Nanoelectronics and Nanosystems

Springer-Verlag Berlin Heidelberg GmbH

Nanoelectronics and Nanosystems

From Transistors to Molecular and Quantum Devices

With 254 Figures

Professor em. Dr. -Ing. Karl Goser
Dipl.-Ing. Jan Dienstuhl
University of Dortmund
Faculty of Electrical Engineering & Information Technology
Integrated Systems Institute
44227 Dortmund
Germany

Dr.-Ing. Peter Glösekötter Intel Corporation Optical Components Division Theodor-Heuss-Str. 7 38122 Braunschweig Germany

Cataloging-in-Publication Data applied for Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.dd.de

ISBN 978-3-540-40443-9 ISBN 978-3-662-05421-5 (eBook) DOI 10.1007/978-3-662-05421-5

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH.

Violations are liable for prosecution under German Copyright Law.

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004 Originally published by Springer-Verlag Berlin Heidelberg New York in 2004

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Digital data supplied by authors Cover-Design: Design & Production, Heidelberg Printed on acid-free paper 62/3020 Rw 5 4 3 2 1 0

Preface

In recent years nanoelectronics has been rapidly gaining in importance and is already on the way to continuing the outstanding success of microelectronics. While most literature dealing with nanoelectronics is concerned with technology and devices, it has been nearly impossible to find anything about the circuit and system level. The challenges of nanoelectronics, however, are evident not only in the manufacture of tiny structures and sophisticated nanodevices, but also in the development of innovative system architectures that will have to orchestrate billions of devices inside future gadgets. This book's objective is to bridge that gap.

The topic of this book has actually been offered as a student's lecture at the University of Dortmund. Since the lecture has been held at the faculty of engineering, the main focus lies on electronics and on the basic principles of the essential physical phenomena.

This book represents an introduction to nanoelectronics, as well as giving an overview of several different technologies and covering all aspects from technology to system design. On the system level, various architectures are presented and important system features - namely scalability, processing power and reliability - are discussed. A variety of different technologies are presented which include molecular, quantum electronic, resonant tunnelling, single-electron and superconducting devices and even devices for DNA and quantum computing. Additionally, the book encompasses a comparison between nanoelectronics and the present state of silicon technologies, a discussion of the nanoelectronic limits, and a vision of future nanosystems in terms of information technologies.

This book is intended for those people who have not lost sight of the system as a whole. It not only covers nano-technology and its devices, but also considers the system and circuit level perspective, indicating the applications and conceivable products. The overview is written for electronic engineers, computer scientists, marketing people and physicists, and offers an initial orientation for students, beginners and outsiders alike.

VI Preface

Several EU projects and various EU initiatives form the scientific basis for the current research activities in the fields of nanoelectronics. We would therefore like to thank the co-ordinator in Brussels, Romano Compano, for his helpful undertakings. In addition we would like to thank our partners at Infineon Research Laboratory in Munich for our many fruitful discussions. Thanks are also due to the Deutsche Forschungsgemeinschaft, especially for the support of the Collaborative Research Center 531, which deals with the design and management of complex technical processes and systems by means of Computational Intelligence methods.

We also thank the assistants and colleagues who coached the lecture: C. Burwick, A. Kanstein, G. Wirth, M. Rossmann and C. Pacha. Thanks are also due to the assistants who drew the diagrams: T. Kliem, G. Sapsford, K. Möschke, B. Rückstein. Last, but not least, thanks go to Karin Goser who corrected the German and English versions.

Dortmund, July 2003 Karl F. Goser Peter Glösekötter Jan Dienstuhl

Contents

1	\mathbf{On}	the W	Vay to Nanoelectronics	1	
	1.1	The I	Development of Microelectronics	2	
	1.2		Region of Nanostructures		
	1.3		Complexity Problem		
	1.4	The C	Challenge initiated by Nanoelectronics	9	
	1.5	Sumn	nary	11	
2	Potentials of Silicon Technology				
	2.1	Semic	conductor as Base Material	13	
		2.1.1	Band Diagram of a Semiconductor	13	
		2.1.2	Band Diagrams of Inhomogeneous Semiconductor		
			Structures	15	
	2.2	Techn	nologies	16	
		2.2.1	Different Types of Transistor Integration	17	
		2.2.2	Technological Processes for Microminiaturization	19	
	2.3	Metho	ods and Limits of Microminiaturization in Silicon	23	
		2.3.1	Scaling	23	
		2.3.2	Milestones of Silicon Technology	24	
		2.3.3	Estimation of Technology Limits	26	
	2.4	electronic and Mechanical Systems (MEMS)	31		
		2.4.1	Technology of Micromechanics	31	
		2.4.2	Micromechanics for Nanoelectronics	32	
	2.5	Integr	rated Optoelectronics	34	
	2.6	Concl	usion	37	
3	Bas	ics of	Nanoelectronics	39	
	3.1	Some	Physical Fundamentals	39	
		3.1.1	Electromagnetic Fields and Photons	39	
		3.1.2	Quantization of Action, Charge, and Flux	41	
		3.1.3	Electrons Behaving as Waves (Schrödinger Equation)	42	
		3.1.4	Electrons in Potential Wells	45	

	3.2	3.1.5 Photons interacting with Electrons in Solids 3.1.6 Diffusion Processes Basics of Information Theory 3.2.1 Data and Bits 3.2.2 Data Processing	46 48 52 52 56			
	3.3	Summary	59			
4	Bio	Biology-Inspired Concepts				
	4.1	Biological Networks	61			
		4.1.1 Biological Neurons	61			
		4.1.2 The Function of a Neuronal Cell	64			
	4.2	Biology-Inspired Concepts	67			
		4.2.1 Biological Neuronal Cells on Silicon	68			
		4.2.2 Modelling of Neuronal Cells by VLSI Circuits	69			
		4.2.3 Neuronal Networks with local Adaptation and	=0			
	4.0	Distributed Data Processing	72			
	4.3	Summary	75			
5	Bio	chemical and Quantum-mechanical Computers	77			
•	5.1	DNA Computer	78			
	0.1	5.1.1 Information Processing with Chemical Reactions	78			
		5.1.2 Nanomachines	79			
		5.1.3 Parallel Processing	82			
	5.2	Quantum Computer	83			
		5.2.1 Bit and Qubit	83			
		5.2.2 Coherence and Entanglement	85			
		5.2.3 Quantum Parallelism	86			
	5.3	Summary	88			
6		allel Architectures for Nanosystems	89			
	6.1	Architectural Principles	89			
		6.1.1 Mono- and Multiprocessor Systems	89			
		6.1.2 Some Considerations to Parallel Data Processing	91			
		6.1.3 Influence of Delay Time	92			
		6.1.4 Power Dissipation and Parallelism	95			
	6.2	Architectures for Parallel Processing in Nanosystems	97			
		6.2.1 Classic Systolic Arrays	97			
		6.2.2 Processors with Large Memories	98			
		6.2.3 Processor Array with SIMD and PIP Architecture 1				
		6.2.4 Reconfigurable Computer				
	0.0	6.2.5 The Teramac Concept as a Prototype				
	6.3	Summary	104			

				Contents	IX
7	Sof	computi	ng and Nanoelectronics		107
	7.1		of Softcomputing		
			ızzy Systems		
			volutionary Algorithms		
			onnectionistic Systems		
		7.1.4 C	omputational Intelligence Systems		115
	7.2	Characte	ristics of Neural Networks in Nanoelectr	onics	117
		7.2.1 Lo	ocal Processing		117
		7.2.2 D	stributed and Fault-Tolerant Storage		118
		7.2.3 Se	lf-Organization		120
	7.3	Summar	7		122
8	Cor	nplex Int	egrated Systems and their Propert	ies	123
	8.1	Nanosyst	ems as Information-Processing Machines	3	123
			anosystems as Functional Blocks		
		8.1.2 In	formation Processing as Information Mo	diffication .	124
	8.2	System I	Design and its Interfaces		126
	8.3	Evolution	nary Hardware		129
	8.4		nents of Nanosystems		
	8.5	Summary	7		132
9	Inte	egrated S	witches and Basic Circuits		133
	9.1		and Wiring		
		9.1.1 Id	eal and Real Switches		134
			eal and Real Wiring		
	9.2		ntegrated Switches and their Basic Circu		
			cample of a Classic Switch: The Transist		
			onventional Basic Circuits		
			areshold Gates		
		9.2.4 Fr	edkin Gate		147
	9.3	Summary	7		149
10	•		ectronics		
	10.1		Electronic Devices (QED)		
			ocoming Electronic Devices		
			ectrons in Mesoscopic Structures		
	10.2		s of Quantum Electronic Devices		
			ort-Channel MOS Transistor		
		_	lit-Gate Transistor		
			ectron-Wave Transistor		
			ectron-Spin Transistor		
			uantum Cellular Automata (QCA)		
			uantum-Dot Array		
	10.3	Summary	7		166

X	Contents
X	Contents

11	Bioelectronics and Molecular Electronics	169
	11.1 Bioelectronics	170
	11.1.1 Molecular Processor	$\dots 171$
	11.1.2 DNA Analyzer as Biochip	$\dots 172$
	11.2 Molecular Electronics	174
	11.2.1 Overview	174
	11.2.2 Switches based on Fullerenes and Nanotubes	175
	11.2.3 Polymer Electronic	178
	11.2.4 Self-Assembling Circuits	180
	11.2.5 Optical Molecular Memories	182
	11.3 Summary	185
10	Nlitiith Mli Di	107
12	Nanoelectronics with Tunneling Devices	
	12.1.1 Tunnel Effect and Tunneling Elements	
	12.1.1 Tunnel Effect and Tunneling Elements	
	12.1.2 Tunneling Blode (TD)	
	12.1.4 Three-Terminal Resonant Tunneling Devices	
	12.1.4 Three-Terminal Resonant Tunneling Devices	
	12.3 Digital Circuit Design Based on RTDs	
	12.3.1 Memory Applications	
	12.3.2 Basic Logic Circuits	
	12.3.3 Dynamic Logic Gates	
	12.4 Digital Circuit Design Based on the RTBT	
	12.4.1 RTBT MOBILE	
	12.4.2 RTBT Threshold Gate	
	12.4.3 RTBT Multiplexer	
	12.5 Summary	
	v	
13	Single-Electron Transistor (SET)	
	13.1 Principle of the Single-Electron Transistor	
	13.1.1 The Coulomb Blockade	
	13.1.2 Performance of the Single-Electron Transistor	
	13.1.3 Technology	
	13.2 SET Circuit Design	
	13.2.1 Wiring and Drivers	
	13.2.2 Logic and Memory Circuits	
	$13.2.3~\mathrm{SET}$ Adder as an Example of a Distributed Circuit	
	13.3 Comparison Between FET and SET Circuit Designs	
	13.4 Summary	223

	Contents	Λl
14	Nanoelectronics with Superconducting Devices	. 225
	14.1 Basics	. 225
	14.1.1 Macroscopic Characteristics	. 225
	14.1.2 The Macroscopic Model	. 227
	14.2 Superconducting Switching Devices	
	14.2.1 Cryotron	
	14.2.2 The Josephson Tunneling Device	
	14.3 Elementary Circuits	
	14.3.1 Memory Cell	. 231
	14.3.2 Associative or Content-Addressable Memory	. 232
	14.3.3 SQUID - Superconducting Quantum Interferometer	
	Device	. 233
	14.4 Flux Quantum Device	. 233
	14.4.1 LC-Gate	. 234
	14.4.2 Magnetic Flux Quantum - Quantum Cellular Automat	a 234
	14.4.3 Quantum Computer with Single-Flux Devices	. 234
	14.4.4 Single Flux Quantum Device - SFQD	. 236
	14.4.5 Rapid Single Flux Quantum Device - RSFQD	. 237
	14.5 Application of Superconducting Devices	. 238
	14.5.1 Integrated Electronics	. 238
	14.5.2 FET Electronics - A Comparison	. 239
	14.5.3 The Electrical Standards	. 241
	14.6 Summary	. 242
15	The Limits of Integrated Electronics	. 245
	15.1 A Survey about the Limits	
	15.2 The Replacement of Technologies	
	15.3 Energy Supply and Heat Dissipation	
	15.4 Parameter Spread as Limiting Effect	
	15.5 The Limits due to Thermal Particle Motion	
	15.5.1 The Debye Length	. 257
	15.5.2 Thermal Noise	
	15.6 Reliability as Limiting Factor	. 259
	15.7 Physical Limits	
	15.7.1 Thermodynamic Limits	
	15.7.2 Relativistic Limits	. 264
	15.7.3 Quantum-Mechanical Limits	
	15.7.4 Equal Failure Rates by Tunneling and Thermal Noise .	
	15.8 Summary	
16	Final Objectives of Integrated Electronic Systems	. 267
_ 0	16.1 Removal of Uncertainties by Nanomachines	
	16.2 Uncertainties in Nanosystems	
	16.3 Uncertainties in the Development of Nanoelectronics	
	16.4 Summary	

XII Contents

References	 273
Index	 277