

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Four-Year) Degree in Information and Communication Technology B.Sc. (Four-Year) Degree in Applied Sciences

Fourth Year – Semester 1 Examination – June/July 2018

ICT 4302 – INTELLIGENT SYSTEMS

Time Allowed: 3 hours

ADDITIONAL MATERIAL

None

INSTRUCTIONS TO CANDIDATES

- 1. This paper contains 4 questions on 4 pages (including the cover page).
- 2. Answer all questions.
- 3. The total marks obtainable for this examination is 100. The marks assigned for each question & sections thereof are included in square brackets.
- 4. This examination accounts for 70% of the module assessment.
- 5. This is a close book examination.
- 6. Clearly state any assumptions that you may make.
- 7. Start answering each question on a fresh page. Clearly number the questions, and parts. Neat and orderly presentation is important.
- 8. Calculators are allowed.

Continued....

Question 1

- (i) Draw the structure of a biological neuron and label the main [05 marks] (a)
 - (ii) Give two applications of artificial neural networks. [04 marks]
- (b) Below is a diagram of a single artificial neuron (perceptron):

The neuron has three inputs $x = (x_1, x_2, x_3)$ that receive only binary signals (either 0 or 1).

- (i) How many different input patterns this neuron can receive? [04 marks] [12 marks]
- (ii) Suppose that the weights corresponding to the three inputs have the following values:

$$\begin{bmatrix} w_1 & = & 2 \\ w_2 & = & -4 \\ w_3 & = & 1 \end{bmatrix}$$

and the activation of the unit is given by the step-function:

$$\varphi(v) = \begin{cases}
1 & \text{if } v \ge 0 \\
0 & \text{otherwise}
\end{cases}$$

Calculate what will be the output value y of the unit for each of the following input patterns:

Pattern	P_1	P_2	P_3	P_4
x_1	1	0	1	1
x_2	0	1	0	1
x_3	0	1	1	1

Continued...

Question 2

(i) (a) What is supervised learning? [03 marks] (ii) To simulate adaptive behavior, the abilities of memorization and [05 marks] generalization are essential. Justify the statement with respect to neural networks by using suitable example. What is over-fitting in machine learning? Explain how Early-[05 marks] stopping help to identify over-fitting? (b) (i) What are the limitations of perceptron model. [02 marks] (ii) Draw multi-layer perceptron neural network [04 marks] (iii) Explain the principle of the gradient descent algorithm. Accompany [06 marks] your explanation with a diagram.

Question 3

(a)	(i)	What is Natural Language Processing?	[03 marks]
	(ii)	Give four applications of Natural Language Processing.	[04 marks]

(b) (i) Write regular expressions for the following:

I. that matches given IP addresses, [04 marks]

168.120.1.4	✓
192.1.255.255	✓
1983.10.30.0	- ×
2010,100.30.0.1	×

II. The set of all alphabetic strings

(c)	(i)	What is Morphology?	[02 marks]
	(ii)	Explain inflectional and derivational morphology? Give two	[04 marks]
		examples for each.	,
	(iii)	Compute minimum edit distance by dynamic programming and	[08 marks]
		show whether 'drive' is closer to 'brief' or to 'drivers' and what	
		the edit distance is	

Question 4

- (a) (i) Write down the probability of the sentence $S = w_1 w_2 w_3 \dots w_n$ [05 marks] using the, trigram probability estimation ((state all the assumptions)
- (b) (i) Consider the following movie sentiment. [10 marks]

"its rawness and vitality give it considerable punch"

The unigram and bigram counts in positive and negative corpuses are shown in Table 1 and 2. Assume that P(its| < s >) = 1 and P(</s > |punch) = 1. Compute the probability of the phrase using the language model

- I. pertaining to positive sentiments,
- II. pertaining to negative sentiments.
- (ii) In reference to the above scenario in Question 4b, [05 marks]
 - I. classify the above movie sentiment as "positive" or "negative". Justify your answer.
- (c) (i) "N-gram models must be smoothed in order to prevent assigning zero probability to any N-gram, even one that was never observed in training data set". Discuss whether you think the above statement is justified.

Table 1 Bigram Counts

Corpus	(its,	(rawness,	(and,	(vitality,	(give,	(it,	(considerable,
	rawness)	and)	vitality)	give)	it)	considerable)	punch)
Negative	1	1	1	4	1	103	2
Positive	4	4	8	13	1	53	3

Table 2 Unigram Counts

Corpus	(its)	(rawness)	(and)	(vitality)	(give)	(it)	(considerable)	(punch)
Negative	582	10	8	6536	62	2459	205	269
Positive	346	23	24	3565	57	941	271	74

------ End of Paper -----