801

TATTGTTAAA ATAACAATTT AACACTCGCC TTGTGAGCGG CCGAGCATAC AACACCCTT TTGTGTGAA GGCTCGTATG AATACGAAGG TTATGCTTCC 851

Xbal

ACCCCCCCC TGGGGGGGG GAATTTCTAG CTTAAAGATC CCATGATTAC GGTACTAATG TGTCGATACT ACAGCTATGA CACACAGGAA GTGTGTCCTT 901

TATTCGAACT ATAAGCTTGA TATGCTTCAA ATACGAAGTT AATGTACGCT TTACATGCGA AACTTCGTAT TTGAAGCATA CGCATGCCAT GCGTACGGTA ~~~~~ 951

SphI

HindIII

AAACAGACGG TTTGTCTGCC CGACATTTTT GCTGTAAAAA GCAGATTGTG CGTCTAACAC GAAAAATGGC CTTTTTACCG GGACACTTCA CCTGTGAAGT 1001

SUBSTITUTE SHEET (RULE 23) 158 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BsrGI	~~~~~~ GTACATGAAA CATGTACTTT	TTGTTAAATC AACAATTTAG	СТТАТАААТС GAATATTTAG	TGGAACAAGA ACCTTGTTCT	AAAAACCGTC TTTTTGGCAG	CAAGTTTTTT GTTCAAAAAA	BanII	GGGAGCCCCC
H	GGGGGGGGT	CGTTAAATTT GCAATTTAAA	GGCAAAATCC (CCGTTTTAGG	TGTTCCAGTT ACAAGGTCAA	TCAAAGGGCG	TCACCCTAAT AGTGGGATTA		GAACCCTAAA
FseI	GGGCCGGCCT	TTAAAATTCG AATTTTAAGC	GGCCGAAATC CCGGCTTTAG	GGTTGAGTGT CCAACTCACA	GACTCCAACG CTGAGGTTGC	ACGAGAACCA TGCTCTTGGT		CACTAAATCG GTGATTTAGC
	AGGGGGGGGG TCCCCCCCCC	TAATATTTTG ATTATAAAAC	TTAACCAATA AATTGGTTAT	ACCGAGATAG TGGCTCTATC	AAAGAACGTG TTTCTTGCAC	ATGGCCCACT TACCGGGTGA		TGCCGTAAAG ACGGCATTTC
PacI	GTTTAATTAA CAAATTAATT	TTGTAAACGT AACATTTGCA	AGCTCATTTT TCGAGTAAAA	AAAAGAATAG TTTTCTTATC	GTCCACTATT CAGGTGATAA	TATCAGGGCG ATAGTCCCGC		GGGGTCGAGG
	1051	1101	1151	1201	1251	1301		1351
1			SUBS	STITUTE SHE 159 / 2		6)		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AAAGGAAGGG TTTCCTTCCC	TAGCGGTCAC ATCGCCAGTG	CTACAGGGCG GATGTCCCGC	GATGAGGGTG		ccggrgcgrc ggccacgcag	CACTGACTCG GTGACTGAGC	PCGAACGGG
AAAGG	TAGCC	CTAC? GATG?	GATG2 CTAC	AgeI	70000	CACT(GTGA(ACGA
ACGTGGCGAG TGCACCGCTC	CTGGCAAGTG	TAATGCGCCG ATTACGCGGC	TGTTGGCACT ACAACCGTGA	·	AAAGGCTGCA TTTCCGACGT	CTTCCTCGCT GAAGGAGCGA	GAAATGGCTT
AAGCCGGCGA TTCGGCCGCT	CGCTAGGGCG	CCGCCGCGCT	TGGCTTACTA		GCAGGAGAAA	ATATATTCCG TATATAAGGC	GCGGCGAGCG
TTGACGGGGA	AAGGAGCGGG TTCCTCGCCC	ACCACCACAC TGGTGGTGTG	GAGTGTATAC CTCACATATG	H	GCTTCATGTG	GTGATACAGG	TCGTTCGACT
GATTTAGAGC CTAAATCTCG	AAGAAAGCGA TTCTTTCGCT	GCTGCGCGTA	Nhel ~~~~~ CGTGCTAGCG GCACGATCGC	IrmX	TCAGTGAAGT AGTCACTTCA	AGCAGAATAT TCGTCTTATA	CTACGCTCGG
1401	1451	1501	1551		1601	1651	1701
		5	BUBSTITUTE SHEET (RULE 2	6)	•	

	TOOL
ıtinued)	A A C U U U U U U U U U U U U U U U U U
tor modules and pCAL vectors (co	HOBH AACONAHHHO COCHOOCO COHOCO CONTRA
dditional pCAL vector mo	
ctional maps and seguences of a	
Eigenra 253. Fun	iguic son i an

e 35	a: Functional	ure 35a: Functional maps and sequences of ad GATGCGAGCC	additional pCAL vector modules and pCAL vectors (continued) AGCAAGCTGA CGCCGCTCGC CTT	CGCCGCTCGC	CTTTACCGAA	TGCTTGCCCC
	1751	CGGAGATTTC GCCTCTAAAG	CTGGAAGATG GACCTTCTAC	CCAGGAAGAT GGTCCTTCTA	ACTTAACAGG TGAATTGTCC	GAAGTGAGAG CTTCACTCTC
• .	1801	GGCCGCGGCA	AAGCCGTTTT TTCGGCAAAA	TCCATAGGCT AGGTATCCGA	CCGCCCCCCT	GACAAGCATC CTGTTCGTAG
SUI	1851	ACGAAATCTG TGCTTTAGAC	ACGCTCAAAT TGCGAGTTTA	CAGTGGTGGC GTCACCACCG	GAAACCCGAC CTTTGGGCTG	AGGACTATAA TCCTGATATT
BSTITUTE SH	1901	AGATACCAGG TCTATGGTCC	CGTTTCCCCC GCAAAGGGGG	TGGCGGCTCC	CTCCTGCGCT GAGGACGCGA	CTCCTGTTCC GAGGACAAGG
EET (RU			AgeI			
LE 26)	1951	TGCCTTTCGG ACGGAAAGCC	TTTA	TCATTCCGCT AGTAAGGCGA	GTTATGGCCG CAATACCGGC	CGTTTGTCTC GCAAACAGAG
	2001	ATTCCACGCC TAAGGTGCGG	TGACACTCAG ACTGTGAGTC	TTCCGGGTAG	GCAGTTCGCT CGTCAAGCGA	CCAAGCTGGA GGTTCGACCT
	2051	CTGTATGCAC	GAACCCCCCG	TTCAGTCCGA AAGTCAGGCT	CCGCTGCGCC	TTATCCGGTA AATAGGCCAT

PCT/EP96/03647 WO 97/08320

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	2101	ACTATCGTCT TGATAGCAGA	TGAGTCCAAC ACTCAGGTTG	CCGGAAAGAC GGCCTTTCTG	ATGCAAAAGC TACGTTTTCG	ACCACTGGCA TGGTGACCGT
	2151	GCAGCCACTG	GTAATTGATT CATTAACTAA	TAGAGGAGTT ATCTCCTCAA	AGTCTTGAAG TCAGAACTTC	TCATGCGCCG
S	2201	GTTAAGGCTA CAATTCCGAT	AACTGAAAGG TTGACTTTCC	ACAAGTTTTA TGTTCAAAAT	GTGACTGCGC CACTGACGCG	TCCTCCAAGC AGGAGGTTCG
	2251	CAGTTACCTC	GGTTCAAAGA CCAAGTTTCT	GTTGGTAGCT CAACCATCGA	CAGAGAACCT GTCTCTTGGA	ACGAAAAACC TGCTTTTTGG
SHEET (AUL / 204	2301	GCCCTGCAAG CGGGACGTTC	GCGGTTTTTT CGCCAAAAAA	CGTTTTTCAGA GCAAAAGTCT	GCAAGAGATT CGTTCTCTAA	ACGCGCAGAC TGCGCGTCTG
E 25)				BglII		
	2351	CAAAACGATC GTTTTGCTAG	TCAAGAAGAT AGTTCTTCTA	САТСТТАТТА GTAGAATAAT		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

C	1
ᆜ	
	ָ
7	7
\tilde{c}	ີ່
7	

BsrGI

CGTTAAATTT	GCAATTTAAA
TTAAAATTCG	AATTTTAAGC
TAATATTTTG	ATTATAAAAC
TTGTAAACGT	AACATTTGCA
GTACATGAAA	CATGTACTTT
↤	

GGCAAAATCC	CCGTTTTAGG
GGCCGAAATC	CCGGCTTTAG
TTAACCAATA	AATTGGTTAT
AGCTCATTTT	TCGAGTAAAA
TTGTTAAATC	AACAATTTAG
51	

TGTTCCAGTT ACAAGGTCAA	TCAAAGGGCG AGTTTCCCGC
ACCGAGATAG GGTTGAGTGT TGTTCCAGTT TGGCTCTATC CCAACTCACA ACAAGGTCAA	GACTCCAACG TCAAAGGGCG CTGAGGTTGC AGTTTCCCGC
ACCGAGATAG TGGCTCTATC	GTCCACTATT AAAGAACGTG CAGGTGATAA TTTCTTGCAC
TC AAAAGAATAG	GTCCACTATT CAGGTGATAA
CTTATAAATC GAATATTTAG	TGGAACAAGA
101	151
SUBSTITU	TE SHEET

	TCACCCTAAT	AGTGGGATTA
	GTC TATCAGGGCG ATGGCCCACT ACGAGAACCA TCACCCTAAT	GCAG ATAGTCCCGC TACCGGGTGA TGCTCTTGGT AGTGGGATTA
	ATGCCCCACT	TACCGGGTGA
	TATCAGGGCG	ATAGTCCCGC
٠	AAAAACCGTC	TTTTTGGCAG
	201	٠
?!!	LE 2	26)

CTTGGGATHT	GTGATTTAGC	ACGCCATTTC	AAAA CCCCAGCTCC ACGGCATTTC GTGATTTAGC CTTGGGATTT	GTTCAAAAA	34.3
GAACCCTAAA	CACTAAATCG	TGCCGTAAAG	TTTT GGGGTCGAGG TGCCGTAAAG CACTAAATCG GAACCCTAAA	CAAGTTTTTT	251
	•				

BanII

?

TTGACGGGGA AAGCCGGCGA ACGTGGCGAG GATTTAGAGC GGGAGCCCCC 301

CTTCCTCGCT GAAGGAGCGA

ATATATTCCG TATATAAGGC

GTGATACAGG

CCGGTGCGTC AGCAGAATAT

551

TCGTCTTATA

GGCCACGCAG

GAAATGGCTT

GCGGCGAGCG

CTACGCTCGG TCGTTCGACT

CACTGACTCG

601

ctors (continued)	GGG CGCTAGGGCG CTGGCAAGTG	CAC CCGCCGCGT TAATGCGCCG	ATAC TGGCTTACTA TGTTGGCACT PATG ACCGAATGAT ACAACCGTGA	Agel	rgtg gcaggagaa aaaggctgca acac cgtcctcttt tttccgacgt	
s of additional pCAL vector modules and pCAL vectors (continued)	GG AAGAAAGCGA AAGGAGCGGG	AC GCTGCGCGTA ACCACCACAC	Nhel ~~~~~~ scg cgrgcragcg gagrgrarac cgc gcacgarcgc crcacararg	IrmX	STG TCAGTGAAGT GCTTCATGTG CAC AGTCACTTCA CGAAGTACAC	
Figure 35a: Functional maps and sequences of CCCTCGGGG	351 AAAGGAAGGG TTTCCTTCCC	401 TAGCGGTCAC ATCGCCAGTG	### 451 CTACAGGGCG	SHEET	S 501 GATGAGGGTG CTACTCCCAC	AgeI
Figu			169	5 / 204	ļ	

WO 97/08320

ū
Š
_
Ξ
5
Ū.
$\overline{}$
'n
≒
≅
U
ىي
>
⋖
J
ā
_
2
Ξ
co
Š
<u></u>
3
Ъ
0
=
_
≒
\simeq
บ
ت
>
_
7
$\overline{\mathbf{c}}$
\sim
-
litional pC/
Ë
ō
·Ξ
=
2
ᅙ
æ
•
0
S
·
ຬ
n.
rence
Inence
dnence
sednence
sednence
nd sequence
ind sequence
and sequence
s and sequence
ps and sequence
aps and sequence
maps and sequence
maps and sequence
al maps and sequence
nal maps and sequence
onal maps and sequence
tional maps and sequence
ctional maps and sequence
nctional maps and sequence
unctional maps and sequence
Functional maps and sequence
i: Functional maps and sequence
ia: Functional maps and sequence
5a: Funct
5a: Funct
5a: Funct
5a: Funct
ure 35a: Funct
ure 35a: Funct
ure 35a: Funct

	GTGACTGAGC	GATGCGAGCC	AGCAAGCTGA	CGCCGCTCGC	CTTTACCGAA
651	ACGAACGGGG TGCTTGCCCC	CGGAGATTTC GCCTCTAAAG	CTGGAAGATG GACCTTCTAC	CCAGGAAGAT GGTCCTTCTA	ACTTAACAGG TGAATTGTCC
701	GAAGTGAGAG CTTCACTCTC	GGCCGCGGCA	AAGCCGTTTT TTCGGCAAAA	TCCATAGGCT AGGTATCCGA	CCGCCCCCT
751	GACAAGCATC CTGTTCGTAG	ACGAAATCTG TGCTTTAGAC	ACGCTCAAAT TGCGAGTTTA	CAGTGGTGGC GTCACCACCG	GAAACCCGAC CTTTGGGCTG
801	AGGACTATAA TCCTGATATT	AGATACCAGG TCTATGGTCC	CGTTTCCCCC	TGGCGGCTCC	CTCCTGCGCT GAGGACGCGA
			AgeI		
851	CTCCTGTTCC	TGCCTTTCGG ACGGAAAGCC	TTTACCGGTG AAATGGCCAC	TCATTCCGCT AGTAAGGCGA	GTTATGGCCG CAATACCGGC
901	CGTTTGTCTC GCAAACAGAG	ATTCCACGCC	TGACACTCAG ACTGTGAGTC	TTCCGGGTAG AAGGCCCATC	GCAGTTCGCT CGTCAAGCGA
951	CCAAGCTGGA GGTTCGACCT	CTGTATGCAC GACATACGTG	GAACCCCCCG CTTGGGGGGGC	TTCAGTCCGA AAGTCAGGCT	CCGCTGCGCC

PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AAGC FTCG	GAAG CTTC	9090 0000	ACCT TGGA	GATT CTAA		GCAC	, 2225 2005 2005
ATGCAAAAGC TACGTTTTCG	AGTCTTGAAG TCAGAACTTC	GTGACTGCGC	CAGAGAACCT GTCTCTTGGA	GCAAGAGATT CGTTCTCTAA	BgllI	GATCTAGCAC CTAGATCGTG	ວວວອວວວວວວ
CCGGAAAGAC GGCCTTTCTG	TAGAGGAGTT ATCTCCTCAA	ACAAGTTTTA TGTTCAAAAT	GTTĞGTAGCT CAACCATCGA	CGTTTTCAGA GCAAAAGTCT	?	CATCTTATTA GTAGAATAAT	АААААААТТА ТТТТТТТААТ
TGAGTCCAAC ACTCAGGTTG	GTAATTGATT CATTAACTAA	AACTGAAAGG TTGACTTTCC	GGTTCAAAGA CCAAGTTTCT	GCGGTTTTTT CGCCAAAAAA		TCAAGAAGAT AGTTCTTCTA	TAACTGCCTT ATTGACGGAA
ACTATCGTCT TGATAGCAGA	GCAGCCACTG	GTTAAGGCTA CAATTCCGAT	CAGTTACCTC GTCAATGGAG	GCCCTGCAAG CGGGACGTTC		CAAAACGATC GTTTTGCTAG	AGGGCACCAA TCCCGTGGTT
TTATCCGGTA	ACCACTGGCA TGGTGACCGT	TCATGCGCCG	TCCTCCAAGC AGGAGGTTCG	ACGAAAAACC TGCTTTTTGG	,	ACGCGCAGAC TGCGCGTCTG	CAGGCGTTTA GTCCGCAAAT
1001	1051	1101	1151	1201		1251	1301
		(SUBSTITUTE	SHEET (RU	LE 26)		
			107	1204			

(continued)	
L vectors	
Z Z	
odules and pCAL ve	
pCAL vector mo	
Š	
-	
s of	
seguence	
al maps and sequences of addition	
Functional	
35a:	
Figure 35	

rg AC	ZA TE	AG I'C	CA 3T	AT IA	GA CT	IC AG	CA GT
ACA1 rgt2	CAGO	CGA.	ACC(IGG(SAA	GTA(CAT(GTT	TAT(ATA(
TGCCGACATG ACGGCTGTAC	GGCATCAGCA CCGTAGTCGT	GGGGCCGAAG CCCCCGCTTC	AACTCACCCA TTGAGTGGGT	TTAGGGAAAT AATCCCTTTA	TATGTGTAGA ATACACATCT	AAAACGTTTC TTTTGCAAAG	TCCCATATCA AGGGTATAGT
TG	Ö Ü Ü	900	AA	TT	TA	AA TT	TC
TTC	AGC	AAC	TGA	CCT	ATA	ATG	CTA
GCA	2001	GAA	TGG	AAC	SCGA	0501:	ACA
TTAAGCATTC AATTCGTAAG	AATCGCCAGC TTAGCGGTCG	TAGTGAAAAC ATCACTTTTG	AAACTGGTGA TTTGACCACT	AATAAACCCT TTATTTGGGA	CTTGCGAATA GAACGCTTAT	CAGAGCGATG GTCTCGCTAC	GTGAACACTA CACTTGTGAT
5	•						
TTGTAATTCA AACATTAAGT	GATGAACCTG CTACTTGGAC	TATTTGCCCA	GTTTAAATCA CAAATTTAGT	ACATATTCTC TGTATAAGAG	CACGCCACAT GTGCGGTGTA	GTATTCACTC CATAAGTGAG	TGTAACAAGG ACATTGTTCC
GTA	TGA	TTT	TTA	ATA) 16CG	ATT ATAA	STAA
TT		_		_	_		•
CTG	CAT	TTGCGTATAA AACGCATATT	TATTGGCTAC ATAACCGATG	GAGACGAAAA CTCTGCTTTT	TTCACCGTAA AAGTGGCATT	AATCGTCGTG TTAGCAGCAC	TGGAAAACGG ACCTTTTGCC
AGTA FCAT	ACGG IGCC	CGTA	rggc	ACG2 IGC1	ACCO	CGTC	AAA. TTT:
CGCAGTACTG GCGTCATGAC	CAAACGGCAT GTTTGCCGTA	TTGCGTATAA AACGCATATT	TATTGGCTAC ATAACCGATG	GAGZ	TTC! AAG	AAT(TTA(TGG
S OF 300 AT (CA	ည္မ	CA	CT	TT	GA CT	CA
naps and sequences of a TGCCACTCAT ACGGTGAGTA	GAAGCCATCA CTTCGGTAGT	CCTTGTCGCC GGAACAGCGG	AAGTTGTCCA TTCAACAGGT	GGGATTGGCT CCCTAACCGA	AGGCCAGGTT	AACTGCCGGA TTGACGGCCT	AGTTTGCTCA TCAAACGAGT
	AAGC	TTG	AGTJ ICAA	3GAT CCTA	3800	ACTC TGA(3TTT
ar maps TG AC	G2	SSS	A.	ĕΰ	AC T(A II	A(T(
Figure 35a: Functional maps and sequences of 1351 TGCCACTCAT ACGGTGAGTZ	1401	1451	1501	1551	1601	1651	1701
35a: Fur 13	77	1,				ij	←
Hgure	• .			UTE SHEET (168 / 204	(RULE 26)		,
_				,			

GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC

	ì
red)	
ntin	1
<u>8</u>	•
ctors	
pCAL ve	
ర్జ	
and	
ules	
pom	
tor	
L ve	
δ	
onal	
dditi	
of a	
ıces	
naps and sequences of	
og po	
ps ar	
l ma	
iona	
unct	
35a: F	
gure 35a: F	
Figure 3	

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (configured) 1751 CCAGCTCACC GTCTTTCATT GCCATACGGA ACTCCGGGTG GGTCGGTGG CAGCAGTGG CAGAAGTAA CGGTATGCCT TGAGGCCCAC TCCGCCCGTT CTTACACTTA TTTCCGGCCT ATTTTGAACA CGCATTATTGACACA CAAATGCCAG AAATTTTTTCC GCCATTATTGCGCT TCCATGTACACA CAAATGCCAG AAATTTTTTCC GCCATTATACGGA GAATGCCAG AAATTTTTTCC GCCATTATACGGA GTCGACTTGC TCCATGTACACA CGCATTATACGGA GTCGACTTGC TCCATGGGATA TATCAACGGT GCTATTACGGA GTTTTACAACGGT GTAACCCTATA TAGGTACCTTA ATAGTTGCCA CCATATAGGT CACTAAAAATTTTTTTTTT	AGCATTCATC TCGTAAGTAG	GCTTATTTT CGAATAAAAA	GTCTGGTTAT CAGACCAATA	TTTACGATGC AAATGCTACG	TCTCCATTTT AGAGGTAAAA	ACGCCCGGTA TGCGGGCCAT	Aatii	GACGTCTAAT CTGCAGATTA
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors to a GGTCGAGTGG CAGAAAGTAA CGGTATGCGT TCCGCCGCTT CTTACAGTAA CGGTATGCCT TCCGCCCGTT CTTACACTTA TTTCCGGCCTT CTTACACTTA TTTCCGGCCTT CTTACACTTA TTTCCGGCCTT TCCGCCCTT CTTACACTTA TTTCCGGCCTT TCCATGTAATATC GAAATGCCAG AAATTTTTCC GGCATTATACGGA TCCATGTAAC TCGTTGACTG ACTTTACGGA TCCATGTAAC TCGTTGACTG ACTTTACGGA GTAACCCTAT ATCAACGGT GGTATATCCA GTAACCCTAT ATCAACGGT GGTATATCCA GTAACCCTAT ATAGTTGCCA CCATATAGGT GTAACCCTAT ATAGTTGCCA CCATATAGGT GTAACCCTAT ATAGTTGCCA CCATATAGGT GTAACCTTAT TAGAGCTATA TCGAGGACTTT TAGAGCTATA TCGAAGATTGG CACTATTACACC CACTATAGG CACTATAGAATACC ACTTTCAACCC CACTATACACCC CACTATACACCC CACTATACACCC CACTATACACCC CACTATACACCC CACTATACACCC CACTATACACCC CACTATACACCCCCACTATACACCC ACTATACACCC CACTATACACCC CACTATACAACCCAACAACCAAC	ACTCCGGGTG TGAGGCCCAC	TAAAACTTGT ATTTTGAACA	CAGCTGAACG GTCGACTTGC	CAAAATGTTC GTTTTACAAG	GTGATTTTTT CACTAAAAAA	CTCAAAAAAT GAGTTTTTTA	1	AACCTCACCC TTGGAGTGGG
Figure 35a: Functional maps and sequences of additional pCAL vector mod 1751 CCAGCTCACC GTCTTTCATT GGTCGAGTGG CAGAAAGTAA TCCGCCCGTT CTTACACTTA TCCGCCCGTT CTTACACTTA TCCGCCCGTT TTAAAAAGG GAAATGTCACTTA TCCATGTAACTGCAG AAATTTTTTCC TCATGGGATA TATCAACGGT GTAACCTTA TCCATGGGATA TATCAACGGT GTAACCTTA ATAGTTGCCA TCGAACGGAAA TCGAAGGAAA TCGAAGGAAT CGAGGACTTTTTTCATTATGG CACCTTATATGG CACCTTAATATGG TATAATAATAATAATAATAATAATAA	ules and pCAL vectors (co GCCATACGGA CGGTATGCCT	AAAGGCCGGA TTTCCGGCCT	CCGTAATATC GGCATTATAG	TGAAATGCCT ACTTTACGGA	GGTATATCCA CCATATAGGT	ATCTCGATAA TAGAGCTATT		TGAAAGTTGG ACTTTCAACC
Figure 35a: Functional maps and sequences of add 1751 CCAGCTCACC GGTCGAGTGG GGTCGAGTGGGTT TCCGCCGGTT TCCGCCGGTT TCCGCCGGTT TCCGCCGGTT TCCATGTAAC TCCATGTAAC GTAACCCTATA GTAACCCTATA GTAACCCTATA GTAACCCTATA GTAACCCTATA GTAACCCTTAT TCGAAGGAATA TCGAAGGAATA CACTAGAATA CACTTAAT CACTTAATA	ditional pCAL vector modi GTCTTTCATT CAGAAAGTAA	GAÁTGTGAAT CTTACACTTA	TTTAAAAAGG AAATTTTTCC	AGCAACTGAC TCGTTGACTG	TATCAACGGT ATAGTTGCCA	GCTCCTGAAA CGAGGACTTT		TTCATTATGG AAGTAATACC
Figure 35a: Functional 1751 1751 1801 1801 1851 1951 (97 704) 2001 2001 2051	maps and sequences of ade CCAGCTCACC GGTCGAGTGG	AGGCGGGCAA TCCGCCCGTT	CTTTACGGTC GAAATGCCAG	AGGTACATTG TCCATGTAAC	CATTGGGATA GTAACCCTAT	AGCTTCCTTA TCGAAGGAAT		GTGATCTTAT CACTAGAATA
SUBSTITUTE SHEET (RULE 26) 169 / 204	a: Functional 1751	1801	1851	1901	1951	2001	· .	2051
	Figure 35		#* *	SUBSTIT		RULE 26)		

	AATACGAAGG
ntinued)	CG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA AATACGAAGG
dules and pCAL vectors (co	CCGTGGGGGTC
ditional pCAL vector mod	AGTGAGTAAT
I maps and sequences of ado	CACTCAATCG
Figure 35a: Functiona	

	CACACAGGAA GTGTGTCCTT	SphI	CGCATGCCAT GCGTACGGTA		CCTGTGAAGT GGACACTTCA	PacI	GTTTAATTAA CAAATTAATT		TCCTTTGATC AGGAAACTAG
	ATAACAATTT TATTGTTAAA		ACCCCCCCCC	HindIII	ΑĦ		TTTGTCTGCC AAACAGACGG		CTCAAGAAGA GAGTTCTTCT
)))))	TTGTGAGCGG	XbaI	GAATTTCTAG CTTAAAGATC		ATACGAAGTT TATGCTTCAA		CGACATTTTT GCTGTAAAAA		CAAAAAGGAT GTTTTTCCTA
}	TTGTGTGGAA AACACACCTT		CCATGATTAC GGTACTAATG		AATGTACGCT TTACATGCGA		GCAGATTGTG CGTCTAACAC	seT	CGGCCATTAT GCCGGTAATA
)	GGCTCGTATG		ACAGCTATGA TGTCGATACT		AACTTCGTAT TTGAAGCATA		GAAAAATGGC CTTTTTACCG	<u>ተ</u>	
	2151		2201		2251		2301		2351
			S	UBSTITU	TE SHEET ((RULE 26))		
				. 1	70 / 204				

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GTTAAGGGAT CAATTCCCTA	СТТТТАААТТ GAAATTTAA	AACTTGGTCT TTGAACCAGA	GCGATCTGTC CGCTAGACAG	GATAACTACG CTATTGATGC	TACCGCGAGA ATGGCGCTCT	CCAGCCGGAA GGTCGGCCTT	CATCCAGTCT
GAAAACTCAC GT CTTTTGAGTG CA	CACCTAGATC CT GTGGATCTAG GA	TATATGAGTA AA ATATACTCAT TT	ACCTATCTCA GC TGGATAGAGT CG	CCGTCGTGTA GA GGCAGCACAT CT	GCTGCAATGA TA CGACGTTACT AT	AATAAACCAG CC TTATTTGGTC GG	TATCCGCCTC CA
TCAGTGGAAC GA AGTCACCTTG CT	AAAGGATCTT CI TTTCCTAGAA G	ATCTAAAGTA TI TAGATTTCAT A	TCAGTGAGGC AGAGTCAC	GCCTGACTCC CO	TGGCCCCAGT G	ATTTATCAGC A TAAATAGTCG T	CCTGCAACTT T
GGTCTGACGC 1 CCAGACTGCG 1	AGATTATCAA 1 TCTAATAGTT	TTTTAAATCA 1 AAAATTTAGT 1	CAATGCTTAA GTTACGAATT	ATCCATAGTT (TAGGTATCAA	GCTTACCATC	CCGGCTCCAG	CAGAAGTGGT
TTTTCTACGG (AAAAGATGCC)	TTTGGTCATG A	AAAAATGAAG TTTTTACTTC	GACAGTTACC	TATTTCGTTC ATAAAGCAAG	ATACGGGAGG TATGCCCTCC	CCCACGCTCA GGGTGCGAGT	GGGCCGAGCG
2401	2451	2501	2551	2601	2651	2701	2751
٠	•	Ş	SUBSTITUTE	SHEET (RU	LE 26)		
			171	/ 204			

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

G TTAATAGTTT	A CGCTCGTCGT	G GCGAGTTACA	G GTCCTCCGAT	G GTTATGGCAG	G CTTTTCTGTG	A TGCGGCGACC	G CCACATAGCA	
C AATTATCAAA	T GCGAGCAGCA	C CGCTCAATGT	C CAGGAGGCTA	C CAATACCGTC	C GAAAAGACAC	T ACGCCGCTGG	C GGTGTATCGT	
AGTTCGCCAG	CGTGGTGTCA	AACGATCAAG	AGCTCCTTCG	ATCACTCATG	CCGTAAGATG	GAATAGTGTA	TAATACCGCG	
TCAAGCGGTC	GCACCACAGT	TTGCTAGTTC	TCGAGGAAGC	TAGTGAGTAC	GGCATTCTAC	CTTATCACAT	ATTATGGCGC	
TAGAGTAAGT	CTACAGGCAT	TCCGGTTCCC	AAAAGCGGTT	CCGCAGTGTT	GTCATGCCAT	GTCATTCTGA	CAATACGGGA	
ATCTCATTCA	GATGTCCGTA	AGGCCAAGGG	TTTTCGCCAA	GGCGTCACAA	CAGTACGGTA	CAGTAAGACT	GTTATGCCCT	
GCCGGGGAAGC	GTTGCCATTG	TTCATTCAGC	TGTTGTGCAA	AGTAAGTTGG	TTCTCTTACT	ACTCAACCAA	TGCCCGGCGT	
	CAACGGTAAC	AAGTAAGTCG	ACAACACGTT	TCATTCAACC	AAGAGAATGA	TGAGTTGGTT	ACGGGCCGCA	
ATTAACTGTT TAATTGACAA	GCGCAACGTT	TTGGTATGGC AACCATACCG	TGATCCCCCA	CGTTGTCAGA GCAACAGTCT	CACTGCATAA GTGACGTATT	ACTGGTGAGT TGACCACTCA	GAGTTGCTCT CTCAACGAGA	
2801	2851	2901	2951	3001	3051	3101	3151	
SUBSTITUTE SHEET (RULE 20)								

SUBSTITUTE SHEET (RULE 20 172 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

GCGAAAACTC CGCTTTTGAG	CCACTCGCGC GGTGAGCGCG	TCTGGGTGAG AGACCCACTC	GGCGACACGG	GAAGCATTTA CTTCGTAAAT		
GTTCTTCGGG	TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	СААТАТТАТТ GTTATAATAA	BsrGI	ATTTGAAT TAAACTTA
ATTGGAAAAC GTTC TAACCTTTTG CAAG	GAGATCCAGT CTCTAGGTCA	CTTTTACTTT GAAAATGAAA	GCCGCAAAAA CGGCGTTTTT	CTTCCTTTTT GAAGGAAAAA		GCGGATACAT CGCCTATGTA
AGTGCTCATC TCACGAGTAG	TACCGCTGTT ATGCCGACAA	TCCTCAGCAT AGGAGTCGTA	AAGGCAAAAT TTCCGTTTTA	TACTCATACT		TGTCTCATGA ACAGAGTACT
GAACTTTAAA CTTGAAATTT	TCAAGGATCT AGTTCCTAGA	ACCCAACTGA TGGGTTGACT	CAAAAACAGG GTTTTTGTCC	AAATGTTGAA TTTACAACTT		TCAGGGTTAT AGTCCCAATA
3201	3251	3301	3351	3401		3451
			JTE SHEET (173 / 204	RULE 26)		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)

GGACACTTCA

TATTCGAACT

ATAAGCTTGA CCTGTGAAGT

ATACGAAGTT TATGCTTCAA

AACTTCGTAT AATGTACGCT

201

TTACATGCGA

TTGAAGCATA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

PacI

SUBSTITUTE SHEET (RULE 26) 175 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GTTTAATTAA CAAATTAATT		TCCTTTGATC AGGAAACTAG	GTTAAGGGAT CAATTCCCTA	СТТТТАААТТ GAAAATTTAA	AACTTGGTCT TTGAACCAGA	GCGATCTGTC CGCTAGACAG	GATAACTACG CTATTGATGC
TTTGTCTGCC AAACAGACGG		CTCAAGAAGA GAGTTCTTCT	GAAAACTCAC CTTTTGAGTG	CACCTAGATC GTGGATCTAG	TATATGAGTA	ACCTATCTCA TGGATAGAGT	CCGTCGTGTA GGCAGCACAT
CGACATTTTT GCTGTAAAAA		CAAAAAGGAT GTTTTTCCTA	TCAGTGGAAC AGTCACCTTG	AAAGGATCTT TTTCCTAGAA	АТСТАААĞТА ТАĞАТТТСАТ	TCAGTGAGGC AGTCACTCCG	GCCTGACTCC CGGACTGAGG
GCAGATTGTG CGTCTAACAC	Fsel	CGGCCATTAT GCCGGTAATA	GGTCTGACGC CCAGACTGCG	AGATTATCAA TCTAATAGTT	TTTTAAATCA AAAATTTAGT	CAATGCTTAA GTTACGAATT	ATCCATAGTT TAGGTATCAA
GAAAAATGGC CTTTTTACCG	<u>τ</u>	50000000000	TTTTCTACGG AAAAGATGCC	TTTGGTCATG ÁAACCAGTAC	AAAAATGAAG TTTTTACTTC	GACAGTTACC CTGTCAATGG	TATTTCGTTC ATAAAGCAAG
251		301	351	401	451	501	551
			SUBSTIT	UTE SHEET	(RULE 23)		
				76 / 204			

ਰ	
当	
.⊑	
컽	
8	
<u>ت</u>	
Ä	
Ξ	
ĕ	
<u> </u>	
۶	
٦	
р	
ä	
N.	
半	
ಕ್ಷ	
2	
Ξ	
2	
ພ	
>	
¥	
õ	
=	
n3	
. <u>ō</u>	
≓	
ಕ	
<u>.</u>	
0	
Ş	
2	
Ę	
₹	
S	
Þ	
ੜ	
S	
<u> </u>	
Ξ	
æ	
5	
=	
ĭ	
Ŧ	
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)	
5,	
E.	
Ę	
್ರಕ್ಷ	
正	

35a: Functional 601	651	701	SUBSTITU	TE SHZET (F	2011 82 111E 26)	901	951
ure 35a: Functional maps and sequences of au 601 ATACGGGAGG TATGCCCTCC	CCCACGCTCA	GGGCCGAGCG CCCGGCTCGC	ATTAACTGTT TAATTGACAA	GCGCAACGTT CGCGTTGCAA	TTGGTATGGC AACCATACCG	TGATCCCCCA	CGTTGTCAGA GCAACAGTCT
GCTTACCATC TGGCCCCAG' CGAATGGTAG ACCGGGGTC	CCGGCTCCAG	CAGAAGTGGT GTCTTCACCA	GCCGGGAAGC CGGCCCTTCG	GTTGCCATTG	TTCATTCAGC	TGTTGTGCAA ACAACACGTT	AGTAAGTTGG TCATTCAACC
TGGCCCCAGT	ATTTATCAGC TAAATAGTCG	CCTGCAACTT GGACGTTGAA	TAGAGTAAGT ATCTCATTCA	CTACAGGCAT	TCCGGTTCCC	AAAAGCGGTT TTTCGCCAA	CCGCAGTGTT GGCGTCACAA
GCTGCAATGA	AATAAACCAG TTATTTGGTC	TATCCGCCTC ATAGGCGGAG	AGTTCGCCAG TCAAGCGGTC	CGTGGTGTCA	AACGATCAAG TTGCTAGTTC	AGCTCCTTCG TCGAGGAAGC	ATCACTCATG TAGTGAGTAC
TACCGCGAGA ATGGCGCTCT	CCAGCCGGAA GGTCGGCCTT	CATCCAGTCT GTAGGTCAGA	TTAATAGTTT AATTATCAAA	CGCTCGTCGT GCGAGCAGCA	GCGAGTTACA CGCTCAATGT	GTCCTCCGAT	GTTATGGCAG CAATACCGTC

$\overline{}$
_
ĕ
≥
·Ξ
8
ے
2
2
ū
Š
Ĺ
₹
2
_
pue :
ਲ
S
半
글
ŏ
Ξ
Ξ
ecto
ರ
8
₹
ပ္
-
7
듣
·≅
≒
ಕ
æ
\overline{c}
5
نة
JCE
ence
Ineuce
edneuce
sednence
od sequence:
and sequence
s and sequence
ips and sequence
naps and sequence
maps and sequence
ial maps and sequence
onal maps and sequence
tional maps and sequence
ictional maps and sequence
unctional maps and sequence
Functional maps and sequence
a: Functional maps and sequence
5a: Functional maps and sequence
35a: Func
35a: Func
35a: Func
Figure 35a: Functional maps and sequence

CTTTTCTGTG GAAAAGACAC	TGCGGCGACC ACGCCGCTGG	CCACATAGCA GGTGTATCGT		GCGAAAACTC CGCTTTTGAG	CCACTCGCGC GGTGAGCGCG	TCTGGGTGAG AGACCCACTC	GGCGACACGG CCGCTGTGCC	GAAGCATTTA
CCGTAAGATG	GAATAGTGTA CTTATCACAT	TAATACCGCG		GTTCTTCGGG	TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	CAATATTATT
gure 358: runctional maps and sequences of administration of the control of the post sectors reministed and 1001 CACTGCATAA TTCTCTTACT GTCATGCCAT CCG GTGCGTA GGC.	GTCATTCTGA CAGTAAGACT	CAATACGGGA GTTATGCCCT	IcumX	ATTGGAAAAC TAACCTTTTG	GAGATCCAGT CTCTAGGTCA	CTTTTACTTT GAAAATGAAA	GCCGCAAAAA CGGCGTTTTT	CTTCCTTTTT
TTCTCTTACT AAGAGAATGA	ACTCAACCAA TGAGTTGGTT	TGCCCGGCGT ACGGGCCGCA	•	AGTGCTCATC TCACGAGTAG	TACCGCTGTT ATGCCGACAA	TCCTCAGCAT AGGAGTCGTA	AAGGCAAAAT TTCCGTTTTA	TACTCATACT
CACTGCATAA GTGACGTATT	ACTGGTGAGT TGACCACTCA	GAGTTGCTCT CTCAACGAGA		GAACTTTAAA CTTGAAATTT	TCAAGGATCT AGTTCCTAGA	ACCCAACTGA TGGGTTGACT	CAAAAACAGG GTTTTTGTCC	AAATGTTGAA
5a: runcuonal 1001	1051	11.01		1151	1201	1251	1301	1351
טונג חווה			SUB	STITUTE SH	SET (RULE 2	26)		
<u>5</u> 1								

BanII

TITACAACTI ATGAGTATGA GAAGGAAAAA GITATAATAA CTTCGTAAAT Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BsrGI

SUBSTITUTE SHEET (RULE 26) 179 / 204

(continued)
vectors
ector modules and pCAL
I pCAL ve
additiona
maps and sequences of
maps and
: Functional
Figure 35a:

gure 3	5a: Functional 1701	gure 358: Functional maps and Sequences of an action of 1701 GGTCGAGGTG CCAGCTCCAC	CCGTAAAGCA CTAAATCGGA ACC	CTAAATCGGA GATTTAGCCT	ACCCTAAAGG TGGGATTTCC	GAGCCCCCGA CTCGGGGGGCT
	1751	TTTAGAGCTT AAATCTCGAA	GACGGGGAAA	GCCGGCGAAC	GTGGCGAGAA CACCGCTCTT	AGGAAGGGAA TCCTTCCCTT
	1801	GAAAGCGAAA CTTTCGCTTT	GGAGCGGGCG CCTCGCCCGC	CTAGGGCGCT GATCCCGCGA	GGCAAGTGTA CCGTTCACAT	GCGGTCACGC CGCCAGTGCG
SUBSTITL	1851	TGCGCGTAAC ACGCGCATTG	CACCACACCC GTGGTGTGGG	GCCGCGCTTA	ATGCGCCGCT	ACAGGGCGCG TGTCCCGCGC
ITE SHEET (RULE 26)	1901	NheI ~~~~~~ TGCTAGCGGA ACGATCGCCT	GTGTATACTG	GCTTACTATG	TTGGCACTGA	TGAGGGTGTC
		ImmX			AgeI	Hes
	1951	AGTGAAGTGC TCACTTCACG	TTCATGTGGC	AGGAGAAAAA TCCTCTTTTT	AGGCTGCACC	GGTGCGTCAG
	2001	CAGAATATGT GTCTTATACA	GATACAGGAT CTATGTCCTA	ATATTCCGCT TATAAGGCGA	TCCTCGCTCA AGGAGCGAGT	CTGACTCGCT GACTGAGCGA

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GAACGGGGCG CTTGCCCCGC	AGTGAGAGGG TCACTCTCCC	CAAGCATCAC GTTCGTAGTG	GACTATAAAG CTGATATTTC	CCTGTTCCTG GGĄCAAGGAC	TTTGTCTCAT	AAGCTGGACT TTCGACCTGA
AATGGCTTAC	TTAACAGGGA AATTGTCCCT	GCCCCCCTGA CGGGGGGACT	AACCCGACAG TTGGGCTGTC	CCTGCGCTCT GGACGCGAGA	TATGGCCGCG	AGTTCGCTCC TCAAGCGAGG
GGCGAGCGGA	AGGAAGATAC TCCTTCTATG	CATAGGCTCC GTATCCGAGG	GTGGTGGCGA	GCGGCTCCCT	ATTCCGCTGT. TAAGGCGACA	CCGGGTAGGC GGCCCATCCG
GTTCGACTGC CAAGCTGACG	GGAAGATGCC CCTTCTACGG	GCCGTTTTTC CGCCAAAAAG	GCTCAAATCA CGAGTTTAGT	TTTCCCCCTG	AgeI ~~~~~~ TACCGGTGTC ATGGCCACAG	ACACTCAGTT TGTGAGTCAA
ACGCTCGGTC TGCGAGCCAG	GAGATTTCCT CTCTAAAGGA	CCGCGGCAAA GGCGCCGTTT	GAAATCTGAC CTTTAGACTG	ATACCAGGCG TATGGTCCGC	CCTTTCGGTT GGAAAGCCAA	TCCACGCCTG
2051	2101	2151	S O T	2251 2251	5301 2301	2351

ᅙ
ž
Ξ.
Ξ
ୃଥ
Š
ō
Ç
>
F
ပ္က
Ē
Ĭ
S
皂
ಕ
2
ב
ctor
ဥ
₹
ď
┲
<u>.</u>
:≝
additio
ő
ਰ
S
nces
핕
ಕ
S
٦
ਲ
bS
23
.=
2
:≘
2
ج
•
35a:
igure
g
ιĒ

CTCCAAGCCA		GAAAAACCGC	CTTTTTGGCG
TAAGGCTAAA CTGAAAGGAC AAGTTTTAGT GACTGCGCTC CTCCAAGCCA		GG TTCAAAGAGT TGGTAGCTCA GAGAACCTAC GAAAAACCGC	CTCTTGGATG
AAGTTTTAGT TTCAAAATCA		TGGTAGCTCA	AAGTTTCTCA ACCATCGAGT CTCTTGGATG
CTGAAAGGAC)	TTCAAAGAGT	AAGTTTCTCA
TAAGGCTAAA		GTTACCTCGG	Ŋ
2551	,	2601	
SUBST	ITUTE	SH	EET

GCGCAGACCA CGCGTCTGGT TTCTCTAATG AAGAGATTAC TTTTCAGAGC AAAAGTCTCG GGTTTTTCG CCAAAAAAGC CCTGCAAGGC GGACGTTCCG 2651

BglII

AAACGATCTC AAGAAGATCA TCTTATTA TTTGCTAGAG TTCTTCTAGT AGAATAAT

2701

SUBSTITUTE SHEET (RULE 26) 182 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTITTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-I: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

gllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (RULE 25) 183 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 28) 184 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCGCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

ПСА

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

Bbe I (1361) Ase I (1364) Eco 57I (1366) Xho I (1371) Bss HII (1376) Bbs I (1386) Bsp EI (1397) Bsr GI (1403)	
Bam H I (192) Pst I (1356) Kpn I (202) Bss SI (1346) Fse I (210) Eag I (1340) -35 (bla) -10 (bla) bla-term	bla MCS 1289 bp
Pml I (189) Bsa BI (182) Nsp V (173) Bsi WI (166) Eco O109I (161) Psp 5II (161) Sty I (157) Msc I (156) Bst XI (152) Bst XI (152) Bst Si (136) Bsu 36I (136)	Mlu I (126)

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

				$\mathtt{StyI}_{\sim\sim\sim\sim\sim\sim\sim\sim}$	
				\ \ \ \ \	
				Psp5II	
		· ;		22222	
	MluI Bsu36I	H	BstXI	Eco01091	
	Hpal B	Bstell	MSCI	` } } }	
126	CGCGTTAACC TC GCGCAATTGG AC	TCAGGTGACC AGTCCACTGG	AAGCCCCTGG CCAAGGTCCC TTCGGGGACC GGTTCCAGGG	CCAAGGTCCC	GTACGTTCGA CATGCAAGCT
·	Н. }	PmlI ~~~~~~	- - -		
	NspVBsaBI	BamHI		FseI	
176	AGATTACCAT CACGTGGATC TCTAATGGTA GTGCACCTAG	CACGTGGATC GTGCACCTAG	GGATC CGGTACCAGG CCTAG GCCATGGTCC	CCGGCCATTA	TCAAAAAGGA AGTTTTTCCT
226	TCTCAAGAAG ATCCTTTGAT AGAGTTCTTC TAGGAAACTA	ATCCTTTGAT TAGGAAACTA	CTTTTCTACG GAAAAGATGC	GGGTCTGACG CCCAGACTGC	CTCAGTGGAA GAGTCACCTT
276	CGAAAACTCA CO	CGTTAAGGGA	TTTTGGTCAT AAAACCAGTA	GAGATTATCA	AAAAGGATCT TTTTCCTAGA

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of θ -lactamase-MCS module (continued)

326	TCACCTAGAT	CCTTTTAAAT	TAAAAATGAA	GTTTTAAATC	AATCTAAAGT
	AGTGGATCTA	GGAAAATTTA	ATTTTTACTT	CAAAATTTAG	TTAGATTTCA
376	ATATATGAGT	AAACTTGGTC	TGACAGTTAC	CAATGCTTAA	TCAGTGAGGC
	TATATACTCA	TTTGAACCAG	ACTGTCAATG	GTTACGAATT	AGTCACTCCG
426	ACCTATCTCA	GCGATCTGTC	TATTTCGTTC	ATCCATAGTT	GCCTGACTCC
	TGGATAGAGT	CGCTAGACAG	ATAAAGCAAG	TAGGTATCAA	CGGACTGAGG
476	CCGTCGTGTA	GATAACTACG CTATTGATGC	ATACGGGAGG TATGCCCTCC	GCTTACCATC CGAATGGTAG	TGGCCCCAGT
526	GCTGCAATGA CGACGTTACT	TACCGCGAGA	CCCACGCTCA GGGTGCGAGT	CCGGCTCCAG GGCCGAGGTC	ATTTATCAGC TAAATAGTCG
576	AATAAACCAG TTATTTGGTC	CCAGCCGGAA GGTCGGCCTT	GGGCCGAGCG	CAGAAGTGGT GTCTTCACCA	CCTGCAACTT GGACGTTGAA
626	TATCCGCCTC	CATCCAGTCT GTAGGTCAGA	ATTAACTGTT TAATTGACAA	GCCGGGAAGC CGGCCCTTCG	TAGAGTAAGT ATCTCATTCA
919	AGTTCGCCAG	TTAATAGTTT	GCGCAACGTT	GTTGCCATTG	CTACAGGCAT
	TCAAGCGGTC	AATTATCAAA	CGCGTTGCAA	CAACGGTAAC	GATGTCCGTA

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

rcgrcgr trggratggc trcattcagc rccggrrccc agcagca aaccataccg aagtaagrcg aggccaaggg	AGTTACA TGATCCCCCA TGTTGTGCAA AAAAGCGGTT TCAATGT ACTAGGGGGT ACAACACGTT TTTTCGCCAA	CTCCGAT CGTTGTCAGA AGTAAGTTGG CCGCAGTGTT GAGGCTA GCAACAGTCT TCATTCAACC GGCGTCACAA	ATGGCAG CACTGCATAA TTCTCTTACT GTCATGCCAT TACCGTC GTGACGTATT AAGAGAATGA CAGTACGGTA	TTCTGTG ACTGGTGAGT ACTCAACCAA GTCATTCTGA AAGACAC TGACCACTCA TGAGTTGGTT CAGTAAGACT	GGCGACC GAGTTGCTCT TGCCCGGCGT CAATACGGGA CCGCTGG CTCAACGAGA ACGGGCCGCA GTTATGCCCT	CATAGCA GAACTTTAAA AGTGCTCATC ATTGGAAAAC GTATCGT CTTGAAATTT TCACGAGTAG TAACCTTTTG	AAAACTC TCAAGGATCT TACCGCTGTT GAGATCCAGT
CGCTCGTCGT GCGAGCAGCA	GCGAGTTACA	GTCCTCCGAT	GTTATGGCAG CAATACCGTC	CTTTTCTGTG GAAAAGACAC	TGCGGCGACC	ccacatagca getetatcet	GCGAAAACTC
CGTGGTGTCA CGCTC GCACCACAGT GCGAG	AACGATCAAG GCGAG TTGCTAGTTC CGCTC	AGCTCCTTCG GTCCT TCGAGGAAGC CAGGA	ATCACTCATG GTTAT TAGTGAGTAC CAATA	CCGTAAGATG CTTTT GGCATTCTAC GAAAA	GAATAGTGTA TGCGC CTTATCACAT ACGCC	TAATACCGCG CCACA	GTTCTTCGGG GCGAP
726 CGTGC GCAC	776 AACG	826 AGCT	876 ATCA TAGT	926 CCGT GGCA	976 GAAT CTTA	1026 TAAT ATTA	1076 GTTC

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

1126	1176	1226	1276 1276			1326	
TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	CAATATTATT GTTATAATAA			ATTTGAATGT TAAACTTACA	BssHII
CCACTCGTGC GGTGAGCACG BSSSI	TCTGGGTGAG AGACCCACTC	GGCGACACGG CCGCTGTGCC	GAAGCATTTA CTTCGTAAAT			ACTCGGCCGC TGAGCCGGCG	
ACCCAACTGA TGGGTTGACT	CAAAAACAGG GTTTTTGTCC	AAATGTTGAA TTTACAACTT	TCAGGGTTAT AGTCCCAATA	PstI	BssSI	ACTCGGCCGC ACGAGCTGCA TGAGCCGGCG TGCTCGACGT	BspEI BsrGI
TCTTCAGCAT AGAAGTCGTA Eco57I	AAGGCAAAAT TTCCGTTTTA	TACTCATACT ATGAGTATGA	TGTCTCATGA ACAGAGTACT		Bbel Asel	GGCGCCATTA A	H .
CTTTTACTTT GAAAATGAAA	GCCGCAAAAA CGGCGTTTTT	CTTCCTTTTT GAAGGAAAAA	GCGGATACAT CGCCTATGTA	XhoI		ATGGCTCGAG TACCGAGCTC	

CATGAAATT GTACTTTAA AGGCCTACAT TCCGGATGTA Figure 36: functional map and sequence of B-lactamase-MCS module (continued) CGCTTTGTCT GCGAACAGA BbsI CGCGCTTCAG GCGCGAAGTC Eco57I 1376

SUBSTITUTE SHEET (RULE 26)
193 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

Figure 37: Oligo and primer design for V_K CDR3 libraries

-3'

F A TN Y Y C Q
T T T G C G A C T T A T T A T T G C C A

C T G G G C G T G T A T T A T T G C C A

G T G G C G G T G T A T T A T T G C C A

G T G G C G T G T A T T A T T G C C A

C D C C A

SUBSTITUTE SHEET (RULE 26) 195 / 204

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

G A C C T
G A C C T
A C C T
A C C T
A C C T

G	C	Ţ				••••••			G	С	Τ		••••••		G	С	T
									****		,		*******				
<u> </u>			G	A	T	G	Α	T			T		********			Α	T
G	Α	G					٠		G	Α	G				G	Α	G
T	T	T							T	T	T	-			T	Ţ. ·	T
G	G	T	G	G	T	G	G	T	G	G	T				G	G	T
C	Α	T							C	Α	Τ				С	Α	T
Α	T	T							Α	T	T				Α	T	T
Α	Α	G		***********					Α	Α	G				Α	Α	G
C	Ţ	T					:		С	T	T				C	T	T
Α	T	G							Α	T	G				Α	T	G
Α	Α	T	Α	Α	T	Α	Α	T	·	Α	T				Α		T
												C	C	T	C		T
C	Α	G				·			C	Α	G				С	Α	G
C	G	T							C	G	T				С	G	Τ
T	C	T	T	C	T	Τ	С	T		C	T	T	C	T	T	C	Τ
Α	C	T							Α	С	T				Α	С	Τ
G	T	T.							G	T	T				G	T	Τ
T	G	G							T	G	G				T	G	G
T	Α	T	T	A	T				Ţ	Α	Τ				T	Α	T
50	O%C	Υ		*********								80)%	P			

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 198 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

09	70	80
	-	T K L
	3 G C G G C G G C	CACGAAGTTA
gap gap		
- G C T G C T G C T		
GATGATGATGAT		•
GAGGAGGAGGAG		
T T T T T T T T T T T T		
GGTGGTGGT		
CATCATCATCAT		·
ATTATTATTATT		
AAGAAGAAGAAG		
CTTCTTCTTCTT		
ATGATGATG		
AATAATAATAAT	•	
TOOTOOTOOTOO	:	
CAGCAGCAGCAG		
CGTCGTCGTCGT TCTTCTTCTTCT	٠	
ACTACTACTACT		·
GTTGTTGTTGTT		
TGG		
TATTATTATTAT	Variability	
18 19	3.32E+05	·
18 18 19	5.98E+06	
18 18 18 19	1.08E+08	•
SUBS	TITUTE SHEET (RULE 26)	·

Figure 38: Oligo and primer design for V\(\lambda\) CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 201 / 204

Figure 39: functional map of expression vector series pBS13

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

% soluble	~	ß	Ã	κ4	۲1	λ2	λ3
H1A	61%	58%	52%	42%	%06	61%	%09
H18	39%	48%	%99	48%	47%	39%	36%
H2	47%	57%	46%	49%	37%	36%	45%
H3	85%	%29	16%	61%	80%	71%	83%
H4	%69	52%	51%	44%	45%	33%	42%
- F	49%	49%	46%	67%	54%	46%	47%
9H	%06	58%	54%	47%	45%	20%	51%

Total amount	전	K2	ĸ3	к4	71	77	у3
H1A	289%		166%	272%	20%	150%	78%
H18	219%		89%	139%	117%	158%	101%
H2	186%	223%	208%	182%	126%	%09	97%
H3	20%		71%	54%	29%	130%	47%
H4	37%		%09	77%	195%	107%	251%
H5	%86		167%	83%	93%	128%	115%
. 9H	65%	117%	89%	109%	299%	215%	278%

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

Soluble amount		Ç	,			7.7	1,2
compared to H3K2	<u>-</u>	Ž	2.	4 4		77	5
H1A	191%	988%	121%	122%	26%	211%	76%
H1B	124%	95%	83%	107%	79%	142%	29%
H2	126%	204%	139%	130%	%99	20%	0/00/
H3	63%	ı	81%	49%	%69	143%	61%
H4	40%	47%	49%	54%	95%	.55%	125%
H5	%69	158%	116%	80%	72%	84%	84%
H6	85%	122%	87%	17%	162%	162%	212%
	McPC						
soluble	38%						
%H3k2 total	117%						
%H3k2 soluble	%69						

SUBSTITUTE SHEET (RULE 26) 204 / 204

INTERNATIONAL SEARCH REPORT

Inv onal Application No PCT/EP 96/03647

A. CLASSI	FICATION OF SUBJECT MATTER C12N15/13 C12N15/10 C12N15	/62 C12N15/70	C12N1/21
IPC 6	C07K1/04 G01N33/53	,	
According to	o International Patent Classification (IPC) or to both national cl	assification and IPC	
	SEARCHED		
Minimum de IPC 6	ocumentation searched (classification system followed by classif C12N C07K G01N	ication symbols)	
Documentat	non searched other than $oldsymbol{minimum}$ documentation to the extent $oldsymbol{t}$	nat such documents are included in the	he fields searched
Electronic d	lata base consulted during the international search (name of data	base and, where practical, search ter	rms used)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	he relevant passages	Relevant to claim No.
A	EP 0 368 684 A (MEDICAL RES COU May 1990 cited in the application see the whole document	UNCIL) 16	1-55
A	EUROPEAN J. IMMUNOLOGY, vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINH pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: sequencing of human immunoglob V-lambda gene segments" cited in the application see the whole document	"Cloning and	1-55
		-/	
	وشهشان		
			·
X Fu	rther documents are listed in the continuation of box C.	X Patent family members	are listed in annex.
'A' docur	categories of cited documents: ment defining the general state of the art which is not sidered to be of particular relevance or document but published on or after the international	"T" later document published a or priority date and not in cited to understand the pri invention "X" document of particular rele	neight or theory underlying the
filing "L" documents whice citati	g date ment which may throw doubts on priority claim(s) or th is cited to establish the publication date of another tion or other special reason (as specified)	cannot be considered nove involve an inventive step v document of particular rele	and or cannot be considered to when the document is taken alone evance; the claimed invention avolve an inventive step when the
P docu	ment referring to an oral disclosure, use, exhibition or r means meant published prior to the international filing date but r than the priority date claimed	ments, such combination to in the art. *&* document member of the s	th one or more other such docu- being obvious to a person skilled same patent family
	he actual completion of the international search	Date of mailing of the inte	
	30 January 1997	.1 1, 02	
ļ	of mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fay: (+ 31-70) 340-3016	Hornig, H	

tr strong Application No PCT/EP 96/03647

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		PC1/EP 90/0304/	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;,	1-55	
	pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document		
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID	1-55	
<u></u>	SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document		
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398	1-55	
	GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document		
A	PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document	1-55	
A .	ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document	1-55	
A	JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document	1-55	
	-/		

1

INTERNATIONAL SEARCH REPORT

Int aonal Application No PCT/EP 96/03647

		PCT/EP 96/03647
(Continu	MOD) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
,		
\	NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES"	1-55
•	see the whole document	
4	WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document	1-55
1	ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4	1-55
A	CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract	1-55
ï	& EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF;ISSN: 0014-2980, 1994,	
		·
•		
,		

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Int onal Application No PCT/EP 96/03647

Patent document cited in search report	Publication date		t family aber(s)	Publication date
EP-A-0368684	16-05-90	AU-B-	634186	18-02-93
		AU-A-	4520189	28-05-90
		CA-A-	2002868	11-05-90
		DE-D-	68913658	14-04-94
		DE-T-	68913658	08-09-94
		ES-T-	2052027	01-07-94
•		WO-A-	9005144	17-05-90
		JP-T-	3502801	27-06-91
WO-A-9511998	04-05-95	AU-A-	8091694	22-05-95
		EP-A-	0725838	14-08-96

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the item	s checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	÷
☐ GRAY SCALE DOCUMENTS .	· .
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	·
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUA	ALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)