Wydział	Dzień	poniedziałek $17^{15} - 19^{30}$	Nr zespołu
Matematyki i Nauk Informatycznych	Data		18
Nazwisko i Imię:	Ocena z przygotowania	Ocena ze sprawozdania	Ocena Końcowa
1. Jasiński Bartosz			
2. Sadłocha Adrian			
3. Wódkiewicz Andrzej			
Prowadzący		Podpis prowadzącego	
dr hab. Jacek Gosk			

Sprawozdanie nr 8

1. Opis ćwiczenia i wstęp teoretyczny

Celem ćwiczenia było zapoznanie się z działaniem lampy elektronowej, wykazanie zależności natężenia prądu anodowego diody od napięcia przyłożonego na diodę oraz wyznaczenie temperatury katody na podstawie wykonanych pomiarów.

Przed rozpoczęciem ćwiczenia, w sali laboratoryjnej przygotowany został uprzednio układ pomiarowy, którego schemat przedstawiono na rysunku ??.

Układ został przygotowany w taki sposób, aby napięcie przyłożone do lampy elektronowej hamowało ruch elektronów opuszczających katodę (biegun dodatni baterii połączony został z katodą, a ujemny z anodą). Budowa układu pozwalała jedynie na regulowanie wartości napięcia w jedną stronę. Z powodu braku możliwości zamiany polaryzacji przykładanego napięcia, nie można było wyznaczyć w ćwiczeniu wartości napięcia kontaktowego między okładkami.

Korzystaliśmy z przybliżenia, że elektrony wewnątrz lampy można opisać jako gaz elektronów, oraz dalej, z powodu znajdowania się ich w próżni nie występują oddziaływania między nimi – jako gaz doskonały. Były to podstawy do założenia, że prędkości elektronów przemieszczających się w kierunku anody mają rozkład Maxwella.

Wzór, który uwzględnia ten rozkład i posłużył w ćwiczeniu za podstawę opracowywania wyników pomiarów, opisuje zależność między natężeniem prądu anodowego a napięciem przyłożonym do lampy.

$$I_a(U_a;T) = I_{a_0} \exp\left(-\frac{eU_a}{kT}\right) \tag{1}$$

gdzie I_a to natężenie prądu anodowego, U_a to zmienna niezależna będąca napięciem przyłożonym do lampy, T to parametr równania, będący temperaturą katody, zaś pozostałe czynniki to następujące stałe:

- I_a prąd początkowy
- \bullet e ładunek elementrarny z minusem

\bullet k – stała Boltzmanna

Analizując równanie, mozna stwierdzić, że I_{a_0} to zerowe natężenie prądu anodowego przy braku przyłożonego dodatkowego napięcia ($U_a=0$ V). Ponieważ napięcie U_a jest hamujące, dlatego przyjmuje w naszych rozważaniach wyłącznie wartości ujemne, stąd (pamiętając o ujemnej wartości ładunku e) argument funkcji wykładniczej ma wartość ujemną. Zatem mierzona wartość I_a powinna znajdować się w przedziale (0; I_{a_0}] i maleć wraz ze zwiększaniem wartości bezwzględnej napięcia hamującego. Dodatkowo, wraz ze zwiększaniem temperatury T wykres funkcji wykładniczej oddala się w przedziale ($-\infty$; 0) od osi OX, co wpływa na zwiększenie wartości funkcji I_a dla ustalonego x.

Do dalszego opracowywania wyników wyprowadzono drugi wzór ze wzoru 1, logarytmując równanie stronami:

$$\ln \frac{I_a}{I_{a_0}} = -\frac{eU_a}{kT} \tag{2}$$

Poszukiwana była zależność liniowa, gdzie:

- $X = U_a$ zmienna niezależna
- $Y = \ln \frac{I_a}{I_{a_0}}$ zmienna zależna
- $a = -\frac{e}{kT} \text{współczynnik kierunkowy}$

2. Pomiary i opracowanie wyników

W naszym doświadczeniu dostaliśmy gotową diodę próżniową oraz mierniki natężenia oraz napięcia, na początku ćwiczenia zmonotowaliśmy obwód w sposób widoczny na rysunku \ref{Model} : Ustawiliśmy prąd żarzenia na 0.375A przy pierwszym pomiarze oraz 0.385A przy drugim. Połączyliśmy katodę z anodą przez mikroamperomierz. Zanim włączyliśmy żarnik prąd wskazywany na mikroaperomierzu wynosił 0A. Po ogrzaniu katody po pewnym czasie prąd ustabilizował się na $0.383~\mu$ A. Zauważyliśmy następującą prawidłowość, jeśli temperatura żarnika rosła wówczas prąd w obwodzie żarnika malał (z powodu wzrostu oporu wraz ze wzrostem temperatury). W tym samym czasie prąd anodowy rosnął wraz z rozgrzewaniem lampy elektronowej.

Po zwarciu oporu na baterii dołączyliśmy woltomierz do obwodu mierzący napięcie na anodzie. Podawaliśmy ujemne napięcie na anodę za pomocą dzielnika napięcia, wtedy prąd anodowy zaczął maleć.

Rozkład Maxwella określa on rozkład prędkości cząstek gazu doskonałego. Określa on liczbę cząstek które w jednostce obiętości mają prędkości z przedziału < v, v + dv >. W naszym doświadczeniu wyemitowane elektrony możemy traktować właśnie jako cząstki gazu doskonałego, ponieważ są one emitowane z gęstością o 10-15 rzędów mniejszą niż w metalu, dzięki temu nie oddziaływują ze sobą.

Rysunek 1: Rozkład Maxwella zasoby1.open.agh.edu.pl/dydaktyka/2_stany_skupienia/02_02_46.jpg

2.1. Pierwszy pomiar

Wyniki pomiarów wykonanych i niepewności dla pierwszego prądu żarzenia są zawarte w tabeli 1. Niepewność pomiarowa natężenia prądu wyraża się wzorem:

$$u_{I_a} = \sqrt{(\frac{\Delta I}{\sqrt{3}})^2 + (\frac{\Delta I_E}{\sqrt{3}})^2}$$

gdzie:

 u_{I_a} - niepewność pomiaru wartości natężenia

 ΔI - niepewność amperomierza

 ΔI_E - niepewność eksperymentatora

W naszym przypadku amperomierz był wychyłowy i posiadał pierwszą klasę czyli by wyznaczyć ΔI posłużyliśmy się wzorem:

$$\Delta I = klasa \ urzdzenia * \frac{zakres}{100} = 0.0015$$

podanym na wykładzie wstępnym. Przyjeliśmy że niepewność eksperymentatora jest równa $\frac{1}{2}$ najmniejszej podziałki.

Wyniki znajdujące się w kolumnie u_U są niepewnościami pomiarowymi napięcia prądu. Wartość niepewności zależy zarówno od jakości urządzenia pomiarowego jak i samego odczytu, w naszym przypadku wyraża się wzorem:

$$u_U = \frac{0,3\% \cdot rdg + 1 \cdot dgt}{\sqrt{3}}$$

gdzie:

rdg - zmierzona wartość

dgt - dokładność pomiaru

Wyniki dla niepewności wyznaczenia logarytmu stosunku prądu zmierzonego do prądu początkowego obliczyliśmy z następujacego wzoru:

$$u_{ln} = \sqrt{(\frac{1}{I_a})^2 \cdot U_{I_a}^2 + (-\frac{1}{I_{a0}})^2 \cdot U_{I_{a0}}^2}$$

gdzie:

 u_{ln} - niepewność logarytmu stosunku wartości natężenia zmierzonego do prądu początkowego

 ${\cal I}_a$ - wartość zmierzonego prądu

 ${\cal I}_{a0}$ - wartość prądu początkowego

 u_{I_a} - niepewność pomiaru wartości natężenia

 $u_{I_{a0}}$ - niepewność pomiaru wartości natężenia początkowego

W większości punktów na wykresie nie jest widoczna niepewność, ponieważ są one mniejsze od punktów którymi są zaznaczone pomiary.

L.p	U[V]	$I_a [\mu A]$	U_{I_a} [μ A]	U_U [V]	$n(l_a/l_{a0})$	U_{ln}	$\sqrt(U)$
1	0.000	0.135	0.0017	0.00058	0.0000	0.0178	0.0000
2	-0.012	0.110	0.0017	0.0006	-0.2048	0.0199	0.1095
3	-0.018	0.105	0.0017	0.00061	-0.2513	0.0205	0.1342
4	-0.021	0.100	0.0017	0.00061	-0.3001	0.0212	0.1449
5	-0.030	0.090	0.0017	0.00063	-0.4055	0.0227	0.1732
6	-0.038	0.080	0.0017	0.00064	-0.5232	0.0247	0.1949
7	-0.045	0.070	0.0017	0.00066	-0.6568	0.0274	0.2121
8	-0.055	0.065	0.0017	0.00067	-0.7309	0.0290	0.2345
9	-0.065	0.055	0.0017	0.00069	-0.8979	0.0334	0.2550
10	-0.075	0.050	0.0017	0.00071	-0.9933	0.0363	0.2739
11	-0.089	0.040	0.0017	0.00073	-1.2164	0.0443	0.2983
12	-0.097	0.035	0.0017	0.00075	-1.3499	0.0502	0.3114
13	-0.107	0.030	0.0017	0.00076	-1.5041	0.0580	0.3271

Tablica 1: Wyniki wielokrotnych pomiarów i niepwności dla pomiaru pierwszego

Używając metody najmniejszych kwadratów policzyliśmy temeperaturę katody wysyłającej elektrony. Współczynnik kierunkowy prostej wynosi:

$$a \approx 13.81(0.11)$$

Z tego otrzymujemy temperaturę katody oraz błąd:

$$T = \frac{e}{k \cdot a} \approx 840.36K$$

$$u_T = \sqrt{\left(\frac{e}{k \cdot a^2}\right) \cdot u_a^2} \approx 6.57K$$

Rysunek 2: Wykres zależności logarytmu stosunku zmierzonego natężenia do natężenia początkowego od napięcia. Pomiar pierwszy

2.2. Drugi pomiar

W drugim pomierze w przeciwieństwie do pierwszego zmienialiśmy zakres pomiarów na amperomierzu (z tego wynikają większe niepewności pomiarowe dla 3 pierwszych pomiarów). Analogicznie do poprzedniego pomiaru wyznaczyliśmy tempraturę metodą najmniejszych kwadratów. Współczynnik kierunkowy prostej wynosi:

 $a \approx 12.80(0.06)$

Z tego otrzymujemy temperaturę katody oraz błąd:

 $T\approx 906.31K$

 $u_T = 3.96K$

Rysunek 3: Wykres zależności natężenia od napięcia. Pomiar pierwszy

L.p	U[V]	$I_a [\mu A]$	U_{I_a} [μ A]	U_U [V]	$ln(l_a/l_{a0})$	U_{ln}	$\sqrt(U)$
1	0.000	0.250	0.0168	0.00058	0.00000	0.09522	0.00000
2	-0.016	0.200	0.0168	0.00061	-0.22314	0.10778	0.12649
3	-0.038	0.150	0.0168	0.00064	-0.51083	0.13087	0.19494
4	-0.041	0.150	0.0017	0.00065	-0.51083	0.06826	0.20248
5	-0.047	0.140	0.0017	0.00066	-0.57982	0.0684	0.21679
6	-0.055	0.125	0.0017	0.00067	-0.69315	0.06866	0.23452
7	-0.058	0.120	0.0017	0.00068	-0.73397	0.06878	0.24083
8	-0.069	0.105	0.0017	0.00070	-0.8675	0.06921	0.26268
9	-0.085	0.085	0.0017	0.00072	-1.07881	0.07018	0.29155
10	-0.100	0.070	0.0017	0.00075	-1.27297	0.0715	0.31623
11	-0.112	0.060	0.0017	0.00077	-1.42712	0.07294	0.33466
12	-0.125	0.050	0.0017	0.00079	-1.60944	0.07528	0.35355
13	-0.141	0.040	0.0017	0.00082	-1.83258	0.07940	0.37550

Tablica 2: Wyniki wielokrotnych pomiarów i niepwności dla pomiaru drugiego

Rysunek 4: Wykres zależności natężenia od pierwiastka napięcia. Pomiar pierwszy

Rysunek 5: Wykres zależności logarytmu stosunku zmierzonego natężenia do natężenia początkowego od napięcia. Pomiar drugi

Rysunek 6: Wykres zależności natężenia od napięcia. Pomiar drugi

Rysunek 7: Wykres zależności natężenia od pierwiastka napięcia. Pomiar drugi