Correction du TD « Combustion en foyer homogène et tubulaire »

Pour un Foyer homogène

Pour un fonctionnement stationnaire $\dot{M}_{k,s} = \dot{M}_{k,e} + \int_{V} \omega_k dV$.

Dans le cas foyer homogène $\omega_k = \omega_{k,s}$ est le même dans tout le volume :

$$\dot{M}_{k} = \dot{M}_{k,e} + \omega_{k}V_{h} \Rightarrow \frac{\dot{M}_{k} - \dot{M}_{k,e}}{V_{h}} = \omega_{k} = v_{k}M_{k}V_{r}$$

 $M_k = MY_k \ et \ Y_k \ (t) = {\rm cte} \ (foyer \ homog\`ene + stationnaire) \\ \Rightarrow \dot{M}_k = \dot{M}Y_k \\ \Rightarrow \dot{M}_{k,e} = \dot{M}Y_{k,e}$

$$\Rightarrow \dot{M}_{k} - \dot{M}_{k,e} = \dot{M}\left(Y_{k} - Y_{k,e}\right) = V_{h}v_{k}M_{k}V_{r} \Rightarrow V_{r} = \frac{\dot{M}\left(Y_{k} - Y_{k,e}\right)}{V_{h}v_{k}M_{k}} \ mais \ \boxed{\lambda = 1 - \frac{Y_{k}}{Y_{k,e}}}$$

Donc:

$$V_r = \frac{\dot{M}Y_{k,e}}{-\nu_k M_k V_h} \lambda$$

droite de dissipation ou de consommation dans un foyer homogène dont la pente est

$$\boxed{\frac{\dot{M}}{V_h} > 0} puisque pour la réaction : \\ -C_3H_8 - 5O_2 + P \rightarrow 0 \qquad v_{C_3H_8} = -1$$

$$-C_3H_8 - 5O_2 + P \rightarrow 0$$
 $V_{C_3H_8} = -1$

Question 4°) Fover tubulaire

On adopte les caractéristiques de fonctionnement correspondant à V_r maximum (cf. 3-a), donc $\lambda = \lambda_m < 1$. On adjoint alors à ce foyer homogène, un foyer tubulaire. On demande de calculer le volume V_t du foyer tubulaire, et le temps de séjour t_{S,t} des gaz dans ce foyer tels que le degré d'avancement de la réaction soit, à sa sortie, $\lambda_s = 0.99$.

<u>Remarque</u>: pour $\lambda_m < \lambda < 1$, on pourra assimiler la courbe $V_r(\lambda)$ à:

- la droite $V_r = V_m = \text{cte pour } \lambda_m < \lambda < 0.85$
- la droite $V_r = V_m ((1-\lambda) / 0.15)$ pour $0.85 < \lambda < 1$.

A la sortie du foyer homogène dont le point de fonctionnement est m :

Le volume du foyer tubulaire est donné par :

L'équation de bilan de Y_k s'écrit :

Foyer tubulaire:

La combustion est avancée et l'écoulement devient quasi-laminaire quasi-1D. La diffusion est négligeable devant la convection et la production chimique donc pour un écoulement stationnaire la conservation du réactif minoritaire (carburant dans le cas d'un mélange pauvre) s'écrit :

$$\dot{m}\frac{dY_k}{dx} = \omega_k \ et \ \omega_k = v_k M_k V_r.$$

Civil Aviation University of China, avril 2018 Option Propulsion, semestre 4

$$dY_{k} = -Y_{k,e}d\lambda$$

$$\dot{m}Y_{k,e}\frac{d\lambda}{dx} = V_{k}M_{k}V_{r}$$

En pratique si A(x) = cte alors le débit total $\dot{M} = A(x)\dot{m}(x) = cte \Rightarrow \dot{m}(x) = \frac{\dot{M}}{A(x)} = cte$

 $\frac{\dot{M}}{A(x)}Y_{k,e}\frac{d\lambda}{dx} = -v_k M_k V_r(\lambda) \ soit \quad A(x)dx = \frac{\dot{M}Y_{k,e}}{v_k M_k} \frac{d\lambda}{V_r(\lambda)} \ et \ le \ volume \ V_t \ du \ foyer \ tubulaire \ de \ longueur \ L \ tel \ que \ \lambda = \lambda_L \ est \ donné \ par :$

$$V_{t} = \int_{0}^{L} A(x) dx = \frac{\dot{M} Y_{k,e}}{v_{k} M_{k}} \int_{\lambda_{i}}^{\lambda_{t}} \frac{d\lambda}{V_{r}(\lambda)}$$

$$V_{t} = \frac{\dot{M}Y_{C_{3}H_{8},e}}{-v_{C_{3}H_{8}}M_{C_{3}H_{8}}} \int_{\lambda_{t}}^{\lambda_{L}} \frac{d\lambda}{V_{r}(\lambda)} = \frac{\dot{M}Y_{C_{3}H_{8},e}}{M_{C_{3}H_{8}}} I$$

 $Où\ Y_{C_3H_8,e}$ est la fraction massique du carburant à l'entrée du foyer homogène, λ_i le degré d'avancement à la sortie du foyer homogène (donc entrée du foyer tubulaire) et

$$Avec I = \int_{\lambda_i}^{\lambda_L} \frac{d\lambda}{V_r(\lambda)}$$

Dans notre cas (voir questions précédentes):

$$\dot{M} = 791.4g$$
 $Y_{C,H_2,e} = 0.04587$

Temps de séjour :

en supposant $\overline{\rho} = \overline{\rho}_{tubulaire} = \overline{\rho}_{entrée} = \rho_m$

Civil Aviation University of China, avril 2018 Option Propulsion, semestre 4

$$t_s = \frac{\overline{\rho} V_t}{\dot{M}}$$

$$t_s = 0.243 \frac{0.57}{791.4} = 0.175 ms$$

5°) On veut brûler le mélange précédent $(\phi = 0.75)$ avec un débit de 500 g/s, et en poussant la réaction jusqu'au degré d'avancement $\lambda = 0.99$.

Quel est le volume total du foyer, dans le cas où celui-ci se compose :

a) uniquement d'un foyer homogène, pour $\lambda = 0.99$

$$\frac{\dot{M}}{V_h} = cte \Rightarrow V_{h2} = V_{h1} \frac{\dot{M}_2}{\dot{M}_1}$$
pour un volume $V_h = 11 \Rightarrow 11$

pour un volume $V_h = 1l \implies \dot{M} = 58g$

Pour un débit
$$\dot{M} = 500g \implies V_h = 1\frac{500}{58} = 8,62l$$

 $V_h = 8,62l$

b) d'un foyer homogène et d'un foyer tubulaire convenablement couplés.

Foyer homogène : $\lambda: 0 \to \lambda_m$

pour un volume $V_h = 1l \implies \dot{M}_m = 791,4g$

Pour un débit
$$\dot{M}_m = 500g \Rightarrow V_h = 1 \frac{\dot{M}_2}{\dot{M}_1} = 1 \frac{500}{791.4} = 0,632l$$

$$V_h = 0,632l$$

Foyer tubulaire: λ : $\lambda_m = 0.8 \rightarrow \lambda = 0.99$

pour un débit $\dot{M}_m = 791,4g \Rightarrow V_t = 0,57l$

pour un débit
$$\dot{M} = 500g \Rightarrow V_t = 0.57 \frac{500}{791.4} = 0.36l$$

$$V_{total} = V_h + V_t = 0,632 + 0,36 = 0,992l$$

L'ensemble foyer homogène plus foyer tubulaire fait un volume de $V_{total} = 0,992l$ plus intéressant que le foyer homogène tout seul : $V_h = 8.62l$ soit pratiquement **8,7 fois** plus volumineux.