

An Introduction to Molecular Phylogenetic Inference

5. PRACTICAL LAB 3

Outline

- MCMC diagnostics
- Tree calibration in BEAST

5. PRACTICAL LAB 3

Software requirements

- Tracer (tree.bio.ed.ac.uk/software/tracer)
- BEAST 2.4.3 package of programs (beast2.org)

Bayesian Analysis:

6. Summarize the mcmc search information and build the tree

MrBayes > sump

MrBayes > sumt

Bayesian Analysis:

6. Summarize the mcmc search information and build the tree

```
Estimated marginal likelihoods for runs sampled in files
"bears.nex.run1.p" and "bears.nex.run2.p":
 (Use the harmonic mean for Bayes factor comparisons of models)
 (Values are saved to the file bears.nex.lstat)
```

Run	Arithmetic mean	Harmonic mean
1 2	-8044.99 -8045.16	-8061.31 -8060.15
TOTAL	-8045.07	-8060.89

Bayesian Analysis:

7. Quit the MrBayes

MrBayes > quit

Visualize the bayesian tree in FigTree

Check the convergence between mcmc runs

Check the trace of mcmc search

Compare parameter distributions for two genes

Divergence time estimation (adding fossil data)

Unconstrained analyses estimate branch lengths as a product of rate and time

Branch lengths = SUBSTITUTION RATE

Divergence time estimation requires a model of among-lineage substitution rate variation to tease apart rate and time

and produce estimates of node ages in absolute time.

$$P(\mathcal{R}, \mathcal{T} \mid \mathbf{P}(\mathcal{R}, \mathcal{T})) = \frac{P(\mathbf{R}, \mathcal{T}) \times P(\mathcal{R}) \times P(\mathcal{T} \mid \mathbf{P}(\mathcal{R}))}{P(\mathbf{R}, \mathcal{T})}$$

Models of lineage specific rate variation

- Global molecular clock
- Local molecular clock
- Compound Poisson process
- Autocorrelated rates
- Uncorrelated rates
- Infinite mixture model on branch lengths

- 1. Node distribution on a tree (e.g., uniform or Dirichlet). Prior is conditional on the age of the root.
- 2. Population-level processes (e.g., coalescent prior)
- 3. Lineage diversification processes:
 - Yule process (speciation rate)
 - Birth-Death process (speciation and extinction rates)

Parametric distributions implemented in BEAST 2

Image source: Heath, 2012

- 1. Open BEAUti program in BEAST folder
- 2. Load the alignments: cytb.nex and irbp.nex (without outgroup)

3. Link clock model and tree for the genes

4. Set substitution models for the genes

5. Select Uncorrelated Clock Log Normal model (UCLN)

6. Priors settings

Crown

7. Choose the oldest fossil for the node(s)

Fossil species		Age range (My)	Citation
Parictis montanus Zaragocyon daamsi		33.9–37.2	Clark and Guensburg 1972; Krause et al. 2008
		20 – 22.8	Ginsburg and Morales 1995; Abella et al. 2012
Ba	allusia elmensis	13.7 - 16	Ginsburg and Morales 1998; Abella et al. 2012
U_{i}	rsavus primaevus	13.65 - 15.97	Andrews and Tobien 1977; Abella et al. 2012
U_{l}	rsavus brevihinus	15.97 - 16.9	Heizmann et al. 1980; Abella et al. 2012
In	$darctos\ vireti$	7.75 - 8.7	Montoya et al. 2001; Abella et al. 2012
In	$darctos\ arctoides$	8.7 - 9.7	Geraads et al. 2005; Abella et al. 2012
In	darctos punjabiensis	4.9 – 9.7	Baryshnikov 2002; Abella et al. 2012
Ai	ilurarctos lufengensis	5.8 – 8.2	Jin et al. 2007; Abella et al. 2012
Ag	$griarctos\ spp.$	4.9 - 7.75	Abella et al. 2011; Abella et al. 2012
Kı	$retzoiarctos\ beatrix$	11.2 - 11.8	Abella et al. 2011; Abella et al. 2012
$A\eta$	$rctodus\ simus$	0.012 – 2.588	Churcher et al. 1993; Krause et al. 2008
U_{l}	rsus $abstrusus$	1.8 – 5.3	Bjork 1970; Krause et al. 2008
U_{l}	rsus spelaeus	0.027 – 0.25	Loreille et al. 2001; Krause et al. 2008

8. Set prior distributions for node time calibrations

9. Set mcmc parameters

		Partitions	Tip Dates	Site Model	Clock Model	Priors	MCMC		
Chain Length	1000000								
Store Every	-1								
Pre Burnin	100000	—	•						
Num Initialization Attempts	10								
▼ tracelog									
File Name	bears.log								
Log Every	500		•						
Mode	autodetect 🗘								
Sort	smart 🗘								

10. Save file bears.xml

11. Run your analysis in BEAST 2

12. Check the posterior probability distributions in Tracer

13. Obtain Maximum Clade Credibility tree (consensus)

14. Visualize the consensus BEAST tree in FigTree

HOMEWORK QUESTIONS

- 1. Compare the topology, branch lengths and node support values between RAxML, MrBayes and BEAST trees. How do they differ?
- 2. For BEAST analysis, increase the number of mcmc steps in a chain (e.g., #10,000,000). Does it change the high posterior densities (HPDs) for nodes? Are the effective sample sizes (ESS) for parameter estimates above 200 (check new log file in Tracer)?
- 3. Repeat the previous run one more time and compare both log files in the Tracer. Did their distributions converge?
- 4. Add more fossil calibrations in the BEAST analysis. Did the high posterior density intervals (HPDs) for node calibrations become narrower or wider?

Phylogenomic Cloudogram

