Machine Learning Applications in the Routing in Computer Networks

Ke Liang & Mitchel Myers
Pennsylvania State University

MENU

- 1. Introduction
- 2. Classification
 - -How? Why?
 - -Methods Overview
 - -Selected Method Details
- 3. Performance Comparison (Bonus)
- 4. Conclusion

INTRODUCTION

Assumption/Scope:

The routing algorithms combining with the supervised and reinforcement learning.

CLASSIFICATION (HOW? WHY?)

METHODS OVERVIEW (14 METHODS)

Method	Туре	Machine Learning Technique	Pros	Cons
GADL	Centralized Supervised	Graph Neural Networks	Training faster; High accuracy; Reduce average latency	Data hungry
ML-assisted LL	Centralized Supervised	Naive Bayes Classifier	Reduce blocking chance	More experiments for circuit- switched network; Data hungry
RouteNet	Centralized Supervised	Graph Neural Networks	Minimize the cost for getting performance for different routing policies; Reduce the average delay and packet loss	Complicated preprocess
QAR	Centralized Reinforcement Learning	SARSA Reinforcement Learning	Fast convergence; Minimize the signaling delay	Need to improve the scalability
DRL-based Cognitive Routing	Centralized Reinforcement Learning	Deep Reinforcement Learning, DDPG framework	Reduce average end-to-end delay	Limited experimental results; Extending to real-world network
DL Heterogeneous Traffic Control	Decentralized Supervised	Deep Neural Network	Reduce average delay and increase the throughput	Extend to real-world network
DBA Routing	Decentralized Supervised	Deep Belief Architecture	Reduce average delay and increase the throughput	Need to improve the scalability
GQNN Routing	Decentralized Supervised	Graph-Query Neural Network.	Generated Models with good delay	Extend to other routing protocols
MLProph	Decentralized Supervised	Neural Network, Decision Tree	Reduce average delay and packet loss chance	Simulate with real mobility traces; Test other novel ML models
DNN Routing	Decentralized Supervised	Deep NN, MILP	Improved link utilization and reduce the congestion	Data hungry
Q-Routing	Decentralized Reinforcement Learning	Q-Learning	Improved performance in high load conditions	Q function table does not scale well to larger networks
CQ-Routing	Decentralized Reinforcement Learning	Q-Learning, Confidence Learning	Faster, and sustain higher network load	Extend to real world network
NN Q-Routing	Decentralized Reinforcement Learning	Neural Network, Q-Learning	, ,	Not scale with some network case
DRQ Routing	Decentralized Reinforcement Learning	Dual Reinforcement Learning, Q-Learning	Improved delivery time under high load conditions	Extend to real-world network

CLASSIFICATION

	Classification	Pros	Cons
ı	Centralized	Resources saved, Flexible, etc.	Single point of failure, etc.
2	Decentralized	Adaptive to changing, Scalable, etc.	Need more space, Infinity loop, etc.
3	Supervised	Scalable; Good Performance	Well-constructed Data, and need well constructed the models
4	Reinforcement	Can be easily combined in routing process	Construct Rewards function

SELECTED METHOD DETAILS

RouteNet

SELECTED METHOD DETAILS

$$\Delta Q_x(y,d) = \eta \left(\min_{Z \in N(y)} Q_y(z,d) + q_x + \delta - Q_x(y,d) \right)$$
Q-Routing

$$\begin{split} \eta(\mathcal{C}_{old},\mathcal{C}_{est}) &= max(\mathcal{C}_{est},1-\mathcal{C}_{old}) \\ \mathcal{C}_{new} &= \begin{cases} \lambda \mathcal{C}_{old} \\ \mathcal{C}_{old} + \eta(\mathcal{C}_{old},\mathcal{C}_{est})(\mathcal{C}_{est} - \mathcal{C}_{old}) \end{cases} \\ \Delta Q_x(y,d) &= \eta(\mathcal{C}_{old},\mathcal{C}_{est}) \big(min_{Z \in N(y)} Q_y(z,d) + q_x + \delta - Q_x(y,d) \big) \\ &\qquad \qquad \mathsf{CQ}\text{-Routing} \end{split}$$

medium load levels (2.15 packets/step)

high load levels (2.75 packets/step)

PERFORMANCE COMPARISON (BONUS)

Comparison on the average delivery time between Q-Routing and CQ-Routing.

Simulation Settings

- Random nodes will receive the packets with the random destination per simulation step.
- **Network load:** Number of the packets generated per simulation step
- **Delivery time:** The total simulation steps needed for a packet occurs in the source node and disappears in the destination node.
- Unbounded FIFO queue to store.
- Learning rate for Q-Routing: $\eta = 0.85$
- Decay constant for CQ-Routing: $\lambda = 0.95$

The irregular **6x6** grid topology

Medium Load	High Load	
2.15 packets/step	2.75 packets/step	

Loads settings

PERFORMANCE COMPARISON (BONUS)

Simulation Results and Interpretation

Averages: within 10 test runs

Red dot line represents the CQ-Routing, and blue line represents the Q-Routing

medium load levels (2.15 packets/step)

high load levels (2.7 packets/step)

CONCLUSION

- 1. Need smarter and scalable routing methods
- 2. ML-techniques show promising results for improving routing performance
- Future:
- 1. More research based on realistic network topology environments
- 2. Combination of supervised and reinforcement learning methods
- 3. Need semi-supervised or unsupervised methods

REFERENCES

- [1] James Kurose, Keith Ross Computer Networking A Top-Down Approach (7th Edition)-Pearson, 2016.
- [2] R. Boutaba, M.A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-Solano and O. M. Caicedo, "A comprehensive survey on machine learning for networking: evolution, applications and research opportunities," Journal Internet Service Application vol 9, no.16, https://doi.org/10.1186/s13174-018-0087-2, 2018.
- [3] Liu Chenyi, Xu Mingwei, Geng Nan, and Zhang Xiang, "A Survey on Machine Learning Based Routing Algorithms," Journal of Computer Research and Development, vol. 57,no. 4, pp. 671-687, 2020.
- [4] Ian Goodfellow and Yoshua Bengio and Aaron Courville, "Deep Learning," MIT Press, http://www.deeplearningbook.org, 2016.
- [5] N. Kato et al., "The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective," in IEEE Wireless Communications, vol. 24, no. 3, pp. 146-153, doi: 10.1109/MWC.2016.1600317WC,2017.
- [6] Z. Zhuang, J. Wang, Q. Qi, H. Sun and J. Liao, "Graph-Aware Deep Learning Based Intelligent Routing Strategy," IEEE 43rd Conference on Local Computer Networks (LCN), Chicago, IL, USA, pp. 441-444, doi: 10.1109/LCN.2018.8638099, 2018.
- [7]Gangxiang Shen, Longfei Li, Ya Zhang, Wei Chen, Sanjay K. Bose, Moshe Zukerman. "Naïve Bayes Classifier-Assisted Least Loaded Routing for Circuit-Switched Networks," IEEE. Translations and content mining, vol. 7, pp. 11854-11867, 2018.
- [8]Rusek, Krzysztof, Suarez-Varela, Jose, Mestres, Albert, Barlet-Ros, Pere, Cabello, Albert, "Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN," SOSR '19: Proceedings of the ACM Symposium on SDN Research. pp. 140-151. 10.1145/3314148.3314357, 2019.
- [9] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros and A. Cabellos-Aparicio, "RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN," in IEEE Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2260-2270, doi: 10.1109/JSAC.2020.3000405, Oct. 2020.
- [10] S. Lin, I. F. Akyildiz, P. Wang and M. Luo, "QoS-Aware Adaptive Routing in Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learning Approach," 2016 IEEE International Conference on Services Computing (SCC), San Francisco, CA, pp. 25-33, doi: 10.1109/SCC, 2016.12.
- [11] Jiawei Wu, Jianxue Li., Yang Xiao, and Jun Liu, "Towards Cognitive Routing based on Deep Reinforcement Learning," arXiv:2003.12439, 2020.
- [12] B. Mao et al., "Routing or Computing? The Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Learning," in IEEE Transactions on Computers, vol. 66, no. 11, pp. 1946-1960, doi: 10.1109/TC.2017.2709742, 2017.
- [13] Geyer, Fabien, and G. Carle. "Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning," Big-DAMA '18, 2018.
- [14] D. K. Sharma, S. K. Dhurandher, I. Woungang, R. K. Srivastava, A. Mohananey and J. J.P.C. Rodrigues, "A Machine Learning-Based Protocol for Efficient Routing in Opportunistic Networks," IEEE Systems Journal, vol. 12, no. 3, pp. 2207-2213, doi: 10.1109/JSYST.2016.2 630923,2018.
- [15] J. Reis, M. Rocha, T. K. Phan, D. Griffin, F. Le and M. Rio, "Deep Neural Networks for Network Routing," International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, pp. 1-8, doi: 10.1109/IJCNN.2019.8851733,2019.
- [16] B. Fortz and M. Thorup, "Internet Traffic Engineering by Optimizing OSPF Weights," IEEE International Conference on Computer Com-munications (INFOCOM), 2000
- [17] Justin Boyan, Michael Littman. "Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach," NIPS 93: Proceedings of the 6th International Conference on Neural Information Processing Systems November 1993, pp: 671–678
- [18] Shailesh KumarRisto Miikkulainen, "Confidence-based q-routing: an online adaptive network routing algorithm," PROCEEDINGS OF Proceeding Conference on Artificial Neural Networks in Engineering, 1998.
- [19] Newton, Will and Wu, Si. "A Neural Network Algorithm for Internetwork Routing," 2002.
- [20] B. Xia, M. H. Wahab, Y. Yang, Z. Fan and M. Sooriyabandara, "Reinforcement learning based spectrum-aware routing in multi-hop cognitive radio networks," 2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Hannover, pp. 1-5, doi: 10.1109/CROWNCO, 2009.