LOF & NMD SnpEff

Pablo Cingolani Rob Sladek

"Gold standard" methods

 LOF as specified in: (Science, 2012)

 NMD as specified in: (Nature, 2004)

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes

Daniel G. MacArthur, ^{1,2*} Suganthi Balasubramanian, ^{3,4} Adam Frankish, ¹ Ni Huang, ¹ James Morris, ¹ Klaudia Walter, ¹ Luke Jostins, ¹ Lukas Habegger, ^{3,4} Joseph K. Pickrell, ⁵ Stephen B. Montgomery, ^{6,7} Cornelis A. Albers, ^{1,8} Zhengdong D. Zhang, ⁹ Donald F. Conrad, ¹⁰ Gerton Lunter, ¹¹ Hancheng Zheng, ¹² Qasim Ayub, ¹ Mark A. DePristo, ¹³ Eric Banks, ¹³ Min Hu, ¹ Robert E. Handsaker, ^{13,14} Jeffrey A. Rosenfeld, ¹⁵ Menachem Fromer, ¹³ Mike Jin, ³ Xinmeng Jasmine Mu, ^{3,4} Ekta Khurana, ^{3,4} Kai Ye, ¹⁶ Mike Kay, ¹ Gary lan Saunders, ¹ Marie-Marthe Suner, ¹ Toby Hunt, ¹ If H. A. Barnes, ¹ Clara Amid, ^{1,17} Denise R. Carvalho-Silva, ¹ Alexandra H. Bignell, ¹ Catherine Snow, ¹ Bryndis Yngvadottir, ¹ Suzannah Bumpstead, ¹ David N. Cooper, ¹⁸ Yali Xue, ¹ Irene Gallego Romero, ^{1,5} 1000 Genomes Project Consortium, Jun Wang, ¹² Yingrui Li, ¹² Richard A. Gibbs, ¹⁹ Steven A. McCarroll, ^{13,14} Emmanouil T. Dermitzakis, ⁷ Jonathan K. Pritchard, ^{5,20} Jeffrey C. Barrett, ¹ Jennifer Harrow, ¹ Matthew E. Hurles, ¹ Mark B. Gerstein, ^{3,4,2†} Chris Tyler-Smith ¹†

NONSENSE-MEDIATED mRNA DECAY: SPLICING, TRANSLATION AND mRNP DYNAMICS

Lynne E. Maquat

How to use

Simply add '-lof' to the command line

Output

 SnpEff adds 'LOF' and 'MND' tags to INFO fields (column 8 in VCF format).

LOF and NMD tag format:

```
Gene | ID | num_transcripts | percent_affected
```

Where:

- Gene : Gene name

- ID : Gene ID (usually ENSEMBL)

– Num_transcripts : Number of transcripts in this gene

- percent affected : Percentage of transcripts affected by

this variant.

Output examples: LOF

Given an effect

```
EFF=..., SPLICE_SITE_DONOR(HIGH|||639|ILDR2| protein_coding|CODING|ENST00000271417|1)
```

The corresponding LOF tag is

LOF=ILDR2 | ENSG00000143195 | 7 | 1.00

- Gene name : ILDR2

- Gene ID : ENSG00000143195

– Num_transcripts : There are 7 transcripts in this gene

percent_affected: 100% of transcripts are affected.

Output examples: NMD

Given an effect

```
EFF=STOP_GAINED(HIGH|NONSENSE|taT/taG|Y269*|321|RHD|
protein_coding|CODING|ENST00000454452|)...
```

The corresponding NMD tag is

NMD=RHD | ENSG00000187010 | 10 | 0.80

– Gene name : RHD

- Gene ID : ENSG00000187010

– Num_transcripts : There are 10 transcripts in this gene

percent_affected: 80% of transcripts are affected.

How to obtain a list of LOF variants

1) Calculate effects using '-lof' command line option

```
java -Xmx4g -jar snpEff.jar -v -lof GRCh37.66 file.vcf.gz > file.eff.vcf
```

- 2) Filter using SnpSift, e.g.:
 - a. Get all entries having LOF with genes that have more than 50% of transcripts affected

```
cat file.eff.vcf | java -jar SnpSift.jar filter "LOF[*].PERC > 0.5"
```

b. Get all entries having NMD with genes that have more than 3 transcripts

```
cat file.eff.vcf | java -jar SnpSift.jar filter "NMD[*].NUMTR > 3"
```