

Handbuch LC 80

Handbuch Lerncomputer LC 80

1943 250

Änderungen, insbesondere solche,die durch den technischen Fortschritt bedingt sind, vorbehalten.

Inhaltsü	bersicht	Seite
0.	Einleitung	6
1.	Grundbegriffe der Informationsdarstellung	8
	in Mikrocomputern	
1.1.	Binärelemente	8
1.2.	Bit, Byte und Wort	9
1.3.	Digitale Codes	10
1.4.	Zahlensysteme	11
1.4.1.	Das reine Binärsystem	11
1.4.2.	Das Hexadezimalsystem	15
1.5.	Darstellungsarten von Zahlen im Byte	17
1.5.1.	Darstellungsart positive Binärzahl	1 7
1.5.2.	Darstellungsart Zweierkomplementzahl	17
1.5.3.	Darstellungsart gepacktes BCD-Format	18
2.	Beschreibung des Mikroprozessorsystems U 880	20
2.1.	Übersicht über das Mikroprozessorsystem U 880	20
2.2.	Aufbau und Arbeitsweise des Mikroprozessors U 880	25
2.2.1.	Registerstruktur	29
2.2.2.	Interruptsystem	32
2.3.	Aufbau und Arbeitsweise des PIO U 855	39
2.3.1.	Schaltkreisbeschreibung	39
2.3.2.	Erläuterung der einzelnen Betriebsarten	46
2.3.2.1.	Betriebsart Byte-Ausgabe (Mode 0)	46
2.3.2.2.	Betriebsart Byte-Eingabe (Mode 1)	47
2.3.2.3.	Betriebsart Byte-Ein-/Ausgabe (bidirektional)	
	(Mode 2)	48
2.3.2.4.	Bit-Ein-/Ausgabe (Mode 3)	49
2.3.3.	Interrupt-Bearbeitung	50
2.3.4.	Programmierung des PIO's	51
2.3.4.1.	Wahl der Betriebsart	51
2.3.4.2.	Ein- bzw. Ausgabedefinition bei Betriebsart	
	Bit-Ein-/Ausgabe	51

2.3.4.3.	Laden des Interrupt-Vekters	52	
2.3.4.4.	Interrupt-Steuerung	52	
2.4.	Aufbau und Arbeitsweise des CTC U 857	54	
2.4.1.	Schaltkreisbeschreibung	54	
	Arbeitsweise des Schaltkreises	60	
2.4.2.1.	Schreibzyklus	60	
2.4.2.2.	Lesezyklus	61	
2.4.2.3.	Interrupt-Quittungs-Zyklus	62	
2.4.2.4.	Prioritätskaskadierung	64	
2.4.2.5.	Zähl- und Zeitgeber-Vorgang	66	
2.4.3.	Programmierung des CTC	6 6	
2.4.3.1.	Laden des Interrupt-Vektors	67	
2.4.3.2.	Format des Kanalsteuerwortes	68	
2.4.3.3.	Format des Zeitkonstantensteuerwortes	69	
3.	Befehlsbeschreibung des U 880	70	
3.1.	Befehlsstruktur	70	
3.2.	Syntax der Assemblersprache	72	
4.3.	Adressierungsarten	73	
3.4.	Flag-Bit-Technik	75	
2070	Befehlssatz	78	
3.5.1.	Ladebefehle	79	
3.5.1.1.	8-Bit-Ladebefehle	79	
3.5.1.2.	16-Bit-Ladebefehle	83	
3.5.2.	Registertauschbefehle	87	
3.5.3.	Blocktransfer- und Suchbefehle	90	
	Arithmetikbefehle	95	
3.5.4.1.	8-Bit-Arithmetikbefehle	95	*
3.5.4.2.	16-Bit-Arithmetikbefehle	97	
3.5.5.	Sprungbefehle	98	
3.5.6.	1-Byte-Logik-Befehle	100	
3.5.7.	Rotations- und Schiebebefehle	102	
3.5.8.	Bitmanipulationsbefehle	108	
3.5.9.	Spezielle Akkumulator- und Flagbefehle	109	
3.5.10.	Unterprogrammaufruf- und Rücksprungbefehle	110	
3.5.11.	Allgemeine Steuerbefehle	113	
3.5.12.	Ein- und Ausgabebefehle	114	

4.	Programmierung der Peripherieschaltkreise	117
	des LC 80	
4.1.	Programmäßige Organisation einer Inter-	
	rupt-Serviceroutine (ISR)	117
4.2.	PIO-Programmi erung	120
4.3.	CTC-Programmi erung	124
5•	Befehlsliste U 880	127
Anhang:	Sachworterläuterungen	147
Anlage:	Bestückungsplan LC 80	

O. Einleitung

Mit dem Einzug der Mikroelektronik in alle Zweige der Volkswirtschaft entwickelt sich bei vielen Menschen der Wunsch, näheres über dieses interessante technische Gebiet zu erfahren und sich auch entsprechend selbst zu betätigen.

Erzeugnisse, die früher ohne Elektronik auskamen, beinhalten heute die Mikroelektronik als deren miniaturisierte Form, z. B.

- Fotoapparate mit automatischer Einstellfunktion
- Werkzeugmaschinen mit mikroelektronischer Steuerung der Funktionen
- Landwirtschaftsmaschinen mit mikroelektronischer Steuerung der Mähhöhe, Pflugtiefe usw.
- Haushaltgeräte mit Programmablaufspeicherung.

 Dazu kommen völlig neue Geräte und Einrichtungen, die nur mit Mikroelektronik möglich sind, z. B.
- Rechner verschiedenster Art
- Fahrkartenautomaten
- mikroelektronische Spiele.

Aus den genannten Beispielen wird deutlich, daß sich auch solche Berufsgruppen mit der Mikroelektronik beschäftigen, deren Haupttätigkeitsfeld der Maschinenbau, die Landwirtschaft, die Optik usw. ist.

Der Lerncomputer LC 80 ist dafür gedacht, der Bevölkerung im allgemeinen und Schülern, Studenten und Berufstätigen in der Aus- und Weiterbildung das modernste Gebiet der Mikroelektronik, die Mikroprozessortechnik, näher zu bringen.

Der Ursprung der Mikroprozessortechnik liegt im Bestreben der Menschen, so effektiv und preiswert wie möglich elektronische Bauelemente zu produzieren. Die Stückzahlen solcher Bauelemente (Schaltkreise) sind ein entscheidendes Kriterium.

Da die verschiedenen Anwender jeweils verschiedene Schaltkreise bei unökonomischen Stückzahlen, jedoch recht billig, verlangten, wurden die Techniker zu akzeptablen Lösungen angehalten.

Sie schufen ein System von Schaltkreisen, die elektrisch zu einer

Schaltung verbunden werden müssen. Dies ist ein Mikroprozessorsystem, dessen Kernstück ("Gehirn") ein Mikroprozessor (CPU) ist. Solche Zusammenschaltung eines Systems von Schaltkreisen nennt man "Hardware", was gleichbedeutend ist mit "körperlich vorhanden". Die Hardware allein löst keine der in den Beispielen genannten Anwendungsfälle. Man muß dem Mikroprozessorsystem erst "eingeben", welche Aufgabe es erledigen soll. Das macht man mit der "Software", einem Programm.

Jedes der genannten Beispiele besteht also aus einer konkreten Hardware und Software, Während die Hardware in ihrem Kern sehr ähnlich ist (immer ist ein Mikroprozessor, z. B. U 880, eingesetzt), hat natürlich ein Fahrkartenautomat eine andere Software als eine Werkzeugmaschine.

Um auf den Ausgangspunkt zurückzukommen: Bei großen Produktionsstückzahlen der Bauelemente können umfangreiche Anwendungsgebiete mit den gleichen Bauelementen befriedigt werden.

Bei Mikroprozessorsystemen erwirbt der Anwender also verschiedene Schaltkreise, schaltet sie zusammen und "sagt" diesem Gebilde mit einer Software, welche Funktion es zu erfüllen hat.

Deshalb wird gelegentlich vom Mikroprozessor als "Alleskönner" gesprochen. Was er aber kann übernimmt er jedoch in einer geeigneten Sprache vom Menschen. Hierfür wurde der Begriff Maschinensprache geprägt, um den qualitativen Unterschied zur menschlichen Sprache zu verdeutlichen.

Der Lerncomputer macht nicht nur mit dem Mikroprozessorsystem als Hardware bekannt. Die Sprache des Mikroprozessors und seine Arbeitsweise wird in diesem Handbuch beschrieben und man kann sogleich am Lerncomputer sein erworbenes Wissen überprüfen. So wird es möglich, verschiedene Programme auszuprobieren und im fortgeschrittenen Stadium dem "Alleskönner" Funktionen zu übertragen. Selbstverständlich handelt es sich beim Lerncomputer LC 80 um einen relativ kleinen Umfang der "Hardware".

Wer sich intensiv mit der Mikroprozessortechnik beschäftigen will, wird die im Handbuch genannten Erweiterungsmöglichkeiten ausnutzen oder sogar auf einer extra Leiterplatte eine spezielle Variante eines Mikroprozessorsystems aufbauen. Mit der Maschinensprache wird der Mikroprozessor "direkt" angesprochen. Um diese zu erlernen, muß man sich Kenntnisse über die
Eigenschaften der Bauelemente aneignen und kann sie dann maximal
ausnutzen. Das Erlernen der Maschinensprache qualifiziert zum
Programmierer, sowohl den Schüler als auch den Werktätigen unterschiedlichen Alters und Berufes. Diese werden nur im Grad der Beherrschung der "Kniffe" und speziellen Fähigkeiten der Mikroprozessoren unterschieden.

Für solche Anwender, die mit Hilfe der Mikroelektronik "nur" bestimmte Probleme der Mathematik, Biologie, Statistik usw. lösen wollen, wurden "problemorientierte" Sprachen geschaffen, die in einem Befehl mehrere Maschinenbefehle realisieren, wie "Basic", "Pascal" usw.

Die Übersetzung in die Maschinensprache übernimmt in diesem Fall das Mikroprozessorsystem selbst. Auch diese Aufgabe wurde ihm vom Menschen mit einer entsprechenden "Software" vorgegeben. Moderne Heimcomputer sind vorwiegend für Basic vorgesehen.

Das Charakteristische der Maschinensprache ist, daß sowohl alle Informationen als auch alle Befehle in Zahlenform codiert werden müssen. Wie jede andere Sprache erfordert dies ein fleißiges Lernen der Vokabeln. Dem gegenüber steht die einfache "Grammatik" und "Syntax".

Wer also die erste Hürde genommen hat, wird mit Schwung, nach und nach die weiteren nehmen, um dann zum immer größer werdenden Kreis der "Mikroprozessor-Fan's" zu gehören.

1. Grundbegriffe der Informationsdarstellung in Mikrocomputern

Um die Arbeitsweise eines Mikrocomputers und seine Programmierung zu verstehen, sind einige Grundkenntnisse notwendig. Diese werden im folgenden kurz erläutert.

1.1. Binärelemente

Informationen, wie Zahlen, Buchstaben, Symbole, Operationen müs-

sen so dargestellt werden, daß sie von einem Computer verstanden und verarbeitet werden können. Das ist möglich, wenn Elemente verwendet werden, die zwei gleichberechtigte Zustände annehmen können. Diese Elemente nennt man Binärelemente.

Beispiele dafür sind:

- Schalter, die offen oder geschlossen sein können
- Löcher oder keine Löcher an einer bestimmten Lochkartenstelle
- zwei mögliche Magnetisierungsrichtungen an einer Stelle auf einem Magnetband
- zwei verschiedene Spannungs- oder Strompegel
- abstrakte Symbole 0 und 1

Für die Darstellung der Informationen im Computer werden die Binärelemente O und 1 verwendet.

1.2. Bit, Byte und Wort

Das <u>Bit</u> ist die kleinste Darstellungseinheit für Informationen. Es ist eine Abkürzung von "binary digit", das mit Binärziffer übersetzt werden kann.

Man kann sich das Bit z. B. als eine Lampe vorstellen, die beliebig ein- oder ausgeschaltet werden kann. Das Zeichen "1" definiert die Lampe im eingeschalteten Zustand. Das Zeichen "0" steht für die ausgeschaltete Lampe.

Ein Bit ist also mit einem binären Zustand 1 bzw. 0 identisch. Informationen bestehen meistens aus mehreren Bits, die in einer Bitfolge zusammengefaßt sind. So stellt z. B. die Bitfolge 1000 die Dezimalziffer 8 dar.

Eine Anzahl von n aufeinanderfolgenden Bits, die ein Computer gleichzeitig verarbeiten kann, bilden ein Wort mit einer Länge von n-Bit.

Als Byte bezeichnet man ein Wort mit einer Länge von 8 Bit. Ein Byte besetzt in dem gebräuchlichen Mikrocomputersystem genau einen Speicherplatz. Es gibt bereits Computer, bei denen der Speicherplatz 16 oder sogar 32 Bit aufnehmen kann.

Um die Bezeichnung der einzelnen Bits innerhalb eines Bytes zu erleichtern, werden die Bits von O bis 7 numeriert:

B7 B6 B5 B4 B3 B2 B1 B0

Das höherwertigste Bit ist B7. Das niederwertigste Bit ist B0. Um eine Speicherzelle im Computer auffinden zu können, erhält diese eine "Hausnummer", die Speicheradresse. Diese Speicheradresse besteht aus einem Wort mit einer Länge von 16 Bit, das als Adreß-Wort bezeichnet wird.

1.3. Digitale Codes

Der digitale Code ist eine einfache Sprache, die ein Computer oder eine digitale Schaltung verstehen und verarbeiten kann. Er besteht aus einem System von Symbolen. Der digitale Code ermöglicht das Speichern, Verarbeiten und Weitergeben von Daten und Informationen.

So wie es verschiedene Sprachen gibt, unterscheidet man auch verschiedene Codeklassen:

- Codes, mit denen in digitalen Schaltungen bestimmte Operationen, z. B. Zählen, Addieren ausgeführt werden können. Beispiel: Binärcode (auch binäre Zeichendarstellung)
- Codes, mit denen die Dezimalziffern 0 ... 9 einzeln für die übersichtliche Darstellung im Computer binär verschlüsselt werden:
 - Beispiel: <u>BCD-Code</u> (Binary Codet Dezimal = Binärcode für Dezimalziffern)
- Codes, mit denen nicht nur Dezimalziffern, sondern auch alle Buchstaben des Alphabets, Operationen, Steuerzeichen usw. verschlüsselt werden können.
 - Beispiel: ASCII-Code (American Standard Code for Information Interchange = 7-Bit-Code für die Informationsverarbeitung). Zur Darstellung innerhalb des Computers wird das 8. Bit ergänzt und mit 0 belegt.
- Codes, die bewirken, daß der Computer eine vorgeschriebene Operationsfolge ausführt.

Beispiel: U 880-Befehlscode

Die genannten Code-Beispiele:

- Binärcode
- BCD-Code
- ASCII-Code
- U 880-Befehlscode

werden bei der Programmierung des U 880-Mikroprozessors verwendet.

Der ASCII-Code ist nicht für die interne Verarbeitung im Computer gedacht, sondern für den Datenaustausch mit peripheren (anschließbaren) Geräten, z. B. Lochbandleser (hier erscheint das 8. Bit als Paritätsbit).

Die anderen genannten Codes werden in den Abschnitten 1.4. und 1.5. genauer erläutert.

1.4. Zahlensysteme

1.4.1. Das reine Binärsystem

Wir sind gewöhnt, im Dezimalsystem zu denken. Die einzelnen Ziffern einer Zahl haben hier Werte, die von ihren Positionen abhängen.

2. B.
$$1 9 8 4$$

$$= 1.10^3 + 9.10^2 + 8.10^1 + 4.10^0$$

$$= 1.1000 + 9.100 + 8.10 + 4.1$$

$$= 1000 + 900 + 80 + 4$$

Das Dezimalsystem umfaßt die Ziffern 0 ... 9.

Die Basis eines Zahlensystems entspricht der Anzahl der verwendeten Ziffern. Die Basis des Dezimalsystems ist also 10. Da zur Darstellung im Computer nur die Binärelemente 0 und 1 benutzt werden können, muß das Dezimalsystem durch ein anderes Zahlensystem ersetzt werden.

Das reine Binärsystem (auch Dualsystem) entspricht der genannten Forderung. Es umfaßt die Binärelemente O und 1. Die Basis ist 2. Die einzelnen Ziffern einer Zahl haben ebenfalls positionsabhängige Wertigkeiten.

Z. B.:
$$1 1 0 1$$

$$= 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$$

$$= 13$$

Die Binärzahl 1101 entspricht der Dezimalzahl 13.

Da ein und dieselbe Zahl in verschiedenen Zahlensystemen durch unterschiedliche Ziffernfolgen dargestellt wird, muß ein Hinweis auf die Basis des Zahlensystems gegeben werden. Das geschieht durch Anfügen der Basis als Index oder durch Anfügen der Buchstaben

- D für das Dezimalsystem
- B für das Binärsystem

Unser Umrechnungsbeispiel könnte also auch kürzer geschrieben werden:

$$1101_2 = 13_{10}$$

oder
$$1101_{B} = 13_{D}$$

Soll die Umrechnung in umgekehrter Richtung erfolgen, also die Dezimalzahl in eine Dualzahl umgeformt werden, gibt es verschiedene Verfahren. Das gebräuchlichste ist für ganze Zahlen die wiederholte Division durch 2 (allgemeingültig wird durch die Basis des Zahlensystems, in das umgerechnet wird, dividiert).

Tabelle 1.1: Dezimal- und Binärzahlen 0 ... 16

Dezimalzahl	Binärzahl Wertigkeit 168421
0	0 0 0 0
1	0001
2	0010
3	0 0 1 1
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
16	10000

Wie aus der Tabelle ersichtlich ist, können in 4 Bit die Dezimalzahlen 0 ... 15 dargestellt werden. Für größere Dezimalzahlen werden in der Binärdarstellung mehr als 4 Bit benötigt.

Tabelle 1.2.: Überblick über die Zuordnung Dezimalzahl-Binärzahl im Bereich von 0 bis 65535

Dezimalza	ahl							B:	lni	ir	zal	ıl					
0																0	
1																1	
.5															1	0	
3															1	1	
4														1	0	0	
7														1	1	1	
8													1	0	0	0	
15													1	1	1	1	4 Bit
16												1	0	0	0	0	
31												1	1	1	1	1	
32											1	0	0	0	0	0	
63											1	1	1		1		
64										1	0				0	0	
127										1	1	1	1		-	1	
128									1	0	0	0	0	0	0	0	
255									1	1		1		1		1	8 Bit
256								1	0	0	0	0	0	0	0	0	
511								1	1	1	1	1	1	1	1	1.	
512							1	0		0				0	0	0	
1023							1	1		1	1	1	1	1	1	1	
1024						1	0	0	O	0	0	0	0	0	0	0	
2047						1	1	1	1	1	1	1	1	1	1	1	
2048					-	0				0						0	
4095					1	1		1			-	1	1	1		1	12 Bit
4096				1	0			0	0	0	0	0	0	0	0	.0	
8191				1		1		1	-				1	1	1		
8192			1	0			0	0		0	0	0	0	0	0	0	
16383			1	1	1	1	1	1	1	1	1	1	1	1	1	1	
16384		1	0			0				0	0		0			0	
32767		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
32768	1	_	0	0	0	0	0	0	0	0			0	0	0	0	
65535	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	16 B1t

Zur Abkürzung wurde definiert:

$$1 K = 2^{10} = 1024$$

Mit einem Adreßwort von 16 Bit Länge lassen sich, wie aus der Tabelle leicht ersichtlich wird, genau 65536 (0 ... 65535)

Speicherplätze, man könnte auch sagen 64 K Speicherplätze adressieren. Ein Speicherplatz hat eine Länge von 8 Bit = 1 Byte.

Deshalb spricht man auch von 64 KByte adressierbarem Speicherbereich.

1.4.2. Das Hexadezimalsystem

Will man sich eine achtstellige Bitreihe (1 Byte) innerhalb kürzester Zeit merken, ist das sehr schwierig. Deshalb hat man nach einer Vereinfachung gesucht. Man benutzt in der Mikrocomputertechnik speziell das Hexadezimalsystem, das eine wesentlich größere Übersicht als das reine Binärsystem bietet. Es wird auch als Sedezimalsystem bezeichnet. Das Hexadezimalsystem hat die Basis 16 = 2⁴. Es verwendet die Ziffern 0 ... 9, und da die Elemente nur 1 Zeichen lang sein sollen, ergänzt man die fehlenden 6 Zeichen durch die Buchstaben A ... F. Eine Hexadezimalziffer, oder kurz Hex-Ziffer, entspricht dem Wert einer 4-Bit-Binärzahl.

Tabelle 1.3.: 4- und 8-Bit-Binärzahlen und Hexadezimalzahlen

Dezimalzahl	Binärzahl	Hexadezimalzahl
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	01 00	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	00010000	10
31	00011111	1F
32	00100000	20
255	11111111	FF

Die Umwandlung einer Binärzahl in eine Hexadezimalzahl erfolgt so, daß man die Binärzahl fortlaufend von rechts nach links in Vierergruppen aufteilt. Dann wird jede Vierergruppe entsprechend der Zuordnungsvorschrift aus Tabelle 1.3. in eine Hexadezimalziffer umgerechnet.

Zur Kennzeichnung einer Hexadezimalzahl verwendet man ein nachgestelltes H oder die Fußnote 16.

1.5. Darstellungsarten von Zahlen im Byte

Ein Byte kann bei gleichem Inhalt völlig unterschiedliche Informationen enthalten.

1.5.1. Darstellungsart positive Binärzahl

Wenn man den Inhalt eines Bytes als reine Binärzahl betrachtet, so können Zahlen zwischen 0 und 255 dargestellt werden. Reine Binärzahlen werden als positive Zahlen gewertet. Soll ein Vorzeichen dazugehören, muß es extra abgespeichert werden. Die Darstellungsart positive Binärzahl wird benutzt für:

- Darstellung von Zahlen und Zählereignissen (Binärcode)
- Codierung von Ziffern, Buchstaben, Operations- und Steuerzeichen (ASCII-Code)
- Befehlscode des Mikroprozessors.

1.5.2. Darstellungsart Zweierkomplementzahl

Das Zweierkomplement wird benutzt, um in einem Byte eine negative Zahl darzustellen. Bei dieser Darstellungsart steht im höchst-wertigsten Bit (B7) eines Bytes das Vorzeichen. Positive Zahlen werden mit einer O, negative mit einer 1 gekennzeichnet. Dadurch wird der Zahlenbereich der reinen Binärzahl, der von O bis 255 reicht, in 2 Teilbereiche, die unsymmetrisch zu O sind, aufgespalten. Die beiden Teilbereiche umfassen dann -128 bis -1 und O bis +127. Das Zweierkomplement Z einer Sstelligen Binärzahl ist definiert als Differenz von 28 und Z

$$z = 2^8 - z$$

Ist Z positiv, so ist \overline{Z} die Darstellung von -Z. Ist Z negativ, so ist \overline{Z} die Darstellung von +Z. Das Zweierkomplement einer Binärzahl Z wird gebildet, indem Z bitweise negiert und anschließend eine 1 addiert wird.

bitweise

Beispiel:
$$1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ = -97_{10}$$

bitweise

Als einfache Methode kann man sich merken: nach der niederwertigsten 1 nach links werden alle Bits negiert.

1.5.3. Darstellungsart gepacktes BCD-Format

Um Zahlen gut lesbar darzustellen, wurde ein spezielles Format geschaffen, das man gepacktes BCD-Format (Binärcode für Dezimalziffern) nennt.

Dazu werden die 8 Bit eines Bytes in 2 Gruppen zu jeweils 4 Bit aufgeteilt, wie beim Einteilungsprinzip der Hexadezimalschreibweise. Damit könnten mit jedem Halbbyte Werte von 0 ... 15 erfaßt werden. Wird der Wertebereich auf 0 ... 9 eingeschränkt, so spricht man vom gepackten BCD-Format, weil jeweils 4 Bit eine Dezimalziffer zwischen 0 und 9 darstellen. In einem Byte können damit Dezimalzahlen zwischen 0 und 99 erfaßt werden. Für größere Zahlen müssen mehrere Bytes verwendet werden.

z. B.:

Für sehr rechnerintensive Aufgaben ist es unzweckmäßig, mit diesem Format zu arbeiten, da zusätzliche Dezimalkorrekturen durchgeführt werden müssen.

2. Beschreibung des Mikroprozessorsystems U 880

2.1. Übersicht über das Mikroprozessorsystem U 880

Das Mikroprozessorsystem U 880 besteht im wesentlichen aus folgenden Grundbausteinen:

T 880	- Central Prozessor Unit (zentrale Verarbeitungseinheit)	(CPU)	
υ 855	- Parallel Input Output (parallele Ein-/Ausgabe)	(PIO)	
ប 856	- <u>Serial Input Output</u> (serielle Ein-/Ausgabe)	(SIO)	eripherie- eausteine
ช 857	- Counter Timer Circuit (Zähler/Zeitgeber)	(CTC)	

Jeder Mikrorechner besteht aus mindestens einer CPU und Speicherschaltkreisen zur Programm- und Testwertspeicherung (ROM, EPROM). Sinnvollerweise wird dieser Aufbau ergänzt, um verschiedene Ein- und Ausgaben realisieren zu können. Dazu werden ein oder mehrere PIO, SIO und CTC benutzt, die auch Peripherie-Schaltkreise genannt werden. Zusätzliche Speicherschaltkreise dienen als Arbeitsspeicher (RAM).

Der Aufbau der Schaltkreise beruht auf einem einheitlichen Konzept (Systemkonzept des U 880), das folgende Merkmale aufweist:

- Austausch von Adressen zwischen der CPU und den Peripherieschaltkreisen und dem Speicher über den Adressbus. Austausch von Daten über den Datenbus, Austausch von Steuersignalen über eine Reihe von Steuerleitungen.
- Binheitliches System zur Programmunterbrechung durch die Peripherieschaltkreise (Interrupt) mit der Möglichkeit.

die Peripherieschaltkreise für mehrere gleichzeitige Interrupts und einem bestimmten Vorrangsystem (Prioritätskaskade) zu verketten.

- Umfangreiche Möglichkeiten zur Programmierung der besonderen Eigenschaften der einzelnen Schaltkreise.
- Gemeinsamer Systemtakt bis zu 4 MHz je nach Ausführungsvariante, durch den die Arbeitsgeschwindigkeit der Grundschritte bestimmt wird.
- Einheitliche Spannungsversorgung von +5 V, abgestimmte Logik-Pegel.

Bild 2.1. Grundstruktur eines mit Bausteinen aus dem System U 880 aufgebauten Mikrorechners

Die <u>U 880-CPU</u> übernimmt als Kernstück des gesamten Mikroprozessorsystems

- die Überwachung des aufgebauten Mikrorechners
- die Befehlsabarbeitung und
- den überwiegenden Teil der Interruptsteuerung.

Es handelt sich beim U 880 um eine CPU, die mit Befehlswörtern variabler Länge (1, 2, 3 oder 4 Byte) standardmäßig Datenwörter von 8 Bit (= 1 Byte) verarbeiten kann, aber auch 1, 4 und 16 Bit.

Neben den Befehlen zur Verarbeitung der Daten stehen eine Fülle von Befehlen zur Programmorganisation zur Verfügung.

Datenquelle oder Datensenke können dabei die CPU, die Peripherieschaltkreise oder die Speicher sein. Der Datentransport (Datentransfer) innerhalb des Systems erfolgt über die CPU.

(Ausnahme: Datentransfer zur Peripherie mittels direktem Speicherzugriff (DMA-Betrieb))

Eine genaue Beschreibung der CPU und ihrer Arbeitsweise folgt im Abschnitt 2.2.

Die Peripherieschaltkreise werden hier nur kurz vorgestellt und im Abschnitt "Programmierung der Peripheriebausteine" genauer erläutert.

U 855 - Parallele Ein-/Ausgabe (PIO)

Beim U 855 handelt es sich um einen Schaltkreis, der über zwei 8-Bit-Datenkanäle (Ports) den parallelen Datenaustausch (8 Bit parallel pro Kanal) zwischen Mikroprozessor und Peripherie realisiert.

Parallele Ein-/Ausgabe ist in der Praxis erforderlich zum Anschluß von Lochstreifenlesern, -stanzern, Druckern sowie andere Formen der digitalen Ein- und Ausgabe, z. B. Tastaturen.

Der PIO kann über die Steuerbefehle, die er von der CPU erhält, an die jeweilige Aufgabe (Betriebsart) angepaßt werden. Der U 855 enthält (wie auch der U 856) ein Signal zur Quittung (Handshake) bei Datenübernahme, -übergabe und den restlichen, nicht in der CPU befindlichen Teil des Interruptsystems. Der U 855 wird in der Zusammenschaltung zum Mikrorechner mit den anderen Peripheriebausteinen in eine Prioriätskaskade eingebunden (Daisy chain), die der im jeweiligen Einsatzfall gewünschten Vorrangstruktur der angeschlossenen Peripheriegeräte entsprechen muß.

U 856 - Serielle Ein-/Ausgabe (SIO)

Der U 856 dient zum Bit-seriellen Datenaustausch (ein Bit nach dem anderen) zwischen Ein-/Ausgabegeräten und dem Mikroprozessor. Solche Geräte sind u. a. Fernschreiber und Floppy-Disk's, aber auch serielle Prozeßdatenübermittlungskanäle.

Der SIO-Baustein enthält zwei serielle 1-Bit-Kanäle, die unabhängig voneinander sowohl Daten senden als auch empfangen können.

Der Datenaustausch zwischen dem U 856 und dem U 880 erfolgt (wie beim U 855) in Byte-serieller (8-Bit-paralleler) Form. Die Umwandlung Bit-serieller Datenwörter in Byte-serielle Datenwörter und umgekehrt, einschließlich einer doppelten 8-Bit-Empfangspufferung, erfolgt in dem seriellen Ein-/Ausgabe-Baustein (SIO).

Die maximale Datenübertragungsrate, eine wichtige Kenngröße jedes seriellen Datenkansls, liegt bei etwa 500 KBit/s.

Das beim U855 zur Quittungslogik und zum Interruptregime gesagte gilt auch für den U856.

U 857 - Zeitgeber/Zähler (CTC)

Der U 857 kann als Zeitgeber oder als Zähler eingesetzt und programmiert werden.

In der Funktion Zeitgeber ermöglicht er dem Anwender, die über ei Interruptsignal ausgelöste Bearbeitung mehrerer zeitzyklischer Echtzeitaufgaben oder z. B. den Aufbau einer software-gesteuerter Echtzeituhr in der CPU.

Die Funktion Zähler realisiert das Abarbeiten voreingestellter Rückwärtszähler mit maximal 256 externen Einzelimpulsen. Beim Erreichen des Zählerstandes Null erfolgt eine Interruptmeldung.

Der CTC-Baustein ist intern aus vier voneinander unabhängigen 8-Bit-Kanälen aufgebaut, die auch durch entsprechende Schaltungsmaßnahmen miteinander verkettet werden können.

Speicherbauelemente (ROM, EPROM, RAM)

Für den Aufbau von Mikrorechnersystemen sind neben den Grundbausteinen auch Speicherbauelemente notwendig. Meist werden die generell byteorientierten Programmspeicher, die vor allem als Festwertspeicher (ROM, read only memory) ausgeführt sind, und die Datenspeicher die als RAM-Lese-Schreib-Speicher ausgeführt sind, zu einem einheitlichen Arbeitsspeicher zusammengefaßt, wobei der Adreßraum für ROM- und für RAM-Bereiche genutzt wird.

Die Gruppe der Festwertspeicher ROM hat die Aufgabe, als Nur-Iese-Speicher einmal eingeschriebene Daten oder Befehle zerstörungs frei für ein beliebig häufiges Lesen bereitzustellen.

Die wichtigsten Arten der Festwertspeicher sind:

- ROM (read only memory)

Der eigentliche ROM ist ein im letzten Fertigungsschritt masker programmierter Festwertspeicher mit nicht mehr veränderlichem Inhalt (Bitmuster).

- PROM (programmable read only memory)

Vom Anwender mit einem speziellen Programmiergerät programmierbare Festwertspeicher, deren eingeschriebener Inhalt ebenfalls

Z. B.: U 505

nicht mehr gelöscht werden kann.

- EPROM (erasable PROM)

Vom Anwender mit einem speziellen Programmiergerät elektrisch programmierbare Festwertspeicher, deren Inhalt mit Hilfe von UV-Licht global gelöscht werden kann.

Z. B.: U 555

- RAM (random access memory)

Speicher mit wahlfreiem Zugriff (lesen oder schreiben), haben die Aufgabe, Daten oder Befehle während des Rechenbetriebes des Mikroprozessors aufzunehmen und wieder bereitzustellen. Mit dem Abschalten der Betriebsspannung verlieren sie ihre Information, wenn nicht spezielle Maßnahmen zur Betriebsspannungspufferung vorgesehen sind. Bezüglich ihrer Systemeigenschaften unterscheiden sich RAM's nicht wesentlich.

Während ROM's fast ausschließlich Byte-organisiert sind, haben RAM's sowohl 1-Bit- als auch 4- und 8-Bit-Verarbeitungsbreite. Z. B.: U-202, U-214, U-224

Die Speicherbauelemente unterscheiden sich weiterhin nach

- Speicherdichte
- Stromaufnahme
- Geschwindigkeit
- Art des Datenaustausches
- Art der Steuerung
- Art der Datenerhaltung.

International gibt es ein umfangreiches Sortiment von Speicherbauelementen.

2.2. Aufbau und Arbeitsweise des Mikroprozessors U 880

Die CPU des Mikroprozessorsystems U 880 ist neben dem leistungsfähigen Befehlsvorrat und der hohen Verarbeitungsgeschwindigkeit durch einen umfangreichen Registersatz (Bild 2.2.) gekennzeichnet. Register sind schnelle Zwischenspeicher, mit parallelem Zugriff zu den Bits des gespeicherten Wertes.

Die CPU enthält 208 Bits im internen RAM, zu denen der Programmierer Zugriff hat. Bild 2.3. illustriert, wie dieser Speicher in 18 Register zu 8 Bit und 4 Register zu 16 Bit unterteilt ist.

Bild 2.2.: Blockschaltbild der CPU - U 880

Alle U 880-Register sind als statische RAM's ausgeführt. Die Register umfassen zwei Sätze von 6 Allgebrauchsregistern, die individuell als 8-Bit-Register oder in Paaren als 16-Bit-Register verwendet werden können. Ebenfalls sind zwei Akkumulatoren und zwei Flagregister vorhanden (Die Registerstruktur wird in Abschnitt 2.2.1. erläutert.).

Alternativsatz

Akkumu- lator A	Flags F	Akkumu- lator A'	Flags F'
В	С	В	C'
. D	E	ים י	E'
H	T.	H'	L'

Allgebrauchsregister

Interrupt Vektor I	Speicher Refresh R
Index Register	IX
Index Register	IY
Keller-Zeiger	SP
Befehls-Zähler	PC

Spezialregister

Bild 2.3.: Aufbau des CPU-Registers

Neben den allgemeinen Registern existieren zwei Indexregister (IX und IY), ein Keller-Zeiger (Stack-Pointer = SP), ein Befehls-Zähler (PC), ein Interruptvektorenregister (I) und ein Speicher-Refresh-Register (R). Die Kommunikation des Mikroprozessors mit seiner Umwelt läuft über 40 Anschlußbeine (Pins) als 8-Bit-Datenbus, als 16-Bit-Adressenbus und eine Reihe von Steuersignalen (Tabelle: 2.1.).

Tabelle 2.1. Signalbelegung U 880

Signal- bezeichnung	Erläuterung
A ₁₅ A ₀ D ₇ D ₀ MREQ	Adressensignale 16 Bit Datensignale 8 Bit MEMORY REQUEST kennzeichnet, daß auf dem Adref bus eine Speicher-Lese- oder eine Speicher- Schreib-Adresse ansteht.
TORQ	IN/OUT REQUEST kennzeichnet, daß auf dem Adref bus eine Ein-/Ausgabe-Portadresse ansteht. IORQ wird außerdem im Interruptakzeptierungs- zyklus verwendet.
RD	READ Daten lesen
WR	WRITE Daten schreiben
M1	Befehlslesezykluskennzeichen (fetch-cycle)
BUSRQ	BUS REQUEST Mitteilung an den U 880, daß Adref
	Daten- und Steuersignalleitungen der CPU ent-
	zogen werden sollen (z. B. für DMA)
BUSAK	BUS ACKNOWLEDGE Antwort des U 880 auf BUSRQ.
	Die angeforderten Signalleitungen sind frei.
RFSH	REFRESH Auffrischungssignal für dynamische RAN
	Speicher
RESET	Ricksetzen der CPU (IFF 1, IFF 2, PC, I, R=0)
HALT	Stop der Befehlsabarbeitung und zyklische Aus-
	führung intern erzeugter NOP-Instruktionen.
	Der U 880 ist nur durch RESET, NMI oder INT aus dem HALT zu befreien.
WATT	CPU geht in einen Wartestand
INT	Interruptsignal (durch Programm gesteuert)
NMI	nichtmaskierbares Interruptsignal (nicht durch
<u>-</u>	Programm gesteuert)
C	CLOCK Takteingang
u _{CC}	Betriebsspannung +5 V
USS (GND)	Masse

(Begriffserläuterung für Interrupt siehe 2.2.3.)

2.2.1. Registerstruktur

Spezialregister

Befehlszähler (PC = Program Counter)

Der Befehlszähler enthält die 16-Bit-Adresse des aktuellen Befehls, der vom Speicher zu holen ist. Der Befehlszähler wird automatisch erhöht, nachdem sein Inhalt in die Adressenleitung überführt worden ist. Wenn Programmsprünge auftreten, wird der neue Wert automatisch in den PC überführt.

Die 16 Bit dieses Registers ermöglichen die direkte Adressierung von 65536 Speicherplätzen (64 K).

Keller-Zeiger (SP = Stackpointer)

Der Zeiger enthält die 16-Bit-Adresse des aktuellen obersten Wertes eines Kellers, der irgendwo in einem externen System-RAM untergebracht ist. Die Anordnung und Festlegung seiner Größe wird vom Programmierer übernommen. Dieser externe Kellerspeicher ist als "zuletzt hinein, zuerst heraus" (Last in First Out-LIFO-Datei) organisiert.

Daten können durch die Ausführung der PUSH- oder POP-Befehle, von speziellen CPU-Registern ausgekellert werden oder aus dem Keller in bestimmte CPU-Register zurückgeholt werden.

Die aus dem Keller geholten Daten sind immer die, die als letzte zuvor gekellert wurden. Der Keller ermöglicht eine einfache Gestaltung von Mehrfach-Interrupts, unbegrenzter Unterprogrammtechnik und Vereinfachungen bei vielen Arten von Datenbehandlungen.

Zwei Indexregister (IX + IY)

Die zwei unabhängigen Register enthalten eine 16-Bit-Basis-Adresse, die bei indizierter Adressierung (siehe 3.3.) verwendet werden. Dabei wird ein Indexregister als Basis benutzt, um das Gebiet im Speicher festzulegen, von dem aus Daten gespeichert oder ent-

nommen werden sollen. Ein zusätzliches Byte ist in indizierten B fehlen enthalten, um die Entfernung von dieser Basis anzugeben. Diese Entfernung ist als Zweierkomplement der entsprechenden Zah spezifiziert. Diese Adressierungsart vereinfacht in starkem Maße viele Typen von Programmen, speziell dort, wo Tabellen-Daten benutzt werden.

Außerdem können die Indexregister auch als 16-Bit-Allgebrauchsregister benutzt werden.

Interrupt-Vektor-Register (I)

Die CPU U 880 kann so betrieben werden, daß ein indirekter Aufru zu irgendeinem Speicherplatz in Abhängigkeit von einem Interrupt erreicht werden kann. Das Register I enthält dann die höchsten 8 Bits der indirekten Adresse, während die den Interrupt auslöse de Schaltung (Peripheriebaustein) die unteren 8 Bits der Adresse liefert. Diese Verfahrensweise ermöglicht es, Interrupt-Routinen dynamisch irgendwo im Speicher mit absolut geringster Zugriffszeit zu dieser Routine abzuspeichern.

Speicher-Auffrisch-Register (R)

Die CPU U 880 enthält ein Speicher-Auffrisch-Register, das dafür sorgt, daß dynamische Speicher genauso benutzt werden können wie statische. Dieses 7-Bit-Register wird automatisch nach jedem Befehlsaufruf erhöht. Die Daten im Auffrisch-Zähler werden auf den unteren Teil des Adressenbusses mit einem Refresh-Steuersignal abgesetzt, während die CPU den aufgerufenen Befehl dekodiert und ausführt. Diese Art der Auffrischung ist vollständig programmtransparent und senkt nicht die Arbeitsgeschwindigkeit der CPU. Der Programmierer kann das Register R zu Testzwecken laden, aber das Register wird normalerweise nicht vom Programmierer benutzt.

Akkumulator und Flag-Register

Die CFU enthält zwei unabhängige 8-Bit-Akkumulatoren A, A' und verbunden damit zwei 8-Bit-Flag-Register F, F'. Der Akkumulator

enthält die Ergebnisse der 8-Bit-Rechenoperationen oder logischen Operationen, wohingegen die Flag-Register die speziellen Bedingungen für die 8- oder 16-Bit-Operationen anzeigen, z. B. wenn das Ergebnis einer Operation gleich Null oder ungleich Null ist. Der Programmierer wählt das Akkumulator-Flag-Paar, mit dem er arbeiten möchte, durch einen einzigen Tausch-Befehl, so daß er mit jedem Paar arbeiten kann.

Allgebrauchsregister

Es gibt zwei zueinander passende Sätze von Allgebrauchsregistern. Jeder Satz enthält sechs 8-Bit-Register, die einzeln als 8-Bit-Register oder paarweise als 16-Bit-Register durch den Programmierer verwendet werden können. Der eine Satz wird mit BC, DE und HL und der Alternativsatz mit BC', DE' und HL' bezeichnet.

Zu jeder beliebigen Zeit kann der Programmierer einen Satz mittels eines Austauschbefehls zur Benutzung auswählen.

In Systemen, wo schnelle Interruptbehandlung erforderlich ist, kann ein Satz von Allgebrauchsregister und ein Akkumulator mit Steuerflags für die Behandlung dieser schnellen Routinen reserviert werden. Nur ein einfacher Austauschbefehl ist erforderlich, um die Anfangsbedingung der Routine zu laden. Das verkürzt wesentlich die Interruptbehandlungszeit. Diese Allgebrauchsregister sind in einem großen Anwendungsbereich durch den Programmierer zu nutzen. Sie vereinfachen auch die Programmierung, besonders bei auf ROM orientierten Systemen, bei denen nur ein kleiner externer Lese-/Schreibspeicherbereich verfügbar ist.

Neben den CPU-Registern existieren, wie aus Bild 2.2. ersichtlich ist, noch weitere Funktionseinheiten.

Rechenwerk und logische Einheit (ALU = Arithmetical Logical Unit)

Die arithmetischen und logischen 8-Bit-Befehle der CPU werden in der ALU ausgeführt. Intern steht die ALU mit den Registern und dem internen Datenbus in Verbindung. Die Funktionsarten, die durch

die ALU ausgeführt werden, sind folgende:

- Addition
- Subtraktion
- logisches UND
- logisches ODER
- logisches exklusiv ODER
- Vergleichen
- Links-/Rechtsverschiebung oder zyklische Verschiebung (arithmetisch und logisch)
- Erhöhen um 1
- Erniedrigen um 1
- Bit-Setzen
- Bit-Löschen
- Bit-Testen

Befehlsregister und CPU-Steuerung

Wenn ein Befehl vom Speicher geholt worden ist, wird er ins Befehlsregister geladen und dekodiert. Das Steuerteil führt diese Funktion durch, erzeugt alle Signale die erforderlich sind, um Daten von oder zu den Registern zu lesen oder zu schreiben, die ALU zu steuern, gibt diese Signale aus und liefert alle extern erforderlichen Steuersignale.

2.2.2. Interruptsystem

Der Zweck eines Interrupts besteht darin, es den peripheren Geräten zu ermöglichen, die CPU-Operation in einer sinnvollen Weise zu unterbrechen und die CPU zu zwingen, daß eine Routine zur Bedienung der Peripherie (Interruptservice-Routine) gestartet wird. Gewöhnlich sind in diesen Routinen Austauschoperationen für Daten Status- oder Steuerinformationen zwischen der CPU und der Periphe rie eingeschlossen. Wenn die Bedienungsroutine abgearbeitet ist, kehrt die CPU zu der Operation zurück, bei der sie unterbrochen wurde.

Interrupt-Annahme/-Abweisung

Die CPU U 880 hat zwei Interrupteingange, einen durch die Software maskierbaren (INT) und einen nichtmaskierbaren Interrupt (NMI). Die Annahme des nichtmaskierbaren Interrupts kann durch den Programmierer nicht verhindert werden. Er wird immer angenommen, wenn ein peripheres Gerät ihn fordert. Dieser Interrupt wird i. a. für die wichtigsten Funktionen reserviert, die beim Auftreten sofort bedient werden müssen, z. B. ein bevorstehender Stromausfall.

Neben den zwei Interrupteingängen besitzt die CPU noch den BUSRQ-Steuereingang für die Busübergabe, der speziell bei DMA-Betrieb Verwendung findet. Dieser Steuereingang hat gegenüber allen Interruptanforderungen höchste Priorität.

Insgesamt ergibt sich in der CPU folgende Prioritätsbewertung:

- 1. Priorität: Bus-Request (BUSRQ)
- 2. " nichtmaskierbarer Interrupt (NMI)
- 3. " maskierbarer Interrupt (INT)

Der maskierbare Interrupt kann durch den Programmierer selektiv zugelassen oder abgewiesen werden. Damit hat der Programmierer die Möglichkeit, Interrupte abzuweisen, wenn während bestimmter Perioden ein Verhalten realisieren muß, in dem ein Interrupt nicht zulässig ist.

In der CPU U 880 gibt es ein Annahme-Flip-Flop (IFF1), das durch den Programmierer mit den Befehlen Interrupt-Annahme (Enable interrupt-EI) bzw. Interrupt-Abweisen (Disable interrupt-DI) ein-bzw. ausgeschaltet werden kann. Wenn IFF1 ausgeschaltet ist, kann durch die CPU kein Interrupt angenommen werden.

Die Programmierung von Interrupts wird in Abschnitt 4. ausführlich beschrieben.

Tatsächlich gibt es in der CPU U 880 2 Annahme-Flip-Flops:

IFF1 und IFF2

IFF1

IFF2

Verhindert aktuell die Annahme von Interrupts zeitweiliger Speicherplatz für IFF1

Die Stellung von IFF1 wird benutzt, um aktuelle Interrupts abzuweisen, während IFF2 nur als zeitweiliger Speicherplatz für IFF1 dient. Der Zweck, IFF1 zu speichern, ist folgender:

Ein RESET der CPU schaltet u. a. IFF1 und IFF2 aus, so daß Interrupts abgewiesen werden. Sie können zu beliebiger Zeit durch den Programmierer mit dem EI-Befehl zugelassen werden. Wenn ein EI-Befehl ausgeführt ist, wird eine schon anliegende Interruptanforderung erst nach der Abarbeitung des auf EI folgenden Befehls angenommen. Diese Verzögerung um einen Befehl ist für den Fall erforderlich, wenn der auf EI folgende ein Rücksprung (return) ist, da ein Interrupt nicht zugelassen werden kann, bis der Rücksprung abgearbeitet ist.

Der EI-Befehl setzt sowohl IFF1 als auch IFF2 in den Annahme-Zustand. Wenn ein Interrupt durch die CFU angenommen wird, werden sowohl IFF1 als auch IFF2 automatisch ausgeschaltet, um weitere Interrupts zu verhindern, bis der Programmierer einen neuen EI-Befehl benutzt, d. h. in den oben genannten Fällen sind IFF1 und IFF2 immer gleich.

Der Zweck, in IFF2 den Zustand von IFF1 zu speichern, wird deutlich, wenn ein nichtmaskierbarer Interrupt auftritt. Wenn ein nichtmaskierbarer Interrupt angenommen wird, wird IFF1 ausgeschaltet, um weitere Interrupts zu verhindern, bis der Programmierer sie wieder zulassen will. Folglich werden, nachdem ein nichtmaskierbarer Interrupt angenommen wurde, maskierbare Interrupts abgewiesen, aber der vorherige Zustand von IFF1 ist gerettet worden, so daß der komplette Zustand der CPU, wie er vor dem nichtmaskierbaren Interrupt bestanden hatte, wieder hergestellt werden kann. Wenn der Befehl "Laden des Akkumulators vom Register

I" (LD A,I) oder der Befehl "Laden des Akkumulators vom Register R" (LD A,R) ausgeführt ist, ist der Zustand von IFF2 in das Paritäts-Flag überführt worden, wo er getestet oder gespeichert werden kann.

Eine zweite Methode, den Zustand von IFF1 zurückzugewinnen, ist die Abarbeitung des Befehls "Rücksprung vom nichtmaskierbaren Interrupt" (RETN). Da dieser Befehl anzeigt, daß die Behandlungsroutine eines nichtmaskierbaren Interrupts abgearbeitet ist, wird der Inhalt von IFF2 nach IFF1 überführt, so daß der Zustand von IFF1 automatisch so wiederhergestellt ist, wie er vor der Annahme des nichtmaskierbaren Interrupts bestanden hatte.

Nachfolgend ist die Wirkung verschiedener Befehle auf die zwei Interrupt-Annahme-Flip-Flops zusammengestellt:

Aktion	IFF1	IFF2	_
RESET	0	0	
DI	0	0	
EI	I	ı	
LD A,I	•		IFF2 Paritäts-Flag
LD A,R	•	•	IFF2 " "
Annahme von NMI	0	•	
RETN	IFF2		IFF2 → IFF1

"." bedeutet keine Veränderung

Da die NMI-Leitung flankengetriggert ist und ihre negativen Flanken ein NMI-Eingangs-Flip-Flop (NMI-EFF) setzen, wird beim Test der NMI-Leitung eigentlich das NMI-Eingangs-Flip-Flop abgefragt und ausgewertet.

Bei einem gesetzten NMI-Eingangs-Flip-Flop werden dann das interne NMI-Flip-Flop gesetzt und das INT-Annahme-Flip-Flop IFF1 rück-gesetzt. Wenn das NMI-Eingangs-Flip-Flop seinerseits nicht gesetzt ist, prüft die CPU nun den Zustand der INT-Leitung und setzt bei einer aktiven INT-Leitung und einer nicht aktiven Interruptverhinderung (IFF1 = 0) das interne INT-Flip-Flop.

Die Abarbeitung erfolgt dann in der Reihenfolge BUSRQ-F/F und INT-F/F.

Interrupt-Beantwortung

CPU

- nichtmaskierbar

Ein nichtmaskierbarer Interrupt wird durch die CFU zu jeder Zeit angenommen. Wenn dieser auftritt, ignoriert die CFU den nächsten aufzurufenden Befehl und führt dafür einen RESTART zur Adresse 0066H durch. Folglich verhält sie sich genauso, als hätte sie einen RESTART-Befehl aufgerufen, mit dem Unterschied, daß diese Adresse keine der 8 Software-RESTART-Adressen ist.

Ein RESTART ist ein Unterprogrammaufruf von einer bestimmten Adresse im Anfangsbereich des Speichers.

maskierbar

Die CPU kann so programmiert werden, daß sie auf einen maskierbaren Interrupt in einer der drei möglichen Arten (Mode) antwortet.

Mode 0

Bei diesem Mode kann die den Interrupt anfordernde Schaltung einen Befehl auf den Datenbus ausgeben und die CPU wird ihn ausführen. Folglich liefert die den Interrupt anfordernde Schaltung den nächsten abzuarbeitenden Befehl anstelle des Speichers.

Meist wird das ein RESTART-Befehl sein, weil die den Interrupt anfordernde Schaltung nur einen Ein-Byte-Befehl einspeisen kann.

Mit anderen Worten, es kann kein beliebiger anderer Befehl, wie z. B. ein 3-Byte-Unterprogrammaufruf ausgeführt werden. Die Taktzahl für die Ausführung dieses Befehls ist um 2 Takte größer

als die normale Zahl für diesen Befehl. Das kommt daher, weil die CPU automatisch 2 WAIT-Zustände in den Interrupt-Antwortzyklus einfügt, um der externen Logikkette (daisy chain) genügend Zeit für die Prioritätssteuerung zur Verfügung zu stellen.

Nach dem RESET ist die CFU immer automatisch auf Mode O gesetzt.

Mode 1

Wenn dieser Mode durch den Programmierer ausgewählt ist, wird die CPU einen Interrupt mit einem RESTART 0038H beantworten. Folglich ist diese Antwort mit der auf einen nichtmaskierbaren Interrupt identisch mit der Ausnahme, daß jetzt die Adresse 0038H aufgerufen wird. Ein weiterer Unterschied besteht darin, daß die erforderliche Zyklenzahl um 2 gegenüber den normalen RESTART entsprechend den zwei eingeführten WAIT-Zuständen vergrößert ist.

Mode 2

Dieser Mode ist die leistungsfähigste der Interrupt-Antwort-Varianten.

Mit einem einzigen 8-Bit-Byte kann vom Benutzer ein indirekter Unterprogrammaufruf zu einem beliebigen Speicherplatz durchgeführt werden. Bei diesem Mode stellt der Programmierer eine Tabelle mit 16-Bit-Startadressen für jede Interrupt-Behandlungsroutine auf. Diese Tabelle kann irgendwo im Speicher untergebracht sein. Wenn ein Interrupt angenommen wird, muß ein 16-Bit-Zeiger gebildet werden, um die Startadresse der gewünschten Interrupt-Behandlungsroutine aus der Tabelle holen zu können. Die oberen 8 Bit des Zeigers werden aus dem Inhalt des I-Registers gebildet. Das Register I muß zuvor mit dem vom Programmierer gewünschten Wert geladen werden, d. h. LD I.A. Zu beachten ist, daß ein RESET der CPU auch das Register I zurückstellt, d. h., daß dort eine Null eingeschrieben wird. Die unteren 8 Bit müssen von der den Interrupt anfordernden Schaltung geliefert werden, wobei das niederwertigste Bit eine O sein muß. Das ist deshalb notwendig, weil der 16-Bit-Zeiger dazu verwendet wird, zwei aufeinanderfolgende Bytes aus einer Interrupttabelle zu holen, um die vollständige 16-Bit-Startadresse der Behandlungsroutine zu bilden. Die Startadressen der Interrupt-Routinen müssen in der Tabelle immer an geraden Speicherplätzen beginnen.

Startadressen-Tabelle der Interrupt-Service-Routinen

unterer Teil	gewünschte Startadresse ausge- wählt durch				
	I-Reg.	8 Bits von Peripherie			
	Inhalt	Bit 0 = 0			
	oberer Teil	unterer Teil			

Das erste Byte jeder Adresse in dieser Tabelle ist der niederwertige Teil der Adresse. Der Programmierer muß selbstverständlich diese Tabelle mit den gewünschten Adressen füllen, bevor ein Interrupt angenommen werden darf.

Zu beachten ist, daß diese Tabelle zu jeder Zeit durch den Programmierer verändert werden kann, wenn verschiedene periphere Schaltungen mit verschiedenen Behandlungsroutinen bedient werden sollen. Voraussetzung dafür ist, daß die Tabelle in einem Lese-Schreib-Speicher untergebracht ist.

Wenn eine den Interrupt anfordernde Schaltung den unteren Teil des Zeigers liefert, kellert die CPU den Befehlszählerstand automatisch. Sie holt dann die Startadresse aus der Tabelle und führt einen Sprung zu dieser Adresse aus. Dieser Antwort-Mode benötigt 19-Takt-Perioden (7, um die unteren 8 Bit von der den Interrupt anfordernden Schaltung aufzurufen; 6, um den Befehlszähler zu retten und 6, um die Sprungadresse zu bilden).

Zu beachten ist, daß die peripheren Schaltungen des U 880-Systems für die Interrupt-Prioritäten eine Logikkettenstruktur (daisy chain structure) aufweisen. Der Schaltkreis, der den In-

terrupt anfordert, liefert der CPU während der Interrupt-Annahme automatisch einen programmierten Vektor. Nähere Informationen dazu können aus dem Abschnitt über die Peripherieschaltkreise entnommen werden.

2.3. Aufbau und Arbeitsweise des PIO U 855

2.3.1. Schaltkreisbeschreibung

Der PIO U 855 ist ein Parallel-Ein-/Ausgabe-Baustein mit zwei TTL-kompatiblen Kanälen (TTL=Transistor-Transistor-Logik). Er stellt die Verbindung zwischen der CPU und peripheren Geräten her, ohne daß eine zusätzliche Logik erforderlich ist.

Die zwei 8 Bit-bidirektionalen Kanäle (Ports) sind mit Einrichtungen für Quittungsbetrieb ("handshaking") versehen.

Eigenschaften des U 855 D:

- Interruptmöglichkeit im Quittungsbetrieb für schnelle Anforderungsbearbeitung
- Folgende Betriebsarten sind möglich:

Byte-Ausgabe (Betriebsart 0)

Byte-Eingabe (Betriebsart 1)

Byte-Ein/Ausgabe (bidirektionaler Betrieb, nur für Port A möglich, Betriebsart 2)

Bit-Ein/Ausgabe (Betriebsart 3)

- Interruptbearbeitung kann den Bedingungen des peripheren Gerätes angepaßt programmiert werden.
- Automatische Interrupt-Vektorerzeugung und Prioritätskodierung durch Kaskadierung der Bausteine (daisy-chain priority interrupt logic).
- Ausgänge des Ports B für den direkten Anschluß von Darlington-Transistoren geeignet.

- Alle Ein- und Ausgänge sind TTL-kompatibel.

In Bild 2.4. ist das Blockschaltbild des U 855 dargestellt. Es sind enthalten:

- Interface zur CPU
- Logik für I/O-Port A und B
- interne Steuerlogik
- Interrupt-Steuerlogik

Bild 2.4.: Blockschaltbild der inneren Struktur des U 855 D

Bild 2.5. zeigt einen einzelnen Ein-Ausgabe-Kanal, bestehend aus:

- 2-Bit-Betriebsarten-Register; wird von der CPU zur Festlegung auf eine der 4 Betriebsarten geladen
- 8-Bit-Ausgabe-Register; dient der Datenübertragung von der CPU an die Peripherie
- 8-Bit-Eingabe-Register;
 dient der Datenübertragung von der Peripherie an die CFU
- 2-Bit-Maskierungssteuerregister (nur Betriebsart 3); wird von der CPU geladen, um festzulegen, welcher Zustand der peripheren Schaltung aktiv sein soll (Low oder High) und welche Verknüpfungsbedingung zur Interrupt-Signal-Erzeugung die einflußnehmenden Anschlüsse erfüllen sollen (UND-Bedingung, wenn alle einflußnehmenden Anschlüsse aktiv sind, bzw. ODER-Bedingung, wenn mindestens einer der einflußnehmenden Anschlüsse aktiv ist)
- 8-Bit-Maskierungsregister (nur Betriebsart 3); wird von der CPU geladen; mit seinem Inhalt wird festgelegt, welche Port-Anschlüsse auf die Erzeugung einer Interrupt-Anforderung Einfluß nehmen
- 8-Bit-Ein-Ausgabe-Auswahlregister (nur Betriebsart 3); wird von der CFU geladen; mit seinem Inhalt wird definiert, welche Anschlüsse des Ports Ausgänge und welche Eingänge sein sollen

Außerdem ist jedem Port ein 7-Bit-Vektorregister zugeordnet, welches von der CPU zur Festlegung des niederwertigen Teils (mit Ausnahme von Bit O) des Interrupt-Vektors geladen wird. Mit dessen Hilfe wird später die Adresse der zugehörigen Interrupt-Service-Routine aufgesucht.

Bild 2.5.: Blockschaltbild eines Kanals

Die genaue Signalbelegung und Bedeutung der einzelnen Anschlüsse enthält Tabelle 2.3.

Tabelle 2.3. Signalbelegung U 855

Signalbezeichnung	Erläuterung
DO D7	Datenbus
	bidirektional, Tri-state
B/X	Kanalauswahl
•	Eingang, High = Kanal B
c/D	Umschaltung Steuerwort/Datenwort
•	Eingang, High = Steuerwort
CE	Bausteinauswahl
	Eingang, Low-aktiv, Aktivierung ist Vorausset-
	zung für E/A-Lese- oder Schreiboperation mit
MT	Maschinenzyklus 1
	Eingang, Low-aktiv, CPU-Steuerbus-Signal
TORQ	Ein-/Ausgabeanforderung
	Eingang, Low-aktiv, CPU-Steuerbus-Signal
ম্য	Lesen
	Eingang, Low-aktiv, CPU-Steuerbus-Signal
C	Systemtakt
INT	Interruptanforderung
	Ausgang, Open-Drain, Low-aktiv
	Aktivierung des Ausgangs signalisiert der CPU
	die Anmeldung eines Interrupts
IEI	Interrupt-Freigabe-Eingang
	Eingang, High-aktiv
	Verbindung von IEI mit IEO des nächsthöherprio-
	risierten E/A-Schaltkreises ermöglicht Inter-
	ruptprioritäts-Kaskadierung
	High-Pegel an IEI bedeutet, daß momentan kein
	Interrupt höherer Priorität abgearbeitet oder
	angemeldet wird
	(Ausnahme: bei noch nicht bestätigtem Interrupt
	eines höherpriorisierten E/A-Schaltkreises,
	RETI-Dekodierung)
IEO	Interrupt-Freigabe-Ausgang
	Ausgang, High-aktiv

IEO führt nur dann High-Pegel, wenn der Eingang IEI desselben Schaltkreises High-Pegel erhält und kein eigener Interrupt abgearbeitet oder angemeldet wird (Ausnahme: bei noch nicht bestätigtem Interrupt eines höherpriorisierten E/A-Schaltkreises, RETI-Dekodierung)

AO ... A7

ARDY

Ein-/Ausgänge Port A,

bidirektional, Tri-state

Quittung, Kanal A (A = READY)

Ausgang, High-aktiv

Bedeutung ist abhängig von Betriebsart:

- 1. MODE 0: Das Signal wird aktiv, um anzuzeig daß das Ausgaberegister des Kanals geladen ist und daß die Daten abgerufen werden kön nen. Nach quittierter Beendigung der Übernahme durch die periphere Schaltung wird das Signal inaktiv.
- 2. MODE 1: Das Signal ist aktiv, wenn das Ein gaberegister des Kanals leer und es bereit ist, Daten vom peripheren Gerät zu überneh men.
- 3. MODE 2: Das Signal ist aktiv, wenn Daten i Ausgaberegister vom Kanal A für einen Tran fer zum peripheren Gerät verfügbar sind. I dieser Betriebsart liegen die Daten am Kan A-Datenbus nicht an, sofern nicht ASTB akt ist.
- 4. MODE 3: Das Signal ist nicht verwendbar un liegt auf Potential "Low".

Kanal A-Strobe '

Eingang, Low-aktiv

Die Bedeutung dieses Signals hängt von der Be triebsart ab, die für Kanal A gewählt wurde:

1. MODE 0: Der Strobeimpuls wird von der Peri pherie abgegeben, um die Daten aus dem Aus

ASTB

- gaberegister zu übernehmen. Das Ende des Strobeimpulses (positive Flanke) gilt als Quittung der erfolgten Übernahme.
- 2. MODE 1: Der Strobeimpuls wird von der Peripherie abgegeben, um Daten von der Peripherie in das Eingaberegister des Kanals zu laden. Die Daten werden in den U 855 geladen, wenn das Signal aktiv ist.
- 3. MODE 2: Wenn das Signal aktiv ist, werden Daten vom Ausgaberegister des Kanals A an den bidirektionalen Datenbus des Kanals A gelegt. Die positive Flanke des Strobeimpulses bestätigt den Empfang der Daten.
- 4. MODE 3: Der Strobeimpuls ist intern verboten.

BO ... B7

BRDY

Ein-/Ausgänge Port B

bidirektional, Tri-state

Quittung Kanal B

Ausgang, High-aktiv

Bedeutung entspricht ARDY mit der folgenden Ausnahme:

In der bidirektionalen Betriebsart des Kanals A ist das Signal "High", wenn das Eingaberegister des Kanals A leer und bereit ist, Daten vom peripheren Gerät zu übernehmen.

BSTB

Kanal B-Strobe

Eingang, Low-aktiv

Bedeutung entsprechend ASTB mit der folgenden Ausnahme: .

In der bidirektionalen Betriebsart des Kanals A überführt dieses Signal Daten vom peripheren Gerät in das Eingaberegister des Kanals A.

2.3.2. Erläuterung der einzelnen Betriebsarten

2.3.2.1. Betriebsart Byte-Ausgabe (Mode O')

Beim Ausführen eines Ausgabebefehls durch die CPU werden die Daten über den Datenbus in das Ausgabe-Register des vorgewählten Ports eingeschrieben. Nach dem Ende des Übergabe-Signals wird nach der nächsten fallenden Flanke von C das Ready-Signal aktiv. Damit wird nach außen hin angezeigt, daß die Daten aus dem Ausgaberegister abgerufen werden können.

Das Ready-Signal bleibt aktiv bis die Übernahme der Daten durch die periphere Schaltung abgeschlossen ist ("Quittung"). Die dem Ende des Strobe-Impulses folgende fallende Flanke von C setzt das Ready-Signal wieder in den inaktiven Zustand.

Mit der steigenden Flanke des Strobe-Signals wird ein INT-Signal ausgelöst, unter der Voraussetzung, daß das Interruptfreigabe-Flip-Flop gesetzt ist und das anfordernde Port im betrachteten Zeitpunkt die höchste Priorität aufweist.

Bild 2.6.: Möglicher Zeitablauf in Mode O

2.3.2.2. Betriebsart Byte-Eingabe (Mode 1)

Während des Low-Zustandes von Strobe werden die an den Eingängen des Ports anstehenden Daten in das Eingaberegister eingeschrieben. Nach der steigenden Flanke von Strobe versetzt die nächste fallende Flanke von C das Ready-Signal in den inaktiven Zustand.

Damit wird angezeigt, daß sich im Eingaberegister Daten befinden, die noch nicht von der CPU gelesen wurden.

Falls das Interrupt-Freigabe-Flip-Flop gesetzt ist und höchste Priorität vorliegt, wird mit der steigenden Flanke von Strobe eine INT-Anforderung ausgelöst.

Nach Abschluß des Lesevorganges wird von der darauffolgenden fallenden Flanke von C das Ready-Signal aktiv geschaltet, als Zeichen dafür, daß die CPU die Daten gelesen hat und neue Daten zugeführt werden können.

Bild 2.7.: Möglicher Zeitablauf in Mode 1

2.3.2.3. Betriebsart Byte-Ein-/Ausgabe (bidirektional) (Mode 2)

Diese Betriebsart kombiniert die Betriebsarten "Byte-Eingabe" und "Byte-Ausgabe", wobei alle 4 Quittungs-Leitungen des U 855 D und die 8 Datenleitungen des Ports A benutzt werden.

Die Quittungsleitungen von Port A werden für die Ausgabe-, die Quittungsleitungen von Port B für die Eingabesteuerung verwendet

Die Datenausgabe an das Port A kann nur während ASTB = Low erfolgen. Seine steigende Flanke kann zur Übernahme der Daten durch die periphere Schaltung benutzt werden.

Wird Port A in der Betriebsart "Byte-Ein-/Ausgabe" betrieben, is Port B in Betriebsart "Bit-Ein-/Ausgabe" zu benutzen.

Bild 2.8.: Zeitablauf in Mode 2

2.3.2.4. Bit-Ein-/Ausgabe (Mode 3)

In dieser Betriebsart wird nicht mit Quittungssignalen gearbeitet. Die Ein- und Ausgabe von Daten kann zu jedem beliebigen Zeitpunkt erfolgen. Das Ausgeben von Daten an das Ausgabe-Register erfolgt nach dem gleichen Zeitschema wie in Betriebsart Byte-Ausgabe.

Bei der Eingabe setzen sich die der CPU zugeführten Daten zusammen aus den Daten des Eingaberegisters (dies gilt für die Bits, die im Ein-Ausgabe-Wahl-Register als Eingänge definiert wurden) und aus dem Inhalt des Ausgaberegisters (dies gilt für diejenigen Bits, die im Ein-Ausgabe-Wahl-Register als Ausgänge definiert wurden).

Bild 2.9.: Zeitablauf in Mode 3 (dargestellt "Lesen")

2.3.3. Interrupt-Bearbeitung

Während MT kann der Interrupt-Zustand der Steuerlogik einer peripheren Schaltung nicht verändert werden. Dies gibt dem Interruptsignal Zeit, die prioritätsbestimmende Kaskadierung der angeschlosenen peripheren Schaltungen zu durchlaufen ("Daisy chain prioritlogic").

Derjenige periphere Schaltkreis, bei dem während des Interrupt-Annahmezyklus am Eingang IEI High anliegt und dessen Ausgang IEO Low liefert, gibt seinen vorher programmierten 8-Bit-Interrupt-Vektor auf den Datenbus aus. Der Ausgang IEO liefert solange Low, bis von der CPU eine RETI (Return from Interrupt Rickkehr von der Unterbrechung) - Anweisung bei IEI = High ausgeführt wird.

Die RETI-Anweisung wird im U 855 D dekodiert.

Bild 2.10.: Interrupt-Bestätigungs-Zyklus

2.3.4. Programmierung des PIO's

Im Grundzustand, d. h. nach Ricksetzen des PIO's sind vorerst alle Kanäle inaktiv. Erst durch eine Programmierung (Initialisierung genannt) durch die CPU in Form von OUT-Befehlen wird die PIO veranlaßt, die jeweils gewünschte Betriebsart sowie Interruptverhalten einzunehmen.

Die dabei gesendeten Daten (in diesem Falle als Steuerwort bezeichnet) müssen nachfolgende Zusammensetzung besitzen.

2.3.4.1. Wahl der Betriebsart

Dies geschieht über die höchstwertigen 2 Bit (M1 und M0) eines Steuerwortes folgenden Formates an das betreffende zu programmierende Port:

D7	D6	D5 ,	D4	D3	D2	D1	DO ·
M 1	M O	x	x	1	1	1	1
Defin der Betri	ition ebsart	nicht benut					euerwor- nauswahl-

Betriebsart	M 1	MO		
Byte-Ausgabe	0	0		
Byte-Eingabe	0	1		
Byte-Ein-/Ausgabe	1	0		
Bit-Ein-/Ausgabe	1	1 .		

2.3.4.2. Ein- bzw. Ausgabedefinition bei Betriebsart Bit-Ein-/ Ausgabe

Wurde die Betriebsart Bit-Ein-/Ausgabe gewählt, so wird das als

nächstes übertragene Steuerwort für dieses Port zur Definition der einzelnen Port-Anschlüsse als Ein- bzw. Ausgange verwendet. Eine "O" entspricht dabei einer Ausgangszuordnung, einer "1" wir ein Eingang zugeordnet.

Format des zusätzlichen Steuerwortes:

2.3.4.3. Laden des Interrupt-Vektors

Erfolgt durch Laden eines Steuerwortes folgenden Formates an das ausgewählte Port:

Durch L-Signal auf der Leitung DO wird das Steuerwort als Interrupt-Vektor identifiziert.

2.3.4.4. Interrupt-Steuerung

Das Interrupt-Freigabe-Flip-Flop kann durch zwei Steuerworte beeinflußt werden (Die für die Bits D3 ... DO im folgenden angegebenen Belegungen definieren die beiden Steuerworte als Interrupt Steuerworte.). In den Betriebsarten O, 1, und 2 ist folgendes Steuerwort anzuwenden:

D7	DE:	D5	D4	D3	D2	D1	DO
Interrupt- freigabe	x	x	x	o	0	1	1

D7 Interrupt-Flip-Flop rückgesetzt, der entsprechende Low Kanal ist nicht interruptfähig

. . High Interrupt-Flip-Flop gesetzt, der entsprechende Kanal ist interruptfähig

D6, D5, D4 Bits werden ignoriert

In Betriebsart 3 wird ein anderes Steuerwort verwendet, in dem die Bits D6, D5, D4 mit benutzt werden.

Das Steuerwort hat folgendes Format:

Low

D7	D6	D5	D4	D3	D2	D1	DO		
Inter- rupt- frei- gabe	UND/ ODER	High/ Low	näch- stes Steuer- wort ist Maske	0	1	1	1		
D7 Low		•	lop rück uptfähig	_	, der ents	prechende	e Kanal		
H ig h	Interru interru	-	lop gese	tzt, de	r entsprec	hende Kar	nal		
D6 Lo₩			er auf di n Kanalle		gung eines	Interrup	ots		
High		UND-Funktion der auf die Erzeugung eines Interrupts einflußnehmenden Kanalleitungen							
D5 Low		_			ng eines I f Low-Zust	. •			
High		-		_	ng eines I f High-Zus	•			
D4	Es folg	t keine M	laske.						

High Es ist erforderlich, ein weiteres Steuerwort auszugeben (Maske). Dieses dient dazu, diejenigen Kanalleitungen zu definieren, die an der Erzeugung einer Interruptanforderung beteiligt sein sollen. Diejenigen Bits, welche mit Maskierungsbit MB_n = O belegt werden, werden zur Erzeugung einer Interruptanforderung herangezogen.

Format des Steuerwortes zur Maskierung:

	M B ₆	MB	MB.	MB ₂	MB ₀	MB.	MB _o
D 7	D6	D5	D4 .	D3	D2	D1	DO

2.4. Aufbau und Arbeitsweise des CTC U 857

2.4.1. Schaltkreisbeschreibung

Der CTC U 857 ist ein Schaltkreis für Zähler- und Zeitgeberfunktionen.

Eigenschaften des U 857 D:

- 4 voneinander unabhängig, software-programmierbare 8-Bit-Zähler 16-Bit-Zeitgeber-Kanäle
 - . jeder Kanal wahlweise als Zähler oder Zeitgeber verwendbar
 - Vorteiler durch 16 oder 256 für jeden Kanal (für die Betriebs art Zeitgeber)
 - . Rückwärtszähler hält die Anzahl der bis Null auszuführenden Zählschritte auslesebereit
 - . Zeitgeber kann wahlweise von einem positiven oder negativen Triggerimpuls gestartet werden
 - . jedem Kanal ist ein Interrupt-Vektor zugeordnet, Kanal-Nr. O hat hardwaremäßig die höchste Priorität
- beim Erreichen von programmäßig festlegbaren Zähler- oder Zeitgeberwerten ist die Erzeugung von Interrupts programmierbar

- automatische Interrupt-Vektor-Bereitstellung; Prioritätskodierung durch Kaskadierung der Bausteine (ohne zusätzlichen Schaltungsaufwand)
- Die Ausgänge der drei herausgeführten Kanäle (Kanal 0, 1, 2) sind für den Anschluß von Darlington-Transistoren ausgelegt.
- Alle Ein- und Ausgänge sind TTL-kompatibel
- Es wird nur eine +5 V-Versorgungsspannung benötigt.
- Einphasen 5 V-Takt
- Maximale Zählfrequenz in der Betriebsart "Zähler" = fc/2

Das Bild 2.11. zeigt das Blockschaltbild des U 857 D.

Folgende Funktionseinheiten sind enthalten:

- 4 Zähler/Zeitgeber-Kanäle
- Interface zu Daten- und Steuerbus des U 880 D (CPU)
- Interrupt-Steuerlogik

Bild 2.11.: Blockschaltbild

Im Bild 2.12. ist das Blockschaltbild eines einzelnen Kanals dargestellt.

Ein Kanal besteht aus folgenden einzelnen Einheiten:

- Zeitkonstantenregister

- Kanalsteuerregister
- Rückwärtszähler
- Vorteiler

Das Zeitkonstantenregister (8 Bit) wird von der CPU zum Initialisieren und Wiedersetzen des Rückwärtszählers beim Erreichen des Zählerstandes Null geladen.

Das Kanalsteuerregister (8 Bit) wird von der CPU zur Bestimmung der Kanalbetriebsart geladen.

Der Rückwärtszähler (8 Bit) wird entweder mit Hilfe des Anwenderprogramms oder automatisch beim Zählerstand Null auf den im Zeitkonstantenregister stehenden Wert gesetzt. Im Zeitgeberbetrieb wird der Rückwärtszähler über den Vorteiler durch den Systemtakt C, im Zählerbetrieb durch einen Impuls am Eingang C/TRG dekrementiert. Der momentane Wert des Rückwärtszählers kann sowohl im Zähler- als auch im Zeitgeberbetrieb zu jedem beliebigen Zeitpunkt von der CPU ausgelesen werden.

Der Vorteiler (8 Bit) wird nur in der Betriebsart "Zeitgeber" benutzt. Programmierbar sind die Werte 16 oder 256.

Bild 2.12.: Blockschaltbild eines CTC-Kanals

Die genaue Signalbelegung und Bedeutung der einzelnen Anschlüsse enthält Tabelle 2.4.

Tabelle 2.4.: Signalbelegung U 857

Signalbezeichnung	Erläuterung
DO D7	8-Bit-bidirektionaler Datenbus, Tri-state
CE	Chipauswahl, Eingang, Low-aktiv
KS0; KS1	Kanalauswahl; Eingabe einer 2-Bit-Adresse, des vom Mikroprozessor angesprochenen Kanals
MT	CPU-Maschinenzyklus M1; Eingang, Low-aktiv
TORQ	Ein-/Ausgabe-Anforderung; Eingang, Low-aktiv
RD	CPU-Leseanforderung; Eingang, Low-aktiv
IEI	Interrupt-Freigabe, Eingang
C/TRGO C/TRG1 C/TRG2	Takt/Trigger-Eingänge (Kanal O bis 3)
C/TRG3	Takteingänge für Zähler bzw. Zeitgebertrig- gerung Programmierbar: High- oder Low-aktiv
सन्दर्भ	Ricksetzeingang; Low-aktiv
	Der Zählvorgang aller Kanäle wird unterbro- chen und die Interrupt-Freigabebits der Steu- erregister aller 4 Kanäle werden zurückgesetzt.
	Die Ausgänge ZC/TO2 und INT werden in den inaktiven Zustand gebracht. Der Ausgang IEO wird gleich dem Wert am Eingang IEI gesetzt. Das Interrupt-Vektorregister wird nicht beeinflußt. Die Daten-Ein/Ausgänge werden in den hochohmigen Zustand gebracht.

Signalbezeichnung	Erläuterung
С	Systemtakt
IEO	Interrupt-Freigabe, Ausgang; High-aktiv für Interrupt-Prioritätskette
ZC/TOO ZC/TO1 ZC/TO2	Nulldurchgang/Zeitgebermeldung-Ausgänge (Kanal O bis 2)
	Nullsignal des Rückwärtszählers, bzw. Meldu des Zeitgebers.
INT	Interrupt-Anforderung, Ausgang, Open-Drain-Ausgang, Low-aktiv

2.4.2. Arbeitsweise des Schaltkreises

2.4.2.1. Schreibzyklus

Im Schreibzyklus werden Kanalsteuerwort, Zeitkonstante und Intruptvektor eingeschrieben. Da der U 857 D keinen Schreibeingan (WR) hat, wird ein Schreibsignal intern aus dem RD-Signal genomen. Zu beachten ist, daß außer dem automatisch erzeugten Wartzyklus TW keine weiteren Wartezyklen beim Schreiben in die Register des U 857 D eingefügt werden dürfen.

Bild 2.13.: Schreibzyklus

2.4.2.2. Lesezyklus

In beiden Betriebsarten (Zähler/Zeitgeber) kann der Momentanwert jedes Kanalrückwärtszählers zu jedem beliebigen Zeitpunkt ausgelesen werden. Der auf den Datenbus ausgegebene Wert repräsentiert die Anzahl der steigenden Zähltaktflanken vor der steigenden Systemtaktflanke des Zustandes T2 im Zählerbetrieb oder den entsprechenden Zählerstand im Zeitgeberbetrieb. Auch beim Lesezyklus darf kein Wartezyklus eingefügt werden.

Bild 2.14.: Lesezyklus

2.4.2.3. Interrupt-Quittungs-Zyklus

Die CPU quittiert nach einer gewissen Zeit die Interrupt-Anford rung des U 857 D durch die Signale MT und TORQ. In dieser Zeit mittelt der U 857 D intern den Kanal mit der höchsten Priorität Zur Gewährleistung der Interruptkaskadesignale werden alle Interuptanforderungszustände der Kanäle festgehalten, solange MT ak tiv ist. Ist IEI am Eingang des U 857 D aktiv, so bringt der Kanal mit der höchsten Priorität den Interruptvektor aus dem Vekt register auf den Datenbus, solange TORQ aktiv ist.

Bild 2.15.: Interrupt-Quittungs-Zyklus

Rickkehr vom Interrupt

Von der RETI-Anweisung wird die Interruptkette am Ende einer Interrupt-Bedien-Routine initialisiert. Die 2 Bytes der RETI-Anweisung werden im CTC intern dekodiert. Der CTC erkennt den Befehlscode EDH, daraufhin wird, wenn der IEI-Eingang aktiv ist und als nächster Befehlscode 4DH folgt, der IEO-Ausgang wieder aktiv. Damit ist die Bedienroutine dieses Kanals abgeschlossen.

Bild 2.16.: Rückkehr vom Interrupt

2.4.2.4. Prioritätskaskadierung

Bild 2.17. zeigt ein Beispiel der Interruptprioritätskaskadierun Kanal 2 fordert einen Interrupt an und wird bedient. Danach fordert Kanal 1 ebenfalls einen Interrupt an. Da Kanal 1 höhere Pri orität hat, wird er zuerst bedient und Kanal 2 wird in der Abarbeitung unterbrochen. Nachdem die Bedienung von Kanal 1 abgeschl sen ist (mit RETI-Anweisung) wird mit der Abarbeitung von Kanal fortgefahren und die Bedienung zu Ende geführt.

Bild 2.17.: Prioritätskaskadierung (Beispiel)

2.4.2.5. Zähl- und Zeitgeber-Vorgang

In der Betriebsart "Zähler" veranlaßt die programmierte Flanke C/TRG-Eingang ein Dekrementieren des Rückwärtszählers. Das Signkann vollkommen asynchron empfangen werden, jedoch wird eine gese Mindestdauer des Impulses gefordert.

Der Zähler arbeitet synchron mit dem Systemtakt. Der Zähler kan nur dekrementiert werden bei der nachfolgenden steigenden Systemaktflanke, wenn die Aktivierung des C/TRG-Eingangs eine gewisse Mindestzeit vorher geschieht. In der Betriebsart "Zeitgeber" kan der Zeitgebervorgang von einer steigenden oder fallenden Flanke eingeleitet werden. Genau wie beim Zählerbetrieb werden diese In pulse asynchron empfangen. Ebenso wird eine bestimmte Mindestim pulsdauer und Schaltzeit des TRG-Impulses gefordert.

Bild 2.18.: Zähler- und Zeitgebervorgang

2.4.3. Programmierung des CTC

Der Schaltkreis U 857 D wird softwaremäßig gesteuert. Grundsätzlich wird nach einer Aktivierung des Schaltkreises (CE-Freigabe ein Steuerwort erwartet. Ob ein Wort als Steuer- oder Datenwort (zum Setzen des Zeitkonstantenregisters) erkannt wird, richtet

sich nach der Form des vorangegangenen Steuerwortes.

2.4.3.1. Laden des Interrupt-Vektors

Während des Interrupt-Quittungs-Zyklus wird dieser Vektor vom Kanal höchster Priorität auf den Datenbus gelegt.

Der Vektor muß dem CTC vorher über Kanal-Nr. O vorgegeben werden.

Format des Interruptvektorsteuerwortes:

D7	D6	D5	D4	D3	D2	D1	DO
٧7	v 6	V 5	V 4	V 3	x	x	0
					beli	ebi-	Identifiziert das
					ger	Bi-	Steuerwort als In-
					närw	ert	terruptvektor

Der Vektor für Kanal 0 ... 3 ergibt sich hieraus wie folgt:

Formate der Interruptvektoren während des Interrupt-Quittungs-Zyklus

i	D7	D6	D5	D4	D3	D2	D1	DO
für Kanal 0	₹7	v 6	. V 5	V 4	V 3	0	0	0
	D7	D6	D5	D.4	D3	D2	D1	DO
für Kanal 1	V 7	v 6	₹5	V 4	V 3	0	1	0
	D7	. D6	D5	`D4	D3	D2	D1	DO
für Kanal 2	V7	v 6	V 5	V 4	V 3	1	0	0
für Kanal 3	V7	V 6	V 5	V4 D4	V 3	1 D2	0 D1	0 D0

Kanal O besitzt hardwäremäßig die höchste Priorität.

2.4.3.2. Format des Kanalsteuerwortes

Durch die einzelnen Bits des Kanalsteuerwortes wird die Betriebs art des jeweiligen CTC-Kanals festgelegt:

D7	D6	D5	D4	
O Interrupt O BetrA. Zeitgebe		O SystTakt um Faktor 16 geteilt	O negative Trigger- flanke	
1 Interrupt freigege- ben	1 BetrArt Zähler	1 SystTakt um Faktor 256 geteilt	1 positive Trigger- flanke	

Nur für Betr.-Art Zeitgeber

D3	D2	D1	DO _
Trigger- zeitpunkt	Zeitkonstan- te laden	Ricksetzen	1 (zur Kennzeich- nung als Kanal- steuerwort)

Nur für Betr.-Art Zeitgeber

D7 0 Interrupt gesperrt

1 Interrupt freigegeben: Interruptanforderung erfolgt
jedesmal, wenn der Rickwärtszähler den Wert Null erreicht

D6 O Zeitgeber: Rückwärtszähler wird vom Vorteiler gestartet
Periode des Zählers c = t_e · p · TC

- p5 siehe Seite 68
- p4 siehe Seite 68
- D3 O Zeitmessung beginnt am Anfang des nächsten Maschinenzyklus, der auf das Laden der Zeitkonstante folgt, mit steigender Flanke von T₂.
 - 1 Triggereingang wird zur Veranlassung des Beginns des Zeitgebervorganges freigegeben, nach der steigenden Flanke von T₂ des Maschinenzyklus, der auf das Laden der Zeitkonstante folgt. Der Vorteiler wird nach 2 bzw. 3 Taktzyklen dekrementiert.

 (Zum Zeitverhalten der CPU siehe Literaturhinweis
 - (Zum Zeitverhalten der CPU siehe Literaturhinweis
 [1] der Bedienungsanleitung)
- D2 O Auf das Kanalsteuerwort folgt keine Zeitkonstante, die Zeitkonstante ist zum Anlaufenlassen des Zeitmeßvorganges noch einzugeben.
 - 1 Nächstes Kontrollwort für den betreffenden Kanal stellt Zeitkonstante für den Rückwärtszähler dar. Wird während des Zeitmeßvorganges eine neue Zeitkonstante eingegeben, so wird die alte Messung erst zu Ende geführt.
- D1 O Kanal zählt weiter.
 - 1 Abbruch der momentanen Operation.

 Falls Bit 2 = 1 ist, wird die Operation nach dem Laden einer Zeitkonstante fortgesetzt. Ist Bit 2 = 0, muß hierfür ein neues Steuerwort an den CTC übermittelt werden.

2.4.3.3. Format des Zeitkonstantensteuerwortes

D7	D6	D5	D4	D3	D2	D1	DO
ZK7	ZK6	ZK5	ZK4	ZK3	ZK2	ZK1	zko

Hat Bit 2 des Kanalsteuerwortes den Wert "1", so wird das nachfolgende Steuerwort für den betreffenden Kanal als Zeitkonstante
(Datenwort) interpretiert und ins Zeitkonstantenregister geladen.
Dabei wird ein Datenwort mit 0000 0000 als Zeitkonstante = 256
interpretiert.

J. Befehlsbeschreibung des U 880

3.1. Befehlsstruktur

Die Leistungsfähigkeit eines Mikroprozessors wird neben der Operationsgeschwindigkeit wesentlich durch die Struktur und die Flexibilität seines Befehlssatzes bestimmt.

Ein Befehl ist eine Anweisung an den Rechner, eine bestimmte Operation auszuführen. Er besteht aus Operationsteil (1-3) Byte und Adresteil (1-2) Byte). Dabei sind folgende Befehlsstrukturen möglich:

1-Byte-Befehl

Beispiel: 04

Erhöhe Inhalt von Register B um 1

2-Byte-Befehl

Beispiel: CB FF

Bitposition 7 des Registers A wird gleich 1 gesetzt

05

Beispiel: 3E

Lade Register A mit Of

3-Byte-Befehl

Beispiel: DD 7E 03 Lade Register A mit Ir halt der Adresse IX+3

Beispiel: 21	00	50	Lade Doppelregister HL mit Adresse 5000H
4-Byte-Befehl	L		
Op - Code	Op - Code	Adresse	Adresse
Beispiel: DD	21	00	50 Lade Indexregister IX mit Adresse 5000H
Op - Code	Op - Code	Direktope	rand Direktoperand
Beispiel: DD	36	03	05
			Lade Inhalt von Re- gister IX+3 mit 05
Op - Code	Op - Code	Direktope	rand OP - Code
Beispiel: DD	CB	03	46
			Bit 0 von Inhalt der Adresse IX+3 wird komplementiert in das Z-Flag ge- laden

Op - Code

Adresse

Adresse

Für den Befehl existiert ein mnemonischer Operationscode (Kürzel). Damit wird die Programmierung für den Anwender einfacher und effektiver als in maschineninterner Form. Der hier verwendete mnemonische Code entspricht der Assemblersprache des Mikroprozessors U 880.

Beispiele:

Mnemonik
INC B
SET 7,A
LD A,05H
LD (IX+3),A
LD HL,5000H
LD IX,5000H
LD (IX+3),05
Bit 0 (IX+3)

3.2. Syntax der Assemblersprache

Die Assemblersprache des Mikroprozessors U 880 besteht aus leicht erlernbaren mnemonischen Ausdrücken, die zusammen mit den zugehörigen Operanden jeweils einen Maschinenbefehl darstellen.

Ein Anwenderquellprogramm besteht aus einer Folge von Maschine befehlen (Anweisungen), die jeweils eine Programmzeile belegen

Aufbau einer Programmzeile:

	Markenfeld	Op.codefeld	Operandenfeld	Kommentarfel
Beispiel:	A1:	ΓD	A,5H	; KONSTANTE LADEN

Markenfeld:

- muß nicht unbedingt belegt sein
- Marken werden linksbündig eingetragen
- erstes Zeichen muß ein Buchstabe sein
- Marke stellt den Namen des folgenden Befehls dar und dient zur späteren Bezugnahme auf diesen Befehl
- Abschluß der Marke mit Doppelpunkt

Operationscodefeld: - enthält einen Befehl des Befehlssatzes

des U 880

- Abschluß durch Tabulator oder Leerzeichen

Operandenfeld: - enthält einen oder mehrere Operanden

- kann auch leer sein (z. B. bei NOP)

Kommentafeld: - beginnt stets mit einem Semikolon

- beinhaltet bei Bedarf Kommentar zur Anweisung

- Abschluß durch Endekennzeichen:

NL = NEW LINES (neue Zeile)

CR LF = CARRIAGE RETURN LINEFEED

(Wagenrücklauf, Zeilenvorschub)
Es handelt sich hier um Tastenfunktionen
einer Eingabetastatur.

Eine Zeile eines Quellprogramms darf maximal aus 72 Zeichen bestehen. Eine Zeile, beginnend mit einem Semikolon, stellt eine Kommentarzeile im Quellprogramm dar.

3.3. Adressierungsarten

Um den Zugriff zu allen Hauptspeicher-, Register- und Ein-/Ausgabeadressen zu ermöglichen, gibt es unterschiedliche Möglichkeiten der Adressierung.

Der Befehlssatz des U 880 umfaßt insgesamt 6 Adressierungsarten.

- Direkte Adressierung

Im Befehl ist eine Speicheradresse als Direktwert angegeben

Beispie - LD A,(5000H)
- IMP 5004H

- Direktoperand

Der Operand steht im Befehl direkt hinter dem Operationscode.

Beispiel: - LD A,5 - LD HL,5000H

8-Bit-Konstante

- indirekte Adressierung

Die Adresse wird vor Abarbeitung des Befehls in einem Registerpaar bereitgestellt.

Beispiel: - LD HL,5000H

JMP (HL)

- LD HL,1000H

LD A,(HL)

- implizite Adressierung

Op-Code und AdreBinformation sind in einem Befehlswort verschlüsselt. Der Befehl bezieht sich fest auf bestimmte Register. Dazu gehören die arithmetischen Befehle, bei denen das Ergebnis stets im Akkumulator steht.

Beispiel: - LD A,50H
ADD H
- ADD 50H

- indizierte Adressierung

Zu einem der beiden Indexregister wird ein Datenbyte addiert, wodurch die endgültige Zieladresse entsteht. Dieses Datenbyte kann einen Wert von -128 bis +127 enthalten.

Beispiel: - LD IX,2000H - LD A,(IX+3)

- Relative Adressierung

Der dem Operationscode folgende Operand enthält einen Wert der die Distanz vom aktuellen Befehlszählerstand (PC) zur Zieladresse ausgibt.

3.4. Flag-Bit Technik

Das Flagregister (F-Register) ist ein 8-Bit-Register innerhalb der CPU, bei dem die Bits zu Auswertungszwecken einzeln betrachtet werden.

Die meisten Befehle des U 880 beeinflussen im Ergebnis der Operation das Flagregister

	<u>D7</u>	_D6	D5	D4	D3	D2	D1	DO
Flagregister	S	Z	X	Н	X	P/V	N	CY

S = Vorzeichenbit (Sign-Flag)

Z = Nullbit (Zero-Flag)

X = keine Bedeutung

H = Halbbyteübertragsbit (Half-Carry-Flag)

P/V = Paritäts/Überlauf-Bit (Parity-Overflow-Flag)

N = Additions/Subtraktions-Bit (Add/Subtract-Flag)

CY = Übertrag-Bit (Carry-Flag)

Mit Hilfe bestimmter Befehle können die einzelnen Bits abgefragt werden und auf Grund des Ergebnisses der weitere Programmablauf gestaltet werden.

Von den 6 Bit des Flagregisters, die von Bedeutung sind, können 4 abgefragt werden.

SIGN-Flag (S)

Das S-Flag zeigt nach logischen und arithmetischen Operationen mit ganzen Zahlen den Inhalt des höchstwertigen Bits (D7) des Akkumulators an. Ist das Ergebnis negativ (Bit D7 = 1), so steht im S-Flag eine 1 (S-Flag gesetzt), ansonsten steht eine O (S-Flag zurückgesetzt).

ZERO-Flag (Z)

Das Z-Flag wird gesetzt, wenn im Ergebnis einer Operation der Wert Null entstanden ist, ansonsten wird Z rückgesetzt. Bei Bit befehlen zeigt es an, ob ein Bit gesetzt ist oder nicht. Das Z-Flag wird gesetzt, wenn das Ergebnis von Such- und Vergleichs befehlen positiv ist. Bei IN/OUT-Befehlen wird Z-Flag gesetzt, wenn bei Datenübertragungen das Zählregister O wird oder die am Eingangstor anliegenden Daten den Wert O haben.

HALF-CARRY-Flag (H)

Das H-Flag wird nach arithmetischen Operationen gesetzt. Sobald ein Übertrag von Bit D3 auf Bit D4 auftritt.

Das wird beim Befehl DAA genutzt, um das Ergebnis einer Additio bzw. Subtraktion von zwei gepackten BCD-Zahlen zu korrigieren. Bei der Addition wird das H-Flag beim Übertrag von Bit D3 zu Bit D4 und bei der Subtraktion beim negativen Übergang von Bit D4 auf Bit D3 gesetzt.

PARITY/OVERFLOW (P/V)

Das P/V-Flag zeigt an:

- Bei logischen und Verschiebebefehlen die Parität des Ergebnis

P/V = 1 gerade Anzahl gesetzter Bits

P/V = ^ ungerade Anzahl gesetzter Bits

- Bei arithmetischen Befehlen zeigt P/V-Flag an, ob das Ergebni einer Operation mit zwei vorzeichenbehafteten ganzen Zahlen außerhalb des zulässigen Zahlenbereiches liegt, d. h. größer als +127 bzw. kleiner als -128 ist.

ADD/SUBTRACT-Flag (N)

Das N-Flag zeigt an, ob als letzter Befehl eine Addition (N-Flag = 0) oder Subtraktion (N-Flag = 1) erfolgte. Das N-Flag

wird vom DAA-Befehl ausgewertet.

CARRY-FLAG (C)

Entsteht bei der Addition ein Übertrag (bzw. bei der Subtraktion ein negativer Übertrag), so wird das C -Flag gesetzt.
Bei der Addition bzw. Subtraktion von Operanden, bestehend aus mehreren Bytes, wird beim Übertrag vom höchstwertigen Bit (D7) des niederwertigsten Bytes zum niederwertigsten Bit (D0) des höherwertigen Datenbytes das C -Flag gesetzt.

Beispiele:

1

2. Byte	C -Flag	1. Byte			
00000010	•	01101011		619	(02 6BH)
00000100		11001100	+	1228	(04 CCH)
	1				
00000111		00110111		1847	(07 37H)
00000101		00110101		1333	(05 35 H)
00000010		10001100	-	652	(02 8CH)
	1				
00000010		10101001		681	(02 A9H)

Außerdem wird das C -Flag von den Verschiebe- und Rotationsbefehlen beeinflußt. Es kann als Ziel und/oder Quelle des höchstwertigsten bzw. niederwertigsten Bits dienen.

Außerdem gibt es noch 2 Flagbits, die nicht abgefragt werden können. Sie haben für die BCD-Arithetik Bedeutung.

3.5. Befehlssatz

Der Befehlssatz des U 880 umfaßt 158 verschiedene Befehle in 696 verschiedenen Modifikationen. Die in diesem Abschnitt ent-haltenen Erläuterungen zu den einzelnen Befehlen bzw. Befehlsgruppen sollen dem Nutzer die Wirkungsweise veranschaulichen. Spezielle Angaben zu den einzelnen Befehlen, z. B. Operationscode, Beeinflussung der Flagbits, sind der dem LC 80 beigefügten Befehlskarte zu entnehmen.

Um die Wirkungsweise der Befehle am LC 80 zu erproben und somit die Programmierung zu erlernen, sind besonders die Punkte 2., 3.1., 3.2. und 3.3. der Bedienungsanleitung gründlich durchzuarbeiten und die nachstehenden Hinweise zu beachten.

Der LC 80 wird zunächst auf Stepfunktion vorbereitet (siehe Punkt 3.3.2. Bedienungsanleitung). Danach wird das Programm in den Speicher (RAM) geschrieben (siehe Punkt 3.2. Bedienungsanleitung) und nochmals auf Richtigkeit überprüft. Durch das Betätigen der Taste "NMI" wird der LC 80 auf Registeranzeige und Stepfunktion gestellt. Es erscheint die Adresse der nächsten Speicherzelle und die Buchstaben PC (Programmcounter). Der PC wird auf die Startadresse des Beispielprogramms gesetzt (2000H) Über die "+"-Taste werden die Register aufgerufen und FFFF (Reg. F auf 00) gesetzt. Es ist zu beachten, daß der Stackpoint SP seinen ursprünglichen Inhalt behält. Danach kann in der Stel lung PC das Programm schrittweise abgearbeitet werden, nach jedem Schritt kann die Änderung des Registers beobachtet und an Hand der Übersicht zu den Beispielen kontrolliert werden. Gegebenenfalls muß während der Abarbeitung des Programms zur besseren Verständlichkeit das Register F auf 00 gesetzt werden. Die Vorbereitung des LC 80 auf Stepfunktion und Registeranzeige ist nur nach Power-On-Reset notwendig. Der in der Tabelle des Programmbeispiels angegebene Registerinhalt ist nur für die durch den abgearbeiteten Befehl beeinflußte Register angegeben.

Bedeutung der in der Befehlsbeschreibung verwendeten Abkürzungen:

r:	eines der Register	A, B, C, D,	E, H, L	
r ₁ :	eines der Register	A, B, C, D,	E, H, L	
ro:	eines der Register	A, B, C, D,	E, H, L	
n:	Direktoperand			
nn:	16-Bit-Konstante			
dd:	eines der Registerpaare	BC, DE, HL,	SP	
qq:	eines der Registerpaare	BC, DE, HL,	AF	
8 1	- eines der Register r:	A, B, C, D,	E, H, L	
	- Direktoperand n			
	- Speicherinhalt der durch HL	festgelegten	Adresse	=(HL)=M
	- " " " IX+d	**	**	=(IX+d)
	- " " " IY+d	**	**	=(IY+d)

3.5.1. Ladebefehle

3.5.1.1. 8-Bit-Ladebefehle

Sie bewirken die Übertragung eines Bitmusters zwischen zwei Registern, einem Register und einem Speicherplatz oder eines im Programm enthaltenen Festwertes (Direktoperand) auf ein Register.

	Byte	Beschreibung
LD r ₁ ,r ₂	1	Laden Register r, mit Register r,
LD r, (HL)	1	Laden Register r mit Inhalt des durch
		Registerpaar HL adressierten Speicher-
		platzes
LD r,n	2	Laden Register r mit einem Direktoperan-
		den n
LD r,(IX+d)	3	Laden Register r mit Inhalt des durch
		Register IX + Verschiebung d adressier-
		ten Speicherplatzes
LD r,(IY+d)	3	Laden Register r mit Inhalt des durch
		IY + Verschiebung d adressierten Speicher+
		platzes
	i	

	Byte	Beschreibung
LD (HL),r	1	Laden des durch HE adressierten Speicher-
		platzes mit Inhalt von Register r
LD (HL),n	2	Laden des durch HL adressierten Speicher-
		platzes mit einem Direktoperanden n
LD (IX+d),r	3	Laden des durch IX + Verschiebung d
		adressierten Speicherplatzes mit Inhalt
		des Registers r
LD (IY+d),r	3	Laden des durch IY + Verschiebung d
		adressierten Speicherplatzes mit Inhalt
		des Registers r
LD (IX+d),n	4	Laden des durch IX + Verschiebung d
		adressierten Speicherplatzes mit
		Direktoperand n
LD (IY+d),n	4	Laden des durch IY + Verschiebung d
		adressierten Speicherplatzes mit
>		Direktoperand n
LD A,(BC)	1	Laden des Akkumulators (Register A) mit
		Inhalt des durch Doppelregister BC
		adressierten Speicherplatzes
LD A, (DE)	1	Laden des Akkumulators mit Inhalt des
		durch Doppelregister DE adressierten
· · · ·		Speicherplatzes
LD A,(nn)	3	Laden des Akkumulators mit Inhalt des
		durch nn adressierten Speicherplatzes
TD (DG) 4		nn: 16-Bit-Konstante
LD (BC),A	1	Laden des durch BC adressierten Speicher-
ID (DE) A	1	platzes mit Inhalt des Akkumulators
LD (DE),A	-1	Laden des durch DE adressierten Speicher-
TD T A	2	platzes mit Inhalt des Akkumulators
LD I,A		Laden des Interruptregisters I mit Akkumulatorinhalt
LD R.A	2	Laden des Refresh-Registers R mit
ло к _р к	ے ا	Akkumulatorinhalt
	'	AKKUMUTSTOTIMIST

	Byte	Beschreibung
LD A,I	2	Laden des Akkumulators mit Inhalt aus
		Interruptvektor-Register I
LD A,R	2	Laden des Akkumulators mit Inhalt aus
		Refresh-Register R

Musterbeispiel: Laden von Registern

1. Vorbereiten des LC 80 auf Stepfunktion
Beachte Hinweis auf Seite 4 der Bedienungsanleitung!
Adreßbelegung wie unter Punkt 3.3. der Bedienungsanleitung
beschrieben

Adresse	Daten	Tasteneingabe
		ADR
		2340
		DAT
2340Н	с3н	<u>c3</u>
, .		+
23 41 H	90Н	90
	-	+
2342Н	OBH	OB

2. Eingabe des Programmes

Adresse	Befehlscode	Mnemonik	Tasteneingabe
			ADR
			2000
			DAT
2000	3E 50	LD A,50H	3E
			<u>+</u>
		İ	50
			+
2002	06 20	LD B,20H	•
2004	60	LD H,B	•
2005	6F	LD L,A	
2006	5E	LD E, (HL)	+
2007	76	HALT	76
			ADR
			2050
2050	AA	AAH	[DAT] AA

3. Übergang zum Stepbetrieb

ADR 2000 NMI

. Angabe der Startadresse des Programmes . Übergang zum Stepbetrieb

. Anzeige:

2002 PC 1. Befehl des Programmes wurde bereits abgearbeitet

4. Register auf Anfangswert setzen

				Tasten- eingabe	Anzeige
•			auf 2000H gesetzt, um		
		_	rammbeginn Anfangs-		
		00:	reitstellen zu	2000	
	können			EX	
•	_		werden wie folgt belegt:		
	AF	-	FFOOH	+	XXXXAF
				FFOO	FFOQAF
				EX	FFOOAF
	BC	-	FFFFH	+	XXXXBC
				PFFF	FFFFBC
				EX	FFFFBC
	DE	-	FFFH	+	XXXXDE
	HL	-	FFFFH	•	
	A'F'	-	FFFFH	•	
	B'C'	_	PFFFH	•	
	D'E'	_	FFFFH	•	
	H'L'	_	PPPFH	•	
	IX	_	PFFFH	•	
	IY	_	ffffh	+	YXXXX
				FFFF	FFFFIY
				EX	FFFFIY
				+	XXXXSP
				<u>=</u> .	2000PC

g Programmabarbeitung

5. 110B1 amminutes of the control of		
Durch Drücken der Taste ADR können		
die Befehle des Programmes einzeln	ADR	2002PC
nacheinander abgearbeitet werden.	+	5000AF
Nach jedem Befehl kann der Inhalt	•	2002PC
der Register abgefragt (durch	ADR	2004PC
Drücken der Tasten + bsw	+	5000AF
oder geändert werden. Wird nach	+	20FFBC
Drücken von + bzw das ent-		
sprechende Register angezeigt, kann		
der neue Wert auf der Tastatur einge-		
drückt und durch Betätigen der Taste		
KX dem Register fest zugewiesen werden.		

Reg.Inhalt	Register	PC
5000	AF	2002
20FF	BC	2004
20 FF	HL	2005
2050	HL	2006
PPAA	DE	2007

3.5.1.2. 16-Bit-Ladebefehle Sie bewirken die Übertragung eines Bitmusters zwischen einem Doppelregister und 2 aufeinanderfolgenden Speicherplätzen oder eines 16-Bit-Festwertes.

	Byte	Beachreibung
LD dd,nn	3	Laden Registerpaar dd mit 16-Bit-
		Konstante nn
LD IX,nn	4	Laden des Registers IX mit 16-Bit-
		Konstante nn
LD IY,nn	4	Laden des Registers IV mit 16-Bit-
		Konstante nn
LD HL, (nn)	3	Laden des Registerpaares HL mit
		Inhalt der durch nn und nn+1
		adressierten Speicherplätze
		H : = (nn +1)
	1	L : = (nn)

	Byte	Beschreibung
LD dd,(nn)	4	Laden Registerpaar dd mit Inhalt der durch nn und nn+1 adressierten Spei- cherplätze d _H (höherwertiger Teil) : = (nn+1)
LD IX,(nn)	4	<pre>d_L (niederwertiger Teil): = (nn) Laden Register IX mit Inhalt der durch nn und nn+1 adressierten Speicherplätse IX_H := (nn+1) IX_T := (nn)</pre>
LD IY, (nn)	4	Laden Register IV mit Inhalt der durch nn und nn+1 adressierten Speicherplätze IV _H := (nn+1)
LD (nn),HL	3	<pre>IY_L := (nn) Laden des durch nn adressierten Spei- cherplatzes mit Register HL (nn+1) := H</pre>
LD (nn),dd	4	<pre>(nn) : = L Laden des durch nn adressierten Spei- cherplatzes mit Registerpaar dd (nn+1) : = dd_H</pre>
LD (nn'),IX	4	<pre>(nn) : = dd_L Laden des durch nn adressierten Spei- cherplatzes mit IX (nn+1) : = IX_H</pre>
LD (nn),IY	4	(nn) : = IX _L Laden des durch nn adressierten Spei- cherplatzes mit Register IY (nn+1) : = IY _H
LD SP,HL	1	<pre>(nn) : = IY_L Laden des Stackpointers mit Register- paar HL SP_H : = H SP_L : = L</pre>

	Byte	Beschreibung
LD SP, IX	2	Laden des Stackpointers mit Register
		II.
		$SP_{H} := IX_{H}$
		$SP_L := IX_L$
Lb sp, IY	2	Laden des Stackpointers mit Register IY
		SP _H : = IY _H
		SP _I , : = IY _I ,
PUSH qq	1	Laden des Inhaltes des Registerpaares
1000 44	·	qq auf den durch den Stackpointer adres-
		sierten Speicherplatz
		$(SP-2) : = qq_{T}$
\		(SP-1) : = qq _H
		SP : = SP-2
PUSH IX	2	Laden des Inhaltes des Registers IX auf
		den durch den Stackpointer adressierten
:		Speicherplatz
		$(SP-2) := IX_{T}$
		(SP-1): = IX _H
		SP := SP-2
PUSH IY	2	Laden des Inhaltes des Registers IY auf
		den durch den Stackpointer adressierten
1		Speicherplatz
		$(SP-2) := IY_{L}$
		$(SP-1) := IY_{H}$
		SP : = SP-2
POP qq	1	Laden des Registers qq mit dem Inhalt
		des durch den Stackpointer adressier-
		ten Speicherplatzes
		$qq_{H}:=(SP+1)$
		qq _L : = (8P)
DOD		SP : = SP+2
POP IX	2	Laden des Registers IX mit dem Inhalt
	}	des vom Stackpointer SP adressierten
ļ	1	Speicherplatzes

	Byte	Beschreibung
		IX _N : = (SP+1)
		$IX_L := (SP)$
		SP : = SP+2
POP IY	2	Laden des Registers IV mit dem Inha
		des vom Stackpointer SP adressierte
		Speicherplatzes
	-	$IY_{H} := (SP+1)$
		$IY_{T_i} := (SP)$
		SP: = SP+2

Beispiele: - Laden des Speicherplatzes 2100H mit dem Wert 30H

Adresse	Befehlscode	Mnemonik
2000	21 00 21	LD HL,2100H
2003	3E 30	LD A, 30H
2005	77	LD (HL),A
2006	76	HALT

Reg.Inhalt	Register	PC
2100	HL	2003
30FF	AF	2005

- Laden von Doppelregistern

Adresse	Befehlscode	Mnemonik
2000	01 50 20	LD BC,2050H
2003	DD 21 55 20	LD IX,2055H
2007	2A 60 20	LD HL, (2060H)
200A	22 65 20	LD (2065H),HL
200D	76	HALT
2060	AA	AAH
2061	ВВ	BEH

Reg.Inhalt	Register	PC	
2050	BC	.2003	
2055	II	2007	'a
BBAA	HL	200A	

Die Taste RES wird betätigt und über ADR und DAT die Speicherplätze

2065 AA und 2066 BB

abgefragt.

3.5.2. Registertauschbefehle

Sie bewirken den Austausch des Bitmusters zwischen zwei oder mehreren Doppelregister.

×	Byte	Beschreibung
EX DE, HL	1	Austausch der Register DE, HL
EXAF	1	D H E L Austausch von Registersatz
BARF	4	AF mit AF' A A' F F'
EXX	1	Austausch der Registerpaare BC mit BC'
EX (SP),HL	1	DE mit DE' und HL mit HL' Austausch des Registers HL mit Inhalt des Stackpointers SP H (SP+1)
EX (SP),IX	2	L (SP) Austausch des Registers IX mit Inhalt des Stackpointers SP IX _H (SP+1)
EX (SP),IY	2	IX _L (SP) Austausch des Registers IY mit Inhalt des Stackpointers SP IY _H (SP+1) IY _L (SP)

Beispiele: Austausch Hauptregistersatz - Zweitregistersats

Adresse	Befehlscode	Mnemonik
2000	3E 20	LD A, 20H
2002	01 50 20	LD BC, 2050H
2005	11 DD CC	LD DE, CCDDH
2008	21 BB AA	LD HL, AABBH
200B	08	EX AF
200C	D9	EXX
200D	76	HALT
Reg.Inhalt	Register	PC
20FF	AF	2002
2050	BC	2005
CCDD	DE	2008
AABB	HL	200B
PFFF	AF	200C
20 FF	AF'	
FFFF	BC	200D
FFFF	DE	
FFFF	HL	
2050	BC'	
CCDD	DE'	
AABB	HL'	

3.5.3. Blocktransfer- und Suchbefehle

Die Blocktransferbefehle bewirken die Übertragung einer Datenfolge von einem Speicherbereich in einen anderen.
Die Suchbefehle vergleichen immer den Akkumulatorinhalt mit
den Datenbytes in einem festgelegten Speicherbereich.

	Byte	Beschreibung
LDI	2	Transport eines Datenbytes von der durch Registerpaar HL adressierten Speicherzelle nach der durch Registerpaar DE adressierten Speicherzelle. Danach werden die Register HL und DE um 1 erhöht und Register BC um 1 vermindert (BC = Bytezähler). (DE) := (HL) DB := DE+1 HL := HL+1 BC := BC-1
LDIR	2	Transport von mehreren Datenbytes ab der durch HL adressierten Speicher- zelle nach der durch DE adressierten Speicherzelle. Die Anzahl der Bytes enthält das Registerpaar BC. Danach werden die Register HL und DE um 1 erhöht und Register BC um 1 vermindert bis BC = 0. (DE) := (HL) HL := HL+1 DE := DE+1
LDD		Transport eines Datenbytes von der durch Registerpaar HL adressierten Speicherzelle nach der durch Registerpaar DE adressierten Speicherzelle. Danach werden die Register HL, DE und BC um 1 vermindert.

	Byte	Beschreibung
LDDR	2	(DE) := (HL) DE := DE-1 HL := HL-1 BC := BC-1 Transport mehrerer Datenbytes ab der durch HL adressierten Speicherzelle nach der durch DE adressierten Speicherzelle. Anzahl der Bytes steht im Registrierpaar BC. Danach
CPI	2	werden die Register HL, DE und BC um 1 vermindert, bis BC = 0. (DE) := (HL) DE := DE-1 HL := HL-1 BC := BC-1 Vergleich des Akkumulatorinhaltes mit dem Inhalt der durch HL adressierten Speicherzelle. In Abhängigkeit vom Ergebnis werden die Flags gesetzt. BC wird um 1 vermindert und HL um 1
CPIR	2	erhöht. A = (HL) HL := HL+1 BC := BC-1 Vergleich des Akkumulatorinhaltes mit
		dem Inhalt der durch HL adressierten Speicherzelle. BC wird um 1 vermindert, HL um 1 erhöht. Anzahl der zu ver- gleichenden Bytes steht im BC. Ver- gleich ist beendet, wenn BC = 0 oder der Akkumulator = (HL) ist. A = (HL) HL := HL+1 BC := BC-1 Flags : Z = 1 bei Gleichheit P/V = 1 bei BC-1 = 0

	. Byte	Beschreibung	
CPD	2	Vergleich des Akkumulatorinhaltes mit dem Inhalt der durch HL adressierten Speicherzelle. Entsprechend dem Ergebnis werden die Flags gesetzt. Die Registerpaare BC und HL werden um 1 vermindert. A = (HL) HL := HL-1	
CPDR	2	Vergleich des Akkumulatorinhaltes mit der durch HL adressierten Speicherzelle. BC und HL werden um 1 vermindert. Anzahl der zu vergleichenden Bytes wird durch BC festgelegt. Der Vergleich endet, wenn BC = 0 oder der Akkumulator = (HL) ist. A = (HL) HL := HL-1 BC := BC-1 Flags : Z = 1 bei Gleichheit P/V = 1 bei BC-1 = 0	

Beispiele:

- Transport von Daten von Adresse 2050H - 2055H nach Adresse 2100H - 2105H

Adresse	Befehlscode	Mnemonik
2000	21 50 20	LD HL, 2050H
2003	01 06 00	LD BC,0006H
2006	11 00 21	LD DE,2100H
2009	ED BO	LDIR
200B	76	HALT
2050	AA	
2051	ВВ	
2052	CC	
2053	DD	
2054	BE	
2055	99	

Reg. Inhalt	Register	PC
2050	HL	2003
0006	BC	2006
2100	DE	2009
2051	HL	
0005	BC	
2101	DE	
	•	•
	•	• 6 x ADR
	•	•
0000	BC	
2106	DE	
2056	HL	

Auf den Adressen 2100 bis 2105 sind die Daten AA BB CC DD EE 99 eingeschrieben.

- Suchen der im Register A angegebenen Daten im Speicher

Adresse	Befehlscode	Mnemonik
2000	3E A9	LD A,OA9H
2002	01 06 00	LD BC,0006H
2005	21 50 20	LD HL,2050H
2008	ED B1	CPIR
200A	7D	LD A,L
200B	C6 O5	ADD 05
200D	6 F	LD L,A
200E	7E	LD A, (HL)
200F	76	HALT
2050	AA	
2051	BB	
2052	CC	
2053	DD	
2054	EE	
2055	A 9	
2056	01	
2057	02	
2058	03	
2059	04	
205A	05	
205B	06	

Statt 0A9H kann als Suchobjekt einer der anderen Speicherinhalte auf den Adressen 2050 bis 2054 verwendet werden. Man erhält dann im Ergebnis des obigen Programmes im Register A die Inhalte der Adressen 2056 bis 2059.

Reg.Inhalt	Register	PC	
A900	AP	2002	
0006	BC	2005	
2050	HL	2008	
0005	BC	2008	
2051	HL		
•	'•		
•	•		
•	•		
0000	BC	200A	
2056	HL	1	
5642	AF	200B	
5B08	AF	200D	
205B	HL	200E	
0608	AF	200F	

3.5.4. Arithmetikbefehle

Als arithmetische Operationen stehen im Mikroprezessor nur Addition, Subtraktion, Inkrementierung (Erhöhen um 1) und Dekrementierung (Erniedrigen um 1) zur Verfügung.

3.5.4.1. 8-Bit-Arithmetikbefehle

Die 8-Bit-Arithmetikbefehle beeinflussen im Ergebnis der Operation die entsprechenden Flags.

Die Operationen finden stets zwischen dem Akkumulator und einem zweiten Datenbyte statt.

Dieses zweite Datenbyte kann ein Direkteperand sein, oder es steht in einem Register oder wird durch dieses adressiert. Das Ergebnis steht immer im Akkumulator. Der zweite Operand bleibt unverändert, außer bei den Inkrement- und Dekrementbefehlen.

	Byte	Beschreibung
ADD r	1	Addiere Inhalt Register r zum
		Akkumulatorinhalt
ADD M	1	Addiere Inhalt der durch HL adressierten
		Speicherzelle zum Akkumulatorinhalt
ADD n	2	Addiere Direktoperand n zum Akkumulator- inhalt
ADD (IX+d)	3	Addiere die durch Register IX + Ver-
		schiebung d adressierte Speicherzelle
		zum Akkumulatorinhalt
		(-128 = d = 127)
ADD (IY+d)	3	Addiere die durch Register IY + Ver-
		schiebung d adressierte Speicherzelle
		zum Akkumulatorinhalt
		(-128 = d = 127)
ADC r	1	Addiere zum Akkumulatorinhalt den In-
		halt von Register r + Carry-Flag
ADC M	1	Addiere zum Akkumulatorinhalt Inhalt
		der durch Registerpaar HL adressierten
		Speicherzelle + Carry-Flag
ADC n	2	Addiere zum Akkumulatorinhalt Direkt-
		operand n + Carry-Flag
ADC (IX+d)	3 .	Addiere zum Akkumulatorinhalt die durch
		Régister IX + Verschiebung d adressierte
		Speicherzelle + Carry-Flag
ADC (IY+d)	3	Addiere zum Akkumulatorinhalt den Inhalt
		der durch Register IY + Verschiebung d
	•	adressierte Speicherzelle + Carry-Flag
SUB s	1-3	Subtrahiere s vom Inhalt des Akkumulators
		s kann sein:
ı		r: A, B, C, D, E, H, L
		n: Direktoperand
		(IX+d)
		(IY+d), wie bei ADD-Befehl
SBC s	1-3	Subtrahiere vom Inhalt des Akkumulators
		s und Carry-Flag

	Byte	Beschreibung
INC r	1	Erhöhung des Registerinhaltes um 1
INC (HL)	1	Erhöhung des Inhaltes des Registerpaares
		HL um 1
INC (IX+d)	3	Erhöhung des Inhaltes der durch IX + Ver-
		schiebung d adressierten Speicherzelle
		(-128 = d = 127)
INC (IY+d)	3	Erhöhung des Inhaltes der durch IY +
		Verschiebung d adressierten Speicher-
		zelle
		(-128 = d = 127)
DEC f	1 0. 3	Inhalt von f wird um 1 vermindert.
		f kann sein:
		r: A, B, C, D, E, H, L
		M: (HL)
		(IX+d)
,		(IY+d) wie bei INC-Befehl

3.5.4.2. 16-Bit-Arithmetikbefehle

Die 16-Bit-Arithmetikbefehle für Addition und Subtraktion beeinflussen die Flags.

Bei den INC- und DEC-Befehlen der Doppelregister werden keine Flags gesetzt.

Die Operationen finden immer mit dem Inhalt von zwei Doppelregistern statt.

	Byte	Beschreibung	
ADD HL, dd	1	Addition von Registerpaar dd zu Register- paar HL	
ADC HL, dd	2	Addition won Registerpaar dd und Carry-	
SBC HL,dd	2	Flag zu Registerpaar HL Subtraktion von Registerpaar dd und Carry-Flag von Registerpaar HL	

	Byte	Beschreibung
ADD IX,pp	2	Addition won Registerpaar pp zu
		Register IX
ADD IY,pp	2	Addition won Registerpaar pp zu
		Register IY
INC dd	1 1	Addition von 1 zum Inhalt des Doppelre-
	(2)	gisters dd: BC, DE, HL, SP, IX, IY
DEC dd	1	Subtraktion von 1 vom Inhalt des Doppel-
	(2)	registers dd: BC, DE, HL, SP, IX, IY

Beispiel: Addition der Doppelregister HL und BC, danach Subtraktion von 1

Adresse	Befehlscode	Mnemonik
2000	01 10 10	LD BC,1010H
2003	21 00 00	LD HL,0000H
2006	09	ADD HL, BC
2007	2B	DEC HL
2008	76	HALT

Reg. Inh.	Register	F-Reg. SZXHXP/VNC	PC	
1010	BC	,	2003	
0000	HL		2006	1
1010	HL		2007	
100F	HL		2008	

3.5.5. Sprungbefehle

Ein Sprungbefehl im Programm bewirkt, daß die normale Reihenfolge der Abarbeitung unterbrochen und statt beim nächsten bei einem anderen Befehl fortgesetzt wird. Zur Kennzeichnung dieses Befehls wird dessen Adresse als Sprungziel angegeben.

	Byte	Beschreibung
JMP nn	3	Unbedingter Sprung nach Adresse nn. Das Programm wird mit dem Befehl fortgesetzt, der auf Adresse nn steht.
JPNZ nn	3	Sprung nach Adresse nn, wenn 2-Flag
JPZ nn	3	Sprung nach Adresse nn, wenn Z-Flag
JPNC nn	3	Sprung nach Adresse nn, wenn C -Flag
JPC nn	3	Sprung nach Adresse nn, wenn C -Flag
JPPO nn	3	Sprung nach Adresse nn, wenn P/V- Flag = 0
JPPE nn	3	Sprung nach Adresse nn, wenn P/V-Flag = 1
JPP nn	3	Sprung nach Adresse nn, wenn S-Flag
JPM nn	3	Sprung nach Adresse nn, wenn S-Flag
JR e	. 2	Unbedingter relativer Sprung e: Abstand zwischen aktuellen Befehls- zählerstand und Zieladresse
JRNZ ●	2	(-126 = e = 129) Bei Z-Flag = 0 relativer Sprung mit Abstand e (-126 = e = 129)
JRZ e	2	Z-Flag = 1, kein Sprung Bei Z-Flag = 1 relativer Sprung mit Abstand e (-126 = e = 129)
JRNC •	2	Z-Flag = 0, kein Sprung bei C -Flag = 0 relativer Sprung mit Abstand e (-126 = e = 129) C -Flag = 1, kein Sprung

	Byte	Beschreibung
JRC e	2	Bei C -Flag = 1 relativer Sprung mit Abstand e (-126 = e = 129) C -Flag = 0, kein Sprung
JMP M	1	Unbedingter Sprung zu der im Register- paar HL angegebenen Adresse
JMP (IX)	2	Unbedingter Sprung zu der in IX ange- gebenen Adresse
JMP (IY)	2	Unbedingter Sprung zu der in IY ange- gebenen Adresse
DJHZ e	2	Subtraktion 1 von Register B, - ist B ≠ 0 Sprung zur Adresse, die sich aus Abstand e ergibt - ansonsten Abarbeitung beim nächsten Befehl

3.5.6. 1-Byte-Logik-Befehle

Sie realisieren logische Verknüpfungen vom Akkumulatorinhalt mit einem Register bzw. mit dem Inhalt einer Adresse. Man verwendet diese Befehle im Programm, um Negationen auszuführen, Masken zu setzen, einzelne Bits zu prüfen, zu setzen oder rückzusetzen usw.:

	Byte	Beschreibung	
AND 8	1-3	Der Inhalt von s wird konjunktiv (log. UND) mit dem Inhalt des Akku- mulators A verknüpft Abarbeitung nach folgender Tabelle:	

Akku Operand	O	1
0	0	0
1	0	1

.	Byte	Beschreibung		
OR 8	1-3	Der Inhalt von s (log. ODER) mit d mulators A verknü Abarbeitung nach	em Inhal	t des Akku-
	c	Akku Operand	o	1
		0	0	1
		1	1	1
XOR s	1-3	EXKLUSIVES ODER v lator -\ Akku	ron s und	Akkumu-
		Operand	0	1
		o	o	1
		1	1	0
CMP s	1-3	Vergleich von sinter. Inhalte von bleiben erhalten. vom Ergebnis der die Flags wie fol S: 1, falls Ersonst O Z: 1, falls Ersonst O H: 0, falls vowurde, sons P/V: 1, falls Ut N: 1 gesetzt d: 1, falls gesonst O	s und Aki In Abhän Operation gt geset rgebnis no rgebnis 0 on Bit 4 st 1 oerlauf,	kumulator ngigkeit n werden zt: egativ, "geborgt" sonst 0

Beispiel: (Der Inhalt des Registers F ist zu Beginn & zu setzen)

Adresse	Befehlscode	Mnemonik
2009	3E FF	LD A, FFH
200B	OE 02	LD C,O2H
200D	A9	XOR C
200E	в9	CMP C
200 F	oc	INC C
2010	76	HALT

Reg.Inhalt	Register	F-Register	PC
		SZXHXP/VNC	
			F : = C
FF 00	AF		200B
FF 02	BC		200D
FD A8	AF	10101000	200E
FD 82	AF	1000010	200F
FD 00	AF		2010
FF 03	BC		

3.5.7. Rotations- und Schiebebefehle

Diese Befehle beziehen sich auf ein Register r und/oder auf eine adressierte Speicherzelle. Sie verschieben den Inhalt nach rechts oder links.

	Byte	Beschreibung
RLCA	1 -	Linksrotation des Akkumulatorinhalts um eine Bitposition. Der Akkumulatorinhalt wird um eine Bitposition nach links verschoben. Bit D7 wird zum Inhalt von Bit D0 und des Carry-Flags. Akku
		C D7 - D0

	Byte	Beschreibung
RLA	1	Linksrotation des Akkumulatorinhalts um
		eine Bitposition. Bit D7 wird ins C -
		Flag geschoben, C -Flag ersetzt DO.
		Akku
		C - D7 - D0
RRCA	1	Rechtsrotation des Akkumulatorinhalts um
		eine Bitposition. Bit DO ersetzt D7 und
		C -Flag.
		\ Akku
		D7 DO C
RRA	1	Rechtsrotation des Akkumulatorinhalts um
		eine Bitposition. Bit DO ersetzt C -Flag,
		C -Flag ersetzt Bit D7.
		Akku
RLC r	2	
RLC (HL)	2	Linksrotation um eine Bitposition.
RLC (IX+d)	4	C := D7, D0:= D7
RLC (IY+d)	4	
		D7 - D0
		r,(HL),(IX+d)
	'	(IY+d)
		·
RRC :	2 0. 4	Rechtsrotation von a analog RRCA
		s: A, B, C, E, H, L,
		(HL), (IX+d), (IY+d)
		8
		D7 - DO - C

	Byte	Beschreibung
RL s	2 0. 4	Linksrotation von s analog RLA s: A, B, C, D, E, H, L, (HL), (IX+d), (IY+d) s C D7 - D0
RR s	2 0. 4	Rechtsrotation von s analog RRA s: A, B, C, D, E, H, L, (HL), (IX+d), (IY+d)
SIA 8	2 0. 4	Linksverschiebung von s um 1 Bit. Bit DO:= 0, C -Flag:= D7 s: A, B, C, D, E, H, L, (HL), (IX+d), (IY+d) C D7 D0 D0 0
SRL s	2 0. 4	Rechtsverschiebung von s um 1 Bit. Bit D7:= 0, C := D0 0
SRA 8	2 0. 4	Rechtsverschiebung von s um 1 Bit. Bit D7 bleibt erhalten. C := D0 s: A, B, C, D, E, H, L, (HL), (IX+d), (IY+d)

	Byte	Beschreibung
RLD	2	Linksverschiebung zwischen Akkumulator und dem Inhalt des durch Registerpaar HL adressierten Speicherplatzes. Die unteren 4 Bits von (HL) werden in die oberen 4 Bits von (HL) und diese wiederum in die unteren 4 Bits des Akkumulators übertragen. Gleichzeitig erfolgt eine Übertragung der unteren 4 Bits des Akkumulators in die unteren 4 Bits von (HL). D7D4 D3D0 D7D4 D3D0
RRD	2	Rechtsverschiebung zwischen Akkumulator und dem Inhalt der durch Registerpaar HL adressierten Speicherzelle. Die unteren 4 Bits von (HL) werden in die unteren 4 Bits des Akkumulators und diese wiederum in die oberen 4 Bits von (HL) übertragen. Gleichzeitig erfolgt eine Übertragung der oberen 4 Bits von (HL) in die unteren 4 Bits von (HL). D7D4 D3D0 D7D4 D3D0 A (HL)

Beispiele:

•		
- Adresse	Befehlscode	Mnemonik
2000	3E FE	LD A, OFEH
2002	07	RLCA
2003	38 FD	JRC FD
2005	3E 01	LD A, O1H
2007	07	RLCA
2008	D2 07 20	JPNC 2007
200B	3E FF	LD A,OFFH
200D	OE FF	LD C,OFFH
200F	C3 14 20	JMP 2014
2012	OE FB	LD C,OFBH
2014	в9	CMOP C
2015	CA 12 20	JPZ 2012
2018	3E 01	LD A,O1H
201A	06 03	LD B,03H
201C	87	ADD A
201D	10 FD	DJNZ FD
201F	76	HALT

RegInhalt	Register A-Register F-Register		F-Register PC
			SZXHXP/VNC
FE 00	AF	1111 1110	0 0 0 0 0 0 0 0 2002
FD 29	AF	1111 1101	0 0 1 0 1 0 0 1 2003
			2002
FB 29	AF	1111 1011	0 0 1 0 1 0 0 1 2003
			•
			. 6x
			•
FE 28	AF	1111 1110	0 0 1 0 1 0 0 0 2005
			F:=00
01 00	AF	0000 0001	0 0 0 0 0 0 0 0 2007
02 00	AF	0000 0010	0 0 0 0 0 0 0 0 2008
	,		2007
04 00	AF	0000 0100	0 0 0 0 0 0 0 0 2008
			•
je.			. 6x
,			•
01 01	AF	0000 0001	0 0 0 0 0 0 0 1 200B
[1	F:=00

Reg	gInhalt	Register	A-Register	F-	-Re	gi	lsi	tes	•			PC
				S	Z	X	Н	XI	2/1	/N	С	
FF	00	AF										200D
FF	FF	BC										200F
												2014
FF	6 A	AF		0	1	1	0	1	0	1	0	2015
												2012
FF	6 A	AF .										2014
FF	FB	BC										
FF	2 Å	AF		0	0	1	0	1	0	1	0	2015
$\mathbf{F}\mathbf{F}$	2A	AF										2018
												F:=00
01	00	AF										201A
03	FB	BC										201C
02	00	AF										201D
02	FB	BC										201C
	1											
08	08	AF		1	0	0	0	1	0	0	0	201F
00	FB	BC	,									

- Adressee Befeh	Lscode Mnemonik
2000 3E 40	LD A,40H
2002 07	RLCA
2003 17	RLA
2004 3E 01	LD A,O1H
2006 OF	RR CA
2007 1F	RRA
2008 3E 01	LD A,O1H
200A CB 2F	SRA A
200C CB 3F	SRL A
200E 76	HALT

RegInhalt	Register	A-Register	F-Register	PC
			SZXH XP/VN C	
40 00	AF	01000000	00000000	2002
80 00	AF	10000000	0.0000000	2003
00 01	AF	00000000	00000001	2004
				F:=00
01 00	AF	00000001	00000000	2006
80 01	AF	10000000	00000001	2007
CO 00	AF	11000000	00000000	2008
01 00	AF	00000001	00000000	200A
00 45	AF	00000000	01000101	2000
00 44	AF	00000000	01000100	200E

3.5.8. Bitmanipulationsbefehle

Mit dieser Befehlsgruppe können einzelne Bits eines Bytes gesetzt oder rückgesetzt werden.

	Byte	Beschreibung
SET b,r	2	Die durch b gekennzeichnete
SET b,(H	r) 5	Bitposition wird 1 gesetzt.
SET b,(I	X+d) 4	b: 7,6,,0
SET b,(I	Y+d) 4	·
RES b,r	2	Die durch b gekennzeichnete
RES b,(H	r)	Bitposition wird O gesetzt.
RES b,(I	X+d) 4	
RES b,(I	Y+d) 4	
BIT b,r	2	Die durch b gekennzeichnete
BIT b,(H	r) 5	Bitposition wird komplemen-
BIT b,(I	X+d) 4	tiert und ins Z-Flag geladen.
BIT b.(I	Y+d) 4	,

Beispiel: Setzen und Rücksetzen der einzelnen Bitpositionen des A-Registers

Adresse	Befehlscode	Mnemonik
2000	3E 00	LD A,00
2002	CB 6F	Bit 5,A
2004	CB E7	SET 4,A
2006	CB A7	RES 4,A
2008	76	HALT

RegInhalt	Register	A-Register	F-Register	PC
·			SZXH XP/VN C	·
00 00	AF	00000000	00000000	2002
00 54	AF	00000000	01010100	2004
10 54	AF	00010000	01010100	2006
00 54	AF	00000000	01010100	2008

3.5.9. Spezielle Akkumulator- und Flagbefehle

	Byte	Beschreibung
DAA	1	Korrigiert nach der Addition/Subtraktion zweier gepackter BCD-Zahlen den Inhalt des Akkumulators so, daß wieder ge- packtes BCD-Format entsteht.
		Bap.: 0010 0110 26
	1	<u>+ 0101 1001 + 59</u>
		falsch 0111 1111 7F
		nach DAA 1000 0101 85
NEG .	2	Subtraktion des Akkumulatorinhaltes von 0 (Zweierkomplement)

	Byte	Beschreibung
CCF	1	Komplementieren des C -Flags
	1	setzen des C -Flags
CPL	1	bitweises Negieren des Akkumulatorin-
		haltes

Beispiel:

Adresse	Befehlscode	Mnemonik
2000	3E 00	LD A,O
2002	2 F	CPL
2003	ED 44	NEG
2005	3F ·	CCF
2006	37	SCF
2007	76	HALT

RegInhalt	Register	-Register		PC
		Z X H XP/VN	C	
00 00	AF	000000	0	2002
FF 3A	AF	011101	0	2003
01 13	AF	001001	1	2005
01 10	AF	001000	0	2006
01 01	AF	0 0 1 0 0 0	1	2007

3.5.10. Unterprogrammaufruf- und Rücksprungbefehle

Unterprogramme sind Befehlsfolgen, die bei der Abarbeitung des Programmes ein- oder mehrmals aktiviert werden. Sie können von mehreren Programmen, sowohl Hauptprogrammen als auch Unterprogrammen, aufgerufen werden.

Bei dieser Programmierungs-Technik wird der im Prozessor vorhandene Kellerspeicher (Stackpointer) genutzt. In den Stackpointer wird beim Sprung in ein Unterprogramm der aktuelle Programmzähler (PC) und damit die Rückkehradresse (Adresse des im Hauptprogramm nächsten Befehls) automatisch eingeschrieben.

Der Einsprung in ein Unterprogramm erfolgt über den Befehl CALL. Das Unterprogramm endet mit einem RET-Befehl.

	Byte	Beschreibung
CALL nn	3	Unbedingter Unterprogrammaufruf.
		Im Stackpointer wird aktueller Programm-
		zähler (PC) gerettet, der dann mit
		Adresse nn geladen wird.
		(SP-1):= PC _H
		(SP-2):= PC _{T.}
	}	PC := nn
CANZ man	3	Unterprogrammaufruf, wenn Z-Flag=0
CAZ nn	3	Unterprogrammaufruf, wenn Z-Flag=1
CANC nn	3 3 3	Unterprogrammaufruf, wenn C -Flag=0
CAC nn	3	Unterprogrammaufruf, wenn C -Flag=1
CAPO nn		Unterprogrammaufruf, wenn P/V-Flag=0
CAPE nn	3	Unterprogrammaufruf, wenn P/V-Flag=1
CAP nn	3 3	Unterprogrammaufruf, wenn S-Flag=0
CAM nn	3	Unterprogrammaufruf, wenn S-Flag=1
RST p	1	Spezieller Unterprogrammaufruf.
		Dabei erfolgt ein Sprung zu der ange-
		gebenen Adresse p.
	1	p kann sein: 00H, 08H, 10H, 18H
		20н, 28н, 30н, 38н
		Die damit aktivierte Befehlsfolge muß
		mit einem RET-Befehl enden.
RET	1	Unbedingte Rücksprung.
		Der Inhalt der durch den Stackpointer
		adressierten Speicherzelle wird zum
		aktuellen Programmzähler. Anschlie-
		ßend wird der Stackpointer um 2 erhöht.
		$PC_{T_i} := (SP)$
		PC _H := (SP+1)
		SP := SP+2

	Byte	Beschreibung
RNZ	1.	Unterprogrammrücksprung,
		wenn Z -Flag = 0
RZ.	1 1	Unterprogrammrücksprung,
	[wenn Z -Flag = 1
RNC	1 1	Unterprogrammrücksprung,
		wenn $C-Flag = 0$
RC	1 1	Unterprogrammrücksprung,
		wenn C-Flag = 1
RPO	1	Unterprogrammrücksprung,
	!	wenn P/V -Flag = 0
RPE	1 1	Unterprogrammrücksprung,
		wenn $P/V-Flag = 1$
RP	1	Unterprogrammrücksprung,
	1	wenn S-Flag = 0
RM	1 1	Unterprogrammrücksprung,
	1	wenn S-Flag = 1
RETI	\$	Rückkehr aus einer Interrupt-
	1	serviceroutine im Mode 2
RETN	2	Rücksprung aus einer nicht-
		maskierbaren Interrupt-
		serviceroutine

Beispiel: Sprung ins Unterprogramm ab Adresse 2050 und Rücksprung aus dem Unterprogramm

Adresse	Befehlscode	Mnemonik
2000	CD 50 20	CALL 2050
2003	76	HALT
2050	00	NOP
2051	00	NOP
2052	C9	RET
PC		
2000		
2050		
2051		
2052		
2003		

3.5.11. Allgemeine Steuerbefehle

	Byte	Beschreibung
NOP	1	Die CPU führt keine Operation aus.
HALT	1	CPU führt solange NOP-Befehle aus,
		bis ein Interrupt- oder der RESET-
		Eingang aktiv wird.
DI	1	Interrupt abweisen
		IFF 1 = 0, IFF 2 = 0
		IFF 1: Interrupt-Annahme-Flip-Flop
		IFF 2: Interrupt-Zwischenspeicher-Flip-
		Flop
EI	1	Interrupt annehmen
		IFF 1 = 1, IFF 2 = 1
IMO	2	Setzen Interruptmodes 0
IM1	2	Setzen Interruptmodes 1
IM2	2	Setzen Interruptmodes 2

3.5.12. Ein- und Ausgabebefehle

	Byte	Beschreibung
PORT →	CPU/Reg.	
	1	`
IN n	2	A:=(n)
	ł	Akkumulatorinhalt wird mit Inhalt des
	<u> </u>	durch n adressierten Eingabekanals ge-
		laden
	1	n: Direktwert
IN r	2	r: = (C)
	l	Register r wird mit Inhalt des durch C
		adressierten Eingabekanals geladen.
		C: enthält Adresse des Eingabekanals
IN F	. 2	Das F-Register wird mit dem Zustand des
		durch C adressierten Eingabekanals ge-
		laden
PORT →	Speicher	
	l	()
INI	. 5	(HL): = (C) B: = B-1
	<u> </u>	HL:= HL+1
		Durch HL adressierter Speicherplatz
	!	wird mit Inhalt des durch C adressier-
	1	ten Eingabekanals geladen. HL wird um
	1	1 erhöht, B um 1 erniedrigt.
	_	C: wird vor Abarbeitung von INI geladen
INIR	2	(HL): = (C) B: = B-1
	[]	HL:= HL+1
		analog INI;
		Wiederholung der Befehlsausführung
		bis B = 0
IND	2	(HL): = (C) B: = B-1
		HL:= HL-1
		analog INI;
		HL wird um 1 verringert

	Byte	Beschreibung
INDR	2	(HL): = (C) B: = B-1 HL: = HL-1 analog INIR; HL wird um 1 verringert
CPU/Reg.	→ PORT	
OUT n	2	<pre>(n): = A Inhalt des Akkumulators wird an den Aus- gabekanal mit der Adresse n gegeben n: Direktwert</pre>
OUT r	2	(C): = r Registerinhalt wird an den durch C adressierten Ausgabekanal gegeben. Adresse des Ausgabekanals muß vorher in C geladen werden.
Speicher	→ PORT	
OUTI	2	(C): = (HL) B: = B-1 HL: = HL+1 Der Inhalt, der durch HL adressierten Speicherzelle wird an den durch C adressierten Ausgabekanal ausgegeben. Danach wird B um 1 verringert und HL um 1 erhöht.
OTIR	2	(C): = (HL) B: = B-1 HL: = HL+1 analog OUTI; Befehl wird so oft wieder- holt bis B = 0 ist.
OUTD	2	(C): = (HL) B: = B-1 HL: = HL-1 analog OUTI; aber HL wird um 1 verringert

	Byte	Beschreibung
OTDR	2	(C): = (HL) B: = B-1 HL: = HL-1
		analog OTIR,
		aber HL wird um 1 verringert.

Bemerkung:

Bei den Eingabe- und Ausgabebefehlen liegt die Kanaladresse auf dem unteren Adreßbus AO ... A7. Auf dem oberen Adreßbus A8 bis A15 liegt bei IN n und OUT n der Akkuinhalt A; bei den Befehlen IN r, OUT r der Inhalt von B; bei den Befehlen INI, INIR, IND, INDR der nicht dekrementierte Wert von B und bei den Befehlen OUT, OTIR, OUTD, OTDR der dekrementierte Wert von B.

Anwendungsbeispiele hierzu sind im Abschnitt 3. enthalten.

L. Programmierung der Peripherieschaltkreise des LC 80

Vachfolgend soll anhand einiger Beispiele die Programmierung von PIO und CTC erläutert werden. Diese Programmierung erfolgt auf der Grundlage der in den Abschnitten 2.3.4. und 2.4.3. aufgeführen schaltkreisspezifischen Programmiervorschriften.

Sa wurde hierbei nicht angestrebt, alle möglichen Varianten zu prfassen, sondern eher den prinzipiellen Aufbau dieser Programmseile zu verdeutlichen.

hie Lösung eigenständiger Anwendungsaufgaben ist dann unter Nutnung o. g. Abschnitte leicht möglich.

Luerst soll nochmals kurz auf die programmäßig notwendigen ktivitäten zur Organisation einer Interruptserviceroutine ISR- (vgl. Abschnitt 2.2.2.) in Verbindung mit CTC und PIO ingegangen werden.

1.1. Programmäßige Organisation einer Interruptserviceroutine

Hemäß des im Abschnitt 2.2.2. dargelegten Ablaufes für den hierbei betrachteten Interruptmode 2 (IM 2) sind folgende Aktivitäten urforderlich:

- Im Grundzustand nach RESET ist die Interruptannahme (INT) gesperrt und muß mittels EI-Befehl erst freigegeben werden. Gleiches gilt nach einer erfolgten Interruptannahme.
- Prinzipiell ist ein Interrupt-Aufruf in Mode 2 mit einem Unterprogrammaufruf mittels CALL-Befehl vergleichbar.

In der Regel wird es notwendig sein, die in der ISR verwendeten Register entweder durch Arbeit mit dem Alternativregistersatz (EXX, EXAF) oder durch PUSH-Befehle zu retten. Am Ende der ISR ist der Rücktausch (EXAF, EXX) bzw. die Rückkellerung der Register (POP) notwendig.

- Das im Rahmen einer ISR abzuarbeitende Unterprogramm kann an beliebiger Stelle im RAM abgespeichert werden und muß zur Kennzeichnung des programmäßigen Endes dieser ISR mit dem Befehl RETI (bei NMI: RETN) abgeschlossen werden.
- Die Startadresse dieses Programms kann ebenfalls an beliebiger Stelle im RAM abgespeichert werden. Die hierfür gewählte RAM-Adresse bestimmt den Inhalt des zu ladenden I-Registers (oberer Adreßteil) sowie des Interruptvektors (unterer Adreßteil) des interruptauslösenden Peripheriekanals.

Ein kurzes Prinzipheispiel soll die erforderliche Programmstruktur verdeutlichen:

Drei Peripheriekanäle sollen interruptfähig sein. Die jeweiligen Interrupt-Unterprogramme seien im RAM nacheinanderfolgend abgespeichert.

(Die verwendeten Adressen wurden beliebig gewählt.)

.
LD A,23H oberer Adresteil der Startadressentafel
der INT-Unterprogramme in I-Register laden
IM 2

.
CUT (Peripheriekanal 1, Steueradresse),OOH Laden der jeweiligen
. Interruptvektoren

OUT (Peripheriekanal 2, Steueradresse),02H

OUT (Peripheriekanal 3, Steueradresse),04H

Interruptvektoren im Rahmen der Initialisierung der Peripherieschaltkreise (Beachte spezielle Interruptvektorerzeugung der CTC-Kanale 1 - 3)

```
Schleife: EI
        HALT
        JR Schleife
2060H: .. .
     (INT-Unterprogramm 1)
   RETI
2073Н: . . .
     (INT-Unterprogramm 2)
   RETI
20A9H: . . .
     (INT-Unterprogramm 3)
   RETI
2300H:DEFW 2060H
                           Startadressentafel der
2302H:DEFW
            2073H
                           INT-Unterprogramme
2304H:DEFW 20A9H
```

s eigentliche Hauptprogramm dieses Prinzipbeispiels besteht aus ner einfachen Schleife mit HALT-Befehl, d. h. nach jeder ISR hrt die CPU in den HALT-Zustand zurück und erwartet eine erneu-INT-Anmeldung. Zuvor muß dabei jeweils mittels EI-Befehl die T-Freigabe erteilt werden.

ill beispielsweise Kanal 2 eine laufende ISR des Kanals 3 unterechen dürfen (vorausgesetzt Kanal 2 besitzt hardwaremäßig höhei Priorität, vgl. Abschnitt 2.4.2.4.), so muß innerhalb des INTiterprogrammes 3 ebenfalls eine INT-Freigabe mittels EI-Befehl rfolgen.

.2. PIO-Programmierung (vgl. hierzu Abschnitt 2.3.4.)

PIO D207/Port A soll in Byte-Ausgabe arbeiten und nicht interruptfähig sein. Anschließend soll der Registerinhalt von A über Port A ausgegeben werden:

) A.OFH Betriebsarten-Steuerwort: Byte-Ausgabe Identifikation als Betriebsartensteuerwort JT (FAH).A Ausgabe Betriebsarten-Steuerwort auf D207/Port A, Steueradresse FAH D A.03H INT-Steuerwort: INT gesperrt Identifikation als INT-Steuerwort

JT (FAH), A

LD A, ...

OUT (F8H), A Ausgabe des A-Registerinhaltes auf Port A,
Datenadresse F6H

Beispiel 2: PIO D207/Port A soll in Byte-Eingabe arbeiten und interruptfähig sein (INT-Vektor = 50H gewählt, INT-Auslösung über ASTE):

0000 0101 LD A.50H INT-Vektor Identifikation als INT-Vektor OUT (FAH), A LD A.4FH Betriebsarten-Steuerwort Byte-Eingabe Identifikation als Betriebsarten-Steu-OUT (FAH).A erwort LD A,83H INT-Steuerwort: 0011 INT freige ge ben Identifikation als INT-Steuerwort OUT (FAH).A

Lapiel 3: PIO D207/Port B soll in Bit-Mode arbeiten, dabei sollen BO - B3 Ausgänge und B4 - B7 Eingänge sein, Interrupt gesperrt. Anschließend soll ein Datenschreibe- und -lesezyklus erfolgen:

· · A,CFH

Betriebsarten-Steuerwort: 1 0 0 1 1 1 1 Bit-Mode

IT (FBH).A

) A, FOH

Definierung der Ein-/ Ausgänge:

 $\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{0}{1} \frac{0}{1} \frac{0}{1} \frac{0}{1}$ Eingänge Ausgänge

tion als INT-Steuerwort

JT (FBH),A

D A,07H

INT-Steuerwort:

INT / gesperrt / Maske folgt nicht

JT (FBH), A

. D A.00

TT (F9H), A über Port B (Datenadresse) wird der Inhalt vom A-Register ausgegeben, d. h. hierbei wirksam nur für die als Ausgänge programmierten Anschlüsse BO - B3

IN A, (F9H) Einlese A-Regie B4 - B7

Einlesen von Port B (Datenadresse) in das A-Register der CPU. Dabei werden die an B4 - B7 (Eingänge) anliegenden Daten sowie die im Ausgaberegister von BO - B3 (Ausgänge) enthaltenen Werte (hierbei BO - B3 = O) gelesen.

Beispiel 4: PIO D207/Port B soll in Bit-Mode arbeiten,
BO - B7 sollen Eingänge sein, wobei ein Interrupt
unter folgender Bedingung ausgelöst werden soll:

BO • B1 • B3 (Low-Pegel an BO, B1 und B3 - UND-Verknüpfung)

(INT-Vektor = 70H gewählt):

LD A.70H

INT-Vektor: 0 1 1 1 0 0 0 0

Identifikation als INT-Vektor

OUT (FBH), A

LD A.CFH

Betriebsarten-Steuerwort

OUT (FBH), A

LD A, FFH

Definition der Ein-/Ausgänge

OUT (FBH), A

LD A, D7H

INT-Steuerwort: 1 1 0 1 0 1 1

INT- / Maske gabe Ver- Low- folgt knup- aktiv

fung

OUT (FBH), A

L, F4H

Maskierung: 1 1 1 1 0 1 0 0 0

B3, B1, BO für INT ausgewertet

(FBH).A

•

- . CTC-Programmierung (vgl. hierzu Abschnitt 2.4.3.)
- <u>spiel 1:</u> CTC D208/Kanal 1 soll als Zeitgeber arbeiten, wobei der Systemtakt (Bezugsbasis 900 kHz) durch den Vorteilerfaktor 256 geteilt wird.

Die Zeitkonstante soll O9H betragen. Die Zeitgeberoperation soll mit der steigenden Systemtaktflanke des CPU-Maschinenzyklusses, der auf das Laden der Zeitkonstante folgt (Software-Triggerung), beginnen.

INT freigegeben, INT-Vektor Kanal 0 = 50H gewählt.

A , 50H

INT-Vektor: 0 1 0 1 0 0 0 0

Identifikation als INT-Vektor

(ECH), A INT-Vektor in Kanal O (!) einschreiben (gemäß Abschnitt 2.4.3. wird damit bei INT-Annahme von Kanal 1 der INT-Vektor = 52H gesendet!)

LD A, A5H

Kanalsteuerwort:

OUT (EDH).A

Kanalsteuerwort in Kanal 1 einschreiben

LD A,09H

Zeitkonstante O9H

OUT (EDH), A

Beginn der Zeitgeberoperation

•

Die Dauer bis zur INT-Auslösung (Nulldurchgang des Rückwärtszählers) beträgt damit gemäß Abschnitt 2.4.3.2.

$$t = \frac{1}{900}$$
 ms • 256 • 9 = 2,56 ms

Beispiel 2: Kanal 3 soll als Zähler arbeiten, wobei die am CTC-Eingang C/TRG3 ankommenden Impulse mit der positiven Flanke (L -> H) gezählt werden. Beim Nulldurchgang des Rückwärtszählers soll ein Interrupt erzeugt werden (INT-Vektor Kanal 0 = 50H gewählt).

Als Zeitkonstante soll der maximale Wert = 0 verwendet werden (entspricht einer Zeitkonstante von 256, d. h. nach 256 Eingangsimpulsen erfolgt INT-Anmeldung).

D A,50H

UT (ECH),A

INT-Vektor in Kanal 0 einschreiben(damit
wird bei INT-Annahme von Kanal 3 der INTVektor = 56H gesendet)

D A, D5H

Kanalsteuerwort:

Zeitkon-Identiposi-Frei- Zähstante tive fikation . gabe als Kaler Trigfolgt gernalsteuřlanerwort ke

UT (EFH).A Kanalsteuerwort in Kanal 3 einschreiben

D A,00

UT (EFH), A Zeitkonstante O: nach 256 Eingangsimpulsen erfolgt INT-Anmeldung durch CTC

5. Befehisliste U880

Symbol	Bedeutung
С	Ubertrageflag. C = 1, wenn die Operation einen Ubertrag vom MSB des Operanden oder des Ergebnisses erzeugt.
Z	Null-Flag. Z = 1, wenn das Ergebnis der Operation Null ist.
3	Vorzeichen-Flag. S = 1, wenn das MSB des Ergebnisses eins ist.
₽/♥	Paritäts- oder Überleuf-Flag. Parität (P) und Überleuf (V) benutzen das gleiche Flag. Logische Operationen beeinflussen das Flag entsprechend der Parität des Ergebnisses, srithmetische Operationen stellen dieses Flag entsprechend dem Überlauf des Ergebnisses. P/V = 1, wenn das Ergebnis paarig ist. P/V = 0, wenn das Ergebnis unpaarig ist. P/V = 1, wenn das Ergebnis einen Überlauf enthält.
H	Halbbyte-Übertrageflag. H = 1, wenn Addition oder Subtraktion einen Übertrag innerhalb von 4 Akkumulatorbita erzeugen.
N	Additions-/Subtraktionsflag. N = 1, wenn vorangegangene Operation eine Subtraktion war. H- und N-Flage werden für die Dezimalkorrektur (DAA) benutzt, um das Ergebnis einer Addition oder Subtraktion von gepackten BCD-Zehlen in das Format gepackter BCD-Zehlen zu wandeln.
‡	Plag wird entsprechend dem Ergebnis der Operation gestellt
•	Flag wird durch die Operation nicht beeinflußt
0	Flag wird durch die Operation gelöscht
1	Flag wird durch die Operation gesetzt
X	Plag unbestimmt
V	P/V-Flag entspricht dem Ergebnis-Überlauf der Operation
P	P/V-Flag entspricht der Parität des Ergebnisses der Operation
r	eines der U880D - Register A,B,C,D,E,H,L.
8	ein 8-Bit-Speicherplatz, der durch eine der für den jeweiligen Befehl zulässigen Adressierungsarten definiert ist.
dd	ein 16-Bit-Speicherplatz, der durch eine der für diesen Befehl zuläseigen Adressierungserten definiert ist.
11	eines der zwei Indexregister IX oder IY
R	Auffrischzähler
n	8-Bit im Bereich 0 - 255
nn	16-Bit im Bereich 0 - 655 35
A	P/V-Flag ist 0, wenn das Ergebnis von BC-1 = 0, sonst P/V = 1
B	Z-Flag ist 1, wenn A = M, sonst Z = 0
IPF1	Interrupt-Annahme-Flip-Flop
IFF2	Interrupt-Zwischenspeicher-Flip-Flop
•	stellt die Abstandsangabe in der reletiven Adressierungsart dar, bezogen auf das 1. Byte des Sprungbefehls, e ist ein Zweierkomple- ment mit Vorzeichen im Bereich -126 bis +129
e-2	ergibt im Operationscode die tateächliche Adresse PC+e, da der Be- fehlszähler vor der Addition von e um 2 erhöht worden ist.
s _b	bezeichnet das Bit b (07) des Speicherplatzes s
•	falls B-1 = 0, wird Z = 1 gesetzt, sonst Z = 0

Befehl	Plage	Bemerkungen
	CZP/VSNH	-
ADD s, ADC s	# # V # O #	8-Bit-Addition oder Addition mit Ubertrag
SUB s, SBC s, CMP s, NEG		8-Bit-Subtraktion, Subtraktion mit Übertrag, Vergleich und Wega- tion des Akkumulatore
AND s	0 P # 0 1	Logische Operationen
OR s, XOR s	0 # P # 0 0	
INC a		8-Bit-Erhöhung
DEC s	. # V # 1#	8-Bit-Erniedrigung
ADD HL, dd	o x	16-Bit-Addition
ADC HL, dd	# * V * O X	16-Bit-Addition mit Übertrag
SBC HL, dd	# # V # 1 X	16-Bit-Subtraktion mit Übertrag
RLA, RLCA, RRA, RRCA	‡ • • • • • •	zyklische Verschiebung - Akkumu- lator
RL s, RLC s, RR s, RRC s	# # P # 0 0	zyklische Verschiebung - Speicher- platz s
SLA s, SRA s, SRL s	# # P # 00	Verschiebung - Speicherplatz s
RLD, RRD	. P + 0 0	zyklische Verschiebung - Zahl links und rechts
DAA	# P # - #	Dezimalen Binrichtung - Akkumula- tor
CPL	11	Komplement des Akkumulators
SCF	1	Setzen des Übertrags
CCF	# o x	Komplement des Übertrage
IN r, INF	. # P # 00	Eingabe, indirekte Registeradresse
IMI, IMD, OUTI, OUTD	. # X X 1 X	Block-Ein- und Ausgabe, $Z = 0$ wenn $B \neq 0$, sonst $Z = 1$
INIR, INDR, OTIR, OTDR	. 1 X X 1 X	$Z = 0$ wenn $B \neq 0$, sonst $Z = 1$
LDI, LDD	. x # x o o	Blocktransfer-Befehle
LDIR, LDDR	.x o xoo	$P/V = 1$ wenn BC $\neq 0$, sonst $P/V = 0$
CPI, CPIR, CPD, CPDR	. # # X 1 X	Block-Such-Befehle, Z = 1 wenn A = (HL), sonst Z = 0; P/V = 1 wenn BC = 0, sonst P/V = 0
LD A,I; LD A,R	. #IFF2 # 0 0	Inhelt des Interrupt-Annahme-Flip- Flops 2 (IFF2) ins P/V-Flag über- führt
BIT b,s	. # x x 0 1	Zustend des Bits b im Speicherplatz s ins Z-Plag überführt

X: Bit hat keine Bedeutung

Format des Flag-Registers

Assembler Sprache	symboli- sche Operation	C	z	Fla P/V	ge S	N	н	Operations- code 76 543 210	By- tes	M∸ Zyk- len	Tak- te	Bemerk	ung
8 - Bit - Le	degruppe	1						·			·		
LD r ₁ ,r ₂	r1 - r2		•	•		•	•	01 r ₁ r ₂	1	1	4	r1, r2	Regi-
LD r,n	r-n	•	•	•	•	•	•	00 r 110	2	2	7	000 001	B
LD r,M	r-M	١.						01 r 110	,	2	7	010	Ď
LD r,(IX+d)	r+-(IX+d)	•		٠	•	•	•	11 011 101 01 r 110 - d -	3	5	19	011 100 101	H L
LD r,(IY+d)	r(IY+d)		•	•	•	•	•	11 111 101 01 r 110 - d -	3	5	19	111 r ₁ ,r ₂	A steht
LD M,r	¥←r							01 110 r	1	2	7		nes der
LD (IX+d),r	(II+d)+-r	•	•	•	•	•	• •	11 011 101 01 110 r - d -	3	5	19	Regist	
LD (IY+d),r	(IY+d)←r	•	•	٠	•	•	•	11 111 101 01 110 r - d -	3	5	19		
LD M,n	¥←n	•	•	•	•	•	•	00 110 110 - n -	2	3	10		
LD (IX+d),n	(IX+d)←n	٠	•	•	•	•	•	11 011 101 00 110 110 - d - - n -	4	5	19		
LD (IY+d),n	(IY+d) + n	•	•	•	•	•	•	11 111 101 00 110 110 - d - - n -	4	5	19		
LD A.(BC)	A - (BC)	-	_		_	_	_	00 001 010	1	2	7		_
LD A, (DE)	A -(DE)						•	00 011 010	,	2	7		
LD A, (nn)	A - (nn)						•	00 111 010	3	4	13		
								- n -	.				
LD (BC),A	(BC)←A							00 000 010	1	2	7		
LD (DE),A	(DE) A							00 010 010	1	2	7		
LD (nn),A	(nn) ←A	•	•	•	•	•	٠	00 110 010 - n -	3	4	13		
LD A,I	A+I		‡	IPP	‡	0	0	11 101 101 01 010 111	2	2	9		
LD A,R	A ← R	•	#	IPP	\$	0	0	11 101 101 01 011 111	2	2	9		
LD I,A	I←A		•	•	•	•	•	11 101 101 01 000 111	2	2	9		
LD R,A	R ← A		•	•.	•	•	•	11 101 101 01 001 111	2	2	9		

16 - Bit - Ledegruppe

LD dd,nn	dd+nn		 00 dd0 001	3	3	10	dd	Paar
LD IX,nn	IX ← nn	 •	 - n - - n - 11 011 101 00 100 001 - n -	4	4	14	00 01 10 11	BC DE HL SP
LD IY,nn	II -nn	 -	- n - 1.1 111 101 00 100 001 - n -	4	4	14		
LD HL, (nn)	H (nn+1) L (nn)	 •	 - n - 00 101 010 - n - - n -	3	5	16		

Assembler Sprache	symboli- sche Operation	c	z	Ple P/V	8 B	n	н	operi code 76 5		10 ns- 210	By- tes		Tak- te	Bemerkung
LD dd,(nn)	ddH+(nn+1) ddL+(nn)	•	•	•	•	•	•	11 1 01 d	01 11	101 011	4	6	20	
LD IX,(nn)	IXE + (nn+1) IXL + (nn)	•	•	•	•	•	•	11 0 00 1	01 n.	010	4	6	20	
LD IY,(nn)	IYH + (nn+1) IYL + (nn)	•	•	•	•	•	•	11 1 00 1	11	101 010	4	6	20	
LD (nn),HL	(nn+1) ← H (nn) ← L	٠	•	•	•	•	•	00 1		-	3	5	16	
LD (nn),dd	(nn+1) ← ddH (nn) ← ddL	•	•	•	•	•	•	11 10 01 de	10	011	4	6	20	dd ist eines der Register- pasre BC,DE, HL,SP
LD (nn),IX	(nn+1) ←IXH (nn) ←IXL		•	•	•	•	•	11 0 00 10	11	101 010	4	6	20	
LD (nn),IY	(nn+1)←IYH (nn)←IYL	٠	•	•	•	•	•	11 1	00	101 010	4	6	20	
LD SP.HL	SP HL	١.					_	11 1			1	١,	6	
LD SP, IX	SP IX	•	•	•	•	•		11 0 11 1	11	101	2	2	10	
LD SP, IY	SP IY	•	•	•	•	•	•	11 1 11 1		101 001	2	2	10	
PUSH qq	(SP-2) ← qqL (SP-1) ← qqH SP ← SP-2	•	•	•	•	•	•	11 qu	10	101	1	3	11	qq Paar 00 BC 01 DE
PUSH IX	(SP-2) + IXL (SP-1) + IXH SP+-SP-2	•	•	•	•	•	•	11 0°			2	4	15	10 HL 11 AP
PUSH IY	(SP-2) ← IYL (SP-1) ← IYH SP←SP-2	•	•	•	•	•	•	11 11 11 10			2	4	15	qq ist eines der Register- paare AP,BC, DB,HL.
POP qq	qqH ← (SP+1) qqL ← (SP) SP ← SP+2		•	•	•	•	•	11 qc	10	001	1	3	10	(Peer)H bzw. (Pear)L be- sieht sich
POP IX	IXH (SP+1) IXL (SP) SP + SP+2		•	•	•	•	•	11 0 11 10			2	4	14	suf die obe- ren bzw. un- teren 8 Bits d. entspr.
POP IY	IYH ← (SP+1) IYL ← (SP) SP ← SP+2	•	•	•	•	•	•	11 11 11 10			2	4	14	Registerpas- res, d.h. BCL=C, AFH=A.
Austausch-,	Blocktransfo	F-		ınd	Suc	he	F	ppe						
EX DE,HL	DE⇔HL							11 10)1	011	1	1	4	
BXAP	AP-AF'							00 00	1	000	1	1	4	İ
	/DOL /DOA	$\overline{}$	_					11 0	-	004	•	—	1	Vantauashuna

	IYL ←(SP) SP ← SP+2	İ						11	100	001				res, d.h. BCL=C, AFH=A.
Austausch-,	stausch-, Blocktransfer- und Suchgruppe													
EX DE, HL	DE-HL	١.	•	•			-	11	101	011	1	1	4	
BXAP	AP-AF	١.				•		00	001	000	1	1_1_	4	
EXX	(BC) (BC)	•	•	•	•	•	•	11	011	001	1	1	4	Vertauschung Registersatz Alternstivre- gistersatz
EX (SP),HL	H - (SP+1) L - (SP)	·	•	•	•	•	•	11	100	011	1	5	19	
EX (SP), IX	IIH + (SP+1) IIL + (SP)	-	•	•	•	•	•		011 100		2	6	23	
EI (SP), IY	IYH ↔(\$P+1) IYL ↔(\$P)	ŀ	•	•	•	•	•	11	111 100	101 011	2	6	23	

Assembler Sprache	aymboli- sche Operation	c	z	Plac P/V	S S	¥	н	coc	rat: le 543	210		M- Zyk- len	Tak- te	Bemerkung
LDI	(DE)←M DE←DE+1 HL←HL+1 BC←BC-1	•	X	A	I	0	0		101 100		2	4	16	
LDIR	(DE) -M DE + DE+1 HL -HL+1 BC - BC-1 Wiederholns bis BC=0		I	0	X	0	0			101 000	2 2	4	21 16	wenn BC#O wenn BC=O
LDD	(DE) ← M DE ← DE-1 HL ← HL-1 BC ← BC-1	•	x	\$ A	I	0	0		101 101		2	4	16	
LDDR	(DE) - M DE - DE-1 HL - HL-1 BC - BC-1 Wiederholus bis BC=0		x	0	I	0	0		101 111		2 2	5	21 16	wenn BC≠0 wenn BC=0
CPI	A-M HLHL+1 BCBC-1	•	B	Å	I	1	I		101 100		2	4	16	
CPIR	A-M HL + HL+1 BC + BC-1 Wiederholum bis BC=0 oder A=M		B	\$ A	I	1	I		101 110		2 2	5	21 16	wenn BC=Co.A=M
CPD	A-M HL +-HL-1 BC +-BC-1	•	‡ B	. A	Ï	1	X	11 10	101 101	101 001	2	4	16	
CPDR	A-M HL -HL-1 BC -BC-1 Wiederholum bis BC=0 oder A-M		\$ B	*	x	1	x		101 111		2 2	5	21 16	wenn BC=00.A=M

8-Bit-Arithmetik und logische Gruppe

XOR s A-A9 0 \$ P \$ 0 0 101 CMP s A - s \$ \$ V \$ 1 \$ 111															
ADD M A-A+M \$ V \$ 0 10 000 110 1 2 7 010 D ADD (IX+d) A-A+(IX+d) \$ V \$ 0 11 011 101 3 5 19 100 H 10 000 110 - d - ADD (IY+d) A-A+(IY+d) \$ V \$ 0 11 111 101 3 5 19 100 H 10 000 110 - d - ADD (IY+d) A-A+(IY+d) \$ V \$ 0 011 111 101 3 5 19 ADD S A-A-S \$ V \$ 1 000 110				\$	‡	-	#	-				l '		r	
ADD M A A A A A A A A A A A A A A A A A	A DD	n	A ← A+n		ŧ	V	ŧ	0		11 000 110	2	2	7		
ADD (IY+d) A - A+(IY+d)										- n -	1				č
ADD (IY+d) A - A+(IY+d)	ADD	ĸ	A-A+M	\$	\$	V		0		10 000 110	1	2	7	010	Ď
ADD (IY+d) A - A+(IY+d)	ADD	(IX+d)	A-A+(IX+d)			V		0		11 011 101	3	5	19		E U
ADD (IY+d) A - A+(IY+d)										10 000 110	ļ				Ľ
10 000 110 -d -										- d -]			111	A
ADC s	ADD	(IY+d)	A - A+(IY+d)	*	#	v		0		11: 111 101	3	5	19	1	
ADC s A-A+s+CY \$ \$ V \$ 0 001 sist eines der r. n. M. (II+d) (I				ļ						10 000 110	Ĭ				
SUB s			ļ							- d -	ļ				
SUB s	ADC	8	A A+s+CY	\$	#	٧	1	0		001					
SEC s	SUB	•	A A B	\$	‡	V	•	1						(IY+d)	wie beim
SBC s															
AND S A-AAS O \$ P \$ 0 1 100 OR S A-AAS O \$ P \$ 0 0 110 OR S A-AAS O \$ P \$ 0 0 100 OR S A-AS O \$ P \$ 0 0 0 100 OR S A-AS O \$ P \$ 0 0 0 100 OR S A-S O \$ P \$ 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 100 OR S O \$ P \$ 0 0 0 100 OR S O \$ P \$ 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 100 OR S O \$ P \$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														ersetz	en 000 in
OR s A-Avs O \$ P \$ 0 0 1110 IOR s A-As O \$ P \$ 0 0 101 CMP s A - s \$ V \$ 1 \$ 111	SBC	8	A-A-s-CY	\$		٧	#	1		011					
XOR s A-A9 0 \$ P \$ 0 0 101 CMP s A - s \$ V \$ 1 \$ 111 -	AND	8	A-AAB	ю	ŧ	P	‡	0	1	100					
XOR s A-A9 0 \$ P \$ 0 0 101 CMP s A - s \$ V \$ 1 \$ 111 -	OR 8	ı	A-Avs	þ		P		0	0	110					
GRP N N - 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IOR	•	A A@ -	o		P		۰0	0						
· · · · · · · · · · · · · · · · · · ·	CMP		A - =	\$		V		1	ŧ	[111]	•.			}	
INCr r+r+1 .	IEC	r	r r+1		‡	V		0	#	00 r 100	1	1	4		

Assembler Sprache	symboli- sche Operation	С	z	Pla P/V	gs S	N	H	co	de	1ons- 210	By-	M- Zyk- len	Tak- te	Bemerkung
INC M	¥ - ¥+1		1	V		0	#	00	110	100	1	3	11	
INC (IX+d)	(IX+d)+- (IX+d)+1		*	V	#	ó	‡	1		101 100	3	6	23	
INC (IY+d)	(IY+d) +- (IY+d)+1		‡	V	*	0		1	111	101 100	3	6	23	
DEC f	f - f - 1		*	V	•	1	*		~ d	- 101				f ist eines der r. M. (IX+d), (IY+d)wie bei IKC; gleiches Format u. Zu- stände wie INC, 100 durch 101 im Operations-
Allgemeine	Arithmetik		nd	1199	Ω D	_	S	L	erer	9000	<u> </u>	<u> </u>	<u> </u>	code eraetzen.
DAA	Wandelt AC Inhelt in gepackt.BC Format nac Add o. Sub traktion v gepackt. B Zahlen	D- h	*	P	*		*	_		111	1	1	4	Dezimalkorrek- tur im Akkumu- lator
CPL	A+X	•	•	•	•	1	1	00	101	111	1	1	4	Komplement d. Akkumulators; Einerkomplement
NEG	A ← Ā+1		#	V	*	1	*	11 01		101 100	2	2	8	Negation AC: Zweierkomple- ment
CCF	CY ← CY	*	•	• .	•	0	I	00	111	111	1	1	4	Komplement d. Übertrags-Flag
SCP.	CY 1	1	•	•	•	0	Ò	00	110	111	1	1	4	Setzen d. Über- trage-Flag
NOP	keine Operation	•	•	•	•	•	•	00	000	000	1	1	4	
HALT	U880D im HALT-Zu- stand	•	•	•	•	•	•	01	110	110	1	1	4	
DI	IFF1 ← 0, IFF2 ← 0	•	•	•	•		•	11	110	011	1	1	4	^
EI	IFF1←1, IFF2←1	•	•	•	•	•	•	11	111	011	1	1	4	
IMO	Setzen d. Interrupt- Mode O	•	•	•	•	•	•			101 110	2	2	8	
IX1	Setzen d. Interrupt- Mode 1	•	•	•	•	٠	•			101 110	2	2	8	
IM2	Setzen d. Interrupt- Mode 2	•	•	•	•	•	•			101 110	2	2	8	
16-Bit-Ari	thmetik					_								
ADD HL,dd	HL-HL+dd	\$				0	X	00	dd1	001	1	3	11	dd Register
ADC HL, dd	HL+HL+dd +CY	*		٧			X	11 01		101 010	2	4	15	00 BC 01 DB 10 HL
SBC HL,dd	HT + HT-qq	*	•	٧	‡	1	I	01		101 010	2	4	15	11 SP

dd ist eines d. Registerpaare: BC, DB, HL, SP

	embler che	symboli- sche Operation		z	Pla P/V	88 3	N	Ħ	co	de	1 ons- 210		M- Zyk- len	Tak- te	Bemerkung
ADD	IX,pp	IX +- IX+pp	*		٠١	•	0	I		011 pp1		2	4	15	pp Register 00 BC 01 DE 10 IX 11 SP pp ist eines d. Registerpaare: BC, DE, IX, SP
ADD	IY,pp	IY IY-pp	*	•	•	•	0	X		111 pp1	101 001	2	4	15	pp Register
INC	dd	dd ← dd+1				•			00	ddO	011	1	1	6	O1 DB
INC	IX	IX← IX+1	•	•	•	•	•	•		011 100		2	. 2	10	10 IY 11 SP
INC	IY	IY-IY+1	•	٠	•	•	•	•	11 00	111 100	101 011	2	2	10	pp ist eines d. Registerpaare: BC. DE. IY. SP
DEC	dd	dd dd-1	١.						00	đđ 1	011	1	1	6	,,,,
DEC	IX.	IX+IX-1		•	٠	•	•	•	11 00	011 101		2	2	10	
DEC	IY	IY ← IY -1	-	•	•	•	•	•		111 101	101 011	2	2	10	

Befehlsgruppe: Verschiebung und zyklische Verschiebung

RLCA	C - ₁ 7+0-	* ·	•	. 0 0	00 000 111	1	1	4	zyklische Ver- schiebung AC, linksherum
RLA	40 - 7 - 0 - A		•	.00	00 010 111	1	1	4	zyklische Ver- schiebung AC, nach links
RRCA	4704-C A	* -	•	.00	00 001 111	1	1	4	zyklische Ver- schiebung AC, rechtsherum
RRA	• 7→0 -€}	* -	•	.00	00 011 111	1	1	4	zyklische Ver- schiebung AC, nach rechts
RLC r		* *	P	‡ 0 0	11 001 011 00 000 r	2	2	8	zyklische Ver- schiebung, Re- gister, links- herum
RLC M .		* *	P		11 001 011 00 000 110	2	4	15	r Register
RLC (IX+d)	r.M (IX+d) (IY+d)	# #	P	•	11 011 101 11 001 011 - d ~	4	6	23	001 C 010 D 011 B 100 H
RLC (IY+d)	-	* *	P		00 000 110 11 111 101 11 001 011 - d -	4	6	,53	101 L 111 A
l					00 000 110				
RLs	6=7.W (IX+d), (IY+d)	* *	P	\$ 0 0	010				Befehlsformat u. Zustände wie bei RLC s; im Opera- tionscode 000 durch d. umrande- ten Bits ersetzen
RRC s	7-0-C ==r, M (IX+d), (IY+d)	* *	P	‡ o o	001				ten bits ersetzen
RR s	7-0-C s=r,M (IX+d), (IY+d)	* *	P	* 0 0	011				

Assembler Sprache	symboli- sche Operation	С	z	Pla P/V	S	N	H	cod	le .	10ns- 210	Ry- tes	M- Zyk- len	Tek- te	Beme	rkung
SLA s	C -7-0-0 9=r,M	*	*	P	‡	0	0		100]					
SRA m	(1X+d), (1Y+d) -{7-→0}-{C}			ъ		۸	0		101	1					_
JAX B	8=r,M (IX+d), (IY+d)	,	•	•	•	Ŭ	Ü			,					
SRL 8	0-7-0-C		‡	P	‡	0	0		111]					
	S=T,M (IX+d), (IY+d)														
RLD	7450 7450	١.	ŧ	P	‡	o	0			101 111	2	5	18		ische Zah-
RRD	र्ग्यक्व र्ग्युव भ	•	*	P		O	0	11	101	101 111	2	5	18	link zwis M, I ober	s u. rechts chen AC u. nhalt d. en Hälfte C wird
Grunne Bit	setzen, 18		har		<i>a</i>		-+				<u> </u>			nich flug	t beein-
BIT b,r	z+r̄ _b		+	X	_	_		11		011	2	2	8	r	Register
BIT b,M	z → W _b		‡	x	x	0	1		ъ 001		2	3	12	000 001 010	B C D
BIT b. (IX+d)	Z ← (IX+d) _b	•	*	I	I	0	1	11_	ь 011 001 d	011	4	5	20	011 100 101 111	H L A
IT b. IY+d)	Z - (IY+d)		*	x	x	0	1	11	111 001 d -	011	4	5	20	p 000	getestetes Bit
ET b,r	r _b ←1	•						01 11 11	ъ 0 01 Ъ	110 011 r	2	2	8	001 010 011 100	1 2 3 4
SET b,M	¥ b←1	•	•	•	•		•	_	001 b		2	4	15	101 110 111	5 6 7
BET b. (IX+d)	(IX+d) _b +-1	•	•	•	•	•	•	11	011 001 d -	011	4	6	23		
SET b. (IY+d)	(IY+d) _b 1	•			•		•	11 -	b 111 001 d -	011	4	6	23		
RES b,s	a _P 0							11 10	ь	110					Bildung d.
1	ser,M (IX+d), (IY+d)													tion in S	n Opera- scodes 11 ET durch 10 tzen. Flags eiten wie

Assembler Sprache	symboli- sche Operation	c	z	Flag	Se S	N	Ħ	Ope 000 76	ret: 543	210	By- tes	M- Zyk- len	Tak- te	Bemerkung
JMP nn	PC ← nn								000		3	3	10	
								-	n -	-		ļ		ļ
JPcc nn	wenn Bedin	<u>-</u> .	•	٠	•	•	•		cc n -		3	3	10	cc Bedingung
	gung cc wallist, PC -ni	n,							'n					000 NZ nicht Null 001 Z Null
JR ●	PC ←PC+e	•	•	•	•	•	•		011 e-2		2	3	12	001 Z Kull 010 NC kein Ubertrag 011 C Ubertrag 100 PO unpar. 101 PE pearig 110 P Vorzeich. 111 M Vorzeich. negativ
JRC e	Wenn C=O	•						00	111	000	2	2	7	Beding. nicht
	kein Sprun wenn C=1 PC←PC+e	ğ						-	6 -2	-	2	3	12	erfüllt Beding. erfüllt.
JRMC e	wenn C=1 kein Sprun	ŀ	•	•	•		•		110 e-2		2	2	7	Beding, nicht erfüllt
	wenn C=0 PC + PC+e	Ĺ									2	3	12	Beding. erfullt.
JRZ e	wenn Z=0, kein Sprun	Ţ.	•	•	•	•	•		101	000	2	2	7	Beding. nicht erfüllt
	Wenn Z=1 PC+PC+e	Ĭ						-			2	3	12	Beding. erfüllt
JRNZ e	wenn Z=1 kein Sprun wenn Z=0 PC → PO+e	8	•	•	•	٠	•		100		2	3	12	Beding. nicht erfüllt Beding. erfüllt
JMP M	PC+M							11	101	001	1	1	4	
JMP (IX)	PC -IX	-	•	•	•	•	•		011 101		2	2	8	
JMP (IY)	PC IY	•	•	•	•	•	٠	11 11	111 101	101 001	2	2	8	
DJMZ e	B←B-1 wenn B=0, kein Sprun	•	•	•	•	•	•		010 e-2		2	2	8	wenn B=0
	wenn B#O PC PC+e										2	3	13	wenn B≠0
Befehlsgru	ppe: Unterp	ro	gre		ıfr	uí		ınd	Ruci	c s pru	ug.			
CALL nn	(SP-1)+PCH (SP-2)+PCL PC+nn SP+SP-2	•	•	•	•	•	•		001 n	-	3	.5	17	
CA cc nn	wenn Bed. cc falsch ist,	·	•	•	•	•	٠		cc n -		3	3	10	wenn cc falsch ist
	kein Sprung sonst wie CALL nn	g,						- -	- n -	•	3	5	17	wenn cc wahr ist
RET	PCL ← (SP) PCH ← (SP+1 SP ← SP+2))	•	•	•		•	11,	001	001	1	3	10	
Rcc	wenn Bed. cc falsch ist,	•	•	•	•	•		11	.cc	000	1	1	5	wenn cc falsch
	kein Sprung sonst Wie	i.	•				_ :				1	3	11	wenn cc wahr ist

Assembler Sprache	symboli- sche Operation	c	z	Flag P/V		n	H	co			By- tes	M- Zyk- len	Tak- te	Веш	erkung
RETI	Rucksprung v. Inter- rupt	•	•	•	•	•	•	11 01	101 001	101 101	2	4	14	cc 000	Bedingung NZ nicht
RETN .	Rücksprung v. nicht maskierb. Interrupt	•	•	•	•	•	•	11 01	101 000	101 101	2	4	14	001 010	Null Z Null NC kein Übertrag C Übertrag
RST p	(SP-1)-PCH (SP-2)-PGL PGH+O PCL+-P SP+-SP-2		•	•	•	•	•	11	t	111	7	3	11	100 101 110 111 t 000 001 010 011 100 101 110	PO unpaer. PE pearigo P Vorz.neg M Vorz.neg DOH OOH 10H 18H 20H 28H 30H 38H
Befehlsgru	efehlsgruppe: Ein- und Ausgabe														

IN n	A-(n)		٠	•	•	•	•	11.	011 - ב		2	3	11	n zu A0 - A 7 AC zu A8 - A15
IN F	r ← (C) wenn r=110, werden nur Flags ge- stellt	1	*	P	*	O	0	11 01	101 r	101 000	2	3	12	C zu AO - A 7 B zu AB - A15
INI	M → (C) B ← B-1 HL ← HL+1	•	‡ a	I	I	1	I			101 010	2	4	16	C su AO - A 7 B zu A8 - A15
INIR	M + (C) B + B-1 HL + HL+1 Wiederholg, bis B=0	ľ	1	X	X	1	X			101 010	2	5 B≠0 4 B=0	21 16	C zu AO - A 7 B zu A8 - A15
IND	M ← (C) B ← B-1 HL ← HL-1		‡ a	X	X	1	I			101 010	2	4	16	C zu AO - A 7 B zu A8 - A15
INDR	M+(C) B+B-1 HL+HL-1 Wiederholg. bis B=0	ŀ	1	x	X	.1	X			101 010	2	5 B≠0 4 B=0	21 16	C 2u AO - A 7 B 2u AB - A15
OUT n	(n) ← A	•	•	•	•	•	•		010		2	3	11	n zu A0 - A 7 AC zu A8 - A15
OUT r	(C)+r		•	•	•	•	•	11 01	101 r	101	2	3 '	12	C zu A0 - A 7 B zu A8 - A15
OUTI	(C)←M B←B-1 HL←HL+1		‡ a	X	X	1	X		101 100	101 011	2	4	16	C zu AO - A 7 B zu AB - A15
OTIR	(C) -M B -B-1 HL - HL+1 Wiederholg. bis B=0	-	1	X	X	1	X		101 110		2	5 B≠0 4 B=0	21 16	C zu A0 ~ A 7 B zu A8 - A15
OUTD	(C)←M B+B-1 HL+HL-1	•	‡ a	X	X	1	X		101 101		2	4	16	C zu AO - A 7 B zu A8 - A15
OTDR	(C) - M B - B-1 HL - HL-1 Wiederholg. bis B=0		1	x	X	1	X		101 111		2	5 B≠0 4 B=0	21 16	C zu A0 - A 7 B zu A8 - A15

Befehlsliste des USSO D sortiert nach dem CP-Code

OP-Code	Mnemonik
00	MOP
01 nn 02	LD BC,nn LD (BC),A
03	INC BC
03 04	INC B
05	DEC B
06 n 07	LD B,n RLCA EXAP
08	EXAP
09	ADD HL, BC LD A, (BC) DEC BC
OA OB	DEC BC
oc	I III C C
OD	DEC C LD C.n
OE n OF	LD C,n RRCA
10 e	DJNZ e
11 nn	LD DE,nn LD (DE),A
12 13	INC DE
14	INC D DEC D
15	DEC D
16 n 17	LD D,n RLA
18 e	JR o
19	ADD HL, DE LD A, (DE)
1A 1B	DEC DE
1C	DEC DE INC E DEC E
1D	DEC E
1B n 1F	LD B,n RRA
20 e	JRWZ e
21 mm	LD HL,nn LD (nn),HL
21 nn 22 nn 23 24	I INC HL
24	INC H
25 26 n	DEC H LD H,n
27	DAA
28 e	JRZ e
29 24 nn	ADD HL, HL LD HL, (nn) DEC HL
2B	DEC HL
2C	INC L
2D 2E n	LD L,n
2₹	CPL
30 e 31 nn	JRMC e
31 nn 32 nn	LD SP,nn LD (nn),A
33	INC SP
34 35	DEC M
36 n	LD M.n
37 38 •	SCF
38 • 39	JRC e ADD HL, SP
	LD A, (nn)
3B 3C	DEC SP
30	LD A,(nn) DEC SP INC A DEC A
32 n	LD A.D
3P 40	CCP LD B, B
41	LD B,C
49	LD B,D
75	1 Th th 10
42 43 44	ע פורוז
43 44 45 46	LD B.E LD B.H LD B.L LD B.M

OP-Code	Mnemonik
48 49 49 48 49 48 49 50 50 50 50 50 50 50 50 50 50	LD C.C.D E H L M A B C D E H L M A B C D E H L M A B C D E H L L D L D L D L D L D L D D D D D D D

OP-Code	Mnemonik
94 95	SUB H SUB L
96 97	ISTURME I
98	SUB A SBC B
99 9 ≜	SBC C SBC D
9A 9B 9C	SBC E SBC H
9D 9B	SEC L
QP .	SRC A
Ã0 A1 A2	AND B AND C AND D
A2 A3	AND C AND D AND B
A3 A4 A5	AND H AND L
A6	AND M
A6 A7 A8	AND M AND A XOR B
A9 AA	XOR C XOR D
AA AB AC	XOR E XOR H
ATI :	TOP I.
AB AP	IOR M IOR A
BO B1	OR B OR C
B2 B3	OR D OR E
B4 B5	OR E OR H OR L
B6	ORM I
B7 B8	OR A CP B
B9 BA BB	CP C CP D CP B
BB BC	CP E CP H
BD	CP L CP M
BE	CP A
CO C1	RNZ POP BC
C2 nn C3 nn C4 nn	JPNZ nn JMP nn
C4 nn	CANZ nn PUSH BC
C5 C6 n	ADD A,n
C7 C8	RZ
C9 CA nn	RET JPZ nn
CC nn CD nn	CAZ nn CALL nn
CE n	ADC n
CF DO	RNC
D1 D2 nn	POP DE JPNC nn
D3	OUT n CANC nn
D5	PUSH DE
D6 n D7 D8	RST 10H
109	RC EXX
Dánn D8nn	JPC nn IN A,n
DC nn DE n	CAC nn SBC n
DP .	RST 18H
B0 B1	RPO POP HL
D2 nn	JPPO nn

OP-Code	Mnemonik
PDCB dB6 PDCB dCB PDCB dCB PDCB dCB PDCB dCB PDCB dB6 PDCB dB6 PDCB dB6 PDCB dB6 PDCB dF6 PDCB dF6 PDCB dF6 PDCB dF6	RES 6, (IY+d) RES 7, (IY+d) SET 0, (IY+d) SET 1, (IY+d) SET 2, (IY+d) SET 3, (IY+d) SET 4, (IY+d) SET 5, (IY+d) SET 6, (IY+d) SET 7, (IY+d)

Befehleliste - sortiert nach der Mnemonik

nach der I	(nemonik
8E	ADC A.(HL)
DBSE d	ADC (IX+d)
PD6E d	ADC (IY+d)
8P 88	ADC A ADC B
89	ADC B ADC C
8Å	ADC D
8B	ADC B
8C	ADC H
8D	ADC L
CE n ED4A	ADC n ADC HL.BC
BD5A	ADC HL, BC ADC HL, DE
ED6A	ADC HL, HL
ED7A	ADC HL, SP
86	ADD M
DD86 d	ADD (IX+d) ADD (IY+d)
PD86 d 87	ADD (IY+d)
80	ADD A ADD B
81 .	ADD C
82	ADD D
83	ADD B
84 85	ADD H
C6 n	ADD L ADD n
09 -	ADD HL, BC
19	ADD HL, DE
29	ADD HL,HL
39 DD09	ADD HL,SP
DD19	ADD IX BC
DD29	ADD IX, DE
DD39	ADD IX,SP
PD09	ADD IY.BC
FD19	ADD IY, DE
PD29 PD39	ADD IY, IY ADD IY, SP
1 Å6	AND M
DDA6 d	AND (IX+d)
PDA6 d	AND (IY+d)
A7	AND A
AO A1	AND B AND C
Ã2	AND C AND D
A3	AND B
A4	AND H
25 26 n	AND L
26 n CB46	AND n
DDCB 446	BIT O,M BIT O,(IX+d)
PDCB d46	BIT O,(IY+d)
CB47	BIT O,A
CB40 CB41	BIT O.B
CB42	BIT O.C BIT O.D
CB43	BIT O,E
CB44	BIT O,H
CB45	BIT O.L

OP-Code	Mnemonik
CB4B DDCB d4E FDCB d4E CB4F CB48 CB49 CB4A CB4B CB4C	BIT 1.M BIT 1.(IX+d) BIT 1.(IY+d) BIT 1.B BIT 1.B BIT 1.C BIT 1.D BIT 1.B BIT 1.B
CB4D CB56 DDCB d56 PDCB d56 CB57 CB50 CB51 CB52 CB53 CB53	BIT 1,L BIT 2,M BIT 2,(IX+d) BIT 2,(IY+d) BIT 2,A BIT 2,B BIT 2,C BIT 2,D BIT 2,B
CB55 CB5E DDCB d5E FDCB d5E CB5P CB58 CB59 CB5A CB5B	BIT 3,M BIT 3,(IX+d) BIT 3,(IY+d) BIT 3,A BIT 3,B BIT 3,D BIT 3,B
CB5D CB66 DDCB d66 FDCB d66 CB67 CB60 CB61 CB62 CB63 CB64 CB64 CB65	BIT 4,M BIT 4,(IX+d) BIT 4,(IY+d) BIT 4,A BIT 4,B BIT 4,C BIT 4,C BIT 4,D
CB6E DDCB d66 FDCB d6E CB6F CB68 CB69 CB6A CB6B CB6C CB6C CB6D CB6D	BIT 4,H BIT 4,L BIT 5,M BIT 5,(IX+d) BIT 5,(IY+d) BIT 5,B BIT 5,B BIT 5,B BIT 5,B BIT 5,B
DDCB d76 PDCB d76 CB77 CB70 CB71 CB72 CB73 CB74 CB75 CB75	BIT 5, L BIT 6, M BIT 6, (IX+d) BIT 6, (IX+d) BIT 6, B BIT 7, M BIT 7, M
DDCB d7E FDCB d7E CB7E CB78 CB79 CB7A CB7B CB7C CB7D DC nn FC nn FC nn	BIT 7, (IY+d) BIT 7,B BIT 7,B BIT 7,D BIT 7,B BIT 7,B BIT 7,L CAC nn CAM nn CALL nn
C4 nn F4 nn EC nn	CABZ nn CAP nn CAPE nn

OP-Code	Mnemonik
OP-Code E4 nn CC nn 3F BB BB BC BP BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD PE NB BB BB BC BD BB BB BC BB BB BB BC BB BB BB BC BB BB BB BC BB BB BB BB BB BB BB BB BB BB BB BB BB	Mnemonik CAPO nn GAZ nn GGZ nn GGP M (IX+d) GMP (IX+d) GMP (IY+d) CMP B CMP B CMP C CMP C CMP C

OP-Code	Mnemonik
06 n ED48 nn	LD B,n LD BC,(nn) LD BC,nn LD C,M LD C,(IX+d) LD C,(IY+d) LD C,A LD C,C LD C,C LD C,C LD C,D
01 nn 4E	LD BC,nn LD C.M
DD4E d	ID C. (IX+a)
PD4E d 4F	LD C, (IY+d)
ÁR.	LD C.B
49 4A	LD C.C
4B	LD C,D
4C 4D	LD C,H
OE n	LD,C,L LD C,n LD D,M
56 DD56 d PD56 d	I III D. LIM+G.
PD56 d 57	I I D D (TY+d)
50	LD D,A LD D,B
51	LD D,C
52 53	LD D,D LD D,B
54 55	LD D.H
16 n	LD D.L LD D.n
BD5B nn 11 nn	LD Dr.n LD Dr.(nn)
522	LD DE,nn LD E,M
DD5E d FD5E d 5F	ID E. (IX+4)
5 P	LD E,A
58 59	LD B, B
5 Å	LD E.D
5B 5C	LD B, B
5D	LDE,L
66	LD E,n
DD66 d PD66 d 67	LD H, M LD H, (IX+d)
67	LD H, (IY+d)
60 61	LDHB
62	LD H,C LD H,D
63 64	מ,ח עות
65	LD H,H
26 n 24 nn	LD H,n
21 nn BD47	LD HL,(nn)
ED47 DD2A nn	LD I,A LD IX,(nn)
DD21 nn	LD IX, nn
FD2A nn FD21 nn	LD HL, (nn) LD HL, nn LD IX, LD IX, (nn) LD IX, (nn) LD IY, (nn) LD IY, (nn) LD L, M LD L, (IX+d)
6 B	LD L,M LD L,(IX+d)
DD6B d FD6B d	LD L, (IX+d) LD L, (IY+d) LD L, A
6 P	LD L.A
68 69	LD L.C
6 A	ע גע עע ו
6B 6C	LD L,E
6D	וויין מון
	LD L,n LD R,A
ED4F ED7B nn	LD SP.(nn)
P9 DDF9	LD SP, HL LD SP, IX
FDF9 31 nn	LD SP, IY
EDAB	LD SP,nn LDD
EDBO EDAO	LDDR LDI LDIR

OP-Code	Mnemonik
ED44 00 B6	NEG NOP OR M
DDB6 d FDB6 d	OR (IX+d) OR (IY+d)
B7 B0	OR A
B1 B2 B3	OR C OR D OR E
B4 B5	OR H OR L
P6 n EDBB	OR n OTDR OTIR
EDB3 ED79 ED41	OUT A
BD79 BD41 BD49 BD51	OUT B OUT C OUT D
ED59 ED61 ED69	OUT B OUT H OUT L
D3 n EDAB	OUT n OUTD OUTI
BDA3 F1 C1	POP AF
B1	POP DE POP HL
DDE1 FDE1 F5	POP IX POP IY PUSH AF
P5 05 D5	PUSH DE
DDE5 FDE5	PUSH HL PUSH IX PUSH IY
DDCB 486	RES O.M RES O.(IX+d)
PDCB d86 CB87 CB80	RES O, (IY+d)
CB81 CB82	RES O.C RES O.D
CB93 CB94 CB85	RES O.E
CBSE DDCB dSE	RES 0,L RES 1,M RES 1,(IX+d)
FDCB d8E	RES 1 (IY+d)
CB88 CB89	RES 1,B
CBSA CBSB CBSC	RES 1,D RES 1,E RES 1,H
CBSD CB96 DDCB d96	1 DBC 4 T
PDCB d96	RBS 2 (IY+d)
CB90 CB91	RES 2,A RES 2,B RES 2,C
CB92 CB93 CB94	RES 2,E RES 2,E
CB95	
DDCB d9E FDCB d9E CB9F	RES 3 (IY+d)
CB98 CB99	
CB9A CB9B CB9C	RES 3,D RES 3,E RES 3,H
CB9D CBA6	RES 3,C RES 3,D RES 3,B RES 3,H RES 3,L RES 4,M

	-
OP-Code	Mnewonik
DDCB dA6 PDCB dA6 CBA7 CBA0 CBA1 CBA2 CBA3 CBA4 CBA5	RES 4, (IX+d) RES 4, (IY+d) RES 4, A RES 4, B RES 4, C RES 4, D RES 4, E RES 4, E RES 4, L RES 5, M
CBAB DDCB dAB FDCB dAB CBAP CBAS CBA9 CBAA CBAB CBAC CBAC	RES 5, (IY+d) RES 5, (IY+d) RES 5, B RES 5, C RES 5, D RES 5, E
CBB6 DDCB dB6 FDCB dB6 CBB7 CBB0 CBB1 CBB2 CBB3 CBB4 CBB5	RES 6, M RES 6, (IX+d) RES 6, (IY+d) RES 6, A RES 6, B RES 6, C RES 6, D RES 6, E
DOCE das FDCB das Cabr Cabr Cabr Cabr Cabr Cabr Cabr Cabr	RES 7. (IX+d) RES 7. (IY+d) RES 7. RES 7. RES 7. RES 7. RES 7. RES 7. RES 7. RES 7. RES 7. LES 7. LES 7. LES RES 7. LES RES RES 7. LES RES RES RES RES RES RES RES RES RES R
BD4D BD45 CB16 DDCB d16 PDCB d16 CB10 CB10 CB11 CB12 CB13 CB14 CB15	RETI RETH RL MIL+d) RL (IX+d) RL A RL B RL C RL D RL B RL B RL L RL L RL L RL L RL L
CBO6 DDCB dO6 FDCB dO6 CBO7 CBO0 CBO1 CBO2 CBO3 CBO4 CBO5 O7 ED6F CB1E	RLC (IX+d) RLC (IX+d) RLC (IY+d) RLC A RLC B RLC C RLC D RLC B RLC H RLC H RLC L RLCA RLD
DDCB d1E PDCB d1E CB1F	RR (IX+d) RR (IY+d) RR A

Mnemonik
RR B RR C RR D RR E RR H RR L RRA RRC M RRC (IX+d) RRC (IY+d) RRC B RRC C RRC B RRC C RRC B RRC C RRC B RRC T RRC B RRC T RRC R RRC T RRC R RRC T RRC R RRC T RRC R RRC T RRC R RRC T RRC T RRC R RRC T RRC T RRC T RRC T RRC T RRC T
RST 18H RST 20H RST 20H RST 30H RST 38H RST 8 SBC (IX+d) SBC (IX+d) SBC C (IX+d) SBC B SBC B SBC B SBC B SBC C SBC B SBC B SBC B SBC H SBC L SBC L SBC C SBC C SBC C SBC C SBC C SBC B SBC H SBC H SBC H SBC H SBC H SBC B SBC H SBC B SBC H SBC B SBC
SBC HL, SP SCF O,M SET O,(IX+d) SET O,(IX+d) SET O,A SET O,B SET O,D SET O,B SET O,B
SET 1,E SET 1,(IX+d) SET 1,(IY+d) SET 1,A SET 1,B SET 1,C SET 1,D SET 1,E SET 1,E
SET 1,L SET 2,M SET 2,(IX+d) SET 2,(IY+d) SET 2,B SET 2,B SET 2,D SET 2,D SET 2,L SET 2,L SET 2,L SET 2,L SET 3,B SET 2,M

OP-Code Mnemonik CBDP SET 3,A CBDP SET 3,D CBDB SET 3,E CBDC SET 3,H SET 4,E SET 4,K SET 4,K SET 4,K SET 4,K SET 4,K SET 4,C SET 4,E SET 4,C SET 4,E SET 5,E SET 6,K SET 7,K SET 7,K SET 7,E		
CBDM CBDD CBDB CBDC CBDB SET 3, E CBDD CBDD CBBD CBDD CBBD CBDC CBE2 CBE2 CBBB CBBD CBBD CBBD CBBD CBBD CBBD CBB	OP-Code	
CBDM CBDD CBDB CBDC CBDB SET 3, E CBDD CBDD CBBD CBDD CBBD CBDC CBE2 CBE2 CBBB CBBD CBBD CBBD CBBD CBBD CBBD CBB		SET 3,A
CBDB CBBC CBBC CBC CBC CBC CBC CBC CBC C	CBD9	SET 3,C
CBDD CRE6 CRE7 CRE7 CRE7 CRE7 CRE8 CRE8 CRE8 CRE8 CRE8 CRE8 CRE8 CRE8	CRDB	
CBMD CERE CBE CBE CBE CBE CBE CBE CBE CBE CBE CB	CBDC	
FDCB dB6	CBDD	SET 3,L
FDCB dB6	CBE6	SET 4,M
CRE2 SET 4. E CRE3 SET 4. E CRE4 SET 4. H SET 5. M DOC	DOCE GEO	SET 4, (IA+q)
CRE2 SET 4. E CRE3 SET 4. E CRE4 SET 4. H SET 5. M DOC	CBR7	SET 4.A
CRE2 SET 4. E CRE3 SET 4. E CRE4 SET 4. H SET 5. M DOC	CBEO	SET 4,B
CBRE5 CBRE6 DDCB dEE CBE7 CBE8 CBE8 CBE8 CBE8 CBE8 CBE8 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE7 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8	CBE1	
CBRE5 CBRE6 DDCB dEE CBE7 CBE8 CBE8 CBE8 CBE8 CBE8 CBE8 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE7 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8	CBE2	SET 4,D
CBRE5 CBRE6 DDCB dEE CBE7 CBE8 CBE8 CBE8 CBE8 CBE8 CBE8 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE8 CBE7 CBE7 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8 CBF8	CBB4	SET 4.H
CREE DDOES dEE SET 5, (IX+d) PDCB dEE SET 5, (IX+d) CREP SET 5, (IX+d) CREP SET 5, (IX+d) CREP SET 5, (IX+d) CREP SET 5, (IX+d) SET 5, R SET 5, R SET 5, R SET 5, R SET 5, R SET 5, R SET 6, R SET 7, R SET 6, R SET 7, R SET 8, R SET 7, R SET 8, R SET 7, R SET 8, R SET 7, R SET 8, R SET 1, R S	CBR5	SET 4,L
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBEE	SET 5,M
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	DOCR GER	SET 5, (LL+d)
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBEF	SET 5.A
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBE8	SET 5,B
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC		SET 5,C
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBEB	SET 5.E
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBEC	SET 5,H
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBED	SET 5,L
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	DDCB 4P6	SET 6,M
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	FDCB dF6	SET 6. (IY+d)
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBP7	SET 6,A
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBFO	SET 6,B
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBF1	SET 6,C
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBF3	SET 6.E
CBPE SET 7, M DDCB dFE SET 7, (IX+d) PDCB dFE SET 7, (IX+d) CBPF SET 7, (IX+d) CBPF SET 7, C CBPB SET 7, C CBPB SET 7, C CBPB SET 7, C CBPC SET 7, C CBPC SET 7, L CBPC	CBF4	SET 6,H
PDCB d26	CBF5	SET 6,L
PDCB d26	DDCB AFF	SET (,M
PDCB d26	FDCB dFE	SET 7. (IY+d)
PDCB d26	CBFF	SET 7,A
PDCB d26	CBP8	SET 7,B
PDCB d26	CBFS	SET 7,0
PDCB d26	CRFB	SET 7.E
PDCB d26	CBFC	SET 7.H
PDCB d26	CBFD	SET 7,L
PDCB d26	DDCB 426	SLA (TIAI)
CB20 CB21 CB22 SILA C CB22 SILA C CB22 SILA D CB23 SILA B CB24 SILA H CB25 SILA H CB26 SILA H CB27 SILA B S	FDCB d26	SLA (IX+d)
CB20 CB21 CB22 SILA C CB22 SILA C CB22 SILA D CB23 SILA B CB24 SILA H CB25 SILA H CB26 SILA H CB27 SILA B S	CB27	SLAA
CB22 SLA D CB23 SLA E CB25 SLA L CB25 SLA L CB26 SRA (IX+d) DDCB d2E SRA (IX+d) PDCB d2E SRA (IX+d) CB27 SRA C CB28 SRA C CB29 SRA C CB20 SRA C CB20 SRA D CB20 SRA E CB20 SRA L CB20 SRA L CB20 SRA L CB20 SRA L SRL (IX+d) SRL (IX+d) SRL SRL (IX+d) SRL SRL (IX+d) SRL SRL SRL (IX+d) SRL SRL SRL C CB30 SRL C CB30 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C CB31 SRL C	CB2O	SLA B
CB24 CB25 CB25 CB25 CB26 CB26 CB27 CB27 CB27 CB28 CB29 CB29 CB20 CB20 CB20 CB20 CB20 CB20 CB20 CB20	CB22	STA D
CB24 CB25 CB25 CB25 CB26 CB26 CB27 CB27 CB27 CB28 CB29 CB29 CB20 CB20 CB20 CB20 CB20 CB20 CB20 CB20	CB23	SLA E
DDCB d2E SRA (IX+d) FDCB d2E SRA (IY+d) CB2B SRA B CB2B SRA C CB2A SRA C CB2B SRA C CB2B SRA L CB2C SRA H CB2D SRA L CB3B SRL (IX+d) FDCB d3E SRL	CB24	SLA H
DDCB d2E SRA (IX+d) FDCB d2E SRA (IY+d) CB2B SRA B CB2B SRA C CB2A SRA C CB2B SRA C CB2B SRA L CB2C SRA H CB2D SRA L CB3B SRL (IX+d) FDCB d3E SRL	CB2B	STYT
CB2F	DDCB d2E	SRA (IX+d)
CB2E SRA B CB29 SRA C CB2A SRA D CB2B SRA B CB2C SRA B CB2C SRA H CB2D SRA L CB3E SRL (IX+d) DDCB d3E SRL (IX+d) PDCB d3E SRL (IX+d) CB3P SRL C CB3A SRL B CB3A SRL C CB3A SRL C CB3A SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3C SRL C	FDCB d2E	SRA (IY+d)
CB29 SRA C CB2A SRA D CB2B SRA B CB2C SRA B CB2C SRA B CB2D SRA L CB3B SRL (IX+d) PDCB d3B SRL (IX+d) PDCB d3B SRL (IX+d) SRL (IX+d) SRL A CB3B SRL C CB3A SRL B CB3B SRL C CB3B SRL C CB3B SRL C CB3B SRL C CB3C SRL C	CB2F	I SKA A
CB2A CB2B SRA D CB2C SRA B SRA H SRA L SRA L SRA L SRA L SRI M DDCB d3E SRI (IX+d) FDCB d3E SRI (IX+d) FDCB d3E SRI (IX+d) SRI B CB3B SRI A SRI B CB3B SRI C CB3B SRI C CB3C SRI H CB3D SRI L SRI L SRI B SRI D SRI C SRI C	CB29	
CB2B SRA B CB2D SRA L CB2D SRA L CB3E SRI, (IX+d) DDCB d3E SRI, (IX+d) PDCB d3E SRI, (IX+d) CB3B SRI, C CB3B SRI, C CB3A SRI, C CB3A SRI, C CB3B SRI, C CB3B SRI, C CB3B SRI, C CB3B SRI, C CB3B SRI, C CB3C SRI, H CB3D SRI, L	CB2A	SRA D
CB2D SRA L CB3E SRL M DDCB d3E SRL (IX+d) PDCB d3E SRL (IX+d) SRL (IX+d) SRL A CB3B SRL B CB3B SRL C CB3A SRL C CB3A SRL C CB3B SRL C CB3C SRL E CB3C SRL H CB3D SRL L	CRSR	SRAE
CB3E SRL M DDCB d3E SRL (IX+d) PDCB d3E SRL (IX+d) SRL (IY+d) SRL A SRL B CB39 SRL C CB3A SRL D CB3B SRL C CB3C SRL C CB3C SRL C CB3C SRL C	CBSD	SRA H
DDCB d3E SRL (IX+d) PDCB d3E SRL (IX+d) CB3P SRL A CB3B SRL B CB39 SRL C CB3A SRL D CB3B SRL C CB3C SRL E CB3C SRL H CB3D SRL L	CB3E	SRL M
CB3F SRL A CB3B SRL B CB39 SRL C CB3A SRL D CB3B SRL E CB3C SRL H CB3C SRL L	DDCB d3E	GDT / TV . 4)
CB3B SRL E CB3B SRL C CB3B SRL D CB3C SRL E CB3C SRL H CB3D SRL L	FDCB d3E	SRL (IY+d)
CB3A SRL C CB3B SRL E CB3C SRL H CB3D SRL L	CB38	SRL A
CB3A SRL B CB3C SRL E CB3C SRL H CB3D SRL L	CB39	I SRL C
CB3B SRL E CB3C SRL H CB3D SRL L	CB3A	SRL D
CB3D SRL L	CB3C	SRL E
96 SUB N	CB3D	SRL L
	96	SUB M
		<u> </u>

OP-Code	Mnemonik
DD 96d PD 96 d 97 90 91 92 93 94 95 D6 n	SUB (IX+d) SUB (IY+d) SUB (IY+d) SUB B SUB C SUB D SUB B SUB H SUB L SUB I SUB I SUB I

OP-Code	Mnemonik
DDA Ed	XOR (IX+d)
PDA Bd	XOR (IY+d)
AP	XOR A
84	XOR B
A9	XOR C
AÅ	XOR D
AB	XOR E
AC	XOR H
AD	IOR L
KE n	IOR n

Programmierung der PIO

Interruptrektor

V7 V6 V5 V4 V3 V2 V1 O

Betriebsartenauswahl

M1 M0 X X 1 1 1 1

MO Betriebsart

O 0 Bytesusgabe

O 1 Byte-Ein-/Ausgabe

1 1 Bit-Ein-/Ausgabe

Ein-/Ausgabe Wahlwort, wenn Bit-Ein-/Ausgabe 107 106 105 104 103 102 101 100

Interruptkontrollwert

EI A/O H/L MF O 111

EI Interruptfreigabe

A/O AND bzw. OR-Verknüpfung

H/L High oder Low-Pegel der Port

MF Maskierungswort folgt als nächstes Steuerwort

Maskierungswort, wenn MF=1
MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

Interruptkontrollwort ohne Auswahlinformation EI X X X 0011

Programmierung der CTC

Interruptrektor

V7 V6 V5 V4 V3 X X O

Kanalsteuerwort

EI M V F T TC R 1

EI Interruptfreigabe T Triggerzeitpunkt
M Betriebsart TC Zeitkonstante folgt
V Vorteilerfaktor R Rücksetzen

F Triggerflanke

Zeitkonstantenwort, wenn TC=1 im Kanalsteuerwort ZK7 ZK6 ZK5 ZK4 ZK3 ZK2 ZK1 ZK0

Dezimal-Hexadezimal-Tabelle von -128 bis +127 negative Zahlen als 2er Komplement

DEZ	HEX	CPL	DBZ	HEX	CPL	DEZ	нех	CPL
0	00	00	44	2C	D4	88	58	88
1	01	PF	45	20	D3	89	59	A7
5	02	PE	46	2E	102	90	5▲	A6
3	03	FD	47	237	D1	91	58	A5
4	04	PC	48	30	DO	92	5C	A4
5	05	FB	49	31	C.F	93	5D	A3
6	06	FA	50	32	CE	94	51B	¥5 ·
7	07	19	51	33	CD	95	5 P	A1
8	08	P 8	52	34	CC	96	60	AO
9	09	177	53	35	СВ	97	61	9 r
10	OA	P 6	54	36	CA	98	62	9B
11	ОВ	P5	55	· 37	C9	99	63	9D
12	oc	F4	56	38	CB	100	64	9C
13	.OD	F3	57	.39	C7	101	65	9B
14	OB	172	58	. 3A	C6	102	66	9.4
15	OF	F1	59	3B	C5	103	67	99
16	10	PO	60	3C	C4	104	68	98
17	11	EP	61	3D	03	105	69	97
18	12	RE	62	3E	C2	106	6A	96
19	13	ED	63	3F	C1	107	6В	95
20	14	1BC	64	40	co	108	6¢	94
21	15	EB	65	41	BF	109	6D	93
55	16	EA	66	42	BE	110	6E	92
23	17	E9	67	43	BD	111	6 F	91
24	18	E 8	68	44	BC	112	70	90
25	19	E 7	69	45	ВВ	113	71	8 F
26	14	186	70	46	BA	114	72	818
27	13	B 5	71	47	В9	115	73	80
28	10	E4	72	48	B8	116	74	8C
29	1D	E3	73	49	B7	117	75	838
30	1B	E 2	74	4A	B6	118	76	8.8
31	1P	B1	75	4B	B5	119	77	89
32	20	EO	76	4C	184	120	78	88
33	21	D₽	77	4D	В3	121	79	87
34	55	DE	78	4E	B2	122	7A	86
35	23	DD	79	4 F	B1	123	78	85
36	· 24	DC	80	50	ВО	124	7C	84
37	25	DB	81	51	AF	125	7D	83
38	26	DA	82	52	AE	126	7B	82
39	27	р9	83	53	AD	127	7F	81
40	28	D8	84	54	AC	128	80	80
41	29	D7	85	55	AB			
42	SY	D6	86	56	AA			
43	23	D5	87	57	A 9	i		

Tabelle der Hexadesimalwerte

6	5	4	3	2	1
HEX - DEC	HRX = DEC	HEX - DEC	HEX - DEC	HEX - DEC	HEX - DEC
0 0	0 0	0 0	0 0	0 0	0 0
1 1,048,576	1 65,536	1 4,096	1 256	1 16	1 1
2 2,097,152	2 131,072	2 8,192	2 512	2 32	2 2
3 3,145,728	3 196,608	3 12,288	3 768	3 48	3 3
4 4,194,304	4 262,144	4 16,384	4 1,024	4 64	4 4
5 5,242,880	5 327,680	5 20,480	5 1,280	5 80	5 5
6 6,291,456	6 393,216	6 24,576	6 1,536	6 96	6 6
7 7,340,032	7 458,752	7 28,672	7 1,792	7 112	7 7
8 8,388,608	8 524,288	8 32,768	8 2,048	8 128	8 8
9 9,437,184	9 589,824	9 36,864	9 2,304	9 144	9 9
A 10,485,760	A 655,360	A 40,960	A 2,560	A 160	A 10
B 11,534,336	B 720,896	B 45,056	B 2,816	B 176	B 11
C 12,582,912	C 786,432	C 49,152	C 3,072	C 192	C 12
D 13,631,488	D 851,968	D 53,248	D 3,328	D 208	D 13
8 14,680,064	B 917,504	B 57,344	18 3,584	B 224	B 14
15,728,640	3 983,040	F 61,440	F 3,840	P 240	P 15
0123	4567	0123	4567	0123	4567
BYTE BY				BY	re

Potenzen von 2

2 ⁿ	n
256	8
512	9
1 024	10
2 048	11
4 096	12
8 192	13
16· 384	14
32 768	15
65 536	16
131 072	17
262 144	18
524 288	19
1 048 576	20
2 097 152	21
4 194 304	22
8 388 608	23
16 777 216	24

Potensen von 16

	16 ⁿ	'	n
		1	0
		16	1 1
		256	2
		4 096	3
		65 536	4
	1	048 576	5
	16	777 216	6
	268	435 456	7
	4 294	967 296	8
	68 719	476 736	9
1	099 511	627 776	10
. 17	592 186	044 416	11
281	474 976	710 656	12
4 503	599 627	370 496	13
72 057	594 037	927 936	14
1 152 921	504 606	846 976	15

Adreßbus

♦ Bus zur Übertragung von Adressen. Die Anzahl der Leitungen entspricht dem maximal adressierbaren Speicherbereich (16 Bit für 64 K Speicherplätze)

AdreBregister

Register eines Mikrocomputers, dessen Inhalt zur Berechnung einer Operandenadresse benutzt wird.

Adresteil

Teil des Befehlswortes. Der A. enthält die absolute Adresse einer Information oder Angabe darüber, wie die absolute Adresse zu bilden ist (z. B. durch Summation von Registerinhalten).

Adresse

- Adresse einer Information ist die Nummer des Speicherplatzes, auf den diese Information untergebracht ist.
- Statt der Nummer wird ein aus alphanumerischen Zeichen gebildetes Wort benutst (symbolische Adresse).

Adressierungsart

Art und Weise, wie die Adresse eines Speicherplatzes in einem Programm dargestellt bzw. wie vom Adreßrechenwerk die Adresse eines Speicherplatzes aus der Operandenangabe im Maschinenbefehl errechnet wird.

Akkumulator

Register, mit dessen Inhalt Operationen durchgeführt werden können. Der A. repräsentiert meist einen Operanden, das Ergebnis der Operation steht wiederum im A. Jeder Mikroprozessor hat mindestens einen A., der für alle Datenübertragungen über den Datenbus vom und zum Prozessor herangezogen wird.

ALU

(Arithmetical Logical Unit)
Arithmetisch-logische Einheit
Funktionsblock des *Rechenwerkes des Mikrorechners. Sie führt arithmetische und logische Operationen und Verschiebeoperationen aus. Sie verfügt über ein Addierwerk und kann *Flags belegen.

Anwenderprogramm

Spezielles Programm, durch das ein Anwenderproblem gelöst wird.

Anweisung

Abgeschlossene Vorschrift, die in einer beliebigen †Programmiersprache formuliert ist.

Arbeitsweise, asynchrone

- Ablauf von zwei oder mehreren voneinander unabhängigen Prozessen (Vorgängen), die so gestaltet sind, daß sie zu keinem Zeitpunkt aufeinander angewiesen sind.
- 2. Eine Betriebsart bei der seriellen Datenübertragung, bei der die Startund Stopkennzeichnungen (Signale) zur zeichenweisen Synchronisation der Datenübertragung benutzt werden. Dadurch können sich Verzerrungen über Frequenzabweichungen nicht über mehrere Zeichen summieren.

Arbeitsweise, synchrone

- Ablauf von zwei oder mehreren voneinander unabhängigen Prozessen, die so gestaltet sind, daß zu bestimmten Zeitpunkten eine Synchronisation stattfindet (Einsatz für Datentransport).
- Eine Betriebsart bei der seriellen Datenübertragung , bei der die Information mit einem konstanten Takt für den Kanal gegeben wird und vom Empfänger mit dem gleichen Takt (gleich in Frequenz und Phase) zu empfangen ist.

Arbeitsspeicher

†Register oder †RAM für Programm und Zwischenergebnisse.

Interchange)

(American Standard Code for Information

ASCII

amerikanischer Standard-Code für Informationsaustausch,
Bezeichnung eines USA-Standards, der
international benutzt wird. Es ist ein
7-Bit-Code für 128 Zeichen (alle Zeichen,
die eine Schreibmaschine besitzt und
einige Sonderzeichen). Er wird zur Ausgabe dieser Zeichen auf periphere Geräte benutzt.

Assembler

Programm zur Übersetzung eines in einer †Assemblersprache geschriebenen Programmes in eine †Maschinensprache.
Aus jedem Assemblerbefehl wird ein Maschinenbefehl erzeugt.

Assemblersprache

Maschinenorientierte Programmiersprache, die vom † Assembler in die† Maschi-

٩	-	

BASIC

(Beginners All-purpose Symbolic

Introduction-Code)

Allzweckprogrammiersprache für Anfänger. Leicht erlernbare höhere Programmiersprache. In einem Befehl werden mehrere Maschinenbefehle zueammengefaßt realisiert.

BCD-Arithmetik

(Binary Coded Decimals-Arithmetik) binar kodierte Dezimalzahlen-Arithmetik, Möglichkeit, bei arithmetischen Verknüpfungen mit ziffernweise kodierten Dezimalzahlen zu arbeiten. Jede Ziffer wird dual in einem Halbbyte (4.4Bit) dargestellt (BCD-Format).

bedingter Sprung

Ein Sprung, der ausgeführt wird, wenn im Programmverlauf bestimmte Bedingungen erfüllt sind.

Befehl

Anweisung an einen Rechner zur Ausführung einer Operation. Ein B. wird durch einen †Assembler in den zugeordneten †Maschinenbefehl übersetzt, der vom †Mikroprozessor verarbeitet werden kann.

Befehlsadresse

†Adresse, unter der ein †Befehl im †Speicher steht.

Befehleregister

Register, daß den Befehl zum Zwecke der Ausführung speichert.

Befehlsvorrat

Gesamtheit der †Befehle, die vom †Steuerwerk eines Mikrorechners verarbeitet werden können.

Befehlszähler

Spezielles Register der CPU, das während der Abarbeitung eines Programmes stets die Adresse des nächsten zu verarbeitenden Befehls enthält. Abkürzung: PC (Program Counter)

Betriebssystem

Programmpaket, das die Bearbeitung von Programmen durch den Rechner ohne menschliche Hilfe ermöglicht.

Programm-Zähler

bidirektional

Übertragung von Daten auf einer Leitung kann in beiden Richtungen erfolgen.

Binärdarstellung

Darstellung von Informationen durch die Elemente 0 und 1 (Binärelemente)

Binarwort

Endliche Folge der Binärelemente 0 und 1

Bit

(Binary Digit) Binärziffer.

1. einzelnes Zeichen eines †Binärwortes 2. kleinste Einheit der Speicherkapazität eines Speicherbausteines

Bus

Verbindungsleitung zwischen den Baugruppen eines Mikrorechners. Man unterscheidet: ↑ Datenbus Adreßbus ↑ Steuerbus

Byte

Zusammenfassung von 8 Bit zu einer Einheit. Ein Byte ist im Speicher die

kleinste adressierbare Einheit. Die Speicherkapazität wird in KByte angegeben.

-Flag

(Carry-Flag)

Übertragsflag;

fFlag, das mit 1 belegt wird, wenn bei Addition oder Subtraktion ein Übertrag über die höchstwertigste Stelle des Akkumulators erfolgt.

PU

(Central Processing Unit)

Zentrale Verarbeitungseinheit - ZVE; Steuert die Abarbeitung des Programmes und die Realisierung eines jeden † Maschinenbefehls.

TC

(Counter/Timer Circuit)
Zähler/Zeitgeber-Baustein;
Spezieller Schaltkreis eines Mikro-

spezieller Schaltkreis eines mikrorechners, der zwei Funktionen übernehmen kann:

- Zähler, der im Sinne eines Weckers Unterbrechungen (†Interrupts) erzeugt.
- Zeitgeber, der im Sinne einer Uhr Zeitangaben zur Verfügung stellen kann.

aisy-Chain

♦Prioritätskaskade

Daten bua

Bus zur Übertragung von Daten zwischen den einzelnen Baugruppen des Mikrorechners. Die Anzahl der Leitungen entspricht der Anzahl der Bits eines Wortes (z. B. 4, 8 oder 16)

Datentransfer

Datentransport

Dekrementierung

Vermindern eines Zählers oder einer

Programmgröße um 1

DMA-Baustein

(Direct Memory Access)
Direkter Speicherzugriff,

Schaltkreis, der sehr schnell und selbständig die Suche nach einem Datenbyte oder Datenübertragungen zwischen Speicher und Peripheren Geräten ausführen kann, ohne Umweg über die CFU. Dadurch wird die CFU von routinemäßigen

Übertragungsaufgaben entlastet.

Ľ

Eingabe-Ausgabe-Baustein Realisiert Datenfluß vom oder zum Mikroprozessor zur oder von der Peripherie.

EPROM

(Erasable Programmable Read-Only-Memory)
löschbarer programmierbarer Nur-Lese-

Speicher,

Speichertyp, der zur Speicherung von festen Programmen und Konstanten dient. Er wird elektrisch programmiert und ist

durch UV-Licht löschbar.

Bohtzeituhr

Baugruppe eines Mikroprozessorsystems zur Erzeugung periodischer Taktimpulse. Die E. dient zum Steuern von Programmabläufen.

ag.

Speicher der Länge ein Bit innerhalb der CPU. Sie werden benutzt, um beim Rechnerlauf aufgetretene Zustände (z. B. Überlauf, O im Akkumulator) zu fixieren.

Der Inhalt der Flags kann in Sprungbefehlen abgefragt und so für Programmverzweigungen genutzt werden. Der Inhalt vom F. wird auch in andere Operationen einbezogen.

agregister

Register innerhalb der CPU.
Das F. besteht aus 8 Flags.

rmat

Anordnung von Daten, Adressen oder Befehlen.

lbbyte

Gruppe von 4 Bits

Synonym: Tetrade

In einem H. können die Zahlen 0 ... 15 in dualer Form dargestellt werden.

rdware

Gesamtheit aller technischen Einheiten eines Mikroprozessorsystems.

uptprogramm

Eigentliches Programm, in dem Unterprogramme aufgerufen werden können.

Flag

(Half-Carry-Flag)

Halbbyte-Übertragsflag

Flag, das mit 1 belegt wird, wenn bei arithmetischen Operationen im Akkumulator ein Übertrag von Bit D3 auf Bit D4 auftritt.

Hexadezimalsystem

In der Rechentechnik sehr häufig benutztes Zahlensystem mit der Basis 16. Verwendete Symbole: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

High

hoch, entspricht dem binären Zustand 1

Ι

Index-Register

ARegister, dessen Inhalt vor oder während der Ausführung eines Befehls zum (oder vom) Adreßoperanden addiert (oder subtrahiert) werden kann.

Inkrementierung

Erhöhen eines Zählers oder einer Pregrammgröße um 1.

Interface

Schnittstelle, elektronische Schaltung, die zwei Geräte oder Bausteine einander anpaßt.

Interrupt

In der Mikrorechentechnik benutzter Fachbegriff für Unterbrechung eines Programmes und Bearbeitung eines vorbereiteten Unterprogrammes (Interruptserviceroutine). Danach wird die Abarbeitung des unterbrochenen Programmes fortgesetzt.

rruptmode

(

Betriebsart der Bausteine eines Mikroprozessorsystems, durch die die Unterbrechungsbehandlung festgelegt wird.
Zu jedem AInterrupt gehört eine AInterruptserviceroutine. Diese Routine (Unterprogramm) wird automatisch aufgesucht, wenn der Mikroprozessor die
Interruptforderung annimmt.

rruptregister

Register, mit dessen Hilfe die Adresse einer AInterruptserviceroutine (ISR) aufgebaut wird. Es enthält den höherwertigen Teil (A8 ... A15) eines Zeigers, der auf die Anfangsadresse der jetzt zu beginnenden ISR zeigt.

rruptservice-

Unterbrechungsbehandlungsroutine, Unterprogramm, das durch die & CPU abgearbeitet wird, sobald ein & Interrupt von einer peripheren Schaltung angenommen wurde

rruptvektor

Information der Länge 16 Bit, die zur Steuerung der Interruptbehandlung dient. Der I. wird vom interruptenden Peripherieschaltkreis ausgesendet. Der niederwertige Teil (AO ... A7) bildet zusammen mit dem Inhalt des Interruptregisters den Zeiger auf die Anfangsadresse der ISR.

Abkürzung für "Kilo", Mengeneinheit für Anzahl von Speicherplätzen 1 KByte = 1024 Byte Kanal Verbindung, über die Daten gesandt oder empfangen werden können (Tor)

Kellerspeicher &Stack

Kellerzeiger AStackpointer

Low tief,

entspricht dem binären Zustand O

Marke Zeichen ("Name") zur Identifizierung einer Anweisung oder eines bestimmten Datenwortes zur Auffindung in einem Computerprogramm.

Maschinenprogramm Folge von & Befehlen in & Maschinensprache, die von einem Mikrorechner
direkt gelesen und ausgeführt werden
können.

Maschinensprache Menge von & Binärwörtern, die von einem Mikroprozessor unmittelbar verarbeitet werden können.

Maske Gruppe von Bits, mit denen durch logische f Befehle die zugeordneten Bits
eines Operanden herausgelöst bzw. gesondert betrachtet werden können.

Mikroprozessor Zentraleinheit (4CPU) eines Mikrorechners mit folgendem schematischen Aufbau

oprozessor-

Informationsverarbeitungssystem, das im wesentlichen aus folgenden Grundbausteinen besteht: 4.CPU

♠ PIO

≜SIO

▲ CTC

♣ ROM

A RAM

♦ DMA

prechner

♦ Mikroprozessorsystem

onik

maschinenorientierte †Programmiersprache, in der alphanumerische Abkürzungen
zur Notation von †Befehlen verwendet
werden. Sie werden durch den †Assembler
in die †Maschinensprache übersetzt.
Beispiel: LD (HL),E ist der mnenomische
Kode für einen Ladebefehl
(Transport aus dem Register E
in den Hauptspeicher).

Übersetzt in die Maschinensprache entsteht das Bitmuster 01110011.

X	
N-Flag	Additions-/Subtraktions-Flag AFlag, das mit 1 belegt wird, wenn als letzter Befehl eine Subtraktion erfelg- te, bei Addition N-Flag = 0.
o .	
Operandenadresse	◆Adresse, unter der ein Operand im ◆Speicher steht.
P	
Peripheriebaustein	Spezieller Schaltkreis für den Anschluß externer (peripherer) Geräte an einen Mikroprozessor.
PIO	(Parallel-Input/Output) Parallele Ein/Ausgabe, spezieller Schaltkreis eines Mikrerechners, der parallelen Datenaustausch zwischen dem Mikroprozessor und der Peripherie realisiert. Der PIO besitzt zwei Datenkanäle mit einer Breite von je 8 Bit = 1 Byte.
Polling	Periodische Abfrage der *Peripheriebau- steine, um festzustellen, ob eine *In- terruptanforderung vorliegt.
Port	1. Mit P. wird die Stelle bezeichnet, an der der *Bus mit dem Mikropro- zessor (oder einem anderen Schalt-

159

kreis) verbunden ist. Man unterschei-

det Datenport, Adressenport.

 Zugriffsstelle für das Einlesen (Eingabeport) oder das Ausgeben (Ausgabeport) von Daten.
 Synonyme: Tor, Kanal.

ioritätskaskade

(Daisy-Chain)

Spezielle Behandlungsweise von Unterbrechungen, die von Peripheriebausteinen an die CPU gesandt werden. Die einzelnen Peripheriebausteine sind dabei fest in eine Vorrangstruktur eingebunden.

ogramm

Folge von Anweisungen und Vereinbarungen, die einen in sich abgeschlossenen Algorithmus darstellen.

ogrammzähler

(PC: Program Counter) ◆Befehlszähler

MC

(Programmable Read Only Memory)
programmierbarer Nur-Lese-Speicher,
vom Programmierer mit einem speziellen
Programmiergerät elektrisch programmierbarer Festwertspeicher, nicht
löschbar.

sudotetrade

Halbbytebelegung (4 Bit) der & BCD-Darstellung, die keiner Dezimalziffer entspricht (A, B, C, D, E, F). Sie kann durch Addition einer Sechs normalisiert werden (BCD-Korrektur).

ffer

Speicherbereiche zur kurzzeitigen Informationsspeicherung, z. B. zum Ausgleich unterschiedlicher Verarbeitungsgeschwindigkeiten miteinander arbei-

tender Einheiten.

P/	V-	F1	aø
I.	,-	r r	aĸ

(Parity-Overflow-Flag)
Paritäts-Überlauf-Flag,
ÆFlag, das mit 1 belegt wird, wenn das
Ergebnis bei logischen Operationen von
gerader Parität ist, oder wenn bei
arithmetischen Operationen ein Überlauf auftritt.

Q

Quellprogramm

Programmtext, der in einer höheren Programmiersprache oder in AAssemblersprache vorliegt. Das Q. muß durch einen Übersetzer oder

Das Q. muß durch einen Übersetzer oder AAssembler in ein Maschinenprogramm

umgesetzt werden.

Quittung

Nachricht zur Bestätigung des korrekten Eintreffens einer Nachricht beim Empfänger in einem Mikroprozessorsystem.

Quittungsbetriebslogik

Technische Vorrichtung in Bausteinen von Rechenanlagen, die durch das Absetzen eines Signals die Beendigung einer Aufgabe mitteilen, bzw. die Bereitschaft zum Informationsaustausch bestätigen (Handshake).

R

RAM

(Random-Access-Memory)
Schreib-Lese-Speicher

Direktzugriffsspeicher für Lesen oder Schreiben, sie verlieren mit dem Abschalten der Betriebsspannung ihre Informationen.

Rechenwerk

Bauteil der ACPU, in dem alle Datenmanipulationen ausgeführt werden. Zum R. sählt die AALU und der ARegistersatz.

Refresh-Register

7-Bit-Speicher des ARegistersatzes eines Mikroprozessors. Das R. dient zur zyklischen Auffrischung von dynamischen ARAM's. Es ist für die Programmierung ohne Bedeutung.

Register

Speicherstelle mit schnellem und direktem Zugriff, die zur vorübergehenden Aufnahme von Daten, Operanden oder Adressen dient. Diese werden bei der Verarbeitung von einem R. in ein anderes R. transportiert und verarbeitet.

Registersatz

Gesamtheit aller & Register eines Mikroprozessors.

Registersatz des Schaltkreises U 880 D:

A	F
В	C
D	E
H	L

A'	F'
B'	C'
D'	E'
H'	L'

Hauptregistersatz

(je 8 Bit)

Zweitregistersatz (je 8 Bit)

I R	B, C, D, E, H, L	allg. 8-Bit- Register Akkumulator
IY	P	Flag-Register
SP	I	Interrupt-
PC	R	register Refresh-Register
Adres-	IX,IY	Indexregister
gister-	SP	Stackpointer
04.12	PC	Programmzähler

ROM

(Read-Only-Memory)

Nur-Lese-Speicher zur Speicherung von festen Programmen und Konstanten.

S

S-Flag

(Sign-Flag)

Vorzeichenflag

Flag, das mit 1 belegt wird, wenn auf Grund einer arithmetischen oder logischen Operation das höchstwertigste Bit des Akkumulators mit 1 belegt, der Inhalt des Akkumulator also negativ ist.

SIO

(Serial Input/Output)

Serieller Ein/Ausgabe-Baustein, Peripheriebaustein, der zum Anschluß von Geräten mit Bit-seriellem Datenaustausch dient (z. B. Fernschreiber).

Software

Gesamtheit der zu einem Mikrorechner gehörenden Programme, z. B. Assembler, Zugriffsroutinen zu externen Datenträgern, Anwenderprogramme peicher

Bauelemente eines Mikrorechners zum Speichern von Programmen und Daten. Die Einheit des S., der Speicherplatz, heißt & Byte. Die Kapazität wird in KByte angegeben. Speichertypen: &RAM, &ROM, &PROM (interne Speicher) Es gibt auch externe Speicher, sie sind nicht direkt adressierbar (z. B.: Magnetband)

peicheradresse

Zahlenangabe zur Auffindung eines Speicherplatzes in einem &Speicher. Die Nummer eines Speicherplatzes ist die S. oder die absolute Adresse.

tack

Stapelspeicher, der zur Verwaltung ein eigenes Adreßregister (†Stackpointer) besitzt. Er dient zur Organisation von Unterprogramm-Verarbeitungen. Funktionsprinzip: Die zuletzt abgelegte Adresse wird als erste wieder entnommen, danach die vorletzte usw. Die Verwaltung erfolgt unabhängig von der Programmierung.

ackpointer

Kellerzeiger

*Register oder Speicherplatz, dessen
Inhalt die Adresse des Arbeitspunktes
in einem *Stack ist.

euerbus

Leitungen zur Übertragung von Steuersignalen zwischen den einzelnen Schaltkreisen.

atax

Menge von Regeln, durch die die Erzeugung gültiger Sätze einer Programmiersprache exakt definiert ist.

Systembus

Sammelleitung eines Mikrorechners, über die der Informationstransport zwischen der & CPU und dem Arbeitsspeicher erfolgt.
Wird die Übertragung auf unterschiedlichen Leitungen realisiert, unter-

lichen Leitungen realisiert, unterscheidet man ≜Datenbus, ≜AdreSbus und ≜Steuerbus.

Т

Tri-State

Möglichkeit von 3 verschiedenen Zuständen: 0,1 und ein hochohmiger Zustand

U

Unterprogramm

In sich abgeschlossenes Teilprogramm, das in einem Programm häufig auftretende Algorithmen beinhaltet. Man gelangt zum U. mit einem speziellen Sprungbefehl. Am Ende eines U. steht ein Rücksprungbefehl.

User

Anwender

1

Wort

Anzahl von aufeinanderfolgenden ABits, die in einem Mikrorechner als Einheit betrachtet werden.

lag

(Zero-Flag)

Nullflag

AFlag, das mit 1 belegt wird, wenn das Ergebnis aus einer Operation O ist.

Zentrale Verarbeitungseinheit | CPU

ierkomplement

Wird benutzt, um in einem Byte eine negative Zahl darzustellen. Im höchstwertigsten Bit B7 steht das Vorzeichen:

O positiv

1 negativ

Das Z. wird gebildet, indem die Binärzahl bitweise negiert und anschließend eine 1 addiert wird.

itregistersatz

Der Inhalt des Haupt-Registersatzes kann ganz oder teilweise in den Zweitregistersatz "kopiert" werden, um die Inhalte des Hauptregistersatzes zu retten bzw. diese für die Ausführung weiterer Operationen freizumachen.

s umfassende Erläuterung der hier aufgeführten und weiser Begriffe der Mikrorechentechnik findet der Leser im d 206 der Reihe "Automatisierungstechnik", Gerhard lin: "Kleines Lexikon der Mikrorechentechnik".

veb mikroelektronik : karl marx: er furt stammbetrieb

DDR-5010 Erfurt, Rudolfstraße 47 Telefon: 5 80, Telex: 061 306

elektronik export-import

Volkseigener Außenhendelsbetrieb der Deutschen Demokristischen Republik DDR - 1026 Berlin, Alexanderpletz 6 Telex: BLN 114721 etel, Telefon: 2180