Ditigal Transmitters and Recievers

February 14, 2018

Contents

1						
2						
3	3 Lecture 3					
Į	Lec	ture ?				
5	Lecture ?					
	5.1	Transmitter				
	5.2	Reciever				
6	Lecture ?					
	6.1	Fourier Transfrom				
		6.1.1 TODO Properties: verify that 6.1.1 is correct				
	6.2	TODO Graham-Schmidt: check matrix algebra book on this				
		topic				
		6.2.1 1st signal				
		6.2.2 2nd – Nth signal				
	6.3	Distortionless System				
	0.0	6.3.1 Acceptable				
	6.4	Freq representation				
	6.5	Bode rep				
	6.6	Filters				
	0.0	1 110015				
,	LEc	eture ? -				
	7.1	TODO Project				
	7.2	Fourier Series - Fourier Transform Relationship				

	7.3	Energy	y spectral density??????????		6	
8	TODO get units for					

1 Lecture 1 - History of Communication

This is mt, I have not a copy of these notes. Mainly discussed how in the last 120 years we/society has gone from using semophores to using modern fast as light coms.

2 Lecture 2 - A cont. of lecture 1

More info I don't have a copy of....

3 Lecture 3

4 Lecture?

:DATE: <2018-02-05 Mon>

Use correlators to match input to possible transmitted waveforms

5 Lecture?

5.1 Transmitter

5.2 Reciever

two bits per symbol - four possible wave forms

6 Lecture?

6.1 Fourier Transfrom

• **F** {g(t)} = G(f) =
$$\int_{-\inf}^{\inf} g(t)e^{-j2\pi ft}$$

•
$$\mathbf{F}^{-1} \{ G(\mathbf{f}) \} = g(\mathbf{t}) = \int_{-\inf}^{\inf} G(f) e^{j2\pi f t}$$

6.1.1 TODO Properties: verify that 6.1.1 is correct

• Linearity

$$- \mathbf{F} a_1 x_1(t) + a_2 x_2(t) = \mathbf{a_1} \mathbf{F} x_1(t) + \mathbf{a_2} \mathbf{F} x_2(t)$$

• Time Shift

$$- \mathbf{F} x(t - T_0) = \int_{-\inf}^{\inf} x(t - t_0) e^{-j2\pi f t}$$

$$\lambda = \text{t-t}_0$$

$$= e^{-j2\pi f} \int_{-\inf}^{\inf} x(\lambda + t_0)$$

$$= e^{-j2_0} \int_{-\inf}^{\inf} x(\lambda) e^{-2\pi f \lambda} d\lambda \text{ (EQ1)}$$

$$= e^{-2j_0} X(f)$$

• Frequency Property

$$-\mathbf{F}^{-1}X(f-f_0)=e^{j2\pi f_0 t}\int_{-\inf}^{\inf}x(t)$$

6.2 TODO Graham-Schmidt: check matrix algebra book on this topic.

:DEADLINE: <2018-02-05 Mon>

- Signals $S_1(t), \ldots, S_m(t)$
- basis functions $\phi_n(t), \dots, \phi_n(t), N \neq M$
- $S_i(t) = \sum n = 1NS_{in}\phi_n(t)$
- $\mathbf{S_i} = [\mathbf{S_{i1}} \ \mathbf{S_{i2}} \ \dots \ \mathbf{S_{in}}]$

6.2.1 1st signal

$$\begin{aligned} \mathbf{E}_{s1} &= ||S_1||^2 \\ \phi_1 &= \frac{S_1(t)}{\sqrt{E_{s1}}} \\ S_{11} &= \sqrt{E_{s1}} \end{aligned}$$

6.2.2 2nd – Nth signal

Creating a new basis function

$$S_{21} = \langle S_2(t), \phi_1(t) \rangle$$

$$\mathbf{r}_2(\mathbf{t}) = \mathbf{S}_2(\mathbf{t})$$
 - $\mathbf{S}_{21} \ \phi_1(\mathbf{t})$ <-- orthogonal to $\phi_1(\mathbf{t})$

If remainted $r_i(t) = 0$ skip the steps below

• The part of signal 2 that can't be represented by $\phi_1(t)$.

$$E_{r2} = ||r_2(t)||^2$$

$$\phi_2(\mathrm{t}) = \frac{r_2(t)}{\sqrt{E_{r2}}}$$

$$S_{22} = \sqrt{E_{r2}}$$

• others

$$S_{ni} = \langle S_n(t), \phi_i(t) \rangle$$
 for $\phi_i(t)$ which are defined.

$$r_i(t) = S_i(t)$$
 - $\sum \{S_{in}\} \ \phi_n(t)$

:DATE: <2018-02-09 Fri>

6.3 Distortionless System

$$x(t) -> -> y(t)$$

6.3.1 Acceptable

• Amplification//

$$y(t) = K x(t) /$$

• Delay

 $y(t) = x(t - t_0)$, \$t₀: positive integer, positive required for causality\$//

• Overall//

$$y(t) = Kx(t - t_0)$$

6.4 Freq representation

$$Y(f) = Ke^{-j2\pi ft_0}X(f) = H(f)X(f)$$
 Linear time invariant. where $H(f) = Ke^{-j2\pi ft_0}$

$$h(t) = K\delta(t - t_0)$$

6.5 Bode rep

$$\begin{split} H(f) &= Ke^{-j2\pi ft_0} \\ H(f) &= K < -constantMag(gain) \\ \angle H(f) &= -2\pi ft_0 < -linear, slope = -2\pi f \\ \textbf{Group Delay:} \ t_g(f) &= \frac{-1}{2\pi} \frac{d}{df} (\angle H(f)) \end{split}$$

6.6 Filters

- \bullet ideal
- realistic
 - Lowpass
 - Highpass
 - Bandpass
 - Bandstop

filter type ideal realistic lowpass sharp rect around center hill flat top highpass bandpass bandstop

7 LEcture? -

:DATE: <2018-02-12 Mon>

7.1 TODO Project

7.2 Fourier Series - Fourier Transform Relationship

7.2.1 Fourier Series

F.S.
$$g(t) = \sum_{-\inf}^{\inf} G_n e^{jn2\$f_0 t}$$

F.T. $G(g) = *F * g(t) \&= \sum_{-\inf}^{\inf} G_n \mathbf{F} \{e^{jn2\pi f_{ot}}\} \$ = \sum_{-\inf} G_n \delta(f - f_0) - \inf_{-\infty} f_{ot} \}$

7.3 Energy spectral density?????????

$$\begin{split} E_g &= \int_{-\inf}^{\inf} |G(f)|^2 df \\ x(t) - &> h(t) - > y(t) \\ X(f) - &> H(f) - > Y(f) \\ E_y &= \int_{-\inf}^{\inf} |X(f)H(f)|^2 df = \int_{f_0 - f}^{f_0 + |deltaf|} \text{ Energy Spectral Density} \\ \Psi_x(f_0) &= \lim_{\Delta f - > 0} \frac{1}{\Delta f} \int_{f_0 - \frac{\Delta f}{2}}^{f_0 + \frac{\Delta f}{2}} |X(f)|^2 df = |X(f_0)|^2 \\ &\text{Energy } E_x = \int \Psi_x(f) df \\ &\text{Energy int bandwith *B centered at } \mathbf{F}_1 \int_{-f_1 - \frac{*B^*}{2}}^{-f_1 + \frac{*B^*}{2}} \Psi_x(f) df = \int_{f_1 - \frac{*B^*}{2}}^{f_1 + \frac{*B^*}{2}} \Psi_x(f) df \end{split}$$

8 TODO get units for

let: \$g(t) =
$$\Pi(t_{\overline{Whatbanwidthcapacitydoweneedtopassexactly}})90$$

 $E_g = \int |g(t)|^2 dt =$ \$g(t) -> "Ideal LPF bandwidth B" -> y(t) 90%Eg = 0.9T energy

Figure 1: internals of Ditigal reciever with two-bit decode