Logic Gates

1. Circuits that manipulate voltages and hence their representative binary values.

2. Logic gates are represented by

- 2.1. Graphical symbol
- 2.2. Logical equation
- 2.3. Rule
- 2.4. Operations described by a truth table

3. Truth table defines output obtained from all possible combinations of inputs.

4. Basic logic gates

- 4.1. AND
- 4.2. OR
- 4.3. XOR (exclusive or)
- 4.4. NOT
- 4.5. NAND
- 4.6. NOR
- 4.7. NXOR

AND Gate:-

Graphical Symbol

Logic Equation

 $C = A \cdot B$

Rule

The two inputs must be true (1) for the output to be true (1).

Truth Table

Inputs		Output
A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate :-

Graphical Symbol

Logic Equation

C = A + B

Rule

At least one input must be true (1) for the output to be true (1).

Truth Table

Inputs		Output
A	В	C
	0	
0	0	0
0	1	1
1	0	1
1	1	1

XOR Gate (Exclusive OR) :-

Graphical Symbol

Logic Equation

$$C = A + B$$

Rule

One or the other input must be true (1) but not both for the output to be true (1).

Truth Table

Inputs		Output	
	A	В	C
	0	0	0
	0	1	1
	1	0	1
	1	1	0

NOT Gate:-

Graphical Symbol

Logic Equation

$$C = B^{-}$$

Rule

Invert the output. i.e., 1 changes to 0 & 0 changes to 1.

Truth Table

Inputs	Output	
A	C	
0 1	1 0	

NAND Gate:-

Graphical Symbol

Logic Equation

C = (A . B)

can also be written C = (A . B)

Rule

Opposite to AND therefore if both input are true output is false(0) otherwise true(1)

Truth Table

Inputs		Output	
A	В	C	
_			
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOR Gate:-

Graphical Symbol

Logic Equation

C = (A + B)' can also be written C = (A + B)

Rule

Opposite to OR therefore if any input is true(1) the output is false(0).

Truth Table

	Output	
A B C		
0 0 1		
0 1 0		
1 0 0		
1 1 0		

NXOR Gate (Exclusive OR):-

Graphical Symbol

Logic Equation

 $C = (A \rightarrow B)$ ' can also be written $C = (A \rightarrow B)$

Rule

Opposite to XOR - if both inputs are the same output is true(1) otherwise false(0)

Truth Table

A A	В	C C
0	0	1
0	1	0
1	0	0
1	1	1

Combinational Circuits

- 1. Circuit made up of a set of connected logic gates.
- 2. Used for generating...
 - 2.1. Binary control functions.
 - 2.2. Logic functions.
- 3. Described using a truth table.
 - 3.1. Consider every possible combination of inputs

Truth Table

Inputs		Intermediary Logic		Output	
\mathbf{A}	В	C	D	R	
		A. B	A + B	C (+) D	
0	0	0	0	0	
0	1	0	1	1	
1	0	0	1	1	
1	1	1	1	0	