

Chapter 1

Introduction and Data Collection

Chapter Goals

After completing this chapter, you should be able to:

- Explain key definitions:
 - Population vs. Sample
- Primary vs. Secondary Data
- Parameter vs. Statistic
- Descriptive vs. Inferential Statistics
- Describe key data collection methods
- Describe different sampling methods
 - Probability Samples vs. Nonprobability Samples
- Select a random sample by computer generation
- Identify types of data and levels of measurement
- Describe the different types of survey error

Why a Manager Needs to Know about Statistics

To know how to:

- properly present information (describe things)
- draw conclusions about populations based on sample information (make decisions)
- improve processes
- obtain reliable forecasts

- A population is the collection of all items or things under consideration –people or objects
- A sample is a portion of the population selected for analysis
- A parameter is a summary measure that describes a characteristic of the population
- A statistic is a summary measure computed from a sample

Population vs. Sample

Population

Measures used to describe the population are called parameters

Sample

Measures computed from sample data are called statistics

Key Definitions

 A survey is the gathering of data about a particular group of people or items

A census is a survey of the entire population

A sample is a survey of a portion of the population

Two Branches of Statistics

- Descriptive statistics
 - Collecting, summarizing, and describing data
- Inferential statistics
 - Drawing conclusions and/or making decisions concerning a population based only on sample data

Descriptive Statistics

- Collect data
 - e.g. Survey

- Present data
 - e.g. Tables and graphs

- Characterize data
 - e.g. Sample mean = $\frac{\sum X_i}{n}$

Inferential Statistics

- Estimation
 - e.g.: Estimate the population mean weight using the sample mean weight
- Hypothesis testing
 - e.g.: Test the claim that the population mean weight is over 120 pounds

Drawing conclusions and/or making decisions concerning a population based on sample results.

Why We Need Data

- To provide input to study a situation
- To measure performance of service or production processes
- To evaluate conformance to standards
- To assist in formulating alternative courses of action
- To satisfy curiosity

Data Sources

Types of Data

Levels of Measurement and Measurement Scales

Differences between measurements, true zero exists

Differences between measurements but no true zero

Ordered Categories (rankings, order, or scaling)

Categories (no ordering or direction)

Ratio Data

Interval Data

Ordinal Data

Nominal Data

Highest Level

Strongest forms of measurement

Higher Level

Lowest Level

Weakest form of measurement

Example Data

<u>Subject</u>	Name I	<u> Height</u>	<u>Income</u>	<u>Gender</u>	Eye color
1	Mary	62	10,350	Female	Blue
2	John	72	30,500	Male	Brown
3	Jill	64	35,600	Female	Green
4	Donna	59	20,700	Female	Brown
5	Sam	73	15,300	Male	Blue
6	Bill	70	52,800	Male	Black
7	Mario	71	19,400	Male	Blue
8	Carol	73	12,500	Female	Brown
9	Betty	70	30,200	Female	Brown
10	Linda	68	22,700	Female	Brown

Data in Frequency Distributions

<u>Height</u>		<u>Income</u>		
Category F	requency	Category	Frequency	
$>$ 54 to \leq 60	1	≤ 20K	4	
$>60 \text{ to } \le 66$	2	>20K to ≤ 50K	5	
$>66 \text{ to } \le 72$	5	> 50K	1	
$>72 \text{ to } \le 78$	2			

<u>Gender</u>		Eye Color		
Category	Frequency	Category	Frequency	
Female	6	Black	1	
Male	4	Blue	3	
		Brown	5	
		Green	1	

Statistical Data

- Numerical Data can be gathered as grouped or converted after gathering.
- Categorical data is by nature always grouped
- Classes for numerical data are usually a range of values
- Classes for categorical data are usually single valued
- Numerical data is usually grouped for graphical presentation

Reasons for Drawing a Sample

Less time consuming than a census

Less costly to administer than a census

Types of Samples Used

(continued)

Probability Sampling

 Items in the sample are chosen based on known probabilities

Simple Random Samples

- Every individual or item from the frame has an equal chance of being selected
- Selection may be with replacement or without replacement
- Samples obtained from computer random number generators

Systematic Samples

- Decide on sample size: n
- Divide frame of N individuals into groups of k individuals: k=N/n
- Randomly select one individual from the 1st
 group
- Select every kth individual thereafter

Stratified Samples

- Population divided into two or more subgroups (called strata) according to some common characteristic
- Simple random sample selected from each subgroup
- Samples from subgroups are combined into one

Cluster Samples

- Population is divided into "clusters," each representative of the population
- A simple random sample of clusters is selected
 - All items in the selected clusters can be used, or items can be chosen from a cluster using another probability sampling technique

Population divided into 16 clusters.

Randomly selected clusters for sample

Advantages and Disadvantages

- Simple random sample and systematic sample
 - Simple to use
 - May not be a good representation of the population's underlying characteristics that have small probabilities
- Stratified sample
 - Ensures representation of individuals across the entire population
- Cluster sample
 - More cost effective
 - Less efficient (need larger sample to acquire the same level of precision)

Types of Survey Errors

Coverage error or selection bias

 Exists if some groups are excluded from the frame and have no chance of being selected

Non response error or bias

 People who do not respond may be different from those who do respond

Sampling error

Variation from sample to sample will always exist

Measurement error

 Due to weaknesses in question design, respondent error, and interviewer's effects on the respondent

Evaluating Survey Worthiness

- What is the purpose of the survey?
- Is the survey based on a probability sample?
- Are there coverage errors (appropriate frame)?
- Is there Non-response error (follow up)
- Is there Measurement error (good questions elicit good responses)
- Is the sampling error acceptable (always exists)

Chapter Summary

- Reviewed why a manager needs to know statistics
- Introduced key definitions
- Examined descriptive vs. inferential statistics
- Described different types of samples
- Reviewed data types and measurement levels
- Examined survey worthiness and types of survey errors