Lógica

06 - Dedução Natural

Marcos Roberto Ribeiro

Introdução

- A dedução natural utiliza certas regras para inferir novas fórmulas a partir de um conjunto de fórmulas (chamadas de *premissas*)
- É preciso usar um processo criativo para determinar quais regras e em qual ordem aplicá-las

Regras para a Conjunção

• A regra \wedge_i permite concluir $\phi \wedge \psi$, dado que ϕ e ψ já foram concluídas

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge_i$$

- para cada conectivo, existem regras de inclusão e eliminação
- As regras de eliminação do ∧ são:

$$\frac{\phi \wedge \psi}{\phi} \wedge_{e_1}$$

$$\frac{\phi \wedge \psi}{\psi} \wedge_{\mathsf{e}_2}$$

Exemplo: demonstração de $p \land q, r \vdash q \land r$

- 1. $p \land q$ premissa 2. r premissa

Regras para a Conjunção

• A regra \wedge_i permite concluir $\phi \wedge \psi$, dado que ϕ e ψ já foram concluídas

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge_i$$

- para cada conectivo, existem regras de inclusão e eliminação
- As regras de eliminação do ∧ são:

$$\frac{\phi \wedge \psi}{\phi} \wedge_{e_1}$$

$$\frac{\phi \wedge \psi}{\psi} \wedge_{\mathsf{e}_2}$$

Exemplo: demonstração de $p \land q, r \vdash q \land r$

- 1. $p \wedge q$ premissa 2. r premissa 3. q \wedge_e , 1 4. $q \wedge r$ \wedge_i , 2, 3

Regras para a Conjunção

• A regra \wedge_i permite concluir $\phi \wedge \psi$, dado que ϕ e ψ já foram concluídas

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge_i$$

- para cada conectivo, existem regras de inclusão e eliminação
- As regras de eliminação do ∧ são:

$$\frac{\phi \wedge \psi}{\phi} \wedge_{e_1}$$

$$\frac{\phi \wedge \psi}{\psi} \wedge_{\mathsf{e}_2}$$

Exemplo: demonstração de $p \land q, r \vdash q \land r$

- 1. $p \wedge q$ premissa
- 2. r premissa 3. q \wedge_e , 1 4. $q \wedge r$ \wedge_i , 2, 3

- 1. $(p \land q) \land r$ premissa
- 2. $s \wedge t$ premissa

- 1. $(p \land q) \land r$ premissa
- 2. $s \wedge t$ premissa
- 3. $p \wedge q$ \wedge_e , 1

- 1. $(p \land q) \land r$ premissa
- 2. $s \wedge t$ premissa
- 3. $p \wedge q \wedge_{e}$, 1
- 4. q ∧_e, 3

- 1. $(p \land q) \land r$ premissa
- 2. $s \wedge t$ premissa
- 3. $p \wedge q$ \wedge_e , 1
- 4. $q \wedge_{e}$, 3
- 5. $s \wedge_{e}$, 2

- 1. $(p \land q) \land r$ premissa
- 2. $s \wedge t$ premissa
- 3. $p \wedge q \wedge_{e}$, 1
- 4. $q \wedge_e$, 3
- 5. $s \wedge_e$, 2
- 6. $q \wedge s \wedge_i$, 4, 5

$$\frac{\neg \neg \phi}{\phi} \neg \neg_e \qquad \qquad \frac{\phi}{\neg \neg \phi} \neg \neg$$

1.	p	premissa
2.	$\neg\neg(q\wedge r)$	premissa

$$\frac{\neg \neg \phi}{\phi} \neg \neg_e$$

$$\frac{\phi}{\neg \neg \phi} \neg \neg_i$$

Exemplo: $p, \neg \neg (q \land r) \vdash \neg p \land r$

2. $\neg\neg(q \land r)$ premissa

3.
$$\neg \neg p$$
 $\neg \neg_i$, 1

$$\frac{\neg \neg \phi}{\phi} \neg \neg_e$$

$$\frac{\phi}{\neg \neg \phi} \neg \neg_i$$

2.
$$\neg\neg(q \land r)$$
 premissa

3.
$$\neg \neg p$$
 $\neg \neg_i$, 1

4.
$$q \wedge r$$
 $\neg \neg_e$, 2

.
$$r \wedge_e$$
, 4

5.
$$\neg \neg p \wedge r \wedge_i$$
, 3, 5

$$\frac{\neg \neg \phi}{\phi} \neg \neg_e$$

$$\frac{\phi}{\neg \neg \phi} \neg \neg_i$$

2.
$$\neg\neg(q \land r)$$
 premissa

3.
$$\neg \neg p$$
 $\neg \neg_i$, 1

4.
$$q \wedge r$$
 $\neg \neg_e$, 2

5.
$$r \wedge_{e}$$
, 4

$$\neg \neg p \wedge r \wedge_i, 3, 5$$

$$\frac{\neg \neg \phi}{\phi} \neg \neg_e$$

$$\frac{\phi}{\neg\neg\phi}\neg\neg_i$$

- 2. $\neg\neg(q \land r)$ premissa
- 3. $\neg \neg p$ $\neg \neg_i$, 1
- 4. $q \wedge r$ $\neg \neg_e$, 2
- 5. r ∧_e, 4
- 6. $\neg \neg p \wedge r \wedge_i$, 3, 5

$$\frac{\phi \quad \phi \to \psi}{\psi} \to_{e}$$

Exemplo:
$$p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$$

1.
$$p \rightarrow (q \rightarrow r)$$
 premissa

2.
$$p \rightarrow q$$
 premissa

4.
$$q \rightarrow r$$
 \rightarrow_e , 1, 3

6.
$$r \rightarrow_{e}$$
, 4, 5

$$\frac{\phi \quad \phi \to \psi}{\psi} \to_{\mathsf{e}}$$

Exemplo:
$$p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$$

1.
$$p \rightarrow (q \rightarrow r)$$
 premissa

2.
$$p \rightarrow q$$
 premissa

4.
$$q \rightarrow r$$
 \rightarrow_e , 1, 3

6.
$$r o_e$$
, 4, 5

$$\frac{\phi \quad \phi \to \psi}{\psi} \to_{\mathsf{e}}$$

Exemplo:
$$p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$$

1.
$$p o (q o r)$$
 premissa

2.
$$p \rightarrow q$$
 premissa

4.
$$q \rightarrow r \rightarrow_e$$
, 1, 3

5.
$$q \rightarrow_e$$
, 2, 3

6.
$$r o_e$$
, 4, 5

$$\frac{\phi \quad \phi \to \psi}{\psi} \to_{\mathsf{e}}$$

Exemplo:
$$p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$$

1.
$$p \rightarrow (q \rightarrow r)$$
 premissa

2.
$$p \rightarrow q$$
 premissa

4.
$$q \rightarrow r$$
 \rightarrow_e , 1, 3

5.
$$q \rightarrow_e$$
, 2, 3

6.
$$r \rightarrow_e$$
, 4, 5

Regra Modus Tollens

- Suponha que temos $p \to q$ e $\neg q$
- Se p é verdadeiro, podemos inferir q (usando a regra \rightarrow_e)
- Porém, teríamos q e $\neg q$ que é um absurdo
- Portanto, p não pode ser verdadeiro e temos $\neg p$

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} MT$$

Exemplo: $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$

- 1. $p \rightarrow (q \rightarrow r)$ premissa
- p premissa
 ¬r premissa
- 4. $q \rightarrow r \rightarrow_e, 1, 2$
- 5. $\neg q$ MT, 4,

Regra Modus Tollens

- Suponha que temos $p \to q$ e $\neg q$
- Se p é verdadeiro, podemos inferir q (usando a regra \rightarrow_e)
- Porém, teríamos q e $\neg q$ que é um absurdo
- Portanto, p não pode ser verdadeiro e temos $\neg p$

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} MT$$

Exemplo: $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$

- 1. $p \rightarrow (q \rightarrow r)$ premissa
- 2. p premissa
- 3. $\neg r$ premissa
- 4. $q \rightarrow r$ \rightarrow_e , 1, 2

Regra Modus Tollens

- Suponha que temos $p \rightarrow q$ e $\neg q$
- Se p é verdadeiro, podemos inferir q (usando a regra \rightarrow_e)
- Porém, teríamos q e $\neg q$ que é um absurdo
- Portanto, p não pode ser verdadeiro e temos $\neg p$

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} MT$$

Exemplo: $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$

- 1. $p \rightarrow (q \rightarrow r)$ premissa 2. p premissa
- 3. $\neg r$ premissa
- 4. $q \rightarrow r \rightarrow_e$, 1, 2
- 5. $\neg q$ MT, 4, 3

a)
$$\neg p \rightarrow q, \neg q \vdash p$$

b)
$$p \rightarrow \neg q, q \vdash \neg p$$

a)
$$\neg p \rightarrow q, \neg q \vdash p$$

- 1. $\neg p \rightarrow q$ premissa
- 2. $\neg q$ premissa
- 3. $\neg \neg p$ MT, 1, 2
- 4. $p \qquad \neg \neg_e, 3$

b)
$$p \rightarrow \neg q, q \vdash \neg p$$

a)
$$\neg p \rightarrow q, \neg q \vdash p$$

- 1. $\neg p \rightarrow q$ premissa
- 2. $\neg q$ premissa
- 3. $\neg \neg p$ MT, 1, 2
 - 4. $p \qquad \neg \neg_e, 3$

b)
$$p \rightarrow \neg q, q \vdash \neg p$$

a)
$$\neg p \rightarrow q, \neg q \vdash p$$

- 1. $\neg p \rightarrow q$ premissa
- 2. $\neg q$ premissa
- 3. ¬¬*p* MT, 1, 2
- 4. *p* ¬¬_e, 3

b)
$$p \rightarrow \neg q, q \vdash \neg p$$

a)
$$\neg p \rightarrow q, \neg q \vdash p$$

2.
$$\neg q$$
 premissa

1. $\neg p \rightarrow q$ premissa

b)
$$p \rightarrow \neg q, q \vdash \neg p$$

1.
$$p \rightarrow \neg q$$
 premissa

1.
$$p \rightarrow \neg q$$
 premissa
2. q premissa

a)
$$\neg p \rightarrow q, \neg q \vdash p$$

1.
$$\neg p \rightarrow q$$
 premissa
2. $\neg q$ premissa

2.
$$\neg q$$
 premissa

3.
$$\neg \neg p$$
 MT, 1, 2
4. p $\neg \neg_e$, 3

b)
$$p \rightarrow \neg q, q \vdash \neg p$$

$$\neg q$$

1.
$$p \rightarrow \neg q$$
 premissa

1.
$$p \rightarrow \neg q$$
 premissa
2. q premissa

- 3. $\neg \neg q$ $\neg \neg_i$, 2

$$\mathsf{a)} \ \neg p \to q, \neg q \vdash p$$

1.
$$\neg p \rightarrow q$$
 premissa
2. $\neg q$ premissa

$$\neg q$$

b)
$$p o
eg q, q \vdash
eg p$$

$$\neg p$$

1.
$$p \rightarrow \neg q$$
 premissa

2. q premissa 3. $\neg \neg q$ $\neg \neg_i$, 2 4. ¬*p* MT, 1, 3

8/31

- ullet Supondo que sabemos que p o q
- Se considerarmos temporariamente que $\neg q$ é verdade, podemos usar MT para inferir $\neg p$

1.	ho ightarrow q	premissa
2.		
		MT, 1, 2
4.		

- Podemos aplicar normalmente regras dentro da caixa para inferir fórmulas que dependem da hipótese $\neg q$
- Quando aplicamos a regra \rightarrow_i , podemos concluir a fórmula $\neg q \rightarrow \neg p$ que independe da hipótese $\neg q$

- Supondo que sabemos que p o q
- Se considerarmos temporariamente que $\neg q$ é verdade, podemos usar MT para inferir $\neg p$

1.	ho ightarrow q	premissa
2.	$\neg q$	hipótese
		MT, 1, 2
4		

- Podemos aplicar normalmente regras dentro da caixa para inferir fórmulas que dependem da hipótese $\neg q$
- Quando aplicamos a regra \rightarrow_i , podemos concluir a fórmula $\neg q \rightarrow \neg p$ que independe da hipótese $\neg q$

- ullet Supondo que sabemos que p
 ightarrow q
- Se considerarmos temporariamente que $\neg q$ é verdade, podemos usar MT para inferir $\neg p$

p o q	premissa
$\neg q$	hipótese
$\neg p$	MT, 1, 2
	$\neg q$

- Podemos aplicar normalmente regras dentro da caixa para inferir fórmulas que dependem da hipótese $\neg a$
- Quando aplicamos a regra \rightarrow_i , podemos concluir a fórmula $\neg q \rightarrow \neg p$ que independe da hipótese $\neg q$

- Supondo que sabemos que p o q
- Se considerarmos temporariamente que $\neg q$ é verdade, podemos usar MT para inferir $\neg p$

1.	p o q	premissa
2.	$\neg q$	hipótese
3.	$\neg p$	MT, 1, 2
4.	eg q o eg p	\rightarrow_i , 2–3

- Podemos aplicar normalmente regras dentro da caixa para inferir fórmulas que dependem da hipótese $\neg q$
- Quando aplicamos a regra \rightarrow_i , podemos concluir a fórmula $\neg q \rightarrow \neg p$ que independe da hipótese $\neg q$

- Supondo que sabemos que p o q
- Se considerarmos temporariamente que $\neg q$ é verdade, podemos usar MT para inferir $\neg p$

1.	ho ightarrow q	premissa
2.	$\neg q$	hipótese
3.	$\neg p$	MT, 1, 2
4.	$\neg a \rightarrow \neg p$	\rightarrow i. 2–3

- Podemos aplicar normalmente regras dentro da caixa para inferir fórmulas que dependem da hipótese $\neg q$
- Quando aplicamos a regra \to_i , podemos concluir a fórmula $\neg q \to \neg p$ que independe da hipótese $\neg q$

A regra \rightarrow_i

• A regra \rightarrow_i é formulada da seguinte maneira:

Atenção

Só podemos usar fórmulas anteriores à caixa, se estas não estiverem em caixas já fechadas

• A linha após a caixa deve ser a aplicação da regra \rightarrow_i sobre a primeira e a última linha da caixa

Exemplo: $\neg q \rightarrow \neg p \vdash p \rightarrow \neg \neg q$

- 1. $\neg q \rightarrow \neg p$ premissa
- 2. p hipótese
- 4. $\neg \neg q$ MT, 1, 3
 - 5. $p \rightarrow \neg \neg q \rightarrow_i$, 2–4

• A regra \rightarrow_i é formulada da seguinte maneira:

Atenção

Só podemos usar fórmulas anteriores à caixa, se estas não estiverem em caixas já fechadas

• A linha após a caixa deve ser a aplicação da regra \rightarrow_i sobre a primeira e a última linha da caixa

- 1. $\neg q \rightarrow \neg p$ premissa
- 2. *p* hipótese
- 4. ¬¬q MT, 1, 3
 - $p \rightarrow \neg \neg q \rightarrow_i$, 2–4

• A regra \rightarrow_i é formulada da seguinte maneira:

Atenção

Só podemos usar fórmulas anteriores à caixa, se estas não estiverem em caixas já fechadas

• A linha após a caixa deve ser a aplicação da regra \rightarrow_i sobre a primeira e a última linha da caixa

- 1. $\neg q \rightarrow \neg p$ premissa
- 2. *p* hipótese
- 3. ¬¬p ¬¬_i, 2
 4. ¬¬q MT, 1, 3
 - 5. $p \rightarrow \neg \neg q \rightarrow_i$, 2–4

• A regra \rightarrow_i é formulada da seguinte maneira:

Atenção

Só podemos usar fórmulas anteriores à caixa, se estas não estiverem em caixas já fechadas

• A linha após a caixa deve ser a aplicação da regra \rightarrow_i sobre a primeira e a última linha da caixa

- 1. $\neg q \rightarrow \neg p$ premissa
- p hipótese
 ¬¬p ¬¬i, 2
- 4. ¬¬*q* MT, 1, 3
- 5. $p \rightarrow \neg \neg q \rightarrow_i$, 2-4

• A regra \rightarrow_i é formulada da seguinte maneira:

Atenção

Só podemos usar fórmulas anteriores à caixa, se estas não estiverem em caixas já fechadas

 A linha após a caixa deve ser a aplicação da regra \rightarrow_i sobre a primeira e a última linha da caixa

- 1. $\neg q \rightarrow \neg p$ premissa 2. p hipótese 3. $\neg \neg p$ $\neg \neg_i$, 2 4. $\neg \neg q$ MT, 1, 3
- 5. $p \rightarrow \neg \neg q \rightarrow_i$, 2–4

1.	q ightarrow r	hipótese
2.		
4.		
		MT, 2, 4
	r	\rightarrow_e , 1, 6
	p o r	
	$(\neg q o \neg p) o (p o r)$	\rightarrow_i , 2–8
10.	$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$	\rightarrow_i , 1–9

1.	q ightarrow r	hipótese
2.	eg q o eg p	hipótese
3.		
4.		
		MT, 2, 4
	r	\rightarrow_e , 1, 6
	p o r	
	$(\neg q o \neg p) o (p o r)$	\rightarrow_i , 2–8
	$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$	\rightarrow_i , 1–9

1.	q ightarrow r	hipótese
2.	eg q o eg p	hipótese
3.	P	hipótese
4.		$\neg \neg_i$, 3
		MT, 2, 4
	r	\rightarrow_e , 1, 6
	p o r	
	$(\neg q ightarrow \neg p) ightarrow (p ightarrow r)$	\rightarrow_i , 2–8
10.	$(q ightarrow r) ightarrow ((\neg q ightarrow \neg p) ightarrow (p ightarrow r))$	\rightarrow_i , 1–9

1.	q ightarrow r	hipótese
2.	eg q o eg p	hipótese
3.	p	hipótese
4.	$ \neg \neg p$	¬¬ _i , 3
		MT, 2, 4
	r	\rightarrow_e , 1, 6
	p o r	
	$(\neg q o \neg p) o (p o r)$	\rightarrow_i , 2–8
10.	$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$	\rightarrow_i , 1–9

1.	q ightarrow r	hipótese
2.	eg q o eg p	hipótese
3.	p	hipótese
4.		$\neg \neg_i$, 3
5.	$ \neg \neg q$	MT, 2, 4
	r	$ ightarrow_e$, 1, 6
	p o r	
	$(\neg q ightarrow \neg p) ightarrow (p ightarrow r)$	\rightarrow_i , 2–8
10.	$(q ightarrow r) ightarrow ((\neg q ightarrow \neg p) ightarrow (p ightarrow r))$	\rightarrow_i , 1–9

1.	q ightarrow r	hipótese
2.	eg q o eg p	hipótese
3.	p	hipótese
4.		$\neg \neg_i$, 3
5.	$\neg \neg q$	MT, 2, 4
6.	q	¬¬ _e , 5
	r	$ ightarrow_e$, 1, 6
	p o r	
	$(\neg q ightarrow \neg p) ightarrow (p ightarrow r)$	\rightarrow_i , 2–8
10.	$(q ightarrow r) ightarrow ((\lnot q ightarrow \lnot p) ightarrow (p ightarrow r))$	\rightarrow_i , 1–9

1.	q o r	hipótese
2.	eg q o eg p	hipótese
3.	p	hipótese
4.		$\neg \neg_i$, 3
5.		MT, 2, 4
6.	q	$\neg \neg_e$, 5
7.	r	$ ightarrow_e$, 1, 6
	p o r	
	$(\neg q ightarrow \neg p) ightarrow (p ightarrow r)$	\rightarrow_i , 2–8
10.	$(q ightarrow r) ightarrow ((\neg q ightarrow \neg p) ightarrow (p ightarrow r))$	\rightarrow_i , 1–9

1.	q o r	hipótese
2.	eg q o eg p	hipótese
3.	p	hipótese
4.		$\neg \neg_i$, 3
5.		MT, 2, 4
6.	q	$\neg \neg_e$, 5
7.	r	$ ightarrow_e$, 1, 6
8.	p o r	\rightarrow_i , 3–7
	$(\neg q ightarrow \neg p) ightarrow (p ightarrow r)$	\rightarrow_i , 2–8
10.	$(q ightarrow r) ightarrow ((\neg q ightarrow \neg p) ightarrow (p ightarrow r))$	\rightarrow_i , 1–9

1.	q ightarrow r	hipótese
2.	eg q o eg p	hipótese
3.	p	hipótese
4.		$\neg \neg_i$, 3
5.	$\neg \neg q$	MT, 2, 4
6.	q	$\neg \neg_e$, 5
7.	r	$ ightarrow_e$, 1, 6
8.	p o r	\rightarrow_i , 3–7
9.	$(\lnot q ightarrow \lnot p) ightarrow (p ightarrow r)$	\rightarrow_i , 2–8
10.	$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$	\rightarrow_i , 1–9

1.	q o r	hipótese
2.	eg q o eg p	hipótese
3.	p	hipótese
4.		$\neg \neg_i$, 3
5.		MT, 2, 4
6.	q	$\neg \neg_e$, 5
7.	r	\rightarrow_e , 1, 6
8.	p o r	\rightarrow_i , 3–7
9.	$(\lnot q ightarrow \lnot p) ightarrow (p ightarrow r)$	\rightarrow_i , 2–8
10.	$(q ightarrow r) ightarrow ((\lnot q ightarrow \lnot p) ightarrow (p ightarrow r))$	\rightarrow_i , 1–9

1.
$$(p \land q) \rightarrow r$$
 premissa

1.
$$(p \land q) \rightarrow r$$
 premissa
2. p hipótese

1.	$(p \wedge q) \rightarrow r$	premissa
2.	р	hipótese
3.	q	hipótese

1.	$(p \wedge q) \rightarrow r$	premissa
2.	р	hipótese
3.	q	hipótese
4.	$p \wedge q$	\wedge_i , 2, 3

1.	$(p \wedge q) \rightarrow r$	premissa
2.	р	hipótese
3.	q	hipótese
4.	$p \wedge q$	\wedge_i , 2, 3
5.		\rightarrow_e , 2, 4

1.	$(p \wedge q) \rightarrow r$	premissa
2.	р	hipótese
3.	q	hipótese
4.	$p \wedge q$	\wedge_i , 2, 3
5.	r	\rightarrow_e , 2, 4
6.	q ightarrow r	\rightarrow_i , 3–5

1.	$(p \wedge q) \rightarrow r$	premissa
2.	р	hipótese
3.	q	hipótese
4.	$p \wedge q$	\wedge_i , 2, 3
5.	r	\rightarrow_e , 2, 4
6.	q o r	\rightarrow_i , 3–5
7.	p o (q o r)	\rightarrow_i , 2–6

1.
$$p \rightarrow (q \rightarrow r)$$
 premissa

1.
$$p \rightarrow (q \rightarrow r)$$
 premissa
2. $p \wedge q$ hipótese

1.
$$p \rightarrow (q \rightarrow r)$$
premissa2. $p \wedge q$ hipótese3. p \wedge_e , 2

1.
$$p \rightarrow (q \rightarrow r)$$
 premissa
2. $p \wedge q$ hipótese
3. $p \wedge q \wedge e$, 2
4. $q \rightarrow r \rightarrow e$, 1, 3

1.	p o (q o r)	premissa
2.	$p \wedge q$	hipótese
3.	р	∧ _e , 2
4.	q ightarrow r	$ ightarrow_e$, 1, 3
5.	q	\wedge_e , 2

1.	p o (q o r)	premissa
2.	$p \wedge q$	hipótese
3.	р	∧ _e , 2
4.	q ightarrow r	$ ightarrow_e$, 1, 3
5.	q	∧ _e , 2
6.	r	\rightarrow_e , 4, 5

1.	p o (q o r)	premissa
2.	$p \wedge q$	hipótese
3.	р	\wedge_e , 2
4.	q o r	$ ightarrow_e$, 1, 3
5.	q	\wedge_e , 2
6.	r	$ ightarrow_e$, 4, 5
7.	$(p \wedge q) \rightarrow r$	\rightarrow_i , 2–6

Exercício: Demonstre $p \rightarrow q \vdash (p \land r) \rightarrow (q \land r)$

1.
$$p \rightarrow q$$
 premissa

Exercício: Demonstre $p \rightarrow q \vdash (p \land r) \rightarrow (q \land r)$

1.	p o q	premissa
2.	$p \wedge r$	hipótese

Exercício: Demonstre $p \to q \vdash (p \land r) \to (q \land r)$

1.	ho ightarrow q	premissa
2.	$p \wedge r$	hipótese
3.	р	\wedge_e , 2

Exercício: Demonstre $p \rightarrow q \vdash (p \land r) \rightarrow (q \land r)$

1.	p o q	premissa
2.	$p \wedge r$	hipótese
3.	р	∧ _e , 2
4.	r	∧ _e , 2

Exercício: Demonstre $p \rightarrow q \vdash (p \land r) \rightarrow (q \land r)$

1.	p o q	premissa
2.	$p \wedge r$	hipótese
3.	р	∧ _e , 2
4.	r	∧ _e , 2
5.	q	\rightarrow_e , 1, 3

Exercício: Demonstre $p \to q \vdash (p \land r) \to (q \land r)$

1.	p o q	premissa
2.	<i>p</i> ∧ <i>r</i>	hipótese
3.	р	∧ _e , 2
4.	r	∧ _e , 2
5.	q	$ ightarrow_e$, 1, 3
6.	q∧r	\wedge_i , 5, 4

Exercício: Demonstre $p \rightarrow q \vdash (p \land r) \rightarrow (q \land r)$

1.	ho ightarrow q	premissa
2.	$p \wedge r$	hipótese
3.	р	∧ _e , 2
4.	r	∧ _e , 2
5.	q	$ ightarrow_e$, 1, 3
6.	q∧r	\wedge_i , 5, 4
7.	$(p \wedge r) \rightarrow (q \wedge r)$	\rightarrow_i , 2–6

Regras para Disjunção

- Dada uma premissa ϕ podemos inferir que " $\phi \lor \psi$ " é verdadeira para qualquer ψ , pois já sabemos que ϕ é verdadeira
- As regras de inclusão da disjunção são as seguintes:

$$\frac{\phi}{\phi \lor \psi} \lor_{i_1} \qquad \qquad \frac{\psi}{\phi \lor \psi} \lor_{i_2}$$

- Para demonstrar uma proposição χ supondo $\phi \lor \psi$, temos que fazer duas demonstrações separadas e combiná-las
 - 1. Primeiro, supomos que ϕ é verdadeira e demonstramos χ
 - 2. Em seguida, supomos que ψ é verdadeira e demonstramos χ
 - 3. Dadas estas demonstrações, podemos inferir χ a partir de $\phi \lor \psi$ com a seguinte regra:

Exemplo: $p \lor q \vdash \overline{q \lor p}$

1.	$p \lor q$	premissa
2.		
		\vee_i , 2
4.		
		√ <i>i</i> , 4
		\vee_e , 1, 2–3, 4–5

1.	$p \lor q$	premissa
2.	р	hipótese
		∨ _i , 2
4.		
		\vee_i , 4
		\vee_e , 1, 2–3, 4–5

Exemplo: $p \lor q \vdash \overline{q \lor p}$

1.	$p \lor q$	premissa
2.	р	hipótese
3.	$q \lor p$	\vee_i , 2
4.		
		\vee_i , 4
		\vee_e , 1, 2–3, 4–5

1.	$p \lor q$	premissa
2.	р	hipótese
3.	$q \lor p$	∨ _i , 2
4	а	hipótese
٠.	9	Importate
5.	9 ∨ p	∨ _i , 4

1.	$p \lor q$	premissa
2.	р	hipótese
3.	$q \lor p$	∨ _i , 2
4.	q	hipótese
5.	$q \lor p$	√ <i>i</i> , 4
		\vee_e , 1, 2–3, 4–5

1.	$p \lor q$	premissa
2.	р	hipótese
3.	$q \lor p$	√ <i>i</i> , 2
4.	q	hipótese
5.	$q \lor p$	√ <i>i</i> , 4
6.	$q \lor p$	\vee_e , 1, 2–3, 4–5

1.	q o r	premissa
2.		
4.	p∨r	
	r	\rightarrow_e , 1, 5
	$p \lor r$	
	$p \lor r$	∨ _e , 2, 3–4, 5–7
	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	q o r	premissa
2.	$p \lor q$	hipótese
4.	p∨r	
	r	\rightarrow_e , 1, 5
	p∨r	
	p∨r	\vee_e , 2, 3–4, 5–7
	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	q o r	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	p∨r	∨ _i , 3
	r	\rightarrow_e , 1, 5
	p∨r	
	$p \lor r$	∨ _e , 2, 3–4, 5–7
	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	q o r	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	$p \lor r$	∨ _i , 3
	r	\rightarrow_e , 1, 5
	$p \lor r$	
	$p \lor r$	∨ _e , 2, 3–4, 5–7
	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	q o r	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	p∨r	∨ _i , 3
5.	q	hipótese
	r	\rightarrow_e , 1, 5
	p∨r	
	p∨r	\vee_e , 2, 3–4, 5–7
	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	q o r	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	p∨r	∨ _i , 3
5.	q	hipótese
6.	r	$ ightarrow_e$, 1, 5
	p∨r	
	$p \lor r$	∨ _e , 2, 3–4, 5–7
	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	q ightarrow r	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	$p \lor r$	∨ _i , 3
5.	q	hipótese
6.	r	\rightarrow_e , 1, 5
7.	$p \lor r$	∨ _i , 6
	$p \lor r$	∨ _e , 2, 3–4, 5–7
	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	q o r	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	p∨r	∨ _i , 3
5.	q	hipótese
6.	r	$ ightarrow_e$, 1, 5
7.	p∨r	√ <i>i</i> , 6
8.	$p \lor r$	\vee_e , 2, 3–4, 5–7
	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	q o r	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	p∨r	∨ _i , 3
5.	q	hipótese
6.	r	$ ightarrow_e$, 1, 5
7.	p∨r	∨ _i , 6
8.	p∨r	∨ _e , 2, 3–4, 5–7
9.	$(p \lor q) \to (p \lor r)$	\rightarrow_i , 2–8

1.	$(p \lor q) \lor r$	premissa
2.		
4.	$p \lor (q \lor r)$	
	g∨r	
	$p \lor (q \lor r)$	
	$p \lor (q \lor r)$	∨ _e , 2, 3–4, 5–7
	r	
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	√ <i>i</i> , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
4.	$p \lor (q \lor r)$	
	g∨r	
	$p \lor (q \lor r)$	
	$p \lor (q \lor r)$	∨ _e , 2, 3–4, 5–7
	r	
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	\vee_i , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	p	hipótese
4.	$p \lor (q \lor r)$	
	g∨r	
	$p \lor (q \lor r)$	
	$p \lor (q \lor r)$	∨ _e , 2, 3–4, 5–7
	r	
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	√ <i>i</i> , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	p	hipótese
4.	$p \lor (q \lor r)$	∨ _i , 3
	g∨r	
	$p \lor (q \lor r)$	
	$p \lor (q \lor r)$	\vee_e , 2, 3–4, 5–7
	r	
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	√ <i>i</i> , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	p	hipótese
4.	$p \lor (q \lor r)$	∨ _i , 3
5.	q	hipótese
	$q \vee r$	
	$p \lor (q \lor r)$	
	$p \lor (q \lor r)$	\vee_e , 2, 3–4, 5–7
	r	
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	\vee_i , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	p	hipótese
4.	$p \lor (q \lor r)$	∨ _i , 3
5.	q	hipótese
6.	$ q \lor r$	√ <i>i</i> , 5
	$p \lor (q \lor r)$	
	$p \lor (q \lor r)$	∨ _e , 2, 3–4, 5–7
	r	
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	√ <i>i</i> , 10
12.	$p \lor (q \lor r)$	\vee_{e} , 1, 2-8, 9-11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	p	hipótese
4.	$p \lor (q \lor r)$	∨ _i , 3
5.	q	hipótese
6.	$q \lor r$	√ <i>i</i> , 5
7.	$p \lor (q \lor r)$	√ <i>i</i> , 6
	$p \lor (q \lor r)$	\vee_e , 2, 3–4, 5–7
	r	
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	\vee_i , 10
12.	$p \lor (q \lor r)$	\vee_{e} , 1, 2-8, 9-11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	p	hipótese
4.	$p \lor (q \lor r)$	∨ _i , 3
5.	q	hipótese
6.	$q \lor r$	√ <i>i</i> , 5
7.	$p \lor (q \lor r)$	∨ _i , 6
8.	$p \lor (q \lor r)$	\vee_{e} , 2, 3–4, 5–7
	r	
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	\vee_i , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	$p \lor (q \lor r)$	∨ _i , 3
5.	q	hipótese
6.	$q \lor r$	√ <i>i</i> , 5
7.	$p \lor (q \lor r)$	∨ _i , 6
8.	$p \lor (q \lor r)$	∨ _e , 2, 3–4, 5–7
9.	r	hipótese
10.	$q \vee r$	
11.	$p \lor (q \lor r)$	∨ _i , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	p	hipótese
4.	$p \lor (q \lor r)$	∨ _i , 3
5.	q	hipótese
6.	$q \lor r$	√ <i>i</i> , 5
7.	$p \lor (q \lor r)$	√ <i>i</i> , 6
8.	$p \lor (q \lor r)$	∨ _e , 2, 3–4, 5–7
9.	r	hipótese
10.	$q \vee r$	√ <i>i</i> , 9
11.	$p \lor (q \lor r)$	√ <i>i</i> , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2-8, 9-11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	$p \lor (q \lor r)$	√ <i>i</i> , 3
5.	q	hipótese
6.	$q \lor r$	√ <i>i</i> , 5
7.	$p \lor (q \lor r)$	√ <i>i</i> , 6
8.	$p \lor (q \lor r)$	∨ _e , 2, 3–4, 5–7
9.	r	hipótese
10.	$q \vee r$	√ <i>i</i> , 9
11.	$p \lor (q \lor r)$	√ <i>i</i> , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$(p \lor q) \lor r$	premissa
2.	$p \lor q$	hipótese
3.	р	hipótese
4.	$p \lor (q \lor r)$	√ <i>i</i> , 3
5.	q	hipótese
6.	$q \lor r$	√ <i>i</i> , 5
7.	$p \lor (q \lor r)$	√ <i>i</i> , 6
8.	$p \lor (q \lor r)$	\vee_e , 2, 3–4, 5–7
9.	r	hipótese
10.	$q \vee r$	\vee_i , 9
11.	$p \lor (q \lor r)$	√ <i>i</i> , 10
12.	$p \lor (q \lor r)$	\vee_e , 1, 2–8, 9–11

1.	$p \wedge (q \vee r)$	premissa
2.		\wedge_e , 1
	$q \vee r$	\wedge_e , 1
4.		
		\wedge_i , 2, 4
	$(p \land q) \lor (p \land r)$	
	r	
	$p \wedge r$	\wedge_i , 2, 7
	$(p \wedge q) \vee (p \wedge r)$	
	$(p \land q) \lor (p \land r)$	

1.	$p \wedge (q \vee r)$	premissa
2.	p	\wedge_e , 1
	$q \vee r$	\wedge_e , 1
4.		
		\wedge_i , 2, 4
	$(p \wedge q) \vee (p \wedge r)$	
	r	
	$p \wedge r$	\wedge_i , 2, 7
	$(p \wedge q) \vee (p \wedge r)$	
	$(p \wedge q) \vee (p \wedge r)$	

1.	$p \wedge (q \vee r)$	premissa
2.	p	\wedge_e , 1
3.	$q \lor r$	\wedge_e , 1
4.		
		\wedge_i , 2, 4
	$(p \wedge q) \vee (p \wedge r)$	
	r	
	$p \wedge r$	\wedge_i , 2, 7
	$(p \wedge q) \vee (p \wedge r)$	
	$(p \wedge q) \vee (p \wedge r)$	

1.	$p \wedge (q \vee r)$	premissa
2.	p	\wedge_e , 1
3.	$q \lor r$	\wedge_e , 1
4.	q	hipótese
		\wedge_i , 2, 4
	$(p \wedge q) \vee (p \wedge r)$	
	r	
	$p \wedge r$	\wedge_i , 2, 7
	$(p \wedge q) \vee (p \wedge r)$	
	$(p \wedge q) \vee (p \wedge r)$	

1.	$p \wedge (q \vee r)$	premissa
2.	p	\wedge_e , 1
3.	$q \lor r$	\wedge_e , 1
4.	q	hipótese
5.	$p \wedge q$	\wedge_i , 2, 4
	$(p \wedge q) \vee (p \wedge r)$	
	r	
	$p \wedge r$	\wedge_i , 2, 7
	$(p \wedge q) \vee (p \wedge r)$	
	$(p \wedge q) \vee (p \wedge r)$	

1.	$p \wedge (q \vee r)$	premissa
2.	p	\wedge_e , 1
3.	$q \lor r$	\wedge_e , 1
4.	q	hipótese
5.	$p \wedge q$	\wedge_i , 2, 4
6.	$(p \wedge q) \vee (p \wedge r)$	∨ _i , 5
6.7.	$(p \wedge q) \vee (p \wedge r)$	V _i , 5 hipótese
	$(p \wedge q) \vee (p \wedge r)$ r $p \wedge r$	
7.	r	hipótese \wedge_i , 2, 7

1.	$p \wedge (q \vee r)$	premissa
2.	p	\wedge_e , 1
3.	$q \vee r$	\wedge_e , 1
4.	q	hipótese
5.	$p \wedge q$	\wedge_i , 2, 4
6.	$(p \wedge q) \vee (p \wedge r)$	∨ _i , 5
7.	r	hipótese
	$p \wedge r$	\wedge_i , 2, 7
	$(p \wedge q) \vee (p \wedge r)$	

1.	$p \wedge (q \vee r)$	premissa
2.	p	\wedge_e , 1
3.	$q \lor r$	\wedge_e , 1
4.	q	hipótese
5.	$p \wedge q$	\wedge_i , 2, 4
6.	$(p \wedge q) \vee (p \wedge r)$	∨ _i , 5
7.	r	hipótese
8.	$p \wedge r$	\wedge_i , 2, 7
	$(p \wedge q) \vee (p \wedge r)$	
	$(p \wedge q) \vee (p \wedge r)$	

1.
$$p \land (q \lor r)$$
 premissa
2. $p \land_{e}, 1$
3. $q \lor r \land_{e}, 1$
4. $q \land_{ipótese}$
5. $p \land q \land_{i}, 2, 4$
6. $(p \land q) \lor (p \land r) \lor_{i}, 5$
7. $r \land_{ipótese}$
8. $p \land r \land_{i}, 2, 7$
9. $(p \land q) \lor (p \land r) \lor_{i}, 8$
0. $(p \land q) \lor (p \land r) \lor_{e}, 3, 5-6, 7-9$

Exemplo (distributividade): $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$

1.
$$p \land (q \lor r)$$
 premissa
2. $p \land_{e}, 1$
3. $q \lor r \land_{e}, 1$
4. $q \land_{ipótese}$
5. $p \land q \land_{i}, 2, 4$
6. $(p \land q) \lor (p \land r) \lor_{i}, 5$
7. $r \land_{ipótese}$
8. $p \land r \land_{i}, 2, 7$
9. $(p \land q) \lor (p \land r) \lor_{i}, 8$
10. $(p \land q) \lor (p \land r) \lor_{e}, 3, 5-6, 7-9$

1. $(p \land q) \lor (p \land r)$ premissa

1. $(p \land q) \lor (p \land r)$ premissa 2. $p \land q$ hipótese

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	מ	Ag. 2

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	р	∧ _e , 2
4.	q	∧ _e , 2

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	р	\wedge_e , 2
4.	q	\wedge_e , 2
5.	$q \lor r$	\vee_i , 4

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	р	∧ _e , 2
4.	q	∧ _e , 2
5.	$q \lor r$	∨ _i , 4
6.	$p \wedge (q \vee r)$	\wedge_i , 3, 5

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	р	∧ _e , 2
4.	q	∧ _e , 2
5.	$q \lor r$	√ <i>i</i> , 4
6.	$p \wedge (q \vee r)$	<i>∧</i> _{<i>i</i>} , 3, 5
7.	$p \wedge r$	hipótese

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	р	∧ _e , 2
4.	q	∧ _e , 2
5.	$q \lor r$	√ <i>i</i> , 4
6.	$p \wedge (q \vee r)$	\wedge_i , 3, 5
7.	p∧r	hipótese
8.	р	∧ _e , 7

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	р	\wedge_e , 2
4.	q	\wedge_e , 2
5.	$q \lor r$	\vee_i , 4
6.	$p \wedge (q \vee r)$	\wedge_i , 3, 5
7.	<i>p</i> ∧ <i>r</i>	hipótese
8.	р	\wedge_e , 7
9.	r	\wedge_e , 7

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	р	∧ _e , 2
4.	q	∧ _e , 2
5.	$q \lor r$	\vee_i , 4
6.	$p \wedge (q \vee r)$	\wedge_i , 3, 5
7.	<i>p</i> ∧ <i>r</i>	hipótese
8.	р	∧ _e , 7
9.	r	∧ _e , 7
10.	$q \lor r$	√ <i>i</i> , 9

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	р	∧ _e , 2
4.	q	∧ _e , 2
5.	$q \lor r$	∨ _i , 4
6.	$p \wedge (q \vee r)$	\wedge_i , 3, 5
7.	p∧r	hipótese
8.	р	^e, 7
9.	r	∧ _e , 7
10.	$q \lor r$	∨ _i , 9
11.	$p \wedge (q \vee r)$	\wedge_i , 8, 10

1.	$(p \wedge q) \vee (p \wedge r)$	premissa
2.	$p \wedge q$	hipótese
3.	p	∧ _e , 2
4.	q	∧ _e , 2
5.	$q \lor r$	√ <i>i</i> , 4
6.	$p \wedge (q \vee r)$	\wedge_i , 3, 5
7.	<i>p</i> ∧ <i>r</i>	hipótese
8.	p	∧ _e , 7
9.	r	∧ _e , 7
10.	$q \lor r$	√ <i>i</i> , 9
11.	$p \wedge (q \vee r)$	∧ _i , 8, 10
12.	$p \wedge (q \vee r)$	\vee_e , 1, 2–6, 7–11

- Como regra adicional, podemos copiar uma fórmula que já sabemos, desde que tal fórmula não dependa de hipóteses temporárias de caixas já fechadas
- Exemplo: $\vdash p \rightarrow (q \rightarrow p)$

1.	р	hipótese
		copie, 1
4.		\rightarrow_i , 2–3
		\rightarrow_i , 1–4

- Como regra adicional, podemos copiar uma fórmula que já sabemos, desde que tal fórmula não dependa de hipóteses temporárias de caixas já fechadas
- Exemplo: $\vdash p \rightarrow (q \rightarrow p)$

1.	р	hipótese
2.	q	hipótese
	p	copie, 1
4.		\rightarrow_i , 2–3
		\rightarrow_i , 1–4

- Como regra adicional, podemos copiar uma fórmula que já sabemos, desde que tal fórmula não dependa de hipóteses temporárias de caixas já fechadas
- Exemplo: $\vdash p \rightarrow (q \rightarrow p)$

1.	р	hipótese
2.	q	hipótese
3.	p	copie, 1
4.		\rightarrow_i , 2–3
		\rightarrow_i , 1–4

- Como regra adicional, podemos copiar uma fórmula que já sabemos, desde que tal fórmula não dependa de hipóteses temporárias de caixas já fechadas
- Exemplo: $\vdash p \rightarrow (q \rightarrow p)$

1.	р	hipótese
2.	q	hipótese
3.	p	copie, 1
4.	q o p	\rightarrow_i , 2–3
		→:. 1–4

- Como regra adicional, podemos copiar uma fórmula que já sabemos, desde que tal fórmula não dependa de hipóteses temporárias de caixas já fechadas
- Exemplo: $\vdash p \rightarrow (q \rightarrow p)$

1.	р	hipótese
2.	q	hipótese
3.	р	copie, 1
4.	q o p	\rightarrow_i , 2–3
5	$p \rightarrow (a \rightarrow p)$	→: 1 – 4

Regras para Negação

- Vimos as regas $\neg \neg_i$ e $\neg \neg_e$, mas não vimos regras que introduzem ou eliminem uma única negação
- Essas regras envolvem a noção de contradição
- Uma contradição possui o formato $\phi \land \neg \phi$ ou $\neg \phi \land \phi$, onde ϕ é uma fórmula qualquer
- A fórmula ⊥ denota a contradição
- Quando deduzimos uma fórmula ϕ a partir de uma fórmula ψ , supomos que se ϕ é válida então temos ψ
- \bullet Como a contradição \bot nunca é válida, podemos deduzir qualquer coisa de \bot
- Assim, temos as regras:

$$\frac{\perp}{\phi}$$
 \perp_e

$$\frac{\phi - \neg \phi}{\Box} \neg \epsilon$$

Exemplo: $\neg p \lor q \vdash \overline{p \to q}$

1.	$\neg p \lor q$	premissa
2.		
4.		¬ _e , 3, 2
		⊥ _e , 4
11.		\vee_e , 1, 2-6, 7-10

1.	$\neg p \lor q$	premissa	
2.	$\neg p$	hipótese	-
4.		¬ _e , 3, 2	
		⊥ _e , 4	
11.		\vee_e , 1, 2–6, 7–10	

1.	$\neg p \lor q$	premissa	
2.	$\neg p$	hipótese	
3.	р	hipótese	
4.		¬ _e , 3, 2	
		⊥ _e , 4	
11.		\vee_e , 1, 2-6, 7-10	

1.	$\neg p \lor q$	premissa
2.	$\neg p$	hipótese
3.	р	hipótese
4.		¬e, 3, 2
		⊥ _e , 4
L1.		\vee_e , 1, 2–6, 7–10

1.	$\neg p \lor q$	premissa
2.	$\neg p$	hipótese
3.	р	hipótese
4.		¬e, 3, 2
5.	q	⊥ _e , 4
1.		\vee_e , 1, 2–6, 7–10

1.	$\neg p \lor q$	premissa
2.	$\neg p$	hipótese
3.	р	hipótese
4.		¬ _e , 3, 2
5.	q	⊥ _e , 4
6.	p o q	\rightarrow_i , 3–5
L1.		\vee_e , 1, 2-6, 7-10

1.	$\neg p \lor q$	premissa	
2.	$\neg p$	hipótese	-
3.	р	hipótese	
4.		¬ _e , 3, 2	
5.	q	⊥ _e , 4	
6.	p o q	\rightarrow_i , 3–5	
7.	q	hipótese	
11.		Ve, 1, 2-6, 7-10	

1.	$\neg p \lor q$	premissa
2.	$\neg p$	hipótese
3.	р	hipótese
4.		¬e, 3, 2
5.	q	⊥ _e , 4
6.	p o q	\rightarrow_i , 3–5
7.	q	hipótese
8.	р	hipótese
	9	
11.		\vee_e , 1, 2-6, 7-10

1.	$\neg p \lor q$	premissa
2.	$\neg p$	hipótese
3.	р	hipótese
4.		¬e, 3, 2
5.	q	⊥ _e , 4
6.	p o q	\rightarrow_i , 3–5
7.	q	hipótese
8.	р	hipótese
9.	q	copie, 7
11.		\vee_e , 1, 2-6, 7-10

1.	$\neg p \lor q$	premissa	
2.	$\neg p$	hipótese	
3.	р	hipótese	
4.		¬e, 3, 2	
5.	q	⊥ _e , 4	
6.	p o q	\rightarrow_i , 3–5	
7.	q	hipótese	
8.	р	hipótese	
9.	q	copie, 7	
10.	p o q	\rightarrow_i , 8–9	
11.		\vee_e , 1, 2-6, 7-10	

Exemplo: $\neg p \lor q \vdash \overline{p \to q}$

1.	$\neg p \lor q$	premissa	
2.	$\neg p$	hipótese	
3.	р	hipótese	
4.		¬e, 3, 2	
5.	q	⊥ _e , 4	
6.	p o q	\rightarrow_i , 3–5	
7.	q	hipótese	
8.	р	hipótese	
9.	q	copie, 7	
10.	p o q	\rightarrow_i , 8–9	
11.	p o q	\vee_e , 1, 2–6, 7–10	

- ullet Supondo que temos um hipótese que leva a uma contradição (ot)
- Então nossa hipótese não pode ser verdadeira
- Assim temos a regra:

- ullet Supondo que temos um hipótese que leva a uma contradição (ot)
- Então nossa hipótese não pode ser verdadeira
- Assim temos a regra:

Exemplo: $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$						
1.	p o q	premissa				
2.	p o eg q	premissa				

- ullet Supondo que temos um hipótese que leva a uma contradição (ot)
- Então nossa hipótese não pode ser verdadeira
- Assim temos a regra:

- ullet Supondo que temos um hipótese que leva a uma contradição (ot)
- Então nossa hipótese não pode ser verdadeira
- Assim temos a regra:

- ullet Supondo que temos um hipótese que leva a uma contradição (ot)
- Então nossa hipótese não pode ser verdadeira
- Assim temos a regra:

Hipótese Falsa

- ullet Supondo que temos um hipótese que leva a uma contradição (ot)
- Então nossa hipótese não pode ser verdadeira
- Assim temos a regra:

Exemplo: $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$		
1.	p o q	premissa
2.	p ightarrow eg q	premissa
3.	р	hipótese
4.	q	\rightarrow_e , 1, 3
5.	$\neg q$	\rightarrow_e , 2, 3
6.	上	¬ _e , 4, 5

Hipótese Falsa

- ullet Supondo que temos um hipótese que leva a uma contradição (ot)
- Então nossa hipótese não pode ser verdadeira
- Assim temos a regra:

Exemplo: $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$			
1.	p o q	premissa	
2.	p o eg q	premissa	
3.	р	hipótese	
4.	q	\rightarrow_e , 1, 3	
5.	$\neg q$	\rightarrow_e , 2, 3	
6.		\neg_e , 4, 5	
7.	$\neg p$	\neg_i , 1, 3–6	

1.
$$p \rightarrow \neg p$$
 premissa

1.
$$p \rightarrow \neg p$$
 premissa
2. p hipótese

1.	p ightarrow eg p	premissa
2.	р	hipótese
3.	$\neg p$	$ ightarrow_e$, 1, 2

1.	p ightarrow eg p	premissa
2.	р	hipótese
3.	$\neg p$	$ ightarrow_e$, 1, 2
4.		¬e, 2, 3

1.	p o eg p	premissa
2.	р	hipótese
3.	$\neg p$	$ ightarrow_e$, 1, 2
4.		¬e, 2, 3
5.	$\neg p$	\neg_{i} , 2–4

- 1. $(p \land \neg q) \rightarrow r$ premissa
- 2. $\neg r$ premissa
- 3. p premissa

1.	$(p \land \neg q) \to r$	premissa
2.	$\neg r$	premissa
3.	p	premissa
4.	$\neg q$	hipótese

1.	$(p \land \neg q) \to r$	premissa
2.	$\neg r$	premissa
3.	p	premissa
4.	$\neg q$	hipótese
5.	$p \wedge \neg q$	\wedge_i , 3, 4

1.	$(p \land \neg q) \to r$	premissa
2.	$\neg r$	premissa
3.	p	premissa
4.	$\neg q$	hipótese
5.	$p \wedge \neg q$	<i>∧</i> _{<i>i</i>} , 3, 4
6.	r	$ ightarrow_e$, 1, 5

1.	$(p \land \neg q) \to r$	premissa
2.	$\neg r$	premissa
3.	p	premissa
4.	$\neg q$	hipótese
5.	$p \wedge \neg q$	\wedge_i , 3, 4
6.	r	$ ightarrow_e$, 1, 5
7.	上	\neg_e , 6, 2

1.	$(p \land \neg q) \to r$	premissa
2.	$\neg r$	premissa
3.	p	premissa
4.	$\neg q$	hipótese
5.	$p \wedge \neg q$	\wedge_i , 3, 4
6.	r	$ ightarrow_e$, 1, 5
7.		\neg_e , 6, 2
8.	$\neg \neg q$	\neg_i , 4–7

1.	$(p \wedge \neg q) \rightarrow r$	premissa
2.	$\neg r$	premissa
3.	p	premissa
4.	$\neg q$	hipótese
5.	$p \wedge \neg q$	\wedge_i , 3, 4
6.	r	$ ightarrow_e$, 1, 5
7.	上	¬e, 6, 2
8.	$\neg \neg q$	\neg_i , 4–7
9.	q	$\neg \neg_e$, 8

• A regra modus tollens é uma regra deduzida da seguinte maneira:

- 1. $\phi \rightarrow \psi$ premissa
- 2. $\neg \psi$ premissa
- ϕ hipotese
- 4. $\psi \qquad \wedge_e, 1, 3$
- 5. ⊥ ¬_e, 4, 2
- 6. $\neg \phi$ \neg_i , 3–5

• Já a regra $\neg \neg_i$ possui a seguinte dedução:

- 1. ϕ premissa
- 2. $\neg \phi$ hipótese
- 3. \perp \neg_e , 1, 2
- 4. $\neg\neg\phi$ \neg_i , 2–3

• A regra *modus tollens* é uma regra deduzida da seguinte maneira:

- 1. $\phi \rightarrow \psi$ premissa
- 2. $\neg \psi$ premissa
- 3. ϕ hipótese
- 4. $\psi \wedge_e$, 1, 3
- 5. \perp \neg_e , 4, 2
- 6. $\neg \phi$ \neg_i , 3–5

- 1. ϕ premissa
- 2. $\neg \phi$ hipótese
- 3. \perp \neg_e , 1, 2
- 4. $\neg\neg\phi$ \neg_i , 2–3

• A regra modus tollens é uma regra deduzida da seguinte maneira:

- 1. $\phi \rightarrow \psi$ premissa
- 2. $\neg \psi$ premissa
- 3. ϕ hipótese
- 4. ψ \wedge_e , 1, 3
 - 5. \perp \neg_e , 4, 2
- 6. $\neg \phi$ \neg_i , 3–5

- 1. ϕ premissa
- 2. $\neg \phi$ hipótese
- 3. \perp \neg_e , 1, 2
- 4. $\neg \neg \phi \quad \neg_i$, 2–3

• A regra modus tollens é uma regra deduzida da seguinte maneira:

- 1. $\phi \rightarrow \psi$ premissa
- 2. $\neg \psi$ premissa
- 3. ϕ hipótese
- 4. $\psi \wedge_e$, 1, 3
- 5. \perp \neg_e , 4, 2
- 6. $\neg \phi$ \neg_i , 3–5

- 1. ϕ premissa
- 2. $\neg \phi$ hipótese
- 3. \perp \neg_e , 1, 2
- 4. $\neg\neg\phi$ \neg_i , 2–3

• A regra modus tollens é uma regra deduzida da seguinte maneira:

- 1. $\phi \rightarrow \psi$ premissa
- 2. $\neg \psi$ premissa
- 3. ϕ hipótese
- 4. $\psi \wedge_e$, 1, 3
- 5. \perp \neg_e , 4, 2
- 6. $\neg \phi$ \neg_i , 3–5

- 1. ϕ premissa
- 2. $\neg \phi$ hipótese
- 3. \perp \neg_e , 1, 2
- 4. $\neg\neg\phi$ \neg_i , 2–3

• A regra modus tollens é uma regra deduzida da seguinte maneira:

1.
$$\phi \rightarrow \psi$$
 premissa

2.
$$\neg \psi$$
 premissa

3.
$$\phi$$
 hipótese

4.
$$\psi \wedge_e$$
, 1, 3

5.
$$\perp$$
 \neg_e , 4, 2

6.
$$\neg \phi$$
 \neg_i , 3–5

1.
$$\phi$$
 premissa

2.
$$\neg \phi$$
 hipótese

3.
$$\perp$$
 \neg_e , 1, 2

4.
$$\neg \neg \phi \quad \neg_i$$
, 2–3

Regras Deduzidas: *Modus Tollens* e $\neg \neg_i$

• A regra modus tollens é uma regra deduzida da seguinte maneira:

1.
$$\phi \rightarrow \psi$$
 premissa

2.
$$\neg \psi$$
 premissa

3.
$$\phi$$
 hipótese

4.
$$\psi \wedge_e$$
, 1, 3

5.
$$\perp$$
 \neg_e , 4, 2

6.
$$\neg \phi$$
 \neg_i , 3–5

1.
$$\phi$$
 premissa

2.
$$\neg \phi$$
 hipótese

4.
$$\neg\neg\phi$$
 \neg_i , 2–3

• A regra modus tollens é uma regra deduzida da seguinte maneira:

1.
$$\phi \rightarrow \psi$$
 premissa

2.
$$\neg \psi$$
 premissa

3.
$$\phi$$
 hipótese

4.
$$\psi$$
 \wedge_e , 1, 3

5.
$$\perp$$
 \neg_e , 4, 2

6.
$$\neg \phi$$
 \neg_i , 3–5

1.
$$\phi$$
 premissa

2.
$$\neg \phi$$
 hipótese

3.
$$\perp$$
 \neg_e , 1, 2

4.
$$\neg\neg\phi$$
 \neg_i , 2–3

• A regra modus tollens é uma regra deduzida da seguinte maneira:

1.
$$\phi \rightarrow \psi$$
 premissa

2.
$$\neg \psi$$
 premissa

3.
$$\phi$$
 hipótese

4.
$$\psi \wedge_{e}$$
, 1, 3

5.
$$\perp$$
 \neg_e , 4, 2

6.
$$\neg \phi$$
 \neg_i , 3–5

1.
$$\phi$$
 premissa

2.
$$\neg \phi$$
 hipótese

3.
$$\perp$$
 \neg_e , 1, 2

4.
$$\neg \neg \phi \quad \neg_i$$
, 2–3

• A demonstração por absurdo diz que se obtermos uma contradição a partir de $\neg \phi$, então podemos deduzir ϕ :

1.	$\neg \phi \to \bot$	dado
		$ ightarrow_e$, 1, 2
4.		\neg_i , 2–3
		¬¬ _e , 4

• A demonstração por absurdo diz que se obtermos uma contradição a partir de $\neg \phi$, então podemos deduzir ϕ :

$\neg \phi \to \bot$	dado
$\neg \phi$	hipótese
	$ ightarrow_e$, 1, 2
	\neg_i , 2–3
	¬¬ _e , 4

• A demonstração por absurdo diz que se obtermos uma contradição a partir de $\neg \phi$, então podemos deduzir ϕ :

1. $\neg \phi \rightarrow \bot$ dado

2.
$$\neg \phi$$
 hipótese

3.
$$\perp$$
 \rightarrow_e , 1, 2

4.
$$\neg \neg \phi$$
 \neg_i , 2–3

5.
$$\phi \neg \neg_e$$
,

• A demonstração por absurdo diz que se obtermos uma contradição a partir de $\neg \phi$, então podemos deduzir ϕ :

1. $\neg \phi \rightarrow \bot$ dag	do
-------------------------------------	----

2.
$$\neg \phi$$
 hipótese

3.
$$\perp$$
 \rightarrow_e , 1, 2

4.
$$\neg \neg \phi$$
 \neg_i , 2–3

$$\phi$$
 $\neg \neg_e$, Δ

• A demonstração por absurdo diz que se obtermos uma contradição a partir de $\neg \phi$, então podemos deduzir ϕ :

1.	$\neg \phi \rightarrow \bot$	dado

2.
$$\neg \phi$$
 hipótese

3.
$$\perp$$
 \rightarrow_e , 1, 2

4.
$$\neg \neg \phi$$
 \neg_i , 2–3

$$\phi$$
 $\neg \neg_e$,

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

1.	$\neg(\phi \lor \neg\phi)$	hipótese
		\vee_i , 2
4.		\neg_e , 3, 1
		\neg_i , 2–4
		\neg_e , 6, 1
		\neg_i , 1–7

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

1.	$\neg(\phi \lor \neg\phi)$	hipótese
2.	ϕ	hipótese
	$\phi \vee \neg \phi$	\vee_i , 2
4.		\neg_e , 3, 1
		\neg_i , 2–4
		\neg_e , 6, 1
		\neg_i , 1–7

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

$\neg(\phi \lor \neg\phi)$	hipótese
ϕ	hipótese
$\phi \vee \neg \phi$	\vee_i , 2
	\neg_e , 3, 1
	\neg_i , 2–4
	\neg_e , 6, 1
	\neg_i , 1–7

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

	$\neg(\phi \lor \neg\phi)$	hipótese
<u>.</u>	ϕ	hipótese
8.	$\phi \lor \neg \phi$	∨ _i , 2
ŀ.		\neg_e , 3, 1
		\neg_i , 2–4
7		\neg_e , 6, 1
		\neg_i , 1–7

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

1.	$\neg(\phi \lor \neg\phi)$	hipótese
2.	ϕ	hipótese
3.	$\phi \lor \neg \phi$	√ <i>i</i> , 2
4.		\neg_e , 3, 1
5.	$\neg \phi$	\neg_{i} , 2–4
		\neg_e , 6, 1
		\neg_i , 1–7

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

1.	$\neg(\phi \lor \neg\phi)$	hipótese
2.	ϕ	hipótese
3.	$\phi \lor \neg \phi$	√ <i>i</i> , 2
4.		\neg_e , 3, 1
5.	$\neg \phi$	\neg_{i} , 2–4
6.	$\phi \lor \neg \phi$	\vee_i , 5
		\neg_e , 6, 1
		\neg_i , 1–7

Terceiro Excluído

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

1.	$\neg(\phi \lor \neg\phi)$	hipótese
2.	ϕ	hipótese
3.	$\phi \lor \neg \phi$	√ <i>i</i> , 2
4.		\neg_e , 3, 1
5.	$\neg \phi$	\neg_{i} , 2–4
6.	$\phi \vee \neg \phi$	\vee_i , 5
7.		\neg_e , 6, 1
		\neg_i , 1–7

Terceiro Excluído

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

1.	$\neg(\phi \lor \neg\phi)$	hipótese
2.	ϕ	hipótese
3.	$\phi \lor \neg \phi$	√ <i>i</i> , 2
4.		\neg_e , 3, 1
5.	$\neg \phi$	\neg_{i} , 2–4
5.	$\phi \lor \neg \phi$	\vee_i , 5
7.	上	\neg_e , 6, 1
3.	$\neg\neg(\phi \lor \neg\phi)$	\neg_i , 1–7

Terceiro Excluído

- A lei do terceiro excluído diz que $\phi \lor \neg \phi$ é verdadeira
- Qualquer que seja ϕ , a fórmula deve ser verdadeira ou falsa (não há uma terceira possibilidade)
- Isto é chamado de lei do terceiro excluído (LTE)
- Demonstração:

1.	$\neg(\phi \lor \neg\phi)$	hipótese	
2.	ϕ	hipótese	
3.	$\phi \lor \neg \phi$	√ <i>i</i> , 2	
4.		\neg_e , 3, 1	
ō.	$\neg \phi$	\neg_{i} , 2–4	
ô.	$\phi \lor \neg \phi$	\vee_i , 5	
7.		\neg_e , 6, 1	
3.	$\neg\neg(\phi \lor \neg\phi)$	\neg_i , 1–7	
9.	$\phi \vee \neg \phi$	¬¬ _e , 8	

1.	p o q	premissa
2.		
4.		
		$ ightarrow_e$, 1, 5
		\vee_e , 2, 3–4, 5–7

1.	p o q	premissa
2.	$\neg p \lor p$	LTE
4.		
		$ ightarrow_e$, 1, 5
		\vee_e , 2, 3–4, 5–7

1.	p o q	premissa	
2.	$\neg p \lor p$	LTE	
3.	$\neg p$	hipótese	
4.			
		$ ightarrow_e$, 1, 5	

1.	p o q	premissa
2.	$\neg p \lor p$	LTE
3.	$\neg p$	hipótese
4.	$\neg p \lor q$	√ <i>i</i> , 3
		$ ightarrow_e$, 1, 5
		\/ 2 3_1 5_7

1.	p o q	premissa
2.	$\neg p \lor p$	LTE
3.	$\neg p$	hipótese
4.	$\neg p \lor q$	√ <i>i</i> , 3
5.	р	hipótese
		$ ightarrow_e$, 1, 5
		\vee_e , 2, 3–4, 5–7

1.	p o q	premissa
2.	$\neg p \lor p$	LTE
3.	$\neg p$	hipótese
4.	$\neg p \lor q$	√ <i>i</i> , 3
5.	р	hipótese
6.	q	$ ightarrow_e$, 1, 5
		\vee_e , 2, 3–4, 5–7

1.	p o q	premissa
2.	$\neg p \lor p$	LTE
3.	$\neg p$	hipótese
4.	$\neg p \lor q$	√ _i , 3
5.	р	hipótese
6.	q	$ ightarrow_e$, 1, 5
7.	$\neg p \lor q$	\vee_i , 6
		\vee_e , 2, 3–4, 5–7

1.
$$p \rightarrow q$$
 premissa
2. $\neg p \lor p$ LTE
3. $\neg p$ hipótese
4. $\neg p \lor q$ \lor_i , 3
5. p hipótese
6. q \to_e , 1, 5
7. $\neg p \lor q$ \lor_i , 6
8. $\neg p \lor q$ \lor_e , 2, 3–4, 5–7

Referências I

de Souza, J. N. (2008).

Lógica para ciência da computação: uma introdução concisa. Elsevier. Rio de Janeiro. 2 edition.

Huth, M. and Ryan, M. (2008).

Lógica em ciência da computação: modelagem e argumentação sobre sistemas.

LTC, Rio de Janeiro, 2 edition.

Silva, F. S. C., Finger, M., and Melo, A. C. V. (2010). *Lógica para computação*.

Cengage Learning, São Paulo, 2 edition.