Assignment 9 MAT 315

7.14 4a: By the proof of 7.13, we have that

$$16^2 = 6 + 5^3 \cdot 2$$

We have that q=2, r=16, p=5, i=3 with k unknown. So therefore we have that $s=16+5^4k$ and so $s^2=r^2+2rp^ik+p^{2i}k^2\equiv a+(q+2+rk)p^i\mod p^{i+1}$ So we want to solve the following:

$$q + 2rk \equiv 0 \mod 5 \implies 2 + 2(16)k \equiv 0 \mod 5$$

And we see that k=4 solves. Therefore $s=16+5^3\cdot 4=516$. Thus the square roots of 6 mod 54 are ± 516 .

7.16a: We see that $41 \equiv 3^2 \mod 2^5$ with r=3 and so $3^2=41+2^5\cdot -1$. We see that q=-1 when k=1. Therefore $q+rk=-1+3\cdot 1=2$. Thus $s=13+2^4\cdot 1=19$ is a square root of 41 mod 2^6 . Multiplying by ± 1 and ± 31 we get that ± 19 and ± 13 are our desired square roots.

7.18: We know that $168 = 3 \cdot 7 \cdot 8$. By the previous results we will work with $25 \equiv 1 \mod 2^3, 25 \equiv 1 \mod 3, 25 \equiv 4 \mod 7$. These will have solutions of $s \equiv 1 \mod 2, s \equiv \pm 1 \mod 3, s \equiv \pm 2 \mod 7$. By CRT, the solutions are $s \equiv \pm (5, 19, 23, 37, 47, 61, 65, 79) \mod 168$.

7.26: We have that $513 = 3^3 \cdot 19$. Hence the square roots of 7 mod 3^3 is $s = \pm 13 \mod 3^3$ and 7 mod 19 will have square root of $s = \pm 8 \mod 19$. By CRT the square root will be $s = \pm 68, 122 \mod 51368$