

Acyklické grafy, stromy a kostry

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

23. marca 2011

Opakovanie – Cyklus, kružnica

Definícia

Cyklus (orientovaný cyklus, polocyklus) je netriviálny uzavretý ťah (orientovaný ťah, poloťah), v ktorom sa okrem prvého a posledného vrchola žiaden vrchol nevyskytuje viac než raz.

Definícia

Kružnica je súvislý pravidelný graf 2. stupňa. Kružnicu o n vrcholoch budeme označovať C_n .

Poznámka

Všetky vrcholy a hrany kružnice C_n možno usporiadať do cyklu

$$(v_1, \{v_1, v_2\}, v_2, \dots, \{v_{n-1}, v_n\}, v_n, \{v_n, v_1\}, v_1)$$

a naopak, všetky vrcholy a hrany cyklu tvoria graf, ktorý je kružnicou

Opakovanie – Cyklus, kružnica

Definícia

Cyklus (orientovaný cyklus, polocyklus) je netriviálny uzavretý ťah (orientovaný ťah, poloťah), v ktorom sa okrem prvého a posledného vrchola žiaden vrchol nevyskytuje viac než raz.

Definícia

Kružnica je súvislý pravidelný graf 2. stupňa. Kružnicu o n vrcholoch budeme označovať C_n .

Poznámka

Všetky vrcholy a hrany kružnice C_n možno usporiadať do cyklu

$$(v_1, \{v_1, v_2\}, v_2, \dots, \{v_{n-1}, v_n\}, v_n, \{v_n, v_1\}, v_1)$$

a naopak, všetky vrcholy a hrany cyklu tvoria graf, ktorý je kružnicou.

Opakovanie – Cyklus, kružnica

Definícia

Cyklus (orientovaný cyklus, polocyklus) je netriviálny uzavretý ťah (orientovaný ťah, poloťah), v ktorom sa okrem prvého a posledného vrchola žiaden vrchol nevyskytuje viac než raz.

Definícia

Kružnica je súvislý pravidelný graf 2. stupňa. Kružnicu o n vrcholoch budeme označovať C_n .

Poznámka

Všetky vrcholy a hrany kružnice C_n možno usporiadať do cyklu

$$(v_1, \{v_1, v_2\}, v_2, \dots, \{v_{n-1}, v_n\}, v_n, \{v_n, v_1\}, v_1)$$

a naopak, všetky vrcholy a hrany cyklu tvoria graf, ktorý je kružnicou.

Definícia

Acyklický graf je taký graf, ktorý neobsahuje ako podgraf kružnicu.

Definícia

Strom je súvislý acyklický graf.

Poznámka

Triviálny graf je stromom

Poznámka

Definícia

Acyklický graf je taký graf, ktorý neobsahuje ako podgraf kružnicu.

Definícia

Strom je súvislý acyklický graf.

Poznámka

Triviálny graf je stromom.

Poznámka

Definícia

Acyklický graf je taký graf, ktorý neobsahuje ako podgraf kružnicu.

Definícia

Strom je súvislý acyklický graf.

Poznámka

Triviálny graf je stromom.

Poznámka

Definícia

Acyklický graf je taký graf, ktorý neobsahuje ako podgraf kružnicu.

Definícia

Strom je súvislý acyklický graf.

Poznámka

Triviálny graf je stromom.

Poznámka

V netriviálnom strome existujú aspoň dva vrcholy stupňa 1

Veta

Nech G = (V, H) je strom, ktorý má aspoň dva vrcholy. Potom V obsahuje aspoň dva vrcholy stupňa 1.

Dôkaz

$$(v_1, \{v_1, v_2\}, v_2, \dots, \{v_{k-1}, v_k\}, v_k)$$
 (1)

je cesta v strome G s najväčším počtom hrán. Ukážeme, že $\deg(v_k)=1$.

Obr.: Keby
$$deg(v_k) > 1$$
,

existovala by aspoň jedna hrana (čiarkovane) incidentná s v_k vytvárajúca jednu zo situácií a) alebo b).

V netriviálnom strome existujú aspoň dva vrcholy stupňa 1

Veta

Nech G = (V, H) je strom, ktorý má aspoň dva vrcholy. Potom V obsahuje aspoň dva vrcholy stupňa 1.

Dôkaz.

Nech

$$(v_1, \{v_1, v_2\}, v_2, \dots, \{v_{k-1}, v_k\}, v_k)$$
 (1)

je cesta v strome G s najväčším počtom hrán. Ukážeme, že deg $(v_k)=1$.

$$v_1$$
 v_2 $v_i \equiv v_l$ v_k v_1 v_2 v_k v_l v_l v_l v_l v_l

Obr.: Keby $deg(v_k) > 1$,

existovala by aspoň jedna hrana (čiarkovane) incidentná s v_k , vytvárajúca jednu zo situácií a) alebo b).

Veta 🔽

Nasledujúce tvrdenia sú ekvivalentné:

- a) G = (V, H) je strom.
- b) V grafe G = (V, H) existuje pre každé $u, v \in V$ jediná u–v cesta.
- c) Graf G = (V, H) je súvislý a každá hrana množiny H je mostom.
- d) Graf G = (V, H) je súvislý a |H| = |V| 1.
- e) V grafe G = (V, H) platí |H| = |V| 1 a G je acyklický.

Definícia

Koreňový strom je strom G = (V, H) s pevne vybraným vrcholom $k \in V$, ktorý nazývame **koreň**. Koreňový strom budeme značiť G = (V, H, k).

Úroveň vrchola u v koreňovom strome G = (V, H, k) je dĺžka – počet hrán – (jedinej) k–u cesty.

Výška koreňového stromu G = (V, H, k) je maximum z úrovní všetkých vrcholov koreňového stromu G.

Definícia

Nech strom $T = (V_T, H_T)$ je podgrafom grafu G = (V, H). Hovoríme, že hrana $h = \{u, v\} \in H$ je **hraničnou hranou**, ak $u \in V_T$ a $v \notin V_T$. Nech $h = \{u, v\}$ je hraničná hrana, $u \in V_T$, $v \notin V_T$. Povieme, že u je **zaradený vrchol**, v je **voľný vrchol** hraničnej hrany h.

Definícia

Nech strom $T = (V_T, H_T)$ je podgrafom grafu G = (V, H). Hovoríme, že hrana $h = \{u, v\} \in H$ je **hraničnou hranou**, ak $u \in V_T$ a $v \notin V_T$. Nech $h = \{u, v\}$ je hraničná hrana, $u \in V_T$, $v \notin V_T$. Povieme, že u je **zaradený vrchol**, v je **voľný vrchol** hraničnej hrany h.

Definícia

Nech strom $T = (V_T, H_T)$ je podgrafom grafu G = (V, H). Hovoríme, že hrana $h = \{u, v\} \in H$ je **hraničnou hranou**, ak $u \in V_T$ a $v \notin V_T$. Nech $h = \{u, v\}$ je hraničná hrana, $u \in V_T$, $v \notin V_T$. Povieme, že u je **zaradený vrchol**, v je **voľný vrchol** hraničnej hrany h.

Algoritmus

- Krok 1. Inicializácia.
 - Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s maximálnou značkou p(u) zaradeného vrchola u.
- Krok 4. Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k+1, \quad p(v) := k$. GOTO Krok 2.

Algoritmus

- Krok 1. Inicializácia. Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP.
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s maximálnou značkou p(u) zaradeného vrchola u.
- Krok 4. Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k+1, \quad p(v) := k$. GOTO Krok 2.

Algoritmus

- Krok 1. Inicializácia. Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP.
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s maximálnou značkou p(u) zaradeného vrchola u.
- Krok 4. Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k+1, \quad p(v) := k$. GOTO Krok 2.

Algoritmus

- Krok 1. Inicializácia. Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP.
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s maximálnou značkou p(u) zaradeného vrchola u.
- Krok 4. Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k+1, \quad p(v) := k.$ GOTO Krok 2.

Algoritmus

- Krok 1. Inicializácia. Nech strom T je triviálny strom obsahujúci jediný vrchol v ∈ V. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP.
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s minimálnou značkou p(u) zaradeného vrchola u.
- Krok 4. Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k+1, \quad p(v) := k$. GOTO Krok 2.

Algoritmus

- **Krok 1.** Inicializácia. Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s minimálnou značkou p(u) zaradeného vrchola u.
- Krok 4. Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k + 1, \quad p(v) := k$. GOTO Krok 2.

Algoritmus

- **Krok 1.** Inicializácia. Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP.
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s minimálnou značkou p(u) zaradeného vrchola u.
- Krok 4. Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k + 1, \quad p(v) := k$. GOTO Krok 2.

Algoritmus

- **Krok 1.** Inicializácia. Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP.
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s minimálnou značkou p(u) zaradeného vrchola u.
- Krok 4. $Polož\ T := T \cup \{h\} \cup \{v\}, \quad k := k+1, \quad p(v) := k.$ GOTO Krok 2.

Najlacnejšia a najdrahšia kostra

Definícia

Kostra súvislého grafu G = (V, H) je taký jeho faktorový podgraf, ktorý je stromom.

Nech G = (V, H, c) je hranovo ohodnotený graf, K kostra grafu G. **Cena** c(K) **kostry** K je súčet ohodnotení jej hrán.

Najlacnejšia kostra v grafe G je kostra s najmenšou cenou.

Najdrahšia kostra v grafe G je kostra s najväčšou cenou.

Najlacnejšia a najdrahšia kostra

Definícia

Kostra súvislého grafu G = (V, H) je taký jeho faktorový podgraf, ktorý je stromom.

Nech G = (V, H, c) je hranovo ohodnotený graf, K kostra grafu G. **Cena** c(K) **kostry** K je súčet ohodnotení jej hrán.

Najlacnejšia kostra v grafe G je kostra s najmenšou cenou.

Najdrahšia kostra v grafe G je kostra s najväčšou cenou.

Algoritmus

- **Krok 1**. Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Nech prvá hrana v postupnosti P je hrana {u, v}.
 Vylúč hranu {u, v} z postupnosti P a ak s už vybranými hranami nevytvára cyklus, zaraď ju do kostry.
- Krok 3. Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO Krok 2.

Algoritmus

- **Krok 1.** Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Nech prvá hrana v postupnosti P je hrana {u, v}.
 Vylúč hranu {u, v} z postupnosti P a ak s už vybranými hranami nevytvára cyklus, zaraď ju do kostry.
- Krok 3. Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO Krok 2.

Algoritmus

- **Krok 1.** Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Nech prvá hrana v postupnosti P je hrana {u, v}.
 Vylúč hranu {u, v} z postupnosti P a ak s už vybranými hranami nevytvára cyklus, zaraď ju do kostry.
- Krok 3. Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO Krok 2.

Algoritmus

- **Krok 1.** Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Pre každý vrchol $i \in V$ polož k(i) = i.
- **Krok 3.** Nech prvá hrana v postupnosti \mathcal{P} je hrana $\{u, v\}$. Vylúč hranu $\{u, v\}$ z postupnosti \mathcal{P} . Ak $k(u) \neq k(v)$, zaraď hranu $\{u, v\}$ do kostry, a $\forall i \in V$, pre ktoré k(i) = k(v), potom polož k(i) := k(u)
- Krok 4. Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO krok 3.

Algoritmus

- **Krok 1.** Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Pre každý vrchol $i \in V$ polož k(i) = i.
- **Krok 3.** Nech prvá hrana v postupnosti \mathcal{P} je hrana $\{u, v\}$. Vylúč hranu $\{u, v\}$ z postupnosti \mathcal{P} . Ak $k(u) \neq k(v)$, zaraď hranu $\{u, v\}$ do kostry, a $\forall i \in V$, pre ktoré k(i) = k(v), potom polož k(i) := k(u)
- Krok 4. Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO krok 3.

Algoritmus

- **Krok 1.** Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Pre každý vrchol $i \in V$ polož k(i) = i.
- **Krok 3.** Nech prvá hrana v postupnosti \mathcal{P} je hrana $\{u, v\}$. Vylúč hranu $\{u, v\}$ z postupnosti \mathcal{P} . Ak $k(u) \neq k(v)$, zaraď hranu $\{u, v\}$ do kostry, a $\forall i \in V$, pre ktoré k(i) = k(v), potom polož k(i) := k(u)
- Krok 4. Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO krok 3.

Algoritmus

- **Krok 1.** Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Pre každý vrchol $i \in V$ polož k(i) = i.
- **Krok 3.** Nech prvá hrana v postupnosti \mathcal{P} je hrana $\{u, v\}$. Vylúč hranu $\{u, v\}$ z postupnosti \mathcal{P} . Ak $k(u) \neq k(v)$, zaraď hranu $\{u, v\}$ do kostry, a $\forall i \in V$, pre ktoré k(i) = k(v), potom polož k(i) := k(u)
- **Krok 4.** Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO krok 3.

1	{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
	10	20	20	30	30	30	40	60	70	70	80	80

Hrana do kostry	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}		2		2		2	7
		2		2		2	7
{1,3}		2		2		2	7
{2,3}							7
{5,7}							

ſ	{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
Ī	10	20	20	30	30	30	40	60	70	70	80	80

Hrana
$$\{u, v\} = \{2, 6\}$$

 $k(2) = 2, k(6) = 6$

$$k(2) \neq k(6) \Rightarrow$$
 zarad' $\{2, 6\}$ do kostry

Hrana do kostry	1	2	-	4 (v)	5	6	7
	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
		2		2		2	7
{1,3}		2		2		2	7
{2,3}							7
{5,7}							

{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Hrana
$$\{u, v\} = \{2, 4\}$$

 $k(2) = 2, k(4) = 4$

$$k(2) \neq k(4) \Rightarrow$$
 zaraď $\{2,4\}$ do kostry

Hrana do kostry	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}		2		2		2	7
{2,3}							7
{5,7}							

{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Hrana
$$\{u, v\} = \{3, 5\}$$

 $k(3) = 3, k(5) = 5$

$$k(3) \neq k(5) \Rightarrow$$
 zaraď $\{3,5\}$ do kostry

Hrana do kostry	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}	1	2	1	2	1	2	7
{2,3}							7
{5,7}							

{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Hrana
$$\{u, v\} = \{1, 3\}$$

 $k(1) = 1, k(3) = 3$

$$k(1) \neq k(3) \Rightarrow$$
 zaraď $\{1,3\}$ do kostry

Hrana do kostry	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}	1	2	1	2	1	2	7
{2,3}	1	1	1	1	1	1	7
{5,7}							

{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Hrana
$$\{u, v\} = \{1, 5\}$$

 $k(1) = 1, k(5) = 1$

$$k(1) = k(5) \Rightarrow$$
 vyhod' $\{1, 5\}$

Hrana do kostry	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}	1	2	1	2	1	2	7
{2,3}	1	1	1	1	1	1	7
{5,7}							

{2,6}	{2,4}	{3,5}	{1,3}	$\{1,5\}$	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Hrana
$$\{u, v\} = \{4, 6\}$$

 $k(4) = 2, k(6) = 2$

$$k(4) = k(6) \Rightarrow$$
 vyhod' $\{4, 6\}$

1	2	3	4	5	6	7
		k(v)			
1	2	3	4	5	6	7
1	2	3	4	5	2	7
1	2	3	2	5	2	7
1	2	3	2	3	2	7
1	2	1	2	1	2	7
1	1	1	1	1	1	7
	1	1 2 1 2 1 2 1 2	k(1 2 3 1 2 3 1 2 3 1 2 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

{2,6}	{2,4}	{3,5}	{1,3}	$\{1,5\}$	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Hrana
$$\{u, v\} = \{2, 3\}$$

 $k(2) = 2, k(3) = 1$

$$k(2) \neq k(3) \Rightarrow$$
 zaraď $\{2,3\}$ do kostry

Hrana do kostry	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}	1	2	1	2	1	2	7
{2,3}	1	1	1	1	1	1	7
{5,7}	1	1	1	1	1	1	1

{2,6}	{2,4}	{3,5}	{1,3}	$\{1,5\}$	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Hrana
$$\{u, v\} = \{5, 7\}$$

 $k(5) = 1, k(7) = 7$

$$k(5) \neq k(7) \Rightarrow$$
 zaraď $\{5, 7\}$ do kostry

	_						
Hrana do kostry	1	2	3	4	5	6	7
			k((v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}	1	2	1	2	1	2	7
{2,3}	1	1	1	1	1	1	7
{5,7}	1	1	1	1	1	1	1

Definícia

Nech G = (V, H, c) je hranovo ohodnotený graf, v ktorom cena hrany $h \in H$ c(h) > 0 znamená jej priepustnosť.

Priepustnosť $c(\mu(u,v))$ u-v cesty (sledu, polosledu, atď.) $\mu(u,v)$ definujeme ako

$$c(\mu(u,v)) = \min\{c(h) \mid h \in \mu(u,v)\}.$$

Definícia

Hovoríme, že u–v cesta $\mu(u,v)$ v grafe G=(V,H,c) je u–v cesta maximálnej priepustnosti, má najväčšiu priepustnosť zo všetkých u–v ciest v G.

Definícia

Nech G = (V, H, c) je hranovo ohodnotený graf, v ktorom cena hrany $h \in H$ c(h) > 0 znamená jej priepustnosť.

Priepustnosť $c(\mu(u,v))$ u-v cesty (sledu, polosledu, atď.) $\mu(u,v)$ definujeme ako

$$c(\mu(u,v)) = \min\{c(h) \mid h \in \mu(u,v)\}.$$

Definícia

Hovoríme, že u-v cesta $\mu(u,v)$ v grafe G=(V,H,c) je u-v cesta maximálnej priepustnosti, má najväčšiu priepustnosť zo všetkých u-v ciest v G.

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c), nech $\{u, v\} \in H$ je taká hrana grafu G, ktorá nepatrí k hranovej množine kostry K.

Nech $\mu(u, v)$ je (jediná) u-v cesta v kostre K.

Potom je priepustnosť cesty $\mu(u, v)$ väčšia alebo rovná ako priepustnosť hrany $\{u, v\}$, t. j.

$$c(\mu(u,v)) \geq c(u,v).$$

Dôkaz.

Majme najdrahšiu kostru \mathcal{K} a nech existuje hrana $\{u,v\}$ taká "že priepustnosť u-v cesty po hranách kostry je menšia než c(u,v)).

Kostra \mathcal{K} modro, hrana $h = \{u, v\}$ (červeno)

u-v cesta po hranách kostry (fialovo) s menšou priepustnosťou než c(u,v) Musí existovať hrana $\{i,j\}$ tejto cesty taká že c(u,v) > c(i,j) Nahradením hrany $\{i,j\}$ hranou $\{u,v\}$ vznikne kostra s väčšou cenou – spor s tým, že $\mathcal K$ bola naidrahšia kostra.

Dôkaz.

Majme najdrahšiu kostru \mathcal{K} a nech existuje hrana $\{u,v\}$ taká "že priepustnosť u-v cesty po hranách kostry je menšia než c(u,v)).

Kostra \mathcal{K} modro, hrana $h = \{u, v\}$ (červeno)

u-v cesta po hranách kostry (fialovo) s menšou priepustnosťou než c(u,v) Musí existovať hrana $\{i,j\}$ tejto cesty taká že c(u,v)>c(i,j)

Nahradením hrany $\{i,j\}$ hranou $\{u,v\}$ vznikne kostra s väčšou cenou – spor s tým, že \mathcal{K} bola najdrahšia kostra.

Dôkaz.

Majme najdrahšiu kostru \mathcal{K} a nech existuje hrana $\{u,v\}$ taká "že priepustnosť u-v cesty po hranách kostry je menšia než c(u,v)).

Kostra $\mathcal K$ modro, hrana $h=\{u,v\}$ (červeno) u-v cesta po hranách kostry (fialovo) s menšou priepustnosťou než c(u,v)

Musí existovať hrana $\{i,j\}$ tejto cesty taká že c(u,v)>c(i,j)Nahradením hrany $\{i,j\}$ hranou $\{u,v\}$ vznikne kostra s väčšou cenou – spor s tým, že $\mathcal K$ bola najdrahšia kostra.

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

Dôkaz.

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

Dôkaz.

Cesta max. priepustnosti:

$$\mu(u,v) = (u, \{u \equiv v_1, v_2\}, v_2, \{v_2, v_3\}, v_3, \{v_3, v_4\}, v_4, \{v_4, v\}, v),$$

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

$$\mu(u, v_2) = (u, \{u, v_5\}, v_5, \{v_5, v_6\}, v_6, \{v_6, v_2\}, v_2),$$

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

$$\mu(v_2, v_3) = (v_2, \{v_2, v_6\}, v_6, \{v_6, v_3\}, v_3),$$

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

$$\mu(v_3, v_4) = (v_3, \{v_3, v_7\}, v_7, \{v_7, v_8\}, v_8, \{v_8, v_4\}, v_4),$$

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

$$\mu(v_4, v) = (v_4, \{v_4, v_8\}, v_8, \{v_8, v_7\}, v_7, \{v_7, v_9\}, v_9, \{v_9, v\}, v).$$

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

Dôkaz.

 $u ext{-}v$ sled po hranách kostry s priepustnosťou \geq než priepustnosť cesty $oldsymbol{\mu}(u,v)$

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

Dôkaz.

Cesta max. priepustnosti:

$$\mu(u,v) = (u, \{u \equiv v_1, v_2\}, v_2, \{v_2, v_3\}, v_3, \{v_3, v_4\}, v_4, \{v_4, v\}, v),$$

Cesta max. priepustnosti po hranách kostry

Algoritmus

Algoritmus na hľadanie u-v cesty maximálnej priepustnosti v súvislom hranovo ohodnotenom grafe G = (V, H, c).

- Krok 1. V grafe G zostroj najdrahšiu kostru K.
- Krok 2. V kostre K nájdi (jedinú) u-v cestu.
 Táto (jediná) u-v cesta v kostre K je u-v cestou maximálne, priepustnosti v grafe G.

Poznámka

Uvedený algoritmus síce nájde u-v cestu maximálnej priepustnosti, no táto nemusí byť – a spravidla ani nebýva – optimálnou z hľadiska prejdenej vzdialenosti.

Ak by sme chceli nájsť najkratšiu u–v cestu s maximálnou priepustnosťou, potrebujeme mať v príslušnom grafe okrem kapacitného ohodnotenia hrán aj ohodnotenie vyjadrujúce ich dĺžku.

Algoritmus

Algoritmus na hľadanie u-v cesty maximálnej priepustnosti v súvislom hranovo ohodnotenom grafe G = (V, H, c).

- Krok 1. V grafe G zostroj najdrahšiu kostru K.
- Krok 2. V kostre K nájdi (jedinú) u-v cestu.
 Táto (jediná) u-v cesta v kostre K je u-v cestou maximálnej priepustnosti v grafe G.

Poznámka

Uvedený algoritmus síce nájde u-v cestu maximálnej priepustnosti, no táto nemusí byť – a spravidla ani nebýva – optimálnou z hľadiska prejdenej vzdialenosti.

Ak by sme chceli nájsť najkratšiu u–v cestu s maximálnou priepustnosťou, potrebujeme mať v príslušnom grafe okrem kapacitného ohodnotenia hrán aj ohodnotenie vyjadrujúce ich dĺžku.

Algoritmus

Algoritmus na hľadanie u-v cesty maximálnej priepustnosti v súvislom hranovo ohodnotenom grafe G = (V, H, c).

- Krok 1. V grafe G zostroj najdrahšiu kostru K.
- Krok 2. V kostre K nájdi (jedinú) u–v cestu. Táto (jediná) u–v cesta v kostre K je u–v cestou maximálnej priepustnosti v grafe G.

Poznámka

Uvedený algoritmus síce nájde u-v cestu maximálnej priepustnosti, no táto nemusí byť – a spravidla ani nebýva – optimálnou z hľadiska prejdenej vzdialenosti.

Ak by sme chceli nájsť najkratšiu u–v cestu s maximálnou priepustnosťou, potrebujeme mať v príslušnom grafe okrem kapacitného ohodnotenia hrán aj ohodnotenie vyjadrujúce ich dĺžku.

Algoritmus

Algoritmus na hľadanie najkratšej u-v cesty s maximálnou priepustnosťou v súvislom hranovo ohodnotenom grafe G=(V,H,c,d), kde c(h) je priepustnosť a d(h) je dĺžka hrany $h\in H$.

- Krok 1. V grafe G nájdi cestu $\mu(u, v)$ maximálnej priepustnosti vzhľadom na ohodnotenie hrán c.
 - Nech C je priepustnosť cesty $\mu(u, v)$.
- Krok 2. Vytvor graf G' = (V, H', d), kde H' = {h|h ∈ H, c(h) ≥ C}. {H' obsahuje len tie hrany pôvodného grafu, ktoré majú priepustnosť väčšiu alebo rovnú než C.}
- Krok 3. V grafe G' nájdi najkratšiu u–v cestu vzhľadom na obodnotenie brán d

Algoritmus

Algoritmus na hľadanie najkratšej u-v cesty s maximálnou priepustnosťou v súvislom hranovo ohodnotenom grafe G=(V,H,c,d), kde c(h) je priepustnosť a d(h) je dĺžka hrany $h\in H$.

- Krok 1. V grafe G nájdi cestu $\mu(u, v)$ maximálnej priepustnosti vzhľadom na ohodnotenie hrán c.
 - Nech C je priepustnosť cesty $\mu(u, v)$.
- Krok 2. Vytvor graf G' = (V, H', d), kde H' = {h|h ∈ H, c(h) ≥ C}. {H' obsahuje len tie hrany pôvodného grafu, ktoré majú priepustnosť väčšiu alebo rovnú než C.}
- Krok 3. V grafe G' nájdi najkratšiu u–v cestu vzhľadom na obodnotenie brán d

Algoritmus

Algoritmus na hľadanie najkratšej u-v cesty s maximálnou priepustnosťou v súvislom hranovo ohodnotenom grafe G=(V,H,c,d), kde c(h) je priepustnosť a d(h) je dĺžka hrany $h\in H$.

- Krok 1. V grafe G nájdi cestu $\mu(u, v)$ maximálnej priepustnosti vzhľadom na ohodnotenie hrán c.
 - Nech C je priepustnosť cesty $\mu(u, v)$.
- Krok 2. Vytvor graf G' = (V, H', d), kde H' = {h|h ∈ H, c(h) ≥ C}. {H' obsahuje len tie hrany pôvodného grafu, ktoré majú priepustnosť väčšiu alebo rovnú než C.}
- Krok 3. V grafe G' nájdi najkratšiu u–v cestu vzhľadom na ohodnotenie hrán d.

