Intervals, Transformations, and Slope Solution (version 8)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-6,0) \cup (4,7)$
Negative	$(0,4) \cup (7,9)$
Increasing	$(-6, -5) \cup (3, 5)$
Decreasing	$(-5,3) \cup (5,9)$
Domain	(-6,9)
Range	(-6, 10)

Intervals, Transformations, and Slope Solution (version 8)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=47$ and $x_2=87$. Express your answer as a reduced fraction.

$$\frac{f(87) - f(47)}{87 - 47} = \frac{78 - 73}{87 - 47} = \frac{5}{40}$$

The greatest common factor of 5 and 40 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{1}{8}$$

2