

COMP SCI 1400 AI Technologies - Deep Learning Basics

Dr Kamal Mammadov

1

What can we do with AI techniques?

Deep Learning

Perceptron Learning Algorithm

Perceptron

Perceptron is a type of linear classifier

Perceptron

$$scores = \sum_{i}^{N} w_i x_i + b \hspace{1cm} f(\mathbf{x}) = egin{cases} 1 & ext{if } \mathbf{w} \cdot \mathbf{x} + b > 0, \ 0 & ext{otherwise} \end{cases}$$

Perceptron Learning Algorithm --- example

Perceptron Learning Algorithm --- optimization

Step 0: randomly initialize weights

Step 1: calculate the actual output

$$\hat{y}_{j}^{t} = f(w_{0}^{t}x_{j,0} + w_{1}^{t}x_{j,1} + \dots + w_{n}^{t}x_{j,n} + b)$$

Step 2: update the weights

$$w_i^{t+1} = w_i^t + r(y_j - \hat{y}_j^t)x_{j,i}$$

Perceptron Learning Algorithm

Programming Example

Input data

```
In [1]: import numpy as np
   import pandas as pd

data = pd.read_csv('./data1.csv', header=None)
# input samples, dim (100, 2)
X = data.iloc[:,:2].values
# output samples, dim (100, )
y = data.iloc[:,2].values
```

Data visualization

```
In [3]: import matplotlib.pyplot as plt

plt.scatter(X[:50, 0], X[:50, 1], color='blue', marker='o', label='Positive')
plt.scatter(X[50:, 0], X[50:, 1], color='red', marker='x', label='Negative')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend(loc = 'upper left')
plt.title('Original Data')
plt.show()
```


PLA algorithm

Feature normalization

First, normalize the two features separately

$$X = \frac{X - \mu}{\sigma}$$

Among them, μ is the feature mean, and σ is the feature standard deviation.

```
In [4]: # Mean
    u = np.mean(X, axis=0)
    # standard deviation
    v = np.std(X, axis=0)

X = (X - u) / v

# draw
    plt.scatter(X[:50, 0], X[:50, 1], color='blue', marker='o', label='Positive')
    plt.scatter(X[50:, 0], X[50:, 1], color='red', marker='x', label='Negative')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.legend(loc = 'upper left')
    plt.title('Normalization data')
    plt.show()
```



```
In [5]: # X + offset
X = np.hstack((np.ones((X.shape[0],1)), X))
# weight init
w = np.random.randn(3,1)
```

Display initial line position:

```
In [6]: # First coordinate (x1, y1)
    x1 = -2
    y1 = -1 / w[2] * (w[0] * 1 + w[1] * x1)
    # Second coordinate (x2, y2)
    x2 = 2
    y2 = -1 / w[2] * (w[0] * 1 + w[1] * x2)
# draw
    plt.scatter(X[:50, 1], X[:50, 2], color='blue', marker='o', label='Positive')
    plt.scatter(X[50:, 1], X[50:, 2], color='red', marker='x', label='Negative')
    plt.plot([x1,x2], [y1,y2],'r')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.legend(loc = 'upper left')
    plt.show()
```


Calculate scores, update weights

```
In [7]: s = np.dot(X, w)
    y_pred = np.ones_like(y) # predict the output
    loc_n = np.where(s < 0)[0]
    y_pred[loc_n] = -1</pre>
```

Next, select one of the misclassified samples and use PLA to update the weight coefficient w.

```
In [8]: # The first error point
t = np.where(y != y_pred)[0][0]
# update weights w
w += y[t] * X[t, :].reshape((3,1))
```

Iterative update training

Updating the weight w is an iterative process. As long as there are misclassified samples, it will continue to update until all samples are classified correctly. (Note that the premise is that the positive and negative samples are completely separable)

```
In [9]: for i in range(100):
    s = np.dot(X, w)
    y_pred = np.ones_like(y)
    loc_n = np.where(s < 0)[0]
    y_pred[loc_n] = -1
    num_fault = len(np.where(y != y_pred)[0])
    print('Update time %2d, error points: %2d' % (i, num_fault))
    if num_fault == 0:
        break
    else:
        t = np.where(y != y_pred)[0][0]
        w += y[t] * X[t, :].reshape((3,1))</pre>
```

Update time 0, error points: 11 Update time 1, error points: 0

Draw result

```
In [10]: # First coordinate (x1, y1)
    x1 = -2
    y1 = -1 / w[2] * (w[0] * 1 + w[1] * x1)
    # Second coordinate (x2, y2)
    x2 = 2
    y2 = -1 / w[2] * (w[0] * 1 + w[1] * x2)
    # draw
    plt.scatter(X[:50, 1], X[:50, 2], color='blue', marker='o', label='Positive')
    plt.scatter(X[50:, 1], X[50:, 2], color='red', marker='x', label='Negative')
    plt.plot([x1,x2], [y1,y2],'r')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.legend(loc = 'upper left')
    plt.show()
```


Perceptron – Multi-layer

Perceptron – Multi-layer

The perceptron algorithm was invented in 1958 at the <u>Cornell Aeronautical Laboratory</u> by <u>Frank Rosenblatt</u>

The perceptron was intended to be a machine, rather than a program, and while its first implementation was in software for the IBM 704.

This machine was designed for **image recognition**: it had an array of 400 photocells, randomly connected to the "neurons".

kipedia.org/wiki/Perceptron

Multi-layer Perceptron (MLP) – Linear/Non-Linear

MLPs are more expressive than Perceptrons since they can learn highly non-linear class boundaries.

MLP vs Deep Neural Network

MLP is the most basic deep neural network

Convolutional neural network

Building Blocks of Deep CNNs

LeNet-5 1998, Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner

- Convolution layers
- Subsampling layers max pooling, average pooling...
- Fully connected layers
- Activations mostly Rectified Linear Units (ReLu) these days.

• CNN – image representation

Color image

0~255

• CNN - convolution

AlGeekProgrammer.com © 2019

Single channel, one kernel

• CNN – output size

AlGeekProgrammer.com © 2019

width of output: floor((width-kernel_size)/stride) + 1

height of output: floor((height-kernel_size)/stride) + 1

• CNN – color image

CNN - convolution

CNN - pooling

max pooling with 2x2 filters and stride 2 Pooled feature map

6 8

4 7

Max(3, 4, 1, 2) = 4

Why do we learn classification, regression or clustering?

Perceptron

Multi-layer Perceptron (MLP) – Linear/Non-Linear

MLPs are more expressive than Perceptrons since they can learn highly non-linear class boundaries.

Building Blocks of Deep CNNs

LeNet-5 1998, Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner

- Convolution layers
- Subsampling layers max pooling, average pooling...
- Fully connected layers
- Activations mostly Rectified Linear Units (ReLu) these days.

Activation

Activation Function: Sigmoid

Non-linearity based on sigmoid.

$$g_{sig}(in) = \frac{1}{1 + e^{-in}}$$

$$g'_{sig}(in) = \frac{1}{(1 + e^{-in})} \left(1 - \frac{1}{(1 + e^{-in})}\right)$$

$$= g_{sig}(in)(1 - g_{sig}(in))$$

- Advantages
 - Smooth gradient, preventing "jumps" in output values.
 - Output values bound between 0 and 1, normalizing the output of each neuron.
- Disadvantages
 - Vanishing
 - Computationally expensive

Rectified Linear Units (ReLU)

- Maximum gradient magnitude is 1
- Still non-linear
- Gradient shape?
- Advantages
 - Computationally efficient—allows the network to converge very quickly
 - Non-linear—although it looks like a linear function, ReLU has a derivative function and allows for backpropagation
- Disadvantages
 - The Dying ReLU problem—when inputs approach zero, or are negative, the gradient of the function becomes zero, the network cannot perform backpropagation and cannot learn.

$$f(x) = \max(0, x).$$

$$f'(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$$

Rectified Linear Units (ReLU)

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Put all these layers together

Coding

Implement LeNet-5 in PyTorch

LeNet code

Install PyTorch running environment

https://pytorch.org/get-started/previous-versions/

v1.11.0 You can choose other versions.

Conda

Use the command according to your computer

OSX

```
# conda
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 -c pytorch
```

Linux and Windows

```
# CUDA 10.2
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=10.2 -c pytorch
# CUDA 11.3
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
# CPU Only
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cpuonly -c pytorch
```

LeNet code

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html

C_5 feature maps F_6 feature maps layer 16 @ 10 x 10 16 @ 5 x 5 layer C_1 Output 120 84 LeNet co feature maps feature maps 10 6 @ 28 x 28 6@14x14 Input 32 x 32 Full Gaussian Convolutions Full connection connection Subsampling Subsampling Convolutions connection

```
PYT0RCH
             MXNET
                        JAX
                                 TENSORFLOW
def init_cnn(module):
                      #@save
    """Initialize weights for CNNs."""
    if type(module) == nn.Linear or type(module) == nn.Conv2d:
        nn.init.xavier_uniform_(module.weight)
class LeNet(d2l.Classifier):
                              #@save
    """The LeNet-5 model."""
    def __init__(self, lr=0.1, num_classes=10):
        super(). init ()
        self.save hyperparameters()
        self.net = nn.Sequential(
            nn.LazyConv2d(6, kernel size=5, padding=2), nn.Sigmoid(),
            nn.AvgPool2d(kernel size=2, stride=2),
            nn.LazyConv2d(16, kernel size=5), nn.Sigmoid(),
            nn.AvgPool2d(kernel_size=2, stride=2),
            nn.Flatten(),
            nn.LazyLinear(120), nn.Sigmoid(),
            nn.LazyLinear(84), nn.Sigmoid(),
            nn.LazyLinear(num_classes))
```

LeNet code

```
PYTORCH MXNET JAX TENSORFLOW

@d2l.add_to_class(d2l.Classifier) #@save
def layer_summary(self, X_shape):
    X = torch.randn(*X_shape)
    for layer in self.net:
        X = layer(X)
        print(layer.__class__.__name__, 'output shape:\t', X.shape)

model = LeNet()
model.layer_summary((1, 1, 28, 28))
```

```
Conv2d output shape:
                             torch.Size([1, 6, 28, 28])
                             torch.Size([1, 6, 28, 28])
Sigmoid output shape:
AvgPool2d output shape:
                             torch.Size([1, 6, 14, 14])
                             torch.Size([1, 16, 10, 10])
Conv2d output shape:
Sigmoid output shape:
                             torch.Size([1, 16, 10, 10])
AvgPool2d output shape:
                             torch.Size([1, 16, 5, 5])
Flatten output shape:
                             torch.Size([1, 400])
Linear output shape:
                             torch.Size([1, 120])
Sigmoid output shape:
                             torch.Size([1, 120])
Linear output shape:
                             torch.Size([1, 84])
Sigmoid output shape:
                             torch.Size([1, 84])
Linear output shape:
                             torch.Size([1, 10])
```

LeNet code

```
PYTORCH
              MXNET
                         JAX
                                  TENSORFLOW
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128)
model = LeNet(lr=0.1)
model.apply_init([next(iter(data.get_dataloader(True)))[0]], init_cnn)
trainer.fit(model, data)
                                                                train_loss
                                     2.0
                                                                val loss
                                                               val acc
                                     1.5 -
                                     1.0 -
                                     0.5 -
                                     0.0 -
                                               2
                                                                  8
                                                                        10
                                                            6
                                                      epoch
```

Deep learning

Bias & Variance

Bias & Variance

High bias: consistently make erroneous predictions High Variance: high residual to the mean

Underfit & Good fit & Overfit

Bias & Variance

Train/Test Performance

Regularization

Regularization

Optimizing a loss function to learn parameters

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$
 Fitting to data Choose the simplest model

Regularization

- Commonly-used regularizers
 - L2-regularization (Lasso): $R_{L_2}(w) \triangleq ||W||_2^2$
 - L1-regularization (Ridge): $R_{L_1}(w) \triangleq \sum_{k=1}^{Q} ||W||_1$
 - Drop-out: it randomly selects some nodes and removes them along with all of their incoming and outgoing connections as shown below.
 - Early stopping: keep one part of the training set as the validation set. When we see that the performance on the validation set is getting worse, we immediately stop the training on the model. This is known as early stopping.

Handle Missing Value

Handle Missing Values

- When models cannot handle missing values:
 - Too many missing values and the dataset is big, then delete the instance/feature
 - Categorical data: transform NaN as new category; Replace by most frequent value; Replace using an algorithm like KNN using the neighbours; Predict the observation using a multiclass predictor, etc.
 - Continuous data: NaN as 0; mean/medium/mode; replace with value before or after; interpolation; regression.

Source: Jaroslav Bendl, 2016

Reference

Hungyi Lee Tutorial

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html