# CONTENTS

| (1) | SPECIFICATIONS                                  | 1  |
|-----|-------------------------------------------------|----|
| (2) | DRIVE SECTION BLOCK DIAGRAM                     | 2  |
| (3) | CABLES                                          | 4  |
|     | 1) CABLE CONNECTIONS FIGURE                     | 4  |
|     | 2) CABLES                                       | 5  |
| (4) | OUTLINE DRAWINGS                                | 8  |
|     | 1) TRANSISTOR AMPLIFIER                         | 8  |
|     | 2) POWER UNIT                                   | 9  |
| (5) | REPLACING AND HANDLING THE TRANSISTOR AMPLIFIER | 10 |
|     | 1) TRANSISTOR AMPLIFIER CONNECTIONS             | 10 |
|     | 2) CHECKPOINTS BEFORE SWITCHING ON POWER        | 12 |
|     | 3) CHECKPOINTS                                  | 13 |
|     | 4) DESCRIPTION OF CHECK PINS                    | 14 |
|     | 5) DESCRIPTION OF VRS                           | 20 |
|     | 6) DESCRIPTION OF PLUGS                         | 22 |
|     | 7) CONNECTOR AND CHECK PIN LAYOUT               | 25 |
|     | 8) VR LAYOUT                                    | 26 |
|     | 9) SETTING PLUG LAYOUT                          | 27 |
| (6) | INSPECTION AND ADJUSTMENT METHODS               | 28 |
|     | 1) HOW TO MEASURE THE VOLTAGES AND CURRENTS     | 28 |
|     | 2) TRANSISTOR AMPLIFIER INSPECTION              | 3. |
|     | 3) POWER UNIT INSPECTION                        | 36 |
|     | 4) POSITION LOOP OFFSET AND DROOP ADJUSTMENTS   | 39 |
|     | 5) RESOLVER FEEDBACK ADJUSTMENT                 | 41 |
|     | 6) MOUNTING THE DETECTOR                        | 42 |

#### INTRODUCTION

This manual outlines the maintenance procedures for using the MELDAS AC servo system. It details the methods involved in replacing the transistor amplifiers as well as the inspection locations and adjustments, and it should thus be read before operating the AC servo system. Refer to the checkpoints before switching on the power.

## (1) SPECIFICATIONS

| Item                                                            | TRS50                                                       | TRS75                                                             | TRS100                                                                             | TRS150                                                          |
|-----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Motor used                                                      | HA40/80                                                     | на100                                                             | на200                                                                              | на300                                                           |
| Continuous output                                               | 20/30Arms                                                   | 45Arms                                                            | 66Arms                                                                             | 99Arms                                                          |
| current Output torque (when used in combination with amplifier) | 170/280<br>kg.cm                                            | 458<br>kg.cm                                                      | 709<br>kg.cm                                                                       | 1036<br>kg.cm                                                   |
| Rated output voltage                                            | 155Vrms                                                     | 155Vrms                                                           | 155Vrms                                                                            | 155Vrms                                                         |
| Alarm circuits                                                  | unit alar (MOH), TG current d current p tection ( compensat | m (PUAL),<br>over-spected<br>etection<br>orotection<br>NSG), inst | motor over<br>eding (TGO'<br>(OVC), inst<br>(OCP), no-<br>tant power<br>nder-volta | V), <b>over-</b><br>tant <b>over-</b><br>-signal de-<br>failure |
| Power supply                                                    | 310V (DC) across P-N<br>(With AC 220V factory power supply) |                                                                   |                                                                                    |                                                                 |
| Control loop                                                    | Current loop (sine wave approximation, PWM)/Speed loop      |                                                                   |                                                                                    |                                                                 |
| Control characteristics                                         |                                                             | trol band:<br>trol range                                          | 500 rad<br>e: <b>1:10,0</b>                                                        |                                                                 |







.

a







## (4) OUTLINE DRAWINGS

## 1) TRANSISTOR AMPLIFIER

Note 1: Fin-cooling fans are not provided on the **TRS50** or TRS75.









Unit

**APU15,** 30, 70,

APU 15-M, 30-M, 70-M, 72-M

- (5) REPLACING AND HANDLING THE TRANSISTOR AMPLIFIER
- 1) TRANSISTOR AMPLIFIER CONNECTIONS:



(Terminal block **TE1** is connected with the drive motor. The unit proper can be mounted onto a rack with the two setscrews.)

- (a) Insert all triangular wave setting plugs S26.
- (b) The dither is not normally used. However, when it is used, plugs S11 and S13 should be inserted.
- (c) Connect the DUA-1 cable to ZP5 on the final axis.
- (d) Connect the TRA-1 cable from ZP5 onthehead axis to ZP4 of

the next axis.

- (e) Perform step (d) for each of the axes involved.
- (f) Keep the S9 setting plug inserted for the head axis only; remove the plugs for all other axes.
- (g) How to insert the TRA-1 and DUA-1 cables



Notes:

- (1) Setting plugs and the adjustable variable resistors (VRs) are located on the control card and they should be adjusted when the unit is replaced.
- (2) When check pins CHA, CHB, 1B-6B and 1E-6E are observed using a synchroscope, do not connect the other check pins and ground simultaneously.
- (3) Ensurethatproper connection is made to P and N of the transistor amplifier, and be sure to connect only after confirming that there is no faulty or improper wiring.
- (4) When the control loop is a closed loop, the ZP2 cable need not be connected.

# 2) CHECKPOINTS BEFORE SWITCHING ON POWER

|   | Item          | Checkpoint                                            |
|---|---------------|-------------------------------------------------------|
| 1 | P, N          | Check whether the power unit P/N, AC                  |
|   | connections   | transistor amplifier P/N and capacitor unit           |
|   |               | P/N connections have been made properly.              |
| 2 | Transformer   | The transformer tap selection (200/220V) is           |
|   | tap           | made to the factory power supply. (800VA              |
|   | selection     | transformer)                                          |
| 3 | Motor         | Check that the motor has been connected               |
|   | connections   | properly:                                             |
|   |               | Transistor U ——— Motor armature U amplifier pin V ——— |
|   |               | W — W W G1G2 G1G2                                     |
|   |               | (No polarity for <b>Gl, G2</b> )                      |
| 4 | Loop polarity | When the motor is rotating clockwise as               |
|   | check         | viewed from the load side, check that a (-)           |
|   |               | voltage is supplied to CH1.                           |
| 5 | Setting plug, | Check that the proper setting plug and VR             |
|   | VR settings   | settings have been made.                              |

### 3) CHECKPOINTS

- (1) Keep the detector mounted in the same position as when it was shipped; moving it will cause the control modes to undergo change.
- (2) Do not touch the base amplifier **at the** top of the AX04 card because of its high voltage.
- (3) Under no circumstances should the power unit be touched since the capacitor will be charged even if no power is actually flowing the unitwhenthelampis on.
- (4) The main circuitry area in the AC servo system is configured without transformers and so the machine system and control unit must be grounded.

## (5) Grounding

Since the OCP circuit is isolated from the other circuits, do not connect the OCP ground (CHB) and the ground AG/LG of the other circuits simultaneously with the synchroscope ground.

# 4) DESCRIPTION OF CHECK PINS

|   | Item    | Check<br>pin | Signal                  | Function                                                                   |
|---|---------|--------------|-------------------------|----------------------------------------------------------------------------|
| 1 | Control | CH7 S        | ervo ON S               | ignal for checking servo ON/OFF.                                           |
|   | signal  |              | signal                  | Servo OFF when low; ON when high.                                          |
|   |         |              | Power<br>unit con-      | Pin for checking whether +24V is being                                     |
|   |         |              | rol <b>sig-</b><br>nal  | supplied to power unit.                                                    |
|   |         | CH15         | 11011                   | 11                                                                         |
| 2 | Speed   | CHl          | TG <b>feed-</b><br>back | Pin for checking TG signal.                                                |
|   | loop    |              | signal                  | Output is 2V <b>+/-10%/1000</b> rpm (ARST, ATT)                            |
|   |         | СН3          | Speed<br>loop           | Indicates error between speed command                                      |
|   | error   |              | _                       | signal and TG.                                                             |
|   | CH4 **  |              |                         | Compensation circuit output                                                |
|   |         | CH 5         | Speed                   | Check pin for when speed command is                                        |
|   |         |              | command                 | issued with VR1 by toggle switch ST1.                                      |
| 3 | Current | СН6          | Current C               | urrent loop command signals serving                                        |
|   | loop    | СН32         | command                 | as torque commands.                                                        |
|   |         | CH17         | Current                 | Current command (sine wave) of current                                     |
|   |         |              | command                 | loop phase U. Waveform is as below:                                        |
|   |         |              | (phase                  | V = Ei sin m t                                                             |
|   |         |              | a)                      | Where Ei = CH6 voltage sin wt = sine wave of 2 cycles per motor revolution |
|   |         |              |                         | Note: Output is ØV when Ei or sinwt = 0                                    |

|   | Item        | heck pin | Signal                                 | Signal Function                                                                                                                      |  |  |  |  |
|---|-------------|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3 | Curren loop | CH18     | Current<br>command<br>(phase <b>W)</b> | Indicates same as above for phase W.                                                                                                 |  |  |  |  |
|   |             | СН19     | Current                                | Indicates phase <b>U</b> current feedback                                                                                            |  |  |  |  |
|   |             |          | feedbac                                | signal.                                                                                                                              |  |  |  |  |
|   |             |          | phase <b>U</b>                         | Note: Detection resistance differs ac-                                                                                               |  |  |  |  |
|   |             |          |                                        | cording to power unit. Output                                                                                                        |  |  |  |  |
|   |             |          |                                        | voltage with <b>lA</b> current differs                                                                                               |  |  |  |  |
|   |             |          |                                        | according to amplifier unit.                                                                                                         |  |  |  |  |
|   |             |          |                                        | Amplifier Detection Resistance Voltage V/Arms                                                                                        |  |  |  |  |
|   |             |          |                                        | TRS 50 RMA - 50 3 3 m Ω 0.187 V TRS 75 RMA - 75 20 m Ω 0.113 V TRS 100 RMA - 1 0 0 15 m Ω 0.085 V TRS 150 RMA - 1 5 0 10 m Ω 0.057 V |  |  |  |  |
|   |             | СН20     | Current                                | Indicates phase W current feedback                                                                                                   |  |  |  |  |
|   |             |          | feedbac                                | signal. Same Note applies as for CH19.                                                                                               |  |  |  |  |
|   |             |          | phase W                                | Phase is shifted 240 deg. from U.                                                                                                    |  |  |  |  |
|   |             |          |                                        | Phase W                                                                                                                              |  |  |  |  |

|   | Item    | Check<br>pin                                                                                                                                | Signal            | Function                                                                                                                                                      |
|---|---------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |         | CH21 Base ampli-fier control signal (phase U)  CH22 Base ampli-fier control signal (phase V)  CH23 Base ampli-fier control signal (phase V) |                   | Signal which controls U phase transistors (upper transistors)  Top/bottom transistor shorting prevention period  Transistor OFF period  Transistor OFF period |
|   |         |                                                                                                                                             |                   | Signal which controls V phase transis- tors.                                                                                                                  |
|   |         |                                                                                                                                             |                   | Signal which controls W phase transistors.                                                                                                                    |
| 4 | Positio | n CH2                                                                                                                                       | Error             | For checking speed command signal output                                                                                                                      |
|   | loop    | loop signal                                                                                                                                 |                   | from NC system.                                                                                                                                               |
| 5 | Power   |                                                                                                                                             |                   | Card AX04 analog ground                                                                                                                                       |
|   | supply  |                                                                                                                                             | ground<br>+12V    | Card AX04 +12V power supply                                                                                                                                   |
|   |         | -12                                                                                                                                         | -12v              | Card AX04 -12V power supply                                                                                                                                   |
|   |         | +5                                                                                                                                          | +5V               | Card AX04 +5V power supply                                                                                                                                    |
|   |         | LG                                                                                                                                          | Digital<br>ground | Card AX04 digital ground                                                                                                                                      |

| Item                    | Check<br>pin                      | Signal                                                                  | Function                                                                                                                                                        |
|-------------------------|-----------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dither                  | CH8<br>or<br>CH12                 | Dither<br>signal                                                        | For checking dither signal                                                                                                                                      |
| Trian-<br>gular<br>wave | CH9<br>CH10<br>CH13<br>CH14       | Trian-<br>gular<br>wave-<br>form                                        | +8 V                                                                                                                                                            |
| Resol-                  | СН16                              |                                                                         | For adjusting amplitude of resolver                                                                                                                             |
| ver                     |                                   | Eeedback                                                                | feedback. Adjusted with VRl0.                                                                                                                                   |
|                         |                                   |                                                                         | 0 12±1 V <sub>r-r</sub>                                                                                                                                         |
|                         | CH27                              | Resolver                                                                | Signal produced by converting resolver                                                                                                                          |
|                         |                                   | Eeedback                                                                | feedback signal into digital signal.                                                                                                                            |
|                         | СН28                              | Resolver                                                                | For checking resolver excitation                                                                                                                                |
|                         |                                   | tion                                                                    | (4.5kHz)                                                                                                                                                        |
| Clock                   | СН29                              | Clock<br>signal                                                         | For checking clock signal (18MHz)                                                                                                                               |
| ovc                     | СН30                              | OVC                                                                     | Input signal of OVC circuit. Circuit is                                                                                                                         |
|                         |                                   | CIICUIC                                                                 | activated when input voltage falls below                                                                                                                        |
|                         |                                   |                                                                         | set value of OVC circuit.                                                                                                                                       |
|                         |                                   |                                                                         |                                                                                                                                                                 |
|                         |                                   |                                                                         |                                                                                                                                                                 |
|                         |                                   |                                                                         | ·                                                                                                                                                               |
|                         | Dither Trian-gular wave Resol-ver | Dither CH8 or CH12  Trian-gular wave CH16 CH16  Resol- CH27  CH27  CH28 | Dither CH8 or Signal  Trian-gular Wave CH10 CH13 CH14  Resol- CH16 Resolver Eeedback  CH27 Resolver Eeedback  CH28 Resolver excitation  Clock CH29 Clock signal |

| It | em C | heck Signal<br>pin       | Function                                                                                                                                                                                                                                                                                      |
|----|------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | ovc  |                          | This signal is produced by rectifying the U, V, W phase current and by converting the current from AC to DC. It can be used to check the response of the current loop at CH30.  Note: CH30 current must be used with appropriate damping.  Insufficient Appropriate Excessive damping damping |
|    | СН34 | Load meter output signal | Used when measuring current at load meter output check pin. Refer to voltage and current measurement methods in (6)-1) for output voltage.                                                                                                                                                    |

|   | Item | Check<br>pin | Signal | Function                               |                |                                            |                 |                      |
|---|------|--------------|--------|----------------------------------------|----------------|--------------------------------------------|-----------------|----------------------|
| 1 | OCP  | СНА          | OCP    | Input signal of OCP circuit.           |                |                                            |                 |                      |
|   |      |              | input  | Detection resistance differs according |                |                                            |                 |                      |
|   |      |              |        | to amplifier and so output per lA also |                |                                            |                 |                      |
|   |      |              |        | varies.                                |                |                                            |                 |                      |
|   |      |              |        |                                        | Amplifier      | Detection<br>resistor                      | Resis-<br>tance | Output<br>voltage/lA |
|   |      |              |        |                                        | TRS50<br>TRS75 | RMA - 5 0<br>RMA - 7 5                     |                 | 0.031 V<br>0.020 V   |
|   |      |              |        |                                        | TRS 100        | $\mathbf{R}\mathbf{M}\mathbf{A} = 1  0  0$ | 1 2.5 m Ω       | 0.0125V              |
|   |      |              |        |                                        | TRS 150        | R M A - 1 5 0                              | 3 <b>mΩ</b>     | 0.008 V              |
|   |      | СНВ          | Ground | OCP                                    | circuit        | ground                                     |                 |                      |
|   |      |              |        | Care                                   | e is requ      | ired since                                 | this g          | round is             |
|   |      |              |        | electrically insulated from AG/LG.     |                |                                            |                 |                      |
|   |      |              |        | Therefore, connect the synchroscope    |                |                                            |                 |                      |
|   |      |              |        | grou                                   | ınd to AG      | , LG and C                                 | HB simu         | ultaneously.         |

# 5) DESCRIPTION OF VRS

|   | Item    |     | Check<br>pın | Signal    | Function                                   |
|---|---------|-----|--------------|-----------|--------------------------------------------|
| 1 | Speed   | VRl | CH5          | Speed     | VR for command when motor is driven        |
|   | loop    |     |              | command   | by speed command. Switch ST1 is            |
|   | adjust- |     |              | input     | switched from P to V for use.              |
|   | ment    | VR3 |              | Integral  | VR for adjusting integral compensa-        |
|   |         |     |              | compen-   | tion of speed loop. Response is            |
|   |         |     |              | tion      | increased when rotated clockwise.          |
|   |         | VR9 |              | For       | VR for servo rigidity which is in-         |
|   |         |     |              | servo     | creased when rotated clockwise.            |
|   |         |     |              | rigidity  | Servo system adjustments are usual-        |
|   |         |     |              |           | ly done by VR3 and <b>VR9.</b>             |
| 2 | Cur-    | VR4 | СН6          | Current   | VR for adjusting current limit of          |
|   | rent    |     |              | clamp     | current loop. Limit is increased           |
|   | loop    |     |              | setting   | when rotated clockwise.                    |
|   |         | VR5 |              | Current   | VR for adjusting current loop gain.        |
|   |         | VR6 |              | loop gain | Set VR5 and VR6 to same gradation.         |
|   |         |     |              | setting   | These <b>VRs</b> should not be adjusted by |
|   |         |     |              |           | customer.                                  |
| 3 | Posi-   | VR2 |              | Position  | VR for adjusting gain of position          |
|   | tion    |     |              | loop gain | loop.                                      |
|   | loop    |     |              | setting   |                                            |

|   | Item                   | VR              | Check     | Signal                            | Function                            |
|---|------------------------|-----------------|-----------|-----------------------------------|-------------------------------------|
|   |                        | VR7             |           | Offset                            | VR for adjusting position loop off- |
|   |                        |                 |           | adjust-                           | set. Position deviation is made     |
|   |                        |                 |           | ment                              | zero with this VR.                  |
| 4 | Resol-                 | VR              | СН16      | Amplitude                         | VR for adjusting amplitude of sine  |
|   | ver                    | 10              |           | adjust-                           | waves fed back from resolver.       |
|   | adjust-                |                 |           | ment                              | Adjust to 12 +/-lVp-p.              |
|   | ments                  | VR12            | СН16      | Amplitude                         | VR for adjusting amplitude fluctua- |
|   |                        |                 |           | fluctua-                          | tion of resolver feedback.          |
|   |                        |                 |           | tion ad-                          | Adjustment is made with motor       |
|   |                        |                 |           | justment                          | driven.                             |
|   |                        | VR16            | СН27      | Phase                             | For adjusting phase of resolver     |
|   |                        |                 | CH28      | adjust-                           | feedback with respect to resolver   |
|   |                        |                 | ment      |                                   | excitation.                         |
| 5 | OVC                    | VR15            |           |                                   | VR for setting operating point of   |
|   | ment                   | adjust-<br>ment |           |                                   | OVC circuit.                        |
| 6 | Dither                 | VR8             | СНб       | Dither                            | Dither is used to eliminate effects |
|   | adjust- CH31 amplitude |                 | amplitude | of sticking or slipping (dither = |                                     |
|   | ment                   |                 |           | adjust-                           | 250Hz sine waves).                  |
|   |                        |                 |           | ment                              | Normally VR is kept at MIN setting. |

Note:

 ${\tt VR11,\ VR13,\ VR14}$  and  ${\tt VR16}$  are adjusted by Mitsubishi and should not be touched by the customer.

# 6) DESCRIPTION OF PLUGS

|   | Item       | Plug       | Function                                                                                                                        |  |  |  |
|---|------------|------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1 | Initial    | s4         | Normally inserted for external emergency stop                                                                                   |  |  |  |
|   | settings   |            | uses. Removed when emergency stop is to be                                                                                      |  |  |  |
|   |            |            | operated externally.                                                                                                            |  |  |  |
|   |            | s9         | Set when supplying +24V to power unit.                                                                                          |  |  |  |
|   |            | S10        | When removed for error correction, errors can                                                                                   |  |  |  |
|   |            |            | be corrected by NC with servo OFF.                                                                                              |  |  |  |
|   |            | S24        | For alarm; high-level signal is output to NC                                                                                    |  |  |  |
|   |            |            | system when alarm state occurs.                                                                                                 |  |  |  |
|   |            | S25        | For alarm; low-level signal is output to NC                                                                                     |  |  |  |
|   |            |            | system when alarm state occurs.                                                                                                 |  |  |  |
|   |            | s1         | Inserted when resolver feedback polarity is                                                                                     |  |  |  |
|   |            |            | reverse of that of magnetic pole.                                                                                               |  |  |  |
|   |            | s2         | For changeover of load meter output level, usually used when plug is inserted.                                                  |  |  |  |
|   |            | <b>s</b> 3 | For changeover of load meter output level, and the output increases when the plug is inserted during set S2 is short-circuited. |  |  |  |
| 2 | Speed loop | S6         | Plug for short-circuiting capacitor in com-                                                                                     |  |  |  |
|   | operation  |            | pensation circuit                                                                                                               |  |  |  |
|   |            | S12        | Used when selecting non-linear gain. Gain is                                                                                    |  |  |  |
|   |            |            | reduced with plug inserted.                                                                                                     |  |  |  |
|   |            | s21        | Used when inserting non-linear circuit into speed loop compensation circuit for turret punch press.                             |  |  |  |
|   |            | s22        | Plug for inserting high resistance at either                                                                                    |  |  |  |
|   |            |            | end of capacitor in compensation circuit.                                                                                       |  |  |  |

|   | Item        | Plug         | Function                                                        |  |  |
|---|-------------|--------------|-----------------------------------------------------------------|--|--|
|   |             | S23          | Plug to add capacitor in compensation circuit                   |  |  |
| 3 | Position    | s14          | Insert plug when selecting 22 $k\Omega$ input re-               |  |  |
|   | loop        |              | sistor of operational amplifier.                                |  |  |
|   | ·           | s15          | Insert plug when selecting 100 $\mathbf{k} \; \Omega$ input re- |  |  |
|   |             |              | sistor of operational amplifier.                                |  |  |
|   |             | S16          | Insert plug when selecting 200 $k\Omega$ input re-              |  |  |
|   |             |              | sistor of operational amplifier.                                |  |  |
| 4 | Resolver    | S17          | For adjusting resolver (for magnetic pole                       |  |  |
|   |             |              | position) feedback amplitude.                                   |  |  |
|   |             | <b>S18</b>   | For canceling resolver feedback no-signal                       |  |  |
|   |             |              | detection.                                                      |  |  |
| 5 | Closed loop | s19          | Used when exciting resolver from amplifier                      |  |  |
|   |             | S20          | with closed-loop operation.                                     |  |  |
| 6 | Dither      | <b>S11</b> 1 | Jsed when dither signal is inserted into <b>con-</b>            |  |  |
|   | circuit     |              | trol circuit for dither circuit connection.                     |  |  |
|   |             | S13          | Used when oscillating dither circuit.                           |  |  |
| 7 | ovc         | S29          | Used for OVC timer selection: timer time is                     |  |  |
|   |             |              | reduced by inserting plug.                                      |  |  |
| 8 | Triangular  | S26          | Used for triangular wave connection; normally                   |  |  |
|   | wave        |              | inserted for use; removed when making tri-                      |  |  |
|   |             |              | angular waves common between cards.                             |  |  |

|    | Item     | Plug | Function                                      |  |  |  |
|----|----------|------|-----------------------------------------------|--|--|--|
| 9  | TGOV     | S30  | Used for switching TGOV level; 3000 rpm       |  |  |  |
|    |          |      | specification applies when plug is inserted.  |  |  |  |
| 10 | на40 ор- | S 5  | Used for HA40; torque command falls by in-    |  |  |  |
|    | eration  |      | serting plug.                                 |  |  |  |
|    |          | S27  | Used for selecting OCP operating level; plug  |  |  |  |
|    |          |      | is inserted when HA40 is used.                |  |  |  |
|    |          | S28  | Used for selecting OVC comparison level; plug |  |  |  |
|    |          |      | is inserted when HA40 is used.                |  |  |  |

#### 7) CONNECTOR AND CHECK PIN LAYOUT



#### 8) VR LAYOUT

Re-adjustment of these **VRs** is not necessary since they have already been set to the specifications of the machine builder when the unit was shipped from the manufacturing plant.



#### 9) SETTING PLUG LAYOUT

Re-adjustment of these plugs is not necessary since they have already been set to the specifications of the machine builder when the unit was shipped from the manufacturing plant.



#### (6) INSPECTION AND ADJUSTMENT METHODS

## 1) HOW TO MEASURE THE VOLTAGES AND CURRENTS

## 1. Motor voltage measurement

Since the voltage output from the transistor amplifier to the motor is PWM-controlled, it appears in the form of pulsive waveforms. The value of the voltage indicated may differ greatly depending on the type of measuring instrument used. To measure, first attach the filter shown below and then use a rectifier-type voltmeter.



(Waveform before filter is attached) (Waveform after filter has been at:tached)

- 2. Motor current measurement
- (i) Due to the reactance of the motor, the current is somewhat smoothed from pulsive waveforms into sine waves. Therefore connect a moving-iron type of ammeter for measurement.



(ii) Besides the method outlined in (i), the motor current can be measured by the voltage of CH34-AG on card AX04.

The output (DC output) is a result of 3-phase half-waverectifying the actual current. The table below shows the relationship between the actual current and voltage.

The output voltage differs according to the amplifier and the setting plug.

o When S2 is open

| Transistor amplifier | CH34 voltage V/Arms |  |  |
|----------------------|---------------------|--|--|
| TRS 50               | Ø.19ØV              |  |  |
| TRS75                | Ø.115V              |  |  |
| TRS100               | 0.085V              |  |  |
| TRS150               | 0.057V              |  |  |

## o When **S2** is shorted

| Transistor amplifier | Setting<br>plug s3 | CH34 voltage V/Arms |
|----------------------|--------------------|---------------------|
| TRS50                | 0                  | 0.060V              |
|                      |                    | 0.024V              |
| TRS75                |                    | 0.015V              |
| TRS100               |                    | 0.011V              |
| TRS150               |                    | 0.0072V             |

o denotes shorted.

- 2) TRANSISTOR AMPLIFIER INSPECTION
- a) Operating display lamps



| Lamp                                 | Function                      | LED                   |
|--------------------------------------|-------------------------------|-----------------------|
| RDY (RA1)                            | For checking NC READY status  | Lights with READY ON. |
| SVON (RA2)                           | For checking whether servo is | Lights with servo ON. |
|                                      | ON or OFF.                    |                       |
| DBL (RAB) For checking dynamic brake |                               | Lights when brake is  |
|                                      | operation.                    | OFF.                  |
| 24V (LED5)                           | Lights when start signal is   | Lights when power is  |
| _                                    | is issued from NC system.     | ON.                   |

b) Alarm displays

ALARM
O LED 1
LED2
LED3
LED4

|  | A<br>L<br>A<br>R | L<br>E<br>D | L<br>V<br>A<br>L | O · C P | O <b>V</b> C | T<br>G<br>O<br>V | N<br>S<br>G | P<br>U<br>A<br>L | F<br>O<br>H | M<br>O<br>H |
|--|------------------|-------------|------------------|---------|--------------|------------------|-------------|------------------|-------------|-------------|
|  | R<br>M           | 1           | 0                | 0       | 0            | 0                | 0           | 0                | 0           | 0           |
|  | C<br>O<br>D<br>E | 2           | 0                |         | 0            |                  | 0           |                  | 0           |             |
|  |                  | 3           | 0                | 0       |              |                  | 0           | 0                |             |             |
|  |                  | 4           | 0                | 0       | 0            | 0                |             |                  |             |             |

"O" LED lights

The alarms are detailed below:

1 Instantaneous power failure compensation/under-voltage compensation (LVAL)

The circuitry is protected when the supply voltage is instantaneously cut off or when the voltage drops to an abnormally low level.

2 Instantaneous overcurrent detection (OCP)

The transistors are protected when an overcurrent momentarily flows to the transistors in the circuitry.

**3** Overcurrent detection (OVC)

This protection circuit functions when an overcurrent has flowed to main circuitry for more than a fixed period of time.

4 Overspeed (TGOV)

The motor is protected when the motor speed exceeds its rating due to a malfunction.

5 No-signal detection (NSG)

This alarm functions when the signals are no longer fed back from the resolver to the transistor amplifier. (This is for detecting the magnetic pole position.)

6 Power unit alarm (PUAL)

Power unit alarm display.

Refer to the section on INSPECTION OF POWER UNIT for further details of the alarm.

7 Fin overheating (F.OH)

Protection is provided when an overcurrent flows to the circuitry and the fin mounted on transistors overheats.

8 Motor overload (M.OH)

Protection is provided when motor is overloaded and it overheats.

- c) REMEDIES FOR ALARMS
- 1) LVAL
- (1) Measure the AC 100V voltage of the amplifier terminal block using a multimeter or synchroscope. Rating: 85-110V.
- (2) When there is nothing unusual with the voltage, the trouble may be an instantaneous power failure. Check the AC 100V and AC 200V wiring connections.

#### 2) **OCP**

(1) Check using a multimeter whether the power transistors have been damaged. Disconnect the wires and measure across the collector and emitter of the transistors. When nothing is wrong, the resistance is at infinity.

- (2) Check whether the connections inside the amplifier have been made improperly and whether any screws are loose.
- 3) ovc
- (1) Check whether a higher current than the rating is flowing to the motor.
- (2) Check that the AX04 card settings have been made properly.
- 4) TGOV
- (1) Check that the AX04 card settings have been made properly.
- (2) Check that the TG voltage is **GV** while the motor has stopped.
- 5) NSG
- (1) Use a synchroscope to measure whether the resolver feedback voltage is 12V.
- (2) When the voltage is  $\mathbf{ØV}_{\bullet}$  check the cables and connectors.
- (3) When the voltage is lower, use VR10 to adjusttheCH16 voltage to 12Vp-p.
- 6) PUAL
- (1) Check out the power unit.
- (2) Refer to page 36 for the alarm displays
- 7) FOH
- (1) Check that none of the amplifier's power transistors have been damaged.

(2) Check if any units other than the power transistors are generating heat.

## 8) MOH

- (1) Check whether the motor is generating heat and measure the armature current. If the current is high, check whether the proper motor has been selected.
- (2) If the motor is not hot, disconnect Gland G2 on the amplifier's terminal block and use a multimeter to check whether power is still flowing or not. When everything is in order, the resistance is zero.

- 3) POWER UNIT INSPECTION
- Power unit operation status displays and alarm display lamps
   (TR115A control card)

|       | Name   | Lamp    | Description of display                                                              |  |  |
|-------|--------|---------|-------------------------------------------------------------------------------------|--|--|
| )p-   | Pilot  | PL11    | Lights when DC voltage of rectifier unit is                                         |  |  |
| erat- |        |         | approx. 80V; off when approx. 40-50V.                                               |  |  |
| ing   | lamp   |         | DO NOT touch since capacitor is still charged                                       |  |  |
| sta-  |        |         | while lamp is lighted even if no power is                                           |  |  |
| tus   |        |         | being supplied.                                                                     |  |  |
|       | PW. ON | LED1    | Lights when +24V is supplied by DUC-1 cable                                         |  |  |
|       |        | (green) | (ZP12 connector) from transistor amplifier.                                         |  |  |
| A1-   | THM    | LED2    | Lights when temperature of rectifier diode                                          |  |  |
| arm   |        | (red)   | exceeds prescribed temperature.                                                     |  |  |
| sta-  |        |         | Alarm for all axes.                                                                 |  |  |
| tus   | NFB    | LED3    | Lights when no-fuse breaker of rectifier                                            |  |  |
|       |        | (red)   | unit is tripped or when it goes OFF.                                                |  |  |
|       |        |         | Alarm for all axes.                                                                 |  |  |
|       | ALM    | LED4    | When multi-tap transformer or RU unit is installed, the RU unit will be an alarm or |  |  |
|       |        | (red)   | when transformer thermal is operated this will be an alarm. Alarm for all axes.     |  |  |
|       | FUSE   | LED5    | Lights when the AC100V fuse or the fuse in the                                      |  |  |
|       |        | (red)   | power unit output (P) breaks. Alarm for all axes.                                   |  |  |

# 2) Description of power unit check pins

| Check pin | Signal | Description of signal                        |  |  |  |
|-----------|--------|----------------------------------------------|--|--|--|
| CPl       | +24V   | DC +24V is output at same time as +24V is    |  |  |  |
|           |        | supplied from NC system to amplifier. At     |  |  |  |
|           |        | this time, LED1 (green) lights.              |  |  |  |
| CP2       | RG     | CP1-CP4 ground                               |  |  |  |
| CP3       | AL     | Low-level signal (normally open) when alarm  |  |  |  |
|           |        | occurs inside power unit. At this time, one  |  |  |  |
|           |        | of the lamps from LED2 to LED5 will light.   |  |  |  |
| CP4       | CR     | Signal which observes time constant of soft- |  |  |  |
|           |        | start circuit. Activates contactor sequence. |  |  |  |

## 3) Power unit card



Control card (TR-115)

# 4) POSITION LOOP OFFSET AND DROOP ADJUSTMENTS

|   | Item    | Adjustment                              | Remarks        |
|---|---------|-----------------------------------------|----------------|
|   | Offset  | 1 Display screen 5 with ALARM/DIAGNOSIS |                |
|   | adjust- | control at NC side. (With M0)           |                |
|   | aent    | 2 Check that NC READY signal appears.   |                |
|   |         | 3 Adjust VR7 on AC transistor ampli-    |                |
|   |         | fier and set POSITION DROOP to +/-2.    |                |
| 2 | Droop   | 1 Display screen 5 with ALARM/DIAGNOSIS |                |
|   | adjust- | control at NC side.                     |                |
|   | ment    | 2 Check that detector being used and    |                |
|   |         | name of detector on screen tally.       |                |
|   |         | 3 Check that TAU and LINEAR ZONE are    |                |
|   |         | correct.                                |                |
|   |         | 4 Calculate position droop from formula |                |
|   |         | below: Feedrate (mm/min) x 1 x 2 gain   |                |
|   |         | Feedrate is F1000 (approx. 100 rpm      |                |
|   |         | motor speed)                            |                |
|   |         | 5 Feed axis 1 so that position droop is | Remember that  |
|   |         | made (+) and use VR2 on AC transistor   | this differs   |
|   |         | amplifier to adjust to position droop   | from machine's |
|   |         | in (4).                                 | (+)(-) direc-  |
|   |         |                                         | tions.         |

| Item | Adjustment                         | Remarks       |
|------|------------------------------------|---------------|
|      | 6 Feed other axes so that position | droo <b>p</b> |
|      | is made (+) and adjust to within   | +/-1:8        |
|      | of droop adjusted in (5).          |               |

# 4) POSITION LOOP OFFSET AND DROOP ADJUSTMENTS

|   | Item    | Adjustment                              | Remarks        |
|---|---------|-----------------------------------------|----------------|
|   | Offset  | 1 Display screen 5 with ALARM/DIAGNOSIS |                |
|   | adjust- | control at NC side. (With M0)           |                |
|   | ment    | 2 Check that NC READY signal appears.   |                |
|   |         | 3 Adjust VR7 on AC transistor ampli-    |                |
|   |         | fier and set POSITION DROOP to +/-2.    |                |
| 2 | Droop   | 1 Display screen 5 with ALARM/DIAGNOSIS |                |
|   | adjust- | control at NC side.                     |                |
|   | nent    | 2 Check that detector being used and    |                |
|   |         | name of detector on screen tally.       |                |
|   |         | 3 Check that TAU and LINEAR ZONE are    |                |
|   |         | correct.                                |                |
|   |         | 4 Calculate position droop from formula |                |
|   |         | below: Feedrate (mm/min) x 1 x 2 gain   |                |
|   |         | Feedrate is F1000 (approx. 100 rpm      |                |
|   |         | motor speed)                            |                |
|   |         | 5 Feed axis 1 so that position droop is | Remember that  |
|   |         | made (+) and use VR2 on AC transistor   | this differs   |
|   |         | amplifier to adjust to position droop   | from machine's |
|   |         | in <b>(4).</b>                          | (+)(-) direc-  |
|   |         |                                         | tions.         |

| Item | Adjustment                                  | Remarks |
|------|---------------------------------------------|---------|
|      | 6 Feed other axes so that position droop    |         |
|      | is made $(+)$ and adjust to within $+/-1$ % |         |
|      | of droop adjusted in (5).                   |         |

# 5) RESOLVER FEEDBACK ADJUSTMENT

| Item     | Adjustment                                  | Remarks            |
|----------|---------------------------------------------|--------------------|
| Feed-    | 1 Measure check pin <b>TPl</b> on GX96 card | 0 07               |
| back     | using synchroscope. (M-L0, M0)              | /\ /\ <sub>P</sub> |
| voltage  | 2 Voltage should range from <b>8Vp-p</b> to |                    |
| check    | 13Vp-p. Short-circuit S5 if higher          |                    |
|          | than 13Vp-p.                                |                    |
| Ampli-   | 1 Obtain highest and lowest points of       |                    |
| tude     | waveform at check pin TPl, set volt-        |                    |
| fluctua- | age range to 0.2V/DIV and set time          |                    |
| tion     | base to 0.1-0.2 sec/DIV.                    | in.                |
| ađjust-  | 2 Drive machine at 3-4 m/min and ad-        | v min              |
| ment     | just <b>VR1</b> and VR2 so that amplitude   | 4 @ mV             |
|          | fluctuation is made less than 40            |                    |
|          | mVp-p.                                      | <del></del>        |
|          | (GX96 card)                                 |                    |
|          | 3 To set voltage range to 0.2V/DIV, use     |                    |
|          | synchroscope ADD and shift with both        |                    |
|          | channels 1 and 2.                           |                    |

## 6) MOUNTING THE DETECTOR

The motor's magnetic pole position (magnet position) must be detected in the AC servo system. Therefore, the detector is mounted differently from that in a DC servo system. The method is shown below.

## 1) Detector mounting surface

Fig. 1 Motor detector mounting surface



# Detector (With bellows)

Fig. 2 Detector (with bellows)





Note When the sensor is Installed in directions  ${\bf B}$ , C or D, the sensor connector moves accordingly to positions B, C or D as shown in the above diagram.

4) Installation method (1) Install the O-ring (S75) to the sensor flange. (2) Install an M4 hexagonal bolt with hole to the coupling. Align the motor shaft key with key groove in the sensor bellows (3) (4)Align the sensor positioning mark with the motor mark off line. (5) Install the sensor to the motor (using M5x0.8 screws). Tighten the screw on the key groove to secure the key so that it cannot (6) move. (7) Insert the sensor rubber plug

Note: The bellows should not be detached from the detector since the positions of these two parts **stand in** a precise relationship.