RECAP OF LESSON 1
RASPBERRY PI PIN DIAGRAM
WE ARE USING BROADCOM (BCM) PIN NUMBERING SYSTEM FOR OUR LESSONS. THE DEFAULT FOR gpiozero Library

from gpiozero import LED	We are "borrowing" as
	module LED from the
	library called gpiozero
led_red=LED(14)	We give our red coloured
	LED a name called
	led_red
led_red.on()	Turn on LED. Set Pin 14
	High
led_red.off()	Turn off LED. Set Pin 14
	Low
led_blink(on_time=.5,	Blink LED five times(n=5)
off_time=.5, n=5)	Each on_time is half a
	second.
	Each off time is half a
	second

We did this is the shell (REPL) of Thonny. Program here is not permanent.

What is a **REPL**?

A REPL (say it, "REP-UL") is an interactive way to talk to your computer in Python. To make this work, the computer does four things:

Read the user input (your Python commands).

Evaluate your code (to work out what you mean).

Print any results (so you can see the computer's response).

Loop back to step 1 (to continue the conversation).

Pin 14

Raspberry Pi Zero V1.2

PATROLCAR Example

Notes repository for this course

https://github.com/ssgoh/Intro_To_Raspberry_Pi