無機化学

第Ⅰ部

非金属元素

1 水素

無色無臭の気体*1 最も軽く、水に溶けにくい

1.1 同位体

 1 H 99% 以上 2 H ($\underline{\mathbf{D}}$)0.015% 3 H ($\underline{\mathbf{T}}$) 微量

1.2 製法

- ナフサの電気分解 **工業的製法**
- 赤熱した $\frac{\mathbf{J} \mathbf{\rho} \mathbf{Z}}{\mathbf{Z}}$ に $\frac{\mathbf{X} \mathbf{X} \mathbf{S}}{\mathbf{X}}$ を吹き付ける $\mathbf{Z} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{S}$ $\mathbf{C} + \mathbf{H}_2 \mathbf{O} \longrightarrow \mathbf{H}_2 + \mathbf{C} \mathbf{O}$
- 水(水酸化ナトリウム水溶液) の電気分解 $2 H_2 O \longrightarrow 2 H_2 + O_2$
- <u>イオン化傾向</u>が $\underline{H_2}$ より大きい</u>金属と希薄強酸 例 $\operatorname{Fe} + 2\operatorname{HCl} \longrightarrow \operatorname{FeCl}_2 + \operatorname{H}_2 \uparrow$ 例 $\operatorname{Zn} + 2\operatorname{HCl} \longrightarrow \operatorname{ZnCl}_2 + \operatorname{H}_2 \uparrow$

1.3 反応

• 水素と酸素 (爆鳴気の燃焼)

$$\mathbf{2}\,\mathbf{H_2} + \mathbf{O_2} \longrightarrow \mathbf{H_2O}$$

• 加熱した酸化銅(II)と水素 $\mathbf{CuO} + \mathbf{H_2} \longrightarrow \mathbf{Cu} + \mathbf{H_2O}$

• 水酸化ナトリウムと水 $\mathbf{NaH} + \mathbf{H_2O} \longrightarrow \mathbf{NaOH} + \mathbf{H_2}$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

2.1 性質

- 無色・無臭
- 第 18 族元素であり、電子配置がオクテットを満た すため反応性が低い。
- イオン化エネルギーが極めて大きい。
- 電子親和力は極めて小さい(ほぼ0)。
- 電気陰性度は定義されない。

2.2 生成

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 $N_2,\,O_2$ に次いで 3 番目に空気中での存在量が多い (約 1%)。

3 ハロゲン

3.1 性質

水との反応性		H ₂ との反応性		特徴	色	常温での状態	沸点・融点	分子間力 (反応性)	分子量	単体の化学式
酸素を発生	水を販化して	爆発的に反応	<u>冷暗所</u> でも	特異 臭	淡黄色	気体	低	弱(強)	÷	F_2
水と反応	一部が	爆発的に反応	<mark>常温</mark> でも <u>光</u> で	刺激臭	黄緑色	気体	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	Cl_2
水と反応	わずかに	触媒により反応	加熱して	揮発性	赤褐 色	液体				Br_2
KIaq には可溶	水と反応しない	加熱して触媒により一部反応	高温で平衡状態	<u>昇華</u> 性	<u> </u>	固体	교마	強(弱)	*	${ m I}_2$

3.2 反応

• フッ素と水素の反応

$$\mathbf{H_2} + \mathbf{F_2} \xrightarrow{$$
常温で爆発的に反応 $} \mathbf{2} \, \mathbf{HF}$

● 塩素と水素の反応

$$\mathbf{H_2} + \mathbf{Cl_2} \xrightarrow{\mathfrak{K}$$
を当てると爆発的に反応 $} \mathbf{2} \, \mathbf{HCl}$

• ヨウ素と水素の反応

^{*&}lt;sup>1</sup> 融点 14K 沸点 20K

$\mathbf{H_2} + \mathbf{I_2} \stackrel{\overline{\mathrm{ala}}$ で平衡 $\mathbf{2}$ \mathbf{HI}

3.3 製法

- フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液の電気分解 (工業的製法)
- 酸化マンガン (Ⅲ)

3.4 フッ素 F

- 保存が困難
- Kr や Xe と反応
- 3.5 **塩素** CI

<u>ClO</u>-による<mark>殺菌・漂白</mark>作用

- 3.5.1 塩素のオキソ酸
- 3.6 **臭素** Br

C=C や C≡C の検出

3.7 ヨウ素 |

ヨウ素デンプン反応で青紫色

第川部

金属元素