- 1. Let $A \in M_{n \times n}(F)$ for some field F. Prove there is some non-zero polynomial p(x) such that p(A) = 0.
 - Do not use Cayley-Hamilton or any other advanced material you might know. Only use what we learned in this module until now.
- 2. For a matrix A, we denote by RSp(A) and CSp(A) the row space and column space of A, respectively.
 - (a) Let $A, A' \in M_{m \times n}(F)$, $B \in M_{n \times p}(F)$ for some field F. Prove that if RSp(A) = RSp(A'), then RSp(AB) = RSp(A'B).
 - (b) Let $A, A' \in M_{n \times p}(F)$, $B \in M_{m \times n}(F)$ for some field F. Prove that if CSp(A) = CSp(A'), then CSp(BA) = CSp(BA').

 Try not to duplicate the same proof as in ??. Rather, try finding a clever and short argument that uses ??.
- 3. Let F be a field, and $A \in M_{n \times n}(F)$ such that $A^{n+1} = 0$. Prove $A^n = 0$.