Maladaptive plastic responses of flowering time to geothermal heating (Cerastium 2)

Analyses with logger data

Alicia Valdés

Contents

Read data	3
Plot with all logger data, one line per logger id	3
Q1: Are instantaneous measures of soil temperature representative for the conditions during the entire spring/growing season?	3
May	9
Whole period	5
Q2: Do differences between soil and air temperatures change with soil temperature?	6
All temperature values	7
Logger data for the whole period:	7
Logger data for May:	8
Logger data for April-May-June:	ę
Daily temperature values	10
Logger data for the whole period:	10
Logger data for May:	11
Logger data for April-May-June:	12
Positive temperature values	13
Logger data for the whole period:	13
Logger data for May:	14
Logger data for April-May-June:	15
Q3: Do correlations between soil and air temperature vary with soil temperature?	16
Option 1 (probably not used): use plots to calculate correlations between soil and air logger temperatures	16
Correlations soil-air temperature over the period April-May-June	16
Correlations soil-air temperature for May only	17

Option 2: try to pair loggers	17
Paired logger data	17
Analyses using all pairs	18
Correlations soil-air temperature over the period April-May-June	18
Correlations soil-air temperature for May only	33
Correlations soil-air temperature for June 1-5	37
Analyses using pairs with distance $< 2 \ldots \ldots \ldots \ldots$	38
Correlations soil-air temperature over the period April-May-June	38
Correlations soil-air temperature for May only	39
Analyses using the 17 pairs where above- and below ground loggers are at the same plant	41
Correlations soil-air temperature over the period April-May-June	41
Correlations soil-air temperature for May only	42
Plot all logger pairs	42
Q3 Option 2 with logger pairs with no problems	43
Analyses using all pairs	43
Correlations soil-air temperature over the period April-May-June	43
Correlations soil-air temperature for May only	44
Session Info	44

Read data

Plot with all logger data, one line per logger id

Q1: Are instantaneous measures of soil temperature representative for the conditions during the entire spring/growing season?

Correlations logger temperature - instant temperature

May

For each logger_nr, get mean temperature during May 2017 and compare with temp_term (which was measured with a thermometer at 10 cm depth on May 2017):

Soil temperature (10 cm depth) measured in May

Observations	78
Dependent variable	$meanmay_logger$
Type	OLS linear regression

F(1,76)	1.233
\mathbb{R}^2	0.016
$Adj. R^2$	0.003

	Est.	S.E.	t val.	p
(Intercept)	6.507	0.547	11.900	0.000
$temp_term$	0.040	0.036	1.111	0.270

Standard errors: OLS

Observations	141
Dependent variable	$meanmay_logger$
Type	OLS linear regression

F(1,139)	399.799
\mathbb{R}^2	0.742
$Adj. R^2$	0.740

	Est.	S.E.	t val.	p
(Intercept)	-0.727	0.625	-1.163	0.247
$temp_term$	0.853	0.043	19.995	0.000

Standard errors: OLS

Correlation mean temperature of may from logger data and soil temperature measured in may with thermometer:

[1] 0.6446784

Correlation mean temperature of may from logger data (only below ground loggers) and soil temperature measured in may with thermometer:

[1] 0.8614051

Correlation mean temperature of may from logger data (only above ground loggers) and soil temperature measured in may with thermometer:

[1] 0.1263677

Whole period

For each logger_nr, get mean temperature during the whole period available and compare with temp_term (which was measured with a thermometer at 10 cm depth on May 2017):

Soil temperature (10 cm depth) measured in May

Observations	78
Dependent variable	$mean_logger$
Type	OLS linear regression

F(1,76)	54.027
\mathbb{R}^2	0.416
$Adj. R^2$	0.408

	Est.	S.E.	t val.	p
(Intercept)	1.633	0.138	11.819	0.000
$_{\rm temp_term}$	0.066	0.009	7.350	0.000

Standard errors: OLS

Correlation mean temperature from logger data and soil temperature measured in may with thermometer:

Observation	ns				141
Dependent	variable		mea	n_l	ogger
Type		OLS li	near i	egre	ession
·	F(1,139)	686.8	07		
	(. ,				
	\mathbb{R}^2	0.8	32		
	$Adj. R^2$	0.8	30		
•					
	Est.	S.E.	t v	al.	р
(Intercept)	-3.547	0.465	-7.6	23	0.000
$temp_term$	0.832	0.032	26.2	07	0.000

Standard errors: OLS

[1] 0.6700633

Correlation mean temperature from logger data (only below ground loggers) and soil temperature measured in may with thermometer:

[1] 0.9119648

Correlation mean temperature from logger data (only above ground loggers) and soil temperature measured in may with thermometer:

[1] 0.6445959

The correlation values seem to indicate that the temperature measured with a thermometer represents quite well longer-term conditions

Q2: Do differences between soil and air temperatures change with soil temperature?

For the plants with aboveground loggers, we have air temperature and soil temperature measured at the same exact location (air temperature measured by the aboveground logger and soil temperature measured with the thermometer). We use these plants to test for correlations between air and soil temperature.

All temperature values

Logger data for the whole period:

Soil temperature (10 cm depth) measured in May

Observations	78
Dependent variable	$mean_logger$
Type	OLS linear regression

F(1,76)	54.027
\mathbb{R}^2	0.416
$Adj. R^2$	0.408

	Est.	S.E.	t val.	p
(Intercept)	1.633	0.138	11.819	0.000
$temp_term$	0.066	0.009	7.350	0.000

Standard errors: OLS

```
## Linear hypothesis test
##
## Hypothesis:
## temp_term = 1
## Model 1: restricted model
## Model 2: mean_logger ~ temp_term
##
     Res.Df
               RSS Df Sum of Sq
                                         Pr(>F)
##
## 1
         77 3339.5
              23.6 1
                         3315.9 10658 < 2.2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

The slope is significantly different from 1: differences between soil and air temperature change with soil temperature, being larger at higher soil temperatures.

Logger data for May:

Soil temperature (10 cm depth) measured in May

Observations	78
Dependent variable	$meanmay_logger$
Type	OLS linear regression

F(1,76)	1.233
\mathbb{R}^2	0.016
$Adj. R^2$	0.003

	Est.	S.E.	t val.	p
(Intercept)	6.507	0.547	11.900	0.000
$temp_term$	0.040	0.036	1.111	0.270

Standard errors: OLS

```
## Linear hypothesis test
##
## Hypothesis:
## temp_term = 1
## Model 1: restricted model
## Model 2: meanmay_logger ~ temp_term
##
##
     Res.Df
              RSS Df Sum of Sq
                                          Pr(>F)
## 1
         77 3878.6
## 2
         76 370.1 1
                         3508.5 720.54 < 2.2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

When looking only at air temperature in May, the slope is also significantly different from 1. But it is not significantly different from zero! So there is no relationship between soil and air temperature.

Logger data for April-May-June:

Soil temperature (10 cm depth) measured in May

Observations	78
Dependent variable	$mean spring_logger$
Type	OLS linear regression

F(1,76)	4.642
\mathbb{R}^2	0.058
$Adj. R^2$	0.045

	Est.	S.E.	t val.	p
(Intercept)	4.805	0.501	9.592	0.000
$temp_term$	0.071	0.033	2.154	0.034

Standard errors: OLS

```
## Linear hypothesis test
##
## Hypothesis:
## temp_term = 1
##
## Model 1: restricted model
## Model 2: meanspring_logger ~ temp_term
##
##
     Res.Df
               RSS Df Sum of Sq
                                          Pr(>F)
## 1
         77 3597.1
## 2
            310.6
                         3286.5 804.06 < 2.2e-16 ***
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

When looking at air temperature in the period April-May-June, the slope is also significantly different from 1: differences between soil and air temperature change with soil temperature, being larger at higher soil temperatures.

Daily temperature values

Repeat what was done above using only daily values of air temperature (after 8 am and before or equal to 8 pm).

Logger data for the whole period:

Observations 78
Dependent variable mean_logger
Type OLS linear regression

F(1,76)	50.038
\mathbb{R}^2	0.397
$Adj. R^2$	0.389

	Est.	S.E.	t val.	p
(Intercept)	2.566	0.157	16.343	0.000
$temp_term$	0.073	0.010	7.074	0.000

Standard errors: OLS

Linear hypothesis test
##
Hypothesis:
temp_term = 1
##
Model 1: restricted model

```
## Model 2: mean_logger ~ temp_term
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 77 3302.6
## 2 76 30.5 1 3272.1 8152 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Logger data for May:

Soil temperature (10 cm depth) measured in May

Observations	78
Dependent variable	$meanmay_logger$
Type	OLS linear regression

F(1,76)	0.196
\mathbb{R}^2	0.003
$Adj. R^2$	-0.011

	Est.	S.E.	t val.	p
(Intercept)	9.212	0.736	12.516	0.000
$temp_term$	0.021	0.048	0.443	0.659

Standard errors: OLS

```
## Linear hypothesis test
##
## Hypothesis:
## temp_term = 1
##
## Model 1: restricted model
## Model 2: meanmay_logger ~ temp_term
##
```

```
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1    77 4314.9
## 2    76 670.6    1    3644.3 413.04 < 2.2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1</pre>
```

Logger data for April-May-June:

Observations 78
Dependent variable meanspring_logger
Type OLS linear regression

F(1,76)	1.799
\mathbb{R}^2	0.023
$Adj. R^2$	0.010

	Est.	S.E.	t val.	p
(Intercept)	7.340	0.689	10.651	0.000
$temp_term$	0.060	0.045	1.341	0.184

Standard errors: OLS

Linear hypothesis test
##
Hypothesis:
temp_term = 1
##
Model 1: restricted model
Model 2: meanspring_logger ~ temp_term
##
Res.Df RSS Df Sum of Sq F Pr(>F)
1 77 3946.4

```
76 587.9 1
                       3358.5 434.13 < 2.2e-16 ***
## ---
                 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
```

Positive temperature values

Logger data for the whole period:

Soil temperature (10 cm depth) measured in May

Observations	78
Dependent variable	$mean_logger$
Type	OLS linear regression

F(1,76)	5.296
\mathbb{R}^2	0.065
$Adj. R^2$	0.053

	Est.	S.E.	t val.	p
(Intercept)	6.208	0.218	28.499	0.000
$temp_term$	0.033	0.014	2.301	0.024

Standard errors: OLS

```
## Linear hypothesis test
##
## Hypothesis:
## temp_term = 1
## Model 1: restricted model
## Model 2: mean_logger ~ temp_term
##
     Res.Df
               RSS Df Sum of Sq
                                         Pr(>F)
##
```

```
## 1    77 3618.1
## 2    76 58.7 1    3559.4 4606 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Logger data for May:

Observations 78
Dependent variable meanmay_logger
Type OLS linear regression

F(1,76)	0.773
\mathbb{R}^2	0.010
$Adj. R^2$	-0.003

	Est.	S.E.	t val.	p
(Intercept)	7.011	0.457	15.342	0.000
$_{\rm temp_term}$	0.026	0.030	0.879	0.382

Standard errors: OLS

```
## Linear hypothesis test
##
## Hypothesis:
## temp_term = 1
##
## Model 1: restricted model
## Model 2: meanmay_logger ~ temp_term
##
##
     Res.Df
               RSS Df Sum of Sq
                                           Pr(>F)
## 1
         77 3866.0
         76 258.5
                         3607.5 1060.6 < 2.2e-16 ***
## 2
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1
```

Logger data for April-May-June:

Soil temperature (10 cm depth) measured in May

Observations	78
Dependent variable	$mean spring_logger$
Type	OLS linear regression

F(1,76)	1.944
\mathbb{R}^2	0.025
$Adj. R^2$	0.012

	Est.	S.E.	t val.	p
(Intercept)	6.277	0.357	17.573	0.000
$temp_term$	0.033	0.023	1.394	0.167

Standard errors: OLS

```
## Linear hypothesis test
##
## Hypothesis:
## temp_term = 1
## Model 1: restricted model
## Model 2: meanspring_logger ~ temp_term
##
##
     Res.Df
               RSS Df Sum of Sq
                                          Pr(>F)
## 1
         77 3718.9
## 2
         76 157.9 1
                         3560.9 1713.6 < 2.2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Q3: Do correlations between soil and air temperature vary with soil temperature?

Or: How useful soil temperature is as a cue for air temperature, i.e., as a cue for spring advancement?

Option 1 (probably not used): use plots to calculate correlations between soil and air logger temperatures

Correlations soil-air temperature over the period April-May-June

For each date and plot, calculate mean, max and min of air and soil temperature (from, respectively, above and belowground loggers). Then, calculate the correlation coefficient for air and soil temperatures over the period April-May-June. Finally, regress these correlation coefficients on mean soil temperature for each plot for the same period.

Several plots with negative correlations!

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6119703	0.0862149	7.0981923	0.0000002
corr_airsoil_max	meansoiltemp	-0.0098613	0.0075418	-1.3075468	0.2024719
corr_airsoil_mean	(Intercept)	0.6977323	0.0892365	7.8189095	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0038386	0.0078061	-0.4917393	0.6270297
corr_airsoil_min	(Intercept)	0.5107733	0.0943600	5.4130303	0.0000113
corr_airsoil_min	meansoiltemp	-0.0036281	0.0082543	-0.4395358	0.6639051

Non-significant in all cases.

Correlations soil-air temperature for May only

For each date and plot, calculate mean, max and min of air and soil temperature (from, respectively, above and belowground loggers). Then, calculate the correlation coefficient for air and soil temperatures over the month of May. Finally, regress these correlation coefficients on mean soil temperature for each plot for the same period.

Several plots with negative correlations!

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6919312	0.0788774	8.7722341	0.0000000
corr_airsoil_max	meansoiltemp	-0.0092418	0.0065041	-1.4209164	0.1672242
corr_airsoil_mean	(Intercept)	0.6680271	0.0884666	7.5511777	0.0000001
corr_airsoil_mean	meansoiltemp	0.0041009	0.0072948	0.5621674	0.5788169
corr_airsoil_min	(Intercept)	0.4456083	0.1342556	3.3191049	0.0026774
corr_airsoil_min	meansoiltemp	0.0104284	0.0110705	0.9419963	0.3548655

Non-significant in all cases.

Option 2: try to pair loggers

Paired logger data

Plot with all paired logger data, one line per logger id


```
##
   # A tibble: 146 x 3
##
      logger_nr pair last_date
##
          <dbl> <dbl> <dttm>
##
    1
            103
                     1 2018-06-06 12:11:00
    2
            105
##
                     1 2018-06-06 13:44:00
##
    3
            101
                     2 2018-06-06 11:34:00
    4
            104
                     2 2018-06-06 13:16:00
##
##
    5
            108
                     3 2018-06-06 12:52:00
                       2018-06-06 11:02:00
##
    6
            113
##
    7
            111
                       2018-06-06 12:59:00
                       2018-06-06 12:04:00
##
    8
            115
##
    9
            117
                     5 2018-06-06 10:43:00
            122
##
   10
                     5 2018-06-06 13:36:00
      .. with 136 more rows
```

Most loggers (131 out of 145) end up on June 6th. So probably using May is OK.

Analyses using all pairs

Correlations soil-air temperature over the period April-May-June

Based on 24-h values For each date and logger pair, calculate mean, max and min of air and soil temperature (from, respectively, the above and belowground logger). Then, calculate the correlation coefficient for air and soil temperatures over the period April-May-June. Finally, regress these correlation coefficients on mean soil temperature (from the belowground logger) for the same period (April-May-June).

Using only data till June 5th, included (as most loggers stop on June 6th).

Look at the pairs with negative correlations in detail Pairs with negative correlations: 36 (only for min), 63, 66, 68, 71, 73.

I cannot see anything worrying in the graph. As the negative correlation is only for the min temperature,

and it is also not very negative, maybe there is nothing strange here?

Here, both loggers have constant values of temperature for several periods of time.

The next graph shows all loggers in the same plot as pair 63:

All but one have similar patterns, with constant values for some time periods. Here is the spatial distribution of the loggers in the plot:

Maybe part of the plot was covered by snow, causing this low variation, and logger 503 was not?

The next graph shows all loggers in the same plot as pair 66:

All the belowground loggers show similar patters, with very low variation. However, the aboveground loggers look fine, even if they are located at the same plant that a belowground logger (see locations in the graph below). So this is probably not due to effects of snow? Or could it be that the aboveground loggers are out of the snow but the belowground ones are covered by snow?

And the locations in the plot:

The next graph shows all loggers in the same plot as pair 68:

And the locations in the plot:

One can really see the negative correlation in this pair! The "peaks" for the aboveground logger coincide with the "valleys" for the belowground one.

The next graph shows all loggers in the same plot as pair 71 and 73: $\,$

And the locations in the plot:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.5414445	0.0532531	10.1673811	0.0000000
corr_airsoil_max	meansoiltemp	-0.0017789	0.0041961	-0.4239331	0.6728962
corr_airsoil_mean	(Intercept)	0.6639691	0.0590038	11.2529902	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0040923	0.0046493	-0.8801977	0.3817219
corr_airsoil_min	(Intercept)	0.5528005	0.0510155	10.8359418	0.0000000
corr_airsoil_min	meansoiltemp	-0.0062181	0.0040198	-1.5468504	0.1263454

Non-significant in all cases.

Linear models testing the effect of soil temperature on correlations between soil and air temperature, removing pairs with negative correlations (5-6 pairs):

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6532763	0.0357085	18.294692	0.0000000
corr_airsoil_max	meansoiltemp	-0.0071265	0.0027362	-2.604566	0.0113544
corr_airsoil_mean	(Intercept)	0.7963235	0.0374644	21.255451	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0105272	0.0028707	-3.667091	0.0004913
corr_airsoil_min	(Intercept)	0.6686414	0.0301222	22.197651	0.0000000
corr_airsoil_min	meansoiltemp	-0.0111786	0.0023113	-4.836430	0.0000085

All significant!

And the graph:

Based on 12-h (day) values Using only daily values of temperature (after 8 am and before or equal to 8 pm).

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.5368293	0.0557102	9.6360999	0.0000000
corr_airsoil_max	meansoiltemp	0.0002100	0.0043195	0.0486128	0.9613644
corr_airsoil_mean	(Intercept)	0.5909129	0.0561507	10.5236931	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0004269	0.0043536	-0.0980494	0.9221693
corr_airsoil_min	(Intercept)	0.6083944	0.0548987	11.0821241	0.0000000
corr_airsoil_min	meansoiltemp	-0.0048871	0.0042566	-1.1481222	0.2547718

Non-significant in all cases.

Linear models testing the effect of soil temperature on correlations between soil and air temperature, removing pairs with negative correlations (5-6 pairs):

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6568292	0.0368735	17.813044	0.0000000
corr_airsoil_max	meansoiltemp	-0.0055417	0.0027795	-1.993793	0.0503097
corr_airsoil_mean	(Intercept)	0.7124420	0.0377785	18.858386	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0062753	0.0028477	-2.203630	0.0310445
corr_airsoil_min	(Intercept)	0.7085154	0.0404277	17.525472	0.0000000
corr_airsoil_min	meansoiltemp	-0.0098199	0.0030664	-3.202460	0.0020856

All but max are significant.

And the graph:

Based on positive values Using only positive values of temperature (>0).

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.5722864	0.0568255	10.0709394	0.0000000
corr_airsoil_max	meansoiltemp	-0.0039756	0.0043611	-0.9115950	0.3652024
corr_airsoil_mean	(Intercept)	0.6207873	0.0603391	10.2883137	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0035835	0.0046308	-0.7738308	0.4417129
corr_airsoil_min	(Intercept)	0.6056288	0.0528874	11.4512789	0.0000000
corr_airsoil_min	meansoiltemp	-0.0080822	0.0040589	-1.9912301	0.0504750

Non-significant in all cases.

Linear models testing the effect of soil temperature on correlations between soil and air temperature, removing pairs with negative correlations:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6487076	0.0359797	18.029844	0.0000000
corr_airsoil_max	meansoiltemp	-0.0070385	0.0027214	-2.586353	0.0119480
corr_airsoil_mean	(Intercept)	0.7033320	0.0362586	19.397672	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0067764	0.0027425	-2.470886	0.0161089
corr_airsoil_min	(Intercept)	0.6757173	0.0320621	21.075270	0.0000000
corr_airsoil_min	meansoiltemp	-0.0100510	0.0024280	-4.139708	0.0001037

All significant!

And the graph:

Correlations soil-air temperature for May only

Based on 24-h values For each date and logger pair, calculate mean, max and min of air and soil temperature (from, respectively, the above and belowground logger). Then, calculate the correlation coefficient for air and soil temperatures over the month of May. Finally, regress these correlation coefficients on mean soil temperature (from the belowground logger) for the same period (May).

Pairs with negative correlations: 63 (not for max), 66, 68, 71, 72 (not for min), 73.

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.5339495	0.0643113	8.3025835	0.0000000
corr_airsoil_max	meansoiltemp	0.0011776	0.0048546	0.2425635	0.8090429
corr_airsoil_mean	(Intercept)	0.5984971	0.0681018	8.7882702	0.0000000
corr_airsoil_mean	meansoiltemp	0.0056804	0.0051408	1.1049748	0.2729010
corr_airsoil_min	(Intercept)	0.5200282	0.0656467	7.9216145	0.0000000
corr_airsoil_min	meansoiltemp	0.0078510	0.0049554	1.5843210	0.1175651

Non-significant in all cases.

Linear models testing the effect of soil temperature on correlations between soil and air temperature, removing pairs with negative correlations:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6609397	0.0454706	14.5355395	0.0000000
corr_airsoil_max	meansoiltemp	-0.0047924	0.0033466	-1.4320039	0.1568618
corr_airsoil_mean	(Intercept)	0.7613055	0.0462880	16.4471484	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0028649	0.0033939	-0.8441434	0.4016387
corr_airsoil_min	(Intercept)	0.6923881	0.0370413	18.6923258	0.0000000
corr_airsoil_min	meansoiltemp	-0.0006942	0.0027174	-0.2554693	0.7991673

Non-significant in all cases.

corr_airsoil_ corr_airsoil_ corr_airsoil_

Based on 12-h (day) values

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.5251973	0.0646679	8.1214504	0.0000000
corr_airsoil_max	meansoiltemp	0.0033714	0.0047894	0.7039205	0.4837846
corr_airsoil_mean	(Intercept)	0.5395430	0.0639890	8.4318116	0.0000000
corr_airsoil_mean	meansoiltemp	0.0057828	0.0047392	1.2202272	0.2264162
corr_airsoil_min	(Intercept)	0.5120213	0.0626557	8.1719839	0.0000000
corr_airsoil_min	meansoiltemp	0.0076132	0.0046404	1.6406225	0.1052990

Non-significant in all cases.

Linear models testing the effect of soil temperature on correlations between soil and air temperature, removing pairs with negative correlations:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6481733	0.0470410	13.7789019	0.0000000
corr_airsoil_max	meansoiltemp	-0.0023223	0.0033970	-0.6836405	0.4965954
corr_airsoil_mean	(Intercept)	0.7023117	0.0419326	16.7485765	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0022867	0.0030060	-0.7607030	0.4495853
corr_airsoil_min	(Intercept)	0.6675056	0.0435184	15.3384720	0.0000000
corr_airsoil_min	meansoiltemp	-0.0006324	0.0031297	-0.2020717	0.8404823

Non-significant in all cases.

measure

corr_airsoil_ma

corr_airsoil_me

Based on positive values

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.5628730	0.0742157	7.5842894	0.0000000
corr_airsoil_max	meansoiltemp	-0.0003401	0.0054842	-0.0620071	0.9507391
corr_airsoil_mean	(Intercept)	0.6069705	0.0750138	8.0914467	0.0000000
corr_airsoil_mean	meansoiltemp	0.0044108	0.0055432	0.7957273	0.4289596
corr_airsoil_min	(Intercept)	0.5762232	0.0640076	9.0024205	0.0000000
corr_airsoil_min	meansoiltemp	0.0039519	0.0047299	0.8355228	0.4063496

Non-significant in all cases.

Linear models testing the effect of soil temperature on correlations between soil and air temperature, removing pairs with negative correlations:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.7228953	0.0427540	16.9082551	0.0000000
corr_airsoil_max	meansoiltemp	-0.0085574	0.0030877	-2.7715005	0.0072976
corr_airsoil_mean	(Intercept)	0.7689999	0.0416724	18.4534644	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0037683	0.0030095	-1.2521306	0.2150789
corr_airsoil_min	(Intercept)	0.6725041	0.0389746	17.2549451	0.0000000
corr_airsoil_min	meansoiltemp	0.0002265	0.0028366	0.0798603	0.9365976

Only significant for max.

And the graph:

Correlations soil-air temperature for June 1-5

Based on 24-h values For each date and logger pair, calculate mean, max and min of air and soil temperature (from, respectively, the above and belowground logger). Then, calculate the correlation coefficient for air and soil temperatures over the month of May. Finally, regress these correlation coefficients on mean soil temperature (from the belowground logger) for the same period (June).

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6976189	0.0671604	10.3873576	0.0000000
corr_airsoil_max	meansoiltemp	0.0022117	0.0040996	0.5394888	0.5912616
corr_airsoil_mean	(Intercept)	0.5783569	0.0884769	6.5368106	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0036764	0.0054008	-0.6807220	0.4982930
corr_airsoil_min	(Intercept)	-0.1903270	0.0932753	-2.0404863	0.0450754
corr_airsoil_min	meansoiltemp	0.0288402	0.0056937	5.0653113	0.0000032

Positive significant for min.

Analyses using pairs with distance < 2

Correlations soil-air temperature over the period April-May-June For each date and logger pair, calculate mean, max and min of air and soil temperature (from, respectively, the above and belowground logger). Then, calculate the correlation coefficient for air and soil temperatures over the period April-May-June. Finally, regress these correlation coefficients on mean soil temperature (from the belowground logger) for the same period (April-May-June).

Using only data till June 5th, included (as most loggers stop on June 6th).

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.5304296	0.0708280	7.4889832	0.0000000
corr_airsoil_max	meansoiltemp	-0.0039004	0.0056562	-0.6895793	0.4937792
corr_airsoil_mean	(Intercept)	0.6288761	0.0788602	7.9745647	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0041705	0.0062976	-0.6622335	0.5109888
corr_airsoil_min	(Intercept)	0.5156739	0.0658971	7.8254368	0.0000000
corr_airsoil_min	meansoiltemp	-0.0054906	0.0052624	-1.0433740	0.3020016

Non-significant in all cases.

Correlations soil-air temperature for May only For each date and logger pair, calculate mean, max and min of air and soil temperature (from, respectively, the above and belowground logger). Then, calculate the correlation coefficient for air and soil temperatures over the month of May. Finally, regress these correlation coefficients on mean soil temperature (from the belowground logger) for the same period (May).

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.5200013	0.0864699	6.0136709	0.0000002
corr_airsoil_max	meansoiltemp	-0.0001031	0.0066566	-0.0154872	0.9877077
corr_airsoil_mean	(Intercept)	0.5552980	0.0904358	6.1402436	0.0000002
corr_airsoil_mean	meansoiltemp	0.0068462	0.0069619	0.9833771	0.3303528
corr_airsoil_min	(Intercept)	0.4477096	0.0868626	5.1542293	0.0000048
corr_airsoil_min	meansoiltemp	0.0109771	0.0066868	1.6416126	0.1072072

Non-significant in all cases.

Analyses using the 17 pairs where above- and belowground loggers are at the same plant

Correlations soil-air temperature over the period April-May-June

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	-0.0071435	0.1349315	-0.0529414	0.9584772
corr_airsoil_max	meansoiltemp	0.0304788	0.0123633	2.4652678	0.0262418
corr_airsoil_mean	(Intercept)	0.0149601	0.1556400	0.0961197	0.9246980
corr_airsoil_mean	meansoiltemp	0.0347551	0.0142607	2.4371243	0.0277336
corr_airsoil_min	(Intercept)	0.0177846	0.1378222	0.1290399	0.8990405
corr_airsoil_min	meansoiltemp	0.0276366	0.0126281	2.1884936	0.0448694

Postive relationships are significant in all cases!

Correlations soil-air temperature for May only

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.0112482	0.1574775	0.0714276	0.9440011
corr_airsoil_max	meansoiltemp	0.0263462	0.0135001	1.9515526	0.0699213
corr_airsoil_mean	(Intercept)	0.0531767	0.1768662	0.3006604	0.7678006
corr_airsoil_mean	meansoiltemp	0.0291942	0.0151623	1.9254520	0.0733463
corr_airsoil_min	(Intercept)	-0.0480644	0.1690743	-0.2842799	0.7800827
corr_airsoil_min	meansoiltemp	0.0340534	0.0144943	2.3494321	0.0329145

Significant only for min, near significance for the others.

Plot all logger pairs

Make one plot for each logger pair and save all as a pdf in output folder.

After looking at the plots, make a new variable pair_problem: - 0 = no problem - 1 = some problems (remove)

Q3 Option 2 with logger pairs with no problems

Analyses using all pairs

Correlations soil-air temperature over the period April-May-June

Most of the pairs with negative correlations have disappeared when considering only pairs without problems! Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.6568341	0.0319380	20.565933	0.0000000
corr_airsoil_max	meansoiltemp	-0.0072069	0.0021963	-3.281420	0.0018870
corr_airsoil_mean	(Intercept)	0.8381035	0.0345061	24.288540	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0122582	0.0023729	-5.165940	0.0000042
corr_airsoil_min	(Intercept)	0.7043187	0.0350510	20.094122	0.0000000
corr_airsoil_min	meansoiltemp	-0.0135863	0.0024104	-5.636639	0.0000008

All significant.

Correlations soil-air temperature for May only

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.7303409	0.0450862	16.198769	0.0000000
corr_airsoil_max	meansoiltemp	-0.0084423	0.0030049	-2.809453	0.0070638
corr_airsoil_mean	(Intercept)	0.8286498	0.0376102	22.032561	0.0000000
corr_airsoil_mean	meansoiltemp	-0.0056441	0.0025067	-2.251634	0.0287701
corr_airsoil_min	(Intercept)	0.7763669	0.0370992	20.926806	0.0000000
corr_airsoil_min	meansoiltemp	-0.0054087	0.0024726	-2.187446	0.0334132

Non-significant in all cases.

Session Info