Name: _______
VIP ID: _____

- Write your name and VIP ID in the space provided above.
- Each of the propositions below is worth 20 points.
- If in your previous exam there are -20 comments associated to a specific kind of proof technique on the front page, choose a proposition below with the same characteristics, and give a proof. You may choose one proposition for each such instance.

Proof by Contrapositive: Instead of proving $P \implies Q$, try $\neg Q \implies \neg P$.

Proof by Contradiction: To prove $P \implies Q$, start with the assumption that P and $\neg Q$ are true.

If and only if statement: To prove $P \iff Q$, prove both $P \implies Q$ and $Q \implies P$.

Existence statement: List, construct, or prove by contradiction.

Proof by Induction: $\forall n \geq n_0, P(n)$. Prove the basis step $P(n_0)$, and use the inductive hypothesis to prove the inductive step $P(n) \implies P(n+1)$.

- Make sure to **box** your proofs, to differentiate them from your exploration and planning. I will only grade for boxed content on each submission.
- Books, and calculators are allowed, but not notes.

Proposition 1. For every $n \in \mathbb{N}$, it follows that

$$(1+2+3+\cdots+n)^2 = 1^3+2^3+3^3+\cdots+n^3.$$

Proposition 2. For every $n \in \mathbb{N}$, it follows that

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \ge \frac{1}{2}.$$

Proposition 3. We say that a number $p \in \mathbb{N}$ is **perfect** if it equals the sum of its positive divisors less than itself. There is a perfect number less than 10.

Proposition 4. For any $n \in \mathbb{N}$, the product of any n consecutive positive integers is divisible by n!.

Proposition 5. Suppose $a, b \in \mathbb{Z}$. If ab is odd, then $a^2 + b^2$ is even.

Proposition 6. There exists a real number $x \in \mathbb{R}$ such that $x^3 - 4x^2 = 7$.

Proposition 7. If $n \in \mathbb{Z}$, then $4|n^2$ or $4|(n^2-1)$.

Proposition 8. Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$ then x > -1.

Proposition 9. Suppose $a, b \in \mathbb{Z}$. Then $a \equiv b \pmod{10}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$.

Proposition 10. The number $\log_2(1) + \log_2(2) + \log_2(3)$ is irrational.

Proposition 11. If $a, b \in \mathbb{R}$ are positive real numbers, then $a + b \ge 2\sqrt{ab}$.

Proposition 12. If $p, q \in \mathbb{Q}$ are rational numbers with p < q, then there exists another rational number $x \in \mathbb{Q}$ that satisfies p < x < q.