Batería con Leap Motion

Este proyecto para la asignatura Nuevos Paradigmas de Interacción de la UGR consta de una batería virtual.

Autores

Sus autores somos Antonio Álvarez Caballero y Adrián Ranea Robles.

Fecha de realización

Desde el día 16 de Octubre hasta el 30 de Octubre.

Descripción del problema que se aborda

El problema abordado es una batería virtual: utilizando dos lápices, rotuladores o similar, podremos simular de manera sencilla y simple el funcionamiento de una batería.

Descripción de la solución que se aporta

La solución propuesta es la siguiente: en un entorno virtual se dibujan cuatro regiones cuadradas de igual tamaño. Tomando como referencia una herramienta (lápiz, bolígrafo, rotuladores...) pintamos en pantalla algo similar a una baqueta, y al posicionarla encima de cada una de las regiones y detectar un gesto, se reproducirá un sonido asociado a dicha región.

Manteniendo la baqueta sin realizar gestos en una determinada región, podemos cambiar el sonido que ofrece de manera sencilla.

Instalación

Para poder ejecutar este proyecto, hacen falta varias cosas:

- Python
- PyOpenGL
- Pygame
- Leap Motion SDK

Para instalar esto en nuestras máquinas de desarrollo (Archlinux x86_64), sólo hacen falta un par de órdenes. Notar que pacman es el gestor de paquetes de Archlinux y pacaur es un wrapper para instalar paquetes de la comunidad fácilmente. En caso de no tenerlo se pueden acceder a los paquetes de Leap de la comunidad desde aquí

```
$ sudo pacman -Syu python2 python2-opengl python2-numpy python2-pygame
$ pacaur -Syu leap-motion-driver leap-motion-sdk
```

Al instalar el SDK de Leap Motion, debemos modificar el PKGBUILD para añadir \${pkgdir} en dos de las últimas líneas, quedando así

```
install -D -m644 "{pkgdir}/usr/lib/Leap/Leap.py" "{pkgdir}/usr/lib/python2.7/site-packages install -D -m644 "<math>{pkgdir}/usr/lib/Leap/LeapPython.so" "{pkgdir}/usr/lib/python2.7/site-packages of the control of the
```

En otras distribuciones de GNU/Linux es probable que estén los paquetes de Python en los repositorios oficiales, pero en caso de que no, se pueden instalar usando **pip**. En la página oficial de Leap Motion también encontramos descargas para GNU/Linux.

Después de esto, deberíamos ser capaces de ejecutar nuestro proyecto sin ningún problema.

Ejecución

En Archilinux, bastaría conectar el Leap Motion mediante los comandos:

```
$ sudo systemctl start leapd
$ sudo leapd
```

Recomendamos la siguiente configuración en el panel de control de leap. En ArchLinux, puedes abrir dicho panel buscando la aplicación *Leap Motion Control Panel*

Para ejecutarlo este programa, basta escribir:

```
$ python2 bateria.py
```

Uso

Cuando ejecutes el programa, encontrarás el siguiente tutorial bastante autoexplicativo.

Léelo con atención y... ¡disfruta tocando la batería!

Figure 1: LeapPanel

Sección de errores frecuentes o aspectos destacados

Alguno de los errores destacados han sido:

- Elección de proyecto: En un principio queríamos realizar un minijuego de tiro al arco usando Kinect, pero vimos que la precisión que nos ofrecía no era lo suficiente, por eso cambiamos a este proyecto.
- Detección de la herramienta: Pasó su tiempo en que diéramos con la herramienta correcta. Un lápiz no muy corto o un rotulador opaco y mate nos servirían como baqueta mágica.
- Detección del gesto: El gesto de Keytap no es tan intuitivo con una herramienta que con tu propio dedo, por lo que hemos tenido que habituarnos para hacerlo correctamente.
- Problemas con el 3D: La profundidad no quedaba muy bien, se precisaba de mucho esfuerzo para acertar a dar en los instrumentos, por lo que optamos por esta solución pseudo-2D.
- Parpadeo: La baqueta parpadeaba mucho, debido a que OpenGL se actualiza muy rápido y lo solucionamos poniendo un temporizador.

TUTORIAL BATERÍA CON LEAP MOTION

Pulsa el botón izauierdo del ratón para continuar

Figure 2: Tutorial

Sección de lecturas recomendadas

La documentación oficial para LeapMotion, Pygame y PyOpenGL son imprescindibles.

Referencias

El entorno gráfico de OpenGL ha sido sacado de aquí, y todo lo referido a Leap Motion y Pygame ha sido sacado de la documentación oficial.

Los sonidos de ejemplo han sido sacados de aquí, que son libres mientras no lo usemos en ámbito comercial.