

CSE322

Pushdown Automata: Deterministic Pushdown Automata and non-deterministic Pushdown Automata &

Context free languages and Pushdown Automata

Lecture #32

Pushdown Automata and Context Free Language

- The set accepted by pda are Context Free Language.
- So For Pda we can draw CFL and for given CFL we can draw Pda.

Construction of Pda for Given CFL

Theorem If L is a context-free language, then we can construct a pda A accepting L by empty store, i.e. L = N(A).

Construction of CFL for given PDA

Theorem If $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a pda, then there exists a context-free grammar G such that L(G) = N(A).

Proof We first give the construction of G and then prove that N(A) = L(G).

Step 1 (Construction of G). We define $G = (V_N, \Sigma, P, S)$, where

$$V_N = \{S\} \cup \{[q, Z, q'] \mid q, q' \in Q, Z \in \Gamma\}$$

i.e. any element of V_N is either the new symbol S acting as the start symbol for G or an ordered triple whose first and third elements are states and the second element is a pushdown symbol.

The productions in P are induced by moves of pda as follows:

 R_1 : S-productions are given by $S \to [q_0, Z_0, q]$ for every q in Q.

 R_2 : Each move erasing a pushdown symbol given by $(q', \Lambda) \in \delta(q, a, Z)$ induces the production $[q, Z, q'] \to a$.

 R_3 : Each move not erasing a pushdown symbol given by $(q_1, Z_1 Z_2 \dots Z_m) \in \delta(q, a, Z)$ induces many productions of the form

$$[q, Z, q'] \rightarrow a[q_1, Z_1, q_2][q_2, Z_2, q_3] \dots [q_m, Z_m, q']$$

where each of the states q', q_2 , ..., q_m can be any state in Q. Each move yields many productions because of R_3 . We apply this construction to an example before proving that L(G) = N(A).

EXAMPLE

Construct a context-free grammar G which accepts N(A), where

$$A = (\{q_0, q_1\}, \{a, b\}, \{Z_0, Z\}, \delta, q_0, Z_0, \emptyset)$$

and δ is given by

$$\delta(q_0, b, Z_0) = \{(q_0, ZZ_0)\}$$

$$\delta(q_0, \Lambda, Z_0) = \{(q_0, \Lambda)\}$$

$$\delta(q_0, b, Z) = \{(q_0, ZZ)\}$$

$$\delta(q_0, a, Z) = \{(q_1, Z)\}$$

$$\delta(q_1, b, Z) = \{(q_1, \Lambda)\}$$

$$\delta(q_1, a, Z_0) = \{(q_0, Z_0)\}$$

Solution

Let

$$G = (V_N, \{a, b\}, P, S)$$

where V_N consists of S, $[q_0, Z_0, q_0]$, $[q_0, Z_0, q_1]$, $[q_0, Z, q_0]$, $[q_0, Z, q_1]$, $[q_1, Z_0, q_0]$, $[q_1, Z_0, q_1]$, $[q_1, Z, q_0]$, $[q_1, Z, q_1]$.

The productions are

$$P_1: S \to [q_0, Z_0, q_0]$$

$$P_2: S \to [q_0, Z_0, q_1]$$

 $\delta(q_0, b, Z_0) = \{(q_0, ZZ_0)\}$ yields

$$P_3$$
: $[q_0, Z_0, q_0] \rightarrow b[q_0, Z, q_0][q_0, Z_0, q_0]$

$$P_4$$
: $[q_0, Z_0, q_0] \rightarrow b[q_0, Z, q_1][q_1, Z_0, q_0]$

$$P_5: [q_0, Z_0, q_1] \to b[q_0, Z, q_0][q_0, Z_0, q_1]$$

$$P_6: [q_0, Z_0, q_1] \rightarrow b[q_0, Z, q_1][q_1, Z_0, q_1]$$

 $\delta(q_0, \Lambda, Z_0) = \{(q_0, \Lambda)\}$ gives

$$P_7$$
: $[q_0, Z_0, q_0] \rightarrow \Lambda$

 $\delta(q_0, b, Z) = \{(q_0, ZZ)\}$ gives

$$P_8: [q_0, Z, q_0] \to b[q_0, Z, q_0][q_0, Z, q_0]$$

$$P_9: [q_0, Z, q_0] \to b[q_0, Z, q_1][q_1, Z, q_0]$$

$$P_{10}$$
: $[q_0, Z, q_1] \rightarrow b[q_0, Z, q_0][q_0, Z, q_1]$

$$P_{11}$$
: $[q_0, Z, q_1] \rightarrow b[q_0, Z, q_1][q_1, Z, q_1]$

$$\delta(q_0, a, Z) = \{(q_1, Z)\}\$$
yields

$$P_{12}$$
: $[q_0, Z. q_0] \rightarrow a[q_1, Z. q_0]$

$$P_{13}$$
: $[q_0, Z, q_1] \rightarrow a[q_1, Z, q_1]$

$$\delta(q_1, b, Z) = \{(q_1, \Lambda)\}$$
 gives

$$P_{14}: [q_1, Z, q_1] \to b$$

$$\delta(q_1, a. Z_0) = \{(q_0, Z_0)\}$$
 gives

$$P_{15}$$
: $[q_1, Z_0, q_0] \rightarrow a[q_0, Z_0, q_0]$

$$P_{16}$$
: $[q_1, Z_0, q_1] \rightarrow a[q_0, Z_0, q_1]$

 P_1 - P_{16} give the productions in P.