

Climate Data Model

FOR A CLIMATE DATA MANAGEMENT SYSTEM

Contents

A way forward	3
Overview / Summary	3
Review of existing data models.	3
Data models considered.	3
Survey results for hourly observations data models	3
Awaiting answer from	4
List of full schemas shared on the OpenCDMS GitHub	4
Assessment of existing data models	4
Structure of the hourly data table	4
Data Quality codes	5
Assessment on existing Climatological Practices.	6
Computation practices and rules with missing data	6
Main Principles	6
Able to manage Essential Climate Variables (ECV)	6
Compliant with the GCOS Climate Monitoring Principles	7
Compliant with the WIGOS Metadata	7
Compliant with the CIMO Guide	7
Compliant with the Manual on the HQ GDMM	7
Compliant with the CDMS Specifications	8
Compliant with current data standards	9
WMO	9
WIS	9
METCE	9
WMO Register Codes	9
WMO and OGC	9
Met Ocean DWG	9
Hydrology Domain Working Group	10
OGC and ISO	10
Recommendations for next generation data models	10
Research questions	10

I	Data	Model Considerations	.10
	•	Primary keys and indexing.	.10
	•	Date period	.10
	•	Long vs wide	.10
	•	Dynamical schema modifications	17
Ref	eren	ces	13
	Cli	mate Data Management System Specifications	.11
	Gu	ide to Instruments and Methods of Observation	.11

A way forward

Overview / Summary

Define "climate" (reference GCOS variables)

Mention alternative terminology including "earth systems"

Review of existing data models

DATA MODELS CONSIDERED

Survey results for hourly observations data models

#		Country	Name	Туре		System Name
	1.	AUSTRALIA	ВоМ	NMHS		CLIDE
	2.	BRAZIL	INMET	NMHS		INMET
	3.	CANADA	MSC	NMHS		ESC
	4.	CZECH	СНМІ	ATACO		CLIDATA
	5.	DWD	DWD	NMHS		
	6.	FRANCE	MF	NMHS		BDCLIM
	7.	FRANCE	MFI	METEO INTERNATIONAL	FRANCE	CLISYS
	8.	NEW ZEALAND	METSERVICE	NMHS		CLIDB
	9.	RUSSIA	HYDROMET	NMHS		CLIWARE
	10.	SPAIN	AEMET	NMHS		SAEMET
	11.	UK	UK Met Office	ORGANIZATION		CLIMSOFT
	12.	UK	UK Met Office	NMHS		MIDAS
	13.	WMO	WMO	ORGANIZATION		CLICOM
	14.	WMO	WMO	ORGANIZATION		МСН
	15.					
	16.					
	17.					

18.

19.

Awaiting answer from

Country	Name	Туре	e System Name
AUSTRALIA	BoM	NMHS	ADAM
CHINA	CMA	NMHS	
JAPAN	JMA	NMHS	
SLOVAKIA	Private	IMS	CLDB

List of full schemas shared on the OpenCDMS GitHub

Country	Name	System Name
AUSTRALIA	BoM	CLIDE
FRANCE	MF	BDCLIM
UK	UK Met Office	CLIMSOFT
UK	UK Met Office	MIDAS
ORGANIZATIO	WMO	CLICOM
N		
ORGANIZATIO	WMO	MCH

Assessment of existing data models

STRUCTURE OF THE HOURLY DATA TABLE

Following the terms used by WMO-TD No. 60 (2007) where 3 data model types have been presented (Element Model, Observation Model, Value Model)

Element model (EM)	An Element Model represents data in tables, having, in each row,		
	different values of one variable observed at one station at different		
	times.		
	For example, hourly data could be stored in an Houly table. Each		
	row would correspond to a specific station, a specific day, and a		
	specific variable. The attributes, i.e. each cell of a specific row, store		
	the different values of that variable and of that station for a given		
	hour (e.g. 24 values for 1 day).		
Observation model (OM)	An Observation Model represents data in tables having, in each		
	row, the values of different variables observed at one station at a		
	given time.		
	For example, hourly data could be stored in an Hourly table. Each		
	row would correspond to a specific station at a specific hour. Each		
	column of a specific row would store the values of the different		
	hourly variables observed at the specific hour, e.g. hourly max		
	temperature, hourly mean temperature and precipitation.		
Value model (VM)	temperature, hourly mean temperature and precipitation. A Value Model will represent the data values in tables having, in		
Value model (VM)	A Value Model will represent the data values in tables having, in		
Value model (VM)	A Value Model will represent the data values in tables having, in each row, only one value of one variable observed at one station at		
Value model (VM)	A Value Model will represent the data values in tables having, in each row, only one value of one variable observed at one station at a specific time.		
Value model (VM)	A Value Model will represent the data values in tables having, in each row, only one value of one variable observed at one station at a specific time. For example, hourly data could be stored in an Hourly. Each row		
Value model (VM)	A Value Model will represent the data values in tables having, in each row, only one value of one variable observed at one station at a specific time.		

Country	Data Model Name	Data Model Type
AUSTRALIA	CLIDE	OM
BRAZIL	INMET	?
CANADA	ESC	VM
CZECH	CLIDATA	EM
DWD		VM
FRANCE	BDCLIM	OM
FRANCE	CLISYS	OM
NEW ZEALAND	CLIDB	
RUSSIA	CLIWARE	OM
SPAIN	SAEMET	EM
UK	CLIMSOFT	VM
UK	MIDAS	OM
WMO	CLICOM	EM
WMO	MCH	VM

DATA QUALITY CODES

Assessment on existing Climatological Practices

COMPUTATION PRACTICES AND RULES WITH MISSING DATA

Main Principles

ABLE TO MANAGE ESSENTIAL CLIMATE VARIABLES (ECV)

https://gcos.wmo.int/en/essential-climate-variables/table

Inventory of ECV Inventory : https://climatemonitoring.info/wp-content/uploads/2020/07/ECV Inventory v3.0.xlsx

COMPLIANT WITH THE GCOS CLIMATE MONITORING PRINCIPLES

See : http://ane4bf-datap1.s3-eu-west-1.amazonaws.com/wmocms/s3fs-public/ckeditor/files/GCOS Climate Monitoring Principles.pdf?
http://ane4bf-datap1.s3-eu-west-1.amazonaws.com/wmocms/s3fs-public/ckeditor/files/GCOS Climate Monitoring Principles.pdf?
http://ane4bf-datap1.s3-eu-west-1.amazonaws.com/wmocms/s3fs-public/ckeditor/files/GCOS Climate Monitoring Principles.pdf?

COMPLIANT WITH THE WIGOS METADATA

See WMO- No. 1192

COMPLIANT WITH THE CIMO GUIDE

Guide to Instruments and Methods of Observation (WMO- No. 8°)

And especially the **Sitting Classification** (first common ISO/WMO standard published by ISO as ISO standard 19289:2014 (EN)).and the **Sustained Performance maintenance**

COMPLIANT WITH THE MANUAL ON THE HQ GDMF

High-quality Global Data Management Framework for Climate WMO- No. 1238. Especially with the International and National WMO Stewardship Maturity Matrix for Climate Data.

COMPLIANT WITH THE CDMS SPECIFICATIONS

Climate Data Management System Specifications WMO- No. 1131 See mainly the chapter 4 of the CDMS Specifications

- Handling observations from multiple sensors per station, per phenomenon, and recording the source of each observation.
- Managing multiple tiers of data quality, from raw records to homogenized data.

· Managing spatial and time-series data

- Using a robust data model that takes into account the requirements of open spatial standards, particularly the ISO 19156:2011 *Geographic information Observations and measurements* standard, METCE and the WMO climate observations application schema (see component 4.2.3.2).
- Managing metadata related to data provenance. This entails ensuring that each change to an observation is recorded for future recovery, and recording the details of why a particular change was made, which includes:
 - Tracing the product lineage to the data source. For example, what observations and gridded data were used to underpin the analysis released in peer-reviewed paper X?
 - Ensuring that the reason for each observation change is recorded.
- Managing third-party and crowdsourced data.
- Managing intellectual property rights related to data.
- Enabling point-in-time recovery. For example, what data were present in the database for station X at time T?
- Storing a range of document formats, such as:
 - Photographs of observation stations and instruments, meteorological phenomena, etc.
 - Scanned paper observation forms
 - Scanned microfiche/microfilm

- Relevant observations metadata documents, such as instrument calibration reports
- Technical manuals
- Site location plans and sections
- Videos and other multimedia formats
- Handling data uncertainty (for more information, see Wikipedia articles on uncertain data and uncertainty).
- Managing multidimensional time-series gridded data and possibly numerical models.
- Providing support for the information management concepts of semantics and linked data.

COMPLIANT WITH CURRENT DATA STANDARDS

Not only station time series but able to manage **spatial** data. More and more data are created for climate services and should be available for NMHSs: models data, reanalysis, radars, etc.

WMO

WIS

METCE

WMO Register Codes

WMO AND OGC

Met Ocean DWG

WMO and Open Geospatial Consortium (OGC): The Meteorology and Oceanography Domain Working Group (Met Ocean DWG)

Hydrology Domain Working Group

WMO and Open Geospatial Consortium (OGC): The Hydrology Domain Working Group

OGC AND ISO

ISO 19156:2011 *Geographic information – Observations and measurements. E.g.* WaterML and the Meteorological Information Exchange Model of the International Civil Aviation Organization (ICAO).

ISO 19115 *Geographic Information - Metadata standard* (not for station metadata)

ISO 19131 *Geographic information – Data product specifications*

ISO 19157 *Geographic Information - Data Quality*

ISO 19158 Geographic Information - Quality assurance of data supply

ISO 19156 Geographic information - Observations and measurements

SensorML: describing sensors and measurement processes

References

#	Title		
		n	
WMO-TD No.	Guidelines on Data Management	2007	
WMO- No. 1192	WIGOS Metadata Standard	2019	
WMO- No. 1238	High-quality Global Data Management Framework for Climate	2019	
WMO- No. 1131	Climate Data Management System Specifications	2014	
WMO- No. 8	Guide to Instruments and Methods of Observation	2018	