Восстановление траектории движения руки по видео

Владимиров Эдуард Анатольевич

Московский физико-технический институт

Курс: Моя первая научная статья Эксперт: Р. В. Исаченко Консультанты: А. Д. Курдюкова

2022

Восстановление траектории

Задача

Объединение методов канонического корреляционного анализа и метода Сугихары.

Проблема

Построение скрытого пространства по временному ряду и выбор функции согласования латентных проекций

Решение

Обучение автоэнкодеров и использование меры наличия причинно-следственной связи в функции согласования.

Методы понижения размерности и метод Сугихары

$$\begin{array}{ccc}
X & f & Y & T = XA, X = TP^{T} \\
A \left(P^{T} & Q^{T} \right) B & U = YB, Y = UQ^{T} \\
T & Cov/corr & U \\
T & Cov/corr & U \\
T & Cov/corr & U
\end{array}$$

Статьи по теме

- Edward De Brouwer, Adam Arany, Jaak Simm, and Yves Moreau. Latent convergent cross mapping. In International Conference on Learning Representations, 2020
- 2. George Sugihara and Robert M May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344(6268):734–741, 1990.
- Farukh Yur'evich Yaushev, Roman Vladimirovich Isachenko, and Vadim Strijov. Concordant models for latent space projections in forecasting. Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 31(1):4–16, 2021.

Метод Сугихары (ССМ)

Траекторная матрица

$$\mathbf{H}_{x} = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{n-N+1} \\ x_{2} & x_{3} & \dots & x_{n-N+2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N} & x_{N+1} & \dots & x_{n} \end{bmatrix} = [x^{1}, \dots, x^{n-N+1}]$$

Определение отображения φ между траекторными пространствами

$$\varphi: \mathsf{x}^0 \mapsto \widehat{\mathsf{z}^0} = \sum_{i=1}^k w_i \mathsf{z}^{t_i}, \quad w_i = \frac{u_i}{\sum\limits_{i=1}^k u_i}, \quad u_i = \exp(-||\mathsf{x}^0 - \mathsf{x}^{t_i}||).$$

Метрика связанности временных рядов

$$Score_{X \to Z} = CCM_{full}(X, Z) - CCM_{0}(X, Z)$$

$$CCM_{full}(X, Z) = Corr(\varphi(x^{n-N+1}), x^{n-N+1})$$

$$CCM_{0}(X, Z) = Corr(\varphi(x^{0}), x^{0})$$

Deep PLS

Consistency:
$$\mathcal{L}_{cons}(T, U) = \exp(-\frac{1}{n}tr(U_{centered}^{\mathsf{T}}T_{centered}))$$

Recovering: $\mathcal{L}_{recov}(X, \hat{X}) = ||X - \hat{X}||_2^2$

PLS-CCM

Feature consistency: $\mathcal{L}_{fc}(T,U) = \exp(-\frac{1}{n}tr(U_{centered}^{\mathsf{T}}T_{centered}))$ Object consistency: $\mathcal{L}_{oc}(X,Y,T,U) = (CCM_{XY} - CCM_{TU})^2$ Recovering: $\mathcal{L}_{recov}(X,\hat{X}) = ||X - \hat{X}||_2^2$

Вычислительный эксперимент

Цель

Сравнение различных стратегий снижения размерности пространства.

Результат работы alphapose

Данные видео-кейпоинтов

Анализ ошибки

Таблица: Сравнение ошибки предсказательной модели в траекторном пространстве и в его подпространстве

	acc_z	асс_у	acc_x	gyr_z	gyr_y	gyr_x
space	1.053 ± 2.223	0.401 \pm 0.833	0.483 \pm 0.825	0.084 ± 0.537	0.090 ± 0.094	0.063 \pm 0.295
subspace	0.315 ± 0.461	0.043 \pm 0.051	0.150 ± 0.177	0.001 ± 0.001	0.015 \pm 0.031	0.001 \pm 0.003

Таблица: Сравнение различных методов снижения размерности

	Метод				
		ССМ	PLS	CCA	Naive
Це.	левой признак				
cyclic	acc z	0.163	0.040	0.116	0.141
	acc y	0.009	0.007	0.011	0.008
	acc_x	0.044	0.045	0.089	0.049
	gyr z	0.000	0.001	0.001	0.001
	gyr y	0.002	0.004	0.005	0.003
	gyr x	0.009	0.004	0.004	0.003
chaotic	acc z	0.315	0.416	0.416	0.331
	acc y	0.043	0.045	0.429	0.055
	acc_x	0.150	0.177	0.221	0.143
	gyr ⁻ z	0.001	0.002	0.003	0.003
	gyr y	0.015	0.022	0.061	0.026
	gyr_x	0.001	0.013	0.015	0.008

Заключение

- 1. Предложен метод согласованного снижения размерности, объединяющий в себе методы PLS и Сугихары
- 2. Проведён вычислительный эксперимент на данных устройств и видеоряда
- 3. Получено, что использование данных из видео повышает качество прогнозирования
- 4. Показано, что прогностическая модель менее устойчива в случае, когда та применяется в траекторном пространстве