Response Analysis

Luke Verdi, Tilman Bayer

12/16/2021

Read in packages and saved data from the email scripts:

Also have a bit of code to pull in segregation data:

```
segregation <- read.csv("../../data/raw/Segregation_by_metro_areas_2021-10.csv")</pre>
# Obtained via curl https://belonging.berkeley.edu/sites/default/files/2021-10/Segregation%20by%20metr
# TKTK: match our 20 Craigslist region names to these metro regions
# TKTK: Write up a short justification for this matching, citing e.g.
# https://geoffboeing.com/publications/craigslist-rental-housing-markets/ :
# "Craigslist geographies are not always a perfect match for census geographies
# [...] but the vast majority of listings are far from these gray-area boundaries
# and the geographies do generally correspond well."
df <- segregation %>% mutate(City = NA) %>% filter(Metro=='Clear')
for (city in unique(rental_response_data$city)) {
    row <- segregation[grepl(toupper(city), toupper(segregation$Metro)),]</pre>
    if (nrow(row) != 1) {
      if (city == 'washingtondc') {
            row <- segregation[grepl(toupper('Washington'), toupper(segregation$Metro)),]</pre>
        } else if (city == 'sfbay') {
            row <- segregation[grepl(toupper('San Francisco'), toupper(segregation$Metro)),]</pre>
        } else if (city == 'inlandempire') {
            row <- segregation[grepl(toupper('Riverside'), toupper(segregation$Metro)),]</pre>
        } else if (city == 'sandiego') {
            row <- segregation[grep1(toupper('San Diego'), toupper(segregation$Metro)),]
        } else if (city == 'newyork') {
            row <- segregation[grepl(toupper('New York'), toupper(segregation$Metro)),]</pre>
        } else if (city == 'losangeles') {
            row <- segregation[grepl(toupper('Los Angeles'), toupper(segregation$Metro)),]
        } else if (city == 'atlanta') {
            row <- segregation[grepl(toupper(city), toupper(segregation$Metro)),]</pre>
        } else if (city == 'baltimore') {
            row <- segregation[grepl(toupper(city), toupper(segregation$Metro)),]</pre>
    }
    row$city <- city</pre>
    df <- rbind(df, row)</pre>
```

```
rental_response_data <- rental_response_data %>% merge(df)
```

This script will use the saved rental response data once that is is fully populated. In the meantime, artificial data will need to be generated:

```
# predicted response ratios by group
rr_white_male = .5
rr_white_female = .7
rr_black_male = .3
rr_black_female = .35
white_male_names = c("Brad Anderson", "Steven Smith", "Luke Mitchell", "Brian Bailey")
white_female_names = c("Hilary Roberts", "Amy Morgan", "Stephanie Nelson", "Kristen Hall")
black_male_names = c("Jamal Jefferson", "DeAndre Jackson", "Terell Robinson", "Jayvon Carter")
black_female_names = c("Shanice Thomas", "Tionna Wilson", "Ebony Williams", "Tyra Booker")
# to have fake data to work with:
rental_response_data <- rental_response_data %>%
  filter(city != 'test') %>%
  mutate(response = ifelse(!is.na(response_timestamp), 1, 0))
# comment this out once data pipeline fully working:
rental_response_data$response <- NA
rental_response_data$sending_name <- NA
for (i in 1:nrow(rental_response_data)) {
  female = rental_response_data$female[i]
  black = rental_response_data$black[i]
  rental_response_data$response[i] = ifelse(female == 1 & black == 1, sample(0:1, 1,
                                                           prob = c(1-rr_black_female, rr_black_female)
                                     ifelse(female == 1 & black == 0, sample(0:1, 1,
                                                           prob = c(1-rr_white_female, rr_white_female)
                                     ifelse(female == 0 & black == 0, sample(0:1, 1,
                                                           prob = c(1-rr_white_male, rr_white_male)),
                                            sample(0:1, 1, prob = c(1-rr_black_male, rr_black_male)))))
  rental_response_data$sending_name[i] = ifelse(female == 1 & black == 1, sample(black_female_names),
                                         ifelse(female == 1 & black == 0, sample(white_female_names),
                                         ifelse(female == 0 & black == 0, sample(white_male_names),
                                            sample(black_male_names))))
}
```

Here we add indicator variables for each of the name effects, and build each model.

We'll be using models ranging from a more simple model with 3 terms:

```
Response = \alpha + \beta_1 Female + \beta_2 Black + \beta_3 Female * Black
```

To models with controls for cities and names:

```
d <- as.data.table(rental response data)</pre>
d <- d[, Brian Bailey := ifelse(sending name == 'Brian Bailey', 1, 0)]</pre>
d <- d[, Steven Smith := ifelse(sending name == 'Steven Smith', 1, 0)]
d <- d[, Luke_Mitchell := ifelse(sending_name == 'Luke Mitchell', 1, 0)]</pre>
d <- d[, Kristen_Hall := ifelse(sending_name == 'Kristen Hall', 1, 0)]</pre>
d <- d[, Stephanie_Nelson := ifelse(sending_name == 'Stephanie Nelson', 1, 0)]</pre>
d <- d[, Amy_Morgan := ifelse(sending_name == 'Amy Morgan', 1, 0)]</pre>
d <- d[, DeAndre_Jackson := ifelse(sending_name == 'DeAndre_Jackson', 1, 0)]</pre>
d <- d[, Terell_Robinson := ifelse(sending_name == 'Terell Robinson', 1, 0)]</pre>
d <- d[, Jayvon_Carter := ifelse(sending_name == 'Jayvon Carter', 1, 0)]</pre>
d <- d[, Tionna_Wilson := ifelse(sending_name == 'Tionna Wilson', 1, 0)]</pre>
d <- d[, Ebony_Williams := ifelse(sending_name == 'Ebony Williams', 1, 0)]</pre>
d <- d[, Tyra_Booker := ifelse(sending_name == 'Tyra Booker', 1, 0)]</pre>
mod_simple <- d[,lm(response ~ female + black + female:black)]</pre>
mod_city_controls <- d[,lm(response ~ female + black + female:black + city)]</pre>
mod_city_segregation_1 <- d[,lm(response ~ female + black + female:black + Divergence)]</pre>
mod_city_segregation_2 <- d[,lm(response ~ female + black + female:black + Segregation.Category)]
mod_name_controls <- d[,lm(response ~ female + black + female:black + city +</pre>
                                         Brian_Bailey + Steven_Smith + Luke_Mitchell +
                                         DeAndre_Jackson + Terell_Robinson + Jayvon_Carter +
                                         Tionna_Wilson + Ebony_Williams + Tyra_Booker)]
```

Now can render the stargazer table and a plot if desired:

```
##
##
                                                            Dependent variable:
##
##
                                                                 response
##
                                                 (1)
                                                           (2)
                                                                    (3)
                                                                              (4)
                                                                                        (5)
## female
                                             0.204*** 0.205*** 0.204*** 0.204***
                                                                                     0.220***
##
                                               (0.014)
                                                        (0.014)
                                                                            (0.014)
                                                                                      (0.023)
                                                                  (0.014)
##
## black
                                             -0.191*** -0.191*** -0.191*** -0.191***
##
                                               (0.014)
                                                        (0.014)
                                                                  (0.014) (0.014)
                                                                                      (0.028)
##
## citybaltimore
                                                        -0.034
                                                                                      -0.036
```

##		(0.030)	(0.030)	
## ##	cityboston	-0.025	-0.025	
##	·	(0.030)	(0.030)	
## ##	citychicago	0.009	0.007	
##	010,0110080	(0.030)	(0.030)	
##		0.004	0.000	
## ##	citydallas	-0.031 (0.030)	-0.032 (0.030)	
##				
	citydenver	0.011	0.008	
## ##		(0.030)	(0.030)	
	citydetroit	-0.029	-0.031	
##		(0.030)	(0.030)	
## ##	cityhouston	-0.008	-0.010	
##	Cltynouston	(0.030)	(0.030)	
##				
## ##	cityinlandempire	-0.038 (0.030)	-0.040 (0.030)	
##		(0.030)	(0.030)	
	citymiami	-0.043	-0.044	
##		(0.030)	(0.030)	
## ##	cityminneapolis	-0.013	-0.014	
##		(0.030)	(0.030)	
##		0.007	0.000	
##	cityphiladelphia	-0.007 (0.030)	-0.008 (0.030)	
##		(0.000)	(0.000)	
	cityphoenix	-0.002	-0.003	
## ##		(0.030)	(0.030)	
	citysandiego	-0.028	-0.029	
##		(0.030)	(0.030)	
##	cityseattle	-0.022	-0.024	
##	CitySeattle	(0.030)	(0.030)	
##				
	citysfbay	-0.029	-0.030	
## ##		(0.030)	(0.030)	
##	citytampa	-0.013	-0.016	
##		(0.030)	(0.030)	
## ##	citywashingtondc	-0.015	-0.016	
##	· · · · · · · · · · · · · · · · · · ·	(0.030)	(0.030)	
##	n.	0.000		
## ##	Divergence	0.003 (0.066)	0.003	
##		(0.000)		
##	Segregation.CategoryLow-Medium Segregation		0.0001	

```
(0.016)
##
##
## Brian Bailey
                                                                                   0.002
                                                                                   (0.028)
##
##
## Steven Smith
                                                                                   0.022
##
                                                                                   (0.028)
##
## Luke_Mitchell
                                                                                   0.037
##
                                                                                   (0.028)
##
                                                                                  -0.019
##
  DeAndre_Jackson
##
                                                                                   (0.029)
##
## Terell_Robinson
                                                                                  -0.042
##
                                                                                   (0.029)
##
  Jayvon_Carter
                                                                                  -0.027
##
                                                                                  (0.028)
##
## Tionna_Wilson
                                                                                  0.070**
##
                                                                                   (0.028)
##
## Ebony Williams
                                                                                  0.050*
##
                                                                                   (0.028)
## Tyra_Booker
                                                                                  0.059**
                                                                                   (0.028)
##
##
## female:black
                                           -0.154*** -0.155*** -0.154*** -0.154***
##
                                            (0.020)
                                                      (0.020)
                                                               (0.020)
                                                                        (0.020)
                                                                                  (0.036)
##
                                           0.492*** 0.509*** 0.491*** 0.492***
                                                                                 0.495***
## Constant
##
                                            (0.010)
                                                      (0.023)
                                                               (0.019)
                                                                        (0.010)
                                                                                  (0.029)
## Observations
                                             9,000
                                                       9,000
                                                                9,000
                                                                          9,000
                                                                                   9,000
## R2
                                             0.094
                                                       0.095
                                                                0.094
                                                                          0.094
                                                                                   0.096
## Adjusted R2
                                             0.094
                                                       0.093
                                                                0.094
                                                                          0.094
                                                                                   0.093
*p<0.1; **p<0.05; ***p<0.01
plot_data <- data.frame('Class' = c('White male', 'Black male', 'White Female', 'Black Female'),</pre>
                       'Response' = c(coef(mod_simple)[1],
                                     coef(mod_simple)[1] + coef(mod_simple)[3],
                                     coef(mod_simple)[1] + coef(mod_simple)[2],
                                     coef(mod_simple)[1] + coef(mod_simple)[2] + coef(mod_simple)[3]
ggplot(plot_data) +
 geom_bar( aes(x=Class, y=Response), stat="identity", fill="blue", alpha=0.8)
```


By looking at the terms for female, black and the female:black interaction term, we can assess the hypotheses of whether racial/ethnic minorities in the US subject to bias when seeking housing, and whether such bias vary by gender.