50.007 Machine Learning

Lu, Wei

Faith is a fine invention

Noun Verb Determiner Adjective Noun

N V D A N

Faith is a fine invention

F

$$p(x_1,x_2,\ldots,x_{n-1},x_n,y_0,y_1,y_2,\ldots,y_{n-1},y_n,y_{n+1})$$

$$\prod_{j=0}^n p(y_{j+1}|y_j) imes \prod_{j=1}^n p(x_j|y_j)$$

$$p(x_1,x_2,\ldots,x_{n-1},x_n,y_0,y_1,y_2,\ldots,y_{n-1},y_n,y_{n+1})$$

Transition probabilities

Emission probabilities

An HMM is defined by a tuple $\langle \mathcal{T}, \mathcal{O}, \theta \rangle$, where

 ${\mathcal T}$

a set of states including START and STOP states.

 \mathcal{O}

a set of observation symbols

 θ

Transition and emission parameters $a_{u,v}$ and $b_u(o)$.

Hidden Markov Model An Example

$$\mathcal{T} = \{ exttt{START}, A, B, exttt{STOP}\}$$
 $\mathcal{O} = \{ ext{``the''}, ext{``dog''}\}$

uackslash v	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

$$a_{u,v}$$

$$b_u(o)$$

Hidden Markov Model An Example $b_u(o)$

$u \setminus o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

$$(\mathbf{x}, \mathbf{y}) = \text{the}/A, \text{dog}/B, \text{the}/A$$

What is $p(\mathbf{x}, \mathbf{y})$?

$$a_{u,v} = (\mathbf{x},\mathbf{y}) = ext{the}/A, ext{dog}/B, ext{the}/A = b_u(o)$$

$\int u ackslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

One path corresponds to one label sequence.

$$a_{u,v} = (\mathbf{x},\mathbf{y}) = ext{the}/A, ext{dog}/B, ext{the}/A = b_u(o)$$

$\int u ackslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

 $a_{\mathtt{START},A}$

$$a_{u,v} = (\mathbf{x},\mathbf{y}) = ext{the}/A, ext{dog}/B, ext{the}/A = b_u(o)$$

$u \backslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

$$a_{\mathtt{START},A} \times b_A(\text{``The''})$$

$$a_{u,v} = (\mathbf{x},\mathbf{y}) = ext{the}/A, ext{dog}/B, ext{the}/A = b_u(o)$$

$\int u ackslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
В	0.1	0.9

$$a_{\mathtt{START},A} \times b_A (\text{``The''}) \times a_{A,B}$$

$$a_{u,v} = (\mathbf{x},\mathbf{y}) = ext{the}/A, ext{dog}/B, ext{the}/A = b_u(o)$$

$\int u ackslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

$$a_{\mathtt{START},A} \times b_A(\text{``The''}) \times a_{A,B} \times b_B(\text{``dog''})$$

$$a_{u,v} = (\mathbf{x},\mathbf{y}) = ext{the}/A, ext{dog}/B, ext{the}/A = b_u(o)$$

$\int u ackslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

$$a_{\mathtt{START},A} \times b_A (\mathtt{``The"}) \times a_{A,B} \times b_B (\mathtt{``dog"}) \times a_{B,A}$$

$$a_{u,v} = (\mathbf{x},\mathbf{y}) = ext{the}/A, ext{dog}/B, ext{the}/A = b_u(o)$$

$\int u ackslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

$$a_{\mathtt{START},A} \times b_A(\text{``The''}) \times a_{A,B} \times b_B(\text{``dog''}) \times a_{B,A} \times b_A(\text{``the''})$$

$$a_{u,v} = (\mathbf{x},\mathbf{y}) = ext{the}/A, ext{dog}/B, ext{the}/A = b_u(o)$$

$\int u ackslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
В	0.1	0.9

$$a_{\mathtt{START},A} \times b_A (\text{``The"}) \times a_{A,B} \times b_B (\text{``dog"}) \times a_{B,A} \times b_A (\text{``the"}) \times a_{A,\mathtt{STOP}}$$

Now that we know what are the model parameters, how do we estimate them? In other words, how to do learning?

 $\overline{\text{Number of times we see a transition from } u \text{ to } v$

$$a_{u,v} = rac{ ext{count}(u,v)}{ ext{count}(u)} \qquad b_u(o) = rac{ ext{count}(u
ightarrow o)}{ ext{count}(u)}$$

Number of times we see the state u in the training set

Number of times we see observation o generated from u

$$a_{u,v} = rac{\mathrm{count}(u,v)}{\mathrm{count}(u)} \qquad b_u(o) = rac{rac{\mathrm{count}(u
ightarrow o)}{\mathrm{count}(u)}$$

Number of times we see the state u in the training set

 $a_{u,v}$

 $b_u(o)$

$u \setminus v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

$u \backslash o$	"the"	"dog"
A	0.9	0.1
B	0.1	0.9

 $\mathbf{x} =$ the dog the

Which label sequence \mathbf{y} is the most probable given the word sequence \mathbf{x} ?

 $a_{{\underline{u}},{\underline{v}}}$

 $b_u(o)$

$u \backslash v$	A	B	STOP
START	1.0	0.0	0.0
A	0.5	0.5	0.0
B	0.0	0.8	0.2

u ackslash o	"the"	"dog"
A	0.9	0.1
В	0.4	

Which label sequence \mathbf{y} is the most probable given the word sequence \mathbf{x}^{3}