Package 'caROC'

October 12, 2022

Title Continuous Biomarker Evaluation with Adjustment of Covariates

Type Package

Version 0.1.5
Author Ziyi Li
Maintainer Ziyi Li <zli16@mdanderson.org></zli16@mdanderson.org>
Description Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
License GPL-2
Encoding UTF-8
Depends R (>= 4.0), quantreg, RColorBrewer
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-02 08:20:03 UTC
R topics documented:
caROC CB
caThreshold
plot_caROC
plot_caROC_CB
plot_sscaROC 10 plot_sscaROC_CB 12
sscaROC
sscaROC_CB
Index 19

2 caROC

caR0C

Covariate-adjusted ROC

Description

Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve.

Usage

```
caROC(diseaseData, controlData, userFormula, control_sensitivity = NULL,
control_specificity = NULL, mono_resp_method = "ROC",
whichSE = "sample", global_ROC_controlled_by = "sensitivity",
nbootstrap = 100, CI_alpha = 0.95, logit_CI = TRUE,
verbose = TRUE)
```

Arguments

diseaseData Data from patients including dependent (biomarker) and independent (covari-

ates) variables.

controlData Data from controls including dependent (biomarker) and independent (covari-

ates) variables.

userFormula A character string to represent the function for covariate adjustment. For exam-

ple, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula

 $= "Y \sim Z1 + Z2".$

control_sensitivity

The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a

numeric vector (e.g. c(0.7, 0.8, 0.9)).

control_specificity

The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)).

mono_resp_method

The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply

ROC-based monotonicity respecting approach. Default value is "ROC".

whichSE The method used to compute standard error. It should be one from the following:

"sample", "bootstrap", meaning to calculate the standard error using sample-based approach or bootstrap. Default is "sample".

global_ROC_controlled_by

Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensi-

tivity".

nbootstrap Number of boostrap iterations. Default is 100.

CI_alpha Percentage of confidence interval. Default is 0.95.

caROC 3

logit_CI Whether to apply logit-based confidence interval. Logit-transformed CI has

been identified to be more robust near border area.

verbose Whether to print out messages. Default value is true.

Value

If control_sensitivity or control_specificity is provided, compute covariate-adjusted specificity (sensitivity) at controlled sensitivity (specificity) level.

Estimate Covariate-adjusted sensitivity/specificity.

SE Estimated standard error.

CI Estimated confidence intervals.

If both control_sensitivity and control_specificity are null, compute covariate-adjusted ROC curve.

sensitivity Estimated sensitivity. specificity Estimated specificity.

mono_adj Monotonicity adjustment method.

Author(s)

Ziyi.li <ziyi.li@emory.edu>

```
n1 = n0 = 500
## generate data
Z_D \leftarrow rbinom(n1, size = 1, prob = 0.3)
Z_C \leftarrow rbinom(n0, size = 1, prob = 0.7)
Y_C_{Z0} \leftarrow rnorm(n0, 0.1, 1)
Y_D_Z0 < rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 < rnorm(n1, 0.9, 1)
M0 \leftarrow Y_C_{Z0} * (Z_C == 0) + Y_C_{Z1} * (Z_C == 1)
M1 \leftarrow Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)</pre>
controlData <- data.frame(M = M0, Z = Z_C)</pre>
userFormula = "M~Z"
## calculate covariate-adjusted specificity at
## controlled sensitivity levels (0.2, 0.8, 0.9)
caROC(diseaseData,controlData,userFormula,
      control_sensitivity = c(0.2, 0.8, 0.9),
      control_specificity = NULL,mono_resp_method = "ROC",
      whichSE = "bootstrap", nbootstrap = 100,
      CI_alpha = 0.95, logit_CI = TRUE)
```

4 caROC_CB

caROC_CB

Get confidence band for covariate-adjusted ROC curve.

Description

Use this function to compute the confidence band for covariate-adjusted ROC curve, with or without monotonicity respecting methods.

Usage

```
caROC_CB(diseaseData, controlData, userFormula,
mono_resp_method, global_ROC_controlled_by = "sensitivity",
CB_alpha = 0.95, logit_CB = FALSE, nbootstrap = 100,
nbin = 100, verbose = FALSE)
```

Arguments

diseaseData Data from patients including dependent (biomarker) and independent (covari-

ates) variables.

controlData Data from controls including dependent (biomarker) and independent (covari-

ates) variables.

userFormula A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula

= "Y \sim Z1 + Z2".

mono_resp_method

The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC".

global_ROC_controlled_by

Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity".

caROC_CB 5

CB_alpha Percentage of confidence band. Default is 0.95.

logit_CB Whether to use logit-transformed (then transform back) confidence band. Default is FALSE.

nbootstrap Number of boostrap iterations. Default is 100.

Number of bins used for constructing confidence band. Default is 100.

Whether to print out messages during bootstrap. Default value is FALSE.

Value

verbose

If global ROC is controlled by sensitivity, a list will be output including the following

Sensitivity Vector of sensitivities;

Specificity_upper

Upper confidence band for specificity estimations;

Specificity_lower

Lower confidence band for specificity estimations;

If global ROC is controlled by Specificity, a list will be output including the following

Specificity Vector of specificity;

Sensitivity_upper

Upper confidence band for sensitivity estimations;

Sensitivity_lower

Lower confidence band for sensitivity estimations;

Author(s)

Ziyi.li <ziyi.li@emory.edu>

```
n1 = n0 = 500
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)

Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)

M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)</pre>
```

6 caThreshold

caThreshold

Calculate covariate-adjusted threshold.

Description

This function is used to calculate covariate-adjusted threshold(s) at controlled sensitivity levels or specificity levels.

Usage

```
caThreshold(userFormula, new_covariates, diseaseData = NULL,
controlData = NULL, control_sensitivity = NULL,
control_specificity = NULL)
```

Arguments

userFormula A character string to represent the function for covariate adjustment. For exam-

ple, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula

 $= "Y \sim Z1 + Z2".$

new_covariates A data frame containing covariates for new data. For example, if my userFor-

mula is "Y \sim Z1 + Z2", new_covariates could be data.frame(Z1 = rnorm(100),

Z2 = rnorm(100)).

diseaseData Data from patients including dependent (biomarker) and independent (covari-

ates) variables.

controlData Data from controls including dependent (biomarker) and independent (covari-

ates) variables.

control_sensitivity

The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a

numeric vector (e.g. c(0.7, 0.8, 0.9)).

caThreshold 7

```
control_specificity
```

The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)).

Value

A vector of covariate-adjusted threshold for all subjects if a scalar sensitivity/specificity is given. A data matrix of covariate-adjusted thresholds for all subjects if a vector of sensitivity/specificity is given.

Author(s)

Ziyi Li <ziyi.li@emory.edu>

```
n1 = n0 = 500
## generate data
Z_D \leftarrow rbinom(n1, size = 1, prob = 0.3)
Z_C \leftarrow rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 \leftarrow Y_C_{Z0} * (Z_C == 0) + Y_C_{Z1} * (Z_C == 1)
M1 \leftarrow Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData \leftarrow data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)</pre>
userFormula = "M~Z"
### generate new covariates
new_covariates <- data.frame(Z = rbinom(20, size = 1, prob = 0.5))</pre>
### calculate covariate-adjusted thresholds at controlled
### sensitivity level 0.7, 0.8, 0.9
caThreshold(userFormula, new_covariates,
             diseaseData = diseaseData,
             controlData = NULL,
             control_sensitivity = c(0.7, 0.8, 0.9),
             control_specificity = NULL)
### calculate covariate-adjusted thresholds at controlled
### sensitivity level 0.7
caThreshold(userFormula,new_covariates,
             diseaseData = diseaseData,
             controlData = NULL,
             control_sensitivity = 0.7,
             control_specificity = NULL)
```

8 plot_caROC

plot_caROC

Plot covariate-adjusted ROC.

Description

Function to plot the ROC curve generated from caROC().

Usage

```
plot_caROC(myROC, ...)
```

Arguments

myROC ROC output from caROC() function.
... Arguments to tune generated plots.

Details

This function can be used to plot other ROC curve, as long as the input contains two components "sensitivity" and "specificity".

Value

Plot the ROC curve.

Author(s)

Ziyi Li <zli16@mdanderson.org>

plot_caROC_CB 9

Examples

```
n1 = n0 = 500
## generate data
Z_D \leftarrow rbinom(n1, size = 1, prob = 0.3)
Z_C \leftarrow rbinom(n0, size = 1, prob = 0.7)
Y_C_{Z0} \leftarrow rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_{Z1} \leftarrow rnorm(n0, 0.2, 1)
Y_D_Z1 < rnorm(n1, 0.9, 1)
M0 \leftarrow Y_C_{Z0} * (Z_C == 0) + Y_C_{Z1} * (Z_C == 1)
M1 \leftarrow Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData \leftarrow data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)</pre>
userFormula = "M~Z"
ROC1 <- caROC(diseaseData,controlData,userFormula,</pre>
                   mono_resp_method = "none")
ROC2 <- caROC(diseaseData,controlData,userFormula,</pre>
                   mono_resp_method = "ROC")
plot_caROC(ROC1)
plot_caROC(ROC2, col = "blue")
```

plot_caROC_CB

Plot confidence band of covariate-adjusted ROC.

Description

A function to plot the confidence band of covariate-adjusted ROC.

Usage

```
plot_caROC_CB(myROC_CB, add = TRUE, ...)
```

Arguments

myROC_CB	Output from caROC_CB() function.
add	Whether to add confidence band to existing plot (TRUE) or draw a new one (FALSE). Default is TRUE.
	Any parameters related with the plot.

Value

No values will be return. This function is for plotting only.

10 plot_sscaROC

Author(s)

Ziyi Li<ziyi.li@emory.edu>

Examples

```
library(caROC)
n1 = n0 = 100
## generate data
Z_D \leftarrow rbinom(n1, size = 1, prob = 0.3)
Z_C \leftarrow rbinom(n0, size = 1, prob = 0.7)
Y_C_{Z0} \leftarrow rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 \leftarrow Y_C_{Z0} * (Z_C == 0) + Y_C_{Z1} * (Z_C == 1)
M1 \leftarrow Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)</pre>
controlData <- data.frame(M = M0, Z = Z_C)
formula = "M~Z"
ROC_CB1 <- caROC_CB(diseaseData,controlData,formula,</pre>
                         mono_resp_method = "none",
                         CB_alpha = 0.95,
                         nbin = 100, verbose = FALSE)
### plot confidence band individually
plot_caROC_CB(ROC_CB1, add = FALSE, lty = 2, col = "blue")
### plot confidence band together with the ROC curve
ROC1 <- caROC(diseaseData,controlData,formula,</pre>
                  mono_resp_method = "none", verbose = FALSE)
plot_caROC(ROC1)
plot_caROC_CB(ROC_CB1, add = TRUE, lty = 2, col = "blue")
```

plot_sscaROC

Plot covariate-adjusted ROC for specific subpopulations.

Description

Function to plot the ROC curve generated from sscaROC().

Usage

```
plot_sscaROC(myROC, ...)
```

plot_sscaROC 11

Arguments

myROC ROC output from sscaROC() function.
... Arguments to tune generated plots.

Details

This function can be used to plot other ROC curve, as long as the input contains two components "sensitivity" and "specificity".

Value

Plot the ROC curve.

Author(s)

Ziyi Li <zli16@mdanderson.org>

```
n1 = n0 = 1000
## generate data
Z_D1 \leftarrow rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)</pre>
Z_C1 \leftarrow rbinom(n0, size = 1, prob = 0.7)
Z_C2 \leftarrow rnorm(n0, 0.8, 1)
Y_C_{Z0} \leftarrow rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 \leftarrow Y_C_{Z0} * (Z_{C1} == 0) + Y_C_{Z1} * (Z_{C1} == 1) + Z_{C2}
M1 \leftarrow Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)
userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
myROC <- sscaROC(diseaseData,</pre>
                   controlData,
                   userFormula,
                   target_covariates,
                   global_ROC_controlled_by = "sensitivity",
                  mono_resp_method = "none")
plot_scaROC(myROC, lwd = 1.6)
```

12 plot_sscaROC_CB

plot_sscaROC_CB Plot latic	confidence band of covariate-adjusted ROC in specific subpopuons.
----------------------------	---

Description

A function to plot the confidence band of covariate-adjusted ROC in specific subpopulations.

Usage

```
plot_sscaROC_CB(myROC_CB, add = TRUE, ...)
```

Arguments

myROC_CB	Output from sscaROC_CB() function.
add	Whether to add confidence band to existing plot (TRUE) or draw a new one (FALSE). Default is TRUE.
	Any parameters related with the plot.

Value

No values will be return. This function is for plotting only.

Author(s)

Ziyi Li<zli16@mdanderson.org>

```
n1 = n0 = 500
## generate data
Z_D1 \leftarrow rbinom(n1, size = 1, prob = 0.3)
Z_D2 \leftarrow rnorm(n1, 0.8, 1)
Z_C1 \leftarrow rbinom(n0, size = 1, prob = 0.7)
Z_C2 \leftarrow rnorm(n0, 0.8, 1)
Y_C_{Z0} \leftarrow rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 < rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 \leftarrow Y_C_{Z0} * (Z_{C1} == 0) + Y_C_{Z1} * (Z_{C1} == 1) + Z_{C2}
M1 \leftarrow Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)</pre>
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)</pre>
userFormula = "M~Z1+Z2"
target\_covariates = c(1, 0.7, 0.9)
```

sscaROC 13

```
# example that takes more than a minute to run
myROC <- sscaROC(diseaseData,</pre>
                controlData,
                userFormula,
                target_covariates,
                global_ROC_controlled_by = "sensitivity",
                mono_resp_method = "none")
# default nbootstrap is 100
# set nboostrap as 10 here to improve example speed
myROCband <- sscaROC_CB(diseaseData,</pre>
                        controlData,
                        userFormula,
                        mono_resp_method = "none",
                        target_covariates,
                        global_ROC_controlled_by = "sensitivity",
                        CB_alpha = 0.95,
                        logit_CB = FALSE,
                        nbootstrap = 10,
                        nbin = 100,
                        verbose = FALSE)
plot_scaROC(myROC, lwd = 1.6)
plot_sscaROC_CB(myROCband, col = "purple", lty = 2)
```

sscaR0C

Covariate-adjusted continuous biomarker evaluations for specific population.

Description

Provides evalution for continuous biomarkers at controlled sensitivity/specificity level, or ROC curve in specified sub-population.

Usage

```
sscaROC(diseaseData, controlData, userFormula, target_covariates,
control_sensitivity = NULL, control_specificity = NULL, mono_resp_method = "ROC",
whichSE = "sample", global_ROC_controlled_by = "sensitivity", nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE, verbose = TRUE)
```

Arguments

diseaseData

Data from patients including dependent (biomarker) and independent (covariates) variables.

14 sscaROC

Data from controls including dependent (biomarker) and independent (covaricontrolData

ates) variables.

userFormula A character string to represent the function for covariate adjustment. For exam-

ple, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula

 $= "Y \sim Z1 + Z2"$.

target_covariates

Covariates of the interested sub-population. It could be a vector, e.g. c(1, 0.5, 0.8), or a matrix, e.g. target_covariates = matrix(c(1, 0.7, 0.9, 1, 0.8, 0.8), 2, 3,

byrow = TRUE)

control_sensitivity

The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)).

control_specificity

The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a

numeric vector (e.g. c(0.7, 0.8, 0.9)).

mono_resp_method

The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply

ROC-based monotonicity respecting approach. Default value is "ROC".

whichSE The method used to compute standard error. It should be one from the following:

"sample", "bootstrap", meaning to calculate the standard error using sample-

based approach or bootstrap. Default is "sample".

global_ROC_controlled_by

Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensi-

tivity".

nbootstrap Number of boostrap iterations. Default is 100.

CI_alpha Percentage of confidence interval. Default is 0.95.

logit_CI Whether to apply logit-based confidence interval. Logit-transformed CI has

been identified to be more robust near border area.

verbose Whether to print out messages. Default value is true.

Value

If control_sensitivity or control_specificity is provided, compute covariate-adjusted specificity (sensitivity) at controlled sensitivity (specificity) level.

Covariate-adjusted sensitivity/specificity. **Estimate**

Estimated standard error. SE

CT Estimated confidence intervals.

If both control_sensitivity and control_specificity are null, compute covariate-adjusted ROC curve.

sensitivity Estimated sensitivity. Estimated specificity.

specificity

mono_adj Monotonicity adjustment method. sscaROC 15

Author(s)

Ziyi.li <zli16@mdanderson.org>

```
n1 = n0 = 1000
## generate data
Z_D1 \leftarrow rbinom(n1, size = 1, prob = 0.3)
Z_D2 \leftarrow rnorm(n1, 0.8, 1)
Z_C1 \leftarrow rbinom(n0, size = 1, prob = 0.7)
Z_C2 \leftarrow rnorm(n0, 0.8, 1)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 \leftarrow Y_C_{Z0} * (Z_{C1} == 0) + Y_C_{Z1} * (Z_{C1} == 1) + Z_{C2}
M1 \leftarrow Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)</pre>
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)</pre>
userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
res <- sscaROC(diseaseData,controlData,</pre>
                userFormula = userFormula,
                control_sensitivity = c(0.2,0.8, 0.9),
                target_covariates = target_covariates,
                control_specificity = NULL,
                mono_resp_method = "none",
                whichSE = "sample", nbootstrap = 100,
                CI_alpha = 0.95, logit_CI = TRUE)
## bootstrap-based variance estimation
res <- sscaROC(diseaseData,controlData,
                userFormula = userFormula,
                control_sensitivity = c(0.2,0.8, 0.9),
                target_covariates = target_covariates,
                control_specificity = NULL,
                mono_resp_method = "none",
                whichSE = "bootstrap",nbootstrap = 100,
                CI_alpha = 0.95, logit_CI = TRUE)
## monotonization by ROC-based
res <- sscaROC(diseaseData,controlData,</pre>
                userFormula = userFormula,
                control_sensitivity = c(0.2,0.8, 0.9),
                target_covariates = target_covariates,
                control_specificity = NULL,
                mono_resp_method = "ROC",
                whichSE = "bootstrap", nbootstrap = 100,
                CI_alpha = 0.95, logit_CI = TRUE)
## control specificity
res <- sscaROC(diseaseData,controlData,</pre>
                userFormula = userFormula,
```

16 sscaROC_CB

sscaROC_CB

Get confidence band for covariate-adjusted ROC curve for specified sub-population.

Description

Use this function to compute the confidence band for covariate-adjusted ROC curve, with or without monotonicity respecting methods for sub-population.

Usage

```
sscaROC_CB(diseaseData, controlData, userFormula, mono_resp_method = "none",
target_covariates, global_ROC_controlled_by = "sensitivity", CB_alpha = 0.95,
logit_CB = FALSE, nbootstrap = 100, nbin = 100, verbose = FALSE)
```

Arguments

diseaseData

Data from patients including dependent (biomarker) and independent (covariates) variables.

controlData

Data from controls including dependent (biomarker) and independent (covariates) variables.

userFormula

A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = " $Y \sim Z1 + Z2$ ".

mono_resp_method

The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC".

target_covariates

Covariates of the interested sub-population. It could be a vector, e.g. c(1, 0.5, 0.8), or a matrix, e.g. target_covariates = matrix(c(1, 0.7, 0.9, 1, 0.8, 0.8), 2, 3, byrow = TRUE)

sscaROC_CB 17

global_ROC_controlled_by

Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity".

tivity".

CB_alpha Percentage of confidence band. Default is 0.95.

logit_CB Whether to use logit-transformed (then transform back) confidence band. De-

fault is FALSE.

nbootstrap Number of boostrap iterations. Default is 100.

nbin Number of bins used for constructing confidence band. Default is 100.

verbose Whether to print out messages during bootstrap. Default value is FALSE.

Value

If global ROC is controlled by sensitivity, a list will be output including the following

Sensitivity Vector of sensitivities;

Specificity_upper

Upper confidence band for specificity estimations;

Specificity_lower

Lower confidence band for specificity estimations;

If global ROC is controlled by Specificity, a list will be output including the following

Specificity Vector of specificity;

Sensitivity_upper

Upper confidence band for sensitivity estimations;

Sensitivity_lower

Lower confidence band for sensitivity estimations;

global_ROC_controlled_by

"specificity".

Author(s)

Ziyi.li <zli16@mdanderson.org>

```
n1 = n0 = 500

## generate data

Z_D1 <- rbinom(n1, size = 1, prob = 0.3)

Z_D2 <- rnorm(n1, 0.8, 1)

Z_C1 <- rbinom(n0, size = 1, prob = 0.7)

Z_C2 <- rnorm(n0, 0.8, 1)

Y_C_Z0 <- rnorm(n0, 0.1, 1)

Y_D_Z0 <- rnorm(n1, 1.1, 1)
```

18 sscaROC_CB

```
Y_C_{Z1} \leftarrow rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 \leftarrow Y_C_{Z0} * (Z_{C1} == 0) + Y_C_{Z1} * (Z_{C1} == 1) + Z_{C2}
M1 \leftarrow Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)</pre>
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)</pre>
userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
# default nbootstrap is 100
# set nboostrap as 10 here to improve example speed
myROCband <- sscaROC_CB(diseaseData,</pre>
                         controlData,
                         userFormula,
                         mono_resp_method = "none",
                         target_covariates,
                         global_ROC_controlled_by = "sensitivity",
                         CB_alpha = 0.95,
                         logit_CB = FALSE,
                         nbootstrap = 10,
                         nbin = 100,
                         verbose = FALSE)
```

Index

```
* Confidence band
                                                    plot_sscaROC_CB, 12
    plot_caROC_CB, 9
                                                    sscaROC, 13
* Plot
                                                    {\tt sscaROC\_CB},\, {\color{red} 16}
    plot_caROC_CB, 9
* ROC
    caROC, 2
    caROC_CB, 4
    plot_caROC, 8
    plot_caROC_CB, 9
    plot_sscaROC, 10
    plot_sscaROC_CB, 12
    sscaROC, 13
    sscaROC_CB, 16
*\ confidence\ band
    caROC_CB, 4
    plot_sscaROC_CB, 12
    sscaROC_CB, 16
* plot
    plot_caROC, 8
    plot\_sscaROC, 10
* sensitivity
    caROC, 2
    caThreshold, 6
    sscaROC, 13
* specificity
    caROC, 2
    caThreshold, 6
    sscaROC, 13
* \ subpopulation \\
    sscaROC, 13
* threshold
    caThreshold, 6
caROC, 2
caROC_CB, 4
caThreshold, 6
plot_caROC, 8
plot_caROC_CB, 9
plot_sscaROC, 10
```