

# **Applying Predictive Models to Course Curricula for Early Prediction of Struggling Students**

Nathanael Braukhoff, Austin FitzGerald, Evan Majerus, Zhiwei (Henry) Yang (University of Wisconsin - Platteville)

Faculty Mentors: Douglas Selent (University of Wisconsin - Platteville) & Seth Adjei (Northern Kentucky University)

#### Abstract

The purpose of this research is to provide data and tools necessary for students and faculty advisors to predict and prevent academic struggle.

# **Research Questions**

- 1. What is the percentage of students who have struggled while attending UW-Platteville?
- 2. How well can we predict a student's next term GPA using their previous term GPA?
- 3. Given varying amounts of prior course performance data, what is the probability that a student will graduate?
- 4. Given student performance data on prerequisite courses, how accurate and how far into the future can we predict post-requisite course performance?

#### Data

Our dataset consists of the historical grade data of 689 unique students from University of Wisconsin - Platteville graduates and withdrawals between the years 2013 - 2018.

#### Data Sample

| Anonymized student ID | Year | Course Name                             | Grade | Academic<br>Standing | Course<br>Credits |
|-----------------------|------|-----------------------------------------|-------|----------------------|-------------------|
| 9535                  | 2007 | World Population,<br>Food and Resources | В     | Good                 | 3                 |
| 2197                  | 2007 | Global Business                         | D     | Probation            | 3                 |
| 5447                  | 2007 | Leadership and Management               | C     | Good                 | 3                 |

# Methodology

## Models

- Gradient Boosted Trees
- Linear/Logistic Regression
- Neural Network (For next term GPA prediction)
- ZeroR (Baseline)
- Bayesian Network (Future work)

## **Experiments**

- Predicting next term GPA with data from the previous term
- Predicting if a student will graduate or not with varying amounts of term GPAs
- Predicting future course grades
- All prerequisite courses



Immediate prerequisite courses



2 Root prerequisite course



#### **Evaluation**

- Next Term GPA: We used five-fold stratified (on term number) student-level cross validation
- Graduation: Five-fold stratified (on binary graduation status) student-level cross validation.
- Future Course Grade: We used five-fold stratified (on grade) student-level cross validation
- We evaluated our models using Normalized Root Mean Square Error (NRMSE)

# **Analysis & Results**



**Graduation Status Prediction - Model Performance** 

0.7

0.5

**Gradient Boosted Trees** 

100.0 | 95.9 | 91.8 | 92.7 | 76.1 | 68.1 | 66.7 | 80.1 | 66.7







## Post-requisite Grade Prediction - Model Performance

## Accuracy / Within Half-Grade Accuracy / Within Full Grade Accuracy

|                        | All Prerequisite Courses | Immediate Prerequisite Courses | Root Prerequisite Courses |
|------------------------|--------------------------|--------------------------------|---------------------------|
| Gradient Boosted Trees | 86.2% / 92.8% / 99.1%    | 33.0% / 51.3% / 84.7%          | 82.7% / 91.1% / 98.5%     |
|                        | NRMSE = 0.09             | NRMSE = 0.28                   | NRMSE = 0.10              |
| Logistic Regression    | 51.5% / 76.6% / 98.0%    | 54.6% / 79.9% / 98.8%          | 52.6% / 78.5% / 98.6%     |
|                        | NRMSE = 0.14             | NRMSE = 0.13                   | NRMSE = 0.15              |
| ZeroR - Mean           | 13.5% / 40.9% / 78.9%    | 13.4% / 40.9% / 78.9%          | 15.4% / 44.0% / 80.5%     |
|                        | NRMSE = 0.28             | NRMSE = 0.27                   | NRMSE = 0.27              |

## Post-requisite Grade Prediction Confusion Matrices



100.0|95.9|91.8|92.8|76.2|68.0|66.8|79.9|66.7

## **User Interface**



# **Significance**

- About 43% of the students have delayed their graduation to longer than 4 years.
- According to our data struggling is prevalent: 76% of the students have struggled at least once while attending UW-Platteville.
- Only 18.6% of students who fail a prerequisite course will continue to take the post-requisite.

# **Conclusions**

- For predicting next term GPA all models performed significantly better than the baseline, but not significantly better than each other
- We can predict a student's graduation status approximately 86% accurately (within a 95% confidence interval).
- Predicting a future course grade can be done accurately with the right data. A GBT Classifier, with data from all prerequisites, can predict within a half-letter grade 92.8% of the time.

## Acknowledgments

We would like to acknowledge funding from the following sources:

- The UW-Platteville Summer Undergraduate Scholars Program
- The UW-Platteville college of EMS
- UW-Platteville Scholarly Activity
   Improvement Fund
- The UW-Platteville Computer Science and Software Engineering department

# Authors



**Evan Majerus** (majeruse@uwplatt.edu) is a sophomore at the University of Wisconsin - Platteville studying Software Engineering.



Nate Braukhoff (braukhoffna@uwplatt.edu) is a senior at the University of Wisconsin - Platteville studying Software Engineering.



**Zhiwei Yang** (yangz@uwplatt.edu) is a senior at the University of Wisconsin - Platteville studying Software Engineering.



**Austin D. FitzGerald** (fitzgeralaus@uwplatt.edu) is a sophomore at the University of Wisconsin - Platteville studying Software Engineering.



**Dr. Douglas Selent** (selentd@uwplatt.edu) is an Assistant Professor in the Computer Science and Software Engineering department at the University of Wisconsin - Platteville. https://sites.google.com/site/dougselent/



100.0 | 89.9 | 94.5 | 92.9 | 77.3 | 75.7 | 70.8

**Dr. Seth Adjei** (sadjeis1@nku.edu) is a Visiting Assistant Professor in the Computer Science department at Northern Kentucky University.