Оценивание вещественного параметра (продолжение)

Малов Сергей Васильевич

Санкт-Петербургский государственный электротехнический университет

10 октября 2020 г.

План

1 Минимаксный и байесовский подходы

- 2 Информационное неравенство
- 3 Асимптотическая нормальность оценок максимального правдоподобия

Минимаксный и байесовский подходы

Определим следующие функционалы риска:

- Максимальный риск: $R_M(\delta) = \sup_{\theta \in \Theta} R_{\delta}(\theta)$
- Байесовский риск по отношению к априорному распределению Q:

$$R_Q(\delta) = \int_{\Theta} R_{\delta}(\theta) dQ(\theta)$$

• Q — распределение (априорное) на борелевских подмножествах Θ .

Определение

Оценка $\delta(X)$ параметра θ называется минимаксной, если она минимизирует максимальный риск, т. е. $R_M(\delta) \leq R_M(\delta^*)$ для любой оценки $\delta^*(X)$.

Определение

Оценка $\delta(X)$ параметра θ называется байесовской по отношению к априорному распределению Q, если она минимизирует байесовский риск, т. е. $R_Q(\delta) \leq R_Q(\delta^*)$ для любой оценки $\delta^*(X)$.

10 октября 2020 г.

Байесовское оценивание

Байесовский подход позвляет говорить о совместном распределении наблюдений и параметра на измеримом пространстве $\mathfrak{X} \times \Theta$.

- $f(x,\theta) = q(\theta)p_{\theta}(x)$ плотность (дискретная плотность, плотность относительно некоторой доминирующей меры μ^* : $\mu^*(dx; d\theta) = \mu(dx) \mu'(d\theta)$
- По формуле Байеса получаем апостериорное распределение с плотностью $a(\theta)p_{\theta}(X)$

 $f(\theta \mid X) = \frac{q(\theta)p_{\theta}(X)}{\int_{\Theta} q(\theta)p_{\theta}(X) \, \mu'(d\theta)}.$

• Байесовский риск (используем функцию потерь Гаусса) имеет вид

$$R_Q(\delta) = \int_{\Theta} \mathbb{E}_{\theta}(\delta(X) - \theta)^2 Q(d\theta) = \int_{\Theta} \mathbb{E}_{\theta}(\delta(X) - \theta)^2 q(\theta) d\mu'(\theta).$$

• Путем дифференцирования по δ находим $\delta_*(X)$, минимизирующую байесовский риск

$$\delta_*(X) = \frac{\int_{\Theta} \theta f(X; \theta) Q(d\theta)}{\int_{\Theta} f(X; \theta) Q(d\theta)} = \int_{\Theta} \theta f(\theta | X) Q(d\theta)$$

• Байесовская оценка – условное (апостериорное) среднее параметра θ при условии X.

Байесовское оценивание

Упражнение

Пусть X_1, \dots, X_n — выборка из $\mathcal{N}(\theta, \sigma^2)$ с известным $\sigma = \sigma_0$. Найти байесовскую оценку θ в предположении, что параметр θ имеет априорное нормальное распределение $\mathcal{N}(\mu, b^2)$ $(\mu, b^2$ — известны).

Решение. Совместная плотность θ и $X=(X_1,\ldots,X_n)$ имеет вид

$$q(\theta)p_{\theta}(x) = \frac{1}{2\pi\sigma_{0}b} \exp\left(-\frac{1}{2\sigma_{0}^{2}} \sum_{i=1}^{n} (x_{i} - \theta)^{2}\right) \exp\left(-\frac{1}{2b^{2}} (\theta - \mu)^{2}\right).$$

Тогда апостериорная плотность имеет вид

$$U(X) \exp\biggl(-\frac{1}{2}\theta^2 \Bigl(\frac{n}{\sigma_0^2} + \frac{1}{b^2}\Bigr) + \theta\Bigl(\frac{n\overline{X}}{\sigma_0^2} + \frac{\mu}{b^2}\Bigr)\biggr) = U(X) \exp\biggl(-\frac{1}{2}\Bigl(\frac{n}{\sigma_0^2} + \frac{1}{b^2}\Bigr)\Bigl(\theta^2 - 2\theta\frac{n\overline{X} + \mu\sigma_0^2/b^2}{n + \sigma_0^2/b^2}\Bigr)\biggr),$$

где
$$U(X) = \frac{\exp\left(-\frac{1}{2}\left(\frac{\sum_{i}X_{i}^{2}}{\sigma_{0}^{2}} + \frac{\mu^{2}}{b^{2}}\right)\right)}{\int_{-\infty}^{\infty} p(\theta)f(X;\theta)\,d\theta)}$$
 – нормирующий множитель. Получили

нормальную плотность со средним $\mathbb{E}(\theta|X)=\frac{nX+\mu\sigma_0^2/b^2}{n+\sigma_0^2/b^2}$ и дисперсией

 $\mathbb{D}(\theta \mid X) = (n + \sigma_0^2/b^2)^{-1}$. Следовательно, байесовская оценка имеет вид

$$\delta(X) = \mathbb{E}(\theta \mid X) = \frac{n}{n + \sigma_0^2/b^2} \overline{X} + \frac{\mu}{nb^2/\sigma_0^2 + 1}$$

Минимаксное оценивание

Теорема (Леман)

Пусть $\{\delta_k\}_{k\in\mathbb{N}^-}$ последовательность байесовских оценок по отношению к априорным распределениям $\{Q_k\}$ соответственно; оценка δ :

$$\sup_{\theta} R_{\delta}(\theta) \leq \overline{\lim_{k \to \infty}} \int_{\Theta} R_{\delta_k}(\theta) dQ_k.$$

Тогда δ — минимаксна.

Доказательство. Пусть δ^* – произвольная оценка. Тогда, поскольку Q_k – вероятностная мера и поскольку δ_k – байесовская:

$$\sup_{\theta} R_{\theta}(\delta^*) \ge \int_{\Theta} R_{\delta^*}(\theta) \ Q_k(d\theta) \ge \int_{\Theta} R_{\delta_k}(\theta) \ Q_k(d\theta).$$

Переходим к пределу

$$\sup_{\theta} R_{\delta^*}(\theta) \ge \overline{\lim_{k \to \infty}} \int_{\Theta} R_{\delta_k}(\theta) \ Q_k(d\theta) \ge \sup_{\theta} R_{\delta}(\theta).$$

Следовательно, δ − минимаксна.

Минимаксное оценивание

Упражнение

Пусть X_1, \dots, X_n — выборка из $\mathcal{N}(\theta, \sigma^2)$ с известным $\sigma = \sigma_0$. Найти минимаксную оценку θ .

Решение. Предположим, что параметр θ имеет нормальное распределение $\mathcal{N}(0,k),\ k\in\mathbb{N}$. Получаем последовательность байесовских оценок: $n\overline{X}$

$$\delta_k(X) = \frac{nX}{n + \sigma_0^2/k}$$

и соответствующую последовательность байесовских рисков:

$$\begin{split} R(\delta_k) &= \int\limits_{-\infty}^{\infty} \mathbb{E}_{\theta} \bigg(\frac{n\overline{X}}{n + \sigma_0^2/k} - \theta \bigg)^2 Q_k(d\theta) = \int\limits_{-\infty}^{\infty} \mathbb{E}_{\theta} \bigg(\frac{n(\overline{X} - \theta) - \theta \sigma_0^2/k}{n + \sigma_0^2/k} \bigg)^2 Q_k(d\theta) = \\ &= \frac{1}{(n + \sigma_0^2/k)^2} \bigg(n\sigma_0^2 - 2\frac{\theta \sigma_0^2}{k} \mathbb{E}_{\theta} n(\overline{X} - \theta) + \int\limits_{-\infty}^{\infty} \theta^2 \, Q(d\theta)/k^2 \bigg) \xrightarrow[k \to \infty]{} \sigma_0^2/n. \end{split}$$

Далее отметим, что

$$\mathbb{E}_{\theta}(\overline{X}-\theta)^2=\sigma_0^2/n.$$

Следовательно, по теореме Лемана \overline{X} – минимаксная оценка θ .

План

1 Минимаксный и байесовский подходы

- 2 Информационное неравенство
- 3 Асимптотическая нормальность оценок максимального правдоподобия

Эвристические предпосылки:

- Параметры тем легче различать, чем больше различаются соответствующие распределения
- Информация, содержащаяся в независимых экспериментах, равна сумме информации, содержащейся в каждом из них

Базовые предположения:

- $(\mathfrak{X},\mathfrak{F},\mathcal{P}),$ где \mathcal{P} = $\{P_{\theta},\ \theta\in\Theta\}$ статистический эксперимент
 - Θ ⊆ \mathbb{R} параметр распределения θ ∈ Θ вещественный
- Семейство \mathcal{P} доминировано мерой μ .
 - обычно μ либо мера Лебега (абсолютно непрерывный случай), либо считающая мера (дискретный случай)
 - по теореме Радона–Никодима существует соответствующее семейство плотностей $\{p_{\theta}\}_{\theta \in \Theta}$: $p_{\theta} = \frac{dP_{\theta}}{d\mu}, \ \theta \in \Theta$

Определение

Будем называть эксперимент регулярным, если при каждом $\theta \in \Theta$:

- (i) $L(x; \theta)$ непрерывна и непрерывно дифференцируема по θ ;
- (ii) допустимо дифференцирование под знаком интеграла

$$\int_{\mathfrak{X}} \frac{\partial}{\partial \theta} p_{\theta}(x) \, \mu(dx) = \frac{\partial}{\partial \theta} \int_{\mathfrak{X}} p_{\theta}(x) \, \mu(dx) = 0;$$

(ііі) существует и отличен от нуля интеграл

$$0 < I(\theta) = \mathbb{E}_{\theta}(U(X; \theta))^2 = \int_{\mathfrak{X}} (U(X; \theta))^2 L(X; \theta) \mu(dX),$$

- $U(x; \theta) = \frac{\partial}{\partial \theta} \log L(x; \theta)$.
- Величина $I(\theta)$ называется информацией Фишера, содержащейся в исходном наборе наблюдений.

Свойства информации Фишера

• Последнее равенство в условии (ii) выполнено всегда:

$$\int_{\mathfrak{X}} p_{\theta}(x) \, \mu(dx) = 1$$
 при любом θ .

- Условие (ii) обычно нарушается, если параметр выходит на границы интеграла
 - в этом случае появляется производная интеграла с переменным пределом
 - в частности, это происходит, если носитель распределения $A = \{x : p_{\theta}(x) > 0\}$ зависит от параметра
- Условие (ii) может быть переписано в виде: $\frac{\partial}{\partial \theta} \mathbb{E} U(x; \theta) = 0$
- Если

$$\int_{\mathfrak{X}} \frac{\partial^2}{\partial \theta^2} p_{\theta}(x) \, \mu(dx) = \frac{\partial^2}{\partial \theta^2} \int_{\mathfrak{X}} p_{\theta}(x) \, \mu(dx) = 0;$$

(функция правдоподобия дважды непрерывно дифференцируема под знаком интеграла по θ), то

$$I(\theta) = -\mathbb{E}\Big(\frac{\partial^2}{\partial \theta^2} \log L(X; \theta)\Big).$$

Утверждение

Пусть $(\mathfrak{X}_1,\mathfrak{F}_1,\mathcal{P}_1)$ и $(\mathfrak{X}_2,\mathfrak{F}_2,\mathcal{P}_2)$ – независимые регулярные эксперименты с информацией Фишера $I_1(\theta)$ и $I_2(\theta)$ соответственно. Тогда эксперимент $(\mathfrak{X}_1 \times \mathfrak{X}_2, \sigma(\mathfrak{F}_1 \times \mathfrak{F}_2), \mathcal{P})$: $\mathcal{P} = \{P_\theta\}_{\theta \in \Theta}$, где $P_\theta(dx) = P_{1\theta}(dx_1)P_{2\theta}(dx_2), x = (x_1, x_2)$ (т.е. $p_\theta(x) = p_{1\theta}(x_1)p_{2\theta}(x_2), x_1, x_2 \in \mathbb{R}$), регулярен и $I(\theta) = I_1(\theta) + I_2(\theta)$.

- Доказательство состоит в непосредственной проверке условий регулярности
- Эксперимент, состоящий в проведении набора независимых регулярных экспериментов, регулярен, а информация Фишера равна сумме информаций Фишера, составляющих его независимых экспериментов
- Информация Фишера I_{θ} , содержащаяся в выборке X_1, X_2, \dots, X_n , в n раз больше информации, содержащейся в каждом наблюдении, т. е. $I(\theta) = nI_1(\theta)$.

Неравенство Рао-Крамера

Определение

Оценка δ называется разрешенной, если

$$\frac{\partial}{\partial \theta} \mathbb{E}_{\theta} \delta(X) = \mathbb{E}_{\theta} \Big(\delta(X) \frac{\partial}{\partial \theta} \log L(X; \theta) \Big).$$

 Оценка разрешенная, если допускается дифференцирование под знаком интеграла

$$\frac{\partial}{\partial \theta} \int_{\mathfrak{X}} \delta(x) L(x; \theta) \, \mu(dx) = \int_{\mathfrak{X}} \delta(x) \frac{\partial}{\partial \theta} L(x; \theta) \, \mu(dx).$$

Теорема (Неравенство Рао-Крамера)

Пусть эксперимент регулярен, δ – разрешенная оценка параметра θ . Тогда, $(1 + b'(\theta))^2$

 $\mathbb{E}_{\theta}(\delta - \theta)^2 \ge \frac{(1 + b'(\theta))^2}{I(\theta)} + b^2(\theta)$

или

$$\mathbb{D}_{\theta}\delta \geq \frac{(1+b'(\theta))^2}{I(\theta)},$$

где $b(\delta) = \mathbb{E}\delta - \theta$ – смещение.

Неравенство Рао-Крамера

Доказательство. По определению смещения $\mathbb{E}_{\theta}\delta = \theta + \boldsymbol{b}(\theta)$. Используя свойство разрешенности оценки, после дифференцирования получаем

$$\frac{\partial}{\partial \theta} \mathbb{E}_{\theta} \delta = \int_{\mathfrak{X}} \delta(x) f'(x, \theta) \, \mu(dx) = \mathbb{E}_{\theta}(\delta(X) \, U(X, \theta)).$$

Тогда, с учетом условия (ii) регулярности эксперимента, получаем равенство $\mathbb{E}_{\theta}\big((\delta(X) - \mathbb{E}_{\theta}\delta(X))U(X,\theta)\big) = 1 + b'(\theta).$

Применяем неравенство Коши – Буняковского

$$(1+b'(\theta))^2 \leq \mathbb{E}_{\theta}(\delta(X) - \mathbb{E}_{\theta}\delta(X))^2 \mathbb{E}_{\theta} U^2(X,\theta) = \mathbb{D}_{\theta}\delta(X) I(\theta),$$

из которого получаем второе неравенство. Отсюда первое неравенство получается тривиальным образом, так как $\mathbb{D}_{\theta}\delta(X) = \mathbb{E}_{\theta}(\delta - \theta)^2 - b_{\sigma}^2(\theta)$.

• Если δ – несмещенная оценка, то неравенство Рао – Крамера примет вид $\mathbb{E}_{\theta}(\delta(X) - \theta)^2 > 1/I(\theta)$.

Эффективные по Фишеру оценки

Определение

Несмещенная оценка δ параметра θ , для которой достигается равенство в неравенстве Рао – Крамера, называется эффективной по Фишеру, или R-эффективной.

Условия существования *R*-эффективной оценки:

- Должна существовать несмещенная оценка
- Равенство в неравенстве Рао Крамера достигается, если достигается равенство в неравенстве Коши–Буняковского

$$\mathbb{E}_{\theta}\big(\big(\delta(X) - \mathbb{E}_{\theta}\delta(X)\big)U(X,\theta)\big) = \mathbb{E}_{\theta}\big(\delta(X) - \mathbb{E}_{\theta}\delta(X)\big)^2\mathbb{E}_{\theta}U^2(X,\theta).$$

• Последнее равенство выполнено только если

$$a_*(\theta)(\delta(X) - \mathbb{E}_{\theta}\delta(X)) = U(X; \theta) = \frac{\partial}{\partial \theta} \ln L(X; \theta).$$

• В этом случае,

$$L(X, \theta) = h(X) \exp(a(\theta)\delta(X) + r(\theta)).$$

Эффективные по Фишеру оценки

Определение

Несмещенная оценка δ параметра θ , для которой достигается равенство в неравенстве Рао – Крамера, называется эффективной по Фишеру, или R-эффективной.

Условия существования *R*-эффективной оценки:

- Должна существовать несмещенная оценка
- Равенство в неравенстве Рао Крамера достигается, если достигается равенство в неравенстве Коши–Буняковского

$$\mathbb{E}_{\theta}\big(\big(\delta(X) - \mathbb{E}_{\theta}\delta(X)\big)U(X,\theta)\big) = \mathbb{E}_{\theta}\big(\delta(X) - \mathbb{E}_{\theta}\delta(X)\big)^2\mathbb{E}_{\theta}U^2(X,\theta).$$

• Последнее равенство выполнено только если

$$a_*(\theta)(\delta(X) - \mathbb{E}_{\theta}\delta(X)) = U(X; \theta) = \frac{\partial}{\partial \theta} \ln L(X; \theta).$$

• В этом случае,

$$L(X, \theta) = h(X) \exp(a(\theta)\delta(X) + r(\theta)).$$

Условия существования *R*-эффективной оценки

Выводы:

• Эффективная по Фишеру оценка существует только если плотности распределения семейства распределений \mathcal{P} представимы в виде

$$p_{\theta}(x_1,\ldots,x_n)=h(x_1,\ldots,x_n)\exp(a(\theta)\delta(x_1,\ldots,x_n)+r(\theta))$$

• в частном случае выборки данное представление означает, что плотность распределения X_1

$$p_{\theta}(x) = h_*(x) \exp(a(\theta)\delta_*(x) + r(\theta)).$$

- множество распределений такого вида однопараметрическое экспоненциальное семейство
- При замене параметризации $\theta^* = g(\theta)$: $p_{\theta}(x) = p_{\theta^*}(x)$ свойства несмещености и R-эффективности оценки не сохраняются
 - очевидно, что $b^*(\theta^*)' = b'(\theta)/g'(\theta)$ и $I^*(\theta^*) = I(\theta)/g(\theta)^2$.
 - неравенство Рао–Крамера: $\mathbb{D}_{\theta^*}\delta \ge \frac{(g'(\theta)+b'(\theta))^2}{l(\theta)} + b^2(\theta), \ \theta = g^{-1}(\theta^*)$
 - поскольку $0 = \mathbb{E}_{\theta} U(X, \theta) = a'(\theta) \mathbb{E}_{\theta} \delta(X) + r'(\theta)$, для каждого однопараметрического экспоненциального семейства существует единственная параметризация $\theta^* = -r'(\theta)/a'(\theta)$, в которой допускается R-эффективное оценивание параметра θ .

Условия существования *R*-эффективной оценки

Теорема

Пусть эксперимент регулярен; $\delta - \mathbf{R}$ -эффективная оценка θ . Тогда δ является оценкой максимального правдоподобия.

Доказательство. Поскольку $U(X, \theta) = a^*(\theta)(\delta(X) - \theta)$, из несмещенности и R-эффективности следует, что

$$a^*(\theta) = \sqrt{I(\theta)/\mathbb{D}_{\theta}\delta(X)} = 1/\mathbb{D}_{\theta}\delta(X) > 0.$$

Тогда $U(X, \delta(X)) = 0$. Следовательно, δ – точка локального максимума функции $L(X; \theta)$ по θ .

• Если δ – R-эффективная оценка θ , то она является НРМД-оценкой

Многомерный случай

В случае **d**-мерного параметра $\theta = (\theta_1, \dots, \theta_d) \in \Theta \subseteq \mathbb{R}^d$, определение регулярного эксперимента вводится аналогично

Определение

Эксперимент регулярный, если при каждом $\theta \in \Theta$:

- (i) $L(x;\theta)$ непрерывна и имеет непрерывные частные производные по каждому аргументу $\theta_s,\ s=1,\ldots,d;$
- (ii) допустимо дифференцирование под знаком интеграла по каждому аргументу, и $\mathbb{E} U(X,\theta) = 0$
 - $U(X,\theta) = \frac{\partial}{\partial \theta} \log L(X,\theta)$ градиент (вектор-столбец) прологарифмированной функции правдоподобия
- (iii) существует положительно определенная матрица информации Φ ишера $\mathbb{I}(\theta) = \mathbb{E}_{\theta} U(X; \theta)' U(X; \theta)$

Многомерный случай

- В предположениях регулярности, элементы информационной матрицы $I_{i,j}(\theta) = \mathbb{E}\Big(\frac{\partial}{\partial \theta_i} \log L(X; \theta) \frac{\partial}{\partial \theta_j} \log L(X; \theta)\Big)$ ковариации компонент градиента функции правдоподобия $U(X, \theta)$.
- Если плотности распределения непрерывно дважды дифференцируемы, и допускается дифференцирование плотности распределения под знаком интеграла дважды, то $\mathbb{I}(\theta) = -\mathbb{E} H(X,\theta)$
 - $H(X,\theta) = \|h_{ij}(X,\theta)\|_{ij}$ матрица Гёссе прологарифмированной функции правдоподобия
 - $h_{ij}(X,\theta) = \frac{\partial^2}{\partial \theta_i \partial \theta_j} \log L(X,\theta), i,j = 1,\ldots,d.$

Многомерный случай

Для случая многопараметрического семейства может быть получено похожее неравенство. Условия регулярности заключаются в наличии частных производных под знаком интеграла по каждому параметру и невырожденности информационной матрицы каждого наблюдения $\mathbb{I}(\theta) = ||I_{i,j}(\theta)||$, где

$$I_{i,j}(\theta) = \mathbb{E}\left(\frac{\partial}{\partial \theta_i} \ln L(x; \theta) \frac{\partial}{\partial \theta_j} \ln L(x; \theta)\right).$$

Тогда для любой разрешенной оценки $\delta = (\delta_1, \dots, \delta_k)$ параметра θ справедливо неравенство

$$\mathrm{Var}(\delta) \geq (\mathbb{E} + \mathcal{B}'(\theta))\mathbb{I}^{-1}(\theta)(\mathbb{E} + \mathcal{B}'(\theta))^T,$$

где \mathbb{E} – единичная матрица; $\mathcal{B}'(\theta)$ – матрица частных производных компонент вектора смещений по параметрам, и, в частности, если δ несмещенная, то

Примеры

Упражнение

Пусть $X_1, ..., X_{n^-}$ выборка из нормального распределения $\mathcal{N}(a, \sigma^2)$. Будет ли R-эффективной НРМД оценка $\tilde{\theta} = (\overline{X}, s'^2)$, $s'^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$.

Решение. Ранее было показано, что ОМП имеет вид $\hat{\theta} = (\overline{X}, s^2)$. Поскольку $\tilde{\theta} \neq \hat{\theta}$, она не является R-эффективной.

• Информационная матрица $\mathbb{I}(a, \sigma^2)$ и $\mathbb{I}(a, \sigma^2)^{-1}$ имеют вид соответственно

$$\left(\begin{array}{cc} n/\sigma^2 & 0 \\ 0 & n/(2\sigma^4) \end{array}\right) \quad \text{if} \quad \left(\begin{array}{cc} \sigma^2/n & 0 \\ 0 & 2\sigma^4/n \end{array}\right).$$

 \bullet Ковариационная матрица оценки $\tilde{\theta}$ есть

$$\left(\begin{array}{cc} \sigma^2/n & 0 \\ 0 & 2\sigma^4/(n-1) \end{array}\right).$$

• Поскольку $\tilde{\theta}$ – НРМД-оценка, R-эффективной оценки (для σ^2) не существует.

План

1 Минимаксный и байесовский подходы

- 2 Информационное неравенство
- 3 Асимптотическая нормальность оценок максимального правдоподобия

Асимптотическая нормальность ОМП

Теорема (Асимптотическая нормальность ОМП)

Пусть $X = (X_1, \dots, X_n)$ – выборка из распределения, принадлежащего регулярному семейству распределений

- (i) выполнено условие дважды дифференцируемости плотности распределения под знаком интеграла
- (ii) $\bar{\mathbb{I}}(\theta) = n \, I(\theta)$ информационная матрица
- (iii) оценка максимального правдоподобия $\hat{\theta}$ состоятельна Тогда

$$n^{1/2}(\hat{\theta} - \theta) \Rightarrow \mathcal{N}(0, I(\theta)^{-1}).$$

• В условиях теоремы, оценка максимального правдоподобия является асимптотически эффективной

Асимптотическая нормальность ОМП

Доказательство. Отметим, что $U(X;\theta)$ представляет собой сумму независимых и одинаково распределенных случайных величин с нулевым средним и матрицей ковариаций

$$\mathbb{I}(\theta) = nI(\theta).$$

С использованием центральной предельной теоремы Леви получаем

$$n^{-1/2}U(X;\theta) \Rightarrow \mathcal{N}(0,I(\theta)).$$

Пусть $\hat{\theta}$ — оценка максимального правдоподобия параметра θ . Используя формулу Тейлора с остаточным членом в форме Лагранжа запишем

 $U(X;\theta) - U(X,\hat{\theta}) = -H(X;\theta^*)(\hat{\theta} - \theta),$

где θ^* — некоторая точка, лежащая на отрезке, соединяющем точки θ и $\hat{\theta}$. Поскольку $\hat{\theta}$ — оценка максимального правдоподобия,

$$U(X; \hat{\theta}) = 0.$$

Таким образом,

$$n^{-1/2}U(X;\theta) = -n^{-1}H(X;\theta^*) n^{1/2}(\hat{\theta} - \theta) = -\overline{H}(X;\theta^*) n^{1/2}(\hat{\theta} - \theta).$$

Поскольку элементы матрицы Гессе представляют собой суммы независимых и одинаково распределенных случайных величин, $\mathbb{E}_{\theta}(H(X;\theta)) = -nI(\theta)$ и наблюдается сходимость по вероятности

 $-n^{-1}H(X;\theta)\to_{P_\theta}I(\theta).$

Асимптотическая нормальность ОМП

Доказательство асимптотической нормальности ОМП (продолжение).

Предположим, что оценка максимального правдоподобия $\hat{\theta}$ является состоятельной оценкой параметра $\theta \in \Theta$. В силу непрерывности функции $H(X;\theta)$ по θ при каждом фиксированном значении X, с использованием закона больших чисел получаем, что

$$\overline{H}(X;\theta^*) = \overline{H}(X;\theta) + \mathrm{O}_P(1) = -I(\theta) + \mathrm{O}_P(1).$$

Тогда, в силу положительной определенности матрицы $I(\theta)$, с вероятностью, стремящейся к единице, матрица \overline{H} также является положительно-определенной, а следовательно, обратимой. Таким образом,

$$n^{1/2}(\hat{\theta}-\theta) = -\overline{H}(X;\theta)^{-1} \; n^{-1/2} U(X;\theta) = I(\theta)^{-1} \; n^{-1/2} U(X;\theta) + \mathrm{O}_P(1).$$

Следовательно,

$$n^{1/2}(\hat{\theta}-\theta) \Rightarrow \mathcal{N}(0,\Gamma),$$

где
$$\Gamma = I(\theta)^{-1}I(\theta)I(\theta)^{-1} = I(\theta)^{-1}$$

